

UNCOVER COVID-19 Challenge Which populations assessed should stay home and which should see an HCP?

ABSTRACT

The tasks associated with this dataset were developed and evaluated by global frontline healthcare providers, hospitals, suppliers, and policy makers. They represent key research questions where insights developed by the Kaggle community can be most impactful in the areas of at-risk population evaluation and capacity management.[1]

You can see more information in Kaggle website which attached on the References

My juptyer notebook work could be found athttps://github.com/hjjkk/ml_final_project

Since 2019-2020, covid-19 has spread all over the world. In US, the virus has caused huge loss of human, material and financial resources, many people dead in this public health security incident. There is a graph about US epidemic recently underneath.

INTRODUCTION

Figure 1. US condition[2]

In this poster, I will analyze data, building a model to predict which populations assessed should stay home and which should see an HCP.

One person should stay home or see an HCP will be judged by if he **is verified** or not.

DATA DESCRIPTION

Filename: coders_against_covid.zip Number of datasets on Namara: 1

Access streaming data on

[Namara](https://app.namara.io/#/search?sources=5e76bb9cbe4 28d03ee7b1689)

[source](https://github.com/codersagainstcovidorg/covid19testing

Source description: Crowdsourced map of testing locations across the US.

DATA PROCESSING

First, divide this dataset into two parts:train_data and test_data, 75% of source file into train_data and 25% to be test_data. Here is description in detail below.

After analysis, some data are useless in modeling. Such as 0 location_id was hash code example a3b3214a-e128-4c68-ac18-a467482f1ab8

Droping some columns and convert 't' and 'f' into 1 and 0.

-	
2	
2	
2	
2	
t64	
float64	
2	
2	
2	
Ing	
74000	
74693	
42090	
42090	
42090 39110	
42090 39110 96180	
42090 39110 96180 89370	
42090 39110 96180 89370 38380	
a 1	

Figure 2. new table info

ANALYSIS

0 39.428731 -78.985996

Due to the propagation characteristics of covid-19, it's easy to find many cases will be confirmed **regionally**,so there're many verified cases in some specific areas. The following pics show some information about the conclusion.

Next normalized 'lat' and 'lng' values into 0~1 to avoid too large scale

Then show correlations by heatmap.

According to the figure 4, we can make a preliminary guess that is_location_collecting_specimens,is_location_accepting_third_party_or ders_for_testing, is_location_only_testing_patients_that_meet_criteria and is_location_by_appointment_only have high correlation with is_verified.

Next show data relations with is_verified

BUILD MODEL

In this step, I use LR(LogisticRegression) to make a model. Optimized hyperparameters with GridSearch.Choosing 7 feature vectors which have close relationship.

LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='12', random_state=None, solver='lbfgs', tol=1e-06, verbose=0, warm start=False)

Use 3-cross validation to verify model in train data and draw learning curve as figure 6

PREDICT

According to the learning curve, this model have good performance in train data, then predict in test data. Using sklearn.metrics to calculate accuracy_score. It has a high accuracy 89.90%

from sklearn.metrics import accuracy_score print(accuracy_score(result_np, predictions))

0.8990384615384616

REFERENCES

- 1. <a href="https://www.kaggle.com/roche-data-science-dat coalition/uncover/tasks?taskId=674.
- 2. https://www.guruin.com/guides/covid19

CONTACT

孔云飞 计算机17-1班 2017011306 Email:2017011306@student.cup.edu.cn