STAT 7200

Introduction to Advanced Probability
Lecture 5

Taylor R. Brown

- Probability Triple
 - Extension Theorem
 - Review From Last Lecture
 - ullet \mathbf{P}^* is Countably Additive over \mathcal{M}
 - ${\cal M}$ is Closed under Finite Intersections/Unions
 - ullet ${\cal M}$ is Closed under Countable Unions of Disjoint Sets
 - ullet $\mathcal M$ is a σ -algebra
 - \circ $\mathcal{J}\subseteq\mathcal{M}$

"A First Look at Rigorous Probability Theory" (Jeffrey Rosenthal) Section 2.3 (continued)

Theorem 1

The Extension Theorem Let \mathcal{J} be a semialgebra of subsets of Ω , \mathbf{P} a function from \mathcal{J} to [0,1] with the following properties:

- a) $\mathbf{P}(\emptyset) = 0, \mathbf{P}(\Omega) = 1.$
- b) $\mathbf{P}(\bigcup_{i=1}^k A_i) \ge \sum_{i=1}^k \mathbf{P}(A_i)$ whenever $A_1, \dots, A_k \in \mathcal{J}$, $\bigcup_{i=1}^k A_i \in \mathcal{J}$, and A_1, \dots, A_k are pairwise disjoint (finite superadditivity).
- c) $\mathbf{P}(A) \leq \sum_{n} \mathbf{P}(A_n)$ whenever $A, A_1, \dots, A_n, \dots \in \mathcal{J}$, and $A \subseteq \bigcup_{n} A_n$ (countable monotonicity).

Then there is a σ -algebra $\mathcal{M}\supseteq\mathcal{J}$ and a probability measure \mathbf{P}^* on \mathcal{M} so that $\mathbf{P}^*(A)=\mathbf{P}(A)$ for all $A\in\mathcal{J}$.

Constructing Probability Triples I

Goal: constructing complicated probability triples on sample space Ω

- 1) Select \mathcal{J} , a collection of subsets of Ω that forms a *semialgebra*. A semialgebra includes empty set and sample space, closed under finite intersections, and the complement of a set in \mathcal{J} can be represented as the unions of disjoint sets from \mathcal{J} .
- 2) Define a function **P** from \mathcal{J} to [0,1] that is finitely superadditive, countably monotonic and $P(\emptyset) = 0, P(\Omega) = 1$.
- 3) Construct outer measure P^* over all subsets of Ω based on P:

$$\mathbf{P}^*(A) = \inf_{A_1, A_2 \dots \in \mathcal{J}, A \subseteq \bigcup_i A_i} \sum_i \mathbf{P}(A_i)$$

We have shown that the outer measure is an extension of ${\bf P}$, is monotonic and countably subadditive over all subsets.

Constructing Probability Triples II

4) We construct a new collection of subsets, denoted as \mathcal{M} :

$$\mathcal{M} = \{A: A \subseteq \Omega, \textbf{P}^*(A \cap E) + \textbf{P}^*(A^c \cap E) = \textbf{P}^*(E) \text{ for all } E \subseteq \Omega\}$$

We have shown that \mathcal{M} includes the empty set and sample space, and is closed under complement. And based on this definition, it is easy to see that $\mathbf{P}^*(A) = 1 - \mathbf{P}^*(A^c)$ for all $A \in \mathcal{M}$.

- 5) To verify that \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure on \mathcal{M} , we still need to show that \mathcal{M} is closed under countable unions and \mathbf{P}^* is countably additive on \mathcal{M} .
- 6) Note that, if we need to verify that whether a given set $A \in \mathcal{M}$. By the countable subadditivity of outer measure, we always have $\mathbf{P}^*(E) \leq \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E)$ for all $E \subseteq \Omega$. Thus we only need to verify $\mathbf{P}^*(E) \geq \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E)$ for all $E \subseteq \Omega$.

\mathbf{P}^* is Countably Additive over $\mathcal M$

Lemma 2 (2.3.9)

For disjoint
$$A_1, A_2, \ldots \in \mathcal{M}$$
, $\mathbf{P}^*(\bigcup_n A_n) = \sum_n \mathbf{P}^*(A_n)$.

Proof: We will show the finite additivity first.

