SEQUENCE LISTING

<110> Corvas International , Inc.
 Vlasuk, George Phillip
 Stanssens, Patrick Eric Hugo
 Messens, Joris Hila Lieven
 Lauwereys, Mart Josef
 Laroche, Yves Rene
 Jespers, Laurent Stephane
 Gansemans, Yannick Georges Jozef
 Moyle, Matthew
 Bergum, Peter W.

<120> NEMATODE-EXTRACTED SERINE PROTEASE INHIBITORS AND ANTICOAGULANT PROTEIN

- <130> 018813/0272487
- <140> 09/498,556
- <141> 2000-04-02
- <150> 08/809,455
- <151> 1997-04-17
- <150> PCT/US95/13231
- <151> 1995-10-17
- <150> 08/486,399
- <151> 1995-06-05
- <150> 08/486,397
- <151> 1995-06-05
- <150> 08/465,380
- <151> 1995-06-05
- <150> 08/461,965
- <151> 1995-06-05
- <150> 08/326,110
- <151> 1994-10-18
- <160> 357
- <170> PatentIn version 3.1

<210> 1 <211> 234 <212> DNA <213> Ancyclostoma caninum	
<400> 1	
aaggcatacc cggagtgtgg tgagaatgaa tggctcgacg actgtggaac tcagaagcca	60
tgcgaggcca agtgcaatga ggaaccccct gaggaggaag atccgatatg ccgctcacgt	120
ggttgtttat tacctcctgc ttgcgtatgc aaagacggat tctacagaga cacggtgatc	180
ggcgactgtg ttagggaaga agaatgcgac caacatgaga ttatacatgt ctga	234
<210> 2 <211> 228 <212> DNA <213> Ancyclostoma caninum <400> 2	
aaggcatacc cggagtgtgg tgagaatgaa tggctcgacg tctgtggaac taagaagcca	60
tgcgaggcca agtgcagtga ggaagaggag gaagatccga tatgccgatc attttcttgt	120
ccgggtcccg ctgcttgcgt atgcgaagac ggattctaca gagacacggt gatcggcgac	180
tgtgttaagg aagaagaatg cgaccaacat gagattatac atgtctga	228
<210> 3 <211> 461 <212> DNA <213> Ancyclostoma caninum	
<220> <221> CDS <222> (22)(321)	
<220> <221> misc_feature <223> AcaNAPs cDNA sequence	
<400> 3	
gaattccgct actactcaac a atg aag atg ctt tac gct atc gct ata atg Met Lys Met Leu Tyr Ala Ile Ala Ile Met 1 5 10	51
ttt ctc ctg gta tca tta tgc agc gca aga aca gtg agg aag gca tac Phe Leu Leu Val Ser Leu Cys Ser Ala Arg Thr Val Arg Lys Ala Tyr 15 20 25	99

```
ccg gag tgt ggt gag aat gaa tgg ctc gac gac tgt gga act cag aag
                                                                           147
Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Asp Cys Gly Thr Gln Lys
cca tgc gag gcc aag tgc aat gag gaa ccc cct gag gag gaa gat ccg
                                                                           195
Pro Cys Glu Ala Lys Cys Asn Glu Glu Pro Pro Glu Glu Glu Asp Pro
                            50
ata tgc cgc tca cgt ggt tgt tta tta cct cct gct tgc gta tgc aaa
                                                                           243
Ile Cys Arg Ser Arg Gly Cys Leu Leu Pro Pro Ala Cys Val Cys Lys
                        65
                                                                           291
gac gga ttc tac aga gac acg gtg atc ggc gac tgt gtt aga gaa gaa
Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val Arg Glu Glu
gaa tgc gac caa cat gag att ata cat gtc t gaacgagaaa gcaacaataa cc
                                                                           344
Glu Cys Asp Gln His Glu Ile Ile His Val
aaaqqttcca actctcqctc tqcaaaatcq ctagttggat gtctcttttg cgtccgaata
                                                                           404
qttttaqttq atqttaaqta aqaactcctq ctqqaqaqaa taaagctttc caactcc
                                                                           461
<210> 4
<211> 77
<212> PRT
<213> Ascyclostoma caninum
<400> 4
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Asp
Cys Gly Thr Gln Lys Pro Cys Glu Ala Lys Cys Asn Glu Glu
                     20
Pro Pro Glu Glu Glu Asp Pro Ile Cys Arg Ser Arg Gly Cys
Leu Leu Pro Pro Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg
                             50
Asp Thr Val Ile Gly Asp Cys Val Arg Glu Glu Glu Cys Asp
Gln His Glu Ile Ile His Val
                 75
<210> 5
<211> 455
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> CDS
<222> (22)..(315)
<220>
<221> misc feature
<223> AcaNAP6 cDNA sequence
```

<400> 5

gaattc	eget	actad	ctcaa	ac a								gct Ala				51
ttt cto Phe Lei	_															99
ccg gag Pro Gli																147
cca tgo Pro Cys		Ala														195
cga tca Arg Sei	? Phe															243
ttc tac Phe Ty: 75	_	_	_				_	_	-	_	_	_				291
gac caa Asp Gli						_	tgaa	acgag	gag a	agcag	gtaat	ca ad	ccaaa	aggtt	С	346
caactti	cgc	tctad	caaaa	at co	gctag	gt t gg	g att	tctc	cctt	tgcg	gtgcg	gaa t	agt	ttagt	Ī.	406
tgatati	aag	taaaa	acct	ec to	gttga	aagaç	g aat	caaaq	gctt	tcca	actt	c				455
<210><211><211><212><213>	6 75 PRT Ascy	clost	coma	can:	inum		,									

<400> 6

Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Val Cys Gly Thr Lys Lys Pro Cys Glu Ala Lys Cys Ser Glu Glu Glu Glu Glu Asp 20 25 Pro Ile Cys Arg Ser Phe Ser Cys Pro Gly Pro Ala Ala Cys Val Cys 40 Glu Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val Lys Glu 55 Glu Glu Cys Asp Gln His Glu Ile Ile His Val

<210> 7 <211> 81 <212> PRT <213> Ascyclostoma caninum

<400> 7

 Arg
 Thr
 Val
 Arg
 Lys
 Ala
 Tyr
 Pro
 Glu
 Cys
 Glu
 Asn
 Glu
 Trp
 Leu

 1
 5
 6
 10
 10
 10
 15
 15
 15

 Asp
 Asp
 Cys
 Glu
 Cys
 Glu
 Asp
 Glu
 Asp
 Glu
 Asp
 Glu
 Asp
 Glu
 Asp
 Asp

<210> 8 <211> 79 <212> PRT <213> Ascyclostoma caninum

<400> 8

```
<210>
<211>
<212> \DNA
<213> Ancyclostoma cellanicum
< 220 >
<221> CDS
<222> (21)..(590)
<220>
<221> misc feature
<223> Rcombinant cDNA Molecule AceNAP4
<400> 9
gaattcacta ttatccaaca atg gcg gtg ctt tat tca gta gca ata gcg
                                                                            50
                      Met Ala Val Leu Tyr Ser Val Ala Ile Ala
tta cta ctg gta tca caa tgc agt ggg aaa ccg aac aat gtg atg act
                                                                            98
Leu Leu Val Ser Gln Cys Ser Gly Lys Pro Asn Asn Val Met Thr
                 15
aac gct tgt ggt ctt aat gaa tat ttc gct gag tgt ggc aat atg aag
                                                                           146
Asn Ala Cys Gly Leu Asn Glu Tyr Phe Ala Glu Cys Gly Asn Met Lys
             30
                                                                           194
gaa tgc gag cac aga tgc aat gag gag gaa aat gag gaa agg gac gag
Glu Cys Glu His Arg Cys Asn Glu Glu Glu Asn Glu Glu Arg Asp Glu
                             50
gaa aga ata acg gca tgc ctc atc cgt gtg tgt ttc cgt cct ggt gct
                                                                           242
Glu Arg Ile Thr Ala Cys Leu Ile Arg Val Cys Phe Arg Pro Gly Ala
                         65
tgc gta tgc aaa gac gga ttc tat aga aac aga aca ggc agc tgt gtg
                                                                           290
Cys Val Cys Lys Asp Gly Phe Tyr Arg Asn Arg Thr Gly Ser Cys Val
                    8.0
                                        8.5
gaa gaa gat gac tgc gag tac gag aat atg gag ttc att act ttt gca
                                                                           338
Glu Glu Asp Asp Cys Glu Tyr Glu Asn Met Glu Phe Ile Thr Phe Ala
                                    100
cca gaa gta ccg ata tgt ggt tcc aac gaa agg tac tcc gac tgc ggc
                                                                           386
Pro Glu Val Pro Ile Cys Gly Ser Asn Glu Arg Tyr Ser Asp Cys Gly
                                115
aat gac aaa caa tgc gag cgc aaa tgc aac gag gac gat tat gag aag
                                                                           434
Asn Asp Lys Gln Cys Glu Arg Lys Cys Asn Glu Asp Asp Tyr Glu Lys
                            130
gga gat gag gca tgc cgc tca cat gtt tgt gaa cgt cct ggt gcc tgt
                                                                           482
Gly Asp Glu Ala Cys Arg Ser His Val Cys Glu Arg Pro Gly Ala Cys
                        145
                                            150
gta tgc gaa gac ggg ttc tac aga aac aaa aaa ggt agc tgt gtg gaa
                                                                           530
Val Cys Glu Asp Gly Phe Tyr Arg Asn Lys Lys Gly Ser Cys Val Glu
155
                    160
                                        165
age gat gac tgc gaa tac gat aat atg gat ttc atc act ttt gca cca
                                                                           578
Ser Asp Asp Cys Glu Tyr Asp Asn Met Asp Phe Ile Thr Phe Ala Pro
                                    180
gaa acc tca cga taaccaaaga tgctacctct cgtacgcaac tccgctgatt gaggtt
                                                                           636
Glu Thr Ser Arg
            190
gattcactcc cttgcatctc aacatttttt ttgtgatgct gtgcatctga gcttaacctg
                                                                           696
```

```
711
ataaagccta tggtg
<210> 10
<211> 425
<212> DNA
<213> Ancyclostoma ceylanicum
<220>
<221> CDS
<222> (10)..(291)
<220>
<221> misc feature
<223> Recombinant cDNA Molecule AceNAP5
<400> 10
gaatteege atg egg acg ete tae ete att tet ate tgg ttg tte ete ate
                                                                            51
         Met Arg Thr Leu Tyr Leu Ile Ser Ile Trp Leu Phe Leu Ile
                                              10
                          5
                                                                            99
tog caa tgt aat gga aaa goa tto oog aaa tgt gac gto aat gaa aga
Ser Gln Cys Asn Gly Lys Ala Phe Pro Lys Cys Asp Val Asn Glu Arg
                   20
                                         25
                                                                           147
tto gao gtg tgt ggc aat ctg aag gag tgc gag ctc aag tgc gat gag
Phe Glu Val Cys Gly Asn Leu Lys Glu Cys Glu Leu Lys Cys Asp Glu
                                     40
gac cct aag ata tgc tct cgt gca tgt att cgt ccc cct gct tgc gta
                                                                           195
Asp Pro Lys Ile Cys Ser Arg Ala Cys Ile Arg Pro Pro Ala Cys Val
tgc gat gac gga ttc tac aga gac aaa tat ggc ttc tgt gtt gaa gaa
                                                                           243
Cys Asp Asp Gly Phe Tyr Arg Asp Lys Tyr Gly Phe Cys Val Glu Glu
                            70
                                                75
        65
                                                                           293
gac gaa tgt aac gat atg gag att att act ttt cca cca gaa acc aaa tg
Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys
                        85
                                            90
                                                                           353
atgaccgaag cttccacctt tctatacata tcttcactgc ttgacaggct tctcgacaat
ttagaagttc tgcttgactt tgtctatttg aaattgttca cactaatggg ggaagtaaag
                                                                           413
                                                                           425
cattttcacq ac
<210> 11
<211> 471
<212> DNA
<213> Ancyclostoma ceylanicum
<220>
<221> CDS
<222> (23)..(237)
<220>
<221> misc_feature
```

