

Password Based Authentication

Information Security (CSC-407)

Fall 2024 (BSE-7A & 7B)

User Authentication

- **User authentication** is the basis for most types of *access control* and *user accountability*.
- User authentication encompasses two functions:
 - 1. The user **identifies** himself/herself to the system by a credential, such as **user ID**.
 - 2. The system **verifies** the user by exchange of **authentication information**.

User Authentication (Cont.)

- User ID could be known to system administrators and other users (e.g. e-mail).
- A typical authentication associated with **user ID** is a **password**, which is kept secret (*known only to user and to the "system"*).
- Typically, the **password** is stored in **hashed** form on the server and this hash code *may not be secret*.
- NIST (SP 800-171) provides a list of security requirements for **identification** and **authentication** services.

Passwords

- A typical authentication associated with user ID is a password.
- The **user ID** could be known to system administrators and other users (*e.g. e-mail*), but the **password** is kept secret (*known only to the user*).
- Typically, the **password** is stored in **hashed** form on the server. However, this hash code *may not be secret*.

NIST SP 800-171

NIST (SP 800-171) provides a list of security requirements for **identification** and **authentication** services.

Basic Security Requirements:

- 1. Identify users or processes acting on behalf of users or devices.
- **2. Authenticate** IDs of users, processes, or devices, as a prerequisite to allowing access.

NIST SP 800-171 (Cont.)

Derived Security Requirements:

- 3. Use multifactor authentication for:
 - Local and network access to privileged accounts.
 - Network access to non-privileged accounts.
- 4. Employ replay-resistant authentication mechanisms for network access.
- 5. Prevent reuse of IDs for a defined period.
- 6. Disable IDs after a defined period of inactivity.
- 7. Enforce a minimum password complexity and change of characters when new passwords are created.

NIST SP 800-171 (Cont.)

Derived Security Requirements (Cont.):

- 8. Prohibit password reuse for a specified number of generations.
- 9. Allow **temporary password** use for system logons with an **immediate change** to a permanent password.
- 10. Store and transmit only **cryptographically-protected** passwords.

Means of Authentication

- There are four general means of authenticating a user's ID:
 - Something the individual knows: E.g. password, PIN or answers to a prearranged set of questions.
 - Something the individual possesses: E.g. smart cards. This type of authenticator is referred to as a token.
 - Something the individual is (static biometrics): E.g. recognition by finger-print, retina and face.
 - Something the individual does (dynamic biometrics): E.g. recognition by voice pattern, handwriting characteristics and typing rhythm.

Multifactor Authentication

- Multifactor authentication refers to the use of more than one of the authentication means.
- The strength of authentication systems is largely determined by the **number of factors** incorporated by the system.
- Implementations that use two factors are considered to be stronger than those that use only one factor.
- Systems that incorporate three factors are stronger than systems that only incorporate two of the factors, and so on.

Multifactor Authentication (Cont.)

The Password System

- Virtually all multiuser systems, network servers, E-commerce websites and other similar services require that a user provide not only a **user ID** but also a **password**.
- The system compares the password to a previously stored password for a user ID, maintained in a *system password file*, e.g. Security Accounts Manager (SAM) in Windows OS.
- The password serves to **authenticate** user ID of the individual logging on to the system.

The Password System (Cont.)

The ID provides security in the following ways:

- Determines whether the user is **authorized** to gain access to a system or not.
- Used as an index for searching the relevant password.
- Determines the **privileges** accorded to the user, E.g.:
 - Administrator or super-user
 - Guest accounts

Common Attack Scenarios

Common attack Scenarios against Passwords:

- 1. Specific account attack:
 - The attacker targets a **specific account** and submits password guesses until the correct password is discovered.
 - Countermeasure: account lockout mechanism, which locks out access to the account after a number of failed login attempts. Typical practice is **five access attempts**.

Common Attack Scenarios (Cont.)

Common attack Scenarios (Cont.):

- 2. Popular password attack:
 - Use popular passwords and try against a range of user IDs.
 - Users have tendency to choose a password that is easily remembered, which unfortunately makes it easy to guess.
 - Countermeasure: policies to inhibit the selection by users of common passwords.

Common Attack Scenarios (Cont.)

Common attack Scenarios (Cont.):

- 3. Offline dictionary attack:
 - Attacker obtains system password file and compares the password hashes against hashes of commonly used passwords.
 - If match is found, the attacker can gain access by that ID/password combination.
 - Countermeasure: prevent unauthorized access to password file through access controls. However, incidents show that determined hackers can frequently bypass such controls, hence gaining access to file!

Password Cracking Approaches

Often the following approaches are adopted:

- 1. Develop a large dictionary of possible passwords and try each against the **password file**.
- 2. A rainbow table, i.e. a huge pre-computed hash table.
- 3. Attacks using a combination of **brute-force** and **dictionary techniques**. E.g. **John the Ripper**.
- 4. Sophisticated password generation algorithms.
- 5. Using **Machine Learning** with large datasets of leaked passwords as training data.

Examples of Password Selection

Examples for Password Selection:

- Passwords that contain only letters: POTHMYDE
- Passwords that contain letters and numbers: meet123
- Passwords that contain only letters and special characters: bob@&ba
- Passwords that contain letters, special characters, and numbers: ap1@52
- Passwords that contain only numbers: 23698217
- Passwords that contain only special characters: &*#@!(%)

Examples of Password Selection (Cont.)

- Passwords that contain only special characters and numbers: 123@\$45
- Passwords that contain only **uppercase and lowercase letters**, such as: **RuNnEr**
- Passwords that contain more than 20 characters comprising a phrase: such as **Hardtocrackveryeasily**
- Passwords that contain shortcut codes or acronyms, such as L8r_L8rNot2day (i.e., later, later, not today)

Examples of Password Selection (Cont.)

- Passwords that contain frequently used words, such as **ABT2_uz_AMZ!** (i.e., about to use Amazon!)
- Passwords that contain the first letters of words of a long sentence, such as:
 - ➤ TffcievwMi16wiwdm5g (i.e., the first foreign country I ever visited was Mexico in 2016 when I was doing my 5th grade)
 - **➤ Mrrh247** (munna ro raha he 247)

Thank You!