

Hochschule für Technik und Wirtschaft Berlin

Wilhelminenhofstraße 75A, 12459 Berlin

Fachbereich 1 Ingenieurwissenschaften - Energie und Information Regenerative Energien (B)

Photovoltaik-Inselbetrieb vom 28.04.2023

Betreuer: M.Sc. Sabine Kupzok Gruppe: 5

NameMatrikelnummerJohannes Tadeus Ranisch578182Markus Jablonka580234Niels Feuerherdt577669Katharina Jacob578522Vorname, Name 5. Student:inMatrikelnummer

Inhaltsverzeichnis

1	Versuchsziele	1
2	Versuchsbeschreibung	1
3	Vorbereitungsfragen	3
	3.1 Photovoltaik-Inselanlage	3
	3.2 Laderregler	4
	3.3 Batteriesysteme	5
	3.4 Wechselrichter in PV-Inselanlagen	6
	3.5 Einstrahlung und Umgebungsbedingungen	9
4	Versuchsdurchführung	10
5	Auswertung	11
	5.1 PV Wechselrichter	11
6	Quellen	14
7	Anhang	15

Abbildungsverzeichnis

1	Pnachgeführter PV-Generator	2
2	stationärer PV-Generator	2
3	Wirkungsgradkennlinie des Wechselrichters in Abhängigkeit der Auslastung $\ .$	12
4	Osziloskopbilder bei verschiedenen Belastungen	13
Tabe	llenverzeichnis Messdaten der Ströme, Spannungn und Leistungen	11
2	Wirkungsgrad und Leistungsbeiwert	11

Abkürzungsverzeichnis

PV Photovoltaik
WR Wechselrichter
LR Laderegler
MPP Maximum Power Point

1 Versuchsziele

Der Versuch 'Photovoltaik-Inselbetrieb' wurde durchgeführt und soll im Folgenden ausgewertet werden. Die Durchführung und Auswertung des Versuches verfolgt das Ziel die Komplexität eines solchen Photovoltaik-Inselsystems zu verstehen. Dabei wird das System sowohl als System für DC-Verbraucher als auch für AC-Verbraucher betrachtet. Des Weiteren ist das Verstehen und aufstellen von Energiebilanzen ein entscheidener Teil der Betrachtung.

Die Relevanz von Photovoltaik-Inselanlagen und damit der Grund für die Durchführung dieses Versuches liegt in der vollständigen Unabhängigkeit der Systeme. Die damit verbundenen Möglichkeiten reichen von der Versorgung kleinerer elektrischer Geräte wie Taschenrechnern, Uhren oder GPS-Trackern bis hin zur Möglichkeit eine Stromversorgung inklusive Netz für größere Geräte herzustellen. Mögliche Anwendungsbereiche sind hier die Versorgung von Geräten an Standorten an denen ein Netzausbau nicht möglich ist, z.B. auf einer Bohr- oder Forschungsinsel oder dort wo noch kein Netz vorhanden ist und eine Inselanlage den ersten sicheren Stromversorger darstellt, wie in einigen Entwicklungsländern bereits der Fall.

2 Versuchsbeschreibung

Der Versuchsaufbau für diese Messungen besteht aus zwei eigenständigen Systemen. Jedes der Systeme wird über eine eigene PV-Anlage versorgt, hierbei ist Anlage 1 nachgeführt und Anlage 2 stationär. Beide PV-Anlagen sind auf der Dachterasse des G-Gebäudes der HTW Berlin am Campus Wilhelminenhof aufgeständert. In 1 und 2 sind die zwei unterschiedlichen PV-Generatoren zu sehen. Die weiteren Komponenten sind innerhalb des Gebäudes angebracht.

Abbildung 1: Pnachgeführter PV-Generator

Abbildung 2: stationärer PV-Generator

Hinsichtlich der Bauteile unterscheiden sich die Anlagen ebenfalls, für Aufbau 1 wurden die folgenden Komponenten genutzt:

- 8x Solarmodule SunWare SW-8046
- 1x Wechselrichter SMA SUNNY ISLAND 2012/2224
- 1x Laderegler SMA SUNNY ISLAND CHARGER 50
- 1x Batteriesystem aus Blei-Gel-Batterien BAE 6V4PVV280
- 1x Ohmsche-induktive Last (hier:stufenweise regelbarer Staubsauger)
- 1x Ohmsche Last (hier: S-Bahn Heizung)

Für Aufbau 2 wurden folgende Komponenten genutzt:

- 8x Solarmodule SunWare SW-8046
- 1x verstellbarer Widerstand

3 Vorbereitungsfragen

3.1 Photovoltaik-Inselanlage

3.1.1 Geben Sie vier Konzepte von PV-Inselanlagen mit je einem Einsatzbeispiel an

Die möglichen Konzepte für eine PV-Inselanlage unterscheiden sich innerhalb der verwendeten Komponenten und entsprechend auch durch die möglichen Verbraucher und die Verschaltung.

