模拟测试 1

- 一、装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,求(1).该两件产品都是一等品的概率;
 - (2). 求丢失的一件也是一等品的概率。

二、某产品的次品率为 0.01, 现将每 400 个产品装成一箱。试用中心极限定理估计, 每箱中次品数超过 4 个的概率

三、设二维离散型随机变量(X,Y)的分布列为.

Y	0	1
X		
1	0.4	0.2
2	а	b

若 EXY = 0.8, 求 (1) a,b 的值; (2). Cov(X,Y).

四、已知总体 X 的概率密度函数为

$$f(x) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1\\ 0 & \text{#$\dot{\mathbb{C}}$} \end{cases}, \ (\theta > 0),$$

其中 θ 为未知参数,求 θ 的矩估计量与极大似然估计量

五、设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-x}, & 0 < y < x, \\ 0, & \not\exists : \vec{\Xi}. \end{cases}$$

求(1)边缘概率密度 $f_X(x)$, $f_Y(y)$;

- (2) P(X+Y<1);
- (3) Z = X + Y的概率密度 $f_z(z)$.

六、某种产品的质量 $\xi \sim N(\mu, \sigma^2)$,现从该产品中随机抽取 16 件,测得质量(单位:千克)为:

10.5, 10.6, 10.1, 10.4, 10.5, 10.3, 10.3, 10.2,

10.9, 10.6, 10.8, 10.5, 10.7, 10.2, 10.7, 10.3

通过描述统计计算得	平均	10.475
	标准误差	0.058095
	中位数	10.5
	众数	10.5
	标准差	0.232379
	方差	0.054
	求和	167.6

观测数

在显著性水平 $\alpha = 0.05$ 下,

问: (1). 是否可以认为该产品质量的标准差 $\sigma=0.15$?

(2). 是否可以认为该产品质量的标准差大于等于 0.15?

置信度(95.0%)

16

0.123826

七、选择题:

1、设随机变量X的概率密度为

$$f(x) = \frac{1}{2\sqrt{\pi}} e^{-\frac{(x+2)^2}{4}}, -\infty < x < \infty$$

且 $Y = aX + b \sim N(0,1)$,则在下列各组数中应取

(A)
$$a=1/2$$
, $b=1$. (B) $a=\sqrt{2}/2$, $b=\sqrt{2}$.

(C)
$$a=1/2$$
, $b=-1$. (D) $a=\sqrt{2}/2$, $b=-\sqrt{2}$.

2、设随机变量 X 与 Y 相互独立,其概率分布分别为

(A)
$$P(X = Y) = 0$$
. (B) $P(X = Y) = 0.5$. (C) $P(X = Y) = 0.52$. (D) $P(X = Y) = 1$.

3、在下列函数中,可以作为随机变量的概率密度函数的是

(A)
$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2x^2}}, & x > 0 \\ 0, & \pm \text{id} \end{cases}$$
 (B) $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \pm \text{id} \end{cases}$ (C) $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \pm \text{id} \end{cases}$ (D) $f(x) = \begin{cases} 2e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

(C)
$$f(x) = \begin{cases} \sin x &, & 0 \le x \le \pi \\ 0 &, & \text{ i.e.} \end{cases}$$
 (D) $f(x) = \begin{cases} 2e^{-x} &, & x > 0 \\ 0 &, & x \le 0 \end{cases}$

4、设随机变量 ξ 和 η 相互独立,其分布函数分别为 $F_{\varepsilon}(x)$ 与 $F_{n}(y)$,则

 $\zeta = \min(\xi, \eta)$ 的分布函数 $F_{\zeta}(z)$ 等于 (

(A)
$$\min\{F_{\varepsilon}(z), F_n(z)\}$$

(B)
$$F_{\varepsilon}(z)F_{n}(z)$$

(C)
$$1-(1-F_{\xi}(z))(1-F_{\eta}(z))$$

(C)
$$1 - (1 - F_{\xi}(z))(1 - F_{\eta}(z))$$
 (D) $F_{\xi}(z) + F_{\eta}(z) + F_{\xi}(z)F_{\eta}(z)$

5、若随机变量 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 则下列结论正确的是 ()。

$$(A)(X,Y)$$
一定服从二维正态分布; $(B)X+Y$ 一定服从正态分布;

(B)
$$X + Y$$
一定服从正态分布:

(C)
$$D(X+Y) = \sigma_1^2 + \sigma_2^2$$
;

(D)
$$E(X+Y) = \mu_1 + \mu_2$$

6、设连续随机变量 X 的密度函数是偶函数, F(x) 是 X 的分布函数,则

$$P(\mid X \mid < 16) = ()$$

(B)
$$2F(16)-1$$
.

