Non-classical information structures

Examples of sequential decomposition

Aditya Mahajan Yale University

Thanks to

Ashutosh Nayyar and Demosthenis Teneketzis, University of Michigan

Information Structures

Information structures :

Collection of data available to each agent to make a decision

Classical information structure (Centralized Sysmtes)

An agent knows the data available to all agents that acted earlier

Non-classical information structure (Decentralized Systems)

Centralized stochastic control – The two models

- Models
- Structural results
 - ▶ (LQG) Affine control laws are optimal
 - ▶ (MC) Controls based on belief state are optimal
- Sequential decomposition

Break a one-shot optimization into a sequence of nested optimizations

Dynamic programming

Outline

- Sequential decomposition in centralized stochastic control
 - ▶ MDP (Markov decision processes)
 - ▶ POMDP (Partially observable Markov decision processes)
- Sequential decomposition in decentralized stochastic control
 - Common observations
 - No common observation
- Examples
 - Decentralized detection
 - Queueing theory
 - Robotics

Centralized stochastic control - MDP

Model

State Update : $X(t+1) = f_t(X(t), U(t), W(t))$

Observation: Y(t) = X(t)

Control: $U(t) = g_t(X(1:t), U(1:t-1))$

Objective : $E^G \left\{ \sum_{t=1}^T c_t(X(t), U(t)) \right\}$

Structural Result

Control: $U(t) = g_t(X(t))$

Sequential Decomposition

$$V_t(x(t)) = \underset{u(t)}{min} \left[c_t(x(t), u(t)) + E \big\{ V_{t+1}(X(t+1)) \mid x(t), u(t) \big\} \right]$$

Centralized stochastic control - POMDP

Model

$$\begin{split} \text{State Update} \ : \ X(t+1) &= f_t(X(t), U(t), W(t)) \\ \text{Observation} \ : \ Y(t) &= h_t(X(t), N(t)) \\ \text{Control} \ : \ & \underbrace{U(t) = g_t(Y(1:t), U(1:t-1))}_{t=1} \end{split}$$
 $\text{Objective} \ : \ E^G \bigg\{ \sum_{t=1}^T c_t(X(t), U(t)) \bigg\}$

Structural Result

Control: $U(t) = g_t(B(t))$ where B(t)(x) = Pr(X(t) = x | Y(1:t), U(1:t-1))

Sequential Decomposition

$$V_t(b(t)) = \min_{u(t)} \left[E \big\{ c_t(x(t), u(t)) + V_{t+1}(B(t+1) \mid b(t), u(t) \big\} \right]$$

Decentralized Systems

Decentralized stochastic control

- Cost of decentralization
 - > Triple objective of control: control, estimation, and communication
- No easy way to find structural results
 - Can consider the problem from the p.o.v. of one agent and fix the strategies of all other agents
 - Works for two agent problems
 - ▶ May not work in general and may not give compact structural results
- No general way to obtain sequential decomposition (until now)
 - ▶ Coupled dynamic programs can give locally optimal strategies

Decentralized stochastic control

Our approach (Mahajan, Nayyar, Teneketzis 2008)

Find sequential decomposition of specific non-trivial instances.

Two models

- ▶ Model A Common observations
- ▶ Model B No common observations

Cost of decentralization

- > Triple objective of control: control, estimation, and communication
- ▶ Each step of sequential decomposition is a functional optimization problem

Model A – Common observations

• State Update:

$$X(t+1) = f_t(X(t), U(t), W(t))$$
 where $U(t) = [U_1(t), ..., U_n(t)]$

- Common Observations: $Z(t) = c_t(X(t), Q(t))$
- Private Observations: $Y_i(t) = h_{i,t}(X(t), N(t))$
- Control: $U_i(t) = g_{i,t}(Z(1:t-1), Y_i(t), M_i(t-1))$
- Memory: $M_i(t) = l_{i,t}(Z(1:t-1), Y_i(t), M_i(t-1))$
- Objective: $E^{G,L} \left\{ \sum_{t=1}^{T} c_t(X(t), U(t)) \right\}$

