## Homework Assignment 5

## Matthew Tiger

## October 10, 2016

**Problem 2.6.9.** i. Use the results of section 2.6 to show that the logistic map  $L_4(x) = 4x(1-x)$  cannot have a super-attracting cycle.

ii. Find a point  $x_0 \in (0,1)$  which is not a periodic point for  $L_4$ .

Solution. i. Suppose that k > 1 and  $x_k$  is a period k point so that  $\{x_1, x_2, \ldots, x_k\}$  is a k-cycle with  $L_4^i(x_1) = x_i$  for 0 < i < k and  $L_4^k(x_1) = x_1$ . This cycle will be super-attracting if

$$\prod_{i=1}^{k} L_4'(x_i) = 0.$$

Note that  $L'_4(x) = 4 - 8x = 0$  only if x = 1/2. Thus, the cycle will be super attracting if and only if  $x_i = 1/2$  for some i = 1, ..., k. Note that the point x = 1/2 does not generate a cycle since  $L_4(1/2) = 1$  and  $L_4^n(1/2) = 0$  for n > 1 so  $x_1 \neq 1/2$ .

We will now demonstrate that there is no point  $x \in [0,1]$  such that  $L_4^n(x) = 1/2$  for n > 0. It has been shown previously that

$$L_4^n(x) = \sin^2\left(2^n \sin^{-1}\left(\sqrt{x}\right)\right) = \sin^2(\theta)$$

for some  $\theta \in (0, \pi/2]$ . Note that for  $\theta_1, \theta_2 \in (0, \pi/2]$ , we have that  $\sin^2(\theta_1) = 1/2$  if and only if  $\theta_1 = \pi/4$  and  $\sin^2(\theta_2) = \pi/4$  if and only if  $\theta_2 = \sin^{-1}(\sqrt{\pi/2}) > 1$ . However, since  $\theta_2 > 1$ , there is no  $\theta \in (0, \pi/2]$  such that  $\sin^2(\theta) = \theta_2$ .

So there is no  $x \in [0,1]$  such that  $L_4^n(x) = \theta_2$  for any n > 0 and hence no n > 0 such that  $L_4^n(x) = 1/2$ . Thus,  $x_i = L_4^i(x_1) \neq 1/2$  for any i > 0 so that  $L_4'(x_i) \neq 0$ . Therefore,  $L_4$  has no super-attracting cycle.

ii. As was shown previously, x = 1/2 is such that  $L_4(x) = 1$  and  $L_4^n(x) = 0 \neq 1/2$  for n > 1. Therefore x = 1/2 is not a periodic point of  $L_4$ .

## **Problem 2.8.3.** Show that

$$\left\{\frac{\mu}{1+\mu^3}, \frac{\mu^2}{1+\mu^3}, \frac{\mu^3}{1+\mu^3}\right\}$$

is a 3-cycle for  $T_{\mu}$  when  $\mu \geq (1 + \sqrt{5})/2$ .

Solution. The tent map is defined as

$$T_{\mu}(x) := \begin{cases} \mu x & 0 \le x \le 1/2 \\ \mu(1-x) & 1/2 < x \le 1 \end{cases}.$$

Now suppose that  $\mu \geq (1+\sqrt{5})/2 > 1$  and let  $x_1 = \frac{\mu}{1+\mu^3}$ . We will now show that

$$T_{\mu}(x_1) = \frac{\mu^2}{1 + \mu^3} = x_2, \quad T_{\mu}^2(x_1) = T_{\mu}(x_2) = \frac{\mu^3}{1 + \mu^3} = x_3, \quad T_{\mu}^3(x_1) = T_{\mu}(x_3) = \frac{\mu}{1 + \mu^3} = x_1$$

demonstrating that  $\{x_1, x_2, x_3\}$  is a 3-cycle.

