华东理工大学 概率论与数理统计

作业簿 (第十册)

	1F.	业净(牙	一一加ノ		
学 院	_ =	<u>₩</u>		圧 级	
学 号		名	[壬课教师	
		第 19 次	作业		
一. 选择题					
1. 设(X ₁ ,X ₂ ,·	··, <i>X</i> _n)是正态。	总体 <i>ξ~N</i>	(μ,σ^2) 的科	样本, \overline{X} 和 S_{n-}^2	,分别为样本
均值 和样本方差,	则有				(C)
(A) $\frac{\overline{X}}{c}$	$\frac{-\mu}{\sigma} \sim N(0,1)$		(B) $\frac{\bar{X}}{S_{i}}$	$\frac{-\mu}{n-1} \sim t(n-1)$	
(C) $n\left(\frac{1}{2}\right)$	$\left(\frac{\overline{X}-\mu}{\sigma}\right)^2 \sim \chi^2(1)$	1)	(D) $\frac{X_1^2}{X_2^2}$	$\frac{2}{2} \sim F(1,1)$	
2.设(X ₁ ,X ₂ ,···,	(X_n) 是总体 ξ 的	勺样本,总体	的各阶矩构	字在,则错误的	的是(D)
(A)	样本均值 \overline{X} 是	皇总体期望	的无偏估计	_	
(B)	X_i (i = 1,2,	,n)均是总·	体期望的无	偏估计	
(C)	样本方差 S_{n-1}^2	是总体方	差的无偏估	计	
(D)	S_n^2 是总体方	差的无偏估	计,这里点	$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - X_i)^2$	$-\bar{X})^2$
3. 设 $\xi \sim N(\mu, \eta)$	1), (X ₁ , X ₂)为。	5的样本。	参数 μ 的无	c偏估计:	
$ \hat{\mu}_1 = \frac{X_1}{X_1} $	$\hat{\mu}_1 + X_2$, $\hat{\mu}_2 = \frac{X_1}{2}$	$\frac{+2X_2}{3}$, $\hat{\mu_3}$	$=\frac{X_1+3X_2}{4}$	$\hat{\mu_4} = \frac{X_1 + 4X_2}{5}$	· · · · · · · · · · · · · · · · · · ·
中最有效的					(A)
(A) μ	u_1 (B)	$\stackrel{^{\wedge}}{\mu_{2}}$	(C) $\stackrel{\wedge}{\mu_3}$	(D)) $\stackrel{\wedge}{\mu_4}$

二. 填空题:

- 1. 矩法估计的理论依据是__大数定律_; 极大似然估计的依据是 _极大似然原理
- 2.点估计的三个主要评价标准是指 _无偏性; _有效性_; _相合性/一致性.
- 3. 设 $(X_1, X_2, ..., X_n)$ 为总体 $\xi \sim N(\mu, \sigma^2)$ 的样本,则:

参数
$$\mu$$
 的矩法估计是 ____ \overline{X} _; σ^2 的矩法估计是 ____ $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ ____;

参数 μ 的极大似然估计是 $\underline{X}_{i=1}$; σ^2 的极大似然估计是 $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$

三. 计算题:

1. 设总体 X 的分布律为 $P\{X=k\}=\frac{1}{N},\ k=0,1,2,\cdots,N-1$, 其中 N 未知, X_1,\cdots,X_n 为来自该总体的样本,试分别求 N 的矩估计 \hat{N}_M 和极大似然估计 \hat{N}_L

解: (1) 矩估计

总体均值:
$$EX = 0 \cdot \frac{1}{N} + 1 \cdot \frac{1}{N} + \dots + (N-1) \cdot \frac{1}{N} = \frac{1}{N} \cdot \frac{N(N-1)}{2} = \frac{N-1}{2}$$
, 样本平均值: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

令 $EX=\overline{X}$,即 $\frac{N-1}{2}=\overline{X}$,得 $N=2\overline{X}+1$,即 N 的矩估计为 $\hat{N}_M=2\overline{X}+1$ 。

