• •

search

검색

- Total | 1,674,254
- Today | 937
- Yesterday | 1,831

통계2014.12.17 19:36

두 모분산의 가설검정 문제풀이

두 모분산의 가설검정 문제풀이를 해보자. 일단 두 모분산의 가설검정에서는 F분포를 사용하는데, 검정통계량과 기각역 구하는 데 사용한다. 그리고 기각역은 아래와 같은데, 왼쪽 기각역을 구할 때는 1에 나눠줘야 하고, 자유도가 서로 바뀐다는 점을 조심해야 한다. 그리고 양측검정에서는 α/2를 사용한다. 그럼 몇 가지 문제를 풀어보자.

1. 동일한 제품을 생산하는 기계1과 기계2가 있고, 이 두 기계에서 생산한 제품의 분산은 같은 것으로 알려져 있다. 하지만 최근에는 기계1에서 생산한 제품의 불량이 많아져서, 일부에서는 기계1에서 생산한 제품의 분산이 더 큰 것 같다는 의견이 나오고 있다. 이에 실상을 파악하기 위해 각각 표본 6개와 12개를 뽑아 조사하였더니, 표본분산은 각각 30과 8이 나왔다고 한다. 이때 기계1에서 생산한 제품의 분산이 더 크다고 할 수 있는지 유의수준 10%에서 검정하시오.

대립가설로 기계1에서 생산한 제품의 분산이 더 큰 것 같다는 의견이 나오므로, 대립가설은 σ_1^2 이 더 "크다"로 설정한다. 그리고 검정통계량을 구해보면 3.75가 나온다.

$$= \frac{s_1^2}{s_2^2}$$

$$H_0: \ \sigma_1^2 \le \sigma_2^2$$

$$H_1: \ \sigma_1^2 > \sigma_2^2$$

$$= \frac{30}{8}$$

$$= 3.75$$

그럼 기각역을 구해보자. 일단 분자의 자유도 n_1 -1은 6-1=5이고, 분모의 자유도 n_2 -1은 12-1=11이다. 그리고 유의수준 α =0.1로, 해당 F값을 F분포표 $\underline{(표)}$ 에서 찾으면 2.45가 나온다. 그래서 기각역은 2.45이다.

$\alpha = 0.1$

v_2	1	2	3	4	<u>(5)</u>	6
1	39.86	49.50	53.59	55.83	57.24	58.20
2	8.53	9.00	9.16	9.24	9.29	9.33
3	5.54	5.46	5.39	5.34	5.31	5.28
4	4.54	4.32	4.19	4.11	4.05	4.01
5	4.06	3.78	3.62	3.52	3.45	3.40
6	3.78	3.46	3.29	3.18	3.11	3.05
7	3.59	3.26	3.07	2.96	2.88	2.83
8	3.46	3.11	2.92	2.81	2.73	2.67
9	3.36	3.01	2.81	2.69	2.61	2.55
10	3.29	2.92	2.73	2.61	2.52	2.46
(11)	3.23	2.86	2.66	2.54	2.45	2.39
12	3.18	2.81	2.61	2.48	2.39	2.33
13	3.14	2.76	2.56	2.43	2.35	2.28
14	3.10	2.73	2.52	2.39	2.31	2.24
15	3.07	2.70	2.49	2.36	2.27	2.21
16	3.05	2.67	2.46	2.33	2.24	2.18

결론을 내면, 검정통계량이 기각역 안에 있으므로 귀무가설이 기각(탈락)된다. 그러므로 기계1에서 생산한 제품의 분산이 더 크다고 할 수 있다.

2. 동일한 것을 분석하는 실험1과 실험2가 있고, 두 실험의 분산은 동일한 것으로 알려져 있다. 그런데 최근에는 실험1의 결과가 더 정확하게 나와서, 실험1의 분산이 더 작은 것 같다는 의견이 나오고 있다. 이에 실제로 그러한지를 파악하기 위해 각각 16번과 7번의 실험을 하였더니, 표본분산은 각각 21과 25가 나왔다고 한다. 이때실험1의 분산이 더 작다고 할 수 있는지 유의수준 5%에서 검정하시오.

대립가설로 실험1의 분산이 더 작다는 의견이 나오므로, 대립가설은 σ_1^2 이 더 "작다"로 설정한다. 그리고 검정 통계량을 구해보면 0.84가 나온다.

3 of 13 19. 4. 29. 오후 3:53

$$= \frac{s_1^2}{s_2^2}$$

$$H_0: \ \sigma_1^2 \ge \sigma_2^2$$

$$H_1: \ \sigma_1^2 < \sigma_2^2$$

$$= \frac{21}{25}$$

$$= 0.84$$

그럼 기각역을 구해보자. 일단 분자의 자유도 n₁-1은 16-1=15이고, 분모의 자유도 n₂-1은 7-1=6이다. 그런데 왼쪽 좌표를 구해야 하므로 자유도가 서로 바뀐다. 그래서 왼쪽 기각역의 자유도는 (6, 15)이다. 그리고 유의수 준 α=0.05로, 해당 값을 표에서 찾으면 2.79가 나온다. 그런데 1에다가 나눠줘야 하므로 1/2.79=0.36이 된다. 그래서 기각역은 0.36이다.

