Dynamika 3/15

Andrzej Kapanowski http://users.uj.edu.pl/~ufkapano/

WFAIS, Uniwersytet Jagielloński w Krakowie

2019

Podstawowe pojęcia

- Dynamika jest częścią mechaniki klasycznej, która zajmuje się badaniem zależności pomiędzy wzajemnymi oddziaływaniami ciał i zmianami ruchu wywołanymi przez te oddziaływania.
- Podstawą dynamiki są trzy zasady Newtona, sformułowane w XVII wieku na bazie eksperymentów i rozważań teoretycznych.
- Ciała mają właściwość nazywaną bezwładnością, tzn. samorzutnie podtrzymują swój stan spoczynku lub ruchu jednostajnego prostoliniowego, o ile nie oddziaływują z innymi ciałami.

Siła

- Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły.
- Siła jest wielkością wektorową.
- Jeżeli na ciało działa kilka sił, to ich siłę wypadkową otrzymujemy dodając wektorowe siły składowe (zasada superpozycji sił).
- Jednostką siły jest niuton, $1N = 1kg \cdot 1m/s^2$.

Granice stosowalności

Granice stosowalności mechaniki klasycznej:

- prędkości ciał bliskie prędkości światła należy stosować szczególną teorię względności Einsteina,
- rozmiary ciał bliskie rozmiarom atomów należy stosować mechanikę kwantową.

Mamy trzy sposoby badania układów mechanicznych:

- mechanika Newtona,
- mechanika Lagrange'a,
- mechanika Hamiltona.

Zasady dynamiki dla punktu materialnego

Pierwsza zasada dynamiki Newtona (zasada bezwładności)

Gdy na ciało nie działa żadna siła lub gdy wypadkowa sił działających na ciało jest równa zeru, to ciało pozostaje w spoczynku lub porusza się ruchem prostoliniowym jednostajnym względem spoczywającego lub poruszającego się ruchem jednostajnym prostoliniowym układu odniesienia.

Co utrudniło zauważenie tej zasady? Tarcie. I z.d.N. jest podstawą statyki punktu materialnego.

Tarcie

Wyróżniamy dwa rodzaje tarcia.

- Tarciem zewnętrznym (suchym) nazywamy oddziaływanie zachodzące między powierzchniami dwóch stykających się ciał stałych, przeciwdziałające ich przemieszczaniu się względem siebie [tarcie statyczne i kinetyczne; tarcie posuwiste i toczne].
- Tarciem wewnętrznym (lepkością) nazywamy oddziaływanie zachodzące między warstwami cieczy lub gazu, poruszającymi się względem siebie.

Zasady dynamiki dla punktu materialnego

Druga zasada dynamiki Newtona

Jeżeli na ciało działa siła niezrównoważona, to ciało porusza się ruchem przyspieszonym z przyspieszeniem proporcjonalnym do wartości tej siły, skierowanym i zwróconym tak samo, jak działająca na ciało siła:

$$\vec{F} = m\vec{a}$$
. (1)

Masa jest miarą bezwładności ciała w ruchu postępowym (określenie masy).

Pęd ciała

Pędem ciała nazywamy wielkość wektorową równą

$$\vec{p} = m\vec{v}$$
 (jednostka $1kg \cdot m/s$). (2)

• Obliczamy zmianę pędu w czasie pod wpływem działania siły dla m = const,

$$\frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a} = \vec{F}.$$
 (3)

 Doświadczenie wykazało, że otrzymany wzór jest znacznie ogólniejszy, np. jest słuszny również w przypadku zmiennej masy ciała (rakieta).

$$\vec{F} = \frac{d\vec{p}}{dt}.\tag{4}$$

Popęd siły

Popędem siły nazywamy wielkość wektorową równą

$$\vec{J} = \vec{F} \Delta t, \tag{5}$$

gdzie Δt to czas działania *stałej* siły \vec{F} .

