Artificial Intelligence I 2023/2024 Week 8 Tutorial and Additional Exercises

Hierarchical Clustering and Evaluation of Clustering Algorithms

School of Computer Science

4th of March 2024

In this tutorial...

In this tutorial we will be covering

- Hierarchical Clustering.
- Cutting the Dendrogram.
- Supervised and unsupervised clustering validation criteria.
- Silhouette coefficient.
- Classification-oriented validation criteria
- Similarity-oriented validation criteria.

Inter-Cluster Dissimilarity Metrics

- Distance metrics can be generalised for clusters to define inter-cluster dissimilarity measures. Let C_1 and C_2 be clusters containing n_1 and n_2 examples respectively. Some examples of distance metrics between C_1 and C_2 are:
 - Single linkage is defined as

$$d_{SL}(C_1, C_2) := \min_{\mathbf{x}^{(1)} \in C_1, \mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

2 Complete linkage is defined as

$$d_{CL}(C_1, C_2) := \max_{\mathbf{x}^{(1)} \in C_1, \mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

Group Average linkage is defined as

$$d_{GL}(C_1, C_2) := \frac{1}{n_1 n_2} \sum_{\mathbf{x}^{(1)} \in C_1} \sum_{\mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

• *Dist*(·) can be any distance function between vectors.

Hierarchical Clustering

Recall the formal algorithm of *Hierarchical Clustering*.

Algorithm 1: Hierarchical clustering.

Input: Distance matrix corresponding to the data set $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ **Output:** Dendrogram.

1 repeat

2

3

4

Find two clusters C_1 , C_2 with the smallest inter-cluster dissimilarity. That is,

$$\arg\min_{C_1,C_2}d_A(C_1,C_2)$$

where $A \in \{SL, CL, GL\}$ denotes single linkage (SL), complete linkage (CL) or group linkage (GL);

- Merge together C_1 , C_2 into a single cluster;
- Note the clusters merged and their corresponding linkage $d_A(\cdot, \cdot)$ in a dendrogram.
- 5 until Only one cluster remains.;
- 6 return Dendrogram.

 Consider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$x^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering in algorithm 1 to merge all examples into a single cluster.
- Use single linkage as the inter-cluster dissimilarity metric.
- Sketch the dendrogram you found along the way clearly depicting the height at which two clusters fuse.

 Reconsider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$\mathbf{x}^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$x^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering in algorithm 1 to merge all examples into a single cluster.
- Use complete linkage as the inter-cluster dissimilarity metric.
- Sketch the dendrogram you found along the way.

Cutting the Dendrogram

- In Hierarchical Clustering, we can impose a threshold on the inter-cluster distance or on the number of clusters.
- When this threshold is surpassed, the algorithm terminates without forming any further clusters, and returns the clusters formed so far.
- Different thresholds can result in different clusters.

 Reconsider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$	$x^{(6)}$
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$\mathbf{x}^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering but impose a threshold of 0.35 on the inter-cluster distance. Write the final clusters.
- Use Hierarchical clustering but impose a threshold of 3 on the number of clusters. Write the final clusters.
- Use **single linkage** as the inter-cluster dissimilarity metric.

Silhouette Coefficient

- Let $\mathbf{x}^{(i)}$ be an example in cluster C, and define
 - **1** a_i to be the average distance of $\mathbf{x}^{(i)}$ to all other examples in C, i.e.,

$$a_i := rac{\sum_{\mathbf{x} \in C, \mathbf{x}
eq \mathbf{x}^{(i)}} d(\mathbf{x}^{(i)}, \mathbf{x})}{(\text{no. of examples in cluster } C) - 1}.$$

② b_i to be the minimum of the average distance of $\mathbf{x}^{(i)}$ to examples in other clusters, i.e.

$$b_i := \min_{\substack{k=1,\ldots,K\\C_k \neq C}} \frac{\sum_{\mathbf{x} \in C_k} d(\mathbf{x}^{(i)}, \mathbf{x})}{\text{no. of examples in } C_k}.$$

• The SC for $\mathbf{x}^{(i)}$ is defined as

$$s_i := \frac{b_i - a_i}{\max\{a_i, b_i\}}.$$

Silhouette Coefficient (continued)

• The SC of a cluster C is defined as

$$s_C := \frac{\sum_{\{i: \mathbf{x}^{(i)} \in C\}} s_i}{\text{no. of examples in cluster } C}.$$

 \bullet The SC of a clustering structure ${\cal C}$ with N examples is defined as

$$s_{\mathcal{C}} := \frac{\sum_{i=1}^{N} s_i}{N}.$$

Consider a dataset with 4 examples, clustered by an algorithm as

$$C_1 = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}, \qquad C_2 = \{\mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}.$$

• The distance matrix for these examples is the following

	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$
$x^{(1)}$	0	0.10	0.65	0.55
$x^{(2)}$	0.10	0	0.70	0.60
$x^{(3)}$	0.65	0.70	0	0.90
$x^{(4)}$	0.55	0.60	0.90	0

- Compute the SC for each point, for each cluster, and for the overall clustering structure $C = \{C_1, C_2\}$.
- Comment on the suitability of examples assigned to C_1 .

