NASA Contractor Report 187151

Free-Stream Turbulence and Concave Curvature Effects on Heated, Transitional Boundary Layers Volume II-Program Listings and Tabulated Data

(NASA-CR-187151) FREE-STREAM TURBULENCE AND CONCAVE CURVATURE EFFECTS ON HEATFD, TRANSITIONAL BOUNDARY LAYERS Final Report (Minnesota Univ.) 202 p CSCL 200

N91-27502 54/0/8 Unclas 63/34 0030071

J. Kim and T.W. Simon University of Minnesota Minneapolis, Minnesota

August 1991

Prepared for Lewis Research Center Under Grant NAG3-881

-		

ABSTRACT

An experimental investigation of the transition process on flat-plate and concave curved-wall boundary layers for various free-stream turbulence levels was performed. Where possible, sampling according to the intermittency function was made. Such sampling allowed segregation of the signal into two types of behavior--laminar-like and turbulent-like. Results show that for transition on a flat-plate, the two forms of boundary layer behavior, identified as laminar-like and turbulent-like, cannot be thought of as separate Blasius and fully-turbulent profiles, respectively. Thus, simple transition models in which the desired quantity is assumed to be an average, weighted on intermittency, of the theoretical laminar and fully turbulent values is not expected to be successful. Deviation of the flow identified as laminar-like from theoretical laminar behavior is shown to be due to recovery after the passage of a turbulent spot, while deviation of the flow identified as turbulent-like from the fully-turbulent values is thought to be due to incomplete establishment of the fully-turbulent power spectral distribution. Turbulent Prandtl numbers for the transitional flow, computed from measured shear stress, turbulent heat flux and mean velocity and temperature profiles, were less than unity. For the curved-wall case with low free-stream turbulence intensity, the existence of Görtler vortices on the concave wall within both laminar and turbulent flows was established using liquid crystal visualization and spanwise velocity and temperature traverses. Transition was found to occur via a vortex breakdown mode. The vortex wavelength was quite irregular in both the laminar and turbulent flows, but the vortices were stable in time and space. The upwash was found to be more

unstable, with higher levels of u' and u'v', and lower skin friction coefficients and shape factors. Turbulent Prandtl numbers, measured using a triple-wire probe, were found to be near unity for all post-transitional profiles, indicating no gross violation of Reynolds analogy. No evidence of streamwise vortices was seen in the high turbulence intensity case. It is not known whether this is due to the high eddy viscosity over the entire flow which reduces the turbulent Görtler number to stable values and causes the vortices to disappear, or whether it is due to an unstable vortex structure. Predictions based on two-dimensional modelling of the flow over a concave wall with high free-stream turbulence levels, as on the pressure surface of a turbine blade, would seem to be adequate. High levels of free-stream turbulence superimposed on a free-stream velocity gradient (which occurs within curved channels) was found to cause a cross-stream transport of momentum within the "potential core" of the flow. The total pressure within the "potential core" can thus rise to levels higher than that which occurs at the inlet to the test section.

Documentation is presented in two volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data.

ACKNOWLEDGEMENTS

The following work was sponsored by the Lewis Research Center of NASA under grant NASA/NAG3-881. The authors thank the grant monitor, Mr. Fred Simon, for his guidance.

Some additional support was provided by the Air Force Office of Scientific Research and the Graduate School of the University of Minnesota.

TABLE OF CONTENTS

VOLUME II

A4. Program Listings	1
A5. Data Listings	
Case 1–Low TI, Flat-wall	75
Case 2–Medium TI, Flat-wall	125
Case 3–High TI, Flat-wall	181
Case 4-Low TI, Concave Curved Wall	206
Case 5-High TL Concave Curved Wall	246

A.4 Program Listing

- 1). STANTON: Program for measuring Stanton numbers using the embedded thermocouples in the wall. (p. 174)
- 2). VRED_CW: Reduction program for velocity measurements in the curved-wall configuration. For flatwall measurements, used a large wall radius. (p. 189)
- 3). TRED_CW: Reduction program for temperature measurements. (p. 200)
- 4). UVRED_CW: Reduction program for X-wire measurements. (p. 216)
- 5). K2H01H02: Program for finding empirical constant needed for frequency compensation of cold-wire in triple-wire measurements. (p. 223)
- 6). VTACQ: Acquisition program for triple-wire measurements. (p. 230)
- 7). I_VTRED: Reduction program for triple-wire measurements (p. 234)

```
10
      ! THIS PROGRAM IS USED FOR STANTON NUMBER MEASUREMENTS (STANTON)
 20
 30
      40
      DIM Y(50),Tc(50),Com$[180],Vraw(150),Traw(150),Qconv(150),Qrad(150),Rex(15
0),Enth(60)
50
      DIM Vwall(150),Qstcond(150),Power1(150),Twall(150),X(150),Stan(150)
60
70
80
     1 CONSTANTS
90
100
     ! HEATER PATCH DATA
110
     Rres=2.051
                                 ! RESISTANCE [OHMS]
120
      Area=.8361
                                 ! HEATER PATCH AREA [m^2]
     Dxtc=2.54E-2
130
                                 ! SPACING BETWEEN THERMOCOUPLES [m]
140
     Da=D×tc+1.
                                 ! AREA OF lin BY lm [m^2]
150
     ! TC CALIBRATION DATA
160
170
     A=.0878053847
180
     B=-.6018211152
190
     C=1.113528335
200
     D=15.14880077
210
220
      230
     INPUT "DO YOU WISH TO TAKE NEW DATA OR READ OLD DATA ? (N/O)", Take$
240
250
     IF Take$="0" THEN GOTO 1240
260
     270
280
     INPUT "INPUT ATMOSPHERIC PRESSURE [in Hg]" ,Press
290
     Press=Press*25.4 ! CONVERT TO mm Ho
     INPUT "INPUT FREE-STREAM TEMPERATURE [C]", Tatm
300
310
320
330
     INPUT "DO YOU WISH TO 1). INPUT VELOCITY OR 2). MEASURE VELOCITY ? ", Velo$
340
     IF Velo$="1" THEN
350
       INPUT "INPUT FREE-STREAM VELOCITY [m/S] !!", Uinf
360
       GOTO 560
370
    ELSE
      ! CALCULATE FREE-STREAM VELOCITY
380
390
       INPUT "SET UP PITOT TUBE TO MEASURE DYNAMIC PRESSURE IN FREE-STREAM", Inp
Œ.
400
       Slope=.2450
410
       Offset=0.
420
       Rair=287.
                                    ! [J/Kg-K]
430
       Rho=Press/Rair/(Tatm+273.15)*132.91 [Kg/m^3]
440
450
      Ntc=10000
      Sum0=0.
460
470
       REMOTE 724
480
      FOR I=1 TO Ntc
490
       ENTER 724: Volt
500
        Sum@=Sum@+Volt
510
      NEXT I
520
      Pdyn=(Slope+(Sum0/Ntc)-Offset)+2.54
530
      Uinf=SQR(195.91/Rho*Pdyn)
```

```
INPUT "REMOVE PITOT TUBE FROM FLOW !!", Inp$
540
550
    END IF
560
     570
     ! COMPUTE HEAT FLUX THROUGH WALL
580
     INPUT "INPUT VOLTAGE ACROSS PRECISION RESISTOR [V]", Vres
590
     INPUT "INPUT VOLTAGE ACROSS HEATER PATCH [V]", Vpatch
600
                                  ! CURRENT THRU HEATER [A]
     Current=Vres/Rres
610
                                   ! HEAT [W]
     Power=Current*Vpatch
620
                                   ! HEAT THROUGH DIFFERENTIAL AREA [W]
     Power=Power/Area*Da
630
640
     Qflux=Power/Da
650
      .........
650
670
      I ACQUIRE THERMOCOUPLE DATA
680
690
     I READ IN RAW VOLTAGES
700
      INPUT "CONNECT TC'S 1 TO 150 !!", Inp$
710
      FOR I=1 TO 148
720
                           INITIALIZE VOLTAGES
730
       Vraw(I)=\emptyset.
740
      NEXT I
750
     REMOTE 703
760
770
     REMOTE 708
     INPUT "INPUT NUMBER OF AVERAGINGS TO BE MADE !!", Mtc
780
     FOR J=1 TO Mtc
790
       FOR I=2 TO 148
800
         IF 1>53 AND I<61 THEN 870
810
         OUTPUT 703; I-1; ","
820
830
         WAIT 1.2
840
         ENTER 708; Volt
         DISP USING """RUN, THERMOCOUPLE NO., TO VOLTAGE: "",2D,4X,3D,4X,5D.3D"
;J,I,Volt+1000
         Vraw(I)=Vraw(I)+Volt
860
        NEXT I
870
     NEXT J
880
     DISP " "
890
900
     FOR I=2 TO 148
910
       Vraw(I)≖Vraw(I)/Mtc+1000
920
930
     NEXT I
940
      Vraw(1)=-(Vraw(4)-Vraw(2))/2+Vraw(2)
950
      Vraw(3)=(Vraw(2)+Vraw(4))/2
960
      Vraw(7)=(Vraw(6)+Vraw(8))/2
970
980
     Uraw(14)=(Uraw(13)+Uraw(15))/2
      V_{raw}(37) = (V_{raw}(36) + V_{raw}(38))/2
990
1000 Vraw(39)=(Vraw(38)+Vraw(40))/2
1010 \quad Vraw(44) = (Vraw(43) + Vraw(45))/2
1020 Vraw(118)=(Vraw(117)+Vraw(119))/2
1030 \quad \text{Uraw}(135) = (\text{Uraw}(134) + \text{Uraw}(136))/2
1040 Uraw(138)=Uraw(137)
1060 1
 1070 INPUT "DO YOU WISH TO STORE RAW DATA ? (Y/N)",Store$
```

```
1080 INPUT "INPUT ANY COMMENTS: ".Com$
1090 IF Stores="Y" THEN
       INPUT "PLACE DISC IN DRIVE 1" .Inp$
1100
       INPUT "INPUT NAME OF DATA FILE !!" .File$
1110
       MASS STORAGE IS ":CS80,700.1"
1120
1130
       CREATE BOAT File$ .10
       ASSIGN @Path TO File$
1140
1150
       OUTPUT @Path; Press, Uinf, Power, Qflux
       FOR I=1 TO 148
1150
         OUTPUT @Path; Vraw(I)
1170
1180
       NEXT I
1190
       MASS STORAGE IS ":CS80.700.0"
1200 END IF
1210 GOTO 1360
1220
     1230
1240 ! READ DATA
1250 INPUT "PLACE DISC IN DRIVE 1", Inp$
1260 INPUT "INPUT NAME OF DATA FILE !!",File$
1270 MASS STORAGE IS ":CS80,700,1"
1280 ASSIGN @Path TO File$
1290 ENTER @Path; Press, Uinf, Power, Qflux
1300 FOR I=1 TO 148
1310
     ENTER @Path; Uraw(I)
1320 NEXT I
1321 |V_{raw}(19) = (V_{raw}(18) + V_{raw}(20))/2
1330 MASS STORAGE IS ":CS80.700.0"
1340 | ******************
1350
1360 ! CONVERT VOLTAGES TO TEMPERATURES
1370
1380 ! ISOTHERMAL JUNCTIONS
1390 Viso2=(Vraw(145)+Vraw(146))/2
1400 INPUT "DO YOU WISH TO MAKE THE ISOTHERMAL BOX CORRECTION? (Y/N)",Corrbox$
1410 IF Corrbox = "Y" THEN Viso1=Viso2-Vraw(148)
1420 IF Corrbox $ = "N" THEN Viso! = Viso2
1430
1440
     ! WALL TEMPERATURES
1450 FOR I=1 TO 138
1460
      IF I>100.1 THEN Uwall(I)=Uraw(I)-Viso2
1470
       IF I<100.1 THEN Vwall(I)=Vraw(I)-V1501</pre>
1480
      Traw(I)=A*Vwall(I)^4+B*Vwall(I)^3+C*Vwall(I)^2+D*Vwall(I)
1490 NEXT I
1500 !
1510 ! FREESTREAM TEMPERATURE
1520 Vinf=Uraw(139)-Viso2
1530 Tinf=A*Vinf^4+B*Vinf^3+C*Vinf^2+D*Vinf
1540 !
1550 ! TEMPERATURE ACROSS INSULATION
1550 Vinsi=(Vraw(141)+Vraw(143))/2-Viso2
1570 Tinsi=A+Vinsi^4+B+Vinsi^3+C+Vinsi^2+B+Vinsi
1580 Vinso=-Vraw(142)-Viso2
1590 Tinso=A*Vinso^4+B*Vinso^3+C*Vinso^2+D*Vinso
1610 1
```

```
1620 ! HEAT FLUX ACROSS INSULATION
1630
                                     ! CONDUCTIVITY OF FIBERGLASS [W/m-K]
1640 Kins=.04
                                      ! THICKNESS OF INSULATION [m]
1650 Dxins=4*2.54/100
166@ Qloss=Kins*Da*(Tinsi-Tinso)/Dxins ! POWER LOST THROUGH BACK WALL [W]
1670 !
1680 | POWER THROUGH FRONT WALL OVER DIFFERENTIAL AREA [W]
1690 Power=Power-Qloss
1710 !
1720 ! CONDUCTION HEAT LOSS
1730 !
1740 ! STREAMWISE CONDUCTION
                                            ! CONDUCTIVITY [W/m-K]
1750 Klex=.1495
                                             ! THICKNESS OF LEXAN/LC COMP.
1760 Dxlex=50.14/1000+2.54E-2
1770 FOR I=1 TO 138
     Q1=(Traw(I)-Traw(I-1))*Klex*Dxlex/.0254 ! 1 in. SPACING BETWEEN TC'S
1780
      Q2=(Traw(I)-Traw(I+1))*Klex*Dxlex/.0254
1790
      IF 1>52 THEN ! NEGLECT CROSS-STREAM CONDUCTION FOR CROSS-SPAN TO'S
1800
1810
       Q1=Ø.
        Q2=0.
1820
1830
      END IF
      Qstcond(I)=Q1+Q2
1840
                                            ! NET POWER THRU FRONT WALL [W]
      Power1(I)=Power-Q1-Q2
1850
      Twall(I)=Traw(I)-Power!(I)+Dxlex/Klex/Da ! FRONT WALL TEMPERATURE [C]
1850
1870 NEXT I
1880
1890 !*****************
1900
1910 ! RADIATION HEAT LOSS [W/m^2]
                                         ! KELUIN-PLANK CONSTANT [W/m^2-K^4]
1920 Sigma=5.67E-8
                                         I EMISSIVITY OF LIQUID CRYSTAL
1930 Emis=.87
1940 FOR I=1 TO 138
      Qrad(I)=Emis*Sigma*Da*((Twall(I)+273.15)^4-(Tinf+273.15)^4)
1950
      Qconv(I)=Power1(I)-Qrad(I)
1960
1970 NEXT I
1980
1990 :******************
2000
2010 ! CALCULATE STANTON NUMBER, REX
2020 FOR I=1 TO 138
       Tave=(Twall(I)+Tinf)/2
2030
       CALL Rhocal(Rho, Tave, Press)
2040
2050
       CALL Opcal(Op, Tave, Press)
       CALL Viscoal(Visc Tave Press)
2050
      Stan(I) = (Qconv(I)/Da)/Rho/Cp/Uinf/(Twall(I)-Tinf)
2070
      X(I)=(I-1+1.5)+2.54/100 ! STREAMWISE DISTANCE OF THERMOCOUPLES [cm]
2080
       Rex(I)=Uinf*X(I)/Visc
2090
2100 NEXT I
2110 | ......
2120 1
2130 | ENTHALPY THICKNESSES ALONG WALL
2140 CALL Enthcal(Stan(*), Twall(*), Tinf, Enth(*))
2150 (*******************
2160 !
```

```
2170 ! PRINT RESULTS
2180 INPUT "DO YOU WISH A PRINTOUT OF THE RESULTS ? (Y/N)",Prin$
2190 IF Prins="N" THEN 2440
2200 INPUT "DO YOU WISH TO PRINT RESULTS ON SCREEN OR PRINTER ? (S/P)",Pr$
2210 IF Pr$="P" THEN
2220
       PRINTER IS 701
2230
       OUTPUT 701;""
       OUTPUT 701:""
2240
2250 END IF
2260 IF Takes="0" THEN PRINT USING """FILENAME: "",10A,2/";Files
2270 PRINT USING """Uinf: "", 2D.2D, "" [m/s]"""; Uinf
                                                          """;Qflux
2280 PRINT USING """HEAT FLUX TO HEATER: "",3D.D,"" [W/m^2]
2290 PRINT USING """HEAT LOSS THROUGH BACK WALL OVER DA: "", 2D.3D, "" [W]"""; Qlo
55
2300 PRINT USING """FREESTREAM TEMPERATURE: "",3D.2D,"" [C]"",/";Tinf
2310 PRINT USING """
                       Twall [C]
                                         RE_{\times}
                                                     Enth [m]
                                                                   Qconv [W
           St"",/"
/m^21
2320 FOR I=1 TO 138
2330 IF 1>53 AND I<61 THEN 2390
     IF INT(I/10)=I/10 AND I<54 THEN PRINT
2340
     IF I=61 OR I=71 OR I=87 OR I=103 OR I=119 OR I=129 THEN PRINT USING "/,"
2350
2360 IF IK53 THEN PRINT USING "3D,5X,2D.2D,7X,SD.3DESZ,7X,SD.3DESZ,7X,SD.3DESZ
Z .7X .SD .3DESZ";I .Twall(I) .Rex(I) .Enth(I) .Qconv(I)/Da .Stan(I)
2370 IF 1>53 THEN PRINT USING "3D,5X,2D.2D,7X,9A,7X,8A,7X,SD.3DESZ,7X,SD.3DES
Z":I,Twall(I),"-----"," ----- ",Qconv(I)/Da,Stan(I)
      2380
****
2390 NEXT I
2400 | PRINT USING "/.""HEAT TRANSFERRED TO FLUID ALONG CENTERLINE: "".D.3DESZ."
* [W]""";Qadded
2410 PRINTER IS 1
2420
2430
     - 1
2440
     I GRAPH DATA
2450
2460 INPUT "DO YOU WISH A PLOT OF St ALONG THE CENTERLINE ? (Y/N)".Cent$
2470 IF Cent$="Y" THEN
2480
      FOR I=1 TO 150
2490
       IF I>53 THEN X(I)=100
      NEXT I
2500
     CALL Plot_log(53,Rex(*),Stan(*), "ST/Cf",1.E+4,1.E+7,1,5,1.E-4,1.E-2,1.E-
2510
1,2,"Rex","St/Cf",Uinf,1)
2520 END IF
2530 !
2540 INPUT "DO YOU WISH TO PLOT THE SPANWISE St VARIATION 7 (Y/N)", Spanw$
2550 IF Spanws="Y" THEN
2560
      CALL Cr_span(78,Rex(*),Stan(*),"Cross-span St",0,50,2,5,-12,12,1,4,"X [1
n.]","Z [in.]",1)
2570 END IF
2580
2590 INPUT "DO YOU WISH A PLOT OF ENTHALPY THICKNESS ALONG THE WALL ? (Y/N)" .Pe
nth$
2600 DIM Xloc(60)
2610 FOR I=1 TO 60
```

```
2620
   X1oc(I)=(I+.5)*2.54 ! [cm]
2630 NEXT I
2640 IF Penth$="Y" THEN
    CALL Plot_lin(52, Xloc(*), Enth(*), "ENTHALPY THICKNESS", 0,160,10,2,0,5,.2,
2650
5,"X [cm]","Enth [mm]",1)
2660 END IF
   2670
2680
2690 END
   2700
2710
2720
   2730
2740 sub Rhocal(Rho, Temp, Press)
2750
                             I DENSITY @ P=1 ATM, T=300 K
    RhoØ=1.1766
2760
   Rho=Rho0+(Press/760)+(300/(Temp+273.15)) ! TEMP. AND PRESS. CORRECTION
2770
2780 !
2790 SUBEND
2800
2810 !
2820
2840 sub Cpcal(Cp,Temp,Press)
2850
    Cp=.053*(Temp+273.15)+988.572
2860
2870 !
2880
   SUBEND
   2890
2900
2910
2930 SUB Plot_log(N,Xplot(*),Yplot(*),Title$,Xmin,Xmax,Xtic,Nxtic,Ymin,Ymax,Yti
c Nytic ,Labelx$ ,Labely$ ,Ufree ,Special )
OPTION BASE 1
2950
2980
   DIM Xd(200),Yd(200)
2970
   GRAPHICS ON
2980
   GCLEAR
2990
   GINIT
   LORG 5
3000
3010
   DEG
    3020
   Nc=1
3030
    Data1$="1"
3040
3050 !*******************
3060 ! LABELS
    LDIR 0
3070
    CSIZE 6
3080
3090
    LORG 5
    FOR I=-.1 TO .3 STEP .1
3100
     MOVE 70+1,95
3110
3120
     LABEL Title$
    NEXT I
3130
3140
   CSIZE 5
```

```
3150
       LORG 5
3160
       MOVE 69,5
3170
       LABEL Labelx$
       LDIR 90
3180
       MOVE 6,52
3190
       LABEL Labely$
3200
       VIEWPORT 15,124,12,90
3210
I LOG-LOG AXES
3230
       WINDOW LGT(Xmin),LGT(Xmax),LGT(Ymin),LGT(Ymax)
3240
3250
        AXES 1,1,LGT(Xmin),LGT(Ymin),1,1,6
       AXES 1,1,LGT(Xmax),LGT(Ymax),1,1,0
3260
       CLIP OFF
3270
3280
       LDIR 0
3290
       CSIZE 3.5,.6
       Ylab=LGT(Ymin)-.05
3300
       FOR I=1 TO LGT(Xmax/Xmin)+1
3310
         IF I=1 THEN Xlab=Xmin/10
3320
         Xlab=Xlab*10
3330
          FOR J=1 TO 9
3340
           MOVE LGT(Xlab*J), LGT(Ymin)
3350
3360
           DRAW LGT(Xlab*J),LGT(1.1*Ymin)
3370
          NEXT J
         MOVE LGT(Xlab), Ylab
3380
3390
         LORG 6
3400
          IF I=1 THEN LORG 3
         LABEL USING "DE"; Xlab
3410
3420
       NEXT I
       Xlab=LGT(Xmin)-.05
3430
       LDIR 90
3440
       FOR I=1 TO LGT(Ymax/Ymin)+1
3450
3450
          IF I=1 THEN Ylab=Ymin/10
3470
          Ylab=Ylab+10
          FOR J=1 TO 9
3420
3490
           MOVE LGT(Xmin),LGT(Ylab*J)
           DRAW LGT(Xmin*1.1),LGT(Ylab*J)
3500
3510
         NEXT J
3520
         MOVE Xlab LGT(Ylab)
3530
         LORG 4
         IF I=1 THEN LORG 1
3540
         LABEL USING "DE"; Ylab
3550
       NEXT I
3560
3570
       ! DRAW LAMINAR CORRELATION
3580
       MOVE LGT(1.E+4),LGT(.453*.7^(-2/3)*(1.E+4)^(-.5))
3590
3600
       DRAW LGT(2.E+6),LGT(.453*.7^(-2/3)*(2.E+6)*(-.5))
3510
       MOVE LGT(1.E+5),LGT(4.E-3)
3620
       LORG 2
       LDIR Ø
3630
       CSIZE 4,.6
3640
       (LABEL "St=0.453+Pr^(-2/3)+Rex^(-.5)"
3650
       MOVE LGT(9.E+4),LGT(4.E-3)
3660
     | DRAW LGT(8.E+4),LGT(4.E-3)
3670
       MOVE LGT(8.E+4),LGT(4.E-3)
3680
     ! DRAW LGT(5.E+4),LGT(.453*.7^(-2/3)*(5.E+4)^(-.5))
3690
```

```
3700
        MOVE LGT(1.E+4),LGT(.332+1.E+4^(-.5))
3710
        DRAW LGT(2.E+6),LGT(.332*2.E+6^(-.5))
3720
        MOVE LGT(1.5E+6),LGT(.332+1.5E+6^(-.5))
3730
        L1 = -3.57
3740
        DRAW 6.L1
3750
3760
        MOVE 6,L1
3770
        DRAW 5.5,L1
3780
        LORG 8
       LABEL "Cf/2=0.332+Rex^(-0.5)"
3790
3800 IPLOT DATA
3810
       LORG 5
       CSIZE 4..5
3820
       FOR I=4 TO N-3
3830
         X=LGT(Xplot(I))
3840
          Y≖LGT(Yplot(I))
3850
         MOUE X.Y
3850
          LABEL "+"
3870
3880
        NEXT I
3890
        LORG 5
        MOVE LGT(5.E+4),LGT(.0085)
3900
                                        + STATION NUMBERS CORRESPOND TO CURVED
       LABEL "STATION NUMBERS: "
3910
                                          WALL CONFIGURATION
        MOVE LGT(Xplot(4)),LGT(.0085)
3920
        LABEL "1"
3930
        MOVE LGT(Xplot(12)),LGT(.0085)
3940
3950
        LABEL "2"
        MOVE LGT(Xplot(24)),LGT(.0085)
3960
        LABEL "3"
3970
        MOVE LGT(Xplot(34)),LGT(.0085)
3980
        LABEL "4"
3990
        MOUE LGT(Xplot(44)/2+Xplot(45)/2),LGT(.0085)
4000
        LABEL "5"
4010
       !MOUE LGT(Xplot(48)/2+Xplot(49)/2),LGT(.0085)
4020
       ILABEL "6"
4030
4040
        INPUT "DO YOU WISH TO PLOT THE TURB, CORR, FOR St AND/OR Cf7 (Y/N)", Corr
4050
_plot$
        IF Corr_plot$="Y" THEN
4060
          INPUT "INPUT Station (>=3), MOMENTUM THICKNESS (m), AND DYN. VISC. (m"
4070
2/S)",Stat,Momen,D_visc
          IF Stat=3 THEN Xwall=(21+.5)+2.54/100
4080
          IF Stat=4 THEN Xwall=(30+.5)+2.54/100
4090
          IF Stat=5 THEN Xwall=(39+.5)+2.54/100
4100
          IF Stat=6 THEN Xwall=(48+.5)*2.54/100
4110
          Xmin=INT(Xwall+100/2.54)-10
4120
          Xmax=100
4130
          Xvo=Xwall-((Momen*Ufree^.202)/(.036*D_visc^.2))^1.25 ! VIRTUAL ORIGIN
4140
4150
          INPUT "Cf CORRELATION ? (Y/N)",Plot_cf$
4160
          IF Plot_cfs="Y" THEN
4170
4180
            FOR Dist=Xmin TO Xmax
                                                 ! DISTANCE FROM LEADING EDGE [m]
              Distp=Dist+2.54/100
4190
              Cf2=.0287*(Ufree*(Distp-Xvo)/D_visc)^(-.2)
4200
              MOVE LGT(Distp*Ufree/D_visc),LGT(Cf2)
4210
```

```
4220
             Cf2plus=.0287*(Ufree*(Distp+1*2.54/100-Xvo)/D visc)^(-.2)
             DRAW LGT((Distp+1*2.54/100)*Ufree/D_visc),LGT(Cf2plus)
4230
4240
           NEXT Dist
         END IF
4250
4260
        INPUT "St CORRELATION ? (Y/N)",Plot_st$
4270
         IF Plot_st$="Y" THEN
4280
           INPUT "INPUT PRANDTL NUMBER" .Prandtl
4290
4300
           FOR Dist=Xmin TO Xmax
4310
             Distp=Dist*2.54/100
4320
             Stan=.03*Prandtl^(-.4)*(Ufree*(Distp-Xvo)/D visc)^(-.2)
4330
             MOVE LGT(Distp*Ufree/D visc),LGT(Stan)
4340
             Stanp=.03*Prandt1^{(-.4)*(Ufree*(Distp+1*2.54/100-Xvo)/D_visc)^{(-.2)}}
4350
            DRAW LGT((Distp+1*2.54/100)*Ufree/D_visc),LGT(Stamp)
4360
          NEXT Dist
4370
         END IF
       END IF
4380
4390
       INPUT "DO YOU WISH TO PLOT OF VALUES? (Y/N)", Cfvals$
4400
4410
       IF Cfvals$="Y" THEN
4420
        INPUT "INPUT THE NUMBER OF Cf VALUES YOU WISH TO PLOT" Nofval
4430
        FOR I=1 TO Nofval
4440
          LORG 5
4450
           CSIZE 5
4460
          INPUT "INPUT Cf, Rex", Cfval, Rexval
          MOUE LGT(Rexval),LGT(Cfval/2)
4470
4480
          LABEL "*"
4490
         NEXT I
4500
      END IF
4510 | **********************
       INPUT "DO YOU WISH A HARD COPY? (Y/N)" Copy$
4520
4530
       IF Copy$="Y" THEN
4540
         INPUT "DO YOU WISH AN EXPANDED PLOT ? (Y/N)" Expan$
4550
         IF Expans="Y" THEN
          DUMP DEVICE IS 701, EXPANDED
4560
4570
          DUMP GRAPHICS
4580
        ELSE
4590
          DUMP GRAPHICS 1 TO #701
4600
        END IF
4510
      END IF
4620 | **************************
4630
      GCLEAR
4640 !
4650 SUBEND
4570 !
4680 !
4700 sub Visccal(Visc, Tave, Press)
4710
4720
       Visc=9.3277E-8*(Tave+273.15)-1.2248E-5
4730
      Visc=Visc*(760/Press)
4740 1
4750 SUBEND
```

```
4770 !
4780
    4790
4800 sub Enthcal(Stan(*), Twall(*), Tinf, Enth(*))
     DIM Q(60),P(60),R(60),A(60),B(60)
4810
4820
                       ! DISTANCE BETWEEN THERMOCOUPLES
    Deltax=2.54E-2
4830
4840
     Enth(0)=0.
4850
     FOR I=1 TO 52
4860
4870
       + CALCULATE SLOPE OF Diw/Dx
4880
       Slope=((Twall(I+1)-Twall(I))/Deltax+(Twall(I)-Twall(I-1))/Deltax)/2
4890
       IF I=1 THEN Slope=(Twall(1)+Twall(2))/Deltax
4900
       A(I)=Slope/(Twall(I)-Tinf)
4910
       B(I)=(Stan(I)+Stan(I-I))/2
4920
       P(I)=1+Delta\times/2+A(I)
4930
       Q(I)=2-P(I)
4940
       R(I)=B(I)*Deltax
4950
      Enth(I)=Q(I)/P(I)*Enth(I-1)+R(I)/P(I)
4950
      ! PRINT I,Q(I)/P(I)*Enth(I-1),R(I)/P(I),Enth(I)
4970
4980
    NEXT I
     ---------
4990
5000 SUBEND
     5010
5020 SUB Plot_lin(M,Xplot(*),Yplot(*),Title$,Xmin,Xmax,Xtic,Nxtic,Ymin,Ymax,Yti
c,Nytic,Labelx$,Labely$,Sp)
5030
    - 1
     OPTION BASE 1
5040
5050
     GRAPHICS ON
5060
     GCLEAR
5070
     GINIT
     LORG 5
5080
5090
     DEG
     5100
* *
    Labs="Y"! WANT LABEL
5110
    Nc=1 / NUMBER OF CURVES DO YOU WISH TO PLOT
5120
    AS="Y" ! INPUT THE DATA BY HAND?
5130
     Con$="N" | CONNECT POINTS?
5140
     Grid$="N"| GRID?
5150
     Datal$="1"4 LABEL DATA AS 1). CROSSES, 2). SQUARES, OR 3). TRIANGLES ?
5160
5180 | LABELS
    LDIR Ø
5190
5200
     CSIZE 6
5210
     LORG 5
     FOR I=-.1 TO .3 STEP .1
5220
      MOUE 70+1,95
5230
       LABEL Title$
5240
     NEXT I
5250
     CSIZE 5
5250
     LORG 5
5270
     MOVE 69,5
5280
```

```
LABEL Labelx$
5290
       LDIR 90
5300
       MOVE 6,52
5310
       LABEL Labely$
5320
       VIEWPORT 15,124,12,90
5330
5340 !*****************************
     I LINEAR-LINEAR AXES
5350
5360
       WINDOW Xmin, Xmax, Ymin, Ymax
5370
       AXES Xtic, Ytic, Xmin, Ymin, Nxtic, Nytic, 5
5380
       AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
       IF Grids="Y" THEN GRID Nxtic*Xtic, Nytic*Ytic, Xmax, Ymax
5390
5400 !
5410
     CLIP OFF
     LDIR Ø
5420
5430
      Ylab=(Ymax-Ymin)/20
     FOR I=1 TO (Xmax-Xmin)/(Xtic*Nxtic)
5440
5450
        -Xl≖I*Xtic*N×tic+Xmin
5460
        MOVE X1.Ymin
5470
        LORG 6
5480
        LABEL X1
     NEXT I
5490
5500
     Xlab=(Xmax-Xmin)/25
5510
      LDIR 90
5520
5530
      FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
5540
        Yl=I*Ytic*Nytic+Ymin
5550
        MOVE -Xlab+Xmin,Yl
        IF ABS(Y1)<1.E-10 THEN GOTO 5580
5560
5570
        LABEL Y1
        IF ABS(Y1)<1.E-10 THEN LABEL "0"
5580
5590
      NEXT I
     LDIR Ø
5600
5620 ! PLOT DATA ENTERED MANUALLY
5630 CLIP ON
5640 LDRG 5
5650 CSIZE 4,.5
56E0
     FOR I=1 TO M
        IF Sp=1 THEN
5670
5680
          Yplot(I)=Yplot(I)*1000
5690
        END IF
5700
       MOVE Xplot(I), Yplot(I)
5710
        LABEL "+"
     NEXT I
5720
     IF Sp=1 THEN
5730
5740
        LORG 2
        CSIZE 4.5,.5
5750
        MOVE 20,4
5760
        LABEL "+ -- Wall Measurements"
5770
        MOVE 20,3.6
5780
5790
        LABEL " -- Profile Measurements"
5800
5810
        LORG 5
5820
        CSIZE 3.5
5821
```

```
! CURVED WALL DATA
       MOVE 4.+2.54,4.B
5822
5623
       LABEL "1"
       MOVE 14.5+2.54.4.8
5824
       LABEL "2"
5825
       MOVE 24+2.54,4.8
5826
       LABEL "3"
5827
       MOVE 34.5+2.54,4.8
5828
       LABEL "4"
5829
       MOVE 44.5+2.54,4.8
5830
       LABEL "5"
5831
       FOR I=1 TO 6
5833
        MOUE ((I-1)+9+4)+2.54,4.8
5840
       | LABEL I
5850
58E0
       NEXT I
     END IF
5870
5880
     INPUT "DO YOU WISH A HARD COPY? (Y OF N)",A5$
5890
     IF A5$="N" THEN 5980
5900
     *INPUT "DO YOU WISH AN EXPANDED VERSION ? (Y/N)", Expandeds
5910
     IF Expanded⊈="Y" THEN
5920
      DUMP DEVICE IS 701 EXPANDED
5930
      DUMP GRAPHICS
5940
5950
     END IF
     IF Expandeds="N" THEN DUMP GRAPHICS 1 TO #701
5960
     OUTPUT 701;"
5970
     GCLEAR
5980
5990 SUBEND
5000 I......
6010
5000
    6030
6040 SUB Cr_span(M,Xplot(*),Yplot(*),Title$,Xmin,Xma,,Xtic,Nxtic,Ymin,Yma,,Ytic
,Nytic,Labelx$,Labely$,Sp)
6050 DIM Yspan(50)
60EC
6070 ! OPTION BASE 1
    GRAPHICS ON
6080
     GCLEAR
B090
E100
     GINIT
     LORG 5
E110
6120
     DEG
      €130
• •
      Labs="Y" | WANT LABEL
E140
      No=1 | NUMBER OF CURVES DO YOU WISH TO PLOT
E150
      AS="Y" 1 INPUT THE DATA BY HAND?
6160
      Cons="N' | CONNECT POINTS?
E170
     G-18="N" + GRID?
E180
     Datals="1"+ LABEL DATA AS 1). CROSSES, 2). SQUARES, DR 3). TRIANGLES ?
6190
E202 1......
6210 | LABELS
E220
     LDIP 0
E230
     CSIZE 6
6240
      LOF6 5
```

```
FOR I=-.1 TO .3 STEP .1
625€
         MOVE 70+1,95
6260
         LABEL Titles
6270
       NEXT I
6166
       CSIZE 5
6290
6300
       LORG 5
6310
       MOVE 69,5
6320
       LABEL Labels $
6330
       LDIR 90
       MOVE 6,52
6340
6350
       LABEL Labely$
       VIEWPORT 15,124,12,90
6380
6370 |-----
6380 | LINEAR-LINEAR AXES
6390
      WINDOW Xmin, Xmax, Ymin, Ymax
5400
       - AXES Xtic,Ytic,Xmin,Ymin,Nxtic,Nytic,5
B410
       AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
6420
       IF Grids="Y" THEN GRID Nxtic+Xtic, Nytic+Ytic, Xmax, Ymax
6430 |
5440
       CLIP OFF
       LDIR 0
6450
       Ylab=(Ymax-Ymin)/20
6450
6470
       FOR I=1 TO (Xmax-Xmin)/(Xtic+Nstic)
         X1=I+Xtic+Nxtic+Xmin
6480
         MOVE X1,Ymin
6490
        LORG 6
6500
E510
        LABEL X1
6520
       NEXT I
6530
       - 1
BE40
       Xlab=(Xmax-Xmin)/25
655C
       LDIR 90
65E0
       FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
6570
         Y1=I+Ytic+Nytic+Ymin
6590
         MOVE -Xlat+Xmin,Yl
         IF ABS(Y1):1.E-10 THEN GOTO BE10
6592
         LABEL YI
6600
         IF AES(Y1)(1.E-10 THEN LABEL "C"
6510
6520
       NEXT I
6E30
      LDIR 0
6850 | PLOT DATA ENTERED MANUALLY
BEEC
      CLIF ON
6E70
       LORG 5
EE9€
       OS17E 4..5
6690
6891
       Yplot(75)=0.
BE 92
       Yplot(63)=0.
6893
       Yplst: 99)=0.
6700
       FOR Sta=1 TO 5
E710
        | Xspan=/Sta-1)+9+4
E720
         MOVE Xspan,-12
€730
         DPAW Xspan,12
6740
E750
         IF Stall.1 AND Star4.8 THEN GOTO 7030
6760
         Nots=11
```

```
6770
          Yspan(1)=10
6780
          Yspan(2)=8
6790
          Yspan(3)=E
£800
          Yspan(4)=4
6810
          Yspan(5)=2
6820
          Yspan(E)=-2
          Yspan(7)=-4
683€
6840
          Yspan/2)=-6
6850
          Yspan(9)=-8
          Yspan(10)=-10
6660
          Yspan(11)=0.
5870
6889
          FOR I=1 TO 10
6890
            IF Sta=1 THEN Xplot(I)=Xspan+Yplot(I+60)*1000
6900
            IF Sta=5 THEN Xplot(I)=Xspan+Yplot(I+)18)+1000
6910
6920
            IF Sta=6 THEN Xplot(I)=Xspan+Yplot(I+128)*1000
6930
          NEXT I
6940
          Xplot(11)=Xspan+Yplot(Xspan)*1000
6950
          FOR I=1 TO 11
6980
            MOVE Xspan, Yspan(I)
6970
6980
            DRAW Xplot(I),Yspan(I)
            LABEL "+"
€990
7000
          NEXT I
7010
          60T0 7330
7020
          Npts=17
7030
7043
          Yspan(1)=10
7050
          Yspan(2)=8
7050
          Yspan(3)≖6
7070
          Yspan(4)=5
708C
          Yspan(5)=4
7090
          Yspan(E)=3
7100
          Yspan(7)=2
7110
          Yspan(8)=1
7128
          Yspan(8)=-1
7130
          Yspan(10)=-2
7140
          Yspan(11)=-3
          Yspan(12)=-4
7150
          Yspan(13)=-5
7150
7170
          Yspan(14)=-6
7:80
          Yspan(15)=-8
          Yspan(18)=-10
7193
7200
          Yspan(17)=0
          FOR I=1 TO 16
7210
7220
            IF Sta=2 THEN Xplot(I)=Xspan+Yplot(I+70)+1000
7230
            IF Sta=3 THEN Xplot(I)=Yspan+Yplot(I+86)+1020
            IF Sta=4 THEN Xplct(I)=Xspan+Yplct(I+102)+1000
7240
7258
          NEXT I
          Xplot(17)=Xspan+Yplot(Xspan)*1000
7250
7270
            - 1
7280
          FOR I=1 TO 17
7290
            MOUE Xspan, Yspan(I)
7300
            DFAW Xplot(I), Yspan(I)
7310
            LABEL "+"
```

```
7320
        NEXT I
7330
       NEXT Sta
7340
       MOVE 8,10.7
7350
       LABEL "St. 1"
7360
       MOUE 17,10.7
7370
       LABEL "St. 2"
7380
       MOVE 26,10.7
7390
       LABEL *St. 3"
7400
      MOVE 35,10.7
7410
     LABEL "St. 4"
7420 MOUE 44,10.7
7430 LABEL "St. 5"
7431
      MOVE 53,10.7
7432
      LABEL "St. 6"
INPUT "DO YOU WISH A HARD COPY? (Y OR N)",A5$
7450
7450
      IF A5$="N" THEN 7540
      INPUT "DG YOU WISH AN EXPANDED VERSION ? (Y/N)" ,Expanded$
7472
7480
       IF Expanded$="Y" THEN
       DUMP DEVICE IS 701, EXPANDED
7490
        DUMF GRAPHICS
7500
751C
       END IF
7520
       IF Expanded = "N" THEN DUMF GRAPHICS 1 TO $701
       OUTPUT 701;"
7530
7540
       GCLEAR
7550 SUBEND
```

```
10
20
      I DATA REDUCTION PROGRAM FOR VELOCITY ON CONCAVE CURVED WALL (VRES CW)
30
      ! THIS PROGRAM PERFORMS THE FOLLOWING:
40
          1). CALCULATES Delta1, Delta2, H and Delta from the velocity profile
               on disc. Correction for curvature is made.
          2). CALCULATES and PLOTS U/Uinf vs. Y/Delt1. Data normalized on
50
            local potential velocity (not Upw).
60
          3). CALCULATES Of from Uplus vs. Yplus data. The Clauser technique
               is used in the turbulent region. Uplus vs. Yplus is plotted.
70
               Data is normalized on local potential velocity (not Upw).
80
90
100
110
      DIM Y(50),Ug(50),Up(50),Ndnst(50),Ynd(50),Und(50),Uplus(50),Yglus(50)
120
      DIM Com#[202]
130
     REAL Natress, H
140
150
     ! INPUT DATA FROM DISC
     INPUT "WAS DATA TAKEN USING A PITOT TUBE OF A HOT-WIRE: (Fund)", Probes
160
    INPUT "READ DATA: PLACE DISC IN DRIVE 1 AND INPUT NAME OF DATA FILE: ",F1
170
le$
180
    MASS STORAGE IS ":CS80,700,1"
190
    ASSIGN @Readfile TO File$
200
    ENTER @Readfile;Coms Temp Press St M
210
    PRINT Coms
220
    BEEP
230
    FOR J=1 TO M
      IF Probes="P' THEN ENTER @Readfile;Y(J),U(J)
240
      IF Probes="Hw" THEN ENTER @Readfile;Y(J),U(J),Up(J)
250
2EC
    NEXT J
262
     Y(1)=1.E-8
270
     MASS STORAGE IS ":0580,700,0"
280
29C
     CALL Visco(Visc Temp Press)
                                  + KINEMATIC VISCOSITY [m'2/5]
300
310
                                    DISTANCE FROM LEADING EDGE [m]
     CALL Xst(St.X)
320
     INPUT "DO YOU WISH TO CALCULATE OF AND U+ vs. Y+ ? (Y/N)", Ofc#
330
340
     IF Cfc$="Y" THER CALL Skfric(Y(*),U(*),M,Visc,Yeff,Yplus(*),Uplus(*),Cf,Up
ω,X)
350
    FEB. "(NY/) ? FEBAMBER PARAMETERS ? (Y/N)", Eps
38C
     IF Bps="Y" THEN CALL Blp(Probes,Y(*),U(*),Up(*),Ndnst(*),M,Visc,X,Yeff,Upw
De1995,De11,De12,H,Rex,Rede11,Rede12,Ynd(*),Und(*),M)
380
390
     CALL Dataprint(Probes M,Files,St.X,Cf,Upw,Visc,Del995,Del1,Del2,Fex,Feta
11,Redel2,Y(*),Yeff,U(*),Ndnst(*),Yplus(*),Uplus(*),Ynd(*),Und(*))
400
     INPUT "DO YOU WISH A PLOT OF THE DATA ? (Y/N)" .Plotd$
4 1 C
     IF Flotds="Y" THEN PRINT
420
     IF Platd%="Y" THEN CALL Dataplot(Probe%,M,Ndmst(*),Ynd(*),Und(*))
430
440
     END
450
     450
     1
470
```

```
480
     .
490
500
     SUB Visco(Visc.Temp.Press)
510
520
      Visc=9.3277E-8*(Temp+273.15)-1.2248E-5 ! VISCOSITY AT 1 ATM (760 TORR)
      Visc=Visc+(760/Press)
530
540
     SUBEND
550
560
     570
580
     .
590
600
610
    SUB Xst(St.X)
620
      IF St=1 THEN X=3.5+2.54/100
630
      IF St=2 THEN X=14.0*2.54/100
640
      IF St=3 THEN X=24.0*2.54/100
650
      IF St=4 THEN X=34.5*2.54/100
     IF St=5 THEN X=44.5+2.54/100
660
670
    SUBEND
680
690
    .
700
710
720
730
    SUB Skfric(Y(*),U(*),Mp,Visc,Yeff,Yplus(*),Uplus(*),Cf,Upw,X)
740
750
760
770
      OPTION BASE 1
780
      DIM Yn(50)
790
      INPUT "LAMINAR OR TURBULENT CORRELATION ? (L/T)" .83$
800
     Flag=0
810
    820
    ļ
830
    ! CALCULATION OF Upw:
840
      Radius=97
                          ! WALL CURVATURE [m]
850
      Vel_const=(U(Mp)*(Radius-Y(Mp))+U(Mp-1)*(Radius-Y(Mp-1)))/2
860
      Upw=Vel_const/Radius ! POTENTIAL VELOCITY AT WALL [m/S]
870
880
    890
    ! REDUCE DATA TO U+ AND Y+ COORDINATES.
900
      INPUT "HOW MANY DATA POINTS DO YOU WISH TO TAKE OUT ? (FROM THE BEGINNIN
6)",Nto
      INPUT "WHAT DO YOU WISH TO INPUT? A. Cf B. Yeff", In$
910
920
      IF Ins="A" THEN INPUT "INPUT Cf",Cf
930
      IF Ins="8" THEN INPUT "INPUT Yeff [cm]", Yeff
940
      FOR J=1 TO Mp
950
       Yn(J)=Y(J)+Yeff
960
       IF Yn(J) \le 1.E-6 THEN Yn(J) = 1.E-40
970
                                  ! LOCAL POTENTIAL VELOCITY [m/S]
       Upot=Vel_const/(Radius-Yn(J))
980
       Uplus(J)=U(J)/Upot/SQR(Cf/2.)
990
       Yplus(J)=Yn(J)=Upot=SQR(Cf/2.)/Uisc/100.
1000
      NEXT J
1010
      Rex=Upw+X/Visc
```

```
1030 ! PLOTTING OF CURVES
       DIM Eta(50), Pe(30)
1040
1050
       GRAPHICS ON
       GCLEAR
1060
1070
       GINIT
1080
       CSIZE 4,.5
1090
       DEG
1100
     _ [ *****************************
1110
     ! DRAW AXES
       Xtic=1.
1120
1130
       Ytic=5.
1140
       Xmax=LGT(3000)
       Ymax=60
1150
1160
       Xmin=0.
       Ymin=0.
1170
1180
       Crox=.01*Xmax
1190
       Croy=.012*Ymax
1200
       Xwin=-(Xmax-Xmin)*.15
       Ywin=-(Ymax-Ymin)*.15
1210
1220
       WINDOW Xwin, Xmax, Ywin, Ymax
       FRAME
1230
1240
       AXES Xtic, Ytic, Xmin, Ymin
1250
       MOVE .2, Ymax-5
       LABEL File$
1250
       MOUE .2, Ymax-7.5
1270
       LABEL USING """Cf= "",D.2DE";Cf
1280
1290
       MOVE .2 Ymax-10.
       LABEL USING """Yeff= "".D.4D"; Yeff
1300
       IF B3$="L" THEN
1310
         MOVE .2, Ymax-12.5
1320
         LABEL USING """Re-x= "",D.2DE";Rex
1330
1340
       END IF
1350
       J1=(Ymax-Ymin)/Ytic-1
       FOR J=0 TO J1
1360
1370
         LORG 1
         MOVE (Xwin-Xmin)/3.,5.*J
1380
1390
         Yval=5.*J
1400
         LABEL USING "2D"; Yval
1410
       NEXT J
1420
       MOVE (Xwin-Xmin)/3.*2, Ymax-5.
1430
       X \vee a^2 l = 10.
1440
       LORG 4
1450
       FOR I=1 TO 3
1460
         MOVE I (Ywin-Ymin)/2.
1470
         LABEL USING "4D"; Xval
1480
         Xval=Xval*10.
1490
       NEXT I
1500
       MOUE Xmax-2., Ywin+2.
       LABEL "Y+"
1510
1520
       MOVE -.30,35
1530
       CSIZE 4.5,.5
       LABEL "U+"
1540
    1550
1560
       MOUE 0,1
```

```
Ia=500
1570
       FOR I=1 TO Ia
1580
1590
        Yd=49/Ia+I+1
1500
         Xd=LGT(Yd)
1610
        DRAW Xd.Yd
1620
       NEXT I
1630
       Ja=500
1640
       MOVE LGT(10),2.44*LOG(10)+5.5
1650
       Xd=LGT(3000)
       Yd=2.44*L06(3000)+5.5
1660
1570
       DRAW Xd,Yd
IF B3$="T" THEN GOTO 1860
1690
       IF Flag=0 THEN
1700
1710
        READ Pe(+)
1720
       END IF
       DATA 0.,.2655,.5294,.7876,1.0336,1.2596,1.458,1.623,1.7522,1.8466,1.911,
1740
      Flag=1
1750
       Eta(1)=0.
1760
       FOR J=2 TO 30
1770
       Eta(J) = Eta(J-1)+.2
1780
       NEXT J
       FOR J=2 TO 30
1790
1800
        Xd=1.1524*Rex^.25*Eta(J)
1810
        Yd=.8678*Rex^.25*Pe(J)
1820
        IF Xd<20. THEN MOVE LGT(Xd), Yd
1830
        Xd=LGT(Xd)
1840
        DRAW Xd.Yd
1850
      NEXT J
IF B3$="L" THEN 2080
1870
1880
      B=1.
1890
      Con=1./2.44
1900
      Sum=0.
1910
       Vanmi=2.
1920
      Vanma=50.
      M=500.
1930
1940
      Yz=0.
1950
      Dy=(Vanma-Vanmi)/M
1950
      FOR I=1 TO M
1970
        Yz=Yz+Dy
1980
        A=((Con*Yz)*(1.-EXP(-Yz/26.)))^2
1990
        Intgt=B+SQR(B^2+4.*A)
2000
        Intgt=(2./Intgt)*Dy
2010
        Sum=Sum+Intgt
2020
        Xd=LGT(Yz)
2030
        Yd=Sum
2040
        IF Yz<5 THEN MOVE Xd,Yd
2050
        DRAW Xd.Yd
2060
      NEXT I
2070
                2080
    I PLOT DATA
2090
      LORG 5
2100
      FOR J=1 TO Mp
```

```
IF J<=Nto THEN 2160
2110
        Ylog=LGT(Yplus(J))
2120
        MOVE Ylog, Uplus(J)
2130
2140
         CSIZE 6
        LABEL "+"
2150
2160
      NEXT J
2170
     INPUT "DO YOU WANT A HARD COPY ? (Y/N)", Copy$
2180
2190
       IF Copys="Y" THEN
        INPUT "DO YOU WISH EXPANDED MODE ? (Y/N)", Expan$
2200
         IF Expans="Y" THEN
2210
2220
          DUMP DEVICE IS 701, EXPANDED
          DUMP GRAPHICS
2230
          OUTPUT 701; " "
2240
      ELSE
2250
          DUMP DEVICE IS 701
2260
2270
          DUMP GRAPHICS
          OUTPUT 701;" "
2280
       END IF
2290
       END IF
2300
       INPUT "DO YOU WANT TO TRY AGAIN ? (Y/N)", Try$
2310
       IF Try$="Y" THEN 880
2320
       GCLEAR
2330
2350
2360 SUBEND
2370
2380
2390
2410
2420 SUB Blp(Probe$,Y(*),U(*),Up(*),Ndnst(*),M,Visc,X,Yeff,Upw,Delta995,Delta1,
Delta2,H,Rex,Redel1,Redel2,Ynd(*),Und(*),Mp)
2430
     DIM Q1(51),Q2(51),Xn(50),Yn(50)
2440
2450
     FOR J=1 TO M
                                I CORRECT Y'S AND CONVERT TO METERS
2460
        Yn(J)=(Y(J)+Yeff)/100
2470
        IF Yn(J)<\emptyset. THEN Yn(J)=\emptyset.
2480
       NEXT J
2490
       1 COMPUTE UPW
2500
                                  ! WALL CURVATURE [m]
2510
       Radius=.97
2520
       K±1/Radius
       Vel_const=(U(Mp)*(Radius-Yn(Mp))+U(Mp-1)*(Radius-Yn(Mp-1)))/2
2530
2540
       Upw=Vel_const/Radius
2550
      I CALCULATE BOUNDARY LAYER THICKNESS (Delta995) BY SIMPLE INTERPOLATION
2560
2570
       FOR I=1 TO M
        Upot=Vel_const/(Radius-Yn(I)) ! COMPUTE LOCAL POTENTIAL VELOCITY
2580
2590
        U995=Upot*.995
        IF U(I)>U995 THEN
2600
2610
          M1 = I
2620
          GOTO 2650
2630
        END IF
2640
       NEXT I
```

```
Frac=(U995-U(M1-1))/(U(M1)-U(M1-1))
2650
       Delta995=(Frac*(Yn(M1)-Yn(M1-1))+Yn(M1-1))
2650
2670
       ! CALCULATE NON-DIMENSIONAL VELOCITY (U/Upot)
2680
2690
        FOR I=1 TO M
2700
         Upot=Vel_const/(Radius-Yn(I)) ! COMPUTE LOCAL POTENTIAL VELOCITY
2710
         Und(I)=U(I)/Upot
2720
       NEXT I
2730
        ! CALCULATE NON-DIMENSIONAL TURBULENCE INTENSITY [%]
2740
       IF Probe$="HW" THEN
2750
2760
         FOR I=1 TO M
           Upot=Vel_const/(Radius-Yn(I)) ! COMPUTE LOCAL POTENTIAL VELOCITY
2770
2780
           Ndnst(I)=Up(I)/Upot*100
                                         ! CONVERT TO PERCENT
2790
         NEXT I
       END IF
2800
2810
       I CALCULATE DISPLACEMENT/MOMENTUM THICKNESS
2820
                   ! USED IN CALCULATING DISPLACEMENT THICKNESS
2830
       Sum1=0.
                    ! USED IN CALCULATING MOMENTUM THICKNESS
2840
       Sum2=0.
2850
       FOR I=1 TO M
         2860
                                         I INTEGRAND FOR DISPLACEMENT THICKNESS
2870
         Q1(I)=(Upot-U(I))/Upw
         Q2(I)=U(I)*(Upot-U(I))/Upw/Upw ! INTEGRAND FOR MOMENTUM THICKNESS
2880
2890
      NEXT I
2900
       Yn(0)=0.
2910
       Q1(0)=1.
2920
       02(0)=0.
2930
      FOR I=0 TO M-2
2940
         ! CALCULATE COEFFICIENTS A.B.C IN Y=AX^2+BX+C
2950
2950
         X1=Yn(I)
2970
         X2=Yn(I+1)
         X3=Yn(I+2)
2980
2990
         Y11=Q1(I)
3000
         Y12=Q1(I+1)
3010
         Y13=Q1(I+2)
3020
         Y21=Q2(I)
         Y22=Q2(I+1)
3030
3040
         Y23=02(I+2)
         B1=((Y13-Y12)*(X1^2-X2^2)-(Y11+Y12)*(X3^2-X2^2))/((X3-X2)*(X1^2-X2^2)-(Y11+Y12)*(X3^2-X2^2))
3050
(X1-X2)*(X3^2-X2^2)
         B2=((Y23-Y22)*(X1^2-X2^2)-(Y21-Y22)*(X3^2-X2^2))/((X3-X2)*(X1^2-X2^2)-
3060
(X1-X2)*(X3^2-X2^2)
         A1 = ((Y11-Y12)-B1+(X1+X2))/(X1^2-X2^2)
3070
         A2=((Y21-Y22)-B2*(X1-X2))/(X1^2-X2^2)
3080
3090
         C1=Y11-A1*X1^2-B1*X1
3100
         C2=Y21-A2*X1^2-B2*X1
3110
3120
         ! CALCULATE AREA
3130
         Delarea1=A1/3*(X2^3-X1^3)+B1/2*(X2^2-X1^2)+C1*(X2-X1)
3140
         Delanea2=A2/3*(X2^3-X1^3)+B2/2*(X2^2-X1^2)+C2*(X2-X1)
3150
         IF I=M-2 THEN Delarea1=A1/3*(X3^3-X1^3)+B1/2*(X3^2-X1^2)+C1*(X3-X1)
3150
         IF I=M-2 THEN Delarea2=A2/3*(X3^3-X1^3)+B2/2*(X3^2-X1^2)+C2*(X3-X1)
3170
         Sum1=Sum1+Delarea1
```

```
Sum2=Sum2+Delarea2
3180
3190
     NEXT I
3200
     Delta!=(1+EXP(-K*Sum1))/K
                                      ! DISPLACEMENT THICKNESS [m]
3210
                                      ! MOMENTUM THICKNESS [m]
      Delta2=(1-1/(K*Sum2+1))/K
3220
3230
      ! NORMALIZE Y-DISTANCES ON WALL CURVATURE
3240
3250
      FOR I=1 TO M
3260
       Ynd(I)=Yn(I)/Radius
      NEXT I
3270
3280
      ! CALCULATE SHAPE FACTORS, REYNOLDS NUMBERS
3290
3300
       H=Delta1/Delta2
3310
      Rex=Upw*X/Visc
3320
      Redel1=Upw+Delta1/Visc
3330
3340
      Redel2=Upw*Delta2/Visc
3360 !
3370 SUBEND
3390
3400
3410 | |
3420 1
3430 SUB Dataprint(Probes, M.Files, St.X., Cf., Upw., Visc., Del995, Del1, Del2, H., Rex., Redel
1, Redel2, Y(*), Yeff, U(*), Ndnst(*), Yplus(*), Uplus(*), Ynd(*), Und(*))
3440 I
INPUT "PRINT DATA ON SCREEN OR PRINTER ? (5/P)" .Pr$
3460
3470
      PRINTER IS 1
      IF Prs="P" THEN
3480
        INPUT "TURN PRINTER ON", Inp$
3490
        PRINTER IS 701
3500
        DUTPUT 701;""
                       ! TURN PERFORATION SKIP ON
3510
        OUTPUT 701:"" ! SET PAGE LENGTH
3520
        OUTPUT 701:""
                       | LINE WRAP MODE
3530
     END IF
3540
3550
     PRINT USING "/,""FILE: "",10A";File$

PRINT USING "/,""STATION: "",2D";St

PRINT USING "2/,""XSTA = "",D.3D,X,""[m]"",15X,""DEL! = "",D.3DESZ,X
3560
3570
3580
""[m]""";X,Del1
                         = "",D.3DESZ,16x,""DEL2 = "",D.3DESZ,X,""[m]""";
      PRINT USING """Cf
3590
Cf.Del2
                                                          = "".D.3D";Upω
                          = "",2D.2D,X,""[m/S]"",13X,""H
      PRINT USING """Upw
3600
,Η
      PRINT USING """Visc = "",D.3DESZ,X,""[m^2/S]"",8X,""REdel1 = "",D.3DES
3610
I"; Visc, Redell
                          = "",D.3DESZ,16X,""REdel2 = "",D.3DESZ";Rex,Redel2
     PRINT USING """REx
3620
       PRINT USING """De1995 = "",D.3DESZ,"" [m]""";De1995
3630
3640
      IF Probe$="HW" THEN
3650
       PRINT USING "2/,6X,""Y [cm]"",3X,""U [m/s]"",12X,""Y+"",7X,""U+"",11X,
3660
""y/R "",7X,""u'/Upw"",/"
```

```
3670
       PRINT USING "2/,6X,""Y [cm]"",3X,""U [m/s]"",12X,""Y+"",6X,""U+"",12X,
3680
"" y/R "",3X,""U/Upw"",/"
     END IF
3690
3700
      FOR I=1 TO M
3710
       IF Probe$="P" THEN
3720
          PRINT USING "X,2D,2X,2D.3D,3X,3D.3D,9X,4D.2D,3X,3D.2D,8X,D.5D,3X,D.3
3730
D":I,(Y(I)+Yeff),U(I),Yplus(I),Uplus(I),Ynd(I),Und(I)
3740
          PRINT USING "X,2D,2X,2D,3D,3X,3D,3D,9X,4D,2D,3X,3D,2D,8X,D,5D,5X,2D.
3D";I,(Y(I)+Yeff),U(I),Yplus(I),Uplus(I),Ynd(I),Ndnst(I)
3760
3770
       IF INT(I/5)=I/5 THEN PRINT
3780
      NEXT I
      PRINTER IS 1
3790
3800
      - 1
3810
3820 SUBEND
     3830
3840
3850
3860
     3870 SUB Dataplot(Probes.M.Ndnst(*), Ynd(*), Und(*))
     ·
3880
      OPTION BASE 1
3890
3900
      DIM Xd(500), Yd(500), Title$[50], Labelx$[50], Labely$[50]
3910
      GRAPHICS ON
3920
      GCLEAR
3930
      GINIT
3940
     LORG 5
3950
      DE G
3960 !********************
3970
      Xmin=0.
                 I MINIMUM VALUE OF X
3980
      Xma×≃.030
3990
      Xtic=.001
                ! SMALL SCALE
4000
      N×tic=5
                 I HOW MANY SMALL SCALES IN LARGE SCALE
      IF Probes="P" THEN
4010
        Titles="Velocity Profile"
4020
4030
        Ymin=0.
4040
        Ymax=1.2
4050
        Ytic=.05
4050
        Nytic=4
       Labelx$="y/R"
4070
4080
        Labely$="U/Upw"
4090
     ELSE
4100
       Titles="Turbulence Intensity Profile"
4110
        Ymin=0.
4120
        Ymax=16
4130
        Ytic=.5
4140
       Nytic=4
4150
       Labelx$="y/R"
4150
       Labely$="u'/Upw [%]"
    END IF
4170
            I NUMBER OF DATA POINTS TO BE PLOTTED
4180
      N=M
```

```
Nc=1 ! NUMBER OF CURVES TO BE PLOTTED
4190
       Expand$="N"
4200
       Data1$="1"
4210
4220
4230
       4240
4250 ! LABELS
       LDIR 0
4250
4270
       CSIZE 6
4280
       LORG 5
       FOR I=-.1 TO .3 STEP .1
4290
        MOVE 70+1,95
4300
        LABEL Title$
4310
       NEXT I
4320
       CSIZE 5
4330
       LORG 5
4340
       MOVE 69,5
4350
4360
       LABEL Labelx$
       LDIR 90
4370
4380
       MOVE 6,52
       LABEL Labely$
4390
       VIEWPORT 15,124,12,90
4400
4410 [*************************
4420 ! LINEAR-LINEAR AXES
      - WINDOW Xmin,Xmax,Ymin,Ymax
4430
       AXES Xtic, Ytic, Xmin, Ymin, Nxtic, Nytic, 5
4440
       AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
4450
       IF Grid$="Y" THEN GRID Nxtic+Xtic,Nytic+Ytic,Xmax,Ymax
4460
4470 !
      CLIP OFF
4480
      LDIR Ø
4490
       Ylab=(Ymax-Ymin)/20
4500
       FOR I=1 TO (Xmax-Xmin)/(Xtic+Nxtic)
4510
         X1=I*Xtic*N×tic+Xmin
4520
         MOUE X1,Ymin
4530
         LORG 5
4540
4550
        LABEL X1
       NEXT I
4560
4570 !
       Xlab=(Xmax-Xmin)/25
4580
       LDIR 90
4590
       FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
4500
4610
         Yl=I*Ytic*Nytic+Ymin
4620
         MOVE -Xlab+Xmin,Yl
         IF ABS(Y1)<1.E-10 THEN GOTO 4650
4630
         LABEL Y1
4640
         IF ABS(Y1)<1.E-10 THEN LABEL "0"
4650
       NEXT I
4550
4670
       LDIR Ø
4580 ! ***************************
       CLIP ON
4690
        IF Data1$="3" THEN
4700
         DIM Tri(3,2)
4710
         READ Tri(*)
4720
        END IF
4730
```

```
IF Probe$="P" THEN
4740
4750
          LINE TYPE 5
          MOVE 0,1
4750
          IDRAW 1.2,0
4770
          LINE TYPE 1
4780
4790
       END IF
4800
        LORG 5
4810
        CSIZE 4,.5
        FOR I=1 TO N
4820
          Xd(I)=(Ynd(I)+Yeff)
4830
4840
        NEXT I
        FOR I=1 TO Nc+N
4850
          IF Probes="P" THEN Yd(I)=Und(I)
4850
          IF Probes="HW" THEN Yd(I)=Ndnst(I)
4870
4880
        NEXT I
        FOR J=1 TO No
4890
          FOR I=1 TO N
4900
4910
            X=Xd(I+N*(J-1))
4920
            Y=Yd(1+N*(J-1))
4930
            IF I=1 THEN MOVE X,Y
            IF I=1 THEN Xp=X
4940
4950
            IF I=1 THEN YD=Y
4960
            Xz=X-Xp
4970
            Yz=Y-Yp
            MOVE Xp,Yp
4980
            IF Cons="Y" THEN IDRAW Xz,Yz
4990
5000
            MOVE X,Y
            IF Data1$="1" THEN LABEL "+"
5010
5020
            Xside=(Xmax-Xmin)/40
5030
            Yside=(Ymax-Ymin)/30
5040
            AREA INTENSITY .5,.5,.5
            IF Data1$="2" THEN
5050
              MOVE X-Xside/2,Y-Yside/2
5060
              RECTANGLE Xside, Yside, FILL, ED6E
5070
5080
            END IF
            IF Data1$="3" THEN
5090
              MOVE X-Xside/2,Y-Yside/2
5100
              GOTO 5160 ! CLOSED TRIANGLES
5110
            I OPEN TRIANGLES
5120
              DRAW X,Y+Yside/2
5130
              DRAW X+Xside/2,Y-Yside/2
5140
5150
              DRAW X-Xside/2,Y-Yside/2
5160
            ! CLOSED TRIANGLES
5170
              RPLOT Tri(+), FILL, EDGE
5180
            END IF
5190
            Xp=X
5200
            Yp≖Y
5210
          NEXT I
5220
        NEXT J
5230
       INPUT "DO YOU WISH A HARD COPY ? (Y/N)", A5$
5240
5250
        IF ASS="Y" THEN
         INPUT "DO YOU WISH EXPANDED MODE ? (Y/N)", Expand$
5260
5270
          IF Expands="Y" THEN
5280
            DUMP DEVICE IS 701, EXPANDED
```

```
10
20
      I DATA REDUCTION PROGRAM FOR TEMPERATURE (TRED CW)
30
      I THIS PROGRAM PERFORMS THE FOLLOWING:
40
         1). CALCULATES Del_th, Del_enth, and Del_cond from the velocity and
50
                temperature profiles on disc.
          2). CALCULATES and PLOTS (Tw-T)/(Tw-Tinf) vs. Y/Del_th.
60
          3). CALCULATES Prt from Tplus vs. Yplus data. The Clauser technique
70
                is used in the turbulent region. Tplus vs. Yplus is plotted.
          4). Curvature correction for velocity is made.
80
81
90
100
110
      DIM Yv(50),U(50),Yt(50),T(50),Ynd(50),Tnd(50),Tplus(50),Yplus(50)
120
      DIM Comv$[200].Comt$[200]
130
      REAL Natress, H
140
150
      ! INPUT DATA FROM DISC
      INPUT "WAS VELOCITY DATA TAKEN USING A PITOT TUBE OR A HOT-WIRE? (P/HW)",P
160
robe$
      IF Probes="HW" THEN
170
180
        INPUT "WAS INTERMITTENCY PROCESSING DONE ? (Y/N)", Intp$
190
      END IF
      INPUT "READ DATA: PLACE DISC IN DRIVE 1 AND INPUT NAME OF VEL. FILE, TEMP
200
. FILE ", Ufile$, Tfile$
210
      MASS STORAGE IS ":CS80,700,1"
220
230
      ! READ VELOCITY DATA
240
      ASSIGN @Readfile TO Vfile$
250
      ENTER @Readfile;Comv$,Temp,Press,St,Mv
260
      FOR J=1 TO MV
270
        IF Probes="P" THEN ENTER @Readfile;Yv(J),U(J)
280
        IF Probes="HW" THEN
          IF Into$="Y" THEN
290
300
            ENTER @Readfile; Yv(J),U(J),U1,Ut,Uprm,Uprl,Uprt,Inter
310
          ELSE
320
           ENTER @Readfile; Yv(J), U(J), Up
330
         END IF
340
        END IF
     NEXT J
350
360
      ! READ TEMPERATURE DATA
370
380
      ASSIGN @Readfiles TO Tfile$
      ENTER @Readfiles; Comt$, St, Mt, Press, Tw, Tinf, Qw
390
400
      PRINT
410
      FOR J=1 TO Mt
420
       ENTER @Readfiles; Yt(J), T(J)
430
      NEXT J
      MASS STORAGE IS ":CS80,700,0"
440
      INPUT "DO YOU WISH TO READ COMMENTS? (Y/N)", Read$
450
      IF Read$="Y" THEN
460
       PRINT Comv$
470
       PRINT Comts
480
490
      END IF
      500
```

```
510
                                                                    I DISTANCE FROM LEADING EDGE [m]
         CALL Xst(St,X)
520
530
            {\sf CALL\ Prtcal(Yt(*),Yv(*),T(*),Yefft,Mt,U(*),Mv,Qw,Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Tplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Press,Yplus(*),Pres
540
rt, X, Tw, Tinf, Const, Y4, Nto)
550
           INPUT "DO YOU WISH TO CALCULATE BOUNDARY LAYER PARAMETERS? (Y/N)", Bp$
560
        IF Bp$="Y" THEN CALL Blp(Yt(*),T(*),Yefft,Mt,Yv(*),U(*),Mv,Delther,Delenth
570
,Delcond,Reh,Ynd(*),Tnd(*),Tw,Qw,Press,Qadded,Nto)
580
           CALL Dataprint(Tfile$,St,X,Yt(*),T(*),Yefft,Mt,Delther,Delenth,Delcond,Reh
590
 .Ynd(*).Tnd(*),Tw,Tinf,Qw,Yplus(*),Tplus(*),Prt,Const,Qadded,Nto)
600
           INPUT "DO YOU WISH A PLOT OF THE DATA? (Y/N)",Plotd$
610
620
           Y1=.05/Delther
           IF Plotd$="Y" THEN CALL Dataplot1(Mt,Ynd(*),Tnd(*)," ",0,1.2,.1,2,0,1.2,.1
630
,2,"Y/Delta","(Tw-T)/(Tw-Tinf)",0,2,Nto,0)
            .
640
650
660
           670
680
690
            SUE Xst(St,X)
700
              IF St=1 THEN X=3.5*2.54/100
710
               IF St=2 THEN X=13.5+2.54/100
720
               IF St=3 THEN X=24.0+2.54/100
730
               IF St=4 THEN X=34.5*2.54/100
740
               IF St=5 THEN X=44.5+2.54/100
750
               IF St=6 THEN X=49.5+2.54/100
760
            SUBEND
770
780
            790
800
810
820
            SUB Prtcal(Yt(*),Yv(*),T(*),Yefft,Mt,U(*),Mv,Qw,Press,Yplus(*),Tplus(*),Pr
830
840
 t,X,Tw,Tinf,Const,Y4,Nto)
 850
                 860
                OPTION BASE 1
 870
                DIM Ynt(50), Ynv(50), Tn(50), Yt1(50)
 880
                 *************
 890
                ! CORRECT TEMP. DATA FOR VELOCITY: CONVERT FROM TOTAL TO STATIC TEMP.S
 900
 910
                FOR J=1 TO Mt
 920
                    CALL Cpcal(Cp,T(J),Press)
 930
                    Rc=.88 ! RECOVERY FACTOR
 940
 950
                    | FIND RANGE OF YT(J)
 960
                    Y_{\vee}(0) = 0.
 970
                   U(0) = 0.
 980
                   FOR I=1 TO MV
 990
                       IF Yt(J)\langle Yv(I)| THEN
 1000
```

```
M2 = I
1010
              60T0 1100
1020
            END IF
1030
            IF Yt(J)>Yv(Mv) THEN
1040
              Velj≈U(Mv)
1050
              60TO 1150
1050
1070
            END IF
1080
          NEXT I
1090
          I FIND VELOCITY AT YT(J)
1100
          Fra=(Yt(J)-Yv(M2-1))/(Yv(M2)-Yv(M2-1))
1110
          Velj=(U(M2)-U(M2-1))*Fra+U(M2-1)
1120
1130
          ! COMPUTE STATIC TEMPERATURE
1140
          T(J)=T(J)-Velj^2/2/Cp*Rc
1150
        NEXT J
1160
        Tinf=Tinf-U(Mv)^2/2/Cp*Rc
1170
        1180
1190
        INPUT "LAMINAR OR TURBULENT CORRELATION? (L/T)",83$
1200
        ! DETERMINE Yefft:
1210
1220
        INPUT "DO YOU WISH TO FIND Yefft? (Y/N)", Det$
1230
                      ! INITIAL Yefft
1240
        Yefft=0.
1250
        Xmax=.25
1250
        Ymax=.5
        IF DetS="Y" THEN
1270
          I CALCULATE NON-DIMENSIONAL TEMPERATURE
1280
1290
          FOR I=1 TO Mt
           Tn(I)=(T\omega-T(I))/(T\omega-Tinf)
1300
         NEXT I
1310
1320
          I CALCULATE SLOPE AT WALL FROM HEAT FLUX DATA
1330
          Tave=(Tw+T(Mt))/2
1340
         CALL Condcalc(Cond, Tave, Press)
1350
1350
         Dtdy=-Qw/Cond
1370
         Y4=-Dtdy*5/(Tw-Tinf)/100
1380
          I PLOT DATA
1390
         FOR I=1 TO Mt
1400
           Yt1(I)=Yt(I)+Yefft
1410
         NEXT I
1420
         INPUT "INPUT XMAX, YMAX FOR PLOT (START : .25,.5)", Xmax, Ymax
1430
         Nto=1
1431
         CALL Dataplot1(Mt,Yt1(*),Tn(*)," ",0,Xmax,.05,1,0,Ymax,.1,1,"Y [cm]",
1440
"(T\omega-T)/(T\omega-Tinf)", Y4,1,Nto,0)
         INPUT "TRY AGAIN? (Y/N)", Try$
1450
          IF Try$="Y" THEN
1460
           INPUT "INPUT Yeff (cm)", Yefft
1470
1480
           GOTO 1390
1490
         END IF
1500
        END IF
1510
1520
       I CALCULATION OF Upw:
1530
```

```
! WALL CURVATURE [m]
       Radius=90
1540
      Vel_const=(U(Mv)*(Radius-Yv(Mv))+U(Mv-1)*(Radius-Yv(Mv-1)))/2
1550
       Upw=Vel_const/Radius
1560
1570
      ! CALCULATION OF MOLECULAR PRANDTL NUMBER
1580
       Tave=(T\omega+T(Mt))/2
1590
       CALL Proalc(Pr, Tave, Press)
1600
       1610
       ! REDUCE DATA TO T-PLUS AND Y-PLUS COORDINATES
1620
       INPUT "INPUT Cf OBTAINED FROM CORRESPONDING VELOCITY DATA: ",Cf
1630
       Const=13.2 ! INITIAL QUESS
1640
       INPUT "HOW MANY DATA POINTS DO YOU WISH TO TAKE OUT? (FROM THE BEGINNING
1650
1660
)",Nto
       IF B3$="T" THEN
1670
         INPUT "WHAT DO YOU WISH TO INPUT? A. Prt B. Cond", In$
1680
         IF Ins="A" THEN INPUT "INPUT Prt", Prt
1690
         IF In$="B" THEN INPUT "INPUT Cond ",Const
1700
       END IF
1710
       IF Flageff>.5 THEN 1930
1720
       FOR J=1 TO Mt
1730
         IF Flagyeff<.5 THEN Ynt(J)=Yt(J)+Yefft
1740
         IF Ynt(J)(=1.E-6 THEN Yn(J)=1.E-40
1750
1760
         CALL Viscalc(Visc,T(J),Press) ! CALCULATE VISCOSITY [m^2/5]
1770
                                      ! CALCULATE HEAT CAPACITY [J/Kg/K]
         CALL Cpcal(Cp,T(J),Press)
1780
                                       | CALCULATE DENSITY [Kg/m^3]
         CALL Rhocal(Rho,T(J),Press)
1790
1800
         Upot=Vel_const/(Radius-Ynt(J)) ! LOCAL POTENTIAL VELOCITY [m/S]
1810
1820
         ! CALCULATION OF Y+
1830
         Yplus(J)=Ynt(J)*Upot*SQR(Cf/2.)/Visc/100.
1840
1850
         ! CALCULATION OF T+
1860
         Tplus(J)=(Tw-T(J))*Upot*SQR(Cf/2)/(Qw/Rho/Cp)
1870
       NEXT J
1880
       CALL Viscalc(Visc,T(Mt),Press)
1890
        Rex=Upw+X/Visc
1900
1910
       Flageff=1.
       1920
       ! PLOTTING OF CURVES
1930
       DIM Eta(30),Pe(30)
1940
       GRAPHICS ON
1950
       GCLEAR
1960
       GINIT
1970
       CSIZE 4,.5
1980
1990
       ......
2000
        ! DRAW AXES
2010
       Xtic=1.
2020
        Ytic=5.
 2030
        Xmax=LGT(3000)
 2040
        Ymax=45
 2050
        Xmin=0.
 2050
        Ymın=0.
 2070
```

```
2080
         Crox=.01*Xmax
 2090
         Croy=.012+Yma×
         Xwin=-(Xmax-Xmin)*.15
 2100
         Ywin=-(Ymax-Ymin)*.15
 2110
         WINDOW Xwin, Xmax, Ywin, Ymax
 2120
 2130
         FRAME
 2140
         AXES Xtic, Ytic, Xmin, Ymin
 2150
         MOVE .2, Ymax-5
 2150
         LABEL File$
 2170
         MOVE .2 Ymax-7.5
 2180
         IF B3$="T" THEN LABEL USING """Prt= "",D.DDE";Prt
 2190
         MOVE .2, Ymax-10.0
 2200
         IF B3$="T" THEN LABEL USING """COND= "".2D.2D"; Const
2210
         IF B3$="L" THEN
2220
           MOVE .2, Ymax-7.5
           LABEL USING """Yefft= "",D.4D,"" [cm]""";Yefft
2230
2240
           MOVE .2, Ymax-12.5
2250
           LABEL USING """RE-X= "",D.DDE";Rex
2260
         END IF
         J1=(Ymax-Ymin)/Ytic-1
2270
        FOR J=0 TO J1
2280
2290
          LORG 1
          MOVE (Xwin-Xmin)/3.,5.*J
2300
2310
          Yval=5.+J
2320
          LABEL USING "2D"; Yval
2330
        NEXT J
2340
        MOVE (Xwin-Xmin)/3.*2.Ymax-5.
2350
        X \vee al = 10,
2360
        LORS 4
2370
        FOR I=1 TO 3
2380
          MOVE I (Ywin-Ymin)/2.
2390
          LABEL USING "4D": Xval
          Xval=Xval*10.
2400
2410
        NEXT I
2420
        MOVE Xmax-2., Ywin+2.
        LABEL "Y+"
2430
2440
        MOVE Xmin-.2, Ywin+30
2450
        LDIR 90
        LABEL "T+"
2460
        LDIR 0
2470
2480
      | DRAW ANALYTIC LINE *************
2490
        MOVE 0,1
2500
        Ia=500
2510
        FOR I=1 TO Ia
2520
          Yd=49/Ia+I+1
2530
          Xd=LGT(Yd/Pr)
2540
          DRAW Xd,Yd
2550
        NEXT I
2560
        Ja=500
2570
        CALL Prcalc(Pr.Tave, Press)
2580
        IF B3$="T" THEN
2590
          MOVE LGT(10).Const*Pr+(Prt/.41)*LOG(10/Const)
2600
          Xd=LGT(3000)
2610
          Yd=Const*Pr+(Prt/.41)*L06(3000/Const)
2620
          DRAW Xd.Yd
```

```
END IF
2630
       ! BLASIUS PROFILE *** *** *** *** ***
2640
2650
       GOTO 2870
2560
      IF B3$="L" THEN
2570
      . DIM Teta(402),Tau(402)
2680
2690
         Pras=VALs(DROUND(Pr.3)*1000)
2700
         Tdat$="TBLA"&Pra$
2710
         ASSIGN @Pathe TO Tdat$
         ENTER @Pathe; Teta(*), Tau(*)
2720
         LORG 5
2730
2740
         Ypre=0.
2750
         Tpre=0.
         FOR I=10 TO 400 STEP 2
2760
           Ypl=Teta(I)*SQR(Visc*X/Upw)*(Upw*SQR(Cf/2))/Visc
2770
           Tdiff=Tau(I)*(Tw-Tinf)
2780
2790
           Tpl=Tdiff+Upw+SQR(Cf/2)/(Qw/Rho/Cp)
2800
           MOVE Ypre.Tpre
           IF I=10 THEN 2830
2810
           IDRAW LGT(Ypl)-Ypre,Tpl-Tpre
2820
           Ypre=L6T(Ypl)
2830
           Tpre=Tpl
2840
         NEXT I
2850
       END IF
2860
2870
2880
       ..........
2890
       ! PLOT DATA
2900
       LORG 5
2910
       FOR J=1 TO Mt
2920
        IF J<=Nto THEN 2980
         IF Yplus(J)<=0. THEN 2980
2930
2940
         Ylog=LGT(Yplus(J))
2950
         MOVE Ylog, Tplus(J)
2960
         CSIZE 6
         LABEL "+"
2970
2980
      NEXT J
2990
       ! MAKE CORRECTIONS TO LAMINAR CASE
3000
3010
       IF B3$="L" THEN
3020
         INPUT "DO YOU WISH TO MODIFY A). Tw, B). Yefft, C). NO MODIFICATION", M
3030
od$
         IF Mods="A" THEN
3040
3050
           BEEP
           DISP USING """Tw= "",20.30 ";Tw
3060
           WAIT 2.5
3070
           INPUT "INPUT TW [C]", TW
3080
3090
           GOTO 1640
3100
         END IF
3110
         IF Mods="B" THEN
3120
           BEEP
           DISP USING """Yefft= "",D.3D";Yefft
3130
3140
           WAIT 2.5
           INPUT "INPUT Yefft [cm]", Yefft
3150
3160
           GOTO 1640
```

```
END IF
3170
     END IF
3180
      3190
3200
     INPUT "DO YOU WANT A HARD COPY? (Y OR N)" Copy$
3210
     IF Copy$="Y" THEN
3220
        INPUT "DO YOU WISH EXPANDED MODE?", Expan$
3230
        IF Expans="Y" THEN
3240
          DUMP DEVICE IS 701, EXPANDED
3250
          DUMP GRAPHICS
3260
         ELSE
3270
          DUMP DEVICE IS 701
3280
          DUMP GRAPHICS
3290
         END IF
3300
       END IF
3310
      IF Copy$="Y" THEN OUTPUT 701;" "
3320
       INPUT "DO YOU WANT TO TRY AGAIN? (Y DR N)", Try$
3330
       IF Try$="Y" THEN 1660
3340
3350
       GCLEAR
       ...........
3360
3370
       - 1
3380 SUBEND
3400 1
3410
3430 !
3440 SUB Blp(Yt(*),T(*),Yefft,Mt,Yv(*),U(*),Mv,Delther,Delenth,Delcond,Reh,Ynd(
*),Tnd(*),Tw,Qw,Press,Qadded,Nto)
     DIM 01(51),02(51),Xn(50),Ynv(50),Ynt(50)
3450
3460
      INPUT "INPUT Yeff FROM CORRESPONDING VELOCITY PROFILE", Yeffv
3470
3480
      FOR J=1 TO MV
         Ynv(J)=(Yv(J)+Yeffv)/100 ! CORRECT Y's AND CONVERT TO METERS
3490
         IF Ynv(J)<\emptyset. THEN Ynv(J)=\emptyset.
3500
       NEXT J
3510
      FOR J=1 TO Mt
3520
        Ynt(J)=(Yt(J)+Yefft)/100
3530
3540
         IF Ynt(J)<\emptyset. THEN Ynt(J)=\emptyset.
3550
      NEXT J
3560
      I COMPUTE UPW
3570
       Radius=97
3571
       \label{eq:loss_t_def} $$ Vel_const=(U(Mv)*(Radius-Yv(Mv))+U(Mv-1)*(Radius-Yv(Mv-1)))/2 $$
3580
3590
      Upw=Vel_const/Radius
3600
                                  ! Tinf IS AVERAGE OF LAST TWO MEASUREMENTS
      Tinf=(T(Mt)+T(Mt-1))/2
3610
                                  ! Tave IS FILM TEMPERATURE
3620
      Tave=(T(Mt)+T\omega)/2
3530
       + FLUID PROPERITES
3640
3650
      CALL Opcal(Op, Tave, Fress)
      CALL Rhocal(Rho, Tave, Press)
3550
3670
      I CALCULATE BOUNDARY LAYER THICKNESS (Delther) BY SIMPLE INTERPOLATION
3880
3E 90
```

```
3700
                  ! NON-DIMENSIONAL TEMPERATURE PROFILE
3710
                 FOR I=1 TO Mt
3720
                      Tnd(I)=(T\omega-T(I))/(T\omega-Tinf)
3730
                 NEXT I
3740
                 FOR I=1 TO Mt
3750
                        IF (Tw-T(I))/(Tw-Tinf)>.995 THEN
3760
3770
                             M1 = I
 3780
                             GOTO 3810
 3790
                        END IF
3800
                 NEXT I
3810
                   Frac=(,995-Tnd(M1-1))/(Tnd(M1)-Tnd(M1-1))
                   Deliher=(Frac+(Ynt(M1)-Ynt(M1-1))+Ynt(M1-1))
3820
3830
                   ! CALCULATE NON-DIMENSIONAL TEMPERATURE PROFILE (DT/DTw vs. Y/De1995)
3840
3850
                 FOR I=1 TO Mt
3850
                        Ynd(I)≃Ynt(I)/Delther
3870
                        Tnd(I)=(Tw-T(I))/(Tw-Tinf)
3880
                 NEXT I
3890
                 ! CALCULATE EHTHALPY THICKNESS
3900
3910
                 ! CALCULATE U(T-Tinf) AT EACH LOCATION
3920
                   FOR J=1 TO Mt
3930
                       Ynv(0)=0.
3940
3950
                       U(0) = 0.
3960
                        ! FIND RANGE OF YT(J)
3970
3980
                        FOR I=1 TO MV
3990
                             IF Ynt(J)<Ynv(I) THEN</pre>
4000
                                  M2 = I
4010
                                  60T0 4090
                            END IF
4020
                             IF Ynt(J)>Ynv(Mv) THEN
4030
4031
                                  Radius=.97
                                  Vel_const=(U(Mv)*(Radius-Ynv(Mv))+U(Mv-1)*(Radius-Ynv(Mv-1)))/2
4034
                                Upt=Vel_const/(Radius-Ynt(J)) ! POTENTIAL VELOCITY AT Ynt(J)
4035
4050
                                  GOTO 4220
40E0
                            END IF
4070
                       NEXT I
4080
                        + FIT PARABOLA THROUGH Yv(M2-1),Yv(M2),Yv(M2+1): U±A*Yv^2+B*Yv+C
4090
4100
                        X1=Y_{n\vee}(M2-1)
4110
                        X2=Ynv(M2)
4120
                        X3=Ynv(M2+1)
4130
                        Y1 = U(M2 - 1)
                        Y2=U(M2)
4140
4150
                        Y3=U(M2+1)
                        B = ((Y3-Y2)*(X1^2-X2^2)-(Y1-Y2)*(X3^2-X2^2))/((X3-X2)*(X1^2-X2^2)-(X1-X2)*(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(X1^2-X2^2)+(
4160
2)*(X3^2-X2^2))
                        A=((Y1-Y2)-B*(X1-X2))/(X1^2-X2^2)
4170
                        C=Y1-A*X1^2-B*X1
4180
                                                                                                             UELOCITY AT Ynt(J)
4190
                       Upt=A*Ynt(J)*Ynt(J)+B*Ynt(J)+C
4200
4210
                        I COMPUTE U*(I-Tinf) CORRESPONDING TO Ynt(J)
```

```
4220
         Q1(J)=Upt+(T(J)-Tinf)
4230
4240
       NEXT J
4250
       Sum1=0.
       Ynt(0)=0.
4250
4270
       Q1(0)=0.
4280
       FOR I=0 TO Mt-2
4290
4300
         ! CALCULATE COEFFICIENTS A.B.C IN Y=AX^2+BX+C
4310
         X1=Ynt(I)
4320
         X2=Ynt(I+1)
         IF Ynt(I+1)=0. THEN 4460
4330
4340
         X3=Ynt(I+2)
4350
         Y11=Q1(I)
4360
         Y12=Q1(I+1)
4370
         Y13=01(I+2)
4380
         B1=((Y13-Y12)*(X1^2-X2^2)-(Y11-Y12)*(X3^2-X2^2))/((X3-X2)*(X1^2-X2^2)-(Y11-Y12)*(X3^2-X2^2))
(X1-X2)*(X3^2-X2^2))
4390
         A1 = ((Y11-Y12)-B1*(X1-X2))/(X1^2-X2^2)
4400
         C1=Y11-A1+X1^2-B1+X1
4410
4420
        ! CALCULATE AREA
4430
         Delarea1=A1/3*(X2^3-X1^3)+B1/2*(X2^2-X1^2)+C1*(X2-X1)
4440
        IF I=M-2 THEN Delarea1=A1/3*(X3^3-X1^3)+B1/2*(X3^2-X1^2)+C1*(X3-X1)
4450
        Sum1=Sum1+Delarea1
4460
       NEXT I
4470
4480
       Delenth=Sum1/Upw/(Tw-Tinf)
4482
       Delenth=(EXP((1/Radius)*Delenth)-1)*Radius
4490
       Qadded=Upw+Delenth+(Tw-Tinf)+Rho+Cp ! HEAT FLUX PER UNIT SPAN [W/m]
4500
       4510
4520
       ! CALCULATE CONDUCTION THICKNESS
4530
       CALL Condcalc(Cond. Tave. Press)
4540
       Delcond=Cond+(Tw-Tinf)/Qw
4550
       4560
4570
       I CALCULATE REYNOLDS NUMBER
4580
       CALL Viscalc(Visc, Tave, Press)
4590
       Reh=Upw*Delenth/Visc
4500
     4610
4620 SUBEND
4 E 4 Ø
4650
4660
4E70
4580 SUB Dataprint(Tfile$,St,X,Yt(*),T(*),Yefft,Mt,Delther,Delenth,Delcond,Reh,
Ynd(*),Tnd(*),Tw,Tinf,Qw,Yplus(*),Tplus(*),Prt,Const,Qadded,Nto)
4690
4700
4710
      INPUT "PRINT DATA ON SCREEN OR PRINTER? (S/P)" Pr$
      PRINTER IS 1
4770
4730
      IF Prs="P" THEN
```

```
INPUT "TURN PRINTER ON", Inp$
4740
        PRINTER IS 701
4750
4760
       END IF
4770
       - 1
       PRINT USING "/,""FILE: "",10A";Tfile$

PRINT USING "/,""STATION: "",2D";St

PRINT USING "/,""Xsta = "",D.3D,X,""[m]"",15X,""Del-ther = "",D.3DESZ,
4780
4790
4800
X,""[m]""";X,Delther
                            = "",2D.2D ,"" [C]"",15X,""Del-enth = "",D.3DESZ,
       PRINT USING """Tw
4810
X ["[m]""; Tw , Delenth
                            = "",2D.2D,X,""[C]"",15X,""Del-cond = "",D.3DESZ,"
      PRINT USING """Tinf
4820
" [m]"""; Tinf, Delcond,
                             = "",D.3DESZ,X,""[W/m^2]"",8X,""Re-enth = "",D.3D
       PRINT USING """Qw
4830
ESZ"; Ow Reh
       PRINT USING """Yeff = "",SD.3DESZ,"" [m]"",11X,""Prt
4840
efft/100.Prt
     PRINT USING """Cond = "",2D.2D,19X,""Qadded ="",4D.2D,"" [W/m]""";Co
4850
nst ,Qadded
4860
       PRINT USING "2/,6X,""Y [cm]"",3X,""T [C] "",12X,""Y+"",6X,""T+"",11X,""
4870
Y/De1995"",2X,""DT/DTw"",/"
4880
       FOR I=Nto TO Mt
4890
         PRINT USING "X,2D,2X,52D.3D,3X,3D.3D,9X,4D.2D,3X,3D.2D,10X,D.3D,3X,D.3
4900
D^*; I-Nto+1, (Yt(I)+Yefft), T(I), Yplus(I), Tplus(I), Ynd(I), Tnd(I)
        IF INT(I/5)=I/5 THEN PRINT
4910
4920
       NEXT I
       PRINTER IS 1
4930
4940
4960 SUBEND
4570
4980
4990
5000
5010 SUB Dataplot(M,Xplot(*),Yplot(*),Title$,Xmin,Xmax,Xtic,Nxtic,Ymin,Ymax,Yti
c,Nytic,Labelx$,Labely$,Nto)
       ...........
5020
       OFTION BASE 1
5030
       DIM Xd(50),Yd(50) !Title$[50]',Labelx$[50],Labely$[50]!Yplot(50),Xplot(5
5040
0)
5050
       GRAPHICS ON
50E0
       GCLEAR
5070
       GINIT
5080
       LORG 5
5090
        DEG
        5100
        N=M | NUMBER OF DATA POINTS DO YOU WISH TO PLOT
5110
        Nc=1 ! NUMBER OF CURVES DO YOU WISH TO PLOT
5120
        Expands="N" ! EXPANDED GRAPHICS PRINT MODE?
5130
       Data1$="2" ! LABEL DATA AS 1). CROSSES, 2). SQUARES, OR 3). TRIANGLES ?
5140
        ! IF TRIANGLES ARE DESIRED, UNCOMMENT AND ENTER VERTEX DATA BELOW AS:
5150
         DATA 0,0, (XMAX- XMIN)/40,0, (XMAX-XMIN)/80,(YMAX-YMIN)/30
        DATA 0,0, .00125,0, .000625,.033333
5160
5170
```

```
5180
        ! LABELS
5190
        LDIR Ø
5200
        CSIZE 6
5210
        LORG 5
        FOR I=-.1 TO .3 STEP .1
5220
          MOVE 70+1,95
5230
5240
          LABEL Title$
5250
        NEXT I
5260
        CSIZE 5
5270
        LORG 5
5280
        MOVE 69,5
5290
        LABEL Labelx$
5300
        LDIR 90
        MOVE 6.52
5310
5320
        LABEL Labely$
5330
        VIEWPORT 15,124,12,90
5340
        ! ****************
5350
        ! LINEAR-LINEAR AXES
5360
        WINDOW Xmin, Xmax, Ymin, Ymax
5370
        AXES Xtic, Ytic, Xmin, Ymin, Nxtic, Nytic, 5
5380
        AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
        IF Grid$="Y" THEN GRID Nxtic*Xtic,Nytic*Ytic,Xmax,Ymax
5390
5400
5410
        CLIP OFF
5420
       LDIR Ø
        Ylab=(Ymax-Ymin)/20
5430
5440
        FOR I=1 TO (Xmax-Xmin)/(Xtic+Nxtic)
5450
         Xl=I*Xtic*Nxtic+Xmin
5460
         MOVE X1, Ymin
5470
         LORG 6
5480
         LABEL X1
5490
       NEXT I
5500
5510
      Xlab=(Xmax-Xmin)/25
5520
       LDIR 90
       FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
5530
5540
         -Yl≂I∗Ytic*Nytic+Ymin
5550
         MOVE -Xlab+Xmin,Yl
5560
         IF ABS(Y1)<1.E-10 THEN GOTO 5580
5570
         LABEL YI
5580
         IF ABS(Y1)<1.E-10 THEN LABEL "0"
5590
       NEXT I
       LDIR Ø
5600
5610
       5620
       CLIP ON
5630
       IF Data1$="3" THEN
5640
         DIM Tri(3,2)
5650
         READ Tri(+)
       END IF
5660
       IF Probes = "P" THEN
5670
5580
         LINE TYPE 5
5690
         MOVE 0,1
5700
         IDRAW 1.2,0
5710
         LINE TYPE 1
5720
       END IF
```

```
LORG 5
5730
       CSIZE 4,.5
5740
       FOR I=1 TO N
5750
         Xd(I)=(Xplot(I)+Yeff)
5760
5770
        NEXT I
        FOR I=1 TO Nc+N
5780
5790
          Yd(I)=Yplot(I)
       NEXT I
5800
        FOR J=1 TO No
5810
         FOR I=Nto TO N
5820
           X=Xd(I+N*(J-1))
5830
            Y=Yd(I+N*(J-1))
5840
           IF I=1 THEN MOVE X,Y
5850
            IF I=1 THEN Xp=X
5860
           IF I=1 THEN Yp=Y
5870
5880
           Xz = X - Xp
5890
           Yz=Y-Yp
5900
           MOVE Xp,YP
            IF Cons="Y" THEN IDRAW Xz,Yz
5910
5920
           MOVE X,Y
            IF Data1$="1" THEN LABEL "+"
5930
           Xside=(Xmax-Xmin)/40
5940
5950
            Yside=(Ymax-Ymin)/30
            AREA INTENSITY .5,.5,.5
5960
            IF Data1$="2" THEN
5970
              MOUE X-Xside/2,Y-Yside/2
5980
              RECTANGLE X51de, Y51de, FILL, EDGE
5990
            END IF
6000
            IF Data1$="3" THEN
6010
              MOUE X-Xside/2,Y-Yside/2
6020
              GOTO 6080 | CLOSED TRIANGLES
6030
            I OPEN TRIANGLES
6040
              DRAW X,Y+Yside/2
6050
              DRAW X+Xside/2,Y-Yside/2
6060
              DRAW X-Xside/2,Y-Yside/2
6070
            ! CLOSED TRIANGLES
6080
              RPLOT Tri(*), FILL, EDGE
6090
            END IF
5100
6110
            X = X
6120
            Yp=Y
6130
          NEXT I
        NEXT J
5140
        6150
        INPUT "DO YOU WISH A HARD COPY? (Y OR N)", A5$
6160
        IF A5$="Y" THEN
6170
          INPUT "DO YOU WISH EXPANDED MODE? (Y/N)", Expand$
6180
5190
          IF Expand$="Y" THEN
            DUMP DEVICE IS 701, EXPANDED
6200
6210
            DUMP GRAPHICS
            OUTPUT 701; "
6220
```

```
E230
      END IF
      IF Expand$="N" THEN
6240
6250
        DUMP GRAPHICS 1 TO #701
        OUTPUT 701;"
6260
6270
      END IF
    END IF
6280
6290
    GCLEAR
     6300
6310 SUBEND
6330 !
6340 I
6350 | *************
6360 SUB Proalc(Pr,Temp,Press)
6370
     Pr=-1.524E-4*(Temp+273.15)+.757
6380
6390
6400 SUBEND
6410
5420
6430
6440
6450 SUB Viscalc(Visc, Temp, Press)
6460
6470
     Visc=9.3277E-8*(Temp+273.15)-1.2248E-5 ! VISCOSITY AT 1 ATM (760 TORR)
                                  ! PRESSURE CORRECTION
6480
     Visc=Visc*(760/Press)
6490
     1
6500 SUBEND
6510 !**********
6520 !
6530
6540
6550 SUB Cpcal(Cp,Temp,Press)
6560
6570
    Cp=.053*(Temp+273.15)+988.572
6580
6590 SUBEND
6600
5610 !
6620
6630
6640 SUB Rhocal(Rho, Temp, Press)
6650
                                   ! DENSITY AT P=1 atm, T=300K
6660
     Rho0=1.1766
6670
     Rho=Rho0*(Press/760)*(300/(Temp+273.15))! TEMP. AND PRESS. CORRECTION
6680
6690 SUBEND
6700
6710
6720
6730
6740 SUB Condcalc(Cond, Tave, Press)
6750
```

```
Cond=7.305E-5*(Tave+273.15)+4.229E-3
6760
6770
6780 SUBEND
6800 SUB Dataplot1(M,Xplot(*),Yplot(*),Title$,Xmin,Xmax,Xtic,Nxtic,Ymin,Ymax,Yt
ic, Nytic, Labelx$, Labely$, Y1, Flag1, Nto, Yefft)
      5810
      OPTION BASE 1
6820
      DIM Xd(50),Yd(50) |Title$[50]!,Labelx$[50],Labely$[50]!Yplot(50),Xplot(5
6830
0)
6840
      GRAPHICS ON
      GCLEAR
6850
      GINIT
6860
      LORG 5
6870
      DEG
6880
      6890
      N=M ! NUMBER OF DATA POINTS DO YOU WISH TO PLOT
6900
      Nc=1 ! NUMBER OF CURVES DO YOU WISH TO PLOT
6910
      Expands="N" ! EXPANDED GRAPHICS PRINT MODE?
6920
      Data1$="1" | LABEL DATA AS 1). CROSSES, 2). SQUARES, OR 3). TRIANGLES ?
6930
       ! IF TRIANGLES ARE DESIRED, UNCOMMENT AND ENTER VERTEX DATA BELOW AS:
6940
        DATA 0,0, (XMAX- XMIN)/40,0, (XMAX-XMIN)/80,(YMAX-YMIN)/30
       ! DATA 0,0, .00125,0, .000625,.033333
6950
       ............
6960
       1 LABELS
6970
      LDIR 0
6980
      CSIZE 6
6990
7000
      LORG 5
      FOR I=-.1 TO .3 STEP .1
7010
        MOVE 70+1,95
7020
        LABEL Title$
7030
7040
      NEXT I
      CSIZE 5
7050
      LORG 5
7080
     MOVE 69,5
7070
     LABEL Label×$
7080
     LDIR 90
7090
7100 MOVE 6,52
     LABEL Labely$
7110
      VIEWPORT 15,124,12,90
7120
       ............
7130
       I LINEAR-LINEAR AXES
7140
       WINDOW Xmin,Xmax,Ymin,Ymax
7150
       AXES Xtic, Ytic, Xmin, Ymin, Nxtic, Nytic, 5
7160
       AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
7170
       IF Grid$="Y" THEN GRID Nxtic*Xtic,Nytic*Ytic,Xmax,Ymax
7180
7190
       CLIP OFF
7200
       LDIR Ø
7210
       Ylab=(Ymax-Ymin)/20
7220
       FOR I=1 TO (Xmax-Xmin)/(Xtic+Nxtic)
7230
         X1=I+Xtic+Nxtic+Xmin
7240
         MOVE X1, Ymin
7250
7260
        LORG 5
         LABEL X1
7270
```

```
7280
        NEXT I
 7290
 7300
        Xlab=(Xmax-Xmin)/25
7310
        LDIR 90
7320
        FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
7330
          Yl=I*Ytic*Nytic+Ymin
7340
          MOVE -Xlab+Xmin,Yl
7350
          IF ABS(Y1)<1.E-10 THEN 60TO 7370
7360
          LABEL YI
7370
          IF ABS(Y1)<1.E-10 THEN LABEL "0"
7380
        NEXT I
7390
        LDIR 0
7400
        7410
        CLIP ON
7420
        IF Data1$="3" THEN
7430
          DIM Tri(3.2)
7440
          READ Tri(+)
7450
        END IF
7450
        IF Probes="P" THEN
7470
          LINE TYPE 5
          MOVE 0,1
7480
7490
          IDRAW 1.2,0
7500
          LINE TYPE 1
7510
        END IF
7520
        LORG 5
        CSIZE 4,.5
7530
7540
        FOR I=1 TO N
7550
          Xd(I)=(Xplot(I)+Yefft)
7560
        NEXT I
7570
        FOR I=1 TO Nc +N
7580
          Yd(I)=Yplot(I)
7590
        NEXT I
7500
        FOR J=1 TO No
7510
          FOR I=Nto TO N
7620
            X=Xd(I+N*(J-1))
7630
            Y=Yd(I+N*(J-1))
            IF I=1 THEN MOVE X,Y
7640
7850
            IF I=1 THEN Xp=X
7660
            IF I=1 THEN YD=Y
7670
            Xz = X - XD
            Yz = Y - YD
7580
7690
            MOVE Xp YP
7700
            IF Cons="Y" THEN IDRAW X: Yz
7710
            MOVE X,Y
7720
            IF Datals="1" THEN LABEL "+"
7730
            Xside=(Xmax-Xmin)/40
7740
            Yside=(Ymax-Ymin)/30
7750
            AREA INTENSITY .5,.5,.5
7760
            IF Data1$="2" THEN
7770
              MOVE X-Xside/2,Y-Yside/2
7780
              RECTANGLE Xside, Yside, FILL, EDGE
7790
            END IF
7800
            IF Data1$="3" THEN
7810
             MOVE X-Xside/2,Y-Yside/2
7820
              GOTO 7870! CLOSED TRIANGLES
```

```
! OPEN TRIANGLES
7830
           DRAW X,Y+Yside/2
7840
            DRAW X+Xside/2,Y-Yside/2
7850
            DRAW X-Xside/2,Y-Yside/2
7860
          ! CLOSED TRIANGLES
7870
           RPLOT Tri(+),FILL,EDGE
7880
          END IF
7890
         Xp=X
7900
7910
          Yp=Y
7920
       NEXT I
7930
     NEXT J
7940
      IF Flag1=1 THEN
7950
        MOVE 0,0
7960
       IDRAW 5,Y1
     END IF
7970
      IF Flag1=2 THEN
7980
        LINE TYPE 5
7990
        MOVE 0,1
8000
        IDRAW 1.2,0
8010
       LINE TYPE 1
8020
8030
      END IF
       8040
       INPUT "DO YOU WISH A HARD COPY? (Y OR N)", A5$
8050
       IF A5$="Y" THEN
8060
        INPUT "DO YOU WISH EXPANDED MODE? (Y/N)", Expand$
8070
         IF Expands="Y" THEN
8080
         DUMP DEVICE IS 701, EXPANDED
8090
          DUMP GRAPHICS
8100
          OUTPUT 701;"
8110
8120
        END IF
        IF Expand$="N" THEN
8130
         DUMP GRAPHICS | TO #701
8140
          OUTPUT 701:"
8150
       END IF
8160
       END IF
8170
8180
       GCLEAR
       8190
8200 SUBEND
```

```
10
20
     ! THIS PROGRAM IS USED TO REDUCE DATA FROM CROSS WIRES (UVRED_CW)
30
     ! THE QUANTITIES FOUND ARE
       1). AVERAGE U AND V NORMALIZED BY UPW.
40
     1
50
         2). RMS OF U AND U NORMALIZED BY UPW.
60
         3). u'v' NORMALIZED BY THE SHEAR VELOCITY Utau^2 AND Upw^2.
70
            CORRECTIONS ARE MADE FOR DIFFERENCES BETWEEN THE MEASUREMENT
80
             OF UPW BY THE CROSS-WIRE AND THE PITOT TUBE.
90
         5). THE VALUES OF Cf, Upw AND DELI ARE OBTAINED FROM THE MEAN
100
             VELOCITY MEASUREMENTS.
110
     1
         6). THE EDDY VISCOSITY IS CALCULATED.
120
     ! UPDATED 04/08/89
130
     140
     DIM Yk(30),U(30),U(30),Upr(30),Upr(30),Upvp(30),Com$[180]
     DIM Ndy(30),Ndu(30),Ndv(30),Ndupr(30),Ndvpr(30),Ndupvp(30),Ndupvp1(30)
150
160
     DIM Xd(30),Yd(30),Evisc(30),Title$[50],Labelx$[50],Labely$[50]
170
     180
190
     ! ENTER DATA FROM DATA FILE
    INPUT "INPUT THE FILE TYPE AND DATE", File$
200
     MASS STORAGE IS ":CS80,700,1"
210
220
    ASSIGN @UV TO File$
    ENTER @Uv; Coms
230
    PRINT USING "3X,60A,/":Com$
240
250
    ENTER @UV:Np
260
    FOR I=1 TO Np
270
      ENTER @Uv;Yk(I),U(I),U(I),Upr(I),Upr(I),Upvp(I)
280
    NEXT I
290
    MASS STORAGE IS ":CS80,700,0"
300
     310
320
    ! INPUT THE PARAMTERS OF UPW AND DELTA
330
    BEEP
340
    INPUT "Cf AND Upw [m/s]",Cf,Upw
350
    360
370 N2=Np-1
380 Sumu=0.
390 Radius=97
400 Velconst=(U(Np)*(Radius-Yk(Np))+U(Np-1)*(Radius-Yk(Np-1)))/2
410
    420
    I PRINT RAW DATA
430
    PRINT " RAW DATA--FILE NAME: ";File$;
440
     PRINT USING "3X,80A"; Com$
450
    PRINT " N
                Y [cm] U [m/s] V [m/s] u' [m/S] v' [m/s] u'v'
460
 [m2/s2]"
470 PRINT
480
    FOR I=1 TO Np
      PRINT USING "#,2X,2D";I
490
500
      PRINT USING "3X,4D.3D";Yk(I),U(I),U(I),Upr(I),Upr(I),Upr(I),Upvp(I)
510
    NEXT I
520
    PRINT
530 PRINT USING "#,2X,11A,2D.2D"; "Upw [m/s]= ",Upw
540 PRINT USING "4X,6A,D.3DESZ"; "Cf= ",Cf
```

