HORT REVISION

SOLUTIONS OF TRIANGLE

I. Sine Formula: In any triangle ABC,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
.

II. Cosine Formula: (i)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 or $a^2 = b^2 + c^2 - 2bc$. $\cos A$

(ii)
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

(ii)
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$
 (iii) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

(i)
$$a = b \cos C + c \cos B$$

(ii)
$$b = c \cos A + a \cos C$$

(iii)
$$c = a \cos B + b \cos A$$

NAPIER'S ANALOGY – TANGENT RULE :

(ii)
$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$$

V. TRIGONOMETRIC FUNCTIONS OF HALF

(i) $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$; $\sin \frac{B}{2}$

(ii) $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$; $\cos \frac{B}{2} = \frac{A}{s(s-a)}$

(iii) $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{A}{s(s-a)}$

(iv) Area of triangle = $\sqrt{s(s-a)(s-b)}$

VI. M—N RULE : In any triangle, $(m+n) \cot \theta = m \cot \alpha - n \cot \beta = n \cot \beta - m \cot C$

VII. $\frac{1}{2} \text{ ab } \sin C = \frac{1}{2} \text{ bc } \sin A = \frac{1}{2} \text{ ca } \sin B = a + \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

Note that $R = \frac{a + b}{4A}$; Where R is the range of the incircle 'r' is given by:

(i)
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$

(ii)
$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$$

(iii)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$$

(i)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
; $\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$; $\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$

(ii)
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$
; $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$; $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$

(iii)
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{\Delta}{s(s-a)}$$
 where $s = \frac{a+b+c}{2}$ & Δ = area of triangle.

(iv) Area of triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$(m+n) \cot \theta = m \cot \alpha - n \cot \beta$$

= $n \cot B - m \cot C$

VII.
$$\frac{1}{2}$$
 ab sin C = $\frac{1}{2}$ bc sin A = $\frac{1}{2}$ ca sin B = area of triangle ABC.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

Note that $R = \frac{a b c}{4 A}$; Where R is the radius of circumcircle & Δ is area of triangle

VIII. Radius of the incircle 'r' is given by:

(a)
$$r = \frac{\Delta}{s}$$
 where $s = \frac{a+b+c}{2}$

(b)
$$r = (s-a) \tan \frac{A}{2} = (s-b) \tan \frac{B}{2} = (s-c) \tan \frac{C}{2}$$

(d) $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

(c)
$$r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}$$
 & so on

(d)
$$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

Radius of the Ex-circles $r_1, r_2 \& r_3$ are given by : IX.

(a)
$$r_1 = \frac{\Delta}{s-a}$$
; $r_2 = \frac{\Delta}{s-b}$; $r_3 = \frac{\Delta}{s-c}$

$$r_1 = \frac{\Delta}{s-a}$$
; $r_2 = \frac{\Delta}{s-b}$; $r_3 = \frac{\Delta}{s-c}$ (b) $r_1 = s \tan{\frac{A}{2}}$; $r_2 = s \tan{\frac{B}{2}}$; $r_3 = s \tan{\frac{C}{2}}$

(c)
$$r_1 = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$
 & so on

(c)
$$r_1 = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$
 & so on (d) $r_1 = 4 R \sin \frac{A}{2} . \cos \frac{B}{2} . \cos \frac{C}{2}$;

$$r_2 = 4 R \sin \frac{B}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{C}{2}$$
; $r_3 = 4 R \sin \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2}$

$$r_3 = 4 R \sin \frac{C}{2} \cdot \cos \frac{A}{2} \cdot \cos \frac{B}{2}$$

LENGTH OF ANGLE BISECTOR & MEDIANS: X.

If $\boldsymbol{m}_{\!a}$ and $\boldsymbol{\beta}_{\!a}$ are the lengths of a median and an angle bisector from the angle A then,

$$m_a = \frac{1}{2} \sqrt{2b^2 + 2c^2 - a^2}$$
 and $\beta_a = \frac{2bc \cos \frac{A}{2}}{b + c}$

Note that $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4} (a^2 + b^2 + c^2)$

XI. ORTHOCENTRE AND PEDAL TRIANGLE:

The triangle KLM which is formed by joining the feet of the altitudes is called the pedal triangle.

