Einfache Differentialgleichungen (algebraische Lösung)

0. Definition, Einschränkung

Definition: Sei die Funktion mit Gleichung y = f(x) n-mal differenzierbar. Gilt $F(x, y, y', y'', ..., y^{(n)}) = 0$ (für alle x), so erfüllt y=f(x) die **Differentialgleichung** (DGL) **F = 0 n-ter Ordnung**.

Beispiele: 1)
$$x^2 + 3y - \sin(x) \cdot y' + 3.5 (y'')^2 = 0$$
 DGL 2. Ordnung 2a) $y' = y$ b) $y' = ky$ DGL 1. Ordnung 3) $y'' = g = konstant$ DGL 2. Ordnung 4) $\dot{N}(t) = -k N(t)$ DGL 1. Ordnung

Wir betrachten zuerst Differentialgleichungen 1. Ordnung und gehen davon aus, dass die Gleichung F(x,y,y') = 0 nach y' aufgelöst werden kann, d.h. es gilt y' = g(x,y).

1. Trennung (Separation) der Variablen

Gegeben sei eine DGL der Form y' = $g(x,y) = \frac{z(x)}{n(y)}$

Dann gilt:
$$y' = \frac{dy}{dx} = \frac{z(x)}{n(y)}$$
, also $n(y) dy = z(x) dx$

Die Variablen x und y wurden also getrennt (separiert).

Integriert man beide Seiten, so erhält man die Lösung der DGL (Beweis später mit dem Integral einer Verketteten Funktion).

Beispiel 1:
$$y' = g(x,y) = -\frac{x}{y}$$
 (also $z(x) = -x$, $n(y) = y$)
$$\frac{dy}{dx} = -\frac{x}{y}$$

$$y \ dy = -x \ dx$$

$$\int y dy = -\int x dx$$

$$\frac{y^2}{2} = -\frac{x^2}{2} + C_1$$
Allgemeine Lösung der DGL lautet also : $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{C}$ (= 2C₁) für C>0 : Schar der Kreise mit Mittelpunkt M(0/0)

Richtungsfeld und Isoklinenschar

Geometrische Deutung der DGL y' = g(x,y) an Hand von Beispiel 1:

Bei y' = g(x,y) lässt sich jedem Punkt (x|y) ein Winkel γ zuordnen, so dass gilt: $y' = g(x,y) = \tan \gamma$ (y' gibt ja Tangentensteigung in (x|y) an) **Eine Lösung** der DGL y' = g(x,y) ist also eine Kurve, die in jedem ihrer Punkte die vorgeschriebene Tangentensteigung hat.

Beispiel 1: $y' = g(x,y) = -\frac{x}{y}$, Definitionsbereich = π_1 -Ebene ohne x-Achse

Man betrachtet y' := k = konstant (zur Bestimmung der sog. **Isoklinen**)

k=-1: -
$$\frac{x}{y}$$
 = -1, für Punkte auf g₋₁: y = x ist also y'=-1

k=1: -
$$\frac{x}{y}$$
 = 1, für Punkte auf g₁: y = -x ist also y'=1

k=0: -
$$\frac{x}{y}$$
 = 0, für Punkte auf g₀: x = 0 (y-Achse) ist also y'=0

k≠0: -
$$\frac{x}{y}$$
 = k, für Punkte auf g_k: y = - $\frac{x}{k}$ ist also y'=k

Die DGL y' = - $\frac{x}{y}$ wird also durch ein **Richtungsfeld** veranschaulicht.

Gleichung der **Isoklinenschar** lautet $y = -\frac{x}{k}$ für $k\neq 0$, bzw. x=0 für k=0.

Die Isoklinenschar ist also hier eine Geradenschar.

Gibt man eine bestimmte Anfangsbedingung $P(x_0|y_0)$ vor, so ergibt sich **eine** Lösungskurve der DGL, z.B. für $x_0=0$, $y_0=1$:

Man bestimmt nun die Konstante C in der allgemeinen Lösung: 0 + 1 = C, also C=1. Diejenige Lösungskurve der DGL, die durch den Punkt P(0|1) geht, hat also die Gleichung $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{1}$ (Einheitskreis mit M(0|0)).

