Visual - NLP Classic Use Cases

Head of Visual NLP (Data Scientist)

Alexander Branov

Data Scientist

Aymane Chilah

Data Scientist

Nitin Kumar

Scala Developer (Data Scientist)

Main topic	Introduced Concepts	Pages
Introduction	Motivation, Overview and General Features.	3-8
Input Types	Entry Points Visual NLP	9
PDF Processing Stages	Description of various PDF stages	10
Image Transformation	Image Enhancement Stages (Notebook Included)	11
Text Detection	Text Detection Solutions (Notebook Included)	12
Text Recognition	OCR Text Extraction Solutions (Notebook Included) & Benchmarks	13-14
PHI Removal	De-Identification & Obfuscation (Notebook Included)	15-19
Table Recognition	Table Detection/ Recognition Stages (Notebook Included) & Benchmarks	20-23
VQA	VQA Solutions (Notebook Included)	24
Medical Assistant	Medical Assistant (Notebook Included)	25
Light Pipeline	Light Pipeline Solution & Benchmarks (Notebook Included)	26
Streaming	Dicom Streaming Solution (Notebook Included)	27

Motivation

- We identified the strong need for a scalable solution.
- Diversity of input formats.
- Situation is more challenging than NLP.

STARBUCKS STORE #10208 11302 EUCLID AVENUE CLEVELAND, OH (216) 229-0749 CHK 664290 12/07/2014 06:43 PM 1912003 DRAWER: 2. REG: 2 VT PEP MOCHA 4.95 SBUX CARD 4.95 XXXXXXXXXXXX3228 SUBTOTAL \$4.95 **TOTAL \$4.95** CHANGE DUE \$0.00 ---- CHECK CLOSED 12/07/2014 06:43 PM SBUX CARD X3228 NEW BALANCE: 37.45 CARD IS REGISTERED

- 111835b(JPEG) vs. 315b, a 355 factor!!.
- Density of information is much lower in OCR than NLP.
- Handling images is challenging.

Motivation

- We provide two flavors of scalability;
 - Strong Scalability: you care about completion time of individual pieces.
 - Weak Scalability: you care about throughput.
- Checkpointing: you want to resume the computation.
- We want to solve all these problems so you don't have to.

Introduction To Visual NLP

- Visual NLP is an OCR, and Visual Document Understanding library built on top of Apache Spark.
- Curated list of features -> only things that work.
- Optimized for performance and accuracy.
- Created by industry practitioners.
- Actively developed.
- Security minded.

Visual NLP Architecture

Visual Document Understanding

OCR

Image Preprocessing

Data Ingestion

Input Sources	Image Recognition	Object I
PdfToImage	ImageToHocr	ImageTextDetec
DocToPdf	ImageToText	ImageTextDetec
PptToImage	ImageToTextV2	ImageDocumer
BinaryTolmage	ImageToTextV3	ImageTableDete
DicomTolmageV3		ImageCellDetec
DicomToMetadata		ImageSignature
		ImageCheckBo
Image Rendering	Tokenizer	Fina
ImageDrawRegions	BrosHocrTokenizer	DicomMetadata
DicomDrawRegions	HocrTokenizer	ImageToPdf
ImageDrawAnnotations	HocrDocumentAssembler	PdfAssembler

ImageTextDetector ImageTextDetectorV2 ImageDocumentRegionDetector ImageTableDetector ImageCellDetector ImageSignatureDetector ImageCheckBoxDetector **Finalizers** DicomMetadataDeldentifier ImageToPdf

Object Detection

ImageSplitRegions RegionsMerger **Visual Question Answering** VisualQuestionAnswering

Table Recognition

HocrToTextTable

VisualDocumentNerGeo GeoRelationExtractor FormRelationExtractor VisualDocumentNerV2

Form Recognizer

Sample Visual NLP workflow

Input Types: Entry Points

- Images (PNG, GIFs, JPEG, etc..)
 - BinaryTolmage
 - Input : BinaryContent
 - Output: Image Object
 - Use Cases: Text Detection, OCR, De-Identification, Obfuscation
- PDF (Digital / Scanned)
 - o PdfTolmage
 - Input : BinaryContent
 - Output: Image_Object
 - Use Cases : De-Identification, Obfuscation
- Dicom
 - o <u>DicomTolmageV3</u>
 - Input : BinaryContent
 - Output : Image Object
 - Use Cases : Medical De-Identification
 - DicomToMetadata
 - Input : BinaryContent
 - Output : Dicom Tags
 - Use Cases : Tag De-Identification
- SVS
 - Pure python implementation
 - Input: SVS
 - Output : SVS
 - Use Case : PHI De-Identification

