О ЧИСЛЕННОМ РЕШЕНИИ СЛАУ С ПЛОХО ОБУСЛОВЛЕННЫМИ МАТРИЦАМИ

Рябов В.М., проф. каф. вычислительной математики СПбГУ, v.ryabov@spbu.ru

Бурова И.Г., проф. каф. вычислительной математики СПбГУ, i.g.burova@spbu.ru

Кальницкая М.А., асп. каф. вычислительной математики СПбГУ, m.kalnitskaya@spbu.ru

Малевич А.В., асп. каф. параллельных алгоритмов СПбГУ, amalevich@cc.spbu.ru

Аннотация

В работе обсуждаются некоторые вопросы численного решения систем линейных алгебраических уравнений с плохо обусловленными матрицами методом регуляризации.

Введение

Пусть A — невырожденная вещественная квадратная матрица размера $n \times n$, $\det A \neq 0$. В этом случае решение системы линейных алгебраических уравнений Az = f существует и единственно. Известны различные модификации метода Гаусса для решения систем линейных алгебраических уравнений (СЛАУ): схема единственного деления, метод Гаусса с выбором ведущего элемента. Предположим, что число обусловленности $cond(A) = \|A\| \cdot \|A^{-1}\|$ матрицы A очень велико, т.е. матрица системы уравнений является плохо обусловленной. Решение плохо обусловленной системы линейных уравнений методом Гаусса по схеме единственного деления далеко не всегда дает удовлетворительное решение. Например, пусть

$$A = \begin{pmatrix} 0.0000001, & 333, & 555 \\ 33333333, & 1, & 70 \\ 55555555, & 70, & 32 \end{pmatrix}, f = (888, & 33333404, & 55555657)^{T}.$$

Число обусловленности матрицы A равно $cond\ A=1314691.460$. Решая эту систему по схеме единственного деления без перестановок (с помощью программы, написанной на C^{++} с вещественными числами типа double), получаем: $z=(1.0,\ 1.555556,\ 0.666667)^T$, что значительно отличается от точного решения $(1.0,\ 1.0,\ 1.0)^T$. Аналогичный пример рассмотрен в [1]. Эти примеры поясняют, что в

процессе решения нужно избегать деления на малые по абсолютной величине элементы. Избежать такой ситуации помогает применение модифицированного метода Гаусса с выбором ведущего элемента, максимальным по абсолютной величине в столбце (стратегия Уилкинсона) или элемента, максимальным по абсолютной величине во всей матрице оставшихся уравнений (стратегия полного упорядочения Жордана). Применение метода Гаусса с выбором ведущего элемента дает решение $z=(1.0,\ 1.0)^T$.

1. О численном решении плохо обусловленной системы уравнений

Если система уравнений плохо обусловлена, например, в случае системы линейных уравнений с матрицами Гильберта $H_n = (h_{ij})_{i,j=1}^n$ порядка n с элементами $h_{ij} = \frac{1}{i+j-1}$, то получить приемлемое решение СЛАУ практически невозможно известными методами (как прямыми методами - методом Гаусса, методом квадратных корней и т.п., так и итерационными).

В табл. 1 приведены значения чисел обусловленности для матриц Γ ильберта порядков от 1 до 20, вычисленные при помощи пакета Maple.

N	$cond(H_n)$	N	$cond(H_n)$
1	1	11	$1.2337 \cdot 10^{15}$
2	27	12	$4.1154 \cdot 10^{16}$
3	748	13	$1.3244 \cdot 10^{18}$
4	28375	14	$4.5378 \cdot 10^{19}$
5	9.4366·10 ⁵	15	$1.5392 \cdot 10^{21}$
6	$2.9070 \cdot 10^7$	16	$5.0628 \cdot 10^{22}$
7	9.8519·10 ⁸	17	$1.6808 \cdot 10^{24}$
8	$3.3873 \cdot 10^{10}$	18	$5.7661 \cdot 10^{25}$
9	1.0996·10 ¹²	19	1.9258·10 ²⁷
10	$3.5357 \cdot 10^{13}$	20	6.2836·10 ²⁸

Таблица 1. Число обусловленности матриц Гильберта H_n

Предположим, что точное решение системы $H_nz=f$ известно, пусть это n-мерный вектор из единиц: $\mathbf{z_T}=(1.0, 1.0, \dots, 1.0)^T$ В этом случае вектор свободных членов вычисляется по формуле $u_i=\sum_{j=1}^n h_{ij}$. В табл. 2 приведены результаты решения системы с выбором ведущего элемента.

