Матричные вычисления

Значительная часть задач вычислительной математики может быть сформулирована в терминах матричного анализа, который необходим при исследовании вопросов корректности, устойчивости и сходимости различных методов. Алгоритмы решения систем линейных алгебраических уравнений — важная часть методов решения уравнений в частных производных.

Глава посвящена вопросам теории устойчивости для матричных задач, приведены наиболее известные прямые и итерационные алгоритмы решения систем линейных алгебраических уравнений, подробно разобраны различные способы их построения. Отдельно рассмотрена задача наименьших квадратов для переопределенных системы уравнений. Приведены алгоритмы для решения проблемы собственных значений.

5.1. Векторные и матричные нормы

Нормой вектора $\mathbf{x} = (x_1, \dots, x_n)^T$ называется функционал, обозначаемый $||\mathbf{x}||$ и удовлетворяющий условиям:

$$||\mathbf{x}|| > 0, \mathbf{x} \neq 0, ||\mathbf{0}|| = 0;$$

 $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||;$
 $||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||.$

Наиболее употребительны следующие нормы:

$$||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i|, \quad ||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|, \quad ||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{(\mathbf{x}, \mathbf{x})}.$$

Нормы $||\cdot||_{\rm I}$ и $||\cdot||_{\rm II}$ называются эквивалентными, если для всех $\mathbf{x}\in\mathbf{R}^n$ справедливы неравенства с одними и теми же положительными постоянными c_1 и c_2 :

$$c_1 ||\mathbf{x}||_{\mathrm{II}} \leqslant ||\mathbf{x}||_{\mathrm{I}} \leqslant c_2 ||\mathbf{x}||_{\mathrm{II}}.$$

$$||A|| > 0, A \neq 0, ||0|| = 0;$$

 $||\alpha A|| = |\alpha| ||A||;$
 $||A + B|| \leq ||A|| + ||B||;$
 $||A C|| \leq ||A|| ||C||.$

Пусть задана некоторая векторная норма $||\cdot||_v$. Тогда матричную норму можно определить как операторную

$$||A||_v = \sup_{||\mathbf{x}||_v \neq 0} \frac{||A\mathbf{x}||_v}{||\mathbf{x}||_v} = \sup_{||\mathbf{x}||_v = 1} ||A\mathbf{x}||_v.$$

В этом случае матричная норма называется $no\partial$ чиненной соответствующей векторной норме $\|\cdot\|_v$.

5.1. Является ли выражение $\min(|x_1|+2|x_2|,2|x_1|+|x_2|)$ нормой вектора **х** в \mathbf{R}^2 ?

Ответ: нет, поскольку неравенство треугольника не выполнено, например для векторов $(1,0)^T$ и $(0,1)^T$.

5.2. Является ли выражение $\max_{t \in [0,1]} \left| \sum_{k=1}^n x_k t^{k-1} \right|$ нормой вектора **х** в \mathbf{R}^n ?

Ответ: да.

5.3. Найти константы эквивалентности, связывающие нормы $||\mathbf{x}||_{\infty}$, $||\mathbf{x}||_{1}$, $||\mathbf{x}||_{2}$, а также векторы, на которых они достигаются.

 $\mathrel{\triangleleft}$ Из неравенств $\max_{1\leqslant i\leqslant n}|x_i|\leqslant \sum\limits_{i=1}^n|x_i|\leqslant n\max_{1\leqslant i\leqslant n}|x_i|$ следует

$$||\mathbf{x}||_{\infty} \leqslant ||\mathbf{x}||_{1} \leqslant n \, ||\mathbf{x}||_{\infty}.$$

Так как $\sum_{i=1}^n x_i^2 \leqslant \left(\sum_{i=1}^n |x_i|\right)^2$, то $||\mathbf{x}||_2 \leqslant ||\mathbf{x}||_1$. Из неравенства Коши—Буняковского имеем

$$\sum_{i=1}^{n} |x_i| \leqslant \left(\sum_{i=1}^{n} 1\right)^{1/2} \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} = n^{1/2} \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}.$$

Следовательно,

$$n^{-1/2}||\mathbf{x}||_1 \leqslant ||\mathbf{x}||_2 \leqslant ||\mathbf{x}||_1.$$

Из неравенств $\max_{1\leqslant i\leqslant n}x_i^2\leqslant \sum_{i=1}^nx_i^2\leqslant n\max_{1\leqslant i\leqslant n}x_i^2$ имеем

$$||\mathbf{x}||_{\infty} \leqslant ||\mathbf{x}||_{2} \leqslant n^{1/2} ||\mathbf{x}||_{\infty}.$$

Легко заметить, что в полученных неравенствах константы эквивалентности достигаются на векторах либо с равными компонентами, либо с единственной ненулевой компонентой.