Lösung einer DGL mit TI 89 bzw TI Voyage

Beispiel 1:
$$y' = g(x,y) = -\frac{x}{k}$$

Befehl zur allgemeinen Lösung:

deSolve(y'=-x/y,x,y)

Nach Drücken der Eingabetaste wird die Lösungsgleichung $y^2 = \rho 1 - x^2$ angezeigt. Dabei steht $\rho 1$ (oder $\rho 2$, $\rho 3$ usw.) für die Konstante C.

Befehl zur speziellen Lösung mit Anfangsbedingung:

deSolve(y'=-x/y and y(0)=1,x,y)

Drücken der Eingabetaste erzeugt die Lösungsgleichung $y^2 = 1 - x^2$

Darstellung des Richtungsfeldes mit TI 89 bzw. TI Voyage (für Beispiel 1)

Mode: DIFF EQUATIONS Y=Editor: y1'(t) = -t/y1

GraphFormats (in Graph-Menu mit F1 erreichbar): Axes=on, Labels=Off,

SolutMethod = RK (für RungeKutta), Fields=SLPFLD

Gibt man zusätzlich yi1=1 (t0=0 vordefiniert) ein, so wird auch die dazugehörige

Kurve gezeichnet.

Will man z.B. zwei Lösungskurven plotten lassen, so gibt man yi1={1 1.5} ein. Für unser Beispiel empfiehlt sich yi1={1 -1}, denn so wird der Vollkreis und nicht nur der obere Halbkreis gezeichnet.

Beispiel 2: y' = ky $(k \in \mathbb{R} \setminus \{0\})$

- a) Lösungsgesamtheit dieser DGL?
- b) Gleichung derjenigen Kurve, die durch den Punkt P(0|a) geht?
- a) Bereits früher wurde bewiesen, dass die Lösungsgesamtheit dieser DGL die Funktionen mit Gleichung $y = f(x) = Ce^{kx}$ (mit $C \in \mathbb{R}$) ist. Die Lösung erfolgt nun durch Separation der Variablen:

$$\frac{dy}{dx} = ky, \text{ also } \frac{dy}{y} = k dx$$
$$\int \frac{dy}{y} = \int k dx$$

$$\label{eq:continuous} \text{In } |y| = kx + C_1, \text{ also } |y| = e^{kx + C_1} = C_2 e^{kx} \quad (\text{mit } C_2 = e^{C_1} \in \mathbb{R}^+)$$

Für y>0 gilt daher $y = C_2 e^{kx}$, für y>0 gilt $y = -C_2 e^{kx}$

Für die Funktion y = 0 ist die DGL auch erfüllt.

Zusammengefasst:

Die Lösungsgesamtheit der DGL y' = ky ist $y = f(x) = Ce^{kx}$ ($C \in \mathbb{R}$)

b) $P(0|a) \in Graph G_f$

Einsetzung der Koordinaten von P in Gleichung der Lösungsgesamtheit bestimmt die Konstante C:

$$a = C e^0 = C$$

Die Gleichung der gesuchten Kurve heisst also $y = f(x) = ae^{kx}$

Beispiel 3: Bestimme die Lösungsgesamtheit der DGL $x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$

$$x\sqrt{1+y^2} = -y\frac{dy}{dx}\sqrt{1+x^2}$$

$$\frac{x}{\sqrt{1+x^2}} dx = -\frac{y}{\sqrt{1+y^2}} dy$$
 (Separation der Variablen geglückt)

$$\frac{1}{2} \int \frac{2x}{\sqrt{1+x^2}} dx = -\frac{1}{2} \int \frac{2y}{\sqrt{1+y^2}} dy$$

$$\sqrt{1 + x^2} = -\sqrt{1 + y^2} + C$$

$$\sqrt{1+x^2} + \sqrt{1+y^2} = C$$

(Verzicht der Auflösung der Gleichung nach y)

