## ПОДСИСТЕМА "ПАМЕТ"

## ЙЕРАРХИЯ НА ПАМЕТТА



## Т1. Системна памет

## 1. Класификация и обща характеристика на класовете



RAM - RANDOM ACCESS MEMORY

SRAM - STATIC RAM

DRAM - DYNAMIC RAM

ROM - READ ONLY MEMORY
PROM - PROGRAMMABLE ROM
EPROM - ERASIBLE PROM

**EEPROM - ELECTRICAL EPROM** 

#### 2. ROM памет

- **2.1.** Видове
- 2.2. Използване (EEPROM/Флаш ROM)
  - ROM BIOS (Basic Input Output System)
  - ROM базирани драйвери, вградени на дънната платка, в чипсета, на видеокарти, мрежови карти
  - ROM с конфигуриращи данни -> напр. в RAM модулите (SPD чип -> капацитет и др. конфигурационна инф.) и др.
- 3. RAM памет класификация
  - 3.1. В зависимост от запомнящия елемент:
    - Динамична (DRAM Dynamic RAM) същност, недостатъци, предимства
    - Статична (SRAM Static RAM) същност, недостатъци, предимства.

От гледна точка на отношението "цена/производителност": DRAM - за изграждане на оперативната памет SRAM - за изграждане на процесорния кеш.

## 3.2. В зависимост от принципа на работа:

- Асинхронна същност, недостатъци
- Синхронна същност, недостатъци, предимства.

От 1996 г. ОП се изгражда на база на синхронна динамична памет (SDRAM - Synchronous Dynamic RAM).

## 4. Синхронна динамична RAM (SD RAM)

- 4.1. Основни понятия и принцип на работа
  - SD RAM -> чипове памет -> 20 нм техпроцес (2015 г. Samsung)
  - Основни производители на чипове:

Samsung – 40%

Micron - 24%

**Hynix - 24 %** 

- Чип -> ядро + управляваща логика + В/И буфери за обмен с шината на паметта
- Ядро -> матрица от запомнящи елементи (клетки)



Капацитет на чипа -> от броя на редовете и колоните (бит, байт)

Банка -> един чип се състои от няколко «логически» банки;
 всяка банка е отделна матрица със свои собствени редове и колони.

Предимство на многобанковите матрици - банките работят напълно независимо една от друга - докато се чете/записва в една банка, успоредно с това се подготвя четенето или записът в друга банка. Поголемият брой банки – по-висока производителност.

Адресиране на клетка: адрес на чип, адрес на банка, адрес на ред, адрес на колона. Преобразуването на адреса на клетката в адреса, използван от процесора, става от контролера на паметта.



## Принцип на запис/четене



## 4.2. Основни храктеристики на DRAM чиповете

## А. Тип (технология) на паметта

Конвенционална SDRAM (1996 г.)

На всеки такт на работа на ядрото се чете по 1 бит (по предния фронт на тактовия импулс) и се предава към буфера. В/И буфер работи синхронно с честотата на ядрото и предаването на един бит от буфера става на всеки такт на работа на ядрото.



Prefetch - 1 бит

## Double Data Rate - DDR SDRAM (2000 r.)

На всеки такт на работа на ядрото, с една команда за четене се четат 2 бита. Те се предават към В/И буфер по две независими линии. Буферът предава двата бита за един такт -> по предния и задния фронт на тактовия сигнал, т.е. фактически той работи на удвоена тактова честота, оставайки напълно синхронизиран с ядрото.

При една и съща честота на ядрото, пропускателната способност на DDR е удвоена спрямо тази на SDRAM.



Prefetch - 2 бита

## Double Data Rate2 - DDR2 SDRAM (2004)

На всеки такт на работа на ядрото, с една команда за четене се четат 4 бита, които се предават към В/И буфер по 4 независими линии. Самият буфер работи с удвоената честота на ядрото и предава 4-те бита за един такт -> по предния и задния фронт на тактовия сигнал.