 W przypadku siły zmieniającej się w czasie możemy pokazać, że popęd siły jest równy całkowitej zmianie pędu ciała

$$\vec{J} = \int_{t_1}^{t_2} \vec{F} dt = \int_{t_1}^{t_2} \frac{d\vec{p}}{dt} dt = \vec{p}_2 - \vec{p}_1 = \Delta \vec{p}.$$
 (6)

ullet Definiujemy średnią siłę jako $ec{J}=ec{\mathcal{F}}_{sr}\Delta t$.

Zasady dynamiki dla punktu materialnego

Trzecia zasada dynamiki Newtona

Jeżeli ciało A działa na ciało B siłą \vec{F}_{AB} , wtedy ciało B działa na ciało A siłą \vec{F}_{BA} równą co do wartości, równoleglą i przeciwnie zwróconą do siły \vec{F}_{AB} :

$$\vec{F}_{AB} = -\vec{F}_{BA}.\tag{7}$$

Siły te nazywamy siłami akcji i reakcji. Siły działają jednocześnie, ale nie mogą się równoważyć (znosić), ponieważ są przyłożone do różnych ciał.

Inercjalne układy odniesienia

- Ruch dowolnego ciała opisujemy względem konkretnego układu odniesienia. Zasady Newtona obowiązują tylko w pewnych ściśle wyróżnionych układach odniesienia, nazywanych układami inercjalnymi. Są to układy spoczywające lub poruszające się ruchem jednostajnym prostoliniowym.
- Zasady Newtona nie obowiązują w nieinercjalnych układach odniesienia, np. w układach poruszających się ruchem przyspieszonym.
- Układ inercjalny jest pewną abstrakcją, która w praktyce jest realizowana z pewnym przybliżeniem (oddziaływania są nieuniknione).

Zasady względności

Zasada względności Galileusza (XVII wiek)

We wszystkich inercjalnych układach odniesienia *zjawiska mechaniczne* przebiegają jednakowo.

Zasada względności Einsteina (XX wiek)

We wszystkich inercjalnych układach odniesienia wszystkie zjawiska fizyczne przebiegają jednakowo.

Zasada względności jest jednym z najbardziej podstawowych praw przyrody.

Podstawowe oddziaływania w przyrodzie

Cztery oddziaływania

Oddziaływanie	Działa na	Przejawy
grawitacyjne	masę	wszystkie zjawiska dużej skali
		we Wszechświecie
elektro-	ładunek	wiąże elektrony w atomach,
magnetyczne	elektrycz-	łączy atomy w cząsteczki i
	ny	kryształy
silne	ładunek	wiąże ze sobą nukleony w ją-
(krótki zasięg)	kolorowy	drach atomowych (siły jądro-
		we), wiąże kwarki w hadro-
		nach (przez gluony)
słabe	ładunek	rozpad beta jąder promienio-
(krótki zasięg)	słaby	twórczych, rozpad mionu

Siły w praktyce

- Siła ciężkości $F_g = mg$.
- Siły międzycząsteczkowe (molekularne, van der Waalsa) są wypadkową oddziaływań elektrycznych elektronów i jąder molekuł.
- Siły sprężyste ciał stałych, prawo Hooke'a (odkształcenie jest wprost proporcjonalne do naprężenia).
- Siły tarcia.
- Siły bezwładności (w układach nieinercjalnych), np. siła odśrodkowa, siła Coriolisa (wahadło Foucaulta, kościół św. Piotra i Pawła w Krakowie).

Ruch jednostajny po okręgu

 Wiemy, że w ruchu jednostajnym po okręgu występuje przyspieszenie skierowane do środka okręgu, które ma wartość

$$a = \frac{v^2}{R}$$
 (przyspieszenie dośrodkowe). (8)

 Zgodnie z drugą zasadą dynamiki Newtona źródłem przyspieszenia musi być siła, która utrzymuje ciało w ruchu po okręgu

$$F = m \frac{v^2}{R} \text{ (wartość siły dośrodkowej)}. \tag{9}$$

- Przykład: ruch piłki na sznurku.
- Przykład: ruch satelity dokoła Ziemi.