(A)
$$2-F(16)$$
; (B) $2F(16)-1$; (C) $1-2F(16)$; (D) $2[1-F(16)]$

(D)
$$2[1-F(16)]$$

7、设随机变量 $X_1, X_2, \cdots, X_n (n > 1)$ 是来自总体 X的简单随机样本,且

$$DX = \sigma^2 > 0$$
 $\Leftrightarrow Y = \frac{1}{n} \sum_{i=1}^n X_i$, $\text{M} D(X_1 - Y) = ($

(A)
$$\frac{n-1}{n}\sigma^2$$

(B)
$$\sigma^2$$

(C)
$$\frac{n+1}{n}\sigma^2$$

(A)
$$\frac{n-1}{n}\sigma^2$$
 (B) σ^2 (C) $\frac{n+1}{n}\sigma^2$ (D) $\frac{n}{n-1}\sigma^2$

八、填空题:

1、设事件A与B相互独立,事件B与C互不相容,事件A与C互不相容,且 P(A) = P(B) = 0.5, P(C) = 0.2, 则事件 $A \setminus B \setminus C$ 中仅 C 发生或仅 C 不发生的 概率 $P(\overline{ABC} \cup AB\overline{C}) = \underline{\hspace{1cm}}$

2、设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其它}, \end{cases}$ 现对 X 进行四次独立重复

观察,用Y表示观察值不大于 0.5 的次数,则 $EY^2 =$ ______

3、设某种轮胎的寿命 X 服从正态分布 $N(\mu,\sigma^2)$, 今随机地测量 16 个轮胎的寿 命,得 $\bar{X} = \frac{1}{2}$, $\sum_{i=1}^{16} X_i^2 = 34$. 在置信度 0.95 下, μ 的置信区间为 () .

4 设 X_1, X_2, \cdots, X_{17} 是总体 $N(\mu, 4)$ 的样本, S_{n-1}^2 是样本方差,若 $P(S_{n-1}^2 > c) = 0.01$,

5、设随机变量 ξ 服从正态分布N(0,1),令 $\eta = \xi^2$,则 η 的密度函数 $p(y) = _____$

6、下图为根据变元 X 和 Y 的样本数据用 Excel 进行回归分析的结果:

	3 10C3/H //C/	0 ,	1211 1 2020	, , , ,		, 4 D I H 4 - H > I	• •
	SUMMARY O	UTPUT					
	回归	统计					
	Multiple	0.986636					
	R Square	0.97345					
	Adjusted	0.970131					
	标准误差	0.39284					
	观测值	10					
	方差分析						
		df	SS	MS	F	gnificance	e F
	回归分析	1	45.26541	45.26541	293.3156	1.37E-07	
	残差	8	1.234586	0.154323			
	总计	9	46.5				
	Co	oefficient	标准误差	t Stat	P-value	Lower 95%	Upper 95%
	Intercept	31.95277	1.665972	19.17965	5.66E-08	28.11102	35. 79451
	X Variabl	-6.88196	0.401832	-17.1265	1.37E-07	-7.80858	-5.95533
- 1							

写出变元X 和Y的可决系数(判定系数)_ ,且一元线性回归 方程为 Y=_____

模拟测试 2

- 一、某仪器由 3 个部件组装而成,质量互不影响,各部件的优质品率均为 80%,如果 3 部件都是优质品,则组装后的仪器一定合格: 如果有i个部件不是优质品,则组装后的仪器不合格率为 $(3i-1)\times10\%$: 试求
- (1) 组装后的仪器上有i个部件不是优质品的概率(i=0,1,2,3)和组装后仪器的不合格率:
- (2) 如果有一个不合格的仪器,问它全部由非优质品部件组装的条件概率是多少?

