Чес Коснёвски

НАЧАЛЬНЫЙ КУРС АЛГЕБРАИЧЕСКОЙ ТОПОЛОГИИ:

Вводный курс алгебраической топологии. написанный англий-еким математиком. Изложение сопровождается большим количеством примеров и рисунков, дано около 350 упражнений для самостоятельной проработки. Для математиков различных специальностей, аспирантов и студентов,

желающих познакомиться с основными понятиями алгеораической топологии	
ОГЛАВЛЕНИЕ	
Предисловие редактора перевода	5
_	_

6

Предисловие 8

Глава 0. Множества и группы Глава 1. Истоки; метрические пространства 14

Глава 2. Топологические пространства 20 Глава 3. Непрерывные функции 26

Глава 4. Индуцированная топология 31

Глава 5. Фактортопология (и группы, действующие на пространствах) 38 52

Глава 6. Произведения пространств Глава 7. Компактные пространства 57

Глава 8. Хаусдорфовы пространства 64 Глава 9. Связные пространства 73

Глава 10. Залачи о блинах 79

Глава 11. Многообразия и поверхности	84
Глава 12. Пути и линейно связные пространства	112
Приложение к главе 12. Теорема Жордана	120
Глава 13. Гомотопия непрерывных отображений	132
Глава 14. Умножение путей	140
Francis 15 Arrangement was marked	1.42

Глава 15. Фундаментальная группа Глава 16. Фундаментальная группа окружности Глава 17. Накрывающие пространства 166

175

178

181 186

195

202

214

221

231

239

253

266

272

Глава 18. Фундаментальная группа накрывающего пространства

Глава 20. Теорема Борсука—Улама и теорема о сэндвиче с ветчиной

Глава 22. Еще о накрывающих пространствах: — теоремы существования

Глава 21. Еще о накрывающих пространствах: теоремы о поднятии

Глава 19. Фундаментальная группа пространства орбит

Глава 23. Теорема Зейферта—ван Кампена. І.Образующие.

Глава 24. Теорема Зейферта—ван Кампена. ІІ. Соотношения

Глава 25. Теорема Зейферта—ван Кампена. III. Вычисления

Глава 27. Узлы. І. Предварительные сведения и торические узлы

Глава 26. Фундаментальная группа поверхности

Глава 29. Сингулярные гомологии: введение

Глава 28. Узлы. II. Ручные узлы

Приложение к гл. 28. Таблица узлов

147 157

Глава 30. Рекомендации для дальнейшего ч	
Рекомендуемая литература	295
Указатель	297
УКАЗАТ	
Абелева (коммутативная) группа 12	График функции 53
Аксиомы отделимости 64—65	Группа 10
Алгебраическая топология 150	— гомологии 276
Алфавит 203	 скольжений накрытия 192
Антидискретная топология 21	— слов 203
Антиподальные точки 80	— узла 244
Ассоциативность групповой	Двойная точка узла 243, 253
операции 10	Действие группы на множестве 47, 48
Бабушкин узел 260, 261	Декартово (прямое) произведение
База накрытия 166	множеств 8
Биективная функция 9	Деформационный ретракт 137
Бинарная операция на множестве 10	— — сильный 137
Блоха и гребенка 115	— — слабый 139
Борсук К. 181	Дикий узел 253
<i>Барсука</i> — У <i>лама</i> теорема 181	Диск 84
Браузра теорема о неподвижной	Дискретная метрика 15
точке 164, 289	— топология 21
Ван Кампен Э. 202	Евклидова (обычная) метрика 15
Вещественное проективное	Единичный элемент группы 10
пространство 38	Ёнэяма К. 121
Взаимно однозначная функция 9	Жордан К. 122
Внутренность множества 22	Жордана теорема 122
Восьмерка 218, 222	Жорданова кривая 122
Выпуклое множество 113	Жорданов многоугольник 122
<i>Гейне — Бореля</i> теорема 62	Задачи о блинах 80, 82
Гомеоморфизм 29	Замкнутое множество в
Гомеоморфные топологические	топологическом пространстве
пространства 29	23
Гомоморфизм групп 11 —	— отображение 28
надстройки 292	Замкнутый путь 147
Гомотопическая группа 155	Замыкание множества 24
— эквивалентность 136	Зейферт Х. 202
Гомотопический тип 136	Зейферта — ван Кампена теорема
Гомотопия 132	202, 208, 209, 214, 218, 221, 222,
— относительно подмножества 133	287
Гомотопные отображения 132	Изоморфизм групп 11
Граница 274	Индуцированная топология 31
Граничный оператор 274	Индуцированный гомоморфизм 150
• •	J 1 1

— — групп гомологии 278	Многообразие 84
Интервалы 13, 77	— с краем 111
Инъективная функция 9	Надстройка 291
Классификационная теорема для	Накрывающее отображение 166
поверхностей 99	— пространство 166
Класс эквивалентности 10	Накрытие 166
Классы эквивалентности слов 204	Незаузленный узел 239
Клейна бутылка 42—44, 99, 107,	Неориентируемая поверхность 101
172—173	Непрерывная функция 14
Коммутант 12	— — на метрическом пространстве
Коммутативная (абелева) группа 12	16
Коммутатор 12	— — на топологическом
Компактное множество 58	пространстве 26
Компактно-открытая топология 63	Непрерывное действие группы на
Композиция функций 9	топологическом пространстве
Компонента 120	49—50
Конечное покрытие 57	Неравенство треугольника 14
Конечно порожденная группа 12	Несобственная двойная точка узла
Конус отображения 291	243, 253
Копредставление группы 202, 204	Нормальная подгруппа 11
Кратная точка узла 243, 253	Образ 8
Крендель 91, 99	Образующие группы 12, 205
Кривая 112	Обратная функция 9
Кривые, заполняющие пространство	Обратный элемент в группе 10
120	Обычная (евклидова) метрика 15
Лебега число покрытия 63	— (метрическая) топология 20
Лемма о склейке 113	Ограничение функции 9
Линейно связное пространство 113	Ограниченное множество в Rn 62
Линзовое пространство 168	Односвязное топологическое
Локально компактное пространство	пространство 153
63	Одноточечная компактификация 63
 линейно связное пространство 	Озера Вады 121
119, 186	Окрестность 25
Манера — Вьеториса	Оператор призмы 279
последовательность 287	Орбита 48
<i>Мёбиуса</i> лист (лента) 39, 100	Ориентируемая поверхность 100
Метризуемое топологическое	— — c краем 111
пространство 21	Основная теорема алгебры 163
Метрика 14	Открытое множество в метрическом
Метрическая (обычная) топология 20	пространстве 16
Метрическое пространство 14	— — в топологическом пространстве
Многолистное накрытие 173	20

— отображение 27	Пространство орбит 49
— покрытие 58	Прямая сумма групп 11
Относительная топология 31	Прямое произведение групп 11
Отношение на множестве 10	— — множеств 8
— эквивалентности 10	Пустое слово 203
Отображение вычисления 63	Путь 112
— множеств 8	Равномерно непрерывное
Пеано Дж. 120	отображение метрических
Первая теорема об изоморфизме 11	пространств 124
Поверхности 97	Регулярное накрытие 177
Поверхность в краем 111	Редуцированное слово 203
— — натянутая на узел 263—264	Ретракт 137
Подгруппа 10	— слабый 138
— порожденная элементом 11	Рефлексивность отношения 10
Поднятие 157	Род поверхности 101
— отображения 169	— узла 265
Подпокрытие 57	Ручной узел 253
Подпространство топологического	Свободная абелева группа ранга n 12
пространства 31	 группа, порожденная множеством
Покрытие 57	символов 203
Полулокально односвязное	— — с <i>п</i> образующими 203
пространство 196	Свободное действие группы 88, 168
Польская окружность 190	Свойство универсальности
Постоянная функция на	отображения произведений 54
топологическом пространстве	— — факторпространств 39
26	Связная сумма поверхностей 97
Правильно накрытое множество 166	— — узлов 262
Приведенная теория гомологии 290,	Связное топологическое
292	пространство 73
— — обобщенная в	Связывающие гомоморфизмы 287
коэффициентами 293	Сильный деформационный ретракт
Приведенный конус 291	137
Приклеивание листа Мёбиуса 100	Симметричность отношения 10
— ручки 99	Сингулярная п-мерная цепь 272—273
— ручки 99 — цилиндра 99	* *
*	Сингулярный п-мерный симплекс 272
Произведение путей 140	
Прокоммутированная группа 235	Сквер-узел 260, 261
Прообраз 9	Скольжение накрытия 174
Простая замкнутая кривая 107, 120, 173	Слабый деформационный ретракт 139
— цепь 119	— ретракт 138
Простой узел 262	Следствие (соотношений группы)

205	множества 8
Слова 203	Топологическая группа 154
Смежные классы в группе 10	 — инвариантность размерности 290
Собственно разрывное действие	Топологическое отождествление 41
группы 167	— произведение топологических
Соотношения 205	пространств 52
Сохраняющий ориентацию	— пространство 20
гомеоморфизм 242	Топология 20
Стабилизатор 48	— конечных дополнений 21
Стандартная неориентируемая	Top 42
поверхность рода т 101	Торический узел 247
— ориентируемая поверхность рода <i>n</i>	Точная последовательность 287
101	Транзитивное действие группы 176
Стандартный п-мерный симплекс 272	Транзитивность отношения 10
Степень пути 161	Тривиальная группа 10
Стереографическая проекция 85	Трилистник 242, 260
Стинрод Н. 290	Уайтхеда теорема 156
Стинрода — Эйленберга аксиомы	Узел 239
291—293	Улам Q. 180
Строго эквивалентные узлы 242—	Универсальное накрытие 195
243	Факторгруппа 11
Структурная теорема для конечно	Фактортопология 38
порожденных абелевых групп	Фундаментальная группа 147
12	— — бутылки Клейна 180, 223
Стягиваемое пространство 136	— — восьмерки 219
Сюръективная функция 9	— — линзового пространства 180,
Тверберг Х. 122	213
Теорема о волосатом шаре 290	— — листа Мёбиуса 180
 — о гомотопической инвариантности 279 	— одноточечного пространства222
— о монодромии 162	— — окружности 157, 222
 — о накрывающей гомотопии для 	— — поверхности 231
путей 171	— — проективной плоскости 223—
 — о накрывающем пути 159 	227, 231
— о неподвижной точке 79	——— в выброшенной точкой
 — о промежуточном значении 79 	220
 — о сэндвича а ветчиной 184 	— — проективного пространства 213
Титце преобразования 207	— — пространства орбт 178— 180
Тождественная функция на	— тора 163, 220—223, 231
топологическом пространстве	— — — G выброшенной точкой 220
26	Функтор 150, 279
Тождественное отображение	Функция 8
1	

Хопф Х. 155 Хорда 129 Центр группы 149 Цепно-гомотопные гомоморфизмы 279 Цикл 274 Циклическая группа 12 Шенфлиса теорема 241 Шрейер О. 251

Хаусдорфово пространство 64

Эйленберг С. 290
Эквивалентные накрытия 191
— пути 140
— узлы 242
Эквивариантное отображение 49
Ядро гомоморфизма 11
G-пространство 50
H-пространство 155
Тк-пространство 65

ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА

Предлагаемая вниманию читателя книга освещает в основном те разделы топологии, которые непосредственно примыкают к понятию фундаментальной группы. Вместе с тем она дает и довольно полное представление о наиболее типичных идеях и методах алгебраической топологии.

Материал книги в большинстве своем уже нашел отражение в литературе по топологии на русском языке. Однако здесь он изложен более элементарно, менее формально, и в то же время достаточно лаконично и полно. Новым понятиям и определениям обычно предшествуют наводящие соображения, которые раскрывают их сущность. В ряде мест, в том числе и при изложении основ общей топологии, ощущается оригинальный стиль автора.

Стремление к наглядности и простоте проявляется в наличии большого числа рисунков — автор иногда опускает аналитические формулы, описывающие те или иные построения, предпочитая апеллировать к геометрическому воображению. Там, где это полезно (например, при описании некоторых основных гомеоморфизмов в теории поверхностей или методов вычисления фундаментальной группы), обычно приводится несколько типичных способов рассуждений. Отличительной чертой книги является и наличие большого количества упражнений (всего их около 350), в основном не выше средней трудности. Их назначение не только в том, чтобы контролировать читателя: в форме упражнений в книге сообщается также много дополнительной информации.

Книга адресована начинающему читателю и будет служить хорошим источником для изучения основ алгебранческой (а также общей) топологии. Она будет полезна математикам разных специальностей, интере-

сующимся топологией.

ПРЕДИСЛОВИЕ

Эта книга содержит материал нескольких отдельных вводных курсов алгебраической топологии для студентов со средней подготовкой. Она написана в геометрическом духе и обильно иллюстрирована (в конце концов, топология—это ветвь геометрии). Насколько это возможно, мы избегали абстракции и вообще при введении новых понятий предпочитали непритязательный подход. Предварительные требования сведены к минимуму; не предполагается никаких знаний из общей топологии, что делает эту книгу особенно подходящей для первоначального курса топологии с упором на алгебраическую топологию. На основе этой книги преподаватель сможет достаточно свободно построить свой курс для начинающих.

Книга изобилует многими упражнениями разной

Книга изобилует многими упражнениями разной сложности, которые помогут читателю усвоить материал и проверить себя. Рекомендуется, конечно, выполнить этих упражнений как можно больше, однако мы не считаем это обязательным. Мы редко предполагаем, что читатель проделал упражнения, а если решение используется в тексте, оно обычно приводится.

Книга содержит элементы общей и алгебраической топологии, отобранные по принципу их доступности. Возможно, это и наиболее изящные разделы предмета. В последней главе даны обширные рекомендации для дальнейшего чтения.

Примерно четверть книги отведена общей топологии и три четверти алгебранческой. Общетопологическая часть не содержит обычных патологий. Излагается лишь материал, достаточный для того, чтобы читатель мог быстро перейти к «интересной» части топологии.

В части, посвященной алгебраической топологии, основное внимание уделено фундаментальной группе пространства. Студенты обычно легко ехватывают понятие фундаментальной группы, и это позволяет им быстро понять, чем занимается алгебраическая топология. Подробно изложены теория накрывающих пространств и теорема Зейферта—ван Кампена, а также их применение для вычисления фундаментальных групп. Из других тем упомянем многообразия и поверхности, теорему Жордана (в качестве приложения к гл. 12), теорию узлов и начальные сведения о сингулярных гомологиях.

Так как эта книга посвящена топологии, а не истории топологии, имена и даты упоминаются не всегда.

Эту книгу не обязательно читать подряд. Следующая схема показывает примерную зависимость глав. Например, чтобы полностью понять гл. 18, нужно прочесть главы 0—9, 12—16 и 17.

Чес Коснёвски

Ньюкасл-апон-Тайн

В этой главе мы приводим некоторые основные определения и результаты теории множеств и теории групп, используемые в книге. При дальнейшем чтении лучше всего возвращаться к этой главе по мере необходимости.

Для множеств X, Y запись $Y \subset X$ означает, что Y — подмножество X. Если $Y \subset X$, мы обозначаем через $X \setminus Y$ множество элементов из X, не принадлежащих Y. Пустое множество обозначается символом Ø.

 \mathcal{L} екартово, или прямое, произведение двух множеств X и Y—это множество упорядоченных пар вида

(x, y), где $x \in X$ и $y \in Y$, т. е.

$$X \times Y = \{(x, y): x \in X, y \in Y\}.$$

Аналогично можно определить декартово произведение конечной совокупности множеств $\{X_i: i=1, 2, \ldots, n\}$:

$$X_1 \times X_2 \times \ldots \times X_n = \{(x_1, x_2, \ldots, x_n) : x_i \in X_i, 1 \leqslant i \leqslant n\}.$$

Функция, или отображение, $f: X \to Y$ одного множества в другое - это соответствие, сопоставляющее каждому элементу x из X единственный элемент f(x)из Ү. Тождественное отображение множества Х-это функция 1: $X \longrightarrow X$, такая, что I(x) = x для всех $x \in X$. Oб раз функции $f: X \longrightarrow Y$ определяется как

$$\operatorname{Im}(f) = f(X) = \{ y \in Y \colon y = f(x) \text{ для некоторого } x \in X \}.$$

Заметим, что если W, W'—два подмножества X, то $f(W \cup W') = f(W) \cup f(W'), \qquad f(W \cap W') \subset f(W) \cap f(W').$

Вообще, если есть семейство подмножеств X, скажем $\{W_i: i \in J\}$, где J—некоторое индексирующее множество, то

$$f\left(\bigcup_{j\in J}W_{j}\right)=\bigcup_{j\in J}f\left(W_{j}\right), \qquad f\left(\bigcap_{j\in J}W_{j}\right)\subset\bigcap_{j\in J}f\left(W_{j}\right).$$

Мы часто сокращаем $f: X \to Y$ просто до f, если не может возникнуть недоразумений. Функция $f: X \to Y$ определяет функцию, отображающую X на f(X), которая также обозначается через f. Если A—подмножество X, то ограничение функции f на A обозначается $f \mid A$; функция $f \mid A \mapsto Y$ определена равенством $(f \mid A)$ (a) = f(a) при $a \in A$.

Если Z подмножество Y и $f: X \rightarrow Y$ некоторая функция, то *прообразом* Z при f называется множество

$$f^{-1}(Z) = \{x \in X : f(x) \in Z\}.$$

Заметим, что для семейства $\{Z_j\colon j\in J\}$ подмножеств Z_j из Y

$$\begin{split} f^{-1}\left(\bigcup_{j\in J}Z_{j}\right) &= \bigcup_{j\in J}f^{-1}\left(Z_{j}\right),\\ f^{-1}\left(\bigcap_{j\in J}Z_{j}\right) &= \bigcap_{j\in J}f^{-1}\left(Z_{j}\right),\\ f^{-1}\left(Y \setminus Z_{j}\right) &= X \setminus f^{-1}\left(Z_{j}\right). \end{split}$$

Функция $f: X \to Y$ взаимно однозначна, или инъективна, если из $x_{\mathbf{f}}, x_{2} \in X$, $x_{1} \neq x_{2}$ следует $f(x_{1}) \neq f(x_{2})$. Функция $f: X \to Y$ является отображением X на Y, или сюръективна, если f(X) = Y. Функция $f: X \to Y$, которая инъективна и сюръективна, называется биективной. В этом случае существует обратная функция $f^{-1}: Y \to X$, определенная соотношением

$$x = f^{-1}(y) \Leftrightarrow y = f(x).$$

Если $f\colon X \to Y$ и $g\colon Y \to Z$ — некоторые функции, их композиция $gf\colon X \to Z$ определяется равенством

$$gf(x) = g(f(x)), x \in X.$$

Если $f: X \to Y$ — биективная функция, то $ff^{-1}: Y \to Y$ и $f^{-1}f: X \to X$ — тождественные отображения. Обратно, если $gf: X \to X$ и $fg: Y \to Y$ — тождественные отображения, то f и g — биективные функции, каждая из которых обратна к другой. Из того что $gf: X \to X$ — тождественная функция, следует, что f инъективна и g сюръективна.

Отношение на множестве X—это подмножество \sim в $X \times X$. Обычно пишут $x \sim y$, если $(x, y) \in \sim$. Отношение \sim на X называется отношением эквивалентности, если оно удовлетворяет следующим трем условиям:

(i) Рефлексивносты $x \sim x$ для всех $x \in X$.

(ii) Симметричность: если $x \sim y$, то $y \sim x$. (iii) Транзитивность: если $x \sim y$ и $y \sim z$, то $x \sim z$. Класс эквивалентности элемента x—это множество

$$[x] = \{ y \in X \mid x \sim y \}.$$

Если \sim — отношение эквивалентности на X, то каждый элемент из X принадлежит в точности одному классу эквивалентности.

Бинарная операция на множестве X — это функция $f: X \times X \to X$. Мы сокращаем f(x, y) до xy (мультипликативное обозначение) или иногда до x+y (аддитивное обозначение).

Группа—это множество G вместе с бинарной операцией, удовлетворяющей трем условиям:

(1) Существует элемент $1 \in G$, называемый единичным элементом, такой, что g1 = 1g = g для всех $g \in G$.

(2) Для любого $g \in G$ найдется элемент $g^{-1} \in G$, обратный к g, такой, что $gg^{-1} = g^{-1}g = 1$.

(3) Для всех g_1 , g_2 , $g_3 \in G$ имеет место ассоциативность, т. е. $(g_1g_2)g_3 = g_1(g_2g_3)$.

В аддитивных групповых обозначениях единичный элемент обозначается символом 0, а обратный к g — символом — g. Группа, единственным элементом которой является единичный, -- это тривиальная группа {1} или {0}.

 Π одмножество H группы G называется подгруппой, если Н-группа относительно бинарной операции на С. Если H — подгруппа G и $g \in G$, то левый смежный класс группы G по H, определяемый элементом g, — это подмножество

$$gH = \{gh: h \in H\}.$$

Правые смежные классы определяются аналогично. Два левых смежных класса gH, g'H по подгруппе H либо не пересекаются, либо совпадают.

Прямое произведение $G \times H$ групп G и H — это множество $G \times H$ с бинарной операцией, определенной равенством (g, h)(g', h') = (gg', hh'). В аддитивном случае мы говорим о прямой симме и обозначаем ее $G \oplus H$.

чае мы говорим о *прямой сумме* и обозначаем ее $G \bigoplus H$. Гомоморфизм $f \colon G \to H$ группы G в группу $H \to T$ функция, для которой при всех $g, g' \in G$

$$f(gg') = f(g) f(g').$$

Если гомоморфизм $f: G \to H$ биективен, то мы называем f изоморфизмом, а группы G и H изоморфными и пишем $G \cong H$ или $f: G \cong H$. Ядро гомоморфизма $f: G \to H$ — это множество

$$\ker f = \{g \in G: f(g) = 1_H\},\$$

где 1_H — единичный элемент в H. Ядро изоморфизма состоит только из единичного элемента группы G.

Подгруппа K группы G называется нормальной, если $gkg^{-1} \in K$ для всех $g \in G$, $k \in K$. Ядро любого гомоморфизма $f: G \to H$ —нормальная подгруппа в G. Гомоморфизм $f: G \to H$ инъективен тогда и только тогда, когда $\ker f = \{1\}$.

Если K — нормальная подгруппа G, то левый смежный класс gK совпадает с правым смежным классом Kg, и множество G/K всех левых смежных классов по K является группой относительно операции

$$(gK)(g'K) = (gg')K.$$

Мы называем *G/K факторгруппой G* по *K*.

Первая теорема об изоморфизме утверждает, что если $f: G \longrightarrow H$ — сюръективный гомоморфизм из группы G на группу H с ядром K, то H изоморфна факторгруппе G/K.

Если $g \in G$, то подгруппа, порожденная элементом g,— это подмножество G, состоящее из всех це-

лых степеней д:

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \},$$

где
$$g^n = \overbrace{gg \dots g}^n$$
 при $n \geqslant 0$ и $g^n = \overbrace{g^{-1}g^{-1}\dots g^{-1}}^{-n}$ при $n < 0$.

В аддитивных обозначениях имеем

$$\langle g \rangle = \{ ng : n \in \mathbb{Z} \},$$

где
$$ng = \overbrace{g+g+\ldots+g}^n$$
 при $n \geqslant 0$ и $ng = \overbrace{(-g)+}$

 $+(-g)+\ldots+(-g)$ при n<0. Если $G=\langle g\rangle$ для некоторого g, то мы говорим, что G- циклическая группа с образующим элементом g. Вообще, множество образующих группы G- это подмножество S в G, такое, что каждый элемент из G является произведением элементов из S. Если S конечно, то мы говорим, что G конечно порождена.

Группа G называется абелевой или коммутативной, если gg'=g'g для всех $g,g'\in G$. Например, множество целых чисел \mathbb{Z} —абелева группа (обозначения аддитивные), более того, она является циклической группой с образующей +1 или -1.

Cвободная абелева группа ранга n-это группа,

изоморфная $\mathbb{Z} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z}$ (n экземпляров).

Структурная теорема для конечно порожденных абелевых групп утверждает: если G—конечно порожденная абелева группа, то G изоморфна группе

$$H_0 \bigoplus H_1 \bigoplus \ldots \bigoplus H_m$$
,

где H_0 —свободная абелева группа и H_i , $i=1, 2, \ldots, m$,— циклические группы, порядки которых являются степенями простых чисел. Ранг группы H_0 и порядки циклических подгрупп H_1, H_2, \ldots, H_m определены однозначно.

Коммутатор в группе G — это элемент вида $ghg^{-1}h^{-1}$. Коммутант группы G — это подмножество G, состоящее из всех конечных произведений коммутаторов в G (оно является подгруппой). Коммутант K — нормальная подгруппа G и в действительности наименьшая подгруппа G, для которой G/K абелева.

Мы используем буквы \mathbb{R} , \mathbb{C} , \mathbb{Z} , \mathbb{N} , \mathbb{Q} для обозначения множеств вещественных, комплексных, целых, натуральных (или целых положительных) и рациональных чисел соответственно. Часто мы называем \mathbb{R} вещественной прямой, а \mathbb{C} комплексной плоскостью.

Множество \mathbb{R}^n —это декартово произведение n экземпляров \mathbb{R} . Мы используем следующие обозначения для некоторых подмножеств \mathbb{R} (называемых *интервалами*):

$$(a, b) = \{x \in \mathbb{R}: \ a < x < b\}, \\ [a, b] = \{x \in \mathbb{R}: \ a \le x \le b\}, \\ [a, b) = \{x \in \mathbb{R}: \ a \le x < b\}, \\ (a, b] = \{x \in \mathbb{R}: \ a < x \le b\}.$$

Смысл подмножеств (— ∞ , b], (— ∞ , b), [a, ∞) и (a, ∞) очевиден. Заметим, что (— ∞ , ∞) = \mathbb{R} .

Отметим, что (a, b) может означать пару элементов, например точку в \mathbb{R}^2 , а также интервал в \mathbb{R} . Что имеется в виду в каждом частном случае, должно быть ясно из контекста.

ИСТОКИ: МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

В топологии изучаются множества с определенной «структурой», которая позволяет придать смысл вопросу: непрерывна или нет функция $f \colon X \to Y$? В этой главе мы выясним, что это за «структура», на примере евклидовых и метрических пространств.

Напомним, что функция $f: \mathbb{R} \to \mathbb{R}$ называется непре-

рывной в точке x, если для любого $\varepsilon_x>0$ существует такое $\delta_x>0$, что $|f(y)-f(x)|<\varepsilon_x$, как только $|y-x|<\delta_x$. Функция называется непрерывной, если она непрерывна во всех точках $x \in \mathbb{R}$. Это определение непрерывности

можно расширить на функции $f: \mathbb{R}^n \to \mathbb{R}^m$ простой заменой знака модуля на евклидово расстояние. Вообще, если у нас есть множества с «функциями расстояния», то можно определить непрерывность при помощи этих функций. «Функция расстояния», или метрика, должна

удовлетворять некоторым очевидным условиям; они приводят к следующему определению. **1.1.** Определение. Пусть A — некоторое множество.

Функция $d: A \times A \longrightarrow \mathbb{R}$, удовлетворяющая условиям (i) d(a, b) = 0 тогда и только тогда, когда a = b.

(ii) $d(a, b) + d(a, c) \geqslant d(b, c)$ для всех $a, b, c \in A$, называется метрикой на А. Множество А с определенной на нем метрикой называется метрическим простран-

ством и обозначается (A, d) или просто M.

Второе свойство известно как неравенство треугольника.

1.2. Упражнение. Покажите, что если d — метрика на A, то $d(a, b) \ge 0$ н d(a, b) = d(b, a) для всех $a, b \in A$.

Если взять $A = \mathbb{R}$ и d(x, y) = |x - y|, то нетрудно видеть, что d — метрика. Вообще, возьмем $A = \mathbb{R}^n$ и определим *d* равенством

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2} = ||x - y||,$$

где $x = (x_i, x_2, \ldots, x_n)$ и $y = (y_i, y_2, \ldots, y_n)$. Снова нетрудно показать, что d—метрика на \mathbb{R}^n . Эта метрика называется евклидовой или обычной метрикой.

Два других примера метрик на $A = \mathbb{R}^n$ задаются равенствами

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|, \quad d(x, y) = \max_{1 \le i \le n} |x_i - y_i|.$$

Проверку того, что это действительно метрики, мы оставляем читателю в качестве упражнения.

Наконец, если A — любое множество, на нем можно определить метрику по правилу: d(x, y) = 0 при x = y и d(x, y) = 1 при $x \neq y$. Полученная метрика называется дискретной метрикой на A.

1.3. Упражнения. (а) Покажите, что каждая из следующих функций является метрикой на \mathbb{R}^n :

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2} = \|x - y\|; \quad d(x, y) = \left\{\begin{array}{ll} 0 \text{ при } x = y, \\ 1 \text{ при } x \neq y. \end{array}\right.$$

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|; \quad d(x, y) = \max_{1 \le i \le n} |x_i - y_i|.$$

(b) Покажите, что $d(x, y) = (x - y)^2$ не определяет метрику на \mathbb{R} .

(c) Покажите, что $d(x, y) = \min_{1 \leqslant i \leqslant n} |x_i - y_i|$ не определяет метрику на \mathbb{R}^n .

(d) Пусть d — метрика и r — положительное число. Покажите, что функция d_r , определенная равенством $d_r(x, y) = rd(x, y)$, также является метрикой.

(e) Пусть d—метрика. Покажите, что d'(x, y) = d(x, y)/(1 + d(x, y))

также является метрикой.

(f) Определим d(x, y) в \mathbb{R}^2 как наименьшее целое число, большее или равное обычному расстоянию между x и y. Является ли d метрикой на \mathbb{R}^2 ?

Теперь легко определить непрерывность отображений метрических пространств.

- **1.4.** Определение. Пусть (A, d_A) , (B, d_B) —метрические пространства. Функция $f: A \to B$ называется непрерывной в точке $x \in A$, если для любого $\varepsilon_x > 0$ существует такое $\delta_x > 0$, что $d_B(f(x), f(y)) < \varepsilon_x$, как только $d_A(x, y) < \delta_x$. Функция называется непрерывной, если она непрерывна во всех точках $x \in A$.
- **1.5.** Упражнения. (а) Пусть A метрическое пространство с метрикой d. Пусть $y \in A$. Покажите, что функция $f \colon A \longrightarrow \mathbb{R}$, определенная равенством f(x) = d(x, y), непрерывна, если \mathbb{R} снабжено обычной метрикой.

(b) Пусть M— метрическое пространство (\mathbb{R} , d), где d— обычная евклидова метрика. Пусть M_0 — метрическое пространство

 (\mathbb{R}, d_0) , где d_0 — дискретная метрика, т. е.

$$d_0 (x, y) = \left\{ \begin{array}{ll} 0 & \text{при} & x = y, \\ 1 & \text{при} & x \neq y. \end{array} \right.$$

Покажите, что все функции $f \colon M_0 \longrightarrow M$ непрерывны. Покажите, что не существует инъективной непрерывной функции из M в M_{0*}

Часто оказывается, что при изменении метрики на A или B множество всех непрерывных функций, отображающих A в B, не меняется. Примеры такого рода приводятся в следующих упражнениях.

1.6. Упражнения. (а) Пусть A, B — метрические пространства с метриками d и d_B соответственно. Пусть d_r — метрика на A, введенная в упр. 1.3 (d) (т. е. d_r (x, y) = rd (x, y). Пусть f — функция, отображающая A в B. Докажите, что f тогда и только тогда непрерывна относительно метрики d на A, когда она непрерывна относительно метрики d_r на A.

(b) Докажите то же, что и в (a), с заменой d, на метрику d'

из упр. 1.3 (е).

Итак, метрика не является определяющим критерием того, будет ли функция непрерывной. Главным здесь оказывается понятие открытого множества.

1.7. Определение. Подмножество U метрического пространства (A, d) называется $\mathit{открытым}$, если для любого $x \in U$ существует такое $\varepsilon_x > 0$, что из $y \in A$ и $d(y, x) < \varepsilon_x$ следует $y \in U$.

Другими словами, U открыто, если для любого $x \in U$ существует такое $\varepsilon_x > 0$, что $B_{\varepsilon_x}(x) = \{y \in A: \ d(y, x) < < \varepsilon_x\} \subset U$.

Примером открытого множества в \mathbb{R} является интервал $(0, 1) = \{x \in \mathbb{R}: 0 < x < 1\}$. В \mathbb{R}^2 открытыми являются следующие множества:

$$\{(x, y) \in \mathbb{R}^2: x^2 + y^2 < 1\}, \quad \{(x, y) \in \mathbb{R}^2: x^2 + y^2 > 1\}, \\ \{(x, y) \in \mathbb{R}^2: 0 < x < 1, 0 < y < 1\}.$$

1.8. Упражнения. (а) Покажите, что $B_{\varepsilon}(x)$ — открытое множество для всех x и всех $\varepsilon > 0$.

(b) Какие из следующих подмножеств \mathbb{R}^2 (с обычной метрикой) открыты:

$$\{(x, y): x^2 + y^2 < 1\} \cup \{(1, 0)\}, \qquad \{(x, y): x^2 + y^2 \le 1\},$$

$$\{(x, y): |x| < 1\}, \qquad \{(x, y): x + y < 0\},$$

$$\{(x, y): x + y \ge 0\}, \qquad \{(x, y): x + y = 0\}?$$

(c) Покажите, что если \mathcal{F} —совокупность всех открытых подмножеств метрического пространства, то (i) пустое множество \varnothing и все пространство принадлежит \mathcal{F} ; (ii) пересечение двух элементов \mathcal{F} принадлежит \mathcal{F} ; (iii) объединение любого числа элементов \mathcal{F} принадлежит \mathcal{F} .

(d) Приведите пример бесконечного семейства открытых множеств в \mathbb{R} (c обычной метрикой), пересечение которых не открыто.

Используя понятие открытого множества, мы получаем следующий ключевой результат.

1.9. Теорема. Функция $f: M_1 \to M_2$ из одного метрического пространства в другое тогда и только тогда непрерывна, когда для любого открытого множества U в M_2 множество $f^{-1}(U)$ открыто в M_1 .

Этот результат утверждает, что f непрерывна в том и только в том случае, когда прообразы открытых множеств открыты. Он не утверждает, что образы открытых множеств открыты.

Доказательство. Пусть d_1 и d_2 —метрики на M_1 и M_2 соответственно. Предположим, что f непрерывна, и пусть U—открытое подмножество M_2 . Пусть $x \in f^{-1}(U)$, так что $f(x) \in U$. Поскольку U открыто, найдется такое $\epsilon > 0$, что $B_\epsilon(f(x)) \subset U$. Непрерывность f гарантирует существование такого $\delta > 0$, что

$$d_1(x, y) < \delta \Longrightarrow d_2(f(x), f(y)) < \varepsilon,$$

или, другими словами, что $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \subset U$. Это означает, что $B_{\delta}(x) \subset f^{-1}(U)$. Так как это верно для

всех $x \in f^{-1}(U)$, то $f^{-1}(U)$ — открытое подмножество M_1 . Обратно, пусть $x \in M_1$; тогда для любого $\varepsilon > 0$ множество $B_{\varepsilon}(f(x))$ есть открытое подмножество M_2 , так что $f^{-1}(B_{\varepsilon}(f(x)))$ — открытое подмножество $M_{\mathfrak{L}}$, Поскольку $x \in f^{-1}(B_{\varepsilon}(f(x)))$ — открытое подмножество $M_{\mathfrak{L}}$. Поскольку $x \in f^{-1}(B_{\varepsilon}(f(x)))$, найдется $\delta > 0$, для которого $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$, т. е. $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Другими словами, найдется такое $\delta > 0$, что $d_{\mathfrak{L}}(f(x), f(y)) < \varepsilon$, как только $d_{\mathfrak{L}}(x, y) < \delta$, а это означает непрерывность f. \square

Эта теорема говорит нам, в частности, что если две метрики на множестве порождают одну и ту же совокупность открытых множеств, то любая функция, непрерывная относительно одной метрики, автоматически непрерывна и относительно другой. Таким образом, упр. 1.6 можно перефразировать так: покажите, что метрики d, d, и d' порождают одну и ту же совокупность открытых множеств.

1.10. Упражнение. Какая из метрик $d(x, y) = \sum |x_i - y_i|$, $d(x, y) = \max |x_i - y_i|$ на \mathbb{R}^n порождает то же семейство открытых множеств, что и обычная метрика \mathbb{R}^n ?

Из сказанного выше мы видим, что для изучения непрерывности функций на метрических пространствах важна именно совокупность открытых множеств в каждом из них, а не сама метрика. Это приводит к следом из них, а не сама метрика. Это приводит к следующей идее: на заданном множестве X выберем некоторую совокупность \mathcal{F} его подмножеств и назовем их открытыми. Это даст нам некий объект (X, \mathcal{F}) , состоящий из множества X вместе с совокупностью \mathcal{F} его подмножеств. Непрерывность отображений таких объектов (X, \mathcal{F}) , (Y, \mathcal{F}') можно определить, назвав функцию $f \colon X \longrightarrow Y$ непрерывной, если $f^{-1}(U) \in \mathcal{F}$, как только $U \in \mathcal{F}'$. Конечно, если бы мы допустили произвольные совокупности, то не получили бы никакой интересной математики. Поэтому мы потребуем, чтобы совокупность \mathcal{F} открытых множеств подчинялась нескольким простым правилам, тем самым, которым подчиняется совокупность открытых множеств в метрическом пространстве (упр. 1.8 (с)). Эти правила таковы: (i) (для удобства) пустое множество \varnothing и все мно-

жество принадлежат F;

(ii) пересечение двух элементов \mathcal{F} принадлежит \mathcal{F} ; (iii) объединение *любого* числа элементов \mathcal{F} принадлежит \mathcal{F} .

Под «структурой», связанной с множеством X, о которой говорилось в начале этой главы, понимается просто совокупность \mathcal{F} подмножеств X, удовлетворяющая этим трем условиям. Это и есть исходный пункт топологии.

ТОПОЛОГИЧЕСКИЕ ПРОСТРАНСТВА

Топологическое пространство — это множество вместе с некоторой совокупностью его подмножеств (которые называются открытыми), удовлетворяющей трем условиям.

2.1. Определение. Пусть X — множество и \mathcal{U} — совокупность его подмножеств, удовлетворяющая условиям

(i) $\varnothing \in \mathcal{U}$, $X \in \mathcal{U}$,

(ii) пересечение двух множеств из $\mathcal U$ принадлежит $\mathcal U$, (iii) объединение любой совокупности множеств из $\mathcal U$ принадлежит $\mathcal U$.

Такая совокупность $\mathcal U$ подмножеств X называется топологией на X. Множество X вместе с $\mathcal U$ называется топологическим пространством и обозначается $(X, \mathcal U)$, что часто сокращается до T или просто X. Множества $U \in \mathcal U$ называются открытыми множествами топологического пространства T. Элементы множества X называются точками пространства T.

Заметим, что из условия (ii) следует, что пересечение любого конечного числа множеств из $\mathcal U$ принадлежит $\mathcal U$. Если обозначить множество всех подмножеств X через $\mathcal S(X)$, то топология на X— это выбор совокупности $\mathcal U \subset \mathcal S(X)$, удовлетворяющей приведенным выше условиям (i), (ii) и (iii). Различные выборы $\mathcal U$ дают различные топологии на X.

Важно иметь много примеров топологических пространств. Из результатов предыдущей главы немедленно получаем, что любое метрическое пространство определяет топологическое пространство, о котором говорят, что оно имеет метрическую или обычную топологию. Обратное неверно, т. е. существуют топологи-

ческие пространства, которые не возникают ни из какого метрического пространства (см. упр. 2.2 (с)). Топологические пространства, возникающие из метрических, называются метризуемыми. Заметим, что два метрических пространства могут определять одно и то же топологическое пространство.

Следующие два примера топологических пространств мы получим, рассмотрев крайние случаи возможных совокупностей подмножеств X, удовлетворяющих аксиомам топологии. Первый из них получается, когда $\mathcal{U} = \{\varnothing, X\}$. Это семейство определяет топологию на любом множестве X, называемую антидискретной топологией. Другой крайний случай—когда \mathcal{U} совпадает с множеством $\mathscr{S}(X)$ всех подмножеств X; этот случай дает топологию на X, называемую дискретной.

2.2. Упражнения. (а) Покажите, что если X имеет дискретную топологию, то оно метризуемо. (Указание: рассмотрите дискретную метрику.)

(b) Пусть X—метризуемое топологическое пространство. Докажите, что для любой пары a, b различных точек из X найдутся открытые множества U_a и U_b , содержащие a и b соответственно и такие, что $U_a \cap U_b = \varnothing$.

(c) Воспользуйтесь (b) для доказательства того, что если пространство X содержит не менее двух точек и имеет антидискретичество доказательства точек и имеет антидискретичество доказательного доказа

ную топологию, то оно неметризуемо.

Интересный пример топологии на множестве X известен под названием топологии конечных дополнений. Здесь $\mathcal U$ состоит из \varnothing , X и тех подмножеств X, дополнения которых конечны. Если X само конечно, то это в точности дискретная топология на X. Если X бесконечно, то нужно проверить, что совокупность $\mathcal U$ удовлетворяет трем аксиомам топологии. Первая из них выполняется тривиально. Для проверки второй предположим, что U_1 , $U_2 \in \mathcal U$, так что $X \setminus U_1$ и $X \setminus U_2$ конечны. Тогда $(X \setminus U_1) \cup (X \setminus U_2)$ тоже конечно, но оно равно $X \setminus (U_1 \cap U_2)$, и, таким образом, $U_1 \cap U_2 \in \mathcal U$. Для проверки третьей аксиомы воспользуемся тем, что $X \setminus (\bigcup_{j \in J} U_j) = \bigcap_{j \in J} (X \setminus U_j)$.

Если X состоит из двух точек $\{a, b\}$, то имеется

всего четыре различные топологии на X, а именно

$$\begin{array}{ll} \mathcal{U}_1 = \{\varnothing, X\}; & \mathcal{U}_2 = \{\varnothing, \{a\}, X\}; \\ \mathcal{U}_3 = \{\varnothing, \{b\}, X\}; & \mathcal{U}_4 = \{\varnothing, \{a\}, \{b\}, X\}. \end{array}$$

To, что \mathcal{U}_1 и \mathcal{U}_4 — топологии, уже доказано; проверку того, что \mathcal{U}_2 и \mathcal{U}_3 —тоже топологии, мы оставляем читателю. Заметим, что (X, \mathcal{U}_2) и (X, \mathcal{U}_3) неметризуемы.

Другие примеры топологических пространств даны в следующих упражнениях.

2.3. Упражнения. В каждом из случаев (a), (b), (c) покажите, что 21 — топология на X. (a) $X = \mathbb{R}$, $\mathcal{U} = \{\emptyset\} \cup \{\mathbb{R}\} \cup \{(-\infty, x): x \in \mathbb{R}\}.$

(b) $X = \mathbb{N} =$ положительные целые = натуральные числа, $\mathcal{U} =$

 $=\{\hat{\varnothing}\}\cup\{0_n: n\geq 1\}, \text{ где } 0_n=\{n, n+1, n+2, \ldots\}.$ (c) $X = \mathbb{R}$, $U \in \mathcal{U}$ в том и только в том случае, если U = под-

множество \mathbb{R} и для любого $s \in U$ найдется такое t > s, что $[s, t) \subset U$, где $[s, t) = \{x \in \mathbb{R}: s \leq x < t\}.$

(d) Найдите число различных топологий на множестве из трех

элементов.

(е) Покажите, что ни одна из следующих совокупностей подмножеств R не является топологией:

$$\begin{array}{l} \mathcal{U}_1 = \{\varnothing\} \bigcup \{\mathbb{R}\} \bigcup \{(-\infty, \ x]: \ x \in \mathbb{R}\}; \\ \mathcal{U}_2 = \{\varnothing\} \bigcup \{\mathbb{R}\} \bigcup \{(a, \ b): \ a, \ b \in \mathbb{R}, \ a < b\}. \end{array}$$

Для любого подмножества У топологического пространства Х можно рассмотреть наибольшее содержащееся в Y открытое множество; оно обозначается \mathring{Y} и называется внутренностью Ү. Другими словами, $\dot{Y} = \bigcup U_I$, где $\{U_i: j \in J\}$ —семейство всех открытых

множеств, лежащих в Y. Очевидно, что $x \in \mathring{Y}$ в том и только в том случае, если найдется открытое множество $U \subset Y$, такое, что $x \in U$.

Пусть, например, I^n —следующее подмножество \mathbb{R}^n : $I^n = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, 2, \dots, n\}.$

Если \mathbb{R}^n снабжено обычной топологией (т. е. метрической топологией, определяемой евклидовой метрикой

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$
, то внутренность I^n есть

$$\hat{I}^n = \{x: \ 0 < x_i < 1, \ i = 1, 2, \ldots, n\}.$$

Чтобы убедиться в этом, возьмем $x \in \mathring{I}^n$, и пусть $\varepsilon = \min \{1-x_i, x_i: i=1, 2, \ldots, n\}$. Открытый шар $B_{\varepsilon}(x)$ (т. е. $\{y \in \mathbb{R}^n: d(y, x) < \varepsilon\}$) радиуса ε с центром в точке x содержится в \mathring{I}^n , и потому \mathring{I}^n открыто. С другой стороны, если $x_i = 1$ или 0 для некоторого i, то любой шар $B_r(x)$ радиуса r с центром в x содержит точки, не лежащне в I^n , как бы ни было мало r. Следовательно, такие точки не содержатся во внутренности I^n .

Дополнения открытых множеств имеют специальное название.

2.4. Определение. Подмножество C топологического пространства X называется замкнутым, если $X \setminus C$ открыто.

Следующее утверждение легко следует из теоретикомножественных результатов о дополнениях пересечений и объединений.

- **2.5. Теорема.** (i) \varnothing , X замкнуты;
- (ii) объединение любых двух замкнутых множеств замкнито:
- (iii) пересечение любой совокупности замкнутых множеств замкнуто.

Понятие замкнутого множества можно использовать для определения топологических пространств.

- **2.6.** Упражнения. (а) Пусть X— некоторое множество и \mathscr{V} совокупность его подмножеств, удовлетворяющая условиям (i) \varnothing , $X \in \mathscr{V}$, (ii) объединение любых двух множеств из \mathscr{V} принадлежит \mathscr{V}^2 , (iii) пересечение любой совокупности множеств из \mathscr{V}^2 принадлежит \mathscr{V}^2 . Покажите, что $\mathscr{U} = \{X \setminus V \colon V \in \mathscr{V}^2\}$ топология на X.
 - (b) Докажите, что в дискретном топологическом пространстве

всякое подмножество одновременно открыто и замкнуто.

(c) Покажите, что если топологическое пространство состоит из конечного числа точек, каждая из которых замкнута, то оно имеет дискретную топологию.

(d) Покажите, что в топологическом пространстве (\mathbb{R} , \mathcal{U}), где \mathcal{U} определено в упр. 2.3 (c), каждое из множеств [s, t) открыто и замкнуто.

Для любого подмножества Y топологического пространства X можно рассмотреть наименьшее содержа-

щее Y замкнутое множество; оно обозначается \overline{Y} и называется замыканием Y. Другими словами, $\overline{Y} = \bigcap F_{I}$ где $\{F_j: j \in J\}$ — семейство всех замкнутых множеств, содержащих Y. Следующий результат дает другое описание \overline{Y} .

2.7. Лемма. $x \in \overline{Y}$ тогда и только тогда, когда для любого открытого множества U, содержащего x. $U \cap Y \neq \emptyset$.

Доказательство. Пусть $x \in \overline{Y}$, и предположим, что найдется содержащее x открытое множество U, для которого $U \cap Y = \emptyset$. Множество $X \setminus U$ замкнуто и $Y \subset X \setminus U$, так что $\overline{Y} \subset X \setminus U$ (упр. 2.9 (a)). Но тогда предположение $x \in \overline{Y}$ противоречит тому, что $x \in U$.

Обратно, допустим, что $x \notin \overline{Y}$, т. е. $x \in X \setminus \overline{Y}$. Но $X \setminus \overline{Y}$ открыто и $(X \setminus \overline{Y}) \cap \overline{Y} = \emptyset$, откуда $(X \setminus \overline{Y}) \cap \overline{Y} = \emptyset$, так что указанное в лемме условие $U \cap Y \neq \emptyset$ не выполнено для $U = X \setminus \overline{Y}$. \square В пространстве \mathbb{R} с обычной топологией замыка-

нием множеств (a, b), [a, b), (a, b] и [a, b] будет [a, b]. 2.8. Упражнения. (а) Пусть X есть $\mathbb R$ с обычной топологией. Най-

дите замыкания следующих подмножеств
$$X$$
:
$$A = \{1, 2, 3, \ldots\}, \quad B = \{x: x \text{ рационально}\},$$

$$C = \{x: x \text{ иррационально}\}.$$

(b) Пусть X — множество $\mathbb R$ с топологией упр. 2.3 (c). Найдите замыкания следующих подмножеств Х:

(a, b), [a, b), (a, b], [a, b].

Дальнейшие свойства замыкания множества даются в качестве упражнений.

2.9. Упражнения. Докажите следующие утверждения. (а) Если Y— подмножество топологического пространства X, причем $Y \subset F \subset X$ и F замкнуто, то $\overline{Y} \subset F$.

- (b) Y замкнуто тогда и только тогда, когда $Y=\overline{Y}$.
- (c) $\overline{\overline{Y}} = \overline{Y}$.
- (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- (e) $X \setminus \mathring{Y} = (\overline{X \setminus Y})$.

- (f) $\overline{Y} = Y \bigcup \partial Y$, где $\partial Y = \overline{Y} \bigcap (\overline{X \setminus Y})$ (∂Y называется границей Y). (g) Y тогда и только тогда замкнуто, когда $\partial Y \subset Y$. (h) $\partial Y = \emptyset$ тогда и только тогда, когда Y открыто и замкнуто
- олновременно.

(i) ∂ ($\{x \in \mathbb{R}: a < x < b\}$) $= \partial$ ($\{x \in \mathbb{R}: a \le x \le b\}$) $= \{a, b\}$. (j) Докажите, что Y тогда и только тогда является замыканием некоторого открытого множества, когда У совпадает с замыканием своей внутренности.

В дальнейшем нам пригодится следующее важное понятие.

2.10. Определение. Пусть X— топологическое пространство. Подмножество $N \subset X$, содержащее точку $x \in X$, называется ее *окрестностью*, если найдется открытое множество U, такое, что $x \in U \subset N$.

В частности, всякое открытое множество является окрестностью любой своей точки. Вообще, всякое множество A, для которого $\mathring{A} \neq \emptyset$, является окрестностью каждой точки из \mathring{A} . Некоторые простые свойства окрестностей содержатся в следующем упражнении (его результаты можно использовать для определения топологий).

2.11. Упражнение. Пусть X — топологическое пространство. Докажите следующие утверждения. (i) Для любой точки $x \in X$ существует хотя бы одна ее окрестность. (ii) Если N — окрестность x и $N \subset M$, то M — тоже окрестность x. (iii) Если M и N — окрестност x, то $M \cap N$ — тоже окрестность x. (iv) Для любой точки $x \in X$ и любой ее окрестности N найдется такая окрестность Uточки x, что $U \subset N$ и U — окрестность каждой из своих точек.

НЕПРЕРЫВНЫЕ ФУНКЦИИ

3.1. Определение. Функция $f: X \rightarrow Y$, где X и Y топологические пространства, называется непрерывной, если для любого открытого множества $U \subset Y$ его прообраз $f^{-1}(U)$ открыт в X.

Самые простые примеры непрерывных функций это тождественная функция $1_X: X \to X$ и постоянная функция $X \to Y$, переводящая любую точку из X в не-

которую фиксированную точку из Y. Если взять пространство X е дискретной топологией, то любая функция $f: X \to Y$, отображающая Xв произвольное топологическое пространство У, непрерывна. Это очевидно, поскольку прообраз любого подмножества У открыт в Х. С другой стороны, если взять У с антидискретной топологией, то всякая функция $f: X \to Y$, отображающая произвольное топологическое пространство X в Y, также непрерывна. На самом деле справедливы и обратные утверждения, помещенные далее в упражнениях.

Теперь приведем пример функции, не являющейся непрерывной. Пусть $X = (\mathbb{R}, \mathcal{U})$, где $\mathcal{U} = \{\varnothing\} \cup \{\mathbb{R}\} \cup \{\mathbb{R}\}$ $U\{(-\infty, x): x \in \mathbb{R}\}$, и пусть $f: X \to X$ определена равенством $f(x) = x^2$. Функция f не непрерывна, потому что $f^{-1}((-\infty, y^2)) = (-y, y)$ не принадлежит $\mathcal U$. Описание всех непрерывных функций, отображающих X в X, дается в упр. 3.2 (d).

3.2. Упражнения. (а) Пусть X—произвольное множество и \mathcal{U} , \mathcal{U}' —топологии на X. Докажите, что тождественное отображение $(X, \mathcal{U}) \longrightarrow (X, \mathcal{U}')$ непрерывно в том и только в том случае, если

(b) Пусть X — топологическое пространство, обладающее тем свойством, что для любого топологического пространства У всякая функция $f\colon X\longrightarrow Y$ непрерывна. Докажите, что топология пространства X дискретна. (Указание: возъмите в качестве Y мно-

жество X с дискретной топологией.)

(c) Пусть Y—топологическое пространство с тем свойством, что для любого топологического пространства X всякая функция $f\colon X \longrightarrow Y$ непрерывна. Докажите, что Y имеет антидискретную топологию. (Указание: возьмите в качестве X множество Y с антидискретной топологией.)

(d) Пусть X— множество вещественных чисел с топологией $\{\varnothing\}\bigcup\{\Bbb R\}\bigcup\{(-\infty,x)\colon x\in\Bbb R\}$. Докажите, что функция $f\colon X\longrightarrow X$ в том и только в том случае непрерывна, если она не убывает (т. е. из x>x' следует $f(x)\geqslant f(x')$) и непрерывна справа в классическом смысле (т. е. для каждого $x\in X$ и любого $\varepsilon>0$ найдется такое $\delta>0$, что из $x\leqslant x'< x+\delta$ следует $|f(x)-f(x')|<\varepsilon$).

Можно охарактеризовать непрерывные отображения и в терминах замкнутых множеств.

3.3. Теорема. Функция $f: X \to Y$ тогда и только тогда непрерывна, когда $f^{-1}(C)$ замкнуто для любого замкнутого подмножества $C \subset Y$.

Доказательство. Предположим, что f непрерывна. Если C замкнуто, то $Y \setminus C$ открыто, и потому $f^{-1}(Y \setminus C)$ открыто. Но $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$, следовательно, $f^{-1}(C)$ замкнуто. Обратно, допустим, что U открыто в Y, так что $Y \setminus U$ замкнуто и, стало быть, $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ замкнуто; но это означает, что $f^{-1}(U)$ открыто, и потому f непрерывна. \square

Отображение, переводящее открытые множества в открытые, называется *открытым*. Открытые отображения не обязательно непрерывны. В качестве примера возьмем Y, состоящее из двух точек $\{a, b\}$ с дискретной топологией, и пусть X—множество вещественных чисел с обычной топологией. Отображение $f\colon X\to Y$, определенное равенством

$$f(x) = \begin{cases} a & \text{при} \quad x \geqslant 0, \\ b & \text{при} \quad x < 0, \end{cases}$$

открыто, но не является непрерывным, потому что $f^{-1}(\{a\})$ не открыто в X. Всякое отображение произвольного топологического пространства в дискретное пространство открыто,

Назовем отображение $f: X \to Y$ замкнутым, если образ любого замкнутого множества замкнут. Замкнутые отображения не обязательно непрерывны; описанное выше открытое разрывное отображение является также и замкнутым. Вообще, непрерывное отображение может быть (i) неоткрытым и незамкнутым, (ii) открытым, но незамкнутым, (iii) замкнутым, но неоткрытым, (iv) и замкнутым, и открытым. Примеры таковы: (i) X—множество A с дискретной топологией, Y—множество A с антидискретной топологией и f—тождественное отображение; (ii) $X = \{a, b\}$ с дискретной топологией и $Y = \{a, b\}$ с топологией $\{\emptyset, \{a\}, \{a, b\}\}$; тогда постоянное отображение, переводящее X в $a \in Y$, открыто и непрерывно, но не замкнуто; (iii) $X = \{a, b\}$ с дискретной топологией и $Y = \mathbb{R}$ с обычной топологией; тогда отображение $f: X \to Y$, заданное равенствами f(a) = 0, f(b) = 1, непрерывно и замкнуто, но не открыто; (iv) X = Y—любое топологическое пространство и f—тождественное отображение. Конечно, если на f наложить дальнейшие ограничения, то некоторые из четырех случаев станут невозможными.

3.4. Упражнение. Пусть $f: X \longrightarrow Y$ — непрерывное отображение топологических пространств. Если оно: (а) инъективно, (b) сюръективно, (c) биективно, какие из названных четырех случаев могут на самом деле возникнуть?

Следующий результат показывает, что композиция двух непрерывных функций непрерывна. Доказательство замечательно своей простотой.

3.5. Теорема. Пусть X, Y и Z—топологические пространства. Если $f: X \to Y$ и $g: Y \to Z$ —непрерывные функции, то их композиция $h = gf: X \to Z$ также непрерывна.

Доказательство. Если U открыто в Z, то $g^{-1}(U)$ открыто в Y и, таким образом, $f^{-1}(g^{-1}(U))$ открыто в X. Но $(gf)^{-1}(U) = f^{-1}(g^{-1}(U))$. \square

Следующее определение указывает, при каких условиях два топологических пространства считаются эквивалентными; для выражения эквивалентности в данном случае используется слово «гомеоморфизм».

3.6. Определение. Пусть X и Y — топологические пространства. Говорят, что Х и У гомеоморфны, если существуют взаимно обратные непрерывные отображения $f\colon X\to Y,\ g\colon Y\to X$ (т. е. $fg=1_Y,\ gf=1_X$). Мы пишем $X\cong Y$ и называем f и g гомеоморфизмами пространств X и Y.

Эквивалентное определение получится, если потребовать, чтобы отображение $f \colon X \longrightarrow Y$ было (i) биективным, (ii) непрерывным и (iii) обратное к нему отображение f^{-1} также было непрерывным. Итак, гомеоморфизм между пространствами X и Y — это биекция между точками и открытыми множествами этих пространств.

Некоторые примеры гомеоморфизмов легко получить из гл. 1. Например, если Х — топологическое пространство, возникающее из метрического пространства М с метрикой d, и если Y возникает из M с метрикой d'. заданной равенством d'(x, y) = d(x, y)/(1 + d(x, y)), то X и Y гомеоморфны. Другой пример получится, если положить X равным \mathbb{R}^n с обычной метрической топологией, а Y— равным \mathbb{R}^n с метрической топологией, полученной из метрики $d(x, y) = \max |x_i - y_i|$. Снова X и Y гомеоморфны. С другой стороны, если $X=\mathbb{R}^n$ с обычной топологией, а $Y=\mathbb{R}^n$ с дискретной топологией, то X и Y не гомеоморфны.

3.7. Упражнения. (а) Приведите примеры пространств X, Y и непрерывной биекции $f\colon X\longrightarrow Y$, такой, что f^{-1} разрывно 1).

(b) Пусть X и Y -- топологические пространства. Докажите, что X и Y в том и только в том случае гомеоморфны, если существует такое отображение $f\colon X\longrightarrow Y$, что (i) f биективно и (ii) подмножество $U \subset X$ тогда и только тогда открыто, когда f(U)открыто.

(c) Пусть метрики d_1 и d_2 на множестве Y таковы, что для некоторых положительных m и M

$$md_1(y, y') \leqslant d_2(y, y') \leqslant Md_1(y, y')$$

при всех $y, y' \in Y$. Покажите, что два топологических пространства, определяемые этими метриками, гомеоморфны. (Указание: рассмотрите тождественное отображение множества Y.) (d) Пусть X— топологическое пространство и G(X)—множе-

¹⁾ См. примеры к теореме 8.8.— *Прим. ред.*

ство всех гомеоморфизмов $f\colon X \longrightarrow X$. Докажите, что G(X) — группа. Для $x \in X$ определим $G_x(X) = \{f \in G(X): f(x) = x\}$. Докажите, что $G_x(X)$ — подгруппа G(X).

Гомеоморфность является отношением эквивалентности, и топология есть изучение классов этой эквивалентности. В следующих трех главах описываются способы построения новых топологических пространств из уже известных.

ИНДУЦИРОВАННАЯ ТОПОЛОГИЯ

Пусть S — подмножество топологического пространства X. Топология пространства X определяет некоторую топологию на S.

4.1. Определение. Топологией на S, индуцированной топологией пространства X, называется совокупность множеств вида $U \cap S$, где U — открытое множество в X.

Другими словами, если \mathcal{U} —совокупность всех открытых множеств в X, то $\mathcal{U}_S = \{U \cap S\colon U \in \mathcal{U}\}$ —совокупность всех открытых множеств в S. Чтобы доказать, что \mathcal{U}_S является топологией на S, мы должны проверить три аксиомы топологии. Так как $\varnothing = \varnothing \cap S$ и $S = X \cap S$, то первая аксиома выполнена. Для проверки второй рассмотрим множества $U_1 \cap S$ и $U_2 \cap S$ из \mathcal{U}_S . Их пересечение $(U_1 \cap S) \cap (U_2 \cap S) = (U_1 \cap U_2) \cap S$ также принадлежит \mathcal{U}_S . Наконец, если $\{U_j \cap S\colon j \in J\}$ —произвольное семейство множеств из \mathcal{U}_S , то $\bigcup_{j \in J} (U_j \cap S) \Rightarrow \bigcup_{j \in J} (U_j \cap S)$ принадлежит \mathcal{U}_S .

Индуцированную топологию иногда называют относительной топологией. Подмножество $S \subset X$, снабженное индуцированной топологией, называется подпространством X.

Например, если взять подмножество [a, b] вещественной прямой \mathbb{R} (с обычной топологией) и задать на нем индуцированную топологию, то множества

[a, c),
$$a < c < b$$
,
(d, b], $a < d < b$,
(d, c), $a \le d < c \le b$,

будут открытыми в [a, b]. Заметим, что открытое подмножество подпространства [a, b] не обязательно открыто в \mathbb{R} .

В качестве другого примера можно взять единичную окружность S^1 в \mathbb{R}^2 с топологией, индуцированной обычной топологией в \mathbb{R}^2 . Тогда открытые множества в S^1 —это объединения открытых дуг, т. е. дуг без концевых точек. Вообще, определим на стандартной n-мерной сфере

$$S^{n} = \left\{ x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_{i}^{2} = 1 \right\}$$

топологию, индуцированную обычной топологией в \mathbb{R}^{n+1} .

Рассмотрим подмножество S пространства \mathbb{R}^{n+1} , заданное уравнением $x_{n+1}=0$. Если наделить S индуцированной топологией (используя обычную топологию в \mathbb{R}^{n+1}), то S будет гомеоморфно \mathbb{R}^n . Читатель может доказать это самостоятельно или заглянуть в гл. 6.

Рис.4.1

Интересно рассмотреть некоторые подпространства \mathbb{R}^3 и найти среди них гомеоморфные между собой. Например, гомеоморфны отрезки [a, b] и [c, d] в $\mathbb{R} \subset \mathbb{R}^3$. Один из гомеоморфизмов задается равенством

$$f(x) = c + (d-c)(x-a)/(b-a).$$

Нетрудно построить обратное отображение f^{-1} и показать, что f и f^{-1} непрерывны (см. также упр. 4.5 (g)). Мы, так сказать, растягиваем или сжимаем один отрезок в другой.

В качестве другого примера рассмотрим окружность и замкнутую ломаную, ограничивающую квадрат

Рис.4.2

Рис.4.3

(рис. 4.1). Отображение, которое переводит дуги x_ix_{i+1} окружности в стороны y_iy_{i+1} ломаной, является гомеоморфизмом окружности и ломаной. Если $\{(x, y): x^2 + y^2 = 1\}$ — окружность и $\{(x, y): x = \pm 1, -1 \leqslant y \leqslant 1$ или $-1 \leqslant x \leqslant 1, y = \pm 1\}$ — ломаная, то гомеоморфизмы имеют вид

окружность \to ломаная ломаная \to окружность (x, y) $\mapsto (x/m, y/m)$ (x, y) $\mapsto (x/r, y/r)$ где $m = \max(|x|, |y|)$ и $r = \sqrt{x^2 + y^2}$. Мы как бы изгибаем окружность в ломаную. Вообще, два подпро-

странства в \mathbb{R}^3 или \mathbb{R}^2 гомеоморфны, если, образно говоря, их можно получить одно из другого при помощи скручивания, изгибания, сжатия или растяжения, но без склеивания точек и разрезания. Так, например, бублик гомеоморфен чайной чашке с ручкой (рис. 4.2).

Другой пример гомеоморфных пространств дан на рис. 4.3 (a) и (d) с промежуточными гомеоморфными пространствами, изображенными на рис. 4.3 (b) и (c).

Если $h: X \cong Y$ —гомеоморфизм, то для любой точки $x \in X$ гомеоморфны пространства $X \setminus \{x\}$ и $Y \setminus \{h(x)\}$. Это свойство иногда позволяет доказать, что некоторые пространства негомеоморфны. Приведем пример такого рассуждения (пока чисто интуитивного). Подпространства [0, 1] и (0, 1) пространства \mathbb{R} не гомеоморфны, потому что если выбросить точку 0 из [0, 1], то получится промежуток (0, 1], который (интуитивно) состоит из одного куска, тогда как при отбрасывании любой точки из (0, 1) получится (интуитивно) два куска, или, точнее, дизъюнктное объединение двух непустых открытых множеств. Но один кусок (интуитивно) не может быть гомеоморфен двум, так как соответствующее отображение содержало бы разрезание и не было бы непрерывным. Таким образом, отрезок [0, 1] не гомеоморфен интервалу (0, 1). (Понятия «один кусок» и «два куска» будут строго определены в гл. 9.) Эту идею можно обобщить, удаляя две или более точек. Читателю предлагается исследовать дальнейшие возможности, которые открывает этот метод, при выполнении следующего упражнения.

4.2. Интуитивное упражнение на гомеоморфизмы. Рассортируйте подпространства \mathbb{R}^3 (и \mathbb{R}^2), изображенные на рис. 4.4, по принципу их гомеоморфности.

Рассмотрим окружность и «заузленную окружность» в \mathbb{R}^3 (рис. 4.5); между ними легко построить гомеоморфизм. Нужно разделить каждое из этих пространств, скажем, на девять частей и отобразить дугу окружности $x_i x_{i+1}$ на дугу $y_i y_{i+1}$ «заузленной окружности». Если сделать рассматриваемые подпространства из тонкой веревки, то легко обнаружить, что при помощи изгибания и скручивания без разрезаний и склеива-

ний невозможно превратить одно из них в другое. Однако если разрезать узел, развязать его и склеить концы, то уже можно получить окружность. Это наводит на мысль видоизменить наше интуитивное представление о гомеоморфизмах подпространств \mathbb{R}^3 , допустив временные разрезания. Идея состоит в том, что

ABCDEFGHUKLMNOPORS TUVWXYZ 1234567890

Рис.4.4

Рис.4.5

можно временно сделать разрез, выполнить некоторые гомеоморфизмы (изгибание, скручивание и т. д.), а затем этот разрез заклеить. Начальное и конечное пространства будут тогда гомеоморфными. Этой идее позднее будет придана строгость при помощи понятия факторпространства (см. гл. 5 и, в частности, теорему 5.5).

4.3. Упражнение. Покажите, что подпространства \mathbb{R}^3 , изображенные на рис. 4.6, гомеоморфны. Первое подпространство получено приклеиванием трех скрученных полосок бумаги к двум бумажным кружочкам. Второе получено склеиванием двух длинных полос бумаги. (Указание: разрежьте первое из этих пространств в двух

местах, а именно перережьте две скрученные полоски, затем разверните и склейте полоски заново.)

Мы уже отметили, что если S — подпространство X, то открытые множества в S не обязательно открыты

Рис.4.6

в X. Но если S открыто в X, то открытые подмножества S открыты также и в X.

(ii) Eсли S замкнуто в X, то подмножества S, вамкнутые в индуцированной топологии, замкнуты в X.

Доказательство. Так как (i) и (ii) доказываются более или менее одинаково, докажем только (i). Предположим, что S открыто в X, и пусть U—открытое подыножество S. По определению, $U = V \cap S$, где V открыто в X. Но так как S открыто в X, то $U = V \cap S$ также открыто в X.

4.5. Упражнения. (а) Покажите, что если Y — подпространство X, а Z — подпространство Y, то Z — подпространство X.

(b) Докажите, что подпространство метризуемого пространства

метризуемо.

(c) Предположим, что S— подпространство X. Покажите, что отображение включения $S \to X$ непрерывно. Более того, покажите, что гопология S является наименьшей (имеющей меньше всего открытых множеств) среди топологий, относительно которых включение $S \to X$ непрерывно.

(d) Пусть X — топологическое пространство, S — его подмножество и $i: S \to X$ — включение. Предположим, что на S задана такая топология, что для любого пространства Y и отображения f:

Y o S это отображение тогда и только тогда непрерывно, когда непрерывна композиция $if: Y \to X$. Докажите, что эта топология на S совпадает ${f c}$ топологией, индуцированной топологией на X.

(e) Пусть Y — подпространство в X и A — подмножество в Y. Обозначим через $\operatorname{Cl}_X(A)$ замыкание A в X, а через $\operatorname{Cl}_Y(A)$ замыкание A в Y. Докажите, что $\operatorname{Cl}_Y(A) \subset \operatorname{Cl}_X(A)$, но, вообще говоря, $Cl_Y(A) \neq Cl_X(A)$.

(f) Покажите, что подмножество (a, b) в $\mathbb R$ с индуцированной топологией гомеоморфно R. (Указание: используйте функцию типа

 $x \mapsto \operatorname{tg} \left[\pi \left(cx + d \right) \right]$ при подходящих c и d.)

 (\bar{g}) Пусть X, Y — топологические пространства и S — подпространство в X. Докажите, что если $f: X \to Y$ непрерывно, то и $f \mid S$: $S \rightarrow f(S)$ непрерывно.

(h) Покажите, что подпространства (1, ∞) и (0, 1) в R с обычной

топологией гомеоморфны. (Указание: $x \mapsto 1/x$.)

(i) Докажите, что $S^n \setminus \{(0, 0, ..., 0, 1)\}$ гомеоморфно \mathbb{R}^n в обычной топологией. (Указание: определите ϕ : $S^n \setminus \{(0, 0, ...,$ \dots , 0, 1)} $\rightarrow \mathbb{R}^n$ формулой

$$\phi(x_1, x_2, \dots, x_{n+1}) = \left(\frac{x_1}{1 - x_{n+1}}, \frac{x_2}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}}\right),$$
а ψ : $\mathbb{R}^n \to S^n \setminus \{(0, 0, \dots, 0, 1)\}$ формулой

$$\psi(x_1, x_2, \ldots, x_n) = \frac{1}{1 + ||x||^2} (2x_1, 2x_2, \ldots, 2x_n, ||x||^2 - 1).$$

(i) Пусть $\mathbb{R}^{n+1} \setminus \{0\}$ и S^n снабжены топологией, индуцированной обычной гопологией пространства \mathbb{R}^{n+1} . Докажите, что отображение $f: \mathbb{R}^{n+1} \setminus \{0\} \to S^n$, определенное равенством f(x) = $= x/\|x\|$, непрерывно.

ФАКТОРТОПОЛОГИЯ (И ГРУППЫ, ДЕЙСТВУЮЩИЕ НА ПРОСТРАНСТВАХ)

В предыдущей главе мы рассматривали, по существу, множество S, топологическое пространство X и инъективное отображение S в X. Это отображение определяло на S индуцированную топологию. В этой главе мы рассмотрим топологическое пространство X, множество Y и сюръективное отображение X на Y. Это отображение определит чекоторую топологию на Y, а именно так называемую фактортопологию.

5.1. Определение. Пусть $f: X \to Y -$ сюръективное отображение топологического пространства X на множество Y. Фактортопологией на Y относительно f называется совокупность множеств

$$\mathcal{U}_f = \{U \colon f^{-1}(U) \text{ открыто в } X\}.$$

Легко проверить, что \mathcal{U}_f удовлетворяет аксиомам топологии: очевидно, что $\varnothing \in \mathcal{U}_f$ и $Y \in \mathcal{U}_f$, а остальные условия легко следуют из того, что $f^{-1}\left(U_1 \cap U_2\right) = f^{-1}\left(U_1\right) \cap f^{-1}\left(U_2\right)$ и $f^{-1}\left(\bigcup_{j \in J} U_j\right) = \bigcup_{j \in J} f^{-1}\left(U_j\right)$. Заметим, что если Y снабжено фактортопологией, то отобранием.

жение $f: X \to Y$ непрерывно. Хорошим примером является множество $\mathbb{R}P^n = \{\{x, -x\}: x \in S^n\}$ неупорядоченных пар точек из S^n .

 $\{x, -x\}: x \in S^n\}$ неупорядоченных пар точек из S^n . Имеется очевидное сюръективное отображение π : $S^n \to \mathbb{R}P^n$, при котором $x \mapsto \{x, -x\}$. Множество $\mathbb{R}P^n$ с фактортопологией относительно отображения π называется вещественным проективным п-мерным пространством.

[°] В качестве другого примера рассмотрим сначала пространство

$$C = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 = 1, |z| \le 1\}$$

є индуцированной топологией (цилиндр). Пусть M — множество неупорядоченных пар точек из C вида $\{\rho, -\rho\}$, т. е.

$$M = \{ \{ p, -p \} : p \in C \}.$$

Так как имеется естественное сюръективное отображение пространства C на 1, то можно снабдить M фактортопологией. Полученное пространство называется листом (или лентой) Мёбиуса.

Рассмотрим отображение $f: M \longrightarrow \mathbb{R}^s$ вида

$$\{p, -p\} \mapsto ((x^2-y^2)(2+xz), 2xy(2+xz), yz),$$

где $p = (x, y, z) \in C \subset \mathbb{R}^3$. Нетрудно проверить, что f инъективно. Образ f(M) пространства M при отображении f изображен на рис. 5.1. В действительности

Рис.5.1

M гомеоморфно $f(M) \subset \mathbb{R}^3$ с индуцированной топологией: непрерывность f следует из непрерывности отображения $F: \mathbb{R}^3 \to \mathbb{R}^3$, определенного равенством

$$F(x, y, z) = ((x^2 - y^2)(2 + xz), 2xy(2 + xz), yz),$$

и свойства универсальности отображения факторпространств (см. ниже теорему 5.2). Доказательство непрерывности f^{-1} предоставляется читателю; оно легко следует из результатов, доказываемых в гл. 8.

Сформулируем и докажем свойство универсальности

отображения факторпространств.

5.2. Теорема. Пусть $f: X \to Y$ —некоторое отображение, и предположим, что Y снабжено фактортопологией относительно f. Отображение $g: Y \to Z$ пространства Y в произвольное топологическое пространство Z тогда и только тогда непрерывно, когда непрерывна композиция $gf: X \to Z$.

Доказательство. Отображение $f: X \longrightarrow Y$ непрерывно, и если g непрерывно, то композиция gf также непрерывна. Обратно, предположим, что gf непрерывно. Если V открыто в Z, то $(gf)^{-1}(V)$ открыто в X, т. е. $f^{-1}(g^{-1}(V))$ открыто в X. По определению фактортопологии на Y, множество $g^{-1}(V)$ открыто в \hat{Y} , а потому д непрерывно.

5.3. Упражнения. (a) Пусть на Y задана фактортопология относительно отображения $f\colon X \to Y$. Докажите, что это наибольшая топология на Y, относительно когорой f непрерывно 1).

(b) Пусть на У задана фактортопология относительно отображения $f: X \to Y$. Покажите, что подмножество A замкнуто в Y

тогда и только тогда, когда $f^{-1}(A)$ замкнуто в X.

(c) Пусть $f: \mathbb{R} \to S^1$ ($S^1 \subset \mathbb{R}^2$) определено равенством f(t) == (cos $2\pi t$, sin $2\pi t$) $\in \mathbb{R}^2$. Докажите, что фактортопология \mathcal{U}_t на S^1 относительно отображения f совпадает с топологией u, индуци-

рованной из \mathbb{R}^2 (т. е. покажите, что (S^1 , \mathcal{U}_f) \cong (S^1 , \mathcal{U})).

(d) Пусть X, Y, Z—топологические пространства \H и $f\colon X\to$ $\rightarrow Y$, g: $Y \rightarrow Z$ —сюръективные отображения. Докажите, что если топологии на Y и \hat{Z} являются фактортопологиями относительно отображений f и g соответственно, то топология на Z есть фактортопология относительно композиции $gf: X \rightarrow Z$.

(e) Докажите, что $\mathbb{R}P^1$ и S^1 гомеоморфны.

(f) Покажите, что отображение $f: \mathbb{R}P^2 \to \mathbb{R}^4$ вида $\{x, -x\} \mapsto$

 \mapsto ($x_1^2 - x_2^2$, x_1x_2 , x_1x_3 , x_2x_3) непрерывно и инъективно.