При една и съща честота на ядрото, DDR2 паметта осигурява двойно по-висока пропускателна способност спрямо DDR и четворно – спрямо SDRAM.



Prefetch - 4 бита

## Double Data Rate3 - DDR3 SDRAM (2007 r.)

На всеки такт на работа на ядрото, с една команда за четене се четат 8 бита, които се предават към В/И буфер по 8 независими линии. Самият буфер работи с учетворената честота на ядрото и предава 8-те бита за един такт -> по предния и задния фронт на тактовия сигнал.

При еднаква честота на ядрото, DDR3 осигурява два пъти по-висока пропускателна способност спрямо DDR2, четири пъти – спрямо DDR и 8 пъти – спрямо SDRAM.



Prefetch - 8 бита

## Б. Стандарти за честота и означение на чиповете памет (JEDEC)

| DDR                  |               | DDR2                 |               | DDR3                 |               |
|----------------------|---------------|----------------------|---------------|----------------------|---------------|
| Означение<br>на чипа | Ядро<br>(MHz) | Означение<br>на чипа | Ядро<br>(MHz) | Означение<br>на чипа | Ядро<br>(MHz) |
| DDR-200              | 100           | DDR2- 400            | 100           | DDR3- 800            | 100           |
| DDR-266              | 133           | DDR2- 533            | 133           | DDR3- 1066           | 133           |
| DDR-333              | 166           | DDR2- 667            | 166           | DDR3- 1333           | 166           |
| DDR-400              | 200           | DDR2-800             | 200           | DDR3-1600            | 200           |
|                      |               | DDR2-1066            | 266           | DDR3-1866            | 233           |
|                      |               |                      |               | DDR3-2133            | 266           |

#### В. Тайминги

Задръжката (в брой тактове) при изпълнението на елементарните операции с матрицата на паметта при четене и запис. Основни тайминги – 4.

Например: 15-15-15-35 (DDR4 2400)

#### Особености:

- ✓ Колкото по-ниски са стойностите -> толкова по-добре.
- ✓ Значението им за оценка бързодействието на паметта намалява, поради все по-рядкото обръщение на процесора към паметта (голям капацитет на L2 и L3). Могат да се използват за сравнение на сходни по бързодействие памети.
- ✓ С повишаване честотата на паметта се увеличават стойностите на таймингите.
- ✓ Най-често отсъстват в описанието на паметта или се дава само първият тайминг – латентност.

Латентност (CAS Latency) - времето в брой тактове между подаването на адреса на стълба (редът в матрицата вече е активен) и началото на предаването на данните.

В. Капацитет (бит или байт) и организация на матрицата.

Например, С -> 256 Мбита; организация на матрицата -> 256М\*4 (8, 16,32); 4, 8, 16, 32 – дължината на думата, т.е. едновременно адресираните клетки.

## 4.3. Конструктивно оформяне на паметта - модули



#### Модул:

- ✓ чиповете са монтирани посредством машинен монтаж
- ✓ модулите съдържат SPD (Serial presence detect) от тип EEPROM, съдържащ конфигурационна информация от производителя
- ✓ ширина на шината за данни е 64 бита (72 бита с ЕСС), т.е. едновременно се четат или записват 8 (9) байта.

Производители: Kingston, Crucial, A-Data, Corsair, Transcent и др.

## А. Основни характеристики

- A1. Тип на паметта SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM
- А2. Форм-фактор
  - ✓ SIMM (Single Inline Memory Module) едноредово разпол. на изводите
  - ✓ DIMM (Dual Inline Memory Module) с двуредово разпол. на изводите



✓ SO DIMM (Small outline DIMM)

DDR2 -> 200 pin (несъвместими)

**DDR3** -> 204 pin

### А3. Честота (MHz)

- ✓ на паметта (чип/ядро)
- ✓ на модула (ефективна честота) -> зависи от честотата на паметта и нейния тип (DDR, DDR2, DDR3, DDR4)
- А4. Трансферна скорост (MB/s) -> название на модула

