上海交通大学试卷

(20<u>19</u> 至 20<u>20</u> 学年 第<u>1</u>学期 <u>2019</u>年 <u>11</u>月 <u>27</u>日)

班级号			学号_		姓名			
果程名称	(<u>後学分析</u>	忻》(荣誉	·)I (期中:	考试)		成绩	
题 号	1	11	111	四	五	六	七	总分
满分	20	12	10	32	10	8	8	100
得 分								
- 、填空器	` ' ' ' '					Fig. 1		
. 若直线								<u> </u> •
$\partial f(x)$	$r) = \ln \frac{1+r}{1-r}$	$\frac{2x}{x}$, \lim_{x}	c ⁽²⁰¹⁹⁾ (0) =	=		·		
设 $\frac{\sin x}{x}$	x 是 f(x)	的一个原	原函数, 」	则∫xf′(x	$\int dx = \underline{}$			·
记 <i>M</i> (i	$n = \max_{0 \le x \le 1}$	$\left\{x^2(1-x)^n\right\}$	$\{n \in \mathbb{N}\}$	Ⅵ),则li	$\underset{\to \infty}{\text{m}} \Big(n^2 M \Big)$	n))=		·
		-ln <i>x</i> 的反						
、单项道	选择题(名	每小题 3	分, 共1	2分)				
若函数	$\chi f(x)$ 的	导函数是	sin x,贝	リ f(x) 的	一个原函	函数是		(
(A)1-	$\cos x$.	(B)	$1+\cos x$.	((C)1-sin	X.	(D) 1-	$+\sin x$.
设函数	(<i>f</i> (<i>x</i>)在	U(0)可長	₽,且 f(((0) = 0, j	f'(0) > 0	则∃δ>	0,使得	}··· (
(A) 对	$\forall x \in (0,$	δ)有 f'(ɔ	c) > 0.		(B) 对 \	$\sqrt{x} \in (0, \delta)$	有 f(x)	>0.
(C) 对	$\forall x \in (-\delta)$	5,0)有 f'	(x) > 0.		(D) 对 ∀	$\forall x \in (-\delta,$	0)有 <i>f</i> (.	(x) > 0.
设函数	g f 在[a,	<i>b</i>]上连续	,在(a,i	b)内二阶	可导,」	且存在 $c\epsilon$	$\equiv (a,b)$,	使得
<i>f</i> (<i>c</i>) >	$-\max\{f(a)\}$	$a), f(b)\}$,则				••	(
(A) 对	任意 <i>x</i> ∈ ((a,b),有	$f''(x) \le 0$). (B)	必存在	$\xi \in (a,b)$,使得	$f''(\xi) < 0$
(C) 对	任意 <i>x</i> ∈ ((a,b),有	$f''(x) \ge 0$). (D)	必存在	$\xi \in (a,b)$,使得	$f''(\xi) > 0$

- () **9.** 设 F'(x) = f(x) ($x \in \mathbb{R}$). 下列命题中正确的有
 - ① 若 f(x) 为周期函数,则 F(x) 也必为周期函数.
 - ② 若 f(x) 为奇函数,则 F(x) 必为偶函数.
 - ③ 若 f(x) 为偶函数,则 F(x) 必为奇函数.
- **(A)** $0 \uparrow$. **(B)** $1 \uparrow$. **(C)** $2 \uparrow$. **(D)** $3 \uparrow$.

- 三、作图题 (本题共10分)
- **10.** 全面讨论 $f(x) = \frac{(x-1)^2}{4(x+1)}$ 的性态,并作出函数图像.

四、计算题 (每小题 8 分, 共 32 分)

12. 计算不定积分 $\int \frac{1}{1+\cos^2 x} dx$.

13. 计算不定积分 $\int \ln(1+\sqrt{x})dx$.

14. 求极限
$$\lim_{x\to 0} \frac{\sin(\sin x) - x}{x^3}$$
.

五、 (本题共10分)

- (1) 证明: 对任意正整数 $n \ge 3$,方程 f(x) = n 存在唯一实根 $x_n \in (3, +\infty)$;
- (2) 求极限 $\lim_{n\to\infty}\frac{x_n}{n\ln n}$.

六、证明题 (本题共8分)

16. 设函数 f 在[0,1]上可导,且 f 的每个零点都是**简单零点**,即若 $f(x_0) = 0$,则 $f'(x_0) \neq 0$. 证明: f 在[0,1]上至多有限个零点.

- 七、证明题 (本题共8分)
- **17.** 设 f 为 (a,b) 内的凸函数. 证明: f 满足**内闭 Lipschitz 条件**,即对 $\forall [\alpha,\beta] \subset (a,b)$, $\exists L > 0$ 使得对 $\forall x_1,x_2 \in [\alpha,\beta]$,有

$$|f(x_1) - f(x_2)| \le L |x_1 - x_2|$$