Ficha - Métodos de Otimização Sem Restrições

Métodos de descida acelerada: Momentum, NAG, Adagrad, RMSProp, Adam

1. Considere o problema (Rosenbrock)

$$\min_{w \in \mathbb{R}^2} F(w) = (a - w_1)^2 + b(w_2 - w_1^2)^2$$

com a=1 e b=100. (Solução: minimizante global $w^*=(a,a^2)$)

Considere para ponto inicial $w^{(0)} = (0,0)^T$, para critério de paragem considere a condição $\|\nabla F(w)\| \le 10^{-6}$, e faça $\eta = \text{constante}$. Em cada iteração, grave para um ficheiro a informação:

k	$w^{(k)^T}$	$\nabla F(w^{(k)})$	$\ \nabla F(w^{(k)}\ _2$	F(w(k))
	•••		•••	

- (a) Resolva o problema usando o método NAG.
- (b) Resolva o problema usando o método RMSProp.
- (c) Resolva o problema usando o método Adam.
- (d) Faça uma análise comparativa dos resultados obtidos.
- 2. Considere novamente o problema de machine learning. Dado o data set $D = (x^n, y^n)_{n=1}^N$ pretende-se determinar os coeficientes de um polinómio de grau I

$$\phi(w; x) = w_0 + w_1 x + w_2 x^2 + \dots + w_I x^I
= w^T p(x)$$

onde $p(x) = (1, x, x^2, \dots, x^{\rm I})^T$ que melhor ajustam o polinómio aos dados D no sentido da minimização da função MSE (Mean Squared error):

$$MSE(w; D) = \frac{1}{N} \sum_{n=1}^{N} (\phi(w; x^n) - y^n)^2.$$

Nota: O gradiente da função MSE(w; D) é dado por $\nabla MSE(w; D) = \frac{2}{N} \sum_{n=1}^{N} (\phi(w; x^n) - y^n) p(x^n)$.

(a) Resolver o Problema apresentado com o data set data1.csv (N=100). Dividir o data set em duas partes: 80% para treino D_t e 20% para validação D_v . Esta seleção deverá ser aleatória. Resolva o problema com o método Adam (batch) e como aproximações iniciais aos parâmetros considere $w^{(0)} = (0, ..., 0)$, e para critério de paragem considere

$$\|\nabla MSE(w)\| \le 10^{-4} \text{ e } k \le 10N_t.$$

Resolva o problema considerando polinómios de grau I = 2, ..., 7. Para cada um dos polinómios calcule: w^* , o erro de treino (in-sample error) $MSE(w^*; D_t)$, e o erro de validação (out-sample error) $MSE(w^*; D_v)$. Fazer o gráfico dos erros e indicar qual o grau I que fornece a melhor aproximação.

- (b) Faça o exercício 2(a) mas implemente a versão Adam estocástico.
- (c) Faça o exercício 2(a) mas implemente a versão <u>Adam estocástico mini-batch</u>. Considere para mini-batch 5% dos dados do D_t . Esta seleção deverá ser aleatória em cada iteração.

1