An Introduction to the People Analytics Lifecycle With Applications in R and Data Studio

Craig Starbuck

2022 - 01 - 19

Contents

1	For	Foreword				
2	Inti	Introduction 7 Getting Started 9				
3	Get					
	3.1	Guiding Principles	9			
	3.2	Tools	11			
	3.3	4D Framework	12			
4	Res	earch Methods	17			
5	Statistical Fundamentals 1					
	5.1	Population Parameters	19			
	5.2	Sample Statistics	19			
	5.3	Descriptive Statistics	19			
	5.4	Inferential Statistics	22			
6	Mea	asurement & Sampling	33			
7	Data Preparation 35					
	7.1	Data Wrangling	35			
	7.2	Feature Engineering	35			
8	Ana	alysis of Differences	37			
	8.1	Comparing 2 Distributions	37			
	8.2	Comparing 3+ Distributions	37			

4 CONTENT

9	Inferential Models 39					
	9.1	Regression	39			
	9.2	Simple Linear Regression	42			
	9.3	Multiple Linear Regression	42			
	9.4	Polynomial Regression	42			
	9.5	Logistic Regression	42			
	9.6	Hierarchical Models	42			
10	Pre	dictive Models	43			
	10.1	Bias-Variance Trade-Off	43			
	10.2	Cross-Validation	43			
	10.3	Balancing Classes	43			
	10.4	Model Performance	43			
11	Aut	omated Machine Learning (AutoML)	45			
12	\mathbf{Uns}	upervised Learning Models	47			
	12.1	Factor Analysis	47			
	12.2	Clustering	47			
13	13 Data Visualization 4					
14	Dat	a Storytelling	51			
15	\mathbf{Bibl}	iography	53			
16	App	endix	55			
	16.1	4D Framework	55			

Foreword

Introduction

Twenty years ago, I was the least likely person to write this book. Like many others, my first statistics course in college was dreadful. On day one, my professor stood before the class of about 100 students and gave us the stats: "Based on historical data, half of you won't make it to the midterm and of those who do, half won't receive a passing grade in the end." This was both discouraging and motivating. Stats was a required course for my major so failure wasn't an option; I had to pass. The course was challenging, and I attended weekly study sessions with classmates and studied a lot independently to learn the material. I saw no applications for statistics to anything I planned to do with my degree, so the course was reduced to memorization of equations; it was anything but enjoyable. I passed the course with a B, and I was determined to never open another stats book.

You may be wondering what changed to motivate authoring a book involving this insufferable subject. The short answer is that I discovered the very important applications to a discipline I truly love, people analytics. As I began to think about complex and nuanced challenges in social science contexts, it became clear that I would not only need to reengage with stats; I would need to develop an authentic appreciation for the discipline. Over the past decade, I have taken the journey of 'relearning' statistics and developing a deep understanding of how statistical methodologies can be applied to various problem statements to gain an objective and data-driven understanding of organizational phenomena.

My purpose in writing this book is to help make this content – which may unfortunately be intimidating to many – both accessible and exciting. In addition to my role in people analytics, I have taught a graduate-level business analytics course for Finance and MBA students for many years and have developed several teaching strategies through this experience that I will apply in this book. Beyond these instruction methods, this book makes a unique contribution in covering the end-to-end analytics lifecycle in a manner that is conversational

and sufficient for providing learners a working knowledge of the most salient topics. There are many texts available for deeper treatments of individual topics covered in this book but as of this writing, I have found none that organize within a single text both theoretical and applied instruction spanning the whole of the people analytics lifecycle.

Thus, this book represents my earnest attempt to provide a concise – yet adequately comprehensive – treatment of the concepts and methods I've found to be most important for people analytics practitioners. My hope is that this book will ignite within you the same passion for analytics I have discovered over the past decade.

Craig Starbuck December 2021

Craig Starbuck, PhD is the CEO and Co-Founder of OrgAcuity, a tech company with a mission to democratize access to people analytics. Craig has built and led people analytics teams at companies such as Robinhood, Mastercard, Equifax, TD Ameritrade, and Scottrade, and he also spent a decade in various data engineering and analytics positions in the banking and health care industries. He is a Member of the Society for Industrial and Organizational Psychology (SIOP) and has a passion for transforming people data into information and insights that help organizations enhance the experience and wellbeing of employees.

Getting Started

3.1 Guiding Principles

Pro Employee Thinking

"With Great Power Comes Great Responsibility."

'Pro employee' thinking is addressed first and for good reason. People analytics has the power to improve the lives of people in meaningful ways. Whether we are shedding light on an area of the business struggling with work-life balance or identifying developmental areas of which a group of leaders may be unaware, people analytics ideally improves employee well-being and effectively, the success of the business. It is important to embrace a 'pro employee' philosophy, as newfound knowledge could also have damaging repercussions if shared with the wrong people or if findings are disseminated without proper instruction on how to interpret and take action (e.g., disparate impact).

One way to error on the side of caution when considering whether or not to disseminate insights is to ask the following: "With this knowledge, could the recipient act in a manner that is inconsistent with our 'pro employee' philosophy?" If the answer to this question is not a clear "no", discuss with your HR, legal, and privacy partners and together, determine how best to proceed. The decision may be to not share the findings with the intended audience at all or to develop a proper communication and training plan to ensure there is consistency in how recipients interpret the insights and take action in response.

Quality

"Garbage In, Garbage Out."

Never compromise quality for greater velocity. It is unlikely that requestors of data and analytics will ask us to take longer to prepare the information. The onus is on us as analytics professionals to level set on a reasonable timeline

for analyses based on many factors that can materially impact the quality of analyses and insights. All it takes is one instance of compromised quality to damage your reputation and cause consumers of your insights to view all findings as suspect. Be sure quality is atop your list of core values, and guard your team's reputation at all costs. If users do not trust the insights provided, they will question what they receive which may in turn result in requests for additional reports to 'tick-and-tie' in order to gain confidence in the data. This is wasteful to both you and your user community.

