Subtopics Covered:	
1.	Law of Constant Composition
2.	Law of Multiple Proportions
3.	Writing and Balancing Chemical Equations
Lessor	n Objectives:
By the	end of the lesson, students should be able to:
•	State and explain the Law of Constant Composition.
•	State and explain the Law of Multiple Proportions.
•	Write and balance chemical equations properly.
1. Law	of Constant Composition (Law of Definite Proportions)
Staten	nent:
	emical compound always contains the same elements combined in the same proportion iss, regardless of its source or the method of preparation."
Explar	nation:
•	The composition of a pure compound is fixed.
	The elements combine in definite , fixed ratios .

Hydrogen 2g

Element Mass of 1 mole

Element Mass of 1 mole

Oxygen 16g

Total 18g

Mass Ratio:

```
218:1618=1:8\frac{2}{18}: \frac{16}{18} = 1:8182:1816=1:8
```

So, water is always 1 part hydrogen and 8 parts oxygen by mass, no matter the source.

Carbon Dioxide (CO₂):

Element Mass of 1 mole

Carbon 12g

Oxygen 32g

Total 44g

Mass Ratio:

```
1244:3244=3:8\frac{12}{44}: \frac{32}{44} = 3:84412:4432=3:8
```

Carbon dioxide is always **3 parts carbon** to **8 parts oxygen** by mass.

2. Law of Multiple Proportions

Statement:

"When two elements combine to form more than one compound, the different masses of one element that combine with a fixed mass of the other are in simple whole-number ratios."

Explanation:

If **element A** combines with **element B** in different ways to form different compounds, the mass of B that combines with a fixed mass of A will be in **simple whole number ratios**.

Examples:

Carbon and Oxygen:

Compound Formula Mass of Carbon Mass of Oxygen

Carbon monoxide CO 12g 16g

Carbon dioxide CO₂ 12g 32g

Comparison:

Fix carbon at **12g**. Compare oxygen masses:

• In CO: 16g of oxygen

• In CO₂: 32g of oxygen

Ratio of oxygen = 16:32 = 1:2

So, the oxygen masses are in a **simple whole-number ratio of 1:2**, confirming the law.

Another Example: Nitrogen Oxides

Compound Formula Mass of N (fixed) Mass of O

Nitrous oxide N₂O 28g 16g

Nitric oxide NO 28g 32g

Nitrogen dioxide NO₂ 28g 64g

Ratio of Oxygen:

16:32:64 = **1:2:4**

3. Writing and Balancing Chemical Equations

What is a Chemical Equation?

A chemical equation shows the reactants and products in a chemical reaction, using symbols and formulae.

Parts of a Chemical Equation:

Reactants → Products

Substances before reaction Arrow (yields) Substances after reaction

Symbols Used in Equations:

Symbol Meaning

- + "and" or "reacts with"
- → "produces" or "yields"
- (s) Solid
- (l) Liquid
- (g) Gas
- (aq) Aqueous solution (dissolved in water)

Steps to Balance Chemical Equations:

- 1. Write the correct formulae for all reactants and products.
- 2. **Count the number of atoms** of each element on both sides.
- 3. Use coefficients (numbers in front) to balance the atoms.
- 4. **Never change subscripts** (do not alter the formula).
- 5. Check your work by recounting atoms.

Examples of Balancing Equations:

Example 1: Combustion of Methane

Unbalanced:CH4+O2 \rightarrow CO2+H2O\text{Unbalanced:} \quad CH_4 + O_2 \rightarrow CO_2 + H_2OUnbalanced:CH4+O2 \rightarrow CO2+H2O

• Carbon: 1 (both sides)

• Hydrogen: 4 (left), 2 (right)

• Oxygen: 2 (left), 3 (right)

Balanced:

CH4+2O2 -> CO2+2H2OCH_4 + 2O_2 \rightarrow CO_2 + 2H_2OCH4+2O2 -> CO2+2H2O

• Carbon: 1

• Hydrogen: 4

Oxygen: 4 (both sides)

Example 2: Reaction of Iron and Oxygen

Unbalanced:Fe+O2→Fe2O3\text{Unbalanced:} \quad Fe + O_2 \rightarrow Fe 2O 3Unbalanced:Fe+O2→Fe2O3

• Iron: 2 on right, so put 2 Fe on left.

• Oxygen: 3 on right, 2 on left. Use LCM of 6.

Balanced:

4Fe+3O2→2Fe2O34Fe + 3O_2 \rightarrow 2Fe_2O_34Fe+3O2→2Fe2O3

Example 3: Neutralization Reaction

Unbalanced:NaOH+HCl→NaCl+H2O\text{Unbalanced:} \quad NaOH + HCl \rightarrow NaCl + H 2OUnbalanced:NaOH+HCl→NaCl+H2O

- All elements are already balanced.
- Final equation:

NaOH+HCl→NaCl+H2ONaOH + HCl \rightarrow NaCl + H 2ONaOH+HCl→NaCl+H2O

Additional Examples for Practice:

Reaction Balanced Equation

Combustion of hydrogen $2H_2 + O_2 \rightarrow 2H_2O$

Formation of ammonia $N_2 + 3H_2 \rightarrow 2NH_3$

Decomposition of water $2H_2O \rightarrow 2H_2 + O_2$

Reaction of sodium with chlorine 2Na + Cl₂ → 2NaCl

Calcium carbonate decomposition CaCO₃ → CaO + CO₂

Meaning

Summary of Key Points:

Law of Constant

Composition

Concept

A compound always has elements in a fixed ratio by mass.

Law of Multiple Elements can combine in different ratios to form different

Proportions compounds.

Chemical Equation Symbolic representation of a chemical reaction.

Balancing Equations Ensuring same number of atoms on both sides.

Conclusion

The **laws of composition** help explain how elements combine in nature.

Balanced chemical equations show how matter is conserved and reactions happen according to fixed rules.