Arquitetura de Redes de Computadores

Luiz Paulo Maia

Sumário

- Comutação
 - circuito X pacote
- Enderaçamento IP
- Classes de endereços e CIDR
- Configuração de endereços IP
 - estática X dinâmica
- Protocolo ARP
- NAT
- IPv6
- Prática com Packet Tracer

Introdução

- A principal função da camada de rede é permitir que uma mensagem enviada pelo transmissor chegue ao destino utilizando dispositivos intermediários.
 - Processo este chamado de comutação;
 - Também conhecido como processo de roteamento e executado por dispositivos chamados Roteadores;

Comutação

 A comutação é o mecanismo que permite que dispositivos não adjacentes em uma rede distribuída se comuniquem.

Comutação

Comutadores

- Os comutadores são dispositivos que atuam nas 3 camadas inferiores do modelo de 5 camadas;
 - Camada de rede permite (3) permite a conexão entre dispositivos não adjacentes;

Modelo de camadas e comutação

Comutadores

- A técnica de comutação é a base para a implementação de redes distribuídas, como o sistema de telefonia e a Internet.
- Dois tipos de comutação que são utilizadas em redes de computadores:
 - comutação por circuito;
 - comutação por pacotes.

Comutação por circuito

Comutação por circuito

- A vantagem da comutação por circuito é a existência de um caminho predefinido
 - Não será necessária a comutação nos dispositivos intermediários;
 - Minimiza problemas de congestionamento;
- Grande desvantagem é a subutilização do canal;
 - Tempo para inicializar o circuito pode ser inaceitável dependendo da aplicação;

Comutação por pacote

Comutação por pacotes

- Base para implementação de redes de interconexão modernas;
 - Mensagens divididas em pacotes;
 - Sequência de reencaminhamentos por roteadores até o destino;
 - Melhor utilização do meio;
- Desvantagem de aumentar o custo de processamento de cada dispositivo individual na rede de interconexão;

Endereçamento

- Uma das principais atribuições da camada de redes;
 - Permite a identificação de dispositivos na rede;
 - Uso do protocolo IP;
 - No modelo Internet, cada host (ou melhor dizendo, cada interface de rede) possui um número identificador único conhecido como endereço IP;

Formato do endereço IP

146.164.2.70

ICANN

- É mandatório que não haja problemas de conflitos de endereços na Internet;
 - ICANN (Internet Corporation for Assigned Names and Numbers): Entidade que controla e centraliza a distribuição de endereços e nomes
 - Geralmente, para se obter um endereço IP não há contato direto com a ICANN.
 - A tarefa de distribuição de endereços é delegada aos provedores de acesso ou ISP (Internet Service Provider).

Endereçamento hierárquico

- No modelo Internet o endereço IP é dividido em duas partes: uma para identificar o host e outra para identificar a rede à qual o host pertence.
- Dessa forma, o processo de roteamento é realizado utilizando apenas a parte que identifica a rede e não cada host individualmente.
- Esse esquema de endereçamento é conhecido como endereçamento hierárquico ou endereçamento em níveis

Classes de endereços IP

Classes de endereços IP

Tabela 6.1	Número de redes e hosts por classe

Classe	Redes	Hosts	Descrição
A	128 (27)	16777216 (2 ²⁴)	Redes muito grandes
В	16384 (214)	65536 (216)	Redes médias/grandes
С	2097152 (221)	256 (28)	Redes pequenas

Classless Inter-Domain Routing (CIDR)

- Enderaçamento usando classes se mostrou ineficiente com o passar do tempo;
- CIDR surgiu como um esquema mais flexível para separação entre parte de rede e parte de hosts;
 - Representado pela notação /n

Classless Inter-Domain Routing (CIDR)

Por exemplo:

 200.10.10.0/25 define que os primeiros 25 bits do endereço são para a parte da rede e os 7 restantes são para o host.

Configuração de endereçamento

- Os endereços da camada de rede podem ser configurados nos hosts de duas formas diferentes.
 - Endereçamento estático;
 - Endereçamento dinâmico;

Endereçamento estático

- Configurado manualmente pelo administrador da rede;
- Feito máquina por máquina;
- IP fica permanentemente associado a uma interface de rede;

Endereçamento dinâmico

- Os hosts não possuem um endereço predefinido.
- O host, ao ser inicializado, solicita um endereço IP a um servidor de endereços através de uma mensagem do tipo broadcast na rede.
- DHCP (Dynamic Host Control Protocol)
 - cliente DHCP;
 - servidor DHCP;

Endereçamento dinâmico

Servidor DHCP

Dinâmico X Estático

- Endereçamento estático:
 - Dificuldade na gerência de endereços;
 - Duas máquinas configuradas com mesmo
 IP pode gerar conflito na rede;
 - Mobilidade limitada de hosts;
- Endereçamento dinâmico:
 - Resolve os problemas relacionados ao endereçamento estático
 - Fragilidade em termos de segurança;

