SNIK Ontologie—Lehre und Implementierung

mit nachträglichen Anmerkungen vom 10. Oktober 2016

Konrad Höffner konrad.hoeffner@imise.uni-leipzig.de

5. Oktober 2016

Vorstellung

- Konrad Höffner
- Studium Diplominformatik an Uni Leipzig
- ▶ Doktorand der Informatik beim AKSW, Uni Leipzig/InfAI
- ▶ Thema "Question Answering auf RDF Data Cubes"
- bei IMISE und im SNIK Projekt seit Juli
- kein Vorwissen über Medizin aber viel praktische Erfahrung mit Semantic Web-Technologien

Vorstellung

- Visualisierung, Implementierung, Serialisierung
- Qualitätssicherung
- Aufsetzen von Services
- ► Raum 227, Tel. (0341)97-16363
- konrad.hoeffner@imise.uni-leipzig.de
- https://github.com/KonradHoeffner/latex/tree/ master/beamer/2016/snik-projekttreffen

Section 1 Einsatz in der Lehre

Ziele

- modelliertes Wissen vermitteln, zusätzlich zu Lehrbüchern, Vorlesungen und Übungen
- ▶ Exploration
- Erstellen von Übungsaufgaben
- Semantic Web nur Mittel zum Zweck, so viel Zeit wie möglich für Gesundheitsinformationssysteme

Problem

- Studenten sind zwar (Medizin-)Informatiker, haben aber nicht zwangsweise die Semantic Web Vorlesungen von Prof. Fähnrich besucht
- ightharpoonup kein Vorwissen in SPARQL und RDF-Serialisierungsformaten vorauszusetzen
- Protégé kein intuitiver Gesamtüberblick, getestete Graphplugins skalieren nicht
- Lösung: Eigenentwicklung einer Visualisierung unter Verwendung ausgereifter Bibliotheken

http://www.snik.eu/(p)graph/

- Öffentliche alte Version (wird aktualisiert) ohne CIOx http://www.snik.eu/graph/
- ▶ Passwortgeschützte neue Version mit CIOx http://www.snik.eu/pgraph/
- CIOx-Ontologie enthält Betriebsinterna, Zugangsdaten nur auf sichere Art und Weise an Befugte Weitergeben!

Kürzester Weg

omputer-Based Information System

Spiderworm

Praktische Vorführung

- ► Kürzester Weg und Spiderworm
- Suche
- Filterung
- ▶ Hilfe
- ▶ Feedback
- Browse

Section 2 Implementierung

```
Überblick
Ontologie Anzahl Tripel
           244
meta
           35803
bb
links-bb
           79
ciox
           1933
links-ciox
           29
           25894
ob
gesamt
           63982
```

Überblick¹

Oberklasse Anzahl

meta:Role 79

meta:Function 154

meta:EntityType 1395

¹Untere Schranken, noch nicht alle meta:subTop-Beziehungen modelliert.

Ausgangssituation

- ► SNIK-Ontologien bb, ob und ciox wurden mit Protégé bearbeitet und als RDF/XML serialisiert
- bei Änderungen mussten andere Personen informiert und mit aktualisierten Dateien versorgt werden
- ightharpoonup ightharpoonup schwierige Kooperation

Modellierung und Serialisierung Lösung

- ► Einsatz des Versionskontrollsystems git
- ► RDF/XML-Serialisierung mit Texteditor bearbeitet
- gleichzeitige Änderungen möglich, Konflikte durch git merge-Mechanismus beheben
- ▶ Rückkehr zu jedem früheren Zeitpunkt möglich
- durch reguläre Ausdrucke gleichzeitige Änderungen an hunderten Entitäten gleichzeitig möglich
- ► Änderungen benötigen Kenntnisse in RDF/XML und git
- wenn großflächige syntaktische Änderungen fertig,
 Rückkehr zur Protégé möglich

Modellierungsprinzipien

- Verwendung existierender Vokabulare
- ► Konsistenz: gleiche Eigenschaften auf gleiche Weise modellieren
- ➤ Zusammenfassen von gleichen Werten zu mehrfach genutzten Objekten, ähnlich Normalform bei Datenbanken, reduziert Inkonsistenzen, Arbeitsaufwand und Fehleranfälligkeit (Bsp.: Lehrbuchquelle)
- Bevorzugen von Object Properties gegenüber Data Type Properties

Prefixe und Vokabulare

Ontologie	Prefix	Inhalt
meta	http://www.snik.eu/ontology/meta	SNIK Meta-Ontologie
bb	http://www.snik.eu/ontology/bb	SNIK Blaues Buch
ob	http://www.snik.eu/ontology/ob	SNIK Oranges Buch
ciox	http://www.snik.eu/ontology/meta	SNIK CIOx Interviews
OV	http://open.vocab.org/terms/	Ontologiedefinition
skos	http://www.w3.org/2004/02/skos/core#	Interlinks, Definitionen
dc	http://purl.org/dc/terms	Metadaten
bibo	http://purl.org/ontology/bibo/	Bibliographie

Dazu Standardvokabulare RDF, RDFS, OWL.

