

Projecto de Sistemas de Informação

Life Inspiration V0.4 - Optimização de uma função Matemática

Optimização de uma função Matemática

- Objectivo: Utilizar algoritmos genéticos para optimizar uma função matemática.
 - Função a optimizar:

Optimização de uma função Matemática -Representação

- Problema: A função é representada por duas variáveis.
 - Anteriormente o individuo apenas tinha o valor, a partir de agora vai passar a ter 2 variáveis e também o domínio, por isso é necessário fazer uma adaptação ao sistema existente para suportar esta funcionalidade.
 - É necessário fazer uma representação binária das variáveis, portanto é necessário saber quantos bits vão ser necessários para cada uma.
 - Domínio $\times 1:Dx1 = 12.1 (-3.0) = 15.1$
 - Precisão de 4 casas decimais: $15.1 * 10000 = 151000 = 2^{17} \le 151000 \le 2^{18}$
 - Domínio $\times 2: Dx2 = 5.8 4.1 = 1.7$

- ▶ Precisão de 4 casas decimais:1.7 * $10000 = 17000 = 2^{14} \le 17000 \le 2^{15}$
- O indivíduo i vai ser composto por 2 genes (x I = x2) em que x I = 18 alelos e x2 = 15 alelos.

Optimização de uma função Matemática -Avaliação

- Problema: É necessário analisar o fitness do individuo.
- Exemplo:
 - X'I = decimal(IIII01001010111000b) =250552d
 - X'2 = decimal(001001011000000b) = 4800d
 - Equação a utilizar para encontrar número real correspondente:

$$x = Limite_{esq_{dominio}} + x' \times \frac{Tamanho_Dominio}{2^{n_{obits}} - 1}$$

$$x'I = -3 + 250552 + \frac{15.1}{2^{18} - 1} = 11,4323$$

$$x'2 = 4.1 + 4800 + \frac{1.7}{2^{15} - 1} = 4,3490$$

 \blacktriangleright Fitness = f(11.4323, 4.3490) = 13,1733

Optimização de uma função Matemática - Recombinação

Seleção - Ordena-se a população (por exemplo: através da roleta ou torneio) colocando, neste caso (maximização), no topo da lista os indivíduos que obtiverem maior valor calculado através da função de avaliação.

Optimização de uma função Matemática - Recombinação

- ▶ Passo I) Escolhem-se 2 indivíduos do topo da lista obtida (que ainda não tivessem sido escolhidos);
- ▶ Passo 2) Calcula-se um numero aleatório entre [0;1[;
- Passo 3.1) Se o numero aleatório por maior do que 0,65, os dois indivíduos escolhidos passam diretamente para a descendência.

Optimização de uma função Matemática - Recombinação

- ▶ Passo 3.2) Se o número aleatório for menor ou igual a 0.65, calcula-se aleatoriamente um ponto de corte para os primeiros genes dos dois indivíduos escolhidos, recombinando-os e procedendo de igual forma para os segundos genes de ambos. Passando para a descendência, os dois indivíduos cujos novos genes são constituídos até aos cortes, pelos seus próprios e dos cortes em diante pelos genes do individuo com o qual foram recombinados.
- ▶ Passo 4) Volta-se ao passo I, até terminarem os indivíduos da lista ordenada.

Optimização de uma função Matemática – Recombinação - Exemplo

- \blacktriangleright Gene xI = a + b
- Gene $x^2 = c + d$

Ponto de corte aleatório

▶ Indivíduos: i1 e i2

- $i1 = x1 \& x2 \Leftrightarrow i1 = a+b \& c+d$
- $i2 = x1 \& x2 \Leftrightarrow i2 = A+B \& C+D$

Recombinando:

- i'1 = a+B & c+D
- i'2 = A+b & C+d

Optimização de uma função Matemática – Mutação

- Passo I) Escolher uma percentagem de mutação (ex:1%);
- Passo 2) Escolher um indivíduo;
- ▶ Passo 3) Escolher o primeiro gene. Para cada um dos alelos é calculada aleatoriamente uma percentagem, se essa percentagem for menor que 1% o bit em causa passa a "1";
- Passo 4) Volta-se ao passo 2, até terminar a população;

Optimização de uma função Matemática – Mutação - Exemplo

 \rightarrow i'3 = 101101 01000111010 & 1 1001000101110

Operador: Intermediate Crossover – números reais

- Passo I) Selecionam-se 2 indivíduos, PI e P2, assumindo o papel de Pais.
- Passo 2) Selecionam-se os genes GeneiP1 e GeneiP2, dos indivíduos P1 e P2 respectivamente, em que i∈(1,2,3,...,número de genes)
- Passo 3) Gera-se um número aleatório a_i, pertencente ao intervalo [-0.25;1.25]

Operador: Intermediate Crossover – números reais

- Passo 4) Calcula-se o gene Gene; F do novo individuo F (filho), através da seguinte forma:
- Passo 5) Volta-se ao ponto 2, até que todos os genes dos indivíduos "Pais" P1 e P2 sejam percorridos (i = número genes)

Operador: Intermediate Crossover - Exemplo

Considerar os seguintes indivíduos, com 3 genes cada.

Pai1	12	25	5
Pai2	123	4	34

Considerar os seguintes valores de "a" para este exemplo:

a1	a2	a3
0.5	1.1	-0.1

Operador: Intermediate Crossover - Exemplo

O novo filho calculado é:

Gene₁F	Gene₂F	Gene₃F
67.5	1.9	2.1

Pai1	12	25	5
Pai2	123	4	34

a1	a2	a3
0.5	1.1	-0.1