Mapeamento de endereços

- Em uma rede ethernet local, cada host possui 2 endereços distintos:
 - Endereço de enlace (MAC);
 - Endereço de rede (IP);
- Problema do mapeamento de endereços:
 - Mapeamento estático cada host possui uma lista de outros hosts;
 - Mapeamento dinâmico uso do protocolo ARP;

Mapeamento de endereços

ARP (Address Resolution Protocol)

- Utilizado para "descobrir" qual endereço MAC está associado ao qual endereço IP;
 - Uso de mensagem de broadcast;
 - Uma vez descoberto o endereço, as informações são guardadas em cache;
 - Periodicamente as informações devem ser renovadas – evita a associação errada de endereço MAC ao trocar uma interface de rede;

Comando arp

```
C:\> arp -a
Interface: 10.41.1.100 --- 0x2
 Endereço IP
                     Endereço físico
                                             Tipo
 10.41.1.1
                       00-04-96-34-a6-16
                                             dinâmico
  10.41.1.5
                                             dinâmico
                       00-30-48-8b-52-e6
                       00-30-48-8b-55-90
                                             dinâmico
 10.41.1.6
                                             dinâmico
  10.41.1.110
                       00-40-a7-12-11-c9
```

arp: resolução de endereços IP em endereços MAC. Exibe e modifica as tabelas de traduções dos endereços IP em endereços físicos utilizados pelo protocolo de resolução de endereços (ARP)

Tradução de Endereços de rede

- Quando a Internet foi concebida, um espaço de endereçamento da ordem de 2³² parecia difícil de ser esgotado;
 - Crescimento exponencial do número de equipamentos conectados;
 - Número de endereços próximo do fim;
 - NAT Network Address Translation;
 - IPV6 Internet Protocol Version 6;

NAT

- O NAT permite que uma instituição opere com apenas um endereço na Internet, mesmo possuindo inúmeros hosts na rede interna.
 - Necessário um dispositivo que implementa o NAT, geralmente um roteador
 - O NAT utiliza o conceito de endereços privados, que são endereços que não podem ser utilizados na Internet, mas apenas dentro da rede interna.

Intervalos de endereços privados

 Há conjuntos de endereços das classes A, B e C que são privados. Isso significa que eles não podem ser usados na internet, pois foram reservados para aplicações locais.

Intervalos de endereços privados

Classe	Endereço Inicial	Endereço Final
A	10.0.0.0	10.255.255.255
В	172.16.0.0	172.31.255.255
С	192.168.0.0	192.168.255.255

Funcionamento do NAT

Funcionamento do NAT

 Roteadores são configurados por padrão para descartar qualquer requisição para endereços privados;

- Como o roteador, ao receber um pacote da rede externa, sabe para qual host da rede interna o datagrama deve ser encaminhado?
 - Faz uso do conceito de Portas (Será abordado mais a frente, na camada de transporte);

Um olhar sobre o IPV6

- O principal problema do protocolo IPv4, apresentado anteriormente, é com relação ao espaço de endereçamento disponível;
 - Proposta de uma nova versão IP chamada IPV6;
 - Endereços de 128 bits 2¹²⁸ endereços;
 - Uso do formato hexadecimal para representação de endereços
 - 2001:DB8::FF00:42:8329

Um olhar sobre o IPV6

- Esquema de divisão de endereço em rede/host
 - 2001:DB8::FF00:42:8329/64
- Mesmo sendo uma solução definitiva para os problemas apresentados pela versão 4 do protocolo, ainda levará algum tempo para o IPV6 ser implementado em larga escala;

Dúvidas, Perguntas, Questionamentos?

Roteamento

- O roteamento é a tarefa de encaminhar um pacote da origem ao destino utilizando dispositivos intermediários, chamados de roteadores, que juntos compõem a rede de interconexão;
 - Algoritmo de roteamento;
 - Tabelas de roteamento;

Roteadores

- Equipamento utilizado no processo de roteamento;
 - Possui pelo menos 2 interfaces de redes;
 - Cada roteador mantém sua própria tabela de roteamento;
 - Responsabilidades:
 - Encaminhar pacotes para o destino final;
 - Manter a tabela de roteamento atualizada;

Processo de roteamento

Processo de roteamento

- No exemplo, todas as tabelas de roteamento estão preenchidas com todas as rotas possíveis;
- Dependendo da topologia da rede, não é necessário definir todas as rotas existentes;
 - rota padrão ou rota default;

Gateway

- Do inglês, gateway significa portão ou portal;
 - Atua como um elemento intermediário para ligação entre duas redes;
 - Todos os pacotes serão encaminhados para essa rota na ausência de uma rota específica;