To be clear, by 'quality' I am referring to results, which is dependent on data integrity in the source systems, proper data preparation steps, and many other factors. The majority of the analyst's time is spent on data preparation (data collection, cleaning and organizing, building training sets, mining for patterns, refining algorithms, etc.). If tight controls do not exist within the source application to support data integrity, data preparation efforts can only go so far in delivering reliable and valid findings. It is often the analysts who identify data integrity issues due to the nature of their work; therefore, close relationships should be formed with source application owners to put into place validation rules to proactively prevent the entry of erroneous data or at the very least, exception/audit reports to identify and address the issues soon after the fact. Close relationships with application owners can also facilitate application changes that will help reduce laborious data preparation steps. For example, if the source application collects information on employees' education via freeform text entries, it may make sense to discuss populating a selection list of schools to free analysts from having to scrub "U", "University", "Univ.", etc. to produce a clean, unique list. These enhancements can save you significant amounts of time down the road.

While the allure may emerge to curtail important data preparation steps or make incorrect assumptions about the quality of data in the source and jump into modeling prematurely, resist the urge to take shortcuts. Ensure experienced analytics professionals are involved in the initial development of a roadmap so that decision makers who may not be as familiar with the technical minutia are better informed when creating timelines. If leaders broadcast deliverables that are not realistic, it will likely result in dangerous levels of pressure being applied to those doing the analysis which will increase the likelihood of shortcut exploitation to hit milestones. Be methodical in your approach and ensure you are progressing commensurate with a coherent and practical analytics roadmap. If quality falls to the bottom of the priority list, all other efforts are futile.

Prioritization

"If everything is a priority, nothing is a priority."

There will always be a supply-demand gap for analytics functions, which is okay as long as the unmet demand is largely requests for low-impact analyses. The maximize impact, it is crucial to be relentless about prioritizing strategically important projects with 'measurable' impact over merely interesting questions.

3.2. TOOLS 11

According to the Pareto Principle, 80% of outcomes (or outputs) result from 20% of causes (or inputs). In analytics, it is important to be laser focused on identifying the 20% of inputs that will result in disproportionate value creation for stakeholders. There are some general customer-oriented questions I have found to be helpful for the intake process to optimize the allocation of time and resources:

- 1. Does this support a company or departmental objective? If not, why should this be prioritized over something else?
- 2. Who is the executive sponsor? If this is really important, there will be an executive-level sponsor.
- 3. What quantitative and/or qualitative data can be provided as a rationale for this request? Is there data to support doing this, or is the problem statement rooted merely in anecdotes?
- 4. Will this mitigate risk or enable opportunities?
- 5. What actions can or will be taken as a result of this analysis?
- 6. What is the scale of impact (# of impacted people)?
- 7. What is the depth of impact (minimum -> significant)?
- 8. Is this a dependency or blocker for another important deliverable?
- 9. What is the impact of not doing (or delaying) this?
- 10. What is the request date? Is there flexibility in this date and/or scope of the request (e.g., what does MVP look like)?

These questions can be weighted and scored as well to support a more automated and data-driven approach to prioritization.

3.2 Tools

This book uses freely available software for statistics, modeling, and data visualization.

R

While many commercial-grade analytics toolsets are very costly, R is an open-source statistical software package that can be downloaded free of charge. It is incredibly powerful, and there is a package for just about any statistical technique you wish to utilize. It is also widely used in highly regulated environments. As of this writing, R Markdown – the dynamic document creator in which I am writing this book – allows for coding in 56 different languages! Therefore, the debate around whether to use Python, Julia, or something else is now moot; we need not sacrifice the advantages of other languages by choosing one. To get started, simply download the latest version of R and the R Studio IDE using the following links.

R: https://www.r-project.org/ R Studio IDE: https://www.rstudio.com/products/rstudio/download/#download

Please note that while R basics are covered, this is not a book on how to code. It is assumed that you already have an understanding of programming fundamentals. If this is not the case, an introductory programming course is highly recommended; this is one of the best investments you can make for a successful career in analytics. The ability to write code is now table stakes for anyone in an analytics-oriented field, as this is the best way to develop reproducible analyses.

The goal of the code provided in this book is not to represent the most performant, succinct, or productionalizable approaches. The code herein is intended only to facilitate understanding and demonstrate how concepts can be implemented in people analytics settings. Programming expertise is important for optimizing these approaches for production applications.

Google Data Studio

Like statistical software, there are many options for BI tools that provide interactive dashboards and robust data visualization. In fact, R has robust data visualization capabilities via packages like ggplot and Shiny – which can be extended with CSS themes, html widgets, and JavaScript actions. In people analytics, dashboards are rarely (if ever) published publicly; we need interactive web-based dashboards with strong authentication and row-level security that have connectors to popular databases such as BigQuery, RedShift, and PostgreSQL to facilitate frequent and automated data refreshes. There are several free options that meet these criteria, and one which tends to be highly underrated is Google's Data Studio. While it is not as feature-rich as popular solutions like Tableau and Power BI, Google is continuously improving the product and the key features needed to be successful in data visualization and dashboarding are already available. It is also very intuitive and easy to use relative to building apps in a tool such as R Shiny. For this reason, Data Studio has been selected as the companion tool to R for this book.

If your organization is a Google shop, Data Studio will integrate nicely with your productivity tools (e.g., sourcing data from Sheets, sharing with those in your Active Directory). If not, it is simple to register company emails as Google accounts to enable sharing and activate row-level security. All you need is a free Google account to get started.

