คู่มือการใช้งานและรายละเอียดการทำงาน

1. การสมัครบัญชีผู้ใช้งาน

1.1. การสมัครบัญชีผู้ใช้งานด้วยอีเมล

1.1.1. กรอกข้อมูลการสมัคร

- ผู้ใช้กรอกอีเมล
- ผู้ใช้กรอกรหัสผ่าน โดยรหัสผ่านจะต้องมีความยาว 6 ตัวอักษรขึ้นไป
- กรอกรหัสผ่านอีกครั้งในช่องยืนยันรหัสผ่าน

1.1.2. บันทึกข้อมูลบัญชี

• แอปพลิเคชันบันทึกข้อมูลอีเมล, รหัสผ่าน และตั้งสถานะบัญชีของ ผู้ใช้เป็น "ยังไม่ยืนยัน"

1.1.3. ส่งลิงก์ยืนยันอีเมล

- แอปพลิเคชันส่งลิงก์ยืนยันการสมัครไปยังอีเมลที่ผู้ใช้กรอก
- กรณีผู้ใช้ไม่ได้รับอีเมล ในหน้ารอการยืนยันอีเมลผู้ใช้สามารถกดให้แอปพลิเคชันส่ง ลิงก์ยืนยันอีกครั้งได้

1.1.4. ยืนยันอีเมล

- ผู้ใช้คลิกลิงก์ยืนยันในอีเมล
- กรณีผู้ใช้กดลิงก์ที่หมดอายุจะมีขึ้นเตือนลิงก์หมดอายุ

1.1.5. อัปเดตสถานะบัญชี

เมื่อผู้ใช้ยืนยันอีเมล ระบบจะอัปเดตสถานะบัญชีของผู้ใช้เป็น "ยืนยันแล้ว"

1.2. การสมัครบัญชีด้วย Google

1.2.1. เข้าสู่ระบบด้วยบัญชี Google

- ผู้ใช้เลือกตัวเลือก "ดำเนินการต่อด้วย Google" จากหน้าจอการสมัคร
- ผู้ใช้กรอกข้อมูลบัญชี Google (อีเมลและรหัสผ่าน) หรือเลือกบัญชีที่ต้องการจาก
 บัญชีที่เชื่อมโยงกับอุปกรณ์

1.2.2. อนุญาตให้แอปเข้าถึงข้อมูลบัญชี Google

- แอปพลิเคชั่นจะขออนุญาตให้เข้าถึงข้อมูลจากบัญชี Google ของผู้ใช้ เช่น ชื่อ อีเมล และข้อมูลอื่นๆ
- ผู้ใช้ยืนยันการอนุญาต

1.2.3. บันทึกข้อมูลบัญชีผู้ใช้

- เอปพลิเคชันจะบันทึกข้อมูลที่ได้รับจากบัญชี Google (เช่น อีเมล)
- สถานะบัญชีผู้ใช้จะถูกตั้งเป็น **"ยืนยันแล้ว"** เนื่องจากผู้ใช้ได้ทำการยืนยันตัวตนผ่าน Google แล้ว

1.2.4. อนุญาตเปิดแอปพลิเคชัน

- เบราว์เซอร์จะปรากฏหน้าต่างป๊อปอัพถามผู้ใช้ว่า "คุณต้องการอนุญาตให้เว็บไซต์นี้ เปิด ErgoDetect หรือไม่" ผู้ใช้สามารถเลือกอนุญาตหรือไม่อนุญาตการดำเนินการ นั้นได้
 - ถ้าผู้ใช้อนุญาต ผู้ใช้จะถูกนำไปยังหน้าหลักของแอปอัตโนมัติ
 - ถ้าผู้ใช้ไม่อนุญาต ผู้ใช้จะไม่ถูกนำไปยังหน้าหลักของแอปอัตโนมัติ

