Refinement Types and Abstract Refinements

Niki Vazou

UC San Diego

Simple Types

LIBRARY

```
div :: Int -> Int -> Int
div x y = x / y
```

USER

div e1 e2

Simple Type Error

LIBRARY

```
div :: Int -> Int -> Int
```

$$div \times y = x / y$$

USER

Simple Type Error

div :: Int -> Int div x y = x / y

USER

div 4 "cat"

Type error:

"Couldn't match expected type Int with actual type String"

Run Time Error

LIBRARY

```
div :: Int -> Int -> Int
div x y = x / y
```

USER

div 4 0

Run time error:

"Exception: divide by zero"

an Int value, different than 0

```
div :: Int
    -> { v:Int | v!=0 }
    -> Int
```

LIBRARY

```
div :: Int -> { v:Int | v!=0 } -> Int
div x y = x / y
```

USER

```
div 4 e -- e::Int
```

```
LIBRARY
div :: Int -> { v:Int | v!=0 } -> Int
div x y = x / y
```

USER

div 4 e -- e::Int

Type error:

"Couldn't match expected type
{v:Int | v!=0} with actual type Int"

$$\langle Int \Rightarrow \{v:Int \mid v!=0\} \rangle^1 e$$

Cast from source type Int
 to target type {v:Int | v!=0}
 with a label 1

$$\langle Int \Rightarrow \{v:Int \mid v!=0\} \rangle^{1}e$$

Cast from source type Int
 to target type {v:Int | v!=0}
 with a label 1

$$\langle Int \Rightarrow \{v:Int \mid v!=0\} \rangle e$$

```
Cast from source type Int

to target type {v:Int | v!=0}

with a label 1
```

```
<Int ⇒ {v:Int | v!=0}>¹e

→ if (e!=0) then e else ↑¹
```

Cast from source type Int
 to target type {v:Int | v!=0}
 with a label 1

Contracts

LIBRARY

```
div :: Int -> { v:Int | v!=0 } -> Int
div x y = x / y
```

USER

$$\overline{\text{div 4}} \ (\langle \text{Int} \Rightarrow \{\text{v:Int} \mid \text{v!=0}\} \rangle^{1} \text{e})$$

 $e \rightarrow 0$

Run time error:

"Exception: **↑ 1**"

A predecessor example

```
pred :: Int -> Int
pred n = n - 1
```

"the result is less than the argument"

A predecessor example

```
pred :: n:Int -> {v:Int | v < n}
pred n = n - 1</pre>
```

"the result is less than the argument"

pred :: n:Int -> {v:Int | v<n} pred = <Int -> Int \Rightarrow n:Int->{v:Int | v<n}>\frac{1}{f} where f x = x - 1 :: Int -> Int

```
pred :: n:Int -> {v:Int | v<n}
pred = <Int -> Int = n:Int -> {v:Int | v<n} > 1 f
    where f x = x - 1 :: Int -> Int
```

LIBRARY

```
pred :: n:Int -> {v:Int | v<n}
pred = <Int -> Int ⇒ n:Int->{v:Int | v<n}>¹f
    where f x = x - 1 :: Int -> Int
```

USER

$$p = pred 4$$

LIBRARY

```
pred :: n:Int -> {v:Int | v<n}
pred = <Int -> Int ⇒ n:Int->{v:Int | v<n}>¹f
    where f x = x - 1 :: Int -> Int
```

USER

$$p = pred 4$$

-- assert (p<4)

pred :: n:Int -> {v:Int | v<n} pred = <Int -> Int \Rightarrow n:Int->{v:Int | v<n}> where f x = x + 1 :: Int -> Int

USER

$$p = pred 4$$

-- assert (p<4)

Run time error:

"Exception: 1 Library.1"

Functional Specifications

Refinement Types as Functional Specifications:

```
pred :: n:Int -> {v:Int | v < n}</pre>
```

```
div :: Int -> {v:Int | v = !0} -> Int
```

Specifications:

Properties that the program should satisfy

Functional Specifications:

Treat the program as collection of functions

Functional Specifications

Refinement Types as Functional Specifications:

