

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **63-070257**
 (43)Date of publication of application : **30.03.1988**

(51)Int.CI. **G03G 5/06**

(21)Application number : **61-214062**

(71)Applicant : **FUJI XEROX CO LTD
MUKAI TOSHIO**

(22)Date of filing : **12.09.1986**

(72)Inventor : **AKASAKI YUTAKA
SATO KATSUHIRO
YABUCHI NAOYA
TANAKA HIROYUKI
NUKADA KATSUMI
MUKAI TOSHIO
YAMASHITA TAKAO
SUZUKI TAKANORI**

(54) ELECTRIC CHARGE TRANSFER MATERIAL FOR ELECTROPHOTOGRAPHY

(57)Abstract:

PURPOSE: To improve an electron transfer characteristic by constituting the titled material of the tetracyano anthraquinodimethane deriv. expressed by specific constitutional formula.

CONSTITUTION: The electric charge transfer material for electrophotography is constituted of the tetracyano anthraquinodimethane deriv. expressed by specific constitutional formula. In formula, R denotes a group selected from a halogen atom, alkyl group, aryl group, aralkyl group, oxylalkyl group, oxyaryl group, oxyaralkyl group, hydroxy group, subst. amino group, carboxyl group, cyano group and nitro group. m=1 when n is 1 and m=0 when n is 2. This material is easily obtd. by one stage of reaction and the co-existence of impurities is extremely low. The material with which the trap sites are few, the residual potential and the change thereof with lapse of time can be suppressed low and the mobility of electrons is high is obtd. Such material lends itself to a photosensitive body for high speed copying.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision
of rejection]

[Date of requesting appeal against examiner's
decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑪ 公開特許公報 (A) 昭63-70257

⑥Int.Cl.⁴

G 03 G 5/06

識別記号

庁内整理番号

7381-2H

④公開 昭和63年(1988)3月30日

審査請求 未請求 発明の数 1 (全6頁)

⑤発明の名称 電子写真用電荷輸送材料

⑥特願 昭61-214062

⑦出願 昭61(1986)9月12日

⑧発明者 赤崎 豊 神奈川県南足柄市竹松1600番地 富士ゼロックス株式会社
竹松事業所内⑨発明者 佐藤 克洋 神奈川県南足柄市竹松1600番地 富士ゼロックス株式会社
竹松事業所内⑩発明者 荘内 尚哉 神奈川県南足柄市竹松1600番地 富士ゼロックス株式会社
竹松事業所内

⑪出願人 富士ゼロックス株式会社 東京都港区赤坂3丁目3番5号

⑫出願人 向井 利夫 宮城県仙台市角五郎2丁目1-2

⑬代理人 弁理士 大家 邦久

最終頁に続く

明細書

1. 発明の名称

電子写真用電荷輸送材料

2. 特許請求の範囲

下記一般式(I)

(式中、Rはハロゲン原子、アルキル基、アリール基、アラルキル基、オキシアルキル基、オキシアリール基、オキシアラルキル基、ヒドロキシ基、アミノ基、カルボキシル基、シアノ基及びニトロ基から選択される基を示し、nは1または2であり、mは0または1である。但し、nが1のときはmは1であり、nが2のときはmは0であるものとする。)

で示されるテトラシアノアンスラキノジメタン誘導体電子写真用電荷輸送材料。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は電子写真感光体に用いられる電荷輸送材料に関する。

〔従来の技術〕

近年、電子写真感光体として有機材料を用いる試みがなされている。この有機感光体は電荷発生能を有する材料(以下電荷発生材という。)と電荷輸送能を有する材料(以下電荷輸送材といふ。)とを組合せて用いるものであり、電荷発生層と電荷輸送層とを積層したり、電荷輸送材中に電荷発生材を分散させた層にしたりして用いられている。輸送される電荷としては正孔もしくは電子が考えられるが、電子輸送能を有する電荷輸送材としてはポリビニルカルバゾール(PVK)とトリニトロフルオレノン(TNF)の1:1混合物が実用に供せられているのみであり、電荷輸送材はピラソリン、ヒドラゾンの如く正孔輸送性のものが殆んどあつた。従来の正孔輸送能を有する電荷輸送材を用いた感光体は、基板、電荷発生層及び電荷輸