Data Studio: https://datastudio.google.com/

3.3 4D Framework

Adherence to a lightweight framework over hastily rushing into an analysis full of assumptions generally lends to better outcomes. A framework ensures (a) the problem statement is understood and well-defined; (b) prior research and analyses are reviewed; (c) the measurement strategy is sound; (d) the analysis

approach is suitable for the hypotheses being tested; and (e) results and conclusions are valid and communicated in a way that resonates with the target audience. This chapter will outline a recommended framework as well as other important considerations that should be reviewed early in the project.

It is important to develop a clear understanding of the key elements of research. Scientific research is the systematic, controlled, empirical, and critical investigation of natural phenomena guided by theory and hypotheses about the presumed relations among such phenomena (Kerlinger & Lee, 2000). In other words, research is an organized and systematic way of finding answers to questions. If you are in the business of analytics, I encourage you to think of yourself as a scientist – regardless of plans to publish outside your organization.

As we will discover when exploring the laws of probability in a later chapter, there is a 1 in 20 chance of finding a significant result when none actually exists. Therefore, it is important to remain disciplined and methodical to protect against backward research wherein the researcher mines data for interesting relationships or differences and then develops hypotheses which they know the data support. There have been many examples of bad research over the years, which often presents in the form of p-hacking or data dredging – the act of finding data to confirm what the researcher wants to prove. This can occur by running an exhaustive number of experiments in an effort to find one that supports the hypothesis, or by using only a subset of data which features the expected patterning.

Academics at elite research institutions are often under immense pressure to publish in top-tier journals which have a track record of accepting new ground-breaking research over replication studies or unsupported hypotheses, and incentives have unfortunately influenced some to compromise integrity. As my PhD advisor told me many years ago, an unsupported hypothesis – while initially disappointing given the exhaustive literature review that precedes its development – is actually a meaningful empirical contribution given theory suggests the opposite should be true.

If you participated in a science fair as a child, you are likely already familiar with the scientific method. The scientific method is the standard scheme of organized and systematic inquiry, and this duly applies to people analytics practitioners striving to promote the robustness of analyses and recommendations.

Over the years, I have adapted the scientific method into a curtailed four-dimensional framework which is intended to elevate the rigor applied to the end-to-end analytical process. The four dimensions are (a) Discover, (b) Design, (c) Develop, and (d) Deliver, and this book will be organized around these. A checklist with general questions and considerations across the analytics life-cycle can be found in the Appendix.

1. Discover

You are likely familiar with the old adage: "An ounce of prevention is worth a pound of cure." Such is the case with respect to planning in an analytics context.

Figure 3.1: The Scientific Method

Figure 3.2: 4D Framework

During the Discover phase, it is important to remain in the problem zone; seek to understand your clients' needs through active listening and questions. This is not the time for solutioning or committing to any specific deliverables. If the client's needs are ambiguous, proceeding will likely be an exercise in futility. Outlined below is a set of general questions that should be considered during this initial phase to prevent allocating scarce time and resourcing to a project that ultimately misses the mark.

2. Design

Perhaps the most important initial question to answer in the design phase is: "Does anything already exist that addresses part, or all, of the client's objectives?" If the existing solution will suffice, it's possible that there is simply a communication/education gap, and you can allocate time and resources elsewhere.

The end-user experience is of paramount importance during the Design phase, as solutions should have a consistent look and feel regardless of who developed the product. To achieve this, it is important to resist siloed thinking and consider the broader set of analytics solutions the team has delivered – or is in the process of delivering.

3. Develop

4. Deliver

The Deliver phase can take many forms depending on the solution being released. If the solution is designed for a large user base, a series of recorded trainings may be in order so that there is a helpful reference for those unable to attend the live sessions or new joiners in the future. It is important to monitor success measures, which could be insights aligned to research hypotheses, dashboard utilization metrics, or any number of others defined within the Discover phase.

Research Methods

Statistical Fundamentals

- 5.1 Population Parameters
- 5.2 Sample Statistics
- 5.3 Descriptive Statistics
 - Measures of Central Tendency Mean

Perhaps the most intuitive measure of central tendency is the mean, which is often referred to as the average. The mean of a sample is denoted by \bar{x} and is defined by:

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

The mean of a set of numeric values can be calculated using the mean() function in R:

```
# Fill vector x with integers
x <- c(1,1,1,2,2,2,3,3,4,50)

# Calculate average of vector x
mean(x)</pre>
```

[1] 6.9

Median

The median represents the midpoint in a sorted vector of numbers. For vectors with an even number of values, the median is the average of the middle two numbers; it is simply the middle number for vectors with an odd number of values. When the distribution of data is skewed, or there is an extreme value like we observe in vector x, the median is a better measure of central tendency.

The median() function in R can be used to handle the sorting and midpoint selection:

```
# Calculate median of vector x
median(x)
```

[1] 2

In this example, the median is only 2 compared with the mean of 6.9 (which is not really representative of any of the values in vector x). Large deltas between mean and median values are evidence of outliers.

Mode

The mode is the most frequent number in a set of values.

While mean() and median() are standard functions in R, mode() returns the internal storage mode of the object rather than the statistical mode of the data. We can easily create a function to return the statistical mode(s):

```
# Create function to calculate statistical mode(s)
stat.mode <- function(x) {
  ux <- unique(x)
  tab <- tabulate(match(x, ux))
  ux[tab == max(tab)]
}
# Return mode(s) of vector x
stat.mode(x)</pre>
```

[1] 1 2

In this case, we have a bimodal distribution since both 1 and 2 occur most frequently.

Range

The range is the difference between the maximum and minimum values in a set of numbers.