Check Specifications with Contracts

1970 Object Oriented Programming Eiffel

2002 Higher Order Programming (Findler, Felleisen)

- ✓ Expressive (express higher order predicates)
- ✓ Blame assignment (to the supplier of bad value)

- X Run time checks (consume computation cycles)
- X Limited coverage (one execution path is checked)

Outline

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Recursive Refinements

Outline

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

LIBRARY

```
div :: Int -> { v:Int | v!=0 } -> Int
div x y = x / y
```

USER

We want

e:: {v:Int |
$$v!=0$$
}

We have
$$p \Rightarrow v!=0$$
e:: {v:Int | p}

Basic Subtyping

```
p_s \Rightarrow p_t
\{ v:b \mid p_s \} \iff \{ v:b \mid p_t \}
```

s <: t

If e::s then e::t

30

Decidable Subtyping

$$p_s \Rightarrow p_t$$

$$\{ v:b | p_s \} \leqslant : \{ v:b | p_t \}$$

refinement language in decidable theories

Propositional Logic +

Theories (equality, linear arithmetic, unint. functions)

Liquid Types

Propositional Logic +

```
\mathbf{Q}: Logical qualifiers (predicates on \mathbf{v}, \star)
        e.g., \mathbf{Q} = \{v > 0, * > 0, v < *, v = * - 1\}
 Q*: instantiate * with program variables
        e.g., \mathbf{Q}^* = \{v>0, y>0, v< n, v=n+1\}
 Liquid Types: { v:b | p}
         with p=\Lambda q, q \in \mathbb{Q}^*
refinement language in decidable theories
```

Theories (equality, linear arithmetic, unint. functions)

Liquid Types

Propositional Logic +

```
\mathbf{Q}: Logical qualifiers (predicates on \mathbf{v}, \star)
        e.g., \mathbf{Q} = \{v > 0, * > 0, v < *, v = * - 1\}
 Q*: instantiate * with program variables
        e.g., \mathbf{Q}^* = \{v>0, y>0, v< n, v=n+1\}
 Liquid Types: { v:b | p}
         with p=\Lambda q, q \in \mathbb{Q}^*
refinement language in decidable theories
```

Theories (equality, linear arithmetic, unint. functions)

33

Basic Subtyping

$$p_s \Rightarrow p_t$$

$$\{ v:b | p_s \} \leftarrow \{ v:b | p_t \}$$

refinement language in decidable theories

Propositional Logic +

Theories (equality, linear arithmetic, unint. functions)

Basic Subtyping

SMT solver:

SAT + Theory Solvers

$$p_s \Rightarrow p_t$$

$$\{v:b | p_s\} <: \{v:b | p_t\}$$

refinement language in decidable theories

Propositional Logic +

Theories (equality, linear arithmetic, unint. functions)

Predecessor Example

```
pred :: n:Int->{v:Int| v<n}
pred n = n - 1</pre>
```

Predecessor Example

```
pred :: n:Int->{v:Int| v<n}
pred n = n - 1</pre>
```

We want

```
n:: Int
```

```
n-1 :: {v:Int | v<n}
```

Predecessor Example

```
pred :: n:Int->{v:Int| v<n}
pred n = n - 1</pre>
```

```
n :: Int
(-) :: x:Int -> y:Int -> {v:Int|v=x-y}
```

Predecessor Example

```
pred :: n:Int->{v:Int| v<n}</pre>
pred n = n - 1
                  v=1 ⇒ true
1 :: {v:Int | v=1} <: Int
n :: Int
(-)::x:Int -> y:Int -> {v:Int | v=x-y}
```

```
(n-1) :: \{v:Int | v=n-1\}
```

Predecessor Example

```
pred :: n:Int->{v:Int| v<n}</pre>
pred n = n - 1
1 :: {v:Int | v=1} <: Int
n :: Int
(-)::x:Int -> y:Int -> {v:Int | v=x-y}
                      \forall v=n-1 \Rightarrow v < n
(n-1):: {v:Int | v=n-1} <: {v:Int | v<n}
```

Predecessor Example

```
pred :: n:Int->{v:Int| v<n}</pre>
pred n = n - 1
1 :: {v:Int | v=1} <: Int
n :: Int
(-)::x:Int -> y:Int -> {v:Int | v=x-y}
```


