Mathematical Tools in Machine Learning

(03.10.19)

Solutions to Exercise Session 1

Instructor: Fadoua Balabdaoui Assistant: Loris Michel

Problem 2.2: Axis-aligned rectangles

- (a) First, by definition of the learning algorithm A, every positive instance of the training set is correctly labeled. By minimality of the rectangle, all negative instances are as well correctly labeled. So A corresponds to ERM (empirical risk minimization).
- (b) Let \mathcal{D} be some fixed distribution over \mathcal{X} and define R^* as in the hint. Let f be the hypothesis associated with R^* and S be a training set. We further denote by R(S) the rectangle returned by the learning algorithm A(A(S)) the corresponding hypothesis). By definition of the learning algorithm $R(S) \subseteq R^*$ for every S. Thus,

$$L_{(\mathcal{D},f)}(R(S)) = \mathcal{D}(R^* \setminus R(S)).$$

Fix some $\epsilon \in (0,1)$ and define R_1, R_2, R_3 and R_4 as proposed in the hint. For each $i \in [4]$, define the event

$$F_i = \{S|_x : S|_x \cap R_i = \emptyset\}.$$

Thanks to union bound we obtain

$$\mathcal{D}^{m}(\{S: L_{(\mathcal{D},f)}(R(S)) > \epsilon\}) \le \mathcal{D}^{m}(\cup_{i=1}^{4} F_{i}) \le \sum_{i=1}^{4} \mathcal{D}^{m}(F_{i}).$$

Thus it is sufficient to ensure that $\mathcal{D}^m(F_i) \leq \delta/4$ for every i. Fix some $i \in [4]$. Then the probability that a sample is in F_i is the probability that all training instances do not fall into R_i , which is exactly $(1 - \epsilon/4)^m$. Therefore,

$$\mathcal{D}^m(F_i) = (1 - \epsilon/4)^m \le \exp(-m\epsilon/4),$$

and hence

$$\mathcal{D}^m(\{S: L_{(\mathcal{D},f)}(R(S)) > \epsilon\}) \le 4\exp(-m\epsilon/4).$$

Plugging in the assumption on m, we conclude our proof.

(c) The hypothesis class of axis aligned rectangles in \mathbb{R}^d is defined as follows. Given real numbers $a_1 \leq b_1, \ldots, a_d \leq b_d$, define the classifier $h_{(a_1,b_1,\ldots,a_d,b_d)}$ by

$$h_{(a_1,b_1,\ldots,a_d,b_d)}(x_1,\ldots,x_d) = \begin{cases} 1 \text{ if } \forall i \in [d], a_i \le x_i \le b_i \\ 0 \text{ otherwise} \end{cases}$$

The class of all axis-aligned rectangles in \mathbb{R}^d is defined as

$$\mathcal{H}^{rec} = \{h_{(a_1,b_1,...,a_d,b_d)} : \forall i \in [d], a_i \le b_i\}.$$

It can be see that the same algorithm proposed above is an ERM for this case as well. The sample complexity is analyzed similarly. The only difference is that instead of 4 strips, we have 2d strips (2 for each dimension). Thus, it suffices to draw a training set of size $\lceil \frac{2d \log(2d/\delta)}{\epsilon} \rceil$.

Remark: you can find R code on the course web-page (Rcode1) implementing the learner A that you can play around with.

Problem 3.1: Sample complexity

The proofs follow (almost) immediately from the definition. We will show that the sample complexity is monotonically decreasing in the accuracy parameter ϵ . The proof that the sample complexity is monotonically

decreasing in the confidence parameter δ is analogous. Denote by \mathcal{D} an unknown distribution over \mathcal{X} , and let $f \in \mathcal{H}$ be the target hypothesis. Denote by A an algorithm which learns \mathcal{H} with sample complexity $m_{\mathcal{H}}(\cdot,\cdot)$. Fix some $\delta \in (0,1)$. Suppose that $0 < \epsilon_1 \le \epsilon_2 \le 1$. We need to show that $m_1 = ^{def} m_{\mathcal{H}}(\epsilon_1, \delta) \ge m_{\mathcal{H}}(\epsilon_2, \delta) = ^{def} m_2$. Given an i.i.d. training sequence of size $m \ge m_1$, we have that with probability at least $1 - \delta$, A returns a hypothesis h such that

$$L_{\mathcal{D},f}(h) \leq \epsilon_1 \leq \epsilon_2.$$

By the minimality of m_2 , we conclude that $m_2 \leq m_1$.

