9. Grafické karty – princip, grafická rozhraní, GPU, parametry

HARDWARE A APLIKAČNÍ SOFTWARE

Princip

- Zajišťuje tvorbu obrazu z určité aplikace, který vidíme na zobrazovací jednotce.
- Spolu se zobrazovací jednotkou tvoří zobrazovací soustavu počítače.

Pracuje ve dvou základních režimech:

Textový režim

 Zobrazuje pouze předem definované znaky znakové sady (např. ASCI kód) uložené v paměti grafiky.

Grafický režim

• Informace zobrazovány po jednotlivých obrazových bodech tzv. pixelech (Picture Element). Z jednotlivých pixelů vykresluje libovolný obraz v daném rozlišení a hloubce barev.

Pixel

- Nejmenší jednotka digitální bitmapové grafiky.
- Představuje jeden svítící bod na monitoru charakterizovaný jasem a barvou.
- Subpixel část pixelu pro jednu základní barvu. Splynutím tří subpixelů základních barev RGB do jedné barvy vznikne pixel.
- Texel je základní jednotkou textury (tapety) používané v počítačové grafice.
- Voxel pravidelné částice objemu představující hodnotu v mřížce třídimenzionálního prostoru (3D), analogie pixelu reprezentuje hodnotu v 2D mřížce.

Grafická rozhraní

- Výstup grafického rozhraní na zobrazovací jednotku:
 - o Analogový (např. CRT monitor, LCD s analogovým vstupem)
 - o Digitální (např. LCD s digitálním vstupem, plazmový monitor)

Grafické výstupní rozhraní VGA

- Video Graphics Array (VGA)
- Standard pro analogové grafické zobrazování určený především pro CRT monitory.
- Využívá analogový signál 3 základních barev RGB.
- Horizontální (řádkovou) a vertikální (snímkovou) synchronizaci.
- Vykreslování obrazu je bod po bodu pomocí půlsnímku v lichých a sudých řádcích.
- Konektor: 3 řady po 5 pinech (15 PIN HIGHDENSITY DSUB)
- Každá barva má svůj vlastní zemnící spoj.
- Monitor se identifikuje pomocí signálů ID0-3.

Pin	Name	Smer	Popis
1	RED	-	Red video (75 ohm, 0.7V
2	GREEN	-	Green video (75 ohm, 0.7)
3	BLUE	-	Blue video (75 ohm, 0.7V
4	ID2	←	Monitor ID Bit 2
5	GND	_	Groun
6	RGND		Red Ground
7	GGND		Green Ground
8	BGND	_	Blue Ground
9	KEY		Key (No pin)
10	SGND	_	Sync Ground
11	ID0	←	Monitor ID Bit 0
12	ID1 or SDA	←	Monitor ID Bit 1
13	HSYNC or CSYNC	\rightarrow	Horizontal Sync (or Comp
14	VSYNC	\rightarrow	Vertical Sync
15	ID3 or SCL	←	Monitor ID Bit 3

Grafické výstupní rozhraní DVI

- Digital Visual Interface (DVI) přenos digitálním signálem.
- Single DVI link se skládá ze čtyř párů kroucené dvoulinky (červený, zelený, modrý a synchronizačních impulzů (Clock rate), přenos je 24 bitů na pixel bez komprese.
- Při požadavku na vyšší rozlišení a tím na vyšší přenosové rychlosti se využívá navíc druhá trojice párů RGB dual DVI link.

Typy:

- DVI-D (digital only) pouze digitální signál.
- DVI-A (analog only) pro kompatibilitu s analogovými monitory
- DVI-I (digital & analog) digitální i analogový signál

Pin	Signal	Pin	Signal
1	T.M.D.S DATA 2-	16	HOT PLUG DETECT
2	T.M.D.S DATA 2+	17	T.M.D.S DATA 0-
3	T.M.D.S DATA 2/4 SHIELD	18	T.M.D.S DATA 0+
4	T.M.D.S DATA 4-	19	T.M.D.S DATA 0/5 SHIELD
5	T.M.D.S DATA 4+	20	T.M.D.S DATA 5-
6	DDC CLOCK	21	T.M.D.S DATA 5+
7	DDC DATA	22	T.M.D.S CLOCK SHIELD
8	ANALOG VERT.SYNC	23	T.M.D.S CLOCK+
9	T.M.D.S DATA 1-	24	T.M.D.S CLOCK-
10	T.M.D.S DATA 1+		
11	T.M.D.S DATA 1/3 SHIELD	C1	ANALOG RED
12	T.M.D.S DATA 3-	C2	ANALOG GREEN
13	T.M.D.S DATA 3+	C3	ANALOG BLUE
14	+5V POWER	C4	ANALOG HORZ SYNC
15	GND	C5	ANALOG GROUND

HDMI

- High-Definition Multimedia Interface
- Nekomprimovaný obrazový digitální signál ve standardní rozšířené nebo high-definition kvalitě.
- 8 kanálů digitálního zvuku.
- Transition Minimized Different Signaling TMDS
- Consumer Electronics Control CEC
- Display Data Channel DDC

