

Blacktown Boys' High School 2024

HSC Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks: 70

Total marks: Section I – 10 marks (pages 3 – 7)

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II – 60 marks (pages 8 – 15)

- Attempt Questions 11 14
- Allow about 1 hour and 45 minutes for this section

Assessor: X. Chirgwin

Student Name:	
Teacher Name:	

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2024 Higher School Certificate Examination.

- Blank Page -

Section I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10.

Which of the following is the correct vector of \overrightarrow{BC} ?

- -8a 4b
- В. -8a + 4b
- C. 8a - 4b
- D. 8a + 4b
- A standard six-sided die is rolled 18 times.

Let \hat{p} be the proportion of the rolls with an outcome of 3.

Which of the following expressions is the probability that at most 12 of the rolls have an outcome of 3?

Q3. Which of the following could be the graph of the solution of the differential equation

В.

D.

A.

C.

- A graph has parametric equations $x = 2 \cos t$, $y = 2 4 \sin^2 t$. What is its Cartesian equation?

A.
$$y = x^2 - 2 \text{ for } -2 \le x \le 2$$

B.
$$y = x^2 - 2 \text{ for } -2 \le x \le 0$$

C.
$$y = x^2 + 2 \text{ for } -2 \le x \le 2$$

D.
$$y = x^2 + 2 \text{ for } -2 \le x \le 0$$

- Q5. If $\sin x = 0.28$ and $\frac{\pi}{2} \le x \le \pi$, evaluate $\tan 2x$.
 - A. $\frac{527}{336}$
 - B. $-\frac{527}{336}$
 - C. $\frac{336}{527}$
 - D. $-\frac{336}{527}$
- Q6. Mohammad hits the target on average 2 out of every 3 shots in archery competitions. During a competition he has 10 shots at the target. What is the probability that Mohammad hits the target exactly 9 times?
 - A. $10\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)$
 - B. $\left(\frac{2}{3}\right)^9 \left(\frac{1}{3}\right)^9$
 - C. $10\left(\frac{2}{3}\right)$
 - D. $5\left(\frac{2}{3}\right)^{10}$
- Q7. What is the value of $\tan \alpha$ when the expression $4 \sin x 3 \cos x$ is written in the form $5 \sin(x \alpha)$?
 - A. $-\frac{3}{4}$
 - B. $\frac{3}{4}$
 - C. $-\frac{4}{3}$
 - D. $\frac{4}{3}$

- Q8. What is the range of the function $f(x) = \cos^{-1}(\tan x)$?
 - A. $[0, \pi]$
 - B. $(0,\pi)$
 - C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - D. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- Q9. The graph of the function y = f(x) is below.

Which of the following is a graph of $y = \frac{-1}{f(|x|)}$?

- A. 6 ÎY 5 4 3 2 1 1 2 3 4 4
- -3 -2 1 0 3 4 X
- -4 -3 2 -2 -3 -4 -4 -5 -5

Q10. Given that \tilde{a} and \tilde{b} are two non-zero vectors, let \tilde{c} be the projection of \tilde{a} onto \tilde{b} . What is the projection of 12a onto 3b?

- A. 36*c*
- B. 12*c*
- C. 4*a*
- D. 3*c*

End of Section I

BBHS 2024 HSC Mathematics Extension 1 Trial Examination

Section II

60 Marks

Attempt Questions 11–14

Allow about 1 hour and 45 minutes for this section

Answer each question on a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use the Question 11 Writing Booklet.

(a) For the vectors u = 5i + j and v = 2i - 3j, evaluate each of the following.

(i)
$$2u - 3v$$

(ii)
$$u \cdot v$$

(b) The polynomial $P(x) = 5x^3 - 2x + 20$ has roots α, β and γ . Evaluate:

(i)
$$\alpha\beta\gamma$$
 1

(ii)
$$\alpha^2 + \beta^2 + \gamma^2$$

(c) Solve
$$\frac{10x}{1+3x} \le 3$$

(d) Show that
$$\frac{d}{dx} \left(\frac{\sin^{-1}(3x)}{3x} \right) = \frac{3x - \sin^{-1}(3x)\sqrt{1 - 9x^2}}{3x^2\sqrt{1 - 9x^2}}$$

Question 11 continues on next page

Question 11 (continued)

(e) A recent census found that 55% of people used public transport.