- the distances of the orthocentre from the angular points of the \triangle ABC are 2 R cosA, 2 R cosB and 2 R cosC
- the distances of P from sides are 2 R cosB cosC,
 2 R cosC cosA and 2 R cosA cosB

the sides of the pedal triangle are a $\cos A (= R \sin 2A)$, b $\cos B (= R \sin 2B)$ and c $\cos C (= R \sin 2C)$ and its angles are

XII EXCENTRAL TRIANGLE:

The triangle formed by joining the three excentres I_1 , I_2 and I_3 of ΔABC is called the excentral or excentric triangle.

orthocentre of the excentral $\Delta I_1 I_2 I_3$. Δ ABC is the pedal triangle of the $\Delta I_1 I_2 I_3$.

the sides of the excentral triangle are

A
B
C

$$4R\cos\frac{A}{2}$$
, $4R\cos\frac{B}{2}$ and $4R\cos\frac{C}{2}$

and its angles are $\frac{\pi}{2} - \frac{A}{2}$, $\frac{\pi}{2} - \frac{B}{2}$ and $\frac{\pi}{2} - \frac{C}{2}$.

$$II_1 = 4R \sin \frac{A}{2}$$
; $II_2 = 4R \sin \frac{B}{2}$; $II_3 = 4R \sin \frac{C}{2}$.

XIII. THE DISTANCES BETWEEN THE SPECIAL POINTS:

- The distance between circumcentre and orthocentre is = $R \cdot \sqrt{1 8 \cos A \cos B \cos C}$
- **(b)** The distance between circumcentre and incentre is = $\sqrt{R^2 2Rr}$
- (c) The distance between incentre and orthocentre is $\sqrt{2r^2 4R^2 \cos A \cos B \cos C}$
- **XIV.** Perimeter (P) and area (A) of a regular polygon of n sides inscribed in a circle of radius r are given by

$$P = 2nr \sin \frac{\pi}{n}$$
 and $A = \frac{1}{2} nr^2 \sin \frac{2\pi}{n}$

Perimeter and area of a regular polygon of n sides circumscribed about a given circle of radius r is given by

$$P = 2nr \tan \frac{\pi}{n}$$
 and $A = nr^2 \tan \frac{\pi}{n}$

EXERCISE-I

With usual notations, prove that in a triangle ABC:

Q.1
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$
 Q.2 $a \cot A + b \cot B + c \cot C = 2(R+r)$

Q.3
$$\frac{r_1}{(s-b)(s-c)} + \frac{r_2}{(s-c)(s-a)} + \frac{r_3}{(s-a)(s-b)} = \frac{3}{r}$$
 Q.4 $\frac{r_1-r}{a} + \frac{r_2-r}{b} = \frac{c}{r_3}$

Q.5
$$\frac{abc}{s}\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} = \Delta$$
 Q.6
$$(r_1 + r_2)\tan\frac{C}{2} = (r_3 - r)\cot\frac{C}{2} = c$$

Q.7
$$(r_1 - r)(r_2 - r)(r_3 - r) = 4 R r^2$$
 Q.8 $(r + r_1) tan \frac{B - C}{2} + (r + r_2) tan \frac{C - A}{2} + (r + r_3) tan \frac{A - B}{2} = 0$

Q.9
$$\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$$

Q.10
$$(r_3 + r_1) (r_3 + r_2) \sin C = 2 r_3 \sqrt{r_2 r_3 + r_3 r_1 + r_1 r_2}$$

Q.11
$$\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2Rr}$$

Q.12
$$\left(\frac{1}{r} - \frac{1}{r_1}\right) \left(\frac{1}{r} - \frac{1}{r_2}\right) \left(\frac{1}{r} - \frac{1}{r_3}\right) = \frac{4R}{r^2 s^2}$$

Q.13
$$\frac{bc - r_2r_3}{r_1} = \frac{ca - r_3r_1}{r_2} = \frac{ab - r_1r_2}{r_3} = r$$

Q.14
$$\left(\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)^2 = \frac{4}{r} \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)$$

Q.15
$$\operatorname{Rr}(\sin A + \sin B + \sin C) = \Delta$$

Q.16
$$2R \cos A = 2R + r - r_1$$

Q.17
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Delta}$$

Q.18
$$\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4\Delta}$$

- Given a triangle ABC with sides a = 7, b = 8 and c = 5. If the value of the expression $\left(\sum \sin A\right)\left(\sum \cot \frac{A}{2}\right)$ can be expressed in the form $\frac{p}{q}$ where $p, q \in N$ and $\frac{p}{q}$ is in its lowest form find
- Q.20 If $r_1 = r + r_2 + r_3$, then prove that the triangle is a right angled triangle.
- If two times the square of the diameter of the circumcircle of a triangle is equal to the sum of the squares of its sides then prove that the triangle is right angled.
- In acute angled triangle ABC, a semicircle with radius r_a is constructed with its base on BC and tangent to the other two sides. r_b and r_c are defined similarly. If r is the radius of the incircle of triangle ABC then prove that, $\frac{2}{r} = \frac{1}{r_0} + \frac{1}{r_h} + \frac{1}{r_c}$.
- FREE Download Study Package from website: www.tekoclasses.com Given a right triangle with $\angle A = 90^\circ$. Let M be the mid-point of BC. If the inradii of the triangle ABM and ACM are r_1 and r_2 then find the range of r_1/r_2
 - If the length of the perpendiculars from the vertices of a triangle A, B, C on the opposite sides are p_1, p_2, p_3 then prove that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.
 - Prove that in a triangle $\frac{bc}{r_1} + \frac{ca}{r_2} + \frac{ab}{r_2} = 2R \left[\left(\frac{a}{b} + \frac{b}{a} \right) + \left(\frac{b}{c} + \frac{c}{b} \right) + \left(\frac{c}{a} + \frac{a}{c} \right) 3 \right]$.