<223> Recombinant cDNA Molecule AceNAP7

gaat	tccg	gct a	acatt	tttca	aa ca										e Cys		52
_	_		gtt Val	_		_			_	_		_	_	_			100
_		_	aga Arg 30		_	_	_			_	_	_	_				148
			gaa Glu														196
			tgc Cys		-												244
			act Thr														292
			cca Pro			tagt	gega	aag t	tcc	cttct	it to	ctcca	aaato	c tgo	eteegt	3	349
ctca	aatta	atc a	acaca	accto	cc ac	ctagt	taag	g att	gact	gac	tcto	cttgo	cat t	gtag	gtattt		409
tcg	ettga	act o	ctgtg	gcatt	t aa	agcat	gaga	a tac	ctact	agg	gaga	aataa	aaa a	attac	ctaact		469
ac																	471

<210><211>	12 396	
<212>	DNA	
<213>	Ancyclostoma duodenale	
<220>		
<221>	CDS	
<222>	(10)(237)	
<220>		
<221>	misc_feature	
<223>	Recombinant cDNA Molecule Adu NAP4	
<400>	12	
gaattc	cgg aaa tgt cct acc gat gaa tgg ttc gat tgg tgt gga act tac Lys Cys Pro Thr Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr	51
_	t tgc gaa ctc aag tgc gat agg gag cta act gag aaa gaa gag s Cys Glu Leu Lys Cys Asp Arg Glu Leu Thr Glu Lys Glu Glu 20 25 30	99
cag gca	a tgt ctc tca cgt gtt tgt gag aag tcc gct tgc gta tgc aat a Cys Leu Ser Arg Val Cys Glu Lys Ser Ala Cys Val Cys Asn 35 40 45	147
	a tta tac aga gac aag ttt ggc aac tgt gtt gaa aaa gac gaa y Leu Tyr Arg Asp Lys Phe Gly Asn Cys Val Glu Lys Asp Glu 50 55 60	195
_	c gat atg gag att att act ttt gca cca gaa acc aaa taatggccta n Asp Met Glu Ile Ile Thr Phe Ala Pro Glu Thr Lys	247
•	65 70 75	
aggttc	caaa ccttgctaca caccgtcagt gctttactgt ttcctctacg tgttagtagt	307
tttaati	tana tatatatati tanagnattat atnathana achinanna achinanna	367
tttgeti	tgac totgtgtatt taagcattgt otactaatgg goaaagtaaa goattgtaag	207
gacataa	ataa tgagtaaacc ttctgattt	396

1																	
<210 <211 <212 <213	> 6 2 > I	13 688 DNA Ancyd	clos	coma	cey.	lanio	cum										
<220 <221 <222	-> (CDS (21)	(5	50)													
<220 <221 <223	. > r	-	_feat		DNA	Mole	ecule	e Adı	uNAP'	7							
< 400)> :	13															
gaat	tcc	ggg (cggca	ag a a	_	_	cga a Arg	_			-	-		Ile			5
			att Ile														9
		_	agg Arg 30	_	-	_			_	_		-	-				14
	_	_	ttg Leu	_	_												19
			cgt Arg														24
			aac Asn														29
_	_		atg Met								_	_	_	_			33
			tgg Trp 110											Glu			38
			gag Glu					Lys									43
		Cys	act Thr														48
			ggc Gly								Cys						53
atc			ttt Phe		ccg	-						agg (ctcca	aacto	ct ego	ct	58

644

688

acacaacgtc agggctagaa tggcccctct gcgagttagt agttttgctt gactctgctt

175

atttgagcac tttctattga tggcgaaaat aaagcattta aaac

```
<210> 14
<211> 349
<212> DNA
<213> Heligmosomoides polygyrus
<220>
<221> CDS
<222> (49)..(276)
<220>
<221> misc_feature
<223> Recmobinant cDNA Molecule HpoNAP5
<400> 14
                                                                            57
quattecged cacetdadad gtgagetacd caagtetteg etggtaca atg ate ega
                                                     Met Ile Arg
                                                                           105
aag ete gtt etg etg act get ate gte aeg gtg gtg eta agt geg aag
Lys Leu Val Leu Leu Thr Ala Ile Val Thr Val Val Leu Ser Ala Lys
                    10
acc tgt gga cca aac gag gag tac act gaa tgc ggg acg cca tgc gag
                                                                           153
Thr Cys Gly Pro Asn Glu Glu Tyr Thr Glu Cys Gly Thr Pro Cys Glu
ccg aag tgc aat gaa ccg atg cca gac atc tgt act ctg aac tgc atc
                                                                           201
Pro Lys Cys Asn Glu Pro Met Pro Asp Ile Cys Thr Leu Asn Cys Ile
                40
                                    45
gtg aac gtg tgt cag tgc aaa ccc ggc ttc aag cgc gga ccg aaa gga
                                                                           249
Val Asn Val Cys Gln Cys Lys Pro Gly Phe Lys Arg Gly Pro Lys Gly
            55
                                60
                                                                           304
tgc gtc gcc ccc gga cca ggc tgt aaa tagttctcca cctgcccttt cgttggaa
Cys Val Ala Pro Gly Pro Gly Cys Lys
                             75
                                                                           349
caaatggctg tctttttaca ttctgaatca ataaagccga acggt
<210> 15
<211> 432
<213> Heligmosomoides polygyrus
<220>
<221> CDS
<222> (40)..(393)
<220>
<221> misc feature
<223> Vectors pDONG61
<400> 15
                                                                            54
aagctttgct aacatactgc gtaataagga gtcttaatc atg cca gtt ctt ttg
                                           Met Pro Val Leu Leu
                                                                           102
ggt att ccg tta tta ttg cgt ttc ctc ggt ttc ctt ctg gta act ttg
```

Gly	Ile	Pro	Leu	Leu 10	Leu	Arg	Phe	Leu	Gly 15	Phe	Leu	Leu	Val	Thr 20	Leu	
					act Thr											150
					ttt Phe											198
					tct Ser											246
					tta Leu 75											294
					gta Val											342
					ta t Tyr											390
gga Gly	ggc	caagt	tcg g	gccat	tece	at at	tcac	gcgg	c cg	cggat	tcc					432
<210 <211 <213 <213	l > 4 2 > I 3 > I	16 433 DNA Heliq	gmoso	omoid	des 1	polyg	gyrus	5								
<221 <221	L> (CDS (40)	(39	93)												
<220 <220 <220	1> r	misc_ Vecto			G62											
< 400)> :	16														
aago	cttt	gct a	aacat	tacto	gc g1	caata	aagga	a gto	cttaa			cca q Pro '				54
Gly	Ile	Pro	Leu	Leu 10	ttg Leu	Arg	Phe	Leu	Gly 15	Phe	Leu	Leu	Val	Thr 20	Leu	102
					act Thr											150
	_			-	ttt Phe		_									198
					tct Ser	_		_	_							246
					tta Leu 75											294

				tct Ser 90												342
			_	tct Ser		_	_		_							390
gga Gly	ggg	ccaag	gtc (ggcca	atcc	ca ta	atcad	cgcg	g cc	gegga	atcc					433
<210 <211 <212 <213	L> 4 2> I	17 134 DNA Heliç	gmoso	omoio	des p	polyg	gyrus	5								
<220 <221 <222	L> (CDS (140)	(2	291)												
<220 <221 <223	L> r	misc_ /ecto		ture pDONG	G63											
<400)> :	L7														
aago	ctttg	gct a	aacat	tacto	gc gt	taata	aagga	a gto	cttaa		atg o					54
										1	Met I 1	Pro V	/al I	Leu 1	Leu 5	
		_		tta Leu 10	_	_			-	ttc	1 ctt	ctg	gta	act	5 ttg	102
Gly	Ile ggc	Pro	Leu ctg	Leu	Leu	Arg ttc	Phe ctt	Leu aaa	Gly 15 aag	ttc Phe ggc	1 ctt Leu ttc	ctg Leu ggt	gta Val aag	act Thr 20 ata	5 ttg Leu gct	102
Gly ttc Phe att	Ile ggc Gly gct	Pro tat Tyr att	Leu ctg Leu 25 tca	Leu 10 ctt	Leu act Thr	Arg ttc Phe ctt	Phe ctt Leu gct	Leu aaa Lys 30 ctt	Gly 15 aag Lys att	ttc Phe ggc Gly att	1 ctt Leu ttc Phe	ctg Leu ggt Gly	gta Val aag Lys 35 aac	act Thr 20 ata Ile	5 ttg Leu gct Ala att	
Gly ttc Phe att Ile ctt	Ile ggc Gly gct Ala gtg	Pro tat Tyr att Ile 40 ggt	ctg Leu 25 tca Ser	Leu 10 ctt Leu ttg Leu ctc Leu	act Thr ttt Phe tct Ser	Arg ttc Phe ctt Leu gat	Phe ctt Leu gct Ala 45 att Ile	aaa Lys 30 ctt Leu	Gly 15 aag Lys att Ile gca Ala	ttc Phe ggc Gly att Ile	1 ctt Leu ttc Phe ggg Gly tta Leu	ctg Leu ggt Gly ctt Leu 50 ccc	gta Val aag Lys 35 aac Asn	act Thr 20 ata Ile tca Ser	5 ttg Leu gct Ala att Ile ttt	150
Gly ttc Phe att Ile ctt Leu gtt	ggc Gly gct Ala gtg Val 55 cag	Pro tat Tyr att Ile 40 ggt Gly ggc	ctg Leu 25 tca Ser tat Tyr	Leu 10 ctt Leu ttg Leu ctc Leu	act Thr ttt Phe tct Ser	Arg ttc Phe ctt Leu gat Asp 60 att	Phe ctt Leu gct Ala 45 att Ile ctc	aaa Lys 30 ctt Leu agc Ser	Gly 15 aag Lys att Ile gca Ala	ttc Phe ggc Gly att Ile caa Gln	1 ctt Leu ttc Phe ggg Gly tta Leu 65 gcg	ctg Leu ggt Gly ctt Leu 50 ccc Pro	gta Val aag Lys 35 aac Asn tct Ser	act Thr 20 ata Ile tca Ser gat Asp	5 ttg Leu gct Ala att Ile ttt Phe	150
Gly ttc Phe att Ile ctt Leu gtt Val 70 tat	ggc Gly gct Ala gtg Val 55 cag Gln gtt	Pro tat Tyr att Ile 40 ggt Gly ggc Gly att	ctg Leu 25 tca Ser tat Tyr gtt Val	Leu 10 ctt Leu ttg Leu ctc Leu cag	Leu act Thr ttt Phe tct Ser tta Leu 75 gta	Arg ttc Phe ctt Leu gat Asp 60 att Ile aag	Phe ctt Leu gct Ala 45 att Ile ctc Leu gct	Leu aaa Lys 30 ctt Leu agc ser ccg Pro gct	Gly 15 aag Lys att Ile gca Ala tct Ser	ttc Phe ggc Gly att Ile caa Gln aat Asn 80 ttc	1 ctt Leu ttc Phe ggg Gly tta Leu 65 gcg Ala att	ctg Leu ggt Gly ctt Leu 50 ccc Pro ctt Leu	gta Val aag Lys 35 aac Asn tct Ser ccc Pro	act Thr 20 ata Ile tca Ser gat Asp tgt Cys	5 ttg Leu gct Ala att Ile ttt Phe ttt Phe 85 aaa	150 198 246
Gly ttc Phe att Ile ctt Leu gtt Val 70 tat Tyr caa	ggc Gly gct Ala gtg Val 55 cag Gln gtt Val aaa	Pro tat Tyr att Ile 40 ggt Gly ggc Gly att Ile atc	ctg Leu 25 tca Ser tat Tyr gtt Val ctc Leu	Leu 10 ctt Leu ttg Leu ctc Leu cag Gln tct Ser	Leu act Thr ttt Phe tct Ser tta Leu 75 gta Val tat	Arg ttc Phe ctt Leu gat Asp 60 att Ile aag Lys ttg	Phe ctt Leu gct Ala 45 att Ile ctc Leu gct Ala gat	aaa Lys 30 ctt Leu agc Ser ccg Pro gct Ala	Gly 15 aag Lys att Ile gca Ala tct Ser att Ile 95 gat	ttc Phe ggc Gly att Ile caa Gln aat Asn 80 ttc Phe	ttc Phe ggg Gly tta Leu 65 gcg Ala att Ile	ctg Leu ggt Gly ctt Leu 50 ccc Pro ctt Leu	gta Val aag Lys 35 aac Asn tct ser ccc Pro gac Asp	act Thr 20 ata Ile tca Ser gat Asp tgt Cys gtt Val 100 tca	5 ttg Leu gct Ala att Ile ttt Phe ttt Phe 85 aaa Lys ggc	150 198 246 294

```
<210> 18
<211> 6
<212> PRT
<213> Artifical Sequence
<220>
<221> misc-feature
<223> Description of Artifical Sequence: pDONG vector linker sequence
<400> 18
Gly Gly Ser Gly Gly
                 5
<210> 19
<211> 430
<212> DNA
<213> Ancyclostoma ceylanicum
<220>
<221> CDS
<222> (10)..(282)
<220>
<221> misc-feature
<223> "w" stands for a or t
<400> 19
                                                                            51
gaatteegg etg gtw tee tae tge agt gga aaa gea aeg atg eag tgt ggt
         Leu Val Ser Tyr Cys Ser Gly Lys Ala Thr Met Gln Cys Gly
gag aat gaa aag tac gat tcg tgc ggt agc aag gag tgc gat aag aag
                                                                            99
Glu Asn Glu Lys Tyr Asp Ser Cys Gly Ser Lys Glu Cys Asp Lys Lys
                   20
                                        25
                                                                           147
tgc aaa tat gac gga gtt gag gag gaa gac gac gag gaa cct aat gtg
Cys Lys Tyr Asp Gly Val Glu Glu Glu Asp Asp Glu Glu Pro Asn Val
               35
                                    40
                                                                           195
cca tgc cta gta cgt gtg tgt cat caa gat tgc gta tgc gaa gaa gga
Pro Cys Leu Val Arg Val Cys His Gln Asp Cys Val Cys Glu Glu Gly
                               55
                                                                           243
tto tat aga aac aaa gat gac aaa tgt gta tca gca gaa gag tgc gaa
Phe Tyr Arg Asn Lys Asp Asp Lys Cys Val Ser Ala Glu Asp Cys Glu
       65
                            70
ctt gac aat atg gac ttt ata tat ccc gga act cga aac tgaacgaagg ctc
                                                                           295
Leu Asp Asn Met Asp Phe Ile Tyr Pro Gly Thr Arg Asn
cattettget geacaagate gattgtetet eccetgeate teagtagttt tgctacattg
                                                                          355
tatatggtag caaaaaatta gcttagggag aataaaatct ttacctatat ttaatcaatg
                                                                           415
                                                                           430
aagtattctc tttct
```

