

REDES DE INFORMACIÓN

ARQUITECTURA DE WAN Y PROTOCOLOS DE SUBRED DE ACCESO

Ingeniero ALEJANDRO ECHAZÚ aechazu@comunicacionnueva.com.ar

ENLACES DE COMUNICACIONES

TIPOS DE CONMUTACION
(SEGÚN LA FORMA EN QUE CONMUTAN LOS NODOS)

DE PAQUETES

REDES WAN

COMPOSICIÓN

ENLACES DE COMUNICACIONES

NODOS DE RED

EQUIPOS TERMINALES

Conmutación

CUADRO COMPARATIVO COSTOS VS VOLUMEN DE DATOS

TIPOS DE CONMUTACIÓN

DE CIRCUITOS	DE PAQUETES (DATAGRAMAS)	DE PAQUETES (CIRCUITOS VIRTUALES)
CONEXIÓN FÍSICA (CONCEPTO)	SIN CONEXIÓN LÓGICA	CONEXIÓN LÓGICA
TRANSMISIÓN CONTINUA	TRANSMISIÓN PAQ	TRANSMISIÓN PAQ
USO EFICIENTE PARA VOZ, INEFICIENTE PARA DATOS	USO EFICIENTE PARA DATOS, MENOS EFICIENTE PARA VOZ	USO EFICIENTE PARA DATOS, MENOS EFICIENTE PARA VOZ
MANTIENE EL ORDEN DE LOS DATOS TX	NO MANTIENE EL ORDEN DE LOS DATOS TX	MANTIENE EL ORDEN DE LOS DATOS TX
SE COBRA POR TIEMPO Y DISTANCIA	SE COBRA POR CANTIDAD DE PAQ Y TIEMPO. NO PESA EN GENERAL LA DISTANCIA	SE COBRA POR CANTIDAD DE PAQ Y TIEMPO. NO PESA EN GENERAL LA DISTANCIA
ENCAMINAMIENTO MÁS RÍGIDO	ENCAMINAMIENTO POR LA RUTA MENOS COSTOSA EN RETARDOS Y CANT SALTOS	ENCAMINAMIENTO POR LA RUTA MENOS COSTOSA EN RETARDOS Y CANT SALTOS

Líneas Dedicadas / Conmutadas

Figura S.8. Comparación entre la línea dedicada y la línea Switched-56 kbits/seg.

TIPOS DE CONMUTACIÓN

DE CIRCUITOS	DE PAQUETES (DATAGRAMAS)	DE PAQUETES (CIRCUITOS VIRTUALES)
RUTA DEDICADA	NO HAY RUTA	RUTA NO DEDICADA
MSJ NO SE ALMACENA	PAQ SE PUEDEN ALMACENAR HASTA SU ENVÍO	PAQ SE ALMACENAN HASTA SU ENVÍO
RUTA SE ESTABLECE PARA TODA LA TRANSMISIÓN	CADA PAQ TIENE SU PROPIO ENRUTAMIENTO	RUTA SE ESTABLECE PARA TODA LA TRANSMISIÓN
RETARDO DE ESTABLECIMIENTO	RETARDO DE TX DE PAQ	RETARDO DE ESTABLECIMIENTO Y DE TX DE PAQ
ANCHO DE BANDA FIJO	USO DINÁMICO DEL ANCHO DE BANDA	USO DINÁMICO DEL ANCHO DE BANDA
LA CONGESTIÓN BLOQUEA EL ESTABLECIMIENTO, NO	LA CONGESTIÓN AUMENTA EL RETARDO DE PAQ	LA CONGESTIÓN BLOQUEA EL ESTABLECIMIENTO Y AUMENTA EL RETARDO DE

PAQ

RETARDO EN LA

TRANSMISIÓN ESTABLECIDA

TIPOS DE SERVICIOS

ORIENTADO A LA CONEXIÓN

- •E, MYLLA CONEXIÓN
- •MANTIENE EL ORDEN DEL TRÁFICO
- **•SIMILAR A UN TUBO**
- •COMO EL SISTEMA TELEFÓNICO

CIRCUITO VIRTUAL

SIN DECISIONES DE ENCAMINAMIENTO POR CADA BLOQUE

ESTABLECIMIENTO DE UNA RUTA EXTREMO A EXTREMO

SIN CONEXIÓN

- •ENCAMINAMIENTO INDEPENDIENTE
- •NO SIEMPRE MANTIENE EL ORDEN DEL TRÁFICO
- ·SIMILAR A UNA CARTA COMÚN
- •COMO EL SISTEMA POSTAL

DATAGRAMA

MAYOR TRABAJO, PERO MÁS ROBUSTAS Y CON MEJOR CAPACIDAD DE ADAPTACIÓN

NO DETERMINACIÓN ANTICIPADA DE RUTAS

ENCAMINAMIENTO INDEPENDIENTE

Data

EFICIENCIA EN LA

TRANSMISIÓN Y EN

EL CONTROL DE ERRORES

RED DE CONMUTACIÓN DE CIRCUITOS

TIPOS DE CONMUTACIÓN POR CIRCUITOS

POR DIVISIÓN EN EL ESPACIO

INICIALMENTE ANALÓGICOS.

