

REPÚBLICA FEDERATIVA DO BRASIL
Ministério da Indústria, do Comércio e do Turismo
Instituto Nacional da Propriedade Industrial

(51) Int Cód.
C22B 3716

(11) (21) PI 9203400-4 A

(22) Data de Depósito: 21/08/92

(43) Data de Publicação: 01/03/94 (RPI 1213)

I N P I
C I D I N
B 22 B 3716
M A R C O M P A T E N C I A

(54) TÍTULO: Processo biotecnológico de remoção de Mármore

(71) Depositante(s): Biológica Desenvolvimento de
Produtos e Processos em Fitotecnologia Ltda (BPPMG)

(72) Inventor(es): Sônia Martins Moreira Daynai; Cristina
Martins Vieira de Carvalho; Leusa Maria Guimarães Carneiro

(57) Resumo: Esta Invenção se refere a um novo processo
biotecnológico para a remoção do Mármore que contenham ferro
utilizando-se biofiação direta ou indireta, com ou sem aplicação
atmosférica do fungo *Azospirillum nigrum*, que se produz metabólitos
orgânicos que causam a solubilização do Mármore. Este processo tem
particular importância no beneficiamento destes minérios no sentido
de aumentar seu valor comercial e sua finalidade baseando seu
processo de obtenção.

BEST AVAILABLE COPY

Relatório Descritivo da Patente de Invenção "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO DE FÓSFORO"

05 Esta invenção se refere a um novo processo biotecnológico para a remoção do fósforo presente como impureza em minérios contendo ferro. O processo tem particular importância para o beneficiamento destes minérios no sentido de aumentar seu valor comercial e sua qualidade no processo de obtenção.

10 A remoção do fósforo em minérios que contêm ferro é feita basicamente pela lavagem dos finos que contêm a maior parte do fósforo e da sílica. Um outro procedimento é a classificação granulométrica que consiste da separação da amostra do minério de acordo com a granulometria seguida de análise química das diferentes porções e remoção 15 daquelas que contiverem alto teor de fósforo. No caso do ferro gusa, no alto forno ainda ocorre uma remoção adicional, já que o fósforo contido no minério tende a ser assimilado pela escória.

20 Para alguns produtos realiza-se o tratamento com produtos químicos. No caso do ferro nióbio, inicialmente trata-se o minério com soda cáustica para remoção do fósforo; posteriormente, este processo foi substituído por tratamento com cloreto de cálcio seguido de lixiviação ácida.

25 O setor minerador mundial ainda não dispõe de nenhum bioprocesso de remoção do fósforo presente em minério contendo ferro que possa ser utilizado em escala industrial.

30 O que se conhece, através da literatura, são alguns poucos trabalhos, ainda em escala de bancada, on-

de a remoção do fósforo de minerais estratégicos começa a ser investigada. Entre eles pode-se citar o trabalho de Agate (1985) que trabalhou com minério de manganês, de grande importância para a indústria de aço. A liga Fe-Mn para a produção de aço de qualidade deve ser estar isenta ao máximo de impurezas como o fósforo. Para isto, o autor testou várias linhagens de microrganismos e observou que Lyphomicrobium sp era o mais eficiente, removendo 90% do fósforo. Esses resultados foram considerados promissores, propondo-se como processo a lixiviação em pilha.

Babenko et alii (1984) também constataram a eficiência de uma linha da bactéria Erwinia carotovora var. carotovora em lixiviar o fósforo presente em minerais de manganês através da mobilização do fósforo labil.

O processo biotecnológico de remoção do fósforo ora proposto consiste da solubilização do fósforo utilizando-se como agente lixiviente ácidos orgânicos produzidos por microrganismos; tal processo pode ser aplicado em substituição ou em conjunto com processos convencionais.

O processo consiste do contato do minério a ser tratado com o microrganismo eficiente em lixiviar o fósforo, na presença de meio de cultura adequado e de determinadas condições ambientais.