9

PDF Processing Stages

- PdfTolmage: Converts each page of a PDF into an image.
- PdfToForm: Extracts key-value structured data (form fields) from PDFs.
- PdfToText: Retrieves embedded text from digitally generated (non-scanned) PDFs.
- PdfToHocr: Generates OCR text in HOCR format with layout, page number, and coordinates.
- PdfToTextTable: Extracts tables from PDF reports page by page, producing structured table data with text chunk coordinates.
- PdfDrawRegions: Draws or overlays regions on the existing PDF.
- ImageToTextPdf: Recognizes text from embedded images and renders the recognized text on top of the original PDF pages.
- PdfAssembler / ImageToPdf: Combines multiple single-page PDFs or rendered images into a multi-page PDF document.

Image Transformations

CPU

ImageTransformer

- Erosion
- Dilation
- Scaling
- Otsu Thresholding
- Adaptive Thresholding
- Median Blur
- Blur
- Remove Objects

GPU

GPUImageTransformer

- Erosion
- Dilation
- Scaling
- Otsu Thresholding
- · Huang Thresholding

Image Text Detection

ImageTextDetectorV2

- Implementation : Python
- Input : Image Object
- Output : Regions
- Hardware : CPU/GPU

<u>ImageTextDetector</u>

- o Implementation : Scala
- Input : Image Object
- Output : Regions
- Hardware : CPU/GPU
- Average 25% Speed up on GPU Hardware

```
STARBUCKS Store #10208

[1302 Euclid Avenue]

Cleveland, OH (216) 229-0749

CHK 664290

[12/07/2014 06:43 PM]

[1912003 Drawer: 2 Reg: 2
```

Image Text Recognition

ImageToText

- o Implementation : Scala
- Input : Image Object
- Output : Text
- o Hardware: CPU
- Support for Multiple Languages
- Faster; Low accuracy for noised images
- Case Sensitive

ImageToTextV2

- Implementation : Scala
- Input : Image Object, Image Crop Regions
- Output : Text
- Handwritten and Printed Text Recognition
- External Text Detector is required
- Hardware : CPU/GPU
- Accuracy & Speed Benchmarking Article

ImageTextDetector

ImageToTextV3

BinaryTolmage

- Implementation : Scala
- Input : Image Object, Image Crop Regions
- Output : Text
- Hardware : CPU/GPU
- External Text Detector is required
- Case Sensitive

