Notes on TRPO

Yue Lin

December 31, 2024

1 Trust Region Policy Optimization

The objective is

$$J(\pi) := \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \cdot r(s_{t}, a_{t}) \right]. \tag{1}$$

The problem is $\max_{\pi} J(\pi)$. We want to develop an iterative method to solve this problem.

Lemma 1.1. The performance difference between two policies is

$$J(\pi') = J(\pi) + \mathbb{E}_{\pi'} \left[\sum_{t=0}^{\infty} \gamma^t \cdot A_{\pi}(s_t, a_t) \right]$$
$$= J(\pi) + \sum_{s} d_{\pi'}(s) \sum_{a} \pi'(a \mid s) \cdot A_{\pi}(s, a),$$
 (2)

where $d_{\pi}(s)$ is the discounted state visitation frequencies and A_{π} is the advantage function under policy π .

Proof. Let $\Pr^{\pi}(\tau \mid s_0 = s)$ denote the probability of observing a trajectory τ when starting in state s and following the policy π . Using a telescoping argument, we have:

$$V^{\pi}(s) - V^{\pi'}(s)$$

$$= \mathbb{E}_{\tau \sim \Pr^{\pi}(\tau|s_{0}=s)} \left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right) \right] - V^{\pi'}(s)$$

$$= \mathbb{E}_{\tau \sim \Pr^{\pi}(\tau|s_{0}=s)} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r\left(s_{t}, a_{t}\right) + V^{\pi'}\left(s_{t}\right) - V^{\pi'}\left(s_{t}\right) \right) \right] - V^{\pi'}(s)$$

$$\stackrel{(a)}{=} \mathbb{E}_{\tau \sim \Pr^{\pi}(\tau|s_{0}=s)} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r\left(s_{t}, a_{t}\right) + \gamma V^{\pi'}\left(s_{t+1}\right) - V^{\pi'}\left(s_{t}\right) \right) \right]$$

$$\stackrel{(b)}{=} \mathbb{E}_{\tau \sim \Pr^{\pi}(\tau|s_{0}=s)} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r\left(s_{t}, a_{t}\right) + \gamma \mathbb{E}\left[V^{\pi'}\left(s_{t+1}\right) \mid s_{t}, a_{t} \right] - V^{\pi'}\left(s_{t}\right) \right) \right]$$

$$\stackrel{(c)}{=} \mathbb{E}_{\tau \sim \Pr^{\pi}(\tau|s_{0}=s)} \left[\sum_{t=0}^{\infty} \gamma^{t} A^{\pi'}\left(s_{t}, a_{t}\right) \right]$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d_{s}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot|s')} \left[A^{\pi'}\left(s', a\right) \right],$$

where (a) rearranges terms in the summation and cancels the $V^{\pi'}(s_0)$ term with the $-V^{\pi'}(s)$ outside the summation, and (b) uses the tower property of conditional expectations and the final equality follows from the definition of d_s^{π} .

- If we can find a π' such that $\sum_{a} \pi'(a \mid s) \cdot A_{\pi}(s, a) \geq 0$ for all s, then update π by π' will make the objective larger or remain unchanged.
- The classic method, exact policy iteration, chooses $\pi'(s) = \arg \max_a A_{\pi}(s, a)$, so it can improve the policy in each iteration or at least not make it worse.
- But due to the unavoidable estimation error, the exact policy iteration may choose the suboptimal action so the true at some state s such that $\sum_{a} \pi'(a \mid s) \cdot A_{\pi}(s, a) < 0$.

Consider the following fuction:

$$L_{\pi}(\pi') = J(\pi) + \sum_{s} d_{\pi}(s) \sum_{a} \pi'(a \mid s) \cdot A_{\pi}(s, a).$$
 (3)

Lemma 1.2. $L_{\pi}(\pi')$ matches $J(\pi)$ to the first order:

- $L_{\pi_0}(\pi_0) = J(\pi_0),$
- $\nabla_{\theta} L_{\pi_{\theta_0}}(\pi_{\theta})|_{\theta=\theta_0} = \nabla_{\theta} J(\pi_{\theta})|_{\theta=\theta_0}$

Theorem 1.3. The following bound holds:

$$J(\pi') \ge L_{\pi}(\pi') - \frac{4\epsilon\gamma}{(1-\gamma)^2}\alpha^2,\tag{4}$$

where $\epsilon = \max_{s,a} |A_{\pi}(s,a)|$, $\alpha = D_{\text{TV}}^{\text{max}}(\pi,\pi')$ and $D_{\text{TV}}(p||q) = \frac{1}{2} \sum_{i} |p_i - q_i|$ is the total variation divergence.