ภาพที่ 1 หน้าสมัครสมาชิก

ภาพที่ 2 หน้ารอยืนยันอีเมล

ภาพที่ 3 ลิงก์กดยืนยันอีเมลในอีเมลผู้ใช้

ภาพที่ 4 ลิงก์กดยืนยันอีเมลหมดอายุ

2. การเข้าสู่ระบบ

2.1. การเข้าสู่ระบบด้วยบัญชีผู้ใช้

2.1.1. กรอกข้อมูลบัญชี

ผู้ใช้กรอกอีเมลและรหัสผ่านที่ได้ลงทะเบียนไว้ในแอป

2.1.2. ตรวจสอบข้อมูล

• ระบบจะตรวจสอบข้อมูลที่กรอก หากข้อมูลถูกต้อง ระบบจะนำผู้ใช้ไปยังหน้าหลัก ของแอป

2.1.3. ข้อผิดพลาดในการเข้าสู่ระบบ

หากข้อมูลไม่ถูกต้อง ผู้ใช้จะได้รับข้อความแจ้งเตือนและสามารถลองใหม่ได้

2.1.4. เสร็จสิ้นการเข้าสู่ระบบ

เมื่อเข้าสู่ระบบสำเร็จ ผู้ใช้จะถูกนำไปยังหน้าหลักของแอป และสามารถเริ่มใช้งาน แอปพลิเคชับได้

2.2. การเข้าสู่ระบบด้วยบัญชี Google

2.2.1. เลือก "เข้าสู่ระบบด้วย Google"

ผู้ใช้เลือก "ดำเนินการต่อด้วย Google" บนหน้าจอการเข้าสู่ระบบ

2.2.2. เลือกบัญชี Google หรือกรอกข้อมูลบัญชี

ผู้ใช้เลือกบัญชี Google ที่เชื่อมโยงกับอุปกรณ์ หรือกรอกอีเมลและรหัสผ่านของ
บัญชี Google หากยังไม่ได้ล็อกอิน

2.2.3. อนุญาตให้แอปเข้าถึงข้อมูล

- ระบบจะขอสิทธิ์ให้แอปเข้าถึงข้อมูลจากบัญชี Google ของผู้ใช้ เช่น ชื่อ อีเมล และ ข้อมูลอื่นๆ
- ผู้ใช้ยืนยันการอนุญาต

2.2.4. ตรวจสอบข้อมูลและเข้าสู่ระบบ

- เมื่อผู้ใช้อนุญาตข้อมูล แอปจะตรวจสอบข้อมูล
- เบราว์เซอร์จะปรากฏหน้าต่างป๊อปอัพถามผู้ใช้ว่า "คุณต้องการอนุญาตให้เว็บไซต์นี้ เปิด ErgoDetect หรือไม่" ผู้ใช้สามารถเลือกอนุญาตหรือไม่อนุญาตการดำเนินการ นั้นได้
 - ถ้าผู้ใช้อนุญาต ผู้ใช้จะถูกนำไปยังหน้าหลักของแอปอัตโนมัติ
 - ถ้าผู้ใช้ไม่อนุญาต ผู้ใช้จะไม่ถูกนำไปยังหน้าหลักของแอปอัตโนมัติ

2.2.5. ข้อผิดพลาดในการเข้าสู่ระบบ

 หากเกิดข้อผิดพลาด เช่น ข้อความผิดพลาดจาก Google หรือการอนุญาตไม่สำเร็จ ระบบจะแจ้งให้ผู้ใช้ทราบและให้ทำการลองใหม่

ภาพที่ 5 หน้าเข้าสู่ระบบ

ภาพที่ 6 หน้าเข้าสู่ระบบด้วย Google

ภาพที่ 7 (ต่อ) หน้าเข้าสู่ระบบด้วย Google

Do you want to allow this website to open "ErgoDetector"?			
Always Allow	Cancel	Allow	

ภาพที่ 8 หน้าต่างป๊อปอัพขออนุญาตเปิดแอพ

3. การรีเซ็ตรหัสผ่าน

3.1. เลือก "ลืมรหัสผ่าน"

