Otimização Imperial

Aluno: Bruno R. L. Netto Professor: João A. R. P. 13 de Dezembro de 2019

Universidade Federal do Rio de Janeiro - UFRJ

- Otimização + Império

• Qual a complexidade de um império?

• Sempre podemos simplificar!

Motivação

- Jogos de estratégia em tempo real Starcraft, Age of Empires...
- Gerenciamento de recursos em tempo pseudo real
- Generalizar algumas ideias para outras aplicações!

Motivação

- Jogos de estratégia em tempo real Starcraft, Age of Empires...
- Gerenciamento de recursos em tempo pseudo real
- Generalizar algumas ideias para outras aplicações!

Motivação

- Jogos de estratégia em tempo real Starcraft, Age of Empires...
- Gerenciamento de recursos em tempo pseudo real
- Generalizar algumas ideias para outras aplicações!

Objetivos

- Do simples ao complexo
- Do complexo ao ...

Objetivos

- Do simples ao complexo
- Do complexo ao ...

Regras do Jogo

Regras simplificadas

Começamos partindo o império simplificado em alguns elementos:

Aldeões

Responsáveis por construir estruturas e produzir recursos

Regras simplificadas

Estruturas

Responsáveis por 'gerar' aldeões e servem de moradia

Regras simplificadas

Recursos

Responsáveis por bancar os aldeões e as estruturas

Diagrama de dependências

Diagrama de dependências

Diagrama de dependências

Um objetivo simples

Um objetivo simples

Um objetivo simples

O Problema

O Problema

Podemos começar a resolver o problema, utilizando a biblioteca do python chamada **CVXPY**. Visto que temos um problema convexo do tipo linear:

Problema Linear

 $\max Pessoas[T_{final}]$

s.a. Muitas equações lineares

- Quais as condições iniciais do império?
- Qual a produção das Casas, Construtores e Fazendeiros? (ρ_{house})
- Qual o custo de se produzir? $(\kappa_{house}, \beta_{farmer}, \beta_{builder})$
- Qual o limite de pessoas por casa?
- O quão importante é cada constante?

- Quais as condições iniciais do império?
- Qual a produção das Casas, Construtores e Fazendeiros? (ρ_{house})
- Qual o custo de se produzir? $(\kappa_{house}, \beta_{farmer}, \beta_{builder})$
- Qual o limite de pessoas por casa?
- O quão importante é cada constante:

- Quais as condições iniciais do império?
- Qual a produção das Casas, Construtores e Fazendeiros? (ρ_{house})
- Qual o custo de se produzir? $(\kappa_{house}, \beta_{farmer}, \beta_{builder})$
- Qual o limite de pessoas por casa?
- O quão importante é cada constante:

- Quais as condições iniciais do império?
- Qual a produção das Casas, Construtores e Fazendeiros? (ρ_{house})
- Qual o custo de se produzir? $(\kappa_{house}, \beta_{farmer}, \beta_{builder})$
- Qual o limite de pessoas por casa?
- O quão importante é cada constante:

- Quais as condições iniciais do império?
- Qual a produção das Casas, Construtores e Fazendeiros? (ρ_{house})
- Qual o custo de se produzir? $(\kappa_{house}, \beta_{farmer}, \beta_{builder})$
- Qual o limite de pessoas por casa?
- O quão importante é cada constante?

Como resolver o PL?

Problema Linear 2.0j

$$\min f(x)$$
s.a. $Ax == b$

$$f_i(x) \leq 0$$

Como resolver o PL?

Método de Pontos Interiores - (Método da Barreira)

- 1. Tomamos o problema dual nas restrições de desigualdade;
- 2. De maneira diferenciável Barreira Logarítmica;
- 3. Método de Newton!

Como resolver o PL?

Problema Linear

$$\min f(x) - \frac{1}{t}\Phi(x)$$
s.a. $Ax == b$

O Problema com 10 estágios

O Problema em 30 estágios

Complexificando o problema

Uma expansão

- 2 Recursos
- 2 Estruturas
- Um exército de verdade!

Back to the drawing board

O Problema punk em 10 Estágios

O Problema punk em 30 Estágios

Mas e quanto ao problema

inteiro?

O problema inteiro - MIP

Novas Restrições

Queremos adicionar as restrições para que nossas variaveis sejam inteiras:

$$V_i == \operatorname{int}(V_i)$$

$$V_i - \operatorname{int}(V_i) <= \epsilon$$

Mas como ele faz isso?

Branch and Bound

- 1. tomamos o PL relaxado
- 2. Se a solução for um ponto viável
- 3. Temos o ótimo global do MIP!
- 4. Caso contrário:
- 5. Digamos que $x_i = \pi$
- 6. Criamos 2 problemas, um com $x_i \leq 3$ e outro com $x_i \geq 4$

Branch and Bound

O problema inteiro - MIP

• Gurobi to the rescue!

O Problema punk inteiro 1 em 10 Estágios

O Problema punk inteiro em 30 Estágios

Aproximando o problema

Um problema misturado

- Podemos criar um problema que é uma mistura dos dois.
- Colocamos um começo inteiro...
- Mas a partir de um certo ponto, colocamos o continuo!

Problema Inteiro - 10 Estágios

Função Objetivo

Maximizar os Colhedores!

Problema Contínuo

Resultado final - 30 estágios

Outra aproximação do problema

Outra maneira!

Aproximação 2 em 30 estágios

Comparando com o Problema inteiro - 30 Estágios

Introdução?

Referências

References

Isayama, Hajime. Shingeki no Kyojin. 2009.

Vinyals, Oriol et al. StarCraft II: A New Challenge for Reinforcement Learning. 2017. arXiv: 1708.04782 [cs.LG].

Agradecimentos

Obrigado!