Workshop INPE, IBAMA, PUC/RIO

Modelo de Risco de Desmatamento para Amazônia Legal

31 de junho e 1º de Julho 2025, Brasília

Parte I - Banco de Dados

Parte II - Operacionalização do Modelo XGBoost

Parte III - Avaliação e Publicação dos Resultados

Parte I - Banco de Dados

- Dados de entrada
- Grupos de variáveis dinâmicas e estáticas
- Automatização na geração das variáveis
- Disponibilização via STAC API
- Pesquisa por coleção e intervalo de tempo
- Exemplo de código para Download

As variáveis foram definidas em um workshop em 2022 com IBAMA, MMA, SEMAS e posteriormente refinadas pela equipe do projeto em 2023.

Variáveis provenientes de dois grupos de dados de entrada, divididos pela periodicidade na produção/disponibilização. Chamados de grupo de variáveis dinâmicas e grupo de variáveis estáticas.

Banco de dados - dados de entrada - dinâmicos

Dados produzidos e publicados de forma sistemática e com alta frequência.

Banco de dados - dados de entrada - estáticos

Dados produzidos e publicados com baixa frequência.

Banco de dados - dados de entrada - estáticos

Dados produzidos e publicados com baixa frequência.

Banco de dados - planilha detalhada

Variável	O que é	Unidade •	Período	Atualização	Fonte	<u>Automatizável</u>	Detailhes Fonte
ArDS	Área de alertas de desmatamento calculada nor	km2	2017-2023	S to the state of	DETER classes de desmatamento INPE	Sim	terrabrasilis.dpi.inpe.br
OcDS		binário (0/1)	2017-2023	Semanal	desmatamento INPE	Sim	terrabrasilis.dpi.inpe.br
CtDS	Contagem de alertas de desmatamento por quinzena	unidade	2017-2023	Semanal	DETER classes de desmatamento INPE	Sim	terrabrasilis.dpi.inpe.br
DeAr	Diferença na área quinzenal de alertas de desmatamento calculada entre a quinzena de referência e a quinzena anterior	km2	2017-2023	Semanal	DETER classes de	Sim	terrabrasilis.dpi.inpe.br
AcAr	Área quinzenal acumulada de alertas de desmatamento calculada até a quinzena de referência.	km2	2017-2023	Semanal	DETER classes de	Sim	terrabrasilis.dpi.inpe.br
A7Q	Área média de alertas de desmatamento das 3 quinzenas antes e 3 quinzenas depois da quinzena de referência e a própria quinzena nos anos anteriores	km2	2017-2023	Semanal	DETER classes de	Sim	terrabrasilis.dpi.inpe.br
XQ	Média das áreas de alertas de desmatamento calculada para as quatro quinzenas anteriores à quinzena de referência, considerando uma vizinhanca do tipo Queen	km2	2017-2023	Semanal	DETER classes de desmatamento INPE	Sim	terrabrasilis.dpi.inpe.br
Flor	Área de vegetação florestal disponível e calculada para para a quinzena	km2	2017-2023	Semanal	PRODES INPE	Sim	terrabrasilis.dpi.inpe.br
Nuvem							

/home/andre/Projects/AMS/Eventos_BSB_Manaus/BSB-workshop/Resumo_geral_dados.xlsx

Banco de dados - Variáveis - divisão do espaço

Uso de espaço celular como estratégia para normalização da distribuição espacial dos dados de entrada.

Produção das variáveis provenientes de dados produzidos com alta frequência

Architecture - emphasis on technology stack

Architecture - database model

DAG Dependencies

✓ Only show DAGs with dependencies Search for...

