杭州电子科技大学学生考试卷(A)卷

			T	T				
考试课程	高等数学	学甲(1)	考试日期	2013年	-1月	日	成 绩	
课程号	A0702171	教师号		任课教师	姓名			
考生姓名	19 1.42	学号(8位)		年级			专业	

题	_	7	= 13v								<u> </u>
号			1	2	3	4	5	6	四	五	
得											
分											

- 填空题(本题共6小题,每小题3分,共18分)
- 1. 不定积分 $\int (x-\sin x)dx = \frac{1}{2}\chi^2 + \cos \chi + C$
- 2. 设函数 $f(x) = \begin{cases} \arcsin(\frac{\tan x}{2x}), & x < 0 \\ a, & x \ge 0 \end{cases}$, 且 f(x) 在 x = 0 处连续,则 $a = \frac{2\pi}{6}$
- 3. 若积分 $\int_{a}^{b} \frac{dx}{(x-a)^q}$ 收敛,则 q 的取值范围是 **&< 1**
- 4. 设 $f(x) = \int_0^{x^2} \sin \sqrt{t} dt$, 则 $f'(\frac{\pi}{4}) = \frac{\sqrt{2}}{4}$. 5. 微分方程 $y'x = y \ln y$ 满足 $y(1) = e^{-2}$ 的特解为 $y = e^{-2}$

- 二、选择题 (本题共 8 小题,每小题 3 分,共 24 分).
- 1. $f'(x_0) = 0$ 是 f(x) 在 x_0 处取得极值的(\bigcap)
 - (A) 充分但非必要条件; (B) 必要但非充分条件;
 - (C) 充分必要条件;
- (D) 既非充分也非必要条件,

- 2. 当x→0时, x-sinx是关于x²的(A) (A) 高阶无穷小; (B) 低阶无穷小; (C)等价无穷小; (D) 同阶但非等价无穷小 3. 设函数 f(x) 在 x = a 的某个领域内有定义,则 f(x) 在 x = a 处可导的一个充分条件是

- (A) $\lim_{h \to +\infty} h[f(a+\frac{1}{h}) f(a)]$ 存在; (B) $\lim_{h \to 0} \frac{f(a+2h) f(a+h)}{h}$ 存在; (C) $\lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$ 存在; (D) $\lim_{h \to 0} \frac{f(a) f(a-h)}{h}$ 存在.
 - $\frac{1}{2}$; (B) $-\frac{1}{2}$; (C) $\frac{3}{2}$; (D) $-\frac{3}{2}$.
- 5. 已知 $y = f(\sin x)$, 则 dy = (入)
 - (A) $f'(\sin x)\cos x dx$; (B) $f'(\sin x) dx$;
 - (C) $f'(\sin x) \sin x dx$; (D) $f'(\sin x) \cos x$.
- - (A) $\sin x \frac{1}{2}\sin^2 x + C$; (B) $x \frac{1}{2}x^2 + C$;
 - (C) $\sin x \cos x + C$; (D) $\frac{1}{2}x^2 x + C$.
- 7. 设函数 $F(x) = \int_0^x f(t)dt$, 则 $\Delta F(x)$ 为(7)
 - (A) $\int_0^x [f(t+\Delta t)-f(t)]dt$; (B) $\int_0^{x+\Delta x} f(t)dt$;
- - (C) $f(x) \cdot \Delta x$;
- (D) $\int_0^{x+\Delta x} f(t)dt \int_0^x f(t)dt.$
- 8. 设 f(x) 连续,则 $\lim_{x\to a} \frac{x}{x-a} \int_a^x f(t)dt = (A)$

 - (A) af(a); (B) f(a); (C) a; (D) 0.

