对点练 ▶先练透基础

类型1 简单复合函数的导数

例1 求下列各函数的导数:

(1) $y = \ln (3x - 2)$;

(2)
$$f(x) = e^{-2x+1} + e^x + e^2$$
;

(3)
$$y = \sqrt{1-2x^2}$$
;

$$(4) f(x) = \ln^2 x - 2\ln x + 3.$$

【解析】(1)
$$y' = \frac{1}{(3x-2)} \cdot (3x-2)' = \frac{3}{3x-2}$$
;

$$(2) f(x) = e^{-2x+1} \cdot (-2x+1)' + e^x = -2e^{-2x+1} + e^x.$$

(3)
$$y' = \frac{1}{2\sqrt{1-2x^2}} \cdot (1-2x^2)' = -\frac{2x}{\sqrt{1-2x^2}}$$
.

(4)
$$f(x) = \ln^2 x - 2\ln x + 3 = (\ln x - 1)^2 + 2$$
,

所以
$$f(x) = \frac{1}{x} \times 2(\ln x - 1) = \frac{-2 + 2\ln x}{x}$$

规律总结:某些较复杂的函数可以先进行整理,比如化为简单的复合函数,利用复合函数的求导法则求其导数.

类型 2 利用复合函数的导数求曲线在某点处的切线

囫2 (1) 若曲线 $y=e^{2x+1}$ 在点(x_0 , e^2x_0+1)处的切线方程为 2ex-y+e=0,则 $x_0=$

【答案】 0

【解析】 $y'=2e^{2x+1}$,所以 $2e2x_0+1=2e$,得 $x_0=0$.

(2) 设曲线 $y=e^{-x}(x\geq 0)$ 在点 $M(t, e^{-t})(t\geq 0)$ 处的切线 l 与 x 轴、y 轴所围成的三角形面积为 S(t),则 S(t)的解析式为

【答案】
$$S(t) = \frac{1}{2} (t+1)^2 e^{-t} (t \ge 0)$$

【解析】 对 $y=e^{-x}$ 求导可得 $y'=f(x)=(e^{-x})'=-e^{-x}$,

故切线 l 在点 $M(t, e^{-t})$ 处的斜率为 $f(t) = -e^{-t}$,

故切线 l 的方程为 $y-e^{-t}=-e^{-t}(x-t)$, 即 $e^{-t}x+y-e^{-t}(t+1)=0$.

所以
$$S(t) = \frac{1}{2} (t+1) \cdot e^{-t} (t+1) = \frac{1}{2} (t+1)^2 e^{-t} (t \ge 0).$$

类型 3 复合函数导数的实际应用

囫3 某港口在一天 24h 内潮水的高度近似满足函数关系 $S(t) = 3\sin\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$ $(0 \le t \le 24)$,其中 S 的单位是 m,t 的单位是 h,求 18 点时潮水起落的速度.

【解析】因为
$$S'(t) = 3\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right) \times \frac{\pi}{12} = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$$
,所以 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$,所以 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$,所以 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$,所以 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$,所以 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{5\pi}{6}\right)$,所以 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$, $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$, $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$, $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$, $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$, $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{4}\cos\left(\frac{\pi}{12}t + \frac{\pi}{6}\right)$ 。 $S'(18) = \frac{\pi}{12}\cos\left(\frac{\pi}{12}t + \frac{\pi}{12}t + \frac{\pi}{12}\right)$ 。 $S'(18) = \frac{\pi}{12}\cos\left(\frac{\pi}{12}t + \frac{\pi}{12}t +$

规律总结:对三角函数型函数的求导,往往需要利用三角恒等变换公式,对函数式进行 化简,再进行求导.复合函数的求导法则熟悉后,中间步骤可以省略,即不必再写出函数的 复合过程,直接运用公式,从外层开始由外到内逐层求导.

