

2009 E2S2 Symposium

Designing, Integrating, and Operating a Microgrid 07 May, 2009

Clark B. Boriack, Manager Power Management and Distribution

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 07 MAY 2009		2. REPORT TYPE		3. DATES COVE	red to 00-00-2009		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
Designing, Integra	5b. GRANT NUMBER						
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER				
					5e. TASK NUMBER		
				5f. WORK UNIT NUMBER			
					PERFORMING ORGANIZATION EPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)				
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
	OTES DIA Environment, I in Denver, CO. U.S		• '	, v <u>-</u>	um & Exhibition		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 27	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Microgrid Definition
- Microgrid Benefits
- Testbed Requirements
- Technical Approach
- Results

What is a Microgrid?

General Definition:

 A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources that can operate in parallel with the grid or in an intentional island mode.

Key Defining Characteristics:

- Integrated distributed energy resources (DERs), capable of providing sufficient and continuous energy to mission critical loads
- Independent controls; island and reconnect with minimal disruption
- Flexible configuration and operation of the power delivery system
- Optimized local DERs, large network loads, and broader power system

What a Microgrid is NOT

- One microturbine in a commercial building
- A group of individual generation sources that are not coordinated, but run optimally for a narrowly defined load
- A load or group of loads that cannot be easily separated from the grid or controlled
- A system that can only operate in isolation from the grid
- Does not have to have thermal (whereas CHP by definition has thermal)

Microgrid Overview

Microgrid Potential Benefits

- IMPROVED RELIABILITY
 - Critical load support
 - Integration of multiple generation sources (legacy and renewable)
- RISK MITIGATION
 - Eliminate dependance upon local utility
 - Integrating available energy sources for backup power
- ELECTRICAL COST REDUCTION
 - Intelligent control for peak shaving
 - Renewable Energy Integration
 - Improved asset utilization by integrating distributed sources

Microgrid Testbed Objective

- Objective Design, install, and test a scalable microgrid with distributed generation sources and loads
 - Modeling and Simulation Software tool to confirm design strategies and solutions
 - 2. System Controllers Combination Distribution Management System and Internet resource
 - 3. Renewable Energy Sources Combined generation of conventional generation with renewable energy sources.

Microgrid Testbed Requirements

- Improve System Reliability
 - Eliminate single points of failure by using redundant controls
 - Intelligently control sources to meet load requirements
 - Intelligently control loads to avoid system overloads
 - Develop software modeling to predict system limitations and develop appropriate controls
 - Simplify generator synchronization controls by using one controller as opposed to three independent relays (typical scheme)
 - Integrate IEE1547 intertie relay for parallel operation with the utility
 - COTS parts for quick support, replacement

Microgrid Testbed Requirements

- Benefit from System Modeling
 - Develop software models to simulate component and system performance to identify performance limitations and control solutions
 - Use developed models to design and implement future microgrids or improve existing systems
- Improve Asset Utilization
 - Integrate distributed sources and loads into one distribution system to allow for efficient use of generation assets
 - Improving asset utilization reduces fuel consumption and associated logistics requirements
 - Integrate renewable sources as available

Microgrid Approach

- Microgrid Master and Local Controllers
 - Programmable Logic Controllers (PLCs) to coordinate and implement intelligent control of distributed sources and loads.
 - Redundant controllers to avoid single points of failure.
 - LabView based-HMI to provide oversite and configure testing
 - COTS components
- Generator Controls
 - One main controller per generator simplifies synchronization of conventional generation sources compared to configuring and integrating three additional control relays per generator.
 - COTS components

Microgrid Approach

- Software Modeling -
 - Prepare software models of individual sources and loads to predict impact to electrical system.
 - Create a microgrid system model from the individual component models to predict system performance.
 - Validate accuracy and correct simulation models
 - Create test cases and control strategies based upon system performance/limitations predicted and validated by models.
- Control Algorithms
 - Monitor system health and intelligently control sources and loads
 - Coordinated control between controllers for system stability

System One-line

Distributed Sources and Loads

- **Distributed Sources**
 - (1) 35 kW Diesel Generator
 - (1) 35 kW Natural Gas Generator
 - (1) 40kW Renewable Energy Inverter
 - (1) 400A Utility Service
 - (1) 50kW Grid Simulator
- Distributed Loads
 - (4) 5 hp three phase motors
 - (1) 20hp dynamometer
 - (1) 225 kW Resistive Load Bank

Test Plan

- Component Model Validation
 - (1) 35 kW Diesel Generator
 - (1) 35 kW Natural Gas Generator
 - (1) 40kW Renewable Energy Inverter
 - (1) 50kW Grid Simulator
 - (4) 5 hp three phase motors
 - (1) 20hp dynamometer
 - (1) 225 kW Resistive Load Bank
- System Model Validation and Analysis
- System Stability Testing and Analysis

Test Results Summary Steady State Accuracy: 90+%

Test	Description	Real Power % Accuracy	Reactive Power % Accuracy
TC1-1	RLB Component Validation Test	>91% (steady state at load bus)	N/A
TC1-2	MLB Component Validation Test	N/A	>95% (steady state at load bus)
TC1-3	20 hp Motor w/ Dynamometer Component Validation Test	>95% (steady state at load bus)	>90% (steady state at load bus)
TC1-4	Inverter Component Validation Test	>99% (steady state at inverter bus)	N/A
TC1-5	DG Component Validation Test	>92% (steady state at load bus)	>90% (steady state at load bus)
TC1-6	NGG Component Validation Test	>92% (steady state at load bus)	>90% (steady state at load bus)
TC2-1	Grid-connected System Validation Test	>97% (steady state at load bus)	>92% (steady state at load bus)

Dyno Component Test One-line

Connected: Utility, 20Hp Dynamometer

Dyno Component Test Results Model kW vs Actual - 95+% Accurate

Dyno Component Test Results Note: Identify System Stress Points, VAR Requirements

Inverter Component Test One-Line Connected: Utility, Inverter

Inverter Component Test Results

Initial Model kW vs Actual -

Note: False Output Ringing Predicted by Model

Inverter Component Test Results

Revised Model kW vs Actual

Note: Model Configuration Impacts Simulation Software Results

System Test One-line

Connected: Utility, Gensets, Inverter, RLB, MLB, Dyno

System Test Results

Utility Current THD Measurements Note: Confirm THD

System Test Results

Utility Neutral Current Measurements Note: Confirm Neutral Current Direction

System Test Results

Note: Neutral Current Solutions

- Transformer Isolation
 - Delta-Wye Transformer traps 3rd order harmonics
- Three Phase Harmonic Filter
 - Wye Delta Transformer to eliminate zero sequence currents
- Neutral Reactor
 - Tuned reactor to block 3rd order currents only
- Neutral Grounding
 - Establish one neutral path to ground
 - Confirm neutral grounding when isolated from utility

Acknowledgements

- ERDC-CERL Contract No.
 - W9132T-07-R-0017
- ERDC-CERL Technical Monitor Frank Holcomb (217) 373-5864

Franklin.H.Holcomb@erdc.usace.army.mil

Contact Information

Clark Boriack
Concurrent Technologies Corporation
Manager, Power Management Distribution
(814) 262-2381

Email: boriackc@ctc.com

Web Adrress: http://www.ctc.com

