7000399

Analysis Assignment 1 Report

Q1.

Code: 1(a,c)

```
C:\Users\mzaka\Desktop\analysis python\Analysis Q.1.py
     Analysis Q.1.py X
        import time
        import matplotlib.pyplot as plt
        def divideNconquer(a, n):
             if n==0:# trivial case or ending clause to recursion
             elif (n%2)==0:# n is even
                 half = divideNconquer(a, n//2)
                 return half * half
             elif (n%2)!=0:# n is odd
                 half = divideNconquer(a, (n-1)//2)
                 return a * half * half
        def naive(a, n):
             result = 1
             for i in range(n):
                 result *= a
             return result
 2θ
        def timeTaken(computingFunction, a, n):
             start_time = time.time()
computingFunction(a, n)
             end time = time.time()
             return (end time - start time)
        nArray = list(range(1, 500002, 100000))
        naiveTimeArray = []
        dNcTimeArray = []
        for n in nArray:
             naiveTime = timeTaken(naive, 2, n)
             dNcTime = timeTaken(divideNconquer, 2, n)
             naiveTimeArray.append(naiveTime)
             dNcTimeArray.append(dNcTime)
        plt.plot(nArray, naiveTimeArray, label='Naive Iterative')
plt.plot(nArray, dNcTimeArray, label='Divide and Conquer')
        plt.xlabel('value of n')
        plt.ylabel('time/seconds')
        plt.legend()
        plt.show()
```

Output:

Output when n Values from 1 to 5*10^5=500,000 used

Output when n Values from 1 to 10^6=1,000,000 used

Conclusion:

#1(b)

#the theoritically expected for the naive method would be O(n) and for the divide&conquer method would be o(log(n))

#1(d)

As for the results from my code and graphs it looks like the naïve iterative algorithm has a time complexity of O(n) while the complexity of the divide&conquer algorithm looks like an O(log(n))

So, in conclusion the results 1(c) are as what we expected theoretically from 1(b).

Q2.

Code:

```
Analysis Q2.py X
                  import time
import matplotlib.pyplot as plt
import random
                 def mergeSort(array):
                          if len(array) > 1:
 midIndex = len(array)//2
leftHalf = array[:midIndex]
rightHalf = array[midIndex:]
                                 mergeSort(leftHalf)
mergeSort(rightHalf)
                                  leftIndex = 0 #left array's index
rightIndex = 0 #right array's index
i = 0 #index to guide the origin array
                                   while leftIndex < len(leftHalf) and rightIndex < len(rightHalf):
    if leftHalf[leftIndex] < rightHalf[rightIndex]:
        array[i] = leftHalf[leftIndex]
        leftIndex += 1</pre>
                                              else:

array[i] = rightHalf[rightIndex]

rightIndex += 1

i += 1
                                   while leftIndex < len(leftHalf):
array[i] = leftHalf[leftIndex]
leftIndex += 1
                                               i += 1
                                   while rightIndex < len(rightHalf):
    array[i] = rightHalf[rightIndex]
    rightIndex += 1
    i += 1</pre>
                 def binarySearch(array, target):#assuming sorted array
  low = 0
  high = len(array) - 1
  pairsArray = []
                while low < high:
    sum = array[low] + array[high]
    if sum == target:
        pairsArray.append((array[low], array[high]))
        low += 1
        high -= 1
        elif sum < target:
        low += 1
        else:</pre>
                                   else:
high -= 1
                         return pairsArray
                 def getPairsEqualsTarget(inputArray, target):
    mergeSort(inputArray) #sort the array then pass it to binarySearch
    pairs = binarySearch(inputArray, target) #binarySearch gets possible pairs
    with sum==target
    return pairs
                 def timeTaken(computingFunction, a, n):
    start_time = time.time()
    computingFunction(a, n)
    end_time = time.time()
    return (end_time - start_time)
                nArray = list(range(1, 10000, 100))
pairsTimeArray = []
for n in nArray:
    S = [random.randint(0, n) for i in range(n)]
    pairsTimeTaken = timeTaken(getPairsEqualsTarget, S, n)
    pairsTimeArray.append(pairsTimeTaken)
                 plt.plot(nArray, pairsTimeArray, label='pairs that summes')
plt.xlabel('value of n')
plt.ylabel('time/seconds')
plt.lapend()
plt.show()
```

Output:

n Values between 1 and 10000

#2(b)

THEORETICALLY merge sort time complexity is o(nlog(n))

AND binary search time complexity is O(log(n))

BUT the modified binary search we created time

complexity is expected to be higher and possibly

equal to O(n) so I will consider it O(n) theoritically

therefore our program using both of these sequentially

would prove time complexity of O(nlog(n))+O(n) which

AND the complexity is the dominant therefore it is theoretically O(nlog(n))

2(c)

The answer corresponds to our expected time complexity which is overall O(nlog(n))