ABE 201 Biological Thermodynamics 1

Module 10:

T P H and U Relationships

Outline

- Representing the relationship between T,
 P, and H graphically
- Sensible versus Latent Heat
- Calculating sensible and latent heat changes
- Estimating heat capacity for biological materials

Constant Temperature Processes

 For <u>Liquids and solids</u>, specific volume and internal energy depend heavily on temperature, and little on pressure

For constant T:

$$\begin{split} (\Delta \hat{U})_T &\approx 0 \\ (\Delta \hat{H})_T &= (\Delta \hat{U})_T + \Delta (P\hat{V})_T = (\Delta \hat{U})_T + \hat{V}\Delta P + P\Delta \hat{V} \\ &\approx 0 \end{split}$$

for water $\hat{V} = 0.00100$ to 0.00116 between 0.01 C to 200 C If water compressed at 20C from 2 Pa (saturation) to 200 kPa, $\Delta H = 0.2$ kJ/kg, from 84.0-84.2 kJ/kg - a change of 0.2%

T, P, H and Phase

- Phase changes represent a "discontinuity" to the relationship between T, P, and H.
- This discontinuity can be expressed by thinking about these relationships as distinct, separate phenomena.
- When no phase change occurs T, P, and H are straight-forward functions of one another.
- When a phase change occurs, T & P are constant while H undergoes a significant change as 100% of the liquid becomes 100% vapor

Sensible Heating

 Defined as heat transferred to raise or lower the temperature of the substance

$$Q = \Delta U$$
 = function of temperature

$$Q = \Delta \dot{H} = function of temperature$$

Latent Heating

 Defined as heat transferred to change the <u>phase</u> of the substance

$$Q = \Delta U_{v}, \Delta U_{m}$$

$$\dot{Q} = \Delta \dot{H}_{v}, \Delta \dot{H}_{m}$$

State Change Without Phase Change, P=constant

Enthalpy is a Strong Function of Temperature

- For incremental changes in temperature at constant *pressure*, the enthalpy change is approximated by the slope of the plotted relationship.
- As the incremental temperature change approaches zero, the limiting slope defines the *heat capacity at constant pressure*.

$$C_p(T)$$

Using C_p

For ideal gas:

$$\Delta \hat{H} = 0 + \int_{T_1}^{T_2} C_p(T) dT$$

For Liquid or solids:

$$\Delta \hat{H} = \hat{V} \Delta P + \int_{T_1}^{T_2} C_p(T) dT \approx \int_{T_1}^{T_2} C_p(T) dT$$

 For nonideal gases this approach is valid only if P is constant. Note in most cases of liquids and solids the first term including ΔP is usually small relative to the second term.

Heat Capacity Formulas

- Table B.2
- Conversion between C_p and C_v:
 - Liquids and Solids:

$$C_p \approx C_v$$

- Ideal Gases:

$$C_p \approx C_v + R$$

Non ideal gases (not easily determined relation)

Simple Derivation

 We can derive the relation between the heat capacities from the definitions we all ready have:

$$\Delta \hat{H} = \Delta \hat{U} + \Delta (P\hat{V})$$

$$\Delta \hat{H} = \Delta \hat{U} + \Delta (RT)$$

$$\Delta \hat{H} = \Delta \hat{U} + R\Delta (T)$$

 Now let us look at the incremental changes for this integral balance and differentiate with respect to temperature:

