31383 ROBOTICS

Exercise #3

Problem 1:

Two frames $O_0X_0Y_0Z_0$ and $O_1X_1Y_1Z_1$ are related by the homogeneous transformation

$$H = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A particle has the velocity $\vec{v}_1(t) = \{3 \ 1 \ 0\}^T$ relative to frame $O_1X_1Y_1Z_1$. What is the velocity of the particle in frame $O_0X_0Y_0Z_0$?

Problem 2:

Consider the three-link planar manipulator show above. Compute the linear velocity \vec{v} and angular velocity $\vec{\omega}$ of the center of link 2.

Problem 3: Find the 6×3 Jacobian for the three links of the cylindrical manipulator shown below.

Problem 4:

A 2-link planar manipulator with a mobile platform moving in Z direction is shown below. The robot works only in the X-Z plane in the working space.

Determine the transformation matrix T_3^0 , and find the Jacobian matrix for this mobile robot.