

Série n°5 Récepteurs actifs-Dipôle générateur

Classe: 2 SC Physique

Exercice n°1:

On associe en série une batterie d'accumulateurs $G(E=12V, r=1\Omega)$, un moteur M(E', r') et un conducteur ohmique de résistance $R=3\Omega$. (voir figure-1 ci-dessous)

1/a-Qu'appelle-on récepteur actif?

b-Classer les dipôles récepteurs dont on dispose en dipôle récepteur actif ou passif.

- 2/On empêche le moteur de tourner (moteur calé) l'intensité du courant débité par le générateur est I₁=2A.
 - a-Déterminer les valeurs des tensions U_{PN} , U_{BN} et U_{AB} et les représenter.
 - b-Déterminer la résistance interne r' du moteur.
- 3/0n laisse le moteur tourner, l'intensité du courant est $I_2=1A$.
 - a-Déterminer la f.c.é.m du moteur.
 - b-Calculer l'énergie électrique W_M consommée par le moteur pendant une durée $\Delta t=10mn$.
 - c-Sous quelles formes d'énergie est transformée l'énergie consommée par le moteur ? Déterminer les valeurs.
- 4/Déterminer le rendement ρ' du moteur.
- 5/Déterminer l'énergie totale dissipée par effet joule dans le circuit pendant une durée **Δt=10mn**.

Exercice n°2:

On veut étudier un moteur (**M**), pour cela on trace sa caractéristique intensité-tension. On obtient le graphe cicontre.

- 1/Représenter le schéma du circuit permettant de tracer cette courbe.
- 2/Ouelle est la nature de ce dipôle ? Justifier.
- 3/Déterminer les grandeurs caractéristiques de ce moteur.
- 4/On branche ce moteur aux bornes d'un générateur de f.é.m **E** et de résistance interne $\mathbf{r}=4\Omega$ et on insère dans le circuit un ampèremètre qui indique le passage d'un courant $\mathbf{I}=\mathbf{1}\mathbf{A}$.

- i-La tension U_M aux bornes du moteur.
- ii-La puissance électrique reçue par le moteur.
- iii-La puissance utile du moteur.
- iv-Le rendement du moteur.
- b-En déduire le f.é.m **E** du générateur.
- 5/a-Pendant combien de temps doit-on faire fonctionner le moteur pour produire une énergie mécanique de **7,2KJ**.

b-Quelle est, en **Wh**, la valeur de l'énergie dissipée par effet joule dans tout le circuit pendant ce temps là ?

Exercice n°3: Les parties I et II, III sont indépendantes

Expérience 1 :

I)L'étude expérimentale d'un dipôle générateur a donné le tableau suivant :

/=						
I(A)	0,25	0,5	1	1,375	1,75	2
U(V)	4,5	4	3	2,25	1,5	1

1/Tracer la caractéristique intensité-tension de ce dipôle :

Echelle : $2cm \leftrightarrow 1V$ et $2cm \leftrightarrow 0.5A$.

- 2/En exploitant le courbe **U=f(I)**, déterminer les grandeurs caractéristiques **E** et **r** de ce dipôle.
- Déduire l'expression de la loi d'ohm relative au générateur.
- 3/Comment peut-on mesurer directement et rapidement le f.é.m E?
- 4/La caractéristique intensité-tension coupe l'axe des intensités en un point particulier.

- a-Préciser les coordonnées de ce point et nommer ce courant.
- b-Retrouver la valeur de ce courant par le calcul.
- c-Est-il pratique de déterminer expérimentalement ce courant.
- II) Un circuit comprend en série :
 - * G est un générateur de f.é.m E = 6 V et de résistance interne $r = 0.5 \Omega$.
 - * M est un moteur de f.c.é.m. E' et de résistance interne $\mathbf{r}' = 0.5 \Omega$.
 - * Un résistor de résistance R2 inconnue.
- 1/Schématiser le circuit.
- 2/0n empêche le moteur de tourner, l'ampèremètre indique $I_2 = 3$ A.
- a-Calculer la tension **U**_G aux bornes de générateur.
- b-Sachant que la puissance électrique dissipée par effet joule dans tout le circuit est

$P_{\text{th totale}} = 22,5W.$

Déduire la valeur de la résistance R2

III) <u>Le moteur tourne</u>, On règle la résistance de résistor $R_2=0.5~\Omega$ et l'intensité du courant devient $I_3=2~A$.