Main Idea: Think in term of common agent

Common agent

Partial functions

$$\begin{split} g_{i,t} : \mathcal{Z}^{t-1} \times \mathcal{Y}_i \times \mathcal{M}_i &\to \mathcal{U}_i \\ g_{i,t} : \mathcal{Z}^{t-1} &\to \left(\mathcal{Y}_i \times \mathcal{M}_i \to \mathcal{U}_i \right) \\ l_{i,t} : \mathcal{Z}^{t-1} &\times \mathcal{Y}_i \times \mathcal{M}_i \to \mathcal{M}_i \\ l_{i,t} : \mathcal{Z}^{t-1} &\to \left(\mathcal{Y}_i \times \mathcal{M}_i \to \mathcal{M}_i \right) \end{split}$$

Common agent decides partial functions

$$\begin{aligned} &U_i(t) = \widehat{g}_{i,t}(Y_i(t), M_i(t-1)) & \text{where} & \widehat{g}_{i,t} = \gamma_{i,t}(z(1:t)) \\ &M_i(t) = \widehat{l}_{i,t}(Y_i(t), M_i(t-1)) & \text{where} & \widehat{l}_{i,t} = \lambda_{i,t}(z(1:t)) \end{aligned}$$

Equivalent model

$$\circ$$
 Augmented State : $\big(X(t),Y(t),M(t-1)\big)$ where $Y(t)=[Y_1(t),\dots,Y_n(t)$ and same for $M(t).$

State Update

$$\begin{split} X(t+1) &= f_t(X(t), U(t), W(t)) \qquad \qquad Y_i(t) = h_{i,t}(X(t), N(t)) \\ U_i(t) &= \widehat{g}_{i,t}(Y_i(t), M_i(t-1)), \qquad M_i(t) = \widehat{l}_{i,t}(Y_i(t), M_i(t-1)) \end{split}$$

• Observations:
$$Z(t) = c_t(X(t), U(t-1), Q(t))$$

o Control
$$\hat{g}_{i,t} = \gamma_{i,t}(Z(1:t-1))$$

$$\hat{l}_{i,t} = \lambda_{i,t}(Z(1:t-1))$$

Objective
$$E^{\Gamma,\Lambda} \left\{ \sum_{t=1}^{I} c_t(X(t),Y(t),M(t-1),\hat{g}_{i,t},\hat{l}_{i,t}) \right\}$$

Equivalent model

Equivalent to a centralized problem!

Information state

$$\pi(\mathsf{t})(z(1:\mathsf{t})) = \left[\left[\left[\pi(\mathsf{t})(\mathsf{x},\mathsf{y},\mathsf{m}) \right] \right] \right]$$

where

$$\pi(t)(x, y, m) = \Pr(X(t) = x, Y(t) = y, M(t-1) = m \mid Z(1:t) = z(1:t))$$

Sequential decomposition

$$V_t(\pi(t)) = \min_{\widehat{g}(t), \widehat{l}(t)} \left[E \left\{ c_t(x(t), u(t)) + V_{t+1}(\Pi(t+1) \mid \pi(t), \widehat{g}(t), \widehat{l}(t) \right\} \right]$$

Model B – No common observations

• State Update:

$$X(t+1) = f_t(X(t), U(t), W(t))$$
 where $U(t) = [U_1(t), ..., U_n(t)]$

- Observations: $Y_i(t) = h_{i,t}(X(t), N(t))$
- o Control: $U_i(t) = g_{i,t}(Y_i(t), M_i(t-1))$
- Memory: $M_i(t) = g_{i,t}(Y_i(t), M_i(t-1))$
- Objective: $E^{G,L} \left\{ \sum_{t=1}^{T} c_t(X(t), U(t)) \right\}$