- **5.4.** Пусть B симметричная положительно определенная матрица.
- 1) Доказать, что величину $\sqrt{(B{\bf x},{\bf x})}$ можно принять за норму вектора ${\bf x}$;
- 2) найти константы эквивалентности, связывающие эту норму с нормой $||\mathbf{x}||_2$.

1) Для доказательства того, что соответствующее выражение определяет норму, достаточно проверить неравенство треугольника. 2) Найдем константы эквивалентности. Так как $B=B^T>0$, то собственные векторы матрицы различны и ортогональны. Пусть $\mathbf{e}_1,\ldots,\mathbf{e}_n$ — ортонормированная система собственных векторов матрицы B (т. е. $(\mathbf{e}_i,\mathbf{e}_j)=\delta_i^j$), а $\lambda_1,\ldots,\lambda_n$ — соответствующие собственные значения. Любой вектор \mathbf{x} представим в виде $\mathbf{x}=\sum_{i=1}^n c_i\mathbf{e}_i$. Поэтому

$$(B\mathbf{x}, \mathbf{x}) = \left(\sum_{i=1}^{n} \lambda_i c_i \mathbf{e}_i, \sum_{i=1}^{n} c_i \mathbf{e}_i\right) = \sum_{i=1}^{n} \lambda_i c_i^2.$$

Отсюда для произвольного вектора ${\bf x}$ имеем

$$\min_{i} \lambda_{i}(\mathbf{x}, \mathbf{x}) \leqslant (B\mathbf{x}, \mathbf{x}) \leqslant \max_{i} \lambda_{i}(\mathbf{x}, \mathbf{x}), \quad (\mathbf{x}, \mathbf{x}) = \sum_{i=1}^{n} c_{i}^{2}.$$

Так как все $\lambda_i(B) > 0$, то полученное неравенство означает эквивалентность евклидовой норме $||\mathbf{x}||_2$ с постоянными

$$\tilde{c}_1 = \sqrt{\min_i \lambda_i}, \quad \tilde{c}_2 = \sqrt{\max_i \lambda_i}.$$

5.5. Найти матричные нормы, подчиненные векторным нормам $||\cdot||_{\infty}$, $||\cdot||_1$ и $||\cdot||_2$.

 \triangleleft Получим оценку сверху для величины $||A\mathbf{x}||_{\infty}$:

$$||A\mathbf{x}||_{\infty} = \max_{i} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \leqslant \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \max_{j} |x_{j}| \right) \leqslant$$
$$\leqslant \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) ||\mathbf{x}||_{\infty}.$$

Покажем, что эта оценка достигается. Пусть максимум по i имеет место при i=l; тогда возьмем $\mathbf{x}=\left(\text{sign}\left(a_{l1}\right), \text{sign}\left(a_{l2}\right), \ldots, \text{sign}\left(a_{ln}\right)\right)^T$. Имеем $||\mathbf{x}||_{\infty}=1$ и точные равенства во всей цепочке выше. Таким образом, $\|A\|_{\infty}=\max_i\left(\sum_{j=1}^n|a_{ij}|\right)$. Аналогично показывается, что $\|A\|_1=\max_j\left(\sum_{j=1}^n|a_{ij}|\right)$.

По определению матричной нормы, подчиненной евклидовой векторной норме,

$$||A||_2 = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_2}{||\mathbf{x}||_2} = \sup_{\mathbf{x} \neq 0} \sqrt{\frac{(A\mathbf{x}, A\mathbf{x})}{(\mathbf{x}, \mathbf{x})}} = \sup_{\mathbf{x} \neq 0} \sqrt{\frac{(A^T A\mathbf{x}, \mathbf{x})}{(\mathbf{x}, \mathbf{x})}}.$$

Имеем, что $(A^TA)^T = A^T(A^T)^T = A^TA$, т. е. матрица $B = A^TA$ — симметричная, и $(A^TA\mathbf{x}, \mathbf{x}) = (A\mathbf{x}, A\mathbf{x}) \geqslant 0$, следовательно, все $\lambda(B) \geqslant 0$.

Рассуждая далее, как в 5.4, получим, что $\sup_{x\neq 0} \frac{(B\mathbf{x},\mathbf{x})}{(\mathbf{x},\mathbf{x})} = \max_i \lambda_i(B)$, а равенство достигается на соответствующем собственном векторе. Поэтому $||A||_2 = \sqrt{\max_i \lambda_i(A^TA)}$.

