

Gate Level Minimization

2019. 3. 18.

K-S. Sohn

Contents

- The map method
- Four-variable map
- Product-of-sums simplification
- Don't care conditions
- NAND-NOR Implementation
- Other two-level implementation
- XOR function

Introduction

Gate-level minimization

 Gate-level minimization is the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

Importance

- CAD can minimize Boolean equations efficiently and quickly.
- Nevertheless, designer should understand the underlying mathematical description and solution of the problem

The Map Method

- The complexity of the digital logic gates
 - the complexity of the algebraic expression
- Logic minimization
 - algebraic approaches: lack specific rules
 - the Karnaugh map (or K-map)
 - a simple straight forward procedure
 - > a pictorial form of a truth table
 - applicable if the # of variables < 7</p>
- A diagram made up of squares
 - each square represents one minterm

Boolean Function

- Standard form of a Boolean function
 - sum of product
 - product of sum
- Simplest algebraic expression
 - o a minimum number of terms
 - a minimum number of literals in each term
 - The simplified expression may not be unique
- K-map (Karnaugh map)
 - a diagram made up of squares with each square representing one minterm of the Boolean function to be minimized

Two-Variable K-Map

- A two-variable Boolean function
 - four minterms
- A two-variable map
 - o four squares, one for each minterm
 - x' = row 0; x = row 1
 - y' = column 0; y = column 1

m_0	m_1
m_2	m_3

(a)

Two-Variable K-Map

- Representation of functions in the K-map
 - map a row of a truth table into square located by (x,y) in the diagram
 - Xy
 - **○** X+y

(a) xy

Three-Variable Map

- Three-variable Boolean function
 - eight minterms
- Three-variable K-map
 - o minterms arranged in a Gray code sequence
 - any two adjacent squares in the map differ by only one variable
 - primed in one square and unprimed in the adjacent one

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

\ yz				y
x	00	01	11	10
0	$\begin{bmatrix} m_0 \\ x'y'z' \end{bmatrix}$	m_1 $x'y'z$	m_3 $x'yz$	$\begin{bmatrix} m_2 \\ x'yz' \end{bmatrix}$
$x \left\{ 1 \right\}$	m_4 $xy'z'$	m_5 $xy'z$	m_7 xyz	m_6 xyz'
				,

Three-Variable K-Map

- Adjacency of squares
 - o in row, in column, and rotation is permitted in each dimension
- Example
 - An adjacent pair m5 and m7 can be simplified
 - omega m5+ m7 = xy'z + xyz = xz (y'+y) = xz

Three-Variable K-Map

Example 3.1

$$> F(x,y,z) = \sum (2,3,4,5) \rightarrow F = x'y + xy'$$

Simplifying with Two Adjacent Squares

Example of adjacency

- m₀ and m₂ (m₄ and m₆) are adjacent
- $oldsymbol{o}$ $m_0 + m_2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'$
- $m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$

Simplifying with Two Adjacent Squares

Example 3.2

$$> F(x,y,z) = \sum (3,4,6,7) = yz + xz'$$

Note: xy'z' + xyz' = xz'

Four Adjacent Squares

Simplification in Boolean function

$$F = m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz'$$

$$= x'z'(y'+y) + xz'(y'+y)$$

$$= x'z' + xz' = z'$$

$$Arr$$
 F = $m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz$

$$= x'z(y'+y) + xz(y'+y)$$
$$= x'z + xz = z$$

Simplifying on Four Adjacent Squares

Example 3.3

$$> F(x,y,z) = \sum (0,2,4,5,6) \rightarrow F = z' + xy'$$

Note: y'z' + yz' = z'

Simplifying on Four Adjacent Squares

- Example 3.4
 - \bigcirc F = A'C + A'B + AB'C + BC
 - express it in sum of minterms
 - find the minimal sum of products expression

Four-Variable K-Map

Four-variable K-map diagram

16 minterms

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> 9	m_{11}	m_{10}

\	$\setminus yz$	•			v	
WX		00	01	11	10	
		m_0	m_1	m_3	m_2	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
		m_4	m_5	m_7	m_6	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
7	,					$\begin{cases} x \end{cases}$
		m_{12}	m_{13}	m_{15}	m_{14}	
	11	wxy'z'	wxy'z	wxyz,	wxyz'	
14,		Q-702	2			J
w {			m_9	m_{11}	m_{10}	5.
	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	
					,	

Use 16, 8, 4, and 2 Adjacent Squares A. P.