$$\alpha = 0.05$$

v_2	1	2	3	4	5	6
1	161.4	199.5	215.7	224.6	230.2	234.0
2	18.51	19.00	19.16	19.25	19.30	19.33
3	10.13	9.55	9.28	9.12	9.01	8.94
4	7.71	6.94	6.59	6.39	6.26	6.16
5	6.61	5.79	5.41	5.19	5.05	4.95
6	5.99	5.14	4.76	4.53	4.39	4.28
7	5.59	4.74	4.35	4.12	3.97	3.87
8	5.32	4.46	4.07	3.84	3.69	3.58
9	5.12	4.26	3.86	3.63	3.48	3.37
10	4.96	4.10	3.71	3.48	3.33	3.22
11	4.84	3.98	3.59	3.36	3.20	3.09
12	4.75	3.89	3.49	3.26	3.11	3.00
13	4.67	3.81	3.41	3.18	3.03	2.92
14	4.60	3.74	3.34	3.11	2.96	2.85
15	4.54	3.68	3.29	3.06	2.90	2.79
16	4.49	3.63	3.24	3.01	2.85	2.74

결론을 내면, 검정통계량이 채택역 안에 있으므로 귀무가설이 채택된다. 그러므로 <mark>실험1의 분산이 더 작다고 할</mark>수 없다.

두 모집단을 검정할 때는, 위 문제처럼 좌측검정은 별로 필요 없다. 왜냐하면 집단의 순서만 바꾸면 우측검정이

되기 때문이다.(여기를 <u>참고</u>하면 되는데, 맨 밑에 있다.) 그리고 F분포는 그 특성상 왼쪽좌표 구하는 법이 짜증 난다. 그래서 좌측검정보다는 우측검정<mark>만</mark> 하는 것이 정신건강에 좋다. 하지만 위의 문제처럼 나올 경우에는 좌측 검정을 해야 한다.

3. 집단1과 집단2의 분산은 동일한 것으로 알려져 있다. 하지만 최근에는 두 집단의 분산이 서로 다른 것 같다는 의견이 나왔다. 그래서 실제로 어떠한지를 알아보기 위해 각각 표본 4개와 6개를 뽑아 조사하였더니, 표본분산은 각각 15와 10이 나왔다고 한다. 이때 두 집단의 분산이 서로 다르다고 할 수 있는지 유의수준 1%에서 검정하시오.

대립가설로 두 집단의 분산이 서로 다른 것 같다는 의견이 나왔는데, 어느 한 집단의 분산이 더 작은지 큰지는 거론되지 않았다. 그래서 대립가설은 "같지 않다"로 설정한다. 그리고 검정통계량을 구해보면 1.5가 나온다.

$$= \frac{s_1^2}{s_2^2}$$

$$H_0: \ \sigma_1^2 = \sigma_2^2$$

$$H_1: \ \sigma_1^2 \neq \sigma_2^2$$

$$= \frac{15}{10}$$

$$= 1.5$$

그럼 기각역을 구해보자. 일단 양측검정이므로 유의수준 α 가 둘로 나뉘고, 그래서 $\alpha/2=0.005$ 의 확률표를 사용해야 한다. 그리고 왼쪽 기각역의 자유도는 (5,3)이고, 오른쪽 기각역의 자유도는 (3,5)이다. 해당 값을 표에서

찾으면 각각 45.39와 16.53이 나오는데, 왼쪽 좌표는 1에다가 나눠줘야 하므로 1/45.39=0.02가 된다. 그래서 기각역은 0.02와 16.53이다.

$\alpha = 0.005$

v_1	1	2	3	4	<u>©</u>	6
1	16211	20000	21615	22500	23056	23437
2	198.5	199.0	199.2	199.2	199.3	199.3
3	55.55	49.80	47.47	46.19	45.39	44.84
4	31.33	26.28	24.26	23.15	22.46	21.97
5	22.78	18.31	16.53	15.56	14.94	14.51
6	18.63	14.54	12.92	12.03	11.46	11.07

$\alpha = 0.005$

v_1	1	2	3	4	5	6
1	16211	20000	21615	22500	23056	23437
2	198.5	199.0	199.2	199.2	199.3	199.3
3	55.55	49.80	47.47	46.19	45.39	44.84
4	31.33	26.28	24.26	23.15	22.46	21.97
(S)	22.78	18.31	16.53	15.56	14.94	14.51
6	18.63	14.54	12.92	12.03	11.46	11.07

결론을 내보면, 검정통계량이 채택역 안에 위치하므로 귀무가설이 채택된다. 그러므로 두 집단의 분산은 서로 같다고 할 수 있다.

양측검정도 좌측검정과 마찬가지로 왼쪽 기각역을 구해야 하므로, 계산하기가 짜증난다. 그래서 이런 경우에는 표본통계량을 바탕으로 가설을 재정립하는 것도 한 방법이다. 그러니까 처음에는 어느 집단이 더 큰지 작은지는 모르지만, 표본을 뽑아보면 어느 집단이 더 큰지를 알 수가 있다. 그래서 위의 문제도 집단1의 표본분산이 15로 더 크기 때문에 가설을 재정립하여, 대립가설을 σ_1^2/σ_2^2 으로 세운 후 우측검정을 할 수도 있다. 그리고 이렇게 단측검정을 하는 것이, 양측검정을 하는 것보다 검정력이 더 좋다.(양측검정은 기각역이 양쪽으로 나뉘기 때문에, 단측검정에 비해서 검정력이 떨어진다.) 하지만 위의 문제처럼 나올 경우에는 양측검정을 해야 한다.