Tutorial 1: Probability and Statistics (MAL403/IC105)

Indian Institute of Technology Bhilai

- 1. Let \mathscr{F} be an algebra. Let $A_1, A_2, \dots A_n$ belongs to \mathscr{F} (i) Then prove that $\bigcup_{i=1}^n A_i \in \mathscr{F}$ and $\bigcap_{i=1}^n A_i \in \mathscr{F}$.
- 2. Let f be a mapping from a set X into a set Y. Let \mathscr{F} be a σ algebra of subsets of Y. Then prove that $f^{-1}(\mathscr{F})$ is a σ algebra of subsets of X.
- 3. Let \mathscr{A} be a σ -algebra of subsets of a set X and let Y be an arbitrary subset of X. Then $\mathscr{D} = \{A \cap Y : A \in \mathscr{A}\}$. Show that \mathscr{D} is a σ -algebra of subsets of Y.
- 4. Let \mathscr{F} be a collection of subsets of a set Ω with the following properties: $\Omega \in \mathscr{F}$ and if $A, B \in \mathscr{F}$ then $A B = A \cap B^c \in \mathscr{F}$. Prove that \mathscr{F} is an algebra.
- 5. Let \mathscr{F} be an algebra of subsets of a set X. Suppose \mathscr{F} has the property that for every increasing sequence $\{A_n\}$ in \mathscr{F} , we have $\bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$. Show that \mathscr{F} is a σ -algebra of subsets of the set X.
- 6. Let Ω be an arbitrary infinite set. We say that a subset A of Ω is co-finite if A^c is a finite set. Let \mathscr{F} consist of all the finite and the co-finite subsets of a set Ω .(a) Show that \mathscr{F} is an algebra of subsets of Ω . (b) Show that \mathscr{F} is a σ -algebra if and only if Ω is a finite set.
- 7. Define a sequence of sets $\{I_n\}$ where $I_n = \{x \in \mathbb{R} : 0 < x < \frac{1}{n}\}$. Show that $\bigcap_{n=1}^{\infty} I_n = \phi$.
- 8. Let \mathscr{G} and \mathscr{H} be to collection of subsets of Ω such that $\mathscr{G} \subseteq \mathscr{H}$. Then prove that $\sigma(\mathscr{G}) \subseteq \sigma(\mathscr{H})$
- 9. \mathscr{F} be a σ -algebra of subsets of a set Ω . Prove that $\sigma(\mathscr{F}) = \mathscr{F}$. If \mathscr{C} is collection of subsets of Ω then prove that $\sigma(\sigma(\mathscr{C})) = \sigma(\mathscr{C})$.
- 10. A set function μ on a sigma field \mathscr{F} in Ω satisfies the following conditions
 - (i) $\mu(A) \in [0, \infty]$
 - (ii) $\mu(\phi) = 0$
 - (iii) Let A_1, A_2, \ldots a sequence of disjoint \mathscr{F} sets then $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$.

Let μ be a finite that is $\mu(\Omega) < \infty$. Define $P(A) = \frac{\mu(A)}{\mu(\Omega)}$ for $A \in \mathscr{F}$. Prove that P is a probability function on (Ω, \mathscr{F}) .

11. Let P_1 and P_2 be two probability function defined on (Ω, \mathscr{F}) . Then prove that $\alpha P_1 + (1-\alpha)P_2$, $\alpha \in [0, 1]$ is a probability function.