Anwendung der Prinzipien

- konsequente Anwendung der Prinzipien zieht große Zahl an Änderungen nach sich
- ▶ in 3 Monaten: 31000 hinzugefügte, 28000 entfernte Zeilen
- teilweise automatisierbar, teilweise Entscheidung bei jedem Fall nötig
- Gartenmetapher: es ist immer etwas zu tun

Anwendung der Prinzipien: Beispiel Synonyme

- Synonyme sind mit <Synonym>Text</Synonym> modelliert
- Problem 1a: Benutzung des leeren Präfixes führt bei jeder Teilontologie zu anderer URI (ob:Synonym, bb:Synonym,...)
- Problem 1b: Synonym ist nicht definiert, daher genaue Semantik unbekannt, wird auch anderswo nicht verwendet

Anwendung der Prinzipien: Beispiel Synonyme

- ► Typische Lösung: Identifizieren und Verwenden eines existierenden Vokabulars
- ► Also: Ersetzen von Synonym durch skos:altLabel
- Problem 2a: Wie entscheidet sich, welches label rdfs:label und welches skos:altLabel wird? Existierende Daten inkonsistent z.B. bei Abkürzungen.
- ▶ Problem 2b: Language tags fehlen, entweder "deöder ën".
- → manuelles Entscheiden in > 500 Fällen, Abkürzungen immer skos:altLabel

Anwendung der Prinzipien: Beispiel Transitivität

- Materialisierung von transitiven Properties wie rdfs:subClassOf
- $A \subseteq B \subseteq C \rightarrow A \subseteq C$
- Diese Tripel können inferiert werden, Virtuoso und die Cytoscape.js unterstützen dies aber nicht.
- Materialisierte Tripel können von anderen nicht unterschieden werden und machen Visualisierung unübersichtlich.

Anwendung der Prinzipien: Beispiel Transitivität

- Entscheidung: Nichts materialisieren, alles materialisieren oder nur zweitoberste Klasse (meta:Role/Function/EntityType) materialisieren? (oberste ist meta:Top)
- ► Anfangszustand: Teilweise nichts materialisiert, teilweise zweitoberste Klasse materialisiert.
- Entscheidung: Oberste Klasse mit neuer Property, meta:subTopClass angegeben, in Visualisierung nicht angezeigt

Ausblick

- ► Fertigstellung großflächiger syntaktische Änderungen
- Kooperative punktuelle semantische Änderungen durch Domänenexperten
- siehe Abschnitt Qualitätssicherung

Anforderungen

- performant bei mehreren tausend Knoten und Kanten
- ► keine Installation nötig
- geringer Implementationsaufwand
- Suchfunktion
- Filterung
- Graphoperationen wie kürzeste Wege, Spiderworm

Designentscheidungen

- ▶ Javascript → keine Installation nötig, immer verfügbar, kein Server nötig
- Cytoscape.js performante Graphbibliothek mit genügend Funktionalität
- SPARQL Endpunkt mit bif:contains-Index für schnelle
 Suche (future work: Lucene Index)
- Pubby SPARQL Browser zur Detailansicht

Datenbereitstellung

- Cytoscape.js kann RDF nicht direkt verarbeiten, hat aber CSV import
- Virtuoso SPARQL Endpunkt kann Ergebnisse als CSV-Dateien abspeichern
- Ontologie nicht 1:1 abgebildet, z.B. Abflachen von OWL Restrictions
- CSV Dateien Cytoscape Desktop importieren, als JSON exportieren
- ▶ JSON-Datei mit Cytoscape.js loaden

Suche mit bif:contains SPARQL Query

Suche mit bif:contains SPARQL Query

label		
"Fulfillment of Laws relevant to Information Management"@en		
"Administration Management"@en		
"Approval to Strategic Information Management Plan"@en		
"Blood Bank Management System"@en		
"Life Cycle Management of Strategic Information Management Plan"@en		
"Change Management"@en		
"Change Management"@en		
"Configuration Management"@en		

