Computació Numèrica

Tema 2. Equacions no lineals

M. Àngela Grau Gotés

Departament de Matemàtiques Universitat Politècnica de Catalunya · BarcelonaTech.

14 de març de 2018

Drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

Índex

- Introducció
- Mètodes dels intervals encaixats
 - Mètode de la bisecció
 - Mètode de la Regula Falsi
- Mètodes iteratius
 - Mètode de la tangent
 - Mètode de la secant
 - Mètodes iteratius del punt fix
 - Ordre de convergència
 - Acceleració de la convergència
- Sistemes d'equacions no lineals

Introducció

Molts fenòmens es descriuen per models no lineals i freqüentment cal resoldre una equació del tipus f(x) = 0, que no pot ser resolta per mètodes algebraics coneguts.

La major part d'aquest capítol es refereix a la solució aproximada d'una equació no lineal. No obstant això, també s'estudiaran els sistemes d'equacions no lineals, més complexes per resoldre i obtenir solucions aproximades.

Introducció

$$F(z) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{rac{-t^2}{2}} dt$$

Nomenclatura

Sigui $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una funció real de variable real.

- **1** α és un **zero de** f si $f(\alpha) = 0$.
- ② x^* és un **punt fix de** f si $f(x^*) = x^*$.
- **1** α és una **solució** o **arrel** de l'equació f(x) = p si

$$f(\alpha) = p$$
.

Nomenclatura

Multiplicitat d'una arrel

Una solució α de f(x) = 0 es diu que té <u>multiplicitat</u> **n** si

$$f(\alpha) = f'(\alpha) = \cdots = f^{n-1}(\alpha) = 0$$
, i $f^{n}(\alpha) \neq 0$.

Si la multiplicitat és 1, es diu que l'arrel és simple.

NB. Determinar iterativament arrels múltiples és un problema mal condicionat.

Exemples

- ① Dues arrels simples, $f(x) = x^2 + x 2 = (x + 2)(x 1)$.
- ② Una arrel doble, $f(x) = x^2 + 4x + 4 = (x + 2)^2$.
- Sense fórmula directa per calcular les arrels dels polinomis de grau superior al 4, $f(x) = x^5 + 5x^3 + 4x^2 + 1$.
- Per equacions amb funcions transcendents només la solució numèrica és factible, $f(x) = x^2 e^{-x}$.

El mètode

No totes les equacions tenen un únic zero simple en el seu domini, llavors per calcular solucions aproximades, per a la convergència dels mètodes en qualsevol procés de càlcul d'arrels d'una equació no lineal consta de tres pasos:

- 1 **Localització**. Conèixer la zona on es troben les arrels. Un estudi analític o una representació gràfica.
- 2 **Separació**. Determinar dominis amb una única arrel.
- 3 **Aproximació**. Determinar una successió $\{x_n\}_{n\in\mathbb{N}}$ convergent al valor α solució de l'equació plantejada:

$$x_n \to \alpha$$
, $f(\alpha) = 0$.

Localització i separació

• TEOREMA DE BOLZANO Per $f: \mathcal{I} \to \mathbb{R}$, $[a, b] \subset \mathcal{I}$ i a < c < b, Ilavors

Teorema

Si f és contínua en l'interval tancat [a,b] i f(a) i f(b) tenen signes diferents, aleshores existeix $c \in (a,b)$ tal que f(c) = 0.

• TEOREMA DE ROLLE Per $f: \mathcal{I} \to \mathbb{R}$, $(a, b]) \subset \mathcal{I}$ i a < c < b, llavors

Teorema

Si f és derivable en l'interval obert (a, b) i f(a) = f(b), aleshores existeix $c \in (a, b)$ tal que f'(c) = 0.

Aproximació: Tipus de mètodes

La successió $\{x_n\}_{n\in\mathbb{N}}$ convergent al valor α solució de l'equació

$$x_n \to \alpha$$
, $f(\alpha) = 0$.

Mètode d'intervals encaixats.

$$[a_1, b_1] \supseteq [a_2, b_2] \supseteq \cdots \supseteq [a_n, b_n] \ldots$$

 $a_n \le x_n \le b_n, \quad \{b_n - a_n\}_n \to 0.$

• Esquemes o algorismes iteratius:

$$x_n = g(x_{n-1}, x_{n-2}, \dots).$$

Mètodes dels intervals encaixats.

