2.18 Adaptive multidimensional modeling with applications in scientific computing

Adaptive multidimensional modeling with applications in scientific computing

- network problems (energy distribution, telecom networks, queueing problems, ...)
- ▶ vision/graphics (shape reconstruction, reflectance distribution, video signal filtering, . . .)
- metamodelling (microwave devices, material design, computational finance, . . .)
- **.** . . .

A. Cuyt and O. Salazar Celis

S. Becuwe, X. Granier, K. in 't Hout, W.-s. Lee, R. Lehmensiek, R.B. Lenin, M. Lukach, R. Pacanowski, P. Poulin and C. Schlick

1/2

Adaptive multidimensional modeling

$$(x_1^{(\ell)}, \dots, x_d^{(\ell)}) \longrightarrow \boxed{ \qquad f \qquad} \longrightarrow f^{(\ell)} \in F^{(\ell)} = [f_<^{(\ell)}, f_>^{(\ell)}]$$
$$\ell = 0, \dots, s$$

$$r_{n,m}(x_1,...,x_d) = \frac{\sum_{k=0}^{n} a_k g_k(x_1,...,x_d)}{\sum_{k=0}^{m} b_k g_k(x_1,...,x_d)}$$

such that
$$r(x_1^{(\ell)}, \dots, x_d^{(\ell)}) \in F^{(\ell)}$$

Adaptive multidimensional modeling

$$r_{n,m}(x_1,...,x_d) = \frac{p_{n,m}(x_1,...,x_d)}{q_{n,m}(x_1,...,x_d)}$$

$$r_{n,m}(x_1^{(\ell)},\dots,x_d^{(\ell)}) \in F^{(\ell)} \underset{q_{n,m}(x_1^{(\ell)},\dots,x_d^{(\ell)}) > 0}{\Leftrightarrow} \begin{cases} -p_{n,m}^{(\ell)} + f_>^{(\ell)}q_{n,m}^{(\ell)} \geqslant 0 \\ p_{n,m}^{(\ell)} - f_<^{(\ell)}q_{n,m}^{(\ell)} \geqslant 0 \end{cases}$$

 $\underset{\text{nonempty interior}}{\Leftrightarrow} \quad \text{strictly convex QP}$

3 / 25

Benchmark

- ► National Institute of Standards and Technology (NIST) reference dataset
- ▶ 151 observations

best ℓ_2 -approximation

$$\sum_{\ell=0}^s \left(r_{2,2}^*(x_1^{(\ell)},\ldots,x_d^{(\ell)}) - \mathsf{f}^{(\ell)}\right)^2 \text{ minimal}$$

$$r_{2,2}^* = \frac{1.6745 - 0.13927x + 0.00260x^2}{1 - 0.00172x + 0.00002x^2}$$

residuals, $\sigma = 0.16355$

5/2

$$f_{>}^{(\ell)} - f_{<}^{(\ell)} = 2(3\sigma) = 0.9813 \Rightarrow n = 2, m = 2$$

$$r_{2,2} = \frac{1.56271 - 0.13713x + 0.00261x^2}{1 - 0.00173x + 0.00002x^2}$$

residuals

$$f_{>}^{(\ell)} - f_{<}^{(\ell)} = 2(2\sigma) = 0.6542 \Rightarrow n = 2, m = 2$$

$$r_{2,2} = \frac{1.16217 - 0.1080x + 0.00224x^2}{1 - 0.00223x + 0.00002x^2}$$

residuals

7/2

compare to best ℓ_{∞} -approximation

$$\max_{\ell=0,\dots,s}\left|r_{2,2}^{\infty}(x_1^{(\ell)},\dots,x_d^{(\ell)})-\mathsf{f}^{(\ell)}\right| \text{ minimal }$$

$$r_{2,2}^{\infty} = \frac{1.15538 - 0.10751x + 0.00223x^2}{1 - 0.00223x + 0.00002x^2}$$

residuals, max = 0.3244

compare to best ℓ_∞ -approximation

$$\max_{\ell=0,\dots,s} \left| r_{2,2}^{\infty}(x_1^{(\ell)},\dots,x_d^{(\ell)}) - \mathsf{f}^{(\ell)} \right| \text{ minimal }$$

$$r_{2,2}^{\infty} = \frac{1.15538 - 0.10751x + 0.00223x^2}{1 - 0.00223x + 0.00002x^2}$$

residuals

8 / 2

$$\begin{array}{l} f_>^{(\ell)}-f_<^{(\ell)}=2(1.75\sigma)=0.5724\Rightarrow r_{2,2}^* \text{ and } r_{2,2}^\infty \text{ do not satisfy}\\ \Rightarrow n=3, \ m=2 \end{array}$$

Ideal lowpass filter:

$$H\left(e^{\mathbf{i} t_1}, e^{\mathbf{i} t_2}\right) = \begin{cases} 1, & (t_1, t_2) \in P \subset [-\pi, \pi] \times [-\pi, \pi], \\ 0, & (t_1, t_2) \notin P. \end{cases}$$

In practice:

