Uma abordagem híbrida para organização flexível de documentos

Apresentação de Monografia

Nilton Vasques Carvalho Junior

Universidade Federal da Bahia Departamento de Ciência da Computação **Orientadora:** Profa. Dra. Tatiane Nogueira Rios Contato: niltonvasques {arroba} dcc.ufba.br

2 de Junho de 2016

Conteúdo

- Introdução
- Pundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
 - Resultados
- Conclusão

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
 - Resultados
- Conclusão

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia
- Governos e corporações também produzem milhares de pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia (Havens et al., 2012).
- Governos e corporações também produzem milhares de documentos todos os dias, tais como relatórios, formulários, pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia (Havens et al., 2012).
- Governos e corporações também produzem milhares de documentos todos os dias, tais como relatórios, formulários, pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

- O avanço da tecnologia tem proporcionado um aumento gigantesco na quantidade de dados armazenados.
- A rede social Facebook produz mais de 25 terabytes/dia (Havens et al., 2012).
- Governos e corporações também produzem milhares de documentos todos os dias, tais como relatórios, formulários, pesquisas de opiniões e etc.
- Muggleton (2006) ressalta que este cenário está além dos limites humanos para o uso e compreensão.

Introdução

- Kobayashi e Aono (2008) enfatizam que instituições estão sobrecarregadas com o processamento desse montante de dados.
- Os dados possuem diversos tipos e formatos, sendo armazenados de forma estruturada ou não estruturada.

Exemplos

documentos de textos, planilhas, áudios, imagens, vídeos documentos HTML e etc.

 Os dados possuem diversos tipos e formatos, sendo armazenados de forma estruturada ou não estruturada.

Exemplos

documentos de textos, planilhas, áudios, imagens, vídeos, documentos HTML e etc.

Introdução

- Kobayashi e Aono (2008) enfatizam que instituições estão sobrecarregadas com o processamento desse montante de dados.
- Os dados possuem diversos tipos e formatos, sendo armazenados de forma estruturada ou não estruturada.

Exemplos

documentos de textos, planilhas, áudios, imagens, vídeos, documentos HTML e etc.

Conclusão

- Dados estruturados já possuem mecanismos eficientes de armazenamento e recuperação.
- Documentos textuais por serem não estruturados são recuperados através de Sistemas de Recuperação da Informação (SRI).

Exemplos

Duckduckgo, Jus Brasil, IEEExplore, ACM, Google e etc

- Dados estruturados já possuem mecanismos eficientes de armazenamento e recuperação.
- Documentos textuais por serem não estruturados são recuperados através de Sistemas de Recuperação da Informação (SRI).

Exemplos

Duckduckgo, Jus Brasil, IEEExplore, ACM, Google e etc

 A extração de padrões de documentos textuais é o principal objetivo da Mineração de Textos (MT).

Vários desafios estão presentes no processo de extração de padrões de documentos textuais, entre eles destaca-se:

- Não estruturados.
- Naturalmente imprecisos e incertos.
- Abordam um ou mais temas.
- Alta dimensionalidade.
- Dados esparsos.

Vários desafios estão presentes no processo de extração de padrões de documentos textuais, entre eles destaca-se:

- Não estruturados.
- Naturalmente imprecisos e incertos.
- Abordam um ou mais temas.
- Alta dimensionalidade.
- Dados esparsos.

Vários desafios estão presentes no processo de extração de padrões de documentos textuais, entre eles destaca-se:

- Não estruturados.
- Naturalmente imprecisos e incertos.
- Abordam um ou mais temas.
- Alta dimensionalidade.
- Dados esparsos.

Exemplos

Uma coleção de documentos pode conter 100.000 palavras, enquanto um documento pode conter apenas algumas centenas (Aggarwal e Zhai, 2012).

Vários desafios estão presentes no processo de extração de padrões de documentos textuais, entre eles destaca-se:

- Não estruturados.
- Naturalmente imprecisos e incertos.
- Abordam um ou mais temas.
- Alta dimensionalidade.
- Dados esparsos.

Vários desafios estão presentes no processo de extração de padrões de documentos textuais, entre eles destaca-se:

- Não estruturados.
- Naturalmente imprecisos e incertos.
- Abordam um ou mais temas.
- Alta dimensionalidade.
- Dados esparsos.