Características de um algoritmo de roteamento

- Selecionar o melhor caminho;
- Convergir rapidamente;
- Oferecer robustez;
- Oferecer escalabilidade;
- Consumir poucos recursos;

Métricas de roteamento

- Número de saltos ou hops;
- Taxa de transmissão (bps) e carga da rede (%);
- Atraso ou latência RTT (Round Trip Time);
- Taxa de Erro transmitidos / recebidos
- Disponibilidade;
- Custo;

Tipos de roteamento

- Duas categorias de roteamento mais comuns:
 - Roteamento por vetor de distância;
 - Roteamento por estado do enlace;

Roteamento por vetor de distância

- Primeiro algoritmo usado na internet;
 - Ainda muito usado pela simplicidade e baixo consumo computacional;
 - RIP Routing Information Protocol;
 - Utiliza o número de saltos como métrica para avaliação da melhor rota;

Exemplo do roteamento por vetor de distância

Exemplo do roteamento por vetor de distância

Destino	Caminho	Custo
Α	-	0

Destino	Caminho	Custo
В	-	0

Destino	Caminho	Custo
С	-	0

Destino	Caminho	Custo
D	-	0

Destino	Caminho	Custo
E	-	0

Destino	Caminho	Custo
В	-	0
Α	C1	1
С	C2	1
E	C4	1

Destino	Caminho	Custo
С	-	0
В	C2	1
Е	C5	1

Destino	Caminho	Custo
D	-	0
Α	C3	1
E	C6	1

Destino	Caminho	Custo
E	-	0
В	C4	1
С	C5	1
D	C6	1

Camada de Redes

50

Exemplo do roteamento por vetor de distância

Destino	Caminho	Custo
Α	-	0
В	C1	1
D	C3	1
С	C1	2
Е	C1	2

Destino	Caminho	Custo
В	-	0
Α	C1	1
С	C2	1
Е	C4	1
D	C1	2

Destino	Caminho	Custo
С	-	0
В	C2	1
E	C5	1
Α	C2	2
D	C5	2

Destino	Caminho	Custo		
D	-	0		
Α	C3	1		
E	C6	1		
В	C3	2		
С	C6	2		

Destino	Caminho	Custo		
E	-	0		
В	C4	1		
С	C5	1		
D	C6	1		
А	C4	2		

Roteamento por estado do enlace

- Algoritmo alternativo ao roteamento por vetor de distância
- O roteamento por estado do enlace é implementado nos protocolos OSPF (Open Shortest Path First);
- O algoritmo baseado no estado do enlace tem uma visão global da rede;

Roteamento por estado do enlace

- Todos os roteadores mantêm uma base de dados com informações sobre todos os caminhos disponíveis e seus respectivos custos.
- As informações são, periodicamente, atualizadas;
- Sempre que for necessário reencaminhar um pacote, o roteador pode calcular o melhor caminho com base nessas informações;

Métricas do roteamento por estado do enlace

- Número de saltos;
- Taxa de transmissão e carga da rede;
- Atraso;
- Taxa de erro;

• ...

- 1. cada roteador envia uma mensagem do tipo Hello para a identificação do dispositivo adjacente.
 - Ao receber a resposta, o roteador passa a conhecer seus vizinhos. Esse mecanismo também é utilizado para garantir que os roteadores estão ativos.
 - Periodicamente, uma mensagem Hello é enviada para os dispositivos vizinhos para garantir que estão em funcionamento.

- 2. Os roteadores calculam o custo para alcançar cada um de seus vizinhos, utilizando alguma das métricas apresentadas.
 - Depois de calculado o custo, cada roteador cria um pacote contendo sua identificação e o custo para alcançar seus vizinhos - LSP (Link State Packet).

- 3. Os pacotes criados por cada roteador são enviados para todos os demais utilizando o roteamento por inundação;
 - À medida que os pacotes são recebidos pelo roteador, é criada uma base de dados contendo a origem, o destino e o custo do enlace.

De	Para	Custo	
Α	В	2	
Α	G	6	
В	Α	2	
В	С	7	
В	E	2	
С	В	7	
С	D	3	
С	F	3	
D	С	3	
D	Н	2	
E	В	2	
Е	F	2	
E	G	1	
F	С	2 6 2 7 2 7 3 3 3 2 2 2 1 3 2 2 2 6 1 4 2 2	
F	Е	2	
F	Н	2	
G	Α	6	
G	E	1	
G	Н	4	
Н	D	2	
A A B B B C C C D D E E E F F G G G H H H	B G A C E B D F C H B F G C E H A E H D F G	2	
Н	G	4	

- 4. O melhor caminho é calculado com base nas informações da base de dados usando algum algoritmo como por exemplo o algoritmo SPF (Shortest Path First) [Dijkstra, 1959];
 - O algoritmo SPF cria uma árvore de caminho de menor custo a partir de determinado roteador, chamado de raiz, para todos os demais.

