Datenstrukturen & Algorithmen

Peppo Brambilla Universität Bern Frühling 2018

Graphenalgorithmen

Maximaler Fluss

- Einleitung
- Flussnetzwerke
- Ford-Fulkerson Methode
- Maximales bipartites Matching

Einleitung

- Gerichtete Graphen zur Modellierung von Flussnetzwerken
- Modell: Material fliesst durch Röhrensystem von Quelle zu Senke
 - Quelle produziert konstantes Materialvolumen pro Zeit
 - Senke konsumiert konstantes Volumen pro Zeit
 - «Fluss» in Röhre ist Volumen pro Zeit, das verschoben wird
- Beispiele
 - Flüssigkeit durch Röhren
 - Teile auf Fliessbändern
 - Strom in elektrischen Netzwerken
 - Information in Kommunikationsnetzwerken

Flussnetzwerke

- Modellierung mit gerichteten Graphen
- Kante: «Röhre»
 - Gewisse maximale Kapazität von Einheiten pro Zeit, die fliessen können
- Knoten: Verbindungspunkte
 - Material darf sich nicht «stauen»
 - «Fluss hinein» muss gleich «Fluss hinaus» sein
- Problem des maximalen Fluss
 - Grösstmöglicher Fluss von Quelle zu Senke, so dass keine maximale Kapazität irgendeiner Kante verletzt wird

Graphenalgorithmen

Maximaler Fluss

- Einleitung
- Flussnetzwerke
- Ford-Fulkerson Methode
- Maximales bipartites Matching

Flussnetzwerke

- Gerichteter Graph G = (V, E)
 - $-(u,v) \in E \rightarrow (v,u) \notin E$ (keine antiparallelen Kanten)
 - für alle $u \in V$: $(u, u) \notin E$ (keine Schlingen)
- Jede Kante (u, v) hat Kapazität $c(u, v) \ge 0$
 - Konvention: $(u, v) \notin E \rightarrow c(u, v) = 0$
- 2 Ausgezeichnete Knoten
 - Quelle $s \in V$
 - Senke $t \in V$
- Annahme: für jeden Knoten v gibt es einen Pfad s w v w t von s über v nach t

Flussnetzwerke

Jede Kante (u, v) hat eine Kapazität c(u, v)Nicht eingezeichnete Kanten haben implizit c(u, v) = 0

Antiparallele Kanten

Graph mit antiparallelen Kanten (G) kann durch hinzufügen von zusätzlichen Knoten und Kanten zu Flussnetzwerk (G') transformiert werden.

Fluss in Flussnetzwerk

- Fluss in Flussnetzwerk G = (V, E): Funktion $f: V \times V \to \mathbb{R}$, die folgende Bedingungen erfüllt
 - Kapazitätsbedingung Für alle $(u, v) \in V \times V$: $0 \le f(u, v) \le c(u, v)$ Wenn $(u, v) \notin E$, dann f(u, v) = 0
 - Flusserhaltung

Für alle $u \in V - \{s, t\}$ gilt:

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

«Eingehender Fluss» = «Ausgehender Fluss»

Fluss in Flussnetzwerk

Jede Kante ist annotiert mit Fluss/Kapazität, d.h. f(u, v)/c(u, v)

Wert eines Flusses

Wert |f| des Flusses f ist definiert als

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

«Fluss aus Quelle s» — «Fluss in Quelle s»

• Kann zeigen

$$|f| = \sum_{v \in V} f(v, t) - \sum_{v \in V} f(t, v)$$

Wert des Beispiel-Flusses: 19

Graphenalgorithmen

Maximaler Fluss

- Einleitung
- Flussnetzwerke
- Ford-Fulkerson Methode
- Maximales bipartites Matching

Ford-Fulkerson Methode

- Löst das Problem des maximalen Flusses
 - Gegeben: Graph G, Quelle s, Senke t, Kapazitäten c
 - Gesucht: Fluss f mit grösstem Wert
- Basiert auf drei Ideen
 - Restnetzwerke
 - Erweiterungspfade (in Restnetzwerken)
 - Schnitte