13

ImageToTextV3

Example Notebook : Visual_03_Text_Recognition.ipynb

Image Text Recognition: Benchmarks

Type Dataset	Model Caching	Cooking	CPU			GPU			
		Caching	TimeTaken (seconds)	Average Time	CER	TimeTaken (seconds)	Average Time	CER	
	ocr_base_printed_v2	No	1709.24	0.01514	0.07333	405.61	0.00359	0.07333	
	ocr_base_printed_v2_opt	No	1608.29	0.01425	0.07351	1072.87	0.00951	0.07351	
		ocr_large_printed_v2	No	3216.36	0.02850	0.06786	544.25	0.00482	0.06786
	FUNSD	ocr_large_printed_v2_opt	No	3505.75	0.03106	0.06787	1245.23	0.01103	0.06787
	FUNSD	ocr_base_printed_v2	Yes	1559.14	0.01381	0.07333	351.01	0.00311	0.07333
		ocr_base_printed_v2_opt	Yes	1348.17	0.01194	0.07371	732.45	0.00649	0.07371
		ocr_large_printed_v2	Yes	2857.73	0.00771	0.06786	518.96	0.00460	0.06786
Printed		ocr_large_printed_v2_opt	Yes	3111.66	0.02757	0.06773	904.11	0.00801	0.06773
		ocr_base_printed_v2	No	3182.52	0.00823	0.01471	867.77	0.00224	0.01471
		ocr_base_printed_v2_opt	No	2839.97	0.00734	0.01489	2410.47	0.00643	0.01489
		ocr_large_printed_v2	No	5440.10	0.01406	0.01428	1093.20	0.00283	0.01428
	SROIE	ocr_large_printed_v2_opt	No	5063.07	0.01309	0.01463	3111.29	0.00804	0.01463
		ocr_base_printed_v2	Yes	2108.02	0.00545	0.01470	810.26	0.00209	0.01470
		ocr_base_printed_v2_opt	Yes	1907.55	0.00493	0.01488	1608.62	0.00493	0.01488
		ocr_large_printed_v2	Yes	4311.84	0.00330	0.01428	993.43	0.00257	0.01428
		ocr_large_printed_v2_opt	Yes	3864.54	0.00999	0.01434	2035.05	0.00526	0.01434
		ocr_base_handwritten_v2	No	2094.36	0.00372	0.06478	617.20	0.0013	0.06478
		ocr_base_handwritten_v2_opt	No	1885.96	0.00372	0.06548	1588.70	0.0031	0.06548
		ocr_large_handwritten_v2	No	3153.85	0.00560	0.04645	1492.10	0.0027	0.04645
	and the same	ocr_large_handwritten_v2_opt	No	3109.64	0.04529	0.04502	2669.50	0.0039	0.04502
Handwritten	IAM	ocr_base_handwritten_v2	Yes	1412.95	0.00251	0.06478	390.72	0.0008	0.06478
		ocr_base_handwritten_v2_opt	Yes	1304.18	0.00232	0.06566	1076.24	0.0023	0.06566
		ocr_large_handwritten_v2	Yes	2281.14	0.00405	0.04645	363.07	0.0006	0.04645
		ocr_large_handwritten_v2_opt	Yes	2137.57	0.00380	0.04487	1325.86	0.0132	0.04487

De-Identification/Obfuscation

- De-Identification is supported for Image, PDF, Dicom and SVS input formats.
- Obfuscation is supported for Image and PDF.

PDF De-Identification Dataset

- Fully synthetic dataset of 50 medical-style PDF documents generated using Faker and GEMINI API.
 - Divided into Easy (30), Medium (10), and Hard (10) levels with increasing layout complexity and noise.
 - Contains PHI in multiple layouts (header, footer, free-text, key-value, and tables)
 - Contains an average of 40–50 PHI entities per document, mainly Dates, Names, Gender, Age,
 Phone Number, SSN and Hospital/Organization identifiers.
- Designed for benchmarking NER solutions on PHI de-identification tasks.
- Performed two experiments: Complete De-Identification and Zero-Shot De-Identification.

Difficulty Level	Precision	Recall	F1-Score	Total Files
Easy	0.9851	0.9799	0.9825	30
Medium	0.9800	0.9575	0.9686	40
Zero Shot Medium	0.9861	1.0000	0.9930	10
• Hard	0.9561	0.9290	0.9424	50

Anonymization Pipeline Builder

- Unified framework for De-Identification and Obfuscation tasks.
- Supports Image, PDF, Dicom Input Sources.
- Compatible with multiple OCR versions <u>ImageToText</u>, <u>ImageToTextV2</u> and <u>ImageToTextV3</u>.
- Provides configurable parameters for individual stage behavior, thresholds, and entity matchers.
- Generates outputs in PDF, Image, Dicom which destroys the intermediate results as its an aggregation stage, or returns
 Dataframe which keeps intermediate stages.
- All Healthcare De-Identification Pipelines are supported, so users can experiment with all variations.
 - o Go To Models Hub
 - Select **De-Identification** option in **Show** Drop Down
 - Select Language EN or any other in Language Drop Down
 - Select **All Healthcare NLP Version** in **For** Drop Down

De-Identification/Obfuscation

- The core workflow is common across all inputs only the Input/Output stages change by file type (PDF, DICOM, Image).
- The process flows from Text Extraction → Healthcare NLP → Visual Rendering to identify and remove PHI.
- Obfuscation replaces PHI text, while Image Inpainting optionally improves visual quality of the output.

18

• De-Identification & Obfuscation Pretrained Pipelines are available in Models Hub.

