Problemas

Iván Irving Rosas Domínguez

11 de septiembre de 2024

Problema 1

En el paper de Maria Emilia se tiene el siguiente Lema como condiciones suficientes para la existencia y unicidad de la densidad continua y acotada para una variable F.

Lema 1 (Lema 3 en Maria Emilia). Sea F una variable aleatoria en el espacio $\mathbb{D}^{1,1}$. Sea u un proceso en $\mathrm{Dom}(\delta)$ tal que cumple las siguientes propiedades, para algunos p, p' > 1 tales que 1/p + 1/p' = 1

- 1. $u \in L^p(\Omega; \mathfrak{H})$
- 2. $\delta(u) \in L^p(\Omega)$
- 3. $(D_u F)^{-1} \in \mathbb{D}^{1,p'}$.

Entonces se cumplen las condiciones de la existencia de la densidad continua y acotada del paper de Maria Emilia.

Después, se argumenta que las hipótesis del Lema 3 se satisfacen si pedimos las condiciones del siguiente lema.

Lema 2 (Lema 4 en Maria Emilia). Sean p, p' > 1 tales que $\frac{1}{p} + \frac{1}{p'} = 1$, y sea $F \in \mathbb{D}^{2,1}$. Supongamos que $u \in \text{Dom}(\delta)$. Si se cumplen las siguientes condiciones

- 1. $u \in L^p(\Omega; \mathfrak{H}),$
- 2. $\delta(u) \in L^p(\Omega)$.
- 3. $(D_u F)^{-1} \in L^{p'}(\Omega)$.
- 4. $(D_u F)^{-2} \left(\|D^2 F\|_{\mathfrak{H}^{\otimes 2}} \|u\|_{\mathfrak{H}} + \|Du\|_{\mathfrak{H}} \|DF\|_{\mathfrak{H}} \right) \in L^{p'}(\Omega),$

entonces $\frac{u}{D_v F} \in \text{Dom}(\delta)$ y en particular, se cumple la ecuación de la densidad continua y acotada de Maria Emilia.

Básicamente son las mismas hipótesis en ambos lemas, salvo que la condición 3. y 4. del Lema 2 deben implicar la condición 3. del Lema 1. ¿Por qué se da esa implicación?

Problema 2.

¿Cómo argumentar la cota que aparece en la expresión para la primera derivada de Malliavin de la solución a la ecuación del calor?

Teorema 1. Sea u la solución al problema $(\ref{eq:condition})$. Supongamos además que $\sigma: \mathbb{R} \to \mathbb{R}$ es de clase $C^1(\mathbb{R}, \mathbb{R})$, y su derivada es una función Lipschitz y acotada. Entonces para cualquier $(t,x) \in [0,T] \times \mathbb{R}$, $u(t,x) \in \bigcap_{p \geq 1} \mathbb{D}^{1,p}$ y además, la derivada de Malliavin cumple que

$$D_{s,t}u(t,x) = p_{t-s}(x-y)\sigma(u(s,y)) + \int_{[s,t]} \int_{\mathbb{R}} p_{t-\tau}(x-\xi)\sigma'(u(\tau,\xi))D_{s,y}u(\tau,\xi)W(d\tau,d\xi),$$

para casi cualquier $s \in [0,t]$ y $y \in \mathbb{R}$. Más aún, se cumple que

$$||D_{s,y}u(t,x)||_p \le C_{T,p} p_{t-s}(x-y),$$
 (1)

para cualquier $0 \le s < t \le T$, y para $x, y \in \mathbb{R}$.