Per $f: \mathcal{I} \to \mathbb{R}$, contínua, $[a, b] \subset \mathcal{I}$ i a < c < b, llavors

Mètode de la bisecció

Començant amb l'interval $I_0 = [a, b]$ tal que $f(a) \cdot f(b) < 0$, s'obté una successió d'intervals encaixats $I_n = [a_n, b_n]$ tal que $f(a_n) \cdot f(b_n) < 0$, els punts mitjos dels quals

$$\alpha_{n+1} = \frac{a_n + b_n}{2}$$

són una aproximació de l'arrel α .

Solució aproximada:

$$\alpha = \alpha_{n+1} \pm I_n$$
 $I_n = \frac{b-a}{2^{n+1}}$.

Mètode de la bisecció

Algorisme

1
$$a_0 = a$$
, $b_0 = b$,
2 Per a $n = 0, 1, \ldots$, $fer : \alpha_{n+1} = \frac{a_n + b_n}{2}$ i
Si $f(a_n)f(\alpha_{n+1}) < 0$, pendre $a_{n+1} = a_n$, $b_{n+1} = \alpha_{n+1}$, altrament, pendre $a_{n+1} = \alpha_{n+1}$, $b_{n+1} = b_n$.

Anàlisi de l'error:

$$|\alpha_{n+1} - \alpha| \le |b_{n+1} - a_{n+1}| < \frac{|b-a|}{2^{n+1}}.$$

Mètode de la bisecció

Criteri d'aturada: Donat $\eta > 0$

$$|\alpha_{n+1} - \alpha| \le |b_{n+1} - a_{n+1}| < \frac{|b - a|}{2^{n+1}} < \eta$$

Càlcul previ nombre iteracions: Donat $\eta > 0$

$$n > \frac{\ln\left(\frac{|b-a|}{\eta}\right)}{\ln 2} - 1$$

Mètode de la Regula Falsi

Començant amb l'interval $I_0 = [a_0, b_0]$ tal que $f(a_0) \cdot f(b_0) < 0$, es construeix una successió de punts definits per

$$x_{n+1} = a_n - f(a_n) \frac{(b_n - a_n)}{f(b_n) - f(a_n)}, \ n \ge 0$$

i una successió d'intervals encaixats $I_{n+1}=[a_{n+1},b_{n+1}]$ tal que si $f(a_n)f(x_{n+1})<0$, pendre $a_{n+1}=a_n,\ b_{n+1}=x_{n+1}$, altrament, pendre $a_{n+1}=x_{n+1},\ b_{n+1}=b_n$.

La coordenada x_{n+1} és el punt de tall de la recta secant per $P(x_{n-1}, f(x_{n-1}))$ i $Q(x_n, f(x_n))$ amb l'eix d'asbsices.

Exercici

Determineu l'arrel real de

$$f(x) = x^3 - x + 1.$$

- Representeu gràficament la funció. Doneu un interval on es trobi un zero de la funció.
- ② Apliqueu el mètode de la bisecció ($\eta = 0.001$).
- Apliqueu el mètode de la regula falsi amb una precisió de quatre decimals correctes.

Mètodes iteratius

Introducció

Objectiu

Obtenir $\{x_n\}_{n\in\mathbb{N}}$ successió convergent de nombres reals

$$x_n \xrightarrow[n \to +\infty]{} \alpha$$
 tal que $f(\alpha) = 0$.

Procediment

Escriure f(x) = 0 com x = g(x) establir un esquema iteratiu del tipus

$$x_n = g(x_{n-1}, x_{n-2}, \dots), n > 0.$$

Mètode de Newton

Mètode de Newton-Raphson o mètode de la tangent

Algorisme

Començant amb el valor x_0 es construeix una successió de punts definits per

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Criteri d'aturada: Donat $\eta > 0$

$$|x_{n+1} - x_n| < \eta$$
 i $|f(x_{n+1})| < \eta$

CONVERGÈNCIA?

Mètode de Newton

Convergència

Regla de Fourier

Sigui $f: \mathcal{I} \to \mathbb{R}$, contínua i derivable, $[a, b] \subset \mathcal{I}$ tal que:

- $\mathbf{1} f(a) \cdot f(b) < 0,$
- **2** $f'(x) \cdot f''(x) \neq 0$, $\forall x \in [a, b]$,
- 3 començant amb el valor

$$x_0 = \begin{cases} a & si & f(a) \cdot f''(a) > 0, \\ b & si & f(b) \cdot f''(b) > 0, \end{cases}$$

llavors, la successió de punts definits per $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, convergeix a la única arrel de f(x) = 0 a l'interval [a, b].

