Application No. 10/602,177 Amendment dated December 19, 2003 Page 2

In The Specification:

At page 1, lines 5 to 8:

This application is a CIP of application serial no. 09/788,811, filed February 20, 2001 and PCT/US00/33612, filed December 11, 2000, which is a CIP of 09/734,479, filed December 11, 2000, which is a CIP of 09/458,281, filed December 10, 1999.

At page 4, line 20 to page 6, line 20:

Figure 2 is a radar plot of the injection molded part properties profile for neat Example 9 and Example 9 with different commercially used nucleating agents for polypropylene.

Figure 3 is a micrograph of a partial cross-section of a molded specimen formed from the copolymer of Example 1.

Figure 3B Figure 4 is a micrograph of a partial cross-section of a molded specimen formed from the comparative polymer of Example 11.

Figure 4 is a graph Figures 5A, 5B, 5C, 5D and 5E are graphs plotting extensional viscosity values (at different shear rates) for the polymers formed in Examples 3, 4, 5, 7 and Comparative Example 12.

Application No. 10/602,177 Amendment dated December 19, 2003 Page 3

Figure 5 Figure 6 plots the average birefringence values for partially oriented yarns from blends of Example 3 in ACHIEVETM 3825 and neat 3825.

Figure 6-plots Figures 7A and 7B plot the break elongation and tenacity values (versus denier count and take-up rate) for the partially oriented yarns from blends of Example 3 in ACHIEVETM 3825 and neat 3825.

Figures 8A and 8B plot tenacity values (versus denier count and take-up rate) for the partially oriented yarns from blends of Example 3 in ACHIEVETM 3825 and neat 3825.

Figure 7 Figure 9 plots the average top load values for blow-molded bottles from impact copolymer PP 7031 E7 and a 20% blend of Example 7 in PP 7031 E7, both at the same bottle weight.

Figure 8 Figure 10 plots the thermoforming processing window at 371 °C (or 700 °F) oven temperature for medium-draw food containers from Example 6, Comparative Example 15 and a50/50 blend of the two.

Figure 9 Figure 11 shows micrographs of the cellular morphologies of flat foamed sheets from Examples 10, 7 and comparator resin PF-814 (commercial product from Montell), using a chemical blowing agent.

Figure 10 Figure 12 plots foam processing parameters during the production of foamed profiles from Example 4 and comparator resin PF-814 (commercial product from Montell), using carbon dioxide gas injection.

Application No. 10/602,177 Amendment dated December 19, 2003 Page 4

Figure 11 Figure 13 shows micrographs of the cellular morphologies of foamed profiles from Example 4 and comparator resin PF-814 (commercial product from Montell), using carbon dioxide gas injection.

Figure 12 Figure 14 plots molded part properties for TPO blend compositions derived from Examples 3, 4, 5, 7 and Comparative Example 12. The TPO compositions involved blends with VISTALONTM 457 EP rubber.

Figure 13 Figure 15 plots film stiffness at elevated temperatures (75 °C and 120 °C) for cast films from Example 3 (neat and in blends with Comp Example 16), Comparative Examples 12 and 16, and commercially available comparators PP4443 and ACHIEVETM 3854.

Figure 14 plots Figures 16 and 17 plot film barrier properties (water vapor transmission resistance and oxygen transmission resistance) for cast films from invention Example 3 (neat and in blends with linear Comparative Example 16), Comparative Examples 12 and 16, and commercially available comparator resins PP4443 and ACHIEVE TM 3854.

Figure 15 Figure 18 plots film heat seal behavior (seal strength) versus sealing temperature for cast films from Example 3 (neat and in blends with Comparative Example 16), Comparative Example 12, and commercially available resins PP4443 and ACHIEVETM 3854.