IBM NALAIYA THIRAN

Data Visualization and Pre-processing

Assignment -2

Team ID	PNT2022TMID33620
Project Name	AI based discourse for Banking Industry
Student Name	Siva R
Student Roll Number	922519106150
Maximum Marks	2 Marks

1.Download the dataset: Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2.Load the dataset:

```
df=pd.read_csv('/content/Churn_Modelling.csv')
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0		15634602	Hargrave	619	France	Female	42		0.00				101348.88	
1		15647311	Hill	608	Spain	Female			83807.86				112542.58	
2		15619304	Onio	502	France	Female	42		159660.80				113931.57	
3		15701354	Boni	699	France	Female	39		0.00				93826.63	
4		15737888	Mitchell	850	Spain	Female			125510.82				79084.10	

3.Perform Below Visualizations:

• <u>Univariate Analysis:</u>

```
import matplotlib.pyplot as plt
%matplotlib inline
df['Age'].plot.hist()
```


sns.distplot(df['Age'].head(200))

• Bivariate Analysis


```
plt.bar(df['RowNumber'].head(),df['CreditScore'].head(),)
plt.title('BarPlot')
plt.xlabel('RowNumber')
plt.ylabel('CreditScore')
```


df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0		15634602	Hargrave	619	France	Female			0.00				101348.88	
1		15647311	Hill	608	Spain	Female	41		83807.86				112542.58	
2		15619304	Onio	502	France	Female	42		159660.80				113931.57	
3		15701354	Boni	699	France	Female	39		0.00				93826.63	
4		15737888	Mitchell	850	Spain	Female			125510.82				79084.10	

• Multi-variate Analysis:

```
sns.barplot('RowNumber','Age',hue='Tenure', data=df.head(
))
```


fig= plt.figure(figsize =(14,10))
sns.heatmap(df.head().corr(), annot = True)

4.Perform descriptive statics on the dataset:

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0		15634602	Hargrave	619	France	Female	42		0.00				101348.88	
1		15647311	Hill	608	Spain	Female	41		83807.86				112542.58	
2		15619304	Onio	502	France	Female	42		159660.80				113931.57	
3		15701354	Boni	699	France	Female	39		0.00				93826.63	
4		15737888	Mitchell	850	Spain	Female	43		125510.82				79084.10	

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
9995	9996	15606229	Obijiaku	771	France	Male	39		0.00				96270.64	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61				101699.77	
9997	9998	15584532	Liu	709	France	Female	36		0.00				42085.58	
9998	9999	15682355	Sabbatini	772	Germany	Male	42		75075.31				92888.52	
9999	10000	15628319	Walker	792	France	Female	28		130142.79				38190.78	

df.shape

 $\overline{(1000, 14)}$

df.info()

RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtvpe	s: float64(2), int64(9)	. object(3)	

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.describe()

5. Handle the missing values:

df.isna().any()

RowNumber False CustomerId False False Surname CreditScore False Geography False Gender False Age False Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False dtype: bool

No missing values

6.Find the outliers and replace the outliers:

sns.boxplot(df['Age'])

df.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in..

"""Entry point for launching an IPython kernel.

5.000500e+03 RowNumber CustomerId 1.569094e+07 CreditScore 6.505288e+02 3.892180e+01 Age Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 5.151000e-01 IsActiveMember 1.000902e+05 EstimatedSalary Exited 2.037000e-01

dtype: float64

qut= df.quantile(q=[0.25,0.75]) qut

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0
0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0

irq=qut.loc[0.75] - qut.loc[0.25] # q3 and q1
irq

RowNumber 4999.5000

 CustomerId
 124705.5000

 CreditScore
 134.0000

 Age
 12.0000

 Tenure
 4.0000

Balance 127644.2400

NumOfProducts 1.0000
HasCrCard 1.0000
IsActiveMember 1.0000
EstimatedSalary 98386.1375
Exited 0.0000

dtype: float64

, ,

Lower

lower= qut.loc[0.25]+(1.5*irq)

lower

RowNumber 1.000000e+04 CustomerId 1.581559e+07 CreditScore 7.850000e+02 Age 5.000000e+01 Tenure 9.000000e+00 1.914664e+05 Balance NumOfProducts 2.500000e+00 HasCrCard 1.500000e+00 IsActiveMember 1.500000e+00 EstimatedSalary 1.985813e+05 0.000000e+00 Exited

dtype: float64

#upper

upper= qut.loc[0.75]+(1.5*irq)

upper

RowNumber 1.499950e+04 CustomerId 1.594029e+07 CreditScore 9.190000e+02 6.200000e+01 Age Tenure 1.300000e+01 Balance 3.191106e+05 NumOfProducts 3.500000e+00 HasCrCard 2.500000e+00 IsActiveMember 2.500000e+00 EstimatedSalary 2.969675e+05 Exited 0.000000e+00

dtype: float64

sns.boxplot(df['Age'])

df['Age'].mean()

38.9218

df['Age']=np.where(df['Age']>57,39, df['Age'])

sns.boxplot(df['Age'])

7. Check for categorical column and perform encoding:

df.info()

RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0		15634602	Hargrave	619	France	Female			0.00				101348.88	
1		15647311	Hill	608	Spain	Female	41		83807.86				112542.58	
2		15619304	Onio	502	France	Female			159660.80				113931.57	
3		15701354	Boni	699	France	Female	39		0.00				93826.63	
4		15737888	Mitchell	850	Spain	Female			125510.82				79084.10	

df.Geography.unique()

array(['France', 'Spain', 'Germany'], dtype=object)