Ruch jednostajny po okręgu

- Ruch po okręgu możemy analizować względem nieinercjalnego układu odniesienia związanego z obracającym się ciałem, np. człowiek na karuzeli lub kierowca samochodu jadącego po torze kołowym.
- W tym układzie obok siły dośrodkowej pojawia się siła odśrodkowa bezwładności. Obie siły równoważą się i ciało spoczywa.

Zasady zachowania w mechanice

- Badania problemów dynamiki ruchu ciał doprowadziły nie tylko do sformułowania zasad dynamiki, lecz spowodowały też odkrycie pewnych innych zasad. W pewnych warunkach są wielkości fizyczne, które w czasie ruchu nie zmieniają się.
- Zasady zachowania (energii, pędu, momentu pędu)
 pozwalają rozwiązać wiele problemów mechanicznych
 w prostszy sposób niż przy wykorzystaniu zasad dynamiki.
- Zasady zachowania są związane z niezmienniczością (symetrią) teorii fizycznych względem określonych grup przekształceń. Zasady zachowania energii, pędu i momentu pędu są związane z symetriami czasoprzestrzeni.

Zasady zachowania w mechanice

Zasady zachowania

Wielkość zachowywana	Symetria czasoprzestrzeni
energia	przesunięcie w czasie
pęd	przesunięcie w przestrzeni
moment pędu	obrót w przestrzeni

Zasada zachowania ładunku elektrycznego jest związana z niezmienniczością względem tzw. transformacji cechowania.

Praca

 Pracą nazywamy iloczyn skalarny wektora siły działającej na ciało i wektora przemieszczenia tego ciała wywołanego działaniem siły,

$$W = \vec{F} \cdot \Delta \vec{r}. \tag{10}$$

- Praca jest wielkością skalarną. Jednostką pracy jest dżul, $1J = 1N \cdot 1m = 1kg \cdot m^2/s^2$.
- Maksymalną pracę wykonuje siła równoległa do przemieszczenia.
- Praca siły prostopadłej do przemieszczenia jest równa zeru. Przykład: ruch po okręgu.
- Siły nie przesuwające ciał, np. siły statyczne nie wykonują pracy.

Praca przeciwko sile sprężystej

- Rozważamy siłę sprężystą postaci $F_s(x) = -kx$, przy czym ciało może poruszać się wzdłuż osi X.
- Przykład: ciężarek na sprężynie.
- Przesuwamy ciało z położenia x_1 do położenia x_2 . Działamy siłą $F=-F_s=kx$.
- Obliczamy pracę przeciwko sile sprężystości

$$W = \int_{x_1}^{x_2} F dx = \int_{x_1}^{x_2} kx \ dx = \frac{kx^2}{2} \Big|_{x_1}^{x_2} = \frac{kx_2^2}{2} - \frac{kx_1^2}{2}.$$
 (11)

• Oznaczmy $E_p(x) = kx^2/2$, $W = E_p(x_2) - E_p(x_1)$.

Praca przeciwko sile ciężkości

- Rozważmy ciało na które działa siła ciężkości $F_g=-mg$, przy czym ciało może poruszać się wzdłuż osi Y skierowanej pionowo w górę.
- Przesuwamy ciało z położenia y_1 do położenia y_2 . Działamy siłą $F=-F_g=mg$.
- Obliczamy pracę przeciwko sile ciężkości

$$W = \int_{y_1}^{y_2} F dy = \int_{y_1}^{y_2} mg \ dy = mgy|_{y_1}^{y_2} = mg(y_2 - y_1).$$
(12)

• Oznaczmy $E_p(y) = mgy$, $W = E_p(y_2) - E_p(y_1)$.