ผู้ใช้เลือก "ลืมรหัสผ่าน" บนหน้าจอการเข้าสู่ระบบ

3.2. กรอกอีเมล

ผู้ใช้กรอกอีเมลของบัญชีผู้ใช้ที่ที่ต้องการรีเซ็ตรหัสผ่าน

3.3. ส่งลิงก์รีเซ็ตรหัสผ่าน

แอปพลิเคชันทำการส่งลิงก์รีเซ็ตรหัสผ่านไปยังอีเมลที่ผู้ใช้กรอก

3.4. ยืนยันรีเซ็ตรหัสผ่าน

- มื่อผู้ใช้ทำการกดลิงก์รีเซ็ตรหัสผ่านจากทางอีเมลแล้ว เบราว์เซอร์จะปรากฏหน้าต่างป๊อป อัพถามผู้ใช้ว่า "คุณต้องการอนุญาตให้เว็บไซต์นี้เปิด ErgoDetect หรือไม่" ผู้ใช้สามารถ เลือกอนุญาตหรือไม่อนุญาตการดำเนินการนั้นได้
 - 。 ถ้าผู้ใช้อนุญาต ผู้ใช้จะถูกนำไปยังหน้ารีเซ็ตรหัสผ่านของแอปอัตโนมัติ
 - 。 ถ้าผู้ใช้ไม่อนุญาต ผู้ใช้จ^ะไม่ถูกนำไปยังหน้ารีเซ็ตรหัสผ่านของแอปอัตโนมัติ

3.5. รีเซ็ตรหัสผ่าน

- ผู้ใช้กรอกรหัสผ่านใหม่ที่ไม่ซ้ำกับรหัสผ่านเดิม
- กรอกรหัสผ่านใหม่อีกครั้งในช่องยืนยันรหัสผ่าน
- ผู้ใช้กดยืนยันการรีเซ็ตรหัสผ่าน เมื่อแอปพลิเคชันทำการบันทึกข้อมูลรหัสผ่านใหม่ เสร็จ แอปพลิเคชันจะนำไปยังหน้าเข้าสู่ระบบอัตโนมัติ

ภาพที่ 9 หน้ากรอกอีเมลของบัญชีผู้ใช้ที่ต้องการรีเซ็ตรหัสผ่าน

ภาพที่ 10 ลิงก์ยืนยันรีเซ็ตรหัสผ่าน

ภาพที่ 11 หน้ารีเซ็ตรหัสผ่าน

4. การสอบเทียบกล้อง (Camera Calibration)

เพื่อให้การคำนวณระยะห่างระหว่างผู้ใช้และหน้าจอมีความแม่นยำมากขึ้น โดยระยะห่างนี้จะถูกคำนวณ จากค่าที่ได้จากขั้นตอนการจดจำท่านั่งที่เหมาะสมเมื่อตรวจจับการใช้งานแต่ละครั้ง แอปพลิเคชันจึงมีตัวเลือกให้ ผู้ใช้ทำการสอบเทียบกล้องเพื่อให้สามารถวัดระยะห่างระหว่างผู้ใช้และหน้าจอเป็นหน่วยเซนติเมตรได้อย่างถูกต้อง

4.1. แสดงขั้นตอนการสอบเทียบกล้องให้แก่ผู้ใช้

- ผู้ใช้เลือกตัวเลือกสำหรับการสอบเทียบกล้อง
- แอปพลิเคชันแสดงขั้นตอนการสอบเทียบกล้องให้ผู้ใช้ปฏิบัติตาม
- ผู้ใช้ยืนยันเพื่อเริ่มต้นการสอบเทียบกล้อง

4.2. การสอบเทียบกล้อง

กระบวนการสอบเทียบกล้องทั้งหมดประกอบด้วยขั้นตอนที่แอปพลิเคชันและเซิร์ฟเวอร์ทำงาน ร่วมกันเพื่อคำนวณค่าพารามิเตอร์กล้องที่ใช้ในการแก้ไขความผิดเพี้ยนของภาพ กระบวนการทั้งหมดมีดังนี้

4.2.1. การจับภาพผู้ใช้และส่งข้อมูลไปยังเซิร์ฟเวอร์

- แอปพลิเคชั่นจับภาพผู้ใช้ขณะถือตารางหมากรุกขนาด 6x9 ช่อง โดยแต่ละช่องมี ขนาด 20 มิลลิเมตร
- แอปพลิเคชันจับภาพเป็นเวลา 12 วินาที เพื่อให้ได้ภาพหลายภาพจากหลาย มุมมอง ซึ่งช่วยเพิ่มความแม่นยำในการสอบเทียบ
- ภาพทั้งหมดจะถูกส่งไปยังเซิร์ฟเวอร์เพื่อใช้ในการประมวลผลต่อไป

