Google Neural Network Models for Edge Devices: **Analyzing and Mitigating** Machine Learning Inference Bottlenecks

Computer Architecture, Lecture 15b **Fall 2021**

Amirali Boroumand

Saugata Ghose

Berkin Akin

Ravi Narayanaswami

Geraldo F. Oliveira

Xiaoyu Ma

Eric Shiu

Onur Mutlu

PACT 2021

Executive Summary

Context: We extensively analyze a state-of-the-art edge ML accelerator (Google Edge TPU) using 24 Google edge models

Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:

- It operates significantly below its <u>peak throughput</u>
- It operates significantly below its <u>theoretical energy efficiency</u>
- It inefficiently handles <u>memory accesses</u>

<u>Key Insight</u>: These shortcomings arise from the monolithic design of the Edge TPU accelerator

- The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

 Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models

- Mensa improves performance and energy by 3.0X and 3.1X
- Mensa reduces cost and improves area efficiency

SAFARI

Outline

- 1 Introduction
- 2 Edge TPU and Model Characterization
- 3 Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Outline

- 1 Introduction
- 2 Edge TPU and Model Characterization
- 3 Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Why ML on Edge Devices?

Significant interest in pushing ML inference computation directly to edge devices

Connectivity

Latency

Bandwidth

Why Specialized ML Accelerator?

Edge devices have limited battery and computation budget

Limited Power Budget

Limited Computational Resources

Specialized accelerators can significantly improve inference latency and energy consumption

Apple Neural Engine (A12)

Google Edge TPU

ntroduction

Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference efficiently across a wide variety of NN models

Outline

- 1 Introduction
- **2** Edge TPU and Model Characterization
- 3 Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Edge TPU: Baseline Accelerator

Google Edge NN Models

We analyze inference execution using 24 edge NN models

Major Edge TPU Challenges

We find that the accelerator suffers from three major challenges:

- 1 Operates significantly below its peak throughput
- 2 Operates significantly below its peak energy efficiency
- 3 Handles memory accesses inefficiently

(I) High Resource Underutilization

We find that the accelerator operates significantly below its peak throughput across all models

Mensa Framework

. . .

Mensa-G

Evaluation

Introduction

SAFARI

TPU and Model Characterization

Conclusion

(2) Low Energy Efficiency

The accelerator operates far below its upper bound energy efficiency

(3) Inefficient Memory Access Handling

Parameter traffic (off-chip and on-chip) takes a large portion of the inference energy and performance

46% and 31% of total energy goes to off-chip parameter traffic and distributing parameters across PE array

Major Edge TPU Challenges

We find that the accelerator suffers from three major challenges:

- 1 Operates significantly below its peak throughput
- 2 Operates significantly below its peak energy efficiency
- 3 Handles memory accesses inefficiently

Question: Where do these challenges come from?

Model Analysis: Let's Take a Deeper Look Into the Google Edge NN Models

Introduction

Diversity Across the Models

Insight I: there is significant variation in terms of layer characteristics across the models

Diversity Within the Models

Insight 2: even within each model, layers exhibit significant variation in terms of layer characteristics

For example, our analysis of edge CNN models shows:

Variation in MAC intensity: up to 200x across layers

Variation in FLOP/Byte: up to 244x across layers

Introduction

Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely oblivious to layer heterogeneity

Edge accelerators typically take a monolithic approach: equip the accelerator with an over-provisioned <u>PE array</u> and <u>on-chip buffer</u>, a rigid <u>dataflow</u>, and fixed <u>off-chip bandwidth</u>

While this approach might work for a specific group of layers, it fails to efficiently execute inference across a wide variety of edge models

Outline

- 1 Introduction
- 2 Edge TPU and Model Characterization
- **3** Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Mensa Framework

Goal: design an edge accelerator that can efficiently run inference across a wide range of different models and layers

> Instead of running the entire NN model on a monolithic accelerator:

Mensa: a new acceleration framework for edge NN inference

Mensa High-Level Overview

Edge TPU Accelerator

Monolithic Accelerator

Mensa

Mensa Runtime Scheduler

The goal of Mensa's software runtime scheduler is to identify which accelerator each layer in an NN model should run on

Mensa Runtime Scheduler

The goal of Mensa's software runtime scheduler is to identify which accelerator each layer in an NN model should run on

Google Neural Network Models for Edge Devices: **Analyzing and Mitigating Machine Learning Inference Bottlenecks**

Amirali Boroumand^{†♦}

Saugata Ghose[‡]

Berkin Akin§

Ravi Narayanaswami§

Geraldo F. Oliveira*

Xiaoyu Ma[§]

Eric Shiu§

Onur Mutlu*†

Carnegie Mellon Univ. Stanford Univ.

