

Socpulariopsis sp. isolate RP38.3

			*	. 1	1	~l =	<i>-</i> 11		(1-
(dA) ₂₂ TG <u>AAAAAAA AAAAAAAAA</u> ATAGATCTGG ATGTCACATT GAAAAGTCTG GTGCACTGGC	ACTCATTTTT CGGCGATTTC ATACAGAAA TCCGGGGAGT TCTTGTAGAC TCTGCAAAGA	TGCGGATAAG ACAAAGGGTA AGTGATCTTC CTCATAGGGA AACCACCGAG TCAAACCCAT 	SAACCT A L	P Q	SCCCCA R E	GCTAATGCT ATTCGGGAGC TACTCTCCCT TGATGGTACC TGGAACTTTG CCCTCCCGCA ATCACGCGAA F E D O G W T S V I P P K L Q I P V P A S Y N	SCTACA I V	CATTGT V Y	GTCTAC
AAAAA ATGTC GTGCA	70000 10000 10000	AGTG/ TCAA/	AGAG(1666(K	S	ATCA(P CCA(ACGC	CAAG
(dA) ₂₂ TG <u>AAAAAAA AAAAAAAAA</u> ATAGATCTGG ATGTCACAT GAAAGTCTG GTGCACTGG	TTTTT GAAAA TAGAC	GGGTA CCGAG	CAGCC P	T 1	GACGC P Q	CCGCA	TGCCC R H	TATCAGCGCC ACGCCATTC H E A K V Y	GAGGC
(dA)22 TG <u>AAAAA</u> ATAGATC GAAAAGT	ACTCA ATACA TCTTG	ACAAA	ACCTC L R	TCTGC W K	TGGAA	CCCTC V	CCCAG	TATCA	CGCAC
CGAAA VAGTG VGTCG	SACAA	ATAAG AGGGA	ACAAC	10000 0	ACCAA F A		CAAAI	CATAC V T	TGTTA F E
GGCGAC CACTA/ CATTC/	TACCCGACTA CCATGCTTCT ACTCATTTTT TTGTAGAAA GTTCTGACAA ATACAGAAAA GATGGGGGAA TCTTGTAGAC	TGCGG/ CTCAT/	AGAGC/ I	AIAICO T D	CACTG/N	IGGAA	AACTG W A	CTGGG D S	GACTC
GAAG CATA TTAC	GAAA GAAA	AGAC	S N	CICTA	CCGA	P K	ACCCA / G	3TTGG	SCTTC Y
CTTGTATGTG GATGAGGAAG GGCGACGAAA CCTGGCCTCG GCTTACCATA CACTAAAGTG TCTATTCCGC TGTTCATTAC CATTCAGTCG	TACCGACTA TTGTAAGAAA GGAGTGTCCA	GGGCGGAGAC CATAGGCGAC	AAAA AAAAAAGAGA AGAGCACAAC ACCTCCAGCC AGAGCAACCT M R L S N I P L L R P W A A L	AGCCGTCAA CTCCCTGCTT GTCCATC <u>ATG CGCCTCTCTA ATATCCCCCT TCTGCGCCCT TGGGCCGCT</u> S L A T L I G L S S G A D T D Q W K T L K P Q	GICCCTAGC CACCCTCATC GGCCTGTCCT CTGGTGCCGA CACTGACCAA TGGAAGACGC TCAAGCCCC A N A I R E L L S L D G T W N F A L P Q S R E	IGATG(IGAAG ACCAGGGCTG GACTAGCGTT ATTCCACCCA AACTGCAAAT CCCAGTGCCC GCCAGCTAC/	CACCGATCCG GCGATCCGGA ACAACGTTGG CTGGGCATAC	IGTIC G G
.TGTG (.CTCG (GTGT TAAG	GAGGA STACAT (dA)10	AAAA. ™	CAIG S S	CCT .		R N	>CGGA	FACTA_
STTGTA SCTGGC TCTATT	AAAAAAATGC TGTCGTGTGT ATGCGGGGAC GGACTGTAAG TTGAATGTGG AGAAGAATG	GGAAACACG GAGAAGAGGA TATTCGGGAA TAGTGTACAT (dA)10	ATCTC	GTCCAT G L	GGCCTG	TACTC T S	GACTA(GCGAT(GACGC G H
TTCT (AAAC (GGGG '	ATGC (GGAC (GTGG)	CACG	GACG	GCTT I	CATC	GAGC ₩	BGCTG P	ATCCG F	GAGG /
SCACTT STTGAC ATCTCC 8	AAAAAA ATGCGG TTGAAT	GGAAAA	AGGAGC	CTCCCT T	CACCCI I R	ATTCGC	ACCAGO T D	CACCG/	IGGIC
GAGA GC CGGA GT GACG AT(AACA /	GTGC (TGTC '	ATGA /	TCAA (TAGC	IGCI	GAAG	TCTT	GACC D E
(dA) ₂₂ <u>AAAAG</u> CCGGA GCACTTTICT CTTGTATGTG GATGAGGAAG GGCGACGAAA TG <u>AAAAAAAAA</u> AAAAGCCGGA GTTGACAAAC CCTGGCCTCG GCTTACCATA CACTAAAGTG ATAGATCTGG ATACGTGACG ATCTCCGGGG TCTATTCCGC TGTTCATTAC CATTCAGTCG GAAAAGTCTG (dA) ₈	CTTGCGAACA AAAAAAATGC TGTCGTGTGT TACCCGACTA CCATGCTTCT ACTCATTTTT GGAATCCAGT ATGCGGGGAC GGACTGTAAG TTGTAAGAAA GTTCTGACAA ATACAGAAAA GGAAGTTCAA TTGAATGTGG AGAAGAAATG CGAGTGTCCA GATGGGGGAA TCTTGTAGAC	GCAGAAGTGC GGAAAACACG GAGAAGAGA GGGCGGAGAC TGCGGATAAG ACAAAGGGTA GAGGTGTGTC TATTCGGGAA TAGTGTACAT CATAGGCGAC CTCATAGGGA AACCACCGAG TATAbox (dA)10	GACIAIAIGA AGGAGCGACG ATCTCG <u>AAAA AAAAAAG</u> AGA AGAGCACAA <u>C ACTCC</u> AGCC AGAGCAACCI M R L S N I P L L R P W A A I	GAGCCGTCAA CTCCCTGCTT GTCCATCATG CGCCTCTCTA ATATCCCCCT TCTGCGCCCT TGGGCCGCTC S L A T L I G L S S G A D T D Q W K T L K P Q	IGTCCCTAGC CACCCTCATC GGCCTGTCCT CTGGTGCCGA CACTGACCAA TGGAAGACGC TCAAGCCCCAAAAAAAAAA	AGCIAAIGCI AIICGGGAGC IACICICCCI IGAIGGIACC IGGAACITIG CCCICCCGCA AICACGCGAA I E E D O G W T S V I P P K L Q I P V P A S Y N	ATTGAGGAAG ACCAGGGCTG GACTAGCGTT ATTCCACCCA AACTGCAAAT CCCAGTGCCC GCCAGCTACA D I F T D P A I R N N V G W A Y Y Q R H A I V	ACGACATCTT CACCGATCCG GCGATCCGGA ACAACGTTGG CTGGGCATAC TATCAGCGCC ACGCCAT	CCCCAGACC TGGTCTGAGG GACGCTACTA TGTTCGCTTC GACTCTGTTA CGCACGAGGC CAAGGTCTAC
71 141	211 281 351	421 491	561	631	701	771	841	911	981