综合练 ▶ 再融会贯诵

一、 单项选择题

1. 函数 $y = \cos(2x + 1)$ 的导数是(

A.
$$y' = \sin(2x+1)$$

A.
$$y' = \sin(2x+1)$$
 B. $y' = -2x \sin(2x+1)$

C.
$$y' = -2\sin(2x+1)$$
 D. $y' = 2x\sin(2x+1)$

D.
$$y' = 2x \sin(2x+1)$$

【答案】 C

【解析】 $y'=-\sin(2x+1)(2x+1)'=-2\sin(2x+1)$.

2. 设 $f(x) = \ln(2x-1)$, 若 f(x)在 $x = x_0$ 处的导数 $f'(x_0) = 1$, 则 x_0 的值为(

A.
$$\frac{e+1}{2}$$
 B. $\frac{3}{2}$ C. 1 D. $\frac{3}{4}$

B.
$$\frac{3}{2}$$

D.
$$\frac{3}{4}$$

【答案】B

【解析】 由 $f(x) = \ln(2x-1)$,得 $f(x) = \frac{2}{2x-1}$.

由
$$f(x_0) = \frac{2}{2x_0 - 1} = 1$$
,解得 $x_0 = \frac{3}{2}$.

3. 随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域, 并取得了显著经济效益. 假设某放射性同位素的衰变过程中, 其含量 N(单位: 贝克)与时间 t(单位:天)满足函数关系 $P(t)=P_0 \cdot 2^{-\frac{t}{30}}$,其中 P_0 为 t=0 时该放射性同位素的含量.已知 t=15 时,该放射性同位素的瞬时变化率为 $-\frac{3\sqrt{2}\ln 2}{10}$,则该放射性同位素含量为 4.5 贝克时

衰变所需时间为()

【答案】 D

【解析】 由 $P(t) = P_0 \cdot 2^{-\frac{t}{30}}$ 得 $P'(t) = -\frac{1}{30} \cdot P_0 \cdot 2^{-\frac{t}{30}} \ln 2$.因为 t = 15 时,该放射性同位 素的瞬时变化率为 $-\frac{3\sqrt{2\ln 2}}{10}$, 所以 $P'(15) = -\frac{\sqrt{2\ln 2}}{60}$ $P_0 = -\frac{3\sqrt{2\ln 2}}{10}$, 解得 $P_0 = 18$, 则 P(t) $=18\cdot2^{-\frac{t}{30}}$. 当该放射性同位素含量为 4.5 贝克, 即 P(t) = 4.5 时,由 18 • $2^{-\frac{t}{30}}$ = 4.5,得 $2^{-\frac{t}{30}}$ $=\frac{1}{4}$, 所以 $-\frac{t}{30}=-2$, 解得 t=60.

4. 设 $a \in \mathbb{R}$,函数 $f(x) = e^x + a \cdot e^{-x}$ 的导函数是 f(x),且 f(x)是奇函数. 若曲线 y = f(x)的 一条切线的斜率是 $\frac{3}{2}$,则切点的横坐标为(

C.
$$\frac{\ln 2}{2}$$

A.
$$\ln 2$$
 B. $-\ln 2$ C. $\frac{\ln 2}{2}$ D. $-\frac{\ln 2}{2}$

【答案】A

【解析】 对 $f(x) = e^x + a \cdot e^{-x}$ 求导得 $f'(x) = e^x - ae^{-x}$.又 f'(x)是奇函数,故 f'(0) = 1 - a = 0,

解得 a=1,故 $f(x)=e^{x}-e^{-x}$.设切点为 (x_0, y_0) ,则 $f(x_0)=ex_0-e-x_0=\frac{3}{2}$,得 $ex_0=2$ 或 $ex_0=-\frac{1}{2}$ (舍去),得 $x_0=\ln 2$.

