

Table of Contents

1	Func	tion	n Reference	 1
	1.1 Exa	mples	es and Demos	 1
	1.1.1	BMV	IWengine	 1
	1.1.2		eing707	
	1.1.3		DSSystem	
	1.1.4		;iPID	
	1.1.5	-	estlandLynx	
	1.2 Line		Fime Invariant Models	
	1.2.1	dss		 3
	1.2.2			
	1.2.3			
	1.2.4			
	1.3 Mod		Oata Access	
	1.3.1		ii/dssdata	
	1.3.2	,	;i/frdata	
	1.3.3	,	;i/get	
	1.3.4	,	ii/set	
	1.3.5	,	ii/ssdata	
	1.3.6	,	ii/tfdata	
		,	Conversions	
	1.4.1		$ m ci/c2d\ldots$	
	1.4.2	,	;i/prescale	
	1.4.3	,	;i/xperm	
		,	nterconnections	
	1.5.1		si/append	
	1.5.2		;i/blkdiag	
	1.5.3	,	i/connect	
	1.5.4	,	ii/feedback	
	1.5.5	,	ii/lft	
	1.5.6	,	ii/mconnect	
	1.5.7	,	ii/parallel	
	1.5.8		ij/series	
		,	Characteristics	
			b	
	1.6.2		i/dcgain	
	1.6.3	,	.m	
	1.6.4	_	vd	
	1.6.5		;i/isct	
	1.6.6	,	trb	13^{-3}
	1.6.7		etectable	14
	1.6.8		;i/isdt	14^{-1}
	1.6.9	,	;i/isminimumphase	
	1.6.10	,	obsv	
	1.6.11		lti/issiso	
	1.6.12		stabilizable	
	1.6.13		lti/isstable	
	1.6.14		lti/norm	
	1.6.15		OSV	

1.6.16	@lti/pole	17
1.6.17	pzmap	17
1.6.18	@lti/size	17
1.6.19	@lti/zero	17
1.7 Mod	el Simplification	18
1.7.1	@lti/minreal	18
1.7.2	@lti/sminreal	
1.8 Time	e Domain Analysis	
1.8.1	covar	
1.8.2	gensig	19
1.8.3	impulse	
1.8.4	initial	
1.8.5	lsim	
1.8.6	step	
	uency Domain Analysis	
1.9.1	bode	
1.9.2	bodemag	
1.9.3	@lti/freqresp	
1.9.4	margin	
1.9.5	nichols	
1.9.6	nyquist	
1.9.0 $1.9.7$	sigma	
	e Placement	
	placeplace	
1.10.1	1	
1.10.2	rlocus	
	ear-Quadratic Control	
1.11.1	dlqr	
1.11.2	estim	
1.11.3	kalman	
1.11.4	lqr	
	bust Control	
1.12.1	augw	
1.12.2	h2syn	
_	hinfsyn	-
1.12.4	mixsyn	
1.12.5	ncfsyn	
1.13 Ma	trix Equation Solvers	
1.13.1	care	
1.13.2	dare	
1.13.3	dlyap	
1.13.4	dlyapchol	36
1.13.5	lyap	40
1.13.6	lyapchol	40
1.14 Ove	erloaded Operators	40
1.14.1	@lti/horzcat	40
1.14.2	@lti/inv	40

1 Function Reference

1.1 Examples and Demos

1.1.1 BMWengine

```
sys = BMWengine ()[Function File]sys = BMWengine ("scaled")[Function File]sys = BMWengine ("unscaled")[Function File]Model of the BMW 4-cylinder engine at ETH Zurich's control laboratory.
```

OPERATING POINT

INPUTS

U_1 Sollsignal Drosselklappenstellung
U_2 Relative Einspritzmenge
U_3 Zuendzeitpunkt
M_L Lastdrehmoment
[Nm]
[Grad KW]

STATES

X_1 Drosselklappenstellung
X_2 Saugrohrdruck [bar]
X_3 Motordrehzahl [U/min]
X_4 Messwert Lamba-Sonde [-]
X_5 Relativer Wandfilminhalt [-]

OUTPUTS

Y_1 Motordrehzahl [U/min] Y_2 Messwert Lambda-Sonde [-]

SCALING

U_1N, X_1N 1 Grad U_2N, X_4N, X_5N, Y_2N 0.05 U_3N 1.6 Grad KW X_2N 0.05 bar

X_3N, Y_1N 200 U/min

10 D : FOR

1.1.2 Boeing707 sys = Boeing707 ()

[Function File]

Creates a linearized state-space model of a Boeing 707-321 aircraft at v=80 m/s (M=0.26, $G_{a0}=-3^{circ}$, $\pi lpha_0=4^{circ}$, $kappa=50^{circ}$).

System inputs: (1) thrust and (2) elevator angle.

System outputs: (1) airspeed and (2) pitch angle.

Reference: R. Brockhaus: Flugregelung (Flight Control), Springer, 1994.

1.1.3 MDSSystem

of a Mass-Damper-Spring System Lukas Reichlin August 2011

Reference: Gu, D.W., Petkov, P.Hr. and Konstantinov, M.M. Robust Control Design with Mat-

1.1.4 optiPID

Numerical Optimization of an A/H PID Controller Required OCTAVE Packages: control, optim (and its dependencies) Required MATLAB Toolboxes: Control, Optimization

1.1.5 WestlandLynx

sys = WestlandLynx ()

[Function File]

Model of the Westland Lynx Helicopter about hover.

INPUTS

main rotor collective longitudinal cyclic lateral cyclic tail rotor collective

STATES

pitch attitude	theta	[rad]
roll attitude	phi	[rad]
roll rate (body-axis)	р	[rad/s]
<pre>pitch rate (body-axis)</pre>	q	[rad/s]
yaw rate	хi	[rad/s]
forward velocity	v_x	[ft/s]
lateral velocity	v_y	[ft/s]
vertical velocity	V_Z	[ft/s]

OUTPUTS

heave velocity	H_dot	[ft/s]
pitch attitude	theta	[rad]
roll attitude	phi	[rad]
heading rate	psi_dot	[rad/s]
roll rate	р	[rad/s]
pitch rate	q	[rad/s]

Reference:

Skogestad, S. and Postlethwaite I.

Multivariable Feedback Control: Analysis and Design

Second Edition

Wiley 2005

http://www.nt.ntnu.no/users/skoge/book/2nd_edition/matlab_m/matfiles.htm

1.2 Linear Time Invariant Models

1.2.1 dss

sys = dss (sys)	[Function File]
sys = dss (d)	[Function File]
sys = dss (a, b, c, d, e,)	[Function File]
sys = dss (a, b, c, d, e, tsam,)	[Function File]

Create or convert to descriptor state-space model.

