Excelの基本操作

グラフの描画

基本の手順

グラフにする数値 データを選択し、

「挿入」→「グラフ」から描きたいグラフを選択する

選んだデータに応じて、グラフが描かれます。修正したい場合は、修正したい グラフの箇所をダブルクリックして、表示されるメニューから適宜選択するな どしてください。

散布図の描画

散布図を描きたいデータを選ぶ

下図の例のように、各項目(県名など)について、x軸とy軸にプロットしたい数値(シュウマイ消費量と最低賃金など)がペアになった表を用意します。

都道府県	シュウマイ	最低賃金	農業就労人	□ (100	万人当た
愛知県	1050	898	0.85		
愛媛県	476	764	2.97		
茨城県	1073	822	3.07		
岡山県	626	807	2.52		
沖縄県	369	762	1.39		
岩手県	766	762	5.5		
岐阜県	873	825	1.91		
宮崎県	417	762	4.07		
宮城県	910	798	2.33		
京都府	1005	882	0.95		
熊本県	496	762	4.02		
群馬県	1139	809	2.23		
広島県	628	844	1.33		
香川県	539	792	3.11		
高知県	533	762	3.73		
佐賀県	1327	762	3.15		
埼玉県	1462	898	0.81		
三重県	872	846	猛 1.87		
.1.πει ⊟	740	700	4 70		

1)数値データの部分をドラッグして選択します。

2)「挿入」メニュー、「散布図」の中から、線のない散布図のアイコンを選びます。

散布図が描かれました。

軸目盛の変更

散布図のx軸やy軸を右クリックして、「軸の書式設定」を選択し、 表示する最小値や最大値を変更すると、データの散らばり具合 を見やすく調節できます。

回帰曲線の描画

1)散布図の中の点(データ)を一度左クリックしたのち、右クリックして出てくるメニューの中から、「近似曲線の追加...」を選択します。

2)近似曲線の書式設定で、線形近似を選びます。

下部にある、「グラフに数式を表示する」 「グラフにR-2乗値を表示する」 にチェックをつけると、近似曲線の式 とR²値が表示されます。

R²値は、相関係数ではないので注意

数値の計算

セルへの計算式の記入

セルに半角で=と記入すると、そのセルに記入したものが数式と みなされ、計算が行われる

基本的な演算

※A1, B1はセル番号の例

```
足し算 =A1+B1
引き算 =A1-B1
掛け算 =A1*B1
割り算 =A1/B1
二乗 =A1*A1 または =A1^2
```

計算の基本操作平均値の計算を例に

1)合計を出す sum関数で

セルに=sum(と記入し、

計算させたい値をドラッグ で選択

関数を)で閉じて完了

2)データの個数を出す counta関数で

148	合計	4045.1		
148	個数	=counta(C	3:C28)	
149				
150				
150			275	
150.4			T	
151				
153				

セルに=counta(と記入 し、

計算させたい値をドラッグ で選択

関数を)で閉じて完了

3)合計を個数で割る

セルに=と記入し、

分子のセル / 分母のセル と記入して完了

補足)average関数で、元のデータを選択しても同じ結果が得られる

合計	4045.1		
個数	26		
平均値	155.5808	手計算	
平均値	=average((03:028)	関数

基本的な関数

※A1やB1、A1:A10は、セル番号やデータ範囲の例

```
= SQRT(A1)
平方根
最大値
     = MAX(A1:A10)
     = MIN(A1:A10)
最小值
平均值
     = AVERAGE(A1:A10)
     = MEDIAN(A1:A10)
中央値
全要素の分散 = VAR.P(A1:A10)
全要素の標準偏差 = STDEV.P(A1:A10)
            = VAR.S(A1:A10)
不偏標本分散
            = STDEV.S(A1:A10)
不偏標本標準偏差
```

身長データを使った 計算例

FREQUENCY関数を 使った簡易的な頻度分布 図の作り方

1)MAX関数MIN関数で、最大値と最小値 を確認する

最大値	167	
最小值	148	

2)区間を設定する。今回は簡易的に、140 から5センチ刻みで170までを作る

140,145と縦に続けて記入したのち、 二つのセルをドラッグで 囲って、 右下の黒い小さな点を下にドラッグすると、5刻みの連続データが作られる。

3)最初の区間にfrequency関数を記入する

140の隣に、 =frequency(と記入

148	最大値	167		
148	最小値	148		
149				
150				
150		140	=frequency(C3:C28,F7:F13)	
150.4		145		
151		150		
153		155		
153		160		
153.4		165		
155		170		
155				
155.5			ф	
156.6			\frac{1}{2}	