4.2.2. การจัดเก็บและอ่านภาพโดยเซิร์ฟเวอร์

- **จัดเก็บภาพ:** เซิร์ฟเวอร์รับภาพที่ส่งมาจากแอปพลิเคชันและบันทึกภาพใน ตำแหน่งที่กำหนดไว้
- อ่านภาพ: ใช้ไลบรารี OpenCV เพื่ออ่านภาพจากตำแหน่งที่จัดเก็บ โดยใช้ ฟังก์ชัน cv.imread

4.2.3. การแปลงภาพและการกำหนดขนาด

- แปลงภาพเป็นระดับสีเทา: ใช้ฟังก์ชัน cv.cvtColor แปลงภาพเป็นภาพขาวดำ (Grayscale) เพื่อให้ง่ายต่อการตรวจจับมุมของกระดานหมากรุก
- กำหนดขนาดภาพเริ่มต้น: ขนาดของภาพแรกที่ประมวลผลจะถูกบันทึกไว้ในตัว แปร frame_size เพื่อใช้เป็นค่าขนาดอ้างอิง หากภาพถัดมามีขนาดแตกต่างกัน ระบบจะบันทึกข้อผิดพลาดและข้ามการประมวลผลภาพนั้น

4.2.4. การตรวจจับมุมของกระดานหมากรุก

- ใช้ฟังก์ชัน cv.findChessboardCorners เพื่อตรวจจับมุมของกระดานหมากรุกใน ภาพ โดยใช้ขนาดกระดาน 6x9 ช่อง เพื่อให้ได้พิกัดที่สอดคล้องกับค่าจริง
- หากตรวจพบกระดานหมากรุก:
 - บันทึกค่าพิกัดจุดในพื้นที่จริง (object points) ที่เตรียมไว้ลง ใน objpoints
 - ปรับค่าพิกัดของมุมที่ตรวจจับได้เพื่อเพิ่มความแม่นยำโดยใช้ ฟังก์ชัน cv.cornerSubPix
 - o บันทึกค่าพิกัดจุดในภาพ (image points) ลงใน imgpoints
- หากไม่พบกระดานหมากรก:
 - บันทึกข้อผิดพลาดหรือข้ามการประมวลผลสำหรับภาพนั้น

4.2.5. การปรับเทียบกล้อง (Calibration)

- เมื่อมีการเก็บข้อมูลพิกัดของภาพ (imgpoints) และพิกัดจุดในพื้นที่จริง (objpoints) เพียงพอแล้ว จะทำการปรับเทียบกล้องโดยใช้ ฟังก์ชัน cv.calibrateCamera
- ฟังก์ชันนี้จะคำนวณและคืนค่า:
 - o camera_matrix: เมทริกซ์กล้องที่ใช้ในการปรับเทียบขนาดและตำแหน่ง ของภาพ
 - o dist_coeffs: ค่าสัมประสิทธิ์การบิดเบือน ซึ่งใช้ในการแก้ไขความเพี้ยน ของภาพที่เกิดจากเลนส์กล้อง
 - rvecs และ tvecs: เวกเตอร์การหมุนและการแปลงตำแหน่ง ซึ่งใช้ในการ อธิบายตำแหน่งและมุมมองของกล้องในแต่ละภาพ

4.2.6. การคำนวณค่าความผิดพลาดเฉลี่ยในการฉายภาพ (Mean Reprojection Error)

