EX.No: 9	Application of K-Means Clustering for Customer Segmentation using
DATE:	Scikit-learn in Python

AIM:

To implement and analyze K-Means clustering algorithm for segmenting customers based on their attributes (such as income and spending score) using **Scikit-learn** in Python.

K-MEANS CLUSTERING:

- ➤ Clustering is an unsupervised learning method used to group similar data points together without prior knowledge of labels.
- **K-Means** is one of the most popular clustering algorithms that:
 - Selects *K* cluster centers (centroids).
 - Assigns each data point to the nearest centroid.
 - Updates centroids based on cluster membership.
 - Repeats until centroids stabilize.
- > It is widely used in **customer segmentation**, where businesses divide customers into groups for targeted marketing, recommendations, and personalized services.

MATHEMATICAL OBJECTIVE FUNCTION:

Minimize the within-cluster sum of squares (WCSS):

Where K=number of clusters, = data point, = Centroid of cluster

ALGORITHM:

- > Step 1: Choose the number of clusters K.
- > Step 2: Initialize cluster centroids randomly
- > Step 3: Assign each data point to the nearest centroid.
- > Step 4: Update centroids by calculating the mean of points in each cluster.
- > Step 5: Repeat steps 3–4 until centroids do not change significantly(convergence).

SOFTWARE & LIBRARIES REQUIRED:

- ✓ Python 3.x
- ✓ Libraries: pandas, numpy, scikit-learn, matplotlib, seaborn

PROGRAM:1

Ouestion

A retail store wants to segment its customers based on **Annual Income** and **Spending Score** using the **K-Means clustering algorithm**.

1. Manually create a dataset in Python (without using any CSV file). The dataset should contain the following 10 rows of data:

CustomerID	AnnualIncome	SpendingScore
1	15	39

2	16	81
3	17	6
4	18	77
5	19	40
6	20	76
7	21	6
8	22	94
9	23	3
10	24	72

- 2. Store the data in a pandas DataFrame.
- 3. Apply the **Elbow Method** to determine the optimal number of clusters.
- 4. Implement K-Means clustering with the chosen number of clusters.
- 5. Visualize the clusters using a **scatter plot**, labeling each cluster with different colors.

```
PYTHON CODING
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Step 1: Manually create dataset
data = {
  'CustomerID': [1,2,3,4,5,6,7,8,9,10],
  'Annual Income (k$)': [15, 16, 17, 18, 45, 46, 47, 80, 82, 85],
  'Spending Score (1-100)': [39, 81, 6, 77, 40, 42, 87, 20, 79, 17]
}
df = pd.DataFrame(data)
print(df)
# Step 2: Select features
```

```
X = df[['Annual Income (k\$)', 'Spending Score (1-100)']].values
# Step 3: Standardize features
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Step 4: Elbow method
inertia = []
for k in range(1, 11):
  model = KMeans(n clusters=k, random state=42)
  model.fit(X scaled)
  inertia.append(model.inertia )
plt.plot(range(1, 11), inertia, marker='o')
plt.xlabel("Number of Clusters (K)")
plt.ylabel("WCSS (Inertia)")
plt.title("Elbow Method (Synthetic Data)")
plt.show()
# Step 5: Apply KMeans (e.g., k=3)
kmeans = KMeans(n clusters=3, random state=42)
clusters = kmeans.fit predict(X scaled)
df['Cluster'] = clusters
print(df)
# Step 6: Visualize clusters
plt.figure(figsize=(8,6))
sns.scatterplot(x=X scaled[:,0], y=X scaled[:,1], hue=clusters, palette='Set2', s=100)
plt.scatter(kmeans.cluster centers [:,0], kmeans.cluster centers [:,1],
       s=300, c='red', marker='X', label='Centroids')
plt.xlabel("Annual Income (scaled)")
plt.ylabel("Spending Score (scaled)")
plt.title("Customer Segmentation (Synthetic Data)")
plt.legend()
plt.show()
```

OUT PUT

CustomerID Annual Income (ks	Spending Score (1-100)
------------------------------	------------------------

0	1	15	39	
1	2	16	81	
2	3	17	6	
3	4	18	77	
4	5	45	40	
5	6	46	42	
6	7	47	87	
7	8	80	20	
8	9	82	79	
9	10	85	17	

Elbow Method (Synthetic Data) 20.0 17.5 15.0 WCSS (Inertia) 12.5 10.0 7.5 5.0 2.5 0.0 2 8 6 10 Number of Clusters (K)

