Solution to Atiyah and MacDonald

Chapter 2. Modules

Jaehyeon Lee

Last update: April 18, 2024

This is a solution to Exercise problems in Chapter 2 of "Introduction to Commutative Algebra" written by M. F. Atiyah and I. G. MacDonald. You can find the updated version and solutions to other chapters on my personal website: [https://ijhlee0511.github.io].

WARNING This solution is written for self-study purposes and to consolidate my understanding. **I do not take responsibility for any disadvantages resulting from the use of this solution. It is at your own risk.** If you find any typos or errors in this solution, please feel free to contact me via email at [ijhlee0511@gmail.com] or [ijhlee0511@kaist.ac.kr].

Exercises and Solutions

2.1. Show that $(\mathbf{Z}/m\mathbf{Z}) \otimes_{\mathbf{Z}} (\mathbf{Z}/n\mathbf{Z}) = 0$ of m, n are coprime.

Solution. There exist integers x and y such that xm + yn = 1. As a result, for any $a \in \mathbb{Z}/m\mathbb{Z}$ and $b \in \mathbb{Z}/n\mathbb{Z}$,

$$a \otimes b = (xm + yn)(a \otimes b) = xma \otimes b + a \otimes ynb = 0.$$

2.2. Let A be a ring, $\mathfrak a$ an ideal, M an A-module. Show that $(A/\mathfrak a) \otimes_A M$ is isomorphic to $M/\mathfrak a M$.

Solution. By the natural inclusion and projection, a sequence $0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$ is exact. Tensoring the sequence, we get an exact sequence $\mathfrak{a} \otimes M \to M \to A/\mathfrak{a} \otimes M \to 0$. Since the map $\mathfrak{a} \otimes M \to M$ in the sequence is given by $x \otimes m \mapsto xm$, we get $A/\mathfrak{a} \otimes M \cong M/\operatorname{Im}(\mathfrak{a} \otimes M \to M) \cong M/\mathfrak{a}M$.

2.3. Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes N = 0$, then M = 0 or N = 0.

Solution. Let m be the unique maximal ideal. Suppose neither M=0 nor N=0. Then by Nakayama's lemma, $M/\mathfrak{m}M\neq 0$ and $N/\mathfrak{m}N\neq 0$. We can view $M/\mathfrak{m}M$ and $N/\mathfrak{m}N$ as finite dimensional vector spaces over $k:=A/\mathfrak{m}$. Therefore, $V:=M/\mathfrak{m}M\otimes_k N/\mathfrak{m}N$ is

a k-vector space with dimension $(\dim_k M/\mathfrak{m}M) \times (\dim_k N/\mathfrak{m}N)^{\mathrm{T}}$, implying it is nonzero. Define a map $f: M/\mathfrak{m}M \times N/\mathfrak{m}N \longrightarrow V$ by $(\bar{m},\bar{n}) \mapsto \bar{m} \otimes_k \bar{n}$. Viewing V as an A-module, this is naturally an A-bilinear map, so there is a surjective A-module homomorphism $f^*: M/\mathfrak{m}M \otimes_A N/\mathfrak{m}N \twoheadrightarrow V$ sending $\bar{m} \otimes_A \bar{n}$ to $\bar{m} \otimes_k \bar{n}$. From the natural surjection $N \twoheadrightarrow N/\mathfrak{m}N$ we get an exact sequence $M/\mathfrak{m}M \otimes_A N \to M/\mathfrak{m}M \otimes_A N/\mathfrak{m}N \to 0$; hence, there is a surjective A-module homomorphism $M/\mathfrak{m}M \otimes_A N \twoheadrightarrow V$. However, by Exercise 2.2,

$$M/\mathfrak{m}M\otimes_A N=(A/\mathfrak{m}\otimes_A M)\otimes_A N=A/\mathfrak{m}\otimes_A (M\otimes_A N)=0,$$

a contradiction.

2.4. Let M_i ($i \in I$) be any family of A-modules, and let M be their direct sum. Prove that M is flat \Leftrightarrow each M_i is flat.

Solution. Suppose M is flat. If $f: N' \to N$ is an injective A-module homormophim, then $f \otimes 1: N \otimes M \to N' \otimes M$. However, $N \otimes M = \bigoplus_{i \in I} N \otimes M_i$ and $N' \otimes M = \bigoplus_{i \in I} N' \otimes M_i$. Observing $(f \otimes 1)(N \otimes M_i) \subseteq N' \otimes M_i$, the restriction $(f \otimes 1)|_{N \otimes M_i}: N \otimes M_i \to N' \otimes M_i$ is also injective. Therefore, each M_i is also flat.

Conversely, suppose each M_i is flat. If $0 \to N' \to N \to N'' \to 0$ is an exact sequence of A-modules, then $0 \to N' \otimes M_i \to N \otimes M_i \to N'' \otimes M_i \to 0$ is also exact. Therefore, the direct sum of exact sequences $0 \to \bigoplus_{i \in I} N' \otimes M_i \to \bigoplus_{i \in I} N \otimes M_i \to \bigoplus_{i \in I} N'' \otimes M_i \to 0$ is also exact. \square

2.5. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra.

Solution. As an A-module, $A[x] = \bigoplus_{i=0}^{\infty} Ax^i$ where $Ax^i \cong A$ for each $i \in \mathbb{Z}_{>0}$. Since A is clearly flat, its direct sum $A[x] \cong A^{\mathbb{Z}_{>0}}$ is also flat by Exercise 2.4.

2.6. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

$$m_0 + m_1 x + \dots + m_r x^r$$
 $(m_i \in M)$.

Defining the product of an element of A[x] and an element of M[x] in the obvious way, show that M[x] is an A[x]-module.

Show that $M[x] \cong A[x] \otimes_A M$.

Solution. M[x] is clearly an abelian group since M is itself an abelian group. Precisely, its abelian group structure is the same with the direct sum $M[x] \cong \bigoplus_{i=1}^{\infty} Mx^i \cong \bigoplus_{i=1}^{\infty} M$. Also, rules for scalar multiplication by A[x] straightforwardly (but too tedious to type every minor detail) hold.

Firstly, let's construct an A-module isomorphism $A[x] \otimes_A M \to M[x]$, and show that it preserves A[x]-scalar multiplication later. Define a map $f: A[x] \times M \to M[x]$ by

$$(a_0 + a_1 x + \dots + a_r x^r, m) \mapsto a_0 m + (a_1 m) x + \dots + (a_r m) x^r.$$

¹There are a lot of ways to show this, but one may use the fact that every *n*-dimensional vector space is isomorphic to k^n . In general, $R^n \otimes_R R^m = R^{nm}$ for any commutative ring R by Proposition 2.14.