#### JEDEC (Joint Electron Device Engineering) СТАНДАРТИ

|                                              | ЧИПОВЕ                 |                             | МОДУЛИ                |                           |                             |
|----------------------------------------------|------------------------|-----------------------------|-----------------------|---------------------------|-----------------------------|
| ТИП ПАМЕТ                                    | Стандартно<br>название | Честота на<br>паметта (MHz) | Название<br>на модула | Ефективна<br>честота(MHz) | Трансф. ско-<br>рост (MB/s) |
| SDRAM (1996 г.)<br>8 байта<br>1 даннов цикъл | -                      | 100<br>133                  | PC-100<br>PC-133      | 100<br>133                | 800<br>1066                 |
| DDR SDRAM (2000 г)<br>8 байта                | DDR-200                | 100                         | PC-1600               | 200                       | 1600                        |
|                                              | DDR-266                | 133                         | PC-2100               | 266                       | 2100                        |
| 2 даннови цикъла                             | DDR-333                | 166                         | PC-2700               | 333                       | 2670                        |
|                                              | DDR-400                | 200                         | PC-3200               | 400                       | 3200                        |
| DDR2 SDRAM                                   | DDR2-400               | 100                         | PC2-3200              | 400                       | 3200                        |
| 2004                                         | DDR2-533               | 133                         | PC2-4200              | 533                       | 4200                        |
| 8 байта                                      | DDR2-667               | 166                         | PC2-5300              | 667                       | 5300                        |
| 2 даннови цикъла                             | DDR2-800               | 200                         | PC2-6400              | 800                       | 6400                        |
|                                              | DDR2-1066              | 266                         | PC2-8500              | 1066                      | 8500                        |
| DDR3 SDRAM                                   | DDR3-800               | 100                         | PC3-6400              | 800                       | 6400                        |
| 8 байта                                      | DDR3-1066              | 133                         | PC3-8500              | 1066                      | 8533                        |
| 2 даннови цикъла                             | DDR3-1333              | 166                         | PC3-10600             | 1333                      | 10667                       |
|                                              | DDR3-1600              | 200                         | PC3-12800             | 1600                      | 12800                       |
|                                              | DDR3-1866              | 233                         | PC3-14900             | 1866                      | 14900                       |
|                                              | DDR3-2133              | 266                         | PC3-17000             | 2133                      | 17066                       |

Еф. честота на модула:

DDR: Честота на ядрото\*2

DDR2: Честота на ядрото\*4

DDR3: Честота на ядрото\*8

#### Трансферна скорост:

Честота на модула (MHz) \* 64 bit (Mb/s)

Честота на модула (MHz) \* 8 Byte (MB/s)

#### А5. Капацитет (Гбайта)

- Капацитет на паметта
  - = Брой модули \* Капацитет на модулите
- Капацитет на модула
  - = Брой чипове \* Капацитет на чипа
- \* Брой чипове -> кратен на 8 (или 9, ако паметта е с контрол)

#### А6. Възможност за контрол на паметта

- Видове грешки
  - ✓ Твърди (постоянни) грешки
  - ✓ Меки (случайни) грешки
- Методи за контрол на меките грешки (IBM). Базират се на "информационен излишък"
  - ✓ Контрол по четност . Открива само единични грешки (около 90% от всички грешки). Един байт включва 9 бита - 8 информационни и 1 контролен.
  - ✓ ECC (Error Correction Code). Открива единични, двойни, тройни и четворни грешки и коригира единични грешки.
- A7. Други наличие на буферна памет, охлаждане, възможност за работа в многоканален режим и др.