Bestätigung des Resultates durch Ableiten:

$$\frac{1}{2}(1+x^2)^{-0.5} \cdot 2x + \frac{1}{2}(1+y^2)^{-0.5} \cdot 2y = 0$$

Beispiel 4: Bestimme die Lösungsgesamtheit der DGL y' = x + y

Diese DGL ist nicht mehr separierbar. Es muss eine neue Methode verwendet werden:

<u>Substitution</u> u := x + y (u ist also eine Funktion von x)

Dann ist u' = 1 + y'

Also gilt u' = 1 + u Dies ist eine separierbare DGL für u

$$\frac{du}{dx} = 1 + u$$

$$\frac{du}{1+u} = dx$$

$$\int \frac{du}{1+u} = \int dx$$

$$\ln |1 + u| = x + C_1$$

$$|1+u|=e^{x+C_1}\!=C_2e^x\quad (C_2=e^{C_1}\!\in \mathbb{R}^+)$$

$$u = Ce^{X} - 1$$
 $(C \in \mathbb{R})$

Resubstitution: $x + y = Ce^{x} - 1$

Also lautet die Lösungsgesamtheit der ursprünglichen DGL

$$v = Ce^{X} - x - 1$$

Beispiel 5: Bestimme die Lösungsgesamtheit der DGL y' = 2(3x + 2y + 1)

Substitution u := 3x + 2y + 1

$$u' = 3 + 2y' = 3 + 2 \cdot 2u = 3 + 4u$$

$$\frac{du}{dx} = 3 + 4u$$

$$\frac{du}{3+4u} = dx$$

$$\int\!\frac{du}{3+4u}=\int\!dx$$

$$\frac{1}{4}$$
ln |3 + 4u| = x + C₁

$$|3 + 4u| = e^{4x+4C_1} = C_2 e^{4x}$$
 $(C_2 = e^{4C_1} \in \mathbb{R}^+)$

$$3 + 4u = C_3 e^{4x}$$
 $(C_3 \in \mathbb{R})$

Resubstitution: $3 + 4(3x + 2y + 1) = C_3 e^{4x}$

$$8y + 12x = C_3 e^{4x} - 7$$

Also lautet die Lösungsgesamtheit der ursprünglichen DGL

$$y = Ce^{4x} - \frac{3}{2}x - \frac{7}{8}$$
 (C $\in \mathbb{R}$)

Kontrolle durch Einsetzen in gegebener DGL:

Linke Seite:
$$y' = 4Ce^{4x} - \frac{3}{2}$$

Rechte Seite:
$$6x + 4(Ce^{4x} - \frac{3}{2}x - \frac{7}{8}) + 2 = 4Ce^{4x} - \frac{3}{2}$$

Verallgemeinerung: Jede DGL der Form y' = g(ax + by + c) kann mit Hilfe der Substitution u := ax + by + c auf eine separierbare DGL in u und x geführt werden:

$$\frac{du}{dx} = a + by' = a + b g(u)$$

$$\frac{du}{a + bg(u)} = dx$$

$$\int \frac{du}{a + bg(u)} = \int dx$$

Daraus entsteht eine Funktion u in Abhängigkeit von x und mit der Resubstitution dann die Lösungsgesamtheit y = f(x) der ursprünglichen DGL.

Aufgabe: Bestimme die Differentialgleichung aller Kurven, die **jede** Hyperbel der Schar $xy = a \ (a \in \mathbb{R})$ rechtwinklig schneiden. Von welcher Art ist die zweite Kurvenschar?