(2) 极大似然

设 (X_1, X_2, \dots, X_n) 的一组观测值为 (x_1, x_2, \dots, x_n) ,

似然函数 $L(N) = \prod_{i=1}^n P(X_i = x_i) = \frac{1}{N^n}$,显然 N 越小,似然函数值越大。 $\text{由 } 0 \leq x_{(1)} \leq \cdots \leq x_{(n)} \leq N-1, \\ \ \, \exists N \geq x_{(n)} \leq N-1, \\ \ \ \, \exists N \geq x_{(n)} \leq N-1, \\ \ \, \exists N \geq x_{($

2. 设总体 X 服从几何分布: $P(X = x) = p(1-p)^{x-1}$, $x = 1,2,\cdots$, 其中 p 未知。设 (X_1, X_2, \cdots, X_n) 为 X 的样本,试求 p 的矩法估计和极大似然估计。

解: (1)由于 $\xi \sim Ge(p)$, 因此 $E\xi = \frac{1}{p}$, 由矩法原则可知 $E\xi = \bar{X}$, 故 $\hat{p} = \frac{1}{\bar{X}}$ 。

(2)设样本 (X_1, X_2, \cdots) 的一组观测值为 (x_1, x_2, \cdots) 由于总体为离散型,

因此似然函数
$$L(p) = \prod_{i=1}^{n} P(X_i = x_i) = p^n (1-p)^{\sum_{i=1}^{n} x_i - n}$$
,

取对数,得 $\ln L(p) = n \ln p + \left(\sum_{i=1}^{n} x_i - n\right) \ln(1-p)$,

上式两端关于
$$p$$
 求导,并令 $\frac{d \ln L(p)}{dp} = 0 \Rightarrow \hat{p} = \frac{1}{\bar{X}}$

3. 设总体 X 的密度函数为 f(x) = $\begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 其中 $\theta > -1$ 是未知 参数, (X_1, X_2, \cdots, X_n) 是来自总体的样本,分别用矩估计法和极大似然法求 θ 的估计量。

解: 总体
$$X$$
 的数学期望为 $EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} (\theta + 1) x^{\theta + 1} dx = \frac{\theta + 1}{\theta + 2}$, 设 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 为样本均值,则应有: $\overline{X} = \frac{\theta + 1}{\theta + 2}$,

解得 θ 的矩法估计量为: $\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}}$;

设 (x_1,x_2,\cdots,x_n) 是样本 (X_1,X_2,\cdots,X_n) 的观察值,则似然函数为:

$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (\theta + 1) x_i^{\theta} = \begin{cases} (\theta + 1)^n (x_1 x_2 \cdots x_n)^{\theta}, & 0 < x_i < 1, i = 1, 2, \dots, n \\ 0, & \text{ i.e. } \end{cases}$$

当 $0 < x_i < 1$ ($i = 1, 2, \dots, n$)时, $L(\theta) > 0$,

$$\ln L(\theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i, \quad \Leftrightarrow \frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i = 0 \quad ,$$

解得
$$\theta$$
的极大似然估计值: $\hat{\theta} = -1 - \frac{n}{\sum_{i=1}^{n} \ln x_i}$.

故
$$\theta$$
的极大似然估计量为: $\hat{\theta} = -1 - \frac{n}{\sum_{i=1}^{n} \ln X_i}$.

4. 设总体 X 的分布律为

X	0	1	2	3
P	θ^2	$2\theta(1-\theta)$	$ heta^2$	$1-2\theta$

其中 θ (0 < θ < $\frac{1}{2}$)是未知参数。现有一组样本的观测值: 3, 1, 3, 0, 3, 1, 2, 3 求 θ 的矩估计值 $\hat{\theta}_M$ 和极大似然估计值 $\hat{\theta}_L$ 。

解: (1) 由矩法原则可知:

$$EX = 0 \cdot \theta^2 + 1 \cdot 2\theta(1 - \theta) + 2 \cdot \theta^2 + 3 \cdot (1 - 2\theta) = 3 - 4\theta = \overline{X},$$