FIG.2A

1051

FIG.2E

Penicillium canescens isolate RPK

TATATAAATG	GECTITGILA	G P S TGGTCCATCG	LIKV	TTGATCAAAG	CCCTCGCATC	V P A	AGTCCCGGCC	Q R E V	CAGCGTGAGG	H G R	ACCATGGTCG	D V T	GGACGTCACT	H E T I	CATGAGACTA	D F Y	ATGACTITTA	LIO	GGATATTACT	VVTD VDG DNG LINY EVE VAN QTTG	<u>GTGGTTACAG ATGTTGATGG TGACAATGGT CTGATTAACT ACGAGGTCGA AGTGGCGAAC CAGACGACGG</u>
TCTGGGAAAC	TATA box VT <u>IA AATAA</u> ACAGT	S L A TGTCTCTTGC	E Q P	TGACAGCCC W K F A	IGGAAATTCG	С Б	TTGAATGTCC	\ \ \ \	GGTTTACTAT	SATH	TCCGCTACGC	F E A	CTTTTGAAGC	E L	CGAGCTTACC	T Y Q H	ACCTATCAAC	НІО	AACATATCCA	Z	AGTGGCGAAC
GCCAAGCTCA TCAGTCACCG ATGAAAAACT ACTCAATTGC CGATGCATCG TCTGGGAAAC TATATAAATG	TATA BOX CCTAAGTGCA GCCAGATATA ATACCCTCAT CAAC <u>TIATAC IA</u> ATTCAT <u>IA AAIAA</u> ACAGT GGCTITGI <u>I</u> A	ATTACCCTTT AATAAAGCGG CAATGAAATT CCTTACGGGA TTGTCGCTGC IGTCTCTTGC IGGTCCAICG	GTP AAR HFP RNEM TQH E QP LIKV	TGGGTACAC CTGCAGCTCG GCACTTTCCA CGCAATGAAA TGACCCAACA TGAACAGCCC TTGATCAAAG R P O R T S S R E L V N L D G L W K F A L A S	rcagececea acgaactica retegagage tigigaacet igatggieta iggaaatieg eeelegeale	GLN D T A Q P W T A P L P K G L E C P V P A	<u> 1660CTCAAT GACACGGCCC AACCGTGGAC AGCGCCATTA CCCAAAGGTC TTGAATGTCC AGTCCCGGCC</u>	SYND IFI SREIH, DHVGWVYY OREV	ICTTACAACG ACATCTICAT CAGCCGGGAG ATTCACGACC ATGTGGGGATG GGTTTACTAT CAGCGTGAGG	I V P K G W S Q E R Y L V R A E S A T H H G	ICATTGTCCC CAAAGGCTGG TCTCAGGAGC GATATCTCGT GCGAGCCGAA TCCGCTACGC ACCATGGTCG	I Y V N N R L V A E H V G X Y T P F E A D V T	CATCTATGTC AACAACCGGC TIGTTGCCGA GCATGTGGGC NGCTATACAC CTTTTGAAGC GGACGTCACT	ELVAPGEKFRLTIGVNNELTHET	GAATTAGTCG CCCCCGGAGA GAAATTICGC TIGACGATTG GTGTCAACAA CGAGCTIACC CATGAGACTA	PPG KIT TGNA TGK RIQ TYQH DFY	FCCCACCTGG AAAAATCACG ACAGGGAACG CGACTGGCAA GAGAATCCAG ACCTATCAAC ATGACTTTTA	NYAGLAR SIWLYS VPQQHIQDI	CAACTATGCT GGTCTCGCCC GATCTATCTG GCTTTATTCT GTACCCCAGC AACATATCCA GGATATTACT	E V	ACGAGGTCGA
ACTCAATTGC	TATA box	L I G CCTTACGGGA	RNEM	CGCAATGAAA V N L	TTGTGAACCT	A P L	AGCGCCATTA	I H O H	ATTCACGACC	^	GATATCTCGT	5 × H	GCATGTGGGC	LTIG	TTGACGATTG	T G K	CGACTGGCAA	L Y S	GCTTTATTCT	LINY	CTGATTAACT
ATGAAAAACT	ATACCCTCAT	M K F CAATGAAATT	H F P	GCACTTTCCA S R E L	TCTCGAGAGC	P W d	AACCGTGGAC	S R E	CAGCCGGGAG	SQER	TCTCAGGAGC	V A E	TTGTTGCCGA	K F R	GAAATTTCGC	T G N A	ACAGGGAACG	MIS	GATCTATCTG	S N O	TGACAATGGT
TCAGTCACCG	GCCAGATATA	AATAAAGCGG	A A R	CTGCAGCTCG R T S	ACGAACTICA	D T A Q	GACACGGCCC	IFI	ACATCTTCAT	™	CAAAGGCTGG	N N R	AACAACCGGC	P G E	CCCCGGGAGA	K I T	AAAAATCACG	GLAR	GGTCTCGCCC	V D G	ATGTTGATGG
GCCAAGCTCA	CCTAAGTGCA	ATTACCCTTT	L G T P	TTGGGTACAC R P 0	TCAGGCCCCA	0 L N	TGGCCTCAAT	SYND	TCTTACAACG	IVP	TCATTGTCCC	Λ	CATCTATGTC	E L V A	GAATTAGTCG	РРG	TCCCACCTGG	A Y N	CAACTATGCT	V V T D	GTGGTTACAG
,	71	141	i	211	281		351		421		491		561		631		701		771		841

AGATCGAAAT TGAAATGGAT TCAACTTGAT CATGTTTGGA CCACTGACCA ATTTGACTCG Ж > GGTTCACGAT G SGTCACAATT CTTAATAAAT SCCCGAGACA AAAACCATGC STGGGTTCTA GCGGCGATGT GTCACAATT о У 1891 1191 1261 1331 1401 1471 1541 1611 1681 1751 1821 911 981 1051 1121

	> Y	2 2 2	> 5 2	∠ - -	ک ح	0 E X X X Z
1961	TCATCCGAGT	AGACGGTAAC	AAGAAGGGTG	TTTTCACCCG	TGACCGAAAG	TCATCCGAGT AGACGGTAAC AAGAAGGGTG TTTTCACCCG TGACCGAAAG CCAAAGGCGG CAGCTCATAG
	L R A	RWTS	LRARWTS IDKN*	*		
2031	TTTGAGGCCA	AGGTGGACTA	GTATTGATAA	GAATTAAGGA	ATTGACATAC	TITGAGGGCA AGGIGGACIA GIAITGAIAA GAAITAAGGA ATTGACATAC TGCCAAATAC AAATGTITGG
2101	CCTCACATTA	CAAAACTATA	TGCAATTAAA	TGTACTGAAG	ATTCGAGGGG	TCGACCACTG ACAATGGAAC
2171	AAAATGTGCT	TAACAGACGT	AAGTCTGGAT	TCTACTTGAA	CAGACGTAAG	TCTGGATTCT ACTTGATTGG
2241	ACTGCTTGTC	ATATGTTCCA	AATCGTATCG	TAAACATTAT	TGAAAATGGC	CAGGAGACAG CGTGGAAAGA
2311	AAGGACAACA	GTCTGGAAGA	CAAGTTCGGA	TGCGCGGATT	CCTCGAAGCT	AAGGACAACA GTCTGGAAGA CAAGTTCGGA TGCGCGGATT CCTCGAAGCT CCCCTTGCAA AACTCATTAC
2381	TGGGCCCCTC	CATACAACAT	TAAGCGCTAT	CATGATCTTC	TCTACAAAGG	TGGGCCCCTC CATACAACAT TAAGCGCTAT CATGATCTTC TCTACAAAGG GCCTCTGCCC AGGTGGACTG
						Poly(dA) signal
2451	CCTTCTCTGA	GGATGTGGAG	CGGGTCTACT	TCCATCAAGT	CCTCATCAAT	CCTTCTCTGA GGATGTGGAG CGGGTCTACT TCCATCAAGT CCTCATCAAT AGAGC <u>IAIAT A</u> CGATATTGG
	Pol	Poly(dA) site				
2521	ACGAGCGG <u>CA</u>	GAAGGCAACG	AGACAATCAA	CGAGTTCGTG	GCTGTAGTCC	<u>ACGAGCGCA GAAGGCAACG AGACAATCAA CGAGTTCGTG GCTGTAGTCC AAGAGTCTGT CGGCGTTCAG</u>
2591	AGCTGTTTCA	AGCTGTTTCA TGCACTCAAT CGGAACGG	CGGAACGG			

