Universidade da Beira Interior Faculdade de Engenharia Departamento de Informática

© Pedro R. M. Inácio (inacio@di.ubi.pt), 2022/23

Segurança Informática

Guia para Aula Laboratorial 1

1º Ciclo em Engenharia Informática

1º Ciclo em Informática Web

1º Ciclo em Matemática e Aplicações

Sumário

Introdução ao tema da criptografia de chave simétrica através do desenvolvimento de tarefas dedicadas ao manuseamento das cifras clássicas mais conhecidas. Discussão de diversos conceitos e termos do jargão da criptografia.

Computer Security

Guide for Laboratory Class 1

B.Sc. in Computer Science and Engineering

B.Sc. in Web Informatics

B.Sc. in Mathematics and Applications

Summary

Introduction to the symmetric key criptography subject via the development of tasks dedicated to handling the most popular classical ciphers. Discussion of several concepts and terms related with cryptography.

Pré-requisitos:

Algumas das tarefas propostas a seguir requerem o uso de *software* para efetuar cálculos e o acesso a um sistema com compilador de programas escritos em linguagem de programação C. Sugere-se, assim, o uso de uma distribuição comum de Linux, onde todas estas condições estarão provavelmente preenchidas.

1 A Cifra de César

Caesar Cipher

A cifra original de César (chamada assim por ter sido usada pelo imperador romano Júlio César) usava uma translação fixa de 3 letras para a esquerda do alfabeto. Contudo, de uma forma geral, se considerarmos que as mensagens a cifrar são todas constituidas pelas letras do alfabeto com 26 letras e a cada uma atribuirmos um valor inteiro de 0 a 25, i.e.,

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z O 1 2 3 4 5 6 7 8

então a cifra de cada letra da mensagem é dada por $E(k,M_i)=M_i+k \bmod 26$, enquanto que a decifra é definida por $D(k,M_i)=M_i-k \bmod 26$, em que k=1,2,...,26 e M_i representa a letra i da mensagem $M\in \mathcal{M}$.

A cifra original de César era, portanto, dada por $E(M_i)=M_i-3 \bmod 26$ e a decifra por $E(M_i)=M_i+3 \bmod 26$ (i.e., k=23).

Tarefa 1 Task 1

Cifre a palavra OLA usando a cifra original de César. Q1.: Qual o resultado?

Tarefa 2 Task 2

Decifre agora o criptograma seguinte, sabendo que a chave utilizada foi 10:

Criptograma: LOXPSMKOYWKSYB

Texto limpo: _____

Tarefa 3 Task 3

Decifre o criptograma seguinte, mas desta feita apenas sabendo que as três letras mais comuns na Língua Portuguesa são o A, o E e o 0. **Nota:** por comodidade, deixaram-se os espaços e as pontuações na frase, cifrando-se apenas as letras do alfabeto indicado antes.

Criptograma: J HVM NVGBVYJ, LPVIOJ YJ OZP NVG Tarefa 4 Task 4 NVJ GVBMDHVN YZ KJMOPBVG! Cifre a mensagem TIO MANEL TINHA UMA QUINTA Q2.: Para o alfabeto especificado em cima, quancom a chave de cifra AULA. tas chaves diferentes se podem definir? □ 25. □ 5. □ 10. □ 32. Criptograma: _ Q3.: Em média e mesmo que não soubesse nada acerca das frequências relativas das letras do alfabeto do texto limpo, de quantas tentativas pre-Q5.: Quantas chaves de cifra diferentes existem cisava para encontrar o texto limpo original? com 4 letras? \square -1. \square π . \square 5. \square 12,5. \square 13 \square 25. \square 1500. $\square 25 \times 24 \times 23 \times 22$ $\Box 4$ $\square 25!$ $\square 4!$ $\square 26 \times 25 \times 24 \times 23$ \square 26! Na verdade, o que fez na tarefa anterior foi atacar a cifra de acordo com um modelo de ataque. Ainda que não seja especialista na área, faça um Q6.: Qual, ou quais, as familias de chaves que esforço para tentar identificar o modelo de atatransformam a cifra de Vigenère numa cifra de que que utilizou: César? ☐ Ciphertext-only attack (COA) ☐ Chaves com letras todas iguais. ☐ Known-plaintext attack (KPA) ☐ Chaves com uma só letra. ☐ Chosen-plaintext attack (CPA) ☐ Chaves com duas letras apenas. ☐ Adaptive chosen-plaintext attack (CPA2) ☐ Chaves com todas as letras diferentes. ☐ Chosen-ciphertext attack (CCA) ☐ Adaptive chosen-ciphertext attack (CCA2) Tarefa 5 Task 5 ☐ Side-channel attack. Decifre o criptograma seguinte (ou encontre a chave de cifra), sabendo que a cifra utilizada foi a cifra de A Cifra de Vigenère Vigenère, a primeira palavra é ISTO e a chave de Vigener Cipher cifra tem 3 letras: Criptograma A cifra de Vigenère, assim designada também de-JUWP G IBELM vido ao seu criador, é um pouco mais segura que a cifra de César. Enquanto que na cifra de César, a Texto-limpo: _ chave de cifra é apenas um número que denota a Q7.: Faça novamente um esforço para tentar deslocação, na cifra de Vigenère, a chave de cifra identificar o modelo de ataque que utilizou para é uma palavra ou uma série de caracteres. Para quebrar a cifra desta vez: cifrar uma mensagem, repete-se a chave de cifra ☐ Ciphertext-only attack (COA) tantas vezes quanto necessário para se perfazer o ☐ Known-plaintext attack (KPA) tamanho do texto-limpo, e depois somam-se (mó-☐ Chosen-plaintext attack (CPA) dulo 26, neste caso), as letras do texto-limpo com ☐ Adaptive chosen-plaintext attack (CPA2) a chave para se obter o criptograma. Por exem-☐ Chosen-ciphertext attack (CCA) plo, se a chave de cifra for OLA e o texto-limpo for