It is easy to verify f is A-bilinear. Therefore, there is a unique A-module homomorphism $\phi: A[x] \otimes_A M \to M[x]$ sending $a_i x^i \otimes m$ to $(a_i m) x^i$. Now, define an A-module homomrphism $\psi: M[x] \to A[x] \otimes_A M$ by $m_i x^i \mapsto x^i \otimes m_i$ for each $i \in \mathbf{Z}_{\geqslant 0}$. Then $\psi \circ \phi = \mathrm{id}_{A[x] \otimes M}$ and $\phi \circ \psi = \mathrm{id}_{M[x]}$, so $\phi: A[x] \otimes_A M \to M[x]$ is an A-module isomorphism. We claim that ϕ actually respects scalar multiplication by A[x]. For $b_0 + b_1 x + \dots + b_s x^s \in A$, we have

$$f((b_0 + b_1 x + \dots + b_s x^s)(a_i x^i \otimes m)) = f((a_i b_0 x^i + a_i b_1 x^{i+1} + \dots + a_i b_s x^{s+i}) \otimes m)$$

$$= a_i b_0 m x^i + a_i b_1 m x^{i+1} + \dots + a_i b_s m x^{s+i}$$

$$= (b_0 + b_1 x + \dots + b_s x^s)(a_i m x^i)$$

$$= (b_0 + b_1 x + \dots + b_s x^s) f(a_i x^i \otimes m),$$

for each $i \in \mathbb{Z}_{\geq 0}$. Therefore, ϕ is also an A[x]-module isomorphism.

2.7. Let \mathfrak{p} be a prime ideal in A. Show that $\mathfrak{p}[x]$ is a prime ideal in A[x]. If \mathfrak{m} is a maximal ideal in A, is $\mathfrak{m}[x]$ a maximal ideal in A[x]?

Solution. Since $\mathfrak{p}[x]$ is the kernel of $A[x] \to (A/\mathfrak{p})[x]$, we have $A[x]/\mathfrak{p}[x] \cong (A/\mathfrak{p})[x]$. Suppose there are $a_0 + \dots + a_r x^r$ and $b_0 + \dots + b_r x^r$ in $(A/\mathfrak{p})[x]$ with non-zero a_r and b_r so that $(a_0 + \dots + a_r x^r)(b_0 + \dots + b_r x^r) = 0$. However, we get $a_r b_r = 0$, a contradiction for A/\mathfrak{p} is an integral domain. As a reulst, $\mathfrak{p}[x]$ is a prime ideal in A[x].

Let k be a field, A = k[y], and $\mathfrak{m} = (y)$. Then $k[y][x]/(y)[x] \cong (k[y]/(y))[x] \cong k[x]$, which is clearly not a field in general. Therefore, $\mathfrak{m}[x]$ is not a maximal ideal.

- **2.8.** i) If M and N are flat A-modules, then so is $M \otimes_A N$.
 - ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A- module.

Solution. i) If $f: L' \to L$ is an injective A-module homomorphism, then $(1 \otimes f): N \otimes L' \to N \otimes L$ is injective. Also, $1 \otimes (1 \otimes f): M \otimes (N \otimes L') \to M \otimes (N \otimes L)$ is injective. By the identification $M \otimes (N \otimes L') = (M \otimes N) \otimes L'$ and $M \otimes (N \otimes L) = (M \otimes N) \otimes L$, it induces an injective map $1' \otimes f: (M \otimes N) \otimes L' \to (M \otimes N) \otimes L$ given by $(m \otimes n) \otimes l' \mapsto (m \otimes n) \otimes l$. This shows $M \otimes_A N$ is flat.

ii) If $f: M' \to M$ is an injective A-module homomorphism then $(1 \otimes f): B \otimes_A M' \to B \otimes_A M$ is injective. However, we can regard this injective map as a B-module homomorphism, since $b_1b_2 \otimes m' \mapsto b_1b_2 \otimes f(m') = b_1(b_2 \otimes f(m'))$. Therefore, we get an injective B-module homomorphism $N \otimes_B (B \otimes_A M') \to N \otimes_B (B \otimes_A M)$, but by the canonical isomorphism in 2.15 of the main text, we get $N \otimes_A M' \to N \otimes_A M$ given by $n \otimes m' \mapsto n \otimes f(m')$. As a result, N is flat as an A-module.

2.9. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules. If M' and M'' are finitely generated, then so is M.

Solution. Regard M' as a submodule of M. Since $M/M' \cong M''$, there are $x_1, \dots, x_n \in M$ so that $x_1 + M', \dots, x_n + M'$ generate M/M'. That is, every element of M belongs to some coset, which is a linear combination of $x_1 + M', \dots, x_n + M'$. Let y_1, \dots, y_m be generators of M'. Then $x_1, \dots, x_n, y_1, \dots, y_m$ generate M.

²Since $M[x] \cong \bigoplus_i Mx^i$ as an A-module, this assignment uniquely determines ψ , which is well-defined.

³Checking only for generators suffices to show this.

2.10. Let A be a ring, \mathfrak{a} an ideal contained in the Jacobson radical of A; let M be an A-module and N a finitely generated A-module, and let $u:M\to N$ be a homomorphism. If the induced homomorphism $M/\mathfrak{a}M\to N/\mathfrak{a}N$ is surjective, then u is surjective.

Solution. Since N is finitely generated, so is $N/\mathfrak{a}N$. Suppose $n_1 + \mathfrak{a}N, \dots, n_r + \mathfrak{a}N$ generate $N/\mathfrak{a}N$ where $n_i = u(m_i)$ for some $m_i \in M$. Then $N = \mathfrak{a}N + \sum_{i=1}^r An_i$, so

$$N/\left(\sum_{i=1}^{r} An_i\right) \cong \mathfrak{a}N/\left(\mathfrak{a}N \cap \sum_{i=1}^{r} An_i\right) \cong \mathfrak{a}\left(N/\sum_{i=1}^{r} An_i\right).$$

By Nakayama's lemma, we get $N = \sum_{i=1}^{r} An_i$. Therefore, u is surjective.

2.11. Let A be a ring $\neq 0$. Show that $A^m \cong A^n \Rightarrow m = n$.

If $\phi: A^m \to A^n$ is surjective, then $m \ge n$.

If $\phi: A^m \to A^n$ is injective, is it always the case $m \le n$?

