

Probability and Stochastic Processes

Lecture 07: Probability Measure and its Properties

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

19 August 2025

Measure

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Measure)

A function $\mu: \mathscr{F} \to [0, +\infty]$ is called a measure on (Ω, \mathscr{F}) if it satisfies the following properties:

- 1. $\mu(\emptyset) = 0$.
- 2. If A_1, A_2, \ldots is a countable collection of disjoint sets, with $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mu\left(\bigsqcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Property 2 above is called the property of countable additivity.

The triplet $(\Omega, \mathcal{F}, \mu)$ is called a **measure space**.

Measure

- When $\mu(\Omega) < +\infty$, the measure μ is called a **finite measure**
- When $\mu(\Omega) = +\infty$, the measure μ is called an infinite measure
- When $\mu(\Omega)=1$, the measure μ is called a **probability measure**, and denoted by $\mathbb{P}.$

Probability Measure

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Probability Measure)

A function $\mathbb{P}: \mathscr{F} \to [0,1]$ is called a **probability measure** if the following properties are satisfied:

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. If A_1, A_2, \ldots is a countable collection of **disjoint** sets, with $A_i \in \mathscr{F}$ for each $i \in \mathbb{N}$, then

$$\mathbb{P}\left(\bigsqcup_{i\in\mathbb{N}}A_i
ight)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i).$$

• (Finite Additivity)

Fix $n \in \mathbb{N}$.

If A_1, \ldots, A_n is a finite collection of **disjoint** sets, with $A_i \in \mathscr{F}$ for each $i \in \{1, \ldots, n\}$, then

$$\mathbb{P}\left(\bigsqcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i).$$

• (Complements)

For any $A \in \mathscr{F}$,

$$\mathbb{P}\left(A^\complement
ight)=1-\mathbb{P}(A).$$

• (Monotonicity)

If
$$A, B \in \mathscr{F}$$
 with $A \subseteq B$, then

$$\mathbb{P}(A) \leq \mathbb{P}(B)$$
.

(Inclusion-Exclusion)

• For any two events $A_1, A_2 \in \mathscr{F}$,

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2).$$

• More generally, for any $n \in \mathbb{N}$ and events $A_1, \ldots, A_n \in \mathscr{F}$,

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} \, \mathbb{P}\left(\bigcap_{i=1}^n A_i\right).$$

(Inclusion-Exclusion)

• For any two events $A_1, A_2 \in \mathscr{F}$,

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2).$$

• More generally, for any $n \in \mathbb{N}$ and events $A_1, \ldots, A_n \in \mathscr{F}$,

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} \, \mathbb{P}\left(\bigcap_{i=1}^n A_i\right).$$

Continuity of Probability Measure

Union and Intersection Events

Fix a measurable space (Ω, \mathscr{F}) .

• Given sets $A_1, A_2, \ldots \in \mathscr{F}$, their **union** is defined by

$$A_{\mathrm{union}} = igcup_{k \in \mathbb{N}} A_k.$$

Interpretation: $\omega \in A_{\text{union}} \implies \exists k \in \mathbb{N}: \ \omega \in A_k$

• Given sets $A_1, A_2, \ldots \in \mathscr{F}$, their intersection is defined by

$$A_{ ext{intersection}} = igcap_{k \in \mathbb{N}} A_k.$$

Interpretation: $\omega \in A_{\text{intersection}} \implies \omega \in A_k \quad \forall \ k \in \mathbb{N}$

The Limit Infimum (liminf) Event

Fix a measurable space (Ω, \mathscr{F}) .

• Given sets $A_1, A_2, \ldots \in \mathscr{F}$, their **limit infimum (liminf)** is defined by

$$A_{ ext{liminf}} = igcup_{n \in \mathbb{N}} igcap_{k \geq n} A_k.$$

Interpretation: For each $n \in \mathbb{N}$, let $B_n := \bigcap_{k > n} A_k$.

$$\begin{array}{lll} \omega \in A_{\mathrm{liminf}} & \Longrightarrow & \omega \in \bigcup_{n \in \mathbb{N}} B_n \\ & \Longrightarrow & \exists \ n \in \mathbb{N}: \ \omega \in B_n \\ & \Longrightarrow & \exists \ n \in \mathbb{N}: \ \omega \in \bigcap_{k \geq n} A_k \\ & \Longrightarrow & \exists \ n \in \mathbb{N}: \ \omega \in A_k \ \forall \ k \geq n. \end{array}$$

The Limit Supremum (limsup) Event

Fix a measurable space (Ω, \mathscr{F}) .