- With usual notation, if in a \triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$; then prove that, $\frac{\cos A}{7} = \frac{\cos B}{10} = \frac{\cos C}{25}$
- For any triangle ABC, if B = 3C, show that $\cos C = \sqrt{\frac{b+c}{4c}}$ & $\sin \frac{A}{2} = \frac{b-c}{2c}$. Q.2
- In a triangle ABC, BD is a median. If $l(BD) = \frac{\sqrt{3}}{4} \cdot l(AB)$ and $\angle DBC = \frac{\pi}{2}$. Determine the $\angle ABC$. Q.3
- ABCD is a trapezium such that AB, DC are parallel & BC is perpendicular to them. If angle Q.4 ADB = θ , BC = p & CD = q, show that AB = $\frac{(p^2 + q^2)\sin\theta}{p\cos\theta + a\sin\theta}$
- Q.5 If sides a, b, c of the triangle ABC are in A.P., then prove that $\sin^2 \frac{A}{2} \csc 2A$; $\sin^2 \frac{B}{2} \csc 2B$; $\sin^2 \frac{C}{2} \csc 2C$ are in H.P.

- Q.6
- Q.7
- Q.8
- **Q.9**
- Find the angles of a triangle in which the altitude and a median drawn from the same vertex divide the angle at that vertex into 3 equal parts.

 In a triangle ABC, if $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are in AP. Show that $\cos A$, $\cos B$, $\cos C$ are in AP. ABCD is a rhombus. The circumradii of \triangle ABD and \triangle ACD are 12.5 and 25 respectively. Find the area of rhombus.

 In a triangle ABC if $a^2 + b^2 = 101c^2$ then find the value of $\frac{\cot C}{\cot A + \cot B}$.

 The two adjacent sides of a cyclic quadrilateral are 2 & 5 and the angle between them is 60°. If the area of the quadrilateral is $4\sqrt{3}$, find the remaining two sides.
- If I be the in–centre of the triangle ABC and x, y, z be the circum radii of the triangles IBC, ICA & IAB, FREE Download Study Package from website: www.tekoclasses.com 0.11 show that $4R^3 - R(x^2 + y^2 + z^2) - xyz = 0$.

 - In a \triangle ABC, (i) $\frac{a}{\cos A} = \frac{b}{\cos B}$

$$b_1 = 1;$$
 $b_2 = \sqrt[4]{7} - \sqrt[4]{28} + 1;$ $a_1 = \sqrt[4]{28}$ and $\sum_{n=1}^{\infty} \frac{1}{a_n} = \sum_{n=1}^{\infty} b_n$

- If I be the in–centre of the triangle ABC and x, y, z be the circum radii of the triangles IBC, ICA & IAB, show that $4R^3 R(x^2 + y^2 + z^2) xyz = 0$.

 Sides a, b, c of the triangle ABC are in H.P., then prove that $\csc A(\csc A+\cot A)$; $\csc B(\csc B+\cot B)$ & $\csc C(\csc C+\cot C)$ are in A.P.

 In a $\triangle ABC$, (i) $\frac{a}{\cos A} = \frac{b}{\cos B}$ (ii) $2\sin A\cos B = \sin C$ (iii) $\tan^2 \frac{A}{2} + 2\tan \frac{A}{2} \tan \frac{C}{2} 1 = 0$, prove that (i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (
- - A_2 is a geometric mean between A_1 and B_1 . (1)
 - B_2 is a harmonic mean between A_2 and B_1 .
- The sides of a triangle are consecutive integers n, n + 1 and n + 2 and the largest angle is twice the O.18 smallest angle. Find *n*.
- The triangle ABC is a right angled triangle, right angle at A. The ratio of the radius of the circle circumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2}:(\sqrt{3}+\sqrt{2})$. Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse. Q.19

Page: 16 of 21 PROPERTIES OF TRIANGLES

98930 58881, BHOPAL,

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

- Line l is a tangent to a unit circle S at a point P. Point A and the circle S are on the same side of l, and the Q.21distance from A to l is 3. Two tangents from point A intersect line l at the point B and C respectively. Find the value of (PB)(PC).
- Let ABC be an acute triangle with orthocenter H. D, E, F are the feet of the perpendiculars from A, B, Q.22 and C on the opposite sides. Also R is the circumradius of the triangle ABC. Given (AH)(BH)(CH) = 3 and $(AH)^2 + (BH)^2 + (CH)^2 = 7$. Find

(a) the ratio $\frac{\prod \cos A}{\sum \cos^2 A}$,

(b) the product (HD)(HE)(HF)

(c) the value of R.