送層の膜に積層して用いる関係で、感光体の帯電は、負極性で行なわざるを得ないために、負帯電オゾンによつて感光体が化学的変質を受けてしまうという問題点を避けることができず、 $\alpha\text{-Se}$ あるいは $\alpha\text{-Si}$ の如き無機感光体に比べ耐刷性が著じるしく低いという欠点を有し、更に正及び負の両極性に帯電可能な感光体（両極性感光体）が得られないという欠点を有している。これら点より正帯電可能な、つまりは電子輸送可能な、更には両極性に帯電可能な感光体の出現が望まれている。

〔発明が解決しようとする問題点〕

本発明はこの様な事情に鑑み、電子輸送性に優れ、又電子及び正孔を輸送し得る新規な電荷輸送材料を提供することを目的とする。

〔問題点を解決するための手段及び作用〕

本発明の電子写真用電荷輸送材料は下記一般式

本発明者等は銳意検討の結果、新規なアントラキノジメタン誘導体電子写真用電荷輸送材料が、従来法に比べて簡単に、かつ高い収率で得らることを見出した。

本発明の電子写真用電荷輸送材料の製造方法を
反応式で示せば下記のとおりである。

(式中、Rはハロゲン原子、アルキル基、アリール基、アラルキル基、オキシアルキル基、オキシアリール基、オキシアラルキル基、ヒドロキシ基、^{置換}アミノ基、カルボキシル基、シアノ基及びニトロ基から選択される基を示し、nは1または2であり、mは0または1である。但し、nが1のときはmは1であり、nが2のときはmは0であるものとする。)で示されるテトラシアノアンスラキノジメタン(TCNAQ)誘導体である。

テトラシアノアンスラキノジメタン誘導体は、従来下記に工程式を示すような一連のプロセスで製造されており（特開昭58-10554号）、多数の工程を必要とし、反応時間が長く、操作が繁雑であること、収率が低いこと、更には生成物の純度が低いために、電子写真感光体の電荷輸送材料としたときトラップサイトが多くなり、残留電位及び経時変化を低く抑えることができなかつた。

一般式(III)で示される原料のアンスラキノン誘導体としては、例えば下記の構造式で示されるものが挙げられる。

式中、Me はメチル基、Bu はメチル基を表わす。

また四塩化炭素と共に用いられる強媒の第三級有機塩基としては、例えば , が挙げられる。

次に本発明の電子写真用電荷輸送材料の製造方法について説明する。

アンスラキノン誘導体をクロロホルムジオキサン、テトラヒドロフラン(THF)等の溶媒に溶解した溶液に四塩化チタンを加え還流温度で加熱する。次いで生成した懸濁液にアンスラキノン誘導体に対して当量以上(好ましくは過剰量)の活性メチレン化合物、及び第3有機塩基の溶液を加え、還流温度で更に加熱を続け、薄層クロマトグラフィ法により反応の進行を確認し、反応終了後、反応溶液を氷冷水中へ注ぎ、分液抽出し、抽出液を濃縮した後適当な媒体中に生成物を沈殿させ、粗生成物を得た後再結晶して目的物を得る。

本発明のテトラシアノアンスラキノジメタン誘

このようなテトラシアノアンスラキノジメタン誘導体は電子写真用感光体の電荷輸送材として用いることができる。即ち、ポリカーボネート、ポリエステル等の接着樹脂と共に用いて電荷輸送層としたり、電荷発生層中に電荷発生材と共にこのアンスラキノジメタン誘導体を含有させて用いることができる。

更にこのテトラシアノアンスラキノジメタン誘導体に対し電子供与体を加え電荷移動錯体を形成させても良い。電子供与体としては、例えばベンゼン、ナフタレン、アントラセン、ピレン、ペリ

導体電子写真用電荷輸送材料の具体例としては下記に構造式を示すものが挙げられる。

レン等の芳香族化合物、*p*-フェニレンジアミンおよび類似の縮合環型の芳香族アミン類、テトラチアフルバレン(TTF)、テトラチアテトラセン(TTT)およびテラメチルテトラチアフルバレン(TMTSF)のような含硫黄電子供与性化合物等が挙げられるが、特にイオン化ポテンシアルが7.7V以下の化合物が好ましく、更にπ型の電子供与性化合物が好ましい。このようなπ型の電子供与性化合物としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、ピレン、ペリレン、TTF、TTT等が挙げられる。