$$\frac{d\hat{H}}{dT} = \frac{d\hat{U}}{dT} + R\frac{dT}{dT}$$

$$C_p = C_v + R$$

Calculating Heat Capacities

Table B.2

$$C_p = a + bT + cT^2 + dT^3$$

Form 2

$$C_p = a + bT + cT^{-2}$$

Table B.2 Heat Capacitiesa

Form 1: $C_p[kJ/(mol \cdot {}^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$ Form 2: $C_p[kJ/(mol \cdot {}^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{\text{sectone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp.	$a \times 10^3$	$b \times 10^{5}$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Acetone	CH ₃ COCH ₃	58.08	1	1	°C	123.0	18.6			-30-60
	,	20100	g	1	°C	71.96	20.10	-12.78	34.76	0-12
Acetylene	C_2H_2	26.04	g	1	°C	42.43	6.053	-5.033	18.20	0-12
Air		29.0	g	1	°C	28.94	0.4147	0.3191	-1.965	0-15
			g	1	K	28.09	0.1965	0.4799	-1.965	273-18
Ammonia	NH_3	17.03	g	1	°C	35.15	2.954	0.4421	-6.686	0-12
Ammonium sulfate	(NH ₄) ₂ SO ₄	132.15	c	1	K	215.9				275-32
Benzene	C_6H_6	78.11	1	1	°C	126.5	23.4			6-67
			g	1	°C	74.06	32.95	-25.20	77.57	0 - 12
Isobutane	C_4H_{10}	58.12	g	1	$^{\circ}C$	89.46	30.13	-18.91	49.87	0-12
n-Butane	C_4H_{10}	58.12	g	1	°C	92.30	27.88	-15.47	34.98	0-12
Isobutene	C_4H_8	56.10	g	1	°C	82.88	25.64	-17.27	50.50	0-12
Calcium carbide	CaC _z	64.10	c	2	K	68.62	1.19	-8.66×10^{10}		298-72
Calcium carbonate	CaCO ₃	100.09	c	2	K	82.34	4.975	-12.87×10^{10}	_	273-10
Calcium hydroxide	Ca(OH)2	74.10	c	1	K	89.5				276-37
Calcium oxide	CaO	56.08	c	2	K	41.84	2.03	-4.52×10^{10}		273-11
Carbon	C	12.01	c	2	K	11.18	1.095	-4.891×10^{10}		273-13
Carbon dioxide	CO ₂	44.01	g	1	°C	36.11	4.233	-2.887	7.464	0 - 15
Carbon monoxide	CO	28.01	g	1	°C	28.95	0.4110	0.3548	-2.220	0-15
Carbon tetrachloride	CCL ₄	153.84	1	1	K	93.39	12.98			273-34
Chlorine	Cl_2	70.91	g	1	°C	33.60	1.367	-1.607	6.473	0-12
Copper	Cu	63.54	c	1	K	22.76	0.6117			273-13

Using Heat Capacity Formulas

$$\Delta \hat{H} = \hat{V} \Delta P + \int_{T_1}^{T_2} C_p(T) dT$$

$$\Delta \hat{H} = \hat{V} \Delta P + \int_{T_1}^{T_2} \left(a + bT + cT^2 + dT^3 \right) dT$$

$$\Delta \hat{H} = 0 + \left| aT + \frac{b}{2}T^2 + \frac{c}{3}T^3 + \frac{d}{4}T^4 \right|_{T_1}^{T_1}$$

$$\Delta \hat{H} \approx a \Delta T = c_p \Delta T$$

Using Sensible and Latent Heat in 1st Law Energy Balances

$$\Delta \dot{H} + \Delta \dot{E}_{k} + \Delta \dot{E}_{p} = \dot{Q} - \dot{W}_{s}$$

$$\Delta \dot{H} = \left[\Sigma \left(\hat{H}_{i,out} \dot{m}_{i,out} \right) - \Sigma \left(\hat{H}_{i,in} \dot{m}_{i,in} \right) \right]$$

$$\Delta \dot{H} = \Delta \hat{H}_{sensible} \dot{m} + \Delta \hat{H}_{latent} \dot{m}$$

$$\Delta \dot{H} = \int_{T_1}^{T_2} \left(a + bT + cT^2 + dT^3 \right) dT \cdot \dot{m} + \Delta \hat{H}_{latent} \dot{m}$$

Heat Capacities of Biological Materials

Usually treated as a constant (b=c=d=0)

$$\Delta \hat{H} \approx a \Delta T = c_p \Delta T$$

- Tabulated Values
 - Very specific (pure biochemicals)
 - Limited range (moisture, composition)
 - Limited utility (variability of biomaterials)
- Calculated Values
 - Estimates based on composition or moisture content

Tabulated Heat Capacities

Material	C _p (kJ/kg-K)				
Flour	1.80-1.88				
Ice Cream (liquid)	3.27				
Ice Cream (frozen)	1.88				
Milk, whole	3.85				
Olive Oil	2.01				
Green Beans (fresh)	3.81				
Green Beans (frozen)	1.97				

Predicting Heat Capacity in Biological Materials

- There are several equations that can be used to predict unknown specific heats for food and biological materials
- Two Examples
 - Seibels Equations
 - Choi and Okos Equation

Seibels Equations

- Based on the wet basis moisture content of the biomaterial
- MC(wb) = mass of water / total mass
- MC(wb) = mass fraction of water
- Specific Heat (kJ/(kg-K))

```
Above freezing: cp = 0.837 + 3.348*x_{water}
```

Below freezing: $cp = 0.837 + 1.256*x_{water}$

Choi and Okos Equation

 Estimates the specific heat for foods in kJ/(kg-K) as weighted average of composition.

Water

$$c_p = 4.180^*X_w + 1.711^*X_p + 1.928^*X_f + 1.547^*X_c + 0.908^*X_a$$

<u>lce</u>

$$c_p = 1.998*X_w + 1.711*X_p + 1.928*X_f + 1.547*X_c + 0.908*X_a$$

w = water, p = protein, f = fat, c = carbohydrate, a = ash

Summary

- Thermodynamic properties (T, P, H, etc.) are related to one another by smooth functions with discontinuities at phase change boundaries
- This can be simplified as two types of thermal relationships: sensible and latent energy
- Heat capacities for biological materials can be measured, use tabulated values, or be estimated from the composition.