Stochastic Coherency in Forecasting Reconciliation

Quarterly Forecasting Forum

International Institute of Forecasting

Kandrika Pritularga Ivan Svetunkov Nikolaos Kourentzes

Manchester, 6th March 2020

Marketing Analytics & Forecasting

Outline

- 1. Introduction
- 2. Hierarchical Forecasting
- 3. Stochastic Coherency
- 4. Forecast Reconciliation under Different Model Specification
- 5. Simulation Studies
- 6. A Case Study: Scandinavian unemployment monthly data
- 7. Discussion
- 8. Conclusion

INTRODUCTION

Introduction

- Forecasting is essential for supporting decisions
- Such decisions are structured in hierarchies
 - Product categories, market segments
 - Weekly, monthly, quarterly, semi-annually, yearly
- Hierarchies can be structured in temporal, cross-sectional, or both

$$\mathbf{S} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \mathbf{y}_b = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix}$$

Athanasopoulos & Kourentzes (2020)

Hierarchical Forecasting

- Conventional methods: Bottom-up and top-down
 - Both ignore important information in the hierarchy
- Current method: MinT Reconciliation
 - Generate forecast for each time series independently
 - Combine the forecast linearly to produce adjusted bottom-level forecasts
 - Aggregate the adjusted forecasts into a complete hierarchy

$$\widetilde{\mathbf{y}}_{t+h|t} = \mathbf{S}\mathbf{G}\widehat{\mathbf{y}}_{t+h|t}$$

$$\mathbf{G} = (\mathbf{S}^T \mathbf{W}_{t+h|t}^{-1} \mathbf{S})^{-1} \mathbf{S}^T \mathbf{W}_{t+h|t}^{-1}$$

Hierarchical Forecasting

 Formulation (Hyndman et al 2011, Wickramasuriya et al. 2018):

$$\widetilde{\mathbf{y}}_{t+h|t} = \mathbf{S}\mathbf{G}\widehat{\mathbf{y}}_{t+h|t}$$

$$\mathbf{G} = (\mathbf{S}^T \mathbf{W}_{t+h|t}^{-1} \mathbf{S})^{-1} \mathbf{S}^T \mathbf{W}_{t+h|t}^{-1}$$

 $\widetilde{y}_{t+h|t}$ is the h-step ahead reconciled forecast; $\widehat{y}_{t+h|t}$ is the h-step ahead unreconciled based forecast; S is a summation matrix; G is the hierarchical reconciliation weight matrix; $W_{t+h|t}$ is the covariance matrix of h-step ahead base forecasts

Hierarchical Forecasting

- $W_{t+h|t}$ is difficult to estimate
- Literature approximates $W_{t+h|t}$ with the covariance matrix of one-step ahead in-sample base forecast error (\widehat{W})
- Suppose we have additional sample and re-estimate G
 given \widehat{W} , \widehat{G} will vary from the previous \widehat{W}

$$\frac{\mathsf{t=1}}{\mathbf{G}_T} = f(\mathbf{S}, \widehat{\mathbf{W}}_T)$$

$$\frac{\mathsf{t=s}}{\mathbf{G}_{T+s}} = f(\mathbf{S}, \widehat{\mathbf{W}}_T)$$

$$\widehat{\boldsymbol{G}}_{T} \neq \widehat{\boldsymbol{G}}_{T+s}$$

$$\boldsymbol{S}\widehat{\boldsymbol{G}}_{T}\widehat{\boldsymbol{y}}_{T+h|T} \neq \boldsymbol{S}\widehat{\boldsymbol{G}}_{T+s}\widehat{\boldsymbol{y}}_{T+s+h|T+s}$$

Classical Coherency

- Most literature in hierarchical assume that the data, or in our words, the observed data is coherent
- Classical coherency is defined as

$$\mathbf{y}_t = \mathbf{S}\mathbf{y}_{b,t}$$

- where the observed time series in the complete hierarchy $m{y}_t$ is an aggregation from the observed bottom-level time series, $m{y}_{b,t}$
- This definition does not allow us to capture uncertainty because it tends to treat the process as deterministic

Research Problems

- Not only uncertainty from the base forecast, but G is also subject to uncertainty
- It is due to uncertainties in forecasting models, namely parameter and model uncertainty
- We propose to redefine coherency from deterministic (observational-focused) to stochastic
- Stochastic coherency ensures that the time series are coherent in expectations
- It enables us to trace back the sources of the uncertainty

