IPv4 and IPv6 Addressing

Campus Network Design & Operations Workshop

• Bese materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license

- Internet connected networks use two types of IP Addressing
 - IPv4 legacy Internet protocol
 - IPv6 new Internet protocol
- Presentation describes IPv4 addresses and IPv6 addresses & addressing
- The Campus Network Design Workshop labs use both IPv4 and IPv6 for all exercises
 - Dual stack network (both protocols running in parallel)

- 32-bit binary number
 - How many unique addresses in total?

- 32-bit binary number
 - How many unique addresses in total?
 - 2³² which is 4,294,967,296 addresses
- Conventionally represented as four dotted decimal octets
- If you turn on all bits this is:

255 . 255 . 255 . 255

- Remember binary mathematics!
- Each bit is basically to the power of 2. First bit from right is 2°, second bit is 2¹ and so on to the eighth bit which is 27.

2726252423222120

11111111

- This means that :
- $111111111 = 1x2^7 + 1x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 1x2^1 + 1x2^0$

- 32-bit binary number
- Conventionally represented as four dotted decimal octets

128 . 223 . 157 . **1**9

Can you explain why 00010011 = 19 in decimal?

- 32-bit binary number
- Conventionally represented as four dotted decimal octets

10000000110111111001110100010011

128 .

. 223 . 157

19

2⁷2⁶2⁵2⁴2³2²2¹2⁰

00010011

- $00010011 = 0x2^7 + 0x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$
- 00010011 = 0 + 0 + 0 + 16 + 0 + 0 + 2 + 1 = 19

Prefixes

- A range of IP addresses is given as a prefix, e.g. 192.0.2.128/27
- In this example:
 - How many addresses are available?
 - What are the lowest and highest addresses?

Prefixes

- A range of IP addresses is given as a prefix, e.g. 192.0.2.128/27
- In this example:
 - How many addresses are available?
 - Number of bits for the host = 32 27 = 5 bits
 - Number of available addresses = 2⁵ = 32

Prefix Calculation

192 . 0 . 2 . 128

110000000000000000000101000000

Prefix length /27 → First 27 bits are fixed

Prefix Calculation

192 . 0 . 2 . 128 110000000000000000000101000000

Prefix length /27 → First 27 bits are fixed

Prefix Calculation

192 . 0 . 2 . 128 110000000000000000000101000000

Prefix length /27 → First 27 bits are fixed

Lowest address:

 $\mathbf{1100000000000000000001010000000}$

192 . 0 . 2 . 128

Highest address:

110000000000000000000101001111

192 . 0 . 2 . 159

IPv4 "Golden Rules"

- 1. All hosts on the same L2 network must share the same prefix
- 2. All hosts with the same prefix have different host part
- 3. Host part of all-zeros and all-ones are reserved

Golden Rules for 192.0.2.128/27

- Lowest 192.0.2.128 = network address
- Highest 192.0.2.159 = broadcast address
- Usable: 192.0.2.129 to 192.0.2.158
- Number of usable addresses: 32 2 = 30

Exercises

- Network 10.10.10.0/25
 - How many addresses in total?
 - How many usable addresses?
 - What are the lowest and highest usable addresses?

Exercises

- Network 10.10.10.0/25
 - How many addresses in total?
 - How many usable addresses?
 - What are the lowest and highest usable addresses?

Hint...

10 .

10

C

Prefix length /25 → First 25 bits are fixed

An Edge Case

- How many usable addresses in a /30 prefix?
- What is this used for?
 - (Note: modern routers support /31 for this purpose to reduce IPv4 address wastage)

An Edge Case

- How many usable addresses in a /30 prefix?
 - Number of host bits is 32 30 = 2
 - Number of addresses is $2^2 = 4$
 - Number of usable address is 4 2 = 2
- What is this used for?
 - Used for Point-to-Point links

Netmask

- Netmask is just an alternative (old) way of writing the prefix length
- A '1' for a prefix bit and '0' for a host bit
- Hence N x 1's followed by (32-N) x 0's

How did we get to 224?

Netmask

$$/27 =$$

11111111111111111111111111100000

255

255

255 .

224

How did we get 224?

$$128 + 64 + 32 = 224$$

Or: 5 bits = 32 IPs
$$(2^5)$$

256 - 32 = 224

What about a "/26"?

