ALGEBRA LINEARE E GEOMETRIA

$1^{\rm o}$ appello — 15 giugno 2021

Esercizio 1. Sia $M(2,\mathbb{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. Data $A = \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}$, sia $U \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che commutano con A:

$$U = \{ B \in M(2, \mathbb{R}) \mid AB = BA \}.$$

- (a) Determinare la dimensione e una base di U.
- (b) Sia $W \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che contengono il vettore (3,-2) nel loro nucleo. Determinare la dimensione e una base di W.
- (c) Determinare $U \cap W \in U + W$.
- (d) Stabilire se U contiene qualche matrice con rango < 2 e diversa dalla matrice nulla.

Soluzione. (a) Poniamo

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Si deve avere

$$\begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}$$

Sviluppando i calcoli si ottiene

$$\begin{cases} b = -2c \\ d = a - c \end{cases}$$

Ci sono quindi infinite soluzioni per ogni $a,c\in\mathbb{R}$. Da ciò segue che dimU=2 e una base di U è formata dalle due matrici

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}$$

La generica matrice di U è quindi del tipo

$$\begin{pmatrix} \alpha & 2\beta \\ -\beta & \alpha + \beta \end{pmatrix}$$

(b) Indichiamo con

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

una matrice di W. Si deve avere

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

da cui si ricava $a=\frac{2}{3}\,b$ e $c=\frac{2}{3}\,d$. Anche in questo caso ci sono infinite soluzioni, per ogni $b,d\in\mathbb{R}$, quindi dimW=2 e una base di W è formata dalle due matrici

$$\begin{pmatrix} 2 & 3 \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 0 \\ 2 & 3 \end{pmatrix}$$

La generica matrice di W è quindi del tipo

$$\begin{pmatrix} 2\lambda & 3\lambda \\ 2\mu & 3\mu \end{pmatrix}$$

(c) Per una matrice che appartiene a $U \cap W$ si deve avere

$$\begin{pmatrix} \alpha & 2\beta \\ -\beta & \alpha + \beta \end{pmatrix} = \begin{pmatrix} 2\lambda & 3\lambda \\ 2\mu & 3\mu \end{pmatrix}$$

L'unica soluzione è data da $\alpha = \beta = \lambda = \mu = 0$, quindi l'unica matrice che appartiene a $U \cap W$ è la matrice nulla e pertanto $\dim(U \cap W) = 0$.

Dalla formula di Grassmann segue che dim(U+W)=4, quindi $U+W=M(2,\mathbb{R})$.

(d) La generica matrice di U è del tipo

$$\begin{pmatrix} \alpha & 2\beta \\ -\beta & \alpha + \beta \end{pmatrix}$$

il cui determinante è $\alpha^2 + \alpha\beta + 2\beta^2$. Una matrice di questo tipo ha rango < 2 se e solo se il suo determinante è uguale a zero, cioè se e solo se $\alpha^2 + \alpha\beta + 2\beta^2 = 0$. Le soluzioni di questa equazione sono date da

$$\alpha = \frac{-\beta \pm \sqrt{-7\beta^2}}{2}$$

Le uniche soluzioni reali si ottengono quindi per $\beta = 0$, da cui segue che anche $\alpha = 0$. Questo significa che l'unica matrice di U che ha rango < 2 è la matrice nulla.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & 1 & t & -3 \\ 1 & -2 & 0 & 3 \\ -1 & 1 & 2 & -1 \end{pmatrix}$$

- (a) Determinare per quale valore di t la funzione f non è suriettiva.
- (b) Per il valore di t trovato determinare delle basi del nucleo e dell'immagine di f.
- (c) Poniamo ora t=0. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1=(1,0,0,0)$, $u_2=(0,0,1,0)$, $u_3=(-1,2,0,3)$. Scrivere la matrice della funzione $\tilde{f}:U\to\mathbb{R}^3$, definita ponendo $\tilde{f}(u)=f(u)$, rispetto alla base $\{u_1,u_2,u_3\}$ di U e alla base canonica di \mathbb{R}^3 .
- (d) Verificare che $\tilde{f}: U \to \mathbb{R}^3$ è un isomorfismo.

Soluzione. (a) Riducendo la matrice A in forma a scala si trova

$$\begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & -1 & 2 & 2 \\ 0 & 0 & t+6 & 0 \end{pmatrix}$$

Questa matrice ha rango < 3 se e solo se t = -6. Questo è il valore di t per cui f non è suriettiva.

(b) Il nucleo di f si trova risolvendo il sistema

$$\begin{pmatrix} 1 & 1 & -6 & -3 \\ 1 & -2 & 0 & 3 \\ -1 & 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Sviluppando i calcoli si trova

$$\begin{cases} x_1 = 4x_3 + x_4 \\ x_2 = 2x_3 + 2x_4 \end{cases}$$

Il nucleo di f ha quindi dimensione 2 e una sua base è data dai vettori (4,2,1,0) e (1,2,0,1). Ricordando che dim $(\operatorname{Ker} f)$ + dim $(\operatorname{Im} f)$ = 4 si deduce che dim $(\operatorname{Im} f)$ = 2 (lo sapevamo già perché il rango della matrice è 2) e una base di Im f è costituita da due colonne linearmente indipendenti della matrice A (ad esempio dalle prime due colonne).

