Fonctions a plusieurs variables

raph

September 16, 2023

Contents

1	Surface et lignes de niveau	2
2	Limites et continuite	2
	2.1 Limite	. 2
	2.2 Continuite	. 2
3	Derivee partielle	3
	3.1 Notation	. 3
	3.2 Utilisation	. 3
	3.2.1 Matrice Hessienne	. 3
	3.2.2 Point de col	. 3
4	Plans tangents et approximations linéaires	3
	4.1 Plans	. 3
	4.2 Approximation lineaire	. 4
5	Dérivées directionnelles et gradients	4
	5.1 Derivee directionnelle	. 4
	5.2 Taux d'accroissement	. 4
6	La dérivée composée ou « chain rule »	4

Maxima, minima et points-cols

4

Surface et lignes de niveau 1

On peut definir une surface 2D dans un espace 3D de deux manieres:

- z = f(x, y)
- 0 = F(x, y, z)

Une ligne de niveau est donnee par: cst = f(x, y)

$\mathbf{2}$ Limites et continuite

2.1 Limite

Le voisinage/limite d'un point a est defini par l'ensemble suivant qui utilise un disque:

$$\{x \in \mathbb{R}^2, \|x - a\| < \delta\}$$

Ce qui implique qu'avec deux variables, ont peut approcher un point depuis plusieurs directions ou chemins

Probleme, le disque peut etre en dehors de l'espace de definition, il y a alors 2 points differents:

- un point entierement dans le disque: point interieur
- un point partiellement en dehors: point de bord

2.2Continuite

f(x) continue en x_0 :

- $f(x_0)$ existe
- $\lim_{x \to x_0} f(x)$ existe $\lim_{x \to x_0} f(x) = f(x_0)$

3 Derivee partielle

3.1 Notation

$$\frac{\partial f}{\partial x} = f_x$$
 ou bien $\frac{\partial f}{\partial y} = f_y$

3.2 Utilisation

On peut utiliser ces derivee partielle afin d'etudier une surface dans une direction donnee.

3.2.1 Matrice Hessienne

La matrice Hessienne des derivees secondes est la suivante:

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} \qquad \text{Heureusement } f_{xy} = f_{yx}$$

3.2.2 Point de col

Il y **possiblement** mais pas necessairement un point de col quand:

$$f_x = f_y = 0$$

4 Plans tangents et approximations linéaires

4.1 Plans

On peut approximer une surface, d'equation z = f(x, y) localement par un **plan** d'equation:

$$z - z_0 = \left(\frac{\partial f}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial f}{\partial y}\right)_0 (y - y_0)$$

Et on defini le **vecteur normal** a ce plan:

$$N = \begin{pmatrix} (f_x)_0 \\ (f_y)_0 \\ -1 \end{pmatrix}$$
 Dirige vers l'exterieur pour une surface fermee

3

Note: On peut poser: f = F + z

4.2 Approximation lineaire

En prenant $df = f(x, y) - f(x_0, y_0)$ de f au point (x_0, y_0) , on a:

$$f(x,y) \sim f(x_0, y_0) + \left(\frac{\partial f}{\partial x}\right)_0 (x - x_0) + \left(\frac{\partial f}{\partial y}\right)_0 (y - y_0)$$

5 Dérivées directionnelles et gradients

Rappel: /En deux dimensions, ont peut construire une derivee dans une direction precise telle que Ox et Oy / (cf. Utilisation)

5.1 Derivee directionnelle

Ainsi, une derivee directionnelle est donnee par:

$$D_u f = \nabla f \cdot u$$

Le vecteur u est **unitaire** (cad ||u|| = 1)

5.2 Taux d'accroissement

Il est donne par:

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

6 La dérivée composée ou « chain rule »

TODO: Ecrire la formule

7 Maxima, minima et points-cols

Ceci est aussi vrai pour les extrema

La nature d'un point **stationnaire** (extrema, point de col) est ensuite determine par ses derievees partielles secondes. Cela revient a etudier la position de la surface associee a f par rapport a son plan tangent au point stationnaire.

En dimension arbitraire, la condition de stationnarite est formulee par:

$$\nabla f = 0$$

Ou alors on utilise la matrice Hessienne, voir methode.

LE RESTE NE SEMBLE PAS ETRE DANS LES TDS, A VOIR ET CORRIGER SI NECESSAIRE