Sbírka příkladů do MATu

Michal Šrubař xsruba03@stud.fit.vutbr.cz

5. února 2016

1 Proč

2 Logika

2.1 Důkazy výrokových formulí

2.1.1

Dokažte sestrojením důkazu, že pro libovolné formule B, C výrokové logiky platí

$$\vdash \neg B \Rightarrow (B \Rightarrow C)$$

Postupujte dle následujícího návodu:

- 1. $\neg B$ (předpoklad)
- 2. B (předpoklad)
- 3. $B \Rightarrow (\neg C \Rightarrow B)$ (axiom A1)
- 4. $\neg B \Rightarrow (\neg C \Rightarrow \neg B)$ (axiom A1)
- 5. pravidlo odloučení aplikované na formule 2,3
- 6. pravidlo odloučení aplikované na formule 1,4
- 7. axiom A3
- 8. pravidlo odloučení aplikované na 6,7
- 9. pravidlo odloučení aplikované na 2,8
- 10. formule 9 je dokazatelná z formulí 1,2
- 11. věta o dedukci
- 12. věta o dedukci.

Dokažte zapsáním formálního důkazu (s použitím věty o dedukci), že platí:

$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$

2.2 Důkazy predikátových formulí

2.2.1

Proved'te důkaz formule

$$\varphi, (\forall x \varphi \to \psi) \vdash \forall x \psi$$

dle následujícího návodu:

- 1. Vezměte formuli φ jako předpoklad
- 2. užijte pravidlo zobecnění
- 3. vezměte formuli $\forall x\varphi \rightarrow \psi$ jako předpoklad
- 4. užijte pravidlo odloučení (modus ponens)
- 5. užijte pravidlo zobecnění.

2.2.2

Napište důkaz věty $\vdash \forall x \neg \varphi \Rightarrow \forall x (\varphi \Rightarrow \psi)$. Návod:

- a) Vezměte formuli $\forall x \neg \varphi$ jako předpoklad, pak užijte axiom substituce (ve formuli $\neg \varphi$ substituujte x za x) a pravidlo odloučení.
- b) Vezměte axiom A1 výrokové logiky ve tvaru $\neg \varphi \Rightarrow (\neg \varphi \Rightarrow \neg \varphi)$ a aplikujte na něj a na formuli získanou v kroku a) pravidlo odloučení.
- c) Vezměte axiom A3 výrokové logiky a aplikujte na něj a na formuli získanou v kroku b) pravidlo odloučení, na výslednou formuli pak aplikujte pravidlo zobecnění.
- d) Poslední získaná formule je teď dokazatelná z formule, která byla vzata jako předpoklad. Nyní užijte větu o dedukci.

Dokažte

$$\varphi(x) \to \forall x \psi(x) \vdash \forall x \varphi(x) \to (\neg \psi(x) \to \psi(y))$$

Návod:

- 1) Vezměte $\varphi(x) \to \forall x \psi(x)$ jako předpoklad.
- 2) Použijte axiom substituce.
- 3) Složení implikací.

- 4) Axiom substituce.
- 5) Složení implikací.
- 6) Výrokový axiom A1.
- 7) Složení implikací.

Dokažte větu $\exists x(\neg\varphi) \to (\forall x\varphi \to \psi)$ Postup:

- 1. Použijte tautologii $\varphi \to \neg \neg \varphi$.
- 2. Proveď te distribuci kvantifikátoru \forall .
- 3. Užijte třetí axiom výrokové logiky ve tvaru $(A \to B) \to (\neg B \to \neg A)$.
- 4. Aplikujte pravidlo odloučení.
- 5. Použijte tautologii $\neg(\forall x\varphi) \rightarrow (\forall x\varphi \rightarrow \psi)$.
- 6. Složte implikace ze (4) a (5).
- 7. Proveď te úpravu (nahraď te kvantifikátor $\forall x$ kvantifikátorem $\exists x$).

2.2.4

Napište důkaz věty $\vdash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$. Návod:

- 1. Vezměte formuli $\forall x \varphi$ jako předpoklad, pak užijte axiom substituce a následně pravidlo odloučení
- 2. Potom vezměte formuli $\forall x(\varphi \to \psi)$ jako předpoklad a opět užijte axiom substituce a následně pravidlo odloučení
- 3. Na formule získané v krocích 1) a 2) aplikujte pravidlo odloučení a na výslednou formuli pravidlo zobecnění
- 4. Poslední získaná formule je tedy dokazatelná z formulí, které byly vzaty jako předpoklady. Nyní užijte 2x větu o dedukci

2.2.5

Dokažte, že platí $\vdash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \psi)$. Zvolte si dva předpoklady. Na předpoklad aplikujte axiom substituce a potom metodu odloučení. Stejný postup aplikujte na druhý předpokla. Poté aplikujte metodu odloučení na předchozí výsledky a poté použijte dvakrát větu o dedukci.