<210> 20 <211> 100 <212> PRT <213> Ancyclostoma caninum <400> 20 Met Lys Met Leu Tyr Ala Ile Ala Ile Met Phe Leu Leu Val Ser Leu 10 Cys Ser Ala Arg Thr Val Arg Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Asp Cys Gly Thr Gln Lys Pro Cys Glu Ala Lys Cys 40 Asn Glu Glu Pro Pro Glu Glu Glu Asp Pro Ile Cys Arg Ser Arg Gly 55 Cys Leu Leu Pro Pro Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg Asp 70 75 Thr Val Ile Gly Asp Cys Val Arg Glu Glu Glu Cys Asp Gln His Glu Ile Ile His Val 100 <210> 21 <211> 98 <212> PRT <213> Ancyclostoma caninum <400> 21 Met Lys Met Leu Tyr Ala Ile Ala Ile Met Phe Leu Leu Val Ser Leu 10 Cys Ser Thr Arg Thr Val Arg Lys Ala Tyr Pro Glu Cys Gly Glu Asn 25 Glu Trp Leu Asp Val Cys Gly Thr Lys Lys Pro Cys Glu Ala Lys Cys 40 Ser Glu Glu Glu Glu Asp Pro Ile Cys Arg Ser Phe Ser Cys Pro 55 60 Gly Pro Ala Ala Cys Val Cys Glu Asp Gly Phe Tyr Arg Asp Thr Val

Ile Gly Asp Cys Val Lys Glu Glu Glu Cys Asp Gln His Glu Ile Ile

70

75

His Val

<210> 22 <211> 94 <212> PRT <213> Ancyclostoma ceylanicum <400> 22 Met Arg Thr Leu Tyr Leu Ile Ser Ile Trp Leu Phe Leu Ile Ser Gln 10 Cys Asn Gly Lys Ala Phe Pro Lys Cys Asp Val Asn Glu Arg Phe Glu 20 25 Val Cys Gly Asn Leu Lys Glu Cys Glu Leu Lys Cys Asp Glu Asp Pro Lys Ile Cys Ser Arg Ala Cys Ile Arg Pro Pro Ala Cys Val Cys Asp Asp Gly Phe Tyr Arg Asp Lys Tyr Gly Phe Cys Val Glu Glu Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys <210> 23 <211> 96 <212> PRT <213> Ancyclostoma ceylanicum <400> 23 Met Ser Thr Leu Tyr Val Ile Ala Ile Cys Leu Leu Val Ser Gln 5 1.0 Cys Asn Gly Arg Thr Val Lys Lys Cys Gly Lys Asn Glu Arg Tyr Asp Asp Cys Gly Asn Ala Lys Asp Cys Glu Thr Lys Cys Gly Glu Glu Glu 40 Lys Val Cys Arg Ser Arg Glu Cys Thr Ser Pro Gly Ala Cys Val Cys Glu Gln Gly Phe Tyr Arg Asp Pro Ala Gly Asp Cys Val Thr Asp Glu 70 75 Glu Cys Asp Glu Trp Asn Asn Met Glu Ile Ile Thr Met Pro Lys Gln 85 90 <210> 24 <211> 108 <212> PRT <213> Ancyclostoma ceylanicum <400> 24

 Met Ala Val Leu Tyr Ser Val Ala Ile Ala Leu Leu Leu Leu Val Ser Gln

 1
 5
 10
 15

 Cys Ser Gly Lys Pro Asn Asn Val Met Thr Asn Ala Cys Gly Leu Asn 20
 25
 30

 Glu Tyr Phe Ala Glu Cys Gly Asn Met Lys Glu Cys Glu His Arg Cys 35
 40
 45

Asn Glu Glu Glu Asn Glu Glu Arg Asp Glu Glu Arg Ile Thr Ala Cys
50
Leu Ile Arg Val Cys Phe Arg Pro Gly Ala Cys Val Cys Lys Asp Gly
65
Tyr Arg Asn Arg Thr Gly Ser Cys Val Glu Glu Asp Asp Cys Glu
85
Tyr Glu Asn Met Glu Phe Ile Thr Phe Ala Pro Glu
105

<210> 25 <211> 82 <212> PRT <213> Ancyclostoma ceylanicum

 Val
 Pro
 Ile
 Cys
 Gly
 Ser
 Asn
 Glu
 Arg
 Tyr
 Ser
 Asp
 Cys
 Alsp
 Asp
 Asp
 Asp
 Cys
 Asp
 Cys
 Asp
 Tyr
 Glu
 Lys
 Gly
 Asp

 Lys
 Glu
 Arg
 Lys
 Lys
 Glu
 Arg
 Pro
 Gly
 Ala
 Cys
 Val
 Cys

 Glu
 Ala
 Cys
 Arg
 Ser
 His
 Val
 Cys
 Glu
 Arg
 Pro
 Gly
 Ala
 Cys
 Val
 Cys

 Glu
 Asp
 Gly
 Pro
 Tyr
 Arg
 Asp
 Lys
 Lys
 Gly
 Ser
 Cys
 Val
 Glu
 Ser
 Asp

 Asp
 Cys
 Glu
 Tyr
 Asp
 Asp
 Pro
 Ile
 Thr
 Pro
 Ala
 Pro
 Glu
 Thr

 Asp
 Cys
 Glu
 Tyr
 Asp
 Asp
 Pro
 Ile
 Thr
 Pro
 Ala
 Pro
 Glu
 Thr

 Asp

<210> 26 <211> 75 <212> PRT <213> Ancyclostoma duodenale <400> 26

 Lys
 Cys
 Pro
 Thr
 Asp
 Glu
 Trp
 Phe
 Asp
 Trp
 Cys
 Gly
 Thr
 Tyr
 Lys
 His

 Cys
 Glu
 Leu
 Leu
 Thr
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Glu
 Cys

 Leu
 Ser
 Arg
 Ala
 Cys
 Ala
 Cys
 Asn
 Asp
 Gly
 Leu

 Tyr
 Arg
 Asp
 Lys
 Gly
 Asn
 Cys
 Val
 Glu
 Lys
 Asn
 Asp
 Asp

 Met
 Glu
 Ile
 Thr
 Phe
 Ala
 Pro
 Glu
 Thr
 Lys
 Ile
 I

<210> 27

<211> 102

<212> PRT

<213> Ancyclostoma duodenale

<400> 27

Met Arg Met Leu Tyr Leu Val Pro Ile Trp Leu Leu Leu Ile Ser Leu 1 5 10 15

Cys Ser Gly Lys Ala Ala Lys Lys Cys Gly Leu Asn Glu Arg Leu Asp 20 25 30

Cys Gly Asn Leu Lys Gl
n Cys Glu Pro Lys Cys Ser Asp Leu Glu Ser 35
 40
 45

Glu Glu Tyr Glu Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys 50 60

Ser Arg Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys 65 70 75 80

Gly Lys Cys Val Ala Lys Asp Val Cys Glu Asp Asp Asn Met Glu Ile 85 90 95

Ile Thr Phe Pro Pro Glu 100

<210> 28

<211> 78

<212> PRT

<213> Ancyclostoma duodenale

<400> 28

Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His 65 70 75

1	\														
<210) >	29													
<211	L>	76													
<212	2 >	PRT													
<213	3 >	Helo	gmos	omoi	des p	poly	gyrus	5							
<400)>	29													
Met	Ile	Arg	Lys	Leu	Val	Leu	Leu	Thr	Ala	Ile	Val	Thr	Val	Val	Leu
1			_	5					10					15	
Ser	Ala	Lys	Th ${f r}$	Cys	Gly	Pro	Asn	Glu	Glu	Tyr	Thr	Glu	Cys	Gly	Thr
			20					25					30		

<210> 30 <211> 187 <212> DNA <213> Ancyclostoma caninum <400> 30

ttattegaaa egatgitete teeaatittig teetiggaaa tiatittage taetitigeaa 60 teigietteg eecagecagi tateteeaet aeegitiggit eegetgeega gggitettig 120 gacaagagge etateegeg aatteagate tgaatgegge egetegagae tagtggatee 180 ttagaca 187

<210><211><211><212><213>	31 495 DNA Ancy	clos	toma	can:	inum											
<220><221><222>	CDS (36)	(3	56)													
<220><221><223>	misc Reco	_		eDNA	Mole	ecul	e Aca	aNAP?	23							
<400>	31															
gaattc	cgcg (gaati	tecg	ct to	gcta	ctac	t caa				acg (Thr 1					53
gtc gc Val Al																101
gag aa Glu Ly																149
cca tg Pro Cy 40	s Glu					ata										197
tac ga Tyr Gl	a gag			_	_		_	_			_		_	-		245
cag cc Gln Pr																293
ggc ga Gly Gl																341
att ac Ile Th				taaa	accca	aat a	aatga	accaa	at ga	actco	ccatt	ct(cgt	gatc	ag	398
cgtcgg	tggt 1	tgaca	agtci	cc co	cctad	catc	t tag	gtagt	ttt	gctt	gata	aat g	gtata	acata	aa	458
actgta	cttt (ctgag	gatag	ga at	aaag	gctct	caa	actad	2							495

```
k210>
      32
<211>
      478
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> CDS
<222> (24)..(341)
<220>
<221> misc_feature
<223> Recombinant cDNA Molecule AcaNAP24
<400> 32
                                                                            53
gaatteegeg gaatteegea acg atg aag acg ete tat att ate get ata tge
                          Met Lys Thr Leu Tyr Ile Ile Ala Ile Cys
                                                                           101
tcg ctc ctc att tcg ttg tgt act gga aga ccg gaa aaa aag tgc ggt
Ser Leu Leu Ile Ser Leu Cys Thr Gly Arg Pro Glu Lys Lys Cys Gly
                15
                                    20
ccc ggt gaa aga ctc gcc tgt ggc aat aag aag cca tgc gag cgc aag
                                                                           149
Pro Gly Glu Arg Leu Ala Cys Gly Asn Lys Lys Pro Cys Glu Arg Lys
                                35
                                                                           197
tgc aaa ata gag aca agt gag gag gat gac tac cca gag gga acc
Cys Lys Ile Glu Thr Ser Glu Glu Glu Asp Asp Tyr Pro Glu Gly Thr
                            50
gaa cgt ttt cga tgc ctc tta cgt gtg tgt gat cag cct tat gaa tgc
                                                                           245
Glu Arg Phe Arg Cys Leu Leu Arg Val Cys Asp Gln Pro Tyr Glu Cys
                        65
                                                                           293
ata tgc gat gat gga tac tac aga aac aag aaa ggc gaa tgt gtg act
Ile Cys Asp Asp Gly Tyr Tyr Arg Asn Lys Lys Gly Glu Cys Val Thr
                   80
gat gat gta tgc cag gaa gac ttt atg gag ttt att act ttc gca cca
                                                                           341
Asp Asp Val Cys Gln Glu Asp Phe Met Glu Phe Ile Thr Phe Ala Pro
                95
                                    100
taaacccaat aatgaccact ggctcccatt cttcgtgacc agcgtcggtg gttgacagtc
                                                                           401
tcccctqcat cttaqtaqtt ttqcttqata atqtatccat aaacaqtact ttctgagata
                                                                           461
gaataaagct ctcaact
                                                                           478
```