- o De-Identification pretrained pipelines come in two variations with and without signature removal.
- o Obfuscation pretrained pipelines do not include signature removal.
- PDF De-Identification solutions are available on Amazon Sagemaker Endpoints.
 - Refer to Slide 26 for PDF De-Identification and Obfuscation Links
- Any PDF De-Identification pretrained pipeline can be converted for image-based de-identification using the example provided in the De-Identification Notebook.

Example Notebook : Visual_04_AnonymizationPipelineBuilder.ipynb

Example Notebook : Visual_05_Deldentification.ipynb

Example Notebook : Visual_06_Obfuscation.ipynb

Table Detection & Recognition

• Table present in documents can have some metadata about their positions, contents and extracting those tables is a matter of reverse engineering. But if those tables are present as images then we will need to apply Computer Vision and OCR and complex algorithms to extract the accurate text from the image.

General Workflow:

- Table Detection Identify and isolate regions in the image where tables are present.
- Cell Detection and HOCR Generation for each detected table region, perform cell segmentation and generate HOCR to capture text layout and structure.
- Table Reconstruction combine the detected cell regions with the HOCR output to rebuild the final structured table representation.

Preferred Shares in aggregate to be issued by our Company at a subscription price of approximately US\$5.66 per share and an aggregate consideration of approximately US\$260 million. The Series B Preferred Shares were issued in full on May 8, 2018 as set forth in the table below.

Name of Shareholder	Number of Series B Preferred Shares	Purchase
		(US\$
WuXi Healthcare Ventures	882,861	4,999,994.99
6 Dimensions Capital, L.P.	3,354,875	18,999,999.08
6 Dimensions Affiliates Fund, L.P.	176,572	999,997.87
Graceful Beauty Limited	4,237,737	23,999,999.73
Tetrad Ventures Pte Ltd	8,828,618	49,999,995.19
Hikeo Biotech L.P.	1,589,151	8,999,997.78
Pure Progress International Limited	1,765,723	9,999,995.64
Kaitai International Funds SPC	882,861	4,999,994.99
Taikang Kaitai (Cayman) Special		
Opportunity I	2,648,585	14,999,996.29
CJS Medical Investment Limited	3,531,447	19,999,996.9
SCC Growth IV Holdco G, Ltd.	5,297,171	29,999,998.2
YF IV Checkpoint Limited	5,297,171	29,999,998.2
HH CST Holdings Limited	1,765,723	9,999,995.64
ARCH Venture Fund IX, L.P.	441,430	2,499,994.67
ARCH Venture Fund IX Overage, L.P.	1,324,292	7,499,995.32
Terra Magnum CST LLC	353,144	1,999,995.73
3W Partners Fund II, L.P.	882,861	4,999,994.99
Huifu Investments Limited	882,861	4,999,994.99
King Star Med LP	1,765,723	9,999,995.64
Total	45,908,806	259,999,931.9

On September 23, 2018, the Company and Golden & Longevity Portfolios L.P. entered

Metrics: Table Detection and Recognition

	Material	Labor	Total
Surface Facilities			
Buildings and°structures	29,380	33,640	63,020
Major equipment	46,350	4,570	50,920
Bulk material	29,040	16,410	45,450
Site development	7,570	4,730	12,300
Shafts and Hoists			
Major equipment	24,500	8,300	32,800
Shafts and lining	58,100	31,400	89,500
Underground Facilities			
Excavations and structures	2,510	4,510	7,020
Major equipment	3,170	220	3,390
Bulk material	1,960	1,470	3,430
Mining			
Major equipment	64,700		64,700
Mine construction	582,330	655,640	1,237,970
Backfilling			
Mine backfilling	102,300	116,000	218,300
Shaft sealing	90°	1110	200
Total Field Costs	952,000	877,000	1,829,000
Architect-Engineer Services			53,000
Owner's Costs			218,000
Contingency			534,000
TOTAL FACILITY COST			2,634,000

- + generate a list of all adjacency relations between each content cell and its nearest horizontal and vertical neighbours.
- + An adjacency relation is a tuple containing the textual content of both cells, the direction and the number of blank cells (if any) in between.
- This 1-D list of adjacency relations can be compared to the ground truth by using precision and recall measures.
- Example: (Material, Labor), (Labor, Total),
 (Surface Facilities, Building and Structures),
 etc.