Problem 3.2: Singletons

(b) Let $\epsilon \in (0, 1)$, and fix the distribution \mathcal{D} over \mathcal{X} . If the true hypothesis is h^- , then our algorithm returns a perfect hypothesis. Assume now that there exists a unique positive instance x_+ . It is clear that if x_+ appears in the training sequence S, our algorithm returns a perfect hypothesis. Furthermore, if $\mathcal{D}[\{x_+\}] \leq \epsilon$ then in any case, the returned hypothesis has a generalization error of at most ϵ (with probability 1). Thus, it is only left to bound the probability of the case in which $\mathcal{D}[\{x_+\}] > \epsilon$ but x_+ does not appear in S. Denote this event by F. Then

$$\mathbb{P}_{S|x \sim \mathcal{D}^m}[F] \le (1 - \epsilon)^m \le e^{-m\epsilon}.$$

Hence $\mathcal{H}_{Singleton}$ is PAC learnable, and its sample complexity is bounded by

$$m_{\mathcal{H}}(\epsilon, \delta) \le \lceil \frac{\log(1/\delta)}{\epsilon} \rceil.$$

Problem 3.3: Concentric circles

Consider the ERM algorithm A which given a training sequence $S = ((x_i, y_i))_{i=1}^m$, returns the hypothesis \hat{h} corresponding to the "tightest" circle which contains all the positive instances. Denote the radius of this hypothesis by \hat{r} . Assume realizability and let h^* be a circle with zero generalization error. Denote its radius by r^*

Let $\epsilon, \delta \in (0,1)$. Let $\overline{r} \leq r^*$ be a scalar s.t. $\mathcal{D}_{\mathcal{X}}(\{x : \overline{r} \leq ||x|| \leq r^*\}) = \epsilon$. Define $E = \{x \in \mathbb{R}^2 : \overline{r} \leq ||x|| \leq r^*\}$. The probability (over drawing S) that $L_{\mathcal{D}}(h_S) \geq \epsilon$ is bounded above by the probability that no point in S belongs to E. This probability of this event is bounded above by

$$(1 - \epsilon)^m < e^{-\epsilon m}.$$

The desired bound on the sample complexity follows by requiring that $e^{-\epsilon m} \leq \delta$.

Problem 3.6: PAC/agnostic PAC

Suppose that \mathcal{H} is agnostic PAC learnable, and let A be a learning algorithm that learns \mathcal{H} with sample complexity $m_{\mathcal{H}}(\cdot,\cdot)$. We show that \mathcal{H} is PAC learnable using A.

Let \mathcal{D}, f be an (unknown) distribution over \mathcal{X} , and the target function respectively. We may assume w.l.o.g. that \mathcal{D} is a joint distribution over $\mathcal{X} \times \{0,1\}$, where the conditional probability of y given x is determined deterministically by f. Since we assume realizability, we have

$$\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = 0.$$

Let $\epsilon, \delta \in (0, 1)$. Then, for every positive integer $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, if we equip A with a training set S consisting of m i.i.d. instances which are labeled by f, then with probability at least $1 - \delta$ (over the choice of S|x), it returns a hypothesis h with

$$L_{\mathcal{D}}(h) \leq \inf_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$$

= $0 + \epsilon$

Problem 3.7: The Bayes optimal predictor

Let $x \in \mathcal{X}$ and $\eta(x)$ be the conditional probability of a positive label at x. We have

$$\begin{split} \mathbb{P}[h_{\mathcal{D}}(X) \neq Y | X = x] &= \mathbb{1}_{[\eta(x) > 1/2]} \mathbb{P}[Y = 0 | X = x] + \mathbb{1}_{[\eta(x) \leq 1/2]} \mathbb{P}[Y = 1 | X = x] \\ &= \mathbb{1}_{[\eta(x) > 1/2]} \eta(x) + \mathbb{1}_{[\eta(x) \leq 1/2]} (1 - \eta(x)) \\ &= \min(\eta(x), 1 - \eta(x)). \end{split}$$

Let g be a classifier from \mathcal{X} to $\{0,1\}$ (can be non-deterministic). We have

$$\begin{split} \mathbb{P}[h(X) \neq Y | X = x] &= \mathbb{P}[h(X) = 0 | X = x] \mathbb{P}[Y = 1 | X = x] + \mathbb{P}[h(X) = 1 | X = x] \mathbb{P}[Y = 0 | X = x] \\ &+ \mathbb{P}[h(X) = 0 | X = x] \eta(x) + \mathbb{P}[h(X) = 1 | X = x] (1 - \eta(x)) \\ &\geq \mathbb{P}[h(X) = 0 | X = x] \min(\eta(x), 1 - \eta(x)) + \mathbb{P}[h(X) = 1 | X = x] \min(\eta(x), 1 - \eta(x)) \\ &= \min(\eta(x), 1 - \eta(x)). \end{split}$$