Exemplos

Uma coleção de documentos pode conter 100.000 palavras, enquanto um documento pode conter apenas algumas centenas (Aggarwal e Zhai, 2012).

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (*Big Data*).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (*Big Data*).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (Big Data).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (Big Data).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

Introdução

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (Big Data).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (Big Data).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

- Agrupar de acordo com a similaridade.
- Grupos com significado relevante.
- Escalável para grandes coleções (Big Data).
- Baixo custo computacional.
- Estimar os parâmetros dos algoritmos.
- Considerar a imprecisão e a incerteza.
- Reduzir a influência de documentos ruidosos.

Introdução

Citação

[...] não é esperado que um único método de agrupamento atenda todas as exigências para todos os conjuntos de dados [...] (Steinbach et al., 2003).

Existem diversos métodos de agrupamento na literatura, os quais destacam-se:

- Fuzzy C-Means (FCM)
- Possibilistic C-Means (PCM)
- Possibilistic Fuzzy C-Means (PFCM)

A partir das investigações conduzidas foi proposto dois métodos de extração de descritores:

- Possibilistic Description Comes Last (PDCL)
- Mixed Possibilistic Fuzzy Description Comes Last (Mixed-PFDCL) (Híbrido)

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
 - Resultados
- Conclusão

Pré-processamento

Introdução

	n ~		
•	Remoção	de	espacos.

- Expansão de abreviações.
- Remoção de stopwords (pronomes, artigos e etc.).
- Lematização (Casa \rightarrow Cas).
- Estruturação dos documentos (TF-IDF).

	termo ₁	termo ₂	termo ₃
doc_1	1	3	4
doc ₂	9	2	0

Tabela: Exemplo matriz docs x termos

	$termo_1$	termo ₂	termo ₃
doc_1	0.1	0.6	1.0
doc_2	0.9	0.4	0.0

Tabela: Exemplo matriz tf-idf

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Coeficiente de similaridade de cosseno.
- Validação do agrupamento com o método silhueta fuzzy.

Introdução

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Validação do agrupamento com o método silhueta fuzzy.

Imagem: Grupos crisp

Imagem: Grupos fuzzy

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Coeficiente de similaridade de cosseno.
- Validação do agrupamento com o método silhueta fuzzy.

Imagem: Grupos crisp

Imagem: Grupos fuzzy

- Organizar objetos similares em um mesmo grupo.
- Grupos crisp x fuzzy
- Coeficiente de similaridade de cosseno.
- Validação do agrupamento com o método silhueta fuzzy.

Imagem: Grupos crisp

Imagem: Grupos fuzzy

Introdução

Agrupamento (FCM) (Bezdek et al., 1984)

Trabalhos relacionados

- Graus de pertinência.
- Restrição probabilística.
- Problema com ruídos.

	$grupo_1$	grupo ₂	total
doc_1	0,5	0,5	1,0
doc_2	0,5	0,5	1,0

Tabela: Pertinências FCM

Imagem: Problema dos ruídos

Introdução

Agrupamento (PCM) (Krishnapuram e Keller, 1993)

- Graus de tipicidade.
- Remoção da restrição probabilística.
- Problema dos grupos coincidentes.

	grupo ₁	grupo ₂	total
doc_1	0,7	0,7	1,4
doc_2	0,2	0,2	0,4

Tabela: Tipicidades PCM

Imagem: Grupos coincidentes

Agrupamento (PFCM) (Pal et al., 2005)

- Pertinências e tipicidades.
- Robustez.

Introdução

 Parâmetros de ponderação a e *b*.

	grupo ₁	grupo ₂	total
doc_1	0,5	0,5	1,0
doc ₂	0,5	0,5	1,0

Tabela: Pertinências PFCM

	$grupo_1$	grupo ₂	total
doc_1	0,7	0,7	1,4
doc ₂	0,2	0,2	0,4

Tabela: Tipicidades PFCM

Imagem: Agrupamento de pontos.

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last (SoftO-FDCL) (Nogueira, 2013).

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last (SoftO-FDCL) (Nogueira, 2013).

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last (SoftO-FDCL) (Nogueira, 2013).

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)
- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last

Introdução

- Atribuir significados aos grupos.
- Manual ou Automatizada.
- Abordagens de conhecimento interno e externo.
- Durante o agrupamento (Description Comes First DCF)

Trabalhos relacionados

- Após o agrupamento (Description Comes Last DCL).
- Método Soft Organization Fuzzy Description Comes Last (SoftO-FDCL) (Nogueira, 2013).