4 :: Int

div 4 :: ???

v=4 ⇒ true

$$4::\{v:Int | v=4\}$$
 {v:Int | v=4}<:Int

4 :: Int

div 4 :: { v:Int | v!=0 } -> Int

$$v=2 \Rightarrow v!=0$$

div 4 2 :: Int

$$v=2 \Rightarrow v!=0$$

div 4 0 :: ???

$$v=0 \Rightarrow v!=0 \times$$

$$0::\{v:Int | v=0\}\{v:Int | v=0\} \% \{v:Int | v!=0\}$$

Refinement Types

- 1991 Freeman and Pfenning
 Refine specific data types (nil, singleton list)
- 1999 DML(C)
 Refinements from a decidable domain C
- 2008 **Liquid Types** (Rondon *et. al.*) Algorithmic Type Inference
 - Static Verification
- Limited annotations
- X Limited expressiveness

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Max example

```
max::Int-> Int -> Int
max x y = if x > y then x else y
```

Max example

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

max 8 12 ::
$$\{ v : Int | v > 0 \}$$

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

We get

max $3.5 :: \{ v : Int | v \ge 5 \}$

We want

max 3 5 :: { $v : Int | v \ge 5 \land odd v \}_{59}$

Problem:

Information of Input Refinements is Lost

```
We get
max 3 5 :: \{ v : Int | v \ge 5 \}
We want
max 3 5 :: \{ v : Int | v \ge 5 \land odd v \}_{60}
```

Our Solution

Problem:

Information of Input Refinements is Lost

Solution:

Parameterize Type Over Input Refinement

Solution:

Parameterize Type Over Input Refinement

```
max::forall <p::Int -> Prop>. refinement

Int -> Int -> Int
max x y = if x > y then x else y
```

```
max::forall <p::Int -> Prop>. refinement

Int -> Int -> Int
max x y = if x > y then x else y
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max :: forall  Prop>.
Int -> Int
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max :: forall  Prop>.
Int -> Int</p
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] ::
Int -> Int [odd/p]
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] ::
{v:Int | odd v} -> {v:Int | odd v} -> {v:Int | odd v}
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] ::
```

3 :: { v:**Int** | odd v }

 $\{v:Int \mid odd v\} \rightarrow \{v:Int \mid odd v\} \rightarrow \{v:Int \mid odd v\}$

```
b = max [(>0)] 8 12 -- assert (b > 0)√
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 :: { v:Int | odd v } 
{v:Int | odd v } -> {v:Int | odd v}
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 ::
```

5 :: { v:**Int** | odd v }

 $\{v:Int \mid odd v\} \rightarrow \{v:Int \mid odd v\}$

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 5 ::
```

5 :: { v:**Int** | odd v }

{v:Int | odd v}

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 5 :: {v:Int | odd v}
```

```
max::forall <p::Int -> Prop>. refinement

Int -> Int -> Int
max x y = if x > y then x else y
```

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

```
next
acc
loop :: (Int -> a -> a) -> 1
loop f n z = go 0 z
where go i acc i < n = go (i+1) (f i acc)
                   otherwise = acc
  loop
 iteration
                           final
                          result
```

"\loop f n z =
$$f^n(z)$$
"

"\loop f n z =
$$f^n(z)$$
"

```
incr :: Int -> Int
incr n z = loop f n z
where f i acc = acc + 1
```

```
incr :: Int -> Int -> Int
incr n z = loop f n z
where f i acc = acc + 1
```

Question: Does ``incr n z = n+z`` hold?

Answer: Proof by Induction

Inductive Proof

Loop Invariant: \mathbb{R} :: (Int, a)

loop iteration

accumulator

Inductive Proof

Loop Invariant: R :: (Int, a)

Base: R(0, z)

Inductive Step: $R(i, acc) \Rightarrow$

R(i+1, fiacc)

Conclusion: R(n, loop f n z)