STOCHASTIC COHERENCY

Stochastic Coherency

• Suppose that the bottom-level process is shown as $y_{b,t} = \mu_{b,t} + \varepsilon_{b,t}$ where $E(y_{b,t}|I_t) = \mu_{b,t}$, $E(\varepsilon_{b,t}|I_t) = \mathbf{0}$, and $\varepsilon_{b,t} \sim N(\mathbf{0}, \Sigma_b)$, then due to aggregation,

$$E(\mathbf{y}_t | \mathbf{I}_t) = E(\mathbf{S}\mathbf{y}_{b,t} | \mathbf{I}_t)$$
$$\boldsymbol{\mu}_t = \mathbf{S}\boldsymbol{\mu}_{b,t}$$

- Coherency is maintained in the expectation level instead of the observational level
- $\mu_{b,t}$ is the true mean of the bottom-level data generating process, $\varepsilon_{b,t}$ is the innovation in the bottom-level time series, μ_t is the true mean of the complete hierarchy, and I_t is the information at t.

Stochastic Coherency in Forecast Reconciliation

$$E(\mathbf{y}_t|\mathbf{I}_t) = E(\mathbf{S}\mathbf{y}_{b,t}|\mathbf{I}_t)$$
$$\mu_t = \mathbf{S}\mu_{b,t}$$

- Now it depends on how well the forecasting models understand the data generating process (DGP)
- We illustrate three scenarios

Source of uncertainties	Perfect model specification	Well-specified models	Mis-specified models
Model	Perfectly known	Known	Wrong models
Parameter	Perfectly known	Estimated	Estimated

Perfect Model Specification

• In this case, all information is known, e.g. $\pmb{\Sigma}_b$, and the forecasting model is

$$\widehat{\mathbf{y}}_t = \boldsymbol{\mu}_t$$

And the h-step ahead base forecast error is

$$\hat{\boldsymbol{e}}_{t+h|t} = \boldsymbol{\varepsilon}_{t+h}$$

- As $m{arepsilon}_{t+h} = m{S}m{arepsilon}_{b,t+h}$, consequently $m{\varSigma} = m{S}m{\varSigma}_bm{S}^T$
- $\boldsymbol{G} = (\boldsymbol{S}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^T \boldsymbol{\Sigma}^{-1}$
 - G is deterministic as everything is known
- Hence, $\widetilde{y}_{t+h}=SG\widehat{\mu}_{t+h}$ and $Var(\widetilde{y}_{t+h})=Var(SG\widehat{\mu}_{t+h})$ which is constant

Well- v.s. Mis-specified Models

Criteria	Well-specified Models	Mis-specified Models
DGP	$oldsymbol{y}_t = oldsymbol{\mu}_t + oldsymbol{arepsilon}_t$	$oldsymbol{y}_t = oldsymbol{\mu}_t + oldsymbol{arepsilon}_t$
Forecasting Model	$\widehat{\boldsymbol{y}}_{t+h} = \mathrm{E}(\widehat{\boldsymbol{y}}_{t+h t} \boldsymbol{I}_t) + \boldsymbol{v}_{t+h t}$	$\widehat{\boldsymbol{y}}_{t+h t}^{\dagger} = \mathrm{E}(\widehat{\boldsymbol{y}}_{t+h t} \boldsymbol{I}_t) + \boldsymbol{v}_{t+h t}^{\dagger}$
Forecast Error	$\hat{\boldsymbol{e}}_{t+h t} = \boldsymbol{\varepsilon}_{t+h} - \boldsymbol{v}_{t+h t}$	$\widehat{m{e}}_{t+h t}^{\dagger} = m{arepsilon}_{t+h} - m{v}_{t+h t}^{\dagger}$
$v_{t+h t}$	As $t o \infty$, $oldsymbol{v}_{t+h t} o oldsymbol{0}$, $oldsymbol{V} o oldsymbol{0}$	$ ext{E}(oldsymbol{v}_{t+h t}^\dagger) = oldsymbol{v}$ and $ oldsymbol{v}_{t+h t} \leq oldsymbol{v}_{t+h t}^\dagger $
Covariance Matrix	$\boldsymbol{W}_{t+h t} = \boldsymbol{\Sigma} + \boldsymbol{V} - 2\operatorname{cov}(\boldsymbol{\varepsilon}_{t+h}, \boldsymbol{v}_{t+h t})$	$\boldsymbol{W}_{t+h t}^{\dagger} = \boldsymbol{\Sigma} + \boldsymbol{V}^{\dagger} - 2\text{cov}(\boldsymbol{\varepsilon}_{t+h}, \boldsymbol{v}_{t+h t}^{\dagger})$
$\widehat{\boldsymbol{G}}$	$\widehat{\boldsymbol{G}} = (\boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{-1}$	$\widehat{\boldsymbol{G}}^{\dagger} = (\boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{*}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{\dagger}^{-1}$
$\widetilde{\mathbf{y}}_{t+h}$	$\widetilde{\boldsymbol{y}}_{t+h} = \boldsymbol{S}\widehat{\boldsymbol{G}}\widehat{\boldsymbol{y}}_{t+h}$	$\widetilde{\boldsymbol{y}}_{t+h t}^* = \boldsymbol{S}\widehat{\boldsymbol{G}}^\dagger \widehat{\boldsymbol{y}}_{t+h t}^\dagger$
$Var(\widetilde{\boldsymbol{y}}_{t+h})$	$Var(oldsymbol{S}\widehat{oldsymbol{G}}\widehat{oldsymbol{y}}_{t+h})$	Var($oldsymbol{S}\widehat{oldsymbol{G}}^{\dagger}\widehat{oldsymbol{y}}_{t+h t}^{\dagger}$)

