Assignment 1: Introduction to Systems Programming

Kevin Rich, Francis Vo, Soo-Hyun Yoo

October 16, 2012

1 Mathematical Analysis

1.1 Algorithm 1

```
Data: Integer array A of size N
   Result: Greatest Sum of Subarray
 1 for i \leftarrow 0 to N do
       for j \leftarrow i to N do
           s \leftarrow 0
 3
            for k \leftarrow i to j do
             s \leftarrow s + A[k]
 5
            end
 6
           if s > max then
 7
            max \leftarrow s
           end
       end
10
11 end
```

Algorithm 1: Pseudocode for Basic Enumeration

This Algorithm has 3 for-loops so it is $O(n^3)$.

1.2 Algorithm 2

```
Data: Integer array A of size N Result: Greatest Sum of Subarray 1 for i \leftarrow 0 to N do 2 | s \leftarrow 0 3 | for j \leftarrow i to N do 4 | s \leftarrow A[j] 5 | if s > max then 6 | max \leftarrow s 7 | end 8 | end 9 end
```

Algorithm 2: Pseudocode for Better Enumeration

This Algorithm has 2 for-loops so it is $O(n^2)$.

1.3 Algorithm 3

```
Data: Integer array A of size N
Result: Greatest Sum of Subarray
def MaxSubarray:
    sums = MaxSubarray_recursive(A)
    return max(sums)
```

Algorithm 3.1: Starting function pseudocode for Divide and Conquer

```
Data: Integer array A of size N
Result: Integer array of size 4
   def MaxSubarray_recursive:
       if A.size <= 1:
           sums.all = A[0]
           sums.left = A[0]
           sums.right = A[0]
           sums.overall = A[0]
       left_sums = MaxSubarray_recursive(A. left_branch)
       right_sums = MaxSubarray_recursive(A, right_branch)
       sums.all = left_sums.all + right_sums.all
       sums.left = max(left_sums.left, left_sums.all + right_sums.left)
       sums.right = max(right_sums.right, left_sums.right + right_sums.all)
       m = left_sums.right + right_sums.left
       sums.overall = max(sums.all, sums.left, sums.right, m)
       return sums
```

Algorithm 3.2: Recursive function pseudocode for Divide and Conquer

This algorithm is recursive and decreases by half every step. Each lower step has double the number of calls. Thus, this algorithm is $O(n \log n)$.

2 Theoretical Correctness

Claim: Given an array of small integers $a[1,\ldots,n]$, the divide-and-conquer algorithm (algorithm 3) takes $O(n\log n)$ time to compute the sum of the maximum subarray, $\max_{i\leq j}\sum_{k=i}^{j}a[k]$.

Proof: Let n be the size of the array of integers, a. The recurrence for the recursive step of the

Proof: Let n be the size of the array of integers, a. The recurrence for the recursive step of the algorithm can be found to be

$$T(n) = \Theta(1) + 2T\left(\frac{n}{2}\right) + \Theta(1)$$
$$= 2T\left(\frac{n}{2}\right).$$

Suppose $T(n) \leq cn \log n$. Substituting, we find:

$$T(n) \le 2 \cdot c \left(\frac{n}{2}\right) \log \frac{n}{2}$$

$$= cn \log \frac{n}{2}$$

$$\le cn \log n$$

$$\equiv O(n \log n)$$

3 Testing

Student ID	Answer
931678074	5703
930569466	8184
932086449	4949

4 Experimental Analysis

4.1 Algorithm 1

4.2 Algorithm 2

4.3 Algorithm 3

5 Extrapolation and Interpretation

5.1 Extrapolation

The functions were calculated using gnuplot's fit function.

5.2 Interpretation

The functions were calculated using gnuplot's fit function and fitting the data to $f(n) = 10^{m*log_{10}(n)+c}$. The slopes for each algorithm is a little lower than the actual power because of the creation overhead of the function has a larger affect on arrays with small sizes. This will cause the left side higher and therefore decreases slope.

