

Общероссийский математический портал

А. С. Пекелис, О группах с изоморфными структурами подполугрупп, Изв. вузов. Матем., 1957, номер 1, 189–194

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 176.52.29.84

5 марта 2023 г., 23:45:16

А. С. Пекелис

О ГРУППАХ С ИЗОМОРФНЫМИ СТРУКТУРАМИ ПОДПОЛУГРУПП

В работе Р. В. Петропавловской [3] устанавливается, что абелева группа, содержащая элементы бесконечного порядка, определяется структурой своих подполугрупп, причем каждый изоморфизм структур подполугрупп двух групп является следствием их группового изоморфизма. В настоящей заметке доказывается, что локально нильпотентная группа без кручения также определяется структурой своих подполугрупп, причем каждый структурный изоморфизм является следствием либо группового изоморфизма, либо группового антиизоморфизма.

Через φ будем обозначать изоморфизм структур подполугрупп двух групп G и G^{φ} . Если A — подполугруппа в G, то A^{φ} означает ее образ в G^{φ} при структурном изоморфизме φ . Отметим, что если A — подгруппа в G, то A^{φ} — подгруппа в G^{φ} (3, стр. 66). Запись $\{a, b\}$ или $\{A, B\}$ будет обозначать подполугруппу, порожденную, соответственно, элементами a и b или подполугруппами A и B.

 Π емма 1. Пусть G и G^{φ} — две группы c изоморфными структурами их подполугрупп, H и H^{φ} — нормальные делители, соответственно, в G и G^{φ} . Тогда φ индуцирует изоморфизм структур

лодполугрупп фактор-групп G/H и $G^{\varphi}/\check{H}^{\varphi}$.

Доказательство. Сначала покажем, что $(AH)^{\varphi} = A^{\varphi} H^{\varphi}$, где A—подполугруппа из G. Если какой-то элемент h из H принадлежит также и A, то $AH = \{A, H\}$. Тогда $(AH)^{\varphi} = \{A, H\}^{\varphi} = \{A^{\varphi}, H^{\varphi}\} = A^{\varphi} H^{\varphi}$, так как $A^{\varphi} \cap H^{\varphi}$ не пусто. Если же $A \cap H$ —пусто, то $AH \neq \{A, H\}$, но $AH \subset \{A, H\}$. Отсюда $(AH)^{\varphi} \subset \{A, H\}^{\varphi} = \{A^{\varphi}, H^{\varphi}\} = A^{\varphi} H^{\varphi} \cup H^{\varphi}$. Так как $A \cap H$ пусто, то и $AH \cap H$ также пусто, поэтому $(AH)^{\varphi} \subset A^{\varphi} H^{\varphi}$. Применяя обратный изоморфизм φ^{-1} , аналогично получим, что $(AH)^{\varphi} \supset A^{\varphi} H^{\varphi}$. Следовательно, $A^{\varphi} H^{\varphi} = (AH)^{\varphi}$.

Каждой подполугруппе A из G/H соответствует в G подполугруппа AH, где A— подполугруппа в G. Обратное утверждение также верно.

Пусть \overline{A} — подполугруппа из G/H, ей соответствует в группе G подполугруппа AH. По доказанному структурный изоморфизм φ ставит в соответствие подполугруппе AH подполугруппу $A^{\varphi}H^{\varphi}$ из G^{φ} , которой соответствует в G^{φ}/H^{φ} подполугруппа \overline{A}' . Таким образом, между подполугруппами из G/H и G^{φ}/H^{φ} устанавливается взаимно однозначное соответствие. Легко видеть, что это соответствие является изоморфизмом структур подполугрупп G/H и G^{φ}/H^{φ} .

Если G и G^{ϕ} — две группы без кручения с изоморфными структурами их подполугрупп, то между элементами G и G^{ϕ} можно установить взаимно однозначное соответствие: элементу x из G будет соответствовать элемент x^{ϕ} из G^{ϕ} , где $\{x\}^{\phi} = \{x^{\phi}\}$. Из работы [3] следует, что $(x^{n})^{\phi} = (x^{\phi})^{n}$. Этим свойством установленного соответствия между элементами групп G и G^{ϕ} будем в дальнейшем часто пользоваться. Покажем, что, если группа G — локально нильпотентная без кручения, то установленное соответствие будет либо изоморфизмом, либо антиизоморфизмом.

Предварительно докажем несколько лемм.