Note:

- $oldsymbol{arepsilon}_{t+h}$ is the innovation of the time series across the hierarchy
- $extbf{\emph{V}}$ is the covariance matrix of $extbf{\emph{v}}_{t+h|t}$
- $oldsymbol{v}^*$ is the covariance matrix of $oldsymbol{v}^*_{t+h|t}$
- Variables with star denote that those are generated from mis-specified models

Well- v.s. Mis-specified Models

Criteria	Well-specified Models	Mis-specified Models
DGP	$oldsymbol{y}_t = oldsymbol{\mu}_t + oldsymbol{arepsilon}_t$	$oldsymbol{y}_t = oldsymbol{\mu}_t + oldsymbol{arepsilon}_t$
Forecasting Model	$\widehat{\boldsymbol{y}}_{t+h} = \mathrm{E}(\widehat{\boldsymbol{y}}_{t+h t} \boldsymbol{I}_t) + \boldsymbol{v}_{t+h t}$	$\widehat{\boldsymbol{y}}_{t+h t}^{\dagger} = \mathrm{E}(\widehat{\boldsymbol{y}}_{t+h t} \boldsymbol{I}_t) + \boldsymbol{v}_{t+h t}^{\dagger}$
Forecast Error	$\hat{\boldsymbol{e}}_{t+h t} = \boldsymbol{\varepsilon}_{t+h} - \boldsymbol{v}_{t+h t}$	$\widehat{m{e}}_{t+h t}^\dagger = m{arepsilon}_{t+h} - m{v}_{t+h t}^\dagger$
$v_{t+h t}$	As $t o \infty$, $oldsymbol{v}_{t+h t} o oldsymbol{0}$, $oldsymbol{V} o oldsymbol{0}$	$\mathrm{E}(oldsymbol{v}_{t+h t}^\dagger) = oldsymbol{v}$ and $ oldsymbol{v}_{t+h t} \leq oldsymbol{v}_{t+h t}^\dagger $
Covariance Matrix	$\boldsymbol{W}_{t+h t} = \boldsymbol{\Sigma} + \boldsymbol{V} - 2\operatorname{cov}(\boldsymbol{\varepsilon}_{t+h}, \boldsymbol{v}_{t+h t})$	$\boldsymbol{W}_{t+h t}^{\dagger} = \boldsymbol{\Sigma} + \boldsymbol{V}^{\dagger} - 2\operatorname{cov}(\boldsymbol{\varepsilon}_{t+h}, \boldsymbol{v}_{t+h t}^{\dagger})$
$\widehat{\boldsymbol{G}}$	$\widehat{\boldsymbol{G}} = (\boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{-1}$	$\widehat{\boldsymbol{G}}^{\dagger} = (\boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{\dagger}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{W}_{t+h t}^{\dagger}^{-1}$
$\widetilde{\mathbf{y}}_{t+h}$	$\widetilde{\boldsymbol{y}}_{t+h} = \boldsymbol{S}\widehat{\boldsymbol{G}}\widehat{\boldsymbol{y}}_{t+h}$	$\widetilde{m{y}}_{t+h t}^{\dagger} = m{S}\widehat{m{G}}^{\dagger}\widehat{m{y}}_{t+h t}^{\dagger}$
$Var(\widetilde{\boldsymbol{y}}_{t+h})$	Var($oldsymbol{S}\widehat{oldsymbol{G}}\widehat{oldsymbol{y}}_{t+h}$)	Var($oldsymbol{S} \widehat{oldsymbol{G}}^\dagger \widehat{oldsymbol{y}}_{t+h t}^\dagger$)

