אלגברה ב' - גיליון תרגילי בית 2 מטריצות מייצגות, ערכים עצמיים וסכומים ישרים

18.4.2020

תרגיל 1. יהיו V,W מרחבים וקטוריים ממימד \mathbb{F}_+ מעל שדה \mathbb{F}_+ ותהי V,W מרחבים וקטוריים ממימד $N\in\mathbb{N}_+$ מעל שדה בסיסים N ל־N בהתאמה עבורם N

$$\left([T]_C^B \right)_{i,j} = \begin{cases} 1 & i = j \in [\dim \operatorname{Im} T] \\ 0 & \text{otherwise} \end{cases}$$

 $i,j \in [n]$ לכל

לכל $A=\bigsqcup_{i\in[k]}A_i$ זרות עבורן $A_1,\ldots,A_k\subseteq\mathbb{F}$ יהיו $A_1,\ldots,A_k\subseteq\mathbb{F}$ זרות עבורן $A\subseteq\mathbb{F}$ ותהי $A\subseteq\mathbb{F}$ ותהי ותהי $A\subseteq\mathbb{F}$ מגודל $A\subseteq\mathbb{F}$ זרות עבורן $A\subseteq\mathbb{F}$ ותהי ותהי ומגודל בייטיים וותהי ומגודל בייטיים וותהי וותהי ומגודל בייטיים וותהי ו

$$.V_{i} := \{ p \in V \mid \forall x \in A \setminus A_{i} : p(x) = 0 \}$$

- טבורם שונים איברים שונים $a_1,\dots,a_{n+1}\in L$ יהיו $p\in L_n\left[x\right]$ ויהי וויהי \mathbb{F} איברים שונים עבורם p=0 . הראו כי p=0 . הראו היאו (מי p=0
 - .p=0 כי .p הראו כי .p ($a_i)=0$ שונים עבורם $a_1,\ldots,a_{n+1}\in\mathbb{F}$ ויהיו $p\in\mathbb{F}_n\left[x
 ight]$.2
 - 3. הראו כי

$$.V_i \cap \sum_{j \in [k] \setminus \{i\}} V_j = \{0\}$$

לכל $i \in [k]$ והסיקו כי dim $_{\mathbb{F}} \, V_i$ והסיקו כי

$$V = \bigoplus_{i \in [k]} V_i$$

V בסיס של $C=(v_1,\ldots,v_n)$ יהי $\mathbb F$ יהי שלה אותו קטוריים מעל אותו מרחבים וקטוריים מעל היו יהיו V,W יהיו היו $D=(w_1,\ldots,w_m)$ ויהי ויהי $D=(w_1,\ldots,w_m)$

נגדיר $i \in [n], j \in [m]$ נגדיר.

$$\mu_{i,j} \colon V \to W$$
$$\cdot \sum_{k \in [n]} \alpha_k v_k \mapsto \alpha_i w_j$$

הראו כי

$$B := (\mu_{1,1}, \dots, \mu_{1,m}, \mu_{2,1}, \dots, \mu_{2,m}, \dots, \mu_{n,1}, \dots, \mu_{n,m})$$

. $\mathsf{Hom}_{\mathbb{F}}\left(V,W\right)$ בסיס של

2. הסיקו כי

 $\operatorname{dim}\operatorname{Hom}_{\mathbb{F}}(V,W)=\operatorname{dim}_{\mathbb{F}}(V)\cdot\operatorname{dim}_{\mathbb{F}}(W)$

3. תהי

$$S \colon \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (-2y,x)$

ונגדיר

$$T \colon \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^{2}\right) o \operatorname{End}_{\mathbb{R}}\left(\mathbb{R}^{2}\right)$$
. $U \mapsto SU$

יהי

$$B := (\mu_{1,1}, \mu_{1,2}, \mu_{2,1}, \mu_{2,2})$$

 $[T]_B$ ואת $[S]_E$ מצאו את $V=W=\mathbb{R}^2$ ואת בסעיף הראשון עבור

 \mathbb{F} מרחבים וקטוריים מעל שדה V, V_1, V_2, W, W_1, W_2 יהיו יהיו V, V_1, V_2, W, W_1, W_2

1. הראו שמתקיים

 $.\operatorname{dim}_{\mathbb{F}}\left(V\oplus W\right)=\operatorname{dim}_{\mathbb{F}}\left(V\right)+\operatorname{dim}_{\mathbb{F}}\left(W\right)$

2. הראו שמתקיים

. $\mathsf{Hom}_{\mathbb{F}}\left(V_1 \oplus V_2, W\right) \cong \mathsf{Hom}_{\mathbb{F}}\left(V_1, W\right) \oplus \mathsf{Hom}_{\mathbb{F}}\left(V_2, W\right)$

3. הראו שמתקיים

. $\mathsf{Hom}_{\mathbb{F}}\left(V,W_{1}\oplus W_{2}\right)\cong\mathsf{Hom}_{\mathbb{F}}\left(V,W_{1}\right)\oplus\mathsf{Hom}_{\mathbb{F}}\left(V,W_{2}\right)$

 $T\in \mathsf{End}_{\mathbb{F}}\left(V_{i}
ight)$ תהי $i\in[n]$ לכל שדה \mathbb{F} . לכל שדה V_{1},\ldots,V_{n} מרחבים וקטוריים מעל שדה אוני

1. הראו כי

$$. \ker \left(\bigoplus_{i \in [n]} T_i \right) = \bigoplus_{i \in [n]} \ker \left(T_i \right)$$

2. הראו כי

$$\operatorname{.Im}\left(\bigoplus_{i\in[n]}T_i\right)=\bigoplus_{i\in[n]}\operatorname{Im}\left(T_i\right)$$