Predicción de Batería de VE:

BatBattery: El Futuro de las Baterías

Universidad Tecnológica de Bolívar INTELIGENCIA ARTIFICIAL
Nivel Explorador

INTELIGENCIA ARTIFICIAL - BAS-1038-202406

www.utb.edu.co/talento-tech

Integrantes:

Rafael Bustamante Lara Leonidas Llorente López Alfredo Lozada Fuentes Owen Tovar Puello Kaleth Maza Barrio

Contextualización del Problema

Los vehículos eléctricos están transformando la movilidad y la lucha contra el cambio climático.

Sin embargo, la gestión de sus baterías usadas plantea un desafío ambiental urgente.

La falta de infraestructura de reciclaje expone al mundo a riesgos de contaminación y pérdida de recursos.

La Inteligencia Artificial emerge como la clave para prever este problema y anticipar soluciones eficientes.

Con IA, podemos guiar hacia un futuro sostenible y una economía circular que maximice el reciclaje y reutilización.

Sectores para abordar:

- ☐ Transporte
- Ambiente
- Tecnologías de la Información

Pregunta de investigación

¿Cómo puede la Inteligencia Artificial (IA) predecir la cantidad de baterías de vehículos eléctricos (VE) que se desecharán anualmente, considerando factores como el ciclo de vida de las baterías y patrones de uso?

Objetivo General

Desarrollar un modelo predictivo basado en técnicas de Machine Learning (ML) para estimar la cantidad de baterías de vehículos eléctricos al final de su vida útil anualmente

Objetivos Específicos

Desarrollar un modelo predictivo basado en técnicas de Machine Learning (ML) para estimar la cantidad de baterías de vehículos eléctricos al final de su vida útil anualmente

Entrenar un modelo de Machine Learning capaz de predecir el número de baterías de vehículos eléctricos utilizando los datos recopilados

Evaluar y validar el modelo predictivo, midiendo el Error Absoluto Promedio (Mean Absolute Error - MAE) y su precisión

Proponer recomendaciones basadas en las predicciones generadas, con el fin de optimizar la planificación y el diseño de infraestructuras de reciclaje de baterías

Metodología

Fase 1: Recolección y análisis de datos

Fase 2: Desarrollo del modelo de Machine Learning

Fase 3: Validación y evaluación del modelo

Fase 4: Implementación y análisis de resultados

Recolección y Limpieza de Datos

Lectura de los datos

DEPARTAMENTO

Bogota D.C.	21861
Antioquia	12261
Cundinamarca	3994
Valle del Cauca	2733
Norte de Santander	1903
Risaralda	790
Atlantico	704
Caldas	637
Santander	602
Meta	416
Boyaca	371
Tolima	348
Quindio	251
Huila	215

Desarrollo del modelo de Machine Learning

Validación y evaluación del modelo

```
Linear Regression ---> R<sup>2</sup>: 0.6884 ---> MAE: 0.1376
Random Forest ---> R<sup>2</sup>: 0.9821 ---> MAE: 0.0045
XGBoost ---> R<sup>2</sup>: 0.9822 ---> MAE: 0.0044
```

El Modelo con Mejor Rendimiento es: XGBoost con un R2 de 0.9822.

→ Paso 3: Entrenamiento de Tres (3) Modelos para Predecir:

Implementación y análisis de resultados

Implementación y análisis de resultados

	Némana da combina da batanéa man
	Número de cambios de baterías por
	vehículo hasta el año deseado
	Ingresa los valores solicitados para predecir el número de cambios de batería que se esperan hasta el año deseado.
	Tipo de Combustible
	Hîbrido
	Año Inicial de Uso
	2010 - +
	Servicio del Vehículo
	Particular
	Año Deseado
35	2030 - +
	Se espera un total de 2.00 cambios de batería hasta el 2030.

Conclusiones

Regresión Lineal

Linear Regression ---> R2: 0.6884 ---> MAE: 0.1376

Random Forest ---> R2: 0.9821 ---> MAE: 0.0045

XGBoost ---> R2: 0.9822 ---> MAE: 0.0044

Random Forest

El Modelo con Mejor Rendimiento es: XGBoost con un R2 de 0.9822.

XGBoost

¡Muchas Gracias!

TALENTO

Universidad Tecnológica de Bolívar

Owen de Jesus Tovar Puello (<u>owentovar07@gmail.com</u>)
Alfredo Jose Lozada Fuentes (<u>alfredo.lozada@udea.edu.co</u>)
Rafael Enrique Bustamante (<u>raenbula@yahoo.com</u>)
Leonidas Enrique Llorente Lopez (<u>leonidasllorente@gmail.com</u>)
Kaleth Maza Barrios (<u>kalethmb@gmail.com</u>)