- 1/Calculer la force contre électromotrice E' du moteur.
- 2/Le rendement du moteur est $\rho = 0.75$, retrouver la valeur de $\,E'\,$ du moteur .
- 3/a-Calculer l'énergie mécanique développée par le moteur sachant qu'il dissipe une énergie thermique $E_{th} = 240I$.
- b-Déduire la durée de fonctionnement de ce moteur.

Exercice n°4:

I) On dispose d'un générateur de force électromotrice ${\bf E}$ et de résistance interne ${\bf r}$ et d'un moteur de force contre électromotrice ${\bf E}'$ et de résistance interne ${\bf r}'$.

Les caractéristiques intensité-tension de deux dipôles sont données sur la figure suivante :

- Dipote -1-
- 1/Attribuer à chaque caractéristique la nature de son dipôle électrique.
- 2/En exploitant les deux courbes, déterminer les valeurs des grandeurs E,r, E'et r'.
- II)On branche le moteur aux bornes du générateur (fig-1)

On suppose dans la suite que : $(E=24V, r=4\Omega)$ et $(E'=18V, r'=2\Omega)$

- 1/Ecrire la loi d'ohm aux bornes du générateur et celle aux bornes du moteur.
- 2/Déterminer l'intensité du courant I lorsqu'on empêche le moteur de tourner (il est calé).
- 3/Le moteur fonctionne, on l'associe en série avec un résistor de résistance **R=20** Ω .(fig-2)
 - a-En appliquant la loi d'ohm et la loi de mailles, déterminer l'intensité du courant I qui circule dans le circuit. b-Déduire les valeurs des tensions U_{AC} , U_{AB} et U_{BC} .
- 4/Calculer:
 - a-La puissance P consommée par le moteur
 - b-La puissance P_u utile par le moteur
 - c-Le rendement ρ du moteur.

d-L'énergie thermique Eth dissipée par effet Joule dans tout le circuit pendant 5 minutes.

Exercice n°5:

On considère le montage électrique représenté ci-contre où :

- ∘G est un générateur de f.é.m. E et de résistance interne r,
- ⋄E est un électrolyseur de f.c.é.m. E'=2,5V et de résistance interne $\mathbf{r'}$ =5 Ω
- ⋄M est un moteur de f.c.é.m. E" et de résistance interne r"=1Ω,
- ⋄**R** est un résistor et **K** est un interrupteur.
- I)La tension à vide du générateur est égale à 12V.

Déterminer les indications du voltmètre et de l'ampèremètre

Lorsque l'interrupteur **K** est ouvert.

II)On ferme l'interrupteur **K**, l'ampèremètre indique le passage

d'un courant électrique d'intensité **I=0,8A**, alors que le voltmètre indiqu

1/Rappeler les lois d'ohm relatives à :

oun dipôle actif.

oun récepteur actif.

⋄un récepteur passif.

- 2/Déterminer la résistance interne **r** du générateur.
- 3/Calculer la tension aux bornes de l'électrolyseur UE.
- 4/Déduire les valeurs des tensions $\mathbf{U_m}$ et $\mathbf{U_R}$ respectivement aux bornes du moteur et du résistor.
- 5/La puissance dissipée par effet joule par le résistor est P_I=1,6w.
 - a-Déterminer l'intensité du courant I_R traversant le résistor, ainsi que sa résistance R.
 - b-En déduire l'intensité du courant I_M traversant le moteur.
 - c-Calculer la f.c.é.m. E" du moteur.
 - d-Déterminer le rendement **ρ** du moteur.

III)On bloque le moteur, est-ce que l'indication de l'ampèremètre change ou non ? Si oui trouver la nouvelle indication.

Exercice n°6:

On considère la portion de circuit représenté par la figure ci-dessous

On applique entre A et B une tension constante $U_{AB}=20V$.

1/Lorsque K est ouvert et le moteur est bloqué, l'ampèremètre indique une intensité I₁=1A.

Lorsque K est ouvert et le moteur tourne librement, l'ampèremètre indique une intensité $I_2=0,2A$.

