AIND Analysing Heuristic For Isolation game

Heuristics

Heuristic functions are used as guide in making an informed decision when the game tree cannot be explored all the way to a terminal state. They are used to guide the game play towards the end goal. A good heuristic function would lead to moves that increase the likelihood of a win.

Exploring Heuristics for Isolation Game

As part of this exercise these heuristic functions (and combinations) were explored:

- open_move_heuristic
 - Number of open moves for the player
- delta_move_heuristic
 - Difference in open moves between player and opponent
- central distance heuristic
 - Distance of player from center of board which has high degree of freedom
- move score heuristic
 - Position scores for the first 3 moves based on data collected from multiple runs
 - game run histories were added to the game object and are saved as pickled data in tournament.py
 - analyse_tournaments.py reads the run-data and generates move_scores.dat which is a set of heat map scores of the board, one for each of the first 3 moves
 - move_score_heuristic selects the highest scored position among the possible legal move for the first 3 moves (more like a opening book but without context)

Analysis of Heuristics

These were the different heuristic function combination that were evaluated:

- f1() = 1.5*delta_move_heuristic
- f2() = delta_move_heuristic central_distance_heuristic
- f3() = delta_move_heuristic + open_move_heuristic
- f4() = -central distance heuristic
- f5() = delta_move_heuristic + move_score_heuristic
- f6() = move_score_heuristic central_distance_heuristic

Summary of different runs:

	function	win percentage	<u>average depth</u>
0	f1	60.00	6.980256
1	f1	65.00	6.842556
2	f1	65.71	6.990695
3	f1	67.14	6.935170
4	f2	79.29	6.800217
5	f2	72.86	6.932351
6	f2	75.71	6.864745
7	f2	77.86	6.785366
8	f3	65.71	6.900167
9	f3	65.71	7.010303
10	f3	69.29	7.074845
11	f3	60.71	7.112133
12	f4	69.29	7.219878
13	f4	70.00	7.211612
14	f4	68.57	7.174829
15	f4	71.43	7.262632
16	f5	70.71	6.907199
17	f5	72.14	6.847766
18	f5	72.86	6.953411
19	f5	66.43	6.964679
20	f6	64.29	7.297447
21	f6	61.43	7.262632
22	f6	66.43	7.208886
23	f6	64.29	7.326870

Analysis

- Single Heuristic function
 - When using a single heuristic, the win percentage variance was less. But the overall performance was not high.
- Multiple Heuristic functions
 - When combined with weights, the win percentage variance was higher. But in some cases the overall performance was higher.
- Search depth
 - contrary to intuition, search depth was shallow for best performing heuristics.
 - Optimizing the code by removing log statements, unnecessary function calls, simplifying heuristic function did not improve the search depth by a significant margin.

Boxplot grouped by function

Boxplot grouped by function

Recommended Heuristic

f2() = delta_move_heuristic - central_distance_heuristic

- win percentage is consistently higher than other heuristics
- thought the average depth explored is the least, the computed value seems to be a more accurate prediction of ideal value
- intuitively central distance penalizes position on the edges of the board and open moves give an indication of the rounds available for the player

Reference

- 1. Knight Tour Heuristic: https://support.sas.com/resources/papers/ proceedings15/3060-2015.pdf
- 2. Artificial Intelligence for Games Ian Millington, John Funge

APPENDIX

Run Data

f1() = 1.5*delta_move_heuristic

Match 1: Student vs Random Result: 19 to 1 Match 2: Student vs MM Null Result: 15 to 5 Match 3: Student vs MM_Open Result: 11 to 9 Match 4: Student vs MM_Improved Result: 12 to 8 Match 5: Student vs AB_Null Result: 11 to 9 Match 6: Student vs AB_Open Result: 11 to 9 Match 7: Student vs AB Improved Result: 12 to 8

Student 65.00%

avg search depth: 6.842555618938961

Match 1: Student vs Random Result: 17 to 3 Match 2: Student vs MM Null Result: 15 to 5 Match 3: Student vs MM_Open Result: 12 to 8 Match 4: Student vs MM_Improved Result: 11 to 9 Match 5: Student vs AB Null Result: 14 to 6 Match 6: Student vs AB_Open Result: 12 to 8 Match 7: Student vs AB_Improved Result: 11 to 9 Student 65.71%

avg search depth: 6.990695128626163

Match 1: Student vs Random Result: 20 to 0 Match 2: Student vs MM_Null Result: 16 to 4 Match 3: Student vs MM_Open Result: 11 to 9 Match 4: Student vs MM_Improved Result: 7 to 13 Match 5: Student vs AB_Null Result: 17 to 3 Match 6: Student vs AB_Open Result: 12 to 8 Match 7: Student vs AB_Improved Result: 11 to 9 Student 67.14% avg search depth: 6.93517017828201