<210>	33													
<211>	472													
<212>	DNA			,										
<213>	Ancyclo	ostoma	can	ınum										
<220>														
<221>	CDS													
<222>	(21)	(335)												
<220>	misc fe	ature												
<223>	Recombi		CDNA	Mole	ecule	e Aca	aNAP:	25						
		•												
<400>	33													
										- ~ ~.	~+ ~+	+	~ ~	50
gaatte	cgta cta	actcaa									la II			50
				1	, 5 11	.11		,	10 1.			10	_	
tcg ctg	g ctc tt	t tca	ctg	tgt	act	gga	aga	ccg	gaa	aaa	aag	tgc	ggt	98
Ser Le	ı Leu Pl		Leu	Cys	Thr	Gly	_	Pro	Glu	Lys	Lys		Gly	
		15					20			+~~	~~~	25	224	146
	t gaa ag y Glu Ai													140
110 01	3(1,Dp	CID	1114	35	<i>D</i> ₁ <i>S</i>	2,0		C ₁ E	40		-12	
tgc aaa	a ata ga	ag aca	agt	gag	gag	gag	gat	gac	gac	gta	gag	gat	acc	194
Cys Lys	s Ile G	lu Thr	Ser	Glu		Glu	Asp	Asp	Asp		Glu	Asp	Thr	
~~+ ~+	45		~+~	~~+	50	+~+	~~~	a~+	aat	55	222	+ ~ ~	2+2	242
	g aga to l Arg Cy													242
60	r mg c	, b Lea		65	741	010	014		70	204		0,0		
	g gat g													290
	s Asp G	ly Tyr		Arg	Asn	Lys	Lys		Glu	Cys	Val	Thr		
75			80			~~~		85	20+	++-	~~~	999	90	341
	a tgc ca l Cys Gl												Ladacc	241
Abp va.	г сув с	95	мър	1 110	1100	OIU	100	110	1111	1	1114	105		
caataat	gac cad	ctggct	cc ca	attct	tcgt	t gat	tcago	cgtc	ggt	ggtt	gac a	agtct	tcccct	401
gcatct	tagt tgo	etttge	tt ga	ataat	cctat	t aca	ataaa	acag	tact	ttci	ga g	gatag	gaataa	461
agetete	caac t													472

ν.																	
<210><211><211><212><213>	34 487 D N A An c yc	clost	coma	can	inum												
<220><221><222>	CDS (57).	. (34	17)														
<220><221><223>	misc_ Recom	_		DNA	Mole	ecule	e Aca	aNAP:	31, i	AcaNi	AP42	and	Acal	NAP46	5		
<400>	34																
gaattc	cgga c	cttac	ctagt	ta ct	cago	cgaat	t caa	aata	cgac	ttad	ctact	ac 1	caa	Me		į	59
aag ac Lys Th																10	07
agt gg Ser Gl																1!	55
gac tg Asp Cy 35	t ggc															20	03
agt ga Ser Gl					cag					cgt						25	51
cct gt Pro Va				gaa					aga					caa		29	99
tgt gt Cys Va															tg	34	49
aagcaa	atga c		gate	gg tt	tgga	actc		ctaca	agat	caca	agctt	ta d	ctgtt	tccc	ct	4 (09
tgcatc	atag t	agtt	ttg	ct ag	gataq	gtgta	a tai	tatta	agca	tgat	tttt	ctg a	atag	ggaga	aa	4 (69
taaagc	ttta a	aatt	tta													4 !	87

<210 <211 <212	.>	35 477 DNA														
<213			clost	toma	can	inum										
<220 <221 <222	. >	CDS (24)	(3	38)												
<220 <221 <223	.> 1		_feat mbina		cDNA	Mol	ecule	e Aca	aNAP	44						
<400)>	35														
gaat	tcc	gcg (gaatt	tccg	ca a	M	tg aa et Ly 1	ag ao ys Tl	cg ct hr Le	eu T	at at yr II	tt at le II	tc go	ct at la I	ta tgc le Cys 10	53
			att Ile													103
			aga Arg 30													149
			gag Glu													197
			tgc Cys													245
Cys 75	Lys	Asp	gga Gly	Tyr	Tyr 80	Arg	Asn	Lys	Lys	Gly 85	Glu	Cys	Val	Thr	Asp 90	293
			cag Gln												taaacc	34-
caat	aat	gac	cacto	ggct	CC C	attc	ttcgt	t ga	tcag	cgtc	ggt	ggtt	gac (agtc	tcccct	40-
gcat	ctt	agt '	tgcti	ttgci	tt ga	ataa	tctat	t aca	ataa	acag	tact	tttc1	tga (gata	gaataa	464
agct	ctc	aac ·	tac													47

<210> 36 <211> 686 <212> DNA <213> Ancycl	lostoma canin	um					
<220> <221> CDS <222> (14)	. (556)						
_	Eeature Dinant cDNA M	olecule AcaNAP	4 5				
<400> 36							
aatteegga aaa atg etg atg ete tae ett gtt eet ate tgg ttg eta 48 Met Leu Met Leu Tyr Leu Val Pro Ile Trp Leu Leu 1 5 10							
	aa tgc agt g	ga aaa tcc gcg	aag aaa tgt ggt Lys Lys Cys Gly 25				
		sn Leu Lys Ala	tgc gag aaa aag Cys Glu Lys Lys 40				
			gaa gat gag tcg Glu Asp Glu Ser 55				
-			gta tgc gat gaa Val Cys Asp Glu				
Tyr Arg Asn I			aga gat gat tgc Arg Asp Asp Cys 90				
			gaa gat aaa tgt Glu Asp Lys Cys 105				
	he Asp Trp C		aag cag tgt gag Lys Gln Cys Glu 120	-			
			gag gca tgc ctc Glu Ala Cys Leu 135				
			gac gga ctg tac Asp Gly Leu Tyr				
Asp Phe Gly A			tgt aac gat atg Cys Asn Asp Met 170				
atc act ttt c Ile Thr Phe F 175			ccaaagg c tctaactc	t cgctacat 585			
aacgtcagtg cttgaattgc ccctttacga gttagtaatt ttgactaact ctgtgtaatt 64							
gagcattgtc tactgatggt gaaaatgaag tgttcaatgt ct 686							

```
<210> 37
<211> 707
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> CDS
<222> (34)..(576)
<220>
<221> misc feature
<223> Recombinant cDNA Molecule AcaNAP47
<400> 37
gaattccgcg gaattccggt tggcggcaga aaa atg ctg atg ctc tac ctt gtt
                                    Met Leu Met Leu Tyr Leu Val
cct atc tgg ttc ctg ctc att tcg caa tgc agt gga aaa tcc gcg aag
                                                                           102
Pro Ile Trp Phe Leu Leu Ile Ser Gln Cys Ser Gly Lys Ser Ala Lys
                                                                           150
aaa tgt ggc ctc aat gaa aaa ttg gac tgt ggc aat ctg aag gca tgc
Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn Leu Lys Ala Cys
                        30
gag aaa aag tgc agc gac ttg gac aat gag gag gat tat ggg gag gaa
                                                                           198
Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp Tyr Gly Glu Glu
                                        50
                    45
                                                                           246
gat gag tcg aaa tgc cga tca cgt gaa tgt att ggt cgt gtt tgc gta
Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ile Gly Arg Val Cys Val
               60
                                                                           294
tgc gat gaa gga ttc tac aga aac aag aag ggc caa tgt gtg aca aga
Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln Cys Val Thr Arg
                                80
gac gat tgc gag tat gac aat atg gag att atc act ttt cca cca gaa
                                                                           342
Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr Phe Pro Pro Glu
        90
                            95
gat aaa tgt ggt ccc gat gaa tgg ttc gac tgg tgt gga act tac aag
                                                                           390
Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys
                       110
                                            115
cag tgt gag cgc aag tgc agt gag gag cta agt gag aaa aat gag gag
                                                                           438
Gln Cys Glu Arg Lys Cys Ser Glu Glù Leu Ser Glu Lys Asn Glu Glu
                   125
                                       130
gca tgc ctc tca cgt gct tgt act ggt cgt gct tgc gtt tgc aac gac
                                                                           486
Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Asn Asp
               140
                                   145\
gga ttg tat aga gac gat ttt ggc aat tgt gtt gag aaa gac gaa tgt
                                                                           534
Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu Lys Asp Glu Cys
           155
                               160
                                                                          586
aac gat atg gag att atc act ttt cca ccg gaa acc aaa cac tgaccaaagg
Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His
```

ctctagctct cgctacataa cgtcagtgct tgaattgtcc ctttacgtgt tagtaatttt	646					
gactaactct gtgtatttga gcattgtcta ctaatggtga aaatgaagct tttcaatgac	706					
t	707					
<210> 38 <211> 529 <212> DNA <213> Ancyclostoma caninum						
<220> <221> CDS <222> (31)(309)						
<220> <221> misc_feature <223> Recombinant cDNA Molecule AcaNAP48						
<400> 38						
gaatteegta egacetaeta etaeteaaeg atg aag geg ete tat gtt ate tet Met Lys Ala Leu Tyr Val Ile Ser						
1 5 ata acg ttg ctc ctg gta tgg caa tgc agt gca aga aca gcg agg aaa Ile Thr Leu Leu Leu Val Trp Gln Cys Ser Ala Arg Thr Ala Arg Lys 10 15 20	102					
ccc cca acg tgt ggt gaa aat gaa agg gtc gaa tgg tgt ggc aag cag Pro Pro Thr Cys Gly Glu Asn Glu Arg Val Glu Trp Cys Gly Lys Gln 25 30 35 40	150					
tgc gag atc aca tgt gac gac cca g at aag ata tgc cgc tca ctc gct Cys Glu Ile Thr Cys Asp Asp Pro A s p Lys Ile Cys Arg Ser Leu Ala 45 50 55	198					
tgt cct ggt cct cct gct tgc gta tgc gac gac gga tac tac aga gac Cys Pro Gly Pro Pro Ala Cys Val Cys Asp Asp Gly Tyr Tyr Arg Asp 60 65 70	246					
acg aac gtt ggc ttg tgt gta caa tat gac gaa tgc aac gat atg gat Thr Asn Val Gly Leu Cys Val Gln Tyr Asp Glu Cys Asn Asp Met Asp 75 80 85	294					
att att atg gtt tca tagggttgac tgaagaatcg aacaaccggt gcacaacttc Ile Ile Met Val Ser 90	349					
tatgettgae tatetetett geateatgea agtttageta gatagtgtat atattageaa 409						
gaccccttgg ggagaatgaa gcttcccaac tatattaaat caataacgtt ttcgcttcat 469						