550 PRINT USING "//"

560 IF Hc\$="Y" THEN OUTPUT 701;"

```
570
       IF Hc$="Y" THEN 640
       INPUT "DO YOU WANT A HARD COPY?" ,Hc$
 580
 590
       IF Hos="Y" THEN
        Flag$≠"Y"
 600
610
         PRINTER IS 701
620
        60TO 440
63Ø
       END IF
640
       Hc$= " "
650
       PRINTER IS 1
660
670
680
       ! COMPUTE NORMALIZED QUANTITIES
690
       Utau=SQR(Cf/2)*Upw ! SHEAR VELOCITY
700
       FOR I=1 TO No
710
        Ndy(I)=Yk(I)/Radius
720
        Ndu(I)=U(I)/Upw
730
        Ndv(I)=U(I)/Upw
        Ndupr(I)=Upr(I)/Upw
740
750
        Ndvpr(I)=Upr(I)/Upw
760
        Ndupvp(I)=-Upvp(I)/Upw/Upw
770
        Ndupvp1(I)=-Upvp(I)/Utau/Utau
780
      NEXT I
790
      ! COMPUTE EDDY VISCOSITY: VELOCITY GRADIENT CALCUALTED USING SIMPLE LINEAR
800
        FIT.
810
      FOR I=1 TO Np
820
        IF I=1 OR I=No THEN
830
          IF I=1 THEN
840
            Grad=(U(I+1)-U(I))/(Yk(I+1)-Yk(I))+100
850
          END IF
860
          IF I=Np THEN
870
            Grad=(U(I)-U(I-1))/(Yk(I)-Yk(I-1))+100
880
          END IF
890
        ELSE
900
          Grad=((U(I+1)-U(I))/(Yk(I+1)-Yk(I))*100+(U(I)-U(I-1))/(Yk(I)-Yk(I-1))*
100)/2
910
        END IF
920
       Evisc(I)=-Upvp(I)/Grad
930
     NEXT I
940
950
960
      ! PRINT REDUCED DATA
970
     PRINT " REDUCED DATA--FILE NAME: ";File$;
980
     IF Curves="Y" THEN PRINT "
                                 (CURVED WALL)"
990
     IF Curves="N" THEN PRINT "
                                  (FLAT WALL)"
1000 PRINT USING "//"
1010 PRINT "
EDDY VISC. "
1020 PRINT " N
                            U/Upw u'/Upw v'/Upw u'v'/Upw^2 u'v'/Utau^2
                     y/R
[m"2/S]"
1030 PRINT
1040 FOR I=1 TO No
        PRINT USING "#,2X,2D";I
1050
1050
       PRINT USING "3X,D.4D,3X,D.3D,3X,D.3D,3X,D.3D,5X,SD.5D,6X,SD.5D,5X,SD.5D"
```

```
;Ndy(I),Ndu(I),Ndupr(I),Ndvpr(I),Ndupvp(I),Ndupvp1(I),Evisc(I)
1070    NEXT I
1080    PRINT
1090    IF Curve$="Y" THEN PRINT USING "2X,29A,2D.2D ";"MEASURED VALUE OF Upw [m
/S]= ",Upwm
1100    IF Hc$="Y" THEN OUTPUT 701;"
```

```
1110 IF Hc$="Y" THEN 1170
1120 INPUT "DO YOU WANT A HARD COPY?" ,Hc$
1130 IF Hc$="Y" THEN
1140
       PRINTER IS 701
1150
        60TO 970
1160 END IF
1170 Hc$=""
1180 PRINTER IS 1
1190
     1200 FOR Jp=1 TO 3
1210 ! PLOT OF NON-DIMENSIONALIZED QUANTITIES
1220
       GRAPHICS ON
1230
       GCLEAR
1240
       GINIT
1250
       CSIZE 4..5
1260
       DEG
1270 (******************
       Titles="RMS OF VELOCITIES--"
1280
                                                ! TITLE OF PLOT
       IF Jp>1.2 THEN Titles="SHEAR STRESS PROFILE--"
1290
1300
       Title$=Title$&File$
1310
       Xmin=0. ! MINIMUM VALUE OF X
       Xmax=.030 | MAXIMUM VALUE OF X
1320
1330
       Xtic=.001
1340
       N×tic≃5
       IF Jp=1 THEN
1350
                       ! u'/Upw, v'/Upw
1360
         Ymin=0.
1370
         Ymax=.15
1380
         Ytic=.005
1390
        Nytic=4
1400
       END IF
1410
       IF Jp=2 THEN
                       __u'v'/Upw^2
1420
         Ymin=0.
1430
         Ymax=.004
1440
         Ytic=.0002
1450
        Nytic=5
       END IF
1460
1470
       IF Jp=3 THEN
                       ! u'v'/Utau^2
1480
         Ymin=Ø.
1490
         Ymax=1.6
1500
         Ytic=.05
1510
         Nytic=4
1520
       END IF
1530
       Labelx$="y/R"
                                  ! X-AXIS LABEL
1540
       Labely$="Upr/Upw, Upr/Upw" ! Y-AXIS LABEL
       IF Jp=2 THEN Labely$="-u'v'/Upw^2"
1550
1560
       IF Jp=3 THEN Labely$="-u'v'/Utau^2"
1570
       N≃Np ! THE NUMBER OF DATA POINTS DO YOU WISH TO PLOT
1580
       Cons="N" | DO YOU WISH TO CONNECT POINTS? (Y OR N)
1590
       Grid$="N" ! GRID?
1600
    .........
1610
     ! LABELS
1620
       LDIR Ø
1630
       CSIZE E
1540
       LORG 5
```

```
FOR I=-.2 TO .2 STEP .1
1650
         MOVE 70+1,95
1660
         LABEL Title$
1670
        NEXT I
1680
        CSIZE 4
1690
        LORG 5
1700
        MOVE 69,5
1710
        LABEL Labelx$
1720
        LDIR 90
1730
1740
        MOVE 6,52
        LABEL Labely$
1750
        VIEWPORT 15,124,12,90
17E0
1770 !
1780 ! LINEAR-LINEAR AXES
        WINDOW Xmin, Xmax, Ymin, Ymax
1790
        FRAME
1800
        AXES Xtic, Ytic, Xmin, Ymin, Nxtic, Nytic, 5
1810
        AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
1820
        IF Grids="Y" THEN GRID Nxtic*Xtic, Nytic*Ytic, Xmax, Ymax
1830
1840
        CLIP OFF
1850 ! FRAME
        LDIR 0
1860
        Ylab=(Ymax-Ymin)/20
1870
        FOR I=1 TO (Xmax-Xmin)/(Xtic+Nxtic)+1
1880
          X1=I*Xtic*N×tic*Xmin
1890
          MOUE X1,Ymin
1900
          LORG 6
1910
          LABEL XI
1920
1930
        NEXT I
1940
        Xlab=(Xmax-Xmin)/25
1950
        LDIR 90
1960
        FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
1970
          Yl=I*Ytic*Nytic+Ymin
1980
          MOUE -Xlab+Xmin,Yl
1990
          LABEL Y1
2000
2010
        NEXT I
2020
        LDIR Ø
      .........
2030
      I PLOT DATA ENTERED MANUALLY
2040
        CLIP ON
2050
        LORG 5
2080
        CSIZE 4,.5
2070
        IF Jp=1 THEN Kp=2
2080
         IF Jp=2 THEN Kp=1
2090
         FOR J=1 TO Kp
2100
           FOR I=1 TO N
 2110
             X = Ndy(I)
 2120
             IF Jp=1 THEN
 2130
               IF J=1 THEN Yp=Ndupr(I)
 2140
               IF J=2 THEN Yp=Ndvpr(I)
 2150
             END IF
 2150
 2170
             IF Jp=2 THEN
               IF J=1 THEN Yp=Ndupvp(I)
 2180
             END IF
 2190
```

```
IF Jp=3 THEN Yp=Ndupvp1(I)
2200
2210
          MOVE Xp,Yp
2220
          MOVE X,Yp
2230
          LABEL "+"
2240
2250
        NEXT I
2260
       NEXT J
2270
       IF Jp=3 THEN
2280
        MOVE 0,1
        LINE TYPE 5
2290
        IDRAW 50,0
2300
        LINE TYPE 1
2310
      END IF
2320
INPUT "DO YOU WISH A HARD COPY? (Y OR N)", A5$
2340
      IF A5$="Y" THEN 2370
2350
2360
      60TO 2470
2370
       INPUT "DO YOU WISH AN EXPANDED PLOT ? (Y/N)", Exp$
       IF Exp$="Y" THEN
2380
         DUMP DEVICE IS 701, EXPANDED
2390
         DUMP GRAPHICS
2400
        OUTPUT 701;"
2410
2420
      ELSE
2430
      DUMP DEVICE IS 701
2440
        DUMP GRAPHICS
2450
     END IF
     OUTPUT 701;" "
2460
2470 NEXT Jp
2480 ***************************
2490 GCLEAR
2500 END
```

```
10
     I THIS PROGRAM IS USED TO DETERMINE K2*(H01/H02) IN PROCESSING DATA FOR
20
       TEMPERATURE FLUCTUATION MEASUREMENTS (K2H01H02).
30
40
     DIM Y(50),U(50),U(50),Upr(50),Upr(50),Upvp(50),Com$[180]
50
     DIM Volt1(1010), Volt2(1010), Volt4(1010), Va(1010)
60
     DIM A$[8704] BUFFER,B$[8704] BUFFER,C$[8704] BUFFER,F$[300],Cexp$[300]
70
     ASSIGN @Prowler1 TO 715
80
     ASSIGN @Prowler2 TO 716
90
     ............
100
110
     INPUT "DO YOU WISH TO TAKE NEW DATA OR USE OLD DATA ? (N/O)", Newold$
120
     IF Newolds="0" THEN 1810
130
140
     ! SET UP NORLAND PROWLERS
150
     INPUT "DO YOU WISH EQUIPTMENT SETUP DETAILS ?", Eqptset$
160
     IF Eqptset$="Y" THEN
170
       PRINT USING "/, ""PROWLER SETUP (ALL CHANNELS): """
180
       PRINT " MODE : TRIGGERED HOLD"
190
       PRINT " RANGE : PROWLER #715--200 CH. A.B; PROWLER #716--MINIMIZE CH. B"
200
       PRINT " BIAS : 0"
210
       PRINT " COUPLING : DC"
220
       PRINT USING "/,"" TRIGGER SOURCE : CHAN A"""
230
       PRINT " SLOPE -"
240
       PRINT " COUPLING : DC"
250
       PRINT " LEVEL : 67.188%"
260
       PRINT " WINDOW : .78125 %"
270
       PRINT USING """ DELAY : 3568"",/"
280
       PRINT "CHANNEL ASSIGNMENTS : "
290
       PRINT USING "/,"" IFA 100 :"""
300
       PRINT " CHANNEL 2 ON IFA 100 : FROM HOT-WIRE (WIRE NO. 3)"
310
       PRINT "
                OFFSET = 1 V, GAIN = 10, FILTER = 5000 HZ"
320
       PRINT USING "/,"" NORLAND (715) :"""
330
       PRINT " CHANNEL A : FROM AMPLIFIER (DO NOT GO THROUGH SIG. CONDITIONER)
340
       PRINT " CHANNEL B : FROM DIFFERENTIATOR (DO NOT GO THROUGH SIG. CONDITI
350
ONER)"
       PRINT USING "/."" NORLAND (716):"""
360
       PRINT USING """ CHANNEL B : FROM CHANNEL 2 OF IFA 100"",2/"
370
380
      END IF
     390
400
     ! SETUP PARAMETERS FOR CIRCUIT/SIGNAL CONDITIONERS/SIGNAL PROCESSING
410
     | CONSTANT CURRENT CIRCUIT :
420
                     I GAIN OF AMPLIFIER
      Copain=1002.
430
                      ! OFFSET OF AMPLIFIER
      Ccoff=.085
440
     Cctc=(-.00130) | TIME CONSTANT OF DIFFERENTIATOR (RC PRODUCT)
450
4 E Ø
     ! IFA 100 CHANNEL 2 :
470
     Ifa2off=1. ! OFFSET OF HOT-WIRE BRIDGE
480
                      I GAIN OF HOT-WIRE BRIDGE
     Ifa2gain=10.
490
500
      I IFA 100 CHANNEL 3 :
510
     Ifa3off=0. | OFFSET OF COLD-WIRE BRIDGE
520
```

```
Ifa3gain=1. | GAIN OF COLD-WIRE BRIDGE
530
540
550
      ! SIGNAL PROCESSING :
560
      Epsilon=1/.878
                        ! EPSILON=R01/R02
570
      V21=1.0E-3*9.68 ! V21=(COLD-WIRE CURRENT)*(HOT-WIRE RESISTANCE)
580
590
      INPUT "ARE THE SETUP PARAMETERS FOR THE CIRCUIT/SIG. COND.S/SIG. PROC. COR
RECT ? (Y/N)", Setupp$
600
     610
620
      ! TRANSFER DATA FROM NORLAND TO COMPUTER
E30
      ASSIGN @Buffa TO BUFFER A$
640
      ASSIGN @Buffb TO BUFFER B$
      ASSIGN @Buffc TO BUFFER C$
650
660
      - TRANSFER ARRAY B[1/1] FROM PROWLER UNIT #15, A[1/1] AND B[1/1] FROM
        PROWLER UNIT #16
670
      FOR J=1 TO 3
       IF J=1 THEN OUTPUT 715 USING "#,K":"_KCGA" ! CONTENTS OF CH. A UNIT 15 IF J=2 THEN OUTPUT 715 USING "#,K":"_KCGC" ! CONTENTS OF CH. B UNIT 15
                                                    ! CONTENTS OF CH. A UNIT 15
680
690
        IF J=3 THEN OUTPUT 716 USING "#,K"; "_KCGC" ! CONTENTS OF CH. B UNIT 16
700
710
        WAIT .5
        IF J=1 THEN TRANSFER @Prowler1 TO @Buffa; COUNT 8452
720
730
        IF J=2 THEN TRANSFER @Prowler1 TO @Buffb; COUNT 8452
        IF J=3 THEN TRANSFER @Prowler2 TO @Buffc; COUNT 8452
740
        WAIT 1.
750
     NEXT J
760
770
     CONTROL @Buffa.5;1 / RESET BUFFER POINTERS
780
      WAIT 1.
790
      CONTROL @Buffb.5;1
800
      WAIT 1.
810
      CONTROL @Buffc.5:1
820
      WAIT 1.
830
840
850
      I COMPUTE EXPONENT AND OFFSET
8E0
      FOR K=1 TO 3
870
       FOR J=1 TO 2
         IF K=1 THEN ENTER @Buffa USING "#,2A";Cexp$
880
          IF K=2 THEN ENTER @Buffb USING "#,2A";Cexp$
890
          IF K=3 THEN ENTER @Buffc USING "#,2A";Cexp$
900
910
         V1=IVAL(Cexp$,16)
920
         Exp=2^(V1-128)
930
          Su=.5
940
         Powerl = 4.
950
         FOR K5=1 TO 6
           IF K=1 THEN ENTER @Buffa USING "#,A";F$
960
970
           IF K=2 THEN ENTER @Buffb USING "#,A";F$
980
           IF K=3 THEN ENTER @Buffc USING "# A" ;F$
990
           V1=IUAL(F$.16)
1000
           Tot=V1/2^Powerk
1010
           Powerk=Powerk+4.
1020
           Su=Su+Tot
1030
        NEXT K5
1040
         IF J=1 THEN
1050
           IF K=1 THEN Factor1=Su*Exp
```

```
IF K=2 THEN Factor2=Su*Exp
1060
          IF K=3 THEN Factor3=Su∗Exp
1070
         END IF
1080
        IF J=2 THEN
1090
          IF K=1 THEN Offset1=Su+Exp
1100
           IF K=2 THEN Offset2=Su+Exp
1110
          IF K=3 THEN Offset3=Su*Exp
1120
        END IF
1130
       NEXT J
1140
       IF K=1 THEN ENTER @Buffa USING "#,240A";F$
1150
       IF K=2 THEN ENTER @Buffb USING "#,240A";F$
1160
       IF K=3 THEN ENTER @Buffc USING "#,240A";F$
1170
1180 NEXT K
       1190
1200
       ! ENTER ANEMOMETER VOLTAGES FROM BUFFERS
1210
1220 Ndat=1000
1230 FOR Ik=1 TO Ndat
      FOR K=1 TO 3
1240
         IF K=1 THEN
1250
           ENTER @Buffa USING "#,B";A1
1260
           ENTER @Buffa USING "#,B";A2
1270
1280
         END IF
         IF K=2 THEN
1290
           ENTER @Buffb USING "#,B";A1
1300
          ENTER @Buffb USING "# ,B";A2
1310
         END IF
1320
         IF K=3 THEN
1330
           ENTER @Buffc USING "#,B";A1
1340
           ENTER @Buffc USING "#,B";A2
1350
13E0
         END IF
         V1=A2*256+A1-32768
1370
         IF K=1 THEN Ew1*(V1*Factor1+Offset1)
1380
         IF K=2 THEN Ew2=(V1+Factor2+Offset2)
1390
         IF K=3 THEN Ew3=(V1*Factor3+Offset3)
1400
       NEXT K
1410
                        ! PROWLER 715 CH. A VOLTAGES (COLD-WIRE VOLTAGE)
       Uplt1(Ik)=Ew1
1470
                        ! PROWLER 715 CH. B VOLTAGES (COLD-WIRE DERIVATIVE)
       Volt2(Ik)=Ew2
1430
                        ! PROWLER 716 CH. B VOLTAGES (HOT-WIRE VOLTAGE - W3)
       Volt4(Ik)=Ew3
1440
       IF INT(Ik/100)=Ik/100 THEN DISP USING "4D,"" :"",4X,2D.5D,5X,2D.5D,5X,2D
1450
.5D";Ik,Volt1(Ik),Volt2(Ik),Volt4(Ik)
1460 NEXT IL
1480 !
1490 | COMPUTE U2, DV2/DT, V3
1500 !
1510 FOR Ik=1 TO Ndat
        + U1 : COLD-WIRE AFTER AMPLIFICATION, SIGNAL CONDITIONING
1520
        Volt1(Ik)=Volt1(Ik)/Ifa3gain+Ifa3off ! DE-CONDITION SIGNAL
1530
                                            ! UN-DO AMPLIFICATION
       Volt1(Ik)=(Volt1(Ik)-Ccoff)/Ccgain
1540
1550
        I V4: HOT-WIRE AFTER SIGNAL CONDITIONING
 1550
        Volt4(Ik)=Volt4(Ik)/1fa2gain+Ifa2off ! DE-CONDITION SIGNAL
 1570
 1580
        1 VOLT2 : COLD-WIRE SIGNAL AFTER AMPLIFICATION, FILTERING, AND
 1590
```

```
DIFFERENTIATION.
       Volt2(Ik)=Volt2(Ik)/Cctc
                                            ! DIVIDE BY TIME CONSTANT
1500
                                            I DIVIDE BY AMPLIFICATION FACTOR
       Volt2(Ik)=Volt2(Ik)/Cogain
1510
1620
      IF INT(Ik/100)=Ik/100 THEN DISP Ik, Volt1(Ik), Volt2(Ik), Volt4(Ik)
1630
1640 NEXT Ik
1650
1660 ! STORE DATA
1670 INPUT "DO YOU WISH TO STORE THE VOLTAGES VOLT1(*), VOLT2(*), & VOLT4(*)?
(Y/N)",Stord$
1680 IF Stords="Y" THEN
1690
       MASS STORAGE IS ":CS80,700,1"
       INPUT "INPUT A FILE NAME" File$
1700
1710
       CREATE BDAT Files,100
       ASSIGN @Writef TO File$
1720
1730
       OUTPUT @Writef; V21, Epsilon
1740
     DUTPUT @Writef;Volt1(*),Volt2(*),Volt4(*)
1750
     MASS STORAGE IS ":CS80.700,0"
1750
      DISP "DATA STORED"
1770 END IF
1780 GOTO 1900
1800 1
1810 INPUT "PLACE DISC IN DRIVE 2: INPUT NAME OF DATA FILE" Dfile$
1820 MASS STORAGE IS ":C580,700,1"
1830 ASSIGN @Readf TO Dfile$
1840 ENTER @Readf; V21, Epsilon
1850 ENTER @Readf; Volt1(*), Volt2(*), Volt4(*)
1850 MASS STORAGE IS ":CS80,700,0"
1870
     1880 1
1890 / COMPUTE Va(Ik) : COMPENSATED COLD-WIRE VOLTAGE
1900 INPUT "INPUT ACQUISITION FREQUENCY (HZ)", Freq
1910 Umax=Volt1(1)
1920 Umin=Volt1(1)
1930 Ndat=1000
1940 FOR Ik=1 TO Ndat
1950
     IF Volt1(II.)>Umax THEN
1960
        Umax=Volt1(Ik)
1970
      END IF
1980
      IF Volt1(Ik)<Vmin THEN
1990
         Umin=Volt1(Ik)
2000
      END IF
2010 NEXT IL
2020 INPUT "INPUT K(=k2*h01/h02)" Kcc
2030 FOR Ik=1 TO Ndat
      Numer=Kcc/Volt4(Ik)/Volt4(Ik)+V21+Volt2(Ik)+Volt1(Ik)
2040
       Denom=1+Epsilon*Kcc/Volt4(Ik)/Volt4(Ik)*Volt2(Ik)
2050
2050
      Va(Ik)=Numer/Denom
2070 NEXT IF
2080
2090
     I PLOT DATA
2100 CALL Plot lin(Volt1(*), Va(*), Ndat, Freq, Vmin, Vmax, Kcc)
2110
2120 INPUT "DO YOU WISH TO TRY ANOTHER VALUE OF K ? (Y/N)" Tryk$
```

```
2130 IF Tryk$="N" THEN STOP
2140 GOTO 2020
2150 !*************************
2160 end
    2170
2180
2190
    2200
2210 sub Plot_lin(Volt1(*),Va(*),Ndat,Freq,Vmin,Vmax,Kcc)
2230 !
2240
    OPTION BASE 1
    DIM Xd(500),Yd(500),Title$[50],Labelx$[50],Labely$[50]! ARRAY TO BE PLOT
2250
TED
    GRAPHICS ON
2260
2270
     GCLEAR
2280
     GINIT
2290
     LORG 5
2300
     DEG
     2310
     Titles="COMPENSATED vs. UNCOMPENSATED VOLTAGES" ! TITLE OF PLOT
2320
     Xmin=500+(1/Freq)+1000 ! MINIMUM VALUE OF X
2330
     Xmax=650+(1/Freq)+1000 ! MAXIMUM VALUE OF X
2340
     Xtic=(Xmax-Xmin)/15  ! SMALL SCALE
2350
     Nxtic=2 ! HOW MANY SMALL SCALES IN LARGE SCALE
2360
     Ymin=DROUND(Vmin+1000,1)-1
2370
     Ymax=DROUND(Umax*1000,1)+1
2380
     Ymax=15
2390
2400
     Ymin=3
2410
     Ytic=(Ymax-Ymin)/24
2420
     Nytic=4
2430
     Lab$="Y"! WANT LABEL
                               ! X-AXIS LABEL
     Label>$="TIME [mS]"
2440
     Labely$="VOLTS [V] X 1000"
                              ! Y-AXIS LABEL
2450
    N=10001 NUMBER OF DATA POINTS DO YOU WISH TO PLOT
2460
     No=2 ! NUMBER OF CURVES DO YOU WISH TO PLOT
2470
    Expand$="N"! EXPANDED GRAPHICS PRINT MODE?
2480
2500 | LABELS
2510
     LDIR Ø
2520
     CSIZE 6
2530
     LORG 5
     FOR I=-.1 TO .3 STEP .1
2540
      MOVE 70+1,95
LABEL Title$
2550
2560
     NEXT I
2570
     CSIZE 5
2580
2590
     LORG 5
    MOVE 69,5
2600
    LABEL Label×$
2610
    LDIR 90
2620
2630 MOVE 6,52
2640 LABEL Labely$
2650 VIEWPORT 15,124,12,90
```

```
2670 | LINEAR-LINEAR AXES
       WINDOW Xmin, Xma>, Ymin, Ymax
2680
       AXES Xtic, Ytic, Xmin, Ymin, Nxtic, Nytic, 5
2690
      AXES Xtic, Ytic, Xmax, Ymax, Nxtic, Nytic, 5
2700
2710 1
2720
      CLIP OFF
2730
       LDIR 0
       IF Labs="N" THEN GOTO 2950
2740
2750
       Ylab=(Ymax-Ymin)/20
       FOR I=1 TO (Xmax-Xmin)/(Xtic*Nxtic)
2760
2770
         X1=I*Xtic*Nxtic+Xmin
         MOVE X1,Ymin
2780
2790
         LORG 6
2800
         LABEL X1
2810
       NEXT I
2820
      Xlab*(Xmax-Xmin)/25
2830
2840
      LDIR 90
      FOR I=1 TO (Ymax-Ymin)/(Ytic*Nytic)
2850
2860
         Yl=I*Ytic*Nytic+Ymin
2870
         MOVE -Xlab+Xmin,Yl
         IF ABS(Y1)<1.E-10 THEN GOTO 2900
2880
         LABEL Y1
2890
         IF ABS(Y1)<1.E-10 THEN LABEL "0"
2900
       NEXT I
2910
       LDIR 0
2920
     2930
     I PLOT DATA ENTERED MANUALLY
2940
2950
       CLIP ON
2980
       LORG 5
       CSIZE 4..5
2970
2980
       FOR J=1 TO No
2990
         IF J=1 THEN
          LINE TYPE 1
3000
3010
         ELSE
           LINE TYPE 4
3020
3030
         END IF
3040
         FOR I=500 TO 650
3050
           IF J=1 THEN
3050
             MOUE I*(1/Freq)*1000, Volt1(I)*1000
             DRAW (I+1)*(1/Freq)*1000, Volt1(I+1)*1000
3070
3060
             DISP I, Volt1(I)
           END IF
3090
           IF J=2 THEN
3100
             MOVE I*(1/Freq)*1000, Va(I)*1000
3110
             DRAW (I+1)*(1/Freq)*1000,Va(1)*1000
3120
           END IF
3130
         NEXT I
3140
       NEXT J
3150
3150
       LINE TYPE 1
3170
3180
       MOVE 5.8,12
3190
       Kc$=VAL$(Kcc)
3200
       Labs="KCC= "8Kc$
3210
       LABEL Lab#
```

```
3230 INPUT "DO YOU WISH A HARD COPY? (Y OR N)", A5$
   IF A5$="Y" THEN
3240
     IF Expand$="Y" THEN
3250
      DUMP DEVICE IS 701 ,EXPANDED
3250
      DUMP GRAPHICS
3270
    END IF
3280
     IF E×pand≎="N" THEN DUMP GRAPHICS ! TO #701
3290
    OUTPUT 701;"
3300
3310
   END IF
3320
   GCLEAR
3330 SUBEND
```

```
10
      ! THIS PROGRAM IS USED TO ACQUIRE U'T' DATA IN BOUNDARY LAYERS (UTACQ)
 20
 30
 40
      DIM Volt1(4100), Volt2(4100), Volt3(4100), Volt4(4100)
 50
      DIM A$[8704] BUFFER, B$[8704] BUFFER, C$[8704] BUFFER, D$[8704] BUFFER
      DIM F$[300],Cexp$[300],Com$[180]
 70
 80
      ASSIGN @Prowler1 TO 715
 90
      ASSIGN @Prowler2 TO 716
 100
      110
      1
 120
      I SET UP NORLAND PROWLERS
      INPUT "DO YOU WISH EQUIPTMENT SETUP DETAILS ?" .Egptset$
 130
 140
      IF Eqptsets="Y" THEN
        PRINT USING "/," "PROWLER SETUP (ALL CHANNELS):"""
 150
 160
        PRINT " MODE : TRIGGERED HOLD"
        PRINT " RANGE : MINIMIZE"
170
        PRINT " BIAS : 0"
180
190
        PRINT " COUPLING : DC"
200
       PRINT USING "/,"" TRIGGER SOURCE : EXTERNAL"""
       PRINT USING """ DELAY : 4095"",/"
210
220
       PRINT "CHANNEL ASSIGNMENTS :"
       PRINT USING "/,"" IFA 100 :"""
230
       PRINT " CHANNEL 1 ON IFA 100 : FROM HOT-WIRE (WIRE NO. 1)"
240
       PRINT "
250
                 OFFSET = 1 V, GAIN = 10, FILTER = 5000 HZ"
       PRINT " CHANNEL 2 ON IFA 100 : FROM HOT-WIRE (WIRE NO. 3)"
260
                OFFSET = 1 U, 6AIN = 10, FILTER = 5000 HZ"
270
       PRINT "
       PRINT " CHANNEL 3 ON IFA 100 : FROM AMPLIFIER OUTPUT OF COLD-WIRE (WIRE
280
 NO. 2)"
290
       PRINT "
               OFFSET = VARIABLE (PROBABLY 5 V), GAIN = 1, FILTER = 5000 HZ
       PRINT " CHANNEL 4 ON IFA 100 : FROM DERIVATIVE OF COLD-WIRE SIGNAL"
300
       PRINT " OFFSET=0, GAIN = 1, FILTER = 2000 HZ"
310
320
       PRINT USING "/."" NORLAND (716) :"""
       PRINT " CHANNEL A : FROM CHANNEL 3 OF IFA 100"
330
       PRINT " CHANNEL B : FROM CHANNEL 4 OF IFA 100"
340
350
       PRINT USING "/,"" NORLAND (715):"""
       PRINT " CHANNEL A : FROM CHANNEL 1 OF IFA 100"
350
370
       PRINT USING """ CHANNEL B : FROM CHANNEL 2 OF IFA 100"",2/"
380
     END IF
390
     400
410
     ! SETUP PARAMETERS FOR CIRCUIT/SIGNAL CONDITIONERS/SIGNAL PROCESSING
420
     ! CONSTANT CURRENT CIRCUIT :
430
     Cogain=200.
                   | GAIN OF AMPLIFIER
440
     Ccoff=0.
                     1 OFFSET OF AMPLIFIER
450
                   TIME CONSTANT OF DIFFERENTIATOR (RC PRODUCT): THIS IS
     Cctc=-.00130
NOT CORRECT, BUT IS OK. THE ERROR HAS BEEN COMPENSATED FOR IN Kcc.
     Current=1.000E-3 | CURRENT THROUGH WIRE [A]
460
470
480
     I IFA 100 CHANNEL 1 : WIRE NO. 1
490
     Ifaloff=1.
                 ! OFFSET OF HOT-WIRE BRIDGE
500
     Ifalgain=10.
                    | GAIN OF HOT-WIRE BRIDGE
510
520
     I IFA 100 CHANNEL 2 : WIRE NO. 3
530
     Ifa2off=1,
                 ' OFFSET OF HOT-WIRE BRIDGE
```

```
I GAIN OF HOT-WIRE BRIDGE
540
     Ifa2gain=10.
550
     ! IFA 100 CHANNEL 3 :
560
     Ifa3off=10.7 ! OFFSET OF COLD-WIRE BRIDGE
570
                    ! GAIN OF COLD-WIRE BRIDGE
580
     Ifa3gain=1.
590
600
     ! SIGNAL PROCESSING :
                    ! (COLD RES. OF HOT-WIRE)/(COLD RES. OF COLD-WIRE)
610
     Epsilon=.0855
     V21=1.0E-3*7.70 ! V21=(COLD-WIRE CURRENT)*(HOT-WIRE RESISTANCE)
620
                     ! K2*H01*H02 (FROM CALIBRATION)--FIND REAL VALUE IN VTRED
630
     Kcc=.10
640
     ! WIRE RESISTANCE/TEMPERATURE CHARACTERISTICS
650
     Dtdr=5.56586 ! SLOPE OF TEMP. vs. RESISTANCE CURVE
660
     R0=-263.042-3.46 ! OFFSET OF TEMP. vs. RESISTANCE CURVE
670
                       UPDATED (4/25/89)
680
     ! HOT-WIRE CALIBRATION COEFFICIENTS
690
                      ! ANGLE BETWEEN WIRES AND FLOW WHEN ALIGNED WITH FLOW
700
     Theta=PI/4.
     ! WIRE 1 DATA : ! UPDATED 4/19/89
710
     A1=-2.470847
720
     B1=8.73329
730
     Power1=.435
740
     Tw1=250.
750
760
     | WIRE 2 DATA :
770
     A2=-2.764756
780
790
     B2=8.260559
800
     Power2=.435
810
     T\omega 2 = 250.
820
     INPUT "ARE THE SETUP PARAMETERS FOR THE CIRCUIT/SIG. COND.S/SIG. PROC. COR
830
RECT ? (Y/N)", Setupp$
     840
850
     INPUT "INPUT OFFSET FOR CH. A AND CH. B FOR PROWLER 715",0ff3,0ff4
8EØ
     INPUT "INPUT OFFSET FOR CH. A AND CH. B FOR PROWLER 716", Off1, Off2
870
     INPUT "INPUT BASE FILE NAME (e.g., VT0804)",Fileb$
880
890
     INPUT "INPUT Y0 [cm]",Y0
     PRINT " MAXIMUM NUMBER OF PROFILE POINTS : 14 ( DO NOT EXCEED !! )"
900
     PRINT USING "2/,"" DATA POINT: "",#"
910
920
     ! STORE CIRCUIT/WIRE/SIG. COND. PARAMETERS
930
     MASS STORAGE IS ":CS80.700.1"
940
     Filep$=Fileb$&"_P"
950
960
     CREATE BOAT Filep$,2
      ASSIGN @Ppath TO Filep$
970
     OUTPUT @Ppath:Cogain,Cooff,Coto,Current,Ifaloff,Ifalgain,IfaZoff,Ifalgain,
980
Ifa3off,Ifa3gain,Epsilon,V21,Kcc,Dtdn,R0,Theta,Tw1,Tw2,Off1,Off2,Off3,Off4
    OUTPUT @Ppath:Power1,Power2,A1,B1,A2,B2
990
1000 MASS STORAGE IS ":C580,700,0"
1010 1
1020 | TAKE DATA
1030 FOR Idata=1 TO 50
     PRINT USING "3X,2D,#";Idata
1040
        I CREATE DATA FILES
1050
```

```
INPUT "START ACQUIRING DATA !!", Inp$
1050
        INPUT "INPUT Y [cm]", Yp
1070
1080
        Y = Y0 - Yp + .05
1090
       MASS STORAGE IS ":CS80,700,1"
1100
      Point$=VAL$(Idata)
1110
      File1$=Fileb$&"_A"&Point$
1120
      File2$=Fileb$&"_B"&Point$
1130
      File3$=Fileb$&"_C"&Point$
1140
        File4$=Fileb$&"_D"&Point$
1150
        Filey$=Fileb$&"_Y"&Point$
1160
1170
1180
       CREATE BDAT File1$.35
1190
       CREATE BDAT File2$,35
       CREATE BDAT File3$,35
1200
       CREATE BDAT File4$,35
1210
        CREATE BOAT Filey$,1
1220
1230
1240
        ASSIGN @Diska TO File1$
1250
       ASSIGN @Diskb TO File2$
1260
        ASSIGN @Diskc TO File3$
        ASSIGN @Diskd TO File4$
1270
1280
        ASSIGN @Ypath TO Filey$
1290
1300
       ASSIGN @Buffa TD BUFFER A$
       ASSIGN @Buffb TO BUFFER B$
1310
        ASSIGN @Buffc TO BUFFER C$
1320
       ASSIGN @Buffd TO BUFFER D$
1330
1340
1350
       OUTPUT @Ypath;Y
      INPUT "PRESS [ENTER] WHEN FINISHED ACQUIRING DATA !!", Inp$
1360
1370
       ! INITIATE DATA TRANSFER
1380
       TRANSFER ARRAY A[1/1] AND B[1/1] FROM PROWLER UNIT #15, THEN FROM
1390
           PROWLER UNIT #16
        FOR J=1 TO 4
1400
         IF J=1 THEN
1410
            OUTPUT 716 USING "#,K"; "S"
1420
1430
            WAIT 1.
            OUTPUT 716 USING "#,K"; "_KCGA" | CONTENTS OF CH. A. UNIT 16
1440
1450
            WAIT 1.
            TRANSFER @Prowler2 TO @Buffa: COUNT 8452
1450
            TRANSFER @Buffa TO @Diska; COUNT 8452
1470
1480
            WAIT .5
1490
          END IF
1500
          IF J=2 THEN
1510
            OUTPUT 716 USING "#,K";"_KCGC" | CONTENTS OF CH. B, UNIT 16
1520
            WAIT 1.
           TRANSFER @Prowler2 TO @Buffb; COUNT 8452
1530
           TRANSFER @Buffb TO @Diskb; COUNT 8452
1540
           WAIT .5
1550
         END IF
1560
1570
         IF J=3 THEN
           OUTPUT 715 USING "#,K"; "_KCGA" + CONTENTS OF CH. A, UNIT 15
1580
1590
           WAIT 1.
```

```
TRANSFER @Prowler1 TO @Buffc:COUNT 8452
1600
          TRANSFER @Buffc TO @Diskc; COUNT 8452
1610
          WAIT .5
1620
        END IF
1630
        IF J=4 THEN
1540
          OUTPUT 715 USING "#,K";"_KCGC" | CONTENTS OF CH. B, UNIT 15
1650
          WAIT 1.
1660
          TRANSFER @Prowler1 TO @Buffd; COUNT 8452
1670
          TRANSFER @Buffd TO @Diskd; COUNT 8452
1680
          WAIT .5
1690
       END IF
1700
1710
     NEXT J
     MASS STORAGE IS ":CS80,700,0"
1720
1730
     Counter=Idata
     INPUT "DO YOU WISH TO CONTINUE ? (Y/N)",Cont$
1740
     IF Conts="N" THEN 1780
1750
1760 NEXT Idata
1770 !
1780 ! STORE COUNTER NUMBER (NUMBER OF DATA PROFILE POINTS)
1790 MASS STORAGE IS ": CS80,700,1"
1800 Filect$=Fileb$&"_CT"
1810 CREATE BDAT Filect$,1
1820 ASSIGN @Cpath TO Filect$
1830 OUTPUT @Cpath:Counter
1840 MASS STORAGE IS ":CS80,700,0"
1860
1870 END
```

```
·
 10
       ! THIS PROGRAM IS USED TO REDUCE v't' DATA TAKEN BY VTACQ (I_VTRED)
 20
 30
       40
 50
      DIM Volt1(4100), Volt2(4100), Volt3(4100), Volt4(4100)
 60
      DIM Y(20),Um(20),Um(20),Tm(20),Uprm(20),Uprm(20),Tprm(20),Upvpm(20),Uptpm(
 20),Uptpm(20),Upvp2m(20),Up2tpm(20)
 70
      DIM Y(20),U1(20),V1(20),T1(20),Upr1(20),Upr1(20),Tpr1(20),Upvp1(20),Uptp1(
 20), Uptp1(20), Upvp21(20), Up2tp1(20)
      DIM Y(20),Ut(20),Vt(20),Tt(20),Uprt(20),Uprt(20),Tprt(20),Upvpt(20),Uptpt(
 20), Vptpt(20), Upvp2t(20), Vp2tpt(20)
 90
      DIM Tpnondim(20), Ynondim(20), Prt(20), Dudy(20), Dtdy(20), Co(20), Yk(20)
      DIM Ynd(20), Upvpnd(20), Uptpnd(20), Vptpnd(20), Upvp2nd(20), Vp2tpnd(20)
 100
      DIM A$[8704] BUFFER, B$[8704] BUFFER, C$[8704] BUFFER, D$[8704] BUFFER
 110
      DIM F$[300],Cexp$[300],Com$[180],Inter(20)
      ------
 130
 140
150
     INPUT "DO YOU WISH TO 1). REDUCE RAW VOLTAGES OR 2). REDUCE DATA TO NONDIM
160
 . FORM ? ".Datared
      IF Datamed=2 THEN 4310
170
      INPUT "INPUT FILE BASE NAME (e.g., UT0804)",Fileb$
180
      INPUT "INPUT WALL TO FREE-STREAM TEMPERATURE DIFFERENCE [C] AT THIS STATIO
190
N" .Deltat
      INPUT "INPUT MOMENTUM BOUNDARY LAYER THICKNESS [cm] AT THIS STATION", Delta
200
210
      MASS STORAGE IS ":CS80,700,1"
220
230
      ! ENTER NUMBER OF PROFILE POINTS FROM DISK
240
      Filect$=Fileb$&"_CT"
250
      ASSIGN @Cpath TO Filect$
260
      ENTER @Cpathindata
270
     I ENTER CIRCUIT/WIRE/SIG. COND. PARAMETERS FROM DISK
280
290
     Filep$=Fileb$8"_P"
     ASSIGN @Ppath TO Filep$
300
     ENTER @Ppath:Cogain,Cooff,Cotc,Current,Ifaloff,Ifalgain,Ifa2off,Ifa2gain,I
fa3off,Ifa3gain,Epsilon,V21,Kcc,Dtdr,R0,Theta,Tw1,Tw2,Off1,Off2,Off3,Off4
320
     ENTER @Ppath:Power1,Power2,Aw1,Bw1,Aw2,Bw2,Thresh,Off_turb,Off_lam
330
     R0=R0-2+3.46
340
     C2the=2*COS(Theta)
350
     S2the=2*SIN(Theta)
350
     I CORRECTION FOR LONGITUDINAL COOLING OF SENSORS
370
380
     Ld=200
                                   1 1/d RATIO OF SENSOR
390
     Kt=-5.E-4*Ld+.3
                                   ! Kt, AS DEFINED BY CHAMPAGNE
400
     Ofuv=(1+Kt*Kt)/(1-Kt*Kt)
                                   ! CORRECTION FACTOR FOR u'v' MEASUREMENTS
     Cfv=:1+Kt*Kt)/(1-3*Kt^2+4*Kt^4) / CORRECTION FACTOR FOR V' MEASUREMENTS
410
420
430
     PRINT USING "/,"" N
                           Y
                                 1.1
                                                      u'
                                                                 + *
     u't' v't'""
v ¹
440
     PRINT USING """
                         u'v'2
                                  V12t1""./"
450
460
     FOR Idata=1 TO Ndata
470
      MASS STORAGE IS ":CS80,700,1"
```

```
480
       ! ENTER RAW DATA FROM DISK
490
500
       Point$=VAL$(Idata)
510
       File15=Fileb$8"_A"&Point$
520
       File2$=Fileb$&" B"&Point$
530
       File3$=Fileb$&"_C"&Point$
540
       File4$=Fileb$&"_D*&Point$
550
       Filey$=Fileb$&"_Y"&Point$
560
570
       ASSIGN @Diska TO File1$
580
       ASSIGN @Diskb TO File2$
590
       ASSIGN @Diskc TO File3$
600
       ASSIGN @Diskd TO File4$
610
       ASSIGN @Ypath TO Filey$
620
630
       ASSIGN @Buffa TO BUFFER A$
640
        ASSIGN @Buffb TO BUFFER B$
650
        ASSIGN @Buffc TO BUFFER C$
660
        ASSIGN @Buffd TO BUFFER D$
670
680
690
       ! ENTER Y [cm]
700
        ENTER @Ypath;Y(Idata)
710
        FOR J=1 TO 4
720
         IF J=1 THEN TRANSFER @Diska TO @Buffa; COUNT 8452
730
          IF J=2 THEN TRANSFER @Diskb TO @Buffb; COUNT 8452
740
          IF J=3 THEN TRANSFER @Diskc TO @Buffc:COUNT 8452
750
          IF J=4 THEN TRANSFER @Diskd TO @Buffd; COUNT 8452
760
         WAIT 1.
770
780
        NEXT J
        MASS STORAGE IS ":CSB0,700,0"
790
800
        ! RE-SET BUFFER POINTERS
810
        CONTROL @Buffa,5:1
820
        WAIT 1.
830
        CONTROL @Buffb ,5:1
840
        WAIT 1.
850
        CONTROL @Buffc,5;1
850
        WAIT 1.
870
        CONTROL @Buffd,5;1
880
890
        WAIT 1.
        900
910
        I COMPUTE : EXPONENT AND OFFSET
920
        FOR K=1 TO 4
930
          FOR J=1 TO 2
940
            IF K=1 THEN ENTER @Buffa USING "#,2A";Cexp$
950
            IF K=2 THEN ENTER @Buffb USING "#,2A";Cexp$
960
            IF K=3 THEN ENTER @Buffc USING "#,2A";Cexp$
970
            IF K=4 THEN ENTER @Buffd USING "#,2A";Cexp$
980
            V1=IVAL(Cexp$,16)
990
            Exp=2^(V1-128)
1000
            Su=.5
1010
1020
            Powerk=4.
```

```
FOR K5=1 TO 6
1030
1040
             IF K#1 THEN ENTER @Buffa USING "#.A";F$
1050
             IF K=2 THEN ENTER @Buffb USING "# A";F$
             IF K=3 THEN ENTER @Buffc USING "# A";F$
1060
            IF K=4 THEN ENTER @Buffd USING "#,A";F$
1070
             V1=IVAL(F$,15)
1080
             Tot=V1/2^Powerk
1090
             Powerk=Power++4,
1100
1110
             Su=Su+Tot
1120
           NEXT K5
1130
           IF J=1 THEN
             IF K=1 THEN Factor1=Su*Exp
1140
             IF K=2 THEN Factor2≃Su*Exp
1150
            IF K=3 THEN Factor3=Su*Exp
1160
             IF K=4 THEN Factor4=Su+Exp
1170
           END IF
1180
           IF J=2 THEN
1190
            IF K=1 THEN Offset1=Su*Exp
1200
            IF K=2 THEN Offset2=Su*Exp
1210
            IF K=3 THEN Offset3=Su*Exp
1220
1230
            IF K=4 THEN Offset4=Su*Exp
          END IF
1240
         NEXT J
1250
1260
        IF K=! THEN ENTER @Buffa USING "#.240A";F$
        IF K=2 THEN ENTER @Buffb USING "#,240A";F$
1270
        IF K=3 THEN ENTER @Buffc USING "#,240A";F$
1280
        IF K=4 THEN ENTER @Buffd USING "#,240A";F$
1290
      NEXT K
1300
       1............
1310
1320
1330
       I INITIALIZE SUMS
1340
       5:1=0.
1350
       S21=0.
1360
       531=0.
1370
      S41=0.
      551=0.
1380
      S51=0.
1390
      571=0.
1400
     S81≖Ø.
1410
1420
     S91=0.
1430 5101=0.
1440 S111=0.
     S121=0.
1450
       5131=0.
1460
1470
     S141=0.
1480
     N1=0.
1490
      S1t=0.
1500
       52t=0.
1510
       S3t=0.
1520
1530
       54t=0.
       S5t=0.
1540
1550
       55t=0.
1560
       S7t=0.
1570
      58t≃Ø.
```

```
59t=0.
1580
1590
       S10t=0.
1600
       S11t=0.
1510
       S12t=0.
       S13t=0.
1620
       S14t=0.
1630
       Nt = \emptyset.
1540
1650
1660
       ! COMPUTE : VOLTAGES FROM PROWLERS
1670
1680
1690
       Ndata=2000
       Sumturb=0.
1700
1710
        Sumlamb=0.
       FOR Ik=1 TO Ndata
1720
         FOR K=1 TO 4
1730
            IF K=1 THEN
1740
              ENTER @Buffa USING "# .B" ; A1
1750
              ENTER @Buffa USING "#,B";A2
1760
              ENTER @Buffa USING "*,B";Jk ! ENTER AND IGNORE ALTERNATE POINTS
1770
              ENTER @Buffa USING "#,B";Jk
1780
            END IF
1790
            IF K=2 THEN
1800
              ENTER @Buffb USING "#,B";A1
1810
              ENTER @Buffb USING "#,B";A2
1820
             ENTER @Buffb USING "#,B";Jk
1830
             ENTER @Buffb USING "#,B";Jk
1840
            END IF
1850
            IF K=3 THEN
1860
              ENTER @Buffc USING "#,B";A1
1870
              ENTER @Buffc USING "#,B";A2
1880
              ENTER @Buffc USING "#,B";Jk
1890
              ENTER @Buffc USING "#,B";Jk
1900
            END IF
19:0
            IF K=4 THEN
1920
              ENTER @Buffd USING "# ,B";A1
1930
              ENTER @Buffd USING "#,B";A2
1940
              ENTER @Buffd USING "#,B";Jk
1950
              ENTER @Buffd USING "#,B";Jk
1960
            END IF
1970
            V1=A2+256+A1-32768
1980
            IF K=1 THEN Ew1=(V1*Factor1+Offset1)
1990
            IF K=2 THEN Ew2=(V1*Factor2+Offset2)
2000
            IF K=3 THEN Ew3=(V1*Factor3+Offset3)
2010
            IF K=4 THEN Ew4=(V1*Factor4+Offset4)
2020
          NEXT K
2030
2040
          Volt1(Ik)=Ew1-Off1 | PROWLER 716 CH. A VOLT. (COLD-WIRE VOLTAGE)
2050
          Volt2(Ik)=Ew2-Off2 ! PROWLER 716 CH. B VOLT. (COLD-WIRE DERIVATIVE)
2050
          Volt3(Ik)≠Ew3-Off3 ! PROWLER 715 CH. A VOLT. (HOT-WIRE VOLTAGE - W1)
2070
          Volt4(Ik)=Ew4-Off4 ! PROWLER 715 CH. B VOLT. (HOT-WIRE VOLTAGE - ₩2)
 2080
 2090
 2100
          I COMPUTE : DETERMINE FLOW REGIME AND CORRECT HW VOLTAGE
 2110
           IF Volt3(Ik)>Thresh THEN
 2120
```

```
2130
           Volt3(Ik)=Volt3(Ik)-Off turb ! SUBTRACT VOLT. ADDED TO TURB. FLOW
           Flag_r$="T"
2140
2150
         ELSE
2160
           - Volt3(Ik)=Volt3(Ik)-Off_lam - ! SUBTRACT VOLT. ADDED TO LAM. FLOW
           Flag_r$="L"
2170
         END IF
2180
2190
2200
         ! COMPUTE : V2.DV2/DT.V3
2210
2220
         U1 : COLD-WIRE SIGNAL AFTER AMPLIFICATION. CONDITIONING
2230
         Volt1(Ik)=Volt1(Ik)/Ifa3gain+Ifa3off | DE-CONDITION SIGNAL
2240
         2250
2260
         VOLT2 : COLD-WIRE SIGNAL AFTER AMPLIFICATION, FILTERING, AND
                  DIFFERENTIATION.
2270
         Volt2(Ik)=Volt2(Ik)/Cctc
                                           I DIVIDE BY TIME CONSTANT OF
                                             DIFFERENTIATOR
2280
         Volt2(Ik)=Volt2(Ik)/Cogain
                                           ! DIVIDE BY AMPLIFICATION FACTOR
2290
2300
         1 V3: HOT-WIRE SIGNAL AFTER CONDITIONING : WIRE 1
2310
         Volt3(Ik)=Volt3(Ik)/Ifalgain+Ifaloff ! DE-CONDITION SIGNAL
2320
        1 V4: HOT-WIRE SIGNAL AFTER CONDITIONING : WIRE 3
2330
2340
         Volt4(Ik)=Volt4(Ik)/Ifa2gain+Ifa2off ! DE-CONDITION SIGNAL
2350
         2360
2370
         ! COMPUTE : COMPENSATED COLD-WIRE VOLTAGE, TEMPERATURE OF FLOW
2380
         Numer=Kcc/Volt4(Ik)/Volt4(Ik)*V21*Volt2(Ik)+Volt1(Ik)
2390
         Denom=1+Epsilon*Kcc/Volt4(Ik)/Volt4(Ik)*Volt2(Ik)
2400
         Va=Numer/Denom
                                   ! CORRECTED VOLTAGE
2410
         Rwire=Va/Current
                                   ! RESISTANCE OF WIRE
2420
                                   + TEMPERATURE OF WIRE/FLOW
         Temp=Rwire*Dtdr+R0
2430
2440
         I COMPUTE : VELOCITIES
2450
         Ctemp=SQR(225./(250-Temp)) | CORRECTION FACTOR FOR TEMPERATURE
2460
         Volt3(Ik)=Volt3(Ik)+Ctemp
2470
         Volt4(Ik)=Volt4(Ik)+Ctemp
2480
2490
        - Ueffwl≖(Awl+Bwl*Volt3(Ik)*Volt3(Ik))^(1/Powerl) - ! EFFECTIVE VELOCITY
2500
        Ueffw2=(Aw2+Bw2*Volt4(Ik)*Volt4(Ik))^(!/Power2)
2510
        Un=(Ueffw1+Ueffw2)/C2the
                                  I INSTANTANEOUS U VELOCITY
2520
        2530
        I COMPUTE : SUMS
2540
2550
        IF Flag r$="L" THEN
2560
          S11=511+Up*Vp
2570
           S21=S21+Vp+Temp
2580
           S31=S31+Up*Temp
2590
2500
          S41=S41+Up+Up
2610
           $51=$51+Vp+Vp
2620
           S61=S61+Temp*Temp
2630
          S71=S71+Up
2540
2650
          $81=$$1+Vp
```

```
591=591+Temp
2650
2670
2680
           S101=S101+Up+Vp+Vp
           S111=S111+Up*Up*Vp
2690
           S121=S121+Vp*Vp*Vp
2700
            S131=S131+Temp*Up*Up
2710
           S141=S141+Temp+Temp+Vp
2720
2730
           N1 = N1 + 1
2740
         END IF
2750
2760
          IF Flag_r$="T" THEN
2770
           S1t=S1t+Up*Vp
2780
            S2t=S2t+Up*Temp
2790
            S3t=S3t+Up*Temp
2800
2810
            S4t=S4t+Up*Up
2820
            $5t=$5t+Vp*Vp
2830
            S6t=S6t+Temp+Temp
2840
2850
            57t = 57t + Up
2850
            S8t=58t+Vp
2870
            S9t=S9t+Temp
2880
2890
2900
            S10t=S10t+Up*Vp*Vp
            S11t=S11t+Up*Up*Vp
2910
2920
           S12t=S12t+Up*Up*Up
           S13t=S13t+Temp*Up*Up
2930
            S14t=S14t+Temp*Temp*Up
2940
2950
295€
            Nt = Nt + 1
2970
          END IF
2980
          IF INT(Ik/100)=Ik/100 THEN DISP USING """IK, TEMP, U, V: "",4D,5x,30.2
2990
D,5X,9D.2D,5X,9D.2D";1k,Temp,Up,Vp
3000
      NEXT IL
3010
        ŧ
3020
        S1m=S11+S1t
3030
        S2m=S21+S2t
304C
        S3m=S31+S3t
3050
        54m=541+54t
3060
3070
        S5m=551+S5t
3080
        SEm=SE1+SEt
        57m=571+57t
3090
3100
        58m=S81+S8t
        S9m=S91+S9t
3110
        510m=5101+510t
3120
        511m=5111+511t
3130
        S12m=S121+S12t
3140
        S13m=S131+S13t
3150
        S14m=S141+S14t
3150
3170
        I COMPUTE : INTERMITTENCY
3180
        Inter(Idata)=Nt/(Nl+Nt)
3190
```

```
3200
3210
        ! COMPUTE : TURBULENCE QUANTITIES
3220
        ! AVERAGE OF VELOCITY AND TEMPERATURE
3230
3240
        Um(Idata)=S7m/Ndata
3250
        Vm(Idata)=S8m/Ndata
        Um(Idata)=57m/Ndata
3260
3270
3280
        Ul(Idata)=S71/Ndata
3290
        V1(Idata)=S81/Ndata
3300
        Tl(Idata)=S91/Ndata
3310
3320
        Ut(Idata)=S7t/Ndata
3330
        Vt(Idata)=S8t/Ndata
3340
        Ut(Idata)=S7t/Ndata
3350
3360
        ! RMS OF VELOCITY AND TEMPERATURE
3370
        Uprm(Idata)=SQR(S4m/(Nm-1)-S7m*S7m/Nm/(Nm-1))
3380
        Vprm(Idata) = SQR((S5m/(Nm-1)-S8m+S8m/Nm/(Nm-1)) + Cfv)
3390
        Tprm(Idata)≈SQR(S6m/(Nm-1)-S9m*S9m/Nm/(Nm-1))
3400
3410
        IF N1=0 OR N1=1 THEN
3420
          Uprl(Idata)=0.
3430
          Vprl(Idata)=0.
3440
          Torl(Idata)=0.
3450
          GOTO 3510
3460
        END IF
        Uprl(Idata)=SQR(S41/(N1-1)-S71*S71/N1/(N1-1))
3470
3480
        Vprl(Idata)=SQR((551/(N1-1)-S81*581/N1/(N1-1))*Cfv)
3490
        Tprl(Idata)=SQR(S61/(N1-1)-S91*S91/N1/(N1-1))
3500
3510
        IF Nt=0 OR Nt=1 THEN
3520
          Uprt(Idata)=0.
3530
          Vprt(Idata)=0.
3540
          Tprt(Idata)=0.
3550
          GOTO 3610
35EØ
        END IF
3570
        Uprt(Idata)=SQR(S4t/(Nt-1)-S7t*S7t/Nt/(Nt-1))
3580
        Vprt(Idata)=SQR((S5t/(Nt-1)-S8t*S8t/Nt/(Nt-1))*Cfv)
3590
        Tprt(Idata)=SQR(S6t/(Nt-1)-S9t*S9t/Nt/(Nt-1))
3600
3610
        ! CROSS CORRELATIONS
3620
        Upvpm(Idata)=(S1m/(Nm-1)-S7m*S8m/Nm/(Nm-1))*Cfuv
        Uptpm(Idata)=(S2m/(Nm-1)-S8m*S9m/Nm/(Nm-1))*Cfuv
3630
3640
        Uptpm(Idata)=S3m/(Nm-1)-S7m*S9m/Nm/(Nm-1)
3650
3650
        IF N1=0 OR N1=1 THEN
3670
          Upvpl(Idata)=0.
3680
          Uptpl(Idata)=0.
3690
          Uptpl(Idata)=0.
          60T0 3760
3700
3710
        END IF
        Upvpl(Idata)=(S11/(N1-1)-571*S81/N1/(N1-1))*Cfuv
3720
3730
        Uptpl(Idata)=(S21/(N1-1)-S81*S91/N1/(N1-1))*Cfuv
3740
        Uptpl(Idata)=S31/(N1-1)-571*S91/N1/(N1-1)
```

```
3750
                         IF Nt=0 OR Nt=1 THEN
3760
                              Upvpt(Idata)=0.
3770
3780
                              Vptpt(Idata)=0.
                              Uptpt(Idata)=0.
3790
                              GOTO 3870
3800
                         END IF
3810
                        Upvpt(Idata)=(S1t/(Nt-1)-S7t*S8t/Nt/(Nt-1))*Cfuv
3820
                         Vptpt(Idata)=(S2t/(Nt-1)-S8t+S9t/Nt/(Nt-1))*Cfuv
3830
                         3840
3850
                         ! TRIPLE CORRELATIONS
3860
                        U_{pvp}2m(Idata)=(S10m/(Nm-1)-2*S8m*S1m/Nm/(Nm-1)-S7m*S5m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)-S7m*S5m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)-S7m*S5m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)-S7m*S5m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)-S7m*S5m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)-S7m*S5m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m*S1m/Nm/(Nm-1)+2*S7m/
3870
8m + S8m / Nm / Nm / (Nm - 1 ) ) + Cfv
                        V_D2t_Dm(Idata)=(S13m/(Nm-1)-2*58m*S2m/Nm/(Nm-1)-59m*S5m/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2*59m*Sm/Nm/(Nm-1)+2
3880
8m*S8m/Nm/Nm/(Nm-1))*Cfv
3890
                        IF N1=0 OR N1=1 THEN
3900
3910
                               Upvp21(Idata)=0.
3920
                               Up2tpl(Idata)≠0.
                               60TO 3980
3930
                        END IF
3940
                        Upvp21(Idata)=(S101/(N1-1)-2*S81*S11/N1/(N1-1)-S71*S51/N1/(N1-1)+2*S71*S
3950
81*581/N1/N1/(N1-1))*Cfv
                        Vp2tp1(Idata)*(S131/(N1-1)-2*S81*S21/N1/(N1-1)-S91*S51/N1/(N1-1)+2*S91*S
3960
81*581/N1/N1/(N1-1))*Cfv
3970
                        IF Nt=0 OR Nt=1 THEN
3980
3990
                              Upvp2t(Idata)=0.
                              Vp2tpt(Idata)=0.
4000
                              GOTO 4050
4010
4020
                         END IF
                        Upvp2t(Idata) = (S10t/(Nt-1)-2*S8t*S1t/Nt/(Nt-1)-S7t*S5t/Nt/(Nt-1)+2*S7t*S
4030
8t * 58t / Nt / Nt / (Nt - 1)) * Cfv
                        Up2tpt(Idata)=(S13t/(Nt-1)-Z*S8t*S2t/Nt/(Nt-1)-S9t*S5t/Nt/(Nt-1)+2*S9t*S
4040
8t*58t/Nt/Nt/(Nt-1))*Cfv
4050
                      - 1
                         PRINT USING "2D,3X,D.3D,2X,#"; Idata,Y(Idata)
4050
                         PRINT USING "2D.2D,2X,SD.3D,2X,2D.2D,2X,D.3D,1X,D.3D,1X,D.3D,*";Um(Idata
4070
);Vm(Idata);Tm(Idata);Uprm(Idata),Vprm(Idata),Tprm(Idata)
                         PRINT USING "2X,SD.3D,2X,SD.3D,1X,SD.3D";Upvpm(Idata),Uptpm(Idata),Uptpm
4080
(Idata)
4090
                         PRINT USING "5X.SD.4D.2X,SD.4D"; Upvp2m(Idata), Vp2tpm(Idata)
4100
                         Counter=Idata
4110
4120 NEXT Idata
4130 BEEP
                 ------------
4140
4150 !
4160 ! STORE DATA
4170 INPUT "DO YOU WISH TO STORE THE DATA ? (Y/N)", Stored$
4180 IF Stored$="N" THEN 4470
4190 INPUT "PLACE DATA STORAGE DISC IN DRIVE 1 AND INPUT FILENAME ",Filen$
4200 MASS STORAGE IS ":CS80,700,1"
4210 CREATE BDAT Filen$,25
```

```
4220 ASSIGN @Writef TO Filen$
4230 OUTPUT @Writef;Counter,Deltat,Deltam
4240 FOR I=1 TO Counter
4250
        DUTPUT @Writef;Y(I),Um(I),Vm(I),Tm(I),Uprm(I),Vprm(I),Tprm(I),Ur
ptpm(I),Vptpm(I),Upvp2m(I),Vp2tpm(I)
4260
        OUTPUT @Writef:Y(I),UI(I),UI(I),TI(I),UprI(I),UprI(I),TprI(I),Ur
ptpl(I), Vptpl(I), Upvp2l(I), Vp2tpl(I)
        OUTPUT @Writef;Y(I),Ut(I),Vt(I),Tt(I),Uprt(I),Uprt(I),Tprt(I),Up
ptpt(I), Vptpt(I), Upvp2t(I), Vp2tpt(I)
428Ø NEXT I
4290 MASS STORAGE IS ":CS80,700,0"
4300 60T0 4470
4320 1
4330 ! INPUT DATA TO BE NON-DIMENSIONALIZED FROM DISC
4340 INPUT "PLACE DISC IN DRIVE 1 AND INPUT DATA FILE NAME !!" Fileb$
4350 MASS STORAGE IS ":CS80.700.1"
4360 ASSIGN @Readf TO Fileb$
4370 INPUT "INPUT Upw [m/S]", Upw
4380 ENTER @Readf; Np, Deltat, Deltam
4390 FOR I=1 TO Np
4400
       ENTER RReadf;Y(I),Um(I),Vm(I),Tm(I),Uprm(I),Vprm(I),Tprm(I),Upvp
pm(I), Uptpm(I), Upvp2m(I), Up2tpm(I)
4410
       ENTER @Readf;Y(I),U1(I),V1(I),T1(I),Upr1(I),Vpr1(I),Tpr1(I),Upvp
pl(I), Vptpl(I), Upvp2l(I), Vp2tpl(I)
4420
       ENTER @Readf;Y(I),Ut(I),Ut(I),Tt(I),Uprt(I).Vprt(I).Tprt(I),Upvp
pt(I), Uptpt(I), Upvp2t(I), Up2tpt(I)
4430 NEXT I
4440 MASS STORAGE IS ":CS80,700,0"
4450
     4460
4470 | COMPUTE : NON-DIMENSIONALIZED DATA
4480 !
4490 | LOCAL DERIVATIVE OF VELOCITY PROFILE :
4500 CALL Lsqfit(Y(*),U(*),Co(*),Np,3,1,Fileb$)
4510 FOR I=1 TO No
4520
       Dudy(I)=\emptyset.
4530
       FOR J=2 TO 5+1
4540
         Dudy(I)=Dudy(I)+Co(J)*(J-1)*Y(I)^(J-2)
4550
       NEXT J
4560 NEXT I
4570
4580 | LOCAL DERIVATIVE OF TEMPERATURE PROFILE :
4590 CALL Lsqfit(Y(*),T(*),Co(*),Np,3,2,Fileb$)
4600 FOR I=1 TO Np
4610
       Dtdy(I)=\emptyset.
4E20
       FOR J=2 TO 5+1
4E30
         Dtdy(I)=Dtdy(I)+Co(J)+(J-1)+Y(I)^(J-2)
4540
       NEXT J
4650 NEXT I
4660
     - 1
4670
     I NON-DIMENSIONALIZE DATA :
4680 FOR I=1 TO Np
4690
       | DISTANCE FROM WALL :
4700
       Ynd(I)=Y(I)/Deltam
```

```
4710
               ! SHEAR STRESS
4720
                Upvpnd(I)=Upvp(I)/Upw/Upw
4730
4740
                I TURBULENT HEAT FLUXES
4750
                Uptpnd(I)=Uptp(I)/Upw/Deltat
4760
                Vptpnd(I)=Uptp(I)/Upw/Deltat
4770
4780
                - 1
                ! TRIPLE PRODUCTS
4790
                Upvp2nd(I)=Upvp2(I)/Upw^3
4800
                Vp2tpnd(I)=Up2tp(I)/Upw/Upw/Deltat
4810
4820
                ! TURBULENT PRANDTL NUMBER
4830
                                                                            ! DIFFUSIVITY OF MOMENTUM
                Epsilonm=Upvp(I)/Dudy(I)
4840
                                                                         ! DIFFUSIVITY OF HEAT
               Epsilont=Uptp(I)/Dtdy(I)
4850
                                                                            ! TURBULENT PRANDTL NUMBER
                 Prt(I)=Epsilonm/Epsilont
4860
4870 NEXT I
4890 !
 4900 | PRINT DATA
 4910 !
 4920 INPUT "PRINT DATA ON SCREEN OR PRINTER ? (5/P) ",Printer$
 4930 IF Printer$="P" THEN PRINTER IS 701
 4940 PRINT USING "10A"; Fileb$
 4950 PRINT USING "2/,""STATION: "",2D,"" ( FLAT WALL, TI=.45%, K=0.0 )""";S
 4960 PRINT USING "2/,""Del 99.5 = "",D.3D,"" [cm]"",7X,""Tw-Tinf = "",D.3D,"" [
 C]""";Deltam,Deltat
 4970 PRINT USING """Upw = "",2D.2D,"" [m/S]"",2/";Upw
                                                                                                                                                              v ¹
                                                                                                                                           u'
  4980 PRINT USING """ N
                                                                                                                     T
                                                                                  U
                t' u'v'""
                                                             [cm] [m/S] [m/S] [C] [m/S]
  4990 PRINT USING """
                         [m2/52]""./"
               [C]
  5000 FOR I=1 TO Np
               PRINT USING "2D,5x,0.3D,5x,2D.2D,4x,5D.2D,3x,2D.2D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,0.3D,5x,
  3D,5X,SD.3D";[],Y([),U([),U([),T([),Upr([),Vpr([),Tpr([),Upvp([)
                IF INT(I/5)=I/5 THEN PRINT
  5030 NEXT I
                                                                                                                                                              4U/d
                                                                                                          u'v'^2
                                                                                                                                     v'^2t'
  5040 PRINT USING "2/,"" N
y dT/dy Prt""
                                                                                       v't'
                                                                   u't'
                                                      [m-C/S] [m-C/S] [m3/S3] [m2-C/S2]
                                                                                                                                                      [1/5]
  5050 PRINT USING """
            [C/m] ""./"
  5060 FOR I=1 TO Np
                  PRINT USING "2D,3x,SD.3D,5x,SD.3D,5x,SD.3D,5x,3D.3D,5x,3D.3D,5x
  5070
   ,D.3D";I,Uptp(I),Vptp(I),Upvp2(I),Vp2tp(I),Dudy(I),Dtdy(I),Prt(I)
                IF INT(I/5)=I/5 THEN PRINT
  5080
  5090 NEXT I
   5100 END
   5110
   5120
   5130
   5140
  5150 SUB Lsqfit(X1(*),Y1(*),Z(*),Np,Mo,Mode,Filen$)
   5160
                OPTION BASE 1
                   N=Np ! NUMBER OF DATA POINTS
   5170
```

```
5180
        M=Mo+1
        ALLOCATE Phi(N,M),Phit(M,N),C(M,M),Xls(N),Yls(N),D(M,M),A1(M,N),Yc(N),E(
 5190
 N)
 5200
        FOR I=1 TO N
 5210
         Yls(I)=Yl(I)
 5220
         X15(I)=X1(I)
 5230
        NEXT I
 5240
 5250
        PRINT
        ! CONSTRUCT PHI
 5260
 5270
        FOR I=1 TO N
 5280
         FOR J=1 TO M
 5290
           Phi(I,J)=Xls(I)^{(J-1)}
 5300
         NEXT J
 5310
        NEXT I
5320
        MAT Phit= TRN(Phi)! TRANSPOSE OF PHI
5330
        MAT D= Phit*Phi
5340
        MAT C= INV(D)
5350
        MAT A1= C+Phit
5360
        MAT E= A1+Y1s
5370
        IF Mode=1 THEN INPUT "DO YOU WISH A HARD COPY OF THE VELOCITY FIT ? (Y/N
5380
)".Hft$
        IF Mode=2 THEN INPUT "DO YOU WISH A HARD COPY OF THE TEMPERATURE FIT ? (
5390
Y/N)" ,Hft$
5400
       IF Hfts="Y" THEN
5410
        PRINTER IS 701
5420
       ELSE
5430
        PRINTER IS 1
5440
       END IF
       IF Regime=1 THEN PRINT USING """TRANSITIONAL FLOW :"""
5450
5460
       IF Regime=2 THEN PRINT USING """LAMINAR FLOW :"""
       IF Regime=3 THEN PRINT USING """TURBULENT FLOW :"""
5470
       IF Mode=1 THEN PRINT "FILE NAME : ",Filen$
5480
       5490
     IF Mode=1 THEN PRINT USING "/,""U = SUM( A(N) + Y^N )"",/"
5500
5510
       IF Mode=2 THEN PRINT USING "/.""T = SUM( A(N) + Y^N )"" /"
       FOR I=1 TO 4
5520
5530
        PRINT USING """A"",D,""= "".SD.4DESZZ,4X,#";I-1,E(I)
5540
         IF I=4 THEN PRINT
5550
       NEXT I
5550
     FOR I=5 TO 6
       ! PRINT USING """A"",D,""= "",SD.4DESZZ,4X,#";I-1,E(I)
5570
5580
     ! IF I≖6 THEN PRINT USING "2/"
5590
     NEXT I
      FOR I=1 TO N
5600
5510
         Yc(I)=0.
5620
         FOR J=1 TO M
5830
          Yc(I)=Yc(I)+E(J)*Xls(I)^(J+I)
5640
        NEXT J
5650
       NEXT I
5660
       IF Mode=1 THEN PRINT " Y
                                                   UC
                                         U
                                                           % DIFF"
      IF Mode=2 THEN PRINT "
5670
                                                    TC
                                                             % DIFF"
5680
     FOR I=1 TO N
```

```
5690 IF Yls(I)=0. THEN 5710
     PRINT USING "20.4D,4X,3D.4D,4X,3D.3D, 4X,3D.3D";X1s(I),Yls(I),Yc(I),(Y
5700
c(I)-Yls(I))/Yls(I)*100
5710
    NEXT I
     5720
     FOR I=1 TO M
5730
      Z(I)=E(I)
5740
5750
     NEXT I
    IF Mode=2 THEN
5760
     IF Hfts="Y" THEN OUTPUT 701;"
5770
    END IF
5780
    PRINTER IS 1
5790
5800 SUBEND
5810 !+++++
```