Redes, subredes e IPV6

Número de redes e hosts por classe

Classe	Redes	Hosts Descrição	
A	128 (2 ⁷)	16777216 (2 ²⁴)	Redes muito grandes
В	16384 (214)	65536 (2 ¹⁶)	Redes médias/grandes
С	2097152 (2 ²¹)	256 (28)	Redes pequenas

Intervalos de endereços por classe

Classe	Endereço Inicial	Endereço Final		
A	0.0.0.0	127.255.255.255		
В	128.0.0.0	191.255.255.255		
С	192.0.0.0	223.255.255.255		
D	224.0.0.0	239.255.255.255		
Е	240.0.0.0	255.255.255.255		

Redes e Sub-redes

- No esquema de endereçamento IP em apenas dois níveis, o endereço é dividido em duas partes:
 - Identificação da rede e;
 - Identificação do host;
- Esquema com dois níveis pode ser insuficiente;

Rede sem sub-redes

Rede com sub-redes

Rede 146.164.0.0 pertence ao tipo B

Sub-redes

- O subendereçamento é implementado na prática utilizando-se parte dos bits destinados à identificação do host.
- Nesse caso, o endereço é dividido em três partes:
 - identificação da rede;
 - identificação da sub-rede e;
 - identificação do host dentro da sub-rede;

Endereçamento e subendereçamento

(a)	ld. da rede	Id. do host		
(b)	Id. da rede	Id. da sub-rede	ld. do host]

Exemplo de subendereçamento

Sub-rede	Endereço da Sub-rede	Endereço Inicial	Endereço Final	Endereço de Broadcast
1.	146.164.1.0	146.164.1.1	146.164.1.254	146.164.1.255
2	146.164.2.0	146.164.2.1	146.164.2.254	146.164.2.255
3	146.164.3.0	146.164.3.1	146.164.3.254	146.164.3.255
4.110		202	11.11	1555
254	146.164.254.0	146.164.254.1	146.164.254.254	146.164.254.255

Endereçamento hierárquico

Sub-redes

- Analisando apenas para o endereço 146.164.2.70, não é possível identificar se há ou não a utilização do esquema de subendereçamento.
- Para diferenciar os dois tipos de endereçamento, utiliza-se uma máscara de bits, chamada de máscara de sub-rede (subnet mask).

- A máscara de sub-rede permite especificar os bits do identificador de host que estão sendo utilizados para subendereçamento.
 - Para isso, a máscara é formada por uma sequência de bits 1, que representa a parte da rede e sub-rede,
 - Seguida de uma sequência de bits 0, que representa a parte do host.

Exemplos de máscaras de sub-rede

11111111	00000000	00000000	00000000	=	255	0	0	0
11111111	11111111	00000000	00000000	=	255	255	0	0
11111111	11111111	11111111	00000000	=	255	255	255	0

Exemplo de máscara de sub-rede

- A máscara sozinha não permite identificar se há utilização de sub-redes.
 - O subendereçamento é uma combinação da classe do endereço com a máscara de sub-rede.
 - Por exemplo, enquanto a máscara 255.255.255.0 para um endereço classe B implementa o esquema de sub-redes, a mesma máscara para um endereço classe C não implica subendereçamento.

- O exemplo anterior considerou um subendereçamento com 256 sub-redes e cada uma contendo 254 hosts.
- Mas suponha uma instituição que tenha cerca de 1000;

- O subendereçamento permite manipular a máscara de sub-rede de forma a refletir as necessidades da instituição.
 - Nesse caso, como são 1000 hosts, basta calcular a potência de dois mais próxima e descobrir o número de bits necessários para representá-los.
 - 1024 (2¹⁰), ou seja dez bits para endereçamento dos hosts.

- O subendereçamento permite manipular a máscara de sub-rede de forma a refletir as necessidades da instituição.
 - Como existem 16 bits possíveis para subendereçamento e são necessários dez para hosts, sobram seis bits para endereçamento de sub-redes.
 - A máscara de sub-rede em decimal deverá representar essa sequência de bits, tendo, assim, a máscara 255.252.0.

Endereçamento sem classe

- A utilização das classes gerou um problema quanto à otimização do uso de endereços;
 - Classless Inter-Domain Routing (CIDR);
 - Permite a criação de sub-redes com tamanhos variados;
 - Uso de uma nova notação;
 - 200.10.10.0/25
 - /25 significa a quantidade de bits usados para identificação de redes;
 - Possibilidade de máscaras variáveis;