- ใช้ฟังก์ชัน calculate_reprojection_error เพื่อคำนวณ **ค่าเฉลี่ยความผิดพลาดใน การฉายภาพใหม่ (Mean Reprojection Error)** เพื่อตรวจสอบความแม่นยำของ การสอบเทียบ
- คำนวณความผิดพลาดโดย:
 - o ใช้ฟังก์ชัน cv.projectPoints ฉายพิกัดจุดในพื้นที่จริงลงบนภาพ
 - คำนวณความต่างระหว่างตำแหน่งของจุ๊ดจริง (imgpoints) กับจุดที่ฉาย ใหม่ (imgpoints proj) ในแต่ละภาพ
 - คำนวณผลรวมของความผิดพลาดทั้งหมด และหารด้วยจำนวนจุดที่ใช้ เพื่อให้ได้ค่าเฉลี่ยความผิดพลาด
- ค่า mean_error ที่ได้จะแสดงถึงระดับความแม่นยำของการสอบเทียบกล้อง ยิ่งค่า นี้ต่ำ แสดงว่าการสอบเทียบมีความแม่นยำสูง

4.2.7. บันทึกข้อมูลการสอบเทียบ

- . เมื่อการสอบเทียบเสร็จสมบูรณ์ เซิร์ฟเวอร์จะบันทึกข้อมูลการสอบเทียบที่ได้ เช่น camera matrix, dist coeffs และ mean error
- เซิร์ฟเวอร์ส่งข้อมูลที่บันทึกนี้กลับไปยังแอปพลิเคชันของผู้ใช้
- แอปพลิเคชันบันทึกข้อมูลการสอบเทียบลงในไฟล์การตั้งค่าของแอปเพื่อใช้ในการ คำนวณระยะห่างและการปรับความแม่นยำในอนาคต

ภาพที่ 12 โมดอลแสดงคำแนะนำการสอบเทียบกล้อง

ภาพที่ 13 โมดอลยืนยันเพื่อเริ่มต้นการสอบเทียบกล้อง

ภาพที่ 14 โมดอลแสดงวิดีโอเพื่อจับภาพตารางหมากรุกจากผู้ใช้

ภาพที่ 15 โมดอลแสดงวิดีโอเพื่อจับภาพตารางหมากรุกจากผู้ใช้

5. การตรวจจับ (Detection)

ในการตรวจจับ แอปพลิเคชันใช้โมเดล Mediapipe เพื่อการตรวจจับจุด Landmark บนใบหน้าและท่าทาง ของร่างกาย โดยใช้โมดูล Face Landmark Detection [9] และ Pose Landmark Detection [10] เพื่อให้ได้ข้อมูล ตำแหน่งที่สามารถนำไปใช้ในการประมวลผลต่าง ๆ ได้ดังนี้

5.1. การตรวจจับท่านั่งหลังค่อม

้ แอปพลิเคชั่นจะตรวจจับตำแหน่งไหล่ทั้งสองข้าง โดยหากพบว่าตำแหน่งไหล่ต่ำกว่าตำแหน่ง ไหล่ที่ถูกต้อง 5% ของความสูงภาพ และเป็นเช่นนี้ต่อเนื่องเป็นเวลา 2 วินาทีหรือมากกว่า แอปพลิเคชันจะทำการแจ้งเตือนผู้ใช้ให้ปรับท่าทางการนั่งให้เหมาะสม

5.2. การตรวจจับระยะห่างจากหน้าจอ

 แอปพลิเคชันจะตรวจสอบขนาดของลูกตาในภาพ โดยหากขนาดของลูกตาใหญ่กว่าขนาดลูก ตาในท่าที่ถูกต้อง 10% เป็นระยะเวลา 30 วินาทีหรือมากกว่า แอปพลิเคชันจะทำการแจ้ง เตือนผู้ใช้ให้ปรับระยะห่างจากหน้าจอให้เหมาะสม

5.3. การตรวจจับระยะเวลาการนั่งทำงาน

- หากตรวจพบใบหน้าผู้ใช้อย่างต่อเนื่องเป็นเวลา 45 นาที ระบบจะทำการแจ้งเตือนให้ผู้ใช้พักการทำงาน
- การหยุดพักจะเริ่มนับใหม่ เมื่อผู้ใช้ออกจากหน้าจออย่างน้อย 5 วินาที

5.4. การตรวจจับการกระพริบตา

แอปพลิเคชันใช้ค่า Eye Aspect Ratio (EAR) เพื่อตรวจจับการกระพริบตา:

- หากค่า EAR = 0.4 จะถือว่าผู้ใช้กำลังปิดตาอยู่
- หากค่า EAR = 0.5 จะถือว่าผู้ใช้กำลังลืมตาอยู่

6. การตรวจจับแบบเรียลไทม์

6.1. เริ่มต้นการตรวจจับแบบเรียลไทม์

- เมื่อผู้ใช้เลือกการตรวจจับแบบเรียลไทม์ หน้าหลักของแอปพลิเคชันจะแสดงภาพจากกล้อง อุปกรณ์ พร้อมข้อมูลต่าง ๆ เช่น ระยะเวลาของเซสชัน ปุ่มเริ่ม/สิ้นสุดเซสชัน และข้อมูลจาก การตรวจจับครั้งล่าสุด
- ผู้ใช้สามารถเริ่มต้นเซสชันการตรวจจับโดยกดปุ่ม "เริ่มต้นเซสชัน" ซึ่งจะมี "หน้าต่างป็อปอัป" แสดงคำอธิบายท่านั่งที่ถูกต้อง วณ

6.2. เริ่มการตรวจจับ:

มื่อผู้ใช้กดเริ่มการตรวจจับจากหน้าต่างป็อปอัป ภาพจากกล้องอุปกรณ์จะแสดง Overlay สีเขียวหากสามารถตรวจจับจุด Landmark บนใบหน้าและร่างกายได้ครบถ้วนตามที่กำหนด เช่น Landmark บริเวณดวงตาและห

ภาพที่ 16 หน้าการตรวจจับแบบเรียลไทม์

ภาพที่ 17 หน้าต่างป็อปอัปคำอธิบายท่านั่งที่ถูกต้องก่อนเริ่มการตรวจจับแบบเรียลไทม์

7. การตรวจจับจากวิดีโอไฟล์

7.1. การอัปโหลดไฟล์วิดีโอ

เมื่อผู้ใช้เลือกการตรวจจับจากวิดีโอไฟล์ แอปพลิเคชันจะแสดง Drop Box สำหรับ ให้ผู้ใช้อัปโหลดไฟล์วิดีโอ

- 7.2. แสดงวิดีโอและการกำหนดท่านั่งที่ถูกต้อง
 หลังจากอัปโหลดไฟล์วิดีโอเสร็จสิ้น แอปพลิเคชันจะแสดงหน้าต่างป็อปอัปที่แสดงวิดีโอที่ผู้ใช้
 - หน้าต่างป็อปอัปจะมีปุ่มให้ผู้ใช้กดเพื่อกำหนดวินาทีที่แสดงท่านั่งที่ถูกต้อง ซึ่งจะใช้เป็น จุดเริ่มต้นในการประมวลผล

7.3. เริ่มการประมวลผลวิดีโอ

เมื่อผู้ใช้กำหนดวินาทีที่แสดงท่านั่งที่ถูกต้องเสร็จสิ้น แอปพลิเคชันจะทำการประมวลผลวิดีโอ ตามเงื่อนไขที่กำหนดไว้ในหัวข้อ 4 (การตรวจจับท่านั่งหลังค่อม ระยะห่างจากหน้าจอ ระยะเวลาการนั่งทำงาน และการกระพริบตา)

7.4. การสร้างวิดีโอจากการตรวจจับ (หากผู้ใช้เลือกบันทึกวิดีโอ)

หากผู้ใช้เลือกตัวเลือกบันทึกวิดีโอจากการตรวจจับ หลังจากกำหนดวินาทีที่แสดงท่านั่งที่ ถูกต้องแล้ว แอปพลิเคชันจะทำการสร้างวิดีโอใหม่โดยเริ่มต้นจากวินาทีที่กำหนด

ภาพที่ 18 หน้าการตรวจจับจากวิดีโลไฟล์

8. การแจ้งเตือน

การแจ้งเตือนของแอปพลิเคชันจะแบ่งออกเป็น 4 ประเภท ตามเงื่อนไขที่กำหนดไว้ในหัวข้อ 4 ดังนี้