Dokažte (napsáním důkazu), že platí

$$\varphi \to (\forall x \psi \to \chi), \psi \vdash \forall x \varphi \to \chi$$

- . Návod:
- a) Zvolte tři vhodné formule jako předpoklady, označte je (1), (2) a (3) tak, aby formule (3) byla $\forall x \varphi$.
- b) Z formule (3) pomocí vhodného axiomu, který označíte (4), a vhodného pravidla odvoď te formuli φ a označte ji (5).
- c) Z formule (5), jedné z formulí (1),(2) a vhodného pravidla dostanete formuli (6).
- d) Na další z formulí (1),(2) aplikujte pravidlo zobecnění, čímž dostanete formuli (7).
- e) Z formulí (6) a (7) dostanete užitím vhodného pravidla poslední formuli, kterou označíte (8). Tato formule je tedy dokazatelná ze zvolených předpokladů. Nyní užijte větu o dedukci.

2.2.7

Dokažte, že platí $\vdash \forall x \forall y \varphi(x, y) \Rightarrow \forall x \varphi(x, x)$, dle následujícího návodu:

- (a) Formuli $\forall x \forall y \varphi(x, y)$ vezměte jako předpoklad
- (b) Axiom substituce.
- (c) Pravidlo odloučení.
- (d) Axiom substituce.
- (e) Pravidlo odloučení.
- (f) Pravidlo zobecnění.
- (g) Výsledek předchozích úvah ve vztahu dokazatelnosti formule z předpokladů.
- (h) Věta o dedukci.

Jakou obdržíte formuli po provedení kroku (f)?

2.2.8

Dokažte sestrojením důkazu:

$$\vdash \forall x \varphi(x, x) \rightarrow (\forall x \forall y \varphi(x, y) \rightarrow \forall y \varphi(y, y))$$

Návod:

- (1) Vezměte $\forall x \varphi(x, x)$ jako předpoklad.
- (2) Použijte axiom substituce.

- (3) Pravidlo odloučení.
- (4) Pravidlo zobecnění.
- (5) Větu o dedukci.
- (6) Výrokový axiom A1.
- (7) Složení implikací.

Dokažte, že platí $\vdash (\varphi \land \exists x \psi) \Rightarrow \exists x (\varphi \land \psi)$. Návod:

- 1. Vezměte formuli $\neg(\exists x(\varphi \land \psi))$ jako předpoklad
- 2. axiom kvantifikátoru
- 3. pravidlo odloučení
- 4. získanou formuli převeď te do tvaru negace (formule)
- 5. poslední formule je dokázána z formule předpokládané v 1, proto aplikujte na obě formule větu o dedukci
- 6. užijte třetí výrokový axiom
- 7. opět aplikujte větu o dedukci.

2.3 Realizace

2.3.1

Buď L jazyk predikátové logiky 1. řádu a rovností, jedním binárním predikátovým symbolem p a jedním unárním funkčním symbolem f. Nechť T je teorie 1. řádu s jazykem L daná následujícími dvěma speciálními axiomy:

$$p(f(x), x)$$
$$f(f(x)) = f(f(y)) \Rightarrow p(x, y)$$

Uvažujme realizaci $M=(\mathbb{Q},\leq,h)$ jazkyka L, kde $\leq p_M$ a operace $h=f_M$ na množině \mathbb{Q} je definována předpisem $h(a)=\frac{a}{2}$ pro libovolné $a\in\mathbb{Q}$. Rozhodněte, zda:

- a) M je modelem teorie T
- b) $f(f(x)) = f(f(y)) \Rightarrow p(f(x), y)$ je důsledkem teorie T.

2.3.2

Buď φ nasledující formule: $\forall x \forall y (x < y \Rightarrow \exists z (x < z \land z < y))$. Bez použití spojky ¬ napište negaci formule φ . Určete, zda je pravdivá formule φ nebo její negace, jestliže univerzem je množina \mathbb{Z} (celých čísel).

2.3.3

Uvažujme jazyk L s jedním binárním predikátovým symbolem p a jedním binárním funkčním symbolem f.

- 1. Najděte nějakou realizaci jazyka L na množině $\{1, 2, 3\}$.
- 2. Nechť φ je následující formule jazyka L: $\forall z \forall y \exists z p(f(x,z),y)$

Uvažujme realizaci \Re jazyka L s univerzem N, kde p_{\Re} je relace uspořádání \leq a f_{\Re} je násobení přirozených čísel. Rozhodněte, zda \Re je modelem teorie φ a svoje rozhodnutí odůvodněte.

2.3.4

Uvažujte jazyk L s rovností, jedním binárním predikátovým symbolem p a jedním funkčním symbolem f. Buď \Re realizace jazyka L, jejimž univerzem je množina \mathbb{R} všech reálných čísel a v niž platí: $p_{\Re}(a,b) \Leftrightarrow a \leq b$, $f_{\Re}(a,b) = a+b$. Uvažujte teorii $T = \{p(f(x,y), f(y,z)) \Rightarrow (p(x,z)), p(x,f(y,z)) \}$ a formuli $\varphi = p(x, f(x,y))$.

- 1) Rozhodněte, zda $\Re \models T$, tj. zda \Re je modelem teorie T.
- 2) Dokažte, že $T \models \varphi$, tj. že φ je důsledkem teorie T.

