Fall-2020 UM-SJTU JI Ve311 Lab #2

Instructor: Dr. Chang-Ching Tu

Due: 11:59 am, October 30, 2020 (Friday)

Note:

(1) Please use A4 size papers.

- (2) The lab report should be submitted online individually.
- (3) Use Proteus 8.10 for simulation before the lab session. In the Proteus library, you should be able to find all the components used in the schematics. The lab report must include both the simulation and measurement results.

1. [Common-Emitter Amplifier]

- (a) [40%] Design and build a common-emitter amplifier in Proteus and on the breadboard which has a voltage gain A_υ > 10, using **npn BJT 2N3904**. Plot V_{OUT} vs V_{IN}. (Hint: First choose an appropriate R_C. Second, perform DC sweep to find out a V_{IN} at which the magnitude of slope is more than 10. At the same time, make sure the BJT is in the forward-active region. If not working, change for another R_C and repeat the DC analysis again.)
- (b) [30%] For $V_{in} = V_{IN} + 0.01 sin(2\pi 10^2 \cdot time)$, plot $V_{out} = V_{OUT} + \upsilon_{out}$ vs time. Confirm that the amplitude of υ_{out} is equal to $0.01 \times A_{\upsilon}$.
- (c) [30%] For $V_{in} = V_{IN} + 0.01 sin(2\pi 10^7 \cdot time)$, plot $V_{out} = V_{OUT} + \upsilon_{out}$ vs time. Is the amplitude of υ_{out} still equal to $0.01 \times A_{\upsilon}$? If not, explain the possible reasons.

General Purpose Transistors

NPN Silicon

Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates Data in addition to JEDEC Requirements.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

x = 3 or 4

Y = Year

WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTER	RISTICS				•	•
Collector - Emitter	Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$))	V _{(BR)CEO}	40	-	Vdc
Collector - Base Br	reakdown Voltage (I _C = 10 μAdc, I _E = 0)	V _{(BR)CBO}	60	-	Vdc	
Emitter-Base Brea	akdown Voltage (I _E = 10 μAdc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Currer	nt (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	_	50	nAdc
Collector Cutoff Cu	urrent (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	-	50	nAdc	
ON CHARACTERI	ISTICS			1	<u>'</u>	
DC Current Gain (I _C = 0.1 mAdc, V _C	2N3903	h _{FE}	20	_	-	
$(I_C = 1.0 \text{ mAdc}, V_C)$	_{DE} = 1.0 Vdc)	2N3904 2N3903 2N3904		40 35 70	- - -	
$(I_C = 10 \text{ mAdc}, V_C)$	_E = 1.0 Vdc)	2N3903		50	150	
(I _C = 50 mAdc, V _C	_E = 1.0 Vdc)	2N3904 2N3903		100 30	300	
(I _C = 100 mAdc, V ₀		2N3904 2N3903		60 15		
(10 - 100 11) (40, 7)	GE = 1.0 Va0)	2N3904		30	_	
Collector – Emitter ($I_C = 10 \text{ mAdc}$, $I_B = I_C = I_C$			V _{CE(sat)}	_ _	0.2 0.3	Vdc
Base – Emitter Sati (I _C = 10 mAdc, I _B = (I _C = 50 mAdc, I _B =		V _{BE(sat)}	0.65	0.85 0.95	Vdc	
•	CHARACTERISTICS			<u> </u>		
Current – Gain – Ba (I _C = 10 mAdc, V _C	andwidth Product E = 20 Vdc, f = 100 MHz)	2N3903 2N3904	f _T	250 300	- -	MHz
Output Capacitano	ce (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	4.0	pF
Input Capacitance	(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	8.0	pF
Input Impedance	_{DE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback (I _C = 1.0 mAdc, V _C	Ratio _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small-Signal Curro (I _C = 1.0 mAdc, V _C	2N3903 2N3904	h _{fe}	50 100	200 400	-	
Output Admittance		h _{oe}	1.0	40	μmhos	
Noise Figure (I _C = 100 μAdc, V _C	NF	- -	6.0 5.0	dB		
SWITCHING CHA	RACTERISTICS					•
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		t _d	-	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _s	- -	175 200	ns
Fall Time			t _f	_	50	ns

^{2.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2%.

ORDERING INFORMATION

Device	Package	Shipping [†]
2N3903RLRM	TO-92	2000 / Ammo Pack
2N3904	TO-92	5000 Units / Bulk
2N3904G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3904RLRA	TO-92	2000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904RLRM	TO-92	2000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RLRP	TO-92	2000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904ZL1	TO-92	2000 / Ammo Pack
2N3904ZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

^{*} Total shunt capacitance of test jig and connectors

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 3. Capacitance

Figure 4. Charge Data

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

Figure 9.

Figure 10.

h PARAMETERS

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

10

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A**

DATE 08 MAY 2012

STRAIGHT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 714.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS
 UNCONTROLLED.
- UNIONI HOLLEU, DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L DIMENSIONS D AND J APPLY BETWEEN DI-MENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
G	0.094	0.102	2.40	2.80
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 2	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SEATING PLANE

TO-92 (TO-226) 1 WATT CASE 29-10

ISSUE A

DATE 08 MAY 2012

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
STYLE 6: PIN 1. 2. 3.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	
2. 3.	CATHODE & ANODE CATHODE	2. 3.	GATE MAIN TERMINAL 2	2. 3.		2. 3.	COLLECTOR BASE	2. 3.	CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER	PIN 1.		PIN 1. 2.	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
3.	V _{CC} GROUND 2 OUTPUT	PIN 1. 2. 3.	MT SUBSTRATE MT	PIN 1. 2. 3.	ANODE GATE	PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
2.	GATE DRAIN SOURCE	2.	BASE COLLECTOR EMITTER	2.	RETURN INPUT OUTPUT	2.	INPUT GROUND LOGIC		GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2		

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative