seometria Analitica Cortión de Sabardo hoviembre

Dac	dok	10.1		-		J.		20	-	1		4-	30	7 0	1	1				1						Ī
TIA	dek neved	111	AC	n	1	0.6	1	-1	2	1		UE	V	2 (-15	4 6	2	1	26		10	CC				
- C	ndred		non	- (NJ.	10	00	-		-	-	-											- 4			
				-	-	-	-	-		-	H	-								-	-	_				-
	1 -			-	,		200	1	H							-				-						-
>	15,	9)	-	(1	51)							Ш											
						,				- 1							1									
A	5 -	٠١,	4	1+	4)													-							
		1		/	3	1																				Ī
																						-				Ī
> (4	1	X				\top													T	\exists					Ī
7		1 4	1	+											H			H		+	7					
-		30	1	V.				000	V C TORRES		1	H								+	-					
Mno	Imnt		05	tev	CN	no.	1	0	104											-	+	-		H		
				-	-	-							_		- Comm						-					
3			- 00	-		-		_			1		L		100	1										
			1		-		1						1	0	Y	1	-								3	
L =	1	1,1			+	A	("	1	, (Z)		X	E	1									5	1	
			10.5				,		,)					1				1	
																										Ī
													1							7						
																				+	_					
		1																								
+		+		+	+	+			-				-	- 7						+	+		-	-		
		+	-	+		+	-		-									18		-	-		-			-
			-	-	-	-	-																_			_
					-															4						
																		-57								
																								1		
			1													-						1				Ī
				1	1	1															1	-		7		
						-																+				
						-			-				-			-					+	+				-
						-		-																		_
								-			-				7					-						_
				-	-	-	-											1	-	-				=		_
			_																							
													- 8													
																							1			
					1																					
				1					-												1	1				
		1	-	17	1	-	-			-				-	-							1				
		1	-		-		-	-	-						-				-		-	-	-			
					1																	1				

Examen Considera los vertices de triangulo ABC
y elemota por Alatecta que con tiene
al lado obvesto al vertice Apsimilarmente By CAGHA A=05,6), B=05,10,0=01,40 z. En cuentra la ecuarción normal de B Tenemos que 4. (g-p) - x = g - p Para C-A ó g-p fenemos C-A=C-4,-2) x p=(5,6) Sustifuxendo. [2 x ER] (-4, -2) , x = (-4, -2) , (5,6) 3 150,-4).x=(2,-4). (5,6)3 52x-4y=10-243 Su ec. hormal es 7 2x-4x =-14/x, y ER-3 2x-4y =- 14

3. Encuentra la ecuación normal de la altura por A la perpendicular a 1 por A).

La ecuación normal es:

Entonces:

Como la Irnea de CB es perpendicular a la alfura, el vector, director puede actuar como

$$(-4,3) \cdot (x,y) = (-4,3) \cdot (5,6)$$

$$-4x + 3y = -20 + 18$$

$$-4x + 3y = -2$$

Forma funcional: $y = \frac{-2+4x}{3}$

4. Calcula las distacia b=d(A,C) y h=d(B,B), para determinar el área bh/2 y haz un dibujo del

Sortie

p=B=(5,1)

 $h = d(B, \beta) = \frac{|c - n \cdot \rho|}{|\ln |l|} = \frac{|-1 \cdot 1 \cdot - ((2, -4) \cdot (5, -1))|}{|\sqrt{(2)^2 + (-4)^{21}}}$ = 1-14-(10-4) 255 2/51 2015' = 215 Area del triangulo (215')(215') (J20')(J20') (120)2 $=\frac{20}{2}$ =10

5. Obtén las coordenadas polares de los puntos con coordenadas cartesianas P=(0,-2) y Q=(-1,2) P=(0,-2) P=(0,1P1) del vector es 2 y que el angulo que forma es 270° o 311/2 P=(317,2) Q=(-1,2) 9=10,191) |Q|= J(-1)2 + (2)2) = 11+4 = 15 tan 0 = 6.0. tano= 1 0= tan (=) Q=(716.56°, 55'), 0= 26.56° 0= 25.56° +90°

6 Demvestra que dos vectores « y v son perpend, culques si y solo si ||u+v||=||u-v|| y dibujo.

Demostración:

=>) se tiene que u 7 v son perpendiculares 7 se quiere demostrat que 1/4 + v/1 = 1/4 - v/1.

segn u y v vertores perpendiculares tales que su producto interior es 0 por el mismo hecho de ser perpendiculares qsi $u \cdot v = 0$, qsi pues si nos tomamos la norma de la suma de u y v oc tiene qve: $||u+v||^2 = (u+v) \cdot (u+v)$ desarrollando

= 11u112 + 2 w.v + 11v112 pero se tenia que u y v eran
perpendiculares

=> $\| u + v \|^2 = \| u \|^2 + 0 + \| v \|^2$ = $\| u \|^2 + \| v \|^2$ pero como $u \cdot v = 0$ 51 restamos

-2u·v no se altera la igualdad => $||u+v||^2 = ||u||^2 - 2u·v + ||v||$ => $||u+v||^2 = u·u - 2u·v + v·v = (u-v)·(u-v) = ||u-v||^2$ => $(||u+v||)^2 = (||u-v||)^2$ pero ... ||u+v|| = ||u-v||

(=) Ahora supongase que 11 u+v11 = 11 u-v11 y se quiere demostror que wyv son perpendirulares.

As1 pres si ||u+v|| = ||u-v||, elevando al cuadrado y usando la definición de norma => $||u+v||^2 = ||u-v||^2 (=> (u+v) \cdot (u+v) = (u-v) \cdot (u-v)$ => $||u||^2 + ||u||^2 = ||u||^2 - ||u||^2 - ||v||^2$ para que se cumpla

la igualdad => 2 u.v= 0 => w.v=0 poro esto

.. u y v son perpendiculares

0.60,0

Tomando la suma y la diferencia

El paralelogramo que se torma es un rectangulo en el que sus diagonales son iguales.