FIG.3C

8/31

Penicillium canescens strain DSM1215

MetLysPheLeuThrArgLeuSerLeuLeuSerLeuAlaAlaPro ATGAAATTTCTTACGCGATTGTCGCTGCTATCTCTTGCTGCTCCA

SerLeuGlyThrProAlaAlaArgHisPheProArgAsnGluMet TCGTTGGGTACACCTGCAGCTCGGCACTTTCCACGCAATGAAATG

XaaGlnAsnGleGlnProLeuIleLysIleArgProGlnArgThr ATCCAAAATGAACAGCCCTTGATCAAAATCAGGCCCCAACGAACT

SerSerArgAspLeuValAsnLeuAspGlyLeuTrpLysPheAla TCATCTCGAGACCTTGTGAACCTTGATGGTCTATGGAAATTCGCC

LeuAlaSerGlyProAsnAspThrAlaGlnProTrpThrAlaProCTCGCATCTGGCCCCAATGACACGGCCCAGCCGTGGACAGCGCCA

LeuProLysGlyLeuGluCysProValProAlaSerTyrAsnAsp TTACCCAAAGGTCTTGAATGTCCAGTCCCGGCCTCTTACAATGAC

IlePheIleSerArgGluIleHisAspHisValGlyTrpValTyrATTTCATCAGCCGGGAGATCCACGACCATGTGGGATGGGTTTAC

TyrGlnArgGluValIleValProLysGlyTrpSerGlnGluArg TATCAGCGTGAGGTCATTGTCCCCAAAGGCTGGTCTCAGGAGCGA

TyrLeuValArgAlaGluSerAlaThrHisHisGlyArgIleTyr TATCTTGTGCGAGCCGAATCCGCTACACACCATGGTCGCATCTAT

ValAsnAsnArgLeuValAlaGluHisValGlyGlyTyrThrPro GTCAACAACCGGCTTGTTGCGGAGCATGTGGGCGGCTATACACCT

PheGluAlaAspIleThrAspLeuValValProGlyGluLysPhe TTTGAAGCCGACATCACTGATTTGGTCGTCCCTGGAGAGAAATTT

ArgLeuThrIleGlyValAsnAsnGluLeuThrHisGluThrIleCGTTTGACGATTGGTGTCAACAACGAGCTTACCCATGAGACTATC

ProProGlyGluIleThrThrAlaAsnAlaThrGlyLysArgIle CCACCAGGAGAAATCACAACAGCGAACGCGACTGGCAAGAGAATC

GlnThrTyrGlnHisAspPheTyrAsnTyrAlaGlyLeuAlaArg CAGACCTATCAACATGACTTTTACAACTATGCCGGTCTCGCCCGA

SerIleTrpLeuTyrSerValProGlnGlnHisIleGlnAspIle TCTATCTGGCTTTATTCTGTACCCCAGCAACATATCCAGGATATT

FIG.4A

ThrValValThrAspValAspGlyAspAsnGlyLeuIleAsnTyr ACTGTGGTTACAGATGTTGATGGTGACAATGGTCTGATCAACTAC

GluValGluValAlaAsnGlnThrThrGlyGlnIleGlnIleSer GAGGTCGAAGTGGCGAACCAGACGACGGGGCAGATCCAGATCTCA

VallleAspGluAspGlyAlaIleValAlaAsnAlaSerGlyAla GTGATCGACGAGGATGGAGCTATTGTTGCAAATGCCTCGGGAGCT

GlnGlyThrValThrIleProSerValLysLeuTrpGlnProGly CAGGGTACTGTCACAATTCCCTCAGTCAAGCTATGGCAACCTGGC

AlaAlaTyrLeuTyrGlnLeuGlnValAsnValValAspSerSer GCCGCATATCTCTACCAACTCCAGGTCAACGTCGTGGATTCTAGC

ValLysIleSerGlySerGlnPheLeuIleAsnGlyLysProPhe GTCAAGATTTCCGGGTCACAATTCTTGATAAACGGCAAGCCTTTC

TyrPheThrGlyPheGlyArgHisGluAspThrAlaValArgGlyTACTTTACCGGTTTTGGCAGGCATGAAGACACAGCAGTACGTGGC

LysGlyHisAspProAlaTyrMetValHisAspPheGlnLeuMet AAAGGACATGACCCAGCATATATGGTTCACGATTTCCAACTCATG

LysTrpIleGlyAlaAsnSerPheArgThrSerHisXaaProTyr AAATGGATTGGAGCAAATTCTTTCCGGACTTCACACTACCCTTAT

AlaGluGluValMetAspPheAlaAspArgAsnGlyIleValValGCAGAAAGGGTCATGGATTTCGCAGATCGAAATGGAATTGTCGTG

IleAspGluThrProAlaValGlyLeuAsnIleAlaLeuMetGly ATCGATGAAACTCCTGCCGTGGGTCTGAACATTGCCTTGATGGGT

ValSerGluSerGlyAlaProGlnThrPheThrProAspGlyIle GTATCTGAGAGTGGTGCCCCACAAACATTTACGCCAGATGGGATT

AsnAspLysThrGlnGluAlaHisLysGlnAlaIleArgGluLeu AACGATAAGACCCAAGAGGCCCACAAACAGGCGATTCGTGAGCTC

IleAlaArgAspLysAsnHisAlaSerValValMetTrpSerIle ATTGCCCGAGACAAAAACCATGCCAGTGTTGTCATGTGGTCTATT

FIG.4B

AlaAsnGluProAlaSerGlnGluAspGlyAlaArgGluTyrPhe GCCAATGAGCCTGCATCTCAGGAAGATGGGGCTCGCGAATACTTC

GluProLeuAlaAsnLeuThrArgGlnLeuAspProThrArgProGAGCCACTGGCCAATTTGACTCGTCAGCTTGATCCAACTCGCCCT

IleThrPheAlaAsnValGlyAlaAlaThrTyrGlnLeuAspArg ATTACATTTGCTAATGTCGGCGCTGCAACATATCAGCTAGATCGG

IleSerAspLeuPheAspValSerCysIleAsnArgTyrPheGly ATCTCTGATCTGTTTGATGTTAGTTGCATAAATCGGTATTTCGGA

TrpTyrSerG1nThrG1yAspLeuG1uG1uA1aG1uA1aA1aLeu TGGTATTCTCAGACAGGAGACCTTGAGGAAGCAGAGGCAGCTCTT

GluLysGluLeuArgGlyTrpGlnGluLysPheHisArgProIle GAAAAGGAGTTGCGTGGGTGGCAAGAGAAATTCCACAGGCCGATC

IleMetSerGluTyrGlyAlaAspThrLeuAlaGlyLeuHisSer ATTATGAGCGAATATGGTGCAGATACCCTTGCAGGTCTTCATTCT

IleLeuAlaLeuProTrpSerGluGluPheGlnValGlnMetLeuATCCTCGCACTGCCTTGGAGCGAAGAGTTCCAGGTACAAATGCTA

AspMetTyrHisArgValPheAspArgIleGluSerMetAlaGly GACATGTACCATCGAGTGTTTGATCGCATTGAGTCGATGGCAGGC

GluHisValTrpAsnPheAlaAspPheGlnThrAsnLeuGlyVal GAGCATGTTTGGAACTTCGCGGATTTCCAGACCAACTTGGGTGTC