データ配列と、区間 配列を、カンマで区 切ってそれぞれ入 力。)で閉じる

4)以下の操作をして、frequency関数を 各区間に適用する

←の部分を選択し、

F2キーを押したのち、

Ctrlキー、Shiftキーを 両方押したまま、リター ンキーを押す。

5)作られたデータを使って作図する

140	0	140以下	0
145	0	140~145	0
150	5	145~150	5
155	7	150~155	7
160	10	155~160	10
165	3	160~165	3
170	1	165~170	1

別のセルに、区間のラベルを作り、頻度の数値をコピペ。

※区間のデータが数字のままだと、下 記のグラフ作成が少し面倒になります。

データ部分を選択し、「挿入」メ ニュー→グラフ「縦棒」で完成。

分散の計算

- 1)平均値を出す(上述)
- 2)各データと平均値の差を出す

	 平均値か	 らの差					
148	=03-\$H\$6	; 					
148			合計	4045.1			
149			個数	26			
150			平均値	155.5808			
150			平均値	155.5808	AVERAGE	関数	
150.4							
151							

	平均値から	5の差					r
148							
148			合計	4045.1			
149			個数	26			
150			平均値	155.5808	手計算		
150			平均値	155.5808	AVERAGE	関数	
150.4							
151							
153							
153							
153.4							
155							
155	#						
155.5							

平均値のセルを選ん だあと、F4キーを押し て、対象セルを固定す る

黒ポツを下にドラッグ して、式をコピーする

	平均値から	うの差				
148	-7.58077					
148	-7.58077		合計	4045.1		
149	-6.58077		個数	26		
150	-5.58077		平均値	155.5808	手計算	
150	-5.58077		平均値	155.5808	AVERAGE	関数
150.4	-5.18077					
151	-4.58077					
153	-2.58077					
153	-2.58077					
153.4	=012-\$H\$	6				
155	0 50077					

コピーしたセルの一つを ダブルクリックして、き ちんと平均値が引かれ ていることを確認する

3)(各データと平均値の差)の2乗を計算する

	平均値からの	差	← Ø	_
148	-7.5807692	231	=D3^:	2
148	-7.5807692	231		
149	-6.5807692	231		
	平均値からの差	← 0.	二乗	
148	-7.580769231	57.	46806	
148	-7.580769231			
149	-6.580769231			_
150	-5.580769231		1	

二乗は^2で計算

同様に、黒ポツのドラッグで下に式をコピー

4)2乗した値の和(二乗和)を計算

	平均値からの差	←の二乗				
148	-7.580769231	57.46806				
148	-7.580769231	57.46806	合計	4045.1		
149	-6.580769231	43.30652	個数	26		
150	-5.580769231	31.14499	平均值	155.5808	手計算	
150	-5.580769231	31.14499	平均值	155.5808	AVERAGE	関数
150.4	-5.180769231	26.84037	二乗和	=sum(E3:E	28)	
151	-4.580769231	20.98345				

sum関数で

5) 二乗和をデータの個数で割る

合計	4045.1		
個数	26		
平均值	155.5808	手計算	
平均値	155.5808	AVERAGE	関数
二乗和	590.7004		
分散	=H8/H5		

6)VAR.P関数で同じ答えになるかを確かめる計算

	平均値からの差	←の二乗				
148	-7.580769231	57.46806				
148	-7.580769231	57.46806	合計	4045.1		
149	-6.580769231	43.30652	個数	26		
150	-5.580769231	31.14499	平均值	155.5808	手計算	
150	-5.580769231	31.14499	平均值	155.5808	AVERAGE	関数
150.4	-5.180769231	26.84037	二乗和	590.7004		
151	-4.580769231	20.98345	分散	22.71925		
153	-2.580769231	6.66037	分散	=var.p(C3:	C28)	
153	-2.580769231	6.66037				
153.4	-2.180769231	4.755754				

完了

不偏標本分散を計算する

分散を出したステップ5)で、データの個数では なく、データの個数-1で割る

合計	4045.1		
個数	26		
平均値	155.5808	手計算	
平均値	155.5808	AVERAGE	関数
二乗和	590.7004		
分散	22.71925		
分散	22.71925	VAR.P	
不偏標本分散	=H8/(H5-	1) 🕇	