Das einfachste der vier Konzepte ist das direkte Verschalten der PV-Anlage mit DC-Verbrauchern, hierbei kann es sich z.B. um ein Heizungssystem für ein Schwimmbecken handeln.

Das zweite System wird durch eine Batterie ergänzt welche zwischen die PV-Anlage und die Verbraucher geschaltet ist. Mögliche Anwendungen sind einfache DC-Systeme, welche allerdings auch außerhalb der Sonnenstunden funktionieren müssen und dementsprechend einen Puffer benötigen. Ein Beispiel wäre hier ein solarversorgter Snackautomat.

Das komplexeste System welches weiterhin für DC-Verbraucher gedacht ist, wird neben den Komponenten des zweiten Systems um einen Laderegler ergänzt welcher vor die Batterie geschaltet wird. Solche Systeme werden häufig in Wohnmobilen oder Wohnwägen verwendet, welche mit DC-Verbrauchern ausgestattet sind.

Um AC-Verbraucher nutzen zu können muss zusätzlich zu System 3 ein Umrichter vor die Verbraucher geschaltet werden, um diese korrekt versorgen zu können. Diese Systeme können dann Einfamilienhäuser, Forschungsstationen oder abgelegene Dörfer versorgen und ein Netz etablieren.

3.1.2 Die Anlagenkomponenten sollen im Inselsystem auf ihre Funktionsfähigkeit hin geprüft werden. Was messen Sie in welcher Reihenfolge?

Gemessen werden an allen Eingängen und Ausgängen der Geräte sowohl der Strom als auch die Spannung. Beginnend mit dem Ausgang der PV-Anlage, wird dann entlang der Erzeugungslinie geprüft. So folgt die Prüfung des Ladereglers. Anschließend wird das Batteriesystem geprüft und abschließend der Umrichter.

3.2 Laderregler

3.2.1 Welche Voraussetzungen müssen Anlagen mit Akku ohne Laderegler haben? Wann wird ein Laderegler notwendig?

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.2.2 Geben Sie Verfahren zur Laderegelung in PV-Inselanlagen an und erläutern Sie deren Funktionsprinzip! Unter welchen Bedingungen ist welches Verfahren von Vorteil? (Beachten Sie auch den Kostenaspekt!)

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.2.3 Es soll eine defekte Batterie des Batteriesystems aus der Anlage gewechselt werden. Geben Sie die Reihenfolge Ihres Vorgehens schrittweise an.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.3 Batteriesysteme

3.3.1 Welche Batterie-Typen werden in PV-Anlagen häufig eingesetzt? Nennen Sie Vor-und Nachteile! Was ist bei deren Laderegelung zu beachten?

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.3.2 Welche Anforderungen werden an einen Batterieraum gestellt?

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein

Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.3.3 Geben Sie die häufig eingesetzten Systemspannungen an! Was ist bei Gleichspannungsverbrauchern (insbesondere bei niedriger Spannung) im Vergleich zu Wechselstromverbrauchern zu beachten?

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

3.4 Wechselrichter in PV-Inselanlagen

3.4.1 Nach welchen Kriterien erfolgt die Auswahl eines Insel-Wechselrichters?

- Die Leistung des Umrichters muss an die Leistungs anforderungen des Insel-Netzes angepasst werden.
- Die Signalqualität der Spannung muss auch unter Last in den erforderten grenzen der Verbraucher bleiben.
- Der Wirkungsgradbereich muss nach dem Lastverhalten des Inselnetzes ausgelegt werden.

• Der Umrichter muss die gleiche Phasen-Anzahl besitzen, wie das System benötigt.