Inputs

sys LTI model to be converted to state-space.

a State transition matrix (n-by-n).

b Input matrix (n-by-m).

c Measurement matrix (p-by-n).

d Feedthrough matrix (p-by-m).

e Descriptor matrix (n-by-n).

tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is

assumed.

... Optional pairs of properties and values. Type set (dss) for more information.

Outputs

sys Descriptor state-space model.

Equations

$$E x = A x + B u$$
$$y = C x + D u$$

ss, tf

1.2.2 frd

sys = frd (sys)	[Function File]
sys = frd (sys, w)	[Function File]
sys = frd (H, w,)	[Function File]
sys = frd (H, w, tsam,)	[Function File]

Create or convert to frequency response data.

Inputs

sys LTI model to be converted to frequency response data. If second argument w is omitted, the interesting frequency range is calculated by the zeros and poles of sys.

H Frequency response array (p-by-m-by-lw). In the SISO case, a vector (lw-by-1) or (1-by-lw) is accepted as well.

w Frequency vector (lw-by-1) in radian per second [rad/s].

tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is assumed.

... Optional pairs of properties and values. Type set (frd) for more information.

Outputs

sys Frequency response data object.

dss, ss, tf

1.2.3 ss

sys = ss (sys)	[Function File]
sys = ss(d)	[Function File]
sys = ss (a, b)	[Function File]
sys = ss (a, b, c)	[Function File]
$sys = ss (a, b, c, d, \ldots)$	[Function File]
sys = ss (a, b, c, d, tsam,)	[Function File]

Create or convert to state-space model.

Inputs

sys LTI model to be converted to state-space.

a State transition matrix (n-by-n).

b Input matrix (n-by-m).

c Measurement matrix (p-by-n). If c is empty [] or not specified, an identity

matrix is assumed.

d Feedthrough matrix (p-by-m). If d is empty [] or not specified, a zero matrix is

assumed.

tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is

assumed.

... Optional pairs of properties and values. Type set (ss) for more information.

Outputs

sys State-space model.

Example

tsam

assumed.

```
octave:1> a = [1 2 3; 4 5 6; 7 8 9];
         octave:2> b = [10; 11; 12];
         octave:3> stname = {"V", "A", "kJ"};
         octave:4> sys = ss (a, b, [], [], "stname", stname)
         sys.a =
                  V
                       A kJ
            V
                       2
                           3
                       5
                           6
            Α
                  7
            kJ
         sys.b =
                 u1
            V
                 10
            Α
                 11
            kJ 12
         sys.c =
                  V
                       A kJ
            у1
                  1
                       0
                           0
            у2
                       1
                           0
                       0
            yЗ
                           1
         sys.d =
                 u1
            у1
                  0
            y2
                  0
            yЗ
                  0
         Continuous-time model.
         octave:5>
  tf, dss
1.2.4 tf
s = tf ("s")
                                                                           [Function File]
z = tf ("z", tsam)
                                                                           [Function File]
sys = tf(sys)
                                                                           [Function File]
sys = tf (num, den, ...)
                                                                           [Function File]
sys = tf (num, den, tsam, ...)
                                                                           [Function File]
  Create or convert to transfer function model.
  Inputs
              LTI model to be converted to transfer function.
  SYS
              Numerator or cell of numerators. Each numerator must be a row vector contain-
  num
              ing the exponents of the polynomial in descending order.
              Denominator or cell of denominators. Each denominator must be a row vector
  den
              containing the exponents of the polynomial in descending order.
```

Sampling time in seconds. If tsam is not specified, a continuous-time model is

.. Optional pairs of properties and values. Type set (tf) for more information.

Outputs

sys Transfer function model.

Example

ss, dss

1.3 Model Data Access

1.3.1 @lti/dssdata

```
 [a, b, c, d, e, tsam] = dssdata (sys)  [Function File]  [a, b, c, d, e, tsam] = dssdata (sys, [])  [Function File]
```

Access descriptor state-space model data. Argument sys is not limited to descriptor state-space models. If sys is not a descriptor state-space model, it is converted automatically.

Inputs

sys Any type of LTI model.

[] In case sys is not a dss model (descriptor matrix e empty), dssdata (sys, []) returns the empty element e = [] whereas dssdata (sys) returns the identity matrix e = eye (size (a)).

Outputs

- a State transition matrix (n-by-n).
- b Input matrix (n-by-m).
- c Measurement matrix (p-by-n).
- d Feedthrough matrix (p-by-m).
- e Descriptor matrix (n-by-n).

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

1.3.2 @lti/frdata

[H, w, tsam] = frdata (sys) [Function File]
[H, w, tsam] = frdata (sys, "vector") [Function File]

Access frequency response data. Argument sys is not limited to frequency response data objects. If sys is not a frd object, it is converted automatically.

Inputs

sys Any type of LTI model.

"v". "vector"

In case sys is a SISO model, this option returns the frequency response as a column vector (lw-by-1) instead of an array (p-by-m-by-lw).

Outputs

H Frequency response array (p-by-m-by-lw). In the SISO case, a vector (lw-by-1) is possible as well.

w Frequency vector (lw-by-1) in radian per second [rad/s].

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

1.3.3 @lti/get

get (sys) [Function File]

value = get (sys, "property") [Function File]

Access property values of LTI objects.

1.3.4 @lti/set

set (sys)
sys = set (sys, "property", value)
Set or modify properties of LTI objects.
[Function File]

1.3.5 @lti/ssdata

[a, b, c, d, tsam] = ssdata (sys)

[Function File]

Access state-space model data. Argument sys is not limited to state-space models. If sys is not a state-space model, it is converted automatically.

Inputs

sys Any type of LTI model.

Outputs

a State transition matrix (n-by-n).

b Input matrix (n-by-m).

c Measurement matrix (p-by-n).

d Feedthrough matrix (p-by-m).

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

1.3.6 @lti/tfdata

```
[num, den, tsam] = tfdata (sys) [Function File]
[num, den, tsam] = tfdata (sys, "tfpoly") [Function File]
Access transfer function data.
```

1.4 Model Conversions

1.4.1 @lti/c2d

sys = c2d (sys, tsam)[Function File]sys = c2d (sys, tsam, method)[Function File]

Convert the continuous lti model into its discrete time equivalent.