Таблица 2. Решения СЛАУ с матрицами Гильберта H_n , полученные методом Гаусса по схеме единственного деления с перестановками

n=8	n=10	n=12	n=14	n=16	n=20
1.0	1.000000	1.000000	1.000000	1.000000	1.000000
1.0	1.000000	1.000003	0.999990	0.999992	1.000075
1.0	0.999998	0.999916	1.000310	1.000358	0.997232
1.0	1.000020	1.001125	0.996220	0.992916	1.043007
1.0	0.999903	0.991859	1.019948	1.074614	0.657461
1.0	1.000267	1.035385	0.981738	0.529207	2.485524
1.0	0.999563	0.902315	0.675197	2.896111	-2.218021
1.0	1.000421	1.175419	2.922896	-4.015765	2.012694
	0.999779	0.795768	-4.498100	9.670665	11.914026
	1.000048	1.148663	10.515965	-8.180072	-20.728838
		0.938525	-9.428208	5.338569	5.732215
		1.011022	8.094763	3.212676	34.233277
			-1.740964	-3.852720	-42.153623
			1.460245	4.216874	18.727738
				-0.004603	2.721547
				1.121177	-16.803379
					49.405743
					-57.516277
					33.288344
					-5.798746

2. Метод регуляризации СЛАУ с симметричной положительно определенной матрицей

Известны различные подходы к решению систем уравнений с плохо обусловленными матрицами [2-6]. В данной работе для получения приемлемого решения СЛАУ рассмотрим применение модификацию метода регуляризации, предложенную В.М.Рябовым. Пусть матрица СЛАУ

$$Az = f, (1)$$

Симметрична и положительно определена (например, матрица Гильберта), так что исходная система однозначно разрешима. При вычислениях на компьютере обычно числа представляются в памяти с некоторой погрешностью. Далее считаем, что матрица и вектор заданы приближенно. В нашем случае существует единственный положительно определенный корень из матрицы $B = \sqrt{A}$, т.е. такая положительно определенная матрица B, что $B^2 = A$.

Установим связь между собственными числами и собственными векторами матриц A и B: пусть μ и x — собственное число и собственный

вектор матрицы B, т. е.

$$Bx = \mu x. \tag{2}$$

Умножим (2) на B и получим

$$Ax = \mu Bx,\tag{3}$$

Используя (2), перепишем (3) в виде

$$Ax = \mu^2 x. \tag{4}$$

Это равенство означает, что собственные вектора матриц A и B совпадают, а собственные числа матрицы A равны квадратам собственных чисел матрицы B. Умножим (1) на B^{-1} и получим

$$Bx = B^{-1}b. (5)$$

Напишем уравнение Эйлера для минимизации сглаживающего функционала $M_{\alpha}(x,B,B^{-1}b)=\|Bx-B^{-1}b\|^2+\alpha\|x\|^2$: оно имеет вид [3] $(B^*B+\alpha E)x_{\alpha}=B^*(B^{-1}b), \qquad \alpha>0,$

или в силу самосопряженности В

$$(A + \alpha E)x_{\alpha} = b, \tag{6}$$

т. е. формально осуществляется сдвиг в исходной системе, но фактически это метод регуляризации для уравнения (5) с тем же решением, что и СЛАУ (1). Вопросы сходимости метода регуляризации изложены в [3]. Решая (6), мы получаем приближенное решение системы (1).

Примечание. Разумеется, не надо искать матрицу B. Применение регуляризации непосредственно к уравнению (1) увеличило бы число обусловленности получающейся системы - возвело бы его в квадрат, что невыгодно.

3. Результаты применения метода регуляризации для систем линейных алгебраических уравнений с матрицами Гильберта H_n .

