Eurovision Voting Trends

Jake Simon 22 September 2021

So Many Songs, So Few to Vote For!

- The Eurovision Song Contest has a 2-tier voting system: jury and public televote
 - In each, voters pick their ten favorite songs, and assign 12 to their favorite, 10 to their 2nd, 8 to their 3rd, and 7-1 points for their 4th-10th favorites.
- What do we want to know?
 - Does the running order affect a song's point results?
 - As the contest has grown, more entries have been added to the contest each year.
 - As of 2021, there are 26 finalists, and 39 entries total!
 - Has this growth swayed the voters in any direction? Is it too much for them?

Switzerland	10 80	Lithuania	2 20
France	12 70	San Marino	18
Malta	8 57	Finland	15
Italy	37	Albania	14
Greece	1 32	Serbia	13
Iceland	7 31	Moldova	13
Portugal	5 27	Belgium	12
Sweden	26	Azerbaijan	4
□ Israel	3 25	United Kingdom	0
Cyprus	6 22	Spain	0
Ukraine	22	Germany	0
Bulgaria	4 21	Norway	0
Russia	21	Netherlands	0

The Tools

- How can we find this out?
 - We will use a linear regression model to detect positive or negative correlation as the order increases.

- What will we use to fulfill this task?
 - R and RStudio
 - SQL (SQLite package via RStudio)
 - Python and its numerous statistical packages
 - I.e. Pandas, Numpy, Matplotlib, etc.

Let's Collect the Data

- Using eschome.net, we will download the "Results" of several Eurovision finals, starting with 2021.
- After that, we will save the page as "HTML only" to our "html database".
- Once that's there, we can now convert the data, using R and SQL!

2021, Final, Netherlands, Rotterdam, Rotterdam Ahoy, 22.5.2021										
Place Points No. Country Performer										
			Country							
1	524	24	Italy	Måneskin						
2	499	20	France	Barbara Pravi						
3	432	11 📥	Switzerland	Gjon's Tears						
4	378	12	Iceland	Daði og Gagnamagnið						
5	364	19	Ukraine	Go_A						
6	301	16	Finland	Blind Channel						

R and SQL: Converting and Cleaning the Data

`{r sal_skills}

dbSendOuery(esc_db, '

This connects us to the SOLite file for our dataset:

esc_db <- dbConnect(RSOLite::SOLite(), "esc-db.salite")

dbWriteTable(esc_db, "ESC", esc_table, overwrite=T)

ALTER TABLE ESC_FINALS

Now, we can take that table, and add it to the SQL database:

Let's add a new column to the table called "Points_Earned".

dbWriteTable(esc_db, "ESC_FINALS", esc_finals_table, overwrite=T)


```
ADD COLUMN Percent_Earned DOUBLE')
# We'll take our new column, and calculate the percentage of points earned by country.
# Note: The denominator, 24 * (# total entries-1), is the max, points a country could
dbSendStatement(esc_db, '
            UPDATE ESC_FINALS
            SET Percent Earned =
             (Points+0.0) / (12 * 2.0 * ((SELECT COUNT(*) FROM ESC)-1))')
# Now, let's take the data and subset it by the following columns:
le_table <- dbGetOuerv(esc_db, '</pre>
             SELECT Place, Points, Percent_Earned, Song_Order, Country,
             (SELECT COUNT(*) FROM ESC) AS Participants
             FROM ESC_FINALS')
# Since this is R, we can assign the SQL table to an R table, and export that as a
# .csv file for our Python project:
write.csv(le_table, file=paste0("csv database/", year, " Eurovision Final Results.csv"))
# Now, let's disconnect from the SOLite server, and head on over to Python!
dbDisconnect(esc_db)
Use SQL to select and modify columns, then
```

use R again to write said columns into .csv file.

Python: What Does It Look Like?

- Here is the head of the 2021 dataset, along with a scatter plot, comparing the final entrants' points to their song order.
 - o Pandas was used to create a DataFrame.
 - Matplotlib was used to create the graph.

	Year	Place	Points	Percent_Earned	Song_Order	Country	Participants
0	2021	16	94	0.103070	1	Cyprus	39
1	2021	21	57	0.062500	2	Albania	39
2	2021	17	93	0.101974	3	Israel	39
3	2021	19	74	0.081140	4	Belgium	39
4	2021	9	204	0.223684	5	Russia	39

Regression Model: Does Song Order Affect Points?

- Let's see if the song order has any significant correlation with percentage of points earned:
 - The 'regplot' function is used to graph the data, while 'ols.fit()' is used to create the summary.