EXERCISE-III

- The radii r_1 , r_2 , r_3 of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm, find the lengths of its sides. [REE '99, 6]
- Q.2(a) In a triangle ABC, Let $\angle C = \frac{\pi}{2}$. If 'r' is the inradius and 'R' is the circumradius of the triangle, then 2(r + R) is equal to:

(A) a + b

(B) b + c

In a triangle ABC, $2 \text{ ac } \sin \frac{1}{2} (A - B + C) =$ (A) $a^2 + b^2 - c^2$ (B) $c^2 + a^2 - b^2$ (C) $b^2 - c^2 - a^2$

Let ABC be a triangle with incentre 'I' and inradius 'r'. Let D, E, F be the feet of the perpendiculars Q.3 from I to the sides BC, CA & AB respectively. If r_1 , r_2 & r_3 are the radii of circles inscribed in the quadrilaterals AFIE, BDIF & CEID respectively, prove that

 $\frac{r_1}{r-r_1} + \frac{r_2}{r-r_2} + \frac{r_3}{r-r_3} = \frac{r_1 r_2 r_3}{(r-r_1)(r-r_2)(r-r_3)}.$

[JEE '2000, 7]

- If Δ is the area of a triangle with side lengths a, b, c, then show that: $\Delta \leq \frac{1}{4} \sqrt{(a+b+c)abc}$ Also show that equality occurs in the above inequality if and only if a = b = c.
- Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC (R being the radius of the circumcircle)?

(A) a, sinA, sinB

(B) a, b, c

(C) a, sinB, R

(D) a, sinA, R [JEE ' 2002 (Scr), 3]

If I_n is the area of n sided regular polygon inscribed in a circle of unit radius and O_n be the area of the Q.6 polygon circumscribing the given circle, prove that

 $I_{n} = \frac{O_{n}}{2} \left(1 + \sqrt{1 - \left(\frac{2I_{n}}{n}\right)^{2}} \right)$

[JEE 2003, Mains, 4 out of 60]

The ratio of the sides of a triangle ABC is 1: $\sqrt{3}$: 2. The ratio A: B: C is Q.7

(A) 3:5:2

(B) 1: $\sqrt{3}$: 2

(C) 3:2:1

(D) 1:2:3

[JEE 2004 (Screening)]

Q.8(a) In \triangle ABC, a, b, c are the lengths of its sides and A, B, C are the angles of triangle ABC. The correct relation is

(A) $(b-c)\sin\left(\frac{B-C}{2}\right) = a\cos\left(\frac{A}{2}\right)$ (B) $(b-c)\cos\left(\frac{A}{2}\right) = a\sin\left(\frac{B-C}{2}\right)$

(B)
$$(b-c)\cos\left(\frac{A}{2}\right) = a\sin\left(\frac{B-C}{2}\right)$$

[JEE 2005 (Screening)]

(b) Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.

Q.9(a) Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$. Then the area of triangle in sq. units is

(A)
$$7 + 12\sqrt{3}$$

(B)
$$12 - 7\sqrt{3}$$

(C)
$$12 + 7\sqrt{3}$$

(D)
$$4\pi$$

[JEE 2006, 3]

(b) Internal bisector of ∠A of a triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent sides of \triangle ABC then

(B) AD =
$$\frac{2bc}{b+c}\cos\frac{A}{2}$$

(C) EF =
$$\frac{4bc}{b+c}\sin\frac{A}{2}$$

[JEE 2006, 5]

Page: 17 of 21 PROPERTIES OF TRIANGLES

FREE Download Study Package from website: www.tekoclasses.com Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = $2\sqrt{2}$ and Q.10angle $B = 30^{\circ}$. The absolute value of the difference between the areas of these triangles is

[JEE 2009, 5]

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 98930 58881, BHOPAL, (M.P.)

EXERCISE-I

Q.19 107 **Q.23**
$$\left(\frac{1}{2}, 2\right)$$

<u>EXERCI</u>SE–II

Q.3 120° **Q.6**
$$\pi/6$$
, $\pi/3$, $\pi/2$

Q.19 B =
$$\frac{5\pi}{12}$$
; C = $\frac{\pi}{12}$; $\frac{b}{c}$ = 2+ $\sqrt{3}$

Q.22 (a)
$$\frac{3}{14R}$$
, (b) $\frac{9}{8R^3}$, (c) $\frac{3}{2}$

EXERCISE–III

Q.8 (a) B; (b)
$$\sqrt{5}$$

Objective Questions)

Part: (A) Only one correct option

In a triangle ABC, (a + b + c) (b + c - a) = k. bc, if: (A) k < 0 (B) k > 6 (C) 0 < k < 41.

