Preparation and evaluation of a nanocomposite of polythiophene with Al₂O₃

Nirmalya Ballav and Mukul Biswas*

Department of Chemistry, Presidency College, Calcutta-700073, India

Abstract: The polymerization of thiophene (TP), in bulk and in solution in CHCl $_3$ by FeCl $_3$ resulted in the formation of a polymer which was characterized by FTIR as polythiophene (PTP). High yield was realized in the latter case. The polymerization of TP with FeCl $_3$ and nanodimensional Al $_2$ O $_3$ resulted in the formation of a nanocomposite which was partly dispersible in aqueous and non-aqueous media. The dispersibility appeared to be higher when the polymerization was conducted in a suspension containing a higher amount of Al $_2$ O $_3$. Scanning electron micrographs showed globular particles and the presence of clusters of composite particles. Transmission electron micrographic (TEM) analyses revealed the particle size of the composite to be in the range 22–74nm. Thermal analyses (TG/DTA) revealed the outstanding stability of PTP–Al $_2$ O $_3$ composites compared to that of PTP. The conductivity of PTP and of PTP–Al $_2$ O $_3$ composite was of the order of 10^{-3} S cm $^{-1}$ for samples doped with I $_2$.

Keywords: nanocomposite; nanodimensional Al₂O₃; polythiophene; thermal stability; conductivity; water-dispersibility

INTRODUCTION

Speciality polymers such as polypyrrole (PPY), polyaniline (PANI) and polythiophene (PTP) display outstanding conductivity and other interesting bulk properties, but suffer from processibility limitations due to their intractable nature. Much research attention has been paid globally to obtain processible dispersions of PPY and PANI in aqueous/nonaqueous solvents. Armes and co-workers^{1,2} developed a variety of PPY- or PANI-based water dispersible nanocomposites using colloidal SiO2 and SnO2 as particulate dispersants. Biswas and Sinha Ray prepared conducting nanocomposites of poly(N-vinylcarbazole) (PNVC), PPY and PANI with montmorillonite clay (MMT), ^{3–5} SiO₂, ⁶ MnO₂⁷ and ZrO₂. To the best of our knowledge, no report seems to be available dealing with the preparation of waterdispersible PTP nanocomposites. A review by Roncali9 refers to the work on some PTP-polymer [poly(methyl methacrylate), poly(vinyl chloride), polystyrene (PMMA, PVC, PS)] composites by direct electropolymerization of TP in the presence of the respective host polymer, and on other PTP composites using multistep methods. Besides these procedures, polymethylthiophene-metal (Ag, Pt, Cu, Pd) composites were prepared by electrodeposition. More recently, in situ intercalative polymerizations of TP derivatives in host matrices such as FeOCl, zeolite or xerogels were reported. With the above background, we became interested in developing composites of PTP based on a nanodimensional metal oxide as the particulate dispersant, with the idea of making PTP dispersible in aqueous or non-aqueous solvents. In view of the insolubility of TP in water, conventional procedures such as injecting water soluble monomers into an aqueous dispersion of metal oxide containing FeCl₃, as used by Armes and co-workers^{1,2} or by us^{3–8} in the case of PY or ANI based systems, could not be applied for the preparation of PTP-metal oxide composites. Yet another hurdle was the well-known fact¹⁰ that, unlike PY, TP is more difficult to oxidize by FeCl₃, which stands in the way of achieving high yields of PTP during chemical oxidative polymerization. However, we have now been able to develop a convenient procedure for the preparation of PTP in high yield in the presence of FeCl₃ as the oxidant. By applying this procedure, we have been able to prepare PTP-Al₂O₃ nanocomposites. We wish to highlight in this paper the preparation, characterization and some evaluations of bulk properties of the composites, including their dispersibility in aqueous/non-aqueous media. Nanodimensional Al₂O₃ was chosen as the dispersant because it was thought that its ultra-small size (≈10nm) compared to other oxides commonly used, such as SiO₂, SnO₂, MnO₂ and ZrO₂, might facilitate the formation of stable suspensions, our earlier studies having indicated that with lower particle size of MnO_2 (>10 nm), ZrO_2 (>10 nm), the tendency to form water dispersible PPY or PANI suspensions was somewhat facilitated.^{7,8}