3.4.2 Welche Insel-Wechselrichter-Typen können zum Einsatz kommen (Kosten beachten)?

Mögliche Umrichter Typen:

- mit oder ohne inneren Trafo
- 3 Level oder Multi Level
- 1 oder 3 Phasig
- Single- oder Multistring

3.4.3 Woran erkennen Sie während des Betriebes einen 'schlechten' Wechselrichter? (niedriger Wirkungsgrad)?

- Die Qualität der Spannung ist durch Oberschwingungen und Verzerrungen unzureichend.
- Der Umrichter produziert zu große mengen an Wärme im Nennlast betrieb.
- Der momentan Wirkungsgrad des Wechselrichters kann mit hilfe von Gleichung 1 bestimmt werden.
- Wenn der Wirkungsgrad bei Nennleistung deutlich unter einem wert von 90% liegt, kann der Umrichter als 'schlecht' bezeichnet werden.

$$\eta_{WR} = \frac{P_{WR,Ein}}{P_{WR,Aus}} \tag{1}$$

3.4.4 Welche Anforderungen an den Einbauort des Wechselrichters müssen gewährleistet sein?

- Der Einbauort muss vor Witterung schützen.
- Der Umrichter muss gut belüftet sein.

- Die Umgebungstemperatur des Umrichters, darf zu keiner zeit auhßerhalb seines angegebenen Temperaturbereichs liegen.
- Die Umrichter sollten für Wartungszwecke leicht zugänglich sein.
- Ein brand sollte möglichst schnell erkannt werden, durch z.B. Brandmelder und sollte keine anderen komponenten beeinflussen durch genügend Abstand oder abschirmung.

3.4.5 Unter welchen Umständen muss am WR einer PV-Inselanlage sofortige Lastabschaltung erfolgen?

Bei jedweder gefahr entdeckung für die verbraucher:

- überspannungen durch z.B. Blitzeinschlag
- Kurzschlüsse durch z.B. Hochwasser
- Bei Feuer am Umrichter.

3.4.6 Wie wirkt sich die benötigte Blindleistung auf die Dimensionierung des Wechselrichters aus?

Durch zusätzlich benötigte Blindleistung muss der Umrichter nicht auf die Leistung des PV-Generators ausgelegt werden, sondern auf die scheinleistung, welches er ins netz geben muss. Diese wird also zusätzlich innerhalb des Umrichters generiert, führt aber zu größeren Leistungflüssen.[1]

3.4.7 Ein PC (einschließlich Peripherie) benötigt 120 W. Der Inselwechselrichter der unter 3. beschriebenen Anlage schaltet wegen Batterieerschöpfung nach 2 Tagen Betriebsdauer ab. Welche Möglichkeit des Dauerbetriebs der Anlage schlagen Sie vor. Begründen Sie die Realisierbarkeit.

Es wird ein Umrichter benötigt, welcher sowohl Spannungsgeregelt als auch Stromgereglet betrieben werden kann, um zwischen Inselbetrieb und Netzbetrieb wechseln zu können.

3.5 Einstrahlung und Umgebungsbedingungen

3.5.1 Welche aus verschiedenen physikalischen Prinzipien resultierenden Messverfahren zur Erfassung der Globalstrahlung kennen Sie?

Es gibt 2 Physikalische Effekte, welche konventionell zu messung der Globalstrahlung verwendet werden. Der Photo-Effekt, welcher in Pyranomatern mit Halbleitersensoren verwendet wird. Dieser Basiert auf dem selben Prinzip wie eine Photovoltaikzelle und setzt die Einstrahlung in Proportion mit dem Strom. Außerdem kann der Seebeck-Effejt verwendet werden, welcher in thermischen Pyranometern verwendet wird. Hierbei wird eine von zwei miteinander verbundenen metallplatten durch die Bestrahlung aufgeheizt. Der Seebeck-Effekt besagt, dass durch eine Temperaturdifferenz zwischen 2 Leitermaterialien eine elektrische Spannung entsteht.[2] Dies hat den Vorteil, dass ein viel größerer Teil des Spektrums gemessen wird.

3.5.2 Welchen Einfluss haben diffuse und direkte Sonnenstrahlung auf die Leistung des PV-Generators?

Der PV-Generaotr kan problemlos sowohl direkter als auch difuser Bestrahlung Leistung entnehmen. Jedoch hat die Difuse Einstrahlung eine geringere spezifische Leistung, da sie mehrweg durch die Atmosphäre zurückgeleht hat und somit einige Wellenlängen durch Absorptionsbänder herausgefiltert wurden.

3.5.3 Wovon hängt die Modultemperatur ab und welchen Einfluss hat sie?

Die Modultemperatue wird durch mehrere Fakotern beeinflusst.