In a $\triangle ABC$, $A = \frac{2\pi}{3}$, $b - c = 3\sqrt{3}$ cm and ar $(\triangle ABC) = \frac{9\sqrt{3}}{2}$ cm². Then a is 2.

(A) $6\sqrt{3}$ cm

(B) 9 cm

(C) 18 cm

(D) none of these

If R denotes circumradius, then in $\triangle ABC$, $\frac{b^2-c^2}{2a\,R}$ is equal to 3.

(A) cos (B - C)

 $(B) \sin (B - C)$

(C) $\cos B - \cos C$

(D) none of these

If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ (= PR), then the angle P is

In a \triangle ABC, the value of $\frac{a\cos A + b\cos B + c\cos C}{a\cos A + b\cos B}$

In a right angled triangle R is equal to

In a \triangle ABC, the inradius and three exradii are r, r, r, and r, respectively. In usual notations the value of r. r, r, r, is equal to

 $(A) 2\Delta$

(B) Δ^2

(D) none of these

In a triangle if $r_1 > r_2 >$ (A) a > b > c

(C) a > b and b < c

(D) a < b and b > c

FREE Download Study Package from website: www.tekoclasses.com

where 'K' has the value equal to:

(C)64

(D) 128

The product of the arithmetic mean of the lengths of the sides of a triangle and harmonic mean of the lengths of the altitudes of the triangle is equal to:

In a triangle ABC, right angled at B, the inradius is:

(A) $\frac{AB+BC-AC}{2}$ (B) $\frac{AB+AC-BC}{2}$ (C) $\frac{AB+BC+AC}{2}$ (D) None The distance between the middle point of BC and the foot of the perpendicular from A is : 12.

(A) $\frac{-a^2+b^2+c^2}{2a}$

(B) $\frac{b^2 - c^2}{2a}$

(D) none of these

In a triangle ABC, B = 60° and C = 45°. Let D divides BC internally in the ratio 1 : 3, then, $\frac{\sin \angle DDD}{\sin \angle CAD}$ 13.

(A) $\sqrt{\frac{2}{3}}$

Let f, g, h be the lengths of the perpendiculars from the circumcentre of the Δ ABC on the sides a, b and 14. c respectively. If $\frac{a}{f} + \frac{b}{g} + \frac{c}{h} = \lambda \frac{abc}{fgh}$ then the value of λ is:

(A) 1/4

(B) 1/2

(C) 1

(D)2

15. A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:

16. If in a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then cos B + cos Č is equal to:

(A) 0

- (B) 1
- (C)2
- (D) none of these
- 17. If the incircle of the Δ ABC touches its sides respectively at L, M and N and if x, y, z be the circumradii of the triangles MIN, NIL and LIM where I is the incentre then the product xyz is equal to:

Page: 19 of 21 PROPERTIES OF TRIANGLES

58881, BHOPAL, (M.P.)

PH: (0755)- 32 00 000,

Sir)

TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA (S. R. K.

- (A) R r²
- (C) $\frac{1}{2} R r^2$
- If in a $\triangle ABC$, $\frac{r}{r_1} = \frac{1}{2}$, then the value of $\tan \frac{A}{2} \left(\tan \frac{B}{2} + \tan \frac{C}{2} \right)$ is equal to : 18.
 - (A) 2
- (B) $\frac{1}{2}$
- (C) 1
- (D) None of these
- In any $\triangle ABC$, then minimum value of $\frac{r_1}{r^3} \frac{r_2}{r^3}$ is equal to 19.

(A)3

- (D) None of these
- 20. In a acute angled triangle ABC, AP is the altitude. Circle drawn with AP as its diameter cuts the sides AB and AC at D and E respectively, then length DE is equal to

22,

- (D)
- AA, BB, and CC, are the medians of triangle ABC whose centroid is G. If the concyclic, then points A, C, G and B, are (A) $2b^2 = a^2 + c^2$ (B) $2c^2 = a^2 + b^2$ (C) $2a^2 = b^2 + c^2$ (D) None of these 21.

- (A) $2b^2 = a^2 + c^2$ (B) $2c^2 = a^2 + b^2$ (C) $2a^2 = b^2 + c^2$ (D) None of these In a \triangle ABC, a, b, A are given and c_1 , c_2 are two values of the third side c. The sum of the areas of two triangles with sides a, b, c_1 and a, b, c_2 is

 $b^2 \sin 2A (B) \frac{1}{2}$

- (C) b² sin 2A
- (D) none of these
- . If r is the inradius and R is the circumradius of the triangle, then 2(r + R)23. [IIT - 2000] is equal to

(A) a + b -

- (C) c + a
- (D) a + b + c
- FREE Download Study Package from website: www.tekoclasses.com 24. Which of the following pieces of data does NOT uniquely determine an acute - angled triangle ABC (R being the radius of the circumcircle)?