Ford-Fulkerson Methode

- Startet mit f(u, v) = 0 für alle $u, v \in V$
- Iteration
 - Suche Erweiterungspfad p im Restnetzwerk G_f
 - Erhöhe Wert von f anhand von p
 - Iteriere bis |f| maximal ist, d.h. bis kein Erweiterungspfad mehr existiert.

```
FORD-FULKERSON-METHOD(G, s, t)
```

- 1 initialize flow f to 0
- 2 while there exists an augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

Restnetzwerke

- Gegeben Fluss f in Netzwerk G = (V, E)
- Restkapazität $c_f(u, v)$ zwischen $u, v \in V$

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{falls } (u,v) \in E, \\ f(v,u) & \text{falls } (v,u) \in E, \\ 0 & \text{andernfalls.} \end{cases}$$

• Restnetzwerk $G_f = (V, E_f)$

$$E_f = \{ (u, v) \in V \times V : c_f(u, v) > 0 \}$$

- Menge der Kanten, die Restkapazität haben, d.h. wo Kapazität erhöht oder verringert werden kann.
- Kann antiparallele Kanten haben

Restnetzwerke

Restnetzwerke

Fluss im Restnetzwerk

- $G_f = (V, E_f)$ hat bis auf antiparallele Kanten die gleichen Eigenschaften wie Flussnetzwerk
- Können Fluss f' auf G_f definieren, der Definition eines Flusses bezüglich den Kapazitäten c_f im Netzwerk G_f genügt.
 - $-f':V\times V\to\mathbb{R}$
 - f' erfüllt Kapazitätsbedingung
 - f' erfüllt Flusserhaltung

Erhöhung eines Flusses

- Gegeben Fluss f in G und Fluss f' in G_f
- Erhöhung $f \uparrow f'$ von f um f' ist

$$(f \uparrow f')(u,v) = \begin{cases} f(u,v) + f'(u,v) - f'(v,u) & \text{falls } (u,v) \in E, \\ 0 & \text{sonst} \end{cases}$$

- Lemma: Gegeben
 - Flussnetzwerk G, Fluss f in G
 - Restnetzwerk G_f , Fluss f' in G_f
 - Dann definiert $f \uparrow f'$ einen Fluss in G mit Wert $|f \uparrow f'| = |f| + |f'|$

- Ein einfacher Pfad $s \rightsquigarrow t$ in G_f
 - Erlaubt mehr Fluss entlang jeder Kannte
 - Eine Folge von Röhren von Quelle zu Senke, durch die mehr Material fliessen kann
- Wieviel mehr Fluss möglich entlang Pfad p?
- Restkapazität des Pfades p

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ ist in } p\}$$

- = «maximaler Zusatzfluss durch Pfad p in G_f »
- Im Beispiel: $p = (s, v_2, v_3, t)$ $c_f(p) = 4$

Erhöhung des Flusses entlang $p = (s, v_2, v_3, t)$ um 4

Erhöhung des Flusses entlang $p = (s, v_2, v_3, t)$ um 4

Kein Erweiterungspfad mehr! Behauptung: Fluss ist maximal

Lemma

- Sei G ein Flussnetzwerk, f ein Fluss in G und p ein Erweiterungspfad in G_f
- Definiere $f_p: V \times V \to \mathbb{R}$ mit $f_p(u,v) = \begin{cases} c_f(p) & \text{falls } (u,v) \text{ zu } p \text{ geh\"{o}rt,} \\ 0 & \text{sonst.} \end{cases}$
- Dann ist f_p ein Fluss in G_f mit Wert $\left|f_p\right|=c_f(p)>0$

Korollar

- Definiere f_p wie oben
- Dann ist $f \uparrow f_p$ ein Fluss in G mit Wert $|f \uparrow f_p| = |f| + |f_p| > |f|$