A.5 Data Listing

Case 1: p. 247

Case 2: p. 297

Case 3: p. 353

Case 4: p. 378

Case 5: p. 418

Case 1:

Mean and fluctuating velocity: IUP0824

Mean temperature: T0829, T1125

Stanton number: ST0829

Shear stress: IUV0828

Turbulent heat flux and Pr_t: IVT1210

FILE: 1UF082481

STATION: 1

XSTA	= .114 [n]	DEL1 = +3.890E-4 [m]
Cf	= 1.B52E-3	DEL2 = +1.547E-4 [N]
Upw	= 28.15 [m/S]	H = 2.515
Visc	$= 1.639E-5 [m^2/S]$	REdel1 = 6.684E+2
RE»	= 1.864E+5	REdel2 = +2.657E+2
De1995	5 = 1.405E-3 [m]	

	Y Lond	U [m/s]	Υ+	U+	Y/Del995	سۋڭ/ئىس
1	. ece	2.539	2.97	3.14	.043	.764
2	.008	3.419	3.9€	4.23	.057	1.072
3	.010	4.019	4.95	4.97	.071	1.679
4	.0:0	5.257	Б.43	ნ.50	. c ej	1.169
5	. c 18	8.357	7.91	7.87	.114	1.351
6	.021	E.574	10.38	10.60	.149	1.514
7	.C75	10.775	12.85	13.32	.:25	1.828
ε	.031	17.830	15.32	15.86	.221	1.884
5	.035	14.627	17.79	18.08	.255	1.950
10	.241	18.708	20.26	20.E7	.252	2.072
1 1	. 048	18.418	27.72	22.76	.327	2.201
12	.cs	15.745	25.19	24.40	.363	2.021
13	. C5	21.191	27.66	2E.19	.398	1.948
1.4	.OEE	20.395	32.60	28.91	.489	1.934
15	.075	25.210	37.54	31.18	.540	1.752
16	.025	28.520	42.48	32.78	.612	1.568
17	, c be	27.281	47.41	33.47	.E83	1.119
18	.10%	27.544	5 2.35	34.04	.754	.855
15	.115	2 .783	57.29	34.34	.825	.743
20	.126	27.8.7	62.23	34.50	.898	.615
21	.141	28.014	E9.64	34.60	1.003	.622
22	.156	28.010	77.04	34.62	1.105	.475
23	.178	28.181	86.52	34.83	1.251	.545
24	.208	28.124	101.73	34.76	1.465	.470

FILE: IUP082452

STATION: 2

Cf Upw Visc	= .343 [m] = 9.570E-4 = 28.28 [m/S] = 1.642E-5 [m^2/S] = 5.90EE+5	DEL1 = +6.917E-4 [m] DEL2 = +2.750E-4 [m] H = 2.515 REdel1 = 1.191E+3 REdel2 = +4.736E+2
	= 5.905ETB = 2.182E-3 [m]	NEGO-1

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	u¹/Upw
1 2 3 4 5	.011 .013 .015 .017	2.581 3.002 3.522 3.960 4.605	4.14 4.90 5.65 6.40 7.54	4.17 4.85 5.69 6.40 7.44	.050 .060 .069 .078 .052	2.197 2.400 2.570 2.607 2.806
6	.023	5.413	8.67	8.75	.105	3.250
7	.028	6.619	10.55	10.70	.128	3.001
8	.033	7.853	12.43	12.70	.151	2.979
9	.038	9.116	14.32	14.74	.174	3.005
10	.043	10.276	16.20	16.61	.197	2.958
11	.053	12.553	19.97	20.29	.243	3.192
12	.063	14.725	23.74	23.80	.289	3.332
13	.073	16.555	27.50	26.76	.335	3.361
14	.086	19.223	33.15	31. 0 7	.403	3.459
15	.103	21.583	38.81	34.89	.472	3.455
16	.118	23.457	44.46	37.92	.541	3.198
17	.133	24.944	50.11	40.32	.610	2.774
18	.153	26.420	57.64	42.71	.701	2.255
19	.173	27.319	65.18	44.16	.793	1.756
20	.203	28.014	76.48	45.29	.931	1.198
21	.233	28.259	87.78	45.68	1.058	.799
22	.273	28.200	102.85	45.59	1.251	.642
23	.323	28.358	121.69	45.84	1.481	.529

FILE: IUP082453

Station 3 (Laminar)

XSTA	= .572 [m]	DEL1 = +9.513E-4 [m]
Cf	= 7.143E-4	DEL2 = +3.826E-4 [m]
Upw	= 28.17 [m/S]	H = 2.487
V150	$= 1.651E-5 [m^2/S]$	REdell = 1.623E+3
RE.	= 9.748E+5	REdel2 = +6.525E+2
De 1995	= 3.242F - 3.1m1	

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սբա
1	.011	2.089	3.65	3.92	.035	2.093
2	.013	2.353	4.30	4.42	.041	2.514
3	.015	2.678	4.94	5.03	.047	2.783
4	.017	3.039	5.58	5.71	.053	2.981
5	.019	3.392	6.23	6.37	.050	3.095
6	.021	3.797	6.87	7.13	.066	3.294
7	.024	4.297	7.84	8.07	.075	3.391
8	.027	4.792	8.81	9.00	.084	3.376
9	.030	5.332	9.77	10.02	.094	3.540
10	.034	6.063	11.05	11.39	.106	3.50C
11	.039	6.913	12.68	12.99	.121	3.664
1.2	.044	7.821	14.29	14.69	.137	3.697
13	.054	9.502	17.51	17.85	.168	3.790
1 4	.064	11.181	20.73	21.00	.198	4.102
15	.074	12.788	23.96	24.02	.229	3.777
16	.084	14.250	27.18	26.77	.260	4.233
17	.099	16.335	32.02	30.68	.306	4.103
18	.119	18.969	38.46	35.63	.368	4.029
15	.139	21.189	44.91	39.80	.430	3.845
20	.159	23.072	51.36	43.34	.491	3.545
21	.179	24.545	57.80	46.11	.5 53	3.205
22	.209	26.228	67.47	49.27	.645	2.783
23	.239	27.221	77.14	51.14	.738	1.869
24	.279	27.856	90.04	52.33	.861	1.212
25	.329	28.098	106.15	52.78	1.016	.727
26	.379	28.162	122.27	52.90	1.170	.688
27	.4 79	28.174	154.51	52.92	1.478	.554
28	.579	28.156	185.74	52.89	1.787	.578
29	.729	28.184	235.09	52.94	2.249	,511

FILE: IUPØ82453

Station 3 (Turbulent)

XSTA	= .572 [m]	DEL1 = +1.757E-3 [m]
Cf	= 2.700E-3	DEL2 = +7.904E-4 [m]
Upw	= 28.17 [m/S]	H = 2.223
Visc	= 1.651E-5 [m*2/5]	REdel1 = 2.998E+3
REX	= 9.748E+5	REde12 = +1.348E+3
De 1995	5 = 3.242E - 3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս՝/Սբա
1	.011	7.123	7.10	6.88	.035	11.649
2	.013	7.155	8.35	6.91	.041	12.275
3	.015	7.653	9.50	7.39	.047	13.544
4	.017	9.339	10.85	9.02	.053	14.458
5	.019	9.620	12.11	9.29	.060	15.163
Б	.021	10.014	13.36	9.68	.056	13.330
7	.024	10.559	15.24	10.20	.075	14.549
8	.027	11.050	17.12	10.69	.084	13.781
9	. 0 30	11.785	19.00	11.39	.094	14.813
10	.034	12.480	21.51	12.08	. 105	14.239
11	.039	13.333	24.64	12.88	.121	15.262
12	.044	12.843	27.78	12.41	.137	15.701
13	.054	14.735	34.05	14.24	.168	13.500
14	.064	16.882	40.31	16.31	.198	13.215
15	.074	17.507	46.58	16.92	.229	13.423
16	.084	17.626	52.85	17.03	.260	14.049
17	.099	18.916	62.25	18.28	.305	10.990
18	.119	20.177	74.78	19.50	.368	11.825
19	.139	20.337	87.31	19.65	.430	14.082
20	.159	20.980	99.85	20.27	.491	11.081
21	.179	22.077	112.38	21.33	.553	11.870
22	.209	23.354	131.18	22.57	.646	12.357
23	.239	24.321	149.98	23.50	.738	9.843
24	.279	24.970	175.05	24.13	.851	11.271
25	.329	24.482	206.39	23.65	1.016	9.903
26	.379	25.431	237.72	24.57	1.170	8.072
27	.479	26.202	300.39	25.32	1.478	7.554
28	.579	26.654	3 63.06	25.75	1.787	3.814
29	.729	0.000	457.06	0.00	2.249	0.000

FILE: IUP082453

Station 3 (Transitional)

XSTA	= .572 [m]	DEL1 = +9.504E-4 [m]
Cf	= 7.800E-4	DEL2 = +3.898E-4 [m]
Upw	= 28.17 [m/S]	H = 2.438
V150	= 1.651E-5 [m^2/S]	REdel1 = 1.621E+3
REx	= 9.748E+5	REdel2 = +6.648E+2
De 1995	= 3.242F-3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/De199	5 u' /Upw
1	.011	2.223	3.81	4.00	.035	4.005
2	.013	2.499	4.49	4.49	.041	4.387
3	.015	2.847	5.16	5.12	.047	4.896
4	.017	3.237	5.84	5.82	.053	5.511
5	.019	3.578	6.51	6.43	.060	5.50 5
6	.021	4.033	7.18	7.25	.056	5.910
7	.024	4.494	8.19	9.08	.075	5.726
8	.027	5.030	9.20	9.04	.084	6.016
9	.030	5.555	10.21	9.99	.094	5.0 87
10	.034	6.236	11.56	11.21	.106	5.562
11	.039	7.157	13.25	12.87	.121	6.3 7€
12	.044	7.982	14.93	14.35	.137	5.554
13	.054	9.719	18.30	17.47	.168	5.914
14	.054	11.415	21.67	20.52	.198	6.271
15	.074	12.963	25.04	23.30	.229	5.5€7
16	.084	14.353	28.40	25.80	.260	5.249
17	.099	16.417	33.46	29.51	.305	4.765
18	.119	19.007	40.19	34.17	.368	4.541
19	.139	21.169	46.93	38.05	. 430	4.393
20	.159	23.018	53.67	41.38	.491	4.095
21	.179	24.500	60.40	44.04	.5 53	3.730
22	.209	26.172	70.51	47.05	.646	3.5 34
23	.239	27.162	80.61	48.83	.738	2.736
24	.279	27.802	94.09	49.98	.861	2.374
25	.329	28.053	110.93	50.43	1.015	1.933
26	.379	28.117	127.77	50.54	1.170	1.742
27	.479	28.1E3	161.45	50.E3	1.478	.927
28	.579	28.153	195.14	50.61	1.787	.642
29	.729	28.184	245.66	50.66	2.249	.511

FILE: IUP@82454A

Station 4A (Laminar)

Cf	= .800 [m] = 7.897E-4	DEL1 = +1.112E-3 [m] DEL2 = +4.805E-4 [m] H = 2.314
RE×	= 26.06 [m/S] = 1.661E-5 [m^2/S] = 1.255E+6 = 5.559E-3 [m]	REdel1 = 1.745E+3 REdel2 = +7.540E+2

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	և¹/Սքա
	010	1.764	3.24	3.41	.019	1.611
1	.010 .012	2.069	3.86	4.00	.022	1.977
2 3	.014	2.394	4.48	4.62	.026	2.297
ے 4		2.721	5.11	5.25	.029	2.461
5	.016 .018	3.077	5.73	5.94	.033	2.697
Б	.020	3.357	6.35	6.48	.037	3.011
7	.023	3.930	7.29	7.55	.042	3.405
8	.023	4.581	8.54	8.85	.049	3.672
9	.032	5.444	10.09	10.51	.058	4.448
10	.037	6.197	11.65	11.97	.067	4.599
	.		13.84	13.93	.080	4.78E
11	.044	7.214	16.95	16.80	.098	5.405
12	.054	8.697	20.07	18.99	.116	5.011
13	.064	9.831	26.30	23.66	.152	6.391
14	.084	12.252	32.54	27.46	.188	Б.745
15	.104	14.218	52.54	211.40		
	.124	16.127	38.77	31.15	.224	6.494
16 17	.154	18.676	48.12	3E.07	.278	6.312
18	.184	20.608	57.47	40.19	.332	5.624
19	.214	22.543	65.63	43.54	.396	4.800
20	.244	23.825	76.18	46.02	.440	3.755
2.1	204	24.928	68.64	48.15	.512	2.548
21 22	.284 .324	25.516	101.11	49.28	.584	1.890
	.354	25.625	113.58	49.88	.658	1.252
23	. 454	25.023	144.75	50.25	.835	.849
24 25	.564	26.059	175.92	50.35	1.015	.733
25	.554	20.003	,			
26	.714	26.059	222.68	50.33	1.285	.648
27	. 8E4	26. 0 33	269.43	50.31	1.555	. 6 28
28	1.014	26.058	316.19	50.33	1.825	.539
29	1.164	26.057	362.95	50.33	2.095	.5 57
- 5	1.104	20.00				

FILE: IUP082454A

Station 4A (Turbulent)

XSTA	= .800 [m]	DEL1 = +1.348E-3 [m]
Cf	= 3.150E-3	DEL2 = +9.245E-4 [m]
Upw	= 26.06 [m/5]	H = 1.458
Visc	$= 1.661E-5 [m^2/5]$	REdel1 = 2.114E+3
RE>	= 1.255E+6	REdel2 = +1.450E+3
De1995	= 5.559E-3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	u¹/Upw
1	.010	5.877	6.47	5.68	.019	10.007
2	.012	7.203	7.71	6.97	.022	10.574
3	.014	7.590	8.96	7,44	.026	11.981
4	.016	8.394	10.20	8.12	.029	12.592
5	.018	9.545	11.45	9.23	.033	13.819
6	.020	9.737	12.69	9.42	.037	13.127
7	.023	10.552	14.56	10.20	.042	13.435
8	.027	11.525	17.05	11.15	.049	13.824
9	.032	12.610	20.16	12.19	.058	13.592
10	.037	13.006	23.27	12.58	.067	13.586
11	.044	13.603	27.63	13.16	.080	13.805
12	.054	14.774	33.86	14.29	.098	13.581
13	.ØE4	15.221	40.08	14.72	.116	12.264
14	.084	16.202	52.53	15.67	.152	12.818
15	.104	17.038	64.98	1E.48	.188	11.747
1 E	.124	17.998	77.44	17.41	.224	11.730
17	. 154	19.012	9 8.11	18.39	.278	10.14E
18	.184	20.132	114.79	19.47	.332	10.210
19	.214	20.604	133.46	19.92	.386	10.386
20	.244	21.287	152.14	20.59	.440	10.432
21	.284	22.377	177.04	21.E4	.512	9.127
22	. 324	22.777	201.94	22.03	.584	9.421
23	. 354	23.282	226.85	22.51	.656	8.829
24	.464	24.050	285.10	23.26	. 835	7,720
25	.564	24.812	351.35	23.99	1.015	6. 175
26	.714	25.211	444.74	24.38	1.285	5.769
27	.854	25.652	538.12	24.61	1.555	3.443
28	1.014	25.747	631.50	24.90	1.825	2.055
29	1.164	24.636	724.88	23.82	2.095	€.033

FILE: IUP@82454A

Station 4A (Transitional)

XSTA	= .800 [m]	DEL1 = +1.107E-3 [m	}
Cf	= 1.400E-3	DEL2 = +5.529E-4 [m]
Upw	= 26.06 [m/S]	H = 2.002	
Visc	= 1.661E-5 [m^2/5]	REdel1 = 1.737E+3	
REx	= 1.255E+6	REdel2 = +8.674E+2	
De 1999	5 = 5.559E-3 [m]		

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	u'/Upw
1	.010	2.938	4.31	4.25	.019	9.014
2	.012	3.542	5.14	5.14	.022	10.692
3	.014	4.075	5.97	5.91	.026	11.777
4	.016	4.349	6.80	6.31	.029	12.118
5	.018	5.021	7.63	7.28	.033	13.856
6	.020	5.268	8.46	7.64	.037	13.556
7	.023	6.002	9.71	8.71	.042	14.252
8	.027	6.491	11.37	9.42	.049	14.281
9	.032	7.386	13.44	10.71	.0 58	14.526
10	.037	8.165	15.52	11.84	.067	14.445
11	.044	9.016	18.42	13.08	.080	13.854
12	.054	10.450	22.57	15.16	.098	13.625
13	.064	11.356	26.72	16.47	.115	12.462
14	.024	13.314	35.02	19.31	.152	10.918
15	.104	14.982	43.32	21.73	.188	9.677
16	.124	16.598	51.62	24.08	.224	8.708
17	.154	18.768	64.07	27.22	.278	7.575
18	.184	20.636	76.5 3	29.93	.332	7.160
19	.214	22.114	88.9 8	32.08	.385	7.165
20	.244	23.299	101.43	33.80	.440	7.024
21	.284	24.414	118.03	35.41	.512	5.147
22	.324	25.005	134.63	36.27	.584	6.016
23	.364	25.398	151.23	3E.84	.656	5.262
24	.464	25.752	192.73	37.35	.835	3.934
25	.564	25.942	234.24	37.63	1.015	2.536
26	.714	26.023	295.49	37.75	1.285	1.494
27	.864	25.041	358.75	37.78	1.555	.793
28	1.014	26.057	421.00	37.80	1.825	.559
29	1.154	26.055	483.25	37.80	2.095	.625

FILE: 1UP082454

Station 4 (Laminar)

XSTA	=	.60C [m]	DEL1	#	+1.014E-3 [m]
Cf	=	7.8EEE-4	DEL2	-	+4.373E-4 [m]
Upw	=	28.09 [m/S]	н	=	2.319
Visc		1.661E-5 [m12/5]	REdel1	=	1.715E+3
REx		1.353E+6	REde12	=	+7.395E+2
De 1995	=	8.599E-3 [m]			
Visc REx		1.8818-5 [m:2/5] 1.3538+6	REdel1		1.715E+3

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս՝/Մբա
1	.013	2.585	4.41	4.54	. 0:0	3.384
2	.015	2.891	5.08	5.19	.023	3.635
3	.017	3.350	5.75	6.01	.026	4.185
4	.019	3.634	6.42	6.52	.029	4.128
5	.021	4.015	7.09	7.21	.032	4.405
6	.023	4.439	7.76	7.97	.025	4.717
7	.025	4.872	8.43	8.75	.038	5.359
8	.027	5.303	9.10	9.52	.041	5.450
9	.030	5.971	10.11	10.72	.04E	5.90E
1 C	.023	6.447	11.12	11.57	.050	5.899
11	. 0 39	7.290	12.79	13.09	.0 58	6.135
12	.048	9.11€	16.15	16.37	.073	7.214
13	.059	10.500	19.50	19.17	.098	7.242
14	.€78	13.559	26.21	24.34	.118	B.157
15	.095	15.891	32.91	28.53	.145	8.335
16	.118	17.908	39.62	32.15	.179	8.139
17	.148	20.850	49.68	37.45	.225	7.327
1 8	.178	22.985	59.74	41.27	.270	€.665
19	.203	24.523	B8.12	44.CI	.308	5.E1E
20	.228	25.792	76.51	4E.31	.346	4.383
21	.278	27.186	93.27	48.81	.422	2.540
22	.328	27.823	110.04	49.95	.497	1.528
23	.37€	28.037	125.81	50.34	.573	1.346
24	.478	28.11E	150.34	50.48	.725	1.054
25	.578	28.097	193,87	50.44	.876	.778
26	.728	28.081	244.17	50.42	1.104	.755
27	.878	28.108	294.47	50.4E	1.331	.708
28	1.028	28. 0 78	344.77	50.41	1.558	.628

FILE: IUF@E2454

Station 4 (Turbulent)

DEL2 = +8.50EE- H = 1.447 REdel1 = 2.082E+3 REdel2 = +1.438E+	
r. REde	11 = 2.082E + 3

						• 211=
	Y [cm]	U [m/s]	Y+	U+	Y/De1995	u¹/Upw
		2 055	8.79	7.20	.020	11.9EE
1	.013	7.956	10.12	7.89	.023	12.458
2	.015	8.719	11.45	B.72	.026	12.143
3	.017	9.646	12.78	9.45	.029	12.494
4	.019	10.447		10.16	.032	12.E11
5	.021	11.235	14.11	10.10		
_	0.27	12.060	15.44	10.91	.035	12.697
€	.023	12.770	16.78	11.55	.038	12.765
7	.025	12.77E	16.11	11.50	.041	13.043
8	.027		20.10	12.27	.045	13.035
9	.030	13.558	22.10	12.77	.050	12.65E
10	.033	14.123	22.10			
			25.43	13.38	.058	13.215
1.1	. 0 38	14.799		14.58	.073	12.355
1.2	.048	16.119	32.09	15.07	.088	12.587
13	.058	16.583	36.74	15.18	.119	11.509
1 4	.078	17.890	52.08	17.09	.149	11.041
15	.098	18.896	65.3 7	17.05	• • • •	
_		19.702	78.69	17,82	.179	10.432
1 E	.118		98.86	18.95	.225	10.285
17	.149	20.955	118.63	19.83	.270	9.E5C
18	.178	21.924	135.27	20.53	.308	9.558
19	.203	22.703	151.91	21.23	.346	9.084
20	.228	23.475	151.51	21.25		
			185.20	22.00	.422	9.500
21	.278	24.323	218.48	22.70	.497	€.57€
22	.328	25.099	251.77	23.28	.573	7.858
23	.378	25.745	318.34	23.93	.725	6.863
24	.478	28.4EC		24,20	. 276	5.721
25	.578	26.754	384.91	24,28		
			484.7E	24.54	1.103	. 4.1EC
2E	.728	27.138	594.62	24.77	1.331	3.905
27	.678	27.388	554.62 684.48	25.22	1.556	1.738
28	1.028	27.884	DE4,45			

FILE: IUP082454

Station 4 (Transitional)

XSTA	= .800 [m]	DEL1 = +1.019E-3 [m]
Cf	= 1.900E-3	DEL2 = +5.772E-4 [m]
Uρω	= 28.09 [m/S]	H = 1.766
	= 1.861E-5 [m ² /S]	REdel1 = 1.724E+3
REx	= 1.353E+6	REde12 = +9.759E+2
Del995	= 6.599E-3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սբա
1	.013	5.571	6.88	5.44	.020	13.222
2	.015	6.300	7.92	7.28	.023	14.172
3	.017	6.954	8.96	8.04	.026	14.564
4	.019	7.578	10.01	8.87	.029	15.541
5	.021	8.124	11.05	9.38	.032	16.155
6	.023	8.928	12.22			
7	.025		12.09	10.31	.035	16.805
8		9.354	13.13	10.81	.038	17.293
9	.027	9.533	14.18	11.01	.041	15.749
10	.030	10.309	15.74	11.91	.04€	17.068
1 6	.033	10.784	17.30	12.45	.050	17.024
11	.038	11.796	19.91	13.E3	.058	17.071
1.2	.048	13.006	25.12	15.02	.073	15.170
13	.058	14.138	30. 33	16.33	.088	14.981
1.4	.0 78	1E.049	40.76	18.54	.119	12.748
15	.098	17.565	51.18	20.29	.149	11.265
16	.118	18.887	61.60	21 03	170	
17	.148	20.912	77.24	21.82 24.16	.179	9.978
18	.178	22.433	92.87		.225	9.071
19	.203	23.605	105.90	25.91	.270	8.560
20	.228	24.663		27.27	.308	8.495
		24.660	118.93	28.51	.346	8.131
21	.278	25.912	144.99	29.93	.422	8.403
22	.328	26.668	171.05	30.81	.497	7.504
23	.378	27.115	197.11	31.32	.573	E.473
24	.478	27.616	249.22	31.90	.725	4.723
25	.578	27.861	301.34	32.10	.87€	3.092
26	.728	28.017	379.51	32.36	1.103	1.555
27	.878	28.096	457.69	32.4E	1.331	.859
28	1.028	28.077	535.86	32.43	1.558	
			5:5.00	52.75	1.556	.636

FILE: IUP@824S5

Station 5 (Laminar)

XSTA	= 1.029 [m]	DEL1 = +9.139E-4 [m]
Cf	= 1.100E-3	DEL2 = +4.492E-4 [m]
Upw	= 28.72 [m/S]	$H \cdot = 2.034$
Visc	= 1.661E-5 [m^2/5]	REdel1 = 1.580E+3
	= 1.778E+6	REde12 = +7.766E+2
De 1995	= 1.010E-2 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	u¹/Upw
1	.019	5.141	7.70	7.63	.019	7.480
	.021	5.595	8.51	8.31	.021	6.969
2 3	.023	5.071	9.33	9.01	.023	€.176
4	.026	6.690	10.54	9.93	.026	5.713
5	.030	7.744	12.16	11.50	.0 30	€.072
6	.035	9.227	14.19	13.70	.035	6.629
7	.040	10.345	15.22	15.36	.040	6.7€4
8	.050	12.324	20.27	18.30	.050	7.352
9	.070	15.500	28.38	23.02	.069	8.323
10	.090	18.573	36.49	27.58	.089	8.659
11	.120	21.283	48.85	31.60	.119	7.27€
12	.170	24.203	68.9 3	35.94	.168	5.407
13	.220	2E.550	89.20	35.42	.218	4.04E
14	.320	28.115	129.74	41.75	.317	2.549
15	.420	28.498	170.29	42.32	.415	1.747
16	.520	28.575	210.83	42.43	.515	1.358
17	.570	28.578	271.65	42.43	.663	1.232
18	.820	28.501	332.47	42.47	.812	1.209
19	.970	28.646	393.28	42.54	.980	.981
20	1.120	28.675	454.10	42.58	1.109	.839
21	1 770	28.728	535.19	42.66	1.307	.662
21 22	1.320 1.520	28.704	616.28	42.62	1.505	.587

FILE: IUP0824S5

Station 5 (Turbulent)

XSTA	= 1.029 [m]	DEL1 = +1.423E-3 [m]
Cf	= 3.820E-3	DEL2 = +1.044E-3 [m]
Upω	= 28.72 [m/S]	H = 1.363
V150	$= 1.661E-5 [m^2/5]$	REdel1 = 2.460E+3
RE>	= 1.778E+6	REdel2 = +1.805E+3
De 1995	= 1.005E-2 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	u¹/Upw
1	.014	10.675	10.58	8.51	.014	9.160
2	.016	11.524	12.09	9.18	.016	9.158
3	.018	12.565	13.60	10.01	.018	9.194
4	.021	13.647	15.87	10.87	.021	9.273
5	.025	14.697	18.89	11.71	.025	8.976
6	.030	15.728	22.67	12.53	.030	8.757
7	.035	16.435	2E.44	13.10	.035	8.699
8	.045	17.453	34.00	13.91	.045	8.290
9	.085	18.626	49.11	15.00	.065	7.852
10	.085	19.630	64.22	15.64	.085	7.489
1.1	.115	20.664	86.89	16.47	.114	7.331
12	.165	21.930	124.67	17.47	.164	7.382
13	.215	22.853	1E2.44	18.21	.214	7.228
14	.315	24.410	238.00	19.45	.313	7.303
15	.415	25.529	313.56	20.34	.413	B.644
16	.515	26.412	389.11	21.04	.512	5.894
17	.665	27.158	502.45	21.64	.662	4.855
18	.815	27.541	615.78	21.94	.811	4.256
19	.985	27.725	729.11	22.09	.960	3.754
20	1.115	27.797	842.45	22.15	1.109	4.661
21	1.315	28.928	993.58	23.05	1.308	1.416
22	1.515	28.337	1144.67	22.58	1.507	.161

FILE: IUP082455

Station 5 (Transitional)

XSTA	= 1.029 [m]	DEL1 = +1.224E-3 [m]
C f	= 3.770E-3	DEL2 = +8.599E-4 [m]
-	= 28.72 [m/S]	H = 1.423
	= 1.661E-5 [m^2/5]	REdel1 = 2.116E+3
	= 1.778E+6	REdel2 = +1.487E+3
De 1995	= 1.005E-2 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	u¹/Upw
1	.014	10.396	10.51	8.34	.014	10.014
2	.015	11.204	12.01	8.99	.016	10.184
3	.018	12.156	13.51	9.75	.018	10.573
4	.021	13.306	15.76	10.57	.021	10.522
5	.025	14.329	18.76	11.49	.025	10.37E
Б	.030	15.393	22.52	12.35	.030	10.001
7	.035	16.103	2€.27	12.92	.035	9.859
8	.045	17.140	33.78	13.75	.045	9.278
9	.065	18.668	48.79	14.97	.055	8.249
10	.085	19.577	63.80	15.70	.085	7.593
11	.115	20.699	86.32	16.50	.114	7.343
12	.165	22.066	123.85	17.70	.164	7.563
13	.215	23.057	151.38	18.49	.214	7.673
14	.315	24.781	23E.44	19.88	.313	7.990
15	.415	25.937	311.50	20.80	.413	7.154
16	.515	26.856	386.56	21.55	.512	6.103
17	.665	27.796	499.15	22.29	.662	4.440
18	.815	28.293	611.74	22.69	.811	3.017
19	.985	28.546	724.33	22.90	.980	1.844
20	1.115	28.645	836.92	22.98	1.109	1.309
٦,	1.315	28.729	987.03	23.04	1.308	.668
21 22	1.515	28.703	1137.15	23.02	1.507	.5 88

FILE: IUF082356

STATION: 6

XSTA	= 1.257 [m]	DEL1 = +1.437E-3 [m]
Cf	= 3.700E-3	DEL2 = +1.054E-3 [m]
Upw	= 32.64 [m/S]	H = 1.364
Visc	= 1.653E-5 [m ² /S]	REdel1 = 2.836E+3
RE⊼	= 2.482E+6	REdel2 = +2.080E+3
De 1995	= 1.105E-2 [m]	

	Y [cm]	U [m/s]	Υ+	U+	Y/Del895	ս'/Սթա
1	.008	8.960	6.79	6,38	0.0.7	5 000
2	.010	10.077	8.49	7.18	.007	5.888
3	.012	11.326	10.19	8. 0 7	.009	7.057
4	.617	13.876	14.43	9.89	.011	7.556
5	.022	15.849	18.68	11.29	.015	7.908
J	.022	13,043	10.00	11.25	.020	8.050
6	.032	18.313	27.17	13.05	.029	7.719
7	.042	19.680	35.66	14.02	.038	7.279
8	.057	20.854	48.40	14.85	.052	6.826
9	.072	21.665	B1.13	15.43	.065	€.531
10	.092	22.624	78.12	16.12	. 0 83	6.441
11	.122	23.541	103.59	16.77	.110	6.411
12	.147	24.155	124.82	17.21	.133	5.3 38
13	.172	24.772	146.04	17.65	.156	6.226
1.4	.202	25.333	171.52	18.05	.183	6.050
15	.232	25.871	196.99	18.43	.210	6.018
16	.282	25.541	239.45	18.91	.255	5.873
17	.332	27.230	281.90	19.40	.300	5.617
16	.382	27.899	324.36	19.88	.346	5.482
1 5	.482	28.961	409.26	20.63	.436	5.147
20	.582	29.915	494.17	21.31	.527	4.735
21	.682	30.662	575.0 8	21.84	.617	4.297
22	.782	31.257	663.95	22.30	.708	3.905
23	.882	31.823	748.50	22.67	.798	3.276
24	.982	32.221	833.81	22.95	.889	2.568
25	1.082	32.439	918.72	23.11	.979	1.918
26	1.182	32.585	1003.63	23.21	1.070	1.538
27	1.282	32.667	1088.54	23.27	1.160	1.155
28	1.382	32.664	1173.45	23.28	1.251	.970
28	1.532	32.672	1300.82	23.28	1.367	.647
30	1.682	32.664	1428.18	23.27	1.522	.590

FILE: T082931

STATION	: 1	
---------	-----	--

Xsta	= .114 [m]	Del-ther = 1.212E-3 [m]
Tω	= 33.68 [C]	Del-enth = 1.359E-4 [m]
Tinf	= 29.49 [0]	Del-cond = 6.261E-4 [m]
Oω	= 1.725E+2 [W/m^2]	Re-enth = $2.327E+2$
Yeff	= -1.500E-4 [m]	Frt = 0.000
Cond	= 13.20	Qadded = 17.85 [W/m]

	Y [cm]	T [C]	Y+	7+	Y/De1995	DT/DTw
1	+.027	33.128	3.41	2.99	.058	.137
2	+.009	33.103	4.39	3.13	.074	.144
3	+.011	33.035	.5.37	3.48	.091	.150
4	+.013	32.857	6.35	4.45	.107	.204
5	+.015	32.680	7.33	5.39	.124	.247
8	+.017	32.525	8.32	6.23	.140	.285
7	+.020	32.271	9.80	7.59	.165	.348
8	+.023	32.072	11.28	8.67	.190	.397
9	+.026	31.859	12.77	9.81	.215	.449
10	+.030	31.634	14.76	11.03	.248	.504
11	+.034	31.411	16.74	12.24	.281	.5 59
12	+.038	31.210	18.74	13.32	.314	.508
13	+.042	31.010	20.73	14.41	.347	.657
14	+.047	30.801	23.23	15.55	.388	.708
15	+.052	30.823	25.73	16.51	.428	.752
16	+.057	30,440	28.23	17.51	.470	.797
17	+.0E2	30.308	30.73	18.23	.512	.629
18	+.067	30.167	33.24	19.00	.553	.854
19	+.077	25.565	38.24	20.08	.635	.9:3
20	+.087	29.842	43.24	20.77	.718	.944
21	+.097	29.745	48.23	21.30	.800	.967
22	+.107	29.679	53.23	21.65	.883	.984
23	+.117	25.641	58.22	21.87	.985	. 9 93
24	+.127	29.621	63.20	21.98	1.048	.998
25	+.137	29.616	68.18	22.01	1.130	.555
28	+.152	29.603	75.64	22.05	1.254	1.001
27	+.172	29.616	85.59	22.01	1.419	.999

FILE: T082932

\sim T	Λ	~	4	O+1	٠	_
ŞΤ	n	1	1	U14	٠	

Xsta Tw Tinf Qw Yeff Cond	= 36.18 = 29.37 = 1.578	S [C] ' [C] SE+2 [W/mm2] SE-5 [m]	Del-enth Del-cond	= 2.334E = 2.568E = 1.121E = 4.367E = 0.000 = 55.14	-4 [m] -3 [m] +2	
	Y [cm]	T [C]	Y+	T+	Y/Del995	DT/DTw
1	+.005	0.000	0.00	0.00	0.000	0.000
2	+.007	35.827	2.57	1.58	.030	.054
3	+.009	35.738	3.31	1.97	.039	.057
4	+.011	35.651	4.05	2.36	.047	.080
5	+.013	35.511	4.78	2.98	.056	.101
6	+.015	35.359	5.53	3.86	.084	.124
7	+.018	35.118	5.64	4.73	.077	.160
8	+.022	34.818	8.13	6.07	.094	.205
9	+.027	34.477	10.00	7.59	.115	.255
10	+.032	34.162	11.87	9.00	.137	.304
11	+.037	33.854	13.75	10.38	.159	.350
12	+.042	33.565	15.63	11.68	.180	.393
13	+.047	33.283	17.52	12.96	.201	.436
14	+.052	33.022	19.41	14.13	.223	.475
15	+.057	32.758	21.31	15.33	.244	.515
16	+.082	32.514	23.21	16.43	.266	.551
17	+.072	32.070	27.02	18.44	.309	.618
18	+.082	31.547	30.85	20.37	.351	.682
15	+.052	31.283	34.69	22.03	.394	.736
20	+.102	30.963	38.53	23.46	.437	.783
21	+.112	30.706	42.37	24.67	.480	.823
22	+.122	30.451	48.22	25.84	.523	.861
23	+.132	30.261	50.08	28.71	.586	.890
24	+.147	30.023	55.83	27.80	.630	. 926
25	+.162	29.854	61.59	28.58	.694	. 951
26	+.177	29.738	67.34	29.12	.759	. 9 E 8
27	+.192	29.672	73.07	29.42	.823	.978
28	+.212	29.599	80.72	29.76	. 90 8	. 9 89
28	+.232	29.583	88.35	29.93	. 994	.995
30	+.252	29.543	95.9 8	30.02	1.080	. 9 98
31	+.272	29.534	103.60	30.08	1.166	.999

32 +.302 29.526 115.03 30.10 1.294 1.000 33 +.332 29.529 126.46 30.08 1.423 1.000

FILE: T112553

STATION	1:	3
---------	----	---

Xsta Tw Tinf Qw Yeff Cond	= 1.B1	3 (C) 5 (C) 9E+2 (W/m^2) 00E-4 [m]	Del-enti Del-con		4 [m] 3 [m] 2	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	+.012	38.854	3.66	3.59	.034	.113
2	+.014		4.27	3.66	.039	.115
3	+.017		5.18		.048	.124
4	+.020		6.10		.056	.130
5	+.024	38.311	7.34	5.39	.0 67	.169
6	+.027	38.178	8.26	5.81	.076	.182
7	+ 032	37.712	5.82	7.32	.090	.229
8	+.037		11.37	8.15	.104	.255
9	+.042		12.93		.118	.291
10	+.047	36.855	14.49	10.11	.132	.316
11	+.052	36.687	16.04	10.66	.14E	.332
12	+.052	3E.137	19.19	12.46	.174	.388
1.7	+ 072	75 576	22 35	14.30	.202	.445

1	+.012	38.854	3.66	3.55	.034	.113
2	+.014	38.842	4.27	3.66	.039	.115
3		38.751	5.18	3.9 6	.048	.124
4	+.020	38.697	6,10	4.13	.056	.130
5	+.024	38.311	7.34	5.38	.0 67	.169
5	7.024	30.311	7107	5.55		
6	+.027	38.178	8.26	5.81	.076	.182
7		37.712	5.82		.090	.229
		37.454		8.15	.104	.255
8			12.93	9.30	.118	.291
9		37.103			.132	.316
10	+.047	36.855	14.49	10.11	.132	.516
11	+.052	36,687	16.04	10.66	.146	.332
	+.052	36.137	19.19		.174	.388
12			22.35		.202	.445
13	+.072	35.576			.230	.486
14		35.170	25.51			.526
15	+.092	34.769	26.69	16.96	.258	.526
16	+.102	34.371	31.88	18.28	.285	.56€
	+.112	33.906	35.10	19.83	.314	.613
17			38.33		.342	.657
18	+.122	33.472	41.55		.370	
19	+.132	33.105			.398	
20	+,142	32.747	44.79	23.70	.550	. 730
21	+.152	32.403	48.04	24.85	.426	.765
22	+,162	32.115	51.29	25.82	.454	.794
23	+.182	31.595	57.79	27.57	.510	.845
			64.30	29.01	.565	
24	+.202	31.170	70.80	30.12	.622	. 922
25	+.222	30.841	70.00	30.12	.022	
26	+.242	30.609	77.29	30.91	.678	.945
27	+.252	30.422	83.76	31.55	.734	. 9 85
28	+.292	30.263	93.44	32.09	.818	.981
			103.10	32.43	.902	
29	+.322	30.163	119.15	32.63	1.043	
30	+.372	30.103	115.15	52.65	1.043	, , , , ,
31	+.472	30 .078	151.21	32.72	1.323	. 9 99
32	+.672	30.075	215.28	32.73	1.883	1.000
33		30.073	311.39		2.724	1.000
34		30.071	439.54	32.74	3.845	1.000
4ر	Ŧ1.074	20.011	,53,64			

FILE: T112554

STATION: 4

+.817

+.917

+1.067

+1.217

+1.417

31 +1.717

26

27

28

29

30

30.077

30.030

29.999

29.998

29.994

29.989

Qw	+ +5.00	[C] [C] E+2 [W/m^2] 0E-5 [m]	Del-enth Del-cond Re-enth Prt		[m] [m]	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	+.007	33,152	3.93	3.65	.007	.191
2	+.009	32.990	5.06	4.45	.009	.232
3	+.013	32.853	7.32	5.13	.013	.257
4	+.016	32.731	9.01	5.73	.016	.298
5	+.019	32.646	10.71	6.15	.019	.320
6	+.022	32.565	12.41	6.55	.022	.341
7	+.027	32.437	15.24	7.18	.027	.374
8	+.032	32.359	18.07	7.57	.032	.394
9	+.042	32.204	23.73	8.34	.042	.433
10	+.052	32.108	25.40	8.81	.051	.458
11	+.067	32.000	37.91	9.35	.056	.485
12	+.067	31.878	49.26	9.98	.085	.517
13	+.117	31.721	66.30	10.74	.11E	.557
14	+.147	31.577		11.45	.145	.594
15	+.177	31.465	100.45	12.01	.175	.623
16	+.217	31.309	123.26	12.78	.215	.662
17	+.267	31.138	151.82	13.64	.264	.705
18	+.317	30.986	180.40	14.40	.313	.745
19	+.367	30.855	209.02	15.05	.363	.779
20	+.417	30.719	237.68	15.73	.412	.814
21	+.467	30.602	26€.36	16.32	.462	
22	+.517	30.494	295.06	16.85	.511	
23	+.5 67	30.381	323.81	17.42	.560	
24	+.617			17.83	.610	.921
25	+.717	30.163	409.99	18.52	.703	. 9 56

467.41

524.76

610.71

698.57

811.07

982.81

18.95

19.18

19.34

19,34

19.37

15.39

.808

.906

1.055

1.203

1.401

1.597 1.001

.978

.990

.998

.998

.999

FILE: T112585

5	Т	Α	T	Ĭ	đ٥	d	:	5

Xsta	= 1.029 [m]	Del-ther = 1.340E-2 [m]
Tω	= 33.82 [C]	Del-enth = 1.979E-3 [m]
Tinf	= 29.90 [C]	Del-cond = 4.837E-4 [m]
Qω	= 2.165E+2 [W/m^2]	Re-enth = $3.225E+3$
Yeff	= +2.000E-5 [m]	Prt = .950
Cond	= 13.20	Qadded = 239.95 [W/m]

	Y [cm]	T (C)	Y+	T+	Y/De1995	DT/DTw
1	+.004	33.367	2.79	2.78	.003	.116
2	+.009	33.150	5.29	4.11	.007	.171
3	+.014	32.818	9.80	6.14	.0:0	.255
4	+.017	32.666	11.91	7.07	.013	.293
5	+.020	32.534	14.02	7.88	.015	.325
5		52.00				
6	+.024	32.422	16.83	8.57	.018	.355
7	+.029	32.278	20.36	9.45	.022	.391
8	+.034	32.195	23.88	9.95	.025	.412
9	+.039	32.131	27.40	10.36	.029	.429
10	+.049	32.007	34.45	11.12	.037	.450
11	+.059	31.922	41.50	11,64	.044	.481
12	+.074	31.814	52.08	12.30	.055	.509
13		31.712	66.19	12.94	.070	.535
14	+,114	31.629	80.32	13.45	.085	.556
15	+.144	31.528	101.51	14.07	.107	.581
, ,	, , , , , ,	5,.525				
16	+.184	31.390	129.81	14.92	.137	.61€
17	+.224	31.287	158.13	15.56	.167	.642
18	+.264	31.188	185.47	16.17	.197	.667
19	+.304	31.105	214.83	16.69	.227	.5 98
20	+.394	30.922	278.72	17.82	.294	.735
			2.5.55		.369	.783
21	+.494	30.732	349.85	19.00	.443	.822
22	+.594	30.575	421.05	19.97	.518	.861
23	+.694	30.422	492,37	20.93	.593	. 900
24	+.794	30.267	563.83	21.89	.557	. 932
25	+.694	30.141	635.30	22.68	.007	. 552
26	+.994	30.043	706.77	23.29	.742	.957
27	+1.094	29.971	778.20	23.74	.817	. 9 75
28	+1.244	29.912	885.20	24.11	.929	.990
29	+1.394	29.883	992,10	24.28	1.041	. 9 98
30	+1.694	29.873	1205.69	24.35	1.265	1.000
31	+1.954	29.875	1419.19	24.34	1.488	1.000

FILE: T112556

C 7	Δ,	T T	ON	6
21	\Box	l I	ON	ס

Xsta Tw	= 1.257 [m] = 33.61 [C]	Del-ther = 1.518E-2 [m] Del-enth = 2.354E-3 [m]
Tinf	= 29.65 [C]	Del-cond = 4.740E-4 [m]
Qw	= 2.166E+2 [W/m ²]	Re-enth = 4.086E+3
Yeff	= -4.000E-5 [m]	Prt = .950
Cond	= 13.20	Qadded = 298.15 [W/m]

	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	+.008	33.156	5.92	2.91	.005	.116
2	+.013	32.741	9.65	5.60	.009	.223
3	+.018	32.471	13.38	7.35	.012	.293
4	+.023	32.324	17.11	8.31	.015	.331
5	+.033	32.107	24.58	9.72	.022	.387
6	+.043	31.960	32.06	10.68	.026	.425
7	+.058	31.809	43.28	11.66	.038	. 454
8	+.073	31.720	54.50	12.24	.048	.487
9	+.093	31.612	69.47	12.95	.061	.515
10	+.123	31,483	91.95	13.80	.081	.548
1.1	+.173	31.326	129.44	14.82	.114	.588
12	+.223	31.209	166.97	15.58	.147	.619
13	+.273	31.099	204.53	16.31	.180	.647
1 4	+.373	30.910	279.76	17.54	.245	.698
15	+.473	30.749	355.09	18.60	.312	.737
16	+.573	30.592	430.56	19.64	.377	.778
17	+.723	30.388	543.92	20.99	.476	.831
18	+.923	30.141	695.37	22.61	.608	.894
19	+1.123	29.930	847.08	24.00	.740	.949
20	+1.323	29.804	998.68	24.83	.872	.981
21	+1.523	29.749	1150.02	25.20	1.003	. 9 95
22	+1.723	29.733	1301.16	25.30	1.135	1.000
23	+2.023	29.732	1527.72	25.31	1.333	1.000
24	+2.423	29.731	1829.80	25.32	1.596	1.000

