

Winning Space Race with Data Science

Bill Louer August 22, 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies:

- o REST API and Webscraping were used for data acquisition
- Basic data wrangling was performed
- Exploratory data analysis was used
- Interactive plotting using Folium maps and Plotly Dash was developed
- o Four (4) classification models were developed and evaluated based on a training and testing dataset.

• Summary of all results:

- SpaceX launches from 4 locations (3 FL, 1 CA)
- SpaceX has improved its landing success over time. KSC has the highest success rate.
- Models were developed for KNN, Decision Tree, Support Vector Machines and Logistic Regression
- All models demonstrated a validation accuracy of 83%
- A logistic regression model was selected for its ability to predict classification probability

Introduction

- SpaceY: Private rocket launch company engaged in space travel; competing with SpaceX
- SpaceX's advantage: Re-use the Rocket's1st stage to keep costs low;
 \$62MM vs. \$165MM!!
- Prediction of a successful Falcon 1st stage landing will help SpaceY predict the cost of their competitor SpaceX's, next launch.
- Objective: Develop predictive tool for SpaceY to predict if SpaceX's Falcon 9 will land the 1st stage successfully

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API
 - Wikipedia Web Scraping using Beautiful Soup
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Normalize data and build training and testing datasets
 - Compare logistical regression, support vector machines, decision tree regression, K nearest neighbor models types and evaluate parameters using GridSearchCV.
 - Evaluate scoring accuracy of test data set and select model.

Data Collection

- Downloaded the course json file
- Called SpaceX API to get SpaceX Rockets, Launches and Payloads data based on ID numbers.
- Screened data to Falcon 9 launches and replaced missing payload mass entries with mean payload
- Web-scraping of Wikipedia page for Falcon9 and Falcon Heavy Data (BeautifulSoup)

Data Collection – SpaceX API

 Data acquisition with SpaceX REST API calls.

 GitHub URL: https://github.com/wlouer/IBM Fin al Project/blob/main/jupyter-labsspacex-data-collection-api.ipynb

Data Collection - Scraping

 Web-Scraping using Beautiful Soup

GitHub URL:
 https://github.com/wlouer/IB
 M_Final_Project/blob/main/ju
 pyter-labs-webscraping.ipynb

```
Request Falcon9 Wiki page from url and parse html with
BeautifulSoup
 # use requests.get() method with the provided static url
 response = requests.get(static url)
 Create a BeautifulSoup object from the HTML response
 # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
 soup = BeautifulSoup(response.text, 'html.parser')
Get column names from parsed html
 column_names = []
 # Apply find_all() function with `th` element on first_launch_table
 headers all = first launch table.find all('th')
    name = extract column from header(header)
    if name != None and len(name) > 0:
       column_names.append(name)
Build dictionary of lists containing each columns data
Convert to Dataframe
df= pd.DataFrame({ key:pd.Series(value) for key, value in launch dict.items() })
Save to csv file
df.to_csv('spacex_web_scraped.csv', index=False)
```

Data Wrangling (Continue Here)

- Clean NaN data and evaluate data values and grouping.
- GitHub URL (Data Wrangling):
 https://github.com/wlouer/IB
 M_Final_Project/blob/main/ju
 pyter-labs-webscraping.ipynb

```
Calculate each site's Launches:
 In [5]:
          # Apply value counts() on column LaunchSite
          df.LaunchSite.value counts()
Calculate the occurrence of each orbit
In [6]:
           # Apply value counts on Orbit column
           df.Orbit.value counts()
Calculate the number of occurrence of mission outcomes.
In [8]:
          landing outcomes = df.Outcome.value counts()
Convert landing outcomes to binary values.
  In [12]:
           # landing_class = 0 if bad_outcome
           # landing class = 1 otherwise
           landing class = []
           for row in df['Outcome']:
               if row in bad_outcomes:
                  landing_class.append(0)
               else:
                  landing class.append(1)
           print(landing class)
```

EDA with Data Visualization

Visualization Plots

- Flight Number vs. Payload Mass: Has success/failure changed with flight number or mass?
- Flight Number vs. Launch Site: Has success/failure changed with flight number vs. Launch Site?
- Payload Mass and Launch Site: Has success/failure changed with flight number vs. Launch Site?
- Success Rate vs. Orbit Type: How does Orbit influence landing success?
- Flight Number vs Orbit type: For each orbit, does landing success increase?