- 1) For disjoint $A_1, A_2 \in \mathcal{M}$, since $A_1 \in \mathcal{M}$, we have (in the definition of \mathcal{M} , let $E = A_1 \cup A_2$, and $A = A_1$):
 - $\mathbf{P}^*(A_1 \cup A_2) = \mathbf{P}^*(A_1 \cap (A_1 \cup A_2)) + \mathbf{P}^*(A_1^c \cap (A_1 \cup A_2)) = \mathbf{P}^*(A_1) + \mathbf{P}^*(A_2)$

The finite additivity would then follow as the result of induction.

- 2) For a countably disjoint sequence, by the finite additivity and monotonicity of \mathbf{P}^* , we have $\sum_{i=1}^n \mathbf{P}^*(A_i) = \mathbf{P}^*(\bigcup_{i=1}^n A_i) \leq \mathbf{P}^*(\bigcup_n A_n)$ Furthermore, $\sum_n \mathbf{P}^*(A_n) = \lim_{n \to \infty} \sum_{i=1}^n \mathbf{P}^*(A_i) \leq \mathbf{P}^*(\bigcup_n A_n)$
- 3) By the countable subadditivity of \mathbf{P}^* , we have $\sum_n \mathbf{P}^*(A_n) \geq \mathbf{P}^*(\bigcup_n A_n)$, thus $\sum_n \mathbf{P}^*(A_n) = \mathbf{P}^*(\bigcup_n A_n)$ for disjoint sequence of \mathcal{M} .

$\mathcal M$ is Closed under Finite Intersections/Unions

Lemma 3 (2.3.10)

If
$$A_1, A_2, \dots A_n \in \mathcal{M}$$
, then $\bigcap_{i=1}^n A_i \in \mathcal{M}$ and $\bigcup_{i=1}^n A_i \in \mathcal{M}$.

Proof: Since \mathcal{M} is closed under complement, then by de Morgan's law, \mathcal{M} is closed under finite unions if \mathcal{M} is closed under finite intersections. So we need to show if $A, B \in \mathcal{M}$, then $A \cap B \in \mathcal{M}$.

1) For any $E \in \Omega$,

$$\mathbf{P}^{*}(A \cap B \cap E) + \mathbf{P}^{*}((A \cap B)^{c} \cap E)$$

$$= \mathbf{P}^{*}(A \cap B \cap E) + \mathbf{P}^{*}((A^{c} \cap B \cap E) \cup (A \cap B^{c} \cap E) \cup (A^{c} \cap B^{c} \cap E))$$

$$\leq \mathbf{P}^{*}(A \cap B \cap E) + \mathbf{P}^{*}(A^{c} \cap B \cap E)$$

$$+ \mathbf{P}^{*}(A \cap B^{c} \cap E) + \mathbf{P}^{*}(A^{c} \cap B^{c} \cap E)$$

$$= \mathbf{P}^{*}(B \cap E) + \mathbf{P}^{*}(B^{c} \cap E) = \mathbf{P}^{*}(E)$$

2) By subadditivity, $\mathbf{P}^*(E) \leq \mathbf{P}^*(A \cap B \cap E) + \mathbf{P}^*((A \cap B)^c \cap E)$. Thus $\mathbf{P}^*(E) = \mathbf{P}^*(A \cap B \cap E) + \mathbf{P}^*((A \cap B)^c \cap E)$ and we have $A \cap B \in \mathcal{M}$.

${\mathcal M}$ is Closed under Countable Unions of Disjoint Sets: I

ullet To show that ${\mathcal M}$ is closed under countable unions of disjoint sets, we need the following result

Lemma 4 (2.3.11)

Let $A_1, A_2, \ldots \in \mathcal{M}$ be disjoint. Define $B_n = \bigcup_{i=1}^n A_i$, then for any $E \subseteq \Omega$, we have $\mathbf{P}^*(E \cap B_n) = \sum_{i=1}^n \mathbf{P}^*(E \cap A_i)$.

Proof: Since $B_n \in \mathcal{M}$ for all $n \in \mathbb{N}$, and note that $B_{n-1} \cap B_n = B_{n-1}$ and $B_{n-1}^c \cap B_n = A_n$, we have:

$$\mathbf{P}^*(E \cap B_n) = \mathbf{P}^*(B_{n-1} \cap E \cap B_n) + \mathbf{P}^*(B_{n-1}^c \cap E \cap B_n)$$
$$= \mathbf{P}^*(E \cap B_{n-1}) + \mathbf{P}^*(E \cap A_n)$$

It is obvious that $\mathbf{P}^*(E \cap B_1) = \mathbf{P}^*(E \cap A_1)$, then the above equation would allow us to use induction to obtain $\mathbf{P}^*(E \cap B_n) = \sum_{i=1}^n \mathbf{P}^*(E \cap A_i)$.