2.3.5

Uvažujme jazyk L se dvěma konstantami k, l, jedním unárním funkčním symbolem f a jedním binárním predikátovým symbolem p. Nechť \Re je realizace jazyka L, kde univerzem je množina všech bodů kulové plochy K se středem O s kulovou plochou K. Symbol f se realizuje v bodě x jako bod jemu protilehlý, tj. $f_{\Re}(x) \neq x$ je průsečík přímky procházející bodem x a středem O s kulovou plochou K. Realizace konstant jsou dva vzájemně protilehlé body: $k_{\Re} = S$ (severní pól) a $l_{\Re} = J$ (Jížní pól). Realizace symbolu p na bodech x, y je $p_{\Re}(x, y) \Leftrightarrow x, y$ leží na stejné (zeměpisné) rovnoběžce, tj. kružnicí vzniklé průnikem kulové plochy K a roviny kolmé na spojnici bodů S a J. Uvažujme následující formule:

- (1) $\chi : p(x, f(x))$
- (2) $\psi: p(l,x) \Leftrightarrow p(k,x)$
- (3) $\theta : f(k) = l$

Určete ty z teorií $A = \{\psi, \theta\}, B = \{\neg \chi, \psi\}, C = \{\neg \chi, \theta\}, D = \{\psi, \theta\},$ jejichž je \Re modelem.

2.3.6

Uvažujme jazyk L s rovností, jedním binárním funkčním symbolem f a predikátovými symboly p a q arit 1 a 3. Nechť \Re je realizace jazyka L, kde univerzem je $P(\mathbb{N})$, tj. množina všech podmnožin množiny přirozených čísel, a symboly se realizují na množinách $A, B, C \subseteq N$ následovně:

$$f_{\Re}(A, B) = A \cap B$$
$$A \in P_{\Re} \Leftrightarrow A \neq \phi$$

$$(A, B, C) \in q_{\Re} \Leftrightarrow A \cap B \cap C$$

je konečná. Rozhodněte, zda jsou následující formule splněny v R:

- 1) $\forall x \forall y q(x, y f(x, y))$
- 2) $p(f(x,y)) \Rightarrow (p(x) \land p(y))$
- 3) $p(x) \wedge p(y) \Rightarrow \forall z q(x, y, z)$
- 4) $p(x) \Rightarrow q(x, f(x, x), x)$

2.3.7

Uvažujme jazyk L s rovností, jedním unárním predikátovým symbolem p a jedním binárním funkčním symbolem f. Nechť M je taková realizace jazyka L na množině $P(\mathbb{R}^2)$ všech podmnožin reálné roviny \mathbb{R}^2 , kde $p_M(X)$ znamená, že X je neprázdná množina bodů ležících uvnitř a na hranici nějakého obdelníku v \mathbb{R}^2 , jehož strany jsou rovnoběžné se souřadnými osami, $f_M(X,Y) = X \cap Y$. Rozhodněte a zdůvodněte, zda

- (1) $M \models (\exists x)(f(x,x) = x \Rightarrow p(x))$
- (2) $M \models (p(x) \land p(y)) \Rightarrow p(f(x,y))$
- (3) $(p(x) \wedge p(y)) \models p(f(x,y))$

2.3.8

Uvažujme jazyk L s rovností a jedním binárním predikátovým symbolem p. Buď R realizace jazyka L, jejimž univerzem je množina $S(\mathbb{Z})$ všechpodgrup grupy $(\mathbb{Z}, +)$ a v niž platí $p_R(G, H) \Leftrightarrow$ existuje injektivní homomorfismus grup $G \to H$.

- 1. Rozhodněte, zda R je modelm teorie uspořádaných množin.
- 2. Uvažujme formuli $\varphi \equiv \forall y p(y,x)$. Popište všechna ohodnocení e proměnných jazyka L taková, že $R \models \varphi[e]$.

2.3.9

Uvažujme jazyk L s rovností, jedním unárním predikátovým symbolem p a jedním binárním funkčním symbolem f. Nechť M je taková realizace jazyka L na množině $P(\mathbb{R}^2)$ všech podmnožin reálné roviny \mathbb{R}^2 , kde $p_M(X)$ znamená, že X je neprázdná množina bodů ležících uvnitř a na hranici nějakého obdelníku v \mathbb{R}^2 , jehož strany jsou rovnoběžné se souřadnými osami, $f_M(X,Y) = X \cup Y$. Rozhodněte a zdůvodněte, zda

- (1) $M \models (\exists x)(p(x) \Rightarrow f(x, x) = x)$
- $(2) \ p(f(x,y)) \models (p(x) \lor p(y))$
- (3) $M \models p(f(x,y)) \Rightarrow (p(x) \lor p(y))$

2.3.10

Uvažujme jazyk L s jedním binárním predikátovým symbolem p. Nechť A je konečná množina a M je taková realizace jazyka L na množině P(A) všech podmnožin množiny A, kde:

$$p_M(X,Y) \Leftrightarrow X \subseteq Y$$
.

Uvažujme formule:

$$\varphi : \forall x \forall y (p(x, y) \Rightarrow p(y, x))$$
$$\psi : \forall y (p(x, y) \Rightarrow p(y, x))$$

a teorii $T = \{\varphi, \psi\}$

- (1) Najděte ohodnocení e volných proměnných formule φ tak, aby byla při tomto ohodnocení pravdivá, tedy aby platilo $M \models \varphi[e]$.
- (2) Rozhodněte a odůvodněte, zda platí $M \models \varphi$.
- (3) Najděte jinou realizaci N na univerzu P(A) takovou, aby platilo $N \models T$.