Typy:

- Typ A 19 pin, HDTV režim, kompatibilní s rozhraním Single-link DVI
- Typ B 29 pinů, dvojnásobná šířka pásma, nepoužívá se
- Typ C mini, 19 pinů
- Typ D micro, 19 pinů

Display port

- DisplayPort digitální rozhraní navržené VESA (Video Electronics Standards Association).
- Primárně přenos obrazu pro displeje.
- Může být použito i pro přenos zvuku, USB a jiných forem dat, používá paketový přenos dat.
- Kompatibilní s HDMI (obraz, zvuk), DVI (obraz) směrem k zobrazovači (PC-DisplayPort Diplay-HDMI, DVI), opačně s pasivním adaptérem nefunguje!

GPU (Graphics processing unit)

- Zajišťuje rychlé grafické výpočty a změny obsahu videopaměti, které jsou posléze zobrazovány na monitoru.
- Moderní grafické procesory mohou být využívány k náročnějším výpočtům (např. kryptoanalýza).
- GPU se může nacházet na samostatné grafické kartě, nebo je umístěna na základní desce.
- Taktéž může být na základní desce integrovaný s mikroprocesorem do jednoho čipu.
- Vysoce výkonná GPU obsahují stovky milionů tranzistorů, vyžaduje intenzivní chlazení a výkonný elektrický zdroj.
- Grafická akcelerace Techniky, které umožňují vykreslovat grafické objekty rychleji, než by bylo možné za použití CPU. To je zajištěno obvody, které umožňují přímo pracovat i se základními grafickými prvky a tvary.

Typy GPU

Dedikované grafické karty

- Připojeny na základní desku pomocí rozšiřujícího slotu (PCI-E).
- Oproti integrované grafické kartě výkonnější.
- Vyžaduje účinnější chlazení a snižuje výdrž na baterii.
- Většinou se instaluje do větších a těžších notebooků.

Integrované grafické karty

- Grafická karta, která je zabudovaná přímo do procesoru.
- Nedosahuje takového výkonu, jako dedikované grafické karty.
- Výhodou je nižší spotřeba a lepší spolupráce mezi CPU a GPU (při výpočetně náročných operacích se stejnými daty odpadá kopírování dat mezi paměti CPU a GPU, ta je totiž společná).
- Zařízení s tímto typem grafických karet jsou vhodná ke kancelářské práci a konzumaci multimédií.

Hybridní grafické karty

- Novější řada, stala se konkurencí integrovaných grafických karet.
- Tyto grafické karty sdílejí svoji paměť se systémem a mají dedikovanou malou vyrovnávací paměť.
- Umožňuje to technologie v rámci PCI Express.

Externí GPU

• Grafická karta umístěna mimo počítač.

- Využití většinou u notebooků.
- Nepříliš velká podpora od oficiálních distributorů grafických karet.

Parametry

Rozlišení

- Rozlišení je dáno počtem pixelů v jedné řádce a počtem řádek.
- Udává se jako dvojce čísel, např. 1920x1080.
- Grafický ovladač může nastavit rozlišení po určitých krocích do své maximální velikosti.
- Při vyšším rozlišením jsou jednotlivé pixely menší a obrazovka vykreslí větší plochu.
- Rozlišení monitoru je závislé na poměru stran monitoru 4:3, 5:4 (DVD PAL 720x576), 16:9, 16:10

Barevná hloubka

- Počet bitů pro vyjádření barvy pixelu.
- 1bitová barva (21 = 2 barvy) také označováno jako Mono Color (nejpoužívanější, bit 0 = černá a bit 1 = bílá).
- 4bitová barva ($2^4 = 16$ barev).
- 24bitová barva (3x8bit RGB) True Color.
- 32bitová barva (3x8bit RGB, 8bit alfa kanál průhlednost).
- S větším počtem barev vzrůstají také nároky na výpočetní výkon grafické karty.

Velikost videopaměti

- Primárně je v ní uložen vytvořený obraz, velikost je dána počtem bodů (rozlišením obrazu) a barevnou hloubkou.
- Pro výpočty v grafickém akcelerátoru uchovává mezivýsledky, doplňující informace a textury.
- Záleží na stínování a akcelerátoru.

Obnovovací frekvence

- Určuje, kolikrát za vteřinu je grafická karta (spolu s monitorem) schopna aktualizovat obraz
- Obrazová frekvence se udává jednak pro zobrazení úplných snímků (**progresive** značeno "p") nebo pro zobrazení lichých a sudých půlsnímků (**interlace** značeno "i") z důvodu kompatibility se zobrazovací jednotkou (např. CRT monitor 50 Hz).
- Při vyšším rozlišení je vyšší počet vykreslovaných bodů a tím je vyšší i datový tok.
- Levnější karty při vyšším rozlišení nepodporují vyšší obnovovací frekvence.