	Eurovision 2021											
	OLS Regression Results											
	=======================================											
	Dep. Variable:		Percent_Earned			R-squared:					0.032	
	Model:			- OLS				Adj.	R-sq	uared:		-0.008
	Method:			Least Squares				F-st	atist	ic:		0.7938
	Date:			Tue, 21 Sep 2021				<pre>Prob (F-statistic):</pre>				0.382
	Time:			22:05:01				Log-	Likel:	ihood:		10.143
	No. Observation	ıs:		26				AIC:				-16.29
	Df Residuals:					24		BIC:				-13.77
	Df Model:					1						
	Covariance Type	:			nonrol	oust						
		==	====	======			===		=====			
			coef	sto	err			t		P> t	[0.025	0.975]
	Intercept		1272		.069		1	992		 0.058	-0.005	0.279
_			1372 0040		.004			891		0.038 0.382	-0.005 -0.005	0.279
-		٠.	0040		.004		 	091		0.362	-0.003	0.013
	Omnibus:				2	815		Durh	in-Wa	tson:		1.876
Prob(Omnibus):						245				ra (JB):		2.457
Skew:						697			(JB):	u (55).		0.293
	Kurtosis:		2.428 Cond. No.					31.9				

Turns out there is hardly any <u>linear</u> correlation, but there is still an interesting pattern as song order increases. It's <u>diverging!</u>

How to Make Sense of the Diverging Pattern

- It appears to have a funnel-like shape, as the Order of Song increases.
- How can we analyze this trend via regression?
 - Take the fitted model from before, and turn the point residuals as the new response!
 - Rather than a direct positive / negative correlation, we can now see if the points become less predictable over the course of the contest! (in other words, as the Order of Song increases)


```
ols_lm = ols('Percent_Earned ~ Song_Order', data=test).fit()
test['Perc_Mag_Res'] = abs(ols_lm.resid)
```

We will take the residual's absolute value to measure predictability. Lower value = more predictable

Residual Regression: How Does Song Order Affect Predictability?

- Let's take a look at the scatter plot, adjusted for residual magnitude.
 - This seems a lot closer to a significant correlation!
- How does this impact the regression model's fit?

Quite a lot actually! We can say with over 99% confidence, the further a song is in the contest (higher order), the less predictable its points become!

What does this finding mean?

- Since the original regression model gets less accurate as song order increases, this could imply voters are a lot more fickle or judgmental towards later songs when they vote.
 - People could also tune out until the show gets closer to the results, causing them to pay more attention to the latter songs.
 - On the other hand, it could mean voters get disinterested as the contest goes along, and put less thought into who they vote for.
 - This seems less likely as it would imply all points would go down towards the end, which they did not, according to our first graph.

Was this a fluke one year?

Let's take the previous three years, and measure their residuals.

2019: p-value = 0.154

2018: p-value = 0.167

2017: p-value = 0.197

Maybe? Let's remove the top 3 outliers per year.

Taking out the 3 songs furthest from the regression line removes any outstanding influence from singular points.

Although most points are within range of a positive correlation, the least accurate points (usually the songs with the most points) are in their own world mathematically and visually.

Now, let's regraph the residual regression models! This should give us a more accurate reading of the data and its trends.

Now what do our regressions look like?

These are the regression models without their top 3 outliers.

2019: p-value = 0.031

2018: p-value = 0.081

2017: p-value = 0.014

Conclusion

- Based on the previous three contests, 2021's measurement of unpredictability seems to indicate a trend.
 - We can say with at least 90% confidence (96.9% excluding 2018) that later songs tend to vary greater and less predictably than earlier songs.
- An interesting thing to note is that all four contests have had around 40 total participants each, and 26 final participants each.
 - Based on this logic of prediction, voters tend to be more sporadic with their voting later in the contest.
 - This could be attributed to later songs being more fresh in the voter's head when recalling all the songs.
 - In the future, we can test this logic on older contests with fewer entries to see if the residuals and general distribution are less noticeable.

Links to My Programs and Repository

- GitHub:
 - Project Repository: https://github.com/jakesimon2/ESC-Voting-Trends
 - This site contains all my code, data sources, and presentation slides.
- Eurovision Song Picker (also on GitHub, created in 2020)
 - https://github.com/jakesimon2/Eurovision-Song-Picker
- Thanks to eschome for keeping great track of all Eurovision Song Contests!
 - Link to Website, where I downloaded the data from: https://www.eschome.net/index.html