由样本得:
$$\bar{X} = \frac{3+1+3+0+3+1+2+3}{8} = 2$$
, 故 θ 的矩估计值 $\hat{\theta}_M = \frac{1}{4}$ 。

(2) 注意该总体为离散型, 且分布律不能由解析式表示。似然函数:

$$L(\theta) = P\{X_1 = 3\}P\{X_2 = 1\}P\{X_3 = 3\}P\{X_4 = 0\}P\{X_5 = 3\}P\{X_6 = 1\}P\{X_7 = 2\}P\{X_8 = 3\}$$
$$= (\theta^2)^2(\cdot 2\theta(1-\theta))^2 \cdot (1-2\theta)^4 = 4\theta^6(1-\theta)^2(1-2\theta)^4,$$

取对数, 得 $\ln L(\theta) = \ln 4 + 6 \ln \theta + 2 \ln(1 - \theta) + 4 \ln(1 - 2\theta)$,

$$\Rightarrow \frac{d \ln L(\theta)}{d \theta} = \frac{6}{\theta} - \frac{2}{1-\theta} - \frac{8}{1-2\theta} = \frac{24\theta^2 - 28\theta + 6}{\theta(1-\theta)(1-2\theta)} = 0$$
,解得 $\theta = \frac{7 \pm \sqrt{13}}{12}$,由于

$$\theta = \frac{7 + \sqrt{13}}{12} > \frac{1}{2}$$
 不合题意,舍去。因此, θ 的极大似然估计值为 $\hat{\theta}_L = \frac{7 - \sqrt{13}}{12}$

5. 设 $(X_1,...,X_n)$ 是取自总体 ξ 的一个简单随机样本 ξ 的密度函数为

$$p(x) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$$
 其中 $\theta > 0$ 为未知参数,

1) 试求 θ 的矩估计; 2) 试求 θ 的极大似然估计;

解: 1) 先计算
$$E\xi = \int_{\theta}^{+\infty} x e^{-(x-\theta)} dx = (-xe^{-(x-\theta)})\Big|_{\theta}^{+\infty} + \int_{\theta}^{+\infty} e^{-(x-\theta)} dx = \theta + 1$$

由于 $E\xi = \overline{X}$,得到 $\hat{\theta} = \overline{X} - 1$

2) 对于一组观测值 $(x_1, x_2, \dots x_n)$, 设 $x_1, \dots, x_n \ge \theta$, 此时似然函数

$$L(\theta) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} (e^{-(x_i - \theta)})$$
 两边取对数,得对数似然函数

增,所以 $\ln L(\theta)$ 的极大值应在 θ 取值的右面的边界点上取到,故 θ 的极大似然 估计值为 $\min_{1 \le i \le n} x_i$, 而 θ 的极大似然估计量为 $\hat{\theta} = \min_{1 \le i \le n} X_i$

第20次作业

- 一.选择题:
- 1.设 $(X_1,X_2,...,X_n)$ 为总体 ξ 的样本, \overline{X} 为样本均值, S^2 为样本方差,则 (B)

A.
$$\bar{X} = E\xi$$

B. $E\overline{X} = E\xi$

C.
$$D\overline{X} = D\xi$$

D. $\lim_{x \to \infty} \overline{X} = E\xi$

- 2. 设总体 X 的数学期望为 μ , (X_1, X_2, \dots, X_n) 是取自总体的样本,则下列命题 中正确的是 (A)
 - A. X_1 是 μ 的无偏估计量;
- B. X_1 是 μ 的极大似然估计量;
- C. X_1 是 μ 的一致(相合)估计量; D. X_1 不是 μ 估计量。
- 3.设 (X_1,X_2,\cdots,X_n) 为总体 $X\sim N(\mu,\sigma^2)(\mu$ 已知)的一个样本, \overline{X} 为样本均值, 则总体方差 σ^2 的下列估计量中,为无偏估计量的是 (C)

