$K_4^*(2045)$

$$I(J^P) = \frac{1}{2}(4^+)$$

K*(2045) MASS

	VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2045 ± 9 OUR AVERAGE Error includes scale factor of 1.1.							
	$2062 \pm 14 \pm 13$		$^{ m 1}$ ASTON	86	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
	2039 ± 10	400	^{2,3} CLELAND	82	SPEC	\pm	50 $K^+ p \rightarrow K_S^0 \pi^{\pm} p$
	2070^{+100}_{-40}		⁴ ASTON	81 C	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
	ullet $ullet$ We do not	use the	following data for av	erage	s, fits, li	mits, e	etc. • • •
	2079 ± 7	431	TORRES	86	MPSF		$400 pA \rightarrow 4KX$
	$2088\pm\ 20$	650	BAUBILLIER	82	HBC	_	8.25 $K^- p \to K_S^0 \pi^- p$ 9 $K^+ d \to K^+ \pi$'s X
	2115 ± 46	488	CARMONY	77	HBC	0	$9 K^+ d \rightarrow K^+ \pi$'s X
	1						

K₄*(2045) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
198± 30 OUR	AVERAGE					
$221 \pm 48 \pm 27$		⁵ ASTON	86	LASS	0	11 $K^- p \rightarrow K^- \pi^+ n$
189 ± 35	400	^{6,7} CLELAND	82	SPEC	\pm	50 $K^+ p \rightarrow K_S^0 \pi^{\pm} p$
 ● ● We do no 	t use the fo	ollowing data for a	verage	es, fits, li	imits, (
$61\pm$ 58	431	TORRES	86	MPSF		400 $pA \rightarrow 4KX$
$170 {+100 \atop -50}$	650	BAUBILLIER	82	HBC	_	8.25 $K^- p \to K_S^0 \pi^- p$
$240 {+} 500 \\ -100$		⁸ ASTON	81 C	LASS	0	11 $K^- p \rightarrow K^- \pi^+ n$
300 ± 200		CARMONY	77	HBC	0	$9 K^+ d \rightarrow K^+ \pi$'s X

K*(2045) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\pi$	(9.9±1.2) %
Γ_2	$K^*(892)\pi\pi$	$(9$ ± 5 $)$ %
Γ_3	$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$
Γ_4	$ ho$ K π	(5.7 ± 3.2) %
Γ_5	ω K π	(5.0 ± 3.0) %
0	ϕ K π	(2.8 ± 1.4) %
Γ ₇	$\phi K^*(892)$	(1.4±0.7) %

Created: 5/30/2017 17:21

 $[\]begin{array}{l} 1 \\ 2 \\ \text{From a fit to all moments.} \\ 3 \\ \text{Number of events evaluated by us.} \\ 4 \\ \text{From energy-independent partial-wave analysis.} \end{array}$

⁵ From a fit to all moments.
6 From a fit to 8 moments.
7 Number of events evaluated by us.
8 From energy-independent partial-wave analysis.

K₄*(2045) BRANCHING RATIOS

$\Gamma(K\pi)/\Gamma_{total}$					Γ_1/Γ		
VALUE	DOCUMENT ID		TECN	CHG	COMMENT		
0.099 ± 0.012	ASTON	88	LASS	0	11 $K^- p \rightarrow K^- \pi^+ n$		
$\Gamma(K^*(892)\pi\pi)$	/Γ(<i>K</i> π)				Γ_2/Γ_1		
<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	CHG	COMMENT		
0.89 ± 0.53	BAUBILLIER	82	HBC	_	8.25 $K^- p \to p K_S^0 3\pi$		
Γ(Κ*(892)ππη	$\pi)/\Gamma(K\pi)$				Γ_3/Γ_1		
VALUE	<u>DOCUMENT ID</u>		TECN	CHG	COMMENT		
0.75±0.49	BAUBILLIER	82	НВС	_	$8.25 \ K^- p \rightarrow p K_S^0 3\pi$		
$\Gamma(\rho K\pi)/\Gamma(K\pi)$	r)				Γ_4/Γ_1		
VALUE	DOCUMENT ID		TECN	CHG	· · ·		
0.58±0.32	BAUBILLIER	82	НВС	_	$8.25 \ K^- p \rightarrow p K_S^0 3\pi$		
$\Gamma(\omega K\pi)/\Gamma(K\tau)$	π)				Γ_5/Γ_1		
VALUE	<u>DOCUMENT ID</u>		TECN	CHG	COMMENT		
0.50±0.30	BAUBILLIER		НВС	_	$8.25 \ K^- p \rightarrow p K_S^0 3\pi$		
$\Gamma(\phi K\pi)/\Gamma_{ m total}$					Г ₆ /Г		
VALUE	DOCUMENT ID		TECN	соми	-,		
0.028±0.014	⁹ TORRES	86	MPSF		$pA \rightarrow 4KX$		
Γ(φK*(892))/	T _{total}				Γ ₇ /Γ		
<u>VALUE</u>	DOCUMENT ID		TECN	СОМ			
0.014 ± 0.007	⁹ TORRES	86	MPSF	400 p	$pA \rightarrow 4KX$		
$^{9}Error$ determination is model dependent.							
K ₄ (2045) REFERENCES							
ASTON 88 ASTON 86 TORRES 86 BAUBILLIER 82 CLELAND 82	NP B296 493 PL B180 308 PR D34 707 PL 118B 447 NP R208 189	D. Asto S. Torr M. Bau	on et al. on et al. es et al. ibillier et a		(SLAC, NAGO, CINC, INUS) (SLAC, NAGO, CINC, INUS) (VPI, ARIZ, FNAL, FSU+) (BIRM, CENA, GLAS+)		

82

81C

CLELAND

CARMONY

ASTON

NP B208 189

PL 106B 235

PR D16 1251

W.E. Cleland et al.

D.D. Carmony et al.

D. Aston et al.

(DURH, GEVA, LAUS+) (SLAC, CARL, OTTA) JP (PURD, UCD, IUPU)

Created: 5/30/2017 17:21