

Apresentação Projeto Final MODELO PREVISÃO PAGAMENTOS EM ATRASO

Porto, 3 de maio de 2024

Realizado por: Sara Oliveira da Silva Orientado por: Rita Faria e Ivo Nogueira

Pós Graduação Data Science e Business Inteligence

Agenda Metodologia CRISP-DM

Apresentação do Projeto

Motivação

O atraso no pagamento de faturas é um desafio comum e transversal a muitas empresas

Pode causar problemas de liquidez e impactar o desempenho financeiros das organizações.

Capacidade de identificar os clientes mais propensos a atrasarem o pagamento das faturas

Apresentação do projeto

Apresentação do Projeto

Objetivo

Desenvolver puridade de identificar os modelo paraques mais propensos a os pagamentos serem o pagamento das atraso. faturas

Apresentação do Projeto

Objetivo | Resumo

O objetivo principal é identificar clientes que são propensos a não efetuarem ou a atrasarem o pagamento das faturas dos produtos/serviços que usufruíram.

Identificação das fontes de dados

- Dataset extraído do Kaggle
- Ficheiro em formato CSV (Comma-separated values)

Descrição dos dados

		countryCode	customerID	PaperlessDate	InvoiceDate	DueDate	InvoiceAmount	Disputed	SettledDate	PaperlessBill	DaysToSettle	DaysLate	
j	nvoiceNumber												
	611365	391	0379- NEVHP	4/6/2013	1/2/2013	2/1/2013	55.94	No	1/15/2013	Paper	13	0	
	7900770	408	8976- AMJEO	3/3/2012	1/26/2013	2/25/2013	61.74	Yes	3/3/2013	Electronic	36	6	
	9231909	391	2820- XGXSB	1/28/2012	7/3/2013	8/2/2013	65.88	No	7/8/2013	Electronic	5	0	
	9888306	408	9322- YCTQO	4/6/2012	2/10/2013	3/12/2013	105.92	No	3/17/2013	Electronic	35	5	
	15752855	818	8627- ELFBK	11/28/2012	10/25/2012	11/24/2012	72.27	Yes	11/28/2012	Paper	34	4	

Dataset composto por

- 12 variáveis
- 2466 data points

Nome da Variável	Significado
countryCode	Código do país do cliente.
customerID	Identificação Única do Cliente.
PaperlessDate	Data em que cliente consentiu fatura digital.
invoiceNumber	Número da fatura.
InvoiceDate	Data da fatura.
DueDate	Data Vencimento da fatura.
InvoiceAmount	Valor total da fatura.
Disputed	Indica se fatura foi contestada pelo cliente. Valores Possíveis: ('Yes' (fatura contestada) ou 'No' (fatura não contestada)
SettledDate	Data em que fatura foi paga ou contestação resolvida.
PaperlessBill	Indica se cliente recebe fatura digital. Valores Possíveis: ('Paper' (fatura em papel) ou 'Electronic' (fatura eletrónica).
DaysToSettle	Número de dias que cliente demorou para efetuar pagamento.
DaysLate	Número de dias que fatura ficou em atraso em relação à data de vencimento.

EDA | Missing Values e Outliers

Variables boxplot

DaysToSettle

DaysLate

Devido ao contexto, não se fez tratamento dos outliers uma vez que é pertinente considerar que existem diversos cenários que influenciam o comportamento dos clientes

100

80

InvoiceAmount

Estatísticas Descritivas Variáveis Numéricas

'InvoiceAmount'

Média (µ): 59,90

Desvio Padrão (σ²): 20,44

Mínimo (min): 5,26 Máximo (max): 128,28 Simetria: -0,1234

Curtose: -0,0952

Estatísticas Descritivas Variáveis Numéricas

'InvoiceAmount'

Média (μ): 59,90

Desvio Padrão (σ²): 20,44

Mínimo (min): 5,26

Simetria: -0,1234

Curtose: -0,0952

'DaysToSettle'

