Jim Wei CS2040S Notes T20 Re	BST of		Interval Search Trees	Hash Chaining = uniform hashing assumption
$\log(n!) = O(n \log n)$	n.left < n < n.ri	ght	Sorted by left endpoint	Put all colliding Hems into a linkedist.
Sterling approx: n! = 1271 (n)	[recursively for grand	:hildren]	left End, right end, left, right,	maxend (subtree) Insert: O(1+h)
unstable, then stable sort best worst avg in-place	stable Search Insert : 0 (O(h) search If search goes left & no	interval, > just insert at front
bubble " " " "	✓ ≤ 2 rotations (≤ I nod	le)	gnaranteed no interval in right	but it there are augments)
sorted reverse	x Remove / Delete :	o (h)	If search goes right, guarant	eed not in left. have to sacrifice either search/insert
insertion n nº nº /	- if leaf, just remove		V intervals,	O (lag n / laglagm) for n items . size () Deproof beyond cs2040s
merge - nlogn ×	x - if one child, swap w	hild & remove	o(k log n) where k = result there exists a O(k + log -	\ adution \
quick nlogn nt nlogn /	- if two children, swap w	suce L remove	but more complicated	DE M. C. M. Mariana
counting - JA bits	→ Succ guaranteed			Expected: $O(h + \frac{m}{n}) = O(h)$
radix mn x heap nlogn /	x	14 40 1001)	Orthogonal Range Searching	Worst: O(h+n) Space - bad for cache Space - bad for cache
heapify n	* Successor Finding	0(4)	leafs store value , Sorted from left >right 12	E CON STANTING UTION OF THE PARTY
Invariants	if n not in tree, sea		key = max (left leafs) (2) 125	
Bubble: biggest i sorted at end Selection: Smallest i sorted at front	finds either pred or		. 9 12	26 40 Linked list size: O(n)
Insertion: first : sorted (rest no change)	But, if x is max, root		Split node is highest rode lo	o < node.val ≤ hi
merge: groups of 2k then 2k-1 then uns Quick:			O(k + logn) > k is result	() [] [] [] [] [] [] [] [] [] [
	P Rotations always have		O(n log n) to build	Obtimal. M = Q ()
1:9 ratio split still o(n logn) ip = in-pro For 3-way partitioning:	Right votation requires le Left rotation requires ri		O(n) space complexity	too small: too many collisions too big : wasted space
O(n log k)		v		
O(n log k) Thum of distinct keys	(Heavy (l. Build a x-tree	Growing & Shrinking OPO
۱٬۰۶٬۰۰۰٬۰۰۰٬۰۰۵ ۹	left-heavy: v.l.h > v.r.h right-heavy: v.l.h < v.r.h		1. Build a x- Tree 2. For each node, build y-	tree O(m,+m2+n) : recompute hashes
slow for buildle, fast for insert	v unbalanced & left-heavy		O(k + log2 n) query	2D resize nitens avg
Order Statistics / Quick Selection	1. v.left balanced, right-rotate	(v) - (·)	o(n logn) to build	(constant o(n) O(n2) o(n)
	2. v.left left-hoavy, right-votati 3. v.left right-heavy, left-rotate	e(v) !(v.kefi)	O (n logn) space compl	exity grown doubling o(n) o(n) o(1)
Find k th smallest in unsorted array. 1. Pick random pivat	& right-rota	le (v)	- cannot maintain balan	ce $\int \int square = o(n^2) = o(n^2) = o(n) = o(n)$ $shrink\{ halving = o(n) = o(n) = o(i) = space$
2. Partition around pivot	Cother side similar)			free Al ere late land
3. Then pivot index is known. 4. Recurse on left or right	Tries -> Strings & bits	Minim wm/M	aximum (oordinates) o(15)	Optimal: half when \(\frac{3}{4} \) empty, double if full \(\to \) amortised o(i) insert & delete
if ick or isk respectively.		If balance	d for 20:	Open Addressing - find another bucket?
