6.5 1) Soit $u \in E$.

Il existe d'uniques scalaires $\alpha_1, \ldots, \alpha_n$ tels que $u = \alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n$. On pose $h(u) = \alpha_1 \cdot f_1 + \ldots + \alpha_n \cdot f_n$.

Cette définition de h implique aussitôt $h(e_i) = f_i$ pour tout $1 \le i \le n$.

2) Vérifions que l'application h est linéaire.

Soient $u, v \in E$ et $\lambda \in \mathbb{R}$.

Il existe d'uniques scalaires $\alpha_1, \ldots, \alpha_n$ et β_1, \ldots, β_n tels que $u = \alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n$ et $v = \beta_1 \cdot e_1 + \ldots + \beta_1 \cdot e_n$.

(a)
$$h(u+v) = h((\alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n) + (\beta_1 \cdot e_1 + \dots + \beta_1 \cdot e_n))$$

 $= h((\alpha_1 + \beta_1) \cdot e_1 + \dots + (\alpha_n + \beta) \cdot e_n)$
 $= (\alpha_1 + \beta_1) \cdot f_1 + \dots + (\alpha_n + \beta_n) \cdot f_n$
 $= (\alpha_1 \cdot f_1 + \dots + \alpha_n \cdot f_n) + (\beta_1 \cdot e_1 + \dots + \beta_n \cdot e_n)$
 $= h(u) + h(v)$

(b)
$$h(\lambda \cdot u) = h(\lambda \cdot (\alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n))$$

 $= h(\lambda \alpha_1 \cdot e_1 + \dots + \lambda \alpha_n \cdot e_n)$
 $= \lambda \alpha_1 \cdot f_1 + \dots + \lambda \alpha_n \cdot f_n$
 $= \lambda \cdot (\alpha_1 \cdot f_1 + \dots + \alpha_n \cdot f_n)$
 $= \lambda \cdot h(u)$

3) Il reste à prouver l'unicité de l'application linéaire h.

Soit h^* une application linéaire de E vers F telle que $h^*(e_i) = f_i$ pour tout $1 \le i \le n$.

Soit $u \in E$.

Il existe d'uniques scalaires $\alpha_1, \dots, \alpha_n$ tels que $u = \alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n$.

$$h^{\star}(u) = h^{\star}(\alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n) = \alpha_1 \cdot h^{\star}(e_1) + \dots + \alpha_n \cdot h^{\star}(e_n)$$

= $\alpha_1 \cdot f_1 + \dots + \alpha_n \cdot f_n = h(\alpha_1 \cdot e_1 + \dots + \alpha_n \cdot e_n) = h(u)$