## Б. Пример:

## Kingston 8GB DDR3 1600MHz HX316C9SR/8

|                | i e      |
|----------------|----------|
| Капацитет      | 8 GB     |
| Окомплектоване | 1x8GB    |
| Тип памет      | DDR3     |
| Скорост        | 1600 MHz |
| Multi-Channel  | Single-  |
| комплект       | channel  |
| CAS латентност | CL 9     |
| Охл. ребра     | Да       |
| Напрежение     | 1.5 V    |

Технология на паметта: DDR3 SDRAM

Капацитет: 8 GB

Форм фактор: DIMM 240-pin

Брой модули: 1

Конфигурация на модулите: 512 х 8

Скорост/честота на паметта: 1600МНz

(PC3-12800)

CAS латентност: CL9

Макс. работна околна температура: 85 С

Мин. работна околна температура: 0 С

Номинално захр. напрежение: 1.5 V

Максимално захр. напрежение: 1.575 V

Минимално захр. напрежение: 1.425 V

Тип пакет: С опаковка

Метод на охлаждане: Heatsink

Височина: 30 мм

**Ширина: 133.4 мм** 

5. DDR4 SDRAM – представена 2008 г. в Сан Франциско

Форм фактор: DIMM -> 288 pin; SO DIMM ->256 pin

## <u>Предимства пред DDR3</u>

- 1. Увеличен капацитет
  - на чиповете до 16 Gb (DDR3 8 Gb)
  - на модулите до 512 GB (DDR3 128 GB).
- 2. Повишена скорост и производителност
  - честота на модула до 3200 MHz (DDR3 2133 MHz)
  - до 16 банки и възможност за работа в 4-канален режим (DDR 8 банки, 3-канален режим).
- 3. Подобрена надеждност ECC на ниво чип (DDR3 на ниво модул).
- 4. Подобрена енергоефективност над 30% в сравнение с DDR3.

#### <u> Недостатъци:</u>

- 1. Висока цена
- 2. По-големи задръжки (тайминги) при еднакви честоти с DDR3
- 3. Необходимост от нова системна платка
- 4. Ограничено приложение в практиката

## <u>Прогнози:</u>

- до края на 2016 г. 90% от пазара на сървъри
- до I тримесечие на 2016 г. 20% от пазара на настолни компютри
- до II тримесечие на 2016 г. 50% от пазара на настолни компютри.

## Примери: 4x4GB DDR4 2666 Corsair DOMINATOR Platinum



| Размер на паметта      | 16 GB        |
|------------------------|--------------|
| Окомплектоване         | 4x4 GB       |
| Тип памет              | DDR4         |
| Скорост                | 2666 MHz     |
| Multi-Channel комплект | Quad-channel |
| Охладителни ребра      | Да           |
| Напрежение             | 1.2 V        |

## Kingston HyperX Fury 16GB (2x8GB) DDR4 2400MHz

| Размер на паметта | 16 GB    |
|-------------------|----------|
| Окомплектоване    | 2x8 GB   |
| Тип памет         | DDR4     |
| Скорост           | 2400 MHz |
| CAS латентност    | CL 15    |
| Охладителни ребра | Да       |
| Напрежение        | 1.2 V    |



#### Т2. Външна памет

- 1. Класификация
  - Магнитна
  - Оптична
  - Флаш-базирана (EEPROM Electrical Erasable Programmable Read-Only Memory )
- 2. HDD (Hard Disk Drive)
  - 2.1. Принцип на магнитния запис
  - 2.2. Базови компоненти, принцип на работа
    - а) Дисков пакет
    - б) Платка



Дисков пакет

- Дискови повърхности (плочи)
- Двигател, въртящ плочите
- Глави за четене/запис
- Позициониращ механизъм

- Дискови плочи
  - ✓ слоеве: предпазващо покритие, феромагн. материал, стъклокерамика, основа
  - ✓ в постоянно въртене
  - ✓ работни повърхнини (страни) -> 0, 1,2, ...
  - ✓ писти (0, 1, 2, ...), сектори (0, 1, 2, ...)
  - ✓ цилиндри (0, 1, 2, ..)
  - ✓ плътност на записа:

линейна: бит/инч (Bits per inch – BPI)

