Support Vector Machine (SVM)

Contents

- ► SVM Introduction
- ► SVM Working
- ► Linear SVM
- ► Non-Linear SVM (Kernel)
- ► Kernel functions
- ▶ Pros & Cons

Support Vector Machine

- **SVM** is a Supervised ML algorithm used for classification and regression problems.
- SVM generates partitions between classes by generating **two parallel lines**.
- ▶ Divides the 2 categories by a clear gap that should be as wide as possible, by a plane called **hyperplane**.
- ► This hyperplane have the **largest margin** to separate given data into classes.
- ► The *larger the margin, the lower is the generalization error* of the classifier.

Wickets	Runs	Player
1	125	Batsman
4	130	Batsman
9	150	Batsman
5	220	Batsman
2	200	Batsman
3	175	Batsman
9	65	Bowler
15	55	Bowler
16	48	Bowler
18	66	Bowler
13	50	Bowler
13	81	Bowler

- We want to classify the new data point as a batsman or a bowler.
- ► To achieve this, a **decision boundary** is required in order to classifty new data.

- The decision boundary is separation between the two classes.
- Infinite number of lines can be drawn in the xy-space.
- This aspect is close to linear regression where we find the best fit line.

- Out of these lines.. Which one to select?
- The class of new data point changes based on the line.
- The best line is selected by computing the **maximum margin** from equidistant **Support Vectors.**

- Support vectors which are closest together and maximizes the distance between groups and support the algorithm.
- In simple terms, the points which are very close to the dividing line.
- Used to select the best dividing line.

SVM - Linear

SVM - Linear

Any Hyperplane can be written mathematically as:

$$\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_n * x_n = 0$$

For 2-dimensional space, the Hyperplane, which is the line, could be written as:

$$\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 = 0$$

SVM - Linear

The data points above this line can be written as:

$$\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 > 0$$

The data points below this line can be written as:

$$\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 < 0$$

from sklearn import svm clf = svm.SVC(kernel='linear') clf.fit(X, Y)

the coefficient of the line print('the coefficient of the line', clf.coef_)

SVM - Kernel

- Consider the data sown in the image 2.
- ► What if our 2-d data looks like this.?
- This can not be separated by a hyperplane.

SVM - Kernel

- In these scenarios, SVM uses a Kernel function.
- This function transforms the data into higher dimension.
- Thereby enabling the option of fitting a plane to separate the classes.

Kernel functions

- Available kernel fucntions Sklearn (svm.SVC()) 'linear',
 'poly', 'rbf', 'sigmoid', 'precomputed'.
- ▶ The most used function is **RBF** (Radial Basis Function).
- ► It is a general-purpose kernel, used when there is no prior knowledge about the data.
- ► It is a transformer to generate new features by measuring the distance between all other dots to a specific dot/dots centers.

Kernel functions

► The most popular/basic RBF kernel is the Gaussian Radial Basis Function:

$$\phi(x, center) = exp(-\gamma ||x - center||^2)$$

- **Example 2 Parameter 3 Example 3 Example 4 Example 4 Example 4 Example 4 Example 4 Example 5 Example 6 Example 7 Ex**
- ►The higher the gamma, the more influence of the features will have on the decision boundary, more wiggling the boundary will be.
- ▶ Gamma is a hyperparameter that we can tune for SVM.

Kernel functions

► Effect of Gamma on the decision boundaries – (Example)

Pros & Cons

Pros:

- ►SVMs are effective when the number of features is quite large.
- ▶ It works effectively even if the number of features are greater than the number of samples.
- ► Non-Linear data can also be classified using customized hyperplanes built by using kernel trick.

Cons:

- ► The biggest limitation of Support Vector Machine is the choice of the kernel. The wrong choice of the kernel can lead to an increase in error percentage.
- ►SVMs have good generalization performance but they can be extremely slow in the test phase.
- ►SVMs have high algorithmic complexity and extensive memory requirements due to the use of quadratic programming.