Mean squared testing error averaged over all testing data versus (constant) precision (in bits) of the network. Error is on a log scale. For a given set size s, network is trained on 2^{s-3} of the 2^s possible inputs (selected at random); tested on the remaining inputs. Learning rate $\eta = 4.0$, 400 iterations over training data. The first bit of each input represents the distance (bit in the string) that should be attended to (all 0 in these experiments). Hidden layer contains 20 neurons.

Squared training error over time (iterations, where each iteration trains on all input samples), where the color of the plot corresponds to precision; hotter colors are higher precision. Initial precision p=8, learning rate $\eta=5.0$, 150 iterations performed over training data. Precision is changed as follows: $p^+=k_1dep+k_2$, k_1,k_2 are constants, d is the direction in which we want precision to change (negative if accuracy, taken as the average over the last three iterations, is above the desired amount, positive otherwise), e is the training error from the last iteration, and p is the current network precision. Plots for a few combinations of k_1, k_2 shown.

Squared training error over time (iterations, where each iteration trains on all input samples), where the color of the plot corresponds to precision; hotter colors are higher precision. Initial precision p = 8, learning rate $\eta = 5.0$, 150 iterations performed over training data. Precision is changed as follows: $p^+ = p + k_1 de$, k_1 a constant, d is the direction in which we want precision to change (negative if accuracy, taken as the average over the last three iterations, is above the desired amount, positive otherwise), e is the training error from the last iteration, and p is the current network precision. Plots for a few values of k_1 shown.

