CSE435 – Robotics

Lab 2 - RobotBASIC Sensors

General Overview

- The robot in **RobotBASIC** has several sensors that let it *feel* and *see* its environment.
- Programs use sensor data to make decisions e.g., avoid collisions, follow targets, or locate goals.
- This lab introduces sensor-based control and key programming constructs in RobotBASIC.

1. Programming Constructs in RobotBASIC

Case Sensitivity

- RobotBASIC is **not case-sensitive** for keywords (IF, if, If all work).
- However, variable names, array names, and labels are case-sensitive.

Comments

// This is a comment

• Anything following // on a line is ignored by the interpreter.

Conditional Statements

Single-line form

if condition then action

• Executes the action only if the condition is true.

Multi-line form

```
if condition
action1
action2
endif
```

With else

```
if condition
action1
else
action2
endif
```

Comparison operators

Operator Meaning

>	greater than
<	less than
=	equal to
<>	not equal
<=	less than or equal
>=	greater than or equal

Loops

For Loop

```
for I = 1 to 10
print I
next
```

While Loop

```
K = 0
while K <> Ascii("q")
  print Random(1000)
  waitkey K
wend
```

• Use **break** to exit a loop early.

Output Commands

Print to screen

```
print Expr
print Expr, Expr
print Expr; Expr

• , → no space
• ; → adds a tab space
```

Print at specific coordinates

```
XYString X, Y, Expr[, Expr; ...]
```

• Similar to print, but text appears at (X, Y) without scrolling.

2. Collision Detection with Bumpers

- The robot has **four bumper sensors** around its perimeter.
- Function:

rBumper()

Returns a number representing which bumpers are pressed (0 = none).

Example - Stop on Collision

```
rLocate 400, 300

while rBumper() = 0
rForward 1
wend
```

3. Object Detection Sensors

- Infrared (IR) Sensors
 - Detect obstacles without touching them.
 - Work by emitting IR light and detecting reflections.
 - Function:

rFeel()


```
rLocate 400, 300
while rFeel() = 0
rForward 1
wend
```

Ranging Sensor (Ultrasonic / Infrared)

- Detects distance to obstacles.
- Function:

rRange()

Returns the distance in pixels.

Example - Move until object within 20 pixels

```
rLocate 400, 300

while rRange() > 20
 rForward 1

wend
```

Robot Vision (Camera)

- Detects **colored objects** in the robot's field of view.
- Function:

rLook()

Returns the detected color.

Example - Turn until red object is seen

```
circle 600, 500, 620, 520, red, red
rLocate 400, 300
while rLook() <> RED
rTurn 1
wend
```

Beacon Detection

- Used to locate a **flashing beacon** in the environment.
- Function:

```
rBeacon(color)
```

Returns:

- **0** → no beacon detected
- o **non-zero** → distance (in pixels) to the beacon

Example - Turn until beacon is detected

```
circle 600, 500, 620, 520, red, red
rLocate 400, 300
while rBeacon(RED) = false
rTurn 1
wend
```

4. Navigation & Status Instruments

Function	Description
rCompass()	Returns current direction (degrees).
rGpsX()	X-coordinate of robot center.
rGpsY()	Y-coordinate of robot center.
rChargeLevel()	Returns current battery percentage.