

JES uncertainty studies for W+Jets background

P. Dunne, A. Magnan, S. Nikitenko

29/04/2013

Method

- Using the method from WorkBookJetEnergyCorrections twiki.
- Uncertainties are from Fall12_V7_MC_Uncertainty_AK5PF.txt which is the "total" uncertainty.
- ▶ Jet 4-vector scaled up/down by percentage given in the file.
- Also correct met px and py by minus the correction to the jet px and py then recalculate met energy.
- Rerun analysis with these corrected objects
- Note: all plots are for W+2 jets MC sample with type0+1 MET and no trigger efficiency corrections

Uncertainty as a function of p_T

Check whether leading two jets are the same for JES up/down

- Calculated percentage of events where the leading two jets are not the same after scaling up/down.
- ▶ Does not count events where jet 1 and 2 just swap order.
- ► For W samples 1.0-3.5% of events have different leading jets depending on sample.
- ► For Z samples 0.5-2.0% of events have different leading jets
- ► Full numbers in email from 25th April

► Check to see whether pt and met shift smoothly and in the right direction

► Check to see whether pt and met scale up and down smoothly

▶ Check to see whether pt and met scale up and down smoothly

Data-driven W+jets estimates - electrons

- Last two columns are number ± statistical error
- Systematic error from JESUP is superscripted and from JESDOWN is subscripted
- Numbers in parentheses are relative systematic errors

From data: electron signal Signal Region Control Region N_{data} XXX NEWK n/a 37.1 ± 5.1 0.264 ± 0.00144 0.118 ± 0.00106 € lensel 0.0054 ± 0.000467 0.00989 ± 0.000942 ϵ_{VBF} 133 ± 11 109 ± 9 90.2 ± 18.2 73.9 ± 12.1

From data: electron QCD				
	Signal Region	Control Region		
N _{data}	XXX	113		
N _{EWK}	n/a	22.5 ± 4.08		
€lepsel	0.264 ± 0.00144	0.118 ± 0.00106		
€VBF	0.00605 ± 0.000494	0.00898 ± 0.000899		
NMC W→eν	149 ± 10	99 ± 8		
N _{W→eν}	136 ± 22.7	90.5 ± 11.7		

Data-driven W+jets estimates - muons

From data:	muon signal		
	Signal Region	Control Region	
N _{data}	XXX	336	
N _{EWK}	n/a	81.8 ± 7.29	
€lepsel	0.276 ± 0.00147	0.318 ± 0.00153	
€VBF	0.00467 ± 0.000427	0.00999 ± 0.000581	
$N_{W \to \mu \nu}^{MC}$	119 ± 10	293 ± 16	
$N_{W o \mu u}^{data}$	103 ± 13	254 ± 19.4	

rom data: muon QCD				
	Signal Region	Control Region		
N _{data}	XXX	305		
N _{EWK}	n/a	54.9 ± 5.39		
ϵ_{lepsel}	0.276 ± 0.00147	0.318 ± 0.00153		
€VBF	0.00589 ± 0.000479	0.00886 ± 0.000547		
$N_{W \to \mu \nu}^{MC}$	150 ± 10	260 ± 14		
$N_{W o \mu u}^{data}$	144 ± 16.1	250 ± 17.8		

Conclusions

- ▶ All distributions seem to change correctly as JES is varied
- ► Largest effect is -13% for electron channel
- Uncertainty sometimes goes in one direction only. This is allowed from the formula used for W+jets background.

BACKUP

Method for estimating W+jets background

- VBF selection: jet pair + MET + M_{jj} + $\Delta \eta_{jj}$.
- Lepton veto: $p_T(e,\mu) > 10$ GeV, $|\eta| < 2.4$, loose ID and isolation.
- W $\rightarrow \mu \nu$ selection: exactly one μ p $_T$ > 20 GeV, $|\eta|$ < 2.4, tight ID and isolation, m $_T$ > 40 GeV. Veto additional loose leptons.

Signal Region

- Where we want to estimate the contribution from W+jets.
- VBF selection + Lepton veto + $\Delta \Phi_{jj}$ selection.
- $N_{MC}^{S} = \sigma \mathcal{L} \epsilon_{HLT} \epsilon_{lepVeto} \epsilon_{VBF}^{s}$ from W+0,1,2,3,4 jets MC samples.
- N_{Data}^{S} : the unknown.

Control Region

- Dominated by W $\rightarrow \mu\nu$ events, but with VBF+ $\Delta\Phi_{ii}$ selection.
- VBF selection, with MET=MET+ p_T^{μ} + W $\rightarrow \mu\nu$ selection.
- $\begin{array}{l} \bullet \quad \textit{N}^{\textit{C}}_{\textit{MC}} = \sigma \mathcal{L} \epsilon_{\textit{HLT}} \epsilon_{\mu} \epsilon_{\textit{m}_{\textit{T}}} \epsilon^{\textit{C}}_{\textit{VBF}} \text{ from} \\ \text{W+0,1,2,3,4 jets MC samples.} \end{array}$
- $\bullet \ \ N_{Data}^{C} = N_{Data} N_{MC}^{t\bar{t}} N_{MC}^{WW,WZ,ZZ}.$

Result

 $\bullet \ \ \text{Hypothesis:} \ \frac{N_{Data}^S}{N_{MC}^S} = \frac{N_{Data}^C}{N_{MC}^S} \Rightarrow N_{Data}^S = N_{Data}^C \underbrace{\stackrel{\epsilon \text{ lep Veto}}{Pata}}_{\epsilon_{\mu} \epsilon_{m_T}} \underbrace{\stackrel{\epsilon_{\text{VBF}}}{\epsilon_{\text{VBF}}}}_{\epsilon_{\text{VBF}}^C}$