KU LEUVEN

Optimal S-boxes against alternative operations

(with M. Calderini and R. Civino)

Riccardo Invernizzi WCC 2024 - Perugia June 17th

Block ciphers

Ingredients

- ▶ n > 0 such that performing 2^n operations is unfeasible
- $ightharpoonup V=\mathbb{F}_2^n$ the message space

Definition

A block cipher is a set of encryption functions indexed by parameters called keys

$$\mathcal{C} = \{ E_k \mid k \in V \} \subseteq \operatorname{Sym}(V).$$

- $ightharpoonup E_k(m)$ is the encryption of a message m with the key k
- \blacktriangleright there exists an efficient algorithm to compute E_k

Substitution-permutation networks (SPN)

► Structure of AES, PRESENT, ...

Differential Cryptanalysis

- Introduced by Biham and Shamir (1991)
- Analyze how input differences effect output differences:

$$\mathbb{P}[E_k(x) + E_k(x + \Delta_x) = \Delta_y]$$

- in SPN: diffusion and key addition do not alter the difference distribution
 - $\lambda(x) + \lambda(x + \Delta_x) = \lambda(\Delta_x)$, with prob. 1
 - $(x+k)+(x+k+\Delta_x)=\Delta_x$, with prob. 1
- we can reduce the analysis to S-boxes

Differential Cryptanalysis

Definition (Differential uniformity)

The differential uniformity of a function γ is

$$\delta(\gamma) := \max_{a,b \neq 0} |\{x \mid \gamma(x) + \gamma(x+a) = b\}|$$

In order to contrast differential cryptanalysis we need:

- $ightharpoonup \gamma$ with low differential uniformity, in order to reduce the probabilities of certain differences
- $ightharpoonup \lambda$ with "good" diffusion properties, in order to involve as many S-boxes as possible in the analysis

Alternative Operations

We maximize non-linearity w.r.t "classic" + induced by

$$T_{+} = \{ \sigma_k \mid \sigma_k : x \mapsto x + k \} < \operatorname{Sym}(V)$$

Consider another (elementary abelian regular) group

$$T_{\circ} = \{ \tau_k \mid \tau_k(0) = k \} < \operatorname{Sym}(V)$$

Then

- $\bullet a \circ b := \tau_b(a)$
- $lackbox(V,\circ)\cong(V,+)$ is a \mathbb{F}_2 -vector space
- ▶ Condition 1: $T_{\circ} < AGL(V, +)$ (computational)
- ▶ Condition 2: $T_+ < AGL(V, \circ)$ (cryptanalytic)

Alternative Operations

Important properties:

- Conditions 1 and 2 characterized by [CCS21]
- the weak key space is defined as

$$W_{\circ} = \{ w \in V \mid \sigma_w = \tau_w \}$$

▶ define $a \cdot b := a + b + a \circ b$; the error space is

$$U_{\circ} = V \cdot V = \langle a \cdot b \mid a, b \in V \rangle \subset W_{\circ}$$

▶ $1 \le \dim W_{\circ} \le n - 2$ ([CDVS06, CCS21])

Alternative cryptanalysis

Question: if \mathcal{C} is a secure block ciphers w.r.t. (classical) differential cryptanalysis, what about \circ operations?

Advantages:

- ightharpoonup S-boxes γ are chosen with low (minimal) differential uniformity w.r.t. the classical sum +
- ▶ higher o-differential uniformity gives us better trails

Disadvantages:

- lacktriangle mixing layer and key addition may not be affine maps w.r.t \circ
- they may impact on the trails

Alternative cryptanalysis - Key addition

- ► Classically: $(x+k) + (x+k+\Delta) = \Delta$
- ▶ in our setting, using condition 2:

$$(x+k)\circ((x\circ\Delta)+k)=\Delta+\underbrace{\Delta\cdot k}_{\in U_\circ}$$

- if $\dim(W_\circ) = n 2$, then $\dim(U_\circ) = 1!$
- then

$$(x+k)\circ((x\circ\Delta)+k) = \begin{cases} \Delta & \text{with pr. } 1/2\\ \Delta+u & \text{with pr. } 1/2 \end{cases}$$