The statement follows now from the fact that the above is true for every $x \in \mathcal{X}$. More formally, by the law of total expectation,

$$\begin{array}{lcl} L_{\mathcal{D}}(h_{\mathcal{D}}) & = & \mathbb{E}_{(x,y)\sim\mathcal{D}}[\mathbbm{1}_{[h_{\mathcal{D}}(x)\neq y]}] \\ & = & \mathbb{E}_{x\sim\mathcal{D}_x}[\mathbb{E}_{y\sim\mathcal{D}_{Y|x}}[\mathbbm{1}_{[h_{\mathcal{D}}(x)\neq y]}|X=x]] \\ & = & \mathbb{E}_{x\sim\mathcal{D}_x}[\min(\eta(x),1-\eta(x))] \\ & \leq & \mathbb{E}_{x\sim\mathcal{D}_x}[\mathbb{E}_{y\sim\mathcal{D}_{Y|x}}[\mathbbm{1}_{[h(x)\neq y]}|X=x]] \\ & = & L_{\mathcal{D}}(h). \end{array}$$

The statement could be also deduced from the following identity for the excess risk of any classifier $h: \mathcal{X} \to \{0,1\}$,

$$L_{\mathcal{D}}(h) - L_{\mathcal{D}}(h) = \mathbb{E}_{x \sim \mathcal{D}}[|2\eta(x) - 1| \mathbb{1}_{h(x) \neq h_{\mathcal{D}}(x)}],$$

As done for $h_{\mathcal{D}}$, we can actually show that for any h,

$$L_{\mathcal{D}}(h) = \mathbb{E}[\mathbb{1}_{h(x)=0}\eta(x) + \mathbb{1}_{h(x)=1}(1-\eta(x))],$$

which, using that $\mathbb{1}_{h(x)=1} = 1 - \mathbb{1}_{h(x)=0}$, is the same as

$$L_{\mathcal{D}}(h) = \mathbb{E}[\mathbb{1}_{h(x)=0}(2\eta(x)-1)+1-\eta(x)].$$

So then in particular,

$$L_{\mathcal{D}}(h) - L_{\mathcal{D}}(h_{\mathcal{D}}) = \mathbb{E}[(\mathbb{1}_{h(x)=0} - \mathbb{1}_{h_{\mathcal{D}}(x)=0})(2\eta(x) - 1)].$$

Now remark that $(\mathbb{1}_{h(x)=0} - \mathbb{1}_{h_{\mathcal{D}}(x)=0})$ takes values in $\{-1,0,1\}$. It turns out that $\mathbb{1}_{h(x)=0} - \mathbb{1}_{h_{\mathcal{D}}(x)=0}$ is non-zero if and only if $h(x) \neq h_{\mathcal{D}}(x)$ and $\mathbb{1}_{h(x)=0} - \mathbb{1}_{h_{\mathcal{D}}(x)=0}$ has the same sign as $2\eta(x) - 1$, so we conclude that

$$\mathbb{E}[(\mathbb{1}_{h(x)=0} - \mathbb{1}_{h_{\mathcal{D}}(x)=0})(2\eta(x) - 1)] = \mathbb{E}[\mathbb{1}_{h(x)\neq h_{\mathcal{D}}(x)}|2\eta(x) - 1|].$$

Problem 4.1: Average losses

(a) Assume that for every $\epsilon, \delta \in (0,1)$ and every distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, there exists $m(\epsilon, \delta) \in \mathbb{N}$ such that for every $m \geq m(\epsilon, \delta)$,

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))} > \epsilon] < \delta.$$

Let $\lambda > 0$. We need to show that there exists $m_0 \in \mathbb{N}$ such that for every $m \geq m_0$, $\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))}] \leq \lambda$. Let $\epsilon = \min(1/2, \lambda/2)$. Set $m_0 = m_{\mathcal{H}}(\epsilon, \delta)$. For every $m \geq m_0$, since the loss is bounded above by 1, we have

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))}] \leq \mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))} > \lambda/2] \cdot 1 + \mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))} \leq \lambda/2] \cdot \lambda/2$$

$$\leq \mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))} > \epsilon] + \lambda/2$$

$$\leq \epsilon + \lambda/2$$

$$\leq \lambda/2 + \lambda/2$$

$$= \lambda$$

(b) Assume now that

$$\lim_{m\to\infty} \mathbb{E}_{S\sim\mathcal{D}^m}[L_{\mathcal{D}(A(S))}] = 0.$$

Let $\epsilon, \delta \in (0,1)$. There exists some $m_0 \in \mathbb{N}$ such that for every $m \geq m_0$, $\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))}] \leq \epsilon \cdot \delta$. by Markov's inequality,

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))} > \epsilon] \leq \frac{\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}(A(S))}]}{\epsilon}$$
$$\leq \frac{\epsilon \delta}{\epsilon}$$
$$= \delta.$$