Отметим важный частный случай симметричной матрицы: $A = A^T$. Тогда $||A||_2 = \max_i |\lambda_i(A)|$.

5.6. Доказать, что модуль любого собственного значения матрицы не больше любой ее нормы.

 \triangleleft Зафиксируем произвольный собственный вектор **x** матрицы A и построим квадратную матрицу X, столбцами которой являются векторы **x**. Получим равенство $\lambda X = AX$. Отсюда следует: $|\lambda| \|X\| \leqslant \|A\| \|X\|$, т. е. $|\lambda| \leqslant \|A\|$.

5.7. Пусть A — вещественная матрица размерности $m \times n$. Доказать следующие свойства спектральной нормы $||A||_2$:

1)
$$||A||_2 = \sup_{\substack{||\mathbf{x}||_2 = 1 \\ ||\mathbf{y}||_2 = 1}} |\mathbf{y}^T A \mathbf{x}|; 2) ||A^T||_2 = ||A||_2; 3) ||A^T A||_2 = ||AA^T||_2 = ||A||_2^2.$$

Для доказательства свойства 1) надо показать, что существуют такие векторы х и у единичной длины, на которых максимум достигается. В силу неравенства Коши−Буняковского и с учетом того, что спектральная норма подчинена евклидовой векторной норме, получаем неравенство

$$|\mathbf{y}^T A \mathbf{x}| = |(\mathbf{y}, A \mathbf{x})| \le ||\mathbf{y}||_2 ||A \mathbf{x}||_2 \le ||\mathbf{y}||_2 ||\mathbf{x}||_2 ||A||_2 = ||A||_2.$$

Пусть вектор \mathbf{x} такой, что $||A\mathbf{x}||_2 = ||A||_2$, т. е. на нем достигается максимум в определении подчиненной нормы, и возьмем $\mathbf{y} = \frac{A\mathbf{x}}{||A\mathbf{x}||_2}$. Тогда $||\mathbf{y}||_2 = 1$ и

$$|\mathbf{y}^T A \mathbf{x}| = \frac{(A \mathbf{x})^T}{||A \mathbf{x}||_2} A \mathbf{x} = \frac{(A \mathbf{x}, A \mathbf{x})}{||A \mathbf{x}||_2} = ||A \mathbf{x}||_2 = ||A||_2.$$

Следовательно, искомые векторы ${\bf x}$ и ${\bf y}$ построены и свойство 1) доказано. Из свойства 1) и равенства

$$\begin{aligned} ||A^{T}||_{2} &= \sup_{\substack{||\mathbf{x}||_{2}=1\\||\mathbf{y}||_{2}=1}} |\mathbf{y}^{T} A^{T} \mathbf{x}| = \sup_{\substack{||\mathbf{x}||_{2}=1\\||\mathbf{y}||_{2}=1}} (\mathbf{y}, A^{T} \mathbf{x}) = \\ &= \sup_{\substack{||\mathbf{x}||_{2}=1\\||\mathbf{y}||_{2}=1}} (A\mathbf{y}, \mathbf{x}) = \sup_{\substack{||\mathbf{x}||_{2}=1\\||\mathbf{y}||_{2}=1}} |\mathbf{x}^{T} A \mathbf{y}| = ||A||_{2} \end{aligned}$$

следует свойство 2).

Покажем справедливость свойства 3). Из свойства 2) следует неравенство

 $||A^T A||_2 \le ||A^T||_2 ||A||_2 = ||A||_2^2$.

Возьмем такой вектор \mathbf{x} , что $||\mathbf{x}||_2=1$ и $||A\,\mathbf{x}||_2=||A||_2$, и применим свойство 1) к матрице A^TA , положив $\mathbf{y}=\mathbf{x}$. Получаем неравенство

$$||A^T A||_2 \ge |\mathbf{x}^T A^T A \mathbf{x}| = (A\mathbf{x}, A\mathbf{x}) = ||A\mathbf{x}||_2^2 = ||A||_2^2.$$

Из этих двух неравенств следует $||A^TA||_2 = ||A||_2^2$. Аналогично показывается, что $||AA^T||_2 = ||A||_2^2$. Таким образом, свойство 3) доказано.

5.8. Пусть A— вещественная прямоугольная матрица. Показать, что умножение ее справа или слева на ортогональную матрицу Q соответствующих размеров не меняет ее спектральную норму.

