SML Assignment - 2

Kaustav Vats (2016048)

Question 1 (Book Questions)

Classes- W1, W2

Confusion Matrix

Features\Evaluation Metric	Training Accuracy	Empirical Error	Bhattacharyya Bound	
X1	65.0	35.0	0.473996	
X1 and X2	60.0	40.0	0.459847	
X1, X2 and X3	85.0	15.0	0.411357	

In particular, is it ever possible for a finite set of data that the empirical error might be larger for more data dimensions?

Not necessarily, Increasing the sample size will affect the distribution, It might change in such a way that distribution is much better separated than before.

Question 2 & 3 Combined (Book Questions)

Normal Distribution\ Evaluation Metric	Avg Training Accuracy	Empirical Error	Bhattacharyya Bound	True Error
W1 N(-0.5, 1) W2 N(0.5, 1) P(w1) == P(w2)	56.01	43.99	0.566574	0.315975
W1 N(-0.5, 2) W2 N(0.5, 2) P(w1) = 2/3& P(w2) = 1/3	28.79	71.21	0.501807	0.400435
W1 N(-0.5, 2) W2 N(0.5, 2) P(w1) == P(w2)	55.85	44.15	0.532247	0.369875
W1 N(-0.5, 3) W2 N(0.5, 1) P(w1) == P(w2)	63.08	36.92	0.571936	0.365817

Part B

Data Visualization

Confusion Matrix

Evaluation Metric	Correlated Test Data	Decorrelated Test Data
Validation Accuracy	83.71	84.57
Testing Accuracy	81.25	83.75

Decision Boundary

ROC Curves

Decorrelated data is giving much better result. False positives have decreased after doing decorrelation as compared to correlated data. Data points are much better separated than before.

Risk Matrix Confusion Matrix Testing Data (Correlated), (Decorrelated) and Missing points

For Missing Values, it seems like good points were more towards one Normal Distribution.

Evaluation Metric

Accuracy	Risk 1	Risk 2	Risk 3	Risk 4	Risk 5	Risk 6
Correlated	81.25	18.75	43.75	56.25	81.25	77.5
Decorrelated	83.75	16.25	43.75	56.25	83.75	80.0
Missing Points	72.5	27.5	43.75	56.25	73.75	70.0

Missing Test Points

78.75 **Accuracy**

Roc with Risk Matrix Incorporation

Decision Boundary After incorporating Risk Matrix with Correlated Data and Decorrelated Data

Decision Boundary are shifted, normal axis to the boundary.

After incorporating Risk Matrix, decision boundary for Risk 3 and Risk 4, are not visible on given grid. On increasing Grid size, It takes lot of time to plot decision boundary with meshgrid.

For Risk 3 and Risk 4, All points are predicted as class 1, that's why boundaries are shifted and not visible in meshgrid size.

Roc Curve for Decorrelated Data

ROC For Decorrelated Data with Risk Matrix

