Spatial Eigenfunction Modeling of Geo-Referenced Data in the Social Sciences

Sebastian Juhl

University of Mannheim

August 6, 2021

Motivation

- many phenomena of interest to social scientists cluster in space
 - economic development, regime type, voting behavior, religious beliefs, etc.
- geographic distribution of variables provide valuable information about the underlying mechanism of interest
- spatial autocorrelation (SA) causes severe problems for common econometric methods

Adequately accounting for spatial structures is necessary to guard against false inferences and to utilize spatial information!

This Project

- so far, social scientists use a limited subset of techniques suitable to handle SA
 - exploratory spatial analysis:
 - \bullet different types of maps
 - local indicators of SA (LISA)
 - inferential models
 - ullet parametric spatial regression models

This Project

- so far, social scientists use a limited subset of techniques suitable to handle SA
 - exploratory spatial analysis:
 - different types of maps
 - local indicators of SA (LISA)
 - inferential models
 - parametric spatial regression models
- spatial eigenfunction analysis particularly Moran eigenvector maps (MEM) – is a simple yet powerful tool to analyze cross-sectional data structures
 - identification & visualization of complex (multi-scale) spatial patterns
 - 2 specification, estimation, and interpretation of inferential models
 - $oldsymbol{\circ}$ partitioning of the variation in $oldsymbol{y}$ into individual components (space, covariates, joint)
 - (structure-preserving) simulation of spatially autocorrelated data

SA & Spatial Eigenfunctions

Spatial eigenfunction alanysis is based on the spectral decomposition of a centered (and symmetric/ symmetrized) connectivity matrix W:

$$MWM = E\Lambda E^{-1} = E\Lambda E' \tag{1}$$

- demeaning projector M = (I 11'/n) also ensures that all eigenvectors are orthogonal and uncorrelated
- \bullet E are all n eigenvectors
- ullet Λ is a diagonal matrix of the eigenvalues λ

SA & Spatial Eigenfunctions

Spatial eigenfunction alanysis is based on the spectral decomposition of a centered (and symmetric/symmetrized) connectivity matrix W:

$$MWM = E\Lambda E^{-1} = E\Lambda E'$$
 (1)

- demeaning projector M = (I 11'/n) also ensures that all eigenvectors are orthogonal and uncorrelated
- \bullet **E** are all n eigenvectors
- ullet Λ is a diagonal matrix of the eigenvalues λ

Direct relationship to the numerator of the global Moran coefficient:

$$MC(x) = \frac{n}{1'W1} \frac{x'MWMx}{x'Mx}$$
 (2)

- \bullet ${\pmb E}$ depict all possible distinct and mutually uncorrelated synthetic map patterns permitted by ${\pmb W}$
- \bullet corresponding eigenvalues $\pmb{\lambda}$ indicate the level of SA

- ullet depict <u>all</u> possible distinct and mutually uncorrelated synthetic map patterns permitted by $oldsymbol{W}$
- \bullet corresponding eigenvalues λ indicate the level of SA

- ullet depict <u>all</u> possible distinct and mutually uncorrelated synthetic map patterns permitted by W
- \bullet corresponding eigenvalues $\pmb{\lambda}$ indicate the level of SA

- ullet depict <u>all</u> possible distinct and mutually uncorrelated synthetic map patterns permitted by $oldsymbol{W}$
- ullet corresponding eigenvalues $oldsymbol{\lambda}$ indicate the level of SA

Eigenvector 1

- ullet depict <u>all</u> possible distinct and mutually uncorrelated synthetic map patterns permitted by $oldsymbol{W}$
- ullet corresponding eigenvalues $oldsymbol{\lambda}$ indicate the level of SA

Eigenvector 1

Eigenvector 170

Eigenvector 25

Eigenvector 50

- E depict all possible distinct and mutually uncorrelated synthetic map patterns permitted by W
- \bullet corresponding eigenvalues λ indicate the level of SA

