

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Szélessávú Hírközlés és Villamosságtan Tanszék

Önálló laboratórium 2 dolgozat

Szilágyi Gábor

Konzulens: Dr. Bilicz Sándor

Budapest, 2022. október 12.

Tartalomjegyzék

1.	Meglátások	1
	1.1. POD madártávlatból	1
	1.2. Miért a kovarianciamátrixnak vesszük az SVD-jét?	1
2.	Ŀ́TEX próba	1
Hi	ivatkozások	1

1. Meglátások

Itt fogom leírni, hogy mit sikerült eddig felfognom az elméleti háttérből.

1.1. POD madártávlatból

Nemlineáris problémák esetén szokott adódni olyan megoldandó, M-ismeretlenes egyenletrendszer, ahol M a szimulált tér diszkretizált pontjainak a száma $(M\gg 1)$. Az eredeti egyenletrendszer egzakt megoldása helyett egy jelentősen csökkentett N dimenziójú $(N\ll M)$ egyenletrendszert oldunk meg, aminek a megoldása jól közelíti az eredetiét.

1.2. Miért a kovarianciamátrixnak vesszük az SVD-jét?

A redukált modell megalkotásához valamilyen snapshotokat használunk a teljes értékűen leszimulált rendszerből, ez a mátrix \mathbf{M} , melynek az i-edik oszlopa az i-edik snapshothoz tartozó megoldásvektor [2]. A rendszer dinamikájának alacsony dimenziós reprezentációjához az \mathbf{M} mátrix SVD-jét kell felhasználni:

$$\begin{split} \mathbf{M} = & \mathbf{V} \mathbf{\Sigma} \mathbf{W}^{\mathrm{T}} \\ \mathbf{C} = & \mathbf{M}^{\mathrm{T}} \mathbf{M} \\ \mathbf{C} = & \mathbf{W} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{V} \mathbf{\Sigma} \mathbf{W}^{\mathrm{T}} \\ \mathbf{C} = & \mathbf{W} \mathbf{\Sigma}^{\mathbf{2}} \mathbf{W}^{\mathrm{T}} \end{split}$$

2. LATEX próba

Lorem ipsum [1]

Hivatkozások

- [1] Francisco Chinesta, Roland Keunings, Adrien Leygue. The Proper Generalized Decomposition for Advanced Numerical Simulations. Springer Cham, 2014. DOI: 10.1007/978-3-319-02865-1.
- [2] Thomas Henneron and Stéphane Clénet. Model order reduction of non-linear magnetostatic problems based on pod and dei methods. *IEEE Transactions on Magnetics*, 50(2):33–36, 2014.