(c) Per t = 0 si ottiene la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 1 & -2 & 0 & 3 \\ -1 & 1 & 2 & -1 \end{pmatrix}$$

Si ha $\tilde{f}(u_1) = Au_1 = (1, 1, -1)$, $\tilde{f}(u_2) = Au_2 = (0, 0, 2)$, $\tilde{f}(u_3) = Au_3 = (-8, 4, 0)$, quindi la matrice di \tilde{f} è

$$\begin{pmatrix} 1 & 0 & -8 \\ 1 & 0 & 4 \\ -1 & 2 & 0 \end{pmatrix}$$

(d) Il determinante della matrice di \tilde{f} appena trovata è $\neq 0$, quindi \tilde{f} è invertibile, quindi \tilde{f} è un isomorfismo.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da f(1,0,0) = (2,-2,-2), f(0,1,0) = (-2,5,-1) e tale che v = (1,-1,-1) sia un autovettore relativo all'autovalore $\lambda = 6$.

- (a) Scrivere la matrice A di f rispetto alla base canonica.
- (b) Determinare gli autovalori e autovettori di f e dire se A è diagonalizzabile.
- (c) Stabilire se esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di f e, se esiste, trovarla.

Soluzione. (a) Si ha f(v) = 6v, cioè f(1, -1, -1) = (6, -6, -6). Dato che $v = e_1 - e_2 - e_3$, si ottiene $e_3 = e_1 - e_2 - v$, quindi $f(e_3) = f(e_1) - f(e_2) - f(v) = (-2, -1, 5)$. La matrice A è quindi

$$A = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 5 & -1 \\ -2 & -1 & 5 \end{pmatrix}$$

(b) Notiamo che A è una matrice simmetrica, quindi è sicuramente diagonalizzabile. Il suo polinomio caratteristico è

$$\det \begin{pmatrix} 2 - \lambda & -2 & -2 \\ -2 & 5 - \lambda & -1 \\ -2 & -1 & 5 - \lambda \end{pmatrix} = -\lambda(\lambda - 6)^2$$

quindi gli autovalori sono $\lambda = 0$ (con molteplicità 1) e $\lambda = 6$ (con molteplicità 2). Un autovettore per $\lambda = 0$ è $v_1 = (2, 1, 1)$. Nel caso dell'autovalore $\lambda = 6$ l'autospazio è dato dalle soluzioni dell'equazione $x_3 = -2x_1 - x_2$. Tale autospazio ha quindi dimensione 2 e una sua base è data dai vettori $v_2 = (1, 0, -2)$ e $v_3 = (0, 1, -1)$.

(c) La matrice A è simmetrica, quindi esiste sicuramente una base ortonormale di \mathbb{R}^3 formata da autovettori di A. Osserviamo che l'autovettore v_1 è ortogonale agli autovettori v_2 e v_3 (infatti si tratta di autovettori associati ad autovalori diversi). Al contrario, gli autovettori v_2 e v_3 non sono ortogonali tra loro (infatti si ha $v_2 \cdot v_3 = 2$). In questo caso possiamo applicare il procedimento di Gram–Schmidt ai vettori v_2 e v_3 .

Poniamo $v_2' = v_2$ e $v_3' = v_3 + \alpha v_2'$. Richiedendo che sia $v_2' \cdot v_3' = 0$ si trova

$$\alpha = -\frac{v_2 \cdot v_3}{v_2 \cdot v_2} = -\frac{2}{5}$$

Quindi il vettore v_3' è

$$v_3' = v_3 - \frac{2}{5}v_2 = \left(-\frac{2}{5}, 1, -\frac{1}{5}\right)$$

I vettori v_1 , v_2' , v_3' sono una base ortogonale formata da autovettori di A. Se, come richiesto, vogliamo una base ortonormale, basta dividere ciascun vettore per la sua norma.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati i punti $A=(0,3,3),\,B=(1,1,2),\,C=(2,2,1).$

- (a) Verificare che l'angolo \widehat{ABC} è retto e trovare un punto D tale che \widehat{ABCD} sia un rettangolo.
- (b) Trovare il punto E, intersezione delle diagonali del rettangolo ABCD.
- (c) Scrivere un'equazione cartesiana del piano π che contiene il rettangolo ABCD.

Soluzione. (a) Sia v = B - A = (1, -2, -1) e w = C - B = (1, 1, -1).

Si ha $v \cdot w = 0$, quindi i vettori v e w sono perpendicolari e quindi l'angolo $A\widehat{B}C$ è retto. Il punto D è dato da D = A + w = (1, 4, 2) (oppure da D = C - v).

(b) Il punto E è il punto medio del segmento AC:

$$E = \frac{A+C}{2} = \left(1, \frac{5}{2}, 2\right)$$

(c) Un vettore \vec{n} ortogonale al piano π è dato dal prodotto vettoriale di v e w, $\vec{n} = v \times w = (3, 0, 3)$. Il piano π ha dunque un'equazione del tipo 3x + 3z = d. Imponendo la condizione di passaggio per il punto A si trova d = 9, quindi l'equazione di π è 3x + 3z = 9 o, equivalentemente, x + z = 3.