BNPlib for density estimation:

A nonparametric C++ library (part 2)

Bruno Guindani Elena Zazzetti

January 8th, 2020

https://github.com/poliprojects/BNPlib

1/12

Model

$$(Y_i|\vartheta_i) \sim F(\cdot,\vartheta_i) \\ (\vartheta_i|G) \sim G \\ G \sim DP(M,G_0) & \stackrel{K\to\infty}{\Longleftrightarrow} \\ (c_i|\mathbf{p}) \sim \sum_{k=1}^K p_k \delta_k(\cdot) \\ \phi_c \sim G_0 \\ \mathbf{p} \sim \mathrm{Dir}(M/K,\dots,M/K) \\ \text{(hierarchical model)} \\ (K\text{-discrete model})$$

with
$$oldsymbol{artheta} \longleftrightarrow (oldsymbol{\phi}, \mathbf{c})$$

Algorithms

- Neal2, Neal8, blocked Gibbs
- Gibbs sampling procedures
- General structure:
 - ightharpoonup sample **allocations** c from some conditional distribution
 - ightharpoonup sample **unique values** ϕ from some conditional distribution
 - ► (sample **weights** *p* of the unique values deltas)

C++ Implementation

Libraries:

- Stan Math: C++ template library for automatic differentiation of any order. It includes a range of built-in functions for probabilistic modeling, linear algebra, and equation solving.
 - Intel TBB library
 - Sundials library
- Eigen: C++ template library for linear algebra.

Structure of Algorithm

Structure: Algorithm<Hierarchy, Mixture, Hypers>

Algorithm<<>Hierarchy, Mixture, Hypers>
Mixture mixture
vector<data_type> data
vector<unsigned int> allocations
vector<Hierarchy<Hypers>> unique_values

Hierarchy<Hypers>
state_type state
shared_ptr <Hypers> hypers
void draw()
void sample_given_data()

Specializations

Hierarchy: NNIGHierarchy (Normal-NormalInvGamma)

- draw()
 - stan::math::inv_gamma_rng
 - ► stan::math::normal_rng
- sample_given_data()
 - NormalGammaUpdate
 - stan::math::inv_gamma_rng
 - stan::math::normal_rng

 $\textbf{Mixture}: \mathsf{SimpleMixture} \to \mathsf{TotalMass}$

Hypers : HypersFixed $ightarrow \mu_0 \ \lambda_0 \ \alpha_0 \ eta_0$

Neal8 specialization

Algorithm Base → **Neal8** Derived

Neal8<<>Hierarchy, Mixture, Hypers>
Mixture mixture
vector<data_type> data
vector<unsigned int> allocations
vector<Hierarchy< Hypers >> unique_values
vector<Hierarchy< Hypers >> aux_unique_values

Implementation of an algorithm

Algorithm<Hierarchy, Mixture, Hypers>

- Example: Neal8 with Hierarchy = Normal-NormalInvGamma,
 Hypers = HypersFixed
- initalize(): random allocation
- step()
 - sample_allocations(): vector card of cardinalities of clusters;
 4 cases handled separately: singleton vs !singleton, aux vs old
 - sample_unique_values(): vector clust_idxs to record which data are in each cluster (or actual cluster structures?)
 - save_iteration()

8 / 12

Impending extensions

- Hyperpriors: objects of class Hypers store pointers to objects of class HypersFixed
- Non-conjugacy: via Stan's HMC sampler
- R interface: via protocol buffers

Protocol Buffers

- API developed by Google
- Data is saved in XML-like structures, called messages, that are defined in .proto files
- Each message corrresponds to a class in C++
- The protoc compiler produces the C++ files that make up the API
- RProtoBuf
- Compromise between efficiency and human-readibility

A general library?

Fully abstract library for all distributions? It requires abstract handling of

- Hierarchies
- Updates
- Non-conjugacy

... but Stan functions cannot take vectors of parameters

⇒ variadic template + argument unpacker?

Bibliography

- 🦫 Muller, Quintana, *Bayesian Nonparametric Data Analysis*
- Neal (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models
- Ishwaran, James (2001), Gibbs Sampling Methods for Stick-Breaking Priors
- https://developers.google.com/protocol-buffers/docs/cpptutorial