(g) Пусть X — топологическое пространство и $f: X \to Y \to Y$ сюръективное отображение. Пусть \mathcal{U}_f фактортопология на Y. Предположим, что \mathcal{U}_- топология на Y, относительно которой f: $X \to Y$ непрерывно. Докажите, что если f—замкнутое или открытое отображение, то (Y, \mathcal{U}) гомеоморфно (Y, \mathcal{U}_I) . Приведите пример неоткрытого и незамкнутого отображения f, для которого

 $(Y, \mathcal{U}) \not\cong (Y, \mathcal{U}_f).$

(h) Предположим, что $f: X \to Y$ — сюръективное отображение топологического пространства X на множество Y. Пусть Y наделено фактортопологией относительно f, и пусть A — подпространство X. Обозначим через \mathcal{U}_1 топологию на $B = f(A) \subset Y$, индуцированную из Y, а через \mathcal{U}_2 — фактортопологию относительно отображения $f \mid A: A \to B$. Покажите, что $\mathcal{U}_1 \subset \mathcal{U}_2$. Приведите пример, показывающий, что, вообще говоря, $\mathcal{U}_1 \neq \mathcal{U}_2$. (Указание: рассмотрите отображение $f \colon \mathbb{R} \to S^1$, заданное равенством $f(t) = \exp(2\pi i t)$.) Покажите также, что если либо A замкнуто в X и f—замкнутое отображение, либо A открыто в X и f—открытое отображение, то $\mathcal{U}_1 = \mathcal{U}_2$.

Пример сюръективного отображения можно получить, рассмотрев классы эквивалентности для некото-

¹⁾ Ср. с упр. 4.5 (c). — Прим. ред.

рого отношения эквивалентности. Если X—топологическое пространство и \sim есть отношение эквивалентности на X, обозначим через X/\sim множество классов эквивалентности и определим $f\colon X\to X/\sim$ равенством f(x)=[x], где [x]—содержащий x класс эквивалентности. О пространстве X/\sim с фактортопологией говорят, что оно получено из X при помощи monoлогического отношение эквивалентности на S^n , для которого $x\sim y$ в том и только в том случае, если $x=\pm y$, то S^n/\sim это, конечно, $\mathbb{R}P^n$. То же самое отношение эквивалентности на цилиндре C дает в качестве факторпространства C/\sim лист Мёбиуса.

Если взять единичный квадрат $X = \{(x, y): 0 \le x, y \le 1\}$ в \mathbb{R}^2 с индуцированной топологией и определить отношение эквивалентности на нем условием

$$(x, y) \sim (x', y') \Leftrightarrow (x, y) = (x', y')$$
 или $\{x, x'\} = \{0, 1\}$ и $y = y''$,

то X/\sim в фактортопологией гомеоморфно цилиндру. Скучное доказательство этого факта можно было бы дать сейчас, но гораздо проще оно получится в гл. 8, сам же факт интуитивно ясен. Мы будем изображать X вместе в заданным на нем отношением эквивалентности так, как это сделано на рис. 5.2 (а). Стрелки показывают, какие точки и в каком порядке отождествляются.

Таким же способом можно построить лист Мёбиуса. Соответствующая картинка изображена на рис. 5.2 (b): отношение эквивалентности на квадрате X определяется как

$$(x, y) \sim (x', y') \Leftrightarrow (x, y) = (x', y')$$
 или $\{x, x'\} = \{0, 1\}$ и $y = 1 - y'$.

Два других примера, полученных из единичного квадрата при помощи топологического отождествления, даны на рис. 5.3.

Нетривиальные эквивалентности на рис. 5.3 (а) имеют вид $(0, y) \sim (1, y)$, $(x, 0) \sim (x, 1)$, а на рис. 5.3 (b) $(0, y) \sim (1, y)$, $(x, 0) \sim (1-x, 1)$. В дальней-

шем будет очевидно (а читатель может попытаться доказать это уже сейчас), что тор (пространство на рис. 5.3 (а)) гомеоморфен следующему подпространству в \mathbb{R}^3 :

$$\{(x, y, z) \in \mathbb{R}^{s}: (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1\}.$$

Гомеоморфизм задается, например, соответствием $(x, y) \mapsto ((2 + \cos 2\pi x) \cos 2\pi y, (2 + \cos 2\pi x) \sin 2\pi y, \sin 2\pi x).$

Это приводит к традиционному изображению тора в виде поверхности бублика (рис. 5.4).

Рис.5.2. (a) Цилиндр. (b) Лист Мёбиуса

Рис.5.3. (a) Тор. (b) Бутылка Клейна

Если взять квадрат из гибкого материала и склеить его граничные точки в соответствии с рис. 5.3 (а), то мы снова придем к этому изображению (рис. 5.5).

Аналогичный процесс для бутылки Клейна труднее, потому что мы вынуждены проводить отождествления в \mathbb{R}^4 . Первое отождествление (рис. 5.6 (b)) выполнить просто. Для следующего (рис. 5.6 (c)) нам нужно четыре измерения. Графически мы изображаем его, как

Рис.5.4

Рис.5.5

Рис,5.6

на рис. 5.6 (d). Окружность самопересечения на самом деле отсутствует; она возникла на рисунке только потому, что мы живем в трехмерном мире.

Рассекая плоскостью пространство на рис. 5.6 (d), мы видим (рис. 5.7 (a), (b)), что бутылка Клейна представляет собой два листа Мёбиуса, склеенных по об-

Рис.5.7

щей границе. По-другому иллюстрируют этот факт

рис. 5.7 (с), (d).

Для облегчения дальнейших наглядных представлений напомним, что вещественная проективная плоскость $\mathbb{R}P^2$ определена как S^2/\sim , где

$$x \sim x' \Leftrightarrow x = \pm x'$$
.

В этом случае северное полушарие отождествляется с южным, и можно ограничиться северным полушарием, которое гомеоморфно диску $D^2 = \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 \leqslant 1\}$ посредством проекции $(x, y, z) \mapsto (x, y)$ для $(x, y, z) \in S^2$ с $z \geqslant 0$. Таким образом, $\mathbb{R}P^2$ можно представить как D^2/\sim , где

 $x \sim x' \Leftrightarrow x = x'$ или $x, x' \in S^1 \subset D^2$ и x = -x'.

Это изображено на рис. 5.8 (b) или на эквивалентном

рис. 5.8 (с). Конечно, это нельзя считать строгим доказательством.

Если выбросить из $\mathbb{R}P^2$ маленький диск, мы получим лист Мёбиуса (рис. 5.9). Таким образом, вещественную проективную плоскость можно представлять себе как лист Мёбиуса с приклеенным диском.

Рис.5.10

Сферу тоже можно представить в виде факторпространства, как показано на рис. 5.10 (а) или (b). Интуитивно можно представлять себе круг и квадрат как кошельки с молниями. Застегнув молнию, мы получим сферу.

В предыдущих примерах наши рассуждения носили интуитивный характер. Можно было бы дать строгие доказательства, но лучше оставить их до того времени, когда у нас будет немного более развитая теория.

Читателю рекомендуется вернуться к этой главе после гл. 8 и восполнить детали приведенных выше наглядных соображений.

Одномерные аналоги диска и сферы — это отрезок и окружность. Если отождествить концы единичного отрезка, мы получим окружность. Интуитивно это ясно. Читателю следует попытаться дать строгое доказательство этого факта.

5.4. Упражнения. (а) Покажите, что если $I = [0, 1] \subset \mathbb{R}$ и — отношение эквивалентности, при котором $x \sim x'$ тогда и только тогда, когда $\{x, x'\} = \{0, 1\}$ или x = x', то I/\sim гомеоморфно S^1 .

тогда, когда $\{x, x\} = \{0, 1\}$ или x = x, то 1/2 томеоморфно 32. (b) Лист Мёбиуса обладает по сравнению с цилиндром некоторыми интересными свойствами. Сделайте модели цилиндра и листа Мёбиуса из полосок бумаги размером около 40×4 см. Проведите карандашом линию посередине между краями цилиндра и листа Мёбиуса. Теперь разрежьте вдоль этой линии. Что получится в каждом случае? Что получится, если разрезать вдоль линии, проведенной на расстоянии от края, равном 1/3 расстояния между краями?

Следующий результат дает достаточные условия того, чтобы факторпространства гомеоморфных пространств были гомеоморфными.

5.5. Теорема. Пусть $f: X \to Y$ — отображение топологических пространств, и предположим, что на X и Y заданы отношения эквивалентности \sim_{χ} и \sim_{γ} соответственно, такие, что $x \sim_{\chi} x'$ в том и только в том случае, если $f(x) \sim_{\gamma} f(x')$. Если f—гомеоморфизм, то X/\sim_{χ} и Y/\sim_{γ} гомеоморфны.

Доказательство. Определим отображение $F: X/\sim_X \to Y/\sim_Y$ равенством F[x]=[f(x)], где квадратные скобки обозначают классы эквивалентности. Это определение корректно, так как если [x]=[x'], то $x\sim_X x'$, а тогда $f(x)\sim_Y f(x')$ и [f(x)]=[f(x')]. Докажем, что F—гомеоморфизм. Чтобы показать, что F инъективно, предположим, что F[x]=F[x'], так что [f(x)]=[f(x')], т. е. $f(x)\sim_Y f(x')$. Но тогда $x\sim_X x'$ и [x]=[x']. Сюръективность F очевидна. Чтобы доказать его непрерывность, рассмотрим естественные проекции $\pi_X: X \to X/\sim_X$ и $\pi_Y: Y \to Y/\sim_Y$, непрерывные по определению фактортопологии. Ясно, что $F\pi_X=\pi_Y f$, и так как f непрерывно, то $F\pi_X$ непрерывно и, следовательно,

F непрерывно в силу свойства универсальности отображения факторпространств. Тот факт, что F^{-1} непрерывно, аналогичным образом следует из равенства $F^{-1}\pi_Y = \pi_X f^{-1}. \quad \Box$

В качестве примера рассмотрим $\mathbb{R}^+ = (0, \infty) \subset \mathbb{R}$ с таким отношением эквивалентности: $x \sim x'$ тогда и только тогда, когда найдется целое n, такое, что x' = $=3^nx$. Рассмотрим также $\mathbb R$ с отношением эквивалентности: $x \sim x'$ в том и только в том случае, если найдется целое n, такое, что x' = n + x. Функция $f: \mathbb{R}^+ \to$ $\rightarrow \mathbb{R}$, определенная равенством $I(x) = \log_3 x$, является гомеоморфизмом, и $x \sim x' \Leftrightarrow f(x) \sim \hat{f}(x')$; следовательно, пространства \mathbb{R}^+/\sim и \mathbb{R}/\sim гомеоморфны. На самом деле оба они гомеоморфны окружности.

Теорема 5.5 уточняет интуитивное представление о гомеоморфизмах, использованное в гл. 4. Начнем с пространства W. Сделав разрезы, получим X и отношение \sim_X , которое показывает, как нужно склеить точки X, чтобы получить W. Теперь применим к пространству X гомеоморфизм f, чтобы получить пространство Y с отношением эквивалентности \sim_Y . Естественно, мы требуем, чтобы

$$x \sim_X x' \Leftrightarrow f(x) \sim_Y f(x').$$

Склеивая Y согласно \sim_Y , получни $Z = Y/\sim_Y$. По теореме 5.5 пространство Z гомеоморфно X.

В дальнейшем полезным будет понятие действия группы G иа множестве X. Оно приводит к новым примерам пространств с фактортопологией.

- **5.6.** Определение. Пусть X множество и G группа. Будем говорить, что G действует на X и что X является G-множеством, если задано отображение миожества $G \times X$ в X, которое обозначается $(g, x) \mapsto g \cdot x$ и обладает следующими свойствами:
- (i) $1 \cdot x = x$ для всех $x \in X$, где 1 единичный элемент G.

(ii) $g \cdot (h \cdot x) = (gh) \cdot x$ для всех $x \in X$ и $g, h \in G$.

В качестве примера рассмотрим группу G всех гомеоморфизмов топологического пространства X в себя (см. упр. 3.7 (d)) и положим $g \cdot x = g(x)$ для $g \in G$.

Этим задается действие G на X, так как, очевидно, $1 \cdot x = 1$ (x) = x и $g \cdot (h \cdot x) = g \cdot h$ (x) = g (h (x)) = $(gh) \cdot x$. В качестве следующего примера возьмем $G = \mathbb{Z}_2 = \{\pm 1\}$ —группу порядка 2 и $X = S^n$. Легко проверить, что равенство $\pm 1 \cdot x = \pm x$ определяет действие \mathbb{Z}_2 на S^n . Если взять в качестве G группу целых чисел \mathbb{Z} , то равенство $n \cdot x = n + x$, где $n \in \mathbb{Z}$, $x \in \mathbb{R}$, определяет некоторое действие \mathbb{Z} на $X = \mathbb{R}$. Этот пример можно обобщить, определив действие $\mathbb{Z} \times \mathbb{Z}$ на \mathbb{R}^2 формулой $(m, n) \cdot (x, y) = (m + x, n + y)$. В обоих случаях мы оставляем читателю проверку того, что получается в самом деле действие группы в смысле определения 5.6. Наш последний пример — действие \mathbb{Z} на бесконечной полосе

$$\{(x, y) \in \mathbb{R}^2: -1/2 \leqslant y \leqslant 1/2\},\$$

заданное равенством $m \cdot (x, y) = (m + x, (-1)^m y)$.

Наше определение G-действия — это, строго говоря, определение *левого* G-действия. Существует также понятие *правого* G-действия, т. е. отображения $X \times G \rightarrow X$, обозначаемого $(x, g) \mapsto x \cdot g$ и такого, что $x \cdot 1 = x$ и $(x \cdot g) \cdot h = x \cdot (gh)$. Под G-действием мы будем всюду понимать левое G-действие.

5.7. Упражнения. (а) Предположим, что X — правое G-множество. Для $x \in X$ и $g \in G$ положим $g \cdot x = x \cdot (g^{-1})$. Покажите, что этим вадается левое действие G на X. Почему не годится определение $g \cdot x = x \cdot g$?

(b) Пусть H — подгруппа группы G. Для $h \in H$, $g \in G$ определим $h \cdot g$ как hg. Покажите, что этим определяется действие H

на С

(c) Пусть G—группа в $\mathscr{G}(G)$ —множество всех ее подмножеств. Покажите, что равенство $g \cdot U = gU = \{gh: h \in U\}, g \in G, U \in \mathscr{S}(G)$, определяет действие G на $\mathscr{F}(G)$.

(d) Пусть G действует на X. Определим стабилизатор точки $x \in X$ как множество $G_x = \{g \in G: g \cdot x = x\}$. Докажите, что G_x —

подгруппа в G.

(e) Пусть G действует на X. Определим орбиту точки $x \in X$ как подмножество $G \cdot x = \{g \cdot x \colon g \in G\}$ множества X. Докажите, что две орбиты $G \cdot x$, $G \cdot y$ либо не пересекаются, либо совпадают. Выведите отсюда, что G-множество X разлагается в объединение непересекающихся орбит.

является тот факт, что G действует на X при помощи биекций.

5.8. Теорема. Пусть X есть G-множество. Для любого $g \in G$ отображение θ_{g} : $X \to X$, переводящее x в $g \cdot x$, биективно.

Доказательство. Из определения G-множества видно, что $\theta_g \theta_h = \theta_{gh}$ и $\theta_1 = 1_X$. Таким образом, $\theta_g \theta_{g^{-1}} = 1_X = \theta_{g^{-1}} \theta_g$ и θ_g биективно. \square

Если G действует на X, можно определить на Xотношение эквивалентности ~ условием

 $x \sim y \Leftrightarrow$ найдется элемент $g \in G$, такой, что $g \cdot x = y$,

или, другими словами, $x \sim y$ тогда и только тогда, когда $y \in G \cdot x$, т. е. x и y принадлежат одной орбите, см. упр. 5.7 (е). Обозначим теперь множество классов эквивалентности через X/G; это — множество орбит действия G на X. Имеется очевидное сюръективное отображение $X \to X/G$. Если X — топологическое пространство с действием G, то можно определить на X/G фактортопологию. Множество X/G с фактортопологией называется пространством орбит действия G на X.

Если, например, \mathbb{Z}_2 действует на \mathbb{S}^n как $\pm 1 \cdot x = \pm x$. то S^n/Z_2 — это в точности $\mathbb{R}P^n$. Если Z действует на \mathbb{R} сдвигами $n \cdot x = n + x$, то \mathbb{R}/\mathbb{Z} совпадает с S^1 .

5.9. Упражнения. (а) Пусть X — бесконечная полоса $\{(x,y) \in \mathbb{R}^2: -1/2 \leqslant y \leqslant 1/2\}$ в \mathbb{R}^2 , и пусть группа \mathbb{Z} действует на ней по формуле $m \cdot (x, y) = (m + x, (-1)^m y)$. Покажите, что пространство орбит X/\mathbb{Z} гомеоморфно листу Мебиуса.

(b) Пусть X и Y — два G-множества. Будем называть отображение $f\colon X \longrightarrow Y$ G-эквивариантным, если $f(g\cdot x) = g f(x)$ для всех $x\in X$ и $g\in G$. Докажите, что если X и Y — топологические пространства, а f есть G-эквивариантный гомеоморфизм, то X/G и Y/G гомеоморфны.

(c) Постройте примеры, показывающие, что если X и Y топологические пространства, на которых действует группа G, при-

чем $X/G \cong Y/G$, то X и Y необязательно гомеоморфны. (d) Пусть X есть G-множество. Для каждого $x \in X$ стабилизатор $G_{\mathbf{x}}$ действует на G и определено множество орбит $G/G_{\mathbf{x}}$. Покажите, что G/G_x — в точности множество левых смежных классов G по подгруппе G_x . Покажите, что существует G-эквивариантная биекция между орбитой $G \cdot x$ точки x и множеством G/G_x .

В приведенных примерах действий групп на топологических пространствах эти группы действовали непрерывно. Для пространств с такими действиями есть особое название.

- **5.10.** Определение. Пусть G— группа. Топологическое пространство X называется G-пространством, если G действует на X и отображение θ_g , переводящее x в $g \cdot x$, непрерывно для всех $g \in G$.
- **5.11.** Упражнение. Пусть X есть G-пространство. Докажите, что отображение θ_g , определенное соответствием $x \mapsto g \cdot x$, является гомеоморфизмом X в себя для всех $g \in G$. Выведите отсюда, что непрерывное действие G на X задает гомоморфизм $g \mapsto \theta_g$ группы G в группу всех гомеоморфизмов X.

Ввиду последнего упражнения будем иногда говорить, что G—группа гомеоморфизмов G-пространства X. Используя этот факт, докажем следующий результат.

5.12. Теорема. Пусть X есть G-пространство. Тогда каноническая проекция $\pi\colon X \to X/G$ является открытым отображением.

Доказательство. Для открытого $U \subset X$ рассмотрим множество

$$\pi^{-1}(\pi(U)) = \{x \in X : \pi(x) \in \pi(U)\} =$$

$$= \{x \in X : G \cdot x = G \cdot y \text{ для некоторого } y \in U\} =$$

$$= \{x \in X : x = g \cdot y \text{ для некоторых } y \in U, g \in G\} =$$

$$= \{x \in X : x \in g \cdot U \text{ для некоторого } g \in G\} =$$

$$= \bigcup_{g \in G} g \cdot U.$$

Действие каждого g из G—гомеоморфизм, поэтому если U открыто, то $\pi^{-1}\left(\pi\left(U\right)\right)$ также открыто, и $\pi\left(U\right)$ открыто в X/G по определению фактортопологии.

Первое из следующих упражнений указывает свойство отображений пространств орбит, аналогичное свойству универсальности отображения факторпространств. Второе аналогично теореме 5.12 (в частном случае).

5.13. Упражнения. (а) Пусть X есть G-пространство и π : $X \longrightarrow X/G$ — каноническая проекция. Предположим, что g— отображение пространства орбит X/G в некоторое топологическое пространство Z. Докажите, что g тогда и только тогда открыто, когда $g\pi$ —открытое отображение.

(b) Пусть X есть G-пространство с конечной группой G. Докажите, что естественная проекция $\pi\colon X\longrightarrow X/G$ является замкну-

тым отображением.

(c) Пусть X есть G-пространство и H — нормальная подгруппа в G. Покажите, что X/H является (G/H)-пространством и что $(X/H)/(G/H) \cong X/G$.

ПРОИЗВЕДЕНИЯ ПРОСТРАНСТВ

Наш последний общий метод построения новых топологических пространств из уже известных—это образование прямого произведения. Напомним, что прямое
произведение $X \times Y$ двух множеств X, Y—это множество упорядоченных пар (x, y), где $x \in X$ и $y \in Y$. Если X и Y—топологические пространства, то при помощи
топологий на X и Y можно ввести топологию на $X \times Y$.
Первое, что приходит на ум,—взять в качестве открытых множеств в $X \times Y$ произведения множеств, открытых в X и Y соответственно. Но это не совсем правильно (подумайте, какая аксиома топологии не выполняется?).

6.1. Определение. Пусть X и Y—топологические пространства. Их *топологическим произведением* $X \times Y$ называется множество $X \times Y$ с топологией $\mathcal{U}_{X \times Y}$, состоящей из всех множеств, являющихся объединениями произведений открытых подмножеств X и Y.

Типичное множество из $\mathcal{U}_{X\times Y}$ имеет вид $\bigcup_{j\in J}U_j\times V_j$, где J—некоторое индексирующее множество и при каждом j множества U_j и V_j открыты соответственно в X и Y. Нетрудно проверить, что $\mathcal{U}_{X\times Y}$ —топология. Действительно, $\varnothing=\varnothing\times\varnothing$ и $X\times Y=X\times Y$, так что первая аксиома выполнена. Если W, $W'\in\mathcal{U}_{X\times Y}$, то $W=\bigcup\limits_{j\in J}U_j\times V_j$ и $W'=\bigcup\limits_{k\in K}U_k\times V_k'$ для некоторых индексирующих множеств J, K, причем U_j , U_k' открыты в X и V_j , V_k' открыты в Y. Так как

$$W \cap W' = \bigcup_{(j,\ k) \in J \times K} (U_j \cap U_k') \times (V_j \cap V_k'),$$

то мы видим, что выполнена вторая аксиома топологии. Третья аксиома выполняется тривиально.

Понятие топологического произведения двух пространств X и Y можно очевидным образом обобщить на случай произведения любого конечного числа топологических пространств.

- **6.2. Упражнения.** (а) Покажите, что если $X_1\cong X_2$ и $Y_1\cong Y_2$, то $X_1{\times}Y_1\cong X_2{\times}Y_2$.
- (b) Пусть X, Y метризуемые пространства с метриками соответственно d_X , d_Y . Покажите, что функция d, определенная формулой

$$d((x_1, y_1), (x_2, y_2)) = \max \{d_X(x_1, x_2), d_Y(y_1, y_2)\},$$

является метрикой на $X \times Y$, определяющей на нем топологию произведения пространств. Выведите отсюда, что топология произведения на $\mathbb{R}^n \times \mathbb{R}^m$ (где \mathbb{R}^n , \mathbb{R}^m имеют обычную топологию) совпадает с обычной топологией на $\mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$.

(c) Γ рафиком функции $f\colon X \longrightarrow Y$ называется множество точек произведения $X \times Y$ вида (x,f(x)) при $x \in X$. Покажите, что если f—непрерывное отображение топологических пространств, то гра-

фик f гомеоморфен X.

(d) Докажите, что \mathbb{R}^2 {0} гомеоморфно $\mathbb{R} \times S^1$. (Указание: рассмотрите \mathbb{R}^2 {0} как \mathbb{C} {0}.)

Возможно и другое описание топологии на $X \times Y$.

6.3. Теорема. Пусть $X\times Y$ —произведение топологических пространств. Множество $W\subset X\times Y$ тогда и только тогда открыто, когда для любого $w\in W$ найдутся такие множества $U_w,\ V_w,\$ что U_w открыто в $X,\ V_w$ открыто в $Y,\ U_w\times V_w\subset W$ и $w\in U_w\times V_w$.

Доказательство. Пусть W открыто; тогда $W = \bigcup_{j \in J} U_j \times V_j$, где J—некоторое индексирующее множество и U_j , V_j открыты соответственно в X и Y. Итак, если $w \in W$, то $w \in U_i \times V_i$ для некоторого $i \in J$. Обратно, множество $\bigcup_{w \in W} U_w \times V_w$ открыто в $X \times Y$ и, очевидно, совпадает с W. \square

Существуют естественные проекции $\pi_{X^{!}}$ $X \times Y \longrightarrow X$ и $\pi_{Y^{!}}$ $X \times Y \longrightarrow Y$ вида $(x, y) \longmapsto x$ и $(x, y) \longmapsto y$. Так как $\pi_{X^{'}}(U) = U \times Y$ и $\pi_{Y^{'}}(V) = X \times V$, то очевидно, что отображения π_{X} и π_{Y} непрерывны.

6.4. Теорема. Для любого $y \in Y$ подпространство $X \times \{y\} \subset X \times Y$ гомеоморфно X.

Доказательство. Рассмотрим отображение $f: X \times \{y\} \to X$ вида $(x, y) \mapsto x$. Очевидно, оно биективно. Можно записать f в виде композиции включения $X \times \{y\} \to X \times Y$ и проекцин $\pi_X: X \times Y \to X$, которые являются непрерывными отображениями. Поэтому f непрерывно. Далее, пусть W — открытое подмножество $X \times \{y\}$, так что $W = \bigcup_{j \in J} U_j \times V_j \cap X \times \{y\}$, где U_j, V_j открыты соответственно в X и Y. Можно переписать W в виде $\bigcup_{j \in J'} U_j \times \{y\}$, где $J' = \{j \in J: y \in V_j\}$, и потому $f(W) = \bigcup_{j \in J'} U_j$ открыто в X. Отсюда f — открытое отображение и, следовательно, гомеоморфизм. \square

Если $f: A \to X$ и $g: A \to Y$ —отображения топологических пространств, то можно определить отображение $h: A \to X \times Y$ формулой h(a) = (f(a), g(a)). Ясно, что h—единственное отображение, для которого $\pi_X h = f$ и $\pi_Y h = g$. Соотношение между непрерывностью f, g и непрерывностью h называется свойством универсальности отображения произведений.

6.5. Теорема. Пусть A, X и Y—топологические пространства. Для любой пары отображений $f \colon A \to X,$ $g \colon A \to Y$ отображение $h \colon A \to X \times Y,$ определенное формулой h(a) = (f(a), g(a)), тогда и только тогда непрерывно, когда f и g непрерывны.

Доказательство. Если h непрерывно, то таковы же $\pi_X h = f$ и $\pi_Y h = g$. Обратно, пусть f и g непрерывны. Пусть U, V—открытые подмножества соответственно X и Y. Тогда $h^{-1}(U \times V) = \{a: f(a) \in U, g(a) \in V\} = f^{-1}(U) \cap g^{-1}(V)$, но так как $f^{-1}(U)$ и $g^{-1}(V)$ открыты, то и $h^{-1}(U \times V)$ открыто. Рассмотрим теперь открытое множество W в $X \times Y$. Если $x \in W$, то $x \in U \times V \subset W$, где U, V открыты в X, Y. Таким образом, $h^{-1}(x) \subset f^{-1}(U) \cap g^{-1}(V) \subset h^{-1}(W)$, и потому $h^{-1}(W)$ открыто. \square

6.6. Упражнения, (а) Покажите, что топология произведения на

 $X{f imes}Y$ является наименьшей топологией, относительно которой $\pi_{f Y}$ и π_Y непрерывны 1).

(b) Пусть X есть G-пространство, а Y есть H-пространство. Докажите, что пространство $(X \times Y)/(G \times H)$ гомеоморфно $(X/G) \times$ $\times (Y/H)$.

(c) Для $(n, m) \in \mathbb{Z} \times \mathbb{Z}$ и $(x, y) \in \mathbb{R}^2$ определим $(n, m) \cdot (x, y) =$ =(n+x, m+y). Покажите, что это определение превращает \mathbb{R}^2 в $\mathbb{Z} \times \mathbb{Z}$ -пространство. Докажите, что $\mathbb{R}^2/(\mathbb{Z} \times \mathbb{Z})$ гомеоморфно $S^1 \times S^1$.

(d) Докажите, что тор (см. рис. 5.3 (a) и 5.4) гомсоморфен $S^1 \times S^1$.

(e) Для $n \in \mathbb{Z}$, $z \in \mathbb{C} \setminus \{0\}$ определим $n \cdot z$ как $n \cdot z = 2^n z$. Покажите, что это определение превращает С √{0} в Z пространство. Докажите, что $(\mathbb{C}\setminus\{0\})/\mathbb{Z}$ гомеоморфно $S^1\times S^1$. (Указание: воспользуйтесь упр. 6.2 (d), 6.6 (b) и тем фактом, что $\mathbb{Z} = \mathbb{Z} \times \{1\}$.)

Рис.6.1

(f) То же, что и в (e), но при $n \cdot z = (2\omega)^n z$, где $\omega =$ $= \exp(2\pi i/3)$. Что будет пространством орбит $(\mathbb{C}\setminus\{0\})/\mathbb{Z}$?

(g) Докажите, что пространства $\mathbb{R}^n \setminus \{0\}$ и $S^{n-1} \times \mathbb{R}$ гомеоморфны. (Указание: рассмотрите отображение $f: S^{n-1} \times \mathbb{R} \to \mathbb{R}^n \setminus \{0\}$, заданное формулой $f(x, t) = 2^t x$.)
(h) Докажите, что подмножество $S_{p, q} \subset \mathbb{R}^n$ вида

$$S_{p, q} = \{x \in \mathbb{R}^n: x_1^2 + x_2^2 + \dots + x_n^2 - x_{n+1}^2 - \dots - x_{n+q}^2 = 1\},\$$

где $p+q\leqslant n$, гомеоморфио $S^{p-1}\times\mathbb{R}^{n-q}$. (Указание: рассмотрите отображение $f\colon S^{p-1}\times\mathbb{R}^{n-q}\longrightarrow S_{p,\ d}$, заданное формулой

$$f(x_1, \ldots, x_p, y_1, \ldots, y_{n-p}) = (x_1 z, x_2 z, \ldots, x_p z, y_1, y_2, \ldots, y_{n-p}),$$

где $z = \sqrt{1 + y^2 + y^2 + \dots + y^2}$

(i) Пусть G — группа гомеоморфизмов вида $\{T^i: i \in \mathbb{Z}\}$, где T: $\mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \setminus \{0\}$ определено формулой Tx = 2x. Покажите, что $(\mathbb{R}^n \setminus \{0\})/G$ гомеоморфно $S^{n-1} \times S^1$.

(j) Докажите, что следующие два подмножества \mathbb{R}^n с обычной

топологией гомеоморфны:

$$I^n = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, 2, \dots, n\},\$$

 $D^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$

¹⁾ Ср. с упр. 4.5 (с).— Прим. ред.

(Указание: сначала покажите, что $I^n\cong ([-1,1])^n=X$, затем определите $\phi\colon X\longrightarrow D^n$ и $\psi\colon D^n\longrightarrow X$ равенствами

$$\varphi(x_1, x_2, ..., x_n) = \frac{\max\{|x_1|, |x_2|, ..., |x_n|\}}{\|x\|} (x_1, x_2, ..., x_n),
\varphi(0) = 0,
\psi(x_1, x_2, ..., x_n) = \frac{\|x\|}{\max\{|x_1|, |x_2|, ..., |x_n|\}} (x_1, x_2, ..., x_n),
\psi(0) = 0.$$

Интуитивно: сожмите каждый прямолинейный отрезок от 0 до ∂X линейно, так чтобы его длина стала равной 1; рис. 6.1.)

(к) Докажите, что $\mathring{D}^n \cong \mathbb{R}^n$. (Указание: $\mathring{D}^n \cong \mathring{I}^n = (\mathring{I})^n$.) (І) Найдите пространство X, содержащее более одной точки и такое, что $X \cong X \times X$. (Указание: попробуйте взять бесконечное множество с дискретной гопологией. Сделав это, попытайтесь найти пример такого пространства с недискретной топологией.)

КОМПАКТНЫЕ ПРОСТРАНСТВА

В этой и двух следующих главах мы рассмотрим свойства пространств, сохраняющиеся при гомеоморфизмах. Такие свойства позволяют судить о гомеоморфности рассматриваемых пространств: если одно из них обладает таким свойством, а другое—нет, то эти пространства не могут быть гомеоморфными. Первое из этих свойств—компактность. В основе его определения лежит следующее свойство отрезка: любое семейство $\{U_j: j \in J\}$ открытых подмножеств единичного отрезка [0, 1] (с индуцированной топологией), такое, что $U_j = [0, 1]$, содержит конечное подсемейство, объединение которого уже дает весь отрезок [0, 1] (см. теорему 7.7).

7.1. Определение. Покрытием подмножества S множества X называется семейство подмножеств $\{U_j\colon j\in J\}$ множества X, такое, что $S\subset\bigcup_{j\in J}U_j$. Если вдобавок индексирующее множество J конечно, то $\{U_j\colon j\in J\}$ называется конечным покрытием.

Например, семейство {[1/n, 1-1/n]: $n\in\mathbb{N}$ } является покрытием подмножества (0, 1) пространства \mathbb{R} . Конечно, если S=X, то семейство { U_j : $j\in J$ }, обладающее свойством $\bigcup_{j\in J}U_j=X$, является покрытием X. Например, если $U_n=(n, n+3)\subset\mathbb{R}$, то { U_n : $n\in\mathbb{Z}$ }—покрытие \mathbb{R} .

7.2. Определение. Пусть $\{U_j\colon j\in J\}$ и $\{V_k\colon k\in K\}$ — покрытия подмножества $S\subset X$. Если для любого $j\in J$ найдется такое $k\in K$, что $U_j=V_k$, то говорят, что $\{U_j\colon j\in J\}$ — подпокрытие покрытия $\{V_k\colon k\in K\}$.

Например, $\{V_r: r \in \mathbb{R}\}$, где $V_r = (r, r+3) \subset \mathbb{R}$, является покрытием \mathbb{R} , и $\{U_n: n \in \mathbb{Z}\}$, где $U_n = (n, n+3)$, его подпокрытие.

- 7.3. Определение. Пусть X топологическое пространство и S его подмножество. Покрытие $\{U_j: j \in J\}$ называется открытым покрытием S, если каждое U_j , $j \in J$, открыто в X.
- **7.4.** Определение. Подмножество S топологического пространства X называется компактным, если всякое открытое покрытие S обладает конечным подпокрытием.

В частности, топологическое пространство X компактно, если всякое его открытое покрытие имеет конечное подпокрытие. Пространство $\mathbb R$ с обычной топологией некомпактно, потому что открытое покрытие $\{(n, n+2): n \in \mathbb Z\}$ не имеет конечных подпокрытий. Пространство X с дискретной топологией тогда и только тогда компактно, когда оно конечно. Так как каждая точка дискретного пространства X является открытым множеством, то для бесконечного X открытое покрытие, состоящее из всех одноточечных множеств, не имеет конечного подпокрытия. С другой стороны, если X конечно, то оно имеет только конечное число открытых подмножеств. Скоро мы покажем, что единичный отрезок [0, 1] является компактным подмножеством $\mathbb R$.

7.5. Упражнения. (а) Пусть на X задана топология конечных дополнений. Покажите, что X компактно. Покажите, что любое его подмножество компактно.

(b) Докажите, что гопологическое пространство компактно в том и голько в том случае, если любое семейство $\{C_j\colon j\in J\}$ замкнутых множеств, для когорого $\bigcap\limits_{j\in J}C_j=\varnothing$, содержит конечное подсемейство $\{C_k\colon k\in K\}$, гакое, что $\bigcap\limits_{j\in J}C_k=\varnothing$.

(c) Пусть \mathcal{F} — гопология на \mathbb{R} , определенная следующим образом: $U \in \mathcal{F}$ тогда и только тогда, когда для любого $s \in U$ найдется такое t > s, что $[s, t) \subset U$. Докажите, что подмножество [0, 1] пространства $(\mathbb{R}, \mathcal{F})$ некомпактно.

Годмножество S топологического пространства можно снабдить индуцированной топологией, и мы получим для S два понятия компактности: как под-

множества X и как самостоятельного пространства. Эти два понятия совпадают.

7.6. Теорема. Подмножество S пространства X компактно тогда и только тогда, когда оно компактно как пространство c индуцированной топологией.

Доказательство. Это очевидно, так как подмножества S, открытые в индуцированной топологии, имеют вид $U \cap S$, где U — открытое подмножество X. Детали рассуждения мы оставляем читателю.

Таким образом, можно определить компактное подмножество S как пространство, компактное в индуцированной топологии.

Следующий результат дает важный пример компактного пространства.

7.7. Теорема. Единичный отрезок $[0, 1] \subset \mathbb{R}$ компактен.

Доказательство. Пусть $\{U_j\colon j\in J\}$ — открытое покрытие отрезка $[0,\ 1]$, и предположим, что оно не имеет конечного подпокрытия. Это означает, что хотя бы один из отрезков [0, 1/2] и [1/2, 1] нельзя покрыть конечным подсемейством из $\{U_j: j \in J\}$. Обозначим его через $[a_1, b_1]$. Далее, по крайней мере один из отрезков $[a_1,\ (a_1+b_1)/2]$ и $[(a_1+b_1)/2,\ b_1]$ нельзя покрыть конечным подсемейством из $\{U_j\colon j\in J\}$; обозначим его через $[a_2,b_2]$. Продолжая таким же образом, получим последовательность отрезков $[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n], \ldots$ такую, что никакое конечное подсемейство из $\{U_j: j \in J\}$ не покрывает ни один из них. Далее, $b_n - a_n = 2^{-n}$ и $a_n \leqslant a_{n+1} < b_{n+1} \leqslant b_n$ для всех n. Из последнего условия следует, что $a_{\it m} \leqslant b_{\it n}$ для любой пары целых чисел m и n, так что b_n ограничивает сверху множество $\{a_1, a_2, \ldots\}$. Пусть a—верхняя грань этого множества. Так как $a \leqslant b_n$ для всех n, то a ограничивает жества. Так как $a \leqslant b_n$ для всех n, то a ограничивает снизу множество $\{b_1, b_2, \ldots\}$. Пусть b—нижняя грань этого множества. По определению имеем $a_n \leqslant a \leqslant b \leqslant b_n$ для всех n. Но так как $b_n - a_n = 2^{-n}$, то $b - a \leqslant 2^{-n}$ для всех n, откуда a = b. Так как $\{U_j: j \in J\}$ покрывает [0, 1] и $a = b \in [0, 1]$, то $a \in U_j$ для некоторого $j \in J$. Так как U_j открыто,

для некоторого $\varepsilon>0$ найдется интервал $(a-\varepsilon,a+\varepsilon)\subset U_j$. Выберем натуральное N так, чтобы $2^{-N}<\varepsilon$ и, следовательно, $b_N-a_N<\varepsilon$. Но $a\in [a_N,b_N]$ и $a-a_N<2^{-N}<\varepsilon$, $b-b_N<2^{-N}<\varepsilon$, так что $[a_N,b_N]\subset (a-\varepsilon,a+\varepsilon)\subset U_j$, а это противоречит тому, что $[a_N,b_N]$ нельзя покрыть конечным подсемейством из $\{U_j\colon j\in J\}$. \square

Можно обобщить эти рассуждения и показать, что единичный n-мерный куб $I^n = I \times I \times \ldots \times I \subset \mathbb{R}^n$, где $I = [0, 1] \subset \mathbb{R}$, является компактным пространством. Однако позже мы приведем другое доказательство этого факта.

7.8. Теорема. Пусть $f: X \to Y$ —непрерывное отображение. Если $S \subset X$ —компактное подпространство, то f(S) компактно.

Доказательство. Пусть $\{U_j\colon j\in J\}$ —открытое покрытие f(S); тогда $\{f^{-1}(U_j)\colon j\in J\}$ —открытое покрытие S. Так как S компактно, найдется конечное подпокрытие $\{f^{-1}(U_k)\colon k\in K\}$, K конечно. Но $f(f^{-1}(U_k))\subset U_k$, и потому $\{U_k\colon k\in K\}$ —покрытие f(S), являющееся конечным подпокрытием покрытия $\{U_j\colon j\in J\}$.

7.9. Следствие. (a) Всякий отрезок $[a, b] \subset \mathbb{R}$ компактен.

(b) Пусть X и Y—гомеоморфные топологические пространства. Тогда X компактно в том и только в том случае, если Y компактно.

в том случае, если Y компактно. (c) Если X компактно и Y имеет фактортопологию, индуцированную некоторым отображением $f: X \to Y$,

то Ү компактно.

(d) S^1 компактно.

Доказательство очевидно. Заметим, что, как следует из (b), некомпактное пространство не может быть гомеоморфным компактному.

Не любое подмножество компактного пространства компактно; например, интервал (0, 1) является некомпактным подмножеством компактного пространства [0, 1]. В этом легко убедиться, рассмотрев покрытие

 $\{(1/n, 1-1/n): n \in \mathbb{N}\}$. Но замкнутое подмножество компактного пространства всегда компактно.

7.10. Теорема. Замкнутое подмножество компактного пространства компактно.

Доказательство. Пусть $\{U_j\colon j\in J\}$ —открытое покрытие подмножества $S\subset X$. Так как $\bigcup\limits_{j\in J}U_j\supset S$, то $\{U_j\colon j\in J\}\cup\{X\diagdown S\}$ является открытым покрытием X, а так как X компактно, то оно имеет конечное подпокрытие. Это конечное подпокрытие X имеет вид $\{U_k\colon k\in K\}$ или $\{U_k\colon k\in K\}\cup\{X\diagdown S\}$, где K конечно. Следовательно, $\{U_k\colon k\in K\}$ —конечное подпокрытие покрытия $\{U_j\colon j\in J\}$ множества S. \square

Мы исследовали компактность относительно индуцированной топологии и фактортопологии. Рассмотрим теперь топологию произведения.

7.11. Теорема. Пусть X и Y — топологические пространства. Они оба компактны тогда и только тогда, когда $X \times Y$ компактно.

Доказательство. Предположим, что X и Y компактны. Пусть $\{W_j: j \in J\}$ —открытое покрытие $X \times Y$. По определению каждое W_j имеет вид $\bigcup_{k \in K} (U_j, k \times V_j, k)$, где U_j , k открыто в X и V_j , k открыто в Y. Таким образом, $\{U_j, k \times V_j, k\}$; $j \in J$, $k \in K\}$ —открытое покрытие $X \times Y$. Для любого $x \in X$ подпространство $\{x\} \times Y$ компактно (оно гомеоморфно Y), и, так как $\{U_j, k \times V_j, k\}$; $j \in J$, $k \in K\}$ покрывает также $\{x\} \times Y$, найдется конечное подпокрытие $\{U_i(x) \times V_i(x): i=1, 2, \ldots, n(x)\}$ пространства $\{x\} \times Y$. Обозначим через U'(x) множество $U'(x) = \bigcap_{i=1}^{n(x)} U_i(x)$. Семейство $\{U'(x): x \in X\}$ является открытым покрытием X и потому имеет конечное подпокрытие $\{U'(x_i): i=1, 2, \ldots, m\}$. Очевидно, что $\{U'(x_i) \times V_{k_i}(x_i): i=1, 2, \ldots, m; k_i=1, 2, \ldots, n(x_i)\}$ — конечное открытое покрытие $X \times Y$. Для любого i и k_i найдутся такие $j \in J$ и $k \in K$, что $U'(x_i) \times V_{k_i}(x_i)$ \subset

 $\subset U_{j,\,k} \times V_{j,\,k} \subset W_j$. Следовательно, существует конечное подпокрытие покрытия $\{W_j\colon j\in J\}$ пространства $X\times Y$. Обратно, если $X\times Y$ компактно, то X и Y ком-

пактны, так как проекции π_{x} и π_{y} непрерывны. \Box

Вообще, если X_1, X_2, \ldots, X_n —компактные топологические пространства, то их произведение $X_1 \times X_2 \times \dots \times X_n$ также компактно. В частности, компактен единичный n-мерный куб I^n . Подмножество $S \subset \mathbb{R}^n$ называется *ограниченным*, если найдется такое K>0, что для любой точки $x=(x_1,\ x_2,\ \dots,\ x_n)\in S$ справедливы неравенства $|x_i|\leqslant K$ при $i=1,\ 2,\ \dots,\ n$. Другими словами, S содержится в n-мерном кубе с ребром 2K. Так как он гомеоморфен единичному п-мерному кубу, то мы получаем следующую теорему.

7.12. Теорема (Гейне — Бореля). Всякое замкнутое и ограниченное подмножество $\mathbb{R}^{n'}$ компактно.

Справедлива также теорема, обратная к теореме 7.12 (см. упр. 8.14 (п)). Из предыдущих результатов можно теперь вывести компактность каждого из следующих пространств:

 S^n (замкнутое ограниченное подмножество \mathbb{R}^{n+1});

 $S^n \times S^n \times \ldots \times S^n$;

 $\mathbb{R}P^n$ (сюрьективный образ S^n);

лист Мёбиуса (замкнутое ограниченное подмножество \mathbb{R}^3).

7.13. Упражнения. (а) Какие из следующих пространств компактны:

$$\begin{array}{ll} D^n = \{x \in \mathbb{R}^n \colon \|x\| \le 1\}; & \mathring{D}^n = \{x \in \mathbb{R}^n \colon \|x\| < 1\}; \\ \{(s, t) \in \mathbb{R}^2 \colon 0 \le s \le 1, \ 0 \le t \le 4\}; \\ \{(s, t, u) \in \mathbb{R}^3 \colon s^2 + t^2 \le 1\} \cap \{(s, t, u) \in \mathbb{R}^3 \colon t^2 + u^2 \le 1\}. \end{array}$$

(b) Докажите, что всякое компактное подмножество \mathbb{R}^n ограничено.

(c) Докажите, что график функции $f\colon I \longrightarrow \mathbb{R}$ компактен тогда и только тогда, когда f непрерывна. Приведите пример разрывной функции $g\colon I \longrightarrow \mathbb{R}$, график которой замкнут, но не компактен.

(d) Пусть X, Y—топологические пространства. Пусть $\mathcal{F}(X, Y)$ множество всех непрерывных отображений X в Y. Если $A \subset X$ и $B \subset Y$, то пусть F(A, B) обозначает подмножество отображений из $\mathcal{F}(X, Y)$, которые переводят A в B:

$$F(A, B) = \{ f \in \mathcal{F}(X, Y) : f(A) \subset B \}.$$

Пусть \mathscr{G} — следующее множество:

 $\mathscr{S} = \{F(A, B): A - \text{компактное подмножество } X, B \text{ открыто в } Y\}.$ Определим совокупность множеств $\mathcal U$ так: $\mathcal U = \{U \subset \mathcal F(X,Y):$ если $f \in U$, то найдутся такие элементы F_1 , F_2 , ..., $F_n \in \mathscr F$, что $f \in F_1 \cap F_2 \cap \cdots \cap F_n \subset U$. Докажите, что \mathcal{U} является топологией на $\widetilde{f}(X, Y)$ (она называется компактно-открытой топологией).

(е) Пусть X - компактное метризуемое топологическое пространство. Предположим, что У - метрическое пространство с мет-

рикой d, и определим d^* на $\mathcal{F}(X, Y)$ формулой

$$d^*(f, g) = \sup_{x \in X} d(f(x), g(x)).$$

Покажите, что d^* — метрика на $\mathcal{F}(X, Y)$ и определяемая ею топология на $\mathcal{F}(X, Y)$ совпадает с компактно-открытой топологией.

(f) Пространство X называется локольно компактным, если для любой точки $x \in X$ всякая ее окрестность содержит компактную окрестность х. Покажите, что если Х локально компактно, то отображение вычисления $e: \mathcal{F}(X, Y) \times X \longrightarrow Y$, заданное фор-

мулой e(f, x) = f(x), непрерывно.

(g) Пусть X — компактное топологическое пространство, возникающее из некогорого метрического пространства с метрикой d. Докажите, что если $\{U_j: j \in J\}$ — открытое покрытие X, то найдется такое $\delta > 0$ (называемое числом Лебега этого покрытия), что любое подмножество X диаметра меньше δ целиком содержится в некотором множестве U_j , $j \in J^{-1}$).

(h) Пусть X — топологическое пространство; определим X^{∞} как $X \cup \{\infty\}$, где ∞ — некоторый элемент, не принадлежащий X. Если \mathcal{U} топология на X, определим \mathcal{U}^{∞} как \mathcal{U} вместе со всеми множествами вида $V(I(\infty))$, где $V \subset X$ и $X \setminus V$ компактно и замкнуто в X. Докажите, что \mathcal{U}^∞ —топология на X^∞ . Докажите также, что X— подпространство X^∞ и что X^∞ компактно (X^∞ называется одноточечной компактификацией X^{2})).

¹⁾ См. теорему 23.4.— Прим. ред.

 $^{^{2}}$) Обычно расширение X^{∞} называют одноточечной компактификацией X при условии, что пространство X локально компактно и хаусдорфово (см. гл. 8). Легко показать, что компактное пространство \dot{X}^∞ является хаусдорфовым только при этом условии.— Прим. ред.

ХАУСДОРФОВЫ ПРОСТРАНСТВА

Исходный пункт этой главы — упр. 2.2 (b), в котором требовалось доказать, что если топологическое пространство Х метризуемо, то для любой пары различных точек $x, y \in X$ найдутся открытые множества U_x и U_y , содержащие соответственно x и y и такие, что $U_x \cap U_y = \varnothing$. Доказательство проводится непосредственно: так как $x \neq y$, то $d(x, y) = 2\varepsilon$ для некоторого $\varepsilon > 0$, где d — произвольная метрика на X, определяющая данную топологию. Множества $B_{\varepsilon}(x) = \{z \in X :$ $d(x, z) < \varepsilon$ и $B_{\varepsilon}(y)$ удовлетворяют нужным условиям.

8.1. Определение. Пространство X называется xaycdopфовым, если для любой пары различных точек $x, y \in X$ существуют открытые множества U_x , U_y , содержащие соответственно x и y и такие, что $\tilde{U}_x \cap \tilde{U}_y = \emptyset$.

Таким образом, все метризуемые пространства хаус-дорфовы, в частности \mathbb{R}^n с обычной топологией и любое дискретное пространство. Пространство с антидискретной топологией не хаусдорфово, если оно содержит не менее двух точек.

8.2. Упражнения. (а) Пусть X — пространство с топологией конечных дополнений. Докажите, что X хаусдорфово тогда и только тогда, когда оно конечно.

(b) Пусть \mathcal{F} — топология на \mathbb{R} , для которой $U \in \mathcal{F}$ тогда и только тогда, когда для любого $s \in U$ найдется такое t > s, что $[s, t) \subset U$. Докажите, что $(\mathbb{R}, \mathcal{F})$ хаусдорфово.

(c) Пусть X и Y — гомеоморфные топологические пространства. Докажите, что X хаусдорфово тогда и только тогда, когда Yхаусдорфово.

Условие Хаусдорфа — один из примеров аксиом отделимости. Рассмотрим некоторые другие аксиомы отделимости, хотя, за исключением нескольких следующих страниц, мы будем широко использовать только аксиому Хаусдорфа.

8.3. Определение. Пусть k—одно из чисел 0, 1, 2, 3 или 4. Пространство X называется T_k -пространством, если оно удовлетворяет приведенному ниже условию T_k .

 $T_{\rm o}$ 1 для любой пары различных точек найдется открытое множество, содержащее одну из этих точек и не содержащее другую.

 T_1 : для любой пары x, y различных точек найдутся открытые множества, одно из которых содержит x, но не содержит y, а другое содержит y, но не содержит x.

 T_2 : для любой пары x, y различных точек найдутся два непересекающихся открытых множества, одно из которых содержит x, а другое y.

 T_3 : X удовлетворяет T_1 , и для любого замкнутого подмножества F и любой точки $x \notin F$ найдутся два непересекающихся открытых множества, одно из которых содержит F, а другое x.

 T_4 : X удовлетворяет T_1 , и для любой пары F_1 , F_2 непересекающихся замкнутых множеств найдутся два непересекающихся открытых множества, одно из которых содержит F_1 , а другое F_2 .

 $T_{\it 2}$ -пространство — это хаусдорфово пространство. $T_{\it 3}$ -пространство иногда называют регулярным.

Очевидно, что $T_2 \Rightarrow T_1 \Rightarrow T_0$. Причина, по которой условие T_1 включено в условия T_3 и T_4 , прояснится в теореме 8.5, из которой будет следовать, что $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$.

8.4. Упражнения. (а) Пусть X и Y—гомеоморфные пространства. Докажите, что X есть T_k -пространство тогда и только тогда, когда Y есть T_k -пространство (k = 0, 1, 2, 3, 4).

(b) Постройте топологические пространства X_0 , X_1 , X_2 и X_3 , такие, что X_k является T_k -пространством, но не является T_f -про-

странством при j > k.

(c) Докажите, что компактное хаусдорфово пространство является T_4 -пространством. (Указание: загляните в доказательство теоремы 8.7, а в крайнем случае—в доказательство теоремы 8.11.)

8.5. Теорема. Пространство X тогда и только тогда удовлетворяет аксиоме T_1 , когда каждая точка в нем замкнута.

Доказательство. Пусть X есть T_1 -пространство. Пусть $x \in X$ и $y \in X \setminus \{x\}$. Тогда найдется открытое множество U_y , содержащее y и не содержащее x. Следовательно, $\bigcup_{y \in X \setminus \{x\}} U_y = X \setminus \{x\}$, т. е. $X \setminus \{x\}$ —объединение открытых множеств и потому открыто. Таким образом, $\{x\}$ замкнуто.

Обратно, если $\{x\}$ и $\{y\}$ замкнуты, то $X \setminus \{x\}$ и $X \setminus \{y\}$ открыты, одно из них содержит x, но не содержит y, а другое содержит y, но не содержит x, т. е. X есть T_1 -пространство. \square

Отсюда вытекает следующий результат.

8.6. Следствие. В хаусдорфовом пространстве каждая точка является замкнутым множеством.

На самом деле имеет место намного более общее утверждение.

8.7. Теорема. Компактное подмножество A хаусдорфова пространства X замкнуто.

Доказательство. Можно считать, что $A \neq \varnothing$ и $A \neq X$, так как в противном случае оно уже замкнуто и доказывать нечего. Выберем точку $x \in X \setminus A$. Для любой точки $a \in A$ найдутся непересекающиеся открытые множества U_a и V_a , такие, что U_a содержит x, а V_a содержит a. Семейство $\{V_a: a \in A\}$ покрывает A, и, так как A компактно, существует конечное подпокрытие, скажем $\{V_a: (1), V_a: (2), \ldots, V_a: (n)\}$. Множество $U = U_{a(1)}$ $\cap U_a: (2)$ $\cap \ldots \cap U_a: (n)$ открыто, содержит x и не пере-

секается ни с одним $V_{a(i)}$. Следовательно, $U \subset X \setminus A$. Итак, каждая точка $x \in X \setminus A$ содержится в некотором открытом множестве, лежащем в $X \setminus A$, и потому $X \setminus A$ открыто, а A замкнуто. \square

Теорема 8.7 приводит к важному результату.

8.8. Теорема. Пусть $f: X \to Y -$ непрерывное отображение компактного пространства X в хаусдорфово пространство Y. Тогда f является гомеоморфизмом в том и только в том случае, если оно биективно.

Доказательство. Очевидно, что если f гомеоморфизм, то оно биективно. Интереснее обратное утверждение. Предположим, что f биективно; тогда существует обратное отображение f^{-1} . Оно непрерывно тогда и только тогда, когда $(f^{-1})^{-1}(V) = f(V)$ замкнуто для всякого V, замкнутого в X. Если V замкнуто в X, то V компактно по 7.10, откуда f(V) компактно по 7.8 и f(V) замкнуто по 8.7. Таким образом, f^{-1} непрерывно.

В доказанной теореме существенны оба условия: и компактности, и каусдорфовости. Если, например, X—множество вещественных чисел с дискретной топологией (и, следовательно, некомпактно), а Y—это $\mathbb R$ с обычной топологией (следовательно, хаусдорфово), то тождественное отображение непрерывно и биективно, но не является гомеоморфизмом. С другой стороны, если $X = \{x, y\}$ с дискретной топологией (следовательно, компактно), а $Y = \{x, y\}$ с топологией $\{\emptyset, Y, \{x\}\}$ (следовательно, не хаусдорфово), то тождественное отображение также непрерывно и биективно, но ие является гомеоморфизмом 1).

При помощи последней теоремы легко установить многие гомеоморфизмы, о которых говорилось в гл. 5. Например, образ f(X) компактного пространства X

¹⁾ Другие типичные примеры: наложение полуинтервала длины 2π на окружность радиуса 1, наложение интервала на компактное пространство, имеющее вид цифры 8, отображение открытого круга с единственной точкой на его границе на сферу и т. п.— Π рим, ред.

в хаусдорфовом пространстве при непрерывном инъек-

тивном отображении гомеоморфен X.

Изучим теперь, как аксиома Хаусдорфа переносится на подпространства, прямые произведения и факторпространства.

8.9. Теорема. Подпространство S хаусдорфова пространства Х хаусдорфово.

Доказательство. Пусть x, y—две различные точки из S. Существуют непересекающиеся открытые в Xмножества U_x и U_y , причем U_x содержит x, а U_y содержит y. Множества $U_x \cap S$ и $U_y \cap S$ —непересекающиеся открытые подмножества S, причем $x \in U_x \cap S$ и $y \in U_n \cap S$. Следовательно, S хаусдорфово. \square

В частности, всякое подмножество \mathbb{R}^n с обычной топологией хаусдорфово.

8.10. Теорема. Пусть X и Y — топологические пространства. Тогда Х и У хансдорфовы в том и только $\boldsymbol{\epsilon}$ том случае, если $X \times Y$ хаусдорфово.

фовы, и пусть $w_1 = (x_1, y_1)$ и $w_2 = (x_2, y_2)$ — две различные точки из $X \times Y$. Если $x_1 \neq x_2$, то можно найти два непересекающихся открытых множества $U_{\scriptscriptstyle 1},\ U_{\scriptscriptstyle 2}$ $\mathbf{c} \ \mathbf{x_1} \in U_1, \ \mathbf{x_2} \in U_2$. Множества $U_1 \times Y$ и $U_2 \times Y$ открыты и не пересекаются в $X \times Y$, причем $w_1 \in U_1 \times Y$ и $w_2 \in U_2 \times Y$ $\in U_2 \times Y$. Если $x_1 = x_2$, то $y_1 \neq y_2$, и аналогичное рассуждение показывает, что в $X \times Y$ найдутся открытые непересекающиеся множества $X \times V_1$ и $X \times V_2$, для которых $w_1 \in X \times V_1$ и $w_2 \in X \times V_2$. Обратно, если $X \times Y$ хаусдорфово, то таковы же

подпространства $X \times \{y\}$ и $\{x\} \times Y$, а следовательно,

Хи У. □

Таким образом, пространства типа $S^1 \times S^1 \times \ldots \times S^1$

хаусдорфовы.

Хотя подпространства и произведения хаусдорфопространств хаусдорфовы, факторпространство хаусдорфова пространства, вообще говоря, не хаусдорфово. Для примера рассмотрим хаусдорфово пространство X и его незамкнутое подмножество A (скажем, $X=\mathbb{R},\ A=(0,\ 1)$). Пусть $Y=X/\sim$, где \sim —отношение эквивалентности на X, при котором $x\sim x'$ тогда и только тогда, когда x=x' или $\{x,\ x'\}\subset A$ (интуитивно, Y—это X со стянутым в точку подмножеством A; мы будем обозначать $Y=X/\sim$ через X/A). Если снабдить Y фактортопологией относительно естественной проекции $g\colon X\to Y$, то прообраз точки $[x_0]\in Y$, где $x_0\in A$, есть множество A, не замкнутое в X. Следовательно, точка $[x_0]$ незамкнута в Y, и Y не хаусдорфово.

Чтобы обеспечить хаусдорфовость факторпространства Y хаусдорфова пространства X, нужно наложить на X дальнейшие ограничения. В качестве примера

приведем следующий результат.

8.11. Теорема. Пусть $Y - \phi$ акторпространство топологического пространства X, определенное при помощи сюръективного отображения $f\colon X \to Y$. Если X компактно и хаусдорфово, а f замкнуто, то Y компактно и хаусдорфово.

Доказательство. Точки пространства Y являются образами точек из X, которые замкнуты в X, и потому точки из Y замкнуты. Пусть y_1 и y_2 —две различные точки из Y. Их прообразы $f^{-1}\left(y_1\right)$ и $f^{-1}\left(y_2\right)$ —непересекающиеся замкнутые подмножества X. Для любой точки $x \in f^{-1}\left(y_1\right)$ и любой точки $a \in f^{-1}\left(y_2\right)$ найдутся непересекающиеся открытые множества U_x , a и V_x , a, для которых $x \in U_x$, a и $a \in V_x$, a. Так как $f^{-1}\left(y_2\right)$ замкнуто, то оно компактно, и найдется конечное подпокрытие покрытия $\{V_{x,a}: a \in f^{-1}\left(y_2\right)\}$ этого множества, скажем $\{V_{x,a}: a \in A\}$, где A—конечное подмножество $f^{-1}\left(y_2\right)$. В частности, найдутся непересекающиеся открытые множества U_x и V_x с $x \in U_x$ и $f^{-1}\left(y_2\right) \subset V_x$, а именно $U_x = \bigcap_{a \in A} U_{x,a}$, $V_x = \bigcup_{a \in A} V_{x,a}$. Далее, $\{U_x: x \in f^{-1}\left(y_1\right)\}$ —открытое покрытие компактного множества $f^{-1}\left(y_1\right)$, и потому найдется конечное подпокрытие $\{U_x: x \in B\}$, где B—конечное подмножество $f^{-1}\left(y_1\right)$. Итак, множества $U = \bigcup_{x \in B} U_x$, $V = \bigcap_{x \in B} V_x$ открыты, не пересекаются и $f^{-1}\left(y_1\right) \subset U$, $f^{-1}\left(y_2\right) \subset V$.

Так как по предположению f замкнуто, то $f(X \setminus U)$ и $f(X \setminus V)$ замкнуты в Y, поэтому $W_1 = Y \setminus f(X \setminus U)$ и $W_2 = Y \setminus f(X \setminus V)$ —открытые подмножества Y, причем $y_1 \in W_1$ и $y_2 \in W_2$. Наконец, осталось проверить, что $W_1 \cap W_2 = \varnothing$. Поэтому предположим, что $y \in W_1 \cap \bigcap W_2$; тогда $y \notin f(X \setminus U)$ и $y \notin f(X \setminus V)$. Следовательно, $f^{-1}(y) \cap (X \setminus U) = \varnothing$ и $f^{-1}(y) \cap (X \setminus V) = \varnothing$, откуда $f^{-1}(y) \subset U \cap V = \varnothing$, и потому $W_1 \cap W_2 = \varnothing$. \square

Из этой теоремы вытекает следующий результат.

8.12. Следствие. Если X — компактное хаусдорфово G-пространство с конечной группой G, то X/G — компактное хаусдорфово пространство.

Доказательство. Пусть C— замкнутое подмножество X. Тогда $\pi^{-1}(\pi(C)) = \bigcup_{g \in G} g \cdot C$, где $\pi \colon X \to X/G$ — естественная проекция. Так как действие $g \in G$ на X— гомеоморфизм, то множества $g \cdot C$ замкнуты для всех $g \in G$. Значит, $\pi^{-1}(\pi(C))$ замкнуто, а следовательно, $\pi(C)$, замкнуто, т. е. π —замкнутое отображение. \square

Так, например, \mathbb{R}^{P^n} —компактное хаусдорфово про-

странство.

Чтобы вывести другое следствие теоремы 8.11, рассмотрим пространство X вместе с подмножеством $A \subset X$. Напомним, что X/A обозначает X/\sim , где \sim —отношение эквивалентности на X, при котором $x\sim x'$ тогда и только тогда, когда x=x' или $x,\ x'\in A$.

8.13. Следствие. Если X — компактное хаусдорфово пространство и A — его замкнутое подмножество, то X/A — компактное хаусдорфово пространство.

Доказательство. Пусть C — замкнутое подмножество X и $p\colon X\to X/A$ — естественная проекция. Если $C\cap A=\varnothing$, то p(C)=C замкнуто. Если $C\cap A\ne\varnothing$, то $p(C)=p(C\setminus A)\cup p(C\cap A)$ тоже замкнуто, потому что $p^{-1}(p(C\setminus A)\cup p(C\cap A))=(C\setminus A)\cup A=C\cup A$. Итак, p— замкнутое отображение. \square

Другие ограничения на хаусдорфово пространство, обеспечивающие хаусдорфовость факторпространства, устанавливаются в следующих упражнениях, среди которых содержится и теорема, обратная к 8.11.

8.14. Упражнения. (а) Пусть $f: X \longrightarrow Y$ —непрерывное сюрьективное отображение компактного пространства Х на хаусдорфово пространство Y. Докажите, что подмножество $U \subset Y$ тогда и только тогда открыто, когда $f^{-1}(U)$ открыто в X. (Указание: докажите, что подмножество C тогда и только тогда замкнуто в Y, когда $f^{-1}(C)$ замкнуто в X.) Выведите отсюда, что топология Y совпадает с фактортопологией, определяемой отображением f.

(b) Докажите, что пространство У тогда и только тогда хаусдорфово, когда диагональ $D = \{(y_1, y_2) \in Y \times Y : y_1 = y_2\}$ замкнута

в $Y \times Y$.

(c) Пусть $f: X \longrightarrow Y$ — непрерывное отображение. Докажите, если Y хаусдорфово, то множество

 $\{(x_1, x_2) \in X \times X: f(x_1) = \hat{f}(x_2)\}$ замкнуто в $X \times X$.

(d) Пусть $f: X \longrightarrow Y$ — непрерывное, сюръективное и открытое отображение. Докажите, что Y тогда и только тогда хаусдорфово, когда множество $\{(x_1, x_2) \in X \times X: f(x_1) = f(x_2)\}$ замкнуто в $X \times X$.

(e) Пусть X — компактное хаусдорфово пространство и Y — факторпространство, опре-Рис.8.1 деленное отображением $f: X \longrightarrow Y$. Докажите,

что У тогда и только тогда хаусдорфово, когда f — замкнутое отображение. Далее докажите, что Y тогда и только тогда хаусдорфово, когда множество $\{(x_1, x_2) \in X \times X: f(x_1) =$ $=f(x_2)$ замкнуто в $X \times X$.

(f) Пусть \sim — отношение эквивалентности на $S^1 \times I$, при котором $(x, t) \sim (y, s)$ тогда и только тогда, когда xt = ys (здесь имеется в виду, что $S^1 \subset \mathbb{O}$ и $I = [0, 1] \subset \mathbb{R}$). Докажите, что $(S^1 \times I)/\sim$ гомеоморфно единичному диску D^2 : $\{x \in \mathbb{R}^2: ||x|| \le 1\} =$

 $= \{x \in \mathbb{C}: |x| \leq 1\}$ с индуцированной топологией.

(g) Пусть ~ отношение эквивалентности на замкнутом единичном квадрате $X = \{(x, y) \in \mathbb{R}^2: 0 \le x, y \le 1\}$, при котором $(x, y) \sim (x', y')$ тогда и только тогда, когда (x, y) = (x', y'), или $\{x, x'\} = \{1, 0\}$ и y = 1 - y' или $\{y, y'\} = \{1, 0\}$ и x = 1 - x' (рис. 8.1). Докажите, что факторпространство X/\sim гомеоморфно \mathbb{R}^{P^2} .

(h) Пусть S_+^n — подмножество $S_-^n \subset \mathbb{R}^{n+1}$, заданное как S_+^n = $=\{x=(x_1,\,x_2,\,\ldots,\,x_{n+1})\in\mathbb{R}^{n+1}:\,\|x\|=1,\,\,x_{n+1}\geqslant 0\}$. Докажите, что отображение $f\colon\mathbb{R}^{n+1}\to\mathbb{R}^n$, определенное формулой $f(x_1,$ $x_2, \ldots, x_{n+1} = (x_1, x_2, \ldots, x_n)$, задает гомеоморфизм S_+^n на замкнутый n-мерный диск $D^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$

(i) Определим — на R условием: x — y тогда и только тогда когда x-y рационально. Покажите, что - является отношением эквивалентности и что пространство \mathbb{R}/\sim с фактортопологией не-

хаусдорфово.

(j) Пусть X — компактное хаусдорфово пространство, U — открытое подмножество X, не совпадающее с X. Докажите, что 1) $U^{\infty} \cong X/(X \setminus U)$. (Указание: рассмотрите $h: U^{\infty} \longrightarrow X/(X \setminus U)$, такое, что h(u) = p(u) при $u \in U$ и $h(\infty) = p(X \setminus U)$, где p:

¹⁾ См. упр. 7.13 (h).— Прим. ред.

 $X \longrightarrow X/(X \setminus U)$ — естественная проекция.) Выведите отсюда, что если $x \in X$ (и X— компактное хаусдорфово пространство), то $(X \setminus \{x\})^m \cong X$.

(k) Докажите, что $S^n \cong (\mathbb{R}^n)^\infty \cong D^n/S^{n-1} \cong l^n/\partial l^n$. (Указа-

HHE: $S^n \setminus \{(0, 0, \dots, 0, 1)\} \cong \mathbb{R}^n \cong D^n \setminus S^{n-1} \cong I^n \setminus \partial I^n$.)

(1) (Обобщение теоремы 8.11.) Пусть Y — факторпространство пространства X, определенное сюръективным отображением $f\colon X \longrightarrow Y$. Предположим, что X — хаусдорфово пространство, f — вамкнутое отображение и $f^{-1}(y)$ компактно для всех $y \in Y$. Дока-

жите, что У — хаусдорфово пространство.

(m) Пусть X—компактное хаусдорфово пространство и A—его замкнутое подпространство. Предположим далее, что A есть G-пространство с конечной группой G. Определим отношение — на X условием, что $x \sim x'$ тогда и только тогда, когда x = x' или обе точки x, x' принадлежат A и $x = g \cdot x'$ для некоторого $g \in G$. Докажите, что — отношение эквивалентности на X и что пространство X/\sim хаусдорфово.

(п) Докажите, что подмножество \mathbb{R}^n тогда и только тогда компактно, когда оно вамкнуто и ограничено. (Указание: восполь-

вуйтесь теоремой 7.12. упр. 7.13(b) и теоремой 8.7.)

СВЯЗНЫЕ ПРОСТРАНСТВА

Интуитивно, пространство X связно, если оно состоит из «одного куска», но как топологически истолковать «кусок»? Разумно потребовать, чтобы открытые и замкнутые подмножества «куска» были соответственно открытыми и замкнутыми во всем пространстве X. Тогда по лемме 4.4 нужно ожидать, что «кусок» открыт и замкнут в X. Это приводит к следующему определению.

9.1. Определение. Топологическое пространство X называется связным, если единственными подмножествами X, открытыми и замкнутыми одновременно, являются \emptyset и X. Подмножество пространства X связно, если оно связно как пространство \mathbf{c} индуцированной топологией.

Равносильное определение связности X состоит в том, что X не является объединением двух непересекающихся непустых открытых множеств. Этот факт составляет содержание следующей теоремы.

9.2. Теорема. Пространство X тогда и только тогда связно, когда оно не является объединением двух своих непересекающихся непустых открытых подмножеств.

Доказательство. Пусть X связно, и предположим, что $X = X_1 \cup X_2$, где X_1 и X_2 —непересекающиеся открытые подмножества X. Тогда $X \setminus X_1 = X_2$, так что X_1 открыто и замкнуто одновременно, откуда $X_1 = \emptyset$ или X и соответственно $X_2 = X$ или \emptyset . В обоих случаях X не является объединением двух непересекающихся непустых открытых подмножеств.

Обратно, пусть X не есть объединение двух нене-

ресекающихся непустых открытых подмножеств, и пусть $U \subset X$. Если U открыто и замкнуто одновременно, то $X \setminus U$ также открыто и замкнуто. Но в этом случае X является объединением непересекающихся открытых множеств U и $X \setminus U$, поэтому одно из них должно быть пустым, т. е. $U = \emptyset$ или U = X. \square

Например, подмножество $S^0 = \{\pm 1\}$ пространства \mathbb{R} несвязно, потому что $\{+1\}$ —одновременно и открытое, и замкнутое подмножество S^0 , или, эквивалентно, S^0 есть объединение своих непересекающихся открытых подмножеств $\{+1\}$ и $\{-1\}$. Примером связного подмножества \mathbb{R} является [a, b], но это нужно еще доказать. Перед доказательством рассмотрим еще несколько примеров. Они показывают, что не следует слишком доверять интуитивным представлениям.

Пусть X—множество вещественных чисел с топологией $\{\varnothing\} \cup \{\mathbb{R}\} \cup \{(-\infty, x): x \in \mathbb{R}\}$; тогда любое подмножество X связно. Для доказательства рассмотрим произвольное подмножество $S \subset X$. Пусть F—непустое подмножество S, открытое и замкнутое в S. Тогда можно записать F как $U \cap S = C \cap S$, где U открыто в X, а C замкнуто в X, т. е. $U = (-\infty, b)$ для некоторого b, а $C = [a, \infty)$ для некоторого a. Так как $F = U \cap S = C \cap S$, то для любого $x \in S$ выполнены неравенства x < b и $x \geqslant a$ (если найдется значение $x \geqslant b$, то $C \cap S \neq U \cap S$; аналогично, если найдется значение x < a, то $U \cap S \neq C \cap S$). Итак, $S \subset [a, b)$ и F = S, откуда следует, что S связно.

Пусть теперь X—множество вещественных чисел с топологией \mathcal{F} , определенной следующим образом: $S \in \mathcal{F}$ тогда и только тогда, когда для любого $s \in S$ найдется такое t > s, что $[s, t) \subset S$. В этом случае единственные непустые связные подмножества X—это точки. Чтобы доказать это, предположим, что T—непустое связное подмножество X и x—точка нз T. Подмножество $[x, x+\varepsilon)$ пространства X открыто и замкнуто для всех $\varepsilon > 0$ (упр. 2.6(d)). Таким образом, $[x, x+\varepsilon) \cap T$ —открытое и замкнутое подмножество T. Так как T связио и $[x, x+\varepsilon) \cap T \neq \emptyset$, то $[x, x+\varepsilon) \cap T = T$ для всех $\varepsilon > 0$. Но это возможно только при

 $T = \{x\}$. Очевидно, что одноточечные множества связны, и потому опи являются единственными связными непустыми подмножествами X.

Перейдем теперь к доказательству того, что подмножество [a, b] пространства $\mathbb R$ (с обычной тополо-

гией) євязно.

9.3. Теорема. Отрезок $[a, b] \subset \mathbb{R}$ связен.

Доказательство. Предположим, что [a, b] является объединением двух своих непересекающихся открытых подмножеств U и V. Пусть $a \in U$. Заметим, что U и V замкнуты в [a, b] и, так как отрезок [a, b] замкнут в \mathbb{R} , замкнуты и в \mathbb{R} . Пусть h—верхняя грань множества

$$\{u \in U \colon u < v \text{ для всех } v \in V\}$$

(это множество непусто, ибо оно содержит точку a). Так как U замкнуто, то $h \in U$. Но $(h-\varepsilon, h+\varepsilon) \cap \bigcap V \neq \emptyset$ для всех $\varepsilon > 0$ (иначе h не было бы верхней гранью), и по лемме $2.7 \ h \in V$. Но V замкнуто, так что $h \in V$ и потому $h \in U \cap V$; мы получили противоречие, доказывающее, что отрезок [a, b] связен. \square

9.4. Теорема. Образ связного пространства при непрерывном отображении связен.

Доказательство. Предположим, что X связно и f1 $X \to Y$ —непрерывное сюръективное отображение. Если U открыто и замкнуто в Y, то $f^{-1}(U)$ открыто и замкнуто в X; но тогда $f^{-1}(U) = \emptyset$ или X и $U = \emptyset$ или Y. Значит, Y связно. \square

9.5. Следствие. Если X и Y—гомеоморфные топологические пространства, то X связно тогда и только тогда, когда Y связно.

Из теоремы 9.4 получаем, что окружность S^1 связна, так как имеется непрерывное сюръективное отображение $f\colon [0,1] \to S^1$, заданное формулой $f(t) = (\cos 2\pi t, \sin 2\pi t) \in S^1 \subset \mathbb{R}^2$.

Чтобы доказать, что интервалы в \mathbb{R} вида [a, b), (a, b] и (a, b) связны, воспользуемся следующим результатом.

9.6. **Теорема.** Пусть $\{Y_j: j \in J\}$ —семейство связных подмножеств пространства X. Если $\bigcap\limits_{j \in J} Y_j \neq \emptyset$, то $Y = \bigcup\limits_{j \in J} Y_j$ связно.

Доказательство. Пусть U—непустое открытое и замкнутое подмножество Y. Тогда $U \cap Y_i \neq \varnothing$ для некоторого $i \in J$ и $U \cap Y_i$ открыто и замкнуто в Y_i . Но Y_i связно, так что $U \cap Y_i = Y_i$ и, следовательно, $Y_i \subset U$. Множество Y_i пересекается с любым другим Y_j , $j \in J$, и потому U также пересекается с любым Y_j , $j \in J$. Повторяя предыдущее рассуждение, получим, что $Y_j \subset U$ для всех $j \in J$ и потому U = Y. \square

Связность интервалов [a, b), (a, b] и (a, b) в $\mathbb R$ следует из теоремы 9.3, следствия 9.5 и того факта, что

$$[a, b] = \bigcup_{n \ge 1} [a, b-(b-a)/2^n]$$

и т. д. Аналогично получаем, что связны само \mathbb{R} , а также интервалы вида $[a, \infty)$, $(-\infty, b]$, $(-\infty, b)$, (a, ∞) .

Последний результат, который мы докажем здесь,

относится к произведениям связных пространств.

9.7. Теорема. Пусть X и Y — топологические пространства. X и Y тогда и только тогда связны, когда $X \times Y$ связно.