二、多项选择题

5. 下列函数求导正确的是(

A. 若
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
, 则 $f'(x) = \frac{4x}{(x^2 + 1)^2}$

B. 若
$$f(x) = e^{2x}$$
, 则 $f'(x) = e^{2x}$

C. 若
$$f(x) = \sqrt{2x-1}$$
 ,则 $f'(x) = \frac{1}{\sqrt{2x-1}}$

D. 若
$$f(x) = \cos\left(2x - \frac{\pi}{3}\right)$$
, 则 $f'(x) = -\sin\left(2x - \frac{\pi}{3}\right)$

【答案】 AC

【解析】 若
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
 ,则 $f'(x) = \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$,故 A

正确; 若 $f(x) = e^{2x}$, 则 $f'(x) = e^{2x} \cdot (2x)' = 2e^{2x}$, 故 B 错误; 若 $f(x) = \sqrt{2x - 1}$, 则 $f'(x) = \frac{1}{2} \cdot (2x - 1)' = \frac{1}{\sqrt{2x - 1}}$, 故 C 正确; 若 $f(x) = \cos\left(2x - \frac{\pi}{3}\right)$, 则 $f'(x) = -\sin\left(2x - \frac{\pi}{3}\right) \cdot \left(2x - \frac{\pi}{3}\right) \cdot \left(2x - \frac{\pi}{3}\right)$, 故 D 错误.

- 6. 以下函数求导正确的是()
- A. 函数 $f(x) = (x+1)^2(x-1)$ 在 x=1 处的导数等于 4
- B. 函数 $f(x) = (1-2x^3)^{10}$ 在 x=1 处的导数等于 32
- C. 函数 $f(x) = x \ln (2x+5)$ 在 x=1 处的导数等于 $\ln 7$
- D. 函数 $f(x) = xe^{x^{-1}}$ 在 x = 1 处的导数等于 2

【答案】 AD

【解析】 对于 A, $f'(x) = [(x+1)^2]'(x-1) + (x+1)^2 \cdot (x-1)' = 2(x+1)(x-1) + (x+1)^2 = 3x^2 + 2x - 1$, 所以 f'(1) = 4, 故 A 正确; 对于 B, $f'(x) = 10(1-2x^3)^9(-6x^2)$, 所以 $f'(1) = 10(1-2)^9(-6) = 60$, 故 B 错误; 对于 C, $f'(x) = [x \ln(2x+5)]' = x' \ln(2x+5) + x[\ln(2x+5)]' = \ln(2x+5) + x \cdot \frac{1}{2x+5} \cdot (2x+5)' = \ln(2x+5) + \frac{2x}{2x+5}$, $f'(1) = \ln 7 + \frac{2}{7}$, 故 C 错误; 对于 D, $f'(x) = e^{x-1} + xe^{x-1} = (x+1)e^{x-1}$, $f'(1) = (1+1)e^{1-1} = 2$, 故 D 正确.

- 7. 下列判断正确的是()
- A. 曲线 $f(x) = \ln (x-1)$ 在点(2, 0)处的切线的倾斜角是 $\frac{\pi}{4}$
- B. 曲线 $f(x) = \frac{1}{x-1}$ 在点(2, 1)处的切线的倾斜角是 $\frac{\pi}{4}$
- C. 曲线 $f(x) = e^{x^{-1}}$ 在点(2, e)处的切线方程是 ex y e = 0
- D. 曲线 $f(x) = (x-1)^5$ 在点(2, 1)处的切线与直线 x+5y=0 互相垂直

【答案】 ACD

【解析】 选项 A, $f'(x) = \frac{1}{x-1}$, f'(2) = 1, 所以倾斜角 $\theta = \frac{\pi}{4}$, 故 A 正确; 选项 B,

 $f'(x) = -\frac{1}{(x-1)^{-2}}$,f'(2) = -1,所以倾斜角 $\theta = \frac{3\pi}{4}$,故 B 错误;选项 C, $f'(x) = e^{x^{-1}}$,f'(2) = e,所以切线方程为 ex - y - e = 0,故 C 正确;选项 D, $f'(x) = 5(x-1)^4$,f'(2) = 5,所以 D 正确.

三、 填空题

8. 若函数 $f(x) = e^{ax} + \ln(x+1)$, f'(0) = 4, 则 $a = _____$.