A sample of 600 randomly selected Australians was surveyed.

Let \hat{p} be the sample proportion of surveyed people who were born overseas.

A normal distribution is to be used to approximate $P(\hat{p} \le 0.575)$.

- (i) Show that the variance of the random variable \hat{p} is $\frac{33}{80000}$.
- (ii) Use the standard normal distribution and the information on page 15 to approximate P(p̂ ≤ 0.575), giving your answer correct to two decimal places.

2

End of Questions 11

BBHS 2024 HSC Mathematics Extension 1 Trial Examination

Question 12 (15 marks) Use the Question 12 Writing Booklet.

(a) Evaluate
$$\int_0^{\frac{1}{5}} \frac{dx}{1 + 25x^2}$$
 2

(b) Evaluate
$$\int_{-1}^{4} \frac{t}{\sqrt{5+t}} dt$$
 by using the substitution $t = u - 5$.

- (c) Samirali turns on his radio 30 times a month on average. It can receive 20 radio stations. Every time he switches on the radio, it goes to a random station. What is the probability that it will be the radio station Samirali wants to listen to upon switching on the ratio at least twice in a month? Round your answer to 4 significant figures.
- (d) It is known that ${}^nC_r = {}^{n-1}C_{r-1} + {}^{n-1}C_r$ for all integers such that $1 \le r \le n-1$. (Do NOT prove this.)

Find ONE possible set of values for p and q such that

$${}^{2026}C_{1924} - {}^{2024}C_{100} - {}^{2024}C_{101} = {}^{p}C_{q}$$

(e) The vectors
$$u = \begin{pmatrix} -5 \\ m \end{pmatrix}$$
 and $v = \begin{pmatrix} 3m-4 \\ 1-6m \end{pmatrix}$ are perpendicular.

What are the possible values of m?

(f) For all integers
$$n \ge 1$$
, use mathematical induction to prove that
$$\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^2} + \frac{5}{3 \times 4 \times 2^3} + \dots + \frac{n+2}{n(n+1) \times 2^n} = 1 - \frac{1}{(n+1) \times 2^n}$$

End of Questions 12

Question 13 (15 marks) Use the Question 13 Writing Booklet.

- (a) (i) By expanding the left-hand side, show that $\sin(8x + 5x) + \sin(8x 5x) = 2\sin 8x \cos 5x$
 - (ii) Hence find $\int \sin 8x \cos 5x \, dx$.
- (b) The arc of the curve $y = \frac{1}{2}(1 + \sin x)$ between $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$ is rotated about the *x*-axis. Find the volume of the solid formed.
- (c) ABCD is a parallelogram where $\overrightarrow{DA} = 12\boldsymbol{a} + 20\boldsymbol{b}$ and $\overrightarrow{DC} = 8\boldsymbol{a} + 4\boldsymbol{b}$. X lies on the line \overrightarrow{AB} such that $\overrightarrow{AX} : \overrightarrow{XB} = 1 : 3$. M is the midpoint of \overrightarrow{DB} . \overrightarrow{CE} is an extension of \overrightarrow{BC} . Y lies on the line \overrightarrow{CE} such that $2\overrightarrow{CY} = -\overrightarrow{DA}$.

2

3

- (i) Find \overrightarrow{XM} in terms of \boldsymbol{a} and \boldsymbol{b} .
- (ii) Prove that X, M and Y are collinear and find k if $\overrightarrow{XM} = k\overrightarrow{MY}$.

Question 13 continues on next page

-11-

BBHS 2024 HSC Mathematics Extension 1 Trial Examination

Question 13 (continued)

(d) (i) Show that
$$\frac{x+2}{4-x^2} = \frac{1}{2-x}$$

ii) Find the particular solution to the differential equation

$$2(4 - x^2) \frac{dy}{dx} = y(x + 2)$$

3

that passes through the point (1, 2), give the answer in the form y = f(x).