dag trigger sensor dataset dataset alias Last refresh: 2025-06-26, 11:41:20 riskdb embargo control trigger dependent dag /opt/airflow/projects/risk-background-tasks/src/data/embargo riskdb_embargo trigger_dag_embargo trigger dag deter riskdb deter trigger dependent dag /opt/airflow/projects/risk-background-tasks/src/data/deter riskdb_deter_control trigger_dag_merge riskdb_merge trigger_dependent_dag /opt/airflow/projects/risk-background-tasks/src/data/merge riskdb_merge_control riskdb trigger riskdb prodes trigger_dependent dag trigger_dag_prodes /opt/airflow/projects/risk-background-tasks/src/data/prodes riskdb_prodes_control trigger dag infracao riskdb infracao trigger dependent dag /opt/airflow/projects/risk-background-tasks/src/data/infracao riskdb infracao control trigger_dag_cmask riskdb_cmask trigger_dependent_dag /opt/airflow/projects/risk-background-tasks/src/data/cmask riskdb cmask control

DAG Dependencies

Search for...

Search for...

dag trigger sensor dataset dataset alias Last refresh: 2025-06-26, 11:41:20 trigger_dag_embargo trigger_dag_deter trigger_dag_merge riskdb trigger trigger_dag_prodes trigger_dag_infracao trigger_dag_cmask

DAG Dependencies

☑ only show DAGs with dependencies Search for...

DAG Dependencies Search for... Search for...

https://stacspec.org/

STAC SpatioTemporal Asset Catalogs

The STAC specification is a **common language to describe geospatial information**, so it can more easily be worked with, indexed, and discovered.

Explore Tutorials

Um Catálogo STAC (SpatioTemporal Asset Catalog) é um padrão para descrever e organizar dados geoespaciais, facilitando a descoberta e o uso desses dados, especialmente imagens de satélite e outros dados com informações de tempo e localização.

Uma API é um conjunto de regras e padrões que permite que diferentes softwares se comuniquem e troquem dados entre si. Neste caso, a API STAC é construída no padrão REST e disponibilizada via Web por meio de links auto descritivos.

https://terrabrasilis.dpi.inpe.br/stac-api/v1/

```
terrabrasilis.dpi.inpe.br/s x +
               terrabrasilis.dpi.inpe.br/stac-api/v1/
Estilos de formatação 🗸
 "stac version": "1.0.0",
 "id": "risk-stac-api".
 "title": "Sistema de Predição de Desmatamento",
 "description": "Catálogo STAC para organização e disponibilização das imagens de risco de desmatamento e variáveis. Valor sem dados para todos os arquivos de variáveis: 999999",
  "type": "Catalog",
 "conformsTo": [
   "https://api.stacspec.org/v1.0.0/core",
   "https://api.stacspec.org/v1.0.0/item-search",
   "https://api.stacspec.org/v1.0.0/ogcapi-features",
   "https://api.stacspec.org/v1.0.0/catalogs",
   "https://api.stacspec.org/v1.0.0/collections'
  "links": [
     "rel": "self".
     "href": "https://terrabrasilis.dpi.inpe.br/stac/catalog/catalog.json",
     "type": "application/json"
     "href": "https://terrabrasilis.dpi.inpe.br/stac/catalog/catalog.json",
     "type": "application/json"
     "href": "https://terrabrasilis.dpi.inpe.br/stac-api/v1/collections",
     "type": "application/json"
     "rel": "conformance",
     "href": "https://terrabrasilis.dpi.inpe.br/stac-api/v1/conformance",
     "type": "application/json"
     "rel": "service-desc",
     "href": "https://terrabrasilis.dpi.inpe.br/stac-api/vl/openapi.json",
     "type": "application/ynd.oai.openapi+ison:version=3.0"
     "rel": "service-doc".
     "href": "https://terrabrasilis.dpi.inpe.br/stac-api/vl/docs",
     "type": "text/html"
     "rel": "search",
     "type": "application/geo+json",
     "href": "https://terrabrasilis.dpi.inpe.br/stac-api/vl/search",
     "method": "GET"
```


https://terrabrasilis.dpi.inpe.br/stac-api/v1/docs

Banco de dados - Download via STAC API

https://gist.github.com/marcoaosilva/ff645972ff3e2cf5360e5de3d74898d7

usage examples of stac server api <> ☐ Raw o example.ipynb API usage examples In [1]: import pystac import requests from datetime import datetime from pathlib import Path def get(endpoint, params=None): response = requests.get(endpoint, params=params) if response.status code == 200: return response.json() print(f"error: {response.text}") return None def download asset(url, download path): response = requests.get(url, stream=True) if response.status code == 200: with open(download path, "wb") as file: for chunk in response.iter content(chunk size=8192): file.write(chunk) print(f"downloaded in {download path}") return True print(f"error downloading file {url}: {response.text}") return False STAC API URL = "https://terrabrasilis.dpi.inpe.br/stac-api/vl/" # API documentation: https://terrabrasilis.dpi.inpe.br/stac-api/v1/docs