- Die Umgebungstemperatur
- Die Bestrahlungsstärke
- Die Einbauart (Hinterlüftet, aktive Kühlung etc.)

Hierbei ist zu beachten, dass nicht alle Wellenlängen des Sonnenlichts in einem Modul in Wärme umgewandelt werden, nur welche mehr Energie als die Bandlücke besitzen. Diese erzeugen zwar auch ein Elektron-Loch-Paar, Generieren aber durch die übereregung Wärme innerhalb des Halbleiters. Die Modul Temperatur hat direkten einfluss auf die Leistung des

PV-Moduls. Bei steigender Temperatur sinkt die Modulspannung deutlich und der Modulstrom steigt minimal.

4 Versuchsdurchführung

Der Versuch wurde entsprechend der Anweisungen aus der Laboranleitung [3] durchgeführt. Zu Beginn wurde unter Anleitung und Erklärung der Laborleitung Fr. Kupzok die Funktionalität der Anlage geprüft und sichergestellt, dass Alles korrekt angeschlossen ist.

Die erste Messung hatte nun das Ziel den Generatorwirkungsgrad beider PV-Generatoren im Aufbau 2, also im DC-Betrieb zu bestimmen und zusätzlich jeweils eine PV-Kennlinie aufzuzeichnen. Hierfür wurde die benötigte Messtechnik angeschlossen und ein verstellbarer Widerstand verschaltet. Ebenfalls wurde die Bestrahlungsstärke mit einem Pyranometer gemessen.

Mittels des verstellbaren Widerstandes wurde das System in den Leerlauf geführt und dann die Leerlaufspannung bestimmt. Durch das Überbrücken des Widerstandes wurde dann ebenfalls der Kurzschlussfall herbeigeführt und der Kurzschlusstrom gemessen.

Im zweiten Teil des Versuches wurde nun Aufbau 1 verwendet, welcher den AC-Betrieb ermöglicht. Ziel des zweiten Teils ist die Ermittlung der in der Anleitung [3, S.8] aufgeführten Kennwerte.

Hierzu gehören die Umgebungstemperatur, Bestrahlungsstärke, sowie Spannungen und Ströme an den relevanten Komponenten. Zusätzlich wurde auch der zeitliche Spannungsverlauf des Wechselrichters auf der AC-Seite mit einem Oszillogramm aufgenommen. Diese Kennwerte wurden für die folgenden Belastungsfälle bestimmt:

- Ohne Last, nur der Wechselrichter ist in Betrieb
- geringe Ohmsche-induktive Last, Staubsauger Stufe 1
- mittlere Ohmsche-induktive Last, Staubsauger Stufe 2
- hohe Ohmsche-induktive Last, Staubsauger Stufe 3
- rein Ohmsche Last, S-Bahn-Heizung

5 Auswertung

5.1 PV Wechselrichter

5.1.1 Wirkungsgrad Kennlinie

Laut Datenblatt hat der Wechselrichter Sunny Island 2012/2224 im Betrieb, ohne Last, einen Eigenverbrauch von 21W. In unserem Fall lag der Eigenverbauch ohne Last bei 29,7 W. Der Eigenverbrauch wird dabei nach Formel Gleichung 2 aus der Leistung am LR im Leerlauf bestimmt. Der Eigenverbrauch des Wechselrichters hat seine Ursachen dabei größtenteils aus den Schaltvorgängen, der in ihm verbauten Halbleiter, und den Ohmschen Widerständen.

$$P_{Eigenverbrauch} = U_{LR} \cdot I_{LR} \tag{2}$$

 U_{AC} Aufgabe U_{LR} P_{AC} f P_{Sonne} U_{Gen} I_{Gen} I_{LR} I_{Batt} I_{WR} I_{AC} $\overline{W}R_{allein}$ 39,3 690 0,84 25,4 1,17 0,15 0,97 12 229,83 0 50 550 7.84-10.5 $Staub_1$ 33.6 24,5 8.9 21,9 510 228,5 3,04 55:99 $Staub_2$ 460 32,2 23,3 -27,243,4 4,33 12,49 15,6 942 227,47 50;75 -46,257,3 471 36,8 7,66 23,2 10,94 1208 226,98 5,05 50;67 $Staub_3$ SB-Heizung 601 34,8 16,15 23,2 20,51 -33,7 55,7 1186 227,4 5 50;56

