МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники им. В.А. Котельникова Кафедра формирования и обработки радиосигналов Дисциплина:

Формирование радиосигналов

ОТЧЕТ

По лабораторной работе №5 «ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ»

Группа: ЭРэ-18-21

Студент: Юшин В.А.

Преподаватель: Плутешко А.В.

Дата: 25.02.2025

Содержание

Лабораторное задание	3
1. Измерение характеристики ФД	3
2. Измерение характеристики ГУН	3
3. Измерение полосы захвата	4
4. Измерение переходных процессов по частоте	5
5. Измерение переходных процессов по фазе	8
6. Обработка результатов измерений	. 10
Вывод	. 13
Домашняя подготовка	15

Лабораторное задание

1. Измерение характеристики ФД

Подадим колебание от внешнего генератора на вход опорной частоты. Форма напряжения — синусоидальная. Частота 8 МГц. Средний уровень 1,6 В. Размах от минимума до максимума 3,0 В. Настроим средний уровень так, чтобы величина +Duty осциллограммы Uon была $50 \pm 2\%$. Подберем f_{on} так, чтобы частота биений на выходе Φ Д была в диапазонеот 40 до 60 кГц.

Pисунок $1 - \Gamma$ рафик зависимости выходного напряжения $\Phi \mathcal{A}$ от времени (реальная характеристика)

2. Измерение характеристики ГУН

Установим частоту равной 8 МГц. Замкнем кольцо ФАПЧ. Изменяя опорную частоту с шагом ± 100 кГц, заполним таблицу 1. В таблицу будем вносить только значения, соответствующие режиму синхронизма.

Таблица 1 – Характеристика управления частотой ГУН

f _{оп} , МГц	6.8	6.9	7	7.1	7.2	7.3	7.4
$f_{\text{гун}}$, М Γ Ц	108.8	110.4	112	113.6	115.2	116.8	118.4
Еупр, В	0.363	0.805	1.21	1.58	1.94	2.28	2.614

Таблица 1 (Продолжение) – Характеристика управления частотой ГУН

	(11)			<u> </u>		10.01010111	*
f _{оп} , МГц	7.5	7.6	7.7	7.8	7.9	8	8.1
$f_{\text{гун}}$, М Γ Ц	120	121.6	123.2	124.8	126.4	128	129.6
Еупр, В	2.94	3.26	3.57	3.87	4.15	4.45	4.74

Для определения $f_{\text{гун}}$ воспользуемся формулой:

$$f_{\mathrm{O\Pi}} = f_{\mathrm{Д}} = \frac{f_{\mathrm{\Gamma YH}}}{16} \rightarrow f_{\mathrm{\Gamma YH}} = f_{\mathrm{O\Pi}} \cdot 16$$

По полученным данным из таблицы 1 построим характеристику управления частотой ГУН.

Рисунок 2 - Характеристику управления частотой ГУН

3. Измерение полосы захвата

Расчет $K_{\text{гун}}$ по двум точкам характеристики в окрестности $E_{\text{упр}} = 2.5 \text{ B}$:

$$K_{\text{гун}} = \frac{f_{\text{гун2}} - f_{\text{гун1}}}{E_{\text{упр2}} - E_{\text{упр1}}}$$

$$K_{\text{гун}} = \frac{(118.4 - 116.8) \cdot 10^6}{2.614 - 2.28} = 4.79 \text{ МГц/В}$$

Включим ЧМ модуляцию. Форма модуляции — треугольная. Частота модуляции 500 Γ ц. Установим центральную частоту и девиацию так, чтобы частота менялась от F_1 до F_2 . Рассчитаем пределы изменения частоты.

$$f_1 = f_{\text{оп мин}} - (E_{\text{упр мин}} + 0.1) \cdot \frac{K_{\text{гун}}}{16} = 6.8 \cdot 10^6 - (0.363 + 0.1) \cdot \frac{4.79 \cdot 10^6}{16}$$

$$= 6.661 \,\text{М}\Gamma\text{ц}$$

$$f_2 = f_{\text{оп макс}} - \left(5.1 - E_{\text{упр макс}}\right) \cdot \frac{K_{\text{гун}}}{16} = 8.1 \cdot 10^6 - (5.1 - 4.76) \cdot \frac{4.79 \cdot 10^6}{16}$$

$$= 7.998 \text{ М}\Gamma\text{ц}$$

Сохраним осциллограмму $E_{\varphi_{\!\!\!/}}$ для положений переключателя 4 и 6 (рисунок 10 - 11).

