Binomial Queues

CMSC420 0101

Spring 2019

Additional Priority Queue operations

- In PQs, we have talked about
 - Naïve implementation (list of lists, array of lists, single array that we splice in between whenever we add...)
 - Binary minheaps (solid implementation, with great cache locality)
 - $O(\log_2 n)$ insertion, deleteMin()
 - *O*(1) getMin()

Additional Priority Queue operations

- In PQs, we have talked about
 - Naïve implementation (list of lists, array of lists, single array that we splice in between whenever we add...)
 - Binary minheaps (solid implementation, with great cache locality)
 - $O(\log_2 n)$ insertion, deleteMin()
 - $\mathcal{O}(1)$ getMin()
- There are other crucial operations on PQs!
 - Merging PQs (binomial queues)
 - Decreasing a key (fibonacci queues)

• Two ways to merge heap A with heap B (assume same size n):

- Two ways to merge heap A with heap B (assume same size n):
 - 1. Call deleteMin() on A n times, and for every one of those times, insert into B. Complexity: $\mathcal{O}(n \cdot (\log_2 n)^2)$. Can drop to $\mathcal{O}(n \cdot \log_2 n)$ if instead of calling deleteMin() n times, we have a way of traversing the heap (BFS, DFS, Iterator...).

- Two ways to merge heap A with heap B (assume same size n):
 - 1. Call deleteMin() on A n times, and for every one of those times, insert into B. Complexity: $\mathcal{O}(n \cdot (\log_2 n)^2)$. Can drop to $\mathcal{O}(n \cdot \log_2 n)$ if instead of calling deleteMin() n times, we have a way of traversing the heap (BFS, DFS, Iterator...).
 - 2. (Only in array implementation): Merge the two arrays into a new one, of size $2n(\mathcal{O}(n))$ and then call heapify() on the new array $(\mathcal{O}(\log_2(2n)))$.
 - So, in total, the copying over "wins" and we have $\mathcal{O}(n)$ for merging two equi-sized heaps.

- Two ways to merge heap A with heap B (assume same size n):
 - 1. Call deleteMin() on A n times, and for every one of those times, insert into B. Complexity: $\mathcal{O}(n \cdot (\log_2 n)^2)$. Can drop to $\mathcal{O}(n \cdot \log_2 n)$ if instead of calling deleteMin() n times, we have a way of traversing the heap (BFS, DFS, Iterator...).
 - 2. (Only in array implementation): Merge the two arrays into a new one, of size $2n(\mathcal{O}(n))$ and then call heapify() on the new array $(\mathcal{O}(\log_2(2n)))$.
 - So, in total, the copying over "wins" and we have O(n) for merging two equi-sized heaps.
- Binomial heaps can be merged in $O(\log_2 n)$.

Binomial queue: basic structure

- Instead of a **single** binary tree, a binomial queue is a **forest** of k-ary trees B_i , themselves called *binomial trees*!
- Recursive definition of a binomial tree:
 - B_0 is a tree consisting of a single node.
 - B_k , for $k \ge 1$ is made up by a root node that contains k links to trees B_0, B_1, \dots, B_{k-1} .

 B_0

• All those heap-ordered trees together (a forest) make up the binomial queue.

• All those <u>heap-ordered</u> trees together (a forest) make up the binomial queue.

- All those <u>heap-ordered</u> trees together (a forest) make up the binomial queue.
- The roots are connected to each other through a list.

Some results

- 1. The tree B_k has 2^k nodes.
 - Starting with 1 node, we double the amount of nodes every time.

Some results

- 1. The tree B_k has 2^k nodes.
 - Starting with 1 node, we double the amount of nodes every time.
- 2. The tree B_k has k levels (so a height of k-1).
 - Straightforward consequence of the fact that T_{k+1} adds a level to T_k , by construction

Some results

- 1. The tree B_k has 2^k nodes.
 - Starting with 1 node, we double the amount of nodes every time.
- 2. The tree B_k has k levels (so a height of k-1).
 - Straightforward consequence of the fact that T_{k+1} adds a level to T_k , by construction
- 3. The i^{th} level of the tree B_k , where $i \in \{0, 1, 2, ...\}$, has $\binom{k}{i}$ nodes!

Binary representation of a binomial queue

- A binomial queue is a set of binomial trees with some maximum degree K for its trees.
- We define a length K binary representation $B = B_0 B_1 \dots B_k$ of our queue using the following rule:

$$B_i = \begin{cases} 1, & if \ T_i \ is \ part \ of \ the \ queue \\ 0, & otherwise \end{cases}$$

k	5	4	3	2	1	0
B_k present?	Т	F	F	Т	Т	F
bits	1	0	0	1	1	0

 B_5

k	5	4	3	2	1	0
B_k present?	Т	F	F	T	Т	F
bits	1	0	0	1	1	0

k	5	4	3	2	1	0
B_k present?	Т	F	F	Т	Т	F
bits	1	0	0	1	1	0

Another result: A binomial queue of size n has $\lceil \log_2 n \rceil$ trees.