напречна: писти/инч (Tracks per inch - TPI)

- Глави за четене/запис обслужват една повърхност
  - √ комбинирани запис/четене
  - ✓ плаващи (безконтактен запис)
  - ✓ писта за паркиране (слаби пружини)
  - Позициониращ механизъм
    - ✓ адресиране плоча, страна, писта, сектор





## Платка



- Електроника, която управлява движението на двигателя и позициониращия механизъм и преобразува цифровите сигнали от контролера на устройството във формат, разбираем за механичната част.
- Буфер за данни временно съхранява данните, обект на В/И операция (четене/запис), т.е. от и за сектора; може да съхранява данните от цялата писта, независимо дали всички данни се изискват в момента или не

#### Конектори



## 2.3. Основни характеристики

- 1. Форм-фактор в инчове (inch)
- 2. Капацитет в гига- (10<sup>6</sup>) и тера- (10<sup>9</sup>) байтове (GB и TB) Фактори:
  - √ брой плочи
  - ✓ надлъжна и напречна плътност -> увеличаване чрез прецизиране на главите, усъвърш. на методите на запис: хоризонтален, вертикален, в дълбочина и др.
- 3. Скорост на въртене в обор./мин (rpm)
- 4. Производителност
  - 4.1. Пропускателна способност (Transfer rate) Фактори:
    - ✓ скорост на въртене
    - ✓ линейна плътност (брой сектори за писта).

Съпоставимост: при еднаква скорост -> по-високата скорост на въртене при еднаква скорост на въртене -> по-голямата плътност

4.2. Средно време за достъп (Average seek time)

Латентност + Време за търсене

Латентност — времето за достигане на необходимия сектор под главата; средна стойност: времето за ½ оборот



Време за търсене – времето за достигане на главата до необходимата писта; средна стойност: времето за ½ линейно придвижване на главите.

#### Фактори:

- √ скорост на въртене върху латентността
- ✓ време за придвижване на главите между пистите и време за превключване между отделните плочи.

#### 5. Кеш памет

Влияе върху производителността на диска - избягва се позиционирането на главите, откриването на необх. сектор и прочитането на данните.

Хардуерен кеш -> инсталиран на дисковия контролер -> DDRAM Софтуерен кеш -> създава се от ОС; заделена част от RAM-а; действа като L2.

## 6. Интерфейс

## Съвременни технологии

✓ S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) — стандарт на IBM, 1992 г. за автоматично наблюдение на някои от параметрите на HDD.



## 2.4. Диапазон на стойностите

## Настолни комютри

- **1.** Форм-фактор —> **3.5** инча
- 2. Капацитет -> 500 GB до 3 ТВ, над 3 ТВ
- 3. Скорост на въртене -> 5400, 7200, 10000, 15000 об/мин.
- 4. Кеш памет -> <mark>8, 16, 32, 64, 128</mark> МБайта
- 5. Интерфейс -> **SATA 2**, SATA 3, SAS.

## Мобилни компютри

- 1. Форм-фактор -> 1.8, 2.5 инча
- 2. Капацитет -> стотици GB до 1 ТВ
- 3. Скорост на въртене -> 5400, 7200, 10000, 15000 об/мин.
- 4. Кеш памет-> 8, 16, 32, <mark>64</mark> МБайта
- 5. Интерфейс -> SATA 2, SATA 3, SAS.

