ChE641 Mathematical Methods in Chemical Engineering

Assignment 8 Differential Equations

Submission not compulsory

- 1. Solve $\frac{dy}{dx} + 2xy = 4x$ subject to the initial condition $y(x=0) = y_0$.
- 2. Determine the solution of y'' + y' 2y = 0 with y(0) = 0 and y'(0) = 6, where primes denote derivatives with x.
- 3. Find the three linearly independent solutions of y''' 3y'' + 3y' y = 0. Show that they are linearly independent.
- 4. Solve the differential equation $y'' + 3y' + 2y = 6 + x^2$.
- 5. Using the method of eigenfunction expansions, solve the following linear partial differential equation: [10 points]

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

subject to the boundary conditions u(0,t)=u(L,t)=0 and the initial conditions u(x,0)=f(x) and $\left(\frac{\partial u}{\partial t}\right)_{t=0}=0$, with f(x=0)=f(x=L)=0.

Useful information

Orthnormality of sines and cosines:

$$\int_0^L \sin(n\pi x/L)\sin(m\pi x/L) = \delta_{mn} \frac{L}{2}$$

$$\int_0^L \cos(n\pi x/L)\cos(m\pi x/L) = \delta_{mn} \frac{L}{2}$$