Compito del 31/01/2025

Corso di MATEMATICA per il Corso di Laurea Triennale in SCIENZE NATURALI E AMBIENTALI

Docente: Alessio Barbieri, E-mail: alessio.barbieri@unitus.it

Nome e Cognome:

Numero di Matricola:

Tempo: 3 ore. Non sono ammesse calcolatrici, appunti personali o libri. Riportare le risposte nel presente foglio negli appositi riquadri. Consegnare anche i fogli a protocollo.

Esercizio	D1	D2	E1	E2	E3	Σ
Voto						

Domanda 1. (3 punti) Indicare quale delle seguenti è la definizione di successione $(a_n)_n$ divergente $a + \infty$:

- $a \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : |a_n \ell| < \varepsilon \ \forall n \ge n_0,$
- $\boxed{b} \ \forall M > 0 \ \exists n_0 \in \mathbb{N} : \ a_n < -M \ \forall n \ge n_0,$
- $\boxed{c} \ \forall M > 0 \ \exists n_0 \in \mathbb{N} : |a_n \ell| < M \ \forall n \ge n_0,$
- $\boxed{d} \ \forall M > 0 \ \exists n_0 \in \mathbb{N} : a_n > M \ \forall n \ge n_0.$

Domanda 2. (3 punti) La funzione "gradino di Heaviside" $f : \mathbb{R} \to \mathbb{R}$, di cui sotto sono riportate legge di definizione e grafico,

$$f(x) = \begin{cases} 1, & \text{se } x \ge 0, \\ 0 & \text{se } x < 0, \end{cases}$$

è un esempio di funzione che soddifa una delle seguenti proprietà nell'intervallo [-1,1]. Quale?

- \boxed{a} E' una funzione integrabile ma che non ammette primitiva,
- b E' una funzione non integrabile ma che non ammette primitiva,
- \overline{c} E' una funzione non continua, quindi non integrabile,
- \overline{d} E' una funzione integrabile e che ammette primitiva.

Esercizio 1. (8 punti) Data la funzione

$$f(x) = \begin{cases} a \cdot \cos^2(x) + b \cdot \sin(x), & x < 0, \\ -\frac{2}{x+1}, & x \ge 0. \end{cases}$$

determinare i valori dei parametri $a,b\in\mathbb{R}$ affinché f sia continua e derivabile in \mathbb{R} .

Soluzione:
$$a = ,b =$$

Esercizio 2. (8 punti) Risolvere il seguente integrale

$$\int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x+2} \, \mathrm{d}x.$$

Soluzione:	

Esercizio 3. (10 punti) Data la funzione

$$f(x) = \frac{x^2 - 3x + 4}{x}$$

determinarne: dominio, eventuali simmetrie, intersezioni con gli assi, segno, eventuali asintoti ed eventuali massimi e minimi. Tracciarne infine un grafico qualitativo qui sotto.

SVOLGIMENTO:

Domanda 1. (3 punti) Indicare quale delle seguenti è la definizione di successione $(a_n)_n$ divergente $a + \infty$:

- $\boxed{a} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |a_n \ell| < \varepsilon \ \forall n \ge n_0,$
- $b \mid \forall M > 0 \; \exists n_0 \in \mathbb{N} : a_n < -M \, \forall n \geq n_0,$
- $\boxed{c} \ \forall M > 0 \ \exists n_0 \in \mathbb{N} : |a_n \ell| < M \ \forall n \ge n_0,$
- $\forall M > 0 \ \exists n_0 \in \mathbb{N} : \ a_n > M \ \forall n \ge n_0.$

a e El sono la definizione di successione convergente, benché la versione El vou sia formalmente corretta (M è runa quantità grande e non piccola come E).

16) è la définitione di successione divergente a -00.

Domanda 2. (3 punti) La funzione "gradino di Heaviside" $f : \mathbb{R} \to \mathbb{R}$, di cui sotto sono riportate legge di definizione e grafico,

$$f(x) = \begin{cases} 1, & \text{se } x \ge 0, \\ 0 & \text{se } x < 0, \end{cases}$$

è un esempio di funzione che soddifa una delle seguenti proprietà nell'intervallo [-1,1]. Quale?

