An Abstract Domain to Infer Octagonal Constraints with Absolute Value

<u>Liqian Chen</u>¹ Jiangchao Liu² Antoine Miné^{2,3} Deepak Kapur⁴ Ji Wang¹

> ¹National University of Defense Technology, China ²École Normale Supérieure, Paris, France ³CNRS, France ⁴University of New Mexico, NM, USA

> > 11/09/2014 - SAS 2014

Overview

- Motivation
- The octagon abstract domain
- A domain of octagonal constraints with absolute value
- Experiments
- Conclusion

MotivationThe octagon abstract domain
A domain of octagonal constraints with absolute value
Experiments

Motivation

Goal: numerical static analysis

discover numerical properties of a program statically and automatically

Applications:

- check for runtime errors (e.g., arithmetic overflows, division by zero, array out-of-bounds, etc.)
- optimize programs
- . . .

<u>Theoretical framework</u>: **abstract interpretation**

to design static analyses that are

- sound by construction (no behavior is omitted)
- approximate (trade-off between precision and efficiency)

Abstract domain: key ingredient of abstract interpretation

- a specific kind of computer-representable properties
 - e.g., a family of constraints
- sound (but maybe incomplete) algorithms for semantic actions
 - e.g., join, meet, widening,...

Numerical abstract domains

- infer relationships among numerical variables
- examples
 - non-relational: intervals (a < x < b)
 - weakly relational: **octagons** $(\pm x \pm y < c)$
 - strongly relational: **polyhedra** $(\sum_k a_k x_k \leq b)$
 - . . .

Convexity limitations: a motivating example

```
1: real x, y;

2: x \leftarrow 1;

3: y \leftarrow 1;

4: while (true) {

5: x \leftarrow -x;

6: y \leftarrow \frac{1}{x}; ①

7: }
```

Loc	Most abstract domains	Concrete semantics
1	$x \in [-1,1]$	$(x = -1 \land y = -1)$
	$y \in [-\infty, +\infty]$	$\lor (x=1 \land y=1)$

Division-by-zero?

Safe!

Absolute Value (AV): y = |x|

• piecewise linear expressiveness

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Possible applications

- to encode disjunctions of linear constraints in the program
 - $(x \le -1 \lor x \ge 1) \iff |x| \ge 1$
 - $(x \neq 1 \lor y \neq 2) \iff |x-1| + |y-2| > 0$
- AV functions in C: abs(), fabs(), ...
- MiniMax functions in C: fmax(), fmin(), ...
 - e.g., $\max(x, y) = \frac{1}{2}(|x y| + x + y)$
- abstractions for floating-point rounding errors

•
$$|R_{\mathbf{f},\mathbf{r}}(x) - x| \le \varepsilon_{\mathrm{rel}} \cdot |x| + \varepsilon_{\mathrm{abs}}$$
 (float: $\varepsilon_{\mathrm{rel}} = 2^{-23}, \varepsilon_{\mathrm{abs}} = 2^{-149}$)

The domain of linear absolute value inequalities: $(\Sigma_k a_k x_k + \Sigma_k b_k | x_k | \le b)$ [Chen et al. ESOP'11]

- idea: extending polyhedra domain $(\sum_k a_k x_k \leq b)$ with absolute value
- pros: piecewise linear expressiveness
- cons: exponential complexity

New idea: weakly relational abstract domain with absolute value

- goal: scalable with non-convex expressiveness
- first choice: extending the octagon domain with absolute value
 - octagons: scalable, widely used in practice (e.g., in ASTRÉE)

$$\begin{cases} x & \leq a_1 \\ -x & \leq a_2 \\ y & \leq a_3 \\ -y & \leq a_4 \\ x & +y & \leq a_5 \\ x & -y & \leq a_6 \\ -x & +y & \leq a_7 \\ -x & -y & \leq a_8 \end{cases}$$

The octagon abstract domain: [Miné 01]

- weakly relational: invariants of the form $\pm x \pm y \le c$
- representation: Difference Bound Matrix (DBM)
- key operation: shorest-path closure via Floyd-Warshall algorithm
- scalable: $\mathcal{O}(n^2)$ in memory and $\mathcal{O}(n^3)$ in time

