ALGEBRA

PROBLEMA 1 Si P(x) =
$$81x^{200} - 27x^{201} - 5x + 20$$

Evalúe P(3)

Resolución

$$x = 3 \Rightarrow P(3) = (3)^{4}(3)^{200} - 3^{3} \cdot (3)^{201} - 5(3) + 20$$

$$P(3) = (3)^{204} - (3)^{204} - 15 + 20$$

$$P(3) = 5$$

PROBLEMA 2

Sea P(x) = $(3x + 2)^3 + (x - 3)^2 + x+3$ Calcule el término independiente.

Resolución

$$x = 0$$

$$P(0)=(3(0)+2)^3+(0-3)^2+0+3$$

$$P(0)=(2)^3+(-3)^2+3$$

$$P(0) = 8 + 9 + 3$$

$$\therefore P(0) = 20$$
, es el T.I.

20

PROBLEMA 3 Sea P(x+2) = $(x+3)^5 - (x-1)^3 + (x+1)x$ Calcule la suma de coeficientes sabiendo que representa la edad de Lucio dentro de 5 años?

Resolución

RECUERDA

Por propiedad. \sum coef.(P(x))=P(1)

$$x + 2 = 1$$

$$\Rightarrow x = -1$$

$$P(1) = ((-1) + 3)^{5} - (-1 - 1)^{3} + (-1 + 1)(-1)$$

$$P(1) = (2)^5 - (-2)^3 + (0)(-1)$$

$$P(1) = 32 + 8 + 0$$

$$P(1) = 40$$

Por lo cual dentro de 5 años tendrá 45 años

PROBLEMA 4 Dado el polinomio

P(x, y) =
$$5ax^{a+3}y^{b-2} - 2ax^{a+3}y^{b+1} + 5x^ay^{b-2}$$
 se sabe que, GA=10 y GR(y)=4. Indique la suma de sus coeficientes

Resolución

$$a+b+1$$

$$a+b+4$$

$$a+b-2$$

$$P(x, y) = 5ax^{a+3}y^{b-2} - 2ax^{a+3}y^{b+1} + 5x^{a}y^{b-2}$$

$$G.A = a + b + 4 = 10$$

$$a+b=6$$

$$GR(y) = b + 1 = 4 \rightarrow b = 3$$

Luego
$$a = 3$$

Suma de coeficientes:

$$(5a) + (-2a) + 5$$

 $(15) + (-6) + 5 = 14$

PROBLEMA 5 Halle el valor de "m"

Si
$$R(x) = (x^{2m} + 2)(x^{3m+5} - 12)$$
. Es de GA=45

Resolución

RECUERDA

El grado en un polinomio de más de un término esta relacionado al mayor exponente de la variable.

PROBLEMA 6 Si $Q(x) = (x^5 + 2x)^2(x^7 - 3)^4(3x^2 + x)$, tiene como grado absoluto (3n-5). Halle el valor de n

Resolución

$$\mathbf{Q}(x) = (x^{5} + 2x)^{2}(x^{7} - 3)^{4}(3x^{2} + x)$$

$$G.A = 10 + 28 + 2 = 3n - 5$$
 $45 = 3n$
 $\rightarrow 15 = n$

RECUERDA

Cuando un polinomio esta elevado a un exponente, el grado esta relacionado con la multiplicación.

PROBLEMA 7 Si el polinomio es completo y ordenado

Q(x)=
$$8x^{m-3}$$
+ $10x^{n+5}$ + $5x^{p-7}$ – $2x$ + 11, calcule m-n-p

Resolución

$$* m - 3 = 4$$

$$m = 7$$

$$* n + 5 = 3$$

$$n = -2$$

$$p - 7 = 2$$

$$p = 9$$

$$m-n-p$$
 $7-(-2)-(9)=0$

PROBLEMA 8 Si el polinomio

$$W(x) = (m+n-1)x^3 + (n+p+2)x^5 + (m+p-3)$$

Es idénticamente nulo, calcule: $R = \sqrt{5(m+n+p)^3 + 4}$

Resolución

$$W(x) = (m+n-1)x^3 + (n+p+2)x^5 + (m+p-3)$$

*
$$m+n-1=0$$
 Luego $m + n = 1$

*
$$n+p+2=0$$
 Luego $n+p=-2$

*
$$m+p-3=0$$
 Luego $m + p = 3$

Sumando:
$$2(m + n + p) = 2 \longrightarrow m + n + p = 1$$

$$R = \sqrt{5(m+n+p)^3 + 4} = \sqrt{5(1)^3 + 4} = \sqrt{9} = 3$$

PROBLEMA 9 Sabiendo que,

$$P(x) = (a + b - 2)x^2 + (b + c + 3)x + (c + a - 1) - 7x^2$$

 $Q(x) = 4x^2 + 3x + 2$, son idénticos. Calcule a+b+c

Resolución

$$(a+b-2)x^2 + (b+c+3)x + (c+a-1) \equiv 11x^2 + 3x + 2$$

igualando los coeficientes

$$\begin{cases} a+b-2 = 11 \\ b+c+3 = 3 \\ c+a-1 = 2 \end{cases}$$

$$2a + 2b + 2c = 16$$

$$2(a+b+c)=16$$

$$a+b+c=8$$

PROBLEMA 10 Si el polinomio 18 18
$$Q(x,y) = 5x^{3a+b-1}y^7 - 1/2x^{3a+b}y^6$$
 Es homogéneo de grado 18, calcule 3a+b

Resolución

*
$$3a + b - 1 + 7 = 18$$

 $3a + b = 18 + 1 - 7$
 $3a + b = 12$

12