Este processo foi realizado com e sem agitação, quando vários microrganismos e parâmetros foram testados. Realizou-se também a lixiviação indireta que consiste da produção de um filtrado livre de células, obtido do crescimento do microrganismo, e de sua aplicação no mineral a ser tratado.

Todo o processo é baseado na reação de metabólitos produzidos pelos microorganismos, possivelmente ácidos orgânicos, com determinados componentes do mineral, o que leva à solubilização do fósforo.

O bioprocesso que visa a remoção do fósforo de minérios foi desenvolvido em condições assépticas, utilizando-se meio de cultura líquido contendo fonte de carbono, nitrogênio, sódio e potássio, o minério de ferro e um

29200%10

05 inoculo da linhagem do Aspergillus niger utilizando-se uma porcentagem de 1g de minério para 50 ml de meio de cultura com ou sem agitação, fez-se tanto a lixiviação direta como a indireta, visando a solubilização do fósforo presente no minério contendo ferro.

10 Como meio de cultura utilizou-se para os ditos 50 ml, fonte de carbono por exemplo, sacarose, fruto se, melaço ou outro rejeito orgânico e ou suas misturas na concentração de 0 a 20 g/l; fonte de nitrogênio entre outros, por exemplo: sulfato de amônia, ureia e ou suas misturas na concentração de 0 a 5 g/l; cloretos por exemplo: sódio, potássio e ou suas misturas na concentração de 0 a 1.0 g/l; fonte de magnésio, manganês e ferro na concentração de 0 a 0.2 g/l cada sob a forma de sulfato e água para completar 1 litro de solução. Também poderia ser usado diretamente o melaço ou outro rejeito orgânico como única fonte de nutriente.

15 A faixa de PH a ser utilizada é de 4,5 a 6,5, sendo a concentração de esporos de fungos / ml de meio = 10^6 a 10^8 .

20 Incubou-se em faixa de temperatua ambiente até 30° + 29C por um período máximo de 20 dias e, periodicamente realizaram-se determinações do teor de fósforo em solução e do PH do meio. Observou-se que na lixiviação direta com agitação (LCA) os resultados obtidos foram mais eficientes com relação a lixiviação direta sem agitação (LSA) conforme se depreende do gráfico (1) em anexo, porcentagem de solubilização de P vezes tempo (dias).

25 No gráfico (2) em anexo, temos uma relação da variação de pH com o tempo de lixiviação com e sem agitação, onde se observa que o rendimento para lixiviação com agitação é mais eficiente devido a um melhor contato do minério com o meio, e também promovendo uma melhor oxigenação no meio, favorecendo a liberação de metabólitos microbianos que 30 vao atuar na solubilização do fósforo.

35 Com relação à lixiviação indireta cultiva-se o fungo Aspergillus niger em meio de cultura líquido,

....9003400

em temperatura ambiente até 30 ± 2°C, durante 1 a 10 dias com ou sem agitação, com o objetivo de se obter um filtrado livre de células contendo o (s) agentes (s) lixiviantes (s) responsável (is) pela solubilização do fósforo.

115 Deste filtrado obtido, dividiu-se em duas partes, para se fazer um teste comparativo onde:

- no meio de cultura para obtenção do filtrado A foi adicionado fonte de Mg, Mn e Fe sob a forma de sulfato, na faixa de 0 a 0,2 g/l cada, incluindo-se os outros nutrientes já anteriormente descritos nas lixiviações com e sem agitação.

- no meio de cultura para obtenção do filtrado B não foram adicionados extras as fontes de Mg, Mn e Fe, utilizando-se o próprio minério contendo ferro como fonte destes nutrientes. Adicionou-se entretanto fósfato exemplo fosfato de potássio monobásico, na faixa de 0 a 0,10g/l como fonte solúvel de fósforo que permite um crescimento adequado do microrganismo. A faixa de pH utilizada variou de 4,5 a 6,5 e, inoculou-se também de 10^6 a 10^8 esporos/ml.