Solution. Let m be a maximal dieal of A and let $\phi: A^m \to A^n$ be an isomorphism. Then $1 \otimes \phi: (A/\mathfrak{m}) \otimes A^m \to (A/\mathfrak{m}) \otimes A^n$ is an isomorphism between vector spaces of dimensions m and n over the field $k = A/\mathfrak{m}$, since $(A/\mathfrak{m}) \otimes A^m \cong k^m$ and $(A/\mathfrak{m}) \otimes A^n \cong k^n$ by Exercise 2.2. Hence, m = n.

If ϕ is surjective, then the tensored morphism $1 \otimes \phi : k^m \to k^n$ is again surjective by Proposition 2.18. Therefore, $m \geq n$ by linear algebra.

The injectivity part is a very famous problem, and there are a lot of good answers for it. One way with a structural approach involves exterior algebra as Corollary 5.11 of [1]. However, I can not figure out a better answer than the following solution [2] in MathOverflow, which uses only Proposition 2.4. Suppose there is an injective A-module homomorphism $\phi:A^m\to A^n$ with m>n. Identifying A^n with $\{(a_1,\ldots,a_n,0,\ldots,0)\in A^m\mid a_i\in A\}\subseteq A^m$, we can regard it as an A-module embedding $\phi:A^m\hookrightarrow A^m$; i.e., $\phi(A^m)\subseteq A^m$. Therefore, by Proposition 2.4, ϕ satisfies an equation of the form

$$p(\phi)=\phi^d+a_1\phi^{d-1}+\cdots+a_d=0$$

where a_i are in A and $p(x) \in A[x]$. Suppose the polynomial p has the minimum degree (well ordering principle). If $a_d = 0$, then $\phi(\phi^{d-1} + a_1 \phi^{d-2} + \dots + a_{d-1})(v) = 0$ for all $v \in A^m$. However, by the injectivity of ϕ , we get $\phi^{d-1} + a_1 \phi^{d-2} + \dots + a_{d-1} = 0$, a contradiction. Therefore a_d is nonzero. However, the m-th coordinate of $p(\phi)(0,\dots,0,1)$ is a_d , contradicting to the assumption $\phi(A^m) \subseteq A^n$. This shows $m \le n$.

2.12. Let M be a finitely generated A-module and $\phi: M \to A^n$ a surjective homomorphism. Show that $\operatorname{Ker}(\phi)$ is finitely generated.

Solution. Let e_1, \ldots, e_n be a basis of A^n and choose $u_i \in M$ such that $\phi(u_i) = e_i$ $(1 \le i \le n)$. Let N be the submodule of M generated by u_1, \ldots, u_n . Then every element of x of M must be in some coset $y + \operatorname{Ker}(\phi)$ for some $y \in N$ if and only if $\phi(x) = \phi(y)$. This shows $N + \operatorname{Ker}(\phi) = M$. If $r_1u_1 + \cdots + r_nu_n \in N$ is in $\operatorname{Ker}(\phi)$, then $r_1e_1 + \cdots + r_ne_n = 0$ in A^n . This implies $r_1 = \cdots = r_n = 0$, so $N \cap \operatorname{Ker}(\phi) = 0$. As a result, $M = N \oplus \operatorname{Ker}(\phi)$. Since M is finitely generated, its quotient $M/N \cong \operatorname{Ker}(\phi)$ is also finitely generated.

2.13. Let $f:A\to B$ be a ring homomorphism, and let N be a B-module. Regarding N as an A-module by restriction of scalars, form the B-module $N_B=B\otimes_A N$. Show that the homomorphism $g:N\to N_B$ which maps y to $1\otimes y$ is injective and that g(N) is a direct summand of N_B .

Solution. We shall show $1 \otimes y \in B \otimes_A N$ is zero only if y = 0. Define $p : N_B \to N$ by $p(b \otimes y) = by$. It is easy to see that p is a B-module homomorphism. However, $p(1 \otimes y) = 0$ only if y = 0, so g is injective. Since p is clearly surjective, we have $N_B / \operatorname{Ker}(p) \cong N \cong \operatorname{Im}(g)$. Let $p^* : N_B / \operatorname{Ker}(p) \to N$ be the induced map by p. Then $p^*(1 \otimes y + \operatorname{Ker}(p)) = y$ for all $y \in N$, so $\operatorname{Im}(g) + \operatorname{Ker}(p) = N_B$ since every element of N must be in some coset $1 \otimes y + \operatorname{Ker}(p)$. However, because $p \circ g = \operatorname{id}_N$, we get $\operatorname{Im}(g) \cap \operatorname{Ker}(p) = 0$. This shows $N_B \cong \operatorname{Im}(g) \oplus \operatorname{Ker}(p) \cong N \oplus \operatorname{Ker}(p)$.

2.14. A partially ordered set I is said to be a *directed set* if for each pair i, j in I there exists $k \in I$ such that $i \le k$ and $j \le k$.

Let A be a ring, let I be a directed set and let $(M_i)_{i \in I}$ be a family of A-modules indexed by I. For each pair i, j in I such that $i \leq j$, let $\mu_{ij} : M_i \to M_j$ be an A-homomorphism, and suppose that the following axioms are satisfied:

- (1) μ_{ii} is the identity mapping of M_i , for all $i \in I$;
- (2) $\mu_{ik} = \mu_{jk} \circ \mu_{ij}$ whenever $i \leq j \leq k$.

Then the modules M_i and homomorphisms μ_{ij} are said to form a *direct system* $\mathbf{M} = (M_i, \mu_{ij})$ over the directed set I.

We shall construct an A-module M called the *direct limit* of the direct system \mathbf{M} . Let C be the direct sum of the M_i , and identify each module M_i with its canonical image in C. Let D be the submodule of C generated by all elements of the form $x_i - \mu_{ij}(x_i)$ where $i \leq j$ and $x_i \in M_i$. Let M = C/D, let $\mu : C \to M$ be the projection and let μ_i be the restriction of μ to M_i .

The module M, or more correctly the pair consisting of M and the family of homomorphisms $\mu_i: M_i \to M$, is called the *direct limit* of the direct system M, and is written $\varinjlim M_i$. From the construction it is clear that $\mu_i = \mu_j \circ \mu_{ij}$ whenever $i \leq j$.

Solution. There is nothing to do.

2.15. In the situation of Exercise 14, show that every element of M can be written in the form $\mu_i(x_i)$ for some $i \in I$ and some $x_i \in M_i$.

Show also that if $\mu_i(x_i) = 0$ then there exists $j \ge i$ such that $\mu_{ij}(x_i) = 0$ in M_j .