Alternative cryptanalysis - Mixing layer

- ► Classically: $x\lambda + (x + \Delta)\lambda = \Delta\lambda$ by linearity
- in our setting:

$$x\lambda \circ (x \circ \Delta)\lambda = \Delta\lambda + (x \cdot \Delta)\lambda + x\lambda \cdot \Delta\lambda + x\lambda \cdot (x \cdot \Delta)\lambda$$

- ightharpoonup in general depends on x
- ▶ define $H_{\circ} := \operatorname{GL}(V, +) \cap \operatorname{GL}(V, \circ)$
- ▶ require $\lambda \in H_{\circ}$ (compatible maps)

Structure of the mixing layer

- ▶ can assume $W_{\circ} = \langle e_3,...,e_n \rangle$ and $U_{\circ} = \{0,(0,0,\mathbf{b})\}$ with $\mathbf{b} \in \mathbb{F}_2^{n-2} \setminus \{0\}$ ([CCS21])

Theorem (CBS19)

 $\lambda \in \operatorname{GL}(V,+) \cap \operatorname{GL}(V,\circ)$ if and only if

$$\lambda = \begin{pmatrix} A & B \\ 0_{n-2,2} & D \end{pmatrix}$$

for some $A\in GL((\mathbb{F}_2)^2,+)$, $B\in (\mathbb{F}_2)^{2\times n-2}$, and $D\in GL((\mathbb{F}_2)^{n-2},+)$, with $\mathbf{b}D=\mathbf{b}$

A first attack

[CBS19] gave the first example of cipher which is:

- resistant to classical diff. cryptanalysis (APN S-box)
- weak w.r.t. differential attack
- ▶ parameters of the cipher: n = 15, s = 3
- ightharpoonup o s.t. $\dim(W_\circ) = n-2$ acts on the first block
- possible to mount a distinguishing attack on 5 rounds

Parallel alternative operation

- Problem: [CBS19] targets only the first S-box
- \triangleright this requires a "slow" diffusion by λ

Idea: introduce a parallel alternative operation $\circ = (\circ_1, ..., \circ_r)$

- can target each S-box separately
- ▶ if $\dim(W_{\circ_s}) = s 2$, we can assume $\circ_1 = ... = \circ_r$ up to conj. by an element $q \in GL(V, +)$

First step: determine the structure of H_{\circ}

Structure of H_{\circ}

- Staring point: characterization of [CBS19] for the case $\dim(W_{\circ}) = n-2$
- ▶ all \circ_i have $\dim(W_{\circ_i}) = n-2$ and $U_{\circ_i} = \{0, (0, 0, \mathbf{b})\}$
- ▶ Consider $\lambda \in GL(V, +)$ and write it as

$$\lambda = \begin{pmatrix} A_{11} & B_{11} & \dots & A_{1r} & B_{1r} \\ C_{11} & D_{11} & \dots & C_{1r} & D_{1r} \\ \vdots & \ddots & \vdots & \vdots \\ A_{r1} & B_{r1} & \dots & A_{rr} & B_{rr} \\ C_{r1} & D_{r1} & \dots & C_{rr} & D_{rr} \end{pmatrix}$$

Structure of H_{\circ}

Theorem (Calderini, Civino, I.)

 $\lambda \in \operatorname{GL}(V,+) \cap \operatorname{GL}(V,\circ)$ if and only if

- 1 $C_{ij} = 0_{(s-2)\times 2}$ and $B_{ij} \in (\mathbb{F}_2)^{2\times (s-2)}$;
- 2 $A_{ij} \in (\mathbb{F}_2)^{2 \times 2}$ such that for each row and each column of blocks there is one and only one non-zero $A_{ij} \in \mathrm{GL}(\mathbb{F}_2,2)$;
- 3 $D_{ij} \in (\mathbb{F}_2)^{(s-2)\times (s-2)}$ such that if A_{ij} is zero $\mathbf{b}D_{ij} = 0$, and if A_{ij} is invertible $\mathbf{b}D_{ij} = \mathbf{b}$. Moreover, the matrix D defined by

$$D = \begin{pmatrix} D_{11} & \cdots & D_{1r} \\ \vdots & \ddots & \vdots \\ D_{r1} & \cdots & D_{rr} \end{pmatrix}$$

must be invertible.