(実施例)

下記に実施例を挙げて本発明の電子写真用電荷輸送材料を説明する。

実施例 1

2,6-ジクロロTCNAQ

2,6-ジクロロアントラキノン2.23gを80mLの乾燥クロロホルムに懸濁させ、TiCl₄ 3.6mL(4eq)を加える。マロンニトリル10.6g(20eq)と乾燥ピリジン26mL(40eq)の乾燥クロロホルム(80mL)

溶液を25分間で滴下後、3時間還流する。水200mlへ注ぎ無機塩を沪別後、分液して、水層を100mlの塩化メチレンで3回抽出する。有機層を合わせ200mlで水洗を4回する。 Na_2SO_4 上で乾燥し、溶媒を減圧留去して得た544mgの紫色タール状固体へエーテル50ml加えて結晶化し沪別する。粗生成物213gをシリカゲル(Q-22,50g)でカラムクロマトグラフィーにより分離し、塩化メチレン流出部として203gの2,6-ジクロロTCNAQを得た。收率68%。アセトニトリル-四塩化炭素から再結晶して融点292-294°Cとなる。

元素分析: $\text{C}_{20}\text{H}_6\text{N}_4\text{Cl}_2$ として

	C	H	N	Cl
計算値(%)	64.37	1.62	15.01	18.99
実測値(%)	64.96	1.30	15.04	19.07

$^1\text{H-NMR}$ (60MHz, δ_{ppm}): 8.25(2H, d, $J=2\text{Hz}$)、
8.20(2H, d, $J=9\text{Hz}$)、7.73(2H, dd, $J=2\text{Hz}, 9\text{Hz}$)。
 $\text{IR}(\text{KBr}, \tilde{\nu} \text{cm}^{-1})$: 3100, 3080, 2230, 1595, 1560,
1315, 840.

実施例 2

8.21(2H, d, $J=9\text{Hz}$)、7.98(2H, dd, $J=3\text{Hz}, 9\text{Hz}$)。
 $\text{IR}(\text{KBr}, \tilde{\nu} \text{cm}^{-1})$: 3100, 3060, 3020, 2210, 1590,
1550, 1540, 1310, 830.

実施例 3

2,6-ビス(メトキシカルボニル)TCNAQ
アントラキノン-2,6-ジカルボン酸ジメチル600mgを乾燥CHCl₃(18ml)に溶かし、TiCl₄ 0.8ml(4eq)を加える。マロンニトリル122g(10eq)と乾燥ピリジン6ml(40eq)の乾燥CHCl₃(18ml)溶液を20分間で滴下する。4時間還流し、200mlの水へ注ぐ。無機塩を沪別後、水層を塩化メチレンで抽出(100ml×3)し、有機層を合わせて水洗(100ml×4)後、 Na_2SO_4 上で乾燥する。溶媒を減圧留去して590mgの緑色タールを得、シリカゲル(Q-22,20g)クロマトグラフィーでCH₂Cl₂で溶出して粗生成物511mgを分離した。エーテル-ヘキサンより再結晶して329mgの2,6-ビス(メトキシカルボニル)TCNAQを得た。mp 110-120°C(分解)。收率42%。

元素分析: $\text{C}_{24}\text{H}_{12}\text{N}_4\text{O}_4$ として

2,6-ジプロモTCNAQ

2,6-ジプロムアントラキノン10gを乾燥CHCl₃(27ml)に懸濁させ、TiCl₄(3.5ml, 4eq)を加える。マロンニトリル(3.60g, 20eq)と乾燥ピリジン(9ml, 40eq)の乾燥CHCl₃溶液を30分間で滴下後3時間還流する。水150mlへ注ぎ、無機塩を沪別後水層をCH₂Cl₂で抽出(100ml×3)し、有機層を合わせて水洗(100ml×4)後、 Na_2SO_4 上で乾燥する。溶媒を減圧留去して143gの褐色タールを得、シリカゲル(Q-22,35g)のカラムクロマトグラフィーにより分離し、CH₂Cl₂で溶出して得た850mgの固体を、10mlのメタノールで洗い830mgの2,6-ジプロムTCNAQを得た。收率66%。塩化メチレン-エタノールで再結晶して融点291-293°Cとなる。