RUTAS QUE SE ESTABLECEN SON FÍSICAMENTE INDEPENDIENTES ENTRE SÍ.

POR DIVISIÓN EN EL TIEMPO

SE BASA EN SISTEMAS DIGITALES Y MULTIPLEXIÓN POR DIVISIÓN DE TIEMPO (TDM).

CANALES DE MENOR VELOCIDAD SON MUESTREADOS A UNA MAYOR VELOCIDAD PARA INTEGRARSE EN UN BUS TDM.

CONCEPTOS BÁSICOS

IMPLICA LA EXISTENCIA DE UN CANAL DE COMUNICACIONES DEDICADO ENTRE DOS ESTACIONES.

FASES

- •ESTABLECIMIENTO DEL CIRCUITO
- •TRANSFERENCIA DE DATOS
- •DESCONEXIÓN DEL CIRCUITO

COMPONENTES

- •ABONADOS
- •BUCLE LOCAL (LAZO DE ABONADO)
- •CENTRALES
- •LÍNEAS PRINCIPALES

CONMUTADOR POR DIVISIÓN EN EL ESPACIO (1 ETAPA)

CONMUTADOR POR DIVISIÓN EN EL ESPACIO (3 ETAPAS)

NUEVOS CONCEPTOS

CONMUTADOR POR DIVISIÓN EN EL TIEMPO

PROTOCOLO PPP

POINT TO POINT PROTOCOL

PROTOCOLO PARA ENMARCAR EL IP CUANDO SE ENVÍA A TRAVÉS DE UNA LÍNEA SERIAL.

DE NIVEL DE ENLACE, ENTRE DOS DISPOSITIVOS.

DERIVADO DEL HDLC.

USADO PARA FORMAR RPV.

FUNCIONES:

- •TRANSPORTE DE DATOS. ASEGURA EL ENLACE Y RECEPCIÓN ORDENADA. EMPLEA ARQ VENTANA DESLIZANTE.
- •AUTENTICACIÓN
- •ASIGNACIÓN DINÁMICA DE DIR IP

PDU PPP 8 8 16 0 a N 16 o 32 8 B D C P INFO FCS B

B = BANDERA

D = DIRECCIÓN. LLEVA SIEMPRE LA DIRECCIÓN ESTANDAR DE DIFUSIÓN. SON DOS ESTACIONES. *

C = CONTROL. TIPO DE TRAMA NO NUMERADA. *

P = IDENTIFICADOR DE PROTOCOLO. PUEDE ASOCIARSE A VARIOS (IP, LCP, PAP, CHAP, ETC.)

FCS = MEDIANTE CRC (16 o 32)

* CAMPOS QUE PUEDEN SER ELIMINADOS POR NEGOCIACIÓN.

LCP (PROTOCOLO DE CONTROL DE ENLACE)

PROTOCOLO PPP - FASES

Establecimiento de conexión. Una computadora contacta con la otra y negocian los parámetros relativos al enlace usando el protocolo LCP. Este protocolo es una parte fundamental de PPP y por ello están definidos en el mismo RFC. Usando LCP se negocia el método de autenticación a utilizar, el tamaño de los datagramas, números claves para usar durante la autenticación,...

Autenticación. No es obligatorio. Existen dos protocolos de autenticación. El más básico e inseguro es PAP, aunque no se recomienda dado que manda el nombre de usuario y la contraseña en claro. Un método más avanzado y preferido por muchos ISPs es CHAP, en el cual la contraseña se manda cifrada.

Configuración de red. Se negocian parámetros dependientes del protocolo de red que se esté usando. PPP puede llevar muchos protocolos de red al mismo tiempo y es necesario configurar individualmente cada uno de estos protocolos. Para configurar un protocolo de red se usa el protocolo NCP correspondiente. Por ejemplo, si la red es IP, se usa el protocolo IPCP para asignar la dirección IP del cliente y sus servidores DNS.

Transmisión. Se manda y recibe la información de red. LCP se encarga de comprobar que la línea está activa durante periodos de inactividad. Obsérvese que PPP no proporciona cifrado de datos.

Terminación. La conexión puede ser finalizada en cualquier momento y por cualquier motivo.

PROTOCOLO PPP - FUNCIONAMIENTO

PPP State Diagram for Line Activation

COMPARACIÓN CON SLIP

SLIP (SERIAL LINE IP): PROTOCOLO DE PROCESO DE TRAMAS UTILIZADO PARA ENVIOS IPA TRAVÉS DE UNA LÍNEA SERIAL.

ENCAPSULA DATAGRAMAS IP. LÍNEAS SINCRÓNICAS. ANTIGÜO ('80).

VENTAJAS DEL PPP

- •Permite la conexión tanto mediante líneas síncronas como asíncronas.
- •Permite la asignación dinámica de direcciones IP en ambos extremos de la conexión.
- •Permite el transporte de varios protocolos de red sobre él (SLIP solamente permite IP).
- •Implementa un mecanismo de control de red NCP.
- •El protocolo PPP se puede usar también para crear RPV tanto cifradas como no cifradas, pero si se desea cifrado, se debe implementar por debajo de PPP.