2.4 Prenexní tvar

2.4.1

Negaci formule

$$\exists x (\neg(\varphi \land \neg \psi) \land \neg(\psi \land \neg \varphi)) \land (\forall x \chi)$$

převeď te do tvaru (ekvivalentní formule), ve kterém se nebude vyskytovat žádná ze spojek \wedge a \vee .

2.4.2

Převeď te formuli $(\forall x p(x, y) \Rightarrow \forall x \exists y q(x, x)) \Rightarrow \forall x (\exists x p(y, x) \Rightarrow q(y, x))$ do prenexního tvaru. Poté ji znegujte a převedte do tvaru, kde se spojka ¬ nebude vyskytovat u neatomických formulí.

2.4.3

Převeď te následující formuli do prenexního tvaru. Potom napište její negaci a upravte ji tak, aby se v ní nevyskytovala spojka \Rightarrow :

$$\forall x A(x) \Rightarrow (\forall x B(y) \Rightarrow \neg \forall x C(y,x))$$

2.4.4

Převed'te formuli

$$\forall x \varphi(x, y) \to \exists x (\psi(x) \lor \chi(y, z)))$$

do prenexního tvaru. K získané formuli (v prenexním tvaru) napište její negaci a upravte ji tak, aby se spojka negace vyskytovala jen před (některými) φ, ψ, χ .

2.4.5

Převed te negaci formulce $\forall x \forall y \varphi(x,y) \Rightarrow \exists x (\psi(x) \Rightarrow \forall z \varphi(x,z))$ do prenexního tvaru.

2.4.6

Převed te negaci formule $(\forall xp(x,y) \to \exists x \forall yq(x,y)) \land \exists y(\forall xp(y,y) \to \forall xp(x,y))$ do prenexního tvaru.

2.4.7

Převeď te negaci následující formule do prenexního tvaru:

$$\neg(\forall x(\Phi(x) \Rightarrow \forall y \psi(x, y)) \Rightarrow \forall x \exists y \psi(x, y))$$

2.4.8

Rozhodněte, zda jsou formule $(x \lor (y \land z)) \Rightarrow (y \land (x \lor z))$ a $((x \lor y) \land (x \lor z)) \Rightarrow y$ ekvivalentní.

2.4.9

Rozhodněte, zda jsou formule $(y \land z) \Rightarrow (x \lor (x \land y))$ a $(z \land \neg x) \Rightarrow (\neg y \land (x \lor \neg y))$ ekvivalentní.

2.4.10

Převed'te formuli

$$\forall x \exists y \varphi(x, y) \to (\varphi(x, x) \to \exists y \forall x \varphi(y, y))$$

do prenexního tvaru. Poté napište jeho negaci ve tvaru, kde se symbol \neg bude vyskytovat pouze u atomických formulí.

3 Algebra

3.1 Grupy, podgrupy, cyklické grupy

3.1.1

Položme $P = \{f : \mathbb{R} \to \mathbb{R}; \exists a \in \mathbb{R} - \{0\} \forall x \in \mathbb{R} : f(x)) = ax\}$. Dokažte, že (P, \circ) , kde \circ značí skládání zobrazení, je grupoid. Zjistěte, zda (P, \circ) je dokonce grupa (svůj závěr odůvodněte).

3.1.2

Je dán grupoid s tří prvkovou množinou a s jednou operací o, která splňuje zákon o krácení. Sestavte tabulku pro tuto operaci. Zároveň grupoid není grupou, ukažte, že neplatí asociativní zákon.

3.1.3

Na množině \mathbb{Z} všech celých čísel uvažujme binární operaci * definovanou takto: x*y = xy + x + y. Tato operace tvoří na množině \mathbb{Z} –1 komutativní grupu, ve které inverzní prvek K danému prvku Je:

a)
$$\frac{1-x}{1+x}$$

- b) $\frac{1}{-1+x}$
- c) $\frac{x}{-1+x}$
- $d) \frac{1}{1+x}$
- e) v jiném tvaru, než je uvedeno v (a)-(d).

Nechť $G = \{x + y\sqrt{7}; x, y \in \mathbb{Q}\}$. Zjistěte, zda $(G, +, \cdot)$ je těleso $(+ a \cdot značí obvyklé operace sčítání a násobení).$

3.1.4

Buď $A=(\mathbb{Z},f)$ algebra typu (1) (\mathbb{Z} značí množinu celých čísel), kde f(z)=|z|-8 pro každé $z\in\mathbb{Z}$. Popište:

- 1. podalgebru $B = \langle -4 \rangle$ algebry A,
- 2. přímý součin algeber $B \times (0, 1, 2, g)$, kde g je permutace g = (1, 2) (v cyklickém zápisu).

3.1.5

Udejte příklad tříprvkového komutativního grupoidu, který není grupou, ale platí v něm zákony o krácení. Zdůvodněte, proč tento grupoid není grupa.