Доказательство. Предположим, что X и Y связны. Так как $X\cong X\times \{y\}$ и $Y\cong \{x\}\times Y$ для всех $x\in X$, $y\in Y$, то $X\times \{y\}$ и $\{x\}\times Y$ связны. Далее, $(X\times \{y\})\cap (\{x\}\times Y)=\{(x,\ y)\}\neq \varnothing$, и, таким образом, $(X\times \{y\})\cup (\{x\}\times Y)$ связно по теореме 9.6. Теперь можно записать $X\times Y$ в виде

$$X \times Y = \bigcup_{x \in X} ((X \times \{y\}) \cup (\{x\} \times Y))$$

для некоторого фиксированного $y \in Y$. Так как $\bigcap_{x \in X} ((X \times \{y\}) \cup (\{x\} \times Y)) \neq \emptyset$, то $X \times Y$ связно.

Обратно, пусть $X \times Y$ связно. Связность X и Y следует из теоремы 9.4 и того факта, что $\pi_X \colon X \times Y \longrightarrow X$ и $\pi_Y \colon X \times Y \longrightarrow Y$ — непрерывные сюръективные отображения. \square

Из этих результатов следует, что \mathbb{R}^n связно. В упражнениях мы ўвидим, что сфера S^n при $n \geqslant 1$ и проективное пространство $\mathbb{R}P^n$ также связны.

9.9. Упражнения. (а) Докажите, что множество рациональных чисел $\mathbb{Q} \subset \mathbb{R}$ несвязно. Каковы его связные подмножества?

(b) Докажите, что подмножество R тогда и только тогда связно, когда оно является интервалом или одной точкой. (Подмножество A пространства $\mathbb R$ называется интервалом, если A содержит по крайней мере две различные точки и для $a, b \in A, a < b$, из a < x < b следует $x \in A$.)

(c) Пусть X — множество, состоящее не менее чем из двух элементов. Докажите, что (i) в дискретной топологии единственные связные подмножества X — это одноточечные множества; (ii) в антидискретной топологии любое подмножество Х связно.

(d) Какие из следующих подмножеств R² связны:

$${x: ||x|| < 1}, {x: ||x|| > 1}, {x: ||x|| \neq 1}$$
?

Какие из следующих подмножеств R³ связны:

$$\{x: x_1^2 + x_2^2 - x_3^2 = 1\}, \quad \{x: x_1^2 + x_2^2 - x_3^2 = -1\}, \quad \{x: x_1 \neq 1\}$$
?

(e) Докажите, что топологическое пространство X тогда и только тогда связно, когда любое непрерывное отображение Xв дискретное пространство (состоящее не менее чем из двух точек) является постоянным.

(f) Пусть A—связное подпространство X и $A \subset Y \subset \overline{A}$. Докажите, что У связно.

(g) Пусть Y и $\{Y_j: j \in J\}$ — связные подмножества пространства X. Докажите, что если $Y_0 \cap Y_1 \neq \emptyset$ для всех $j \in J$, то $Y = Y_0 \cup \left(\bigcup_{f \in J} Y_f\right)$ связно.

(h) Докажите, что \mathbb{R}^{n+1} (0) связно при $n \ge 1$. Выведите отсюда, что S^n в \mathbb{R}^{Pn} связны при $n \ge 1$. (Указание: рассмотрите отображение $f: \mathbb{R}^{n+1} \setminus \{0\} \longrightarrow S^n$, заданное формулой $f(x) = x/\|x\|$.)

(i) Пусть A и B — подмножества \mathbb{R}^2 вида

$$A = \{(x, y): x = 0, -1 \le y \le 1\},\$$

$$B = \{(x, y): 0 < x \le 1, y = \cos \pi/x\}.$$

Докажите, что $X = A \bigcup B$ связно. (Указание. Докажите, что A и B связны. Затем рассмотрите $X \stackrel{.}{=} U \cup V$, где U и V открыты и замкнуты в X, и предположите, что некоторая точка из A принадлежит U.)

(j) Пусть A и B—подмножества \mathbb{R}^2 вида

$$A = \{(x, y): 1/2 \le x \le 1, y = 0\},\ B = \{(x, y): 0 \le x \le 1, y = x/n, \text{ rge } n \in \mathbb{N}\}.$$

Докажите, что X = A[]B связно.

(k) Первые шаги в алгебраической топологии. Пусть X—топологическое пространство. Определим $H\left(X\right)$ как множество всех непрерывных отображений X в \mathbb{Z}_2 (топологическое пространство, состоящее из двух точек $\{0, 1\}$ с дискретной топологией). Если $f, g \in H(X)$, определим сумму f + g формулой

$$(f+g)(x) = f(x) + g(x) \pmod{2}$$
 $(x \in X)$.

Докажите, что I+g непрерывно и H(X)—абелева группа относительно этой операции. Докажите, что X тогда и только тогда связно, когда H(X) изоморфна циклической группе порядка 2. Постройте примеры топологических пространств X_k с группами $H(X_k)$, изоморфными $(\mathbb{Z}_2)^k$.

ЗАДАЧИ О БЛИНАХ

В этой главе мы приведем некоторые довольно легкомысленные приложения результатов предыдущих глав к так называемым «задачам о блинах». Грубо говоря, первая задача такова: допустим, что на тарелке лежат два блина (произвольной формы); нужно показать, что можно разрезать оба блина точно пополам одним взмахом ножа. Вторая задача — показать, что можно разделить блин на четыре равные части двумя перпендикулярными разрезами. Доказательства основаны на некоторой форме теоремы о промежуточном значении.

10.1. Лемма. Если $f: I \to \mathbb{R}$ — непрерывная функция, для которой произведение $f(0) f(1) \leq 0$, то найдется такая точка $t \in I$, что f(t) = 0.

Доказательство. Пусть $f(t) \neq 0$ для всех $t \in I$ и, в частности, f(0) f(1) < 0. Определим функцию $g: I \rightarrow \{\pm 1\} = S^0$ формулой g(t) = f(t)/|f(t)|. Очевидно, что она непрерывна и сюръективна (потому что f(0) f(1) < 0). Но отрезок I связен, а множество $S^0 \rightarrow$ нет. Это противоречит тому, что непрерывный образ связного пространства связен. \square

Как следствие получаем теорему о неподвижной

точке.

10.2. Следствие. Пусть $f: I \to I$ —непрерывная функция; тогда существует такая точка $t \in I$, что f(t) = t.

Доказательство. Если f(0)=0 или f(1)=1, доказывать нечего. Поэтому предположим, что f(0)>0 и f(1)<1, и рассмотрим функцию g(t)=f(t)-t. Она непрерывна и удовлетворяет условию g(0)g(1)<0.

По лемме 10.1 имеем g(t) = 0 для некоторого $t \in I$ и, следовательно, f(t) = t для некоторого $t \in I$.

10.3. Следствие. Всякое непрерывное отображение окружности в прямую переводит некоторую пару диаметрально противоположных точек в одну точку.

Доказательство. Пусть $f(t) \neq f(-t)$ для всех $t \in S^1$; определим функцию $h: S^1 \to \mathbb{R}$ формулой h(t) = f(t) - f(-t). Пусть $e: I \to S^1$ задано формулой $e(t) = \exp \pi i t$. Очевидно, что функция he непрерывна. Далее, he(0) = h(1) = f(1) - f(-1), he(1) = h(-1) = f(-1) f(1) = -he(0). Итак, по лемме 10.1 найдется такая точка $t \in I$, что he(t) = 0, и потому найдется такая точка $t \in S^1$, что h(t) = 0, т. e. he(t) = f(-t). he(t) = f(-t).

Имеется физическая интерпретация следствия 10.3.

10.4. Следствие. В данный момент времени на данной большой окружности земного шара найдется пара антиподальных точек с одинаковой температурой.

Антиподальные точки—это диаметрально противоположные точки. Этот результат можно обобщить, см. гл. 20.

Перейдем теперь к точной формулировке первой задачи о блинах.

10.5. Теорема. Пусть A и B — ограниченные множества на евклидовой плоскости 1). Тогда в этой плоскости найдется прямая, которая делип каждое из множеств на две части равной площади.

Заметим, что эти множества могут пересекаться, т. е. блины могут налагаться один на другой. Более того, множества могут не быть связными, т. е. блины могут быть разорваны на несколько кусков.

Доказательство. Пусть S — окружность с центром $(0, 0) \in \mathbb{R}^2$, которая содержит внутри себя A и B (она существует, так как A и B ограничены). Изменяя

 $^{^{-1}}$) Предполагается, что множества A и B имеют площадь. — $\Pi \ pum \ nepes$.

масштаб, можно считать, что диаметр S равен 1. Для любого $x \in S$ рассмотрим диаметр D_x окружности S, проходящий через x, и пусть L_t —перпендикуляр к D_x , проходящий через точку на D_x , расстояние которой от x равно t ($t \in I$), см. рис. 10.1.

Рис.10.1

Пусть $g_1(t)$ —площадь части A, лежащей с той же стороны от L_t , что и x, а $g_2(t)$ — площадь другой части. Заметим, что $g_1(0) = g_2(1) = 0$. Ясно, что g_1 и g_2 —непрерывные функции, отображающие I в \mathbb{R}^{-1}). Определим $f: I \to \mathbb{R}$ формулой $f(t) = g_2(t) - g_1(t)$. Эта функция непрерывна и удовлетворяет условию f(0) ==-f(1), т. е. $f(0)f(1)\leqslant 0$. По лемме 10.1 найдется такая точка $t\in I$, что f(t)=0. Эта точка может не быть единственной. Так как g_2 и — g_1 — невозрастающие функции (это очевидно), то $f = g_2 - g_1$ тоже не возрастает. Таким образом, f(t) = 0 либо на целом отрезке [a, b], либо в единственной точке c. В первом случае определим $h_A(x) = (a+b)/2$, а во втором $h_A(x) = c$. Другими словами, перпендикуляр к D_x , проходящий через точку иа D_x , расстояние которой от x равно $h_A(x)$, делит площадь A пополам Заметим, что $h_A(-x)$ $=1-h_A(x)$. Заметим также, что $h_A: S^1 \to I$ —непрерывная функция (обычный прием: слегка подвинуть х и посмотреть, что произойдет с $h_{A}(x)$).

¹⁾ Доказательство см. в указанной в гл. 30 книге Стинрода и Чинна, с. 101. — Прим. перев.

Определим таким же образом функцию $h_B\colon S^1\to I$, используя B вместо A. Затем определим $h\colon S^1\to \mathbb{R}$ формулой $h(x)=h_A(x)-h_B(x)$. Так как h_A и h_B непрерывны, то и h непрерывна. Далее, h(x)=-h(-x) для всех $x\in S^1$. Но, согласно следствию 10.3, существует такая точка $y\in S^1$, что h(y)=h(-y). Значит, h(y)=0, $h_A(y)=h_B(y)$, и перпендикуляр к D_y , проходящий через точку на D_y , расстояние которой до y равно $h_A(y)$, делит пополам площади A и B. \square

Эта теорема обобщается на высшие размерности, т. е. на n ограниченных множеств в \mathbb{R}^n . Случай n=3 см. в гл. 20.

Приведем теперь точную формулировку второй за-

дачи о блинах.

10.6. Теорема. Если A—ограниченное множество на плоскости, то существуют две перпендикулярные прямые, разделяющие A на четыре части одинаковой площади.

Доказательство. Как и в доказательстве теоремы 10.5, заключим A внутрь окружности S с центром

Рис.10.2

в $(0, 0) \in \mathbb{R}^2$ единичного диаметра. Для любого $x \in S$ пусть L_x —перпендикуляр к D_x , пересекающий D_x на расстоянии $h_A(x)$ от x (в частности, L_x делит площадь A пополам). Пусть y—точка на S, полученная из x поворотом на прямой угол против часовой стрелки (т. е. $y = ix = x \sqrt{-1}$). Пусть теперь M_x —перпенди-

куляр к D_y , пересекающий D_y на расстоянии $h_A(y)$ от $y\left(M_x\right)$ тоже делит площадь A пополам). Обозначим четыре части A в порядке обхода против часовой стрелки через $A_1(x)$, $A_2(x)$, $A_3(x)$, $A_4(x)$ (рис. 10.2). Заметим, что если обозначить площадь $A_i(x)$ через $g_i(x)$, то

$$g_1(x)+g_2(x)=g_3(x)+g_4(x), g_4(x)+g_1(x)=g_2(x)+g_3(x),$$
 откуда $g_1(x)=g_3(x)$ и $g_2(x)=g_4(x)$. Конечно, каждая из функций g_1, g_2, g_3 и g_4 , отображающих S в $\mathbb R$, непрерывна. Пусть f —непрерывная функция, определенная формулой

 $f(x) = g_1(x) - g_2(x) = g_3(x) - g_4(x).$

Заметим, что $f(ix) = g_1(ix) - g_2(ix) = g_2(x) - g_3(x) = g_2(x) - g_1(x) = -f(x)$. Применим теперь лемму 10.1 к функции $fVe^-: I \to \mathbb{R}$, где $Ve^-: I \to S^1$ определена формулой $Ve^-(t) = \exp(\pi i t/2)$, и получим нужный результат. \square

Решения задач о блинах — это теоремы существования; они утверждают, что существуют разрезы нужного вида, но не указывают, как их сделать. Вообще говоря, точное положение разреза найти трудно. В упражнении мы приведем пример, когда это сделать легко.

10.7. Упражнения. (а) Допустим, что на тарелке лежат два блина. Как сделать одним взмахом ножа разрез, делящий оба блина точно пополам, если один блин имеет форму правильного 2n-угольника, а другой — правильного 2m-угольника?

(b) (Другое доказательство теоремы 10.5.) Используя обозначения теоремы 10.5, покажите сначала, что для $x \in S^1$ найдется прямая L_x , перпендикулярная D_x , которая делит A пополам. Эта прямая разделит B на две части. Пусть $k_1(x)$, $k_2(x)$ — площади соответственно ближайшей к точке x и дальней от нее частей B. Положим $k(x) = k_1(x) - k_2(x)$. Покажите, что k: $S^1 \longrightarrow \mathbb{R}$ непрерывно, и выведите отсюда теорему 10.5.

МНОГООБРАЗИЯ И ПОВЕРХНОСТИ

В этой главе мы рассмотрим класс топологических пространств, локально устроенных как евклидовы пространства.

11.1. Определение. Пусть n— неотрицательное целое число. Хаусдорфово пространство, каждая точка которого имеет открытую окрестность, гомеоморфную открытому n-мерному диску $\mathring{D}^n = \{x \in \mathbb{R}^n \colon \|x\| < 1\}$, называется n-мерным многообразием. Заметим, что $\mathring{D}^n \cong \mathbb{R}^n$, так что с равным успехом можно потребовать, чтобы каждая точка имела окрестность, гомеоморфную \mathbb{R}^n .

Так как \mathbb{R}^0 — одна точка, то любое пространство с дискретной топологией является нульмерным многообразием. (Пространство с дискретной топологией хаувдорфово, и для $x \in X$ в качестве открытого множества, содержащего x и гомеоморфного \mathbb{R}^0 , можно взять $\{x\}$.) Кроме нульмерных простейшими примерами n-мерных многообразий являются, пожалуй, \mathbb{R}^n или само \mathring{D}^n . Любое открытое подмножество \mathbb{R}^n тоже является n-мерным многообразием: если U открыто в \mathbb{R}^n и $u \in U$, то найдется такое $\varepsilon > 0$, что $u \in B_\varepsilon(u) \subset U \subset \mathbb{R}^n$ и, конечно, $B_\varepsilon(u) \cong \mathring{D}^n$.

Окружность S^1 — одномерное многообразие. Чтобы проверить это, предположим, что $S^1 \subset \mathbb{C}$ задана как $\{\exp 2\pi it \colon t \in I\}$. Если $x = \exp 2\pi i\theta \in S^1$, то

$$x \in S^{1} \setminus \{-x\} = S^{1} \setminus \{\exp 2\pi i (\theta - 1/2)\} =$$

$$= \{\exp 2\pi i t: \theta - 1/2 < t < \theta + 1/2\} \cong$$

$$\cong (\theta - 1/2, \theta + 1/2) \cong (0, 1) \cong \mathring{D}^{1},$$

так что каждая точка имеет окрестность, гомеоморфную \mathring{D}^1 . Очевидно, что S^1 хаусдорфово и, следовательно, является одномерным многообразием. Вообще, n-мерная сфера S^n является n-мерным многообразием. Чтобы установить это, введем понятие стереографической проекции, которая является гомеоморфизмом пространства $S^n \setminus \{(0, 0, \ldots, 0, 1)\}$ на \mathbb{R}^n . Определим ее следующим образом: для $x \in S^n \setminus \{(0, \ldots, 0, 1)\}$ проведем в \mathbb{R}^{n+1} прямую через точки $(0, \ldots, 0, 1)$ и x до пересечения с $\mathbb{R}^n = \{(x_1, x_2, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \colon x_{n+1} = 0\}$. Обозначим точку пересечения через $\phi(x)$ (рис. 11.1).

Нетрудно усмотреть (интуитивно это понятно), что φ непрерывно и биективно. Легко определить $\psi = \varphi^{-1}$ и убедиться, что оно непрерывно. Нетрудно получить для φ точную формулу: написать уравнения прямой в \mathbb{R}^{n+1} , проходящей через $(0,\ldots,0,1)$ и x, и найти на ней точку, в которой $x_{n+1}=0$. Читатель может быстро сосчитать, что

$$\phi(x_1, x_2, \dots, x_{n+1}) = \left(\frac{x_1}{1-x_{n+1}}, \frac{x_2}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}\right).$$
 Обратное отображение $\psi \colon \mathbb{R}^n \to S^n \setminus \{(0, \dots, 0, 1)\}$ за-

Обратное отображение ψ : $\mathbb{R}^n \to S^n \setminus \{(0, ..., 0, 1)\}$ задается формулой

$$\psi(x_1, x_2, \ldots, x_n) = \frac{1}{1 + \|x\|^2} (2x_1, 2x_2, \ldots, 2x_n, \|x\|^2 - 1).$$

Мы оставляем читателю проверку того, что φ и ψ непрерывны и $\varphi\psi = 1$, $\psi\varphi = 1$.

Отсюда следует, что любая точка $x \in S^n \setminus \{(0, ..., 0, 1)\}$ имеет окрестность, а именно само множество $S^n \setminus \{(0, ..., 0, 1)\}$, гомеоморфную \mathring{D}^n . Наконец, точка (0, ..., 0, 1) имеет окрестность $S^n \setminus \{(0, ..., 0, -1)\}$, гомеоморфную \mathbb{R}^n при отображении φ^i , заданном фор-

86

мулой

$$\varphi'(x_1, x_2, \ldots, x_{n+1}) = \left(\frac{x_1}{1+x_{n+1}}, \frac{x_2}{1+x_{n+1}}, \ldots, \frac{x_n}{1+x_{n+1}}\right).$$

Следовательно, S^n в самом деле есть n-мерное многообразие.

Другой способ удостовериться, что S^n является n-мерным многообразием, состоит в том, что сначала рассматриваются точка $(0, \ldots, 0, 1) \in S^n$ и ее окрестность U вида

$$U = \{(x_1, x_2, \dots, x_{n+1}) \in S^n : x_{n+1} > 0\}.$$

Эта окрестность гомеоморфна \check{D}^n при ортогональной проекции, т. е. отображении $U \to \mathring{D}^n \subset \mathbb{R}^n$ вида $(x_1, x_2, \ldots, x_{n+1}) \mapsto (x_1, x_2, \ldots, x_n)$. В общем случае для $x \in S^n$ возьмем в качестве U_x множество

$$U_{x} = \{ y \in S^{n_{1}} \mid ||x - y|| < \sqrt{2} \},$$

которое, очевидно, является открытой окрестностью точки $x \in S^n$. Ортогональная проекция на n-мерное подпространство в \mathbb{R}^{n+1} , проходящее через O ортогонально прямой, соединяющей O и x, дает гомеоморфизм между U_x и \mathring{D}^n и показывает, что S^n есть n-мерное многообразие.

Заметим, что по определению n-мерное многообразие хаусдорфово. Можно спросить: а не будет ли хаусдорфовым всякое пространство X, каждая точка которого имеет окрестность, гомеоморфную \mathbb{R}^n ? Как показывает простой пример, ответ отрицателен. Пусть

$$X = \{x \in \mathbb{R}: -1 < x \le 2\}$$

с топологией $\mathcal U$, для которой $U\in\mathcal U$, если $U=\varnothing$, U=X или U — произвольное объединение множеств вида

$$(\alpha, \beta), -1 \le \alpha < \beta \le 2,$$

 $(\alpha, 0) \cup (\beta, 2], -1 \le \alpha < 0, 0 \le \beta < 2.$

Заметим, что топология X не совпадает с топологией, индуцированной из \mathbb{R} , потому что множества вида $(\beta, 2]$ не открыты в X. Правильное наглядное изобра-

жение X дано на рис. 11.2. Такое изображение объясняется тем, что точка $\{2\}$ сколь угодно близка к точке $\{0\}$ (т. е. любое открытое множество, содержащее $\{2\}$, содержит $(\alpha,0)$ для некоторого α). Ясно, что X нехаусдорфово, так как любая открытая окрестность точки $\{2\}$ пересекается с каждой открытой

окрестностью точки $\{0\}$. С другой стороны, любая точка из X имеет окрестность, гомеоморфную \mathbb{R}^1 . Если $x\in X$ и $x\neq 2$, это очевидно. Если x=2, то $N=(-1/2,\ 0)\cup(3/2,\ 2]$ является окрестностью точки $\{2\}$, гомеоморфной \mathring{D}^1 при отображении $f\colon N\to (-1,\ 1)=\mathring{D}^1$, где

$$f(y) = D^1$$
, где
$$f(y) = \begin{cases} 2y & \text{при } -1/2 < y < 0, \\ 4 - 2y & \text{при } 3/2 < y \leqslant 2. \end{cases}$$

Читатель должен проверить непрерывность и биективность f и непрерывность обратного отображения $g: (-1, 1) \rightarrow N$, заданного формулой

$$g(x) = \begin{cases} x/2 & \text{при } -1 < x < 0, \\ 2-x/2 & \text{при } 0 \le x < 1. \end{cases}$$

Итак, условие хаусдорфовости в определении 11.1 отнюдь не является излишним. Оно устраняет пространства вроде изображенного на рис. 11.2, которые наша интуиция отказывается считать локально похожими на евклидовы. Другая возможная причина включения этого условия состоит в том, что нам хочется представлять себе n-мерные многообразия как подпространства некоторого евклидова пространства \mathbb{R}^N (с большим N), локально устроенные наподобие \mathbb{R}^n . В этом случае хаусдорфовость наследуется из объемлющего пространства \mathbb{R}^N . И действительно, имеет место теорема, которая утверждает, что если M—какое-нибудь «хорошее» n-мерное многообразие (напри-

мер, компактное), то оно гомеоморфно подпространству некоторого евклидова пространства \mathbb{R}^N . В случае компактного многообразия см. упр. 11.2 (f) и (g).

Для получения дальнейших примеров многообразий заметим, что если M есть m-мерное многообразие, а N есть n-мерное многообразие, то произведение $M\times N$ представляет собой (m+n)-мерное многообразие, потому что $\mathring{D}^m\times\mathring{D}^n\cong\mathbb{R}^m\times\mathbb{R}^n\cong\mathbb{R}^{m+n}\cong\mathring{D}^{m+n}$ и произведение хаусдорфовых пространств хаусдорфово. Значит, $S^1\times S^1$ —двумерное многообразие, и вообще $S^1\times S^1\times \ldots \times S^1$ есть n-мерное многообразие.

Пространство \mathbb{R}^{P^n} также является n-мерным многообразием. Чтобы убедиться в этом, рассмотрим отображение $p\colon S^n \to \mathbb{R}P^n$, переводящее $x \in S^n$ в пару $\{x,-x\} \in \mathbb{R}P^n$. Пусть U_x —открытая окрестность точки $x \in S^n$, гомеоморфная \mathring{D}^n , диаметр которой меньше $\sqrt{2}$. В этом случае $p(U_x)$ —открытая окрестность точки $\{x,-x\} \in \mathbb{R}P^n$, гомеоморфная \mathring{D}^n . В самом деле, p — непрерывное открытое отображение (теорема 5.12), и если U —достаточно малая область в S^n , то $p \mid U$ 1 U \to $\to p(U)$ биективно. Вообще, пусть X —некоторое G-пространство в конечной группой G. Говорят, что G действует на X свободно, если $g \cdot x \neq x$ для всех $x \in X$ и всех $g \in G$, $g \neq 1$. Если G свободно действует на X и X —компактное n-мерное многообразие, то таково же и X/G. Обратно, если X/G есть n-мерное многообразие, то X—также n-мерное многообразие. Детали доказательства мы оставляем читателю.

В качестве следующего примера рассмотрим факторпространство M, изображенное на рис. 11.3, которое образовано из восьмиугольной области X при помощи указанных отождествлений сторон. Пусть $p\colon X \to M$ —естественная проекция.

Если $x \in M$ — такая точка, что $p^{-1}(x)$ лежит внутри X, то очевидно, что x имеет окрестность, гомеоморфную \mathring{D}^2 : такой окрестностью будет $p(\mathring{X})$. Если $x \in M$ — такая точка, что $p^{-1}(x)$ лежит на стороне X, но не содержит вершин, то, как нетрудно видеть,

x снова имеет окрестность, гомеоморфную \mathring{D}^2 ; см. рис. 11.4.

Наконец, если $p^{-1}(x)$ содержит вершины X, то окрестность N_x точки x, гомеоморфная \mathring{D}^2 , изображена на рис. 11.5 ($p^{-1}(N_x)$ состоит из точек X, находящихся

Рис.11.3

на расстоянии меньше ε от $p^{-1}(x)$ при некотором подходящем $\varepsilon > 0$).

Интуитивно вполне ясно, что M хаусдорфово, и читатель без труда в этом убедится. Для «алгебраически» мыслящего читателя мы дадим следующее доказательство. Пусть A обозначает «край» X. Запишем A в виде $\bigcup_{i=1}^8 A_i \cup Y$, где A_i —замкнутые стороны X, а Y—множество вершин X. Пусть C—замкнутое подмножество X. Тогда

$$p^{-1}p(C) = p^{-1}p\left((C \setminus A) \cup (C \cap Y) \cup \bigcup_{i=1}^{8} (C \cap A_i)\right) =$$

$$= (C \setminus A) \cup p^{-1}p(C \cap Y) \cup \bigcup_{i=1}^{8} p^{-1}p(C \cap A_i) =$$

$$= (C \setminus A) \cup \varepsilon Y \cup \bigcup_{i=1}^{8} ((C \cap A_i) \cup B_i),$$

где $\epsilon Y = Y$, если $C \cap Y$ непусто, и $\epsilon Y = \emptyset$, если $C \cap Y$ пусто. Через B_i в последнем равенстве обозначены множества, определяемые следующим образом. Если сторона A_i отождествлена при образовании факторпро-

странства M со стороной A_j , то B_i —это множество всех точек из A_j , с которыми отождествлены точки множества $C \cap A_i$. Очевидно, что B_i гомеоморфно $C \cap A_i$ и $p(B_i) = p(C \cap A_i)$. Заметим, что $p^{-1}p(C \cap A_i) \cap A_j = B_i \cup (\epsilon Y \cap A_j)$. Итак (рис. 11.6),

$$p^{-1}p(C) = C \cup \varepsilon Y \cup \bigcup_{i=1}^{8} B_{i}.$$

Отождествление множеств A_i и A_j является гомеоморфизмом, переводящим $C \cap A_i$ в B_i . Так как $C \cap A_i$ замкнуто в A_i , то B_i замкнуто в A_j , и так как A_j замкнуто в A_j , и так как A_j замкнуто в A_j . Поэтому $p^{-1}p(C)$ замкнуто и p(C) замкнуто по определению фактортопологии. Итак, $p: X \to M$ —замкнутое отображение. Так как X—компактное хаусдорфово пространство, то по теореме 8.11 M также компактно и хаусдорфово, т. е. является двумерным многообразием.

Отождествления, изображенные на рис. 11.3, можно провести в нашем трехмерном пространстве, как показано на рис. 11.7. Конечный результат называется кренделем.

Другой способ реализации многообразия M изображен на рис. 11.8. Сначала нужно выбросить открытый диск, являющийся окрестностью точки многообразия M, полученной склеиванием вершин восьмиугольника X, как показано на рис. 11.8 (а). Затем отождествим стороны, обозначенные через a_1 , и получим (с). Рассмотрим темную область Y на (d). Она гомеоморфна подпространству \mathbb{R}^2 , изображенному на (e). Отображение f, определенное равенствами

$$f\left(x,\,y\right) = \left\{ \begin{array}{ll} (x\,(a+2y\,(b-a))/b,\,y) & \text{при } 0\leqslant x\leqslant b \text{ и } y\leqslant 0\text{,} \\ \left(\frac{(x-b)\,(1-a-2y\,(b-a))}{1-b} + a + 2y\,(b-a),\,y\right) \\ & \text{при } b\leqslant x\leqslant 1 \text{ и } y\leqslant 0\text{,} \\ (xa/b,\,y) & \text{при } y\geqslant 0 \end{array} \right.$$

(где $0 < a \le b < 1$), является гомеоморфизмом пространств, изображенных на рис. 11.8 (е) и (f). Заметим, что f тождественно на трех сторонах этой области, не имеющих выступа. Итак, мы получили гомеоморфизм пространства Y на себя, тождественный на трех сторонах Y, не содержащих a_2 . Используя этот гомеоморфизм пространства Y и тождественное отображение незатемненной части (d), получим гомеоморфизм между (d) и (g). Итак, (c) и (h) гомеоморфны. Подобным же способом можно убедиться, что гомеоморфны (h) и (k), пользуясь для построения гомеоморфизма темными областями на (i) и (j). Отождествление сторон, обозна-

Рис.11.7

ченных на (k) через a_2 , дает (l). Аналогично получаем (m), гомеоморфное исхолному пространству (a)

(m), гомеоморфное исходному пространству (a). Далее перейдем к рис. 11.9 и после простых растягивающих гомеоморфизмов получим пространство на рис. 11.9 (c). Наконец, вклеивая обратно выброшенный ранее диск, получим крендель, изображенный на рис. 11.9 (d).

Оказывается, все компактные двумерные многообразия можно получить как факторпространства неко-

Рис.11.8

торых многоугольных областей. Далее в этой главе мы вернемся к соответствующему построению.

Puc.11.9

11.2. Упражнения. (а) Покажите, что открытое подмножество п-мерного многообразия также является п-мерным многообразием. (b) Пусть $\mathbb{C}P^n = S^{2n+1}/\sim$, где \sim — отношение эквивалентности на $S^{2n+1} \subset \mathbb{C}^{n+1}$, при котором

 $x \sim y \Leftrightarrow x = (\exp 2\pi i t) y$ для некоторого $t \in I$.

Докажите, что $\mathbb{C}P^n$ есть 2n-мерное многообразие. (Заметим, что \sim стягивает окружности в S^{2n+1} в точки; например, множество $\{(\exp 2\pi it,\ 0,\ \dots,\ 0):\ t\in I\}$ представляет одну точку в $\mathbb{C}P^n$.) (c) Пусть p— натуральное число и $L_p=S^{2n+1}/\sim$, где \sim —от-

ношение эквивалентности на $S^{2n+1} \subset \mathbb{C}^{n+1}$, при котором

$$x \sim y \Leftrightarrow x = (\exp 2\pi i n/p) y, \qquad n = 0, 1, ..., p-1.$$

Докажите, что L_p является (2n+1)-мерным многообразием. $(L_p = S^{2n+1}/\mathbb{Z}_p)$, где \mathbb{Z}_p очевидным образом свободно действует на S^{2n+1} .)

(d) Пусть X — некоторое G-пространство, причем группа Gконечна и действует на X свободно. Докажите, что если X компактное п-мерное многообразие, то таково же пространство орбит X/G. Кроме того, докажите, что если X/G — многообразие, то X — тоже многообразие.

(e) Докажите, что если M есть n-мерное многообразие, то каждая точка M имеет окрестность, гомеоморфную замкнутому

n-мерному диску D^n .

(f) Пусть M — компактное n-мерное многообразие. Докажите, что M гомеоморфно подпространству некоторого евклидова пространства $\mathbb{R}^{N_{\mathbf{c}}}$ (Указание. Так как M компактно, то найдется конечное покрытие $\{D_1, D_2, \ldots, D_m\}$ многообразия M и гомеоморфизмы h_i : $D_i \longrightarrow \mathring{D}_n$. Воспользуйтесь упр. 8.14 (j) и (k) для получения гомеоморфизмов $M/(M \setminus D_i) \cong (D_i)^m \cong (\mathring{D}^n)^m \cong S^n$. Так как M компактно и хаусдорфово, а $M \setminus D_i$ замкнуто, то проекция p_i : $M \longrightarrow M/(M \setminus D_i)$ непрерывна, и мы получаем непрерывные отображения f_i : $M \longrightarrow S^n$. Определим $f: M \longrightarrow (S^n)^m$ формулой $f(x) = (f_1(x), f_2(x), \ldots, f_m(x))$. Наконец, $(S^n)^m \subset (\mathbb{R}^{n+1})^m = \mathbb{R}^{(n+1)m}$.

(g) Пусть M есть n-мерное многообразие и D—подпространство M, гомеоморфное \mathring{D}^n . Так как $\mathring{D}^n \cong \mathbb{R}^n \cong S^n \setminus \{(0,\dots,0,1)\}$, то имеется гомеоморфизм $g\colon D \longrightarrow S^n \setminus \{(0,\dots,0,1)\}$. Определим $f\colon M \longrightarrow S^n$ условием

$$f(x) = \begin{cases} g(x) & \text{при} \quad x \in D, \\ (0, \dots, 0, 1) & \text{при} \quad x \in M \setminus D. \end{cases}$$

Докажите, что f непрерывно. Воспользуйтесь этим результатом для нового доказательства утверждения п. (f).

В первую очередь нас интересуют компактные связные многообразия. Все компактные связные нульмерные многообразия гомеоморфны между собой. Окружность S1 является компактным связным одномерным многообразием. В действительности S^1 — единственное с точностью до гомеоморфизма компактное связное одномерное многообразие. Доказательство этого факта не очень трудно, и мы дадим его набросок. Первый шаг (вероятно, самый трудный, но вполне наглядный) состоит в использовании компактности для доказательства того, что если M — компактное связное одномерное многообразие, то оно допускает «хорошее» разбиение на конечное число подмножеств, гомеоморфных единичному отрезку І. Если назвать гомеоморфные образы отрезка І дугами, а образы точек {0, 1} вершинами этих дуг, то под «хорошим» разбиением мы понимаем такое, при котором ни одна дуга не пересекает саму себя, а две дуги могут пересекаться только по одной или двум вершинам. (Идея доказательства следующая: (i) покрыть M открытыми окрестностями всех его точек, гомеоморфными $\mathring{D^1}\cong \mathring{I}$, (ii) выделить из этого покрытия конечное, что возможно в силу компактности M, (iii) вписать в полученное конечное покрытие замкнутое покрытие множествами, гомеоморфными I, и, наконец, (iv) воспользоваться определением одномерного многообразия и показать, что M имеет «хорошее» разбиение.) Очевидно, что в хорошем разбиении M на дуги и вершины каждая вершина является вершиной точно двух различных дуг, а каждая дуга имеет две различные вершины. (Если некоторая вершина является вершиной только одной или более чем двух дуг, то у нее нет окрестности, гомеоморфной $\mathring{\mathcal{D}}^1$.) Предположим, что

$$A_1$$
 A_2

M состоит более чем из двух дуг. Пусть A_1 , A_2 —две дуги в M, пересекающиеся по общей вершине a. Пусть h_1 : $A_1 \to I$, h_2 : $A_2 \to I$ —гомеоморфизмы, определяющие A_1 и A_2 как дуги. Можно считать, что h_1 (a) = 1 и h_2 (a) = 0; иначе нужно взять композицию h_1 и (или) h_2 с гомеоморфизмом f: $I \to I$, определенным формулой f (t) = I - t. Определим g: $A_1 \cup A_2 \to I$ условиями

$$g(x) = \begin{cases} h_1(x)/2 & \text{при} \quad x \in A_1, \\ (1 + h_2(x))/2 & \text{при} \quad x \in A_2. \end{cases}$$

Это отображение определено корректно и, как легко видеть, является биективным. Чтобы установить его непрерывность, заметим сначала, что A_1 и A_2 замкнуты в A_1 U A_2 и в M. Пусть C—замкнутое подмножество I; тогда множество

$$g^{-1}(C) = h_1^{-1}([0, 1/2] \cap C) \cup h_2^{-1}([1/2, 1] \cap C)$$

очевидным образом замкнуто в $A_1 \cup A_2$ и, следовательно, g непрерывно. Отсюда легко вытекает, что g—гомеоморфизм. Значит, мы можем заменить дуги A_1 , A_2 одной дугой A. Теперь мы имеем разбиение M, в котором одной дугой и одной вершиной меньше. Продолжая этот процесс, мы придем к разбиению M, состоящему из двух дуг и, следовательно, имеющему две вершины. Таким образом, M гомеоморфно двум экземплярам I, склеенным своими концами. Поэтому M гомеоморфио окружности S^1 .

Компактные связные двумерные многообразия называются поверхностиями. Примерами поверхностей являются сфера S^2 , тор $T = S^1 \times S^1$, вещественная проективная плоскость $\mathbb{R}P^2$ и описанный выше крендель.

Рис.11.10

Первые три примера — основные в том смысле, что из них можно получить любую поверхность при помощи «связной суммы». Пусть S_1 и S_2 — две непересекающиеся поверхности; их связная сумма $S_1 \# S_2$ получается выбрасыванием малого открытого диска на каждой поверхности и склеиванием по границам образовавщихся дырок (рис. 11.10).

Чтобы получить более строгое определение, выберем сначала $D_1 \subset S_1$ и $D_2 \subset S_2$, гомеоморфные D^2 . Легко видеть, что такие области существуют. В самом деле, пусть x—точка на какой-нибудь поверхности; она имеет окрестность N, для которой существует гомеоморфизм $h: N \to D^2$. Подпространство $h^{-1}(D_{1/2}^2) \subset N$, где $D_{1/2}^2 \subset D^2$ —замкнутый днск радиуса 1/2, гомеоморфно D^2 при гомеоморфизме $y \mapsto 2h(y)$.

Итак, пусть $D_1 \subset S_1$ и $D_2 \subset S_2$ — подпространства, гомеоморфные D^2 , и пусть $h_1\colon D_1\to D^2,\ h_2\colon D_2\to D^2$ —

соответствующие гомеоморфизмы. Определим $S_1 \# S_2$, полагая

$$S_1 \# S_2 = ((S_1 \setminus \mathring{D}_1) \cup (S_2 \setminus \mathring{D}_2))/\sim,$$

где \sim — отношение эквивалентности, нетривиальное только на $\partial (S_1 \diagdown \mathring{D}_1) \cup \partial (S_2 \diagdown \mathring{D}_2) = \partial D_1 \cup \partial D_2$, где оно

Рис.11.11

задается соотношением $x \sim h_2^{-1}h_1(x)$ при $x \in \partial D_1$. Можно показать, что это определение связной суммы не зависит от выбора дисков D_1 , D_2 и гомеоморфизмов h_1 , h_2 . Негрудно видеть, что $S_1 \# S_2$ —поверхность: единст-

венные точки, окрестности которых нужно рассмотреть, это точки из ∂D_1 и ∂D_2 . Детали мы оставляем читателю.

Крендель является связной суммой двух торов (рис. 11.10). Бутылка Клейна—связная сумма двух проективных плоскостей. Это легко следует из гл. 5, а геометрическое доказательство изображено на рис. 11.11. Начнем с двух проективных плоскостей на рис. 11.11 (а), затем выбросим два открытых диска, заштрихованных на (b). Получим пространство, гомеоморфное (с). Склеивание (т. е. образование связной суммы) дает (d). Сделав разрез, как указано на (е), получим факторпространство (f); переместив треугольники, получим (g); отождествление вертикальных сторон дает (h) и простой гомеоморфизм приводит к (i), которое является бутылкой Клейна.

Тот факт, что все поверхности можно получить из сферы S^2 , тора $T=S^1\times S^1$ и вещественной проективной плоскости $\mathbb{R}P^2$ при помощи связных сумм, составляет содержание так называемой классификационной теоремы для поверхностей.

11.3. **Теорема**. Всякая поверхность S гомеоморфна точно одной из следующих поверхностей:

$$S^{2} # \underbrace{T # T # \dots # T}_{m} \qquad (m \ge 0),$$

$$S^{2} # \underbrace{\mathbb{R}P^{2} # \mathbb{R}P^{2} # \dots # \mathbb{R}P^{2}}_{n} \qquad (n \ge 1).$$

Доказательство распадается на две части. В первой части доказывается, что всякая поверхность гомеоморфна хотя бы одной из поверхностей, перечисленных в теореме 11.3. Мы не будем входить во все подробности этой части, а дадим лишь краткий набросок далее в этой же главе. Во второй части доказывается, что никакие две поверхности, перечисленные в теореме, не гомеоморфны; это мы строго докажем в гл. 26.

Взятие связной суммы с тором часто называют приклеиванием ручки (где ручка—это тор с выброшенным открытым диском); причина такого названия очевидна (см., например, рис. 11.12 (е), (f)). Иногда мы будем говорить о приклеивании цилиндра: в таком

случае из поверхности выбрасывают два открытых диска и приклеивают цилиндр, как показано на рис. 11.12 (а). Важно сделать это правильно. Неправильное приклеивание цилиндра (т. е. обращение стрелки на одной из граничных окружностей) эквивалентно взятию связной суммы с бутылкой Клейна.

Рис.11.12 (a) — (c) Приклеивание цилиндра. (d) — (f) Приклеивание ручки

Взятие связной суммы с вещественной проективной плоскостью часто называют приклеиванием листа Мёбиуса (рис. 11.13). Это вызвано тем, что проективная плоскость с выброшенным открытым диском есть в точности лист Мёбиуса (см. гл. 5).

Поверхности, полученные взятием связной суммы с $\mathbb{R}P^2$, отличаются тем, что они являются односторонними. Это объясняется тем, что они содержат лист Мёбиуса, который, как мы видели в гл. 5, обладает некоторыми странными свойствами. Назовем поверхность ориенти руемой, если она не содержит в себе

листа Мёбиуса. Если же поверхность содержит лист Мёбиуса, то она называется неориентируемой.

Таким образом, бутылка Клейна и вещественная проективная плоскость— неориентируемые поверхности,

Рис.11.13. Приклеивание листа Мёбиуса

тогда как сфера, тор и крендель ориентируемы. Поверхность

$$S^2 \# \underbrace{T \# T \# \ldots \# T}_{m} \qquad (m \geqslant 0),$$

которую мы будем записывать сокращенно в виде $S^2 \# mT$, называется стандартной ориентируемой поверхностью рода m. Поверхность

$$S^2 \# \underbrace{\mathbb{R}P^2 \# \mathbb{R}P^2 \# \ldots \# \mathbb{R}P^2}_{(n \geqslant 1),$$

сокращенно $S^2 \# n\mathbb{R}P^2$, называется стандартной неориентируемой поверхностью рода n.

Возникает естественный вопрос: какие поверхности получатся, если взять связные суммы торов и проективных плоскостей? Другими словами, какой стандартной поверхности гомеоморфна поверхность

$$\underbrace{T \# T \# \dots \# T}_{m} \# \underbrace{\mathbb{R}P^{2} \# \dots \# \mathbb{R}P^{2}}_{n} =$$

$$= mT \# n\mathbb{R}P^{2}$$

при m, $n \geqslant 1$? Такая поверхность, очевидно, неориентируема, и если предположить справедливость теоремы 11.3, то $mT \# n\mathbb{R}P^2$ гомеоморфна поверхности $k\mathbb{R}P^2$ при некотором k. Мы найдем значение k в случае m=n=1 и оставим общий случай в качестве (легкого) упражнения.

Рис.11.14

11.4. Лемма. $T \# \mathbb{R}P^2 \cong \mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$.

Доказательство. Обозначим $T \# \mathbb{R}P^2$ через S_1 , а $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$ через S_2 . Представим сначала S_1 и S_2 в виде факторпространств. S_1 —факторпространство шестиугольной области X (рис. 11.14).

Заметим, что все вершины X отождествляются с одной точкой из S_1 , и найдется окрестность \mathring{D}_i этой точки в S_1 , гомеоморфная \mathring{D}^2 (рис. 11.14 (e)). Выбрасывание этой окрестности (рис. 11.15 (a)) и проведение нужных отождествлений дает пространство рис. 11.15 (c), которое после подходящего гомеоморфизма превращается в (d) на том же рисунке. Опишем последовательность гомеоморфизмов, преобразующих 11.15 (d) в

Рис.11.15

С другой стороны, S_2 имеет представление в виде факторпространства, изображенное на рис. 11.16 (с). Выбрасывание заштрихованной на (d) окрестности D_2 , которая гомеоморфна открытому диску, и проведение необходимых отождествлений даст нам пространство на рис. 11.16 (g). Очевидно существование гомеоморфизма

$$h: S_1 \setminus \mathring{D}_1 \cong S_{\check{\mathbf{z}}} \setminus \mathring{D}_2.$$

Более того, ясно, что h индуцирует гомеоморфизм

$$\partial (S_1 \diagdown \mathring{D}_1) \cong \partial (S_2 \diagdown \mathring{D}_2).$$

Этот гомеоморфизм границ может быть продолжен до гомеоморфизма между D_1 и D_2 . Если $h: \partial D_1 \to \partial D_2 -$ этот гомеоморфизм и $h_1\colon D_1\cong D^2$, $h_2\colon D_2\cong D^2$, запишем $x\in D^2$ в полярных координатах в внде $x=(r,\ t)$, где $0\leqslant r\leqslant 1$ и $t\in \partial D^2=S^1$. Определим $H\colon D_1\to D_2$ формулой $H(y)=h_2^{-1}(r,\ h_2hh_1^{-1}(t))$, где $h_1(y)=(r,\ t)\in D^2$. Очевидно, что $H\mid \partial D_1=h$ и что H—гомеоморфизм. Таким образом,

$$S_1 = (S_1 \setminus \mathring{D}_1) \cup D_1 \cong (S_2 \setminus \mathring{D}_2) \cup D_2 = S_2. \quad \Box$$

Есть и другой способ наглядного представления гомеоморфизма между S_1 и S_2 . Начнем с представления связной суммы $T \# \mathbb{R} P^2$ как ручки (т. е. тора с дыркой) вместе с листом Мёбиуса, который должен быть к ней приклеен. Это представление изображено на рис. 11.17 (а) и очевидным образом гомеоморфно пространству на рис. 11.17 (b). Выполнив гомеоморфизмы (c)—(f), мы придем к рис. 11.17 (g).

Рис.11.16

Рис.11.17

Рис.11.18

Рассмотрим бутылку Клейна с выброшенным диском. Как выглядит это пространство, показано на рис. 11.18.

Сравнивая рис. 11.17 (g) и 11.18 (g), мы видим, что $S_1 \cong K \# \mathbb{R} P^2$, где K = 0 бутылка Клейна. Но $K \cong \mathbb{R} P^2 \# 0$

 $S_1 \cong K \# \mathbb{R} P^2$, где K — бутылка Клейна. По $K \cong \mathbb{R} P^2 \# \mathbb{R} P^2$, откуда $S_1 \cong S_2$, что и требовалось показать.

11,5. Упражнения. (а) Пусть S_1 , S_2 и S_3 —поверхности. Покажи-

те, что $S_1 \# S_2 \cong S_2 \# S_1$, $(S_1 \# S_2) \# S_3 \cong S_1 \# (S_2 \# S_3)$, $S^2 \# S_1 \cong S_1$. Образует ли группу множество гомеоморфных поверхностей относительно операции связной суммы? Почему нет? (b) Пусть M_1 , M_2 —непересекающиеся связные n-мерные мно-

(c) Пусть $S=mT \# n\mathbb{R}P^2$ при $m, n\geqslant 1$. Какой стандартной поверхности гомеоморфна S?

(d) Пусть S — поверхность. Докажите, что S гомеоморфна ровно

одной из следующих поверхностей: $S^2 \# nT$, $\mathbb{R}P^2 \# nT$, K # nT, где K—бутылка Клейна и $n \geqslant 0$. (е) Допустим, что поверхность S является G-пространством, где $G = \mathbb{Z}_{2n+1} - \mathbf{q}$ иклическая группа нечетного порядка. Докажите, что S/G— поверхность. Заметим, что действие G на S не предполагается свободным.

Дадим теперь набросок первого шага в доказательстве классификационной теоремы для поверхностей. Подпространство некоторого пространства называется простой замкнутой кривой, если оно гомеоморфно окружности S^1 . Если C— простая замкнутая кривая на поверхности S, то будем говорить, что C разделяет S, если $S \setminus C$ несвязно, т. е. разрезание вдоль C делает S несвязной (рис. 11.19).

Пусть S—поверхность, содержащая простую замкнутую кривую C, не разделяющую S. Можно доказать, что C имеет окрестность, гомеоморфную либо цилиндру, либо листу Мёбиуса (рис. 11.20). Интуитивно это должно быть ясно.

Выбросим теперь из S внутренность этого цилиндра или листа Мёбиуса. В первом случае получатся две дырки, и мы заклеим их двумя дисками, а во втором случае получится одна дырка, которую мы тоже заклеим диском. Мы придем к поверхности S, получен-

ной из S либо приклеиванием цилиндра (правильным или неправильным), либо приклеиванием листа Мёбиуса. Иначе говоря,

$$S = S_1 \# T$$
, $S = S_1 \# K$ или $S = S_1 \# \mathbb{R}P^2$.

Рассмотрим теперь S_1 , найдем на ней простую замкнутую кривую, не разделяющую ее (если такая существует), и повторим описанный выше процесс; получим

Рис.11.19. C_1 разделяет S^2 , а C_2 не разделяет T

Рис.11.20

поверхность S_2 , для которой $S_1 = S_2 \# T$, $S_1 = S_2 \# K$ или $S_1 = S_2 \# \mathbb{R} P^2$. Продолжая таким же образом далее, после i шагов получим поверхность S_i , для которой

$$S = S_i \# i_1 T \# i_2 K \# i_3 \mathbb{R} P^2$$
,

где $i_1 + i_2 + i_3 = i$. Оказывается, после конечного числа шагов (обозначим его через $k \geqslant 0$) этот процесс обрывается, т. е. всякая простая замкнутая кривая в $S_{\bf k}$ разделяет S_k . Наконец, воспользуемся теоремой, согласно которой поверхность S_k , которую разделяет любая простая замкнутая кривая на ней, гомеоморфна сфере S^2 . С точностью до недоказанных утверждений 1) мы

¹⁾ Оба последних утверждения нетрудно доказать при дополнительном предположении, что поверхность S триангулируема.

Рис.11.22

видим, что поверхность S гомеоморфна $S^2 \# lT \# mK \# mRP^2$ для некоторых l, m, $n \geqslant 0$ (l+m+n=k). При помощи леммы 11.4 легко установить, что поверхность $S^2 \# lT \# mK \# n\mathbb{R}P^2$ гомеоморфна

$$S^2 \# lT$$
 при $m+n=0$, $S^2 \# (2l+2m+n) \mathbb{R}P^2$ при $m+n>0$.

Чтобы завершить доказательство классификационной теоремы, осталось показать, что никакие две поверхности, перечисленные в теореме 11.3, не гомеоморфны. Это будет сделано в гл. 26.

11.6. Упражнения. (а) Покажите, что на торе T найдутся две различные (но пересекающиеся) простые замкнутые кривые C_1 , C_2 , такие, что $T \setminus (C_1 \cup C_2)$ связно.

Поскольку строгое доказательство этого факта довольно утомительно, триангулируемость поверхностей обычно предполагается с самого начала (см., например, Спеньер Э., Алгебраическая топология. Пер. с англ. — М.: Мир, 1971, с. 195, или Масси У., Столингс Дж., Алгебраическая топология. Введение. Пер. с англ. — М.: Мир, 1977, с. 30). — Прим. ред.

Рис.11.23

Рис.11.24

- (b) Покажите, что на торе T не существует трех различных простых замкнутых кривых C_1 , C_2 , C_3 , таких, что $T \setminus (C_1 \cup C_2 \cup C_3)$ связно.
 - (c) Обобщите (a) и (b) на другие поверхности.

Мы закончим эту главу результатом, уже упоминавшимся ранее: всякую поверхность можно представить в виде факторпространства некоторой многоугольной области в \mathbb{R}^2 .

11.7. Теорема. Если S—ориентируемая поверхность рода $m \ge 1$, то S является факторпространством 4m-угольника с отождествлениями, указанными на рис. 11.21 (a).

Если S— неориентируемая поверхность рода $n \geqslant 1$, то S является факторпространством 2n-угольника c отождествлениями, указанными на рис. 11.21 (b).

Чтобы доказать этот результат, достаточно показать, что mT и $n\mathbb{R}P^2$ имеют указанный вид. Мы просто иллюстрируем случай $m\leqslant 2$, $n\leqslant 3$. Как показано на рис. 11.22, $T \ \# \ T$ имеет нужный вид. Ясно, как про-

должить это построение, чтобы получить результат в ориентируемом случае. Неориентируемому случаю соответствуют рис. 11.23 для $\mathbb{R}P^2 \# \mathbb{R}P^2$ и рис. 11.24 для $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$. Снова должно быть ясно, как продолжить построение.

11.8. Упражнения. (а) n-мерным многообразием c краем называется хаусдорфово пространство M, каждая точка которого имеет открытую окрестность, гомеоморфную либо \mathbb{R}^n , либо его верхнему полупространству, т. е. множеству $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\colon x_n\geqslant 0\}$. Множество всех точек M, имеющих окрестности, гомеоморфные верхнему полупространству, но не имеющих окрестностей, гомеоморфных \mathbb{R}^n , называется краем многообразия M. Докажите, что край n-мерного многообразия с краем является (n-1)-мерным многообразием (без края).

(b) Компактное связное двумерное многообразие с краем называется поверхностью с краем. Докажите, что край поверхности с краем является объединением конечного числа непересекающихся окружностей. Выведите отсюда, что приклеиванием конечного числа дисков можно из каждой поверхности с краем по-

лучить поверхность без края.

(с) Поверхность с краем называется *ориентируемой*, если она не содержит листа Мёбиуса. Докажите, что поверхность с краем ориентируема тогда и только тогда, когда ориентируема соответствующая ей поверхность без края (см. (b) выше).

ПУТИ И ЛИНЕЙНО СВЯЗНЫЕ ПРОСТРАНСТВА

В гл. 9 мы изучали связность. В этой главе мы изучим похожее, но все же несколько отличающееся от прежнего понятие связности: линейную связность. Сначала введем необходимое для этого понятие Π утем в пространстве X называется непрерывное отображение $f: [0, 1] \to X$. Тогда f(0) называется началом, а f(1) — концом пути. Говорят, что f соединяет f(0) и f(1) и что f—путь из f(0) в f(1).

Заметим, что путь—это именно отображение f, а не его образ f([0, 1]), который называется $\kappa \rho u e o u$ в X.

Обычно мы представляем себе $t \in [0, 1]$ как время,

и тогда f(t) — положение в момент t.

Простейший пример пути — постоянный путь ε_x : $[0, 1] \to X$, определенный равенством $\varepsilon_x(t) = x$ для всех $t \in [0, 1]$, где х—некоторая точка из \hat{X} . На этом пути мы находимся все время в одной точке $x \in X$.

Имеется два простых, но важных способа получения новых путей из старых. Они приведены в следующей лемме. Первый сопоставляет пути f путь \overline{f} , получаемый прохождением пути f в обратном направлении. Второй соединяет два пути f и g (если это возможно), чтобы получить новый путь f*g.

12.1. Лемма. (a) Если f—путь в X, а \overline{f} определено равенством $\overline{f}(t) = f(1-t)$, то \overline{f} —также путь в X. (b) Если f и g—два пути в X, причем конец f совпадает c началом g, то функция f*g: $[0, 1] \to X$, определенная равенствами

$$(f*g)(t) = \left\{ \begin{array}{ll} f\left(2t\right) & \text{при} & 0 \leqslant t \leqslant 1/2, \\ g\left(2t-1\right) & \text{при} & 1/2 \leqslant t \leqslant 1, \end{array} \right.$$

является путем в Х.

Доказательство. Часть (а) очевидна, а часть (b) получается из следующего результата, называемого леммой о склейке. □

12.2. Лемма. Пусть W, X—топологические пространства, причем $W = A \cup B$, где A и B замкнуты в W. Если $f: A \to X$ и $g: B \to X$ —непрерывные отображения, причем f(w) = g(w) для всех $w \in A \cap B$, то отображение $h: W \to X$, определенное равенствами

$$h(w) = \begin{cases} f(w) & \text{при} & w \in A, \\ g(w) & \text{при} & w \in B, \end{cases}$$

непрерывно.

Доказательство. Заметим, что h определено корректно. Пусть C—замкнутое подмножество X; тогда

$$h^{-1}(C) = h^{-1}(C) \cap (A \cup B) = = (h^{-1}(C) \cap A) \cup (h^{-1}(C) \cap B) = \int^{-1}(C) \cup g^{-1}(C).$$

Так как f непрерывно, то $f^{-1}(C)$ замкнуто в A и, следовательно, в W, поскольку A замкнуто в W. Аналогично $g^{-1}(C)$ замкнуто в W. Следовательно, $h^{-1}(C)$ замкнуто в W, и h непрерывно.

12.3. Определение. Пространство X называется линейно связным, если для любых двух точек $x_0, x_1 \in X$ найдется соединяющий их путь в X.

Заметим, что, в силу леммы 12.1, достаточно фиксировать $x_0 \in X$ и потребовать, чтобы для любого $x \in X$ нашелся путь в X, соединяющий x_0 с x.

Например, \mathbb{R}^n с обычной топологией линейно связно, так как для любой пары точек $a, b \in \mathbb{R}^n$ отображение $f \colon [0, 1] \to \mathbb{R}^n$, определяемое формулой f(t) = tb + (1-t)a, является путем из a в b. Вообще, всякое выпуклое подмножество \mathbb{R}^n линейно связно. Подмножество $E \subset \mathbb{R}^n$ называется выпуклым, если вместе с любыми точками $a, b \in E$ оно содержит множество $\{tb + (1-t)a \colon 0 \leqslant t \leqslant 1\}$, т. е. E выпукло, если прямолинейный отрезок, соединяющий любую пару точек из E, сам лежит в E. Примеры выпуклого и невыпуклого подмножеств \mathbb{R}^2 см. на рис. 12.1.

В частности, всякий интервал в \mathbb{R}^1 линейно связен. Несколько следующих результатов 12.4-12.7 аналогичны результатам 9.4-9.7.

 P_{HC} .12.1. Слева — выпуклое множество, справа — невыпуклое множество

12.4. **Теорема.** Образ линейно связного пространства при непрерывном отображении линейно связен.

Доказательство. Пусть X линейно связно и g: $X \to Y$ — непрерывное сюръективное отображение. Если a, b — две точки из Y, то найдутся точки a', $b' \in X$, для которых g(a') = a и g(b') = b. Так как X линейно связно, найдется путь f из a' в b'. Но тогда gf — путь из a в b. \square

12.5. Следствие. Если X и Y — гомеоморфные топологические пространства, то X линейно связно тогда и только тогда, когда Y линейно связно.

Из теоремы следует, что окружность S^1 линейно связна. Пользуясь этим, можно показать, что линейно связны $\mathbb{R}^{n+1}\setminus\{0\}$, S^n и \mathbb{R}^{P^n} при $n\geq 1$ (для $\mathbb{R}^{n+1}\setminus\{0\}$ это следует из того, что любые две его точки лежат на некоторой окружности, не проходящей через 0; для S^n и \mathbb{R}^{P^n} —из того, что они являются непрерывными образами $\mathbb{R}^{n+1}\setminus\{0\}$).

11.6. Теорема. Пусть $\{Y_j: j \in J\}$ — семейство линейно связных подмножеств пространства X. Если $\bigcap_{j \in J} Y_j \neq \emptyset$, то $Y = \bigcup_{j \in J} Y_j$ линейно связно.

Доказательство. Пусть a, $b \in Y$; тогда $a \in Y_k$ и $b \in Y_t$ для некоторых k, $l \in J$. Пусть c — любая точка из $\bigcap_{j \in J} Y_j$. Так как Y_k линейно связно и a, $c \in Y_k$, то найдется путь f из a в c. Аналогично, найдется путь

g из c в b. Путем, соединяющим a c b, будет тогда h = f * g, τ . e.

$$h(t) = \begin{cases} f(2t) & \text{при} & 0 \le t \le 1/2, \\ g(2t-1) & \text{при} & 1/2 \le t \le 1. \ \Box \end{cases}$$

Этот результат дает другой способ доказательства линейной связности пространства $\mathbb{R}^{n+1} \setminus \{0\}$ (а следовательно, S^n и \mathbb{R}^{P^n}) при $n \ge 1$.

12.7. Теорема. Топологические пространства X и Y тогда и только тогда линейно связны, когда $X \times Y$ линейно связно.

Доказательство, совпадающее с доказательством теоремы 9.7 (с заменой связности на линейную связность), мы оставляем читателю.

Предыдущие результаты не должны вводить читателя в заблуждение, будто между связностью и линейной связностью нет никакой разницы. Как показывает следующая теорема, это не так.

12.8. Теорема. Всякое линейно связное пространство связно. Однако не всякое связное пространство линейно связно.

Доказательство. Пусть X — линейно связное пространство. Докажем, что X связно. Пусть $X = U \cup V$ с открытыми и непустыми U, V. Так как X линейно связно и U, V непусты, то найдется путь $f \colon [0, 1] \to X$, для которого $f(0) \in U$ и $f(1) \in V$. Отрезок [0, 1] связен, поэтому f([0, 1]) связно, и, значит, $U \cap f([0, 1])$ и $V \cap f([0, 1])$ должны пересекаться. Но тогда U и V пересекаются, так что X связно. \square

Чтобы показать, что не все связные пространства линейно связны, приведем пример, известный как «блоха и гребенка» (рис. 12.2). Рассмотрим подмноже-

ство $X \subset \mathbb{C}$, где $X = A \cup B$, причем

$$A = \{i\}$$
 (блоха),

 $B = [0, 1] \cup \{1/n + yi: n \in \mathbb{N}, 0 \le y \le 1\}$ (гребенка).

Мы утверждаем, что X связно, но не линейно связно. Чтобы доказать, что X связно, заметим сначала, что B линейно связно (применяем теорему $12.6\,\mathrm{k}$ семейству

множеств $B_n = [0, 1] \cup \{1/n + yi \colon 0 \leqslant y \leqslant 1\}$ при $n \in \mathbb{N}$) и потому связно. Пусть U — открытое и замкнутое подмножество X. Можно считать, что $A \subset U$ (иначе дополнение к U было бы открытым и замкнутым подмножеством X, содержащим A). Так как U открыто

Рис.12.2. Блоха и гребенка

и $i \in U$, то найдется такое $\varepsilon > 0$, что $\{x: | i-x| < \varepsilon\} \cap X \subset U$. Существует натуральное n, для которого $1/n + i \in U$; в частности, $U \cap B \neq \emptyset$. Но B связно и $U \cap B$ — непустое открытое и замкнутое подмножество B. Таким образом, $U \cap B = B$, т. е. $B \subset U$. Но $X = A \cup B$ и $A \subset U$, поэтому U = X и X связно. (В сущности, мы доказали, что $B \subset X \subset \overline{B}$, и связность X следует из упр. 9.8 (f).)

Чтобы доказать, что X не является линейно связным, мы покажем, что единственный путь в X с началом в точке $i \in X$ —это постоянный путь. Пусть f—путь в X с началом в точке i. Так как эта точка замкнута в X, то $f^{-1}(i)$ замкнуто в [0, 1] и, более того, $f^{-1}(i) \neq \emptyset$, так как $0 \in f^{-1}(i)$. Пусть U—открытое подмножество X, определенное как

$$U = X \cap \{z \in \mathbb{C}: |z - i| < 1/2\}.$$

Если $t_0 \in f^{-1}(i)$, то, в силу непрерывности f, найдется такое $\varepsilon > 0$, что $f(t) \in U$ при $|t - t_0| < \varepsilon$. Мы утверждаем, что $f((t_0 - \varepsilon, t_0 + \varepsilon) \cap [0, 1]) = i$. Для доказательства предположим, что $|t_1 - t_0| < \varepsilon$ и $f(t_1) \in B$.

Множество $U \cap B$ является объединением непересекающихся интервалов, высекаемых из него прямыми $x=1/n, n\in\mathbb{N}$. Всякий такой интервал открыт в U, так как совпадает с множеством $\{x+yi\colon 1/(n+1) < x < < 1/(n-1)\}\cap U$, и замкнут в U, поскольку равен $\{1/n+yi\colon 0\leqslant y\leqslant 1\}\cap U$. В частности, интервал V, содержащий $f(t_1)$, открыт и замкнут в U, и его пересечение с множеством $W=f((t_0-\varepsilon, t_0+\varepsilon)\cap [0, 1])\subset U$ открыто и замкнуто в W, а так как W связно и содержит $i=f(t_0)\notin V$, то $V\cap W=\varnothing$, что противоречит предположению $f(t_1)\in V$. Этим доказано, что если $t_0\in f^{-1}(i)$, то $(t_0-\varepsilon, t_0+\varepsilon)\cap [0, 1]\subset f^{-1}(i)$, и потому $f^{-1}(i)$ открыто. Но $f^{-1}(i)$ также и замкнуто, а отрезок [0,1] связен, поэтому $f^{-1}(i)=[0,1]$, т. е. f([0,1])=i. Следовательно, не существует пути, соединяющего $i\in X$ с какой-либо другой точкой из $B\subset X$. Итак, X не является линейно связным. \square

Имеется много других (похожих) примеров связных, но не линейно связных пространств 1); см. упражнения ниже.

Последний результат, который мы докажем в этой главе, относится к открытым связным подмножествам \mathbb{R}^n .

12.9. Теорема. Всякое непустое открытое связное подмножество E пространства \mathbb{R}^n линейно связно.

Доказательство. Пусть $p \in E$, и пусть F—подмножество E, состоящее из всех точек, которые можно соединить с p путем, лежащим в E. Мы утверждаем, что F открыто. Чтобы доказать это, возьмем $q \in F \subset E$. Так как E открыто, найдется открытый n-мерный диск $D \subset E$ с центром в точке q, т. е.

$$q \in D = \{x: \|q - x\| < \varepsilon\} \subset E$$

при некотором $\varepsilon > 0$. Открытый диск D линейно связен (он гомеоморфен \mathbb{R}^n), поэтому любую его точку можно соединить с q путем, лежащим в D. Следовательно, любую точку из D можно соединить с p путем, лежащим в E, и потому $q \in D \subset F$. Итак, F открыто.

¹⁾ Связным, но не линейно связным может быть пространство компактной группы. Типичным примером такой группы служит 2-адический соленоид (см. указанную в гл. 30 книгу Стинрода и Эйленберга, с. 286).— Прим. ред.

Мы также утверждаем, что F замкнуто. Чтобы установить это, положим $G = E \setminus F$, т. е. G состоит из тех точек множества E, которые нельзя соединить с p путем, лежащим в E. Рассуждения, аналогичные проведенным выше, позволяют показать, что G открыто, и потому F замкнуто. Итак, подмножество F непусто, открыто и замкнуто в E; но E связно, поэтому E = F и, значит, E линейно связно.

12.10. Упражнения. (а) Докажите, что любое пространство с антидискретной топологией линейно связно.

(b) Какие из следующих подмножеств О линейно связны:

 $\{z: |z| \neq 1\}, \{z: |z| \geqslant 1\}, \{z: z^2 \text{ вещественно}\}$?

(c) Докажите лемму 12.2 в случае, когда A и B открыты в W. (d) Пусть $X = A \cup B$ — подпространство \mathbb{R}^2 , где

$$A = \{(x, y): x = 0, -1 \le y \le 1\},$$

 $B = \{(x, y): 0 < x \le 1, y = \cos \pi/x\}.$

Покажите, что X связно, но не линейно связно. (e) Пусть $X = A \mid B$ — подпространство \mathbb{R}^2 , где

$$A = \{(x, y): x = 0, -1 \le y \le 1\},$$

 $B = \{(x, y): 0 < x \le 1, y = \sin 1/x\}.$

Покажите, что X связно, но не линейно связно.

(f) Рассмотрим следующие подмножества R2:

$$A = \{(x, y): 0 \le x \le 1, y = x/n \text{ при } n \in \mathbb{N}\},\ B = \{(x, y): 1/2 \le x \le 1, y = 0\}.$$

Докажите, что $A \cup B$ связно, но не линейно связно.

(g) Допустим, что A—линейно связное подмножество пространства X и $\{A_j: j \in J\}$ —семейство линейно связных подмножеств X, каждое из которых пересекается с A. Докажите, что $A \cup \left\{ \bigcup_{j \in J} A_j \right\}$ линейно связно.

(h) Пусть
$$S^n = S^n_+ \bigcup S^n_-$$
, где
$$S^n_+ = \{x \in \mathbb{R}^{n+1} : ||x|| = 1, x_{n+1} \ge 0\},$$

$$S^n_- = \{x \in \mathbb{R}^{n+1} : ||x|| = 1, x_{n+1} \le 0\}.$$

Используя упр. 8.14 (h), докажите, что S^n линейно связно при n>0.

(i) Пусть \sim — отношение на множестве точек пространства X, при котором $x\sim y$ тогда и только тогда, когда найдется путь в X, соединяющий x и y. Докажите, что \sim — отношение эквивалентности и что X тогда и только тогда линейно связно, когда факторпространство X/\sim состоит из одной точки.

(j) Открытая окрестность точки $x \in X$ — это открытое множество U, содержащее эту точку. Пространство X называется ло-кально линейно связным, если для любой точки $x \in X$ любая ее

Рис.12.3

открытая окрестность содержит линейно связную открытую окрестность x. Докажите, что если X локально линейно связно и $U \subset X$ открыто, то U локально линейно связно. Докажите, что \mathbb{R}^n локально линейно связно (и потому любое его открытое подмножество локально линейно связно). Докажите, что если X связно и локально линейно связно, то оно линейно связно (тем самым заново будет доказана теорема 12.9).

(к) Пусть $p,\ q\in X$. Говорят, что подмножества $A_1,\ A_2,\ \ldots,\ A_k$ пространства X образуют прострую цепь, соединяющую p и q, если $p\in A_1,\ q\in A_k,\ A_i\cap A_j=\varnothing$ при |i-j|>1 и $A_i\cap A_{i+1}\ne\varnothing$ при $i=1,\ 2,\ \ldots,\ k-1$ (рис. 12.3). Докажите, что если X связно и если $\{U_j:\ j\in J\}$ —открытое покрытие X, то любую пару точек из X можно соединить простой цепью, состоящей из элементов этого покрытия. (Указание: для $p\in X$ рассмотрите множество точек из X, которые можно соединить с p некоторой простой цепью, состоящей из элементов покрытия $\{U_j:\ j\in J\}$.)

(1) Используя (k), получите еще одно доказательство теоремы 12.9.

(m) Докажите, что связное *n*-мерное многообразие линейно связно.

связно.
(п) Докажите, что *п*-мерное многообразне локально линейно

(о) Докажите, что пространство $Y \subset \mathbb{R}^2$, заданное как $Y = A \cup B \cup C$, где

$$A = \{(x, y): x^2 + y^2 = 1, y \ge 0\},\$$

$$B = \{(x, y): -1 \le x \le 0, y = 0\},\$$

$$C = \{(x, y): 0 < x \le 1, y = (1/2) \sin \pi/x\},\$$

линейно связно, но не локально линейно связно.

(р) Пусть $Z = Y \cup D \in \mathbb{R}^2$, где Y—пространство из (о) и D— окружность $\{(x-1)^2+y^2=1\}$. Докажите, что Z линейно связно, но не локально линейно связно.

Закончим эту главу примером необычного пути. Этот путь $f\colon I\to I^2$ сюръективен. О таких примерах

говорят как о «кривых, заполняющих пространство». Впервые они были получены Дж. Пеано около 1890 г. Путь f определен как предел путей f_n : $I \to I^2$. Первые

Рис.12.4

три из них изображены на рис. 12.4. Читатель без труда наглядно представит себе n-й шаг. После n шагов любая точка квадрата I^2 лежит на расстоянии не более $(1/2)^n$ от некоторой точки образа $f_n(I)$. В пределе получаем непрерывное сюръективное отображение $f\colon I\to I^2$. Заметим, что на любом шаге инъективность непрерывного отображения $f_n\colon I\to I^2$ нарушается только в точках $\{0\}$ и $\{1\}$ из I. В действительности I и $f_n(I)$ гомеоморфны. В пределе это, конечно, неверно.

ПРИЛОЖЕНИЕ К ГЛАВЕ 12. ТЕОРЕМА ЖОРДАНА

12А.1. Определение. Простая замкнутая кривая С— это гомеоморфный образ окружности. Компонента— это максимальное связное подпространство.

Из двух следующих утверждений одно верно, а другое — нет.

- (A) Пусть C простая замкнутая кривая на евклидовой плоскости. Тогда $\mathbb{R}^2 \diagdown C$ несвязно и состоит из двух компонент, общей границей которых является C. В точности одна из этих компонент ограничена.
- (В) Пусть D— подмножество евклидовой плоскости. Если D является границей каждой компоненты своего дополнения и если $\mathbb{R}^2 \setminus D$ имеет ограниченную компоненту, то D—простая замкнутая кривая.

Построим теперь пример, показывающий, что оба

эти утверждения не могут быть верными одновременно. Пример известен под названием озер Вады. Впервые его описал К. Ёнэяма в 1917 г. Рассмотрим область в виде двойного кольца (рис. 12А.1). Представим себе

Рис.12А.1. Озера Вады

ее как остров посреди моря, на котором имеются озера. Для удобства воду в озерах изобразим по-разному. Определим три открытых связных множества, прорыв на острове каналы от моря и озер. В момент t=0 выроем канал от моря, доставляющий морскую воду на расстояние не более 1 от любой точки острова. В момент t=1/2 выроем канал от первого озера, доставляющий его воду на расстояние не более 1/2 от любой точки острова. В момент t=3/4 выроем канал, доставляющий воду второго озера на расстояние не более 1/4 от любой точки суши. Продолжая этот процесс, построим в момент $1-(1/2)^n$ канал, доставляющий воду соответствующего водоема на расстояние не более $(1/2)^n$ от любой точки суши. Эти каналы, конечно, не должны пересе-

каться. Два озера с их каналами и море со своим каналом образуют три открытых связных множества, а остаток суши D служит их общей границей.

Если верно (В), то множество D в озерах Вады является простой замкнутой кривой, и потому (А) неверно. Поэтому, если верно (А), то (В) должно быть неверным. Тем самым доказано, что из двух утверж-

дений (А), (В) справедливо не более одного.

На самом деле (A) истинно, а (B) ложно. Утверждение (A) называется теоремой Жордана по имени К. Жордана, который в начале 90-х годов прошлого века указал, что, несмотря на интуитивную очевидность (A), требуется строгое доказательство этого утверждения. Такое доказательство дал в начале века О. Веблен. Приводимое здесь доказательство основано на недавно открытом «элементарном» доказательстве, которым мы обязаны Хельге Тверберг.

Простую замкнутую кривую называют также жордановой кривой. Жорданова кривая C на плоскоети —
это подпространство \mathbb{R}^2 , гомеоморфное $S^1 = \{z \in \mathbb{C} | |z| = 1\}$. Будем говорить, что жорданова кривая вадана отображением $f: S^1 \to \mathbb{R}^2$, если $C = f(S^1)$. Конечно, f не единственно. Жорданова кривая называется жордановым многоугольником, если она состоит из конечного

числа прямолинейных отрезков.

Мы всегда представляем окружность S^1 как подмножество комплексной плоскости, и \mathbb{R}^2 удобно представлять как комплексную плоскость. Таким образом, расстояние между точками x, y из \mathbb{R}^2 или S^1 будет обозначаться |x-y|. Если A и B—два непересекающихся компактных подмножества, определим d(A, B) как

 $d(A, B) = \inf \{ | a - b | : a \in A, b \in B \}.$ В частности, если A состоит из одной точки, скажем $\{x\}$, то

 $d(x, b) = \inf\{|x-b|: b \in B\}.$

Покажем прежде всего, что теорема Жордана справедлива для жордановых многоугольников.

12A.2. Теорема. Tеорема Жордана выполняется для жордановых многоугольников, m.e. если C — жорданов

многоугольник, то $\mathbb{R}^2 \setminus C$ состоит из двух компонент, имеющих C в качестве общей границы, и в точности одна из этих компонент ограничена.

Доказательство. Покажем сначала, что если C — жорданов многоугольник, то $\mathbb{R}^2 \setminus C$ имеет не менее двух компонент. Пусть $p \in \mathbb{R}^2 \setminus C$; рассмотрим любой луч, исходящий из точки p. Пусть P(r, p) обозначает число

Рис.12А.2

пересечений луча r с многоугольником C, подсчитанное с учетом следующего соглашения. Если r проходит через вершину V или содержит целую сторону L многоугольника C, то считаем такое пересечение дважды, когда стороны, смежные с V или L, лежат по одну сторону от луча r; в противном случае пересечение считается однократно. Например, на рис. 12A.2 имеем $P(r_1, p) = 1$, $P(r_2, p) = 1$, $P(r_3, p) = 1$, $P(r_4, p) = 5$, $P(r_5, p) = 3$, $P(r_6, p) = 3$.

При вращении луча r вокруг точки p значение P(r, p), вообще говоря, меняется, но его четность остается неизменной. Поэтому мы можем определить понятие четной или нечетной точки p в зависимости от того, четно или нечетно число P(r, p) для любого луча, ис-

ходящего из точки p. Свойство точки p быть четной или нечетной назовем четностью.