- E' una funzione integrabile ma che non ammette primitiva,
- b E' una funzione non integrabile ma che non ammette primitiva,
- c E' una funzione non continua, quindi non integrabile,
- $\overline{|d|}$ E' una funzione integrabile e che ammette primitiva.

che questa furione non ammette primitive è stato mostrato a pag 15 delle "Lezioni 11-12-13", mentre il fatto che sia integrabile è stato mostrato a pag 31 di "Lezioni 11-12-13".

Inothe,

- [6] FALSA (Vedi pag 31)
- [d] FALSA (vedi pag 15)
- E FALSA perché runa fuzione non continua prò essere integrabile e per mostrarlo, a lezione, abbiamo preso proprio questo esempio.

Esercizio 1. (8 punti) Data la funzione

$$f(x) = \begin{cases} a \cdot \cos^2(x) + b \cdot \sin(x), & x < 0, \\ -\frac{2}{x+1}, & x \ge 0. \end{cases}$$

determinare i valori dei parametri $a, b \in \mathbb{R}$ affinché f sia continua e derivabile in \mathbb{R} .

Soluzione:
$$a = -2, b = 2$$

La fuzione f è definita a tratti. Le due singole definizioni sono continue e derivabili negli intervalli in cui sono state considerate. Ciundi f è continua e derivabile in IR 1503 ValbEIR. Studiamo quindi continuità e derivabilità in xo=0:

I continuità in x0=0:

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (a\cos^{2}(x) + b\sin(x))$$

$$= a \cdot \cos^2(0) + b \sin(0) = a \cdot 1^2 + b \cdot 0 = a \cdot 1 + b \cdot 0 = a$$

$$f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} -\frac{2}{x+1} = -\frac{2}{1} = -2.$$

Alora,
$$f$$
 continua in $x_0=0 \iff a=-z$

Sostituamo ad a il - 2:

$$f(x) = \begin{cases} -2\cos^2(x) + b\sin(x) / x < 0 \\ -\frac{z}{x+1} / x > 0 \end{cases}$$

calcoliamo le derivate:

• per
$$\times < 0$$

$$\begin{aligned}
\text{DERIVATA DELLA FUNZIONE COMPOSTA:} \\
(\cos^2(x)) &= [(\cos(x))^2] &= 2\cos(x) \cdot (\cos(x)) \\
f'(x) &= -2 \cdot 2\cos(x) \cdot (-\sin(x)) + b\cos(x) &= 2\cos(x) \cdot (-\sin(x)) \\
&= 4\cos(x)\sin(x) + b\cos(x)
\end{aligned}$$

$$\lim_{x\to 0} f'(x) = \lim_{x\to 0} f(x) = \lim_{x\to 0} (4\cos(x)) + \lim_{x\to 0} f(x)$$

$$f(x) = -\frac{2}{x+1} \longrightarrow f'(x) = \frac{2}{(x+1)^2}$$
 (derivata del reciproco)

$$\lim_{x\to 0} \lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2}{(x+1)^2} = \frac{2}{1} = 2.$$

Quindi,

$$f$$
 continua e derivabile in $x_0 = 0$

$$\Rightarrow$$
 $a=-2, b=2$

(e quinti in 12)

Esercizio 2. (8 punti) Risolvere il seguente integrale

$$\int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x+2} \, \mathrm{d}x.$$

Soluzione: $\frac{1}{3}(\sqrt{e}-1)$

PRIMO MODO PER RISO WERLO:

Per sostituzione: pomamo $t = 3x+2 \rightarrow 3x=t-2 \rightarrow x=\frac{1}{3}t-\frac{2}{3}$

$$\rightarrow | dx = \frac{1}{3} dt$$

In the,

•
$$x = -\frac{2}{3} \longrightarrow t = 3 \cdot (-\frac{2}{3}) + 2 = -2 + 2 = 0 \longrightarrow t = 0$$

•
$$x=-\frac{1}{2}$$
 \longrightarrow $t=\frac{3}{2}$ $\left(-\frac{1}{2}\right)+2=-\frac{3}{2}+2=\frac{-3+4}{2}=\frac{1}{2}$ \longrightarrow $t=\frac{1}{2}$

$$\int_{-\frac{2}{3}}^{\frac{1}{2}} e^{3x+2} dx = \int_{0}^{\frac{1}{3}} e^{t} dt = \int_{0}^{\frac{1}{2}} \left[e^{t} \right]_{0}^{\frac{1}{2}} = \int_{0}^{\frac{1}{2}} \left(e^{\frac{1}{2}} - e^{0} \right)$$

$$= \int_{0}^{\frac{1}{2}} \left(e^{\frac{1}{2}} - 1 \right) = \int_{0}^{\frac{1}{2}} \left(\sqrt{e} - 1 \right)$$

N.B: il + c vell'integrale definito non si rusa. A maggior ragione non prò compaire nel risultato!