O(n) for vandom pivot ~9:10 split	Search: O(L) Space: O(nL) + overhead	Even: T(n)	$f = T(\gamma_2) + O(1)$ $f = 2T(^{1}/2) + O(1)$	hash fo returns sequence
O(n²) worst case, only I elem removed each loop	-> possible to compress) = 27 ("/4) + 0(1)	stronger uniform hashing a scumption
Trees 2	(unchain only if needed)	7(*) = 0 (m)	expected cost: $\leq \frac{1}{1-c}$ ($cl = \frac{n}{c} = 1$) by 6?
number of	(a,b) - tree & B-tree	1 11111	Dictonary is ordered	insert n< m quadratic probing
_ insertion orders:n!	B - tree == (b, 2b) - tree 1. Every node has [a,b] shildren	<u>Hashing</u>	symbol table	h(k,0) → h(k,1) → ··· 0,1,4,9,16,25,36,49, ···
- shapes: ~4" by Catalan	2 Root has 2 2 children	If use arra	y, need 2" slots, n = max bit len	if empty, in sert gth if deleted, overwrite <pre>Q < 0.5 , m is prime</pre>
numbers n: >4° => by PHP, order of	3. All leaf at some level 4. Keys are sorted.	Hash Collision		search sound or empty sot can find empty slot
insertions do not result in	5. Bottom-up building		—→ keys k, & kz (ollide if h(k,)=h	skip deleted
unique shape. height = max level of any vertex	6. 游keys = \$child - 1 O(h) but h very small so O(1)	- always have	collisions :: U>> m by PHP	mark as deleted for
[null = -1 , leaf = 0]	h=[logbn,logan+1]	01 1:	n hash function (naive)	double hashing h(k,i) = $f(k)$ + ix g(k) med m
DFS -> use stack [n:		- will coll	ide again	if g(k) relatively prime to m, h(k,i) is good 49
- Pre-order (n, l, r)	Dynamic Order Statistics	2. Chaining 3. Open add	lre ssin a	tabulation hashing T is some 2D (1,1,10) table for j in 0N:
_ In - order (R, n, r)	Store weight of subtree		eassuming equal chance	hash "= T[key(s)](j)
- Post -order (P,r,n)	Time complexity not affected select & rank in och)	Probability \	1 if item i in bucket j O otherwise	Calculus
o(n), every node visited = 1.				ap: £ a+xd GP: £ ar"
(BFS) -> use queue	Augmenting Data Structures	P(χ(;,)) = = (ε(,;)) = = (ε(,;)) = = (ε(,;))		$S_n = \frac{n}{2} (2\alpha + (n-1) d)$ $S_n = \frac{a_1 (1-r^n)}{1-r}, r \neq 0$
Root, adjacent, next level.	→ use properties that only depend on subtree/subset		of expediation,	$= \frac{n}{2} \left(a_n + a_n \right) \qquad \qquad S_{bo} = \frac{a}{1-r} , r < 1 \text{ converges}$
Balance / Height-balanced	to update easily	for n items	> n ;tems/bucket	n" >> n! >> k">> n" >> log'n >> logn >> loglogn
Balanced \iff h= 0 (log n) $\left[h < \frac{\log n}{\log \phi} \Rightarrow h < 1.44 \log n\right]$	kd-tree	Ψ-	currence Relations	$T(n) = aT(n-b) + f(n), a > 0, b > 0, f(n) = \Theta(n^k), k > 0$
Node v is height-balanced	Alternate splitting x,y,z,	<u> </u>	(n-1)+0(1) 0(n)	case a=1: $\Theta(n^{k+1}) = \Theta(n \cdot f(n))$ case a>1: $\Theta(n^k a^{n/k}) = \Theta(a^{n/k} \cdot f(n))$
<=> v.y.h - v.r.h ≤ 1	Search: O(h)		n-1)+0(n) 0(n²) (n-1)+0(logn) 0(n bogn)	case $\alpha < 1: \varphi(n^k) = \varphi(f(n))$
Ringry tree is height-balanced	[Construction]: 0 (n logn)		[n-1) + 0 (n²) ○ (n³) (n-1) + 0 (1) ○ (2²)	$2T\left(\frac{n}{2}\right) + O(1) \qquad O(n) \qquad \underbrace{S}_{1} \qquad O(n\log n)$
(=) every node is height-balanced	1. fin AMedian (points) based on x	exp 3T	(n-1) +0(1) 0(3")	$\frac{T(\frac{n}{2}) + O(n)}{2T(\frac{n}{2}) + O(n)} = \frac{O(n)}{O(n \log n)} \qquad T(\frac{n}{2}) + O(n^2) = O(n^2)$
Height-balanced => balanced	2. Partition around median	[21 T	$(n-100)+0(1)$ $O(\frac{100}{N})=O(N)$	21 (1/2) + 0 (n log n) 0 (n log n)
Balanced => height-balanced	 Recurse with next dimension on both halves (now children) 		(4-1) +0(42) 0 (442)	$T(n) = aT(\frac{n}{b}) + f(n), a \ge 1, b > 1, f(n) = \Theta(n^k \log^p n)$