Main Idea: Think in term of system designer

Equivalent model

- \circ Augmented State : $\big(X(t),Y(t),M(t-1)\big)$ where $Y(t)=[Y_1(t),\ldots,Y_n(t)$ and same for M(t).
- State Update

$$\begin{split} X(t+1) &= f_t(X(t), U(t), W(t)) & Y_i(t) &= h_{i,t}(X(t), N(t)) \\ & U_i(t) &= g_{i,t}(Y_i(t), M_i(t-1)), & M_i(t) &= l_{i,t}(Y_i(t), M_i(t-1)) \end{split}$$

- o Observations: Nothing
- $\label{eq:gitting} \begin{array}{ll} \circ & Control & g_{i,t} = \gamma_{i,t}(g(t-1),l(t-1)) \\ \\ l_{i,t} = \lambda_{i,t}(g(t-1),l(t-1)) \end{array}$
- Objective $E^{\Gamma,\Lambda} \left\{ \sum_{t=1}^{I} c_t(X(t), Y(t), M(t-1), g_{i,t}, l_{i,t}) \right\}$

Equivalent model

Equivalent to a centralized problem!

Information state

$$\pi(\mathsf{t})(z(1:\mathsf{t})) = \left[\left[\left[\pi(\mathsf{t})(z(1:\mathsf{t}))(x,y,m) \right] \right] \right]$$

where

$$\pi(t)(z(1:t))(x,y,m) = \Pr(X(t) = x, Y(t) = y, M(t-1) = m)$$

Sequential decomposition

$$V_{t}(\pi(t)) = \min_{g(t), l(t)} \left[E \left\{ c_{t}(x(t), u(t)) + V_{t+1}(\Pi(t+1) \mid \pi(t), g(t), l(t) \right\} \right]$$

Non-classical information structures:

Sequential decomposition is possible

Are these models useful – Special Cases

- k-step state sharing information structure
- k-step control sharing information structure
- k-step observation sharing information structure
- Witsenhausen's general sequential team model
- Witsenhausen's standard form

Are these models useful – Examples

- Decentralized Detection
 - Decentralized Wald Problem
 - Wald problem with 1-bit memory
- Control of Queues
 - Multi-access broadcast
 - Load balancing in queues

- Robotics
 - Robot rendezvous with communications
 - Decentralized task scheduling
- Toy problem

Decentralized tiger problem

Decentralized Wald problem

- o Decisions = { More meas., decide H_0 , decide H_1 }
- action = fn(all past observations)
- Each measurement by each sensor costs c

Final cost
$$J(u_1, u_2, h) =$$

$$\begin{cases}
0 & \text{if } u_1 = u_2 = h, \\
1 & \text{if } u_1 \neq u_2 \\
k & \text{if } u_1 = u_2 \neq h
\end{cases}$$

• Minimize $E\{c\tau_1+c\tau_2+J(u_1,u_2,h)\}$

Decentralized Wald problem

- Studied by Teneketzis and Ho, 1985
- Obtained structural results:

Optimal to take action based on likelihood ratio test (threshold rule)

 $action = fn(posterier of H_0)$

Obtained coupled dynamic programs to determine locally optimally thresholds.

Globally optimal thresholds – Use Model B

Structural results make the model equivalent to Model B

- $\begin{array}{ll} \circ & \text{Define: } \pi(t) = \text{Pr}\left(H, U_1(t), U_2(t), \lambda_1(t), \lambda_2(t)\right) \text{ or equivalently} \\ \pi(t) = \left[\text{Pr}\left(U_1(t), U_2(t), \lambda_1(t), \lambda_2(t) \,|\, H_0\right), \quad \text{Pr}\left(U_1(t), U_2(t), \lambda_1(t), \lambda_2(t) \,|\, H_1\right)\right] \end{aligned}$
- Sequential Decomposition

$$V_{t}(\pi(t)) = \min_{\alpha(t),\beta(t)} \left[E \left\{ c_{t}(h,u_{1}(t),u_{2}(t)) + V_{t+1}(\Pi(t+1) \mid \pi(t),\alpha(t),\beta(t) \right\} \right]$$