Таким образом, $\mathbb{R}^2 \setminus C$ распадается на множества четных и нечетных точек, обозначаемые соответственно $X_{\mathfrak{q}}$ и $X_{\mathfrak{q}}$. Очевидно, что $\mathbb{R}^2 \setminus C = X_{\mathfrak{q}} \cup X_{\mathfrak{q}}$ и $X_{\mathfrak{q}} \cap X_{\mathfrak{q}} = \varnothing$. Покажем, что $X_{\mathfrak{q}}$ и $X_{\mathfrak{q}}$ открыты в $\mathbb{R}^2 \setminus C$. Пусть $p \in \mathbb{R}^2 \setminus C$ и $d(p,C)=\varepsilon$. Это означает, что $B_{\varepsilon}(p)\subset \mathbb{R}^2 \setminus C$. Четность всех точек из $B_{\varepsilon}(p)$ совпадает с четностью p: для $x \in B_{\varepsilon}(p)$ нужно рассмотреть луч с началом в p, проходящий через x. Итак, $X_{\mathfrak{q}}$ и $X_{\mathfrak{g}}$ открыты, так что $\mathbb{R}^2 \setminus C$ несвязно и состоит не менее чем из двух компонент.

Множества $X_{\mathfrak{q}}$ и $X_{\mathfrak{g}}$ линейно связны. Чтобы доказать это, выберем любой отрезок на C и две точки a, b из $\mathbb{R}^2\setminus C$, близкие к C, но находящиеся по разные стороны от выбранного отрезка, так что, скажем, $a\in X_{\mathfrak{q}}$ и $b\in X_{\mathfrak{g}}$. Далее, если p— любая точка из $\mathbb{R}^2\setminus C$, то, очевидно, в $\mathbb{R}^2\setminus C$ существует путь, соединяющий p с некоторой точкой, близкой к C (но не обязательно к выбранному отрезку на C). Продолжив этот путь вдоль C так, чтобы он оставался в $\mathbb{R}^2\setminus C$ и вблизи C, можно достичь точки a или b. Это рассуждение показывает, что $X_{\mathfrak{q}}$ и $X_{\mathfrak{g}}$ линейно связны и потому связны, что завершает доказательство теоремы. \square

Для дальнейшего нам понадобится понятие равномерной непрерывности и тот факт, что непрерывное отображение $f \colon S^1 \to \mathbb{R}^2$ равномерно непрерывно.

12А.3. Определение. Пусть M_1 , M_2 —метрические пространства с метриками соответственно $d_{\mathfrak{f}}$, $d_{\mathfrak{d}}$. Отображение $f\colon M_1 \to M_2$ называется равномерно непрерывным, если для любого $\varepsilon > 0$ найдется такое $\delta > 0$, что d_2 (f (x), f (y)) $< \varepsilon$ для всех x, y из M_1 , для которых d_1 (x, y) $< \delta$.

Заметим, что это условие сильнее обычной непрерывности.

12А.4. Теорема. Пусть M_1 , M_2 — метрические пространства с метриками соответственно d_1 , d_2 . Если $f\colon M_1\to M_2$ — непрерывное отображение и M_1 компактно, то f равномерно непрерывно.

Доказательство. Пусть $\varepsilon > 0$. Для любого $x \in M_1$ найдется такое $\delta(x) > 0$, что если $y \in M_1$ н $d_1(x, y) < < 2\delta(x)$, то $d_2(f(x), f(y)) < \varepsilon/2$. Множества $\{B_{\delta(x)}(x): x \in M_1\}$ образуют открытое покрытие M_1 . Так как M_1 компактно, то найдется конечное подпокрытие

$$\{B_{\delta(x_1)}(x_1), B_{\delta(x_2)}(x_2), \ldots, B_{\delta(x_n)}(x_n)\}.$$

Пусть $\delta = \min \{\delta(x_1), \delta(x_2), \ldots, \delta(x_n)\}$. Если $x, y \in M_i$ и $d_1(x, y) < \delta$, то $x \in B_{\delta(x_i)}(x_i)$ при некотором i ($1 \le i \le n$), и потому $d_2(f(x), f(x_i)) < \epsilon/2$, так как $\delta \le \delta(x_i)$. Далее,

$$d_1(y, x_i) \leqslant d_1(y, x) + d_1(x, x_i) < \delta + \delta(x_i) \leqslant 2\delta(x_i),$$
 так что $d_2(f(y), f(x_i)) < \epsilon/2$. Итак, $d_2(f(x), f(y)) \leqslant d_2(f(x), f(x_i)) + d_2(f(x_i), f(y)) < \epsilon$. \square

12А.5. Следствие. Всякое непрерывное отображение $f: S^1 \to \mathbb{R}^2$ равномерно непрерывно.

Доказательство очевидно.

12А.6. Следствие. Пусть M_1 , M_2 —метрические пространства с метриками соответственно d_1 , d_2 . Если $f\colon M_1 \to M_2$ — непрерывное отображение, причем M_1 компактно u $f\colon M_1 \to f(M_1)$ является гомеоморфизмом, то для любого $\varepsilon>0$ найдется такое $\delta>0$, что при d_2 (f(x), f(y)) $<\delta$ будет выполнено неравенство $d_1(x,y)<\varepsilon$.

Доказательство. f^{-1} : $f(M_1) \to M_1$ — непрерывное отображение компактного метрического пространства. □

12А.7. Теорема. Пусть C — жорданова кривая, заданная отображением $f \colon S^1 \to \mathbb{R}^2$. Для любого $\varepsilon > 0$ найдется жорданов многоугольник C', задаваемый отображением $f' \colon S^1 \to \mathbb{R}^2$, для которого $|f(x) - f'(x)| < \varepsilon$ при всех $x \in S^1$.

 \mathcal{A} оказательство. Так как f равномерно непрерывно на $S^{\mathbf{1}}$, то найдется такое $\epsilon_{\mathbf{1}}>0$, что

$$|x-y| < \varepsilon_1 \Longrightarrow |f(x)-f(y)| < \varepsilon/2.$$

Так как $f\colon S^1 \to C$ —гомеоморфизм, то, согласно следствию 12A.6, найдется такое $\epsilon_2>0$, что

$$|f(x)-f(y)|<\varepsilon_2\Rightarrow |x-y|<\min(\varepsilon_1,\sqrt{3}).$$

(Причина появления $\sqrt{3}$ в том, что для подмножества A окружности S^1 диаметра меньше $\sqrt{3}$ найдется наименьшая замкнутая дуга, в которой оно содержится.)

шая замкнутая дуга, в которой оно содержится.) Пусть $\delta = \min{(\varepsilon/2, \ \varepsilon_2)}$. Покроем C квадратами S_1 , S_2 , ..., S_n диаметра δ , которые могут пересекаться

только по сторонам. Так как $\delta \leqslant \varepsilon_2$, то существует наименьшая замкнутая дуга $A_1 \neq S^1$, содержащая $f^{-1}(S_1)$. Спрямим теперь $f(A_1)$, образовав жорданову кривую C_i , т. е. определим $f_i\colon S^1\to\mathbb{R}^2$ формулами $f_i(e(t))=\begin{cases} f(e(t)) & \text{при } e(t)\notin A_i, \\ \left(1-\frac{t-a}{b-a}\right)f(e(a))+\frac{t-a}{b-a}f(e(b)) \text{ при } e(t)\in A_i, \end{cases}$

где $A_1 = \{e(t): a \le t \le b\}$ и $e(t) = \exp 2\pi i t$, а затем положим $C_1 = f_1(S^1)$. Это, очевидно, жорданова кривая. Заметим, что $f(A_1)$ не обязательно содержится в S_1 и

положим $C_1 = f_1(S^1)$. Это, очевидно, жорданова кривая. Заметим, что $f(A_1)$ не обязательно содержится в S_1 и что $f_1^{-1}(S_i) \subset f_1^{-1}(S_i)$ при $i=2,\ 3,\ \ldots,\ n$. Спрямим теперь $f_1(A_2)$, где A_2 —наименьшая дуга,

содержащая $f_1^{-1}(\hat{S}_2)$. Получим жорданову кривую C_2 , заданную отображением f_2 ! $S^1 \to \mathbb{R}^2$ (если $f_1^{-1}(S_2) = \emptyset$, положим $f_2 = f_1$ и $C_2 = C_1$). Снова заметим, что $f_2^{-1}(S_i) \subset f^{-1}(S_i)$ при $i = 3, 4, \ldots, n$. Продолжая таким же образом, получим жорданов многоугольник C_n , заданный отображением f_n : $S^1 \to \mathbb{R}^2$. Нужно проверить, что

образом, получим жорданов многоугомынк C_n , заданный отображением f_n : $S^1 \to \mathbb{R}^2$. Нужно проверить, что C_n ε-близок к C.

Пусть $x \in S^1$ н $f_n(x) \neq f(x)$. Тогда $f_n(x) = f_f(x) \neq f_{f-1}(x)$ для некоторого $f \geqslant 1$, где $f_3 = f$. По построению, x принадлежит дуге A_f , концы которой обозначим через g, g. Также по построению g (g) и g (g) и g (g) и g (g). Имеем

$$|f(x) - f_n(x)| = |f(x) - f(y) + f_j(y) - f_j(x)| \le \le |f(x) - f(y)| + |f_j(y) - f_j(x)| \le \le |f(x) - f(y)| + \delta \le |f(x) - f(y)| + \varepsilon/2.$$

Так как $|f(z)-f(y)| \le \delta \le \varepsilon_2$, то $|z-y| \le \varepsilon_1$. Но |x-y| < |z-y|, так что $|x-y| < \varepsilon_1$ и, следовательно, $|f(x)-f(y)| < \varepsilon/2$. Итак,

$$|f(x) - f_n(x)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

12A.8. Теорема. Пусть C - жорданов многоугольник, заданный отображением $f: S^1 \to \mathbb{R}^2$. Тогда ограничен-

ная компонента $\mathbb{R}^2 \setminus C$ содержит открытый диск, в пересечении границы которого c C найдутся две точки f(a), f(b) c $|a-b| \geqslant \sqrt{3}$.

Доказательство. Пусть D—открытый диск, лежащий в ограниченной компоненте $\mathbb{R}^2 \setminus C$ и такой, что найдутся две точки f(a), $f(b) \in \partial D$ с максимальным |a-b|. Такой диск существует. Предположим, что |a-b| < V 3. Тогда a и b должны быть концами некоторой дуги A длины больше $4\pi/3$. Граничная окружность диска D не может пересекаться с множеством $f(A) \setminus \{f(a), f(b)\}$, потому что $\max\{|a-c|, |b-c|\} > |a-b|$ для всех $c \in A \setminus \{a, b\}$.

Пусть $f(v_1)$, $f(v_2)$, ..., $f(v_n)$ —вершины C, принадлежащие f(A), в порядке обхода от f(a) к f(b). Имеются четыре возможности: (i) $v_1 \neq a$, $v_n \neq b$, (ii) $v_1 \neq a$, $v_n = b$, (iii) $v_1 = a$, $v_n \neq b$ и (iv) $v_1 = a$, $v_n = b$. В первом случае окружность ∂D касается прямых $f(a)f(v_1)$ и $f(b)f(v_n)$ и найдется диск $D' \subset \mathbb{R}^2 \setminus C$, близкий к D и такой, что окружность $\partial D'$ касается C в точках f(a') и f(b'), близких к f(a) и f(b) и лежащих соответственно на отрезках $f(a)f(v_1)$ и $f(b)f(v_n)$ (рис. 12A.3 (a)). Так как |a'-b'|>|a-b|, получаем противоречие. В случае (ii) окружность ∂D касается прямой $f(a)f(v_1)$ и найдется диск $D' \subset \mathbb{R}^2 \setminus C$, такой, что $\partial D'$ касается C вблизи f(a) на стороне $f(a)f(v_1)$ и прохо-

 $|a-b| \geqslant \sqrt{3}$. \square

дит через некоторую точку стороны $f(b) f(v_{n-1})$ (рис. 12A.3 (b)). Это приводит к противоречию. Случай (iii) аналогичен (ii). В случае (iv) рассмотрим область R, ограниченную дугой f(A) и радиусами \overline{D} , проведенными в точки f(a) и f(b). Проведем из центра D луч, перпендикулярный отрезку f(a) f(b) и направленный внутрь области R. Для любой точки х этого луча существует единственная окружность S_r с центром в x, проходящая через f(a) и f(b). Непрерывно перемещая x от центра D вдоль этого луча, мы получим при x, близких к центру D, окружности S_r , ограничивающие диски D_x , лежащие в $\mathbb{R}^2 \setminus C$. В конце концов для некоторого x окружность S_{x} либо пересечет f(A) в некоторой точке, отличной от f(a) и f(b), либо станет касательной к одной из прямых $f(a) f(v_2)$ или $f(b) f(v_{n-1})$. Невозможность первого случая была уже доказана, а второй приводится к противоречию тем же методом, что и случай (ii). Все эти противоречия ос-

Докажем теперь часть теоремы Жордана.

Доказательство. Очевидно, что существует неогра-

что

12А.9. Теорема. Если C — жорданова кривая, то $\mathbb{R}^2 \setminus C$ имеет не менее двух компонент.

тавляют только одну возможность, а именно

ниченная компонента. Покажем, что существует также и ограниченная компонента. Пусть C_1, C_2, \ldots последовательность жордановых многоугольников, сходящаяся к C в смысле теоремы 12A.7, где ε пробегает последовательность $\varepsilon_1, \varepsilon_2, \ldots$, сходящуюся к нулю. Пусть C, C_1, C_2, \ldots заданы соответственно отображениями f, f_1, f_2, \ldots так, что $f_n \to f$ при $n \to \infty$. По теореме 12A.8 для каждого C_n найдется диск D_n , лежащий в ограниченной компоненте $\mathbb{R}^2 \setminus C_n$, граница которого пересекается с C_n по множеству, содержащему точки f_n (a_n) и f_n (b_n) с $|a_n - b_n| \geqslant V$ $\overline{3}$. Обозначим центр диска D_n через z_n . Существует диск D_0 , содержащий все

жордановы кривые C_n и C и, следовательно, все D_n . Итак, последовательность z_1, z_2, \ldots ограничена в \mathbb{R}^2

и, значит, содержит сходящуюся подпоследовательность. Поэтому можно считать, что сама последовательность z_n , $n \geqslant 1$, сходится к z при $n \to \infty$.

Для больших n точки z и z_n лежат в одной и той же компоненте $\mathbb{R}^2 \setminus C_n$. Мы покажем это следующим образом. Найдется такое $\delta > 0$, что если $|x-y| \geqslant \sqrt{3}$, то $|f(x)-f(y)| \geqslant \delta$. Тогда $|f(a_n)-f(b_n)| \geqslant \delta$ при всех $n \geqslant 1$, и потому $|f_n(a_n)-f_n(b_n)| > \delta/2$ при $n \geqslant N$, где N настолько велико, что $\varepsilon_N < \delta/2$. Это означает, что диаметр S_n при $n \geqslant N$ больше $\delta/2$, и потому $d(z_n, C_n) > \delta/4$. Но для достаточно больших n имеем $|z-z_n| < \delta/4$, так что z и z_n должны лежать в одной и той же компоненте $\mathbb{R}^2 \setminus C_n$, а именно в ограниченной компоненте $\mathbb{R}^2 \setminus C_n$. Покажем, что z не может лежать в неограниченной компоненте $\mathbb{R}^2 \setminus C_n$.

Предположим, что z лежит в неограниченной компоненте $\mathbb{R}^2 \setminus C$. Тогда в $\mathbb{R}^2 \setminus C$ найдется путь g из z в некоторую точку вне D_0 (по теореме 12.9 открытое связное подмножество \mathbb{R}^2 линейно связно). Пусть $d\left(g\left(I\right), C\right) = \delta$. Для больших n имеем $\left|f_n\left(x\right) - f\left(x\right)\right| < \delta/2$ и, следовательно, $d\left(g\left(I\right), C_n\right) > \delta/2$, а это означает, что для больших n точка z лежит в неограниченной компоненте $\mathbb{R}^2 \setminus C_n$. Но это противоречит доказанному ранее факту, что z лежит в ограниченной компоненте $\mathbb{R}^2 \setminus C_n$. Отсюда заключаем, что z не лежит в неограниченной компоненте $\mathbb{R}^2 \setminus C_n$ и потому $\mathbb{R}^2 \setminus C$ имеет также ограниченную компоненту.

Чтобы доказать вторую часть теоремы Жордана, нам понадобятся еще одно определение и лемма.

12А.10. Определение. $Xop\partial o \ddot{u}$ Γ жордановой кривой C называется прямолинейный отрезок, пересекающийся с C только в своих котцах. Таким образом, за исключением концов, Γ лежит в $\mathbb{R}^2 \setminus C$.

Заметим, что если C—жорданов многоугольник и Γ —его хорда, то $\Gamma \subset X \cup C$, где X—одна из компонент $\mathbb{R}^2 \setminus C$, и, более того, $X \setminus \Gamma$ состоит из двух компонент.

Доказательство. Идея состоит в том, чтобы взять открытый диск радиуса δ с центром в точке a и протащить его в точку b, оставаясь все время внутри X. Единственное, что может помешать такому перемещению диска (диаметр которого равен 2δ), — это наличие хорды длины меньше 2δ в $X \cup C$. Но предположения леммы исключают такую возможность. \square

12A.12. Теорема. Пусть C — жорданова кривая; тогда $\mathbb{R}^2 \setminus C$ имеет не более двух компонент.

Доказательство. Предположим, что $\mathbb{R}^2 \setminus C$ имеет три или более компонент, и пусть p, q, r—точки из трех различных компонент. Пусть $d\left(\{p, q, r\}, C\right) = \epsilon$ и C_1, C_2, \ldots —последовательность жордановых многоугольников, сходящаяся к C. Предположим, что C, C_1, C_2, \ldots заданы отображениями f, f_1, f_2, \ldots соответственно. Для больших n имеем $d\left(C_n, C\right) < \epsilon/2$, и потому $d\left(\{p, q, r\}, C_n\right) > \epsilon/2$. Теорема 12A.2 показывает, что для любого достаточно большого n две из трех точек p, q, r лежат в одной и той же компоненте X_n множества $\mathbb{R}^2 \setminus C_n$. Переходя, если нужно, к подпоследовательности, можно считать, что p и q содержатся в X_n для всех n.

Допустим, что найдется δ , $0 < \delta < \varepsilon$, и бесконечно много значений n, для которых точки p и q соединены путем g_n в X_n с $d(g_n(I), C_n) \geqslant \delta$. Для больших n имеем $d(C_n, C) < \delta/2$ и потому $d(g_n(I), C) > \delta/2$, откуда видно, что p и q лежат в одной и той же компоненте $\mathbb{R}^2 \setminus C$. Это противоречие означает, что такого δ не существует. Применяя лемму 12A.11, получаем, что для бесконечно многих n найдутся хорды Γ_n длины δ_n , такие, что p и q лежат в разных компонен-

тах $X_n \setminus \Gamma_n$ и $\delta_n \to 0$ при $n \to \infty$. Обозначим эти n в возрастающем порядке через n (1), n (2), Пусть концами $\Gamma_{n(i)}$ являются точки $f_{n(i)}$ (a_i) и $f_{n(i)}$ (b_i). Так как $\delta_{n(i)} \to 0$ при $i \to \infty$, имеем $f_{n(i)}$ (a_i) — $f_{n(i)}$ (b_i) — 0 при $i \to \infty$, и, следовательно, f (a_i) — f (b_i) — 0 при $i \to \infty$, откуда $a_i - b_i \to 0$ при $i \to \infty$.

Так как p и q лежат в разных компонентах $X_{n(i)} \setminus \Gamma_{n(i)}$, то для бесконечно многих значений i одна из этих точек, например p, принадлежит компоненте множества $X_{n(i)} \setminus \Gamma_{n(i)}$, ограниченной хордой $\Gamma_{n(i)}$ и дугой $f_{n(i)}(A_i)$, где A_i —меньшая из дуг в S^1 с концами в a_i и b_i . Так как a_i — b_i —0 при i— ∞ , то диаметр этой компоненты при достаточно большом i станет меньше ϵ . В частности, $|p-f(a_i)| < \epsilon$, что дает противоречие, доказыван диее теорему.

Теорема Жордана следует теперь из 12А.9—12А.12.

12А.13. Упражнения. (а) Докажите, что если A — образ в \mathbb{R}^2 инъективного непрерывного отображения $f\colon I \to \mathbb{R}^2$, то $\mathbb{R}^2 \smallsetminus A$ связно.

(b) Пусть C — жорданова кривая, заданная отображением $f: S^1 \to \mathbb{R}^2$. • Пределим δ , полагая

$$\delta = \min \{ |f(x) - f(y)| : x, y \in S^1 \quad \text{if } |x - y| \ge \sqrt{3} \}.$$

Докажите, что ограниченная компонента $\mathbb{R}^2 \smallsetminus C$ содержит открытый диск диаметра δ .

(c) В \mathbb{R}^2 можно расположить несчетное множество непересекающихся простых замкнутых кривых, например $\{C_r: r\in \mathbb{R}_+\}$, где $C_r=\{(x,y)\in \mathbb{R}^2: x^2+y^2=r\}$. Восьмеркой называется пространство, гомеоморфное множеству $\{(x,y)\in \mathbb{R}^2: (x\pm 1)^2+y^2=1\}$. Докажите, что если $\{E_j: j\in J\}$ —семейство непересекающихся восьмерок в \mathbb{R}^2 , то J не более чсм счетно.

ГОМОТОПИЯ НЕПРЕРЫВНЫХ ОТОБРАЖЕНИЙ

В этой главе мы введем отношение эквивалентности для непрерывных отображений топологических пространств. Оно будет играть основную роль в следующих

главах, особенно в применении к путям.

Грубо говоря, два непрерывных отображения f_0 , f_1 : $X \to Y$ называются гомотопными, если существует семейство промежуточных непрерывных отображений f_t : $X \to Y$, где $0 \le t \le 1$, непрерывно зависящих от t (рис. 13.1 (а)). На рис. 13.1 (b) изображены два негомотопных отображения. Здесь $X = S^1$, а Y - кольцо в R².

Более точное определение таково.

13.1. Определение. Два непрерывных отображения f_0 , $f_1: X \to Y$ называются *гомотопными*, если существует непрерывное отображение $F: X \times I \to Y$, такое, что $F(x, 0) = f_0(x)$ и $\dot{F}(x, 1) = f_1(x)$.

Пример см. на рис. 13.2. Отображение F называется гомотопией между f_0 и f_1 . Мы пишем $f_0 \simeq f_1$ или F: $f_0 \simeq f_1$. Для каждого $t \in [0, 1]$ мы обозначаем F(x, t) через $f_t(x)$, и отобра-

жение $f_t: X \to Y$ непрерывно.

Заметим, что если $f: I \to Y$ — путь, то f гомотопно постоянному пути $\varepsilon_{f^{(0)}}$ посредством гомотопии $F\colon I\times X \to Y$, где F(x,t)=f((1-t)x). Если мы хотим избежать таких ситуаций, мы пользуемся более общим понятием гомотопии - гомотопией относительно подмножества А. При этом требуется, чтобы гомотопия оставляла на месте все точки А.

13.2. Определение. Пусть A — подмножество X и f_0 , f_1 — непрерывные отображения X в Y. Назовем f_0 и f_1

Рис.13.1. (a) Гомотопные отображения. (b) Негомотопные отображения

Рис. 13.2

гомотопными относительно A, если существует гомотопия $F: X \times I \to Y$ между f_0 и f_1 , такая, что F(a, t) не зависит от t при $a \in A$. Другими словами, $F(a, t) = f_0(a)$ для всех $a \in A$ и всех $t \in I$.

Заметим, что в этом случае $f_0(a) = f_1(a)$ для всех $a \in A$. Гомотопия F называется гомотопией относительно A и записывается в виде $f_0 \simeq f_1$ (rel A) или $f_0 \simeq \text{rel } A f_1$.

Пример см. на рис. 13.3, где X = I и $A = \{0\} \subset X$. В качестве другого примера рассмотрим рис. 13.4,

Рис.13.3

Рис.13.4

где X = I, $A = \{0, 1\}$ и Y =кольцо в \mathbb{R}^2 . Отображения f_0 , f_1 негомотопны относительно A, хотя они и гомотопны в абсолютном смысле.

Конечно, при $A=\varnothing$ гомотопия относительно A превращается в обыкновенную гомотопию. Следующий результат показывает, что гомотопия относительно A является отношением эквивалентности.

13.3. Лемма. Отношение \simeq rel $_A$ на множестве непрерывных отображений X в Y является отношением эквивалентности.

Доказательство. Отношение рефлексивно, потому что F(x, t) = f(x)— гомотопия относительно A между f и f. Оно симметрично, так как если F: $f \simeq _{\text{rel }A} g$, то G: $g \simeq _{\text{rel }A} f$, где G задано равенством G(x, t) = F(x, 1-t). Наконец, это отношение транзитивно, потому что если F: $f \simeq _{\text{rel }A} g$ и G: $g \simeq _{\text{rel }A} h$, то H: $f \simeq _{\text{rel }A} h$

где H задано равенствами

$$H(x, t) = \begin{cases} F(x, 2t), & 0 \le t \le 1/2, \\ G(x, 2t - 1), & 1/2 \le t \le 1. \end{cases}$$

Лемма о склейке показывает, что H непрерывно. \square

13.4. Упражнения. (a) Пусть X — пространство, $f: S^1 \to X$ — непрерывное отображение. Йокажите, что f гомотопно нулю (т. е. постоянному отображению) тогда и только тогда, когда существует непрерывное отображение $g: D^2 \to X$, для которого $g \mid S^1 =$ =f. (Указание: если c—постоянное отображение и F: $c \simeq f$, положите g(rx) = F(x, r) при $x \in S^1, r \in I$ и воспользуйтесь упр. 8.14(f).)

(b) Пусть $x, y \in X$. Обозначим через P(x, y) множество классов эквивалентности путей в X из x в y по отношению гомотопности относительно $\{0, 1\}$. (Другими словами, два пути $p, q: I \rightarrow$ o X из x в y эквивалентны тогда и только тогда, когда $p \simeq q$ (re! $\{0, 1\}$).) Покажите, что между P(x, y) и P(x, x) тогда и только тогда существует взаимно однозначное соответствие, когда $P(x, y) \neq \emptyset$.

(c) Пусть 0 < s < 1. Для данных путей p и q с p(1) = q(0)

определим *h* формулами

$$h(t) = \begin{cases} p(t/s), & 0 \le t \le s, \\ q((t-s)/(1-s)), & s \le t \le 1. \end{cases}$$

Докажите, что h и p*q гомотопны относительно $\{0, 1\}$.

(d) Для данного пути f обозначим через \overline{f} путь, определенный формулой $\overline{f}(t) = f(1-t)$. Докажите, что $f \simeq g$ (rel $\{0, 1\}$) тогда и только тогда, когда $\overline{f} \simeq \overline{g}$ (rel {0, 1}).

(e) Покажите, что если $f_0 \simeq \operatorname{rel}_A f_1\colon X \to Y$ и $g\colon Y \to Z$ — непрерывное отображение, то $gf_0 \simeq \operatorname{rel}_A gf_1\colon X \to Z$. (f) Пусть $f_0 \simeq f_1\colon X \to Y$ и $g_0 \simeq g_1\colon Y \to Z$. Докажите, что $g_0f_0 \simeq g_1f_1$: $X \to Z$. (Указание: воспользуйтесь сначала (е), чтобы

показать, что $g_0f_0\simeq g_0f_1$, а затем покажите, что $g_0f_1\simeq g_1f_1$.) (g) Пусть X,Y топологические пространства и $\mathcal{F}(X,Y)$ — множество не рерывных отображений X в Y с компактно-открытой топологией (см. упр. 7.13 (d)). Докажите, что если $f \simeq g$: $X \to Y$, то найдется путь из f в g в пространстве $\mathcal{F}(X, Y)$. Допустим, что X компактно и хаусдорфово. Докажите, что путь из f в g в пространстве \widehat{f} $(X,\ Y)$ существует в том и голько в том случае, если $f\simeq g\colon X\to Y$. (Для справедливости последнего результата достаточно, чтобы X было локально компактным и хаусдорфовым.)

Понятие гомотопных отображений можно использовать для определения отношения эквивалентности топологических пространств.

13.5. Определение. Говорят, что пространства X и Y имеют один и тот же гомотопический тип, если существуют непрерывные отображения $f\colon X \longrightarrow Y, g\colon Y \longrightarrow X,$ такие, что $gf \simeq 1\colon X \longrightarrow X, fg \simeq 1\colon Y \longrightarrow Y.$ Отображения f и g называются в этом случае гомотопическими эквивалентностями. Говорят также, что X и Y гомотопически эквивалентны.

Очевидно, гомеоморфные пространства имеют одинаковый гомотопический тип, но обратное не верно. Например, при n>0 n-мерный диск $D^n \subset \mathbb{R}^n$ не гомеоморфен одной точке (скажем, $\{y\} \subset D^n$), но имеет гомотопический тип точки. Чтобы показать, что эти пространства гомотопически эквивалентны, рассмотрим отображение включения $f\colon \{y\} \to D^n$ (заданное равенством f(y)=y) и постоянное отображение $g\colon D^n \to \{y\}$. Очевидно, что gf=1, тогда как $F\colon D^n \times I \to D^n$, определенное формулой F(x,t)=tx+(1-t)y, является гомотопически эквивалентные точке, носят специальное название.

13.6. Определение. Пространство X, гомотопически эквивалентное точке, называется *стягиваемым*.

Таким образом, диск D^n стягиваем. Вообще, всякое выпуклое подмножество \mathbb{R}^n стягиваемо. Говоря нестрого, пространство стягиваемо, если его можно продеформировать по себе в точку (например, с окружностью этого нельзя сделать).

Другой пример пары гомотопически эквивалентных пространств представляют цилиндр C и окружность S^1 . Чтобы в этом убедиться, представим C и S^1 в виде

$$C = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 = 1, -1 \le z \le 1\},\$$

$$S^1 = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 = 1, z = 0\}.$$

Определим $i: S^1 \to C$ как включение и $r: C \to S^1$ при помощи равенства r(x, y, z) = (x, y, 0). Очевидно, $ri = 1: S^1 \to S^1$, тогда как отображение $F: C \times I \to C$, определенное формулой F((x, y, z), t) = (x, y, tz), является гомотопией между ir и $1: C \to C$.

Рассмотренные примеры приводят к новым определениям.

- 13.7. Определение. Подмножество A топологического пространства X называется pempakmom пространства X, если существует непрерывное отображение $r: X \to A$, такое, что $ri = 1: A \to A$ (или, эквивалентно, $r \mid A = 1$), где $i: A \to X -$ включение. Отображение r называется pempakuueu.
- 13.8. Определение. Подмножество A пространства X называется $\partial e \phi$ ормационным ретрактом X, если существует такая ретракция $r: X \to A$, что $ir \simeq 1: X \to X$, где $i: A \to X -$ включение.

Другими словами, A является деформационным ретрактом X, если существует такая гомотопия $F\colon X\times I\to X$, что F(x, 0)=x для всех $x\in X$ и F(x, 1) — ретракция X на A.

Таким образом, окружность — деформационный ретракт цилиндра. Заметим, что если A — деформационный ретракт X, то A и X гомотопически эквивалентны. В примере с окружностью и цилиндром отображение ir на самом деле гомотопно тождественному относительно окружности. Это приводит к еще одному определению.

13.9. Определение. Подмножество A пространства X называется сильным деформационным ретрактом, если существует такая ретракция $r\colon X \to A$, что $ir \simeq_{\mathsf{rel}\,A} \mathsf{l}\colon X \to X$.

Другими словами, A—сильный деформационный ретракт X, если существует такая гомотопия $F: X \times I \longrightarrow X$, что F(x, 0) = x для всех $x \in X$, F(a, t) = a для всех $a \in A$, $t \in I$, и $F(x, 1) \in A$ для всех $x \in X$.

Сильный деформационный ретракт является, очевидно, деформационным ретрактом. Понятие сильного деформационного ретракта будет полезно в дальнейшем. Предостережение: в некоторых книгах сильный деформационный ретракт называют просто деформационным ретрактом. Мы воздержимся от применения этой терминологии. Говоря нестрого, А является сильным деформационным ретрактом пространства X, если X можно продеформировать по себе в A, оставляя точки из A неподвижными.

Приведем следующий пример, иллюстрирующий понятие сильного деформационного ретракта. Рассмотрим подмножество $Y = C_1 \cup C_2$ пространства \mathbb{R}^2 , где

$$C_1 = \{x = (x_1, x_2): (x_1 - 1)^2 + x_2^2 = 1\},\$$

$$C_2 = \{x = (x_1, x_2): (x_1 + 1)^2 + x_2^2 = 1\}.$$

Таким образом, Y—это восьмерка, т. е. две окружности с одной общей точкой. Пусть $X = Y \setminus \{(2, 0),$ (-2, 0); тогда точка $x_0 = (0, 0)$ является сильным деформационным ретрактом X. Чтобы это установить, рассмотрим очевидные отображения $i: \{x_0\} \to X$ и $r: X \to \{x_0\}$. Ясно, что ri = 1. Чтобы убедиться, что $ir \simeq 1$ (rel $\{x_0\}$), используем следующую гомотопию F: $X \times I \xrightarrow{\sim} X$:

$$F(x, s) = (1-s) x/\|((1-s)x_1 + (-1)^i, (1-s)y_2)\|$$
 при $x \in C_i$, $i = 1, 2$.

Заметим, что $((1-s)\,x_1+(-1)^i,\,(1-s)\,y_2)\not=(0,\,0)$ при $x\in X$. Легко проверить, что F непрерывно. Так как $F(x_0,\,s)=x_0,\,F(x,\,0)=x$ и $F(x,\,1)=x_0$, то $ir\simeq 1$ (rel $\{x_0\}$) и, таким образом, $\{x_0\}$ —сильный деформационный ретракт X.

13.10. Упражнения. (a) Покажите, что на листе Мёбиуса найдется окружность, являющаяся его сильным деформационным ретрактом. Выведите отсюда, что лист Мёбиуса и цилиндр гомотопически эквивалентны.

(b) Докажите, что пространство X тогда и только тогда стягиваемо, когда тождественное отображение 1: $X \to X$ гомотопно

постоянному отображению.

(c) Докажите, что ретракция $r: D^n \to S^{n-1}$ существует тогда и только тогда, когда S^{n-1} стягиваема 1). (Указание. Пусть $F: S^{n-1} \times I \to S^{n-1}$ —гомотопия между постоянным и тождественным отображениями. Воспользуйтесь естественным отображением $S^{n-1} \times I \longrightarrow D^n$ вида $(x, t) \longmapsto tx$ и тем фактом, что $F(S^{n-1} \times \{0\})$ одна точка.)

(d) Докажите, что если X связно и имеет тот же гомотопи-

ческий тип, что и Y, то Y также связно. (е) Подмножество $A \subset X$ называется слабым ретрактом пространства X, если существует непрерывное отображение $r: X \to A$, такое, что $ri\simeq 1$: $A\to A$, где i: $A\to X$ —включение. Ретракт, очевидно, является слабым ретрактом. Приведите пример слабого ретракта, не являющегося ретрактом.

 $^{^{\}rm J})$ Нестягиваемость сферы S^{n-1} вытекает, например, из предложений 29.8 и 29.19.— Прим. ред.

(f) Приведите пример деформационного ретракта, не являюще-

гося сильным деформационным ретрактом.

(g) Подмножество A

Х называется слабым деформационным ретрактом пространства X, если этображение включения $i: A \longrightarrow X$ является гомотопической эквивалентностью. Таким образом, деформационный регракт является и слабым деформационным ретрактом. Приведите пример слабого деформационного ретракта, не являющегося деформационным ретрактом,

(h) Пусть A — подпространство X, и пусть Y — непустое топологическое пространство. Докажите, что $A \times Y$ тогда и только тогда является ретрактом пространства $X \times Y$, когда A — ретракт X.

(i) Докажите, что отношение «быть ретрактом» транзитивно (т. е. если A — ретракт B, а B — ретракт C, то A — ретракт C).

(i) Докажите, что подмножество $S^1 \times \{x_0\}$ является ретрактом пространства $S^1 \times S^1$, но не является его сильным деформационным ретрактом ни для какой точки $x_0 \in S^1$. Является ли оно деформационным ретрактом? Слабым деформационным ретрактом?

(k) Пусть $x_0 \in \mathbb{R}^2$. Найдите окружность в \mathbb{R}^2 , являющуюся

сильным деформационным ретрактом пространства $\mathbb{R}^2 \setminus \{x_0\}$.

(I) Пусть T — тор, а X — дополнение к некоторой его точке. Найдите подмножество X, гомеоморфное восьмерке и являющееся сильным деформационным ретрактом пространства X.

(m) Докажите, что Sⁿ — сильный деформационный ретракт

пространства $\mathbb{R}^{n+1} \setminus \{0\}$

(n) Покажите, что ретракт хаусдорфова пространства замкнут.

(о) Пусть Y — подпространство \mathbb{R}^n и I, $g: X \to Y$ — непрерывные отображения. Докажите, что если для всякого $x \in X$ точки f(x) и g(x) можно соединить прямолинейным отрезком в Y, го $f \simeq g$. Выведите отсюда, что любые два отображения $f, g: X \longrightarrow \mathbb{R}^n$ гомотопны.

(р) Пусть X — произвольное пространство и f, $g: X \longrightarrow S^n$ непрерывные отображения, для которых $f(x) \neq -g(x)$ при всех $x \in X$. Докажите, что $f \simeq g$. (Указание: рассмотрите отображение $\mathbb{R}^n \setminus \{0\} \longrightarrow S^{n-1}$ вида $x \mapsto x/\|x\|$ и примените (о).) Выведите отсюда. что всякое непрерывное отображение $f: X \longrightarrow S^n$, не являющееся сюръективным, гомотопно постоянному отображению.

УМНОЖЕНИЕ ПУТЕЙ

Если f и g — пути в X, причем f(1) = g(0), то под n роизведением f и g мы понимаем путь f * g, определенный в гл. 12 формулами

$$(f*g)(t) = \left\{ \begin{array}{ll} f(2t), & 0 \leqslant t \leqslant 1/2, \\ g(2t-1), & 1/2 \leqslant t \leqslant 1. \end{array} \right.$$

Далее в этой главе мы подробнее изучим это «умножение» путей. Точнее, мы рассмотрим умножение путей с точностью до гомотопии относительно {0, 1} и увидим, в какой степени это умножение удовлетворяет аксиомам группы.

14.1. Определение. Два пути f, g в X мы называем *эквивалентными* и пишем $f \sim g$, если они гомотопны относительно $\{0, 1\}$.

Заметим, что пути $f_{\rm o}$, $f_{\rm 1}$ в X эквивалентны, если существует непрерывное отображение $F\colon\ I\times I\to X$, такое, что

$$F(t, 0) = f_0(t)$$
 и $F(t, 1) = f_1(t)$ при $t \in I$, $F(0, s) = f_0(0)$ и $F(1, s) = f_0(1)$ при $s \in I$

(рис. 14.1). В этом случае мы будем писать F: $f_0 \sim f_i$. Как показывает лемма 13.3, \sim —отношение эквивалентности на множестве путей в X. Обозначим класс эквивалентности пути f через [f]. Наш первый результат показывает, что произведение классов эквивалентности путей корректно определено условием [f][g] = [f * g].

14.2. Jemma. $\Pi ycmb \ f_0, \ f_1, \ g_0, \ g_1 - nymu \ B \ X, \ npuчем \ f_0 \ (1) = g_0 \ (0) \ u \ f_1 \ (1) = g_1 \ (0).$ **E**cau $f_0 \sim f_1 \ u \ g_0 \sim g_1, \ mo \ f_0 * g_0 \sim f_1 * g_1.$

Доказательство. Пусть $F: f_0 \sim f_1$ и $G: g_0 \sim g_1$ —гомотопии относительно $\{0, 1\}$, реализующие эти эквивалентности. Определим $H: I \times I \to X$ формулами

$$H(t, s) = \begin{cases} F(2t, s), & 0 \le t \le 1/2, \\ G(2t-1, s), & 1/2 \le t \le 1. \end{cases}$$

По лемме о склейке H непрерывно, так как $F(1, s) = f_0(1) = g_0(0) = G(0, s)$. Легко видеть, что H является

Рис.14.1

Рис.14.2

гомотопией относительно $\{0,\ 1\}$ между f_0*g_0 и f_1*g_1 (рис. 14.2). \square

Следующий результат устанавливает ассоциативность умножения классов путей, иными словами, ([f][g])[h] = [f]([g][h]), когда эти произведения имеют смысл (т. е. при f(1) = g(0) и g(1) = h(0)). Заметим, что, вообще говоря, $(f*g)*h \neq f*(g*h)$ (см. упр. 14.6 (a)).

14.3. Лемма. Пусть f, g, h—три пути в X, для которых f(1) = g(0) и g(1) = h(0). Тогда $(f * g) * h \sim$

$$\sim f * (g * h).$$

Доказательство. Заметим сначала, что

$$((f * g) * h) (t) = \begin{cases} f (4t), & 0 \le t \le 1/4, \\ g (4t-1), & 1/4 \le t \le 1/2, \\ h (2t-1), & 1/2 \le t \le 1; \end{cases}$$

$$(f * (g * h)) (t) = \begin{cases} f (2t), & 0 \le t \le 1/2, \\ g (4t-2), & 1/2 \le t \le 3/4, \\ h (4t-3), & 3/4 \le t \le 1. \end{cases}$$

Изобразим эти пути диаграммами

Эти диаграммы можно использовать для очень простого алгебраического описания наших путей. Рассмотрим, например, (f*g)*h. При $1/4 \le t \le 1/2$ используем g

Рис.14.3

в композиции с линейной функцией, переводящей отрезок [1/4, 1/2] в [0, 1], а именно $t \mapsto 4t - 1$. На самом деле можно использовать любую непрерывную функцию, отображающую [1/4, 1/2] в [0, 1], которая переводит 1/4 в [0, 1/2] в [0, 1], но обычно проще всего выбрать линейную функцию.

Чтобы построить гомотопию между (f*g)*h и f*(g*h), рассмотрим рис. 14.3. При данном значении s

используем / на отрезке [0, (s+1)/4], g на отрезке [(s+1)/4, (s+2)/4] и h на отрезке [(s+2)/4, 1]. Методом, описанным выше, мы придем к определению F: $I \times I \to X$ равенствами

$$F(t, s) = \begin{cases} f(4t/(1+s)), & 0 \le t \le (s+1)/4, \\ g(4t-s-1), & (s+1)/4 \le t \le (s+2)/4, \\ h((4t-s-2)/(2-s)), & (s+2)/4 \le t \le 1. \end{cases}$$

Отображение F непрерывно и

$$F(t, 0) = ((f * g) * h) (t),$$

$$F(0, s) = f(0) = ((f * g) * h) (0),$$

$$F(t, 1) = (f * (g * h)) (t),$$

$$F(1, s) = h(1) = ((f * g) * h) (1).$$

Итак, F является нужной гомотопией. 🔲

Для $x \in X$ был определен постоянный путь ε_x : $I \longrightarrow X$, $\varepsilon_x(t) = x$. Класс эквивалентности постоянного пути ведет себя как (левая или правая) единица, т. е. $[\varepsilon_x][f] = [f] = |f| [\varepsilon_y]$, если путь f начинается в x и кончается в y.

Это доказывается в следующей лемме.

14.4. Лемма. Если f — nymb в X с началом в x и концом в y, то $\varepsilon_x * f \sim f$ и $f * \varepsilon_y \sim f$.

Доказательство. Докажем только, что $\varepsilon_x * f \sim f$. Доказательство того, что $f * \varepsilon_y \sim f$, проводится аналогично. Рассмотрим рис. 14.4. Определим $F \colon I \times I \to X$ формулами

$$F(t, s) = \begin{cases} x, & 0 \le t \le (1-s)/2, \\ f((2t-1+s)/(1+s)), & (1-s)/2 \le t \le 1. \end{cases}$$

Тогда $F(t, 0) = \varepsilon_x * f$, F(t, 1) = f(t) и F—гомотопия относительно $\{0, 1\}$. \square

Рассмотрим, наконец, обратные пути (с точностью до эквивалентности). Напомним, что для пути f через \overline{f} обозначается путь, определенный равенством $\overline{f}(t) = f(1-t)$. Заметим, что $f \sim g$ тогда и только тогда, когда $\overline{f} \sim \overline{g}$ (доказать это легко). Следующий результат показывает, что класс эквивалентности \overline{f} играет роль

обратного для класса эквивалентности f, т. е. $[f][\bar{f}] = [\varepsilon_x]$, $[\bar{f}][f] = [\varepsilon_u]$ для пути f с началом в x и концом в y.

14.5. Лемма. Пусть f—путь в X с началом в x и концом в y. Тогда $f * \overline{f} \sim \varepsilon_x$ и $\overline{f} * f \sim \varepsilon_y$.

 \mathcal{A} оказательство. Докажем только, что $f*\overline{f}\sim \varepsilon_{x}$. Путь $f*\overline{f}$ задан формулами

$$(f * \overline{f})(t) = \begin{cases} f(2t), & 0 \leq t \leq 1/2, \\ f(2-2t), & 1/2 \leq t \leq 1. \end{cases}$$

Он представляет собой путь, по которому мы движемся первую половину времени вдоль f, а вторую половину—вдоль f в обратном направлении. Чтобы пройти за единицу времени из x в y и обратно в x, мы движемся

Рис.14.4

со скоростью 2 (т. е. с удвоенной «нормальной» скоростью). Если теперь менять скорость пропорционально (1-s) при $s\in I$, то для любого s мы получим путь, который начинается в x, идет до f(2(1-s)) и затем возвращается в x. При s=0 получим $f*\overline{f}$, а при s=1 получим ε_x . Поэтому определим $F\colon I\times I\to X$ формулами

$$F(t, s) = \begin{cases} f(2t(1-s)), & 0 \le t \le 1/2, \\ f((2-2t)(1-s)), & 1/2 \le t \le 1. \end{cases}$$

Очевидно, F непрерывно и

$$F(t, 0) = (f * \overline{f})(t), \qquad F(t, 1) = f(0) = \varepsilon_x(t),$$

$$F(0, s) = f(0) = (f * \overline{f})(0), \qquad F(1, s) = f(0) = (f * \overline{f})(1),$$

так что $f*\overline{f} \sim \varepsilon_x$. \square

Другая гомотопия между $f*\overline{f}$ и ϵ_x задается отображением $G\colon I\times I\to X$, где

$$G(t, s) = \begin{cases} f(2t), & 0 \le t \le (1-s)/2, \\ f(1-s), & (1-s)/2 \le t \le (1+s)/2, \\ f(2-2t), & (1+s)/2 \le t \le 1. \end{cases}$$

Идея состоит в том, что время, в течение которого мы движемся вдоль f, пропорционально (1-s). Таким образом, первую часть времени, равную (1-s)/2, мы идем вдоль f, затем ждем в точке f(1-s) и, наконец, возвращаемся вдоль f за последнюю часть времени, равную (1-s)/2. Итак, при s=0 этот путь совпадает с $f*\overline{f}$, а при s=1 мы все время проводим в точке x, т. е. проходим путь ϵ_x .

В следующей главе мы вернемся к классам экви-

валентности путей и их произведениям.

14.6. Упражнения. (а) Приведите примеры путей f, g, h в некотором пространстве X, для которых f (1) = g (0), g (1) = h (0) и (i) $(f*g)*h \neq f*(g*h)$, (ii) (f*g)*h = f*(g*h).

 $(f*g)*h \neq f*(g*h),$ (ii) (f*g)*h = f*(g*h).(b) Дайте прямое доказательство того, что $\mathbf{e}_{f(0)}*f \sim f*\mathbf{e}_{f(1)}.$ (c) Пусть f—путь в X, и пусть $h:I \longrightarrow I$ —непрерывное

(c) Пусть f—путь в X, и пусть $h: I \to I$ —непрерывное отображение, для которого h(0) = 0, h(1) = 1. Докажите, что $f \sim fh$.

(d) Используйте (c) для прямого доказательства гого, что

 $f \sim \epsilon_x * f$, где f—путь с началом в x. (e) Пусть f, $g: I \longrightarrow X$ —пути в X из x в y. Докажите, что $f \sim g$ тогда и только тогда, когда $f * g \sim \epsilon_x$.

(f) Пусть $h: I \to I$ — непрерывная функция, для которой

h(0) = 1 и h(1) = 0. Докажите, что если f - путь, то $\overline{f} \sim fh$.

(g) Пусть $0=t_0 \leqslant t_1 \leqslant t_2=1$ и $f\colon I \longrightarrow X$ —некоторый путь. Определим пути f_1, f_2 равенствами

$$f_1(t) = f((1-t)t_0 + tt_1), \quad f_2(t) = f((1-t)t_1 + tt_2).$$

Докажите, что $f_1 * f_2 \sim f$. (Указание: примените (c).)

(h) Пусть $0 = t_0 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_q = 1$ н $f: I \to X$ — некоторый путь. Определим пути f_1, f_2, \ldots, f_q равенствами $f_i(t) = f((1-t)t_{i-1}+tt_i)$. Докажите, что $[f] = [f_1][f_2] \ldots [f_q]$.

(i) Пусть X—пространство, представленное в виде $X=U \cup V$, где U и V—открытые подмножества. Покажите, что если f—путь в X, то [f] можно представить в виде $[f]=[f_1][f_2]\dots [f_q]$, где каждое f_f —либо путь в U, либо путь в V. (Указание. Рассмотрите открытое покрытие $\{f^{-1}(U), f^{-1}(V)\}$ отрезка I, запишите

 $f^{-1}\left(U\right)$ н $f^{-1}\left(V\right)$ в виде объединения непересекающихся открытых интервалов и воспользуйтесь компактностью I, или можно приме-

нить упр. 7.13 (g). Наконец, примените (h).)

(i) (i) Докажите, что если $h: (0, 1) \to (0, 1)$ —гомеоморфизм, то существует гомеоморфизм $f: [0, 1] \to [0, 1]$, при котором $f \mid (0, 1) = h$. Докажите единственность такого гомеоморфизма. (Указание: рассмотрите интервал (0, a], замкнутый в \mathring{l} , и покажите, что h ((0, a]) имеет вид (0, b] или [c, 1) для некоторого b или c.) (ii) Докажите, что если $h: l \to l$ —гомеоморфизм, то $h(\partial l) = \partial l$. (Указание: воспользуйтесь связностью.) (iii) Пусть $f, g: l \to X$ —пути в X, такие, что $f: l \to f(l)$ и $g: l \to g(l)$ —гомеоморфизмы. Докажите, что если f(l) = g(l), то либо $f \sim g$, либо $f \sim g$. (Указание: используйте (ii).) (iv) Пусть $f, g: l \to X$ —замкнутые пути в X, такие, что $f: \mathring{l} \to f(l)$ и $g: \mathring{l} \to g(\mathring{l})$ —гомеоморфизмы. Докажите, что если f(l) = g(l) и $f(\partial l) = g(\partial l)$, то либо $f \sim g$, либо

ФУНДАМЕНТАЛЬНАЯ ГРУППА

В предыдущей главе мы видели, что классы эквивалентности путей (пути эквивалентны, если они гомотопны относительно $\{0, 1\}$) в пространстве X почти удовлетворяют аксиомам группы. Проблема только в том, что умножение не всегда определено, а единица «плавает». Обойти эти трудности позволяет использование замкнутых путей.

15.1. Определение. Путь называется *замкнутым*, если f(0) = f(1). Если f(0) = f(1) = x, то говорят, что f — замкнутый путь в точке x.

В некоторых книгах замкнутый путь называют петлей.

Заметим, что произведение f*g определено для любой пары замкнутых путей в некоторой точке $x \in X$. Обозначим множество классов эквивалентности замкнутых путей в точке $x \in X$ через $\pi(X, x)$. Это множество наделено умножением: [f][g] = [f*g] при [f], $[g] \in \pi(X, x)$, которое определено корректно по лемме 14.2. Следующий результат устанавливает, что $\pi(X, x)$ группа; она называется ϕ ундаментальной группой пространства X в точке x.

15.2. Теорема. $\pi(X, x)$ является группой.

Это следует из гл. 14. Произведение уже было определено. Единичным элементом является $[\varepsilon_x]$ (см. лемму 14.4.), обратные элементы задаются равенством $[f]^{-1} = [\overline{f}]$ (см. лемму 14.5), а ассоциативность следует из леммы 14.3.

Ввиду ассоциативности умножения классов эквивалентности путей мы часто будем вместо [(f*g)*h] писать [f*g*h]. Заметим, однако, что писать f*g*h вместо (f*g)*hнельзя.

Прежде чем двигаться дальше, предлагаем читателю следующие упражнения.

15.3. Упражнения. (a) Почему нельзя описать $\pi(X, x)$ без привлечения точки х?

(b) Покажите, что если X — конечное топологическое простран-

ство с дискретной топологией, то $\pi(X, x) = 0$.

(c) Вычислиге $\pi(Q, 0)$, где Q — множество рациональных чисел с топологией, индуцированной обычной топологией $\mathbb R$.

(d) Пусть X — пространство, для которого $\pi(X, x) = 0$. Покажите, что если f, g — два пути в X, причем f(0) = g(0) = x и f(1) = g(1), то $f \sim g$. (Указание: воспользуйтесь упр. 14.6 (e).)

Если выбрать две различные точки $x, y \in X$, то заранее не видно причин, по которым $\pi(X, x)$ и $\pi(X, y)$ должны быть связаны друг с другом. Но если найдется путь из x в y, то такая связь имеется.

15.4. Теорема. Пусть x, $y \in X$. Если в X найдется путь из x в y, то группы $\pi(X, x)$ и $\pi(X, y)$ изоморфны.

Доказательство. Пусть f—путь из x в y. Если g замкнутый путь в точке x, то $(\overline{f}*g)*f$ — замкнутый путь в точке y. Поэтому можно определить отображение u_t : $\pi(X, x) \to \pi(X, y)$ равенством $u_t[g] = [\bar{f} * g * f]$. Это отображение — гомоморфизм групп, потому что

$$\begin{aligned} u_f([g][h]) &= u_f[g*h] = [\overline{f}*g*h*f] = \\ &= [\overline{f}*g*f*\overline{f}*h*f] = [\overline{f}*g*f][\overline{f}*h*f] = u_f[g]u_f[h]. \end{aligned}$$

Используя путь \overline{f} из y в x, можно определить $u_{\overline{i}}$: $\pi(X, y) \rightarrow$ $\rightarrow \pi (X, x)$ равенством $u_{\tilde{f}}[h] = [f*h*\bar{f}]$. Как показывает простая проверка, тогда $u_{\bar{i}}u_{f}[g] = [g]$ и $u_{f}u_{\bar{i}}[h] = [h]$, и, биективно и потому является изоморфизмом.

15.5. Следствие. Если Х — линейно связное пространство, для любых $x, y \in X$ группы $\pi(X, x)$ и $\pi(X, y)$ изоморфны.

Этот результат не будет верным, если опустить условие линейной связности X, и если X только связно, он, вообще говоря, тоже не имеет места. После того как мы вычислим несколько фундаментальных групп (в последующих главах), читатель сумеет построить примеры связных пространств, для которых $\pi(X,x)$ и $\pi(X,y)$ не изоморфны для некоторых пар точек $x,y\in X$.

Ввиду следствия 15.5 возникает искушение опустить x в $\pi(X, x)$, если X линейно связно. Это опасно, так как канонического изоморфизма между $\pi(X, x)$ и $\pi(X, y)$ не существует, поскольку различные пути из x в y могут определять различные изоморфизмы.

15.6. Упражнения. (а) Докажите, что два пути f, g из x в y тогда и только тогда определяют один и тот же изоморфизм между $\pi(X, x)$ и $\pi(X, y)$ (т. е. $u_f = u_g$), когда $[g*\overline{f}]$ принадлежит центру $\pi(X, x)$. Центр Z(G) группы G определяется как

$$Z(G) = \{a \in G: ab = ba$$
 для всех $b \in G\}$.

(b) Пусть u_f : $\pi(X, x) \longrightarrow \pi(X, y)$ — изоморфизм, определенный некоторым путем f из x в y. Докажите, что u_f тогда и только тогда не зависит от f, когда $\pi(X, x)$ — абелева группа.

В оставшейся части главы мы будем изучать, как ведет себя фундаментальная группа при непрерывном отображении топологических пространств. Пусть $\varphi\colon X \to Y$ —непрерывное отображение; следующие три факта очевидны.

(i) Если f, g—пути в X, то φf , φg —пути в Y.

(ii) Если $f \sim g$, то $\varphi f \sim \varphi g$.

(iii) Если f—замкнутый путь в X в точке $x \in X$,

то ϕf — замкнутый путь в Y в точке $\phi(x)$.

Итак, если $[f] \in \pi(X, x)$, то $[\phi f]$ —корректно определенный элемент группы $\pi(Y, \phi(x))$. Поэтому определим ϕ_* : $\pi(X, x) \to \pi(Y, \phi(x))$ равенством $\phi_*[f] = [\phi f]$.

15.7. Лемма. ф. — гомоморфизм групп.

В самом деле, $\varphi_*([f][g]) = \varphi_*[f*g] = [\varphi(f*g)] = [\varphi(f*g)] = [\varphi(f*g)] = [\varphi(f)[\varphi(g)] = \varphi_*[f][\varphi(g)] = [\varphi(f)[\varphi(g)] = [\varphi(f)[\varphi(g)]] = [\varphi(f)[\varphi(g)]] = [\varphi(f)[\varphi(g)]] = [\varphi(f)[\varphi(g)] = [\varphi(f)[\varphi(g)]] = [\varphi(f)$

15.8. Определение. Гомоморфизм ϕ_* : $\pi(X, x) \to \pi(Y, \phi(x))$, определенный равенством $\phi_*[f] = [\phi f]$,

где $\varphi: X \longrightarrow Y$ — непрерывное отображение, называется гомоморфизмом, *индуцированным* отображением φ .

Доказательство следующих двух результатов просто и предоставляется читателю.

15.9. Теорема. (i) Пусть $\varphi: X \to Y$ $u \psi: Y \to Z - He-прерывные отображения; тогда <math>(\psi\varphi)_* = \psi_*\varphi_*$.

(ii) Если 1: $X \to X$ —тождественное отображение, то 1_* —тождественный гомоморфизм группы $\pi(X, x)$.

15.10. Следствие. Если φ : $X \to Y$ — гомеоморфизм, то φ_* : $\pi(X, x) \to \pi(Y, \varphi(x))$ — изоморфизм.

Итак, фундаментальная группа дает средство перехода от топологии к алгебре. Для этого процесса характерны следующие черты.

(i) Каждому топологическому пространству (с отмеченной точкой) сопоставляется некоторая группа

(в данном случае фундаментальная группа).

(ii) Каждому непрерывному отображению топологических пространств сопоставляется некоторый (в данном случае индуцированный) гомоморфизм групп.

(iii) Композиции непрерывных отображений сопоставляется композиция индуцированных гомоморфизмов.

(iv) Тождественному отображению отвечает тождественный гомоморфизм.

(v) Гомеоморфизму отвечает изоморфизм.

Описанный процесс перехода от топологии к алгебре дает хороший пример, показывающий, что такое алгебраическая топология. Мы заменяем топологию алгеброй и используем наше знание алгебры, чтобы узнать коечто о топологии. Конечно, если фундаментальные группы двух пространств изоморфны, это не означает, что пространства гомеоморфны. Но если фундаментальные группы не изоморфны, то пространства заведомо не гомеоморфны.

Замечание. Отмеченные выше євойства (i)—(v) дают пример функтора. Итак, фундаментальная группа—это функтор из топологии (совокупности топологических пространств с отмеченными точками и непрерывных отображений, переводящих отмеченную точку в отме-

ченную) в алгебру (совокупность групп и их гомоморфизмов).

15.11. Упражнения. (а) Приведите пример непрерывного инъективного отображения $\phi\colon X \longrightarrow Y$, для которого ϕ_* не инъективно (предполагая известным 1), что $\pi(S^1, x) \cong \mathbb{Z}$, $\pi(D^2, x) = 0$).

(b) Приведите пример непрерывного сюръективного отображе-

ния $\phi\colon X \longrightarrow Y$, для которого ϕ_* не сюръективно. (c) Докажите, что если $\phi\colon X \longrightarrow Y$ непрерывно и f — путь из x в y, то $\phi_*u_f = u_{\phi f}\phi_*\colon \pi(X, x) \longrightarrow \pi(Y, \phi(y))$, где u_f и $u_{\phi f}$ изоморфизмы фундаментальных групп, определяемые путями f и фf.

(d) Докажите, что два непрерывных отображения φ , ψ : $X \longrightarrow Y$, гомотопные относительно некоторой точки $x_0 \in X$ и обладающие свойством $\phi(x_0) = \psi(x_0)$, индуцируют один и тот же гомоморфизм группы $\pi(X, x_0)$ в $\pi(Y, \varphi(x_0))$.

(e) Пусть A— ретракт X и r: $X \longrightarrow A$ — ретракция. Докажите. что i_* : $\pi(A, a) \longrightarrow \pi(X, a)$ — мономорфизм (где $i: A \longrightarrow X$ — включение) и что r_* : $\pi(X, a) \longrightarrow \pi(A, a)$ — эпиморфизм для любой

точки $a \in A$.

(f) В обозначениях (e) предположим, что $i_{\alpha}\pi(A, a)$ — нормальная подгруппа $\pi(X, a)$. Докажите, что $\pi(X, a)$ — прямое произведение подгрупп $im i_*$ и $ker r_*$.

(g) Докажите, что если A — сильный деформационный ретракт X. то отображение включения $i: A \longrightarrow X$ индуцирует изоморфизм

 i_* : $\pi(A, a) \longrightarrow \pi(X, a)$ для любой точки $a \in A$.

(h) Покажите, что если φ : $X \longrightarrow X$ — непрерывное отображение, гомотопное тождественному, то ϕ_* : $\pi(X,x_0) \to \pi(X,\phi(x_0))$ — изоморфизм для любой точки $x_0 \in X$ (в случае затруднения загляните в доказательство теоремы 15.12).

Следующий результат обобщает упр. 15.11 (d).

15.12. Теорема. Пусть φ , ψ : $X \rightarrow Y$ —непрерывные отображения топологических пространств и $F\colon \phi \simeq \psi$ гомотопия. Если $f: I \to Y$ —путь из $\varphi(x_0)$ в $\psi(x_0)$, определенный равенством $f(t) = F(x_0, t)$, то гомоморфизмы ϕ_* : $\pi(X, x_0) \rightarrow \pi(Y, \phi(x_0))$ и ψ_* : $\pi(X, x_0) \rightarrow$ $\to \pi \, (Y, \ \psi(x_0))$ связаны соотношением $\psi_* = u_f \phi_*$, где $u_f - u_3$ оморфизм групп $\pi \, (Y, \ \phi(x_0))$ и $\pi \, (Y, \ \psi(x_0))$, определенный путем f.

Доказательство. Нужно показать, что если $[g] \in$ $\in \pi (X, x_0)$, то $[\psi g] = [\bar{f} * \psi g * f]$. Другими словами, нужно показать, что пути $(\overline{f}*\varphi g)*f$ и ψg эквивалентны. Заме-

¹⁾ См. следующую главу. — Πpum . ped.

тим, что

$$((\overline{f*}\phi g)*f)(t) = \begin{cases} f(1-4t), & 0 \le t \le 1/4, \\ \phi g(4t-1), & 1/4 \le t \le 1/2, \\ f(2t-1), & 1/2 \le t \le 1. \end{cases}$$

Это можно переписать в виде

$$((\overline{f}*\varphi g)*f)(t) = \begin{cases} F(x_0, 1-4t), & 0 \leq t \leq 1/4, \\ F(g(4t-1), 0), & 1/4 \leq t \leq 1/2, \\ F(x_0, 2t-1), & 1/2 \leq t \leq 1. \end{cases}$$

Между тем $\psi g(t) = F(g(t), 1)$. Чтобы усмотреть гомотопию между $(\overline{f}*\varphi g)*f$ и ψg , заметим, что путь ψg эквивалентен пути $(\varepsilon_x * \psi g) * \varepsilon_x$, где $x = \psi(x_0)$. Путь $(\varepsilon_x * \psi g) * \varepsilon_x$ имеет вид

$$((\varepsilon_x * \psi g) * \varepsilon_x)(t) = \begin{cases} F(x_0, 1), & 0 \le t \le 1/4, \\ F(g(4t-1), 1), & 1/4 \le t \le 1/2, \\ F(x_0, 1), & 1/2 \le t \le 1. \end{cases}$$

Поэтому определим отображение $H\colon I\times I \longrightarrow Y$ формулами

$$H(t, s) = \begin{cases} F(x_0, 1-4t(1-s)), & 0 \le t \le 1/4, \\ F(g(4t-1), s), & 1/4 \le t \le 1/2, \\ F(x_0, 1+2(t-1)(1-s)), & 1/2 \le t \le 1. \end{cases}$$

Отображение H, очевидно, непрерывно и

$$\begin{array}{ll} H\left(t,\ 0\right) = ((\overline{f}*\varphi g)*f)\left(t\right), & H\left(t,\ 1\right) = ((\varepsilon_{x}*\psi g)*\varepsilon_{x})\left(t\right), \\ H\left(0,\ s\right) = F\left(x_{0},\ 1\right) = \psi\left(x_{0}\right), & H\left(1,\ s\right) = F\left(x_{0},\ 1\right) = \psi\left(x_{0}\right). \end{array}$$

Следовательно, $(\overline{f}*\varphi g)*f \sim (\varepsilon_x * \psi g)*\varepsilon_x \sim \psi g$, откуда

 $u_f \phi_* = \psi_*$ \square Эту теорему можно сформулировать по-другому,

эту теорему можно сформулировать по-другому, сказав, что имеет место коммутативная диаграмма

Следующие два результата относятся к гомотопически эквивалентным пространствам.

15.13. Теорема. *Если* $\varphi: X \to Y$ — гомотопическая эквивалентность, то ϕ_* : $\pi(X, x) \to \pi(Y, \phi(x))$ —изоморфизм для любой точки $x \in X$.

Доказательство. Так как ф-гомотопическая эквивалентность, то существует непрерывное отображение $\psi: Y \longrightarrow X$, для которого $\varphi \psi \simeq 1: Y \longrightarrow Y$ и $\psi \varphi \simeq 1: X \longrightarrow X$. По теореме 15.12 имеем $u_f(\psi \varphi)_* = 1_*$, и так как u_f и 1_* — изоморфизмы, то $(\psi \varphi)_* = \psi_* \varphi_*$ — тоже изоморфизм. Это означает, что ψ_* — эпиморфизм, а ϕ_* — мономорфизм. Аналогично, $\phi_*\psi_*$ — изоморфизм, откуда ϕ_* эпиморфизм, а ψ_* — мономорфизм. \Box

15.14. Следствие. Стягиваемое пространство имеет тривиальную фундаментальную группу.

15.15. Определение. Топологическое пространство Xназывается односвязным, если оно линейно связно и $\pi(X, x) = \{1\}$ для некоторой (и, следовательно, любой) точки $x \in X$.

Таким образом, стягиваемое пространство односвязно. Обратное, как читатель в дальнейшем убедится, неверно.

15.16. Упражнения. (a) Пусть A — слабый ретракт X (см. упр. 13.10 (e)). Что можно сказать о гомоморфизмах i_s : $\pi(A, a) \rightarrow$ $\rightarrow \pi(X', a), r_*: \pi(X, a) \rightarrow \pi(A, a)$ при $a \in A$?

(b) Говорят, что пространство X обладает свойством C, если для любого замкнутого пути $f \colon I \longrightarrow X$ существует такая гомотопня $F: I \times I \longrightarrow X$, что F(t, 0) = f(t), F(t, 1) — постоянное отображение, F(0, s) = F(1, s) для всех $s \in I$. Заметим, что F не обязательно является гомотопией относительно $\{0, 1\}$. Локажите, что если X обладает свойством C, то X односвязно.

(c) Пусть $X = U \bigcup V$, где U, V открыты и односвязны, и $U \bigcap V$ линейно связно. Докажите, что X односвязно. Следовательно,

сфера S^n при $n \ge 2$ односвязна. (Указание: воспользуйтесь

упр. 14.6 (і) и (е).)

Последний результат этой главы относится к фундаментальной группе топологического произведения пространств. Он мог быть получен в этой главе и раньше.

15.17. Теорема. Пусть X, $Y - \partial в$ а линейно связных топологических пространства. Фундаментальная группа произведения ХХУ изоморфна произведению фундаментальных групп пространств Х и Ү.

Доказательство. Пусть $p: X \times Y \to X$, $q: X \times Y \to X$ $\rightarrow Y$ —проекции. Определим φ : $\pi(X \times Y, (x_0, y_0)) \rightarrow$ $\rightarrow \pi(X, x_0) \times \pi(Y, y_0)$ равенством $\varphi[f] = (p_*[f], q_*[f]) =$

 $=(\lceil pf \rceil, \lceil qf \rceil).$

Проверим сначала, что ф корректно определено. Если $f \sim g$, то имеется непрерывное отображение F: $I \times I \rightarrow X \times Y$, такое, что F(t, 0) = f(t), F(t, 1) = g(t)и $F(0, s) = F(1, s) = (x_0, y_0)$. Непрерывные отображения $pF: I \times I \to X$ и $qF: I \times I \to Y$ определяют эквивалентности $pf \sim pg$ и $qf \sim qg$, так что $\phi[f] = \phi[g]$ и ф корректно определено.

Чтобы установить сюръективность ф, предположим, что $([f_1], [f_2]) \in \pi(X, x_0) \times \pi(Y, y_0)$. Рассмотрим отображение $f: I \longrightarrow X \times Y$, определенное равенством $f(t) = (f_1(t), f_2(t))$. Очевидно, что $\phi[f] = ([f_1], [f_2])$.

Чтобы показать инъективность ф, предположим, что $\phi[f] = \phi[g]$. Это означает, что $pf \sim pq$ и $qf \sim qg$. Если F_1 : $I \times I \longrightarrow X$ и F_2 : $I \times I \longrightarrow Y$ задают эти эквивалентности, то $F: I \times I \longrightarrow X \times Y$, определенное равенством $F(t, s) = (F_1(t, s), F_2(t, s))$, дает эквивалентность $f \sim g$.

Наконец, гомоморфность ф следует из того очевидного факта, что если f, g: $I \rightarrow X \times Y$ — пути с f(1) = g(0),

TO p(f*g) = pf*pg и q(f*g) = qf*qg.

Другие способы доказательства теоремы 15.17 содержатся в упражнениях.

15.18. Упражнения. (а) Докажите, что произведение двух одно-

связных пространств односвязно.

(b) Пусть $f\colon I \to X$, $g\colon I \to Y$ —замкнутые пути в точках $x_0 \in X$ и $y_0 \in Y$ соответственно. Пусть $i\colon X \to X \times Y$ и $j\colon Y \to X \times Y$ $\xrightarrow{X} X \times Y$ — включения, определенные равенствами $i(x) = (x, y_0)$ и $j(y) = (x_0, y)$. Покажите, что пути (if) * (jg) и (jg) * (if) в $X \times Y$ эквивалентны.

(c) В обозначениях (b) покажите, что огображение произведения $\pi(X, x_0) \times \pi(Y, y_0)$ в $\pi(X \times Y, (x_0, y_0))$ вида ([f], [g]) \mapsto

 \mapsto [(if) * (jg)] является изоморфизмом групп.

(d) Топологической группой G называется группа, которая является также топологическим пространством, причем отображения $\mu\colon G\times G \longrightarrow G$ и $v\colon G \longrightarrow G$, определенные равенствами $\mu\:(g_1,\;g_2)=g_1g_2$ и $v\:(g)=g^{-1}$, непрерывны. Пусть $f,\;h$ —замкнутые пути в G в точке $e\in G$. Определим $f\cdot h$ равенством $(f\cdot h)\:(t)=\mu\:(f\:(t),\;h\:(t)),\;t\in I$. Докажите, что $f*h\sim f\cdot h\sim h*f$, и выведите отсюда, что фундаментальная группа $\pi\:(G,\;e)$ абелева. Покажите далее, что гомоморфизм $v_*\colon \pi\:(G,\;e)\longrightarrow \pi\:(G,\;e)$ удовлетворяет условию $v_*\:[f]=[f]^{-1}.$

(е) Определим на окружности $S^1 \subset \mathbb{C}$ умножение $\mu: S^1 \times S^1 \longrightarrow S^1$ равенством $\mu: (z_1, z_2) = z_1 z_2$ и отображение $\nu: S^1 \longrightarrow S^1$ равенством $\nu: (z) = z^{-1}$. Докажите, что $S^1 \longrightarrow$ топологическая группа. Выведите отсюда, что $\pi: (S^1, 1)$ —абелева группа.

(f) Обобщим результат упр. (d). Пусть x_0 —точка пространства X. Предположим, что существует непрерывное отображение μ : $X \times X \to X$, такое, что μ (x, x_0) = μ (x_0 , x) = x для всех $x \in X$. Докажите, что если f, g: $I \to X$ — замкнутые пути в точке $x_0 \in X$ и i, j: $X \to X \times X$ — включения i (x) = (x, x_0), j (x) = (x_0 , x), то μ ((if) * (ig)) = f * g. Выведите из (b), что π (ig) —абелева группа. (g) Обобщим результат упр. (f). Пространство ig называется ig Н-пространство ig (ig) ч ig = 1 (ig) и ig = 1 (ig), где ig и ig — ig = 8 включения, что ig = 1 (ig) и ig = 1 (ig), где ig и ig — ig = 8 включения, что ig = 1 (ig) заметим, что ig = 1 (ig) — ig = 1 (ig). Докажите, что фундаментальная группа ig (ig) — ig = ig — Покажите, что фундаментальная группа ig (ig) — ig = ig — ig —

Фундаментальную группу $\pi(X, x_0)$ часто обозначают $\pi_1(X, x_0)$, где индекс 1 напоминает о том, что при определении фундаментальной группы использовались пути (отображения отрезка $I \subset \mathbb{R}^1$). В общем случае можно определить $\pi_n(X, x_0)$, используя отображения куба $I^n \subset \mathbb{R}^n$ в X. Эта группа называется n-й гомотопической группой пространства X в точке x_0 . Мы наметим кратко соответствующие определения; читатель, которого это не интересует, может перейти прямо к следующей главе.

Пусть ∂I^n означает, как обычно, край I^n , т. е. $\partial I^n = \{(t_1, t_2, \ldots, t_n) \in I^n: t_i = 0 \text{ или } 1 \text{ для некоторого } i\}.$

Множество $\pi_n(X, x_0)$ состоит из гомотопических классов относительно ∂I^n непрерывных отображений $f: I^n \to X$, для которых $f(\partial I^n) = x_0$. Произведение определяется как [f][g] = [f * g], где

$$(f * g) (t) = \begin{cases} f(2t_1, t_2, \dots, t_n), & 0 \leq t_1 \leq 1/2, \\ g(2t_1 - 1, t_2, \dots, t_n), & 1/2 \leq t_1 \leq 1. \end{cases}$$

Можно проверить, что произведение определено корректно и задает на $\pi_n(X, x_0)$ структуру группы. Конечно, при n=1 мы получаем фундаментальную группу. Фундаментальная группа, как мы увидим далее, не обязательно абелева, но $\pi_n(X, x_0)$ при $n \geqslant 2$ всегда абелева.

15.19. Упражнения. (а) Докажите, что $\pi_n(X, x_0)$ — группа.

(b) Докажите, что если в X существует путь из x_0 в x_1 , то $\pi_n(X, x_0)$ и $\pi_n(X, x_1)$ изоморфны.

(c) Для непрерывного отображения $\varphi: X \longrightarrow Y$ определите φ_* : $\pi_n(X, x_0) \longrightarrow \pi_n(Y, \varphi(x_0))$ и докажите, что φ_* — гомоморфизм. Докажите также теорему 15.9 для n-х гомотопических групп. Выведите, что гомеоморфные пространства имеют изоморфные гомотопические группы.

Рис.15.1

(d) Докажите, что гомотопически эквивалентные пространства имеют изоморфные гомотопические группы.

(e) Докажите, что при $n \ge 2$ группа $\pi_n(X, x_0)$ абелева. (Указание: гомотопия между f * g и g * f изображена на рис. 15.1.)

Примечание. Имеет место результат, в некотором смысле обратный к (d). Это - теорема Уайтхеда, которая утверждает, что если Х и У — топологические пространства определенного гипа (так называемые линейно связные клеточные комплексы) и $\phi\colon X\longrightarrow Y$ — непрерывное отображение, индуцирующее изоморфизмы ϕ_* : $\pi_n(X, x_0) \to \pi_n(Y, \phi(x_0))$ при всех $n \ge 1$, то ϕ —гомотопическая эквивалентность.

