Вариационный вывод в моделях глубокого обучения

Бахтеев Олег

June 16, 2020

Сложность модели: зачем?

Model	image size	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V2 [29]	224×224	11.2 M	1.94 B	74.8	92.2
NASNet-A (5 @ 1538)	299×299	10.9 M	2.35 B	78.6	94.2
Inception V3 [59]	299×299	23.8 M	5.72 B	78.0	93.9
Xception [9]	299×299	22.8 M	8.38 B	79.0	94.5
Inception ResNet V2 [57]	299×299	55.8 M	13.2 B	80.4	95.3
NASNet-A (7 @ 1920)	299×299	22.6 M	4.93 B	80.8	95.3
ResNeXt-101 (64 x 4d) [67]	320×320	83.6 M	31.5 B	80.9	95.6
PolyNet [68]	331×331	92 M	34.7 B	81.3	95.8
DPN-131 [8]	320×320	79.5 M	32.0 B	81.5	95.8
SENet [25]	320×320	145.8 M	42.3 B	82.7	96.2
NASNet-A (6 @ 4032)	331×331	88.9 M	23.8 B	82.7	96.2

Zoph et al., 2017. Сложность моделей отличается почти в два раза при одинаковом качестве.

 Бахтеев Олег
 Выбор модели
 June 16, 2020
 2 / 24

Принцип минимальной длины описания

$$MDL(\mathbf{f},\mathfrak{D}) = L(\mathbf{f}) + L(\mathfrak{D}|\mathbf{f}),$$

где \mathbf{f} — модель, $\mathfrak D$ — выборка, L — длина описания в битах.

$$\mathsf{MDL}(\mathbf{f},\mathfrak{D}) \sim L(\mathbf{f}) + L(\mathbf{w}^*|\mathbf{f}) + L(\mathfrak{D}|\mathbf{w}^*,\mathbf{f}),$$

 ${\bf w}^*$ — оптимальные параметры модели.

f_1	$L(\mathbf{f}_1)$	$L(\mathbf{w}_1^* \mathbf{f}_1)$	$L(D \mathbf{w}_1^*,\mathbf{f}_1)$		
\mathbf{f}_2	$L(\mathbf{f}_2)$	$L(\mathbf{w}_2^* \mathbf{f}_2)$	$L(\mathbf{p} \mathbf{w}_2^*,\mathbf{f}_2)$		
f_3	$L(\mathbf{f}_3)$	$L(\mathbf{w}_3^*)$	$L(\mathbf{p} \mathbf{w}_3^*, \mathbf{f}_3)$		

Бахтеев Олег Выбор модели June 16, 2020

MDL и Колмогоровская сложность

Колмогоровская сложность — длина минимального кода для выборки на предварительно заданном языке.

Теорема инвариантности

Для двух сводимых по Тьюрингу языков колмогоровская сложность отличается не более чем на константу, не зависяющую от мощности выборки.

Отличия от MDL:

- Колмогоровская сложность невычислима.
- Длина кода может зависеть от выбранного языка. Для небольших выборок теорема инвариантности не дает адекватных результатов.

Связанный байесовский вывод

Первый уровень: выбираем оптимальные параметры:

$$\mathbf{w} = \max \frac{p(\mathfrak{D}|\mathbf{w})p(\mathbf{w}|\mathbf{h})}{p(\mathfrak{D}|\mathbf{h})},$$

Второй уровень: выбираем модель, доставляющую максимум обоснованности модели.

Обоснованность модели ("Evidence"):

$$p(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} p(\mathfrak{D}|\mathbf{w}) p(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$

Схема выбора модели

Пример: полиномы

MAP и Evidence

6 / 24

Вариационная оценка, ELBO

Вариационная оценка Evidence, Evidence lower bound — метод нахождения приближенного значения аналитически невычислимого распределения $p(\mathbf{w}|\mathfrak{D},\mathbf{h})$ распределением $q(\mathbf{w})\in\mathfrak{Q}$. Получение вариационной нижней оценки обычно сводится к задаче минимизации

$$\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathfrak{D})) = -\int_{\mathbf{w}} q(\mathbf{w})\log \frac{p(\mathbf{w}|\mathfrak{D})}{q(\mathbf{w})} d\mathbf{w} = \mathsf{E}_{\mathbf{w}}\log p(\mathfrak{D}|\mathbf{w}) - \mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h}))$$

Вариационный вывод и expectation propogation (Bishop)

Аппроксимация Лапласа и вариационная оценка, зеленая линия (Bishop)