Лемма 2. Пусть H и H^{φ} — изолированные нормальные делители, соответственно, в группах без кручения G и G^{φ} , G/H, и G^{φ}/H^{φ} — абелевы. Тогда для любых двух элементов a и b из G выполняется соотношение $(ab)^{\varphi} = a^{\varphi}b^{\varphi}h^{\varphi}$, где $h^{\varphi} \in H^{\varphi}$.

Доказательство. По лемме 1, структурный изоморфизм φ индуцирует изоморфизм структур подполугрупа фактор-групп G/H и G^{φ}/H^{φ} , который обозначаем через φ . Из доказательства леммы 1 следует, что

$$(\langle a \rangle H)^{\varphi} = \langle a \rangle^{\varphi} H^{\varphi} = \langle a^{\varphi} \rangle H^{\varphi},$$

поэтому

$$\{aH\}^{\bar{\varphi}}=\{a^{\varphi}H^{\varphi}\}.$$

Так как G/H и G^{φ}/H^{φ} — абелевы без кручения, то структурный изоморфизм $\overline{\varphi}$ является следствием группового изоморфизма G/H и $G^{\varphi}/H^{\varphi}[3]$, который обозначим также через $\overline{\varphi}$. Если обозначим

$$\overline{a} = aH$$
, $\overline{a^{\varphi}} = a^{\varphi}H^{\varphi}$,

то будем иметь, что

$$\{\overline{a}\}^{\varphi} = \{\overline{a^{\varphi}}\},$$

отсюда $\overline{a}^{\overline{\varphi}} = \overline{a^{\overline{\varphi}}}$. Тогда

$$(\overline{ab})^{\overline{\varphi}} = (\overline{a} \ \overline{b})^{\varphi} = \overline{a}^{\overline{\varphi}} \ \overline{b}^{\overline{\varphi}} = \overline{a}^{\overline{\varphi}} \ \overline{b}^{\overline{\varphi}} = \overline{a}^{\overline{\varphi}} \ \overline{b}^{\overline{\varphi}} = \overline{(ab)}^{\overline{\varphi}},$$

поэтому $\overline{a^{\varphi}}$ $\overline{b^{\varphi}}$ = $\overline{(ab)^{\varphi}}$. Переходя к группе G^{φ} , получим

$$a^{\varphi}H^{\varphi}b^{\varphi}H^{\varphi} = (ab)^{\varphi}H^{\varphi}, \ a^{\varphi}b^{\varphi}H^{\varphi} = (ab)^{\varphi}H^{\varphi}.$$

Следовательно, $(ab)^{\varphi} = a^{\varphi}b^{\varphi}h^{\varphi}$, где $h^{\varphi} \in H^{\varphi}$.

Лемма 3. Пусть G — упорядоченная группа, причем $E = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_n = G$ — система всех ее выпуклых подгрупп. Тогда группу G^* можно так упорядочить, что если a > b, то и $a^* > b^*$.

Доказательство. Обозначим через G^+ полугруппу положительных элементов группы G. Тогда группу G^{φ} можно так упорядочить, что $(G^+)^{\varphi}$ будет полугруппой всех ее положительных элементов, а $E = H_0^{\varphi} \subset H_1^{\varphi} \subset ... \subset H_n^{\varphi} = G^{\varphi}$ —системой всех ее выпуклых подгрупп (5, стр. 334). Покажем, что тогда из a > b следует, что $a^{\varphi} > b^{\varphi}$. Для доказательства можно предположить, что a > l и b > l. Если $a \in H_m$, $b \in H_l$, $H_l \subset H_m$ ($l \neq m$), то $a^{\varphi} \in H_m^{\varphi}$, $b^{\varphi} \in H_l^{\varphi}$, $H_l^{\varphi} \subset H_m^{\varphi}$, и так как $a^{\varphi} > l^{\varphi}$ и $b^{\varphi} > l$, то $a^{\varphi} > b^{\varphi}$.

Будем считать, что a и $b \in H_j$, a и $b \in H_{j-1}$. Из леммы 2 следует, что

$$(ab^{-1})^{\varphi} = a^{\varphi}(b^{\varphi})^{-1}, h_{j-1}^{\varphi}, h_{j-1}^{\varphi} \in H_{j-1}^{\varphi}.$$

Если $ab^{-1} \overline{\in} H_{j-1}$, то, так как

$$(ab^{-1})^{\varphi} > l$$
 и H_{j-1}^{φ}

— выпуклая подгруппа в G^{φ} , то $a^{\varphi}(b^{\varphi})^{-1} > l$, т. е. $a^{\varphi} > b^{\varphi}$. Если же $ab^{-1} \in H_{j-1}$, то $a \in \{b, H_{j-1} \cap G^{+}\}$. Тогда $a^{\varphi} \in \{b^{\varphi}, H_{j-1}^{\varphi} \cap (G^{\varphi})^{+}\}$. Отсюда $a^{\varphi} > b^{\varphi}$. Лемма доказана.

