(1R*,2S*)-1-fenylo-2-nitropropanol.

Dziedzina wynalazku:

Niniejszy wynalazek dotyczy (1R*,2S*)-1-fenylo-2-nitroalkoholi, w szczególności (1R*,2S*)-2-nitro-1-fenylo-1-propanolu i jego homologów oraz metod ich wytwarzania.

Tło wynalazku:

Fenylopropanolamina jest powszechnym składnikiem wielu dostępnych bez recepty preparatów na kaszel i przeziębienie, a także aktywnym składnikiem wielu produktów zmniejszających apetyt. Fenylopropanolamina może jednak występować jako dwa oddzielne związki, które są wzajemnie stereoizomerami, (1R*,2S*)-fenylopropanolamina i (1S*,2R*)-fenylopropanolamina. Właściwości fizyczne obu stereoizomerów są różne. (1R*,2S*)-fenylopropanolamina, zwana również dl-norefedryną, jest pożądanym stereoizomerem i jest produktem określonym przez Farmakopeę Stanów Zjednoczonych XXII (USP). (1S*,2R*)-fenylopropanolamina, zwana również dl-izonorefedryną, nie spełnia specyfikacji USP XXII. Fenylopropanolamina USP jest zatem synonimem (1R*,2S*)-fenylopropanolaminy lub dl-norefedryny.

Jedną z obecnie stosowanych metod wytwarzania fenylopropanolaminy jest reakcja propiofenonu z azotynem alkilu, po której następuje katalityczna redukcja (uwodornienie) półproduktu izonitrozopropiofenonu. Proces ten został opisany na przykład przez Hartung i Crossley, Organic Synthesis, Vol. 2, str. 363-364; Hartung i Munch, "Amino Alcohols. I. Phenylpropanolamine and Para-Tolylpropanolamine", J. Am. Chem. Soc., Vol. 51, s. 2264 (1929); Wilbert et al., U.S. Patent 3,028,429. Główną zaletą tego procesu jest to, że wytwarza on zasadniczo 100% pożądanego stereoizomeru dl-norefedryny. Proces ten ma jednak istotne wady. Jest to proces wieloetapowy z umiarkowaną wydajnością na każdym etapie, co skutkuje stosunkowo niską ogólną wydajnością. Ponadto proces produkcyjny generuje duże ilości niebezpiecznych odpadów, których utylizacja jest kosztowna.

Fenylopropanoloamina może być również wytwarzana w reakcji benzaldehydu z nitroetanem, po której następuje katalityczna redukcja pośredniego nitroalkoholu, 2-nitro-1-fenylo-1-propanolu. Proces ten został opisany przez Hoover et al., "Synthesis of 2-Amino-1-Phenyl-1-Propanol and Its Methylated Derivatives", J. Org. Chem., Vol. 12, pp. 506-509 (1947), i ma tę zaletę, że prawie nie generuje odpadów. Proces ten ma jednak poważną wadę polegającą na tym, że sam półprodukt nitroalkoholowy jest wytwarzany jako stereoizomeryczna mieszanina (1R*,2S*)-2-nitro-1-fenylo-1-propanolu o

niskiej zawartości pożądanego stereoizomeru (1R*,2S*)-2-nitro-1-fenylo-1-propan olu. Po redukcji frakcja pożądanego stereoizomeru fenylopropanoloaminy, dl-norefedryny, wynosi tylko około 30-35%, a pozostała ilość to inny stereoizomer, dl-izonorefedryna. Podejmowane przez tych wcześniejszych pracowników próby rozdzielenia stereoizomerów fenylopropanolaminy z wydajnością wystarczającą do praktycznego zastosowania nie powiodły się i proces ten został porzucony na rzecz obecnego procesu propiofenonowego.

Patenty USA nr 1,356,877 i 1,973,647 na rzecz Nagai, opisujące proces benzaldehydowy do produkcji homologów efedryny, ujawniają zastosowanie katalizatorów, takich jak węglany metali alkalicznych, wodorowęglany, fosforany lub pirydyna. Zastosowanie wodorotlenków metali alkalicznych w mieszaninie reakcyjnej zostało opisane przez Vanderbilta i Hassa, Ind. Eng. Chemistry, Vol. 32, s. 34 (1940). Metody te mają jednak te same wady opisane powyżej, a mianowicie produkt redukcji zawiera tylko stosunkowo niewielkie ilości pożądanego stereoizomeru, ogólna konwersja jest niska, a reakcja przebiega powoli.