Бахтеев Олег Выбор модели June 16, 2020 7 / 24

Получение вариацонной нижней оценки

Максимизация вариационной нижней оценки

$$\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w}$$

эквивалентна минимизации расстояния Кульбака-Лейблера между распределением $q(\mathbf{w}) \in \mathfrak{Q}$ и апостериорным распределением параметров $p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})$:

$$\hat{q} = \operatorname*{arg\,max}_{q \in \mathfrak{Q}} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w} \Leftrightarrow \hat{q} = \operatorname*{arg\,min}_{q \in \mathfrak{Q}} \mathsf{D}_{\mathsf{KL}} \big(q(\mathbf{w}) || p(\mathbf{w} | \mathbf{y}, \mathbf{X}, \mathbf{h}) \big),$$

$$\mathsf{D}_{\mathsf{KL}}\big(q(\mathsf{w})||p(\mathsf{w}|\mathsf{y},\mathsf{X},\mathsf{h})\big) = \int_{\mathsf{w}} q(\mathsf{w})\log\left(\frac{q(\mathsf{w})}{p(\mathsf{w}|\mathsf{y},\mathsf{X},\mathsf{h})}\right)d\mathsf{w}.$$

Бахтеев Олег

ELBO: нормальное распределение

Пусть $q \sim \mathcal{N}(oldsymbol{\mu}_q, \mathbf{A}_q)$.

Тогда вариационная оценка имеет вид:

$$\int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{Y}|\mathbf{X}, \mathbf{w}, \mathbf{h}) d\mathbf{w} - D_{\mathsf{KL}} (q(\mathbf{w}) || p(\mathbf{w}|\mathbf{h})) \simeq$$

$$\sum_{i=1}^m \log p(\mathbf{y}_i|\mathbf{x}_i,\hat{\mathbf{w}}) - D_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})\big) \to \max_{\mathbf{A}_q,\boldsymbol{\mu}_q}, \quad \hat{\mathbf{w}} \sim q.$$

В случае, если априорное распределение параметров $p(\mathbf{w}|\mathbf{h})$ является нормальным:

$$p(\mathbf{w}|\mathbf{h}) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{A}),$$

дивергенция $D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})$ вычисляется аналитически:

$$\frac{D_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})\big)}{2} = \frac{1}{2}\big(\mathsf{tr}(\mathbf{A}^{-1}\mathbf{A}_q) + (\mu - \mu_q)^\mathsf{T}\mathbf{A}^{-1}(\mu - \mu_q) - n + \ln|\mathbf{A}| - \ln|\mathbf{A}_q|\big).$$

Бахтеев Олег Выбор модели June 16, 2020

Graves, 2011

Априорное распределение: $p(\mathbf{w}|\sigma) \sim \mathcal{N}(\mu, \sigma \mathbf{I})$. Вариационное распределение: $q(\mathbf{w}) \sim \mathcal{N}(\mu_q, \sigma_q \mathbf{I})$.

Жадная оптимизация гиперпараметров:

$$\mu = \hat{E}\mathbf{w}, \quad \sigma = \hat{D}\mathbf{w}.$$

Прунинг параметра w_i определяется относительной плотностью:

$$\lambda = rac{q(\mathbf{0})}{q(oldsymbol{\mu}_{i,q})} = \exp(-rac{\mu_i^2}{2\sigma_i^2}).$$

Бахтеев Олег Выбор модели June 16, 2020

10 / 24

ELBO: нормальное распределение

"Обычная" функция потерь:

$$L = \sum_{\mathbf{x}, \mathbf{y} \in \mathfrak{D}} - \log p(\mathbf{y}|\mathbf{x}, \mathbf{w}) + \lambda ||\mathbf{w}||_2^2.$$

Вариационный вывод при $(p(\mathbf{w}|\mathbf{h}) \sim \mathcal{N}(\mathbf{0},\mathbf{1}))$:

$$L = \sum_{\mathbf{x}, \mathbf{y}} \log p(\mathbf{y}|\mathbf{x}, \hat{\mathbf{w}}) +$$

$$+ \frac{1}{2} \big(\mathrm{tr}(\mathbf{A}_q) + \boldsymbol{\mu}_q^\mathsf{T} \mathbf{A}^{-1} \boldsymbol{\mu}_q - \ln \, |\mathbf{A}_q| \big).$$

Пример грубой аппроксимации нормальным диагональным распределением q

Прунинг: вероятностные предположения

Consider the following prior over a parameter w where its scale z is governed by a distribution p(z):

$$z \sim p(z); \qquad w \sim \mathcal{N}(w; 0, z^2),$$
 (3)

with z^2 serving as the variance of the zero-mean normal distribution over w. By treating the scales of w as random variables we can recover marginal prior distributions over the parameters that have heavier tails and more mass at zero; this subsequently biases the posterior distribution over w to be sparse. This family of distributions is known as scale-mixtures of normals [6, 2] and it is quite general, as a lot of well known sparsity inducing distributions are special cases.

