

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2019 - 2020

C1 : Performances statiques et cinématiques des systèmes composés de chaine de solides

TD 8 - Introduction à la modélisation des systèmes mécaniques (C4-1)

26 Novembre 2019

Compétences

- Analyser; Caractériser des écarts : Grandeurs utilisées : unités du système international; homogénéité des grandeurs
- Modéliser; Proposer un modèle de connaissance et de comportement : Solide indéformable : définition; référentiel, repère; équivalence solide/référentiel; degrés de liberté; vecteur-vitesse angulaire de deux référentiels en mouvement l'un par rapport à l'autre

1 Assemblage du fuselage d'un falcon à l'aide d'un robot 6 axes ABB

a) Présentation

La structure d'un avion est composée de plusieurs éléments devant être assemblés entre eux pour donner la structure finale de l'appareil (figure 1).

FIGURE 1 – FALCON 7X et vue éclatée des différents sous-ensembles d'un FALCON 7X

On étudie ici l'utilisation d'un robot 6 axes permettant de réaliser les opérations d'assemblage entre les éléments (tronçon 1 et 2) du fuselage de l'avion par rivetage (figure 2).

L'implantation d'un robot est considérée comme optimale lorsque la totalité des points visés est accessible : l'extrémité du robot doit atteindre le point de fixation de la demi-couture des tronçons. Dans le cas de l'étude, le robot doit réaliser une couture orbitale entre deux tronçons et éviter les collisions éventuelles (figure 4).

FIGURE 2 – structure de Falcon 7X en cours d'assemblage par la cellule

b) Repérage et paramétrage du bras articulé

- On attache à **l'embase fixe du robot** 0 le repère $R_0(O_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$. \vec{y}_0 est l'axe vertical ascendant.
- L'embase de rotation 1 est en liaison pivot (une seule rotation) autour de l'axe $(O_0, \overrightarrow{y}_{0,1})$ par rapport au corps du robot 0. On attache au solide 1 le repère $R_1(O_0, \vec{x}_1, \vec{y}_{0,1}, \vec{z}_1)$. On pose $\theta_{10} = (\vec{x}_0, \vec{x}_1) = (\vec{z}_0, \vec{z}_1)$. On supposera ici $\theta_{10} = 0$.
- Le **bras** 2 est en liaison pivot d'axe (O_2, \vec{z}_2) avec le solide 1. On attache au solide 2 le repère $R_2(O_2, \vec{x}_2, \vec{y}_2, \vec{z}_{2,1})$.
- On pose $\overrightarrow{O_0O_2} = L_1 \cdot \overrightarrow{x}_1 + L_2 \cdot \overrightarrow{y_1}$ et $\theta_{21} = (\overrightarrow{x}_1, \overrightarrow{x}_2) = (\overrightarrow{y}_1, \overrightarrow{y}_2)$.

 Le **bras** 3 est en liaison pivot d'axe $(O_3, \overrightarrow{z}_3)$ avec le bras 2. On attache au solide 3 le repère $R_3(O_3, \overrightarrow{x}_3, \overrightarrow{y}_3, \overrightarrow{z}_{3,2,1})$. On pose $\overrightarrow{O_2O_3} = L_3 \cdot \overrightarrow{x}_2$ et $\theta_{31} = (\overrightarrow{x}_1, \overrightarrow{x}_3) = (\overrightarrow{y}_1, \overrightarrow{y}_3)$.
- Le **bras** 4 est en liaison pivot d'axe (O_4, \vec{x}_4) avec le bras 3. On attache au solide 4 le repère $R_4(O_4, \vec{x}_{3,4}, \vec{y}_4, \vec{z}_4)$. On pose $\overrightarrow{O_3O_4} = L_4 \cdot \overrightarrow{x}_3 + L_5 \cdot \overrightarrow{y}_3$ et $\theta_{43} = (\overrightarrow{z}_3, \overrightarrow{z}_4) = (\overrightarrow{y}_3, \overrightarrow{y}_4)$.
- L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe (O_5, \vec{z}_5) par rapport au bras (4), a pour repère associé le repère R_5 $\left(O_5, \overrightarrow{x}_5, \overrightarrow{y}_5, \overrightarrow{z}_{1,2,3,5}\right)$ tel que $O_4O_5 = L_6 \cdot \overrightarrow{x}_3$ et $\theta_{51} = \left(\overrightarrow{x}_1, \overrightarrow{x}_5\right) = \left(\overrightarrow{y}_1, \overrightarrow{y}_5\right)$.
- L'extrémité de l'outil est définie par le point P défini par : $\overrightarrow{O_5P} = L_8 \cdot \overrightarrow{x}_5$.