Kamlet, U.S. Patent 2,151,517, zajął się problemem niskiej reaktywności i konwersji katalitycznych węglanów alkalicznych i wodorotlenków, najpierw wytwarzając sól metalu alkalicznego nitroalkanu i reagując z produktem addycji wodorosiarczynu benzaldehydu. Proces ten skutecznie zwiększył konwersję reagentów i znacznie skrócił czas reakcji, ale nadal wytwarzał produkt nitroalkoholowy o niskiej zawartości pożądanego stereoizomeru (1R*,2S*).

Istnieje zapotrzebowanie na prekursory dl-norefedryny i jej homologów. W szczególności potrzebne są 1-fenylo-2-nitroalkohole o zwiększonej zawartości pożądanego stereoizomeru (1R*,2S*)-1-fenylo-2-nitroalkoholu. Po redukcji (1R*,2S*)-1-fenylo-2-nitroalkoholi, wytwarzane byłyby z wysoką wydajnością pożądane homologi (1R*,2S*)-fenylopropanoloaminy.

Istnieje również potrzeba udoskonalonego procesu wytwarzania prekursorów 1-fenylo-2-nitroalkoholi dl-norefedryny i jej homologów. Metoda ta powinna wytwarzać 1-fenylo-2-nitroalkohole o zwiększonej zawartości pożądanego stereoizomeru (1R*,2S*)-1-fenylo-2-nitroalkoholu. Proces powinien również wytwarzać pożądany produkt (1R*,2S*)-1-fenylo-2-nitroalkoholu z wysoką ogólną konwersją reagentów i krótkim czasem reakcji.

Podsumowanie preferowanych rozwiązań:

Zgodnie z jednym z aspektów niniejszego wynalazku, dostarczony jest 1-fenylo-2-nitroalkohol o wzorze I, gdzie m jest liczbą całkowitą od 0 do 3, a każdy R jest niezależnie wybrany z grupy składającej się z H, -CH3 i -CH2CH3. W związku o wzorze I, węgiel-1 i węgiel-2 są asymetryczne, to znaczy są centrami chiralnymi,

wokół których tworzą się izomery R i S. Wszystkie pozostałe węgle mogą być asymetryczne lub nie. Alkohol 1-fenylo-2-nitroalkoholowy ma zatem stereoizomer (1R*,2S*) i stereoizomer (1S*,2R*). 1-fenylo-2-nitroalkohol zawiera więcej niż około 50% stereoizomeru (1R*,2S*). W preferowanym przykładzie wykonania, nitroalkoholem jest 2-nitro-1-fenylo-1-propanol.

Reakcję prowadzi się w obecności katalizatora aminowego. Wytworzony w tej reakcji 1-fenylo-2-nitroalkohol zawiera więcej niż około 50% pożądanego stereoizomeru (1R*,2S*).

W preferowanym przykładzie wykonania przedstawiono metodę wytwarzania 2-nitro-1-fenylo-1-propanolu. Metoda ta obejmuje reakcję benzaldehydu z nitroetanem w obecności katalizatora aminowego. Wytworzony w tej reakcji 2-nitro-1-fenylo-1-propanol ma stereoizomer (1R*,2S*) i stereoizomer (1S*,2R*). Preferowany stereoizomer (1R*,2S*) stanowi więcej niż około 50% 2-nitro-1-fenylo-1-propanolu. Redukcja tego nitroalkoholu daje dl-norefedrynę z wysoką wydajnością.

Inne przedmioty, cechy i zalety niniejszego wynalazku staną się oczywiste dla osób zaznajomionych ze sztuką na podstawie poniższego szczegółowego opisu. Należy jednak rozumieć, że szczegółowy opis i konkretne przykłady, wskazując preferowane przykłady wykonania niniejszego wynalazku, są podane w formie ilustracji, a nie ograniczeń. Wiele zmian i modyfikacji w zakresie niniejszego wynalazku można wprowadzić bez odchodzenia od jego ducha, a wynalazek obejmuje wszystkie takie modyfikacje.

