CSCI 3230

Fundamentals of Artificial Intelligence

Chapter 5, Sect 1-5

GAME PLAYING

Adversarial Search

Checkers

Outline

- Games as Search Problems
- Optimal Decision Games
- Resource limits
- $\alpha \beta$ pruning
- Games of chance

Games vs. search problems

"Unpredictable" opponent ⇒ solution is a strategy specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal, must approximate Plan of attack:

- Considered possibility of computer's chess (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948, Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)
- Deep Blue beat G. Kasparov in 1997

Games as search problems

- The state of a game is easy to represent, and agents have a small number of well-defined actions. That makes game playing an idealization of worlds in which hostile agents act to diminish one's well-being.
- What really make games so special in AI? : they are usually much too hard to solve.
- Chess, e.g. has an average branching factor of about 35, and often go to 50 moves by each player, so the search tree has about 35¹⁰⁰ nodes ("only" about 10⁴⁰ different legal positions).

Games as search problems

- Games are much more like the real world than the standard search problems we have looked at so far.
- Games also penalize inefficiency very severely.
- A chess program that is 10% less effective in using its available time probably will be beaten into the ground, other things being equal.
- Pruning is to ignore portions of the search tree that make no difference to the final choice
- Heuristic evaluation functions approximate the true utility of a state without doing a complete search.

Types of games

perfect information

imperfect information

deterministic	chance
chess, checkers, go, othello	backgammon monopoly
	bridge, poker, scrabble nuclear war

Perfect Decisions in Two-Person Games

Consider a game with 2 players, called MAX and MIN. MAX moves 1st. A game can be defined as a search problem with the following components:

- The initial state, which includes the board position and an indication of whose move it is.
- A set of operators, which define the legal moves that a player can make.
- A terminal test, which determines when the game is over. States where the game has ended are called terminal states.
- A utility function (also called a payoff function), which gives numeric value for the outcome of a game. In chess, the outcome is a win, loss or draw, represented by +1, -1 or 0. Some games have a wider variety of possible outcomes; e.g. backgammon payoff range: +192 to -192
- ⇒ Max to find a strategy that will lead to a winning terminal state regardless of what MIN does. Strategy includes the correct move by MAX for each possible move by MIN.

Game tree (2-player, deterministic, turns)

A (partial) search tree for the game of Tic-Tac-Toe.

Top node – initial state.

Utilities assigned by the rules of the game to the terminal states.

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value = best achievable payoff against best play; E.g. 2-ply (1 move) game:

(Recursive for n-ply)

A 2-ply game tree generated by the minimax algorithm. The terminal nodes show the utility value for MAX computed by the utility function. The utilities of the other nodes are computed by the minimax algorithm from the utilities of their successors. MAX's best move is A_1 ; Min's best reply is A_{11} . ?

Minimax algorithm

```
function Minimax-Decision(state, game) returns an action
  inputs: state, current state in game
  v \leftarrow \text{Max-Value}(state) //\text{For Max nodes to start}
   return the action in Successors(state) with value v
function Max-Value(state) returns a utility value
  if Terminal-Test(state) then return Utility(state)
  v \leftarrow -\infty
  for each s in Successors(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(s)) //\text{recursive call}
  return v
function Min-Value(state) returns a utility value
   if Terminal-Test(state) then return Utility(state)
  v \leftarrow \infty
  for each s in Successors(state) do
      v \leftarrow \text{Min}(v, \text{Max-Value}(s)) //\text{recursive call}
   return v
```

Goto α-β

EXAMPLE for MINIMAX Decision

$v \leftarrow \text{MAX-VALUE (state)}$		
Call MAX-VALUE		
$v \leftarrow -\infty$	A	A
for each s A_1 $v \leftarrow MAX (v, MIN-VALUE (s))$	$v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s))$	A ₃
MIN-VALUE	MIN-VALUE	************
$v \leftarrow \infty$	$v \leftarrow \infty$	
for each s A_{11} A_{12} A_{13}	for each s A_{21} A_{22} A_{23}	
$v \leftarrow \text{MIN} (v, \text{ MAX-VALUE } (s))^*$ $v = 3 \leftarrow \text{MIN} (\infty, 3) (3, 12) (3, 8)$	$v \leftarrow \text{MIN} (v, \text{MAX-VALUE}(s))^{**}$ $v = 2 \leftarrow \text{MIN} (\infty, 2) (2, 4) (2, 6)$	
return $v = 3$	return $v = 2$	return $v=2$
Return to MAX-VALUE	Return to MAX-VALUE	
$v \leftarrow \text{MAX}(v, \text{ MIN-VALUE}(s))$	$v \leftarrow MAX(v, MIN-VALUE(s))$	
$v = 3 \leftarrow \text{MAX} \ (v = -\infty, \text{MIN-VALUE} = v = 3)$	$v = 3 \leftarrow \text{MAX} \ (v = 3, \text{MIN-VALUE} = v = 2)$	$v = 3 \leftarrow MAX (v = 3, v = 2)$

