Binomial Theorem Exercise

1. Question 1.

It is given that

$$\left(x^2 + \frac{1}{x}\right)^5 + \left(x^2 - \frac{1}{x}\right)^5 = 2x^{10} + hx^4 + \frac{k}{x^2}.$$

- (a) Find the values of h and k.
- (b) Using the result of (a), evaluate

$$\left(3 + \frac{1}{\sqrt{3}}\right)^5 + \left(3 - \frac{1}{\sqrt{3}}\right)^5.$$

Ans:

- (a) h = 20, k = 10
- (b) $\frac{2008}{3}$

2. Question 2.

It is given that

$$\left(x + \frac{1}{x^2}\right)^4 + \left(x - \frac{1}{x^2}\right)^4 = ax^4 + \frac{b}{x^2} + \frac{c}{x^8}.$$

Find the values of a, b and c.

Ans: (a, b, c) = (2, 12, 2)

3. Question 3.

Determine whether the expansion of $\left(2x + \frac{3}{x^2}\right)^7$ consists of

- (a) a constant term,
- (b) an x term.

Find each term if it exists.

Ans:

- (a) No
- (b) Yes, 6048x

4. Question 4.

- (a) If k is a positive integerm expand $(1-3x)^k$ in ascending powers of x up to powers of 2.
- (b) It is given that the coefficient of x^2 in the expansion of $(1-3x)^k(1+x+2x^2)$ is 77. Find the value of k.

Ans:

(a)
$$1 - 3kx + \frac{9}{2}k(k-1)x^2 + \dots$$

(b)
$$k = 5$$

5. Question 5.

(a) Expand
$$(1-3x)^4$$
 and $\left(1+\frac{2}{x}\right)^3$.

(b) In the expansion of
$$(1-3x)^4\left(1+\frac{2}{x}\right)^3$$
, find

- (i) the constant term,
- (ii) the coefficient of x.

Ans:

(a)
$$(1-3x)^4 = 1 - 12x + 54x^2 - 108x^3 + 81x^4$$
, $\left(1+\frac{2}{x}\right)^3 = 1 + \frac{6}{x} + \frac{12}{x^2} + \frac{8}{x^3}$

- (b) (i) -287
 - (ii) -336

6. Question 6.

- (a) Given that n is a positive integer, expand $\left(ax + \frac{b}{x}\right)^n$ in descending powers of x up to the 5th term, where $a \neq 0$ and $b \neq 0$.
- (b) If the 4th term in the expansion is the constant term, find the value of n.

Ans:

(a)
$$a^n x^n + \binom{n}{1} a^{n-1} b x^{n-2} + \binom{n}{2} a^{n-2} b^2 x^{n-4} + \binom{n}{3} a^{n-3} b^3 x^{n-6} + \binom{n}{4} a^{n-4} b^4 x^{n-8} + \cdots$$

(b)
$$n = 6$$

7. Question 7.

It is given that n is a positive integer where n > 3, the coefficients of x^5 and x^6 in the expansion of $(1+3x)^n$ are the same. Find the value of n.

Ans:
$$n = 7$$

8. Question 8.

It is given that n is a positive integer, the 5th term in the expansion of $\left(2x^2 + \frac{1}{2x}\right)^n$ in descending powers of x is the constant. Find the value of n and the 5th term.

Ans:
$$n = 6$$
, 5th term = $\frac{15}{4}$

9. Question 9.

Let T_r be the coefficient of x^r in the expansion of $\left(x^2 + \frac{a}{2x}\right)^7$, where $a \neq 0$. If $T_2 = 2T_5$, find the value of a.

Ans:
$$a=4$$

10. **Question 10.**

In the expansion of $\left(ax + \frac{2}{x^2}\right)^n$, the 3rd term in descending powers of x is $\frac{20}{27}$, where n is a positive integer and a < 0. Find the values of n and a.

Ans:
$$n = 6, a = -\frac{1}{3}$$

11. Question 11.

It is given that the coefficient of x^3 in the expansion of $\left(1 + \frac{x}{2n}\right)^n$ is $\frac{1}{100}$, where n is a positive integer. Find the value of n and the coefficient of x^4 .

Ans:
$$n = 5$$
, coefficient of $x^4 = \frac{1}{2000}$

12. **Question 12.**

- (a) Given that n is a positive integer, expand $(1 kx)^6 (1 + x)^n$ in ascending powers of x up to the term in x^2 .
- (b) If the coefficients of x and x^2 in the expansion are -23 and 125 respectively, find the values of n and k.

Ans:

(a)
$$-(6k+n)x + \frac{1}{2}(30k^2 - n^2 + n)x^2 + \cdots$$

(b)
$$n = 5, k = 3$$

13. **Question 13.**

It is given that $(2 + \frac{x}{10})^n = 1024 + px + qx^2 + \cdots$.

- (a) Find the value of n.
- (b) Find the values of p and q.

Ans:

(a)
$$n = 10$$

(b)
$$p = 512, q = \frac{576}{5}$$

14. **Question 14.**

It is given that $(hx-1)^k = -1 + 10x - 10h^2x^2 + \cdots$, where k is a positive integer.

3

- (a) Find the values of h and k.
- (b) Hence, find the coefficient of x^3 in the expansion.

Ans:

(a)
$$h = 2, k = 5$$

15. **Question 15.**

It is given that $(hx-2)^k = 64 - 576x + 240h^2x^2 + \cdots$, where k is a positive integer.

- (a) Find the values of h and k.
- (b) Hence, find the coefficient of x^3 in the expansion.

Ans:

- (a) h = 3, k = 6
- (b) -4320