Optimal S-boxes

Second step: study the o-differential uniformity of optimal functions

- we consider 4-bit S-boxes
- in [LP07] all 4-bit permutations up to affine equivalence (multiplication by maps in AGL(V, +)) are classified
- ▶ affine equivalence preserves (among others) differential uniformity
- 302 classes of which 16 are "optimal"
- ▶ among the properties of optimal functions we have 4-differential uniformity (best possible for 4-bit permutations)

Optimal S-boxes

	0 _x	1 _x	2 _x	3 _x	4 _×	5 _x	6 _x	7 _×	8 _x	9 _x	A_{\times}	B _x	C_{x}	D_{x}	E_{x}	F_{\times}
$\overline{G_0}$	0	1	2	D _×	4 _×	7 _×	F×	6 _x	8 _x	B _x	C _×	9 _×	3 _x	Ex	A×	5
G_1	0	1	2	D _×	4 _×	7 _×	F_{\times}	6 _×	8 _x	B _x	Ex	3 _×	5 _x	9 _×	A_{\times}	12
G_2	0	1	2	D _×	4 _×	7 _×	F_{\times}	6 _×	8 _x	B _x	Ex	3 _×	A×	C_{\times}	5 _×	9
G_3	0	1	2	D_{\times}	4 _×	7 _×	F_{\times}	6 _×	8 _x	C _×	5 _x	3 _×	A_{\times}	E_{\times}	B_{x}	9
G_4	0	1	2	D _×	4 _×	7 _×	F_{\times}	6 _×	8 _x	C _×	9 _×	B _×	A×	Ex	5 _×	3 _×
G_5	0	1	2	D_{\times}	4 _×	7 _×	F_{\times}	6 _x	8 _x	C _×	B _×	9 _×	A_{\times}	E_{\times}	3 _×	5
G_6	0	1	2	D_{\times}	4 _×	7_{\times}	F_{\times}	6 _x	8 _x	C _×	B _x	9 _×	A_{\times}	E_{\times}	5 _×	3 _×
G_7	0	1	2	D_{\times}	4 _×	7_{\times}	F_{\times}	6 _x	8 _x	C _×	Ex	B _x	A_{\times}	9 _×	3_{x}	5
G_8	0	1	2	D_{\times}	4 _×	7_{\times}	F_{\times}	6 _×	8 _x	Ex	9 _×	5 _x	A_{\times}	B_{x}	3 _×	12
G_9	0	1	2	D_{x}	4 _×	7 _×	F_{\times}	6 _×	8 _x	E _×	B _x	3 _x	5 _×	9 _×	A_{\times}	12
G_{10}	0	1	2	D_{\times}	4 _×	7_{\times}	F_{\times}	6 _×	8 _x	Ex	B _×	5 _x	A_{\times}	9 _×	3 _×	12
G_{11}	0	1	2	D _×	4 _×	7 _×	F_{\times}	6 _×	8 _x	E _×	B _×	A×	5 _×	9 _×	C_{\times}	3 _x
G_{12}	0	1	2	D_{\times}	4 _×	7 _×	F_{\times}	6 _×	8 _x	Ex	B _×	A×	9 _×	3 _×	C_{\times}	5
G_{13}	0	1	2	D _×	4 _×	7 _×	F_{\times}	6 _×	8 _x	Ex	Cx	9 _×	5 _x	B_{x}	A_{\times}	3 _×
G_{14}	0	1	2	D _×	4_{\times}	7 _×	F_{\times}	6 _×	8 _x	Ex	C _×	B _×	3 _×	9 _×	5 _×	10
G_{15}	0	1	2	D_{\times}	4 _×	7_{\times}	F_{\times}	6 _×	8 _x	Ex	C _×	B _×	9 _×	3 _×	A_{\times}	5 _×

o-differential uniformity of optimal S-boxes

- o-differential uniformity is not preserved by affine equivalence
- can have different uniformity inside the same class
- \blacktriangleright # functions in a single aff. class $\sim 2^{36}$
- \blacktriangleright # of alternative sums $\circ = 105$

Proposition

For any
$$g_1, g_2 \in H_\circ$$
, $\delta_\circ(f) = \circ(g_1 \cdot f \cdot g_2)$.
For any $\sigma_c \in T_+$, $\delta_\circ(f) = \delta_\circ(\sigma_c \cdot f) = \delta_\circ(f \cdot \sigma_c)$ (under cond. 2).