5.3 Algorithm 1

5.3.1 Extrapolation

$$f(n) = 4.71599 \times 10^{-10} \times n^3$$

$$f(n) = 3600 \rightarrow n = 19690$$

5.3.2 Interpretation

Slope = 2.99734

5.4 Algorithm 2

5.4.1 Extrapolation

$$f(n) = 1.87761 \times 10^{-9} \times n^2$$

 $f(n) = 3600 \rightarrow n = 1384678$

5.4.2 Interpretation

Slope = 1.99602

5.5 Algorithm 3

5.5.1 Extrapolation

$$f(n) = 1.74832 \times 10^{-8} \times n \times log(n)$$

$$f(n) = 3600 \rightarrow n = 8984428998 = 8.98 \times 10^{9}$$

5.5.2 Interpretation

 ${\rm Slope} = 1.00506$

6 Code

6.1 Files

```
alg1.cpp - function for algorithm 1
alg2.cpp - function for algorithm 1
alg3.cpp - function for algorithm 1
analysis.cpp - code to run algorithm and measure times for the number of array then outputs .t file makefile - to compile files
maxSubarray.pdf -
maxSubarray.tex - to create pdf filename
test.cpp - allows input of file, and runs algorithm on input file
analysis/ - hold compiled executables for running analysis
test/ - hold compiled executables for running tests on code, and test array files
timingfiles/ - holds files for creating plots
timingfiles/*.t - files that holds run times for different array sizes
timingfiles/*.gp - code for gnuplot. 2 plots of each algorithm: 1 normal plot, and 1 log-log plot
```

6.2 Algorithm 1

```
Enumeration
    * Loop over each pair of indices i; j and compute the sum from k=i to j of a[k].
    * Keep the best sum you have found so far.
   using namespace std;
  int MaxSubarray(int a[], int n){
     int i,j,k;
12
13
     int max = a[0];
     int sum;
15
     for (i = 0; i < n; ++i)
       for (j = i; j < n; ++j){
         sum = 0;
          for (k = i; k \le j; ++k)
18
            \operatorname{sum} \ += \ a \left[ \ k \ \right];
20
          \inf (\max < \sup) \{
21
22
            \max = \sup;
23
24
       }
25
     return max;
26
```

alg1.cpp

6.3 Algorithm 2

```
\ast Notice that in the previous algorithm, the same sum is computed many times.
   * In particular, notice that sum from k=i to j of a[k] can be computed from sum from k=
   using namespace std;
  int MaxSubarray(int a[], int n){
12
13
    \begin{array}{ll} \mbox{int} & i \;, j \;, k \,; \\ \mbox{int} & \max \; = \; a \; [ \; 0 \; ] \,; \end{array}
14
15
    int sum;
16
    for (i = 0; i < n; ++i)
17
      sum = 0;
18
      for (j = i; j < n; ++j){
    sum += a[j];
20
         if(max < sum){
21
22
           \max = \sup;
23
         }
      }
24
25
    return max;
26
```

alg2.cpp

6.4 Algorithm 3

```
* Divide and Conquer
    * If we split the array into two halves, we know that the maximum subarray will either
           * contained entirely in the frst half,
           * contained entirely in the second half, or
           * made of a suffix of the frst half of maximum sum and a prefix of the second
        half of maximum sum
    * The frst two cases can be found recursively. The last case can be found in linear
  #define ALL
10
  #define LEFT
                     1
  #define RIGHT
                     2
  #define OVERALL 3
   using namespace std;
   void MaxSubarray_h(int array[], int size, int sums[]){
     // Base case.
18
     if(size \ll 1)
       sums [ALL]
                       = array [0];
                                        // Sum of entire array
20
                                        // Largest sum from left end of array
// Largest sum from right end of array
                       = array [0];
       sums [LEFT]
21
       sums [RIGHT]
                       = array [0];
22
                                        // Largest sum found so far
       sums[OVERALL] = array[0];
23
24
25
     int i = size/2; // Index of middle element
26
27
28
     // Recurse.
     int *left = new int [4];
int *right = new int [4];
29
30
     MaxSubarray_h(array,i,left);
MaxSubarray_h(array+i, size-i, right);
31
32
     // Calculate various possible maximum sums.
34
     int a = left [ALL] + right [ALL];
                                               // Sum of everything
35
     int l = left [ALL] + right [LEFT];
36
                                                // Possible max sum from the left
     int r = left [RIGHT] + right [ALL];
int m = left [RIGHT] + right [LEFT];
                                                 // Possible max sum from the right
// Possible max sum straddling both branches
37
39
    40
42
43
44
     overall = overall > m ? overall : m;
45
     // Final answers!
46
     sums[0] = a;
47
     sums[1] = 1;
48
     sums[2] = r;
     sums[3] = overall;
50
51
52
53
  int MaxSubarray(int a[], int n){
     int *p = new int [4];
     MaxSubarray_h(a,n,p);
56
    \begin{array}{l} \text{int } s1 = p[0] > p[1] ? p[0] : p[1]; \\ \text{int } s2 = p[2] > p[3] ? p[2] : p[3]; \\ s1 = s1 > s2 ? s1 : s2; \\ \end{array}
59
     return s1;
60
61
```

alg3.cpp