

10

NB1230 Linear Algebra, Resit Monday June 17 2023, 9:00-11:00

Student number :	First name :
	HEMA YEERA SREEPUORNA
1 🗆 🗆 🗆 📕 🗆 🗆	THEMA FERA SKEEPOORNA
2 🗆 🗆 🗆 🗆 🗆 🗆	Last name :
3 🗆 🗆 🗆 🗆 🗆	Manager
4 🗆 🗆 🗆 🗆 🗆	NEKKANTI
5	K" I I I I
6 🗌 🖀 🔲 🗎 🗎 🗎	
7 🗆 🗆 🜃 🗆 🗆 🗆 🗆	
8 🔲 🗎 🗎 🗎	
9	

This exam consists of 9 main Grasple questions plus 6 main questions on paper, worth 35+46=81 points in total: Grade = $1+\frac{Point\ total}{9}$. You can use the build in Grasple calculator. Please write your answers in the answer boxes and provide explanations when requested. Raise your hand when you have a question!

1. Consider the following matrix and vector

$$A = \begin{bmatrix} h^2 - 4 & 3 & 4 \\ 0 & h - 1 & k \\ 4 - h^2 & -3 & h - 2 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} k \\ h - 1 \\ -k \end{bmatrix}$$

For each combination of values for h and k determine the number of solutions of the equation $A\mathbf{x} = \mathbf{b}$.

Answer	No solutions	One solution	Infinitely many solutions
	h=-2 a K=-4	ht-2,1,2	h= -2 6 k 7 -4
THIS WCT.	h=2 or k=4	23	h=1

Examiner responsible: Iris Smit

Examination reviewer: Fokko van de Bult

5

3

9

2. Consider the set S of vectors $\mathbf{x} \in \mathbb{R}^2$ for which $x_1^2 = x_2^2$.

Is S a linear subspace of \mathbb{R}^2 ?

Explain your answer: Investigate whether or not S satisfies the definition of a linear subspace.

Answer:

Yes

Explanation:

If a subspace is thream and it and i are in that subspace, It i should be in the subspace

too.

for this set, for example $\vec{n} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\vec{r} = 1^2$ $\vec{v} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ $\vec{r} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

however $\vec{u}+\vec{v}=\begin{bmatrix} 3\\ -1 \end{bmatrix}=(3)^{T}\neq (-1)^{T}$ 3 s'is mot a linear subspace.

3. Suppose that A is a 3×5 matrix whose first row consists only of zeroes. Based on this information, give the minimal and maximal possible value of the rank of A. Explain your answers.

Answer:

Min ()

2 Max

Explanation:

If one row is all zeros, then A can have at most two row pivots, and therefore, 2 Column pivots, so maximum rank of A is 2.

It is also possible that the other rows might be all zero's too, in which case, the rank is Zero (min).

4. Consider the following matrix and its echelon form.

$$A = \begin{bmatrix} 1 & 2 & 3 & 5 & 7 \\ -2 & -4 & -2 & -4 & -6 \\ 1 & 2 & 3 & 5 & 16 \\ -2 & -4 & 6 & 8 & 3 \end{bmatrix} \sim E = \begin{bmatrix} 1 & 2 & 3 & 5 & 7 \\ 0 & 0 & 4 & 6 & 8 \\ 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Which of the following sets form a basis for Col(A)?

$$\mathcal{B}_{1} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 3 \\ 6 \end{bmatrix} \right\} \qquad \mathcal{B}_{2} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -6 \\ 5 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ -6 \\ 16 \\ 3 \end{bmatrix} \right\} \qquad \mathcal{B}_{3} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \\ 0 \end{bmatrix} \right\}$$

Answer:

Yes/No:

No

Yes/No:

Yes

Yes/No:

No

Explanation:

form of A, so the dim (col(A)) should be equal to 3. Therefore β_1 is not a basis for col(A). Rank(A)=3

· B3 is is not a proper basis because these are the columns from the echelon form and they are not in the columnspace of A. for example,

word linear G ~ Row reduction leads to a comb, so not contradictory row:

even a part of contradictory row:

the set of vectors: [0 0 0 0 0 | -43/4]

· β₂ i's a proper basis because dim of the set is 3 and the first and third vectors are in col(A) - columns 1 and 5 of matrix A: which are the pivot columns in echelon form. They are a linearly independent set (not multiples of each other). It forms a proper basis for a subspace spanning Proper basis

- 5. Consider the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and the linear subspace $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.
 - (a) Show that A is an orthogonal matrix.

Explanation:

Orthogonal matrix has orthonormal columns.

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1 \qquad ||[a]|| = 1$$

$$|[[a]|| = 1 \qquad ||[a]|| = 1$$

(b) Show that $A\mathbf{w} \in W$ for all $\mathbf{w} \in W$.

Explanation:

A Since W = Span
$$\{V_1, v_2\}$$
 of two linearly enclopendent vectors, vector $\vec{w} = C_1V_1 + C_2V_2$

A $V_1 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1$

4

3

(c) Compute the eigenvalues of A.

Answer:

1

Explanation: Since A is an orthogonal matrix, A only has one eigen value: 1. Since columns of are A are Unearly independent they span all of R3.

Therefore for any vector in IR3,
the eigenvalue is 1 with
arithmetic muliplicity of 3
and geometric multiplicity of 3. $\begin{bmatrix} -2 & 0 & 17 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \end{bmatrix} \quad -2 \begin{bmatrix} 2 & -2 & 1 \\ 2 & -2 & 1 \end{bmatrix} + 1 \begin{bmatrix} 2 & -2 & 1 \\ 2 & -2 & 1 \end{bmatrix} = 0$

(d) The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ with standard matrix A is a rotation. Determine a vector that spans the axis of rotation.

Answer:

Explanation: A vector that spans the axis of rotation has eigenvalue 1, because it does not change.

3

5

(e) Bonus: Determine the angle of rotation

Explanation:	,	
		31

6. Consider an injective linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^5$ and a linearly independent set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ in \mathbb{R}^4 . Explain why $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ in \mathbb{R}^5 is linearly independent.

Explanation:

Injective bruces transformation is one-to-one
transformation. Which means there is only
one value in domain that maps onto
one value in the range. for lin. independent
Set [V,1V2,V3]. [T(Vi),T(V2),T(V3)] will be
unique too, making [T(Vi),T(V2),T(V3)] a
linearly independent set.

V, 1, V2, V3 are not multiples of each
other or a
linear combination.

>> [Vi, V2, V3] will have pivot in every column, so
of the pivot in every column.

Extra space 1

(6.) Cet
$A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \qquad \Delta \vec{x} = \vec{0} \qquad \vec{x} = \vec{0}$
NW(A) = {0} since the vectors are linearly
Prodependent.
T(A) = [7(V1) T(V2) T(V3)] only has
the trivitio trivial solution as asolution
to $T(M) \vec{x} = 0$. Herefore, these columns are linearly indepent No.
> Substitution = 0

Extra space 2

5 · 2	