4. Измерение переходных процессов по частоте

Настроим ЧМ модуляцию. Форма модуляции — меандр. Частота модуляции 5 кГц. Девиацию частоты выберем, воспользовавшись следующей формулой:

$$\frac{K_{\text{гун}}}{16} \cdot 0.5 = \frac{4.79 \cdot 10^6}{16} \cdot 0.5 = 0.15 \text{ МГц}$$

Центральную частоту генератора оставим такой же, как и в предыдущем пункте.

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с изменением формы переходных процессов $E_{\varphi_{\mathcal{I}}}(t)$ при увеличении постоянной времени фильтра.

Сохраним осциллограммы $E_{\varphi д}(t)$ и $E_{y n p}(t)$ для нескольких положений переключателей.

Рисунок 3 — Осциллограмма переходных процессов по частоте $E_{\phi \rm A}(t)$ и $E_{\rm упр}(t)$ при положении переключателя 1, управляющее напряжение (красный), напряжение на выходе $\Phi \mathcal{I}$ (синий), теоретическая зависимость (зеленый)

Рисунок 4 — Осциллограмма переходных процессов по частоте $E_{\phi \mu}(t)$ и $E_{y \pi p}(t)$ при положении переключателя 3, управляющее напряжение (красный), напряжение на выходе $\Phi \mathcal{I}$ (синий), теоретическая зависимость (зеленый)

Pисунок 5 — Осциллограмма переходных процессов по частоте $E_{\varphi Д}(t)$ и $E_{y \Pi p}(t)$ при положении переключателя 5, управляющее напряжение (красный), напряжение на выходе $\Phi Д$ (синий), теоретическая зависимость (зеленый)

5. Измерение переходных процессов по фазе

Выключим выход внешнего генератора и выключим модуляцию. Настроим внешний генератор. Форма напряжения — меандр. Частота 5 кГц. Средний уровень 1,75 В. Размах от минимума до максимума 3,5 В. Выберем в качестве опорного колебание от внутреннего опорного генератора 8МГц. Включим выход внешнего генератора.

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с изменением формы переходных процессов $E_{\varphi_{\overline{A}}}(t)$ при увеличении постоянной времени фильтра. Сохраним осциллограммы $E_{\varphi_{\overline{A}}}(t)$ и $E_{y_{\overline{A}}}(t)$ для нескольких положений переключателей.

Рисунок. 6 — Осциллограмма переходного процесса по фазе $E_{\phi Д}(t)$ и $E_{y п p}(t)$ при положении переключателя 1, управляющее напряжение (красный), напряжение на выходе $\Phi Д$ (синий), теоретический сигнал (зеленый)

Рисунок 7 — Осциллограмма переходного процесса по фазе $E_{\phi Д}(t)$ и $E_{yпp}(t)$ при положении переключателя I, управляющее напряжение (красный), напряжение на выходе $\Phi Д$ (синий), теоретический (зеленый)

Pисунок 8- Oсциллограмма $E_{\rm \phi g}(t)$ и $E_{
m ynp}(t)$ при положении переключателя 3

6. Обработка результатов измерений

Построим характеристику ФД:

Рисунок 9 – Характеристика ФД

Заполним таблицу, используя для расчета дифференциальные параметры характеристик в точках, соответствующих $E_{\phi д} = E_{ynp} = 2.5 \text{ B}$.