Szczegółowy opis preferowanych rozwiązań:

Zaskakującym nowym odkryciem jest to, że zastosowanie katalizatora aminowego, wraz z kontrolą temperatury reakcji, selektywnie zwiększa produkcję pożądanego stereoizomeru (1R*,2S*) w produkcji nitroalkoholi. W szczególności, reakcja benzaldehydu i nitroetanu w obecności katalizatora aminowego w niskiej temperaturze prowadzi do wytworzenia produktu 2-nitro-1-fenylo-1-propanolu, w którym pożądany stereoizomer (1R*,2S*)-2-nitro-1-fenylo-1-propanolu jest obecny w ilości do 80% lub więcej. Produkcja produktu fenylopropanoloaminy, który spełnia

specyfikacje USP XXII, może być zatem przeprowadzona w prosty i ekonomiczny sposób, bez generowania niepożądanych niebezpiecznych odpadów.

Zgodnie z przykładem wykonania niniejszego wynalazku, dostarczany jest 1-fenylo-2-nitroalkohol o wzorze I, w którym m jest liczbą całkowitą od 0 do 3, a każdy R jest niezależnie wybrany z grupy składającej się z H, -CH3 i -CH2CH3. Węgiel-1 i węgiel-2 są asymetryczne, podczas gdy wszystkie pozostałe węgle mogą być asymetryczne lub nie. 1-fenylo-2-nitroalkohol ma stereoizomer (1R*,2S*) i stereoizomer (1S*,2R*). 1-fenylo-2-nitroalkohol zawiera więcej niż około 50% stereoizomeru (1R*,2S*). Korzystnie 1-fenylo-2-nitroalkohol zawiera od 60% do 80% lub więcej stereoizomeru (1R*,2S*). Szczególnie preferowanym nitroalkoholem jest 2-nitro-1-fenylo-1-propanol (m=0, każdy R=H).

Zgodnie z innym przykładem wykonania niniejszego wynalazku, dostarczony jest sposób wytwarzania 1-fenylo-2-nitroalkoholu o wzorze I. 1-fenylo-2-nitroalkohol wytwarzany tą metodą ma stereoizomer (1R*,2S*) i stereoizomer (1S*,2R*). Stereoizomer (1R*,2S*) stanowi więcej niż około 50% 1-fenylo-2-nitroalkoholu, korzystnie około 60% do 80%. Metoda obejmuje etap reakcji benzaldehydu z nitroalkanem o wzorze II, w którym każdy R jest zdefiniowany powyżej, w obecności katalizatora aminowego.

Nitroalkanem o wzorze II, który jest preferowany do stosowania w niniejszym wynalazku, jest nitroetan (m=0, każdy R=H). Można również stosować inne nitroalkany, takie jak nitropropan, nitrobutan lub wyższy nitroalkan.

Nitroalkan poddaje się reakcji z benzaldehydem, tworząc 1-fenylo-2-nitroalkohol. Inne aldehydy aromatyczne mogą być stosowane, na przykład podstawiony benzaldehyd, w celu uzyskania innych produktów nitroalkoholowych.

Zgodnie z przykładem wykonania niniejszego wynalazku, reakcja jest katalizowana przez aminę. Stwierdzono, że katalizatory aminowe mają wysoki stopień selektywności w wytwarzaniu pożądanego stereoizomeru (1R*,2S*) nitroalkoholu. W preferowanym przykładzie wykonania, katalizator aminowy jest reprezentowany przez wzór III, w którym R7, R8 i R9 są niezależnie grupą alkilową, korzystnie niższą grupą alkilową, taką jak grupa alkilowa C1-3, grupa alkanolowa lub grupa alkarylowa, taka jak grupa benzylowa. R7, R8 i R9 mogą być także niezależnie wodorem. Dwa z R7, R8 i R9 mogą również wspólnie tworzyć pierścień nasycony o 3-6 lub więcej członach, na przykład pierścień piperydynowy, piperazynowy, triazynowy lub morfolinowy lub podobną pochodną. Aminy o wzorze III nie powinny być sterycznie utrudnione (np. podstawione grupami t-butylowymi).

