

PROTON -

A Python Framework for Physics-Based Electromigration Assessment on Contemporary VLSI Power Grids

Olympia Axelou, Eleni Tselepi, George Floros, Nestor Evmorfopoulos, George Stamoulis
University of Thessaly, Greece

Electromigration (EM) Stress

_|1

[1] J. Lienig and M. Thiele, Fundamentals of electromigration-aware integrated circuit design. Springer International Publishing, 2018.

Long-term Reliability of Power Grids

- Phenomenon of EM
 - Caused by the continuous downscaling of the ICs and the simultaneous increase of currents
- Major concern for nanometer-scaled Integrated Circuits (IC)
 - Process variation in modern technology nodes
- Has been included in the IC design flow
 - Traditional methods are incorrect for modern interconnects (e.g., Black's equation and Blech's criterion)

Addressing the gap: A free physics-based EM tool

Democratizing EM Analysis

Bring down barriers to democratize HW design

- PROTON's goal aligns with open-source strategies from EU (e.g., EuroEXA, CONVOLVE) and largescale EDA projects in US (e.g., OpenROAD)
- Enabling smaller design teams and individuals to benefit from cutting-edge EM analysis
 - Fostering innovation and collaboration within the EDA community
- Open-source is the future of EDA...

The OpenROAD™ project attacks the barriers of Cost, Expertise and Uncertainty (i.e., Risk) that block the feasibility of hardware design in advanced technologies.

✓ Low complexity

✓ Robust methods

The core of the tool

Korhonen's equation w/ line boundary conditions

FDM Discretization into *n* discretization points

$$\dot{\boldsymbol{\sigma}}(t) = \mathbf{A}\boldsymbol{\sigma}(t) + \mathbf{B}\boldsymbol{j}$$

Line Analysis

$$L(t) = diag(t, \frac{e^{\lambda_2 t} - 1}{\lambda_2}, ..., \frac{e^{\lambda_n t} - 1}{\lambda_n})$$

$$\boldsymbol{\sigma}(t) = \boldsymbol{V}\boldsymbol{L}(t)\boldsymbol{V}^T\boldsymbol{B}\boldsymbol{j}^{[1]}$$

 $V^T r \Leftrightarrow DCT(r)$ $Vr \iff IDCT(r)$

O(nlogn)

Completely **parallelizable** for different lines in the under-test power grid

[1] O. Axelou et al., A Novel Semi-Analytical Approach for Fast Electromigration Stress Analysis in Multi-Segment Interconnects. ICCAD, 2022.

State-space model

$$\dot{\boldsymbol{\sigma}}(t) = \mathbf{A}\boldsymbol{\sigma}(t) + \mathbf{B}\boldsymbol{j}^{[2]}$$

 $y(t) = L\sigma(t)$

Stress is more pronounced at vias and endpoints

[2] O. Axelou et al., Fast Electromigration Stress Analysis Using Low-Rank Balanced Truncation for General Interconnect and Power Grid Structures. Integration Journal, 2023.

User Interface

Command-Line Version

```
powergrid_EM_analysis.tcl
  # An automated script that parses a SPICE powergrid file and performs
   # Electromigration (EM) analysis on the complete powergrid at specific
                                                                            Command Prompt - python PROTON_CLI.py
                                                                                                                                                                                     П
   # time (e.g. chip lifetime) and finds the EM-susceptible lines.
                                                                          PROTOM v1.0
   # as the line with the maximum stress.
                                                                           University of Thessaly, Greece
                                                                           >$ (PROTON) set powergrid example.spice
   # Date: 19/6/2023
                                                                           >$ (PROTON) set project path C:/Users/olymp/Desktop
   # Create new project
                                                                           >$ (PROTON) set project name example cli project
  set powergrid C:\Users\olymp\Documents\GitHub\EM_analysis_tool\benchmarks\ibmpg1.>$ (PROTON) parse_powergrid
                                                                                                                                                         Simple command-
   set project path C:\Users\olymp\Desktop
                                                                           Found layer M3, net 1
   set project name automated ibmpg1
                                                                                                                                                            line interface
                                                                           Found layer M4, net 2
   parse_powergrid
                                                                           Found layer M5, net 5
   # open_project C:\Users\olymp\Desktop\automated_ibmpg1
                                                                           Found layer M6, net 6
                                                                           Found layer M3, net 0
                                                    source TCL
                                                                           Found layer M4, net 3
   set technology CuDD
                                                                           Found layer M5, net 4
                                                       scripts
   set temperature 378
                                                                           Found layer M6, net 7
   set line width 1
                                                                          Spice file was successfully parsed in 1.921 seconds and the project has been created at C:\Users\o
  # Complete powergrid EM stress check at 20y (6.38e8s) for a random sample of 100 lymp\Desktop\example cli project.
                                                                           >$ (PROTON) _
   # and check for lines that exceed the critical stress of 10KPa
   analyze 6.38e8 --sample 100 --critical 10000
   # Export stats on the powergrid and EM stress results
   report powergrid stats --file C:\Users\olymp\Desktop\powergrid stats.txt
   report line stress --maxstress --file C:\Users\olymp\Desktop\critical line stress.csv
   # Ouit
   quit
```

Use Cases – Comparison with existing tool

Line analysis comparison between PROTON and COMSOL on different benchmarks at 20y

IBMPG2 IBMPG6

Tools	runtime (s)	speedup	rel. error	runtime (s)	speedup	rel. error
COMSOL PROTON	87.09 0.312	×279.3	3e-6	$ \begin{array}{ c c c } \hline $	$\times 685$	6e-7

Competitive and scalable runtimes

Very low relative error

Indistinguishable responses

Point analysis comparison between PROTON and COMSOL at 20y

We invite you to take a look!

https://github.com/oaxelou/PROTON

Olympia Axelou

oaxelou@e-ce.uth.gr University of Thessaly, Greece

Demo

PROTON in a nutshell

- PROTON is a fast EM power grid assessment tool
 - open-source, cross-platform
 - intuitive GUI and fully-automated CLI version
 - easily integratable into any power grid design flow (SPICE input format)
- It employs state-of-the-art methodologies and libraries
 - very low computational complexity
 - robust methods
 - applicable on any large-scale power grid design (low-memory footprint)