3 Cifra de Substituição

Substitution Cipher

☐ Side-channel attack.

Na cifra de substituição, a chave de cifra é simplesmente a definição de uma tabela de correspondências de cada letra do alfabeto que se está a utilizar para a respetiva cifra dessa letra. Por exemplo, a chave seguinte determina que todos os A do texto-

☐ Adaptive chosen-ciphertext attack (CCA2)

ESTAAULAEUMASECA, o criptograma obtinha-se da se-

ESTAAULAEUMASECA +OLAOLAOLAOLAOLAO

=SDTOLUZLEIXAGPCO

Repare que, neste caso e ao contrário do que a contece para a cifra anterior, a mesma letra pode ser

guinte forma:

todos os B em Q, etc.:

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
SQTUHJIBYKAVLCWEZNRMXGFPDO
```

A operação de decifra consiste em simplesmente olhar para a correspondência no sentido contrário.

Tarefa 6 Task 6

Construa um programa em linguagem C para cifrar e decifrar usando a cifra de substituição. Considere começar com o programa incluído a seguir:

```
#include < stdio . h>
void encrypt(char * in, char * out, char * key
     , int size){
  int i = 0;
  for(i = 0; i < size; i++){
       int iFound = 0;
       int j = 0;
       while ( iFound == 0 )
          if ( in[i] == key[j] )
              iFound = 1;
          else
              j++;
       out[i] = key[26+j];
  }
}
int main(){
  char key[2*26] = \{
      'A' , 'B<sup>ī</sup> , 'C' , 'D' , 'E' , 'F' , 'G' , 'H' , ' I ' , 'J' , 'K
            ,'L','M','N','O','P','Q','R','S','T',
      'U', 'V', 'W', 'X', 'Y', 'Z',
'S', 'Q', 'T', 'U', 'H', 'J', 'I', 'B', 'Y', 'K', 'A', 'V', 'L', 'C', 'W', 'E', 'Z', 'N', 'R', 'M',
           'X', 'G', 'F', 'P', 'D', 'O'
  };
  char plaintext[12] = "OLACOMOESTA";
char ciphertext[12] = "XXXXXXXXXXXX";
char plaintext2[12] = "XXXXXXXXXXXXXX";
   printf("%s\n", plaintext);
  encrypt(plaintext, ciphertext, key,11);
   printf("%s\n", ciphertext);
  decrypt(ciphertext, plaintext2, key,11);
   printf("%s\n", plaintext2);
```

Q8.: Depois de analisar a sua definição, consegue dizer quantas chaves diferentes suporta a cifra de substituição?

\square 5	\square 5!	\square 25!	\square 26!	$\square 2^{80}$	$\square 2^{\log_2 5}$
-------------	--------------	---------------	---------------	------------------	------------------------

Um computador moderno consegue efetuar cerca de 2^{26} operações compostas num segundo.

limpo sejam transformados em S no criptograma, e Acha que esse computador conseguia testar exaustivamente (i.e., por brute force) todas as chaves possíveis para a cifra analisada em tempo útil?

- ☐ Sim, conseguia mas demorava algumas horas.
- ☐ Sim, conseguia nas calmas. Curte!
- □ Não, não conseguia.

Q10.: Tendo em conta o que fez e estudou até esta parte do guia, esta cifra parece-lhe segura?

- ☐ Sim, parece-me ser segura.
- ☐ Em termos de número de chaves, parece-me ser segura, mas em termos de facilidade de ataque, não.

Q11.: Esta cifra é vulnerável a ataques em que se conhece parte do texto-limpo associado a um criptograma ou em que o texto-limpo associado a um criptograma tem propriedades estatísticas notáveis?

- ☐ Sim, é vulnerável em ambas as situações.
- ☐ É vulnerável apenas na primeira situação.
- ☐ É vulnerável apenas na segunda situação.
- □ Não é vulnerável em nenhum dos casos.