Corollary 1.4. From 1.3 we know that the following bound holds:

$$J(\pi') \ge L_{\pi}(\pi') - \frac{4\epsilon\gamma}{(1-\gamma)^2} \cdot D_{\mathrm{KL}}^{\mathrm{max}}(\pi, \pi'). \tag{5}$$

Assume that we have exact evaluation of A_{π} . Then we can have the following algorithm.

Algorithm 1 Policy iteration algorithm guaranteeing non-decreasing expected return η

- 1: Initialize π_0
- 2: for $i = 0, 1, 2, \ldots$ until convergence do
- 3: Compute all advantage values $A_{\pi_i}(s, a)$
- 4: Solve the constrained optimization problem:

$$\pi_{i+1} = \arg\max_{\pi} \left[L_{\pi_i}(\pi) - \frac{4\epsilon\gamma}{(1-\gamma)^2} \cdot D_{\mathrm{KL}}^{\mathrm{max}}(\pi_i, \pi). \right]$$

5: end for

This is a minorization-maximization (MM) algorithm. The surrogate function is $M_i(\pi) = L_{\pi_i}(\pi) - \frac{4\epsilon\gamma}{(1-\gamma)^2} \cdot D_{\text{KL}}^{\text{max}}(\pi_i, \pi)$ that minorizes J with equality at π_i .

Corollary 1.5. Algorithm 1 generates a monotonically improving sequence of policies $J(\pi_i) \leq J(\pi_j)$ where i < j.

Proof. We can see this by M_i :

- $\pi_{i+1} = \arg \max_{\pi} M_i(\pi_i)$, so $M_i(\pi_{i+1}) \ge M_i(\pi)$.
- $J(\pi_{i+1}) \ge M_i(\pi_{i+1})$ by (5), and $J(\pi_i) = M_i(\pi_i)$ because the divergence is 0.
- So $J(\pi_{i+1}) J(\pi_i) \ge M_i(\pi_{i+1}) M_i(\pi_i) \ge 0$.

If π is parameterized by θ , then we know that by solving the following optimization problem, the objective J is guaranteed to be improved:

$$\max_{\theta} \left[L_{\pi_{\theta_0}}(\pi_{\theta}) - \frac{4\epsilon\gamma}{(1-\gamma)^2} \cdot D_{\text{KL}}^{\text{max}}(\pi_{\theta_0}, \pi_{\theta}) \right]$$
 (6)

In practice, if we use the coefficient $\frac{4\epsilon\gamma}{(1-\gamma)^2}$, the step sizes will be very small. (Why?) A robust approach to taking larger steps is to impose a **trust region constraint**, which limits the KL divergence between the new policy and the old policy:

$$\max_{\theta} L_{\pi_{\theta_0}}(\pi_{\theta})$$
s.t. $D_{\text{KL}}^{\text{max}}(\pi_{\theta_0}, \pi_{\theta}) \leq \delta$. (7)

The constraints are too many, so we use a **heuristic approximation** which considers the average divergence:

$$\max_{\theta} L_{\pi_{\theta_0}}(\pi_{\theta}) = J(\pi_{\theta_0}) + \sum_{s} d_{\pi_{\theta_0}}(s) \sum_{a} \pi_{\theta}(a \mid s) \cdot A_{\pi_{\theta_0}}(s, a)$$
s.t.
$$\mathbb{E}_{s \sim d_{\pi_{\theta_0}}} \left[D_{\text{KL}} \left((\pi_{\theta_0}(\cdot \mid s) \| \pi_{\theta}(\cdot \mid s)) \right) \right] \leq \delta.$$
 (8)

That is,

$$\max_{\theta} \quad \sum_{s} d_{\pi_{\theta_0}}(s) \sum_{a} \pi_{\theta}(a \mid s) \cdot A_{\pi_{\theta_0}}(s, a)
\text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi_{\theta_0}}} \left[D_{\text{KL}} \left((\pi_{\theta_0}(\cdot \mid s) \| \pi_{\theta}(\cdot \mid s)) \right) \right] \leq \delta.$$
(9)

Use importance sampling, then we have the trust region policy optimization problem:

$$\max_{\theta} \quad \mathbb{E}_{s \sim d_{\pi_{\theta_0}}, a \sim q} \left[\frac{\pi_{\theta}(a \mid s)}{q(a \mid s)} A_{\theta_0}(s, a) \right]
\text{s.t.} \quad \mathbb{E}_{s \sim d_{\pi_{\theta_0}}} \left[D_{\text{KL}} \left((\pi_{\theta_0}(\cdot \mid s) \| \pi_{\theta}(\cdot \mid s)) \right) \right] \leq \delta.$$
(10)