Algorithmique pour la bioinformatique

3. Chaînes de Markov cachées

Nicolas Lartillot

January 2017

- Introduction
- 2 Hidden Markov Models
 - Formal definition
 - Most likely path: Viterbi algorithm
 - Summing over paths: Baum-Welsch algorithm
 - Learning HMM parameters and structure
- 3 Examples
 - Predicting secondary structure of proteins
 - Pairwise alignment
 - Multiple alignment: profile HMMs

Retour sur le TP 1

prior (prob. of genotype given allele frequencies)

$$p(aa) = \pi_a^2$$
 $p(ab) = 2\pi_a\pi_b$

likelihood (prob. of read counts n_{ij} given genotype)

$$p(n_{ij} \mid aa, \epsilon) = (1 - \epsilon)^{n_{ij}(a)} \left(\frac{\epsilon}{3}\right)^{n_{ij}^{tot} - n_{ij}(a)}$$

$$p(n_{ij} \mid ab, \epsilon) = \left(\frac{1}{2}(1 - \epsilon) + \frac{1}{2}\frac{\epsilon}{3}\right)^{n_{ij}(a) + n_{ij}(b)} \left(\frac{\epsilon}{3}\right)^{n_{ij}^{tot} - n_{ij}(a) - n_{ij}(b)}$$

Bayes theorem: posterior probability of genotypes

$$p(ab \mid n_{ij}, \epsilon) \propto p(n_{ij} \mid ab, \epsilon) p(ab)$$

Bayes theorem (with normalization factor)

$$p(ab \mid n_{ij}, \epsilon) = \frac{p(n_{ij} \mid ab, \epsilon)p(ab)}{\sum_{ab}p(n_{ij} \mid ab, \epsilon)p(ab)}$$

Marginal probability of read counts

$$p(n_{ij} \mid \epsilon) = \sum_{ab} p(n_{ij} \mid ab, \epsilon) p(ab)$$

product over all individuals and all positions (total likelihood):

$$L(\epsilon) = \prod_{i} \prod_{j} p(n_{ij} \mid \epsilon)$$

$$\ln L(\epsilon) = \sum_{i} \sum_{i} \ln p(n_{ij} \mid \epsilon)$$

 \rightarrow : can be used to estimate ϵ (by maximum likelihood)

Log likelihood curve

• maximized for $\epsilon \simeq 0.008$

Model of alternating GC-rich and GC-poor regions

observed sequence (S)
hidden sequence (H)

ACTAGAATGGCGGCCAGACGATTACATA.. PPPPPPPPPPRRRRRRRRRRRRRPPPPPPPPP..

Emission and transition probabilities

transition probabilities ($\delta = \epsilon = 0.001$)

	Р	R
Р	0.999	0.001
R	0.001	0.999

Secondary structure

- 3 hidden states: L (loop), H (Helix) and E (Extended beta-strand)
- in each state, 20 emission probabilities (amino-acids)

Secondary structure

transition probabilities between hidden states

	L	Н	Е
L	0.85	0.07	0.08
Н	0.05	0.94	0.01
Ε	0.06	0.07 0.94 0.01	0.93

$$\mathbf{q} = (q_{kl})_{k,l=L,H,E}$$

emission probabilities

	Α	С	 Υ
L	0.05	0.07	 0.08
Н	0.03	0.03	 0.12
Ε	0.05 0.03 0.10	0.11	 0.03

$$\mathbf{e} = (e_k(x))_{k=L,H,E, x=A,C,...,Y}$$

A Hidden Markov chain *M* characterized by

- an alphabet of hidden states s_1, s_2, \dots, s_K
- an alphabet of observable symbols v₁, v₂,..., v_P
- initial probabilities (over hidden states) π_k (vector of dim K)
- transition probabilities (between hidden states) q_{kl} ($K \times K$ matrix)
- emission probabilities $e_k(v_p)$ (K vectors of dim P)

A realization: 2 parallel series of random variables

- the hidden state path $h = (h_t)_{t=1..T}$
- the observed sequence of emitted symbols: $x = (x_t)_{t=1..T}$

Joint probability (hidden and observed states)

$$p(x, h \mid M) = \pi(h_1)e_{h_1}(x_1) \left[\prod_{t=1}^{T-1} q_{h_t h_{t+1}} e_{h_{t+1}}(x_{t+1}) \right]$$