Note that  $\mu/(1+\mu^3)$  is monotonically decreasing if  $\mu \geq (1+\sqrt{5})/2$ . Thus,

$$0 \le \frac{\mu}{1+\mu^3} \le \frac{\frac{1+\sqrt{5}}{2}}{1+\left(\frac{1+\sqrt{5}}{2}\right)^3} = \frac{-1+\sqrt{5}}{4} \le \frac{1}{2}.$$

Hence,

$$T_{\mu}(x_1) = \mu \left(\frac{\mu}{1+\mu^3}\right) = \frac{\mu^2}{1+\mu^3} = x_2.$$

Similarly, we see that  $\mu^2/(1+\mu^3)$  is monotonically decreasing if  $\mu \geq (1+\sqrt{5})/2$  so

$$0 \le \frac{\mu^2}{1+\mu^3} \le \frac{\left(\frac{1+\sqrt{5}}{2}\right)^2}{1+\left(\frac{1+\sqrt{5}}{2}\right)^3} = \frac{1}{2}.$$

Thus.

$$T_{\mu}(x_2) = \mu \left(\frac{\mu^2}{1+\mu^3}\right) = \frac{\mu^3}{1+\mu^3} = x_3.$$

Lastly, if  $\mu \ge (1+\sqrt{5})/2$  then  $\mu^3/(1+\mu^3)$  is monotonically increasing so that

$$\frac{1}{2} \le \frac{1+\sqrt{5}}{4} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^3}{1+\left(\frac{1+\sqrt{5}}{2}\right)^3} \le \frac{\mu^3}{1+\mu^3} \le 1$$

Therefore,

$$T_{\mu}(x_3) = \mu \left(1 - \frac{\mu^3}{1 + \mu^3}\right) = \frac{\mu}{1 + \mu^3} = x_1$$

and  $\{x_1, x_2, x_3\}$  is a 3-cycle.

**Problem 3.2.5.** Show that the map f(x) = (x - 1/x)/2,  $x \neq 0$ , has no fixed points but it has period 2-points. Find the 2-cycle, and by looking at the graph of  $f^3(x)$ , check to see whether or not it has a 3-cycle. Why does this not contradict Sharkovskys Theorem?

Solution. The function f will have a fixed point if and only if the function g(x) = f(x) - x has real roots. We see that

$$g(x) = f(x) - x = \frac{x^2 - 1}{2x} - x = -\frac{x^2 + 1}{2x} = 0$$

if and only if  $x^2 + 1 = 0$ . Thus, g has no real roots and f has no fixed points.

If  $h(x) = f^2(x) - x$  has real solutions, then these solutions give rise to a 2-cycle of f. Thus,

$$h(x) = f(f(x)) - x = \frac{\left(\frac{x^2 - 1}{2x}\right)^2 - 1}{2\left(\frac{x^2 - 1}{2x}\right)} - x = -\frac{-3x^4 - 2x^2 + 1}{-4x^3 + 4x} = 0$$

if and only if  $-3x^4 - 2x^2 + 1 = 0$ , the real solutions of which are given by  $3^{-1/2}$  and  $-3^{-1/2}$ . Hence,  $\{3^{-1/2}, -3^{-1/2}\}$  is a 2-cycle of f.

The graphs of  $f^3(x)$  and y = x are shown in Figure 1. From these graphs we see that the graph of  $f^3(x)$  crosses the line y = x at 6 points. Since f has a 2-cycle, 2 of these points arise from the fact that the solutions of  $f^2(x) = x$  also satisfy  $f^3(x) = x$ . However, of the four remaining points, the graph of  $f^3(x)$  does not cross the graph y = x at exactly 3 points so a 3-cycle does not arise for f(x).



Figure 1: The graphs of  $f^3(x)$  (blue) and y = x (orange).

Note that the domain of f is given by  $(-\infty, 0) \cup (0, \infty)$ . Since the domain of f is not an interval, it does not satisfy the assumptions of Sharkovsky's Theorem and thus the theorem does not apply.

**Problem 3.2.6.** A map  $f: [1,7] \to [1,7]$  is defined so that f(1) = 4, f(2) = 7, f(3) = 6, f(4) = 5, f(5) = 3, f(6) = 2, f(7) = 1, and the corresponding points are joined so the map is continuous and piece-wise linear. Show that f has a 7-cycle but no 5-cycle.

Solution. The definition of f shows that  $f^7(1) = 1$  with  $f^n(1) \neq 1$  for 0 < n < 7. Thus, 1 is a period 7 point of f and  $\{1, 4, 5, 3, 6, 2, 7\}$  is a 7-cycle of f.

Let  $I_k = [k, k+1]$  for k = 1, ..., 6. Note that f has one fixed point  $c \in I_4$ . Suppose to the contrary that  $x_1 \neq c$  is a period 5 point of f and  $\{x_1, x_2, x_3, x_4, x_5\}$  is a 5-cycle.