120 Observou-se que a porcentagem de fósforo removida do minério foi praticamente a mesma nos dois filtrados.

Este processo de lixiviação direta ou indireta com ou sem agitação utilizando-se o Aspergillus niger e seu meio de cultura aqui descrito, poderá ser utilizado também para outros minérios que contém ferro, além do minério de ferro.

130 Embora o processo de remoção de fósforo de minério contendo ferro que acaba de ser descrito pareça a forma de realização preferível da invenção, compreendes-se à que diversas modificações podem ser feitas sem sair do âmbito de invenção, podendo alguns de seus elementos serem substituídos por outros que exerçeriam o mesmo papel técnico, sem entretanto, ampliar o escopo inventivo.

29203-3400

R E I V I N D I C A Ç Õ E S

1 - "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO

DI: PÓSFORO", caracterizado pelo fato de se fazer uma lixi-
viação direta ou indireta, com ou sem agitação do minério
05 contendo ferro, em presença de esporos do Aspergillus niger
em concentração de 10^6 a 10^8 esporos /ml, utilizando-se um
meio de cultura contendo fonte de carbono em concentração
de 0 a 20 g/l, fonte de nitrogênio em concentração de 0 a
5 g/l, cloretos em concentração de 0 a 1,0 g/l, fontes de
10 magnésio, manganês e ou ferro na concentração de 0 a 0,2
g/l cada fonte de fósforo de 0 a 0,10 g/l e água até com-
pletar 1 litro em pH na faixa de 4,5 a 6,5, com temperatu-
ras variando entre a T ambiente até $30 \pm 2^\circ C$ durante um
periodo de no máximo 20 dias.

15 2 - "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO

DI: FÓSFORO" de acordo com a reivindicação 1, caracterizado
pelo fato de que como fonte de carbono pode-se utilizar sa-
carose, frutose, melado ou resíduo orgânico.

20 3 - "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO

DE FÓSFORO" de acordo com a reivindicação 2, caracterizado
pelo fato de que quando se utilize melado ou resíduo orgâ-
nico não é necessário colocar-se os outros nutrientes.

25 4 - "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO

DE FÓSFORO" de acordo com a reivindicação 1, caracterizado
pelo fato de que a fonte de nitrogênio pode-se ser sulfato
do amônio ou uréia entre outros.

5 - "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO

DI: PÓSFORO" de acordo com a reivindicação 1, caracterizado

392003400

pelo fato de que a fonte de cloretos pode ser Na Cl, K Cl e ou suas misturas.

05 6 - " PROCESSO BIOTECNOLÓGICO DE REMOÇÃO
DE FÓSFORO" de acordo com a reivindicação 1, caracterizado pelo fato de que o magnésio, manganês e ferro estão sob a forma de SO_4^{2-} .

10 7 - "PROCESSO BIOTECNÓGICO DE REMOÇÃO
DE FÓSFORO" de acordo com a reivindicação 1, caracterizado pelo fato de que como fonte de fósforo pode-se utilizar o fosfato de potássio monobásico, quando não se tiver fósforo presente no minério original, para permitir um crescimento do microrganismo.

39203400

9203400

F.61

11.65

292003400

332003400

9203400

R E S U M O

Patente de Invenção para "PROCESSO BIOTECNOLÓGICO DE REMOÇÃO DE FÓSFORO"

Esta invenção se refere a um novo processo biotecnológico para a remoção do fósforo que contenham ferro utilizando-se lixiviação direta ou indireta, com ou sem agitação através do fungo Aspergillus niger, que ao produzir metabólitos orgânicos vai causar a solubilização ao fósforo.

Este processo tem particular importância no beneficiamento destes minérios no sentido de aumentar seu valor comercial e sua finalidade barateando seu processo de obtenção.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.