

Project I Diabetic Retinopathy Detection

Deep Learning Lab Winter-term 2020/2021

Team Ram Sabarish Obla Amar Bapu (st169693) Swetha Lakshmana Murthy (st169481)

Introduction

What is Diabetic Retinopathy (DR)?

- Abnormal growth of blood vessels in the retina
- Impediment caused to the back of the eye
- Complications resulting in vision impairments
- Results in vision loss if not detected in the early stage

Diabetic retinopathy affects over one-third of all people with diabetes and is the leading cause of vision loss in working-age adults.

* Source https://idf.org/our-activities/care-prevention/eye-health.html

^{*} Please note that Diabetic Retinopathy will be addressed as DR in the presentation henceforth.

Diabetic retinopathy (DR) is the primary cause of vision loss in adults aged 20–74 years^{1–3}

...these numbers are estimated to rise, as the prevalence of diabetes increases^{1,3}-

DR, diabetic retinopathy

^{1.} Lee R, et al. Eye Vis (Lond). 2015;2:17; 2. Ting DSW, et al. Clin Exp Ophthalmol. 2016;44:260-77; 3. Yau JWY, et al. Diabetes Care. 2012;35:556-564;

^{4.} IAPB Vision Atlas. Diabetic Retinopathy. http://atlas.iapb.org/vision-trends/diabetic-retinopathy/ [last accessed March 2018];

^{5.} Flaxman SR, et al. Lancet Glob Health. 2017;5:e1221-34

Motivation

- O Detect the changes between the healthy and unhealthy retina
- Overcome the need of a trained opthamologist
- Overcome the complications of DR

Complications of DR

- Vitreous hemorrhage
- Retinal detachment
- Glaucoma
- Blindness

Objective

Build a Deep learning model for DR Image Classification

Facilitate the DR Screening Process Creating an aid for medical diagnostics in the field of DR

System Flow

Data Preprocessing - Input Pipeline

Data Preprocessing - Input Pipeline

Input Pipeline Creation

516 - Fundus Images

413 – Train Images

103 – Test Images

Input image size -256×256

Configuring dataset for performance

To train a model precisely, the following are to be taken care of,

- Shuffling
- Batching

Model with overfitting

Well! We can try augmenting the images. Also take a note of the dropout layer too!

Reducing Overfitting

Data Augmentation

Operations Performed

- Rotation
- Zoom
- Shift
- Horizontal and Vertical Flipping

Reducing Overfitting

2. Adding Dropout Layers

Input of Dropout Layer	Fractional Number (0.1, 0.2, 0.3,)
Action Performed	Drops 10%, 20%, 30%, of the output units randomly from the applied layer.

Without Dropout

With Dropout

Model Architecture

The model consists of,

- Convolutional Neural Network(CNN)
- Max-Pooling Layer
- Dropout

Training and Evaluation

Training and Evaluation

Hyperparameter Tuning (HPT)

•HP_OPTIMIZER

•HP_EPOCHS

•HP_DENSE_LAYER

•HP_DROPOUT

<u>Selection based on HPT</u>

Optimizer - Adam

Number of Epochs - 150

Dense layer - 512

Dropout - 0.4, 0.5

Train and Validation Accuracy and Loss

Training and Evaluation

Metrics

Confusion Matrix: Describes the performance of the model The final achieved test accuracy is about **72.81%**.

Deep Visualization

Grad-CAM

- Localizes image regions with relevance
- Visualizes gradients of the final conv2D layer

Grad-CAM + Guided Backpropagation

Nullifies the gradients associated with negative value

Conclusion and Future Scope

- Model for early detection of patients with the highest risk of vision loss.
- Timely referral to a retinal specialist
- Aims at preventing irreversible vision impairments.
- Feasible deployment across different eye-care centers

Future Scope:

- Diabetics can be classified as , Type1 Juvenile and Type 2 Elderly Individuals
- Dataset can be collected and analysed based on the,
- Age I Type of Diabetics
- Drug used Insulin and Oral

References

- [1] https://www.tensorflow.org/tutorials/load_data/images
- [2] Selvaraju, Ramprasaath R.; Cogswell, Michael; Das, Abhishek; Vedantam, Ramakrishna ; Parikh, Devi ; Batra, Dhruv: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceeding Conference on Computer Vision, 2017, S. 618–626
- [3] https://math.mit.edu/ennui/
- [4] Deep Learning Course and Lab lectures and slides

Thank you