Merging binomial queues

- To merge two binomial queues, we simply add the two binary representations together!
- Whenever we encounter an addition of a 1 with a 1, we have a carry bit.
 - In Bin Queue terms, this means that we construct a tree of order B_{k+1} by comparing the roots of two B_k s (those made up the '1's in the addition) and making the smaller one the root of the new tree.
 - So combining two binomial trees is *constant time*: one comparison and one reference assignment, irrespective of n.

Since the highest rank tree is 3, we have two 4-bit representations to add.

Merging example

Best scenario: no combines (carries)

Best scenario: no combines (carries)

Gotta combine the two T_0 s, which means that there will **not** be a T_0 in the final queue (LSB of sum is 0).

Had to merge 5 pairs of trees, so paid 5 unit costs.

Generally, for adding klength bit vectors of all 1s
(or, merging "full" binomial
queues of rank k), we pay k unit costs.

• Suppose we want to merge two binomial queues of the same maximum rank r. Both queues have n keys total.

- Suppose we want to merge two binomial queues of the same maximum rank r. Both queues have n keys total.
- How does k, the number of paid unit costs, grow as a function of n?

- Suppose we want to merge two binomial queues of the same maximum rank r. Both queues have n keys total.
- How does k, the number of paid unit costs, grow as a function of n?

 $\mathcal{O}(n)$ $\mathcal{O}(\log_2 n)$ Something else (what?)

- Suppose we want to merge two binomial queues of the same maximum rank r. Both queues have n keys total.
- How does k, the number of paid unit costs, grow as a function of n?

- Worst-case scenario is two r —bit vectors of all 1s, which means that we will have to merge all same-rank pairs of trees.
- But we already know that a Binomial Queue with n elements has $[\log_2 n]$ trees!

- Suppose we want to merge two binomial queues of the same maximum rank r. Both queues have n keys total.
- How does k, the number of paid unit costs, grow as a function of n?

- Worst-case scenario is two r —bit vectors of all 1s, which means that we will have to merge all same-rank pairs of trees.
- But we already know that a Binomial Queue with n elements has $[\log_2 n]$ trees!

Merge these for me please!

Enqueue

- To enqueue an element in a Binomial Queue, we simply make a T_0 out of it and merge this singleton queue with the rest of the queue.
- Since we can generate up to $\log_2 n$ pairs of trees that we should merge, enqueue() is also a $\mathcal{O}(\log_2 n)$ operation .

Enqueue 8

8

Merge two T_0 s into a T_1 ...

Merge two T_0 s into a T_1 ...

Merge two T_1 s into a T_2 ...

Merge two T_1 s into a T_2 ...

• Since there are $\lceil \log_2 n \rceil$ Binomial Trees in a Binomial queue with n keys, and the roots are connected via a linked list, getMin() is $\mathcal{O}(\log_2 n)$.

- Since there are $\lceil \log_2 n \rceil$ Binomial Trees in a Binomial queue with n keys, and the roots are connected via a linked list, getMin() is $\mathcal{O}(\log_2 n)$.
- Or is it?

- Since there are $\lceil \log_2 n \rceil$ Binomial Trees in a Binomial queue with n keys, and the roots are connected via a linked list, getMin() is $\mathcal{O}(\log_2 n)$.
- Or is it?
- Maintaining a pointer to the minimum element makes it $\mathcal{O}(1)$!

- Since there are $\lceil \log_2 n \rceil$ Binomial Trees in a Binomial queue with n keys, and the roots are connected via a linked list, getMin() is $\mathcal{O}(\log_2 n)$.
- Or is it?
- Maintaining a pointer to the minimum element makes it $\mathcal{O}(1)$!
- Begin from an empty queue, current global minimum is null. Every time you insert a new element and merge two trees, compare the minimum of the two roots to the stored global minimum. If smaller, replace global minimum.