FILENAME: ST0829

Uinf: 28.18 [m/s]

HEAT FLUX TO HEATER: 196.1 [W/m^2]

HEAT LOSS THROUGH BACK WALL OVER DA: .081 [W]

FREESTREAM TEMPERATURE: 29.27 [C]

	Twall [8]	RE×	Enth [m]	Qconv [W/m^2]	St
	n= =.	+6.493E+4	+1.373E-6	+1,452E+2	+5.985E-4
1	35.74		+2.401E-5	+1.621E+2	+9.157E-4
2	34.76	+1.086E+5	+5.785E-5	+1.672E+2	+1.125E-3
3	33.87	+1.524E+5	+9.614E-5	+1.727E+2	+1.440E-3
4	32.97	+1.965E+5	+1.191E-4	+1.704E+2	+1.301E-3
5	33.32	+2.399E+5	+1.391E-4	+1.671E+2	+1.124E-3
6	33.87	+2.831E+5	+1.601E-4	+1.660E+2	+1.06EE-3
7	34.09	+3.265E+5	+1.748E-4	+1.648E+2	+1.013E-3
8	34.31	+3.697E+5	+1.832E-4	+1.619E+2	+9.083E-4
9	34.80	+4.127E+5	11.0522		
		.4 554545	+1.967E-4	+1.589E+2	+8.184E-4
10	35.29	+4.554E+5	+2.123E-4	+1.589E+2	+8.127E-4
11	35.34	+4.988E+5	+2.251E-4	+1.572E+2	+7.714E-4
12	35.60	+5.417E+5	+2.360E-4	+1.564E+2	+7.485E-4
13	35.76	+5.648E+5	+2.454E-4	+1.545E+2	+7.051E-4
14	36.07	+6.278E+5	+2.583E-4	+1.533E+2	+B.808E-4
15	3E.27	+6.704E+5	+2.692E-4	+1.530E+2	+6.734E-4
18	36.33	+7.136E+5	+2.793E-4	+1.513E+2	+B.414E-4
17	3E.61	+7.582E+5	+2.854E-4	+1.510E+2	+6.334E-4
18	36.69	+7.993E+5	+2.915E-4	+1.485E+2	+5.912E-4
19	37.09	+8.415E+5	TZ.515L 4		
	37 75	+8.842E+5	+3.048E-4	+1.475E+2	+5.754E-4
20		+9.276E+5	+3.287E-4	+1.480E+2	+5.834E-4
21		+9.718E+5	+3.650E-4	+1.502E+2	+6.212E-4
22		+1.017E+6	+4.205E-4	+1.534E+2	+6.823E-4
23		+1.057E+5	+5.149E-4	+1.583E+2	+8.005E-4
24		+1.109E+B	+6.655E-4	+1.650E+2	+1.022E-3
25		+1.156E+6	+8.624E-4	+1.709E+2	+1.32SE-3
26		+1.202E+6	+1.04EE-3	+1.750E+2	+1.657E-3
27		+1.247E+B	+1.135E-3	+1.785E+2	+1.827E-3
28		+1.291E+6	+1.204E-3	+1.7B2E+2	+1.804E-3
2.5	32.28	41,231210			
	72.17	+1.335E+6	+1.310E-3	+1.771E+2	+1.90BE-3
30		+1.379E+6	+1.433E-3	+1.777E+2	+1.99~E-J
3 1		+1.424E+B	+1.524E-3	+1.788E+2	+2.144E-3
32		+1.467E+6	+1.513E-3	+1.785E+2	+2.110E-3
33		+1.510E+6	+1.552E-3	+1.774E+2	+1.955E-3
3.		+1.555E+6	+1.652E-3	+1.782E+2	+2.0688-3
39		+1.593E+B	+1.689E-3	+1.784E+Z	+2.091E-3
31		+1.533E+6	+1.694E-3	+1.779E+2	*+2.828E-3
3		+1.685E+6	+1.765E-3	+1.774E+2	+1.957E-3
3:		+1.730E+6	+1.914E-3	+1.783E+2	+2.081E-3
3	5 31.31	11,1502.0			

```
40
        31.77
                  +1.775E+6
                                 +2.020E-3
                                                +1.751E+2
                                                               +2.208E-3
  41
        31.78
                   +1.818E+5
                                  +2.075E-3
                                                +1.790E+2
                                                               +2.1978-3
  47
        31.77
                   +1.862E+6
                                  +2.084E-3
                                                +1.791E+2
                                                               +2.2088-3
  43
        31.94
                   +1.905E+6
                                 +2.086E-3
                                                +1.780E+2
                                                               +2.053E-3
  44
        31.85
                   +1.949E+6
                                 +2.213E-3
                                                +1.786E+2
                                                               +2.1305-3
  45
        31.77
                   +1.994E+6
                                 +2.402E-3
                                                +1.791E+2
                                                               +2,211E-3
  46
        31.57
                   +2.039E+B
                                 +2.516E-3
                                                +1.803E+2
                                                               +2,420E-3
 47
        31.66
                   +2.082E+6
                                 +2.430E-3
                                                +1.797E+2
                                                               +2.314E-3
 48
        31.85
                   +2.125E+6
                                 +2.398E-3
                                                +1.786E+2
                                                               +2.136E-3
 49
        31.86
                   +2.169E+6
                                 +2.440E-3
                                                +1.78EE+2
                                                               +2.128E-3
 50
        31.87
                   +2.212E+6
                                 +2.620E-3
                                                +1.785E+2
                                                               +2.117E-3
 51
        31.50
                   +2.258E+6
                                 +2.816E-3
                                                +1.801E+2
                                                              +2.384E-3
 52
                  +2.301E+6
        31.63
                                 +2.724E-3
                                                +1.799E+2
                                                               +2.349E-3
 61
       31.81
                  +2.695E+6
                                               +1.788E+2
                                                             +2.167E+3
 62
       32.08
                  +2.736E+6
                                               +1.773E+2
                                                             +1.944E-3
 63
       32.38
                  +2.778E+6
                                  -----
                                               +1.757E+2
                                                              +1.748E-3
 64
       32.49
                  +2.820E+6
                                  -----
                                               +1.751E+2
                                                             +1.875E-3
 65
       32.47
                  +2.864E+6
                                  ----
                                               +1.752E+2
                                                             +1.692E-3
 66
       21.65
                  +3.002E+6
                                  -----
                                              +2.330E+2
                                                             -S.285E-4
 67
       32.61
                  +2.951E+6
                                  ----
                                              +1.744E+2
                                                             +1.611E-3
 68
       32.51
                  +2.995E+6
                                  ----
                                              +1.749E+Z
                                                             +1.667E-3
 69
      31.66
                  +3.046E+6
                                  -----
                                               +1.797E+2
                                                             +2.314E-3
 70
      31.95
                  +3.088E+6
                                  ----
                                               +1.781E+2
                                                             +2.050E-3
71
       34.09
                  +3.112E+6
                                  -----
                                              +1.859E+2
                                                             +1.0855-3
 72
       31.24
                  +3.182E+E
                                 ----
                                              +1.821E+2
                                                             +2.850E-3
 73
       34.77
                  +3.193E+6
                                 -----
                                              +1.620E+2
                                                             +9.125E-4
 74
       35.40
                  +3.231E+E
                                 -----
                                              +1.585E+2
                                                             +8.018E-4
 75
       35.29
                  +3.275E+6
                                 -----
                                              +1.590E+2
                                                             +8.192E-4
 76
       35.46
                  +3.317E+6
                                 -----
                                              +1.580E+2
                                                             +7.919E-4
 77
       35.49
                  +3.360E+6
                                 -----
                                              +1.578E+2
                                                             +7.877E-4
 78
       35.42
                  +3.404E+6
                                 -----
                                              +1.583E+2
                                                             +7.98EE-4
 79
      35.52
                  +3.445E+6
                                 ~----
                                              +1.577E+2
                                                             +7.838E-4
80
      35.63
                 +3.488E+6
                                 ----
                                              +1.571E+2
                                                             +7.668E-4
61
      35.50
                 +3.533E+6
                                 -----
                                              +1.578E+2
                                                             +7.881E-4
82
      35.29
                  +3.579E+6
                                 ----
                                              +1.551E+2
                                                             +8.201E-4
83
      34.87
                  +3.626E+E
                                 -----
                                              +1.815E+2
                                                             +8.979E-4
84
      33.77
                  +3.881E+6
                                 -----
                                              +1.878E+2
                                                             +1.153E-3
85
       34.70
                  +3.715E+6
                                 ----
                                              +1.825E+2
                                                             +9.274E-4
88
      34.06
                  +3.765E+6
                                 ----
                                              +1.681E+2
                                                             +1.0735-3
87
      31.32
                 +3.839E+5
                                              +1.816E+2
                                                            +2.723E-3
      31.27
88
                 +3.884E+E
                                              +1.819E+2
                                                            +2.7835-3
83
      32.40
                 +3.915E+6
                                 -----
                                              +1.756E+2
                                                            +1.7335-3
      34.£3
90
                 +3.533E+5
                                             +1.629E+2
                                                            +8.417E-4
91
      35.69
                 +3.962E+6
                                 -----
                                             +1.556E+2
                                                            +7.287E-4
92
      3E.5E
                 +3.998E+8
                                 -----
                                             +1.517E+2
                                                            +8.471E-4
```

				+1.508E+2	+6.312E-4
93	36.70	+4.039E+6		+1.590E+2	+8.192E-4
94	35.29	+4.093E+6		+1.557E+2	+7.319E-4
95	35.88	+4.136E+6		+1.581E+2	+7.844E-4
96	35.45	+4.184E+B		+1.578E+2	+7.853E-4
97	35.51	+4.227E+6		+1.578E+2	+7.8E1E-4
98	35.50	+4.270E+B		+1.485E+2	+5.911E-4
99	37.09	+4.294E+6			+9.3:8E-4
100	34.E8	+4.367E+6		+1.626E+2	+9.4955-4
101	34.59	+4.412E+6		+1.631E+2	+1.625E-3
102	32.59	+4,481E+6		+1.745E+2	*1.625E-J
*****	**********CF	OSS-SPAN DATA***			
		. 4 5745+6		+1.786E+2	+2.128E-3
103	31.85	+4.534E+6		+1.774E+2	+1.948E-3
104	32.08	+4.575E+6		+1.776E+2	+1.97EE+3
105	32.04	+4.619E+6		+1.769E+2	+1.881E-3
108	32.17	+4.661E+6		+1.755E+2	+1.723E-3
107	32.41	+4.702E+6		+1.754E+2	+1.711E-3
108	32.43	+4.745E+6		+1.753E+2	+1.707E-3
109	32.44	+4.789E+B		+1.754E+2	+1.717E-3
110	32.42	+4.833E+6		+1.750E+2	+1.676E-3
111	32.49	+4.875E+6			+1.649E-3
112	32.54	+4.919E+6		+1.748E+2	+1.6E7E-3
113	32.51	+4.9E3E+B		+1.749E+2	+1.730E-3
114	32.40	+5.008E+6		+1.755E+2	+1.770E-3
115	32.34	+5.053E+6		+1.759E+2	+1.704E-3
115	32.45	+5.095E+6		+1.753E+2	_
117	32.27	+5.141E+6		+1.763E+2	+1.811E-3
118	31.97	+5.190E+6		+1.780E+2	+2.030E-3
	**********C	ROSS-SPAN DATA***	********		
					+2.302E-3
115	31.67	+5.238E+B		+1.798E+2	+1.790E-3
120	32.31	+5.272E+B		+1.761E+2	+1.711E-3
121	32.43	+5.314E+6		+1.754E+2	+1.711E-3
122	32.43	+5.358E+6		+1.754E+2	
123	32.34	+5.403E+6		+1.753E+2	+1.770E-3
	32.38	+5.448E+B		+1.757E+2	+1.7436-3
124	32.32	+5.491E+6		+1.750E+2	+1.78CE-3
125	32.30	+5.535E+6		+1.761E+2	+1.794E-3
126		+5.581E+6		+1.789E+2	+1.881E-3
127	32.17	+5.628E+6		+1.781E+2	+2.045E-3
128	31.95				
****	(ROSS-SPAN DATA++	******		
129	4.52	+6.162E+6		+3.123E+2	-3.724E-4
	32.25	+5.710E+6		+1.754E+Z	+1.826E-3
130		+5.748E+B		+1.741E+2	+1.5888-3
131	32.66 32.46	+5.794E+6		+1.752E+2	+1.8855-3
132		+5.842E+6		+1.765E+2	+1.847E-3
133	32.22	+5.542E+6 +8.117E+6		+2.453E+2	-7.347E-4
134	19.17	+6.042E+6		+2.114E+2	-1.8755-3
1:35	25.82			+1.759E+2	+1.7705-3
135	32.34	+5.972E+6		+1.76EE+2	+1.847E-3
137	32.22	+6.017E+6		+1.755E+2	+1.847E-3
138	32.22	+E.051E+6		1:,7002.12	_

Station 3 (Laminar)

RAW DATA--FILE NAME: IUV082853

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S] v'	[m/s]	u'v' [m2/S2]	Gamma
1	.060	11.975	0.000	1.088	.323	145	. 045
2	.067	13.054	0.000	1.075	.257	091	.043
3	.077	14.596	0.000	1.126	.258	025	.043
4	.092	16.544	0.000	1.150	.279	011	.038
5	.117	19.695	0.000	1.068	296	01E	.042
6	.142	22.231	0.000	.950	.267	.013	.012
7	.167	24.220	0.000	.884	.283	.023	.038
8	.192	25.621	Ø.000	.745	.235	.014	.030
9	.217	26.671	0.000	.535	.185	.008	.027
10	.242	27.181	0.000	.474	.189	.010	.028
11	.267	27.546	0.000	.326	.134	.012	.029
12	.292	27.800	0.000	.285	.119	-0.000	
13	.342	27.865	0.000	.183	.102	-0.000	.023
14	.367	27.964	0.000	. 156	.055	0.000	.021
15	.392	27.882	0.000	. 146	.074	-0.000 -0.000	.017
16	.442	27.973	0.000	.144	.057	-0.000 -0.000	.021
17	. 452	27.890	0.000	.144	.065	-0.000 003	.018
18	.592	27.955	0.000	.134	.063	003 001	.017 .014

Upu [m/s]= 27.94 DEL995 [cm]= .324 Cf= 7.143E-4

LAMINAR FLOW :

REDUCED DATA--FILE NAME: 100082853

N	Y/DELTA	Մ/Ծթա	ս՝/Սբա	∨¹/Upw	u'v'/Utau^2
1	.18519	.42860	.03896	.01156	.51938
2	.20679	.45722	.03848	.00921	.32786
3	.23765	.52239	.04032	.00923	.02909
4	.28395	.59211	.04117	.01000	.04027
5	.36111	.70490	.03823	.01059	.05614
8	.43827	.79587	.03399	.00956	04622
7	.51543	.88584	.03166	.01013	08265
8	.59259	.91700	.02885	.00840	05155
9	.66975	.95457	.01913	.00663	0 2735
1 ©	.74891	.97282	.01687	.00575	03720
1 1	.82407	.98591	.01169	.00478	04127
12	.90123	.99499	.01021	.08427	.00127
13	1.05558	.99733	.00655	.003E4	.00174
14	1.13272	1.00088	.00558	.00234	00086
15	1.20988	.99782	.00522	.00254	.00179
15	1.38420	1.00117	.00514	.00239	.00133
17	1.51852	.99822	.00514	.00233	.00549
18	1.82716	1.00052	.00480	.00225	.00260

Station 3 (Turbulent)

RAW DATA--FILE NAME: IUV082883

N	Y [cm]	U [m/s]	V [m/s]	u' [m/5]	v' [m/s]	u'v' [m2/S2]	Gamma
1	.080	15.658	.198	3.259	1.885	E34	.045
2	.057	16.287	.273	3.473	2.117	-2.269	.043
3	.077	16.939	228	3.274	1.762	.150	.042
4	.092	18.708	159	3.113	1.838	-1.643	.038
5	.117	19.715	067	3.240	1.588	-2.276	.042
6	.142	21.137	.131	3.163	1.893	-3.378	.€39.
7	.187	22.003	.059	3.020	1.932	-2.339	.030
8	.192	23.238	102	3.084	1.691	-1.508	.030
9	.217	24.055	.046	2.747	1.649	-1.179	.027
10	.242	24.312	095	2.807	1.323	-1.030	.028
11	.287	25.502	032	2.550	1.407	-1.113	.029
12	.292	25.417	100	2.098	1.418	613	.023
13	.342	26.09 8	.016	1.951	1.261	343	.021
14	.367	26.782	159	1.297	1.044	009	.0:7
15	.352	25.754	.136	2.278	1.079	479	.021
16	.442	26.445	.231	1.832	1.139	398	.018
17	.492	26.917	.158	1.625	.712	474	.017
18	.592	27.604	.042	.923	.715	119	.014

Upw [m/s]= 27.94 DEL995 [cm]= .324 Cf= 2.700E-3

TURBULENT FLOW :

REDUCED DATA--FILE NAME: IUV@82853

N	Y/DELTA	U/Upw	υ¹ /Uρω	v*/Upw	u'v'/Utau^2
1	.18519	.56042	.11663	.ØE748	.60156
2	.20679	.58292	.12430	.07576	2.15261
3	.23765	.BOBIB	.11719	.06308	14273
4	.28395	.66353	.11143	.06573	1.55934
5	.38111	.70552	.11595	.ØE040	2.15852
6	.43827	.75652	.11319	. 0 6776	3.20520
7	.51543	.78751	.10809	.08913	2.21804
8	.59259	.83184	.11038	.06052	1.43072
9	.68975	.85038.	.09832	.05982	1.11521
10	.74691	.87015	.10046	.0473E	.97692
11	.82407	.91274	.09184	.05035	1.05610
12	. 90123	. 90 989	.07508	.05076	.58146
13	1.05556	.93407	.08951	.04513	.32560
1.4	1.13272	.95855	.04842	.03737	. 00 388
15	1.20988	.92178	.08154	.03882	.45498
16	1.36420	.94650	. 0 8556	.04075	.36960
17	1.51852	.98339	.05815	.02547	.44957
18	1.82716	.98797	.03303	.02559	.11308

Station 3 (Transitional)

RAW DATA+-FILE NAME: IUV082853

Ν	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/S2]	Gamma
1	.060	12.143	0 88	1.483	.514	109	.045
2	.067	13.193	347	1.432	.524	081	.043
3	.077	14.694	468	1.372	.442	.011	.042
4	.092	16.626	450	1.345	.454	043	. 0 38
5	.117	19.696	501	1.236	.480	103	.042
ε	.142	22.189	50 ε	1.136	.473	148	.039
7	.167	24.152	462	1.085	.447	050	.030
8	.192	25.549	407	.992	.376	057	. 0 30
9	.217	26.600	413	.811	.335	082	.027
10	.242	27.100	288	.812	.290	037	.028
11	.267	27.487	228	.639	.274	034	.029
12	.292	27.745	251	.553	.245	024	.023
13	.342	27.828	120	.418	.208	014	.021
14	.367	27.945	174	.271	.147	-0.000	.017
15	.392	27.837	079	.485	.174	022	.021
16	.442	27.946	123	.343	.171	018	.0:8
17	.492	27.874	036	.279	.114	014	.017
16	.592	27.950	097	.174	.104	003	.014

Upw [m/s]= 27.94 DEL995 [cm]= .324 Cf= 7.800E-4

TRANSITIONAL FLOW :

REDUCED DATA--FILE NAME: 100022853

N	Y/DELTA	U/Upw	u¹/Upw	∨¹/Upw	u'v'/Utau^2
1	.18519	.43460	.05305	.01839	.35960
2	.20679	.47220	.05124	.01874	.26878
3	.23765	.52591	.04510	.01583	03457
4	.28395	.53505	.04813	.01625	.14127
5	.36111	.70493	.04425	.01647	.35821
Б	.43627	.79416	. 040 58	.01534	.48857
7	.51543	.85442	.03884	.01598	.29512
8	.59259	.91444	.03551	.01345	.18500
9	.66975	.95205	.02903	.01199	.20513
10	.74691	. 9 8 9 9 5	.02906	.01038	.12076
11	.82407	.98378	. 0 2287	.00981	.11517
12	.90123	.99303	.01981	.00875	.07898
13	1.05558	.99800	.01498	.00744	.04446
1.4	1.13272	1.00016	.00971	.00527	.00034
15	1.20988	.99832	.01680	.00524	.07154
16	1.36420	1.00021	.01227	.00510	:06005
17	1.51852	.99755	.00999	.00408	.04585
16	1.82715	1.00035	.00824	.00373	.01003

Station 4A (Laminar)

RAW DATA--FILE NAME: IUVG82884A

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S] v'	[m/s]	u'v' [m2/S2]	Gamma
1 2	.060 .085	9.468 12.383	0.000 0.000	1.340	.481	.048 087	.348 .338 .308
3	.135	17.342	0.000	1.562	.556 .540	.008 .102	.29E
4 5	.185 .235 .285	20.931 23.541 24.971	0.000 0.000 0.000	1.384 .557 .633	.360 .273	.018 .024	.262
6 7	.335	25.629	0.000	.402	.188	-0.000 007	.248
8 9	.385 .435	25.900 25.954	0.000 0.000	.234	.185	017 .001	.199
10 11	.485 .535	25.986 26.004	Ø.000 Ø.000	.185 .183	.141	002	.144
12 13	. 5 85 . 63 5	25.939 26.020	0.000 0.000	.173 .165	.144	.001 .002	.100
14	.735 .835	25.951 26.030	0.000 0.000	.161	.143	003 001 001	.043 .028 .013
16	.935	25.970	Ø.000	. 147	. 121	001	

Upw [m/s]= 25.98 DEL995 [cm]= .556 Cf= 7.897E-4

LAMINAR FLOW :

REDUCED DATA--FILE NAME: IUV@82854A

N	Y/DELTA	U/Upw	u¹/Upw	v'/Upw	u'v'/Utau^2
1	.10793	.36445	.05157	.01853	18179
2	.15291	.47665	.05885	.02005	.32481
3	.24285	. 6 6753	.05012	.02140	02873
4	.33279	.82568	.05327	.02079	38348
5	.42274	.90611	. 0 3838	.0:385	06796
6	.51268	.96118	. 0 2438	.01050	09102
7	.60263	.98E48	.01549	.00723	.00013
ε	.69257	.99891	.00902	.00572	.02485
9	.78251	. 9 9899	.00958	.00718	.06455
10	.87246	1.00023	.00712	.00544	00464
11	.96240	1.0003	.00703	.00528	.00515
12	1.05235	.99844	.00856	.00555	00282
13	1.14229	1.00153	.00E33	.00548	00821
14	1.32218	. 99 889	.00821	.00549	.01041
15	1.50207	1.00192	.00584	.00590	.00285
16	1.88198	13666.	.00585	.00455	.00522

Station 4A (Turbulent)

RAW DATA--FILE NAME: IUV082854A

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/\$2]	6arina
1	.050	14.550	.735	2.905	1.678	. 141	.348
2	. 0 85	16.523	0 83	2.942	1.686	960	.338
3	.135	18.644	217	2.563	1.668	-1.179	.308
4	.185	20.065	050	2.551	1.715	-1.794	.298
5	.235	21.454	228	2.503	1.534	-1.499	.282
6	.285	22.616	168	2.457	1.426	-1.394	.285
7	.335	23.394	208	2.105	1.322	943	.248
8	.385	23.801	178	2.145	1.244	823	.237
9	.435	24.347	092	1.835	1.119	624	.199
10	.485	24.519	099	1.739	1.018	442	.173
1 1	.535	24.812	021	1.459	1.068	354	.144
12	.585	25.008	023	1.378	.842	322	.100
13	.635	25.000	.047	1.508	.895	403	.084
1 4	.735	25.274	011	1.171	.980	271	.043
15	.835	25.324	031	1.189	.978	200	.028
16	.9 35	25.823	.221	.766	.727	132	.013

Upw [m/s]= 25.88 DEL995 [cm]= .556 Cf= 3.150E-3

TURBULENT FLOW :

REDUCED DATA--FILE NAME: IUV082854A

N	Y/DELTA	U/Upw	u'/Upw	∨'/Upw	u'v'/Utau^2
1	.10793	.56005	.11199	.06457	13236
2	.15291	.63599	.11326	.06488	.90299
3	.24285	.71762 •	. 0 9866	. 0 6420	1.10913
4	.33279	.77249	.09820	.06503	1.68770
5	.42274	.82816	.09835	.05906	1.41053
8	.51268	.87050	.09455	.05490	1.31096
7	.eczes	.90045	.06103	.05089	.888.93
3	.69257	.91613	.08257	.04787	.77419
9	.78251	.93716	.07084	.04308	.58719
10	.87246	.94378	.06692	.03920	.41591
11	.98240	.95502	.056;6	.04109	.33314
12	1.05235	.96252	.05303	.03240	.30251
13	1.14228	.96229	.05805	.03446	.37536
14	1.32218	.97282	.04507	.03770	.25474
15	1.50207	.97475	.04575	.03764	.18850
16	1.68196	.99398	.02950	.02798	.12432

Station 4A (Transitional)

RAW DATA--FILE NAME: 100082884A

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/\$2]	Bamma
1	.060	11.237	.328	3.158	1.111	.939	.348
2	.085	13.782	326	2.880	1.087	.058	.338
3	.135	17.744	478	2.018	1.052	233	.308
4	.185	20.67E	408	1.851	1.087	567	.295
5	.235	22.955	436	1.831	. 8 81	555	.282
6	.285	24.293	361	1.778	.810	541	.288
7	.335	25.073	321	1.468	.E82	309	.248
8	.385	25.401	263	1.390	.622	251	.237
9	.435	25.634	217	1.063	.530	185	.199
10	.485	25.731	202	.927	.446	107	.173
1.1	.535	25.832	176	.714	.430	085	.144
12	.585	25.846	113	.543	.301	041	.100
13	.635	25.935	167	.542	.300	053	.084
14	.735	25.922	098	.318	.245	017	.043
15	.835	26.010	163	.273	.223	009	.028
16	. 9 35	25.968	090	.169	.149	004	.013

Upw [m/s]= 25.98 DEL995 [cm]= .556 Cf= 1.400E-3

TRANSITIONAL FLOW :

REDUCED DATA--FILE NAME: IUV082854A

N	Y/DELTA	Ս/Սբա	ս՝/Սբա	√¹/Upw	u'v'/Utau^2
1	.10793	. 43252	.12157	.04275	-1.98745
2	.15291	.53050	.11087	.04182	12265
3	.24285	.68298	.07758	.04049	.49319
4	.33279	.79585	.07126	.04107	1.20084
5	.42274	. 88356	.07048	.03381	1.17403
6	.51268	.93506	.06842	.03118	1.14538
7	.60283	.98510	.05850	.02825	.65404
8	.69257	.97773	.05349	.02392	.53085
9	.78251	.98868	.04092	.02040	.39207
10	.87245	.99043	.03570	.01715	.22592
11	.98240	.99431	.02748	.01653	.17952
12	1.05235	.99485	.02088	.01157	.08764
13	1.14229	.99825	.02084	.01155	.11251
14	1.32218	.99779	.01225	.00344	.03604
15	1.50207	1.00115	.01053	.02859	.01982
16	1.68196	.99354	.00851	.00575	.00771

Station 4 (Laminar)

RAW DATA--FILE NAME: IUV082854

N	Y [cm]	U [m/s]	U [m/s]	u' [m/S]	v' [m/s] (/'v' [m2/S2]	Germa
1	.060	11.142	0.000	1.832	.699	.184	.EE1
2	.070	12.323	0.000	2.030	.728	197	.653
3	.080	14.820	0.000	2.023	.723	134	.E64
4	.140	20.094	0.000	1.961	.651	.082	.636
5	.190	23.737	0.000	1.509	.576	.05€	.BCC
6	.240	25.859	0.000	1.069	.402	.051	.548
7	.290	27.075	ଡ.ଡେଡ	.763	.310	.033	.532
8	.340	27.589	0.000	.411	.260	.022	.487
9	.390	27.769	0.000	.297	.218	.034	.462
10	.440	27.805	0.000	.274	.216	002	.413
1.1	.490	27.739	0.000	.231	.229	002	.370
12	.540	27.744	0.000	.248	.250	00 2	.288
13	.590	27.826	0.000	.213	.215	008	.235
14	.640	27.742	0.000	.220	.220	00 8	.185
15	.690	27.809	0.000	.200	.227	004	.122
15	.740	27.812	0.000	.223	.204	001	.089
17	.840	27.760	0.000	.169	.187	002	.050
18	. 940	27.744	0.000	.174	.177	-6.666	.018

Upw [m/s]= 27.73 DEL995 [cm]= .660 Cf= 7.866E-4

LAMINAR FLOW :

N	Y/DELTA	U/Upw	u¹/Upw	√'/Upw	u'v'/Utau12
1	.09082	.40172	.05507	.02521	60820
2	.1 0 608	.44431	.07320	.02624	.65097
3	.13638	.53436	.07295	.02605	.44375
4	.21215	.72449	.07070	.02348	27170
5	.28792	.85585	.05442	.02076	18544
Б	.36369	. 9 3236	.03856	.01451	15751
7	.43545	.97622	.02752	.01117	11014
8	.51523	.99473	.01480	.00938	07362
9	.59100	1.00122	.01069	.00785	01434
10	.68877	1.00253	. 009 89	.00780	.00748
11	.74254	1.00014	.00833	. 00826	.00515
12	.81831	1.00032	.00894	.00901	. 0 0599
13	.88487	1.00327	.00767	.00775	.01516
14	.96984	1.00025	.00795	.00793	.01954
15	1.04581	1.00267	.00722	.00818	.01216
16	1.12138	1.00278	.00883	.00737	.00278
17	1.27292	1.00089	. ଅଦ୍ୟପ୍ତ	.00874	.00658
18	1.42446	1.00032	.00627	.00637	.00122

Station 4 (Turbulent)
RAW DATA--FILE NAME: 1UV0828S4

N Y	[an]	U [m/s]	V [m/s]	u* [m/S]	v' [m/s]	u'v' [m2/52]	Gamma
2 3 4	.050 .070 .050 .140 .140 .240 .340 .340 .440 .540 .540 .540 .540 .640 .740 .840	16.295 17.133 18.543 20.534 22.101 23.303 24.521 25.106 25.655 26.163 26.393 26.800 26.800 26.800 26.876 26.964 27.133 27.227 27.352	.939 .325 044 017 198 103 222 211 115 128 072 072 070 080 098 098 098	2.772 2.877 2.768 2.602 2.556 2.514 2.302 2.237 2.104 1.608 1.519 1.511 1.271 1.242 1.247 .812	1.900 1.847 1.674 1.677 1.540 1.463 1.424 1.262 1.194 1.065 1.021 .947 .996 .929 .918 .889 .789	392 992 -1.607 -1.827 -1.660 -1.307 -1.274 -1.047 855 583 409 494 444 101 229 394 189 347	.6554506272306652808.5456252808.10065280808.100652808.100652808.100652808.100652808.100652808.100652808.100652808.100652808.100652808.100652808.100652808.100652808.10065280808.10065280808.10065280808.10065280808.10065280808.10065280800000000000000000000000000000000

Upw [m/s]= 27.73 DEL995 [cm]= .660 Of= 3.100E-3

TURBULENT FLOW :

N	Y/DELTA	Մ/Սբա	ս¹/Մբա	v*/Upw	u'v'/Utau^2
1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16	.05052 .10606 .13636 .21215 .28782 .36389 .43846 .51523 .59100 .66677 .74254 .81831 .85407 .96964 1.04561	.58751 .51773 .56858 .74035 .78865 .84020 .86411 .90522 .92501 .94533 .95150 .96030 .96030 .96030	.0955 .10056 .10056 .09576 .095266 .095266 .095266 .095266 .09576796 .09544496 .095444496 .09444466 .0944496	.06652 .06651 .06037 .06047 .05553 .05276 .05575 .05134 .043643 .03660 .03584 .03584 .03584 .03584 .03584	.32896 .83237 1.34813 1.53240 1.39260 1.09579 1.06620 .87852 .71720 .48896 .34273 .41396 .37202 .08449 .19173 .33067
17 16	1.27252 1.42445	.98170 .98518	.02982	.02553	.29092

Station 4 (Transitional)

RAW DATA--FILE NAME: 10082854

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/\$2]	6anima
1	.060	14.550	.672	3.488	1.545	.889	.EE1
2	.070	15.466	.125	3.475	1.582	.034	.653
3	.090	17.294	188	3.103	1.444	688	.6E4
4	.140	20.374	205	2.398	1.420	-1.070	.636
5	.190	22.756	358	2.339	1.264	-1.1E0	.600
6	.240	24.457	251	2.367	1.131	941	.548
7	.290	25.715	309	2.172	1.065	803	.532
8	.340	26.380	277	2.015	.903	534	.487
9	.390	26.792	207	1.789	.832	499	.482
10	.440	27.127	211	1.458	.709	309	.413
11	.490	27.241	133	1.188	.549	188	.370
12	.540	27.429	110	. 976	.553	177	.288
13	.590	27.583	182	.874	.522	131	.236
14	.640	27.581	118	.672	.447	031	.185
15	.690	27.705	190	.548	.387	043	.122
16	.740	27.752	176	.469	.327	045	.089
17	.840	27.733	101	.286	.255	011	.050
18	.940	27.737	102	.212	.201	008	.018

Upw [m/s]= 27.73 DEL995 [cm]= .660 Cf= 1.900E-3

TRANSITIONAL FLOW :

N	Y/DELTA	Մ/Սբա	⊔¹/Upw	v¹/Upw	u'v'/Utau~2
1	.09092	.52462	.12575	.05944	-1.21675
2	.10EC8	.55764	.12530	.05703	04555
3	.13638	.62355	.11188	.05207	.94200
4	.21215	.73459	.08645	.05121	1.48384
5	.28792	.82048	.08433	.04559	1.58575
6	.36369	.88181	.08533	.04877	1.26710
7	.43948	.92717	.07831	.03840	1.09837
8	.51523	.95114	.07267	.03255	.81241
9	.59100	.96501	.06452	.02999	.68350
10	.66677	.97608	.05256	.02555	.42274
11	.74254	.98218	.04285	.02339	.25787
12	.61831	. 9 88 96	.03519	.01995	.24252
13	.89407	.99452	.03151	.01881	.17905
14	.96984	.99445	.02424	.01510	.04205
15	1.04561	. 9 9893	.01976	.01394	.05823
16	1.12138	1.00050	.01692	.01177	.06094
17	1.27292	.99993	.01030	.00518	.01558
18	1.42446	1.00005	.00763	.00725	.01130

Station 5 (Laminar)

RAW DATA--FILE NAME: IUV082855

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S] v'	[m/s]	u'v' [m2/S2]	Gamma
1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17	.060 .105 .155 .255 .355 .455 .555 .655 .755 .955 1.155 1.255	15.234 21.572 24.273 26.242 27.320 28.034 28.531 28.571 28.543 28.547 26.532 26.633 28.633 28.624 26.624	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.341 1.790 1.965 1.579 1.250 1.211 .757 .251 .174 .193 .185 .203 .182 .177 .170 .157	.922 .472 .733 .582 .574 .468 .376 .156 .156 .193 .193 .182 .178 .152	610 .107 247 446 487 220 073 030 001 0.000 000 000 000 000 000 000	.979 .977 .972 .986 .952 .903 .868 .759 .626 .441 .168 .041
. ,							

Upw [m/s]= 28.62 DELS95 [cm]= 1.005 Cf= 1.100E-3

LAMINAR FLOW :

N	Y/DELTA	U/Upw	ս'/Սքա	v¹/Upw	u'v'/Utau^2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	.05970 .10448 .15423 .20396 .25373 .35323 .45274 .55224 .65174 .75124 .85075 .95025 1.04875 1.14925 1.24876 1.34626	.53230 .75374 .84811 .91669 .95458 .97954 .99031 1.00039 .99829 .99732 .99745 1.00042 1.00056 1.00106	.08179 .06256 .06267 .05517 .043369 .04235 .02785 .006676 .006676 .006675 .006676 .006618 .006596 .00548	.03220 .01651 .02561 .02633 .02005 .01689 .01315 .00749 .00544 .00690 .00731 .00637 .00621 .00530	1.35440 23732 .54716 .99060 1.06060 .46693 .16106 .06756 .00624 .00274 00033 .00346 .00599 .00599
17	1.54728	1.00015	.00546	.00401	

Station 5 (Turbulent)

RAW DATA--FILE NAME: IUV082855

N	Y [cm]	U [m/s]	V [m/s]	n, [w/2]	v [m/s]	u'v' [m2/S2]	Garina
1	.060	18.391	.641	1.913	1.584	-1.207	.979
2	.105	20.453	.031	1.988	1.480	-1.546	.977
3	.155	21.824	142	1.966	1.394	-1.419	.972
4	.205	22.835	226	2.002	1.337	-1.389	.983
5	.255	23.460	154	1.989	1.268	-1.168	.958
6	.355	24.942	271	1.909	1.151	951	.922
7	.455	25.974	285	1.728	1.047	640	.903
8	.555	26.859	-,297	1.597	.882	437	. 930
9	.855	27.365	210	1.359	.815	375	.556 .888
10	.755	27.797	189	1.116	.722	278	.759
1 1	.855	28.093	235	.868	.662	137	.626
12	. 955	28.314	283	.755	.583	110	.441
13	1.055	28.415	307	.627	.550	051	.264
14	1.155	28.484	257	.559	.559	033	.168
15	1.255	28.567	304	.420	.488	043	
16	1.355	28.540	193	.535	.550	645 118	.083
17	1.555	28.602	120	.449	.397	023	.049 .011

Upw [m/s]= 26.62 DEL995 [cm]= 1.005 Cf= 3.820E-3

TUREULENT FLOW :

N	Y/DELTA	Ս/Սբա	ս'/Մբա	∨¹/Upw	u'v'/Utau^2
1	.05970	.64258	.05583	.05886	.77127
2	.10448	.71462	.06945	.05171	.98826
3	.15423	.76253	.05671	.04670	.90727
4	.20358	.79785	.06996	.04572	.87511
5	.25373	.81972	.06949	.04432	.74650
6	.35323	.87147	.06671	.04021	.60780
7	.45274	.90758	.08037	.03657	.40893
8	.55224	.93647	. 05 581	.03081	.27931
9	.B5174	.95614	.04748	.02847	.23945
10	.75124	.97125	.03898	.02524	.17796
11	.85075	. 9 8158	.03033	.02313	.08771
12	.95025	. 9 8932	.02636	.02036	.07033
13	1.04975	. 9 9282	.02189	.01521	.03265
14	1.14925	. 9 9536	.01953	.01952	.06306
15	1.24876	.99814	.01467	.01705	. 0 2718
16	1.34826	.98719	.01883	.02307	.07514
17	1.54726	.39936	.01570	.01387	.01481

Station 5 (Transitional)

RAW DATA--FILE NAME: IUV082855

N	Y [cm]	U [m/s]	U [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/52]	Gamma
1	.050	18.324	.627	1.975	1.675	-1.145	.979
2	.105	20.479	.020	1.990	1.466	-1.522	. 9 77
3	.155	21.893	151	2.008	1.380	-1.411	.872
4	.205	22.940	228	2.078	1.320	-1.352	€ 3 € .
5	.255	23.630	156	2.116	1.246	-1.147	.958
6	.355	25.183	269	2.040	1.113	887	.922
7	.455	26.203	280	1.802	1.002	571	.903
8	.555	26.982	294	1.607	.853	403	.930
9	.655	27.524	204	1.332	.761	318	. 8 58.
10	.755	27.977	187	1.028	.637	211	.759
	.855	28.253	221	.730	.539	081	.626
11		28.492	280	.546	.417	051	.441
12	.955	28.575	292	.381	.336	014	.284
13	1.055		295	.286	.283	020	.168
14	1.155	28.523	255	.204	.221	008	.083
15	1.255	28.528		.194	.210	009	.043
16	1.355	28.620	311		.141	002	.011
17	1.555	28.624	333	.162	. 141	. 002	

Upw [m/s]= 28.62 DEL995 [cm]= 1.005 Of= 3.770E-3

TRANSITIONAL FLOW :

N	Y/DELTA	U/Upw	u¹/Upw	v1/Upw	u'v'/Utau^2
1	.05970	.84026	.06899	. 0 5852	.74185
2	.10448	.71554	.08954	.05123	.98566
3	.15423	.76497	.07015	.04823	.91417
4	.20398	.80154	.07254	.04613	.87546
5	.25373	.82566	.07393	.04354	.74283
6	.35323	.87950	.07128	. 0 388 9	.57420
7	.45274	.91554	.05297	.03500	.36964
-	.55224	.94277	.05614	.02979	.26083
3		.96170	.04653	.02661	.20564
9	.65174	.97752	.03590	.02225	. 13644
10	.75124		.02550	.01662	.05235
11	.85075	.98752	:	.01457	. 0 33328
12	.95025	. 95553	.01909		.00939
13	1.04975	.99843	.01332	.01173	
14	1.14925	1.00009	.01001	.00383	.01258
15	1.24878	1.00027	.00712	.00771	.00401
16	1.34826	.59995	.00679	.00734	.00593
17	1.54726	1.00014	.00565	.00491	.00150

Station 6
RAW DATA--FILE NAME: 100082886

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/52]	Gamma
1	.060	19.660	.148	1.973	1.675	-1.658	.939
2	.110	21.725	058	1.923	1.428	-1.489	. 99 8
3	.165	23.029	154	1.916	1.316	-1.466	.989
4	.265	24.524	177	1.810	1.202	-1.274	1.000
5	.365	25.881	262	1.748	1.118	-1.074	.999
6	.465	26.968	285	1.614	1.021	810	. 9 58
7	.565	27.788	264	1.521	.956	70E	.981
8	. 6 65	28.458	285	1.367	.858	492	.940
S	.765	28.957	218	1.152	.718	344	.848
10	.865	29.415	202	.978	.622	198	.679
11	.9 65	29.716	183	.809	.528	149	.471
12	1.065	30.005	277	.584	.440	090	.282
13	1.165	30.114	269	.428	.352	048	.132
14	1.365	30.215	262	.250	.242	018	.043
15	1.565	30.233	285	.182	.160	005	.008

Upω [m/s]= 30.20 DELS95 [cm]= 1.105 Cf= 3.700E-3

TRANSITIONAL FLOW :

N	Y/DELTA	U/Upw	u¹/Upw	v¹/Upw	u'v'/Utau^2
1	.05430	.65099	.06532	.05548	.98292
2	.09955	.71936	.06369	.04728	.88234
3	.14932	.76258	.08348	.04359	.88858
4	.23982	.81206	.05993	.03979	.75534
5	.33032	.85638	.05787	.03703	.63657
8	.42081	.89299	.05343	.03381	.47992
7	.51131	.92012	.0503E	.03166	.41841
3	.60181	.94288	.04526	.02841	.29177
S	.69231	. 9 5883	.03946	.02378	.20364
10	.78261	.97402	.03238	.02061	.11734
11	.87330	. 9 8397	.02677	.01748	.08824
12	.95360	. 99 358	.01935	.01456	. 0 5352
13	1.05430	.99716	.01415	.01165	.02516
1.4	1.23528	1.00048	.00827	.00801	.01065
15	1.41629	1.00108	.00603	.00531	.00276

IVT121053 Station 3 (Transitional)

N	Del 9 Qwall	9.5 = .3 = 151.0	23 [cm] [W/m^2]	7	w-Tinf	= 7.770 [C) Ui	שב = 26.31 = שכ	[m/S]	
N					+	•	. •	t '	u'v'	u't'
1	N		_			-		1 (0)	m2/52]	[m-C/S]
1		[cm]	[m/5]	[W/2]	103	1000	, , , , . .			
1 .056		25.0	10 54	- 46	32.78	2.278	. 90 8			
3 .095							.573			
\$\frac{125}{5}\$ \frac{19.32}{10.5}\$80 \text{30.29}\$ \text{1.269}\$ \text{.494}\$ \text{.315}\$216314\$ \$\frac{1}{5}\$ \text{.165}\$ \text{.22.58}\$80 \text{.29.49}\$ \text{.1269}\$ \text{.494}\$ \text{.315}\$216314\$ \$\frac{1}{5}\$ \text{.205}\$ \text{.243}\$131219\$ \$\frac{1}{7}\$ \text{.255}\$ \text{.257}\$77 \text{.28.62}\$ \text{.298}\$ \text{.236}\$137186 \$\frac{1}{7}\$ \text{.255}\$ \text{.257}\$77 \text{.28.62}\$ \text{.585}\$ \text{.298}\$ \text{.150}\$077058 \$\frac{9}{8}\$ \text{.255}\$ \text{.26.31}\$74 \text{.26.61}\$ \text{.614}\$ \text{.236}\$ \text{.139}\$073 +.005 \$\frac{9}{3}\$ \text{.255}\$ \text{.26.32}\$74 \text{.26.61}\$ \text{.614}\$ \text{.236}\$ \text{.139}\$073 +.005 \$\frac{10}{3}\$ \text{.355}\$ \text{.26.30}\$67 \text{.28.60}\$ \text{.561}\$ \text{.236}\$ \text{.139}\$073 +.005 \$\frac{11}{10}\$ \text{.455}\$ \text{.26.53}\$67 \text{.86.52}\$ \text{.236}\$ \text{.189}\$071 \$\frac{11}{10}\$ \text{.455}\$ \text{.26.53}\$65 \text{.257}\$ \text{.072}\$069007 \$\frac{1}{10}\$ \text{.255}\$ \qua						1.813	.633			
5 .165 22.5880 29.49 1.269 .494 .315216314 5 .205 24.5682 29.01 1.086 .382 .243131219 7 .255 25.7777 28.72 .930 .346 .236137186 8 .285 26.1173 26.62 .585 .298 .150077058 9 .325 26.3274 28.61 .614 .236 .139073 +.085 10 .365 26.3067 28.60 .561 .235 .163025071 11 .405 26.3768 28.61 .463 .174 .119003039 12 .445 26.3867 28.63 .319 .154 .098 +.004017 13 .445 26.3965 28.62 .257 .144 .072009007 14 .525 26.3865 28.61 .266 .165 .118014015 N v't' u'v''2 v'^2t' dU/dy dT/dy Prt GAMMA 1 +.128 +9.6803129 148.654 -40.488 +1.219 .141 2 +.124 +.214035 135.523 -36.778 +.547 .127 3 +.121 +.110 +.1629 111.047 -25.869 +.673 .104 4 +.061262 +.0602 88.901 -23.639 +.495 .081 5 +.072719 +.1596 67.014 -16.393 +.786 .071 6 +.038588 +.029 18.984 -4.512 +1.023 .043 8 +.011469 +.0410 10.321 -1.513 +.126 .032 10 +.012166 +.0647 -4.003 1.689 +.891 .036 11 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001019 +.0056 5.719 -1.983 +1.553 .011 1 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001031 +.0065 5.719 -1.983 +1.553 .011 1 +.002019 +.0056 5.719 -1.983 +1.555 .011							.453	.357		
B .205 24.56 82 29.01 1.086 .382 .243 131 219 7 .255 25.77 77 28.72 .930 .346 .236 137 186 8 .285 .26.11 73 28.62 .585 .298 .150 077 058 9 .325 .26.32 74 28.61 .614 .236 .139 073 +.086 10 .365 .26.30 67 28.60 .561 .236 .153 025 071 11 .405 .26.37 68 28.61 .463 .174 .119 003 039 12 .445 .26.38 67 28.63 .319 .154 .098 +.004 017 13 .485 .26.39 65 28.61 .265 .165 .118 014 015 14 .128 +9.680 3129 148.654 -40.488 +1.219 .141 2 +.124 +.235						1.269	.494	.315	216	314
6 .205 24.56 82 29.01 1.000 .346 .235 137 186 7 .255 25.77 77 28.72 .930 .346 .236 077 058 8 .285 .26.32 74 28.61 .614 .236 .139 073 +.008 9 .325 .26.32 67 28.60 .561 .236 .153 025 071 10 .365 .26.37 68 28.61 .463 .174 .119 003 039 12 .445 .26.38 67 28.63 .319 .154 .096 +.004 017 13 .485 .26.39 66 28.62 .257 .144 .072 069 007 14 .525 .26.38 65 28.61 .266 .165 .118 014 015 15	5	.155	22.50	.00	20.,0					
7 .255	_	205	24 56	82	29.01	1.085	.382	.243		
8			_			.930	.346	.236		
9 .325						.585				
10	_									
11	_				28.60	.561	.236	. 153	025	1671
11	10	. 505	20.00						007	0.70
12	1.1	405	26.37	68	28.51					
13				67	28.63					
N v't' u'v'^2 v'^2t' dU/dy dT/dy Prt 6AMMA [m-C/5] [m3/53] [m2-C/52] [1/5] [C/m] 1 +.128 +9.6803129 148.654 -40.488 +1.219 .141 2 +.124 +.2140362 135.533 -36.778 +.547 .127 3 +.121 +.110 +.1629 111.047 -29.869 +.673 .104 4 +.061262 +.0602 88.901 -23.639 +.495 .081 5 +.072719 +.1596 63.014 -16.393 +.786 .071 6 +.038588 +.1292 41.289 -10.356 +.862 .053 7 +.030548 +.0829 19.984 -4.512 +1.023 .043 8 +.011469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000174 +.0003 1.079 .493 +109.054 .032 10 +.012166 +.0547 -4.003 1.689 +.891 .030 11 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001031 +.0067 -1.683 .451 -2.122 .014 13 +.002019 +.0056 5.719 -1.983 +1.553 .011 13 +.002019 +.0056 5.719 -1.983 +1.553 .011					28.62					
N vit' u'v'^2 v'^2t' dU/dy dT/dy Prt 6AMMA [m-C/5] [m3/53] [m2-C/52] [1/5] [C/m] 1 +.128 +9.6803129 148.654 -40.488 +1.219 .141 2 +.124 +.2140362 135.533 -36.778 +.547 .127 3 +.121 +.110 +.1629 111.047 -29.869 +.673 .104 4 +.061262 +.0602 88.901 -23.639 +.495 .081 5 +.072719 +.1596 63.014 -16.393 +.786 .071 6 +.038588 +.1292 41.289 -10.356 +.862 .053 7 +.030548 +.0829 19.984 -4.512 +1.023 .043 8 +.011469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000174 +.0003 1.079 .493 +109.054 .032 10 +.012166 +.0547 -4.003 1.689 +.891 .030 11 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001031 +.0067 -1.683 .451 -2.122 .014 13 +.002019 +.0056 5.719 -1.983 +1.553 .011 13 +.002019 +.0056 5.719 -1.983 +1.553 .011				65	28.61	.266	.165	.118	014	015
1 +.128 +9.680 3123 +100.053 -36.778 +.547 .127 2 +.124 +.214 0362 135.533 -36.778 +.547 .104 3 +.121 +.110 +.1629 111.047 -29.869 +.673 .104 4 +.061 262 +.0602 88.901 -23.639 +.495 .081 5 +.072 719 +.1596 63.014 -16.393 +.786 .071 6 +.038 588 +.1292 41.289 -10.356 +.862 .053 7 +.030 548 +.0829 19.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 -4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019<	N						-			
2 +.124 +.214 0362 135.533 -36.778 +.547 .127 3 +.121 +.110 +.1629 111.047 -29.869 +.673 .104 4 +.061 262 +.0602 88.901 -23.639 +.495 .081 5 +.072 719 +.1596 63.014 -16.393 +.786 .071 5 +.038 588 +.1292 41.289 -10.356 +.862 .053 7 +.030 548 +.0829 19.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 -4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014	,	± 128	+9 580	3	129	148.654				
2 +.121 +.110 +.1629 111.047 -29.869 +.673 .104 4 +.061 262 +.0602 88.901 -23.639 +.495 .081 5 +.072 719 +.1596 63.014 -16.393 +.786 .071 6 +.038 588 +.1292 41.289 -10.356 +.862 .053 7 +.030 548 +.0829 19.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 +4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014 13 +.002 019 +.00567 -1.583 -5.527 +1.019 .011 <td></td> <td></td> <td></td> <td></td> <td></td> <td>135.533</td> <td></td> <td></td> <td></td> <td></td>						135.533				
4 +.061 262 +.0602 88.901 -23.639 +.495 .081 5 +.072 719 +.1596 63.014 -16.393 +.786 .071 5 +.038 588 +.1292 41.289 -10.356 +.862 .053 7 +.030 548 +.0829 19.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 -4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014 13 +.002 019 +.0056 5.719 -1.983 +1.553 .011 13 +.002 019 +.0056 5.719 -5.627 +1.019 .011						111.047				
5 +.072 719 +.1596 63.014 -16.393 +.786 .071 5 +.038 588 +.1292 41.289 -10.356 +.862 .053 7 +.030 548 +.0829 19.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 -4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014 13 +.002 019 +.0056 5.719 -1.983 +1.553 .011 13 +.002 019 +.0056 5.719 -5.627 +1.019 .011						88.901				
6 +.038 588 +.1292 41.289 -10.356 +.862 .053 7 +.030 548 +.0829 19.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 -4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014 13 +.002 019 +.0056 5.719 -1.983 +1.553 .011 13 +.002 019 +.0253 17.282 -5.627 +1.019 .011						63.014	-16.393	+.785	.071	
6 +.038 588 +.1232 +.1232 4.512 +1.023 .043 7 +.030 548 +.0829 18.984 -4.512 +1.023 .043 8 +.011 469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000 174 +.0003 1.079 .493 +109.054 .032 10 +.012 166 +.0547 -4.003 1.689 +.891 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014 13 +.002 019 +.0056 5.719 -1.983 +1.553 .011 13 +.002 019 +.0056 5.719 -5.627 +1.019 .011	2	1.012	****					. 655	057	
7 +.030	F.	+.038	588	+.1	292				•	
8 +.011469 +.0410 10.321 -1.913 +1.266 .032 9 -0.000174 +.0003 1.079 .493 +109.054 .032 10 +.012166 +.0547 -4.003 1.689 +.891 .030 11 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001031 +.0087 -1.683 .451 -2.122 .014 13 +.002019 +.0056 5.719 -1.983 +1.553 .011 13 +.002019 +.0056 5.719 -5.627 +1.019 .011			548	+.0	829					
9 -0.000174 +.0003 1.079 .493 +105.054 .052 10 +.012166 +.0547 -4.003 1.689 +.891 .030 11 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001031 +.0087 -1.683 .451 -2.122 .014 13 +.002019 +.0056 5.719 -1.983 +1.553 .011 13 +.002019 +.0056 5.719 -5.627 +1.019 .011				+.0	410	10.321				
10 +.012 166 +.0547 -4.003 1.689 +.031 .030 11 +.002 057 +.0150 -4.923 1.675 +.594 .019 12 +.001 031 +.0087 -1.683 .451 -2.122 .014 13 +.002 019 +.0056 5.719 -1.983 +1.553 .011 13 +.002 019 +.0252 17.282 -5.627 +1.019 .011	_		174	+.0	0003	1.079				
11 +.002057 +.0150 -4.923 1.675 +.594 .019 12 +.001031 +.0067 -1.683 .451 -2.122 .014 13 +.002019 +.0056 5.719 -1.983 +1.553 .011 13 +.002019 +.0056 5.719 -5.627 +1.019 .011		=		+.0	547	-4.003	1.689	+.891	. wsc	
11 +.002057 +.0150 -4.523 1.073 12 +.001031 +.0087 -1.583 .451 -2.122 .014 13 +.002019 +.0056 5.719 -1.983 +1.553 .011 13 +.002019 +.0056 5.719 -5.527 +1.018 .011								4 E04	019	
12 +.001031 +.0087 -1.583 .451 -2.122 .011 13 +.002019 +.0056 5.719 -1.983 +1.553 .011	11	+.002							-	
13 +.002019 +.0056 5.719 -1.983 +1.553 .011		+.001	031					_		
17 28? +5.62/ +1.013			019							
			025	+.(0252	17.282	-5.b2(T1.0013		

```
FILE NAME: IVT121053 Station 3 (Transitional)
 ****************
U = SUM(A(N) + Y^N)
.2550
        25.7678 25.864
                              +.372
  .2850
         26.1140 26.312
                              +.759
 .3250 26.3184 26.526
.3650 26.2987 26.454
  .3250
                              +.790
                              +.591
 .4050
         26.3651
                              -.392
                  26.262
 .4450
         26.3767
                              -.990
                  26,116
 .4850
        26.3931
                  26.183
                              -.798
 .5250
        26,3797
                  26.629
                              +.944
************
T = SUM(A(N) + Y^{n}N)
A0= +3.5085E+01 A1= -5.4085E+01
                              A2= +1.4542E+02 A3= -1.2605E+02
 T TC
.0500 32.7801 32.730
.0650 32.1574 32.150
.0950 31.1389 31.152
.1250 30.2897 30.351
.1650 29.4881 29.555
.2050 29.0141 29.024
                   TC % DIFF
                          -.154
 .0500
 .0850
                              -.022
 .0950
                              +.043
 .1250
                             +.204
 .1650
                             +.226
 .2050
                             +.034
        28.7165 28.660
28.6186 28.565
 .2550
 .2850
                             -.186
 .3250
        28.6087
                  28.541
                             -.237
 .3850
       28.6048 28.589
                             -.057
 .4050
        28.5140 28.550
                             +.150
 .4450
       28.6319 28,706
                             +.260
 .4850
       28.6185 28.680
                             +.214
 .5250
        28.6135
                             -.286
                 28.532
```

IVT121053 Station 3 (Laminar)

	99.5 = 11 = 151.6	.323 [cm] 7 [W/m^2]	Τω-Τι	.nf = 7.770 [C)	Upw = 25.3	1 [m/5]	
*1	Y	υ	Ų T	u'	٧,	ŧ'	u'v'	u't'
N	[cm]	[m/S]	[m/S] [C		[m/S]	[C]	[m2/52]	[m=C/S]
1	.050	10.17	49 32.	85 1.560	.814	.463	688	517
ż	.065	12.27	59 32.		.275	.431	089	504
3	.055	15.03	75 31.		.332	.354	091	410
4	.125	19.39	83 30.		.285	.281	021	305
5	.165	22.70	83 29.		.256	.185	002	-,142
6	.205	24.67	83 28.	.98 .734	.189	.134	003	081
7	.255	25.89	79 28.		.158	.083	012	019
8	.285	25.17	74 28.		.136	.0 50	003	005
9	.325	26.39	75 28.		.125	.139	005	+.005
10	.365	26.36	68 28.		.115	.053	-,002	-0.023
11	.405	26.40	68 28.	.60 .169	.107	.047	002	+.001
12	.445	26.40	67 28.	.62 .158	.101		-0.000	+.001
13	.485	26.41	57 28.	.61 .157	.099	.049	+.001	+.001
14	.525	25.40	65 28.	.60 .154	.090	.048	001	+0.000
N		u'v'^2 [m3/\$3]		dU/dy [1/S]	dT/dy {C/m}	Prt	GAMMA	
,	+.097	+10.703	2972	154.356	-41.734	+1.907	.141	
1 2	+.050	+.005	0052	140.563	-37.864	+.474	.127	
3	+.035	+.333	0177	114.839	-30.663	+.703	.104	
4	+.024	- .0 73	0043	91.598	-24.178	+.235	.081	
5	+.012	083	+.0017	64.471	-16.645	+.050	.071	
6	+.005	026	+.0038	41.759	-10.386	+.125	.053	
7	+.003	012	+.0041	19.574	-4.352	+.970	.043	
В	+.001	005	+.0005	9.574	-1.686	+.596	.032	
9	001	005	+.0001	.102	.754	+69.968	.032	
10	+.001	005	+.0017	-4.956	1.921	+.615	.030	
11	+0.000	002	+.0001	-5.600	1.815	+2.241	.019	
12	-0.003	002	+.0004	-1.831	.436	-2.580	.014	
13	-0.000	002	+.0003	6.352	-2.216	+1.274	.011	
14	+0.000	001	+.0004	18.949	-6.141	+.962	.011	

```
FILE NAME: INT121053 Station 3 (Laminar)
..........
U = SUM(A(N) + Y^N)
A0= +1.2014E+00 A1= +2.0482E+02 A2= -5.3907E+02 A3= +4.5976E+02
  Y U UC % DIFF
       10.1695 10.152
                         -.172
 .0500
       12.2701
               12.363
                          +.758
 .0650
                         +.974
       16.0318 16.188
19.3877 19.278
 .0950
 .1250
                          -.565
 .1650
       22.6969 22.385
                         -1.374
       24.6682 24.495
                         -.703
 .2050
 .2550
       25.8947 25.999
                         +.404
 .2850
       26.1677 26.430
                         +1.004
       26.3854 26.609
                         +.848
 .3250
 .3550
                         +.520
       26.3603 25.497
       26.4046 26.272
 .4050
                         -.504
 .4450
       26.3986
               26.108
                        -1.100
 .4850 25.4059 25.184
                         -.840
 .5250 26.3953 26.675
                         +1.061
*****************************
T = SUM(A(N) + Y^N)
+.006
-.194
 .2550 28.6809 28.625
                         -.231
       28.6025 28.536
 .2850
 .3250
       28.6085 28.522
                         -.302
 .3650
       28.5858 28.580
                         -.021
                         +.195
 .4050
       28.5031
               28.659
       28.5239
               28.708
                         +.294
 .4450
                         +.217
 .4850
       28.6145
               28.577
 .5250
       28.6037
                28.514
                          -.314
```

IVT121053 Station 3 (Turbulent)

Del 9 Qwall	9.5 = .3 = 151.0	23 [cm] [W/m^2]	Т	w-Tinf	= 7.770 [C]) Up	ыш = 2E.3	1 [m/5]	
				-	u'	٧,	t'	u'v'	u't'
N	Y	U	U [m/S]	T [C]	[m/S]	[m/S]	[0]	[m2/52]	[m-C/E]
	[cm]	[m/S]	[M/ 5]	101	\$117 B =				2 .25
	.050	12.78	27	32.37	4.029	1.333	1.211	399	-3.175 -3.261
1	.065	13.72	44	31.97	3.817	1.431		-1.561 -2.248	-2.988
2	.095	16.41	41	31.29	3.932	1.664	, , , ,		-1.571
3	.125	18.50	55	30.53	2.924	1.242	.783	940 -2.358	-1.757
4 5	. 165	21.10	41	30.00	3.137	1.550	.824	-2.350	-1.707
5	. 105						500	-2.037	-1.575
8	.205	22.60	63	29.57		1.454		-1.500	-1.580
7	.255	22.94	36	29.51	2.855	1.428	.703	-1.864	850
8	.285	24.49	47	29.10		1.456	.598	-1.075	01E
9	.325	24.26	27	28.62	2.401	1.015	.141	339	-1.131
10	.365	24.31	48	29.22	2.330	1.185	.641	555	, , , , ,
10	,500					. 014	.558	182	933
11	.405	24.33	72	29.18		1.014	.480	+.318	420
12	.445	24.78	70	29.21		1.022	.360	556	353
13	.485	25.30	38	28.96		.948 1.297	.548	858	241
14	.525	25.04	44	29.46	1.554	1.297	. 340	,,,,	
N	v't' [m-C/5]	u'v'^2 [m3/S3]	v'^ [m2-0		dU/dy [1/5]	dT/dy [C/m]	Prt	GAMMA	
				1070	101.613	-27.765	+.265	.141	
1	+.412	+.729		1679 1401	93.085	-25.606	+.651		
2	+.659	469		7797	77.165	-21.529	+.779		
3	+.805	-1,302		2142	62.760	-17.774	+.659		
4	+.404	807		1457	45.912	-13.268	+1.087	.071	
5	+.627	-3.393	т	+=21					
_	-00	-5.837	∔ 1 I	0158	31.759	-9.333	+1.182		
6	+.508	-4.938		1406	17.857	-5.220	+1.731		
7	+.270	-10.052		1036	11,537	-3.180	+2.775		
8	+.185	-10.052		0079	5.467	962	+40.903		
9	+.005	-1.717		8205	2.093	.685	498	.030	
10	+.223	-2.431	٠,	0200					
	. 441	-,959	+	2403	1.413	1.759	-2.029		
11	+.111	813		0489	3.428	2.262	+3.42		
12	+.061			0 924	8.137	2,193	-1.52		
13	+.098	151 +.473		7256	15.541	1.552	49	3 .011	
14	+.173	+.4/3	٠,	, , , , , ,	, =				

```
FILE NAME: IVT1210S3 Station 3 (Turbulent)
 ***************
 U = SUM(A(N) * Y^N)
A0= +6.6951E+00 A1= +1.3278E+02 A2= -3.3270E+02 A3= +2.8070E+02
  Y U UC % DIFF
.0500 12.7789 12.537 -1.890
.0650 13.7234 13.997 +1.994
                                     +1.994
  .0550
            16.4109
                        16.547
                                      +.830
+.211
           18.6029 18.642
21.0967 20.807
  .1250
  .1650
                                      -1.375
           22.5955 22.351
22.8441 23.574
  .2050
                                      -1.082
  .2550
                                    +2.745
           24.4904
                       24.011
  .2850
                                     -1.957
           .3250
                                     +.350
  .3650
                                     +.734
  .4050
                                     +.894
  .4450
                                      -.598
           .4850
.5250
  .4850
                                   -1.738
*************
T = SUM(A(N) + Y^N)
A0= +3.3932E+01 A1= -3.5543E+01 A2= +8.2246E+01 A3= -5.9578E+01
 Y T TC % DIFF
.0500 32.3719 32.353 -.060
.0650 31.9660 31.952 -.043
 .0950
          31.2910 31.246
                                     -.143
          30.5335 30.657
29.9972 30.038
29.5747 28.568
 .1250
                                     +.406
                                     +.137
+.045
 .1650
 .2050
          29.5098 29.228
 .2550
                                     -.954
-.004
29.5098 29.228

.2850 29.1041 29.103

.3250 28.6164 29.022

.3650 29.2195 29.018

.4050 29.1810 29.069

.4450 29.2107 29.152

.4850 28.9585 29.243

.5250 29.4558 29.319
                                    +1.418
                                    -.688
                                     -.383
                                     -.202
                                     +.981
                                     -.463
```

IVT1210S4 Station 4

Del 9 Qwall	39.5 = .6 L = 178.9	575 [cm] [W/m^2]	T	w-Tinf	= 2.890 [C) U	Uow = 26.58 [m/S]			
									• . •	
N	Y	ť	V	T	u,	v'	t '	u'v'	u't'	
	[cm]	[m/S]	[m/5]	[0]	[m/S]	[m/S]	[C]	[m2/52]	[m-C/S]	
1	.050	17.71	31	29.€9	2.220	1.304		-1.108	379	
2	.090	19.23	47	29.50	2.0E1	1.187		-1.070	-,351 -,334	
3	.150	20.87	54	29.30	1.934	1.128	-,	-1.051		
4	.230	22.03	58	29.15	1.954	1.076	.309	996	404	
5	.300	23.15	67	28.98	1.854	1.000	.320	887	415	
Б	.360	23.91	68	28,90	1.733	.935	.324	677	390	
7	.430	24.68	73	28.76	1.658	.870	.334	587	402	
6	.500	25.28	72	28.64	1.437	.863	.313	495	310	
9	.570	25.71	70	28.54	1.236	.740	.289	357	238	
10	.640	26.10	71	28.44	.959	.664	.250	274	148	
11	.710	26.24	66	28.41	1.014	.9 38	.198	667	062	
12	.790	25.40	E7	28.41	.709	.644	.178	293	059	
13	.890	26.51	66	28.40	.653	.659	.123	355	017	
14	1.040	26.56	68	28.37	.212	.180	.060	004	001	
			• 6 =	11.	dU/dv	dT/dy	Prt	GAMMA		
N	v't'	u'v'^2	v1^2 [m2=0/		[1/5]	[C/m]		<u> </u>		
	[m-C/S]	[m3/53]	[M2-6/	251	11/51	(0) 113				
1	+.140	803	+.03	531	27.984	-3.271	+.528	.997		
2	+.125	451	+.02	254	25.542	-3.081	+1.025	.9 97		
3	+,125	470	+.02	284	21.542	-2.757	+1.078	.994		
4	+.131	601	+.05	51 9	17.893	-2.445	+1.042	.990		
5	+.131	574	+.09	337	14.594	-2.145	+.999	. 986		
ε	+.117	598	+.16	213	12.045	-1.897	+.913	.981		
7	+.121	779	+.13		9.396	-1.620	+.833	.9 57		
8	+.075	-2.348	+.0		7. 09 8	-1.354	+1.228	.912		
9	+.074	966	+,1		5.150	-1.101	+1.025	.823		
10	+.051	-1.440	+.0	855	3.552	860	+1.305	.662		
11	+.026	-6.591	+.0	136	2.304	630	+7.030	.495		
12	+.030	-2.639	+.0		1.307	383	+2.822	.332		
13	+.012	-3.807	+.0		.703	096	+4.139	.173		
14	+.003	004	+.0		1.139	.288	397	.034		
			, -							

```
FILE NAME: IVT121084 Station 4
U = SUM(A(N) + Y^N)
A0= +1.6476E+01 A1= +3.1199E+01 A2= -3.3035E+01 A3= +1.1912E+01

      1= +1.6478E+01
      A1= +3.1199E+01
      A2=

      Y
      U
      UC
      X DIFF

      .0500
      17.7063
      17.956
      +1.41

      .0900
      19.2255
      19.027
      -1.03

      .1600
      20.8715
      20.672
      -.95

      .2300
      22.0283
      22.051
      +.10

      .3000
      23.1476
      23.186
      +.16

      .3600
      23.9121
      23.984
      +.29

      .4300
      24.6832
      24.732
      +.19

      .5000
      25.2788
      25.307
      +.11

      .5700
      25.7090
      25.734
      +.05

                                           +1.413
                                                 -1.035
  .0930
  .1500
                                                   -.953
                                                  +.102
  .2300
                                                  +.164
  .3000
  .3500
  .4300
                                                  +.197
                                                  +.112
  .5000
              25.7090 25.734
                                                  +.096
  .5700
  .6400 26.0975 26.036
                                                  -.235
  .7100
              26.2388 26.239
                                                  +.001
                                                  -.080
  .7900
              26.4017 26.381
 .8900 26.5105 26.475
1.0400 26.5614 26.593
                                                  -.134
                                                   +.119
**************
T = SUM(A(N) + Y^N)
A0 = +2.9828E + 01 A1 = -3.5152E + 00 A2 = +2.4585E + 00 A3 = -4.1016E - 01
   Y T
                               TC % DIFF
              29.6927 29.659
                                              -.115
  .0500
              29,4982 29,532
                                                   +.114
  .0900
                               29.327
               29.3028
                                                   +.084
  .1600
                              29.145
  .2300
               29.1481
                                                    -.009
  .3000
                28.9804
                                28.985
                                                   +.015
              28.9021 26.854
28.7555 28.741
                                                   -.133
  .3802
  .4300
                                                   -.056
  .5000
              28.6449 28.637
                                                   ~.029
  .5700
              28.5410 28.551
                                                   +.034
              28.4381
                              28.482
  .6400
                                                   +.155
              28.4095 28.430
                                                   +.072
  .7100
  .7900 28.4088 28.390
                                                   -.067
                                                   -.111
  .8900 28.3974 28.366
1.0400 28.3879
                              28.381
                                                   +.04E
```

IVT1210S5 Station 5

Del 9 Qwall	9.5 = 1.0 = 180.6	19 [cm] [W/m^2]	T	w-Tinf =	= 2.600 [C]	Upv	u = 27.04	[m/S]	
				-	u'	, '	ť,	u'v'	u't'
N	Y	U	V	Τ	[m/S]	[m/5]		[m2/52]	[m-C/S]
	[cm]	[m/5]	[m/5]	[C]	FW/21	(M/ J J			
			4.0	20 57	2.120	1.240	.244	-1.104	252
1	.050	17.63	49	29.67	2.010	1.137		-1.028	281
2	.090	19.01	56	29.48	1.955	1.075		-1.079	268
3	.140	20.22	71	29.34	1.779	1.022	.217	883	-,243
4	.240	21.87	83	29.13	1.664	.989	.217	887	227
5	.340	23.17	92	28.99	1.004	. 505			
				28.85	1.552	.927	.221	753	207
6	.440	24.09	91		1.408	.838	.221	573	190
7	.540	25.00	-1.00	28.70	1.336	.810	.220	559	177
8	.540	25.71	-1.01	28.58	1.133	.721	.215	387	-,154
9	.740	25.35	-1.07	28.43	1.028	.763	.200	420	120
10	.840	25.77	98	28.29	1.020	. 105			
		_		20.20	.853	.692	.176	342	074
11	.940	27.15	-1.05	28.20	.650	.641	.125	317	030
12	1.090	27.44	-1.03	28.12		.317	.087	052	008
13	1.240	27.54	99	28.08	.339	.168	.063	004	001
14	1.390	27.56	9 5	28.05	.202	.100	.005		
N	v't' [m-C/5]	u'v'^2 [m3/\$3]		2t' 2/52]	dU/dy [1/S]	dT/dy [C/m]	Prt	GAMMA	
		0.05		633	22.071	-2.294	+.863	1.000	
1	+.133	805		245	20.555	-2.225	+.985	1.000	
2	+.112	370		080	18.953	-2.138	+1.125	1.000	
3	+.108	202		7000 1282	15.783	-1.965	+1.078	1.000	
4	+.102	268		137	12.920	-1.793	+1.208	1.000	
5	+.102	358	+.4	101	12.520				
				3463	10.366	-1.621	+1.194	1.000	
6	+.099	409		0463 0480	8.121	-1.449	+1.271	.997	
7	+.080	403			E.184	-1.278	+1.562	. 9 83	
8	+.074	-1.296		0406 277	4.555	-1.107	+1.485	.949	
9	+.083	-1.275		732	3.235	- 937	+2.579	.810	
10	+.047	-2.907	+.1	0005	5.235	. 55 .			
				007	2.224	767	+3.505	.520	
11	+.034	-1.603	-	2093 0598	1.285	513	+5.916		
12	+.021	-3.022		0599	1.040	259	+2,160		
13	+.005	414		0061	1.489	007	+.006		
14	+.003	003	+.	0029	1,400	. • • •			

```
FILE NAME: IVT121055 Station 5
U = SUM(A(N) + Y^N)
A0= +1.6908E+01 A1= +2.3911E+01 A2= -1.8785E+01 A3= +5.1412E+00

        08E+01
        A1=
        +2.3911E+01
        A2=

        U
        UC
        % DIFF

        17.6348
        18.057
        +2.39

        19.0078
        18.912
        -.50

        20.2205
        19.902
        -1.57

        21.8668
        21.63E
        -1.09

        23.1701
        23.068
        -.43

        24.0857
        24.230
        +.60

        24.9956
        25.152
        +.62

        25.7117
        25.865
        +.59

        26.3593
        26.399
        +.15

        26.7667
        26.786
        +.06

        27.1500
        27.056
        -.34

        27.4426
        27.311
        -.48

     Y
   .0500
                                                  +2.398
   .0900
                                                       -.505
   .1400
                                                     -1.577
   .2400
                                                     -1.056
                                                      -.439
+.500
   .3400
   .4400
   .5400
                                                       +.626
   .6400
                                                       +.595
   .7400
                                                       +.151
   .8400
                                                       +.065
  .9400
                                                       -.345
 1.0900
               27.4426 27.311
                                                       -.481
 1.2400
               27.5356 27.476
                                                       -.218
 1.3900 27.5576 27.657
                                                       +.362
**********
T = SUM(A(N) + Y^N)
A0= +2.9705E+01 A1= -2.3809E+00 A2= +8.6841E-01 A3= -6.9542E-03
   Y
             T
                                  TC % DIFF
                                 29.589
  .0500
               29.5671
                                                    -.265
               29.4780
                                 29.498
                                                      +.068
  .1400
               29.3350
                                  29.389
                                                       +.184
  .2400
               29.1268
                                  29.184
                                                        +.196
  .3400
                28.9933
                                  28.996
                                                       +.009
  ,4403
               28.8465
                                  28.825
                                                        -.073
  .5400
                 28.7019
                                   28.572
                                                       -.104
                              28.536
  .5400
                 28.5758
                                                       -,141
                               28.416
  .7400
                28.4321
                                                       -.056
  .8400
                28.2908
                              28.314
                                                       +.083
  .9400
                28.2003 28.229
                                                      +.101
1.0900
              28.1205
                                 28.133
                                                      +.044
           28.0793
1.2400
                                28.075
                                                       -.015
1.3900
                28.0639
                                  28.055
                                                      -.031
```