SECONDO MODO PER RISOLIERLO:

$$\int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x+2} dx = \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx$$

$$= \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx$$

$$= \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx$$

Poniamo
$$t = 3x \rightarrow \boxed{x = \frac{1}{3}t} \rightarrow \boxed{4x = \frac{1}{3}dt}$$

•
$$\times = -\frac{2}{3} \rightarrow t = 2 \cdot \left(-\frac{2}{3}\right) = -2 \rightarrow t = -2$$

•
$$\times = -\frac{1}{2} \longrightarrow t = 3\left(-\frac{1}{2}\right) = -\frac{3}{2} \longrightarrow t = -\frac{3}{2}$$

Alloga
$$\int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x+2} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{3x} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{1}{2}} e^{4x} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{1}{3}} e^{4x} dx = e^{2} \int_{-\frac{2}{3}}^{-\frac{3$$

$$= e^{2} \cdot \frac{1}{3} \int_{-2}^{-3/2} e^{t} dt = \frac{e^{2}}{3} \left[e^{t} \right]_{-2}^{-3/2} = \frac{e^{2}}{3} \left[e^{-\frac{3}{2}} - e^{-\frac{7}{2}} \right]$$

$$= \frac{e^{2}}{3} \cdot e^{-\frac{3}{2}} - \frac{e^{2}e^{-2}}{3} = \frac{1}{3} \left(e^{2-\frac{3}{2}} - e^{2-2} \right)$$

$$= \frac{1}{3} (e^{\frac{1}{2}} - e^{0}) = \frac{1}{3} (e^{\frac{1}{2}} - 1) = \frac{1}{3} (\sqrt{12} - 1)$$

Esercizio 3. (10 punti) Data la funzione

$$f(x) = \frac{x^2 - 3x + 4}{x}$$

determinarne: dominio, eventuali simmetrie, intersezioni con gli assi, segno, eventuali asintoti ed eventuali massimi e minimi. Tracciarne infine un grafico qualitativo qui sotto.

DSIMMETRIE:
$$f(-x) = \frac{(-x)^2 + 3x + 4}{-x} = -\frac{x^2 + 3x + 4}{x} \neq f(x), -f(x)$$
 $\rightarrow f$ we pan, we dispan

(3) INTERSEZIONI CON GLI ASSI:

□ asse y: non ce ne possono essere, visto che o & D

Dasse X:

$$\int_{\gamma} \gamma = 0$$

$$\gamma = \frac{x^2 - 3x + 4}{x} \qquad \Rightarrow \frac{x^2 - 3x + 4}{x} = 0 \Rightarrow x = 0$$

$$\rightarrow x^2 - 3x + 4 = 0$$

$$\Delta = (-3)^2 - 4 \cdot 1 \cdot 4 = 9 - 16 = -7 < 0$$

- x2-3x+4=0 uon ha solviouri reali
- _ uon ci sono intersezioni con l'asse x.

(4) SEKNO:

$$\frac{x^2-3x+4}{x}$$
 > 0

N: x2-3x+4>0 YXER perché 0<0

D: X>0

Dunque f(x)>0 & x>0 fix)<0 & x<0

Per il trimomio ax²+bx+c, con a>0, se a<0 => ax²+bx+c>0 4xer?

: MOTUIZA 3

Duerticali: x=0 candidato.

$$\lim_{x \to 0^{+}} \frac{x^{2} - 3x + 4}{x} = \frac{0 - 3 \cdot 0 + 4}{0^{+}} = \frac{4}{0^{+}} = +\infty$$

$$\lim_{x \to 0^{-}} \frac{x^{2} - 3x + 4}{x} = \frac{0 - 3 \cdot 0 + 4}{0^{-}} = \frac{4}{0^{-}} = -\infty$$

=> x=0 asintoto verticale per f.