Note: * TERMINAL-TEST in MAX-VALUE is "YES", ∴ return UTILITY(s) = 3, 12, 8
** TERMINAL-TEST in MAX-VALUE is "YES", ∴ return UTILITY(s) = 2, 4, 6

Properties of minimax

Complete	Yes, if tree is finite (chess has specific rules for this) NB a finite strategy can exist even in an infinite tree!
Optimal	Yes, against an optimal opponent. Otherwise??
Time	O(bm), m: max depth of search tree; ??
Space	O(bm) (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games \Rightarrow exact solution completely infeasible

Resource limits

Minimax assumes the program has time to search all the way to terminal states, usually not practical.

Suppose we have 100 seconds, explore 104 nodes/second

 \Rightarrow 10⁶ nodes per move (chess: about 10⁴⁰ different legal positions, m=4:100).

Standard approach:

- Cutoff test (← terminal test)
 E.g. Depth limit (perhaps add quiescence search)
- Evaluation function (Utility function)
 - = estimated desirability of position

Evaluation functions, EVAL

- An evaluation function, returns an estimate of the expected utility of the game from a given position. E.g. introductory chess books give an approximate material value for each piece: each pawn is worth 1, a knight or bishop is worth 3, a rook 5, and the queen 9.
- The performance of a game-playing program is extremely dependent on the quality of its EVAL. If inaccurate, it will guide the program toward positions that are apparently "good", but in fact disastrous.

Evaluation functions, EVAL

- How exactly do we measure quality?
 - 1. The evaluation function must agree with the utility function on terminal states.
 - 2. It must not take too long!
 - 3. EVAL should accurately reflect the actual chances of winning.
- The material advantage evaluation function assumes that the value of a piece can be judged independently pieces present on the board.
- This kind of EVAL is called a weighted linear function, expressed as

$$w_1 f_1 + w_2 f_2 + \dots + w_n f_n$$

where the w's are the weights, and the f's are the features of the particular position (e.g. w_I is 1 for the pawn & f_I is no. of pawns etc.)

Evaluation functions

For chess, typically linear weighted sum of features.

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

e.g.
$$w_1 = 9$$

with $f_I(s)$ = (number of white queens) – (number of black queens), etc.

Digression: Exact values don't matter

Behavior is preserved under any monotonic transformation of EVAL.

Only the order matters: payoff in deterministic games acts as an ordinal utility function.

Cutting off search

Minimax Cutoff is identical to Minimax Value except

- Terminal? is replaced by Cutoff?
- 2. Utility is replaced by EVAL

Does it work in practice?

```
b^m: 10<sup>6</sup> nodes/move, b = 35 \Rightarrow m = 4
```

4 ply look ahead is a hopeless chess player!

4 ply \approx human novice (: 'n-all-vis)

8 ply \approx typical PC, human master

12 ply ≈ Deep Blue, Kasparov

Cutting off search

- The most straightforward approach to controlling the amount of search is to set a fixed depth limit, d.?
- The depth is set by the time limit of the game.
- A more robust approach is to apply iterative deepening. When time runs out, the program returns the move selected by the deepest completed search.??
- The approaches can have some disastrous consequences because of the approximate nature of the EVAL. Consider again the simple evaluation function for chess based on material advantage.
 - (see fig 5.4(d) mistaken white is winning if stop too short White Queen is to be taken.)

Cutting off search

Fig 5.4 Some chess position and their evaluations.

Qui'escence search

- Obviously, a more sophisticated cutoff test is needed. The evaluation function should only be applied to positions that are quiescent, i.e., unlikely to exhibit wild swings in value in the near future.
- In chess, e.g., positions with favorable captures are not quiescent for an evaluation function that just counts material.
- Expand non-quiescent positions until quiescent positions are reached called a quiescence search; sometimes restricted to consider only certain types of moves, such as capture moves, that quickly resolve the uncertainties in the position.

A quiescence search attempts to emulate this behavior by instructing a computer to search "interesting" positions to a greater depth than "quiet" ones (hence its name) to make sure there are no hidden traps and, usually equivalently, to get a better estimate of its value.

Horizon problem

- The horizon problem is more difficult to estimate. It arises when the program is facing a move by the opponent that causes serious damage and is ultimately unavoidable.
- (The stalling moves push the inevitable queening move "over the horizon" to a place where it cannot be detected.)

Black to move

Fig 5.5 The horizon problem. A series of checks by the black rook forces the inevitable queening move by white "over the horizon" and makes this position (state) look like a slight advantage for black, when it is really a sure win for white. *One strategy to mitigate:* <u>singular extension</u> - remember "clearly better" single moves

Alpha-Beta pruning

- It is possible to compute the correct minimax decision without looking at every node in the search tree.
- The process of eliminating a branch of the search tree from consideration is called pruning the search tree.
- The technique is called alpha-beta pruning.
- It returns the same moves as minimax would, but prunes away branches that cannot possibly influence the final decision.

