Lecture 2: One Parameter Models

Professor Alexander Franks

2020-10-14

Announcements

- Reading: Chapter 3, Hoff
- Homework due: October 18, at midnight
 - + Submit homework/. Rmd and homework/. Polf only
- . Office Hours
- · Qvizes

Bayesian Inference

- In frequentist inference, θ is treated as a fixed unknown constant
- In Bayesian inference, θ is treated as a random variable
- Need to specify a model for the joint distribution $p(y,\theta) = p(y \mid \theta) p(\theta)$

Bayesian Inference in a Nutshell

New

- The prior distribution $p(\theta)$ describes our belief about the true population characteristics, for each value of $\theta \in \Theta$.
- 2. Our sampling model $p(y \mid \theta)$ describes our belief about what data we are likely to observe if θ is true.
 - 3. Once we actually observe data, y, we update our beliefs about θ by computing <u>the posterior distribution $p(\theta \mid y)$ </u>. We do this with Bayes' rule!

Bayes' Rule

$$P(A \mid B) = rac{P(B \mid A)RAR}{P(B)}$$

- $P(A \mid B)$ is the conditional probability of A given B
- $P(B \mid A)$ is the conditional probability of B given A
- P(A) and P(B) are called the marginal probability of A and B (unconditional)

Bayes' Rule for Bayesian Statistics / Sampling

Prior distribution

- $P(\theta \mid y)$ is the posterior distribution
- $P(y \mid \theta)$ is the likelihood
- $P(\theta)$ is the prior distribution
- $P(y) = \int_{\Theta} p(y \mid \tilde{\theta}) p(\tilde{\theta}) d\tilde{\theta}$ is the model evidence choose. $P(\Theta|y) \propto P(y \mid \tilde{\theta}) P(\tilde{\theta}) P(\tilde{\theta})$ $P(\Theta|y) \propto P(y \mid \tilde{\theta}) P(\tilde{\theta}) P(\tilde{\theta})$ $P(\Theta|y) \approx P(y \mid \tilde{\theta}) P(\tilde{\theta}) P(\tilde{\theta})$

Bayes' Rule for Bayesian Statistics

$$P(\theta \mid y) = \frac{P(y \mid \theta)P(\theta)}{P(y)}$$

$$\propto P(y \mid \theta)P(\theta)$$

- Start with a subjective belief (prior)
- Update it with evidence from data (likelihood)
- Summarize what you learn (posterior)

The posterior is proportional to the likelihood times the prior!

- We need to estimate the prevalence of a COVID in Isla Vista
- Get a small random sample of 20 individuals to check for infection

- θ represents the population fraction of infected
- Y is a random variable reflecting the number of infected in the sample
- $\bullet \ \Theta = [0,1] \quad \mathcal{Y} = \{0,1,\ldots,20\}$
- Sampling model: $Y \sim \operatorname{Binom}(20, \theta)$

Sampling Model P(Y10)

- Assume *a priori* that the population rate is low
 - The infection rate in comparable cities ranges from about 0.05 to 0.20
- Assume we observe Y = 0 infected in our sample
- What is our estimate of the true population fraction of infected individuals?

Table of Relevant Quantities

Bayesian vs Frequentist

- In frequentist inference, unknown parameters treated as constants
 - Estimators are random (due to sampling variability)

• Asks: what would I expect to see if I repeated the experiment?"

Bayesian vs Frequentist

- In frequentist inference, unknown parameters treated as constants
 - Estimators are random (due to sampling variability)
 - Asks: what would I expect to see if I repeated the experiment?"
- In Bayesian inference, unknown parameters are random variables.
 - \circ Need to specify a prior distribution for θ (not easy)
 - Asks: "what do I *believe* are plausible values for the unknown parameters given the data?"
 - Who cares what might have happened, focus on what *did* happen by conditioning on observed data.

Example: estimating shooting skill in basketball

- On November 18, 2017, an NBA basketball player, Robert Covington, had made 49 out of 100 three point shot attempts.
- At that time, his three point field goal percentage, 0.49, was the best in the league and would have ranked in the top ten all time
- How can we estimate his true shooting skill?
 - Think of "true shooting skill" as the fraction he would make if he took infinitely many shots $\frac{9}{100} = \frac{49}{100} = 49$

16 / 63

Example: estimating shooting skill in basketball

- Assume every shot is independent (reasonable) and identically distributed (less reasonble?)
- Let $Y \sim \text{Bin}(n, \theta)$ where θ corresponds to his true skill
- Frequentist inference tells us that the maximum likelihood estimate is simply $\frac{y}{n} = 49/100 = 0.49$
- What would our estimates be if we use Bayesian inference?
 - What properties do we want for our prior distribution?

$$P(\theta|g) \sim P(y|\theta) P(\theta)$$

 $\theta \in [0,1]$, $P(\theta) > 0$ for all $\theta \in [0,1]$

Cromwell's Rule

The use of priors placing a probability of 0 or 1 on events should be avoided except where those events are excluded by logical impossibility.