What about a "/28"?

https://nsrc.org/workshops/2009/summer/ref/netmask-table.html

Subnetting

- Since each L2 network needs its own prefix, then if you route more than one network you need to divide your allocation
- Ensure each prefix has enough IPs for the number of hosts on that network

Subnetting Example

- You have been given 192.0.2.128/27
- However, you want to build two Layer 2 networks and route between them
- The Golden Rules demand a different prefix for each network
- Let's split this address space into two equal-sized pieces

Subnetting /27

Subnetting /27

Check correctness

- Expand each new prefix into lowest and highest
- Ranges should not overlap
 - **192.0.2.128/28**
 - Lowest (network) = 192.0.2.128
 - Highest (broadcast) = 192.0.2.143
 - **192.0.2.144/28**
 - Lowest (network) = 192.0.2.144
 - Highest (broadcast) = 192.0.2.159
 - How many usable addresses now?

Aggregation tree

- Continue to divide prefixes as required
- Can visualize this as a tree

Questions about IPv4?

- 128-bit binary number
 - How many unique addresses in total?

- 128-bit binary number
 - How many unique addresses in total?
 - **2**128
 - 3.402823669209 x10³⁸
 - 340,282,366,920,938,463,463,374,607,431,768,211,456

- 128-bit binary number
 - How many unique addresses in total?
 - **2**128
 - 3.402823669209 x10³⁸
 - -340,282,366,920,938,463,463,374,607,431,768,211,456
- Conventionally represented in hexadecimal 8 words of 16 bits, separated by colons

2607:8400:2880:0004:0000:0000:80DF:9D13

Hexadecimal

```
0000
                                                8
4 bits
                            0
                                          1000
                      0001
                                          1001
= 1 hex digit
                                          1010
                      0010
                            3
                      0011
                                          1011
                                                В
                      0100
                                          1100
                      0101
                            5
                                          1101
                                                D
                      0110
                                          1110
                                                E
                                                F
                      0111
                                          1111
```

```
4 hex digits = 16 bits
```


Our example address:

2607:8400:2880:0004:0000:0000:80DF:9D13

Leading zeros can be dropped

Our example address:

```
2607:8400:2880:0004:0000:0000:80DF:9D13
```

- Leading zeros can be dropped
- The largest contiguous run of all-zero words can be replaced by "::" (see RFC5952)

```
2607:8400:2880:<del>000</del>4:<del>0000:0000</del>:80DF:9D13
```


Our example address:

```
2607:8400:2880:0004:0000:0000:80DF:9D13
```

- Leading zeros can be dropped
- The largest contiguous run of all-zero words can be replaced by "::" (see RFC5952)

```
2607:8400:2880:<del>000</del>4:<del>0000:0000</del>:80DF:9D13
```

2607:8400:2880:4::80DF:9D13

IPv6 rules

- With IPv6, every subnet is /64 (*1)
- The remaining 64 bits can be assigned by hand, or picked automatically
 - all-zeros address is reserved (*1) Subnet-Router Anycast address
- There are special prefixes
 - e.g. link-local addresses start with FE80::
- Total available IPv6 space is $\approx 2^{61}$ subnets
 - Global unicast addresses have first 3 bits set to 001

(*1) Except /127 recommended for point-to-point links (RFC 6164), in which case the all-zeros address is allowed

IPv6 addressing

Typical end-user allocation is /48 or /56 (dependent on ISP policy)

How many /64 networks can you build from a /48 allocation?

Typical end-user allocation is /48

- How many /64 networks can you build from a /48 allocation?
 - IPv6 address is 128 bits which means you have 128 64 48 = 16 bits
 - Number of networks = $2^{16} = 65,536$

- You are assigned 2001:DB8:123::/48
 - 2001:0DB8:0123:0000:0000:0000:0000
- Lowest /64 network?

- You are assigned 2001:DB8:123::/48
 - 2001:0DB8:0123:0000:0000:0000:0000
- Lowest /64 network?
 - 2001:DB8:123:0000::/64
 - written simply 2001:DB8:123::/64

- You are assigned 2001:DB8:123::/48
 - 2001:0DB8:0123:0000:0000:0000:0000
- Lowest /64 network?
 - 2001:DB8:123:0000::/64
 - written simply 2001:DB8:123::/64
- Highest /64 network?