The range() function in R returns the minimum and maximum numbers:

Return lowest and highest values of vector x
range(x)

[1] 1 50

We can leverage the $\max()$ and $\min()$ functions to calculate the difference between these values:

```
# Calculate range of vector x
max(x, na.rm = TRUE) - min(x, na.rm = TRUE)
```

[1] 49

• Measures of Spread

Variance

Variance is a measure of the variability around the average value. Variance is calculated using the average of squared differences from the mean.

Variance of a population is defined by:

$$\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$$

Variance of a sample is defined by:

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

It is important to note that since differences are squared, the variance is always non-negative. In addition, we cannot compare these squared differences to the arithmetic mean since the units are different. For example, if we calculate the variance of compensation measured in USD, variance should be expressed as USD squared while the mean exists in the original USD unit of measurement.

Standard Deviation

The standard deviation is simply the square root of the variance, as defined by:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N-1}}$$

Since a squared value can be converted back to its original units by taking its square root, the standard deviation expresses variability around the mean in the variable's original units.

Quartiles

The Interquartile Range (IQR)...

Covariance

$$cov_{x,y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N-1}$$

Correlation

"Correlation is not causation."

$$r_{x,y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{(} x_i - \bar{x})^2 \sum_{(} y_i - \bar{y})^2}}$$

5.4 Inferential Statistics

The objective of inferential statistics is to make inferences – with some degree of confidence – about a population based on available sample data. Several related concepts underpin this goal and will be covered here.

- Introduction to Probability
- Central Limit Theorem

The Central Limit Theorem (CLT) is a mainstay of statistics and probability and fundamental to understanding the mechanics of inferential analysis techniques we will cover later in this book. The CLT was initially coined by a Frenchborn mathematician named Abraham De Moivre in the 1700s. While initially unpopular, it was later reintroduced and attracted new interest from theorists and academics (Daw & Pearson, 1972).

The CLT states that the average of independent random variables, when increased in number, tend to follow a normal distribution. The distribution of sample means approaches a normal distribution regardless of the shape of the population distribution from which the samples are drawn. This is important because the normal distribution has properties that can be used to test the likelihood that an observed difference or relationship in a sample is also present in the population.

If we need to estimate the average value of a population, for example, we can lean on the CLT and normal distribution properties to obtain the range of values that are likely to include the true population average. This is how confidence intervals are defined, which enable us to make reasonable inferences about the unknown population parameters based on sample data.

Figure 5.1: The Empirical Rule

Let's begin with an intuitive example of CLT. Imagine that we have a reliable way to measure the nerdiness of a population on a 100-point scale, where 100 indicates maximum nerdiness and 1 indicates relative normality. Consider that a small statistics conference is in progress at a nearby convention center, and there are 40 statisticians in attendance. In a separate room at the same convention center, there is also a group of 40 random people (non-statisticians) who are gathered to discuss some less interesting topic. Our job is to walk into one of the rooms and determine – on the basis of nerdiness alone – whether we have entered the statistics conference or the other, less interesting gathering of non-statisticians.

Let's assume the mean nerdiness score and standard deviation of these two groups are known; the group of statisticians have, on average, a nerdiness score of 85 with a standard deviation of 2, while the group of non-statisticians are a bit less nerdy with a mean score of 65 and a standard deviation of 4. With a known population mean and standard deviation, the standard error (the standard deviation of the sample means) provides the ability to calculate the probability that the sample (the room of 40 people) belongs to the population of interest (fellow statisticians).

Herein lies the beauty of the CLT: roughly 68 percent of sample means will lie within one standard error of the population mean, roughly 95 percent within two standard errors of the population mean, and roughly 99 percent within three standard errors of the population mean. Therefore, any room whose members have an average nerdiness score that is not within two standard errors of the population mean (between 81 and 89 for our statisticians) is statistically unlikely to be the group of statisticians for which we are searching. This is because in less than 5 in 100 cases could we randomly draw a 'reasonably sized' sample of statisticians with average nerdiness so extremely different from the population average.

Because small samples lend to anamalies, we could – by chance – select a single person who happens to fall in the tails (relatively normal or extremely nerdy); however, as the sample size increases, it becomes more and more likely that the observed average reflects the average of the larger population. It would be virtually impossible (in less than 1 in 100 cases) to draw a random sample of statisticians from the population with average nerdiness that is not within three standard errors of the population mean (between 79 and 91). Therefore, if we find that the room of people have an average nerdiness score of 75, we should quickly head to the other room!

Let's now see the CLT in action by simulating a random uniform population distribution from which we can draw random samples. Remember, the shape of the population distribution does not matter; we could simulate an Exponential, Gamma, Poisson, Binomial, or other distribution and observe the same behavior.

```
# Load libraries for data wrangling and viz
library(dplyr)
library(ggplot2)
# Set seed for reproducible random distribution
set.seed(1234)
# Generate uniform population distribution with 1000 values ranging from 1 to 100
rand.unif <- runif(1000, min = 1, max = 100)</pre>
# Calculate population mean
mean(rand.unif)
## [1] 51.22007
# Calculate population standard deviation
# Note: The sd() function returns the sample standard deviation since it is less common to work
sqrt((length(rand.unif)-1)/length(rand.unif)) * sd(rand.unif)
## [1] 28.8152
# Produce histogram to visualize population distribution
ggplot() +
  aes(rand.unif) +
  labs(x = "x", y = "N") +
```

As expected, these randomly generated data are uniformly distributed. Next, we will draw 100 random samples of various sizes and plot the average of each.

geom_histogram(colour = "white", size = .1, fill = "#262626")

```
# Define number of samples to draw from population distribution
samples <- 100

# Populate vector with sample sizes
sample_n <- c(1:5,10,25,50)

# Initialize empty data frame to hold sample means
sample_means = NULL

# Set seed for reproducible random samples
set.seed(456)

# For each n, draw random samples</pre>
```


Figure 5.2: Uniform Population Distribution (N = 1000)

Per the CLT, we can see that as n increases, the sample means become more normally distributed.