End of Questions 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.

(a) The diagram below shows the graph of the function y = f(x).

Sketch $y = \frac{1}{\sqrt{f(x)}}$

- (b) The rate of change of the number of people entering an arena is modelled by $\frac{dN}{dt} = kN\left(1 \frac{N}{5000}\right), \text{ where } k \text{ is a constant and } N \text{ is the number of people}$ after t minutes. There are 200 people in the arena initially and the capacity of the arena is 5000 people. At a certain time, the number of people in the arena is 1000 and is increasing at the rate of 500 people per minute.
 - (i) Show that k = 0.625.
 - (ii) Show that $\frac{5000}{N(5000 N)} = \frac{1}{N} + \frac{1}{5000 N}$

1

1

- (iii) Find the number of people in the arena after 6 minutes.
- (iv) How long will it take for the arena to be 90% full? Round to the nearest second.

Question 14 continues on next page

-13-

BBHS 2024 HSC Mathematics Extension 1 Trial Examination

Question 14 (continued)

(c) Given that $\sin^{-1} x$, $\cos^{-1} x$ and $\sin^{-1} (2 - x)$ have values for $0 \le x \le \frac{\pi}{2}$.

(i) Show that $\sin(\sin^{-1} x - \cos^{-1} x) = 2x^2 - 1$.

3

2

(ii) Hence solve the equation $\sin^{-1} x - \cos^{-1} x = \sin^{-1} (2 - x)$.

End of Paper

-14-

follows.

Use the information below to answer Question 11 (f) (ii).

Table of values $P(Z \le z)$ for the normal distribution N(0,1)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9 A \bigcirc B \bigcirc C \bigcirc D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as

A B C D D

 $C\bigcirc$

 $D \bigcirc$

A O вО CO Here A O ВО CO DO Λ вО CO DO A O вО CO DO

	2024 Mathematics Extension 1 AT4 Trial Solutions				
Section 1					
Q1	$ \frac{\mathbf{c}}{B\vec{C}} = \overline{B}\vec{A} + \overline{A}\vec{D} + \overline{D}\vec{C} \overline{B}\vec{C} = -14\underline{b} + 8\underline{a} + 10\underline{b} \overline{B}\vec{C} = 8\underline{a} - 4\underline{b} $	1 Mark			
Q2	B Having 12 out of 18 rolls be an outcome of 3 corresponding to a \hat{p} value of $\frac{12}{18} = \frac{2}{3}$ Since "at most" that proportion is desired, then probability is $P\left(\hat{p} \leq \frac{2}{3}\right)$	1 Mark			
Q3	С	1 Mark			
Q4	A $x = 2\cos t, -2 \le x \le 2$ $x^2 = 4\cos^2 t$ $y = 2 - 4\sin^2 t$ $4\sin^2 t = 2 - y$ $\sin^2 t + \cos^2 t = 1$ $4\sin^2 t + 4\cos^2 t = 4$ $2 - y + x^2 = 4$ $y = x^2 - 2$	1 Mark			
Q5	D $\sin x = \frac{7}{25}, \frac{\pi}{2} \le x \le \pi$ $\tan x = -\frac{7}{24}$ $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$ $\tan 2x = \frac{2 \times \left(-\frac{7}{24}\right)}{1 - \left(-\frac{7}{24}\right)^2}$ $\tan 2x = -\frac{336}{527}$	1 Mark			
Q6	$ \begin{array}{c} D \\ ^{10}C_{9}\left(\frac{2}{3}\right)^{9}\left(\frac{1}{3}\right)^{1} = 5 \times \left(\frac{2}{3}\right)^{10} \end{array} $	1 Mark			
Q7	B $5\sin(x - \alpha) = 5\sin x \cos \alpha - 5\cos x \sin \alpha$ $5\cos \alpha = 4 \dots (1)$ $5\sin \alpha = 3 \dots (2)$ $(2) \div (1)$ $\tan \alpha = \frac{3}{4}$	1 Mark			
Q8	A Range is $0 \le y \le \pi$	1 Mark			

