Лабораторная работа 2.1.1

Измерение удельной теплоёмкости воздуха при постоянном давлении

Шерхалов Денис Б02-204

19 февраля 2023 г.

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

1. Введение

Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки.

Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рис. 1: Нагрев газа при течении по трубе

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см. рис. 1). Пусть за некоторое

время dt через калориметр прошла малая порция газа массой $dm=q\,dt$, где q [кг/с] — массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q=c\,dm\Delta T$, где $\Delta T=T_2-T_1$ — приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1\approx P_2=P_0$, где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$c_P = \frac{N - N_{\text{пот}}}{q\Delta T} \tag{2}$$

Экспериментальная установка: Схема установки изображена на рис. 2. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов.

Рис. 2: Схема экспериментальной установки

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta=40.7\frac{\text{мкB}}{\text{K}}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ΓC . Для регулировки расхода служит кран K. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\frac{\Delta V}{\Delta t}$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева–Клапейрона: $\rho_0 = \frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu = 29.0 \text{г/моль}$ — средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{пот}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (C_P q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q = const) подводимая мощность и разность температур связаны прямой пропорциональностью ($\Delta T(N)$ – линейная функция).

2. Выполнение

- 1. Подготовим к работе газовый счетчик: проверим, что он заполнен водой, установим счётчик по уровню. Охладим калориметр до комнатной температуры. Включим вольтметр, предназначенный для измерения ЭДС термопары.
- 2. Запишем показания комнатной температуры и давления.

$$T_0 = 295.35 \ K, P_0 = 98430 \pm 5 \ \Pi a$$

3. Установим максимальный расход воздуха на газовом счётчике — 5л за 30 ± 0.5 с. Определим массовый расход воздуха q_0 [г/с].

$$q_0 = \rho_0 \frac{\Delta V}{\Delta t} = \frac{\mu P_0}{R T_0} \frac{\Delta V}{\Delta t}$$

Относительная погрешность косвенных измерений может быть найдена по формуле

$$\sigma_{q_0} = \sqrt{\sigma_{T_0}^2 + \sigma_{P_0}^2 + \sigma_t^2}$$

$$\frac{\Delta V_0}{\Delta t_0} = 0.1667 \pm 0.0027 \frac{\pi}{c}, \quad q_0 = 0.1939 \pm 0.0032 \frac{\Gamma}{c}$$

4. Оценим величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\delta T=1{
m K}$. Определим теоретическое значение удельной теплоемкости воздуха при постоянном давлении $C_{m,P}^{{
m reop}} \frac{{
m Д}_{\rm K}}{{
m r}\cdot {
m K}}$, считая воздух идеальным двухатомным газом:

$$C_{m,P}^{\text{reop}} = \frac{3.5R}{\mu} \approx 1003 \, \frac{\text{Дж}}{\text{кг} \cdot K}$$

Оценим минимальную мощность N_0 , необходимую для нагрева газа при максимальном расходе. $N_0 = c_p q \Delta T + N_{\text{пот}} \approx c_p q \Delta T \approx 0.194 \text{ Bt.}$

Учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R_{\scriptscriptstyle \rm H}\approx 29~{\rm Om},$ искомое значение тока $I_0=\sqrt{\frac{N_0}{R_{\scriptscriptstyle \rm H}}}\approx 0.08~{\rm A}.$

5. Отметим, что погрешности последующих измерений таковы:

$$\Delta I = 0.05 \text{ MA}, \quad \Delta U = 0.5 \text{ MB}, \quad \Delta \varepsilon = 1 \text{ } \mu \text{B}$$

Следовательно, оценим погрешности косвенных величин так:

$$\Delta N = U\Delta I + I\Delta U, \quad \delta T = \frac{\Delta \varepsilon}{\beta} = 0.02K$$

6. Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_0 = 0.1939 \pm 0.0032 \frac{\Gamma}{c}$. (Таблица №1, график №1).