算题(共6小题,每小题6分,共36分)

1. 设 $y = e^{2x} - \ln \cot x$, 求dy.

$$y'=2e^{2x}-\frac{1}{\omega tx}\cdot(-cc^{2x})$$

$$=2e^{2x}+\frac{1}{\omega x\cdot \sin x}$$

$$dy=(2e^{2x}+\frac{1}{\omega x\cdot \sin x})dx$$

」 2. $y = \arctan x + x \ln \sqrt{x}$, 求 $\frac{d^2 y}{dx^2}\Big|_{x=1}$ 的值

$$\frac{d\dot{y}}{dx^2} = \frac{-2x}{(1+x)^2} + \frac{1}{2x}$$

$$\left| \frac{d^2y}{dx^2} \right|_{x=1} = -\frac{1}{2} + \frac{1}{2} = 0$$

4. 求函数 $f(x) = (x-2)^2 \cdot \sqrt[3]{x^2}$ 的极值.

f(x)= (x-2) 2x 3 x6(-00,+00) $f'(h) = 2(\chi-2)\chi^{\frac{1}{3}} + \frac{2}{3}(\chi-2)^{\frac{2}{3}}\chi^{\frac{1}{3}} = \frac{4}{5}\cdot\frac{(\chi-2)(\chi+1)}{3\sqrt{\chi}}$ 生fin)=0 => x=1/2. パ x=2

K	(-a0, B)	(0.1/2)	1/2	(/2, 2)	2	12. +00
4	-	+	0	-	0	+
1	1	A		Л		7

5. 已知 f(x) 的一个原函数是 $\ln \sin x$, 求 $\int x f(1-x^2) dx$. 由已知. dhainx=fix)dx

 $\int x f(t-x^2) dx = -\frac{1}{2} \int f(t-x^2) d(t-x^2) \xrightarrow{t-x^2 \pm t} -\frac{1}{2} \int f(t) dt$ = - i hisint + c =- I h sinchx) +c

[得分] 6. 计算 $\int_0^2 (1+\frac{x}{2})\sqrt{2x-x^2} dx$.

 $\sqrt{2x-x^2} = \sqrt{F(x+1)^2}$ $\sqrt{2}x - F + t$.

なれること(達+芝)Nトセンの比

= 3 1 N+t2dt

=3.47

1. [4 %] 方程 $\ln(x^2 + y) = x^3 y + \cos x$ 确定隐函数 y = y(x), 求 y'(0).

2x+ y' = 3xy +xy'-sinx

x=0 Ad / 1 => y= e

· y'10)=0

2. [6分] 求微分方程 $y'' + 2y' - 3y = xe^{-3x}$ 的通解.

P 1721-3=0 => (H3)(H)=0=) 1=1. 12=-3

Y=Gex+Ge3x

@ m=1. λ=3

分野解 y*=(ax+b)·xe=x=(ax+bx)e=x

y*'=[30x2+(20-36)x+b]e-3x

y*"=[90x2+(-120+96)x+(20-66)]e=>x

代入得. a=% b=//6 :.y*=~(-2x+1)e=3x

Q @ M Y= €(-2x+1)e =×+ C, ex+ C, e-3x

得分

五、应用题[本题 7 分] 已知平面区域 D 由抛物线 $y=1-x^2$ 和 x 轴、 y 轴及直线 x=2 围成, 面区域 D 的面积:

试求(1)平面区域D的面积;

(2) 平面区域 D 绕 y 轴旋转一周生成的旋转体的体积.

(1) P= \(\frac{1}{0} + \text{2} d\times - \int_{1}^{2} + \times^{2} d\times = 2 $(2) V = \int_{0}^{1} A X^{2} dy + \left[A \cdot 2^{2} \cdot 3 - \int_{-3}^{0} A X^{2} dy \right]$ $= \int_{0}^{1} A (1 + y) dy + 12A - \int_{-3}^{0} A (1 - y) dy$ $= A \left[1 - \frac{1}{3} + 12 - (3 + \frac{9}{2}) \right]$ = 5A

得分

六、证明题 [本题 5 分]

设函数 f(x) 在 [-a,a](a>0) 上具有二阶连续导数,且 f(0)=0,试证明: α $\left[-a,a\right]$ 上至少存在一点 ξ ,使得 $a^3 f''(\xi) = 3 \int_{-\sigma}^{\sigma} f(x) dx$.