Relatório 11 de TCC2/IC

Ly Sandro Amorim de Campos Salles Departamento de Física Universidade Federal do Paraná

23 de Maio de 2019

Desde o último encontro foram realizadas as seguintes atividades:

Considerando que computadores geram números aleatórios a partir de uma *seed*, foi verificada a presença de caos nas simulações com vizinhança de Moore utilizando o seguinte método:

- 1. Geração da matriz inicial com a seed 156501936 (gerada em uma calculadora Casio);
- 2. Inversão de estado e limiar de n células em posições aleatórias geradas com *seed* baseada no horário mundial;
- 3. Execução da simulação para 10000 cyclos utilizando L = 100, limiar igual a q e seed igual a 2376222 (gerada em uma Casio);

Esse procedimento foi feito para $n \in \{0, 1, 10, 100, 1000, 10000\}$ e $q \in \{0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

A verificação da existência de caos foi feita considerando o coeficiente de Lyapunov

$$\lambda = \frac{1}{n} \ln \left| \frac{f^{n}(x+\varepsilon) - f^{n}(x_{0})}{\varepsilon} \right| = \frac{1}{n} \ln(\Delta)$$
 (1)

Porém, considerando que $\ln(0) = -\infty$ e que computadores não lidam muito bem com infinito, foram feitas as seguintes observações com o intuito de desenvolver um coeficiente equivalente:

a)
$$\lambda < 0 \Leftrightarrow e^{\lambda} < 1 \Leftrightarrow \Delta^{\frac{1}{n}} < 1 \Leftrightarrow \Delta^{\frac{1}{10}} < 1 \Rightarrow$$
 sistema estável

b)
$$\lambda = 0 \Leftrightarrow e^{\lambda} = 1 \Leftrightarrow \Delta^{\frac{1}{n}} = 1 \Leftrightarrow \Delta^{\frac{1}{10}} = 1$$

c)
$$\lambda>0\Leftrightarrow e^{\lambda}>1\Leftrightarrow \Delta^{\frac{1}{n}}>1\Leftrightarrow \Delta^{\frac{1}{10}}>1\Rightarrow$$
 sistema caótico

(O número 10 foi tomado arbitrariamente com a finalidade de diminuir números grandes). Portanto, é suficiente mostrar que $\Delta^{\frac{1}{10}} > 1$.

Para os próximos dias, estas serão as tarefas realizadas:

- 1. Verificação de comportamento caótico para o autômato celular considerando a vizinhança Von Neumann;
- 2. Demonstração matemática do Algoritmo de Contagem de Aglomerados utilizado;
- 3. Desenvolvimento da explicação que considera q como liquidez;
- 4. Desenvolvimento da explicação que considera q como volatilidade;

q			ε		
_	0.01%	0.1%	1%	10%	100%
0.1	1.8794	1.8456	1.7018	1.4393	1.8960
1.0	1.8958	1.7182	1.5883	1.4302	1.2938
2.0	2.0125	2.3890	1.6698	1.6073	1.5662
3.0	1.2384	1.7053	1.9184	1.4607	1.4430
4.0	1.3701	2.4282	1.9308	1.7997	1.3555
5.0	1.8896	1.6471	1.5051	2.2331	1.2264
6.0	1.5401	1.3400	1.4389	1.0733	1.1573
7.0	1.5848	1.4721	1.3281	1.1638	1.1869
8.0	1.3449	1.3471	1.2113	1.2330	1.0450
9.0	1.4383	1.4295	1.2436	1.0116	1.0921
10.0	1.3170	1.7878	1.2356	1.2074	1.2092

Tabela 1: Valores médios para $\Delta^{\frac{1}{10}}$ obtidos na simulação com Vizinhança de Moore. Apesar de todos serem positivos, indicando a presença de cáos, alguns são próximos de 1, indicando sistemas menos caóticos.

- 5. Explicação do porquê de o limiar intrínseco a cada célula ser considerado como um determinador do momento certo para vender ou comprar, no caso de q ser considerado como liquidez;
- 6. Leitura de Referênciais Teóricos apropriados para os trabalhos desenvolvidos;
- 7. Escrita do TCC.