3.1.6

Uvažujme univerzální algebru $A=(\mathbb{C},+,conj,1)$, kde + je binární operace sčítání komplexních čísel, conj je unární operace konjungace (komplexní sdruženost), tj. conj(a+bi)=a-bi, a 1 je nulární operace. Popište podalgebru $\langle \{i\} \rangle$ algebry A (tj. podalgebru generovanou jednoprvkovou množinou $\{i\}$). Na množině $\mathbb Q$ všech racionálních čísel je dána binární relace \odot vztahem $x \odot y = x + y - xy$. Pak $(\mathbb Q, \odot)$ tvoří:

- (a) grupu
- (b) komutativní monoid, který není grupou
- (c) monid, který není komutativní
- (d) pologrupu bez neutrálního prvku
- (e) netvoří komutativní pologrupu

3.1.7 J

e dána grupa ($\mathbb{Z}, 1, 2, f$), kde \mathbb{Z} je množina celých čísel a 1,2 jsou konstanty a f je unární operace definována předpisem f(x) = 3x. Určte podgrupu (6) generovanou prvkem 6.

Popište:

- a) podgrupu grupy \Re s operací + generovanou množinou $\{3,11\}$,
- b) podtěleso tělesa \Re (s obvyklými operacemi sčítání a násobení) generované množinou $\{n\}$, kde n je celé nenulové číslo.

3.1.9

Buď S symetrická grupa na množině $\mathbb{R} - \{0, 1\}$, tj. grupa všech permutací na množině $\mathbb{R} - \{0, 1\}$ s operací skládání. Určete podgrupu grupy S generovanou permutací $\{f_1, f_2\}$, kde $f_1(x) = \frac{x}{x-1}$, $f_2(x) = \frac{x-1}{x}$.

3.2 Morfismy

3.2.1

Uvažujme univerzální algebru $A=(\mathbb{Z}^2,e,\delta,\oplus,\odot,\nabla)$, kde e je nulární operace, δ je unární operace, \oplus , \odot jsou binární operace a ∇ je ternární operace. Tyto operace jsou dány následovně: $e=(0,1), \, \delta(x,y)=(x,y+2), \, \oplus (x_2,y_2)=(x_1+x_2,y_1+y_2), \, (x_1,y_1)\odot(x_2,y_2)=(x_1x_2,y_1+y_2), \, \nabla((x_1,y_1),(x_2,y_2),(x_3,y_3))=(x_1+x_2+x_3,y_1+y_2+y_3)$. Zjistěte a zdůvodněte, zda zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ určené předpisem $\varphi(x,y)=(3x,x+y)$ je homomorfismus algebry A do A.

3.2.2

Na množině $\mathbb C$ komplexních čísel uvažujme operaci + obvyklého sčítání. Buď $f:\mathbb C\to\mathbb C$ zobrazení dané předpisem f(a+ib)=a-ib. Pak:

- a) $(\mathbb{C}, +)$ není grupa
- b) f je zobrazení grupy $(\mathbb{C}, +)$ do sebe, které není homomorfismem
- c) f je homomorfismus grupy $(\mathbb{C}, +)$ do sebe, který není izomorfismem
- d) f je izomorfismus grupy $(\mathbb{C}, +)$ na sebe (tedy automorfismus)
- e) neplatí žádná z uvedených možností

Uvažujme univerzální alagebru $A = (\mathbb{Z}, ^*, ')$ typu (1,1) na množině celých čísel \mathbb{Z} , kde odpovídající unární operace jsou dány vztahy: a' = |a| a $a^* = (-1)^a a$. Rozhodněte, zda zobrazení $\varphi(a) = 4a^2$ je homomorfismus $A \to A$ a pokoud ano, popište jeho jádro.

3.2.3

Uvažujme aditivní grupu reálných čísel (\mathbb{R}, \oplus) , kde operace \oplus je daná předpisem

$$a \oplus b = a + b - 1$$

- 1. Rozhodněte, zda grupoid (\mathbb{R}, \oplus) je monoid.
- 2. Rozhodněte, zda zobrazení $f: \mathbb{R} \to \mathbb{R}$ dané předpisem f(x) = 2x + 1 je homomorfismus grupidů $(\mathbb{R}, +) \to (\mathbb{R}, \oplus)$.

Nechť pro libovolné přirozené číslo m>0 značí symbol Z_m okruh zbytkových tříd modulo m a pro libovolné $x\in Z$ nechť symbol $[x]_m$ značí tu třídu kongruence modulo m (tedy prvek množiny Z_m), která obsahuje prvek x. Jaký musí být vztak mezi přirozenými čisly m,n>0, aby platilo $[x]_m\subseteq [x]_n$ pro všechna $z\in Z$? Je pak zobrazení $f:Z_m\to Z_n$ dané předpisem $f([x]_m)=[x]_n$ pro všechna $x\in Z$ homomorfismus?

3.2.5

Uvažujme univerzální algebru $A=(\mathbb{Z}^2,e,\delta,\oplus,\odot,\nabla)$, kde e je nulární operace, δ je unární operace, \oplus , \odot jsou binární operace a ∇ je ternární operace. Tyto operace jsou dány následovně: $e=(0,1),\,\delta(x,y)=(x+1,y),\,\oplus(x_2,y_2)=(x_1+x_2,y_1+y_2),\,(x_1,y_1)\odot(x_2,y_2)=(x_1+x_2,y_1y_2),\,$ $\nabla((x_1,y_1),(x_2,y_2),(x_3,y_3))=(x_1+x_2+x_3,y_1+y_2+y_3).$ Zjistěte a zdůvodněte, zda zobrazení $\varphi:\mathbb{Z}\to\mathbb{Z}$ určené předpisem $\varphi(x,y)=(x+y,2y)$ je homomorfismus algebry A do A.