Lösung: Für die gegebene Schar gilt: $f(x) = \frac{a}{x}$, also $f'(x) = -\frac{a}{x^2}$. Sei y = g(x) die Gleichung der gesuchten Schar. Im Schnittpunkt S(x|y) gilt:

Steigung m_1 der gegeben Schar ist $-\frac{a}{\chi^2}$, Steigung m_2 der gesuchten Schar

ist g'(x)=y'. Da $m_1 \cdot m_2 = -1$, so gilt: $-\frac{a}{x^2} \cdot y' = -1$ und a = xy. Also lautet die

Differentialgleichung für die gesuchten Kurven: $y' = \frac{x^2}{xy} = \frac{x}{y}$

(Sie muss unabhängig von a sein, denn die gesuchte Kurve muss **jede** Hyperbel der gegebenen Schar schneiden!)

Die Gleichung ihre Lösungsgesamtheit lautet $y^2 - x^2 = C$ (selber!) Dies sind Hyperbeln für $C \neq 0$ und zwei Geraden für C = 0.

[Lösung der DGL y' = $\frac{x}{y}$:

$$\frac{dy}{dx} = \frac{x}{y}$$
, also y dy = x dx, daher $\frac{y^2}{2} = \frac{x^2}{2} + C_1$, also $y^2 - x^2 = 2C_1 = C$]

2. Lineare Differentialgleichungen

Definition: Eine DGL 1. Ordnung heisst **linear**, wenn sie folgende Form hat:

$$y' = f_1(x) \cdot y + f_2(x)$$
 (*)

 $y' = f_1(x) \cdot y$ heisst die zu (*) gehörende **homogene** DGL.

Ist $f_2(x) \neq 0$, so ist (*) eine **inhomogene** DGL.

Beispiele:

Beispiel 2:
$$y' = ky$$
 $f_1(x) = k$, $f_2(x) = 0$ Homogene: $y' = ky$ Beispiel 4: $y' = y + x$ $f_1(x) = 1$, $f_2(x) = x$ Homogene: $y' = y$ Homogene: $y' = y$ Beispiel 5: $y' = 4y + 6x + 2$ $f_1(x) = 4$, $f_2(x) = 6x + 2$ Homogene: $y' = 4y$ Beispiel 6: $y' = xy + x$ $f_1(x) = x$, $f_2(x) = x$ Homogene: $y' = xy$ Beispiel 7: $y' = \frac{1}{x^2}y + \sin x$ $f_1(x) = \frac{1}{x^2}$, $f_2(x) = \sin x$ Homogene: $y' = \frac{1}{x^2}y$

Beispiel 8:
$$y' = -y + e^{x}$$

$$f_1(x)=-1$$
, $f_2(x)=e^x$

a) Lösung der homogenen linearen DGL

$$y' = \frac{dy}{dx} = f_1(x) \cdot y$$

$$\frac{dy}{y} = f_1(x) \ dx, \ also \ ln \ |y| + lnC_1 = ln \ |C_1y| = \int f_1(x) \ dx \qquad \qquad (C_1 \in \mathbb{R}^+)$$

Lösungsgesamtheit der homogenen DGL: $\mathbf{y} = \mathbf{C} e^{\int f_1(x) dx} := \mathbf{C} \mathbf{g}(\mathbf{x})$ $(\mathbf{C} \in \mathbb{R})$

Beispiel 4: y' = y hat Lösung $y = Ce^{\int 1dx} = Ce^x$

Beispiel 5: y' = 4y hat Lösung $y = Ce^{\int 4dx} = Ce^{4x}$

Beispiel 6: y' = xy hat Lösung y = $Ce^{\int xdx} = Ce^{\frac{x^2}{2}}$

Beispiel 7: $y' = \frac{1}{x^2}y$ hat Lösung $y = Ce^{\int x^{-2}dx} = Ce^{-\frac{1}{x}}$

Beispiel 8: y' = -y hat Lösung $y = Ce^{-\int 1dx} = Ce^{-x}$

b) Lösung der inhomogenen linearen DGL

Erläuterung an Hand des Beispiels 4 : y' = x + y (*)

Diese lineare DGL wurde (s. Seite 5) mit der Substitution u := x + y gelöst.