IVT1210SB Station 6

Del ! Qwal	99.5 = 1. 1 = 179.7	154 [cm] [W/m^2]	т	w~Tinf	- 2.750 [0	:1	Uρw = 28.7	8 [m/5]	
N	Y [cm]	υ [m/S]	V [m/S]	T [C]	u¹ [m/S]	v' [m/S]	ť,	u'v' [m2/52]	u't' [m-C/5]
1 2 3 4 5	.050 .085 .135 .235 .335	18.25 19.72 20.95 22.63 23.84	73 94 -1.00 -1.14 -1.28	29.82 29.60 29.43 29.22 29.03	2.265 2.072 1.975 1.871 1.718	1.317 1.141 1.088 1.029 1.008	.228	-1.274 -1.153 -1.027 -1.045 954	317 293 262 243 209
6 7 8 9	.435 .535 .635 .785 .935	25.66	-1.37 -1.38 -1.39 -1.44 -1.46	28.97 28.86 28.74 28.56 28.39	1.587 1.477 1.316 1.166 1.035	.957 .900 .851 .702 .786	.197 .198 .197 .191 .187	811 714 548 399 455	192 171 154 133 101
11 12 13	1.085 1.235 1.385 1.535	28.64 28.91 28.98 29.03	-1.50 -1.51 -1.48 -1.49	28.24 28.15 28.11 28.11	.888 .795 .683 .637	.783 .792 .732 .686	.164 .129 .098 .058	480 508 444 408	058 028 010 +.001
N	v't' [m-C/S]	u'v'^2 [m3/S3]	v*^2 [m2-0/		dU/dy [1/5]	dT/dy [C/m]	Prt	GAMMA	
1 2 3 4 5	+.130 +.123 +.105 +.110 +.095	-1.221 430 414 276 291	+.08 +.03 +.03 +.02	541 563 198	20.940 19.868 18.387 15.612 13.083	-2.299 -2.224 -2.119 -1.917 -1.725	+1.075 +1.059 +1.127 +1.170 +1.321	1.000 1.000 1.000 1.000	
6 7 8 9	+.095 +.091 +.086 +.065 +.056	354 285 312 298 -2.794	+.03 +.02 +.03 +.04 +.03	189 188 101	10.802 8.767 6.979 4.759 3.095	-1.545 -1.376 -1.218 -1.001 809	+1.215 +1.233 +1.114 +1.284 +2.133	1.000 .999 .999 .976 .895	
11 12 13	+.033 +.021 +.009 +.002	-4.505 -6.352 -5.830 -5.665	02 +.03 +.02 06	363 231	1.986 1.432 1.434 1.991	642 500 382 288		.645 .327 .123 .035	

```
FILE NAME: IVT121056 Station 6
****************
U = SUM(A(N) + Y^N)
A0= +1.7799E+01 A1= +2.2525E+01 A2= -1.6159E+01 A3= +4.1131E+00
  Y U UC % DIFF
.0500 18.2517 18.885 +3.472
.0850 19.7235 19.599 -.629
 .0500
 .0850
                             -1.892
 .1350
         20.9520 20.556
  .2350
         22.6295 22.253
                             -1.662
  .3350
         23.8413 23.686
  .4350
         24.8534 24.878
                              +.101
                           +.775
+1.027
  .5350
         25.6560 25.855
 .6350 26.3691 25.640
.7850 27.3454 27.513
.9350 28.0670 28.095
                             +.E14
                              +.101
 1.0850 28.6427 28.470
                              -.605
 1.2350
        28.9112 28.719
                              -.665

    1.3850
    28.9836
    28.927
    -.195

    1.5350
    29.0278
    29.177
    +.513

*************
T = SUM(A(N) + Y^N)
28.2429 28.277
1.0850
                              +.119
1.2350
        28.1470 28.191
                              +.157
1.3850
         28.1080
                  28.125
                              +.ØE2
        28.1110 28.075
1.5350
                              -.126
```

Case 2:

Mean and fluctuating velocity: IUP0909

Mean temperature: T0913

Stanton number: ST0907

Shear stress: IUV0915

Turbulent heat flux and Pr_t: IVT0119

FILE: IUP080931

STATION: 1

XSTA = .114 [m] DEL1 = +5.093E-4 [m]
Cf = 2.263E-3 DEL2 = +2.124E-4 [m]
Upw = 16.65 [m/S] H = 2.398
Visc = 1.620E-5 [m/2/S] REdel1 = 5.229E+2
REA = 1.174E+5 REdel2 = +2.181E+2

De1995 = 2.4978-3 [m]

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս՝/Սբա
1	.008	1.549	2,63	2.76	.032	.758
2	.010	1.857	3.32	3.31	.039	1.098
3	.012	2.289	4.01	4.09	.045	1.411
4	.014	2.647	4.70	4.73	.054	1.667
5	.018	3.043	5.39	5.43	.062	1.874
E	.019	3.621	6.42	6.45	.074	2.212
7	.022	4.323	7.46	7.72	.0€€	2.575
8	.026	5.025	8.84	8.97	.103	3.074
9	.031	5.574	10.57	10.66	.123	3.837
10	.041	7.927	14.02	14.15	.163	4.705
1 1	.051	9.600	17.48	17.14	.203	5.382
12	.ØE1	11.180	20.93	19.98	.243	5.866
13	.071	12,445	24.3 9	22.22	.283	5.743
14	.0€1	13.358	27.84	23.85	.323	5.793
15	.091	14.217	31.29	25.38	.363	5.0E7
16	.101	15.004	34.75	2€.78	.403	4.551
17	.111	15.487	38.20	27.60	.443	3.905
1 &	.121	15.808	41.66	28.22	.453	3.276
19	.141	16.242	4 8. 5 7	26.99	.583	2.036
20	.161	16.500	55.47	29.45	.643	1.334
21	.181	1E.444	62.38	29.35	. 723	1.082
22	.211	15.537	72.74	29.52	.843	.912
23	.241	16.550	83.11	29.54	. 9 93	.881
24	.271	18.616	93.47	29.66	1.084	.836
16	.301	1E.532	103.63	29.51	1.204	.652
2E	.41	16.648	152.19	29.72	1.764	.838
27	. 431	16.855	148.74	29.74	1.724	.777

FILE: IUP090882

STATION: 2 (Laminar)

XSTA	=	.343 [m]	DEL1	=	+8.495E-4	[m]
Cf	=	1.60EE-3	DEL2	=	+3.886E-4	[m]
Upw	=	16.29 [m/S]	н	=	2.305	
Visc	=	1.623E-5 [m^2/5]	REdel1	#	8.526E+2	
RE.	=	3.442E+5	REde12	=	+3.700E+2	
De 1995	±	3.175E-3 [m]				

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս'/Մբա
1	.009	1.327	2.59	2.88	.029	2.192
2	.011	1.516	3.16	3.28	.035	2.535
3	.013	1.732	3.73	3.75	.041	2.905
ے 4	.015	2.005	4.30	4.34	.048	3.396
5	.017	2.227	4.57	4.82	.054	3.603
6	.019	2.491	5.44	5.40	.060	4,011
7	.021	2.795	6.01	6.05	.087	4.481
8	.023	3.046	€.58	6.60	.€73	4.915
9	.025	3,447	7.43	7.47	.092	5.355
10	.025	3.815	8.28	8.27	.092	5.880
1.1	.033	4.269	9.42	9.25	.104	E.313
12	.043	5.426	12.26	11.76	.136	7.299
13	.053	6.543	15.11	14.17	.167	8.231
14	.063	7.547	17.95	16.35	.199	9.051
15	.073	8.454	20.80	18.34	.230	5.733
16	.088	9.701	25.06	21.02	.278	10.272
17	.103	11.080	29.33	24.01	.325	11.219
18	.118	11.903	33.60	25.79	.372	10.922
19	.133	12.789	37.86	27.57	.419	18.845
28	.153	13.86€	43.55	30.04	.482	9.937
21	.173	14.478	49.24	31.37	.545	8.699
22	.193	15.025	54.93	32.55	.608	8.140
23	.213	15.430	50.E2	33.43	.671	€.369
24	.233	15.672	66.30	33.96	.734	5.164
25	.283	15.932	74.64	34.52	.829	4.160
26	.293	16.084	83.37	34.85	.923	3.032
27	.323	18.271	91.90	35.25	1.018	2.457
26	.353	15.295	100.43	35.31	1.112	1,849
29	.353	16.238	108.97	35.18	1.207	1.561
30	.433	16.254	123.19	35.28	1,364	1.134

31	.483	16.283	137.41	35.28	1.522	.976
32	.533	16.392	151.63	35.52	1.679	.962
33	.E33	16.292	180.07	35.30	1.994	.929
3.4	무그구	16 763	765 48	75 79	2 939	. 273

FILE: 1UF090952

STATION: 2 (Turbulent)

XSTA Ef	= .343 [m] = 4.200E-3	DEL1 = +1.017E-3 [m] DEL2 = +6.452E-4 [m] H = 1.576
Upw	= 15.29 [m/S] = 1.523E-5 [m/2/S]	H = 1.576 REdel1 = 1.020E+3
Visc REx	= 1.623E+5 = 3.442E+5	REde12 = +6.476E+2
De 1995	5 = 3.175E-3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սթա
}	.003	3.233	4.20	4.33	.029	7.858
2	.011	3.682	5.12	4.93	. 0 35	9.698
3	.013	4.254	E.04	5.70	.041	10.650
ت 4	.015	4.645	6.95	6,22	.048	12.189
5	.013	5.4E9	7.67	7.33	.054	13.311
5	.617	2.400				
6	.019	E.146	8.79	8.23	.080	11.980
7	.021	5.474	9.71	8.67	.057	13.763
8	.023	6.548	10.63	8.91	.073	15.035
9	.025 .026	7.477	12.01	10.02	.082	14.419
10	.025	7.159	13.39	9.59	.092	14.887
10	.023	7.123	,5155			
1.1	.033	7.373	15.23	9.88	.104	11.752
12	.043	8.740	19.83	11.71	.135	12.479
	.043 .053	9.052	24.43	12.13	.167	14.958
13		9.861	29.03	13.21	.199	14.570
14	.0E3	9.423	33.63	12.62	.230	18.584
15	.073	5.423	33.02	12,02		
15	.088	10.584	40.53	14.18	.278	15.878
17	.103	11.218	47.43	15.03	. 325	12.555
18	.118	11.555	54.33	15.48	.372	15.093
15	.133	11.551	Б1.23	15.48	.419	14.638
20	.153	12.893	70.43	17.27	.482	12.387
7.0	.155	, 2.033				
21	.173	12.759	79.63	17.09	.545	13.BE1
22	.193	14.015	88.83	18.78	.608	10.295
23	.213	14.119	98.0 3	18.92	.871	11.850
24	.233	13.715	107.22	18.38	.734	14.975
25	.253	14.197	121.02	19.02	, 829	9.357
	.235					
26	.293	14.455	134.92	19.37	. 923	12,901
27	.323	15.249	145.62	20.43	1.018	8.079
25	.353	15.162	1E2.42	20.31	1.112	8 .5ē≟
19	.383	15.454	175.22	20.72	1.207	6. 983
30	.433	15.160	199.21	20.31	1.384	€.495

31	.483	15.810	222.21	21.16	1.522	5.631
32	.533	15.872	245.21	21.27	1.679	2.083
33	.633	16.039	251.21	21.49	1.994	3.07E
ス.:	B77	15 571	475 15	22 22	2 979	653

FILE: IUP@80932

STATION: 2 (Transitional)

XSTA = .343 [m] DEL1 = +8.518E-4 [m]
Cf = 1.700E-3 DEL2 = +3.776E-4 [m]
Upw = 16.29 [m/S] H = 2.256
Visc = 1.623E-5 [m^2/S] REdel1 = 8.549E+2
REx = 3.442E+5
Del995 = 3.175E-3 [m]

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս¹/Սքա
		. 705	2.67	2.82	.029	3.249
1	.009	1.388	3.25	3.35	.035	3.926
2	.011	1.592	3.84	3.81	.041	4.322
3	.013	1.809	4,42	4.46	.048	5.325
4	.015	2.120	5.01	4.90	.054	5.598
5	.017	2.327	2.01			
_	2.0	2.650	5.60	5.58	.060	6.521
6	.019	2.844	6.18	6.20	.0∈7	€.832
7	.021 .023	3.213	Б.77	Б.77	.073	7.42€
8	.025 .025	3.614	7.84	7.E1	.082	7.772
9	.025	3.951	ε.52	8.32	.092	7.528
10	.629	١ دو. د	• • • • • • • • • • • • • • • • • • • •			
	.033	4.398	9.89	9.26	.104	7.638
11	.005 .043	5.594	12.62	11.78	.135	8.845
12 13	.053	6.665	15.54	14.04	.167	9.307
14	.063	7.655	18.47	18.12	.199	9.875
15	.073	B.51E	21.40	17.93	.230	10.305
15	. 975	0.3,0				. 5 . 5 . 5
16	.088	9.741	25.79	20.51	.278	10.64E
17	.103	11.065	30.18	23.35	.325	11.255
18	.118	11.885	34.57	25.03	.372	11,193
19	.133	12.714	36.95	26.77	.419	11.147
20	. 153	13.819	44.81	29.10	.482	10.148
20	. 155	, 2 , 5			- 45	9.124
21	.173	14,418	50.66	30.3E	.545	8.341
22	.193	14.980	56.51	31.55	.603	6.813
13	.213	15.382	62.38	32.35	.671	E.220
24	.233	15.601	58.22	32.85	.734	4.732
25	.263	15,878	77.00	33.44	.829	4.735
			25 55	33.77	. 923	4.045
26	.293	16.037	85.77	33.77	1.018	2.940
27	.323	16.245	94.55	34.21 34.2E	1,112	2.452
28	.353	16.270	103.33	34.15	1.207	1.938
28	.383	16.223	112.11	34.16	1.364	1.721
30	.433	16.268	125.74	27.20	,.504	

		16.262	141.37	34.25	1.522	1 0.75
52	.533	16.392	155.03		1.679	.988
33	.633	16.292	185,27	34.31	1.994	.939
3.4	.933	16.283	273.05		7 676	

FILE: IUPC90993A

STATION: 3A (Laminar)

XSTA	=	.572 [m]	DEL1	=	+1.277E-3	[m]
Of	=	1.695E-3	DEL2	×	+6.265E-4	[m]
Upw	=	12.29 [m/S]	H	*	2.038	
V150	=	1.826E-5 [m ² /5]	REdel1	•	9.657E+2	
RE≠	=	4.322E+5	REdel2	=	+4.737E+2	
Del 995	=	8.726E-3 [m]				

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սբա
į	.014	1.151	3.07	3.22	.015	3.541
2	.015	1.336	3.51	3.73	.0:8	4.441
3	.018	1.451	3.95	4.06	.021	4.599
4	.021	1.679	4.61	4.69	.024	5.074
5	.024	1.911	5.27	5.34	.027	5.676
6	.027	2.176	5.93	6.08	.031	6.519
7	.030	2.402	6.59	€.71	.034	7.092
8	.034	2.746	7.47	7.67	.039	7.554
9	.038	2.979	8.35	8.32	.043	5.087
10	.048	3.644	10.56	10.19	.095	9.148
11	.058	4.324	12.76	12.08	.068	10.005
12	.078	5.406	17.1E	15.11	.089	11.123
13	.098	6.393	21.58	17.67	.112	12.265
14	.118	7.330	25.97	20.48	.135	13.463
15	.148	8.368	32.57	23.43	.170	13.381
1 &	.178	9.258	39.17	25.87	.204	12.585
17	.238	10.434	50.18	29.16	.261	10.832
1 8	.278	11.032	61.19	30.83	.319	9.120
19	.328	11.557	72.20	32.29	.376	7.170
20	.378	11.819	83.20	33.03	.433	5.616
21	.478	12.035	105.22	33.64	.548	3.159
22	.578	12.109	127.23	33.84	.682	1.930
23	.678	12.220	149.24	34.15	.777	1.717
24	.526	12.265	182.27	34.27	, 949	1.292
25	.578	12.260	215.25	34.26	1.121	1.125
26	1.178	12.262	259.31	34.27	1.350	.547
27	1.378	12.267	303.34	34.28	1.579	. 9 £3
28	1.678	12.297	369. 38	34.36	1.923	.55
29	1.978	12.288	435,43	34.34	2.267	. 9 18

FILE: IUP090953A

STATION: 3A (Turbulent)

De1995 = 8.727E-3 [m]

	Y [cm]	U [m/s]	Y+	U+	Y/Del999	ց ս*/Սքա
1	.002	1.716	2.74	3.02	.029	4.515
2	.010	1.858	3.42	3.34	.011	5.398
3	.012	2.241	4,11	4.03	.014	€.849
4	.014	2.552	4.79	4.59	.016	8.288
5	.016	2.942	5.46	5.29	.018	9.045
5	.018	3.225	6.16	5.79	.021	10.560
7	.021	3.785	7.19	5.80	.024	11.135
5	.014	4.1E7	8.22	7.49	.028	11.668
9	.C27	4.591	5.24	8.25	.031	13.273
10	.030	4.810	10.27	8.64	.034	13.423
11	. 0 34	5.243	11.64	9.42	.039	14.087
12	.C35	5.427	13.01	9.86	.044	13.815
13	.048	6.221	16.43	11.18	.055	14.449
14	.05∂	6.767	19.55	12.16	.055	14.212
15	.078	7.412	26.71	13.32	.089	13.695
16	.095	7.827	33.55	14.06	.112	13.456
17	.118	8.184	40.40	14.71	.135	13.808
١٤	.145	8.607	50.67	15.47	.170	12.806
19	.178	9.038	60.94	16.24	.204	12.527
20	.228	9.404	78 .0 6	16.90	.261	12.426
21	.278	9.696	95.18	17.42	.319	11.780
22	.328	10.155	112.30	18.25	.376	11.415
23	.378	10.505	129.42	18.67	.433	10.815
24	.478	10.538	163.66	19.65	.548	9.363
25	.57€	11.218	197.90	20.15	.662	7.674
26	.e7a	11.412	232.13	20.50	.777	6.262
27	.828	11.574	287.49	20.79	.949	7.229
28	.978	11.652	334.85	20.93	1.121	5.337
29	1.178	11.829	403.32	21.25	1.350	4.002
30	1.378	0.0 00	471.8€	0.00	1.579	e .000

FILE: IUP@90953A

STATION: 3A (Transitional)

XSTA = .572 [m] DEL1 = +1.330E-3 [m]
Cf = 2.600E-3 DEL2 = +7.541E-4 [m]
Upw = 12.29 [m/S] H = 1.764
Visc = 1.626E-5 [m"2/S] REdel1 = 1.608E+3
REx = 4.322E+5 REdel2 = +5.702E+2

De1995 = 8.726E-3 [m]

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս¹/Սբա
1	.014	1.660	3.80	3.75	.016	7.934
2	.016	1.952	4.35	4.40	.018	9.156
3	.018	2.145	4.89	4.84	.021	10.305
4	.021	2.513	5.71	5.67	.024	11.613
5	.024	2.703	6.53	6.28	.027	12.339
6	.027	3.105	7.35	7.00	.031	13.611
7	.030	3.338	8.17	7.53	.034	13.857
8	.034	3.815	9.26	8.61	.039	14.795
ā	.Ø3€	4.044	10.35	9.12	.043	14.538
10	.048	4.696	13.07	10.59	.055	15.520
11	. c 58	5.331	15.80	12.03	. 0 EE	15.417
12	.078	6.253	21.25	14.11	.089	14.671
13	.098	6.995	26.71	15.78	.112	14.013
14	.118	7.596	32.1E	17.36	.135	14.048
15	.145	8.478	40.34	19.13	.170	13.173
16	.178	9.158	48.52	20.68	.204	12.548
17	.228	10.044	62,15	22.66	.261	12.159
18	.278	10.554	7 5.78	23.81	.319	11.410
19	.328	11.080	89.41	25.00	.376	18.381
20	.378	11.455	103.05	25.85	. 433	8.634
21	.478	11.757	130.31	26.53	.549	6.715
22	.578	11.965	157.53	27.00	.682	4.503
23	.678	12.131	184.84	27.37	.777	3.779
24	.828	12.223	225.74	27.58	.949	2.558
25	.979	12.250	266.64	27.64	1.121	1.451
26	1.178	12.260	321.17	27.66	1.350	1.020
27	1.378	12.267	375.70	27.68	1.579	.973
28	1.E78	12.297	457.49	27.75	1.923	. 9 9:
25	1.978	12.280	539.28	27.72	2.267	. 9 18

FILE: 10P090953

STATION: 3 (Laminar).

XSTA	= .572 [m]	DEL1 = +9.704E-4 [m]	3
Cf	= 1.757E-3	DEL2 = +4.904E-4 [m])
Upw	= 16.18 [m/S]	H = 1.979	
V150	= 1.8258~5 [m12/8]	REdel1 = 9.863E+2	
REx	≈ 5.691E+5	REde12 = +4.883E+2	
Del995	= 8.938E-3 [m]		

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս¹/Սբա
1	.010	1.547	3.10	3.23	.012	3.077
2	.012	1.771	3.69	3.69	.014	4.000
3	.014	2.029	4.28	4.23	.015	4.485
4	.016	2.297	4.87	4.79	.018	5.050
5	.018	2.563	5.46	5.55	.021	5.121
6	.020	2.908	6.05	€.06	.023	6.258
7	.022	3.104	6.64	6.47	.025	6.133
8	.024	3.469	7.23	7.23	.027	6.595
9	.026	3.710	7.82	7.74	. 030	6.853
10	.025	4.270	8.71	8.50	.033	7.828
11	.032	4.470	9.59	9.32	.038	7.5E5
1.2	.Ø3E	4.905	10.77	10.23	. Ø 4 1	8.893
13	.041	5.682	12.25	11.85	.045	9.871
14	.051	€.639	15.20	13.85	.058	10.863
15	.081	7. £ 88	18.15	16.03	.069	11.363
1 6	.071	8.459	21.10	17.64	. 080	12.739
17	.088	9.€93	25.53	20.21	.057	13.316
18	.105	10.781	31.43	22.46	.119	13.176
19	.136	12.298	40.29	25.65	.153	12.479
20	.166	13.421	49.14	27.99	.185	11.328
21	.196	14.129	58.00	25.46	.220	10.423
22	.236	15.071	69.80	31.43	.265	7.508
23	.285	15.555	84.56	32.48	.321	5.747
24	.33E	15.827	9 9.32	33.00	.376	4.123
25	.365	15.951	114.08	33.27	. 432	3.407
26	.48E	15.014	143.59	33.40	.544	1.889
27	.586	1E.10E	173.11	33.59	.656	1.703
28	.ee€	16.029	202.62	33.55	.769	1.269
28	.E3E	15.098	248.89	33.57	. 9 36	1.175
30	.986	16.214	291.17	33.81	1.104	1.093

31	1.136	16.123	335.44	33.52	1.272	1.041
32	1.285	16.106	379.71	33.59	1.439	.593
33	1.485	16.222	438.74	33.83	1.663	.980
34	1.686	1E.127	497.77	33.63	1.867	.918
35	1.985	16.230	586.32	33.85	2.223	.954

FILE: IUP090933

STATION: 3 (Turbulent)

XSTA	= .572 [m]	DEL1 = +1.420E-3 [m]
C f	= 4.500E-3	DEL2 = +1.014E+3 [m]
Upw	= 15.18 [m/S]	H = 1.401
V150	= 1.625E-5 [m12/5]	REdel1 = 1.414E+3
REX	= 5.891E+5	REdel2 = +1.009E+3
De 1995	S = 8.913E-3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս'/Սբա
1	. ଅଡଃ	2.819	3.78	3.67	.003	5.464
2	.010	3.390	4.72	4.42	.011	7.153
3	.012	4.019	5.67	5.24	.013	8.45E
4	.014	4.464	6.61	5.81	.0∶5	9.168
5	.016	5.237	7.56	6.82	.018	10.228
Б	.018	5.549	8.50	7.23	.020	10.E10
7	.020	€.0 57	9.45	7.89	.022	11.055
8	.022	6.636	10.39	8.63	.025	11.517
9	.024	B.720	11.34	8.76	.027	12.133
10	.027	7.394	12.75	9.63	.030	11.769
11	.078	7.E50	14.17	10.02	.034	12.112
12	.034	8.132	16.06	10.60	.038	12.129
13	.039	8.587	18.42	11.18	.044	12.193
1 4	.049	9.373	23.15	12.21	.055	11.770
15	.059	9.909	27.87	12.91	.055	11.675
1 E	.059	10.275	32.59	13.39	.077	11.227
17	. 0 84	10.757	35.68	14.02	.094	11.052
18	.104	11.118	49.12	14.49	.117	10.571
1.9	.134	11.766	63.30	15.26	.150	10.637
28	.154	12.220	77.47	15.92	.184	16.449
21	.194	12.560	91.64	16.39	.218	10.115
22	.234	13.124	110.53	17.10	.263	10.288
23	.284	13.654	134.15	17.79	.319	9.735
24	.334	14.040	157.77	18.30	.375	9.7€3
56	.384	14.350	181.38	18.70	. 431	8.888
26	.484	14.835	228.62	19.33	.543	7.605
27	.584	15.204	275.85	19.81		. Б.70 ∂
22	.884	15.288	323.09	19.92	.767	6.114
28	. 634	15.510	393.94	20.34	. 936	5.092
3.0	.984	15 .6 89	464.5€	20,44	1.104	4.797

31	1.134	15.717	535.65	20.48	1.272	3.656
32	1.284	15.767	606.50	20.55	1.441	3.444
33	1.484	0.000	700.97	0.00	1.665	0.000
34	1.684	16.057	795.44	20.52	1.889	.667
35	1.984	0.000	937.15	0.00	2.226	Ø.002

FILE: IUP@90933

STATION: 3 (Transitional)

XSTA = .572 [m] DEL1 = +1.152E-3 [m]DEL2 = +7.563E-4 [m] H = 1.523 Cf = 4.000E-3 Upw = 18.18 [m/S] Visc = 1.625E-5 [m^2/S] REA = 5.651E+5 REdel1 = 1.147E+3

De1995 = 8.913E-3 [m]

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Մբա
1	.008	2.454	3.56	3.39	.009	6.054
2	.010	2.970	4.45	4.11	.011	7.829
3	.012	3.505	5.34	4.84	.013	9.339
4	.014	3.970	6.23	5.49	.016	10.115
5	.016	4.634	7.13	5.40	.018	11.474
6	.016	4.839	8.02	6.69	.020	12.049
7	.020	5.353	8.51	7.40	.022	12.749
8	.022	5. 851	5.80	€.03	.025	13.465
9	.024	B.013	10.ES	8.31	. 0 27	13.633
10	.027	6.669	12.02	9.22	. ୭୦୦	13.E50
11	.030	6.995	13.36	9.67	. 0 3 4	13.948
1.2	.034	7.406	15.14	10.24	.©38	14.183
13	.035	7.919	17.37	10.94	. 044	13.926
14	.049	8.751	21.82	12.09	.055	13.568
15	. 053	9.384	28.27	12.97	.ØEE	12.955
18	.069	9.862	30.73	13.63	.077	12.504
17	.Ø€4	10.499	37.41	14.51	.0954	11.977
1 5	.124	11.038	46.32	15.26	.117	11.491
1 🖰	.174	11.845	59.68	18.37	. 150	11.195
20	.154	12.516	73.04	17.30	.184	11.148
21	.194	13.008	88.40	17.98	.218	11.0EC
22	.234	13.682	104.21	18.88	.263	11.005
23	.284	14.250	12E.48	19.70	.315	10.278
24	.334	14.595	148.74	20.16	.375	9.819
25	.584	14.891	171.01	20.58	.431	8.825
26	. 454	15.379	215.54	21.26	.543	B.771
27	.5:4	15.768	250.0 8	21.79	.655	
28	.684	15.677	304.61	21.94	.767	3.985
25	.834	1E.041	371.41	22.17	.936	2.284
30	. 954	16.190	438.21	22.38	1.104	1.835

REdel2 = +7.531E+2

32 33 34	1.134 1.284 1.484 1.684 1.984	16.114 16.105 16.222 16.127 16.230	505.01 571.82 660.88 749.95 883.55	22.27 22.26 22.42 22.29 22.43	1.272 1.441 1.665 1.889 2.226	1.224 1.028 .980 .918
----------------	---	--	--	---	---	--------------------------------

FILE: IUP090954

STATION: 4 (Laminar)

XSTA	= .800 [m]	DE(1) = +9.222F-4 [m]
v D > U	cec (m)	DEL1 = +9.222E-4 [m]
Ωf	= 2.200E-3	DEL2 = +5.424E-4 [m]
Upw	= 15.38 [m/S]	H = 1.700
V150	= 1.627E−5 [m°2/\$]	REdel1 = 9.285E+2
REX	= 8.057E+5	REdel2 = +5.462E+2
Del 995	= 1.339E-2 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս'/Սբա
١	.005	1.566	1.84	3.07	. 034	1.738
2	.ଉଷ୍ଟ	2.015	2.84	3.71	.005	3.033
3	.012	2.559	3.84	4.71	.005	4.432
4	.015	2.847	5.18	5.24	.012	3.773
5	.021	3.516	6.85	6.47	.015	5.195
6	.025	4.70E	8.52	8.66	.019	5.084
7	. ତ୍ରୁଟ	5.535	10.19	10.19	.023	8.840
8	.036	B.E11	11.86	12.17	.027	7.451
9	.045	7.373	15.20	13.57	.034	9.520
10	.058	8.92E	18.54	16.43	. 041	10.755
11	.085	8.598	21.88	16.55	.049	9.885
12	.078	10.185	25.21	18.75	.058	14.544
13	.098	11.625	31.89	21.40	.071	9.545
14	.12E	13.069	41.91	24. 0 E	.094	12.588
15	.155	14.169	51.93	25.08	.116	9.739
1 5	.188	14.801	B1.95	27.25	.139	9.572
17	.288	15.843	95.35	29.15	.213	5.448
1 5	.285	15.800	128.75	29.09	.288	4.445
19	.485	15.973	162.14	29.40	. 3 63	2.859
20	.635	18.059	212.24	25.56	. 475	2.953
21	.786	16.167	283.33	29.60	.587	2.472
22	.985	16.269	329.13	29.95	.73E	1.815
23	1.198	16.311	395.62	30.03	.885	1.514
24	1.385	18.362	462.72	30.12	1.025	1.341
25	1,585	18.373	529.51	30.14	1.184	1.005
2E	1.785	1E.377	596.31	30.15	1.333	1.043
27	1.986	18.389	663.10	30.17	1,483	. 584
25	2.165	16.292	729.69	29.99	1.632	.93€
29	2.488	16.383	830. 0 9	38.16	1.855	.974
30	2.786	16.374	930.26	30.14	2.080	.944

FILE: IUP090984

STATION: 4 (Turbulent)

XSTA	=	.800 [m]	DEL 1	=	+2.121E-3	[m]
Cf	×	4.250E-3	DEL2	=	+1.614E-3	[m]
Upω	=	15.38 [m/S]	Н	=	1.314	
V150	=	1.627E-5 [m°2/S]	REdel1	=	2.1366+3	
REA	=	€.@57E+5	REdel2	=	+1.625E+3	
De1985	=	1.339E-2 [m]				

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	ս՝/Սբա
1	.005	2.124	2.55	2.81	.004	3.429
2	.009	2.684	3.95	3.82	. ଜଉଞ	5.279
3	.012	3.676	5.34	4.67	.023	6.981
4	.015	4.729	7.19	6.25	.012	8.501
5	.021	5.8 36	9.52	7.73	.015	5.875
6	.025	6.2 61	11.84	9.09	.019	10.609
7	.030	7.575	14.16	10.03	.023	10.504
ε	.035	8.270	16.48	10.95	.027	10.75E
G	.045	9.198	21.12	12.18	.034	10.663
10	.05€	9.766	25.76	12.93	. C41	10,103
1.1	.ØEE	10.166	30.40	13.47	.049	10.077
12	.078	18.452	35.05	13.84	.055	9.482
13	.095	10.988	44.33	14.55	.071	9.070
14	.126	11.529	58.28	15.27	.054	8.560
15	.155	11.881	72.18	15.71	.116	8.519
1 E	.186	12.231	86.11	16.20	.139	8.391
17	.205	13.048	132.53	17.28	.213	8.35∴
18	.385	13.703	178.54	18.15	.288	8.CI3
19	,485	14.245	225.3€	18.87	.383	7.523
20	.635	14.753	294.59	19.54	.475	6.763
21	.766	15.142	364.62	20.00	.587	6.033
22	.985	15.387	457.46	20.38	.736	5.407
23	1.186	15.657	550.29	20.74	.885	4.838
24	1.386	15.714	643.13	20.81	1.035	4.555
25	1,585	15.749	735.97	20.85	1.154	3.712
26	1.785	15.876	e28.80	21.03	1.333	3.883
27	1.988	15.928	921.E4	21.10	1.483	3.022
28	2.186	15.588	1014.48	20.62	1.E32	1.933
29	2.426	0.000	1153.73	e.ee	1.855	0.000
30	2.785	0.000	1292.99	0.00	2.020	0.000

FILE: IUP@90984

STATION: 4 (Transitional)

XSTA	= .800 [m]	DEL1 = +1.862E-3 [m]
Cf	= 4.200E-3	DEL2 = +1.188E-3 [m]
Upw	= 16.38 [m/S]	H - 1.399
Visc	= 1.627E-5 [m/2/S]	REdel1 = 1.673E+3
REX	= 6.057E+5	REdel2 = +1.196E+3
De1595	5 = 1.339E+2 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	u¹/Upw
1	.005	2.066	2.54	2.75	. 004	3.393
2	600.	2.851	3.92	3.80	.005	5.308
3	.012	3.547	5.31	4.86	.009	7.011
4	.016	4.703	7.15	6.27	.012	8.555
5	.021	5.803	9.46	7.73	.015	9.971
E	.035	6.837	11.77	9.11	.019	10.852
7	.@30	7.556	14.07	10.07	.023	10.655
8	.036	8.254	16.38	11.00	.027	10.773
9	.045	9.190	21.00	12.24	.034	10.682
10	.055	5.760	25.61	13.00	. 041	10.114
1.1	.065	10.151	30.22	13.54	.049	10.099
12	.076	10.449	34.84	13.92	.055	9.538
13	.098	10.992	44.07	14.64	.071	9.076
14	.126	11.541	57.91	15.38	.094	€.€34
15	.155	11.885	71.76	15.84	.116	8.650
16	.188	12.254	85.60	16.33	.139	8.525
17	.285	13.051	131.74	17.44	.213	8.579
1 8	.395	13.760	177.89	18.33	.263	8.217
15	.485	14.3E9	224.03	19.14	. 353	7.781
20	.635	15.039	293.28	20.04	.475	6.990
21	.785	15.608	3E2.47	20.79	.587	5.741
22	.985	15.989	454.76	21.30	.73E	4.225
23	1.188	15.216	547.05	21.60	.885	2.716
24	1.386	16.321	639.34	21.75	1.035	1.988
25	1.585	16.360	731.63	21.80	1.164	1.312
ΩE	1.795	16.373	823.91	21.81	1.333	1.131
27	1.988	16.387	916.20	21.83	1.453	. 954
26	2.188	16.291	1003.49	21.70	1.632	.947
2.6	2.488	16.383	1146.53	I1.E3	1.856	. 574
36	1.788	15.374	1285.36	21.82	2.030	. 944

FILE: IUP090995

STATION: 5

XSTA = 1.029 [m] DEL1 = +2.093E-3 [m]

Of = 4.050E-3 DEL2 = +1.538E-3 [m]

Upw = 15.81 [m/S] H = 1.3E1

Visc = 1.629E-5 [m^2/S] REdel1 = 2.160E+3

RE = 1.0E0E+6 REdel2 = +1.587E+3

Del995 = 1.749E-2 [m]

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սբա
	225	2.319	2.93	3. 0 7	.004	4.051
1	. ଅଡ଼େ		3.86	3.87	.005	5.313
2	.ଉଷ୍ଟ	2.925	4.76	4.54	. ØØ6	€.209
3	.010	3.435	Б. E4	€.08	.002	8.034
4	.014	4.597	8.96	7.72	.011	9.452
5	.019	5.838	6.30			
		c 773	11.29	8.90	.014	10.052
6	.024	6.732	15.93	10.88	.020	10.510
7	.034	8.228	20.58	12.01	.025	10.302
8	.044	9.084	25.22	12.85	.031	9.695
9	.054	9.753	34.51	13,51	.042	9.183
េខ	.074	10.525	J4.J1			
			43.80	14.59	.054	8.904
11	.054	11.041	62.38	15.35	.077	8.003
12	. 134	11.510	90.25	16.28	.111	7.850
13	.194	12.319	136.70	17.26	.168	7.504
14	.294	13.054	183.15	18.09	.225	7.650
15	.394	13.685	105.15	10.03		
			229.60	18.85	.283	7.359
16	.494	14.251	299.27	19.68	.3E8	7.147
17	.£44	14.830	392.17	20.47	.483	6.200
15	.844	15.483	485.0E	21.11	.597	5.101
i 5	1.044	15.958	577.9E	21.65	.711	4.111
20	1.244	16.380	577.36	21.00		
		.5.501	670.85	21.81	.826	3.051
21	1.444	16.501	763.75	22.09	.948	2.254
22	1.E44	16.708	879.88	22.15	1.083	1.515
23	1.994	1E.752	998.00	22.08	1.226	1.182
24	2.144	15.701	1135.34	22.23	1.398	1.055
25	2.444	18.615	1100.04			
_		·r 007	1274.69	22.21	1.569	1.005
26	2.744	15.802	1214.03			·

FILE: 1091351

c	т	Δ	Ť	7	0	ħ,	٠	1	
_	- 4		- 1	4			•		

Tw Tinf Qw Yeff	= .110 = 34.0 = 29.5 = 1.73 = +5.0 = 13.2	7 (C) 5 (C) 4E+2 (W/m^2) 00E-5 (m)	Delment Delmoon Rementh Prit	r = 1.589E h = 1.604E d = 6.857E = 1.825E = 0.000 = 13.73	-4 [m] -4 [m] +2	
	Y [cm]	T [C]	Y+	T+	Y/Del995	DT/DTw
1	+.005	0.000	0.00	0.00	0.000	0.000
2 3 4 5 6	+.007 +.009 +.009 +.010 +.012	33.646 33.556 33.489 33.374 33.209	2.36 2.70 3.04 3.38 4.05		.044 .050 .057 .063 .076	.095 .115 .130 .156 .193
7 8 9 10 11	+.014 +.016 +.018 +.020 +.022	32.896 32.753	4.73 5.42 5.10 6.78 7.46	3.71 4.34 4.87 5.29 5.82	.088 .101 .113 .126 .138	.224 .263 .294 .319
12 13 14 15 16	+.026 +.030 +.034 +.038 +.042	32.250 31.996 31.820 31.624 31.445	8.83 10.21 11.58 12.96 14.34	7.69	.164 .189 .214 .239 .264	.407 .463 .503 .546 .586
17 18 19 20 21	+.045 +.051 +.055 +.051 +.066	31.273 31.084 30.905 30.741 30.594	15.72 17.45 19.18 20.91 22.64	11.09	.289 .321 .352 .384 .415	.624 .667 .705 .743
23 24	+.071 +.081 +.081 +.101 +.111	30.452 30.227 30.061 29.917 29.815	24.36 27.85 31.31 34.78 38.25	13.46 14.31 14.94 15.48	.447 .510 .573 .636 .699	.808 .858 .895 .927
27 28 29 30 31	+.121 +.141 +.161 +.181 +.201	29.743 29.647 29.607 29.59) 29.551	41.71 48.64 55.55 62.45 69.35	16.14 16.50 16.65 16.71	.7E1 .687 1.013 1.139	.985 .987 .995 .999
31 33 34	+.231 +.291 +.391	29.598 29.588 29.589	79.71 100.41 134.91	16.71 16.72 16.72	1.454 1.831 2.461	1. 0 00 1.000 1.000

FILE: T091382

STATION: 2	c	Ŧ	A	T	Ī	ON	:	2
------------	---	---	---	---	---	----	---	---

	= 37.29 = 29.44	; [C] ; [C] ;E+2 [W/m ²] ;GE-4 [m]	Del-enth Del-cond Re-enth Prt	= 3.54EE- = 3.713E- = 1.331E- = 3.647E+ = 0.00C = 53.39	4 [m] 3 [m] 2	
	Y [cm]	т [С]	Y+	T+	Y/De1995	DT/DTw
1	+.010	Ø.000	ଡ.ଡଡ	0.00	0.000	0.000
2 3 4 5 6	+.012 +.014 +.016 +.018 +.020		3.38 3.94 4.51 5.08 5.65	2.65 2.87 3.55 4.16 4.60	.034 .039 .045 .051	.099 .107 .132 .155
? 9 10	+.022 +.024 +.027 +.030 +.034		6.21 6.79 7.64 8.50 9.64	5.13 5.60 6.45 7.16 7.66	.052 .058 .076 .085 .098	
12 13 14 15	+.038 +.044 +.049 +.054 +.064		11.08 12.52 13.96 15.41 18.31	8.81 9.55 10.55 11.36 12.97	.110 .124 .139 .152 .180	
17 18 19 20 21	+.074 +.084 +.094 +.104 +.114	33.125 32.689 32.291 32.008 31.664	21.22 24.15 27.09 30.02 32.97	14.43 15.98 17.40 18.41 19.64	.209 .237 .265 .293 .322	
22 23 24 25 28	+.124 +.134 +.144 +.159 +.174	31.124 30.853 30.545	35.91 38.67 41.84 46.28 50.70	20.60 21.58 22.55 23.66 24.38	.350 .376 .406 .448 .491	.791 .826
27 28 29 30 31	+.194 +.214 +.244 +.274 +.304	30.137 29.503 29.748 25.886 25.610	56.60 62.52 71.35 80.15 88.98	25.14 25.99 26.55 26.77 27.05	.547 .604 .698 .773 .857	
32 33	+.334 +.364	29.563 29.537	97.77 106.57	27.22 27.31	.942 1.027	.955 .956

34 35 36	+.424 +.524 +.624	29.516 29.507 29.505	124.15 153.44 182.72	27.39 27.42 27.43	1.196 1.478 1.760	1.000
37	+.774	29.506	226.64	27.42	2.183	1.000
38	+.974	29.507	285.21	27.42	2.747	1.033

FILE: T091383A

FILE:	T091353A					
STATI	ON: 3A					
Tinf Qw Yeff	= 36.09 = 29.63	(6) (6) E+2 (W/m ² 2) 0E-4 (m)	Del-enth Del-cond Re-enth Prt	= 9.271E- = 8.E32E- = 1.399E- = 6.391E+ = 0.000 = 77.49	4 [m] 3 [m] 2	
	Y [cm]	T [0] T	Υ+	T+	Y/De1995	DT/DTw
1	+.018	0.000	0.00	0.00	0.000	0.000
2 3 4 5 6	+.020 +.022 +.024 +.026 +.028	34.804		3.34 4.05 4.57 5.28 5.47	.022 .024 .026 .028	.200
7 8 9 10 11	+.030 +.035 +.040 +.045 +.050		7.93 9.27 10.60 11.95 13.28	5.95 7.25 8.11 9.17 9.42	.032 .038 .043 .049 .054	.345
12 13 14 15	+.055 +.065 +.075 +.085 +.105		14.61 17.25 19.98 22.66 26.06	9.79 10.70 11.68 12.14 14.19	.059 .070 .051 .092 .113	.404
17 18 19 20 21	+.125 +.145 +.165 +.185 +.215	32.431 32.151 31.834 31.555 31.216		15.14 16.31 17.65 18.82 20.25	.135 .156 .178 .200 .232	.613
22 23 24 25 26	+.285	30.995 30.677 30.578 30.438 30.238	66.11 71.56 79.80 87.99 98.93		.264 .286 .318 .351 .394	
27 28 25 30 31	+.415 +.4E5 +.515 +.585 +.685	30.075 29.993 29.896 25.893 25.764	112.59 126.21 139.86 153.45 160.74	25.09 25.43 25.85 25.86 26.41	.448 .502 .555 .609 .717	.937 .950 .965 .965

 32
 +.765
 29.738
 207.95
 26.52
 .825
 .988

 33
 +.865
 29.725
 235.15
 26.58
 .933
 .951

35	+.965 +1.165 +1.365	29.688 29.673 29.674		26.73 26.80 26.79	1.041 1.257 1.472	.999
	+1.665	29.667 29.672	452.79 534.35		1.796	

FILE: T091353

51	AT	ION:	3
----	----	------	---

Tw Tinf Qw Yeff	= .572 = 34.49 = 29.39 = 1.699 = +1.10 = 13.20	3 [C] 5 [C] 8E+2 [W/m ²] 80E-4 [m]	Del−enth Del−cond Re−enth Prt	= 9.753E = 1.027E = 7.889E = 1.010E = .950 = 98.23	-3 (m) -4 (m) +3	
				_		
	Y [cm]	T [C]	Y+	T+	Y/De1995	שומ/ום
1	+.011	0.000	2.03	0.00	0.000	0.000
2	+.013	33.724	5.66	3.74	.013	.152
3	+.015	33.567	6.54	4.50	.015	.183
4	+.217	33.409	7.42	5.27	. e 17	.215
5		33.321	8.29	5.70	.019	.232
6	+.021	33.138	9.17	6.59	.022	.268
7	+.023	33.048	10.05	7.03	.024	
8	+.025	32.982	10.93	7.35	.026	.299
9	+.030	32.669	13.14	8.88	.031	.361
10		32.550	15.34	9.42	.036	.383
11	+.045		19.75	10.68	.045	.434
12	+.055	32.11B	24.17	11.59	.055	
13	+.065	31.947	28.59		.057	.504
	+.075	31.819	33.02	13.05	.077	.529
		31.590	41.88	14.23	.057	
16	+.115	31.375	50.75	15.24	.118	.E17
17	+.135	31.228	59.63	15.97	.138	.E4E
18	+.155		E5.54	16.84	.159	.681
19	+.185		81.92	18.04	.193	.729
20	+.215		95.28	18.71	.220	.75€
21	+.245	30.460	103.70	19.76	.251	.797
22	+.295	30.304	131.01	20.55	.302	.829
23	+.345	30.136	153.35	21.38	.354	
24	+.445	29.912	198.07	22.49	.458	
25	+.545	29.733	242.84		.559	
2€	+.645	29.623	287.58	23.94	.BE1	.964
27	+.745	29.557	332.29	24.27	.764	.977
28	+.845	29.515	376.99	24.48	.866	.985
29	+.945	25.471	421.71		.969	.954
30	+1.045	29.448	46E.40	24.81	1.072	.998
31	+1.245	29.440	5 55.69	24.85	1.277	1.000
32	+1,445	29.433	644.98	24.89	1.452	1.000
33	+1.745	29.440	778.25	24.85	1.769	1,000
P. F.						

FILE: T@91384

STATION: 4

Xsta	=	.600 (m)	Del-ther	=	1.539E-2 [m]
Ťω	=	33.69 [0]	Del-enth	=	1.729E-3 [m]
Tinf	=	29.25 [C]	Del-cond	*	6.628E-4 [m]
Qw	=	1.739E+2 [W/m"2]	Referith	=	1.725E+3
Yeff	=	+7.003E-5 [m]	Prt	=	.950
Cond	=	13.20	Qadded	=	141,42 [W/m]

	Y [cm]	T [C]	Y+	T+	Y/Del995	DT/DTw
1	+.007	ଡ.୭୭୦	0.00	6.63	ø.002	0.002
2	+.009	3 3.1 5 9	4.08	2.62	.006	.122
3	+.011	33.071	4.99	3.05	.007	.142
4	+.013	32.901	5.90	3.83	.008	.181
5	+.015	32.783	E.81	4.48	.010	.205
6	+.017	32.655	7.73	5.11	.011	.238
7	+.019	32.493	8.€4	5.91	.0:2	.275
8	+.021	32.405	9.56	6.35	.014	.296
9	+.026	32.164	11.05	7.55	.017	.351
10	+.031	31.984	14.14	8.44	.ece	.392
1 1	+.036	31.835	1E.44	9.16	.023	.427
12	+.041	31.723	18.73	9.74	.027	.452
13	+.051	31.547	23.33	10.E1	.033	.493
1 4	+.051	31.414	27.90	11.28	.040	.513
15	+.071	31.315	33.52	11.77	.045	.54E
16	+.091	31.166	41.71	12.52	.059	.550
17	+.111	31.049	50.92	13.10	.072	.507
18	+.131	30.979	EØ.12	13.45	.085	.613
1 🖰	+.161	30.E81	73.92	1,3.94	.105	.648
20	+.211	30.728	95.97	14.71	.137	.68
21	+.261	30.599	120.04	15.35	.170	.718
22	+.361	30.393	166.23	16.39	.235	.758
23	+.461	30.197	212.51	17.36	.300	.803
24	+.5£1	30.021	258.88	18.26	.365	.843
25	+.711	29.826	328.47	19.24	.452	. 8 88
25	+.861	29.647	398.18	20.14	.560	. 529
27	+1.0E1	29.512	491.06	20.63	.659	.9E0
2.5	+1.261	29.413	583. 5 8	21.33	.819	.983
2.5	+1.411	29.329	853.50	21.45	.917	989
30	+1.561	29.35E	723.13	21.82	1.014	
31	+1.711	29.344	752.67	21.68	1.112	.999
32	+1,951	25.340	862.18	21.78	1.209	1.000
33	40.0E1	29.335	554.87	21.72	1,339	1.001

FILE: 1091385

STATION: 5

Tw Tinf Qw	= +5.00	[C] 	Del-enth Del-cond Re-enth Prt	= 2.025E-2 [r = 2.110E-3 [r = 6.809E-4 [r = 2.164E+3 = .950 = 181.54 [W/r	. J 1]	
				`		
	Y [cm]	T [C]	Y+	T +	Y/De1995	DT/DTw
1	+.005	ଡ.୧୦୭	0.08	0.00	0.000	0 .000
2	+.008	33.071	3.66	2.68	.004	.121
3	+.010	32.958	4.57	3.25	.005	.146
4	+.012	32.865 32.721 32.553	5.49	3.71	.005	.167
5	+.014	32.721	6.41		.007	
6	+.016	32.553	7.33	5.27	.008	.237
7	+.018	32.362	8.26	6.23	.ଡଡ଼	.280
8	+.020	32.299	9.18	6.54	.010	.294
9	+.023	32.139	10.57	7.35	.011	
10	+.028	31.987	12.88	8.11	.014	. 364
11	+.033	31.825	15.19	8.92	.016	.403
12	+.038	31.696	17.50	9.62	.015	.431
13	+.043	31.590	18.82	10.16	.021	
14	+.053	31.431		10.91	.025	
15		31.304		11.55	.031	.517
16		31.134		12.41	.041	.555
17	+.103	31.005	47.63	13.05	.051	.584
18	+.133	30.871		13.74	.068	
15		30.704		14.58	.090	
20		30.577		15.23	.115	.690
21	+.283	30.442	131.30	15.91	.140	.710
22	+.333	30.370	154.58	16.28	.164	.726
23		30.219		17.04	.214	.760
23 24	+.433 +.533	30.039		17.96	.263	. 801
25	+.533 +.683	29.875		16.60	.337	.835
25	+.663 +.863	29.608	411.65	20.15	.43E	.897
			F25 54	20.00	For	C 3.5
27	+1.083	29.470	505.31	20.86	.535 .634	. 92 <i>8</i> . 958
26	+1.283	29.348	599.05 692.76	21.49 21.90		.955
29	+1.483	29.267	785.47	22.22	.732 .831	
30	+1.EE3	29.204 29.184	755.47 880.04	22.32	.930	.952
31	+1.883	23.184	କ୍ରେଡ : ଅଧ	± 4 + 2 4	. 556	. 3
32	+2.083	29.169	973.60	22.40	1.009	.998
3 3	+2.383	29.154	1113.91	22.48	1.177	. 9 93

34	+2.683	29.147	1254.20	22.51	1.325	1.001
_	+3.163		1487.87	22.48	1.572	. 9 59

FILENAME: ST0907

Uinf: 16.63 [m/s]

HEAT FLUX TO HEATER: 234.7 [W/m^2]

HEAT LOSS THROUGH BACK WALL OVER DA: .108 [W]

FREESTREAM TEMPERATURE: 28.76 [C]

	Twall [C]	RE×	Enth [m]	Ocony [W/m^2]	St
1	37.11	+3.780E+4	+2.582E-6	+1.715E+2	+1.098E-3
ż	36.20	+6.316E+4	+3.589E-5	+1.885E+2	+1.351E-3
3	35.38	+8.863E+4	+7.988E-5	+1.933E+2	+1.553E-3
4	34.57	+1.142E+5	+1.251E-4	+1.984E+2	+1.816E-3
5	35.11	+1.394E+5	+1.556E-4	+1,949E+2	+1.E33E-3
5	35.77	+1.644E+5	+1.821E-4	+1.909E+2	+1.450E-3
7	36.15	+1,895E+5	+2.078E-4	+1.888E+2	+1.361E-3
8	36.53	+2.145E+5	+2.275E-4	+1.867E+2	+1.280E-3
9	37.14	+2.394E+5	+2.419E-4	+1.830E+2	+1.165E-3
10	37.72	+2.641E+5	+2.632E-4	+1.794E+2	+1.069E-3
11	37.64	+2.893E+5	+2.907E-4	+1.801E+2	+1.083E-3
12	37.71	+3.144E+5	+3.182E-4	+1.796E+2	+1.071E-3
13	37.63	+3.397E+5	+3.485E-4	+1.801E+2	+1.064E-3
14	37.56	+3.649E+5	+3.860E-4	+1.805E+2	+1.096E-3
15	37.16	+3.905E+5	+4.316E-4	+1.829E+2	+1.162E-3
16	36.86	+4.161E+5	+4.805E-4	+1.847E+2	+1.21BE-3
17	36.50	+4.417E+5	+5.435E-4	+1.857E+2	+1.286E-3
18	35.92	+4.678E+5	+6.110E-4	+1.903E+2	+1.416E-3
19	35.68	+4.934E+5	+6.748E-4	+1.916E+2	+1.474E-3
			17 5045 4	+1.935E+2	+1.567E-3
20	35.33	+5.192E+5	+7.594E-4	+1.955E+2	+1.720E-3
21	34.63	+5.453E+5	+8.600E-4 +9.442E-4	+1.988E+2	+1.856E-3
22	34.45	+5.713E+5		+1.983E+2	+1.89SE-3
23	34.35	+5.9692+5	+1.009E-3	+1.997E+2	+1.930E-3
24	34.26	+6.225E+5	+1.085E-3 +1.191E-3	+2.009E+2	+2.017E-3
25	34.05	+6.482E+5	+1.191E-3 +1.309E-3	+2.027E+2	+2.159E-3
26	33.74	+6.743E+5	+1.395E-3	+2.040E+2	+2.267E-3
27	33.53	+7.0016+5	+1.415E-3	+2.040E+2	+2.267E-3
28	3 3.53	+7.256E+5 +7.5 0 5E+5	+1.438E-3	+2.024E+2	+2.136E-3
29	33.78	+/.505075	71.436E 3	CE, DE VE	• • • • • • • • • • • • • • • • • • • •
30	33.77	+7.780E+5	+1.501E-3	+2,026E+2	+2.147E-3
31	33.73	+8.015E+5	+1.5898-3	+2.028E+2	+2.166E-3
32	33.55	+8.274E+5	+1.669E-3	+2.039E+2	+2.259E-3
33		+8.527E+5	+1.676E-3	+2.037E+2	+2.237E-3
34	33.84	+8.776E+5	+1.708E-3	+2.021E+2	+2.111E-3
35		+9.033E+5	+1.788E-3	+2.028E+2	+2.1E7E-3
36		+9.288E+5	+1.826E-3	+2.030E+2	+2,184E-3
37		+9.539E+5	+1.834E-3	+2,023E+2	+2.120E-3
38		+9.790E+5	+1.892E-3	+2.014E+2	+2.0598-3
39		+1.005E+B	+2.008E-3	+2.024E+2	+2.13BE-3

```
40
        33.63
                   +1.031E+6
                                  +2.092E-3
                                                 +2.034E+2
                                                                +2.216E-3
 41
        33.65
                   +1.056E+6
                                  +2.140E-3
                                                 +2.032E+2
                                                                +2.203E-3
 42
        33.57
                   +1.082E+6
                                  +2.148E-3
                                                 +2.032E+2
                                                                +2.196E-3
 43
        33.87
                   +1.105E+6
                                  +2.165E-3
                                                 +2.019E+2
                                                                +2.097E-3
 44
       33.85
                   +1.132E+6
                                  +2.229E-3
                                                 +2.021E+2
                                                                +2.109E-3
 45
       33.82
                   +1.157E+6
                                  +2.347E-3
                                                 +2.022E+2
                                                                +2.119E-3
 46
       33.56
                   +1.184E+B
                                  +2.444E-3
                                                 +2.038E+2
                                                                +2.251E-3
 47
       33.65
                  +1.209E+5
                                  +2.432E-3
                                                 +2.033E+2
                                                                +2.204E-3
 48
       33.84
                  +1.234E+6
                                  +2.454E-3
                                                 +2.021E+2
                                                                +2.112E-3
 49
       33.79
                  +1.259E+B
                                  +2.528E-3
                                                 +2.024E+2
                                                                +2.136E-3
 50
       33.76
                  +1.285E+6
                                  +2.643E-3
                                                 +2.026E+2
                                                                +2.150E-3
 51
       33.56
                  +1.311E+6
                                  +2.744E-3
                                                 +2.038E+2
                                                                +2.254E-3
 52
       33.50
                                  +2.735E-3
                  +1.336E+8
                                                 +2.035E+2
                                                                +2.233E-3
61
      32.80
                  +1.569E+6
                                                +2.081E+2
                                                               +2.728E-3
       33.41
 62
                  +1.592E+6
                                                +2.046E+2
                                                               +2.332E-3
       33.73
                                   ----
 63
                   +1.616E+6
                                                +2.028E+2
                                                               +2.163E-3
 Б4
       33.85
                                   ----
                                                               +2.101E-3
                   +1.641E+6
                                                +2.020E+2
       41.63
                                   ____
 65
                   +1.629E+6
                                                +1.547E+2
                                                               +6.358E-4
       48.73
 66
                   +1.622E+6
                                   -----
                                                +1.108E+2
                                                               +3.015E-4
 67
                                   -----
       34.19
                   +1.715E+6
                                                +2.001E+2
                                                               +1.956E-3
 88
       34.00
                   +1.742E+8
                                                +2.012E+2
                                                               +2.039E-3
 69
       32.84
                   +1.773E+6
                                   ____
                                                +2.078E+2
                                                               +2.699E-3
 70
       33.20
                   +1.797E+6
                                   -----
                                                +2.058E+2
                                                               +2.455E-3
71
       3E.07
                  +1.807E+6
                                   ----
                                                +1.893E+2
                                                               +1.380E-3
72
       37.07
                                   -----
                  +1.827E+6
                                                +1.834E+2
                                                               +1.178E-3
73
       35.38
                  +1.856E+6
                                   ----
                                                +1.875E+2
                                                               +1.311E-3
74
       37.24
                  +1.877E+5
                                   -----
                                                +1.824E+2
                                                               +1.148E-3
75
       37.17
                  +1.902E+6
                                   ____
                                                +1.828E+2
                                                               +1.1B@E-3
76
       37.35
                  +1.926E+6
                                   -----
                                                +1.818E+2
                                                               +1.130E-3
77
       37.48
                  +1.951E+6
                                                +1.810E+2
                                                               +1.108E-3
78
       37.27
                  +1.977E+8
                                                +1.822E+2
                                                               +1.142E-3
79
       37.55
                  +2.001E+6
                                                +1.80EE+2
                                                               +1.096E-3
80
       37.48
                                   -----
                  +2.025E+6
                                               +1.810E+2
                                                               +1.108E-3
81
       37.44
                  +2.052E+6
                                                +1.812E+2
                                                               +1.114E-3
82
       37.12
                  +2.079E+6
                                                +1.832E+2
                                                               +1.170E-3
83
       35.87
                  +2.112E+6
                                  -----
                                                +1.905E+2
                                                               +1.427E-3
84
       33.80
                                  -----
                  +2.150E+6
                                                +2.024E+2
                                                               +2.132E-3
85
       34.07
                                  -----
                                                               +2.007E-3
                  +2.173E+6
                                               +2.008E+2
                                  ----
86
       34.44
                  +2.195E+6
                                                +1.987E+2
                                                               +1.858E-3
87
       33.55
                  +2.228E+8
                                               +2.038E+2
                                                              +2.258E-3
86
       33.85
                  +2.251E+B
                                               +2.021E+2
                                                              42.105E-3
89
       33.99
                  +2.276E+6
                                  ----
                                               +2.013E+2
                                                              +2.043E-3
                  +2.300E+6
90
       34.14
                                  -----
                                               +2.004E+2
                                                               +1.977E-3
                  +2.325E+6
91
      34.25
                                  -----
                                               +1.998E+2
                                                               +1.533E-3
      34.47
                  +2.349E+B
                                               +1.986E+2
                                                              +1.849E-3
```

67	34.34	+2.375E+6		+1.993E+2	+1.896E-3
93		+2.403E+6		+2.014E+2	+2.050E-3
94	33.98	_		+1.995E+2	+1.911E-3
95	34.31	+2.426E+6		+2.003E+2	+1.9888-3
96	34.17	+2.452E+6		+2.001E+2	+1.950E-3
97	34.21	+2.477E+6			+2.043E-3
98	33.99	+2.504E+6		+2.013E+2	
99	34.65	+2.525E+6		+1.975E+2	+1.762E-3
100	33.69	+2.558E+5		+2.030E+2	+2.187E-3
101	33.79	+2.582E+6		+2.024E+Z	+2.136E-3
102	33.68	+2.608E+6		+2, 0 31E+2	+2.191E-3
102	••••				
		ROSS-SPAN DATA***	**********		
*****		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	77 00	+2,639E+6		+2.071E+2	+2.602E-3
103	32.98			+2.023E+2	+2.124E-3
104	33.82	+2.658E+6		+2.017E+2	+2.072E-3
105	33.93	+2.683E+6		+2.015E+2	+2.061E-3
105	33.95	+2.708E+6		- · · ·	+1.977E-3
107	34.14	+2.732E+6		+2.004E+2	
1 ଡ ିଚ	34.11	+2.758E+6		+2.006E+2	+1.990E-3
105	34.10	+2.783E+6		+2.007E+2	+1.994E-3
110	34.05	+2.809E+6		+2.010E+2	+2.018E-3
111	34.14	+2.834E+B		+2.004E+2	+1.977E-3
112	34.09	+2.860E+B		+2.007E+2	+2.000E-3
113	34.02	+2.885E+6	`	+2.012E+2	+2.032E-3
		+2.812E+6		+2.015E+2	+2.057E-3
114	33.96	-		+2.020E+2	+2.058E-3
115	33.87	+2.938E+6		+2.026E+2	+2.151E-3
116	33.76	+2.964E+6		-	+2.253E-3
117	33. 5 6	+2.991E+6		+2.038E+2	+2.407E-3
118	33.28	+3.019E+6		+2.053E+2	72,467E-3
*****	* * * * * * * * * * (CROSS-SEAN DATA***	*********		
119	33.01	+3.047E+B		+2.069E+2	+2.580E-3
120	34.18	+3.082E+6		+2.003E+2	+1.953E-3
121	34.25	+3.087E+6		+1.998E+2	+1.933E-3
	34.23	+3.112E+5		+1.999E+Z	+1.940E-3
122		+3.139E+6		+2.005E+2	+1.9838-3
123	34.13			+2.083E+2	+1.963E-3
124	34.18	+3.164E+6		+2.009E+2	+2.011E-3
125	34.05	+3.190E+6		+2.012E+2	+2.039E-3
126	34.00	+3.216E+6		+2.029E+2	+2.175E-3
127	33.71	+3.244E+5			+2.279E-3
128	33.51	+3.272E+6		+2.040E+2	T_ , Z 3E " J
****	*********	CROSS-SPAN DATA***	******		
129	32.78	+3.304E+6		+2.062E+2	+2.741E-3
130	34.13	+3.317E+6		+2.005E+2	+1.983E-3
131	34.50	+3.338E+E		+1.578E+2	+1.798E-3
132	34.38	+3.3656+5		+1.991E+2	+1.883E-3
	34.05	+3,384E+6		+2.00BE+2	+2.011E-3
133		+3.504E+6		+2.458E+2	-4.226E-3
134	25.70			+2.240E+2	+1.03EE-2
135	25.93	+3.48BE+B		+2.00BE+2	+1.980E-I
136	34.11	+3.489E+6		+2.005E+2	+2.057E-3
137	33.9£	+3.495E+6			+2.057E-3
138	33. 9 6	+3.522E+6		+2.015E+2	ت بالنابية،

TRANSITIONAL FLOW : Station 2
RAW DATA--FILE NAME: IUU@\$1552

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S] v'	[m/s]	u'v' [m2/S2]	Gamma
1	.050	€.€79	240	1.564	.540	121	.050
2	.059	9.439	357	1.636	.536	118	.083
3	.063	10.670	445	1.E73	.549	142	.079
4	.113	12.494	485	1.696	.531	214	.077
5	.143	13.909	561	1.555	.458	083	.0E1
6	.173	14.854	568	1.354	.452	076	.050
7	.203	15.559	528	1.005	.384	052	.041
8	.233	15.849	530	.894	.334	050	.035
9	.263	16.068	498	.748	.314	080	. 0 39
10	.293	16.228	502	.525	.247	022	.027
1.1	.323	16.279	483	.510	.250	051	.026
12	.353	16.352	484	.408	.220	032	.018
13	.403	1E.386	-,474	.265	.182	005	.009
14	.453	16.426	-,465	.198	.194	008	.010
15	.503	16.427	4B1	.204	.203	015	.005
16	.5 83	16.440	4E3	.148	.198	002	. ଡ ଥା

Upu [m/s]= 16.29 DEL985 [cm]= .318 Cf= 1.700E-3

TRANSITIONAL FLOW :

N	Y/DELTA	U/Upw	u¹/Upw	v*/Upw	o'v'rUtau^2
1	.18898	.53280	.09501	.03317	.53818
2	.21417	.57541	.10041	.03252	.52443
3	.26142	.65502	.10272	. 0 3370	.E2927
4	.35591	.76897	.10414	.03262	.94820
5	.45039	.85363	.09545	.02871	.36639
€	.54498	.91167	.08314	.02775	.33902
7	.62937	.95515	.06169	.02357	.48797
8	.73386	.97294	.05486	.02053	.22238
9	. 82835	.98535	.04595	.01925	.35545
10	.92283	.99622	.03222	.01519	.09930
11	1.01732	.99933	.03129	.01533	.22403
12	1.11181	1.00379	.02504	.01353	.14120
13	1.25529	1.00592	.01628	.01118	.02336
14	1.43677	1.00935	.01218	.01191	.03502
15	1.58425	1.00839	.01251	.01245	.06564
16	1.83622	1.00521	. 0 0906	.01215	.00917

LAMINAR FLOW : Station 3A

RAW DATA--FILE NAME: 100091553A

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S] v'	[m/s]	u'v' [m2/92]	Gamma
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	.050 .085 .125 .225 .325 .425 .525 .625 .825 .925 1.075 1.225	5.117 6.303 8.035 10.556 11.603 11.902 12.034 12.04 12.133 12.132 12.135 12.137 12.137	0.000 0.000	1.200 1.372 1.483 1.194 .742 .491 .308 .225 .164 .163 .136 .127 .130	.295 .304 .354 .282 .205 .184 .180 .183 .184 .181 .202 .209 .215	058106142039022009003003005004003003002	.478 .468 .478 .405 .361 .228 .128 .122 .035 .025 .023

Upw [m/s]= 12.29 DEL995 [cm]= 1.873 Cf= 1.695E-3

LAMINAR FLOW :

REDUCED DATA--FILE NAME: 100091553A

N	Y/DELTA	U/Upw	u¹/Upw	y¹/Upw	u'v'/Utao~Z
1 2 3 4 5 5 7 8 9 8 1 1 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.05876 .09741 .14325 .25785 .37245 .48705 .60165 .71625 .83085 .94549 1.06005 1.23156 1.40385 1.57575	.41634 .51288 .65378 .85970 .94413 .96839 .978196 .98196 .98720 .987214 .987214 .98733 .96555	.09765 .11160 .12064 .05715 .06036 .03997 .02503 .01628 .01500 .01324 .01107 .01031 .01060 .00576	.02398 .02471 .02979 .02294 .01670 .01501 .01487 .01488 .01488 .01488 .01542 .01645 .01645	.45435 .82797 1.10971 .30723 .17522 .07152 .0268 .0268 .03505 .03505 .03505 .03505

TURBULENT FLOW : Station 3A

RAW DATA--FILE NAME: 10091553A

Ν	Y [cm]	U [m/s]	V [m/s]	u' [m/5]	v' [m/s]	u'v' [m2/52]	Gamma
1	.063	E.942	150	1.469	.885	328	.475
Z	.025	7.711	287	1.519	.916	382	.466
3	.125	8.483	384	1.455	.868	429	.478
4	.225	9.600	410	1.403	.849	467	.42E
5	.325	10.349	448	1.228	.815	383	.361
6	.425	10.911	542	1.031	.674	181	.316
7	.525	11.023	384	1.060	.765	307	.223
8	.625	11.306	457	. 9 6 1	.665	213	.185
9	.725	11.445	403	.830	.579	140	.122
10	.825	11.636	39 3	.798	.659	161	.091
1 1	.925	11.587	294	.786	.659	242	.036
12	1.075	12.014	387	.429	.557	016	.015
13	1.225	11.842	.230	.750	.480	185	.005
1 4	1.375	11.759	118	.383	.382	134	,003
15	1.525	0.000	0.000	0.000	0.000	0.000	.001

Upω [m/s]= 12.29 DEL995 [cm]= .873 Cf= 4.100E-3

TURBULENT FLOW :

REDUCED DATA--FILE NAME: 100091583A

N	Y/DELTA	U'Upw	u†/Upw	v¹/Upw	u'v'/Utau^2
1	.06976	.56489	.11951	.07199	1.06009
2	.09741	.62743	.12359	.07455	1.23333
3	.14325	.69025	.11929	.07063	1.57810
4	.25785	.78112	.11420	.08505	1.50788
5	.37245	.64210	.03394	.06632	1.23769
5	.48705	.88779	.08387	.05487	.58425
7	.60165	.89693	.08822	.06221	.99125
8	.71625	.51992	.07616	.05412	.68733
9	.83085	.93125	.ØE754	.04711	.45069
10	. 94545	.94695	.06497	.05360	.51975
11	1.06005	.94280	.06393	.05361	.78311
12	1.23195	.97757	.03488	.04531	.05288
13	1.40385	.98357	.05102	.03983	.60900
14	1.57575	.95676	.03119	.03110	.43227
15	1.74765	Ø.00000	0.00000	0.00000	0.00000

TRANSITIONAL FLOW : Station 3A RAW DATA--FILE NAME: IUUCG1553A

N	Y [cm]	U [m/s]	V [m/s]	u' [m/5] v'	[m/s]	u'v' [m2/S2]	Gamma
1	.050	5.987	174	1.616	.647	164	. 475
2	.025	6.959	347	1.604	.666	191	.4EE
3	.125	8.249	453	1.491	.65€	292	.478
4	.225	10.174	544	1.368	.595	270	.405
5	.325	11.151	549	1.122	.523	203	.381
6	.425	11.589	574	.844	.403	074	.318
		11.809	531	.707	.403	107	.223
7	.525	11.926	532	.549	.333	053	.186
8	.625			.400	.270	030	.122
9	.725	12.023	523		.257	022	.081
10	.625	12.093	510	.306			.035
1.1	.925	12.112	509	.224	.228	017	
12	1.075	12.134	498	.136	.212	003	.015
13	1.225	12.136	487	.141	.218	005	. 005
14	1.375	12.133	485	.122	.216	003	.023
15	1.525	12.149	485	.120	.216	002	.001

Upw [m/s]= 12.29 DEL995 [cm]= .873 Cf= 2.600E-3

TRANSITIONAL FLOW :

REDUCED DATA--FILE NAME: IUV@91593A

N	Y/DELTA	U/Մpw	u¹/Upw	v'/Upw	u'v'/Utab'2
1 2 3 4 5 6 7 8 9 10 11 12 13	.06276 .09741 .14325 .25785 .37245 .40705 .60165 .71625 .83085 .94545 1.06005 1.23195 1.40325 1.57575	.48712 .58628 .87123 .81780 .90730 .94288 .96048 .97039 .97831 .98384 .98554 .98733 .98747	.13152 .13090 .12134 .11129 .05128 .06856 .05752 .04464 .03256 .02456 .01821 .01110 .01147	.05266 .05421 .05339 .04641 .04255 .03279 .02712 .02197 .02092 .01857 .01723 .01771	.83345 .87520 1.48507 1.37530 1.03143 .37850 .54609 .27199 .15274 .11406 .08798 .01560 .01375
15	1.74765	.98853	.00978	.01759	

LAMINAR FLOW : Station3

FAW DATA--FILE NAME: IUV091553

14	Y [cm]	U [m/s]	V [m/s]	u' [m/S] v'	[m/s]	u'v' [m2/52]	Gamma
1	.050	7.420	0.000	1.420	.426	.092	.838
2	.095	10.338	0.000	1.849	.452	227	.810
3	.145	12.882	0.000	1.776	.403	113	.812
4	.245	15.262	0.000	1.041	.314	035	.7£4
5	.345	15.906	0.000	.655	.242	029	.732
6	.445	16.122	0.000	.380	.242	03E	.E48
7	.545	16.168	0.000	.298	.255	.005	.510
8	.645	16.209	0.000	.220	.253	0.000	.371
9	.745	16.235	0.000	.205	.269	-0.000	.244
10	.845	16.251	0.0 00	.198	.270	002	.141
1.1	. 945	1E.270	0.000	.181	.27€	005	. 2 E 4
12	1.095	16.255	0.0 00	.172	.272	003	.028
13	1.245	15.256	0.000	.154	.254	002	.005
14	1,395	16.252	0.000	.168	.314	002	.004
15	1.545	16.262	0.000	.156	.310	002	.021

Upw [m/s]= 16.18 DEL995 [cm]= .891 Cf= 1.757E-3

LAMINAR FLOW :

N	Y/DELTA	Ս/Մբա	u¹/Upw	v'/Upw	u'v'/Utau^2
1	.06732	.45858	.08778	.00635	40198
2	.10659	.63892	.11425	.02791	.98741
3	.16268	.79816	.10578	.02493	.49364
4	.27498	.94329	.05437	.01938	.15240
5	.38708	.98304	.04045	.01497	.12630
6	.49517	.99639	.02352	.01495	.02570
7	.61147	.95924	.01840	.01573	0215E
8	.72366	1.00180	.01353	.01566	00054
9	.83596	1.00347	.01272	.01683	.08875
18	.94805	1.00437	.01221	.016E7	.00T4E
11	1.05025	1.00553	.01117	.01704	.02307
12	1.22854	1.004E3	.01063	.01684	.01251
13	1.39684	1.00458	.01011	.01818	.01055
14	1.58813	1.00505	.01025	.01943	.01011
15	1.73342	1.00510	.00963	. 0 :317	.00797

TURBULENT FLOW : Station3

RAW DATA--FILE NAME: 100091553

N	Y [cm]	U [m/s]	V [m/s]	u' [m/5]	v' [m/s]	u'v' [m2/82]	Gamma
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	.050 .095 .145 .245 .345 .445 .645 .745 .845 .845 1.095 1.245	9.316 11.122 12.139 13.347 14.254 14.254 15.260 15.440 15.695 15.675 15.675 16.022 16.195 15.888	.413 402 567 638 638 5531 5538 429 429 275 1540	1.519 1.527 1.580 1.529 1.418 1.238 1.061 .966 .633 .804 .E25 .595 .476 .229	1.226 1.137 1.042 .930 .854 .773 .720 .682 .635 .678 .592 .598 .393 .305	356 684 708 505 444 305 268 225 168 209 106 070 019 .025	.838 .820 .812 .784 .732 .648 .510 .371 .244 .141 .084 .028 .009