1.4.2 @lti/prescale

[scaledsys, info] = prescale (sys)

[Function File]

Prescale state-space model. Uses SLICOT TB01ID and TG01AD by courtesy of NICONET e.V. (http://www.slicot.org). Frequency response commands perform automatic scaling unless model property scaled is set to true.

Inputs

sys LTI model.

Outputs

scaledsys Scaled state-space model.

info Structure containing additional information.
 info.SL Left scaling factors. T1 = diag (info.SL).
 info.SR Right scaling factors. Tr = diag (info.SR).

Equations

Es = T1 E Tr As = T1 A Tr Bs = T1 B Cs = C Tr Ds = D

For proper state-space models, Tl and Tr are inverse of each other.

1.4.3 @lti/xperm

sys = xperm (sys, st_idx)
Reorder states in state-space models.

[Function File]

1.5 Model Interconnections

1.5.1 @lti/append

sys = append (sys1, sys2)

Group LTI models by appending their inputs and outputs.

[Function File]

1.5.2 @lti/blkdiag

sys = blkdiag (sys1, sys2)

[Function File]

Block-diagonal concatenation of LTI models.

1.5.3 @lti/connect

sys = connect (sys, cm, inputs, outputs)

[Function File]

Arbitrary interconnections between the inputs and outputs of an LTI model.

1.5.4 @lti/feedback

sys = feedback (sys1)	[Function File]
<pre>sys = feedback (sys1, "+")</pre>	[Function File]
sys = feedback (sys1, sys2)	[Function File]
sys = feedback (sys1, sys2, "+")	[Function File]
sys = feedback (sys1, sys2, feedin, feedout)	[Function File]
<pre>sys = feedback (sys1, sys2, feedin, feedout, "+")</pre>	[Function File]
TO III I A CALLETT III	

Feedback connection of two LTI models.

Inputs

sys1 LTI model of forward transmission. [p1, m1] = size (sys1).

sys2 LTI model of backward transmission. If not specified, an identity matrix of appropriate size is taken.

feedin Vector containing indices of inputs to sys1 which are involved in the feedback loop. The number of feedin indices and outputs of sys2 must be equal. If not specified, 1:m1 is taken.

feedout Vector containing indices of outputs from sys1 which are to be connected to sys2. The number of feedout indices and inputs of sys2 must be equal. If not specified, 1:p1 is taken.

"+" Positive feedback sign. If not specified, "-" for a negative feedback interconnection is assumed. +1 and -1 are possible as well, but only from the third argument onward due to ambiguity.

Outputs

sys Resulting LTI model.

Block Diagram

1.5.5 @lti/lft

$$sys = 1ft (sys1, sys2)$$
 [Function File] $sys = 1ft (sys1, sys2, nu, ny)$ [Function File]

Linear fractional tranformation, also known as Redheffer star product.

Inputs

sys2

sys1 Upper LTI model.

Lower LTI model.

nu The last nu inputs of sys1 are connected with the first nu outputs of sys2. If not specified, min (m1, p2) is taken.

ny The last my outputs of sys1 are connected with the first my inputs of sys2. If not specified, min (p1, m2) is taken.

Outputs

sys Resulting LTI model.

Block Diagram

1.5.6 @lti/mconnect

```
sys = mconnect (sys, m) [Function File] sys = mconnect (sys, m, inputs, outputs) [Function File]
```

Arbitrary interconnections between the inputs and outputs of an LTI model.

Inputs

sys LTI system.

Connection matrix. Each row belongs to an input and each column represents man output.

Vector of indices of those inputs which are retained. If not specified, all inputs inputs are kept.

Vector of indices of those outputs which are retained. If not specified, all outputs outputs are kept.

Outputs

Interconnected system. SYS

Example

Solve the system equations of
$$y(t) = G e(t)$$
 $e(t) = u(t) + M y(t)$ in order to build $y(t) = H u(t)$ The matrix M for a (p-by-m) system G has m rows and p columns (m-by-p).

Example for a 3x2 system: $u1 = -1*y1 + 5*y2 + 0*y3$ $u2 = pi*y1 + 0*y2 - 7*y3$
 $\begin{vmatrix} -1 & 5 & 0 \\ M = | pi & 0 & 7 \end{vmatrix}$

7 |

1.5.7 @lti/parallel

sys = parallel (sys1, sys2)

Parallel connection of two LTI systems.

Block Diagram

1.5.8 @lti/series

[Function File] [Function File]

[Function File]

Block Diagram

1.6 Model Characteristics

1.6.1 ctrb

co = ctrb (sys)
co = ctrb (a, b)
Return controllability matrix.
[Function File]

Inputs

sys LTI model.

a State transition matrix (n-by-n).

b Input matrix (n-by-m).

Outputs

co Controllability matrix.

Equation

$$C_o = [BABA^2BldotsA^{n-1}B]$$

1.6.2 @lti/dcgain

k = dcgain (sys) [Function File] DC gain of LTI model.

Inputs

sys LTI system.

Outputs

k DC gain matrice. For a system with m inputs and p outputs, the array k has dimensions [p, m].

freqresp

1.6.3 gram

```
W = \text{gram } (sys, mode) [Function File] Wc = \text{gram } (a, b) [Function File]
```

gram (sys, "c") returns the controllability gramian of the (continuous- or discrete-time) system sys. gram (sys, "o") returns the observability gramian of the (continuous- or discrete-time) system sys. gram (a, b) returns the controllability gramian Wc of the continuous-time system dx/dt = ax + bu; i.e., Wc satisfies aWc + mWc' + bb' = 0.

1.6.4 hsvd

```
hsv = hsvd (sys)
hsv = hsvd (sys, "offset", alpha)
[Function File]
[Function File]
```

Hankel singular values of the stable part of an LTI model. If no output arguments are given, the Hankel singular values are displayed in a plot. Uses SLICOT AB13AD by courtesy of NICONET e.V. (http://www.slicot.org)

1.6.5 @lti/isct

bool = isct (sys) [Function File]

Determine whether LTI model is a continuous-time system.

Inputs

sys LTI system.

Outputs

bool = 0 sys is a discrete-time system.

bool = 1 sys is a continuous-time system or a static gain.

1.6.6 isctrb

bool = isctrb (sys)	[Function File]
bool = isctrb (sys, tol)	[Function File]
bool = isctrb (a, b)	[Function File]
bool = isctrb (a, b, e)	[Function File]
bool = isctrb(a, b, [], tol)	[Function File]
<pre>bool = isctrb (a, b, e, tol)</pre>	[Function File]

Logical check for system controllability. Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

sys LTI model.

a State transition matrix.

b Input matrix.

e Descriptor matrix.

tol Optional roundoff parameter. Default value is 0.