A.
$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$$
;

B.
$$\frac{1}{n-1}\sum_{i=1}^{n-1}(X_i-\overline{X})^2$$
;

C.
$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}$$
;

D.
$$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\mu)^2$$

二.填空题

- 1. 在一批垫圈中随机抽取 10 个, 测得它们的厚度(单位: mm)如下:
- 1.23, 1.24, 1.26, 1.29, 1.20, 1.32, 1.23, 1.23, 1.29, 1.28 用矩估计法得到这批垫圈的数学期望 μ 的估计值 $\hat{\mu}=\bar{x}=1.257$,

标准差 σ 的估计值 $\hat{\sigma} = s_{n-1} = 0.037$ (填 s_n 也对.如果只要求填估计值解不唯一)

- 2. 将合适的数字填入空格, 其中:
 - (1) 总体矩, (2) 样本矩, (3) 中心极限定理, (4) 大数定律。 矩估计的做法是用<u>(2)</u>, 代替<u>(1)</u>, 其依据是<u>(4)</u>。
- 3. 已知总体 $X\sim N(\mu,\sigma^2)$,其中未知参数 μ 和 σ 的极大似然估计分别为 \bar{X} 和 S_n ,则概率 $P\{X<2\}$ 的极大似然估计为 $\Phi\bigg(\frac{2-\bar{X}}{S_n}\bigg)$ 。

三. 计算及证明题:

1. 设总体 $\xi \sim N(\mu, 1)$, (X_1, X_2, X_3) 是 ξ 的样本,且:

$$\hat{\mu}_{1} = \frac{1}{2}X_{1} + \frac{1}{4}X_{2} + \frac{1}{4}X_{3}; \quad \hat{\mu}_{2} = \frac{1}{3}X_{1} + \frac{1}{3}X_{2} + \frac{1}{3}X_{3}; \quad \hat{\mu}_{3} = \frac{2}{5}X_{1} + \frac{2}{5}X_{2} + \frac{1}{5}X_{3}$$

证明 $\hat{\mu_1}$, $\hat{\mu_2}$, $\hat{\mu_3}$ 都是 μ 的无偏估计,并说明这三个估计中,哪一个估计最有效?

证明:
$$E\hat{\mu}_{\!\scriptscriptstyle 1} = E\bigg(\frac{1}{2}\,X_{\!\scriptscriptstyle 1} + \frac{1}{4}\,X_{\!\scriptscriptstyle 2} + \frac{1}{4}\,X_{\!\scriptscriptstyle 3}\bigg) = \frac{1}{2}\,EX_{\!\scriptscriptstyle 1} + \frac{1}{4}\,EX_{\!\scriptscriptstyle 2} + \frac{1}{4}\,EX_{\!\scriptscriptstyle 3} = \bigg(\frac{1}{2} + \frac{1}{4} + \frac{1}{4}\bigg)\mu = \mu,$$

同理可得: $E\hat{\mu}_2 = \mu$; $E\hat{\mu}_3 = \mu$. 所以, $\hat{\mu}_1, \hat{\mu}_2, \hat{\mu}_3$ 都是 μ 的无偏估计.

此外,由于样本 X_1 , X_2 , X_3 独立同分布,故有:

$$D\hat{\mu}_1 = D\left(\frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3\right) = \frac{1}{4}DX_1 + \frac{1}{16}DX_2 + \frac{1}{16}DX_3 = \frac{3}{8},$$

同理可得: $D\hat{\mu}_2 = \frac{1}{3}$; $D\hat{\mu}_3 = \frac{9}{25}$. 可知 $D\hat{\mu}_1 > D\hat{\mu}_3 > D\hat{\mu}_2$,故 $\hat{\mu}_2$ 最有效.

2. 设从均值为 μ ,方差为 $\sigma^2>0$ 的总体中,分别抽取容量为 n_1 和 n_2 的两个独立样本, $\overline{X_1}$ 和 $\overline{X_2}$ 分别是两个样本的均值.试证:对于任意常数a,b (a+b=1), $Y=a\overline{X_1}+b\overline{X_2}$ 是 μ 的无偏估计,并确定常数a,b,使得DY达到最小。

证明: 因为 $EY = E(a\overline{X}_1 + b\overline{X}_2) = aE\overline{X}_1 + bE\overline{X}_2 = (a+b)\mu = \mu$,

故对于任意常数 a,b(a+b=1) , $Y=a\overline{X}_1+b\overline{X}_2$ 都是 μ 的无偏估计.

