光学笔记

Optics Notes

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.8 - 2025.1

序言

本文为笔者本科时的"光学"课程笔记(Notes of Optics, 2024.8-2025.1)。由于个人学识浅陋,认识有限,文中难免有不妥甚至错误之处,望读者不吝指正,在此感谢。

我的邮箱是 dingyi233@mails.ucas.ac.cn。

目录

 		J
目录		IJ
1 月	电磁场的基本性质	2
2		3
3		4
4		5
5		6
6		7
参考	文献	8
	A. 波理论	9
A	A.1 一维波A.2 谐波A.3 相位和相速度	9 9 10
附录	B 波理论	11
	3.1 支撑材料列表	11
	3.2 这里是我的第二节附录	11
P	3.3 这里是我的第三节附录	12

为了更好的学习光学,建议先跳转至附录

第1章 电磁场的基本性质

第2章

第3章

第4章

第5章

第6章

参考文献

[1] Born M., Wolf E., 杨葭荪译. 光学原理: 光的传播、干涉和衍射的电磁理论. 电子工业出版社, 北京, 7 edition, 10 2009.

附录 A. 波理论

光的真实本性是光学的全部讨论的中心问题,在本书中我们从头到尾都得对待这个问题。"光究竟是一种波动现象还是一种粒子现象?"这个似乎干脆利索的问题,远比它初看之下复杂得多。

因为对光的经典讨论和量子力学讨论都要用到波的数学描述,本章要为这两种表述所需要的东西打好基础。下面叙说的想法将用于一切物理波,从一杯茶的表面张力皱波,到从某个遥远的星系照到我们的光脉冲。

A.1 一维波

一维波的形式:

一维波函数的最一般的形式:

$$\psi(x,t) = f(x - vt) = g(t - \frac{x}{v}) \tag{1}$$

具体而言,对于给定的波形(波的形状),我们只需令 t=0,拍一张 "照片"(例如 $\psi(x)=\frac{3}{10x^2+1}$),得到 $\psi(x,0)=f(x)$,然后将 f(x) 中的 x 换为 x-vt,即可得到一个以速度 v(可为负)向 x 轴正方向运动的波 $\psi(x,t)=f(x-vt)=g(t-\frac{x}{v})$ 。

绳索的上下振动是在第二个维度上的,但振动导出的波仍是一维波。

微分波动方程:

无损耗介质中的波动方程(无阻尼系统[®]的波动方程,阻尼效应可以添加一个 $\frac{\partial \psi}{\partial t}$ 项来描述,后文会进行讨论):

$$\frac{\partial^2 \psi}{\partial t^2} = v^2 \frac{\partial^2 \psi}{\partial x^2} \Longleftrightarrow \frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$
 (2)

如果代表一个波的函数 ψ 是这个方程的解,它将同时是 (x-vt) 的函数 (即 $t-\frac{x}{v}$ 的函数),它还是一个可以同时对 x 和 t 以非平庸方式求二次微商的函数。

特别地,我们有结论: ψ 是一维波函数 $\iff \psi$ 是 (x-vt) 的二次可微函数。

A.2 谐波

谐波的概念:

谐波,指简谐波、正弦波,其轮廓图是正弦曲线,是最简单的波形。在后续的傅里叶变换一节我们可以 看到,任何波形都可以由谐波叠加合成,因此谐波具有特殊的意义。

考虑如下波形:

$$\psi(x, t)|_{t=0} = \psi(x) = A \sin kx = f(x)$$
 (3)

其中 k>0 是一个常数,称为传播数(空间角频率),且 $k=\frac{2\pi}{\lambda}\cdot\mathbf{m}$ (λ 为波长),也即数值上等于频率 ν 但是量纲为 1 的常数;A 称为振幅。

光学中常用的长度单位是纳米 nm、微米 μ m 和埃米 1 Å = 10^{-10} m。本文规定,若无特殊情况,一般用 λ 表示波长, τ 表示周期, $\nu=\frac{1}{\tau}$ 表示时间频率, $\omega=2\pi\nu$ 表示时间角频率,波数(空间频率) $\kappa=\frac{1}{\lambda}$,传播数(空间角频率) $k=2\pi\kappa$ 。

