Polylamb Language Specification

1 Syntax

1.1 Expressions

\overline{e}	:=	\overline{l}	literals
		x	variables (lowercase)
		(e)	parenthesized
		$e[\tau]$	type application
		$e_1 \ e_2$	application
		$e_1 op e_2$	binary operation
		(e_1,\ldots,e_n)	n -tuples, $n \ge 2$
		$\lambda x:\tau. e$	lambda abstraction ¹
		$\Lambda t. e$	type abstraction ²
		$\mathtt{let}\ p = e_1\ \mathtt{in}\ e_2$	let binding
		fix $f = \lambda$ (x : $ au$): $ au'$. e_1 in e_2	recursive functions 3
		$\mathtt{if}\ e_1\ \mathtt{then}\ e_2\ \mathtt{else}\ e_3$	if expression
\overline{l}	:=	null	unit literal: Unit
		true false	boolean literals: Bool
		$\ldots \mid -2 \mid -1 \mid 0 \mid 1 \mid 2 \mid \ldots$	64-bit signed ints: Int
\overline{p}	:=	-	discarded pattern
		x	single argument
		(p_1, \ldots, p_n)	n -tuple destructor, $n \geq 2$
$\overline{}$ op	:=	& < = > + - *	binary operations

1.2 Types

au	:= t	type variable (uppercase)
	(au)	parenthesized
	$ au_1$ -> $ au_2$	arrow types
	$\forall t. \tau$	universal types
	$\tau_1 * \ldots * \tau_n$	tuple types, $n \ge 2$
	$\verb Int \verb Bool \verb Unit $	built-in types

declaration

Declarations

Alternative syntax

We can write \setminus or lambda instead of λ . We can write any in place of Λ . We can write forall in place of \forall .

Semantics:

Call-by-value big step semantics.
When a bound variable is bound again, the new binding takes over.
There is no one-type tuples
Lexical scope.

One can also denote a curried multi-argument function with the syntax λ ($v_1:t_1$) ... ($v_n:t_n$). e, which desugars to n nested lambda expressions. Note that in this case, parentheses are needed around each annotated argument.

²Similarly, $\Lambda t_1 \dots t_n$. e is n nested type abstractions.

³To define mutually recursive functions, connect the definitions using the keyword **and**. For example, one can have **fix** $f_1 = \lambda$ $(v_1:\tau_1) \rightarrow \tau'_1$. e_1 and ... and $f_n = \lambda$ $(v_n:\tau_n) \rightarrow \tau'_n$. e_n in e'