Probability of paths and emissions

Joint probability (hidden and observed states)

$$p(x, h \mid M) = \pi(h_1)e_{h_1}(x_1) \left[\prod_{t=1}^{T-1} q_{h_t h_{t+1}} e_{h_{t+1}}(x_{t+1}) \right]$$

$$= \left[\pi(h_1) \prod_{t=1}^{T-1} q_{h_t h_{t+1}} \right] \left[e_{h_1}(x_1) \prod_{t=1}^{T-1} e_{h_{t+1}}(x_{t+1}) \right]$$

$$= p(h \mid M) p(x \mid h, M)$$

Joint probability (hidden and observed states)

$$p(x, h \mid M) = p(x \mid h, M) p(h \mid M)$$

Marginal probability of observed sequence (sum over all paths)

$$p(x \mid M) = \sum_{h} p(x, h \mid M)$$

Posterior probability of hidden states (Bayes theorem)

$$p(h \mid x, M) = \frac{p(x \mid h, M) p(h \mid M)}{p(x \mid M)}$$
$$= \frac{p(x, h \mid M)}{p(x \mid M)}$$

The main algorithmic problems of HMM

paths

given an observed sequence x

- find the most likely hidden path (maximize $p(h \mid x, M)$)
- integrate probability over all paths (compute $p(x \mid M)$)

learning HMMs

- estimating parameters (transition and emission probabilities)
- choosing structure (how many hidden states, etc)

two types of learning

supervised: given annotated examples (x, h) pairs)

unsupervised: given non annotated examples (x only)

Most likely path: Viterbi algorithm

```
h = (h_t)_{t=1..T}: the sequence of hidden state (hidden path) x = (x_t)_{t=1..T}: the observed sequence of emitted symbols p(x, h \mid M): the joint probability
```

question

Given
$$x = (x_t)_{t=1..T}$$
, find $\hat{h} = (\hat{h}_t)_{t=1..T}$ such that:

$$\hat{h} = \max_{h} p(x, h \mid M)$$

- maximum is over K^T possible paths
- cannot be computed by brute force searching
- but exhaustive search is possible using dynamic programming

Definition

 $v_k(t)$: probability of the most probable path ending in state k at time t.

$$v_k(t) = \max_{h_1,\ldots,h_{t-1}} p(h_1,\ldots,h_{t-1},h_t=k,x_1,\ldots,x_t \mid M)$$

 $ptr_k(t)$: hidden state at time t-1 of this most probable path

$$v_1(t+1) \stackrel{?}{=} v_1(t)q_{11}e_1(L)$$

$$v_1(t+1) \stackrel{?}{=} v_2(t)q_{21}e_1(L)$$

$$v_1(t+1) \stackrel{?}{=} v_3(t)q_{31}e_1(L)$$

$$v_1(t+1) = \max_{k=1,2,3} v_k(t) q_{k1} e_1(x_{t+1})$$

$$ptr_1(t+1) = arg \max_{k=1,2,3} v_k(t) q_{k1} e_1(x_{t+1})$$

$$v_l(t+1) = \max_k v_k(t) q_{kl} e_l(x_{t+1})$$

Viterbi algorithm

initialization
$$v_0(0) = 1$$
, $v_k(0) = 0$ for $k < 0$.

recursion $t = 0 \dots T - 1$

$$v_l(t+1) = e_l(x_{t+1}) \max_k v_k(t) q_{kl}$$

$$ptr_l(t+1) = argmax_k v_k(t) q_{kl}$$
termination $p(x, \hat{h} \mid M) = \max_k v_k(T)$

$$\hat{h}_T = argmax_k v_k(T)$$
traceback $t = T - 1 \dots 1$

$$\hat{h}_t = ptr_{t+1}(\hat{h}_{t+1})$$

Complexity of Viterbi algorithm

compute a product of probabilities

- at each time step t = 1..T
- for each state k = 1..K at time t
- and for each state l = 1..K at time t + 1

Complexity

TK^2

- linear in T: very efficient, even for long genomic sequences
- quadratic in K: should keep model simple (low number of hidden states)

Integrating over all paths. Baum Welsch algorithm

 $h = (h_t)_{t=1..T}$: the sequence of hidden state (hidden path) $x = (x_t)_{t=1..T}$: the observed sequence of emitted symbols

question

Given $x = (x_t)_{t=1..T}$, compute

 $p(x, h \mid M)$: the joint probability

$$p(x \mid M) = \sum_{h} p(x, h \mid M)$$

- sum is over K^N possible paths
- again, exhaustive sum is possible using dynamic programming (forward and backward algorithms)

definition

$$f_k(t) = p(x_1, \ldots, x_t, h_t = k)$$

$$f_l(t+1) = \sum_k f_k(t) q_{kl} e_l(x_{t+1})$$

$$f_l(t+1) = \sum_k f_k(t) q_{kl} e_l(x_{t+1})$$

initialization
$$f_0(0) = 1$$
, $f_k(0) = 0$ for $k > 0$.

