

CHEMISTRY

ASESORÍA

TOMO I Y II

Si los iones X^{4+} ; Y^{3+} ; W^{2-} poseen igual cantidad de electrones, además sus números atómicos suman 155. Calcule el número atomico de X.

Resolución

De los datos

Si poseen igual cantidad de electrones

$$z_1 X^{4+}; \quad z_2 Y^{3+}; \quad z_3 W^{2-}$$

$$Z_1 - 4 = Z_2 - 3 = Z_3 + 2$$

$$\begin{cases} Z_2 = Z_1 - 1 \\ Z_3 = Z_1 - 6 \end{cases}$$

$$Z_1 + Z_2 + Z_3 = 155$$

$$Z_1 - 1$$
 $Z_1 - 6$ $3Z_1 = 162$ $Z_1 = 54$

Los posibles números cuánticos de un electrón ubicado en el subnivel más energético del tercer nivel son:

A)
$$(3; 3; -2; -\frac{1}{2})$$
 B) $(3; 2; -3; +\frac{1}{2})$ **(3)** $(3; 2; -1; -\frac{1}{2})$ **(3)** $(3; 1; 0; +\frac{1}{2})$ **(4)**

(3; 0; 0; 1) Résolución El subnivel mas energético del tercer nivel es el 3d

Los números cuánticos de un electrón en este subnivel son: $(3; 2; m_i; m_s)$

Donde:
$$m_1 = -2, -1; 0; +1; +2$$

Donde:
$$m_s = -\frac{1}{2}$$
 o $m_s = +\frac{1}{2}$

Son posibles números cuánticos
$$(3; 2; -1; 1/2)$$

Si el átomo de un elemento del cuarto periodo presenta cinco orbitales semillenos de energía relativa igual a 5 y además posee 32 nucleones neutros, entonces su número de nucleones fundamentales es

A) 56 **(X)** 57 **(C)** 58 **(D)** 60 **(E)** 62

Resolución

De acuerdo al enunciado realizamos la configuración electrónica

₇E: 1s² 2s² 2p⁶ 3s² 3p⁶

Hay que considerar 4 niveles de energía (cuarto periodo) y 5 orbitales semillenos de energía relativa igual a cinco (el subnivel tiene que ser 🚺 necesariamente 3d) 3d: -2 -1 0 +1 +2

$$Z = 25$$
 $n^{\circ} = 32$

$$A = Z + n$$
 $A = 25 + 32$ $A = 57$

Un ion dispositivo de un elemento X es isoelectrónico con otro ion Y⁴⁺ que se encuentra en el quinto periodo y en el grupo VB. El grupo de la tabla periódica moderna donde se encuentra el elemento X es

$$\triangle$$
) II $A B$

Resolución

Para el elemento Y realizamos la C.E. teniendo presente que pertenece al 5° periodo y grupo V B La C.E. termina en 5s²4d³

ZY:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^3$$

 $4d^3$
 $2x - 2 = 41 - 4$

$$Z_{x} - 2 = 41 - 4$$

$$Z_{Y} = 41$$

Indique cuál de los siguientes elementos químicos presenta mayor tamaño atómico.

$$Rb (Z = 37)$$

B)
$$Ca(Z = 20)$$

C)
$$Li(Z = 3)$$

M
$$Rb (Z = 37) B) Ca (Z = 20) C) Li (Z = 3) D) Mg (Z = 12) E) K (Z = 19)$$

E)
$$K$$
 ($Z = 19$)

Resolución

Ubicamos cada elemento en la tabla periódica actual

C.E. ₃₇Rb: [*Kr*]5s

C.E. ₁₉ K:
$$[Ar]4s^1$$

Periodo: 5 Grupo: IA

Periodo: 4 Grupo: IIA

Periodo: 2 Grupo: IA

Periodo: 3 Grupo:

Periodo: 4 Grupo: IA

Presenta mayor tamaño atomico (mayor volumen), el que tenga mayor radio atomico

Aumenta Radio **Atómico**

Respecto a los compuestos iónicos, la propiedad incorrecta es
A) Son solidos a temperatura ambiente.

- B) Fundidos son buenos conductores de la corriente electrica.
- C) Son solubles en agua.
- 🙉 Presentan bajos puntos de fusión.
- E) En soluciones acuosas son buenos conductores eléctricos.

Resolución

Los compuestos iónicos generalmente presentan las siguientes propiedades:

Son sólidos a temperatura ambiente.

Malos conductores eléctricos al estado sólido, pero cuando se encuentran fundidos o disueltos en algún solvente polar como el agua, son buenos conductores eléctricos.

Presentan altos puntos de fusión.

No forman moléculas sino redes cristalinas.

De los siguientes subniveles de energía: 4s¹,5f¹²,3p⁶, 4d³, 6p⁴ el que presenta mayor estabilidad es

Resolución

Para cada subnivel se tiene:

Subnivel	n	I	(n+l)
4 s	4	0	4
5f	5	3	8
3p	3	1	4
4d	4	2	6
6p	6	1	7

A menor E.R. existe mayor estabilidad. En caso que dos subniveles aparentemente tengan la misma E.R., es mas estable el que presente menor "n" (más cerca al núcleo)**

Presenta mayor estabilidad el subnivel "3p"

La configuración electrónica de un determinado elemento en su estado fundamental es la siguiente: 1s² 2s² 2p⁶ 3s² 3p³. Indique el número de electrones desapareados.

Resolución

Los electrones desapareados se encuentran en orbitales de subniveles incompletos:

Los electrones desapareados se encuentran en 3p³

Hay 3 electrones desapareados

Para las siguientes series de energía de ionización, indique la alternativa incorrecta:

C)
$$F > 0 > C$$

D)
$$V > Ca > K$$

E)
$$0 > S > Se$$

Resolución

Ver tabla periódica actual

En el grupo VIA: O > S > Se

En el 2° periodo: F > O > C

En el grupo 4° periodo: V > Ca > K

En el grupo IA: Li > Na > K

ENERGÍA DE IONIZACIÓN (E.I.)

Es la mínima necesaria para arrancar lede un átomo al estado gaseoso.

Es incorrecta K > Na > Li

Ver tendencia de las propiedades periódicas

Un elemento químico se encuentra en el cuarto periodo y grupo VII B de la tabla periódica actual. Determine su número de masa si posee 30 neutrones.

A) 50 B) 52 **©** 55 **D)** 56 **E)** 59

Resolución

Como el elemento pertenece al cuarto periodo, entonces posee 4 niveles de energía.

Como pertenece al grupo VIIB entonces #e-ultimo subnivel "s" + #e-subnivel "d" incompleto = 7

Realizando la C.E.

zE:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$
 Z= 25
 $3d^5$ A= Z + n n= 30
A = 25 +30
A= 55

LAS PROPIEDADES PERIÓDICAS VARÍAN DE LA SIGUIENTE MANERA

