Applications Information (Continued)

FIGURE 12. Typical Reference and Supply Circuit

FIGURE 13. Symmetrically Centered Reference

3.0 Converter Equations

The transition between adjacent codes N and N+1 is given by:

$$V_{IN} = \left\{ (V_{REF(+)} - V_{REF(-)}) \begin{bmatrix} N & 1 \\ 256 & 512 \end{bmatrix} \pm V_{TUE} \right\} + V_{REF(-)}$$
 (2)
$$N = \frac{V_{IN} - V_{REF(-)}}{V_{REF(+)} - V_{REF(-)}} \times 256 \pm Absolute Accuracy$$
 (4)

The center of an output code N is given by:

$$V_{IN} = \left\{ (V_{REF(+)} - V_{REF(-)}) \left[\frac{N}{256} \right] \pm V_{TUE} \right\} + V_{REF(-)}$$
 (3)

The output code N for an arbitrary input are the integers within the range:

$$N = \frac{V_{IN} - V_{REF(-)}}{V_{REF(+)} - V_{REF(-)}} \times 256 \pm Absolute Accuracy (4)$$

where: V_{IN} = Voltage at comparator input

 $V_{REF(+)} = Voltage at Ref(+)$

 $V_{REF(-)} = Voltage at Ref(-)$

V_{TUE} = Total unadjusted error voltage (typically $V_{REF(+)} \div 512)$