Model Evaluation and Hyperparameter Tuning

Dr. Sharu Theresa Jose

University of Birmingham

February 9, 2024

Learning Outcomes

- Understand the significance of model evaluation
- Learn different methods of model evaluation
- Understand the pros and cons of the methods

(Slides adopted from Prof. Ata Kaban's lectures)

Recap: Supervised Learning

Main ingredients of supervised learning:

- Model: Form of function that we want to learn characterized by free parameters
- Cost function: Measures the misfit of any particular function from the model, given a training set
- \bullet $\mbox{\it Training algorithm}:$ For example, gradient descent that minimizes the cost function

Running the training algorithm on some training data learns the "best" values of the free parameters, yielding a **predictor**.

Recap: Continued

Hyperparameters are "higher-level" free parameters.

- In neural networks:
 - Depth (number of hidden layers)
 - Width (number of hidden neurons in a hidden layer)
 - Activation function (choice of nonlinearity in non-input nodes)
 - Regularisation parameter (way to trade off simplicity vs. fit to the data)
- In polynomial regression:
 - Order of the polynomial (i.e., use of x, x^2 , x^3 , ..., x^m)
- In general
 - Model Choice

Evaluation of a Predictor Before Deployment

- Recall: A predictor is obtained by training the free parameters of the considered model using the available annotated data.
- Evaluation of a predictor serves to estimate its future performance, before deploying
 it in the real world
- To do so, we always split the available annotated data randomly into:
 - A training set, used to estimate the free parameters, and
 - A test set, used to evaluate the performance of the trained predictor before deploying it.

Which Model? How to set hyperparameters?

- Each hyperparameter value corresponds to a different model.
- We need methods that evaluate each model.
- For this evaluation, we can no longer use the cost function computed on the training set. Why?
 - The more complex (flexbile) the model, the better it will fit the training data.
 - But the goal is to predict well on future data.
 - A model that has capacity to fit any training data will overfit.

Which Model to Choose?

Note here:

- Even if the models only differ by one hyperparameter, they are different models.
- Choosing a particular value of a hyperparameter requires evaluating each model.

Evaluating Models for Model Choice

- Do not confuse this with evaluating a predictor (model already chosen).
- Training set is annotated data used for training within a chosen model.
- Test set is also annotated data but used for evaluating the trained predictor before deploying it.
- None of these can be used to choose the model!
 - Tempting to use the test set, but if we do, we no longer have an independent data set to evaluate the final predictor before deployment.

Evaluating Models for Model Choice

Key Idea: To choose between models or hyperparameters, separate a subset from the training set to create **validation set**.

Methods

- Holdout validation
- Cross-validation
- Leave-one-out validation

Method 1: Holdout Validation

- 1. Randomly choose 30% of data to form a validation set (blue data points)
- 2. Remaining data forms the training set (black data points)

- Randomly choose 30% of data to form a validation set
- 2. Remaining data forms the training set
- 3. Train your model on the training set
- 4. Estimate the test performance on the validation set

Model 1
Mean Squared Validation Error = 2.4

- Randomly choose 30% of data to form a validation set
- 2. Remaining data forms the training set
- 3. Train your model on the training set
- 4. Estimate the test performance on the validation set

Model 2 Mean Squared Validation Error = 0.9

- Randomly choose 30% of data to form a validation set
- 2. Remaining data forms the training set
- 3. Train your model on the training set
- 4. Estimate the test performance on the validation set

Mean Squared Validation Error = 2.2

- Randomly choose 30% of data to form a validation set
- 2. Remaining data forms the training set
- 3. Train your model on the training set
- 4. Estimate the test performance on the validation set
- Choose the model with lowest validation error

- Model 1: Mean squared valiation error = 2.4
- Model 2: Mean squared valiation error = 0.9
- Model 3: Mean squared valiation error = 2.2

Lowest validation error: Model 2

- 1. Randomly choose 30% of data to form a validation set
- 2. Remaining data forms the training set
- 3. Train your model on the training set
- 4. Estimate the test performance on the validation set
- 5. Choose the model with lowest validation error
- 6. Re-train with chosen model on joined training and validation to obtain predictor
- 7. Estimate future performance of the obtained predictor on test set
- 8. Ready to deploy the predictor

A Final Note on Point 4

4: Estimate the test performance on the validation set

In practice, this is done differently in regression and in classification:

- Regression: We compute the cost function (mean squared error) on the examples of the validation set (instead of the training set)
- ullet Classification: We do not compute the cross-entropy cost on the validation set. Instead, we compute the 0-1 error metric:

$$0-1 \ \text{error metric} = \frac{\text{number of wrong predictions}}{\text{number of predictions}} = 1 - \text{Accuracy}.$$

Other metrics besides Accuracy can also be employed.

Method 2: k-Fold Cross-Validation

- Split the training set randomly into k (equal-sized) disjoint sets.
 (In this example, k = 3)
- 2. Use k-1 of those together for training
- 3. Use the remaining one for validation
- 4. Permute the *k* sets and repeat *k* times
- 5. Average the performances on *k* validation sets

Explanation of the Steps

Randomly split the dataset into k=3 partitions, denoted by blue, green and purple points.

Model 1

 For the blue partition: Train on all the points except the blue partition. Compute the validation error using the points in the blue partition

Model 1

- For the blue partition: Train on all the points except the blue partition. Compute the validation error using the points in the blue partition
- For the green partition: Train on all the points except the green partition. Compute the validation error using the points in the green partition

Model 1

- For the blue partition: Train on all the points except the blue partition. Compute the validation error using the points in the blue partition
- For the green partition: Train on all the points except the green partition. Compute the validation error using the points in the green partition
- For the purple partition: Train on all the points except the purple partition.
 Compute the validation error using the points in the purple partition
- Take the mean of these errors
 - $MSE_{3FOLD} = 2.05$

Repeat for other models:

- Choose the model with the smallest average 3-fold cross validation error. Here, this
 is Model 2.
- Re-train with chosen model on joined training and validation to obtain the predictor
- Estimate future performance of the obtained predictor on test set
- Deploy the predictor in real-world

Method 3: Leave-one-out Validation

- We leave out a single example for validation, and train on all the rest of the annotated data
- ullet For a total of N examples, we repeat this N times, each time leaving out a single example
- Take the average of the validation errors as measured on the left-out points
- \bullet Same as N-fold cross-validation where N is the number of labelled points

Advantages and Disadvantages

	Advantages	Disadvantages	
Holdout validation	Computationally cheapest	Most unreliable if sample size is not large enough	Large sample
3-fold	Slightly more reliable than holdout	Wastes 1/3-rd annotated data. Computationally 3-times as expensive as holdout	
10-fold	Only wastes 10%Fairly reliable	Wastes 10% annotated data Computationally 10-times as expensive as holdout	
Leave- one-out	Doesn't waste data	Computationally most expensive	Small sample

Summary

- Need for model validation methods
- Three methods for model validation:
 - Holdout validation
 - k-fold cross-validation
 - Leave-one-out validation
- Advantages and disadvantages of each method