VAR.S関数で同じ答えになるかを確認

合計	4045.1	
個数	26	
平均値	155.5808	手計算
平均値	155.5808	AVERAGE関数
二乗和	590.7004	
分散	22.71925	
分散	22.71925	VAR.P
不偏標本分散	23.62802	
不偏標本分散	=var.s(C3:0	C28)

完了

標準偏差を出す

SQRT関数で分散の平方根を出す

合計	4045.1									
個数	26									
平均値	155.5808	手計	算							
平均値	155.5808	AVE	RAGE関]数						
二乗和	590.7004									
分散	22.71925									
分散	22.71925	VAR	P							
不偏標本分散	23.62802	., ., .,		S		FV	'.Pで	夫 ,祝	至言烈	
不偏標本分散	23.62802	VA [—]		平均値からの差				O PI	T H(0)	
標準偏差	=sgrt(H9)		148	-7.580769231	57.46806					
1示于 冊 /도	-sqrt(113)		148	-7.580769231	57.46806		合計	4045.1		
			149	-6.580769231	43.30652		個数	26		
			150	-5.580769231	31.14499		平均値	155.5808	手計算	
			150		31.14499		平均値		AVERAGE	関数
			150.4	-5.180769231	26.84037		二乗和	590.7004		
			151	-4.580769231	20.98345		分散	22.71925		
			153	-2.580769231	6.66037		分散	22.71925	VAR.P	
			153	-2.580769231	6.66037		不偏標本分散	23.62802		
			153.4	-2.180769231	4.755754		不偏標本分散	23.62802	VAR.S	
			155	-0.580769231	0.337293		標準偏差	4.766471		
			155	-0.580769231	0.337293		標準偏差	=stdev.p(C	03:028)	
			155.5	-0.080769231	0.006524					
			156.6	1 019230769	1 038831					

不偏標本標準偏差を出す

SQRT関数で不偏標本分散の平方根を出す

標準偏差

不偏標本標準偏差

不偏標本標準偏差

4,766471 STDEV.P

=stdev.s(C3:C28)

4.860866

合計	4045.1					
個数	26					
平均値	155.5808	手計算				
平均値	155.5808	AVERAGE!	対数			
二乗和	590.7004		СТ		107	: <i>十 T</i> 左=刃
分散	22.71925		5 1	レヒV	.5 C	も確認
分散	22.71925	VAR.P		ı	I	
不偏標本分散	23.62802		合計	4045.1		
不偏標本分散	23.62802	VAR.S	個数	26		
標準偏差	4.766471		平均値	155.5808		
標準偏差	4.766471	STDEV.P	平均値		AVERAGE	□
不偏標本標準偏差	=sqrt(H11)		二乗和	590.7004	AVENAGE:	×18×
			· · ·			
			分散	22.71925		
			分散	22.71925	VAR.P	
			不偏標本分散	23.62802		
			不偏標本分散	23.62802	VAR.S	
			標準偏差	4.766471		

Excelによる 都道府県ランキングの データの加工

都道府県ランキングからコピー&ペーストしたデータ を、散布図や相関係数の計算ができるように加工する

https://todo-ran.com/

都道府県ランキングのページから、表のデータを コピーする

11 横断歩道での一時停止率

12 大学進学率

13 スターバックスコーヒー店舗数

14 寺院数

□ しゅうまい消費量ランキング

「並替」の右横の「北/南」「降順/昇順」をクリックすると並べ替え表示します。

順位	都道府県	購入金額	偏差値
並替	北南	降順 昇順	降順 昇順
1	神奈川県	2,873円	100.81
2	東京都	1,514円	66.92
3	山梨県	1,332円	62.38
4	群馬県	1,310円	61.83
5	静岡県	1,219円	59.56

都道府県別ランキング

徳島県 滋賀県 香川県 京都府

Excelにはりつける

	А	В	С	D	Е	F	G
1							
2							
3		順位	都道府県	購入金額	偏差値		
4		並替	北南	降順 昇順	降順 昇順		
5		1	神奈川県	2,873円	100.81		
6		2	東京都	1,514円	66.92		
7		3	山梨県	1,332円	62.38		
8		4	群馬県	1,310円	61.83		
9		5	静岡県	1,219円	59.56		
10		6	愛知県	1,165円	58.21		
11		7	<u>千葉県</u>	1,154円	57.94		
12		8	埼玉県	1,106円	56.74		
13		9	佐賀県	1,076円	55.99		
14		10	岐阜県	1,038円	55.04		
15		11	大阪府	1,009円	54.32		
16		12	栃木県	998円	54.05		
17		13	<u>奈良県</u>	990円	53.85		
18		14	<u>茨城県</u>	976円	53.5		
19		15	山形県	888円	51.3		
20		16	京都府	842円	50.15		

