Inference 2, 2023, lecture 11

Rolf Larsson

December 6, 2023

Today

Chap. 5. Testing hypotheses (continued)

- Example: Binomial test
- Uniformly most powerful tests
- Monotone likelihood ratio

Example: Binomial test

- Assume that $X \sim \text{Bin}(5, p)$ where $p \in [1/2, 1]$.
- Test $H_0: p = 1/2$ vs $H_1: p = 3/4$ on level 0.05.
- Derive the most powerful test.

Uniformly most powerful tests

- Suppose we observe $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent, distributed as X with parameter θ .
- The parameter space is $\Theta = \Theta_0 \cup \Theta_1$ where $\Theta_0 \cap \Theta_1 = \emptyset$.
- Test H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \in \Theta_1$.
- We want to find a test which is most powerful for a given size (significance level).
- Today: generalize the Neyman-Pearson lemma, where we had H_0 : $\theta = \theta_0$, H_1 : $\theta = \theta_1$, to
 - H_0 : $\theta \le \theta_0$, H_1 : $\theta > \theta_0$
 - H_0 : $\theta \ge \theta_0$, H_1 : $\theta < \theta_0$.
- At first, we need to define the test size!

Uniformly most powerful tests

Definition (5.8)

A test φ is called a **test of size** α if.f.

$$\alpha = \sup_{\theta \in \Theta_0} \mathcal{E}_{\theta} \{ \varphi(\mathbf{X}) \}.$$

Example 1:

- Suppose $X \sim \text{Bin}(5, p)$.
- Test $H_0: p \le 1/2$ vs $H_1: p > 1/2$ on level 0.05.
- Consider the Binomial test example:

$$\varphi(x) = \begin{cases} 1 & \text{if } x = 5, \\ \gamma = 0.12 & \text{if } x = 4, \\ 0 & \text{otherwise.} \end{cases}$$

Show that the maximum of the power function lies on the border to the alternative.

Uniformly most powerful tests

A uniformly most powerful test is the one with highest power among those that have (at most) the same size.

Definition (5.9)

A test φ^* is called **uniformly most powerful (UMP) of size** α if.f.

$$\sup_{\theta \in \Theta_0} E_{\theta} \{ \varphi^*(\mathbf{X}) \} = \alpha$$

and

$$E_{\theta}\{\varphi^*(\mathbf{X})\} \geq E_{\theta}\{\varphi(\mathbf{X})\}$$

for all $\theta \in \Theta_1$ and for all tests φ of size at most α .

Definition (5.10)

A model $\{P_{\theta}, \theta \in \Theta\}$ with $\Theta \subseteq \mathcal{R}$ is said to have a **monotone likelihood** ratio (MLR) in the statistic T if.f. for all θ, θ' with $\theta > \theta'$ there exists a nondecreasing function $F_{\theta,\theta'}$ such that

$$\frac{L(\theta; \mathbf{x})}{L(\theta'; \mathbf{x})} = F_{\theta, \theta'} \{ T(\mathbf{x}) \}.$$

Example 2:

- Let $\mathbf{X} = (X_1, ..., X_n)$ be a i.i.d. sample from $N(\mu, \sigma^2)$ with known σ^2 .
- Show that the model of the sample has a MLR in $T(\mathbf{x}) = \sum_{i=1}^{n} x_i$.

Theorem (5.3)

Let $\mathbf{X} = (X_1, ..., X_n)$ be a i.i.d. sample from P_{θ} . If the distribution P_{θ} belongs to a one-parameter exponential family with

$$p(x;\theta) = A(\theta)h(x)\exp\{\zeta(\theta)R(x)\},\$$

where $\zeta(\cdot)$ is monotone nondecreasing, then the model of the sample has a MLR in $T(\mathbf{x}) = \sum_{i=1}^{n} R(x_i)$.

8 / 11

Theorem (5.4)

Blackwell Suppose that we have a MLR family in T.

(a) For the test problem H_0 : $\theta \ge \theta_0$ vs H_1 : $\theta < \theta_0$ the test

$$\varphi\{T(\mathbf{x})\} = \begin{cases} 1 & \text{if} \quad T(\mathbf{x}) < k, \\ \gamma & \text{if} \quad T(\mathbf{x}) = k, \\ 0 & \text{if} \quad T(\mathbf{x}) > k, \end{cases}$$

with γ , k such that $E_{\theta_0}\{\varphi(\mathbf{X})\} = \alpha$ is a UMP test of size α .

(b) For the test problem H_0 : $\theta \le \theta_0$ vs H_1 : $\theta > \theta_0$ the test

$$\varphi\{T(\mathbf{x})\} = \begin{cases} 1 & \text{if} \quad T(\mathbf{x}) > k, \\ \gamma & \text{if} \quad T(\mathbf{x}) = k, \\ 0 & \text{if} \quad T(\mathbf{x}) < k, \end{cases}$$

with γ , k such that $E_{\theta_0}\{\varphi(\mathbf{X})\} = \alpha$ is a UMP test of size α .

(c) For any θ of the respective alternatives the tests in (a) and (b) have maximal power among all tests ψ with $E_{\theta_0}\{\psi(\mathbf{X})\} = \alpha$.

Corollary 5.2: The exponential families with a MLR satisfy theorem 5.4.

Example 3: Derive UMP tests on level $\alpha = 0.05$ for the following situations.

- Let $\mathbf{X}=(X_1,...,X_n)$ be an i.i.d. sample from $N(\mu,\sigma^2)$ with known σ^2 . Test H_0 : $\mu \geq \mu_0$ vs H_1 : $\mu < \mu_0$.
- ② $X \sim \text{Bin}(5, p)$. Test $H_0: p \le 1/2 \text{ vs } H_1: p > 1/2$.

News of today

Generalization to one-sided tests:

- Test size
- UMP test
- MIR
- MLR in the exponential family
- Blackwell: When LR tests are UMP.
- It works for the exponential family.