If a prior places probabilities of 0 or 1 on an event, then no amount of data can update that prior.

I beseech you, in the bowels of Christ, think it possible that you may be mistaken.

--- Oliver Cromwell

Cromwell's Rule

Leave a little probability for the moon being made of green cheese; it can be as small as 1 in a million, but have it there since otherwise an army of astronauts returning with samples of the said cheese will leave you unmoved.

--- Dennis Lindley (1991)

If $p(\theta = a) = 0$ for a value of a, then the posterior distribution is always zero, regardless of what the data says

$$p(heta=a|y) \propto p(y| heta=a)p(heta=a)=0$$

Example: estimating shooting skill in basketball

- Assume every shot is independent (reasonable) and identically distributed (less reasonble?)
- Let $Y \sim \text{Bin}(n, \theta)$ where θ corresponds to his true skill
- Frequentist inference tells us that the maximum likelihood estimate is simply $\frac{y}{n} = 49/100 = 0.49$
- What would our estimates be if we use Bayesian inference?
 - If our prior reflects "complete ignorance" about basketball?
 - What if we want to incorporate prior domain knowledge?

$$P(9/g) \neq L(\theta)P(\theta)$$
Unif: $P(\theta) \neq L(\theta)P(\theta)$

$$L(\theta) \neq P(\theta) \neq D(\theta)$$

$$P(\theta/g) \neq D(\theta/\theta)$$

$$P(\theta/g) \neq D(\theta/\theta)$$

$$\int_{0}^{\infty} k \theta^{2}(1-\theta)^{n-g} d\theta = 1$$

$$P(\theta/g) = \text{Betal} \quad D(\theta/\theta)$$

$$P(\theta/g) = \text{Betal} \quad D(\theta/\theta)$$

The Binomial Model

- The uniform prior: $p(\theta) = \mathrm{Unif}(0,1) = \mathbf{1}\{\theta \in [0,1]\}$
 - A "non-informative" prior
- Posterior: $p(\theta \mid y) \propto \underbrace{\theta^y (1-\theta)^{n-y}}_{\text{likelihood}} \times \underbrace{\mathbf{1}\{\theta \in [0,1]\}}_{\text{prior}}$
- The above posterior density is is a density over θ .

The Binomial Model

- The uniform prior: $p(\theta) = \mathrm{Unif}(0,1) = \mathbf{1}\{\theta \in [0,1]\}$
 - A "non-informative" prior
- Posterior: $p(\theta \mid y) \propto \underbrace{\theta^y (1-\theta)^{n-y}}_{\text{likelihood}} \times \underbrace{\mathbf{1}\{\theta \in [0,1]\}}_{\text{prior}}$
- The above posterior density is is a density over θ .

$$egin{aligned} ullet \ p(heta \mid y) \sim \mathrm{Beta}(\underline{y+1}, \underline{n-y+1}) = rac{\Gamma(n)}{\Gamma(n-y)\Gamma(y)} egin{aligned} heta^y (1- heta)^{n-y} \ heta \ heta \end{aligned}$$

Example: estimating shooting skill in basketball

Posterior is proportional to the likelihood

• An entire distribution describes our beliefs about the value for θ . How can we summarize these beliefs?

- An entire distribution describes our beliefs about the value for θ . How can we summarize these beliefs?
- *Point estimates:* posterior mean or mode:
 - $\circ E[\theta \mid y] = \int_{\Theta} \theta p(\theta \mid y) d\theta$ (the posterior mean)
 - $\arg\max p(\theta \mid y)$ (maximum a posteriori estimate)

- An entire distribution describes our beliefs about the value for θ . How can we summarize these beliefs?
- *Point estimates:* posterior mean or mode:
 - $\circ E[\theta \mid y] = \int_{\Theta} \theta p(\theta \mid y) d\theta$ (the posterior mean)
 - $\circ \operatorname{arg\ max} p(\theta \mid y)$ (*maximum a posteriori* estimate)
- Posterior variance: $\mathrm{Var}[\theta \mid y] = \int_{\Theta} (\theta E[\theta \mid y])^2 p(\theta \mid y) d\theta$

- An entire distribution describes our beliefs about the value for θ . How can we summarize these beliefs?
- *Point estimates:* posterior mean or mode:
 - $\circ E[\theta \mid y] = \int_{\Theta} \theta p(\theta \mid y) d\theta$ (the posterior mean)
 - $\circ \operatorname{arg\ max} p(\theta \mid y)$ (*maximum a posteriori* estimate)
- Posterior variance: $Var[\theta \mid y] = \int_{\Theta} (\theta E[\theta \mid y])^2 p(\theta \mid y) d\theta$ • Posterior credible intervals: for any region R(y) of the parameter
- Posterior credible intervals: for any region R(y) of the parameter space compute the probability that θ is in that region: $p(\theta \in R(y))$