≪ Из свойства 3) спектральной нормы (см. 5.7) следует, что

$$||QA||_2^2 = ||(QA)^T QA||_2 = ||A^T Q^T QA||_2 = ||A^T A||_2 = ||A||_2^2.$$

Из свойства 2) и полученного равенства имеем

$$||AQ||_2 = ||(AQ)^T||_2 = ||Q^T A^T||_2 = ||A^T||_2 = ||A||_2.$$

В частности, из равенств

$$||Q\mathbf{x}||_2^2 = (Q\mathbf{x}, Q\mathbf{x}) = (Q\mathbf{x})^T Q\mathbf{x} = \mathbf{x}^T Q^T Q\mathbf{x} = \mathbf{x}^T \mathbf{x} = (\mathbf{x}, \mathbf{x}) = ||\mathbf{x}||_2^2$$
 получаем, что умножение ортогональной матрицы на вектор \mathbf{x} сохраняет его длину.

5.9. Используя выражения для матричных норм из 5.5, показать справедливость неравенства $||A||_2^2 \leq ||A||_1 ||A||_{\infty}$.

 \triangleleft Модуль любого собственного значения матрицы не больше любой ее нормы (см. 5.6), поэтому имеем

$$||A||_2^2 = \max \lambda(A^T A) \le ||A^T A||_1 \le ||A||_1 ||A^T||_1 = ||A||_1 ||A||_{\infty}.$$

5.10. Рассмотрим функцию от элементов матрицы

$$\eta(A) = \max_{i,j} |a_{ij}|, \quad 1 \leqslant i, j \leqslant n.$$

Показать, что $\eta(A)$ не является нормой в пространстве матриц (хотя и является нормой вектора с компонентами a_{ij} в $\hbox{\bf R}^{n^2}$).

 \triangleleft Для любой матричной нормы справедливо неравенство $||AB|| \le$ $||A|| \, ||B||$. Рассмотрим матрицы A = B, $a_{ij} = b_{ij} = 1 \, \forall i,j$ для которых имеют место соотношения $\eta(AB) = n$, $\eta(A) = \eta(B) = 1$, противоречащие приведенному выше неравенству.

5.11. Доказать, что выражение $M(A) = n \, \eta(A)$ (см. 5.10) является матричной нормой.

 \triangleleft Заметим, что требует проверки только четвертое условие из определения матричной нормы: $M(AB) \leqslant M(A)M(B)$.

$$M(AB) = n \max_{i,j} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right| \leqslant n \max_{i,j} \sum_{k=1}^{n} |a_{ik} b_{kj}| \leqslant$$

$$\leqslant n \sum_{k=1}^{n} \eta(A) \eta(B) = n \eta(A) n \eta(B) = M(A) M(B).$$

5.12. Доказать, что для векторов $\mathbf{x} = (x_1, x_2)^T$ и h > 0 выражение $||\mathbf{x}||_h = \max\left(|x_1|, \frac{|x_2 - x_1|}{h}\right)$ является нормой. Найти матричную норму, подчиненную этой векторной норме.

 \triangleleft Найдем матричную норму. Заметим, что $||\mathbf{x}||_h = ||\mathbf{y}||_{\infty}$, где

$$\mathbf{y} = S \mathbf{x}, \qquad S = \begin{pmatrix} 1 & 0 \\ -\frac{1}{h} & \frac{1}{h} \end{pmatrix}.$$

Поэтому

$$||A||_{h} = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{h}}{||\mathbf{x}||_{h}} = \sup_{\mathbf{x} \neq 0} \frac{||SA\mathbf{x}||_{\infty}}{||S\mathbf{x}||_{\infty}} = \sup_{\mathbf{y} \neq 0} \frac{||SAS^{-1}\mathbf{y}||_{\infty}}{||\mathbf{y}||_{\infty}} =$$

$$= ||SAS^{-1}||_{\infty} = \left| \left| \left(\frac{a_{11} + a_{12}}{a_{21} + a_{22} - a_{11} - a_{12}} a_{22} - a_{12} \right) \right| \right|_{\infty} =$$

$$= \max \left(|a_{11} + a_{12}| + h |a_{12}|, |a_{22} - a_{12}| + \frac{1}{h} |a_{21} + a_{22} - a_{11} - a_{12}| \right). \quad \triangleright$$

5.13. Доказать, что выражение $N(A) = \left(\sum_{i,j=1}^n a_{ij}^2\right)^{1/2}$ является матричной нормой. Найти наилучшие константы эквивалентности, связывающие N(A) и нормы $\|\cdot\|_1, \|\cdot\|_2 \|\cdot\|_\infty$.

Ответ: $\frac{1}{\sqrt{n}} N(A) \leqslant \|A\|_1 \leqslant \sqrt{n} N(A), \quad \frac{1}{\sqrt{n}} N(A) \leqslant \|A\|_2 \leqslant N(A),$ $\frac{1}{\sqrt{n}} N(A) \leqslant \|A\|_{\infty} \leqslant \sqrt{n} N(A).$ Матричную норму N(A) называют пормой Фробениуса (пормой Шура, евклидовой матричной пормой) и обозначают $\|A\|_F$.