Now, suppose that  $x_1 \in I_1$ . Then the definition of f tells us that

$$f(x_1) \in \bigcup_{k=4}^6 I_k.$$

This then implies that

$$f^2(x_1) \in \bigcup_{k=1}^4 I_k$$
,  $f^3(x_1) \in \bigcup_{k=3}^6 I_k$ ,  $f^4(x_1) \in \bigcup_{k=1}^5 I_k$ , and  $f^5(x_1) \in \bigcup_{k=2}^6 I_k = [2, 7]$ .

But if  $f^5(x_1) \in [2, 7]$ , then  $f^5(x_1) \neq x_1$  since  $x_1 \in [1, 2]$  and  $f^5(2) = 5$ . Using reasoning similar to that used above, we see for k = 2, 3, 5, 6 that

$$f^5(I_2) = \bigcup_{k=3}^6 I_k$$
,  $f^5(I_3) = \bigcup_{k=4}^6 I_k$ ,  $f^5(I_5) = \bigcup_{k=1}^4 I_k$ , and  $f^5(I_6) = \bigcup_{k=1}^5 I_k$ .

Thus, for k = 2, 3, 5, 6, we have that if  $x_1 \in I_k$  and  $x_1 \neq k, k+1$ , then  $x_1 \notin f^5(I_k)$  and  $f^5(x_1) \neq x_1$ . Similarly, if  $x_1 = k, k+1$ , we see from the definition of f that  $f^5(x_1) \neq x_1$ .

Thus, if  $x_1$  is a period 5 point, then  $x_1 \in I_4$  and  $f(x_1) \in I_3 \cup I_4$ . However, if  $f(x_1) \in I_3$ , then  $f^5(x_1) \in I_1$  so that  $f^5(x_1) \neq x_1$  violating the assumption that  $x_1$  is a period 5 point. Thus, we must have that  $f(x_1) \in I_4$ . This in turn implies that  $f^2(x_1) = I_3 \cup I_4$ . However, if  $f^2(x_1) \in I_3$ , then  $f^5(x_1) \in I_6$  so that  $f^5(x_1) \neq x_1$  again violating the assumption that  $x_1$  is a period 5 point. So we must have that  $f^2(x_1) \in I_4$ . We can similarly show that we also have that  $f^3(x_1), f^4(x_1) \in I_4$ . Note that if  $x \in I_4$ , then f(x) = -2x + 13 with fixed point c = 13/3. Thus, we see that

$$f^{2}(x) = 4x - 13$$

$$f^{3}(x) = -8x + 39$$

$$f^{4}(x) = 16x - 65$$

$$f^{5}(x) = -32x + 143.$$

Hence,  $f^5(x) - x = -32x + 143 - x = 0$  if and only if x = 13/3 = c, a contradiction. Therefore, f has no 5-cycle.

**Problem 3.2.10.** Let  $f : \mathbb{R} \to \mathbb{R}$ . Write down all the possibilities for a 4-cycle  $\{a, b, c, d\}$  with a < b < c < d for f (e.g. f(a) = c, f(c) = d, f(d) = b, and f(b) = a). Indicate which are mirror images, and which give rise to a 3-cycle.

Solution. Note that if x = a, b, c, d, then  $f(x) \neq x$  otherwise x would be a fixed point and would not generate a 4-cycle. So, first consider that a generates the 4-cycle and f(a) = b. Then  $f(b) \neq a$  otherwise  $\{a, b\}$  would be a 2-cycle of f. Thus, either f(b) = c of f(b) = d. If f(b) = c, then  $f(c) \neq a$  otherwise  $\{a, b, c\}$  would be a 3-cycle and  $f(c) \neq b$  otherwise  $\{b, c\}$  would be a 2-cycle. So, f(c) = d and thus f(d) = a if the set of points  $\{a, b, c, d\}$  generates a 4-cycle. If, on the other hand f(b) = d, then  $f(d) \neq a$  otherwise  $\{a, b, d\}$  be a 3-cycle and  $f(d) \neq b$  otherwise  $\{b, d\}$  would be a 2-cycle. So f(d) = c and f(c) = a if the set of points  $\{a, b, c, d\}$  generates a 4-cycle.

Therefore, if f(a) = b, we have two possible 4-cycles

$$\{a, b, c, d\}$$
 and  $\{a, b, d, c\}$ .