gtacacgtgc tcagcacatt catatccact cctcacactc catgaaagca gtgaaatgtt 529

<210><211><212><213>	39 361 DNA Necator	america	anus										
<220><221><222>	CDS (16)(2	252)											
<220><221><223>	misc_fea Recombir		NA Mole	ecule	Nam	NAP							
<400>	39												
gccaac	tctt cgaa	_	att cga [le Arq			_							51
	c act ttt l Thr Phe 15		-	_	_	_		-					99
	a tgt ggd u Cys Gly O												147
	a tgt act e Cys Thr	Met As											195
	c aag cgt r Lys Arg	_	_	-		-							243
gat tg	t aaa taa s Lys	igttatca	a gaac	gctcg	t tt	tgto	cttac	c att	agat	ggg	tgag	gctgatg	302
tatctg	tcag ataa	actctt	tcttct	caaaa	aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaa	aaaaa	361

```
<210> 40
<211> 77
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP5
<400> 40
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Asp Cys Gly
                                     10
Thr Gln Lys Pro Cys Glu Ala Lys Cys Asn Glu Glu Pro Pro Glu Glu
             20
                                 25
Glu Asp Pro Ile Cys Arg Ser Arg Gly Cys Leu Leu Pro Pro Ala Cys
                             40
Val Cys Lys Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val
                         55
Arg Glu Glu Cys Asp Gln His Glu Ile Ile His Val
                     70
<210> 41
<211> 75
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Alignment of amino acid sequences to mature AcaNAP6
<400> 41
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Val Cys Gly
                                      10
Thr Lys Lys Pro Cys Glu Ala Lys Cys Ser Glu Glu Glu Glu Glu Asp
                                25
Pro Ile Cys Arg Ser Phe Ser Cys Pro Gly Pro Ala Ala Cys Val Cys
                             40
Glu Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val Lys Glu
                        55
Glu Glu Cys Asp Gln His Glu Ile Ile His Val
```

```
<210>
      42
<211> 74
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP48
<400> 42
Arg Thr Ala Arg Lys Pro Pro Thr Cys Gly Glu Asn Glu Arg Val Glu
                                     10
Trp Cys Gly Lys Gln Cys Glu Ile Thr Cys Asp Asp Pro Asp Lys Ile
Cys Arg Ser Leu Ala Cys Pro Gly Pro Pro Ala Cys Val Cys Asp Asp
                           40
Gly Tyr Tyr Arg Asp Thr Asn Val Gly Leu Cys Val Gln Tyr Asp Glu
Cys Asn Asp Met Asp Ile Ile Met Val Ser
<210> 43
<211> 88
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Alignment of amino acid sequences to mature AcaNAP23
<400> 43
Lys Pro Ser Glu Lys Glu Cys Gly Pro His Glu Arg Leu Asp Cys Gly
                                    10
Asn Lys Lys Pro Cys Glu Arg Lys Cys Lys Ile Glu Thr Ser Glu Glu
Glu Asp Asp Tyr Glu Glu Gly Thr Glu Arg Phe Arg Cys Leu Leu Arg
                            40
Val Cys Asp Gln Pro Tyr Glu Cys Ile Cys Asp Asp Gly Tyr Tyr Arg
                       55
Asn Lys Lys Gly Glu Cys Val Thr Asp Asp Val Cys Gln Glu Asp Phe
                    70
Met Glu Phe Ile Thr Phe Ala Pro
```

```
<210> 44
<211> 87
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP24
<400> 44
Arg Pro Glu Lys Lys Cys Gly Pro Gly Glu Arg Leu Ala Cys Gly Asn
                 5
Lys Lys Pro Cys Glu Arg Lys Cys Lys Ile Glu Thr Ser Glu Glu Glu
Asp Asp Tyr Pro Glu Gly Thr Glu Arg Phe Arg Cys Leu Leu Arg Val
Cys Asp Gln Pro Tyr Glu Cys Ile Cys Asp Asp Gly Tyr Tyr Arg Asn
                       55
Lys Lys Gly Glu Cys Val Thr Asp Asp Val Cys Gln Glu Asp Phe Met
Glu Phe Ile Thr Phe Ala Pro
                8.5
<210> 45
<211> 86
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP25
<400> 45
Arg Pro Glu Lys Lys Cys Gly Pro Gly Glu Arg Leu Asp Cys Ala Asn
                                   10
Lys Lys Pro Cys Glu Pro Lys Cys Lys Ile Glu Thr Ser Glu Glu Glu
           20
                                25
Asp Asp Asp Val Glu Asp Thr Asp Val Arg Cys Leu Val Arg Val Cys
Glu Arg Pro Leu Lys Cys Ile Cys Lys Asp Gly Tyr Tyr Arg Asn Lys
                       55
Lys Gly Glu Cys Val Thr Asp Asp Val Cys Gln Glu Asp Phe Met Glu
```

85

Phe Ile Thr Phe Ala Pro

```
46
<211>
      86
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP44
<400> 46
Arg Pro Glu Lys Lys Cys Gly Pro Gly Glu Arg Leu Asp Cys Ala Asn
                                   10
Lys Lys Pro Cys Glu Pro Lys Cys Lys Ile Glu Thr Ser Glu Glu Glu
           20
                                25
Asp Asp Asp Val Glu Glu Thr Asp Val Arg Cys Leu Val Arg Val Cys
        35
                            40
                                               45
Glu Arg Pro Leu Lys Cys Ile Cys Lys Asp Gly Tyr Tyr Arg Asn Lys
Lys Gly Glu Cys Val Thr Asp Asp Val Cys Gln Glu Asp Phe Met Glu
                                       75
                    70
Phe Ile Thr Phe Ala Pro
<210> 47
<211> 78
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP 31, 42 and 46
<400> 47
Lys Ser Leu Trp Asp Gln Lys Cys Gly Glu Asn Glu Arg Leu Asp Cys
                 5
                                   10
Gly Asn Gln Lys Asp Cys Glu Arg Lys Cys Asp Asp Lys Arg Ser Glu
                                25
Glu Glu Ile Met Gln Ala Cys Leu Thr Arg Gln Cys Leu Pro Pro Val
                           40
Cys Val Cys Glu Asp Gly Phe Tyr Arg Asn Asp Asn Asp Gln Cys Val
                       55
Asp Glu Glu Cys Asn Met Glu Phe Ile Thr Phe Ala Pro
```

```
<210>
      48
<211>
      89
<212> PRT
<213> Ancyclostoma ceylanicum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AceNAP4d1
<400> 48
Lys Pro Asn Asn Val Met Thr Asn Ala Cys Gly Leu Asn Glu Tyr Phe
                 5
                                   1.0
Ala Glu Cys Gly Asn Met Lys Glu Cys Glu His Arg Cys Asn Glu Glu
            20
                                25
Glu Asn Glu Glu Arg Asp Glu Glu Arg Ile Thr Ala Cys Leu Ile Arg
                                                45
Val Cys Phe Arg Pro Gly Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg
Asn Arg Thr Gly Ser Cys Val Glu Glu Asp Asp Cys Glu Tyr Glu Asn
                    7.0
Met Glu Phe Ile Thr Phe Ala Pro Glu
<210> 49
<211> 82
<212> PRT
<213> Ancyclostoma ceylanicum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AceNAP4d2
<400> 49
Val Pro Ile Cys Gly Ser Asn Glu Arg Tyr Ser Asp Cys Gly Asn Asp
                 5
                                   10
Lys Gln Cys Glu Arg Lys Cys Asn Glu Asp Asp Tyr Glu Lys Gly Asp
                                25
Glu Ala Cys Arg Ser His Val Cys Glu Arg Pro Gly Ala Cys Val Cys
                           40
Glu Asp Gly Phe Tyr Arg Asn Lys Lys Gly Ser Cys Val Glu Ser Asp
                        55
Asp Cys Glu Tyr Asp Asn Met Asp Phe Ile Thr Phe Ala Pro Glu Thr
```

Ser Arg

```
<210>
      50
<211> 84
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Alignment of amino acid sequences to mature AcaNAP45d1
<400> 50
Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn
                 5
Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp
Tyr Lys Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg
Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln
                        55
Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr
                                       75
Phe Pro Pro Glu
<210> 51
<211> 84
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP47d1
<400> 51
Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn
Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp
                                25
Tyr Gly Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ile Gly
Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln
Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr
```

Phe Pro Pro Glu

```
<210> 52
<211> 83
<212> PRT
<213> Ancyclostoma duodenale
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature
AduNAP7d1 and AduNAP4d1
<400> 52
Lys Ala Ala Lys Lys Cys Gly Leu Asn Glu Arg Leu Asp Cys Gly Asn
Leu Lys Gln Cys Glu Pro Lys Cys Ser Asp Leu Glu Ser Glu Glu Tyr
Glu Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg Arg
Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Lys Cys
                        55
Val Ala Lys Asp Val Cys Glu Asp Asp Asn Met Glu Ile Ile Thr Phe
                   70
                                       75
Pro Pro Glu
<210> 53
<211> 78
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223>
<400> 53
Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys
                                   10
Gln Cys Glu Arg Lys Cys Asn Lys Glu Leu Ser Glu Lys Asp Glu Glu
                                25
Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Asn Asp
                           40
Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu Lys Asp Glu Cys
                       55
```

Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His

```
<210> 54
<211> 78
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Alignment of amino acid sequences to mature AcaNAP47d2
<400> 54
Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys
                                                        15
                5
                                    10
Gln Cys Glu Arg Lys Cys Ser Glu Glu Leu Ser Glu Lys Asn Glu Glu
                                25
Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Asn Asp
Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu Lys Asp Glu Cys
                       55
Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His
                   70
<210> 55
<211> 77
<212> PRT
<213> Ancyclostoma duodenale
<220>
<221> misc_feature
<223> Alignment of amino acid sequences to mature AduNAP4
<400> 55
Lys Cys Pro Thr Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys His
                                    10
Cys Glu Leu Lys Cys Asp Arg Glu Leu Thr Glu Lys Glu Glu Gln Ala
           20
                                25
Cys Leu Ser Arg Val Cys Glu Lys Ser Ala Cys Val Cys Asn Asp Gly
                           40
                                               45
Leu Tyr Arg Asp Lys Phe Gly Asn Cys Val Glu Lys Asp Glu Cys Asn
                        55
Asp Met Glu Ile Ile Thr Phe Ala Pro Glu Glu Thr Lys
```

```
<210> 56
<211> 78
<212> PRT
<213> Ancyclostoma duodenale
<220>
<221> misc_feature
<223> Alignment of amino acid sequences to mature AduNAP7d2
<400> 56
Asp Glu Cys Gly Pro Asp Glu Trp Phe Asp Tyr Cys Gly Asn Tyr Lys
Lys Cys Glu Arg Lys Cys Ser Glu Glu Thr Ser Glu Lys Asn Glu Glu
                                25
Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Lys Asp
Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Pro His Asp Glu Cys
                        55
Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His
                    70
<210> 57
<211> 75
<212> PRT
<213> Ancyclostoma ceylanicum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AceNAP5
<400> 57
Lys Ala Phe Pro Lys Cys Asp Val Asn Glu Arg Phe Glu Val Cys Gly
Asn Leu Lys Glu Cys Glu Leu Lys Cys Asp Glu Asp Pro Lys Ile Cys
                                25
Ser Arg Ala Cys Ile Arg Pro Pro Ala Cys Val Cys Asp Asp Gly Phe
Tyr Arg Asp Lys Tyr Gly Phe Cys Val Glu Glu Asp Glu Cys Asn Asp
                       55
Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys
```

```
<210> 58
<211> 77
<212> PRT
<213> Ancyclostoma ceylanicum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AceNAP7
<400> 58
Arg Thr Val Lys Lys Cys Gly Lys Asn Glu Arg Tyr Asp Asp Cys Gly
Asn Ala Lys Asp Cys Glu Thr Lys Cys Gly Glu Glu Lys Val Cys
           2.0
                                25
Arg Ser Arg Glu Cys Thr Ser Pro Gly Ala Cys Val Cys Glu Gln Gly
                                               45
Phe Tyr Arg Asp Pro Ala Gly Asp Cys Val Thr Asp Glu Glu Cys Asp
                       55
Glu Trp Asn Asn Met Glu Ile Ile Thr Met Pro Lys Gln
                    70
<210> 59
<211> 84
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature AcaNAP2
<400> 59
Lys Ala Thr Met Gln Cys Gly Glu Asn Glu Lys Tyr Asp Ser Cys Gly
Ser Lys Glu Cys Asp Lys Lys Cys Lys Tyr Asp Gly Val Glu Glu Glu
                                25
Asp Asp Glu Glu Pro Asn Val Pro Cys Leu Val Arg Val Cys His Gln
Asp Cys Val Cys Glu Glu Gly Phe Tyr Arg Asn Lys Asp Asp Lys Cys
                       55
Val Ser Ala Glu Asp Cys Glu Leu Asp Asn Met Asp Phe Ile Tyr Pro
```