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
 - Resultados
- Conclusão

Introdução

Trabalhos relacionados

- Marcacini e Rezende (2010) propões uma abordagem incremental hierárquica para construção de tópicos.
- Havens et al. (2012) e Kumar et al. (2015) explora
- Deng et al. (2010) propõe uma maneira de estabilizar a
- Karami et al. (2015) utiliza o agrupamento ainda na fase de

- Marcacini e Rezende (2010) propões uma abordagem incremental hierárquica para construção de tópicos.
- Havens et al. (2012) e Kumar et al. (2015) explora otimizações para Big Data.
- Deng et al. (2010) propõe uma maneira de estabilizar a inicialização do agrupamento.
- Karami et al. (2015) utiliza o agrupamento ainda na fase de pré-processamento.

- Marcacini e Rezende (2010) propões uma abordagem incremental hierárquica para construção de tópicos.
- Havens et al. (2012) e Kumar et al. (2015) explora otimizações para Big Data.
- Deng et al. (2010) propõe uma maneira de estabilizar a inicialização do agrupamento.
- Karami et al. (2015) utiliza o agrupamento ainda na fase de

- Marcacini e Rezende (2010) propões uma abordagem incremental hierárquica para construção de tópicos.
- Havens et al. (2012) e Kumar et al. (2015) explora otimizações para Big Data.
- Deng et al. (2010) propõe uma maneira de estabilizar a inicialização do agrupamento.
- Karami et al. (2015) utiliza o agrupamento ainda na fase de pré-processamento.

- Jiang et al. (2013) combina os algoritmos genéticos no agrupamento para evitar os mínimos locais.
- Murali e Damodaram (2015) propõe uma medida de
- Nogueira (2013) traz uma abordagem de extração de

Abordagem proposta

Trabalhos relacionados

- Jiang et al. (2013) combina os algoritmos genéticos no agrupamento para evitar os mínimos locais.
- Murali e Damodaram (2015) propõe uma medida de similaridade com informações semânticas.
- Nogueira (2013) traz uma abordagem de extração de

- Jiang et al. (2013) combina os algoritmos genéticos no agrupamento para evitar os mínimos locais.
- Murali e Damodaram (2015) propõe uma medida de similaridade com informações semânticas.
- Nogueira (2013) traz uma abordagem de extração de descritores independente do agrupamento.

- Introdução
- Pundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
 - Resultados
- Conclusão

Coleções textuais

Introdução

Coleção	docs	termos	classes	% zeros	n-gramas
Opinosis	51	842	3	95,73%	1-grama
20newsgroups	2000	11028	4	99,11%	1-grama
Hitech	600	6925	6	97,93%	1-grama
NSF	1600	2806	16	99,76%	1-grama
WAP	1560	8070	20	98,51%	1-grama
Reuters-21578	1052	3925	43	98,55%	1-grama

Tabela: Características das coleções textuais utilizadas nesta pesquisa

Introdução

Imagem: Estratégia de organização flexível de documentos adotada ao se misturar abordagens fuzzy e possibilísticas no agrupamento

Introdução

Coleção	# classes	FCM	PCM	PFCM
Opinosis	3	3	3	3
20Newsgroup	4	2	2	2
Hitech	6	6	5	5
NSF	16	11	2	16
WAP	20	14	5	16
Reuters-21578	43	22	11	36

Tabela: Quantidade ótima de grupos determinada através do método da silhueta fuzzy para cada algoritmo de agrupamento

Introdução

Coleção	docs	termos	FCM	PCM	PFCM
Opinosis	51	842		✓	
20newsgroups	2000	11028			√
Hitech	600	6925	✓		
NSF	1600	2806	✓		
WAP	1560	8070			√
Reuters-21578	1052	3925	✓		

Tabela: Sumário dos resultados da classificação dos descritores

Introdução

Método	crisp ₁	crisp ₂	crisp ₃
FCM	drive, display,	import, model,	breakfast, con-
	control, car,	problem, unit,	cierge, coffee,
	work	design	food, inn
PCM	read, problem,	turn, size, qua-	extreme, drive,
	car, work,	lity, review, fea-	point, reason,
	found	ture	run
PFCM μ	drive, control,	read, complete,	breakfast, plea-
	version, car,	device, display,	sant, concierge,
	work	size	coffee, clean
PFCM λ	club, immacu-	housekeep,	bottle, adult,
	late, towel, pil-	tourist, tea,	food, reserve,
	low, fridge	smoke, london	dinner

Tabela: Descritores extraídos com os métodos de agrupamento FCM, PCM e PFCM da coleção Opinosis .

