Olimpiada Naţională de Matematică 2007 Etapa judeţeană şi a Municipiului Bucureşti 3 martie 2007 CLASA A IX-A

Subiectul 1. Spunem că o funcție $f: \mathbb{N} \to \mathbb{N}$ are proprietatea (\mathcal{P}) dacă pentru orice $y \in \mathbb{N}$ ecuația f(x) = y are exact 3 soluții.

- a) Să se arate că există o infinitate de funcții cu proprietatea (\mathcal{P}) ;
- b) Să se determine funcțiile monotone cu proprietatea (\mathcal{P}) ;
- c) Să se determine dacă există funcții monotone $f: \mathbb{Q} \to \mathbb{Q}$ cu proprietatea (\mathcal{P}) .

Subiectul 2. Fie triunghiul ABC și punctele $M \in (AB)$, $N \in (BC)$, $P \in (CA)$, $R \in (MN)$, $S \in (NP)$, $T \in (PM)$, astfel încât

$$\frac{AM}{MB} = \frac{BN}{NC} = \frac{CP}{PA} = \lambda, \ \frac{MR}{RN} = \frac{NS}{SP} = \frac{PT}{TM} = 1 - \lambda, \ \lambda \in (0, 1).$$

- a) Să se demonstreze că triunghiul STR este asemenea cu triunghiul ABC;
- b) Să se determine valoarea parametrului λ astfel încât aria triunghiului STRsă fie minimă.

Subiectul 3. Să se determine funcțiile $f: \mathbb{N}^* \to \mathbb{N}^*$ pentru care

$$x^2 + f(y)$$
 divide $f(x)^2 + y$

pentru orice $x, y \in \mathbb{N}^*$.

Subiectul 4. Fie trei vectori coplanari u, v, w, fiecare de modúl 1.

- a) Să se demonstreze că putem alege semnele +, -, astfel încât să avem $|\pm \mathbf{u} \pm \mathbf{v} \pm \mathbf{w}| \leq 1$;
- b) Să se dea un exemplu de trei vectori $\mathbf{u}, \mathbf{v}, \mathbf{w}$ unde, oricum am alege semnele +, -, să avem $|\pm \mathbf{u} \pm \mathbf{v} \pm \mathbf{w}| \ge 1$.

Timp de lucru 3 ore

Toate subiectele sunt obligatorii