Gly Thr Arg Asn

```
<210> 60
<211> 58
<212> PRT
<213> Heligmosomoides polygyrus
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature HpoNAP5
<400> 60
Lys Thr Cys Gly Pro Asn Glu Glu Tyr Thr Glu Cys Gly Thr Pro Cys
                5
Glu Pro Lys Cys Asn Glu Pro Met Pro Asp Ile Cys Thr Leu Asn Cys
            20
                                25
Ile Val Asn Val Cys Gln Cys Lys Pro Gly Phe Lys Arg Gly Pro Lys
                           40
Gly Cys Val Ala Pro Gly Pro Gly Cys Lys
<210> 61
<211> 61
<212> PRT
<213> Necator americanus
<220>
<221> misc feature
<223> Alignment of amino acid sequences to mature NamNAP
<400> 61
Lys Arg Asp Cys Pro Ala Asn Glu Glu Trp Arg Glu Cys Gly Thr Pro
                                   10
Cys Glu Pro Lys Cys Asn Gln Pro Met Pro Asp Ile Cys Thr Met Asn
                                25
Cys Ile Val Asp Val Cys Gln Cys Lys Glu Gly Tyr Lys Arg His Glu
                            40
Thr Lys Gly Cys Leu Lys Glu Gly Ser Ala Asp Cys Lys
                       55
   50
<210> 62
<211> 171
<212> PRT
<213> Ancyclostoma ceylanicum
<400> 62
Lys Pro Asn Asn Val Met Thr Asn Ala Cys Gly Leu Asn Glu Tyr Phe
                                   10
Ala Glu Cys Gly Asn Met Lys Glu Cys Glu His Arg Cys Asn Glu Glu
Glu Asn Glu Glu Arg Asp Glu Glu Arg Ile Thr Ala Cys Leu Ile Arg
        35
                            40
                                                45
```

Val &ys Phe Arg Pro Gly Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg Asn Arg Thr Gly Ser Cys Val Glu Glu Asp Asp Cys Glu Tyr Glu Asn 70 Met Glu Phe Ile Thr Phe Ala Pro Glu Val Pro Ile Cys Gly Ser Asn 85 Glu Arg Tyr Ser Asp Cys Gly Asn Asp Lys Gln Cys Glu Arg Lys Cys 105 Asn Glu Asp Asp Tyr Glu Lys Gly Asp Glu Ala Cys Arg Ser His Val 120 125 115 Cys Glu Arg Pro Gly Ala Cys Val Cys Glu Asp Gly Phe Tyr Arg Asn 135 Lys Lys Gly Ser Cys Val Glu Ser Asp Asp Cys Glu Tyr Asp Asn Met 155 150 Asp Phe Ile Thr Phe Ala Pro Glu Thr Ser Arg 165

<210> 63

<211> 162

<212> PRT

<213> Ancyclostoma caninum

<400> 63

Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp Tyr Lys Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg 40 Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln 55 Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr 70 75 Phe Pro Pro Glu Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys 85 90 Gly Thr Tyr Lys Gln Cys Glu Arg Lys Cys Asn Lys Glu Leu Ser Glu 100 105 Lys Asp Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys 120 115 Val Cys Asn Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu 135 140 Lys Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr 150 155 Lys His

<210> 64

<211> 162

<212> PRT

<213> Ancyclostoma caninum

<400> 64

Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn 10 Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp Tyr Gly Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ile Gly Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr 75 Phe Pro Pro Glu Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys Gln Cys Glu Arg Lys Cys Ser Glu Glu Leu Ser Glu 105 Lys Asn Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys 120 Val Cys Asn Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu 135 140 Lys Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr 150 155 Lys His

<210> 65

<211> 161

<212> PRT

<213> Ancyclostoma duodenale

<400> 65

```
Asn Tyr Lys Lys Cys Glu Arg Lys Cys Ser Glu Glu Thr Ser Glu Lys
                               105
Asn Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val
                           120
       115
Cys Lys Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Pro His
                      135
Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys
                   150
                                      155
His
<210> 66
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Xaa in locations 2 to 9 is any amino acid
<400> 66
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 67
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Xaa in locations 2 to 9 is any amino acid
<400> 67
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 68
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 and 2 is any amino acid, provided that at least
one of Xaa at locations 1 and 2 is Glu or Asp, Xaa in locations 3 to 8 is any
amino acid
<400> 68
Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 69
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<400> 69
Gly Phe Tyr Arg Asp
<210> 70
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<400> 70
Gly Phe Tyr Arg Asn
<210> 71
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<400> 71
Gly Tyr Tyr Arg Asp
<210> 72
<211> 5
<212> PRT
<213> Ancyclostoma caninum
```

<400> 72

Gly Try Tyr Arg Asn

```
<210> 73
 <211> 5
 <212> PRT
 <213> Ancyclostoma caninum
 <400> 73
 Gly Leu Tyr Arg Asp
 <210> 74
 <211> 5
 <212> PRT
 <213> Ancyclostoma caninum
 <400> 74
 Glu Ile Ile His Val
 <210> 75
 <211> 5
 <212> PRT
 <213> Ancyclostoma caninum
 <400> 75
 Asp Ile Ile Met Val
 <210> 76
 <211> 6
<212> PRT
<213> Ancyclostoma caninum
```

<400> 76

Phe Ile Thr Phe Ala Pro

```
<210> 77
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<400> 77
Met Glu Ile Ile Thr
<210> 78
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Xaa in locations 1 and 2 is any amino acid, provided that at least one
Xaa is Glu or Asp
<400> 78
Xaa Xaa Gly Phe Tyr Arg Asp
<210> 79
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 and 2 is any amino acid, provided that at least one
Xaa is Glu or Asp
<400> 79
Xaa Xaa Gly Phe Tyr Arg Asn
                5
```

```
<210> 80
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 and 2 is any amino acid, provided that at least one
Xaa is Glu or Asp
<400> 80
Xaa Xaa Gly Tyr Tyr Arg Asp
1
                5
<210> 81
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 and 2 is any amino acid, provided that at least one
Xaa is Glu or Asp
<400> 81
Xaa Xaa Gly Tyr Tyr Arg Asn
<210> 82
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 and 2 is any amino acid, provided that at least one
Xaa is Glu or Asp
<400> 82
Xaa Xaa Gly Leu Tyr Arg Asp
                5
```

```
<210> 83
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 2 to 9 is any amino acid
<400> 83
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 84
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 is any amino acid, perferably Leu; Xaa in location
2 is any amino acid; Xaa in location 3 is any amino acid, perferably Arg; Xaa
in location 4 is any amino acid
<400> 84
Xaa Xaa Xaa Xaa
 1
<210> 85
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 to 4 is any amino acid
<400> 85
Xaa Xaa Xaa Xaa
 1
```

```
<210> 86
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 to 2 is any amino acid
<400> 86
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
      5
<210> 87
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Xaa in locations 1 to 2 is any amino acid
<400> 87
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
      5
 1
<210> 88
<211> 25
<212> DNA
<213> Ancyclostoma caninum
<400> 88
tcagacatgt ataatctcat gttgg
                                                                      25
<210> 89
<211> 22
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc-feature
<223> Oligonucleotide primer YG101
<400> 89
```

aaggcatacc cggagtgtgc tg

<210>	90	
<211>	21	
<212>		
<213>	Ancyclostoma caninum	
<220>		
	misc feature	
	Xaa in locations 1 to 2 is any amino acid	
12237	nad in locations i to i is any amine acid	
<400>	90	
aarccn	tgyg armggaartg y	21
<210>	01	
<211>		
<212>		
	Ancyclostoma caninum	
(213)	Andycroscoma cantinam	
<220>		
<221>	misc feature	
<223>	"w" stands for a or t; "r" stands for a of g; "n" stands for any	
base; a	and "y" stands for c or t .	
<400>	91	
turwan	cent cyttreanae rea	23
C W T W CITI	COME CYCCE CAMAC FOR	

```
<210> 92
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> N-terminus
<400> 92
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp
               5
<210> 93
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> N-terminus
<400> 93
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp
               5
<210> 94
<211> 33
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> "r" stands for a or g; "n" stands for inosine; "y" stands for c or t
<400> 94
```

aargcntayc cngartgygg ngaraaygar tgg

```
<210> 95
<211> 28
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Oligonuclotide primer
<400> 95
aattcgcggc cgctttttt ttttttt
                                                                          28
<210> 96
<211> 24
<212> DNA
<213> Ancyclostoma caninum
<400> 96
                                                                          24
ggtggcgacg actcctggag cccg
<210> 97
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> N-terminal fragment
<400> 97
Gys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Tip Leu Asp Asp Cys Gly Thr
Gln Lys Pro
```

<210><211><211><212><213>	98 10 DNA Ancyclostoma	caninum			
<400>	98				
cggaat	tccg		10		
<210><211><211><212><213>	99 18 DNA Ancyclostoma	caninum			
<400>	99				
tggcct	tggcctagcg tcaggagt				
<210><211><211><212><213>	100 18 DNA Ancyclostoma	caninum			
<400>	100				
cctgac	gcta ggccatgg		18		
<210><211><211><212><213>	101 24 DNA Ancyclostoma	caninum			
<400>	101				
agcgga	agcggataac aatttcacac agga				

<210><211><211><212><213>	102 66 DNA Ancyclostoma caninum				
<400>	102				
atgttc	toto caattttgto ottggaaatt attttagott tggotacttt gcaatotgto	60			
tteget					
<210><211><212><213>	103 57 DNA Ancyclostoma caninum				
<400>	103				
cagcca	cagccaggta tetecaetae egttggttee getgeegagg gttetttgga caagagg				
<210><211><211><212><213>	104 51 DNA Ancyclostoma caninum				
<400>	104				
cctatc	cgcg gaattcagat ctgaatgcgg ccgctcgaga ctagtggatc c	51			
<210><211><211><212><213>	105 41 DNA Ancyclostoma caninum				
<220><221><223>	misc_feature Oligonucleotide primer YG103				
<400>	105				
gctcgc	gctcgctcta gaagcttcag acatgtataa tctcatgttg g 4				

```
<210> 106
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Amino-terminous
<400> 106
Lys Ala Tyr Pro Glu
<210> 107
<211> 36
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Oligonucleotide primer YG102
<400> 107
                                                                           36
gaccagtcta gacaatgaag atgctttacg ctatcg
<210> 108
<211> 23
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc feature
<223> Amino-terminous YG60
<400> 108
```

gtgggagacc tgatactctc aag

```
<210> 109
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> N-terminal fragment
<400> 109
Arg Thr Val Arg Lys Ala Tyr Pro Glu
                5
<210> 110
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> N-terminal fragment
<400> 110
Arg Thr Val Arg Lys
<210> 111
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Description of Artifical Sequence: pDONG vector amplified PCR primer
fragment
<400> 111
```

-55-

33

atccgaagct ttgctaacat actgcgtaat aag

```
<210> 112
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Description of Artifical Sequence: pDONG vector amplified PCR primer
fragment
<400> 112
tatgggatgg ccgacttggc ctccgcctga gcctccacct ttatcccaat ccaaataaga
                                                                           60
<210> 113
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Description of Artifical Sequence: pDONG vector amplified PCR primer
fragment
<400> 113
atgggatggc cgacttggcc ctccgcctga gcctccacct ttatcccaat ccaaataaga
                                                                           60
<210> 114
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> misc feature
<223> Description of Artifical Sequence: pDONG vector amplified PCR primer
fragment
<400> 114
                                                                           60
tatgggatgg ccgacttggc cgatccgcct gagcctccac ctttatccca atccaaataa
```

```
<210> 115
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<221> misc feature
<223> Description of Artifical Sequence: pDONG vector amplified PCR primer
fragment
<400> 115
                                                                            45
aggagggat ccgcggccgc gtgatatggg atggccgact tggcc
<210> 116
<211> 24
<212> DNA
<213> Artifical Sequence
<220>
<221> misc_feature
<223> Description of Artifical Sequence: pUC119 primer
<400> 116
                                                                            24
cgccagggtt ttcccagtca cgac
<210> 117
<211> 28
<212> DNA
<213> Ancyclostoma caninum
<400> 117
                                                                            28
gtttcgagtt ccgggatata taaagtcc
<210> 118
<211> 7
<212> PRT
<213>
<220>
<221> misc_feature
<223> Xaa in location 5 is Arg, Pro or Lys
<400> 118
Lys Pro Cys Glu Xaa Lys Cys
```

```
<210> 119
<211> 8
<212> PRT
<213> Necator americanus
<220>
<221> misc_feature
<223> Xaa in location 2 is Val, Ile or Gln; Xaa in location 4 is Lys, Asp,
Glu or Gln; Xaa in location 5 is Asp or Glu; Xaa in location 7 is Phe or Tyr
<400> 119
Cys Xaa Cys Xaa Xaa Gly Xaa Tyr
<210> 120
<211> 44
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Oligonucleotide primer
<400> 120
                                                                              44
gaccagtcta gaccaccatg gcggtgcttt attcagtagc aata
<210> 121
<211> 40
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Oligonucleotide primer
<400> 121
gctcgctcta gattatcgtg aggtttctgg tgcaaaagtg
                                                                              40
```