Refinamento com PFCM - Discussão

- FCM e PFCM capturaram melhor a estrutura das coleções.
- Capacidade de adaptação do método SoftO-FDCL.
- Descritores fuzzy mais significativos.
- Descritores possibilísticos pouco significativos.
- Dimensionalidade aparenta influenciar os resultados.

Abordagem proposta

Método SoftO-FDCL (Nogueira, 2013)

	$\mu(d_i, g_j) \geq \delta, \forall d_i$	$\mu(d_i,g_j)<\delta, \forall d_i$
$t_k \in d_i, \forall d_i$	ganhos	ruídos
$t_k \not\in d_i, \forall d_i$	perdas	rejeitos

Tabela: Matriz de contingência do método SoftO-FDCL

$$precis\~ao(t_k, g_j) = \frac{ganhos}{ganhos + ruídos}$$
 (1)

$$recuperação(t_k, g_j) = \frac{ganhos}{ganhos + perdas}$$
 (2)

$$f1(t_k, g_j) = \frac{2 * precisão(t_k, g_j) * recuperação(t_k, g_j)}{precisão(t_k, g_j) + recuperação(t_k, g_j)}$$
(3)

grupo₁ grupo₂ 0.85 0.75 termo₁ 0.95 0.35 termo₂ 0.55 0.25 termo₃ 0.80 0.65 termo₄ 0.50 0.50 termo₅ 0.30 0.24 termo₆

Tabela: Pontuação dos termos obtidas com a medida f1

0.10

termo₇

0.83

grupo₁ grupo₂ 0.75 termo₁ 0.85 0.95 0.35 termo₂ 0.25 0.55 termo₃ 0.80 0.65 termo₄

Tabela: Descritores de maior pontuação em cada grupo

0.50

0.30

0.10

termo₅

termo₆

termo₇

0.50

0.24

0.83

O limiar é adequado?

Introdução

$$\delta = \frac{1}{\text{total de grupos}} = \frac{1}{2} = 0,5 \tag{4}$$

	$grupo_1$	grupo ₂	total
doc_1	0,4	0,6	1,0
doc_2	0,8	0,2	1,0

Trabalhos relacionados

Tabela: Pertinências PFCM

	$grupo_1$	grupo ₂	total
doc_1	0,6	0,9	1,5
doc_2	0,4	0,1	0,5

Tabela: Tipicidades PFCM

Introdução

Convertendo tipicidades em pertinências

Tipicidades \rightarrow Pertinências

$$\lambda'(d_i, g_j) = \frac{\lambda(d_i, g_j)}{\sum_{k=1}^c \lambda(d_i, g_k)}$$
 (5)

	$grupo_1$	grupo ₂	total
doc_1	$\frac{0.6}{1.5} = 0.4$	$\frac{0.9}{1.5} = 0.6$	1,0
doc ₂	$\frac{0.4}{0.5} = 0.8$	$\frac{0,1}{0,5} = 0,2$	1,0

Tabela: Tipicidades → Pertinências

Abordagem proposta

Método PDCL

	$\lambda'(d_i, g_j) \geq \delta, \forall d_i$	$\lambda'(d_i,g_j)<\delta, \forall d_i$
$t_k \in d_i, \forall d_i$	ganhos	ruídos
$t_k \not\in d_i, \forall d_i$	perdas	rejeitos

Tabela: Matriz de contingência do método PDCL

Ponderando os ganhos, ruídos, perdas e rejeitos

$$ganhos(t_k, g_j) = \sum_{d_i \in D'} \lambda(d_i, g_j)$$
 (6)

42/56

$$D' = \{d_i | SE \lambda'(d_i, g_j) \ge \delta E t_k \in d_i PARA \forall d_i\}$$
 (7)