Пусть G — нильпотентная группа без кручения с конечным числом образующих. Упорядочим ее [2]. Так как упорядоченная нильпотентная группа без кручения с конечным числом образующих обладает лишь конечным числом выпуклых подгрупп, то, по лемме 3, G^{ϕ} можно упорядочить так, чтобы из того, что a > b следовало $a^{\phi} > b^{\phi}$ и наоборот. В дальнейшем будем считать, что G — нильпотентная группа без кручения с конфчным числом образующих, в G и G^{ϕ} установлены какие-то фиксированные линейные порядки, причем из того, что a > b в группе G следует, что $a^{\phi} > b^{\phi}$ в группе G^{ϕ} и наоборот.

Лемма 4. Пусть а й b—два неперестановочных элемента группы G, H—изолированный нормальный делитель в G, причем

 $b \in H$, $a \in H$ u b > l.

a) Ecau $a \in \{abh, b^{-1}\}$, $cde h < l, h \in H$, mo $b^{-n}abh = a (n \ge 0)$.

- 6) Ecau $a \in \{bah, b^{-1}\}$, ide h < l, $h \in H$, mo $bahb^{-r} = a \ (r > 0)$.
- B) $Ec_{n}u \ a \in \{ab, b^{-n}\}\ (n \geqslant 0), \ mo \ n = 1.$
- r) Ecau $a \in \{ba, b^{-n}\} \ (n \gg 0), mo \ n = 1.$

Доказательство. а) Так как $a\in \{abh,\,b^{-1}\}$ и H— изолированный нормальный делитель в G, то $b^{-n}abhb^{-r}=a$ $(n\geqslant 0,\,r\geqslant 0)$. Тогда $abhb^{-r}a^{-1}=b^n\geqslant l$, отсюда $bhb^{-r}\geqslant l$ и $h\geqslant b^{r-1}$. Так как h< l, то r=0. Следовательно, $b^{-n}abh=a$.

б) Доказательство аналогично доказательству а).

- в) Так как $a\in \{ab,\ b^{-n}\}$, и H— изолированный нормальный делитель, то $b^{-nl}ab\ b^{-nm}=a\ (l\geqslant 0,\ m\geqslant 0)$. Отсюда $ab^{-nm+1}a^{-1}=b^{nl}\geqslant l$, поэтому $b^{-mn+1}\geqslant l$, значит $-nm+1\geqslant 0$, $nm\leqslant 1$. Пусть $n\geqslant 1$, тогда mn=0 и $aba^{-1}=b^{nl}$. Из равенства $aba^{-1}=b^{nl}$ получаем, что $a^{-1}ba\in I(b)$, где I(b)— изолятор элемента b. Так как G— нильпотентная группа без кручения с конечным числом образующих, то I(b)— бесконечная циклическая (1, стр. 79)*. Поэтому $aI(b)a^{-1}=I(b)$. Тогда получаем, что a и b перестановочны (1, стр. 84), а это противоречит условию. Следовательно, $n\leqslant 1$. Очевидно, что $n\neq 0$, поэтому n=1.
 - г) Доказательство аналогично доказательству в).

 Π е м м а 5. Если H и H^{φ} — изолированные нормальные делители, соответственно, в группах G и G^{φ} , G/H и G^{φ}/H^{φ} — абелевы, $a \in H$, $b \in H$, то либо $(ab)^{\varphi} = a^{\varphi} b^{\varphi}$, либо $(ab)^{\varphi} = b^{\varphi} a^{\varphi}$.

Доказательство. Если a и b перестановочны, то лемма доказана (3, стр. 71). Поэтому будем предполагать, что a и b неперестановочны.