元素分析: $\text{C}_{20}\text{H}_6\text{Br}_2\text{N}_4$ として

	C	H	N	Br
計算値(%)	51.98	1.31	12.12	34.58
実測値(%)	52.29	1.12	12.10	34.30

$^1\text{H-NMR}$ (60MHz, δ_{ppm}): 8.47(2H, d, 3Hz)、

	C	H	N
計算値(%)	68.57	2.88	13.33
実測値(%)	68.38	3.12	12.79

$^1\text{H-NMR}$ (60MHz, δ_{ppm}): 9.04(2H, s)、
8.50(4H, s)、4.06(6H, s)。
 $\text{IR}(\text{KBr}, \tilde{\nu} \text{cm}^{-1})$: 3080, 3000, 2950, 2850, 2220,
1730, 1610, 1570, 1440, 1290,
1250, 765, 690.

実施例 4

2,6-ジメチルTCNAQ

2,6-ジメチルアントラキノン150gを60mlの乾燥CHCl₃に溶かし、TiCl₄ 2.8ml(4eq)を加える。マロンニトリル8.40g(20eq)と乾燥ピリジン20ml(40eq)の乾燥CHCl₃(60ml)溶液を30分間で滴下後3.5時間還流する。水(250ml)へ注ぎ、無機塩を沪別後分液。水層を塩化メチレンで抽出(100ml×3)し、有機層を合わせて水洗(150ml×4)後、 Na_2SO_4 上で乾燥する。溶媒を減圧留去して5.0gの赤色タールを得、シリカゲル(Q-22,50g)クロマトグラフィーにかけ、CH₂Cl₂-ヘキサン

ン(4:1)で溶出として得た235gの黄色ワツクス状固体を50mlのエーテルで洗い、1.83gの2,6-ジメチルTCNAQを得た。収率87%。 CH_2Cl_2 -ヘキサンより再結晶してmp 270-272°Cのサンプルを得た。

元素分析: $\text{C}_{22}\text{H}_{14}\text{N}_4$ として

	C	H	N
計算値(%)	79.50	3.64	16.86
実測値(%)	79.96	3.43	16.87

$^1\text{H-NMR}$ (60MHz, δ_{ppm}): 8.20(2H, d, $J=8\text{Hz}$)、8.10(2H, s)、7.56(2H, d, $J=8\text{Hz}$)、2.53(6H, s)。
 $\text{IR}(\text{KBr}, \nu_{\text{cm}^{-1}})$: 2220, 1610, 1550, 1320, 1270, 820。

実施例 5

2,7-ビス(メトキシカルボニル)TCNAQ
 アントラキノン-2,7-ジカルボン酸ジメチル1.70gを50mlの乾燥 CHCl_3 ICとかし、 TiCl_4 2.3ml

(4eq)加える。マロンニトリル346g(10eq)と乾燥ピリジン(17ml, 40eq)の乾燥 CHCl_3 溶液を1時間で滴下する。1時間還流し、200mlの水へ注ぐ。無機塩を沪別後、分液し、水層を塩化メチレンで抽出(50ml×3)する。有機層を合わせて水洗(150ml×3)後、 Na_2SO_4 上で乾燥する。溶媒を減圧留去して、5gの赤色タールを得、シリカゲル(Q-22, 50g)クロマトグラフィーにかけ、 CH_2Cl_2 で溶出して176gの緑色タール状物を得る。これをベンゼン150mlにとかし、2N HCl 100mlで3回洗う。有機層を水洗(50ml×2)し、飽和 NaCl 水溶液(50ml)で洗つた後、 Na_2SO_4 上で乾燥する。ヘキサン30mlを加え溶媒を留去して954mgの2,7-ビス(メトキシカルボニル)TCNAQをベンゼン錯体として単離した。収率36% mp 130-145°C(分解)。