Die Lösungsgesamtheit ist $y = Ce^{x} - x - 1$

Der Vergleich mit der Lösungsgesamtheit $y = Ce^x$ der dazugehörigen homogenen DGL y' = y zeigt:

7

$$y = Ce^{x} + y_{0}$$
, wobei $y_{0} = -x - 1$

Da $y_0' = -1$, so ist $y_0' = x + (-x - 1) = x + y_0$, d.h. y_0' ist selber eine Lösung der inhomogenen DGL (*).

Tatsächlich gilt die Verallgemeinerung:

Satz: Die Lösungsgesamtheit der inhomogenen DGL $y' = f_1(x) \cdot y + f_2(x)$ (*) erhält man, indem man zur Lösungsgesamtheit der dazugehörigen homogenen DGL $y' = f_1(x) \cdot y$ eine beliebige Lösung (**partikuläre** Lösung) y_0 von (*) addiert.

Beweis: $y' = f_1(x) \cdot y + f_2(x)$ (*), $y' = f_1(x) \cdot y$ (**)

Sei y₀ eine partikuläre Lösung von (*)

a) Zu zeigen: Jede beliebige Lösung y_1 von (*) kann in der Form $y_1 = y + y_0$ mit y Lösung von (**) geschrieben werden.

In der Tat: $y = y_1 - y_0$, also $y' = y_1' - y_0' = f_1(x) \cdot y_1 + f_2(x) - (f_1(x) \cdot y_0 + f_2(x))$ = $f_1(x) \cdot (y_1 - y_0)$, d.h. y ist Lösung von (**).

b) Zu zeigen: Ist y eine beliebige Lösung von (**), so ist $y_1 = y + y_0$ eine Lösung von (*).

In der Tat: $y_1' = y' + y_0' = f_1(x) \cdot y + f_1(x) \cdot y_0 + f_2(x) = f_1(x) \cdot (y + y_0) + f_2(x)$

Beispiel 5: y' = 4y + 6x + 2 (*)

Die homogene DGL y' = 4y hat Lösungsgesamtheit y = Ce^{4x} Partikuläre Lösung y₀ = ?

Damit 4y und $f_2(x) = 6x + 2$, verrechenbar' sind, machen wir für y_0 einen linearen Ansatz: $y_0 = mx + q$, m = ?, q = ?

Einsetzen von y_0 und y_0 = m in (*): m = 4mx + 4q + 6x + 2, also $x(4m + 6) + 4q - m + 2 \equiv 0$ (für alle x)

Daher muss 4m + 6 = 0, folglich m = -1.5 und damit 4q + 1.5 + 2 = 0, folglich q = -0.875 sein. Es ist $y_0 = -1.5x - 0.875$.

Die Lösungsgesamtheit der DGL (*) ist also

$$y = Ce^{4x} - \frac{3}{2}x - \frac{7}{8}$$

Dies entspricht auch der früher (s. Seite 5) hergeleiteten Lösung.

Beispiel 6: y' = xy + x (*)

Die homogene DGL y' = 4y hat Lösungsgesamtheit y = $Ce^{\frac{x^2}{2}}$ Partikuläre Lösung y₀ = ?

Damit xy und $f_2(x) = x$ verrechenbar sind, machen wir für y_0 den Ansatz: $y_0 = k, \ k = ?$

Einsetzen von y_0 und y_0 = 0 in (*): 0 = xk + x = x (k + 1) (für alle x), also muss k = -1 ein. Es ist $y_0 = -1$.

Die Lösungsgesamtheit der DGL (*) ist also $y = Ce^{\frac{x^2}{2}} - 1$

Beispiel 7: $y' = \frac{1}{x^2}y + \sin x$ (*)

Die homogene DGL y' = $\frac{1}{x^2}$ y hat Lösung y = $Ce^{-\frac{1}{x}}$

Partikuläre Lösung $y_0 = ?$ Schwierig! Allgemeines Verfahren?

