CLAIMS

What is claimed is:

1	1. A scalable digital loop carrier system
2	capable of providing voice, video and data
3	communications, the system comprising:
4	
5	(a) a primary channel bank;
6	
7	(b) an asynchronous transfer mode (ATM)
8	interface connected to the primary channel bank;
9	
LO	(c) a time division multiplex (TDM)
L1	interface connected to the primary channel bank; and
L2	•
L3	(d) at least a first secondary channel bank
L 4	connected to the primary channel bank through the ATM
L5	and TDM interfaces, the primary channel bank capable of
L6	providing clock synchronization to the secondary
L 7	channel bank, wherein the primary channel bank and the
L8	secondary channel bank each comprise:
L9	
20	(i) a time slot cross-connect
21	interchanger (TSI) having a plurality of subscriber bus
22	interfaces; and

25

23

- (ii) an ATM access controller connected to the TSI, the ATM access controller having a plurality of ATM cell bus interfaces.
 - 2. The system of claim 1, wherein the primary channel bank further comprises a synchronous transport signal (STS) cross-connect controller connected to the TSI in the primary channel bank.
 - 3. The system of claim 2, wherein the primary channel bank further comprises a synchronous optical network (SONET) framer connected to the STS cross-connect controller in the primary channel bank.
 - 1 4. The system of claim 2, further comprising a 2 plurality of STS transport cards connected to the STS 3 cross-connect controller in the primary channel bank.
 - 5. The system of claim 1, wherein the secondary channel bank further comprises a synchronous transport signal (STS) cross-connect controller connected to the TSI in the secondary channel bank.
 - 1 6. The system of claim 5, wherein the secondary channel bank further comprises a synchronous optical

- 3 network (SONET) framer connected to the STS cross-
- 4 connect controller in the secondary channel bank.
- 1 7. The system of claim 5, further comprising a
- 2 plurality of STS transport cards connected to the STS
- 3 cross-connect controller in the secondary channel bank.
- 1 8. The system of claim 1, wherein the TDM
- 2 interface is capable of supporting 16 time division
- 3 multiplexed channels.
- 1 9. The system of claim 1, wherein the ATM
- 2 interface is capable of transporting 216 ATM cells per
- 3 125 μ s frame.
- 1 10. The system of claim 1, wherein the TDM
- 2 interface is capable of providing a plurality of
- 3 synchronous transport signal-one (STS-1) channels in a
- 4 synchronous optical network (SONET) frame.
- 1 11. The system of claim 1, wherein the primary
- 2 channel bank further comprises a timing generator to
- 3 provide timing reference to the TSI and ATM access
- 4 controllers in the primary channel bank, the timing
- 5 generator having a timing reference input and a clock

Attorney Docket No.: DSCC01067WSW/LAH /lah/dscc/1067.001

-26-

Client Ref.: 1067-00

- 6 synchronization output connected to the secondary
- 7 channel bank.
- 1 12. The system of claim 11, wherein the timing
- 2 reference input comprises a synchronous optical network
- 3 (SONET) timing reference input.
- 1 13. The system of claim 11, wherein the timing
- 2 reference input comprises a T1 timing reference input.
- 1 14. The system of claim 11, wherein the timing
- 2 reference input comprises a building integrated timing
- 3 supply (BITS) input.
- 1 15. The system of claim 11, wherein the secondary
- 2 channel bank further comprises a timing generator to
- 3 provide timing reference to the TSI and the ATM access
- 4 controller in the secondary channel bank, the timing
- 5 generator in the secondary channel bank synchronized by
- 6 a clock synchronization signal received from the clock
- 7 synchronization output of the primary channel bank.
- 1 16. The system of claim 1, further comprising a
- 2 second secondary channel bank connected to the primary
- 3 channel bank through the TDM and ATM interfaces.

1	17. The system of claim 16, wherein the second
2	secondary channel bank is connected to the first
3	secondary channel bank through the TDM and ATM
4	interfaces.
1	18. A scalable digital loop carrier system
2	capable of providing voice, video and data
3	communications, the system comprising:
4	
5	(a) a primary channel bank;
6	
7	(b) an asynchronous transfer mode (ATM)
8	interface connected to the primary channel bank;
9	
10	(c) a time division multiplex (TDM)
11	interface connected to the primary channel bank; and
12	
13	(d) at least a first secondary channel bank
14	connected to the primary channel bank through the ATM
15	and TDM interfaces, the primary channel bank capable of
16	providing clock synchronization to the secondary
17	channel bank, wherein the primary channel bank and the
18	secondary channel bank comprise respective node control
19	processors capable of communicating to each other, each

20

of the node control processors comprising:

3

	·
22	(i) a time slot cross-connect
23	interchanger (TSI) having a plurality of subscriber bus
24	interfaces;
25	
26	(ii) an ATM access controller
27	connected to the TSI, the ATM access controller having
28	a plurality of ATM cell bus interfaces;
29	
30	(iii) a synchronous transport signal
31	(STS) cross-connect controller connected to the TSI;
32	and
33	
34	(iv) a synchronous optical network
35	(SONET) framer connected to the STS cross-connect
36	controller.
• •	
1	19. The system of claim 18, further comprising a
2	plurality of STS transport cards connected to the STS
3	cross-connect controller in the primary channel bank.
1	20. The system of claim 18, further comprising a

plurality of STS transport cards connected to the STS

cross-connect controller in the secondary channel bank.

- 1 21. The system of claim 18, wherein the STS
 2 cross-connect controller is capable of supporting at
 3 least 12 STS-1 channels.
- 1 22. The system of claim 18, wherein the TDM
 2 interface is capable of providing a plurality of
 3 synchronous transport signal-one (STS-1) channels in a
 4 synchronous optical network (SONET) frame.
- 23. The system of claim 18, wherein the primary channel bank further comprises a timing generator to provide timing reference to the TSI and the ATM access controller in the primary channel bank, the timing generator having a timing reference input and a clock synchronization output connected to the secondary channel bank.
- 1 24. The system of claim 23, wherein the timing 2 reference input comprises a synchronous optical network 3 (SONET) timing reference input.
- 1 25. The system of claim 23, wherein the timing 2 reference input comprises a T1 timing reference input.

- 26. The system of claim 23, wherein the timing reference input comprises a building integrated timing supply (BITS) input.
- 1 The system of claim 23, wherein the secondary channel bank further comprises a timing generator to 2 3 provide timing reference to the TSI, the STS crossconnect controller and the ATM access controller in the 4 5 secondary channel bank, the timing generator in the 6 secondary channel bank synchronized by a clock synchronization 7 signal received from the clock 8 synchronization output of the primary channel bank.

- 28. The system of claim 18, further comprising a second secondary channel bank connected to the primary channel bank through the TDM and ATM interfaces.
 - 1 29. The system of claim 28, wherein the second 2 secondary channel bank is connected to the first 3 secondary channel bank through the TDM and ATM 4 interfaces.
 - 1 30. The system of claim 18, wherein each of the 2 node control processors further comprises a 3 microprocessor connected to the TSI and the ATM access 4 controller.

Attorney Docket No.: DSCC01067WSW/LAH /lah/dscc/1067.001

-31-

Client Ref.: 1067-00

1	31. The system of claim 30, wherein each of the
2	node control processors further comprises a data link
3	and control tone card (DCT) connected to the
4	microprocessor.
1	32. A scalable digital loop carrier system capable of providing voice, video and data
2	capable of providing voice, video and data
3	communications, the system comprising:
4	
5	(a) a primary channel bank;
6	
7	(b) an asynchronous transfer mode (ATM)
8	interface connected to the primary channel bank;
9	
LO	(c) a time division multiplex (TDM)
11	interface connected to the primary channel bank; and
12	
13	(d) at least a first secondary channel bank
14	connected to the primary channel bank through the ATM
15	and TDM interfaces, wherein the primary channel bank
16	and the secondary channel bank each comprise:
L7	
18	(i) a time slot cross-connect
19	interchanger (TSI) having a plurality of subscriber bus
2.0	interfaces:

Client Ref.: 1067-00

Attorney Docket No.: DSCC01067WSW/LAH /lah/dscc/1067.001

35

36

21	(ii) an ATM access controller
22	connected to the TSI, the ATM access controller having
23	a plurality of ATM cell bus interfaces; and
24	
25	(iii) a timing generator to provide
26	timing reference to the TSI and the ATM access
27	controller, the timing generator in the primary channel
28	bank having a timing reference input and a clock
29	synchronization output connected to provide clock
.30	synchronization to the timing generator in the
31	secondary channel bank.
32	
33	33. The system of claim 32, wherein the primary

1 34. The system of claim 33, wherein the primary 2 channel bank further comprises a synchronous optical 3 network (SONET) framer connected to the STS cross-

channel bank further comprises a synchronous transport

signal (STS) cross-connect controller connected to the

4 connect controller in the primary channel bank.

TSI in the primary channel bank.

1 35. The system of claim 33, further comprising a 2 plurality of STS transport cards connected to the STS 3 cross-connect controller in the primary channel bank.