Wiele klas i typów amin uznano za użyteczne w reakcji wynalazczej. Związek aminowy może być mono-, di- lub polifunkcyjny w odniesieniu do podstawionych grup aminowych. Preferowane są drugorzędowe i trzeciorzędowe aminy alifatyczne,

przy czym najbardziej preferowane są trzeciorzędowe aminy alifatyczne. Preferowaną aminą trzeciorzędową jest trietyloamina lub "TEA" (R7-9 = -CH2CH3). Przydatne są również drugorzędowe i trzeciorzędowe aminy di- i tri-alkanolowe, drugorzędowe i trzeciorzędowe aminy mono-alkilo, di-alkanolowe, cykliczne aminy alifatyczne, drugorzędowe i trzeciorzędowe aminy benzylowe oraz pochodne morfoliny.

Aminy pierwszorzędowe, choć nie tak preferowane, są również katalityczne i mają znaczny stopień selektywności dla pożądanego stereoizomeru (1R*,2S*). Jednak aminy pierwszorzędowe są zdolne do tworzenia produktów ubocznych zasady Schiffa poprzez działanie aminy pierwszorzędowej na benzaldehyd. Zmniejsza to ogólną wydajność nitroalkoholu.

Pochodne aniliny, tj. związki, w których jeden lub więcej z R7, R8 i R9 są niepodstawionymi lub podstawionymi grupami fenylowymi, nie są uważane za wchodzące w zakres wzoru III i nie są preferowane. Podobnie, związki aromatyczne, takie jak N-podstawione pirydyny, nie są rozważane do stosowania zgodnie z wynalazkiem. Aromatyczne aminy lub pochodne aniliny nie byłyby jednak wykluczone, o ile związek aminowy ma co najmniej jedną inną grupę funkcyjną, która jest aktywna, na przykład ma co najmniej jedną z grup wymienionych powyżej jako wykazujących aktywność katalityczną.

Aminy z kilku różnych klas zostały ocenione w celu określenia ich aktywności katalitycznej i selektywności w produkcji pożądanego stereoizomeru (1R*,2S*) nitroalkoholu. Wyniki przedstawiono w tabeli 1.

Table 1. Evaluation of Amine Catalysts in 1-phenyl-2-nitroalcohol Reaction

Catalyst	Amine Type	Reacta	ant Mole Ratios	Total	(1R*,2S*) in	
		Benzaldehyde	Nitroethane	Catalyst	Conversion %*	Nitro-alcohol %
Triethylamine	Tertiary linear aliphatic	1.00	2.91	0.97	75.3	79.3
Diethanolamine	Secondary alkanol	1.00	4.00	0.25	81.9	64.6
Dimethylbenzylamine	zylamine Tertiary benzyl		1.50	1.00	94.5	56.5
Piperidine	peridine Secondary cyclic aliphatic		4.00	0.25	89.6	59.4
Diethylamine	Secondary linear aliphatic	1.00	4.00	0.20	99.7	68.7
Dimethyl-p-toluidine	Tertiary aniline derivative	1.00	1.50	1.00	N.R.	N.R.
Pyridine	Pyridine derivative	1.00	4.00	0.25	N.R.	N.R.
1-phenyl-1,2- propanedione-2-oxime	Oxime	1.00	4.00	0.25	N.R.	N.R.
Propylamine	Primary amine	1.00	4.00	0.25	52.6	58.3
Tetramethylammonium hydroxide	Quaternary ammonium hydroxide	1.00	4.00	0.25	53.6	38.8
Benzyltributylammonium chloride	Quaternary ammonium chloride	1.00	4.00	0.25	N.R.	N.R.
Sodium hydroxide	Alkali hydroxide (non-amine)	1.00	1.00	0.25	78.4	18.4

Based on limiting reactant

Dane w Tabeli 1 pokazują, że istnieje wiele klas i typów katalizatorów aminowych, które działają korzystnie w reakcji wynalazczej. Tabela ta pokazuje również, że inne aminy nie działają tak korzystnie. Można na przykład zauważyć, że pirydyna nie wykazuje aktywności katalitycznej w reakcji 1-fenylo-2-nitroalkoholu. Jest to sprzeczne z ujawnieniami patentów Nagai, które wymieniają pirydynę jako katalizator w reakcji benzaldehydu do produkcji efedryny i jej homologów.

Inna amina, wodorotlenek tetrametyloamoniowy (czwartorzędowy wodorotlenek amoniowy), wykazuje aktywność katalityczną. Jednak katalizator ten nie wytwarza selektywnie pożądanego stereoizomeru (1R*,2S*). Dlatego nie jest on uważany za preferowany katalizator do stosowania w reakcji według niniejszego wynalazku.