Média (µ): 26

Desvio Padrão (σ²): 12 Mínimo (min): 0

Máximo (min): 0 Máximo (max): 26 Simetria: 0,2415

Curtose: -0,2007

Estatísticas Descritivas Variáveis Numéricas

'DaysLate'

Média (µ): 3 Desvio Padrão (σ^2): 6

Mínimo (min): 0

Máximo (max): 45

Simetria: 2,1589

Curtose: 4,6978

Estatísticas Descritivas Variáveis Categóricas

'Disputed'

Fatura não contestada (0): 1905 registos

Fatura contestada (1): 561 registos

'PaperlessBill'

Fatura em papel (0): 1263 registos

Fatura eletrónica (1): 1203 registos

Preparação dos Dados

Transformação dummies | Normalização

Transformação Dummies

Normalização

	InvoiceAmount	Disputed	DaysTo Settle	Country_California, US	Country_Georgia, US	Country_Germany	Country_Kansas, US	PaperlessBill_dummy
0	-0.193614	-0.542868	-1.090203	-0.431448	-0.508098	1.732988	-0.437384	0.975958
1	0.090259	1.842748	0.774799	-0.431448	-0.508098	-0.577038	-0.437384	-1.024634
2	0.292885	-0.542868	-1.738899	-0.431448	-0.508098	1.732988	-0.437384	-1.024634
3	2.252588	-0.542868	0.693712	-0.431448	-0.508098	-0.577038	-0.437384	-1.024634
4	0.605635	1.842748	0.612625	2.317778	-0.508098	-0.577038	-0.437384	0.975958
2461	0.964881	-0.542868	1.423495	-0.431448	-0.508098	1.732988	-0.437384	-1.024634
2462	-1.059425	-0.542868	-0.198248	-0.431448	-0.508098	1.732988	-0.437384	0.975958
2463	0.376579	-0.542868	-0.117159	-0.431448	1.968125	-0.577038	-0.437384	0.975958
2464	-0.329677	-0.542668	-0.441507	-0.431448	1.968125	-0.577038	-0.437384	0.975958
2465	0.428948	-0.542868	-1.009116	-0.431448	-0.508098	-0.577038	-0.437384	-1.024634

Metodologia

Target = ['DaysLate']

Divisão do dataset em conjuntos de treino (80%) e teste (20%)

Testados vários algoritmos de regressão

Métricas de avaliação utilizadas:

- RMSE
- R²

Otimização Hiperparâmetros

Tentativas

Regressão Linear

Modelo

Avaliação

LinearRegression()

RMSE	3,3435
R ²	0,7056

Modelling Avaliação

Tentativas

Regressão Linear

Modelo

Avaliação

LinearRegression()

RMSE	3,3435
R ²	0,7056

Regressão Ridge

Ridge (alpha = 0,5)

RMSE	3,335
R ²	0,707

Tentativas

Modelo

Avaliação

Regressão Linear

LinearRegression()

RMSE	3,3435
R ²	0.7056

Regressão Ridge

Ridge (alpha = 0,5)

RMSE	3,335
R ²	0,707

Regressão Lasso

Lasso (alpha = 0,5)

RMSE	3,310
R ²	0,711

Tentativas

Avaliação

Regressão Linear

Modelo LinearRegression()

RMSE	3,3435
R ²	0,7056

Regressão Ridge

Ridge (alpha = 0,5)

RMSE	3,335
R ²	0,707

Regressão Lasso

Lasso (alpha = 0,5)

RMSE	3,310
R ²	0,711

Árvore Decisão

DecisionTreeRegressor (max_depth=5, random_state=42)

RMSE	0,597
R ²	0,991

Tentativas

Modelo

Avaliação

Regressão Linear

LinearRegression()

RMSE	3,3435
R ²	0,7056

Regressão Ridge

Ridge (alpha = 0,5)

