

PHYSIQUE

Classe: 4 MATHS ET SC EXP

Série: 5 rev T1

Nom du Prof: HAFFAR SAMI

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

Les ions iodure I⁻ réagissent avec les ions peroxodisulfate en solution aqueuse selon une réaction lente et totale modélisée par l'équation: $2I^- + S_2O_8^{2-} \longrightarrow I_2 + 2 SO_4^{2-}$

On prépare, à **t=0** et à une température constante T_1 , un mélange contenant un volume $V_1=20mL$ d'une solution d'une solution de d'iodure de potassium (KI) de concentration $C_1=2.10^{-2}mol.L^{-1}$ et un volume $V_2=3V_1$ d'une solution de peroxodisulfate de potassium ($K_2S_2O_8$) de concentration C_2

On note $\alpha = n(I^-)/n_0(I^-)$ où $n_0(I^-)$ et $n(I^-)$ représentent respectivement les quantités de matières des ions iodure présents à l'état initial et à une date t quelconque.

Une étude expérimentale à permis de tracer la courbe traduisant l'évolution de α en fonction du temps.

b- Montrer que l'avancement x de la réaction est donner par :

$$x = \frac{C_1 V_1}{2} (1-\alpha)$$

- **c-** Montrer, en utilisant le graphique que les ions iodure sont en excès. Déterminer alors l'avancement final de la réaction.
 - d- En déduire la valeur de C2

- 2) a- Définir la vitesse volumique, $V_v(t)$, et montrer que son expression est donné par : $V_v(t) = -\frac{C_1}{8} \cdot \frac{d\alpha}{dt}$
 - **b-** Calculer sa valeur **maximale**.
- 3) A l'instant t = 15 min on prélève un volume $V_p = 10$ mL du mélange réactionnel que l'on refroidit dans l'eau glacée puis on dose la quantité de diiode formé à cet instant par une solution (S) de thiosulfate de sodium $Na_2S_2O_3$ de concentration $C = 2.10^{-3}$ mol.L⁻¹.
 - a- Déterminer la molarité de diode, dans la solution, à cette date
 - **b** Ecrire l'équation de la réaction de dosage.
 - c- Déterminer le volume V₀ de (S) ajouté pour atteindre l'équivalence.
- 4) On refait la même expérience mais dans les conditions décrites dans le tableau, on obtient les courbes de la figure ci-dessous.

a	b	C
Température T ₂ >T ₁	On ajoute au mélange un volume d'eau Ve=2V ₁ à la température T=T ₁	* On ajoute au mélange quelques gouttes de solution de Fe ²⁺ * Température T ₂ >T

- a- Préciser le rôle joué par les ions F²⁺ au cours de l'expérience C.
- b- Attribuer, en le justifiant, la courbe correspondante à chaque expérience.

Exercice 2

A fin d'étudier la réaction de formation de l'ion thiocyanatofer II (FeSCN²⁺) de couleur rouge sang à une température T, on fait réagir des ions fer III (Fe³⁺: couleur jaune) avec des ions thiocyanate (**SCN**⁻: incolore). La réaction est modélisée par l'équation :

Les constituants du système chimique sont dans une même phase liquide.

À un volume V = 20 mL d'une solution aqueuse d'ions Fe^{3+} de concentration molaire

- C=2.10⁻² mol.L⁻¹, on ajoute, à l'instant de date t₀ un même volume V d'une solution aqueuse d'ions thiocyanate SCN⁻ à la même concentration C. Le suivi expérimental de l'évolution du système montre qu'à partir d'un instant de date t₁ la concentration des ions fer III (Fe³⁺) prend une valeur **[Fe³⁺]=6,18.10⁻³ mol.L⁻¹** qui reste inchangée pour tout t > t1
- 1° Donner l'expression de la fonction des concentrations π associée à l'équation chimique considérée. Calculer sa valeur à l'instant de date to et indiquer le sens d'évolution spontanée du système.
 - 2° a- Exprimer la constante d'équilibre K en fonction de x_f puis en fonction τ_f .
- b-Calculer l'avancement final x_f de la réaction. En déduire la composition molaire du système à l'équilibre.
 - c- Déterminer la valeur du taux d'avancement final τ_f .
 - **d-** Déduire la valeur de la constante d'équilibre associée à l'équation.
 - 3° On répartit équitablement le système (S) obtenu à l'équilibre dans deux béchers (B_1) et (B_2).
 - * Dans le bécher (B₁) on ajoute de l'eau distillée jusqu'à avoir un volume V= 100mL
- * Dans le bécher (B₂) on ajoute quelques gouttes d'acide phosphorique (qui réagit avec les ions ferrique) sans variation de volume du mélange réactionnel.
 - a- Préciser, en le justifiant, le sens d'évolution du système chimique dans chaque bécher.
 - **b-** Déterminer la composition, en **mol**, du système dans le bêcher (**B**₁) à l'équilibre chimique.