Solution. In the construction of M in Exercise 2.14, there are finitely many $i_1, \ldots, i_n \in I$ so that $y = \mu_{i_1}(x_{i_1}) + \cdots + \mu_{i_n}(x_{i_n})$. Choose some $j \ge i_1, \ldots, i_n$ and let $x_j := \mu_{i_1 j}(x_{i_1}) + \cdots + \mu_{i_n j}(x_{i_n})$. Then $\mu_j(x_j) = y$.

Suppose $\mu_i(x_i) = 0$. Then x_i is in Ker(μ), where $\mu : C := \bigoplus_{i \in I} M_i \to M$ is the projection. Since Ker(μ) is a submodule of C generated by $\{y_i - \mu_{ij}(y_i) \mid i, j \in I, j \geq i\}$, we have $x_i = \sum_{p=1}^n (y_p - \mu_{i_p j_p}(y_p))$ where $y_p \in M_{i_p}$ and $i_p \leq j_p$. However, every term not in M_i must be eliminated by other terms, so $x_i = y_{i'} - \mu_{i'j}(y_{i'})$ for some $y_{i'} \in M_{i'}$. The only possible way is $y_{i'} = x_i$ and $\mu_{ij}(x_i) = 0$.

2.16. Show that the direct limit is characterized (up to isomorphism) by the following property. Let N be an A-module and for each $i \in I$ let $\alpha_i : M_i \to N$ be an A-module homomorphism such that $\alpha_i = \alpha_j \circ \mu_{ij}$ whenever $i \leq j$. Then there exists a unique homomorphism $\alpha : M \to N$ such that $\alpha_i = \alpha \circ \mu_i$ for all $i \in I$.

Solution. Rephrasing the property as a commutative diagram is as follows:

for $j \ge i$, where each triangle in the diagram commutes. This property uniquely characterizes M up to 'unique' isomorphism. Suppose our given (M, μ_i) satisfies the property, and another module (M', μ'_i) satisfies the same property. Trivially, if we plug M to N, the unique morphism α is the identity id_M . However, by the assumption, there are unique morphisms β and γ so that each triangle of the following diagram commutes

for each $j \ge i$. Therefore we get $\gamma \circ \beta = \mathrm{id}_M$. Ditto $\beta \circ \gamma = \mathrm{id}_{M'}$, and this shows M and M' are isomorphic by 'unique' isomorphisms β and γ .

Now let's show (M, μ_i) actually satisfy the property. Define an A-module homomorphism $f: \bigoplus_{i\in I} M_i \to N$ as $(x_i)_{i\in I} \mapsto \sum_{i\in I} \alpha_i(x_i)$. Since $\alpha_i(x_i) = \alpha_j(\mu_{ij}(x_i))$ by the assumption, $f(x_i - \mu_{ij}(x_i)) = 0$. Therefore $\operatorname{Ker}(\mu) \subseteq \operatorname{Ker}(f)$, so we get the induced A-module homomorphism $\alpha: M \to N$ satisfying $\alpha \circ \mu = f$. By the construction, $\alpha(\mu_i(x_i)) = f(x_i) = \alpha_i(x_i)$ for any $x_i \in M_i$, so α satisfies the desired property. To show the uniqueness of α , suppose $\alpha': M \to N$ also satisfies the same property. By Exercise 2.15, every element of M can be written in the form $\mu_i(x_i)$ for some $x_i \in M_i$. But $\alpha'(\mu_i(x_i)) = \alpha_i(x_i) = \alpha(\mu_i(x_i))$. This ends the proof.

2.17. Let $(M_i)_{i\in I}$ be a family of submodules of an A-module, such that for each pair of indices i,j in I there exists $k\in I$ such that $M_i+M_j\subseteq M_k$. Define $i\leqslant j$ to mean $M_i\subseteq M_j$ and let $\mu_{ij}:M_i\to M_j$ be the embedding of M_i in M_j . Show that

$$\varinjlim M_i = \sum M_i = \bigcup M_i.$$

In particular, any A-module is the direct limit of its finitely generated submodules.

Solution. For any $m,n\in \sum M_i$, notice m+n belongs to some ambient module M_k , so $\bigcup M_i=\sum M_i$. Let $\mu_i:M_i\to \sum M_i$ be the natural inclusion, and suppose N be an A-module and for each $i\in I$ let $\alpha_i:M_i\to N$ is an A-module homomorphism such that $\alpha_i=\alpha_j\circ\mu_{ij}$ whenever $i\in j$. Then an A-module homomorphism $\alpha:\sum M_i\to N$ given by $(x_i)_{i\in I}\mapsto \sum \alpha_i(x_i)$ satisfies $\alpha(\mu_i(x_i))=\alpha_i(x_i)$ for arbitrary $x_i\in M_i$. Since μ_i is nothing but inclusion, such α satisfying $\alpha=\alpha_i\circ x_i$ for any $i\in I$ is unique. This shows that $\varinjlim M_i=\sum M_i$ by Exercise 2.16.

In particular, let M be any A-module, and $(M_i)_{i\in I}$ be the collection of all finitely generated submodules of M. For each $i,j\in I$, M_i+M_j is also finitely generated; hence I and $(M_i)_{i\in I}$ satisfies the desired property. Moreover, for any $x\in M$, Ax is a finitely generated submodule itself, so $M=\sum M_i=\lim M_i$.

2.18. Let $\mathbf{M} = (M_i, \mu_{ij})$, $\mathbf{N} = (N_i, \nu_{ij})$ be direct systems of A-modules over the same directed set. Let M, N be the direct limits and $\mu_i : M_i \to M$, $\nu_i : N_i \to N$ the associated homomorphisms.

A homomorphism $\square: \mathbf{M} \to \mathbf{N}$ is by definition a family of A-module homomorphisms $\phi_i: M_i \to N_i$, such that $\phi_j \circ \mu_{ij} = \nu_{ij} \circ \phi_i$ whenever $i \leq j$. Show that \square defines a unique homomorphism $\phi = \varinjlim \phi_i: M \to N$ such that $\phi \circ \mu_i = \nu_i \circ \phi_i$ for all $i \in I$.

Solution. Let $\alpha_i := \nu_i \circ \phi_i$ for each $i \in I$. Then by the assumption, we get

$$\begin{aligned} \alpha_i &= \nu_i \circ \phi_i \\ &= \nu_j \circ \nu_{ij} \circ \phi_i \\ &= \nu_j \circ \phi_j \circ \mu_{ij} \\ &= \alpha_j \circ \mu_{ij}, \end{aligned}$$

whenever $i \le j$. By Exercise 2.16, this implies that there exists a unique homomorphism $\phi: M \to N$ so that the following diagram commutes:

whenever $i \leq j$. This ends the proof.