Domain representation

- efficient encoding: DBM
- idea: rewrite octagonal constraints on $V = \{V_1, \dots, V_n\}$ as potential constraints on $V' = \{V'_1, \dots, V'_{2n}\}$ where
 - V'_{2k-1} represents $+V_k$
 - V'_{2k} represents $-V_k$

the constraint	is represented by
$V_i - V_j \leq a$	$V'_{2i-1} - V'_{2i-1} \le a$ and $V'_{2i} - V'_{2i} \le a$
$V_i + V_j \leq b$	$V'_{2i-1} - V'_{2j} \le b$ and $V'_{2j-1} - V'_{2i} \le b$
$-V_i-V_j \leq c$	$V'_{2i} - V'_{2i-1} \le c$ and $V'_{2i} - V'_{2i-1} \le c$
$V_i \leq d$	$V'_{2i-1}-V'_{2i}\leq 2d$
$-V_i \leq e$	$V'_{2i} - V'_{2i-1} \leq 2e$

Key domain operation: closure

$$\begin{cases} x & \leq a_1 \\ -x & \leq a_2 \\ y & \leq a_3 \\ -y & \leq a_4 \\ x & +y & \leq a_5 \\ x & -y & \leq a_6 \\ -x & +y & \leq a_8 \end{cases} + \begin{cases} y & \leq a_3 \\ -y & \leq a_4 \\ z & \leq a_3' \\ -z & \leq a_4' \\ y & +z & \leq a_5' \\ y & -z & \leq a_6' \\ -y & +z & \leq a_7' \\ -y & -z & \leq a_8' \end{cases} \Rightarrow \begin{cases} x & \leq ? \\ -x & \leq ? \\ -x & \leq ? \\ x & +z & \leq ? \\ x & +z & \leq ? \\ x & -z & \leq ? \\ -x & +z & \leq ? \\ -x & -z & \leq ? \end{cases}$$

Floyd-Warshall algorithm

1: for
$$k \leftarrow 0$$
 to $|V| - 1$
2: for $i \leftarrow 0$ to $|V| - 1$
3: for $j \leftarrow 0$ to $|V| - 1$
4: $d[i,j] \leftarrow \min(d[i,j], d[i,k] + d[k,j])$ /* $i \stackrel{d_{ik}}{\sim} k \stackrel{d_{kj}}{\sim} j^*$ /

Complexity: $\mathcal{O}(|V|^3)$

An abstract domain of octagonal constraints with absolute value

Octagonal constraints with absolute value

- octagonal constraints: $\pm x \pm y \le a$
- absolute value on one variable: $\pm x \pm |y| \le b$
- absolute value on two variables: $\pm |x| \pm |y| \le c$

Note: positive coefficients over AV terms can be removed

Theorem ([Chen et al. ESOP'11])

Any AV inequality

$$\sum_{i} a_i x_i + \sum_{i \neq p} b_i |x_i| + b_p |x_p| \le c$$

where $b_p > 0$, can be reformulated as a conjunction of two AV inequalities

$$\begin{cases} \sum_{i} a_i x_i + \sum_{i \neq p} b_i |x_i| + b_p x_p \le c \\ \sum_{i} a_i x_i + \sum_{i \neq p} b_i |x_i| - b_p x_p \le c \end{cases}$$

Concise representation: 3 parts

- octagonal constraints: $\pm x \pm y \le a$
- absolute value on one variable: $-|x| \pm y \le b, \pm x |y| \le c$
- absolute value on two variables: $-|x| |y| \le d$

X				$\leq a_1$
-x				$\leq a_2$
		y		$\leq a_3$
		-y		$\leq a_4$
X		+y		$\leq a_5$
X		-y		$\leq a_6$
-x		+y		$\leq a_7$
-x		-y		≤ a ₈
	- x			$\leq b_1$
			- y	$\leq b_2$
	- x	+y		$\leq b_3$
	- x	-y		$\leq b_4$
X			- y	$\leq b_5$
-x			- y	
	- x		- y	$\leq c_1$

				DBM				
	X	-x	x	- x	у	-y	y	- y
X		2 <i>a</i> ₂						
-x	2a ₁							
x				$2b_1$				
- x								
y	a ₆	a ₈		b_4		$2a_4$		
-y	a ₅	a ₇		b_3	$2a_3$			
y	b ₅	<i>b</i> ₆		c_1				$2b_2$
- y								

Concise representation: 3 parts

- octagonal constraints: $\pm x \pm y \le a$
- absolute value on one variable: $-|x| \pm y \le b, \pm x |y| \le c$
- absolute value on two variables: $-|x| |y| \le d$

Expressiveness limitation: $-|x| - |y| \le c$

• | · | applies to only (single) variables rather than expressions

An example:
$$y = ||x| - 1| + 1$$
, i.e.,

$$y = \left\{ \begin{array}{ll} -x & \text{if } x \leq -1 \\ x+2 & \text{if } -1 \leq x \leq 0 \\ 2-x & \text{if } 0 \leq x \leq 1 \\ x & \text{if } x \geq 1 \end{array} \right.$$