二、设有n个相互独立的电子器件 D_1,D_2,\cdots,D_n ,它们的使用情况如下: D_1 损坏, D_2 立即使用; D_2 损坏, D_3 立即使用, \cdots 。设器件 D_i (i = 1,2, \cdots ,n) 的寿命服从参数为 λ = 0.2(1/小时)的指数分布,令T 为n 个器件使用的总计时间。试用中心极限定理确定至少要多少个器件才能使得T 大于等于 600 小时的概率不小于 0.9772?

三、设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} A, & 0 < x < y < 1 \\ 0, & 其他 \end{cases}$$

- (1) 求常数 A;
- (2) 求边缘密度函数 $f_X(x)$, $f_Y(y)$; 并判断 X,Y 是否独立;
- (3) 求Z=X+Y的概率密度函数.

四. 设总体 X 的概率密度函数为 $f(x,\theta) = \begin{cases} \frac{1}{2-\theta}, & \theta < x < 2 \\ 0, & 其他 \end{cases}$

于 2 的参数, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本,

求: (1) 求 θ 的矩法估计:

(2) 求 θ 的极大似然估计量.

五、已知随机变量 ξ 只能取-2,0,1,2 四个值,概率依次为 $\frac{1}{2}$, $\frac{c}{3}$, $\frac{1}{4}$, $\frac{c}{6}$, 求常数 c ,并计算条件概率 $P(\xi < 1 | \xi > -1)$ 和 $\eta = \xi^2$ 的分布律。

六、经过7次热处理时的淬火温度的测量,得到温度(${}^{\circ}C$):

85.6, 85.9, 85.7, 85.8, 85.7, 86.0, 85.5

假设热处理时的淬火温度服从正态分布 $N(\mu, \sigma^2)$,经过 Excel 数据分析后得到下表,求

- (1) 给定显著性水平 $\alpha = 0.05$,在方差未知的条件下能 否认为淬火温度的均值是否等于 85?
- (2) 求淬火温度的方差 σ^2 置信水平为95%的置信区间.

平均	85. 74285714
标准误差	0.064943722
中值	85. 7
模式	85. 7
标准偏差	0. 171824939
样本方差	0. 02952381
峰值	-0. 638085328
偏斜度	0. 16896417
区域	0.5
最小值	85. 5
最大值	86
求和	600. 2
计数	7

七、选择题:

1、若
$$P(A) = \frac{1}{3}, P(B) = \frac{1}{4}, P(A-B) = \frac{3}{12}, 则 () 成立。$$

(A)
$$P(B-A) = \frac{3}{12}$$
, (B) $P(A \cup B) = \frac{1}{3}$, (C) A, B 不独立 (D) A, B 相互独立

2、已知随机变量 ξ 的密度函数为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$,则 $\eta = \xi$ 的密度函数为

(A)
$$p(y) = \begin{cases} 2\sqrt{y}, & 0 < y < 1, \\ 0, & \text{ 其他,} \end{cases}$$
; (B) $p(y) = \begin{cases} \frac{1}{2}\sqrt{y}, & 0 < y < 1, \\ 0, & \text{ 其他,} \end{cases}$;

(C)
$$p(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & 其他, \end{cases}$$
; (D) $p(y) = \begin{cases} \frac{2}{3}\sqrt{y}, & 0 < y < 1, \\ 0, & 其他, \end{cases}$;

3、随机变量 ξ , η 独立同分布, 均服从二项分布 B(3,p), 则概率 $P\{\xi+\eta<1\}=($)

(A)
$$p^6$$
 (B) $1-p^6$ (C) $1-(1-p)^6$ (D) $(1-p)^6$

4、下列 () 可以成为某个随机变量 ξ 的分布函数 F(x)。

(A)
$$F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$
 (B) $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{2}, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$

(C)
$$F(x) = \begin{cases} 0, & x < 0 \\ 2x, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$
 (D) $F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$

5、 设随机变量 ξ , η 独立同分布, 均服从指数分布 E(2), 则概率 $P\{\min(\xi,\eta)<3\}=($

(A)
$$1-e^{-12}$$
; (B) $1-e^{-8}$; (C) $(1-e^{-4})^3$; (D) e^{-12} ;