また、単体はベンゼン錯体を塩化メチレン溶液として、溶媒を減圧留去して得たタール状物を、塩化メチレン-ヘキサンにより結晶化することによつても定量的に得られる。mp 125-150°C(分解)。

$^1\text{H-NMR}$ (60MHz, δ_{ppm}): 8.95(2H, s)、8.40(4H, s)、4.00(6H, s)。
 $\text{IR}(\text{KBr}, \nu_{\text{cm}^{-1}})$: 2970, 2240, 1735, 1610, 1570, 1560, 1440, 1290, 1260, 1200, 1185, 1120, 1100, 760, 690。

実施例 6

2,7-ジメチルTCNAQ
 2,7-ジメチルアントラキノン129gを乾燥 CHCl_3 (50ml)ICとかし、 TiCl_4 (2.4ml, 4eq)を加える。マロンニトリル7.20g(20eq)と乾燥ピリジン(17ml, 40eq)の乾燥 CHCl_3 溶液を30分間で滴下する。3時間還流後、300mlの水へ注ぎ、無機塩を沪別後分液、水層を塩化メチレンで抽出(50ml×3)後、有機層を合わせて水洗(150ml×3)後、 Na_2SO_4 上で乾燥する。溶媒を減圧留去して、2.84gの褐色タールを得、シリカゲル(Q-22, 50g)クロマトグラフィーにかけて、 CH_2Cl_2 で溶出して得た黄色タールに10mlのエーテルを加えて結晶化し沪別する。粗生成物143gを塩化メチレン-ヘキサンより再結晶し、113gの2,7-ジメチ

ルTCNAQを得た。収率63% mp 268-269°C。

元素分析: $\text{C}_{22}\text{H}_{14}\text{N}_4$ として

	C	H	N
計算値(%)	79.50	3.64	16.86
実測値(%)	79.77	3.38	16.97

$^1\text{H-NMR}$ (60MHz, δ_{ppm}): 2.53(6H, s)、7.58(2H, d, $J=12\text{Hz}$)、8.12(2H, s)、8.25(2H, d, $J=12\text{Hz}$)。

$\text{IR}(\text{KBr}, \nu_{\text{cm}^{-1}})$: 2230, 1600, 1585, 1555, 1540, 1480, 1330, 1310, 1270, 830, 820, 695, 580, 460。

実施例 7

アルミ基板上にポリエステル樹脂3部とビスアゾ顔料2部とを含む溶液を塗布して電荷発生層を形成した。次いでこの電荷発生層上に実施例1で製造した化合物3重量部とポリカーボネート樹脂2重量部とを含む溶液を塗布して電荷輸送層を形成した。尚電荷発生層及び電荷輸送層の膜厚は、各々2μ、20μであつた。

この様にして形成した感光体を用い一様に正極

性に帯電させ、像導光を行なつたところ静電コン
トロストが550Vの潜像が形成された。各々の静
電潜像を現像して複写像を形成したところ良好な
画像が得られた。

又、潜像形成ステップを繰返し行なつたところ
残留電位の上昇は100V程度であつた。

実施例 8

実施例7と同様に実施例3で製造した化合物を
用いて試験したところ、良好な複写像が得られた。

〔発明の効果〕

本発明の電子写真用電荷輸送材料は、一段階の
反応により簡単に得ることができ、不純物の混在
を極めて低くすることができ、電子写真の輸送材
料としたときトラップサイトが少なくなり残留電
位及びその経時変化を低く抑えることができ、電
子の易動度(モビリティ)の高い両極性帯電可能
な高速複写用の感光体に利用することができる。

代理人 弁理士(8108) 大家邦久

第1頁の続き

②発明者	田中 浩之	神奈川県南足柄市竹松1600番地 竹松事業所内	富士ゼロックス株式会社
②発明者	額田 克己	神奈川県南足柄市竹松1600番地 竹松事業所内	富士ゼロックス株式会社
②発明者	向井 利夫	宮城県仙台市角五郎2丁目1-2	
②発明者	山下 敬郎	宮城県仙台市鹿野2丁目19-27・3-1	
②発明者	鈴木 孝紀	宮城県仙台市金剛沢2丁目8-43	