Abordagem proposta

$$\mu'(d_i, g_j) = \frac{a\mu(d_i, g_j) + b\lambda'(d_i, g_j)}{a + b} \tag{8}$$

Método Mixed-PFDCL

Introdução

Pertinência híbrida

$$\mu'(d_i, g_j) = \frac{a\mu(d_i, g_j) + b\lambda'(d_i, g_j)}{a + b} \tag{8}$$

Método Mixed-PFDCL

Introdução

Pertinência híbrida

$$\mu'(d_i, g_j) = \frac{a\mu(d_i, g_j) + b\lambda'(d_i, g_j)}{a + b} \tag{8}$$

	$\mu'(d_i, g_j) \geq \delta, \forall d_i$	$\mu'(d_i,g_j)<\delta, \forall d_i$
$t_k \in d_i, \forall d_i$	ganhos	ruídos
$t_k \not\in d_i, \forall d_i$	perdas	rejeitos

Tabela: Matriz de contingência do método Mixed-PFDCL

Resultados

	PCM		PFCM	
Coleção	SoftO-FDCL	PDCL	SoftO-FDCL	Mixed
Opinosis		√		√
20newsgroups	✓	✓		√
Hitech		✓		√
NSF	✓	✓		√
WAP		√		√
Reuters-21578		✓		√

Tabela: Sumário dos resultados da classificação dos descritores extraídos com os métodos SoftO-FDCL, PDCL e Mixed-PFDCL

Abordagem proposta

Resultados

	$grupo_1$		grupo₂	
Método	termo	pontuação	termo	pontuação
SoftO-FDCL	caf	0,923077	caf	0,923077
	floor	0.888889	floor	0.888889
	food	0.880000	food	0.880000
	coffe	0.857143	coffe	0.857143
	concierge	0.846154	concierge	0.846154
PDCL	bathro	0.894716	make	0.800980
	food	0.888785	time	0.789846
	concierge	0.860127	nice	0.779338
	supermarket	0.856632	feature	0.778138
	chain	0.856632	easy	0.768564

Tabela: 5 termos de maior pontuação obtidos extraídos com os métodos Soft-FDCL e PDCL da coleção Opinosis com o algoritmo PCM

Resultados - Discussão

- Demonstram a adequação da interpretação proposta.
- O método SoftO-FDCL pode gerar pontuações similares a partir das tipicidades.
- Os métodos propostos resolvem o problema de pontuações similares.
- Os métodos PDCL e Mixed-PFDCL superaram o método SoftO-FDCL.
- O método Mixed-PFDCL se mostrou adequado para a organização híbrida de documentos.

Conteúdo

- Introdução
- 2 Fundamentação Teórica
 - Pré-processamento
 - Agrupamento (FCM,PCM,PFCM)
 - Extração de descritores
- Trabalhos relacionados
- Abordagem proposta
 - Refinamento com PFCM
 - Método PDCL
 - Método Mixed-PFDCL
 - Resultados
- Conclusão

- A organização flexível de documentos envolve muitos campos de estudo.
- Detalhamento dos métodos de agrupamento FCM, PCM, PFCM e HFCM.
- É possível aprimorar todas as etapas do processo.
- Impactos do PFCM na organização flexível de documentos.

- A organização flexível de documentos envolve muitos campos de estudo.
- Detalhamento dos métodos de agrupamento FCM, PCM, PFCM e HFCM.
- É possível aprimorar todas as etapas do processo.
- Impactos do PFCM na organização flexível de documentos.

- A organização flexível de documentos envolve muitos campos de estudo.
- Detalhamento dos métodos de agrupamento FCM, PCM, PFCM e HFCM.
- É possível aprimorar todas as etapas do processo.
- Impactos do PFCM na organização flexível de documentos.

- A organização flexível de documentos envolve muitos campos de estudo.
- Detalhamento dos métodos de agrupamento FCM, PCM, PFCM e HFCM.
- É possível aprimorar todas as etapas do processo.
- Impactos do PFCM na organização flexível de documentos.

- Propriedades do limiar δ .
- A estratégia híbrida se mostrou adequada, produzindo bons descritores.
- Os métodos propostos obtiveram bons resultados.
- Publicação de artigo científico na conferência FUZZ-IEEE.

- Propriedades do limiar δ .
- A estratégia híbrida se mostrou adequada, produzindo bons descritores.
- Os métodos propostos obtiveram bons resultados.
- Publicação de artigo científico na conferência FUZZ-IEEE.

Introdução

- Propriedades do limiar δ .
- A estratégia híbrida se mostrou adequada, produzindo bons descritores.
- Os métodos propostos obtiveram bons resultados.
- Publicação de artigo científico na conferência FUZZ-IEEE.

