SVM 1vsAll algorithm

Input:

- 3/2 training samples (**Tx**) with labels (**Ty**).
- 1/3 training samples (Vx) with labels (Vy). This will be used to validate the SVM.
- Parameters: g (Gaussian kernel) and C.

Output:

- svm_out = predicted labels (Py) of Vx.

Compare **Py** to **Vy** to compute the rate of SVM.

%

For each class assign a label 1 and a label -1 for all other classes.

- / * Call the function **Classifiy_svm**.
- | The input parameters are: the Tx, labels (1 and -1), Vx, Vy, C, g
- / Classify_svm will return a real value R -positive or negative- for each element in Vx.

The output is a matrix **M**

	0	1	2	 9
Vx(1)	Value R of Vx(1) when class 0 is versus All	Value R of Vx(1) when class 1 is versus All		Value R of Vx(1) when class 9 is versus All
Vx(2)	Value R of Vx(2) when class 0 is versus All			
Vx(1000)				

Now to find the predicted label of the ith element in Vx (i=[1..1000]), we look where is the maximal R in the ith row of the matrix M.

For example, if the first row of **M** is (predicted labels of the first element):

Vx	0	1	2	3	4	5	6	7	8	9
Vx(1)	-2.0	3.53	6.2	-8.9	0	1	<u>10</u>	3	5	-20

The maximal value is 10 so the predicted label to be assigned to the element 1 in Vx is 6.

Using **M**, we can predict the labels of the elements of **Vx**.

Now, to compute the error rate, we compare the predicted labels to the real labels (Vy).

This should be repeated for each value of g in [0.1 0.01 0.001 0.0001] and C in [1 10 100 1000 10000].

The optimal g (i.e go) and C (i.e. Co) are those corresponding to the best error rate.

Finally, use **go** and **Co** to predict the labels of **Test** dataset.