Desafío 12

Disparidad estéreo de imágenes

lyán Álvarez

Trabajo realizado

Un script y experimentación en Matlab.

El script "DisparidadEstereo_main" permite seleccionar una de las imágenes de experimentación, ajustar los valores de disparidad y muestra los mapas de disparidad.

Disparidad estéreo

La disparidad estéreo es una diferencia en la posición aparente de un objeto visto por cada ojo, debido a la distancia entre los ojos humanos. Esto es una de las claves en la percepción de profundidad en la visión binocular.

Los ojos humanos, al estar separados por una distancia, ven ligeramente diferentes imágenes de un objeto, lo que se conoce como disparidad estéreo. El cerebro integra estas dos imágenes para percibir la profundidad y la distancia de los objetos en el entorno tridimensional.

Resultados Backpack

Mapa disparidad ideal

Objetos cercanos

```
disparityRange = [0 256];
disparityBM(im0, im1, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);
disparityBM(im0, im1E, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);
disparityBM(im0, im1L, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);
```


Mapa disparidad con rango

Resultados Adirondack

Mapa disparidad ideal

Objetos cercanos

```
disparityRange = [0 128];
disparitySGM(im0, im1, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);
disparitySGM(im0, im1E, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);
disparitySGM(im0, im1L, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);
```


Mapa disparidad con rango

Resultados Couch

Mapa disparidad ideal

Objetos distancia media

```
disparityRange = [0 512];
disparityBM(im0, im1, 'DisparityRange', disparityRange, 'UniquenessThreshold', 50);
disparityBM(im0, im1E, 'DisparityRange', disparityRange, 'UniquenessThreshold', 50);
disparityBM(im0, im1L, 'DisparityRange', disparityRange, 'UniquenessThreshold', 50);
```


Mapa disparidad con rango

Resultados Flowers

Mapas disparidad con rango

Objetos cercanos

disparityRange = [0 1024];
disparityBM(im0, im1, 'DisparityRange', disparityRange, 'UniquenessThreshold', 15);
disparityBM(im0, im1E, 'DisparityRange', disparityRange, 'UniquenessThreshold', 15);
disparityBM(im0, im1L, 'DisparityRange', disparityRange, 'UniquenessThreshold', 10);

Objetos lejanos

disparityRange = [0 256];
disparityBM(im0, im1, 'DisparityRange', disparityRange, 'UniquenessThreshold', 20);
disparityBM(im0, im1E, 'DisparityRange', disparityRange, 'UniquenessThreshold', 20);
disparityBM(im0, im1L, 'DisparityRange', disparityRange, 'UniquenessThreshold', 15);