- 36. The system of claim 32, wherein the secondary channel bank further comprises a synchronous transport signal (STS) cross-connect controller connected to the TSI in the secondary channel bank.
- 1 37. The system of claim 36, wherein the secondary 2 channel bank further comprises a synchronous optical 3 network (SONET) framer connected to the STS cross-4 connect controller in the secondary channel bank.
- 1 38. The system of claim 36, further comprising a 2 plurality of STS transport cards connected to the STS 3 cross-connect controller in the secondary channel bank.
- 39. The system of claim 32, wherein the TDM interface is capable of supporting 16 time division multiplexed channels.
- 40. The system of claim 32, wherein the ATM interface is capable of transporting 216 ATM cells per μ s frame.
- 1 41. The system of claim 32, wherein the TDM
 2 interface is capable of providing a plurality of
 3 synchronous transport signal-one (STS-1) channels in a
 4 synchronous optical network (SONET) frame.

Attorney Docket No.: DSCC01067WSW/LAH /lah/dscc/1067.001

- The system of claim 32, wherein the timing 1 42. reference input of the timing generator in the primary 2 channel bank comprises a synchronous optical network 3 (SONET) timing reference input.
- The system of claim 32, wherein the timing 1 2 reference input of the timing generator in the primary channel bank comprises a T1 timing reference input. 3
- The system of claim 32, wherein the timing 1 reference input of the timing generator in the primary 2 channel bank comprises a building integrated timing 3 supply (BITS) input. 4
- The system of claim 32, further comprising a 45. 1 second secondary channel bank connected to the primary 2 channel bank through the TDM and ATM interfaces. 3
- The system of claim 45, wherein the second 46. 1 secondary channel bank is connected to the first 2 secondary channel bank through the TDM and ATM 3 4 interfaces.

Attorney Docket No.: DSCC01067WSW/LAH /lah/dscc/1067.001

1	47. A scalable digital loop carrier system
2	capable of providing voice, video and data
3	communications, the system comprising:
4	
5	(a) a primary channel bank;
6	
7	(b) an asynchronous transfer mode (ATM)
8	interface connected to the primary channel bank;
9	
10	(c) a time division multiplex (TDM)
11	interface connected to the primary channel bank; and
12	
13	(d) a plurality of secondary channel banks
14	connected to the primary channel bank through the ATM
15	and TDM interfaces, wherein the primary channel bank
16	and the secondary channel banks comprise respective
17	timing generators and respective node control
18	processors,
19	
20	wherein the timing generators are
21	capable of providing clock signals for the respective
22	channel banks, the timing generator in the primary
23	channel bank having a timing reference input and a
24	clock synchronization output connected to provide clock
25	synchronization to the timing generators in the
26	secondary channel banks, and

27	wherein the node control processors each
28	comprise:
29	
30	(i) a time slot cross-connect
31	interchanger (TSI) having a plurality of subscriber bus
32	interfaces;
33	
34	(ii) an ATM access controller
35	connected to the TSI, the ATM access controller having
36	a plurality of ATM cell bus interfaces;
37	
38	(iii) a synchronous transport signal
39	(STS) cross-connect controller connected to the TSI;
40	and
41	
42	(iv) a synchronous optical network
43	(SONET) framer connected to the STS cross-connect
44	controller.
1	48. The system of claim 47, further comprising a
2	plurality of STS transport cards connected to the STS
3	cross-connect controller in the primary channel bank.

2

plurality of STS transport cards connected to the STS

49. The system of claim 47, further comprising a

- 3 cross-connect controller in the secondary channel
- 4 banks.
- 1 50. The system of claim 47, wherein the STS
- 2 cross-connect controller is capable of supporting at
- 3 least 12 STS-1 channels.
- 1 51. The system of claim 47, wherein the TDM
- 2 interface is capable of providing a plurality of
- 3 synchronous transport signal-one (STS-1) channels in a
- 4 synchronous optical network (SONET) frame.
- 1 52. The system of claim 47, wherein the timing
- 2 reference input of the timing generator in the primary
- 3 channel bank comprises a synchronous optical network
- 4 (SONET) timing reference input.
- 1 53. The system of claim 47, wherein the timing
- 2 reference input of the timing generator in the primary
- 3 channel bank comprises a T1 timing reference input.
- 1 54. The system of claim 47, wherein the timing
- 2 reference input of the timing generator in the primary
- 3 channel bank comprises a building integrated timing
- 4 supply (BITS) input.

- 1 55. The system of claim 47, wherein each of the 2 node control processors further comprises a 3 microprocessor connected to the TSI and the ATM access 4 controller.
- 1 56. The system of claim 55, wherein each of the 2 node control processors further comprises a data link 3 and control tone card (DCT) connected to the 4 microprocessor.