Mètode de Newton

Regla de Fourier

Veure: convergència lenta mètode de Newton

20 / 41

Mètode de la secant

Algorisme

Començant amb dos valors x_0 i x_1 es construeix una successió de punts definits per

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

o equivalent

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}.$$

Criteri d'aturada: Donat $\eta > 0$

$$|x_{n+1} - x_n| < \eta$$
 i $|f(x_{n+1})| < \eta$

CONVERGÈNCIA?

Algorismes - Fita de l'error

Sigui $\alpha \in \mathbb{R}$ l'arrel de f(x) = 0, \mathcal{J}_{α} un entorn tancant de α i $\{x_n\}_{n \in \mathbb{N}}$ successió convergent $x_n \xrightarrow[n \to +\infty]{} \alpha$ tal que $f(\alpha) = 0$.

Fita "a posteriori"

Si f és derivable en \mathcal{J}_{α} i $x_n \in \mathcal{J}_{\alpha}$, es verifica que:

$$|\epsilon_n| = |x_n - \alpha| \le \frac{|f(x_n)|}{\min_{x \in \mathcal{J}_\alpha} |f'(x)|}.$$

TVM:
$$|f(x_n) - f(\alpha)| = |f'(c)| \cdot |(x_n - \alpha)|$$

Exercici (continuació)

Determineu l'arrel real de

$$f(x) = x^3 - x + 1.$$

- Apliqueu el mètode de Newton ($\eta = 0.00005$).
- Apliqueu el mètode de la secant amb una precisió de quatre decimals correctes.
- Quin mètode necessita més iteracions? Quin menys? Quin mètode dona una millor aproximació? Quin pitjor? Comenta les diferències trobades.

Mètode de la iteració simple

Fent ús d'operacions elementals, la equació $\mathbf{f}(x) = 0$ es pot expressar com $x = \mathbf{g}(x)$, on \mathbf{g} és una funció contínua.

Iteració simple

Una aproximació inicial x_0 dóna lloc a la successió

$$x_{n+1}=\mathbf{g}(x_n).$$

Punt fix

Si la successió $x_{n+1} = \mathbf{g}(x_n), n > 0$ és convergent a un valor α , llavors α és un punt fix de \mathbf{g} o, també, un zero de \mathbf{f} .

Mètode de la iteració simple

 $x - \cos x = 0$ es pot transformar en

$$x = \cos x$$
, $x = \frac{x + \cos x}{2}$, $x = \frac{2x + \cos x}{3}$, $x = \sqrt{x \cos x}$

Observació

La successió $\{x_n\}$ pot no convergir malgrat s'esculli x_0 molt proper al punt fix.

Convergència

$$x_{n+1} = \frac{x_n + \cos(x_n)}{2}, x_0 = 1 \dots x_7 = 0.73909,.$$

 $x_{n+1} = \frac{2x_n + \cos(x_n)}{3} x_0 = 1 \dots x_{14} = 0.73909$

Exercici

Determineu l'arrel real de

$$x = \cos x$$

- Representeu gràficament la funció. Doneu un interval on es trobi un zero de la funció.
- 2 Prenent $x_0 = 0$, calculeu 15 iterats dels mètodes iteratius

$$x_{n+1} = \frac{x_n + \cos(x_n)}{2}, \quad x_{n+1} = \frac{2x_n + \cos(x_n)}{3}.$$

3 Prenent $x_0 = 1$, calculeu 15 iterats dels mètodes iteratius

$$x_{n+1} = \cos(x_n), \quad x_{n+1} = \sqrt{x_n \cos(x_n)}.$$

Quin mètode és convergent? Quin és divergent?

Mètodes del punt fix

Sigui $\alpha \in \mathbb{R}$ el punt fix de x = g(x) i \mathcal{J}_{α} un entorn de α .

Teorema de convergència

Si g és derivable i $|g'(x)| \le k < 1$ en \mathcal{J}_{α} . Llavors, $\forall x_0 \in \mathcal{J}_{\alpha}$, la successió $x_{n+1} = g(x_n), n > 0$ verifica que:

- a) $x_n \in \mathcal{J}_{\alpha}$ $n = 0, 1, 2, \dots$
- b) $\lim_{n\to\infty} x_n = \alpha$.
- c) α és la única arrel de x = g(x) dins de \mathcal{J}_{α} .