EDA with Data Visualization (continued)

Visualization Plots

- Payload Mass and Orbit type: How does success/failure change with Orbit and Payload mass?
- Launch success rate vs Year: Has launch success rate improved or lessened?

- GitHub URL of completed EDA with data visualization notebook:
 - https://github.com/wlouer/IBM_Final_Project/blob/main/edadataviz.ipynb

EDA with SQL

• SQL queries:

- Unique Launch Sites
- Launch sites that begin with CCA (Cape Canaveral)
- Max payload mass when NASA was the customer
- Average payload mass when the Booster version was V1.1
- Date of first successful landing on a ground pad
- Boosters resulting in successful landing on drone ship with payload (4,000 and 6,000 kg)
- Number of successful and failed mission outcomes (not landing outcomes)

EDA with SQL (continued)

- SQL queries (Continued):
 - Name of booster version that carried max payload
 - Month names, failed landings on drone ship ,booster versions, launch_site for year 2015
 - Ranked count of landing outcomes between the date 2010-06-04 and 2017-03-20, in descending order.
- GitHub URL of completed EDA with SQL notebook:
 https://github.com/wlouer/IBM_Final_Project/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Added circle marker and text for each launch site to see where, geographically the launch sites were.
- Marked each flight from each launch site with a marker cluster. Colors were added for success or failure to visualize:
 - The number of launches at each site
 - The success and failures at each site.
- Marked a line and measurement to the nearest ocean, railroad, highway and large city
 - Proximity to these features show how materials are transported to the sites
 - o Proximity to cities and oceans show how safety is considered when conducting Rocket Launches
- GitHub URL: https://github.com/wlouer/IBM Final Project/blob/main/lab jupyter launch site location.html

Build a Dashboard with Plotly Dash

- Created pie-chart with dropdowns to:
 - Visualize ALL sites success rate
 - Visualize each site's successful and failed landings.
- Visualize successful and failed landings based on payload range for a dropdown selection of all sites or individual sites.
 - The range in payload was used as a slider
- GitHub URL of your completed Plotly Dash lab:

https://github.com/wlouer/IBM Final Project/blob/main/spacex_dash_app.py

Predictive Analysis (Classification)

- Normalized/Transformed the dataset using the Pre-processing Standard Scaler package in sci-kit learn
- Divided the dataset into a training set and a test set using 20% for testing.
- Created four (4) different models using GridSearch to find the best hyper-parameters:
 - Logistic Regression
 - Support Vector Machine
 - Decision Tree
 - K Nearest Neighbor
- Calculated the validation score on the test data set
- Plotted a confusion matrix to see the predictions vs. actual data
- GitHub URL of your completed predictive analysis lab:

https://github.com/wlouer/IBM_Final_Project/blob/main/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Predictive Analysis (Classification)

Model Development:

- Logistic Regression
- Support Vector Machine
- Decision Tree
- K Nearest Neighbor
- GitHub URL:

https://github.com/wlouer/IBM_Final_Project/blob/main/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

1. Normalized dataset using StandardScalar

```
# students get this
transform = preprocessing.StandardScaler()
X = transform.fit_transform(X)
```

2. Divided data into training and testing set

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state = 2)
```

3. Created and fit model

Measure test accuracy with testing data set