5.14. Пусть числа $d_k > 0, k = 1, \dots, n$. Доказать, что $\max_k (d_k|x_k|)$ — норма вектора \mathbf{x} . Найти норму матрицы, подчиненную этой векторной норме.

Ответ: $||DAD^{-1}||_{\infty}$, где $D = \text{diag}(d_1, \dots, d_n)$.

- **5.15.** Пусть числа $d_k > 0$, $k = 1, \ldots, n$. Доказать, что $\sum_{k=1}^n d_k |x_k|$ норма вектора \mathbf{x} . Найти норму матрицы, подчиненную этой векторной норме. Ответ: $\|DAD^{-1}\|_1$, где $D = \operatorname{diag}(d_1, \ldots, d_n)$.
- **5.16.** Пусть числа $d_k > 0, \ k = 1, \dots, n$. Доказать, что $\sqrt{\sum_{k=1}^n d_k \, x_k^2}$ норма вектора **х**. Найти норму матрицы, подчиненную этой векторной норме. Ответ: $\|DAD^{-1}\|_2$, где $D = \operatorname{diag}(\sqrt{d_1}, \dots, \sqrt{d_n})$.
- **5.17.** Доказать, что $\max_{1 \le i \le n} \left(\left| \sum_{k=1}^i x_k \right| \right)$ норма вектора \mathbf{x} . Найти норму матрицы, подчиненную этой векторной норме.

Ответ: $||LAL^{-1}||_{\infty}$, где $l_{ij} = 1$ при $i \leqslant j$ и $l_{ij} = 0$ при i > j.

5.18. Пусть $M(A) = n \cdot \max_{1 \leqslant i,j \leqslant n} |a_{ij}|$. Найти наилучшие константы C_1, C_2 в неравенстве $C_1 M(A) \leqslant \|A\|_2 \leqslant C_2 M(A)$.

OTBET: $C_1 = \frac{1}{n}, C_2 = 1.$

5.19. Пусть $M(A) = n \cdot \max_{1 \leqslant i,j \leqslant n} |a_{ij}|$. Найти наилучшие константы C_1, C_2 в неравенстве $C_1 \ M(A) \leqslant \|A\|_1 \leqslant C_2 \ M(A)$.

Ответ: $C_1 = \frac{1}{n}, C_2 = 1.$

5.20. Пусть
$$||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \ p \geqslant 1$$
. Доказать неравенство Йенсена $||\mathbf{x}||_p \leqslant ||\mathbf{x}||_q, \ 1 \leqslant q \leqslant p \leqslant \infty.$

<1 Считаем, что $\mathbf{x} \neq 0$, так как иначе неравенство тривиально. Пусть для определенности $|x_1|=\max|x_i|$. Тогда

$$||\mathbf{x}||_p = |x_1| \left(1 + \sum_{i=2}^n \alpha_i^p\right)^{1/p}, \ ||\mathbf{x}||_q = |x_1| \left(1 + \sum_{i=2}^n \alpha_i^q\right)^{1/q},$$

 $\alpha_i = |x_1|^{-1} |x_i| \leqslant 1$. Так как $q \leqslant p$, то $\alpha_i^p \leqslant \alpha_i^q$, а $t^{1/p} \leqslant t^{1/q}$ для $t \geqslant 1$. Таким образом,

$$\left(1 + \sum_{i=2}^{n} \alpha_i^p\right)^{1/p} \leqslant \left(1 + \sum_{i=2}^{n} \alpha_i^q\right)^{1/q}.$$

5.21. Доказать, что при $\mathbf{x} \in \mathbf{R}^n$ справедливо равенство $\lim_{p \to \infty} ||\mathbf{x}||_p = ||\mathbf{x}||_{\infty}.$

 \lhd Из неравенств $||\mathbf{x}||_{\infty}\leqslant ||\mathbf{x}||_p\leqslant n^{1/p}||\mathbf{x}||_{\infty}$ в пределе при $p\to\infty$ получаем требуемый результат.

5.22. Доказать, что сходимость в любой норме в пространстве \mathbf{R}^n эквивалентна покоординатной сходимости.

Указание. Воспользоваться эквивалентностью любых норм в конечномерном пространстве.

5.23. Пусть $||\cdot||$ — векторная норма в \mathbf{R}^m и $A \in \mathbf{R}^{m \times n}$ — прямоугольная матрица, размерности $m \times n$. Показать, что если ранг матрицы $\mathrm{rank}(A) = n$, то $||A\mathbf{x}||$ — векторная норма в \mathbf{R}^n .