Q9		1 Mark
Q10	$ \begin{array}{l} \mathbf{B} \\ \operatorname{proj}_{\left(3\underline{b}\right)}\left(12\underline{a}\right) = \frac{\left(12\underline{a}\right) \cdot \left(3\underline{b}\right)}{\left 3\underline{b}\right ^{2}}\left(3\underline{b}\right) \\ \operatorname{proj}_{\left(3\underline{b}\right)}\left(12\underline{a}\right) = \frac{12\left(\underline{a} \cdot \underline{b}\right)}{\left \underline{b}\right ^{2}}\left(\underline{b}\right) \\ \operatorname{proj}_{\left(3\underline{b}\right)}\left(12\underline{a}\right) = 12\operatorname{proj}_{\left(\underline{b}\right)}\left(\underline{a}\right) \\ \operatorname{proj}_{\left(3\underline{b}\right)}\left(12\underline{a}\right) = 12\underline{c} \end{array} $	1 Mark

Section 2		
Q11ai	2u - 3v	1 Mark
	$=2\left(5\frac{i}{c}+j\right)-3\left(2\frac{i}{c}-3j\right)$	Correct solution
	$=10\overset{\cdot}{i}+2\overset{\cdot}{j}-6\overset{\cdot}{i}+9\overset{\cdot}{j}$	
	= 10i + 2j - 6i + 9j $= 4i + 11j$	
Q11aii	$\left(5i + j\right) \cdot \left(2i - 3j\right)$	1 Mark Correct solution
	$=5\times2+1\times-3$	Correct solution
	= 7	
Q11bi	$P(x) = 5x^3 - 2x + 20$	1 Mark
	$\alpha\beta\gamma = -\frac{d}{a} = -\frac{20}{5}$	Correct solution
	$\alpha \beta \gamma = 4$ 5 $\alpha \beta \gamma = -4$	
Q11bii	$\alpha^2 + \beta^2 + \gamma^2$	2 Marks Correct solution
	$\begin{aligned} \alpha^2 + \beta^2 + \gamma^2 \\ &= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma) \\ &= 0 - 2 \times -\frac{2}{5} \\ &= \frac{4}{5} \end{aligned}$	Correct solution
	$=0-2\times-\frac{1}{5}$	1 Mark
	$=\frac{4}{r}$	Makes significant
	5	progress
Q11c	$\frac{10x}{1+3x} \le 3, x \ne -\frac{1}{3}$	3 Marks
	$\frac{1}{1+3x} \le 3, x \ne -\frac{3}{3}$ $10x(1+3x) \le 3(1+3x)^2$	Correct solution
	$10x(1+3x) \le 3(1+3x)^{-2}$ $10x(1+3x) - 3(1+3x)^{2} \le 0$	2 Marks
	$(1+3x)[10x-3(1+3x)] \le 0$	Makes significant
	$(1+3x)(x-3) \le 0$	progress and
	Sketch the graph of $y = (1 + 3x)(x - 3)$	identifies 3, $-\frac{1}{3}$
	\ \(\partial y \) / (1 + 5%)(x - 5)	are the two key
		values
	$-\frac{1}{3}$ 3	1 Mark
		Multiplies both
	$\left \therefore -\frac{1}{3} \right < x \le 3$	sides by the square of denominator
	3 1 2 3	or denominator
Q11d	$\frac{d}{dx}\left(\frac{\sin^{-1}(3x)}{3x}\right)$	3 Marks
		Correct solution
	$3x \times \frac{3}{\sqrt{1-9x^2}} - 3\sin^{-1}(3x)$	2 Marks
	$=\frac{\sqrt{1-9x^2}}{9x^2}$	Make significant
	$-\frac{3(3x-\sin^{-1}(3x)\sqrt{1-9x^2})}{}$	progress
	$= \frac{3x \times \frac{3}{\sqrt{1 - 9x^2}} - 3\sin^{-1}(3x)}{9x^2}$ $= \frac{3(3x - \sin^{-1}(3x)\sqrt{1 - 9x^2})}{9x^2\sqrt{1 - 9x^2}}$	1 Mark
	$=\frac{3x-\sin^{-1}(3x)\sqrt{1-9x^2}}{3x^2\sqrt{1-9x^2}}$	Differentiate
	$3x^2\sqrt{1-9x^2}$	$\sin^{-1}(3x)$
Q11ei	Let p be the probability of people who catch public transport	2 Marks
	$p = 0.55, \qquad q = 1 - p = 0.45$	Correct solution
	$n = 600$ $\sigma^2 = \frac{0.55 \times 0.45}{600}$	1 Mark
	000	Obtains correct p
	$\sigma^2 = \frac{33}{80000}$	and q values
	80000	

