# Sztuczna Inteligencja w Grafice Komputerowej - Projekt nr $2\,$

# Błażej Ejzak, Paweł Dombrzalski 313220, 318647

## 22 kwietnia 2025

#### Streszczenie

Niniejszy dokument prezentuje wyniki rozwiązania zadania związanego z Tone Mappingiem opartym o sztuczne sieci neuronowe w oparciu o Learning a self-supervised tone mapping operator via feature contrast masking loss.

# Spis treści

| 1 | olementacja algorytmu | 2                                          |    |
|---|-----------------------|--------------------------------------------|----|
|   | 1.1                   | Porównanie z metodami Reinharda i Mantiuka | 2  |
|   | 1.2                   | Wnjoski                                    | 14 |

# 1 Implementacja algorytmu

Algorytm mozna podzielić na zasadnicze wysokopoziomowe części:

• Przygotowanie zbioru danych. Pojedynczy indeks w zbiorze danych odpowiada pięciu obrazkom (trzem o różnej jasności, przekształconemu algorytmem prawa- $\mu$  oraz oryginalnemu).

- Stworzenie autoenkodera (enkoder, model łączenia/agregacji, dekoder) uwzględniającego na wejściu trzy obrazy o rosnącej jasności.
- $\bullet$  Autoenkoder generuje obraz poddany tone-mappingowi. W celu obliczenia straty dla całego modelu dodatkowo używamy pretrenowanego modelu Vgg, który wraz z zastosowaniem filtracji Gaussa oraz połączenia lokalnych średnich oraz odchylenia standardowego tworzy mapy cech dla predykcji autoenkodera oraz obrazu prztworzonego algorytmem prawa- $\mu$  pomiędzy, którymi obliczana jest strata L1.

#### 1.1 Porównanie z metodami Reinharda i Mantiuka



Rysunek 1: Mantiuk - Kuchnia



Rysunek 2: Reinhard - Kuchnia



Rysunek 3: Nasz model - Kuchnia



Rysunek 4: Mantiuk - Drzewo



Rysunek 5: Reinhard - Drzewo



Rysunek 6: Nasz model - Drzewo



Rysunek 7: Mantiuk - Szklanka



Rysunek 8: Reinhard - Szklanka



Rysunek 9: Nasz model - Szklanka



Rysunek 10: Mantiuk - Umywalka



Rysunek 11: Reinhard - Umywalka



Rysunek 12: Nasz model - Umywalka



Rysunek 13: Mantiuk - Rzeka



Rysunek 14: Reinhard - Rzeka



Rysunek 15: Nasz model - Rzeka



Rysunek 16: Mantiuk - Domek



Rysunek 17: Reinhard - Domek



Rysunek 18: Nasz model - Domek



Rysunek 19: Mantiuk - Taczka



Rysunek 20: Reinhard - Taczka



Rysunek 21: Nasz model - Taczka



Rysunek 22: Mantiuk - Świeczki



Rysunek 23: Reinhard - Świeczki



Rysunek 24: Nasz model - Świeczki

| Obraz    | Our Model | Reinhard | Mantiuk |
|----------|-----------|----------|---------|
| Świeczki | 98.86     | 59.69    | 87.89   |
| Umywalka | 85.31     | 49.77    | 76.27   |
| Drzewo   | 55.63     | 7.12     | 4.76    |
| Domek    | 64.12     | 46.87    | 21.23   |
| Taczka   | 71.52     | 49.05    | 36.50   |
| Szklanka | 59.17     | 8.22     | 59.96   |
| Kuchnia  | 73.70     | 29.15    | 72.71   |
| Rzeka    | 87.73     | 32.30    | 97.65   |

Tabela 1: Porównanie wartości BRISQUE

## 1.2 Wnioski

W większości przypadków nasz model daje lepsze efekty. W szczególności gdy obrazek ma duży kontrast, wtedy model daje żywe oraz ostre barwy. Stosunkowo gorzej rezultaty wyglądają gdy obraz wejściowy jest w jednej tonacji - głównie ciemnej. Wtedy Reinhard lepiej rozjaśnia obraz uwidaczniając więcej detali.