Example 3.5

 $F(w,x,y,z) = \sum (0,1,2,4,5,6,8,9,12,13,14) \rightarrow F = y'+w'z'+xz'$

Note: w'y'z' + w'yz' = w'z'xy'z' + xyz' = xz'

Boolean algebra and logic gates

Use 16, 8, 4, and 2 Adjacent Squares A. P.

Example 3.6

$$\circ$$
 F = A'B'C'+ B'CD'+ A'BCD'+ AB' \rightarrow B'D' + B'C' + A'CD'

Notes:

A;B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'C' + AB'C' = B'C'

Simplification Procedure

- Simplification criteria
 - all the minterms of the function are covered by terms
 - the number of terms in the expression is minimized
 - there are no redundant terms(i.e., minterms already covered by other terms)
- Systematic choice of adjacent squares
 - Find essential prime implicants first, and then find prime implicants those which cover the given Boolean function.

Implicant

- a product term which, when true(i.e., 1), always implies that the given Boolean function is true(i.e., 1).
- \circ F(w,x,y,z) = wx + xy + z \rightarrow implicants of F: wx, xy, z, wxy, zx,
- then how about w, x, y, or wy?

Prime implicant

- a P.I. is a product term obtained from the map by combining all possible maximum numbers of squares
- o a single 1's represents a P.I. if it is not adjacent to any other 1's.
- Two adjacent 1's form a P.I if they are not within a group of four adjacent 1's. Four adjacent 1's form a P.I if they are not within a group of eight adjacent 1's, and so on.

- Essential prime implicant
 - prime implicants that cover an output of the function that no combination of other prime implicants is able to cover
 - one or more minterms in a square are covered by only that one prime implicant
 - the essential P.I. must be included in the minimized expression

- Example: considering essential P.I. and P.I.
 - \circ F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

AB C	D 00	01	11	10
00	1		1	1
01		1	1	
11		1	1	
10	1	1	1	1

- Example: considering essential P.I. and P.I.
 - ightharpoonup F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)
 - essential P.I. : BD; B'D'

Note:

$$A'B'C'D' + A'B'CD' = A'B'D'$$

 $AB'C'D' + AB'CD' = AB'D'$
 $A'B'D' + AB'D' = B'D'$

- Example: considering essential P.I. and P.I.
 - \circ F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)
 - O P.I.: CD, B'C, AD, and AB'

 \circ F = BD+B'D'+CD+AD = BD+B'D'+CD+AB?= BD+B'D'+B'C+AD

= BD+B'D'+B'C+AB'

Five-Variable K-Map

- Divide and re-combine the map
 - map for more than four variable becomes complicated
 - five-variable map ⇒ divide ⇒ two four-variable map

A = 0						
		DE		1)	
i	BC	0 0	01	11	10	•
	00	0	1	3	2	
	01	4	5	7	6	$\left. \right _{C}$
B	11	12	13	15	14	
D	10	8	9	11	10	
E						

A = 1						
		DE		1	D	
Ì	BC	00	01	11	10	1
	00	16	17	19	18	
	01	20	21	23	22	$\left\{ \left\{ \right\} _{C}$
В	11	28	29	31	30	
D	10	24	25	27	26	
E						

Five-Variable K-Map

Example

 \circ F = $\sum (0,2,4,6,9,13,21,23,25,29,31) = A'B'E' + BD'E + ACE$

Five-Variable K-Map

Backgrounds

- The minimized Boolean function expressed in the product-of-sums can be derived from the map.
- The minterms not included in the standard sum-of-product form of F denote F'.

Procedure

- o mark squares by 1's for F on the K-map.
- mark the remaining squares by 0's for F'
- obtain minimized F' with combining adjacent 0's-squares in sum-ofproduct form
- obtain F in product-of-sum from F' by using such as DeMorgan theorem

Example 3.7

○
$$F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$$

= $(A' + B')(C' + D')(B' + D)$.