谐波最常见的形式是:

$$\psi(x,t) = A\sin k(x \mp vt) \Longleftrightarrow \psi = A\sin(kx \mp \omega t) \tag{4}$$

[®]无阻尼系统考虑的区域中不包含源

空间频率:

光学信息可以以一种周期性方式散布在空间里,很像一个波的截图,我们可以将其视作(v=0)的波,并用空间频率 κ 来描述它们。

图 A.1: 空间频率较低的正弦亮度分布

图 A.2: 空间频率较高的正弦亮度分布

A.3 相位和相速度

考虑任何一个一维波函数 $\psi(x,t) = A\sin(kx - vt + \varphi_0)$, $\varphi = kx + vt$ 称为相位, φ_0 称为初相。由热力学中的偏微分关系,我们定义相速度:

$$\left(\frac{\partial x}{\partial t}\right)_{\varphi} = -\frac{\left(\frac{\partial \varphi}{\partial t}\right)_{x}}{\left(\frac{\partial \varphi}{\partial x}\right)_{t}} \tag{5}$$

附录 B. 标题

B.1 支撑材料列表

这里插入一张图片(类似思维导图那种)

表 B.1: 中英文对照表

English	中文
voltage	电压
current	电流
power	功率
resistance	电阻
conductance	电导
inductance	电感
capacitance	电容
frequency	频率
circuit	电路
circuit element	电流元件
signal	信号
circuit analysis	电路分析
circuit synthesis	电路综合
circuit design	电路设计
circuit topology	电路拓扑

表 B.2: 中英文对照表

English	中文
voltage	电压
current	电流
power	功率
resistance	电阻
conductance	电导
inductance	电感
capacitance	电容
frequency	频率
circuit	电路
circuit element	电流元件
signal	信号
circuit analysis	电路分析
circuit synthesis	电路综合
circuit design	电路设计
circuit topology	电路拓扑

B.2 这里是我的第二节附录

```
% MATLAB code here
2
    x = 0:0.1:2*pi;
3
    y = \sin(x);
    plot(x, y);
4
    xlabel('x');
    ylabel('sin(x)');
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
8
9
    % MATLAB code here
    x = 0:0.1:2*pi;
10
    y = sin(x);
11
12
    plot(x, y);
13
    xlabel('x');
    ylabel('sin(x)');
14
15
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
16
```

```
17
    % MATLAB code here
18
    x = 0:0.1:2*pi;
19
    y = \sin(x);
20
    plot(x, y);
21
    xlabel('x');
22
    ylabel('sin(x)');
23
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
24
25
    % MATLAB code here
    x = 0:0.1:2*pi;
26
27
    y = \sin(x);
    plot(x, y);
2.8
29
    xlabel('x');
30
    ylabel('sin(x)');
    title ('Sine Function');
31
32
    % ... (MATLAB code here, 最好是插入文件)
    % MATLAB code here
33
    x = 0:0.1:2*pi;
34
    y = \sin(x);
35
    plot(x, y);
36
    xlabel('x');
37
38
    ylabel('sin(x)');
    title ('Sine Function');
39
    % ... (MATLAB code here, 最好是插入文件)
40
    % MATLAB code here
41
    x = 0:0.1:2*pi;
42
    y = \sin(x);
43
    plot(x, y);
44
45
    xlabel('x');
46
    ylabel('sin(x)');
    title ('Sine Function');
47
    % ... (MATLAB code here, 最好是插入文件)% ... (MATLAB code here, 最好是插入文件)% ...
48
        (MATLAB code here, 最好是插入文件)% ... (MATLAB code here, 最好是插入文件)% ... (
        MATLAB code here, 最好是插入文件)A
    % MATLAB code here
49
    x = 0:0.1:2*pi;
50
    y = \sin(x);
51
52
    plot(x, y);
    xlabel('x');
53
54
    ylabel('sin(x)');
55
    title ('Sine Function');
    % ... (MATLAB code here, 最好是插入文件)
56
```

B.3 这里是我的第三节附录

你好你好你好你好你好你好