SOLUTION KEY

Produced by: Kyle Dahlin

Problems:

Chap 9: 14, 30, **34**, 42, **48**, 54 Chap 10: 6, 8, 14, 18, 20, **24**

Problem 9.14. What is the order of the element $14 + \langle 8 \rangle$ in the factor group $\mathbb{Z}_{24}/\langle 8 \rangle$?

Solution:

 $|14 + \langle 8 \rangle| = 4$ since $\langle 14 + \langle 8 \rangle \rangle = \{14 + \langle 8 \rangle, 4 + \langle 8 \rangle, 18 + \langle 8 \rangle, \langle 8 \rangle \}$, where we have used the fact that $28 \equiv 4 \mod 24$ and $32 \equiv 8 \mod 24$.

Problem 9.30. Express U(165) as an internal direct product of proper subgroups in four different ways.

Solution:

Since $165 = 3 \cdot 5 \cdot 11$, there is an isomorphism, ϕ , from U(165) to $\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{10}$. Let $\psi = \phi^{-1}$. Then $G_1 = \psi(\mathbb{Z}_2)$, $G_2 = \psi(\mathbb{Z}_4)$, and $G_3 = \psi(\mathbb{Z}_{10})$ are disjoint normal proper subgroups of U(165). Let $H_1 = G_1 \times G_2$, $H_2 = G_2 \times G_3$, and $H_3 = G_1 \times G_3$. Then U(165) can be written in the following four different ways:

$$U(165) = G_1 \times G_2 \times G_3$$

$$= H_1 \times G_3$$

$$= H_2 \times G_1$$

$$= H_3 \times G_2$$

Problem 9.34*.** In \mathbb{Z} , let $H = \langle 5 \rangle$ and $K = \langle 7 \rangle$. Prove that $\mathbb{Z} = HK$. Does $\mathbb{Z} = H \times K$?

Solution:

First note that $HK = \{5s + 7t | s, t \in \mathbb{Z}\}$. Since $\gcd(5,7) = 1$, there exists $s, t \in \mathbb{Z}$ such that 5s + 7t = 1. Hence $\mathbb{Z} = \langle 1 \rangle \subseteq HK$ and thus $HK = \mathbb{Z}$. However, $\mathbb{Z} \neq H \times K$ since $H \cap K \neq \emptyset$. For example, $35 \in H \cap K$.

Problem 9.42. An element is called a *square* if it can be expressed in the form b^2 for some b. Suppose that G is an Abelian group and H is a subgroup of G. If every element of H is a square and every element of G/H is a square, prove that every element of G is a square. Does your proof remain valid when "square" is replaced by "nth power" where n is any integer?

Solution:

Let $g \in G$. Then $gH = b^2H$ for some $b \in G$. Hence there exist h_1 and h_2 in H such that $gh_1 = b^2h_2$. Further, there are c_1 and c_2 in G such that $gc_1^2 = b^2c_2^2$. Thus, since G is Abelian, $g = (bc_2c_1^{-1})^2$ is a square.

The proof remains valid for any value of n as long as G is Abelian by replacing the power of "2" with "n" in the proof above.

Problem 9.48*.** If G is a group and |G:Z(G)|=4, prove that $G/Z(G)\cong \mathbb{Z}_2\oplus \mathbb{Z}_2$.

Solution:

By Example 3 (pg. 163) a group of order 4 is isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Suppose that G/Z(G) is cyclic. Then by Theorem 9.3, G is Abelian and G = Z(G), which is impossible. Since G/Z(G) is not cylic, it must be isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Problem 9.54. Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$, where $i^2 = j^2 = k^2 = -1$, -i = (-1)i, $1^2 = (-1)^2 = 1$, ij = -ji = k, jk = -kj = i, and ki = -ik = j.

- a. Construct the Cayley table for G.
- b. Show that $H = \{1, -1\} \triangleleft G$.
- c. Construct the Cayley table for G/H. Is G/H isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$?