2.19. A sequence of direct systems and homomorphisms

$$M \to N \to P$$

is *exact* if the corresponding sequence of modules and module homomorphisms is exact for each $i \in I$. Show that the sequence $M \to N \to P$ of direct limits is then exact.

Solution. For the notations, let $\mathbf{M} = (M_i, \mu_{ij})$, $\mathbf{N} = (N_i, \nu_{ij})$, and $\mathbf{P} = (P_i, \pi_{ij})$ be direct systems of A-modules over the same directed set I. Let M, N, and P be the direct limits and $\mu_i : M_i \to M$, $\nu_i : N_i \to N$, and $\pi_i : P_i \to P$ be the associated homomorphisms. Let $\mathbf{\Phi} : \mathbf{M} \to \mathbf{N}$ and $\mathbf{\Psi} : \mathbf{N} \to \mathbf{P}$ denote homomorphisms of direct systems so that the given sequence is exact where $\phi_i : M_i \to N_i$, and $\psi_i : N_i \to P_i$ are associated homomorphisms. By Exercise 2.18, they define a unique homomorphism $\phi = \varinjlim \phi_i : M \to N$ and $\psi = \varinjlim \psi_i : N \to P$ such that $\phi \circ \mu_i = \nu_i \circ \phi_i$ and $\psi \circ \nu_i = \pi_i \circ \psi_i$. Then the following diagram commutes:

whenever $i \leq j$, where the first and second rows are exact by the assumption. We claim that $\operatorname{Im}(\phi) = \operatorname{Ker}(\psi)$; i.e., the third row is exact. By Exercise 2.15, for any $m \in M$, there are some $i \in I$ and some $m_i \in M_i$ so that $m = \mu_i(m_i)$. Then $\psi(\phi(m)) = (\psi \circ \phi \circ \mu_i)(m_i) = (\pi_i \circ \psi_i \circ \phi_i)(m_i) = \pi_i(0) = 0$, so $\operatorname{Im}(\phi) \subseteq \operatorname{Ker}(\psi)$. For the reverse inclusion, suppose n is in $\operatorname{Ker}(\psi)$. By Exercise 2.15 again, there exists some $i \in I$ and some $n_i \in N_i$ such that $n = \nu_i(n_i)$. However, $0 = \psi(n) = \psi(\nu_i(n_i)) = \pi_i(\psi_i(n_i))$, so there exists some $j \geq i$ such that $\pi_{ij}(\psi_i(n_i)) = 0$ by the second statement of Exercise 2.15. Notice $\psi_j(\nu_{ij}(n_i)) = \pi_{ij}(\psi_i(n_i)) = 0$. Thus, there exists some $m_j \in M_j$ such that $\phi_j(m_j) = \nu_{ij}(n_i)$ due to the assumption that $\operatorname{Im}(\phi_j) = \operatorname{Ker}(\psi_j)$. As a result,

$$\phi(\mu_j(m_j)) = \nu_j(\phi_j(m_j)) = \nu_j(\nu_{ij}(n_i)) = \nu_i(n_i) = n.$$

This shows $Im(\phi) = Ker(\psi)$.

2.20. Keeping the same notation as in Exercise 14, let N be any A-module. Then $(M_i \otimes N, \mu_{ij} \otimes 1)$ is a direct system; let $P = \varinjlim(M_i \otimes N)$ be its direct limit. For each $i \in I$ we have a homomorphism $\mu_i \otimes 1 : M_i \otimes N \to \overrightarrow{M} \otimes N$, hence by Exercise 16 a homomorphism $\psi : P \to M \otimes N$. Show that ψ is an isomorphism, so that

$$\underline{\lim}(M_i\otimes N)\cong(\underline{\lim}M_i)\otimes N.$$

Solution. For the notation, let $\mu_i': M_i \otimes N \to P$ denote the canonical A-module homomorphism characterizing the direct limit P. Then $\psi \circ \mu_i' = \mu_i \otimes 1$ for all $i \in I$. For each $i \in I$, let $g_i: M_i \times N \to M_i \otimes N$ be the canonical bilinear mapping given by $(m_i, n) \mapsto m_i \otimes n$. Fixing $n \in N$, we get an A-module homomorphisms $g_i(-, n): M_i \to M_i \otimes N$, and it is easy to see that they form a homomorphism $(M_i, \mu_{ij}) \to (M_i \otimes N, \mu_{ij} \otimes 1)$ between two directed system. Therefore, by Exercise 2.18, they define a unique homomorphism $g(-, n): M \to P$ such that $g(-, n) \circ \mu_i = \mu_i' \circ g_i(-, n)$. We claim that $g(m, -): N \to P$ is also an A-module homomorphism for each fixed $m \in M$. By Exercise 2.15, there exist some $i \in I$ and some $m_i \in M_i$

so that $\mu_i(m_i) = m$. Then for any $n_1, n_2 \in N$ and $a \in A$, we have

$$\begin{split} g(m,n_1+an_2) &= g(\mu_i(m_i),n_1+an_2) \\ &= (g(-,n_1+an_2)\circ\mu_i)(m_i) \\ &= \mu_i'(g_i(m_i,n_1+an_2)) \\ &= \mu_i'(g_i(m_i,n_1)+ag_i(m_i,n_2)) \\ &= \mu_i'(g_i(m_i,n_1))+a\mu_i'(g_i(m_i,n_2)) \\ &= g(m,n_1)+ag(m,n_2), \end{split}$$

assuming $m = \mu_i(m_i)$ for some $i \in I$ and some $m_i \in M_i$. We finally get a bilinear map $g: M \times N \to P$, and hence we obtain the corresponding A-module homomorphism $\phi: M \otimes N \to P$ such that $\phi(m \otimes n) = g(m, n)$.