La rotation entre les solides (0) et (1) est supposée bloquée dans tout le sujet.

FIGURE 3 - Schéma cinématique du robot

c) Modélisation

- Q1: Donner les figures planes de projection permettant de traduire toutes les rotations du mécanisme.
- **Q 2 : Déterminer le vecteur** $\overrightarrow{O_0P}$.
- **Q 3 :** Déterminer la projection du vecteur $\overrightarrow{O_0P}$ selon les vecteurs \overrightarrow{x}_1 et \overrightarrow{y}_1 .

Les deux positions extrêmes du robot (figure 4) sont définies dans le tableau ci-dessous :

Paramètres angulaire	Angles en position extrême 1	Angle en position extrême 2
$ heta_{10}$	0°	0°
θ_{21}	58°	-58°
θ_{31}	25°	-35°
θ_{43}	0°	0°
θ_{51}	-90°	+90°

Paramètres	Valeur en m
L_1	0,405 <i>m</i>
L_2	0,433 <i>m</i>
L_3	1,075 <i>m</i>
L_4	1,762 <i>m</i>
L_5	0,165 <i>m</i>
L_6	0,25 <i>m</i>
L_8	0,75 <i>m</i>
R	1,17 <i>m</i>
h	0,3 <i>m</i>
L	2,7 <i>m</i>

FIGURE 4 – Schéma d'implantation du robot

- Q 4: Donner les valeurs numériques des projections du vecteur $\overrightarrow{O_0O_P}$ selon les vecteurs \overrightarrow{x}_1 et \overrightarrow{y}_1 pour les deux positions extrêmes 1 et 2.
 - Q 5 : Vérifier que le robot peut bien atteindre les deux positions extrêmes souhaitées.
- Q 6 : Déterminer la hauteur H de positionnement du centre du fuselage par rapport au sol. Vérifier que le fuselage ne touche pas le sol.
 - Q 7 : Représenter schématiquement sur la figure 4 le robot dans ses deux configurations extrêmes.

2 Calculs vectoriels

Soient $R_1 = (O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}), R_2 = (O_2, \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_2})$ et $R_3 = (O_3, \overrightarrow{i_3}, \overrightarrow{j_3}, \overrightarrow{k_3})$ avec $\overrightarrow{i_m}, \overrightarrow{j_m}, \overrightarrow{k_m}$ des vecteurs unitaire formant les bases orthonormées R_m .

On passe de R_1 à R_2 par un rotation α autour de $\overrightarrow{i_1}$.

On passe de R_2 à R_3 par un rotation θ autour de $\overrightarrow{j_2}$.

Q8: Faire les figures de changement de base.

Q 9 : Donner les composantes des vecteurs $\overrightarrow{i_3}$ et $\overrightarrow{j_3}$ dans R_1 .

Q 10 : Donner le résultat des opérations suivantes :

$$\overrightarrow{k_1} \cdot \overrightarrow{i_2}$$
,

$$\vec{j}_3 \cdot \vec{k}_1$$
,

$$\overrightarrow{i_1} \cdot \overrightarrow{i_3}$$

$$\overrightarrow{k_1} \wedge \overrightarrow{i_2}, \qquad \overrightarrow{j_3} \wedge \overrightarrow{k_1}, \qquad \overrightarrow{i_1} \wedge \overrightarrow{i_3}.$$

$$\overrightarrow{j_3} \wedge \overrightarrow{k_1}$$

$$\overrightarrow{i_1} \wedge \overrightarrow{i_3}$$

On définit les vecteurs :

$$\overrightarrow{V}_1 = a \overrightarrow{i_1} + b \overrightarrow{k_1}$$

$$\vec{V}_2 = c \vec{i}_3$$

$$\overrightarrow{V}_3 = d \overrightarrow{i_3} + e \overrightarrow{j_3}.$$

Q 11 : Donner l'expression de la projection du vecteur $\overrightarrow{W} = \overrightarrow{V}_1 \wedge \overrightarrow{V}_2$ sur $\overrightarrow{i_1}$.

Q 12 : Calculer le produit mixte $(\overrightarrow{V}_1 \wedge \overrightarrow{V}_2) \cdot \overrightarrow{V}_3$

Lycée La Martinière Monplaisir Lyon