ФУНДАМЕНТАЛЬНАЯ ГРУППА ОКРУЖНОСТИ

ни одного пространства. В этой главе мы вычислим фундаментальную группу окружности S1 и в результате получим группу Z целых чисел. Интуитивно этот результат можно объяснить следующим образом. Всякий замкнутый путь f в S^1 в точке $1 \in S^1$ наворачивается некоторое число раз на окружность; это число называется числом оборотов или степенью отображения f. (Начнем с f(0) = 1 и рассмотрим f(t) по мере возрастания t; каждый обход окружности против часовой стрелки считаем за +1, а каждый обход по часовой стрелке за -1. Сумма полученных чисел есть число оборотов или степень f.) Итак, каждому замкнутому пути f в точке 1 мы сопоставили целое число. Оказывается, два замкнутых пути тогда и только тогда эквивалентны (т. е. гомотопны относительно {0, 1}), когда их степени совпадают. Наконец, для любого целого п существует замкнутый путь степени п. Чтобы получить более строгое определение степени

За исключением нескольких тривиальных случаев, мы до сих пор не вычислили фундаментальной группы

замкнутого пути, рассмотрим следующее отображение вещественной прямой $\mathbb R$ на S^1 : e: $\mathbb R \to S^1$, $t \mapsto \exp 2\pi i t$. Геометрически мы представляем прямую в виде спирали, а отображение e—как проекцию (рис. 16.1). Заметим, что $e^{-1}(1) = \mathbb Z \subset \mathbb R$. Идея состоит в том, что если дано отображение f: $I \to S^1$, для которого f(0) = f(1) = 1, то существует единственное отображение \tilde{f} : $I \to \mathbb R$, для которого $\tilde{f}(0) = 0$ и $e\tilde{f} = f$ (отображение \tilde{f} называется поднятием f). Так как f(1) = 1, то $\tilde{f}(1) \in e^{-1}(1) = \mathbb Z$;

это целое число и называется степенью f. Далее мы

покажем, что если f_0 и f_1 —эквивалентные пути в S^1 , то $\tilde{f}_0(1) = \tilde{f}_1(1)$. Это приводит к отображению $\pi(S^1, 1) \to Z$, которое, как мы покажем, является изоморфизмом групп.

Этот метод вычисления π (S^1 , 1) обобщается на некоторые другие пространства; см. гл. 17—19. Следующая лемма является исходным пунктом для основного определения, приведенного в гл. 17.

Рис.16.1

16.1. Лемма. Пусть U—какое-нибудь открытое подмножество $S^1 \setminus \{1\}$ и $V = I \cap e^{-1}(U) \subset \mathbb{R}$. Тогда $e^{-1}(U)$ есть дизъюнктное объединение открытых множеств $V + n = \{v + n, v \in V\}, n \in \mathbb{Z}$, каждое из которых е гомеоморфно отображает на U.

$$U = \{ \exp 2\pi i t : 0 \le a < t < b \le 1 \}$$

для некоторых a, b. Тотда V=(a,b) и V+n=(a+n,b+n). Очевидно, что $e^{-1}(U)$ —дизъюнктное объединение открытых множеств V+n ($n\in\mathbb{Z}$). Пусть e_n обозначает ограничение e на (a+n,b+n). Очевидно, что e_n непрерывно и биективно. Для проверки того, что e_n^{-1} непрерывно, рассмотрим точку $x\in(a+n,b+n)$ и заключим ее в отрезок $W=[x-\varepsilon,x+\varepsilon]$, где $\varepsilon>0$ настолько мало, что $W\subset(a+n,b+n)$. Так как отрезок W

компактен, а окружность S^1 хаусдорфова, то по теореме $8.8\ e_n$ определяет гомеоморфизм $W\to e_n(W)$. Точка $e_n(x)$ не может быть концом дуги $e_n(W)$, так как в этом случае образом связного множества $e_n(W)\setminus e_n(x)$ при гомеоморфизме e_n^{-1} было бы несвязное множество $W\setminus \{x\}$. Поэтому $e_n(W)$ —окрестность точки $e_n(x)$ в S^1 и в U, и так как отображение e_n^{-1} , ограниченное на эту окрестность, является гомеоморфизмом, то оно непрерывно в точке $e_n(x)$, а так как точка $x\in (a+n,b+n)$ произвольна, то e_n^{-1} непрерывно на всем множестве $e_n(a+n,b+n)=U$, и потому e_n —гомеоморфизм. \square

16.2. Упражнение. Покажите, что лемма справедлива для $S^1 \diagdown \{x\}$, где x — произвольная точка S^1 .

16.3. Следствие. Если $f: X \to S^1$ не сюръективно, то f гомотопно нулю.

Доказательство. Если x не принадлежит образу f, то $S^1 \setminus \{x\}$ гомеоморфно стягиваемому пространству (0, 1) ($x = \exp 2\pi i s$ при некотором s и $S^1 = \{\exp 2\pi i t : s \leqslant t < 1 + s\}$). \square

Перейдем теперь к первому основному результату этой главы: так называемой теореме о накрывающем пути (для $e: \mathbb{R} \longrightarrow S^1$).

16.4. Теорема. Всякое непрерывное отображение $f\colon I \to S^1$ имеет поднятие $\tilde{f}\colon I \to \mathbb{R}$. Более того, если $x_0 \in \mathbb{R}$ — точка, в которой $e(x_0) = f(0)$, то существует единственное поднятие \tilde{f} , для которого $\tilde{f}(0) = x_0$.

Доказательство. Для любого $x \in S^1$ пусть U_x —такая открытая окрестность x, что $e^{-1}(U_x)$ —дизыонктное объединение открытых подмножеств \mathbb{R} , каждое из которых гомеоморфно отображается на U_x при помощи e. Множество $\{f^{-1}(U_x): x \in S^1\}$ можно записать в виде открытого покрытия $\{(x_j, y_j) \cap I: j \in J\}$ отрезка I. Так как отрезок I компактен, то найдется конечное подпокрытие вида $[0, t_1 + \varepsilon_1), (t_2 - \varepsilon_2, t_2 + \varepsilon_2), \ldots, (t_n - \varepsilon_n, 1],$ где $t_i + \varepsilon_i > t_{i+1} - \varepsilon_{i+1}$ при $i = 1, 2, \ldots, n-1$. Выберем теперь $a_i \in (t_{i+1} - \varepsilon_{i+1}, t_i + \varepsilon_i)$ при $i = 1, 2, \ldots, n-1$ так, чтобы $0 = a_0 < a_1 < a_2 < \ldots < a_n = 1$. Очевидно,

Рис.16.2

что $f([a_l, a_{l+1}])$ содержится в некотором открытом подмножестве S_l окружности S^1 , таком, что $e^{-1}(S_l)$ является дизъюнктным объединением открытых подмножеств \mathbb{R} , каждое из которых гомеоморфно отображается на S_l при помощи e.

Определим поднятия \tilde{f}_k над $[0, a_k]$ по индукции при $k=0, 1, \ldots, n$ так, чтобы $\tilde{f}_k(0)=x_0$. При k=0 это тривиально: $\tilde{f}_0(0)=x_0$, и другого выбора нет. Предположим, что $\tilde{f}_k\colon [0, a_k] \to \mathbb{R}$ определено и единственно. Напомним, что $f([a_k, a_{k+1}]) \subset S_k$ и $e^{-1}(S_k)$ —дизъюнктное объединение множеств $\{W_j\colon j\in J\}$, для которых $e\mid W_j\colon W_j\to S_k$ —гомеоморфизм при любом $j\in J$. Далее, $\tilde{f}_k(a_k)\in W$ для некоторого однозначно определенного множества W из $\{W_j\colon j\in J\}$ (рис. 16.2). Любое продолжение \tilde{f}_{k+1} должно отображать $[a_k, a_{k+1}]$ в W, так как отрезок $[a_k, a_{k+1}]$ линейно связен. Но ограничение $e\mid W\colon W\to S_k$ является гомеоморфизмом, поэтому существует единственное отображение $\rho\colon [a_k, a_{k+1}]\to W$.

такое, что $e\rho = f \mid [a_k, a_{k+1}]$ (на самом деле $\rho = (e \mid W)^{-1}f$). Определим теперь \tilde{f}_{k+1} как

$$\tilde{f}_{k+1}(s) = \begin{cases} \tilde{f}_k(s), & 0 \leq s \leq a_k, \\ \rho(s), & a_k \leq s \leq a_{k+1}. \end{cases}$$

Это отображение непрерывно по лемме о склейке, так как $\tilde{f}_k(a_k) = \rho(a_k)$, и единственно по построению. По индукции получаем поднятие \tilde{f} .

Эта теорема позволяет определить степень замкнутого пути в S^1 . Пусть f— замкнутый путь в S^1 в точке 1 и $\tilde{f}\colon I\to\mathbb{R}$ —единственное его поднятие, для которого $\tilde{f}(0)=0$. Так как $e^{-1}(f(1))=e^{-1}(1)=\mathbb{Z}$, то $\tilde{f}(1)$ —целое число; назовем его степенью f. Чтобы показать, что эквивалентные пути имеют одинаковые степени, покажем сначала, что эквивалентные пути имеют эквивалентные поднятия. Для этого заменим в предыдущей теореме I на I^2 и получим следующую лемму.

16.5. Лемма. Всякое непрерывное отображение $F: I^2 \to S^1$ имеет поднятие $\tilde{F}: I^2 \to \mathbb{R}$. Более того, если $x_0 \in \mathbb{R}$ — точка, в которой $e(x_0) = F(0, 0)$, то существует единственное поднятие \tilde{F} , для которого $\tilde{F}(0, 0) = x_0$.

Доказательство. Рассуждаем точно так же, как при доказательстве теоремы 16.4. Так как квадрат I^2 компактен, можно выбрать

$$0 = a_0 < a_1 < \ldots < a_n = 1$$
, $0 = b_0 < b_1 < \ldots < b_m = 1$ так, чтобы $F(R_{ij}) \subset S_{ij}$, где R_{ij} —прямоугольник

$$R_{i,i} = \{(t, s) \in I^2: a_i \le t \le a_{i+1}, b_i \le s \le b_{i+1}\},$$

а S_{ij} —открытое подмножество S^1 , для которого $e^{-1}(S_{ij})$ —дизъюнктное объединение открытых подмножеств \mathbb{R} , каждое из которых гомеоморфно отображается на S_{ij} при помощи e. Поднятие \tilde{F} определяется индуктивно над прямоугольниками R_{00} , R_{01} , ..., R_{0m} , R_{10} , R_{11} , ... при помощи процесса, аналогичного использованному в доказательстве теоремы 16.4. Детали мы оставляем читателю. \square

В качестве следствия получаем так называемую теорему о монодромии для е: $\mathbb{R} \to S^1$, которая утверждает, что эквивалентные пути имеют одну и ту же степень.

16.6. Следствие. Пусть f_0 и f_1 —эквивалентные пути в S^1 в точке 1. Если $\tilde{f_0}$ и $\tilde{f_1}$ —их поднятия, для кото $p_{blx} \tilde{f}_{0}(0) = \tilde{f}_{1}(0), mo \tilde{f}_{0}(1) = \tilde{f}_{1}(1).$

Доказательство. Пусть F—гомотопия относительно $\{0, 1\}$ между f_0 и f_1 . Она однозначно поднимается до

 $\tilde{F}: I^2 \to \mathbb{R} \ c \ \tilde{F}(0, 0) = \tilde{f}_0(0) = \tilde{f}_1(0).$ Так как $F(t, 0) = \tilde{f}_0(0) = \tilde{f}_1(0)$ $= f_0(t)$ u $F(t, 1) = f_1(t)$, to $\tilde{F}(t, 0) = \tilde{f}_0(t)$ u $\tilde{F}(t, 1) =$ $=\tilde{f}_1(t)$. Далее, $\tilde{f}(1, t)$ —путь из $\tilde{f}_0(1)$ в $\tilde{f}_1(1)$, поскольку $F(1, t) = f_0(1) = f_1(1)$. Ho $\tilde{F}(1, t) \in e^{-1}(f_0(1)) \cong \mathbb{Z}$; это означает, что $\tilde{F}\left(\mathbf{1},\;t\right)$ —постоянный путь, и потому $\tilde{f}_0(1) = \tilde{f}_1(1)$. Заметим, что на самом деле \tilde{F} —гомото-

пия относительно $\{0, 1\}$ между \tilde{f}_0 и \tilde{f}_1 . \square Теперь мы в состоянии вычислить фундаментальную группу окружности.

16.7. Teopema. $\pi(S^1, 1) \cong \mathbb{Z}$.

Доказательство. Определим φ : $\pi(S^1, 1) \to Z$ равенством $\phi([f]) = \deg f$, где $\deg f$ —степень f. Напомним, что $\deg f = \tilde{f}(1)$, где \tilde{f} —единственное поднятие f, для которого $\tilde{f}(0) = 0$. Отображение ϕ определено корректно согласно следствию 16.6. Покажем, что ф-изоморфизм групп.

Покажем сначала, что ϕ — гомоморфизм. Пусть $l_a(f)$ — поднятие f с началом в точке $a \in e^{-1}(f(0))$. Таким образом, $l_0(f) = \tilde{f}$ и $l_a(f)(t) = \tilde{f}(t) + a$ для некоторого пути в S^1 о началом в 1. Очевидно, что $l_a(f*g) =$

 $= l_a(f) * l_h(g)$, где $b = \tilde{f}(1) + a$. Итак, если [f], $[g] \in \pi(S^1, 1)$, to $\varphi([f][g]) = \varphi([f*g]) = f*g(1) = l_0(f*g)(1) = (l_0(f)*l_b(g))(1) =$

 $= l_b(g)(1) = b + \tilde{g}(1) = \tilde{f}(1) + \tilde{g}(1) = \varphi([f]) + \varphi([g]),$ где $b = \tilde{f}(1)$. Следовательно, ϕ — гомоморфизм.

Легко показать, что φ сюръективно. Для $n \in \mathbb{Z}$ пусть $g: I \to \mathbb{R}$ определено равенством g(t) = nt; тогда $eg: I \to S^1$ —замкнутый путь в точке 1. Так как g—поднятие eg, для которого g(0) = 0, то $\varphi([eg]) = \deg(eg) = g(1) = n$, откуда следует, что φ сюръективно.

Чтобы показать, что ϕ инъективно, предположим, что ϕ ([f]) = 0, т. е. $\deg f$ = 0. Это означает, что поднятие \tilde{f} пути f удовлетворяет условию \tilde{f} (0) = \tilde{f} (1) = 0. Так как \mathbb{R} стягиваемо, то $\tilde{f} \simeq \varepsilon_0$ (rel $\{0, 1\}$). Другими словами, найдется отображение $F\colon I^2 \to \mathbb{R}$, для которого F (0, t) = \tilde{f} (t), F (1, t) = 0 и F (t, 0) = F (t, 1) = 0. На самом деле F (s, t) = $(1-s)\tilde{f}$ (t). Но eF: $I^2 \to S^1$ удовлетворяет условиям eF (0, t) = f (t), eF (1, t) = 1, eF (t, 0) = eF (t, 1) = 1, поэтому $f \simeq \varepsilon_1$ (rel $\{0, 1\}$), т. е. $[f] = 1 \in \pi$ (S^1 , 1), что и доказывает инъективность ϕ . Следовательно, ϕ — изоморфизм.

Этим завершается доказательство основного результата настоящей главы. Отсюда немедленно получаем

16.8. Следствие. Фундаментальная группа тора есть $\mathbb{Z} \times \mathbb{Z}$.

Завершим эту главу двумя приложениями. Первое из них известно под названием основной теоремы алгебры.

16.9. Следствие. Всякий непостоянный комплексный многочлен имеет корень.

Доказательство. Без потери общности можно считать, что многочлен имеет вид

$$p(z) = a_0 + a_1 z + \ldots + a_{k-1} z^{k-1} + z^k$$

при $k\geqslant 1$. Допустим, что p не имеет нулей (или корней). Определим функцию $G\colon I\times [0,\infty)\to S^1\subset \mathbb{C}$ формулой

$$G(t, r) = \frac{p(r \exp 2\pi it)}{|p(r \exp 2\pi it)|} \frac{|p(r)|}{p(r)}$$

при $0 \leqslant t \leqslant 1$ и $r \geqslant 0$. Очевидно, G непрерывна. Опре-

делим отображение $F\colon I^2 \to S^1$ равенствами $F(t,s) = \begin{cases} G(t,s/(1-s)), & 0 \leqslant t \leqslant 1, & 0 \leqslant s < 1, \\ \exp 2\pi i k t, & 0 \leqslant t \leqslant 1, & s = 1. \end{cases}$ Оно непрерывно, так как $\lim_{s \to 1} F(t,s) = \lim_{s \to 1} G(t,s/(1-s)) = \lim_{t \to \infty} G(t,t) = (\exp 2\pi i t)^k.$ Кроме того, F—гомотопия относительно $\{0,1\}$ между $f_0(t) = F(t,0)$ и $f_1(t) = F(t,1)$. Но $f_0(t) = 1$ и $f_1(t) = 1$

 $= \exp 2\pi i kt$, так что $\deg f_0 = 0$, тогда как $\deg f_1 = k$,

что приводит к противоречию при $k \geqslant 1$. \square

Второе приложение известно под названием теоремы Брауэра о неподвижной точке на плоскости. Напомним, что в гл. 10 мы доказали теорему о неподвижной точке для отрезка I. Следующий результат—аналогичная теорема для D^2 . Результат справедлив и в высших размерностях, однако для доказательства требуются уже другие средства.

16.10. Следствие. Всякое непрерывное отображение $f: D^2 \to D^2$ имеет неподвижную точку, т. е. такую точку x, в которой f(x) = x.

Доказательство. Предположим противное, что $x \neq f(x)$ для всех $x \in D^2$. Тогда можно определить отображение $\varphi: D^2 \to S^1$, полагая $\varphi(x)$ равным точке пересечения луча, проведенного из f(x) в x, с окружностью S^1

Рис.16.3

(рис. 16.3). Непрерывность ϕ очевидна. Пусть i: $S^1 \to D^2$ —включение; тогда $\phi i = 1$ и мы имеем коммутативную диаграмму

Из нее следует коммутативность диаграммы

Но $\pi(D^2, 1) = 0$, так как диск D^2 стягиваем, и мы получаем коммутативную диаграмму

которая невозможна. 🗌

16.11. Упражнения. (а) Для $[f] \in \pi$ (S^1 , 1) пусть γ —контур $\{f(t): t \in I\}$ $\subset \mathbb{O}$. Положим ω (f) $= \frac{1}{2\pi i} \int \frac{dz}{z}$. Докажите, что (i) ω (f) — це-

лое число, (ii) w(f) не зависит от выбора $f \in [f]$, (iii) $w(f) = \deg f$. (b) Пусть $f \colon S^1 \longrightarrow S^1 \longrightarrow$ отображение, определенное формулой $f(z) = z^k$ при некотором целом k. Опишите $f_* \colon \pi(S^1, 1) \longrightarrow \pi(S^1, 1)$

в терминах изоморфизма $\pi(S^1, 1) \cong \mathbb{Z}$. (c) Пусть α , β — следующие замкнутые пути в $S^1 \times S^1$: $\alpha(t) = \exp 2\pi i t$, 1), $\beta(t) = (1, \exp 2\pi i t)$. Покажите при помощи диа-

= (exp $2\pi u$, 1), βv , грамм, что $\alpha*\beta \sim \beta*\alpha$.

(d) Вычислите $\pi(S^1 \times S^1 \times ... \times S^1$, (1, 1, ..., 1)).

(e) Используя упр. 15.16 (c), выведите, что тор не гомеоморфен сфере $S^2.$

(f) Докажите, что множество гочек $z \in D^2$, для которых $D^2 \setminus \{z\}$ односвязно, есть в точности S^1 . Выведите отсюда, что если $f \colon D^2 \longrightarrow D^2$ —гомеоморфизм, то $f \colon S^1$.

(g) Найдите фундаментальные группы следующих пространств: (i) $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$; (ii) \mathbb{C}^*/G , где G—группа гомеоморфизмов вида $\{\phi^n\colon n\in\mathbb{Z}\}$ при $\phi(z)=2z$; (iii) \mathbb{C}^*/H , где $H=\{\psi^n\colon n\in\mathbb{Z}\}$ при $\psi(z)=2z$; (iv) $\mathbb{C}^*/\{e,a\}$, где e—тождественный гомеоморфизм и a(z)=-z.

НАКРЫВАЮЩИЕ ПРОСТРАНСТВА

В этой и нескольких следующих главах мы изучим обобщения результатов и понятий гл. 16.

Пусть $p: \tilde{X} \longrightarrow X$ — непрерывное отображение. Будем

говорить, что открытое подмножество $U \subset X$ правильно накрыто отображением p, если $p^{-1}(U)$ —дизъюнктное объединение открытых подмножеств \tilde{X} , каждое из которых гомеоморфно отображается на U при помощи p. Непрерывное отображение $p\colon \tilde{X} \to X$ называется накрывающим отображением, если любая точка $x \in X$ имеет открытую окрестность, правильно накрытую отображением p. В этом случае мы говорим, что p: $\tilde{X} \to X$ —накрытие, \tilde{X} —накрывающее пространство

для X и X — база накрытия p: $\tilde{X} \to X$. Другими словами, p: $\tilde{X} \to X$ является накрытием, если

(i) p сюръективно и (ii) для любого $x \in X$ иайдется открытая окрестность

U точки x, такая, что $p^{-1}(U) = \bigcup_{j \in J} U_j$ для некоторого семейства $\{U_j\colon j \in J\}$ подмножеств \tilde{X} , удовлетворяющих условиям $U_j\cap U_k = \varnothing$ при $j \neq k$ и $p \mid U_j\colon U_j \longrightarrow U$ —гомеоморфизм для всех $j \in J$.

Из гл. 16 мы знаем, что e: $\mathbb{R} \longrightarrow S^1$ —накрытие. Очевидно, что всякий гомеоморфизм h: $X \longrightarrow X$ является накрывающим отображением. Другой тривиальный пример накрытия p: $\bar{X} \longrightarrow X$ получится, если положить \bar{X} равным $X \times Y$, где Y—дискретное пространство, и взять в качестве p каноиическую проекцию. Интересным примером является накрытие p_n : $S^1 \longrightarrow S^1$, где $p_n(z) = z^n$ $(n \neq 0$, окружность S^1 считаем вложенной в \mathbb{C}). Чтобы

убедиться, что это на самом деле накрывающее отображение, достаточно заметить, что для любого $x \in S^1$ множество $S^1 \setminus \{x\}$ правильно накрыто отображением p_n .

K накрытиям приводят также некоторые G-пространства. Пусть X есть G-пространство. Будем говорить, что действие G на X собственно разрывно, если для любой точки $x \in X$ найдется ее открытая окрестность V, такая, что $g \cdot V \cap g' \cdot V = \emptyset$ при всех $g, g' \in G$, $g \neq g'$. Заметим, что если действие собственно разрывно, то $g \cdot x \neq x$ при всех $g \in G$, $g \neq 1$, и всех $x \in X$, так как из $x \in V$ следует $g \cdot x \in g \cdot V$. Прежде чем рассмотреть примеры, мы докажем теорему, которая объяснит причину введения собственно разрывных действий.

17.1. Теорема. Пусть X есть G-пространство. Если действие G на X собственно разрывно, то $p\colon X \longrightarrow X/G$ накрытие.

Доказательство. Заметим сначала, что $p: X \to X/G$ непрерывное сюръективное отображение. По теореме 5.12 отображение p открыто. Пусть U — открытая окрестность точки $x \in X$, удовлетворяющая условию собственной разрывности. Так как p — открытое отображение, то p(U) — открытая окрестность точки $G \cdot x = p(x)$ и $p^{-1}(p(U)) = \bigcup_{g \in G} y \in U$ (см. доказательство теоремы 5.12), причем $\{g \cdot U \colon g \in G\}$ — непересекающиеся открытые подмножества X. Далее, $p \mid g \cdot U \colon g \cdot U \to p(U)$ — непрерывное открытое биективное отображение и, следовательно, гомеоморфизм. \square

Действие группы \mathbb{Z} на \mathbb{R} вида $x \mapsto x + n$ собственно разрывно, так как если $x \in \mathbb{R}$ и $\varepsilon < 1/2$, то $(x - \varepsilon, x + \varepsilon)$ — открытая окрестность x, удовлетворяющая нужному условию. Так как это действие \mathbb{Z} на \mathbb{R} превращает \mathbb{R} в \mathbb{Z} -пространство, мы видим, что $p: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ — накрывающее отображение (читатель должен проверить, что этот пример совпадает с $e: \mathbb{R} \to S^1$).

Следующий пример показывает, что естественное отображение $S^n \to \mathbb{R} P^n$ является накрытием. Рассмотрим \mathbb{Z}_2 -пространство S^n , где \mathbb{Z}_2 действует по формуле ± 1 $x = \pm x$. При $x \in S^n$ множество $\{y \in S^n \colon ||y - x|| < 1/2\}$

является открытой окрестностью x, удовлетворяющей условию из определения собственной разрывности. Иначе, так как $x \neq -x$ и S^n —хаусдорфово пространство, найдутся непересекающиеся открытые окрестности V и W соответственно точек x и -x. Окрестность $V \cap (-W)$ точки x удовлетворяет условию собственной разрывности. Этот пример допускает обобщение. Напомним, что группа G действует на X свободно, если $g \cdot x \neq x$ для всех $x \in X$ и $g \in G$, $g \neq 1$.

17.2. Теорема. Если G — конечная группа, свободно действующая на хаусдорфовом пространстве X, то действие G на X собственно разрывно.

Доказательство. Пусть $G = \{1 = g_0, g_1, g_2, \ldots, g_n\}$. Так как X хаусдорфово, найдутся открытые окрестности U_0 , U_1 , ..., U_n точек $g_0 \cdot x$, $g_1 \cdot x$, ..., $g_n \cdot x$ соответственно, для которых $U_0 \cap U_j = \emptyset$ при $j = 1, 2, \ldots, n$. Пусть U— пересечение $\bigcap_{j=0}^n g_j^{-1} \cdot U_j$, которое, очевидно, является открытой окрестностью x. Имеем $g_i \cdot U = \bigcap_{j=0}^n g_i \cdot (g_j^{-1}U_j) \subset U_i$ и $g_i \cdot U \cap g_j \cdot U = g_j \cdot ((g_j^{-1}g_i \cdot U) \cap g_j \cdot U)$

 $g_i \cdot U = \prod_{j=0}^{n} g_i \cdot (g_j \cup f) \subset U_i \cdot n \cdot g_i \cdot U \cap g_j \cdot U = g_j \cdot (g_i \cup f) \cap U = g_j \cdot (g_k \cup f) = \emptyset$ при некотором k, так как $g_k \cdot U \subset U_k$ и $U \subset U_0$. Поэтому действие G на X собст-

 $g_k \cdot U \subset U_k$ и $U \subset U_0$. Поэтому деиствие U на X сооственно разрывно. \square Хороший пример свободного действия дает действие

Хороший пример своюодного действия дает действие циклической группы \mathbb{Z}_p на 3-мерной сфере $S^3 \subset \mathbb{C}^2$, $S^3 = \{(z_0, z_1) \in \mathbb{C}^2: |z_0|^2 + |z_1|^2 = 1\}$. Для q, взаимно простого с p, определим $h: S^3 \to S^3$ формулой

$$h(z_0, z_1) = (\exp(2\pi i/p) z_0, \exp(2\pi iq/p) z_1).$$

Тогда h—гомеоморфизм S^3 , причем $h^p=1$. Определим действие \mathbb{Z}_p на S^3 , полагая

$$n \cdot (z_0, z_1) = h^n(z_0, z_1), \quad n \in \mathbb{Z}_p = \{0, 1, \ldots, p-1\}.$$

Это действие свободно и S^3 хаусдорфово, поэтому $S^3 \to S^3/\mathbb{Z}_p$ —накрытие. Пространство орбит S^3/\mathbb{Z}_p называется линзовым пространством и обозначается L(p,q). Заметим, что L(2,1)—это $\mathbb{R}P^3$. Имеется очевидное

обобщение этого примера—действие Z_p на $S^{2n+1} \subset \mathbb{C}^{n+1}$; детали мы оставляем читателю.

Пора приступить к доказательству некоторых общих результатов о накрытиях. Заметим, что в примерах, связанных с действием групп, накрывающее отображение открыто, а база имеет фактортопологию относительно накрывающего отображения. На самом деле это

17.3. Теорема. Пусть $p: \tilde{X} \to X$ —накрывающее отображение. Тогда (i) p—открытое отображение;

(ii) X имеет фактортопологию относительно р.

верно для всех накрытий.

Дока зательство. Пусть U — открытое подмножество X и $x \in p(U)$. Так как p — накрывающее отображение, то

имеется правильно накрытая открытая окрестность V точки x. Пусть $\tilde{x} \in p^{-1}(x) \cap U$. Так как $\tilde{x} \in p^{-1}(V) = \bigcup_{j \in J} V_j$,

то найдется открытое множество V_j в \tilde{X} , содержащее \tilde{x} . Так как $V_j \cap U$ открыто в V_j и $p \mid V_j$ —гомеоморфизм V_j на V_j то $p(V_j \cap U)$ открыто в V_j . Но V_j открыто в V_j поэтому $p(V_j \cap U)$ открыто в V_j Так как $v_j \in P(V_j \cap U) \subset P(U)$, то P(U) открыто и потому P_j —открытое отображение. Вторая часть теоремы следует из того, что P_j —не-

Вторая часть теоремы следует из того, что p— непрерывное открытое отображение, и потому подмножество V пространства X тогда и только тогда открыто, когда $p^{-1}(V)$ открыто. \square

Многие результаты, полученные в предыдущей главе для накрытия $e: \mathbb{R} \to S^1$, обобщаются на другие накрытия. Если $p: \tilde{X} \to X$ — накрытие и $f: Y \to X$ — непрерывное отображение, то поднятием f называется

непрерывное отображение $\tilde{f}\colon Y \longrightarrow \tilde{X}$, для которого $p\tilde{f} \Longrightarrow f$. Следующий результат показывает, что если поднятие существует, то оно (в существенном) единственно.

17.4. Лемма. Пусть $p: \tilde{X} \to X$ —накрытие $u \tilde{f}, \tilde{\tilde{f}}: Y \to \tilde{X} - \partial Ba$ поднятия отображения $f: Y \to X$. Если Y

связно и $\tilde{f}(y_0) = \tilde{f}(y_0)$ для некоторой точки $y_0 \in Y$, то $\tilde{f} = \tilde{f}$.

Доказательство. Определим Y' как множество $\{y \in Y : \}$ $\tilde{f}(y) = \tilde{f}(y)$ }. Оно не пусто, поскольку $y_0 \in Y'$. Покажем, что Y' открыто и замкнуто. Пусть $y \in Y$; тогда найдется открытая окрестность V точки f(y), правильно накрытая отображением p, т. е. $p^{-1}(V)$ —дизъюнктное объединение множеств $\{V_j\colon j\in J\}$ и $p\mid V_j\colon V_j\to V$ —гомеоморфизм для любого $j \in J$. Если $y \in Y'$, то $\tilde{f}(y) = \tilde{f}(y) \in \mathcal{F}(y)$ $\in V_k$ при некотором $k \in J$ и $\tilde{f}^{-1}(V_k) \cap \tilde{f}^{-1}(V_k)$ — открытая окрестность точки y, лежащая в Y'. Чтобы убедиться в этом, возьмем $x \in \tilde{f}^{-1}(V_k) \cap \tilde{\tilde{f}}^{-1}(V_k)$; тогда $\tilde{f}(x) \in V_k$ и $\tilde{\tilde{f}}(x) \in V_k$, а также $p\tilde{f}(x) = p\tilde{\tilde{f}}(x)$. Так как $p \mid V_k$ —гомеоморфизм, то $\tilde{f}(x) = \tilde{\tilde{f}}(x)$. Значит, каждая точка из Y'имеет открытую окрестность, лежащую в Y', и потому Y' открыто. С другой стороны, если $y \notin Y'$, то $\tilde{f}(y) \in V_k$ и $\tilde{f}(u) \in V$, при некоторых k, l, $k \neq l$. Следовательно, $ilde{f}^{-1}(V_k)\cap ilde{f}^{-1}(V_l)$ — открытая окрестность y, лежащая в дополнении к Y' (доказывается, как и прежде). Итак, Y' замкнуто. Поскольку Y связно, то Y = Y' и $\tilde{f} = \tilde{f}$. \square

Отсюда вытекает забавное следствие.

17.5. Следствие. Π редположим, что \tilde{X} линейно связно $u \oplus : \tilde{X} \longrightarrow \tilde{X}$ — непрерывное отображение, для которого $p\phi = p$. Если $\phi(x_1) = x_1$ для некоторой точки $x_1 \in \tilde{X}$, то $\varphi(x) = x$ для всех $x \in \tilde{X}$ (т. е. φ — тождественное отображение).

Доказательство. Пусть x — любая точка из \tilde{X} и α : $I \longrightarrow \tilde{X}$ — путь из x_1 в x. Так как $\varphi(x_1) = x_1$, то пути α и $\phi\alpha$ пачинаются в точке x_i . Далее, $p\alpha = p\phi\alpha$, так что α и $\phi\alpha$ —поднятия пути $\rho\alpha$: $I \to X$. По последней лемме $\alpha = \phi \alpha$; в частности, концы путей α и $\phi \alpha$ совпадают, т. е. $\varphi(x) = x$.

Следующий результат, известный как теорема о накрывающей гомотопии для путей, доказывается так же, как теорема 16.4 и лемма 16.5.

- 17.6. Теорема. Пусть $p: \tilde{X} \longrightarrow X$ —накрытие.
- (i) Для пути $f: I \longrightarrow X$ и точки $a \in \tilde{X}$, такой, что p(a) = f(0), найдется единственный путь $\tilde{f}: I \longrightarrow \tilde{X}$, для которого $p\tilde{f} = f$ и $\tilde{f}(0) = a$.

(ii) Для непрерывного отображения $F: I \times I \to X$ и точки $a \in \tilde{X}$, такой, что p(a) = F(0, 0), найдется единственное непрерывное отображение $\tilde{F}: I \times I \to \tilde{X}$, для которого $p\tilde{F} = F$ и $\tilde{F}(0, 0) = a$.

Как «ледствие получаем теорему о монодромии, доказательство которой совпадает с доказательством следствия 16.6.

17.7. Следствие. Пусть f_0 и f_1 —эквивалентные пути в X. Если $\tilde{f}_0(0) = \tilde{f}_1(0)$, то $\tilde{f}_0(1) = \tilde{f}_1(1)$.

Продолжая обобщение результатов гл. 16, получаем следующий результат.

17.8. Теорема. Пусть $p: \tilde{X} \to X$ — накрытие c односвязным пространством \tilde{X} . Тогда сущгствует взаимно однозначное соответствие между множествами $\pi(X, p(a))$ и $p^{-1}(p(a))$, где $a \in \tilde{X}^{-1}$).

Доказательство в основном содержится в доказательстве теоремы 16.7. Приведем его существенные моменты. Сначала определяем $\varphi\colon \pi(X,\,p\,(a)) \longrightarrow p^{-1}(p(a))$ равенством $\varphi([f]) = \tilde{f}(1)$, где \tilde{f} —поднятие f, для которого $\tilde{f}(0) = a$. Отображение φ определено корректно согласно следствию 17.7.

Далее определяем $\psi: p^{-1}(p(a)) \longrightarrow \pi(X, p(a))$. Чтобы сделать это, выбираем $x \in p^{-1}(p(a))$ и некоторый путь f из a в x. Так как \tilde{X} односвязно, любые два таких пути

¹⁾ См. также упр. 18.4 (с). — Прим. ред.

эквивалентны, поэтому [pf]—корректно определенный элемент $\pi(X, p(a))$. Положим $\psi(x) = [pf]$. Легко проверить, что $\phi \psi = 1$ и $\psi \phi = 1$, так что ϕ и ψ —биекции. \square

Смысл этого результата в том, что для вычисления $\pi(X, x_0)$ нужно найти накрытие $p\colon \tilde{X} \longrightarrow X$ с односвязным накрывающим пространством \tilde{X} , а затем найти групповую структуру на $p^{-1}(x_0)$ так, чтобы биекция φ : $\pi(X, x_0) \longrightarrow p^{-1}(x_0)$ стала изоморфизмом групп. Этим мы, в сущности, и занимались в гл. 16. Вообще говоря, сделать это не просто. Некоторые частные случаи появятся в последующих главах (см. также гл. 21).

- **17.9.** Упражнения. (а) Пусть $p: \tilde{X} \longrightarrow X$ —накрывающее отображение, X_0 подмножество X и $\tilde{X_0} = p^{-1}(X_0)$. Докажите, что $p_0: \tilde{X_0} \longrightarrow X_0$, определенное равенством $p_0(x) = p(x)$, является накрывающим отображением.
- (b) Пусть $\tilde{X} = \{(x, y) \in \mathbb{R}^2: x$ или y целое} и $X = \{(z_1, z_2) \in \mathcal{E}^1 \times S^1: z_1 = 1$ или $z_2 = 1\}$. Пусть $p: \tilde{X} \longrightarrow X$ определено равенством $p(x, y) = (\exp 2\pi i x, \exp 2\pi i y)$. Покажите, что $p: \tilde{X} \longrightarrow X$ накрывающее отображение.
- (c) Какие из следующих отображений являются накрывающими: (i) $\rho\colon \mathbb{C}^* \longrightarrow \mathbb{C}^*$, заданное как $\rho(z) = z^n$ при фиксированном целом n; (ii) $\sin\colon \mathbb{C} \longrightarrow \mathbb{C}$; (iii) $\rho\colon U \longrightarrow \mathbb{C}^*$, заданное формулой $\rho(z) = (1-z)^m z^n$, где m, n—фиксированные целые числа и $U = \mathbb{C}^* \setminus \{1\}$?
- (d) Пусть $p\colon \tilde{X} \longrightarrow X$ и $q\colon \tilde{Y} \longrightarrow Y$ —накрывающие отображения. (i) Докажите, что $p\times q\colon \tilde{X}\times \tilde{Y} \longrightarrow X\times Y$ —накрывающее отображение. (ii) Докажите, что если X=Y и $\tilde{W}=\{(\tilde{x},\ \tilde{y})\in \tilde{X}\times \tilde{Y}\colon p(\tilde{x})=q(\tilde{y})\}$, то отображение $f\colon \tilde{W}\longrightarrow X$, определенное равенством $f(\tilde{x},\ \tilde{y})=p(\tilde{x})$, является накрывающим. (iii) Что такое \tilde{W} и f в случае, когда оба отображения $p\colon \tilde{X}\longrightarrow X$ и $q\colon \tilde{Y}\longrightarrow Y$ совпадают с $e\colon \mathbb{R}\longrightarrow S^1$, где $e\:(t)=\exp 2\pi it$?
- (е) Пусть $a: \mathbb{C} \to \mathbb{C}$ и $b: \mathbb{C} \to \mathbb{C}$ гомеоморфизмы комплексной плоскости \mathbb{C} , определенные формулами az = z + i, bz = z + 1/2 + i. Покажите, что $ba = a^{-1}b$, и выведите отсюда, что

$$G = \{a^m b^n : m \in \mathbb{Z}, n \in \mathbb{Z}\}$$

является группой гомеоморфизмов $\mathbb C$. Далее докажите, что действие G собственно разрывно и что пространство орбит $\mathbb C/G$ хаусдорфово.

(f) (продолжение (e)). Найдите полуоткрытый прямоугольник,

содержащий ровно одну гочку из каждой орбиты действия G, по-

казав тем самым, что С/G — бутылка Клейна.

(g) (продолжение (f)). Вложение бутылки Клейна в \mathbb{R}^4 . Пусть $\phi \colon \mathbb{C} \longrightarrow \mathbb{R}^5$ определено формулой $\phi(x+iy)=(\cos 2\pi y, \cos 4\pi x, \sin 4\pi x, \sin 2\pi y \cos 2\pi x, \sin 2\pi x \sin 2\pi y)$. Покажите, что ϕ переводит каждую орбиту группы G в одну точку, и выведите отсюда, что \mathbb{C}/G гомеоморфно образу ϕ .

Покажите, что ограничение отображения ψ : $\mathbb{R}^5 \longrightarrow \mathbb{R}^4$, где $\psi(p, q, r, s, t) = ((p+2)q, (p+2)r, s, t)$, на образ ϕ является

гомеоморфизмом.

(h) Пусть $p\colon \tilde{X} \longrightarrow X$ — накрытие с линейно связным X. Докажите, что мощность множества $p^{-1}(x)$ не зависит от $x\in X^1$). Если она конечна и равна n, то говорят, что $p\colon \tilde{X} \longrightarrow X$ есть n-листное накрытие.

(i) Найдите двулистное накрытие $p: S^1 \times S^1 \longrightarrow K$, где $K \longrightarrow GV$

тылка Клейна.

- (j) Подмножество Σ некоторого пространства называется простой замкнутой кривой, если оно гомеоморфно S^1 . Пусть $p\colon S^2 \longrightarrow \mathbb{R}P^2$ каноническая проекция сферы на проективную плоскость. Докажите, что если Σ —простая замкнутая кривая в $\mathbb{R}P^2$, то $p^{-1}(\Sigma)$ —либо простая замкнутая кривая в S^2 , либо объединение двух непересекающихся простых замкнутых кривых. (Указание: рассмотрите Σ как образ некоторого замкнутого пути в $\mathbb{R}P^2$.)
- (k) Вычислите $\pi(S^1 \times S^1, (1, 1))$ прямо из результатов этой главы. (Указание: используя часть (i) упр. (d), найдите накрывающее отображение $\mathbb{R} \times \mathbb{R} \longrightarrow S^1 \times S^1$, а затем воспользуйтесь

теоремой 17.8.)

(I) Предполагая известной односвязность S^n при $n \ge 2$ (упр. 15.16 (c)), покажите, что фундаментальная группа $\mathbb{R}P^n$ при $n \ge 2$ —циклическая порядка 2. Далее покажите, что если p—простое число, то фундаментальная группа линзового пространства L(p,q) циклическая порядка p.

(m) Существует ли топологическое пространство Y, для кото-

рого $S^1 \times Y$ гомеоморфно $\mathbb{R}P^2$ или S^2 ?

- (п) Пусть $p: X \xrightarrow{} Y$ накрытие и X, Y— хаусдорфовы пространства. Докажите, что X тогда и только тогда является n-мерным многообразием, когда Y есть n-мерное многообразие.
- (о) Пусть $p\colon \widetilde{X} \longrightarrow X$ накрытие и Y— некоторое пространство. Предположим, что $f\colon Y \longrightarrow X$ имеет поднятие $\widetilde{f}\colon Y \longrightarrow \widetilde{X}$. Докажите, что любую гомотопию $F\colon Y \times I \longrightarrow X$, для которой $F(y, 0) = f(y), \ y \in Y$, можно поднять до гомотопии $\widetilde{F}\colon Y \times I \longrightarrow \widetilde{X}$ с $\widetilde{F}(y, 0) = \widetilde{f}(y), \ y \in Y$.
- (р) Пусть $p\colon \tilde{X} \longrightarrow X$ накрытие и $f, g\colon Y \longrightarrow \tilde{X}$ два непрерывных отображения, для которых pf=pg. Докажите, что множество точек в Y, в которых f и g совпадают, открыто и замкнуто.

¹⁾ Ср. с упр. 18.4 (с). — Прим. ред.

- (q) Пусть $p\colon \widetilde{X} \longrightarrow X$ накрытие с локально линейно связным X (см. упр. 12.10 (j)). Докажите, что \widetilde{X} также локально линейно связно.
- (г) Скольжением накрытня $p\colon \widetilde{X} \longrightarrow X$ называется гомеоморфизм $h\colon \widetilde{X} \longrightarrow \widetilde{X}$, для которого ph=p. Докажите, что множество всех скольжений образует группу.
- (s) Пусть $\rho \colon \widetilde{X} \longrightarrow X$ накрытие, для которого \widetilde{X} связно и локально линейно связно. Докажите, что действие группы скольжений накрытия $\rho \colon \widetilde{X} \longrightarrow X$ на \widetilde{X} собственно разрывно 1).

¹⁾ См. теорему 21.8.— Прим. ред.

ФУНДАМЕНТАЛЬНАЯ ГРУППА НАКРЫВАЮЩЕГО ПРОСТРАНСТВА

Эта глава посвящена группе $\pi(\tilde{X}, \tilde{x}_0)$ и ее связи с $\pi(X, x_0)$, где $p: \tilde{X} \to X$ — накрытие и $p(\tilde{x}_0) = x_0$. Большинство результатов содержится в упражнениях.

Первый результат следует непосредственно из теоремы 17.6.

18.1. Теорема. Если $p: \tilde{X} \to X$ —накрытие с такими $\tilde{x}_0 \in \tilde{X}, x_0 \in X$, что $p(\tilde{x}_0) = x_0$, то индуцированный гомоморфизм $p_*: \pi(\tilde{X}, \tilde{x}_0) \to \pi(X, x_0)$ является мономорфизмом.

Естественно поставить вопрос, что изменится, если изменить точки $\tilde{x_0}$ и x_0 . Ответ дает следующая

18.2. Теорема. Пусть $p: \tilde{X} \to X$ —накрытие с линейно связным \tilde{X} . Если $\tilde{x_0}, \ \tilde{x_1} \in \tilde{X}, \ mo\ s\ X$ найдется путь f из $p(\tilde{x_0})$ $s\ p(\tilde{x_1}), \ makoù, \ umo\ u_fp_*\pi(\tilde{X}, \tilde{x_0}) = p_*\pi(\tilde{X}, \tilde{x_1}).$

Доказательство. Пусть g—путь в \tilde{X} из \tilde{x}_0 в \tilde{x}_1 . Путь g определяет изоморфизм u_g групп π (\tilde{X} , \tilde{x}_0) и π (\tilde{X} , \tilde{x}_1), так что $u_g\pi$ (\tilde{X} , \tilde{x}_0) = π (\tilde{X} , \tilde{x}_1). Применение гомоморфизма p_* дает $p_*u_g\pi$ (\tilde{X} , \tilde{x}_0) = $p_*\pi$ (\tilde{X} , \tilde{x}_1). Но $p_*u_g=u_{pg}p_*$ (см. упр. 15.11 (c)), так что путь f=pg удовлетворяет нужным условиям. \square

Если в этой теореме $p\left(\tilde{x_0}\right) = p\left(\tilde{x_1}\right) = x_0$, то путь f определяет элемент [f] группы $\pi\left(X, x_0\right)$ и, таким образом,

$$p_*\pi(\tilde{X}, \tilde{x}_1) = [f]^{-1} (p_*\pi(\tilde{X}, \tilde{x}_0))[f].$$

Другими словами, подгруппы $p_*\pi(\tilde{X}, \tilde{x_0})$ и $p_*\pi(\tilde{X}, \tilde{x_1})$ сопряжены в $\pi(X, x_0)$. На самом деле можно утверждать больше:

18.3. Теорема. Пусть $p: \tilde{X} \to X$ — накрытие с линейно связным \tilde{X} . При $x_0 \in X$ множество $\{p_*\pi(\tilde{X}, \tilde{x_0}): \tilde{x_0} \in p^{-1}(x_0)\}$ есть класс сопряженности в $\pi(X, x_0)$.

Доказательство. Мы уже показали, что любые две подгруппы из этого множества сопряжены. Предположим теперь, что H—подгруппа π (X, x_0), сопряженная одной из подгрупп $p_*\pi(\tilde{X}, \tilde{x_0})$. Таким образом, $H = \alpha^{-1}(p_*\pi(\tilde{X}, \tilde{x_0}))\alpha$ при некотором $\in \pi(X, x_0)$. Пусть $\alpha = [f]$ и \tilde{f} —поднятие f с началом в $\tilde{x_0}$. Тогда $p_*\pi(\tilde{X}, \tilde{f}(1)) = u_f p_*\pi(\tilde{X}, x_0) = H$, так что H принадлежит нашему множеству. \square

Другие соотношения между $\pi(\tilde{X}, \tilde{x_0})$ и $\pi(X, x_0)$ даются в качестве упражнений.

18.4. Упражнения. В этих упражнениях $p: \tilde{X} \longrightarrow X$ — накрытие с линейно связным \tilde{X} и $x_0 \in X$.

(а) Для $\tilde{x} \in \rho^{-1}(x_0)$ и $[f] \in \pi(X, x_0)$ определим $\tilde{x} \cdot [f]$ равенством $\tilde{x} \cdot [f] = \tilde{f}(1)$, где \tilde{f} —единственное поднятие f с началом в \tilde{x} . Докажите, что этим определено правое действие группы $\pi(X, x_0)$ на множестве $\rho^{-1}(x_0)$. (Указание: посмотрите доказательство теоремы 16.7 и используйте обозначение l_a (f) для поднятия f с началом в a.)

(b) Говорят, что группа G действует m ранэитивно на множестве S, если для любых a, $b \in S$ найдется такой элемент $g \in G$, что $g \cdot a = b$. Другими словами, $S = G \cdot a$, орбите точки $a \in S$. Докажите, что $\pi(X, x_0)$ действует транзитивно на $p^{-1}(x_0)$.

- (c) Дохажите, что существует эквивариантная относительно группы $\pi(X, x_0)$ биекция между $\rho^{-1}(x_0)$ и множеством правых смежных классов группы $\pi(X, x_0)$ по подгруппе $\rho_*\pi(X, x_0)$. (Указание: воспользуйтесь упр. 5.9 (d) с заменой левых смежных классов на правые и покажите, что стабилизатор действия $\pi(X, x_0)$ на $\rho^{-1}(x_0)$ есть $\rho_*\pi(X, x_0)$.)
- (d) Выведите из (c), что если \vec{X} односвязно, то существует эквивариантная относительно действия $\pi\left(X,\ x_{0}\right)$ биекция между $p^{-1}\left(x_{0}\right)$ и $\pi\left(X,\ x_{0}\right)$.
- (е) Покажите, что если $p\colon \tilde{X}\longrightarrow X$ есть n-листное накрытие (т. е. $p^{-1}(x_0)$ состоит из n точек), то $p_*\pi(\tilde{X},\ \tilde{x_0})\longrightarrow \pi(X,\ x_0)$ является включением подгруппы индекса n.

(f) Допустим, что фундаментальная группа пространства X есть $\mathbb Z$ и множество $p^{-1}(x_0)$ конечно. Найдите фундаментальную

группу пространства $ilde{X}$.

(g) Докажите, что если X односвязно, то p — гомеоморфизм.

- (h) Пусть X = X. Докажите, что если фундаментальная группа X конечна, то p—гомеоморфизм. Обязательно ли p будет гомеоморфизмом, если фундаментальная группа X бесконечна?
- (i) Накрытие называется регулярным, если для некоторой точки $\tilde{x_0} \in \tilde{X}$ подгруппа $\rho_*\pi$ $(\tilde{X}, \tilde{x_0})$ нормальна в π (X, x_0) . Докажите, что если f—замкнутый путь в X и накрытие регулярно, то либо всякое поднятие f замкнуто, либо никакое поднятие не замкнуто.
- (j) Предположим, что $p\colon \tilde{X} \longrightarrow X$ —накрытие, полученное из собственно разрывного действия G на \tilde{X} (т. е. $X = \tilde{X}/G$). Докажите, что $p\colon \tilde{X} \longrightarrow X$ регулярно 1).
- жите, что $p: X \longrightarrow X$ регулярно -). (k) Докажите, что p тогда и только тогда является гомеоморфизмом, когда $p_*\pi(\tilde{X}, \tilde{x}_0) = \pi(X, x_0)^2$).

²) См. упр. (c) выше. — Прим. ред.

¹⁾ См. теорему 19.1 и лемму 19.2. При естественных дополнительных ограничениях справедливо также обратное утверждение, см. предложения 21.8-21.10.— Прим. $pe\partial$.

ФУНДАМЕНТАЛЬНАЯ ГРУППА ПРОСТРАНСТВА ОРБИТ

В этой главе мы будем предполагать, что X — линейно связное пространство, на котором определено собственно разрывное действие группы G. Таким образом, $p\colon X \to X/G$ — накрытие. Цель этой главы — найти соотношение между G и фундаментальной группой про-

странства орбит X/G.

Пусть $x_0 \in X$ и $y_0 = p(x_0) \in X/G$. Заметим, что $p^{-1}(y_0) = \{g \cdot x_0 \colon g \in G\}$. Если $[f] \in \pi(X/G, y_0)$, то существует единственное поднятие \tilde{f} пути f с началом в точке $x_0 \in X$. Элемент $\tilde{f}(1) \in p^{-1}(y_0)$, и потому существует единственный элемент $g_f \in G$, такой, что $\tilde{f}(1) = g_f \cdot x_0$. Следовательно, соответствие $f \mapsto g_f$ определяет отображение ϕ : $\pi(X/G, y_0) \to G$.

19.1. Теорема. Отображение φ : $\pi(X/G, y_0) \to G$ является гомоморфизмом групп.

Доказательство. Рассмотрим два замкнутых пути f, f' в X/G в точке y_0 . Если f * f' - единственное поднятие f * f' с началом в $x_0 \in X$, то $f * f' = \tilde{f} * l_a(f')$, где $\tilde{f} -$ единственное поднятие f с началом в x_0 , а $l_a(f') -$ единственное поднятие f' с началом в точке $a = \tilde{f}(1)$. Это следует из того, что $\tilde{f} * l_a(f') -$ также поднятие f * f' с началом в точке $x_0 \in X$. Пусть $\tilde{f}' -$ единственное поднятие f' с началом в началом в

$$f * \tilde{f}' (1) = g_f \cdot \tilde{f}' (1) = g_f \cdot (g_f \cdot x_0) = (g_f g_f \cdot x_0) \cdot x_0$$

Отсюда следует, что $\varphi([f][f']) = \varphi([f]) \varphi([f'])$ и φ —гомоморфизм. \square

Вычислим ядро гомоморфизма ф.

19.2. Лемма. Ядро гомоморфизма $\varphi: \pi(X/G, y_0) \to G$ совпадает с подгруппой $p_*\pi(X, x_0)$.

Доказательство. Ядро ϕ — это множество таких элементов $[f] \in \pi$ (X/G, y_o), что ϕ [f] = 1. Это в точности

те элементы из π (X/G, y_0), для которых \tilde{f} (1) = x_0 , т. е. \tilde{f} —замкнутый путь в X в точке $x_0 \in X$. Таким образом, это множество элементов $[f] \in \pi$ (X/G, y_0) вида $[p\tilde{f}]$ при $[\tilde{f}] \in \pi$ (X, x_0), т. е. $p_*\pi$ (X, x_0). \square В частности, $p_*\pi$ (X, x_0)—нормальная подгруппа в

В частности, $p_*\pi(X, x_0)$ — нормальная подгруппа в $\pi(X/G, y_0)$, и потому определена факторгруппа $\pi(X/G, y_0)/p_*\pi(X, x_0)$.

19.3. Теорема. Группы $\pi(X/G, y_0)/p_*\pi(X, x_0)$ и G изоморфны.

Доказательство. Нам нужно только показать, что гомоморфизм φ : $\pi(X/G, y_0) \to G$ сюръективен. Для $g \in G$ обозначим через f_g путь в X из x_0 в $g \cdot x_0$. Тем самым определен элемент $[pf_g] \in \pi(X/G, y_0)$. По определению, $\varphi([pf_g]) \cdot x_0 = p\widetilde{f}_g(1)$, где $p\widetilde{f}_g$ —единственное поднятие pf_g с началом в x_0 . Но таким поднятием является f_g и $f_g(1) = g \cdot x_0$. Таким образом, $\varphi([pf_g]) = g$, что и доказывает сюръективность φ . \square

19.4. Следствие. Если X односвязно, то $\pi(X/G, y_0) \cong G$.

Из этого следствия можно вновь получить результат гл. 16 о том, что фундаментальная группа окружности есть Z. Это следует из того, что окружность S^1 гомеоморфна \mathbb{R}/\mathbb{Z} . Тем же способом можно вывести, что фундаментальная группа пространства $(S^1)^n \cong \mathbb{R}^n/\mathbb{Z}^n$ изоморфна \mathbb{Z}^n . Другие примеры, часто основанные на приведенных ранее упражнениях, содержатся в следующей подборке упражнений.

19.5. Упражнения. (а) Покажите, что фундаментальная группа линзового пространства L(p, q) изоморфна \mathbb{Z}_p . (В силу упр. 15.16

(c) сфера S^3 односвязна.)

(b) Покажите, что для любой конечно порожденной абелевой группы G существует пространство X_G , фундаментальная группа которого равна G. (Учтите тот факт, что G есть произведение некоторого числа экземпляров $\mathbb Z$ и нескольких конечных циклических групп.)

(c) Пусть $Y = \mathbb{C}^*/K$, где $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ и K — группа гомеоморфизмов вида $\{\varphi^n: n \in \mathbb{Z}\}$ с $\varphi(z) = 4z$. Докажите, используя следствие 19.4. что фундаментальная группа Y есть $\mathbb{Z} \times \mathbb{Z}$. (Указание. Найдите односвязное пространство X, группу \overline{G} и в ней нормальную подгруппу H так, чтобы X было G-пространством, $X/H\cong\mathbb{C}^*$ и G/H=K. Далее воспользуйтесь упр. 5.13 (c).)

(d) Докажите, что формула $Tz=\overline{z}+1+i$ определяет гомеоморфизм $T\colon X\to X$, где $X=\mathbb{R}\times [0,\ 1]\subset \mathbb{C}$. Покажите, что если G—группа гомеоморфизмов, порожденная отображением T, то X/G — лист Мёбиуса. Выведите отсюда, что фундаментальная группа листа Мёбиуса есть Z.

(е) Докажите, что фундаментальная группа бутылки Клейна имеет вид $G = \{a^m b^n : m, n \in \mathbb{Z}, ba = a^{-1}b\}$, т. е. $G - \text{группа } \mathbf{c}$ дву-

мя образующими a, b и одним соотношением $ba = a^{-1}b$.

(f) Пусть G собственно разрывно действует на X. Напомним, что, согласно упр. 18.4 (a), группа $\pi(X/G, y_0)$ действует на $p^{-1}(y_0)$ (справа). Докажите, что $(g \cdot x) \cdot [f] = g \cdot (x \cdot [f])$ при $g \in G, x \in p^{-1}(y_0)$ и $\{f\} \in \pi (X/G, y_0).$

(g) Пусть G и H — группы, действующие на множестве S, причем G действует слева, а H — справа. Предположим, что $(g \cdot x)$ • $h = g \cdot (x \cdot h)$ для всех $g \in G$, $x \in S$, $h \in H$. Докажите, что если Gдействует на S свободно и транзитивно, то можно определить гомоморфизм ϕ : $H \to G$ так, чтобы его ядро совпадало со стабилизатором точки $x_0 \in S$ при действии H, где $S = \{g \mid x_0 \colon g \in G\}$. (Указание: определите φ (h) при $h \in H$ как единственный элемент $g \in G$, для которого $g \cdot x_0 = x_0 \cdot h$.)

(h) При помощи (f) и (g) дайте новое доказательство теоремы

19.1 и леммы 19.2.

(i) При помощи (h) и упр. 18.4 (c) дайте новое доказательство теоремы 19.3.

ТЕОРЕМА БОРСУКА—УЛАМА И ТЕОРЕМА О СЭНДВИЧЕ С ВЕТЧИНОЙ

Дадим несколько приложений результатов предыдущих глав. Они обобщают результаты гл. 10 и опираются на теорему Борсука—Улама (сформулированную С. Уламом и доказанную К. Борсуком в начале 30-х годов).

20.1. Теорема. Не существует непрерывного отображения $\varphi \colon S^2 \to S^1$, при котором $\varphi (-x) = -\varphi (x)$.

Эта теорема обобщает результат о том, что не существует непрерывного отображения $\varphi\colon S^1\to S^0$, при котором $\varphi(-x)=-\varphi(x)$ (такое отображение должно было бы быть сюръективным, но окружность S^1 связна, а S^0 —нет). На самом деле справедлив более общий результат: при $n\geqslant 1$ не существует непрерывного отображения $\varphi\colon S^n\to S^{n-1}$, при котором $\varphi(-x)=-\varphi(x)$. При n>2 доказательство выходит за рамки этой книги, так как оно должно использовать другие средства, например высшие гомотопические группы.

Для доказательства теоремы 20.1 предположим, что существует непрерывное отображение $\varphi\colon S^2\to S^1$, при котором $\varphi(-x)=-\varphi(x)$. Группа $\mathbb{Z}_2=\{\pm 1\}$ антиподально действует на S^2 и на S^1 (т. е. $\pm 1\cdot x=\pm x$), и в обоих случаях действие собственно разрывно. Если $p_2\colon S^2\to S^2/\mathbb{Z}_2$ и $p_1\colon S^1\to S^1/\mathbb{Z}_2$ —канонические проекции, то φ индуцирует непрерывное отображение $\psi\colon S^2/\mathbb{Z}_2\to S^1/\mathbb{Z}_2$, для которого $p_1\varphi=\psi p_2$, а именно $\psi(\{\pm x\})=\{\pm \varphi(x)\}$ (см. доказательство теоремы 5.5). Пусть $a=(1,0,0)\in S^2$, где, как обычно.

 $S^2 = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 = 1\}.$

Пусть $b=\rho_2(a)\in S^2/\mathbb{Z}_2$. Если /—путь в S^2 из a в —a, заданный формулой $f(t)=(\cos\pi t,\,\sin\pi t,\,0),\,0\leqslant t\leqslant 1$, то ρ_2f —замкнутый путь в S^2/\mathbb{Z}_2 в точке b. Мы утверждаем, что элемент $[\rho_2f]\in\pi(S^2/\mathbb{Z}_2,\,b)$ удовлетворяет условию $[\rho_2f]^2=[\varepsilon_b]$. Имеем

$$(p_{2}f * p_{2}f)(t) = \begin{cases} p_{2}(\cos 2\pi t, \sin 2\pi t, 0), & 0 \leq t \leq 1/2, \\ p_{2}(\cos (2t - 1)\pi, \sin (2t - 1)\pi, 0), & 1/2 \leq t \leq 1, \\ = p_{2}(\cos 2\pi t, \sin 2\pi t, 0), & 0 \leq t \leq 1. \end{cases}$$

Определим $F: I \times I \rightarrow S^2$ равенством

$$F(t, s) = (s + (1-s)\cos 2\pi t, (1-s)\sin 2\pi t, \sqrt{2s(1-s)(1-\cos 2\pi t)}).$$

Мы видим, что p_2F : $I\times I\to S^2/\mathbb{Z}_2$ — непрерывное отображение, удовлетворяющее условиям

$$p_{2}F(t, 0) = (p_{2}f * p_{2}f)(t),$$

$$p_{2}F(t, 1) = p_{2}(1, 0, 0) = \varepsilon_{b}(t),$$

$$p_{2}F(0, s) = p_{2}(1, 0, 0) = p_{2}F(1, s),$$

откуда следует, что $[\rho_2 f]^2 = [\epsilon_b] \in \pi (S^2/\mathbb{Z}_2, b)$. Отображение $\psi: S^2/\mathbb{Z}_2 \to S^1/\mathbb{Z}_2$ индуцирует гомоморфизм

$$\psi_*$$
: $\pi(S^2/\mathbb{Z}_2, b) \longrightarrow \pi(S^1/\mathbb{Z}_2, \psi(b)),$

так что $[\psi p_2 f]^2 = [\epsilon_{\psi,(b)}] \in \pi (S^1/\mathbb{Z}_2, \psi(b))$. Очевидно, что $S^1/\mathbb{Z}_2 \cong S^1$ и $\pi (S^1/\mathbb{Z}_2, \psi(b)) = \{\alpha^n: n \in \mathbb{Z}\}$ при некотором $\alpha \in \pi (S^1/\mathbb{Z}_2, \psi(b))$ (на самом деле $\alpha = [p_1g]$, где $g: I \to S^1$ определено формулой $g(t) = \exp \pi it \in S^1 \subset \mathbb{C}$). Из равенства $[\psi p_2 f]^2 = [\epsilon_{\psi,(b)}]$ следует, что $[\psi p_2 f] = [\epsilon_{\psi,(b)}]$, поскольку $[\psi p_2 f] = \alpha^k$ при некотором k, и $\alpha^{2k} = \alpha^0$ влечет за собой $\alpha^k = \alpha^0$.

Замечание. Упр. 15.16 (с) утверждает, что сфера S^2 односвязна (см. также следствие 23.9), поэтому из предыдущей главы мы выводим, что фундаментальная группа S^2/Z_2 есть Z_2 . Стало быть, ψ_* —гомоморфизм группы Z_2 в Z; но всякий такой гомоморфизм тривиален, поэтому $[\psi p_2 f] = [\varepsilon_{\psi_*,b_*}] \in \pi (S^1/Z_2, \psi(b))$. Предыдущее рассуждение было проведено только затем, что-

бы не использовать результаты упражнений и результаты, которые будут доказаны позже.

Возвращаясь к доказательству теоремы 20.1, вспомним результаты гл. 17 и рассмотрим однозначно определенные поднятия путей $\psi p_2 f$ и $\varepsilon_{\psi (b)}$ в S^1 с началом в точке $\varphi(a)$. Ими являются соответственно φf и $\varepsilon_{\varphi(a)}$ (напомним, что $\psi p_2 = p_1 \varphi$). Но $\varphi f(1) = \varphi(-a) = -\varphi(a)$, тогда как $\varepsilon_{\varphi(a)}(1) = \varphi(a)$, что противоречит равенству $[\psi p_2 f] = [\varepsilon_{\psi(b)}]$. Поэтому отображения φ не существует (заметим также, что $[p_2 f] \neq [\varepsilon_b] \in \pi(S^2/\mathbb{Z}_2, b)$). \square

20.2. Следствие. Пусть $f: S^2 \to \mathbb{R}^2$ — непрерывное отображение, для которого f(-x) = -f(x) при всех $x \in S^2$. Тогда существует точка $x \in S^2$, в которой f(x) = 0.

Доказательство. Предположим, что $f(x) \neq 0$ при всех $x \in S^2$, и определим $g \colon S^2 \to S^1$ формулой $g(x) = f(x)/\|f(x)\|$. Отображение g непрерывно и g(-x) = -g(x), что противоречит теореме 20.1. \square

20.3. Следствие. Пусть $f: S^2 \to \mathbb{R}^2$ —непрерывное отображение. Тогда существует точка $x \in S^2$, в которой f(x) = f(-x).

Доказательство. Если $f(x) \neq f(-x)$ при всех $x \in S^2$, то можно определить $g \colon S^2 \to \mathbb{R}^2$ формулой g(x) = f(x) - f(-x). Это отображение непрерывно и удовлетворяет условиям g(-x) = -g(x) и $g(x) \neq 0$ для всех $x \in S^2$, что противоречит следствию 20.2.

Следствие 20.3 есть обобщение следствия 10.3. Оба предыдущих следствия остаются справедливыми и при замене S^2 и \mathbb{R}^2 на S^n и \mathbb{R}^n .

Следствие 20.3 утверждает, в частности, что не существует непрерывного инъективного отображения S^2 в \mathbb{R}^2 . Отсюда непосредственно получается

20.4. Следствие. Никакое подмножество \mathbb{R}^2 не гомеоморфно S^2 .

Как и в гл. 10, мы получаем физическую интерпретацию этого утверждения.

20.5. Следствие. В любой момент времени на земной

поверхности найдется пара антиподальных точек, в которых одновременно совпадают температура и давление.

Аналогом первой теоремы о блинах является *теорема о сэндвиче с ветчиной*, которая утверждает, что трехслойный сэндвич можно разрезать точно пополам одним взмахом ножа. Точнее, имеет место

20.6. Теорема. Пусть A, B и C — ограниченные подмножества 1) \mathbb{R}^3 . Тогда в \mathbb{R}^3 найдется плоскость, которая делит каждое из них точно пополам по объему.

Доказательство. Рассуждения аналогичны доказательству теоремы 10.5. Можно считать, что A, B и C лежат внутри сферы S в \mathbb{R}^3 диаметра 1 с центром в точке 0. При $x \in S$ обозначим через D_x диаметр S, проходящий через точку x. При $t \in I$ обозначим через P_t плоскость, перпендикулярную D_x и проходящую через точку диаметра D_x на расстоянии t от x. Плоскость P_t делит A на две части A_1 и A_2 , из которых A_1 ближе к x, чем A_2 . Определим функции f_i , f_2 равенствами

$$f_1(t) =$$
 объем A_1 , $f_2(t) =$ объем A_2 .

Очевидно, что f_1 и f_2 —непрерывные функции, отображающие отрезок I в \mathbb{R} , причем f_1 монотонно не убывает, а f_2 монотонно не возрастает. Следовательно, функция $f\colon I\to\mathbb{R}$, определенная как $f(t)=f_1(t)-f_2(t)$, непрерывна и монотонно не убывает. Далее, f(0)=-f(1), так что по теореме о промежуточном значении найдется такое $t\in I$, что f(t)=0. Так как f монотонно не убывает, то она обращается в нуль либо в одной точке a, либо на отрезке [a,b]. В первом случае обозначим через $\alpha(x)$ точку a, а во втором — точку (a+b)/2. Тогда $P_{\alpha(x)}$ делит A на две равные части. Заметим, что отображение $\alpha\colon S\to\mathbb{R}$ непрерывно и удовлетворяет условию $\alpha(x)=1-\alpha(-x)$.

Аналогично можно определить непрерывные функции β , γ : $S \to \mathbb{R}$, для которых $\beta(x) = 1 - \beta(-x)$, $\gamma(x) =$

¹⁾ Как и в теореме 10.5, предполагается, что множества A, B и C имеют объем. — Π рим. перев.

 $=1-\gamma(-x)$ и $P_{\beta(x)}$, $P_{\gamma(x)}$ делят соответственно B и Cточно пополам. При помощи функций а, в и у определим теперь $φ: S → \mathbb{R}^2$ равенством

$$\varphi(x) = (\alpha(x) - \beta(x), \ \alpha(x) - \gamma(x)).$$

Так как α , β , и γ непрерывны, то ϕ непрерывно. Далее, $\varphi(-x) = -\varphi(x)$, так что, согласно следствию 20.2, найдется точка $y \in S$, в которой $\varphi(y) = 0$. Но это означто $\alpha(y) = \beta(y) = \gamma(y)$, поэтому плоскость $P_{\alpha(y)}$ делит А, В и С точно пополам.

20.7. Упражнения. (a) Докажите, что при $n \ge 2$ не существует непрерывного отображения $\varphi: S^n \to S^1$, при котором $\varphi(-x) = -\varphi(x)$.

(b) Предположим, что группа \mathbb{Z}_{D} действует на $S^{3} \subset \mathbb{C}^{2}$ и $S^{1} \subset \mathbb{C}$ следующим образом:

$$k \cdot (z_1, z_2) = (\exp(2\pi i k/p) z_1, \exp(2\pi i k q/p) z_2),$$

 $k \cdot z = \exp(2\pi i k/p) z,$

где $k \in \mathbb{Z}_p = \{0, 1, ..., p-1\}$ и q—целое число, взаимно простое с p. Докажите, что не существует \mathbb{Z}_p -эквивариантного непрерывного отображения S^3 в S^1 .

(с) Существует ли в трехмерном пространстве аналог второй

теоремы о блинах?

(d) Пусть X и Y — пространства, на которых собственно разрывно действует группа G. Предположим также, что $\phi\colon X\longrightarrow Y$ есть G-эквивариантное непрерывное отображение. Пусть $\psi \colon X/G \to$ $\rightarrow Y/G$ — отображение, индуцированное отображением ϕ . Докажите, что гомоморфизм ψ_* : $\pi(X/G, p(x_0)) \to \pi(Y/G, q\varphi(x_0))$ индуцирует гомоморфизм

$$\pi (X/G, p(x_0))/p_*\pi (X, x_0) \to \pi (Y/G, q\phi(x_0))/q_*\pi (Y, \phi(x_0)),$$
 который является изоморфизмом, где $p\colon X\to X/G$ и $q\colon Y\to Y/G$ —

канонические проекции.

(e) При помощи (d) дайте новое доказательство георемы Борсука — Улама и результата упр. (b) (каждое в одну строчку).

ЕЩЕ О НАКРЫВАЮЩИХ ПРОСТРАНСТВАХ: ТЕОРЕМЫ О ПОДНЯТИИ

Пусть $p: \tilde{X} \to X$ — накрытие и $f: Y \to X$ — непрерывное отображение, причем Y связно. Напомним, что, как было показано в гл. 17, если поднятие \tilde{f} отображения $f: Y \to X$ существует, то оно (в существенном) единственно. Далее, если поднятие \tilde{f} существует, то следующая диаграмма коммутативна:

Гомоморфизм p_* является мономорфизмом (теорема 18.1) и $p_*\tilde{f}_*=f_*$, так что $f_*\pi$ $(Y,y_0)=p_*\tilde{f}_*\pi$ $(Y,y_0)\subset p_*\pi$ (\tilde{X},\tilde{x}_0) . Итак, необходимым алгебраическим условием существования поднятия f является включение $f_*\pi$ (Y,y_0) \cap $\subset p_*\pi$ (\tilde{X},\tilde{x}_0) . Оказывается, это условие будет и достаточным, если наложить одно дополнительное условие на Y. Таким образом, чисто топологический вопрос эквивалентен чисто алгебраическому вопросу. Условие на Y состоит в том, чтобы оно было связным и локально линейно связным. Пространство Y называется локально линейно связным, если для любого $y \in Y$ всякая открытая окрестность точки y содержит линейно связную окрестность этой точки y содержит линейно связное и локально линейно связное пространство является линейно связным. Докажем это.

21.1. Лемма. Если Y связно и локально линейно связно, то Y линейно связно.

Доказательство. Пусть y—некоторая точка из Y и U—множество точек Y, которые можно соединить с y путем в Y. Если $u \in U$, то u имеет открытую линейно связную окрестность V (так как Y—открытая окрестность u и Y—локально линейно связное пространство). Если $v \in V$, то в V найдется путь из u в v, а в Y—путь из y в u, так что в Y найдется путь из y в v. Следовательно, $V \subset U$. Этим показано, что V открыто. Аналогичным образом можно показать, что $V \setminus U$ открыто, так что V открыто и замкнуто. Так как $V \in U$, это множество не пусто. Но V связно, и потому U должно совпадать с V, что и доказывает линейную связность V.

21.2. Теорема. Пусть $p: \tilde{X} \to X$ — накрытие, Y — связное и локально линейно связное пространство и $y_0 \in Y$, $\tilde{x_0} \in X$, $p(\tilde{x_0}) = x_0$. Для нгпрерывного отображения $f: Y \to X$ с $f(y_0) = x_0$ тогда и только тогда существует поднятие $f: Y \to \tilde{X}$ с $\tilde{f}(y_0) = \tilde{x_0}$, когда

$$f_*\pi(Y, y_0) \subset p_*\pi(\tilde{X}, \tilde{x_0}).$$

Доказательство. Мы уже видели, что это условне необходимо, остается проверить его достаточность. Поэтому предположим, что $f_*\pi(Y, y_0) \subset p_*\pi(\tilde{X}, \tilde{x_0})$, и покажем, что существует поднятие \tilde{f} . Определим \tilde{f} следующим образом. Пусть $y \in Y$, и пусть $\varphi\colon I \to Y —$ путь в Y из y_0 в y. Тогда $f \varphi$ —путь в X из x_0 в f(y). По теореме о накрывающей гомотопии для путей (теорема 17.6 (i)) существует единственный путь $\tilde{f} \varphi\colon I \to \tilde{X}$, для которого $\tilde{f} \varphi(0) = x_0$ и $p f \varphi = f \varphi$. Определим $\tilde{f}(y)$ как $f \varphi(1)$ (рис. 21.1).

Неожиданным образом \tilde{f} оказывается корректно определенным и непрерывным. Покажем сначала, что \tilde{f} корректно определено. Единственный выбор, кото-

рый мы делали, — это выбор пути ϕ из y_0 в y. Пусть ψ — другой путь в Y из y_0 в y. Произведение $\phi*\overline{\psi}$ — замкнутый путь в Y в точке y_0 . Имеем

$$f_* [\varphi * \overline{\psi}] = [f \varphi * f \overline{\psi}] \in f_* \pi (Y, y_0).$$

Но $f_*\pi(Y, y_0) \subset p_*\pi(\tilde{X}, \tilde{x_0})$, и потому найдется замкнутый путь α в \tilde{X} в точке $\tilde{x_0}$, для которого $[f\phi*f\bar{\psi}] = [p\alpha]$. Используя результаты гл. 14, получаем

$$f \varphi \sim f \varphi * \varepsilon_{x_0} \sim f \varphi * (f \overline{\psi} * f \psi) \sim (f \varphi * f \overline{\psi}) * f \psi \sim p \alpha * f \psi.$$

Путь α замкнут, значит, $p\alpha*f\psi = \alpha*f\psi$, и по теореме о монодромии (теорема 17.7)

$$\widetilde{f}\widetilde{\psi}$$
 (1) = $\widetilde{p}\alpha * \widetilde{f}\psi$ (1) = $(\alpha * \widetilde{f}\widetilde{\psi})$ (1) = $\widetilde{f}\widetilde{\psi}$ (1),

что и доказывает корректность определения f(y). Заметим, что для определения \tilde{f} нам нужна была только линейная связность Y.