## Примери



## 1. Toshiba 2TB 64MB 7200rpm 3.5" SATA3 DT01ACA200

| Капацитет                | 2000 GB         | Форм фактор: 3.5"                                                          |  |
|--------------------------|-----------------|----------------------------------------------------------------------------|--|
| Скорост на диска         | 7200 rpm        | Капацитет: 2 ТВ                                                            |  |
| Cache памет              | 64 MB           | Поддържан канал за данни: SATA 3-600<br>Инсталирана кеш памет: 64 MB       |  |
| Вътр. трансфер на данни: | 150 MB/s        | Скорост на въртене: 7200 rpm                                               |  |
| Външен трансфер на данни | 6 Gbit/s        | Средно време за търсене: 0.6 ms                                            |  |
| HDD време за достъп      | 0.5 ms          | Външен трансфер на данни: 6 Gbps<br>Невъзстановими грешки: 1 per 10^14     |  |
| Интерфейс                | <b>SATA 3.0</b> | X-ки на твърдия диск: S.M.A.R.T.                                           |  |
| Размери                  |                 | Входно напрежение (Мин.; Макс.)                                            |  |
| Ширина                   | 101.6 mm        | Консумирана енергия ( Мин.; Макс.)<br>Удароустойчивост(при работа и съхр.) |  |
| Височина                 | 26.1 MM         | Вибрации (при работа и при съхр.)                                          |  |
| Дълбочина                | 147 mm          | Ниво на шум при работа                                                     |  |
| Тегло                    | 680 г           | Р-ри (дълбочина, височина, ширина)                                         |  |
| Диаметър                 | 3,5"            | Номинално тегло: 0.68 кг                                                   |  |
|                          |                 |                                                                            |  |



## 2. Seagate 2TB 64MB 7200rpm 64MB SATA3 ST2000DM001

Форм фактор: 3.5"

Капацитет: 2 ТВ

Поддържан канал за данни: SATA 3

Инсталирана кеш памет: 64 МВ

Брой плочи:

Брой глави: 6

Производителност

Скорост на въртене: 7200 грт

Поддържан вътр. трансфер на данните: 156 MB/sec

Поддържан външен трансфер на данни: 6 Gbps

Надеждност

Невъзстановими грешки: 1 per 10^14





3. SSD (предлагат се от 2007-2008 г.)

1. Форм-фактор -> 2.5, 3.5 инча

2. Капацитет -> стотици GB - 1 ТВ

3. Скорост на четене/запис -> стотици МВ/ѕ

4. Интерфейс -> **SATA 2**, **SATA 3**, **PCI-e** 

## Примери

1. Flash SSD Kingston V300 2.5", 120GB, 450 MB/s, SATA 3

Производител (Марка) Kingston

Форм-фактор 2.5"

Капацитет 120 GB

Скорост на четене/запис ~ 450 MB/s

Интерфейс SATA3

2. Intel SSD P3700 Series (400GB, 2.5 ", PCI-e 3.0, 20 nm), 2700 MB/s, 1080 MB/s), 933079



## 4. Сравнителна характеристика на HDD и SSD

- бързодействие
- надеждност
- консумирана енергия / топлоотдаване / шум
- капацитет
- цена

\* От 2009 г. производителите на HDD предложиха т. нар. "зелени" модели HDD -> понижено ниво на шума и топлоотдаването.



## 5. Хибридна памет (SSD+HDD)













## 5.1. Dual-диск хибридни системи



- Комбинират използването на отделни SSD и HDD устройства.
- Разпределението на информацията се управлява от:
  - ✓ потребителя -> често използваните файлове, в т.ч. и ОС се съхраняват на SSD;
  - ✓ OC SSD действа като кеш на HDD (поддържа копия на най-често използваните данни от твърдия диск).



## Пример

# Western Digital Black2 2.5" 1TB HDD + 120GB SSD SATA3 WD1001X06XDTL

Производител Western Digital

Homep WD1001X06XDTL

Капацитет 1TB HDD + 120GB SSD

Кеш (HDD) 16 MB

Скорост на въртене (HDD) 5400 об./мин.

Интерфейс SATA3



## 5.2. SSHD хибридни системи

## SSHD Drive



**Технология Fusion Drive ( Apple Inc., септем-ври 2011 г.)** 

- логическо обединяване на HDD и SDD в единна памет с общ капацитет;
- динамично преразпределяне на съхранената информация между HDD и SDD ->
   автоматично от операционната система,
   базирано на статистиката за текущата използваемост на съхраняваните програми и данни.