8.1. การแจ้งเตือนเมื่อการกระพริบตาน้อยกว่าที่กำหนด

• แอปพลิเคชันจะตรวจจับการกระพริบตาของผู้ใช้โดยใช้ค่า Eye Aspect Ratio (EAR) ตามที่ระบุ ในหัวข้อที่ 4 หากตรวจพบว่าผู้ใช้ไม่กระพริบตาต่อเนื่องเป็นเวลา 5 วินาที แอปพลิเคชันจะแจ้ง เตือนเพื่อกระตุ้นให้ผู้ใช้กระพริบตา

8.2. การแจ้งเตือนเมื่อใช้งานต่อเนื่องเป็นเวลานาน

หากแอปพลิเคชันตรวจพบใบหน้าผู้ใช้ต่อเนื่องเป็นเวลา 45 นาที ระบบจะทำการแจ้งเตือนให้ผู้ใช้
พักสายตาหรือเคลื่อนไหว โดยการแจ้งเตือนนี้จะเริ่มนับเวลาใหม่เมื่อผู้ใช้ออกจากหน้าจออย่าง
น้อย 5 วินาที

8.3. การแจ้งเตือนเมื่อท่านั่งหลังค่อมเกินเวลาที่กำหนด

แอปพลิเคชันจะตรวจจับตำแหน่งไหล่ทั้งสองข้าง โดยหากตำแหน่งไหล่ต่ำกว่าตำแหน่งที่ถูกต้อง
 5% ของความสูงภาพ และเป็นเช่นนี้ต่อเนื่องเกิน 2 วินาที แอปพลิเคชันจะแจ้งเตือนผู้ใช้ให้ปรับท่านั่งให้เหมาะสม

8.4. การแจ้งเตือนเมื่ออยู่ใกล้หน้าจอเกินกว่าที่กำหนด

• แอปพลิเคชั้นจะตรวจสอบขนาดของลูกตาในภาพ หากขนาดของลูกตาใหญ่กว่าขนาดในท่าที่ เหมาะสม 10% เป็นเวลา 30 วินาทีหรือมากกว่า แอปพลิเคชันจะแจ้งเตือนผู้ใช้ให้ปรับระยะห่าง จากหน้าจอให้อยู่ในระยะที่เหมาะสม

ภาพที่ 19 หน้าต่างแจ้งเตือนตรวจจับการกระพริบตา

ภาพที่ 20 หน้าต่างแจ้งเตือนระยะเวลาที่ควรนั่งทำงานในแต่ละครั้ง

ภาพที่ 21 หน้าต่างแจ้งเตือนตรวจจับท่าทางการนั่งหลังค่อม

ภาพที่ 22 หน้าต่างแจ้งเตือนการระยะห่างจากหน้าจอ

9. การสรุปผลการตรวจจับ

แอปพลิเคชั่นจะสรุปผลการตรวจจับโดยแสดงข้อมูลรายละเอียดของเซสชั่น ดังนี้

9.1. ข้อมูลสรุปเซสชัน

• แอปพลิเคชันจะแสดงข้อมูลพื้นฐาน ได้แก่ หมายเลขเซสชัน วันที่ เวลา และระยะเวลาของ เซสชัน

9.2. วิดีโอและการ์ดข้อมูลการตรวจจับ (กรณีผู้ใช้เลือกบันทึกวิดีโอ)

 หากผู้ใช้เลือกบันทึกวิดีโอ แอปพลิเคชันจะแสดงวิดีโอที่บันทึกไว้พร้อมกับการ์ดข้อมูลการ ตรวจจับสำหรับแต่ละหัวข้อการตรวจจับ

9.3. การแสดงผล Time Line ของเหตุการณ์ที่ตรวจพบ

- การ์ดข้อมูลของแต่ละหัวข้อจะมี Time Line ของเหตุการณ์ที่ตรวจพบ พร้อมข้อมูล รายละเอียด เช่น
 - เงื่อนไขการตรวจจับที่กำหนดไว้
 - เวลาเฉลี่ยที่เกินกำหนด
 - เวลานานที่สุดที่เกินกำหนด
 - จำนวนครั้งที่เกินเวลาที่กำหนด
 - 🔾 เปอร์เซ็นต์ของเหตุการณ์ที่เกินเวลาที่กำหนด