Energia

- Energia jakiegoś ciała to wielkość skalarna będąca miarą zdolności ciała do wykonania pracy.
- Wyróżnia się wiele rodzajów energii, np. energia mechaniczna, energia jądrowa, energia elektryczna itp.
- Jednostką energii jest dżul.
- Energia kinetyczna E_k jest to energia związana ze stanem ruchu ciała,

$$E_k = \frac{1}{2}mv^2$$
 (energia kinetyczna). (13)

 W różnych układach odniesienia energia kinetyczna ciała może być różna.

Praca i energia kinetyczna

- Rozważmy ciało o masie m poruszające się wzdłuż osi X, na które działa stała siła F skierowana wzdłuż osi X.
- Z drugiej zasady dynamiki Newtona wynika, że ciało będzie miało stałe przyspieszenie

$$F = ma. (14)$$

Z kinematyki mamy zależność

$$v_2^2 = v_1^2 + 2a(x_2 - x_1),$$
 (15)

$$\frac{1}{2}mv_2^2 = \frac{1}{2}mv_1^2 + ma(x_2 - x_1). \tag{16}$$

ullet Zauważmy, że x_2-x_1 to przemieszczenie ciała, czyli

$$E_{k2} = E_{k1} + W. (17)$$

 Praca wykonana przez siłę wypadkową nad ciałem jest równa zmianie energii kinetycznej tego ciała.

Moc

Wielkością wyrażającą szybkość wykonania pracy jest moc.

Moc średnia

$$P_{sr} = \frac{\Delta W}{\Delta t}.$$
 (18)

Moc chwilowa

$$P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}.$$
 (19)

Moc jest wielkością skalarną, której jednostką jest wat 1W=1J/s.

Siły zachowawcze i niezachowawcze

- Układ ciał nazywamy układem zamkniętym (odosobnionym, izolowanym), jeżeli można pominąć działanie sił zewnętrznych w porównaniu z działaniem sił wewnętrznych tego układu.
- Siła wypadkowa działająca na ciało składa się zwykle z dwóch rodzajów sił składowych: sił zachowawczych i sił niezachowawczych.
- Siły zachowawcze to siły, których praca wykonana przy przemieszczaniu ciała po drodze zamkniętej jest równa zeru.
- Przykład: siła grawitacyjna, siła sprężysta.
- Dla sił niezachowawczych praca wykonana przy przemieszczaniu ciała po drodze zamkniętej nie jest równa zeru.
- Przykład: siła tarcia.

Energia potencjalna

- Praca wykonana przez siłę zachowawczą przy przemieszczaniu ciała między dwoma punktami A i B nie zależy od drogi, po której zostaje wykonana, a zależy jedynie od położenia punktów A i B względem siebie.
- Energią potencjalną nazywamy energię oddziaływań, zależną od wzajemnego położenia oddziałujących ze sobą ciał. Możemy też mówić o energii potencjalnej ciała w polu sił zachowawczych.
- Przykład: energia potencjalna ciała w polu grawitacyjnym $E_p(y)=mgy$.
- Przykład: energia potencjalna ciała w polu siły sprężystej $E_p(x) = kx^2/2$.

Siła grawitacji

Siła sprężysta

Energia potencjalna

 W przypadku jednowymiarowym, mając daną energię potencjalną, możemy obliczyć siłę zachowawczą,

$$F(x) = -\frac{dE_p(x)}{dx}. (20)$$

 Praca przeciwko siłom zachowawczym prowadzi do wzrostu energii potencjalnej,

$$E_{p1} + W = E_{p2}. (21)$$

 Energia potencjalna jest określona z dokładnością do pewnej stałej. Zwykle stałą dobieramy tak, aby energia potencjalna wynosiła zero w położeniu, w którym działająca siła jest zerowa.