W tej tabeli znajduje się również reakcja kontrolna z wodorotlenkiem sodu działającym jako katalizator. Ta nieamina wykazała słabą selektywność w kierunku produkcji pożądanego stereoizomeru (1R*,2S*).

Niniejszy wynalazek charakteryzuje się wysoką zawartością pożądanego stereoizomeru (1R*,2S*) alkoholu 1-fenylo-2-nitroalkoholowego. Kontrolując temperaturę reakcji oraz ilości i proporcje odczynników i katalizatora, jak omówiono poniżej, można łatwo osiągnąć ułamek molowy stereoizomeru (1R*,2S*) wynoszący co najmniej około 50%, korzystnie 60% do 80% lub więcej. Ani węglany alkaliczne, ani wodorotlenki alkaliczne stosowane w poprzednich procesach nie zapewniają porównywalnych proporcji stereoizomerów (1R*,2S*) do (1S*,2R*).

Sam związek aminowy może być stosowany jako homogeniczny katalizator. Alternatywnie, związek aminowy może być włączony do nierozpuszczalnego nośnika lub nierozpuszczalnej żywicy i stosowany jako katalizator heterogeniczny.

Kontrola temperatury reakcji oraz proporcji reagentów i katalizatora aminowego są ważne dla osiągnięcia pożądanego stosunku stereoizomeru (1R*,2S*) do stereoizomeru (1S*,2R*) zgodnie z wynalazkiem. W odniesieniu do temperatury reakcji, reakcję można prowadzić w temperaturze od około -15°C do 30°C. Reakcję korzystnie prowadzi się w niskiej temperaturze, najlepiej w temperaturze od około -15°C do 0°C. Reakcję można prowadzić w wyższych temperaturach, takich jak temperatura pokojowa, z niższą wydajnością. Jednak nawet w wyższych temperaturach reakcja wynalazcza osiąga ogólne wydajności i stosunki stereoizomerów (1R*,2S*) do (1S*,2R*) nieoczekiwanie wyższe niż osiągane zgodnie z obecnym procesem benzaldehydu.

Optymalna temperatura prowadzenia reakcji zależy również od konkretnego użytego nitroalkanu. Gdy stosowanym nitroalkanem jest nitroetan, optymalny zakres temperatur wynosi około -15°C do 0°C.

Kontrola proporcji odczynników użytych w reakcji jest również ważna dla uzyskania pożądanych rezultatów. Najlepsze wyniki obserwuje się, gdy stosunek nitroalkanu do benzaldehydu w mieszaninie reakcyjnej wynosi korzystnie około 1:10 do 10:1, a korzystniej około 1:1 do 4:1.

Ilość katalizatora aminowego stosowanego w mieszaninie reakcyjnej można również zmieniać w celu uzyskania najkorzystniejszych wyników. Optymalne stężenie aminy zależy częściowo od rodzaju użytej aminy. Aminy drugorzędowe wykazują wyższą aktywność i mogą być stosowane w niższych stężeniach. Aminy trzeciorzędowe najlepiej stosować w wyższych stężeniach niż aminy drugorzędowe. Ilość użytego katalizatora aminowego jest mierzona w stosunku do ilości nitroalkanu w mieszaninie reakcyjnej. Preferowane ilości aminy drugorzędowej wynoszą około 0,1% do 250% nitroalkanu, przy czym najbardziej preferowane są ilości od 1% do 10%. Aminę trzeciorzędową korzystnie stosuje się w ilości od około 10 mol% do 250 mol% zastosowanego nitroalkanu, korzystniej około 50 mol% do 150 mol%. Dostosowując temperaturę, stosunek reagentów i stężenie aminy, reakcję można regulować tak, aby selektywnie zachęcać do wytwarzania pożądanego stereoizomeru (1R*,2S*) nitroalkoholu.

Reakcja wynalazcza jest odwracalna, a jeśli pozwoli się jej przebiegać przez dłuższy czas lub w wyższych temperaturach, osiąga równowagowy stosunek stereoizomerów (1R*,2S*) do (1S*,2R*), który jest w przybliżeniu taki sam jak niepożądany stosunek wytwarzany metodami z poprzedniego stanu techniki. Neutralizacja lub usunięcie katalizatora jest potrzebne do wygaszenia reakcji lub "zamrożenia" stosunku izomerów w bardziej korzystnym stosunku, który istnieje w czasie wygaszania. Neutralizację katalizatora można osiągnąć poprzez obniżenie pH.