Upw [m/s]= 18.18 DEL995 [cm]= .891 Cf= 4.500E-3

TURBULENT FLOW :

N	Y/DELTA	⊍/∪₽₩	ս՝/Սբա	v'/Upw	u'v'/Utau^2
1 23 45 67 89 10 11 12 14 15	.06732 .10659 .16268 .27468 .38708 .45927 .61147 .72366 .63586 .54805 1.06025 1.22854 1.39684 1.56513 1.73342	.57590 .68739 .75023 .82493 .82099 .91748 .94437 .95426 .97001 .97107 .98116 .98116 .99021 1.00095	.09399 .10057 .05763 .05451 .09766 .07653 .06584 .06084 .05146 .04571 .03575 .02940 .01415	.07580 .07028 .06440 .05750 .05260 .04776 .04452 .04212 .03924 .04192 .03661 .02621 .02621 .01887	.60391 1.16150 1.20144 .86393 .75352 .51766 .45425 .36293 .26499 .35522 .18002 .14248 .11907 .03146

TRANSITIONAL FLOW : Station3
RAW DATA--FILE NAME: IUU091583

И	Y [cm]	U [m/s]	V [m/s]	u' [m/8]	v' [m/s]	u'v' [m2/52]	Gamma
1	.050	9.009	.365	1.558	1.142	200	.838
2	.095	10.980	436	1.698	1.050	578	.820
3	.145	12.276	544	1.E44	.960	623	.812
4	.245	13.760	607	1.639	.841	472	.784
5	.345	14.697	641	1.457	.744	37€	.732
6	.445	15.294	666	1.190	.640	225	.648
7	.545	15.714	660	.915	.545	148	.510
8	.645	15. 5 23	654	.728	.454	104	.371
9	.745	16.104	655	.505	.398	058	.244
10	.845	16.175	634	.399	.362	043	.141
11	.945	16.237	522	.273	.321	021	.034
12	1.095	15.244	616	.205	.293	009	.018
13	1.245	16.254	605	.170	.297	004	.035
1 4	1.395	16.261	600	.166	.316	003	.004
15	1.545	16.262	59C	.156	.311	002	.001

Upw [m/s]= 16.16 DEL995 [cm]= .891 Cf= 4.000E-3

TRANSITIONAL FLOW:

Ν	Y/DELTA	U/Upw	u.∖∩b∞	v¹/Upw	u'v'/Utau12
1	.0E732	.55581	.10246	.07057	.38282
2	.10659	.67864	.10481	.08489	1.10300
3	.16268	.75887	.10160	.05931	1.19817
4	.27488	.85043	.10133	.05197	.90214
5	.36708	.90834	.09003	.04598	.71903
£	.49927	.94525	.07355	.03953	.42939
7	.£1147	.97123	.05655	.03371	.28299
8	.72386	.96414	.04498	. 0 2871	.19850
9	.83586	.99529	.03124	.01459	.11044
10	.54205	.99989	.0245E	.02240	.09232
11	1.06025	1.00350	.01655	.01982	.03528
1.2	1.22854	1.00398	.01269	.01809	.01757
13	1.35884	1.00455	.01051	.01835	.00718
14	1.56513	1.00504	.0102E	.01951	.00479
15	1.73342	1.00507	.00586	.01521	.00359

LAMINAR FLOW : Station 4

RAW DATA--FILE NAME: 100031554

N	Y [cm]	U [m/s]	V [m/s]	u' [m/5] v'	[m/s]	u'v' [m2/52]	Gamma
1 23 4 5 6 7 8 9 0 1 1 2 3 4 4 5 6 7 1 8 9 0 1 1 2 3 4 4 5 6 7 1 8 1 9	.050 .085 .145 .245 .3445 .5445 .5445 .9445 1.245 1.745 1.745 1.745 1.745 1.745	7.638 9.874 13.126 14.975 15.810 16.000 16.132 16.237 16.258 16.258 16.301 16.330 16.340 16.340 16.334	Ø.000 Ø.000	.924 1.973 1.365 1.278 .959 .651 .496 .356 .323 .315 .263 .219 .199 .183 .165 .165	.536 .557 .267 .357 .315 .376 .276 .277 .277 .277 .277 .277 .277 .2	.184267262243159 .111 .046 .033 .001 .001 .002 0.000005005005003001001	.998 .994 .991 .575 .947 .5742 .6542 .577 .506 .277 .116 .003 .003

Upw [m/s]= 16.38 DEL995 [cm]= 1.339 Cf= 2.200E-3

LAMINAR FLOW :

1 .04481 .46632 .03400 2 .07085 .60278 .12045 .03400	.62447 .90558 .88588
3 .10928 .80333 .07804 .02884 4 .16297 .91425 .07804 .02365 5 .25768 .96522 .05857 .02365 6 .23234 .97663 .03974 .02177 - 7 .40702 .98488 .03031 .01520 - 8 .48170 .98732 .02178 .01960 - 9 .55679 .98125 .01973 .01683 - 10 .63107 .9958 .01924 .01782 - 11 .70975 .99435 .01492 .01651 - 12 .78043 .98520 .01492 .01651 - 12 .78043 .98520 .01492 .01704 -	.82488 .53954 .37488 .15610 .11342 .00473 .00572 .00642 .00110 .00944 .01928 .00587 .01119 .00388

TURBULENT FLOW : Station 4
RAW DATA--FILE NAME: 100081564

N	Y [cm]	U [m/s]	V [m/s]	u* [m/S]	v' [m/s]	u'v' [m2/52]	Gamma
1	.060	8.573	.863	1.195	1.158	054	.955
2	.095	10.375	356	1.399	1.134	631	.995
3	.145	11.589	515	1.344	. 9 53	539	.934
4	.245	12.730	638	1.338	. e 85	555	.991
5	.345	13.418	645	1.294	.852	503	.531
E	.445	14.042	700	1.276	.778	450	.979
7	.545	14.563	727	1.179	.735	377	.942
8	.645	14.899	765	1.102	.704	305	.853
9	.745	15.139	733	1.033	.682	290	.745
10	.845	15.359	710	.920	.604	205	.E33
1.1	. 945	15.510	696	.819	.597	198	.505
12	1.045	15.575	672	.808	.569	164	.388
13	1.145	15.668	604	.779	.584	174	.278
14	1.245	15.787	57E	.718	.520	152	.175
15	1.345	15.798	565	.668	.564	124	.116
16	1.545	15.895	510	.697	.538	175	.052
17	1.745	16.084	437	.4E5	.470	034	.021
18	1.945	15.983	321	.681	.454	050	.011
15	2.145	16.200	51E	.355	.483	.098	.003

Upw [m/s]= 16.38 DEL995 [cm]= 1.339 Cf= 4.250E-3

TURBULENT FLOW :

N	Y/DELTA	U/Upw	ս՝/Մբա	v*/Upw	u'v'/Utau'2
1	.04481	.52338	.07299	.07060	.16460
2	.07095	.63340	.0853E	.06923	1.10741
3	.10829	.70751	.08207	.05816	.94517
4	.16297	.77720	.08154	.05402	.97471
5	.257E5	.81919	. 0 7897	.05204	.88303
6	.33234	.85727	.07792	.04750	.78974
7	.40782	.88908	.07198	.04485	.56083
8	.48170	.90980	.06730	.04300	.53508
5	.55639	.92426	. 0 6307	.04165	.50908
10	.63107	.93766	.05614	.03589	.35684
1.1	.70575	. 94688	.04997	.03547	.34667
12	.78043	.95083	.04936	.03473	.28835
13	.85512	.95654	.04757	.03568	.30518
14	.52990	.98380	.04384	.03175	.26881
15	1.00448	.95447	.04088	. 0344E	.21E70
16	1.15385	.97042	.04257	.03287	.30888
17	1.30321	.98198	.02840	.02889	.05947
18	1.45258	.97577	.04159	.02771	.10551
15	1.60:94	. 98904	.02165	.02949	17136

TRANSITIONAL FLOW : Station 4 RAW DATA--FILE NAME: IUV231854

N	Y [cm]	U [m/s]	V [m/s]	u* [m/S]	v' [m/s]	u'v' [m2/52]	Gamma
1	.080	8.559	.861	1.196	1.155	091	.555
2	.095	10.373	355	1.401	1.132	B30	. 995
3	.145	11.599	517	1.349	.950	540	.954
4	.245	12.751	639	1.352	.882	555	.991
5	.345	13.440	646	1.310	.850	504	.991
5	.445	14.084	704	1.297	.772	448	.979
7	.545	14.655	737	1.208	.718	369	.942
8	.645	15.087	790	1.122	.665	284	.853
9	.745	15.419	780	1.025	.611	257	.748
10	.845	15.689	777	.872	.521	171	.E33
11	. 945	15.895	787	.724	.475	138	.505
12	1.045	16.035	794	.632	.418	095	.368
13	1.145	16.119	788	.533	.4୯୧	083	.278
1.4	1.245	16.235	756	.416	.350	054	.175
15	1.345	16.254	801	.337	.338	035	.116
16	1.545	1E.317	783	.257	.306	018	.052
17	1.745	16.341	803	.161	.300	008	.021
18	1.845	15.331	752	.178	.303	034	.011
15	2.145	16.330	803	.155	.313	001	.003

Upw [m/s]= 16.38 DEL995 [cm]= 1.339 Cf= 4.200E-3

TRANSITIONAL FLOW :

N	Y/DELTA	U/Upw	uʻ/Upw	v¹/Upw	u'k'/Utab'2
1	.04481	.52312	.07301	.07050	.16056
2	.07095	.63326	.08553	.08911	1.11775
3	.10829	.70807	.08238	.05802	.95913
Δ	.18257	.77843	.06351	.05384	.9871 0
5	.25765	.02051	. ୭୫୯୭୦	.05136	.89379
£	.33234	.85984	.07921	.04712	.79113
7	.40702	.89458	.07374	.04385	.65413
8	.48170	.92107	.05849	.04059	.50435
ģ	.55E39	.54131	.08257	.02732	.45829
10	.63187	.95779	.05322	.03181	.38197
11	.70575	.97039	.04415	.02926	.24444
12	.79843	.97894	.03851	.02553	.16902
13	.85512	.98407	.03253	.02489	.145E1
14	. 52980	.59115	.02537	. 0 2138	. 0 5553
15	1.00448	.95228	.02057	.02061	.0E150
15	1.15385	.99616	.01570	.01859	.03036
17	1.30331	.997E1	.01135	.01529	.01073
18	1.45259	.99699	.01039	.01549	. 00808
19	1.60194	.59898	. 0 0545	.01910	.0015E

TRANSITIONAL FLOW : Station 5
FAW DATA--FILE NAME: IUV091555

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/52]	Garma
1	.060	9.875	.071	1.333	1.108	449	1.000
2	.020	10.902	264	1.378	1.075	585	1.000
3	.105	11.474	347	1.344	.979	505	1.000
4	.155	12.137	465	1.298	.875	525	1.000
5	.255	12.983	549	1.246	. 641	509	1.000
6	.355	13.726	631	1.234	.818	508	.999
7	.505	14.385	606	1.162	.754	402	.996
ક	.655	15.032	690	1.152	.698	365	. SE 4
9	.805	15.574	708	1.0E0	.602	288	.679
10	. 955	15.964	733	.925	.5 65	222	.735
11	1.105	16.283	743	.787	.488	143	.572
12	1.255	16.514	778	.622	.428	09E	.399
13	1.405	16.E44	757	.545	.403	096	.276
14	1.555	16.733	770	.466	.342	050	.151
15	1.705	16.794	765	.376	.329	044	.133
16	1.855	1E.815	772	.295	.313	029	.085
17	2.055	16.853	789	.224	.311	013	.043
18	2.255	16.849	799	.206	.317	009	.egg
19	2.555	16.641	816	.177	.316	005	.011

Upw [m/s]= 16.81 DEL995 [cm]= 1.749 Cf= 4.050E-3

TRANSITIONAL FLOW :

N	Y/DELTA	U/Upw	u'/Upw	v*/Upw	u'v'/Utau"2
1	.03431	.58748	.07927	.Ø8593	.78540
2	.04574	. 6 4855	. 0 8196	.Ø8393	1.02321
3	.06033	.68256	.07998	.05826	.9873€
4	.08562	.72202	.07724	.05235	.91888
5	.14580	.77235	.07413	. 0 5004	.88949
6	.20297	.81651	.07339	.04887	.88826
7	.28974	.85574	. 0 6915	.04484	.70176
9	.37450	.89421	.08852	.04155	.63773
9	.46016	.92646	.06305	.03703	.50084
10	.54603	.94985	.05527	.03360	.36717
11	.63179	. 9 58E3	.04579	.02891	.24955
12	.71755	. 9 82 3 9	.03597	.02549	.16857
13	.80332	.99012	.03248	.02395	.16792
14	.88909	. 59543	.02771	.02036	.08855
15	.97484	.99902	.02236	.01959	.07747
16	1.06061	1.00032	.01759	.01662	.05057
17	1.17496	1.00256	.01332	.0:853	.02262
18	1.28931	1.00234	.01227	.01884	.01571
19	1.46083	1.00182	.01052	.01879	.00921

IVI011952 (Station 2, Transitional flow)

	99.5 = . 1 = 137.3		7	w−Tınf	≈ 6.5E0 [C 3	Upw = 16.8	36 [m/S]	
N	Y	U	V	Ţ	u'	٧,		u'v'	
	[cm]	[m/S]	[m/S]	(C)	[m/S]	[m/S]	[C]	[m2/52]	[m-C/S]
1	.050	6.91	+.04	33.84	1.551	.372	.E48	+.100	824
2	.070	9.03	63	33.17	1.819	.429	.E48	242	-1.02E
3	.090	10.93	70	32.4€	1.934	.462		243	-1.103
4	.120	12.97	77	31.69	1.940	.473		297	-1.068
5	.150	14.50	83	31.18	1.720	.392	.505	126	765
6	.180	15.49	80	30.82	1.616	.360	.487	164	703
7	.210	15.09	82	30.60	1.26€	.451		167	394
8	.240	16.54	78	30.44	1.002	.321	.291	099	
9	.270	16.75	79	30.35	.819		.231	0∈€	1EE
10	.300	15.87	78	30.27	.€97	.217	.200	034	111
1 1	.330	16.96	74	30.21	.589	.252		068	079
12	.380	17.04	73	30.16	.449	.273		062	030
13	.460	17.05	74	30.16	.328	.219	.077	0 31	0 i5
N		u'v'12 [m3/53]			d U/dy [1/5]	dT/dy [C/m]	Prt	GAMMA	
1	+.022	+.181	02		105.482	-37.033			
2	+.135	+.ØE3	+.03	-	~	-32.123	+.630		
3	+.128	061	+.04		77.959				
4	+.141	471	+.16		59,957	-21.351			
5	+.068	285	+.09	122	44.217	-15.519	+. 6 69	.075	
€	+.076	3€2	+.13	69	30.741	-11.260	+.790	.076	
7	+.055	+.565	+.06		19.527	-7.374		.063	
8	+.045	208	+.11	03	10.576	-4.2E1	+.891	.04€	
9	+.024	361	+.09		3.888	-1.921	+1.378		
10	+.017	095	+.02		-,538	355	-1.330	.046	
11	+.017	226	+.02	0 5	-2.700	.439	+.646	.040	
12	+.007	-,436	+.00	35	-1.276	.043	+.313	.024	
13	+.007	099	+.01		14.078	-5.057	+1.501	.015	

```
FILE NAME: (Station 2, Transitional flow)
-----
TU = SUMC A(N) + YAN )
                              A2= -4.3204E+02 A3= +4.1904E+02
AQ= +8.4597E-01 A1= +1.4554E+02
                    UC % DIFF
           U
  Y
        6.9140 7.095
9.0332 9.061
10.9310 10.751
12.9682 12.814
                         +2.624
  .0500
                              +.305
 .0700
                              -1.548
 .0900
 .1200
                              -1.150
 .1500
         14.4951
                  14.371
                              -.857
 .1800
                              +.025
         15.4858
                  15.490
 .2100
         16.0932
                  16.238
                              +.899
         1E.5449
 .2400
                  16.684
         16.7544
                  16.895
                              +.840
  .2700
         16.8721 16.940
                              +.401
  .3000
         16.9633
                  16.885
                              -.459
  .3300
         17.0447
                  16.760
                              -1.671
 .3800
         17.0482
                   17.165
                              +.E83
 .4600
*****************
T = SUM(A(N) + Y^N)
  = +3.5991E+01 A1= -5.0811E+01 A2= +1.4852E+02 A3= -1.4317E+02

Y T TC % DIFF

.0500 33.8449 33.804 -.120
A0= +3.5991E+01
                           -.120
 .0500
         33.8449
                              -.173
 .0700
         33,1708 33,113
                   32.517
                              +.174
         32.4605
 .0900
                              +.299
         31.6906
                   31.785
 .1200
                              +.163
                  31.228
 .1500
         31.1774
                              +.007
                  30.823
 .1800
         30.8204
                              -.166
 .2100
         30.5958
                  30.545
 .2400
         30.4432
                  30.372
                              -.233
 .2700
         30.3539
                   30.282
                              -.238
                  30.249
                              -.054
 .3000
         30.2657
 .3300
         30.2117
                  30.253
                              +.135
 .3800
         30.1546
                  30.274
                              +.361
         30.1558
                   30.110
 . 4600
                               -.153
```

..............

IVT011952 (Station 2, Laminar flow)

Del ' Qwal	89.5 = .3 l = 137.3	318 [cm] [W/m^2]	Tw-	-Tinf	= 6.5E0 [(23] Upw = \$6.86 [m/5]				
N	Y	U	υ	T	u i	٧,	ť'	u'v'	u't'		
N	[cm]	[m/S]	[m/S]	[C]	[m/S]	[m/S]	[C]	[m2/52]	[m-C/5]		
	0.50	E.71	+.01	33.90	1.299	.217	.527	+.058	627		
1	.050	8.93		33.19		.243	.575	1B7	924		
2	.070	10.90		32.45		.258	.586	184	-1.041		
3	.090	13.01		31.66		.272	.570	189	-1.028		
4	.120			31.14		.247	.457	Ø6E	717		
5	.150	14.56	65	JI.I4	1.050						
6	.180	15.61	82	30.77		.231	.399	068	548		
7	.210	16.1'9		30.56		.342	.301	113	312		
8	.240	16.52	79	30.42		.209	.236	042	194		
9	.270	16.81		30.33		.145	.180	021	113		
10	.300	16.93	79	30.24	.525	.138	.127	015	05€		
			25	30.19	.413	.134	.111	018	037		
11	.330	17.02		30.1E		.139		010	018		
12	.380 .460	17.07 17.07		30.15		.155		00E	004		
13 N	v't'	u'v'^2	v¹^2t	,	dU/dy	dT/dy		6AMMA			
	[m-C/S]	[m3/53]	[m2-0/5	2.1	[1/5]	[C/m]					
1	+.011	+.017	+.018	0	109.646	-38.419		.095			
2	+.091	01E	+.011		94.815	-33.248	+.723	.091			
3	+.086	032	+.012		80.652	-28.442	+.753	S 90.			
4	+.089	119	+ 050		61.909	-21.919	+.757	.081			
5	+.042	110	+.026		45.369	-16.218	+.566	.075			
5	1.072	,	,,,,,	_							
6	+.036	105	+.027	4	31.231	-11.340		.076			
7	+.025	+.844	003	7	19.495	-7.264		.063			
8	+.022	123	+.057	£	10.153	-4.051		.046			
9	+.011	034	+.009		3.232	-1.639		.045			
10	+.007	025	+.008		-1.295	050	079	.045			
		-		-	7 470	.716	+.494	.040			
11	+.002	015	+.005		-3.420	.166		.024			
12	+.003	011	+.002		-1.623	-5.4E5		.019			
13	+.002	000	+.002	ь	15.133	-5.465	7.2(1				

```
FILE NAME : IUT011982 Station 2 (Laminar)
U = SUM(A(N) + Y^N)
A0= +3.8545E-01 A1= +1.5210E+02 A2= -4.5586E+02 A3= +4.4491E+02
         U
                    UC % DIFF
   Υ
           6.7060
  .0500
                     6.906
                               +2.586
                     8.951
          8.9262
  .0700
                                 +.278
                     10.706
  .0900
          10.9008
                                 -1.787
  .1200
          13.0109
                     12.841
                                 -1.303
  . 1500
          14.5631
                     14.444
                                  -.814
  .1800
          15.6068
                     15.587
                                  -.124
  .2100
          16.1855
                     16.342
                                  +.959
  .2400
          16.6178 16.781
                                  +.963
  .2700
          16.8125
                    16.976
                                 +.973
  .3000
                                 +.380
         16.9348 16.999
          17.0160 16.922
                                 -.550
  .3300
 .3800 17.0721 16.769
.4600 17.0691 17.195
                                -1.778
                                 +.738
******************************
T = SUM(A(N) + Y^N)
-.151
         33.1880 33.132
                                 -.162
 .0700
  .0900
         32.4550
                  32.516
                                 +.188
                  32.516
31.763
31.193
30.761
30.504
30.336
30.253
30.230
30.242
30.273
30.100
  .1200
         31.6564
                                 +.336
         31.1440
  .1500
                                 +.156
        30.7711
                                 +.033
 .1800
       30.5649
30.4166
30.3336
                                 -.199
 .2100
 .2400
                                 -.265
  .2700
                                 -.267
 .3000
        30.2431
                                 -.045
 .3300 30.193E
.3600 30.1567
.4600 30.1506
                                 +.159
                                 +.38€
                                 -.157
```

IVT011952 Station 2 (Turbulent)

Del 9 Qwall	99.5 = .3 L = 137.3	318 [cm] [W/m^2]	τ	w-Tinf	= 6.560 IC	31] Upw = 16.86 [m/S]			
N	Y [cm]	U [m/S]	V [m/S]	T [C]	u' [m/S]	v' [m/S]	[C]	u'v' [m2/52]	u't' [m-C/5]	
1 2 3 4 5	.050 .070 .050 .120	8.88 10.10 11.21 12.48 13.66	+.28 46 33 34 58	33.33 33.02 32.51 32.08 31.59	2.222 2.576 2.466 2.333 2.205	.965 1.182 1.183 1.305 1.105	.979	066 -1.019 916 -1.267 625	-1.565 -1.876 -1.692 -1.318 -1.011	
6 7 8 9	.180 .210 .240 .270 .300	14.00 14.72 15.03 15.52 15.57	45 65 37 63 70	31.42 31.05 30.99 30.78 30.74	2.516 1.952 1.732 1.714 1.757	.979 1.207 1.072 1.238 .792	.611 .561	825 695 607 809 311	-1.647 938 716 751 614	
11 12 13	.330 ,380 .480	15.68 15.95 15.97	42 44 32	30.65 30.48 30.43	1.717 1.562 1.606	1.032 1.488 1.053	.394	846 -1.815 851	527 175 326	
N	v't' [m-C/S]	u'v'^2 [m3/53]	v'^: [m2=0		dU/dy [1/5]	dT/dy {C/m}		6AMMA		
1 2 3 4 5	+.285 +.615 +.477 +.537 +.272	067 283 357 -2.572 -1.167	0 +.3 0 +.3 +.2	155 628 218	61.256 53.979 47.173 37.846 29.578	-22.586 -20.094 -17.778 -14.587 -11.744	+.516 +.724 +.924 +.913	.095 .091 .038 .061		
6 7 8 9	+.356 +.399 +.265 +.224 +.172	-1.538 -1.512 -1.298 -5.210 723	+.3 +.2 +1.1	864	22.369 16.219 11.127 7.095 4.121	-9.248 -7.093 -5.288 -3.825 -2.709	+.761 +1.089 +1.945	.076 .063 .046 .045		
11 12 13	+.093 +.040 +.129	-3.361 -14.097 -2.848	8	863 376 3144	2.2 0 6 1.367 6.142	-1.938 -1.422 -2.592	2 +47.747	.024		

```
FILE NAME: Station 2 (Turbulent)
****************************
U = SUM(A(N) + Y^N)
A0= +5.4169E+00 A1= +8.1506E+01 A2= -2.1721E+02 A3= +1.9608E+02

    V
    U
    U
    U
    X
    DIFF

    .0500
    8.8841
    8.974
    +1.00

    .0700
    10.1021
    10.125
    +.22

    .0900
    11.2088
    11.136
    -.64

    .1200
    12.4814
    12.408
    -.56

    .1500
    13.6564
    13.417
    -1.75

    .1800
    14.0043
    14.194
    +1.35

    .2100
    14.7216
    14.770
    +.32

                                      +1.009
                                         +.229
                                         -.649
                                         -.583
                                        -1.750
                                        +1.354
  .2100 14.721E 14.770
                                         +.329
  .2400 15.0323 15.178
                                         +.9€7
                                         -.467
  .2700 15.5208 15.448
  .3000
            15.5709 15.614
                                         +.277
                                         +.159
  .3300
            15.6813
                         15.70€
  .3800
            15.9529
                         15.783
                                        -1.064
  .4500
            15.9709
                          16.033
                                          +.391
*****************************
T = SUM(A(N) * Y^N)
A0= +3.4653E+01 A1= -2.9417E+01 A2= +7.3305E+01 A3= -6.3983E+01
           T TC % DIFF

33.3284 33.358 +.068

33.0158 32.931 -.256

32.5111 32.553 +.129
   Υ
  .0500
  .0700
  .0900
  .1200
           32.0820 32.088
                                          -.042
  .1500
            31.5885
                         31.674
                                         +.272
  .1800
           31.4237
                         31.360
                                         -.202
 .2100
            31.0548
                         31.116
                                         +.197
 .2400
           30.9939 30.931
  .2700
           30.7809
                         30.795
                                         +.047
           30.7352
                         30.698
 .3000
                                         -.120
           30.6517
 .3300
                         30.629
                                         -.072
           30.4792
                        30.549
 .3800
                                         +.230
 .4800
           30.4253
                                         -.066
                         30.405
```

IVT011953 Station3

Del 5 Qwall	39.5 = .8 1 = 152.0	391 [cm] [W/m^2]	Ţ	พ∽Tıกf	≖ 3.9E0 [() j	Jpw = 16.8	E [m/S]	
	Y	U	V	Т	u'	v¹	t '	u'v'	u't'
N	Y [cm]	[m/5]	(m/5)	ίςs	[m/S]	[m/S]	[C]	[m2/52]	[m-0/5]
					5 4 5 7	.9 98	.662	322	957
1	.050	10.13	09	32.40	2.102	.905	.597	519	774
2	.070	10.99	43	32.21	1.914	.845	.521	530	710
3	.120	12.38	50	31.80	1.816		.557	553	826
4	.220	13.91	57	31.34	1.835	.800	.515	391	684
5	.320	14.97	59	31.01	1.614	.683	.515	551	.004
6	.420	15.66	63	30.78	1.363	.E27	.457	315	500
7	.520	16.16	E2	30.59	1.019	.516	.368	160	293
8	.520	16.35	62	30.51	.877	.462	.315	144	208
9	.720	16.53	60	30.41	.631	.391	.243	074	114
	.820	16.72	59	30.35	.442	.332	.184	035	04€
10	.820	,01,12		•					
11	.920	1E.79	60	30.33	.339	.293	.127	023	023
12	1,120	16.86	59	30.30	.227	.270	.073	000	007
N	v't' [m-C/5]	u'v'^2 [m3/\$3]	v1^2 [m2-0/		dU/dy [1/5]	dT/dy [C/m]	Prt	6AMMA	
	111 0/01	(11.57.50)				i			
1	+.217	078	+.09	395	24.021	-6.844	+.423	1.000	
2	+.209	290	+.16	317	22.785	-6.521	+.712	1.000	
3	+.161	335	+.08	564	19.836	-5.747	+.955	1.000	
4	+.181	628	+.18	810	14.549	-4.350	+.91E	1.003	
5	+,134	503	+.1{	526	10.076	-3.153	+.913	1.000	
					5 417	-2.158	+.927	1.000	
6	+.114	457	+.16		6.417	-1.364	+.829	1.000	
7	+.073	219	+.01		3.573		+1.212	1.000	
8	+.059	218	+.0		1.543	771 379	+2.445	1.000	
9	+.035	126	+ . 0		.327	188	-3.811	1.000	
10	+.023	043	+.0	264	075	188	-5,011	1.000	
	. 0.13	A.D	+.0	175	.338	199	+1.125	1.003	
11	+.012	019	+.0		3.605	822	+.399	1.000	
12	+.003	009	₹.V	21	5.005	, ,			

FILE NAME : IUT011953 Station 3

U = SUM(A(N) + Y'N)

A0 = +9.209	31E+00 A1=	+2.7255E+01	A2= -3.3356E+01	A3= +1.3570E+01
Y	υ	UC	% DIFF	
.0500	10.1294	10.490	+3.561	
.0700	10.9941	10.958	327	
.1200	12.3755	12.023	-2.850	
.2200	13.90E2	13.735	-1.229	
.3200	14.5697	14.960	067	
.4200	15.6577	15.778	+.765	
.5200	16.1570	16.270	+.701	
.6200	16.3492	16.519	+1.040	
.7200	16.E099	16.606	024	
.8200	16.7249	16.612	677	
.9200	16.7931	16.618	-1.042	
1.1200	16.8602	1 6.9 58	+.581	

 $T = SUM(-A(N) + Y^N)$

AØ= +3.26	89E+01 A	1= -7.6887E+00	A2= +8.6948E+00	A3= -3.3508E+00
Y	T	TC	% DIFF	
.0503	32.3967	32.326	217	
.0 700	32.2060	32.193	048	
.1200	31.7965	31.886	+.282	
.2200	31.3350	31.383	+.153	
.3200	31.0092	31.010	+.001	
.4202	30.7797	30.745	111	
.5200	30.5941	30.571	075	
.6203	30.5104	38.46€	145	
.7202	30.4077	30.410	+.008	
.8200	30.3532	30.384	+.100	
.9200	30.3266	30.366	+.129	
1.1200	30.3003	30.277	077	

IVT011954 Station 4

Del 9 Qwall	9.5 = 1.3 = 154.5	39 [cm] [W/m^2]	Т	w-Tinf *	± 3.620 [C]	Upi	w = 15.8€	[m/S]	
N	Y	U	V	т	u'	v' [m/S]	f.,	u'v' (m2/52)	u't' [m-C/5]
• •	[cm]	[m/5]	[m/S]	[0]	[m/5]	[MI \ 2 1			
			. 70	32.09	1.571	.850	.456	147	440
1	.050	9.28	+.38	31.79	1.566	.862	.393	519	389
2	.090	11.27	45	31.41	1.443	.805	.364	537	373
3	.190	12.65	55	31.11	1.370	.742	.351	44E	345
4	.340	13.81	53	30.8E	1.289	.699	.359	389	344
5	.490	14.75	01	30.00	.,,				
		15.53	62	30.66	1.150	.€02	.335	297	292
6	.640	15.55	64	30.53	1.014	.544	.317	218	242
7	.790	16.35	63	30.39	.818	.455	.266	140	152
8	940	16.53	65	30.31	.604	.355	.209	069	051
9	1.090	16.83	6 5	30.25	.462	.334	.174	055	053
10	1.240	10.75	,					075	029
	1.390	16.61	64	30.24	.374	.315	.140	035	017
11 12	1.540	15.83	65	30.22	.303	.275	.103	021	011
14	1.540	, 5, 6, 6							
			v1^	2+1	dU/dy	dT/dy	Prt	GAMMA	
N	v't'	u'v'^2	[m2+0	_	[1/5]	[C/m]			
	[m-C/S]	[m3/53]	L MZ - U	7 32 3	.,				
	45	357	+ 0	353	16.561	-3.703	+,227	1.000	
1	+.145	357		714	15,418	-3.479	+.752	1.000	
2	+.158	144		280	12.744	-2.951	+.938	1.000	
3	+,133	113		245	9.227	-2.247	+,922	1.000	
4	+,118	225		599	E.304	-1.650	+.900	1.000	
5	+.113	225		, , , , ,					
_		215	+.6	1654	3.975	-1.158	4.914	1.000	
6	+.095 +.081	209		0649	2.239	-,772	+.929		
7 8	+.055	155		0512	1.097	492	+1.145		
5 5	+.032 +.032	068		0294	.548	318	+1.278		
10	+.027	059		0262	.592	250	+.836	1.600	
10	7.041		-					1.000	
11	+.018	034	+.	C174	1.230	287	+.446		
12	+.011	020		0089	2.462	431	+.349	1.000	
1 4									

```
FILE NAME: IVT011984 Station 4
 **************
 U = SUM(A(N) + Y^N)
A0= +9.2160E+00 A1= +1.8050E+01 A2= -1.5216E+01 A3= +4.39E3E+00
            U UC % DIFF
9.2848 10.081 +8.576
11.2660 10.720 -4.843
   Y
   .0500
           11.2660 10.720
.0900 11.26E0 10.720
.1900 12.6469 12.12E
.3400 13.8074 13.7E7
.4900 14.7468 14.924
.6400 15.5313 15.688
.7900 15.9837 16.146
.9400 16.3495 16.369
1.0900 16.6294 16.505
1.2400 16.7324 16.563
1.3900 16.8133 16.712
1.5400 16.8315 16.982
  .0900
                                  -4.116
-.295
+1.202
+1.007
+1 007
                                      +.241
                                      -.749
                                      -.893
                                      -.601
                                      +.892
*****************
T = SUM(A(N) + Y^N)
A0= +3.2173E+01 A1= -3.9942E+00 A2= +2.9689E+00 A3= -7.8439E-01
   Y
  Y T TC .0500 32.0885 31.980
                        TC % DIFF
                                     -.337
 .0900 31.7910 31.837
                                      +.144
 .1900
           31.4106
                       31.516
                                     +.334
 .3400
          31.1100
                       31.127
                                      +.055
 .4900
          30.8E13
                       30.836
                                      -.082
 . 5400
          30.8615
                                      -.113
                       30.627
 .7900
           30.5258
                                      -.139
                        30.483
 .9400
           30.3902
                        30.390
                                      -.001
           30.3053
1.0900
                        30.331
                                      +.070
           30.2534
1.2400
                      30.289
                                      +.119
            30.2384 30.250
1.3900
                                      +.040
1.5400
           30.2243
                        30.198
                                      -.087
```

1VT011955 Station 5

Del 98.5 = 1.748 [cm]	u = 16.86 (m/S)
N Y V V T u' V'	t' u'v' u't'
N Y U V T L' V' [cm] [m/S] [m/S] [C] [m/S] [m/S]	[C] [m2/52] [m-C/5]
1 .050 10.6236 31.94 1.647 .882	.459484449 .385551378
2 .095 11.6341 31.67 1.476 .839	
3 .245 13.1250 31.24 1.351 .7E5	.328454308 .321430290
4 .395 14.1656 30.96 1.275 .720	
5 .545 14.9063 30.76 1.222 .684	.318362279
6 .695 15.4463 30.60 1.206 .621	.316338286
7 .845 15.9366 30.44 1.029 .552	.301234230
8 .995 16.3264 30.34 .940 .499	.281181192
9 1,145 16.6162 30.26 .824 .449	.258149157
10 1.295 16.7765 30.18 .679 .390	.225084111
11 1.495 17.0166 30.14 .528 .353	.186065067
12 1.695 17.1064 30.11 .417 .307	.139041037
13 1.895 17.1666 30.09 .283 .296	.104020015
14 2.195 17.1964 30.06 .216 .281	.0EE012005
N viti uivin2 vin2ti dU/dy dT/dy	Prt GAMMA
[m-C/S] [m3/S3] [m2-C/S2] [1/S] [C/m]	
1205 1205 1205 2 074	+.728 1.000
1 +.186408 +.1305 10.652 -2.974	+1.008 1.000
2 +.153262 +.0549 10.079 -2.816 3 +.120084 +.0061 8.284 -2.320	+1.080 1.000
5 7.120	+1.053 1.000
4 11113	+.987 1.000
5 +.104142 +.0327 5.236 -1.479	7.507
6 +.100158 +.0438 3.983 -1.132	+.965 1.000
7 +.07E145 +.0440 2.910836	+.880 1.000
8 +.066134 +.0398 2.017589	+.803 1.000
9 +.058115 +.0422 1.304391	+.772 1.000
10 + .044099 + .0369 .771244	+.672 1.000
The state of the s	
11 +.030065 +.0265 .342124	+.791 1.000
12 +.020028 +.0140 .232093	+.821 1.000
13 +.013017 +.0096 .444150	7,021 1.000
13 7.013017 7.0030	+.537 1.000 +.527 1.000

```
FILE NAME : TUTQUISS Station 5
U = SUM(-A(N) + Y^N)
.8450
        15.9299
                 16.052
                           +.828
 .9950
        18.3231
                 16,428
                           +,845
 1.1450
        16.6081
                 16.676
                           +.407
1.2950
        16.7718
                 16.829
                           +.342
        17.0058
1.4950
                 16.935
                           -.416
1.6950
        17.1040
                 16.987
                           -.683
        17.1613
1.8950
                 17.049
                           -.652
        17.1940
2.1950
                 17.302
                           +.630
••••••
T = SUM(A(N) + Y^N)
A0= +3.1991E+01 A1= -3.1553E+00 A2= +1.8390E+00 A3= -3.6798E-01
       T TC % DIFF
31.9411 31.838 -.32
31.6704 31.707 +.11
  Y
 .0500
                           -.324
 .0950
                            +.117
 .2450
                31.323
        31.2375
                           +.273
 .3950
                31.009
                           +.173
        30.9552
 .5450
                30.758
                            -.008
       30.7604
        30.6020
 .6950
                30.563
                           -.129
        30.4395
                30.416
                           -.078
 .8450
       30.3362
30.2627
                30.309
                           -.088
 .9950
1.1450
                30.237
                           -.086
1.2950
                30.190
                           +.031
       30.1803
1.4950
        30.1419
                30.154
                           +.041
1.6950
       30.1065
                30.134
                           +.090
       30.0898
                30.111
                           +.071
1.8950
2.1950
       30.0573
                30.034
                           -.079
```

Case 3:

 $\begin{array}{lll} \mbox{Mean and fluctuating velocity:} & \mbox{UP0207} \\ \mbox{Mean temperature:} & \mbox{T0216} \\ \mbox{Stanton number:} & \mbox{ST0213} \\ \mbox{Shear stress:} & \mbox{UV0207} \\ \mbox{Turbulent heat flux and Pr_t:} & \mbox{VT0213} \\ \end{array}$

FILE: UF020781

XSTA	= .114 [m]	DEL1 = 5.159E-4 [m]
Cf	= 7.000E-3	DEL2 = 3.019E-4 [m]
Upw	= 9.07 [m/S]	H = 1.709
V150	= 1.598E-5 [m ² /S]	REdel1 = 2.929E+2
REx	= 6.490E+4	REdel2 $= 1.714E+2$
De 1995	= 3.579E-3 [m]	

	Y [cm]	U [m/s]	Y+	U+	Y/Del995	u'/Upw
1	.002	2.180	.67	4.05	.006	7.450
2	.007	2.260	2.35	4.21	.020	7.738
3	.012	2.384	4.03	4.44	.034	8.174
4	.017	2.973	5.71	5.54	.048	10.107
5	.022	3.518	7.39	6.55	.051	11.711
6	.027	4.029	9.07	7.50	.075	13.010
7	.032	4.561	10.75	8.50	.089	13.529
8	.037	4.977	12.43	9.27	.103	14.002
9	.042	5.386	14.11	10.03	.117	14.565
10	.047	5.762	15.79	10.73	.131	15.071
11	.052	€.067	17.47	11.30	.145	14.712
1.2	.057	6.334	19.15	11.80	.159	15,053
13	.062	6.584	20.63	12.27	.173	14.860
14	.072	7.036	24.19	13.11	.20!	14,713
15	.062	7.342	27.55	13.58	.229	14.432
16	.092	7.609	30.90	14.18	.257	14.363
17	.102	7.774	34.2E	14.48	.285	13.943
18	.117	8.120	39.30	15.13	.327	13.335
15	.142	8.415	47.70	15.68	.397	12.511
20	.182	8.683	61.14	16.17	.509	11.777
21	.282	8.946	94.73	16.66	.788	10.476
22	.382	9.055	128.32	15.87	1.067	10.173
23	.482	9.056	161.91	16.87	1.347	9.707
24	.582	5.053	195.50	1E.86	1.626	9.688
25	.780	9.045	262.69	16.85	2.185	9.548
26	1.082	9.103	363.46	16.98	3.023	9.695

FILE: UP020752

XSTA	= .343 [m]	DEL1 =	1.204E-3 [m]
Cf	≠ 5.750E-3	DEL2 =	8.317E-4 [m]
Upw	= 9.31 [m/S]	H =	1.447
Visc	<pre># 1.608E-5 [m²/5]</pre>	REdel1 =	6.989E+2
REx	= 1.985E+5	REdel2 =	4.816E+2
De 1995	= 1.146E-2 [m]		

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սբա
1	.010	2.337	3.10	4.68	.029	8.035
2	.015	2.487	4.66	4.98	.013	6.675
3	.020	2.919	6.21	5.85	.017	10.081
4	.025	3.497	7.76	7.01	.022	11.587
5	.030	3.952	9.31	7.92	.026	12.795
	.030	0.052				
6	.035	4.389	10.87	8.79	.031	13.131
7	.040	4.726	12.42	9.47	.035	13.530
8	.045	5.074	13.97	10.17	.035	13.519
9	.050	5.361	15.52	10.74	.044	13.575
10	.055	5.584	17.08	11.19	.048	13.240
1.1	.065	5.941	20.18	11.90	.057	13.214
12	.075	5.975	23.28	11.97	.065	13.351
13	.085	6.457	26.39	12.94	.274	12.553
14	.095	6.614	29.49	13.25	.063	12.113
15	.115	6.974	35.78	13.97	. 100	11.773
16	.165	7.395	51.23	14.82	.144	10.558
17	.215	7.726	6 E.75	15.48	.188	10.548
18	.265	7.956	82.27	15.94	.231	10.141
19	.315	8.154	9 7.79	16.34	.275	9.972
20	.415	8.478	128.84	16.99	.362	9.628
					_	
21	.515	В.730	159.89	17.49	.449	9.357
22	.615	8.981	190.93	17.99	.537	9.076
23	.715	5.0 39	221.98	18.11	.624	8.761
24	.815	9.137	253.02	18.31	.711	8.555
25	.915	9.227	284.07	18.49	.799	8.459
2.5		0 221	315.12	18.48	.886	8.236
26	1.015	9.221		18.53	.973	8.334
27	1.115	9.250	346.16 392.73	18.53	1.104	6.007
28	1.265	9.305	454.62	18.54	1.279	8.054
29	1.465	9.301			1.453	7.845
30	1.665	9.315	516.91	18.6€	1.453	7.645

FILE: UP020753

XSTA	= .572 [m]	DEL1 = 2.022E-3 [m]
Cf	= 4.850E-3	DEL2 = 1.433E-3 [m]
Upw	= 9.24 [m/5]	H = 1.411	
Visc	= 1.613E-5 [m^2/5]	REdel1 = 1.158E+3	
RE×	■ 3.273E+5	REdel2 = 8.208E+2	
De1995	= 1.839E-2 [m]		

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	u¹/Upw
1	.022	2.444	6.21	5.37	.012	8.673
2	.027	2.978	7.62	6.54	.015	10.469
3	.032	3.357	9.03	7.38	.017	11.493
4	.037	3.785	10.44	8.32	.020	12,186
5	.042	4.205	11.85	9.24	.023	12.495
6	.047	4.537	13.26	9.97	.026	12.965
7	.052	4.802	14.57	10.55	.028	12.761
8	.057	5.057	16.08	11.11	.031	12.752
9	.067	5.39 8	18.90	11.85	.035	12.598
10	.077	5.637	21.72	12.39	.042	12.367
1.1	.092	5.933	25.95	13.04	.050	11.850
1.2	.107	6.128	30.18	13.47	.0 58	11.526
13	.127	€.348	35.82	13.95	.069	11.153
14	.177	6.784	49.93	14.91	.096	10.477
15	.227	7.025	E4.0 3	15.44	. 123	10.157
16	.277	7.236	76.13	15.50	.151	9.997
17	.377	7.638	106.34	16.79	.205	9.508
18	.477	7.950	134.54	17.47	.255	9.458
19	.577	8.209	162.75	18.04	.314	9.258
20	.677	8.397	190.96	18.45	.368	9.170
21	.827	8.609	233.27	16.92	.450	8.619
22	. 977	8.762	275.58	19.25	.531	8.446
23	1.177	8.954	331.99	19.68	.640	7. 9 81
24	1.377	9.049	388.40	19.89	.749	7.856
25	1.577	9.130	444.82	20.06	.858	7.627
26	1.777	9.165	501.23	20.18	. 966	7.350
27	1.977	9.216	557.64	20.25	1.075	7.273
26	2.177	9.229	614.05	20.28	1.184	7.195
29	2.377	9.205	670.47	20.23	1.293	7.158
30	2.577	9.234	726.65	20.29	1.401	6.988

FILE: UP020754

XSTA	= .800 [m]	DEL1 = 2.599E-3 [m]
Cf	= 4.700E-3	DEL2 = 1.905E-3 [m]
Upw	= 9.19 [m/5]	H = 1.364
REx	= 1.617E-5 [m^2/S] = 4.549E+5 = 2.451E-2 [m]	REdel1 = 1.477E+3 REdel2 = 1.083E+3

	Y [cm]	U [m/s]	Y+	U+	Y/De1995	ս'/Սբա
1	.017	2.055	4.69	4.63	.007	7.309
2	.022	2.380	6.05	5.34	.009	8.345
3	.027	2.821	7.44	B.33	.011	9.864
4	.032	3.289	8.82	7.38	.013	11.263
5	.037	3.691	10.20	8.28	.015	11.816
6	.042	4.044	11.58	9.07	.@17	12.490
7	.047	4.319	12.95	9.69	.019	12.525
8	.052	4.502	14.33	10.32	.021	12.470
9	.057	4.80€	15.71	10.73	.023	12.385
10	.062	5.024	17.09	11.27	.025	12.561
11	.072	5.319	19.84	11.93	.029	12.216
12	.082	5.525	22.50	12.40	.033	11.880
13	.102	5.855	28.11	13.14	.042	11.489
14	.122	6.168	33.62	13.84	.050	10.819
15	.172	6.524	47.41	14.54	.070	10.272
16	.222	5.79 8	61.19	15.25	.091	10.012
17	.272	6.574	74.97	15.65	.111	9.78€
18	.372	7.316	102.53	15.42	.152	9.519
19	,472	7.582	130.09	17.01	. 193	9.408
20	.672	7.982	185.21	17.91	.274	9,193
21	.872	8.267	240.34	18.55	.356	8.758
22	1.072	8.494	295.46	19.06	.437	8.411
23	1.272	8.705	350.58	19.53	.519	8.068
24	1.472	8.810	405.70	19.77	.601	7.678
25	1.672	8.953	460.83	20.09	.682	7.266
26	1.872	9.035	515.95	20.27	.764	7.130
27	2.072	9.058	571.07	20.32	.845	6.929
28	2.272	9.129	626.19	20.48	.927	6.884
29	2.472	9.150	6 81.32	20.53	1.009	6.624
30	2.672	9.148	736.44	20.53	1.090	5.473

31	2.972	9.189	819.12	20.62	1.213	6.42E
32	3.272	9.216	901.81	20.68	1.335	Б.342
33	3.572	9.192	984.49	20.63	1.457	Б.237
34	3 972	9.195	1094.74	20.63	1.621	6.063

FILE: TØZ1681

۲.	TAT	ION	:	١
_	י רחי	TOIL	•	,

STATI	ON: 1					
Xsta Tw Tinf Qw Yeff Cond		[C] [C] E+2 [W/m^2] 0E-5 [m]	Del-enth Del-cond	= 5.119E-3 = 3.470E-4 = 5.611E-4 = 1.966E+2 = 1.000 = 15.51	4 [m] 4 [m] 2	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	002	0.000	0.00	0.00	Ø. ØØØ	0.000
2 3 4 5	+0.000 +.005 +.006 +.011 +.014	34.263 34.063 33.866 33.619 33.361	0.00 1.65 2.66 3.65 4.66	.12 .76 1.39 2.17 3.00	0.000 .010 .016 .021 .027	.009 .057 .104 .163 .225
7 8 9 10	+.017 +.020 +.025 +.030 +.035	33.150 32.582 32.686 32.454 32.207	5.67 6.67 8.36 10.04	3.67 4.27 5.15 5.90 6.69	.033 .039 .049 .059 .068	.275 .320 .385 .442 .501
12 13 14 15	+.040 +.045 +.055 +.065 +.075	32.022 31.847 31.555 31.307 31.136	13.42 15.11 18.50 21.90 25.25	7.29 7.85 8.79 9.59 10.15	.078 .088 .107 .127 .147	.545 .567 .657 .716 .757
17 18 19 20 21	+.093 +.110 +.130 +.150 +.170	30.89E 30.698 30.538 30.432 30.36E	30.39 37.19 44.00 50.79 57.59	10.93 11.57 12.09 12.43 12.65	.17E .215 .254 .293 .332	.814 .862 .900 .925 .941
22 23 24 25 26	+.200 +.240 +.290 +.390 +.490	30.297 30.235 30.206 30.157 30.141	67.78 81.36 98.33 132.28 166.21	12.87 13.07 13.17 13.33 13.36	.391 .469 .567 .762 .957	.957 .972 .979 .991 .995
27 28 29	+.690 +.690 +1.390	30.126 30.120 30.117	234.07 301.93 471.56	13.43 13.45 13.46	1.348 1.739 2.716	

FILE: T021652

ST	AT	1	ON	:	2

Xsta Tw Tinf Qw Yeff Cond	= 35.5 = 30.0 = 1.90 = +0.0	0 [C] 6 [C] 7E+2 [W/m^2] 00E+0 [m]	Del-ent Del-con Re-enth Prt	r = 1.488E- h = 9.638E- d = 7.518E- = 5.582E+ = 1.000 = 56.67	-4 [m] -4 [m] -2	
	Y [cm]	T [C]	Y+	T+	Y/Del995	DT/DTw
1 2 3 4	+.005 +.008 +.012 +.015	34.952 34.952 34.831 34.607	1.53 2.45 3.68 4.61	1.62 1.67 2.04 2.72	.003 .005 .009 .010	.098 .101 .124 .165
5 6 7 8 9		33.862	5.54 6.47 7.41 8.34 9.91	3.50 4.37 5.02 5.63 6.53	.012 .014 .016 .018 .022	.212 .264 .303 .34!
	+.037 +.042 +.047 +.052 +.052	32.939	11.47 13.03 14.60 16.17 19.31	8.87	.025 .028 .032 .035 .042	.442 .475 .507 .534
15 16 17 16	+.072 +.082 +.082 +.112 +.132	32.007	22.44 25.58 28.73 35.01 41.31	10.32 10.75 11.27 11.90 12.40	.048 .055 .062 .075	.621 .647 .677 .715
20 21 22 23 24	+.151 +.181 +.212 +.262 +.312	31.388 31.011 31.092 30.934 30.798	47.60 57.04 66.49 82.25 98.02	12.77 13.25 13.63 14.12 14.56	.102 .122 .142 .176	.766 .795 .817 .846
25 26 27 28 29	+.362 +.462 +.562 +.662 +.662	30.657 30.524 30.413 30.337 30.220	113.80 145.37 176.95 203.53 271.72	14.89 15.41 15.76 16.00 16.37	.243	.892 .922 .943 .957
30 31 32 33 34	+1.062 +1.262 +1,562 +2.061 +2.562	30.174 30.146 30.125 30.105 30.102	334.85 357.97 497.64 650.41 806 14	16.51 16.60 16.66 16.73		.987 .992 .996 1.000

FILE: T021653

S	T	A	T	1	ON	:	3
---	---	---	---	---	----	---	---

28 +2.110

29 +2.510

30 +3.010

31 +3.510

27

+1.810

30.127

30.103

30.075

30.082

30.050

	= .572 = 36.18 = 30.04 = 1.867 = +3.00 = 13.80	3 [C] 5 [C] 7E+2 [W/m^2] 00E-5 [m]	Del-enth Del-cond Re∼enth Prt	= 8.810E+	3 [m] 4 [m] 2	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	+.010	35.422	2.79	2.17	.004	.124
2	+.015	35.200	4.19	2.80	.005	.161
3	+.020		5.60	4.03	.009	.231
4	+.025		7.02	5.22	.011	.299
5	+.030	34.033	8.44	E.14	.013	.351
5	+.035	33.769	9.86	6.90	.015	.394
7	+.040		11.28	7.59	.017	.433
		33.116	14.14	8.78	.021	.501
8	+.050	32.882	16.99	9.45	.025	
9	+.050	32.862	,6.33	3.45		
10	+,070	32.660	19.84	10.10	.030	.575
11	+.080		22.70	10.58	.034	.ecz
12	+.100	32.214	28.42	11.40	.043	.648
13	+.120	32.052	34.14	11.87	.051	.674
14	+.140	31.899	39.86	12.31	.050	.£99
14	7.140	21.033	55.00			
15	+.150	31.779	45.59	12.65	.068	.719
16	+.210	31.573	55.90	13.27	.090	.753
17	+.260		74.24	13.76	.111	.780
18	+.310		88.50		.132	.808
19	+.360		102.95	14.54	.154	.823
15	1.500	51.155				
20	+.410	31.028	117.32	14.8E	.175	.841
21	+.510	30. 839	145.10	15.41	.218	.872
22	+.610	30.698	174.89	15.83	.260	.895
23	+.810	30.518	232.47	16.35	.346	.925
24	+1.010	30.379	290.10	16.76	.431	.947
<i>-</i> 4	71.WIW	30.573		- · -		
25	+1.310	30.243	376.57	17.17	.559	.970
26	+1.510		434.22	17.34	.645	.979
ن ن		70.102	E70 EE	17 51	. 773	. 9 88

520.65

607.03

722.22

85E.1**5**

1010.11 17.73

17.51

17.58

17.66

17.70

.773

1.071

1.285

1.498 1.001

. 901

.**9**88

.992

.997

.999

FILE: T021654

Xsta	= .800 [m]	Del-ther = 3.012E-2 [m]
Tω	= 36.63 [C]	Del-enth = 2.098E-3 [m]
Tinf	= 30.09 [C]	Del-cond = 9.479E-4 [m]
Qω	$= 1.844E+2 [W/m^2]$	Re-enth = $1.197E+3$
Yeff	= +0.000E+0 [m]	Prt = 1.000
Cond	- 14.00	Qadded = 148,64 [W/m]

	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
t	+.007	35.974	1.91	1.85	.002	.100
2	+.012	35.947	3.27	1.93	.004	. 104
3	+.017	35.707	4.54	2.60	.006	.141
4	+.022	35.190	6.0 2	4.05	.007	.220
5	+.027	34.857	7.40	5.01	.009	.270
5		34.183	10.18	6.93	.012	.373
7	+.047	33.776	12.97	8.09	.016	.435
8	+.057	33.419	15.76	9.11	.019	.489
9	+.067	33.177	18.55	9.80	.022	.526
10	+.077	32.951	21.34	10.45	.026	.561
11	+.097	32.700	26.93	11.17	.032	.599
12	+.117	32.453	32.52	11.89	.039	.636
13	+.137	32.294	38.12	12.34	.045	.66!
1 4	+.157	32.175	43.71	12.69	.052	.679
15	÷ 37	32.00	52.11	13.17	.062	.704
16	+.127	31.8 39	63.32	13.66	.075	.730
17	+.277	3:. 5 69	77.35	14.15	.092	.758
īε	• . ፲፻፻	31.444	105.41	14.80	.125	.798
1 5	+.527	31.180	147.57	15.57	.175	.830
20	+.727	30.933	203.90	16.38	.241	.872
21	+.957	30.580	260.33	17.03	.308	. 905
22	+1.127	30.538	316.76	17.44	.374	.928
23	+1.427	30.372	401.45	17.93	.474	.953
24	+1.727	30.274	485.14	18.21	.573	.968
25	+2.127	30.180	599.07	18.49	.706	. 9 83
26	+2.627	30.126	740.12	18.64	.872	.991
27	+3.127	30.090	881.18	18.75	1.038	.995
28	+3.627	30.077	1022.15	18.79	1.204	.998
29	+4.B27	30.054	1304.14	18.86	1.536	1.002

FILENAME: ST0213

Uinf: 9.51 [m/s]

HEAT FLUX TO HEATER: 224.4 [W/m^2]

HEAT LOSS THROUGH BACK WALL OVER DA: .101 [W] FREESTREAM TEMPERATURE: 30.58 [C]

FREESIF	EAM TENEEN	HIONE: SOILS			C 1
Tu	wall [C]	RE×	Enth [m]	Qconv [W/m^2]	St
			+6.575E-6	+1.980E+2	+8.237E-3
1	32.81	+2.184E+4	+1.654E-4	+2.033E+2	+6.186E-3
2	33.63	+3.631E+4		+1.981E+2	+4.657E-3
3	34.53	+5.070E+4	+2.550E-4	+1.926E+2	+3.690E-3
4	35,44	+6.501E+4	+3.358E-4	+1.935E+2	+3.763E-3
5	35.36	+7.948E+4	+4.223E-4	+1.916E+2	+3.522E-3
6	35.64	+9.385E+4	+5.022E-4	+1.917E+2	+3.527E-3
7	35.54	+1.083E+5	+5.922E-4	+1.918E+2	+3.532E-3
8	35.63	+1.227E+5	+6.E76E-4	+1.904E+2	+3.354E-3
9	35.87	+1.371E+5	+7.193E-4	71.0075.4	
•			. 5. 6775 - 4	+1.885E+2	+3.135E-3
10	36.16	+1.514E+5	+7.877E-4	+1.892E+2	+3.207E-3
11	36.07	+1.658E+5	+8.744E-4	+1.891E+2	+3.191E-3
12	36.10	+1.802E+5	+9.464E-4	+1.886E+2	+3.133E-3
13	36.19	+1.946E+5	+1.002E-3	+1.873E+2	+3.005E-3
14	36.39	+2.089E+5	+1.062E-3	+1.874E+2	+3.007E-3
15	36.39	+2.233E+5	+1.136E-3	+1.873E+2	+2.953E-3
16	36.41	+2.377E+5	+1.201E-3	+1.867E+2	+2.939E-3
17	38.50	+2.521E+5	+1.274E-3	+1.872E+2	+2.98@E-3
18	36.43	+2.665E+5	+1.325E-3	+1.854E+2	+2.818E-3
19	36.71	+2.807E+5	+1.348E-3	41,054272	
, ,			+1.405E-3	+1.843E+2	+2.720E-3
20	36.90	+2.949E+5	+1.481E-3	+1.848E+2	+2.754E-3
21	36.83	+3.094E+5	+1.45TE-3 +1.545E-3	+1.853E+2	+2.794E-3
22	36.76	+3.238E+5	+1.545E-3	+1.840E+2	+2.685E-3
23	3€.97	+3.380E+5	+1.613E-3	+1.828E+2	+2.590E-3
24	37.16	+3.522E+5	+1.705E-3	+1.830E+2	+2.806E-3
25	37.13	+3.666E+5	+1.825E-3	+1.841E+2	+2.697E-3
26	36.95	+3.812E+5	+1.625E-3	+1.853E+2	+2.795E-3
27	36.76	+3.958E+5	+1.886E-3	+1.840E+2	42.690E-3
28	3E.96	+4.100E+5	+1.904E-3	+1.821E+2	+2.538E-3
29	37.27	+4.240E+5	T1.304E 5		_
			+1.961E-3	+1.820E+2	+2.525E-3
30	37.30	+4.383E+5	+2.044E-3	+1.818E+2	+2.517E-3
31	37.32	+4.526E+5	+2.130E-3	+1.828E+2	+2.585E-3
32	37,18	+4.672E+5	+2.154E-3	+1.827E+2	+2.578E-3
3 3	37.19	+4.816E+5	+2.182E-3	+1.811E+2	+2.467E-3
34	37.43	+4,956E+5	+2.782E 3	+1.813E+2	+2.475E-3
3 5	37.42	+5.100E+5	+2.296E-3	+1.817E+2	+2.497E-3
36	37.37	+5.244E+5	+2.298E-3	+1.805E+2	+2.417E-3
37	37.55	+5.385E+5	+2.348E-3	+1.793E+2	+2.340E-3
38	37.74	+5.526E+5 +5.671E+5	+2.451E-3	+1.802E+2	+2.392E-3
35	37.61	+5.6(1673	· · · · · · · · · · · · · · · · · · ·		

```
40
         37.49
                    +5.817E+5
                                    +2.530E-3
                                                   +1.809E+2
                                                                  +2.445E-3
  41
         37.51
                    +5.960E+5
                                    +2.583E-3
                                                   +1.808E+2
                                                                  +2.434E-3
  42
         37.54
                    +6.103E+5
                                    +2.E06E-3
                                                   +1.807E+2
                                                                  +2.424E-3
  43
         37.72
                    +6.244E+5
                                    +2.541E-3
                                                   +1.795E+2
                                                                  +2.347E-3
  44
         37.68
                    +6.388E+5
                                   +2.718E-3
                                                   +1.798E+2
                                                                  +2.355E-3
  45
         37.63
                    +6.532E+5
                                   +2.869E-3
                                                   +1.799E+2
                                                                  +2.382E-3
  45
        37.22
                    +6.684E+5
                                   +3.010E-3
                                                   +1.826E+2
                                                                  +2.566E-3
  47
        37.28
                    +6.826E+5
                                   +2.976E~3
                                                   +1.822E+2
                                                                  +2.5386-3
  48
        37.66
                    +6.963E+5
                                   +2.943E-3
                                                   +1.798E+2
                                                                  +2.372E-3
  49
        37.74
                    +7.105E+5
                                   +2.997E-3
                                                   +1.794E+2
                                                                  +2.341E-3
  50
        37.69
                    +7.249E+5
                                   +3.098E-3
                                                  +1.797E+2
                                                                  +2.360E-3
  51
        37.54
                    +7.396E+5
                                   +3.178E-3
                                                  +1.805E+2
                                                                 +2.421E-3
  52
        37.60
                    +7.538E+5
                                   +3.059E-3
                                                  +1.805E+2
                                                                 +2.400E-3
 6.1
        33.86
                   +8.925E+5
                                                 +2.020E+2
                                                                +5.711E-3
 62
        34.58
                   +9.052E+5
                                                 +1.979E+2
                                                                +4.600E-3
 63
        46.95
                   +8.881E+5
                                                 +1.222E+2
                                                                +7.070E-4
 54
        35.07
                   +9.328E+5
                                                 +1.950E+2
                                                                +4.0355-3
 65
        42.11
                   +9.28EE+5
                                                 +1.529E+2
                                                                +1.247E-3
 66
        36.00
                   +9.592E+5
                                                 +1.895E+2
                                                                +3,256E-3
 67
        35.39
                   +9.753E+5
                                    _____
                                                 +1.932E+2
                                                                +3.739E-3
 €8
       35.11
                   +9.906E+5
                                    _____
                                                 +1.948E+2
                                                                +3.995E-3
 69
        34.02
                   +1.008E+5
                                    -----
                                                 +2.011E+2
                                                                +5.421E-3
 70
       34.37
                   +1.022E+6
                                    -----
                                                 +1.991E+2
                                                                +4.881E-3
71
        34.83
                   +1.035E+6
                                                 +1.964E+2
                                                                +4.292E-3
 72
       35.67
                   +1.047E+6
                                                +1.916E+2
                                                                +3.505E-3
 73
       34.72
                   +1.0E4E+6
                                                 +1.971E+2
                                                                +4.422E-3
 74
       35.77
                   +1.075E+6
                                   -----
                                                +1.910E+2
                                                                +3.425E-3
 75
       35.86
                   +1.089E+6
                                   ----
                                                +1.905E+2
                                                                +3.359E-3
 76
       35.99
                   +1,103E+6
                                   -----
                                                +1.857E+2
                                                                +3.262E-3
 77
       35.97
                   +1.118E+6
                                   -----
                                                +1.898E+2
                                                                +3.278E-3
 78
       35.88
                   +1.133E+6
                                   _____
                                                +1.903E+2
                                                               +3.341E-3
 79
       36.17
                   +1.146E+6
                                   -----
                                                +1.886E+2
                                                               +3.143E-3
 80
       3B.22
                   +1.160E+E
                                   -----
                                                +1.884E+2
                                                               +3.112E-3
 13
       36.15
                   +1.175E+6
                                   -----
                                                +1.887E+2
                                                               +3.153E-3
82
       35.95
                  +1.190E+6
                                   -----
                                                +1.899E+2
                                                               +3.295E-3
83
       35.19
                  +1.207E+6
                                                +1,943E+2
                                                               +3.916E-3
84
       34.20
                  +1.225E+6
                                                +2.000E+2
                                                               +5.132E-3
25
       35.71
                  +1.234E+6
                                   -----
                                                +1.913E+2
                                                               +3.468E-3
85
       35.37
                  +1.250E+6
                                   -----
                                                +1.933E+2
                                                               +3.754E-3
87
       35.34
                  +1.264E+6
                                                +1.935E+2
                                                               +3.782E-3
33
       3E.23
                  +1.276E+6
                                  -----
                                               +1.883E+2
                                                               +3.101E-3
89
       36.56
                  +1.289E+6
                                  -----
                                                +1.854E+2
                                                               +2.503E-3
90
       36.75
                  +1.303E+6
                                  -----
                                                +1.852E+2
                                                               +2.797E-3
91
       36.81
                  +1.317E+6
                                                +1.849E+2
                                                               +2.767E-3
92
      35.94
                  +1.331E+6
                                                +1.841E+2
                                                               +1.701E-3
```

```
+2.771E-3
                                                +1.849E+2
 93
       36.80
                   +1.346E+6
                                   ----
                                                +1.850E+2
                                                               +2.867E-3
                   +1.361E+6
                                   ____
 94
       36.53
                                                +1.853E+2
                                                               +2.805E-3
 95
       35.74
                   +1.375E+6
                                   -----
                   +1.389E+6
                                                +1.858E+2
                                                               +2.849E-3
                                   -----
 96
       35.56
                                   ----
                                                +1.857E+2
                                                               +2.840E-3
 97
       36.67
                   +1.404E+6
                                                               +2.917E-3
 98
                   +1.419E+6
                                   ____
                                                +1.865E+Z
       36.54
                   +1.431E+6
                                                +1.830E+2
                                                               +2,603E-3
 99
       37.14
                                   -----
                                                +1.857E+2
                                                               +2.540E-3
100
       36.50
                   +1.448E+6
                                                               +3.031E-3
                                   ____
                                                +1.876E+2
101
       36.35
                   +1.463E+6
                                                +1.871E+2
                                                               +2.978E-3
                   +1.477E+6
                                   ____
102
       36.43
+3.455E-3
       35.73
                   +1.494E+6
                                                +1.912E+2
103
                                                               +2.754E-3
                                                +1.848E+2
104
       36.83
                   +1.504E+6
                                   ____
                                                               +2.677E-3
                   +1.517E+6
                                   -----
                                                +1.839E+2
105
       36.99
                                   ____
                                                +1.828E+2
                                                               +2.592E-3
106
       37.15
                  +1.531E+6
                                   -----
                                                +1.808E+2
                                                               +2.441E-3
107
       37.50
                  +1.544E+6
                                   -----
                                                +1.805E+2
                                                               +2.413E-3
       37.56
                  +1.558E+6
108
                                                +1.805E+2
                                                               +2.413E-3
109
       37.56
                  +1.572E+6
       37.46
                  +1.587E+6
                                                +1.811E+2
                                                               +2.458E-3
110
       37.42
                  +1.602E+6
                                   ____
                                                +1.813E+2
                                                               +2.475E-3
111
                                   -----
                                                +1.819E+2
                                                               +2.518E-3
112
       37.32
                  +1.617E+6
                                   ____
                                                +1.824E+2
                                                               +2.554E-3
113
       37.24
                  +1.631E+6
                                                               +2.573E-3
       37.20
                   +1.646E+6
                                   -----
                                                +1.826E+2
114
                                   ____
                                                +1.829E+2
                                                               +2.595E-3
115
       37.15
                  +1.661E+6
                                   ____
       37.08
                   +1.675E+6
                                                +1.833E+2
                                                               +2.630E-3
115
                   +1.691E+6
                                   -----
                                                +1.848E+2
                                                               +2.763E-3
117
       36.82
                                                +1.856E+2
                                                               +2.834E-3
118
       36.69
                  +1.706E+6
+2.909E-3
                                                +1.864E+2
119
       36.55
                  +1.721E+6
                                                               +2.357E-3
                                   _----
                                                +1.802E+2
120
       37.60
                  +1.730E+6
                                   _____
                                                               +2.335E-3
                                                +1.793E+2
       37.75
                  +1.744E+6
121
                                                               +2.27SE-3
                                   -----
                                                +1.785E+2
122
       37.89
                  +1.757E+E
       37.84
                                                +1.788E+2
                                                               +2.300E-3
                  +1.772E+6
123
                                                +1.798E+2
                                                               +2.387E-3
                  +1.787E+5
174
       37.67
                                                +1.807E+2
                                                               +2.427E-3
125
       37.53
                  +1,602E+6
                                                +1.807E+2
                                                               +2.427E-3
126
       37.53
                  +1.817E+6
                                                               +2.603E+3
                                   -----
                                                +1.830E+2
127
       37.14
                  +1.833E+6
                                                +1.843E+2
                                                               +2.717E-3
                                   -----
126
       3E.91
                  +1.849E+6
+1.861E+2
                                                               +2.880E-3
       36.E0
                  +1.865E+6
                                   -----
129
                                                               +2.291E-3
                                   ----
                                                +1.787E+2
130
       37.85
                  +1.872E+6
                                                               +2.115E-3
131
       38.35
                  +1.884E+E
                                   _----
                                                +1.758E+2
                                                               +2.15EE-3
                                   ____
                                                +1.765E+2
132
       38.23
                  +1,899E+6
                                   ----
                                                +1.784E+2
                                                               +2.276E-3
133
       37.90
                  +1.915E+6
       37.69
                                                +1.797E+2
                                                               +2.361E-3
134
                  +1.931E+6
                                                +1.628E+2
                                                               +2.592E-3
135
       37.16
                  +1.948E+6
                                                               +2.862E-3
                                   ____
                                                +1.859E+2
136
       36.E3
                  +1.965E+6
       36.31
                                                +1.878E+2
                                                               +3.056E-3
137
                  +1.982E+6
138
       36.31
                  +1.995E+5
                                   -----
                                                +1.878E+2
                                                               +3.056E-3
```

RAW	DATAFILE	NAME: UU02	07S1 Station	1		
N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
ı	.060	6.10 3	043	.995	.717	086
2	.075	6.994	393	1.101	.742	199
3	.090	7.604	509	1.169	.723	248
4	.110	8.212	623	1.133	.661	253
5	.130	8.598	578	1.099	.587	219
6	.150	8.802	617	1.024	.538	179
7	.170	9.013	612	1.003	.499	150
8	.200	9.275	673	.955	.491	128
9	.230	9.344	673	.940	.447	115
10	.260	9.388	632	.90 3	.440	110
11	.290	9.501	673	.90 6	.439	118
12	.320	9.504	651	.880	.433	092
13	.350	9.520	687	.873	.453	096
14	.390	9.579	658	.856	.457	085
15	.440	9.569	704	.848	.484	098
16	.540	9.569	712	.830	.499	071
17	.740	9.561	711	.830	.561	122
18	1.040	9.551	768	.849	.632	159
19	1.340	9. 538	776	.820	.652	136
20	1.640	9.582	776	.831	.695	155
21	2.540	9.636	795	.785	.719	122
Upw [[m/s]= 9.07	7 DEL995	[cm]= .366	Cf=	7.000E-3	

RAW	DATAFILE	NAME: UUØ2	0752 Station	n 2		
N	Y [cm]	U [m/s]	U [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
1	.060	€.630	305	1.074	.752	278
2	.080	7.045	330	1.021	.681	237
3	.100	7.322	292	1.003	.641	262
4	.120	7.518	357	.960	.592	216
5	.140	7.750	402	.955	.595	230
Б	.170	7.943	409	.950	.560	216
7	.220	8.237	437	.937	.544	205
	.270	8,431	445	.924	.521	204
8 9	.320	8.654	456	.914	.520	190
10	.420	8.954	488	.883	.494	176
11	.520	9.110	482	.847	.485	133
12	.620	9.355	510	.827	.477	110
13	.720	9.462	50E	.808	.468	102
14	.870	9.580	502	.775	.467	053
15	1.070	9.648	519	.766	.495	0 58
16	1.270	9.650	511	.727	.502	044
17	1.470	9.690	504	.743	.546	059
18	1.670	9.718	498	.729	.565	052
19	1.970	9.698	536	.717	.582	073
20	2.470	9.717	545	.716	.622	070
21	2.970	9.713	558	.700	. 6 32	074
22	4.270	9.699	541	.681	.668	072
Upw	[m/s] = 9.3	DEL 995	[cm]= 1.145	Cf=	5.750E-3	

N	Y [cm]		0753 Station			u'v' [m2/s2
**	1 20113	0 [11175]	O THIVE!	U [M/5]	V LM/51	U.A. [W5/2]
1	.050	5.473	121	. 9 59	.691	162
2	.090	6.317	318	1.004	.654	259
3	.140	6 .952	345	. 921	.596	236
4	.190	7.272	413	.992	.571	245
5	.240	7.550	416	.925	.570	244
Б	.340	7.906	492	.887	.527	222
7	.440	8.268	494	.882	.520	221
8	.540	8.465	514	.840	.519	194
9	.690	8.762	528	.815	.481	163
0	.840	9.043	566	.791	.470	146
11	1.040	9.207	538	.760	.466	117
12	1.240	9.342	5 53	.723	.461	096
13	1.440	9.454	558	.696	.469	074
4	1.740	9.556	563	.660	.474	049
5	2.040	9.553	566	.658	.499	044
6	2.540	9.597	559	.624	.528	041
7	3.040	9.€15	55!	.625	.530	033
8	4.040	9.626	5 63	.614	.549	037
9	5.040	9.629	520	.609	.579	052
ipw [m/s = 9.24	DEL995	[cm]= 1.839	Cf= 4	.850E-3	

RAW	DATAFILE	NAME: UVØZ	0754 Station	4			
N	Y [cm]	U [m/s]	V [m/s] u	' [m/S]	v' [m/s]	u'v' [m2/s	21
1	.050	6.330	271	.947	.585	201	
2	.080	6.520	311	.939	.566	229	
3	.110	6.732	308	.914	.534	195	
4	.140	6.939	319	.913	.523	203	
5	.180	7.140	363	.866	.522	183	
5 6	.280	7.440	364	.889	.521	214	
7	.380	7.736	394	. e 37	.505	200	
8	.530	8.073	420	.827	.502	187	
9	.730	8.449	445	.801	.490	169	
10	.930	8.676	422	.782	.469	157	
11	1.130	8.863	449	.743	.4E8	134	
12	1.330	9.043	453	.698	.458	107	
13	1.630	9.210	472	.683	.439	095	
14	1.930	9.295	~.451	.641	,449	066	
15	2.330	9.375	466	.608	.458	055	
16	2.830	9,448	456	.585	.474	031	
17	3.330	9.487	457	.583	.495	048	
18	3.830	9.501	443	.560	.491	026	
19	4.830	9.474	440	.563	.515	019	
Upw	[m/s]= 9.15	9 DEL995	[cm]= 2.451	Cf=	4.700E-3		