recursion
$$t = 0 \dots T - 1$$

$$f_l(t+1) = \sum_k f_k(t) q_{kl} e_l(x_{t+1})$$

termination
$$p(x \mid M) = \sum_{k} f_{k}(T)$$

definition

$$b_k(t) = p(x_{t+1}, ..., x_T | h_t = k)$$

1

2

3

$$b_k(t-1) = \sum_l q_{kl}e_l(x_t)b_l(t)$$

2

3

$$b_k(t-1) = \sum_l q_{kl}e_l(x_t)b_l(t)$$

initialization
$$b_k(L) = q_{k0}$$
.

recursion
$$t = T \dots 2$$

$$b_k(t-1) = \sum_l e_l(x_t)b_l(t)q_{kl}$$

termination
$$p(x \mid M) = \sum_{l} q_{0l} e_{l}(x_1) b_{l}(1)$$

2

3

$$w_{k}(t) = \sum_{h|h_{t}=k} p(x,h) = p(x_{1},...,x_{t},h_{t}=k) p(x_{t+1},...,x_{T} \mid h_{t}=k)$$

$$= f_{t}(k) b_{t}(k)$$

$$p(h_{t}=k \mid x) = \frac{w_{k}(t)}{\sum_{l} w_{l}(t)}$$

Learning HMM parameters

question

Given a training database of (x, h) annotated pairs learn the parameters of the HMM.

just compute

 N_{kl} total number of transitions from k to l in database

 N_k total number of transitions from k: $N_k = \sum_l N_{kl}$

 M_{kp} total number of emissions of symbol p when in state k

 M_k total number of emissions in state k: $M_k = \sum_p M_{kp}$

ML estimate

$$q_{kl} = rac{ extstyle N_{kl}}{ extstyle N_{k}}, \qquad e_k(extstyle s_{p}) = rac{ extstyle M_{kp}}{ extstyle M_{k}}$$

Learning HMM parameters

question

Given a training database of (x, h) annotated pairs learn the parameters of the HMM.

just compute

 N_{kl} total number of transitions from k to l in database

 N_k total number of transitions from k: $N_k = \sum_l N_{kl}$

 M_{kp} total number of emissions of symbol p when in state k

 M_k total number of emissions in state k: $M_k = \sum_p M_{kp}$

Bayes estimate (add pseudocounts)

$$q_{kl} = rac{N_{kl+n_l}}{N_k+n}, \qquad e_k(s_p) = rac{M_{kp}+m_p}{M_k+m}$$

Unsupervised training

Viterbi training (approximate)

- start from rough parameter estimates
- use Viterbi algorithm to infer paths
- compute N_{kl} and M_{kp} on viterbi paths
- ullet estimate parameters based on N_{kl} and M_{kp}
- iterate

Unsupervised training

Viterbi training (approximate)

- start from rough parameter estimates
- use Viterbi algorithm to infer paths
- compute N_{kl} and M_{kp} on viterbi paths
- estimate parameters based on N_{kl} and M_{kp}
- iterate

Baum Welsch training (exact: EM)

- start from rough parameter estimates
- use Baum Welsch algorithm to compute *expectations* of N_{kl} and M_{kp} over all paths
- ullet estimate parameters based on those expectations \overline{N}_{kl} and \overline{M}_{kp}
- iterate

Predicting secondary structure

Martin et al 2006

Pair HMM for pairwise alignment

sequence X ACAGAAT--ATT sequence Y A-AGGATACAT- hidden sequence MXMMMMMYYMMX

- ullet gap opening with probability δ
- ullet gap extension with probability ϵ
- emission probability (1 base in state X or Y, 2 bases in state M)

Posterior decoding (FSA)

- for each pair of positions, compute posterior probability of being aligned (i.e. jointly emitted by a match state)
- put in same colums positions that have high match probability
 Bradley et al PLOS Compute Biol 2009.

- gaps are not uniformly distributed along sequences
- conserved blocks, alternating with regions of more variable length
- corresponds to structured / loop regions of the conformation

Profile HMM

trained on seed alignment:

```
FQDN-R
FK-N-R
FK-E-R
FK-EVR
```

012.3.45

applied on new sequence

```
AEFWQ-RAI
0ii1i2d4ii5
```

Profile HMM

overall procedure

for each protein family

- make a seed alignment (based on superposition of 3D structures)
- train a profile HMM on seed alignment
- homologues should have higher $p(s \mid M)$: using Baum Welsch, search for homologues in databases.
- using Viterbi (or posterior decoding): align homologues with seed alignment

exemple: globin family

exemple: globin family

Krogh et al 1994