- Example 3.7
 - Gate implementation of the function F

Given F as product-maxterms (canonical form)

an example

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$\circ$$
 F = $\sum (1,3,4,6)$

$$\circ$$
 F'= $\sum (0,2,5,7)$

$$\circ$$
 F= $\prod (0,2,5,7)$

$$F = x'z + xz'$$

$$F' = xz + x'z'$$

$$F = (x'+z')(x+z)$$

Don't-Care Conditions

- Don't care condition
 - If we can don't care what value is assumed by the function for an unspecified minterms, we call them as "don't-care conditions."
- Don't-care minterm
 - a don't-care minterm is a combination of variables whose logical value is not specified.
 - the square of the don't-care minterm is marked as 'X' in the K-map.

Don't-Care Conditions

Example 3.8

- \circ F (w,x,y,z) = $\sum (1,3,7,11,15)$
- $oldsymbol{o}$ d(w,x,y,z) = \sum (0,2,5)

Don't-Care Conditions

□ Example 3.8

wxyz	w'x' + yz	w'z + yz
0000	1	
0000		U
0001	1	1
0010	1	0
0011	1	1
0100	0	0
0101	0	1
0110	0	0
0111	1	1
1000	0	0
1001	0	0
1010	0	0
1011	1	1
1100	0	0
1101	0	0
1110	0	0
1111	1	1

NAND nad NOR Implementation

NAND

O A universal gate ⇒ any logic circuit can be implemented

Graphic Symbols for a NAND Gate

- Two graphic symbols for a three input NAND gate
 - AND-invert

invert-OR

$$x' + y' + z' = (xyz)'$$

NAND-NAND Two-level Implementation

- Original function
 - sum of products
- Example: F = AB + CD
 - AND-OR

F=((AB)'(CD)') = AB + CD

NAND-invert-OR

NAND-NAND

NAND-NAND Implementation

- Example 3.9
 - Implement F with NAND gates
 - \circ F(x,y,z) = (1,2,3,4,5,7)
- Procedure
 - simplified in the form of sum of products
 - a NAND gate for each product term; the inputs to each NAND gate are the literals of the term
 - o a single NAND gate for the second sum term
 - a single literal requires an inverter in the first level

□ Simplification: $F(x,y,z) = \sum (1,2,3,4,5,7) = xy' + x'y + z$

Multilevel NAND Circuits

- Common procedure
 - Implement circuit in terms of AND, OR, and NOT gates
 - convert into an all-NAND circuit
- \Box F = A(CD + B) + BC'
 - omit simplification for illustration
 - AND-OR gates

Multilevel NAND Circuits

- \Box F = A(CD + B) + BC'
 - NAND gates

- Procedure of AND-OR to all-NAND
 - Convert all AND gates to NAND gates with AND-invert graphic symbols.
 - 2. Convert all OR gates to NAND gates with invert-OR graphic symbols.
 - 3. Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (a one-input NAND gate) or complement the input literal.

An Example for The Conversion Procedure

- \Box F = (AB' + A'B)(C + D')
 - Implement AND-OR circuit directly

Then convert it to all-NAND circuit along the procedure

NOR Implementation

■ NOR

- the dual of the NAND operation
- the NOR gate is also universal

Inverter
$$x \longrightarrow x$$

Graphic Symbols for a NOR Gate

- Two graphic symbols for a three input NOR gate
 - OR-invert (c.f. AND-invert)

invert-AND (c.f. invert-OR)

$$x \longrightarrow x'y'z' = (x + y + z)'$$

Example of Two-level NOR Circuit

$$\Box$$
 F = (A + B)(C + D)E

OR-AND

Example of Multilevel NOR Circuit

- - AND-OR-AND circuit

NOR-NOR-NOR circuit

Wired Logic

- Wired-AND
 - the function performed by tying outputs of two open-collector TTL NAND gates
- Wired-OR
 - OR function performed by tying outputs of two ECL NOR gates

AOI with Wired AND

Two level implementation with NAND-wired-AND

$$\circ$$
 F = (AB)'(CD)'

→ F = (AB + CD)' ⇒ AND-OR-INVERT (i.e., AOI) function

OAI with Wired-OR

■ Two-level implementation with NOR-wired-OR

$$\circ$$
 F = (A + B)' + (C + D)'

ightharpoonup F = ((A + B)(C + D))' \Rightarrow OR-AND-INVERT (i.e., OAI) function

