FMI, Info, Anul I

Logică matematică și computațională

Seminar 5

(S5.1) Confirmați sau infirmați:

- (i) pentru orice φ , $\psi \in Form$, $\vDash \varphi \land \psi$ dacă şi numai dacă $\vDash \varphi$ şi $\vDash \psi$;
- (ii) pentru orice $\varphi, \psi \in Form, \vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.

Demonstrație:

(i) Este adevărat. Avem:

(ii) Nu este adevărat! Dacă luăm $e_1: V \to \{0,1\}$, astfel încât, pentru orice $x \in V$, $e_1(x) = 1$, şi $e_2: V \to \{0,1\}$, astfel încât, pentru orice $x \in V$, $e_2(x) = 0$, avem că $e_1 \not\vdash \neg v_0$ și $e_2 \not\vdash v_0$, deci v_0 și $\neg v_0$ nu sunt tautologii, pe când $v_0 \lor \neg v_0$ este tautologie.

(S5.2) Să se găsească toate modelele fiecăreia dintre mulțimile de formule:

(i)
$$\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$$

(ii)
$$\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$$

Demonstrație:

1

- (i) Fie $e: V \to \{0, 1\}$ şi $n \in \mathbb{N}$. Atunci $e \models v_n \to v_{n+1}$ dacă şi numai dacă $e^+(v_n \to v_{n+1}) = 1$ dacă şi numai dacă $e^+(v_n) \to e^+(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \to e(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \le e(v_{n+1})$. Prin urmare,
 - $e \models \Gamma$ dacă şi numai dacă pentru orice $n \in \mathbb{N}, \ e(v_n) \le e(v_{n+1})$ dacă şi numai dacă $e(v_0) \le e(v_1) \le \dots \le e(v_n) \le e(v_{n+1}) \le \dots$ dacă şi numai dacă (pentru orice $v \in V, \ e(v) = 0$) sau (există $k \in \mathbb{N}$ a.î. pentru orice $i < k, \ e(v_i) = 0$ şi, pentru orice $i \ge k, \ e(v_i) = 1$).

Definim $e^{\infty}: V \to \{0,1\}$ astfel încât, pentru orice $v \in V$, $e^{\infty}(v) = 0$ şi, pentru orice $k \in \mathbb{N}$, $e_k: V \to \{0,1\}$, astfel încât, pentru orice $n \in \mathbb{N}$,

$$e_k(v_n) = \begin{cases} 0 & \text{dacă } n < k \\ 1 & \text{dacă } n \ge k. \end{cases}$$

Atunci

$$Mod(\Gamma) = \{e_k \mid k \in \mathbb{N}\} \cup \{e^{\infty}\}.$$

- (ii) Fie $e: V \to \{0,1\}$. Atunci
 - $e \models \Gamma$ dacă și numai dacă $e \models v_0$ și, pentru orice $0 \le n \le 7, e \models v_n \to v_{n+1}$ dacă și numai dacă $e(v_0) = 1$ și $e(v_0) \le e(v_1) \le \ldots \le e(v_7) \le e(v_8)$ dacă și numai dacă pentru orice $n \in \{0, 1, \ldots, 8\}, e(v_n) = 1$.

Aşadar,

$$Mod(\Gamma) = \{e : V \to \{0,1\} \mid e(v_n) = 1 \text{ pentru orice } 0 \le n \le 8\}.$$

(S5.3) Fie $\Gamma \subseteq Form$ şi $\varphi, \psi \in Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Demonstrație:

(i) Fie e un model al lui Γ . Vrem să arătăm că e este model al lui ψ . Cum $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$, avem $e \vDash \varphi$ şi $e \vDash \varphi \to \psi$. Atunci $e^+(\varphi) = 1$ şi $e^+(\varphi \to \psi) = 1$. Deoarece $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = 1 \to e^+(\psi) = e^+(\psi)$, rezultă că $e^+(\psi) = 1$, adică $e \vDash \psi$.

- (ii) "⇒" Fie e un model al lui Γ . Vrem să arătăm că e este model al lui $\varphi \to \psi$. Avem două cazuri:
 - (a) $e^+(\varphi) = 0$. Atunci $e^+(\varphi \to \psi) = 0 \to e^+(\psi) = 1$, deci $e \vDash \varphi \to \psi$.
 - (b) $e^+(\varphi) = 1$, deci $e \models \varphi$. Atunci $e \models \Gamma \cup \{\varphi\}$, şi prin urmare, $e \models \psi$, adică $e^+(\psi) = 1$. Rezultă că $e^+(\varphi \to \psi) = 1 \to 1 = 1$, deci $e \models \varphi \to \psi$.

