6.002 CIRCUITS AND ELECTRONICS

Nonlinear Analysis

■ Discretize matter → LCA

Review

- Discretize value → Digital abstraction
 - Subcircuits for given "switch" setting are linear! So, all 5 methods (m1 - m5) can be

applied

SR MOSFET Model

Today

- Nonlinear Analysis
 - Analytical method based on m1, m2, m3
 - Graphical method
 - ▶ Introduction to incremental analysis

How do we analyze nonlinear circuits, for example:

(Curiously, the device supplies power when v_D is negative)

Method 1: Analytical Method

Using the node method, (remember the node method applies for linear or nonlinear circuits)

$$\frac{v_D - V}{R} + i_D = 0 \tag{1}$$

$$i_D = ae^{bv_D}$$

2 unknowns 2 equations

Solve the equation by

- trial and error
- numerical methods

Method 2: Graphical Method

Notice: the solution satisfies equations

 \bigcirc and \bigcirc

Combine the two constraints

e.g.
$$V=1$$
 $v_D=0.5V$ $R=1$ $i_D=0.4A$ $a=\frac{1}{4}$ $b=1$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 6

Method 3: Incremental Analysis

Motivation: music over a light beam Can we pull this off?

Problem: The LED is nonlinear → distortion

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

If only it were linear ...

it would've been ok.

What do we do?
Zen is the answer
... next lecture!

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 6