Cristian Pachón García

February 4, 2020

- Introduction
- 2 Linear regression
- 3 Ingredients for Deep Learning Loss function Gradient Descent
- 4 Deep Learning Introduction Perceptron Multi-layer Perceptron Backpropagation How a Neural Net is trained? Overfitting

Introduction

•000000000

- 2 Linear regression
- 3 Ingredients for Deep Learning Loss function Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

What is Machine Learning?

- Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns learn from data.
- The process of making the machine learn is called the training process.

ML algorithms can be classified into two different groups:

- Supervised learning.
- Unsupervised learning.

Supervised learning is the machine learning task of learning a function that **maps an input to an output**.

Unsupervised learning is the machine learning task that allows us to discover patterns from the data. Rather than prediction a variable (temperature, flower type, etc.) these algorithms are aimed to discover patterns in the data.

Introduction

	Athens	Barcelona	Brussels	Calais	Cherbourg	
Athens	0	3313	2963	3175	3339	•••
Barcelona	3313	0	1318	1326	1294	
Brussels	2963	1318	0	204	583	
Calais	3175	1326	204	0	460	
Cherbourg	3339	1294	583	460	0	
:	:	:	:	:	:	٠

Introduction

000000000

- 2 Linear regression
- 3 Ingredients for Deep Learning Loss function Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

Linear regression

	height	weight		
1	173.37	69.76		
2	174.18	71.36		
3	173.16	70.85		
4	175.60	69.91		
5	174.33	67.45		
6	173.18	71.77		
7	174.49	70.46		
8	174.74	70.44		
9	174.58	69.82		
10	173.69	69.99		
:	:	:		
200	173.61	70.213		

- We would like to find two coefficients (w and b) such that weight = b + w * height.
- In general, given two pairs of variables x and y, we would like to find two coefficients (w and b) such that y = b + w * x.
- w is known as the weight and b is known as the bias.

How can we find w and b such that y = b + w * x is a "good approximation" to the data points?

More important question than *how* is: **why** do we know to know these parameters?

• If a system is modeled by an equation, it can help to predict what can happen under certain circumstances.

• Let's suppose b = 4.057 and w = 0.3769. It means

$$y = 4.057 + 0.3769 * x.$$

What would be the weight (y) of someone whose height (x) is 174 cm? y = 4.057 + 0.3769 * 174 = 69.6376 kg.

- 1 Introduction
- 2 Linear regression
- 3 Ingredients for Deep Learning
 Loss function
 Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

- 1 Introduction
- 2 Linear regression
- 3 Ingredients for Deep Learning
 Loss function
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

Loss function

- Previously, we asked the model to predict the weight of a persona whose height is 174 cm.
- The prediction was 69.6376 kg.
- **Notation:** when we use the model to predict, we use a special symbol for the results: \hat{y} .
- So, in the previous example: $\hat{y} = 69.6376$

How can we find w and b such that y = b + w * x is a "good approximation" to the data points?

- We need a metric that tells what is "good" and what is "bad".
- We want a metric that is close to 0 when the model is correct.
- We want a metric that increases as long as the model is not correct.

Let's assume we have w and b. For instance, at random we choose w=0.2 and b=3:

	height(x)	weight(y)	$prediction(\hat{y})$	$error = (y - \hat{y})^2$
1	173.37	69.76	37.67	1029.39
2	174.18	71.36	37.84	1123.97
3	173.16	70.85	37.63	1103.53
:	:	:	:	:
200	173.6189	70.31279	37.72378	1062.0434
200	175.0109	10.31213	31.12310	1002.0454

$$loss = MSE = \sqrt{\frac{1}{200}(1029.39 + 1123.97 + \dots + 1062.0434)} = 31.86411$$

• In general, the formula for loss function (for regression problems) is the following one:

loss =
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - (b + wx_i))^2}$$
.

- Our goal is to find b and w such that the loss is minimum.
- How??? Choosing b and w randomly??? We will use **Gradient** Descent algorithm.