Рис.21.1

Чтобы доказать, что \tilde{f} непрерывно, потребуется дополнительное предположение о том, что Y локально линейно связно. Пусть U — открытое подмножество \tilde{X} . Пусть $y \in \tilde{f}^{-1}(U)$; тогда U — открытая окрестность $\tilde{f}(y)$. Пусть U' — правильно накрытая окрестность точки $p\tilde{f}(y) = f(y)$, для которой $U' \subset p(U)$. По определению

 $p^{-1}(U') = \bigcup_{j \in J} V_j$, где каждое V_j гомеоморфно U', и $\tilde{f}(y) \in V_k$ при некотором k. Так как V_k и U — открытые окрестности $\tilde{f}(y)$, то $W = V_b \cap U$ — также открытая окрестность $\tilde{f}(y)$. Заметим, что $\rho(W)$ — правильно накрытая окрестность f(y), так как U' правильно накрыта и $p(W) \subset U'$. Отображение f непрерывно, и потому $f^{-1}(p(W))$ — открытая окрестность точки $y \in Y$. Так как Y локально линейно связно, то найдется линейно связная открытая окрестность V точки y, лежащая в $f^{-1}(p(W))$. Мы утверждаем, что $\tilde{f}(V) \subset U$. Очевидно, $\tilde{f}(y) \in U$. Если y' —другая точка из V, то в V найдется путь ϕ из y в y', и по определению \tilde{f} мы видим, что $\tilde{f}(y')$ совпадает с $f\varphi$ (1), где $f\varphi$ — единственное поднятие $f \varphi$ с началом в $\tilde{f}(y)$ (если ψ — путь из y_0 в y, то $\psi * \varphi$ путь из y_0 в y', и $f(\psi*\phi)(1) = f\widetilde{\phi}(1)$ по теореме о накрывающей гомотопии для путей). Образ пути $f\varphi$ лежит в $f(V) \subset p(W)$, и потому образ пути $\widetilde{f \varphi}$ лежит в $p^{-1}(p(W))$. Но $p^{-1}(p(W)) = \bigcup_{j \in J} W_j$, где W_j —попарно непересекающиеся множества, гомеоморфные p(W), и одно из них, например W_k , совпадает с W. Так как $f\widetilde{\phi}(0) = \widetilde{f}(y) \in W$, то $f\varphi(1) = \tilde{f}(y') \in W$. Этим доказано, что $\tilde{f}(V) \subset W \subset U$, и, следовательно, $V \subset \tilde{f}^{-1}(U)$. Итак, любая точка из $ilde{f}^{-1}\left(U
ight)$ имеет открытую окрестность в $ilde{f}^{-1}\left(U
ight)$, так что $\tilde{f}^{-1}(U)$ открыто, и потому \tilde{f} непрерывно. \square

Заметим еще раз, что для определения \tilde{f} мы требовали от Y только линейной связности. Для непрерывности \tilde{f} нужно, чтобы Y было локально линейно связным. Приведем теперь пример, показывающий, что если Y линейно связно, но не локально линейно связно, то \tilde{f} не обязательно непрерывно. Пусть Y—следующее подмножество \mathbb{R}^2 : $Y = A \cup B \cup C$, где

$$A = \{(x, y) : x^2 + y^2 = 1, y \ge 0\},\$$

$$B = \{(x, y) : -1 \le x \le 0, y = 0\},\$$

$$C = \{(x, y) : 0 < x \le 1, y = (1/2) \sin(\pi/x)\}$$

(рис. 21.2). Это пространство называется польской окрижностью.

Очевидно, что Y линейно связно. Далее, так как $B \cup C$ не является линейно связным, то Y односвязно

и не локально линейно связно. Рассмотрим накрытие $e\colon \mathbb{R} \to S^1$, и пусть $f\colon Y \to S^1$ — отображение, определенное формулами

$$f(x, y) = \begin{cases} (x, y) & \text{при} \quad (x, y) \in A \subset Y, \\ (x, -\sqrt{1-x^2}) & \text{при} \quad (x, y) \in B \cup C \subset Y. \end{cases}$$

Очевидно, что f непрерывно. Полагая $y_0=(1,\ 0),$ $\tilde{x}_0=0$, мы видим, что условие $f_*\pi(Y,\ y_0)\subset p_*\pi(\tilde{X},\ \tilde{x_0})$ выполнено (здесь $p=e,\ \tilde{X}=\mathbb{R}$). Можно определить \tilde{f} , как в доказательстве теоремы 21.2, и получить

$$\tilde{f}\left(x,\ y\right) = \begin{cases} (\arccos x)/2\pi & \text{при} \quad (x,\ y) \in A \cup B, \\ (\arccos x)/2\pi - 1 & \text{при} \quad (x,\ y) \in C. \end{cases}$$

Очевидно, что $p\tilde{f}=f$, $\tilde{f}(1,\ 0)=0$, но \tilde{f} разрывно в точке $(0,\ 0)\in Y$.

Приведем несколько следствий теоремы 21.2. Первое из них не нуждается в доказательстве.

- **21.3.** Следствие. Если Y односвязно и локально линейно связно, то всякое непрерывное отображение $f\colon Y\to X$ поднимается до $\tilde{f}\colon Y\to \tilde{X}$.
- **21.4.** Следствие. Пусть p_i : $X_i \to X$, p_2 : $X_2 \to X \partial \mathcal{B} a$ накрытия, для которых X_i и X_2 связны и локально линейно связны. Пусть x_i , x_2 , x_0 —отмеченные точки

в $X_{\bf i}, X_{\bf 2}, X$ соответственно, причем $p_{\bf i}(x_{\bf i})=p_{\bf 2}(x_{\bf 2})=x_{\bf 0}.$ Если $p_{\bf 1*}\pi(X_{\bf i}, x_{\bf 1})=p_{\bf 2*}\pi(X_{\bf 2}, x_{\bf 2}),$ то существует сохраняющий отмеченные точки гомеоморфизм $h: X_{\bf i} \to X_{\bf 2},$ при котором $p_{\bf 2}h=p_{\bf i}.$

Доказательство. Накрывающие отображения p_1 и p_2 поднимаются до отображений \tilde{p}_1 и p_2 , таких, что $p_2\tilde{p}_1=p_1$ и $p_1\tilde{p}_2=p_2$. Пусть $\phi=\tilde{p}_2\tilde{p}_1!$ $X_1\to X_1$; тогда $p_1\phi=p_1$ $(\tilde{p}_2\tilde{p}_1)=(p_1\tilde{p}_2)$ $\tilde{p}_1=p_2\tilde{p}_1=p_1$. Далее, $\phi(x_1)=x_1$; поэтому, согласно следствию 17.5,

далее, $\phi(x_1) = x_1$; поэтому, согласно следствию 17.5, отображение ϕ тождественно, т. е. $\tilde{p}_2\tilde{p}_1=1$. Меняя местами X_1 и X_2 , убеждаемся, что $\tilde{p}_1\tilde{p}_2=1$. Итак, \tilde{p}_1 и \tilde{p}_2 —гомеоморфизмы, и наше утверждение получается взятием $h=\tilde{p}_1$.

В частном случае односвязных пространств $X_{\mathbf{i}}$ и $X_{\mathbf{2}}$ получаем

21.5. Следствие. Пусть p_1 : $X_1 \to X$, p_2 : $X_2 \to X - \partial в a$ накрытия с односвязными и локально линейно связными пространствами X_1 и X_2 . Тогда существует гомеоморфизм $h\colon X_1 \to X_2$, при котором $p_2 h = p_1$.

Из теоремы 15.9 легко следует утверждение, обратное следствию 21.4.

21.6. Следствие. Пусть p_1 : $X_1 \to X$, p_2 : $X_2 \to X$ — накрытия со связными и локально линейно связными пространствами X_1 и X_2 . Пусть x_1 , x_2 , x_0 — отмеченные точки, причем $p_1(x_1) = p_2(x_2) = x_0$. Если существует гомеоморфизм h: $X_1 \to X_2$, при котором $p_2h = p_1$ и $h(x_1) = x_2$, то $p_{1*}\pi(X_1, x_1) = p_{2*}\pi(X_2, x_2)$.

Будем говорить, что два накрытия $p_1\colon X_1\to X$, $p_2\colon X_2\to X$ эквивалентны, если существует гомеоморфизм $h\colon X_1\to X_2$, при котором $p_2h=p_1$. Заметим, что этот гомеоморфизм не обязан переводить отмеченную точку в отмеченную. Получаем обобщение следствий 21.4 и 21.6:

21.7. Теорема. Пусть $p_1: X_1 \to X$, $p_2: X_2 \to X$ — накрытия со связными и локально линейно связными X_1 и X_2 .

Пусть x_1, x_2, x_0 —отмеченные точки, причем $p_1(x_1) = p_2(x_2) = x_0$. Эти накрытия тогда и только тогда эквивалентны, когда подгруппы $p_{1*}\pi(X_1, x_1)$ и $p_{2*}\pi(X_2, x_2)$ сопряжены в группе $\pi(X, x_0)$.

Доказательство. Это непосредственно вытекает из следствий 21.4, 21.6 и теоремы 18.3. □

Группой скольжений накрытия $p \colon \tilde{X} \to X$ называется группа всех гомеоморфизмов $h \colon \tilde{X} \to \tilde{X}$, при которых ph = p (см. упр. 17.9 (г)). Эта группа обозначается $G(\tilde{X}, p, X)$. Очевидно, что \tilde{X} есть $G(\tilde{X}, p, X)$ -пространство.

21.8. Теорема. Если \tilde{X} связно и локально линейно связно, то действие группы $G(\tilde{X}, p, X)$ на \tilde{X} собственно разрывно.

Доказательство. Пусть x—любая точка из \tilde{X} и U—правильно накрытая окрестность точки p(x). Тогда $p^{-1}(U)$ —дизъюнктное объединение множеств $\{V_j, j \in J\}$, причем $x \in V_k$ для некоторого k. Пусть $h \in G(\tilde{X}, p, X)$. Если h(x) = x, то, согласно следствию 17.5, отображение h тождественно. Другими словами, если $h \neq 1$, то $h(x) \neq x$. Так как ph(x) = p(x), то $h(x) \in V_l$ при некотором l. Далее, если $V_l = V_k$, то h(x) = x. Отсюда заключаем, что если $h \neq 1$, то $x \in V_k$ и $h(x) \in V_l$, причем $V_k \cap V_l = \emptyset$.

Можно считать что U линейно связно, поскольку \widetilde{X} (а следовательно, и X) локально линейно связно. Итак, каждое из множеств V_J , $j \in J$, линейно связно. Имеем $ph(V_k) = U$, так что $h(V_k) \subset \bigcup_{j \in J} V_j$. Но множества

 V_f , $j \in J$, линейно связны и $h(x) \in V_t$ при некотором $x \in V_k$, откуда $h(V_k) \subset V_t$, и потому $V_k \cap h(V_k) = \emptyset$. Этим доказано, что действие группы $G(\widetilde{X}, p, X)$ собственно разрывно.

Используя этот и некоторые предыдущие результаты, приходим к следующим интересным заключениям.

21.9. Теорема. Пусть \tilde{X} связно и локально линейно

связно. Если $p_*\pi(\tilde{X}, \tilde{x_0})$ — нормальная подгруппа $\pi(X, x_0)$, то X гомеоморфно $\tilde{X}/G(\tilde{X}, p, X)$.

Доказательство. Так как $p_*\pi(\tilde{X}, \tilde{x}_0)$ —нормальная подгруппа, то из теоремы 18.3 следует, что $p_*\pi(\tilde{X}, \tilde{x}_1) = p_*\pi(\tilde{X}, \tilde{x}_0)$ для всех $\tilde{x}_1 \in p^{-1}(x_0)$; при этом $p(\tilde{x}_1) = x_0 = p(\tilde{x}_0)$. Согласно следствию 21.4, в $G(\tilde{X}, p, X)$ найдется элемент h, для которого $h(\tilde{x}_0) = \tilde{x}_1$. Обратно, если $h(\tilde{x}_0) = \tilde{x}_1$ при некотором $h \in G(\tilde{X}, p, X)$, то очевидно, что $p(\tilde{x}_0) = p(\tilde{x}_1)$. Итак, группа $G(\tilde{X}, p, X)$ отождествляет точки пространства \tilde{X} точно так же, как p. Этим доказано, что между X и $\tilde{X}/G(\tilde{X}, p, X)$ имеется взаимно однозначное соответствие. Оно является гомеоморфизмом, потому что каждое из этих множеств имеет естественную фактортопологию, определяемую проекциями $p: \tilde{X} \to X$ и $\pi: \tilde{X} \to \tilde{X}/G(\tilde{X}, p, X)$. \square

21.10. Следствие. Пусть \tilde{X} связно и локально линейно связно. Если $p_*\pi(\tilde{X},\tilde{x_0})$ — нормальная подгруппа $\pi(X,x_0)$, то $\pi(X,x_0)/p_*\pi(\tilde{X},\tilde{x_0})\cong G(\tilde{X},p,X)$.

Доказательство. Это непосредственно вытекает из теорем 21.9 и 19.3. □

21.11. Следствие. Если \tilde{X} односвязно и локально линейно связно, то $\pi(X, x_0) \cong G(\tilde{X}, p, X)$.

21.12 Упражнения. (а) Покажите, что подпространство P прямой \mathbb{R} , определенное как P {0, 1/n: n— натуральное число}, не является локально линейно связным.

(b) Пусть $p_1: X_1 \longrightarrow S^1$, $p_2: X_2 \longrightarrow S^1$ суть n-листные накрытия (n-натуральное число). Покажите, что они эквивалентны.

п — натуральное число). Покажите, что они эквивалентны.
 (c) Определите все накрывающие пространства для следующих

пространства (i) S^1 , (ii) $S^1 \times S^1$, (iii) односвязного и локально

линейно связного пространства X.

(d) Пусть $p_1: X_1 \longrightarrow X$, $p_2: X_2 \longrightarrow X$ — накрытия связного и локально линейно связного пространства X. (i) Докажите, что если существует непрерывное сюръективное отображение $f: X_1 \longrightarrow X_2$, при котором $p_2f = p_1$, то оно является накрывающим отображением. (ii) Докажите, что если X_2 линейно связно и существует непрерывное отображение $f: X_1 \longrightarrow X_2$, при котором $p_2f = p_1$, то f— накрывающее отображение.

(е) Пусть $\rho_1: X_1 \longrightarrow X$ и $\rho_2: X_2 \longrightarrow X$ —накрытия, причем X_1 односвязно и локально линейно связно, а X_2 связно и локально линейно связно. Докажите, что существует непрерывное накрывающее отображение $\rho: X_1 \longrightarrow X_2$.

(f) Пусть X—связное G-пространство, причем действие G на X собственно разрывно. Докажите, что группа скольжений накры-

тия $p: X \longrightarrow X/G$ совпадает с G.

(g) Пусть $p: \widetilde{X} \longrightarrow X$ — накрытие со связным и локально линейно связным пространством \widetilde{X} . Докажите, что $G(\widetilde{X}, p, X)$ действует на $p^{-1}(x_0)$. Далее покажите, что действие $G(\widetilde{X}, p, X)$ на $p^{-1}(x_0)$ тогда и только тогда транзитивно, когда $p_*\pi(\widetilde{X}, \widetilde{X}_0)$ — нормальная подгруппа $\pi(X, x_0)$ (определение транзитивного действия см. в упр. 18.4 (b)).

ЕЩЕ О НАКРЫВАЮЩИХ ПРОСТРАНСТВАХ: ТЕОРЕМЫ СУЩЕСТВОВАНИЯ

класса сопряженных подгрупп $\pi(X, x_s)$ накрытие $p: \tilde{X} \to X$, отвечающее этому классу. Как мы покажем далее, ответ положителен, если X удовлетворяет еще некоторым дополнительным условиям (кроме связности и локальной линейной связности). Всегда существует накрытие, соответствующее классу сопряженности всей фундаментальной группы X, а именно $1: X \to X$. Но оно не представляет интереса. Напротив, накрытие, соответствующее классу сопряженности тривиальной подгруппы, очень интересно. Это накрытие, если оно существует для данного X, называется yниверсальным накрытием пространства X. Итак, универсальное накрытие X—это накрытие $p: \tilde{X} \to X$, для которого \tilde{X} односвязно. Вскоре мы дадим необходимое и достаточное условие существования универсального накрытия X.

В предыдущей главе мы показали, что накрытие $p: \tilde{X} \to X$ определяется с точностью до эквивалентности классом сопряженных подгрупп $p_*\pi(\tilde{X}, \tilde{x}_0)$ в $\pi(X, x_0)$. Естественно спросить, существует ли для данного

Пусть $p: \tilde{X} \to X$ — универсальное накрытие X. Если x— любая точка из X и $\tilde{x} \in p^{-1}(x)$, то найдется правильно накрытая окрестность U точки x, для которой $p^{-1}(U)$ является дизъюнктным объединением множеств $\{V_f, j \in J\}$, и $\tilde{x} \in V_k$ при некотором k. Обозначим V_k через V. Диаграмма

приводит к коммутативной диаграмме фундаментальных групп

$$(\rho|V)_* \downarrow \qquad \qquad \downarrow P_*$$

$$\pi(U,x) \xrightarrow{i_*} \pi(X,x)$$

Отображение $p \mid V \colon V \longrightarrow U$ —гомеоморфизм, и потому $(p \mid V)_*$ — изоморфизм. Так как $p: \tilde{X} \to X$ — универсальное накрытие, то группа $\pi(\tilde{X}, \tilde{x})$ тривиальна, и отображение i_st должно быть тривиальным гомоморфизмом, т. е. $i_*(\alpha) = [e_x]$ для всех $\alpha \in \pi(U, x)$. Этим показано, что если $p: \tilde{X} \to X$ — универсальное накрытие X, то любая точка $x \in X$ имеет окрестность U, для которой гомоморфизм $\pi(U, x) \to \pi(X, x)$ тривиален. Пространство X с таким свойством называется полулокально $o\partial$ носвязным. Таким образом, пространство X полулокально односвязно в том и только в том случае, если для любой точки $x \in X$ найдется такая окрестность U, что любой замкнутый путь в U в точке x эквивалентен в X постоянному пути $\varepsilon_{\mathbf{x}}$. Заметим, что при стягивании замкнутого пути, лежащего в U, в точку x допустим выход за пределы U. Заметим также, что если U — такая окрестность x, что всякий замкнутый путь в U в точке x эквивалентен в X постоянному пути, то любая окрестность U' точки x, лежащая в U, также обладает этим свойством.

Наиболее интересные пространства являются полулокально односвязными (см. упражнения), и придется как следует подумать, чтобы привести пример связного и локально линейно связного пространства, не являющегося полулокально односвязным. Таким примером

может служить подпространство $X \subset \mathbb{R}^2$, заданное как $X = \bigcup_{n>0} C_n$, где C_n —окружность с центром $(1/n, 0) \in \mathbb{R}^2$ радиуса 1/n. Точка $(0, 0) \in X$ не удовлетворяет условию полулокальной односвязности пространства X. Таким образом, это пространство не имеет универсального накрытия.

 $\hat{\ni}$ то необходимое условие существования универсального накрытия пространства X является на самом

деле и достаточным.

22.1. Теорема. Связное и локально линейно связное пространство X тогда и только тогда обладает универсальным накрытием $p: \tilde{X} \to X$, когда X полулокально односвязно.

Доказательство. Сначала построим пространство \tilde{X} и отображение $p\colon \tilde{X} \to X$, а затем покажем, что они обладают нужными свойствами. Пусть $x_0 \in X$ — отмеченная точка и \tilde{X} — множество классов эквивалентности путей с началом в x_0 (см. определение 14.1). Таким образом,

$$\tilde{X} = \{ [\alpha] : \alpha \colon I \to X, \ \alpha(0) = x_0, \ [\alpha] = [\beta] \Leftrightarrow \alpha \sim \beta \}.$$

Определим теперь $p: \tilde{X} \to X$ равенством $p([\alpha]) = \alpha(1)$.

Теперь нужно ввести на \tilde{X} топологию. Пусть U открыто в X и α : $I \to X$ — путь е началом в x_0 и концом в некоторой точке $x_1 \in U$. Определим $[U, \alpha]$ как

$$[U, \alpha] = \{ [\alpha * \beta]: \beta: I \to X, \beta(0) = \alpha(1), \beta(I) \subset U \}.$$

Другими словами, $[U, \alpha]$ состоит из классов эквивалентности путей $\alpha*\beta$, где β начинается в $\alpha(1)$ и целиком лежит в U. Используем эти множества для определения топологии $\mathcal U$ на $\tilde X$ следующим образом: отнесем к топологии $\mathcal U$ множества \varnothing , $\tilde X$ и произвольные объединения подмножеств $\tilde X$ вида $[U, \alpha]$. Чтобы проверить, что $\mathcal U$ —топология на $\tilde X$, достаточно проверить, что пересечение двух множеств из $\mathcal U$ принадлежит $\mathcal U$ (все остальные аксиомы топологии выполняются тривиально). Покажем сначала, что если $[\gamma] \in [U, \alpha]$, то

 $[U, \gamma] = [U, \alpha]$. Так как $[\gamma] \in [U, \alpha]$, то найдется путь β , лежащий в U, для которого $[\gamma] = [\alpha*\beta]$. Если δ — любой путь в U с началом в β (1), то $[\gamma*\delta] = [(\alpha*\beta)*\delta] = [\alpha*(\beta*\delta)]$, откуда следует, что $[U, \alpha] \supset [U, \gamma]$. То же самое рассуждение показывает, что $[U, \alpha] \subset [U, \gamma]$, так что $[U, \gamma] = [U, \alpha]$. Рассмотрим теперь $[U, \alpha] \cap [U', \alpha']$, где $[U, \alpha]$ и $[U', \alpha']$ принадлежат \mathcal{U} . Если $\beta \in [U, \alpha] \cap [U', \alpha']$, то $[U, \beta] = [U, \alpha]$ и $[U', \beta] = [U', \alpha']$. Непосредственно очевидно, что $[U \cap U', \beta] \subset [U, \alpha] \cap [U', \alpha']$ и, следовательно, $[U, \alpha] \cap [U', \alpha']$ является объединением множеств вида $\{[U \cap U', \beta] : \beta \in [U, \alpha] \cap [U', \alpha]\}$, а потому $[U, \alpha] \cap [U', \alpha'] \in \mathcal{U}$. Проверку того, что пересечение любых двух множеств из \mathcal{U} принадлежит \mathcal{U} , мы оставляем читателю (это просто). Таким образом, \mathcal{U} — топология на \tilde{X} .

Проверим теперь, что отображение $p\colon \tilde{X} \to X$ непрерывно. Пусть U — открытое подмножество X. Если $p^{-1}(U)$ пусто, проверять нечего. Предположим, что $[\alpha] \in p^{-1}(U)$; тогда по определению $[U, \alpha]$ — открытое подмножество \tilde{X} и

$$p([U, \alpha]) = \{(\alpha \times \beta)(1) : [\alpha \times \beta] \in [U, \alpha]\} =$$

$$= \{\beta(1) : [\alpha \times \beta] \in [U, \alpha]\} \subset U,$$

так как по определению множества $[U, \alpha]$ пути β лежат в U. Поэтому $p^{-1}(U) = \bigcup_{\{\alpha\} \in p^{-1}(U)} [U, \alpha]$ является

открытым множеством в \tilde{X} и p непрерывно.

Далее проверим, что $p: \tilde{X} \to X$ сюръективно. Это просто, потому что если $x \in X$, то найдется путь в X с началом в x_0 и концом в x (пространство X линейно связно). Очевидно, что $[\alpha] \in \tilde{X}$ и $p([\alpha]) = x$.

Чтобы показать, что $p: \tilde{X} \to X$ — накрытие, нам осталось проверить, что любая точка из X имеет правильно накрытую окрестность. Пусть $x \in X$ и V — открытая линейно связная окрестность, для которой всякий лежащий в ней замкнутый путь в точке x эквивалентен в X постоянному пути ε_x . Имеем $p^{-1}(V) = \bigcup_{\{\alpha\} \in p^{-1}(V)} [V, \alpha]$.

Если $[V,\alpha] \cap [V,\beta] \neq \emptyset$, то найдется элемент $[\gamma] \in [V,\alpha] \cap [V,\beta]$, и потому $[V,\gamma] = [V,\alpha]$ и $[V,\gamma] = [V,\beta]$, так что $[V,\alpha] = [V,\beta]$. Этим показано, что $p^{-1}(V)$ — дизъюнктное объединение открытых множеств. Нужно показать, что p гомеоморфно отображает каждое из этих множеств на V. Отображение $p_\alpha = p \mid [V,\alpha]$: $[V,\alpha] \rightarrow V$ непрерывно как ограничение непрерывного отображения. При $x \in V$ пусть β —некоторый путь в V из $\alpha(1)$ в x; тогда $[\alpha*\beta] \in [V,\alpha]$ и $p([\alpha*\beta]) = x$. Этим показано, что p_α сюръективно.

Чтобы доказать инъективность p_{α} , предположим, что $p_{\alpha}\left(\left[\alpha*\beta\right]\right)=p_{\alpha}\left(\left[\alpha*\gamma\right]\right)$ для некоторых элементов $\left[\alpha*\beta\right]$, $\left[\alpha*\gamma\right]\in\left[V,\ \alpha\right]$. Тогда β и γ имеют одни и те же концы. Поэтому путь $\beta*\gamma$ замкнут и лежит в V. По нашему выбору V этот путь эквивалентен в X постоянному пути ε_{x} . В частности, $\beta\sim\gamma$, и потому $\left[\alpha*\beta\right]=\left[\alpha*\gamma\right]$, откуда следует инъективность p_{α} .

Чтобы завершить доказательство гомеоморфности отображения p_{α} , осталось проверить, что p_{α}^{-1} непрерывно, или, что то же самое, что p_{α} —открытое отображение. Пусть $[W, \beta]$ открыто в $[V, \alpha]$. Тогда $N = p([W, \beta])$ —это множество точек из W, которые можно соединить путем в W с β (1). Для любого $y \in N$ найдется открытое линейно связное подмножество $W_y \subset W$, содержащее y. Так как $y \in N$ и W_y линейно связно, то $W_y \subset N$, и потому $N = \bigcup_{y \in N} W_y$. Итак, $p([W, \beta]) = N$ открыто и p_{α} —гомеоморфизм; это завершает доказательство того, что p: $\tilde{X} \to X$ —накрытие.

Чтобы закончить доказательство теоремы 22.1, осталось проверить, что \tilde{X} односвязно. Покажем сначала, что \tilde{X} линейно связно. Пусть $\tilde{x_0} = [\varepsilon]$ —класс эквивалентности постоянного пути ε в точке x_0 и $[\alpha]$ —произвольный элемент \tilde{X} . Определим $\tilde{\alpha}$! $I \to \tilde{X}$ как $\tilde{\alpha}$ (s) = $= [\alpha_s]$, $s \in I$, где $\alpha_s(t) = \alpha(st)$, $t \in I$. Тогда $\tilde{\alpha}$ —путь в \tilde{X} из $\tilde{x_0}$ в $[\alpha]$. Этим доказано, что \tilde{X} линейно связно (заметим, что $\tilde{\alpha}$ —поднятие α).

Пусть β — замкнутый путь в \tilde{X} в точке $\tilde{x_0}$. В силу

единственности поднятий, $\beta = \widetilde{p\beta}$, и потому

$$[p\beta] = [p(\widetilde{p\beta})] = [\widetilde{p\beta}(1)] = \tilde{x}_{\bullet} = [\varepsilon].$$

Итак, путь $\beta = \rho \widetilde{\beta}$ эквивалентен постоянному пути в \widetilde{X} , и потому \widetilde{X} односвязно, и доказательство теоремы 22.1 закончено. \square

22.2. Следствие. Пусть X—связное, локально линейно связное и полулокально односвязное пространство. Если H—подгруппа $\pi(X, x_{\bullet})$, то существует накрытие p_H : $X_H \to X$, единственное с точностью до эквивалентности, для которого $H = p_{H^*}\pi(X_H, x_H)$. В частности, для любого класса сопряженных подгрупп группы $\pi(X, x_0)$ найдется накрытие $p' \colon X' \to X$, для которого $p'_*\pi(X', x')$ принадлежит этому классу.

Доказательство. Пусть $p: \tilde{X} \to X$ —универсальное накрытие X и $G(\tilde{X}, p, X)$ —группа его скольжений. Так как $G(\tilde{X}, p, X) \cong \pi(X, x_0)$, то в качестве H' можно взять подгруппу, соответствующую H при этом изоморфизме. Затем положим $X_H = \tilde{X}/H'$, и пусть p_H —отображение, индуцированное отображением p. Детали мы оставляем читателю. \square

Условия на X в следствии 22.2, обеспечивающие существование X_H , можно ослабить (см. упр. 22.3 (е)). 22.3. Упражнения. (а) Докажите, что односвязное пространство

полулокально односвязно.

(b) Докажите, что связное n-мерное многообразие полулокально односвязно. Докажите, что связное n-мерное многообразие M имеет универсальное накрытие p. $\tilde{M} \longrightarrow M$, где \tilde{M} —также n-мерное

многообразие.

(c) Докажите, что группа π (S^n , x_0) при n>1 тривиальна, следующим образом. Пусть $p\colon \tilde{S}^n \longrightarrow S^n$ — универсальное накрытие. Определите отображение $f\colon D^n \longrightarrow S^n$, переводящее ∂D^n в x_0 , так, чтобы сфера S^n стала факторпространством диска D^n относительно отображения $f\colon$ Покажите, что f поднимается до $f'\colon D^n \longrightarrow \tilde{S}^n$ и что f' определяет (при помощи перехода к факторпространству) непрерывное отображение $f''\colon S^n \longrightarrow \tilde{S}^n$, для которого pf''=1. Наконец, примените функтор фундаментальной группы к последовательности $S^n \stackrel{f''}{\longrightarrow} \tilde{S}^n \stackrel{\rho}{\longrightarrow} S^n$ и убедитесь, что группа π (S^n , x_0) тривиальна.

(d) Пусть X—связное, локально линейно связное и полулокально односвязное пространство, и пусть H—подгруппа π (X, x_0) . Пусть \mathcal{P} —множество путей в X с началом в x_0 . Определим отношение \sim_H на \mathcal{P} условиями

$$\alpha \sim_H \beta \Leftrightarrow \alpha(1) = \beta(1)$$
 и $[\alpha * \overline{\beta}] \in H$.

Докажите, что \sim_H —отношение эквивалентности на \mathcal{P} . Обозначим класс эквивалентности α через $[\alpha]_H$. Определим X_H как \mathcal{P}/\sim_H , и пусть p_H : $X_H \longrightarrow X$ определено равенством $p_H([\alpha]_H) = \alpha$ (1). Пусть U открыто в X и α : $I \longrightarrow X$ —путь в X с началом в x_0 и концом в U. Определим $[U, \alpha]_H$ как

 $[U, \alpha]_H = \{ [\alpha * \beta]_H : \beta \colon I \to X, \beta(0) = \alpha(1), \beta(I) \subset U \}.$ Покажите, что совокупность множеств q_{IH} , состоящая из \emptyset , X_H и произвольных объединений множеств вида $[U, \alpha]_H$, является топологией на X_H . Наконец, докажите, что $p_H \colon X_H \to X$ —накрытие и $p_{H*}\pi(X_H, x_H) = H \subset \pi(X, x_0)$.

(е) Пусть X—связное и локально линейно связное пространство. Пусть H—подгруппа $\pi(X, x_0)$. Докажите, что накрытие p_H : $X_H \longrightarrow X$, для которого $p_{H*}\pi(X_H, x_H) = H$, существует тогда и только тогда, когда любая точка $x \in X$ имеет такую окрестность U, что всякий замкнутый путь в U в точке x эквивалентен в X некоторому элементу подгруппы $H \subset \pi(X, x_0)$. (Указание: видоизмените доказательство упр. (d).)

ТЕОРЕМА ЗЕЙФЕРТА—ВАН КАМПЕНА. І. ОБРАЗУЮЩИЕ

Теорема, которую мы собираемся обсудить, дает общий метод вычисления фундаментальных групп. Она была впервые доказана в начале 30-х гг. независимо друг от друга X. Зейфертом и Э. ван Кампеном.

Предположим, что пространство X является объединением двух открытых линейно связных подпространств U_1 и U_2 . Предположим далее, что $U_1 \cap U_2$ непусто и линейно связно. Теорема Зейферта — ван Кампена дает способ вычисления фундаментальной группы X, если известны фундаментальные группы пространств U_1 , U_2 и $U_1 \cap U_2$ (частный случай этой теоремы приведен в упр. 15.16 (c)).

Пусть $x_0 \in U_1 \cap U_2$ и ψ_j : $U_j \to X$ —включения при $j=1,\ 2.$ Грубо говоря, теорема Зейферта—ван Кампена описывает:

(i) Образующие группы $\pi(X, x_0)$. Если $\alpha \in \pi(X, x_0)$,

то
$$\alpha = \prod_{k=1}^n \psi_{\lambda(k)*} \alpha_k$$
, где $\alpha_k \in \pi(U_{\lambda(k)}, x_0)$, $\lambda(k) = 1$ или 2.

(ii) Соотношения группы $\pi(X, x_0)$. Пусть $\alpha =$

 $= \prod_{k=1}^{n} \psi_{\lambda(k)*} \alpha_k$ — элемент группы $\pi(X, x_0)$. Элемент α тогда и только тогда является единичным, когда его можно привести к единичному конечным числом операций, каждая из которых вставляет в α или исключает из него выражение из некоторого списка. Этот список завнент от $\pi(U_1 \cap U_2, x_0)$, $\pi(U_1, x_0)$ и $\pi(U_2, x_0)$.

Данные из (i) и (ii) об образующих и соотношениях называются копредставлением группы $\pi(X, x_0)$. Для точной формулировки теоремы Зейферта — ван Кампена нужно строго определить, что такое копредставление

группы. На самом деле оно является изящным способом записи группы при помощи образующих и соотношений. Прежде чем говорить об этом дальше, введем некоторые обозначения.

Рассмотрим множество S, представляя себе его элементы как некоммутирующие между собой символы. При помощи этих символов образуем слова, т. е. выражения вида

$$W = x_1^{\varepsilon(1)} x_2^{\varepsilon(2)} \dots x_k^{\varepsilon(k)},$$

где $x_i \in S$ (допускаются повторения) и $\varepsilon(i) = \pm 1$. (Иначе говоря, мы строим из множества $S = \{y_i \colon i \in J\}$ алфавит $\{y_j^1, y_j^{-1}\colon j\in J\}$, из которого затем образуем слова.) Удобно рассматривать и *пустое слово*, не содержащее символов. Слово называется редуцированным, если оно не содержит x^1 вслед за x^{-1} или x^{-1} вслед за x^1 ни при каком $x \in S$. Так, $x_1^1 x_1^1 x_1^1 -$ редуцированное слово, $x_1^1 x_1^{-1} x_1^1$ — нет. Любое слово можно привести к редуцированному слову отбрасыванием пар вида x^1x^{-1} или $x^{-1}x^{1}$ (где $x \in S$), если они имеются. Например, $x_1^{-1}x_2^1x_2^{-1}x_1^1x_3^1$ приводится к $x_1^{-1}x_1^1x_3^1$, а оно в свою очередь к x_3^1 .

Используя в качестве композиции редуцированных слов приписывание их одного за другим и приведение полученного слова к редуцированному, можно превратить множество G редуцированных слов в алфавите Sв группу. Роль единицы играет пустое слово, а слово, обратное к $W=x_1^{\varepsilon\,(1)}x_2^{\varepsilon\,(2)}\dots x_k^{\varepsilon\,(k)}$, имеет вид

$$W^{-1} = x_k^{-\varepsilon} {}^{(k)} x_{k-1}^{-\varepsilon} {}^{(k-1)} \dots x_2^{-\varepsilon} {}^{(2)} x_1^{-\varepsilon} {}^{(1)}.$$

Проверку аксиом группы мы оставляем читателю. Эта группа называется свободной группой, порожденной множеством S. Конечно, сами символы из S несущественны, и если S' — другое множество, находящееся во взаимно однозначном соответствии с S, то свободные группы, порожденные множествами S и S', изоморфны. Если S конечно и содержит п элементов, то свободная группа, порожденная множеством S, называется свободной группой с п образующими.

Заметим, что свободная группа с одной образующей

 $\{x\}$ состоит из элементов

1, x^1 , x^{-1} , x^1x^1 , $x^{-1}x^{-1}$, $x^1x^1x^1$, $x^{-1}x^{-1}x^{-1}$, ... и, как нетрудно видеть, изоморфна группе целых чисел \mathbb{Z} . Часто пишут сокращенно x вместо x^1 , x^2 вместо x^1x^1 , x^{-2} вместо $x^{-1}x^{-1}$ и т. д. Заметим также, что свободная группа с n образующими при n>1—бесконечная неабелева группа.

Удобно взглянуть на свободную группу с несколько иной точки зрения и рассмотреть классы эквивалентности слов по некоторому отношению эквивалентности.

Определим следующие операции над словами: (i) вставить в данное слово xx^{-1} или $x^{-1}x$, где

(ii) выбросить из данного слова xx^{-1} или $x^{-1}x$,

где $x \in S$.

(Вставить xx^{-1} в слово W — значит записать Wв виде W_1W_2 и затем перейти к слову $W_1xx^{-1}W_2$; конечно, здесь W_1 или W_2 может быть пустым.) Два слова W, W' называются эквивалентными, если W' можно получить из W конечным числом операций вида (i) и (ii). Ясно, что это — отношение эквивалентности; очевидно и то, что всякое слово эквивалентно своей редуцированной форме. Множество классов эквивалентности слов в алфавите S с приписыванием в качестве закона композиции образует свободную группу, порожденную множеством S. Для краткости мы обычно обозначаем класс эквивалентности, содержащий слово W, той же буквой W. Это не должно приводить к недоразумениям. Предположим теперь, что R—некоторое множество

слов в алфавите S. Можно рассмотреть следующие

дополнительные операции над словами в S:

(iii) вставить в данное слово r или r^{-1} , где $r \in R$;

(iv) выбросить из данного слова r или r^{-1} , где $r \in R$. Будем теперь говорить, что два слова W, W' эквивалентны, если W' можно получить из W при помощи конечного числа операций вида (i)—(iv). Читатель может легко проверить, что это — отношение эквива-лентности и что множество классов эквивалентности образует группу с приписыванием слов в качестве композиции. Говорят, что эта группа задана копредставлением (S:R), и обозначают ее символом $\langle S:R \rangle$. Как и выше, мы обозначаем класс эквивалентности

слова W той же буквой W, и снова это не должно приводить к недоразумениям. Элементы S называются образующими, а элементы R—соотношениями группы $\langle S:R \rangle$.

Приведем три простых примера. Во-первых, группа с копредставлением $(S:\varnothing)$ —это свободная группа, порожденная множеством S. Второй пример — $\langle \{x\}:\{x^n\}\rangle$, где n — фиксированное натуральное число. Эта группа состоит из слов $1, x, x^2, \ldots, x^{n-1}$ и, как легко видеть, изоморфна циклической группе \mathbb{Z}_n . В качестве третьего примера рассмотрим $\langle \{x,y\}:\{xyx^{-1}y^{-1}\}\rangle$. Ясно, что xy=yx, так как при помощи операций (iii) и (ii) получаем $xy=(xyx^{-1}y^{-1})^{-1}xy=yxy^{-1}xy=yxy^{-1}y=yx$. Нетрудно видеть, что $x^ay^b=y^bx^a$ для всех целых a и b, и потому любое слово $g=x^{a(1)}y^{b(1)}x^{a(2)}\dots x^{a(k)}y^{b(k)}$

можно переписать в виде $g = x^a y^b$, где $a = \sum_{i=1}^{R} a(i)$ и

 $b = \sum_{i=1}^{n} b(i)$. Итак, группа $\langle \{x, y\} : \{xyx^{-1}y^{-1}\} \rangle$ изоморфна $\mathbb{Z} \times \mathbb{Z}$.

Если α —слово в алфавите S и $\alpha=1$ в группе $\langle S:R \rangle$, то α не обязательно принадлежит R, но его можно привести к пустому слову при помощи конечной последовательности операций вида (i)—(iv). В этом случае говорят, что α является следствием соотношений R. Например, $x^ay^bx^{-a}y^{-b}$ —следствие соотношений $xyx^{-1}y^{-1}$.

Различные копредставления могут определять изоморфные группы. Например, группа $\langle \{x, y\} : \{y\} \rangle$ изоморфна группе $\langle \{x\} : \emptyset \rangle$. Аналогично, группа $\langle \{a, b\} : \{baba^{-1}\} \rangle$ изоморфна группе $\langle \{a, c\} : \{a^2c^2\} \rangle$. Чтобы убедиться в этом, определим $f: \langle \{a, b\} : \{baba^{-1}\} \rangle \longrightarrow \langle \{a, c\} : \{a^2c^2\} \rangle$ на образующих формулами f(a) = a, f(b) = ca и вообще

 $f\left(X_1^{\varepsilon\left(1\right)}X_2^{\varepsilon\left(2\right)}\ldots X_n^{\varepsilon\left(n\right)}\right) = f\left(X_1\right)^{\varepsilon\left(1\right)} f\left(X_2\right)^{\varepsilon\left(2\right)}\ldots f\left(X_n\right)^{\varepsilon\left(n\right)}.$

Так как $f(baba^{-1}) = caacaa^{-1} = ca^2c = c (a^2c^2) c^{-1} = cc^{-1} = 1$, то мы получаем корректно определенное отображение, которое, как легко видеть, является гомоморфизмом. Если определить

 $g: \langle \{a, c\}: \{a^2c^2\} \rangle \longrightarrow \langle \{a, b\}: \{baba^{-1}\} \rangle$

на образующих равенствами g(a) = a, $g(c) = ba^{-1}$, то легко проверить, что д определено корректно, является гомоморфизмом и fg = 1, gf = 1, так что f и g—изо-

морфизмы групп.

Определить, изоморфны или нет две группы, заданные своими копредставлениями, в общем случае крайне трудно. Даже если известно, что две такие группы изоморфны, бывает трудно понять почему. Например, группа $\langle \{x, y\} : \{xy^2x^{-1}y^{-3}, yx^2y^{-1}x^{-3}\} \rangle$ изоморфна тривиальной группе 1, но доказать это очень трудно. (Читателю тем не менее стоит попытаться это сделать.) Несмотря на эти огорчительные факты, имеются разные приемы, позволяющие узнать, различны или нет две рассматриваемые группы. Эти приемы будут излагаться по мере необходимости.

Будем говорить, что данная группа G имеет копредставление (S:R), если G изоморфна $\langle S:R \rangle$. Всякая группа G имеет копредставление $(S_G:R_G)$, где

$$S_G = \{g \in G\}, \quad R_G = \{(xy)^1 \ y^{-1} x^{-1}; \ x, \ y \in G\};$$

здесь $(xy)^1$ —символ, представляющий $xy \in G$. Доказательство того, что группа G изоморфна $\langle S_G: R_G \rangle$, предоставляется читателю в качестве упражнения.

Иногда удобнее записывать элементы из R как соотношения, т. е. вместо множества $\{r: r \in R\}$ писать $\{r=1: r \in R\}$. Более того, если r—произведение двух слов uv, то можно заменить r=1 на $u=v^{-1}$. Так, например, можно записать $\langle \{A, B\} : \{ABA^{-1}B^{-1}\} \rangle$ как $\langle \{A, B\} : \{ABA^{-1}B^{-1} = 1\} \rangle$ или как $\langle \{A, B\} : \{AB = BA\} \rangle$. Другой пример — рассмотренное выше множество R_G , которое можно записать как $\{(xy)^1 = x^1y^1; x, y \in G\}$. Эти неформальные обозначения не должны приводить к недоразумениям.

23.1. Упражнения. (a) Покажите, что всякая группа G изоморфна $\langle S_G : R_G \rangle$, где $S_G = \{g \in G\}$, $R_G = \{(xy)^1 \ y^{-1} x^{-1} \colon x, \ y \in G\}$. (b) Чему равен порядок группы $\langle \{A,B\} : R \rangle$, где $R = \{A^4, A^2 B^{-2}, A^3 B A^{-1} B^{-1}\}$?

(c) Покажите, что группа $\langle \{A, B\} : \{A^4, B^2, ABA^{-1}B^{-1}\} \rangle$ изо-

морфна $\mathbb{Z}_4 \times \mathbb{Z}_2$. (d) Пусть G — группа, заданная копредставлением (S:R). Пусть

AG—группа, заданная копредставлением (S: AR), где

 $AR = R \cup \{xyx^{-1}y^{-1}: x, y \in S\}.$

Покажите, что AG — абелева группа и что существует эпиморфизм $G \longrightarrow AG$. Чему равно ядро этого эпиморфизма?

(е) Используя упр. 19.5 (е), покажите, что фундаментальная группа бутылки Клейна имеет копредставление ($\{a, b\}: \{abab^{-1}\}$). (f) Пусть $G = \langle S:R \rangle$. Пусть T_i (i = 1, 2, 3, 4) — следующие преоб-

 T_2 : Если $r \in R$ таково, что соотношение r = 1 выполняется в группе $\langle S : R \setminus \{r\} \rangle$, положим S' = S, $R' = R \setminus \{r\}$. T_3 : Если w—слово в S, а x—символ, не принадлежащий S, по-

ложим $S' = S \bigcup \{x\}, \ R' = R \bigcup \{wx^{-1}\}.$ T_4 : Если $x \in S$, а w—слово в S, не содержащее x или x^{-1} и такое, что $wx^{-1} \in R$, го подставим w вместо x в каждый элемент из

 $R \setminus \{ wx^{-1} \}$, чтобы получить R', и положим $S' = S \setminus \{ x \}$. Докажите, что если (S'':R'') получается из (S:R) при помощи конечной последовательности преобразований Титце, то группа

 $\langle S'':R''\rangle$ изоморфна $\langle S:R\rangle$.

(Преобразования T_1 и T_2 отвечают соответственно добавлению исключению лишнего соотношения, T_3 и T_4- соответственно добавлению и исключению лишней образующей.)

Вернемся теперь к нашему топологическому пространству X — объединению двух открытых линейно связных подмножеств U_1 и U_2 с непустым и линейно связным пересечением. Пусть ϕ_1 , ϕ_2 , ψ_1 , ψ_2 — различные включения, как показано на диаграмме

Выберем в качестве отмеченной точку $x_0 \in U_1 \cap U_2$. Получим следующую коммутативную диаграмму гомоморфизмов:

Предположим, что известны фундаментальные группы пространств $U_1 \cap U_2$, U_1 и U_2 и заданы копредставления этих групп: $\pi(U_1 \cap U_2, x_0) = \langle S: R \rangle, \pi(U_1, x_0) =$

 $= \langle S_1 : R_1 \rangle, \ \pi(U_2, \ X_0) = \langle S_2 : \tilde{R}_2 \rangle.$

Если $s \in S$, то $\phi_{1*}s \in \pi(U_1, x_0)$ и $\phi_{2*}s \in \pi(U_2, x_0)$, так что можно выразить эти элементы в виде слов в алфавитах соответственно $S_1,\ S_2.$ Пусть « $\phi_{1*}s$ » и $(\phi_{2*}s)$ — слова, представляющие соответственно $\phi_{1*}s$ и $\varphi_2 * S$.

23.2. Определение. Эбозначим через R_s множество следующих слов в алфавите $S_1 \cup S_2$:

$$(\langle \varphi_{1*} s \rangle) (\langle \varphi_{2*} s \rangle)^{-1}, \quad s \in S.$$

Можно представлять R_{s} как множество соотношений; при этом оно записывается в виде $\{ \langle \phi_{1*} s \rangle = \langle \phi_{2*} s \rangle : s \in S \}$. Сформулируем теперь теорему Зейферта и ван Кам-

пена.

23.3. Теорема Зейферта—ван Кампена. $\Gamma pynna \pi (X, x_0)$ изоморфна еруппе, заданной образующими $S_1 \cup S_2$ и соотношениями $R_1 \cup R_2 \cup R_S$.

Заметим, что соотношения R группы $\pi(U_1 \cap U_2, x_0)$ не используются.

Грубо говоря, $\pi(X, x_0)$ — наименьшая группа, порожденная группами $\pi(U_1, x_0)$ и $\pi(U_2, x_0)$, для которой $\phi_{1*}s = \phi_{2*}s$, $s \in \pi(U_1 \cap U_2, x_0)$. Доказательство теоремы будет разделено на две

части. Первая часть касается образующих и будет доказана в этой главе. Вторая часть касается соотношений и будет доказана в следующей главе. Сейчас мы докажем результат, который будет полезным в дальнейшем (на самом деле это в точности упр. 7.13(g)). Здесь мы могли бы, как и в гл. 16, обойтись без него.

23.4. Теорема. Пусть X — компактное топологическое пространство, возникающее из некоторого метрического пространства с метрикой д. Для любого открытого покрытия $\{U_i: i \in J\}$ существует такое $\delta > 0$ (называемое числом Лебега этого покрытия), что любое подмножество диаметра меньше в содержится в одном из множеств U_i , $j \in J$.

Доказательство. Так как X компактно, можно считать, что J конечно. При $x \in X$ и $j \in J$ определим $f_j(x)$ равенством

$$f_j(x) = d(x, X \setminus U_j) = \inf_{y \in X \setminus U_j} d(x, y).$$

Очевидно, что f_j непрерывна, как и функция f, определенная формулой $f(x) = \max_{i \in J} f_j(x)$. Так как $X \setminus U_j$ замкнуто, то $f_j(x) = 0$ тогда и только тогда, когда $x \in X \setminus U_j$. Таким образом, f(x) = 0 тогда и только тогда, когда $x \in X \setminus U_j$. Для всех $j \in J$. Но $\{U_j: j \in J\}$ — покрытие X, и потому f(x) > 0 при всех $x \in X$. Компактность X и непрерывность f означают, что f(X) — компактное подмножество \mathbb{R} , на самом деле — интервала $(0, \infty) \subset \mathbb{R}$. Следовательно, найдется такое $\delta > 0$, что $f(x) > \delta$ для всех $x \in X$. Мы утверждаем, что любое множество S диаметра меньше δ должно принадлежать некоторому U_k , $k \in J$. Чтобы убедиться в этом, возьмем $x \in S$; тогда $f(x) > \delta$ и, значит, $f_k(x) > \delta$ при некотором k, откуда в свою очередь следует, что $x \in U_k$.

Первый шаг в доказательстве теоремы Зейферта—ван Кампена относится к образующим. По существу, мы приводим решение упр. 14.6 (g), (h) и (i).

Но диаметр S меньше δ и $d(x, X \setminus U_k) > \delta$ для некоторого $x \in S$, так что S целиком лежит в U_k .

23.5. Лемма. Группа π (X, x_0) порождена множеством $\psi_{1*}\pi$ (U_1 , x_0) \cup $\psi_{2*}\pi$ (U_2 , x_0).

Другими словами, если $\alpha \in \pi(X, x_{\bullet})$, то $\alpha = \prod \psi_{\lambda(k)} \alpha_k$, где $\alpha_k \in \pi(U_{\lambda(k)}, x_0)$ и $\lambda(k) = 1$ или 2.

Доказательство. Пусть f—замкнутый путь в точке $x_0 \in X$. Пусть δ —число Лебега открытого покрытия $\{f^{-1}(U_1), f^{-1}(U_2)\}$ отрезка I. Это означает, что если $t_0, t_1, t_2, \ldots, t_n$ —последовательность вещественных чисел, для которой

$$0 = t_0 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_n = 1$$

и $t_i - t_{i-1} < \delta$, то $f([t_{i-1}, t_i])$ содержится в U_i или U_2 при $i=1,2,\ldots,n$. Можно считать, что $f(t_i) \in U_1 \cap U_2$. (Если $f(t_i) \notin U_1 \cap U_2$, то $[t_{i-1}, t_i]$ и $[t_i, t_{i+1}]$ лежат оба в U_1 или оба в U_2 , так что можно объединить эти отрезки в один $[t_{i-1}, t_{i+1}]$, для которого $f([t_{i-1}, t_{i+1}])$

Рис.23.1

содержится в U_i или в U_2 .) Теперь перенумеруем точки и продолжим процесс (рис. 23.1).

Определим пути $f_i: I \to X$ при i = 1, 2, ..., n равенствами

$$f_i(t) = f((1-t)t_{i-1} + tt_i).$$

Заметим, что путь f_i лежит в U_1 либо в U_2 , начинается в $f(t_{i-1})$ и кончается в $f(t_i)$. Мы утверждаем, что $[f] = [f_1][f_2] \dots [f_n]$. На самом деле это было установлено в упр. 14.6 (i), но мы для полноты дадим доказательство.

23.6. ЈІемма. Пусть $f: I \to X-путь$ и $0=t_0 \leqslant t_1 \leqslant \leqslant t_2 \leqslant \ldots \leqslant t_n=1$. Если $f_j: I \to X$ при $j=1, 2, \ldots, n$ определены равенствами $f_j(t)=f((1-t)\,t_{j-1}+tt_j)$, то $[f]=[f_1]\,[f_2]\,\ldots\,[f_n]$.

Доказательство. Проведем индукцию по n. Пусть сначала n=2; тогда $0=t_0 \leqslant t_1 \leqslant t_2=1$ и

$$(f_1 * f_2)(t) = \begin{cases} f_1(2t), & 0 \leq t \leq 1/2, \\ f_2(2t-1), & 1/2 \leq t \leq 1, \end{cases} = \begin{cases} f(2tt_1), & 0 \leq t \leq 1/2, \\ f(1-(2t-1))t_1 + 2t - 1, & 1/2 \leq t \leq 1. \end{cases}$$

Используя гомотопию $F\colon I \times I \to X$ вида

$$F(t, s) = \begin{cases} f((1-s) 2tt_1 + st), & 0 \le t \le 1/2, \\ f((1-s)(t_1 + (2t-1)(1-t_1)) + st), & 1/2 \le t \le 1, \end{cases}$$

можно убедиться, что $f_1 * f_2 \sim f$.

Предположим теперь, что n>2 и лемма справедлива для всех меньших натуральных чисел. Имеем $0=t_0\leqslant t_1\leqslant\ldots\leqslant t_n=1$. Так как $0=t_0\leqslant t_{n-1}\leqslant t_n$, то по доказанному получаем $f\sim g*f_n$, где $g(t)=f(tt_{n-1})$. Далее,

$$0 = \frac{t_0}{t_{n-1}} \leqslant \frac{t_1}{t_{n-1}} \leqslant \dots \leqslant \frac{t_{n-2}}{t_{n-1}} \leqslant \frac{t_{n-1}}{t_{n-1}} = 1,$$
 так что по предположению индукции $[g] = [g_1][g_2]\dots$

так что по предположению индукции $[g] = [g_1][g_2] \dots$ \dots $[g_{n-1}]$, где $g_i(t) = g((1-t)t_{i-1}/t_{n-1} + tt_i/t_{n-1}) = f((1-t)t_{i-1} + tt_i) = f_i(t)$. Итак, $[f] = [f_1][f_2] \dots [f_n]$.

Можно было бы предложить следующее прямое доказательство (без индукции). Имеем $((\dots((f_1*f_2)*f_3)*\dots)*f_n)(t) =$

$$= \begin{cases} f_{1}(2^{n-1}t), & 0 \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-1}, \\ f_{2}(2^{n-1}t-1), & \left(\frac{1}{2}\right)^{n-1} \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-2}, \\ \vdots & \vdots & \vdots \\ f_{k}(2^{n-k+1}t-1), & \left(\frac{1}{2}\right)^{n-k+1} \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-k}, \\ \vdots & \vdots & \vdots \\ f_{n}(2t-1), & \frac{1}{2} \leqslant t \leqslant 1, \end{cases}$$

$$\begin{cases} f(2^{n-1}tt_{1}), & 0 \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-1}, \\ f(t_{1}+(2^{n-1}t-1)(t_{2}-t_{1})), & \left(\frac{1}{2}\right)^{n-1} \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-2}, \\ \vdots & \vdots & \vdots \\ f(t_{k-1}+(2^{n-k+1}t-1)(t_{k}-t_{k-1})), & =f(h(t)) \\ \left(\frac{1}{2}\right)^{n-k+1} \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-k}, & \vdots \\ f(t_{n-1}+(2t-1)(1-t_{n-1})), & \frac{1}{2} \leqslant t \leqslant 1, \end{cases}$$

где $h\colon I \longrightarrow I$ —непрерывная функция, определенная ра-

венствами

$$h(t) = \begin{cases} 2^{n-1}tt_1, & 0 \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-1}, \\ t_{k-1} + (2^{n-k+1}t-1)(t_k - t_{k-1}), \\ \left(\frac{1}{2}\right)^{n-k+1} \leqslant t \leqslant \left(\frac{1}{2}\right)^{n-k}, & k = 2, 3, \dots, n. \end{cases}$$

Определим $F: I \times I \to X$ формулой F(t, s) = f(sh(t) + (1-s)t). Очевидно, что F непрерывно, и потому $f \sim (\dots ((f_1 * f_2) * f_3) * \dots) * f_n$, что и доказывает нужный результат.

Рис.23.2

Возвращаясь к доказательству леммы 23.5, выберем пути $q_i\colon I\to X$ при $i=1,\ 2,\ \dots,\ n-1$ так, чтобы $q_i(0)=x_0,\ q_i(1)=f(t_i)$ и $q_i(t)\in U_1\cap U_2$ для всех $t\in I$. Определим также q_0 и q_n равенствами $q_0(t)=q_n(t)=x_0$ (рис. 23.2). Так как $[f]=[f_1][f_2]\dots[f_n]$, то

$$[f] = [q_0][f_1][\overline{q_1}][q_1][f_2][\overline{q_2}] \dots [q_{n-1}][f_n][\overline{q_n}] = = [q_0 * f_1 * \overline{q_1}][q_1 * f_2 * \overline{q_2}] \dots [q_{n-1} * f_n * \overline{q_n}],$$

и каждый из путей $q_i*(f_{i+1}*\overline{q}_{i+1})$ в точке x_0 замкнут и лежит целиком в U_1 или в U_2 . Следовательно, $[q_i*f_{i+1}*\overline{q}_{i+1}]$ — элемент либо подгруппы $\psi_{1*}\pi(U_1,x_0)$, либо подгруппы $\psi_{2*}\pi(U_2,x_0)$. Итак, каждый элемент группы $\pi(X,x_0)$ можно записать в виде произведения образов элементов из $\pi(U_1,x_0)$ и $\pi(U_2,x_0)$, что и доказывает лемму 23.5.

23.7. Следствие. Группа $\pi(X, x_0)$ порождена множеством $\psi_{1*}S_1 \cup \psi_{2*}S_2$, где S_1 и S_2 — образующие соответственно групп $\pi(U_1, x_0)$ и $\pi(U_2, x_0)$.

Писать все время ψ_{1*} и ψ_{2*} слишком громоздко, поэтому мы условимся писать s вместо $\psi_{j*}s$ при $s \in S_j$, $i=1,\ 2.$ Другими словами, если $f\colon I\to U_i$, то композицию $I \xrightarrow{f} U_j \xrightarrow{\psi_j} X$ обозначим также через f. В этом смысле группа $\pi(X, x_0)$ порождена множеством $S_1 \cup S_2$, где S_1 , S_2 порождают соответственно $\pi(U_1, x_0)$, $\pi (U_2, x_0).$

Непосредственно из следствия 23.7 получается

23.8. Следствие. Если $S_1 = S_2 = \emptyset$, то группа $\pi(X, x_0)$ тривиальна.

Отсюда, в частности, вытекает

23.9. Следствие. При $n \geqslant 2$ сфера S^n односвязна.

В самом деле, S^n можно представить в виде $U_1 \cup U_2$, где $U_1 = S^n \setminus \{(1, 0, ..., 0)\}, \dot{U}_2 = S^n \setminus \{(-1, 0, ..., 0)\}.$ Оба множества U_1 и U_2 односвязны, так как они гомеоморфны \mathbb{R}^n при гомеоморфизмах

$$\varphi_{1}: U_{1} \to \mathbb{R}^{n}, \ \varphi_{1}(x_{1}, \ldots, x_{n+1}) = \left(\frac{x_{2}}{1 - x_{1}}, \ldots, \frac{x_{n+1}}{1 - x_{1}}\right),
\varphi_{2}: U_{2} \to \mathbb{R}^{n}, \ \varphi_{2}(x_{1}, \ldots, x_{n+1}) = \left(\frac{x_{2}}{1 + x_{1}}, \ldots, \frac{x_{n+1}}{1 + x_{1}}\right).$$

Используя результаты гл. 19, мы можем теперь получить

- 23.10. Следствие. Фундаментальная группа проективного пространства $\mathbb{R}P^n$ совпадает с \mathbb{Z}_2 , а линзового пространства L(p, q)—с \mathbb{Z}_p .
- **23.11.** Упражнение. Пусть $X = \bigcup_{i=1}^{n} U_i$, где каждое U_i , i = 1, 2, i=1 ..., n, открыто и линейно связно. Предположим также, что $\bigcap_{i=1}^n U_i$ непусто и линейно связно. Пусть $x_0 \in \bigcap_{i=1}^n U_i$. Докажите,

что группа $\pi(X, x_0)$ порождена множеством $\bigcup_{i=1}^{n} \psi_{i*}\pi(U_i, x_0)$, где

 $\psi_i: U_i \longrightarrow X$ — включения.

ТЕОРЕМА ЗЕЙФЕРТА — ВАН КАМПЕНА II. СООТНОШЕНИЯ

В этой главе мы завершим доказательство теоремы Зейферта — ван Кампена (теоремы 23.3). Напомним, что, по нашему предположению, $X=U_1\cup U_2$, где U_1 , U_2 и $U_1\cap U_2$ — непустые открытые линейно связные подмножества X. Отмеченную точку x_0 выбираем в $U_1\cap U_2\subset X$, и группа $\pi(U_1\cap U_2,x_0)$ порождена множеством образующих S, а группы $\pi(U_j,x_0)$ имеют копредставления $(S_j:R_j)$ при j=1, Z. Наконец, R_S —множество соотношений « φ_{1*} s» = « φ_{2*} s» при $S\in S$. В предыдущей главе мы показали, что группа $\pi(X,x_0)$ порождена множеством $S_1\cup S_2$.

24.1. Лемма. Образующие $S_1 \cup S_2$ группы $\pi(X, x_0)$ удовлетворяют соотношениям R_1, R_2 и R_S .

Доказательство. Так как ψ_{j*} : π (U_{j} , x_{0}) \to π (X, x_{0})—гомоморфизм при j=1, 2, то любое соотношение, которому удовлетворяют элементы S_{j} в π (U_{j} , x_{0}), выполняется и для элементов $\psi_{j*}S_{j} \subset \pi$ (X, x_{0}). Таким образом, если мы воспользуемся соглашением об опускании ψ_{j*} , то элементы из $S_{1} \cup S_{2}$ в π (X, x_{0}) удовлетворяют соотношениям R_{1} и R_{2} .

Если $s \in S \subset \pi$ ($U_1 \cap U_2$, x_0), то $\psi_{1*} \phi_{1*} s = \psi_{2*} \phi_{2*} s$, так как $\psi_1 \phi_1 = \psi_2 \phi_2$. Если слово в S_f представляет $\phi_{j*} s$, то это же слово в S_f представляет $\psi_{j*} \phi_{j*} s$ в $\pi(X, x_0)$, так что

$$\langle \varphi_{1*} s \rangle = \langle \varphi_{2*} s \rangle, \quad s \in S. \square$$

Доказательство теоремы Зейферта—ван Кампена будет завершено, если мы покажем, что других соотношений, кроме указанных в лемме 24.1, нет.

24.2. Теорема. Если элементы $S_1 \cup S_2$ в $\pi(X, x_0)$ удовлетворяют некоторому соотношению, то оно является следствием соотношений R_1 , R_2 и R_S .

Доказательство этой теоремы нетрудно, но довольно длинно и требует введения большого количества обозначений.

Пусть $\alpha_1^{\varepsilon(1)}\alpha_2^{\varepsilon(2)}\dots\alpha_k^{\varepsilon(k)}=1$ —соотношение между элементами множества $S_1\cup S_2\subset\pi(X,x_0)$. Здесь $\varepsilon(i)=\pm 1$ и $\alpha_i\in S_{\lambda(i)}$ при $i=1,2,\dots,k$, где $\lambda(i)=1$ или 2. Для каждого $i=1,2,\dots,k$ выберем замкнутый путь f_i в $U_{\lambda(i)}$ в точке x_0 так, чтобы $[f_i]=\alpha_i^{\varepsilon(i)}$. Другими словами, $\alpha_i=[f_i]$ при $\varepsilon(i)=1$ и $\alpha_i=[\overline{f_i}]$ при $\varepsilon(i)=-1$. Определим путь $f\colon I\to X$ равенствами

$$f(t) = f_i (kt - i + 1)$$
 при $(i - 1)/k \le t \le i/k$, $i = 1, 2, \ldots, k$.

Заметим, что $f_j(t)=f((1-t)(j-1)/k+t_j/k)$, и так как $0=0/k\leqslant 1/k\leqslant\ldots\leqslant k/k=1$, то из леммы 23.6 следует, что $[f]=[f_1][f_2]\ldots[f_k]$. Так как $\alpha_1^{\mathfrak{e}^{(1)}}\alpha_2^{\mathfrak{e}^{(2)}}\ldots\ldots\alpha_k^{\mathfrak{e}^{(k)}}=1$, то [f]=1, т. е. $f\sim \epsilon_{x_0}$. Пусть $F\colon I\times I\to X$ — гомотопия между f и ϵ_{x_0} , т. е.

$$F(t, 0) = f(t), \quad F(t, 1) = F(0, s) = F(1, s) = x_0.$$

Пусть теперь δ —число Лебега открытого покрытия $\{F^{-1}(U_1), F^{-1}(U_2)\}$ квадрата $I \times I$; выберем числа $0 = t_0 < t_1 < t_2 < \ldots < t_m = 1, \ 0 = s_0 < s_1 < s_2 < \ldots < s_n = 1$ так, чтобы

- (i) $\{1/k, 2/k, \ldots, (k-1)/k\} \subset \{t_1, t_2, \ldots, t_{m-1}\},$
- (ii) $(t_i-t_{i-1})^2+(s_f-s_{f-1})^2<\delta^2$ для всех i,j.

Очевидно, что такой выбор возможен. Если R_{ij} —прямоугольник $[t_{i-1}, t_i] \times [s_{j-1}, s_j]$ в $I \times I$, то $F(R_{ij})$ содержится либо в U_1 , либо в U_2 для каждой пары i, j.

Для каждой пары i, j пусть a_{ij} : $I \to X$ —путь из x_0 в $F(t_i, s_j)$, лежащий в U_1 (или в U_2 , или в $U_1 \cap U_2$), если $F(t_i, s_j)$ лежит в U_1 (или в U_2 , или в $U_1 \cap U_2$ соответственно). Такой выбор возможен, так как каждое из множеств U_1 , U_2 и $U_1 \cap U_2$ линейно связно. Если $F(t_i, s_j) = x_0$, то мы требуем, чтобы $a_{ij} = \varepsilon_{x_0}$ (рис. 24.1).

Рис.24.1

Определим также пути b_{ij} , c_{ij} равенствами $b_{ij}(t)=F\left((1-t)\,t_{i-1}+tt_i,\,s_j\right),\,c_{ij}(t)=F\left(t_i,\,(1-t)\,s_{j-1}+ts_j\right),$ так что b_{ij} —путь из $F\left(t_{i-1},\,s_j\right)$ в $F\left(t_j,\,s_j\right),\,$ а c_{ij} —путь из $F\left(t_i,\,s_{j-1}\right)$ в $F\left(t_i,\,s_j\right)$ (рис. 24.1). Заметим, что

$$[f] = [b_{11}][b_{21}] \dots [b_{m1}], \quad [\varepsilon_{x_0}] = [b_{1n}][b_{2n}] \dots [b_{mn}].$$

Пути $b_{i,\,j-1}*c_{ij}$ и $c_{i-1,\,j}*b_{ij}$ эквивалентны (как пути): интуитивно ясно, что их можно продеформировать один в другой внутри $F(R_{ij})$. Эквивалентность этих путей явно задается гомотопией $H\colon I\times I\to X$, где

$$H(t, s) = \begin{cases} F((1-s)((1-2t)t_{i-1}+2tt_i)+st_{i-1}, \\ (1-s)s_{j-1}+s((1-2t)s_{j-1}+2ts_j)), & 0 \le t \le 1/2, \\ F((1-s)t_i+s((2-2t)(t_{i-1}+(2t-1)t_i)), & (1-s)((2-2t)s_{j-1}+(2t-1)s_j)+ss_j), & 1/2 \le t \le 1. \end{cases}$$

Заметим, что $H\left(I\times I\right)\subset U_{1},\ U_{2}$ или $U_{1}\cap U_{2}$ в зависимости от того, какое из включений $F\left(R_{ij}\right)\subset U_{1},\ U_{2}$ или $U_{1}\cap U_{2}$ имеет место.

Определим теперь замкнутые пути f_{ij} и g_{ij} в точке x_0 :

$$f_{ij} = (a_{i-1, j} * b_{ij}) * \overline{a}_{ij}, \quad g_{ij} = (a_{i, j-1} * c_{ij}) * \overline{a}_{ij}.$$

Так как $b_{i,\ j-1}*c_{ij}\sim c_{i-1,\ j}*b_{ij}$, то пути $f_{i,\ j-1}*g_{ij}$ и $g_{i-1,\ j}*f_{ij}$ эквивалентны. Более того, эквивалентность имеет место в $U_1,\ U_2$ или $U_1\cap U_2$ в соответствии с тем, будет ли $F(R_{ij})\subset U_1,\ U_2$ или $U_1\cap U_2$. Следовательно, $f_{i,\ j-1}\sim (g_{i-1,\ j}*f_{ij})*g_{ij}$, т. е. $[f_{i,\ j-1}]=[g_{i-1,\ j}][f_{ij}][g_{ij}]$. Выразим теперь каждый из этих элементов в виде слова из S_1 или S_2 , чтобы получить соотношение $(f_{i,\ j-1})=(g_{i-1,\ j})*(g_{ij})$ » (g_{ij}) » либо в $\pi(U_1,\ x_0)$, либо в $\pi(U_2,\ x_0)$ соответственно. Поэтому последнее соотношение должно быть следствием соотношений R_1 или R_2 .

Пусть теперь $1/k=t_{i\ (1)};$ тогда $[f_1]=[f_{10}][f_{20}]\ldots$ \ldots $[f_{i\ (1),\ 0}],$ и так как f_1 —замкнутый путь в $U_{\lambda\ (1)}$ в точке x_0 , то можно при помощи соотношений $R_{\lambda\ (1)}$ выразить $[f_{10}],$ $[f_{20}]\ldots [f_{i\ (1),\ 0}]$ в виде слов в алфавите $S_{\lambda\ (1)}.$ Итак, получим соотношение

$$\alpha_1^{\varepsilon_{(1)}} = [f_1] = \langle [f_{10}] \rangle \langle [f_{20}] \rangle \dots \langle [f_{i(1), 0}] \rangle,$$

которое является следствием соотношений R_{λ} (1). Можно получить аналогичные соотношения для α_2^{ϵ} (2), α_3^{ϵ} (3), ... $\alpha_k^{\epsilon(k)}$. Итак,

$$\alpha = \alpha_1^{\varepsilon (1)} \alpha_2^{\varepsilon (2)} \ldots \alpha_k^{\varepsilon (k)} = \langle [f_{10}] \rangle \langle [f_{20}] \rangle \ldots \langle [f_{m0}] \rangle$$

— соотношение, являющееся следствием $R_{\rm 1}$ и $R_{\rm 2}$. Перепишем это в виде соотношения

$$\alpha = (\langle [g_{01}] \rangle \langle [f_{11}] \rangle \langle [g_{11}] \rangle) (\langle [g_{11}] \rangle \langle [f_{21}] \rangle \langle [g_{21}] \rangle) \dots (\langle [g_{m-1}, 1] \rangle \langle [f_{m1}] \rangle \langle [g_{m1}] \rangle),$$

которое также является следствием $R_{\rm 1}$ и $R_{\rm 2}$. После новой расстановки скобок получим

$$\alpha = (\langle [g_{01}] \rangle) \langle [f_{11}] \rangle \langle ([\overline{g}_{11}] \rangle \langle [g_{11}] \rangle) \langle [f_{21}] \rangle \langle ([\overline{g}_{21}] \rangle \langle [g_{21}] \rangle) \dots \\ \dots \langle ([\overline{g}_{m-1}, 1] \rangle \langle [g_{m-1}, 1] \rangle) \langle [f_{m1}] \rangle \langle ([\overline{g}_{m1}] \rangle).$$

Имеем $g_{01}=g_{m1}=\varepsilon_{x_0}$, так что « $[g_{01}]$ »=1 и « $[g_{m1}]$ »=1— тривиальные соотношения. Соотношение « $[\overline{g}_{j1}]$ » « $[g_{j1}]$ »=1 также тривиально, если « $[\overline{g}_{j1}]$ » и « $[g_{j1}]$ » выражены в виде слов либо из S_1 , либо из S_2 . Но если g_{j1} —путь в $U_1 \cap U_2$, то одно из слов « $[\overline{g}_{j1}]$ » или « $[g_{j1}]$ » можно выразить в алфавите S_1 , а другое—в S_2 . В этом случае соотношение « $[\overline{g}_{j1}]$ » « $[g_{j1}]$ » = 1 является следствием соотношений R_S . Итак, получаем, что соотношение

$$\alpha = \langle [f_{11}] \rangle \langle [f_{21}] \rangle \ldots \langle [f_{m1}] \rangle$$

является следствием соотношений R_1 , R_2 и R_S . Повторяя этот процесс, получим соотношение

$$\alpha = \langle [f_{1n}] \rangle \langle [f_{2n}] \rangle \dots \langle [f_{mn}] \rangle = \langle [\epsilon_{x_0}] \rangle \langle [\epsilon_{x_0}] \rangle \dots \langle [\epsilon_{x_0}] \rangle$$
 в качестве следствия из упомянутых соотношений. Таким образом, первоначальное соотношение — следствие этих соотношений. Итак, теорема 24.2, а вместе с ней и теорема Зейферта — ван Кампена доказаны.

Кампена мы отложим до следующей главы, за исключением одного примера, основанного на приведенном ниже следствии.

Вычисления с применением теоремы Зейферта — ван

24.3. Следствие. Если $U_1 \cap U_2$ односвязно, то $\pi(X, x_0)$ – группа с образующими $S_1 \cup S_2$ и соотношениями $R_1 \cup R_2$.

Это утверждение очевидно.

В качестве примера применения этого следствия рассмотрим восьмерку, т. е. подпространство $X \subset \mathbb{R}^2$ вида $C_1 \cup C_2$, где (рис. 24.2)

$$\begin{split} C_1 &= \{ (x, y) \in \mathbb{R}^2 \colon \ (x-1)^2 + y^2 = 1 \}, \\ C_2 &= \{ (x, y) \in \mathbb{R}^2 \colon \ (x+1)^2 + y^2 = 1 \}. \end{split}$$

Чтобы воспользоваться следствием, нужно показать, что X является объединением открытых линейно связных подмножеств U_1 , U_2 с односвязным пересечением $U_1 \cap U_2$. Для этого положим $U_1 = X \setminus \{x_1\}$ и $U_2 = X \setminus \{x_2\}$, где $x_1 = (-2,0)$, $x_2 = (2,0)$. Очевидно, что U_1 и U_2 открыты и линейно связны, а $U_1 \cap U_2 = X \setminus \{x_1, x_2\}$ линейно связно. Далее, $U_1 \cap U_2$ односвязно, потому что оно гомотопически эквивалентно $\{x_0\}$. На самом

деле $\{x_0\}$ —сильный деформационный ретракт $U_1 \cap U_2$ (см. конец гл. 13). Поэтому применимо следствие 24.3. Далее, U_j и C_j гомотопически эквивалентны относительно x_0 при j=1,2 (на самом деле снова C_j —сильный деформационный ретракт U_j). Итак, $\pi(U_j,x_0)$ —свободная группа с одной образующей, и, согласно следствию 24.3, фундаментальная группа восьмерки—свободная группа с двумя образующими.

Рис.24.2

Нетрудно обобщить этот результат на совокупность n окружностей, соединенных в одной точке, и получить, что фундаментальная группа этого пространства есть свободная группа с n образующими. Мы оставляем это в качестве (простого) упражнения.

24.4. Упражнения.

(а) Пусть X_n — объединение n окружностей, пересекающихся (попарно и все вместе) в единственной точке x_0 . Докажите, что π (X_n , x_0) — свободная группа с n образующими. (Быть может, по индукции?)

(b) Пусть X — следующее подмножество \mathbb{R}^2 :

$$X = \{(x, y) \in \mathbb{R}^2 : -1 \leqslant x, y \leqslant 1$$
 и x или $y \in \mathbb{Z}\}.$

Определите фундаментальную группу X.

(c) Пусть Y — дополнение следующего подмножества \mathbb{R}^2 : $\{(x,0)\in\mathbb{R}^2: x\in\mathbb{Z}\}$. Докажите, что $\pi(Y,(1,1))$ — свободная группа со счетным множеством образующих.

(d) Пусть X—хаусдорфово пространство, представимое в виде $X = A \cup B$, где каждое из A, B гомеоморфно тору и $A \cap B = \{x_0\}$. Вычислите π (X, x_0). (Указание. Найдите стягиваемую окрестность C_A точки x_0 в A и положите $U_1 = B \cup C_A$. Аналогично определите $U_2 = A \cup C_B$, где C_B —стягиваемая окрестность x_0 в B.)

(е) Пусть X — пространство, полученное из $S^{n-1} \times \mathbb{R}$ выбрасыванием k непересекающихся подмножеств, гомеоморфных откры-

тому n-мерному диску D^n . Какова фундаментальная группа X?

(f) Пусть $X = \{(x, y) \in \mathbb{R}P^n \times \mathbb{R}P^n: x = x_0$ или $y = x_0\}$, где x_0 — фиксированная точка из $\mathbb{R}P^n$ (X — это два экземпляра $\mathbb{R}P^n$ с одной общей точкой x_0). Вычислите π (X, x_0). Конечна ли эта группа?

(g) Пусть $X=U_1 \cup U_2$, где U_1 и U_2 открыты и линейно связны, а $U_1 \cap U_2$ непусто и линейно связно. Пусть $\phi_1\colon U_1 \cap U_2 \longrightarrow U_1$ и $\psi_1\colon U_1 \longrightarrow X$ — включения. Докажите, что если U_2 односвязно,

то ψ_{1*} : $\pi(U_1, x_0) \longrightarrow \pi(X, x_0) \longrightarrow \text{пиморфизм.}$

Далее докажите, что ядро отображения ψ_{1*} —это наименьшая нормальная подгруппа $\pi(U_1, x_0)$, содержащая образ $\psi_{1*}\pi(U_1 \cap U_2, x_0)$.