Outputs

bool = 0 System is not controllable.

bool = 1 System is controllable.

isobsv

1.6.7 isdetectable

bool = isdetectable (sys)	[Function File]
<pre>bool = isdetectable (sys, tol)</pre>	[Function File]
bool = isdetectable (a, c)	[Function File]
bool = isdetectable (a, c, e)	[Function File]
bool = isdetectable (a, c, [], tol)	[Function File]
bool = isdetectable (a, c, e, tol)	[Function File]
bool = isdetectable (a, c, [], [], dflg)	[Function File]
bool = isdetectable (a, c, e, [], dflg)	[Function File]
bool = isdetectable (a, c, [], tol, dflg)	[Function File]
<pre>bool = isdetectable (a, c, e, tol, dflg)</pre>	[Function File]
T	1 1 11 1

Logical test for system detectability. All unstable modes must be observable or all unobservable states must be stable. Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

sys LTI system.

a State transition matrix.

c Measurement matrix.

e Descriptor matrix.

tol Optional tolerance for stability. Default value is 0.

dflg = 0 Matrices (a, c) are part of a continuous-time system. Default Value.

dflg = 1 Matrices (a, c) are part of a discrete-time system.

Outputs

bool = 0 System is not detectable.

bool = 1 System is detectable.

See isstabilizable for description of computational method. isstabilizable, isstable, isctrb, isobsv

1.6.8 @lti/isdt

bool = isdt (sys)

[Function File]

Determine whether LTI model is a discrete-time system.

Inputs

sys LTI system.

Outputs

bool = 0 sys is a continuous-time system.

bool = 1 sys is a discrete-time system or a static gain.

1.6.9 @lti/isminimumphase

Determine whether LTI system is minimum phase. If a square system P is minimum-phase, its inverse P^--1 is stable.

1.6.10 isobsv

bool = isobsv (sys)	[Function File]
bool = isobsv (sys, tol)	[Function File]
bool = isobsv(a, c)	[Function File]
bool = isobsv(a, c, e)	[Function File]
bool = isobsv (a, c, [], tol)	[Function File]
bool = isobsv(a, c, e, tol)	[Function File]

Logical check for system observability. Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

sys LTI model.

a State transition matrix.

c Measurement matrix.

e Descriptor matrix.

tol Optional roundoff parameter. Default value is 0.

Outputs

bool = 0 System is not observable.

bool = 1 System is observable.

isctrb

1.6.11 @lti/issiso

```
bool = issiso (sys) [Function File]
Determine whether LTI model is single-input/single-output (SISO).
```

1.6.12 isstabilizable

bool = isstabilizable (sys)	[Function File]
bool = isstabilizable (sys, tol)	[Function File]
bool = isstabilizable (a, b)	[Function File]
bool = isstabilizable (a, b, e)	[Function File]
bool = isstabilizable (a, b, [], tol)	[Function File]
bool = isstabilizable (a, b, e, tol)	[Function File]
bool = isstabilizable (a, b, [], [], dflg)	[Function File]
bool = isstabilizable (a, b, e, [], dflg)	[Function File]
<pre>bool = isstabilizable (a, b, [], tol, dflg)</pre>	[Function File]
bool = isstabilizable (a, b, e, tol, dflg)	[Function File]

Logical check for system stabilizability. All unstable modes must be controllable or all uncontrollable states must be stable. Uses SLICOT AB01OD and TG01HD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

LTI system. SYSState transition matrix. \mathbf{a} b Input matrix. Descriptor matrix. eOptional tolerance for stability. Default value is 0. toldflg = 0Matrices (a, b) are part of a continuous-time system. Default Value. dflg = 1Matrices (a, b) are part of a discrete-time system. **Outputs** bool = 0System is not stabilizable. bool = 1System is stabilizable. Method * Calculate staircase form (SLICOT AB010D) * Extract unobservable part of state transition matrix * Calculate eigenvalues of unobservable part * Check whether real (ev) < -tol*(1 + abs (ev))continuous-time abs (ev) < 1 - toldiscrete-time isdetectable, isstable, isctrb, isobsv 1.6.13 @lti/isstable bool = isstable (sys) [Function File] bool = isstable (sys, tol) [Function File] Determine whether LTI system is stable. 1.6.14 @lti/norm [Function File] gain = norm (sys, 2) [gain, wpeak] = norm (sys, inf) [Function File] [gain, wpeak] = norm (sys, inf, tol) [Function File] Return H-2 or L-inf norm of LTI model. Uses SLICOT AB13BD and AB13DD by courtesy of NICONET e.V. (http://www.slicot.org) 1.6.15 obsv

ob = obsv (sys)[Function File] ob = obsv(a, c)[Function File]

Return observability matrix.

Inputs

LTI model. SYS

State transition matrix (n-by-n).

Measurement matrix (p-by-n). c

Outputs

obObservability matrix.

Equation

 $O_b = left[matrixCcrCAcrCA^2cr^dotscrCA^{n-1}ight]$

1.6.16 @lti/pole

p = pole (sys)

[Function File]

Compute poles of LTI system.

Inputs

sys LTI model.

Outputs

p Poles of sys.

1.6.17 pzmap

pzmap (sys) [p, z] = pzmap (sys)

[Function File]

[Function File]

Plot the poles and zeros of an LTI system in the complex plane. If no output arguments are given, the result is plotted on the screen. Otherwise, the poles and zeros are computed and returned.

Inputs

sys LTI model.

Outputs

p Poles of sys.

z Transmission zeros of sys.

1.6.18 @lti/size

nvec = size (sys)
n = size (sys, dim)
[p, m] = size (sys)

[Function File]

[Function File]

[Function File]

LTI model size, i.e. number of outputs and inputs.

Inputs

sys LTI system.

dim If given a second argument, size will return the size of the corresponding dimen-

sion.

Outputs

nvec Row vector. The first element is the number of outputs (rows) and the second

element the number of inputs (columns).

n Scalar value. The size of the dimension dim.

p Number of outputs.

m Number of inputs.

1.6.19 @lti/zero

z = zero (sys)[z, k] = zero (sys) [Function File]

[Function File]

Compute transmission zeros and gain of LTI model.

Inputs

sys LTI model.

Outputs

z Transmission zeros of sys.

k Gain of sys.

1.7 Model Simplification

1.7.1 @lti/minreal

```
sys = minreal (sys)
sys = minreal (sys, tol)
[Function File]
```

Minimal realization or zero-pole cancellation of LTI models.