- 1 Introduction
- 2 Linear regression
- 3 Ingredients for Deep Learning
 Loss function
 Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

Gradient Descent

The idea is the following one:

- Given a function that depends on two parameters f(b, w), we want to find w^* and b^* such that $min\{f(b, w)\} = f(b^*, w^*)$.
- Gradient Descent (GD) allows us to find such parameter.
- GD works with more than two variables, i.e, let's suppose we want to find the minimum value of a function that depends on n variables $f(z_1, z_2, \ldots, z_n)$, GD allows us to find $z_1^*, z_2^*, \ldots, z_n^*$ such that $min\{f(z_1, z_2, \ldots, z_n)\} = f(z_1^*, z_2^*, \ldots, z_n^*)$.

Algorithm 1: Gradient Descent algorithm

```
Result: Find w^* such that min\{f(w)\} = f(w^*)
epsilon = 10^{-6}:
w_0 = (random) initial point;
is\_minimum = FALSE:
learning\_rate = 0.1;
f_0 = f(w_0):
while not is_minimum do
    derivative = f'(w_0);
    w_1 = w_0 - learning\_rate \cdot derivative;
   f_1 = f(w_1);
   if |f_1 - f_0| < epsilon then
       is\_minimum = TRUE;
   end
    w_0 = w_1;
    f_0 = f_1;
```

end

return w₁

Given $f(w) = w^2$ and $w_0 = 1$, we want to apply GD algorithm to obtain the minimum. We expect to obtain, after some iterations, $w^* = 0$ (or close to 0).

Remember that:

- $f(w) = w^2$.
- derivative = f'(w) = 2w.
- $w_1 = w_0 learning_rate \cdot derivative$.

We choose as learning rate a value of 0.01.

iteration	<i>W</i> ₀	$f(w_0)$	derivative	<i>w</i> ₁	$f(w_1)$	$ f(w_1)-f(w_0) $
2	1.00	1.00	2.00	0.80	0.64	0.36
3	0.80	0.64	1.60	0.64	0.41	0.23
4	0.64	0.41	1.28	0.51	0.26	0.15
:	:	:	:	:	:	:
•		•	•	•	•	•
26	0.00	0.00	0.01	0.00	0.00	0.00
27	0.00	0.00	0.01	0.00	0.00	0.00

$$f(w) = w^4 + w^3 - 3w^2 - 2w + 2.$$

Its derivative function is:

$$f'(w) = 4w^3 + 3w^2 - 6w - 2.$$

We cannot solve manually the following equation:

$$4w^3 + 3w^2 - 6w - 2$$

GD can help us to find the minimum value.

Gradient Descent

Remember that:

- $f(w) = w^4 + w^3 3w^2 2w + 2$.
- derivative = $f'(w) = 4w^3 + 3w^2 6w 2$.
- $w_1 = w_0 learning_rate \cdot derivative$.

We choose as learning rate a value of 0.001.

iteration	w_0	$f(w_0)$	derivative	w_1	$f(w_1)$	$ f(w_1)-f(w_0) $
1	2	10	30	1.97	9.124	0.87
2	1.97	9.12	28.40	1.94	8.33	0.78
3	1.94	8.33	26.93	1.91	7.63	0.70
4	1.91	7.63	25.58	1.88	6.99	0.63
5	1.88	6.99	24.33	1.86	6.41	0.57
6	1.86	6.41	23.17	1.84	5.88	0.52
7	1.84	5.88	22.10	1.81	5.41	0.47
8	1.81	5.41	21.10	1.79	4.97	0.43
:	:	:	:	:	:	:
•		•	-	•	-	•
367	1.07	-1.03	0.03	1.07	-1.03	0
368	1.078	-1.03	0.03	1.07	-1.03	0
					4 🗆 🕨 4 8	□

Back to our initial problem, we want w and b such that minimize

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(weight-\left(b+w\cdot height\right)\right)^{2}}.$$

- Applying GD we obtain b = 4.0570 and w = 0.3769.
- Loss function is 1.00795.
- Any other set of parameters would provide a loss function greater than 1.00795.

- GD is an algorithm that helps us find the optimal values for the parameters. That is why it is called *optimizer*.
- There are many *optimizers* algorithms:
 - Momentum
 - RMSprop
 - Adam
 - AdaMax
 - Adadelta
 - · ...

- Introduction
- 2 Linear regression
- 3 Ingredients for Deep Learning Loss function Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

- Introduction
- 2 Linear regression
- 3 Ingredients for Deep Learning Loss function Gradient Descent
- 4 Deep Learning Introduction

Perceptron
Multi-layer Perceptron
Backpropagation
How a Neural Net is trained
Overfitting

Introduction

Why do we need another kind of models?