Reakcja może być prowadzona w taki sposób, że ograniczającym reagentem jest nitroalkan lub benzaldehyd. Zazwyczaj reakcję prowadzi się z nadmiarem nitroalkanu. Powoduje to, że benzaldehyd jest ograniczającym reagentem.

Innym aspektem prowadzenia reakcji w nadmiarze nitroalkanu jest brak konieczności stosowania dodatkowego rozpuszczalnika reakcyjnego. Reakcję można jednak również przeprowadzić w obecności obojętnego rozpuszczalnika reakcyjnego. Można wykorzystać powszechnie stosowane rozpuszczalniki, takie jak alkohole alifatyczne, węglowodory alifatyczne i aromatyczne oraz inne. Rozpuszczalniki reagujące z nitroalkanem nie byłyby jednak użyteczne. Na przykład rozpuszczalniki na bazie ketonów, które reagują z nitroalkanem, są niekorzystne. Każdy z wyżej wymienionych rozpuszczalników może również zawierać różne ilości wody.

Szczególnie preferowanym przykładem wykonania niniejszego wynalazku jest ulepszona metoda wytwarzania 2-nitro-1-fenylo-1-propanolu. Osiąga się to poprzez

reakcję benzaldehydu z nitroetanem w obecności katalizatora aminowego. Wytworzony 2-nitro-1-fenylo-1-propanol zawiera co najmniej około 50% stereoizomeru (1R*,2S*), ale może wynosić od 60% do 80% lub więcej, gdy jest prowadzony w niskiej temperaturze. W szczególności preferowana jest temperatura reakcji od -15°C do 0°C. Preferowanym katalizatorem aminowym dla tej reakcji jest amina trzeciorzędowa, najlepiej trietyloamina.

Wytwarzanie dl-norefedryny i jej homologów można osiągnąć zgodnie z innym przykładem wykonania niniejszego wynalazku. Najpierw tworzy się 1-fenylo-2-nitroalkohol, jak opisano powyżej, metodą reakcji benzaldehydu z nitroalkanem w obecności katalizatora aminowego. Utworzony w tej reakcji 1-fenylo-2-nitroalkohol jest następnie redukowany do związku o wzorze IV.

DL-norefedryna (m=0, każdy R=H) może być wytwarzana w ten sposób poprzez reakcję benzaldehydu z nitroetanem w obecności katalizatora aminowego zgodnie z niniejszym wynalazkiem w celu wytworzenia 2-nitro-1-fenylo-1-propanolu i redukcji 2-nitro-1-fenylo-1-propanolu.

Redukcja cząsteczki organicznej zwykle odpowiada zwiększeniu zawartości wodoru lub zmniejszeniu zawartości tlenu w cząsteczce. Redukcję 1-fenylo-2-nitroalkoholu w przykładzie wykonania niniejszej reakcji osiąga się dowolną metodą uwodornienia znaną w sztuce, najlepiej przez uwodornienie katalityczne.

Synteza 1:

Nitroetan (10,2 g, 0,132 mola) zmieszano z trietyloaminą (17,1 g, 0,169 mola), schłodzono do temperatury -8°C i dodano benzaldehyd (5,1 g, 0,047 mola). Po 2,7 godzinach w temperaturze -10°C mieszaninę zneutralizowano. Analiza HPLC wykazała konwersję 8,25 g (96,9%) całkowitego 2-nitro-1-fenylo-1-propanolu. 6,40 g 2-nitro-1-fenylo-1-propanolu stanowiło (1R*,2S*)-stereoizomer (77,6%).

Synteza 2:

Nitroetan (15,6 g, 0,208 mola) zmieszano z trietyloaminą (17,1 g, 0,169 mola), schłodzono do temperatury -8°C i dodano benzaldehyd (5,02 g, 0,047 mola). Po 2,25 godzinach reakcji, w temperaturze -10°C, mieszaninę zneutralizowano. Analiza HPLC wykazała konwersję 8,30 g (96,9%) całkowitego 2-nitro-1-fenylo-1-propanolu z zawartością (1R*,2S*)-stereoizomeru 6,11 g (74,1%).