Пусть $(ab)^{\varphi} \neq a^{\varphi} b^{\varphi}$. По лемме 2 имеем $(ab)^{\varphi} = a^{\varphi} b^{\varphi} h^{\varphi}$, где $h^{\varphi} \in H^{\varphi}$. Предположим, что $(ab)^{\varphi} < a^{\varphi} b^{\varphi}$, т. е. $h^{\varphi} < l$. Так как $a \in \{ab, b^{-1}\}$, то $a^{\varphi} \in \{a^{\varphi} b^{\varphi} h^{\varphi}, (b^{\varphi})^{-1}\}$. Применяя лемму 4 а), получим $(b^{\varphi})^{-n} a^{\varphi} b^{\varphi} h^{\varphi} = a^{\varphi}$, $(n \geqslant 0)$, т. е. $a^{\varphi} \in \{a^{\varphi} b^{\varphi} h^{\varphi}, (b^{\varphi})^{-n}\}$. Тогда, переходя к группе G, имеем, что $a \in \{ab, b^{-n}\}$. Из леммы 4 в) следует, что n = 1. Отсюда $a^{\varphi} b^{\varphi} h^{\varphi} = b^{\varphi} a^{\varphi}$, т. е. $(ab)^{\varphi} = b^{\varphi} a^{\varphi}$.

Пусть $(ab)^{\varphi} > a^{\varphi} b^{\varphi}$, т. е. $h^{\varphi} > l$. Переходя к группе G на основании лемм 2 и 3 получим ab > abh', где $h' \in H$. Тогда h' < l. Рассуждая аналогично предыдущему, будем иметь, что abh' = ba, т. е. $(ba)^{\varphi} = a^{\varphi} b^{\varphi}$. Покажем, что тогда и $(ab)^{\varphi} = b^{\varphi} a^{\varphi}$. На основании леммы 2 имеем $(ab)^{\varphi} = b^{\varphi} a^{\varphi} h_1^{\varphi}$, $h_1^{\varphi} \in H^{\varphi}$. Если $h_1^{\varphi} > l$, то переходя к группе G, получим $ab > abh_1'$, $h_1' \in H$. Отсюда $h_1' < l$. Так как $a^{\varphi} \in \{b^{\varphi} a^{\varphi}, (b^{\varphi})^{-1}\}$, то $a \in \{abh_1', b^{-1}\}$. Из леммы 4 а) получаем, что

^{*} См. также А. Г. Курош, Теория групп, стр. 416, 430, 1953.

 $b^{-n}abh_1'=a\ (n\geqslant 0)$. Тогда $a\in \{abh_1',\ b^{-n}\}$, отсюда $a^{\varphi}\in \{b^{\varphi}a^{\varphi},\ (b^{\varphi})^{-n}\}$. На основании леммы 4 г), n=1. Поэтому имеем $abh_1'=ba$, т. е. $b^{\varphi}a^{\varphi}=(ba)^{\varphi}$. Отсюда следует, что a и b перестановочны [3], что невозможно. Аналогично доказывается, что $h_1^{\varphi}< l$ не может быть. Следовательно, $h_1^{\varphi}=l$, т. е. $(ab)^{\varphi}=b^{\varphi}a^{\varphi}$.

 Π емма 6. В условиях леммы 5 для элементов a u b выполняются соотношения: либо $(ab^{-1})^{\phi}=a^{\phi}(b^{\phi})^{-1}$, либо $(ab^{-1})^{\phi}=(b^{\phi})^{-1}a^{\phi}$.

Доказательство аналогично доказательству лемм 4 и 5.

 Π е м м а 7. Если нильпотентная группа G без кручения порождается двумя элементами а и b, причем G не циклическая, то B G существует изолированный нормальный делитель H, содер-

жащий в, но не содержащий а.

Доказательство. Пусть $E=Z_0 \subset Z_1 \subset \cdots \subset Z_{n-1} \subset Z_n=G-$ верхний центральный ряд группы G; $a,b\in Z_{n-1}$, так как, в противном случае, длина верхнего центрального ряда была бы меньше n. Возьмем изолятор подгруппы, порожденной элементом b и подгруппой Z_{n-1} . Обозначим этот изолятор через F. F — нормальный делитель в G, так как $F \supset Z_{n-1}$. Если $a \in F$, то H = F. Если же $a \in F$, то G = F. Тогда $a^m = b^k z_{n-1}$ ($m, k \neq 0$), $z_{n-1} \in Z_{n-1}$ (4, стр. 210). Поэтому G/Z_{n-1} —абелева группа без кручения с двумя образующими a и b ($a = aZ_{n-1}$, $b = bZ_{n-1}$), связанными соотношением $a^m = b^k$. Следовательно, G/Z_{n-1} —циклическая, что невозможно, так как тогда длина верхнего центрального ряда была бы меньше n.