Таблица 2 – Величины, определяющие поведение кольца ФАПЧ

К _{фд} , В/рад	$K_{\text{гун}}$, М Γ ц/В	Т _{фапч} , мкс
1.59	4.79	0.334

Значение $K_{\varphi_{\pi}}$ и $T_{\varphi_{\alpha\Pi^{\Psi}}}$ определим по следующим формулам:

$$K_{\Phi A}=rac{E_{\Pi}}{\pi}=rac{5}{\pi}=1.59\ B/рад$$
 $T_{\Phi^{\Pi^{\Pi^{\Pi}}}}=rac{P}{2\pi\cdot K_{\Gamma V H}\cdot K\Phi_{A}}=rac{16}{2\pi\cdot 4.79\cdot 10^{6}\cdot 1.59}=0.334\ {
m MKC}$

Осциллограммы $E_{\varphi_{\overline{A}}}(t)$ были сняты при увеличении постоянной времени фильтра для положений 4 и 6. Рассчитаем значения постоянной времени цепи для этих положений и сведем их в таблицу 3:

$$\tau_{\Phi^{\text{HY}}} = R_1 \cdot C_1$$

Таблица 3 — Номиналы элементов RC-фильтра и рассчитанные значения постоянной времени ФНЧ τ .

Номер	R_1 , OM	\mathcal{C}_1 , п Φ	$ au_{ m \phi H \Psi}$, мкс	
переключателя	11, 0.11	01, 11	Фич,	
4	300	2200	0.66	
6	300	6800	2.04	

Pисунок $10-\Gamma$ рафик зависимости $E_{\phi \mathrm{J}}(t)$ при положении переключателя 4

Pисунок $11-\Gamma$ рафик зависимости $E_{\Phi \mathtt{J}}(t)$ при положении переключателя 6

По приведенным графикам на рисунках 10 и 11 определим значения полосы захвата и полосы синхронизма для положений переключателей 4 и 6 соответственно:

$$\gamma = \frac{\Pi_{3ax}}{\Pi_{CHHX}} = \frac{0,678}{1} = 0,678$$

$$\gamma = \frac{\Pi_{\text{3ax}}}{\Pi_{\text{CWHX}}} = \frac{0,562}{1} = 0,562$$

Для определения теоретического значения γ по графику зависимости нормированной полосы захвата γ от нормированной постоянной времени ФНЧ τ , приведенному в описании данной лабораторной работы, рассчитаем значение τ по следующей формуле для положений 4 и 6 соответственно:

$$\tau = \frac{\tau_{\Phi H 44}}{T_{\Phi A \Pi 4}} = \frac{0.66 \cdot 10^{-6}}{0.334 \cdot 10^{-6}} = 1.98$$

$$\tau = \frac{\tau_{\Phi H \Psi 6}}{T_{\Phi A \Pi \Psi}} = \frac{2,04 \cdot 10^{-6}}{0,334 \cdot 10^{-6}} = 6,11$$

Полученным значениям τ по графику соответствуют значения γ равные 0,58 и 0,35 для 4 и 6 положений. Полученные данные сведем в таблицу. Таблица 4 – Сравнение рассчитанных и теоретических значений γ

Номер положения	Рассчитанное значение	Теоретическое значение
переключателя	γ	γ
4	0,58	0,678
6	0,35	0,562

Вывод

лабораторной работы были ходе выполнения обнаружены расхождения между результатами, полученными в процессе теоретических расчетов на этапе домашней подготовки, и данными, полученными во время эксперимента. Однако, несмотря на наличие различий, можно отметить, что обоих случаях характер И форма процессов В схожи. Выскажем предположения о причинах отличия результатов измерений и моделирования.

Первой возможной причиной отличия результатов может являться тот факт, что при построении временных зависимостей переходных процессов, рассчитанных по дифференциальным уравнениям, мы имели дело с математической моделью процесса, приближенной к идеальным параметрам и результатам, а построение измеренных процессов является практической частью данной работы, проводимой в лаборатории. В результате, расхождения между рассчитанной математической моделью и реальным экспериментом играют существенную роль в наличии расхождений.

При определении расчетного значения величины γ была использована зависимость $\gamma(\tau)$, при расчете τ были использованы значения сопротивления R и емкости C для соответствующего положения переключателя и величина $T_{\Phi A\Pi \Psi}$, которая была определена с учетом крутизны $K_{\rm гун}$. Поскольку крутизна

 $K_{\text{гун}}$ определялась в окрестности $E_{\text{упр}} = 2.5 \text{ B}$ по двум значениям $f_{\text{гун}}$ и $E_{\text{упр}}$, то значение крутизны $K_{\text{гун}}$ может быть недостаточно точным, а следовательно, и значение величины τ по которому определялось значение величины γ .