Contract/grant sponsor: Council of Scientific and Industrial Research (CSIR), New Delhi; contract/grant number: 80(0037)/EMR II (Received 23 October 2001; revised version received 18 March 2002; accepted 5 April 2002)

^{*} Correspondence to: Mukul Biswas, Department of Chemistry, Presidency College, Calcutta-700073, India E-mail: dkmandal@cal2.vsnl.net.in

EXPERIMENTAL

Materials

Thiophene (Aldrich, USA) was freshly distilled under reduced pressure before use. Nanodimensional ${\rm Al_2O_3}$ powder was prepared in the National Metallurgical Laboratory, Jamshedpur, India, and kindly donated by this organization. All other reagents and chemicals were of analytical grade.

Chemical polymerization of TP using FeCl₃

A known mass of TP was directly injected into a round-bottomed flask containing a known quantity of FeCl₃, and the reaction mixture was heated to 60°C under reflux for 3h. The total contents were then washed thoroughly with methanol and water. The deep brownish-black powdery mass was dried at 60°C under vacuum. In a different procedure, a known mass of TP was placed in a conical flask containing 30 ml CHCl₃ and to this a particular quantity of FeCl₃ was added in one go. The reaction mixture was stirred for 3h at room temperature. The product was washed thoroughly with methanol and water. The deep brownish-black mass was then dried at 60°C under vacuum.

Preparation of composites

A known mass of Al_2O_3 was finely dispersed in a conical flask containing 30 ml of $CHCl_3$, after which a known quantity of TP was injected. A particular amount of $FeCl_3$ was then added to the solution in one go. The reaction mixture was magnetically stirred at room temperature for 3h. The solution was centrifuged and the separated mass was thoroughly washed with methanol and water. The deep brownish-black mass was dried at 60 °C under vacuum.

Characterization and property evaluation

FTIR spectra of PTP and PTP-Al₂O₃ composites were taken on a Jasco 410 (Essex, UK) instrument.

The surface morphology of the composites was studied with a Hitachi S 415 A (Tokyo, Japan) scanning electron microscope. Particle sizes of the PTP-Al₂O₃ composite were measured by transmission electron microscopy (TEM) on a Hitachi 600 (Tokyo, Japan) instrument. TEM studies were conducted with a dilute dispersion of the composite in isopropanol dried on a copper grid. Themogravimetric (TG) and differential thermal analysis (DTA) studies were conducted on a Shimadzu DT-40 (Tokyo, Japan) instrument. Direct current (DC) conductivity measurements were conducted on pressed pellets with silver coating.

RESULTS AND DISCUSSION

Table 1 presents some data on the polymerization and composite formation in TP–FeCl₃–CHCl₃ and TP–FeCl₃/Al₂O₃–CHCl₃ systems, respectively. It is generally accepted¹⁰ that TP is more difficult to oxidize than PY, so that polymerization of TP by FeCl₃ is not as facile as for PY–FeCl₃. Miyata and coworkers¹¹ reported the preparation of highly conducting PTP and PPY in high yields in the presence of anhydrous FeCl₃ by controlling the oxidation potential of the systems to an optimum value. We thus attempted to prepare PTP in high yield by using variable FeCl₃/TP ratios in CHCl₃ medium, which would in principle change the oxidation potential of the Fe³⁺/Fe²⁺ couple in the TP–FeCl₃ redox system.