Лемма 8. Для любых двух элементов а и b из группы G выполняется одно из соотношений: $(ab)^{\varphi} = a^{\varphi} b^{\varphi}$ или $(ab)^{\varphi} = b^{\varphi} a^{\varphi}$.

Доказательство. Для доказательства можно предположить, что G порождается элементами a и b. Если a и b перестановочны, то лемма доказана (3, стр. 71). Поэтому будем считать, что a и b неперестановочны. По лемме 7 в G существует изолированный нормальный делитель H, содержащий b, но не содержащий a. Тогда H^{φ} —также изолированный нормальный делитель в G^{φ} (5, стр. 328). По леммам 5 и 6 имеем тогда $(ab)^{\varphi} = a^{\varphi} b^{\varphi}$ или $(ab)^{\varphi} = b^{\varphi} a^{\varphi}$.

 Π е м м а 9. Пусть а и b- d s a произвольных элемента группы G. Если $(ab)^{\varphi}=a^{\varphi}\,b^{\varphi}$, то $(ab^{-1})^{\varphi}=a^{\varphi}\,(b^{\varphi})^{-1}$, если же $(ab)^{\varphi}=b^{\varphi}\,a^{\varphi}$,

 $mo(ab^{-1})^{\varphi} = (b^{\varphi})^{-1}a^{\varphi}$.

Доказательство. Можно считать, что a и b неперестановочны [3]. Пусть $(ab)^{\varphi}=a^{\varphi}\,b^{\varphi}$, и предположим, что $(ab^{-1})^{\varphi}\neq a^{\varphi}(b^{\varphi})^{-1}$. Тогда по лемме 8 $(ab^{-1})^{\varphi}=(b^{\varphi})^{-1}a^{\varphi}$, а так как a и b неперестановочны, то $(b^{-1}a)^{\varphi}=a^{\varphi}(b^{\varphi})^{-1}$. Рассмотрим выражение $(a^2)^{\varphi}$. При этом, по лемме 8 возможны два случая:

- 1) $(a^2)^{\varphi} = (ab \cdot b^{-1}a)^{\varphi} = (ab)^{\varphi} (b^{-1}a)^{\varphi} = a^{\varphi} b^{\varphi} a^{\varphi} (b^{\varphi})^{-1} = (a^{\varphi})^2$, отсюда $b^{\varphi} a^{\varphi} (b^{\varphi})^{-1} = a^{\varphi}$, т. е. a и b перестановочны (3, стр. 71), что невозможно.
- 2) $(a^2)^{\varphi} = (ab \cdot b^{-1}a)^{\varphi} = (b^{-1}a)^{\varphi} (ab)^{\varphi} = a^{\varphi} (b^{\varphi})^{-1} a^{\varphi} b^{\varphi} = (a^{\varphi})^2$, откуда также получаем перестановочность a и b (3, стр. 71), что невозможно.

Аналогично доказывается утверждение для случая $(ab)_{\varphi} = b^{\varphi} a^{\varphi}$.

T е о р е м а 1. Если группы G и G^{ϕ} имеют изоморфные структуры подполугрупп, причем G — нильпотентная группа без кручения с конечным числом образующих, то G и G^{ϕ} изоморфны, при-

чем структурный изоморфизм ф является следствием группового изоморфизма или антиизоморфизма.

Доказательство. Для доказательства достаточно показать, что установленное взаимно однозначное соответствие между элементами групп G и G^{ϕ} является либо изоморфизмом, либо антиизоморфизмом. По лемме 8, для любых двух элементов a и b из G выполняется соотношение $(ab)^{\phi}=a^{\phi}b^{\phi}$ или $(ab)^{\phi}=b^{\phi}a^{\phi}$. Пусть a—фиксированный элемент из G, а g—произвольный элемент группы G. Покажем, что для всех g выполняется соотношение $(ag)^{\phi}=a^{\phi}g^{\phi}$ или $(ag)^{\phi}=g^{\phi}a^{\phi}$. Пусть для каких-то элементов b и c выполняются соотношения $(ab)^{\phi}=a^{\phi}b^{\phi}$ и $(ac)^{\phi}=C^{\phi}a^{\phi}$. Элементы a и b, а также a и c можно считать неперестановочными. Тогда по лемме a a0 a0 a1 денения a2 a3 a4 денения a4 a5 a5 денения a6 денения a7 денения a8 и a9 a9 или a9 a9 или a9 a9 денения a9 a9 или a9 a9 денения a9 д