3.2.6

Mějme grupu $M(n,\mathbb{R})$ všech čtvercových matic řádu $n(n \in \mathbb{N} - \{0\})$ nad \mathbb{R} s operací sčítání a grupu \mathbb{R} všech reálných čísel s operací sčítání. Definujeme zobrazení $f: M(n,\mathbb{R}) \to \mathbb{R}$ předpisem f(A) = tr(A) pro všechna $A \in M(n,\mathbb{R})$ (kde tr(A) značí stopu matice A, tj. součet prvků na hlavní diagonále matice A). Dokažte, že j je homomorfismus, popište třídy jádra $M(n,\mathbb{R})/f$ a určete normální podgrupu grupy $M(n,\mathbb{R})$ odpovídajicí jádru $M(n,\mathbb{R})/f$. Zjistěte, zda grupy $M(n,\mathbb{R})/f$ a \mathbb{R} jsou izomorfní.

3.3 Kongruence

3.3.1

Nechť \mathbb{C}^* značí multiplikativní grupu všech nenulových komplexních čísel a G její podgrupu všech komplexních čísel s absolutní hodnotou 1. Nechť $f:\mathbb{C}^*\to G$ je zobrazeni dane vztahem $f(z)=\frac{z}{|z|}$. Popište kongruenci na \mathbb{C}^* danou jádrem zobrazení f a určete jí odpovídající normální podgrupu grupy \mathbb{C}^* .

3.3.2

Mějme grupu regulárních matic řádu 2 nad tělesem reálných čísel \mathbb{R} spolu s operací násobení matic, označíme ji $(GL(2,\mathbb{R}),\cdot)$. Uvažujme binární relaci \sim na $(GL(2,\mathbb{R}),\cdot)$ definovanou předpisem $A \sim B \Leftrightarrow |A| = |B|$ (kde || značí determinant). Dokažte, že

- 1. \sim je kongurence na grupě $(GL(2,\mathbb{R}),\cdot)$ a
- 2. faktorová grupa $(GL(2,\mathbb{R})/\sim,\cdot)$ je izomorfní s grupou $(\mathbb{R}\setminus\{0\},\cdot)$ všech nenulových reálných čísel s násobením.
- 3. Definujte normální podgrupu grupy $(GL(2,\mathbb{R}),\cdot)$, která odpovídá kongruenci \sim .

3.3.3

Uvažujme algebru $A=(\mathbb{Z},t)$ s jednou unární operací t definovanou pro libovolné $x\in\mathbb{Z}$ předpisem t(x)=x+1.

- a) Popište všechny podalgebry algebry A.
- b) Uvažujme rozklad množiny \mathbb{Z} , jehož třídy jsou všechny dvouprvkové množiny tvaru $\{2k, 2k+1\}$, $k \in \mathbb{Z}$. Je příslušná ekvivalence kongruencí na algebře A?

3.3.4

Na multiplikativní grupě ($\mathbb{C}\setminus\{0\}$,·) všech nenulových komplexních čísel nechť jsou dva prvky v relaci \sim právě tehdy, když mají stejnou absolutní hodnotu. Dokažte, že relace \sim je kongruence na uvedené grupě, a graficky znázorněte třídy kongruence \sim a také normální podgrupu určenou kongruencí \sim .

3.3.5

Uvažujeme algebru $A=(\Sigma^*,\mu,\delta_a,b)$ typu (3,1,0), kde Σ^* je množina všech konečných řetězců (slov) vytvořených z prvků (písmen) konečné množiny (abecedy) Σ . Symbol μ označuje ternární operaci zřetězení tří slov v daném pořadí, nulární operace b je dána vybraným prvkem $b \in \Sigma$, $a \in \Sigma$ je pevně daný prvek $a \neq b$ a δ_a je unární operace, která nahrazuje všechny výskyty prvku b v daném řetězci řetězce ab. Definujme binární relaci \sim na Σ^* takto: $u \sim v \Leftrightarrow |u| = |v|$, kde |u| je počet prvků řetězce u. Rozhodněte, zda \sim je kongruencí na algebře A, a pokud ano, popište třídy příslušného rozkladu. Pokud ne, pak najděte takovou podalgebru algebry A, pro kterou příslušné zúžení relace \sim kongruencí je.

3.3.6

Najděte všechny rozklady množiny $\{x, y, z\}$ takové, že jim odpovídající ekvivalence jsou kongruence na algebře $A = (\{x, y, z\}, b)$, kde f(x) = y, f(y) = f(z) = z.

3.3.7

Mějme algebru $A = (\mathbb{R}^2, a, b, c)$ typu (2, 1, 0), kde operace $\{a, b, c\}$ jsou dány vztahy:

$$a((x_1, x_2), (y_1, y_2)) = (x_1y_1 + x_2y_2, x_1y_2 + x_2y_1)$$
$$b(x_1, x_2) = (-x_1, x_2)$$
$$c = (0, 0)$$

Definujeme relaci ekvivalence $(x_1, x_2) \sim (y_1, y_2) \Leftrightarrow x_{\overline{1}}^2 + x_{\overline{2}}^2 = y_{\overline{1}}^2 + y_{\overline{2}}^2$. Rozhodněte, zda \sim je či není kongruence na A (odůvodněte).

3.4 Zbytkové třídy

3.4.1

Najděte všechny generátory cyklické grupy $(\mathbb{Z}_7, +)$.