Metrics: Table Detection and Recognition

Table Detection Model Comparison

Model	general_model_table_detection_v2 (0.5)	general_model_table_detection_v2 (0.8)	table_detection_v3 (0.5)	table_detection_v3 (0.8)
IOU @ 0.6 precision	0.93394	0.93995	0.96637	0.98140
IOU @ 0.6 recall	0.91314	0.90646	0.95991	0.93987
IOU @ 0.6 f1	0.92342	0.92290	0.96313	0.96018
IOU @ 0.7 precision	0.91116	0.91917	0.96188	0.97674
IOU @ 0.7 recall	0.89087	0.88641	0.95546	0.93541
IOU @ 0.7 f1	0.90090	0.90249	0.95866	0.95563

OCR Model Comparison

Model	JSL image2text	AWS Textract	JSL image2textV2 with regions merger 5.4.0	JSL image2text 5.4.0
IOU @ 0.6 precision	0.74357	0.77286	0.50647	0.72612
IOU @ 0.6 recall	0.68153	0.65669	0.49873	0.73121
IOU @ 0.6 f1	0.71120	0.71006	0.50257	0.72866
IOU @ 0.7 precision	0.64142	0.65244	0.27167	0.59709
IOU @ 0.7 recall	0.58790	0.55414	0.26752	0.60127
IOU @ 0.7 f1	0.61349	0.59917	0.26957	0.59917

Visual Question Answering

 Extracts and interprets not only the textual content whether handwritten, typewritten, or printed but also a wide range of visual cues such as page layout and structure (including forms and tables), non-textual components (like marks, checkboxes, separators, and diagrams), and stylistic features such as fonts, colors, and highlights.

How many females are affected by diabetes? 3.6%

What percentage of cases can be prevented? 60%

What could lead to blindness or stroke? Diabetes

What is the Annual Economic Cost (in billion)? 6

Medical Assistant

- It works on Databricks with usage of Databricks Container Service.
- It has multimodal LLM under the hood.
- It may be used to extract any medical info from docs, especially prescriptions and medical test.
- It can process handwritten text.
- It is possible to set separate questions/prompt for each image or use one question for all.
- Our approach supports Sparks and Databricks strong features like scalability.

Extracted Medical Tests (JSON Format)

Prompt: Extract medical tests with their attributes and return the result as JSON. If no tests are found, return an empty JSON.

Light Pipelines

Create LightPipeline

Streaming

Visual NLP Sagemaker Listing

- Clinical De-identification for PDF (EN) <u>Link</u>
- Clinical Obfuscation for PDF (EN) <u>Link</u>
- Extract Digital Text from Handwritten content <u>Link</u>
- PHI leakage detection for DICOM <u>Link</u>
- DICOM Images De-identification Full <u>Link</u>
- DICOM Images De-identification Base Link
- DICOM Images De-identification Alias <u>Link</u>
- SVS Images De-identification <u>Link</u>

Next Steps

- Add compatibility for small vision-language models in GGUF format, allowing seamless execution directly on Spark without taking data out from the DataFrame.
- Improve support for running advanced models like Medical Assistant VLMs across diverse compute environments and deployment platforms.
- Bridging layers to ensure smooth interoperability between older pipelines and the new VLM architecture.
- Integrate a new OCR engine delivering higher accuracy, better layout retention, and optimized performance for large-scale document processing.

Questions and Answers

Resources:

John Snow LABS

Workshops & Training

- a. Visual NLP Workshop Link
- b. Spark NLP Workshop Link

Documentation

- a. Healthcare NLP Documentation Link
- b. Spark NLP Documentation Link
- c. Visual NLP Documentation Link

Repositories

- a. John Snow Labs Repository Link
- b. Dicom De-Identification Repository Link
- c. PDF De-Identification Dataset <u>Link</u>

Blogpost & Benchmarks

- a. PDF De-Identification Benchmarks Link
- b. OCR Benchmarks Link
- c. Visual NLP Speed Benchmarks Link

Notebooks & Tutorials

- a. De-Identification / Obfuscation Notebooks Link
- Cloud Integrations
 - a. AWS SageMaker Listings Link
 - b. Integration Docs Link