${\mathcal M}$ is Closed under Countable Unions of Disjoint Sets: II

Lemma 5 (2.3.13)

For disjoint $A_1, A_2, \ldots \in \mathcal{M}$, $\bigcup_n A_n \in \mathcal{M}$.

Proof: Let $B_n = \bigcup_{i=1}^n A_i$, then for any $E \subseteq \Omega$

$$\mathbf{P}^{*}(E) = \mathbf{P}^{*}(E \cap B_{n}) + \mathbf{P}^{*}(E \cap B_{n}^{c}) = \sum_{i=1}^{n} \mathbf{P}^{*}(E \cap A_{i}) + \mathbf{P}^{*}(E \cap B_{n}^{c})$$

$$\geq \sum_{i=1}^{n} \mathbf{P}^*(E \cap A_i) + \mathbf{P}^*(E \cap (\bigcup_{j=1}^{\infty} A_j)^c)$$

Letting $n \to \infty$, we have:

$$\mathbf{P}^*(E) \ge \sum_n \mathbf{P}^*(E \cap A_n) + \mathbf{P}^*(E \cap (\bigcup_n A_n)^c) \ge \mathbf{P}^*(E \cap (\bigcup_n A_n)) + \mathbf{P}^*(E \cap (\bigcup_n A_n)^c). \text{ Thus } (\bigcup_n A_n) \in \mathcal{M}$$

${\mathcal M}$ is a σ -algebra

Lemma 6 (2.3.14)

 \mathcal{M} is a σ -algebra

Proof: We only need to prove that \mathcal{M} is closed under countable unions. Let $A_1, A_2, \ldots \in \mathcal{M}$. For each n, define $B_n = A_n \cap (\bigcup_{i=1}^{n-1} A_i)^c$.

Since we already show that \mathcal{M} is closed under complement, finite intersections/unions, $B_n \in \mathcal{M}$.

As $B_n \cap B_m = \emptyset$ for all $n \neq m$, by the previously established result, $\bigcup_n B_n \in \mathcal{M}$. However, $\bigcup_n A_n = \bigcup_n B_n$, so $\bigcup_n A_n \in \mathcal{M}$. Then \mathcal{M} is closed under countable unions.

Lemma 7

$\mathcal{J} \subseteq \mathcal{M}$

Proof: We need to show that for any $A \in \mathcal{J}$, $\mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) \leq \mathbf{P}^*(E)$ for all $E \in \Omega$.

- By the definition of outer measure and A.4.2, for any $\varepsilon > 0$, we can find $B_1, B_2, \ldots, \in \mathcal{J}$ so that $E \subseteq \bigcup_n B_n$ and $\sum_n \mathbf{P}(B_n) < \mathbf{P}^*(E) + \varepsilon$. Furthermore, by the definition of semialgebra, $A^c = \bigcup_{k=1}^K J_k$ where $J_1, J_2, \ldots J_k \in \mathcal{J}$ are pairwise disjoint. Thus:
- $\mathbf{P}^*(E \cap A) + \mathbf{P}^*(E \cap A^c) \leq \mathbf{P}^*((\bigcup_n B_n) \cap A) + \mathbf{P}^*((\bigcup_n B_n) \cap A^c)$ = $\mathbf{P}^*(\bigcup_n (B_n \cap A)) + \mathbf{P}^*((\bigcup_n B_n) \cap (\bigcup_{k=1}^K J_k))$ $\leq \sum_n \mathbf{P}^*(B_n \cap A) + \sum_{n,k} \mathbf{P}^*(B_n \cap J_k) = \sum_n \mathbf{P}(B_n \cap A) + \sum_{n,k} \mathbf{P}(B_n \cap J_k)$ = $\sum_n (\mathbf{P}(B_n \cap A) + \sum_k \mathbf{P}(B_n \cap J_k)) \leq \sum_n \mathbf{P}(B_n) < \mathbf{P}^*(E) + \varepsilon$
- As ε is an arbitrary constant, we can conclude that $\mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) \leq \mathbf{P}^*(E)$. Thus $A \in \mathcal{M}$, $\mathcal{J} \subseteq \mathcal{M}$.