```
accuracy_svm_cv = svm_cv.score(X_test, Y_test)
accuracy_svm_cv
```

5. Plot confusion matrix and compare model accuracy

yhat=sym cy.predict(X test)

plot_confusion_matrix(Y_test,yhat)

18

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- Success Rate improved significantly with additional flights at each site
- Flights at Kennedy Space Center commenced just before flight number 30

Payload vs. Launch Site

- CCAFS SLC-40 and KSC LC-39A sites have been used to successfully launch and land rockets with payloads greater than 10,000 kg
- VAFB SLC-4E successful but limited to 10,000kg payload.

Success Rate vs. Orbit Type

- ES-L1, GEO, HEO and SSO orbits have a perfect landing success rate.
- GTO orbits have the lowest landing success rate of about 50%.

Flight Number vs. Orbit Type

- Initial orbit types were LEO, ISS, PO, GTO, and ES L1.
- Other orbits were attempted after flight number 35.
- Only one(1) GEO orbit and one(1) SO orbit was attempted.

Payload vs. Orbit Type

- Payload mass greater than
 8,000 kg were only used for:
 - International Space Station
 - o Polar Orbit
 - Very Low Earch Orbits.
- These had high landing success rates.

Launch Success Yearly Trend

- Landing success rate has increased from 2000 to 2020 significantly.
- There was a dip in landing success rate in 2018.

All Launch Site Names

- Unique launch sites
- Florida:
 - o Cape Canaveral CCAFS LC-40,
 - o Cape Canaveral CCAFS SLC-40,
 - Kennedy Space Center KSC LC-39A
- California:
 - Vandenberg Air Force Base; VAFB SLC-4E
- There are 3 launch sites located near Cape Canaveral, Florida and 1 located North of Las Angeles.

Launch Site Names Begin with 'CCA'

• 5 records where launch sites begin with `CCA`

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Total payload mass for customer NASA (CRS): 48,213 kg

o SpaceX has transported the total weight equivalent of a fully loaded semi-truck!

Boosters Carried Maximum Payload

 Booster Version which carried the max payload:

oF9 B5 B1048.4

Booster Version B1048 Courtesy: Wikipedia

Average Payload Mass by F9 v1.1

- Average payload mass carried by booster version F9 V1.1: 2,535 kg
 - Mass equivalent of a Tesla Model X.

First Successful Ground Landing Date

• First successful landing on a ground pad: Dec. 22, 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

- Boosters landed on a drone ship with payload between 4,000 and 6,000 kg:
 - o F9 FT B1020
 - o F9 FT B1022
 - o F9 FT B1026
 - o F9 FT B1021.2
 - o F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- Total successful and failed missions (not landings):
 - o 99 Successful,
 - o 1 failed,
 - 1 payload status unclear

Mission_Outcome	COUNT(*)
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

2015 Launch Records

- Failed Drone Ship Landings in 2015:
 - o 2 Launched from Cape Canaveral CCAFS LC-40 with v1.1 Boosters

Month	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Ranking the count of landing outcomes.
- Landing Outcomes between 2010-06-04 and 2017-03-20:

Landing_Outcome	Landing_Count
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Falcon 9 Launch Sites

Falcon 9 Launch Sites (Vandenberg AFS, Cape Canaveral and Kennedy Space Center

Florida Launch Sites (Zoomed): Kennedy Space Center KSC LC 35A, Cape Canaveral CCAFS SLC-40, LC-40

Landing Successes and Failures per Site

• Launch landing successes are shown in green; failures in red.

Launch Sites, Distance to Highway, Rail and City

Distance to:

• Coastline: 0.9 km

• Rail: 1.2 km

• Highway: 0.67 km

• City: 23.4 km

Launch Successes: All Sites

• Kennedy Space Center LC-49 has the highest number of launch successes (10), followed by CCAFS LC-40 (7), VAFB SLC-4E (4) and then CCAFS SLC-40 (3).

Launch Site with Highest Success Rate

• Kennedy Space Center has 10 successful landings, 3 failed landings

Launch Status vs. Payload All Sites (5,000 – 10,000 kg)

- Payload Range: 5,000 10,000 kg
- Booster with the most successful landings: FT
- Booster with the most failed landings: v1.1

Classification Accuracy

- Each of the models produced a similar validation accuracy of 0.83
- However, the Logistic Regression model was selected because it has the ability to predict probability associated with a classification.

Confusion Matrix (Logistic Regression)

- Each of the models has the same confusion matrix:
- Model predicted all 12 successful landings.
- Model predicted 3 failures correctly.
- Model predicted 3 false positives.

Conclusions

- SpaceX launches from 4 locations (3 FL, 1 CA)
- Each location was selected for proximity to highway, railway, the ocean and away from large cities.
- SpaceX has improved its landing success over time. KSC has the highest success rate.
- Models were developed for KNN, Decision Tree, Support Vector Machines and Logistic Regression
- All models demonstrated a validation accuracy of 83%
- A logistic regression model was selected for its ability to predict classification probability

Appendix

References: GitHub Repository (https://github.com/wlouer/IBM_Final_Project)