1.7.2 @lti/sminreal

```
sys = sminreal (sys)[Function File]sys = sminreal (sys, tol)[Function File]
```

Perform state-space model reduction based on structure. Remove states which have no influence on the input-output behaviour. The physical meaning of the states is retained.

Inputs

sys State-space model.

Optional tolerance for controllability and observability. Entries of the state-space matrices whose moduli are less or equal to *tol* are assumed to be zero. Default value is 0.

Outputs

sys Reduced state-space model.

minreal

1.8 Time Domain Analysis

1.8.1 covar

[p, q] = covar (sys, w) [Function File] Return the steady-state covariance.

Inputs

sys LTI model.

w Intensity of white noise inputs which drive sys.

Outputs

p Output covariance.

q State covariance.

lyap, dlyap

1.8.2 gensig

[u, t] = gensig (sigtype, tau) [Function File]
[u, t] = gensig (sigtype, tau, tfinal) [Function File]
[u, t] = gensig (sigtype, tau, tfinal, tsam) [Function File]

Generate periodic signal. Useful in combination with lsim.

Inputs

sigtype = "sin" Sine wave. sigtype = "cos" Cosine wave. sigtype = "square" Square wave. sigtype = "pulse"

Periodic pulse.

tau Duration of one period in seconds.

tfinal Optional duration of the signal in seconds. Default duration is 5 periods.

tsam Optional sampling time in seconds. Default spacing is tau/64.

Outputs

 $egin{array}{ll} u & ext{Vector of signal values.} \\ t & ext{Time vector of the signal.} \\ ext{lsim} \\ \end{array}$

1.8.3 impulse

[y, t, x] = impulse (sys) [Function File] [y, t, x] = impulse (sys, t) [Function File] [y, t, x] = impulse (sys, tfinal) [Function File] [y, t, x] = impulse (sys, tfinal, dt) [Function File]

Impulse response of LTI system. If no output arguments are given, the response is printed on the screen.

Inputs

sys LTI model.

t Time vector. Should be evenly spaced. If not specified, it is calculated by the poles of the system to reflect adequately the response transients.

tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the system to reflect adequately the response transients.

Optional sampling time. Be sure to choose it small enough to capture transient phenomena. If not specified, it is calculated by the poles of the system.

Outputs

y Output response array. Has as many rows as time samples (length of t) and as many columns as outputs.

t Time row vector.

x State trajectories array. Has length (t) rows and as many columns as states.

initial, lsim, step

1.8.4 initial

[y, t, x] = initial (sys, x0)	[Function File]
[y, t, x] = initial (sys, x0, t)	[Function File]
[y, t, x] = initial (sys, x0, tfinal)	[Function File]
[y, t, x] = initial (sys, x0, tfinal, dt)	[Function File]

Initial condition response of state-space model. If no output arguments are given, the response is printed on the screen.

Inputs

sys State-space model.

x0 Vector of initial conditions for each state.

Optional time vector. Should be evenly spaced. If not specified, it is calculated by the poles of the system to reflect adequately the response transients.

tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the system to reflect adequately the response transients.

dt Optional sampling time. Be sure to choose it small enough to capture transient phenomena. If not specified, it is calculated by the poles of the system.

Outputs

y Output response array. Has as many rows as time samples (length of t) and as many columns as outputs.

t Time row vector.

x State trajectories array. Has length (t) rows and as many columns as states.

Example

Continuous Time: x = A x, y = C x, x(0) = x0Discrete Time: x[k+1] = A x[k], y[k] = C x[k], x[0] = x0

impulse, lsim, step

1.8.5 lsim

[y, t, x] = lsim (sys, u)	[Function File]
[y, t, x] = lsim (sys, u, t)	[Function File]
[y, t, x] = lsim (sys, u, t, x0)	[Function File]
[y, t, x] = lsim (sys, u, t, [], method)	[Function File]
[y, t, x] = lsim (sys, u, t, x0, method)	[Function File]

Simulate LTI model response to arbitrary inputs. If no output arguments are given, the system response is plotted on the screen.

Inputs

sys LTI model. System must be proper, i.e. it must not have more zeros than poles.

U Vector or array of input signal. Needs length(t) rows and as many columns as there are inputs. If sys is a single-input system, row vectors u of length length(t) are accepted as well.

Time vector. Should be evenly spaced. If sys is a continuous-time system and t is a real scalar, sys is discretized with sampling time tsam = t/(rows(u)-1). If sys is a discrete-time system and t is not specified, vector t is assumed to be 0: tsam : tsam*(rows(u)-1).

vector of initial conditions for each state. If not specified, a zero vector is assumed.

method Discretization method for continuous-time models. Default value is zoh (zeroorder hold). All methods from c2d are supported.

Outputs

- y Output response array. Has as many rows as time samples (length of t) and as many columns as outputs.
- t Time row vector. It is always evenly spaced.
- x State trajectories array. Has length (t) rows and as many columns as states.

impulse, initial, step

1.8.6 step

[y, t, x] = step(sys)	[Function File]
[y, t, x] = step (sys, t)	[Function File]
[y, t, x] = step (sys, tfinal)	[Function File]
[y, t, x] = step (sys, tfinal, dt)	[Function File]

Step response of LTI system. If no output arguments are given, the response is printed on the screen.

Inputs

sys LTI model.

t Time vector. Should be evenly spaced. If not specified, it is calculated by the poles of the system to reflect adequately the response transients.

tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the system to reflect adequately the response transients.

dt Optional sampling time. Be sure to choose it small enough to capture transient phenomena. If not specified, it is calculated by the poles of the system.

Outputs

- y Output response array. Has as many rows as time samples (length of t) and as many columns as outputs.
- t Time row vector.
- x State trajectories array. Has length (t) rows and as many columns as states.

impulse, initial, lsim

1.9 Frequency Domain Analysis

1.9.1 bode

[mag, pha, w] = bode (sys) [Function File] [mag, pha, w] = bode (sys, w) [Function File]

Bode diagram of frequency response. If no output arguments are given, the response is printed on the screen.

Inputs

sys LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by the zeros and poles of the system.

Outputs

mag Vector of magnitude. Has length of frequency vector w.

pha Vector of phase. Has length of frequency vector w.

w Vector of frequency values used.

nichols, nyquist, sigma

1.9.2 bodemag

[mag, w] = bodemag (sys) [Function File] [mag, w] = bodemag (sys, w) [Function File]

Bode magnitude diagram of frequency response. If no output arguments are given, the response is printed on the screen.

Inputs

sys LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by the zeros and poles of the system.