n レン 1 + n n - 1 + n n - 2	Amortised Analysis		(m) + 0 (10gn) 0 (10gn)	case los a $>k$: $\Theta(n^{\log_b a})$
n _n 2 2 n _{n-2} P _{left & right} n _n z 2 ^{h/2} children	Operation has amortised cost of T(n)	٥(22nt + 4n+7) = 0(22n2+4n)	case $\log_b a = k$: $p > -1$: $\Theta(n^k \log^{p+1} n)$ $p = -1$: $\Theta(n^k \log \log n)$
$n_h \le \sum_{i=1}^{k} 2^i = 2^{h+1} - 2$	if her every integer k.	,	*	case logba < k: p > 0 : O (n log Pn)
n ist	cost of k operations $\leq kT(n)$			p < 0 :

Graphs Do	Heap sorted = heap, heap \$ sorted	Prim's Algorithm (DP)	
(simple) path: set of edges connecting 2 nodes	[1,2,,n] root: i left: 2; parent: [½] right: 2: +1	and the same of the same	substructure
(no nodes repeated) cycle: path w/ src == des+	parent: [12] right: 2: +1 Full binary tree: everylevel is full	1. S = { start 3 - overlap	onstruct problem from smaller problems ping subproblems
2 (1 o cycle (E = V-1)	(full =) complete) (2" array filled)	2. add min distance (cut) -> diffe	Trom ARC
in forest: 31 disconnected trees	Complete ": 1. every level except leaf is full 2. leaf node for left	3. repeat 2 8 3	y optional substructure
sparse: E=O(v) dense: E=O(v2) longest shortest pai	. (array no gaps)	each node add/extract once 2. defin	subproblems \$
, , ,	get min/max koutof n: 0(n log k)	F 2 V : connected 4. done	
deg diameter	max heap tree local only		increasing subsequence
% star n-1 2	1. root 2 children (not nephew)	Kruskal's prefix	ver. = max(all prev) +1
clique/complete graph n-1 1 line (is biparlite) 2 n-1	2. complete binary tree	1. sort edges small 7 bg 0(n2)	
cycle (even is bipartite) 2 = \frac{\frac{\pi}{2} \frac{\pi}{2}}{\text{even}} \text{odd}	- child = root = parem - largest always root	2. ITETATE & WAR IS	n search ver. Is array storing smallest tail of lengths on-1
bipartite – n-1	- 2" largest always rooms child	- terminate after V-1 edges added -to- use up to union/find if form cycle - is	non-decreasing > monotonic
AYL BST 12 log n	- h = Llog "J : bubble up/down raises/lowers level	if (! uf. find (src, dest)) { for	x in arr: in search for position to add in tails
space find an adj. emmerate ad	is is Adj of invariant violation	· P in (esc. loca):	ura tails. size_used
adj. list o(VtE) fast fast	slow insert : 0 (log n)	bush of bush o	
adj. matrix O(v²) show slow	fast 1. insert in far left of leaf	10 16 3	ve weight cycles -> 40 ate edge weights & Bellman-Ford
, , ,	2. bubble up Tpainter or position	0(F & (E))	se - collecting
Graph Searching Q	ex tract Max : 0 (log m)	Boruvka's -> parallelisable ->in < k	steps: graph ver o(ke+kv)
Eunweighlad SSSP	1. swap root 2 last elem 2. remove last elem (the max)	i. mo	del as DAG
BFS & DFS	3. bubble down (picks larger side)	sue s (? restants (V pollo) JO I literations	ke k copies or node to every v E Gi
o(V+ E) - list o(V²) - matrix	(in general, raise priority to so, extract Max)	1. Par each CC, take min outaging edge	E-2226 Hom substance
o(v") - matrix - parent edges form tree (use deft of tree)	heapity : o(")	2. add them → in = b	c steps: DP O(kV²) 2) = max prize at v in = k steps
	1. glart w/ complete irse can skipleaf	s. violige more	= wax {b(m'k-i) + neight(n'm) me nuneighponn}
Topological Ordering -> on DAG 1. sequential total ordering (NOT unique)	2, iterate from last to first index	overall: 0 (E log v)	-
2. no bidirectional edge (antisymmetric)	1. if heap (only check shildren), good!	Variants of MSTs los	ngest common subsequence
3. no cycle pre-order DFS on tree = topo order	2. else bubble down)) = x[01]
