Real-time Identification of Simple and Extended Musical Chords using Artificial Neural Networks

R3 A09
Brain Blast 2019

Navarro, Joachim Alfonso A. Coronel, Lesli Natasha A.

Has this ever happened to you?

We do what we have to do

What if the song wasn't too popular?

What if a machine could do it?

What is a chord?

C major

What is a chord?

What is a chord?

C major

How is a chord named?

How is a chord named?

Chord identification:

Naming chords by knowing their notes

...And we're expecting a computer to do that?

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

Magic math bag

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

Magic math bag

Magic math bag

2

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

Magic math bag

Magic math bag

2

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

This layout is a simple neural network

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

But real ones look more like this

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

This neural network can be trained...

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

to output certain numbers...

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

using a training dataset

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

Second bag

Correct output

0.9

0.2

0.4

0.1

which contains **answers** for all "bags".

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

QUIZ! First bag

Correct output

The network is then tested using a Validation dataset

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

QUIZ! First bag

Input

1

0.9

0.8

. . .

Correct output

0.7

0.3

The network tries to answer and may get Wrong answers.

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

So it trains again and again...

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

until its score is high enough.

Sanderson, 2017

Nielsen, 2015

Colina, Perez, & Paraan, 2017

1 train-test cycle = 1 epoch

Why use ANNs for chord identification?

Osmalskyj, Embrechts, Piérard, & Van Droogenbroeck, 2012

Perera & Kodithuwakku, 2005

Zhou & Lerch, 2015

only used

Major

Minor

Successfully implemented their chord-identifying ANNs

Can an ANN handle these 37 chord types?

Major	Major 7	Major 9	Major 11	mM7	M6
Minor	Minor 7	Minor 9	Minor 11	mM9	m6
Dom 7	Dom 9	Dom 11	M11sus2	M9sus2	M9sus4
sus2	sus4	7sus2	7sus4	M7sus2	M7sus4
aug	aug7	aug9	aug11	M6(9)	m6(9)
dim	dim7	ø7	dim9	11sus2	9sus2
					9sus4

Esp. when songs can use many chord types?

"Slide"

Calvin Harris ft. Frank Ocean & Migos

Amaj7

G#min7

C#min11

F#min9

G#min7

Amaj9

Objectives

Create an ANN capable of identifying our 37 chords

Objectives

...and can respond within 40 ms

Greeff, 2016

Methodology

Accuracy on the **validation** dataset "questions"

Accuracy on the **training** dataset "questions"

Peak training accuracy after 20K epochs

Can't learn training dataset very well

Peak validation accuracy after 20K epochs

Learns just the training dataset

"Overfitting"

Mean total response time, 30 samples

Significantly better than the 40ms standard

Conclusion

Our chords are too complex for ANNs...

...but they are fast enough for chord ID'n

Recommendations

Other machine learning algorithms

Fewer and simpler chords

2

Use audio rather than MIDI as input

-3

References

- Baharloo, S., Service, S., Risch, N., Gitschier, J., & Freimer, N. (2000). Familial aggregation of absolute pitch. *American Journal of Human Genetics*, 67, 755-758. doi:10.1086/303057.
- Chord. (2004). In *The concise Oxford dictionary of music* (4th ed.) Oxford, UK: Oxford University Press.
- Colina, N. C. A., Perez, C. E., & Paraan, F. N. C. (2017). Simple techniques for improving deep neural network outcomes on commodity hardware. *AIP Conference Proceedings*, 1871, 040001. doi:10.1063/1.4996523.
- Daniel, G. (2013). *Principles of artificial neural networks* (3rd ed.) Chicago, IL: World Scientific.
- Fujishima, T. (1999). Realtime chord recognition of musical sound: A system using common Lisp music. Retrieved from http://www.music.mcgill.ca/~jason/mumt621/papers5/fujishima_1999.pdf.
- Greeff, W. (2016). The influence of perception latency on the quality of musical performance during a simulated delay scenario. Retrieved from https://repository.up.ac.za/bitstream/handle/2263/58578/Greeff_Influence_2017.pdf?sequence=4.
- Humphrey, E., Bello, J. P., & Cho, T. (n.d.). Chord Recognition. Retrieved from http://steinhardt.nyu.edu/marl/research/chord_recognition.
- Kidd, P. (2017). pyrtmidi: Real-time MIDI I/O for Python [GitHub repository]. Retrieved August 23, 2017, from https://github.com/patrickkidd/pyrtmidi.
- Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel programming with CUDA. *ACM Queue*, *6*(2), 40-53.

- Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
- Osmalskyj, J., Embrechts, J-J., Piérard, S., & Van Droogenbroeck, M. (2012, May 9). Neural networks for musical chords recognition. Retrieved at http://jim.afim-asso.org/jim12/pdf/jim2012 08 p osmalskyj.pdf.
- Perera, N., & Kodithuwakku, S. R. (2005, December 15). Music chord recognition using artificial neural networks. *1st Proceedings of the International Conference on Information and Automation*, 304-308.
- Root. (2004). In *The concise Oxford dictionary of music* (4th ed.) Oxford, UK: Oxford University Press.
- Sanderson, G. [3Blue1Brown]. (2017, October 5). But what *is* a Neural Network? | Chapter 1, deep learning. Retrieved from https://www.youtube.com/watch?v=aircAruvnKk.
- Stark, A. M., & Plumbley, M. D. (2009). Real-time chord recognition for live performance [PDF file]. Retrieved at https://www.eecs.qmul.ac.uk/~markp/2009/StarkPlumbley09-icmc.pdf.
- Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. *Proceedings of the National Academy of Sciences*, 95, 3172-3177. Retrieved at http://www.pnas.org/content/95/6/3172.full.
- Zhou, X., & Lerch, A. (2015). Chord detection using deep learning. 16th
 International Society for Music Information Retrieval Conference, 52-58.
 Retrieved at http://ismir2015.uma.es/articles/96 Paper.pdf.

Illustrations by Lesli Coronel