Wald problem with 1 bit of memory

- Decisions = { More meas. and update memory, decide H_0 , decide H_1 }
- Each measurement by each sensor costs c
- (action, next memory) = fn(current observation, current memory)

$$\text{o} \quad \text{Final cost } J(u,h) = \left\{ \begin{aligned} 0 & \text{if } u = h, \\ L_0 & \text{if } u \neq h = H_0 \\ L_1 & \text{if } u \neq h = H_1 \end{aligned} \right.$$

• Minimize $E\{c\tau + J(u,h)\}$

Wald problem with 1 bit of memory

- Studied by Sandell, 1974
- Presents a sequential decomposition attributed to Witsenhausen

Globally optimal design – Use Model B

- $\circ \quad \text{Define: } \pi(t) = \left[\Pr\left(M(t) \mid H_0 \right), \quad \Pr\left(M(t) \mid H_1 \right) \right]$
- Sequential Decomposition

$$V_t(\pi(t)) = min \begin{cases} E\{cost\ of\ stopping\ |\ \pi(t), u = H_0\}, \\ E\{cost\ of\ stopping\ |\ \pi(t), u = H_1\}, \\ c + E\{V_{t+1}(\Pi(t+1))\ |\ \pi(t), g(t)\} \end{cases}$$

Multi-access broadcast

- Independent Bernoulli arrivals
- One user transmits ⇒
 successful transmission

- \circ Both users transmit \Longrightarrow packet collision
- Channel feedback available to both users
- action = fn(all past queue sizes, all past feedback)
- o Objective: Maximize throughput or minimize delay

Multi-access broadcast

- o Studied by Hluchyj and Gallager, 1981
- o Restricted attention to "window protocols" and symmetric arrival rates

Determining optimal design - Use Model A

o Structural results

action = fn(current queue size, all feedback)

- Define : $\pi(t) = \text{Pr}$ (queue size of user 1, queue size of user $2 \mid \text{all past feedback}$)
- Sequential decomposition

$$V_t(\pi(t)) = \min_{g_1(t),g_2(t)} \left[E \left\{ c(x(t),u(t)) + V_{t+1}(\Pi(t+1)) \mid \pi(t),g_1(t),g_2(t) \right\} \right]$$

Multi-access broadcast

- For symmetric arrival rates and buffer size 1, the sequential decomposition can be used to prove that Hluchyj-Gallager strategy is optimal among all strategies.
- Structural results can be further simplified (Anastasopoulos, preprint)

$$\pi(t) = ($$
 Pr (queue size of user $1 |$ all past feedback),

Pr (queue size of user 2 | all past feedback))

Load balancing in Queues

- Independent Bernoulli arrivals at rate λ_i
- Geometric service times μ_i

- Waiting cost w, dropping cost d, switching cost c
- action = fn(all past queue lengths of self and neighbors)
- o Objective: Minimize expected waiting plus switching cost

Load balancing in Queues

- Considered by Cogill, Rotkowitz, Roy, and Lall, 2004
- Assumed each queue uses only the current queue lengths to determine its action.

action = fn(current queue lengths of self and neighbors)

Provided an approximate dynamic programming approach

Determining optimal design – Use model B

- Define: $\pi(t) = \Pr(\text{queue length of all users})$
- Sequential Decomposition

$$V_t(\pi(t)) = \min_{g(t)} \left[E \left\{ c(x(t), u(t)) + V_{t+1}(\Pi(t+1)) \mid \pi(t), g(t) \right]$$

Robot rondevouz

Bernsein, Zibersein, Immerman, 2000

Robot task sharing

Conclusion

Finding structural results is an art

Obtaining a sequential decomposition can be turned into a science