EEL-07

Solution of Question 1.

(a)

i It is straightforward to compute that

$$x^{3} + x^{2} + 2 = (x + 1)(x^{2} + 2) + x,$$

 $x^{2} + 2 = x \cdot x + 2.$

As a result,

$$1 = \gcd(f(x), g(x)).$$

[4]

ii According to the previous part, it is clear that

$$2 = x^{2} + 2 + 2x \cdot x$$

$$= x^{2} + 2 + 2x (x^{3} + x^{2} + 2 + (2x + 2) (x^{2} + 2))$$

$$= 2x (x^{3} + x^{2} + 2) + (x^{2} + x + 1) (x^{2} + 2).$$

Multiply both sides with 2. It holds that

$$1 = x(x^3 + x^2 + 2) + (2x^2 + 2x + 2)(x^2 + 2).$$

As a result,

$$a(x) = x,$$

 $b(x) = 2x^{2} + 2x + 2.$

[4]

- (b) By Bézout's identity, there exist $a, b \in \mathbb{Z}$ such that $1 = ar_1 + br_2$. Multiply both sides by r. One obtains that $r = ar_1r + br_2r$. By assumption $r_1|(r_2r)$, it is clear that r_1 divides the right hand side of the equation. Hence $r_1|r$. [2]
- (c) Since f(x) = (x+1)(x+1), f(x) is reducible. [2]
- (d) $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$ is irreducible. To justify it, one can try all possible polynomials g(x) in $\mathbb{F}_3[x]$ of degree $0 < \deg(g) < 2$. As $f(x) = x \cdot x + 1$ and f(x) = (x+1)(x+2) + 2, we conclude that f(x) is irreducible. [2]

(e)

i Since f is irreducible, it holds that $\gcd(f,g)=1$ for all $g\in\mathcal{R}$. By Bézout's identity, it holds that

$$1 = c(x) f(x) + d(x) g(x),$$

- or $d(x) g(x) = 1 \mod f(x)$. This proves the existence of g^{-1} . Hence \mathcal{R} is a field. [3]
- ii Suppose that f(x) is reducible, i.e., there exist g(x) and h(x) such that f(x) = g(x)h(x) and $1 \le \deg(g(x)) < \deg(f(x))$ and $1 \le \deg(h(x)) < \deg(f(x))$. Since \mathcal{R} is a field, $g^{-1}(x)$ exits. Hence $h(x) = (g^{-1}(x)g(x))h(x) = g^{-1}(x)f(x) = g^{-1}(x) \cdot 0 = 0 \mod f(x)$. This contradicts that $1 \le \deg(h(x))$. Hence f(x) must be irreducible. [3]

Solutions of Question 2.

(a)

i Since
$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$, one has ord (3) = 6. [2]

ii
$$\log_3 1 = 6$$
, $\log_3 2 = 2$, and $\log_3 3 = 1$.

iii Since
$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 1$, one has ord $(2) = 3$.

iv
$$\log_2 1 = 3$$
, $\log_2 2 = 1$, and $\log_2 3$ does not exist. [2]

- v Suppose that there exist x_1, x_2 such that $0 \le x_1 < x_2 \le p-1$ and $b^{x_1} = b^{x_2}$. Then $b^{x_2}/b^{x_1} = b^{x_2-x_1} = 1$ which suggests that ord $(b) \le x_2 x_1 < p-1$. This contradicts the definition of a primitive element b. The claim is therefore proved.
- vi The base b should be a primitive element. Suppose that b is not a primitive element. Then the set $\mathcal{B} = \{b^1, b^2, \cdots\}$ contains only ord (b) many elements with ord (b) < p-1. This means that for some element $y \in \mathbb{F}_p^*$, $\log_b y$ is not well defined. [2]
- (b) Alice would like to store (i, b^{x_i}) on the server. [2]