Указание. Убедиться в справедливости первого условия в определении нормы.

5.24. Проверить, что $||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$, $p \geqslant 1$, является нормой в пространстве \mathbf{C}^n векторов с комплексными координатами. Показать, что при $\mathbf{x} \in \mathbf{C}^n$ справедливо неравенство $||\mathbf{x}||_p \leqslant ||\mathrm{Re}(\mathbf{x})||_p + ||\mathrm{Im}(\mathbf{x})||_p$. Найти такую максимальную постоянную $c_0 > 0$, что $c_0(||\mathrm{Re}(\mathbf{x})||_2 + ||\mathrm{Im}(\mathbf{x})||_2) \leqslant ||\mathbf{x}||_2$ для всех $\mathbf{x} \in \mathbf{C}^n$.

У казание. Обозначить $x_k = a_k + i b_k$ и воспользоваться неравенством треугольника для векторов, координатами которых являются $|a_k|$ и $|b_k|$.

OTBET: $c_0 = \frac{1}{\sqrt{2}}$.

5.25. Пусть $||\cdot||$ — некоторая норма в \mathbf{R}^n . Доказать, что функционал

$$||\mathbf{x}||_* = \sup_{\mathbf{y} \neq 0} \frac{(\mathbf{x}, \mathbf{y})}{||\mathbf{y}||}$$

также задает норму в \mathbf{R}^n , называемую двойственной к $||\cdot||$. Найти норму, двойственную к $||\cdot||_{\infty}$.

Ответ: $||\cdot||_1$.

5.26. Пусть $1 \leqslant p \leqslant \infty$ и B — любая подматрица квадратной матрицы A. Доказать, что $||B||_p \leqslant ||A||_p$.

 \triangleleft Пусть A — матрица, размерности $n \times n$, и B — некоторая ее подматрица размерности $n_1 \times n_2$, $n_i \leqslant n$. Используя при необходимости перестановки строк и столбцов (это не влияет на норму матрицы), представим A в виде

$$A = \begin{pmatrix} B & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

По определению, $||A||_p = \sup_{||\mathbf{x}||_p=1} ||A\mathbf{x}||_p$. Пусть $\mathbf{x}^*, ||\mathbf{x}^*||_p = 1$ — такой вектор, что $||B||_p = ||B\mathbf{x}^*||_p$ и $\tilde{\mathbf{x}} = (x_1^*, \dots, x_{n^2}^*, 0, \dots, 0)^T$. В этом случае

 $||\tilde{\mathbf{x}}||_p = 1 \text{ if } ||B||_p = ||B\mathbf{x}||_p \text{ if } \mathbf{x} = (x_1, \dots, x_{n_2}, 0, \dots, 0) \text{ . B show city factors}$ $||\tilde{\mathbf{x}}||_p = 1 \text{ if } ||A||_p \geqslant ||A\tilde{\mathbf{x}}||_p \geqslant ||B\mathbf{x}^*||_p = ||B||_p.$

- **5.27.** Доказать, что если матрица $D=\mathrm{diag}(d_1,d_2,...,d_k)\in\mathbf{R}^{m\times n},$ где $k=\min\{m,n\},$ то $||D||_p=\max|d_i|.$
- **5.28.** Пусть B невырожденная матрица, $||\cdot||$ некоторая норма в пространстве векторов размерности n. Доказать, что $||\mathbf{x}||_* = ||B\mathbf{x}||$ также является нормой в пространстве векторов. Какая норма в пространстве матриц порождается нормой $||\mathbf{x}||_*$ в пространстве векторов?

Указание. Воспользоваться 5.12 и 5.23.

5.29. Показать, что если A—невырожденная матрица, то для нормы матрицы, подчиненной векторной норме, справедливо равенство

$$||A^{-1}||^{-1} = \inf_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||}.$$

Указание. По определению,

$$||A^{-1}|| = \sup_{\mathbf{y} \neq 0} \frac{||A^{-1}\mathbf{y}||}{||\mathbf{y}||} = \sup_{\mathbf{x} \neq 0} \frac{||\mathbf{x}||}{||A\mathbf{x}||}.$$

Используя далее определения inf и sup, доказать, что

$$\left(\sup_{\mathbf{x}\neq\mathbf{0}}\frac{||\mathbf{x}||}{||A\mathbf{x}||}\right)^{-1} = \inf_{\mathbf{x}\neq\mathbf{0}}\frac{||A\mathbf{x}||}{||\mathbf{x}||}.$$

5.30. Доказать неравенство $||A||_2 \le ||A||^{1/2} ||A^T||^{1/2}$ для любой нормы A, подчиненной какой-либо векторной норме.