Banco de dados - Download via STAC API

https://gist.github.com/andre-carvalho/e86fa326bed27750def74fd839a4cb3e

```
download-risk-data.pv U X
                                                                        endpoint = f"{API URL}/search"
tools > download-risk-data.py > get variables
                                                                        datetime range=f"{START DATE.strftime("%Y-%m-%d")}/{END DATE.strftime("%Y-%m-%d")}"
      from datetime import date
      from pathlib import Path
                                                                        params = {
      import requests
                                                                             "collections": "collection1",
                                                                             "datetime range": datetime range
     API URL="https://terrabrasilis.dpi.inpe.br/stac-api/v1/"
     START DATE=date(2023.12.16)
     END DATE=date(2023.12.16)
                                                                        variables = get variables(endpoint=endpoint, params=params)
     DOWNLOAD DIR="/tmp/risk/download"
     dynamic variables=['ArDS', 'A7Q', 'AcAr', 'CtDS', 'DeAI', 'DeAr'
                                                                        assert variables is not None
     def get variables(endpoint, params=None):
                                                                        for variable in variables:
         response = requests.get(endpoint, params=params)
         if response.status code == 200:
                                                                             dynamic vars=[]
             return response.ison()["features"]
                                                                             for name, values in variable['assets'].items():
         print(f"error: {response.text}")
                                                                                 if name in dynamic variables:
         return None
                                                                                      dynamic vars.append(name)
     def download asset(url, download path):
                                                                                      url = values['href']
         response = requests.get(url, stream=True)
                                                                                      download dir = Path(f"{DOWNLOAD DIR}/{name}")
         if response.status code == 200:
                                                                                      download dir.mkdir(exist ok=True, parents=True)
             with open(download path, "wb") as file:
                for chunk in response.iter content(chunk size=8192):
                                                                                      download path = Path(f"{download dir}/{Path(url).name}")
                   file.write(chunk)
                                                                                      if not Path.is file(download path):
            print(f"downloaded in {download path}")
                                                                                           print(f"downloading {url} ...")
            return True
         print(f"error downloading file {url}: {response.text}")
                                                                                           download asset(url=url, download path=download path)
         return False
```


Parte II - Operacionalização do Modelo XGBoost

- Ambiente de execução
- Ajuste de parâmetros de execução
- Treinamento e Inferência

PARTE II - Operacionalização do modelo XGBoost

XGBoost - Operacionalização do modelo no INPE

Lista de bibliotecas necessárias: requirements.txt

```
xgboost-cpu
scikit-learn
scikit-image
matplotlib
pandas
rasterio
requests
shap
wheel
setuptools>=67
numpy==1.26.4
gdal[numpy]==3.6.2
```


XGBoost - Operacionalização do modelo no INPE

Criação de container Docker como ambiente autossuficiente, contendo o ambiente Python e todas as bibliotecas necessárias para rodar o model.

O código do modelo está adaptado para acessar a STAC API, obter os dados necessários e executar o processo de treinamento e inferência.

XGBoost - Operacionalização do modelo no INPE

Parte III - Avaliação e Publicação dos Resultados

- Aplicativo de apoio à avaliação dos resultados
- Publicação do dado de risco na aplicação AMS

XGBoost - Operacionalização do modelo

https://terrabrasilis.dpi.inpe.br/forecast-viewer-homologation/Results

XGBoost - Operacionalização do modelo

https://terrabrasilis.dpi.inpe.br/ams-homologation/