6、设 $(X_1, X_2, X_3, X_4, X_5, X_6)$ 是来自总体N(0,4) 的样本,则下列()服从分布 F(2,4)。

(A)
$$\frac{X_1^2 + X_2^2}{X_3^2 + X_4^2 + X_5^2 + X_6^2}$$
; (B) $\frac{2(X_1^2 + X_2^2)}{X_3^2 + X_4^2 + X_5^2 + X_6^2}$;

(C)
$$\frac{4(X_1^2 + X_2^2)}{X_3^2 + X_4^2 + X_5^2 + X_6^2};$$

(D)
$$\frac{X_1^2 + X_2^2}{2(X_3^2 + X_4^2 + X_5^2 + X_6^2)}$$

7、设 X_1, X_2, X_3, X_4 是来自某个总体的简单随机样本,且总体中含有未知参数 μ ,

已知 $\theta_1(X_1, X_2, X_3, X_4)$ 和 $\theta_2(X_1, X_2, X_3, X_4)$ 都是关于 μ 的估计量,在下列各项 中()不是判别估计量优良准则。

- (A) 无偏性 (B) 一致估计
- (C) 有效性
- (D) 线性估计

八、填空题:

- 1、某盒子内装有大小相同的20只球,其中8只红球、7只黑球、5只白球, 从中随机任取3只,则恰好取到2只黑球的概率为____。
- 2、设 $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{2}$, $P(A|B) = \frac{1}{3}$, 则概率 $P(A-B) = _____$ 。
- 3、设(ξ , η)服从二维正态分布 N(1,0,4,1,-0.5) ,则概率 $P\{\xi-\eta \ge 1\}=$ ____。
- 4、设随机变量 ξ 服从正态分布N(0,1),令 $\eta = \begin{cases} \xi, & \xi > 0 \\ 0, & 其他 \end{cases}$,则 $E\eta = \underline{\qquad}$ 。
- 5、已知随机变量 (ξ,η) 的联合密度函数为 $p(x,y) = \begin{cases} 6x, & 0 < x < y < 1 \\ 0, & \text{其他} \end{cases}$,则协方
- 6、为了研究钢线含碳量(单位:%)X对于电阻Y在 $20^{\circ}C$ 下的影响,做了7次试验,得到数据如下:

钢线含碳量 X	0.1	0.3	0.4	0. 45	0. 55	0.7	0. 75
电阻 Y	15	18	19	20	21	22. 6	24

经 Excel 的线性回归计算得到:

SUMMARY OUTPUT						
回归统计						
Multiple R	0. 99598					
R Square	0. 99198					
Adjusted R Square	0. 99038					
标准误差	0. 29353					
观测值	7					
方差分析					_	
	df	SS	MS	F	Significano e F	2
回归分析	1	53. 3063	53. 3063	618. 7089		
残差	5	0. 43079	0.08616			
总计	6	53. 7371			_	
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%
Intercept	13. 8405	0. 26925	51. 4038	5. 27E-08	13. 14838	14. 5326
X Variable 1	13. 1435	0. 52841	24.8739	1.96E-06	11. 7852	14. 5018

可以得到相关系数为______,且一元线性回归方程为_____

模拟测试 3

- 一、某学生的 ipad 掉了,落在宿舍中的概率为 50%,在这种情况下找到的概率为 98%;落在教室里的概率为 35%,在这种情况下找到的概率为 60%;落在路上的概率为 15%,在这种情况下找到的概率为 10%,求
- (1) 该学生找到 ipad 的概率;
- (2) 已知 ipad 被找到,求 ipad 是在宿舍中被找到的概率.