IleArgValAspGlyAsnLysLysGlyValPheThrArgAspArg ATCCGAGTAGATGGTAACAAGAAGGGTGTTTTCACGCGTGACCGA

LysProLysAlaAlaHisSerLeuArgAlaArgTrpThrAsn AAGCCAAAGGCGCAGCTCATAGTTTGAGGGCAAGGTGGACGAAT

GlyAspLysAsn GGTGATAAGAATTAG

FIG.4C

Giberella zeae

ATGTTGCGACCACAAGCCAACAGGGCTCGCGACCTTGTGTCACTAGACGGTGTTTGGAACTTTGCCCTCGCCA AATCTCACGACATTGAAACTGAGCAAGCATGGAAGAAGCGAATCTCACCAGAGCTTCAAGTACCTGTTCCAGC CAGCTACAACGACATCTTTGCTGACGAGACCATCCGCGACCACGTCGGCTGGGTCTACTATCAGCGTCAAGCA GTTGTTCCCCGCGGTTGGGTTGCGCCTCAGCGTGTCTTTCTACGTGTAGATGCTGCAACCCACCACGGCAGAG TTTACGTCAACGACAAGTTTGTCGTCGAGCATATCGGCGGCTATACACCGTTTGAGATTGAGCTTACTGGACT TGTCGAACCGGGGTCAGAGTTTCGTCTTACGATTGCTGTGAACAATCAACTCACATGGGAGACTATTCCGCCG GGTCGCATTGAGGCTCAAAGTGATGGTTCGCGGAAGCAGAGCTATCAGCATGACTTTTTCAACTATGCTGGAT TGGCCCGTTCTGTGGCTTTACTCGGTACCAAAGGTCTTTATAAATGATATCAGCGTCGGCACAGATCTTCT TGGGGACGGAACCGGCATTGTCGAATTTGATATTCGGACCTCTGGTGAACTTCAGGCTGACGCAAGATGGCGC ATCCTGCTCGACGACGAAGAGGATGCGACAGTGTGTCAAGCCCAAGAGTCACATGGAAAACTTGAGGTTAAAA ACGCTAAATACTGGGCACCTGGTGCTGCGTACCTTTATCAGCTTCGGGCTCAGCTCGTACGCGGCGAACACGA CGAGATCCTCGACACATATAACCTTGCCGTAGGCATCCGTTCAGTCGAGATCCGAGATGGCCGCTTCTTCATC CGTCATACATGATACACGACTACCGTCTGATGAAGTGGATAGGAGCCAACTCTTTCCGAACCTCCCACTACCC CTACGCAGAGGAGGTTCTGGAATATGCCGACAGACACGCGTGGTTGTTATTAACGAAACAGCCGCCGTTGGT CTCAACCTCAATATTGTCTCGGGTATGTTTGGCAACAAGCAACTTGCCACATTCTCCCCGGATACCATGAGTA GCAAAACACAGGCTTCACATGAACAAGCTATCCGTGAGCTTATCAGCCGGGATAAGAACCACCCTTGTGTTGT GATGTGGATGCTGGCAAATGAGCCTGGGGCCAGCGAGCAGGGAAGTCGAGAATACTTTGAACCGCTCGTTACC TTGGCGCGATCGCTGGACAGTCAGAAACGGCCAATGTGCTACTCCCACATGATCCACTCTAAGCCTGATACAG ATCGCATCGCAGACCTTTTTGATGTAGTCTGTATGAACCGCTACTACGGGTGGTACACGCAAACAGGAAACCT CAAAGCCGCAGAAGTCGCCCTTGAAGCCGAGCTACGCAGTTGGCAAGAAGCCTACGCCGCCAAACCCATAATC ATGACGGAATATGGCACCGACACAGTCGCAGGTCTGCACACCGTTTGTGATGTGCCCTGGACTGAAGAGTACC AGGTTCGCTTTTTGGACATGTATCACCGCGTCTTTGACCGCATTGATAATGTCGTCGGCGAGCATGTGTGGAA CTTTGCTGATTTCCAGACATCGGCTATGATTATTAGGGTTGATGGGAACAAGAAGGGTATCTTTACTAGGGAT CGCAGGCCAAAGAGTGCAGCTCATGCTTTGCGAGCGAGATGGACTGGGCCTGTTGGACCTCGCAAGATAGAGG TGACCAAGCAATAA

MLRPQANRARDLVSLDGVWNFALAKSHDIETEQAWKKRISPELQVPVPASYNDIFADETIRDHVGWVYYQRQA VVPRGWVAPQRVFLRVDAATHHGRVYVNDKFVVEHIGGYTPFEIELTGLVEPGSEFRLTIAVNNQLTWETIPP GRIEAQSDGSRKQSYQHDFFNYAGLARSVWLYSVPKVFINDISVGTDLLGDGTGIVEFDIRTSGELQADARWR ILLDDEEDATVCQAQESHGKLEVKNAKYWAPGAAYLYQLRAQLVRGEHDEILDTYNLAVGIRSVEIRDGRFFINGKPFYFTGFGKHEDGPVRGRGYDASYMIHDYRLMKWIGANSFRTSHYPYAEEVLEYADRHGVVVINETAAVG LNLNIVSGMFGNKQLATFSPDTMSSKTQASHEQAIRELISRDKNHPCVVMWMLANEPGASEQGSREYFEPLVTLARSLDSQKRPMCYSHMIHSKPDTDRIADLFDVVCMNRYYGWYTQTGNLKAAEVALEAELRSWQEAYAAKPIIMTEYGTDTVAGLHTVCDVPWTEEYQVRFLDMYHRVFDRIDNVVGEHVWNFADFQTSAMIIRVDGNKKGIFTRDRRPKSAAHALRARWTGPVGPRKIEVTKQ

Aspergillus nidulans

AGCTCCGCGACGTCGAGCTCCCGCCAACACAACAAGCCCTAACCATCAACCTGAAACCCCAGCAGCAGACGTCGAC GAGAGACCTCGTTTCTCTCGACGGGCTGTGGTCCTTTGCCCTCGAAGACGCCCACAAACAGCACCTCTGCTCCC TGGACGGCGCGCTCCCAAAGGGCCTGGAATGTCCCGTCCCTGCATCCTACAACGACATCTTCGTCGACAGGA CCATTCACGATCACGTCGGCTGGGTATACTACCAACGCACTGTGACTGTCCCACGGGGCTGGGCAGATCAGCG CGCTTTCCTCCGTCTGGAGTCAGCAACGCATCATGGCCGCGTCTATGTCAATGAGCACCTGGTTGCCGAGCAT GTTGGCGGTTACACCCCGTTTGAAGCCGACATTACCTCTCTCGTGCAGCCTGGTGAAAGCTTCCGGTTGACAA TCGGTGTGACAACCAGCTGACGCACGAGACCATCCCTCCAGGTGATCTGGTGACTTCTGAGTATACAGGGAA GAAACAGCAGAGCTACCAGCACGACTTTTACAATTACGCAGGGCTGGCGAGGTCCATATGGCTCTACTCTGTG CCCAAGGATCAGTTCATCAAGGACATCACGGTCGTTCCAGATGTTGATTGGGATGGTGACGCAGAGACCGGAG TGGTGAGCTATACCGTCCAGACTTCTAACGCGACGAGTGGCCCCATCCGGATCTCAATTCTCGATGAAGAAGG AAACGAGGTCGCAACAGCGTCCGGAGCCACTGGGACAGCTACCATTCCCTCTGTCAACCTCTGGCAGCCTGGC GCTCCCTACCTATACTCCTTCACTGTCAGCATCCTCTCCGCCTCCCAACGGCTGATCGACACATACACACTGC CCATCGGTATCCGCACTGTGGCTGTCGGCAACGGCACTATCCTGGTCAACAATGAGCCGGTCTACCTGACCGG GTTTGGCAAACACGAGGATAGTCCCATCCGCGGCAAAGGCCACGACATCGCGTACCTAGTCCACGACTTCCAG CTGCTGGACTGGATCGGCGCAACTCTTTCCGCACCAGCCACTATCCTTACGCGGAAGAGGTGATGGAATTTG CTCAACGGACACAAGCAGGGTGACCTTCGCGCCGGACGGGATCAACAACAATACTCGCGCAGCCCACGCCCAG CGTCTGATGAGCCAGGTGCGCGCGCATACTTTGAGCCCCTCACGCGGCTCGCCCGCTCCCTCGATCCCGCGCA CCGGCCCATAACTTTCGCCAACCTCGGCCTGGCAACCTATGAAACCGACACAATCTCTGACTTGTTCGATGTT CTCTGCCTGAACCGATATTTCGGCTGGTACTCGTACACGGGAGACCTGGAGTCCGCCGGAAAGGCACTCCATG GGCGGGACTGCACTCTGTGCTGGGACTGATCTGGAGCGAGGAGTTCCAAATCGAGTTGCTGGATGTATCAT GCATACAGCGGGTGGATGGGAACAAGAAGGGTGTCTTTACCAGAGACCGCAGACCCAAGGGGGGCGCGTTTGC CTTGAGGAAGAGGTGGATGAATATGATGTCGAGTTAG