Expressiveness lifting

- introduce new auxiliary variables to denote expressions inside the AV function
- e.g., $\{y = |\nu| + 1, \nu = |x| 1\}$

Closure:

	>	۷S.	У	_		y vs.	. Z		_		X VS	5. Z	
x			$\leq a_1$	-	y			≤ a ₃		X			≤?
-x			$\leq a_2$		-y			≤ a ₄		-x			≤?
		у	$\leq a_3$				z	$\leq a_3'$				Z	≤?
		-y	≤ a ₄				-z	$\leq a'_4$				-z	≤?
X		+y	$\leq a_5$		y		+z	$\leq a_{\S}'$		X		+z	≤?
X		-y	$\leq a_6$		y		-z	$\leq a_6^7$		X		-z	≤?
-x		+y	≤ a ₇		-y		+z	$\leq a_7'$		-x		+z	≤?
-x		-y	≤ a ₈	+	-y		-z	$\leq a_8'$	\Rightarrow	-x		-z	≤?
	- x		$\leq b_1$			- y		$\leq b_2$			- x		<pre> <? <? <? <? <? <? <? <? <? <? <? <? <?</th></pre>
			$- y \leq b_2$					$- z \leq b_2'$					$- z \leq ?$
	- x	+y	$\leq b_3$			- y	+z	$< b_3^7$			- x	+z	≤? ≤?
	- x	-y	$\leq b_4$			- y	-z	$\leq b_{4}^{\gamma}$			- x	-z	≤?
X			$- y \le b_5$		V			$- z \leq b_{\rm E}^7$		X			$- z \leq ?$
-x			$- y \le b_6$	_	-v			$- z \leq b_6^7$		-x			$- z \leq ?$
	- x		$- y \leq c_1$			- y		$- z \leq c_1'$			- x		$- z \leq ?$

A trivial **strong** closure: via orthant enumeration (over 2^n orthants)

- ask $-|x| + z \le ?$ in each orthant via Floyd-Warshall algorithm
- the final answer will be the greatest result of all orthants

$$2^{4} \textit{orthants} \begin{cases} \frac{x & y & z & w}{+ & + & + & + \\ + & + & + & - & - \\ + & + & - & - & + \\ + & + & - & - & - \\ & & \dots & & \\ - & - & - & - & - \end{cases}$$

Complexity: $\mathcal{O}(2^n \times n^3)$

<u>A weak closure</u>: WeakCloVia3Sign() of complexity $\mathcal{O}(n^3)$

```
1: for k \leftarrow 0 to |V| - 1

2: for i \leftarrow 0 to |V| - 1

3: for j \leftarrow 0 to |V| - 1

4: Combine AVO_{ik} and AVO_{kj} to tighten AVO_{ij} by orthant enumeration; /* only 8 orthants*/
```

- enumerating the signs of 3 variables each time
- as precise as strong closure for 3 variables
- but weaker than strong closure for more than 3 variables

Example

```
\{y \le 24, -|y| + x \le 10, -s - |x| \le 36, -|s| - z \le 8, -z-y \le 84, s + y \le 80\}, • strong closure: x - z \le 112
```

• WeakCloVia3Sign() : $x - z \le 142$

Another cheaper **weak** closure: WeakCloVia1Sign() of complexity $\mathcal{O}(n^3)$

```
1: for k \leftarrow 0 to |V| - 1

2: for i \leftarrow 0 to |V| - 1

3: for j \leftarrow 0 to |V| - 1

4: Combine AVO_{ik} and AVO_{kj} to tighten AVO_{ij} when x_k \ge 0;

5: Combine AVO_{ik} and AVO_{kj} to tighten AVO_{ij} when x_k \le 0;

/* only 2 orthants*/
```

- enumerating the signs of 1 variables each time
- weaker than the previous weak closure WeakCloVia3Sign()

Example

$$\{y-x \le 24, -z-|x| \le 6, x-z \le 16, y-|z| \le 10, y-z \le 50\}$$

- WeakCloVia3Sign(): $y z \le 40$
- WeakCloVia1Sign(): y z < 50

Other domain operations for static analysis

- transfer functions (such as branch tests and assignments)
- join
- meet
- extrapolation (such as widening and narrowing)
- projection
- emptiness test
- inclusion

Implementation

• in the numerical abstract domain library APRON [Jeannet Miné 09]