CustomerID Annual Income (k\$) Spending Score (1-100) Cluster

0	1	15	39	2
1	2	16	81	0
2	3	17	6	2
3	4	18	77	0
4	5	45	40	2
5	6	46	42	2
6	7	47	87	0
7	8	80	20	1
8	9	82	79	1
9	10	85	17	1

PROGRAM:2

Note:

- 1. Place the **customers.csv** file in the same folder as your Python code.
- 2. Run the code in Spyder / Jupyter Notebook / VS Code.
- 3. It will show:
 - Dataset preview
 - Elbow curve (to choose clusters)
 - Segmentation scatter plot

QUESTION

A retail store wants to segment its customers based on **Annual Income** and **Spending Score** using the **K-Means clustering algorithm**.

1. Create a CSV file named customers.csv with the following data:

CustomerID	AnnualIncome	SpendingScore
1	15	39
2	16	81
3	17	6
4	18	77
5	19	40

6	20	76
7	21	6
8	22	94
9	23	3
10	24	72

- 2. Load the dataset from the CSV file into Python using pandas.
- 3. Apply the **Elbow Method** to determine the optimal number of clusters.
- 4. Implement **K-Means clustering** with the chosen number of clusters.
- 5. Visualize the clusters using a **scatter plot**, labeling each cluster with different colors.

PYTHON CODING

```
# K-Means Customer Segmentation using CSV file
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
# Step 1: Load the CSV file
df = pd.read csv("customers.csv")
print("Dataset Preview:")
print(df.head())
# Step 2: Select features (Age, Annual Income, Spending Score)
X = df[['Age', 'AnnualIncome', 'SpendingScore']]
# Step 3: Find the optimal number of clusters using Elbow Method
wcss = []
for i in range(1, 11):
  kmeans = KMeans(n clusters=i, init='k-means++', random state=42)
  kmeans.fit(X)
  wcss.append(kmeans.inertia)
plt.plot(range(1, 11), wcss, marker='o')
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
```

OUT PUT

Dataset Preview:

CustomerID Age AnnualIncome SpendingScore

0	1 19	15000	39
1	2 21	18000	81
2	3 20	17000	6
3	4 23	22000	77
4	5 31	35000	40

Clustered Data:

CustomerID Age AnnualIncome SpendingScore Cluster

0	1	19	15000	39	0
1	2	21	18000	81	0
2	3	20	17000	6	0
3	4	23	22000	77	0
4	5	31	35000	40	2

Result:

The experiment successfully applied **K-Means clustering** to segment customers into groups based on income and spending behavior. Visualization confirmed the effectiveness of clustering, and the elbow method helped determine the optimal number of clusters.

EXERCISE:

1. A shopping mall collects customer information containing **Age** and **Annual Income**. The management wants to identify different customer groups for targeted marketing campaigns.

The following dataset contains information of 10 customers:

CustomerID Age AnnualIncome

1	19	15000
2	21	18000
3	20	17000
4	23	22000
5	31	35000
6	35	40000
7	40	45000
8	52	60000
9	58	65000
10	63	70000

Question:

- 1. Load the above dataset into a pandas DataFrame (you can enter manually or save as CSV and load).
- 2. Apply the **Elbow Method** to determine the optimal number of clusters.
- 3. Perform **K-Means clustering** to group customers.
- 4. Visualize the clusters in a scatter plot (Age vs Annual Income).
- 5. Interpret the results (e.g., young-low income, middle-aged-high income, etc.).
- 2. A retail chain wants to classify customers into lifestyle groups using three features: **Age**, **Annual Income**, and **Spending Score**.

The following dataset contains information of 10 customers:

CustomerID Age AnnualIncome SpendingScore

1	19	15000	39
2	21	18000	81
3	20	17000	6
4	23	22000	77
5	31	35000	40

6	35	40000	50
7	40	45000	60
8	52	60000	30
9	58	65000	20
10	63	70000	70

Question:

- 1. Load the above dataset into a pandas DataFrame (either manually or using CSV).
- 2. Standardize the features since they are in different ranges.
- 3. Use the **Elbow Method** to find the best number of clusters.
- 4. Perform K-Means clustering.
- 5. Visualize the clusters in a **3D scatter plot** (Age vs Income vs Spending Score).
- 6. Explain the characteristics of the clusters (e.g., young-high income-high spending, old-low income-low spending, etc.).