

01 Vehicle Rescheduling Problem

The vehicle rescheduling problem (VRSP) arises when a previously assigned trip is disrupted. A traffic accident, a medical emergency, or a breakdown of a vehicle are examples of possible disruptions that demand the rescheduling of vehicle trips.

Amos Dinh, Matthias Fast, Henrik Rathai, Jannik Völker

02 Previous Challenges

2019 Challenge

CHF 7'500.- for first prize CHF 5'000.- for second prize CHF 2'500.- for third prize

Multi-Agent Reinforcement Learning on Trains

AMLD 2021 Competition NeurIPS 2020 Competition

By SNCF & SBB & DB Deutsche Bahn

02 Environment

02 Environment

02 Environment – Observations

02 Evaluation Parameter & Rewards

Env	# agents	W	Н	# cities	Malfunction rate			
0	7	30	30	2	0 %			
1	10	30	30	2	1 %			
2	20	30	30	3	0,5 %			
3	50	30	35	3	0,5 %			
speed = 1; max_rails_between_cities = 2; max_rails_in_city = 2; n_envs_run = 10								

NormalizedReward = cumulativeReward

self.env.maxEpisodeSteps * self.env.getNumAgents()

03 Ziel und Vorgehen

- Lernen eines Reinforcement Learning Agents der die Züge zu ihrem Ziel bringt
- Der Agent muss lernen, Deadlocks der Züge zu vermeiden:
 - Frontal Kollisionen
 - Defekte
- Wir benutzen einen einzelnen Agenten, der per Zeitschritt nacheinander für jeden Zug die nächste Aktion auswählt.
- Multi-Agenten System oder einzelner Agent, der mehrere Entscheidungen per Zeitschritt trifft
- Anwenden von Temporal Difference Learning Methoden
- Modellieren von Q(S, A) als Neurales Netz

03 Lernen des Agenten: Modellierungsdimensionen

- Aktionen: {L, F, R, Stop, Nothing} (oder: Wahl zwischen N-kürzesten Wegen...)
- Observation: Baumbasiert per Zug, Tiefe N (oder: Graphbasiert, Gridbasiert)
 - Dist_to_target, other_train_passes_at_step_t, malfunction

- other_train_passes_at_step_t: Predictor ist naiver Shortest Path
- TD Methoden: (n-step, expected) SARSA, (double, dueling) Q-Learning
- Reward: Summe der Rewards der Agenten per Zeitschritt
 - Negativer Reward: for not moving at all, per time step
 - Positiver Reward: Erreichen des Ziels

03 Lernen des Agenten: Modellierungsdimensionen

- Training: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) Q(S_t, A_t) \right]$ [1] $L = \mathbb{E}_{s,a,r,s'} \left[\left(r + \gamma \max_{a'} Q(s', a') Q(s, a) \right)^2 \right]$
 - Replay Buffer
 - Epsilon-greedy
 - Training zufällig gesampelten Mini-Batches
 - o 2000 Episoden

[1] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." *nature* 518.7540 (2015): 529-533.

04 Baseline & Algorithms

Baseline

Comparison of RL Algorithms

04 Actions

04 Experiments

Training Length

Progressive Training