Была проведена серия вычислительных экспериментов по применению метода регуляризации для решения систем линейных алгебраических уравнений с матрицами Гильберта порядка n=2,3,...,20. В табл. 3, 4 приведены результаты применения метода регуляризации при различных

параметрах $\alpha=1.0,10^{-1},10^{-2},...,10^{-15}$ для решения возмущенных систем линейных алгебраических уравнений $(H_n+\alpha E)z=f$, где матрица исходной системы $H_n=\left(h_{ij}\right)$ - матрица Гильберта порядка n. Решение возмущенной системы вычисляли методом Гаусса по схеме единственного деления и с выбором ведущего элемента. Точное решение исходной невозмущенной системы $H_nz=f$ известно — это п-мерный вектор из единиц: $z=(1.0, 1.0, ...,1.0)^T$. Погрешность решения вычисляли с помощью евклидовой нормы.

Вычисляя решение возмущенной СЛАУ при различных значениях α , находим оптимальное значение параметра, при котором погрешность решения имеет минимальное значение.

В табл. 4 жирным шрифтом выделено наименьшее значение погрешности для данного n, соответствующее оптимальному значению параметра возмущения α .

Таблица 4. Погрешности решения методом Гаусса по схеме единственного деления возмущенной системы линейных алгебраических уравнений с матрицами Гильберта порядка n при различных значениях параметра α .

α	n=8	n=10	n=12	n=14	n=20
0	0.1 •10-5	0.71.10-3	0.3306	17.0703	105.2819
10 ⁻¹²	0.86 10 ⁻⁸ .	0.1310-5	0.2210 ⁻⁵	0.19·10-4	0.17*10 ⁻⁴
10-11	$0.16 \cdot 10^{-7}$	0.14 ·10 ⁻⁶	0.69 ·10 ⁻⁷	$0.27 \cdot 10^{-6}$	0.23 ·10 ⁻⁶
10 ⁻¹⁰	0.16 · 10 - 6	0.16 · 10 - 6	0.19 ·10-6	0.20 ·10 ⁻⁶	0.25 ·10-6
10-8	0.16.10-3	0.16 · 10 - 3	0.20 · 10 - 3	0.20 · 10 - 3	0.25 • 10 - 3
10-7	0.44 ·10 ⁻³	0.58 ·10-3	0.58 ·10 ⁻³	0.65 ·10 ⁻³	0.78 · 10 - 3
10-6	0.16 · 10-2	0.17 ·10-2	0.19 ·10-2	0.21 ·10 ⁻²	0.25 ·10 ⁻²
10 ⁻⁵	0.46 ·10-2	0.56 ·10-2	0.63 ·10-2	0.66 •10-2	0.80 - 10-2
10-4	0.16-10-1	0.18 •10-1	0.19 ·10 ⁻¹	0.21 ·10 ⁻¹	0.25 · 10 ⁻¹
10-3	0.51·10 ⁻¹	0.56 ·10 ⁻¹	0.61 ·10 ⁻¹	0.67 • 10 ⁻¹	0.81 ·10 ⁻¹
10-2	0.16 • 10 - 1	0.1799	0.1985	0.2153	0.2581
10 ⁻¹	0.52·10 ⁻¹	0.5788	0.6355	0.6872	0.8220

Заключение

В данной работе представлены результаты численного решения СЛАУ с плохо обусловленной матрицей методом регуляризации, модифицированным В М Рябовым. Показано, что решение СЛАУ с матрицами Гильберта с применением метода регуляризации может быть существенно улучшено.

Литература

- 1. Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. М.: Мир. Редакция литературы по математическим наукам, 1969. 167 с.
- 2. Д. К. Фаддеев, В. Н. Фаддеева. О плохо обусловленных системах линейных уравнений // Журн. вычисл. матем. и |матем. физ., 1961, т. 1, № 3, 412—417.
- 3. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. Учебное пособие для вузов. Изд. 3-е, исправленное. М.: Наука. Гл. ред. физ.-мат. лит., 1986.-288 с.
- 4. М. К. Гавурин. Решение «почти особенных» операторных уравнений // Успехи матем. наук, 1960, 15, № 5, 151—154.
- 5. М. К. Гавурин, О плохо-обусловленных системах линейных алгебраических уравнений // Журн. вычисл. матем. и матем. физ., 1962, т. 2, № 3, 387–397
- 6. М. К. Гавурин, В. М. Рябов. Применение полиномов Чебышева при регуляризации некорректных и плохо обусловленных уравнений в гильбертовом пространстве // Журн. вычисл. матем. и матем. физ., 1973, т. 13, № 6, 1599—1601.