





## University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

## Assignment 1

Measure Theory

Author: Adam J. Gray Student Number: 3329798

1

## 1.1

Define

$$\ell_n = \sum_{k=1}^{N_n} \alpha_k \chi_{C_k}$$
$$u_n = \sum_{k=1}^{N_n} \beta_k \chi_{C_k}$$

where  $\alpha_k := \inf\{f(x) : x \in C_k\}$  and  $\beta_k := \sup\{f(x) : x \in C_k\}$  and  $C_k \in \mathcal{P}_n$  where  $\mathcal{P}$  is defined in the question. We wish to show that

$$\lim_{n \to \infty} |\ell - f| = 0 = \lim_{n \to \infty} |f - u_n|$$

 $\lambda$  a.e.

It is obvious that  $\ell \leq f \leq u_n$  and so proving

$$\lim_{n \to \infty} |u_n - \ell_n| = 0$$

is sufficient. Define

$$\phi_n := u_n - \ell_n = \sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k}.$$

Firstly we must show  $\lim_{n\longrightarrow\infty}\phi_n$  exists  $\lambda$  a.e. This follows from the fact that  $\ell_n$  (  $u_n$  ) is a non-decreasing (non-increasing) sequence which is bounded above (below) by f which is also bounded.

We now wish to establish that  $\lim_{n\to\infty} \phi_n = 0$ . Note that

$$\phi_n \le \sup\{f(x) - f(y) : x, y \in S\} \le K\chi_S$$

for some K because f is bounded. Now because S is bounded in  $\mathbb{R}^d$  we have that  $K\chi_S \in \mathcal{L}^1(S)$ . The dominated convergence theorem therefore allows us to write

$$\int \lim_{n \to \infty} \underbrace{\sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k}}_{=\phi_n} d\lambda = \lim_{n \to \infty} \int \sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k} d\lambda$$

$$= \lim_{n \to \infty} \sum_{k=1}^{N_n} (\beta_k - \alpha_k) \lambda(C_k) \text{ because } \phi_n \text{ is a simple function}$$

$$= 0 \text{ because } f \text{ is Riemann integrable }.$$

This means that  $\lim_{n\to\infty} \phi_n = 0$ ,  $\lambda$  a.e. and hence  $\lim_{n\to\infty} \ell_n = f = \lim_{n\to\infty} \ell_n$ ,  $\lambda$  a.e.

We now show that the Riemann integral and the Lebesgue integral coincide. We have that

$$|\ell_n| \le M\chi_S$$

for some M because f is bounded. By the same argument as above  $M\chi_S \in \mathcal{L}^1(S)$ .  $\lim_{n \to \infty} \ell_n$  exists and equals f (this was established above), so by the dominated convergence theorem,

$$\underbrace{\lim_{n \to \infty} \int \ell_n d\lambda}_{\int_S f(x) dx} = \int \underbrace{\lim_{n \to \infty} \ell_n}_{\circledast} d\lambda$$

$$= \underbrace{\int f d\lambda}_{\text{Lebesque integral}}$$

## 1.2

Let  $N = \{x : \lim_{n \to \infty} \ell_n(x) \neq \lim_{n \to \infty} u_n(x)\}$  and let  $X = S/(\partial S \cup N)$ . We wish to show that for all  $x \in X$  and  $\varepsilon > 0$  there exists a  $\delta > 0$  such that

$$\sup\{f(x_1) - f(x_2) : ||x - x_1|| < \delta, ||x - x_2|| < \delta\} < \varepsilon.$$

Fix x and  $\varepsilon$ . As  $\lim_{n\to\infty}(u_n-\ell_n)=0$  there exists an L such that n>L implies  $u_n-\ell_n<\varepsilon$  which is to say that

$$\sum_{k=1}^{N_n} (\beta_k - \alpha_k) \chi_{C_k} < \varepsilon$$

which implies that

$$(\beta_k - \alpha_k) < \varepsilon$$

where  $x \in C_k$ . Therefore chosing  $\delta = \inf\{||y - x|| : y \notin C_k\}$  guarentees  $\{y : ||y - x|| < \delta\} \subseteq C_k$  and hence

$$\sup\{f(x_1) - f(x_2) : ||x - x_1|| < \delta, ||x - x_2|| < \delta\} < \varepsilon.$$

We now need to prove that  $\delta > 0$ . To do this we show that there exits a partitioning of S such that

$$\inf\{||x_1 - x|| : x_1 \notin C_k\} > 0$$

for all  $x \in X$  so long as  $x \in C_k/(\partial C_k)$ . We then show that there always exists a partitioning of X such that  $x \notin \partial C_k$  and the result will follow.

A partitioning of S such that  $\circledast$  holds for all n is given by

$$C_k = \left(\frac{k(b_1 - a_1)}{q^n}, \frac{(k+1)(b_1 - a_1)}{q^n}\right] \times \dots \times \left(\frac{k(b_d - a_d)}{q^n}, \frac{(k+1)(b_d - a_d)}{q^n}\right]$$
(1)

where q=2. Now suppose that  $x\in\partial C_k$  then the  $\circledast$  would still hold when q=3 but  $x\not\in\partial C_k$ .

3