Classification-oriented validation criteria

- Consider a set of L different classes, clustered into K clusters.
- Precision of cluster i with respect to class j

$$precision(i, j) := \frac{\text{no. of examples of class } j \text{ in cluster } i}{\text{no. of examples in cluster } i}.$$

• Recall of cluster i with respect to class j

$$recall(i, j) := \frac{\text{no. of examples of class } j \text{ in cluster } i}{\text{no. of examples in class } j}.$$

• F-measure of cluster i with respect to class j

$$F(i,j) := \frac{2 \cdot precision(i,j) \cdot recall(i,j)}{precision(i,j) + recall(i,j)}.$$

Classification-oriented validation criteria (continued)

• The *entropy* of cluster *i* is defined as

$$e_i := -\sum_{j=1}^{L} precision(i, j) \cdot \log_2(precision(i, j)),$$

where $-x \log_2 x := 0$, when x = 0.

• The total entropy of the set of clusters is defined as

$$e := \sum_{i=1}^{K} \frac{\text{no. of examples in cluster } i}{\text{total no. of examples}} e_i.$$

We want a low entropy.

Classification-oriented validity measures (continued)

• The purity of cluster i is defined as

$$p_i := \max_{j} precision(i, j).$$

• The overall purity of the set of clusters is defined as

$$p := \sum_{i=1}^{K} \frac{\text{no. of examples in cluster } i}{\text{total no. of examples}} p_i.$$

We want a high purity.

• Consider the set with 10 examples and 3 classes, clustered into 3 clusters (classes and clusters are not the same)

Example	Class	Cluster	Example	Class	Cluster
$\mathbf{x}^{(1)}$	1	1	x ⁽⁶⁾	3	1
$x^{(2)}$	3	2	$x^{(7)}$	2	2
$x^{(3)}$	2	3	x ⁽⁸⁾	2	2
x ⁽⁴⁾	1	1	$x^{(9)}$	1	3
x ⁽⁵⁾	3	2	x ⁽¹⁰⁾	2	1

- Write down the confusion matrix.
- Compute the following
 - \bullet precision(1,3).
 - 2 recall(1,3).
 - \bullet F(1,3).
 - e_2 .
 - $0 p_2$.

Similarity-oriented validation criteria

- Consider a set of N examples of different classes, clustered into clusters.
- The ideal cluster similarity matrix is an N × N matrix whose ij-th element equals 1 if examples i and j are in the same cluster, and 0 otherwise.
- The *ideal class similarity matrix* is an $N \times N$ matrix whose ij-th element equals 1 is examples i and j are in the same class, and 0 otherwise.
- We can compute the correlation between these two matrices.
- We can also use binary similarity-based measures.

Binary similarity-based measures

- Consider a set of N examples of different classes, clustered into clusters and define the following
 - $f_{00} := \text{no.}$ of pairs having different class and different cluster.
 - ② $f_{01} := no.$ of pairs having different class and same cluster.
- The Rand statistic is defined as

Rand statistic =
$$\frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$
.

• The Jaccard coefficient is defined as

$$\textit{Jaccard coefficient} = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}.$$

 Reconsider the first five examples of the previous set with 3 classes, clustered into 3 clusters

Example	Class	Cluster
$x^{(1)}$	1	1
$x^{(2)}$	3	2
$x^{(3)}$	2	3
$x^{(4)}$	1	1 1
$x^{(5)}$	3	2

- Write down the ideal cluster similarity matrix and the ideal class similarity matrix.
- Compute the Rand statistic and the Jaccard coefficient.

Up next...

Advanced Material

(OPTIONAL) Advanced Exercise 1

- Let C_1 , C_2 and C_3 be clusters. Prove the following:

 - $d_{CL}(C_1, C_2 \cup C_3) = \max\{d_{CL}(C_1, C_2), d_{CL}(C_1, C_3)\}.$
- Recall that
 - **1** $C \cup C' = \{ \mathbf{x} : \mathbf{x} \in C \lor \mathbf{x} \in C' \}.$
 - $d_{SL}(C,C') = \min_{\mathbf{x} \in C, \mathbf{x}' \in C'} Dist(\mathbf{x},\mathbf{x}').$
 - $d_{CL}(C,C') = \max_{\mathbf{x} \in C, \mathbf{x}' \in C'} Dist(\mathbf{x},\mathbf{x}').$
 - **1** Dist (\cdot, \cdot) is some distance function for vectors.
- Hint: $\min_{\mathbf{x} \in C \lor \mathbf{x} \in C'} f(\mathbf{x}) = \min\{\min_{\mathbf{x} \in C} f(\mathbf{x}), \min_{\mathbf{x} \in C'} f(\mathbf{x})\}$, for any sets C, C', and real-valued function $f(\cdot)$. The same holds if we replace all the min's with max's.

Until the next time...

Thank you for your attention!