(A) a, sin A, sin B

- (B) a, b, c
- (C) a, sin B, R
- 25. If the angles of a triangle are in the ratio 4:1:1, then the ratio of the longest side to the perimeter is

(A) $\sqrt{3}$: $(2 + \sqrt{3})$

- (B) 1 : 6
- (C) 1:2 + $\sqrt{3}$
- (D) 2:3

[IIT - 2004]

The sides of a triangle are in the ratio 1: $\sqrt{3}$: 2, then the angle of the triangle are in the ratio 26.

(A) 1:3:5

- (B) 2:3:4
- (C) 3:2:1
- 27. In an equilateral triangle, 3 coincs of radii 1 unit each are kept so that they touche each other and also [IIT - 2005] the sides of the triangle. Area of the triangle is

- (A) $4 + 2\sqrt{3}$
- (B) $6 + 4 \sqrt{3}$
- (C) $12 + \frac{7\sqrt{3}}{4}$ (D) $3 + \frac{7\sqrt{3}}{4}$
- If P is a point on C₁ and Q is a point on C₂, then $\frac{PA^2 + PB^2 + PC^2 + PD^2}{QA^2 + QB^2 + QC^2 + QD^2}$ equals (C) 5/6 (D) 7/8 28.
- 29. A circle C touches a line L and circle C, externally. If C and C, are on the same side of the line L, then locus of the centre of circle C is

