

Regularized regression

Akitaka Matsuo

Regularized regression

- We saw linear regression in the previous lecture.
- Linear regression is BLUE for the train set, but might be overlysensitive to the train data.
- We can adjust the problem by using penalized regression.
- Methods
 - Ridge regression
 - LASSO
 - (Elastic net)

Regularized regression, objective function

– Linear regression:

$$\operatorname{argmin}_{\beta} \sum_{i} (Y_i - (\beta_0 + \sum_{j} \beta_j X_{ij}))^2$$

– Regularized regression:

$$\operatorname{argmin}_{\beta} \sum_{i} (Y_{i} - (\beta_{0} + \sum_{j} \beta_{j} X_{ij}))^{2} + \lambda g(\beta_{-0})$$

– The shape of $g(\beta)$ is different across methods

Ridge regression

$$\operatorname{argmin}_{\beta} \sum_{i} (Y_i - (\beta_0 + \sum_{j} \beta_j X_{ij}))^2 + \lambda \sum_{j} \beta^2$$

- $-\lambda \sum_{i} \beta^{2}$ is the penalty term (i.e. shrinkage penalty)
 - L2-penalty
 - sum of the squared β s multiplied by λ
 - $\lambda = 0$: OLS
 - $\lambda = \infty$: completely shrunken β
- $-\lambda$ is an only tuning parameter in ridge regression

Ridge regression, diferent lambda

- This is an illustration of fitted line with different λ value
- When λ gets bigger, the line gets flatter
- The best λ value:
 - Enough shrinkage without too much bias (see example later)

LASSO Regression

The objective function is similar but slightly different

- LASSO

$$\operatorname{argmin}_{\beta} \sum_{i} (Y_i - (\beta_0 + \sum_{j} \beta_j X_{ij}))^2 + \lambda \sum_{j} |\beta|$$

Ridge regression

$$\operatorname{argmin}_{\beta} \sum_{i} (Y_i - (\beta_0 + \sum_{i} \beta_j X_{ij}))^2 + \lambda \sum_{i} \beta^2$$

- LASSO penalty
 - L1-penalty
 - sum of the absolute value of β s multiplied by λ
 - $\lambda = 0$: OLS
 - $\lambda = \infty$: completely shrunken β
- $-\lambda$ is an only tuning parameter in LASSO regression

Similarity/Difference between Ridge and "Luniversity **LASSO**

Similarity

- Both penalize
- Can be estimated when more variables than observations

Differences

- The way of shrinking:
 - Ridge: Make all beta smaller but rarely gets to 0
 - LASSO: Quickly shrink β for meaningless variables to 0

So, Ridge is powerful when a lot of weak/meaningful predictors, while LASSO is useful when a lot of junk variables. That's why LASSO is used for variable selection.

Regularization paths for LASSO and Ridge

Elastic net

- Elastic net is the combination of Lasso and ridge regression with both L1 and L2 norm
- One formulation is:

$$\operatorname{argmin}_{\beta} \sum_{i} (Y_{i} - (\beta_{0} + \sum_{j} \beta_{j} X_{ij}))^{2} + \lambda (\alpha \sum_{j} |\beta| + (1 - \alpha) \sum_{j} \beta^{2})$$

- Two tuning parameters:
 - α: weight of L1 and L2
 - $-\alpha = 1$: LASSO
 - $-\alpha = 0$: Ridge regression
- If tuned well, could perform the best

Summary

- Regularized regression: Methods to reduce model variance
- Two methods:
 - Ridge regression
 - Shrink everything smaller, basically keep all variables
 - LASSO regression
 - Variable selection