Entries 1–7 in Table 1 record some polymerization data in TP–FeCl₃ polymerization systems in bulk and in CHCl₃ solution. Entries 1 and 2 suggest that a high yield of PTP (70–80%) could be achieved when TP was added to FeCl₃ directly at temperatures above 60 °C. However, at room temperature the reaction was not as vigorous and the yield was low (not measurable). Overall, this procedure was rather clumsy and

	Reaction conditions		Conversion	Conversion per g	Particle size
Entry	FeCl ₃ /TP (w/w)	Al ₂ O ₃ (g)	(%)	of composite (%)	(nm)
1	7/1	-	70		
2	8/1	_	80		22-74
3	1/1	_	6		
4	2/1	_	12		
5	10/1	_	80		
6	12/1	_	106		
7	16/1	_	108		
8	1/1	0.1	8	6	
9	12/1	0.1	106	88	
10	16/1	0.1	126	105	
11	12/1	0.5	164	82	
12	14/1	0.5	172	86	
13	1/1	0.1 ^b	32	26	27-76
14	1.5/1	0.1 ^b	54	45	

Table 1. Data on polymerization^a and composite formation^b in TP and TP–Al₂O₃ system respectively

^a Experiments were conducted in bulk at 60 °C for entries 1, 2, 13 and 14, and in CHCl₃ (30ml) for entries 3–12 at room temperature for 3 h.

b Al₂O₃ was impregnated with FeCl₃.

the loss of unreacted TP was appreciable even though reflux conditions were used.

Entries 3–7 record some polymerization data using CHCl₃ as the solvent. At a low FeCl₃/TP (wt/wt) ratio of 1/1 very poor yield of PTP was realized. With an increase in the FeCl₃/TP ratio, the yield of PTP started to increase progressively, up to complete conversion. These observations are significant in the sense that they endorse the formation of PTP in high yield in CHCl₃ medium during chemical polymerization by anhydrous FeCl₃.

Figure 1. FTIR spectra of (a) PTP–Al $_2$ O $_3$ composite; (b) PTP and (c) PTP obtained by FeCl $_3 \cdot 3$ H $_2$ O catalyst.

Entries 8–12 present some composite formation data using alumina as a nanodimensional metal oxide. As before, the yield of polymer was found to increase dramatically with increasing FeCl₃/TP ratio.

Entries 13 and 14 represent the polymerization yield achieved when the alumina was impregnated with FeCl₃ by our earlier method⁴⁻⁶ and the polymerization was conducted in bulk under reflux at 60 °C. However, these yields were lower than those realized in entries 1 and 2. Accordingly, the FeCl₃ impregnation procedure did not prove very efficient compared to the presently adopted procedure involving dispersion of Al₂O₃ in CHCl₃ (entries 8-12). In general, entries 1-14 in Table 1 clearly indicate that the yield of PTP systematically varied with the Fe³⁺ loading in the initial feed. To achieve this high yield it was always necessary to add the entire amount of FeCl₃ to the CHCl₃-TP solution in one go with constant stirring. If the FeCl₃ was added gradually, high yields could not be obtained. Possibly, the former procedure was more appropriate for maintaining a high Fe³⁺/Fe²⁺ balance around the TP moities in the medium, and hence an enhanced oxidation potential, a condition believed¹¹ to be necessary for achieving high yield in the system. We want to emphasize that our procedure is indeed simple as far as the realization of high yield in chemical oxidative polymerization of TP by FeCl₃ is concerned.

Figure 2. (a), (b) Scanning electron micrographs of PTP-Al₂O₃ composite.

The formation of PTP-Al₂O₃ composite (entries 8–12 in, Table 1) deserves some comment. As is well known, during the past decade a great deal of research attention has been paid to the preparation of water dispersible nanocomposites of speciality polymers such as PPY and PANI by using nanodimensional metal oxides, such as MnO₂, ZrO₂, SiO₂ and MMT clay^{3–5} in aqueous medium, as particulate dispersants. The general procedure adopted for the polymerization of these water-soluble monomers was to add them into an aqueous suspension of the nanodimensional metal oxides in the presence of oxidants such as FeCl₃ or (NH₄)₂S₂O₈. The use of such a procedure for pro-

ducing dispersible PTP composites has not reportedly been attempted so far, evidently because of the general insolubility of TP in water and the relative inefficiency of FeCl₃ in polymerizing TP in aqueous systems. However, Biswas and Sinha Ray^{6–8} developed a method for the preparation of oxide based nanocomposites of PNVC by polymerizing *N*-vinylcarbazole (a monomer insoluble in water) in a non-aqueous solvent, in the presence of a Lewis acid FeCl₃ as the initiator, and then precipitating PNVC by methanol addition to the medium containing the finely dispersed oxide particles. Thus, we decided to polymerize TP using FeCl₃ in CHCl₃ medium in which nanodimen-

Figure 3. Transmission electron micrographs of (a) Al_2O_3 particles and (b) PTP- Al_2O_3 particles with CHCl₃ and (c) without any solvent.

