图论作业(4.7)

中国人民大学 信息学院 崔冠宇 2018202147

题目1 假设图 G 中的任意两点之间都有通路相连. 证明: 若 G 中有两条最长轨,则二最长轨有公共顶点. (注: 轨是顶点相异的通路.)

证明. (这里语言稍有歧义,按照最长轨和次长轨一样可以证明.)

设 $v_0v_1\cdots v_m$ 是 G 中的最长轨, $u_0u_1\cdots u_n$ 是 G 中的次长轨, 容易看出 n=m 或 n=m-1(因为 $v_0v_1\cdots v_{m-1}$ 可作为次长轨, 必有 $n\geq m+1$).

反设 v_0, \dots, v_m 和 u_0, \dots, u_n 无公共点,由于图 G 中的任意两点之间都有通路相连,所以 $\exists 1 < i < m, 1 < j < n$,使得 v_i 与 u_i 之间存在轨 P_0 ,长度 $l_0 \ge 1$.

现在取 $v_0 \cdots v_i$ 和 $v_i \cdots v_m$ 中较长的一段 P_1 , 容易得出这一段的长度 $l_1 \geq \lceil \frac{m}{2} \rceil$; 同理, 取 $u_0 \cdots u_j$ 和 $u_j \cdots u_n$ 中较长的一段 P_2 , 这一段的长度 $l_2 \geq \lceil \frac{n}{2} \rceil \geq \lceil \frac{m-1}{2} \rceil$. 将 P_0 , P_1 和 P_2 组成一条轨, 它的长度 $l = l_0 + l_1 + l_2 \geq 1 + \lceil \frac{m}{2} \rceil + \lceil \frac{m-1}{2} \rceil = m+1$, 与 $v_0 \cdots v_m$ 是最长轨矛盾.

所以 v_0, \dots, v_m 和 u_0, \dots, u_n 必有公共点. \square

P26, **T52** 证明: 若 $e \in E(G)$, 且 e 在 G 的一个闭行迹上, 则 e 在一个圈上.

证明. 设 $v_0e_1v_1\cdots e_nv_n$ 是包含 e 的闭迹. 分两种情况讨论:

- 1. 若 v_0, v_1, \dots, v_n 除 $v_0 = v_n$ 外互不相同. 依定义, 这是一个圈.
- 2. 若除 v_0, v_n 相同外有 v_i, v_j 相同. 如下图所示, 将原闭迹拆分成 $v_0e_1v_1 \cdots v_ie_{j+1}v_{j+1} \cdots e_nv_n (= v_0)$ 和 $v_ie_{i+1}v_{i+1} \cdots e_jv_j (= v_i)$, 保留其中含 e 的一部分. 显然这仍是闭迹, 但是重复的点少了. 由于闭迹是有限长序列, 不断做下去, 一定能化为情况1.

综上, e 一定在一个圈上. □