Alpha-Beta pruning

General Principle:

Consider a node *n* somewhere in the tree such that Player has a choice of moving to that node. If Player has a better choice m either at the parent node of *n*, or at any choice point further up, then *n* will never be reached in actual play. So once we have found out enough about *n* to reach this conclusion, we can prune it.

The 2-ply game tree as generated by alpha-beta.

α - β pruning example

Properties of α - β

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering", time complexity = $O(b^{m/2})$
 - ⇒ doubles depth of search
 - ⇒ can easily reach depth 8 and play good chess
- A simple example of the value of reasoning about which computations are relevant (a form of meta-reasoning)

Why is it called α - β

 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune the branch Define β similarly for MIN

The α - β algorithm

```
function Alpha-Beta-Search (state) returns an action
   inputs: state, current state in game
   v \leftarrow \text{Max-Value}(state, -\infty, +\infty) //\text{for Max nodes to start}
   return the action in Successors(state) with value v
function Max-Value(state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
                  \alpha, the value of the best alternative for MAX along the path to state
                  \beta, the value of the best alternative for MIN along the path to state
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow -\infty
   for each s in Successors(state) do
       v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
       if v \ge \beta then return v //nodes follow are pruned by jumping out of the for loop
       \alpha \leftarrow \text{Max}(\alpha, \nu)
    return v
function Min-Value(state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
                  \alpha, the value of the best alternative for MAX along the path to state
                  \beta, the value of the best alternative for MIN along the path to state
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow +\infty
   for each s in Successors(state) do
       v \leftarrow \text{Min}(v, \text{Max-Value}(s, \alpha, \beta))
       if v \le \alpha then return v //nodes follow are pruned by jumping out of the for loop
       \beta \leftarrow \text{Min}(\beta, v)
    return v
```

EXAMPLE for α-β Pruning

Initialize $\alpha = -\infty$; $\beta = \infty$		
Call MAX-VALUE $v \leftarrow -\infty$		
for each s A_1	A ₂	$\mathbf{A_3}$
$v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\alpha, \beta))$	$v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\alpha = 3, \beta))$	••••
MIN-VALUE $v \leftarrow \infty$	MIN-VALUE $\nu \leftarrow \infty$	••••
for each s A_{11} A_{12} A_{13}	for each $s A_{21}$ / A_{23} / A_{33}	
$v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\alpha, \beta))^*$	$v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\alpha, \hat{\beta}))$	
$v = 3 \leftarrow MIN(\infty, 3)$ (3, 12) (3, 8)	$v = 2 \leftarrow MIN (v = \infty, MAX-VALUE=2)**$	$v = 2 \leftarrow MIN(\infty, 14)$
$v=3 \leq \alpha = -\infty?$	$v = 2 \le \alpha = 3 ***$	(14,5) (5,2)
$\beta = 3 \leftarrow MIN \ (\beta = \infty, v)$	return v= 2	
return $v = 3$ (β won't be returned)		
Return to MAX-VALUE	Return to MAX-VALUE	
$v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\alpha, \beta))$	$v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\alpha = 3, \beta))$	
$v = 3 \leftarrow \text{MAX} \ (v = -\infty, \text{MIN-VALUE} = v = 3)$	$v = 3 \leftarrow \text{MAX} \ (v = 3, \text{MIN-VALUE} = v = 2)$	$v = 3 \leftarrow \text{MAX} (v = 3,$
$v=3 \geq \beta = \infty?$	$v=3 \geq \beta = \infty$?	MIN-VALUE = v = 2)
$\alpha = 3 \leftarrow \text{MAX} (\alpha = -\infty, \nu = 3)$	$\alpha = 3 \leftarrow \text{MAX} (\alpha = 3, \nu = 3)$	

Note: * TERMINAL-TEST in MAX-VALUE is "YES", \therefore return UTILITY(s) = 3, 12, 8

- ** TERMINAL-TEST in MAX-VALUE is "YES", \therefore return UTILITY(s) = 2
- *** Jump out of the "for each s loop" and effectively prune A22 & A23

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion. Marion Tinsley in 1994 used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Checkers

Othello

Go 圍棋

Nondeterministic games: backgammon

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

Algorithm for nondeterministic games

ExpectiMinimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

```
if state is a Max node then
  return the highest ExpectiMinimax-value of Successors(state)
if state is a Min node then
  return the lowest ExpectiMinimax-value of Successors(state)
if state is a chance node then
  return average of ExpectiMinimax-value of Successors(state)
...
```

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

- ▶ Perfection is unattainable ⇒ must approximate
- Good idea to think about what to think about e.g. pruning
- Uncertainty constrains the assignment of values to states
 Games are to AI as grand prix racing is to automobile design