(c)

i At least
$$k$$
 pairs are needed. [2]

ii The linear system is given by

$$[a_0, a_1, \cdots, a_{k-1}] \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_{i_1} & t_{i_2} & \cdots & t_{i_\ell} \\ \vdots & \vdots & \ddots & \vdots \\ t_{i_1}^{k-1} & t_{i_2}^{k-1} & \cdots & t_{i_\ell}^{k-1} \end{bmatrix} = [f(t_{i_1}), f(t_{i_2}), \cdots, f(t_{i_\ell})].$$

[2]

iii When $\ell = k$, the matrix M is a Vandermonde matrix and hence its inverse exists. The vector \mathbf{a} can be obtained from $\mathbf{a} = \mathbf{f} M^{-1}$. When $\ell < k$, the number of equations is less than the number of unknowns. The solution of this linear system is not unique.

Solutions of Question 3.

(a) $d(\mathcal{C}) = \min_{\mathbf{c} \in \mathcal{C}, \ \mathbf{c} \neq \mathbf{0}} \text{ weight } (\mathbf{c}).$

[2]

- (b) d(C) is the minimum number of linearly dependent columns of H, i.e., $d = \operatorname{spark}(H)$. [2]
- (c)

i By Gaussian elimination, it is clear that

$$G' = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & & 1 \end{array} \right].$$

[2]

ii

$$H = \left[\begin{array}{cccccc} 1 & & & 1 & 1 & 1 & 0 \\ & 1 & & 1 & 1 & 0 & 1 \\ & & 1 & 1 & 0 & 1 & 1 \end{array} \right].$$

[2]

iii The syndrome vector is given by

$$s_1 = y_1 H^T = [1 \ 0 \ 0].$$

As a result, the error vector is given by $e = [1\ 0\ 0\ 0\ 0\ 0]$ and the minimum distance decoder outputs $\hat{c}_1 = [0\ 1\ 0\ 1\ 1\ 0\ 1]$. From the last four bits of \hat{c}_1 , it is clear that $\hat{m}_1 = [1\ 1\ 0\ 1]$.

[3]

iv The syndrome vector is given by

$$[1\ 0\ 0\ 0\ 0\ 0\ 1]\ \boldsymbol{H}^T = [1\ 1\ 1].$$

Let c_2 and c_4 be the 2nd and 4th symbols in c. Then one has

$$[c_2 \ c_4] \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right] = [1 \ 1 \ 1] \ .$$

It is clear that $[c_2 \ c_4] = [0 \ 1]$. Hence $\boldsymbol{c} = [1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1]$ and $\boldsymbol{m} =$

(d)

i
$$n_2 = 8$$
. [1]

ii $k_2 = 4$. The dimension of C_2 is the same as that of C because there is one-to-one mapping between the codewords in C and those in C_2 .

iii

[2]

- iv $d(\mathcal{C}_2) = 4$. For any $\mathbf{c} \in \mathcal{C}$, let $\mathbf{c}_2 \in \mathcal{C}_2$ be the corresponding codeword of which the first seven bits are given by \mathbf{c} . That $d(\mathcal{C}_2) = 4$ can be obtained by observing that
 - $c=0 \Rightarrow c_2=0$.
 - $\operatorname{wt}(\mathbf{c}) = 3 \Rightarrow \operatorname{wt}(\mathbf{c}_2) = 4$.
 - wt $(c) \ge 3$, for all $c \in C$ and $c \ne 0 \Rightarrow$ wt $(c_2) \ge 4$ for all $c_2 \in C_2$ and $c_2 \ne 0$. [2]

Solutions of Question 4.

- (a) The parity-check matrix $H \in \mathbb{F}^{(n-k)\times n}$ contains n-k rows. Every n-k+1 columns must be linearly dependent. Hence $d \leq n-k+1$. [3]
- (b)
- i Let $c_1 = \operatorname{eval}(f_1)$ and $c_2 = \operatorname{eval}(f_2)$ where $\operatorname{deg}(f_1) \leq k 1$ and $\operatorname{deg}(f_2) \leq k 1$. Then $\alpha c_1 + \beta c_2 = \operatorname{eval}(g)$ with $g = \alpha f_1 + \beta f_2$. Since $\operatorname{deg}(g) \leq k - 1$, $\operatorname{eval}(g) \in \mathcal{C}$. [3]
- ii A polynomial of degree k-1 can have at most k-1 zeros. Hence, $\forall \mathbf{c} \in \mathcal{C} \text{ s.t. } \mathbf{c} \neq 0, \ \mathbf{c} = \text{eval}(f) \text{ has weight at least } n-k+1.$ [3]
- (c)

