Płoty

XV OIJ, zawody II stopnia

13 marca 2021

Kod zadania: **plo**

Limit czasu: 3 s (C++) / 20 s (Python)

Limit pamięci: 512 MB

Bajtazar ma pole w kształcie wielokąta wypukłego (każdy kąt wewnętrzny jest mniejszy od 180°). Chce podzielić to pole na trójkątne obszary, stawiając płoty – odcinki łączące dwa niesąsiednie wierzchołki wielokąta. Płoty nie mogą się przecinać (poza dotykaniem w wierzchołkach wielokąta). Taki podział nazywać będziemy *triangulacją*.

Zadanie znalezienia triangulacji swojego pola niestety przerosło Bajtazara, dlatego zwrócił się o pomoc do firmy Trójkątex S.A. Firma opracowała dla niego plan budowy płotów (listę odcinków triangulacji).

Przykładowa triangulacja wielokąta pokazana jest na poniższym rysunku:

Bajtazar zadowolony z usługi już miał się zabierać do budowy płotów według planu, gdy odkrył, że jego złośliwy kolega Bajtek do przygotowanej listy dopisał dodatkowy odcinek. Odcinek ten również łączy dwa niesąsiednie wierzchołki i jest różny od pozostałych odcinków na liście. Czy pomożesz Bajtazarowi wykryć, który z odcinków na liście został dopisany?

Napisz program, który na podstawie końców odcinków ze zmienionego planu wyznaczy odcinek dodany przez Bajtka. Jeśli jest kilka możliwości, wystarczy że podasz jedną, dowolną z nich.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna Z ($1 \le Z \le 1000$) – liczba zestawów testowych. W kolejnych wierszach znajduje się Z zestawów, z których każdy jest opisany jak poniżej.

W pierwszym wierszu zestawu znajduje się jedna liczba naturalna N ($4 \le N \le 500\,000$) określająca liczbę wierzchołków wielokąta opisującego pole Bajtazara. Wierzchołki wielokąta numerowane są kolejnymi liczbami naturalnymi od 1 do N.

W kolejnych N-2 wierszach zestawu znajduje się opis kolejnych płotów w zmodyfikowanym przez Bajtka planie: opis każdego płotu składa się z dwóch różnych liczb naturalnych x, y ($1 \le x, y \le N$, $|x-y| \ne 1$ oraz $|x-y| \ne N-1$), oznaczających końce płotu biegnącego wzdłuż prostej łączącej te wierzchołki. Odcinki nie powtarzają się.

Łączna liczba wierzchołków we wszystkich zestawach nie przekracza 500000.

Wyjście

Dla każdego z Z zestawów danych w osobnym wierszu, wypisz dwie liczby naturalne p oraz q: końce odcinka, którego usunięcie spowoduje uzyskanie triangulacji wielokąta z wejścia. Liczby te możesz wypisać w dowolnej kolejności.

Jeżeli istnieje wiele możliwych rozwiązań, Twój program może wypisać dowolne z nich.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów	
W każdym zestawie testowym $N \leq 5$.	8	
Łączna liczba wierzchołków we wszystkich zestawach nie przekracza 1000.	53	

Przykłady

Wejście dla testu plo0a:

_				
	2			
	6			
	1 3			
	3 5			
	2 6			
	1 5			
	4			
	1 3			
	2 4			

Wyjście dla testu plo0a:

	4
2 6	
2 4	

Wyjaśnienie do przykładu:

Pierwszy zestaw danych opisuje pole Bajtazara przedstawione w treści zadania. Jedynym płotem, który mógł być dodany przez Bajtka jest 2 6.

Pole Bajtazara w drugim zestawie danych wygląda następująco:

W tym zestawie danych zarówno płot 2 4, jak i płot 1 3 mógł być dodany przez Bajtka, dlatego należy wypisać dowolny z nich.

Pozostałe testy przykładowe

- test plo0b: Z = 10. W każdym zestawie N = 10. Jednakowe układy z cyklicznie zmienioną numeracją wierzchołków.
- test plo0c: Z = 1, N = 512.
- test plood: Z = 1, $N = 500\,000$. Każdy odcinek poprawnej triangulacji ma jeden koniec w wierzchołku numer 1.