Q11eii	(0.555 0.55)	2 Marks
	$P(\hat{p} \le 0.575) = P\left(Z \le \frac{0.575 - 0.55}{\sqrt{\frac{33}{20000}}}\right)$	Correct solution
	ν γ 80000 /	1 Mark Obtains the correct
	$P(\hat{p} \le 0.575) = P(Z \le 1.2309)$ $P(\hat{p} \le 0.575) \approx P(Z \le 1.23)$	z-score
	$P(\hat{p} \le 0.575) \approx 0.8907$	
	$P(\hat{p} \le 0.575) = 0.89 \text{ (2 dp)}$	
Q12a	$\int_{0}^{\frac{1}{5}} \frac{dx}{1 + 25x^{2}}$	2 Marks
	0	Correct solution
	$=\frac{1}{5}\int_{0}^{\frac{1}{5}} \frac{5dx}{1+(5x)^2}$	1 Mark Correct anti-
	$ \begin{array}{l} 3J_0 & 1 + (3x)^2 \\ = \frac{1}{5} [\tan^{-1}(5x)]_0^{\frac{1}{5}} \end{array} $	derivative
	3	
	$= \frac{1}{5} \left[\tan^{-1} \left(5 \times \frac{1}{5} \right) - \tan^{-1} (5 \times 0) \right]$	
	$=\frac{1}{5}\left[\frac{\pi}{4}-0\right]$	
	$=\frac{\pi}{20}$	
Q12b	(4 t	3 Marks
~==~	$I = \int_{-1}^{4} \frac{t}{\sqrt{5+t}} dt$	Correct solution
	t = u - 5	2 Marks
	dt = du	Obtains correct
	t = 4, u = 9	anti-derivative in terms of u
	t = -1, u = 4	1 Mark
	$I = \int_{4}^{9} \frac{u-5}{\sqrt{(5+u-5)}} du$	Obtains correct
	ν γ (3 μ 3)	integrand in terms of u
	$I = \int_{0}^{9} \frac{u-5}{\sqrt{u}} du$	0.0
	$I = \int_{0}^{3} \left(u^{\frac{1}{2}} - 5u^{-\frac{1}{2}} \right) du$	
	$I = \left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}} - \frac{5u^{\frac{1}{2}}}{\frac{1}{2}} \right]_{4}^{9}$	
	$I = \left[\frac{2u\sqrt{u}}{3} - 10\sqrt{u}\right]^9$	
	$I = \left[\left(\frac{2 \times 9\sqrt{9}}{3} - 10\sqrt{9} \right) - \left(\frac{2 \times 4\sqrt{4}}{3} - 10\sqrt{4} \right) \right]$	
	$I = \left[(18 - 30) - \left(\frac{16}{2} - 20 \right) \right]$	
	$I = \frac{1}{8}$	
	3	
Q12c	The probability of the correct radio station is $\frac{1}{20}$	3 Marks Correct solution
	$X \sim B\left(30, \frac{1}{20}\right)$	
	. 20/	2 Marks Makes significant
	$ P(X \ge 2) = 1 - P(X \le 1) P(X \ge 2) = 1 - (P(X = 1) + P(X = 0)) $	progress