Помимо этого, можно отметить тот факт, что при обработке результатов измерений в формуле 1 был учтен делитель частоты в кольце Φ АПЧ, равный 16.

$$\tau \frac{d^2}{dx^2} \varphi + \frac{d}{dx} \varphi - \varphi = \frac{\pi}{2} + \Delta, \quad \varphi < 0 \quad . \tag{1}$$

Домашняя подготовка

Down A Thirty A
4.1. Utscommer negromosna
There gardens
Louising sangui
Theyroccours as An ma successe un
тут жар-ку с крутизной коточне или, шистуси
Конодо ФАЛИ е ФВ на опешенте нописосногуее или, ничегощем Такища 3 - Исходине даннее
Takuya 3 - Venegune gamere
min, B
+5 200
Tabunya 4 - Mocromum. 01
Tadiunga 4 - Mocromuse Eperaeucu 9114, Ti
TEMAC
2 9,5
d 96
3 0,7
4 2,0
4. 2 Parrenter zaganere
3 de Briganile
1. Heerhoums repeacquee nhoyever E con (4) nh.
Hu + 345 kly uz emaquonapuoro perunino e st = T
1. Recripcione nepercognice o projecto E gon (t) non current onopuoù racrora gun 7-0
· quel motoro Ti, t=13
1.1 ges T-0
Perop. ypaluence: $\frac{d}{dx} + 1 = I$ Maranenne yenobus: $\int f(t) - I$
7
Vargee permercere 1/2) - cymun trav. (2) + tory. (2)
1(2) = 12 (2)+1 ay. (2), rgc 12 (2) = T/2
Bug to (x) zubucum or pencennus reaportefue ypulneneus 3+1-0 => 1=-1
\Rightarrow $+as = A \cdot e^{\lambda x}$
Voryce pencerul ypubuluus: $1/xS = II + Ae^{\lambda x}$
of the salk
d + (x) = 2A)x
Nogemeelee $x=0$: $T_+A=T$
$\int \lambda = 8 - 4 = -3\pi$
Nogemedium $x=0$: $\begin{cases} T + A = T \\ \lambda A = \frac{3T}{8} \end{cases} \rightarrow A = \frac{-3T}{8}$
Peusenne gun $T \rightarrow 0$: $f(x) = I - 3T \cdot e^{-ix}$, $ige x = \frac{t}{Tquany}$
2 8 1 1 ye 2 - Trans

1.2 gus 71 = 0,5 rge 1-1, 2 = 71 , 1 >0 Harausece your bu contentique $f^{+} = II - II + A = II - 3II , i.e consumo$ cunsponegues oper 0 = -311, narconone yeuchue 1110) = 31 coorberes. 11 агеньной размости гасто в шомин врашени x = 0 => Танту (2007 - 101/10) Aucenouse 11.1 gugs ypalmenne $\frac{d^2}{dx^2} + \frac{d}{dx} + 1 = \frac{T}{2}$ Has. youobus: \(\(\frac{1}{10} \) = \(\frac{1}{8} \) 1(x) - 12(2) + 100(2), age 14(x) - T/2 Характер ур-ие: 32+3+1=0 $M = -\frac{1}{2} + \frac{13}{2}i$ $M = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ $\Longrightarrow for = Ae^* cospex + Be* singex$ Myee penance yp-ns: $1(x) = II + A e^{-\frac{1}{2}x} \cos \frac{\sqrt{3}}{2}x + Be^{-\frac{1}{2}x} \sin \frac{\sqrt{3}}{2}x$ U +(x) = -1 e + (A cas \(\frac{13}{2}\) x + (B sin \(\frac{18}{2}\) x) + \(\frac{13}{2}\) e + \(\frac{1}{2}\) x + B cas \(\frac{13}{2}\) x) Mogemallum x =0 Pennenne gus T = 0: $f(x) = II - 3II e^{\frac{1}{2}x} \left(\cos \frac{\sqrt{3}}{2} x - \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x \right)$, $rge x = \frac{t}{Trans}$