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go \Theta z
 where go i acc | i < n = go (i+1) (f i acc)
                   otherwise = acc
                      R :: (Int, a)
                      R(0, z)
                      R(i, acc) \Rightarrow
                         R(i+1, fiacc)
```

 $\mathbb{R}(n, loop f n z)$

 $\mathbb{R}(n, loop f n z)$

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go \theta z
where go i acc i < n = go (i+1) (f i acc)
                  otherwise = acc
                   r :: Int -> a -> Prop
R :: (Int, a)
R(0, z)
                  z ::a<r 0>
R(i, acc) \Rightarrow
   R(i+1, fiacc)
```

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z
where go i acc i < n = go (i+1) (f i acc)
                 otherwise = acc
                  r :: Int -> a -> Prop
R :: (Int, a)
R(0, z)
                 z :: a<r 0>
                 f ::i:Int -> a<r i>
R(i, acc) \Rightarrow
                 -> a<r (i+1)>
   R(i+1, f i acc)
```

R(n, loop f n z)

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z
 where go i acc i < n = go (i+1) (f i acc)
                otherwise = acc
                 r :: Int -> a -> Prop
R :: (Int, a)
R(0, z)
                 z :: a<r 0>
                 f :: i:Int -> a<r i>
R(i, acc) \Rightarrow
   R(i+1, f i acc)
                    -> a<r (i+1)>
R(n, loopfnz) loopfnz::a<r n>
```

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go \Theta z
where go i acc | i < n = go (i+1) (f i acc)
               otherwise = acc
                 r :: Int -> a -> Prop
                 z :: a<r 0>
                 f :: i:Int -> a<r i>
```

loop f n z :: a < r n >

-> a<r (i+1)>

```
loop
:: forall <r :: Int -> a -> Prop>.
    f:(i:Int -> a<r i> -> a<r (i+1)>)
    -> n:{ v:Int | v>=0 }
    -> z:a<r 0>
    -> a<r n>
```

```
incr acc
        incr :: Int -> Int -> Int
                                      by 1
        incr n z = loop f n z
          where f i acc = acc + 1'
         R(i, acc) \Leftrightarrow acc = i + z
loop
  :: forall <r :: Int -> a -> Prop>.
      f:(i:Int -> a<r i> -> a<r (i+1)>)
  -> n:{ v:Int | v>=0 }
  -> z:a<r 0>
  -> a<r n>
```

```
incr :: Int -> Int -> Int
       incr n z = loop f n z
         where f i acc = acc + 1
        R(i, acc) \Leftrightarrow acc = i + z
loop [{\i acc -> acc = i + z}]
  :: f:(i:Int -> {v:a  v=i+z}
                -> \{v:a | v=(i+1)+z\}
 -> n:{v:Int | v>=0}
 -> z:Int
 -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
        incr n z = loop f n z
          where f i acc = acc + 1
          R(i, acc) \Leftrightarrow acc = i + z
loop [\{ \{ i \ acc -> acc = i + z \} ]
  :: f:(i:Int -> {v:a | v=i+z}
-> {v:a | v=(i+1)+z})
 -> n:{v:Int | v>=0}
 -> z:Int
 -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
       incr n z = loop f n z
         where f i acc = acc + 1
         R(i, acc) \Leftrightarrow acc = i + z
loop [{\i acc -> acc = i + z}] f
  :: n:{v:Int | v>=0}
  -> z:Int
  -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
        incr n z = loop f n z
          where f i acc = acc + 1
         R(i, acc) \Leftrightarrow acc = i + z
loop [{\i acc -> acc = i + z}] f
  :: n:{v:Int | v>=0}
  -> z:Int
  -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
     incr n z = loop f n z
       where f i acc = acc + 1
       R(i, acc) \Leftrightarrow acc = i + z
:: n:{v:Int | v>=0}
-> z:Int
-> {v:Int | v=n+z}
```

incr

```
incr :: n:{v:Int | v>=0}
    -> z:Int
    -> {v:Int | v=n+z}
incr n z = loop f n z
where f i acc = acc + 1
```

Question: Does ``incr n z = n+z`` hold?

Answer: Yes

Outline

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

Outline

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

A Vector Data Type

Goal: Encode the domain of Vector