9.4. กราฟฮิสโตแกรม (Histogram Graph)

• นำเสนอกราฟฮิสโตแกรมที่แสดงความถี่ของเหตุการณ์ที่เกินเวลาที่กำหนดในแต่ ละช่วงเวลาของเซสชัน เพื่อให้เห็นช่วงเวลาที่มีการเกินกำหนดบ่อยที่สุด

9.5. การส่งออกในรูปแบบไฟล์ PDF

• เมื่อผู้ใช้กดปุ่มส่งออกไฟล์ PDF แอปพลิเคชันจะบันทึกไฟล์ PDF ลงในอุปกรณ์ของผู้ใช้ โดย ไฟล์นี้จะมีข้อมูลสรุปคล้ายกับที่แสดงในแอปพลิเคชัน ยกเว้นวิดีโอ

ภาพที่ 23 หน้าการสรุปผลการตรวจจับแบบมีวิดีไฟล์

ภาพที่ 24 หน้าการสรุปผลการตรวจจับแบบไม่มีวิดีไฟล์

ภาพที่ 25 หน้าการสรุปผลการตรวจจับแบบแสดงเวลาของเหตุการณ์

ภาพที่ 26 ตัวอย่างรายละเอียดของหน้าการสรุปผลการตรวจจับ

ภาพที่ 27 ตัวอย่างไฟล์ PDF ที่ส่งออก

ภาพที่ 28 ตัวอย่างไฟล์ PDF ที่ส่งออก

10. ประวัติการตรวจจับ

แอปพลิเคชั่นจะแสดงประวัติเซสชั่นการตรวจจับทั้งหมดของผู้ใช้ โดยมีรายละเอียดดังนี้

10.1. ข้อมูลประวัติเซสชันการตรวจจับ

uสดงข้อมูลแต่ละเซสชัน เช่น รูป Thumbnail ของเซสชัน วันที่ เวลา หมายเลขเซสชัน และแท็ก ประเภทของการตรวจจับ

10.2. ตัวเลือกการจัดเรียงและกรองข้อมูล

- ผู้ใช้สามารถเลือกจัดเรียงประวัติเซสชันได้ เช่น
 - เรียงลำดับจากเก่าไปใหม่ หรือจากใหม่ไปเก่า
 - o แสดงเฉพาะการตรวจจับแบบเรียลไทม์
 - แสดงเฉพาะการตรวจจับจากวิดีโอ

ภาพที่ 29 หน้าประวัติการตรวจจับ

11. การตั้งค่า

แอปพลิเคชันมีตัวเลือกให้ผู้ใช้ปรับแต่งการตั้งค่าต่าง ๆ ตามความต้องการ ดังนี้

11.1. การเลือกอุปกรณ์และการตั้งค่ากล้อง

ผู้ใช้สามารถเลือกกล้องที่ต้องการใช้ในการตรวจจับ

11.2. การใช้ค่า Focal Length ในการตรวจจับ

· ผู้ใช้สามารถเลือกเปิดหรือปิดการใช้ค่า Focal Length เพื่อความแม่นยำในการตรวจจับ

11.3. การแสดงข้อมูลระหว่างการตรวจจับ

• ผู้ใช้สามารถเลือกเปิดหรือปิดการแสดงข้อมูลรายละเอียดการตรวจจับระหว่างเซสชัน เช่น ข้อมูล สถานะการตรวจจับในแต่ละหัวข้อการตรวจจับที่กำหนดไว้ในหัวข้อที่ 4

11.4. การจัดการการแจ้งเตือน

ผู้ใช้สามารถเปิดหรือปิดการแจ้งเตือนในแต่ละประเภทตามที่กำหนดไว้ในหัวข้อที่ 7

11.5. การบันทึกวิดีโอการตรวจจับ

ผู้ใช้สามารถเลือกบันทึกวิดีโอจากเซสชันการตรวจจับในรูปแบบเรียลไทม์

ภาพที่ 30 หน้าการตั้งค่า ส่วนการตั้งค่ากล้อง

ภาพที่ 31 หน้าการตั้งค่า ส่วนการตั้งค่าทั่วไป