Calcolo Numerico - Laurea in Matematica, a.a. 2021-2022 Esercizi di Laboratorio del 29/11/2021

1. Problema ai minimi quadrati. È dato il problema

$$\min_{x \in \mathbb{R}^m} \|b - Ax\|$$

con

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & 5 & -2 \\ 2 & 0 & 4 & -3 \\ 10 & -1 & -3 & 0 \\ 1 & 1 & 1 & -1 \end{bmatrix}, \qquad b = \mathbf{1}.$$

- i) Usa la fattorizzazione QR di Householder costruita nella precedente esercitazione, per la risoluzione del problema ai minimi quadrati. In particolare:
 - Copia la funzione QR_house.m rinominandola x = minquad_house(A,b);
 - Nella nuova funzione, modifica l'iterazione in modo da aggiornare anche il vettore b, senza aggiornare U, ottenendo direttamente $\hat{b} = Q^T b$;
 - Sapendo che $R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$, determina $\mathbf{x} = \mathbf{R_1}^{-1}\mathbf{b1}$, dove $\mathbf{b1}$ è il primo blocco del vettore \hat{b} , ottenuto durante l'iterazione;
- ii) Scrivi una funzione $x = minquad_chol(A,b)$ che usa la decomposizione di Cholesky $A^TA = LL^T$ per risolvere il problema mediante l'equazione normale $(A^TA)x = A^Tb$; (all'interno, usa la funzione matlab L = chol(M, 'lower'); per determinare il fattore di Cholesky per una matrice M, ed usa "backslash" per risolvere con i due sistemi triangolari. Se disponibili, puoi usare i tuoi risolutori triangolari superiore/inferiore)

Confronta le soluzioni ottenute con QR e con l'equazione normale, calcolando la norma relativa della loro differenza.

iii) Considera i dati

$$A_{\delta} = \begin{bmatrix} 1 & 1 \\ -2 & -2 \\ 0 & \delta \end{bmatrix} \in \mathbb{R}^{3 \times 2}; \qquad b = \mathbf{1} \in \mathbb{R}^3.$$

Per $\delta=1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9$ (implementa con un ciclo) scrivi uno script che confronta le soluzioni ottenute con minquad_chol e minquad_house, con quella ottenuta con il comando $\mathbf{x}=A_\delta\backslash$ b, riportando su un grafico gli errori relativi nei due casi al variare di δ , cioè

$$\frac{\|x^* - x_{house}\|}{\|x^*\|}, \qquad \frac{\|x^* - x_{chol}\|}{\|x^*\|}.$$