

Ce qu'on va voir

- Introduction aux réseaux de neurones et à l'apprentissage profond
- 2. Fonctionnement et protocole d'entraînement des ANN
- 3. Evaluation des réseaux de neurones
- 4. Réseaux de neurones à Convolution (CNN)
- 5. Réseaux antagonistes génératifs (GAN)

Types d'apprentissage Supervisé Non-Supervisé **Autres** Donnée «étiquetées» Donnée «non-étiquetées» Semi-supervisé, «labelisées» «annotées» Par renforcement, x_1, x_2, \ldots, x_N $x_1 \rightarrow y_1$; predire (\hat{y}_1) $x_2 \rightarrow y_2$; predire (\hat{y}_2) Regrouper les données selon leurs similarité $x_N \to y_N$; predire (\hat{y}_N) Classification/Régression Regroupement/Clustering

Applications

7

Generative Adversial Network (GAN)

Karras, Tero, et al.
"Progressive
growing of gans for
improved quality,
stability, and
variation." arXiv
preprint
arXiv:1710.10196 (2
017).

11

Neurone artificiel: Perceptron

- Le principe repose sur la sommation des entrées pondérées et le calcul du seuil d'activation.
- Un perceptron implémente la fonction linéaire
- suivante:

• $\Rightarrow \mathcal{Y} = f(\mathcal{W}.\mathcal{X} + b)$

où
$$f(v) = \begin{cases} 1 & \text{si } v \ge 0 \\ 0 & \text{si } v < 0 \end{cases}$$

Perceptron vs. Adaline

Adaline.

En commun:

output

- Classifieur binaire (sortie 1/0)
- Séparation linaire entre les deux classes
- Apprentissage itératif.

Différence: processus d'apprentissage

- Perceptron utilise des valeurs de classe 1/0 (valeurs discrètes) pour calculer l'erreur.
- Adaline utilise des valeurs linéaires (valeurs continues) pour calculer l'erreur.

17

• Classification: Prédire y (valeur discrète

• $f(v) = \begin{cases} 1 & \text{si } v \geq 0 \\ 0 & \text{si } v < 0 \end{cases}$

- **Régression:** Approximer y (valeur continue, probabilité)
- Fonction d'activation: fonction « sigmoid »
- $f(v) = \frac{1}{1+e^{-v}}$

18

Entrées

Poids

Que peut implémenter un perceptron?

· Les fonctions logiques:

<i>x</i> ₁	x_2	x_1 ET x_2	x_1 OU x_2	NON x ₁
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

19

Perceptron: le NON et le ET logiques

- Un perceptron modélise le NON logique par:
 - $\circ \ \ y = f(w_1x_1 + b)$
 - o Une entrée x_1 et une sortie y
 - o Pour $w_1 = -1$ and b = 0.5
 - $\circ \quad \Rightarrow y = f(-1 \times x_1 + 0.5)$
 - o NON(1)=0; NON(0)=1
- Un perceptron le ET logique par:
 - o $y = f(w_1x_1 + w_2x_2 + b)$
 - o Deux entrées x_1, x_2 , une sortie y
 - o pour $w_1 = 1$, $w_2 = 1$, b = -1.5
 - $\circ \quad \Rightarrow y = f(x_1 + x_2 1.5)$
 - \circ ET(1,1) =1, ET(0,1)=0

Problème du XOR logique

- Problème:
- Non separable linéairement
- Solution:
- → Besoin d'une couche intermédiaire

x_1	x_2	$x_1 X O R x_2$		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

21

Problème du XOR logique

23

Réseaux de neurones

- Type de couche:
- Couche d'entrée: les données
- Couches cachées: couches intermédiaires, nécessaires pour des calculs complexes non séparables linéairement.
- Couche de sortie: étiquettes des classes.

Références

- https://medium.com/analytics-vidhya/brief-history-ofneural-networks-44c2bf72eec
- https://www.youtube.com/watch?v=kNPGXgzxoHw
- https://towardsdatascience.com/perceptrons-logical-functions-and-the-xor-problem-37ca5025790a
- https://medium.com/@lucaspereira0612/solving-xor-with-a-single-perceptron-34539f395182
- https://www.udemy.com/course/deeplearning/