IVT021351 Station 1

	99.5 = 11 = 195.			โพ−Tinf	= 4.405	[0]	Upw ≖ 9.	.07 [m/S]	
N	Y [cm]	U [m/S]	U [m/S]	T [C]	u' [m/5]	v' [m/5]	t' [C]	u'v' [m2/82]	u'i [m-ū/
1 2 3 4 5	.050 .055 .105 .145 .185	5.02 5.62 6.62 7.02 7.28	-1.59 -1.71 -1.94 -1.89 -2.07	31.90 31.49 30.88 30.61 30.45	1.208 1.077 1.028	.5 35	.768 .680 .543 .487	418 447 353 347 271	58 58 38 38
5 7 8 9 10	.225 .265 .305 .345 .385	7.61	-2.08 -2.11 -2.13 -2.12 -2.10	30.38 30.31 30.29 30.26 30.24	.908 .861 .812 .814 .785	. 409 .395 .391 .401	.311 .230 .168 .147	255 226 201 199 183	15 10 05 05 04
N	vit: [m=0/5]	u'v'^2 [m3/\$3]	v1^2t		dU/dy [1/5]	dT/dy [C/m]	Prt		
1 2 3 4 5	+.288 +.288 +.181 +.148 +.078	054 142 157 145 071	+.095 +.146 +.130 +.112 +.045	5 7 5	30.701 26.972 18.192 11.102 5.704	-20.184 -17.599 -11.558 -6.757 -3.198	+.953 +1.022 +1.241 +1.424 +1.940		
5 7 8 9	+.078 +.052 +.034 +.034 +.025	052 048 020 025 020	+.050 +.030 +.015 +.018 +.010	2 1 9	1.935 021 347 1.018 4.074	875 .206 .047 -1.352 -3.992	+1.438 +42.916 +.797 +7.678 +7.036		

```
FILE NAME: IUT021351 Station 1
U = SUM(-A(N) + Y^N)
A0= +3.2512E+00 A1= +4.4847E+01 A2= -1.54E7E+02 A3= +1.7E14E+02
         U UC % DIFF
  Υ
        5.0164 5.129
5.6205 5.561
                         +2.242
 .0500
                         -1.057
 .0650
 .1050
        6.6182
                6.459
                         -2.409
        7.0237
                 7.039
 .1450
                7.039
7.370
 .1850
        7.2813
                         +1.211
                7.518
7.552
 .2250
        7.4319
                         +1.158
 .2650
        7.5579
 .3050
                          -.937
        7.5100
                7.539
                 7.547
 .3450
        7.5131
                          -.875
 .3850
                 7.543
         7.5819
                           +.603
****************
T = SUM(A(N) * Y(N))
-.145
 .1850
       30.4492
                30.405
 .2250
       30.3640
                30.328
                          -.185
 .2650
       30.3147
                30.319
                          +.013
       30.2857
                30.328
                          +.139
 .3050
                30.306
                          +.135
 .3450
       30.2649
 .3850
       30.2397
                30.203
                          -,121
```

IVT0213S2 Station 2

	99.5 = 1. 11 = 188.9			Tw-Tinf	= 5.570 [C]	Upw = 3.	31 [m/S]	
N	Y [cm]	U [m/S]	U [m/S]	T [C]	u', [m/S]	v' [m/S]	t' [C]	u'v' [m2/S2]	u't' [m-C/S]
1 2 3 4 5	.050 .050 .190 .290 .390	4.25 5.41 6.30 6.70 7.00	-1.02 -1.50 -1.82 -1.89 -1.94	32.86 32.09 31.31 30.98 30.77	1.077 .871 .855	.487 .567 .491 .486	1.146 .876 .640 .542 .472	247 431 301 295 259	482 568 334 270 202
6 7 8 9	.490 .590 .690 .790 .940	7.22 7.37 7.50 7.61 7.67	-1.93 -2.04 -2.05 -2.11 -2.09	30.60 30.47 30.39 30.31 30.25	.789 .761 .760 .715	.450 .432 .424 .398 .404	.409 .348 .317 .266 .227	251 217 215 173 154	159 114 110 065 045
11	1.090 1.290	7.71 7.74	-2.10 -2.12	30.22 30.18	.658 .662	.415 .420	.190 .166	147 134	035 026
N	v't' [m=0/S]	u'v'^2 [m3/\$3]	v'12 [m2-0/		dU/dy [1/5]	dT/dy [C/m]	Prt	GAMMA	
1 2 3 4 5	+.327 +.307 +.188 +.150 +.121	033 140 067 054 046	+.11 +.14 +.07 +.04	09 75 15	5.435 5.050 4.151 3.343 2.627	-4.361 -4.038 -3.286 -2.615 -2.027	+.805 +1.122 +1.270 +1.543 +1.652	1.000 1.000 1.000 1.000 1.000	
6 7 8 9 10	+.103 +.082 +.075 +.052 +.040	047 031 044 026 029	+.030 +.030 +.030 +.010 +.010	36 38 73	2.003 1.470 1.028 .578 .325	-1.520 -1.095 752 490 251	+1.854 +1.975 +2.084 +2.425 +2.947	1.000 1.000 1.000 1.000 1.000	
1 1 1 2	+.032 +.026	011 013	+.010 +.008		.177 .301	195 407	+5.012 +7.082	1.000	

```
FILE NAME: IUT021382 Station 2
U = SUM(-A(N) + Y^N)
A0= +5.3613E+00 A1= +5.9370E+00 A2= -5.1352E+00 A3= +1.5248E+00
  Y U UC % DIFF
.1900 6.3042 5.314 +.16
 .1900
                               +.161
 .2900
         6.6963
                   6.688
                               -.119
 .3900
          7.0009
                    6.986
                               -.212
 .4900
          7.2222
                    7.217
                               -.075
 .5900
          7.3716
                    7.390
                               +.246
                    7.514
 .6900
          7.4959
                               +.228
                   7.598
 .7900
         7.6145
                               -.211
                   7.671
 .9400
         7.6676
                               +.046
                   7.705
1.0988
         7.7148
                               -,111
                    7.748
1.2900
         7.7440
```

 $T = SUM(A(N) * Y^N)$

```
A0= +3.2059E+01 A1= +4.7841E+00 A2= +4.3313E+00 A3= -1.3617E+00
  Y T TC % DIFF
.1900 31.3145 31.297 -.09
.2900 30.9775 31.003 +.00
                                           -.055
  .2900
           30.7654
30.7654
30.5988
30.4699
30.3902
30.373
30.3070
30.312
30.2533
30.258
70.2197
30.172
                                               +.082
  .3900
                                               +.020
  .4900
                                                -.013
  .5900
                                                -.017
  .6900
                                               -.057
  .7900
                                               +.015
  .9400
                                                +.016
1.0900 30.2197
1.2900 30.1768
                                               +.025
                                               -.015
```

IVT0213S3 Station 3

	99.5 = 1 11 = 185.			「w-Tinf	= 6.220 (CJ	Upw = 9.	24 [m/\$]	
N	Y [cm]	U [m/S]	V [m/S]	T [C]	u' [m/S]	v' [m/S]	t' [C]	u'v' [m2/S2]	u't' [m-C/S]
1 2 3 4 5	.050 .100 .220 .420 :620	4.09 4.92 5.80 6.39 6.75	-1.15 -1.52 -1.74 -1.88 -1.92	33.44 32.58 31.70 31.13 30.79	.962 .834 .764	.505 .501 .485 .458	1.240 1.038 .676 .558 .463	296 341 284 249 224	627 566 330 248 195
6 7 8 9 10	.820 1.020 1.220 1.420 1.620	7.03 7.28 7.38 7.51 7.55	-1.96 -2.05 -2.05 -2.08 -2.10	30.57 30.41 30.30 30.23 30.19	.693 .633 .631	.432 .401 .398 .386	.395 .317 .274 .232 .180	206 186 154 139 126	146 107 074 060 039
11	1.920 2.220	7.63 7.65	-2.09 -2.09	30.15 30.14		.391 .410	.143 .111	113 109	029 023
И	v't' [m-C/S]	u'v'^2 [m3/\$3]	v*^2 [mZ=0/9		dU/dy [1/8]	dT/dy [C/m]	Prt	GAMMA	
1 2 3 4 5	+.376 +.318 +.184 +.146 +.119	030 070 025 028 028	+.100 +.090 +.041 +.030 +.033	12 16 15	3.530 3.347 2.928 2.296 !.746	-3.433 -3.235 -2.786 -2.114 -1.536	+.764 +1.038 +1.483 +1.573 +1.657	1.000 1.000 1.000 1.000 1.000	
6 7 8 9	+.101 +.077 +.063 +.051 +.036	042 026 033 025 010	+.034 +.022 +.021 +.020 +.008	ত্র ত্র 8	1.276 .888 .581 .356	-1.054 667 375 178 076	+1.693 +1.815 +1.572 +1.356 +1.286	1.000 1.000 1.000 1.000 1.000	
11 12	+.029 +.024	014 014	+.010 +.008		.148 .267	102 342	+2.563 +5.688	1.000 1.000	

```
FILE NAME : IVT021383 Station 3
U = SUM(A(N) * Y'N)
A0= +5.0948E+00 A1= +3.7176E+00 A2= -1.9055E+00 A3= +3.3886E-01
  y U UC % DIFF
                              +.434
                   5.824
 .2200
         5.7990
                   €.345
                              -.546
         5.3865
 .4200
                   5.748
                              -.080
         6.7521
 .6200
                              +.250
                    7.049
 .8200
          7.0313
                              -.180
                   7.254
         7.2771
 1.0200
                              +.454
                   7.410
          7.3753
 1.2200
                   7.502
                              -.051
          7.5057
 1.4200
                               -.073
                    7.557
          7.5829
 1.6200
                               -.274
                    7.607
          7.6276
 1.9200
                               +.153
          7.8528
                    7.665
 2.2200
```

T = SUM(A(N) + Y(N))

```
T TC % DIFF
31.6579 31.665 -.1€
 Υ
                         -.102
 .2200
                         +.146
       31.1319
               31.177
 .4200
                         +.073
       30.7913
               30.814
 .E200
               30.556
                         -.054
       30.5729
 .8200
                         -.073
               30.386
       30.4081
1.0200
               30.283
30.230
                         -.053
       30.2996
1.2200
                         -.009
       30.2326
1.4200
                30.206
                         +.052
       30.1902
1.6200
                         +.066
               30.185
       30.1646
1.9200
               30.123
2.2200
        30.1368
```

IVT021354 Station 4

Qu	el 99.5 = ; uall = 181	.9 [W/m^2]	1W-11r	of = 6.073	[0]	Upw =	9.19 [m/S]	
N	•	_	V	T	u,	v *	t'	u'v'	
	[cm]	[m/S]	[m/S]	[0]	[m/S			[m2/S2]	u't' [m-C/S
1 2		4.94	10	33.4	5 1.127	.480	1.289	078	
3		5.90	34	32.5	5 1. 0 68	.462	.983		707
4	.200	8.65	35	31.8	2 .939			168	617
5	.450	7.47	41	31.14			.597	192	436
ב	.700	8.00	45	30.77			.528	193	323
5	.950	0 77					.520	179	276
7	1.200	8.33	46	30.53			.447	148	188
8	1.450	8.61	46	30.34		.409	.386	121	150
9	1.700	8.79	45	30.24		.400	.325	112	111
10	1.950	8.98	43	30.14		.404	.282	092	088
	7.550	9.05	43	30.07	.668	.386	.228	072	088 062
1.1	2.200	9.13	44	70 07				.012	.002
12	2.450	9.19	45	30.03		.383	.187	054	043
13	2.700	9.21		30.00		.381	.158	042	031
14	3.200	9.25		30.00 29.99	.518	.396	.136	033	025
		0.23	• * 4	43.33	.602	.413	.094	030	017
N	v't'	u'v'^2	. 1051						
	[m-C/S]	[m3/53]	V''Zt	, 3.1	dU/dy	dT/dy	Prt	GAMMA	
		11107 30 3	LM2-0/5	21	[1/5]	[C/m]			
1	+.291	040	+.116	4	3.384	2 676			
2	+.227	ØE8	+.099		3.251	-2.639	+.211	1.000	
3	+.177	027	+.0470		2.593	-2.528	+.578	1.000	
4	+.139	029	+.031		2.397	-2.313	+.837	1.000	
5	+.123	034	+.0333		1.859	-1.818	+1.054	1.000	
_				,	1.603	-1.382	+1.073	1.000	
6	+.097	026	+.0247	7	1.409	-1.006	.1 000		
7		032	+.0286	;	1.018	690	+1.092	1.000	
8	+.071	037	+.0278		.695	630 434	+.981	1.000	
9	+.065	024	+.0249		.441	434 237	+.983	1.000	
0	+.048	027	+.0169		.254	100	+.753 +.589	1.000 1.000	
1	+.037	008				- · • •		1.000	
	+.029	008 008	+.0099		.137	023	+.240	1.000	
	+.025	008 001	+.0060		.097	005	+.080	1.000	
	+.019		+.0063		.105	047	+.573	1.000	
-		007	+.0057		.349	310	+1.416	1.000	

```
FILE NAME: IUT0213S4 Station 4
**********
U = SUM(A(N) * Y^N)
A0= +6.0738E+00 A1= +3.5192E+00 A2= -1.3704E+00 A3= +1.8231E-01
 Y U UC % DIFF
.2000 6.6475 6.724 +1.159
.4500 7.4746 7.397 -1.044
 .2000
                            +1.156
                             -1.044
 .4500
                   7.928
 .7000
         7.9974
                              -.863
         8.3327
                              +.047
                   8.337
 .9500
                              +.302
1.2000
         8.8126
                   8.E39
         8.7925
1.4500
                   8.851
                              +.569
1.7000
         8.9824
                   8.992
                              +.105
                               +.311
1.9500
         9.0492
                   9.077
2.2000
         9.1326 9.125
                              -.095
2.4500
         9.1910
                   5.151
                              -.431
2.7000
         9.2123
                   9.174
                              -,414
         9.2473
                              +.318
3.2000
                    9.277
```

 $T = SUM(A(N) * Y^N)$

A0 = +3.224	9E+01 A1=	-2.7527E+00	A2= +1.1460E+00	A3= -1.5924E-01
Y	Ţ	TC	% DIFF	
.2000	31,8244	31.743	255	
.4500	31.1439	31.228	+.271	
.7000	30.7650	30.829	+.209	
.9500	30.5279	30.532	+.013	
1.2000	30.3441	30.321	075	
1.4500	30.2408	30.182	195	
1.7000	30.1401	30.099	135	
1.9500	30.0652	30.058	026	
2.2000	30.0310	30.044	+.045	
2.4500	30.0003	30.042	+.140	
2.7000	30.0044	30.037	+.109	
3.2000	29.9868	29.958	097	

Case 4:

Mean and fluctuating velocity: UP0729

Mean temperature: T0829

Stanton number: ST0831

Shear stress: UV0817

Turbulent heat flux and Pr_t : IVT0831

FILE: UP072981

Upw	= .089 [m] = 2.230E-3 = 16.53 [m/S] = 1.603E-5 [m ² /S] = 9.170E+4	DEL2 H REdel1	= 5.412E-4 [m = 2.125E-4 [m = 2.547 = 5.583E+2 = 2.192E+2	
, . _ , .	= 9.170E+4 = 1.801E-3 [m]	KE De 12	= 2.152672	

	Y [cm]	U [m/s]	Y +	U+	y/R	u¹/Upw
	.012	2.259	4.13	4.09	.00012	.363
1	.014	2.565	4.82	4.64	.00014	.383
2 3	.014	3.021	5.51	5.47	.00016	.432
		3.278	6.20	5.93	.00019	.462
4 5	.018 .021	3.806	7.24	6.89	.00022	.497
	0.25	4 458	8.61	8.09	.00026	.563
6	.025	4.469	12.06	11.13	.00036	.665
7	.035	6.146	15.51	13.96	.00046	.938
8	.045	7.715 9.995	20.68	18.09	.00062	.9 58
9 10	.060 .075	12.033	25.86	21.77	.00077	.960
10	.0.5					
1.3	.095	13.953	32.76	25.24	.00098	1.040
12	.125	15.725	43.12	28.44	.00129	.764
13	.155	16.368	53.48	29.59	.00160	.669
14	.195	16.555	67.31	29.92	.00201	.664
15	.245	16.590	84.61	29.97	.00253	.660
	205	1C CD7	101.93	29.96	.00304	.676
16	.295	16.593	136.63	29.96	.00407	.699
17	.395	16.612	206.24	29.96	.00613	.646
18	.595	16.644	276.13	29.94	.00820	.692
19 20	.795 1.195	16.669 16.743	416.80	29.95	.01232	.629

FILE: UP0729S2C

Station 2 (downwash)

XSTA Of Upw Visc REx Del9	= 4.6 = 17. = 1.6 = 3.7	56 [m] 00E-3 24 [m/S] 31E-5 [m^2/S] 60E+5 59E-3 [m]	DEL 1 DEL 2 H REdel REdel	= 3.166E- = 1.635E- = 1.937 1 = 3.349E+ 2 = 1.729E+	4 [m] 2	
	Y [cm]	U [m/s]	Y+	U+	y/R	u¹/Upw
1	.005	2.528	2.28	3.06	00005	
2	.007	2.654	3.30	3.21	.00005	1.383
3	.009	3.474	4.31	4.20	.00007	1.242
4	.011	4.192	5.33	5.07	.00009	1.797
5	.013	5.073	6.34	6.13	.00011	2.343
			0.04	0.15	.00013	2.748
6	.016	B.292	7.86	7.61	00015	
7	.020	7.892	9.89	9.54	.00016	3.393
8	.025	9.618	12.43	11.63	.00020	3.920
9	.030	11.076	14.97	13.39	.00025	4.692
10	.035	12.381	17.50	14.97	.00030	4.778
			,,,,,,,	14.57	.00036	5.005
1.1	.040	13.382	20.04	16.18	00044	
12	.045	14.101	22.58	17.04	.00041	4.922
13	.050	14.611	25.12	17.66	.00046	4.412
14	.050	15.342	30.20	18.54	.00051	3.875
15	.070	15.775	35.27	19.06	.00061	3.105
		- · · · · -	55.21	13.06	.00072	3.398
16	.089	16.247	45.43	19.63	22222	_
17	.109	16.466	55.60	19.89	.00092	3.405
18	.160	16.715	81.03	20.18	.00113	3.406
19	.210	16.987	106.48	20.50	.00164	4.693
20	.260	17.219	131.97	20.30 20.77	.00216	3. 9 98
			151.57	20.77	.00268	2.282
21	.310	17.339	157.47	20.90	007.0	
22	.410	17.346	208.57	20.89	.00319	.846
23	.510	17.375	259.77	20.90	.00422	.642
24	.710	17.389	362.49	20.87	.00525	.650
25	1.010	17.405	517.38	20.83	.00731	.620
			2.7.00	20.65	.01041	.660

FILE: UP072952T

Station 2 (upwash)

XSTA = .356 [m] Cf = 2.100E-3 Upw = 17.23 [m/S] Visc = 1.631E-5 [m/S] REx = 3.757E+5 De1995 = 3.007E-3 [m]	DEL2 H 2/SJ REdel1	= 1.160E-3 [m] = 5.310E-4 [m] = 2.185 = 1.226E+3 = 5.610E+2		
Y [cm] U [m/s) Y+	U+	y/R	u¹/Upw
1 .015 2.569	5.14	4.78	.00015	4.762
2 .017 3.091	5.82	5.53	.00018	5.694
3 .019 3.458	6.51	6.19	.00020	6.451
4 .021 3.839	7.19	6.88	.00022	7.213
5 .025 4.571	8.56	8.18	.00026	8.444
6 .030 5.39E	10.28	9.66	.00031	10.179
7 .040 6.750	13.70	12. 0 9	.00041	12.296
8 .050 7.726	17.13	13.83	.00052	13.428
9 .060 8.564	20.55	15.33	.00062	14.193
10 .075 9.190	25.70	16.45	.00077	13.883
11 .085 9.236	29.13	16.53	.00088	13.276
12 .095 9.218	32.56	16.49	.00098	12.334
13 .105 9.144	35.99	16.36	.00106	11.898
14 .115 8.978	39.43	16.06	.00119	10.872
15 .130 8.695	44.57	15.55	.00134	9.917
16 .145 8.751	49.73	15.65	.00149	9.696
17 .165 9.365	56.60	16.75	.00170	10.911
18 .185 10.764	63.47	19.24	.00191	12.351
19 .205 12.659	70.35	22.63	.00211	11.953
20 .225 14.424	77.22	25.77	.00232	10.362
21 .245 15.907 22 .265 16.728 23 .285 17.073 24 .305 17.229 25 .335 17.311	84.11 90.99 97.88 104.77	28.42 29.88 30.49 30.76 30.90	.00253 .00273 .00294 .00314 .00345	6.503 3.521 1.857 1.001 .619
26 .365 17.304	125.45	30.88	.00376	.735
27 .395 17.323	135.81	30.90	.00407	.676
28 .445 17.320	153.08	30.88	.00455	.679
29 .515 17.319	177.29	30.86	.00531	.672
30 .715 17.364	246.65	30.67	.00737	.595

FILE: UP0729530

Station 3 (downwash)

XSTA	= .610 (m)	DEL1	=	1.407E-3	[m]
Cf	- 4.800E-3	DEL2	=	9.959E-4	[m]
Upw	= 17.08 [m/S]	Н	=	1.413	
Visc	= 1.630E-5 [m^2/S]	REdel1		1.475E+3	
RE×	= 6.389E+5	REde12	=	1.044E+3	
De1995	= 1.007E-2 [m]				

	Y [cm]	U [m/s]	Y+	U+	y/R	u⁴/Upw
1	0.000	2.206	0.00	2.54	0.00000	3.090
2	.001	2.300	.51	2.75	.00001	3.224
3	.003	2.328	1.54	2.78	.00003	3.172
4	.005	2.415	2.57	2.89	.00005	3.207
5	.0 07	2.751	3.59	3.29	.00007	4.010
6	.009	3.513	4.62	4.20	.00009	5.576
7	.011	4.153	5.65	4.96	.00011	6.466
8	.014	5.055	7.19	6.04	.00014	7.951
9	.018	6.248	9.24	7.47	.00019	9.271
10	.023	7.447	11.81	8.90	.00024	10.134
1.1	.028	8.279	14.38	9.89	.00029	10.482
12	.038	9.560	19.52	11.42	.00039	10.093
13	.048	10.301	24.66	12.30	.00049	9.922
14	.063	10.984	32.37	13.12	.00065	9.152
15	.098	11.840	50.37	14.14	.00101	8.228
16	.148	12.593	76.11	15.03	.00153	7.684
17	.198	13.129	101.88	15.66	.00204	7.344
18	.298	13.994	153.49	16.67	.00307	6.899
19	.498	15.375	257.03	18.28	.00513	5.570
20	.648	16.213	334.97	19.25	.00668	4.408
21	.848	16.961	439.27	20.09	.00874	2.362
22	1.048	17.236	544.01	20.38	.01080	1.035
23	1.248	17.333	649.18	20.45	. 0 1287	.707
24	1.448	17.384	754. 79	20.47	.01493	.653
25	1.648	17.406	860.85	20.45	.01699	.654
26	1.948	17.467	1020.75	20.46	.02008	.631
27	2.248	17.481	1181.70	20.41	.02318	.677
28	2.748	17.583	1452.19	20.42	.02833	.609

FILE: UP0729S3T

Station 3 (upwash)

XSTA	=	.610 [m]	DEL1		1.623E-3 [m]	j
Cf	=	4.150E-3	DEL2	=	1.124E-3 [m]	J
Upw	=	17.11 [m/S]	н	•	1.444	
Visc	-	1.629E-5 [m^2/S]	REdel1	=	1.705E+3	
REx	_	6.403E+5	REde12	=	1.181E+3	
De1995		1.019E-2 [m]				

	Y [cm]	U [m/s]	Y+	U+	y/R	u¹/Upw
1	.008	3.047	3.59	3.91	.00008	4.800
2	.009	3.533	4.55	4.53	.00010	5.565
3	.012	4.046	5.50	5.19	.00012	6.548
4	.013	4.586	6.46	5.88	.00014	7.519
5	.017	5.725	8.38	7.34	.00018	8.762
Б	.022	6.830	10.77	8.76	.00023	9.605
7	.028	7.681	13.16	9.85	.00028	9.886
8	.032	8.294	15.56	10.64	.00034	9.768
9	.042	9.195	20.35	11.79	.00044	9.479
10	.057	10.091	27.53	12.94	.00059	8.987
1.1	.072	10.659	34.72	13.67	.00075	8.285
12	.092	11.150	44.31	14.29	.00095	7.879
13	.142	11.960	68.29	15.32	.00147	7.165
14	.242	13.021	116.33	16.67	.00250	6.680
15	.342	13.871	164.48	17.74	.00353	6.3 83
16	.492	15.010	236.88	19.16	.00508	5.737
17	.642	15.991	309.51	20.38	.00562	4.664
18	.842	16.901	406.69	21.50	.00869	2.622
19	1.042	17.248	504.29	21.89	.01075	1.029
20	1.242	17.316	602.29	21.93	.01281	.703
21	1.442	17.367	700.70	21.95	.01487	.607
22	1.743	17.416	849.09	21.95	.01795	.634
23	2.242	17.517	1098.50	21.96	.02312	.637

FILE: UP0729540

Station 4 (downwash)

XSTA	= .876 [m]	DEL1 = 1.532E-3 [m
Cf	= 5.200E-3	DEL2 = 1.167E-3 [m
Upw	= 17.14 [m/S]	H = 1.313
Visc	$= 1.624E-5 [m^2/5]$	REdel1 = 1.616E+3
REx	= 9.244E+5	REdel2 = 1.231E+3
De 1999	5 = 1.445E-2 [m]	

	Y [cm]	U [m/s]	Y+	U+	y/R	u'/Upw
1	0.000	2.282	0.00	2.61	0.00000	2.840
2	.003	2.404	1.61	2.75	.00003	3.027
3	.006	3.263	3.23	3.73	.00005	4.907
4	.009	4.168	4.84	4.77	.00009	6.259
5	.012	5.267	6.46	6.03	.00012	7.905
Б	.015	6.071	8.07	6.95	.00015	8.858
7	.025	8.458	13.45	9.68	.00026	10.538
8	.035	10.003	18.83	11.44	.00036	10.804
9	.045	10.871	24.22	12.44	.00046	10.373
10	.065	11.893	34.99	13.60	.00067	9.488
1.1	.095	12.668	51.15	14.48	.00098	8.4 84
12	.145	13.342	78.11	15.25	.00149	7.857
13	.195	13.779	105.10	15.74	.00201	7.499
14	.295	14.371	159.17	16.40	.00304	6.8 96
15	.445	14.976	240.47	17.06	.00459	6.416
16	.695	15.765	376.54	17.91	.00716	5.582
17	.895	16.312	485.91	18.50	.00923	4.859
18	1.095	16.840	595.73	19.06	.01129	3.921
19	1.295	17.171	706.01	19.39	.01335	2.815
20	1.545	17.430	844.51	19.63	.01593	1.447
21	1.795	17.549	983.74	19.71	.01851	.867
22	2.045	17.582	1123.70	19.70	.02108	.723
23	2.295	17.621	1264.40	19.69	.02366	.6 98
24	2.545	17.630	1405.85	19.65	.02524	.644
25	2.795	17.687	1548.04	19.66	.02881	.630
25	3.295	17.751	1834.71	19.63	.03397	.625
27	3.795	17.834	2124.46	19.61	.03912	.668
28	4.295	17.928	2417.33	19.61	.04428	.621

FILE: UP072954T

Station 4 (upwash)

XSTA	= .876 [m]	DEL1 = 2.487E-3 [m]
Cf	= 4.200E-3	DEL2 = 1.820E-3 [m]
Upw	= 17.13 [m/S]	H = 1.367
Visc	= 1.626E-5 [m^2/S]	REdel1 = 2.620E+3
RE×	= 9.234E+5	REdel2 = 1.917E+3
De1995	= 1.603E-2 [m]	

	Y [cm]	U [m/s]	Y+	U+	y/R	u¹/Upw
1	.007	2.620	3.38	3.34	.00007	4.113
2	.009	3.278	4.35	4.17	.00009	5.257
3	.011	3.775	5.31	4.81	.00011	6.29 8
4	.013	4.487	6.28	5.71	.00013	7.236
5	.016	5.136	7.73	6.54	.00016	8.321
6	.021	6.412	10.14	8.17	.00022	9.745
7	.026	7.304	12.56	9.30	.00027	10.118
8	.036	8.572	17.39	10.91	.00037	10.215
9	.046	9.432	22.22	12.01	.00047	10.203
10	.061	10.239	29.48	13.03	.00063	9.543
11	.076	10.696	36.73	13.61	.00 078	9.079
12	.105	11.343	51.24	14.43	.00109	8.529
13	.156	11.913	75.46	15.15	.00161	7.915
14	.206	12.341	99.69	15.68	.00212	7.668
15	.306	12.905	148.24	16.39	.00315	7.260
16	.456	13.614	221.25	17.26	.00470	7.065
17	.606	14.232	294.49	18.01	.00525	6.8 67
18	.805	15.006	392.49	18.95	.00831	6.677
19	1.006	15.767	490.90	19.87	.01037	5.918
20	1.206	16.507	589.73	20.76	.01243	4.914
21	1.406	17.044	68 8. 9 6	21.39	.01449	3.454
22	1.606	17.337	788.62	21.72	.01656	1.954
23	1.806	17.472	88 8. 6 9	21.84	.01852	1.036
24	2.056	17.502	1014.37	21.82	.02120	.801
25	2.305	17.555	1140.72	21.83	.02377	.687
26	2.556	17.604	1267.74	21.83	.02635	.649
27	2.806	17.633	1395.42	21.81	.02893	538

FILE: UP0729550

Station 5 (downwash)

XSTA	=	1.130 [m]	DEL1	-	2.436E-3	[m]
Cf	=	4.700E-3	DEL2	=	1.898E-3	[m]
Upw	=	16.76 [m/S]	Н	=	1.284	
Visc	-	1.628E-5 [m^2/S]	REdel1	-	2.509E+3	
REx	=	1.164E+6	REdel2	=	1.954E+3	
De1995	*	2.173E-2 [m]				

	Y [cm]	U [m/s]	Y+	U+	y/R	u¹/Upw
1	.003	2.101	1.50	2.59	.00003	2.644
2	.005	2.268	2.50	2.79	.00005	3.217
3	.007	2.907	3.49	3.58	.00007	4.737
4	.010	3.811	4.99	4.69	.00210	6.387
5	.013	4.703	6.49	5.79	.00013	7.779
6	.018	6.160	8.99	7.58	.00019	9.519
7	.023	7.248	11.48	8.92	.00024	10.320
8	.033	8.743	16.48	10.76	.00034	10.895
9	.043	9.6 68	21.48	11.89	.00044	10.772
10	.058	10.566	28.97	13.00	.00060	10.246
11	.078	11.257	38.97	13.84	.00080	9.457
12	.098	11.709	48.97	14.40	.00101	9.303
13	.148	12.335	74.00	15.16	.00153	8.630
14	.198	12.774	9 9. 0 5	15.69	.00204	8.268
15	.298	13.379	149.23	16.41	.00307	7.893
16	.448	13.979	224.69	17.12	.00462	7.440
17	.648	14.501	325.67	17.73	.00668	6.847
18	.848	14.955	427.07	18.24	.00874	6.403
19	1.098	15.484	554.42	18.84	.01132	5.687
20	1.398	16.090	708.11	19.52	.01441	4.902
21	1.698	16.586	8 52.77	20.05	.01751	3.894
22	1.998	16.973	1018.41	20.46	.02060	2.690
23	2.298	17.161	1175.04	20.62	.02369	1.501
24	2.598	17.240	1332.66	20.65	.02678	1.037
25	2.898	17.326	1491.29	20.69	.02988	. 761
26	3.198	17.343	1650.93	20.64	.03297	.724
27	3.598	17.411	1865.38	20.63	.03709	. 653
28	4.098	17.496	2136.03	20.62	.04225	.599

FILE: UP072955T

Station 5 (upwash)

XSTA	= 1.130 [m]	DEL1 =	3.679E-3 [m]
Cf	= 3.700E-3	DEL2 =	2.718E-3 [m]
Ūοω	= 16.76 [m/S]	н =	1.353
Visc	= 1.627E-5 [m^2/S]	REdel1 =	3.791E+3
RE×	= 1.165E+6	REdel2 =	2.801E+3
De 1995	= 2.390E-2 [m]		

	Y [cm]	U [m/s]	Y+	U+	y/R	u'/Upw
1	.008	2.581	3.55	3.58	.00008	4.349
2	.010	3.156	4.43	4.38	.00010	5.462
3	.012	3.652	5.32	5.06	.00012	6.343
4	.014	4.150	6.21	5.75	.00014	7.352
5	.015	4.624	7.09	6.41	.00016	7.868
6	.021	5.694	9.31	7.89	.00022	9.333
7	.026	6.570	11.53	9.11	.00027	9.767
8	.036	7.895	15.96	10.94	.00037	10.216
9	.045	8.547	20.40	11.85	.00047	9.925
10	.066	9.479	29.27	13.14	.00058	9.374
11	.086	10.028	38.15	13.90	.00089	8.906
12	.096	10.216	42.59	14.15	.00099	8.662
13	.121	10.595	53.70	14.67	.00125	8.267
14	.171	11.177	75.93	15.47	.00176	7.994
15	.246	11.691	109.32	16.17	.00254	7.833
16	.346	12.197	153.92	16.85	.00357	7.583
17	.496	12.734	220.99	17.57	.00511	7.323
18	.696	13.363	310.74	18.40	.00718	7.026
19	.9 96	14.141	445.07	19.41	.01027	6.842
20	1.296	15.031	582.24	20.57	.01336	6.4 61
21	1.596	15.779	719.28	21.52	.01645	5.9 38
22	1.896	16.475	857.17	22.40	.01955	4.772
23	2.196	16.969	995.94	23.00	.02264	3.016
24	2.496	17.202	1135.59	23.24	.02573	1.564
25	2.796	17.290	1276.14	23.29	.02882	.977
26	3.096	17.345	1417.57	23.29	.03192	.766
27	3.596	17.408	1655.33	23.25	.03707	.616
28	4.095	17.502	1895.63	23.25	.04223	.670

FILE: T0829530

Station 3 (downwash)

Xsta	= .610) [m]	Del-ther	- = 9.841E-	·3 [m]	
Tω	= 32.62	2 [0]	Del-ent	h = 1.034E-	·3 [m]	
Tinf	= 28.67	7 [C]	Del-con	d = 6.314E	4 [m]	
Qω	= 1.478	BE+2 [W/m^2]	Re-enth	= 1.081E+	·3	
Yeff	= +1.70	00E-4 [m]	Prt	- .950		
Cond	= 13.20	9		= 71.73	[W/m]	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	+.017	0.000	0.00	0.00	0.000	0.000
2	+.019	31.598	9.67	6.62	.019	.289
3		31.465	10.69	7.48	.021	
4		31.383	11.72		.023	
5	+.025	31.269	12.75	8.76	.025	
6	+.027	31.171	13.77	9.40	.027	.410
7	+.029	31.112	14.80	9.79	.029	.427
8		30.9 36	17.37		.035	.477
9	+.039	30.819	19.94	11.70	.040	.510
10	+.049	30.601	25.08	13.13	.050	.572
† 1	+.059	30.488	30.23	13.87	. 0 60	.604
12	+.069	30.395	35.37		.070	
13		30.280	45.67	15.24	.090	. 6 63
14	+.109	30.184	55.97	15.87	.111	.690
15	+.129	30.124	66.28	16.27	.131	.707
16	+.169	30.014	86.93	17.00	.172	.738
17	+.219	29.914	112.77		.223	.766
18	+.269	29.826	138.67	18.25	.273	.791
19	+.369	29.647	190.63	19.45	.375	.842
20		29.523	242.74	20.30	.477	.877
21	+.569	29.393	295.04	21.18	.578	.914
	+.669	29.269	347.54	22.03	.580	.949
23	+.869	29.131	452.81	23.00	.883	. 9 88
24		29.088	558.4 2	23.34	1.086	
25	+1.369		717.59		1.391	1.002
26	+1.669	29.083	877.80	23.53	1.696	1.002

27 +1.969 29.094 1039.04 23.54 2.001 .998

FILE: T082953T

Station 3 (upwash)

Xsta	= .610 (m)	De]-ther = 1.193E-2 [m]
Tω	= 32.95 [C]	Del-enth = 1.445E-3 [m]
Tinf	- 28.72 [C]	Del-cond = 7.079E-4 [m]
Qω	<pre>= 1.479E+2 [W/m^2]</pre>	Re-enth = 1.512E+3
Yeff	= +1.200E-4 [m]	Prt = .950
Cond	= 13.20	Qadded = 112.51 [W/m]

	Y [cm]	T [C]	Y+	T+	Y/Del995	DT/DTw
1	+.016	31.963	7.57	5.94	.013	.249
2	+.018	31.920	8.52	8.20	.015	.260
3	+.020	31.842	9.47	6.67	.017	.279
4	+.022	31.764	10.42	7.14	.018	.299
5	+.024	31.658	11.38	7.79	.020	.326
6	+.029	31.424	13.76	9.20	.024	.385
7	+.034	31.268	16.15	10.15	. 0 28	.424
8	+.044	31.022	20.94	11.65	.037	.487
9	+.054	30.855	25.72	12.67	.045	.529
10	+.064	30.751	30.51	13.30	.054	.555
11	+.084	30.604	40.08	14.20	.070	.592
12	+.104	30.497	49.67	14.86	.087	.619
13	+.134	30.368	64.07	1 5.6 5	.112	.652
14	+.174	30.254	83.28	16.35	. 146	.580
15	+.224	30.119	107.36	17.20	.188	.715
16	+.324	29.927	155.64	18.39	.271	.763
17	+.424	29.750	204.11	19.51	. 355	.808
18	+.524	29.599	25 2.75	20.45	.439	.846
19	+.674	29.393	326.04	21.77	. 565	.898
20	+.874	29.160	424.32	23.26	.732	.957
21	+1.074	29.033	522.97	24.11	. 900	.989
22	+1.274	28.992	621.91	24.42	1.068	. 9 99
23	+1.574	28.994	770.95	24.45	1.319	.999
24	+1.974	28. 9 89	971.30	24.63	1.654	1.000
25	+2.474	28.989	1224.28	24.77	2.073	1.000

FILE: T0829540

Station 4 (downwash)

Xsta Tw Tinf Qw Yeff Cond	= 32.4° = 28.6 = 1.48° = +1.40°	9 (C) 1 (C) 3E+2 (W/m^2) 00E-4 (m)	Del-ent Del-cor	er = 1.736E- th = 2.009E- ed = 6.404E- = 2.109E- = .950 = 142.35	-3 [m] -4 [m] -3	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1 2 3 4 5	+.016 +.018 +.020 +.022 +.024	31.546 31.510 31.436 31.328 31.224	8.49 9.56 10.62 11.69 12.76	6.34 6.59 7.09 7.82 8.53	.009 .010 .012 .013	.262 .272 .292 .323
6 7 8 9	+.026 +.031 +.036 +.046 +.056	31.141 30.952 30.800 30.585 30.455	13.83 16.51 19.19 24.56 29.92	9.09 10.37 11.40 12.86 13.75	.015 .018 .021 .026	.375 .427 .470 .529
11 12 13 14	+.066 +.086 +.106 +.136 +.186	30.358 30.221 30.128 30.033 29.927	35.29 46.03 56.78 72.92 99.84	14.41 15.35 15.99 16.64 17.37	.038 .050 .061 .078 .107	.593 .631 .656 .683
16 17 18 19 20	+.286 +.386 +.586 +.786 +.986	29.782 29.686 29.517 29.362 29.216	153.82 207.95 316.71 426.14 536.23	18.39 19.07 20.28 21.39 22.45	.165 .222 .337 .453 .568	.753 .780 .827 .870
21 22 23 24 25	+1.185 +1.486 +1.786 +2.086 +2.386 +2.886	29.096 28.960 28.902 28.899 28.894	646.91 813.94 981.92 1150.79 1320.83	23.34 24.37 24.85 24.96 25.08	.683 .856 1.029 1.201 1.374	.944 .982 .998 .998
€0	T2,000	20.033	1606.80	25.23	1.662	1.000

FILE: T082954T

Station 4 (upwash)

Xsta	= .876 [m]	Del-ther = 1.868E-2 [m]
Tω	= 32.74 [C]	Del-enth = 2.341E-3 [m]
Tinf	= 28.54 [C]	Del-cond = 6.920E-4 [m]
Qω	= 1.484E+2 [W/m^2]	Re-enth = $2.455E+3$
Yeff	= +1.100E-4 [m]	Prt = .950
Cond	= 13.20	Qadded = 179.12 [W/m]

	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1	+.017	31.722	8.11	6.17	.009	.262
2		31.669	9.07	_	.010	.276
3	+.021	31.581	10.03	7.02	.011	.298
3	7.021	51.50	10.05		•••	
4	+.024	31.453	11.47	7.80	.013	.332
5	+.028	31.320	13.39	8.61	.015	.366
6	+.033	31.176	15.79	9.49	.018	.403
7	+.043	30.977	20.61	10.71	.023	.454
8	+.053	30.809	25.42	11.74	.028	.497
						525
9	+.053	30.702	30.24	12.39	.034	.525
10		30.560	39.89		.044	.561
11	+.108	30.454	51.9 5		.058	.589
12	+.138	30.355	66.44		.074	.614
13	+.188	30.232	90.62	15.29	.101	.645
14	+,288	30.051	139.13	16.42	.154	.692
15		29.923	187.79	17.23	.208	.725
16	+.488	29.811	236.60	17.94	.261	.754
17	+.688	29.614	334.70	19.20	.368	.805
18	+.888	29.431	433.44	20.39	.475	.852
19	+1.088	29.255	532.80	21.53	.582	.897
20	+1.288	29.091	632.77	22.61	.690	.940
21	+1.488	28.964	733.22	23.46	.797	.972
22	+1.688	28.891	834.01	23.97	. 904	.991
23	+1.9 68	28.866	985.73	24.21	1.064	.9 98
24	+2.288	28.859	1138.40	24.33	1.225	.999
25	+2.788	28.854	1395.18		1.493	
43	TE. 100	₹0.00 4	, 535.10	£7.01	55	

FILE: T0829550

Station 5 (downwash)

Tw Tinf Qw Yeff		7 [C] 2 [C] 5E+2 [W/m^2] 00E-4 [m]	Del-enti Del-cond	= 2.802E-2 n = 2.788E-3 d = 7.036E-4 = 2.860E+3 = .950 = 209.75 [[m] [m]	
	Y [cm]	T [C]	Y+	T+	Y/De1995	DT/DTw
1 2 3 4	+.016 +.018 +.020 +.022	31.775 31.740 31.674 31.621	7.89 8.88 9.87 10.86	6.30 6.53 6.95 7.29	.006 .006 .007 .008	.255 .264 .281 .295
5 6 7 8 9	+.024 +.029 +.034 +.039 +.044	31.574 31.391 31.200 31.026 30.904	11.85 14.33 16.82 19.32 21.81	7.58 8.75 9.97 11.08 11.86	.009 .010 .012 .014 .016	.307 .353 .403 .447 .478
10 11 12 13	+.054 +.064 +.079 +.099 +.119	30.713 30.600 30.470 30.351 30.262	26.80 31.79 39.27 49.26 59.25	13.08 13.81 14.64 15.41 15.98	.019 .023 .028 .035	.527 .556 .589 .620
15 16 17 18 19	+.149 +.179 +.229 +.279 +.379	30.145 30.086 29.890 29.931 29.827	74.27 89.28 114.35 139.44 189.74	16.74 17.13 17.75 18.14 18.83	.053 .064 .082 .100	.673 .688 .712 .728
20 21 22 23 24	+.529 +.729 +.929 +1.129 +1.429	29.694 29.568 29.453 29.345 29.191	265.49 366.95 468.98 571.59 726.58	19.73 20.59 21.38 22.14 23.22	.189 .260 .332 .403	.754 .788 .820 .850 .878
25 26 27 28 29	+1.729 +2.029 +2.329 +2.529 +2.529	29.070 28.970 28.917 28.895 28.881	882.73	24.10 24.84 25.28 25.51 25.70	.617 .724 .831 .938	.948 .974 .987 .993
30 31 32 33	+3.229 +3.729 +4.229 +4.729	28.884 28.873 28.867 28.868	1678.87 1950.20 2224.66 2502.25	25.77 25.99 26.18 26.33	1.152 1.331 1.509 1.688	.995 .999 1.000

FILE: T082955T

Station 5 (upwash)

Xsta Tw Tinf Qw Yeff Cond		[C] [C] E+2 [W/m^2] DE-4 [m]	Del-enth	= 2.693E-2 = 3.222E-3 = 7.121E-4 = 3.305E+3 = .950 = 245.99 [[m] [m]	
	Y [cm]	T [C]	Y+	T+	Y/Del995	DT/DTw
1 2	+.018 +.020	31.741 31.697	7.88 8.75	5.91 6.16	.007 .007	.265 .278
3 4 5 6	+.025 +.030 +.035 +.040 +.050	31.484 31.331 31.223 31.128 30.948	10.96 13.16 15.36 17.57 21.99	7.36 8.23 8.83 9.37 10.39	.009 .011 .013 .015	.331 .370 .397 .421 .467

FILENAME: ST0831

Uinf: 17.20 [m/s]

HEAT FLUX TO HEATER: 171.3 [W/m^2]

HEAT LOSS THROUGH BACK WALL OVER DA: .073 [W]

FREESTREAM TEMPERATURE: 28.07 [C]

	Twall [C]	RE×	Enth [m]	Qconv [W/m^2]	St
1	30.0 8	+4.000E+4	+2.951E-6	+1.485E+2	.3 5565 -
2	30.96	+6.650E+4	+7.286E-5	+1.526E+2	+3.752E-3
3	31.91	+9.285E+4	+1.094E-4	+1.473E+2	+2.694E-3
4	32.86	+1.190E+5	+1.401E-4	+1.4/3E+2 +1.418E+2	+1.961E-3
5	32.94	+1.455E+5	+1.682E-4		+1.515E-3
6	33.49	+1.716E+5	+1.914E-4	+1.417E+2	+1.48BE-3
7	3 3.68	+1.979E+5	+2.170E-4	+1.383E+2	+1.306E-3
8	33.87	+2.242E+5	+2.388E-4	+1.373E+2	+1.254E-3
9	34.16	+2.504E+5	+2.564E-4	+1.363E+2	+1.204E-3
			1210045-4	+1.346E+2	+1.133E-3
10	34.47	+2.765E+5	+2.872E-4	+1.326E+2	
1.1	34.02	+3.032E+5	+3.386E-4	+1.326E+2 +1.354E+2	+1.063E-3
12	33.59	+3.300E+5	+3.990E-4	+1.379E+2	+1.165E-3
13	33.14	+3.568E+5	+4.613E-4		+1.279E-3
1 4	3 2.93	+3.835E+5	+5.201E-4	+1.405E+2	+1.417E-3
15	32.71	+4.102E+5	+6.118E-4	+1.416E+2	+1.492E-3
16	32.06	+4.375E+5	+7.444E-4	+1.427E+2	+1.573E-3
17	31.66	+4.646E+5	+8.546E-4	+1.466E+2	+1.876E-3
18	31.53	+4.913E+5	+9.062E-4	+1.488E+2	+2.113E-3
19	31.69	+5.176E+5	+9.320E-4	+1.496E+2	+2.209E-3
			13.0205-4	+1.485E+2	+2.095E-3
20	31.75	+5.441E+5	+9.773E-4	+1 4005+0	
21	31.75	+5.706E+5	+1.039E-3	+1.482E+2	+2.054E-3
22	31.69	+5.973E+5	+1.081E-3	+1.482E+2	+2.059E-3
23	31.82	+6.236E+5	+1.100E-3	+1.486E+2	+2.097E-3
24	31.92	+6.499E+5	+1.150E-3	+1.478E+2	+2.014E-3
25	31.82	+6.766E+5	+1.242E-3	+1.472E+2	+1.955E-3
26	31.66	+7.035E+5	+1.332E-3	+1.478E+2	+2.013E-3
27	31.61	+7.301E+5	+1.383E-3	+1.488E+2	+2.118E-3
28	31.67	+7.566E+5	+1.378E-3	+1.491E+2	+2.151E-3
29	31.92	+7.825E+5	+1.391E-3	+1.487E+2	+2.107E-3
			.1.5512-5	+1.472E+2	+1.955E-3
30	31.89	+8.091E+5	+1.451E-3	11.4745.5	
31	31.86	+8.357E+5	+1.538E-3	+1.474E+2	+1.970E-3
32	31.70	+8.627E+5	+1.620E-3	+1.476E+2	+1.989E-3
33	31.72	+8.892E+5	+1.640E-3	+1.485E+2	+2.0 86E-3
34	31.85	+9.154E+5	+1.683E-3	+1.484E+2	+2.075E-3
35	31.76	+9.421E+5	+1.755E-3	+1.476E+2	+1.993E-3
36	31.76	+9.687E+5	+1.775E-3	+1.482E+2	+2.049E-3
37	31.89	+9.948E+5	+1.764E-3	+1.482E+2	+2.050E-3
38	32.03	+1.021E+6	+1.804E-3	+1.474E+2	+1.968E-3
		_	.,0046 3	+1.466E+2	+1.891E-3

```
+1.944E-3
                                                +1.472E+2
                                 +1.897E-3
                 +1.048E+6
39
      31.94
                                                               +2.000E-3
                                                +1.477E+2
                                 +1.965E-3
                  +1.075E+6
40
       31.84
                                                               +1.984E-3
                                 +2.009E-3
                                                +1.476E+2
                  +1.101E+6
       31.87
41
                                                +1.476E+2
                                                               +1.966E-3
                                 +2.010E-3
                  +1.128E+6
       31.87
42
                                                +1.465E+2
                                                               +1.878E-3
                                 +2.020E-3
                  +1.153E+6
43
       32.05
                                                               +1.897E-3
                                                +1.467E+2
                                 +2.085E-3
                  +1.180E+6
       32.02
44
                                                +1,468E+2
                                                               +1.913E-3
                                 +2.207E-3
                  +1.207E+6
45
       31.99
                                                               +2.056E-3
                                                +1.483E+2
                                 +2.295E-3
                  +1.234E+6
45
       31.75
                                                +1.476E+2
                                                               +1.985E-3
                                 +2.275E-3
                  +1.260E+6
       31.87
47
                                                +1.469E+2
                                                               +1.914E-3
                                 +2.282E-3
                  +1.286E+6
       31.99
48
                                                               +1.901E-3
                                                +1.467E+2
                                 +2.333E-3
                  +1.313E+6
49
       32.01
                                                               +1.919E-3
                                 +2.421E-3
                                                +1.469E+2
       31.98
                  +1.339E+6
50
                                                               +1.976E-3
                                 +2.491E-3
                                                +1.475E+2
                  +1.366E+6
       31.88
51
                                                               +1.955E-3
                                 +2.573E-3
                                                +1.473E+2
                  +1.393E+6
       31.92
52
+2.064E-3
                                               +1.483E+2
                                  ____
       31.74
61
                                  -----
                                               +1.444E+2
                                                               +1.691E-3
                  _____
       32.43
62
                                                               -5.741E-4
                                               +2.835E+2
                  -----
63
       3.99
                                                               +1.614E-3
                                               +1,434E+2
                  -----
       32.61
64
                                                               +1.736E-3
                                               +1.449E+2
                  _____
       32.34
65
                                                               -4.872E-4
                                               +3.104E+2
                  _____
      -2.64
66
                                                               +1.440E-3
                                  ____
                                               +1.40BE+2
                  _____
       33.07
67
                                                               +1.515E-3
                                               +1.420E+2
                                  -----
       32.86
68
                                                               +1.862E-3
                                               +1.464E+2
                                  ____
69
       32.09
                                                               +2.009E-3
                                               +1.478E+2
                                  ----
70
       31.83
+1.402E-3
                                               +1.402E+2
71
       33.18
                                                               +1.270E-3
                                  -----
                                                +1.377E+2
       33.62
72
                                                               +1.208E-3
                                                +1.363E+2
                                  ____
73
       33.85
                                                               +1.088E-3
                                                +1.334E+2
       34.36
 74
                                                               +1.181E-3
                                                +1.357E+2
                                  ----
 75
       33.96
                                                +1.366E+2
                                                               +1.220E-3
                                  ____
                   _____
 76
       33.80
                                                               +1.142E-3
                                  ____
                                                +1.348E+2
                   _____
 77
       34.12
                                                +1.325E+2
                                                               +1.054E-3
                                  _____
       34.52
 78
                                                +1.120E+2
                                                               +5.802E-4
                   _____
 79
       38.03
                                                               +1.293E-3
                                                +1.381E+2
                   -----
       33.54
 80
                                                               +1.343E-3
                                                +1.391E+2
                   _____
 81
       33.37
                                                               +1.305E-3
                                                +1.384E+2
                   -----
       33.50
 82
                                                               +1.312E-3
                                   ____
                                                +1.385E+2
                   _____
       33.47
 83
                                                               +1.591E-3
                                                +1.431E+2
                                   -----
                   _____
       32.67
 84
                                                               +1.231E-3
                                   ____
                                                +1.369E+2
                   -----
       33.76
 85
                                                               +1.406E-3
                                                +1.402E+2
                                   ____
       33.17
 85
**************CROSS-SPAN DATA*************
                                                               +2.341E-3
                                                +1.505E+2
                                   ____
 87
       31.35
                                                               +2.184E-3
                                   ____
                                                +1.493E+2
       31.56
 88
                                                               +2.155E-3
                                                +1.491E+2
                   ------
                                   ____
       31.60
 89
                                                               +2.101E-3
                                                +1.486E+2
                   -----
       31.68
 90
```

```
91
        31.69
                                   -----
                                                +1.486E+2
                                                              +2.096E-3
  92
         31.78
                                                +1.481E+2
                                                              +2.039E-3
        31.68
  93
                                                +1.486E+2
                                                              +2.101E-3
  94
        31.62
                   -----
                                                +1.490E+2
                                                              +2.144E-3
  95
        31.61
                   ------
                                                +1.490E+2
                                                              +2.150E-3
  96
        31.69
                   ------
                                                +1.486E+2
                                                              +2.09EE-3
  97
        31.70
                   -----
                                                +1.485E+2
                                                              +2.090E-3
  98
        31.58
                                                +1.452E+2
                                                              +2.172E-3
  99
         4.30
                                                +2.823E+2
                                                              -5.791E-4
 100
        31.57
                                   -----
                                                +1.493E+2
                                                              +2.178E-3
 101
        31.44
                                   -----
                                                +1.500E+2
                                                              +2.272E-3
 102
        31.49
                                   ____
                                                +1.497E+2
                                                              +2.235E-3
 103
        31.59
                   -----
                                               +1.491E+2
                                                              +2.161E-3
 104
        32.02
                   -----
                                  -----
                                               +1.467E+2
                                                              +1.897E-3
 105
        32.30
                   _____
                                  -----
                                               +1.451E+2
                                                              +1.751E-3
 106
        32.13
                                               +1.461E+2
                                                              +1.840E-3
 107
        32.16
                                  -----
                                               +1.459E+2
                                                              +1.824E-3
 108
        32.02
                                  -----
                                               +1.467E+2
                                                              +1.897E-3
 109
        31.97
                                  -----
                                               +1.470E+2
                                                              +1.924E-3
 110
        31.89
                                  -----
                                               +1.474E+2
                                                              +1.970E-3
 111
        32.02
                                  -----
                                               +1.467E+2
                                                              +1.897E-3
 112
        32.07
                                               +1.464E+2
                                                              +1.870E-3
 113
        32.00
                   _____
                                               +1.468E+2
                                                              +1.905E-3
 114
        31.96
                   -----
                                               +1.471E+2
                                                              +1,933E-3
 115
        31.87
                   -----
                                               +1.476E+2
                                                              +1.984E-3
116
        31.79
                                               +1.48@E+2
                                                             +2.029E-3
117
       31.73
                   -----
                                               +1,483E+2
                                                              +2.089E-3
118
       31.77
                                               +1.481E+2
                                                             +2.044E-3
119
       31.81
                  -----
                                  -----
                                               +1.479E+2
                                                             +2.019E-3
                  _____
120
       32.26
                                  _____
                                               +1,454E+2
                                                             +1.775E-3
121
       32.22
                  -----
                                               +1.456E+2
                                                             +1.791E-3
122
       32.09
                  -----
                                               +1.464E+2
                                                             +1.852E-3
123
       32.05
                  ------
                                               +1.465E+2
                                                             +1.879E-3
124
       32.15
                  ------
                                               +1.450E+2
                                                             +1.828E-3
125
       31.97
                  _____
                                  -----
                                              +1.470E+2
                                                             +1.924E-3
126
       32.04
                  -----
                                              +1.455E+2
                                                             +1.883E-3
127
       31.75
                  -----
                                  -----
                                              +1.483E+2
                                                             +2.059E-3
128
       31.75
                                  _____
                                              +1.483E+2
                                                             +2.059E-3
129
       31.71
                                              +1.484E+2
                                                             +2.080E-3
130
       32.15
                                  -----
                                              +1.460E+2
                                                             +1.828E-3
131
       32.44
                  -----
                                  -----
                                              +1.444E+2
                                                             +1.688E-3
132
                  -----
      32.28
                                 -----
                                              +1.453E+2
                                                             +1.763E-3
133
       32.12
                  _____
                                 -----
                                              +1.462E+2
                                                             +1.845E-3
134
       32.13
                  _____
                                 -----
                                              +1.461E+2
                                                             +1.836E-3
135
       32.13
                  _____
                                 -----
                                              +1.461E+2
                                                             +1.836E-3
136
      32.13
                  ------
                                 -----
                                              +1.461E+2
                                                             +1.836E-3
```

137	31.81	 	+1.479E+2	+2.019E-3
138	31.81	 	+1.479E+2	+2.019E-3

Station 2 (downwash)

Upw [m/s]= 17.24 Cf= 4.600E-3

RAW	RAW DATAFILE NAME: UVØ817S2C						
N	Y [cm]	U [m/s]	V [m/s]	u' [m/5]	v' [m/s]	u'v' [m2/s2]	
1	.050	15.545	121	.580	.527	027	
2	.086	16.127	118	.602	.634	0.000	
3	.116	16.413	057	.654	.802	122	
4	.146	16.546	002	.687	.829	232	
5	.176	16.705	.069	.652	.786	317	
6	.226	17.005	.084	.547	.599	272	
7	.276	17.183	.029	.338	.283	073	
8	.326	17.230	.030	.231	.128	018	

Station 2 (upwash)

RAW	DATAFILE	NAME: UVØ8	1752T		_		
N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/:	52}
1	.060	8.688	821	1.210	2.344	169	
2	.081	8.976	453	1.166	2.164	.160	
3	.106	8.937	.065	1.158	2.019	.479	
4	.126	9.029	.479	1.315	1.986	.868	
5	.151	9.713	.918	1.548	1.932	.9 93	
6	.176	11.196	1.050	1.893	1.737	.685	
7	.206	13.847	.768	1.772	1.308	008	
8	.236	15.803	.344	1.170	.770	173	
9	.266	16.828	.116	.567	.295	039	
10	.296	17,147	.055	.206	.161	018	
11	.336	17.225	.060	.124	.065	002	
12	.376	17.208	.067	.135	.050	.002	

Upw [m/s]= 17.23 Cf= 2.100E-3

Station 3 (downwash)

RAW	DATAFILE	NAME: UVØB	1753C			
N	Y [cm]	U [m/s]	V [m/s]	u' [m/\$]	v' [m/s]	u'v' [m2/s2]
1	.060	12.047	039	1.343	1.122	654
2	.0 97	12.870	110	1.272	.984	607
3	.147	13.485	183	1.217	.939	610
4	.247	14.497	309	1.088	.867	518
5	.347	15.163	302	.980	.783	408
6	.447	15.732	304	.832	.685	290
7	.547	16.207	271	.712	.602	236
8	.647	16.596	277	.518	.482	128
9	.747	16.862	269	.374	.369	067
10	.847	16.977	239	.231	.259	024
11	.9 97	17.062	225	.151	.148	005

Station 3 (upwash)

RAW N	DATAFILE Y [cm]	NAME: UVØ8 U [m/s]	1753T U [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
N	1 CCPIJ	0 1,47 3 1	V 11.7 03			
1	.060	10.949	145	1.322	1.190	689
2	.100	11.833	187	1.247	1.057	629
3	.150	12.414	137	1.184	.980	567
4	.200	12.950	- 175	1.194	.937	574
5	.300	13.768	199	1.123	.903	535
6	.400	14.470	170	1.071	.839	484
7	.500	15.138	193	.967	.761	398
8	.600	15.761	224	.834	.645	276
9	.700	16.235	228	.658	.523	169
10	.800	16.646	238	.496	.412	099
11	.900	16.915	236	.311	.285	031
12	1.050	17.053	232	.173	.162	007

Upw [m/s]= 17.11 Cf= 4.160E-3

Station 4 (downwash)

	DATAFILE	NAME: UVØ8	17540			
N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
1	.060	11.789	.085	1.441	1.118	591
2	.113	12.809	030	1.383	.918	576
3	.188	13.424	101	1.250	.835	503
4	.288	13.934	167	1.223	.888	548
5	.438	14.609	279	1.102	.884	514
6	.588	15.092	297	1.045	.835	492
7	.788	15.683	300	.923	.788	409
8	.98 8	16.218	280	.791	.661	264
9	1.188	15.679	281	.600	.514	160
10	1.388	16.969	268	.404	.380	078
11	1.588	17.121	255	.225	.276	026
12	1.888	17.198	270	.136	.133	003

Upw [m/s]= 17.14 Cf= 5.200E-3

Station 4 (upwash)

RAW D N	ATAFILE Y [cm]	NAME: UVØ81 U [m/s]	754T V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/	523
1 2 3 4 5 6 7 8 9 10	.060 .146 .296 .446 .596 .796 .996 1.196 1.396 1.596	10.458 11.899 12.864 13.471 14.126 14.900 15.664 16.310 16.806 17.093	0.000 .009 .001 .015 082 108 153 172 179 215 228	1.440 1.347 1.291 1.230 1.187 1.144 1.022 .834 .573 .285	1.153 .929 .954 .937 .914 .846 .780 .633 .495 .311	574 554 576 590 579 515 449 269 138 005	

Upw [m/s]= 17.13 Cf= 4.200E-3

Station 5 (downwash)

RAW	DATAFILE	NAME: UVØ8	17S5C			
N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
1	.060	10.745	.002	1.493	1.110	545
2	.130	12.054	.020	1.380	.893	488
3	.230	12.810	- .0 67	1.396	.889	565
4	.380	13.572	166	1.292	.880	526
5	.580	14.179	189	1.234	.866	547
6	.780	14.759	299	1,101	.849	475
7	.980	15.178	253	1.018	.796	435
8	1.180	15.672	304	.932	.757	369
9	1.380	16.007	201	.834	.676	298
10	1.680	16.484	186	.641	.530	166
1 1	1.980	16.809	150	.426	.395	080
12	2.280	17.016	141	.240	.264	026
13	2.580	17.138	190	.150	.154	003
14	2.980	17.130	148	.125	.086	001

Upw [m/s]= 15.76 Cf= 4.700E-3

Station 5 (upwash)

RAW N	DATAFILE Y [cm]	NAME: UU08 U [m/s]	1755T V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2])
1	.0 60	9.9 63	080	1.456	1.105	520	
2	.130	11.175	011	1.400	.885	452	
3	.280	12.271	005	1.375	.920	535	
4	.480	12.947	.031	1.320	.949	607	
5	.680	13.538	.017	1.255	. 9 58	584	
6	.880	14.021	.044	1.215	.9 38	5 85	
7	1.080	14.574	.018	1.161	.90 9	534	
8	1.280	15.000	.014	1.119	.864	535	
9	1.580	15.712	027	1.007	.733	377	
10	1.880	16.392	112	.769	.605	241	
11	2.180	16.838	143	.451	.413	077	
12	2.480	17.038	166	.247	.270	023	
13	2.880	17.131	183	.144	.146	003	

Upω [m/s]= 16.76 Cf= 3.700E-3

IVT0831S3C Station 3 (downwash)

R = 97.000 [cm] Qwall = 147.5 [W/m^2]		Tw-Tir	Tw-Tinf = 3.800 [C]			Upw = 17.08 [m/S]			
N	Y	U	V	Ţ	u'	v¹	t'	u'v'	u't'
	[cm]	[m/S]	[m/S]	[C]	[m/S]	[m/S]	[C]	[m2/S2]	[m-C/5
1	.050	11.16	+.48	29.73	1.603	.943	.359	228	+.024
2	.085	12.35	43	29.50	1.458	.834	.300	464	258
3	.155	13.44	54	29.27	1.257	.747	.254	426	189
4	.255	14.49		29.06	1.149	.691	.238	380	+.015
5	.355	15.17	66	28.90	.947	.627	.225	256	119
6	.455	15.76		28.74	.826	.544	.210	189	096
7	.555	16.21		28.63	.688	.464	.204	122	07
8	.655	16.57		28.51	.539	.365	.178	071	048
9	.805	16.85		28.39	.339	.248	.126	026	020
10	. 95 5	17.01	50	28.34	.186	.164	.067	005	003
11	1.155	17.09		28.33	.125	.084	.023	001	-0.000
12	1.455	17.13	45	28.32	.111	.046	.015	-0.000	+0.022
N	v't' [m-C/S]	u'v'^2 [m3/53]	v'^2t [m2-C/S		d U/dy [1/S]	dT/dy [C/m]	Prt	GAMMA	
	[M-C/5]	£ M3/331	1 MZ-0/3	2 3	[1/5]	[C/m]			
1	007	689	006		12.511	-2.589	-6.485	1.000	
2	+.120	403	+.061		11.756	-2.468	+.812	1.000	
3	+.090	257	+.038		10.315	-2.235	+1.025	1.000	
4	+.001	189	009		8.423	-1.920	+136.734	1.000	
5	+.069	131	+.030	2	6.723	-1.627	+.904	1.000	
6	+.055	112	+.026		5.215	-1.355	+.898	1.000	
7	+.048	086	+.025		3.899	-1.106	+.722	1.000	
8	+.033	051	+.019		2.776	878	+.681	1.000	
9	+.015	020	+.010	5	1.453	576	+.697	1.000	
10	+.005	005	+.003	8	.5 63	323	+.654	1.000	
11	+.001	-0.000	+.000	1	.051	062	+1.893	1.000	
12	+0.000	+0.000	-0.000	Ø	.727	.167	403	1.000	

```
FILE NAME: IUT0831530 Station 3 (downwash)
U = SUM(A(N) + Y^N)
A0= +1.1634E+01 A1= +1.3631E+01 A2= -1.1440E+01 A3= +3.2097E+00
       U UC
13.4434 13.484
                             % DIFF
  Υ
                               +.302
 .1550
                               -.478
 .2550
                   14.419
         14.4887
                  15.175
15.770
                               +.045
 .3550
         15.1681
                               +.073
 .4550
                    15.770
         15.7589
        16.2088
                               +.096
                    16.224
 .5550
                               -.074
        16.5688
                    16.557
 .6550
                               +.091
        16.8531
                  16.868
 .8050
                  17.014
 .9550 17.0061
                               +.048
                   17.063
                               -.139
1.1550 17.0866
                               +.041
                   17.136
1.4550 17.1291
***************
T = SUM(A(N) + Y^N)
A0= +2.9662E+01 A1= -2.7660E+00 A2= +1.7967E+00 A3= -3.6150E-01
                           % DIFF
  y T
                TC
          29.2712
                               +.015
                   29.275
 .1550
                                +.012
                    29.068
          29.0644
  .2550
                               -.030
          28.8993
                    28.891
  .3550
                               -.010
                    28.742
  .4550
          28.7447
                               -.047
                    28.619
          28.6324
  .5550
                               +.021
          28.5140
                    28.520
  .6550
                                +.066
         28.3928
                    28.412
 .8050
                                +.031
                    28.345
 .9550
         28.3360
                                -.077
                    28.308
        28.3295
 1.1550
                                +.020
                    28.328
 1.4550
         28.3224
```

IVT0831937 Station 3 (upwash)

R Qu	R = 97.000 [cm] Qwall = 147.5 [W/m^2]		Tw-T1	Tw-Tinf = 3.800 [C]			Upw = 17.11 [m/S]		
N	ı Y	U	V	<u>,</u> Τ	u '	٧.	t ¹	u'v'	u't'
	(cm)	[m/S]	[m/S]	(0)	[m/S]	[m/S]	[C]	[m2/S2]	[m-C/S
1		9.86	13	30.13	1.656	. 961	.380	413	+.030
2		11.15	22	29.84	1.510	.895	.321	605	+.037
3		12.02	19	29.63	1.278	.871	.280	498	214
4		12.56	22	29.51	1.245	.825	.257	486	197
5	.305	13.39	28	29.30	1.109	.767	.233	424	157
6		14.15	29	29.13	1.082	.723	.230	412	157
7		14.87	38	28.97	1.028	.6 53	.222	353	149
8		15.47	39	28.83	.871	.577	.201	257	106
9		16.02	41	28.69		.473	.189	163	077
10	.805	16.42	42	28.59	.580	.405	.173	117	058
11	.905	16.77	44	28.50		.303	.138	046	027
12	1.055	17.00	46			.169	.077	007	004
13	1.205	17.06		28.36		.095	.034	-0.000	-0.000
14	1.455	17.09	44	28.35	.116	.047	.019	-0.000	-0.000
N	v't'	u'v'^2	v1^2t	. •	4,1,2,4				
1,	[m-C/S]	[m3/S3]			dU/dy [1/S]	dT/dy [C/m]	Prt	GAMMA	
1	005	435	014	0	11.330	-2.472	-17.591	1.000	
2	+.002	265	+.016	5	10.803	-2.377	+70.068	1.000	
3	+.116	114	+.022	1	10.114	-2.250	+.953	1.000	
4	+.106	090	+.018	37	9.550	-2.146	+1.025		
5	+.096	112	+.025	2	8.454	-1.940	+1.019	1.000	
6	+.092	119	+.022		7.398	-1.737	+1.048	1.000	
7	+.082	132	+.030		6.384	-1.537	+1.032	1.000	
8	+.069	135	+.031		5.410	-1.341	+.924	1.000	
9	+.052	095	+.022		4.477	-1.148	+.811		
10	+.043	074	+.021	2	3.585	959	+.722	1.000	
11	+.025	031	+.013		2.734	772	+.532	1.000	
12	+.007	004	+.002		1.533	499	+.341	1.000	
13	+.001	-0.000	+.000		.425	234	+.063	1.000	
14	+0.000	+0.000	-0.000	Ø	-1.219	.192	+.102	1.000	

```
ILE NAME: IVT0831831 Station 3 (upwash)
***************
U = SUM(A(N) + Y^N)
AQ= +1.0315E+01 A1= +1.1925E+01 A2= -6.0022E+00 A3= +6.8051E-01
          U UC % DIFF
12.0225 12.022 -.00
  Υ
                               -.006
  .1550
                   12.513
                                 -.395
         12.5631
 .2050
                   13.413
                                +.168
  .3050
         13.3907
                                +.415
                   14.205
  .4050
         14.1467
                                +.190
                   14.894
         14.8659
  .5050
                                +.105
                   15.484
          15.4672
  .6050
                                -.261
                   15.978
          16.0194
  .7050
                                -.234
          16.4188
                   16.380
  .8050
                                -.425
                   16.696
          16.7671
  .9050
                                +.098
          16.9982
                   17.015
 1.0550
                                +.560
                   17.160
          17.0649
 1.2050
                                -.210
                   17.056
          17.0918
 1.4550
**************
T = SUM(A(N) + Y^N)
A0= +2.9898E+01 A1= -2.5794E+00 A2= +1.0740E+00 A3= -5.5699E-02

Y T TC % DIFF

.1550 29.6318 29.624 -.026
  .1550
                                +.022
                     29.514
         29.5077
  .2050
                                +.027
                    29.310
          29.3020
  .3050
                    29.126
                                -.002
          29.1267
  .4050
                    28.962
                                -.018
          28.9675
  .5050
                                -.024
                    28.819
          28.8256
  .6050
                                 +.011
                    28.694
          28.6910
  .7050
                                 -.008
          28.5912
                    28.589
  .8050
                                +.025
          28.4953
                    28.502
  .9050
                                +.013
                    28.407
           28.4033
 1.0550
                                 -.023
           28.3587
                    28.352
 1.2050
                                 +.005
                    28.347
           28.3461
 1.4550
```

IUT0831S4C Station 4 (downwash)

R = 97.000 [cm] Qwall = 147.6 [W/m^2]		Tw-Ti	Tw-Tinf = 3.780 [C]			Upw = 17.14 [m/S]			
N	Y [cm]	U [m/S]	U	T	u'	v *	t'	u'v'	u¹1
	I CM 3	1m/5j	[m/S]	[C]	[m/S]	[m/S]	[C]	[m2/S2]	[m=0/
1		10.51	+,54	29.70	1.592	.812	.422	077	+.05
2		12.61	37	29.39	1.497	.735	.326	428	+.01
3		13.63	47	29.17	1.276	.725	.280	392	23
4	.405	14.54	59	28.95	1.091	.719	.254	350	17
5	.605	15.14	64	28.77	.983	.663	.238	304	12
6	.805	15.75	62	28.61	.854	.621	.227	249	16
7	1.005	16.25	50	28.47		.540	.213	184	09
8	1.205	16.64	57	28.33		.419	.175	102	05
9	1.405	16.94	5 3	28.26	.377	.314	.131	038	02
10	1.605	17.08	50	28.21	.230	.226	.089	015	00
11	1.805	17.16	49	28.20	.170	.138	.041	003	00
12	2.005	17.20	50	28.19	.122	.086	.016	-0.000	-0.02
N	v't'	u'v'^2	v1^21	i '	dU/dy	dT/dy	Prt	GAMMA	
	[m-C/S]	[m3/S3]	[m2-C/9	52)	[1/5]	[C/m]		2	
1	+.007	482	008		4.880	-1.195	+2.701	1.000	
2	007	284	+.002		4.709	-1.168	-15.000	1.000	
3	+.088	234	+.036		4.404	-1.117	+1.125	1.000	
4	+.093	105	+.023		3.809	-1.009	+.99 3	1.000	
5	+.061	102	+.033	55	3.235	893	+1.032	1.000	
6	+.073	126	+.032	6	2.683	769	+.9 86	1.000	
7	+.061	137	+.040		2.152	638	+.889	1.000	
8	+.040	078	+.029	12	1.542	499	+.772	1.000	
9	+.020	035	+.016		1.154	351	+.566	1.002	
10	+.010	011	+.008	8	.688	196	+.425	1.000	
11	+.002	001	+.001	Б	.243	034	+.211	1.000	
12	+0.000	+0.000	+0.000		181	.137	+1.101	1.000	

```
FILE NAME: IUT0831S4C Station 4 (downwash)
U = SUM(A(N) + Y^N)
A0= +1.2685E+01 A1= +5.0360E+00 A2= -1.5696E+00 A3= +8.9325E-02
 .2050
                          +.154
                           -.428
 .4050
                           +.272
 .6050
 .8050
                           -.021
1.0050
                           -.042
1.2050
                           -.192
1.4050
                17.093
        17.0807
                           +.075
1.6050
               17.186
17.192
      17.1620
17.2049
                17.186
                           +.141
1.8050
                           -.075
2.0050
****************
T = SUM(A(N) + Y^N)
A0= +2.9411E+01 A1= -1.2189E+00 A2= +2.3974E-01 A3= +3.2724E-02
 -.005
                           +.024
                           -.010
 .6050
                           -.028
                           -.034
1.0050
        28.3268
                28.347
                           +.072
1.2050
        28.2571 28.262
                           +.018
1.4050
                 28.207
                           -.014
        28.2111
1.6050
                           -.054
                28.184
        28.1993
1.8050
        28.1856
                 28.194
                           +.031
2.0050
```

IVT0831S4T Station 4 (upwash)