- $\qquad \qquad \textbf{passband} \ [1-\delta_1,1+\delta_1], \quad \ (t_1,t_2) \in P$
- ▶ stopband $[-\delta_2, \delta_2]$, $(t_1, t_2) \notin P \cup T$
- \blacktriangleright transition band $[-\delta_2, 1+\delta_1], \ \ (t_1, t_2) \in T$

10 / 25

Grid structured data

Examples of passband: $s + 1 = 33 \times 33$

centro symmetric filter

fan filter

Rational models for the parameters $\delta_1=0.01$ and $\delta_2=0.02$

12 / 25

 $\mathsf{parameters} \to physical\ model \to \mathsf{behaviour}$

$$\begin{array}{c} \mathsf{parameters} \to \mathsf{physical} \ \mathsf{model} \to \mathsf{behaviour} \\ \downarrow \quad \mathsf{simplify} \quad \downarrow \end{array}$$

13 / 25

Point valued data

$$\label{eq:parameters} \begin{array}{c} \mathsf{parameters} \to \mathsf{physical} \ \mathsf{model} \to \mathsf{behaviour} \\ \\ \downarrow \quad \mathsf{simplify} \quad \downarrow \\ \\ \mathsf{parameters} \to \mathsf{metamodel} \to \mathsf{behaviour} \end{array}$$

Model of the stripline characteristic impedance $Z_0(\mathfrak{q},\varepsilon_r)$

14 / 25

Model of the transmission coefficient $S_{21}(f,w)$ of two inductive posts in rectangular waveguide

Interval valued data

A European call option gives its holder the right (but not the obligation) to purchase from the writer a prescribed asset for a prescribed price at a prescribed time in the future.

- T expiry date $(0 \le t \le T)$
- E strike or exercise price
- S asset price $S_t \geqslant 0$
- annual interest rate (constant)
- σ market volatility

Interval valued data

Black-Scholes PDE

$$\frac{\partial C}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} + rS \frac{\partial C}{\partial S} - rC = 0$$

$$C(S,T) = \max(S - E, 0)$$

$$C(0,t) = 0,$$
 $0 \leqslant t \leqslant T$

$$C(S, t) \approx S$$
,

Typically a few million values computed:

$$\begin{split} \left(E^{(i)}, r^{(i)}, \sigma^{(i)}\right), \quad i &= O(10^1) \\ \left(S^{(i,j)}, t^{(i,k)}\right), \quad (j,k) &= O(10^4) \end{split}$$

- lacktriangle fit model through subset of s+1 data points
- ▶ check model on all available values
- ▶ increase s and update model

18 / 25

Interval valued data

Graph in
$$(\mathfrak{u},\nu)\colon\thinspace \mathfrak{u}=\text{ln}(S)-\text{ln}(E)+rt,\quad \nu=\sigma\sqrt{t}$$

$$C-Sr_{n,\mathfrak{m}}(\mathfrak{u},\nu)$$

$$n = 16$$
, $m = 20$, $f_{>}^{(\ell)} - f_{<}^{(\ell)} = 0.005$

C(u, v)/S

s+1=212 data points

0.000 0.003 0.003 0.002 0.001 1003 0.002 0.001 1003 0.002 0.001 0.003 0.

 $r_{16,20}(u,\nu)$

relative error

$$r_{n,\,m}(u,\nu) = \frac{\text{degree 4} \, + a_{15}u^5 + a_{16}\nu^5}{\text{degree 5}}$$

20 / 25

Scattered interval data

The Bidirectional Reflectance Distribution Function $\rho(\theta_1, \varphi_1, \theta_{\nu}, \varphi_{\nu})$ describes how a material reflects light from surfaces.

- l lighting direction
- viewing direction
- θ zenithal angle
- φ azimuthal angle

chrome steel

fabric beige

Scattered interval data

For isotropic materials $90 \times 90 \times 180 \approx 1.45$ million measured BRDF samples (RGB values):

- \blacktriangleright a priori error control (3–5%) on all data points (≈ 1.12 Mb)
- ▶ a posteriori error control on all measured samples

 $r_{25,18}(\theta_h, \theta_d), s+1=205$

relative error

22 / 25

Scattered interval data

Rendered example: blue-metallic paint

Original (33MB)

Approximation (1.15KB)

Compressive sensing recovers a K–sparse signal from only $M \approx K$ measurements without loss of information.

$$\begin{split} x(t) &= 2\cos(5t) - 15\cos(14t) + \cos(26t) & 0 \leqslant t \leqslant 2\pi \\ &+ 5\cos(35t) + \text{noise}([-0.1, 0.1]), \end{split}$$

24 / 25

$$t_j = j\frac{2\pi}{71}$$
, $j = 0, ..., 7$, $s + 1 = 8$

Choice of datapoints allows to recover the frequencies first,

and afterwards the coefficients by fitting the same data,

$$2.004 - 14.93 \ 0.9668 \ 5.007$$

$$x(t) = 2\cos(5t) - 15\cos(14t) + \cos(26t) + 5\cos(35t)$$