

Alexssandre de Oliveira Junior

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University

Geographic Nutshell

Brasil

210 millions of people 8.516.000 km²

Geographic Nutshell

Poços de Caldas

$\nabla \nabla$ INSIDE THE CRATER OF A LARGE EXTINCT VOLCANO

DISSIPATION OF QUANTUM RESOURCES

Geographic Nutshell

Poços de Caldas

Geographic Nutshell

São Paulo

DISSIPATION OF QUANTUM RESOURCES $\nabla \nabla$

Geographic Nutshell

São Paulo

INSTITUTE OF PHYSICS "GLEB WATAGHIN"

DISSIPATION OF QUANTUM RESOURCES $\nabla \nabla$

Geographic Nutshell

São Paulo

INSTITUTE OF PHYSICS "GLEB WATAGHIN"

- Resource theories
- Open quantum systems
- Continuous variable quantum information

Quantum Thermodynamics

TEAM-NET ONLINE WORKSHOP

This field is extremely broad

- This field is extremely broad
- \bullet Thermodynamics as a theory of restrictions \longrightarrow resource theory approach

Resource theory of thermodynamics

Free States

$$\gamma = \frac{e^{-\beta H}}{Z}$$

Resource theory of thermodynamics

Free States

$$\gamma = \frac{e^{-\beta H}}{Z}$$

Thermodynamic monotone

i.
$$\phi(\mathcal{E}(\rho)) \leq \phi(\rho)$$
 ii. $\phi(\gamma) = 0$

ii.
$$\phi(\gamma) = 0$$

$$D(\rho||\gamma) = \text{tr}[(\rho(\log \rho - \log \gamma))]$$

Resource theory of thermodynamics

Free States

$$\gamma = \frac{e^{-\beta H}}{Z}$$

Thermodynamic monotone

i.
$$\phi(\mathcal{E}(\rho)) \leq \phi(\rho)$$
 ii.
$$\phi(\gamma) = 0$$

ii.
$$\phi(\gamma) = 0$$

$$D(\rho||\gamma) = \text{tr}[(\rho(\log \rho - \log \gamma))]$$

Thermal operations

$$\mathcal{E}_{\rho} = \operatorname{tr}(U(\rho \otimes \gamma_B)U^{\dagger})$$

$$I. \quad \mathcal{E}(\gamma) = \gamma$$

II.
$$\mathcal{E}(e^{-iHt}\rho e^{iHt}) = e^{-iHt}\mathcal{E}(\rho)e^{iHt}$$

State interconversion: work extraction

Setting

State interconversion: work extraction

Setting

General interconversion problem:

Setting

General interconversion problem:

System + empty battery

$$(\circ \otimes)^{\otimes n} \xrightarrow{W?} (\circ \circ \otimes)^{\otimes n}$$

$$W = k_B T \left(\frac{D(\mathbf{p}||\gamma)}{D(\mathbf{p}||\gamma)} - \sqrt{\frac{V(\mathbf{p}||\gamma)}{n}} \Phi^{-1}(\epsilon) \right)$$

• Fluctuation-dissipation relations in resource theories

JC. T. Chubb, M. Tomamichel, and K. Korzekwa, "Beyond The Thermodynamic Limit: Finite-size Corrections To State Interconversion Rates", Quantum, vol. 2, p. 108, 2018.

Fluctuation - dissipation relations

General idea

Fluctuation - dissipation relations

General idea

Fluctuation - dissipation

Fluctuation - dissipation relations

Brownian motion

Drag dissipates kinetic energy, turning it into heat

FDR: when there is a process that dissipates energy, there is a reverse process related to thermal fluctuations.

$$W = k_B T \left(\frac{D(\mathbf{p}||\gamma)}{D(\mathbf{p}||\gamma)} - \sqrt{\frac{V(\mathbf{p}||\gamma)}{n}} \Phi^{-1}(\epsilon) \right)$$

JC. T. Chubb, M. Tomamichel, and K. Korzekwa, "Beyond The Thermodynamic Limit: Finite-size Corrections To State Interconversion Rates", Quantum, vol. 2, p. 108, 2018.

Two frameworks for work extraction

Interconversion Scenario

$$(\bullet \otimes \blacksquare)^{\otimes n} \xrightarrow{W?} (\bullet \bullet \bullet \otimes \blacksquare)^{\otimes n}$$

- Mathematically very clean
- Abstract and hard to implement physically

Level transformation

Strongly physically motivated model

Two frameworks for work extraction

Interconversion Scenario

Level transformation

Why and how these two frameworks are related?

• Resource resonance: under certain circumstances one can avoid unnecessary work fluctuations (dissipation of energy)

K. Korzekwa, M. Tomamichel and JC. T. Chubb, "Avoiding Irreversibility: Engineering Resonant Conversions of Quantum Resources", Phys. Rev. Lett. 122, 110304, 2019.

Conclusions

- Explore the role of the FDR in the resource theory of thermodynamics
- A "dictionary" between the two frameworks
- Design experimental setups that would employ the resource resonance
- What does the fluctuation term means in the resource theory of entanglement when studying transformations between pure bipartite states?
- Work extraction considering coherent states

Than.