Eigenvector 170

Eigenvector 401

Dynamic Pie Group 2021

- ullet depict <u>all</u> possible distinct and mutually uncorrelated synthetic map patterns permitted by $oldsymbol{W}$
- \bullet corresponding eigenvalues λ indicate the level of SA

1. Identification of Complex Spatial Structures

- global and local MC statistics might fail to identify mixtures of positive and negative SA
- Example:

• global and local MC statistics might fail to identify mixtures of positive and negative SA

Dynamic Pie Group 2021

• Example:

Sebastian Juhl

• global and local MC statistics might fail to identify mixtures of positive and negative SA

• Example:

- eigenfunction analysis allows researchers to decompose the global MC into positively and negatively autocorrelated parts
 - global $MC = MC^+ + MC^-$
- decomposing the global MC helps identifying complex non-random spatial patterns

- eigenfunction analysis allows researchers to decompose the global MC into positively and negatively autocorrelated parts
 - global $MC = MC^+ + MC^-$
- decomposing the global MC helps identifying complex non-random spatial patterns

Monte Carlo setup:

- N = 100 units ordered on a regular 10×10 grid
- ullet W is a row-normal symmetric contiguity matrix (rook scheme)
- ρ ranges from -.9 to .9 in steps of .1
- <u>Scenario 1:</u> simple spatial structure
 - $\boldsymbol{x} = (\boldsymbol{I} \rho \boldsymbol{W}_g)^{-1} \boldsymbol{u}$
- <u>Scenario 2:</u> mixture of positive and negative SA
 - $x = (I \rho W_g)^{-1} u + (I (-\rho)W_g)^{-1} v$

How does the decomposed MC based on spatial eigenfunctions performs compared to the global MC in terms of power?

Scenario 1: Simple Spatial Structure

- SA causes severe problems for common econometric inferential techniques
- depending on the spatial DGP, SA can lead to
 - incorrect standard errors
 - 2 biased and inconsistent parameter estimates
- spatial regression models address these problems but require many more or less rigid assumptions
 - knowledge of the true DGP
 - functional form assumptions
 - exact specification of SA in each regressor
 - difficult to estimate in a GLM framework
 - ...
- semiparametric spatial filtering methods use Moran eigenvectors to construct a synthetic proxy variable that controls for SA

- a subset of eigenvectors E^* can be combined to reproduce real-world map patterns
- Example: Median age in German NUTS-3 regions (2017)

Observed Median Age

MC = 0.404 (p = 0.000)

- ullet a subset of eigenvectors E^* can be combined to reproduce real-world map patterns
- Example: Median age in German NUTS-3 regions (2017)

- ullet a subset of eigenvectors E^* can be combined to reproduce real-world map patterns
- Example: Median age in German NUTS-3 regions (2017)

- a judiciously selected subset of eigenvectors controls for the underlying spatial pattern
- straightforward parameter estimation & interpretation

How much variation in y is caused by X?

- a common spatial structure spuriously inflates the share of variation explained by the predictors
- \bullet disentangle the individual contribution of the covariates and the spatial structure

How much variation in y is caused by X?

- a common spatial structure spuriously inflates the share of variation explained by the predictors
- disentangle the individual contribution of the covariates and the spatial structure

1 identify a subset of eigenvectors \boldsymbol{E}^* that serve as spatial predictors

- 1 identify a subset of eigenvectors \boldsymbol{E}^* that serve as spatial predictors
- 2 regress \boldsymbol{y} on three sets of predictors and calculate R^2
 - 2.1 regress \boldsymbol{y} on \boldsymbol{X} (fraction [a+b])
 - 2.2 regress \boldsymbol{y} on \boldsymbol{E}^* (fraction [b+c])
 - 2.3 regress \boldsymbol{y} on \boldsymbol{X} and \boldsymbol{E}^* (fraction [a+b+c])