Outputs

mag Vector of magnitude. Has length of frequency vector w.

w Vector of frequency values used.

bode, nichols, nyquist, sigma

1.9.3 @lti/freqresp

H = freqresp (sys, w)

[Function File]

Evaluate frequency response at given frequencies.

Inputs

sys LTI system.

w Vector of frequency values.

Outputs

Array of frequency response. For a system with m inputs and p outputs, the array H has dimensions [p, m, length (w)]. The frequency response at the frequency w(k) is given by H(:,:,k).

dcgain

1.9.4 margin

Gain and phase margin of a system. If no output arguments are given, both gain and phase margin are plotted on a bode diagram. Otherwise, the margins and their corresponding frequencies are computed and returned.

Inputs

sys LTI model. Must be a single-input and single-output (SISO) system.

tol Imaginary parts below tol are assumed to be zero. If not specified, default value

sqrt (eps) is taken.

Outputs

gamma Gain margin (as gain, not dBs).

phi Phase margin (in degrees).

w_gamma Frequency for the gain margin (in rad/s).

w_phi Frequency for the phase margin (in rad/s).

Equations

CONTINUOUS SYSTEMS Gain Margin L(jw) = L(jw) BTW: L(jw) = L(-jw) = conj (L(jw))num(jw) num(-jw) ----- = ----den(jw) den(-jw) num(jw) den(-jw) = num(-jw) den(jw)imag (num(jw) den(-jw)) = 0imag (num(-jw) den(jw)) = 0Phase Margin |num(jw)| |L(jw)| = |----| = 1|den(jw)| 2 2 z z = Re z + Im znum(jw) num(-jw) ----- ***** ----- **=** 1 den(jw) den(-jw) num(jw) num(-jw) - den(jw) den(-jw) = 0real (num(jw) num(-jw) - den(jw) den(-jw)) = 0DISCRETE SYSTEMS Gain Margin L(z) = L(1/z) BTW: z = e --> w = --- $num(z) \quad num(1/z)$ den(z) den(1/z)num(z) den(1/z) - num(1/z) den(z) = 0Phase Margin |num(z)||L(z)| = |----| = 1|den(z)|L(z) L(1/z) = 1 $num(z) \quad num(1/z)$ ----- * ----- = 1 den(z) den(1/z)num(z) num(1/z) - den(z) den(1/z) = 0

PS: How to get L(1/z)

roots

1.9.5 nichols

```
[mag, pha, w] = nichols (sys)
[mag, pha, w] = nichols (sys, w)
[Function File]
```

Nichols chart of frequency response. If no output arguments are given, the response is printed on the screen.

Inputs

sys LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by the zeros and poles of the system.

Outputs

mag Vector of magnitude. Has length of frequency vector w.

pha Vector of phase. Has length of frequency vector w.

w Vector of frequency values used.

bode, nyquist, sigma

1.9.6 nyquist

```
[re, im, w] = nyquist (sys)
[re, im, w] = nyquist (sys, w)
[Function File]
[Function File]
```

Nyquist diagram of frequency response. If no output arguments are given, the response is printed on the screen.

Inputs

sys LTI system. Must be a single-input and single-output (SISO) system.

Optional vector of frequency values. If w is not specified, it is calculated by the zeros and poles of the system.

Outputs

re Vector of real parts. Has length of frequency vector w.

im Vector of imaginary parts. Has length of frequency vector w.

w Vector of frequency values used.

bode, nichols, sigma

1.9.7 sigma

```
 [sv, w] = sigma (sys)  [Function File]  [sv, w] = sigma (sys, w)  [Function File]  [sv, w] = sigma (sys, [], ptype)  [Function File]  [sv, w] = sigma (sys, w, ptype)  [Function File]
```

Singular values of frequency response. If no output arguments are given, the singular value plot is printed on the screen;

Inputs

sys LTI system. Multiple inputs and/or outputs (MIMO systems) make practical sense.

w Optional vector of frequency values. If w is not specified, it is calculated by the zeros and poles of the system.

ptype = 0 Singular values of the frequency response H of system sys. Default Value.

ptype = 1 Singular values of the frequency response inv(H); i.e. inversed system.

ptype = 2 Singular values of the frequency response I + H; i.e. inversed sensitivity (or return difference) if H = P * C.

ptype = 3 Singular values of the frequency response I + inv(H); i.e. inversed complementary
sensitivity if H = P * C.

Outputs

sv Array of singular values. For a system with m inputs and p outputs, the array sv has min (m, p) rows and as many columns as frequency points length (w). The singular values at the frequency w(k) are given by sv(:,k).

w Vector of frequency values used.

bodemag, svd

1.10 Pole Placement

1.10.1 place

f = place (sys, p)	[Function File]
f = place(a, b, p)	[Function File]
[f, nfp, nap, nup] = place (sys, p, alpha)	[Function File]
[f, nfp, nap, nup] = place (a, b, p, alpha)	[Function File]

Pole assignment for a given matrix pair (A,B) such that p = eig (A-B*F). If parameter alpha is specified, poles with real parts (continuous-time) or moduli (discrete-time) below alpha are left untouched. Uses SLICOT SB01BD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

sys LTI system.

a State transition matrix (n-by-n) of a continuous-time system.

b Input matrix (n-by-m) of a continuous-time system.

p Desired eigenvalues of the closed-loop system state-matrix A-B*F. length (p) <= rows (A).

alpha Specifies the maximum admissible value, either for real parts or for moduli, of the eigenvalues of A which will not be modified by the eigenvalue assignment algorithm. alpha ≥ 0 for discrete-time systems.

Outputs

f State feedback gain matrix.

nfp The number of fixed poles, i.e. eigenvalues of A having real parts less than alpha, or moduli less than alpha. These eigenvalues are not modified by place.

nap The number of assigned eigenvalues. nap = n-nfp-nup.

nup The number of uncontrollable eigenvalues detected by the eigenvalue assignment algorithm.

Note

```
Place is also suitable to design estimator gains:
    L = place (A.', C.', p).'
    L = place (sys.', p).' # useful for discrete-time systems
```

1.10.2 rlocus

rlocus (sys)
[rldata, k] = rlocus (sys[, increment, min_k, max_k])
Display root locus plot of the specified SISO system.

[Function File]

Inputs

sys LTI model. Must be a single-input and single-output (SISO) system.

 min_k Minimum value of k. max_k Maximum value of k.

increment The increment used in computing gain values.

Outputs

rldata Data points plotted: in column 1 real values, in column 2 the imaginary values.

k Gains for real axis break points.