observació

$$|x_{n+1} - \alpha| \le k|x_n - \alpha| \le \dots \le k^{n+1}|x_0 - \alpha|.$$

Estimació de l'error

Si comptem els errors d'arrodoniment, $\bar{x}_{n+1} = g(\bar{x}_n) + \delta$,

Fita superior error (I)

$$|\bar{x}_{n+1}-\alpha|<\frac{k}{1-k}|\bar{x}_n-\bar{x}_n|+<\frac{1}{1-k}\delta.$$

Si l'aritmètica és exacte, $\bar{x}_{n+1} = g(\bar{x}_n)$,

Fita superior error (II)

$$|\bar{x}_{n+1} - \alpha| < \frac{k^{n+1}}{1-k} |\bar{x}_1 - \bar{x}_0|.$$

Ordre de convergència

Definició

La successió de punts $(x_n)_{n\in\mathbb{N}}$, i el mètode que la genera, té **ordre de convergència** almenys **p** si, per a qualsevol punt $x_0 \in \mathcal{J}_{\alpha}$, existeix C>0 tal que

$$|x_{n+1} - \alpha| < C|x_n - \alpha|^p.$$

Si p = 1 cal impossar C < 1.

En el cas que

$$\lim_{n\to\infty}\frac{|x_{n+1}-\alpha|}{|x_n-\alpha|^p}=L$$

direm que la successió té ordre de convergència almenys p; si p=1 cal |L|<1.

Ordre de convergència

Zero simple

- Convergència almenys lineal del mètode de la iteració simple si |g'(x)| < 1 per a $x \in \mathcal{J}_{\alpha}$.
- Onvergència almenys lineal del mètode de la Regula Falsi.
- Convergència almenys quadràtica del mètode de Newton.
- Convergència almenys superlineal del mètode de la Secant:

$$\frac{1+\sqrt{5}}{2}\approx 1.61803.$$

Decimals correctes en cada iteració

$$d_{n+1} = -\log_{10}|x_{n+1} - \alpha| \approx -p\log_{10}|x_n - \alpha| - \log_{10}L$$
$$d_{n+1} \approx p \cdot d_n$$

Ordre de convergència - Aproximacions

PCLOC

$$\widehat{\lambda}_n = \frac{\ln |f(x_n)|}{\ln |f(x_{n-1})|}, \quad n > 1.$$

ACLOC

$$\widetilde{\lambda}_n = \frac{\ln|x_n - x_{n-1}|}{\ln|x_{n-1} - x_{n-2}|}, \quad n > 2.$$

Acceleració de la convergència

Sigui $\{x_n\}_{n\in\mathbb{N}}$ successió **linealment** convergent α tal que $f(\alpha)=0$.

Observació

$$\begin{vmatrix} |x_{n+2} - \alpha| = \kappa |x_{n+1} - \alpha| \\ |x_{n+1} - \alpha| = \kappa |x_n - \alpha| \end{vmatrix} \quad \Rightarrow \quad \alpha = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n+2} - 2x_{n+1} + x_n}$$

Les diferències progressives endavant, es defineixen per

$$\Delta x_{n+1} = (x_{n+1} - x_n)$$

i per k > 1,

$$\Delta^{(k)} x_{n+1} = \Delta(\Delta^{(k-1)} x_{n+1}).$$

Acceleració de la convergència

Mètode Δ^2 d'Aitken

$$x'_{n+2} = \frac{x_{n+2}x_n - x_{n+1}^2}{x_{n2} - 2x_{n+1} + x_n} = x_{n+2} - \frac{(\Delta x_{n+1})^2}{\Delta^2 x_n}$$

Llavors $x_n' \underset{n \to +\infty}{\longrightarrow} \alpha$ més ràpidament, en el sentit que

$$\lim_{n\to\infty}\frac{|x_n'-\alpha|}{|x_n-\alpha|}=0.$$

A partir d'un procés $x_{k+1} = g(x_k)$ de primer ordre, i unes iteracions, x_0 , x_1 i x_2 , calculem x_2' , i continuem $x_3 = g(x_2')$ i $x_4 = g(x_3)$ i tornem a aplicar el procés a la terna x_2' , x_3 i x_4 . (Steffensen)

Acceleració de la convergència

A partir d'un procés $x_{k+1}=g(x_k)$ de primer ordre, i donat x_0 calculem $x_1=g(x_0)$ i $x_2=g(x_1)$, i $x_0''=x_0-\frac{(x_1-x_0)^2}{x_2-2x_1+x_0}$.