Supporting strict inequalities

Supporting strict inequalities

ullet representation: maintain a boolean matrix S of the same size as the AVO matrix M

$$S_{ij} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 0 & \text{if } V_j'' - V_i'' < M_{ij} \\ 1 & \text{if } V_j'' - V_i'' \leq M_{ij} \end{array} \right.$$

- ullet operations: over the pair (M_{ij},S_{ij})
 - ordering: $(M_{ij}, S_{ij}) \sqsubseteq (M'_{ij}, S'_{ij}) \stackrel{\text{def}}{\Longrightarrow} (M_{ij} < M'_{ij} \lor (M_{ij} = M'_{ij} \land S_{ij} \le S'_{ij}))$
 - emptiness test: $\exists i, M_{ii} < 0 \lor (S_{ii} = 0 \land M_{ii} = 0)$
 - propagation: $(M_{ik}, S_{ik}) + (M_{kj}, S_{kj}) \stackrel{\text{def}}{=} (M_{ik} + M_{kj}, S_{ik} \& S_{kj})$
 - . . .

Example analyses

An example^a

 involving non-convex constraints (due to disjunctions, the usage of the AV function) as well as strict inequalities

```
static void p_line16_primary (...) {
    real dx, dy, x, y, slope;
    ...
    if (dx == 0.0 && dy == 0.0)
        return;
① if (fabs(dy) > fabs(dx)) {
        @ slope = dx / dy;
        ...
} else {
        @ slope = dy / dx;
        ...
```

AV octagons
- dx - dy <0
- dx - dy <0
dx - dy <0
- dy <0
- dx - dy <0
$- dx + dy \leq 0\wedge$
- dx <0

^aextracted from the XTide package and used in the Donut domain [Ghorbal et al. 12]

The octagon abstract domain A domain of octagonal constraints with absolute value Experiments

Experiments

Preliminary experimental results

NECLA Benchmarks: Division-by-zero False Alarms [Ghorbal et al. 12]

- show commonly used practices that developers use to protect a division-by-zero
- extracted from available free C source code of various projects
- "involve non-convex tests (using for instance disjunctions or the AV function), strict inequalities tests, ..."

program	donut domain		octagons	AV octagons		
program	invariants #FP		invariants	#FP	invariants	♯FP
motiv(if)	$dy \neq 0$	0	$dy \in [-\infty, +\infty]$	1	dy > 0	0
motiv(else)	$dx \neq 0$	0	$dx \in [-\infty, +\infty]$	1	dx > 0	0
gpc	$den \notin [-0.1, 0.1]$	0	$den \in [-\infty, +\infty]$	1	den > 0.1	0
goc	$d \notin [-0.09, 0.09]$	0	$d \in [-\infty, +\infty]$	1	$ d \geq 0.1$	0
×2	$Dx \neq 0$	0	$Dx \in [-\infty, +\infty]$	1	Dx > 0	0
xcor	usemax $\notin [1,10]$	1	usemax ≥ 0	1	usemax > 0	0

Preliminary experimental results

Experiments on ASTRÉE

- a set of large embedded industrial C codes
- compare octagons and AVO (disabling disjunctive domains in ASTREE)

	size	octag	ons	AV oct	agons	result comparison		
code	SIZE	time (s)	∄alarm	time (s)	∄alarm	‡alarm	time	
	(KLoc)	Lillie (3)	µататтт	Lillie (3)	Дататтт	reduction	increase	
P1	154	6216	881	7687	881	0	23.66%	
P2	186	6460	1114	7854	1114	0	21.58%	
P3	103	1112	403	2123	403	0	90.92%	
P4	493	17195	4912	38180	4912	0	122.04%	
<i>P</i> 5	661	18949	7075	43660	7070	5	130.41%	
P6	616	34639	8192	70541	8180	12	103.65%	
P7	2428	99853	10980	217506	10959	21	117.83%	
P8	3	517	0	581	0	0	12.38%	
P9	18	534	16	670	16	0	25.47%	
P10	26	1065	102	1133	102	0	6.38%	

Conclusion

Summary

- the AVO domain: extending octagons with absolute value
 - to infer invariants in the form of

$$\{\pm x \pm y \le a, \pm x \pm |y| \le b, \pm |x| \pm |y| \le c\}$$

- more precise than octagon domain but with the same magnitude of complexity $\mathcal{O}(n^3)$
- non-convexity expressiveness
- support strict inequalities

Future Work

- more choices for closure algorithm
 - is the strong closure problem NP-hard?
- consider AV octagonal constraints with integers as constant terms