Match 1: Student vs Random Result: 15 to 5 Result: 14 to 6 Match 2: Student vs MM Null Match 3: Student vs MM_Open Result: 12 to 8 Match 4: Student vs MM_Improved Result: 9 to 11 Match 5: Student vs AB_Null Result: 11 to 9 Match 6: Student vs AB_Open Result: 10 to 10

Match 7: Student vs AB_Improved Result: 13 to 7

Student 60.00%

avg search depth: 6.98025613660619

f2() = delta_move_heuristic - central_distance_heuristic

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM_Null Result: 17 to 3

Match 3: Student vs MM_Open Result: 14 to 6

Match 4: Student vs MM_Improved Result: 16 to 4

Match 5: Student vs AB_Null Result: 17 to 3

Match 6: Student vs AB_Open Result: 15 to 5

Match 7: Student vs AB_Improved Result: 13 to 7

Student 79.29%

avg search depth: 6.800217155266015

Match 1: Student vs Random Result: 18 to 2

Match 2: Student vs MM_Null Result: 18 to 2

Match 3: Student vs MM_Open Result: 13 to 7

Match 4: Student vs MM_Improved Result: 11 to 9

Match 5: Student vs AB_Null Result: 15 to 5

Match 6: Student vs AB_Open Result: 13 to 7

Match 7: Student vs AB_Improved Result: 14 to 6

Student 72.86%

avg search depth: 6.932351336606656

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM Null Result: 17 to 3

Match 3: Student vs MM_Open Result: 13 to 7

Match 4: Student vs MM_Improved Result: 12 to 8

Match 5: Student vs AB_Null Result: 19 to 1

Match 6: Student vs AB_Open Result: 15 to 5

Match 7: Student vs AB_Improved Result: 11 to 9

Student 75.71%

avg search depth: 6.864745011086474

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM Null Result: 19 to 1

Match 3: Student vs MM_Open Result: 14 to 6

Match 4: Student vs MM_Improved Result: 14 to 6

Match 5: Student vs AB Null Result: 15 to 5

Match 6: Student vs AB Open Result: 16 to 4

Match 7: Student vs AB_Improved Result: 12 to 8

Student 77.86%

avg search depth: 6.785365853658536

f3() = delta_move_heuristic + open_move_heuristic

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM_Null Result: 16 to 4

Match 3: Student vs MM_Open Result: 12 to 8

Match 4: Student vs MM_Improved Result: 8 to 12

Match 5: Student vs AB_Null Result: 14 to 6

Match 6: Student vs AB_Open Result: 10 to 10

Match 7: Student vs AB_Improved Result: 13 to 7

Student 65.71%

avg search depth: 6.900167317345232

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM_Null Result: 19 to 1

Match 3: Student vs MM_Open Result: 9 to 11

Match 4: Student vs MM_Improved Result: 7 to 13

Match 5: Student vs AB_Null Result: 15 to 5

Match 6: Student vs AB_Open Result: 11 to 9

Match 7: Student vs AB_Improved Result: 12 to 8

Student 65.71%

avg search depth: 7.010303377218088

Match 1: Student vs Random Result: 16 to 4

Match 2: Student vs MM_Null Result: 16 to 4

Match 3: Student vs MM_Open Result: 11 to 9

Match 4: Student vs MM_Improved Result: 11 to 9

Match 5: Student vs AB_Null Result: 15 to 5

Match 6: Student vs AB_Open Result: 13 to 7

Match 7: Student vs AB_Improved Result: 15 to 5

Student 69.29%

avg search depth: 7.074845244794598

Match 1: Student vs Random Result: 16 to 4

Match 2: Student vs MM Null Result: 17 to 3

Match 3: Student vs MM_Open Result: 6 to 14

Match 4: Student vs MM_Improved Result: 6 to 14

Match 5: Student vs AB Null Result: 14 to 6

Match 6: Student vs AB Open Result: 12 to 8

Match 7: Student vs AB_Improved Result: 14 to 6

Student 60.71%

avg search depth: 7.11213341000575

f4() = -central_distance_heuristic

Match 1: Student vs Random Result: 19 to 1
Match 2: Student vs MM_Null Result: 14 to 6
Match 3: Student vs MM_Open Result: 13 to 7
Match 4: Student vs MM_Improved Result: 9 to 11
Match 5: Student vs AB_Null Result: 14 to 6
Match 6: Student vs AB_Open Result: 14 to 6
Match 7: Student vs AB_Improved Result: 14 to 6
Student 69.29%

avg search depth: 7.21987784564131

Match 1: Student vs Random Result: 17 to 3
Match 2: Student vs MM_Null Result: 19 to 1
Match 3: Student vs MM_Open Result: 11 to 9
Match 4: Student vs MM_Improved Result: 10 to 10
Match 5: Student vs AB_Null Result: 14 to 6
Match 6: Student vs AB_Open Result: 12 to 8
Match 7: Student vs AB_Improved Result: 15 to 5
Student 70.00%