Solution:

a. The Cayley table for G is:

	1	i	j	k			-j	-k
1	1	i	j	k	-1	-i	-j	-k
i	i	-1	k	i	-i	1	-k	-j
\overline{j}	j	-k	-1	i	-j	k	1	-i
k	k	j	-i	-1	-k	-j	i	1
$\overline{-1}$	-1	-i	-j	-k	1	i	j	k
-i	-i	1	-k			-1	k	-j
-j	-j		1	-i	j	-k	-1	i
-k	-k	-j	i	1	k	j	-i	-1

- b. By observation of the Cayley table for G, we see that H=Z(G). Hence $H \triangleleft G$.
- c. The Cayley table for G/H is:

Since |G/H| = 8/2 = 4 = |G:Z(G)|, $G/H \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ by Problem 9.48.

Problem 10.6. Let G be the group of all polynomials with real coefficients under addition. For each f in G, let $\int f$ denote the antiderivative of f that passes through the point (0,0). Show that the mapping $f \mapsto \int f$ from G to G is a homomorphism. What is the kernel of this mapping? Is this mapping a homomorphism if $\int f$ denotes the antiderivative of f that passes through (0,1)?

Solution:

Let $\phi: G \to G$ be the map defined in the problem statement. Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and

$$g(x) = \sum_{i=0}^{m} b_i x^i$$
 be arbitrary elements of G . Then $(f+g)(x) = \sum_{i=0}^{\max\{m,n\}} (\hat{a}_i + \hat{b}_i) x^i$ where

 $\hat{a}_i = a_i$ if $i \leq n$ and $\hat{a}_i = 0$ otherwise. Define \hat{b}_i similarly.

Now
$$\phi(f)(x) = \sum_{i=0}^{n} \left(\frac{1}{i+1}\right) a_i x^{i+1}$$
 and $\phi(g)(x) = \sum_{i=0}^{m} \left(\frac{1}{i+1}\right) b_i x^{i+1}$ and

$$\phi(f+g)(x) = \sum_{i=0}^{\max\{m,n\}} \left(\frac{1}{i+1}\right) (\hat{a}_i + \hat{b}_i) x^i$$
$$= \phi(f)(x) + \phi(g)(x)$$

Hence ϕ is a homomorphism. If $f \in \ker \phi$, then $\phi(f) = \sum_{i=0}^{n} \left(\frac{1}{i+1}\right) a_i x^{i+1} = 0$ implies f = 0. Hence $\ker \phi = \{0\}$.

The map $\psi: G \to G$ where $\phi(f)$ denotes the antiderivative of f that passes through (0,1) is <u>not</u> a homomorphism since $\psi(f+g)(0)=1\neq 2=\psi(f)(0)+\psi(g)(0)$ for any $f,g\in G$.

Problem 10.8. Let G be a group of permutations. For each σ in G, define

$$\operatorname{sgn}(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ is an even permutation} \\ -1 & \text{if } \sigma \text{ is an odd permutation} \end{cases}$$

Prove that sgn is a homomorphism from G to the multiplicative group $\{+1, -1\}$. What is the kernel? Why does this homomorphism allow you to conclude that A_n is a normal subgroup of S_n of index 2? Why does this prove Exercise 23 of Chapter 5?

Solution:

First note the following facts about the parity of a permutation:

which is exactly the multiplication table for -1 and 1. Hence it is clear that $sgn(\sigma\gamma) = sgn(\sigma) sgn(\gamma)$ and sgn is a homomorphism.

 $\ker \operatorname{sgn} = \{\sigma \in G | \operatorname{sgn}(\sigma) = 1\} = \{\text{even permutations in } G\}.$

If
$$G = S_n$$
, then $\ker(\operatorname{sgn}) = A_n$ and $|S_n : A_n| = |\{1, -1\}| = 2$.