【答案】3

【解析】 由 $f(x) = e^{ax} + \ln(x+1)$,得 $f(x) = ae^{ax} + \frac{1}{x+1}$,因为 f(0) = 4,所以 f(0) = a+1 = 4,所以 a = 3.

9. 己知 $f(x)=x^3$,则 f'(2x+3)=______, [f(2x+3)]'=_____.

【答案】 $3(2x+3)^2$ $6(2x+3)^2$

【解析】 因为 $f(x)=x^3$,所以 $f'(x)=3x^2$,则 $f(2x+3)=3(2x+3)^2$.设 t=2x+3,f(2x+3)=f(t),则 t'=2,则[f(2x+3)] $'=2\times3(2x+3)^2=6(2x+3)^2$.

10. 曲线 $f(x) = (1-x)^2 + 3\ln(2+x)$ 在点(1, f(1))处的切线的斜率为_____.

【答案】〔

【解析】 $f(x)=(1-x)^2+3\ln(2+x)(x>-2)$, $f'(x)=2x-2+\frac{3}{2+x}=\frac{2x^2+2x-1}{x+2}$, 所以 k=f'(1)=1.

四、解答题

- 11. 求下列函数的导数:
- $(1) f(x) = (3x^2 + 1)(2 x);$
- (2) $f(x) = x^2 \ln(2x)$;
- $(3) f(x) = \ln (2x-1)^3$.

【解析】 $(1) f(x) = 6x(2-x) + (3x^2+1) \times (-1) = -9x^2 + 12x - 1;$

$$(2) f'(x) = 2x \ln(2x) + x^2 \times \frac{2}{2x} = x[2\ln(2x) + 1];$$

- (3) 因为 $f(x) = 3\ln(2x-1)$,所以 $f(x) = \frac{6}{2x-1}$.
- 12. 已知函数 $f(x) = \ln(x+1) ax$ 的图象在 x = 2 处的切线与直线 2x + 3y + 1 = 0 平行,
- (1) 求 a 的值;
- (2) 求曲线 g(x)=f(x)+x 上到直线 y=x+3 距离最小的点的坐标,并求出该最小值.

【解析】 (1) 由 $f(x)=\ln (x+1)-ax$,得 $f'(x)=\frac{1}{x+1}-a$,因为函数 f(x)的图象在 x=2处的切线与直线 2x+3y+1=0 平行,所以 $f(2)=\frac{1}{3}-a=-\frac{2}{3}$,所以 a=1.

(2) $g(x) = \ln (x+1)$, $g'(x) = \frac{1}{x+1}$, $\varphi g'(x) = \frac{1}{x+1} = 1$, 得 x = 0, 则曲线 g(x)在点(0,

0)处的切线方程为x-y=0,即点(0,0)到直线y=x+3的距离最小,最小距离 $d=\frac{3}{\sqrt{2}}=\frac{3}{2}\sqrt{2}$.

创新练 ▶延伸与迁移

1. 在对函数 $y = [f(x)]^{g(x)}$ 求导时可运用对数法: 在解析式两边同时取对数,得到 $\ln y = g(x) \cdot \ln f(x)$,然后两边同时求导,得 $\frac{y'}{y} = g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)}$,于是 $y' = [f(x)]^{g(x)} \cdot [g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)}]$].用此法探求 $y = (x+1)^{\frac{1}{x+1}}$ (x>0)的导数为______.

【答案】
$$y'=[1-\ln(x+1)]\cdot(x+1)^{\frac{-2x-1}{x+1}}$$

【解析】 由
$$y=(x+1)^{\frac{1}{x+1}}$$
 (x>0),

两边同时取对数,得 $\ln y = \frac{1}{x+1} \ln (x+1)$,

两边同时求导,得
$$\frac{y'}{y} = \frac{-1}{(x+1)^{-2}} \ln(x+1) + \frac{1}{x+1} \times \frac{1}{x+1} = \frac{1}{(x+1)^{-2}} [1 - \ln(x+1)],$$
 所以 $y' = [1 - \ln(x+1)] \cdot (x+1)^{\frac{-2x-1}{x+1}}$.