Consequence: we can restrict to inspect the elements $g_1G_ig_2$, for $g_1,g_2\in GL(V,+)\backslash H_{\circ}$, for each possible sum \circ .

Avg. # functions with given o-differential uniformity

	2	4	6	8	10	12	14	16
$\overline{G_0}$	0	914	7842	3463	420	19	0	14
G_1	0	1019	10352	4226	560	0	0	18
G_2	0	1003	8604	3805	462	21	0	16
G_3	0	1103	7769	1824	177	0	0	0
G_4	0	1101	9295	2715	179	0	0	0
G_5	0	2479	24135	5402	639	0	0	0
G_6	0	1632	10842	3071	218	0	0	0
G_7	0	1257	10679	2994	186	28	0	0
G_8	0	1691	12821	6113	583	93	0	24
G_9	0	1228	7734	2693	154	39	0	0
G_{10}	0	1228	8063	2763	166	41	0	0
G_{11}	0	1637	9940	2941	214	0	0	0
G_{12}	0	2541	16832	5308	352	0	0	0
G_{13}	0	1124	9520	2416	217	15	0	0
G_{14}	0	1207	7641	2584	160	51	0	0
G_{15}	0	1227	7776	2630	163	52	0	0

Experimental results

We tested our attack on some toy ciphers:

- $ightharpoonup V=\mathbb{F}_2^{16}$, with 4 S-boxes of 4 bits each
- fix \circ to be the parallel sum defined by $\mathbf{b} = (0,1)$
- fix the S-box γ to be optimal w.r.t. +
- random keys (no key-schedule)

Different choices for the mixing layer:

- first experiment: fixed mixing layer with good diffusion properties
- lacktriangle second experiment: random mixing layers sampled from $H_{
 m o}$

The sum o

0	0 _×	1_{\times}	2_{x}	3_{x}	4_{\times}	5 _x	6 _×	7_{\times}	8 _x	9_{x}	\mathtt{A}_{\times}	\mathtt{B}_{x}	C_x	\mathtt{D}_{x}	E_{\times}	F_{x}
0 _x	0 _×	1 _×	2 _x	3 _x	4 _×	5 _×	6 _x	7 _×	8 _x	9 _x	A_{\times}	B _x	C _×	D_{x}	E _×	F_{\times}
1_{\times}	1 _×	0_{x}	3_{x}	2_{x}	5_x	4_{\times}	7_{x}	6_{x}	9_{x}	8 _x	B_{x}	\mathtt{A}_{\times}	D_{x}	C_{\times}	F_{\times}	E_{\times}
2_{x}	2_{x}	3_x	0_{x}	1_{\times}	6_{x}	7_{\times}	4_{\times}	5_x	\mathtt{A}_{\times}	B_{x}	8 _x	9_{x}	E_{x}	F_{\times}	C_x	D_{x}
3_{x}	3 _×	2_{x}	1_{\times}	0_{x}	7_{x}	6_{x}	5_x	4_{\times}	B_{x}	\mathtt{A}_{\times}	9_{x}	8 _x	F_{\times}	E_{\times}	D_{x}	C_{\times}
4_{\times}	4_{\times}	5_x	6_{x}	7_{x}	0_{x}	1_{\times}	2_{x}	3_{x}	D_{\times}	C_{x}	F_{\times}	\mathbf{E}_{x}	9_x	8 _x	B_{x}	A_{\times}
5_{x}	5 _×	4_{\times}	7_{x}	6 _×	1_{\times}	0_{x}	3_{x}	2_{x}	C_{\times}	\mathtt{D}_{x}	\mathbf{E}_{x}	F_{x}	8 _x	9_x	${\tt A}_{\times}$	B_{x}
6 _×	6 _×	7_{\times}	4_{\times}	5_{x}	2_{x}	3_{x}	0_{x}	1_{\times}	F_{\times}	E_{\times}	D_{x}	C_x	\mathtt{B}_{x}	${\tt A}_{\times}$	9_{x}	8 _x
7_{\times}	7_{\times}	6_{x}	5_{x}	4_{\times}	3_{x}	2_{x}	1_{\times}	0_{x}	E_{\times}	F_{\times}	C_{\times}	D_{x}	${\tt A}_{\times}$	B_{x}	8 _x	9_x
8 _x	8 _x	9_{x}	\mathtt{A}_{\times}	B_{x}	D_{x}	C_{\times}	F_{\times}	E_{\times}	0_{x}	1_{\times}	2_{x}	3_{x}	5_{x}	4_{\times}	7_{x}	6 _x
9_{x}	9 _×	8 _x	\mathtt{B}_{x}	\mathtt{A}_{\times}	C_x	D_{x}	E_{\times}	F_{\times}	1_{\times}	0_{x}	3_{x}	2_{x}	4_{\times}	5_{x}	6_{x}	7_{x}
\mathtt{A}_{\times}	A_{\times}	B_{x}	8 _x	9_{x}	F_{\times}	E_{\times}	\mathtt{D}_{x}	C_x	2_{x}	3_{x}	0_{\times}	1_{\times}	7_{x}	6_{x}	5_{x}	4_{x}
B_{x}	B_{x}	\mathtt{A}_{\times}	9_{x}	8 _x	\mathbf{E}_{x}	F_{\times}	C_{\times}	D_{x}	3_{x}	2_{x}	1_{\times}	0_{x}	6_{x}	7_{x}	4_{\times}	5_x
C_{x}	C_{\times}	D_{x}	E_{\times}	F_{\times}	9_x	8 _x	B_{x}	${\tt A}_{\times}$	5_x	4_{\times}	7_{x}	6_{x}	0_{x}	1_{\times}	2_{x}	3_x
D_{\times}	D_{\times}	C_{\times}	F_{\times}	E_{\times}	8 _x	9_{x}	${\tt A}_{\times}$	B_{x}	4_{\times}	5_x	6_{x}	7_{x}	1_{\times}	0_{x}	3_{x}	2_x
${\tt E}_{\times}$	E_{\times}	F_{\times}	C_x	D_{x}	B_{x}	\mathtt{A}_{\times}	9_x	8 _x	7_{x}	6_{x}	5_{x}	4_{\times}	2_{x}	3_{x}	0_{x}	1_{\times}
F_{\times}	F_{\times}	${\tt E}_{\times}$	D_{x}	C_{\times}	A_{\times}	B_{x}	8 _x	9_x	6_{x}	7_{x}	4_{\times}	5_x	3_x	2_{x}	1_{\times}	0_{x}