3.4.2

Najděte všechny generátory cyklické grupy ($\mathbb{Z}_5, +$).

3.4.3

Vypočtěte v tělese $(\mathbb{Z}_5,\cdot,+)$

$$(\frac{1}{1} + \frac{1}{2} + \frac{1}{3}) \cdot \frac{1}{4}$$

3.4.4

V tělese \mathbb{Z}_7 vypočtěte $\frac{4}{3}(2-\frac{3}{4}-\frac{5}{3})$.

3.4.5

Vypočtěte v tělese \mathbb{Z}_7 zbytkových tříd modulo 7:

$$\frac{4(3+5)}{6} - \frac{2}{3}$$

3.4.6

Najděte největší společný dělitel polynomů $x^4 + x^3 + 3x + 3$ a $x^3 + 2x^2 + 4x + 3$ nad okruhem $(\mathbb{Z}_5, \cdot, +)$. Během výpočtu používejte jen reprezentanty prvků \mathbb{Z}_5 z množiny $\{0, 1, 2, 3, 4\}$.

4 Funkcionalni analýza

4.1 Metrické prostory

4.1.1

Nad abecedou $\Gamma = \{x,y,z\}$ uvažujeme jazyk $\Sigma = x^*y^+z^*$. Buď $\mu(u,v) = n$, kde n je nejmenší počet změn řetězce u, které je potřeba provést, aby se tento řetězec transformoval na řetězec v. Přitom změnou řetězce rozumíme vypuštění či vložení symbolu nebo nahrazení symbolu jiným symbolem v tomto řetězci. Ověřte (dokažte), zda μ je či není metrika na Σ a v kladném případě určete všechny prvky množiny Σ , které leží v otevřené kouli o poloměru Σ 0 se středem v prvku Σ 1.

4.1.2

Ve vektorovém prostoru \mathbb{R}_3 s euklidovskou metrikou p definujeme vzdálenost libovolných dvou množin A a B vztahem $\delta(A,B)=\inf\{(p(a,b)|a\in A,b\in B)\}$. Rozhodněte, zda $(P(\mathbb{R}_3),\delta)$ tvoří metrický prostor (symbol $P(\mathbb{R}_3)$ značí množinu všech podmnožin množiny \mathbb{R}_3).

Definujeme zobrazení $\delta: \mathbb{R}^2 \to \mathbb{R}$ předpisem

$$\delta((x_1, y_1), (x_2, y_2)) = \frac{|x_1 - x_2|}{2} + 3|y_1 - y_2|$$

Rozhodněte, zda zobrazení δ definuje metriku na množině \mathbb{R}^2 (využijte skutečnost, že vztahem d(x,y) = |x-y| je definována metrika na \mathbb{R}). V kladném případě zakreslete v rovině \mathbb{R}^2 jednotkovou kružnici vzhledem k této metrice, tj. množinu $\{(x,y) \in \mathbb{R}^2; \delta((x,y),(0,0)) = 1\}$.

4.1.4

Na \mathbb{Z}^2 definujeme metriku δ následovně: $\delta((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$. Zakreslete kružnici určenou touto metrikou a poloměru 2 se středem v bodě (0, 0), tj. množinu

$$S_{\delta}(2) = \{(x, y) \in \mathbb{Z}^2 : \delta((x, y), (0, 0)) = 2\}$$

. Určete počet prvků množiny $S_{\delta}(2)$ a tyto prvky vypište.

4.1.5

Na množině \mathbb{Z}^2 je definovaná metrika δ vztahem $\delta((x_1, y_1), (x_2, y_2)) = max \{|x_1 - x_2|, |y_1 - y_2|\}$. Zjistěte, pro které body $(x, y) \in \mathbb{Z}^2$ platí současně $\delta((1, -1), (x, y)) = 3$ a $\delta((2, 3), (x, y)) = 2$.

4.1.6

Na množině \mathbb{Z}^2 je definovaná metrika δ vztahem $\delta((x_1, y_1), (x_2, y_2)) = max \{|x_1 - x_2|, |y_1 - y_2|\}$. Zjistěte, pro které body $(x, y) \in \mathbb{Z}^2$ platí současně $\delta((-1, 1), (x, y)) = 3$ a $\delta((3, 0), (x, y)) = 2$.

4.2 Normované prostory

4.2.1

V lineárním prostoru C[-1,1] všech (reálných) spojitých funkcí na intervalu [-1,1] uvažujme normu $||f|| = \max\{|f(t))|; t \in [-1,1]\}$ a funkci $h \in C[-1,1]$ danou vztahem h(t) = 1 - |t| pro všechna $t \in [-1,1]$. Určete všechny konstantní funkce $g \in C[-1,1]$ s vlastností p(g,h) = 1, kde p je metrika indukovaná danou normou. (Návod: Úlohu řešte graficky.)

4.2.2

V reálné rovině \mathbb{R}^2 uvažujme normu danou vztahem $\|(x,y)\| = |x| + |y|$ a nechť p je metrika v \mathbb{R}^2 inkludovaná touto normou. Načrtněte množinu všech bodů $[x_0, x_1]$ v \mathbb{R}^2 , pro než platí $p([x_0, x_1], [0.0]) \leq 1$. Jaký je rovinný obsah této množiny?