	$P(X \ge 2) = 1 - \left({}^{30}C_0 \left(\frac{1}{20}\right)^0 \left(\frac{19}{20}\right)^{30} + {}^{30}C_1 \left(\frac{1}{20}\right)^1 \left(\frac{19}{20}\right)^{29}\right)$ $P(X \ge 2) = 0.446457 \dots$ $P(X \ge 2) = 0.4465 (4 \text{ sig fig})$	1 Mark Finds $P(X = 0)$ or $P(X = 1)$
Q12d	$ \begin{array}{c} ^{2026}C_{1924} - ^{2024}C_{100} - ^{2024}C_{101} = ^{p}C_{q} \\ ^{2026}C_{1924} - (^{2024}C_{100} + ^{2024}C_{101}) = ^{p}C_{q} \\ ^{2026}C_{1924} - ^{2025}C_{101} = ^{p}C_{q} \\ ^{p}C_{q} + ^{2025}C_{101} = ^{2026}C_{1924} \\ ^{p}C_{q} + ^{2025}C_{101} = ^{2026}C_{102} \\ ^{2025}C_{102} + ^{2025}C_{101} = ^{2026}C_{102} \\ & \therefore p = 2025, q = 102 \ or \ 1923 \end{array} $	2 Marks Correct solution 1 Mark Combines two terms
Q12e	${\binom{-5}{m}} \cdot {\binom{3m-4}{1-6m}} = 0$ $-15m+20+m-6m^2 = 0$ $-6m^2 - 14m + 20 = 0$ $3m^2 + 7m - 10 = 0$ $(3m+10)(m-1) = 0$ $m = -\frac{10}{3}, m = 1$	2 Marks Correct solution 1 Mark Makes significant progress
Q12f	RTP: $\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{n+2}{n(n+1) \times 2^{n}}$ $= 1 - \frac{1}{(n+1) \times 2^{n}}$ 1. Prove statement is true for $n = 1$ $LHS = \frac{3}{1 \times 2 \times 2} = \frac{3}{4}$ $LHS = \frac{3}{4}$ $RHS = 1 - \frac{1}{(1+1) \times 2^{1}}$ $RHS = 1 - \frac{1}{4}$ $RHS = \frac{3}{4} + \frac{3}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $= 1 - \frac{1}{(k+1) \times 2^{k}}$ 3. Prove statement is true for $n = k + 1$ $\frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $= \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}}$ $+ \frac{1}{(k+1)(k+1+1) \times 2^{k+1}} = 1 - \frac{1}{(k+2) \times 2^{k+1}}$	3 Marks Correct solution 2 Marks Makes significant progress 1 Mark Establishes the base case