8

Beispiel 8:
$$y' = -y + e^{X}$$
 (*)

Die homogene DGL y' = -y hat Lösungsgesamtheit $y = Ce^{-x}$ Partikuläre Lösung $y_0 = ?$

Damit -y und ex verrechenbar sind, machen wir den Ansatz

$$y_0 = ke^X$$

$$y_0' = ke^x = -ke^x + e^x$$
, also $2ke^x = e^x$ (für alle x)

Also ist 2k=1, daher k=0.5. Es ist $y_0=0.5e^X$

Die Lösungsgesamtheit der DGL (*) ist also $y = Ce^{-x} + 0.5e^{x}$

Beispiel 9: $xy' = x^2 + y$

$$y' = \frac{1}{x}y + x \text{ mit } x \neq 0$$
 (*)

Homogen:
$$\frac{dy}{dx} = \frac{y}{x}$$
 also $\frac{dy}{y} = \frac{dx}{x}$

$$\ln |y| = \ln |x| + \ln |C| = \ln |Cx|$$

Lösungsgesamtheit der homogenen DGL: y = Cx

Partikuläre Lösung
$$y_0$$
 von (*): $y_0 = x^2$, denn y_0 , $y_0 = 2x = \frac{1}{x}x^2 + x^2$

Die Lösungsgesamtheit der DGL (*) ist also $y = Cx + x^2 = x (x + C)$

Allgemeines Verfahren zum Finden der partikulären Lösung y₀ (Variation der Konstanten)

Manchmal ist es nicht einfach, eine partikuläre Lösung zu finden. Man versucht dann, die Konstante C in der allgemeinen Lösung der homogenen Gleichung zu variieren:

Erläuterung an Hand des Beispiels 4: y' = y + x (*), $f_1(x) = 1$, $f_2(x) = x$

Die dazugehörige homogene DGL y' = y hat Lösungsgesamtheit y = $C g(x) = C e^{x}$

Ansatz für y_0 : $y_0 = C(x)e^x$

Einsetzen von y_0' und y_0 in (*): $y_0' = C'(x)e^x + C(x)e^x = C(x)e^x + x$

Also ist
$$x = C'(x)e^x$$
 und damit $C'(x) = \frac{x}{e^x} = \frac{f_2(x)}{g(x)}$

Partielle Integration oder TI liefert $C(x) = (-x - 1) e^{-x}$

$$y_0 = C(x) e^x = -x - 1$$

Die Lösungsgesamtheit von (*) ist also $y = Ce^{x} - x - 1$

Tatsächlich gilt der

Satz:
$$y' = f_1(x) \cdot y + f_2(x)$$
 (*), $y' = f_1(x) \cdot y$ (**)

Sei $y = C e^{\int f_1(x) dx} = C g(x)$ die Lösungsgesamtheit der homogenen DGL (**)

Eine Lösung y_0 von (*) hat die Form $y_0 = C(x)$ g(x) (Variation der Konstanten) mit

$$C(x) = \int \frac{f_2(x)}{g(x)} dx.$$

Beweis: g(x) erfüllt die homogene DGL, also $g'(x) = g(x) \cdot f_1(x)$ $y'_0 = C'(x) g(x) + C(x) g'(x) = \frac{f_2(x)}{g(x)} \cdot g(x) + \frac{C(x)}{g(x)} \cdot f_1(x) = f_1(x) \cdot y_0 + f_2(x)$ Also erfüllt y_0 die DGL (*)

Natürlich wird das Verfahren der Variation der Konstanten zum Finden von y_0 im Prinzip nur dann benützt, wenn es keinen einfacheren Ansatz gibt. Als Übung sollen nun aber doch unsere Beispiele mit diesem Verfahren betrachtet werden.

Beispiel 6: y' = xy + x (*)
Lösung mit Hilfe der Variation der Konstanten (selber!)