二、设 (ξ,η) 的联合分布律;

η ξ	0	1	2			
0	а	b	$\frac{1}{9}$			
1	$\frac{2}{9}$	с	0			
2	$\frac{1}{9}$	0	0			

,其中a,b,c为常数,已知 $E\xi = E\eta = \frac{5}{9}$,求:

- (1) 求常数 a,b,c;
- (2) 求 ξ 和 η 的边缘分布律,并判断 ξ 与 η 是否独立 (需说明理由);
- (3) 求 $\zeta = \max(\xi, \eta)$ 的分布律和分布函数 $F_{\zeta}(z)$;
- (4) 求 $cov(\xi,\eta)$ 。

三、设二维随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} A e^{-x-y} & 0 < y < x \\ 0 & \text{其他} \end{cases} .$$

- (1) 求常数 A;
- (2) 求边缘密度函数 $f_X(x)$, $f_Y(y)$; 并判断 X,Y 是否独立;
- (3) 求Z=X+Y的概率密度函数。

四、(本题要求用中心极限定理近似计算)一复杂系统,由多个相互独立作用的部件组成,在运行期间,每个部件损坏的概率都是0.1,为了使整个系统可靠地工作,必须至少有88%的部件起作用。为了使整个系统的可靠性达到0.99,整个系统至少需要由多少个部件组成?(提示:系统至少由500以上各部件)

五、某车间生产的螺杆直径服从正态总体 $N(\mu, \sigma^2)$, 今随机地从中抽取 5 支测得直径为(单位: mm)

22.3, 21.5, 20.0, 21.8, 21.4, 经过 Excel 中"描述统计"的计算后得到:

元均 示准误差 0. 383406 (1)当方差 σ^2 未知时,问在显著性水平 $\alpha = 0.05$ 中值 21. 5 情况下,能否认为螺杆直径等于 20? の. 857321 (2)在已知方差 $\sigma^2 = 0.64$ 的条件下,求均值 μ 的置 0. 735 信水平为 95%的置信区间.

平均	21.4
标准误差	0. 383406
中值	21.5
标准偏差	0.857321
样本方差	0.735
区域	2.3
最小值	20
最大值	22.3
求和	107
计数	5
最大(1)	22.3
最小(1)	20
置信度(95.0%)	1.064507
·	

六、选择题:

1、如果下列()条件成立,则事件A,B互不相容。

(A)
$$A \subset (\Omega - B)$$

(B)
$$A \subset B$$

$$(C) P(AB) = 0$$

(A)
$$A \subset (\Omega - B)$$
 (B) $A \subset B$ (C) $P(AB) = 0$ (D) $P(AB) = P(A)P(B)$

2. 已知随机变量 ξ 的概率密度为 $p_{\xi}(x) = \begin{cases} \frac{3}{2}x^2, & -1 < x < 1 \\ 0. & 其他 \end{cases}$,则 $\eta = \xi^2$ 的概率密

度为(

$$(A) \quad p_{\eta}(y) = \begin{cases} \frac{3}{2}y^{\frac{1}{2}} & -1 < y < 1 \\ 0 & \text{ 其他} \end{cases} , \qquad (B) \quad p_{\eta}(y) = \begin{cases} \frac{3}{2}y & -1 < y < 1 \\ 0 & \text{ 其他} \end{cases} ,$$

$$(C) \quad p_{\eta}(y) = \begin{cases} \frac{3}{2}y^{\frac{1}{2}} & 0 < y < 1 \\ 0 & \text{ 其他} \end{cases} , \qquad (D) \quad p_{\eta}(y) = \begin{cases} \frac{3}{2}y & 0 < y < 1 \\ 0 & \text{ 其他} \end{cases} ,$$

(B)
$$p_{\eta}(y) = \begin{cases} \frac{3}{2}y & -1 < y < 1 \\ 0 & 其他 \end{cases}$$

(C)
$$p_{\eta}(y) = \begin{cases} \frac{3}{2}y^{\frac{1}{2}} & 0 < y < 1 \\ 0 & 其他 \end{cases}$$

(D)
$$p_{\eta}(y) = \begin{cases} \frac{3}{2}y & 0 < y < 1 \\ 0 & 其他 \end{cases}$$

3、已知随机变量 ξ 服从参数为 1 的指数分布E(1),随机变量 η 服从参数为 2 的 指数分布 E(2) ,则概率 $P\{\min(\xi,\eta) \leq 1\} = ($

(A)
$$1 - e^{-3}$$

(B)
$$e^{-3}$$

(C)
$$(1-e^{-1})(1-e^{-2})$$

(A)
$$1-e^{-3}$$
 (B) e^{-3} (C) $(1-e^{-1})(1-e^{-2})$ (D) $1-(1-e^{-1})(1-e^{-2})$