Synteza 3:

Benzaldehyd (13,28 g, 0,125 mola), nitroetan (9,41 g, 0,125 mola), 47,5 ml etanolu SDA-2B i 3,5 ml wody zmieszano i dodano 1 ml roztworu wodorotlenku sodu (50%) z chłodzeniem. Po 75 godzinach reakcji, w temperaturze pokojowej, wodorotlenek sodu został zneutralizowany. Analiza HPLC wykazała konwersję 16,2 g (71,6%) całkowitego 2-nitro-1-fenylo-1-propanolu z ilością (1R*,2S*)-stereoizomeru wynoszącą 5,5 g (33,9%).

Synteza 4:

Benzaldehyd (13,29 g, 0,125 mola), nitroetan (9,39 g, 0,125 mola), 47,5 ml etanolu SDA-2B i 3,5 ml wody zmieszano i schłodzono do -10°C. Do schłodzonej mieszaniny dodano 1,0 ml roztworu wodorotlenku sodu (50%) i reakcję prowadzono przez 75 godzin w temperaturze -10°C, po czym wodorotlenek sodu zneutralizowano. Analiza HPLC wykazała konwersję 19,3 g (85,4%) całkowitego 2-nitro-1-fenylo-1-propanolu z zawartością izomeru (1R*,2S*)6,4 g (33,1%).

Synteza 5:

Benzaldehyd (106,1 g., 1,0 mol) mieszano z wodorosiarczynem sodu (100,6 g., 1,06 mol) w 500 ml wody przez 30 minut. Oddzielnie, nitroetan (82,5 g., 1,10 mola) rozpuszczono, z chłodzeniem, w roztworze sporządzonym z 50% wodorotlenku sodu (90,9 g., 1,13 mola) i 155 ml wody. Mieszaninę tę dodawano przez 15 minut w temperaturze 25°C, energicznie mieszając, do produktu addycji benzaldehydu i wodorosiarczynu sodu. Po całonocnym mieszaniu dolną warstwę odrzucono. Analiza HPLC górnej warstwy wykazała konwersję 125,4 g (69,3%) całkowitego 2-nitro-1-fenylo-1-propanolu z zawartością (1R*,2S*)-izomeru 43,9 g (35,1%).

Table 2: Preparation of 1-phenyl-1-nitroalcohols

Example	Conditions		Reactants		Reactant Mole Ratios			Total	(IR*,2\$*) in
	Min	Deg C	Nitroalkane	Catalyst	Nitroalkane	Benzaldehydo	Catalyst	Conversion %*	Nitro-alcohol %
3	1365	-10_	1-nitropropane	Triethylamine	4.00	1.00	1.00	88.4	58.5
4	3075	-12	Nitroethane	Dimethylbenzylamine	1.50	1.00	1.00	94.5	56.5
5	42	-5	Nitroethane	Propylamine	4.00	1.00	0.25	52.6	58.3
6	55	-13	Nitroethane	Piperidine	4.00	1.00	0.25	89.6	59.4
7	370	-8	Nitroethane	Triethylamine	1.00	2,12	2.59	100.8	63.0
8 .	220	-10	Nitroethane	Diethanolamine	4.00	1.00	0.25	81.9	64.6
9	205	-10_	Nitroethane	Triethylamine	1.00	2.10	0.16	83.6	66.0
10	130	-10	Nitroethane	Triothylamine	1.00	3.60	0.31	91.9	67,7
11	1120	-13	Nitroethane	Triethylamine	1.00	1.03	2,49	91.0	68.1
12	45	-10	Nitroethane	Diethylamine	4.00	1.00	0.20	99.7	68.5
13	60	-5	Nitroethane	Triethylamine	1.00	3.63	0,99	91.3	69.2
14	305	-8	Nitroethane	Triethylamine	2.66	1.00	4.94	95.2	73.0
1.5	543	-10	Nitroethane	Triethylamine	1.00	6.94	0.29	77.1	73.3
16	75	-13	Nitroethane	Triethylamine	1.00	2.09	0.46	81.4	74.9
17	155	-10	Nitroethane	Trieshylamine	2.91	1.00	0.97	75.3	79.3

Napisane przez: Fudes