Zachowanie energii mechanicznej

- Rozważmy układ zamknięty, w którym działają tylko siły zachowawcze (wewnętrzne).
- Praca sił wewnętrznych w tym układzie spełnia związki

$$E_{k1} + W = E_{k2}, (22)$$

$$E_{p1} - W = E_{p2}. (23)$$

Dodanie stronami prowadzi do zależności

$$E_{k1} + E_{p1} = E_{k2} + E_{p2}. (24)$$

Definiujemy całkowitą energię mechaniczną układu E_c
jako sumę jego energii potencjalnej i energii kinetycznej,

$$E_c = E_k + E_p. (25)$$

Zachowanie energii mechanicznej

Zasada zachowania energii mechanicznej

Całkowita energia mechaniczna układu zamkniętego, w którym działają tylko siły zachowawcze, jest wielkością stałą:

$$E_c = E_k + E_p = \text{const.} \tag{26}$$

Jeżeli w układzie występuje tarcie, które nie jest siłą zachowawczą, to energia mechaniczna może częściowo zamienić się na inne formy energii, np. na ciepło.

Układ punktów materialnych

- Rozważmy układ n punktów materialnych o masach m_1 , m_2 , itd. umieszczonych w położeniach \vec{r}_1 , \vec{r}_2 , itd.
- Pęd układu punktów materialnych jest równy

$$\vec{P} = \sum_{i=1}^{n} m_i \vec{v}_i = m_1 \vec{v}_1 + m_2 \vec{v}_2 + \ldots + m_n \vec{v}_n.$$
 (27)

Masa całego układu wynosi

$$M = \sum_{i=1}^{n} m_i = m_1 + m_2 + \ldots + m_n.$$
 (28)

ullet Środek masy układu jest to wektor $ec{r}_{CM}$ dany wzorem

$$M\vec{r}_{CM} = \sum_{i=1}^{n} m_i \vec{r}_i = m_1 \vec{r}_1 + m_2 \vec{r}_2 + \ldots + m_n \vec{r}_n.$$
 (29)

Układ punktów materialnych

 Różniczkując względem czasu równanie na środek masy otrzymujemy

$$M\vec{v}_{CM} = \sum_{i=1}^{n} m_i \vec{v}_i = \vec{P}.$$
 (30)

Różniczkując ponownie względem czasu otrzymujemy

$$M\vec{a}_{CM} = \sum_{i=1}^{n} m_i \vec{a}_i = \sum_{i=1}^{n} \vec{F}_i.$$
 (31)

• Środek masy ciała lub układu ciał to punkt, który porusza się tak, jakby była w nim skupiona cała masa układu, a wszystkie siły zewnętrzne były przyłożone w tym punkcie.

Układ punktów materialnych

Z drugiej strony możemy zapisać

$$\frac{d\vec{P}}{dt} = \sum_{i=1}^{n} \vec{F}_{i}.$$
 (32)

- Wśród sił działających na układ punktów materialnych mogą być siły zewnętrzne i wewnętrzne. Z trzeciej zasady dynamiki Newtona wynika, że suma wektorowa sił wewnętrznych w układzie jest zawsze równa zeru.
- Jeżeli suma sił zewnętrznych działających na układ jest równa zeru (układ zamknięty), to pochodna pędu układu względem czasu jest równa zeru

$$\frac{d\vec{P}}{dt} = 0. {(33)}$$

Zachowanie pędu

Zasada zachowania pędu

Pęd zamkniętego układu ciał jest wielkością stałą, niezależną od procesów zachodzących w tym układzie.

$$\vec{P} = \sum_{i=1}^{n} \vec{p}_i = \sum_{i=1}^{n} m_i \vec{v}_i = \text{const.}$$
 (34)

Zasada zachowania pędu obowiązuje również w mechanice relatywistycznej, fizyce atomowej i jądrowej.

Zjawisko odrzutu

- Rozważmy sytuację, w której jakieś ciało rozpada się na dwie części pod wpływem działania sił wewnętrznych.
- Jeżeli siły wewnętrzne są znacznie większe od sił zewnętrznych, to ciało można uznać za układ zamknięty.
- Początkowo ciało spoczywa, czyli pęd układu jest równy zeru.
- Po rozpadzie mamy dwie części ciała o masach m_1 i m_2 , które poruszają się z prędkościami odpowiednio \vec{v}_1 i \vec{v}_2 .
- Z zasady zachowania pędu otrzymujemy

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = 0, (35)$$

$$\vec{v}_2 = -\frac{m_1}{m_2} \vec{v}_1 \text{ (odrzut)}. \tag{36}$$

Przykład zjawiska odrzutu: wystrzał z broni palnej.