avg search depth: 7.2116115029842645

Match 1: Student vs Random Result: 18 to 2
Match 2: Student vs MM_Null Result: 17 to 3
Match 3: Student vs MM_Open Result: 8 to 12
Match 4: Student vs MM_Improved Result: 12 to 8
Match 5: Student vs AB_Null Result: 15 to 5
Match 6: Student vs AB_Open Result: 12 to 8
Match 7: Student vs AB_Improved Result: 14 to 6
Student 68.57%

avg search depth: 7.174829157175399

Match 1: Student vs Random Result: 17 to 3
Match 2: Student vs MM_Null Result: 16 to 4
Match 3: Student vs MM_Open Result: 13 to 7
Match 4: Student vs MM_Improved Result: 11 to 9
Match 5: Student vs AB Null Result: 17 to 3

Match 6: Student vs AB_Open Result: 16 to 4

Match 7: Student vs AB_Improved Result: 10 to 10

Student 71.43%

avg search depth: 7.262631871182676

f5() = delta_move_heuristic + move_score_heuristic

Match 1: Student vs Random Result: 18 to 2

Match 2: Student vs MM_Null Result: 16 to 4

Match 3: Student vs MM_Open Result: 11 to 9

Match 4: Student vs MM_Improved Result: 13 to 7

Match 5: Student vs AB_Null Result: 13 to 7

Match 6: Student vs AB_Open Result: 13 to 7

Match 7: Student vs AB_Improved Result: 15 to 5

Student 70.71%

avg search depth: 6.907199100112486

Match 1: Student vs Random Result: 16 to 4

Match 2: Student vs MM Null Result: 18 to 2

Match 3: Student vs MM_Open Result: 16 to 4

Match 4: Student vs MM_Improved Result: 13 to 7

Match 5: Student vs AB_Null Result: 14 to 6

Match 6: Student vs AB_Open Result: 10 to 10

Match 7: Student vs AB_Improved Result: 14 to 6

Student 72.14%

avg search depth: 6.84776613348042

Match 1: Student vs Random Result: 17 to 3

Match 2: Student vs MM_Null Result: 19 to 1

Match 3: Student vs MM_Open Result: 14 to 6

Match 4: Student vs MM_Improved Result: 15 to 5

Match 5: Student vs AB_Null Result: 14 to 6

Match 6: Student vs AB_Open Result: 11 to 9

Match 7: Student vs AB_Improved Result: 12 to 8

Student 72.86%

avg search depth: 6.953410981697171

Match 1: Student vs Random Result: 17 to 3

Match 2: Student vs MM_Null Result: 16 to 4

Match 3: Student vs MM_Open Result: 11 to 9

Match 4: Student vs MM_Improved Result: 12 to 8

Match 5: Student vs AB_Null Result: 14 to 6

Match 6: Student vs AB_Open Result: 11 to 9

Match 7: Student vs AB_Improved Result: 12 to 8

Student 66.43%

avg search depth: 6.964678633468442

f6() = move_score_heuristic - central_distance_heuristic

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM_Null Result: 12 to 8

Match 3: Student vs MM_Open Result: 13 to 7

Match 4: Student vs MM_Improved Result: 11 to 9

Match 5: Student vs AB_Null Result: 13 to 7

Match 6: Student vs AB_Open Result: 13 to 7

Match 7: Student vs AB_Improved Result: 9 to 11

Student 64.29%

avg search depth: 7.297447280799112

Match 1: Student vs Random Result: 18 to 2

Match 2: Student vs MM Null Result: 14 to 6

Match 3: Student vs MM_Open Result: 9 to 11

Match 4: Student vs MM_Improved Result: 12 to 8

Match 5: Student vs AB_Null Result: 13 to 7

Match 6: Student vs AB_Open Result: 9 to 11

Match 7: Student vs AB_Improved Result: 11 to 9

Student 61.43%

avg search depth: 7.262631871182676

Match 1: Student vs Random Result: 15 to 5

Match 2: Student vs MM_Null Result: 18 to 2

Match 3: Student vs MM_Open Result: 11 to 9

Match 4: Student vs MM_Improved Result: 10 to 10

Match 5: Student vs AB_Null Result: 15 to 5

Match 6: Student vs AB_Open Result: 12 to 8

Match 7: Student vs AB_Improved Result: 12 to 8

Student 66.43%

avg search depth: 7.208886324293133

Match 1: Student vs Random Result: 19 to 1

Match 2: Student vs MM_Null Result: 13 to 7

Match 3: Student vs MM_Open Result: 10 to 10

Match 4: Student vs MM_Improved Result: 12 to 8

Match 5: Student vs AB_Null Result: 13 to 7
Match 6: Student vs AB_Open Result: 13 to 7
Match 7: Student vs AB_Improved Result: 10 to 10

Student 64.29%

avg search depth: 7.326869806094183