

ソフトウェア設計法及び演習 ソフトウェア工学概論及び演習

関澤 俊弦 日本大学 工学部

連絡

- 設計演習2 (来週の7月4日)
 - □出題範囲
 - オブジェクト指向開発 (主にLesson06~Lesson10)
 - 口設問形式
 - WordとAstah*を用いたレポート形式
 - □提出期限
 - ・設計演習2の講義日に案内 (組により提出期限が異なる可能性あり)

復習

- ■オブジェクト指向
 - ロデータ属性、メソッド
 - ロクラス, インスタンス
- ■オブジェクト指向によるシステム分析
- UML

ロユースケース、クラス図、シーケンス図、ステート チャート

- ■オブジェクト指向によるシステム設計
- ■構造化設計
- ■演習

オブジェクト指向によるシステム設計

- ■オブジェクト指向モデリング
 - □分析段階で**業務やユーザの視点**のモデル
 - → 設計段階で**システムの視点**のモデル

オブジェクト指向によるシステム設計

■ 分析段階 (復習: Lesson07, Lesson08)

論理モデルの展開

- ■設計段階
 - □物理モデルへ展開
 - 実装言語やデータベースに合わせた実装用のクラスの表現

例: ATMの論理モデルの展開

■ 論理モデル

p.96

- 物理モデル□ 実装用のクラスの追加
 - 和TM 取引 口座リスト 預入 払戻 顧客リスト 口座 顧客

例: ATMの論理モデルの展開

■ 物理モデルのシーケンス図□ 実装用のクラスの追加

- ■オブジェクト指向によるシステム設計
- ■構造化設計
- ■演習

設計フェーズ

- ■システムの設計フェーズ
 - ロ一般に, 外部設計と内部設計から成る
 - 外部設計: 業務やユーザの視点で捉えた設計
 - 内部設計: 計算機の視点で捉えた設計

構造化設計

- ■構造化設計とは
 - ロ設計段階で効果的な手法

- ■「よく」管理されたプロジェクト
 - ロ設計の各過程が明確
 - □方法論・品質測定基準などが明確

N.

システム設計における問題点

- ■方法論の欠如
 - ロ設計に関する標準的な方法論がない(?!)
- ■プログラム至上主義
 - ロシステム要件や仕様に不明確を残した状態で、 コーディングに入ってしまう
 - 「プログラム」のアウトプットがある安心感
- ■修正作業の増加
 - ロ設計不足による手戻りの増加

設計の「複雑さ」がおおきな原因の1つ

「良い設計」の概念

- ■複雑さの最小化
 - 口分割
 - 口独立性
 - □強度
 - □結合度
 - □階層化
- 用語: モジュール
 - ロシステムの構成要素となるもの
 - □通常,いくつかの機能を集め、まとめる

複雑さの最小化: 分割

- ■システムを構成要素に分割すること
 - ロ問題を局所化し、複雑さを低減
 - □抽象化と階層化が必要

複雑さの最小化: 独立性

- システム/プログラムの構成要素の独立性の こと
 - □他の構成要素との関連を単純化するほど、独立性が高いと言う

複雑さの最小化: 強度

- ■モジュールの強度とは
 - ロモジュールを構成する要素間の関連性の強さ
 - 個々の命令の必然性が高い程, 強度は強いと言う

N.

複雑さの最小化: 結合度

- ■モジュール間の関連性の尺度
 - □他のモジュールへの影響が少ない程, 結合度は 弱いと言う
 - 例: ブラックボックスは結合度が弱い: 入出力のみが分かっていれば扱える

Xから見てYはブラックボックス (Yの内部処理を知る必要がない) (入力Aに対して出力Bが分かればよい)

複雑さの最小化: 階層化

- ■システム/プログラムをいくつかのレベルに階層的に分割すること
 - ロ個々のレベルの理解を容易にする
 - □各レベルは下位のレベルの要素間の関連性を集 約する

構造化設計:要約

- ■構造化設計では、システム/プログラムを;
 - ロ機能的に捉えて分割し(強度を強くし),
 - ロ機能の階層化を図り、
 - □個々の機能間の結合度を弱くする. (機能間の入出力を定義することにより)

- ■オブジェクト指向によるシステム設計
- ■構造化設計
- ■演習

演習9(前回): シーケンス図 - 解答例

- 自動販売機のシーケンス図をastah*で描け
 - ロ イベントや操作呼び出しのシーケンスはシナリオと合っていること
 - □ クラス名はクラス図と一致していること

演習9(前回): ステートチャート - 解答例

- ステートチャートを描け
 - メニュークラスの例:
 - オブジェクトの振舞い (イベントに応じた状態遷移)が 正しく説明できること

状態名	内容
待機状態	初期状態, 金銭投入なし
おつり返却中	金銭投入あり、おつりの返却
受付中	金銭投入あり, 選択可能なボタンの点灯
搬出中	金銭投入あり、搬出待ち
搬出完了	金銭投入なし、搬出済み

演習10: 自動販売機の分析

- ■前回までに作成した自動販売機のクラス図や シーケンス図に合わせて、以下のモデルを修 正し、完成させよ
 - ロユースケース図
 - ロクラス図
 - ロシーケンス図
 - ロステートチャート(1つ以上のクラス)

提出

- ■提出物
 - ロ次のファイルを提出(詳細は後述)
 - 1. Astah*のファイル 1つ
- ■提出先
 - ロポータルサイトの「課題管理」
 - ・提出期限までは再提出可能
- ■提出期限
 - □次回講義の前日 23:59

N.

提出物の詳細: Astah*のファイル

- ファイルフォーマット
 - □ Astah*のプロジェクトファイル
 - 1つのプロジェクトファイルにまとめること (ポータルは1ファイルのみ提出可能)
- ファイル名
 - □"学籍番号_10.asta"
 - 拡張子は .asta とすること

まとめ

- ■オブジェクト指向
 - ロデータ属性、メソッド
 - ロクラス, インスタンス
- ■オブジェクト指向によるシステム分析
- UML
 - ロユースケース、クラス図、シーケンス図、ステート チャート
- ■オブジェクト指向によるシステム設計
- ■構造化設計