MATH 110AH (Algebra)

September 24, 2022

1 9.23 Friday Week 0

Groups were invented by Évariste Galois circa 1830 to discuss symmetries in mathematical objects. For instance, the group G of "symmetries of equilateral triangles" contains a total of $3 \cdot 2 = 6$ elements consisting of rotations and reflections.

Theorem 1.1

Finite simple groups are classified.

Proving things about the integers

Try to use "simple" facts about the integers to prove complicated ones. Recall the number systems:

- the integers $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$,
- the rational numbers $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$, and
- the real numbers \mathbb{R} contains \mathbb{Q} , $\sqrt{2}$, π , . . . , "all the points on the line."

Definition 1.2

A field \mathbb{F} (e.g. \mathbb{Q} , \mathbb{R} , \mathbb{C} , not \mathbb{Z}) is a set with elements $0, 1 \in \mathbb{F}$, $0 \neq 1$, and operators + (addition) and (multiplication), where for all $x, y \in \mathbb{F}$, $x + y, xy \in \mathbb{F}$, such that

- 1. + is associative, commutative, 0 is its identity, and has inverses. That is,
 - $\forall x, y, z \in \mathbb{F} : (x + y) + z = x + (y + z),$
 - $\forall x, y \in \mathbb{F} : x + y = y + x$,
 - $\forall x \in \mathbb{F} : 0 + x = x$, and
 - $\forall x \in \mathbb{F} \exists y \in \mathbb{F} : x + y = 0$, and writing y = -x.
- 2. · is associative, commutative, 1 is its identity, and nonzeros have inverse. That is,
 - $\forall x, y, z \in \mathbb{F} : (xy)z = x(yz),$
 - $\forall x, y \in \mathbb{F} : xy = yx$,
 - $\forall x \in \mathbb{F} : 1 \cdot x = x$, and
 - $\forall x \in \mathbb{F} : x \neq 0 \Rightarrow \exists y \in \mathbb{F} : xy = 1.$
- 3. Distributive law: $\forall x, y, z \in \mathbb{F} : x(y+z) = xy + xz$.

Definition 1.3

An ordered field (for example, \mathbb{R} , \mathbb{Q} , not \mathbb{C}) \mathbb{F} is a field with a given subset $P \subset \mathbb{F}$ called the positive elements such that

- 1. for all $x \in \mathbb{F}$, exactly one of $x \in P$, x = 0, $-x \in P$ is true (we say $x \in \mathbb{F}$ is negative if $-x \in P$), and
- 2. for all $x, y \in P$, x + y, $xy \in P$.

How to use these axioms to prove inequalities

Definition 1.4

For an ordered field \mathbb{F} , we say for x, $y \in \mathbb{F}$ that x < y if y - x = y + (-x) is positive (so x is positive iff x > 0).

Likewise $x \le y$ if y - x is positive or 0.

Lemma 1.5

- 1. For any $x, y \in \mathbb{R}$, exactly one of x < y, x = y, x > y is true.
- 2. 1 is positive.
- 3. For $a, b, c \in \mathbb{R}$, if a < b then a + c < b + c.
- 4. If $a, b, c \in \mathbb{R}$, $a \ge 0$, and $b \ge c$, then $ab \ge ac$.

Proof.

- 1. y x is either positive, negative, or 0.
- 2. Note that $1 \neq 0$. Then either 1 is positive or -1 is positive. If -1 is positive then $(-1)^2 = 1$ is positive, resulting in a contradiction.
- 3. Note that (b + c) (a + c) = b a is positive.
- 4. Note that for all $a \in \mathbb{R}$ we have $0 \cdot a = 0$. Then

$$a(b-c) \ge 0$$

$$ab - ac \ge 0$$

$$ab \ge ac.$$

The big property of the integers is the inductive or well-ordering principle

The integers \mathbb{Z} are a subset of \mathbb{Q} (or \mathbb{R}). There are $0, 1 \in \mathbb{Z}$ and if $x, y \in \mathbb{Z}$ then $x + y, xy, -x \in \mathbb{Z}$.

Theorem 1.6: Well-ordering principle

Let $\mathbb{Z}^+ = \{x \in \mathbb{Z} : x > 0\} = \{1, 2, 3, 4, \dots\}$. Let S be a nonempty subset of \mathbb{Z}^+ . Then S contains a smallest element, that is,

$$\exists\,x\in S\;\forall\,y\in S:x\leq y.$$

An example of what we can prove using this is:

Proposition 1.7

There is no integer N with 0 < N < 1.

Proof. Let $S = \{n \in \mathbb{Z} : 0 < n < 1\}$. Let $S \neq \emptyset$, then by the well-ordering principle S has a smallest element N. Since N < 1, $N^2 < N \cdot 1 = N$. Since N^2 is also an integer, this is a contradiction. Then $S = \emptyset$, that is, there is no integer $N \in (0,1)$. □

Theorem 1.8: Induction

For each $n \in \mathbb{Z}^+$, let P(n) be a statement that could be true or false. Suppose P(1) is true and that for any $n \in \mathbb{Z}^+$, if P(n) is true then P(n+1) is true. Then P(n) is true for all $n \in \mathbb{Z}^+$.

Proof. Let $S = \{n \in \mathbb{Z}^+ : P(n) \text{ is false}\}$. Suppose $S \neq \emptyset$, then by the well-ordering principle S has a smallest element N. Since P(1) is true, $N \neq 1$. Then N > 1. Then $N \geq 2$ since there are no integers in (1,2). Then $N - 1 \in \mathbb{Z}^+$. Since P(N) would be true if P(N - 1) were true, P(N - 1) is not true. Then $N - 1 \in S$, a contradiction. Then $S = \emptyset$. □