Logistic Regression

READING: 9.1-9.4

7.3-7.6

EXERCISES: CH 9. 21,33,35,37

ASSIGNED: NONE

PRODUCER: DR. MARIO

Motivation

Response Variable is Binary (Coded as Indicator)

$$Y = \begin{cases} 1 & if Yes (Success) \\ 0 & if No (Failure) \end{cases}$$

- Predictor Variable Could Be Numeric or Categorical
- Bad Idea -> Linear Regression or ANOVA

$$Y \neq \beta_0 + \beta_1 X + \epsilon$$
 $Y \neq \mu + \alpha_i + \epsilon$

Requirements

$$Y = Binary\ Response$$
 $X = Predictor\ Variable$
 $\pi = P(Y = 1|X = x) = Proportion\ of\ 1's\ if\ X = x$

Logistic Regression Model

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X \quad \text{or} \quad \pi = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- Parameter π Versus Statistic p
- Example
 - π = Probability of Having Green Eyes
 - Sample of 10 Random People 0,1,1,0,1,0,0,0,0
 - p = Sample Average or Proportion of Blue-Eyed People in Sample

$$p = \frac{0+1+1+0+1+0+0+0+0+0}{10} = \frac{3}{10} = 0.3 = 30\%$$

Another Reason Why Linear Regression or ANOVA Wouldn't Work

• Odds that Y = 1

Parameter:
$$\frac{\pi}{1-\pi}$$
 Estimate: $\frac{p}{1-p}$

- Odds are a Ratio of P(Y = 1) to $P(Y \neq 1) = P(Y = 0)$ (Binary Case)
- Example: The Odds of a Horse Winning a Race is 4 to 1 or 4:1 or 4
 - Interpretation: "4 Wins for Every 1 Loss"
 - Probability: P(Win) = 4/5 and P(Loss) = 1/5
 - Calculation of Odds: $P(Win)/P(Loss) = \frac{4}{5} * \frac{5}{1} = 4$

Reason for Logistic Regression Model

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X$$

- Notice
 - Probability: $0 < \pi < 1$
 - Odds: $0 < \frac{\pi}{1-\pi} < \infty$
 - Log Odds: $-\infty < \log\left(\frac{\pi}{1-\pi}\right) < \infty$

- Interpretation of Logistic Regression Model
 - Model:

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \beta_0 + \beta_1 X$$

- Default in Statistics is the Natural Logarithm
- Intercept Represents the Log Odds When *X=0*
- Slope Represents the Change in Log Odds When X Increases by 1

Suppose We Have Model

Then for Odds

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = 3-2X$$
Log Odds Decreasing by 2 for Every 1 Unit Increase in X is not Equivalent to Saying that Odds Decreases by e^2

for Every 1 Unit Increase in X

Log Odds Decreasing by 2 for Every

 $\frac{\hat{\pi}}{1 - \hat{\pi}} = e^{3 - 2X} \neq e^3 - e^2 X$

Slope $\beta_1 < 0$ Indicates Odds Decreases as X Increases

Suppose We Have Model

$$\log\left(\frac{\widehat{\pi}}{1-\widehat{\pi}}\right) = 3 - 2X$$

 $\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = 3-2X$ Then for Probability $\hat{\pi} = \frac{e^{3-2X}}{1+e^{3-2X}} = \frac{Odds}{1+Odds}$

Notice What Happens When $X = \frac{-\beta_0}{\beta_1} = \frac{3}{2}$

$$\hat{\pi} = \frac{e^{3-2X}}{1+e^{3-2X}} = \frac{e^{3-2\left(\frac{3}{2}\right)}}{1+e^{3-2\left(\frac{3}{2}\right)}} = \frac{e^0}{1+e^0} = \frac{1}{1+1} = 1/2$$

• Estimating Parameters β_0 and β_1

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X$$

- Recall in Linear Regression We Chose Estimates Based Off Minimization of a Bad Thing (SSE)
- In Logistic Regression We Choose Estimates that Maximize the Likelihood (Good Thing)
- The Likelihood the Probability of Our Data

- Function in R that Estimates Logistic Regression Models glm(formula, family=binomial, data)
- GLM Stands for Generalized Linear Model
- The "family=binomial" Argument Uses a Logit Link Function to Connect the Mean π to a Linear Predictor

$$logit(\pi) = log\left(\frac{\pi}{1-\pi}\right)$$

Example: Putts

Data from 587 Different Putts

Length	3	4	5	6	7
Made	84	88	61	61	44
Missed	17	31	47	64	90
Total	101	119	108	125	134

 Question: What is the relationship between the length of a putt and the probability of making that putt?

Supplement for Lecture 27

Comparing Sample Proportions to Estimates From Model

# Made	
# Attempts	

Length	3	4	5	6	7
$\rightarrow \hat{p}$	0.832	0.739	0.565	0.488	0.328
$\widehat{\pi}_{oldsymbol{\zeta}}$	0.826	0.730	0.605	0.465	0.330

Why the Difference?

$$\frac{e^{3.26 - 0.57X}}{1 + e^{3.26 - 0.57X}}$$

- Estimate Odds
 - When are the Odds Greater Than 1?
 - When are the Odds Less Than 1?

Odds Ratios

- Way to Compare Two Groups
 - Example: Compare a Putt at 3ft Versus a Putt at 4ft
- Formula

$$OR = \frac{Odds_1}{Odds_2} = e^{\beta_0 + \beta_1 X_1} / e^{\beta_0 + \beta_1 X_2}$$

 Interpretation: Odds of success in Group 1 is _____ times the odds of success in Group 2

Supplement for Lecture 27

- Calculate Odds Ratios
- Compare Odds Ratios to Slope of Logistic Regression Model

$$Slope = \frac{Rise}{Run} = \frac{Change\ in\ Log\ Odds}{1 - 0} = \frac{\log(Odds_{a+1}) - \log(Odds_a)}{1 - 0} = \log(OR)$$

What Happens When We Increase X by 1?

$$e^{\beta_0 + \beta_1(X+1)} = e^{\beta_0 + \beta_1 X + \beta_1} = (e^{\beta_1})e^{\beta_0 + \beta_1 X}$$

Odds Odds

Rule of Exponents: $x^{a+b} = x^a x^b$ Rule of Logarithms:

$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

Assumptions for Logistic Regression

- Linearity
 - Assume the Linear Model for the Log Odds is Reasonable
 - Assess by Plotting the Log Odds from Proportions in Sample

Against Your X Variable

- Check for Linearity
- Large Sample Size
 - Recall: np>10 and n(1-p)>10
 - Require 10 Successes and Failures
 Per Predictor Variable

Assumptions for Logistic Regression

- Randomness
 - Is Flipping a Weighted Coin Reasonable for Deciding Whether or Not the Outcome is 0 or 1?
 - Tied to the Bernouilli Distribution (Binary Variables)
- Independence
 - Observed Successes/Failures Independent of Each Other
 - Tied to the Binomial Distribution
- No Multicollinearity (Applies if Doing Multiple Logistic Regression)

Hypothesis Test and CI for Slope

- Hypotheses
 - $H_0: \beta_1 = 0$
 - H_a : $\beta_1 \neq 0$
- Test Statistic

•
$$z^* = \frac{\widehat{\beta}_1}{SE_{\widehat{\beta}_1}}$$

- P-Value
 - Use Standard Normal Distribution
 - Use 2*(1-pnorm(abs(zstar),mean=0,sd=1)) Function in R

Hypothesis Test and CI for Slope

- Decision Same As Always
- Interpret Similar to Interpretation of Test from SLR
- Alternative: Confidence Interval
 - $\hat{\beta}_1 \pm 1.96 * SE_{\widehat{\beta}_1}$
 - Does it Contain 0? Yes or No?
- CI for Odds Ratio Exponentiate Both Bounds of CI