Now we claim that ϕ and ψ are mutually inverse. For any $m \in M$ and $n \in N$, assuming $m = \mu_i(m_i)$ for some $i \in I$ and some $m_i \in M_i$,

$$\psi(\phi(m \otimes n)) = \psi(g(m, n))
= \psi(g(\mu_i(m_i), n))
= (\psi \circ \mu'_i)(g_i(m_i, n))
= (\mu_i \otimes 1)(g_i(m_i, n))
= (\mu_i \otimes 1)(m_i \otimes n)
= \mu_i(m_i) \otimes n
= m \otimes n,$$

so $\psi \circ \phi = \mathrm{id}_{M \otimes N}$. For the converse, for given $p \in P$, there is some $i \in I$ and some $x_i \in M_i \otimes N$ so that $p = \mu_i'(x_i)$. We may write $x_i = \sum_{j=1}^k m_{ij} \otimes n_j$ for some $k \in \mathbf{Z}_{\geqslant 0}, m_{i1}, \dots, m_{ik} \in M_i$, and $n_1, \dots, n_k \in N$. Then,

$$\phi(\psi(p)) = (\phi \circ \psi \circ \mu'_i)(x_i)$$

$$= \sum_{j=1}^k (\phi \circ (\mu_i \otimes 1))(m_{ij} \otimes n_j)$$

$$= \sum_{j=1}^k \phi(\mu_i(m_{ij}) \otimes n_j)$$

$$= \sum_{j=1}^k g(\mu_i(m_{ij}), n_j)$$

$$= \sum_{j=1}^k \mu'_i(g_i(m_{ij}, n_j))$$

$$= \sum_{j=1}^k \mu'_i(m_{ij} \otimes n_j)$$

$$= p.$$

As a result, $\underline{\lim}(M_i \otimes N) \cong (\underline{\lim} M_i) \otimes N$.

2.21. Let $(A_i)_{i \in I}$ be a family of rings indexed by a directed set I, and for each pair $i \leq j$ in I let $\alpha_{ij}: A_i \to A_j$ be a ring homomorphism, satisfying conditions (1) and (2) of Exercise 14. Regarding each A_i as a **Z**-module we can then form the direct limit $A = \varinjlim A_i$. Show that A inherits a ring structure from the A_i so that the mappings $A_i \to A$ are ring homomorphisms. The ring A is the direct limit of the system (A_i, α_{ij}) .

If A = 0 prove that $A_i = 0$ for some $i \in I$.

Solution. We define multiplication of A as follows. For any $a,b \in A$, by Exercise 2.15, there are some $i \in I$ and some $x_i, y_i \in A_i$ such that $a = \alpha_i(x_i)$ and $b = \alpha_i(y_i)$. (We can say x_i, y_i lie on same A_i since I is a directed set; precisely, if $x_{i_1} \in A_{i_1}$ and $y_{i_2} \in A_{i_2}$, then there exists $i \in I$ such that $i_1 \le i$ and $i_2 \le i$, and let x_i and y_i be $\alpha_{i_1i}(x_{i_1})$ and $\alpha_{i_2i}(y_{i_2})$, respectively) Then define ab as $\alpha_i(x_iy_i)$. To show it is well-defined, suppose $a = \alpha_j(x_j)$ and $b = \alpha_j(y_j)$ for some $j \in I$ and some $x_j, y_j \in A_j$. There exists some $k \in I$ such that $i \le k$ and $j \le k$, so

$$\alpha_k(\alpha_{ik}(x_i) - \alpha_{jk}(x_j)) = 0$$
 and $\alpha_k(\alpha_{ik}(y_i) - \alpha_{jk}(y_j)) = 0$.

Then by Exercise 2.15, there is some $k' \ge k$ so that⁴

$$\alpha_{kk'}(\alpha_{ik}(x_i) - \alpha_{jk}(x_j)) = 0$$
 and $\alpha_{kk'}(\alpha_{ik}(y_i) - \alpha_{jk}(y_j)) = 0$.

Observe

$$\alpha_{ik}(x_iy_i) - \alpha_{jk}(x_iy_j) = \alpha_{ik}(x_i)(\alpha_{ik}(y_i) - \alpha_{jk}(y_j)) + \alpha_{jk}(y_j)(\alpha_{ik}(x_i) - \alpha_{jk}(x_j)).$$

Plugging it into the ring homomorphism $\alpha_{kk'}$, we obtain

$$\alpha_{kk'}(\alpha_{ik}(x_iy_i) - \alpha_{jk}(x_jy_j)) = 0.$$

This demonstrates that $\alpha_i(x_iy_i) = \alpha_j(x_jy_j)$ in A, ensuring the well-defined nature of the multiplication. For $i \in I$, let 1_i denote the multiplicative identity of A_i . As $\alpha_{ij}(1_i) = 1_j$, we can deduce that $\alpha_i(1_i) = \alpha_j(1_j)$ for all $i, j \in I$. Let 1 represent $\alpha_i(1_i)$. Consequently, for any element $a = \alpha_i(x_i)$ in A, $1a = \alpha_i(1_ix_i) = \alpha_i(x_i) = a$. This confirms that the ring structure with which we have endowed A makes each α_i a ring homomorphism.

Now suppose A=0. Then for any $i\in I$ and $a_i\in A_i$, a_i is in $\mathrm{Ker}(\mu)$, where $\mu:C:=\bigoplus_{i\in I}M_i\to M$ is the projection. Then as the solution of Exercise 2.15, there exists some $j\in I$ such that $\mu_{ij}(1_i)=0$. Since μ_{ij} must sends 1_i to 1_j , it implies $A_j=0$.

2.22. Let (A_i, α_{ij}) be a direct system of rings and let \mathfrak{N}_i be the nilradical of A_i . Show that $\lim \mathfrak{N}_i$ is the nilradical of $\lim A_i$.

If each A_i us an integral domain, then $\varliminf A_i$ is an integral domain.

Solution. Let \Re denote the nilradical of $\varinjlim A_i$. Since $\alpha_{ij}(\Re_i) \subseteq \Re_j$ for each $i \leq j$, the inclusion $\iota_i : \Re_i \hookrightarrow A_i$ induces the corresponding homomorphism $\iota : \varinjlim \Re_i \to \varinjlim A_i$, and ι is injective by Exercise 2.19. Therefore we can regard $\varinjlim \Re_i$ as a subset of $\varinjlim A_i$ via ι . If $x_i \in A_i$ is nilpotent, then $\alpha_i(x_i)$ is also nilpotent, so $\varinjlim \Re_i \subseteq \Re$ by Exercise 2.15. Conversely, suppose $x \in \varinjlim A_i$ is nilpotent; i.e., $x^r = 0$ for some $r \in \mathbb{Z}_{\geq 0}$. By Exercise 2.15 again, it implies there exists some i, j such that $x = \alpha_i(x_i)$ and $\alpha_{ij}(x_i)^r = 0$. Then $\alpha_{ij}(x_i)$ is in \Re_j , so $x = \alpha_j(\alpha_{ij}(x_i))$ is in $\varinjlim \Re_i$.