Ausblick

- ► Suche von Phrasen statt Wörtern
- ► Suche mit Synonymen und Schreibfehlern
- ▶ z.B. durch Apache Lucene/SOLR index
- Bugfixing
- Wechsel von Pubby zu modernerem RDF browser
- Export von Selektionen

Ausgangspunkt: 5 Star Linked Data

- 1. Daten sind im Web in irgendweinem Format verfügbar ✓
- 2. maschinenlesbare strukturierte Daten (z.B. kein PNG) √
- 3. nichtprorietäres Format (z.B. CSV, nicht Excel) √
- 4. nach den offenen Standards des W3C publiziert (RDF and SPARQL) \checkmark
- 5. mit Links zu anderer Linked Data √ (zwischen Teilontologien) / ✗ (außerhalb SNIK)

Dimensionen der Qualität

- http://www.semantic-web-journal.net/content/qualityassessment-linked-data-survey, Meta-Studie von Amrapali Zaveri
- ▶ 18 gemeinsame Dimensionen
- teilweise subjektiv
- aufwändig zu bestimmen, teilweise Crowdsourcing nötig

Dimensionen der Qualität—Beispiele

- Accessibility Serialisierte Dateien, SPARQL Endpunkt, im Browser aufrufbare URLs
- ► Lizenzen bei Datenbanken nicht betrachtet aber bei Linked Data notwendig
- Interlinking Verknüpfungen von und zu anderen Datensets
- Performance Latenzzeit, Skalierbarkeit
- ▶ Understandability, Completeness, Relevanz, ...

Designierte Manuelle Korrektur

- semantische Korrektheit von Fakten benötigt manuellen Input
- serielles Durcharbeiten der serialisierten Ontologien beschränkt Personen auf Schnittmenge von Semantic-Web-Experten und Domänenexperten
- besser: zufällige Stichproben von Fakten
- manuell ausgezeichnet als korrekt, falsch oder ungewiss

Designierte Manuelle Korrektur

- Korrektur kann in beliebig großen Arbeitsabschnitten erfolgen
- bei Überschneidung inter-rater-agreement
- Triple Checkmate Tool von AKSW

Feedback von Visualisierung

- wenn Fehler bemerkt werden, kann Ticket erstellt werden
- ▶ https:
 //bitbucket.org/imise/snik-ontology/issues
- ► Feedback für Visualisierung und Ontologie getrennt
- (wenn Internet funktioniert) Vorführung

Cytoscape Desktop

Cytoscape Desktop ob bb meta ciox

Cytoscape Desktop

Section 3 Nachträgliche Anmerkungen

Diskussion

- Transformation RDF->CSV mittels SPARQL Anatoli Zeiser beibringen
- Visualisierung bereitet Einigen Kopfschmerzen, Option auf hellen Hintergrund gewünscht
- Hervorheben von Interontologierelationen durch Filter (bereits erledigt)
- Hinzufügen fehlender Daten im RDF-Browser

Diskussion

- Beschriebene Prozesse stehen in der Mitte des Gesamtworkflows, Faktenextraktion ist davon unberührt.
- ► Für zukünftige Extraktionen (z.B. durch Birgit Schneider) ändert sich also nicht direkt etwas.
- Allerdings ist Änderung der Extraktion geplant, um großen Aufwand der Ontologiequalitätsverbesserung nach Extraktion zu verkleinern, durch Angleichen von Tabellenformular mit RDF und Ontologie.
- ► Außerdem Untersuchung von Excel2OWL-Alternativen geplant.

Referenzen und Weitere Informationen

- https://wiki.imise.uni-leipzig.de/Projekte/ SNIK/ontologie/workflow
- https://github.com/IMISE/snik-cytoscape.js
- https://github.com/IMISE/snik-ontology (URL wird evtl. geändert)
- https://bitbucket.org/imise/snik-ontology (URL wird geändert)
 - ► http://www.snik.eu/graph
 - ► http://www.snik.eu/pgraph
 - ► http://www.snik.eu/sparql
 - ► http://www.snik.eu/ontology
 - Und natürlich mailto://konrad.hoeffner@imise.uni-leipzig.de :-)

Mitarbeit

- ► alles open source (außer CIOx)
- ▶ alle können sehr gerne Mitentwickeln
- entweder pull-Request oder mich fragen und GitHub/Bitbucket-Account in Entwicklerteam aufnehmen lassen
- readme-Dateien im Wurzelordner der Repositories lesen
- ▶ Bug gefunden? Ticket im Repository erstellen.