Note:

- $oldsymbol{arepsilon}_{t+h}$ is the innovation of the time series across the hierarchy
- $extbf{\emph{V}}$ is the covariance matrix of $extbf{\emph{v}}_{t+h|t}$
- $oldsymbol{\cdot}$ $oldsymbol{V}^*$ is the covariance matrix of $oldsymbol{v}^*_{t+h|t}$
- Variables with star denote that those are generated from mis-specified models

Accuracy and Variance in Forecast Reconciliation

- Uncertainties in forecast reconciliation originates from uncertainties in the base forecasts
- Analogous to forecast combination literature
 - Estimated weights in forecast combination increase the variance of the combined forecast, while fixed weights, even if suboptimal, often provide better results
- Further complication: $W_{t+h|t}$ is difficult to estimate
 - Need approximations, usually based on $\widehat{m{W}}$
 - The estimated covariance with shrinkage is believed to be the best approximation among all
- The difference between two coherencies lies on the variance instead of the point forecasts

SIMULATION STUDIES

Experiment Design

- Small hierarchy, simple data generating process
 - 4 bottom-level time series, 7 time series in the complete hierarchy
 - DGP of the bottom-level: AR(1), with the parameter of 0.4, the correlated innovation is generated
 - Sample size = 24, 120; forecast horizon = 1 and 6-step
- Large hierarchy, more complicated DGP
 - 50 bottom-level time series with two levels in the upper-level of the hierarchy
 - DGP of the bottom-level: ARIMA, AR and MA orders are sampled from 0 and 3, and the integration is from 0 and 1
 - Sample size = 30, 150

Models

- Small hierarchy
 - Four levels of model specification
 - Perfect AR(1)
 - Estimated AR(1)
 - AutoARIMA: automatic selection (include AR(1))
 - ETS(AAN): wrong models (does not include AR(1))
- Large hierarchy
 - We employ AutoARIMA and ETS(ZZZ)

Error Metrics

- Measure the overall performance across the hierarchy (Gamakumara et al. 2018)
 - Follow the theory but little benefits in practice
 - $RelTotSE_h = \sum_{i=1}^{N} MSE_{ih,recon} / \sum_{i=1}^{N} MSE_{ih,base}$
 - "Loss function error metrics"
- Measure the performance of individual time series then summarise them for a complete hierarchy (Athanasopoulos & Kourentzes 2020, Davydenko & Fildes 2013)
 - Does not follow the loss function but practically beneficial
 - $AvgRelMSE_h = \left(\prod_{i=1}^{N} \left(MSE_{ih,recon}/MSE_{ih,base}\right)\right)^{1/N}$
 - N is the number of time series in the hierarchy
 - "Decision error metrics"

Covariance Matrix Approximations

pSHR: pShrink; bSHR: bShrink; SHR: MinT-Shrink; EMP: MinT-Sample; our proposed covariance matrices are inside the red boxes

FINDINGS: SIMULATION

Findings: Small Hierarchy, Sample = 24

Red lines: geometric mean; red triangles: omitting some part of the distribution from the plots; TSE means RelTotSE

Findings: Small Hierarchy, Sample = 120

Findings: Small Hierarchy

- When we estimate the model with certainty, i.e. perfectly estimate the parameters and the structure of the model, no benefit of reconciliation
- The benefits will be larger when we have mis-specified models and more complex covariance matrix at the cost of variability
- However, The gain of reconciliation becomes limited when we have larger sample sizes and longer forecast horizons
- OLS: reconciled forecasts are never worse than base forecasts → align to Theorem 3.1. in Gamakumara et al 2018

Accuracy vs Variance (RelTotSE)

MinT-Sample (EMP) is omitted; the red line is the threshold when the reconciled forecast is worse than the base; the results are from the sample size of 24; we calculate the variance from 500 runs in the simulation, for each scenario.

Accuracy vs Variance (AvgRelMSE)

MinT-Sample (EMP) is omitted; the red line is the threshold when the reconciled forecast is worse than the base; the results are from the sample size of 24; we calculate the variance from 500 runs in the simulation, for each scenario.