MRVFPVLSFLSLALIPPSLGVPSPQLRDVELPPTQQALTINLKPQQTSTRDLVSLDGLWSFALEDATNSTSAP WTAALPKGLECPVPASYNDIFVDRTIHDHVGWVYYQRTVTVPRGWADQRAFLRLESATHHGRVYVNEHLVAEH VGGYTPFEADITSLVQPGESFRLTIGVDNQLTHETIPPGDLVTSEYTGKKQQSYQHDFYNYAGLARSIWLYSV PKDQFIKDITVVPDVDWDGDAETGVVSYTVQTSNATSGPIRISILDEEGNEVATASGATGTATIPSVNLWQPG APYLYSFTVSILSASQRLIDTYTLPIGIRTVAVGNGTILVNNEPVYLTGFGKHEDSPIRGKGHDIAYLVHDFQ LLDWIGANSFRTSHYPYAEEVMEFADRQGILVIDETPAVGLAYSIGAGISTDTSRVTFAPDGINNNTRAAHAQ ALRELIARDKNHPSVIMWSIANEPASDEPGARAYFEPLTRLARSLDPAHRPITFANLGLATYETDTISDLFDV LCLNRYFGWYSYTGDLESAGKALHEELDGWVAKYPTKPIIISEYGADTMAGLHSVLGLIWSEEFQIELLDVYH GVFDQFQNVVGEHVWNFADFQTKEGIQRVDGNKKGVFTRDRRPKGAAFALRKRWMNMMSS

(1)	(1)
Caenorhabditis elegans Drosophila melanogaster Mus musculus Rattus norvegicus Felis catus Canis familiaris Cercopithecus aethiops Homo sapiens	

FIG.7A

														_	la f	_	-
ATVMPW	TIPMP	VLDMPV	TLDMPV	TLDMP	TLDMPV	TLDMP	TVDMP	IIY W	I₩	EEMPV	RAIAW	ISMAN	HEOPW	LECPV	LQIPV	HOVPW	LDMPV
DHERFON	ELSKSRP	PLRESGP	PLRESGP	PLRESGP	PLRESGP	PLRESGP	PLWESGF	LESED	RP	E_P0P	ALOES	K TTOT	ALPKG	.PLPKG	.VIPPK-	.RISPE-	L ES
VNOWNTL	RDEWYAK	EDDWYRO	EKDWYRO	EDDWYRT	EDDWYRA	EEQWYRR	EEDWYRR	ENGWIKE	DRP	SVGLDEGWNKELPDPEEMPV	DORMMES	-KGLEEKWYESKLITDTISMAW	-TNSTSAPWTAALPKGLECPV	TAGPWTA	EDOGWTS	TEGAWKK	G E QWY L ES LDMPV
vecovair	ANPTOGVI	NNRLOGF	NNRLOGF	ENRROGE	JGRROGF	DNRRRGF	DNRRRGF	N1	1	SVG	N0	1	SNT	PND	REIE	HDIE	
TFVREPHI	VF/NRSDQ/	#RAD SI	SFRADYSI	SFRADESI	SFRADFSI	SFRADESI	SFRADESI	A TOPE	NLEVTSK	OFETDPN	AFSLDRE	NFKLDYG	SFALEDA	KFALASG	NFALPOS	INEALAKS	FDS
DSCDGCW	3SLDGIW	KA DOUM	KV DG W	KE NG M	KD DO N	KE DOLM	KELDGLW	IDLOGFW	LILNGVM	TLMNGTW	KKLDGLW	FDLNGVW	VSLDGLW	VNLDGLM	LSLDGTW	NSLDGVW	LDGLW
(25) VOKNEIRTVDSLDGLWIFVREPHNGGDVGIVNQWNTLDHERFQNATVMPV	(51) PRESETREVRS DETWINFVRSDQANPTOGNRDEWYAKELSKSRPTIPMPW	30) PKESPSKELKALDGIMHFRAD SNNRLOGFEDDWYROPLRESGPVLDMPW	(30) PKETPSRELKVLDGLMSFRADYSNNRLQGFEKDWYRQPLRESGPTLDMPW	30) PRESPSRERKELINGLINSFRADFSENRROGFEDDWYRTPLRESGPTLDMPW	(30) PRESPSKERKOLDELMSFRADFSDGRROGFEDDWYRAPLRESGPTLDMPW	ESQSIRER	30) POESPSKECKE DOLMSFRADFSDNRRRGFEEDWYRRPLWESGPTVDMPW	-MRSFYRPKIDLDEFRIENENTGFENGWYKGLESEDIIY	(4) PORNKKRFILILNGVWNLEVTSK	(7) PIONKYRFNTLMNGTWOFETDPN	(4) PVETPTREIKKLDGCWAFSLDRENGGIDORWWESALGESRAIAW	(4) PINTETRGVFDLNGVWNFKLDYG	44) POOTSTRDLVSLDGLWSFALEDA-	.42) PORTSSRELVNLDGLWKFALASGLNDTAOPWTAPLPKGLECPW	37) POANAIRELLSLOGTWINFALPOSREIEEDOGWTSVIPPKLOIPW	(4) BOANRARDLVSLDGVWNEALAKSHDIETECAWKKRISPELOVPW	P S SREL LDGLW F D S
(25) VQ	(51) PR	(30) PK	(30) PK	(30) PR	(30) PR	(27) PR	(30)	(1) -M	(4) PO	(7) PI	(4) PV	(4) PI	(44) PC	(42) PC	(37) PC	(4) 区	۵
legans	Orosophila melanogaster		SI		10	ethiops		Sulfolobus solfataricus	tima	asseri	į	sp.	uTans	escens	sp.		
Caenorhabditis elegans	la melar	nJus	Rattus norvegicus	tus	Canis familiaris	Cercopithecus aethiops	iens	us solfi	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.	Gibberella zeae	ı SI
,aenorha.	Irosophi	Mus musculus	Rattus n	Felis catus	Sanis fa	Sercopit	Homo sapiens	Sulfolob	Thermoto	Lactobac	Escheric	Staphylc	Aspergii	Penicili	Scopu1a1	Gibbere	Consensus
)	7	_	_		_	_		,		-	_	•	•	-	-		