由于两个样本独立,因此 \bar{X}_1, \bar{X}_2 相互独立,于是:

$$DY := \frac{a^2 \sigma^2}{n_1} + \frac{(1-a)^2 \sigma^2}{n_2} = \frac{(n_1 + n_2)a^2 - 2n_1a + n_1}{n_1n_2} \sigma^2$$
,求其最小值,

$$\left[\frac{(n_1+n_2)a^2-2n_1a+n_1}{n_1n_2}\sigma^2\right]' = \frac{2(n_1+n_2)a-2n_1}{n_1n_2}\sigma^2 = 0 \Rightarrow a = \frac{n_1}{n_1+n_2},$$

$$b=1-a=\frac{n_2}{n_1+n_2}$$
,即当 $a=\frac{n_1}{n_1+n_2}$, $b=\frac{n_2}{n_1+n_2}$ 时, DY 最小。

3. 设随机变量 X 服从区间 $(\theta, \theta+1)$ 上的均匀分布,其中 θ 为未知参数, X_1, X_2, \cdots, X_n 是来自于 X 的一个样本, \overline{X} 是样本均值, $X_{(1)} = \min\{X_1, X_2, \cdots, X_n\}$. 证明: $\hat{\theta}_1 = \overline{X} - \frac{1}{2}$ 和 $\hat{\theta}_2 = X_{(1)} - \frac{1}{n+1}$ 都是 θ 无偏估计量 (n > 1).

证明: 因为X 服从区间 $(\theta, \theta+1)$ 上的均匀分布,所以 $EX_i = EX = \frac{2\theta+1}{2}$, $E\hat{\theta}_1 = E(\bar{X} - \frac{1}{2}) = E(\bar{X}) - \frac{1}{2} = E(X) - \frac{1}{2} = \frac{2\theta+1}{2} - \frac{1}{2} = \theta$,所以 $\hat{\theta}_1$ 是 θ 无偏估计量.

再证 $\hat{\theta}$, 是 θ 无偏估计量,因均匀分布X 的分布函数和密度函数分别为:

$$F(x) = P\{X \le x\} = \begin{cases} 0, & x \le \theta \\ x - \theta, & \theta < x < \theta + 1, \\ 1, & x \ge \theta + 1 \end{cases} \qquad p(x) = F'(x) = \begin{cases} 1, & \theta < x < \theta + 1 \\ 0, & \cancel{\bot} : \end{aligned}$$

 X_1, X_2, \dots, X_n 与 X 独立且同分布, 故 $X_{(1)}$ 的分布函数为:

$$F_{(1)}(x) = P\{X_{(1)} \le x\} = 1 - [1 - F(x)]^n$$

$$f_{(1)}(x) = F'_{(1)}(x) = n[1 - F(x)]^{n-1} p(x) = \begin{cases} n(1 + \theta - x)^{n-1}, & \theta < x < \theta + 1 \\ 0, & \sharp \succeq \end{cases},$$

于是,
$$EX_{(1)} = \int_{-\infty}^{+\infty} x f_{(1)}(x) dx = \int_{\theta}^{\theta+1} nx (1+\theta-x)^{n-1} dx$$

$$=-n\int_{\theta}^{\theta+1}(1+\theta-x)(1+\theta-x)^{n-1}dx+n(1+\theta)\int_{\theta}^{\theta+1}(1+\theta-x)^{n-1}dx=\frac{1}{n+1}+\theta,$$

$$E\hat{\theta}_2 = E(X_{(1)} - \frac{1}{n+1}) = \frac{1}{n+1} + \theta - \frac{1}{n+1} = \theta$$
, 所以 $\hat{\theta}_2$ 也是 θ 无偏估计量。

4.设总体 X 服从参数为 $\frac{1}{\rho}$ 的指数分布, (X_1, X_2, \dots, X_n) 是总体 X 的一个样本,

证明: (1) \overline{X} 和 $n \min_{1 \le i \le n} \{X_i\}$ 都是 θ 的无偏估计; (2) 问 \overline{X} , $n \min_{1 \le i \le n} \{X_i\}$ 中哪个更有效?

