$$\frac{1}{2} = \frac{x f(x, \frac{x}{y})}{2} = \frac{1}{1} \cdot \frac{f(x, \frac{x}{y}) + x}{2} \cdot \frac{[f_1 \times 1 + f_2 \times \frac{1}{y}]}{2x}$$

$$= f(x, \frac{x}{y}) + x(f_1 + \frac{1}{y}f_2)$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{f_1 \times 1 + f_2 \times y}{g}$$

$$\frac{x^{2}}{3x^{3}y} = \frac{f_{1} \times 0 + f_{2} \times (-\frac{x}{y^{2}}) + x \times \left[f_{1} \times 0 + f_{12} \times (-\frac{x}{y^{2}}) + x \times \left[f_{2} \times (-\frac{x}{y^{2}}) + (-\frac{y^{2}}{y^{2}}) + (-\frac{y^{2}}{y^{2}})$$

$$= f_{2x}(\frac{-2x}{y^2}) + f_{12}(\frac{-x^2}{y^2}) + f_{22}(\frac{-x}{y^3})$$

2.
$$xyz + \sqrt{x^2+y^2+z^2} = \sqrt{2}$$
, $z(x,y)$, $x=1,y=0$, $z=1$.

$$Zx = -2$$

$$Q : 1 \cdot xZ + y \cdot xZy + \frac{1}{2} (x^2 + y^2 + z)^{-\frac{1}{2}} \cdot (2y + Zy) = 0$$

$$\frac{1}{1} + \frac{1}{2\sqrt{2}} \frac{2y}{2y} = 0$$

 $d^2 = (x+y-8)^2$ st. x2+2xy+3y2-8y=0 $2 = \frac{1}{2} (x+y-8)^2 - \lambda (x^2 + 2xy + 3y^2 - 8y)$ $Lx = \frac{1}{2} \times 2(x+y-8) - \lambda(2x+2y) = 0$ $Ly = \frac{1}{2} \times 2(x+y-8) - \lambda(2x+6y-8) = 0$ $y=2, x=-2\pm 2\sqrt{2}$ 0 x = -2 + 25, y = 2x +y-8 = 2/2-8. : $\frac{d^2min = (x_2-8)^2 = 7 dmin = 4\sqrt{2}-2}{2}$ $\frac{1}{2}(1+\cos 2\theta)$ 4. : $x^2 + y^2 \leq R^2$ $i \frac{1}{3} \left\{ x = P \cos \theta , P \in [0,R], \right.$ $y = \rho \sin \theta$ $\theta \in [0, 2\pi 1]$ $\therefore \mathcal{R}_{1}^{2} = \int_{0}^{2\pi} d\theta \int_{0}^{R} \left(\rho^{2} \cos^{2}\theta + \rho^{2} \sin^{2}\theta \right) \rho d\rho$ $= \int_{0}^{270} \left(\frac{R^{\frac{3}{4}}}{4a^{2}} \cos \theta + \frac{R^{\frac{4}{5}}}{4b^{2}} \sin^{2}\theta \right) d\theta$ $= \frac{\pi R^4}{A} \left(\frac{1}{\Omega^2} + \frac{1}{b^2} \right)$

在 x y 的 校 約 次 (x^2+y^2) d x d y d z

= $\iint_{D} (x^2+y^2) dx dy dz$ = $\iint_{D} (x^2+y^2) (x^2+y^2) dx dy$ = $\iint_{D} (x^2+y^2) [2-2(x^2+y^2)] dx dy$ = $2\iint_{D} (x^2+y^2) [1-x^2-y^2] dx dy$

G

$$x = \rho \cos \theta, \quad y = \rho \sin \theta. \quad \rho \in [0,1], \quad \theta \in [0,2\pi]$$

 $= 2 \int_0^{2\pi} d\theta \int_0^1 \rho^2 (1-\rho^2) \rho d\rho$

 $= 4\pi \times \frac{6^{3}-6^{3}}{3}$

6. \$\int \int_L (x+y) dL.

$$\therefore \int_{L_1} = \int_{1}^{\infty} (t+1) \times \sqrt{1} dt = \frac{1}{2}t^2 + t \Big|_{1}^{\infty} = -\frac{3}{2}$$

②
$$(0,1) \rightarrow (0,-1)$$
 $x=0$ $t \in [1,-1]$ $y=t$

5, t sidt =0.

(x+y) dx + (x+y) dy

S (2y+Z) dz Adz + zdz Ady

 $\vec{z}^2 = (0, 2y+Z, Z)$

 $x = \rho \cos \theta$ $y = P sin \theta$, $P \in T O, IJ, O \in T O, J J$

F= (0, 2Psin0+Z,Z) ro = (- Psino, Pcoso,0)

 $\vec{r}_2 = (0, 0, 1)$: ro xT2 - (pcoso, - psino, 0)

: 13 = - 520 do fdz (2 p2 sin20 + psinoz pole

= - 1270

nede , br=11.

8.
$$a_0 = \int_0^2 f(x) dx = \frac{1}{2}$$

 $a_n = \int_0^1 x \cos nx dx = \frac{(-1)^n - 1}{(nz)^n}$

:
$$f(x) \sim \frac{1}{4} + \frac{5}{n=1} \frac{(-1)^n - 1}{(n\pi)^2} \cos nx + (-1)^n \frac{\sin nx}{n\pi}$$

$$S(x) = \begin{cases} x & 0 < x < 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$S(x) = \begin{cases} x & 0 < x < 1 \\ \sqrt{2} & x = 1 \end{cases}$$

F: CON 2PSHIPPLY EN

Fa = 1 - PEINS, PERSON

	W. Y.	+20		
9 (1)	Sn(x) =	En anza		
1 1 10	En BIFF	8	•	
	Sn'(x)	$=$ $\sum_{n=1}^{\infty}$ $n \alpha_n$	x^{n-1}	
	· Ne la la de	71=1 11 Un	<i></i>	

$$S_n''(x) = \sum_{n=2}^{\infty} n(n-1) O_n x^{n-2}.$$

$$x = s''(x) - 2xs'(x) - 4s(x) = 0$$

$$\frac{1}{5} \frac{102}{(n+2)(n+1)} \frac{10}{(n+2)(n+1)} \frac{10}{(n+2)} \frac{10}{(n+$$

$$\frac{\exists}{\alpha_{n+2}} = \frac{2 \alpha_n}{n+1}$$

(2) ...
$$Q_0 = 0$$
, $Q_1 = 1$
... $Q_{2n} = 0$, $Q_{2n+1} = n!$

$$S(x) = \sum_{n=0}^{+\infty} a_{2n+1} \chi^{2n+1}$$

$$= \chi e^{x^2}$$