Programmering med Python 3 (version 3.7.2)

Skriva ut data

OPERATION	RESULTAT
print(1.5)	1.5
print(1.5 + 2)	3.5
print(1,5 + 2)	1 7
print("Svar: Sju")	Svar: Sju
print("Svar:" + "Sju")	Svar:Sju
print("Svar:" , "Sju")	Svar: Sju
print("Svar:", 1.5+2)	Svar: 3.5

Matematiska operationer

OPERATION	KOMMENTAR
x + y	Summan av x och y.
x - y	Differensen av x och y.
x * y	Produkten av x och y.
x/y	Kvoten av x och y.
x//y	Heltalsdelen vid divisionen x/y.
x % y	Resten vid divisionen x/y.
x**y	x upphöjt till y.
abs(x)	Absolutvärdet av x.
round(x, n)	Avrundar flyttalet x till n antal decimaler.

Variabler

OPERATION	KOMMENTAR	
tal = 7	Sparar talet 7 i variabeln tal.	
tal = 3 + 2	Sparar resultatet 5 i variabeln tal.	
tal = tal + 2	Variabeln tal får värdet tal + 2.	
namn = "Sara"	Sparar texten (strängen) Sara i variabeln namn.	

Datatyper

int()	Heltal
float()	Decimaltal (flyttal)
complex(re, im)	Komplext tal med realdelen re och imaginärdelen im.
str()	Sträng (text och symboler)

Skriva in data

OPERATION

KOMMENTAR

Inmatning sparas som en textsträng. Inmatning sparas som ett heltal. Inmatning sparas som ett tal med decimaler.

Jämförelser, logiska operationer

OPERATION	KOMMENTAR	EXEMPEL
x == y	Sant om x är lika med y.	7 == 7 ger True.
x ! = y	Sant om x inte är lika med y.	•
x > y	Sant om x är större än y.	
x < y	Sant om x är mindre än y.	7 < 3 ger False.
x >= y	Sant om x är större än eller lika med y.	
x <= y	Sant om x är mindre än eller lika med y.	
x and y	Sant om både x och y är sanna.	7 > 3 and 7 < 3 ger False.
x or y	Sant om x och/eller y är sant.	7 == 7 or 7 < 3 och
		7 == 7 or 3 == 3 ger True.
not x	Sant om x är falskt.	not(7 == 7) ger False.

if-satser

EXEMPEL

if vinkel < 90:
 print("spetsig")
elif vinkel == 90:
 print("rät")
else:
 print("trubbig")</pre>

vinkel = int(input("Ange en vinkel i grader."))

KOMMENTAR

Frågar efter en vinkel i en triangel. Om vinkel är mindre än 90 grader, skrivs spetsig. Om vinkeln är 90 grader, skrivs rät. Annars skrivs trubbig.

for-loopar

EXEMPEL

KOMMENTAR

for i in range(4): Loopen körs 4 gånger. Programmet skriver ut talen 0, 1, 2 och 3. print(i)

for i in range(1, 4): Loopen körs 4 – 1 gånger. Programmet skriver talen 1, 2 och 3. print(i)

while-loopar

EXEMPEL

KOMMENTAR

x = 0

Variabeln x sätts till 0.

while x < 4:

Så länge x är mindre än 4, utförs instruktionerna:

print(x) x = x + 1 x skrivs ut och x ökar med 1.

Listor

OPERATION

RESULTAT

lista = []

Skapar den tomma listan lista.

lista = [2, 4, 6, 2, 6]

Skapar lista som innehåller i ordning talen 2, 4, 6, 2, 6. Ger det första elementet i lista (som har index 0).

lista[0]
lista[2]

Ger det tredje elementet (6) i lista (som har index 2).

lista.append(8)

Lägger till talet 8 sist i lista.

lista.index(4)
lista.extend(lista2)

Ger index för den första 4:an i lista. Lägger till lista2 till slutet av lista.

lista.insert(2, 5)
lista.remove(2)

Lägger in 5 i lista på platsen framför index 2. Tar bort den första förekomsten av 2 ur lista.

lista.pop(3)

Ger det element i lista som har index 3. Tar sedan bort

det elementet från listan.

lista.sort()

Sorterar lista i storleksordning med minsta talet först.

lista.reverse()
lista.count(2)

Elementen i lista läggs i omvänd ordning. Räknar antal förekomster av elementet 2 i lista.

sum(lista)Summerar alla talilista.len(lista)Ger antalet elementilista.max(lista)Ger det största taletilista.

min(lista)

Ger det minsta talet i lista.

Importera matematiska funktioner

from math import *

Importerar samtliga funktioner från modulen math.

Dessa funktioner är endast definierade för reella tal. $\,$

sqrt(x)
exp(x)

Kvadratroten ur *x*.

log(x)

Talet e upphöjt till *x*.

Den naturliga logaritmen av *x*.

log10(x) log(x, y)

10-logarimen av *x*.

sin(x), cos(x), tan(x)

*y-*logaritmen av *x*. De trigonometriska funktionerna. Argumentet anges i

radianer.

asin(x), acos(x), atan(x)

De inversa trigonometriska funktionerna. Resultatet är en

vinkel i radianer.

Importera matematiska funktioner (forts.)

<pre>degrees(x) radians(x) pi e</pre>	Omvandlar vinkeln x från radianer till grader. Omvandlar vinkeln x från grader till radianer. Konstanten pi , $\pi = 3,141592$ Konstanten e , $e = 2,718281$
<pre>from random import * randint(a,b) uniform(a,b) choice(lista)</pre>	Importerar samtliga funktioner från modulen $random$. Slumpar fram ett heltal N i intervallet $a \le N \le b$. Slumpar fram ett flyttal R i intervallet $a \le R \le b$. Slumpar fram ett element ur listan lista.
<pre>from statistics import * median(lista), mean(lista) mode(lista)</pre>	Importerar samtliga funktioner från modulen statistics. Beräknar medianen av talen i lista. Beräknar medelvärdet av talen i lista. Beräknar typvärdet bland elementen i lista.
pstdev(lista)	Beräknar standardavvikelsen där lista utgör hela populationen.

Komplexa tal

from cmath import *	Importerar samtliga funktioner från modulen cmath. Dessa funktioner är definierade för komplexa tal.
<pre>z = complex(3,7) z.conjugate() z.real</pre>	Sparar det komplexa talet $3 + 7j^*$ i variabeln z . Det komplexa konjugatet $(3 - 7j)$ till z . Realdelen (3) till z för det komplexa talet i variabeln z .
z.imag	Imaginärdelen (7) av komplexa talet i variabeln z. *I Python har den imaginära enheten beteckningen j.

Definiera egna funktioner

EXEMPEL	KOMMENTAR
<pre>def cylinderns_area(r,h):</pre>	Definierar en funktion av cylinderns_area, som tar radien r och höjden h som argument.
return 3.14*r**2*h	Beräknar och returnerar volymen av en cylinder med radien r och höjden h .
<pre>print(cylinderns_area(2,3))</pre>	Anropar funktionen cylinderns_area och skriver ut det returnerade värdet 37.68.
<pre>def fakultet(n): res = 1</pre>	Definerar funktionen fakultet med n som argument.
for i in range(n): res = res*(i+1)	Loopar n gånger $i = 0, 1, 2,, n - 1$.
return res	Returnerar värdet av produkten $1 \cdot 2 \cdot 3 \cdot \dots \cdot n$.