• Given sets $A_1, A_2, \ldots \in \mathscr{F}$, their **limit supremum (limsup)** is defined by

$$A_{ ext{limsup}} = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k.$$

Interpretation: For each $n \in \mathbb{N}$, let $B_n := \bigcup_{k > n} A_k$.

$$egin{array}{lll} \omega \in A_{
m limsup} & \Longrightarrow & \omega \in \bigcap_{n \in \mathbb{N}} B_n \ & \Longrightarrow & orall \, n \in \mathbb{N}, \, \, \omega \in B_n \ & \Longrightarrow & orall \, n \in \mathbb{N}, \, \, \omega \in igcup_{k \geq n} A_k \ & \Longrightarrow & orall \, n \in \mathbb{N}, \, \, \exists \, k \geq n \, \colon \, \omega \in A_k. \end{array}$$

The Limit Event

Fix a measurable space (Ω, \mathscr{F}) .

• Given sets $A_1, A_2, \ldots \in \mathscr{F}$, if

$$A_{\text{liminf}} = \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_k = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k = A_{\text{limsup}},$$

then we say that the **limit of** A_1, A_2, \ldots **exists**, and is defined by

$$A_{\text{limit}} = A_{\text{liminf}} = A_{\text{limsup}}.$$

• (Moving Singletons)

Let
$$(\Omega,\mathscr{F})=(\mathbb{N},2^{\mathbb{N}}).$$
 Let

$$A_n = \{n\}, \qquad n \in \mathbb{N}.$$

- 1. What is A_{liminf} ?
- 2. What is A_{limsup} ?
- 3. Identify A_{limit} if it exists.

• (Odd-Even Stabilization)

Let
$$(\Omega, \mathscr{F}) = (\mathbb{N}, 2^{\mathbb{N}})$$
. Let

$$A_n = \{i \leq n : i \text{ odd}\} \cup \{i > n : i \text{ even}\}, \qquad n \in \mathbb{N}.$$

- 1. What is A_{liminf} ?
- 2. What is A_{limsup} ?
- 3. Identify A_{limit} if it exists.

• (Sliding Window)

Let
$$(\Omega, \mathscr{F}) = (\mathbb{N}, 2^{\mathbb{N}})$$
.
Fix $m \in \mathbb{N}$. Let

$$A_n = \{n, n+1, \ldots, n+m\}, \qquad n \in \mathbb{N}.$$

- 1. What is A_{liminf} ?
- 2. What is A_{limsup} ?
- 3. Identify $A_{\rm limit}$ if it exists.

• (Non-Decreasing Sets)

Let
$$(\Omega, \mathscr{F}) = (\mathbb{N}, 2^{\mathbb{N}}).$$

Suppose that $A_1, A_2, \ldots \in \mathscr{F}$ satisfy

$$A_1\subseteq A_2\subseteq A_3\subseteq\cdots$$

- 1. What is A_{liminf} ?
- 2. What is A_{limsup} ?
- 3. Identify A_{limit} if it exists.

Some Tidbits About liminf, limsup, and limit Events

Fix a measurable space (Ω, \mathscr{F}) . Let $A_1, A_2, \ldots \in \mathscr{F}$.

- A_{liminf} and A_{limsup} belong to \mathscr{F}
- A_{limit} , if it exists, belongs to \mathscr{F}
- If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, then

$$A_{ ext{limit}} = \bigcup_{n \in \mathbb{N}} A_n.$$

• If $A_1 \supset A_2 \supset A_3 \supset \cdots$, then

$$A_{ ext{limit}} = \bigcap_{n \in \mathbb{N}} A_n.$$

• $A_{
m liminf}$ is sometimes denoted more explicitly as $\liminf_{n \to \infty} A_n$ $A_{
m limsup}$ is sometimes denoted more explicitly as $\limsup_{n \to \infty} A_n$ $A_{
m limit}$ is sometimes denoted more explicitly as $\lim_{n \to \infty} A_n$

(Continuity of Probability)

Fix a measurable space (Ω, \mathscr{F}) .

