Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 3

Nicolás Cagliero

June 22, 2025

- 1. Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivamente enumerable (no hace falta que defina "función Σ -recursiva")
- 2. Defina s^{\leq}
- 3. Defina ∗≤
- 4. Defina #≤

Respuestas:

- 1. Diremos que un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable cuando sea vacío o haya una función $F:\omega\to\omega^n\times \Sigma^{*m}$ tal que $I_F=S$ y F_i sea Σ -recursiva, para cada $i\in\{1,\ldots,n+m\}$
- $2. \ s^{\leq}: \Sigma^* \to \Sigma^*$

$$s^{\leq}((a_n)^m)=(a_1)^{m+1}, \text{ para cada } m\geq 0$$

$$s^{\leq}(\alpha a_i(a_n)^m)=\alpha a_{i+1}(a_1)^m$$

 $3. *\leq : \omega \to \Sigma^*$

$$\begin{split} *^{\leq} (0) &= \varepsilon \\ *^{\leq} (i+1) &= s^{\leq} (*^{\leq} (i)) \end{split}$$

4. $\#^{\leq}: \Sigma^* \to \omega$

$$\#^{\leq}(\varepsilon) = 0$$

$$\#^{\leq}(a_{i_k}\dots a_{i_0})=i_k n^k+\dots+i_0 n^0$$
 para $i_0,i_1,\dots,i_k\in\{1,\dots,n\}$