Nondegenerate Forms

- 16 possible combination of two-level forms
 - (AND, OR, NAND, NOR) x (AND, OR, NAND, NOR)
- Degenerate form
 - S degenerate form = a single operation
 - \circ ex.: AND-AND \Rightarrow AND; OR-OR \Rightarrow OR
- Nondegenerate form
 - Solution = 8 nondegenerate form = 8 nondeg

AND-OR OR-AND

NAND-NAND NOR-NOR

NOR-OR
NAND-AND

OR-NAND
AND-NOR

in each line, left form and right one are dual to each other

Nondegenerate Form

- Sum of product
 - AND-OR, NAND-NAND
- Product of sum
 - OR-AND, NOR-NOR
- AOI
 - AND-NOR, NAND-AND
 - o complement of AOI ⇒ sum of product
- OAI
 - OR-NAND, NOR-OR
 - complement of OAI ⇒ product of sum

OAI(OR-AND-INVERT) Implementation

- \Box F = (AB + CD + E)'
 - AND-NOR

NAND-AND

OAI(OR-AND-INVERT) Implementation

- \Box F = ((A + B)(C + D)E)'
 - OR-NAND

NOR-OR

Implementation with Other Two-level Forms

Tabular summary

	valent nerate Form	Implements	Simplify	To Get an Output of
(a)	(b)*	the Function	into	
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

Example 3.10

Given function presentation

- \circ F = x'y'z' + xyz'
- \circ F' = (x + y + z)(x' + y' + z) (product-of-sums form)
- \circ F' = x'y + xy' + z (sum-of-products form)

Example 3.10

Implement F in terms of AOI form

AND-NOR

NAND-AND

Example 3.10

Implement F in terms of OAI form

$$\circ$$
 F' = (x + y + z)(z' + y' + z)

OR-NAND

NOR-OR

Exclusive-OR Function

Exclusive-OR

$$\circ$$
 $x \oplus y = x'y + xy'$

Exclusive-NOR

$$(x \oplus y)' = xy + x'y'$$

Identities in XOR operation

$$x = 0 \oplus x$$

$$\circ$$
 x \oplus 1 = x'

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$\circ$$
 $x \oplus y' = x' \oplus y = (x \oplus y)'$

Exclusive-OR Functions

- Commutativeness
 - \bigcirc A \bigoplus B = B \bigoplus A
 - what is the physical meaning?
- Associativeness
 - \circ (A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C
 - what is the physical meaning?

XOR Implementation

- \Box $x \oplus y = x'y + xy'$
 - O NOT, AND, OR gates

- \Box $x \oplus y = (xy)'x + (xy)'y$
 - NAND gates

Odd Function

3 variable XOR function

$$\circ$$
 A \oplus B \oplus C = \sum (1, 2, 4, 7)

Definition: odd function

 Multi-variable XOR function is equal to 1 if the number of variables that are equal to 1 is odd.

Even Function

Definition

- complement of the multi-variable XOR function is equal to 1 if the number of variables that are equal to 1 is even.
- (A \oplus B \oplus C)' = \sum (0, 3, 5, 6)

Implementation of 3-variable XOR

Odd function

Even function

Four-variable XOR function

Odd function

 \circ A \oplus B \oplus C \oplus D

10 00 01 11 m_0 m_1 m_3 m_2 00 1 m_{Δ} m_5 m_7 m_6 01 B m_{14} m_{12} m_{13} m_{15} 11 m_8 m_{10} m_0 m_{11} 10

Even function

 $(A \oplus B \oplus C \oplus D)'$

Parity Generation

- Even parity generator for 3-bit message
 - Truth table

Three-Bit Message		Parity Bit		
X	у	Z	P	
0	0	0	0	
0	0	1	1	$x \longrightarrow 1$
0	1	0	1	
0	1	1	0	y—————————————————————————————————————
1	0	0	1	
1	0	1	0	7
1	1	0	0	4
1	1	1	1	

 \bigcirc P is an odd function \Rightarrow P = x \oplus y \oplus z

Parity Checker

- Even parity checker for 3-bit message
 - Truth table
 - \circ C(x,y,z,P) is an odd function

	Four Rece	Parity Error Check		
x	y	z	P	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Discussion~~~