R = 97.000 [cm] Qwall = 147.6 [W/m^2]			Tw-Ti	nf = 3	3.780 [C]	Upw			
N	Υ		V	Т	u'	v¹	ť,	u'v'	u't'
	[cm]	[m/S]	[m/S]	[C]	[m/S]	[m/S]	[C]	[m2/S2]	[m-C/S
1	.050	9.39	+.48	30.18	1.642	.872	.432	101	+.041
2	.095	10.91	29	29.86	1.585	.789	.369	457	+.028
3	.135	11.60	28	29.72		.774	.340	446	322
4	.335	12.79	25	29.38		.825	.292	555	252
5	.485	13.42	30	29.21	1.223	.827	.283	516	240
6	.635	14.06	31	29.05		.817	.269	521	212
7	.835	14.82		28.86		.766	.258	437	179
8	1.035	15.59		28.67		.709	.247	387	165
9	1.235	16.19		28.52	.862	.586	.224	256	124
10	1.435	16.73	53	28.37	.615	.456	.178	125	0 65
11	1.635	17.08		28.30	.352	.320	.117	044	021
12	1.835	17.20		28.25	.173	.176	.049	001	001
13	2.135	17.23	59	28.25	.132	. 0 90	.024	+0.000	+0.000
N	v't'	u'v'^2			dU/dy	dT/dy	Prt	6AMMA	
	[m-C/S]	[m3/\$3]	[m2-C/S	2]	[1/5]	[C/m]			
1	+.008	479	+.003		5.383	-1.501	+3.5 65	1.000	
2	+.003	271	+.004		5.318	-1.474	+44.9 58	1.000	
3	+.123	156	+.042		5.258	-1.449	+1. 0 00	1.000	
4	+.136	021	+.000		4.924	-1.321	+1.097	1.000	
5	+.133	043	+.011	5	4.636	-1.222	+1.020	1.000	
6	+.133	102	+.0198		4.316	-1.119	+1.018	1.000	
7	+.118	150	+.0342		3.841	976	+.941	1.000	
8	+.107	257	+.061		3.308	827	+.907	1.000	
9	+.078	207	+.050		2.720	673	+.817	1.000	
10	+.051	141	+.0444	1	2.074	512	+.603	1.000	
11	+.022	050	+.0219		1.372	345	+.508	1.000	
12	+.003	002	+.0028		.614	172	+.117	1.000	
13	+.001	+0.000	+.0003	3	630	.099	040	1.000	

```
FILE NAME: IUT083154T Station 4 (upwash)
*****************
U = SUM(A(N) + Y^N)
A0= +1.0939E+01 A1= +5.4520E+00 A2= -6.6993E-01 A3= -2.3555E-01
  Y U UC % DIFF
.1350 11.5968 11.663 +.56
                             +.567
 .1350
                  12.682
                              -.843
         12.7894
 .3350
                              -.191
                  13.399
         13.4247
 .4850
                 14.071
14.888
                              +.104
 .6350
         14.0563
                              +.469
 .8350
        14.8181
                14.888
15.603
16.207
16.687
17.033
                               +.110
         15.5862
 1.0350
                               +.108
        16.1895
 1.2350
 1.4350 16.7304
                               -.257
        17.0757
                               -.251
 1.6350
         17.2003 17.233
                               +.188
1.8350 17.2003
2.1350 17.2307
                   17.233
                               +.015
*************
T = SUM(A(N) + Y^N)
A0= +2.9893E+01 A1= -1.5314E+00 A2= +3.0081E-01 A3= +2.5299E-02
  Y T TC % DIFF
                              -.085
         29.7169
                  29.692
 .1350
         29.3772
                  29.414
                              +.127
 .3350
         29.2087 29.224
                              +.051
 .4850
         29.0538 29.048
                              -.020
 .6350
                              -.070
         28.8587
                   28.839
 .8350
                              -.049
         28.6722
                  28.658
 1.0350
         28.5181
                              -.035
                   28.508
 1.2350
                              +.076
         28.3679
                 28.389
 1.4350
                   28.304
                              +.028
         28.2958
 1.6350
                   28.252
                               -.005
 1.8350 28.2534
                   28.241
                               -.016
         28.2451
 2.1350
```

IVT0831SSC Station 5 (downwash)

	R = 97.000 [cm] Qwall = 146.7 [W/m^2]			Tw-Tinf = 3.950 [C]			Upw = 16.76 [m/S]		
N		U	V	7	u'	٧,	ţ,	u'v'	u't'
	[cm]	[m/S]	[m/S]	[C]	[m/S]	[m/S]	. [C]	[m2/S2]	[m-C/S
1	.050	8.44	+.53	29.82	1.480	.721	.477	038	+.044
2	.115	11.54	39	29.41	1.518	.774	.374	448	+.030
3	.265	12.88	50	29.09		.732	.316	423	307
4	.515	13.80	58	28.84	1.180	.757	.267	425	204
5	.815	14.62	63	28.64	1.051	.733	.251	383	164
6	1.115	15.21	63	28.50		.646	.231	303	132
7	1.415	15.80	62	28.36	.806	.559	.211	223	099
8	1.715	16.26	57	28.25		.477	.184	141	065
9	2.015	16.64	52	28.17	.439	.368	.140	069	030
10	2.315	16.84	51	28.11	.260	.265	.093	021	009
11	2.615	16.92	50	28.08	_	.155	.045	004	001
12	3.015	16.99	49	28.08	.122	.083	.018	+0.000	+0.000
N	v't'	u'v'^2	v¹^2	. 1	dU/dy	J T / 1		•••••	
	[m-C/S]	[m3/S3]	[m2-C/9		[1/5]	dT/dy [C/m]	Prt	GAMMA	
1	-0.000	232	+.015	51	3.864	-1.018	-108.721	1.000	
2	001	323	+.011		3.744	9 82	-107.595	1.000	
3	+,111	151	+.035		3.472	902	+.991	1.000	
4	+.106	097	+.032		3.037	776	+1.026	1.000	
5	+.096	130	+.041	9	2.546	636	+1.001	1.000	
6	+.080	131	+.040		2.087	509	+.926	1.000	
7	+.064	133	+.038		1.662	395	+.828	1.000	
8	+.048	108	+.034		1.269	294	+.680	1.000	
9	+.028	065	+.025		.910	205	+.554	1.000	
10	+.015	020	+.013	4	.583	129	+.320	1.000	
11	+.003	003	+.002		.289	066	+.299	1.000	
12	+0.000	+0.000	+.000	1	051	001	+.025	1.000	

```
FILE NAME: IUT0831550 Station 5 (downwash)
***************
U = SUM(A(N) + Y^N)
A0= +1.1941E+01 A1= +3.9581E+00 A2= -9.4118E-01 A3= +6.1114E-02
  Y U UC
.2650 12.8811 12.925
.5150 13.7991 13.738
                         % DIFF
                             +.340
 .2650
                              -.443
 .5150
                             -.299
                  14.575
 .8150
         14.6184
                15.269
                             +.395
         15.2088
 1.1150
                             +.197
        15.7992
                   15.830
 1.4150
                             +.044
        16.2619
                   16.269
 1.7150
                             -.245
                  16.595
        16.6358
 2.0150
                              -.113
        16.8371
                  16.818
 2.3150
                  16.948
                              +.137
        16.9249
 2.6150
                   16.994
                              -.005
        16.9948
 3.0150
***************
T = SUM(A(N) + Y^N)
A0= +2.9332E+01 A1= -1.0460E+00 A2= +2.8017E-01 A3= -2.3643E-02
  Y T TC .2650 29.0940 29.074
                   TC % DIFF
                           -.070
                              +.099
         28.8354 28.864
  .5150
         28.6390 28.652
                              +.047
 .8150
                              -.057
                  28.481
          28.4971
 1.1150
                              -.035
                  28.345
         28.3553
 1.4150
                              -.019
 1.7150
         28.2479
                   28.242
                              -.004
                   28.168
        28,1692
 2.0150
                              +.046
         28.1054
                   28.118
 2.3150
                              +.018
        28.0844
                   28.089
 2.6150
                              -.022
         28.0829
                  28.077
 3.0150
***************
```

IVT0831857 Station 5 (upwash)

$R = 97.000 \text{ [cm]}$ $Quall = 146.7 \text{ [W/m^2]}$			Tw-Ti	Tw-Tinf = 3.950 (C)			Upw = 16.76 [m/5]		
N	Y [cm]	U [m/S]	V [m/S]	T [C]	u' [m/5]	v' [m/S]	ť' [C]	u'v' [m2/S2]	u't' [m-C/S]
						• • • • • • • • • • • • • • • • • • • •	,	1112/32	LM-0/5.
1	.050	8.64	+.41	30.20		.854	.463	122	+.076
2	.100	10.34	28	29.84		.809	.386	477	+.012
3	.300	11.82	15	29.43		.786	.312	441	288
4	.500	12.61	14	29.23		.831	.279	441	231
5	.800	13.41	11	29.01	1.173	.835	.263	467	199
6	1.100	14.20	21	28.80	1.138	.804	.257	452	192
7	1.400	14.90	25	28.64		.766	.242	431	166
8	1.700	15.66	35	28.47	. 941	.651	.229	314	138
9	2.000	16.26	41	28.32	.723	.523	.190	188	0 87
10	2.300	16.69	45	28.22	.470	.364	.129	084	036
11	2.600	16.87	46	28.17	.263	.255	.083	029	009
12	3.000	16.96	47	28.15		.106	.024	+0.000	+0.000
N	v't' [m-C/S]	u'v'^2 [m3/\$3]	v'^21 [m2-0/s		dU/dy [1/S]	dT/dy [C/m]	Prt	GAMMA	
1	020	304	+.008	32	3.018	877	-1.741	1.000	
2	+.005	211	+.009		3.024	869	+23.632	1.000	
3	+.120	044	+.009		3.024	838	+1.018	1.000	
4	+.116	037	004		2.991	801	+1.020	1.000	
5	+.125	+.057	005	7	2.876	738	+.963	1.000	
6	+.121	082	+.018	8	2.685	665	+.927	1.000	
7	+.113	172	+.042		2.416	582	+.915	1.000	
8	+.091	197	+.056		2.071	488	+.812	1.000	
9	+.060	188	+.054		1.649	384	+.726	1.000	
10	+.029	091	+.029		1.151	269	+.673	1.000	
11 12	+.013 +.001	036 +0.000	+.015 +.000		.575 312	144 . 0 38	+.561 019	1.000	

```
FILE NAME: IUT0831557 Station 5 (upwash)
**************
U = SUM(A(N) + Y^N)
A0= +1.0989E+01 A1= +3.0109E+00 A2= +8.6515E-02 A3= -1.4229E-01
  Y U UC % DIFF
.3000 11.8166 11.896 +.676
.5000 12.6084 12.499 -.872
.8000 13.4080 13.380 -.205
.1000 14.1973 14.217 +.135
 .3000
 .5000
 .8000
1.1000
                              +.584
        14.8966 14.984
1.4000
                             +.011
        15.6569
                  15.659
1.7000
                             -.246
                  16.219
         16.2588
2.0000
                             -.280
         16.6874
                  16.641
2.3000
         16.8654
                             +.214
                  16.902
2.6000
         16.9585
                  16.959
                             +.001
3.0000
*************
T = SUM(A(N) + Y^N)
+.015
                  29.016
        29.0122
 .8000
         28.7983
                  28.806
 1.1000
                             -.083
-.030
         28.6421
                  28.618
 1.4000
                  28.458
 1.7000
         28.4653
                             +.035
                  28.327
 2.0000
         28.3170
                             +.047
                  28.229
         28.2154
 2.3000
         28.1717
                             -.019
                  28.166
 2.6000
                              -.007
         28.1464
                  28.144
 3.0000
```

Case 5:

Mean and fluctuating velocity: UP0606

Mean temperature: T0602

Stanton number: ST0602

Shear stress: UV0613

Turbulent heat flux and Pr_t: IVT0627

FILE: UP060651

XSTA =	089 [m]	DEL1 =	0.000E+0 [m]
Cf =	■ 6.000E-3	DEL2 =	0.000E+0 [m]
Upw =	= 17.70 [m/S]	н -	0.000
Visc =	= 1.631E-5 [m^2/S]	REdel1 =	0.000E+0
REx =	= 9.648E+4	REdel2 =	0.000E+0
De1995 =	. 0.000E+0 [m]		
Y	[cm] U [m/s]	Y+	U+

	Y [cm]	U [m/s]	Y+	U+	y/R	u⁴/Upw
1	.002	2.965	1.19	3.05	.00002	4.945
2	.004	3.092	2.38	3.19	.00004	5.017
3	.006	4.002	3.57	4.13	.00005	6.912
4	.009	5.094	5.35	5.25	.00009	8.820
5	.013	6.776	7.73	6.99	.00013	10.878
6	.017	7.922	10.10	8.17	.00018	11.745
7	.022	9.246	13.08	9.54	.00023	12.589
8	.032	10.847	19.02	11.19	.00033	12.519
9	.042	11.964	24.95	12.34	.00043	12.404
10	.052	12.640	30.91	13.04	.00054	11.962
11	.067	13.414	39.82	13.84	.00069	11.621
12	.087	14.141	51.71	14.59	.00090	11.200
13	.117	14.909	69.54	15.38	.00121	11.374
14	.167	15.721	99.26	16.22	.00172	10.699
15	.217	16.241	128.98	16.75	.00224	9.994
16	.417	17.105	247.86	17.64	.00430	9.177
17	.517	17.191	307.30	17.73	.00533	8.871
18	.717	17.393	425.18	17.94	.00739	8.816
19	1.017	17.485	604.50	18.04	.01048	8.822
20	1.317	17.664	782.82	18.22	.01358	8.748
21	1.617	17.780	961.14	18.34	.01667	8.623
22	1.917	17.872	1139.46	18.43	.01976	8.591
23	2.217	17.967	1317.78	18.53	.02286	B.502
24	2.717	18.108	1614.97	18.58	.02801	8.481
25	3.217	18.160	1912.17	18.73	.03316	8.201
26	3.717	18.284	2205.37	18.86	.03832	8.335

FILE: UP060652

XSTA Cf Upw	= .356 [m] = 5.900E-3 = 17.70 [m/S]	DEL1 = 0.000E+0 [m] DEL2 = 0.000E+0 [m] H = 0.000
	$= 1.630E-5 [m^2/S]$	REdel1 = 0.000E+0
REx	= 3.861E+5	REdel2 = 0.000E+0
De 1995	= 0.000E+0 [m]	

	Y [cm]	U [m/s]	Y+	U+	y/R	ս¹/Սբա
1	.005	3.481	2.95	3.62	.00005	5.261
2	.007	4.571	4.13	4.75	.00007	7.161
3	.009	4.949	5.31	5.15	.00009	7.676
4	.011	5.241	6.49	5.45	.00011	8.143
5	.015	6.939	8.85	7.22	.00015	10.179
6	.020	8.575	11.80	8.92	.00021	11.510
7	.025	9.741	14.74	10.13	.00026	11.691
8	.030	10.580	17.69	11.01	.00031	11.940
9	.040	11.611	23.59	12.08	.00041	11.602
10	.055	12.766	32.44	13.28	.00057	11.000
11	.075	13.489	44.23	14.03	.00077	10.369
12	.095	14.027	56.03	14.59	.00098	10.213
13	.125	14.518	73.72	15.10	.00129	10.048
14	.175	15.195	103.21	15.81	.00180	9.763
15	.275	15.999	162.19	16.64	.00284	9.499
16	.325	16.368	191.67	17.03	.00335	9.240
17	.425	16.820	250.65	17.50	.00438	9.238
18	.575	17.299	339.12	17.99	.00593	8.735
19	.775	17.707	457.07	18.42	.00799	8.418
20	.9 75	18.046	575.02	18.77	.01005	7.986
21	1.375	18.299	810.93	19.03	.01418	7.511
22	1.775	18.408	1046.84	19.15	.01830	7.323
23	2.175	18.552	1282.74	19.30	.02242	7.180
24	2.575	18.621	1518.65	19.37	.02655	7.071
25	2.975	18.597	1754.56	19.45	.03067	7.052
26	3.375	18.775	1990.47	19.53	.03479	6 .998
27	3.775	18.867	2225.37	19.63	.03892	6.928
28	4.275	18.899	2521.26	19.66	.04407	6.983
29	4.775	19.079	2816.14	19.85	.04923	6.856

FILE: UP0606S3

XSTA	= .610 [m]	DEL1 = 0.000E+0	[m]
Cf	= 5.300E-3	DEL2 - 0.000E+0	[m]
Üpw	= 17.70 [m/S]	H = 0.000	
Visc	= 1.626E-5 [m^2/S]	REdel1 = 0.000E + 0	
RE×	= 6.635E+5	REdel2 = 0.000E+0	
De 1995	= 0.000E+0 [m]		

	Y [cm]	U [m/s]	Y+	U+	y/R	u¹/Upw
1	.009	4.604	5.04	5.05	.00009	7.390
2	.011	5.320	6.16	5.84	.00011	8.402
3	.013	5.953	7.28	6.53	.00013	9.263
4	.015	6.860	8.96	7.53	.00016	10.445
5	.020	7.901	11.21	8.67	.00021	11.259
6	.024	8.851	13.45	9.71	.00025	11.709
7	.029	9.632	16.25	10.57	.00030	11.678
8	.034	10.333	19.05	11.34	.00035	11.852
9	.044	11.179	24.65	12.27	.00045	11.371
10	.064	12.324	35.86	13.53	.00066	10.847
11	.0 84	12.912	47.05	14.17	.00087	10.443
12	.124	13.701	69.48	15.04	.00128	10.424
13	.174	14.320	97.49	15.72	.00179	10.388
14	.224	14.876	125.50	16.33	.00231	10.315
15	. 324	15.573	181.53	17.09	.00334	10.175
16	.524	16.516	293.59	18.13	.00540	9.513
17	.724	17.110	405.65	18.78	.00745	9.145
18	.924	17.459	517.71	19.16	.00953	8.499
19	1.224	17.828	685.79	19.57	.01262	7.980
20	1.524	18,100	853.88	19.86	.01571	7.544
21	1.924	18.305	1078.00	20.09	.01984	7.0 83
22	2.324	18.430	1302.11	20.23	.02396	6.785
23	2.724	18.551	1526.23	20.36	.02808	6.523
24	3.124	18.620	1750.34	20.44	.03221	6.432
25	3.524	18.730	1974.46	20.56	.03633	6.352
26	3.924	18.760	2198.58	20.59	.04045	6.221
27	4.424	18.895	2478.72	20.74	.04561	6.138
28	4.924	18.949	2758.87	20.80	.05076	6.100
29	5.424	18.995	3039.01	20.85	.05592	Б.124
30	5.924	19.046	3319.16	20.90	.06107	6.123

31	6.424	19.078	3599.30	20.94	.06623	6.145
32	6.924	19.073	3879.45	20.93	.07138	

FILE: UP0606S4

XSTA	.876 [m]	DEL1 = 0.000E+0 [m	,]
Cf	= 5.300E-3	DEL2 = 0.000E+0 (m	۱]
Upw	= 17.70 [m/S]	H = 0.000	
Visc	$= 1.625E-5 [m^2/S]$	REdel1 = 0.000E+0	
REx	= 9.543E+5	REdel2 = 0.000E+0	
De1995	= 0.000E+0 [m]		

	Y [cm]	U [m/s]	Y+	Ú+	y/R	u¹/Upw
1	.001	2.403	.56	2.64	.00001	3.168
2	.003	2.520	1.68	2.77	.00003	3.458
3	.006	3.144	3.36	3.45	.00006	4.801
4	.009	4.268	5.05	4.68	.0 0009	6.680
5	.012	5.525	6.73	6.06	.00012	8.808
6	.016	6.90 8	8.97	7.58	.00016	10.378
7	.019	7.760	10.65	8.52	.00020	11.113
8	.023	8.692	12.89	9.54	.00024	11.564
9	.028	9.602	15.70	10.54	.00029	11.811
10	.0 38	10.956	21.30	12.02	.00039	11.980
1 3	.048	11.771	26.91	12.92	.00049	11.628
12	.058	12.336	32.52	13.54	.00050	11.195
13	. 0 78	13.043	43.73	14.31	.ଉଉଉଉଉ	10.797
14	.108	13.781	60.55	15.12	.00111	10.550
15	.158	14.445	88.58	15.85	.00163	10.322
16	.208	14.959	116.61	16.42	.00214	10.201
17	.308	15.643	172.67	17.17	.00318	10.098
18	.458	16.316	256.76	17.91	.00472	9.880
19	.658	16.793	368.89	18.43	.00578	9.542
20	.9 58	17.355	537.07	19.05	.00988	8.638
21	1.258	17.642	705.26	19.36	.01297	8.360
22	1.558	17.902	873.44	19.65	.01606	7.670
23	1.9 58	18.142	1097.69	19.91	.02019	7.133
24	2.358	18.322	1321.94	20.11	.02431	6.766
25	2.9 58	18.510	1658.31	20.32	.03049	6.341
26	3.458	18.605	1938.62	20.42	.03565	. 6.011
27	3.9 58	18.692	2218.93	20.51	.04080	5.811
28	4.458	18.774	2499.24	20.60	.04595	5.724
29	4.9 58	18.842	2778.55	20.68	.05111	5.648
30	5.458	18.798	30 59.86	20.53	.05627	5.652

31	5 <i>.</i> 958	18.916	3340.17	20.76	.06142	5.695
32	6.458	18.923	3620.48	20.77	.06658	5.473
33	6.958	18.905	3900.79	20.75	.07173	5 554

FILE: UP0606S5

XSTA	= 1,130 [m]	DEL1 = 0.000E+0 [m]	
Cf	= 5.000E-3	DEL2 = 0.000E+0 [m]	
Upw	= 17.70 [m/S]	H = 0.000	
Visc	# 1.621E-5 [m^2/\$]	REdel1 = 0.000E+0	
REx	= 1.234E+6	REdel2 = 0.000E+0	
De 1999	5 = 0.000E + 0 (m)		

	Y [cm]	U [m/s]	Y+	U+	y/R	u'/Upw
1	.002	2.296	1.09	2.59	.00002	3.183
2	.004	2.368	2.18	2.68	.00004	3.162
3	.007	3.333	3.82	3.77	.00 007	5.410
4	.011	4.890	6.00	5.53	.00011	8.029
5	.016	6.597	8.73	7.45	.00016	10.199
6	.021	7.786	11.46	8.80	.00022	11.360
7	.026	8.845	14.19	9.99	.00027	11.666
8	.031	9.687	16.92	10.95	.00032	11.784
9	.041	10.869	22.38	12.28	.00042	11.472
10	.051	11.501	27.84	13.00	.00053	11.508
11	.071	12.460	38.75	14.08	.00073	10.734
12	.101	13.159	55.13	14.87	.00104	10.296
13	.131	13.692	71.50	15.47	.00135	10.189
14	.181	14.328	98.79	16.19	.00187	10.247
15	.281	15.159	153.37	17.13	.00290	10.294
16	.431	15.944	235.24	18.02	.00444	10.041
17	.581	16.394	317.11	18.52	.00599	9.744
18	.781	16.830	426.27	19.02	.00805	9.153
19	. 9 81	17.114	535.44	19.34	.01011	8.872
20	1.281	17.325	699.18	19.58	.01321	8.326
21	1.581	17.609	8 62 ,9 2	19.90	.01630	7.715
22	1.881	17.751	1026.66	20.06	.01939	7.396
23	2.181	17.877	1190.40	20.20	.02248	7.140
24	2.581	18.002	1408.72	20.34	.02661	6.692
25	2.981	18.067	1627.05	20.41	.03073	6.632
26	3.481	18.181	1899.95	20.54	.03589	6.164
27	3.981	18.287	2172.85	20.66	.04104	5. 751
28	4.481	18.295	2445.75	20.67	.04620	5.674
29	4.981	18.411	2718.66	20.80	.05135	5.470
30	5.481	18.367	2991.56	20.75	.05651	5.295

	5.981	18.420	3264.46	20.81	.06166	5.308
32	6.4 81	18.346	3 537. 3 6	20.73	.06581	5.235
33	6.981	18.350	3810.27	20.74	.07197	5.108
34	7.481	18.332	4083.17	20.71	07712	5.100

FILE: T0602S1

Xsta Tw Tinf Qw Yeff Cond	= .089 = 32.16 = 29.07 = 2.169 = +5.00 = 13.20	[C] [C] E+2 [W/m^2] ØE-5 [m]	Del-enth Del-cond	= 4.471E-3 = 3.441E-4 = 3.674E-4 = 3.707E+2 = .950 = 21.00 [[m] [m]	
	Y [cm]	T [C]	Y+	τ+	y/R	DT/DTw
1	+.007	31.624	4.11	2.75	.00007	.179
2	+.009	31.441	5.29	3.69	.00009	.240
3	+.010	31.331	5.88	4.25	.00010	.276
4	+.011	31.274	6.47	4.54	.00011	.295
5	+.012	31.199	7.06	4.92	.00012	.320
6	+.014	31.075	8.24	5.56	.00014	.361
7	+.016	30.922	9.43	6.34	.00016	.412
8	+.018	30.842	10.61	6.75	.00019	.438
9	+.020	30.749	11.79	7.23	.00021	.469
10	+.024	30.592	14.17	8.03	.00025	.521
11	+.028	30.460	16.54	8.71	.00029	.5 65
12	+.033	30.332	19.51	9.37	.00034	.608
13	+.038	30.238	22.47	9.85	.00039	.639
14	+.048	30.058	28.42	10.78	.00049	.698
15	+.058	29. 9 63	34.36	11.27	.00060	.730
16	+.068	29.846	40.31	11.88	.00070	.769
17	+.0 88	29.700	52.21	12.63	.00091	.817
18	+.108	29.609	64.11	13.10	.00111	.847
19	+.138	29.498	81.97	13.67	.00142	.884
20	+.188	29.363	111.76	14.37	.00194	.929
21	+.238	29.291	141.54	14.74	.00245	.9 53
22	+.288	29.241	171.33	15.00	.00297	. 9 69
23	+.338	29.204	201.12	15.20	.00348	.9 82
24	+.388	29.174	230.91	15.35	.00400	.992
25	+.488	29.157	290.45	15.44	.00503	.9 97
26	+.588	29.148	349.99	15.49	.00506	
27	+.68 8	29.142	409.53	15.52	.00709	1.002
28	+.838	29.150	498.79	15.47	.00864	.999
29	+.9 88	29.145	588.0 8	15.50	.01019	
30	+1.188	29.146	707.13	15.50	.01225	1.001
31	+1.488	29.151	885.67	15.47	.01534	.9 99

FILE: T0602S2

		.				
Xsta				er = 1.408E-		
Tω	= 32.5			th = 9.346E-		
Tinf				nd = 4.397E -		
Qw		BE+2 [W/m^2]	Re-enth	h = 1.006E +	3	
Yeff		00E-5 [m]	Prt	= .950		
Cond	= 13.2	2	Qadded	≈ 67.19	[W/m]	
	W F 3	*		_		
	Y [cm]	T [C]	Y+	T+	y/R	DT/DTw
1	+.006	31.9 83	3.48	3.12	.00005	.171
2	+.008	31.951	4.65	3.28	.00008	.180
3	+.010	31.732	5.81	4.40	.00010	.242
4	+.012	31.603	6.98	5.07	.00012	.278
5	+.014	31.439	8.15	5.91	.00012	.324
			••••	3.3,	.00014	.324
6	+.016	31.293	9.33	6.67	.00016	.366
7	+.018	31.192	10.50	7.18	.0 0015	.394
8	+.022	31.024	12.84	8.05	.00023	.441
9		30.816	15.78	9.12	.00028	.499
10	+.032	30.670	18.72	9.88	.00033	.541
11	+.037	30.576	21.66	10.37	40070	500
12	+.042	30.460	24.50	10.97	.00038	.567
13	+.047	30.369	27.54	11.44	.00043	.600
14	+.052	30.308	30.49	11.75	.00048	.625
15	+.062	30.191	36.37		.00054	.642
. 5		50.151	36.37	12.36	.00064	.675
16	+.072	30.113	42.26	12.77	.00074	.697
17	+.0 82	30.042	48.15	13.14	.00085	.717
18	+.102	29.931	5 9.93	13.72	.00105	.749
19	+.122	29.864	71.71	14.06	.00126	.767
20	+.172	29.711	101.19	14.85	.00177	.810
21	+.222	29.589	170 50	45 45		
22	+.272	29.521	130.70	15.49	.00229	.845
23	+.372	29.397	160.19	15.85	.00280	.864
24	+.472	29.299	219.25	16.49	.00384	.899
25	+.572	29.232	278.35	17.00	.00487	.926
23	4.514	23.232	337.45	17.35	.00590	.945
26	+.772	29.154	455.65	17.76	.00796	.967
27	+.972	29.096	573.88	18.06	.01002	. 9 83
28	+1,172	29.065	692.10	18.23	.01208	.992
29	+1.372	29.057	810.24	18.27	.01414	.994
30	+1.672	29.038	987.51	18.37	01724	1.000
7.		20.22			- · .	-
31	+1.972	29.034	1164.72	18.39	.02033	1.001
32	+2.272	29.034	1341.91	18.39	.02342	1.001
33	+2.572	29.035	1519.09	18.38	.02652	1.000
34	+2.972	29.039	1755.31	18.37	.03064	1.000

FILE: T060253

STAT	ION:	3
------	------	---

Xsta	610	[m]	Del-ther	- = 2.461E-2	[m]	
Tω	= 32.91		Del-enth	n = 1.533E-3	[m]	
Tinf	= 28.80	[0]		= 4.980E-4	[m]	
		E+2 [W/m^2]	Re-enth	= 1.649E+3		
	= +1.00			9 50		
Cond	= 13.20	l	Qadded	= 123.38 [W/m]	
	Y [cm]	T [C]	Y+	T+	y/R	DT/DTw
						4.50
1		32.229	3.30	3.35	.00006	.172
2		32.226	4.95	3.36	.00009	.172
3	+.012	31.939	6.61	4.77	.00012	.244
4	+.015	31.642	8.27	6.24	.00015	.319
5	+.018	31.405	9.94	7.40	.00019	.378
6	+.021	31.233	11.61	8.25	.00022	.422
7	+.024	31.099	13.27	8.92	.00025	.455
8	+.028	30.933	15.50	9.74	.00029	.497
9	+.033	30.804	18.28		.00034	.529
10	+.038	30.681	21.07	10.99	.00039	.560
11	+.048	30.529	26.64	11.74	.00049	.598
12	+.058	30.387	32.21	12.45	.00050	.634
13		30.288		12.94	.00070	
14	+.078	30.206		13.35	.00080	.680
• "		01.200		, • , • , • , • , • , • , • , • , • , •		
15	+.088	30.170	48.94	13.53	.00091	.689
16	+.108	30.056	60.10	14.10	.00111	
17	+.128	29.994	71.25	14.41	00132	
18	+.158	29.887	88.01	14.94	.00163	
19	+.188	29.811	104.76	15.32	.00194	.779
20	+.238	29.705	132.71	15.85	.00245	.805
21	+.288	29.619		16.28	.00297	.827
22		29.494	215.62	16.90	.00400	.8 58
23	+.488	29.404	272.59	17.35	.00503	.881
24	+.588	29.252	384.65	18.11	.00709	.919
25	+.888	29.169	496.70	18.53	.00915	.940
26	+1.188	29.064		19.05	.01225	. 955
	+1.488	29.021	833.04	19.27	.01534	.977
28	+1.988	28.979	1113.22	19.48	.02049	.988
29	+2.488	28.949	1393.46	19.63	.02565	.995
30	+2.988	28.935	1673.64	19.70	.03080	.999
31	+3.488	28.935	1953.69	19.70	.03596	.999
32	+3.988	28.933	2233.78	19.71	.04111	.999
3 3	+4.488	28.932	2513.86	19.72	.04627	1.000

FILE: T060254

STATION:	4
----------	---

	Xsta	87	5 [m]	Del-th	er = 4.760E-	.7 (=1	
		= 32.7			th = 2.553E-		
		= 28.7			nd = 4.970E-		
			BE+2 [W/m^2]				
•	Vaff	= +0.00	20E12 (W/M 2)		n = 2.748E+	3	
		= 13.20		Prt			
	Cong	= 13.20	0	Qadded	= 2 0 5.61	[W/m]	
		Y [cm]	T [C]	Y+	T+	(5	DT /DT
				, ,	, ,	y/R	DT/DTw
	1	+.006	32.109	3.30	3.11	.00006	.160
			32.017	4.95		.00009	.183
	3	+.012	31.876	6.61		.00012	
				0.07	4.20	.00012	.218
	4	+.015	31.680	8.27	5.2 2	.00015	.268
	5		31.434	9.94	6.43	.00019	.329
	Б	+.022	31.196	12.16		.00073	.389
	7	+.027	30.993	14.94		.00028	
	8	+.032	30.828	17.73	9.43	.00033	
	-		20.020	,,,,	3.43	.00055	.482
	9	+.037	30.686	20.51	10.12	.00038	.517
	10	+.042	30.581	23.30	10.64	.00043	.543
	11	+.047	30.491	26.09	11.09	.00043	.566
	12	+.052	30.424	28.87	11.42	.00048	
	13	+.062	30.294	34.45	12.07		.583
			50.254	54.45	12.01	.00064	.616
	14	+.072	30.188	40.03	12.59	00074	C 4 3
	15	+ 092	30.068	51.19	13.19	.00074	
	16	+.112	29.963	62.36	13.71	.00095	.672
	17	+.142	29.854	79.11	14.26	.00115	.699
	18	+.172	29.779	95.87		.00146	.726
			23.772	33.67	14.63	.00177	.745
	19	+.212	29.686	118.23	15.09	.00219	200
	20	+.262	29.591	146.19	15.57		.768
	21	+.312	29.533	174.15	15.86	.00270	.792
	22		29.411	230.13		.00322	.807
	23	+.512	29.336		16.46	.00425	.837
	25	1.512	23.336	285.11	16.84	.00528	.856
	24	+.712	29.208	39 8.17	17.48	00774	000
	25	+1.012	29.091	566.32	18.06	.00734	.888
	26		29.014	734.54		.01043	.918
	27	+1.612	28.951		18.45	.01353	.937
	28	+2.012	28.912	9 02.83 1127.11	18.76	.01662	.953
	20	12.012	20.512	1127.11	18.96	.02074	.96 3
	29	+2.512	28.857	1407.58	19.18	02504	074
	30	+3.012	28.836	1688.05	19.18	.02590	.974
	31	+3.512	28.813	1968.54	19.45	.03105	.982
	32	+4.012	28.799	2248.98		.03621	.987
	3 3	+4.512	28.788	2529.43	19.52	.04136	.991
	-		201100	2020,40	19.58	.046521	.994

3.4	+5.012	28.777	2809.90	19.63	.05167	.996
-				19.68	.05682	999
35	+5.512	28.768	2030.22			
3.0	+6.012	28.764	3370.80	19.70	.06198	1.000
				10 71	.06713	1 . 0 00
77	AE E12	28 762	3651 .19	13.71	. 00 , , 5	,,,,,,

FILE: T060255

STATION:	- 5
----------	-----

Xsta Tw Tin Qw Yefa Cons	= 32.6 f = 28.6 = 2.10 f = +9.0	81 [C] 80 [C] 8E+2 [W/m^2] 800E-5 [m]	Del-en Del-co	er = 5.117E th = 2.767E nd = 5.171E n = 2.979E = .950 = 230.81	-3 [m] -4 [m] +3	
	Y [cm]	T [C]	Y+	T +	y/R	DT/DTw
1 2 3 4 5	+.011 +.013 +.015 +.018 +.021	31.937 31.834 31.760 31.570 31.367	5.88 6.95 8.03 9.64	4.19 4.69 5.04 5.96 6.93	.00011 .00013 .00015 .00019	.213 .238 .256 .302 .351
6 7 8 9 10	+.026 +.031 +.041 +.051 +.071	31.128 30.917 30.625 30.444 30.209	13.97 16.67 22.09 27.50 38.34	8.08 9.10 10.51 11.38 12.52	.00027 .00032 .00042 .00053 .00073	.409 .460 .531 .575 .632
11 12 13 14 15	+.091 +.141 +.191 +.291 +.491	30.067 29.822 29.699 29.510 29.269	49.18 76.31 103.45 157.78 266.60	13.21 14.40 15.00 15.92 17.09	.00094 .00145 .00197 .00300 .00506	.666 .726 .756 .801 .860
16 17 18 19 20	+.691 +.891 +1.191 +1.491 +1.791	29.165 29.075 28.977 28.946 28.912	375.42 484.34 647.79 811.11 974.50	17.60 18.04 18.52 18.67 18.84	.00712 .00919 .01228 .01537	.885 .907 .931 .938
21 22 23 24 25	+2.091 +2.491 +2.991 +3.491 +3.991	28.862 28.820 28.811 28.779 28.749	1138.06 1356.10 1628.39 1900.96 2173.61	19.08 19.29 19.33 19.49 19.64	.02156 .02568 .03084 .03599 .04114	.958 .969 .971 .979
26 27 28 29	+4.491 +4.991 +5.991 +6.991	28.741 28.714 28.694 28.687	2446.04 2718.80 3263.92 3808.87	19.67 19.81 19.90 19.94	.04630 .05145 .06176 .07207	.988 .994 .999

FILENAME: ST0602

Uinf: 18.56 [m/s]

HEAT FLUX TO HEATER: 236.0 [W/m^2]

HEAT LOSS THROUGH BACK WALL OVER DA: .082 [W]

FREESTREAM TEMPERATURE: 29.37 [C]

			4		. .
	Twall [C]	RE×	Enth [m]	Qconv [W/m^2]	St
1	31.27	+4.308E+4	+3.821E-6	+2.126E+2	+5.272E-3
2	31.54	+7.175E+4	+1.226E-4	+2.208E+2	+4.796E-3
	31.89	+1.003E+5	+2.121E-4	+2.188E+2	+4.093E-3
3 4	32.24	+1.289£+5	+3.129E-4	+2,166E+2	+3.556E-3
5	31.81	+1.577E+5	+3.989E-4	+2.196E+2	+4.240E-3
5 6	32.42	+1.861E+5	+4.660E-4	+2.156E+2	+3.334E-3
7	32.22	+2.148E+5	+5.909E-4	+2.169E+2	+3.589E-3
	32.02	+2.436E+5	+6.738E-4	+2.182E+2	+3.879E-3
8 9	32.32	+2.720E+5	+6.832E-4	+2.164E+2	+3.459E-3
7	52.52	72.720213			
10	32.75	+3.003E+5	+7.355E-4	+2.138E+2	+2.985E-3
11	32.60	+3.290E+5	+8.250E-4	+2.149E+2	+3.136E-3
12	32.65	+3.576E+5	+9.019E-4	+2.145E+2	+3.084E-3
13	32.62	+3.862E+5	+9.656E-4	+2.14BE+2	+3.119E-3
14	32.76	+4.147E+5	+1.003E-3	+2.139E+2	+2.981E-3
15	32.89	+4.431E+5	+1.051E-3	+2.131E+2	+2.855E-3
16	32.93	+4.716E+5	+1.135E-3	+2.129E+2	+2.820E-3
17	32.82	+5.004E+5	+1.250E-3	+2.136E+2	+2.921E-3
18	32.69	+5.292E+5	+1.317E-3	+2.144E+2	+3.046E-3
19	32.87	+5.575E+5	+1.326E-3	+2.133E+2	+2.881E-3
, ,	32.07		-		
20	33.04	+5.858E+5	+1.372E-3	+2.123E+2	+2.732E-3
21	33.01	+6.144E+5	+1.456E-3	+2.125E+2	+2.759E-3
22	32.97	+6.431E+5	+1.498E-3	+2.128E+2	+2.794E-3
23	33.14	+6.713E+5	+1.505E-3	+2.117E+2	+2.650E-3
24	33.28	+6.996E+5	+1.563E-3	+2.109E+2	+2.547E-3
25	33.18	+7.283E+5	+1.682E-3	+2.115E+2	+2.619E-3
26	33.03	+7.572E+5	+1.809E-3	+2.124E+2	+2.740E-3
27	32.93	+7.860E+5	+1.899E-3	+2.130E+2	+2.821E-3
28	32.96	+8.146E+5	+1.889E-3	+2.129E+2	+2.801E-3
29	33.24	+8.425E+5	+1.889E-3	+2.111E+2	+2.576E-3
LJ	55,24	.0.4202			
30	33.24	+8.710E+5	+1.964E-3	+2.112E+2	+2.578E-3
31	33.20	+8.997E+5	+2.105E-3	+2.114E+2	+2.60EE-3
32	32.96	+9.289E+5	+2.237E-3	+2.129E+2	+2.802E-3
33	32.99	+9.574E+5	+2.218E-3	+2.127E+2	+2.774E-3
34	33.25	+9.852E+5	+2.254E-3	+2.110E+2	+2.57@E-3
35	33.10	+1.014E+6	+2.358E-3	+2.120E+2	+2.682E-3
36	33.13	+1.043E+6	+2.379E-3	+2.119E+2	+2.663E-3
37	3 3.25	+1.071E+6	+2.369E-3	+2.111E+2	+2.569E-3
38	33.38	+1.099E+6	+2.439E-3	+2.103E+2	+2.480E-3
50	22.20				

```
39
        33.23
                   +1.128E+6
                                  +2.598E-3
                                                 +2.112E+2
                                                                +2.584E-3
  40
        33.09
                   +1.157E+6
                                  +2.711E-3
                                                 +2.121E+2
                                                                +2.695E-3
  41
        33.10
                   +1.186E+6
                                  +2.780E-3
                                                 +2.120E+2
                                                                +2.681E-3
  47
        33.09
                   +1.214E+6
                                  +2.758E-3
                                                 +2.121E+2
                                                                +2.696E-3
  43
        33.35
                   +1.242E+6
                                  +2.745E-3
                                                 +2.105E+2
                                                                +2.502E-3
  44
        33.31
                   +1.271E+6
                                  +2.832E-3
                                                 +2.108E+2
                                                                +2.526E-3
  45
        33.28
                   +1.299E+6
                                  +3.036E-3
                                                 +2.109E+2
                                                                +2.547E-3
                   +1.329E+6
  46
        32.94
                                  +3.213E-3
                                                 +2.130E+2
                                                                +2.815E-3
  47
        33.03
                   +1.357E+6
                                  +3.178E-3
                                                 +2.124E+2
                                                                +2.740E-3
  48
        33.18
                   +1.385E+6
                                  +3.172E-3
                                                 +2.115E+2
                                                                +2.619E-3
 49
        33.21
                   +1.414E+6
                                  +3.238E-3
                                                 +2.114E+2
                                                                +2.601E-3
 50
        33.18
                   +1.442E+6
                                  +3.421E-3
                                                 +2.114E+2
                                                                +2.618E-3
 51
        32.94
                   +1.472E+6
                                  +3.541E-3
                                                 +2.130E+2
                                                                +2.816E-3
 52
        33.08
                   +1.500E+6
                                  +3.657E-3
                                                 +2.120E+2
                                                                +2.698E-3
 61
       30.87
                                                +2.245E+2
                                                               +7.059E-3
 62
        31.53
                                   -----
                                                +2.208E+2
                                                               +4.815E-3
 63
       37.01
                                   -----
                                                +1.894E+2
                                                               +1.179E-3
 64
       32.25
                                   ____
                                                +2.168E+2
                                                               +3.551E-3
 65
       48.80
                                                +1.159E+2
                                                               +2.892E-4
 66
       32.05
                   -----
                                                +2.179E+2
                                                              +3.838E-3
 67
       32.08
                   ------
                                               +2.177E+2
                                                              +3.789E-3
       31.97
 6 R
                                               +2.183E+2
                                                              +3.952E-3
 69
       30.99
                                               +2.238E+2
                                                              +6.477E-3
 70
       31.25
                   -----
                                  -----
                                               +2.224E+2
                                                              +5.553E-3
71
       31.71
                                  -----
                                               +2.198E+2
                                                              +4.430E-3
 72
       32.54
                  -----
                                  _____
                                               +2.152E+2
                                                              +3.203E-3
 73
       32.22
                  ------
                                               +2.169E+2
                                                              +3.583E-3
 74
       32.61
                  ------
                                               +2.147E+2
                                                              +3.126E-3
 75
       32.56
                  -----
                                               +2.151E+2
                                                              +3.185E-3
 76
       32.66
                  ------
                                               +2.145E+2
                                                              +3.076E-3
 77
       32.58
                  -----
                                               +2.149E+2
                                                              +3.160E-3
 78
       32.47
                  -----
                                               +2.156E+2
                                                              +3.284E-3
79
       3.22
                  -----
                                  -----
                                               +3.581E+2
                                                              -6.161E-4
80
       32.48
                                  -----
                                               +2.155E+2
                                                              +3.266E-3
81
       32.39
                                  -----
                                               +2.150E+2
                                                              +3.379E-3
82
       32.13
                                  -----
                                               +2.175E+2
                                                              +3.718E-3
83
      32.18
                                  -----
                                               +2.172E+2
                                                              +3.638E-3
      31.68
84
                                  _____
                                               +2.200E+2
                                                              +4.479E-3
85
      32.24
                  ------
                                  ----
                                               +2.168E+2
                                                              +3.562E-3
8€
       31.85
                  -----
                                  -----
                                               +2.190E+2
                                                              +4.156E-3
87
       32.40
                                               +2.159E+2
                                                             +3.3598-3
88
       32.58
                                  -----
                                               +2.144E+2
                                                             +3.060E-3
89
      32.84
                                  -----
                                               +2.135E+2
                                                             +2.806E-3
90
       32.91
                                               +2.131E+2
                                                             +2.842E-3
```

```
+2.122E+2
                                                           +2.720E-3
91
      33.06
                 _____
                                             +2.115E+2
                                                           +2.614E-3
                 _____
92
      33.19
                                                           +2.793E-3
                                             +2.127E+2
93
      32.97
                                                           +2.892E-3
                                             +2.134E+2
                 -----
      32.85
94
                                             +2.134E+2
                                                           +2.892E-3
                 _____
95
      32.85
                                             +2.134E+2
                                                           +2.899E-3
                                ____
                 -----
96
      32.85
                                                           +2.856E-3
                                             +2.132E+2
                                ____
                 _____
97
      32.89
                                             +2.141E+2
                                                           +3.005E-3
                                ____
98
      32.73
                 -----
                                             +2.109E+2
                                                           +2.537E-3
                                ____
                 -----
99
      33.30
                                             +2.140E+2
                                                           +2.997E-3
                                ____
100
      32.74
                                             +2.132E+2
                                                           +2.856E-3
                                ____
      32.89
101
                                             +2.128E+2
                                                           +2.800E-3
                                ____
      32.96
102
+2.877E-3
                                             +2.133E+2
      32.87
                 -----
103
                                                           +2.476E-3
                                -----
                                             +2.104E+2
                 _____
104
      33.39
                                                           +2.170E-3
                                             +2.075E+2
                 _____
105
      33.89
                                             +2.085E+2
                                                           +2.273E-3
                 _____
106
      33.71
                                                           +2.227E-3
                                ____
                                             +2.081E+2
      33.79
107
                                                           +2.283E-3
                 _____
                                ____
                                             +2.086E+2
      33.69
108
                                                           +2.356E-3
                                -----
                                             +2.093E+2
      33.57
109
                                                           +2.417E-3
                                             +2.099E+2
                                -----
      33.47
110
                                                           +2.401E-3
                                -----
                                             +2.097E+2
      33.50
                 -----
111
                                                           +2.433E-3
                                             +2.100E+2
                 _____
112
      33.45
                                                           +2.470E-3
                                             +2.103E+2
                                ____
                 _____
113
      33.39
                                                           +2.481E-3
                                ----
                                             +2.104E+2
                 _____
114
      33.38
                                _----
                                             +2.106E+2
                                                           +2.503E-3
                 -----
      33.35
115
                                                           +2.554E-3
                                             +2.110E+2
                                ____
116
                 -----
      33.27
                                                           +2.572E-3
                                             +2.111E+2
                                ----
                 _____
117
      33.25
                                                           +2.644E-3
                                             +2,117E+2
                                ____
      33.15
118
+2.720E-3
                                             +2.122E+2
       33.06
119
                                             +2.087E+2
                                                           +2.292E-3
120
       33.67
                  _____
                                 ____
                                             +2.082E+2
                                                           +2.23EE-3
       33.77
121
                                                           +2.259E-3
                                _____
                                             +2.084E+2
                 _____
122
       33.73
                                 --+---
                                             +2.089E+2
                                                           +2.311E-3
                  _____
123
       33.64
                                                           +2.427E-3
                                 -----
                                             +2.100E+2
                  _____
       33.46
124
                                                           +2.487E-3
                                             +2.105E+2
                  _____
                                 ____
       33.37
125
                                                           +2.443E-3
                                 -----
                                             +2.101E+2
                 -----
       33.43
12E
                                                           +2.532E-3
                                 ____
                                             +2.108E+2
127
       33.30
                                                           +2.63BE-3
                                 ____
                                             +2.116E+2
128
       33.16
+3.052E-3
                                             +2.143E+2
                 ------
       32.58
129
                                                           +2.321E-3
                                             +2.09@E+2
                  _-----
130
       33.63
                                                           +2.099E-3
                                             +2.067E+2
                  _____
131
       34.03
                                                           +2.179E-3
                                             +2.076E+2
132
       33.88
                  -----
                                             +2.095E+2
                                                           +2.375E-3
                  -----
133
       33.54
                                                           +2.443E-3
                                 ____
                                             +2.101E+2
                  _____
134
       33.43
                                                           +2.414E-3
                                             +2.098E+2
                                 ____
                  ------
       33.48
135
                                                           +2.386E-3
                                             +2.096E+2
                                 -----
       33.52
136
```

137 138	33.47 33.47			+2.099E+2 +2.099E+2	+2.417E-3 +2.417E-3			

Station 1
RAW DATA--FILE NAME: UV0613S1

N	Y [cm]	U [m/s]	U [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s	21
N 12345678901123145678901123145678901123145678901123	7 [cm] .060 .115 .165 .315 .465 .765 .915 1.065 1.265 1.465 2.465 2.965 3.465 3.965 4.465 5.965 6.965	13.244 15.241 16.157 17.182 17.374 17.548 17.629 17.667 17.719 17.834 17.983 18.073 18.206 18.329 18.481 18.558 18.666 18.666 18.833 18.885	.126089194197237245286309333283351373352393341416403327404423	1.921 1.957 1.878 1.713 1.653 1.630 1.591 1.584 1.524 1.577 1.551 1.532 1.468 1.526 1.520 1.474 1.496 1.495	1.397 1.130 .984 .839 .905 .974 1.037 1.116 1.161 1.231 1.223 1.336 1.369 1.381 1.423 1.488 1.500 1.487 1.485 1.445	793 737 450 327 318 247 262 405 429 471 481 478 388 368 278 415 404 344 344 344 344	
21 22	7.965 8.965	18.927 18.673	500	1.602	1.307	.146	

Upw [m/s]= 17.70 Cf= 6.000E-3

Station 2
RAW DATA--FILE NAME: UV061382

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2	2]
1	.060	13.623	.145	1.819	1.252	700	
2	.136	15.029	.037	1.754	1.024	655	
3	.336	16.682	109	1.681	.927	629	
4	.536	17.391	136	1.594	.972	629	
5	.736	17.894	236	1.545	.973	491	
6	. 9 36	18.163	210	1.505	.992	499	
7	1.136	18.332	273	1.417	1.058	408	
8	1.336	18.482	295	1.346	1.116	508	
9	1.536	18.501	313	1.362	1.134	478	
10	1.786	18.582	343	1.325	1.202	519	
11	2.036	18.667	390	1.327	1.244	508	
12	2.336	18.690	385	1.328	1.284	494	
13	2.636	18.780	470	1.289	1.284	534	
14	2.936	18.834	447	1.294	1.360	685	
15	3.236	18.896	534	1.269	1.369	602	
16	3.636	18.960	533	1.241	1.331	532	
17	4.036	18.986	568	1.278	1.381	548	
18	4.536	19.132	620	1.281	1.340	497	
19	5.0 36	19.215	679	1.218	1.372	499	

Upw [m/s]= 17.70 Cf= 5.900E-3

Station 3
RAW DATA--FILE NAME: UV061353

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
1	.060	12.714	050	1.865	1.244	810
2	.140	14.299	157	1.836	1.034	742
3	.290	15.612	233	1.838	1.001	80E
4	.490	16.523	262	1.760	.987	736
5	.740	17.275	288	1.642	1.005	782
6	.990	17.717	321	1.540	1.064	715
7	1.240	17.973	339	1.463	1.074	699
8	1.490	18.187	366	1.335	1.060	555
9	1.740	18.286	3 32	1.253	1.103	575
10	1.990	18.403	378	1.265	1,165	618
11	2.240	18.446	375	1.253	1.176	605
12	2.490	18.557	350	1.196	1.209	556
13	2.990	18.705	399	1.170	1.227	562
14	3.490	18.761	409	1.157	1.336	632
15	3.990	18.837	435	1.130	1.303	6 36
16	4.490	18.932	466	1.137	1.270	578
17	4.990	19.005	493	1.128	1.275	573
18	5.490	19.059	389	1.118	1.282	536
19	5.990	19.117	296	1.138	1.265	574
20	6.490	19,211	488	1.108	1.224	513
21	6.990	19.177	304	1.119	1.160	350
22	7.990	19.163	290	1.196	1.054	288
23	8.990	18.666	332	1.190	.90 8	027

Upw [m/s]= 17.70 Cf= 5.300E-3

Station 4
RAW DATA--FILE NAME: UV061354

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
1	.060	12.933	0.000	1.919	1.235	818
2	.135	14.528	005	1.830	1.017	634
3	.335	15.974	121	1.806	1.010	813
4	.635	16.968	251	1.743	1.079	850
5	. 9 35	17.525	375	1.567	1.088	750
6	1.235	17.776	327	1.555	1.179	932
7	1.535	18.028	357	1.424	1.185	815
8	1.835	18.177	390	1.374	1.155	749
9	2.135	18.339	421	1.301	1.240	727
10	2.435	18.452	407	1.276	1.216	774
11	2.735	18.600	470	1.206	1.267	715
12	3.035	18.699	549	1.171	1.216	652
13	3.535	18.762	501	1.158	1.279	- .725
14	3.535	18.833	569	1.068	1.259	635
15	4.535	18.861	581	1.067	1.282	651
16	5.035	18.960	608	1.029	1.251	591
17	5.535	19.042	650	1.043	1.250	571
18	6.035	19.033	629	1.017	1.229	530
19	6.535	19.039	6 65	1.018	1.172	465
20	7.035	19.009	666	.990	1.131	399
21	8.035	18.918	675	1.011	1.024	- .29 3
22	9.035	18.607	637	1.021	.884	107
23	10.035	17.200	477	1.304	.804	.1 9 6

Upw [m/s]= 17.70 Cf= 5.300E-3

Station 5
RAW DATA--FILE NAME: UV061385

N	Y [cm]	U [m/s]	V [m/s]	u' [m/S]	v' [m/s]	u'v' [m2/s2]
1	.060	12.587	040	1.889	1.264	7 62
2	.160	14.563	159	1.872	1.016	738
3	.360	15.931	256	1.843	.990	845
4	.660	16.986	315	1.667	1.005	754
5	.960	17.316	367	1.595	1.056	814
6	1.250	17.597	364	1.459	1.103	745
7	1.560	17.896	411	1.351	1.154	747
8	1.860	17.970	4 87	1.344	1.182	816
9	2.160	18.014	452	1.330	1.232	824
10	2.460	18.131	478	1.225	1.264	783
11	2.760	18.247	507	1.223	1.265	798
12	3.060	18.248	-,503	1.179	1.271	772
13	3.560	18.325	532	1.086	1.254	65 5
14	4.050	18.464	581	1.086	1.222	621
15	4.560	18.453	543	1.018	1.242	612
15	5.060	18.476	568	.999	1.222	556
17	5.560	18.499	547	. 9 56	1.226	506
18	6.060	18.498	495	. 90 9	1.128	374
19	6.560	18.502	628	.904	1.079	332
20	7.060	18.453	536	.886	1.081	302
21	8. 0 60	18.327	426	.930	1.004	167
22	9.060	17.957	259	.940	.826	058
23	10.060	16.914	261	1.203	.769	.154

Upw [m/s]= 17.70 Cf= 5.000E-3

IVT062752 Station 2

R Qwa	= 97.000 all = 213.	[cm] 9 [W/m^2]	Tw-Tı	.nf = 3	.390 [C]	Uрw	= 17.70 [m/S]	
N	Y	U	U	т	u'	٧٠	ŧ'	u'v'	u't'
	[cm]		[m/S]	(C J	[m/5]	[m/S]	(C)	[m2/52]	u/t/ [m-C/5
1	.050	14.22	74	31.31	2.120	1.014	.412	840	509
2	.200	16.05	86	30.91	1.893	.877	.326	788	392
3	.350	17.13	93	30.67	1.804	.870	.277	732	296
4	.550	17.94	-1.00	30.50	1.702	.895	.234	740	213
5	.750	18.41	-1.01	30.40	1.580	.911	.183	582	136
6	. 950	18.80	-1.08	30.35	1.494	.963	.147	575	096
7	1.200	19.03	-1.14	30.31	1.459	. 9 55	.112	442	057
8	1.400	19.06	-1.10	30.30	1.364	1.011	.096	497	041
9	1.600	19.15	-1.14	30.29	1.376	1.026	.078	478	032
10	1.850	19.19	-1.13	30.28	1.379	1.102	.068	526	030
11	2.100	19.26	-1.12	30.29	1.309	1.089	.057	470	022
12	2.400		-1.17	30.29	1.375	1.114	.051	5 53	019
13	2.700		-1.25	30.30	1.298	1.152	.045	466	012
1 4	3.200	19.46	-1.19	30.29	1.336	1.185	.043	556	009
N	v't'				dU/dy	d T/dy	Prt	GAMMA	
	[m-C/S]	[m3/S3]	[m2-C/9	52 1	[1/5]	[C/m]			
1	+.184	608	+.111		3.694	722	+.893	1.000	
2	+.139	184	+.040		3.210	623	+1.102	1.000	
3	+.128	267	+.059		2.760	530	+1.098	1.000	
4	+.116	271	+.07E		2.213	418	+1.210	1.000	
5	+.053	318	+.068	57 ·	1.726	318	+1.149	1.000	
6	+.082	330	+.067		1.301	231	+1.246	1.000	
7	+.055	165	+.033		.854	139	+1.305	1.000	
8	+.049	210	+.045		.565	079	+1.418	1.000	
9	+.039	128	+.037		.336	032	+1.172	1.000	
10	+.036	218	+.029	19	.135	.010	-1.055	1.000	
11	+.028	116	+.016		.029	.032	-18.276	1.000	
12	+.027	229	+.020		.027	.034	-25.606	1.000	
13	+.021	211	+.016		.161	.0 07	945	1.000	
14	+.020	113	+.010	3	.688	099	+3.954	1.000	

```
FILE NAME : IVT062752 Station 2
**************
U = SUM(A(N) + Y''N)
A0= +1.6356E+01 A1= +3.8625E+00 A2= -1.7082E+00 A3= +2.5255E-01
  +.345
                                  -.048
 .7500
                                 -.536
 .9500
                                 -.318
 1.2000
                                 +.235
 1.4000
                                 +.231
 1.5000
                                 +.327
1.8500
                                 +.075
 2.1000
                                 +.062
2.4000 19.2665
2.7000 19.4170
                                 -.585
                                  +.223
         19.4565
                     19.500
 3.2000
***************
T = SUM(A(N) + Y^N)
A0= +3.0806E+01 A1= -7.5668E-01 A2= +3.5029E-01 A3= -5.1570E-02
Y T TC % DIFF
.5500 30.4985 30.487 -.036
                                  +.033
          30.4039 30.414
  .7500
                                 +.033
          30.3492 30.359
  .9500
          30.3107 30.313
                                  +.009
 1.2000
          30.3006 30.292
30.2876 30.281
30.2787 30.279
30.2872 30.284
30.2916 30.295
30.2954 30.302
                                  -.029
 1.4000
                                  -.022
 1.6000
                                 -0.000
 1.8500
          30.2872
                                  -.010
 2.1000
                                  +.011
          30.2916
 2.4000
                                  +.021
          30.2954
 2.7000
                                   -.011
                      30.282
          30.2852
 3.2000
```

IVT062753 Station 3

	97.000 11 = 210.		τω-Τ:	inf = 3	3.910 (C)	Upw	= 17.70 (`m/\$]	
N	Y	U	V	T	u'	٧,	ť'	u'v'	٠ ں
	[cm]	[m/S]	[m/S]	[0]	[m/S]	[m/S]	[0]	[m2/S2]	
1	.050	12.49	77	31.69		1.077	.5 25	916	€
2	.200	15.14	9 5	31.08		.944	.389	863	4
3	.500	16.97	-1.16	30.64		.949	.308	871	3
4	.800	17.73	-1.22	30.54		.949	.255	770	2
5	1.100	18.20	-1.26	30.43	1.574	. 994	.215	838	1
6	1.400	18.62	-1.26	30.37		1.010	.174	679	1
7	1.700		-1.25	30.35		1.029	.150	621	0
8	2.000		-1.33	30.32		1.041	.116	616	0
9	2.400	19.07		30.32		1.069	.098	488	0
10	2.800	19.15	-1.32	30.28	1.173	1.088	.083	508	0
11	3.200	19.26	-1.29	30.31	1.146	1.115	.064	525	0
12	3.600	19.38		30.33		1.176	.056	499	0
13	4.000	19.42		30.32		1.213	.051	511	0
1 4	4.500	19.49	-1.30	30.31	1.112	1.182	.049	497	0
N	v't'	u'v'^2	v1^2·	, ·	dU/dy	dT/dy	Prt	GAMMA	
		[m3/53]			[1/5]	[C/m]	FFE	бишин	
1	+.278	748	+.219		2.492	558	+.738	1.000	
2	+.184	296	+.116	8	2.281	505	+1.037	1.000	
3	+.159	517	+.116	57	1.889	406	+1.172	1.000	
4	+.137	416	+.091		1.535	317	+1.156	1.000	•
5	+.129	631	+.113	36	1.221	238	+1.266	1.000	
6	+.105	538	+.092		.947	170	+1.153	1.000	
7	+.089	324	+.075		.711	112	+1.098	1.000	
8	+.066	294	+.056		.514	064	+1.148	1.000	
9	+.057	254	+.046		.313	016	+.439	1.000	
0	+.043	205	+.036	3	.182	.013	868	1.000	
1	+.038	172	+.038		.120	.025	-2.869	1.000	
2	+.031	115	+.029		.128	.018	-2.192	1.000	
3	+.031	216	+.028		.205	008	+.609	1.000	
4	+.026	123	+.028	1	.400	065	+3.079	1.000	

```
FILE NAME: IUT062783 Station 3
************
U = SUM(A(N) + Y^N)
A0= +1.6163E+01 A1= +2.5643E+00 A2= -7.3013E-01 A3= +7.2543E-02
          U
                   UC % DIFF
  Υ
                               +.279
          17,7347
                   17.784
 .8000
                               -.043
         18.2045
                 18.197
1.1000
                               -.514
                   18.521
         18.6166
1.4000
                               -.094
                   18.769
1.7000
          18.7861
                               +.120
                    18.951
2.0000
         18.9286
                               +.224
                    19.114
         19.0717
2.4000
                 19.211
                               +.339
2.8000
         19.1462
         19.2617
                               +.039
                    19.269
3.2000
         19.3782
                    19.316
                               -.319
3.6000
                                -.226
         19.4248
                    19.381
4.0000
         19.4883
                                +.202
                    19.528
4.5000
***************
T = SUM(A(N) + Y^N)
A0= +3.0881E+01 A1= -5.7652E-01 A2= +1.8528E-01 A3= -1.9028E-02
  Y T TC % DIFF
.8000 30.5399 30.529 -.05
.1000 30.4307 30.446 +.04
                            -.037
 .8000
                               +.049
 1.1000
                               +.038
                   30.385
         30.3731
 1.4000
         30.3539 30.343
                               -.036
 1.7000
                               -.014
                   30.317
         30.3210
 2.0000
                   30.301
                               -.049
         30.3163
 2.4000
                   30.302
                               +.061
 2.8000
          30.2830
                   30.310
                               +.001
          30.3095
 3.2000
                               -.025
         30.3265
                   30.319
 3.6000
       30.3160
                               +.018
                    30.321
 4.0000
                                -.006
 4.5000
         30.3063
                   30.305
```

IUT062754 Station 4

	= 97.000 : all = 211.0		Tw-T11	nf = 3	.940 [C]	Upw	= 17.70 [m/S]	
N	Y [cm]	U [m/S]	V [m/S]	T [C)	u 1	v'	t'	u'v'	
	1000	1111/21	r m/ 5 1	163	[m/S]	[m/S]	[C]	[m2/S2]	[m-C/S
1	.050	12.32	39	31.59	2.004	1.019	.498	557	585
2	. 144		88	31.14	1.918	.899	.413	853	520
3	.344	16.15		30.80	1.865	.921	.370	920	493
4	.694	17.27		30.54		.9 99	.327	879	371
5	.994	17.75	-1.19	30.45	1.622	1.038	.283	881	289
6	1.394	18.10		30.34		1.075	.240	795	201
7	1.794	18.31		30.29	1.329	1.102	.206	728	155
8	2.194	18.52		30.23	1.234	1.129	.173	660	110
9	2.594	18.70		30.22	1.182	1.096	.152	587	085
10	2.994	18.76	-1.33	30.21	1.169	1.137	.129	625	0 61
1.1	3.494	18.94	-1.34	30.18	1.091	1.160	.112	576	047
12	3.994		-1.35	30.18	1.063	1.141	.097	511	034
13	4.494			30.17	1.039	1.152	.077	519	022
1 4	4.994	19.16	-1.39	30.17	1.009	1.146	.076	461	015
N	v't'	u'v'^2	v1^2t	•	dU/dy	dT/dy	Prt	GAMMA	
	[m-C/S]	[m3/S3]			[1/5]	[C/m]	F1 C	GAINNA	
1	+.205	690	+.160		1.770	450	+.692	1.000	
2	+.179	336	+.047		1.690	429	+1.213	1.000	
3	+.187	333	+.062		1.526	386	+1.241	1.000	
4	+.183	551	+.118		1.262	315	+1.199	1.000	
5	+.169	594	+.1292	2	1.058	261	+1.283	1.000	
6	+.159	682	+.1447		.817	196	+1.202	1.000	
7	+.136	600	+.1299		.614	141	+1.224	0.000	
8	+.114	519	+.1142		.447	095	+1.229	1.000	
9	+.094	480	+.0976		.316	058	+1.147	1.000	
10	+.079	500	+.0976	5	.222	031	+1.095	1.000	
11	+.069	345	+.0769		.156	010	+.537	1.000	
12	+.058	328	+.0690		.148	004	+.236	1.000	
13	+.039	139	+.0366		.196	012	+.831	1.000	
1 4	+.035	160	+.0433	;	.302	035	+1.529	1.000	

```
FILE NAME : IUT062784 Station 4
************
U = SUM(A(N) + Y^N)
A0= +1.6269E+01 A1= +1.8133E+00 A2= -4.3697E-01 A3= +3.8136E-02
                    UC % DIFF
          U
  Υ
        17.2661 17.330
17.7500 17.677
                              +.367
  .6940
                               -.412
 .9940
                                -.250
         18.0959 18.051
 1.3940
                                +.156
                  18.336
 1.7940
         18.3071
                               +.152
         18.5183 18.547
 2.1940
                                -.002
                  18.698
         18.6981
 2.5940
                               +.226
         18.7619 18.804
 2,9940
                               -.234
         18.9408 18.897
 3.4940
                               +.042
         18.9622
                   18.970
 3.9940
                                -.141
         19.0808 19.054
 4.4940
                               +.101
                   19.176
          19.1569
 4.9940
**************
T = SUM(A(N) + Y^N)
A0= +3.0800E+01 A1= -4.6176E-01 A2= +1.1575E-01 A3= -9.7542E-03

Y T TC % DIFF

.6940 30.5377 30.532 -.017
                             -.017
          30.5377
  .6940
                   30.446
                                +.001
         30.4450
  .9940
                                +.036
                   30.355
 1.3940
         30.3444
                                -.004
                   30.288
         30.2895
 1.7940
                               +.022
-.029
-.039
                   30.241
         30.2347
 2.1940
                   30.211
         30.2201
 2.5940
         30.2055
                   30.194
 2.9940
                                +.009
                   30.184
          30.1814
 3.4940
                               +.018
          30.1758
                    30.181
 3.9940
                               +.025
          30.1700
                    30.178
 4.4940
                                -.021
                    30.166
         30.1725
 4.9940
```

1VT0627SS Station 5

Qwa	= 97.000 111 = 210.	[cm] 8 [W/m^2]	Tw-T;]	inf = 3	3.940 [C]	Upw = 17.70 [m/S]			
N	Y	U	v	т	u'	٧,	t ·	u'v'	u
	[cm]	[m/S]	[m/S]	[0]	[m/5]	[m/S]	[0]	[m2/52]	_
1	.050	10.32	+.37	31.70		.906	.534	141	!
2	.182		-1.06	31.03		.918	.414	821	-:
3	.482	15.70	-1.28	30.59		.927	.363	898	
4	.782	17.38		30.41		.947	.318	767	
5	1.182	17.89	-1.40	30.28	1.556	1.031	.273		:
6	1.582		-1.40	30.21		1.096	.239	792	;
7	1.982		-1.43	30.19	1.311	1.099	.222	715	-:
8	2.382	18.44		30.14	1.285	1.131	.195	773	-:
9	2.782		-1.48	30.13	1.226	1.174	.185	723	- :
10	3.182	18.62	-1.46	30.12	1.149	1.182	.159	676	6
1 1	3.582	18.71	-1.48	30.09	1.101	1.133	.137	578	0
12	3.982	18.78	-1.50	30.07		1.180	.127	573	0
3	4.482		-1.52	30.05		1.131	.107		0
4	4.982	18.82	-1.43	30.07	.999	1.117	.095	454	0
N	v't'	u'v'^2	v1^2t	. 1	d U/dy	dT/dy			
	[m-C/S]	[m3/S3]	[m2-C/S		[1/5]	[C/m]	Prt	GAMMA	
1	+.152	256	+.056	9	1.489	374	+.233	1.000	
2	+.190	367	+.082	6	1.398	350	+1.081		
3	+.195	465	+.099	12	1.201	300	+1.146	1.000	
4	+.165	513	+.114	4	1.021	253	+1.154	1.000	
5	+.163	549	+.112	1	.805	198	+1.219	1.000	
6	+.156	534	+.119		.618	150	+1.237	1.000	
7	+.153	562	+.130		.459	110	+1.115	1.000	
8	+.140	646	+.134		.329	077	+1.289	1.000	
9	+.135	658	+.146		.227	051	+1.205	1.000	
0	+.117	564	+.124	4	.153	033	+1.233	1.000	
1	+.090	507	+.102		.107	022	+1.295	1.000	
2	+.093	407	+.108		.090	018	+1.252	1.000	
3	+.071	346	+.080		.109	024	+1.480	1.000	
4	+.061	311	+.078	5	.172	042	+1.813	1.000	

```
FILE NAME : IUT052755 Station 5
U = SUM(A(N) + Y^N)
A0= +1.6452E+01 A1= +1.5245E+00 A2= -3.5658E-01 A3= +2.9551E-02
   Y U UC % DIFF
.7820 17.3761 17.440 +.36
.1820 17.8917 17.804 -.45
                                           +.388
  .7820
                                              -,458
 1.1820
                             18.088
             18.1269
 1.5820

    1.5826
    18.1269
    18.088

    1.9820
    18.2762
    18.303

    2.3820
    18.4363
    18.459

    2.7820
    18.5322
    18.569

    3.1820
    18.6199
    18.644

    3.5820
    18.7076
    18.695

    3.9820
    18.7768
    18.734

    4.4820
    18.8027
    18.782

    4.9820
    18.8240
    18.850

                                              9 1 1 4 E
                                               +.131
                                              - .055
                                               -,217
                                               -.109
                                               +.142
****************
T = SUM(A(N) + Y^N)
A0= +3.0638E+01 A1= -3.8280E-01 A2= +9.1846E+02 A3= -7.7143E-03
   .7820
 1.1820
 1.5820
 1.9820
 2.3820
 2.7820
 3.1820
 3.5820
                                               +.035
                             30.063
              30.0720
 3.9820
                                               +.066
             30.0527 30.072
 4.4820
                                               -.048
 4.9820 30.0707
                             30.056
 **************
```

ALACIA				
	Report Docun	contation Par	~~	
National Aeronautics and Space Administration	ricport Docum	ientation raj	ge	
1. Report No.	2. Government Access	sion No.	3. Recipient's Catalog	. No
NASA CR-187151			o. Hecipient's Catalog	, NO.
4. Title and Subtitle	<u> </u>	-	5. Report Date	
Free-Stream Turbulence and Concave Transitional Boundary Layers		Heated,	August 1991	
Volume II-Program Listings and Tabulated Data	a		6. Performing Organiz	ration Code
7. Author(s)			Performing Organiz	ation Report No.
J. Kim and T.W. Simon			None	auon nopon no.
			10. Work Unit No.	
			505-62-52	
Performing Organization Name and Address				
University of Minnesota			11. Contract or Grant N	0.
Department of Mechanical Engineering	g		NAG3-881	
Minneapolis, Minnesota 55455				
			13. Type of Report and	
12. Sponsoring Agency Name and Address			Contractor Repo	ort
National Aeronautics and Space Admin Lewis Research Center	istration		Final	
Cleveland, Ohio 44135-3191			14. Sponsoring Agency	Code
Cieveland, Onio 44133-3191				
 Supplementary Notes Project Manager, Fred Simon, Internal I 	Fluid Mechanics Div	ision, NASA Lewis	Research Center, (2)	16) 433–5894.
An experimental investigation of the transiti turbulence levels was performed. Where posegregation of the signal into two types of bethe two forms of boundary layer behavior, in fully-turbulent profiles, respectively. Thus, weighted on intermittency, of the theoretical identified as laminar-like from theoretical ladeviation of the flow identified as turbulent-fully-turbulent power spectral distribution. It turbulent heat flux and mean velocity and ter turbulence intensity, the existence of Görtler using liquid crystal visualization and spanwishreakdown mode. The vortex wavelength witime and space. The upwash was found to be shape factors. Turbulent Prandtl numbers, my profiles, indicating no gross violation of Reynintensity case. It is not known whether this is number to stable values and causes the vortic two-dimensional modelling of the flow over a turbine blade, would seem to be adequate. H (which occurs within curved channels) was foflow. The total pressure within the "potential Documentation is presented in two volumes.	sestile, sampling accord chavior—laminar-like a dentified as laminar-like a dentified as laminar-like simple transition model laminar and fully turbu minar behavior is show like from the fully-turbu furbulent Prandtl numb mperature profiles, were vortices on the concave se velocity and tempera as quite irregular in both more unstable, with his deasured using a triple-velocity and tempera is due to the high eddy verse to disappear, or whe as concave wall with high levels of free-stream pound to cause a cross-state core" can thus rise to I Volume I contains the	ing to the intermittent and turbulent-like. Re and turbulent-like, cas in which the desired alent values is not expend to be due to recover alent values is thought ers for the transitional eless than unity. For e wall within both lam ture traverses. Transich the laminar and turb gher levels of u' and wire probe, were found ence of streamwise we iscosity over the entire ther it is due to an unsuch free-stream turbuler and turbulence superimpream transport of more evels higher than that text of the report inches	sults show that for transannot be thought of as so annot be thought of as so quantity is assumed to ected to be successful. If y after the passage of a to be due to incomplet a flow, computed from a the curved-wall case within and turbulent flow the transaction was found to occur outent flows, but the vortice was seen in the lottle to be near unity for all ortices was seen in the lottle to the transaction which reduces the table vortex structure. In the lottle transaction is the present of the flow which reduces the table vortex structure. The lottle transaction is the present of the flow within the present the transaction within the "potential transaction in the summer transaction in the summer transaction within the "potential transaction in the summer transaction in the summer transaction within the "potential transaction in the summer	Such sampling allowed sition on a flat-plate, separate Blasius and be an average, Deviation of the flow turbulent spot, while se establishment of the measured shear stress, ith low free-stream is was established a vortex tices were stable in cition coefficients and post-transitional high turbulence the turbulent Görtler Predictions based on ssure surface of a velocity gradient ential core" of the
7. Key Words (Suggested by Author(s))		18 Dietribusia - Chi		
Boundary layer transition		18. Distribution Statemer	•	
Heat transfer		Unclassified -		
Flat plates		Subject Catego	ory 34	
Curvature				
9. Security Classif. (of the report)	20. Security Classif. (of th	in name)		
Unclassified	Unclass		21. No. of pages	22. Price*
	Officias	,,,,,cu	281	A13

NASA FORM 1625 OCT 86

į.			

National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

Official Business Penalty for Private Use \$300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Fees Pair National Aeronautics a Space Administration NASA 451