⁴Rigorously speaking, to show $\alpha_{kk'}$ sends 'both' of them 0, we should repeat the same argument as showing that we can assume x_i and y_i lie on the same A_i .

2.23. Let $(B_{\lambda})_{\lambda \in \Lambda}$ be a family of A-algebras. For each finite subset J of Λ let B_J denote the tensor product (over A) of the B_{λ} for $\lambda \in J$. If J' is another finite subset of A and $J \subseteq J'$, there is a canonical A-algebra homomorphism $B_J \to B_{J'}$. Let B denote the direct limit of the rings B_J as J runs through all finite subsets of Λ . The ring B has a natural A-algebra structure for which the homomorphisms $B_J \to B$ are A-algebra homomorphisms. The A-algebra B is the *tensor product* of the family $(B_{\lambda})_{\lambda \in \Lambda}$.

Solution. There is nothing to do.

2.24. If M is an A-module, the following are equivalent:

- i) M is flat;
- ii) $\operatorname{Tor}_n^A(M, N) = 0$ for all n > 0 and all A-modules N;
- iii) $\operatorname{Tor}_1^A(M, N) = 0$ for all A-modules N.

Remark. An *A*-module *P* is *projective* if and only if for every surjective *A*-module homomorphism $p: M \to M''$ and any *A*-module homomorphism $b: P \to M''$, there exists a lifting g; that is, there exists a homomorphism g makes the following diagram commute:

$$M \xrightarrow{g} M'' \longrightarrow 0$$

It is easy to see that an A-module P is projective if and only if $\operatorname{Hom}_A(P, -)$ is an exact functor; that is, for every exact sequence of A-modules

$$0 \to M'' \to M \to M' \to 0$$
.

the sequence

$$0 \to \operatorname{Hom}(P, M'') \to \operatorname{Hom}(P, M) \to \operatorname{Hom}(P, M') \to 0$$

is also exact. For instance, every free A-module is projective ([3], Theorem 3.5). For an A-module N, a **projective resolution** of N is an exact sequence

$$\cdots \to P_2 \xrightarrow{\partial_2} P_1 \xrightarrow{\partial_1} P_0 \xrightarrow{\varepsilon} N \to 0$$

in which each P_n is projective. If P_n is free, then the sequence is called *free resolution* of N. It is well known that every A-module N has a free resolution (the proof is actually not difficult, see Proposition 6.2 of [3]); hence, every A-module has a projective resolution. For a given projective resolution of N, remove N

$$\cdots \rightarrow P_2 \xrightarrow{\partial_2} P_1 \xrightarrow{\partial_1} P_0 \xrightarrow{\partial_0} 0$$

and form the following sequence by tensoring it with M:

$$\cdots \to M \otimes_A P_2 \xrightarrow{1_M \otimes \partial_2} M \otimes_A P_1 \xrightarrow{1_M \otimes \partial_1} M \otimes_A P_0 \xrightarrow{1_M \otimes \partial_0} 0.$$

It is not an exact sequence in general, but it is easy to see that $\operatorname{Im}(1_M \otimes \partial_{n+1}) \subseteq \operatorname{Ker}(1_M \otimes \partial_n)$ for all $n \geq 0$. Such sequence is called a **chain complex**. For $n \geq 0$, the *A*-module $\operatorname{Tor}_n^A(M,N)$ is the **homology** of this complex at position n; that is, $\operatorname{Tor}_n^A(M,N) = \operatorname{Ker}(1_M \otimes \partial_n) / \operatorname{Im}(1_M \otimes \partial_{n+1})$ for n > 0, and $\operatorname{Tor}_0^A(M,N) = \operatorname{Coker}(1_M \otimes \partial_1) \cong M \otimes_A N$. Surprisingly, $\operatorname{Tor}_n^A(M,N)$ does not depend on the choice of projective resolution of N ([3], Proposition 6.20).

One of the most fundamental properties (in some context it is treated as an axiom for derived functors, which is the general notion of Tor functor; see Definition 2.1.1 of [4]) of Tor functor is as follows. If $0 \to N' \to N \to N''$ is an exact sequence of A-modules, then for an A-module M there is a long exact sequence, called Tor exact sequence ([3], Theorem 6.27),

$$\cdots \to \operatorname{Tor}_{n}^{A}(M, N') \to \operatorname{Tor}_{n}^{A}(M, N) \to \operatorname{Tor}_{n}^{A}(M, N'') \to \operatorname{Tor}_{n-1}^{A}(M, N') \to \operatorname{Tor}_{n-1}^{A}(M, N) \to \operatorname{Tor}_{n-1}^{A}(M, N'') \to \cdots$$

which ends with

$$\cdots \to \operatorname{Tor}_0^A(M, N') \to \operatorname{Tor}_0^A(M, N) \to \operatorname{Tor}_0^A(M, N'') \to 0.$$

Recall $\operatorname{Tor}_0^A(M,N) \cong M \otimes_A N$.

Solution. $[(i) \Rightarrow (ii)]$ Suppose an exact sequence

$$\cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow N \rightarrow 0$$

is a free resolution of N, and by tensoring with M we get

$$\cdots \to F_2 \otimes M \to F_1 \otimes M \to F_0 \otimes M \to N \otimes M \to 0.$$

Since M is flat, the resulting sequence is exact and therefore its homology groups, which are the $\operatorname{Tor}_n^A(M,N)$, are zero for n>0.

 $[(ii) \Rightarrow (iii)]$ It is trivial.

[(iii) \Rightarrow (i)] Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence. Then from the Tor exact sequence,

$$\operatorname{Tor}_{1}^{A}(M, N'') \to M \otimes N' \to M \otimes N \to M \otimes N'' \to 0$$

is exact. Since $\operatorname{Tor}_1^A(M, N'') = 0$ it follows that M is flat.

2.25. Let $0 \to N' \to N \to N'' \to 0$ be an exact sequence, with N'' flat. Then N' is flat $\Leftrightarrow N$ is flat.

Solution. From the Tor exact sequence, we get an exact sequence

$$\cdots \to \operatorname{Tor}_2(M,N'') \to \operatorname{Tor}_1(M,N') \to \operatorname{Tor}_1(M,N) \to \operatorname{Tor}_1(M,N'') \to \cdots$$

for all A-modules M. If N'' and N' are flat, then $0 \to \operatorname{Tor}_1(M,N) \to 0$ is exact, implying $\operatorname{Tor}_1(M,N) = 0$. Therefore N is flat. If N'' and N are flat, then $0 \to \operatorname{Tor}_1(M,N') \to 0$ is exact. As a result N' is flat.