The S-box γ

- $ightharpoonup \gamma$ is an optimal permutation affine equivalent to G_0 (the class of SERPENT's S1)
- \blacktriangleright $\delta_+(\gamma) = 4$ (optimal), but $\delta_{\circ}(\gamma) = 16$

x	0 _x	1 _×	2 _×	3 _×	4 _×	5 _x	6 _x	7 _×	8 _x	9 _×	A_{\times}	B _×	C_{\times}	D_{\times}	E _×	F _×
$x\gamma$	0 _x	E_{\times}	B_{x}	1_{\times}	7_{\times}	C_{\times}	9_{x}	6 _×	D_{\times}	3_{x}	4_{\times}	F_{\times}	2_{x}	8 _x	\mathtt{A}_{\times}	5_x

The S-box γ

First experiment

- ▶ $\lambda \in H_{\circ}$ with good diffusion properties
- reminescent of PRESENT's mixing layer

First experiment

Figure: Best +-differential probability vs best o-differential probability

Second experiment

- lacktriangle Sample random mixing layers in H_{\circ}
- compare trails for different number of rounds

Figure: Best +-differential probability vs best o-differential probability

Concluding remarks

- characterization of parallel H_{\circ} for d=n-2 (and n-3)
- ▶ optimal S-boxes are can have high o-differentials
- ▶ when $\lambda \in H_{\circ}$ \circ -diff. cryptanalysis can give better results
- can purposely create hidden weakness

Some open problems:

- ightharpoonup characterization of H_{\circ} for any d
- ightharpoonup cryptanalysis for d=n-3
- can we target key addition and / or key schedule?

References

- [CCS21] Calderini, Civino, Sala On properties of translation groups in the affine general linear group with applications to cryptography
- ► [CDVS06] Caranti, Dalla Volta, Sala Abelian regular subgroups of the affine group and radical rings
- ► [CBS19] Civino, Blondeau, Sala Differential Attacks: Using Alternative Operations
- ► [LP07] Leander, Poschmann On the Classification of 4 Bit S-Boxes