• Let $A_1, A_2, \ldots \in \mathscr{F}$ be a collection of events for which $A_{\text{limit}} = \lim_{n \to \infty} A_n$ exists. Then,

$$\mathbb{P}\left(\lim_{n\to\infty}A_n
ight)=\lim_{n\to\infty}\mathbb{P}(A_n).$$

- Case 1: $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$
 - Let B_1, B_2, \ldots be defined as

$$B_1 = A_1, \quad B_2 = A_2 \setminus A_1, \quad B_3 = A_3 \setminus A_2, \quad \dots$$

- **Claim 1:** $B_i \cap B_i = \emptyset$ for all $i \neq j$
- Claim 2: We have

$$\bigsqcup_{k=1}^n B_k = \bigcup_{k=1}^n A_k \quad \forall \ n \in \mathbb{N}, \qquad \qquad \bigsqcup_{k \in \mathbb{N}} B_k = \bigcup_{k \in \mathbb{N}} A_k.$$

Therefore, it follows that

$$\mathbb{P}\left(\lim_{n\to\infty}A_n\right)=\mathbb{P}\left(\bigcup_{k\in\mathbb{N}}A_k\right)\overset{\textbf{Claim 2}}{=}\mathbb{P}\left(\bigcup_{k\in\mathbb{N}}B_k\right)=\sum_{k\in\mathbb{N}}\mathbb{P}(B_k)=\lim_{n\to\infty}\sum_{k=1}^n\mathbb{P}(B_k)=\lim_{n\to\infty}\mathbb{P}\left(\bigcup_{k\in\mathbb{N}}B_k\right)$$

- Case 2: $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$
 - Clearly, $A_1^\complement \subseteq A_2^\complement \subseteq A_3^\complement \subseteq \cdots$
 - We then have

$$\mathbb{P}\left(\lim_{n o\infty}A_n
ight)=\mathbb{P}\left(igcap_{n\in\mathbb{N}}A_n
ight)=1-\mathbb{P}\left(igcup_{n\in\mathbb{N}}A_n^{\complement}
ight)=1-\mathbb{P}\left(\lim_{n o\infty}A_n^{\complement}
ight)=1-\lim_{n o\infty}\mathbb{P}(A_n^{\complement})\ =\lim_{n o\infty}1-\mathbb{P}(A_n^{\complement})=\lim_{n o\infty}\mathbb{P}(A_n).$$

- General case: $\lim_{n\to\infty} A_n$ exists, i.e., $A_{\text{liminf}} = A_{\text{limsup}} = \lim_{n\to\infty} A_n$
 - − For any $n \in \mathbb{N}$,

$$\underbrace{\bigcap_{k\geq n} A_k}_{B_n} \subseteq A_n \subseteq \underbrace{\bigcup_{k\geq n} A_k}_{C_n}$$

Clearly,

$$B_1 \subseteq B_2 \subseteq B_3 \subseteq \cdots$$
, $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$, $\mathbb{P}(B_n) \leq \mathbb{P}(A_n) \leq \mathbb{P}(C_n)$.

Observe that

$$A_{ ext{liminf}} = igcup_{n \in \mathbb{N}} B_n, \qquad A_{ ext{limsup}} = igcap_{n \in \mathbb{N}} \mathcal{C}_n.$$

$$\mathbb{P}(A_{ ext{liminf}}) = \mathbb{P}\left(igcup_{n\in\mathbb{N}} B_n
ight) = \lim_{n o\infty} \mathbb{P}(B_n) \leq \lim_{n o\infty} \mathbb{P}(A_n) \leq \lim_{n o\infty} \mathbb{P}(C_n) = \mathbb{P}\left(igcap_{n\in\mathbb{N}} C_n
ight) = \mathbb{P}(A_{ ext{limsun}})$$

- General case: $\lim_{n\to\infty}A_n$ exists, i.e., $A_{\mathrm{liminf}}=A_{\mathrm{limsup}}=\lim_{n\to\infty}A_n$
 - We then have

$$\mathbb{P}(A_{ ext{liminf}}) = \mathbb{P}\left(igcup_{n\in\mathbb{N}} B_n
ight) = \lim_{n o\infty} \mathbb{P}(B_n) \leq \lim_{n o\infty} \mathbb{P}(A_n) \leq \lim_{n o\infty} \mathbb{P}(C_n) = \mathbb{P}\left(igcap_{n\in\mathbb{N}} C_n
ight) = \mathbb{P}(A_{ ext{limsup}})$$

- If $A_{\text{liminf}} = A_{\text{limsup}}$, it follows that

$$\lim_{n\to\infty}\mathbb{P}(A_n)=\mathbb{P}\left(\lim_{n\to\infty}A_n\right)$$