

Welcome to the Biodiversity Genomics course!

Joana Meier, Karin Näsvall, Nicol Rueda, Patricio Salazar Tree of Life Programme, Wellcome Sanger Institute

The Branco Weiss Fellowship Society in Science

What you wanted us to cover in the course

Basically everything we offered! We will thus give an introduction to each of these fields

Tentative schedule

- Saturday, 20 July:
 - introduction to biodiversity genomics, Linux, NGS data
 - Filtering and quality checks of Illumina data
- Sunday, 21 July:
 - Mapping reads to a reference genome
 - Variant calling and filtering vcf files
- Monday, 22 July:
 - Population structure with PCA and phylogenomics
 - Genome scans to identify regions under selection
- Tuesday, 23 July:
 - Detecting introgression
 - Comparative genomics
- Wednesday, 24 July:
 - Phylogenomics with reference genomes
 - Buffer, topics of interest & discussing own projects

Daily sessions:

- 9:00-10:30: First session (1.5 hours)
- 10:30-11:00: Coffee break (30 min)
- 11:00-12:30: Second session (1.5 hours)
- 12:30-1:30: Lunch break (1 hour)
- 1:30-3:30: Third session (2 hours)
- 3:30-4:00: Coffee break (30 min)
- 4:00-6:00: Fourth session (2 hours)

Researchers who contributed to organising this course and can help with questions about IKIAM / Tena

Dr Patricio Salazar

Franz Chandi

Kimberly Gavilanes

Alex Arias

María José Sánchez

Prof Caroline Bacquet

Lead organiser

Chief of lunch breaks Chief of coffee breaks & facilities

Chief of class room infrastructure

Jack of all trades

Key facilitator

A few tips and housekeeping rules

- Be kind to each other
- Sexism, racism, or any other kind of unfair behaviour is not tolerated. Please let me, Patricio, Nicol or Karin know if you experience or see anything like this.
- To ask questions, please raise your hand. Questions are very much encouraged. If you do not understand something, just ask!
- If you struggle with something, put the green card on your desk and someone will come to help you.
- All course materials (including slides) can be found here:
 github.com/rapidspeciation/biodiversity_genomics_course

We are a very diverse group, which is great!

- Always feel free to ask questions at any time. It is likely that at least one other person is sooo happy that you asked.
- Our diversity is a big advantage. Let's learn from each other!

Please, introduce yourself with your name and if you wish also your country, study organism or research question

Joana Meier

Childhood

PhD on cichlid fish Speciation in Bern, Switzerland

Group leader at the Wellcome Sanger Institute

Karin Näsvall, PhD

Postdoctoral fellow Rapid speciation group, Tree of Life Wellcome Sanger Institute, UK

Nicol Rueda

Colombia

- BSc in Biology Colombia
- Master in Species Conservation in trade (CITES)
 Universidad Internacional de Andalucia Spain
- Master of Science in Biology Universidad Nacional de Colombia
- PhD candidate in Biology
 Universidad del Rosario Colombia

Master of science in Biology

Population monitoring for 7 months in two forests of different conservation status.

Capture-Mark-recapture technique

re Xud Colomb Class Ex. Fix Not 49(157):053-964, winder-dissistante de

Ciencias Naturales

Drivers of diversification in *Heliconius*, with special focus on the *sara/sapho* clade

Introduction to Biodiversity Genomics

Using genomics to understand and preserve biodiversity from genetic diversity, populations, to species and ecosystems

Resolving the taxonomy

- Placing potentially new species
- Species delineation

Adaptation and speciation

- Identifying genomic regions involved in speciation
- Identifying genes underlying traits

Are the species declining?

- Detecting past inbreeding
- Assessing genetic diversity

Studying gene flow

- Are populations/species hybridising or have in the past?
- Finding regions of adaptive introgression

Studying genome evolution

- Gene expansions, e.g. olfactory
- Chromosomal rearrangements
- Genome size evolution (TEs, etc)

Which species occur here?

- Identifying biodiversity hotspots
- Monitoring effectiveness of conservation strategies

Human Genome Project

- Human genome project started in 1990, completed in 2003
- Sequenced across ~20 institutions worldwide
- Cost an approximate \$5 billion US dollars

The first human reference genome transformed modern medicine and understanding of human evolution and physiology

- Comparing populations e.g. to study how humans spread across the globe
- Finding introgression with neanderthals and denisovans
- Identifying genes under selection, like the laktase gene
- Finding genes causing diseases like breast cancer
- Understanding how cancer develops
- Personalised medicine
- Single-cell sequencing to understand which genes are active in which cells

Sequencing costs are decreasing rapidly

Since Oct 2023
PacBio Revio
(66 Gbp per lane
in 15 kb reads)

Source: National Human Genome Research Institute

Project Psyche

Atlas des génomes marins

CREATING A NEW FOUNDATION FOR BIOLOGY

Sequencing Life for the Future of Life

Why do we need a reference genome for whole-genome sequencing projects?

Short-read

sequencing

(e.g. Illumina)

machine

Genome = set of all chromosomes

Break into many million short DNA fragments

Problem:

We do not know which of these sequences to compare

Millions of reads, 150 bp long

GATGCT

ATAGTG

GTGTAG

GATGCT

CTGAGT

TGCTGA

How do we make a reference genome?