Zur Kontrolle:
$$C(x) = -e^{\frac{x^2}{2}}$$

Beispiel 7: $y' = \frac{1}{x^2}y + \sin x$ (*)

Der Ansatz $y_0 = C(x) e^{-\frac{1}{x}}$ führt auf das zu (!) schwierige Integral $\int e^{\frac{1}{x}} \sin x \, dx$

Beispiel 8: $y' = -y + e^{x}$ (*)

Lösung mit Hilfe der Variation der Konstanten (selber!)

Zur Kontrolle:
$$C(x) = \int (e^x)^2 dx = \int e^{2x} dx = 0.5e^{2x}$$

Beispiel 9: $xy' = x^2 + y$

Lösung mit Hilfe der Variation der Konstanten (selber!)

Zur Kontrolle: C(x) = x

3. "Homogene" Differentialgleichungen

Definition: Eine DGL der Form $y' = g(\frac{y}{x})$ heisst "homogene" DGL

Bemerkung: Der Begriff "homogen" hat mit dem früheren Begriff 'dazugehörige homogene DGL' nichts zu tun!

Lösung: Die Substitution $u:=\frac{y}{x}$ führt immer auf eine separierbare DGL in u und x. (Ohne Beweis)

Beispiel 1: $y' = 2\frac{y}{x} + 1$

Diese DGL ist auch **linear** mit $f_1(x) = \frac{2}{x}$ und $f_2(x) = 1$. Es könnte also das Lösungsverfahren von Kapitel 2 angewendet werden (selber!)

Substitution: $u:=\frac{y}{x}$ Also gilt y = xu und damit y' = u + xu'y' = 2u + 1 = u + xu' und damit u'x = u + 1

$$\frac{du}{u+1} = \frac{1}{x} dx$$

Integration liefert In |u + 1| = In |x| + In |C| = In |Cx||u + 1| = Cx mit $|C| = \mathbb{R}$

Resubstitution: $\frac{y}{x} = Cx - 1$, also lautet die Lösungsgesamtheit der ursprünglichen DGL $y = Cx^2 - x = x (Cx - 1)$

Beispiel 2:
$$y' = \frac{y+x}{y-x} = \frac{\frac{y}{x}+1}{\frac{y}{x}-1}$$
 (für $x \neq 0$)

Substitution: $u := \frac{y}{x}$ Also gilt y = xu und damit y' = u + xu'

$$y' = \frac{u+1}{u-1} = u + xu'$$

Nach einigem Umformen ergibt sich $\int \frac{u-1}{-u^2+2u+1} du = \int \frac{1}{x} dx$

$$-\frac{1}{2}\int \frac{2(u-4)}{u^2-2u-1} du = \int -\frac{1}{x} dx$$

$$-\frac{1}{2}\ln|u^2 - 2u - 1| = \ln|x| + \ln|C_1| = \ln|C_1x|$$

$$\left| u^2 - 2u - 1 \right|^{-\frac{1}{2}} = \left| C_1 x \right|$$

$$\left| u^2 - 2u - 1 \right| = \frac{1}{C_1^2 x^2}$$

$$u^2-2u-1=\frac{1}{Cx^2} \text{ mit } C \in \mathbb{R}$$

Resubstitution liefert $\frac{y^2}{x^2} - 2\frac{y}{x} - 1 = \frac{1}{Cx^2}$

Die Lösungsgesamtheit der ursprünglichen DGL lautet also $y^2 - 2xy - x^2 = C$

Beispiel 3: Gesucht sind alle Kurven, die sämtliche dazugehörigen Ortsvektoren unter dem gleichen Winkel 45° schneiden. (vergleiche dazu auch die Lösung des Käferproblems http://www.mathematik.ch/puzzle/puzzle21.php)

t: Tangente im Punkt P(x|y) der gesuchten

Neigungswinkel α der Tangente t

$$y' = \tan(\phi + 45^\circ) = \frac{\tan\phi + \tan 45^\circ}{1 - \tan\phi \tan 45^\circ} = \frac{\frac{y}{x} + 1}{1 - \frac{y}{x}}$$

Die Aufgabe führt also auf eine "homogene" DGL.