Tabelle 1: Messdaten der Ströme, Spannungn und Leistungen

Der Wirkungsgrad des Wechselrichters berechnet sich nach folgender Formel:

$$\eta_{WR} = \frac{P_{AC}}{P_{WR.Ein}} \tag{3}$$

Dabei ist in Abbildung 3 zu erkennen, dass der Wirkungsgrad des Wechselrichters sich nicht linear verhält. Zunächst ist sehr niedrig und nähert sich dann einem Maximum an. Anschließend fällt der Wirkungsgrad wieder leicht ab, was an den steigenden Ohmschenverlusten liegt, die bei immer

Tabelle 2: Wirkungsgrad und Leistungsbeiwert

WR_allein	48,71%	0
Staub_1	95,05%	0,73419325
Staub_2	$93,\!15\%$	0,95639848
Staub_3	90,87%	1,05387224
S-Bahn_Heizung	91,78%	1,04309587

Abbildung 3: Wirkungsgradkennlinie des Wechselrichters in Abhängigkeit der Auslastung

höher werdenen Strömen immer größer werden. Der maximale Wirkungsgrad liegt bei uns sogar bei 95 Prozent (Abbildung 3). Dies ist sogar 2 Prozent über dem Wirkungsgrad den der Hersteller angibt. Die ermittelte Kurve für den Wirkungsgrad ist dabei gut mit der Theorie zu vereinbaren. Des Weiteren ist zu erkennen, dass dieser Wechselrichter bereits ab 30 % der Nennleistung sehr hohe Wirkungsgrade beseitzt, was ihn besonders gut macht für Standorte, die häufig Teilleistung liefern.

5.1.2 Frequenz- und Spannungsstabilität

Wie in unseren Messwerten zu sehen liegt die Spannung zwischen 226V und 230V. Die Spannung nimmt dabei mit steigender Leistung ab. Diese Werte passen auch sehr gut mit den Datenblattwert von 230 Volt zusammen. Die Frequenz bleibt dabei konstant bei 50 Hertz, wie man auf den Osziloskopbildern erkennen kann. Jedoch ist auch zu erkennen, dass der Sinus nur im Leerlauf und beim Anschließen der Straßenbahnheizung ohne Oberschwingungen daherkommt. Dies liegt daran, das hier ausschließlich Wirkleistung benötigt wird. Beim Anschließen des Staubsaugers erkennt man in Abbildung 4 die Oberschwingungen die entstehen. Dies liegt daran, dass der Staubsauer auch Blindleistung benötigt.

Abbildung 4: Osziloskopbilder bei verschiedenen Belastungen

5.1.3 Leistungsbeiwert

Der Leistungsbeiwert $\cos(\phi)$ berechnet sich nach Gleichung 4:

$$\cos(\phi) = \frac{P_{AC,Wirk}}{I_{AC} \cdot U_{AC}} \tag{4}$$

Dabei ist in der Tabelle zu sehen, dass bei immer größerer Leistung beim Staubsauger der Leistungsbeiwet sich immer näher an 1 annähert (Tabelle 2), was bedeutet, dass fast nur Wirkleistung benötigt wird. Leider ist es nicht möglich den Leistungsbeiwert anhand unserer Oszilosgramme zu bestimmen. Dies liegt daran, dass es nicht möglich war ein stehendes Bild zu erzeugen, anhand dessen es möglich wäre eine Aussage über den Phasenversatz zu machen. In der Theorie sollte mit steigendem Blindleistungsbedarf ein immer größer Phasenversatz zu sehen sein.

6 Quellen

Literatur

- [1] Warum blindleistung wichtig und richtig ist. https://www.sma. de/partner/expertenwissen/sma-verschiebt-die-phase. Accesed 02.05.2023-11:29.
- [2] Thermoelektrizität. https://de.wikipedia.org/wiki/ThermoelektrizitÃdt#Seebeck-Effekt. Accesed 30.04.2023-14:01.
- [3] Labor regenarative energien zusammenwirken und energiebilanzen in dezentralen speichergestützten photovoltaik-anlagen. https://moodle.htw-berlin.de/pluginfile.php/1749734/mod_resource/content/3/Anleitung%20PV-Insel%2020230427.pdf. Accesed 06.05.2023-21:09.

7 Anhang

In den Anhang gehört eine Kopie aller aufgenommenen Messdaten (vor der Weiterverarbeitung), ggf. mit Anmerkungen, sowie Datenblätter von Messgeräten und Maschinen soweit verfügbar.