Extensive Form Games I

By Marzie Nilipour Spring 2023

Introduction

 The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the Sequential structure explicit.

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the Sequential structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

- Suppose players 1 and 2 are two children
- Someone offers them two cookies, but only if they can agree how to share them
- player 1 chooses one of the following options:
 - player 1 gets 2 cookies: (2,0)
 - They each get 1 cookie: (1,1)
 - player 1 gets 0 cookies: (0,2)
- player 2 chooses to accept or reject the sharing strategy:
 - Accept => they each get their cookies
 - Reject => neither gets any

Tree representation (extensive form)

How many pure strategies does each player have?

• P1:

• P2:

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N is a set of n players
- Actions: A is a (single) set of actions
- Choice nodes and labels for these nodes:
 - Choice nodes: H is a set of non-terminal choice nodes
 - Action function: $\chi: H \to 2^A$ assigns to each choice node a set of possible actions
 - Player function: $\rho: H \to N$ assigns to each non-terminal node h a player $i \in N$ who chooses an action at h
- ullet Terminal nodes: Z is a set of terminal nodes, disjoint from H

- Successor function: $\sigma: H \times A \to H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
 - Choice nodes form a tree: nodes encode history
- Utility function: $u = (u_1, \dots, u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player i on the terminal nodes Z

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$
- Utility function: $u = (u_1, \dots, u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player i on the terminal nodes Z

How many pure strategies does each player have?

• P1: 3

• P2: 8

• What is pure strategies?

• P1:

• P2:

What is pure strategies?

• P1:

•
$$S_1 = \{2-0, 1-1, 0-2\}$$

• P2:

S₂ = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), (yes, no, no), (no, yes, yes), (no, yes, no), (no, no, yes), (no, no, no)}

Informal Definition

A *pure strategy* for a player in a game of perfect information is a *complete plan* of actions to take at each node belonging to that player.

Informal Definition

A *pure strategy* for a player in a game of perfect information is a *complete plan* of actions to take at each node belonging to that player.

 Each pure strategy must specify an action at every node where it's the agent's move

Definition (pure strategies)

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$\prod_{h \in H, \rho(h)=i} \chi(h)$$

• pure strategies for player1:

• pure strategies for player2:

- pure strategies for player2:
 - $S_2 = \{(C,E), (C,F), (D,E), (D,F)\}$

- pure strategies for player1:
 - $S_1 = \{(A,G), (A,H), (B,G), (B,H)\}$

- pure strategies for player2:
 - $S_2 = \{(C,E), (C,F), (D,E), (D,F)\}$

- pure strategies for player1:
 - $S_1 = \{(A,G), (A,H), (B,G), (B,H)\}$

Are (A,G) and (A,H) the same strategy?

- pure strategies for player2:
 - $S_2 = \{(C,E), (C,F), (D,E), (D,F)\}$

- pure strategies for player1:
 - $S_1 = \{(A,G), (A,H), (B,G), (B,H)\}$

- Are (A,G) and (A,H) the same strategy?
 - No

Converting an extensive-form game into normal form

• Every game tree corresponds to an equivalent normal-form game

Converting an extensive-form game into normal form

• Every game tree corresponds to an equivalent normal-form game

Converting an extensive-form game into normal form

- Each terminal node may occur several times in the payoff matrix
 - Can cause exponential blowup
 - 5 outcomes in the game tree
 - 16 outcomes in the payoff matrix

• Extensive form games have more compact representation

A,G)	3,8	3,8	8,3	8,3
A,H)	3,8	3,8	8,3	8,3
B,G)	5,5	2,10	5,5	2,10
B,H)	5,5	1,0	5,5	1,0

A point

Converting a normal form game into perfect information game

- we can't always perform the reverse transformation
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

• What are the pure Nash equilibria?

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2,10	5, 5	2,10
BH	5, 5	1,0	5, 5	1,0

- What are the pure Nash equilibria?
 - ((A,G), (C,F))
 - ((A,H), (C,F))
 - ((B,H), (C,E))

	CE	CF	DE	DF
AG	3,8	(3,8)	8,3	8,3
AH	3,8	3,8	8, 3	8,3
BG	5, 5	2,10	5, 5	2,10
BH	(5,5)	1,0	5, 5	1,0

- What are the pure Nash equilibria?
 - ((A,G), (C,F))
 - ((A,H), (C,F))
 - ((B,H), (C,E))

Something intuitively wrong

- What are the pure Nash equilibria?
 - ((A,G), (C,F))
 - ((A,H), (C,F))
 - ((B,H), (C,E))

Something intuitively wrong

- What are the pure Nash equilibria?
 - ((A,G), (C,F))
 - ((A,H), (C,F))
 - ((B,H), (C,E))

- Something intuitively wrong
 - G dominates H for player 1.
 - H is "off-path", if you are rational!

- What are the pure Nash equilibria?
 - ((A,G), (C,F))
 - ((A,H), (C,F))
 - ((B,H), (C,E))

- G dominates H for player 1.
- H is "off-path", if you are rational!

Need a new solution concept

Modified version of NE

Need a new solution concept

Modified version of NE

Subgame Perfect Nash Equilibrium (SPNE)

Informal Definition

- A **sub-game** is a part of the game that looks like a game within the tree. It satisfies the two following properties:
 - 1. It starts from a single node
 - 2. It comprises all successors to that node

Subgames

Subgame Perfect Equilibrium (SPE)

s is a subgame perfect equilibrium of G iff for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'

Again

- What are the pure Nash equilibria?
 - ((A,G), (C,F)) is subgame perfect
 - ((A,H), (C,F)) is not subgame perfect
 - ((B,H), (C,E)) is not subgame perfect

Again

- What are the pure Nash equilibria?
 - ((A,G), (C,F)) is subgame perfect
 - ((A,H), (C,F)) is not subgame perfect
 - ((B,H), (C,E)) is not subgame perfect

• SPNE = ((A,G), (C,F))

Theorem

Theorem

Every perfect information game in extensive form has a SPNE

Theorem

Theorem

Every perfect information game in extensive form has a SPNE

- Every SPNE is a NE,
- But vice versa in not correct definitely

Backward Induction

- Start with the last player and chose the strategies yielding higher payoff
- This simplifies the tree
- Continue with the before-last player and do the same thing
- Repeat until you get to the root

This is a fundamental concept in game theory

Computing SPNE

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

Computing SPNE

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

 $util_at_child$ is a vector denoting the utility for each player