- Propriedades do limiar δ .
- A estratégia híbrida se mostrou adequada, produzindo bons descritores.
- Os métodos propostos obtiveram bons resultados.
- Publicação de artigo científico na conferência FUZZ-IEEE.

Referências I

Introdução

AGGARWAL, C. C.; ZHAI, C. An introduction to text mining. In: Mining Text Data. Springer Science + Business Media, 2012. p. 1–10. Disponível em: http://dx.doi.org/10.1007/978-1-4614-3223-4 1>. BEZDEK, J. C.; EHRLICH, R.; FULL, W. Fcm: The fuzzy c-means clustering algorithm. Computers & Geosciences, v. 10, n. 2, p. 191 – 203, 1984. ISSN 0098-3004. Disponível em: http://www.sciencedirect.com/science/article/pii/ 0098300484900207>. DENG, J. et al. An improved fuzzy clustering method for text mining. In: The 2nd International Conference on Networks

Security, Wireless Communications and Trusted Computing

(NSWCTC), 2010. [S.I.: s.n.], 2010. v. 1, p. 65-69.

Referências II

Introdução

HAVENS, T. et al. Fuzzy c-means algorithms for very large data. *IEEE Transactions on Fuzzy Systems*, v. 20, n. 6, p. 1130–1146, 2012.

JIANG, H. et al. An improved method of fuzzy clustering algorithm and its application in text clustering. *JOURNAL OF INFORMATION & COMPUTATIONAL SCIENCE*, JOURNAL OF INFORMATION & COMPUTATIONAL SCIENCE, v. 10, n. 2, p. 519, 2013. Disponível em: http://manu35.magtech.com.cn/Jwk ics/EN/abstract/article 1507.shtml>.

KARAMI, A. et al. FLATM: A fuzzy logic approach topic model for medical documents. In: 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC). Institute of Electrical &

Referências III

Introdução

Electronics Engineers (IEEE), 2015. Disponível em: .

ROBAYASHI, M.; AONO, M. Vector space models for search and cluster mining. In: Survey of Text Mining II. Springer Science + Business Media, 2008. p. 109–127. Disponível em: http://dx.doi.org/10.1007/978-1-84800-046-9_6.

KRISHNAPURAM, R.; KELLER, J. M. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, v. 1, n. 2, p. 98–110, 1993. ISSN 1063-6706.

KUMAR, D. et al. A hybrid approach to clustering in big data. IEEE Transactions on Cybernetics, Institute of Electrical & Electronics Engineers (IEEE), p. 1–1, 2015. Disponível em: http://dx.doi.org/10.1109/TCYB.2015.2477416.

Introdução

MARCACINI, R. M.; REZENDE, S. O. Incremental construction of topic hierarchies using hierarchical term clustering. In: *Proceedings of the 22nd International Conference on Software Engineering & Knowledge Engineering (SEKE'2010), Redwood City, San Francisco Bay, CA, USA, July 1 - July 3, 2010.* [S.I.]: Knowledge Systems Institute Graduate School, 2010. p. 553. ISBN 1-891706-26-8.

MUGGLETON, S. H. 2020 computing: Exceeding human limits. *Nature*, Nature Publishing Group, v. 440, n. 7083, p. 409–410, mar 2006. Disponível em: http://dx.doi.org/10.1038/440409a.

Referências V

Introdução

MURALI, D.; DAMODARAM, A. Semantic document retrieval system using fuzzy clustering and reformulated query. In: 2015 International Conference on Advances in Computer Engineering and Applications. Institute of Electrical & Electronics Engineers (IEEE), 2015. Disponível em: http://dx.doi.org/10.1109/ICACEA.2015.7164788>. NOGUEIRA, T. M. Organização Flexível de Documentos. Tese (Doutorado) — ICMC-USP, 2013.

PAL, N. R. et al. A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, IEEE Press, v. 13, n. 4, p. 517–530, 2005. ISSN 1063-6706.

Abordagem proposta

Referências VI

STEINBACH, M.; ERTöZ, L.; KUMAR, V. The challenges of clustering high-dimensional data. In: In New Vistas in Statistical Physics: Applications in Econophysics, Bioinformatics, and

Pattern Recognition. [S.I.]: Springer-Verlag, 2003. ISBN

Uma abordagem híbrida para organização flexível de documentos

978-3-642-07739-5.