(h) Пусть $X=U_1\cup U_2$, где U_1 , U_2 и $U_1\cap U_2$ —открытые непустые линейно связные подпространства. Докажите, что если U_2 и $U_1\cap U_2$ односвязны, то фундаментальные группы пространств U_1 и X изоморфны.

(і) Пусть K—компактное подмножество \mathbb{R}^n с линейно связным $\mathbb{R}^n \setminus K$. Пусть $h: \mathbb{R}^n \longrightarrow S^n \setminus \{(1,0,\ldots,0)\}$ — гомеоморфизм, заданный формулой

$$h(x_1, x_2, \ldots, x_n) = (\|x\|^2 - 1, 2x_1, 2x_2, \ldots, 2x_n) \left(\frac{1}{1 + \|x\|^2}\right).$$

Докажите, что при $x_0\in\mathbb{R}^n\setminus K$ группа $\pi\left(\mathbb{R}^n\setminus K, x_0\right)$ изоморфна $\pi\left(S^n\setminus h\left(K\right), h\left(x_0\right)\right)$. (Указание: $K\subset B_k$ (0) при некотором k. Рассмотрите $U_1=h$ ($\mathbb{R}^n\setminus K$), $U_2=h$ ($\mathbb{R}^n\setminus B_k$ (0)) \bigcup {(1, 0, 0, ..., 0)} и воспользуйтесь упр. (h).)

(j) Пусть X—тор с одной выброшенной точкой. Покажите, что фундаментальная группа X—свободная группа с двумя обра-

зующими.

(k) Покажите, что фундаментальная группа $\mathbb{R}P^2 \setminus \{y\}$, где $y \in \mathbb{R}P^2$, изоморфна \mathbb{Z} .

(1) Пусть Y_n —следующее подпространство \mathbb{O} :

$$Y_n = \{z \in \mathbb{C}: |z-j+1/2| = 1/2, j=1, 2, \ldots, n\},$$

где n — натуральное число. Вычислите $\pi(Y_n, 0)$.

ТЕОРЕМА ЗЕЙФЕРТА — ВАН КАМПЕНА III. ВЫЧИСЛЕНИЯ

В этой главе мы воспользуемся теоремой Зейферта ван Кампена для вычисления фундаментальных групп некоторых пространств. Для первых трех примеров ответ был получен ранее (в качестве упражнения или следствия) при помощи других методов.

Начнем с доказательства того, что фундаментальная группа тора T изоморфна $\mathbb{Z}{ imes}\mathbb{Z}$. Представим T в виде квадрата со сторонами, отождествленными, как показано на рис. 25.1 (b). Отождествляемые стороны обозначим через a_1 и a_2 .

Пусть y—некоторая точка внутри квадрата, как показано на рис. 25.1(c). Пусть $U_1 = T \setminus \{y\}$ и $U_2 =$ $=T \setminus (a_1 \cup a_2)$, т. е. U_2 —внутренность квадрата. Очевидно, U_1 и U_2 открыты и линейно связны, так же как и $U_1 \cap U_2$. Таким образом, можно применить теорему Зейферта—ван Кампена. Пусть x_0 , x_1 —точки, указанные на рис. 25.1 (c). (Заметим, что x_1 появляется на рисунке четыре раза, так как эти четыре точки отождествляются в одну точку пространства T.) Пусть, наконец, c — окружность с центром в y, проходящая

через x_0 , а d — прямолинейный отрезок, соединяющий x_0 и x_1 , как показано на рис. 25.1 (c).

Граница квадрата (рис. 25.2 (а)) после отождествления дает восьмерку в T (рис. 25.2 (b); см. также рис. 25.1 (а)). Она, очевидно, является сильным деформационным ретрактом множества $U_{\mathfrak{s}}$.

Рис.25.2

Если α_1 и α_2 —замкнутые пути в U_1 в точке x_1 , обходящие по одному разу a_1 и a_2 соответственно в направлениях, отмеченных на рис. 25.2 (b), то $\pi(U_1, x_1)$ свободная группа с образующими $[\alpha_1]$, $[\alpha_2]$. Заметим, что $[\alpha_1]$ и $[\alpha_2]$ определены однозначно. Пусть δ —путь в U_1 из x_0 в x_1 , соответствующий отрезку d (т. е. δ : $I \rightarrow d$ —гомеоморфизм); тогда $\pi(U_1, x_0)$ —свободная группа с образующими $[\delta*\alpha_1*\overline{\delta}], [\delta*\alpha_2*\overline{\delta}],$ которые мы обозначим через А, и А, соответственно.

Одноточечное пространство $\{x_0\}$ —сильный деформационный ретракт множества U_2 , и потому $\pi(U_2, x_0) = 1$. Окружность с является сильным деформационным ретрактом пересечения $U_1 \cap U_2$. Если γ —замкнутый путь в $U_1 \cap U_2$ в точке x_0 , однократно обходящий c в направлении, показанном на рис. 25.1(c), то $\pi(U_1 \cap U_2)$ x_0) — свободная группа, порожденная элементом [v].

Теорема Зейферта — ван Кампена утверждает, что группа $\pi\left(T,\;x_{\scriptscriptstyle 0}\right)$ порождена множеством образующих $\{A_1, A_2\}$ и имеет единственное соотношение « $\phi_{1*}[\gamma]$ »=

=« $\phi_{2*}[\dot{\gamma}]$ ». В U_1 имеем

$$\begin{split} [\varphi_1 \gamma] = & [\delta * \alpha_1 * \alpha_2 * \overline{\alpha}_1 * \overline{\alpha}_2 * \overline{\delta}] = \\ = & [\delta * \alpha_1 * \overline{\delta}] [\delta * \alpha_2 * \overline{\delta}] [\delta * \overline{\alpha}_1 * \overline{\delta}] [\delta * \overline{\alpha}_2 * \overline{\delta}], \end{split}$$

так что « $\phi_{1*}[\gamma]$ » = $A_1A_2A_1^{-1}A_2^{-1}$. С другой стороны, « $\phi_{2*}[\gamma]$ » = 1, так что группа $\pi(T, x_0)$ имеет копредставление ($\{A_1, A_2\}$: $\{A_1A_2A_1^{-1}A_2^{-1}\}$) и, следовательно, изоморфна $\mathbb{Z} \times \mathbb{Z}$.

В качестве следующего примера рассмотрим бутылку Клейна К. Вычисление ее фундаментальной группы во многом аналогично вычислению фундаментальной группы тора. Представим бутылку Клейна К, как на рис. 25.3(а), и используем обозначения рис. 25.3(b).

Пусть $U_1 = K \setminus \{y\}$ и $U_2 = K \setminus (a_1 \cup a_2)$; тогда U_1 , U_2 , $U_1 \cap U_2$ удовлетворяют условиям теоремы Зейферта—ван Кампена. Граница квадрата после отождествления станет восьмеркой (рис. 25.4), и эта восьмерка является сильным деформационным ретрактом множе-

ства U_1 .

Следовательно, $\pi(U_1, x_0)$ —свободная группа, порожденная образующими $[\alpha_1]$, $[\alpha_2]$, где α_1 , α_2 —пути, соответствующие сторонам a_1 и a_2 . Если δ —путь, отвечающий отрезку d, то $\pi(U_1, x_0)$ —свободная группа, порожденная элементами $[\delta*\alpha_1*\overline{\delta}]$, $[\delta*\alpha_2*\overline{\delta}]$, которые мы обозначим соответственно A_1 и A_2 .

Пространство U_2 стягиваемо, и потому $\pi(U_2, x_0) = 1$. Наконец, окружность c—сильный деформационный ретракт $U_1 \cap U_2$, так что $\pi(U_1 \cap U_2, x_0)$ —свободная группа, порожденная элементом $[\gamma]$, где γ —путь в $U_1 \cap U_2$, соответствующий c, т. е. проходящий c один раз в ука-

занном направлении. В U_1 имеем

$$\begin{split} [\phi_1 \gamma] &= [\delta * \alpha_1 * \alpha_2 * \overline{\alpha}_1 * \alpha_2 * \overline{\delta}] = \\ &= [\delta * \alpha_1 * \overline{\delta}] [\delta * \alpha_2 * \overline{\delta}] [\delta * \overline{\alpha}_1 * \overline{\delta}] [\delta * \alpha_2 * \overline{\delta}], \end{split}$$

так что « $\phi_{1*}[\gamma]$ » = $A_1A_2A_1^{-1}A_2$. С другой стороны, « $\phi_{2*}[\gamma]$ » = 1. Итак, из теоремы Зейферта — ван Кампена немедленно получаем, что $\pi(K, x_0)$ изоморфна группе $\langle \{A_1, A_2\} : \{A_1A_2A_1^{-1}A_2\} \rangle$ (см. также упр. 19.5(e)).

В качестве третьего примера мы покажем (снова), что фундаментальная группа вещественной проективной плоскости $\mathbb{R}P^2$ изоморфна \mathbb{Z}_2 . Представим $\mathbb{R}P^2$ в виде факторпространства, как показано на рис. 25.5(а).

Рис.25.3

Рис.25.4

Пусть x_0 , x_1 , y, c и d—точки, окружность и отрезок,

изображенные на рис. 25.5(b).

Пусть $U_1 = \mathbb{R}P^2 \setminus \{y\}$ и $U_2 = \mathbb{R}P^2 \setminus a$; тогда U_1 , U_2 , $U_1 \cap U_2$ удовлетворяют условиям теоремы Зейферта — ван Кампена. Кривая a представляет окружность в $\mathbb{R}P^2$ и является сильным деформационным ретрактом множества U_1 . Таким образом, $\pi(U_1, x_1)$ — свободная группа, порожденная элементом $[\alpha]$, где α — путь в U_1 , соответствующий кривой a. Если δ — путь из x_0 в x_1 , соответствующий отрезку d, то $\pi(U_1, x_0)$ — свободная группа, порожденная элементом $[\delta*\alpha*\delta] = A$.

Подпространство U_2 стягиваемо в точку x_0 , и потому $\pi(U_2, x_0) = 1$. Окружность c— сильный деформационный ретракт $U_1 \cap U_2$, так что $\pi(U_1 \cap U_2, x_0)$ —свободная группа с образующей $[\gamma]$, где γ —путь в $U_1 \cap U_2$ в точке x_0 , соответствующий c, τ . е. обходящий c один

Рис.25.6

(a)

раз в указанном направлении. Из теоремы Зейферта — ван Кампена получаем, что $\pi\left(\mathbb{R}P^2,x_0\right)$ — группа с образующей A и соотношением $\langle \phi_{1*}[\gamma] \rangle = \langle \phi_{2*}[\gamma] \rangle$. В U_1 имеем $\left[\phi_1\gamma\right] = \left[\delta*\alpha*\alpha*\overline{\delta}\right] = \left[\delta*\alpha*\overline{\delta}\right] \left[\delta*\alpha*\overline{\delta}\right]$, так что $\langle \phi_{1*}[\gamma] \rangle = A^2$. Между тем $\langle \phi_{2*}[\gamma] \rangle = 1$, так что $\pi\left(\mathbb{R}P^2,x_0\right)$ изоморфна группе $\langle \{A\}:\{A^2\} \rangle$, т. е. \mathbb{Z}_2 .

Нашим следующим примером будет пространство X, представленное n-угольником, все стороны которого отождествлены с одной, как показано на рис. 25.6(a). Заметим, что если n=2, то X совпадает с $\mathbb{R}P^2$.

Используя обозначения рис. 25.6(b), положим $U_1 = X \setminus \{y\}$ и $U_2 = X \setminus a$. Пространства U_1 , U_2 , $U_1 \cap U_2$ непусты и линейно связны. Стороны многоугольника образуют окружность a в X. Она является сильным

Рис.25.**7**

Рис.25.8

деформационным ретрактом U_1 , и потому $\pi(U_1, x_1)$ — свободная группа, порожденная элементом $[\alpha]$, где α — замкнутый путь в точке x_1 , соответствующий окружности a. Если δ — путь из x_0 в x_1 , соответствующий отрезку d, то $\pi(U_1, x_0)$ — свободная группа, порожденная элементом $[\delta*\alpha*\delta] = A$. Подпространство U_2 стягиваемо, так что $\pi(U_2, x_0) = 1$. Наконец, окружность c — сильный диформационный ретракт $U_1 \cap U_2$, так что $\pi(U_1 \cap U_2, x_0)$ — свободная группа, порожденная элементом $[\gamma]$, где γ — замкнутый путь в $U_1 \cap U_2$ в точке x_0 , соответствующий окружности c.

Применяя теорему Зейферта — ван Кампена, мы видим, что π (X, x_0) имеет одну образующую A и одно соотношение « $\phi_{1*}[\gamma]$ » = « $\phi_{2*}[\gamma]$ ». Легко видеть, что $[\phi_1\gamma] = [\delta*\alpha*\ldots*\alpha*\delta] = [\delta*\alpha*\delta]^n$, так что « $\phi_{1*}[\gamma]$ » = A^n .

Между тем « $\phi_{2*}[\gamma]$ » = 1, так что $\pi(X, x_0)$ имеет копред-

ставление ({A}:{ A^n }), т. е. $\pi(X, x_0)$ изоморфна цикли-

ческой группе \mathbb{Z}_n .

Во всех предыдущих примерах этой главы пространство U_2 стягиваемо. Следующие примеры не обладают этим свойством. Рассмотрим одновременно три пространства. Пусть X_1 , X_2 , X_3 — факторпространства, показанные на рис. 25.7. Заметим, что в X_3 сторона a_3 не отождествлена ни с какой другой стороной. Используемые нами обозначения показаны на рис. 25.8.

Рис.25.9

Пусть $U_{i1} = X_i \setminus b$ при i = 1, 2, 3. Пусть $U_{i2} = X_i \setminus (a_1 \cup a_2)$ при i = 1, 2, и пусть $U_{32} = X_3 \setminus (a_1 \cup a_2 \cup a_3)$. Тогда $U_{i1}, U_{i2}, U_{i1} \cap U_{i2}$ — открытые и линейно связные подмножества пространств X_i при i = 1, 2, 3. На рис. 25.9 показаны «внешние стороны» пространств X_i после отождествлений.

В каждом случае они являются сильными деформационными ретрактами подпространств U_{i1} . Поэтому нетрудно видеть, что $\pi(U_{i1}, x_0)$ — свободная группа с образующими

где в каждом случае мы используем очевидные обозначения α_1 , α_2 , α_3 и δ .

Пространство U_{i2} содержит окружность b в качестве сильного деформационного ретракта, i=1, 2, 3. Таким образом, $\pi(U_{i2}, x_0)$ —свободная группа с одной обра-

зующей $B = [\varepsilon *\beta * \overline{\varepsilon}]$, где β и ε —пути, отвечающие соответственно b и e.

Окружность c — сильный деформационный ретракт подпространства $U_{i_1} \cap U_{i_2}$, так что $\pi (U_{i_1} \cap U_{i_2}, x_0)$ — свободная группа с одной образующей $[\gamma]$. В U_{i_1} имеем

$$\begin{bmatrix} \phi_1 \gamma \end{bmatrix} = \begin{bmatrix} \delta * \alpha_2 * \alpha_1 * \alpha_1 * \overline{\alpha_2} * \alpha_1 * \overline{\alpha_1} * \overline{\delta} \end{bmatrix} = A_2 A_1^2 A_2^{-1} \quad \text{при} \quad i = 1,$$

$$\begin{bmatrix} \phi_1 \gamma \end{bmatrix} = \begin{bmatrix} \delta * \alpha_2 * \alpha_1 * \overline{\alpha_1} * \overline{\alpha_2} * \alpha_1 * \overline{\alpha_1} * \overline{\delta} \end{bmatrix} = 1 \quad \text{при} \quad i = 2,$$

Внутри U_{i2} имеем $[\phi_2\gamma]=[\epsilon*\beta*\beta*\beta*\bar{\epsilon}]=B^3$. Применяя теорему Зейферта—ван Кампена, получаем следующие копредставления фундаментальных групп пространств X_i 1

 $\begin{aligned} \pi\left(X_{1}, \ X_{0}\right) &= \langle \{A_{1}, \ A_{2}, \ B\} : \{A_{2}A_{1}^{2}A_{2}^{-1} = B^{3}\} \rangle, \\ \pi\left(X_{2}, \ X_{0}\right) &= \langle \{A_{2}, \ B\} : \{B^{3} = 1\} \rangle, \\ \pi\left(X_{3}, \ X_{0}\right) &= \langle \{A_{1}, \ A_{2}, \ B\} : \varnothing \rangle. \end{aligned}$

Последний результат имеет место, поскольку $A_2A_1^2A_2^{-1} \times A_3^{-1}A_1^{-1} = B^3$ тогда и только тогда, когда $A_3 = A_1^{-1}B^{-3}A_2A_1^2A_2^{-1}$, так что группа $\{A_1, A_2, A_3, B\}$: $\{A_2A_1^2A_2^{-1}A_3^{-1}A_1^{-1} = B^3\}$ изоморфна группе $\{A_1, A_2, B\}$: \varnothing >.

Рис. 25.10

Дальнейшие вычисления с использованием теоремы Зейферта—ван Кампена будут проведены в следующих главах.

Рис.25.11

25.1. Упражнения. (a) Пусть G — конечная абелева группа. Покажите, что существует пространство X_G , фундаментальная группа которого изоморфна G (см. также упр. 19.5(b)). (b) Пространство X получено из пятиугольника при помощи

отождествления его сторон, как показано на рис. 25.10. Вычис-

лите фундаментальную группу пространства Х.

(c) Докажите, что если подмножество $W \subset \mathbb{R}^3$ гомеоморфно открытому диску $\mathring{\mathcal{D}}^2$, то W не является открытой в \mathbb{R}^3 окрестностью никакой своей точки. (Указание: если W — открытая в \mathbb{R}^3 окрестность гочки $\omega \in W$, то найдется подмножество $U_1 \subset W$, для которого $w \in U_1$ и $\overline{U_1} \cong \mathring{D}^3$ по определению.)

(d) Пусть X — крендель, т. е. подпространство \mathbb{R}^3 , изображен-

ное на рис. 11.7(e). Вычислите его фундаментальную группу.

(е) Пусть D_1 , D_2 —два двумерных диска с границами S_1 и S_2 соответственно. Пусть X—объединение D_1 и D_2 , причем точки S_1 отождествлены с точками S_2 по правилу: $\exp 2\pi it \in S_1$ отождествляется с $\exp 2\pi int$ в S_2 , где n—некоторое фиксированное натуральное число. Докажите, что X односвязно.

(f) Вычислите фундаментальные группы факторпространств,

изображенных на рис. 25.11.

ФУНДАМЕНТАЛЬНАЯ ГРУППА ПОВЕРХНОСТИ

Теперь ничто не мешает нам приступить к вычислению фундаментальной группы произвольной поверхности. Напомним результаты гл. 11, согласно которым любую поверхность можно получить из сферы, тора и проективной плоскости при помощи взятия связной суммы. Напомним также, что фундаментальная группа тора имеет две образующие, скажем c_i и d_i , и одно соотношение $c_1d_1c_1^{-1}d_1^{-1}=1$, тогда как фундаментальная группа проективной плоскости имеет одну образующую f_i и одно соотношение $f_i^2=1$. Общий результат, который мы докажем, состоит в следующем.

26.1. Теорема. Фундаментальная группа поверхности $S = S^2 \# mT \# n\mathbb{R}P^2$ есть группа с образующими c_1 , d_1 , c_2 , d_2 , ..., c_m , d_m , f_1 , f_2 , ..., f_n и одним соотношением

$$c_1 d_1 c_1^{-1} d_1^{-1} c_2 d_2 c_2^{-1} d_2^{-1} \dots c_m d_m c_m^{-1} d_m^{-1} f_1^2 f_2^2 \dots f_n^2 = 1.$$

Доказательство. Можно записать S в виде

$$S = X \cup H_1 \cup H_2 \cup \ldots \cup H_m \cup M_1 \cup M_2 \cup \ldots \cup M_n,$$

где X—сфера с m+n=q выброшенными открытыми дисками, H_1, H_2, \ldots, H_m —ручки (каждая из которых — тор с выброшенным открытым диском) и M_1, M_2, \ldots, M_m —листы Мёбиуса (каждый из которых — вещественная проективная плоскость с выброшенным диском), Если b_1, b_2, \ldots, b_q суть q окружностей, образующих край X, то

$$X \cap H_i = b_i,$$
 $i = 1, 2, ..., m,$
 $X \cap M_j = b_{m+j},$ $j = 1, 2, ..., n.$

Заметим, что X гомеоморфно диску D^2 с q-1 выброшенными открытыми дисками. Пусть x_0 —точка внутри X, как показано на рис. 26.1. Пусть x_1 , x_2 , ..., x_q —точки на b_1 , b_2 , ..., b_q . Пусть, наконец, a_1 , a_2 , ..., a_q —кривые, соединяющие x_0 с x_1 , x_2 , ..., x_q соответственно, как показано на рис. 26.1.

Рис.26.1

Подпространство в X, состоящее из $a_i, a_2, \ldots, a_{q-1}$ и $b_1, b_2, \ldots, b_{q-i}$, есть сильный деформационный ретракт X. Поэтому нетрудно видеть, что фундаментальная группа X—это свободная группа с q—1 образующими. (На самом деле после стягивания дуг $a_1, a_2, \ldots, a_{q-1}$ в точку x_0 пространство X гомотопически эквивалентно относительно $\{x_0\}$ объединению q—1 окружностей с одной общей точкой.) Если a_1, a_2, \ldots, a_q —пути в X из x_0 в x_l , соответствующие дугам a_1, a_2, \ldots, a_q , а $\beta_1, \beta_2, \ldots, \beta_q$ —замкнутые пути в точках x_1, x_2, \ldots, x_q , соответствующие окружностям b_1, b_2, \ldots, b_q , то $\pi(X, x_0)$ —свободная группа, порожденная образующими

$$B_1 = [\alpha_1 * \beta_1 * \overline{\alpha}_1], \quad B_2 = [\alpha_2 * \beta_2 * \overline{\alpha}_2], \dots, \quad B_{q-1} = [\alpha_{q-1} * \beta_{q-1} * \overline{\alpha}_{q-1}].$$

Если обозначить $[\alpha_q * \beta_q * \overline{\alpha}_q]$ через B_q , то $B_q^{-1} = B_1 B_2 \dots B_{q-1}$, т. е. $B_1 B_2 \dots B_{q-1} B_q = 1$.

Итак, $\pi(X, x_0)$ можно эквивалентно описать как группу с образующими B_1, B_2, \ldots, B_q и одним соот-

ношением $B_1B_2\dots B_q=1$. Эта формулировка будет полезна в дальнейшем.

Если взять другие отмеченные точки, например x_l , $l=1, 2, \ldots, q$, то $\pi(X, x_l)$ —группа с образующими $h_l(B_1), h_l(B_2), \ldots, h_l(B_q)$ и одним соотношением $h_l(B_1B_2\ldots B_q)=1$, где $h_l: \pi(X, x_0)\to \pi(X, x_l)$ —изоморфизм, определенный формулой $h_l([\theta])=[\bar{\alpha}_l*\theta*\alpha_l]$. Заметим, что $h_l(B_l)=[\beta_l]$.

Рис.26.2

Рассмотрим теперь ручку H_{l} . Из прежних вычислений нам известно, что фундаментальная группа H_{l} —свободная группа с двумя образующими. В обозначениях рис. $26.2~\pi\,(H_{l},~x_{i})$ —свободная группа, порожденная элементами $C_{l} = \left[\varepsilon_{l} * \gamma_{i} * \overline{\varepsilon_{l}} \right]$ и $D_{l} = \left[\varepsilon_{l} * \delta_{l} * \overline{\varepsilon_{l}} \right]$, где ε_{l} —путь, соответствующий кривой e_{l} в H_{l} , а γ_{l} , δ_{l} —замкнутые пути в H_{l} , изображенные на рис. 26.2.

Заметим, что замкнутый путь β_l , соответствующий окружности b_i , можно выразить через C_l и D_l в виде $[\beta_l] = C_l D_l C_l^{-1} D_l^{-1}$.

Рассмотрим лист Мёбиуса M_j . Фундаментальная группа M_j —свободная группа с одной образующей $F_j = \left[\epsilon_{j+m} * \phi_j * \epsilon_{j+m} \right]$, где ϵ_{j+m} —путь, соответствующий e_{j+m} на рис. 26.3, а ϕ_j —изображенный там замкнутый путь. Заметим также, чго $\left[\beta_{j+m} \right] = F_i^2$.

Чтобы вычислить фундаментальную группу поверхности S, скомбинируем полученные результаты и применим индукцию. Определим подпространства X_0 , X_1 , ..., X_a поверхности S следующим образом:

$$X_0 = X$$
, $X_i = X_{i-1} \cup H_i$ при $i = 1, 2, ..., m$, $X_{m+j} = X_{m+j-1} \cup M_j$ при $j = 1, 2, ..., n$.

Покажем, что фундаментальные группы пространств X_i и X_{m+j} устроены следующим образом: $\pi(X_i, x_0)$, $i=0, 1, \ldots, m$ — группа с образующими c_1, d_1, c_2 ,

Рис.26.3

 $d_2, \ldots, c_i, d_i, B_{i+1}, B_{i+2}, \ldots, B_q$ и одним соотношением $c_1d_1c_1^{-1}d_1^{-1}c_2d_2c_2^{-1}d_2^{-1}\ldots c_id_ic_1^{-1}d_i^{-1}B_{i+1}\ldots B_q=1$, а $\pi(X_{m+j}, x_0), j=0, 1, \ldots, n,$ — группа с образующими $c_1, d_1, c_2, d_2, \ldots, c_m, d_m, f_1, f_2, \ldots, f_j, B_{m+j+1}, B_{m+j+2}, \ldots$ \ldots, B_q и одним соотношением $c_1d_1c_1^{-1}d_1^{-1}c_2d_2c_2^{-1}d_2^{-1}\ldots$

 $\dots c_m d_m^4 c_m^{-1} d_m^{-1} f_1^2 f_2^2 \dots f_j^2 B_{m+j+1} B_{m+j+2} \dots B_q = 1.$

Чтобы доказать этот результат, воспользуемся теоремой Зейферта—ван Кампена, а для этого нужно представить X_k в виде объединения двух открытых подмножеств. Хотя $X_k = X_{k-1} \cup Y_k$, где $Y_k = H_i$ или M_j при некоторых i и j, но ни одно из этих подпространств не открыто. Напомним, однако, результат гл. 11 о том, что (поскольку мы брали связные суммы) найдется открытая окрестность N_k окружности b_k в S, гомеоморфная $S^1 \times (-1, 1)$, причем если g_k : $N_k \rightarrow S^1 \times (-1, 1)$ —соответствующий гомеоморфизм, то $g_k(b_k) = S^1 \times \{0\}$ и

$$g_k^{-1}(S^1 \times (-1, 0]) \subset X \subset X_{k-1}, \quad g_k^{-1}(S^1 \times [0, 1]) \subset Y_k.$$

Поэтому определим $U_k = X_{k-1} \cup N_k \subset X_{k-1} \cup Y_k = X_k$ и $V_k = N_k \cup Y_k \subset X_{k-1} \cup Y_k = X_k$. Подпространства U_k и V_k иространства X_k открыты и линейно связны, и $U_k \cap$

 $\bigcap V_k = N_k$ линейно связно. Теперь можно применить теорему Зейферта—ван Кампена к $X_k = U_k \cup V_k$ и отмеченным точкам $x_k \in b_k$. Очевидно, что X_{k-1}, Y_k, b_k —сильные деформационные ретракты соответственно пространств $U_k, V_k, U_k \cap V_k$, так что

$$\pi (U_k, x_k) = \pi (X_{k-1}, x_k), \quad \pi (V_k, x_k) = \pi (Y_k, x_k),$$

$$\pi (U_k \cap V_k, x_k) = \pi (b_k, x_k) = \langle \{ [\beta_k] \} \colon \varnothing \rangle.$$

Фундаментальные группы $\pi(X_k, x_0)$ совсем легко вычисляются по индукции. Иллюстрируем это вычислением группы $\pi(X_i, x_0)$. Имеем

$$\pi(U_{i}, x_{1}) = \pi(X, x_{1}) = \langle \{h_{1}(B_{1}), h_{1}(B_{2}), \dots, h_{1}(B_{d})\} : \{h_{1}(B_{1}B_{2}\dots B_{d}) = 1\} \rangle,$$

$$\pi(V_{i}, x_{1}) = \pi(H_{i}, x_{1}) = \langle \{C_{i}, D_{1}\} : \varnothing \rangle,$$

$$\pi(U_{1} \cap V_{i}, x_{1}) = \pi(b_{i}, x_{1}) = \langle \{[\beta_{1}]\} : \varnothing \rangle.$$

По теореме Зейферта—ван Кампена π (X_i , x_1) = = π ($U_i \cup V_i$, x_1)—группа с образующими C_i , D_i , h_1 (B_1), h_1 (B_2), ..., h_1 (B_q) и соотношениями h_1 (B_1B_2 B_q) = 1, h_1 (B_1) = $C_1D_1C_1^{-1}D_1^{-1}$, так как h_1 (B_1) = $[\beta_1]$ в X и [β_1] = $C_1D_1C_1^{-1}D_1^{-1}$ в H_i . Исключение образующей h_1 (B_1) показывает, что π (X_i , X_i)—группа с образующими C_i , D_i , h_1 (B_2), h_1 (B_3), ..., h_1 (B_q) и одним соотношением $C_iD_1C_1^{-1}D_1^{-1}h_i$ ($B_2B_3\dots B_q$) = 1.

Отсюда непосредственно следует, что $\pi(X_1, x_0)$ — группа с образующими c_1 , d_1 , B_2 , B_3 , ..., B_q и одним соотношением $c_1d_1c_1^{-1}d_1^{-1}B_2B_3$... $B_q=1$, где $c_1=h_1^{-1}(C_1)=$ = $[\alpha_1*e_1*\gamma_1*e_1*\alpha_1]$ и $d_1=h_1^{-1}(D_1)=[\alpha_1*e_1*\delta_1*e_1*\alpha_1]$.

Очевидное продолжение этой процедуры предоставляется читателю.

Непосредственно не видно, насколько различаются группы, перечисленные в теореме 26.1. Поэтому мы прокоммутируем их, т. е. из группы $G = \langle S_1 : R \rangle$ образуем прокоммутированную группу

$$AG = \langle S_1 : R \cup \{xyx^{-1}y^{-1}, x, y \in S_1\} \rangle,$$

добавив соотношения xy=yx для всех $x, y \in G$. Пусть n=0, т. е. $S=S^2 \# mT$; тогда $A\pi (S, x_0)$ — группа с множеством образующих $S_m=\{c_1, d_1, c_2, d_2, \dots$

..., c_m , d_m } и соотношениями $\{r_m = 1\} \cup \{xy = yx: x, y \in S_m\}$, где

$$r_m = c_1 d_1 c_1^{-1} d_1^{-1} c_2 d_2 c_2^{-1} d_2^{-1} \dots c_m d_m c_m^{-1} d_m^{-1}.$$

В частности, имеет место соотношение $c_1d_1=d_1c_1$, так что соотношение $r_m=1$ является следствием соотношений $\{xy=yx\colon x,\ y\in S_m\}$. Итак, $A\pi(S,\ x_0)$ —это группа $\langle S_m\colon \{xy=yx\colon\ x,\ y\in S_m\}\rangle$, и нетрудно видеть, что $A\pi(S,\ x_0)\cong \mathbb{Z}^{2m}$.

При $n \ge 1$, когда $S = S^2 \# mT \# n\mathbb{R}P^2$, группа $A\pi(S, x_0)$ имеет образующие $S_{m+n} = \{c_1, d_1, c_2, d_2, \ldots, c_m, d_m, f_1, f_2, \ldots, f_n\}$ и соотношения $\{r_{m+n} = 1\}$ $\bigcup \{xy = yx: x, y \in S_{m+n}\}$, где

$$r_{m+n} = c_1 d_1 c_1^{-1} d_1^{-1} c_2 d_2 c_2^{-1} d_2^{-1} \dots c_m d_m c_m^{-1} d_m^{-1} f_1^2 f_2^2 \dots f_n^2.$$

Соотношение $r_{m+n}=1$ —следствие соотношений $\{xy=yx: x, y\in S_{m+n}\}$ и $\{(f_1f_2\dots f_n)^2=1\}$. Более того, соотношение $\{(f_1f_2\dots f_n)^2=1\}$ —следствие соотношений $\{r_{m+n}=1\}\cup \{xy=yx: x, y\in S_{m+n}\}$. Таким образом,

$$A\pi (S, x_0) = \langle S_{m+n} : \{ xy = yx : x, y \in S_{m+n} \} \cup \{ (f_1 f_2 \dots f_n)^2 = 1 \}.$$

Поэтому любой элемент из $A\pi(S, x_0)$ можно записать в виде

$$c_1^{a(1)}d_1^{b(1)}c_2^{a(2)}d_2^{b(2)}\dots c_m^{a(m)}d_m^{b(m)}f_1^{e(1)}f_2^{e(2)}\dots f_n^{e(n)},$$

где $a(i), b(i), e(i) \in \mathbb{Z}$. Это выражение можно переписать в виде

$$c_1^{\alpha(1)} d_1^{b(1)} c_2^{\alpha(2)} d_2^{b(2)} \dots c_m^{\alpha(m)} d_m^{b(m)} f_1^{e(1)-e(n)} f_2^{e(2)-e(n)} \dots$$

$$\dots f_{n-1}^{e(n-1)-e(n)} (f_1 f_2 \dots f_n)^{e(n)},$$

и тогда легко видеть, что $A\pi(S, x_0) \cong \mathbb{Z}^{2m+n-1} \times \mathbb{Z}_2$.

26.2. Следствие. Прокоммутированная фундаментальная группа (i) ориентируемой поверхности рода $m \ (m \geqslant 0)$ есть \mathbb{Z}^{2m} , (ii) неориентируемой поверхности рода $n \ (n \geqslant 1)$ есть $\mathbb{Z}^{n-1} \times \mathbb{Z}_2$.

Это следствие показывает, что никакие две поверхности из перечисленных в теореме 11.3 не гомеоморфны. Следующее утверждение можно рассматривать как

основной результат о связи поверхностей и их фундаментальных групп.

26.3. Следствие. Две поверхности тогда и только тогда гомеоморфны, когда их (прокоммутированные) фундаментальные группы изоморфны.

Это следует из классификационной теоремы для поверхностей (гл. 11) и следствия 26.2.

Полезно отметить еще один результат, вытекающий из последнего следствия.

26.4. Следствие. Поверхность тогда и только тогда односвязна, когда она гомеоморфна сфере S^2 .

Следствие 26.2 можно использовать для решения вопроса о том, является ли какое-то заданное пространство поверхностью.

26.5. Следствие. Пусть X — некоторое пространство и $x_0 \in X$. Если группа $A\pi(X, x_0)$ не имеет вида \mathbb{Z}^{2m} или $\mathbb{Z}^{n-1} \times \mathbb{Z}_2$, то X — не поверхность.

В гл. 11 мы дали другое описание поверхностей в терминах факторпространств многоугольников. Независимое вычисление фундаментальной группы поверхности исходя из этого описания мы оставляем читателю в качестве упражнения.

26.6. Упражнения. (а) Пусть M — факторпространство 4m-угольника ($m \ge 1$) с отождествлениями, указанными на рис. 26.4 (а),

Рис.26.4

т. е. M — ориентируемая поверхность рода m. Докажите непосредственно (с использованием теоремы Зейферта — ван Кампена), что фундаментальная группа M — это группа с образующими A_1 , B_1 , A_2 , B_2 , ..., A_m , B_m и одним соотношением $A_1B_1A_1^{-1}B_1^{-1}A_2B_2A_2^{-1}B_2^{-1}$...

... $A_m B_m A_m^{-1} B_m^{-1} = 1$. (b) Пусть M — факторпространство 2n-угольника $(n \ge 1)$ с отождествлениями, указанными на рис. 26.4 (b), т. е. M — неориентируемая поверхность рода n. Докажите (применяя теорему Зейферта — ван Кампена), что фундаментальная группа M — это группа с образующими A_1 , A_2 , ..., A_n и одним соотношением $A_1^2 A_2^2 \dots A_n^2 = 1$.

(d) Докажите, что если G_n — свободная группа с n образующими, то существует четырехмерное многообразие M_n с фунда-

ментальной группой G_n . (Указание: найдите M_1 .)

УЗЛЫ. I. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ И ТОРИЧЕСКИЕ УЗЛЫ

 \mathcal{Y} зел — это подпространство \mathbb{R}^3 , гомеоморфное окружности S^1 . Некоторые примеры узлов приведены на рис. 27.1. Хотя все пространства на этом рисунке гомеоморфны между собой (каждое из них по определению гомеоморфно окружности), интуиция подсказывает нам, что вложены в R3 они не одинаково. Так, если сделать веревочные модели узлов, то в нашем трехмерном мире нельзя, например, превратить узел (а) на рис. 27.1 в узел (с), не разрезая веревки. Это происходит потому, что узел (с) «заузлен», тогда как узел (а) «незаузлен». Разумно считать узел незаузленным, если его можно совместить с узлом (а) рис. 27.1 при помощи непрерывного движения в трехмерном пространстве. Это наводит на мысль, что, кроме непрерывного движения узла, происходит непрерывная деформация и объемлющего трехмерного пространства. Таким образом, мы приходим к следующему определению. Узел К называется незаузленным, если существует гомеоморфизм $h: \mathbb{R}^3 \to \mathbb{R}^3$, при котором h(K)—стандартная окружность $\{(x, y, 0) \in \mathbb{R}^3: x^2 + y^2 = 1\}$ в $\mathbb{R}^2 \subset \mathbb{R}^3$. Итак, узлы (а) и (b) на рис. 27.1 незаузлены, а остальные заузлены (по крайней мере, в этом убеждает нас практический опыт или интуиция). Далее в этой главе мы докажем, что узлы (c), (d) и (g) на рис. 27.1 действительно заузлены. В следующей главе мы сможем доказать, что заузлены и все остальные узлы на рис. 27.1.

Читатель может удивиться, почему мы определили узел как подпространство \mathbb{R}^3 . (Не только ли потому, что мы живем в трехмерном мире?) Почему бы не определить узел K как подпространство \mathbb{R}^n , гомеоморф

Рис. 27.1. Некоторые узлы. (с) Правый трилистник. (d) Левый трилистник. (e) Правая восьмерка. (f) Левая восьмерка. (h) Китайская роза. (i) Беседочный узел. (j) Узел истинной дружбы. (k) Бабушкин узел. (i) Узел ложной дружбы. (m) Сквер-узел

Рис.27.3. Правый (слева) и левый реперы.

ное S^1 ? Очевидно, что n должно быть не менее 2 (причина — следствие 10.3). Однако при $n \neq 3$ всегда существует гомеоморфизм $h: \mathbb{R}^n \to \mathbb{R}^n$, такой, что h(K) стандартная окружность в \mathbb{R}^n . Мы не будем доказывать этот результат. При n=2 это знаменитая теорема Шёнфлиса. При $n \geqslant 4$ это означает, что если бы мы жили в четырехмерном пространстве (или в пространстве более высокой размерности), то мы могли бы развязать все узлы. Интуитивно это ясно: дополнительное измерение дает место для протаскивания одного куска веревки «сквозь» другой. Этим объясняется, почему мы определили узлы как гомеоморфные образы окружности в R³. Можно было бы рассматривать подпространства \mathbb{R}^{n+1} , гомеоморфные S^{n-1} . Вопрос об их заузленности приводит к некоторым интересным имеет смысл и результатам, но они выходят за рамки этой книги.

Вернемся к узлам в \mathbb{R}^3 . Итак, мы определили, что значит для узла быть незаузленным. Вообще, назовем два узла K_1 и K_2 эквивалентными, если существует гомеоморфизм $h: \mathbb{R}^3 \to \mathbb{R}^3$, при котором $h(K_1) = K_2$. Например, на рис. 27.1 эквивалентными являются узлы (a) и (b); (c), (d) и (g); (e) и (f) и т. д. То, что (a) и (b) эквивалентны, очевидно. Так же легко обнаружить эквивалентность узлов (g) и (c). Чтобы убедиться, что (c) и (d) эквивалентны, поместим один из них прямо над другим. Искомым гомеоморфизмом будет зеркальное отражение относительно плоскости, расположенной между ними. Аналогичный гомеоморфизм имеет место для пары (e), (f). Есть и другой способ установить эквивалентность узлов (e) и (f). Он изображен на рис. 27.2. Читателю рекомендуется сделать узел (е) рис. 27.1 из веревки и продеформировать его, как показано на рис. 27.2.

Заметим, однако, что физический эксперимент (попытайтесь его провести) приводит к заключению, что левый и правый *трилистники* (рис. 27.1 (c), (d)) не одинаковы в том смысле, что в трехмерном пространстве нельзя преобразовать левый трилистник в правый. На самом деле для перехода от одного к другому потребуется зеркало. Зеркальное отражение переводит правый репер в \mathbb{R}^3 в левый репер (рис. 27.3), но перевести один из них в другой движением в \mathbb{R}^3 невозможно.

Назовем гомеоморфизм $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ сохраняющим ориентацию, если он переводит правый репер в правый репер 1). Узлы K_1 и K_2 называются строго экви-

 $^{^{1})}$ Это определение имеет смысл только для гомеоморфизмов, дифференцируемых вместе со своими обратными. В общем случае сохранение ориентации можно определить при помощи теории гомологий (гл. 29) следующим образом. Одноточечная компактификация пространства \mathbb{R}^3 есть S^3 (упр. 8.14 (k)), и гомеоморфизм h единственным образом продолжается до гомеоморфизма $h^\infty\colon S^3\longrightarrow S^3$, переводящего точку ∞ в себя. Гомеоморфизма h^∞ индуцирует изоморфизм $h^\infty\colon H_3\left(S^3\right)\longrightarrow H_3\left(S^3\right)$ (следствие 29.13). Но $H_3\left(S^3\right)=\mathbb{Z}$ (теорема 29.19), поэтому h^∞ является либо тождественным изоморфизмом, либо умножением на -1. В первом случае говорят, что h сохраняет, а во втором— что h обращает ориентацию пространства \mathbb{R}^3 . — Прим перев.

валениными, если существует сохраняющий ориентацию гомеоморфизм $h: \mathbb{R}^3 \to \mathbb{R}^3$, для которого $h(K_1) = K_2$. Таким образом (по крайней мере интуитивно), левый и правый трилистники не являются строго эквивалентными. С другой стороны, как показывает рис. 27.2, левая и правая восьмерки строго эквивалентны. Понятие строгой эквивалентности узлов хорощо согласуется с наглядным представлением о том, какие узлы следует считать одинаковыми. На самом деле можно доказать, что узлы K_1 и K_2 тогда и только тогда строго эквивалентны, когда найдется число k>0 и гомеоморфизм $h: \mathbb{R}^3 \to \mathbb{R}^3$, при котором $h(K_1) = K_2$ и h(x) = xпри $||x|| \geqslant k$. Этот (нетривиальный) результат имеет серьезную физическую подоплеку, разобраться в которой мы предоставляем читателю. Мы не будем его ни доказывать, ни использовать.

27.1. Упражнения. (а) Покажите, что отношения эквивалентности и строгой эквивалентности узлов действительно являются отношениями эквивалентности.

(b) Пусть $h: \mathbb{R}^3 \to \mathbb{R}^3$ — линейное отображение (т. е. $h (\lambda a + \mu b) = \lambda h (a) + \mu h (b)$ при $\lambda, \mu \in \mathbb{R}$, $a, b \in \mathbb{R}^3$). Докажите, что h сохраняет ориентацию в том и только в том случае, если $\det h > 0$.

(с) Докажите, что узел K тогда и только тогда строго эквивалентен стандартной окружности в \mathbb{R}^3 , когда он эквивалентен ей. (Указание: стандартная окружность «симметрична».)

(d) Приведите, если это возможно, примеры узлов K, для которых (i) $K \subset S^2 \subset \mathbb{R}^3$, (ii) $K \subset \text{тор} \subset \mathbb{R}^3$, (iii) $K \subset \text{корендель} \subset \mathbb{R}^3$. (e) Пусть K—узел в \mathbb{R}^3 , состоящий из конечного числа k

прямодинейных отрезков. При каких значениях k ($0 \le k \le 10$)

узел К может быть заузленным?

(f) Пусть $p: \mathbb{R}^3 \to \mathbb{R}^2$ —естественная проекция \mathbb{R}^3 на \mathbb{R}^2 (т. е. $p(x_1, x_2, x_3) = (x_1, x_2) \in \mathbb{R}^2 \subset \mathbb{R}^3$). Кратной точкой для узла K называется точка $x \in \mathbb{R}^2$, для которой $p^{-1}(x) \cap \mathbb{R}$ состоит из двух или более точек. Эта точка называется двойной, если $p^{-1}(x) \cap K$ состоит из двух точек. В этом случае мы называем ее несобственной двойной точкой, если при малом шевелении узла она перестает быть кратной (рис. 27.4).

Рассмотрите узлы, для которых все кратные точки являются собственными двойными точками. Найдите все такие узлы с одной, двумя, тремя, четырьмя, пятью и шестью кратными точками.

Если K_1 и K_2 —эквивалентные узлы, то существует гомеоморфизм между $\mathbb{R}^3 \diagdown K_1$ и $\mathbb{R}^3 \diagdown K_2$. Следовательно, фундаментальные группы дополнений двух эквивалентных узлов изоморфны. Выберем любую точку $x_0 \in \mathbb{R}^3 \diagdown K$

и назовем группу $\pi(\mathbb{R}^3 \setminus K, x_0)$ группой узла K. Эквивалентные, но не строго эквивалентные узлы имеют изоморфные группы. Этим объясняется, почему мы рассматриваем эквивалентные, а не строго эквивалентные узлы.

Рис. 27.4. Собственная (слева) и несобственная двойные точки.

27.2. Теорема. Γ руппа незаузленного узла изоморфна \mathbb{Z} .

Доказательство. Пусть $K = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 = 1, z = 0\}$ — стандартная окружность в \mathbb{R}^3 . Возьмем любое $\varepsilon > 0$ и определим подпространства X, Y пространства $\mathbb{R}^3 \setminus K$ равенствами

$$X = \{(x, y, z) \in \mathbb{R}^3 : x < \varepsilon\} \cap (\mathbb{R}^3 \setminus K),$$

$$Y = \{(x, y, z) \in \mathbb{R}^3 : x > -\varepsilon\} \cap (\mathbb{R}^3 \setminus K).$$

Легко видеть, что подпространство

$$\{(x, y, z) \in \mathbb{R}^3 \mid x = 0, y \ge 0\} \setminus \{(0, 1, 0)\}$$

является сильным деформационным ретрактом пространств X и Y. Итак, если O— начало координат в \mathbb{R}^3 , то фундаментальные группы $\pi(X, O)$, $\pi(Y, O)$ изоморфны \mathbb{Z} и имеют образующие $[\alpha_X]$, $[\alpha_Y]$, где α_X : $I \to X$ и α_Y : $I \to Y$ —пути вида $t \mapsto (0, 1-\cos 2\pi t, \sin 2\pi t)$. Подпространство $\{(x, y, z): x=0\} \setminus \{(0, 1, 0), (0, -1, 0)\}$ является сильным деформационным ретрактом пространства $X \cap Y$, так что $\pi(X \cap Y, O)$ —свободная группа с двумя образующими $[\beta_1]$ и $[\beta_{-1}]$, определенными как

$$\beta_1(t) = (0, 1 - \cos 2\pi t, \sin 2\pi t),$$

 $\beta_{-1}(t) = (0, -1 + \cos 2\pi t, \sin 2\pi t).$

Если ϕ_X : $X \cap Y \longrightarrow X$, ϕ_Y : $X \cap Y \longrightarrow Y$ — естественные включения, то очевидно, что

$$\varphi_X \beta_1 = \alpha_X, \quad \varphi_Y \beta_1 = \alpha_Y,$$

$$\varphi_X \beta_{-1} \sim \alpha_X, \quad \varphi_Y \beta_{-1} \sim \alpha_Y.$$

Все условия на X, Y, $X \cap Y$, необходимые для применимости теоремы Зейферта— ван Кампена, ғыполнены, и из этой теоремы следует, что фундаментальная группа π ($\mathbb{R}^3 \setminus K$, O) является свободной группой с одной образующей [α], где путь α : $I \to \mathbb{R}^3 \setminus K$ задан равенством α (t) = (0, 1— $\cos 2\pi t$, $\sin 2\pi t$).

Наша следующая цель — показать, что не все узлы незаузлены. Мы сделаем это, вычислив группу трилистника и некоторого класса аналогичных узлов. Трилистник принадлежит к числу так называемых торических узлов. Это — большой класс узлов, являющихся простыми замкнутыми кривыми на торе в \mathbb{R}^3 . Мы представляем тор в виде $S^1 \times S^1$, причем точка на $S^1 \times S^1$ задается парой чисел (exp $i\phi$, exp $i\theta$) при $0 \le \phi$, $\theta < 2\pi$.

Рис.27.5

Удобно представлять \mathbb{R}^3 как $\mathbb{C} \times \mathbb{R}$ и использовать полярные координаты $(r,\theta) \equiv re^{i\theta}$ в \mathbb{C} . Таким образом, точка в \mathbb{R}^3 представляется тройкой (r,θ,z) . В этих обозначениях определим непрерывное отображение f: $S^1 \times S^1 \to \mathbb{R}^3$ формулой

 $f(\exp i\varphi, \exp i\theta) = (1 + (1/2)\cos\varphi, \theta, (1/2)\sin\varphi);$

тогда $S^1 \times S^1$ гомеоморфно образу $f(S^1 \times S^1)$ (см. рис. 27.5 и 5.4).

Пусть m, n—взаимно простые натуральные числа.

(e) Тип (4, 3)

Определим $K_{m,n}$ как следующее подмножество тора в \mathbb{R}^3 : $K_{m,n} = \{f(\exp 2\pi i m t, \exp 2\pi i n t): t \in I\}.$

Нетрудно проверить, что отображение $g \colon S^1 \longrightarrow K_{m,n}$, определенное как $g (\exp 2\pi i t) = f (\exp 2\pi i m t, \exp 2\pi i n t)$,

является гомеоморфизмом, так что $K_{m,n}$ —узел. Назовем $K_{m,n}$ торическим узлом типа (m,n). Примеры торических узлов см. на рис. 27.6. На торе имеются две стандартные окружности, задаваемые как $f(\exp 2\pi it, 1)$ и $f(1, \exp 2\pi it)$. Торический узел типа (m, n) обходит n раз вокруг тора в направлении окружности $f(\exp 2\pi it, 1)$ и m раз — в направлении другой стандартной окружности. Если представить тор в виде факторпространства $\mathbb{R}^2/\mathbb{Z}^2$, то $K_{m,n}$ —образ в T прямой в \mathbb{R}^2 , проходящей через начало координат с угловым коэффициен-TOM n/m.

Для вычисления группы торического узла $K = K_{m,n}$ удобно слегка раздуть этот узел. Пусть a—положительное число, не превосходящее $\lfloor (1/2) \sin \pi/n \rfloor$. При $0 \leqslant b \leqslant a$ определим K_b как следующее подмножество $\mathbb{R}^3 (= \mathbb{C} \times \mathbb{R})$:

$$\{(x+1+(1/2)\cos 2\pi mt, 2\pi nt, y+(1/2)\sin 2\pi mt): 0 \le t \le 1, x^2+y^2 \le b^2\}.$$

Очевидно, что $K_0 = K$. Вообще, если $D_b = \{(x, y) \in \mathbb{R}^2 :$ $x^2 + y^2 \leqslant b^2$, то существует гомеоморфизм $\check{h}: S^1 \times \check{D_b} \to K_b$, определенный равенством

$$h (\exp 2\pi it, (x, y)) = (x + 1 + (1/2)\cos 2\pi mt, 2\pi nt, y + (1/2)\sin 2\pi mt).$$

(Отображение h, очевидно, непрерывно и сюръективно.m Hетрудно проверить, что h инъективно; при этом используется условие $b \leqslant a < |(1/2)\sin \pi/n|$. Гомеоморфность hследует тогда из теоремы 8.8.)

Оказывается, $\mathbb{R}^3 \setminus K$ и $\mathbb{R}^3 \setminus K$, гомеоморфны BCEX b, $0 \le b < a$.

27.3. Теорема. Пусть а — положительное число и при

 $0\leqslant b\leqslant a$ существует гомеоморфизм $h\colon S^1 imes D_b o K_b$ $\subset \dot{\mathbb{R}}^3$. Если $0 \le b \le a$, то $\mathbb{R}^3 \setminus K_b$ гомеоморфно $\mathbb{R}^3 \setminus K_a$.

Доказательство. Определим $\varphi: \mathbb{R}^3 \setminus K_b \to \mathbb{R}^3 \setminus K_a$ следующим образом. Если $x \notin \mathring{K}_a \setminus K_b$, положим $\varphi(x) = x$, а если $x \in K_a \setminus K_b$, то можно написать $x = h(z, r \exp i\theta)$ при $b < r \leqslant a$; в этом случае определим $\varphi(x)$ как $h(z, (r-b)(a/(a-b)) \exp i\theta)$. Аналогично определим ψ : $\mathbb{R}^3 \setminus K_0 \to \mathbb{R}^3 \setminus K_b$ следующим образом. Если $x \notin \mathring{K}_a \setminus K_0$, то $\psi(x) = x$, а если $x \in K_a \setminus K_0$, то $x = h(z, r \exp i\theta)$ при $0 < r \le a$ и $\psi(x)$ определяется как $h(z, (r(a-b)/a+b) \exp i\theta)$. Проверку того, что $\psi \varphi = 1$, $\psi \psi = 1$ и что φ и ψ непрерывны, мы оставляем читателю. \square

27.4. Теорема. Группа торического узла типа (m, n) является группой с двумя образующими a, b и одним соотношением $a^n = b^m$.

Доказательство. Определим $f: \mathbb{C} \times S^1 \to \mathbb{R}^3 (= \mathbb{C} \times \mathbb{R})$ как

 $(r \exp i\varphi, \exp i\theta) \mapsto (1 + (1/2) r \cos \varphi, \theta, (1/2) r \sin \varphi).$

Очевидно, что f непрерывно. Образ $f(S^1 \times S^1)$ является тором в \mathbb{R}^3 , описанным ранее. Выберем $\varepsilon > 0$ так, чтобы $2\varepsilon < a$, где a, как и ранее, не превосходит $\lfloor (1/2) \sin \pi/n \rfloor$. Определим подпространства X и Y как $X = \{f(r \exp i\varphi, \exp i\theta): 0 \leqslant \varphi, \theta \leqslant 2\pi, 0 \leqslant r < 1+\varepsilon\} \setminus K_{2\varepsilon}, Y = \mathbb{R}^3 \setminus \{f(r \exp i\varphi, \exp i\theta): 0 \leqslant \varphi, \theta \leqslant 2\pi, 0 \leqslant r < 1-\varepsilon\} \setminus K_{2\varepsilon}.$

Таким образом, $X \cup Y = \mathbb{R}^3 \setminus K_{2\varepsilon} \cong \mathbb{R}^3 \setminus K$. Пусть $x_0 \in X \cap Y$.

Рис.27.7

Легко видеть, что $Z=\{f\ (0,\exp i\theta)\colon \ 0\leqslant \theta\leqslant 2\pi\}$ — сильный деформационный ретракт X, а Y— сильный деформационный ретракт $\mathbb{R}^3\diagdown Z$. На рис. 27.7 показа-

ны рассматриваемые области при n=3 в сечении полуплоскостью H в \mathbb{R}^3 , состоящей из точек вида (r,θ,z) при фиксированном θ (например, при $\theta=0$). Ясно, что Z—стандартная окружность в \mathbb{R}^3 , и потому $\pi(X,x_0)$ и $\pi(Y,x_0)$ —свободные группы с образующими $[\alpha]$ и $[\beta]$ соответственно. Здесь α —замкнутый путь в X, который проходит из точки x_0 к окружности Z по дуге, обозначаемой через a_X , обходит один раз окружность Z и возвращается вдоль дуги a_X обратно в x_0 . Образующая $[\beta]$ представлена замкнутым путем β в Y, выходящим из x_0 по дуге a_Y к окружности

$$\{(1+(3/4)\cos 2\pi t, 0, (3/4)\sin 2\pi t): t \in I\},\$$

однократно обходящим эту окружность и возвращающимся вдоль дуги a_Y в точку $x_{\scriptscriptstyle 0}$. Пространство $X\cap Y$ — это в точности

 $\{f(r \exp i\varphi, \exp i\theta): 0 \leqslant \varphi, \theta \leqslant 2\pi, 1-\varepsilon < r < 1+\varepsilon\} \setminus K_{2\varepsilon};$

оно содержит подпространство

$$W = \{ f (\exp 2\pi i (mt + \delta), \exp 2\pi i nt) : 0 \leqslant t \leqslant 1 \}$$

при некотором δ (например, $\delta = n/2$) в качестве сильного деформационного ретракта (попробуйте привести несколько примеров при малых m, n). Подпространство W является окружностью, и потому π ($X \cap Y$, x_o)—свободная группа с одной образующей [γ], где γ —замкнутый путь в $X \cap Y$, обходящий один раз вокруг W (если выбрать $x_o \in W$).

Пусть ϕ_X : $X \cap Y \to X$, ϕ_Y : $X \cap Y \to Y$ —естественные включения. Нетрудно видеть, что

$$\phi_{X*}[\gamma] = [\alpha]^n$$
 или $[\alpha]^{-n}$, $\phi_{Y*}[\gamma] = [\beta]^m$ или $[\beta]^{-m}$,

поэтому, заменяя, если нужно, α на $\overline{\alpha}$ и β на $\overline{\beta}$, получим $\phi_{X*}[\gamma] = [\alpha]^n$, $\phi_{Y*}[\gamma] = [\beta]^m$. Рис. 27.8 иллюстрирует случай m = 3, n = 2. Пространства X, Y, $X \cap Y$ удовлетворяют условиям

теоремы Зейферта—ван Кампена, из которой немедленно следует доказываемый результат. Заметим, что

теорема Зейферта — ван Қампена была бы неприменима, если бы в предыдущем рассуждении мы положили ε=0.

Хотя группа торического узла вычислена, но неясно, тривиальна она или нет. Аналогичную задачу для поверхностей мы решили, прокоммутировав их

Рис.27.8

фундаментальные группы. Оказывается, однако, что прокоммутированная группа узла всегда изоморфна \mathbb{Z} . (См. упр. 27.7(d), где есть указание, как доказать это для торических узлов. В общем случае см. следствие 28.4.) Поэтому нужно искать другой способ ответить на вопрос, заузлены или нет торические узлы.

27.5. Лемма. Торический узел типа (3, 2) заузлен.

Доказательство. Группа этого узла есть $G = \langle \{a, b\} : 1\{a^2 = b^3\} \rangle$. Определим G' добавлением в G нескольких соотношений:

$$G' = \langle \{a, b\} : \{a^2 = b^3, a^2 = 1, ab = b^{-1}a\} \rangle.$$

Имеется очевидный эпиморфизм $G \longrightarrow G'$, переводящий a в a и b в b.

Легко видеть, что G' изоморфна группе перестановок трех символов, т. е.

$$G' = \{1, a, b, ab, b^2, ab^2: ab = b^{-1}a\}.$$

Эта группа неабелева, откуда следует, что и G неабелева, так как гомоморфный образ абелевой группы есть абелева группа. Таким образом, G неизоморфна \mathbb{Z} , откуда вытекает наше утверждение.

Можно провести аналогичные рассуждения для других торических узлов, но этим будет доказана только их заузленность. Мы же хотим узнать, эквивалентен ли каждый из них какому-нибудь другому. Чтобы показать, что все они различны, нужен другой прием.

27.6. Теорема. Если два торических узла типов (m, n), (m', n') при m, n, m', n' > 1 эквивалентны, то $\{m, n\} = \{m', n'\}, m. e. m = m' u n = n' или m = n' и n = m'. В частности, при <math>m, n > 1$ всякий торический узел типа (m, n) заузлен. Кроме того, существует бесконечно много различных узлов.

Доказательство. Предлагаемые теоретико-групповые рассуждения были впервые приведены О. Шрейером в 1923 г. Рассмотрим элемент $a^n = b^m$ в группе $G = \langle \{a, b\} : \{a^n = b^m\} \rangle$. Этот элемент коммутирует с a и b:

$$aa^n = a^{n+1} = a^n a$$
, $ba^n = bb^m = b^{m+1} = b^m b = a^n b$,

а потому коммутирует с любым элементом из G. Поэтому подгруппа N, порожденная элементом a^n , нормальна в G, и определена факторгруппа G/N. Всякое $g \in G$ можно записать в виде $g = a^{\alpha (1)}b^{\beta (1)} \dots a^{\alpha (k)}b^{\beta (k)}$ при некоторых $\alpha (1)$, $\beta (1)$, ..., $\alpha (k)$, $\beta (k)$. Тогда $gN \in G/N$ можно записать в виде

$$gN = (a^{\alpha(1)} N) (b^{\beta(1)} N) \dots (a^{\alpha(k)} N) (b^{\beta(k)} N) = (aN)^{\alpha(1)} (bN)^{\beta(1)} \dots (aN)^{\alpha(k)} (bN)^{\beta(k)},$$

откуда следует, что группа G/N порождена элементами aN и bN. Если gN=N, то $g\in N$, и потому $g=(a^n)'=(b^m)'$ при некотором l. Итак, соотношения в G/N имеют вид $(aN)^n=N$ и $(bN)^m=N$, так что

$$G/N = \langle \{aN, bN\} : \{(aN)^n = 1, (bN)^m = 1\} \rangle \cong \cong \langle \{c, d\} : \{c^n = 1, d^m = 1\} \rangle.$$

Заметим, что центр G/N тривиален, так как если x принадлежит центру G/N, то cx = xc и dx = xd. Из первого условия следует, что $x = c^{\alpha}$ при некотором α , а из второго—что $x = d^{\beta}$ при некотором β , поэтому x = 1. Это означает, что центр Z(G) группы G есть N (если $p: G \to G/N$ —естественная проекция, то, как легко видеть, $p(Z(G)) \subset Z(G/N)$). Другими словами,

имеем

$$G/Z(G) \cong \langle \{c, d\} : \{c^n = 1, d^m = 1\} \rangle$$
.

Коммутирование этой группы дает

$$\langle \{c, d\} : \{c^n = 1, d^m = 1, cd = dc\} \rangle \cong \mathbb{Z}_n \times \mathbb{Z}_m.$$

Если торические узлы типов (m, n) и (m', n') эквивалентны, то их группы G, G' изоморфны. Но тогда группы G/Z(G) и G'/Z(G') тоже изоморфны. Прокоммутировав их, получим, что $Z_n \times Z_m$ и $Z_{n'} \times Z_{m'}$ изоморфны, а это возможно только при $\{m, n\} = \{m', n'\},$ так как (m, n) и (m', n') — пары взаимно простых чисел.

27.7. Упражнения. (а) Покажите, что торические узлы типов (m, 1) или (1, n) могут быть незаузленными.

(b) Покажите, что торический узел типа (m, n) эквивалентен узлу типа (n, m). Являются ли они строго эквивалентными?

(с) Торические узлы были определены для пар положительных взаимно (простых целых чисел (m, n), но это определение имеет смысл для любой пары ненулевых взаимно простых целых чисел. Покажите, что если изменить знак у m или n, то полученный торический узел будет эквивалентен исходному. Будет ли он строго эквивалентен исходному?

(d) Докажите, что прокоммутированная группа торического узла изоморфна \mathbb{Z} . (Указание: если $G = \langle \{a, b\} : \{a^n = b^m\} \rangle$, опре-

делите φ : $AG \longrightarrow \mathbb{Z}$ формулой $\varphi(a^kb^l) = mk + nl.$

(e) Докажите, что группа $\langle \{a, b\}; \{a^3 = b^2\} \rangle$ изоморфна группе $(\{x, y\}; \{xyx = yxy\})$. (Воспользуйтесь преобразованиями Титце из упр. 23.1 (f).)

УЗЛЫ, П. РУЧНЫЕ УЗЛЫ

Пусть K — узел в \mathbb{R}^3 . Обозначим через p проекцию \mathbb{R}^3 на плоскость $\mathbb{R}^2 = \{(x_1, x_2, 0) \in \mathbb{R}^3\}$, определенную формулой $p(x_1, x_2, x_3) = (x_1, x_2, 0)$. Напомним, что точка $x \in p(K)$ называется κ ратной, если $p^{-1}(x) \cap K$ состоит

Рис.28.1. Собственная двойная точка (слева), тройная точка (в центре), несобственная двойная точка

более чем из одной точки, и двойной, если $p^{-1}(x) \cap K$ состоит из двух точек (рис. 28.1). Двойная точка называется *несобственной*, если она пропадает при малом шевелении узла (на изображении несобственной двойной точки на рис. 28.1 малый сдвиг «верхнего куска» влево приводит к исчезновению двойной точки).

28.1. Определение. Узел *К* называется *ручным*, если он эквивалентен узлу, имеющему только конечное число кратных точек, каждая из которых является собственной двойной точкой.

Все примеры узлов в предыдущей главе были ручными. Пример узла, который не является ручным, приведен на рис. 28.2. Такие узлы называются дикими. Эта глава посвящена ручным узлам.

28.2. Упражнения. (а) Докажите, что торический узел типа (m, n) — ручной.

(b) Докажите, что узел, имеющий конечное число кратных

точек, ручной.

(c) Докажите, что узел тогда и только тогда является ручным, когда он эквивалентен узлу, состоящему из конечного числа прямолинейных отрезков.

(d) Докажите, что узел K тогда и голько тогда является ручным, когда существует подпространство $K_e \subset \mathbb{R}^3$, содержащее K

Рис. 28.2. Дикий узел

и гомеоморфное пространству $S^1{ imes}D^2$, причем узел K соответствует при этом гомеоморфизме окружности $S^1{ imes}\{0\}$.

На протяжении этой главы K — ручной узел. Нашей целью будет вычисление группы узла K. Можно считать, что K лежит в нижнем полупространстве \mathbb{R}^3 , т. е.

$$K \subset \{(x_1, x_2, x_3): x_3 \leq 0\},$$

и, более того, что K лежит в плоскости $\{(x_i, x_2, x_3); x_3 = 0\}$, за исключением уступов глубины ε в каждой двойной точке (рис. 28.3).

Пусть P—множество точек узла K, имеющих вид $(x_1, x_2, -\varepsilon)$, для которых $p(x_i, x_2, -\varepsilon)$ —кратная точка. Можно считать, что $P \neq \emptyset$, так как в противном случае узел K незаузлен. Пусть p_1 —одна из точек P. Выбор направления обхода узла K определяет нумерацию кратных точек p_2, p_3, \ldots, p_n . Множество P разбивает K на конечное число дуг a_1, a_2, \ldots, a_n . Направление обхода узла K определяет ориентацию этих дуг, и можно считать, что концом дуги a_i является точка $p_i, i=1,2,\ldots,n$ (рис. 28.4).

Наша следующая цель—описать замкнутые пути в $\mathbb{R}^3 \setminus K$. При $i=1,2,\ldots,n$ обозначим через c_i малую окружность в $\mathbb{R}^3 \setminus K$, охватывающую дугу a_i , как показано на рис. 28.5. Зададим направление обхода c_i так, чтобы вместе с направлением обхода дуги a_i

Рис.28.4

Рис.28.5

оно образовывало правый винт. Конечно, окружности c_1, c_2, \ldots, c_n нужно выбрать непересекающимися.

Пусть x_0 — отмеченная точка в $\mathbb{R}^3 \setminus K$, находящаяся несколько выше узла K. При $i=1,2,\ldots,n$ обозначим через b_i отрезок в $\mathbb{R}^3 \setminus K$, соединяющий x_0 с окружностью c_i . Эти отрезки можно выбрать непересекающимися и лежащими в верхнем полупространстве

Рис.28.6

 $\{(x_1, x_2, x_3): x_3 \geqslant 0\}$ (рис. 28.5). Определим γ_i как замкнутый путь в точке x_0 , который начинается в x_0 , идет вдоль b_i , один раз обходит c_i в выбранном направлении и возвращается вдоль b_i в x_0 .

Мы покажем, что группа $\pi(\tilde{\mathbb{R}}^3 \setminus K, x_0)$ порождена элементами $[\gamma_1], [\gamma_2], \ldots, [\gamma_n]$. Соотношения между ними изображены на рис. 28.6. Если пересечение таково, как на рис. 28.6 (а), то имеется соотношение $[\gamma_i][\gamma_j] \times [\gamma_{i+1}][\bar{\gamma}_j] = 1$. Другая возможность — когда дуга a_j ориентирована противоположно по сравнению с этим рисунком, а именно как на рис. 28.6 (с). В этом случае имеем соотношение $[\gamma_i][\bar{\gamma}_j][\bar{\gamma}_{i+1}][\gamma_j] = 1$. Оказывается, других соотношений нет — это будет показано ниже. Здесь и далее мы полагаем $a_{n+1} = a_1$, $\gamma_{n+1} = \gamma_i$ и т. д.

28.3. Теорема. Группа ручного узла порождена элементами $[\gamma_1], [\gamma_2], \ldots, [\gamma_n]$ и имеет соотношения $[\gamma_1] = r_1, [\gamma_2] = r_2, \ldots, [\gamma_n] = r_n$. Каждое соотношение $[\gamma_i] = r_i$ имеет вид $[\gamma_i] = [\gamma_j] [\gamma_{i+1}] [\gamma_j]^{-1}$ или $[\gamma_i] = [\gamma_j]^{-1} [\gamma_{i+1}] [\gamma_j]$ при некотором j. Более того, любое одно из соотношений $[\gamma_k] = r_k$ можно опустить, и группа от этого не изменится.

Значение j, которое входит в соотношение, определяется дугой a_f , пересекающей проекцию узла над точкой p_i . Какое именно из двух соотношений имеет место, зависит от направлений обхода дуг a_i и a_f . В частности, если поворот от направления a_i к направлению a_f происходит по часовой стрелке, то выполняется первое соотношение, в противном случае—второе (см. рис. 28.6 (а) и (с) соответственно).

Глядя на соотношения в теореме 28.3, немедленно

получаем

28.4. Следствие. Прокоммутированная группа узла есть \mathbb{Z} .

Для доказательства теоремы 28.3 рассмотрим подпространства C и A пространства \mathbb{R}^3 , определенные как

$$C = \{(x_1, x_2, x_3): x_3 > -2\epsilon/3\},\$$

$$A = \{(x_1, x_2, x_3): x_3 < -\epsilon/3\}.$$

Множество $C \cap K$ (и $A \cap K$) состоит из n непересекающихся дуг без кратных точек. Поэтому ясно, что существует гомеоморфизм $h\colon C \to C$, для которого $h(C \cap K)$ есть объединение $\bigcup_{i=1}^n (S_i \cap C)$, где S_l , $i=1,2,\ldots,n,$ окружность $\{(x_1,x_2,x_3)\colon x_1=i,x_2^2+x_3^2=1\}$ (рис. 28.7).

Таким образом, $C \setminus K$ гомотопически эквивалентно диску с n выброшенными точками, откуда следует, что $\pi(C \setminus K, x_0)$ —свободная группа с n образующими $[\gamma_1], [\gamma_2], \dots, [\gamma_n]$.

Аналогичным образом получим, что фундаментальная группа $A \setminus K$ есть свободная группа с n образующими. Но $A \setminus K$ не содержит x_0 . Поэтому выберем отрезок b, соединяющий x_0 с множеством A, не пересекающий K и остальные выбранные дуги. Обозначим

Рис.28.8

через B множество A в объединении с множеством всех точек, находящихся на расстоянии не более δ от отрезка b. Пространство $B \setminus K$ открыто и линейно связно, и очевидно, что $\pi(B \setminus K, x_0)$ —свободная группа с n образующими $[\beta_1], [\beta_2], \ldots, [\beta_n]$. Замкнутый путь β_i идет из x_0 вдоль b к A, затем в точку, близкую к p_i , вдоль окружности в $B \setminus K$ с центром в p_i и

обратно в x_0 (рис. 28.8).

Рассмотрим далее пространство $(B \setminus K) \cap (C \setminus K)$. Оно, очевидно, имеет гомотопический тип диска с 2n выброшенными точками, и потому π $((B \setminus K) \cap (C \setminus K), x_0)$ — свободная группа в 2n образующими $[\alpha_1^-], [\alpha_2^-], \ldots$ $[\alpha_n^-], [\alpha_1^+], [\alpha_2^+], \ldots, [\alpha_n^+]$. Чтобы описать эти образующие, заметим, что $B \cap C$ разбивает K на 2n дуг, которые можно обозначить через $a_1^-, a_2^-, \ldots, a_n^-$ и $a_1^+, a_2^+, \ldots, a_n^+$, где a_i^- и a_i^+ —части дуг a_i и a_{i+1} соответственно, лежащие в $A \cap C$ и ближайшие K точке p_i . Путь α_i^- обходит вокруг a_i^- и a_i^+ (для удобства), как изображено на рис. 28.8.

Пусть теперь φ_B : $(B \cap C) \setminus K \to B \setminus K$ и φ_C : $(B \cap C) \setminus K \to C \setminus K$ — естественные включения. Легко обнару-

жить следующие эквивалентности:

$$\varphi_{B}\alpha_{i}^{-} \sim \beta_{i}, \quad \varphi_{B}\alpha_{i}^{+} \sim \varepsilon, \quad \varphi_{C}\alpha_{i}^{-} \sim \gamma_{i},$$

тогда как $\phi_{\mathbf{C}}\alpha_i^+ \sim ((\gamma_i * \gamma_j) * \gamma_{i+1}) * \gamma_j$ или $\phi_{\mathbf{C}}\alpha_i^+ \sim ((\gamma_i * \gamma_j) * \gamma_{i+1}) * \gamma_j$ в зависимости от связи направления обхода a_j с направлениями обхода дуг a_i и a_{i+1} (на рис. 28.8 изображено первое из этих соотношений).

Так как пространства $B \setminus K$, $C \setminus K$, $(B \setminus K) \cap (C \setminus K)$ открыты и линейно связны, то можно применить теорему Зейферта—ван Кампена, из которой утверждения об образующих и соотношениях получаются непосредственно.

Чтобы показать, что одно из соотношений избыточно, заменим A на A', где A'—объединение A с множеством всех точек, находящихся на расстоянии

Рис.28.9

от начала координат в \mathbb{R}^{3} , большем, чем некоторое большое число N. Этим определяется множество $B'=B \cup A'$. Фундаментальная группа $B' \setminus K$ та же самая, что и у $B \setminus K$, но фундаментальная группа $(B' \cap C) \setminus K$ имеет на одну образующую меньше, чем фундаментальная группа $(B \cap C) \setminus K$. Это происходит потому, что $(B' \cap C) \setminus K$ имеет гомотопический тип сферы S^{2} с 2n выколотыми точками. Отбрасывая образующую $[\alpha_{k}^{+}]$ группы $\pi((B' \cap C) \setminus K, x_{0})$, мы видим,

что соотношение $[\gamma_k] = r_k$ в $\pi(\mathbb{R}^3 \diagdown K, x_0)$ больше не является необходимым. Детали мы оставляем читателю. \square

Иллюстрируем эту теорему тремя примерами. Для краткости будем обозначать $[\gamma_k]$ просто через γ_k . Сначала вычислим заново группу трилистника. Используя обозначения рис. 28.9 и те, что применялись ранее, мы видим, что группа трилистника имеет три образующие γ_1 , γ_2 , γ_3 с соотношениями $\gamma_1 = \gamma_3^{-1}\gamma_2\gamma_3$, $\gamma_2 = \gamma_1^{-1}\gamma_3\gamma_1$, $\gamma_3 = \gamma_2^{-1}\gamma_1\gamma_2$, одно из которых излишне. Например, третье излишне потому, что его можно получить, подставив первое соотношение во второе:

$$\gamma_2 = \gamma_1^{-1} \gamma_3 \gamma_1 = \gamma_1^{-1} \gamma_3 \ (\gamma_3^{-1} \gamma_2 \gamma_3) = \gamma_1^{-1} \gamma_2 \gamma_3,$$
 откуда $\gamma_3 = \gamma_2^{-1} \gamma_1 \gamma_2$. Итак, группа трилистника есть

 $\langle \{\gamma_1, \gamma_2, \gamma_3\} : \{\gamma_1 = \gamma_3^{-1} \gamma_2 \gamma_3, \gamma_2 = \gamma_1^{-1} \gamma_3 \gamma_1\} \rangle =$ $= \langle \{\gamma_2, \gamma_3\} : \{\gamma_2 = \gamma_3^{-1} \gamma_2^{-1} \gamma_3 \gamma_3 \gamma_3^{-1} \gamma_2 \gamma_3\} \rangle =$

 $= \langle \{\gamma_2, \gamma_3\} : \{\gamma_2 \gamma_3 \gamma_2 = \gamma_3 \gamma_2 \gamma_3\} \rangle$

и, как легко видеть, изоморфна группе $\langle \{a, b\} : \{a^3 = b^2\} \rangle$.