Genome = set of all chromosomes

Break into many million long (10-50 kbp) DNA fragments

Reference genome

ATAGTGTGGATGCTGAGTTCGT

ATAGTGTGGATG
GTGTGGATGCT
TGGATGCTGAGT
GATGCTGAGTTC
TGCTGAGTTCG
s, CTGAGTTCGT

Long-read sequencing machine (e.g. PacBio)

more expensive than short-read sequencing

Millions of reads, 10-20 kbp long

GATGCTGAGTA
ATAGTGTGGAT
GTGTGGATGTG
TGCTGAGTTCG
TGGATGCTGAT
CTGAGTTCTCG

puzzling them together (aligning them to each other)

How do we <u>use</u> this reference genome?

Genome = set of all chromosomes

Solution:

The reference genome allows us to place the reads so that we can compare them across individuals, populations or species

Do these two butterflies belong to different species?

CRISPR butterflies with *cortex/ivory* knocked-out

They are only significantly different in one region in the genome, right next to cortex/ivory, which are also known to affect colour patterns in other butterflies and moths

Introduction to high-throughput or next-generation sequencing

Sanger Sequencing (since 1980s)

- Possible to manually check each sequence and resequence failed sequences
- Requires primer sequences and has very low throughput (expensive per bp)

Two main types of high-throughput sequencing

Short-read sequencing

- Reads are typically 150 bp long
- Cheaper than long-read sequencing
- E.g. Illumina, soon probably also Ultima Genomics

Long-read sequencing

- Reads are typically >10 kb long (PacBio: 15-20 kbp, Nanopore: 10-100 kbp)
- More expensive than short-read technologies
- Required for making a reference genome
- E.g. PacBio or Nanopore

Read length versus per Gbp sequencing costs for different sequencing machines (note the axes are in logarithmic scale)

- * PacBio
- * Illumina

Star size shows the total throughput per lane, also given in parentheses ()

Whole-genome sequencing

Genome

= complete set of chromosomes

Long-read sequencing (PacBio or Nanopore/ONT) paired-end sequencing

Short-read sequencing (e.g. Illumina) paired-end sequencing

Long read sequencing technologies

PacBio

PacBio HiFi reads (99.95% accurary)

Each DNA-fragment is sequenced many times to get a high-quality consensus (=summary) read

Multi-pass sequencing on Sequel II System

HiFi Read Base Calling

Illumina flowcell

Short-read sequencing with Illumina

Newer Illumina machines use wells and only 2 colours (e.g. Novaseq, Nextseq, MiniSeq. This makes it faster and cheaper)

Whole-genome sequencing

Genome

= complete set of chromosomes

Long-read sequencing (PacBio or Nanopore/ONT) paired-end sequencing

Short-read sequencing (e.g. Illumina) paired-end sequencing

Sequencing approaches for biodiversity genomics

Sequencing approaches for biodiversity genomics

Whole-genome requencing (short-read data)

- Requires a reference genome
- individuals need to be from the same or closely related species
- Complete genome sequenced

Genome assembly comparisons (long-read data)

- Comparative genomics studying structural
 variation between species, can be distantly related
- Gene expansions, transposable elements etc
- Phylogenomics across deeply divergent species
- Pangenomics multi-genome assemblies to study within-species variation in structural variants

Genome A

Reduced-representation techniques (only parts of the genome sequenced)

Ultra-conserved elements (UCE)

- Sequence capture
 with baits based
 on genomic
 regions that are
 conserved across
 many species
- Works with highly divergent species

Restriction Associated Sequencing (RAD)

(similar methods: GBS, ddRAD)

- does not require primers/baits or reference genome
- individuals need to be from the same or closely related species
- Information from thousands of loci distributed across the genome

Targeted or amplicon sequencing, e.g. barcoding

- Sequencing one or few genes
- requires primers
- e.g. CO1 (mitochondrial barcoding region),
 advantage: large database (BOLD) available to
 compare to for species identification

Environmental DNA (eDNA)

- Mostly CO1 sequencing from soil, water, air (spider webs)
- Identifying local species
- Studying species richness

Data that course attendees are working on

Trade-offs: Splitting reads (i.e. costs) among:

Total data gets divided by:

- Number of sites to sequence
 - Depends on genome size and sequencing stragegy, e.g. RAD versus whole-genome
- Sequencing depth (e.g. sequencing at 10x depth of coverage)
- Number of specimens to sequence
- Example: 1 Novaseq X 10 B lane
 2.5 billion paired-end reads of 150 bp each -> 375 Gbp data
 - 100 whole-genomes of a species with 0.375 Gbp genome size at 10x coverage
 - 19 whole-genomes of a species with 1 Gbp genome size at 20x coverage
 - 375 individuals sequenced with a RAD sequencing approach resulting in 50 Mbp at a sequencing depth of 20x

Now let's get started with handling genomic data!

First, a brief overview of what we will do now

Whole-genome short-read sequencing

1. Quality check and trimming raw reads

2. Alignment to the reference genome with bwa

3. Variant and genotype calling with bcftools