- Since there are $\lceil \log_2 n \rceil$ Binomial Trees in a Binomial queue with n keys, and the roots are connected via a linked list, getMin() is $\mathcal{O}(\log_2 n)$.
- Or is it?
- Maintaining a pointer to the minimum element makes it $\mathcal{O}(1)$!
- Begin from an empty queue, current global minimum is null. Every time you insert a new element and merge two trees, compare the minimum of the two roots to the stored global minimum. If smaller, replace global minimum.
 - Increases the unit cost of merging two trees by one additional comparison, but it's definitely worth it.

dequeue() (deleteMin())

- Dequeueing consists of finding the minimum root, removing it and reinserting all of its children.
 - Reinserting = put them all in a temporary queue and then merge with current one.

dequeue() (deleteMin())

- Dequeueing consists of finding the minimum root, removing it and reinserting all of its children.
 - Reinserting = put them all in a temporary queue and then merge with current one.
- A Binomial Tree T_k consists of a root pointing to k children.
 - And $k \leq \log_2 n$ (` = ' only when we have a single binomial tree in the queue)
 - So we have $O(\log_2 n)$ trees to enqueue in a temporary queue
 - $O(\log_2 \log_2 n)$ for this step, since the temp queue will have at most $\log_2 n$ binomial trees!

dequeue() (deleteMin())

- Dequeueing consists of finding the minimum root, removing it and reinserting all of its children.
 - Reinserting = put them all in a temporary store and then merge with current one.
- A Binomial Tree T_k consists of a root pointing to k children.
 - And $k \leq \log_2 n$ (` = ' only when we have a single binomial tree in the queue)
 - So we have $O(\log_2 n)$ trees to put in a temporary queue
- Then, we merge the temporary queue with the original one.
 - $\mathcal{O}(\log_2 n)$
 - So, in total, we pay the logarithmic cost twice
 - In total: $O(\log_2 n)$ with a 2 up front.

Dequeueing Example

• Delete the minimum element of this binomial queue.

1. Suppose we have a Binomial Queue with 11,021 elements. Does it contain a T_0 ?

- 1. Suppose we have a Binomial Queue with 11,021 elements. Does it contain a T_0 ?
 - Yes, since 11,021 is an odd number, and the only way to write it in binary involves a '1' as the LSB (which means that a T_0 has to be present)!

- 1. Suppose we have a Binomial Queue with 11,021 elements. Does it contain a T_0 ?
 - *Yes*, since 11,021 is an odd number, and the only way to write it in binary involves a '1' as the LSB (which means that a T_0 has to be present)!
- 2. Suppose we have a Binomial Queue with 1023 elements. What is the rank of the highest rank Binomial Tree in this queue?

- 1. Suppose we have a Binomial Queue with 11,021 elements. Does it contain a T_0 ?
 - Yes, since 11,021 is an odd number, and the only way to write it in binary involves a '1' as the LSB (which means that a T_0 has to be present)!
- 2. Suppose we have a Binomial Queue with 1023 elements. What is the rank of the highest rank Binomial Tree in this queue?
 - 9 (nine), since $1023 = \sum_{i=0}^{9} 2^{i}$

- 1. Suppose we have a Binomial Queue with 11,021 elements. Does it contain a T_0 ?
 - Yes, since 11,021 is an odd number, and the only way to write it in binary involves a '1' as the LSB (which means that a T_0 has to be present)!
- 2. Suppose we have a Binomial Queue with 1023 elements. What is the rank of the highest rank Binomial Tree in this queue?
 - 9 (nine), since $1023 = \sum_{i=0}^{9} 2^{i}$
- 3. We have a Bin Queue A described by the binary string 10110011. We take the XOR of this string with 1111111 to produce a new Bin Queue B (with some elements in it, it doesn't matter for this question). If I were to merge A and B, how many trees would I have to merge?

3) We have a Bin Queue A described by the binary string 10110011. We take the XOR of this string with 1111111 to produce a new Bin Queue B (with some elements in it, it doesn't matter for this question). If I were to merge A and B, how many trees would I have to merge?

 $\begin{array}{c} 10110011 \\ \underline{\otimes} \ 1111111 \\ \hline 01001100 \end{array}$

3) We have a Bin Queue A described by the binary string 10110011. We take the XOR of this string with 1111111 to produce a new Bin Queue B (with some elements in it, it doesn't matter for this question). If I were to merge A and B, how many trees would I have to merge?

 $\begin{array}{c} 0000000\\ \hline 10110011\\ +01001100\\ \hline 111111111\end{array}$

Zero trees merged!

Five trees merged!

Binomial vs Binary heaps

Binomial Heap	Binary Heap
Efficient merging $(\mathcal{O}(\log_2 n))$	Great cache locality (in array implementation)
<pre>getMin()and enqueue() just as efficient</pre>	Easy implementation
Big constant in front of $\log_2 n$ for enqueue() and dequeue()	Can be used for sorting (heapsort)
	Inefficient merging ($\mathcal{O}(q_1 + q_2)$)