

Contrôle mécanique du solide

1 - Système à leviers

Dans le système bielle-manivelle ci-contre, l'extrémité d'une tige (OA) de longueur (R) a un mouvement circulaire uniforme avec la vitesse angulaire (ω) constante.

Elle entraîne :

- une bielle (AB) de longueur $L_1 > R$
- une bielle (CB) de longueur $L_2 > R$ à t = 0, $\Theta = 0$.

Le point D est le milieu de [AB] . Le point G est le milieu de [BC] On pose :

$$\overrightarrow{OC} = a.\vec{x} + b.\vec{y}$$

 $(\vec{x}, \vec{y}, \vec{z})$ repère lié à la partie fixe $(\vec{x_1}, \vec{y_1}, \vec{z_1})$ repère lié à (1) $(\vec{x_2}, \vec{y_2}, \vec{z_2})$ repère lié à (2) $(\vec{x_3}, \vec{y_3}, \vec{z_3})$ repère lié à (3)

- 1) Représenter les figures de changement de repère faisant apparaître les angles Θ , α et β
- 2) Quelle est l'équation horaire angulaire ($\Theta = f(t)$)?
- **3)** Déterminer les vitesse de rotation $\vec{\Omega}$ (1/0), $\vec{\Omega}$ (2/0), $\vec{\Omega}$ (3/0) en fonction de Θ , β , α et de leurs dérivées
- 4) Déterminer le vecteur vitesse du point A, $\overrightarrow{V_{A/R}}$ en fonction de Θ , R et de ses dérivées.
- **5)** Déterminer le vecteur vitesse du point B (par changement de point), $\overline{V_{B\ 2/R}}$ en fonction de Θ , α , R et L₁ et de leurs dérivées. (exprimer le vecteur dans le repère $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$)
- **6)** Déterminer le vecteur vitesse du point B (par dérivation), $\overline{V_{B_3/R}}$ en fonction de Θ , α , β et L_2 et de leurs dérivées. (exprimer le vecteur dans le repère $\overline{x_2}$, $\overline{y_2}$, $\overline{z_2}$)
- 7) En déduire deux relations entre Θ , α , β , R, L₁ et L₂
- 8) Ecrire les torseurs cinématiques suivants :
- Torseur cinématique du mouvement de 1 par rapport à R exprimé en A
- Torseur cinématique du mouvement de 2 par rapport à R exprimé en A puis en B
- Torseur cinématique du mouvement de 3 par rapport à R exprimé en C puis en B

Rappel : Le torseur cinématique $\{ {m v}_{\scriptscriptstyle 2/1} \}$ du mouvement d'un solide 2 par rapport à un solide 1 exprimé au point A sera noté :

$$\left\{\boldsymbol{\mathcal{V}}_{(2\rightarrow1)}\right\} = \left\{\frac{\overrightarrow{\Omega}_{2/1}}{\overrightarrow{V}_{A_{2/1}}}\right\} = \left\{\frac{\overrightarrow{\Omega}_{2/1}}{\overrightarrow{V}_{A_{2/1}}} = \omega_{x21}.\overrightarrow{x} + \omega_{y21}.\overrightarrow{y} + \omega_{z21}.\overrightarrow{z}\right\}$$

- 9) Déterminer $\overrightarrow{I_{B\ 2/R}}$, l'accélération du point B en fonction de Θ , R et L_1 et de ses dérivées.
- **10)** Déterminer $\overline{\Gamma_{B \, 3/R}}$, l'accélération du point B en fonction de β et L₂ et de ses dérivées.

2 - Demi-disque

Soit une plaque (P) en forme de demi-disque de rayon (a) et d'épaisseur négligeable devant le rayon (a)

On note μ la masse surfacique du matériau constituant la plaque (P)

Le référentiel R₀ est galiléen et est rapporté au repère $(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$

2) Déterminer la position du centre de gravité de la plaque (P) en fonction de a

- les moments et les produits d'inertie qui sont égaux
- 4) Calculer les moments d'inertie lox, loy et loz du demi-disque (on utilisera les coordonnées polaires)

6) Ecrire la matrice d'inertie en G