- Unfortunately real life is not linear. We need more complex/flexible models.
- Neural networks (Deep Learning models) are very flexible models.
 They are able to capture very non-linear patterns and model them with a high precision.

ImageNet problem

- The ImageNet project is a large visual database designed for use in visual object recognition software research.
- More than 14 million images have been hand-annotated.
- ImageNet contains more than 20.000 categories with a typical category, such as "balloon" or "strawberry", consisting of several hundred images.

 \rightarrow

- Deep Learning Perceptron

Single neuron model (perceptron)

- Weights and bias are the parameters that define the behavior.
 They must be estimated during training.
- The output (y) is derived from a sum of the weighted inputs plus a bias term.
- The activation function introduces non-linearities.

Single neuron model: Linear Regression

Activation functions

Sigmoid

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU $\max(0.1x,x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

- 1 Introduction
- 2 Linear regression
- Ingredients for Deep Learning Loss function Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron

Backpropagation How a Neural Net is trained Overfitting

Multi-layer Perceptron

Introduction

Forward pass computes

$$\begin{split} \mathbf{h}_0 &= \mathbf{x} \\ \mathbf{h}^{(t)} &= g(W^{(t)}\mathbf{h}^{(t-1)} + \mathbf{b}^{(t)}) \end{split}$$

Forward pass computes

$$\begin{aligned} \mathbf{h}_0 &= \mathbf{x} \\ \mathbf{h}^{(t)} &= g(W^{(t)}\mathbf{h}^{(t-1)} + \mathbf{b}^{(t)}) \end{aligned}$$

Backpropagation

- Deep Learning Backpropagation

Forward pass

We are going to use the following notation for derivatives:

$$\frac{\partial L}{\partial w}, \frac{\partial L}{\partial b}$$

Remember that GD formula is:

$$w = w - learning_rate \cdot \frac{\partial L}{\partial w},$$

$$b = b - learning_rate \cdot \frac{\partial L}{\partial b}$$
.

Backpropagation: Linear case

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial y'} \cdot \frac{\partial y'}{\partial b}.$$

Backpropagation: Linear case

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial y'} \cdot \frac{\partial y'}{\partial z} \cdot \frac{\partial z}{\partial w}$$

- Deep Learning

How a Neural Net is trained?

Introduction

How a Neural Net is trained?

The first step is to decide the structure of the Neural Net. To begin with, it should be an easy Net (just to have a first quick model).

Given a dataset (big dataset) we split the data set into three part:

- Training part.
- Validation part.
- Test part.

Split the training dataset into n parts (epoch).

- For every epoch train the model using the training part.
- Compute the loss metric (and more metrics if you want) in this epoch.
- Compute the loss metric (and more metrics if you want) in the validation part.

How a Neural Net is trained?

Finally, compute the loss over the test dataset and compare it with the loss of the training dataset and the validation dataset.

- How a Neural Net is trained?
 - All Deep Learning Frameworks come with an efficient implementation of the previous steps (especially the training loop).
 - The most popular ones are TensorFlow (Google), Keras ("Google") and PyTorch (Facebook).

Deep Learning Framework Power Scores 2018

- Introduction
- 2 Linear regression
- Ingredients for Deep Learning
 Loss function
 Gradient Descent
- 4 Deep Learning
 Introduction
 Perceptron
 Multi-layer Perceptron
 Backpropagation
 How a Neural Net is trained

Overfitting

Overfitting

If we need as much data as possible to train a model, why do have to train with one part of the dataset instead of the whole dataset?

Overfitting is a modeling error which occurs when a function is too closely fit to a limited set of data points.

The way of fighting overfitting is using what is called *regularization* techniques. It consists in adding a penalty in the loss function:

$$loss = \left(y - (b + wx)\right)^2,$$

$$loss_{reg} = loss + \lambda(b^2 + w^2),$$

where λ is a value that we have to choose a priori. Normally $\lambda > 0.001$ and $\lambda < 1$.

Underfitting

When the model is too easy that is not able to learn important patters from them data, it is said that the model is underfitted.

How to find a "good model"?

- Start with a really simple model.
- · Check it is underfitted.
- Increase the model complexity until it gets overfitted.

Perceptron (P)

Feed Forward (FF)

Radial Basis Network (RBF)

Deep Feed Forward (DFF)

Thank You