- You are assigned 2001:DB8:123::/48
 - 2001:0DB8:0123:0000:0000:0000:0000
- Lowest /64 network?
 - 2001:DB8:123:0000::/64
 - written simply 2001:DB8:123::/64
- Highest /64 network?
 - 2001:DB8:123:FFFF::/64

Ways to allocate the host part

- We recommend manual configuration for servers
 - Gives a persistent and predictable address
- Choose any scheme that you like, e.g.
 - Can number sequentially from ::1
 - Can use the last octet of the IPv4 address
 - Can embed the whole IPv4 address in the lower 32 bits
 - e.g. 2607:8400:2880:4::80DF:9D13
 - 80DF9D13 hex = 128.223.157.19 in decimal
 - Can also be written as 2607:8400:2880:4::128.223.157.19

Ways to allocate the host part

- Automatic: "stateless address autoconfiguration" (SLAAC)
 - Prefix is learned from Router Advertisement messages, and client derives the low 64 bits from the network card MAC address
 - Design problem: MAC address is persistent and means you can be tracked around the Internet
 - Now most clients generate random, changing "privacy" addresses

Ways to allocate the host part

- Automatic: "stateless address autoconfiguration" (SLAAC)
 - Prefix is learned from Router Advertisement messages, and client derives the low 64 bits from the network card MAC address
 - Design problem: MAC address is persistent and means you can be tracked around the Internet
 - Now most clients generate random, changing "privacy" addresses
- Or use DHCPv6
 - Gives you DHCP logs and non-changing addresses
 - Consistent with how you manage IPv4 address allocation
 - Unfortunately, Android does not support DHCPv6

Additional client configuration

- Default gateway is learned via Router Advertisements
 - even if you are using DHCPv6
- Router advertisements can provide recursive DNS servers (RDNSS) and DNS search list (DNSSL) settings
 - But clients may need additional configuration that DHCP traditionally does
- This means that there are three variations you may come across
 - SLAAC only
 - SLAAC + stateless DHCPv6 for extra client configuration
 - Stateful DHCPv6 + Router Advertisements for default gateway

Link local addresses

- All clients also assign themselves a link-local address
- Starts with FE80:
 - May see explicitly scoped to an interface, e.g. FE80::1%eth0
- Remainder of address auto-generated from MAC address (like SLAAC), or can be manually overridden
- Can only be used for communication on the same LAN segment
 - But link-local addresses can be used for next hop, e.g. default gateway

Other notes on IPv6

- Mostly similar to IPv4, e.g. forwarding, prefix matching
- Loopback address is ::1
 - Equivalent to IPv4 127.0.0.1
- "ARP" is replaced by "NDP"
- Beware of "Duplicate Address Detection" (DAD)
 - Many vendors implement this in such a way that any address conflict causes one side to *permanently* disable the address until the interface is shutdown and re-enabled
 - Cisco shows the disabled address as "[DUP]"

Questions about IPv6?

IPv4 / IPv6	IANA	

IPv4 Address Distribution

- IPv4 addresses
 - Distributed by RIRs according to demonstrated need
 - Almost completely exhausted
 - RIRs have IPv4 run-out policies
 - E.g. one-off assignment from a limited pool, or waiting list
- Typical Campus:
 - Small public address block
 - For public servers, NAT pools
 - Anything from /28 to /21 depending on RIR region/upstream
 - Private address block
 - For internal end users, network management, etc

IPv6 Address Distribution

- IPv6 addresses
 - Network operators receive minimum of /32
 - Includes RENs, University Campuses, etc
 - End-sites receive /48 or /56
 - Smallest subnet size is /64
- Typical Single Campus:
 - /48 divided out amongst buildings
- Typical Multi-Campus or Multi-Faculty:
 - /32 divided out amongst Campuses
 - /48 per campus

Questions about IP Address Distribution?

Designing an Address Plan

 Now we will look at how to design an address plan for a simple campus

Designing an Address Plan

There are different numbers of hosts in each part of the campus

Network	Number of Devices
Border Router to Core Router	2
Server Network	23
Science Building	120
Arts Building	52
Engineering Building	200
Library	80
Administration Building	40
Languages Building	30
Staff & Student Hostel	60

IPv4 Plan

- You will not get public IPv4 space for all this!!
 - In the old days you could (and would have to plan and subnet carefully to justify your allocation)
- Today, make the best of whatever you can get
 - Got a /28? Use a /29 for a few servers with public IPs and the other /29 for a NAT pool
 - Got a /24? You're lucky! Maybe two /26 server networks and /25 for NAT?
- Everything else has to be private, but that's easy with 10.0.0.0/8
- Make a logical IPv4 address plan that's easy to manage