Figure 4. TG and DTA thermograms of a PTP-Al₂O₃ composite.

sional Al₂O₃ powder had been finely dispersed by sonication. As expected, the resultant PTP, being insoluble in CHCl₃, precipitated out onto the Al₂O₃ particles, thereby forming PTP-Al₂O₃ composite particles.

FTIR spectral characteristics

The formation of PTP and its incorporation in the composite were readily determined by the IR absorption peaks at $695\,\mathrm{cm^{-1}}$ and $786\,\mathrm{cm^{-1}}$ usually ascribed^{9,10} to the C—H out-of-plane stretching vibration. For comparison, the reported IR spectrum of PTP prepared in FeCl₃·0.5H₂O is presented in Fig 1 together with the corresponding peaks in the present system.

Scanning electron micrographic analyses

Scanning electron micrographs of a PTP-Al₂O₃ composite at two magnifications are presented in Fig 2. In general, the composite particles were characterized by globular morphology; also, particles were not of uniform size and exhibited a tendency to form clusters.

Transmission electron micrographic analyses

Transmission electron micrographs of Al_2O_3 and some PTP- Al_2O_3 composites are shown in Fig 3. Figure 3(a) shows that the Al_2O_3 particles exist as stringy particles (average size about 10 nm). The TEM image of the PTP- Al_2O_3 composite prepared in CHCl₃ revealed the formation of globular clusters of polymer- Al_2O_3 particles. By contrast, PTP- Al_2O_3 composite prepared in the absence of any solvent showed

relatively irregular particle formation. The average particle diameters as evaluated from Fig 3(c) were in the range 27–74 nm.

Thermal stability of PTP-Al₂O₃ composites

Figure 4 shows the thermogravimetric stability data for the PTP-Al₂O₃ composite. The composite was initially stable up to 250 °C (4.3% mass loss); thereafter it gradually lost mass (about 45%) up to 617°C and subsequently remained stable up to 997°C with 2% further mass loss. The total mass loss suffered by Al₂O₃ was 34%, while over the same temperature range (997°C) PTP was initially stable up to 248°C and decomposed completely at 600 °C. In fact, these observed trends served as proof for the presence of PTP together with Al₂O₃ particles in the composite, because otherwise a repeat TG trend for PTP would actually have been observed in Fig 4. The DTA scan for PTP-Al₂O₃ revealed only a broad hump between 350 and 420 °C, while the corresponding DTA for the base polymer revealed a sharp endothermic transition at 433°C. Thus, these data confirm the enhanced thermogravimetric stability of the PTP-Al₂O₃ composite relative to that of PTP.

Conductivity characteristics

Table 2 compares the conductivity values of PTP and PTP-Al $_2$ O $_3$ composites with some of the PTP conductivities reported in the literature. In this study, PTP and PTP-Al $_2$ O $_3$ composites were doped with I $_2$ for a week. However, as suggested by Table 2, wide variations are actually observed between the various values reported, particularly that of Miyata and coworkers. ¹¹ This seems to be due to some inherent structural defects ¹¹ of the PTP produced by chemical oxidative polymerization.

Dispersibility of PTP and PTP-Al₂O₃ composites in aqueous and non-aqueous solvents

Table 3 summarizes the conditions applied to obtain dispersions of PTP and PTP-Al $_2$ O $_3$ composites in aqueous medium. Evidently, PTP was not dispersible under any of the conditions applied. Significantly, the PTP-Al $_2$ O $_3$ composite showed some tendency to exist as a stable suspension in water and in isopropanol. A comparison of entries 3 and 4 in Table 3 suggests that the higher the quantity of Al $_2$ O $_3$ in the initial feed, the greater the tendency of the particles to disperse in the medium.