	$LHS = \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^{2}} + \frac{5}{3 \times 4 \times 2^{3}} + \dots + \frac{k+2}{k(k+1) \times 2^{k}} + \frac{k+3}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \frac{1}{k+3} + \frac{k+3}{k+3}$	
	$LHS = 1 - \frac{2k + 3}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \frac{1}{(k+1) \times 2^{k}} + \frac{k+3}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \left(\frac{2(k+2)}{(k+1)(k+2) \times 2^{k+1}} - \frac{(k+3)}{(k+1)(k+2) \times 2^{k+1}}\right)$ $LHS = 1 - \frac{2k + 4 - k - 3}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \frac{k+1}{(k+1)(k+2) \times 2^{k+1}}$	
	$LHS = 1 - \frac{k+1}{(k+1)(k+2) \times 2^{k+1}}$ $LHS = 1 - \frac{1}{(k+2) \times 2^{k+1}}$	
	LHS = RHS $\therefore \frac{3}{1 \times 2 \times 2} + \frac{4}{2 \times 3 \times 2^2} + \frac{5}{3 \times 4 \times 2^3} + \dots + \frac{n+2}{n(n+1) \times 2^n}$	
	$=1-\frac{1}{(n+1)\times 2^n}$	
Q13ai	$\sin(8x + 5x) + \sin(8x - 5x) = \sin 8x \cos 5x + \cos 8x \sin 5x + \sin 8x \cos 5x - \cos 8x \sin 5x = 2 \sin 8x \cos 5x$	1 Mark Correct solution
Q13aii	$\int \sin 8x \cos 5x dx$ $= \frac{1}{2} \int (\sin(8x + 5x) + \sin(8x - 5x)) dx$ $= \frac{1}{2} \int (\sin 13x + \sin 3x) dx$ $= \frac{1}{2} \times \left(-\frac{1}{13} \cos 13x - \frac{1}{3} \cos 3x \right) + C$	2 Marks Correct solution 1 Mark Obtains $\frac{1}{2} \int (\sin 13x + \sin 3x) dx$
0431	$= -\frac{1}{26}\cos 3x - \frac{1}{6}\cos 3x + C$	2.042-112
Q13b	$V = \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{2} (1 + \sin x) \right)^2 dx$ $V = \frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + 2\sin x + \sin^2 x) dx$	3 Marks Correct solution 2 Marks Correct antiderivative
	$V = \frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + 2\sin x + \frac{1}{2} (1 - \cos 2x) \right) dx$ $V = \frac{\pi}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{3}{2} + 2\sin x - \frac{1}{2} \cos 2x \right) dx$	1 Mark Finds $\frac{\pi}{4} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + 2 \sin x + \sin^2 x) dx$
	$V = \frac{\pi}{4} \left[\frac{3}{2} x - 2 \cos x - \frac{1}{4} \sin 2x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $V = \frac{\pi}{4} \left[\left(\frac{3}{2} \times \frac{\pi}{2} - 2 \cos \frac{\pi}{2} - \frac{1}{4} \sin \left(2 \times \frac{\pi}{2} \right) \right) - \left(\frac{3}{2} \times -\frac{\pi}{2} - 2 \cos \left(-\frac{\pi}{2} \right) - \frac{1}{4} \sin \left(2 \times -\frac{\pi}{2} \right) \right) \right]$	
	$V = \frac{\pi}{4} \left[\left(\frac{3\pi}{4} - 0 - 0 \right) - \left(-\frac{3\pi}{4} - 0 \right) \right]$ $V = \frac{3\pi^2}{8} \text{ units}^3$	

Q13ci	$\overline{XM} = \overline{XB} + \overline{BM}$ $\overline{XM} = \frac{3}{4}\overline{AB} + \frac{1}{2}\overline{BD}$	2 Marks Correct solution
	$\overrightarrow{XM} = \frac{3}{4}\overrightarrow{DC} + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AD})$	1 Mark
	$\frac{4}{\vec{X}\vec{M}} = \frac{3}{4}(8a + 4b) + \frac{1}{2}(-8a - 4b - 12a - 20b)$	Finds \overrightarrow{XB} or \overrightarrow{BM} in terms of \boldsymbol{a} and \boldsymbol{b}
	$\overrightarrow{XM} = (6\mathbf{a} + 3\mathbf{b}) + (-10\mathbf{a} - 12\mathbf{b})$	
	$\overrightarrow{XM} = -4a - 9b$	
Q13cii		3 Marks Correct solution
	$\overrightarrow{MY} = -\overrightarrow{BM} - \overrightarrow{CB} - \frac{1}{2}\overrightarrow{DA}$	2 Marks
	$\overrightarrow{MY} = (10a + 12b) - (12a + 20b) - \frac{1}{2}(12a + 20b)$	Finds k or proves collinear
	$ \overline{MY} = 10\mathbf{a} + 12\mathbf{b} - 12\mathbf{a} - 20\mathbf{b} - 6\mathbf{a} - 10\mathbf{b} $ $ \overline{MY} = -8\mathbf{a} - 18\mathbf{b} $	1 Mark
	$\overrightarrow{XY} = \overrightarrow{XR} + \overrightarrow{RY}$	Finds \overrightarrow{MY} or \overrightarrow{XY}
	$\overrightarrow{XY} = AB + BY$ $\overrightarrow{XY} = 6\mathbf{a} + 3\mathbf{b} - 12\mathbf{a} - 20\mathbf{b} - 6\mathbf{a} - 10\mathbf{b}$	
	$\overline{XY} = -12\boldsymbol{a} - 27\boldsymbol{b}$	
	$\overrightarrow{XY} = 3\overrightarrow{XM} = \frac{3}{2}\overrightarrow{MY}$	
	Since these vectors are scalar multiples of each other and M is a common	
	point, therefore X,M and Y are collinear. $k=\frac{1}{2}$	
Q13di	$\frac{x+2}{4-x^2}$	1 Mark Correct solution
	$=\frac{x+2}{(2+x)(2-x)}$	
	$=\frac{1}{2-x}$	
Q13dii	$2(4-x^2)\frac{dy}{dx} = y(x+2)$	3 Marks
	$\int \frac{2}{y} dy = \int \frac{x+2}{4-x^2} dx$	Correct solution
	$\int \frac{1}{y} dy = \int \frac{1}{2-x} dx$	2 Marks Obtains correct
	$\int y^{ay} - \int 2 - x^{ax}$	primitive
	$2\ln y = -\ln 2 - x + C_1$	1 Mark Separates the
	$\ln y = -\frac{1}{2}\ln 2 - x + C_2$	variables in the
	$\ln y = \ln\frac{1}{\sqrt{2-x}} + C_2$	differential equation, or
	$y = Ae^{-\sqrt{2}-x}$	equivalent merit
	$y = \frac{1}{\sqrt{2-x}}$ $x = 1, y = 2$	
	$x = 1, y = 2$ $2 = \frac{A}{\sqrt{2 - 1}}$ $A = 2$	
	A = 2	
	$\therefore y = \frac{2}{\sqrt{2-x}}$	
	√2 − x	