Block Diagram

1.11 Linear-Quadratic Control

1.11.1 dlqr

[g, x, 1] = dlqr (sys, q, r)	[Function File]
[g, x, 1] = dlqr (sys, q, r, s)	[Function File]
[g, x, 1] = dlqr(a, b, q, r)	[Function File]
[g, x, 1] = dlqr(a, b, q, r, s)	[Function File]
[g, x, 1] = dlqr(a, b, q, r, [], e)	[Function File]
[g, x, 1] = dlqr(a, b, q, r, s, e)	[Function File]

Linear-quadratic regulator for discrete-time systems.

Inputs

sys	Continuous or discrete-time LTI model.
a	State transition matrix of discrete-time system.
b	Input matrix of discrete-time system.
q	State weighting matrix.
r	Input weighting matrix.
S	Optional cross term matrix. If s is not specified, a zero matrix is assumed.

e Optional descriptor matrix. If e is not specified, an identity matrix is assumed.

Outputs

g State feedback matrix.

x Unique stabilizing solution of the discrete-time Riccati equation.

l Closed-loop poles.

Equations

dare, care, lqr

1.11.2 estim

$$est = estim (sys, 1)$$
 [Function File]
 $est = estim (sys, 1, sensors, known)$ [Function File]

Return state estimator for a given estimator gain.

Inputs

sys LTI model.

1 State feedback matrix.

sensors Indices of measured output signals y from sys. If omitted, all outputs are mea-

sured.

known Indices of known input signals u (deterministic) to sys. All other inputs to sys are assumed stochastic. If argument known is omitted, no inputs u are known.

Outputs

est State-space model of estimator.

kalman, place

1.11.3 kalman

[est, g, x] = kalman	(sys, q, r)	[Function File]
[est, g, x] = kalman	$(\mathit{sys},\mathit{q},\mathit{r},\mathit{s})$	[Function File]
[est, g, x] = kalman	$(\mathit{sys}, q, r, [], \mathit{sensors}, \mathit{known})$	[Function File]
[est, g, x] = kalman	(sys, q, r, s, sensors, known)	[Function File]
TO 1 TZ 1	C TOTAL	

Design Kalman estimator for LTI systems.

Inputs

sys Nominal plant model.

q Covariance of white process noise.

r Covariance of white measurement noise.

S Optional cross term covariance. Default value is 0.

sensors Indices of measured output signals y from sys. If omitted, all outputs are mea-

sured.

known Indices of known input signals u (deterministic) to sys. All other inputs to sys

are assumed stochastic. If argument known is omitted, no inputs u are known.

Outputs

est State-space model of the Kalman estimator.

g Estimator gain.

x Solution of the Riccati equation.

Block Diagram

care, dare, estim, lqr

1.11.4 lqr

[g, x, 1] = lqr (sys, q, r)	[Function File]
[g, x, 1] = lqr (sys, q, r, s)	[Function File]
[g, x, 1] = lqr (a, b, q, r)	[Function File]
[g, x, 1] = lqr (a, b, q, r, s)	[Function File]
[g, x, 1] = lqr (a, b, q, r, [], e)	[Function File]
[g, x, 1] = lqr (a, b, q, r, s, e)	[Function File]

Linear-quadratic regulator.

Inputs

sys Continuous or discrete-time LTI model.

a State transition matrix of continuous-time system.

b Input matrix of continuous-time system.

q State weighting matrix.

r Input weighting matrix.

S Optional cross term matrix. If s is not specified, a zero matrix is assumed.

e Optional descriptor matrix. If e is not specified, an identity matrix is assumed.

Outputs

g State feedback matrix.

x Unique stabilizing solution of the continuous-time Riccati equation.

Closed-loop poles.

Equations

$$x = A x + B u, \quad x(0) = x0$$

$$\inf_{0} J(x0) = INT (x' Q x + u' R u + 2 x' S u) dt$$

$$0$$

$$L = eig (A - B*G)$$

care, dare, dlqr

1.12 Robust Control

1.12.1 augw

P = augw (G, W1, W2, W3)

[Function File]

Extend plant for stacked S/KS/T problem. Subsequently, the robust control problem can be solved by h2syn or hinfsyn.

Inputs

- G LTI model of plant.
- W1 LTI model of performance weight. Bounds the largest singular values of sensitivity S. Model must be empty [], SISO or of appropriate size.
- W2 LTI model to penalize large control inputs. Bounds the largest singular values of KS. Model must be empty [], SISO or of appropriate size.
- W3 LTI model of robustness and noise sensitivity weight. Bounds the largest singular values of complementary sensitivity T. Model must be empty [], SISO or of appropriate size.

All inputs must be proper/realizable. Scalars, vectors and matrices are possible instead of LTI models.

Outputs

P State-space model of augmented plant.

Block Diagram

Reference:

Skogestad, S. and Postlethwaite I.

Multivariable Feedback Control: Analysis and Design

Second Edition

Wiley 2005

Chapter 3.8: General Control Problem Formulation

h2syn, hinfsyn, mixsyn

1.12.2 h2syn

[K, N, gamma, rcond] = h2syn (P, nmeas, ncon) [Function File] H-2 control synthesis for LTI plant. Uses SLICOT SB10HD and SB10ED by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

P Generalized plant. Must be a proper/realizable LTI model.

nmeas Number of measured outputs v. The last nmeas outputs of P are connected to the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are

used to calculate the H-2 norm.

ncon Number of controlled inputs u. The last ncon inputs of P are connected to the

outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited

by a harmonic test signal.

Outputs

K State-space model of the H-2 optimal controller.

N State-space model of the lower LFT of P and K.

gamma H-2 norm of N.

Block Diagram

augw, lqr, dlqr, kalman

1.12.3 hinfsyn

[K, N, gamma, rcond] = hinfsyn (P, nmeas, ncon) [Function File]
[K, N, gamma, rcond] = hinfsyn (P, nmeas, ncon, gmax) [Function File]

H-infinity control synthesis for LTI plant. Uses SLICOT SB10FD and SB10DD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

P Generalized plant. Must be a proper/realizable LTI model.

nmeas Number of measured outputs v. The last nmeas outputs of P are connected to the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are used to calculate the H-infinity norm.

ncon Number of controlled inputs u. The last ncon inputs of P are connected to the outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited by a harmonic test signal.

gmax The maximum value of the H-infinity norm of N. It is assumed that gmax is sufficiently large so that the controller is admissible.

Outputs

K State-space model of the H-infinity (sub-)optimal controller.

N State-space model of the lower LFT of P and K.

gamma L-infinity norm of N.