(A) an ellipse

- (B) a circle
- (C) a parabola
- (D) a hyperbola

	30.	Let ℓ be a line through A the vertex A are equal. (A) 0.5 (unit) ²	A and parallel to BD. A p . If the locus of S meet: (B) 0.75 (unit) ²	oint S moves such that is AC in A_1 , and ℓ in A_2 ar (C) 1 (unit) ²	ts distance from the line BD and and A_3 , then area of ΔA_1 , A_2A_3 is (D) (2/3) (unit) ²	ANGLES
s.com	Part : (: (B) May have more than one options correct				
	31.	In a \triangle ABC, following re (A) $r_2 + r_3 = r_1 - r$	elations hold good. In w (B) $a^2 + b^2 + c^2 = 8 R^2$	hich case(s) the triangle (C) r ₁ = s	e is a right angled triangle? (D) 2 R = r ₁ - r	TESOF
	32.					
	33.	(A) $\frac{2bc \cos \frac{A}{2}}{b+c}$ AD, BE and CF are the then:	(B) $\frac{2bc \sin \frac{A}{2}}{b+c}$ e perpendiculars from	$(C) \frac{abc cosec \frac{A}{2}}{2R(b+c)}$ the angular points of a Δ	(D) $\frac{2\Delta}{b+c}$ $\cdot \cos ec \frac{A}{2}$ A ABC upon the opposite sides,	Page: 20 of 21 PROPERTIES OF TRIANGLES
		(A) $\frac{\text{Perimeter of } \Delta \text{DEF}}{\text{Perimeter of } \Delta \text{ABC}}$	$\frac{r}{c} = \frac{r}{R}$	(B) Area of $\Delta DEF = 2$	2 Δ cosA cosB cosC	Page : 20
		(C) Area of $\triangle AEF = \triangle$	cos²A	(D) Circum radius of A		∵
sse	34.	The product of the dist	ances of the incentre f	om the angular points o	of a Δ ABC is:	M.P
ocla		(A) 4 R ² r	(B) 4 Rr ²	(C) $\frac{(abc)R}{s}$	(D) $\frac{(abc)r}{s}$	AL,
udy Package from website: www.tekoclasses.com	35.	In a triangle ABC, po ADE = angle AED = θ , (A) $\tan \theta = 3 \tan B$	oints D and E are tak then:		that BD = DE = EC. If angle	1, BHOPAL, (M.P.)
		(C) $\frac{6\tan\theta}{\tan^2\theta - 9} = \tan A$		(D) angle B = angle C		58881
	36.		a \triangle ABC the value of I	I $(r_1 - r)$ can be simplifie	ed as:	98930
		(A) abc Π tan $\frac{A}{2}$	(B) 4 r R ²	(C) $\frac{(abc)^2}{R(a+b+c)^2}$	(D) (D 3	32 00 000, 9
	E	xercise -	9	ahiaatirra (Quantiana)	9
		ACI CISC -		ubjective (questions)	8
y Pack	1.	If in a triangle ABC				
tudy Pack	1.	If in a triangle ABC, $\frac{cc}{cc}$ angled.	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}, p$	rove that the triangle A	ABC is either isosceles or right	: (0755)-
oad Study Pack	1.	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a t	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}, \text{ p}$ $\tan A + b \tan B = (a + b)$	rove that the triangle A) $\tan\left(\frac{A+B}{2}\right)$, prove the	ABC is either isosceles or right eat triangle is isosceles.	: (0755)-
ownload Study Pack		If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a t	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}, \text{ p}$ $\tan A + b \tan B = (a + b)$	rove that the triangle A	ABC is either isosceles or right at triangle is isosceles.	
E Download Study Pack	2.	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a t If $\left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2 \text{ t}$ In a \triangle ABC, \angle C = 60°	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, pos A + 2 cos B = $\frac{\sin B}{\sin C}$, pos A + b tan B = (a + b) then prove that the trian $A + B = A = A = A = A = A = A = A = A = A =$	rove that the triangle A) $\tan\left(\frac{A+B}{2}\right)$, prove that A is the right triangle.	ABC is either isosceles or right hat triangle is isosceles. The area of the Δ BAD is $\sqrt{3}$ times	(S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	2.	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC, if a triangle ABC, if a triangle ABC, $\frac{r_1}{r_2} \left(1 - \frac{r_1}{r_3} \right) = 2 \text{ tr}$ In a \triangle ABC, \angle C = 60° the area of the \triangle BCD. The radii r_1 , r_2 , r_3 of escape and r_3 and r_4 are a few and r_4 and r_5 are a few and r_6 are a few and r_6 are a few and r_6 and r_6 are a few and r_6 are a fe	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, put $\frac{\sin A + \sin B}{\sin C}$ and $\frac{\sin A + \cos A}{\sin C}$ and $\frac{\sin A + \cos A}{\sin C}$ and $\frac{\sin A + \cos A}{\cos C}$ and $\frac{\cos A + \cos A}{\sin C}$ and $\frac{\cos A + \cos A}{\cos A}$ and $\cos A$	rove that the triangle A) $\tan\left(\frac{A+B}{2}\right)$, prove the agle is the right triangle.	ABC is either isosceles or right hat triangle is isosceles. The area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq.	RIYA (S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	2.	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC, if a triangle ABC, if a triangle ABC, $\frac{r_1}{r_2} \left(1 - \frac{r_1}{r_3} \right) = 2 \text{ tr}$ In a \triangle ABC, \angle C = 60° the area of the \triangle BCD. The radii r_1 , r_2 , r_3 of escending and its perimeter is ABC is a triangle. D	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, put $\frac{\sin A + \sin B}{\sin C} = \frac{\sin B}{\sin C}$, put $\frac{\sin A + \sin B}{\sin C} = \frac{\sin B}{\sin C}$, put $\frac{\sin A + \sin B}{\sin C} = \frac{\sin B}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\sin C} = \frac{\cos A + 2\cos C}{\sin C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $\frac{\cos A + 2\cos C}{\cos A + 2\cos C}$, put $$	rove that the triangle A) $\tan\left(\frac{A+B}{2}\right)$, prove the agle is the right triangle. Soint on AC such that the alle ABC are in harmonic as of its sides.	ABC is either isosceles or right hat triangle is isosceles. The area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq. dicular to AC, then prove that	KARIYA (S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	 3. 4. 5. 6. 	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC, if a triangle ABC, if a triangle ABC, $\frac{r_1}{r_2} = 2 \text{ tr}$. In a \triangle ABC, \angle C = 60° the area of the \triangle BCD. The radii r_1 , r_2 , r_3 of escendent and its perimeter is ABC is a triangle. D $\cos A. \cos C = \frac{2(c^2 - a)}{3ac}$	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, pos A + 2 cos B = $\frac{\sin B}{\sin C}$, pos A + b tan B = (a + b) then prove that the triangle $\frac{8}{2}$ A = 75°. If D is a positive directly of a triangle sequence of a triangle sequence at the middle point of $\frac{2}{2}$.	rove that the triangle $\frac{A}{2}$, prove the sign of the right triangle. From the solution of the sign of the sides of its sides.	ABC is either isosceles or right hat triangle is isosceles. The area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq. dicular to AC, then prove that	KARIYA (S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	 3. 4. 5. 	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC, if a triangle ABC, if a triangle ABC, if a triangle ABC, $\angle C = 60^{\circ}$ the area of the \triangle BCD. The radii r_1 r_2 r_3 of esc cm and its perimeter is ABC is a triangle. D $\cos A. \cos C = \frac{2(c^2 - a)}{3ac}$ Two circles, of radii a a $2ab \sin \theta$	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, pos A + 2 cos B = $\frac{\sin B}{\sin C}$, pos A + b tan B = (a + b) then prove that the triangle $\frac{8}{2}$ A = 75°. If D is a positive directly of a triangle sequence of a triangle sequence at the middle point of $\frac{2}{2}$.	rove that the triangle $\frac{A}{2}$, prove the sign of the right triangle. From the solution of the sign of the sides of its sides.	ABC is either isosceles or right hat triangle is isosceles. The area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq. dicular to AC, then prove that	KARIYA (S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	 3. 4. 5. 6. 	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC, $\angle C = 60^{\circ}$ the area of the \triangle BCD. The radii r_1 , r_2 , r_3 of esc cm and its perimeter is ABC is a triangle. D $\cos A. \cos C = \frac{2(c^2 - a)}{3ac}$ Two circles, of radii a a $\frac{2ab\sin\theta}{\sqrt{a^2 + b^2 + 2ab\cos\theta}}$ In the triangle ABC, linequal to ω , prove that (i) $\cot \omega = \cot A + \cot A = \cot A + \cot A = $	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, put $\frac{\sin A}{\sin C}$, put $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\cos C}$ and $\frac{\cos A}{\cos C}$ and	rove that the triangle A of A of A of A of A or A of A or	ABC is either isosceles or right hat triangle is isosceles. e area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq. dicular to AC, then prove that e length of the common chord is s OAB, OBC and OCA are each	. MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	 3. 4. 6. 7. 	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC is a triangle. Decorporate ABC is a triangle are accorded as $2(c^2 - ac^2 - ac^$	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, put $\frac{\sin A}{\sin C}$, put $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\cos C}$ and $\frac{\cos A}{\cos C}$ and	rove that the triangle A of A is a prove that the right triangle. The right triangle is the right triangle. The right triangle is the right triangle. The right triangle is of the ABC are in harmonic is of its sides. If AD is perpendicular angle θ . Prove that the drawn so that the angle θ is θ is the points A descaled as θ . If θ is the points θ is θ is θ .	ABC is either isosceles or right hat triangle is isosceles. e area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq. dicular to AC, then prove that e length of the common chord is s OAB, OBC and OCA are each	. MATHS : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)-
FREE Download Study Pack	 3. 4. 6. 7. 8. 	If in a triangle ABC, $\frac{cc}{cc}$ angled. In a triangle ABC, if a triangle ABC, $\frac{r_1}{r_2} = 2$ triangle ABCD. The radii r_1 r_2 r_3 of escending and its perimeter is ABC is a triangle. Decos A. $\cos C = \frac{2(c^2 - a)}{3ac}$. Two circles, of radii a a angle ABC, in the triangle ABC, line equal to ω , prove that (i) $\cot \omega = \cot A + (ii) \cot \omega = \cot A + (iii) \cot \omega = \cot A + (iiii) \cot \omega = \cot A + (iiii) \cot \omega = \cot A + (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$	$\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$, put then $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\sin C}$ are $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\sin C}$ and $\frac{\sin A}{\sin C}$ are equilateral trial espectively. Prove that;	rove that the triangle A of A is a prove that the right triangle. The right triangle is the right triangle. The right triangle is the right triangle. The right triangle is of the ABC are in harmonic is of its sides. If AD is perpendicular angle θ . Prove that the drawn so that the angle θ is θ is the points A descaled as θ . If θ is the points θ is θ is θ .	ABC is either isosceles or right hat triangle is isosceles. e area of the Δ BAD is $\sqrt{3}$ times progression. If its area is 24 sq. dicular to AC, then prove that e length of the common chord is s OAB, OBC and OCA are each	KARIYA (S. R. K. Sir) PH: (0755)-