4. 随机变量 ξ 的分布函数为 F(x), 密度函数为 p(x), 则可以成为某个随机变量 的概率密度函数的是()。

(B)
$$p(x)F(x)$$

(B)
$$2p(x)F(x)$$

(C)
$$3p(x)F(x)$$

(B)
$$2p(x)F(x)$$
 (C) $3p(x)F(x)$ (D) $p^2(x)F(x)$

5、 设P(B|A) = 0.4,P(A-B) = 0.3,若P(B-A) = () ,则事件A,B相互 独立

6. 设总体 ξ 和 η 相互独立,分别服从N(0,4)和N(0,16), X_1,X_2,\cdots,X_6 和 Y_1,Y_2,\cdots,Y_6 分别是 ξ 和 η 的样本, 当 (a,b) = () 时, 统计量 $\frac{1}{a}\sum_{i=1}^{6}X_{i}^{2}+\frac{1}{b}\sum_{i=1}^{6}Y_{i}^{2}$

服从 χ^2 (12)的分布。

$$(B)$$
 $(1,4)$

$$(C)$$
 (4.8)

7、设总体 $\xi \sim N(\mu, \sigma^2)$, 其中 μ 是已知参数, $\sigma^2 > 0$ 是未知参数, $(X_1, X_2, ..., X_n)$ 是从总体中抽出的一组样本,则 σ^2 的极大似然估计值 $\hat{\sigma}^2$ =()。

(A)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (B) $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

(B)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

(C)
$$\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\mu)^2$$
 (D) $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$

(D)
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})$$

8、如图为根据变元 X 与 Y 的样本数据用 EXCEL 进行回归分析的结果

SUMMARY OUT	PUT	1				
回归统	计	66 67 -9				,
Multiple R	0.9584					
R Square	0.9185					
Adjusted R	0.8913					
标准误差	1					
观测值	5					
方差分析						10
	df	SS	MS	F	Significance F	
回归分析	1	33.8	33.8	33.8	0.010131424	1
残差	3	3	1			
残差 总计	4	36.8				
Cod	efficier	标准误差	t Stat	P-value	Lower 95%	Upper 95%
T	1 05	0.001200	1 20075	0.0506	1 610610222	4 110610

Intercept | 1.25 | 0.901388 | 1.38675 | 0.2596 | -1.618618333 | 4.118618 X Variable 1.625 0.279508 5.81378 0.01013 0.735479216 2.514521

则变元 X 与 Y 的样本相关系数和回归方程分别为 ()

- (A) 0.9584, Y=1.25+1.625X; (B) 0.9185, Y=1.25+1.625X; (C) 0.9584, Y=1.625+1.25X; (D) 0.9185, Y=1.625+1.25X.

七、填空题:

1 、 设 二 维 随 机 变 量 (ξ,η) 的 联 合 概 率 密 度 为

$$p(x,y) = \begin{cases} \frac{2}{\pi} & x^2 + y^2 \le 1 \exists y > 0 \\ 0 & \text{其他} \end{cases}, 则概率 P\{\xi \ge \eta\} = \underline{\hspace{1cm}}.$$

- 2、设随机变量 ξ 服从均匀分布U(-1,3),则 ξ 的绝对值 ξ]的数学期望 $E \mid \xi \mid = \underline{\hspace{1cm}}_{\circ}$
- 3、设随机变量 ξ 的概率分布为

ζ	-1	0	1	2
P	0.2	0.4	0.3	0.1

若 令 $\eta = \xi^2$, 则 二 维 随 机 变 量 (ξ, η) 在 (0.5, 1) 处 的 分 布 函 数 $F(0.5,1) = _{\circ}$

- 4、设随机变量 ξ , η 相互独立, $\xi \sim B(2,0.5)$, $\eta \sim B(4,0.5)$,则
- 5、已知随机变量 ξ,η 服从相同的分布,且 ξ,η 的相关系数为 0.5,用切比雪夫 不等式估计,得到概率 $P(|\xi-\eta| \geq \sqrt{6D\xi}) \leq \underline{\hspace{1cm}}$ 。