Отчет

Исследование задачи об обтекании кругового цилиндра

Постановка задачи

Движение жидкости описывается нестационарным уравнением Навье-Стокса

$$\frac{\partial u}{\partial t} + u \nabla u = -\nabla p + \frac{1}{Re} \Delta u, \nabla u = 0, Re = \frac{UR}{v}$$

С граничными условиями

$$x^2 + y^2 = 1$$
: $u_x = 0$, $u_y = 0$, $u_z = 0$;
 $x \to \infty$, $y \to \infty$: $u_x = 1$, $u_y = 0$, $u_z = 0$;

И начальными условиями

$$t = 0$$
: $u_x = 1$, $u_y = 0$, $u_z = 0$;

Кинематическую вязкость будем изменять так, чтобы получить желаемое число Рейнольдса

$$v = \frac{2}{Re} M^2 / c$$

Построение расчетной сетки

Рис.1 Расчетная область

Рис.2 Блочная структура сетки

Рисунки

Рис.1 Визуализация трехмерного течения около цилиндра при Re=600 с помощью изоповерхностей z компоненты скорости.

Интегральные характеристики

Коэффициент сопротивления \mathcal{C}_D

$$C_D = \frac{F_{\chi}}{U^2 2RL\rho/2}$$

Коэффициент подъемной силы

$$C_L = \frac{F_y}{U^2 2RL\rho/2}$$

Число Струхаля St

$$St = \frac{f_1 2R}{U}$$

Среднее квадратическое значение коэффициента подъёмной силы \mathcal{C}_L^{RMS}

$$C_L^{RMS} = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} (C_L(t))^2 dt}$$

Значения характеристик представлены в таблице

Re	0.1	1	10	26	40	100	140	200	300	600
C_D	70	12	2.9	1.9	1.5	1.35	1.33	1.334	1.26	1.19
C_L^{RMS}	0	0	0	0	0	0.23	0.34	0.43	0.46	0.3
St	_	_	-	_	_	0.16	0.185	0.19	0.2	0.21

Таблица 1. Значения интегральных характеристик при различных Re для 2D цилиндра

Re	200	600
C_D	1.33	1.14
C_L^{RMS}	0.47	0.29
St	0.2	0.2

Таблица 2. Значения интегральных характеристик при различных Re для 3D цилиндра

Re = 200

Рис.2 Значения C_D и C_L при Re=200

Энергетический спектр пульсаций и спектральная мощность пульсаций

$$\begin{split} u_x' &= u_x - \overline{u_x}, \qquad u_y' = u_y - \overline{u_y}, \qquad u_z' = u_z - \overline{u_z}, \\ \hat{u}_x'(f) &= \frac{1}{\sqrt{2\pi}} \int\limits_{-T/2}^{T/2} u_x'(t) \, e^{-2\pi i f t} dt, \qquad \hat{u}_y'(f) = \frac{1}{\sqrt{2\pi}} \int\limits_{-T/2}^{T/2} u_y'(t) \, e^{-2\pi i f t} dt, \\ \hat{u}_z'(f) &= \frac{1}{\sqrt{2\pi}} \int\limits_{-T/2}^{T/2} u_z'(t) \, e^{-2\pi i f t} dt \\ E(f) &= (\hat{u}_x'(f))^2 + (\hat{u}_y'(f))^2 + (\hat{u}_z'(f))^2 \\ PSD(f) &= E(f)/T \end{split}$$

Здесь u_x', u_y', u_z' - пульсации скорости, $\overline{u_x}, \overline{u_y}, \overline{u_z}$ - средние скорости, f – частота пульсаций.

Re = 600