FIG.7B

FIG.7C

FIG.7D

KNVGNFULFNVAGILRSVOL	YTFUENWAGIHRSVHL	TSFULFINAGE HISOVIL	ISEDIENMETHISVNL	INFUENMACHERPYLL	TYFDIFNIAGLHRPVLL	TYFULFINAGEOURSVILE	TYFUIFINGGEORSVILL	AAFDIFNIGGIHRPWYI	FUIFPNGEIIRPWLI	YFDIFINISCIMENIAM	YFHOFFNWAGIHRSVML	≥.	YQHDIYNIYASIM	YOHDIYINIAGIARSIM	YNHOTYNWAGIARSVSL	YOHOTENWAGLARSVML	FDFFNYAGL RSV L
	TVPQGRITEVPNDGGMTIVQS		TLEPGTIVYKTDPSMYPKGYFVQD	TLEPGTILYQTDTSKYPKGYFVQN	IT_PPGTIVYKTDASKYPKGYFVQN	TLEPGTIQYLTDISKYPKGYFIQN	TILEPGTIQYLIDTSKYPKGYFVQN	NLPPARDLNN			TIMPGMVITDENGKKQS	_	1	TIPPGK	ш <u>г</u> рб	UIPPGRIEAQSDGSRKQS	TLPPG TD G VQ
(169)	(192)	(179)	(179)	(179)	(179)	(177)	(180)	(133)	(124)	(144)	(142)	(140)	(181)	(179)	(175)	(143)	(201)
Caenorhabditis elegans	Drosophila melanogaster	Mus musculus	Rattus norvegicus	Felis catus	Canis familiaris	Cercopithecus aethiops	Homo sapiens	Sulfolobus solfataricus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.	Gibberella zeae	Consensus

FIG.7E

Caenorhabditis elegans (219)	(219)	MKIP-SVYTONINIVADHTGSFFFETAVSSLDGVRVE
Drosophila melanogaster	(233)	YTTP-RTFILEEVENTITNLSKDAT VOENFTYSYSNNGSAANEADNVLQIQ
Mus musculus	(220)	YTTP-TTYIDDITVIHNVEQDIGLNTMMISVQGSEHFQLE
Rattus norvegicus	(220)	YTTP-TTYIDDITYITDVPROVQLMMMISVQGSDHFQLE
Felis catus	(220)	YTTP-TTYIDDITESTSWNQDTGLNDYQIFNEGGEHFQLE
Canis familiaris	(220)	
Cercopithecus aethiops	(218)	YTTP-TAYIDDITVITIGNEHDTGLMMQISVKGSNLFELE
Homo sapiens	(221)	KTTP-TTYIDDITVITISWEQDSGLMMOUSWKGSNLFKLE
Sulfolobus solfataricus	(160)	EFVD-ECHYEDITYMIKSYGHLKWEILSECNORFSLR
Thermotoga maritima	(163)	!
Lactobacillus gasseri	(179)	LALP-OSQITNFKLNYQLANNKATITMNIEANNNAEFK
Escherichia coli	(177)	NS
Staphylococcus sp.	(179)	YTTP-FTYVEDISMYTDFNGPTGTMMTVDFQGKAETVK
Aspergillus nidulans	(217)	YSVPKDQFIIKDITVVPDVDWDGDAETGVWSYTVQTSNATSGPIR
Penicillium canescens	(215)	YSVP-QQHJQDITWYTDVDQDNGLINYEVEWANQTTGQIQ
Scopulariopsis sp.	(210)	KSVP-DVHVSDMTVITTENDDEGNEGTWNYSVETSGSNDTQAR
Gibberella zeae	(178)	YSVB-KVFIJNDISMGTDLLQBGTQIMEFDIJRTSGELQADARWR
Consensus	(251)	YTTP TYIDDITV T V D GLV Y I V G

FIG.7F

MSTEVS	NO EIK	MSHEW MSHEW	TS FEW	MSLEWR MSLEWR	MSLEWR TSLEWR	SHEWR	SHEWO	MILIME		DPYSWKIKIE	-MELCWI	MOIKWE	SFTMS	-G-AAYLMOLOWN	-G-AAYLWTILRME	-G-AAYLMQJRAU	AYLYSL V
MGKPJ	MHSEPGYL	«НЕНРАУ <u>)</u>	MHEHPAYL	MHEHPAYL	MHEHPAY.	MHERPAYI	MHERPAYI	DNPYI					G-APYLWSFTM	G-AAY	G-AAY	G-AAY	Α
(LIMPRG	CPMMPYLI	T MAD Y LI	T MAD A LI	T MWPYL!	I JAMMI	RIMPYL	SLEWPYLL	IPMSEG	RFMSL	-NGSM-	 DM	ILMEP		do	- ACP	KYMAP	L E E
(255) WKMFDGEGSUMYTGNOTKSEGOISNPKLMMPRGMGKPGLMSHENS	:280) ANTYDKOGILIVANATSDOKLGOKOONDVKPONAPYLMHSEPGYLOOLEIK	CLOVPSA	WRITDEDGKIVARGTGNEGOLKVPRAHLIMMPYLMHEHPAYLINSLE	VR. L. DEEGKVVARGEGGRGOLOVPNAHLIMMPYLMHEHPAYLINSLE	WHILDEEGKWAAGTGSQGRUQVPWVHIMMPYLMHEHPAYLINSLE	CLICAPGA	WRITIDAENKVVANGTIGTQGOLKVPIGVSLIMMPYLMHERPAYLINSUENG	EKDWN	IKLGEEEKKIRTSNRFVEGEFILENARFINSLEDPYLINGU	SLITIKN	WELRDADQQVVATGQGTSGTLDWWNPHLMQP	WSVVDEEGKVVASTEGLSGNVEIPNVILMEP-	ISILDEEGNEVATASGAT GTATIPSVNLMCP-	ISVIDEDGAIVAKASGAQGTVTIBSVK_MQP-	MILIDEDGNEVAEASELE GSLNNSPVNLMOP-	ILLIDDEEDATWCQAQESHGKLEWKWAKYWAP-	G L VPN LW P
NQTKS	TSDQKLG	IGNOC	IGNEC	1GGRC	16500	19100	<u>19</u> 10(ESSNE-VF	TSNRFVE	SKNT§	0GTS(EGLS(SGAT(SGA0	SELE	QESH	
GSLIMYTG	GILIVANA'	GKWAHG	GKIVARG	GKWADG	GKWADG	NKLVANG	NKWVANG	GRVILNE	KKIR	KEVACAT	DOOVVAITG	GKWAST	GNEVATA	GA IVAKA	GNEVAEA	<u>∃</u> DAT[VCQA	301) V LLDEEGKVVA GTG
DKMFDGE	ANTINDKO	MOLLDED		WRLDEE	WALL DEE	WALDA!	MACTON MACTON	FK		MILFONO	WELRDAD	NSVVDEE		ISVIDE		I-COEE	V LLDE
(255)	$\overline{}$	$\overline{}$	(228)	(523)	(259)	(257)	(500)	(196)	(506)	(216)	(214)	(217)	(261)	(254)	(251)	(220)	(301)
Caenorhabditis elegans	Drosophila melanogaster	S	egicus		iaris	Sercopithecus aethiops	S	Sulfolobus solfataricus	maritima	us gasseri	coli	cus sp.	s nidulans	Penicillium canescens	osis sp.	zeae	•
Caenorhabdi	Drosophila .	Mus musculus	Rattus norvegicus	Felis catus	Canis familiaris	Cercopithec	Homo sapiens	Sulfolobus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium	Scopulariopsis sp.	Gibberella zeae	Consensus