*Univ. of Illinois Urbana-Champaign

§ Google

*ETH Zürich

Each of the accelerators caters to

Layers tend to group together into a small

Outline

- 1 Introduction
- 2 Edge TPU and Model Characterization
- 3 Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Identifying Layer Families

Key observation: the majority of layers group into a small number of <u>layer families</u>

Families I & 2: low parameter footprint, high data reuse and MAC intensity

→ compute-centric layers

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity

→ data-centric layers

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Families 1&2 → compute-centric layers

- **32x32 PE Array** → **2 TFLOP**/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Families 1&2 → compute-centric layers

- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator

Family 3 \rightarrow LSTM data-centric layers

- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline
- Near-data accelerator

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Families 1&2 → compute-centric layers

- 32x32 PE Array → 2TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- I28KB Param. Buffer → 32x Reduction
- On-chip accelerator

Family 3 → LSTM data-centric layers

- 8x8 PE Array → 128 GFLOP/s
- I28KB Act. Buffer → I6x Reduction
- No Param. Buffer → 4MB in Baseline
- Near-data accelerator

Families 4&5 → **non-LSTM data-centric layers**

- -16x16 PE Array → 256 GFLOP/s
- -128KB Act. Buffer → 16x Reduction
- -128KB Param. Buffer → 32x Reduction
- Near-data accelerator

to efficiently execute inference across our Google NN models

- Near-data accelerator

Outline

- 1 Introduction
- 2 Edge TPU and Model Characterization
- 3 Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Energy Analysis

Baseline Google Edge TPU accelerator using a <u>high-bandwidth off-chip memory</u>

Energy Analysis

Mensa-G improves energy efficiency by 3.0X compared to the Baseline

Throughput Analysis

Mensa-G improves throughput by 3.1X compared to the Baseline

More in the Paper

Details about Mensa Runtime Scheduler

Details about Pascal, Pavlov, and Jacquard's dataflows

- Energy comparison with Eyeriss v2
- Mensa-G's utilization results

Mensa-G's inference latency results

More in the Paper

Google Neural Network Models for Edge Devices:

Analyzing and Mitigating Machine Learning Inference Bottlenecks

Saugata Ghose[‡] Berkin Akin§

Ravi Narayanaswami§

Geraldo F. Oliveira*

Xiaoyu Ma§

Eric Shiu§

Onur Mutlu*†

Carnegie Mellon Univ.

Stanford Univ. ‡Univ. of Illinois Urbana-Champaign

§ Google

*ETH Zürich

Outline

- 1 Introduction
- 2 Edge TPU and Model Characterization
- 3 Mensa Framework
- 4 Mensa-G: Mensa for Google Edge Models
- 5 Evaluation
- 6 Conclusion

Conclusion

Context: We extensively analyze a state-of-the-art edge ML accelerator (Google Edge TPU) using 24 Google edge models

Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:

- It operates significantly below its <u>peak throughput</u>
- It operates significantly below its <u>theoretical energy efficiency</u>
- It inefficiently handles <u>memory accesses</u>

Key Insight: These shortcomings arise from the monolithic design of the Edge TPU accelerator

- The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa

 Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models

- Mensa improves performance and energy by 3.0X and 3.1X
- Mensa reduces cost and improves area efficiency

Google Neural Network Models for Edge Devices: **Analyzing and Mitigating** Machine Learning Inference Bottlenecks

Computer Architecture, Lecture 15b Fall 2021

Amirali Boroumand

Saugata Ghose

Berkin Akin

Ravi Narayanaswami

Geraldo F. Oliveira

Xiaoyu Ma

Eric Shiu

Onur Mutlu

PACT 2021

Carnegie Mellon I UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN