Chapter 01 of DSUR

Peter Baumgartner 2018-05-27

Contents

1	\mathbf{Bas}	ics: Measures of Central Tendency	1
	1.1	How to get a small data set into R?	1
		1.1.1 Assign values to a vector	1
		1.1.2 Read data values from keyboard	2
	1.2	The Mode	2
		1.2.1 Variante 1: Simple but good!	2
		1.2.2 Version 2: with NA	2
		1.2.3 Version 3: with package modeest	2
	1.3	The Median	3
		1.3.1 Just the function	3
		1.3.2 Without outlier	3
	1.4	The Mean	3
		1.4.1 Just the function	3
		1.4.2 Without outlier	3
		1.4.3 With NA Value not removed	3
		1.4.4 With NA Value removed	3
		1.4.5 With outlier but trimmed	4
	1.5	The Range	4
		1.5.1 Just the function	4
		1.5.2 Without outlier	4
	1.6	Upper and Lower Quartile	4
	1.7		4
			4
			4
	1.8	- V-	5
		1.8.1 Self-test p.25	5
		1.8.2 Self-Test p.27	5

1 Basics: Measures of Central Tendency

1.1 How to get a small data set into R?

Number of friends of 11 Facebook user: 108, 103, 252, 121, 93, 57, 40, 53, 22, 116, 98.

1.1.1 Assign values to a vector

```
> # number of facebook friends = nff
> nff <- c(108, 103, 252, 121, 93, 57, 40, 53, 22, 116, 98)
> nff <- sort(nff)
> nff
```

[1] 22 40 53 57 93 98 103 108 116 121 252

1.1.2 Read data values from keyboard

After running the following code you have to set your cursor into the console and provide the data. There are 2 possibilities: * Enter the data manually and separate each entry with >ENTER< * Copy a string of data (e.g. from a PDF table), where each data is spearated by a blank

In both cases: Terminate the input with an extra >ENTER<

```
> nff_scan <- as.vector(scan(file = ""))
> nff <- sort(nff_scan)
> nff_scan
```

1.2 The Mode

There is no mode-function in the base R module. See https://bit.ly/R-mode. But there are many possibilities to programm this function.

Before I will demonstrate this, I need to add another number into the data set in order to get the frequencey of one number higher than the others.

```
> nff_mode <- c(nff, 53)
```

1.2.1 Variante 1: Simple but good!

```
> Mode <- function(x) {
+  ux <- unique(x)
+  ux[which.max(tabulate(match(x, ux)))]
+ }
> Mode(nff_mode)
```

[1] 53

1.2.2 Version 2: with NA

```
> Mode <- function(x, na.rm = FALSE) {
+     if (na.rm) {
+         x = x[!is.na(x)]
+     }
+     ux <- unique(x)
+     ux[which.max(tabulate(match(x, ux)))]
+ }
> Mode(nff_mode)
```

[1] 53

1.2.3 Version 3: with package modeest

```
> library(modeest)
> mlv(nff_mode, method = "mfv")
```

```
Mode (most likely value): 53
Bickel's modal skewness: 0.5
Call: mlv.default(x = nff_mode, method = "mfv")
1.3 The Median
1.3.1 Just the function
> median(nff)
[1] 98
1.3.2 Without outlier
> median(nff[1:10])
[1] 95.5
1.4 The Mean
1.4.1 Just the function
> mean(nff)
[1] 96.63636
1.4.2 Without outlier
> mean(nff[1:10])
[1] 81.1
1.4.3 With NA Value not removed
> mean(nff[c(1:10, NA)])
[1] NA
1.4.4 With NA Value removed
> mean(nff[c(1:10, NA)], na.rm = TRUE)
```

[1] 81.1

1.4.5 With outlier but trimmed

```
> mean(nff, trim = 0.1)
[1] 87.66667
> mean(nff[2:10])
[1] 87.66667
```

1.5 The Range

1.5.1 Just the function

```
> x <- range(nff)
> xr <- x[2] - x[1]
> cat("Range:", x[2], "-", x[1], "=", xr)
```

Range: 252 - 22 = 230

1.5.2 Without outlier

```
> x <- range(nff[1:10])
> xr <- x[2] - x[1]
> cat("Range:", x[2], "-", x[1], "=", xr)
```

Range: 121 - 22 = 99

1.6 Upper and Lower Quartile

```
> quantile(nff, type = 1)

0% 25% 50% 75% 100%
22 53 98 116 252
```

1.7 The Interquartile Range

1.7.1 Just the function

```
> IQR(nff)
```

[1] 57

1.7.2 Computed with type = 1

This measure has 9 different calculation methods (quantile algorithms) which really matter because of their big differences. Standard is type = 7 (results in 57), whereas type = 1 results in 63.

```
> IQR(nff, type = 1)
```

[1] 63

1.8 Self-Tests

1.8.1 Self-test p.25

```
> treadmill <- c(18,16,18,24,23,22,22,23,26,29,32,34,34,36,36,43,42,49,46,46,57)
> Mode <- function(x, na.rm = FALSE) {
      if (na.rm) {
          x = x[!is.na(x)]
      }
      ux <- unique(x)</pre>
      tab <- tabulate(match(x, ux));</pre>
      ux[tab == max(tab)]
+ }
> Mode(treadmill)
[1] 18 23 22 34 36 46
> median(treadmill)
[1] 32
> mean(treadmill)
[1] 32.19048
> quantile(treadmill, type = 6)
  0% 25% 50% 75% 100%
16.0 22.5 32.0 42.5 57.0
> range(treadmill)
[1] 16 57
> IQR(treadmill, type = 6)
```

1.8.2 Self-Test p.27

[1] 20

What's the probability that someone wo threw themselves of Beachy Head was 30 years or older?

- First we convert 30 into a z-score. Suppose the mean of the suicide scores was 36, and the standard deviation 13; then 30 will bekomme (30-36)/13 = -0.4615385.
- We then look up this value in the column labelled "Bigger Portion" (i.e., the area above the value -0.4615385).
- I get the value of 32.28%, or put another way, there is a chance of 32.28% that a suicide victim was aged 30 or less. We can also say that there is a 67.72% chance that a suicide victim wa older than 30.