If f(a) = c, we can use similar reasoning to see that  $\{a, c, b, d\}$  and  $\{a, c, d, b\}$  are 4-cycles and if f(a) = d, then  $\{a, d, b, c\}$  and  $\{a, d, c, b\}$  are 4-cycles. Note, these are the only possible 4-cycles of f.

The mirror image of a 4-cycle  $\{x_1, x_2, x_3, x_4\}$  is the 4-cycle such that  $f(x_4) = x_3$ ,  $f(x_3) = x_2$ ,  $f(x_2) = x_1$ , and  $f(x_1) = x_4$ , i.e. the 4-cycle  $\{x_4, x_3, x_2, x_1\}$ . Therefore,  $\{a, b, c, d\}$  and  $\{a, d, c, b\}$  are mirror images,  $\{a, b, d, c\}$  and  $\{a, c, d, b\}$  are mirror images, and lastly  $\{a, c, b, d\}$  and  $\{a, d, b, c\}$  are mirror images.

Proposition 3.1.7 tells us that for I, an interval, and  $f: I \to I$ , a continuous map, if  $I_1$  and  $I_2$  are closed sub intervals of I with at most one point in common and  $I_2 \subset f(I_1)$  and  $I_1 \cup I_2 \subset f(I_2)$ , then f has a 3-cycle. Throughout, we assume that our function f is continuous. Let  $I_1 = [a, b]$ ,  $I_2 = [b, c]$ , and  $I_3 = [c, d]$ .

If  $\{a, b, c, d\}$  is a 4-cycle of f, then we see that

$$[c,d] = I_3 \subset f(I_2) = [c,d]$$
 and  $[b,d] = I_2 \cup I_3 \subset f(I_3) = [a,d]$ 

so that a 3-cycle is generated by the proposition. Similarly, for the 4-cycles  $\{a, b, d, c\}$ ,  $\{a, c, d, b\}$ , and  $\{a, d, c, b\}$  we see under these 4-cycles that

$$[b, c] = I_2 \subset f(I_3) = [a, c]$$
 and  $[b, d] = I_2 \cup I_3 \subset f(I_2) = [a, d],$   
 $[a, b] = I_1 \subset f(I_2) = [a, d]$  and  $[a, c] = I_1 \cup I_2 \subset f(I_1) = [a, c],$   
 $[a, b] = I_1 \subset f(I_2) = [a, b]$  and  $[a, c] = I_1 \cup I_2 \subset f(I_1) = [a, d],$ 

respectively, so that these 4-cycles give rise to 3-cycles by our proposition. Since the other 4-cycles do not meet the criteria of the proposition, they do not generate 3-cycles.

**Problem 3.2.11.** Use Sharkovsky's Theorem to prove that if  $f : [a, b] \to [a, b]$  is a continuous function and  $\lim_n f^n(x)$  exists for every  $x \in [a, b]$ , then f can have no points of period n > 1.

Solution. Suppose to the contrary that  $f:[a,b] \to [a,b]$  is a continuous function and  $\lim_n f^n(x)$  exists for every  $x \in [a,b]$  but there is a point  $y \in [a,b]$  of period n > 1. Then we have that  $f^n(y) = y$  with  $f^k(y) \neq y$  for 0 < k < n. As a result, for every m > n, we will have that  $f^m(y) = f^k(y)$  where  $m \equiv k \mod n$ .

Since  $y \in [a, b]$  we have that  $\lim_n f^n(y) = L$  exists by assumption. Thus, for all  $\varepsilon > 0$ , there exists an N such that if  $n \ge N$ , then  $|f^n(y) - L| < \varepsilon$ . Suppose that  $N \equiv k \mod n$ . This implies that if  $|f^N(y) - L| < \varepsilon$  then  $|f^k(y) - L| < \varepsilon$ . Since for m > 0 we have that N + m > N, we require that if  $|f^N(y) - L| < \varepsilon$ , then  $|f^{N+m}(y) - L| = |f^{k+m}(y) - L| < \varepsilon$ . However, if these inequalities are true for all  $\varepsilon > 0$ , then this implies that  $f^k(y) = f^{k+m}(y) = L$  for m > 0. If k = 0, then we have that  $y = f^0(y) = f^m(y)$  for some 0 < m < n. If on the other hand k > 0, we have for m = n - k > 0, that  $f^k(y) = f^n(y) = y$ . So in either case, we can find some 0 < k < n such that  $f^k(y) = y$ . This is contradictory to the assumption that y is a point of period n and so our assumption must be false. Therefore, f has no points of period n > 1.