

Tutorial-5

1: The register which holds the address of the location to or from which data are to be transferred is called

- A. Index register
- B. Instruction register
- C. Memory address register
- D. Memory data register

The following control inputs are active in the bus system shown in Fig. 5-4. For each case, specify the register transfer that will be executed during the next clock transition.

	S_2	S_1	So	LD of register	Memory	Adder
a.	1	1	1	IR	Read	
ь.	1	1	0	PC		_
c.	1	0	0	DR	Write	
d.	0	0	0	AC	_	Add

- (a) Memory read to bus and load to IR: IR ← M[AR]
- (b) TR to bus and load to PC: PC ← TR
- (c) AC to bus, write to memory, and load to DR:
 - $DR \leftarrow AC$, $M[AR] \leftarrow AC$
- (d) Add DR (or INPR) to AC: $AC \leftarrow AC + DR$

A group of bits that tell the computer to perform a specific operation is known as

(A) Instruction code

(B) Micro-operation

(C) Accumulator

(D) Register

. .

The following register transfers are to be executed in the system of Fig. 5-4. For each transfer, specify: (1) the binary value that must be applied to bus select inputs S_2 , S_1 , and S_0 ; (2) the register whose LD control input must be active (if any); (3) a memory read or write operation (if needed); and (4) the operation in the adder and logic circuit (if any).

- a. AR ←PC
- b. $IR \leftarrow M[AR]$
- c. $M[AR] \leftarrow TR$
- d. AC ← DR, DR ← AC (done simultaneously)

		(1)	(2)	(3)	(4)
		$S_{2}S_{1}S_{0}$	Load(LD)	<u>Memory</u>	<u>Adder</u>
(a)	$AR \leftarrow PC$	010 (PC)	AR		
(b)	$IR \leftarrow M[AR]$	111 (M)	IR	Read	
(c)	M[AR] ← TR	110 (TR)		Write	
(d)	DR ← AC	100 (AC)	DR and		Transfer
` '	AC ← DR		AC		DR to AC

The communication between the components in a microcomputer takes place via the address and

(A) I/O bus

(B) Data bus

(C) Address bus

(D) Control lines

Draw a timing diagram similar to Fig. 5-7 assuming that SC is cleared to 0 at time T_3 if control signal C_7 is active.

$$C_7T_3$$
: $SC \leftarrow 0$

 C_7 is activated with the positive clock transition associated with T_1 .

The load instruction is mostly used to designate a transfer from memory to a processor register known as

- (A) Accumulator
- (C) Program counter

- (B) Instruction Register
- (D) Memory address Register

• WHAT ARE THE TWO INSTRUCTIONS NEEDED IN THE BASIC COMPUTER IN ORDER TO SET THE E-FLIP FLOP TO 1?

CLE Clear E CME Complement E

_____ register keeps track of the instructions stored in program stored in memory.

- (A) AR (Address Register)
- (C) PC (Program Counter)

- (B) XR (Index Register)
- (D) AC (Accumulator)

State whether True or False:—-

An arithmetic shift left multiplies a signed binary number by 2

The BSA instruction is

- (A) Branch and store accumulator
- **(B)** Branch and save return address
- (C) Branch and shift address
- (D) Branch and show accumulator

is the sequence of operations performed by CPU in processing an instruction:

- a. Execute cycle
- b. Fetch cycle
- c. Decode cycle
- d. Instruction cycle

is the step during which a new instruction is read from the memory:

- a. Decode
- b. Fetch
- c. Execute
- d. None of these