In-Text Estimates for CR-TND Paper - SIMULATIONS

Suzanne Dufault

December 29, 2017

	03_05	05_06	06_07	07_08	08_10	10_11	$11_{-}12$	12 - 13	13_14	Average
RR = 1	0.0520	0.0502	0.0485	0.0456	0.0536	0.0506	0.0509	0.0486	0.0469	0.0497
RR = 0.6	0.6755	0.6275	0.4617	0.4615	0.6830	0.5374	0.3250	0.3494	0.3038	0.4916
RR = 0.5	0.9361	0.9008	0.7451	0.7362	0.9370	0.8290	0.5557	0.5896	0.5191	0.7498
RR = 0.4	0.9997	0.9972	0.9594	0.9598	0.9997	0.9827	0.8196	0.8552	0.7945	0.9298
RR = 0.3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9830	0.9926	0.9803	0.9951

Table 1: The period specific estimates of the proportion of significant results at each lambda for the Test-Positive Fraction Method.

	03_05	05_06	06_07	07_08	08_10	10_11	$11_{-}12$	12_13	13_14	Average
RR = 1	0.0780	0.0686	0.0677	0.0709	0.0773	0.0814	0.0822	0.0809	0.0671	0.0749
RR = 0.6	0.7768	0.6549	0.5777	0.6503	0.7197	0.5738	0.3825	0.4316	0.4483	0.5795
RR = 0.5	0.9796	0.9149	0.8401	0.9072	0.9519	0.8423	0.6052	0.6771	0.6962	0.8238
RR = 0.4	1.0000	0.9987	0.9890	0.9995	1.0000	0.9891	0.8517	0.9090	0.9213	0.9620
RR = 0.3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9892	0.9986	0.9983	0.9985

Table 2: The period specific estimates of the proportion of significant results at each lambda for the proposed Odds Ratio Method.

	03_05	05_06	06_07	07_08	08_10	10_11	11_12	12_13	13_14	Average
RR = 1	0.0163	0.0223	0.0274	0.0233	0.0195	0.0269	0.0461	0.0385	0.0376	0.0287
RR = 0.6	0.0098	0.0134	0.0164	0.0140	0.0117	0.0161	0.0276	0.0231	0.0226	0.0172
RR = 0.5	0.0082	0.0112	0.0137	0.0117	0.0098	0.0135	0.0230	0.0193	0.0188	0.0143
RR = 0.4	0.0065	0.0089	0.0110	0.0093	0.0078	0.0108	0.0184	0.0154	0.0150	0.0115
RR = 0.3	0.0049	0.0067	0.0082	0.0070	0.0059	0.0081	0.0138	0.0116	0.0113	0.0086

Table 3: The period specific estimates of bias at each lambda for the proposed Odds Ratio Method.

	03_05	05_06	06_07	07_08	08_10	10_11	$11_{-}12$	$12_{-}13$	13_14	True	Average
RR = 1	0.1829	0.2096	0.2311	0.2111	0.1941	0.2299	0.3016	0.2789	0.2741	0.2435	0.2348
RR = 0.6	0.1829	0.2096	0.2311	0.2111	0.1941	0.2299	0.3016	0.2789	0.2741	0.2435	0.2348
RR = 0.5	0.1829	0.2096	0.2311	0.2111	0.1941	0.2299	0.3016	0.2789	0.2741	0.2435	0.2348
RR = 0.4	0.1829	0.2096	0.2311	0.2111	0.1941	0.2299	0.3016	0.2789	0.2741	0.2435	0.2348
RR = 0.3	0.1829	0.2096	0.2311	0.2111	0.1941	0.2299	0.3016	0.2789	0.2741	0.2435	0.2348

 $\label{thm:condition} \mbox{Table 4: The period specific estimates of the standard deviation of log(lambda) for the proposed Odds Ratio method. } \\$

	Ratio = 1	Ratio = 4
RR = 1	0.9500	0.9527
RR = 0.6	0.9483	0.9563
RR = 0.5	0.9470	0.9595
RR = 0.4	0.9451	0.9651
RR = 0.3	0.9434	0.9735

Table 5: The coverage for the Welch-Satterthwaite adjustment of the Test-Positive Method.