Universidade de São Paulo		
Escola de Artes, Ciências e Humanidades		
Docente: Prof. Dr. Clodoaldo A M Lima.		
Disconto	No HCD	

Primeira Prova de Arquitetura de Computador

- * a, b, c, d, i estão nos registrados \$t0, \$t1, \$t2, \$t3 e \$t4
- 2ª Questão) (2,0 pontos) As arquiteturas de uso geral atuais são normalmente referenciadas como máquinas von

Neumman. Quais as principais características dessa arquitetura e sua principal limitação?

3ª Questão) (2,0 pontos) Explique como funcionam as 5 formas de endereçamento básicas da arquitetura MIPS mostradas. Compare as em termos de complexidade de execução da busca/utilização dos operandos:

4ª Questão) (1,5 ponto) Escreva os códigos em linguagem de máquina para computar a expressão **X=(A+B×C)/(A-B×C)** para as duas arquiteturas com instruções em linguagem de máquina disponíveis e

formas de endereçamento para operações aritméticas conforme a tabela a seguir. Em seguida, determine o número de bytes de instruções buscados na memória e o número de bytes de dados trocados entre a memória e a CPU.

Forma de Endereçamento	
Registrador-Memória	Registrador
Load R1,M	Load R1,M
Store R1,M	Store R1,M
Add R3,R2,M	Add R3, R2, R1
Sub R3, R2, M	Sub R3, R2, R1
Mult R3,R2,M	Mult R3, R2, R1
Div R3,R2,M	Div R3, R2, R1

OBSERVAÇÕES:

- 1. Considere possíveis otimizações no código
- 2. M é um endereço de memória 16 bits
- 3. Ri é um registrador de 4 bits
- 4. Os opcodes possuem 8 bits
- 5. As instruções devem ter **comprimentos múltiplos de 4 bits**
- 6. Note que a linguagem **não é MIPS**
- 5ª Questão) (2,0 pontos) Considere a organização do bloco de dados multiciclo abaixo, que acomoda a execução de um subconjunto da arquitetura do conjunto de instruções do processador MIPS. Considere também as modificações que foram necessárias realizar nesta. Em seguida, responda às questões abaixo.
- a) Marcar no desenho abaixo e/ou descrever todos os caminhos do bloco de dados efetivamente usados pela instrução BEQ Rs, Rt, Rótulo e JUMP Rótulo. Isto significa marcar e/ou descrever em texto todos os caminhos por onde passa informação útil relevante à execução da instrução, ou seja, os dados e endereços que esta realmente necessita manipular.
- b) Diga qual operação é executada pela unidade lógica-aritmética (ALU) no terceiro ciclo de relógio da instrução BEQ Rs, Rt, Rótulo e JUMP Rótulo, justificando sua resposta.
- c) Qual a função da ALU na execução da instruções em cada ciclo das instruções na organização multiciclo.
- d) Explique detalhadamente como funciona uma unidade de controle microprogramada