Accuracy vs Variance (AvgRelMSE)

MinT-Sample (EMP) is omitted; the red line is the threshold when the reconciled forecast is worse than the base; the results are from the sample size of 24; we calculate the variance from 500 runs in the simulation, for each scenario.

Findings: Error Metrics

- The choice of error metrics is important
- Different error metrics tell different stories
 - RelTotSE: overall performance on average
 - AvgRelMSE: a summary of individual performance
- Using RelTotSE confirms the theories in Gamakumara et al 2018
- Little benefits are shown from AvgRelMSE
- NONETHELESS, we observe variability regardless the error metrics

Findings: Large Hierarchy, Sample = 30

Larger sample sizes and hierarchy sizes confirm the findings

A CASE STUDY: SCANDINAVIAN UNEMPLOYMENT MONTHLY DATA

Scandinavian Unemployment

- Data: Scandinavian unemployment monthly data from January 1989 to December 2014
 - Structured based on age, gender, and countries
 - Age: 15-24 years old and over 25 years old
 - Gender: male and female
 - Countries: Denmark, Sweden, Finland, Norway
- Sample size: 36 300, with a step of 12
- Forecasting models: AutoARIMA and ETS with automatic selection
- Generate from one- to twelve-step ahead forecasts
- Implement 8 covariance matrix approximations

Scandinavian Unemployment

Scandinavian Unemployment

AutoARIMA

Finding: Scandinavian Unemployment

- The findings confirm the simulation results
- MinT-Shrink performs the best among all at the cost of very volatile results across the forecast horizons.
- The second best is WLS, which ignores the offdiagonal information, and it is competing with pSHR
- Exploiting information in the off-diagonal of the covariance matrix improves the accuracy but increases its variability

DISCUSSION

Discussion: Source of Uncertainties

- Stochastic coherency shifts our paradigm to a nondeterministic forecast reconciliation
- Two sources of uncertainties in forecast reconciliation
 - Base forecast uncertainty: the main source
 - Reconciliation weight uncertainty: amplified the former
- Forecast reconciliation improves the accuracy, on average
 - It depends on the quality of the base forecasts and of the reconciliation weights

Discussion: Error Metrics

- The evidence shows that the MinT Reconciliation works as the theories tell us, given that we use RelTotSE or "loss function error metric"
- However, the decision error metric does not show significant benefits of reconciliation, clearly.
 - AvgRelMSE does not align the loss function of MinT Reconciliation
- However, we observe uncertainty from the two measures → uncertainty in forecast reconciliation is inevitable regardless the metrics

Conclusion

- We propose stochastic coherency to overcome a limitation in the conventional coherency in hierarchical forecasting
- We observe two sources of uncertainties in forecast reconciliation, namely base forecast and reconciliation weight uncertainty
- Practical framework is proposed to mitigate uncertainty, i.e. comparing the benefits and the costs given the base model specification and the covariance matrix approximation

Our homework?

- It is not finished yet!
- We see the evidence of the uncertainty in the projection matrix but we have not yet understood the behaviour of the projection matrix given any approximation of the covariance matrix
- If we find a way to understand the projection matrix, then we may suggest a selection framework in forecast reconciliation

Thank you for your attention!

Kandrika Pritularga

k.pritularga@lancaster.ac.uk

Marketing Analytics & Forecasting

References

- Athanasopoulos, G., Kourentzes, N., 2020. On the evaluation of hierarchical forecasts. doi:10.1017/s0950184300800014.
- Davydenko, A., & Fildes, R. (2013). Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts. International Journal of Forecasting, 29(3), 510-522.
- Gamakumara, P., Panagiotelis, A., Athanasopoulos, G., Hyndman, R.J., 2018. Probabilistic Forecasts in Hierarchical Time Series.
- Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G., Shang, H.L., 2011. Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis doi:10.1016/j.csda.2011.03.006.
- Panagiotelis, A., Gamakumara, P., Athanasopoulos, G. & Hyndman, R.J. (2019). Forecast reconciliation A geometric view with new insights on bias correction (Department of Econometrics and Business Statistics Working Paper Series 18/19).
- Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.J., 2018. Optimal Forecast
 Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization.
 Journal of the American Statistical Association 1459. doi:10.1080/01621459.2018.1448825.

Geometric Presentation of Forecast Reconciliation

s is the coherency space, defined by Gamakumara et al 2018 and Panagiotelis et al 2019

Example of The Case Study Data