Указание. Воспользоваться решениями 5.6 и 5.9.

5.31. Доказать, что если
$$A=A^T,$$
 то $||A||_2=\sup_{\mathbf{x}\neq 0}\frac{|(A\mathbf{x},\mathbf{x})|}{||\mathbf{x}||_2^2}$.

Указание. Воспользоваться решением 5.5.

5.32. Пусть $A=A^T>0$ и $||\mathbf{x}||_A=(A\mathbf{x},\mathbf{x})^{1/2}$. Доказать, что для произвольного многочлена $p_m(t)$ степени $m\geqslant 0$ верно равенство

$$||p_m(A)||_A = ||p_m(A)||_2.$$

Известно, что симметричная и положительно определенная матрица A имеет квадратный корень $A^{1/2}$. Пусть Q—ортогональная матрица, i-й столбец которой является i-м собственным вектором из полной ортонормированной системы собственных векторов A, а D—диагональная матрица с i-м собственным числом A в i-й строке. Тогда $A = QDQ^T$ и $A^{1/2} = QD^{1/2}Q^T$. Матрица $A^{1/2}$ коммутирует с A и любой ее степенью, а также и с $p_m(A)$. Используя этот факт, а также определения нормы $||\cdot||_2$ и энергетической нормы $||\cdot||_A$, получаем требуемое утверждение из следующей цепочки равенств:

$$||p_{m}(A)||_{A} = \sup_{\mathbf{x} \neq 0} \frac{(Ap_{m}(A)\mathbf{x}, p_{m}(A)\mathbf{x})^{1/2}}{(A\mathbf{x}, \mathbf{x})^{1/2}} =$$

$$= \sup_{\mathbf{x} \neq 0} \frac{(p_{m}(A)A^{1/2}\mathbf{x}, p_{m}(A)A^{1/2}\mathbf{x})^{1/2}}{||A^{1/2}\mathbf{x}||_{2}} = \sup_{\mathbf{y} \neq 0} \frac{||p_{m}(A)\mathbf{y}||_{2}}{||\mathbf{y}||_{2}} = ||p_{m}(A)||_{2}.$$

5.33. Доказать, что если матрица A — вещественная и $(A\mathbf{x}, \mathbf{x}) > 0$ для всех вещественных $\mathbf{x} \neq 0$, то существует такая постоянная $\delta > 0$, не зависящая от \mathbf{x} , что $(A\mathbf{x}, \mathbf{x}) \geqslant \delta(\mathbf{x}, \mathbf{x})$.

 \lhd Всякая вещественная матрица A представима в виде A=S+K, где $S=\frac{A+A^T}{2}$ — симметричная, а $K=\frac{A-A^T}{2}$ — кососимметричная матрицы. При этом для любого вещественного $\mathbf{x}\neq 0$ имеем $(A\mathbf{x},\mathbf{x})=(S\mathbf{x},\mathbf{x})\geqslant \delta\left(\mathbf{x},\mathbf{x}\right)$, где $\delta\geqslant 0$ — минимальное собственное значение матрицы S. Из неравенства $(A\mathbf{x},\mathbf{x})>0$ следует, что $\delta>0$.

5.34. Привести пример положительно определенной вещественной матрицы, спектр которой не является вещественным.

Ответ: матрица

$$A = \begin{pmatrix} a & 1 & 0 & \cdots & 0 \\ -1 & a & 0 & \cdots & 0 \\ 0 & 0 & & & \\ & & & B & \\ 0 & 0 & & & \end{pmatrix}$$

с положительной константой a и симметричной положительно определенной подматрицей B положительно определена, но имеет пару комплексно-сопряженных собственных значений $\lambda_{1,2}=a\pm {\rm i}.$

5.35. Доказать, что матричные нормы, определенные равенствами $M(A) = n \cdot \max_{1 \leqslant i,j \leqslant n} |a_{ij}|$ и $N(A) = (\sum_{i,j=1}^n a_{ij}^2)^{1/2}$, не подчинены никаким векторным нормам.

Указание. Воспользоваться тем фактом, что для любой подчиненной нормы справедливо следующее равенство: ||I|| = 1, где $I = \text{diag}(1, \dots, 1)$.

5.36. Показать, что для любого собственного значения $\lambda(A)$ невырожденной матрицы A справедлива оценка $\frac{1}{||A^{-1}||}\leqslant |\lambda(A)|$.

Указание. Воспользоваться решением 5.6.

