Элементарные функции

1 Многочлены, дробно-рациональные функции

Определение. *Многочленом* называется формальная запись вида $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. Числа $a_n, a_{n-1}, \ldots, a_0$ называются коэффициентами многочлена. Многочлен естественным образом задаёт функцию f(x).

Теорема 1. Уравнение $ax^2 + bx + c = 0$ имеет не более двух вещественных корней, которые вычисляются по формуле

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Доказательство.

Теорема 2 (Виета). Пусть $x_1, x_2 - \kappa$ орни уравнения $ax^2 + bx + c$. Тогда справедливы равенства

- $x_1 + x_2 = -\frac{b}{a}$;
- $x_1x_2 = \frac{c}{a}$.

Теорема 3 (Безу). Пусть P(x) — некоторый многочлен. Тогда P(x) можно представить в виде (x-a)Q(x) тогда и только тогда, когда P(a)=0.

1. Решите уравнение

(a)
$$x^2 - 6x + 8 = 0$$
;

(b)
$$2x^2 + x - 6$$
;

(c)
$$x^2 - 3x + 6 = 0$$
;

(d)
$$x^3 + 5x^2 + 2x - 8 = 0$$
.

3apara 1b.
$$2x^{2} + x - 6 = 0$$
.
 $x_{0} + x_{1} = -\frac{1}{2}$; $x_{0} \cdot x_{1} = -3$.
 $\frac{3}{2}$; -2 .
 $2x^{2} + x - 6 = 0$.
 $(2x + 3) \cdot (x + 2) = 0$.
 $x^{2} - 6x + 5$.
 $(x - 1)(x - 5) = 0$.

3apara 1 d. Pennere yp-e

$$x^{3} + 5x^{2} + 2x - 8 = 0.$$

$$(x-1)(x^{2} + 6x + 8) = 0$$

$$-x^{2} - 6x$$

$$6x^{2} + 8x$$

$$x^{2} + 6x + 8$$

$$x^{2} + 6x + 8$$

$$x = -6 \pm 2$$

$$x = -6 \pm 2$$

$$x = -2 - 4$$

$$0 + 6et: x_{0} = 1, x_{1} = -2, x_{2} = -4$$

2. Постройте график функции $4x^2 - 4x + 4$.

Зарага. Постренть прадпи 9-yuu ax?+6x+C=0 $4x^{2} - 4x + 4 = 0$ Х-координата вери паработое равна $\frac{X_0+X_1}{2}=\frac{-6}{2a}$ $y - \mu \circ \rho \circ g$ pabra $\frac{-9}{4a}$ Omp. Pour + nagorbaeras morromeno

Oup. φ -ying f inequibaeras moreoroneno boj pacraneuseii (youb anouseii) na [a,b] eau $[x,y\in [a,b] \times (y=) f(x) < (y=) f(y).$

 ${f 3.}$ Докажите, что при $a\geqslant 0$ и любом $b\in \mathbb{R}$ уравнение $x^3+ax+b=0$

имеет только один действительный корень.

4. Прямая пересекает график функции $y=x^2$ в точках с абсциссами x_1 и x_2 , а ось абсцисс — в точке с абсциссой x_3 . Докажите, что

 $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{x_3}.$