余分な列、行を削除する

- 順位、偏差値の列
- 一番上のヘッダーの2行
- 一番下の全国の行

列、行番号の上で右ク リックし、削除を選択

データの欄には単位や桁区切りのカンマが 入っているので、数値データに直す

1)LEN関数で文字数を調べる

2)この例の場合、「円」と「,」は一文字としてカウントされているようなので、LEFT関数で、左側から「円」一文字分短い文字列をとってくる

<u>神奈川県</u> 2,873円 6 = LEFT(C3,D3-1	1)
<u>東京都</u> 1,514円 LEFT(文字列 , [2	文字数])

3)取り出した文字列は、文字データなので、数値データに直す。

Excelでは、数値データに見える文字列を、数値演算に用いると、数値データとして扱ってくれる。

この性質を使って、取り出した数値部分の文字データに0を足すことで、数値データに変換する。

		文字数	数字部分	数値データ	7
神奈川県	2,873円	6	2,873	=E3+0	
市台坝	4 E 4 4 M				1

4)下にコピーして、想定通りの結果が得られているのを確認

		文字数	数字部分	数値データ
神奈川県	2,873円	6	2,873	2873
東京都	1,514円	6	1,514	1514
山梨県	1,332円	6	1,332	1332
群馬県	1,310円	6	1,310	1310
静岡県	1,219円	6	1,219	1219
愛知県	1,165円	6	1,165	1165
<u>千葉県</u>	1,154円	6	1,154	1154
埼玉県	1,106円	6	1,106	1106
佐賀県	1,076円	6	1,076	1076
<u>岐阜県</u>	1,038円	6	1,038	1038
大阪府	1,009円	6	1,009	1009
栃木県	998円	4	998	998
奈良県	990円	4	990	990
<u>茨城県</u>	976円	4	976	976
山形県	888円	4	888	888
京都府	842円	4	842	842
<u>福井県</u>	832円	4	832	832

同様の手順で、他のランキングデータを取得し、 数値化を行う。

		文字数	数字部分	数値データ			文字数	数字部分	数値データ
神奈川県	2,873円	6	2,873	2873	東京都	985円	4	985	985
東京都	1,514円	6	1,514	1514	神奈川県	983円	4	983	983
山梨県	1,332円	6	1,332	1332	<u>大阪府</u>	936⊞	4	936	936
群馬県	1,310円	6	1,310	1310	<u>愛知県</u>	898⊞	4	898	898
静岡県	1,219円	6	1,219	1219	埼玉県	898⊞	4	898	898
<u>愛知県</u>	1,165円	6	1,165	1165	<u>千葉県</u>	895⊞	4	895	895
<u>千葉県</u>	1,154円	6	1,154	1154	京都府	882円	4	882	882
埼玉県	1,106円	6	1,106	1106	<u>兵庫県</u>	871 円	4	871	871
佐賀県	1,076円	6	1,076	1076	静岡県	858⊞	4	858	858
岐阜県	1,038円	6	1,038	1038	三重県	846 円	4	846	846
大阪府	1,009円	6	1,009	1009	広島県	844円	4	844	844
栃木県	998⊞	4	998	998	滋賀県	839円	4	839	839
奈良県	990円	4	990	990	北海道	835円	4	835	835
<u>茨城県</u>	976円	4	976	976	栃木県	826円	4	826	826
山形県	888円	4	888	888	<u>岐阜県</u>	825円	4	825	825
	242.77	A	040	0.40	4-14-1-	222 77	4	000	000