i
$$C_0 = \{0\}$$
, $C_1 = C_3 = \{1,3,9\}$, $C_2 = C_6 = \{2,6,18\}$, $C_4 = \{4,12,10\}$, $C_5 = \{5,15,19\}$, $C_7 = \{7,21,11\}$, $C_8 = \{8,24,20\}$. [4]

ii

A.
$$\deg(g) = |C_1| + |C_2| + |C_4| + |C_5| + |C_7| + |C_8| = 18.$$
 [2]

B.
$$k = n - \deg(g) = 26 - 18 = 8$$
. [2]

C. $d \ge 13$. Note that $\alpha^1, \alpha^2, \dots, \alpha^{12}$ are roots of g(x). For any code $c \in C$, all the roots of g(x) are the roots of the corresponding generating function c(x). One has

$$\underbrace{\begin{bmatrix}
1 & \alpha & \cdots & \alpha^{(n-1)} \\
1 & \alpha^2 & \cdots & \alpha^{2(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{12} & \cdots & \alpha^{12(n-1)}
\end{bmatrix}}_{A}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_{n-1}
\end{bmatrix} = 0.$$

Since every 12-column sub-matrix of A is a Vandermonde matrix and has full column rank, $d(\mathcal{C}) \geq 12 + 1 = 13$. [3]

Solutions of Question 5.

i
$$p_Y(0) = p_Y(1) = \frac{1}{2}(1-p)$$
 and $p_Y(?) = p$. [3]

ii It is clear that
$$H(X|0) = H(X|1) = 0$$
 and $H(X|?) = 1$. [2]

iii Since
$$H(X|Y) = p$$
, $I(X;Y) = 1 - p$. [2]

(b)

i
$$p_{Y_1Y_2}(00) = p_{Y_1Y_2}(01) = p_{Y_1Y_2}(10) = p_{Y_1Y_2}(11) = \frac{1}{4}(1-p)^2$$
.
 $p_{Y_1Y_2}(?0) = p_{Y_1Y_2}(?1) = \frac{1}{2}p(1-p)$.
 $p_{Y_1Y_2}(0?) = p_{Y_1Y_2}(1?) = \frac{1}{2}p(1-p)$.
 $p_{Y_1Y_2}(??) = p^2$. [3]

ii If neither y_1 nor y_2 is ?, then we can identify u_2 and u_1 uniquely. Hence $H\left(U_1|00\right)=H\left(U_1|01\right)=H\left(U_1|10\right)=H\left(U_1|11\right)=0.$

If either y_1 or y_2 is ?, U_1 has equal probability to be 0 or 1. Hence $H(U_1|?0) = H(U_1|?1) = H(U_1|0?) = H(U_1|1?) = H(U_1|??) = 1$. [3]

iii Since
$$H(U_1|Y_1Y_2) = 2p - p^2$$
, $I(U_1; Y_1Y_2) = 1 - 2p + p^2$. [2]

iv If $y_2 \neq ?$, then u_2 is uniquely identified. Hence $H(U_2|y_1y_2u_1) = 0$ if $y_2 \neq ?$.

If $y_2 = ?$ but $y_1 \neq ?$, we are still able to find u_2 via $y_1 = u_1 + u_2$. Hence $H(U_2|y_1?u_1) = 0$ when $y_1u_1 \in \{0,1\}^2$.

If
$$y_1 = y_2 = ?$$
, $H(U_2|??u_1) = 1$. [3]

v Since
$$H(U_2|Y_1Y_2U_1) = p^2$$
, $I(U_2;Y_1Y_2U_1) = 1 - p^2$. [2]