

Bruce M. Boghosian

Behrens-Fisher problem

Testing H_0 : $\sigma_X^2 = \sigma_Y^2$

Two-sample inferences

The Behrens-Fisher problem

Testing $H_0: \sigma_X^2 = \sigma_Y^2$

Bruce M. Boghosian

Department of Mathematics

Tufts University

1 The Behrens-Fisher problem

2 Testing $H_0: \sigma_X^2 = \sigma_Y^2$

Summary

Tufts The Behrens-Fisher problem

Behrens-Fisher problem

- Can we test H_0 : $\mu_X = \mu_Y$ if $\sigma_X \neq \sigma_Y$?
- This is still an unsolved problem in statistics.
- Instead of $T = \frac{\overline{X} \overline{Y}}{S_p \sqrt{\frac{1}{a} + \frac{1}{m}}}$, a widely used approximation is

$$W = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$$

■ Thm. (Welch 1938): W is approximately distributed like a Student t distribution with

$$\frac{\left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)^2}{\frac{\sigma_X^4}{n^2(n-1)} + \frac{\sigma_Y^4}{m^2(m-1)}},$$

degrees of freedom, rounded to the nearest integer.

Deficiencies of Welch's solution

Bruce M. Boghosian

The Behrens-Fisher problem

 $\sigma_X^{ar{}} = \sigma_X^{ar{}}$ Summary ■ **Thm.** (Welch 1938): *W* is approximately distributed like a Student *t* distribution with

$$\frac{\left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)^2}{\frac{\sigma_X^4}{n^2(n-1)} + \frac{\sigma_Y^4}{m^2(m-1)}},$$

df, rounded to the nearest integer.

■ When $\sigma_X = \sigma_Y$, Welch's expression for df becomes

$$\frac{\left(\frac{1}{n} + \frac{1}{m}\right)^2}{\frac{1}{n^2(n-1)} + \frac{1}{m^2(m-1)}},$$

- does exhibit symmetry in m and n, as it should.
- does reduce to 2m-2 when m=n, as it should.
- does not reduce to m + n 2, as it should.
- Caution is urged unless $m \approx n$.

Tufts Testing $H_0: \sigma_X^2 = \sigma_Y^2$

Testing H_0 :

- Let x_1, \ldots, x_n and y_1, \ldots, y_m be independent random samples from $N(\mu_X, \sigma_X)$ and $N(\mu_Y, \sigma_Y)$, respectively.
 - To test $H_0: \sigma_Y^2 = \sigma_Y^2$ versus $H_1: \sigma_Y^2 > \sigma_Y^2$ at the α level of significance, reject H_0 if $s_{\nu}^2/s_{\nu}^2 \leq F_{\alpha,m-1,n-1}$.
 - To test $H_0: \sigma_Y^2 = \sigma_Y^2$ versus $H_1: \sigma_Y^2 < \sigma_Y^2$ at the α level of significance, reject H_0 if $s_Y^2/s_X^2 \ge F_{1-\alpha,m-1,n-1}$.
 - To test $H_0: \sigma_X^2 = \sigma_Y^2$ versus $H_1: \sigma_X^2 \neq \sigma_Y^2$ at the α level of significance, reject H_0 if either (a) $s_Y^2/s_X^2 \le F_{\alpha/2,m-1,n-1}$ or (b) $s_Y^2/s_X^2 \ge F_{1-\alpha/2,m-1,n-1}$.

Example

Bruce M. Boghosian

The Behrens-Fishe oroblem

```
Testing H_0: \sigma_X^2 = \sigma_Y^2
Summary
```

- People with Raynaud's syndrome have impaired blood circulation to the fingers, causing heat loss.
- Measurements of heat output of fingers of n=10 normal subjects, and m=10 subjects with Raynaud's syndrome

```
x \text{ (wo/RS)}
                2.43
                         1.83
                                  2.43
                                           2.70
                                                     1 88
                                                              1 96
                                                                       1.53
                                                                                2.08
                                                                                         1.85
                                                                                                  2 44
v (wi/ RS)
                0.81
                         0.70
                                  0.74
                                           0.36
                                                     0.75
                                                              0.56
                                                                       0.65
                                                                                0.87
                                                                                         0.40
                                                                                                  0.31
```

- We have $\bar{x} = 2.11$, $s_X = 0.37$, $\bar{y} = 0.62$, $s_Y = 0.20$.
- It is evident that $\overline{Y} < \overline{X}$, but what about the variances?

Tufts Example (continued)

Testing H_0 :

- Test $H_0: \sigma_X^2 = \sigma_Y^2$ versus $H_1: \sigma_Y^2 \neq \sigma_Y^2$
- Level of significance is $\alpha = 0.05$.
- Reject H_0 if either
 - $s_{v}^{2}/s_{x}^{2} \leq F_{\alpha/2,m-1,n-1}$
 - $s_{\nu}^2/s_{\chi}^2 \geq F_{1-\alpha/2,m-1,n-1}$
- We have $F_{0.025,9.9} = 0.248$ and $F_{0.975,9.9} = 4.03$.
- Since $\frac{s_Y^2}{s_X^2} = 0.292$, we are unable to reject the null hypothesis that $\sigma_{\mathbf{Y}}^2 = \sigma_{\mathbf{Y}}^2$.

Summary

Bruce M. Boghosian

The Behrens-Fishe problem

Testing H_0 $\sigma_X^2 = \sigma_Y^2$

Summar

- We have discussed Behrens-Fisher problem, and presented an approximate solution, with some deficiencies, but we note this is an important unsolved problem of statistics.
- We have tested H_0 : $\sigma_X^2 = \sigma_Y^2$ and given an example.