```
df['Gender'].replace({'Female':0, 'Male': 1 }, inplace=True)
df['Geography'].replace({'France':0,'Germany':1, 'Spain':2}, i
nplace=True)
df.head()
```

```
        RowNumber
        CustomerId
        Surname
        CreditScore
        Geography
        Gender
        Age
        Tenure
        Balance
        NumOfProducts
        HasCrCarl
        IsActiveMember
        EstimatedSalary
        Exited

        0
        1
        15634602
        Hargrave
        619
        0
        42
        2
        0.00
        1
        1
        1
        1
        101348.88
        1

        1
        2
        15647311
        Hill
        608
        2
        0
        41
        1
        83807.86
        1
        0
        1
        112542.58
        0

        2
        3
        15619304
        Onio
        502
        0
        42
        8
        159660.80
        3
        1
        0
        113931.57
        1

        3
        4
        15701354
        Boni
        699
        0
        0
        39
        1
        0.00
        2
        0
        0
        93826.63
        0

        4
        5
        15737888
        Milchell
        850
        2
        0
        43
        2
        125510.82
        1
        1
        1
        79084.10
        0

</table
```

```
# using dummy values
df_d= pd.get_dummies(df,columns = ['Surname'])
```

df_d.head()

	RowNumber	CustomerId	CreditScore	Geography	Gender	- Age	Tenure	Balance	NumOfProducts	HasCrCard	 Surname_Zinachukwudi	Surname_Zito	Surname_Zoto	v Surname_Zot	ova Surname	Zox Su	name_Zubarev	Surname_Zubarev	Surname_Zu	ev Surname_Zuyev	Surname_Zuyeva
0		15634602																			
1		15647311						83807.86													
2								159660.80													
3																					
4																					

8. Split the data into dependent and independent variables:

```
#splitting the dataset into x(independent variable) and y(dependent variable)

x=df.iloc[:,0:10]
y=df.iloc[:,10]

print(x.shape)
print(y.shape)

print(x.columns)
#print(y)
```

```
(10000, 10)
(10000,)
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts'], dtype='object')
```

9.Scale the independent variable:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x = scale(x)
x
```

array([0.64609167, -1.54776799, 0.64609167, ..., -1.54776799, 0.64609167, 0.64609167])

10. Split the data into training and testing:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test
_size=0.25, random_state=0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

(7500,)

(7500,)

(2500,)

(2500,)