Substitution: $u := \frac{y}{x}$ Also gilt y = xu und damit y' = u + xu'

$$y' = \frac{u+1}{1-u} = u + xu'$$

Nach einigem Umformen erhält man $\int \frac{1-u}{u^2+1} du = \int \frac{1}{x} dx$

$$\int \frac{1}{u^2 + 1} du - \int \frac{u}{u^2 + 1} du = \ln|x| + \ln|k| = \ln|kx|$$

$$arctan \ u - 0.5 \ln(u^2 + 1) = \ln$$

$$arctan \ u = \ln(|kx|(u^2 + 1)^{0.5})$$

Resubstitution: $\arctan \frac{y}{x} = \ln (|kx|(\frac{y^2}{x^2} + 1)^{0.5}) = \ln (|k|(y^2 + x^2)^{0.5})$

Verwendet man Polarkoordinaten (r = $\sqrt{x^2 + y^2}$, ϕ = arctan $\frac{y}{x}$), so gilt:

 $\varphi = \ln (|\mathbf{k}| \, \mathbf{r}) \, \text{bzw.} \, \mathbf{r} = \mathbf{C} \mathbf{e}^{\varphi}$

Dies ist die Gleichung der logarithmischen Spirale.

4. Eine spezielle Differentialgleichung 2. Ordnung

Beispiel: $\ddot{y} = g - k\dot{y}$ ($k \in \mathbb{R}^+$, g: Erdbeschleunigung = konstant)

y(t): Weg, y (t): Geschwindigkeit v(t), y (t): Beschleunigung a(t)

Anfangsbedingungen: y(0) = 0, v(0) = 0,

Die DGL kann mit Hilfe $\dot{y} = v$ auf eine lineare DGL in v zurückgeführt werden:

 $\dot{v} = -kv + q$

Separation der Variablen ist möglich: $\frac{dV}{dt}$ = -kv + g

$$\frac{dv}{v - \frac{g}{k}} = -k dt$$

$$\ln |v - \frac{g}{k}| = -kt + C_1$$

$$v - \frac{g}{k} = C_1 e^{-kt}$$

$$v(t) = \frac{g}{k} + C_1 e^{-kt}$$

Aus der Anfangsbedingung v(0) = 0 bestimmt man die Konstante C_1 :

$$v(0) = 0$$
: $\frac{g}{k} + C_1 e^{-k0} = \frac{g}{k} + C_1 = 0$, also $C_1 = -\frac{g}{k}$

$$v(t) = \frac{g}{k} (1 - e^{-kt}) = \frac{dy}{dt}$$

Also ist
$$y(t) = \frac{g}{k} \int (1 - e^{-kt}) dt = \frac{g}{k} (t + \frac{1}{k} e^{-kt}) + C_2$$

Aus der Anfangsbedingung y(0) = 0 bestimmt man die Konstante C_2 :

$$y(0) = 0$$
: $\frac{g}{k^2} + C_2 = 0$, also $C_2 = -\frac{g}{k^2}$

Die Lösung der DGL mit den gegebenen Anfangsbedingungen lautet also:

$$y(t) = \frac{g}{k}(t + \frac{1}{k}e^{-kt} - \frac{1}{k})$$

Bemerkung: Die DGL \dot{v} = -kv + g kann natürlich auch mit dem Ansatz für lineare DGL gelöst werden. Die Lösungsgesamtheit der dazugehörigen homogenen DGL \dot{v} = -kv lautet v = C₁ e^{-kt}. Eine partikuläre Lösung v₀ erhält man durch den Ansatz v₀ (= v_∞) = konstant.

Es gilt dann
$$v_0$$
' = 0 = -k v_0 + g, also $v_0 = \frac{g}{k}$

Die Lösungsgesamtheit der DGL $\dot{v} = -kv + g$ ist dann wie oben

$$v(t) = \frac{g}{k} + C_1 e^{-kt}$$