FIG. 7G

LILDGELADIMREQFGFRTVTWSDSQIFTNSMPFYCLGFGMTEDFEIT ULATNDELLDWMBLKVGTRTESWNSQQFLINGKPVMFRGFGRTTEDSDI	VITTESVIDYYTLPVGIRTVAVTKSKFLINGKEFYFOGVNKIEDSDI	MTTPESVSDFYTLPVGIRTVAVTKSKFLINGKPFYFQGVNKHEDSDI	LTAQTAAGSVSDFYTLPVGIRTVAVTEHDFLINGKDFYFHGVNKTEDADII	LTAQMAAGPVSDFYTLPVGIRTVAVTEROFLINGKDFYFHGVNKTTDADII	LTAQTSLGPVSDFYTLPVGIRTVAVTESDFLINGKDFYFHGVNKHEDADI	LTAQTSLGPVSDFYTLPVGIRTVAVITKSDFLINGKPFYFHGVNKHEDADI	MYVGGNLKOSVYERIGFROVEWKDGKIYLNGKPIFLKGFGRHEDFPU	DEKDEYTLDIGIRTISWDEKRLYLNGKPVFLKOFGKIREFPV	MLEDGKTVDEYTDKIGIRTVKIVNDKILLMNHDIYLKGFGKIEDFNV	AKSQTECDIMPLRVGIRSVAVKGEQFLIMHQP-YFTGFGQHEDADL	[]VNDGLTIDVYEEPFGVKTVEVNDGKFLINNKIPFYFKGFGKHEDTPI	<u> </u>	IVGS-S-GDVVDTYNLATGVRTVKVAGSDFLINGKPFYFTGFGKHEDTAV	L.SD-DTVVDTYPLPVGVRSVRVEGNOFLINGKPFYFTTGFGKHEDSPV	LVRGEH-DEILDTYMLAVGIRSVEIRDGREFFINGKPFYFTGFGKHEDGPV	L V D YTLPVGIRTVAV QFLINGKPFYF GFGKHEDADI
(310)	(306)	(308)	(306)	(306)	(304)	(302)	(540)	(248)	(528)	(528)	(528)	(303)	(562)	(293)	(292)	(351)
Caenorhabditis elegans Drosophila melanogaster	Mus musculus	Rattus norvegicus	Felis catus	Canis familiaris	Cercopithecus aethiops	Homo sapiens	olfataricus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.	Gibberella zeae	Consensus

FIG.7H

IGRGFNQAIMTKOLNLLEMMGGNCYRTITHYPYSETRMFENDRRGIA			RERGEDMPL INDFNLLAWLGANSFR SINDVENENCUCDAYGIN	REKGFDWPLLVKDFNLLRWLGANAFRISHYPYAEEVMOLCDRYGIV	REKGFDWPLLWKDFNLLRWLGAWAFRISHYPYAEEVMOLCDRYGIV	REKGFDWPLLMKDFNLLRWLGANAFRTSHYPYAEENLOMCDRYGIN	REKGEDWPLLMKDFNLLMWLGANAFRTSHYPYAEEVMQMCDRYGIV	LEKETYGAVLMREHIGANSFRISHRYSNEHLDLADEMGEL	LECCITEYPLMIKDENLLKWINANSFRISHYPYSEEWLDLADR CI	LOKAVNESIIKRDYECMKWIGANGFRSSHYPYAELWYQYADKYGFL	REKGFDNVLMMHDHALMDWIGANSMRTSHYPYAEEMLDWADEHGI	NGRGFNEASNWMDFNILKWIGANSFRIAHYPYSEELMXLAUXEGL) REKCHOIAYLWHOFOLLOWIGANSFRISHYPYALEVMEHAUKKEI	ROKGHDPAYMAHDFQLMKMIGANSFRISHYPYAEEVMDFADKNGI) ROKGYDPAYMIHDFELMKAMGANSFRTSTYPYAETVMEYADRHGI) RORGALDASYMIHDYRLMKWIGANSFRTSHYPYAEEW_EYADRHGV) RGKGFD ALLVKDFNLLKWIGANSFRTSHYPYAEEVM LADRYGI
(347)	(3/8)	(353)	(353)	(326)	(326)	(354)	(357)	(287)	(290)	(302)	(302)	(306)	(351)	(344)	(340)	(311)	(401)
Caenorhabditis elegans	Drosophila melanogaster	Mus musculus	Rattus norvegicus	Felis catus	Canis familiaris	Cercopithecus aethiops	Homo sapiens	Sulfolobus solfataricus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.	Gibberella zeae	Consensus

FIG. //

FIG. 7J

Signaturez	HPSVIAWS AND DIMKKESRNYFKILLNOTAHGIOR-TROVITIONGP-T-	HPSW/MMSIANEPRTGSVSADSYFELVANFITRSLDK-TRPIJTAAIAV	HPANVMWSVANTPSBALKPAAYYFKTLITHTKALDL-TRPVTFVSNA	HPANNMSVANIEPNSSLKPAGYYFKTILIAHTKALDP-TRDVTFVSNT	HPANVMWSVANE PASFLKPAGYYFKTLIAHTKALDP-SRDVTFVTNS	HPSWWMSVANEPITSFLKPAAYYFKTILIAHTKALDP-SRPVTFVTNS	HPANVMMSVANTPASHLESAGYYLKMVITHTKALDP-SRPVTFVTNS	HPANVMMSVANEPASHLESAGYMHKMVIAHTKSLIDIG-SRIVTFVSNS	380) RPSMIMMSVMMMPPPSDIREVAEFIRREVELFKSLUS-SRUVTFASHR	HPS/VIMMSVAINEDESNHPD/AEGFFKALLYETANEMDR-TREVVVM/SMMDAP	HPSVIAWS_FINEPESTICESYDYFKDIFAFARK_DPONRPYTGTLVMGS-	HPSWWMWSIIANEDTRPQGAREKFAPLAEATRKLDP-TRPITCWNVMFC-	HPSWMMSIPANJAATEEEGAYEYFKPLVELUKELDPOKRPVTUMLFVMA-	HPSWIMWSIANEPASDEPGARAMFEPLITRLARS DPAHRPITFANLGLA-	HASIMAMISTANIE PASHEDGARENFEPLTNUTROLDPTR-PITFANVGTA-	HASINVSWICMTINIEPASAEDGAREYFOPLINELITRELIDE-TRIVITITINVMGA-	HPCNVMMMLANTPGASEQGSREYFEFLVTLARSLDSQKRTMCYSHMIHS-	HPSVVMWSVANEP S A YFK LI TKALDP TRPVTFV	
	(427)	(458)	(436)	(436)	(439)	(439)	(437)	(440)	(380)	(372)	(402)	(405)	(404)	(450)	(442)	(439)	(410)	(501)	
	Caenorhabditis elegans	Drosophila melanogaster	Mus musculus	Rattus norvegicus	Felis catus	Canis familiaris	Cercopithecus aethiops	Homo sapiens	Sulfolobus solfataricus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.	Gibberella zeae	Consensus	

-1G.7K

,		. •	'	•	'	•	5) -NYAADKGAPYVONIGLOSONYSONTHDYG-HLELIQLQLATQFENWYKKYYO	5)SVRDLALEYV D VISL NYNHGNN TEW G -DIDSGVKVVAIELEEIHK	1) DERTROVALKYFDIVCVNRYKGNYIYQG-RIEFGLQALEKDIEELYARHR	4) -GPKVDKLHPLCDFVCLNNYYGNNVAGGPEIVNAKKNLEDELDGWQN) -DAHTDTISDLFDVLOLNYNYGANVQSG-DLETAEKVLEKELLAMDE	3) -TPETDKVÆLLIDVIJALNANGNNFDGG-DLEAAKVHLROEFHAMNK	9) -TYETDTISDLFUNICLINGTFONTSYTG-DLESAGKALHEFLDGMV/	0) -TYQLDRISDLFDWSGINNNFGNNSQTG-DLEEAEAALEKELHGWQF	7) -TVDKCLISDLFDFLSLNRYYGNNVQTG-DLESAEVAMEEFLLQMVI	9) -KPDTDRIADLFONNOMININGWITQTG-NLKAAEVALEAFLRSWQF	 YD D GA VDVICLNRYYGWY D G LE A L ELE W H
(474)	(504)	(482)	(485)	(482)	(485)	(483)	(486)	(426	(42]	(454)	(450)	(453)	(499)	(490)	(481)	(459)	(551)
Caenorhabditis elegans	Orosophila melanogaster		Rattus norvegicus		Sanis familiaris	Sercopithecus aethiops		Sulfolobus solfataricus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.		