В качестве следующего примера рассмотрим бабушкин узел, изображенный на рис. 28.10 (а). Мы видим, что группа этого узла имеет образующие $\gamma_1, \gamma_2, \ldots, \gamma_6$ и соотношения

 $\begin{array}{ll} \gamma_{1} = \gamma_{3}^{-1} \gamma_{2} \gamma_{3}, & \gamma_{2} = \gamma_{1}^{-1} \gamma_{3} \gamma_{1}, \\ \gamma_{3} = \gamma_{2}^{-1} \gamma_{4} \gamma_{2}, & \gamma_{4} = \gamma_{6}^{-1} \gamma_{5} \gamma_{6}, \\ \gamma_{5} = \gamma_{4}^{-1} \gamma_{6} \gamma_{4}, & \gamma_{6} = \gamma_{5}^{-1} \gamma_{1} \gamma_{5}, \end{array}$

одно из которых лишнее. Все соотношения можно выразить через γ_1 , γ_3 и γ_5 , и нетрудно показать, что эта группа изоморфна группе с тремя образующими γ_1 , γ_3 , γ_5 и двумя соотношениями $\gamma_1\gamma_3\gamma_1=\gamma_3\gamma_1\gamma_3$ и $\gamma_5\gamma_1\gamma_5=\gamma_1\gamma_5\gamma_1$. Итак, группа бабушкиного узла есть группа с тремя образующими x, y, z и двумя соотношениями xyx=yxy и xzx=zxz.

В качестве последнего примера рассмотрим скверузел, изображенный на рис. 28.10 (b). Группа этого узла имеет шесть образующих $\gamma_1, \gamma_2, \ldots, \gamma_6$ и соотно-

Рис.28.10. (a) Бабушкин узел. (b) Сквер-узел.

шения

$$\begin{array}{ll} \gamma_{1} = \gamma_{3}^{-1} \gamma_{2} \gamma_{3}, & \gamma_{2} = \gamma_{1}^{-1} \gamma_{3} \gamma_{1}, \\ \gamma_{8} = \gamma_{2}^{-1} \gamma_{4} \gamma_{2}, & \gamma_{4} = \gamma_{6} \gamma_{5} \gamma_{6}^{-1}, \\ \gamma_{5} = \gamma_{1} \gamma_{6} \gamma_{1}^{-1}, & \gamma_{6} = \gamma_{5} \gamma_{1} \gamma_{5}^{-1}, \end{array}$$

одно из которых лишнее. Как и для бабушкиного узла, легко исключить три образующие и получить группу с тремя образующими γ_1 , γ_3 , γ_5 и двумя соотношениями $\gamma_1\gamma_3\gamma_1=\gamma_3\gamma_1\gamma_3$ и $\gamma_5\gamma_1\gamma_5=\gamma_1\gamma_5\gamma_1$. Итак, группа сквер-узла—это группа с тремя образующими x,y,z и двумя соотношениями xyx=yxy и xzx=zxz. В частности, мы видим, что группы бабушкиного узла и сквер-узла изоморфны. Однако известно, что эти два узла не эквивалентны, хотя мы не будем это доказывать.

28.5. Упражнение. Применяя теорему 28.3, вычислите группы узлов на рис. 27.1. Для узла на рис. 27.1 (b) покажите, что получается, как это и должно быть, группа $\mathbb Z$.

Закончим наше рассмотрение узлов кратким описанием двух конструкций, связанных с узлами. Большинство деталей и интересных свойств этих конструкций оставлены читателю в виде упражнений.

Рис.28.11

Для двух узлов K_1 и K_2 зададим направления обхода и определим их *связную сумму* $K_1 \# K_2$ как узел, который получается выбрасыванием интервала из каждого узла и склеиванием оставшихся частей так, чтобы направления их обхода были согласованы (рис. 28.11). Простым узлом называется узел, который нельзя представить в виде $K_1 \# K_2$, где оба узла K_1 и К2 заузлены. Все узлы в наших таблицах (см. приложение к гл. 28) простые.

28.6. Упражнения. (а) Покажите, что узел $K_1 \# (K_2 \# K_3)$ строго

эквивалентен узлу $(K_1 \# K_2) \# K_3$. (b) Покажите, что узел $K_1 \# K_2$ строго эквивалентен $K_2 \# K_1$.

(Указание: см. рис. 28.12.)

(c) Покажите, что если K_1 строго эквивалентен K'_1 , а K_2 строго эквивалентен K_2 , то $K_1 \# K_2$, строго эквивалентен $K_1 \# K_2$. Останется ли это верным, если убрать слово «строго»?

Следующая конструкция сопоставляет каждому (ручному) узлу поверхность с краем (см. упр. 11.8 (b)). Чтобы сделать это, выберем на узле направление об-

Рис.28.13

хода. Область вблизи каждой кратной точки (рис. 28.13 (а)) перестраивается, как показано на рис. 28.13 (b).

В результате перестроек получается несколько непересекающихся окружностей. Каждую из них можно заклеить диском так, чтобы эти диски не пересекались. Для этого в случае, когда окружности содержатся одна в другой, слегка изогнем диски, чтобы они вышли из плоскости, начиная с самой внутренней окружности и переходя по очереди к внешним. Наконец, на место прежней кратной точки вклеим полоску, закрученную на пол-оборота (рис. 28.13 (d)). В результате получим ориентируемую поверхность с краем. Ее край, очевидно, совпадает с узлом К. Будем говорить, что эта поверхность с краем натирима на узел. Некоторые примеры даны на рис. 28.14 и 28.15.

Узлу на рис. 28.15 отвечает пара окружностей, вложенных одна в другую. Мы заклеиваем внутреннюю окружность диском, лежащим в плоскости. Внеш-

Рис.28,14

Рис.28.15

няя окружность заклеивается диском, расположенным ниже плоскости. Таким образом, рис. 28.15 (b) можно рассматривать как сферу с дыркой, в которой находится диск. На рис. 28.15 (c) эти две области соединены пятью скрученными полосками.

Под родом поверхности с краем мы понимаем род отвечающей ей поверхности без края (в смысле упр.

11.8 (b)). Род построенной выше поверхности с краем равен (c-d+1)/2, где c—число кратных точек, а d—число непересекающихся окружностей в нашем построении.

Вообще говоря, на узел можно натянуть много разных поверхностей с краем. Род узла K определяется как наименьшее целое g(K), такое, что на K можно натянуть ориентируемую поверхность с краем рода g(K).

28.7. Упражнения. (а) Покажите, что g(K # L) = g(K) + g(L) (это нетривиально).

(b) Выведите из (a), что любой узел можно представить в виде

конечной связной суммы простых узлов.

(c) Покажите, что род незаузленного узла равен нулю. (d) Докажите, что если K заузлен, то $K \not \mp L$ заузлен для

любого узла L.

(e) Докажите, что род торического узла типа (m, n) не превосходит (m-1)(n-1)/2.

Рис.28.16

(f) Проделаем следующие операции над узлом K, нарисованным на плоскости. Прежде всего заштрихуем окружающую узел внешнюю область (рис. 28.16). Затем заштрихуем некоторые из областей таким образом, чтобы из двух соседних областей одна была заштрихована, а другая—нет. Далее обозначим все заштрихованные области, кроме внешней, буквами R_1, R_2, \ldots, R_n . Каждой кратной точке сопоставим число +1, -1 или 0 согласно тому, имеет ли пересечение в этой точке вид, изображенный соот-

ветственно на рис. 28.16 (b), (c) или (d); нуль появляется тогда, когда два заштрихованных участка вблизи двойной точки принадлежат одной и той же области.

Образуем симметричную матрицу $A\left(K\right)=\left(a_{ij}\right)$ размера $n\times n$

следующим образом:

 $a_{ii} =$ сумма чисел в кратных точках области R_i ,

 $-a_{ij} = -a_{ji} =$ сумма чисел в общих кратных точках областей R_i и R_j .

Например, узел на рис. 28.16 определяет матрицу $\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$. Пусть $d(K) = \det A(K)$, так что d(K) не зависит от нумерации заштрихованных областей. При n=0 определим d(K)=1.

(i) Найдите два строго эквивалентных узла K и L, для которых $\mathcal{I}(K) \neq d(L)$. Будет ли |d(K)| = |d(L)|?

- (ii) Если узлы K и L эквивалентны, будет ли |d(K)| = |d(L)|?
- (ііі) Найдите узлы K и L, не являющиеся строго эквивалентными, для которых |d(K)| = |d(L)|.

(iv) Покажите, что d(K # L) = d(K) d(L).

ПРИЛОЖЕНИЕ К ГЛ. 28. ТАБЛИЦА УЗЛОВ

Следующие диаграммы изображают, с точностью до эквивалентности, все простые узлы, имеющие не более девяти двойных точек.

СИНГУЛЯРНЫЕ ГОМОЛОГИИ: ВВЕДЕНИЕ

Очень важную часть топологии составляет теория гомологий. В настоящей главе эту теорию невозможно изложить во всей полноте. Мы только иллюстрируем ее основные идеи и связь (на примере одного частного случая) с фундаментальной группой.

29.1. Определение. Стандартным п-мерным симплексом Δ_n называется следующее подпространство \mathbb{R}^{n+1} :

$$\Delta_n = \left\{ x = (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} : \sum_{i=0}^n x_i = 1, x_i \geqslant 0, i = 0, 1, \dots, n \right\}.$$

Точки $v_0=(1,\,0,\,\ldots,\,0),\,v_1=(0,\,1,\,0,\,\ldots,\,0),\,\ldots,\,v_n=$ $=(0,\,0,\,\ldots,\,0,\,1)$ называются вершинами симплекса Δ_n . Так, Δ_0 —это точка, Δ_1 —отрезок, Δ_2 —треугольник и Δ_3 —тетраэдр (рис. 29.1).

29.2. Определение. Пусть X — топологическое пространство. Сингулярным п-мерным симплексом в X называется непрерывное отображение $\varphi: \Delta_n \to X$.

Таким образом, сингулярный 0-мерный симплекс — это точка в X, тогда как сингулярный одномерный симплекс — это, по существу, путь в X. В самом деле, если ϕ — сингулярный одномерный симплекс, то равенство $f(t) = \phi(1-t,t)$ задает путь $f\colon I \to X$ из точки $\phi(v_0)$ в точку $\phi(v_1)$. Обратно, путь $f\colon I \to X$ определяет сингулярный одномерный симплекс $\phi\colon \Delta_1 \to X$, если положить $\phi(x_0, x_1) = f(x_1)$.

29.3. Определение. Сингулярной п-мерной цепью в Х

называется выражение вида $\sum_{j \in J} n_j \phi_j$, где $\{\phi_j \colon j \in J\}$ — семейство всех сингулярных n-мерных симплексов в X (J — некоторое индексирующее множество) и $n_j \in Z$,

причем только конечное множество чисел из $\{n_j: j \in J\}$ отличны от нуля.

Множество $S_n(X)$ сингулярных n-мерных цепей в X образует абелеву группу со сложением, определенным формулой

$$\sum n_j \varphi_j + \sum m_j \varphi_j = \sum (n_j + m_j) \varphi_j.$$

Нулевой элемент—это $\sum 0 \varphi_j$, а обратным к $\sum n_j \varphi_j$ является $\sum (-n_j) \varphi_j$. Ассоциативность и коммутатив-

ность полученной группы очевидны.

Группа $S_n(X)$ обладает некоторыми хорошими свойствами, но, к сожалению, вообще говоря, слишком велика. Она станет более обозримой, если ввести на ней отношение эквивалентности (подобно тому как это делалось при определении фундаментальной группы). Введем сначала понятие граничного оператора.

Для данного сингулярного n-мерного симплекса ϕ определим сингулярный (n-1)-мерный симплекс $\partial_i \phi$ формулой

$$\partial_i \varphi (x_0, x_1, \dots, x_{n-1}) = \varphi (x_0, x_1, \dots, x_{i-1}, 0, x_i, \dots, x_{n-1})$$
 при $i = 0, 1, \dots, n$ (рис. 29.2). Очевидно, этим определяется гомоморфизм групп $\partial_i \colon S_n(X) \to S_{n-1}(X)$, при котором $\sum n_i \varphi_i \mapsto \sum n_i \partial_i \varphi_i$.

29.4. Определение. Граничный оператор $\partial: S_n(X) \to S_{n-1}(X)$ определяется формулой

$$\partial = \partial_0 - \partial_1 + \partial_2 - \dots + (-1)^n \partial_n = \sum_{i=0}^n (-1)^i \partial_i$$

При помощи граничного оператора можно определить две важные подгруппы в $S_n(X)$.

29.5. Определение. (а) Сингулярная n-мерная цепь $c \in S_n(X)$ называется n-мерным циклом, если $\partial c = 0$. Множество n-мерных циклов в X обозначается $Z_n(X)$.

(b) Сингулярная n-мерная цепь $d \in S_n(X)$ называется n-мерной границей, если $d = \partial e$ для некоторого $e \in S_{n+1}(X)$. Множество n-мерных границ в X обозначается $B_n(X)$.

Другими словами,

$$Z_n(X) = \ker \partial \colon S_n(X) \to S_{n-1}(X),$$

 $B_n(X) = \operatorname{im} \partial \colon S_{n+1}(X) \to S_n(X),$

и, таким образом, $Z_n(X)$ и $B_n(X)$ — подгруппы $S_n(X)$. Заметим, что все сингулярные 0-мерные цепи яв-

ляются 0-мерными циклами, т. е. $Z_0(X) = S_0(X)$.

Оказывается, все *n*-мерные границы являются *n*-мерными циклами. Это непосредственно вытекает из следующего результата.

29.6. Теорема. $\partial \partial = 0$.

Доказательство. Вычислим $\partial \partial$ на сингулярном n-мерном симплексе φ :

$$\partial \partial \varphi = \partial \sum_{i=0}^{n} (-1)^{i} \partial_{i} \varphi = \sum_{i=0}^{n-1} \sum_{j=0}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \varphi.$$

Мы утверждаем, что $\partial_j \partial_i = \partial_i \partial_{j+1}$ при $i \leqslant j$. Убедимся в этом следующим образом:

$$\begin{aligned} (\partial_{j}\partial_{i}\varphi) &(x_{0}, \ldots, x_{n-2}) = (\partial_{j} (\partial_{i}\varphi)) (x_{0}, \ldots, x_{n-2}) = \\ &= (\partial_{i}\varphi) (x_{0}, \ldots, x_{j-1}, 0, x_{j}, \ldots, x_{n-2}) = \\ &= \varphi (x_{0}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{j-1}, 0, x_{j}, \ldots, x_{n-2}) = \\ &= (\partial_{j+1}\varphi) (x_{0}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-2}) = \\ &= (\partial_{i}\partial_{j+1}\varphi) (x_{0}, \ldots, x_{n-2}). \end{aligned}$$

Итак,

$$\begin{split} \partial \partial \mathfrak{q} &= \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} = \\ &= \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i+j} \partial_{i} \partial_{j+1} \mathfrak{q} + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} = \\ &= \sum_{j=0}^{n-1} \sum_{i=i}^{n-1} (-1)^{i+j} \partial_{i} \partial_{j+1} \mathfrak{q} + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} = \\ &= \sum_{j=0}^{n-1} \sum_{i=j}^{n-1} (-1)^{i+j} \partial_{j} \partial_{i+1} \mathfrak{q} + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} = \\ &= \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} + \\ &+ \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_{j} \partial_{i} \mathfrak{q} = 0. \quad \Box \end{split}$$

Таким образом, $B_n(X)$ — подгруппа $Z_n(X)$. Так как обе эти группы абелевы, то $B_n(X)$ — нормальная подгруппа $Z_n(X)$, и потому определена факторгруппа $Z_n(X)/B_n(X)$.

29.7. Определение. Факторгруппа $Z_n(X)/B_n(X)$ называется *п-мерной группой гомологий пространства* X. Она обозначается $H_n(X)$.

Другими словами, элементы $H_n(X)$ — это классы эквивалентности циклов по отношению эквивалентности

$$c \sim c' \Leftrightarrow c - c' \in B_n(X)$$

при c, $c' \in Z_n(X)$ (как легко видеть, \sim действительно является отношением эквивалентности). В этом случае говорят, что циклы c и c' гомологичны.

В следующих двух леммах вычисляются группы гомологий точки и нульмерная группа гомологий линейно связного пространства.

29.8. Лемма. Если X — одноточечное пространство, то $H_0(X) \cong \mathbb{Z}$ и $H_n(X) = 0$ при n > 0.

Доказательство. При любом $n\geqslant 0$ существует единственный сингулярный n-мерный симплекс $\phi_{(n)}\colon \Delta_n \to X$, и, таким образом,

$$S_n(X) = \mathbb{Z} = \{k\varphi_{(n)}: \ k \in \mathbb{Z}\}.$$

Далее, $\partial_i \varphi_{(n)} = \varphi_{(n-1)}$ при n > 0 и

$$\partial \varphi_{(n)} = \sum_{i=0}^{n} (-1)^{i} \partial_{i} \varphi_{(n)} = \sum_{i=0}^{n} (-1)^{i} \varphi_{(n-1)} =$$

$$= \begin{cases} 0 & \text{при нечетном } n, \\ \varphi_{(n-1)} & \text{при четном } n > 0. \end{cases}$$

При n=0 имеем $\partial \phi_{(0)}=0$. Из предыдущего вытежает, что

$$Z_n(X) = \begin{cases} S_n(X), & \text{если } n \text{ нечетно или } n = 0, \\ 0, & \text{если } n \text{ четно и } n > 0, \end{cases}$$

$$B_n(X) = \begin{cases} S_n(X), & \text{если } n \text{ нечетно,} \\ 0, & \text{если } n \text{ четно,} \end{cases}$$

следовательно,

$$H_n(X) = \begin{cases} \mathbf{Z}, & \text{если } n = 0, \\ 0, & \text{если } n > 0. \quad \Box \end{cases}$$

29.9. Лемма. Если X — непустое линейно связное пространство, то $H_0(X) \cong \mathbb{Z}$.

Дока зательство. Произвольный нульмерный цикл (или, что то же самое, нульмерная сингулярная цепь) имеет вид $\sum_{x \in X} n_x x$, где $n_x \in Z$ и только конечное множество из чисел $\{n_x \colon x \in X\}$ ненулевые. Определим $\psi \colon H_{\mathfrak{o}}(X) \to Z$ формулой $\psi (\sum n_x x) = \sum n_x$.

Проверим сначала, что это определение корректно. Пусть $\sum m_x x$ —другой нульмерный цикл, гомологичный $\sum n_x x$, т. е. $\sum n_x x = \sum m_x x + \partial c$, где c—некоторая одномерная сингулярная цепь. Эта цепь имеет вид $c = \sum_{j \in J} k_j \varphi_j$, где $k_j \in \mathbf{Z}$ и φ_j —одномерный сингулярный симплекс. Далее,

$$\partial c = \sum_{j \in J} k_j \partial \varphi_j = \sum_{j \in J} k_j (\varphi_j (v_1) - \varphi_j (v_0)),$$

откуда

$$\begin{array}{l} \psi\left(\sum n_{x}x\right) = \psi\left(\sum m_{x}x + \partial c\right) = \\ = \psi\left(\sum m_{x}x + \sum k_{j}\varphi_{j}\left(v_{1}\right) - \sum k_{j}\varphi_{j}\left(v_{0}\right)\right) = \\ = \sum m_{x} + \sum k_{j} - \sum k_{j} = \sum m_{x} = \psi\left(\sum m_{x}x\right), \end{array}$$

т. е. ф определено корректно.

Очевидно, что ψ —гомоморфизм. Он сюръективен, поскольку $\psi(nx) = n$, где x—любая точка из X. Покажем, наконец, что ψ инъективен. Пусть $\sum n_x x$ —нульмерный цикл; тогда

$$\sum n_x x = (\sum n_x) x_0 + \sum_{x \in X} (n_x x - n_x x_0) =$$

$$= (\sum n_x) x_0 + \partial \left(\sum_{x \in X} n_x \varphi_x\right),$$

где ϕ_x — путь (или одномерный сингулярный симплекс) из x в x_0 . Таким образом, $\sum n_x x$ и $(\sum n_x) x_0$ гомологичны. Поэтому если $\psi(\sum n_x x) = 0$, то $\sum n_x = 0$, а тогда

цикл $\sum n_{x}x$ гомологичен нулю, и этим доказана инъ $eктивность \psi$.

Этот последний шаг является решающим, поскольку он показывает, что новый нульмерный цикл $c = \sum n_x x$ гомологичен нульмерному циклу $(\sum n_x) x_0$, который полностью определяется числом $\sum n_x$.

Для непрерывного отображения $f: X \longrightarrow Y$ можно определить отображение $f_{\#}: S_n(X) \to S_n(Y)$ формулой $f_{\#}\left(\sum_{j\in J}n_{j}\varphi_{j}\right)=\sum_{i\in J}n_{i}f\varphi_{i}.$

(Видимо, нужно было бы обозначить $f_{\#}: S_n(X) \rightarrow$ $\rightarrow S_n(Y)$ через $f_{n\#}: S_n(X) \rightarrow S_n(Y)$, но это обозначение неоправданно сложно.) Очевидно, что $f_{\#}$ —гомоморфизм групп. На самом деле $f_{\#}$ переводит циклы в циклы и границы в границы. Это вытекает из следующего результата.

29.10. Лемма. $\partial f_{\#} = f_{\#} \partial$.

Показательство. Рассмотрим (n-1)-мерный сингулярный симплекс ф. Имеем

$$((\partial_i f_\#)(\varphi))(x_0, x_1, \ldots, x_{n-1}) = \partial_i (f\varphi)(x_0, x_1, \ldots, x_{n-1}) =$$

$$= (f\varphi)(x_0, x_1, \ldots, x_{i-1}, 0, x_i, \ldots, x_{n-1}) =$$

$$= f(\varphi(x_0, x_1, \ldots, x_{i-1}, 0, x_i, \ldots, x_{n-1})) =$$

$$= f((\partial_1 \varphi)(x_0, x_1, \ldots, x_{n-1})) =$$

$$= (f \partial_i \varphi) (x_0, x_1, \dots, x_{n-1}) = (f \# \partial_i) (\varphi) (x_0, x_1, \dots, x_{n-1}),$$

что и доказывает лемму. 🗌

29.11. Следствие. $f_{\#}(Z_n(X)) \subset Z_n(Y)$, $f_{\#}(B_n(X)) \subset B_n(Y)$.

Доказательство. Если c — цикл в X, то $\partial f_{\#}(c)$ = $= f_{\#} \partial(c) = 0$, откуда следует, что $f_{\#}(c)$ — цикл в Y. Если d—граница в X, то $d = \partial(e)$ и $f_{\#}(d) = f_{\#}\partial(e) =$ $=\partial f_{\#}(e)$ — граница в Y. [

Это следствие показывает, что существует гомоморфизм групп $f_*: H_n(X) \longrightarrow H_n(Y)$, определенный равенством $f_*\left(\sum_{i\in J}n_j\phi_i\right) = \sum_{i\in J}n_if\phi_i$, где $\sum_{i\in J}n_i\phi_i$ есть n-мерный цикл в X. Гомоморфизм $f_*: H_n(X) \to H_n(Y)$ на-

зывается индуцированным гомоморфизмом.

Следующие два результата доказываются легко, и их доказательство предоставляется читателю. Сравните их с теоремой 15.9 и следствием 15.10.

- **29.12. Теорема.** (i) Пусть $f: X \to Y$ и $g: Y \to Z$ непрерывные отображения; тогда $(gf)_* = g_*f_*: H_n(X) \to H_n(Z)$ при всех $n \geqslant 0$.
- (ii) $E c n u = 1: X \longrightarrow X m o ж д e c m в e н н о e o m o f p a ж e н u e, m o <math>1_* m o x d e c m s e n + u u e c m o m o f p u s c e x n <math>\geqslant 0$.
- **29.13.** Следствие. Если $f: X \to Y$ гомеоморфизм, то $f_{\bullet}: H_n(X) \to H_n(Y)$ изоморфизм при всех $n \geqslant 0$.

Замечание. Гомологии определяют функтор из топологии в алгебру (а именно в абелевы группы; см. примечание перед упр. 15.11).

На самом деле группы гомологий гомотопически эквивалентных пространств изоморфны. Это вытекает из следующей теоремы о гомотопической инвариантности.

29.14. Теорема. Пусть f, $g: X \to Y$ — непрерывные отображения. Если f и g гомотопны, то $f_* = g_*: H_n(X) \to H_n(Y)$ при всех $n \geqslant 0$.

Доказательство. Определим при $t \in I$ отображение $\lambda_t \colon X \to X \times I$ равенством $\lambda_t (x) = (x, t)$. Пусть $F \colon X \times I \to Y$ — гомотопия между f и g, т. е. F(x, 0) = f(x), F(x, 1) = g(x), или, в терминах λ_t , $F\lambda_0 = f$, $F\lambda_1 = g$. Допустим, что $\lambda_{0*} = \lambda_{1*}$; тогда

$$f_* = (F\lambda_0)_* = F_*\lambda_{0*} = F_*\lambda_{1*} = (F\lambda_1)_* = g_*.$$

Итак, осталось показать, что $\lambda_{0*}=\lambda_{1*}\colon H_n(X)\to H_n(X\times I)$. Мы покажем, что для гомоморфизмов λ_{0*} , $\lambda_{1*}\colon S_n(X)\to S_n(X\times I)$ найдется гомоморфизм $P\colon S_n(X)\to S_{n+1}(X\times I)$ (называемый оператором призмы), для которого $\partial P+P\partial=\lambda_{1*}-\lambda_{0*}$. Если такой оператор существует, то гомоморфизмы λ_{0*} и λ_{1*} называются цепно-гомотопными.

Если $\lambda_{0\#}$ и $\lambda_{1\#}$ цепно-гомотопны и c—некоторый n-мерный цикл в X, то $(\lambda_{1\#}-\lambda_{0\#})(c)=(\partial P+P\partial)(c)=$ $=\partial\ (Pc)$, откуда следует, что $\lambda_{1\#}c$ и $\lambda_{0\#}c$ гомологичны,

и потому $\lambda_{1*}=\lambda_{0*}$. Итак, для доказательства теоремы достаточно показать, что λ_{1*} и λ_{0*} цепно-гомотопны. Чтобы сделать это, нужно определить оператор P.

Пусть $\varphi: \Delta_n \to X$ —сингулярный n-мерный симплекс в X, т. е. элемент $S_n(X)$. Определим $P_i(\varphi)$ при i=0, $1,\ldots,n$ как элемент группы $S_{n+1}(X\times I)$, заданный равенством

$$P_i(\phi)\left(x_0,\;x_1,\;\ldots,\;x_{n+1}
ight) = \left(\phi\left(x_0,\;x_1,\;\ldots,\;x_{i-1},\;\ldots,\;x_{i-1},\;\ldots,\;x_{i+1},\;x_{i+1},\;x_{i+2},\;\ldots,\;x_{n+1}
ight),$$
 и определим $P\left(\phi\right) \in S_{n+1}\left(X imes I\right)$ формулой $P\left(\phi\right) =$

 $= \sum_{i=0}^{n} (-1)^{i} P_{i}(\varphi).$ Нетрудно видеть, что $P: S_{n}(X) \to S_{n+1}(X \times I)$ — гомоморфизм.

Границу ∂P (φ) можно теперь записать в виде

$$\partial P(\varphi) = \sum_{j=0}^{n+1} (-1)^j \, \partial_j P(\varphi) = \sum_{j=0}^{n+1} \sum_{i=0}^n (-1)^{i+j} \, \partial_j P_i(\varphi).$$

Перепишем $\partial_j P_i(\varphi)$ по-другому. При i < j-1 имеем $\partial_j P_i(\varphi)(x_0, \ldots, x_n) = P_i(\varphi)(x_0, \ldots, x_{j-1}, 0, x_j, \ldots, x_n) = \left(\varphi(x_0, \ldots, x_{i-1}, x_i + x_{i+1}, x_{i+2}, \ldots \right)$

$$\ldots, x_{j-1}, 0, \ldots, x_n, 1 - \sum_{k=0}^{i} x_k = 0$$

$$= \left(\partial_{j-1} \varphi (x_0, \dots, x_{i-1}, x_i + x_{i+1}, x_{i+2}, \dots, x_n), 1 - \sum_{k=0}^{i} x_k\right) =$$

$$= P_i \left(\partial_{j-1} \varphi \right) (x_0, \dots, x_n) = P_i \partial_{j-1} (\varphi) (x_0, \dots, x_n).$$

При i > j получим

$$\partial_{j} P_{i}(\varphi)(x_{0}, \ldots, x_{n}) = P_{i}(\varphi)(x_{0}, \ldots, x_{j-1}, 0, x_{j}, \ldots, x_{n}) =$$

$$= \left(\varphi(x_{0}, \ldots, x_{j-1}, 0, \ldots) \right)$$

$$\ldots, x_{i-2}, x_{i-1} + x_i, x_{i+1}, \ldots, x_n, 1 - \sum_{k=0}^{i-1} x_k = 0$$

$$= \left(\partial_{j} \varphi (x_{0}, \ldots, x_{i-2}, x_{i-1} + x_{i}, x_{i+1}, \ldots, x_{n}), 1 - \sum_{k=0}^{i-1} x_{k}\right) =$$

$$= P_{i-1} (\partial_{j} \varphi) (x_{0}, \ldots, x_{n}) = P_{i-1} \partial_{j} (\varphi) (x_{0}, \ldots, x_{n}).$$

Наконец, если i=1, то

$$\frac{\partial_{j} P_{j}(\varphi)(x_{0}, \ldots, x_{n}) = P_{j}(\varphi)(x_{0}, \ldots, x_{j-1}, 0, x_{j}, \ldots, x_{n}) =}{\left(\varphi(x_{0}, \ldots, x_{n}), 1 - \sum_{k=0}^{j-1} x_{k}\right) =}$$

$$= P_{j-1}(\varphi)(x_{0}, \ldots, x_{j-1}, 0, x_{j}, \ldots, x_{n}) = \frac{\partial_{j} P_{j-1}(\varphi)(x_{0}, \ldots, x_{n})}{\left(\varphi(x_{0}, \ldots, x_{n}), \ldots, x_{n}\right)}$$

Окончательно имеем $\partial_j P_j = \partial_j P_{j-1}$, $\partial_j P_l = P_{l-1} \partial_j$ при i > j, $\partial_j P_l = P_l \partial_{j-1}$ при i < j-1. Используя эти соотношения и записывая ∂P в виде

$$\partial P = \sum_{j=0}^{n+1} \sum_{i=0}^{n} (-1)^{i+j} \partial_{j} P_{i} = \partial_{0} P_{0} + \sum_{i=j-1}^{n} \partial_{j} P_{j} + \sum_{i=j-1=0}^{n} (-1) \partial_{j} P_{j-1} - \partial_{n+1} P_{n} + \sum_{i=j-1}^{n} (-1)^{i+j} \partial_{j} P_{i} + \sum_{i=j-1}^{n} (-1)^{i+j} \partial_{j} P_{i},$$

нетрудно убедиться, что $\partial P = \partial_0 P_0 - \partial_{n+1} P_n - P \partial$. Но $\partial_0 P_0 (\varphi) (x_0, \ldots, x_n) = P_0 (\varphi) (0, x_0, \ldots, x_n) = (\varphi (x_0, \ldots, x_n), 1) = \lambda_1 \varphi (x_0, \ldots, x_n) = \lambda_{1\#} (\varphi) (x_0, \ldots, x_n),$

$$\partial_{n+1} P_n(\varphi) (x_0, \dots, x_n) = P_n(\varphi) (x_0, \dots, x_n, 0) = = (\varphi (x_0, \dots, x_n), 0) = \lambda_0 \varphi (x_0, \dots, x_n) = = \lambda_0 \# (\varphi) (x_0, \dots, x_n).$$

Итак, $\partial P + P \partial = \lambda_{1\#} - \lambda_{0\#}$, т. е. $\lambda_{1\#}$ и $\lambda_{0\#}$ цепно-гомотопны.

29.15. Упражнения. (а) Докажите, что если $f\colon X \longrightarrow Y$ —гомотопическая эквивалентность, то $f_*\colon H_n(X) \longrightarrow H_n(Y)$ —изоморфизм при любом $n \geqslant 0$.

(b) Докажите, что если $i: A \longrightarrow X$ — включение ретракта A в X, то $i_*: H_n(A) \longrightarrow H_n(X)$ — мономорфизм. Докажите, что если $g: X \longrightarrow A$ — ретракция, то $H_n(X) = \operatorname{im} i_* \bigoplus \ker g_*$. Далее докажите, что если A— деформационный ретракт X, то i_* — изоморфизм.

(c) Пусть X — линейно связное пространство и $x_0 \in X$. Пусть $p\colon X \longrightarrow \{x_0\}$ — очевидное отображение; определим $\tilde{H}_n(X)$ как ядро гомоморфизма $p_*\colon H_n(X) \longrightarrow H_n(\{x_0\})$. Локажите, что $H_n(X) \cong \tilde{H}_n(X) \bigoplus H_n(\{x_0\})$.

(d) Пусть $f\colon X \longrightarrow Y$ — непрерывное отображение, переводящее отмеченную точку в отмеченную точку. Покажите, что существует индуцированный гомоморфизм $f_*\colon \tilde{H}_n(X) \longrightarrow \tilde{H}_n(Y)$. Предположим далее, что $g\colon X \longrightarrow Y$ —другое отображение, переводящее отмеченную точку в отмеченную точку, причем f и g гомотопны относительно отмеченной точки в X. Докажите, что $f_* = g_*\colon \tilde{H}_n(X) \longrightarrow \tilde{H}_n(Y)$.

Следующий результат в нашем кратком обзоре гомологий — это описание связи между фундаментальной группой и одномерной группой гомологий пространства.

29.16. Теорема. Существует гомоморфизм ψ : $\pi(Y, y_0) \rightarrow H_1(Y)$. Если Y линейно связно, то гомоморфизм ψ сюръективен, u его ядро совпадает c коммутантом группы $\pi(Y, y_0)$. Другими словами, $H_1(Y)$ есть прокоммутированная группа $\pi(Y, y_0)$.

Доказательство. Пусть $f\colon I \to Y$ — путь в Y с началом в y_0 . Определим $\psi(f)\colon \Delta_1 \to Y$ равенством

$$\psi(f)(x_0, x_1) = f(x_1) = f(1-x_0), (x_0, x_1) \in \Delta_1.$$
 ражение $\psi(f)$ является одномерным сингулярны

Отображение $\psi(f)$ является одномерным сингулярным симплексом. Если f—замкнутый путь, то $\partial(\psi(f)) = y_0 - y_0 = 0$, и потому $\psi(f)$ —одномерный цикл в Y.

Проверим теперь, что если f и f'—эквивалентные замкнутые пути, то $\psi(f)$ и $\psi(f')$ —гомологичные циклы. Пусть $f \sim f'$, и пусть $F \colon I \times I \to Y$ —гомотопия относительно $\{0, 1\}$, реализующая эту эквивалентность. Используем F для определения двумерного сингулярного симплекса $\varphi \colon \Delta_2 \to Y$ следующим образом. Координаты точки Q в Δ_2 можно выразить в виде (1-s,s)(1-t), st при некоторых s, t, $0 \leqslant s$, $t \leqslant 1$ (рис. 29.3). Определим $\varphi(Q)$ как $\varphi(Q)$ как $\varphi(Q)$ как $\varphi(Q)$ как $\varphi(Q)$ имеем

$$\phi(x_0, x_1, x_2) = \begin{cases} F(1-x_0, x_2/(1-x_0)) & \text{при } x_0 \neq 1, \\ F(0, 0) & \text{при } x_0 = 1. \end{cases}$$

Заметим, что $x_2/(1-x_0)=x_2/(x_1+x_2)$ и, конечно,

Рис.29.3

 $x_0, x_1, x_2 \geqslant 0$, так что $0 \leqslant x_2/(1-x_0) \leqslant 1$. Так как F(0, t) = F(0, 0) при всех $t \in I$, то ϕ непрерывно. Легко вычислить границу ϕ :

$$\partial_0 \varphi (x_0, x_1) = \varphi (0, x_0, x_1) = F (1, x_1) = y_0 = \psi (\varepsilon) (x_0, x_1),$$

где ϵ : $I \longrightarrow Y$ — постоянный путь $\epsilon(t) = y_0$;

$$\begin{array}{lll} \partial_{1}\phi\left(x_{_{0}},\;x_{_{1}}\right) = \phi\left(x_{_{0}},\;0,\;x_{_{1}}\right) = \\ &= \left\{ \begin{array}{lll} F\left(1-x_{_{0}},\;x_{_{1}}/(1-x_{_{0}})\right) & \text{при} & x_{_{0}} \neq 1, \\ F\left(0,\;0\right) & \text{при} & x_{_{0}} = 1; \\ &= \left\{ \begin{array}{lll} F\left(1-x_{_{0}},\;1\right) & \text{при} & x_{_{0}} \neq 1, \\ F\left(0,\;0\right) & \text{при} & x_{_{0}} = 1; \\ &= \psi\left(f'\right)\left(x_{_{0}},\;x_{_{1}}\right); \end{array} \right. \end{array}$$

 $\partial_2 \varphi(x_0, x_1) = \varphi(x_0, x_1, 0) = F(1 - x_0, 0) = \psi(f)(x_0, x_1).$

Другими словами, $\partial \varphi = \psi(\varepsilon) - \psi(f') + \psi(f)$.

Если, однако, определить c_2 : $\Delta_2 \to Y$ как c_2 $(x_0, x_1, x_2) = y_0$, то $\partial_0 c_2 = \partial_1 c_2 = \partial_2 c_2 = c_1$, где одномерный сингулярный симплекс c_1 : $\Delta_1 \to Y$ определен как $c_1(x_0, x_1) = y_0$. Итак, $\psi(\epsilon) = \partial c_2$, и потому циклы $\psi(f)$ и $\psi(f')$ гомологичны. Этим доказано, что ψ —корректно определенное отображение группы $\pi(Y, y_0)$ в $H_1(Y)$.

Чтобы проверить гомоморфность отображения ψ , рассмотрим в Y замкнутые пути f и f' в точке y_0 . Нужно показать, что цикл $\psi(f*f')$ гомологичен $\psi(f)+\psi(f')$, т. е. что цикл $\psi(f)+\psi(f')-\psi(f*f')$ является границей некоторого сингулярного двумерного симп-

лекса $\phi\colon \Delta_{\mathbf{2}} \longrightarrow Y$. Определение ϕ подсказано рис. 29.4 и в явной форме имеет вид

$$\varphi(x_0, x_1, x_2) = \begin{cases} f(1 + x_2 - x_0) & \text{при } x_0 \geqslant x_2, \\ f'(x_2 - x_0) & \text{при } x_0 \leqslant x_2. \end{cases}$$

Заметим, что ϕ непрерывно по лемме о склейке. Легко вычислить границу ϕ :

$$\begin{split} &\partial_0 \phi \left(x_0, \, x_1 \right) = \phi \left(0, \, x_0, \, x_1 \right) = f' \left(x_1 \right) = \psi \left(f' \right) \left(x_0, \, x_1 \right); \\ &\partial_1 \phi \left(x_0, \, x_1 \right) = \phi \left(x_0, \, 0, \, x_1 \right) = \begin{cases} f \left(1 + x_1 - x_0 \right) & \text{при } x_0 \geqslant x_1, \\ f' \left(x_1 - x_0 \right) & \text{при } x_0 \leqslant x_1; \end{cases} \\ &= \begin{cases} f \left(2x_1 \right) & \text{при } x_1 \leqslant 1/2, \\ f' \left(2x_1 - 1 \right) & \text{при } x_1 \geqslant 1/2 \quad \text{(так как } x_1 + x_0 = 1); \\ &= \psi \left(f * f' \right) \left(x_0, \, x_1 \right); \\ &\partial_2 \phi \left(x_0, \, x_1 \right) = \phi \left(x_0, \, x_1, \, 0 \right) = f \left(1 - x_0 \right) = \psi \left(f \right) \left(x_0, \, x_1 \right). \end{split}$$

 $\partial_2 \varphi (x_0, x_1) = \varphi (x_0, x_1, 0) = f(1-x_0) = \psi (f)(x_0, x_1).$ Таким образом, $\partial \varphi = \psi (f') - \psi (f*f') + \psi (f)$, откуда цикл $\psi (f*f')$ гомологичен $\psi (f) + \psi (f')$, и, следовательно, ψ —гомоморфизм.

Предположим теперь, что Y линейно связно. Покажем, что ψ сюрьективно. Пусть $c = \sum_{i=1}^{n} n_{i} \phi_{i}$ — одномерный цикл в Y; тогда $\partial c = 0$, т. е. $\sum_{i=1}^{n} n_{i} (\phi_{i} (v_{0}) - \phi_{i} (v_{1})) = 0$. Записав ∂c в виде $\sum_{y \in Y} m_{y} y$, получим $m_{y} = 0$ при всех $y \in Y$. Для любого $j \in J$ выберем путь g_{j0} из y_{0} в $\phi_{j}(v_{0}) = \partial_{0}\phi_{j}(1)$ и путь g_{j1} из y_{0} в $\phi_{j}(v_{0}) = \partial_{0}\phi_{j}(1)$.

Рис. 29.4

 y_0 в $\phi_f(v_0) = \partial_0 \phi_f(1)$ и путь g_{f1} из y_0 в $\phi_f(v_1) = \partial_1 \phi_f(1)$. Эти пути должны зависеть только от концов, т. е. при $\phi_f(v_0) = \phi_k(v_0)$ должно выполняться равенство

 $g_{f0} = g_{k0}$. Очевидно, что в этом случае

Полагая σ_j равным одномерной сингулярной цепи, определенной равенством $\sigma_j = \psi(g_{j0}) + \phi_j - \psi(g_{ji})$, получим $c = \sum n_j \sigma_j$. Если f_j : $I \to Y$ — путь, заданный формулой $f_i(t) = \phi_j (1-t,t)$, то $(g_{j0}*f_j)*g_{j1}$ — замкнутый путь в Y в точке g_0 , причем $\psi((g_{j0}*f_j)*g_{j1}) = \sigma_j$ и $\psi\left(\prod_i [(g_{j0}*f_j)*g_{j1}]^{n_i}\right) = c$, откуда следует сюръективность гомоморфизма ψ .

Докажем, что ядро ψ совпадает с коммутантом. Предположим, что цикл $\psi(f)$ гомологичен нулю, т. е.

$$\psi(f) = \partial \left(\sum_{j \in J} n_j \varphi_j \right) = \sum_{j \in J} n_j (\varphi_{j0} - \varphi_{j1} + \varphi_{j2}),$$

где φ_f $(j \in J)$ — двумерный сингулярный симплекс и $\varphi_{fi} = \partial_i \varphi_f$ (i = 0, 1, 2). Так как $\psi(f)$ — одномерный сингулярный симплекс, то $\psi(f) = \varphi_{kl}$ при некоторых k, l,

Рис.29.5

и после приведения подобных членов в правой части последнего выражения для $\psi(f)$ в ней будет содержаться ϕ_{kl} с коэффициентом 1, а все другие слагаемые—с коэффициентом 0.

Пусть g_{ji} $(j \in J, i = 0, 1, 2)$ — путь в Y из y_0 в $\phi_j(v_i)$. Как и раньше, путь g_{ji} должен зависеть только от конца $\phi_j(v_i)$, а не от индексов. Если $\phi_j(v_i) = y_0$, то выберем постоянный путь (рист 29.5).

Пусть f_{ji} ($j \in J$, i = 0, 1, 2) — пути в Y, определенные равенствами $f_{ji}(t) = \varphi_{ji}(1-t, t) = \partial_i \varphi_j(1-t, t);$ определим пути $h_{ji}(j \in J, i = 0, 1, 2)$ формулами

 $h_{j0} = (g_{j1} * f_{j0}) * \overline{g}_{j2}, \quad h_{j1} = (g_{j0} * f_{j1}) * g_{j2}, \quad h_{j2} = (g_{j0} * f_{j2}) * g_{j1}.$

Наконец, определим пути h_j $(j \in J)$ как $h_j = (h_{j0}*\bar{h}_{j1})*h_{j2}$. Нетрудно видеть, что путь h_j эквивалентен пути $(g_{/1}*((f_{/0}*\overline{f}_{/1})*f_{/2}))*\overline{g}_{/1}$, который, очевидно, эквивалентен постоянному пути є. Итак, $\prod [h_i]^n i = 1$.

Пусть $A\pi(Y, y_0)$ — факторгруппа $\pi(Y, y_0)$ по коммутанту, т. е. прокоммутированная группа $\pi(Y, y_0)$. Если $[\alpha]$ — элемент $\pi(Y, y_0)$, обозначим через $[[\alpha]]$ соответствующий элемент группы $A\pi (Y, y_0)$. Так как

 $\prod [h_j]^n = 1$, to $\prod [[h_j]]^n = 1$.

Мы знаем, что $\psi(f) = \varphi_{kl}$ при некоторых k, l. Поэтому $f=f_{kl}$ и (по нашему выбору g_{fi}) также $f=h_{kl}$. Так как группа $A\pi (Y, y_0)$ абелева, то можно привести подобные члены в выражении $\prod [[h_{i}]]^{n_{i}}$ и получить, $\text{ 4TO } \prod \left[\left[h_{i} \right] \right]^{n} / = \left[\left[f \right] \right].$

Таким образом, [[f]] = 1, т. е. [f] принадлежит коммутанту. Поэтому ядро гомоморфизма ф содержится в коммутанте. С другой стороны, тот факт, что группа $H_{1}\left(Y
ight)$ абелева, означает, что ядро ψ содержит коммутант. Это завершает доказательство теоремы. П

29.17. У пражнения. (а) Покажите, что $H_1(S^1) \cong \mathbb{Z}$ и $H_1((S^1)^n) \cong \mathbb{Z}^n$. (b) Приведите пример, показывающий, что если У не является

линейно связным, то группа $A\pi(Y, y_0)$ может быть не изоморфной группе $H_1(Y)$.

(с) Вычислите одномерную группу гомологий ориентируемой поверхности рода g и неориентируемой поверхности рода g. Выведите отсюда, что две поверхности S_1 и S_2 тогда и только тогда гомеоморфны, когда $H_1(S_1) \cong H_1(S_2)$.

(d) Предположим, что Y линейно связно. Докажите, что $\pi(Y, y_0)$ и $H_1(Y)$ тогда и только тогда изоморфны когда $\pi(Y, y_0)$ абелева.

(е) Покажите, что одномерная группа гомологий восьмерки изоморфна $\mathbb{Z} \times \mathbb{Z}$.

(f) Пусть S — некоторая поверхность, а S' получена из S выбрасыванием открытого диска Докажите, что $H_1(S) \cong H_1(S')$.

При вычислении фундаментальных групп очень

полезной была теорема Зейферта — ван Кампена. Аналогичная теорема имеется и в теории гомологий.

Пусть $X = U_1 \cup U_2$, где $U_i \cap U_2$ —открытые подмножества X, и пусть $\varphi_i \colon U_1 \cap U_2 \to U_i$, $\psi_i \colon U_i \to X$ —включения при i = 1, 2. Определим гомоморфизмы

$$i: H_k(U_1 \cap U_2) \to H_k(U_1) \bigoplus H_k(U_2),$$

$$j: H_k(U_1) \bigoplus H_k(U_2) \to H_k(X)$$

равенствами $i(c) = (\phi_{1*}(c), \phi_{2*}(c)), i(c_1, c_2) = \psi_{1*}(c_1) - \psi_{2*}(c_2).$

29.18. Теорема. Пусть $X = U_1 \cup U_2$, где U_1 и U_2 открыты в X. Существуют такие гомоморфизмы $\Delta : H_k(X) \longrightarrow H_{k-1}(U_1 \cap U_2)$, что в последовательности групп и гомоморфизмов

$$\dots \longrightarrow H_{k+1}(X) \xrightarrow{\Delta} H_k(U_1 \cap U_2) \xrightarrow{l} H_k(U_1) \bigoplus H_k(U_2) \xrightarrow{l} \dots$$
$$\longrightarrow H_k(X) \xrightarrow{\Delta} H_{k-1}(U_1 \cap U_2) \longrightarrow \dots$$

ядро каждого гомоморфизма равно образу предшествующего гомоморфизма.

Более того, если $Y \longrightarrow \partial$ ругое пространство, причем $Y = V_1 \cup V_2$ (V_1, V_2 открыты в Y), и $f \colon X \longrightarrow Y \longrightarrow$ непрерывное отображение, для которого $f(U_i) \subset V_i$, то $(f \mid U_1 \cap U_2)_* \Delta = \Delta f_*$, т. е. гомоморфизмы Δ коммутируют с индуцированными гомоморфизмами.

Гомоморфизмы Δ называются связывающими гомоморфизмами, а последовательность в теореме 29.18 называется последовательностью Майера — Вьеториса. Вообще, последовательность групп и гомоморфизмов, в которой ядро каждого гомоморфизма равно образу предшествующего, называется точной последовательностью. Таким образом, последовательность Майера — Вьеториса точна.

Мы не будем доказывать теорему 29.18, однако, чтобы продемонстрировать ее полезность (а тем самым полезность теории гомологий), докажем при помощи нее один результат и выведем из него важные следствия.

29.19. Теорема. Пусть n — натуральное число;

$$H_k(S^n) = \begin{cases} Z & \text{при } k = 0, n, \\ 0 & \text{в противном случае.} \end{cases}$$

Более того, если $T_n: S^n \to S^n$ —отражение, заданное формулой $T_n(x_0, x_1, \dots, x_n) = (-x_0, x_1, \dots, x_n),$ то $T_{n*}: H_n(S^n) \to H_n(S^n)$ есть умножение на -1.

Доказательство. Докажем эту теорему по индукции с использованием последовательности Майера — Вьеториса. Пусть $U_1 = \{x \in S^n: x_n > -1/2\}$ и $\dot{U_2} = \{x \in S^n: x_n > -1/2\}$ $x_n < 1/2$ }. Заметим, что U_1 и U_2 стягиваемы и $U_1 \cap U_2$ гомотопически эквивалентно S^{n-1} , так что

$$H_k\left(U_i\right) = \left\{ \begin{array}{ll} Z & \text{при} & k = 0, \\ 0 & \text{в противном случае,} \\ H_k\left(U_1 \cap U_2\right) = H_k\left(S^{n-1}\right). \end{array} \right.$$

Далее, если представить S^{n-1} как $\{x \in S^n: x_n = 0\}$, то $T_n \mid S^{n-1} = T_{n-1}$. Пусть n=1; тогда при k=1 последовательность

Майера — Вьеториса имеет вид

$$\ldots \to 0 \xrightarrow{j} H_{\mathbf{1}}(S^{1}) \xrightarrow{\Delta} H_{\mathbf{0}}(S^{0}) \xrightarrow{i} Z \oplus Z \xrightarrow{j} \ldots,$$

что можно переписать как

$$\ldots \to 0 \xrightarrow{i} H_{\mathbf{I}}(S^{\mathbf{I}}) \xrightarrow{\Delta} Z \oplus Z \xrightarrow{i} Z \oplus Z \xrightarrow{j} \ldots,$$

где i(x, y) = (x + y, x + y). Гомоморфизм Δ инъективен. поскольку $\ker \Delta = \operatorname{im} i = 0$. Далее, группа $\operatorname{im} \Delta = \ker i = 0$ $=\{(x, -x) \in Z \oplus Z\}$ изоморфна Z, так что $H_1(S^1)=Z$. Очевидно, что $T_{0*}(x, y)=(y, x)$, и так как $T_{0*}\Delta=\Delta T_{1*}$, то T_1 — умножение на -1. При k > 1 последовательность имеет вид

$$\cdots \longrightarrow 0 \stackrel{i}{\longrightarrow} H_k(S^1) \stackrel{\Delta}{\longrightarrow} H_{k-1}(S^0) \stackrel{j}{\longrightarrow} 0 \longrightarrow \cdots,$$

и легко проверить, что Δ — изоморфизм (этот гомоморфизм инъективен, так как $\ker \Delta = \operatorname{im} i$, и сюръективен, так как im $\Delta = \ker j$). Поэтому при n = 1 теорема доказана.

Пусть m > 1 и результат справедлив при n = m - 1.

Докажем его при n=m. При k=1 имеем

$$\ldots \to 0 \xrightarrow{i} H_1(S^m) \xrightarrow{\Delta} H_0(S^{m-1}) \xrightarrow{i} \mathbf{Z} \oplus \mathbf{Z} \to \ldots,$$

что можно переписать в виде

$$\dots \to 0 \xrightarrow{I} H_1(S^n) \xrightarrow{\Delta} Z \xrightarrow{I} Z \oplus Z \to \dots,$$

где i(a) = (a, a), так что $\ker i = 0$, а следовательно, $\operatorname{im} \Delta = 0$ и $H_1(S^m) = 0$. При k > 1 имеем

$$\ldots \to 0 \xrightarrow{j} H_k(S^m) \xrightarrow{\Delta} H_{k-1}(S^{m-1}) \xrightarrow{i} 0,$$

откуда делаем вывод, что $H_k(S^m)\cong H_{k-1}(S^{m-1})$. Далее, при k=m, используя равенство $T_{m-1*}\Delta=\Delta T_{m*}$, получаем, что T_{m*} —умножение на —1. Отсюда по индукции следует утверждение теоремы. \square

29.20. Следствие. (a) Eсли $n \neq m$, то сферы S^n и S^m имеют разный гомотопический тип.

(b) Всякое непрерывное отображение $f: D^n \to D^n$

имеет неподвижнию точку.

(c) Отражение $T_n: S^n \to S^n$ не гомотопно тожде-

ственному отображению.

(d) Антиподальное отображение $A: S^{2n} \to S^{2n}$, определенное равенством A(x) = -x, не гомотопно тождественному отображению.

(e) Если $f: S^{2n} \longrightarrow S^{2n}$ гомотопно тождественному

отображению, то f имеет неподвижную точку.

(f) Не существует непрерывного отображения $f: S^{2n} \to S^{2n}$, для которого векторы x и f(x) ортогональны в \mathbb{R}^{2n+1} при всех x.

Часть (а) следует из теоремы о гомотопической инвариантности (теорема 29.14); см. упр. 29.15 (а). Часть (b)—это теорема Брауэра о неподвижной точке; она доказывается точно так же, как следствие 16.10. Часть (c) следует из теоремы о гомотопической инвариантности. Часть (d) следует из того, что $A = R_0 R_1 \dots R_{2n}$, где R_1 —отражение вдоль t-й координаты, так что A_* : $H_{2n}(S^{2n}) \to H_{2n}(S^{2n})$ — умножение на $(-1)^{2n+1} = -1$. Для доказательства (e) допустим, что f не имеет неподвижных точек; тогда $(1-t)f(x)-tx\neq 0$ при всех x, и можно определить гомотопию F: $S^{2n} \times$

 $\times I \longrightarrow S^{2n}$ между f и A формулой

F(x, t) = ((1-t)f(x)-tx)/||(1-t)f(x)-tx||.

Наконец, часть (f) следует из (e), потому что если xи f(x) ортогональны, то $f(x) \neq x$.

Части (e) и (f) имеют при n=1 физическое истолкование, обычно называемое теоремой о волосатом шаре. Она утверждает, что волосатый шар (т. е. D^3 , на котором из каждой точки его поверхности S^2 растет волос) нельзя гладко причесать. В самом деле, любая такая попытка приводит к образованию «пробора» или «макушки». Для доказательства достаточно заметить, что на гладко причесанной сфере единичный вектор f(x), указывающий направление волоса в точке х, был бы ортогонален вектору х. Отметим, однако, что волосатый тор можно причесать гладко. Этот факт имеет важное значение для термоядерных энергетических

29.21. Упражнения. (а) При помощи последовательности Майера ---Вьеториса вычислите гомологии $\mathbb{R}P^2$. (b) При помощи последовательности Майера — Вьеториса вы-

числите группы гомологий дополиения к узлу. Выведите отсюда следствие 28.4. (c) Докажите, что не существует ретракции диска D^n на

chepy S^{n-1} .

установок будущего.

(d) Пусть M есть m-мерное многообразие, а N — некоторое n-мерное многообразие. Докажите, что если $m \neq n$, то M и N не гомеоморфны. Это свойство называется топологической инвариантностью размерности. (Указание: воспользуйтесь гомеоморфизмом $M/(M \setminus D) \cong S^m$, описанным в упр. 11.12 (f).)

Есть много других способов определения гомологических групп. Для широкого класса пространств (например, для клеточных комплексов) все эти теории совпадают. На этом основан аксиоматический подход к теории гомологий, предложенный С. Эйленбергом и Н. Стинродом в начале 50-х гг. Опишем множество аксиом так называемых «приведенных теорий гомологий». Это теории, определенные для топологических пространств с отмеченной точкой (как фундаментальная группа). Приведенные сингулярные группы гомологий пространства X с отмеченной точкой $x_0 \in X$ определяются равенством

$$\tilde{H}_n(X) = \ker (p_{\bullet}: H_n(X) \longrightarrow H_n(\{x_0\})),$$

где $p: X \to \{x_0\}$ — очевидное отображение (см. упр. 29.15 (c)). Для отображения $f: X \to Y$, переводящего отмеченную точку в отмеченную точку, существует индуцированный гомоморфизм $f_{\bullet}: \tilde{H}_n(X) \to \tilde{H}_n(Y)$, определенный очевидным образом.

Прежде чем сформулировать аксиомы приведенной теории гомологий, введем кратко некоторые обозначения.

29.22. Определение. Пусть X — топологическое пространство с отмеченной точкой x_0 . Определим ΣX как факторпространство $(X \times I)/(X \times \partial I \cup \{x_n\} \times I)$ с очевидной отмеченной точкой. Назовем ΣX (приведенной) надстройкой над X.

Заметим, что если $f \colon X \to Y$ — непрерывное отображение, переводящее отмеченную точку в отмеченную точку, то оно индуцирует сохраняющее отмеченные точки непрерывное отображение $\Sigma f : \Sigma X \to \Sigma Y$, опре-

деленное очевидным образом.

29.23. Определение. Приведенный конус CX над X $(X \times I)/(X \times I)$ определяется как факторпространство \times {1} U { x_o } \times I).

Если $f: X \to Y$ — непрерывное отображение, переводящее отмеченную точку в отмеченную точку, то конус C_f отображения f есть факторпространство $(CX \cup Y)/\sim$, где \sim — отношение эквивалентности, определенное условием $(x, 0) \sim f(x)$ при $(x, 0) \in CX$ и $f(x) \in Y$. Отмеченной точкой конуса С, является точка, соответствующая отмеченной точке $u_0 \in Y$.

Заметим. имеется естественное включение что $i: Y \to C_r$

29,24. Упражнения. (а) Докажите, что если $p\colon X \to \{x_0\}$ — постоянное отображение, то C_p совпадает с ΣX . (b) Докажите, что если X хаусдорфово, то таково же ΣX . (c) Докажите, что $\Sigma S^1 \cong S^2$.

Сформулируем теперь аксиомы Эйленберга — Стинрода приведенной теории гомологий. Начиная с этого

места, все пространства имеют отмеченные точки и все отображения таких пространств непрерывны и переводят отмеченные точки в отмеченные точки.

Приведенная теория гомологий, определенная на некоторой совокупности (возможно, всех) топологических пространств с отмеченной точкой, включает в себя следующие объекты.

- (Å) Семейство $\{\tilde{H}_n:\ n\in\mathbb{Z}\}$, такое, что \tilde{H}_n ставит в соответствие каждому пространству X из рассматриваемой совокупности абелеву группу $\tilde{H}_n(X)$. Эта группа называется п-мерной приведенной группой гомологий Х.
- (В) Для любого непрерывного отображения $f: X \to Y$, переводящего отмеченную точку в отмеченную точку, существует индуцированный гомоморфизм f_* ! $\tilde{H}_n(X) \rightarrow$ $\rightarrow \tilde{H}_{n}(Y)$ при всех n.

 (\mathring{C}) Для любого пространства X и любого целого nсуществует гомоморфизм $\sigma_n(X)$: $\tilde{H}_n(X) \to \tilde{H}_{n+1}(\Sigma X)$, называемый гомоморфизмом надстройки.

Эти объекты должны подчиняться следующим семи аксиомам.

- (1) (Аксиома тождества.) Если 1: $X \to X$ —тождественное отображение, то индуцированный гомоморфизм $1_*: \tilde{H}_n(X) \to \tilde{H}_n(X)$ является тождественным изоморфизмом при любом целом n.
- (2) (Аксиома композиции.) Если $f: X \to Y$ и $g: Y \to Z$ отображения (непрерывные и переводящие отмеченные точки в отмеченные точки), то $(gf)_* = g_* f_*$.
- (3) (Аксиома естественности надстройки.) Если $f: \hat{X} \to \hat{Y}$ — непрерывное отображение, то следующая диаграмма коммутативна:

(4) (Аксиома гомотопии.) Если отображения f, g: $X \to Y$ гомотопны относительно отмеченной точки в X, то индуцированные гомоморфизмы f_* и g_* совпадают.

(5) (Аксиома надстройки.) Надстроечный гомоморфизм $\sigma_n(X)$: $\tilde{H}_n(X) \to \tilde{H}_{n+1}(\Sigma X)$ является изоморфиз-

мом для всех X и всех n.

(6) (Аксиома точности.) Для всякого отображения $f\colon X \to Y$ последовательность $\tilde{H_n}(X) \stackrel{f_*}{\to} \tilde{H_n}(Y) \stackrel{i_*}{\to} \tilde{H_n}(C_f)$ обладает свойством $\lim f_* = \ker i_*$ при всех n, где

i: $Y \to C_f$ — естественное включение. (7) (Аксиома размерности.)

$$\tilde{H}_n(S^0) = \begin{cases} \mathbb{Z} & \text{при } n = 0, \\ 0 & \text{в противном случае.} \end{cases}$$

29.25. Упражнение. Покажите, что приведенная сингулярная теория гомологий является приведенной теорией гомологий в описанном выше смысле. (Указание: для проверки аксиом (5) и (6) воспользуйтесь последовательностью Майера—Вьеториса.)

Если вместо приведенной выше аксиомы размерности потребовать выполнения условия $\tilde{H}_n(S^o) = G_n$ для некоторой совокупности абелевых групп G_n , $n \in \mathbb{Z}$, то мы получим обобщенную приведенную теорию гомологий с коэффициентами $\{G_n: n \in \mathbb{Z}\}$. Такие теории приобрели в современной алгебраической топологии чрезвычайно важное значение.

РЕКОМЕНДАЦИИ ДЛЯ ДАЛЬНЕЙШЕГО ЧТЕНИЯ

Эта глава содержит подборку книг для дальнейшего чтения. Сюда же включены книги, требующие для своего чтения гораздо более обширных сведений из топологии, чем изложенные в этой книге. Выбор предлагаемых книг основан на (предвзятых) вкусах автора. Так, во многих случаях упоминается книга Спеньера; это превосходный всесторонний учебник по алгебраической топологии, хотя кое-кто находит его трудным для чтения.

Многообразия. Некоторую общую теорию многообразий содержит книга Дольда. О двумерных и трехмерных многообразиях см. у Мойза. Важным классом многообразий являются так называемые дифференцируемые

многообразия; им посвящена книга Хирша.

Теория гомотопий. Рекомендуем три книги: Грея,

Спеньера и Уайтхеда.

Накрывающие пространства. Теория накрывающих пространств вливается в теорию расслоенных пространств, хорошими пособиями по которой являются книги Хьюзмоллера и Спеньера.

Действия арупп. На топологических пространствах см. у Бредона. На многообразиях см. у Коннера и

Флойда и у Коннера.

лоида и у Коннера. *Теория узлов*. Книги Рольфсена и Кроуэлла — Фокса.

Теория гомологий. Дальнейшие сведения о сингулярной теории гомологий имеются в книгах Дольда, Гринберга, Спеньера и Викка. Две другие разновидности теории гомологий—это симплициальные гомологии и гомологии Чеха 1). В книге Спеньера излагаются

¹⁾ Правильнее называть их гомологиями Александрова — Чеха. — Прим. ред.

обе эти теории. Книга Маундера хороша для знакомства с симплициальными гомологиями, а книги Дольда и Масси можно рекомендовать для изучения теории гомологий Чеха. Обобщенные теории гомологий см. у Грея и Свитцера. В книге Грея обобщенные теории гомологий исследуются с чисто гомотопической точки зрения. Наконец, классическая книга по аксиоматической теории гомологий — это книга Стинрода и Эйленберга.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- Бредон (Bredon G. E.) Introduction to compact transformation groups.— New York—London: Academic Press, 1972. [Русский перевод: Бредон Г. Введение в теорию компактных групп преобразований. - М.: Наука, 1980.]
- Викк (Vick J. W.) Homology theory. New York London: Academic Press, 1973. Грей (Gray B.) Homotopy theory.— New York—San Francisco—

London: Academic Press, 1975.

- Гринберг (Greenberg M. J.) Lectures on algebraic topology. New York: Academic Press, Benjamin, 1967.
- Дольд (Dold A.) Lectures on algebraic topology. Berlin Heidelberg-New York: Springer, 1972. [Русский перевод: Дольд А. Лекции по алгебраической топологии. — М.: Мир, 1976.]

Kоннер (Conner P. E.) Differentiable periodic maps (second edition). — Berlin — Heidelberg — New York: Springer, 1979.

- Коннер, Флойд (Conner P. E., Floyd E. E.) Differentiable periodic maps.— Berlin—Heidelberg—New York: Springer, 1964. [Русский перевод: Коннер П., Флойд Э. Гладкие периодические
- отображения.— М.: Мир, 1969.] Кроуэлл, Фокс (Crowell R. H., Fox R. H.) Introduction to knot theory.— Boston—New York: Ginn, 1963. [Русский перевод: Кроуэлл Р., Фокс Р. Введение в теорию узлов. - М.: Мир, 1967.1
- Maccu (Massey W. S.) Homology and cohomology theory.— New York—Basel: Marcel Dekker, 1978. [Русский перевод: Масси У. Теория гомологий и когомологий: Подход, основанный на применении коцепей Александера — Спеньера. — М.: Мир, 1981.]
- Маундер (Maunder C. R. F.) Introduction to algebraic topology.— Cambridge University Press, 1980.
- Moйз (Moise E. E.) Geometric topology in dimensions 2 and 3. -New York - Heidelberg - Berlin: Springer, 1977.

Рольфсен (Rolfsen D.) Knots and links.— Berkeley, Ca.: Publish or perish, 1976.

Свитцер (Switzer R. M.) Algebraic topology — homotopy and homology. — Berlin — Heidelberg — New York: Springer, 1975.

Спеньер (Spanier E. H.) Algebraic topology. -- New York: McGraw Hill, 1966. [Русский перевод: Спеньер Э. Алгебраическая топология. — М.: Мир, 1971.]

Стинрод, Эйленберг (Steenrod N., Eilenberg S.) Foundations of algebraic topology. - Princeton University Press, 1952. [Русский перевод: Стинрод Н., Эйленберг С. Основания алгебраической топологии. — М.: Физматгиз, 1958.]

Уайтхед (Whitehead G. W.) Homotopy theory. — Cambridge, Mass.: M.I.T. Press, 1966.

Хирш (Hirsch M. W.) Differential topology. - New York-Heidelberg—Berlin: Springer, 1976. [Русский перевод: Хирш М. Дифференциальная топология. — М.: Мир, 1979.]

Хьюзмоллер (Husemoller D.) Fibre bundles (second edition).— York—Heidelberg—Berlin: Springer, 1975, [Русский перевод первого издания: Хьюзмоллер Д. Расслоенные пространства. - М.: Мир. 1970.1

ЛИТЕРАТУРА, ДОБАВЛЕННАЯ ПРИ ПЕРЕВОДЕ

Масси У., Столлингс Дж. Алгебраическая топология. Введение. Пер. с англ.— М.: Мир, 1977.

Милнор Дж., Уоллес А. Дифференциальная топология (начальный курс). Пер. с англ. — М.: Мир. 1972.

Рохлин В. А., Фукс Д. Б. Начальный курс топологии, Геометрические главы. - М.: Наука, 1977.

Стинрод Н., Чинн У. Первые понятия топологии, Пер, с англ,-М.: Мир, 1967.

УКАЗАТЕЛЬ

Абелева (коммутативная) группа 12
Аксиомы отделимости 64—65
Алгебраическая топология 150
Алфавит 203
Антидискретная топология 21
Антиподальные точки 80
Ассоциативность групповой операции 10

Бабушкин узел 260, 261 База накрытия 166 Биективная функция 9 Бинарная операция на множестве 10 Блоха и гребенка 115 Борсук К. 181 Борсука — Улама теорема 181 Брацура теорема о неподвижной точке 164, 289

Ван Кампен Э. 202 Вещественное проективное пространство 38 Взаимно однозначная функция 9 Внутренность множества 22 Восьмерка 218, 222 Выпуклое множество 113

Гейне — Бореля теорема 62 Гомеоморфизм 29 Гомеоморфные топологические пространства 29 Гомоморфизм групп 11 — надстройки 292 Гомотопическая группа 155

— эквивалентность 136
Гомотопический тип 136
Гомотопия 132
— относительно подмножества 133
Гомотопные отображения 132
Граница 274
Граничный оператор 274
График функции 53

Группа 10 — гомологий 276

скольжений накрытия 192

— слов 203

— узла 244

Двойная точка уэла 243, 253 Действие группы на множестве 47, 48 Декартово (прямое) произведе-

ние множеств 8 Деформационный ретракт 137

— сильный 137— слабый 139

Дикий узел 253 Диск 84

Дискретная метрика 15

топология 21

Евклидова (обычная) метрика 15 Единичный элемент группы 10 Ёнэяма К. 121

Жордан К. 122 Жордана теорема 122 Жорданова кривая 122 Жорданов многоугольник 122 Замкнутое множество в топологическом пространстве 23 — отображение 28 Замкнутый путь 147 Замыкание множества 24 Зейферт Х. 202 Зейферта — ван Кампена теорема 202, 208, 209, 214, 218, 221, 222, 287

Задачи о блинах 80, 82

Изоморфизм групп 11

Индуцированная топология 31 Индуцированный гомоморфизм — групп гомологий 278 Интервалы 13, 77 Инъективная функция Классификационная теорема для поверхностей 99

Класс эквивалентности 10 Классы эквивалентности 204 42 - 44Клейна бутылка 107, 172—173 Коммутант 12 Коммутативная (абелева) группа 12 Коммутатор 12 Компактное множество 58 Компактно-открытая топология 63 Композиция функций 9 Компонента Конечное покрытие 57 Конечно порожденная группа 12 Конус отображения 291 Копредставление группы 204Кратная точка узла 243, 253 Крендель 91, 99

Лебега число покрытия 63 Лемма о склейке 113

прост-

Кривые, заполняющие

Кривая 112

ранство 120

Линейно связное пространство 113 Линзовое пространство 168 Локально компактное пространство 63

 линейно связное пространство 119, 186

Майера — Вьеториса последовательность 287 *Мёбиуса л*ист (лента) 39, 100 топологическое Метризуемое пространство 21 Метрика 14 Метрическая (обычная) топология 20 Метрическое пространство 14 Многолистное накрытие 173 Многообразие — с краем 111

Надстройка 291 Накрывающее отображение 166 — пространство 166 Накрытие 166 Незаузленный узел 239 Неориентируемая поверхность 101 Непрерывная функция 14 — на метрическом пространстве 16 — на топологическом странстве 26 Непрерывное действие

на топологическом пространстве 49--50 Неравенство треугольника Несобственная двойная узла 243, 253

Нормальная подгруппа

Образ 8 Образующие группы 12, 205 Обратная функция 9 Обратный элемент в группе 10 Обычная (евклидова) метрика 15 (метрическая) топология Ограничение функции 9

Ограниченное множество в \mathbb{R}^n 62 Односвязное топологическое пространство 153 Одноточечная компактификация 63 Озера Вады 121 Окрестность 25 Оператор призмы 279 Орбита 48 Ориентируемая поверхность 100 — — с краем 111 Основная теорема алгебры 163 Открытое множество в метри-

 — в топологическом пространстве 20 — отображение 27

 покрытие 58 Относительная топология Отношение на множестве

ческом пространстве 16

— эквивалентности Отображение вычисления 63 — множеств 8

Пеано Дж. 120 Первая теорема об изоморфизме 11

Поверхности 97 Поверхность в краем III

— натянутая на узел 263 - 264Подгруппа 10

порожденная элементом Поднятие 157

— отображения 169 Подпокрытие 57 Подпространство топологическо-

го пространства 31 Покрытие 57

Полулокально односвязное пространство 196

Польская окружность 190 Постоянная функция на топологическом пространстве

Правильно накрытое множество 166

Приведенная теория гомологий 290, 292

 — обобщенная с коэффициентами 293

Приведенный конус 291 Приклеивание листа

100 — ручки 99 — цилиндра 99

Произведение путей 140 Прокоммутированная 235

Прообраз 9 Простая замкнутая кривая 107, 120, 173

— цепь 119 Простой узел 262 Пространство орбит 49

Прямая сумма групп 11 Прямое произведение групп 11

— — множеств 8 Пустое слово 203

Путь 112

Равномерно непрерывное отображение метрических пространств 124 Регулярное накрытие Редуцированное слово 203 Ретракт 137 слабый 138 Рефлексивность отношения Род поверхности 101 — узла 265 Ручной узел 253

Свободная абелева группа ранга *п* 12

группа, порожденная

жеством символов 203 образующими 203 n

мно-

Свободное действие группы 88, 168

Свойство универсальности отображения произведений — факторпространств

Связная сумма поверхностей 97

— узлов 262

Связное гопологическое пространство 73

Связывающие гомоморфизмы 287 деформационный ре-Сильный тракт 137

Симметричность отношения Сингулярная п-мерная 27Ž—273

Сингулярный *п*-мерный симплекс 272

Сквер-узел 260, 261

Скольжение накрытия 174 Слабый деформационный ретракт 139

ретракт 138

Следствие (соотношений группы) 205

Слова 203

Смежные классы в группе 10 Собственно разрывное действие **г**руппы 167

Соотношения 205

Сохраняющий ориентацию LOмеоморфизм **24**2

Стабилизатор 48

Стандартная неориентируемая поверхность рода т 101

поверхность ориентируемая рода п 101

Стандартный

п-мерный лекс 272

Степень пути 161

Стереографическая проекция 85 Стинрод Н. 290

Стинрода — Эйленберга омы 291-293

Строго эквивалентные узлы 242--243

Структурная теорема для нечно порожденных абелевых групп 12

Стягиваемое пространство 136 Сюръективная функция 9

Тверберг Х. 122

Теорема о волосатом шаре 290 о гомотопической инвариант-

ности 279 — о монодромии 162

— о накрывающей ГОМОТОПИИ для путей 171

159 -- о накрывающем ПУТИ о неподвижной точке **7**9

 о промежуточном значении 79 — о сэндвиче в ветчиной

Титце преобразования Тождественная функция на топологическом пространстве 26 Тождественное отображение множества 8 Топологическая группа

- инвариантность размерности 290 Топологическое отождествление

 произведение топологических пространетв 52

пространство 20

Топология 20

 конечных дополнений 21 Top 42

Торический узел 247 Точная последовательность 287 Транзитивное действие группы 176

Транзитивность отношения Тривиальная группа Трилистник 242, 260

У*айтхеда* теорема 156 Узел 239 Улам **G.** 180 Универсальное накрытие 195

Факторгруппа 11 Фактортопология 38

Фундаментальная группа 147 — бутылки Клейна 180, 223

 восьмерки 219

— линзового пространства 180, 213

— — листа Мёбиуса

 одноточечного пространства 222

157, 222 — окружности

— поверхности 231

 проективной плоскости 223-227, 231

 выброшенной точкой 220

 проективного пространства 213

 пространства орбит 178— 180

— тора 163, 220—223, 231 — — с выброшенной точкой 220

Функтор 150, 279 Функция 8

Хаусдорфово пространство 64 Хопф X. 155 Хорда 129

Центр группы 149 Цепно-гомотопные гомоморфизмы 279 Цикл 274 Циклическая группа 12 **Ш**енфлиса теорема 241 Шрейер **©. 251**

Эйленберг G, 290 Эквивалентные накрытия 191

— пути 140— узлы 242

— узлы 242 Эквивариантное отображение 49

Ядро гомоморфизма 11

G-пространство 50 H-пространство 155 T_k -пространство 65

ОГ ЛАВЛЕНИЕ

Предисловие редактора перевода	
Предисло	вие
Глава О	. Множества и группы
Глава І.	. Истоки: метрические пространства
Глава 2	. Топологические пространства
Глава 3	. Непрерывные функции
Глава 4	. Непрерывные функции
Глава 5	. Фактортопология (и группы, действующие на
	пространствах)
Глава 6	. Произведения пространств
Глава 7.	. Компактные пространства
Глава 8.	. Хаусдорфовы пространства 64
	. Связные пространства
Глава 10.	. Задачи о блинах
Глава 11.	Многообразия и поверхности
Глава 12.	Пути и линейно связные пространства 119
	Приложение к главе 12. Теорема Жордана 120
Глава 13.	. Гомотопия непрерывных отображений 13
Глава 14.	Умножение путей
Глава 15.	Умножение путей
Глава 16.	. Фундаментальная группа окружности 157
Глава 17.	Накрывающие пространства
Глава 18.	Фундаментальная группа накрывающего простран-
	ства
Глава 19.	Фундаментальная группа пространства орбит 178
Глава 20.	Теорема Борсука — Улама и георема о сэндвиче
	с ветчиной
Глава 21.	Еще о накрывающих пространствах: теоремы о
	поднятии
Глава 22.	Еще о накрывающих пространствах; теоремы су-
	ществования
Глава 23.	Теорема Зейферта — ван Кампена. 1. Образующие. 202
	Теорема Зейферта — ван Кампена. И. Соотноше-
	ния
Глава 25.	георема зенферта — ван қампена. 111. Вычисле-
E 00	иня
глава 26.	Фундаментальная группа поверхности 231
1 лава 27.	Узлы. І. Предварительные сведения и торические
F 00	узлы
глава 28.	Узлы. II. Ручные узлы
Γ 00	Приложение к гл. 28. Таблица узлов 266
глава 29.	
глава 30.	
Vunnama	
Указатель	