Polymer (reaction conditions)	Dopant	Conductivity (S cm ⁻¹)	Reference
PTP (CHCl ₃ –FeCl ₃)	I ₂ , 1 week	0.3×10^{-3}	This study
PTP-Al ₂ O ₃ (CHCl ₃ - FeCl ₃)	l ₂ , 1 week	0.4×10^{-3}	This study
PTP (CHCl ₃ -FeCl ₃ -3H ₂ O)	_	4.3×10^{-4}	10
PTP (AsF ₅ , pressure)		2×10^{-2}	9
PTP (CHCl ₃ -FeCl ₃)	l ₂ , 1 week	70	11
PTP (vapour–FeCl ₃)	_	14	10

Table 2. Direct current conductivity of PTP and PTP-Al₂O₃ composites

Table 3. Water dispersibility of PTP and PTP-Al₂O₂ based composites

Entry	Conditions	Observation
1	Bulk PTP (entries 1 and 2, Table 1) sonicated in water for 1 h	Immediate precipitation of polymer. No colouration of the supernatant solution
2	PTP (entries 3–7, Table 1) sonicated in water for 1h	Gradual settling down of suspended polymer. No colouration of the supernatant solution
3	PTP-Al ₂ O ₃ composite (entries 8–10, 13 and 14 Table 1) sonicated in water/isopropanol for 1h	A deep brown dispersion of polymer was formed which was stable for more than a month. Part of the polymer settled down which could again be sonicated with a fresh quantity of water to produce a brown dispersion, a part remaining insoluble, and so on
4	PTP-Al $_2$ O $_3$ composite with higher percentage of Al $_2$ O $_3$ (entries 11 and 12, Table 1) sonicated in water for 1h	The observation was similar to that for entry 3 except that a relatively smaller amount of the composite particles settled down

CONCLUSIONS

This work establishes the conditions for the preparation of (1) PTP homopolymer in high yield by $FeCl_3$ initiator in $CHCl_3$ medium and (2) $PTP-Al_2O_3$ nanocomposites partly dispersible in aqueous medium. The $PTP-Al_2O_3$ nanocomposites showed improved thermogravimetric stability compared to PTP homopolymer, while the conductivity of either polymer was of the order of $10^{-3} \, \mathrm{S \, cm}^{-1}$.

ACKNOWLEDGEMENTS

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for funding a project no 80(0037)/EMR II to MB, to Prof S Ghosh, Head of the Department of Chemistry, Presidency College, Calcutta, to the Principal, Presidency College, Calcutta for facilities, to Dr HS Maiti, Director, Central Glass and Ceramic Research Institute, Jadavpur, Calcutta for help in conductivity

measurements and many helpful discussions, and to Mr P Roy and A Chakraborty of the Saha Institute of Nuclear Physics for TEM analyses.

REFERENCES

- 1 Stjeskal J, Kratochvil P, Armes SP, Lascelles SF, Reide A, Helmstedt M, Frokes J and Krivka I, *Macromolecules* 29:6814 (1996).
- 2 Armes SP, Gottesfeld S, Berry JG, Garzon F and Agnew SF, *Polymer* **32**:2325 (1992).
- 3 Biswas M and Sinha Ray S, Polymer 39:6423 (1998).
- 4 Sinha Ray S and Biswas M, J Appl Polym Sci 73:2971 (1999).
- 5 Biswas M and Sinha Ray S, J Appl Polym Sci 77:2948 (2000).
- 6 Sinha Ray S and Biswas M, Mater Res Bull 33:105 (1998).
- 7 Biswas M, Sinha Ray S and Liu Y, Synth Met 105:99 (1999).
- 8 Sinha Ray S and Biswas M, Synth Met 108:231 (2000).
- 9 Roncali J, *Chem Rev* **92**:711 (1992) and references cited therein. 10 Toshima N and Hara S, *Prog Polym Sci* **20**:155 (1995) and references cited therein.
- 11 Whang EY, Han HJ, Nalwa SH, Watanabe T and Miyata S, Synth Met 41-43:3043 (1991).