• Confidence Intervals

Figure 5.3: Distribution of 100 Sample Means

A Confidence Interval (CI) is a range of values that likely includes an unknown population value, as defined by:

$$CI = \bar{X} \pm z_{\frac{\sigma}{\sqrt{n}}}$$

A related concept that is fundamental to estimating CIs is the standard error. The standard error (SE) is the standard deviation of sample means. While the standard deviation is a measure of variability for random variables, the variability captured by the SE reflects how representative the sample is of the population. Since sample statistics will approach the actual population parameters as the size of the sample increases, the SE and sample size are inversely related; that is, the SE decreases as the sample size increases. The SE is defined by:

$$SE = \frac{\sigma}{\sqrt{n}}$$

Let's illustrate the relationship between CIs and standard errors by validating whether the normal distribution properties are characteristic of the data simulated for our CLT example (since population parameters are known):

[1] 97

[1] 50.52632

```
# Store sample means with n = 50
x_bars <- sample_means[sample_means$n == 50, "x_bar"]

# Calculate 95% CI (1.96 standard errors above and below the mean)
ci95_lower_bound <- mean(x_bars) - 1.96 * (sd(x_bars) / sqrt(length(x_bars)))
ci95_upper_bound <- mean(x_bars) + 1.96 * (sd(x_bars) / sqrt(length(x_bars)))

# Print lower bound for 95% CI
ci95_lower_bound

## [1] 50.76792

# Print upper bound for 95% CI
ci95_upper_bound

## [1] 52.29547

# Calculate percent of sample means within +/- 2 SEs
length(x_bars[x_bars < mean(x_bars) + 2 * sd(x_bars) & x_bars > mean(x_bars) - 2 * sd(x_bars) & x_bars > mean
```

97% of sample means are within 2 SEs, which is roughly what we expect per the properties of normally distributed data.

The 95% CI corresponds to a z-score of 1.96, which is simply the number of SEs we expect to include the true population average – at least in 95 of 100 random samples taken from said population. In this example, we know that our population mean is 51.2, which is covered by our 95% CI (50.8 - 52.3). Note that our CI narrows with larger samples since our confidence that the range includes the population mean increases with more data.

Next, let's look at a 99% CI. We will use a z-score of 2.58 for this:

```
# Calculate 99% CI (2.58 standard errors above and below the mean)
ci99_lower_bound <- mean(x_bars) - 2.58 * (sd(x_bars) / sqrt(length(x_bars)))
ci99_upper_bound <- mean(x_bars) + 2.58 * (sd(x_bars) / sqrt(length(x_bars)))
# Print lower bound for 99% CI
ci99_lower_bound</pre>
```

```
# Print upper bound for 99% CI ci99_upper_bound
```

[1] 52.53707

```
# Calculate percent of sample means within +/- 3 SEs
length(x_bars[x_bars < mean(x_bars) + 3 * sd(x_bars) & x_bars > mean(x_bars) - 3 * sd(x_bars)]) /
```

[1] 100

All of the sample means are within 3 SEs, indicating that it would be highly unlikely – nearly impossible even – to observe a sample mean from the same population that falls outside this interval.

Like the 95% CI, this slightly wider 99% CI (50.5 - 52.5) also includes the true population mean of 51.2.

• Hypothesis Testing

Hypothesis testing is how we leverage CIs to test whether a significant difference or relationship exists in the data. Sir Ronald Fisher invented what is known as the null hypothesis, which states that there is no relationship/difference. The null hypothesis is defined by:

$$H_0: \mu_A = \mu_B$$

The objective of hypothesis testing is to determine if there is sufficient evidence to reject the null hypothesis in favor of an alternative hypothesis. The null hypothesis always states that there is 'nothing' of significance; disprove me if you can! If we want to test whether an intervention has an effect on an outcome in a population, the null hypothesis states that there is no effect. If we want to test whether there is a difference in average scores between two groups in a population, the null hypothesis states that there is no difference.

An alternative hypothesis may simply state that there is a difference or relationship in the population, or it may specify the expected direction (e.g., Population A has a significantly 'larger' or 'smaller' average value than Population B; Variable A is 'positively' or 'negatively' related to Variable B):

$$H_A: \mu_A \neq \mu_B$$

$$H_A: \mu_A < \mu_B$$

$$H_A: \mu_A > \mu_B$$

Alpha

The alpha level of a hypothesis test, denoted by α , represents the probability of obtaining observed results due to chance if the null hypothesis is true. In other words, α is the probability of rejecting the null hypothesis (and therefore claiming that there is a significant difference or relationship) when in fact we should have failed to reject it because there is insufficient evidence to support the alternative hypothesis.

 α is often set at .05 but is sometimes set at a more rigorous .01. An α of .05 corresponds to a 95% CI (1 - .05), and .01 to a 99% CI (1 - .01). At the .05 level, we would conclude that a finding is statistically significant if the chance of observing a value at least as extreme as the one observed is less than 1 in 20 if the null hypothesis is true. Note that we observed this behavior with our simulated distribution of sample means. In our example, we found that in 97 of 100 cases, the sample mean was within our 95% CI. While we can draw a more extreme value by chance with repeated attempts, we should only expect a mean outside the 95% CI less than 1 in every 20 times. Moreover, we should generally only expect a mean outside the 99% CI less than 1 in every 100 times.

Beta

Another key value is Beta, denoted by β , which relates to the power of the analysis. Simply put, power reflects our ability to find a difference or relationship if there is one. Power is calculated by $1 - \beta$.