<210><211><212><213>				
	misc_feature Oligonucleotide primer			
<400>	122			
aaagca	aaagcaacga tgcagtgtgg tgag			
<210><211><211><212><213>	47			
	misc_feature Oligonucleotide primer			
<400>	123			
gctcgctcta gaagcttcag tttcgagttc cgggatatat aaagtcc				
<210><211><211><212><213>	30			
	misc_feature Oligonucleotide primer			
<400>	124			
gagact	gagactttta aatcactgtc ggatcagaag			

```
<210> 125
<211> 33
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Oligonucleotide primer
<400> 125
                                                                                33
ttcaggacta gttcatggtg cgaaagtaat aaa
<210> 126
<211> 28
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Oligonucleotide primer
<400> 126
                                                                                28
gcgtttaaag caacgatgca gtgtggtg
<210> 127
<211> 46
<212> DNA
<213> Ancyclostoma caninum
<220>
<221> misc_feature
<223> Oligonucleotide primer
<400> 127
                                                                                46
cgctctagaa gcttcatggg tttcgagttc coggatatat aaagtc
```

```
<210> 128
```

<211> 91

<212> PRT

<213> Ancyclostoma caninum

<220>

<221> misc_feature

<223> Alignment of AcaNAPc2

<400> 128

Leu Val Sar Tyr Cys Ser Gly Lys Ala Thr Met Gln Cys Gly Glu Asn
1 5 10 15

Glu Lys Tyr Asp Ser Cys Gly Ser Lys Glu Cys Asp Lys Lys Cys Lys 20 25 30

Tyr Asp Gly Val Glu Glu Glu Asp Asp Glu Glu Pro Asn Val Pro Cys 35 40 45

Leu Val Arg Val Cys His Gln Asp Cys Val Cys Glu Glu Gly Phe Tyr 50 55 60

Arg Asn Lys Asp Asp Lys Cys Val Ser Ala Glu Asp Cys Glu Leu Asp 65 70 75 80

Asn Met Asp Phe Ile Tyr Pro Gly Thr Arg Asn 85 90

<210> 129

<211> 8

<212> PRT

<213> Ancyclostoma caninum

<220>

<221> Internal fragment

<223> Xaa in locations 2 to 8 is any amino acid

<400> 129

Cys Xaa Xaa Xaa Xaa Xaa Xaa 1

```
<210> 130
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 130
Cys Xaa Xaa Xaa Xaa Cys
               5
<210> 131
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 5 is any amino acid
<400> 131
Cys Xaa Xaa Xaa Cys
<210> 132
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 132
Cys Xaa Xaa Xaa Cys
```

```
<210> 133
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and 3 is any amino acid
<400> 133
Cys Xaa Xaa Cys
<210> 134
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 21 is any amino acid
<400> 134
10
Xaa Xaa Xaa Xaa
          20
<210> 135
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 20 is any amino acid
<400> 135
5
                               10
Xaa Xaa Xaa Xaa
```

```
<210> 136
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 19 is any amino acid
<400> 136
5
Xaa Xaa Xaa
<210> 137
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 18 is any amino acid
<400> 137
10
Xaa Xaa
<210> 138
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 17 is any amino acid
<400> 138
```

5

Xaa

```
<210> 139
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 16 is any amino acid
<400> 139
5
<210> 140
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment _{\mbox{\scriptsize 2223}\mbox{\scriptsize >}} Xaa in locations 1 to 3 and 5 to 15 is any amino acid
<400> 140
10
<210> 141
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 14 is any amino acid
<400> 141
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1 5
```

```
<210> 142
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 13 is any amino acid
<400> 142
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 143
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 12 is any amino acid
<400> 143
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 144
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 11 is any amino acid
<400> 144
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
               5
```

```
<210> 145
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and 5 to 10 is any amino acid
<400> 145
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
                5
<210> 146
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 146
Cys Xaa Xaa Xaa Xaa
<210> 147
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 147
Cys Xaa Xaa Xaa
```

```
<210> 148
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 148
Cys Xaa Xaa Xaa Xaa
<210> 149
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 149
Cys Xaa Xaa Xaa Xaa
<210> 150
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 150
Cys Xaa Xaa Xaa
```

```
<210> 151
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and 4 is any amino acid
<400> 151
5
<210> 152
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 14 is any amino acid
<400> 152
<210> 153
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 13 is any amino acid
<400> 153
Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 154
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and 7 is any amino acid
<400> 154
Cys Xaa Xaa Xaa Xaa Xaa Cys
              5
<210> 155
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 155
Cys Xaa Xaa Xaa Xaa Cys
<210> 156
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 156
Cys Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 157
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 157
Cys Xaa Xaa Xaa Xaa Cys
<210> 158
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 158
Cys Xaa Xaa Xaa Cys
<210> 159
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 159
Cys Xaa Xaa Xaa Cys
```

```
<210> 160
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 23 is any amino acid
<400> 160
5
                              10
Xaa Xaa Xaa Xaa Xaa Xaa
          20
<210> 161
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 22 is any amino acid
<400> 161
```

10

Xaa Xaa Xaa Xaa Xaa

```
<210> 162
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 21 is any amino acid
<400> 162
10
Xaa Xaa Xaa Xaa
         20
<210> 163
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 20 is any amino acid
<400> 163
5
                          10
Xaa Xaa Xaa Xaa
         20
<210> 164
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 19 is any amino acid
<400> 164
5
```

Xaa Xaa Xaa

```
<210> 165
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 18 is any amino acid
<400> 165
5
                          10
Xaa Xaa
<210> 166
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 17 is any amino acid
<400> 166
10
Xaa
<210> 167
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 16 is any amino acid
<400> 167
5
                          10
```

```
<210> 168
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 15 is any amino acid
<400> 168
5
                                10
<210> 169
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 14 is any amino acid
<400> 169
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
              5
<210> 170
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 13 is any amino acid
<400> 170
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
             5
```

```
<210> 171
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 12 is any amino acid
<400> 171
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
              5
<210> 172
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 11 is any amino acid
<400> 172
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
              5
<210> 173
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 10 is any amino acid
<400> 173
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
1 5
```

```
<210> 174
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 174
Cys Xaa Xaa Xaa Xaa
<210> 175
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 175
Cys Xaa Xaa Xaa
<210> 176
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220> Internal fragment
<221> Xaa in locations 2 to 6 is any amino acid
<400> 176
Cys Xaa Xaa Xaa Xaa
```

```
<210> 177
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Xaa in locations 2 to 5 is any amino acid
<223> Internal fragment
<400> 177
Cys Xaa Xaa Xaa Xaa
<210> 178
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 178
Cys Xaa Xaa Xaa
<210> 179
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 15 is any amino acid
<400> 179
5
                               10
```

```
<210> 180
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 14 is any amino acid
<400> 180
Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
           5
<210> 181
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 181
Cys Xaa Xaa Xaa Xaa Xaa Xaa
             5
<210> 182
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 7 is any amino acid
<400> 182
Cys Xaa Xaa Xaa Xaa Xaa
```

```
<210> 183
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 183
Cys Xaa Xaa Xaa Xaa
1
<210> 184
<211> 26
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 26 is any amino acid
<400> 184
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
<210> 185
<211> 25
<212> PRT
<213> Ancyclostoma caninum
<221> Internal fragment
<223> Xaa in locations 2 to 25 is any amino acid
<400> 185
5
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 186
<211> 24
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 24 is any amino acid
<400> 186
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
        20
<210> 187
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 23 is any amino acid
<400> 187
1 5
                        10
Xaa Xaa Xaa Xaa Xaa Xaa
        20
<210> 188
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 22 is any amino acid
<400> 188
```

10

-81-

5

Xaa Xaa Xaa Xaa Xaa 20

```
<210> 189
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 21 is any amino acid
<400> 189
1
           5
                         10
Xaa Xaa Xaa Xaa
         20
<210> 190
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 20 is any amino acid
<400> 190
Xaa Xaa Xaa Xaa
        20
<210> 191
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 19 is any amino acid
<400> 191
```

Xaa Xaa Xaa

```
<210> 192
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 18 is any amino acid
<400> 192
Xaa Xaa
<210> 193
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 17 is any amino acid
<400> 193
10
1
Xaa
<210> 194
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 16 is any amino acid
<400> 194
5
```

```
<210> 195
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 15 is any amino acid
<400> 195
5
<210> 196
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 14 is any amino acid
<400> 196
5
<210> 197
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 13 is any amino acid
<400> 197
```

```
<210> 198
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 12 is any amino acid
<400> 198
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
              5
<210> 199
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 11 is any amino acid
<400> 199
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 200
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 10 is any amino acid
<400> 200
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 201
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 9 is any amino acid
<400> 201
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
               5
<210> 202
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 202
Cys Xaa Xaa Xaa Xaa Xaa Xaa
<210> 203
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 7 is any amino acid
<400> 203
Cys Xaa Xaa Xaa Xaa Xaa
```

```
<210> 204
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 204
Cys Xaa Xaa Xaa Xaa
<210> 205
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 205
Cys Xaa Xaa Xaa Xaa Xaa Xaa
<210> 206
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 206
Cys Xaa Xaa Xaa Xaa Cys
```

```
<210> 207
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 207
Cys Xaa Xaa Xaa Cys
<210> 208
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 208
Cys Xaa Xaa Xaa Cys
<210> 209
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 23 is any amino acid
<400> 209
10
Xaa Xaa Xaa Xaa Xaa Xaa
```

-88-

```
<210> 210
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 22 is any amino acid
<400> 210
10
           5
Xaa Xaa Xaa Xaa Xaa
         20
<210> 211
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 21 is any amino acid
<400> 211
5
                          10
Xaa Xaa Xaa Xaa
         20
<210> 212
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 20 is any amino acid
<400> 212
5
Xaa Xaa Xaa Xaa
```

```
<210> 213
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 19 is any amino acid
<400> 213
5
                          10
Xaa Xaa Xaa
<210> 214
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 18 is any amino acid
<400> 214
10
Xaa Xaa
<210> 215
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 17 is any amino acid
<400> 215
```

Xaa

```
<210> 216
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 16 is any amino acid
<400> 216
5
<210> 217
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 15 is any amino acid
<400> 217
5
                             10
<210> 218
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 14 is any amino acid
<400> 218
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
            5
                             10
```

```
<210> 219
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 13 is any amino acid
<400> 219
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 220
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 12 is any amino acid
<400> 220
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 221
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 11 is any amino acid
<400> 221
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
               5
```

```
<210> 222
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 10 is any amino acid
<400> 222
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
               5
<210> 223
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 223
Cys Xaa Xaa Xaa Xaa
<210> 224
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 224
Cys Xaa Xaa Xaa
```

```
<210> 225
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 225
Cys Xaa Xaa Xaa Xaa
<210> 226
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 226
Cys Xaa Xaa Xaa Xaa
<210> 227
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 227
Cys Xaa Xaa Xaa
1
```

```
<210> 228
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 and locations 4 to 15 is any amino acid
<400> 228
5
<210> 229
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 and locations 4 to 14 is any amino acid
<400> 229
<210> 230
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 8 is any amino acid
<400> 230
Cys Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 231
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 7 is any amino acid
<400> 231
Cys Xaa Xaa Xaa Xaa Xaa
<210> 232
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 6 is any amino acid
<400> 232
Cys Xaa Xaa Xaa Xaa
<210> 233
<211> 26
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 26 is any amino acid
<400> 233
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 234
<211> 25
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 25 is any amino acid
<400> 234
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
<210> 235
<211> 24
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragmen
<223> Xaa in location 2 to 24 is any amino acid t
<400> 235
10
        5
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
<210> 236
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 23 is any amino acid
<400> 236
10
```