One example of the aforementioned framework is the spike-and-slab distribution [50], the golden standard for sparse Bayesian inference. Under the spike-and-slab, the mixing density of the scales is a Bernoulli distribution, thus the marginal p(w) has a delta "spike" at zero and a continuous "slab" over the real line. Unfortunately, this prior leads to a computationally expensive inference since we have to explore a space of 2^M models, where M is the number of the model parameters. Dropout [29, 67],

Bayesian deep compression: drpout-group sparsity

One potential choice for p(z) is the improper log-uniform prior [37]: $p(z) \propto |z|^{-1}$. It turns out that we can recover the log-uniform prior over the weights w if we marginalize over the scales z:

$$p(w) \propto \int \frac{1}{|z|} \mathcal{N}(w|0, z^2) dz = \frac{1}{|w|}.$$
 (4)

This alternative parametrization of the log uniform prior is known in the statistics literature as the normal-Jeffreys prior and has been introduced by [16]. This formulation allows to "couple" the scales of weights that belong to the same group (e.g. neuron or feature map), by simply sharing the corresponding scale variable z in the joint prior³:

$$p(\mathbf{W}, \mathbf{z}) \propto \prod_{i}^{A} \frac{1}{|z_{i}|} \prod_{ij}^{A,B} \mathcal{N}(w_{ij}|0, z_{i}^{2}),$$
 (5)

where W is the weight matrix of a fully connected neural network layer with A being the dimensionality of the input and B the dimensionality of the output. Now consider performing variational inference with a joint approximate posterior parametrized as follows:

$$q_{\phi}(\mathbf{W}, \mathbf{z}) = \prod_{i=1}^{A} \mathcal{N}(z_i | \mu_{z_i}, \mu_{z_i}^2 \alpha_i) \prod_{i=1}^{A,B} \mathcal{N}(w_{ij} | z_i \mu_{ij}, z_i^2 \sigma_{ij}^2),$$
 (6)

where α_i is the dropout rate [67, 37, 51] of the given group. As explained at [37, 51], the multiplicative parametrization of the approximate posterior over z suffers from high variance gradients; therefore we will follow [51] and re-parametrize it in terms of $\sigma_{z_i}^2 = \mu_{z_i}^2 \alpha_i$, hence optimize w.r.t. $\sigma_{z_i}^2$. The lower bound under this prior and approximate posterior becomes:

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(\mathbf{z})q_{\phi}(\mathbf{W}|\mathbf{z})}[\log p(\mathcal{D}|\mathbf{W})] - \mathbb{E}_{q_{\phi}(\mathbf{z})}[KL(q_{\phi}(\mathbf{W}|\mathbf{z})||p(\mathbf{W}|\mathbf{z}))] - KL(q_{\phi}(\mathbf{z})||p(\mathbf{z})). \tag{7}$$

Бахтеев Олег Выбор модели June 16, 2020 13 / 24

Bayesian deep compression: drpout-group sparsity

At test time, in order to have a single feedforward pass we replace the distribution over **W** at each layer with a single weight matrix, the masked variational posterior mean:

$$\hat{\mathbf{W}} = \operatorname{diag}(\mathbf{m}) \mathbb{E}_{q(\mathbf{z})q(\tilde{\mathbf{W}})}[\operatorname{diag}(\mathbf{z})\tilde{\mathbf{W}}] = \operatorname{diag}(\mathbf{m} \odot \boldsymbol{\mu}_z)\mathbf{M}_W,$$
 (10)

where \mathbf{m} is a binary mask determined according to the group variational dropout rate and \mathbf{M}_W are the means of $q_{\phi}(\tilde{\mathbf{W}})$. We further use the variational posterior marginal variances⁵ for this particular posterior approximation:

$$V(w_{ij})_{NJ} = \sigma_{z_i}^2 \left(\sigma_{ij}^2 + \mu_{ij}^2\right) + \sigma_{ij}^2 \mu_{z_i}^2, \tag{11}$$

Bayesian deep compression: half-cauchy

Another choice for p(z) is a proper half-Cauchy distribution: $\mathcal{C}^+(0,s) = 2(s\pi(1+(z/s)^2))^{-1}$; it induces a horseshoe prior [8] distribution over the weights, which is a well known sparsity inducing prior in the statistics literature. More formally, the prior hierarchy over the weights is expressed as (in a non-centered parametrization):

$$s \sim C^{+}(0, \tau_{0}); \quad \tilde{z}_{i} \sim C^{+}(0, 1); \quad \tilde{w}_{ij} \sim \mathcal{N}(0, 1); \quad w_{ij} = \tilde{w}_{ij}\tilde{z}_{i}s,$$
 (12)