Pисунок $I-\Pi$ ереходные процессы $E_{\phi\partial}(t)$ при скачке с $\varphi^+=\pi/8$

```
2. Poerhoums repersone showever F_{FR}(t) the evenue emphasi received no - 375 kg uz ercuyucuspuoro furucusa e t^+ = II_{\overline{t}}
       2.1 Dece 7-0
          Rusp. ypulnence d 1+1- I Henceusine yeurobias (16) = I
                                                                                                1/0/- -31
        1(x) = fr(x)+ los(x), 1ge 14/x)=1
       20 poumepuervuenos y/xibuence: 1+1=0
        for = A.e la
       Otigee herrence ypassiences: 1/2) = I + Ache
                                               d 1(x) = A Adx
      Nogemasaw x=0
    \begin{cases} \frac{77}{8} + 1 = \frac{1}{2} \\ \lambda A = -\frac{37}{8} \end{cases} \Rightarrow A = +\frac{37}{8}
    Manyracus gus T-0: 1/2) = I + 3/1 = -12, rge 2 = +
     2.2. Files morono Ti, i=1...3
T1 = 0,5, 1ge i=1, z = Ti
Tgany
  Horeenouse yeursue coordinates yeranobulus guerreneuro 1^+ = \overline{I} \implies \varkappa = 0

Then I_{\varphi} = 0 I_{\varphi} = 0
   Dug. ypakuene dh 1+ dx 1+1= II
  Haz yeurbus \ \( \frac{10}{2} = \frac{17}{2}
 1(2) = 14/2) + 105 (20), age 14/2 = I
 Xa pause puenreence y poesneuce: 12+1+1=0
                                                \lambda_1 = -\frac{1}{2} + \frac{13}{2}i \lambda_2 = -\frac{1}{2} - \frac{13}{2}i
Soo = Aed cospx + Beda singx
Origee permenue: 8/x) = I + A. c = 2 eas 13 x + Bc = 2 s/n 15 x
                            d 1/2) = -1 e fx (4 cos 13 x + bsin 13 x) + 13 e fx (-4sin 13 x + Bos 13)
Nogerabum 2 =0
 \int \frac{T}{8} + H = \frac{T}{2}
-\frac{1}{2}H + \frac{13}{2}B = -\frac{37}{8}
\Rightarrow \int A = +\frac{377}{8}
\Rightarrow \int A = +\frac{377}{8}
```

```
Remember que T=0: 1(2) = I + OT e - 22 (cos 13 2 - 13 sin 13 2), 190 2 = #
     Hen jenobile coertererbyer geronal zuareneno ft-I, coorbererbyer naranonole
      2 =0 - Tgan (won-won (0)) = -31 - Tgany = 0,5 wee
     Rug ypresume 4 \frac{d^2}{dx^2} + \frac{d}{dx} + f = \frac{7}{8}

Her. yeuchus: \int f(0) - \frac{7}{4}

\int f'(0) = -\frac{37}{8}
      1 (x) - 14(x) + 108(x), age 14(x) - II
     Action of the series 41 \times 111 = 0
\lambda_1 = -\frac{1}{8} \cdot \sqrt{15} \cdot \lambda_2 = -\frac{1}{8} - \sqrt{15} \cdot i = 0
      => for = A e "us px + Be x sinpx
    Oryce presence ypuluence: 1(x) = I + A e tox cos VI x + Be & sin VI5 x
                                             d +(2) = -1 = fx (Neas VIS x + Roll VIS x) + VIS e fx (Asin VIS x + B.
                                                                                                            · eas 15 x)
   Regercibieur 2 =0
\int_{8}^{\pi} \frac{1}{8} dt = \frac{\pi}{8}
\int_{8}^{\pi} \frac{1}{8} dt = \frac{3\pi}{8}
 Pennenne gun T \to 0: l(x) = \frac{\pi}{8} + \frac{3\pi}{8} e^{-\frac{1}{3}x^2} \left( \cos \frac{\sqrt{15}}{8}x - \frac{2\sqrt{15}}{15} \sin \frac{\sqrt{15}}{8}x \right), \text{ tge } x = \frac{t}{Tgan4}
```


Pисунок 2 – переходные процессы $E_{\phi \phi}(t)$ при скачке с $\phi^+ = \pi/2$

