2021 February 26 Shift 1

EE24BTECH11001 - ADITYA TRIPATHY

1. The number of seven-digit integers with the sum of the digits equal to 10 and formed by using the

2. The maximum value of the term independent of 't' in the expression of $\left[\left(tx^{\frac{1}{5}} + \left\{\frac{1-x}{t}\right\}\right)^{\frac{1}{10}}\right]^{10}$ where $x \in (0,1)$ is:

c) 35

d) 82

digits 1, 2 and 3 only is:

b) 42

a) 77

 $x \in (0, 1)$ is:

P3: 2x + 10y + 14z = 5

Then, which of the following is true?

a) $\frac{10!}{\sqrt{3}(5!)^2}$	b) $\frac{2.10!}{3(5!)^2}$	c) $\frac{10!}{3(5!)^2}$	d) $\frac{2.10!}{3\sqrt{3}(5!)^2}$	
3. The value of				
		$\sum_{n=1}^{100} \int_{n-1}^{n} e^{x - [x]} dx$		(1)
where $[x]$ is the	greatest integer $\leq x$			
a) $100(e-1)$		b) 100 <i>e</i>		
c) $100(1-e)$		d) $100(1+e)$		
bacteria cout is	1000 at initial time $t =$		number of bacteria present and it is increased by 20% in 2 here. $\left(\frac{1}{2}\right)^2$ is equal to:	
a) 1	b) 2	c) 16	d) 8	
5. If a and b are p	erpendicular, then			
	a	$\times (\mathbf{a} \times (\mathbf{a} \times (\mathbf{a} \times \mathbf{b})))$		
is equal to a) \frac{1}{2} \bm{a} ^4 \bm{b} b) \bm{a} \times \bm{b} c) \bm{a} ^4 \bm{b} d) \bm{0} 6. In an increasing of the third and	geometric series, the suffifth term is 25. Then, t	Im of the second and the he sum of 4^{th} , 6^{th} and 8^{th}	e sixth terms is $\frac{25}{2}$ and the pro-	oduct
a) 35	b) 30	c) 26	d) 32	
7. Consider the thr P1: $3x + 15y + 21$ P2: $x - 3y - z = 5$	z=9,			

a) P1 and P3 are parab) P2 and P3 are parac) P1 and P2 are parad) P1, P2 and P3 are8. The sum of the infinite	llel. llel. parallel.			
		$\frac{2}{3} + \frac{7}{3^2} + \frac{12}{3^3} + \frac{17}{3^4} + \frac{22}{3^5} + \dots$		(2)
is equal to:				
a) $\frac{9}{4}$	b) $\frac{15}{4}$	c) $\frac{13}{4}$	d) $\frac{11}{4}$	
9. The value of				
		$\begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{vmatrix}$		(3)
is: a) -2 b) $(a+1)(a+2)(a+3)$ c) 0 d) $(a+2)(a+3)(a+4)$				
10. If	• /			
	$\frac{\sin}{a}$	$\frac{-1}{c} = \frac{\cos^{-1}}{b} = \frac{\tan^{-1}}{c}; 0 < x < 1$		(4)
, then the value of co a) $\frac{1-y^2}{2y}$	$s\left(\frac{\pi c}{a+b}\right)$ is:			
b) $\frac{1-y^2}{1+y^2}$				
c) $1 - y^2$				
d) $\frac{1-y^2}{y\sqrt{y}}$ 11. Let <i>A</i> be a symmetric A^2 is 1, then the poss		er 2 with integer entries. If the sun such matrices is:	n of the diagonal elem	nents of
a) 6	b) 1	c) 4	d) 12	
a) Equilateral triangleb) Right angled triangc) Isosceles triangled) None of the above	le	y = 0, $x + 2y = 3$ and $2x + y = 0= \frac{1}{2}x^4 - 5x^2 + 18x^2 - 19x occurs at$		
Γ .	,	<u> </u>	•	

14. Let f be any function defined on \mathbf{R} and let it satisfy the condition:

b) (2, 2)

a) (2,9)

$$|f(x) - f(y)| \le \left| \left(x - y^2 \right) \right|, \forall x, y \in \mathbf{R}$$
 (5)

d) (0,0)

c) $(3, \frac{21}{2})$

3

If f(0) = 1, then:

- a) $f(x) < 0, \forall x \in \mathbf{R}$
- b) f(x) can take any vaule in **R**
- c) f(x) = 0
- d) $f(x) > 0, \forall x \in \mathbf{R}$
- 15. The value of

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + 3^x} \, dx$$

is:

a) 2π

b) 4π

c) $\frac{\pi}{2}$

d) $\frac{\pi}{4}$