Likelihood Ratio Test

- Tests Overall Effectiveness of the Model
- Hypothesis Test for Comparing Empty Model to Full Model
- Similar to F-test in Linear Regression
- Almost Equivalent to Previous Hypothesis Test (P-values Similar)
- Let L Represent the Likelihood of our Model We Want to Maximize

Likelihood Ratio Test

- The glm() Function Minimizes $-2 * \log(L)$ (Same as Maximizing L)
- The glm() Function also Estimates L_0 Which is the Likelihood of the Constant Model or Empty Model (Only an Intercept)
- Effectiveness of Model Can Be Measured by the Test Statistic
 - $G^* = -2 * \log(L_0) (-2 * \log(L))$
 - Notice: $G^* = -2(\log(L_0) \log(L)) = -2 * \log(\frac{L_0}{L})$

Likelihood Ratio Test

- P-value
 - Use Chi-Squared Distribution
 - Degrees of Freedom for Chi-Squared is 1 When Full Model has 1 Predictor
- Hypotheses the Same as Previous Test
 - $H_0: \beta_1 = 0$
 - H_a : $\beta_1 \neq 0$
- Testing Same Hypothesis Test but Trust LRT Over Previous Test

Supplement for Lecture 27

- Examine Output from Logistic Regression
- Get Confidence Intervals for Slope
- Get Confidence Intervals for Odds Ratio
- Perform Likelihood Ratio Test

Maximizing Likelihood

- Suppose There are Three Decks of Playing Cards
 - Standard 52 Card Deck
 - Euchre Deck (9,10,J,Q,K)
 - Only Red Cards from the Deck (26 Cards)

4				2 *	*		3 *	*		4 ♣	*	5.			6 ♣	*	7 •	*	*	8 4	• •	9	*	*	10 4	**	J +	Q.	K +
		*	*		-T-			*		-1-	-ĭ- *		*	- ÷	*	* *		**	*	4	**		***	**		**			
			¥	_	*	Ž	_	*	Š	4	*	֡֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	7	Š	*	* 9		*	T		* *		*	* 6	100	0	ı • • · · · · · · · · · · · · · · · · ·	Ď	K * *
4				2 ♠	•		3 •	•		4 •	•	••	•		••	٠	÷	*	•	4	•	•	•	•	44		A	A	* •
	•	R						٠					٠		•	^		•	•	4			ŢĄ	Ţ	3				
			₹		Ÿ	ž		Ť	ξ	Ť	♥	•	•) Š	Ť	♥ §		Ÿ	♥ ½	•	• * •		\Psi	♥ 6	•	• * ***********************************	r • 👫	Ď	V K
A	,			2	•		3 ♥	•		4 ♥	•	5	•		6 ♥	•	7 ♥	Ψ.	•	8		9	•	•	IO •	~ *	J	Q • (**)	K
		•						•					•		•	•		•	•	•	×.		×	X					
			*		٨	2		٨	ė S	•	♠ ‡	4	•	ĝ	٨	♠		٨	♠ [†]	4		3	*	₩ 6	7		r P	To a	R
Ā			一	2	•	ヿ	3	•	ヿ゙	4 ♦	•	5	•	•	6 💠	•	7	• .	•	8 4	, •	9	•	•	io •)	J. Fra		K + F
		٠		*			•	•		•		ľ	•		•	•		•*	•		*		•	•	ľ	•	366	20	416
			.		•	<u>*</u>		•	•	•	٠±			, t	•	• *		•	• †		•		•	• 2		•		3	

Maximizing Likelihood

- Sample 2 Cards: Get Jack of Hearts and then the Jack of Diamonds
- Let L Represent the Likelihood of Our Sample
- Probability of the Sample Under All Three Situations
 - Full Deck: $L = \left(\frac{1}{52}\right) * \left(\frac{1}{51}\right) \approx 0.00038$
 - Euchre Deck: $L = \left(\frac{1}{24}\right) * \left(\frac{1}{23}\right) \approx 0.0018 \leftarrow \text{Most Likely}$
 - Red Deck: $L = (\frac{1}{26}) * (\frac{1}{25}) \approx 0.0015$

Thank You

Make Reasonable Decisions