reverse post-order DFS	after i iterations, last i elem are heap	arun DES/BES (any ST is min)	> LCS(A(i-i), B(i) +1
same as DFS	cost = Eizl log (it +1) = n+log i +	O(E) if connected	: mar (LES (A(:-1), E(1)) , LES (A(:), E(:-1))
kahn's algorithm	= n + log n; = n + log n by sterling = = 0 (") B. all edge weights [1,10]	min vertex cover on tree)
repent: 1. $S = \{x \text{ has no incoming edge } x \in V\}$	Union-Find Binomial Tree is an application of u	af kruskal	set of nodes that touch every edge (dist) S[v,0] = size of VC of subtree, if v covered
2. add all in S to result 3. remove edges connected to x6S	Quick-find Bn = root + Bo + 8,4 + Bn-1 =	B _{n-1} + B _{n-1} 1. use array of size 10 to sort (links 2.2 nd part same	2[n'1] = it n ust consist
4. remove all in S from V	int () a(1)	sorting: o(E) (counting sort)	2[184f.0] = D
0(v+ E)	- 4-A	overall : o (& (E,E))	S[leaf, 1] = 1 all child covered
A triangle inequality	(NOT binary) [anick - Maion] intro parent pointer - connected (=) same tree	prim	2 [w,0) = 2 [w,1) + [(wz,1) +
$S(S,C) \leq S(S,A) + S(A,C)$	find: O(n) (han possible (BAD!)	1. insert/remove from PQ: O(U) 2. decreasekay: O(E)	+ ((1,,w)2, (0,,w]2) xom +1 = (1,v)2
keep reducing estimate R estimate 3 actual	union: 0[h)] Weighted-Union]	overall : O(v+E) = O(E)	→2V subproblems o(u) time
Bellman-ford -> do this V-1 times (alt: que (can terminate early)		1 to a	
after i iterations, i hop estimate on shortest	neth is correct! h= o(loan)	1. V V EV, AND MIN INCOMING ENTE	
A(EV)	tree of height k has size 3 2k find/union: o(log n)	-9 use induction 2. done acyclic & V-1 adge => tree	misc.
cannor find longest unless non-negative - use lo	g to avoid multiplication	D. directed graph	- can combine u v if weight (u, u) = 0
log [a,a	υ . 2an) = log a, + loga, t	NP-hard	-k copies of G for k states
S brook of 3 of correct may to tele-	Path Compressi	on Stuff about MST	
حمّ ع relay tree edges in BFS . م د	Dijkstra - set parent poin	ter of A. re-weighing edges is OK	
5 . Claring & afterwards always &d	every node to i	aladina meialter	
min pa of nodes - relax all edges from u	after j iters, traversing up	B. MaxST	
· · · · · · · · · · · · · · · · · · ·	oijkstra j closest is find/union: o(log	OR run Kruskal from big > small	
Array I V I	O(V3) Wu + PC) : very		
1	D(E logs, V) Thirst ap is O(log n) O(n + ma(m		
)(E loge, V)		
SSSP	Palmost linear		
unweighted BFS	MST -> for weighted, undirected graphs	APSP Floy &- Warshall	
no -ve cycle Bellman-Ford no -ve weight Dijkstra	ST: acyclic subset of edges that connect co	s[v,w,P] be shortest path from	
DAG Topo-sort + relax	1. no cycles Jo	vow only passing through ve? Po = {1} P, = {1,2,,n}	
longest DAG negate then SSSP_DAG	2. split MST -> 2 MSTs	8[v,w,P;41] = min (\$[v,w,P;] ,	
Strongly Connected Component (SCC)	proof for every cycle, max edge NOT in MST.	\$ (v, i+1, p;) + \$[i+1, ·	
V v, we scc, path exists from con	ntradiction 4, cut property (blue) for every cut, min edge IS in MST.	0 (v³) better than naive Dijkstra (v³ lo	g V) when dense
y>w & w>v	nore west	" V O(v²) space to store parent pointers to g	* ElogV pet posts,
taraph of multiple see is as provided and	be, min outgoing edge => in MST ("cut)		•
DAG has V Scc (:: single node is Scc)	a remove - divide & conquer no work unless along made		
weights Ye E E , C E R	(not all)	for k in nodes: for each pair of nodes:	
etc - shortest path change	Ein a MST (=> not max in and cycle : suggest it is and in cycle,	use k as shortcut	
e x c → shortest path SAME	can always avoid removing it		