"\(\infty\)" Fie e un model al lui $\Gamma \cup \{\varphi\}$. Atunci $e^+(\varphi) = 1$ şi $e \models \Gamma$, deci, din ipoteză, $e^+(\varphi \to \psi) = 1$. Obținem atunci, ca la (i), că $e^+(\psi) = 1$, adică $e \models \psi$.

(iii) $\Gamma \vDash \varphi \land \psi \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi \land \psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi) = e^+(\psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e \vDash \varphi \text{ si } e \vDash \psi \iff \Gamma \vDash \varphi \text{ si } \Gamma \vDash \psi.$

Notație. Pentru orice mulțime Γ de formule și orice formulă φ , notăm cu $\Gamma \vDash_f \varphi$ (și citim din Γ se deduce semantic finit φ) faptul că există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

(S5.4) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_f \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.

Demonstrație:

Avem întâi că $\Gamma \vDash_{f} \varphi \iff \text{există } \Delta \subseteq \Gamma \text{ finită cu } \Delta \vDash \varphi \iff (\text{din Propoziția 2.30.(i)})$ există $\Delta \subseteq \Gamma \text{ finită cu } \Delta \cup \{\neg \varphi\} \text{ nesatisfiabilă (*).}$

Apoi, cum o mulţime finit satisfiabilă înseamnă o mulţime pentru care orice submulţime finită a sa e satisfiabilă, avem că $\Gamma \cup \{\neg \varphi\}$ nu e finit satisfiabilă \iff există $\Delta' \subseteq \Gamma \cup \{\neg \varphi\}$ finită astfel încât Δ' e nesatisfiabilă (**).

Noi vrem să arătăm că (*) este echivalent cu (**).

Pentru "(*) implică (**)", luăm $\Delta' := \Delta \cup \{\neg \varphi\}$, ce este, clar, o submulțime finită a lui $\Gamma \cup \{\neg \varphi\}$.

Pentru "(**) implică (*)", luăm $\Delta := \Delta' \cap \Gamma$. Clar, Δ este o submulțime finită a lui Γ . Rămâne de arătat că $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă. Cum $\Delta' \subseteq \Gamma \cup \{\neg \varphi\}$, avem:

$$\Delta' = \Delta' \cap (\Gamma \cup \{\neg \varphi\}) = (\Delta' \cap \Gamma) \cup (\Delta' \cap \{\neg \varphi\}) = \Delta \cup (\Delta' \cap \{\neg \varphi\}) \subseteq \Delta \cup \{\neg \varphi\}.$$

Cum Δ' e nesatisfiabilă, rezultă că și $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă.

(S5.5) Demonstrați că următoarele afirmații sunt echivalente:

- (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
- (V2) Pentru orice $\Gamma \subseteq Form, \Gamma$ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form$, $\varphi \in Form$, $\Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{\mathrm{f}} \varphi$.

Demonstraţie:

Echivalența între (V1) și (V2) este evidentă.

```
Demonstrăm că (V2) \Rightarrow (V3):
\Gamma \vDash \varphi \iff \Gamma \cup \{\neg \varphi\} \text{ este nesatisfiabilă (conform Propoziției 2.30.(i))} \\ \iff \Gamma \cup \{\neg \varphi\} \text{ nu este finit satisfiabilă (conform (V2) pentru } \Gamma \cup \{\neg \varphi\}) \\ \iff \Gamma \vDash_f \varphi \text{ (conform (S5.4))}.
\text{Demonstrăm că (V3)} \Rightarrow (V2):
\Gamma \text{ este nesatisfiabilă} \iff \Gamma \vDash \bot \text{ (conform Propoziției 2.29)} \\ \iff \Gamma \vDash_f \bot \text{ (conform (V3) pentru } \Gamma \text{ și } \bot) \\ \iff \text{ există o submulţime finită } \Delta \text{ a lui } \Gamma \text{ a.î. } \Delta \vDash \bot \\ \iff \text{ există o submulţime finită } \Delta \text{ a lui } \Gamma \text{ a.î.} \\ \Delta \text{ este nesatisfiabilă (conform Propoziției 2.29)} \\ \iff \Gamma \text{ nu este finit satisfiabilă.}
```

4