- 1 identify a subset of eigenvectors \boldsymbol{E}^* that serve as spatial predictors
- 2 regress \boldsymbol{y} on three sets of predictors and calculate R^2
 - 2.1 regress \boldsymbol{y} on \boldsymbol{X} (fraction [a+b])
 - 2.2 regress \boldsymbol{y} on \boldsymbol{E}^* (fraction [b+c])
 - 2.3 regress \boldsymbol{y} on \boldsymbol{X} and \boldsymbol{E}^* (fraction [a+b+c])
- 3 using the results from step 2, calculate individual fractions

$$3.1 [a] = [a+b+c] - [b+c]$$

3.2
$$[b] = [a+b] + [b+c] - [a+b+c]$$

3.3
$$[c] = [a+b+c] - [a+b]$$

$$3.4 [d] = 1 - [a+b+c]$$

- 1 identify a subset of eigenvectors \boldsymbol{E}^* that serve as spatial predictors
- 2 regress \boldsymbol{y} on three sets of predictors and calculate R^2
 - 2.1 regress \boldsymbol{y} on \boldsymbol{X} (fraction [a+b])
 - 2.2 regress \boldsymbol{y} on \boldsymbol{E}^* (fraction [b+c])
 - 2.3 regress \boldsymbol{y} on \boldsymbol{X} and \boldsymbol{E}^* (fraction [a+b+c])
- 3 using the results from step 2, calculate individual fractions
 - 3.1 [a] = [a+b+c] [b+c]
 - 3.2 [b] = [a+b] + [b+c] [a+b+c]
 - 3.3 [c] = [a+b+c] [a+b]
 - 3.4 [d] = 1 [a+b+c]
- 4 use Moran spectral randomization to compute R_{adj}^2

Example:

- regress GDP (y) on median age (X)
- MC of (log) GDP: 0.347 (p = 0.000)
- ullet spatial filtering identifies 15 relevant eigenvectors $({m E}^*)$

Example:

- regress GDP (y) on median age (X)
- MC of (log) GDP: 0.347 (p = 0.000)
- ullet spatial filtering identifies 15 relevant eigenvectors $({m E}^*)$

	<u>Joint Fractions</u>			<u>Individual Fractions</u>			
	[a+b]	[b+c]	[a+b+c]	[a]	[b]	[c]	[d]
R^2	0.286	0.246	0.523	0.277	0.009	0.237	0.477
R_{adi}^2	0.284	0.217	0.492	0.275	0.009	0.208	0.508

Note: Spatially constrained null model to calculate R_{adj}^2 based on 1,000 random permutations.

4. (Structure-Preserving) Simulation of Spatially Autocorrelated Data

Simulating Spatial Data

- spatial multipliers $(I \rho W)^{-1}$ are typically used to simulate SA data
 - fixed degree of SA across simulations (controlled by ρ)
 - <u>does not</u> preserve spatial structure
- using MEMs for simulations preserves the geographic distribution

 Observed Median Age

Range = [36.300; 53.900]

Simulating Spatial Data

- spatial multipliers $(I \rho W)^{-1}$ are typically used to simulate SA data
 - fixed degree of SA across simulations (controlled by ρ)
 - <u>does not</u> preserve spatial structure
- using MEMs for simulations preserves the geographic distribution

Observed Median Age

Range = [45.549; 45.802]

Simulating Spatial Data

- spatial multipliers $(I \rho W)^{-1}$ are typically used to simulate SA data
 - fixed degree of SA across simulations (controlled by ρ)
 - does not preserve spatial structure
- using MEMs for simulations preserves the geographic distribution

Conclusion

- spatial eigenfunction analysis complements the statistical repertoire
 - it helps addressing methodological problems caused by SA
 - MEMs allow researchers to derive additional information from geo-referenced data
- improves exploratory and inferential analysis, especially w.r.t
 - \bullet identification & visualization of complex (multi-scale) spatial patterns
 - specification, estimation, and interpretation of inferential models
 - variation partitioning
 - simulation of SA data

Additional Resources

spfilteR package:

<u>CRAN:</u> https://CRAN.R-project.org/package=spfilteR

 $\underline{\rm GitHub:}\ \rm https://github.com/sjuhl/spfilteR$

Feedback & suggestions are highly appreciated! sebastian.juhl@gess.uni-mannheim.de www.sebastianjuhl.com