Page: 21 of 21 PROPERTIES OF TRIANG! circumscribed to the radius of the circle escribed to the hypotenuse is, $\sqrt{2}$: $(\sqrt{3} + \sqrt{2})$. Find the acute angles B & C. Also find the ratio of the two sides of the triangle other than the hypotenuse.

If the circumcentre of the \triangle ABC lies on its incircle then prove that, 12.

$$\cos A + \cos B + \cos C = \sqrt{2}$$

13. Three circles, whose radii area a, b and c, touch one another externally and the tangents at their points of contact meet in a point; prove that the distance of this point from either of their points of contacts

$$is \left(\frac{abc}{a+b+c}\right)^{\frac{1}{2}}.$$

11.

swers

EXERCISE

EXERCISE # 2

98930 58881, BHOPAL, (M.P.)

TEKO CLASSES, H.O.D. MATHS: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)-32 00 000,

4. $\angle ABD = 30^{\circ}$ 5. 6, 8, 10 cms

10. B **13.** C **12.** B

www.tekoclasses.com **16.** B 18. B **19**. C **20.** D **21.** 0

FREE Download Study Package from website: 24. D 25. A **26.** A 27. B 28. B

31. ABCD 32. ACD **33.** ABCD

34. BD 35. ACD **36.** ACD