ME766A ASSIGNMENT-2

MOHAMMED SOHAIB 200611

1) RAPIDLY EXPANDING RANDOM TREE.

Basic concept on this:

A single RRT-Connect iteration...

3) Calculate node "nearest" to target

7) Return path connecting start and goal

1) One tree grown using random target

4) Try to add new collision-free branch

2) New node becomes target for other tree

5) If successful, keep extending branch

6) Path found if branch reaches target

Basic RRT Algorithm:

```
RRT_CONNECT (q_{init}, q_{goal}) {
T_{a'}init(q_{init}); T_{b'}init(q_{goal});
for k = 1 to K do
q_{rand} = \text{RANDOM\_CONFIG()};
if not (\text{EXTEND}(T_{a'}, q_{rand}) = \text{Trapped}) then
if (\text{EXTEND}(T_{b'}, q_{new}) = \text{Reached}) then
Return \text{PATH}(T_{a_i}, T_{b_i});
SWAP(T_{a_i}, T_{b_i});
Return Failure;
```

Instead of switching, use T_a as smaller tree. This helped James a lot

WORK SPACE:

##All the required code is at the end of this document.

START: [10 15]

END: [-10 -10]

No of nodes: 1000.

START: [-15 -15]

END: [-5 -15]

NODES: 1500

FAILED CASE:

START: [15 15]

END: [-19 -19]

NODES: 1000

2) PROBABILISTIC ROAD MAP METHOD BY ROBOTICS TOOLBOX.

This is basically done by the inbuilt functions of the Probabilistic road map and draw out the possible paths.

Work space:

Considerable code is at the end of the document.