4.3 Unitární prostory

4.3.1

Na reálném vektorovém prostoru \mathbb{R}^3 definujme skalární součin vztahem $(x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = x_1y_1 + x_2y_2 + x_3y_3$. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální

bázi podprostoru prostoru \mathbb{R}^3 generovaného vektory 1, 2, -1), (1, 2, -3), (4, 8, -8), (3, 6, -9). Na reálném vektorovém prostoru \mathbb{R}^3 definujeme skalární součin vztahem

$$(x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = x_1y_1 + x_2y_2 + x_3y_3$$

Pomocí Gram-Schmidtova ortogonalizačního procesu najděte orotnormální bázi podprostoru prostoru \mathbb{R}^3 generovaného vektory (2, -1, 3), (-1, 2, -3), (3, 0, 3) a (8, 2, 6).

4.3.2

V Euklidovském prostoru \mathbb{R}^4 nalezněte ortonormální bázi podprostoru W generovaného vektory $u_1 = (1, 1, 1, 1), u_2 = (1, 1, 1, -1), u_3 = (1, 1, -1, 1)$ a $u_4 = (-1, 1, 1, 1)$.

5 Grafy

5.1 Nazelezeni grafu

5.1.1

Uvažujme obyčejný graf G, který má 19 hraf a součet stupňů lichých uzlů je menší nebo roven součtu stupňů sudých uzlů. Kolik má graf G lichých uzlů, víte-li, že jich je více než 2 a všechny mají stejný stupeň větší než 1?

5.1.2

V obci Skorošice se koná amatérský fotbalový turnaj, kterého se účastní 9 týmů. V dopolední části turnaje každý tým odehrál 2 zápasy. Kolik zápasů v odpolední části musí každý tým odehrát, aby si zahráli co nejvíce zápasů, avšak celkový počet odehraných zápasů musí být menší jak 32.

5.1.3

Je dán graf G=(U,H), kde $U=\{1,2,\ldots,2n\},\ n>0$ přirozené číslo a H má 15 prvků. Pro každé číslo $i=1,2,\ldots,n$ mají uzly i a n+i tentýž stupeň i. Určete hodnotu čísla n a pak graf G přehledně nakreslete.

5.1.4

Kolik hran má patnáctistěn s 26 vrcholy? Nápověda: Uvažujte planární graf odpovídající danému mnohostěnu.

5.1.5

Nakreslete všechny navzájem neizomorfní stromy se 6 uzly.

5.1.6

Každá ze 13 zemí má uzavřenou bilaterální smlouvu o hospodářské spolupráci s právě n ostatními zeměmi (z těchto 13ti). Jakých hodnot může nabývat n, jestliže víme, že n>2 a n není dělitelné číslem 4 ani číslem 5.

Kolik hran má sedmnáctistěn s 30 vrcholy? Nápověda: Uvažujte planární graf odpovídající danému mnohostěnu.

5.1.8

Uzel obyčejného grafu se nazývá artikulace, pokud se po jeho odstranění a odstranění s ním incidentních hran zvýší počet komponent grafu. Kolik existuje navzájem neizomorfních lesů o 6 uzlech s právě 1 artikulací? Nakreslete je.

5.1.9

Graf G má 11 uzlů, která mají všechny stejný stupeň n. Určete počet h hran grafu G, víte-li, že n > 2 a že G je nesouvislý. Pokuste se graf G přehledně nakreslit.

5.1.10

Jaký je nejmenší počet hran grafu se 7 uzly, jehož každý uzel má stupeň 2,4 nebo 6 a každý z těchto stupňů je zastoupen? Nakreslete takový graf.

5.2 Nazeteni minimální kostry

5.2.1

Je dán graf G=(U,H), kde $U=\{a,b,c,d,e,f,g,h\}$ a H má 15 prvků s oceněním $v:H\to N$ takovým, že $v\{a,b\}=2,v\{a,c\}=1,v\{a,d\}=1,v\{b,c\}=1,v\{b,d\}=2,v\{c,d\}=3,v\{b,e\}=4,v\{d,e\}=3,v\{d,g\}=2,v\{e,f\}=4,v\{e,g\}=3,v\{e,h\}=2,v\{f,g\}=3,v\{f,h\}=1,v\{g,h\}=1.$ Nakreslete tento graf tak, že každá z následujících čtveřic (a,b,c,d), (b,d,e,g) a (e,f,g,h) tvoří vrcholy čtveřice a hrany jsou znázorněny úsečkami spojujícími příslušné vrcholy. Určete cenu minimální kostry tohoto grafu a jednu jeho minimální kostry nakreslete do obrázku.

5.2.2

V grafu $G = \{U, H\}$, kde H=

5.2.3

Je dán graf G=(U,H), kde $U=\{a,b,c,d,e,f,g,h\}$ a H má 13 prvků s oceněním $v:H\to N$ takovým, že $v\{a,b\}=2,v\{a,d\}=5,v\{a,f\}=1,v\{b,c\}=0,v\{c,d\}=5,v\{c,e\}=1,v\{d,e\}=10,v\{d,f\}=0,v\{e,g\}=3,v\{e,h\}=3,v\{f,g\}=1,v\{f,h\}=2,v\{g,h\}=6.$ Určete cenu minimální kostry tohoto grafu a jednu jeho minimální kostru nakreslete.