Beyond Labels: Contrastive Representation Learning for Scalable Image-based Plant Disease Diagnosis

Syed Shayan Ali Shah¹, Hafeez Anwar², **Farman Ullah³***, Mustaqeem Khan³, Jamil Ahmad³, Mobeen ur Rehman

Abstract

SimCLR-based SSL with a lightweight ConvNeXt-Tiny head delivers 97.67% accuracy and 98.12% F1 on PlantVillage, lowering label needs and yielding clear t-SNE separation

Methodology

SimCLR pretraining (NT-Xent, twin augmentations)

→ freeze encoder → linear fine-tuning on a small labeled subset with MixUp/CutMix/label smoothing → report accuracy/F1 and visualize clusters via t-SNE.

RESULTS

t-SNE confirms semantically rich, class-separable features learned via contrastive SSL.

Predictions are **highly accurate across classes**; remaining confusions are between **look-alike diseases**

SOTA Comparison

Proposed method leads all benchmarks in both Accuracy and F1, confirming stronger generalization with fewer labels

CONCLUSIONS

We learn rich visual features from unlabeled leaves via SimCLR, then lightweight classifier fine-tune a with strong regularization, achieving high accuracy/F1 clear and separability. This demonstrates SSL effective, accessible an agricultural approach real tor settings.