2.26. Let N be an A-module. Then N is flat \Leftrightarrow $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$ for all finitely generated ideals \mathfrak{a} in A.

Solution. If N is flat, then $\operatorname{Tor}_1(M,N)=0$ for all A-modules M by Exercise 2.24. To show the converse, firstly we claim that N is flat if $\operatorname{Tor}_1(M,N)=0$ for all finitely generated A-modules M. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of finitely generated A-modules. Then form the Tor exact sequence, we get an exact sequence

$$\operatorname{Tor}_{1}(M'', N) \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0.$$

Since $\operatorname{Tor}_1(M'',N)=0$ by the assumption, we conclude that for any injective homomorphism $f:M'\to M$ the corresponding homomorphism $f\otimes 1:M'\otimes N\to M\otimes N$ is injective. Hence N is flat by Proposition 2.19, and this shows the claim holds. Now suppose $\operatorname{Tor}_1(A/\mathfrak{a},N)=0$ for all finitely generated ideals \mathfrak{a} in A. If M is finitely generated, let x_1,\ldots,x_n be a set of generators of M, and let M_i be the submodule generated by x_1,\ldots,x_i . Observe that for a given cyclic module Ax, a map $f:A\to Ax$ given by $1\mapsto x$ is an A-module homomorphism, implying $Ax\cong A/\operatorname{Ker}(f)$. Since M_i/M_{i-1} is generated by a single element for $2\leq i\leq n, M_i/M_{i-1}\cong A/\mathfrak{a}_i$ for some ideal \mathfrak{a}_i . Consider the exact sequence

$$0 \to M_{i-1} \to M_i \to M_i/M_{i-1} \to 0$$

for $2 \le i \le n$. Since $\operatorname{Tor}(M_1, N) = 0$ and $\operatorname{Tor}_1(M_i/M_{i-1}, N) = 0$ by the hypothesis for $2 \le i \le n$, proceeding by induction on i we get $\operatorname{Tor}_1(M, N) = \operatorname{Tor}_1(M_n, N) = 0$. This ends the proof.

2.27. A ring *A* is *absolutely flat* if every *A*-module is flat. Prove that the following are equivalent:

- i) A is absolutely flat
- ii) Every principal ideal is idempotent.
- iii) Every finitely generated ideal is a direct summand of A.

Solution. [i) \Rightarrow ii)] Let $x \in A$. Since A/(x) is a flat A-module, the map $\alpha : (x) \otimes A/(x) \rightarrow A \otimes A/(x) = A/(x)$ induced by the inclusion $(x) \hookrightarrow A$ is injective. Since $\alpha(x \otimes \bar{a}) = x\bar{a} = 0$, we get $(x) \otimes A/(x) = 0$. However, $(x) \otimes A/(x) = (x)/(x^2)$ by Exercise 2.2, so $(x) = (x^2)$.

[ii) \Rightarrow iii)] Let $x \in A$. Then $x = ax^2$ for some $a \in A$, hence e = ax is idempotent, and (x) = (e) because x = xe. Now if e, f are idempotents, then (e, f) = (e + f - ef) since e(e + f - ef) = e and f(e + f - ef) = f. Therefore every finitely generated ideal is principal, and generated by an idempotent e, hence is a direct summand because $A = (e) \oplus (1 - e)$.

[iii) \Rightarrow i)] Clearly A is an flat A-module, so every finitely generated ideal of A is flat by Exercise 2.4. Since A/\mathfrak{a} is a direct summand of A for any finitely generated ideal \mathfrak{a} , we have $\operatorname{Tor}_1(A/\mathfrak{a}, N) = 0$ for any A-module N. By Exercise 2.26, every A-module is flat. \square

2.28. A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise 7 is absolutely flat. Every homomorphic image of an absolutely flat ring is absolutely flat. If a local ring is absolutely flat, then it is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.

⁵Consider maps $A \to (e) \oplus (1-e)$ and $(e) \oplus (1-e) \to A$ given by $a \mapsto (ae, a(1-e))$ and $(a, b) \mapsto a + b$, respectively. Then they are two-sided inverses of each other.

Jaehyeon Lee

Solution. Every principal ideal of a Boolean ring is clearly idempotent, which makes it absolutely flat.

Let A be the ring of Chapter 1, Exercise 7; i.e., A is a nonzero ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Suppose $x^n = x$ and $y^m = y$ for some n, m > 1. Then $x = x(x^{n-1} + y^{m-1} - x^{m-1}y^{m-1})$ and $y = y(x^{n-1} + y^{m-1} - x^{m-1}y^{m-1})$, so $(x, y) = (x^{n-1} + y^{m-1} - x^{m-1}y^{m-1})$. Therefore every finitely generated ideal is principal. Since $x = x^{n-2}x^2$, we have $(x) = (x^2)$, so A is absolutely flat.

Let $\phi : A \to B$ be a ring homomorphism where A is absolutely flat. Then $\phi(A) \cong A / \operatorname{Ker}(\phi)$. For any principal ideal (\bar{x}) of $A / \operatorname{Ker}(\phi)$, clearly $(\bar{x}) = (\bar{x})^2$ because $(x) = (x)^2$ in A. Therefore every homomorphic image of an absolutely flat ring is absolutely flat.

Suppose A is a local ring which is absolutely flat. For any $x \in A$, since every principal ideal is idempotent, we have $x = ax^2$ for some $a \in A$. Then e = ax is idempotent, but a local ring contains no idempotent neither 0 nor 1. Therefore, if x is nonzero, x is a unit, so A is a field.

Now suppose A is absolutely flat and x is a non-unit in A. Since every principal ideal is idempotent, there is some $a \in A$ so that $x(1-ax) = x - ax^2 = 0$. If x is not a zero divisor, then 1-ax = 0, leading to a contradiction. This shows that every non-unit in A is a zero-divisor. \Box

References

- [I] K. Conrad. Exterior powers. https://kconrad.math.uconn.edu/blurbs/linmultialg/extmod.pdf.
- [2] Balazs Strenner (https://mathoverflow.net/users/11214/balazs strenner). Atiyah-macdonald, exercise 2.11. https://mathoverflow.net/q/47846.
- [3] Joseph J. Rotman. *An Introduction to Homological Algebra*. Springer Science+Buisness Media, second edition, 2009.
- [4] Charles A. Weibel. *An Introduction to Homological Algebra*. Cambridge University Press, 1994.