The only class

Kai von Fintel

http://kvf.me/cssl19-only

Today

- Some spillover from yesterday
- Basics of exceptives

Spillover

Day One:

Two Theories (renamed)

Theory 1 one-place propositional *only* is basic, typeshifted *only* can combine with any type that ends in *t*, the contextually relevant set of alternative propositions is constrained by focus

Theory 2 only is a two-place operator, its first argument is either its surface sister or a constitutent that moves to it. the contextually relevant set of alternatives to its first argument is constrained by the type of that constituent

The two theories applied to an example

(1) Muriel only voted for $[Hubert]_F$

Assume VP-internal subjects get reconstructed

(2) only [Muriel voted for [Hubert] $_F$]

Theory 1

(2) only_C [Muriel voted for [Hubert]_F]

Easy: *only* here is propositional *only*, it asserts that its prejacent is the only true proposition in *C*, focus semantics ensures that *C* is constrained to contain only propositions denoted by sentences of the form "Muriel voted for *x*". This reduces to the claim that only Hubert is such that Muriel voted for him.

Theory 2

- (2) only_C [Muriel voted for [Hubert]_F]
- \Rightarrow [only_C Hubert] λx . (Muriel voted for x)

Easy: The focussed phrase *Hubert* moves upwards to *only* and becomes its first argument. *only* says that Hubert is the only individual in *C* that the second argument is true of. This reduces to the claim that only Hubert is such that Muriel voted for him.

only students

(3) Only students attended the show.

only students

(3) Only students attended the show.

How does this fit into our theories?

only students $_{\langle e,t \rangle}$ attended $_{\langle e,t \rangle}$

only students $_{\langle e,t \rangle}$ attended $_{\langle e,t \rangle}$

two predicates don't combine to give a proposition

but both of our theories depend on that

Two options

- only as a determiner $(\langle et, \langle et, t \rangle)$
- only students = only (some [students]_F)
 (operating on a quantifier)

Determiner *only*

- would be non-conservative
- but mirror image of a conservative determiner (∀)

Next Tuesday

We will focus on the interaction of *only* with *if*, but will include a closer look at *only* students under the second option.

Day Two:

(1) Every player but Julie danced.

- (1) Every player but Julie danced.
 - · Julie is a player
 - Julie didn't dance
 - Every player who is not Julie danced

(2) No player but Dominique danced.

- (2) No player but Dominique danced.
 - · Dominique is a player
 - Dominique danced
 - No player who is not Dominique danced

(3) *Some player but Shanice danced.

(4) *Most players but Shanice danced.

What we want

- derive all the meaning components
- no disjunctive meaning
- explain the co-occurrence restrictions

A wider view

English but is very "constrained"

- · strong co-occurrence restrictions
- strongly connected to quantifier (some extraposition possible)

Other exceptives are less constrained

- free exceptives
 - or at least freer

(5) Except (for) Lize, every player danced.

(6) Every player danced with every guest, except Nahikari with Élise.

Most players danced, except Grace.

(8) Svenja walks to work, except on

Wednesdays.

(9) Every player danced, except Gaëtane

remained seated.

We will look at some of these tomorrow.

von Fintel 1993

(10) Every player but Svenja danced.

(10) Every player but Svenja danced.

Svenja is **the** exception to the generalization that every player danced.

(11) No player but Svenja danced.

(11) No player but Svenja danced.

Svenja is **the** exception to the generalization that no player danced.

Task

Make precise what it means for an individual to be the exception to a generalization.

Start with subtraction

- (12) Every/no player but Svenja danced.
 - It is false that every/no player danced.
 - But it is true that every/no member of the set {players minus Svenja} danced.

But we shouldn't needlessly subtract.

But we shouldn't needlessly subtract.

Subtract the smallest set you have to to make

the generalization true.

The exception

Given a proposition $\phi[A]$ that makes a claim about a set A,

 ${\it x}$ is the exception to $\phi[{\it A}]$ iff

- $\phi[A \{x\}]$ is true
- $\{x\}$ is the smallest set S that makes $\phi[A-S]$ true.

The exception

Given a proposition $\phi[A]$ that makes a claim about a set A,

 ${\it x}$ is the exception to $\phi[{\it A}]$ iff

- $\phi[A \{x\}]$ is true
- $\{x\}$ is the smallest set S that makes $\phi[A-S]$ true.

Show that this entails that $\phi[\mathbf{A}]$ is false.

The exception

Given a proposition $\phi[A]$ that makes a claim about a set A,

 ${\it x}$ is the exception to $\phi[{\it A}]$ iff

- $\phi[A \{x\}]$ is true
- $\{x\}$ is the smallest set S that makes $\phi[A-S]$ true.

Show that this entails that $\phi[A]$ is false. Show that this entails that $x \in A$.

Exceptions can be bigger than one individual

(13) a. every player but Daniëlle and Christen

no player but two forwards

Exceptions can be bigger than one individual

- (13) a. every player but Daniëlle and Christen
 - b. no player but two forwards

Our semantics works as long as the sister of but determines a set.

On the way to compositionality

To write our semantics into the meaning of *but*, we need access to the domain of the quantifier and to a function that maps that domain into a truth-value.

von Fintel 1993

but is the sister to the domain argument and "rolls up" the sentence from there.

von Fintel 1993

but is the sister to the domain argument and "rolls up" the sentence from there.

$$\llbracket but
Vert = \lambda x. \lambda A. \lambda Q. \lambda P.$$

 $\neg Q(A)(P) \& \forall S: Q(A - S)(P) \rightarrow \{x\} \subseteq S.$

Think through what this means for our examples

(14) Every/no [player but Svenja] danced.

Co-occurrence restrictions?

- Only universal determiners (all, no, ...)
 guarantee the existence of a unique smallest exception.
- Some determiners (some for example) never have unique exceptions.
- Others (most for example) only have unique exceptions in very specific cases.

Deconstructing von Fintel 1993

- von Fintel 2000
- · Gajewski 2008
- Hirsch 2016

Tricky cases

- (15) every man and every woman except the parents of John
- (16) the wife of every president except Hilary Clinton

von Fintel 2000's NP-level analysis

(17) $(\lambda R. \text{ every (player & R))}$ but X

von Fintel 2000's NP-level analysis

(17) (λR . every (player & R)) but X

$$\llbracket extstyle e$$

(18) every man and every woman except the parents of John

but and NPI-any

(19) Mary didn't see anyone but Bill.

but and NPI-any

(19) Mary didn't see anyone but Bill. anyone is an existential quantifier, so it shouldn't be able to host but

Gajewski 2008

Sever the subtraction operation from the leastness condition.

X is the least S such that Mary didn't see

(anybody - S)

Hirsch 2016

The higher operator could simply be a focus-sensitive exhaustivity operator.

Beyond but

Return to most

- (20) Most players danced, except Carly.
- (21) Almost all players danced, except Camila.

X is not an exception_{KvF} to the most-claim.

X is an exception_{KvF} to the related all-claim.

A recommendation

See García-Álvarez's Stanford thesis from 2008 (downloadable from the website)

A natural aspect of exceptives

Exceptives state an exception to a generalization. If the set of exceptions is large, it's hard to think of the generalization as having any force anymore.

(22) ? Every player, except most of them, danced.

This smallness ingredient is reminiscent of what we find with *only*.

Next

Thursday Katia Vostrikova's very recent work on clausal exceptives.

Friday Scalarity (and mirativity) in the meaning of *only*