

Efficient Transformers for Financial Data

Final Project of MODELS OF SEQUENTIAL DATA

Skolkovo Institute of Science and Technology

TEAM 1
Vladimir Baikalov
Kovaleva Maria
Konstantin Shlychkov
Vo Ngoc Bich Uyen

PLAN

- 1. Introduction
- 2. Full Attention Model
- 3. Performer Model
- 4. Informer Model
- 5. Comparison
- 6. Conclusion

Introduction

Financial Data - information about receipts and expenditures on a bank card

=> predict client's gender

by 3 models: Baseline, Performer & Informer

• Comparing the efficiency of them in terms of *memory* and *computation*.

Full Attention Model

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Performer Model

- Based on FAVOR+
- New space complexity O(Lr + Ld + rd)
- New time complexity O(Lrd)
 where L sequence length, r latent dimension size, d embedding size

$$\phi(\mathbf{x}) = \frac{h(\mathbf{x})}{\sqrt{m}} (f_1(\omega_1^\top \mathbf{x}), ..., f_1(\omega_m^\top \mathbf{x}), ..., f_l(\omega_1^\top \mathbf{x}), ..., f_l(\omega_m^\top \mathbf{x})),$$

Informer Model

Main points:

- Continuous state representation:
 - convert input sequence in the continuous signal as linear combination of N radial basis functions via regression
 - o add attention: also continuous via probability distribution computing by neural network
- Advantages:
 - \circ Complexity will be linear O(LN) rather than quadratic O(L²)
 - "Constant length" N which can be smaller than original L

Informer Model

Additional points:

- unbounded memory: we can add points from previous continuous space representation
- sticky memories: sample according to previous attention

Results of training

Skolkovo Institute of Science and Technology

All the models achieve at least 70% accuracy score on the test data

Inference Time Comparison

Memory Consumption

Conclusion

- Vanilla transformers a sequence transduction model used in encoder-decoder architectures with multi-headed self-attention;
- Informer a transformer extended with an unbounded long-term memory;
- **Performer** a transformer relied on Fast Attention Via positive Orthogonal Random features mechanism.

Experiments on transaction data to determine a customer's gender

=> the Performer and Informer model <[memory and temporal complexity]< baseline model

for your attention

remember attention is all you need