```
Abstract
             refinement
data Vec <d::Int -> Prop> a
  = V {f :: i:Int<d> -> a}
           index
         satisfies d
```

"vector defined on positive integers"

$$Vec < {\{ v -> v > 0 \}} > a$$

"vector defined only on 1"

$$Vec < {\{ v -> v = 1 \}} > a$$

"vector defined on the range 0 .. n"

Vec
$$<\{\v -> 0 \le v < n\}>$$
 a

Abstract refinement

value satisfies r at i

"vector defined on **positive integers**, with **values equal** to their **index**"

Vec
$$\{ v -> v > 0 \}$$
, $\{ i v -> i = v \} > Int$

"vector defined only on 1, with values equal to 12"

Vec
$$\{ v -> v = 1 \}$$
, $\{ v -> v = 12 \} > Int$

Null Terminating Strings

"vector defined on the range 0 .. n, with its last value equal to `\0`"

Vec
$$\{ v -> 0 \le v < n \}$$
,
 $\{ v -> i = n-1 => v = \0 \} > Char$

Fibonacci Memoization

"vector defined on **positives**, with i-th value equal to **zero or i-th fibonacci**"

Vec
$$\{ \langle v \rangle \le v \}$$
,
 $\{ \langle v \rangle v | = 0 => v = fib(i) \} > Int$

Using Vectors

• Abstract over d and r in vector op (get, set, ...)

• Specify vector properties (NullTerm, FibV, ...)

Verify that user functions preserve properties

Using Vectors

```
type NullTerm n =
 Vec <{\v -> 0<=v<n},
       \{ i v \rightarrow i=n-1 => v=' (0') \} > Char
upperCase
  :: n:{v: Int | v>0}
  -> NullTerm n
  -> NullTerm n
upperCase n s = ucs ∅ s where
ucs i s =
  case get i s of
  '\0' -> S
  c -> ucs (i + 1) (set i (toUpper c) s)
```

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

List Data Type

```
data List a
= N
| C (h :: a) (tl :: List a)
```

Goal: Relate tail elements with the head

Recursive Refinements

Abstract refinement

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

tail elements satisfy p at h

Unfolding Recursive Refinements

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

Unfolding Recursive Refinements

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

Unfolding Recursive Refinements (1/3)

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

```
h<sub>1</sub> :: a
tl<sub>1</sub> :: List  (a1</sub>>)
```

Unfolding Recursive Refinements (2/3)

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

Unfolding Recursive Refinements (3/3)

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

```
h_1 :: a
h_2 :: a 
h_3 :: a 
N :: List  (a )
```

Increasing Lists

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

type IncrLa = List $<{ \mid hd v -> hd \leq v }> a$

h₁ 'C' h₂ 'C' h₃ 'C' N :: IncrL a

Increasing Lists

```
data List a  a -> Prop>
    = N
     C (h :: a) (tl :: List  (a))
 type IncrLa = List <{ \mid hd v \rightarrow hd \leq v }> a
      h<sub>1</sub> 'C' h<sub>2</sub> 'C' h<sub>3</sub> 'C' N :: IncrL a
h₁ :: a
h_2 :: \{ v:a \mid h_1 \le v \}
h_3 :: \{ v:a \mid h_1 \le v \land h_2 \le v \}
N :: IncrL { v:a | h_1 \le v \land h_2 \le v \land h_3 \le v }
```

Sorting Lists

```
data List a  a -> Prop>
 = N
  C (h :: a) (tl :: List  (a))
type IncrLa = List <\{ hd v -> hd \le v \}> a
insert :: y:a -> IncrL a -> IncrL a
insert y N = N
insert y(x)^{C}xs y < x = y^{C}x^{C}xs
                   otherwise = y `C` insert y xs
insertSort :: xs:[a] -> IncrL a
insertSort = foldr insert N
```

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Refinement Types

Liquid Types

Abstract Refinements

Abstract Refinements

```
LiquidHaskell = Liquid Types
+ Abstract Refinements
```

Increase expressiveness without complexity

Relate arguments with result, i.e., max
Relate expressions inside a structure, i.e., Vec, List
Express inductive properties, i.e., loop

Conclusion

Refinement Types for Functional Specifications

Verify Specifications

At run Time (Contracts)

- Expressive
- X Run time checks

Statically (Liquid Types)

- X Less Expressive
 Static verification

Abstract Refinements

Increase expressiveness without complexity

Thank you!