データの並び替え

二つのランキングを都道府県名で突き合わせるため表を都道 府県名で並び替える

1)件名の一番上のデータからドラッグを始めて、表全体を選択する

			** / \	244_/
		文字数	数字部分	数値データ
神奈川県	,8 7 3円	6	2,873	2873
<u>果尽郁</u>	,514円	6	1,514	1514
山梨県	1,35 <mark>2</mark> }	らドラッ	在3時於	1332
群馬県	1,310円		1,310	1310
静岡県	1,219円	6	1,219	1219
愛知県	1,165円	6	1,165	1165
<u>千葉県</u>	1,154円	6	1,154	1154
埼玉県	1,106円	6	1,106	1106
佐賀県	1,076円	6	1,076	1076
<u>岐阜県</u>	1,038円	6	1,038	1038
大阪府	1,009円	6	1,009	1009
栃木県	998円	4	998	998
奈良県	990円	4	990	990
茨城県	976⊞	4	976	↔ 976

ドラッグを始めた列を基準に並び替えられるので、必ず都道府 県名のセルから始める

2)ホームメニュー→並べ替えとフィルター→昇順 で、並び替える

3)もう一つの表も同様に並び替える

4)都道府県名が正しく対応しているかどうか、IF関数で確認 する

各行で都道府県名が一致していれば「OK」、一致していなければ「NG」と表示させる

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q
1																	
2				文字数	数字部分	数値デー	- タ			文字数	数字部	数値デ-	ータ	名前の一	致		
3		<u>愛知県</u>	1,165円	6	1,165	1165		<u>愛知県</u>	898⊞	4	898	898		=IF(B3=I	- −3,"OK","N	G")	
4		愛媛県	438円	4	438	438		<u>愛媛県</u>	764円	4	764	764		IF(論理 :	式 , [値が真の場	合],[値が偽	の場合])
5		<u>茨城県</u>	976円	4	976	976		<u>茨城県</u>	822円	4	822	822					

下方にコピーして、全部OKならばよい。

完了 散布図の作成や相関係数の計算などに用いてください。

Excelで 正規分布、t分布を描く

標準正規分布を描く

1)エクセルで、-5.0から5.0まで0.1刻みの数値 を作る

縦につなげて、-5, -4.9と入力し、 右下の黒ポツを下にドラッグして 連続データを作る

2)NORM.S.DIST関数を使って、上記で作った数値における確率密度を出す

黒ポツのドラッグ、あるいは黒ポツのダブルクリックで、下方に式をコピーする

-5	1.5E-06	
-4.9	2.4E-06	
-4.8	4E-06	
-4.7	6.4E-06	
-4.6	1E-05	

3)散布図を使って作図する

累積分布関数のグラフを作る

同様に、NORM.S.DIST関数の第2引数にTRUE を指定すると、累積分布関数の値を計算してくれる。

-5	1.49E-06	=NORM.S.DIST	r(C2,TRUE)
-4.9	2.44E-06		·
-4.8	3.96E-06		

グラフをクリックし、データ範囲を広げてあげると、 確率密度関数と累積分布関数を一枚のグラフに表 示することができる

ここらへんをドラッグ

確率から、標準正規分布の境界 値を求める

1) NORM.S.INV関数で

上側確率を指定するときは、1-値を関数に渡す。あるいは絶対値をとってもよい。

0.025	-1.95996	
0.975	1.959964	

t 分布を描く

1)-5~5まで、0.1刻みのデータを作り、さらに、適当な自由度をいくつか、各列の先頭に記入する

	自由度						
	1	2	5	10	30	1000	
-5							
-4.9							
-4.8							
-4.7							
-4.6							
-4.5 -4.4							
-4.4							

2)T.DIST関数で確率密度を計算する

第一引数(xの値)と、第二引数(自由度)のセルの指定では、 F4キーを数回押して、第一引数は列が、第二引数は行が固 定されるようにする。

	自由度					
	1	2	5	1		
-5 =T.DIST(\$B4,C\$3,FALSE)						
-4.9						
-48						

表全体にコピーする

	自由度						
	1	2	5	10	30	1000	
-5	0.012243	0.007128	0.001757	0.000396	3.29E-05	1.71E-06	
-4.9	0.012727	0.007539	0.001944	0.000464	4.36E-05	2.78E-06	
-4.8	0.013241	0.007981	0.002152	0.000544	5.77E-05	4.46E-06	
17	0.010700	0.000450	0.000007	0.000000	7 045 05	7 1 5 00	

3)散布図を使ってグラフにする

確率からt分布の境界値を 出す

T.INV関数で、確率と自由度を与えて計算する。

自由度		確率	
	1	0.025	=T.INV(C4,B4)

上側確率をとるときには、1-確率を与えるか、絶対値をとる。

自由度		確率	
	1	0.025	-12.7062
	1	0.975	12.7062