5.37. Доказать, что для любого собственного значения $\lambda(A)$ матрицы A справедливо неравенство $|\lambda(A)| \leqslant \inf_k ||A^k||^{1/k}$, где k — натуральное число.

Указание. Воспользоваться решением 5.6.

5.38. Доказать, что если A — нормальная матрица $(AA^T=A^TA)$, то $||A||_2=\rho(A)$, где $\rho(A)=\max_i|\lambda_i(A)|$ — cnekmpaльный радиус матрицы <math>A.

Указание. Воспользоваться тем фактом, что нормальная матрица имеет полную ортонормированную систему собственных векторов.

5.39. Убедиться, что матрица A размерности $n \times n$ при $n \geqslant 2$ не определяется однозначно значениями квадратичной формы $(A\mathbf{x}, \mathbf{x})$ на произвольном векторе \mathbf{x} , т. е. найдутся две различные матрицы A и B, для которых $(A\mathbf{x}, \mathbf{x}) \equiv (B\mathbf{x}, \mathbf{x})$ для любых вещественных \mathbf{x} .

Указание. Воспользоваться решением 5.33.

5.40. Доказать, что всякая норма $\|\cdot\|_m$ матрицы согласована с какойлибо векторной нормой $\|\cdot\|_v$, т. е. верна оценка $\|A\mathbf{x}\|_v \leqslant \|A\|_m \|\mathbf{x}\|_v$.

 \triangleleft Пусть для матрицы A определена некоторая матричная норма $||A||_m$. Тогда определим функционал $||\mathbf{x}||_v$ следующим образом:

$$\|\mathbf{x}\|_{v} = \left\| \begin{pmatrix} 0 & 0 & \dots & 0 & x_{1} \\ 0 & 0 & \dots & 0 & x_{2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & x_{n} \end{pmatrix} \right\|_{m}.$$

Непосредственно проверяется, что $\|\mathbf{x}\|_v$ удовлетворяет всем условиям векторной нормы и согласован с исходной матричной.

5.41. Пусть A — матрица размерности $n \times n, \ \rho(A)$ — ее спектральный радиус и задано число $\varepsilon > 0.$ Доказать, что существует по крайней мере одна матричная норма, для которой имеют место оценки

$$\rho(A) \leqslant ||A|| \leqslant \rho(A) + \varepsilon.$$

$$D_t R D_t^{-1} = \begin{pmatrix} \lambda_1 & t^{-1} r_{12} & t^{-2} r_{13} & \dots & t^{-n+1} r_{1n} \\ 0 & \lambda_2 & t^{-1} r_{23} & \dots & t^{-n+2} r_{2n} \\ 0 & 0 & \lambda_3 & \dots & t^{-n+3} r_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

При достаточно большом t>0 сумма модулей наддиагональных элементов матрицы $D_tRD_t^{-1}$ не превосходит ε . В частности, это приводит к неравенству $\|D_tRD_t^{-1}\|_1\leqslant \rho(A)+\varepsilon$. Теперь определим матричную норму с помощью формулы

$$||A|| = ||D_t U^* A U D_t^{-1}||_1 = ||(U D_t^{-1})^{-1} A (U D_t^{-1})||_1.$$

Таким образом, выбор достаточно большого t в приведенной выше формуле приводит к оценке сверху, а оценка снизу следует из 5.6.

5.2. Элементы теории возмущений

Рассмотрим систему линейных алгебраических уравнений

$$A \mathbf{x} = \mathbf{b}$$

с квадратной невырожденной матрицей A. При ее решении в результате вычислений с конечной разрядностью вместо \mathbf{x} получается *приближенное* решение $\tilde{\mathbf{x}}$, которое можно рассматривать как *точное* решение *возмущенной* системы

$$(A + \delta A)\,\tilde{\mathbf{x}} = \mathbf{b},$$

где матрица возмущений δA мала в каком-либо смысле.

Другой источник ошибок в $\tilde{\mathbf{x}}$ определяется возмущениями δA и $\delta \mathbf{b}$ в элементах матрицы A и в компонентах вектора правой части \mathbf{b} (например, вследствие ошибок округлений, возникающих в процессе ввода вещественных чисел в память компьютера).

Чтобы оценить насколько приближенное решение $\tilde{\mathbf{x}}$ отличается от точного решения \mathbf{x} , используют нормы векторов и подчиненные нормы матриц.

Пусть в системе $A\mathbf{x} = \mathbf{b}$ возмущается только вектор \mathbf{b} , т. е. вместо исходной системы решается возмущенная система $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}} \equiv \mathbf{b} + \delta \mathbf{b}$,