Mètode de Steffensen

En general, per cada $n \ge 0$, definim $x_0^{(n+1)} = x_n''$, $x_1^{(n+1)} = g(x_0^{(n+1)})$, $x_2^{(n+1)} = g(x_1^{(n+1)})$, i finalment

$$x_{n+1}'' = x_0^{(n+1)} - \frac{\left(x_1^{(n+1)} - x_0^{(n+1)}\right)^2}{x_2^{(n+1)} - 2x_1^{(n+1)} + x_0^{(n+1)}}.$$

Llavors $x_n'' \underset{n \to +\infty}{\longrightarrow} \alpha$ més ràpidament que el mètode del punt fix inicial i que el mètode d'Aitken.

Millora de la convergència

Observeu el cas següent: $x_{n+1} = e^{-x_n}$ i $x_0 = 0.5$

Normal	Aitken	Steffensen
0.5		
0.606530660		
0.545239212	0.567 623876	0.567623876
0.579703095	0.567298989	
0.560064628	0.567193142	
0.571172149	0.567159364	0.567143314
0.564862947	0.567148453	The Person of the Control of the Con
0.568438048	0.567144952	
0.566409453	0.567143825	0.567143290

Sistemes d'equacions no lineals

La funció $F:D\subseteq\mathbb{R}^n\to\mathbb{R}^n$ de diverses variables dóna lloc al sistema d'equacions no lineals F(x)=0, que també es pot escriure com

$$\begin{cases}
F_1(x_1, \dots, x_n) = 0, \\
F_2(x_1, \dots, x_n) = 0, \\
\vdots \\
F_n(x_1, \dots, x_n) = 0.
\end{cases} (1)$$

El mètode de Newton

Si F és diferenciable amb contiuïtat,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - (DF(\mathbf{x}^{(k)}))^{-1} \cdot F(\mathbf{x}^{(k)})$$
 (2)

per $\mathbf{x}^{(k)}$ indiquem el vector d'iteració k-èssim.

Notació: Els vectors son vectors columna, i es representen amb minúscules en negreta.

Criteri d'aturada: Donat $\eta > 0$

$$||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k+1)}|| < \eta$$
 i $||f(\mathbf{x}^{(k+1)})|| < \eta$

Exercici

Apliqueu el mètode de Newton per resoldre el sistema no lineal

$$x = \sin(x + y),$$

$$y = \cos(x - y),$$

prop de (1,1) amb una precisió tal que

$$||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}|| \le 10^{-6}$$
 i $||f(\mathbf{z}^{(k+1)})|| < 10^{-6}$.

El mètode de la iteració simple

Transformen F(x) = 0 com x = G(x), el mètode és

$$\mathbf{x}^{(k+1)} = G(\mathbf{x}^{(k)}) \tag{3}$$

per $\mathbf{x}^{(k)}$ indiquem el vector d'iteració k-èssim.

La convergència depèn si $||DG(\alpha)|| < 1$.

Criteri d'aturada: Donat $\eta > 0$

$$||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k+1)}|| < \eta$$
 i $||f(\mathbf{x}^{(k+1)})|| < \eta$

Exercici

Apliqueu el mètode de la iteració simple per resoldre el sistema no lineal

$$x = \sin(x + y),$$

$$y = \cos(x - y),$$

prop de (1,1) amb una precisió tal que

$$||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}|| \le 10^{-6}$$
 i $||f(\mathbf{z}^{(k+1)})|| < 10^{-6}$.

Teorema de convergència

Sigui $\alpha \in \mathbb{R}^n$ la solució de $F(\mathbf{z}) = 0$ i el punt fix de $\mathbf{z} = G(\mathbf{z})$ i \mathcal{D}_{α} un conjunt tancat i convex que conté la solució α .

Si G és de classe $C^1(\mathcal{D}_{\alpha})$ i $||J_G(\mathbf{z})|| \leq L < 1$ per tot $\mathbf{z} \in \mathcal{D}_{\alpha}$. Llavors, $\forall \mathbf{z}^0 \in \mathcal{D}_{\alpha}$, la successió $\mathbf{z}^{k+1} = g(\mathbf{z}^k), k > 0$ verifica que:

- a) $\mathbf{z}^k \in \mathcal{D}_{\alpha}$ $k = 0, 1, 2, \dots$
- b) $\lim_{k\to\infty} \mathbf{z}^k = \alpha$.
- c) α és la única arrel de $\mathbf{z} = g(\mathbf{z})$ dins de \mathcal{D}_{α} .
- d) Es verifca que

$$||\mathbf{z}^{(k+1)} - \alpha|| \le \frac{L}{1 - L}||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}||$$