Block Diagram

augw, mixsyn

1.12.4 mixsyn

[K, N, gamma] = mixsyn (G, W1, W2, W3, ...) [Function File]

Solve stacked S/KS/T H-inf problem. Bound the largest singular values of S (for performance), K S (to penalize large inputs) and T (for robustness and to avoid sensitivity to noise). In other words, the inputs r are excited by a harmonic test signal. Then the algorithm tries to find a controller K which minimizes the H-infinity norm calculated from the outputs z.

Inputs

G LTI model of plant.

W1 LTI model of performance weight. Bounds the largest singular values of sensitivity S. Model must be empty [], SISO or of appropriate size.

W2 LTI model to penalize large control inputs. Bounds the largest singular values of KS. Model must be empty [], SISO or of appropriate size.

W3 LTI model of robustness and noise sensitivity weight. Bounds the largest singular values of complementary sensitivity T. Model must be empty [], SISO or of appropriate size.

... Optional arguments of hinfsyn. Type help hinfsyn for more information.

All inputs must be proper/realizable. Scalars, vectors and matrices are possible instead of LTI models.

Outputs

K State-space model of the H-infinity (sub-)optimal controller.

N State-space model of the lower LFT of P and K.

gamma L-infinity norm of N.

Block Diagram

Entire System: N = lft (P, K)Open Loop: L = G * KClosed Loop: T = feedback (L)

Reference:

Skogestad, S. and Postlethwaite I.

Multivariable Feedback Control: Analysis and Design

Second Edition Wiley 2005

Chapter 3.8: General Control Problem Formulation

hinfsyn, augw

1.12.5 ncfsyn

[K, N, gamma, info] = ncfsyn (G, W1, W2, factor)

[Function File]

Normalized Coprime Factor (NCF) H-infinity synthesis. Compute positive feedback controller using the McFarlane/Glover Loop Shaping Design Procedure. Uses SLICOT SB10ID, SB10KD and SB10ZD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

G LTI model of plant.

W1 LTI model of precompensator. Model must be SISO or of appropriate size. An identity matrix is taken if W1 is not specified or if an empty model [] is passed.

W2 LTI model of postcompensator. Model must be SISO or of appropriate size. An identity matrix is taken if W2 is not specified or if an empty model [] is passed.

factor = 1 implies that an optimal controller is required. factor > 1 implies that a suboptimal controller is required, achieving a performance that is factor

times less than optimal. Default value is 1.

Outputs

K State-space model of the H-infinity loop-shaping controller.

N State-space model of the closed loop depicted below.

gamma L-infinity norm of N.

info Structure containing additional information.

info.emax Nugap robustness. emax = inv (gamma).

info.Gs Shaped plant. Gs = W2 * G * W1.

info.Ks Controller for shaped plant. Ks = ncfsyn (Gs).

info.rcond Estimates of the reciprocal condition numbers of the Riccati equations.

Block Diagram of N

1.13 Matrix Equation Solvers

1.13.1 care

[x, 1, g] = care (a, b, q, r)	[Function File]
[x, 1, g] = care (a, b, q, r, s)	[Function File]
[x, 1, g] = care (a, b, q, r, [], e)	[Function File]

[x, 1, g] = care (a, b, q, r, s, e)

[Function File]

Solve continuous-time algebraic Riccati equation (ARE). Uses SLICOT SB02OD and SG02AD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

- a Real matrix (n-by-n).
- b Real matrix (n-by-m).
- q Real matrix (n-by-n).
- r Real matrix (m-by-m).
- S Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.
- e Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is assumed.

Outputs

- x Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).
- l Closed-loop poles (n-by-1).
- g Corresponding gain matrix (m-by-n).

Equations

dare, lqr, dlqr, kalman

1.13.2 dare

[x,	1,	g]	=	dare (a, b, q, r)	[Function File]
[x,	1,	g]	=	dare (a, b, q, r, s)	[Function File]
[x,	1,	g]	=	dare $(a, b, q, r, [], e)$	[Function File]
[x,	1,	g]	=	dare (a, b, q, r, s, e)	[Function File]

Solve discrete-time algebraic Riccati equation (ARE). Uses SLICOT SB02OD and SG02AD by courtesy of NICONET e.V. (http://www.slicot.org)

Inputs

a	Real matrix (n-by-n).
b	Real matrix (n-by-m).
q	Real matrix (n-by-n).
r	Real matrix (m-by-m).
S	Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.
e	Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is assumed.

Outputs

- x Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).
- *l* Closed-loop poles (n-by-1).
- g Corresponding gain matrix (m-by-n).

Equations

care, lqr, dlqr, kalman

1.13.3 dlyap

Solve discrete-time Lyapunov or Sylvester equations. Uses SLICOT SB03MD, SB04QD and SG03AD by courtesy of NICONET e.V. (http://www.slicot.org)

Equations

dlyapchol, lyap, lyapchol

1.13.4 dlyapchol

u = dlyapchol (a, b) [Function File]

$$u = \text{dlyapchol}(a, b, e)$$

[Function File]

Compute Cholesky factor of discrete-time Lyapunov equations. Uses SLICOT SB03OD and SG03BD by courtesy of NICONET e.V. (http://www.slicot.org)

Equations

$$A U' U A' - U' U + B B' = 0$$

(Lyapunov Equation)

$$A U' U A' - E U' U E' + B B' = 0$$

(Generalized Lyapunov Equat:

dlyap, lyap, lyapchol

1.13.5 lyap

$$x = 1yap (a, b)$$
 [Function File]
 $x = 1yap (a, b, c)$ [Function File]
 $x = 1yap (a, b, [], e)$ [Function File]

Solve continuous-time Lyapunov or Sylvester equations. Uses SLICOT SB03MD, SB04MD and SG03AD by courtesy of NICONET e.V. (http://www.slicot.org)

Equations

$$AX + XA' + B = 0$$
 (Lyapunov Equation)
$$AX + XB + C = 0$$
 (Sylvester Equation)
$$AXE' + EXA' + B = 0$$
 (Generalized Lyapunov Equation)

lyapchol, dlyap, dlyapchol

1.13.6 lyapchol

$$u = lyapchol (a, b)$$
 [Function File] $u = lyapchol (a, b, e)$ [Function File]

Compute Cholesky factor of continuous-time Lyapunov equations. Uses SLICOT SB03OD and SG03BD by courtesy of NICONET e.V. (http://www.slicot.org)

Equations

lyap, dlyap, dlyapchol

1.14 Overloaded Operators

1.14.1 @lti/horzcat

Horizontal concatenation of LTI objects. If necessary, object conversion is done by sys_group. Used by Octave for "[lti1, lti2]".

1.14.2 @lti/inv

Inversion of LTI objects.