PROOFS: HOMEWORK 3

ANDREW TSENG: ART2589

Problem 2.34

Part A

Given that a and b are nonzero polynomials, then the $\deg(a)$ and $\deg(b)$ are the highest power within the polynomials. By definition and properties of multiplying, $a \cdot b$ is the field of the product of the two nonzero polynomials which means that highest power of $a \cdot b$ is the $\deg(a) + \deg(b)$.

Part B

Assume that polynomial a has a multiplicative inverse, meaning that there exists polynomials $b, c \in F[x]$. Thus b(x)c(x) = 1, since b, c exist in F[x], then deg(b) = deg(c) = 0. Meaning that deg(a) = 0, implying that a is a constant polynomial.

Assume that the polynomial a is a constant polynomial, meaning that deg(a) = 0. Let b, c be the multiplicative inverses of a such that c(x)b(x) = 1. Since deg(b) + deg(c) = 0 and we know that b, c are nonnegative polynomials since they are in the field F, then b, c are multiplicative inverses.

Part C

Part D

Problem 2.37

 $x^3 + x + 1$ has all of its coefficient within the field $F_2[X]$. Since all of the coefficients within the polynomial is 1, then it is clear that the polynomial is irreducible.

Problem 2.38

1	x	x^2	1+x	$1 + x^2$	$x + x^2$	$1 + x + x^2$
0	0	0	0	0	0	0
1	x	x^2	1+x	$1 + x^2$	$x + x^2$	$1 + x + x^2$
x	x^2	x+1	$x + x^2$	1	$x^2 + x + 1$	$x^2 + 1$
x+1	$x^2 + x$	$x^2 + x + 1$	$1 + x^2$	x^2	1	x
x^2	x+1	$x + x^2$	$1 + x + x^2$	$1 + x^2$	1	x
$1 + x^2$	1	x	x^2	$1 + x + x^2$	1+x	$x + x^2$
$x + x^2$	$x^2 + x + 1$	$1 + x^2$	1	1+x	x	x^2
$1 + x + x^2$	$1 + x^2$	1	x	$x + x^2$	x^2	1+x

Problem 2.40