Type I & II Errors

A Type I Error is a false positive, wherein we conclude that there is a significant difference or relationship when there is not. A Type II Error is a false negative, wherein we fail to capture a significant finding. α represents our chance of making a Type I Error, while β represents our chance of making a Type II Error. I once had a professor who told me that committing a Type I error is a shame, while committing a Type II error is a pity, and I've found this to be a helpful way to remember what each type of error represents.

P-Values

In statistical tests, the p-value is referenced to determine whether the null hypothesis can be rejected. The p-value represents the probability of obtaining a result at least as extreme as the one observed if the null hypothesis is true. As a general rule, if p < .05, we can confidently reject the null hypothesis and conclude that the observed difference or relationship is likely a noteworthy finding.

While statistical significance helps us understand the probability of observing results by chance when there is actually no difference or effect in the population, it does not tell us anything about the size of the difference or effect. Analysis

	H _o True	H _o False
Reject H ₀	Type I Error	Correct Rejection
Fail to Reject H₀	Correct Decision	Type II Error

Figure 5.4: Type I and II Errors

should never be reduced to inspecting p-values; in fact, p-values have been the subject of much controversy among researchers in recent years. This book will cover how to interpret results of statistical tests to surface the story and determine if there is anything 'practically' significant among statistically significant findings.

Measurement & Sampling

Data Preparation

7.1 Data Wrangling

7.2 Feature Engineering

Level one people analytics tends to utilize only the delivered fields from the HRIS (e.g., location, job profile, org tenure, etc.), but a good next step is to derive smarter variables from these fields. These can then be used to slice and dice turnover and engagement data differently, use as inputs in attrition risk models, etc. Below are some ideas to get you started:

- Number of jobs per unit of tenure (larger proportions tend to see greater career pathing)
- Office/remote worker (binary variable dummy coded as 1/0)
- Local/remote manager (binary variable dummy coded as 1/0)
- Hire/Rehire (binary variable dummy coded as 1/0)
- Hired/acquired (proxy for culture shock effects)
- Gender isolation (ratio of employee's gender to number of the same within immediate work group)
- Generation isolation (comparison of age bracket to most frequent generational bracket within immediate work group)
- Ethnic isolation (ratio of employee's ethnicity to number of the same within immediate work group)
- Difference between employee and manager age
- Percentage change between last two performance appraisal scores (per competency and/or overall)
- Team and department quit outbreak indicators (ratio of terms over x months relative to average headcount over x months)
- Industry experience (binary or length in years)

Remember to compute variables consistent with a need (e.g., is there reason to believe generationally isolated employees are more likely to term?). There may be a time and place for undertaking data mining initiatives with no a priori theories about what may be uncovered; however, more often than not, our efforts should be tied to specific hypotheses the business needs tested, which have sound theoretical underpinnings.

Analysis of Differences

- 8.1 Comparing 2 Distributions
- 8.2 Comparing 3+ Distributions

Inferential Models

It's important to draw a distinction between inferential and predictive models. Inferential models are highly interpretable and their utility is largely in understanding the nature and magnitude of the effect variables have on outcomes. Inferential models also lend to quantifying the extent to which we can generalize the observed effects to the larger population from which the sample was drawn. The objective in predictive modeling is to also to learn from patterns in historical data but for the purpose of achieving the most accurate predictions of future events – even at the expense of interpretability. To be clear, this isn't to say that predictive models cannot be interpreted – they certainly can – but I've seen relatively few applications for predictive modeling in people analytics because models generally need to be highly interpretable to support action planning.

This chapter is dedicated to inferential models to support a working understanding of how to interpret model output and communicate clear, data-driven narratives that respect the nuance and noise characteristic of people data. The following chapter will provide an overview of predictive modeling frameworks.

9.1 Regression

Regression is perhaps the most important statistical learning technique for people analytics. If you have taken a statistics course at the undergraduate or graduate levels, you have surely already encountered it. Before diving into the math to understand the mechanics of regression, let's develop an intuitive understanding.

Imagine we are sitting at a large public park in NYC on a nice fall afternoon. If asked to estimate the annual compensation of the next person to walk by, in the absence of any additional information how would you estimate this? Most

would likely estimate the average annual compensation of everyone capable of walking by. Since this would include both residents and visitors, this would be a very large group of people! The obvious limitation with this approach is that among the large group of people capable of walking by, there is likely a significant range of annual compensation values. Many walking by may be children, unemployed, or retirees who earn no annual compensation, while others may be highly compensated senior executives at the pinnacle of their careers. Since the range of annual compensation could be zero to billions of dollars, estimating the average of such a large population is likely going to be highly inaccurate without more information about who may walk by.

Let's consider that we are sitting outside on a weekday afternoon. Should this influence our annual compensation estimate? It is likely that we can eliminate a large segment of those likely to walk by, as we would expect most children to be in school on a typical fall weekday afternoon. It's also unlikely that those who are employed and not on vacation will walk by on a fall weekday afternoon. Therefore, factoring in that it is a weekday should limit the size of the population which in turn may reduce the range of annual compensation values for our population of passerbys.

Let's now consider that the park is open only to invited guests for a symposium on people analytics. Though it may be difficult to believe, a relatively small subset of the population is likely interested in attending such a symposium, so this information will likely be very helpful in reducing the size of the population who could walk by, which should further reduce the range of annual compensation since we probably have a good idea of the profile of those most likely to attend. This probably also lessens (or altogether eliminates) the importance of the weekday factor in explaining why people vary in the amount of compensation they earn each year.

Furthermore, let's consider that only those who reside in NYC and Boise were invited, and that the next person to walk by resides in Boise. Most companies apply a significant cost of living multiplier to the compensation for those in an expensive region such as NYC, resulting in a significant difference in compensation relative to those residing in a much less expensive city like Boise – all else being equal. Therefore, if we can partition attendees into two groups based on their geography, this should limit the range of annual compensation significantly within each – likely making the average compensation amount in each group a more nuanced and reasonable estimate.