 $(c^{-1}b)^{\varphi} = (c^{-1}a^{-1} \cdot ab)^{\varphi} = (c^{-1}a^{-1})^{\varphi} (ab)^{\varphi} = (a^{\varphi})^{-1} (c^{\varphi})^{-1} a^{\varphi} b^{\varphi} = (c^{\varphi})^{-1} b^{\varphi}$, отсюда a и c перестановочны (3, стр. 71), что невозможно; или же $(c^{-1}b)^{\varphi} = (c^{-1}a^{-1} \cdot ab)^{\varphi} = (ab)^{\varphi} (c^{-1}a^{-1})^{\varphi} = a^{\varphi} b^{\varphi} (a^{\varphi})^{-1} (c^{\varphi})^{-1} = (c^{\varphi})^{-1} b^{\varphi}$.

Тогда $(c^{\varphi}a^{\varphi})b^{\varphi}(c^{\varphi}a^{\varphi})^{-1}=b^{\varphi}$, т, е. ac перестановочно с b (3, стр. 71). Отсюда $(ac \cdot b)^{\varphi}=(ac)^{\varphi}b^{\varphi}=c^{\varphi}a^{\varphi}b^{\varphi}$, с другой стороны, $(acb)^{\varphi}=(a\times \times cb)^{\varphi}=a^{\varphi}(cb)^{\varphi}=a^{\varphi}c^{\varphi}b^{\varphi}$ или же $(acb)^{\varphi}=(cb)^{\varphi}a^{\varphi}=c^{\varphi}b^{\varphi}a^{\varphi}$. В первом случае получаем, что a и c перестановочны, а во втором — a и b перестановочны (3, стр. 71), что невозможно.

Аналогично доказывается, что наше предположение невозможно и в случае, если $(bc)^{\varphi} = c^{\varphi} b^{\varphi}$.

Покажем теперь, что, если для какого-то фиксированного элемента a из G и произвольного элемента g из G выполняется соотношение $(ag)^{\varphi} = a^{\varphi}g^{\varphi}$ $((ag)^{\varphi} = g^{\varphi}a^{\varphi})$ для всех g, то и для любого другого фиксированного элемента b из G также будет выполняться соотношение $(bg)^{\varphi} = b^{\varphi}g^{\varphi}$ $((bg)^{\varphi} = g^{\varphi}b^{\varphi})$ для всех g.

Пусть для каких-то элементов a и b из G выполняются соотношения $(ag)^{\varphi} = a^{\varphi}g^{\varphi}$ и $(bg)^{\varphi} = g^{\varphi}b^{\varphi}$ для всех g из G, причем a и b не принадлежат центру группы G. Всегда для элементов a и b найдется такой элемент x, который будет неперестановочен как c a, так и c b, так как в противном случае группа покрывалась бы двумя подгруппами, что невозможно. Тогда будем иметь $(xa)^{\varphi} = x^{\varphi}a^{\varphi}$, $(xb)^{\varphi} = b^{\varphi}x^{\varphi}$. На основании только что доказанного, отсюда будет следовать перестановочность элементов x и a или элементов x и b, что невозможно, ввиду выбора элемента x.

Отсюда получаем, что установленное взаимно однозначное соответствие между элементами групп G и G^{ϕ} есть либо изоморфизм, либо антиизоморфизм. Теорема доказана.

Как следствие теоремы 1 получаем следующую теорему.

T е о р е м а 2. Если группы G и G^{ϕ} обладают изоморфными структурами подполугрупп, причем группа G — локально нильпотентная без кручения, то группы G и G^{ϕ} изоморфны, и структурный изоморфизм ϕ есть следствие изоморфизма или антиизоморфизма групп G и G^{ϕ} .

Уральский государственный университет им. А. М. Горького

Поступило 14 X 1957

ЛИТЕРАТУРА

1. П. Г. Канторович, Группы с базисом расщепления, Мат. сб. 22 (64), стр. 79—100, 1948. 2. А. И. Мальцев, О доупорядочении группы, Тр. мат. ин-та им. В. А. Стеклова, т. XXXVIII, стр. 173—175, 1951. 3. Р. В. Петропавловская, Об определяемости группы структурой ее подсистем, Мат. сб. 29 (71), стр. 63—78, 1951. 4. Б. И. Плоткин, К теории некоммутативных групп без кручения, Мат. сб. 30 (72), стр. 199—212, 1952. 5. Б. И. Плоткин, Радикальные и полупростые группы, Тр. М-го мат. об-ва, т. 6, стр. 299—336, 1957.