Suggested campus IPv4 plan

Allocate 10.X.0.0/16 to each building and subdivide consistently

Ne	twork	Contai	ner subnet	
Co	re	10.0.0.	0/16	
Bu	ilding 1	10.1.0.0/16		
— Bu	ilding 2 etc	10.2.0.	0/16 etc .	
— Bu	ilding 255		10.255	.0.0/16
→	Use	Subnet		VLAN
	Network Management	10.x.0.0/24		x0
	Wired (staff/general)	10.x.1.0/	24	x1
	Wired (computer lab)	10.x.2.0/2	24	x2
	Wireless *	10.x.8.0/2	21	x8

Use	Subnet	VLAN
Loopbacks (further divided into /32's)	10.0.0.0/24	-
Point-to-points (divided into /30's or /31's)	10.0.1.0/24	-
Public servers	192.0.2.72/29	2
Student servers	10.0.3.0/24	3
Finance servers	10.0.4.0/24	4

Advantages of a consistent plan

- You can look at any IP address and immediately tell:
 - Which building it's in
 - Which subnet / application within that building
 - Which VLAN it's on
- Very helpful for troubleshooting and tracing
- No need to think when creating new configs or allocations
 - Lends itself well to templated configs
- Feel free to tailor our suggestions to your use case

Modified plan for ACLs

- Protect switch management IPs, video cameras, BMS etc from general access by aggregating them, for example under 10.128/9
 - Network management = 10.128.0.0/16
 - Building 1 network management = 10.128.1.0/24
 - Building 2 network management = 10.128.2.0/24 ... etc
 - IP cameras = 10.129.0.0/16 ... etc
- This allows for short, simple ACLs in the core router
 - allow from [monitoring systems] to 10.128.0.0/16
 - allow from [video recorders] to 10.129.0.0/16
 - deny from everywhere else to 10.128.0.0/9

Multi-campus university?

- Allocate blocks out of 10/8 to each campus, e.g. 8 lots of /11
 - -10.0.0.0/11 (10.0 10.31)
 - -10.32.0.0/11 (10.32 10.63)
 - **–** ...
 - -10.224.0.0/11 (10.224 -10.255)
- More than 32 buildings in a campus? Give it another /11 block, and/or subdivide each building block

Building 33A	10.33.0.0/18	Building 33C	10.33.64.0/18
Building 33B	10.33.128.0.0/18	Building 33D	10.33.192.0/18

IPv6 Plan

- This time we have unique public IPs everywhere!
- Campus gets a /48
 - That's $2^{16} = 65,536$ subnets of /64
 - Same as 2¹⁶ subnets from 10.0.0.0/24 to 10.255.255.0/24
 - A happy alignment
- We will use 2001:db8:abc::/48 as our example

Suggested campus IPv6 plan

Allocate a /60* to each building and subdivide consistently

	Netv	work	Со	ntainer subnet						
	Core			01:db8:abc::/60						
	Building 1 Building 2 etc		200	01:db8:abc:10::/60						
—			2001:db8:abc:20::/60				+			
\vdash	Build	ding 255	ng 255 2001:db8:abc:2550::/60				Use	Subnet	VLAN	
							Loopbacks (divided into /128's)	2001:db8:abc::/64	-	
	→	Use		Subnet	VLAN	Point-to-points (divided into /127's)	2001:db8:abc:1::/64	-		
		Device Management Wired (staff/general)		2001:db8:abc:x0::/64	x0		Public servers	2001:db8:abc:2::/64	2	
				2001:db8:abc:x1::/64	x1		Student servers	2001:db8:abc:3::/64	3	
		Wired (computer lal	b)	2001:db8:abc:x2::/64	x2		Finance servers	2001:db8:abc:4::/64	4	
		Wireless		2001:db8:abc:x8::/64	x8					

VLAN tags

- VLAN IDs 2-4094 are available. You are unlikely to run out!
- If your core router supports "no switchport" and sub-interfaces, then you could use the *same* VLAN tags to every building
 - Worth considering even if you are not short of VLANs
 - Makes edge/dist switch configs nearly identical everywhere

Use	Subnet (v4)	Subnet (v6)	VLAN
Network Management	10.x.0.0/24	2001:db8:abc:xx00::/64	10
Wired (staff/general)	10.x.1.0/24	2001:db8:abc:xx01::/64	11
Wired (computer lab)	10.x.2.0/24	2001:db8:abc:xx02::/64	12
Wireless	10.x.8.0/21	2001:db8:abc:xx08::/64	18

Same on all switches in all buildings

Questions?

