FEUILLE D'EXERCICES nº 6

Exercice 1 – (FFT itérative) – Nous considérons ici des polynômes de A[X] où A est un anneau commutatif unitaire. Soit n une puissance de 2 différente de $1:n=2^k$ avec k>0. Soit $\omega\in A$ une racine primitive n-ième de l'unité (on a $\omega^n=1$ et ω^d-1 n'est diviseur de zéro pour aucun $1\leqslant d< n$). On admettra que l'anneau considéré possède une telle racine. On appelle transformée de Fourier discrète d'un polynôme $R\in A[X]$ de degré < n, identifié au n-uplet (R_0,\ldots,R_{n-1}) le n-uplet

$$DFT_{\omega}(R) = (R(1), R(\omega), \dots, R(\omega^{n-1})).$$

On pose $m = n/2 = 2^{k-1}$. Alors, pour $0 \le p < m$, on a

$$R(\omega^p) = \sum_{j=0}^{m-1} R_{2j}\omega^{2jp} + \omega^p \sum_{j=0}^{m-1} R_{2j+1}\omega^{2jp}$$

et

$$R(\omega^{p+m}) = \sum_{j=0}^{m-1} R_{2j}\omega^{2jp} - \omega^p \sum_{j=0}^{m-1} R_{2j+1}\omega^{2jp}.$$

Les formules précédentes permettent de ramener le calcul d'une DFT de degré < n à deux DFT de degrés < m. En cours, vous avez vu un algorithme récursif qui utilise ce fait.

- 1) Soit $A = \mathbb{F}_{29}$. Trouver une racine primitive quatrième de l'unité ω dans \mathbb{F}_{29} . Soit $P = x^3 + x 1$ dans \mathbb{F}_{29} . Exécuter l'algorithme pour calculer $DFT_{\omega}(P)$.
- 2) Écrire l'arbre de récursivité de l'algorithme pour n=8 et

$$P = \sum_{i=0}^{7} a_i x^i.$$

Vérifier que si b_0, \ldots, b_7 est la liste des coefficients obtenus, alors pour tout i dans $\{0, \ldots, 7\}$, $b_i = a_{M(3,i)}$, où M est l'application "miroir" définie comme suit : si $t = \sum_{i=0}^{k-1} t_i 2^i$, où les t_i appartiennent à $\{0,1\}$, alors

$$M(k,t) = \sum_{i=0}^{k-1} t_{k-i-1} 2^{i}$$

(on inverse l'écriture binaire de t). Ainsi, M(k,t) n'est défini que si t appartient à $\{0,\ldots,2^k-1\}$.

3) Montrer que si $n = 2^k$, la suite des coefficients obtenus b_0, \ldots, b_{n-1} par récursivité sont tels que pour tout i,

$$b_i = a_{M(k,i)}$$
.

4) Soit P un polynôme de degré strictement inférieur à n. Montrer qu'on peut écrire P de façon unique

$$P = P_0(x^2) + xP_1(x^2).$$

Soit T le tableau indicé de 0 à n-1 tel que si $0 \le i \le n/2-1$, alors $T[i] = P_0(\omega^{2i})$ et $T[i+m] = P_1(\omega^{2i})$. Comment obtient-on la transformée de Fourier discrète de P à partir de T?

5) En déduire un algorithme itératif de transformée de Fourier rapide.

Exercice 2 - (FFT sur un exemple)

- 1) Montrer que 2 est une racine primitive 8ème de l'unité dans \mathbb{F}_{17} .
- **2)** Soit dans $\mathbb{F}_{17}[x]$ le polynôme.

$$P(x) = \sum_{i=0}^{7} ix^i.$$

Exécuter l'algorithme récursif de la FFT vu en cours sur P, avec n=8 et en prenant 2 comme racine de l'unité.

Exercice 3 – (Fast negative wrapped convolution) – On se propose ici de décrire une variante que l'on peut mettre en œuvre lorsque A n'admet pas nécessairement de racine primitive n-ième de l'unité. On supposera que 2 est une unité de A et si d est une puissance de 2 on posera

$$D_d = A[X]/\langle X^d + 1 \rangle,$$

et

$$\omega_d = X \mod (X^d + 1) \in D_d.$$

- 1) Montrer que ω_d est une racine primitive 2*d*-ième de l'unité de D_d .
- 2) Soient P et Q deux polynômes de degrés $< n = 2^k$ où $k \geqslant 1$, vérifiant en outre $\deg(PQ) < n$. Posons

$$m = 2^{\lfloor \frac{k}{2} \rfloor}$$
 et $t = \frac{n}{m}$,

et partitionnons P et Q en t blocs de dimension m:

$$P = \sum_{j=0}^{t-1} P_j X^{mj}$$
 et $Q = \sum_{j=0}^{t-1} Q_j X^{mj}$,

où les P_j et Q_j sont des polynômes de ${\cal A}[X]$ de degré < m. Posons

$$P' = \sum_{j=0}^{t-1} P_j Y^j \in A[X, Y]$$
 et $Q' = \sum_{j=0}^{t-1} Q_j Y^j \in A[X, Y].$

- 3) Montrer que pour déterminer PQ il suffit de déterminer P'Q' modulo $(Y^t + 1)$.
- 4) Se ramener à la détermination de P"Q" modulo $(Y^t + 1)$ dans $D_{2m}[Y]$ où P" = P' mod $(Y^t + 1)$ et Q" = Q' mod $(Y^t + 1)$.
- 5) Observer qu'il y a dans D_{2m} des racines primitives 2t-ièmes de l'unité et utiliser la FFT pour calculer PQ.