GROUPES, ANNEAUX, CORPS: I*

www.eleves.ens.fr/home/yhuang

12.1 Exemples généraux

- Une bijection. Soit G un groupe et $g \in G$. Montrer que l'application $a \mapsto ga$ est une bijection, que l'on appelle la translation (à gauche) par g.
- Un automorphisme. Soit G un groupe et $g \in G$. Montrer que l'application $a \mapsto gag^{-1}$ est un endomorphisme, que l'on appelle plus souvent l'automorphisme intérieur (associé à g).

Montrer que si H est un sous-groupe de G, alors $H' = gHg^{-1}$ est aussi un sous-groupe de G. On dit dans ce cas que H et H' sont conjugués.

- Un sous-groupe. Soit G un groupe et $g \in G$. Montrer que l'ensemble des éléments de G qui commutent avec g est un sous-groupe de G. Voir 12.3.3.
- Un autre sous-groupe. Soit G un groupe et $g \in G$. Montrer que l'ensemble $\{g^n | n \in \mathbb{Z}\}$ est un sous-groupe de G.
- Groupes d'ordres petits. Décrire tous les groupes d'ordre inférieur à 6.

12.2 Exemples de groupes

12.2.1 Groupes cycliques

- 1) Montrer que tout groupe cyclique est un groupe abélien.
- 2) Lang, P24...

12.2.2 Groupes diédraux

12.2.3 Groupes libres (Cayley?)

12.3 Exemples de sous-groupes

12.3.1 Centre

*) $G/Z(G) \cong Int(G)$.

12.3.2 Centralisateurs

Propriétés...

^{*}Les anneaux sont supposés commutatifs unitaires.

12.3.3 Normalisateurs

12.4 Exercices sur les groupes

12.4.1 Construction d'un groupe à partir d'un monoïde

12.4.2 Théorème de Lagrange

12.4.3 Théorème de factorisation

Soit $f: G \to G'$ un morphisme de groupes.

1) Montrer que Ker(f) est un sous-groupe distingué de G.

Soient H un sous-groupe distingué de G et un morphisme de groupes $f: G \to G'$ tel que $f(H) = e_{G'}$ (autrement dit $H \subset Ker(f)$).

2) Montrer qu'il existe un morphisme de groupe $g:G/H\to G'$ tel que $f=g\circ p$, où $p:G\to G/H$ est la projection canonique.

12.5 Exemples de morphismes de groupes

12.6 Exercices sur les morphismes de groupes

12.6.1 Théorème de factorisation

- 1) Montrer que si $f: G \to G'$ est un morphisme de groupes, alors Ker(f) est un sous-groupe de G.
- 1,5) Montrer que si G' est abélien, alors le noyau de f est un sous-groupe distingué de G.
- 2) Montrer que si H est un sous-groupe de G, alors il existe un morphisme de groupes $f: G \to G/H$ canonique tel que H soit le noyau de f.

12.6.2 Diagrammes commutatifs et suites exactes

Définitions.

- 0) Montrer que si on a une suite exacte courte $0 \to E \to F \to 0$, alors E et F sont isomorphes.
- 1) Considérons un diagramme commutatif de groupes abéliens... ¹

12.6.3 Lemme des cinq

Dessin.

Montrer que si la première, la seconde, la quatrième et la cinquième flèches sont des isomorphismes, alors la troième flèche l'est aussi.

¹Bourbaki, Algèbre commutatives, P17.

- 12.7 Exemples d'anneaux
- 12.7.1 Anneaux des polynômes
- 12.7.2 Anneaux des entiers quadratiques
- 12.7.3 Entiers de Gauss
- 12.8 Exemples de sous-anneaux
- 12.9 Exercices sur les anneaux
- 12.9.1 Un anneau euclidien est factoriel
- 1) Montrer qu'un anneau euclidien est principal.
- 2) Montrer qu'un anneau principal est factoriel.
- 12.10 Exemples de corps
- 12.10.1 Idéal maximal et corps
- 1) Montrer que le quotient d'un anneau par un idéal maximal est un corps. Réciproque?
- 2) Montrer que le quotient d'un anneau par un idéal premier est un anneau intègre. Réciproque?
- 12.10.2 Anneaux intère fini
- 12.11 Exercices sur les corps
- 12.12 Compléments
- 12.12.1 Groupes Dualisants