Déterminer la résistance interne $\mathbf{r_1'}$ et la f.c.é.m $\mathbf{E_1'}$ du moteur.

2/Lorsque K est fermé et le moteur tourne librement, l'ampèremètre indique une intensité $I_3=1,2A$.

La résistance interne de l'électrolyseur est $\mathbf{r}_2'=18\Omega$.

a-Déterminer l'intensité du courant qui traverse l'électrolyseur. En déduire la f.c.é.m $\mathbf{E_2'}$ de l'électrolyseur.

b-Calculer dans ce cas:

b₁-La puissance chimique développée dans l'électrolyseur.

b₂-L'énergie dissipée par effet joule dans la portion AB pendant **Δt=5min**.

b₃-Le rendement du moteur.

Exercice n°7:

Le générateur de tension constante $U_G = 11 V$.

I)Un circuit électrique comprend en série :Un générateur ; un électrolyseur de f.c.e.m ${\bf E'}$ et de résistance interne

 $\mathbf{r'} = \mathbf{1} \Omega$ et un résistor de résistance R.(fig.1).

L'électrolyseur développe une puissance chimique $P_{ch} = 2W$.

Le générateur fournie une puissance électrique de 5,5W au circuit.

1/Déterminer :

a-L'intensité du courant I qui traverse le circuit.

b-La f.c.e.m de l'électrolyseur.

c-La résistance du résistor.

2/Calculer l'énergie électrique transformée en chaleur par effet joule dans l'électrolyseur pendant 10 mn.

II)On remplace le résistor R par deux résistors R_1 et R_2 montés en dérivation, l'électrolyseur transforme une puissance de un watt en puissance thermique (fig.2)

- 1/ Déterminer l'intensité I' du courant qui traverse l'électrolyseur.
- 2/ Déterminer la tension aux bornes des deux résistors.
- 3/ Sachant que l'énergie électrique transformée en chaleur dans le résistor R₁ pendant 50 s est de 240 J. Calculer R_1 , I_1 et R_2 .

III)On branche maintenant le générateur G entre les bornes d'un moteur (**E',r'**) (fig.3). Lorsque le moteur est calé l'ampèremètre indique I = 2,5 A Lorsque le moteur est en marche l'ampèremètre indique I' = 1 A.

Montrer que $E' = U_G (1 - \frac{I'}{I})$. Calculer E' et r'.

(fig.2)

 \mathbf{R} .

(fig.3)

Exercice n°8:

1/ Le résistor de résistance $R = 46 \Omega$ est placé en série avec un moteur (M) de f.c.e.m E'1 et de résistance interne r'1.

On maintient entre les points A et B une tension constante $U_1 = 12 \text{ V}$.

L'intensité I du courant qui traverse la portion AB est :

* I_{C} lorsque le moteur est calé.* I_{m} lorsque le moteur est en marche.

Avec $I_C = 1,6 I_m$. La puissance mécanique $P_{mec} = 0,72 W$.

a-Déterminer les valeurs E'_1 , r'_1 I_C , I_m .

b-Quelle est en joules et en Wh la valeur de l'énergie électrique E, reçue par le moteur (M) pendant

c-Calculer la valeur de la puissance dissipée par effet Joule dans AB.

2/On considère le circuit (fig.2)

- Générateur **G** avec $U_G = 24 V$.
- des trois résistors $R_1 = 10 \Omega$; $R_2 = 20 \Omega$ et $R_3 = 30 \Omega$.
- du moteur (M) précédent.
- Electrolyseur à électrodes inattaquables (E'₂, r'₂)
- La tension aux bornes de R₂ indique 10 V. a-Montrer que $I = I_2 [1 + (R_1 + R_2)/R_3]$

b-Déterminer la valeur de :

- la chute de tension aux bornes du moteur (M).
- la puissance électrique fournie à l'électrolyseur.
- la puissance mécanique fournie par le moteur (**M**).
- l'énergie électrique dissipée par effet Joule dans l'ensemble { (M), R₁,

c-Sachant que **66,67** % de l'énergie électrique reçue par l'électrolyseur est convertie en énergie chimique, déterminer la valeur de r'2 et celle de E'2.

 \mathbf{M}

(fig.2)