SUDARSHAN DEVKOTA

sdevkota007.github.io Linkedin: linkedin.com/in/sdevkota/ Github: github.com/sdevkota007

Contact info: sudarshan.devkota93@gmail.com — 407-779-4798

EXPERIENCE

Graduate Teaching Associate (Lecturer for Computer Graphics)

 ${\rm Aug}~2023$ - Present

University of Central Florida, Orlando, FL

- Deliver lectures twice a week
- Develop curriculum and teaching material for a class of 110 students
- Offer personalized guidance and mentoring to students
- Administer and assess exams, programming assignments, and projects.

Graduate Teaching Assistant

Aug 2018 - July 2023

University of Central Florida, Orlando, FL

• Worked as a Teaching Assistant for the following courses: Introduction to Discrete Structures —— Security in Computing —— Introduction to C programming —— Advanced Computer Architecture —— Computer Graphics

Co-op Engineer for Vulkan

May - Aug 2019, 2020, 2021

AMD, Orlando, FL

- Maintain and refine Vulkan driver architecture.
- Validate functionality for existing and new features in the driver code.
- Perform prototyping of functionalities for upcoming features.
- Develop internal tools to improve development efficiency and productivity.

Researcher and Developer

Jan 2017 - Apr 2018

Spark Technology Pvt. Ltd., Kathmandu, Nepal

- Implement theories, algorithms, and mathematical models to research related projects.
- Implement and optimize Deep Neural Network models for machine learning projects.
- Develop technical documentation.

PUBLICATIONS

Efficient neural representation of volumetric data using coordinate-based networks

• S. Devkota and S. Pattanaik. Efficient neural representation of volumetric data using coordinate-based networks. Computer Graphics Forum, 2023

Deep learning based super-resolution for medical volume visualization with direct volume rendering

• S. Devkota and S. Pattanaik. Deep learning based super-resolution for medical volume visualization with direct volume rendering. In *Advances in Visual Computing*, pages 103–114, Cham, 2022. Springer International Publishing

Referenced based color transfer for medical volume rendering

• S. Devkota and S. Pattanaik. Referenced based color transfer for medical volume rendering. In *Advances in Visual Computing*, pages 197–208, Cham, 2020. Springer International Publishing

PROJECTS

Single Shot Detector for Face Detection

Nov 2018 - Dec 2019

• Abstract: Single shot detection (SSD) architecture with Inception V2 as base model is implemented to detect faces in an image. Furthermore, features from these faces are extracted using a different neural network architecture called FaceNet to facilitate for face recognition

SVBRDF Extraction using a Deep Auto-Encoder

Nov 2018 - Dec 2019

 Abstract: A deep Auto-Encoder architecture called U-Net is used to extract the SVBRDF of a surface from a single image. The SVBRDF is estimated using four parameterized maps which are per-pixel normal, specular roughness, specular albedo, and diffuse albedo

A Neural Network Approach for Prediction of DNA Protein Binding

Mar 2019 - Apr 2019

• Abstract: Different neural network architectures are implemented, and their performances are evaluated for the classification of DNA sequences based on whether transcription factors bind to the given DNA sequence.

Deep Learning for Ransomware Detection

• Abstract: A deep learning based method which utilizes static analyses on the captured ransomware packets to distinguish between ransomwares and normal user activity

Simulation of Solar System

• Abstract: As the name implies, it is a basic simulation of the solar system which was programmed in Python with OpenGL as the graphics library.

Real-time Audio Content Recognition Engine (RARE)

• Abstract: RARE is an audio-signal processing engine capable of identifying audio content in any feed (TV, radio, online streams).

Biometric Fingerprint Based Centralized Attendance System

Apr 2017 - Jul 2017

• Abstract: Fingerprint images from fingerprint device sensors at different locations are sent to a centralized server for matching, identification, and registering attendance for an individual.

Fingerprint Classification Using Deep Neural Network

Feb 2017 - Jun 2017

• Abstract: Implemented Transfer Learning for the classification of biometric fingerprints. The final layer of the inception model was re-trained using NIST SD4 dataset and fingerprint images collected from different sources.

Sentiment Analysis Using Recurrent Neural Network

Feb 2017 - Mar 2017

• Abstract: A Recurrent Neural Network classifies a given sentence into either a positive or a negative sentiment.

Nepali Number Recognition Using Convolutional Neural Network

Dec 2016 - Feb 2017

• Abstract: A Convolutional Neural Network classifies a given image containing a Nepali numerical digit into either one of the ten Nepali numbers.

Vehicle Detection and Road Traffic Congestion Mapping Using Image Processing

Dec 2015 - Aug 2016

• Abstract: Vehicle tracking was performed with non-maxima suppression followed by histogram matching. Furthermore, Dijkstra's algorithm was implemented to find the shortest route among a list of alternative routes to avoid vehicle congestion.

Graphical Password Authentication Using Persuasive Cued Click Points for file encryption.

May 2015 - Aug 2015

• Abstract: Implemented AES encryption to provide security to the files and SHA-256 as the hashing technique to generate a fixed-length key for the cipher.

4S-Roadies, A Game Application

Nov 2013 - Jan 2014

• Abstract: 4S Roadies is a 2D, top view, racing game, windows application.

EDUCATION

Ph.D Computer Science

Enrolled: Aug 2018 — Expected: Dec 2023

University of Central Florida, Orlando FL

Final dissertation on "Deep Learning Approaches for Automatic Colorization, Super-resolution, and Representation of Volumetric Data"

B.E. Electronics and Communication

Nov 2012 - Nov 2016 Tribhuvan University, Institute of Engineering,

Kathmandu, Nepal

Final dissertation on "Vehicle Detection and Road Traffic Congestion Mapping Using Image Processing"

SKILLS

- Programming Languages: C, C++, Python, C#, Java, JavaScript, (Assembly languages: 8085, 8086, 8051)
- Frameworks and APIs: WebGL, OpenGL, Vulkan, GLSL, TensorFlow, Keras, PyTorch, Qt, tkinter, CUDA, Hadoop, Django, Flask, Vue JS
- Game engines: Unity
- Version Control: Github, Gitlab, Perforce
- Database: MySQL, MongoDB, PostgreSQL, Redis, Apache Solr
- Working Platform: Linux, Windows
- Cloud technologies: Google Cloud Platform
- Continuous Integration: TeamCity, Jenkins

CERTIFICATIONS

• Deep Learning Specialization (deeplearning.ai) by Professor Andrew Ng

Oct 2017 - Dec 2017 Jun 2017 - Aug 2017

• Machine Learning (coursera) by Professor Andrew Ng, Stanford University

May 2017 - Jul 2017

• M101P MongoDB by Professor Andrew Erlichson, MongoDB University