RMSE	3,335
R ²	0,707

Regressão Lasso

Lasso (alpha = 0,5)

RMSE	3,310
R ²	0,711

Árvore Decisão

DecisionTreeRegressor (max_depth=5, random_state=42)

RMSE	0,597
R^2	0,991

Random Forest

RandomForestRegresso r(n_estimators=100, max_depth=5, random_state=42)

RMSE	0,644
R ²	0,99

Modelo Escolhido

Gradient Boosting

Modelo

GradientBoostingRegressor (n_estimators=1000, learning_rate=0.1, max_depth=5, random_state=42)

Avaliação

RMSE	0,524
R ²	0,994

Explica a maior parte da variância

Otimização

Gradient Boosting

Modelo

GradientBoostingRegressor (n_estimators=1000, learning_rate=0.1, max_depth=5, random_state=42)

Avaliação

RMSE	0,524
R ²	0,994

Modelling Avaliação

Otimização

Gradient Boosting

Modelo

GradientBoostingRegressor (n_estimators=1000, learning_rate=0.1, max_depth=5, random_state=42)

		~
ΛM	110	200
Ava	пы	:2()
/ \ \ \ \	цα	Q uo
		3

RMSE	0,524
R ²	0,994

Melhores Hiperparâmetros

hyperparameters = {

'learning rate' = 0,4177,

'max_depth' = 3,

'max_features' = None,

'min_samples_leaf' = 3,

'min_samples_split' = 4,

'n_estimators' = 388,

'subsample' = 0,803 }

Otimização

Gradient Boosting

Modelo

Avaliação

GradientBoostingRegressor (n_estimators=1000, learning_rate=0.1, max_depth=5, random_state=42)

RMSE	0,524
R ²	0,994

RandomizedSearchCV()

Melhores Hiperparâmetros

hyperparameters = {

'learning rate' = 0,4177,

'max_depth' = 3,

'max_features' = None,

'min_samples_leaf' = 3,

'min_samples_split' = 4,

'n_estimators' = 388,

'subsample' = 0,803 }

Gradient Boosting

GradientBoostingRegressor (**hyperparameters)

RMSE	0,057
R ²	0,998

Otimização

Gradient Boosting

Modelo

Avaliação

GradientBoostingRegressor (n_estimators=1000, learning_rate=0.1, max_depth=5, random_state=42)

RMSE	0,524
R ²	0,994

RandomizedSearchCV()

Melhores Hiperparâmetros

hyperparameters = {

'learning rate' = 0,4177,

'max_depth' = 3,

'max_features' = None,

'min_samples_leaf' = 3,

'min_samples_split' = 4,

'n_estimators' = 388,

'subsample' = 0,803 }

Gradient Boosting

GradientBoostingRegressor (**hyperparameters)

RMSE	0,057
R ²	0,998

Enquadramento

Sugestões

Construção fluxos de trabalho em tempo real para preparação e limpeza dos dados

Sugestões

Construção fluxos de trabalho em tempo real para preparação e limpeza dos dados

Integração do modelo com os sistemas existentes

Sugestões

Construção fluxos de trabalho em tempo real para preparação e limpeza dos dados

Integração do modelo com os sistemas existentes

Monitorização contínua para acompanhar desempenho do modelo

Sugestões

Construção fluxos de trabalho em tempo real para preparação e limpeza dos dados

Integração do modelo com os sistemas existentes

Monitorização contínua para acompanhar desempenho do modelo

Retreinar periodicamente o modelo com dados novos

Sugestões

Construção fluxos de trabalho em tempo real para preparação e limpeza dos dados

Integração do modelo com os sistemas existentes

Monitorização contínua para acompanhar desempenho do modelo

Retreinar periodicamente o modelo com dados novos

Manter a documentação atualizada

Conclusão

Go Sara! Sem suporte!

OBRIGADA!