Таблица 1: Измерение $\Delta T(N)$ при $q_0 = 0.1939 \pm 0.0032 \frac{\mathrm{r}}{\mathrm{c}}$

U, B	I, м A	N, м B т	ΔN , м $\mathrm{B}\mathrm{ ext{ iny T}}$	ε , MB	ΔT , K
3.458	121.9	421.5	0.2	0.071	1.47
4.526	159.4	721.4	0.3	0.120	2.95
5.880	206.9	1216.6	0.4	0.205	5.04
7.820	274.8	2148.9	0.5	0.359	8.82

Рис. 3: График №1

Коэффициент наклона графика №1: $k_1 = 4.104 \pm 0.002 \frac{K}{\mathrm{Br}}$

7. Завершив первую серию измерении, охладим калориметр до комнатной температуры. Для этого отключим источник питания нагревателя, откроем кран К и продуем калориметр при максимальном расходе воздуха до тех пор, пока показания ЭДС не достигнут нуля.

Повторим измерения при другом расходе. Установим расход воздуха на газовом счётчике – 5π за 61 ± 0.5 с. Определим массовый расход воздуха q_1 [г/с].

$$\frac{\Delta V_1}{\Delta t_1} = 0.0820 \pm 0.0007 \,\frac{\pi}{c}, \quad q_1 = 0.0955 \pm 0.0008 \,\frac{\Gamma}{c}$$

8. Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_1 = 0.0955 \pm 0.0008 \frac{\Gamma}{c}$. (Таблица №2, график №2).

Таблица 2: Измерение $\Delta T(N)$ при $q_1 = 0.0955 \pm 0.0008$ $\frac{r}{c}$

U, B	I, мА	N, м B т	ΔN , м B т	ε , MB	ΔT , K
3.499	123.3	431.4	0.2	0.129	3.17
4.417	155.5	686.8	0.3	0.205	5.04
5.511	193.8	1068.0	0.4	0.313	7.69
6.138	215.8	1304.6	0.4	0.388	9.53

Рис. 4: График №2

Коэффициент наклона графика №2: $k_2 = 7.099 \pm 0.002 \frac{K}{\mathrm{Br}}$

9. Остаётся найти C_p , пользуясь формулой (7).

$$k_1 = 4.104 \pm 0.002 \frac{K}{\text{Bt}} \implies \left(\frac{N}{\Delta T}\right)_1 = \frac{1}{k_1} = 0.2437 \pm 0.0001 \frac{\text{Bt}}{\text{K}}$$

$$k_2 = 7.099 \pm 0.002 \frac{K}{\text{Bt}} \implies \left(\frac{N}{\Delta T}\right)_2 = \frac{1}{k_2} = 0.14086 \pm 0.00004 \frac{\text{Bt}}{\text{K}}$$

Построим график зависимости $\frac{N}{\Delta T}$, $\frac{\text{мВт}}{\text{K}}$ от q, $\frac{\Gamma}{c}$ (Таблица №3, график №3)

Коэффициент наклона графика №3: $c_p = k_3 = 1045 \pm 40 \frac{\text{Дж}}{\text{кг·К}}$.

Таблица 3: $\frac{N}{\Delta T} \frac{\text{мВт}}{\text{K}}$ от $q \frac{\text{г}}{\text{c}}$

$\frac{N}{\Delta T}$, $\frac{MBT}{K}$	$\Delta \left(\frac{N}{\Delta T}\right), \frac{MBT}{K}$	$q, rac{\Gamma}{\mathrm{c}}$	$\Delta q, \frac{\Gamma}{c}$
243.7	0.1	0.1939	0.0032
140.86	0.04	0.0955	0.0008

Рис. 5: График №3

3. Вывод

В ходе эксперимента при использовании знаний полученных в ходе курса термодинамики было получено значение удельной массовой теплоёмкости воздуха при постоянном давлении. Полученное значение $C_{m,P}=1045\pm40\frac{J_{\infty}}{\kappa_{\Gamma}\cdot K}$ хорошо совпало с теоретическим $C_{m,P}^{\rm reop}=1003\frac{J_{\infty}}{\kappa_{\Gamma}\cdot K}$. В свою очередь, табличное значение для удельной теплоёмкости воздуха варьируется: $C_{m,P}^{\rm ra6\pi}=1007-1030\frac{J_{\infty}}{\kappa_{\Gamma}\cdot K}$ при комнатной температуре в зависимости от влажности (нулевая – 100%).

Неполное совпадение результата вызвано, вероятно, во-первых, тем, что воздух – это не совсем смесь идеальных двухамтомных газов, как минимум в силу наличия в воздухе водяного пара, а во-вторых тем, что установление идеального равновесия требует слишком большого времени ожидания, в связи с чем снимаемые значения $I,\,U,\,\varepsilon$ – не совсем равновесные.