- Vorgehen um maximalen Fluss zu finden:
 - Suche Erweiterungspfad p in G_f
 - Erhöhe f entlang p
 - Fertig, wenn kein Erweiterungspfad mehr in G_f existiert
- Behauptung: Fluss f ist maximal, wenn kein Erweiterungspfad in G_f existiert
- Zeigen Behauptung mithilfe von Schnitten

- Schnitt (S,T) eines Flussnetzwerks G=(V,E) ist Partitionierung von V in S und T=V-S, so dass Quelle $s \in S$ und Senke $t \in T$
- Nettofluss f(S,T) über Schnitt (S,T)

$$f(S,T) \coloneqq \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

• Kapazität c(S,T) des Schnittes (S,T)

$$c(S,T) \coloneqq \sum_{u \in S} \sum_{v \in T} c(u,v)$$

 Minimaler Schnitt ist Schnitt mit minimaler Kapazität über alle Schnitte von G

• Beispiel: Schnitt $S = \{s, v_1, v_2\}, T = \{v_3, v_4, t\}$

$$f(S,T) = f(v_1, v_3) + f(v_2, v_4) - f(v_3, v_2)$$

$$= 12 + 11 - 4$$

$$= 19$$

$$c(S,T) = c(v_1, v_3) + c(v_2, v_4)$$

$$= 12 + 14$$

$$= 26$$

- Beachte Unterschied zwischen Nettofluss und Kapazität
 - Nettofluss: subtrahiert Fluss von T nach S
 - Kapazität: ignoriert Kapazitäten von T nach S

• Beispiel: Schnitt $S = \{s, v_1, v_2, v_3\}, T = \{v_4, t\}$

$$f(S,T) = f(v_2, v_4) + f(v_3, t) - f(v_4, v_3)$$

$$= 11 + 15 - 7$$

$$= 19$$

$$c(S,T) = c(v_2, v_4) + c(v_3, t)$$

$$= 14 + 20$$

$$= 34$$

 Gleicher Nettofluss wie vorher, aber höhere Kapazität

Lemma

```
Für jeden Schnitt (S,T) gilt: f(S,T) = |f|, d.h. «Wert des Flusses» = «Nettofluss über Schnitt»
```

Korollar

- «Wert eines beliebigen Flusses» ≤ «Kapazität eines beliebigen Schnitts»
- Folgerung:
 - «Maximaler Fluss» ≤
 - «Kapazität des minimalen Schnitts»

Max-flow min-cut Theorem

- Theorem:
 Sei f ein Fluss in einem Flussnetzwerk G,
 dann sind folgende Bedingungen äquivalent
 - 1. f ist maximaler Fluss in G.
 - 2. G_f enthält keine Erweiterungspfade.
 - 3. |f| = c(S, T) für einen Schnitt (S, T) von G.

Beweis

- (1) \rightarrow (2): Falls G_f Erweiterungspfad p hätte, dann könnten wir Fluss mit Wert $|f| + |f_p| > |f|$ erhalten; Widerspruch zu Annahme (1)
- (3) \rightarrow (1): Korollar $|f| \le c(S,T)$ für jeden Schnitt.

Darum: $|f| = c(S, T) \rightarrow f$ ist ein maximaler Fluss

Beweis

- (2) \rightarrow (3): Nehmen an, dass G_f keinen Erweiterungspfad hat. Definieren
 - $-S = \{v \in V : \text{ existiert Pfad } s \to v \text{ in } G_f\}, T = V S$
 - t muss in T sein, sonst gibt es Erweiterungspfad
 - Also ist (S, T) ein Schnitt
 - Betrachte $u \in S$, $v \in T$
 - $(u,v) \in E$, dann f(u,v) = c(u,v), sonst wäre $(u,v) \in E_f$ und damit $v \in S$
 - $(v,u) \in E$, dann f(v,u) = 0, sonst wäre $c_f(u,v) = f(v,u)$ positiv, d.h. $(u,v) \in E_f$, also $v \in S$
 - $(u,v) \notin E$ und $(v,u) \notin E$, dann f(u,v) = f(v,u) = 0