0146	000/ × 5000 - 4500	1 Monte
Q14biv	$90\% \times 5000 = 4500$	1 Mark Correct solution
	$\frac{4500}{5000 - 4500} = \frac{1}{24}e^{0.625t}$	Correct solution
	1 04354	
	$9 = \frac{1}{24}e^{0.625t}$	
	$9 \times 24 = e^{0.625t}$	
	$\ln 216 = 0.625t$	
	$t = \frac{\ln 216}{0.625}$	
	0.625 $t = 8^{\circ}36'1.6''$	
	t = 8 min 36 s (nearest second)	
	t = 6 min 50 5 (nearest sectoria)	
Q14ci	Let $\sin^{-1} x = \alpha$, $\cos^{-1} x = \beta$	3 Marks
	$\sin \alpha = \frac{x}{1}, \cos \beta = \frac{x}{1}$	Correct solution
	$\frac{\sin u - 1}{\cos p} = 1$	
	β	2 Marks
	$\frac{1}{x}$	Makes significant
		progress
	α	1 Mark
	$\sqrt{1-x^2}$	Identifies
	$\sin(\sin^{-1}x - \cos^{-1}x)$	$\sin \beta = \cos \alpha$
	$\sin(\sin x - \cos x)$ = $\sin(\alpha - \beta)$	$= \sqrt{1 - x^2}$
	$= \sin \alpha \cos \beta - \sin \beta \cos \alpha$	- V 1 - X
	$x x \sqrt{1-x^2} \sqrt{1-x^2}$	
	$=\frac{x}{1} \times \frac{x}{1} - \frac{\sqrt{1-x^2}}{1} \times \frac{\sqrt{1-x^2}}{1}$	
	$= x^{2} - (1 - x^{2})$	
	$=2x^{2}-1$	
Q14cii	$\sin^{-1} x - \cos^{-1} x = \sin^{-1} (2 - x)$	2 Marks
	$\sin(\sin^{-1} x - \cos^{-1} x) = 2 - x$ $2x^{2} - 1 = 2 - x$	Correct solution
	$2x^2 - 1 = 2 - x$ $2x^2 + x - 3 = 0$	4.84
	$2x^{2} + x - 3 = 0$ $2x^{2} - 2x + 3x - 3 = 0$	1 Mark
	2x - 2x + 3x - 3 = 0 $2x(x - 1) + 3(x - 1) = 0$	Deduce $2x^2 - 1 = 2 - x$
	(x-1)(2x+3) = 0	and find both x
	3	values
	$x = 1, x = -\frac{3}{2}$	
	$0 \le x \le \frac{\pi}{2}$	
	x = 1 is the only solution.	
	$\cdots \lambda = 1$ is the only solution.	