How to Change the World with Donald Knuth

Abraham Xiao

Masdar Institute of Science and Technology

Information Security Project Presentation

Discrete Logarithm

Discrete Logarithm in a Nutshell

The security of many cryptographic techniques depends on the intractability of discrete logarithm problem.

A partial list of these include:

- DiffieHellman key agreement and its derivatives.
- ElGamal encryption.
- ElGamal signature scheme and its variants.

General setting for algorithms in this section are:

- A (multiplicatively written) finite cyclic group G
- *n* is the order of group *G*
- ullet α is a generator of group ${\it G}^1$

¹For more math background, refer to [Ros12].

Relevant Definitions

Cyclic group and its generator.

Definition

A group is *cyclic* if there is an element $\alpha \in G$ such that for each $b \in G$ there is an integer i with $b = \alpha^i$. Such an element α is called a generator of G.

Definition

Let G be a finite cyclic group of order n. Let α be a generator of G, and let $\beta \in G$. The *discrete logarithm of* β *to the base* α , denoted $\log_{\alpha} \beta$, is the unique integer x, $0 \le x \le n-1$, such that $\beta = \alpha^x[\mathsf{MVO96}]$.

References I