Zderzenia

- Zderzenie zachodzi wtedy, gdy dwa lub więcej ciał działa na siebie stosunkowo dużymi siłami w stosunkowo krótkim czasie.
- Zderzenie nie wymaga bezpośredniego zetknięcia się ciał.
 Przykład: sonda czy kometa mijająca planetę.
- Nasza wiedza dotycząca świata cząstek pochodzi z doświadczeń zderzeniowych.
- Mówiąc o zderzeniu, musimy być w stanie rozróżnić przedziały czasu przed zderzeniem, podczas zderzenia i po zderzeniu.

Zderzenia

- Wszelkie zderzenia możemy podzielić na dwa rodzaje: zderzenia sprężyste i niesprężyste.
- W zderzeniach sprężystych pęd i energia kinetyczna układu są zachowane.
- W zderzeniach niesprężystych pęd jest zachowany, a energia kinetyczna jest na ogół zmniejszana (zamienia się na inną postać energii).
- Zderzenie dwóch kul może być centralne (prędkości obu kul są skierowane wzdłuż prostej łączącej ich środki) lub niecentralne.

Zderzenie centralne sprężyste dwóch kul

- Załóżmy, że zderzające się kule o masach m_1 i m_2 poruszają się w tym samym kierunku przed i po zderzeniu.
- Prędkości przed zderzeniem to v_1 i v_2 ($v_1 > v_2$), prędkości po zderzeniu u_1 i u_2 .
- Zasada zachowania pędu:

$$m_1 v_1 + m_2 v_2 = m_1 u_1 + m_2 u_2. (37)$$

Zasada zachowania energii:

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 u_1^2}{2} + \frac{m_2 u_2^2}{2}.$$
 (38)

Zderzenie centralne sprężyste dwóch kul

Grupujemy wyrazy

$$m_1(v_1-u_1)=m_2(u_2-v_2),$$
 (39)

$$m_1(v_1-u_1)(v_1+u_1)=m_2(u_2-v_2)(u_2+v_2).$$
 (40)

Dzieląc stronami otrzymujemy zależność

$$v_1 + u_1 = u_2 + v_2. (41)$$

Wynik końcowy

$$u_1 = \frac{m_1 - m_2}{m_1 + m_2} v_1 + \frac{2m_2}{m_1 + m_2} v_2, \tag{42}$$

$$u_2 = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2. \tag{43}$$

Dyskusja

- Jeżeli $m_1=m_2$, to $u_1=v_2$ i $u_2=v_1$ (wymiana prędkości).
- Jeżeli $m_2 > m_1$ i $v_2 = 0$ (nieruchoma tarcza), to $u_1 < 0$ (kula odskoczy wstecz).
- Jeżeli $m_2\gg m_1$ i $v_2=0$, to $u_1=-v_1$ i $u_2=0$.
- Jeżeli $m_1\gg m_2$ (pocisk o bardzo dużej masie) i $v_2=0$, to $u_1=v_1$ i $u_2=2v_1$.

Zderzenie centralne niesprężyste dwóch kul

- Załóżmy, że zderzające się kule o masach m_1 i m_2 poruszają się w tym samym kierunku przed zderzeniem.
- Prędkości przed zderzeniem to v_1 i v_2 ($v_1 > v_2$), wspólna prędkość po zderzeniu to u (kule przyklejają się do siebie).
- Zasada zachowania pędu:

$$m_1v_1 + m_2v_2 = (m_1 + m_2)u.$$
 (44)

$$u = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}. (45)$$

Łatwo można obliczyć ubytek energii kinetycznej.