What if we also learn the specific zip code in which the next passerby from Boise resides? The important information is likely captured in the larger city label (NYC vs. Boise), and the compensation for the specific zip codes within each city are unlikely to vary to a significant degree. Assuming this is true, it probably would not make sense to consider both the city name and zip code since they are effectively redundant pieces of information with regard to explaining differences in annual compensation.

What if we learn that the next person to walk by will be wearing a blue shirt? Does this influence your estimate? Unless there is research to suggest shirt color and earnings are related, this information will likely not contribute any significant information to our understanding of why people vary in the amount of compensation they earn annually and should, therefore, not be considered.

You can probably think of many relevant variables that would help further narrow the range of annual compensation. These may include job, level, years of experience, education, location, among other factors. The main thing to understand is that for each group of observations with the same characteristics - such as senior analysts with a graduate degree who reside in NYC - there is a distribution of annual compensation. This distribution reflects unexplained variance. That is, we do not have information to explain why the compensation for each and every person is not the same and in social science contexts, it simply is not practical to explain 100 percent of the variance in outcomes. Two people may be similar on hundreds of factors (experience, education, skills) but one was simply a more effective negotiator when offered the same role and commanded a higher salary. It's likely we do not have data on salary negotiation ability so this information would leave us with unexplained variance in compensation. The goal is simply to identify the variables that provide the most information in helping us tighten the distribution so that estimating the average value will generally be an accurate estimate for those in the larger population with the same characteristics.

While we can generally improve our estimates with more relevant information (not shirt color or residential zip code in this case), it is important to understand that samples which are too small (n < 30) lend to anomalies; modeling noise in sparse data can result in models that are unlikely to generalize beyond the sample data. For example, if the only people from Boise to attend the people analytics symposium happen to be two ultra wealthy tech entrepreneurs who earn millions each year, it would not be appropriate to use this as the basis for our estimates of all future attendees from Boise. This is a phenomenon known as overfitting that will be covered later in this chapter.

This is the essence of regression modeling: find a limited number of variables which independently or jointly provide significant information that helps explain (by reducing) variance around the average value. As illustrated in this example, adding additional variables (information) can impact the importance of other variables or may offer no incremental information at all. In the subsequent sections, we will cover how to identify which variables are important and how to quantify the effect they have on the outcome.

9.2 Simple Linear Regression

9.2.1 Parameter Estimation

Ordinary Least Squares (OLS) is the most common method for estimating unknown parameters in a linear regression model.

9.3 Multiple Linear Regression

- 9.3.1 Moderation
- 9.3.2 Mediation

9.4 Polynomial Regression

9.5 Logistic Regression

Logistic regression is an excellent tool when the outcome is categorical. Logistic regression allows us to model the probability of different classes – a type of modeling often referred to as classification. The context for classification can be binomial for two classes (e.g., active/inactive, promoted/not promoted), multinomial for multiple unordered classes (e.g., skills, job families), or ordinal for multiple ordered classes (e.g., survey items measured on a Likert scale, performance level).

- 9.5.1 Binomial
- 9.5.2 Multinomial
- 9.5.3 Ordinal

Proportional Odds Logistic Regression

9.6 Hierarchical Models

Predictive Models

- 10.1 Bias-Variance Trade-Off
- 10.2 Cross-Validation
- 10.3 Balancing Classes
- 10.4 Model Performance

Automated Machine Learning (AutoML)

Unsupervised Learning Models

- 12.1 Factor Analysis
- 12.2 Clustering

Data Visualization

Data Storytelling

Bibliography

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.

Daw, R. H., & Pearson, E. S. (1972). Studies in the History of Probability and Statistics. XXX. Abraham De Moivre's 1733 Derivation of the Normal Curve: A Bibliographical Note. Biometrika, 59(3), 677–680. https://doi.org/10.2307/2334818

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. New York: Springer.

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.

Kerlinger, F., & Lee, H. (2000). Foundations of behavioral research (4th ed.). Melbourne: Wadsworth.

Wheelan, C. (2013). Naked Statistics: Stripping the Dread from the Data. New York: W.W. Norton.

Appendix

16.1 4D Framework

1. Discover

You are likely familiar with the old adage: "An ounce of prevention is worth a pound of cure." Such is the case with respect to planning in an analytics context. During the Discover phase, it is important to remain in the problem zone; seek to understand your clients' needs through active listening and questions. This is not the time for solutioning or committing to any specific deliverables. If the client's needs are ambiguous, proceeding will likely be an exercise in futility. Outlined below is a set of general questions that should be considered during this initial phase to prevent allocating scarce time and resourcing to a project that ultimately misses the mark.

• Client

Who is the client? A client can be a person or organization that has contracting you for consulting services, or an internal stakeholder within your organization who has need. What is important to them?

• Primary Objective

- What is the client ultimately hoping to accomplish?
- Is the request merely to satisfy one's curiosity, or are there actions that can realistically be taken to materially influence said objective?

• Problem Statement

 One of my most important early steps is clearly defining the problem statement. If your understanding of the problem – after translating from the business terms in which it was initially expressed – is misaligned with the client's needs, none of the subsequent steps matter.

Figure 16.1: Figure 1: 4D Framework

• Guiding Theories

- What theoretical explanations can the client offer as potential rationalizations for the phenomena of interest?
- Are there existing theories in the organizational literature that should guide how the problem is tackled (e.g., findings from similar research implemented in other contexts)?

• Research Questions

To respect the nuances of the problem statement, it is important to unpack it and frame as a set of overarching questions to guide the research.