0 onzzontali:

$$\lim_{x \to +\infty} \frac{x^2 - 3x + 4}{x} = \frac{+\infty - \infty}{+\infty}$$
 F.±.

$$= \lim_{x \to +\infty} \frac{x^{2}(1 - \frac{3}{x} + \frac{4}{x^{2}})}{x} = \lim_{x \to +\infty} \frac{x(1 - \frac{3}{x} + \frac{4}{x^{2}})}{1} = +\infty(1 - 0 + 0)$$

= +00 = un a sono asintoti onizzontali per x++00.

$$\lim_{x \to -\infty} \frac{x^2 - 3x + 4}{x} = \frac{+\infty}{-\infty}$$
 F.I.

$$=\lim_{x\to-\infty}\frac{x^{2}\left(1-\frac{3}{x}+\frac{4}{x^{2}}\right)}{x}=\lim_{x\to-\infty}\frac{x\left(1-\frac{3}{x}+\frac{4}{x^{2}}\right)}{1}=-\infty\left(1-0+0\right)$$

= -00 = un a sono assistati onizzontali per x+-00.

0 obliqui:

· per x -+ +00:

$$\lim_{x\to+\infty} \frac{f(x)}{x} = \lim_{x\to+\infty} \frac{x^2 - 3x + 4}{x} \cdot \frac{1}{x} = \lim_{x\to+\infty} \frac{x^2 - 3x + 4}{x^2} = \frac{+\infty - \infty}{+\infty} FI$$

$$= \lim_{x \to +\infty} \frac{x(1-\frac{3}{x}+\frac{4}{x^2})}{x^2} = 1-0+0 = 1 = :m$$

ora calcoliamo

$$\lim_{x \to +\infty} \left[f(x) - m \times \right] = \lim_{x \to +\infty} \left[\frac{x^2 - 3x + 4}{x} - x \right] = \lim_{x \to +\infty} \frac{x^2 - 3x + 4 - x}{x}$$

$$= \lim_{x \to +\infty} \frac{-3x + 4}{x} = \frac{-\infty}{+\infty} \text{ F.T.}$$

$$=\lim_{x\to+\infty}\frac{x(-3+\frac{4}{x})}{x}=-3+0=-3=:9$$

• per × → -∞:

$$\lim_{x\to-\infty} \frac{f(x)}{x} = \lim_{x\to-\infty} \frac{x^2 - 3x + 4}{x} \cdot \perp = \lim_{x\to-\infty} \frac{x^2 - 3x + 4}{x^2} = \frac{+\infty}{+\infty} \text{ F.T.}$$

$$= \lim_{x \to -\infty} \frac{x(1-\frac{3}{x}+\frac{4}{x^2})}{x^2} = 1-0+0 = 1 = :m$$

ora calcoliamo

$$\lim_{x \to -\infty} \left[f(x) - m \times \right] = \lim_{x \to -\infty} \left[\frac{x^2 - 3x + 4}{x} - x \right] = \lim_{x \to -\infty} \frac{x^2 - 3x + 4 - x^2}{x}$$

$$= \lim_{x \to -\infty} \frac{-3x + 4}{x} = \frac{+\infty}{-\infty} \text{ F.t.}$$

$$= \lim_{x \to -\infty} \frac{x(-3+\frac{4}{x})}{x} = -3+0 = -3=:9$$

$$y=x-3$$
 asintoto obliquo per $x \to -\infty$.

$$f'(x) = \frac{(2x-3)x - 1 \cdot (x^2 - 3x + 4)}{x^2} = \frac{2x^2 - 3x - x^2 + 3x - 4}{x^2}$$
$$= \frac{x^2 - 4}{x^2}$$

cerchiamo i punti critici:

$$f'(x) = 0 \longrightarrow \frac{x^2 - 4}{x^2} = 0 \longrightarrow \frac{x^2 - 4}{x^2} = 0 \times x^2 - 4 = 0$$

$$\longrightarrow x^2 - 4 = 0 \longrightarrow x^2 = 4 \longrightarrow x = -2 \times x = 2$$

classifichianoli:

$$f'(x) > 0 \longrightarrow \frac{x^2-4}{x^2} > 0$$

$$N: \times^2 - 4 > 0 \longrightarrow \times^2 \rightarrow 4 \longrightarrow \times (-2 \vee \times) Z$$

- in x = -2 f passa da crescente a decrescente D = -2 punto di massimo relativo
- in x=2 f passa da decrescente a crescente D = 2 punto di minimo relativo.