A Enigma¹ era uma máquina que implementava uma cifra de substituição polialfabética através do encadeamento de 3 rotores (que podiam ser esco-Ihidos de um conjunto de 5). Na sua forma mais simples (sem o chamado dashboard), o número máximo de chaves (combinações) suportadas era de $A_3^5 \times 26^2 \times 26^3 = 712882560$:

- A_3^5 é o número de arranjos possíveis na escolha de 3 em 5 rotores:
- 26² é o número de posições possíveis para os saltos entre os rotores (o rotor do meio podia iterar após o primeiro rotor chegar à letra A, ou à letra B, C, etc.);
- 26³ é o número de posições iniciais dos rotores (cada rotor podia começar numa de 26 letras).

Esta máquina suportou as comunicações alemãs durante bastante tempo, e motivou também imensa investigação na sua criptanálise. Na altura, a máquina constituía um desafio, porque tentar todas as 712882560 combinações manualmente e para cada

possível ver enigma a funcionar а http://enigmaco.de/enigma/enigma.html e encontrar bastante informação útil em https://plus.maths.org/content/exploringenigma. A página https://observablehq.com/@tmcw/enigmamachine tem outra representação interessante, embora simplificada.

mensagem era uma tarefa difícil e morosa, para além de sujeita a erros. Q12.: Quanto tempo demoraria um computador atual a tentar essas combinações?	 ⊕ (xor ou ou exclusivo): ⊕ 0 1 0 0 1 1 1 0 		
Sugestão: experimente fazer um programa que conte até 712882560 e verifique o tempo que demora. Comente isto com o Professor.	Use a tabela para calcular o xor da mensagem a transmitir com a sequência que gerou durante a experiência da moeda. Observe as caracteristicas do resultado guiando-se pelas seguintes questões. Q20.: Quantos 0s tem o resultado do xor?		
4 One Time Pad			
One Time Pad	Q21.: Quantos 1s tem o resultado do xor?		
A one time pad é conhecida como a cifra simétrica	Q22.: Quantas vezes tem a combinação 00?		
com segurança perfeita, embora tenha outros defei-	Q23.: Quantas vezes tem a combinação 11?		
tos.	Q24.: A sequência resultante parece-lhe ser aleatória?		
Tarefa 7 Task 7	☐ Sim, de facto parece. ☐ Não, não parece.		
Pegue numa moeda e atire-a 16 vezes ao ar (faça isso com o devido cuidado e respeito). Por cada lançamento, aponte um 0 ou um 1 num ficheiro de texto conforme saia cara ou coroa.	Q25.: Se enviar a sequência resultante do xor ao(à) seu(ua) colega, este(a) consegue recuperar o texto-limpo da mensagem? De que forma? Atirando também a moeda ao ar, registando os		
Q13.: Quantos 0s sairam?	resultados e fazendo o xor ao contrário. Atirando também a moeda ao ar, registando os resultados e fazendo o xor da mesma forma. É impossível obter o texto-limpo de volta, a não ser que também lhe envie a sequência resultante		
Q14.: Quantos 1s sairam?			
Q15.: Quantas vezes saiu a combinação 00?			
Q16.: Quantas vezes saiu a combinação 01?	da minha experiência. ☐ É impossível obter o texto-limpo de volta, inde-		
Q17.: Se lhe dissessem o que saiu das 6 primeiras vezes, conseguia adivinhar o que ía sair na sétima? Não, não ia. Com uma probabilidade de 1/6, sim, ía.	pendentemente das condições.		
Q18.: A sequência que resultou desta experiência vai de encontro ao conceito que tem de aleatoriedade?			
☐ Sim, vai.☐ Nunca pensei nisso, mas vai.☐ Não, não vai.			
Tarefa 8 Task 8			
Considere que estava a tentar transmitir uma mensagem em binário a um(a) colega seu(ua). A mensagem era 0000000100000001. Q19.: Esta mensagem parece-lhe aleatória ou fácil de prever? Aleatória. Fácil de prever.			

Analise a tabela seguinte, que define a operação de