FIG.7L

Ξ	뜻	` }	χ,	}	χ.	<u> </u>	>	:	;	;		1 1	!	!		.!	
TEMBADS I PGLINGEPS VDESEQNONEV I QETHHAFDAL VKDHT	(552) -KPIIMSTYGADILEGLHMOPAYVWSEEFOTEVFSRHFKAFDELRKKGWF	STYGODA I POLIHEDPPRMFSEEYOKAVLENYHSMLDOKRKE-Y	STATE ADAYS GLHEDPPRMFSEEY TALLENYHLILDEKRKE-Y	STYGADTITAGEHODPPLMFSEEYOKGLLEOYHLWLDOKRKE-1	STYGAETTIAGEHODPPLMFSEEYOKGLLEOYHLMLDOKRKE-)	IOS Y CAFITY OF HOOP PLANTEEY WINSLIFE ON HOW LOOK RK-YV	SEYGAETIIAGEHOOPPHMFIJEEYOKSULEOYHLGUDOKRRK-V	TEFGADAIYGLHSDPPOMSEEYOSEMIRKMIEALREKDYI	-KPIFVTEFEADAIAGIHYDPPOMFSEEYDAELVEKTIRLLLKKDYI-	THE GADTLESSHRUPDE MASQEY IN EYYOMYEDIJFKKYPFI -	TEYBYDT AGLHSMYTDM SEEY CAWLDMYHRVFDRVSAV -	8	SHYCADTWAGLHSVLGLIWSEEF DIELLDVYHGVFDOFONV-	INTERPRIBEING THE TOTAL TO THE TOTAL DATE OF THE SECTION OF THE SE	-KIIIMSHYGADTLAGLHAVDEVLWSEEYOTNLLRMSHKVFDSIDSI-	TEYCTDIMAGLHTVCDVPWTEEYQVRFLDMYHRAVFURIDNV-	KPIIISEYGADTIAGLH DPPLMFSEEYQ LLE YH VFD
	$\overline{\text{MII}}$	2011	30110 SO 110	2011	100	SOII	SOLI		1FVT	FY	-OPIJITEYG	IMI I		IMMI	NI IM	Į Į	PIIIS
Ż	Ÿ	Y	7	Ÿ	Ÿ	Ÿ	Ÿ	X	Y	¥	Ö						
$\overline{\mathfrak{S}}$	5	\subseteq	$\overline{}$	$\overline{}$	$\overline{}$	\sim	\sim	\sim	\sim	$\overline{}$	\sim	$\overline{}$		$\overline{}$		\subset	\Box
(52	(55	(530	(530)	(533)	(533)	(531)	(534)	(473)	(470)	(203)	(498)	(501)	(547)	(238)	(232)	(202)	(601)
Caenorhabditis elegans (52	Drosophila melanogaster (55		jicus (Felis catus (533	iaris (thiops (Homo sapiens (534	olfataricus	$\overline{}$	Lactobacillus gasseri (503)	Escherichia coli (498)	Staphylococcus sp. (501	Aspergillus nidulans (547	·s	Scopulariopsis sp . (535	Gibberella zeae (507	Consensus (60

=1G.7M

1) TGEMIMNIPADEMII-GMITTTRAVONHKGVETRSROAKIMAYTLRNRYLKKG	IGEFVANIZADIKI - AOSYTRVGONKKOVI IRAROPKAMAHLLRKRYFALG	VGELIMMEADEMI-NOSPLRVIGMKKGIFTROROPRISAFILRERYWRIA	ICT INTENDENT-NOSPLRVITONKKGIFIRORNPRVARFIL RERYWRIA	VOT INVENDEMI-NOSPORVMONAKGI TIROROPRGAMFIL RERYWKLA	VOT INVIADEMI-DOSPORAVONRIGIFIROROPIAMELA	WOFE INVITABLE - EOSPTRV GNAKKOVITROROPISAAFI LARKWATA	WOLL INVITADEMI-EOSPTRALGNAKGI HIROROPISAAFIL REBYWKIA	WGFHIWNFADFRI-PONPSRTILNRKGIFTRDROPNLAAKVVEELFKNKL	IGTHVMAFADIKI-PONVRRPILNHKOVFIRDROPNLVAHVLRRLMSEV-	COELVANTADEKI-SEGIMRVGGNDKGITIRDREPNDIA-IILKKKWQQLN	WEEDVWNFADIAI - SOGILRVGGNKKGIFIRDRKPKSAAFLLOKKWIGMN	WEEDAWNFADHAIL-SOGVMRVOGNKKGVFIRDRKPK-AAHVFREKMINIP	MGEHVWW.FADFOIL-KEGIORVDGNKKGVFIRDRRPKGAA-JALKKKMMNMM	ACEHVWN TADTOI - NLGIIRWDONKKOVTIKDRKPRAAAHSLRARWISID	WEEHVWIN FADFOID PHTGVNR VDGINGKGVFIRERRPKAAAHELKRRWLDEG	WEEHVWINTADFOIL-SAMIIRADENKKGIFTRORRPKSAAHALRARWTGPV	VGE IWNFADF T Q RV GNKKGIFTRDRQPK AAFLLR RW IA
(571)	(601)	(878)	(878)	(581)	(581)	(629)	(585)	(520)	(516)	(220)	(544)	(548)	(594)	(584)	(581)	(504)	(651)
Caenorhabditis elegans (571)	Orosophila melanogaster (601)	Mus musculus	Rattus norvegicus	Felis catus	Sanis familiaris	Cercopithecus aethiops	Homo sapiens	Sulfolobus solfataricus	Thermotoga maritima	Lactobacillus gasseri	Escherichia coli	Staphylococcus sp.	Aspergillus nidulans	Penicillium canescens	Scopulariopsis sp.	Gibberella zeae	Consensus

FIG. 7N

Caenorhabditis elegans (620) SNIDIIIMI	(620)	SNIDITMI
Drosopnila metanogaster	(000)	RULDUCSI PEULI I I I I I I I I I
Mus musculus	(627)	NETGGHGSGPRTQCFGSRPF1F
Rattus norvegicus	(627)	NETRGYGSVPRTQCMGSRPFTF
Felis catus	(630)	NETRYPWSAVKSQCLENSPFTL
Canis familiaris	(630)	NETGHHRSAAKSQCLENSPFAL
Cercopithecus aethiops	(628)	NETRYPHSIAKSQCLENSPFT-
Homo sapiens	(631)	NETRYPHSVAKSQCLENSPFT-
Sulfolobus solfataricus	(269)	RS
Thermotoga maritima	(564)	
Lactobacillus gasseri	(266)	
Escherichia coli	(293)	FGEKPQQGGKQ
Staphylococcus sp.	(262)	DFGYKN
Aspergillus nidulans	(643)	SSSS
Penicillium canescens	(633)	KN
Scopulariopsis sp.	(631)	FPKLGNGTSGA
Gibberella zeae	(603)	GPRKIEVTKO
Consensus	(701)	

FIG.8

FIG.9

β-glucuronidase activity in leaves of rice T1 plants transformed with pPWT9.17

FIG.10A

Secreted β -glucuronidase activity in leaves of rice T1 plants transformed with pKKWA68.4 and pPWT9.17

FIG.10B

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.