- Q1: ...Q2: ...Q3: ...
- Research Hypotheses

Once research questions are developed, what do you expect to find based on anecdotal stories or empirical findings? As a next step, these expectations should be expressed in the form of research hypotheses. Please note that these research hypotheses are different from statistical hypotheses.

- H1: ... - H2: ... - H3: ...

To ensure the hypotheses lend themselves to actionable analyses, it is important to consider the following: "What does success look like?" In other words, once the project is complete, against which success measures will the project's success be determined? Curiosity is not a business reason and hope is not a reasonable strategy. The following questions may prove helpful in the promotion of actionable – over merely interesting outcomes:

- What will be done if the hypotheses are empirically supported?
- What will be done if the hypotheses are not empirically supported?

Assumptions

At this point, it's helpful to consider what assumptions may be embedded in this discovery work. Are the questions and hypotheses rooted in what the client has theorized, or are these the product of an ambiguous understanding of the client's needs?

• Cadence

- Is this analysis a one-off, or could there be a need to refresh this analysis on a regular cadence? - Are there dates associated with programs, actions, etc. this analysis is intended to support?

Aggregation

Is there a need for individual-level detail supporting the analysis? Aaggregate data should generally be the default unless a compelling justification exists and approval from legal and privacy partners is granted. One important role of analysts is to help keep the audience focused on the bigger picture and findings. Access to individual-level detail can not only introduce unnecessary legal and compliance risk but can also lead to questions and probing that can delay taking needed actions based on the results.

Deliverable

What is the preferred method of communicating the results of the analysis (e.g., interactive dashboard, static slide deck, document)? It is important to determine this early so that subsequent efforts can be structured to support the preferred deliverable. For example, if an interactive dashboard is preferred, does your Engineering department need to prioritize dependent tasks such as data feeds, row-level security, BI development, and production server migrations?

• Filters & Dimensions

How does your client prefer to segment the workforce? Some common grouping dimensions are business unit, division, team, job family, location, tenure, and management level.

2. Design

Perhaps the most important initial question to answer in the design phase is: "Does anything already exist that addresses part, or all, of the client's objectives?" If the existing solution will suffice, it's possible that there is simply a communication/education gap, and you can allocate time and resources elsewhere.

The end-user experience is of paramount importance during the Design phase, as solutions should have a consistent look and feel regardless of who developed the product. To achieve this, it is important to resist siloed thinking and consider the broader set of analytics solutions the team has delivered – or is in the process of delivering.

• Data Privacy

Are there potential concerns with the study's objective, planned actions, and/or requested data elements from an employee privacy or legal perspective? A cross-functional data governance committee can help with efficient and consistent decisioning on requests for people data and analytics.

• Data Sources & Elements

- What data sources are required?
- What data elements are required?

In cases where sensitive attributes such as gender, ethnicity, age, sexual orientation, and disability status are requested, it's always best to exercise a 'safety first' mentality and consult with legal and privacy partners to ensure there is comfort with the intended use of the data. The decision on whether or not to include these sensitive data elements is often less about what the audience can view (e.g., People Partners may already have access to the information at the person level in the source system) and more anchored in what they plan to do with the information.

Is the required data already accessible in a data warehouse or other analytics environment? If not, does it need to be? What is required to achieve this?

Data Quality

It is important to understand the data generative process and never make assumptions about how anomalies or missing data should be interpreted. After identifying what data sources will be required for a particular analysis, it is important to meet with source system owners and data stewards to deeply understand the business processes by which data are generated in the system(s). Are there data quality concerns that need to be explored and addressed?

• Variables

How will the constructs be measured (e.g., survey instrument, derived attribute, calculated field)?

· Analysis Method

What are the appropriate analysis methods based on the research hypotheses? If modeling is required, is it more important to index on accuracy or interpretability?

Dependencies

Are other teams required to develop this solution? What is the nature of the work each dependent team will perform? Are there required system configuration changes? Do these teams have capacity to support?

• Change Management

Will this solution impact current processes or solutions? If so, what is the change management plan to facilitate a seamless transition and user experience?

• Sign-Off

Generally, it is best for the client to signoff on the problem statement, analysis approach, and wire frame for the deliverable (if applicable) before providing an ETA and proceeding to the development phase. This ensures alignment on the client's needs and the perceived utility of the solution in addressing those needs.

3. Develop

• Development Patterns

- Are there development patterns that should guide the development approach to support consistency?
- Are there existing calculated fields that can/should be leveraged for derived data?
- Are there best practices that should be employed to optimize performance (e.g., load time for dashboards, executing complex queries during non-peak times)?
- Are there standard color palettes that should be applied?

• Productionalizable Code

- How do models and data science pipelines need to be developed to facilitate a seamless migration from lower to upper environments? For example, initial exploratory data analysis (EDA) may be performed using curated data in flat files for the purpose of identifying meaningful trends, relationships, and differences, but where will this data need to be sourced in production to automate the refresh of models at a regular interval? If the data were provided from multiple source systems, what joins are required to integrate the data? What transformation logic or business rules need to be applied to reproduce the curated data?

• Unit Testing

- What test cases will ensure the veracity of data?
- Who will perform the testing?

• UAT Testing

- In the spirit of agility and constant contact with the client to prevent surprises, it is generally a good idea to have the client take the solution for a test run within the UAT environment and then provide sign-off before migrating to production. If the deliverable is a deck or doc with results from a model, UAT may surface clarifying questions that can be addressed before releasing to the broader audience.

4. Deliver

The Deliver phase can take many forms depending on the solution being released. If the solution is designed for a large user base, a series of recorded trainings may be in order so that there is a helpful reference for those unable to attend the live sessions or new joiners in the future. It is important to monitor success measures, which could be insights aligned to research hypotheses, dashboard utilization metrics, or any number of others defined within the Discover phase.