证明: (1) 由 X 服从参数为 $\frac{1}{\theta}$ 的指数分布, X 的分布函数为:

 $F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ 于是有 $\min_{1 \le i \le n} X_i$ 的分布函数和密度函数分别为:

$$F_{\min_{1 \le i \le n} X_i}(x) = 1 - [1 - F(x)]^n = \begin{cases} 1 - e^{-\frac{n}{\theta}x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

$$p_{\min_{1 \le i \le n} X_i}(x) = \begin{cases} \frac{n}{\theta} e^{-\frac{n}{\theta}x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

于是 $E(n\min_{1\leq i\leq n}X_i)=n\int_0^{+\infty}x\cdot\frac{n}{\theta}e^{-\frac{n}{\theta}x}dx=n\cdot\frac{\theta}{n}=\theta$.

而 $E\overline{X} = E(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n}\sum_{i=1}^{n}EX_{i} = \theta$. 故 \overline{X} 和 $n\min_{1\leq i\leq n}\{X_{i}\}$ 都是 θ 的无偏估计.

(2) 同样由于 X 服从参数为 $\frac{1}{\theta}$ 的指数分布,得到 $DX_i = \theta^2, i = 1, 2, ..., n$,于是有 $D\bar{X} = D(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n^2}\sum_{i=1}^n DX_i = \frac{\theta^2}{n}; \quad \text{为了计算 } D\{n\min_{1\leq i\leq n}\{X_i\}\}, \quad \text{需要先计算}:$

$$E(n\min_{1\leq i\leq n}X_{i})^{2} = n^{2}\int_{0}^{+\infty}x^{2}\cdot\frac{n}{\theta}e^{-\frac{n}{\theta}x}dx = n^{2}\left\{-x^{2}e^{-\frac{n}{\theta}x}\right\}_{0}^{+\infty} + 2\int_{0}^{+\infty}xe^{-\frac{n}{\theta}x}dx = 2n\theta\int_{0}^{+\infty}x\cdot\frac{n}{\theta}e^{-\frac{n}{\theta}x}dx = 2\theta^{2}$$

于是得到: $D\{n\min_{1\leq i\leq n}X_i\}=E(n\min_{1\leq i\leq n}X_i)^2-(En\min_{1\leq i\leq n}X_i)^2=\theta^2$.

故当n=1时, $n\min_{1\leq i\leq n}\{X_i\}$ 和 \overline{X} 一样有效;当n>1时, \overline{X} 比 $n\min_{1\leq i\leq n}\{X_i\}$ 更有效。

5. 试讨论参数的矩法估计和极大似然估计是否一定存在,如果存在又是否唯一?

解:参数的矩法估计和极大似然估计都未必存在,即便存在也未必唯一.

因为矩法估计是以总体的矩存在为前提,如果总体矩不存在,那么参数的矩法估计量也就自然无从谈起了。至于矩法估计的非唯一性,比如,总体 ξ 只有一个未知参数 θ ,且总体的各阶原点矩存在。那么,由 $E\xi^k = \overline{X^k}$ $(k \ge 1)$ 解得的 $\hat{\theta}$ 都是 θ 的矩法估计量,因此参数的矩法估计量可能不存在,也可能存在但不唯一.

参数的极大似然估计可能不存在,或存在不唯一的例子如下:

 $\xi \sim U(\theta - 0.5, \ \theta + 0.5)$,则 θ 的极大似然估计为 $\hat{\theta} \in [\max X_i - 0.5, \ \min X_i + 0.5]$ 当 $\max X_i - 0.5 < \min X_i + 0.5$ 时,区间内的任意数都是参数 θ 的极大似然估计(不唯一). 而当 $\max X_i - 0.5 > \min X_i + 0.5$ 时,参数 θ 的极大似然估计不存在.