Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет безопасности информационных технологий

Группа	ФИЗ-3 Э БИТ 1.3.1	К работе допущен
Студенты	Бардышев Артём Суханкулиев Мухаммет Шегай Станислав	Работа выполнена
Преподавател	ь Бочкарев М. Э.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №4.02

Определение расстояние между двумя щелями интерференционным методом

1. Цель работы.

Определение расстояния между двумя щелями по полученной от них интерференционной картине.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерение координат минимумов интерференционной картины от двух щелей при изменении расстояния между объектом и экраном.
- 3. Объект исследования.

Интерференционная картина.

4. Метод экспериментального исследования.

Прямые измерения координат минимумов интерференционной картины.

- 5. Рабочие формулы и исходные данные.
 - 1. Расстояние между объектом и экраном:

$$L = X_3 - X_0$$

2. Расстояние между щелями:

$$d = \frac{\lambda}{K}$$

Длина волны:

$$\lambda = 632.82 \pm 0.01 \, \mathrm{HM}$$

Теоретическое расстояние между щелями:

$$d_{\text{Teon}} = (0.12 \pm 0.01) \text{ MM}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Экран	Миллиметровая шкала	−30 − 30 мм	±1 мм
2	Оптический рельс	Рельс с линейкой	0 — 1200 мм	±10 мм

7. Схема установки.

Рисунок 1 – Фото экспериментальной установки

1 – лазер, 2 – объект, 3 – экран, 4 – фоторезистор с линейкой и измерителем фототока.

8. Результаты прямых измерений и их обработки.

Пользуясь линейкой на оптической скамье, измерим координату экрана X_3 . Установив экран на максимальном расстоянии от объекта, запишем по горизонтальной линейке координаты 10 последовательных минимумов, начиная от середины интерференционной картины влево. Сдвигая экран к объекту на 5 см, сделаем те же измерения ещё 5 раз:

$X_0 = 1135,$	$X_{\mathfrak{I}}=100,$	$X_{3} = 150,$	$X_{\mathfrak{I}}=200,$	$X_{3} = 250,$	$X_{\mathfrak{I}}=300,$	$X_{3} = 350$,
мм	ММ	ММ	ММ	ММ	ММ	ММ
<i>x</i> ₁ , <i>MM</i>	4	4	4	4	4	3,5
<i>x</i> ₂ , <i>MM</i>	8	7	7	6	6	6
<i>x</i> ₃ , <i>MM</i>	11	11	10	9	9	8
<i>x</i> ₄ , <i>MM</i>	14,5	14	13	12	12	11
<i>x</i> ₅ , <i>MM</i>	17	16	15	15	14	14
<i>x</i> ₆ , <i>MM</i>	21	20	18	17	16,5	16,5
<i>x</i> ₇ , <i>MM</i>	24	23	22	20	19,5	19,5
х ₈ , мм	28	26	25	23	21	21
<i>x</i> ₉ , <i>MM</i>	31	29	27	25	24	24
<i>x</i> ₁₀ , <i>MM</i>	34	32	30	29	27	26
L, MM	1035	985	935	885	835	785

Для каждого измерения вычислили расстояние между объектом и экраном (1).

9. Расчет результатов косвенных измерений.

Вычислив расстояние между крайними координатами в каждом измерении, разделим его на число минимумов m, получим тем значение периода картины Δx .

$$\Delta x = \frac{x_{10} - x_1}{m} = \frac{34\text{MM} - 4\text{MM}}{10} = 3 \text{ MM}$$

$X_0 = 1135,$	$X_{\mathfrak{I}}=100$,	$X_{\mathfrak{I}}=$ 150 ,	$X_{\mathfrak{I}}=200$,	$X_{\mathfrak{I}}=250$,	$X_{\mathfrak{I}}=300,$	$X_{\mathfrak{I}}=350,$
ММ	мм	ММ	ММ	ММ	ММ	ММ
Δx , MM	3	2,8	2,6	2,5	2,3	2,25
L, MM	1035	985	935	885	835	785

Аппроксимировав график зависимости ширины интерференционной полосы Δx от расстояния L (10), по коэффициенту наклона K (МНК) прямой и известной длине волны источника определим расстояние d между щелями (2):

$$\begin{cases} 6b + 5460K = 15.45 \\ 5460b + 5012350K = 14193.25 \end{cases}$$
 $b \approx -0.207$, $K \approx \mathbf{0.00306}$
$$d = \frac{632.82 \cdot 10^{-6} \text{мм}}{0.00306} \approx 206803.9 \cdot 10^{-6} \text{мм} \approx \mathbf{0.207} \text{ мм}$$

10. График

Рисунок 2 – График зависимости ширины интерференционной полосы Δx от расстояния L

11. Расчет погрешностей измерений.

Погрешность наклона ΔK рассчитывается по формуле:

$$\Delta K = \sqrt{\frac{\sum_{i=1}^{n} (\Delta x_i - (KL_i + b))^2}{(n-2) \cdot \sum_{i=1}^{n} (L_i - \bar{L})^2}} \approx 0.2378 \cdot 10^{-3} \approx 0.0002$$

Но чтобы учесть погрешности измерений $\delta x = \pm 1\,\mathrm{mm}$ и $\delta L = \pm 10\,\mathrm{mm}$ скорректируем формулу:

$$\Delta \mathbf{K} = \frac{\sqrt{\sum_{i=1}^{n} (\delta \Delta x_i)^2 + K^2 \sum_{i=1}^{n} (\delta L_i)^2}}{\sum_{i=1}^{n} (L_i - \bar{L})^2} \approx 1.573 \cdot 10^{-3} \approx \mathbf{0}.\mathbf{0016}$$

Используя ΔK найдем погрешность Δd

$$\Delta \boldsymbol{d} = \sqrt{\left(\frac{\partial d}{\partial K} \cdot \Delta K\right)^2 + \left(\frac{\partial d}{\partial K} \cdot \Delta \lambda\right)^2} = \sqrt{\left(\frac{\lambda}{K^2} \cdot \Delta K\right)^2 + \left(\frac{1}{K} \cdot \Delta \lambda\right)^2} \approx \boldsymbol{0}.\boldsymbol{108}$$

12. Окончательные результаты.

Вычисленное расстояние между щелями:

$$d \approx 0.207 \pm 0.108$$
 MM, $\varepsilon_d \approx 52.288\%$, $\alpha = 0.95$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы было определено расстояние между щелями интерференционным методом. Значение расстояния между щелями совпало с теоретическим значением в пределах погрешности.

Высокая погрешность обусловлена тем, что для L была взята предельная погрешность $\pm 10\,$ мм, что завышает неопределённость, но позволяет учесть возможные ошибки измерения. Это оправдано, так как визуальные оценки координат минимумов могут содержать субъективные погрешности.

В целом эксперимент подтверждает теоретическое значение расстояния между щелями.