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u)$$
$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0 = c(S,T)$$

- Mit vorherigem Lemma folgt |f| = f(S,T) = c(S,T)

Ford-Fulkerson Algorithmus

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G. E

2 (u, v).f = 0

3 while there is a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Analyse

- Falls ganzzahlige Kapazitäten, dann vergrössert jeder Schritt |f| um ≥ 1
- Falls maximaler Fluss Wert $|f^*|$ hat, dann $\leq |f^*|$ Iterationen
- Komplexität $O(E | f^* |)$

Edmonds-Karp Algorithmus

- Finde erweiternde Pfade mit Breitensuche in Restnetzwerk
- Aufwand $O(VE^2)$
 - Beweis siehe Buch

Graphenalgorithmen

Maximaler Fluss

- Einleitung
- Flussnetzwerke
- Ford-Fulkerson Methode
- Maximales bipartites Matching

- Eines von vielen Problemen, das gelöst werden kann, indem man es als Flussproblem formuliert
- Ungerichteter Graph G = (V, E) heisst bipartit falls V in $V = L \cup R$ partitioniert werden kann, so dass alle Kanten zwischen L und R sind

- Matching: Eine Teilmenge $M \subseteq E$, so dass für alle $v \in V$, ≤ 1 Kante von M auf v inzident ist
 - Knoten heisst matched, falls Kante inzident auf ihn, sonst unmatched
- Maximales Matching: ein Matching mit grösster Kardinalität
 - M ist maximal falls $|M| \ge |M'|$ für alle M'
- Problem: gegeben bipartiter Graph (mit Partitionierung), finde maximales Matching

Kein maximales Matching

Maximales Matching

- Anwendungsbeispiel: Flugzeuge einer Menge von Routen zuweisen
 - L: Menge von Flugzeugen
 - R: Menge von Routen
 - $-(u,v) \in E$ falls Flugzeug u Route v fliegen kann
- Wollen grösstmögliche Anzahl Routen, die von den Flugzeugen geflogen werden können

• Gegeben G, definiere Flussnetzwerk G' = (V', E')

- Knoten $V' = V \cup \{s, t\}$
- Kanten $E'=\{(s,u):u\in L\}$ //Alle Knoten links Verbindum mit s $\cup \{(u,v):u\in L,v\in R,(u,v)\in E\}$ $\cup \{(v,t):v\in R\}$
- Kapazität c(u, v) = 1 für alle $(u, v) \in E'$

Formulierung als Flussproblem

Formulierung als Flussproblem

Lemma

Sei G = (V, E) bipartiter Graph mit $V = L \cup R$, G' = (V', E') entsprechendes Flussnetzwerk.

Wenn M Matching in G, dann gibt es Fluss f in G' mit Wert |f| = |M|.

Wenn f Fluss in G, dann gibt es Matching M in G mit Kardinalität |M| = |f|.

Finde maximalen Fluss in G'

- Benutze Kanten mit Fluss 1 im Matching
- Beweise siehe Buch

Analyse

- Jeder Knoten in V hat ≥ 1 inzidente Kanten $\rightarrow |E| \geq \frac{|V|}{2} \rightarrow |V| \leq 2|E|$
- Deshalb $|E| \le |E'| = |E| + |V| \le 3|E|$
- Deshalb $|E'| = \Theta(E)$
- Wert des maximalen Fluss O(V)
- Ford-Fulkerson hat Komplexität $O(E | f^*|) = O(E | V)$ wobei $| f^*|$ Kapazität des maximalen Fluss

Anwendung von Max-flow min-cut

- Viele Optimierungsprobleme in der Bildverarbeitung
 - Z.B. Automatische Bildsegmentierung

http://research.microsoft.com/pubs/67890/siggraph04-grabcut.pdf

Nächstes Mal

• Repetition