

Carnegie Mellon University

Tepper School of Business

46-886: Machine Learning Fundamentals

Amr Farahat

Recommender Systems: Neighborhood-Based Collaborative Filtering

Much of this slide deck is derived/borrowed from course material I've co-taught at MIT

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License</u>

Collaborative Filtering

	i	tem	<i>i</i> Items	
user u		?	C	
Users		С	user-item ratings	user information (e.g. demographics)
			item meta-data (e.g. genre)	

• For user *u* and item *i*, we want to predict how user *u* will rate item *i*

Collaborative Filtering Systems

- Two broad types of CF methods:
 - Neighborhood CF
 - User-User
 - Item-Item
 - Model-based CF

Neighborhood CF: User-User

- User-User CF:
 - Identify users who are 'very similar' to user u (based on ratings) and who have actually rated i
 - Prediction: Average those users' ratings, using user-user similarity as the weight
- Examples of "similarity" metrics
 - Correlation between rating vectors
 - "Distance" between rating vectors

Neighborhood CF: User-User

Example: We want to predict Al's rating for M2

	M1	M2 _	M3	M4	M5		
Al	5	? \	4	5	?		
Ben	4	1	?	4	2		
Carrie	1	4	5	2	4		
Debra	?	\?	?	4	3		

 Basic idea: Average M2's ratings from the other users weighted by their similarity to Al.

Neighborhood CF: Item-Item

• Item-based CF = user-based CF "rotated by 90 degrees"

	M1		<u>M2</u>		P	13	<u> </u>	4	M!	5	
Al		5		?		4		5		?	
Ben		4		1		?		4		2	
Carrie		1		4		5		2		4	
Debra		?		?		?		4		3	

- Basic idea: Average Al's ratings for other movies weighted by their similarity to M2.
- Item-Item CF:
 - o Identify items that are 'very similar' to item i and which have been rated by user u
 - Prediction: Average those items' ratings, using item-item similarity as the weight