Xaa Xaa Xaa Xaa Xaa Xaa 20

```
<210> 237
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 22 is any amino acid <400> 237
10
Xaa Xaa Xaa Xaa Xaa
         20
<210> 238
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 21 is any amino acid
<400> 238
10
Xaa Xaa Xaa Xaa
         20
<210> 239
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 20 is any amino acid
<400> 239
Xaa Xaa Xaa Xaa
```

```
<210> 240
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 19 is any amino acid
<400> 240
10
            5
Xaa Xaa Xaa
<210> 241
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 18 is any amino acid
<400> 241
10
Xaa Xaa
<210> 242
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 17 is any amino acid
<400> 242
10
1
```

Xaa

```
<210> 243
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 to 16 is any amino acid
<400> 243
5
<210> 244
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in locations 2 to 15 is any amino acid
<400> 244
<210> 245
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 14 is any amino acid
<400> 245
5
```

```
<210> 246
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 13 is any amino acid
<400> 246
5
<210> 247
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 12 is any amino acid
<400> 247
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 248
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 11 is any amino acid
<400> 248
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
      5
```

```
<210> 249
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 10 is any amino acid
<400> 249
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
               5
<210> 250
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 9 is any amino acid
<400> 250
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 251
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 251
Cys Xaa Xaa Xaa Xaa Xaa Xaa
       5
```

```
<210> 252
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in locations 2 to 7 is any amino acid
<400> 252
Cys Xaa Xaa Xaa Xaa Xaa
<210> 253
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 253
Cys Xaa Xaa Xaa Xaa
<210> 254
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 254
Cys Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 255
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 255
Cys Xaa Xaa Xaa Xaa Cys
<210> 256
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 256
Cys Xaa Xaa Xaa Cys
<210> 257
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 257
Cys Xaa Xaa Xaa Cys
```

```
<210> 258
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 23 is any amino acid
<400> 258
5
                         10
Xaa Xaa Xaa Xaa Xaa Xaa
         20
<210> 259
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 22 is any amino acid
<400> 259
Xaa Xaa Xaa Xaa Xaa
         20
<210> 260
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 21 is any amino acid
<400> 260
10
```

Xaa Xaa Xaa Xaa

```
<210> 261
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 20 is any amino acid
<400> 261
5
                          10
Xaa Xaa Xaa Xaa
         20
<210> 262
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 19 is any amino acid
<400> 262
Xaa Xaa Xaa
<210> 263
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 18 is any amino acid
<400> 263
10
```

Xaa Xaa

```
<210> 264
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 17 is any amino acid
<400> 264
5
                         10
Xaa
<210> 265
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 16 is any amino acid
<400> 265
<210> 266
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 15 is any amino acid
<400> 266
10
```

```
<210> 267
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 14 is any amino acid
<400> 267
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 268
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 12 is any amino acid
<400> 268
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 269
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 12 is any amino acid
<400> 269
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                 5
```

```
<210> 270
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 11 is any amino acid
<400> 270
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 271
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 10 is any amino acid
<400> 271
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
                5
<210> 272
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 272
Cys Xaa Xaa Xaa Xaa
```

```
<210> 273
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 273
Cys Xaa Xaa Xaa
1
<210> 274
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 274
Cys Xaa Xaa Xaa Xaa
<210> 275
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 275
Cys Xaa Xaa Xaa Xaa
```

```
<210> 276
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 276
Cys Xaa Xaa Xaa
1
<210> 277
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 15 is any amino acid
<400> 277
10
<210> 278
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 14 is any amino acid
<400> 278
5
                           10
```

```
<210> 279
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 and locations 4 to 13 is any amino acid
<400> 279
Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 280
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 280
Cys Xaa Xaa Xaa Xaa Xaa Xaa
<210> 281
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 7 is any amino acid
<400> 281
Cys Xaa Xaa Xaa Xaa Xaa
```

```
<210> 282
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in locations 2 to 6 is any amino acid
<400> 282
Cys Xaa Xaa Xaa Xaa
1
<210> 283
<211> 26
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 26 is any amino acid
<400> 283
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 284
<211> 25
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 25 is any amino acid
<400> 284
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
        20
<210> 285
<211> 24
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 24 is any amino acid
<400> 285
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
<210> 286
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 23 is any amino acid
<400> 286
```

Xaa Xaa Xaa Xaa Xaa Xaa 20

```
<210> 287
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 22 is any amino acid
<400> 287
Xaa Xaa Xaa Xaa Xaa
         20
<210> 288
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in locations 2 to 21 is any amino acid
<400> 288
Xaa Xaa Xaa Xaa
<210> 289
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 20 is any amino acid
<400> 289
1
                         10
Xaa Xaa Xaa Xaa
```

```
<210> 290
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 19 is any amino acid
<400> 290
5
Xaa Xaa Xaa
<210> 291
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 18 is any amino acid
<400> 291
Xaa Xaa
<210> 292
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 17 is any amino acid
<400> 292
```

-116-

Xaa

```
<210> 293
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 16 is any amino acid
<400> 293
5
                         10
<210> 294
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 15 is any amino acid
<400> 294
5
<210> 295
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 14 is any amino acid
<400> 295
5
```

```
<210> 296
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 13 is any amino acid
<400> 296
<210> 297
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 12 is any amino acid
<400> 297
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 298
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 11 is any amino acid
<400> 298
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 299
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 10 is any amino acid
<400> 299
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 300
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 9 is any amino acid
<400> 300
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<210> 301
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 301
Cys Xaa Xaa Xaa Xaa Xaa Xaa
```

-119-

```
<210> 302
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 7 is any amino acid
<400> 302
Cys Xaa Xaa Xaa Xaa Xaa
<210> 303
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 303
Cys Xaa Xaa Xaa Xaa
<210> 304
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 304
Cys Xaa Xaa Xaa Xaa
```

```
<210> 305
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in locations 2 to 4 is any amino acid
<400> 305
Cys Xaa Xaa Xaa
1
<210> 306
<211> 3
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 3 is any amino acid
<400> 306
Cys Xaa Xaa
1
<210> 307
<211> 2
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 2 is any amino acid
<400> 307
Cys Xaa
1
```

```
<210> 308
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 308
Cys Xaa Xaa Xaa Xaa Xaa Xaa
<210> 309
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 309
Cys Xaa Xaa Xaa Xaa Cys
<210> 310
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 310
Cys Xaa Xaa Xaa Cys
```

```
<210> 311
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 311
Cys Xaa Xaa Xaa Cys
1
<210> 312
<211> 23
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 23 is any amino acid
<400> 312
Xaa Xaa Xaa Xaa Xaa Xaa
          20
<210> 313
<211> 22
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 22 is any amino acid
<400> 313
10
Xaa Xaa Xaa Xaa Xaa
```

```
<210> 314
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220> Internal fragment
<221> Xaa in locations 1 to 3 and locations 5 to 21 is any amino acid
<400> 314
10
Xaa Xaa Xaa Xaa
<210> 315
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 20 is any amino acid
<400> 315
Xaa Xaa Xaa Xaa
<210> 316
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 19 is any amino acid
<400> 316
5
                         10
```

-124-

Xaa Xaa Xaa

```
<210> 317
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 18 is any amino acid
<400> 317
5
                         10
Xaa Xaa
<210> 318
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 17 is any amino acid
<400> 318
Xaa
<210> 319
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 16 is any amino acid
<400> 319
```

```
<210> 320
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 15 is any amino acid
<400> 320
5
                            10
<210> 321
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 14 is any amino acid
<400> 321
<210> 322
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 13 is any amino acid
<400> 322
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
            5
                      10
```

```
<210> 323
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in locations 1 to 3 and locations 5 to 12 is any amino acid
<400> 323
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1 5
<210> 324
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 11 is any amino acid
<400> 324
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                 5
<210> 325
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 1 to 3 and locations 5 to 10 is any amino acid
<400> 325
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
```

```
<210> 326
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 326
Cys Xaa Xaa Xaa Xaa
1
<210> 327
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 327
Cys Xaa Xaa Xaa
<210> 328
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 328
Cys Xaa Xaa Xaa Xaa
```

```
15
<210> 329
<211> 5
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 5 is any amino acid
<400> 329
Cys Xaa Xaa Xaa Xaa
1
<210> 330
<211> 4
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 4 is any amino acid
<400> 330
Cys Xaa Xaa Xaa
<210> 331
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in location 2 and locations 4 to 15 is any amino acid
<400> 331
```

```
<210> 332
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment <223> Xaa in location 2 and locations 4 to 14 is any amino acid
<400> 332
5
<210> 333
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 333
Cys Xaa Xaa Xaa Xaa Xaa Xaa
<210> 334
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 7 is any amino acid
<400> 334
Cys Xaa Xaa Xaa Xaa Xaa
```

```
<210> 335
<211> 6
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 335
Cys Xaa Xaa Xaa Xaa
<210> 336
<211> 26
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 26 is any amino acid
<400> 336
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
<210> 337
<211> 25
<212> PRT
<213> Ancyclostoma caninum
<220>
<223> Internal fragment
<221> Xaa in locations 2 to 25 is any amino acid
<400> 337
10
```

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

<210> 338 <211> 24 <212> PRT <213> Ancyclostoma caninum <220> <221> Internal fragment <223> Xaa in locations 2 to 24 is any amino acid <400> 338 Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 <210> 339 <211> 23 <212> PRT <213> Ancyclostoma caninum <220> <221> Internal fragment <223> Xaa in locations 2 to 23 is any amino acid <400> 339 Xaa Xaa Xaa Xaa Xaa Xaa 20 <210> 340 <211> 22 <212> PRT <213> Ancyclostoma caninum <220> <221> Internal fragment <223> Xaa in locations 2 to 22 is any amino acid <400> 340

Xaa Xaa Xaa Xaa Xaa

20

```
<210> 341
<211> 21
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 21 is any amino acid
<400> 341
Xaa Xaa Xaa Xaa
        20
<210> 342
<211> 20
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 20 is any amino acid
<400> 342
Xaa Xaa Xaa Xaa
        20
<210> 343
<211> 19
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 19 is any amino acid
<400> 343
```

Xaa Xaa Xaa

```
<210> 344
<211> 18
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 18 is any amino acid
<400> 344
Xaa Xaa
<210> 345
<211> 17
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 17 is any amino acid
<400> 345
10
Xaa
<210> 346
<211> 16
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 16 is any amino acid
<400> 346
```

```
<210> 347
<211> 15
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 15 is any amino acid
<400> 347
5
<210> 348
<211> 14
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 14 is any amino acid
<400> 348
<210> 349
<211> 13
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 13 is any amino acid
<400> 349
5
```

```
<210> 350
<211> 12
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 12 is any amino acid
<400> 35,0
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
               5
<210> 351
<211> 11
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 11 is any amino acid
<400> 351
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                5
<210> 352
<211> 10
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 10 is any amino acid
<400> 352
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
       5
```

```
I
<210> 353
<211> 9
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 9 is any amino acid
<400> 353
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                5
<210> 354
<211> 8
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 8 is any amino acid
<400> 354
Cys Xaa Xaa Xaa Xaa Xaa Xaa
<210> 355
<211> 7
<212> PRT
<213> Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 7 is any amino acid
```

<400> 355

Cys Xaa Xaa Xaa Xaa Xaa

```
<210>
       3/56
 < 211>
       6
 <212>
       ЭRT
<2/13>
       Ancyclostoma caninum
<220>
<221> Internal fragment
<223> Xaa in locations 2 to 6 is any amino acid
<400> 356
Cys Xaa Xaa Xaa Xaa
<210> 357
 <211> 4
 <212> PRT
<213> Ancyclostoma caninum
```

<223> Xaa in locations 2 to 4 is any amino acid

<400> 357 Leu Xaa Arg Xaa

<221> Internal fragment

<220>