If $H \subseteq S_n$ and sgn is defined on H, then either $H \in \ker(\operatorname{sgn})$ or $\ker(\operatorname{sgn}) \triangleleft H$. In the first case, every element of H is even. In the second, since $H/\ker(\operatorname{sgn}) \cong \mathbb{Z}_2$, exactly half the elements of H are even. Thus this proves Exercise 5.23.

Problem 10.14. Explain why the correspondence $x \mapsto 3x$ from \mathbb{Z}_{12} to \mathbb{Z}_{10} is not a homomorphism.

Produced by: Kyle Dahlin

Solution:

Let ϕ be the map defined above. Then $\phi(4\cdot 3) = \phi(0) = 0$ but $\phi(4)\cdot\phi(3) = 12\cdot 9 = 8$.

Problem 10.18. Can there be a homomorphism from $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ onto \mathbb{Z}_8 ? Can there be a homomorphism from \mathbb{Z}_{16} onto $\mathbb{Z}_2 \oplus \mathbb{Z}_2$? Explain your answers.

Solution:

Suppose ϕ is an onto homormophism from $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ to \mathbb{Z}_8 . Then there exists $(a,b) \in \mathbb{Z}_4 \oplus \mathbb{Z}_4$ such that $\phi((a,b)) = 1$. Every element of $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ has order 1, 2, or 4 and $|\phi((a,b))| = 8$ must divide |(a,b)|, which is impossible. Hence no onto homomorphism can exist.

Suppose ψ is an onto homomorphism from \mathbb{Z}_{16} to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Then since $\psi(2) = \psi(1+1) = \psi(1) + \psi(1) = 0$, then $\langle 2 \rangle \in \ker \psi$ and $|\ker \psi| \geq 8$. However,

$$4 = |\mathbb{Z}_2 \oplus \mathbb{Z}_2| = |\mathbb{Z}_{16} : \ker \psi| = \frac{16}{|\ker \psi|},$$

and ker ψ must have order 4, a contradiction.

Problem 10.20. How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_8 ? How many are there to \mathbb{Z}_8 ?

Solution:

Suppose ϕ is an onto homomorphism from \mathbb{Z}_{20} onto \mathbb{Z}_8 . Then there is an $a \in \mathbb{Z}_{20}$ such that $\phi(a) = 1$ and hence $|\phi(a)| = 8$. However, by property 3 of Theorem 10.1, $|\phi(a)|$ divides $|a| \in \{1, 2, 4, 5, 10, 20\}$, which is impossible.

By property 2 of Theorem 10.1, any homomorphism from \mathbb{Z}_{20} onto \mathbb{Z}_8 is completely specified by where it sends 1. Define $\phi: \mathbb{Z}_{20} \to \mathbb{Z}_8$ and $\phi(1) = a$. Lagrange's Theorem and property 3 of Theorem 10.1 require that |a| divide both 20 and 8, so $|a| \in \{1, 2, 4\}$. Hence $a \in \{0, 2, 4, 6\}$. Each value of a specifies a distinct homomorphism. Hence there are four homomorphisms from \mathbb{Z}_{20} into \mathbb{Z}_8 .

Problem 10.24*.** Suppose that $\phi: \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is a group homomorphism with $\phi(7) = 6$.

- a. Determine $\phi(x)$.
- b. Determine the image of ϕ .
- c. Determine the kernel of ϕ .
- d. Determine $\phi^{-1}(3)$. That is, determine the set of all elements that map to 3.

Solution:

- a. Let $a = \phi(1)$. Then $\phi(7) = \phi(7 \cdot 1) = 7\phi(1) = 7a = 6$. Hence a = 3 and hence $\phi(x) = 3x$.
- b. $\phi(\mathbb{Z}_{50}) = \langle 3 \rangle \subset \mathbb{Z}_{15}$.
- c. $\ker \phi = \langle 5 \rangle \subset \mathbb{Z}_{50}$.
- d. By property 6 of Theorem 10.1, $\phi^{-1}(3) = 1 + \ker \phi = 1 + \langle 5 \rangle \subset \mathbb{Z}_{50}$.