Бахтеев Олег Выбор модели June 16, 2020 15 / 24

Bayesian deep compression: half-cauchy

$$s_b \sim \mathcal{IG}(0.5, 1);$$
 $s_a \sim \mathcal{G}(0.5, \tau_0^2);$ $\tilde{\beta}_i \sim \mathcal{IG}(0.5, 1);$ $\tilde{\alpha}_i \sim \mathcal{G}(0.5, 1);$ $\tilde{w}_{ij} \sim \mathcal{N}(0, 1);$

$$w_{ij} = \tilde{w}_{ij} \sqrt{s_a s_b \tilde{\alpha}_i \tilde{\beta}_i}. \tag{14}$$

It should be mentioned that the improper log-uniform prior is the limiting case of the horseshoe prior when the shapes of the (inverse) Gamma hyperpriors on $\tilde{\alpha}_i$, $\tilde{\beta}_i$ go to zero [8]. In fact, several well known shrinkage priors can be expressed in this form by altering the shapes of the (inverse) Gamma hyperpriors [3]. For the variational posterior we will employ the following mean field approximation:

$$q_{\phi}(s_b, s_a, \tilde{\beta}) = \mathcal{LN}(s_b | \mu_{s_b}, \sigma_{s_b}^2) \mathcal{LN}(s_a | \mu_{s_a}, \sigma_{s_a}^2) \prod_{i}^{A} \mathcal{LN}(\tilde{\beta}_i | \mu_{\tilde{\beta}_i}, \sigma_{\tilde{\beta}_i}^2)$$
(15)

$$q_{\phi}(\tilde{\boldsymbol{\alpha}}, \tilde{\mathbf{W}}) = \prod_{i}^{A} \mathcal{LN}(\tilde{\alpha}_{i} | \mu_{\tilde{\alpha}_{i}}, \sigma_{\tilde{\alpha}_{i}}^{2}) \prod_{i,j}^{A,B} \mathcal{N}(\tilde{w}_{ij} | \mu_{\tilde{w}_{ij}}, \sigma_{\tilde{w}_{ij}}^{2}), \tag{16}$$

Bayesian deep compression: результаты

		<u>w≠0 </u> %	Compression Rates (Error %)		
Model Original Error %	Method		Pruning	Fast Prediction	Maximum Compression
LeNet-300-100	DC	8.0	6 (1.6)	-	40 (1.6)
	DNS	1.8	28* (2.0)	_	-
1.6	SWS	4.3	12* (1.9)	_	64(1.9)
	Sparse VD	2.2	21(1.8)	84(1.8)	113 (1.8)
	BC-GNJ	10.8	9(1.8)	36(1.8)	58(1.8)
	BC-GHS	10.6	9(1.8)	23(1.9)	59(2.0)
LeNet-5-Caffe	DC	8.0	6*(0.7)	-	39(0.7)
	DNS	0.9	55*(0.9)	-	108(0.9)
0.9	SWS	0.5	100*(1.0)	_	162(1.0)
	Sparse VD	0.7	63(1.0)	228(1.0)	365(1.0)
	BC-GNJ	0.9	108(1.0)	361(1.0)	573(1.0)
	BC-GHS	0.6	156(1.0)	419(1.0)	771(1.0)
VGG	BC-GNJ	6.7	14(8.6)	56(8.8)	95(8.6)
8.4	BC-GHS	5.5	18(9.0)	59(9.0)	116(9.2)

Квантизация: вероятностные предположения

The log uniform prior (Eq. (5)) can be viewed as a continuous relaxation of the spike-and-slab prior with a spike at location 0 (Louizos et al.) [2017]. We use this insight to formulate a quantizing prior, a continuous relaxation of a "multi-spike-and-slab" prior which has multiple spikes at locations c_k , $k \in \{1, ..., K\}$. Each spike location corresponds to one target value for subsequent quantiza-

Бахтеев Олег Выбор модели June 16, 2020 18 / 24

Квантизация: вероятностные предположения

$$p(w_{ij}) = \int \mathcal{N}(w_{ij}|m_{ij}, z_{ij}) p_z(z_{ij}) p_m(m_{ij}) \, dz_{ij} dm_{ij} \qquad p_m(m_{ij}) = \sum_k a_k \delta(m_{ij} - c_k),$$
 (11)

with $p(z_{ij}) \propto |z_{ij}|^{-1}$. The location prior $p_m(m_{ij})$ is a mixture of weighted delta distributions located at the quantization values c_k . Marginalizing over m yields the quantizing prior

$$p(w_{ij}) \propto \sum_{k} a_k \int \frac{1}{|z_{ij}|} \mathcal{N}(w_{ij}|c_k, z_{ij}) \, \mathrm{d}z_{ij} = \sum_{k} a_k \frac{1}{|w_{ij} - c_k|}.$$
 (12)

In our experiments, we use K=3, $a_k=1/K \ \forall k$ and $c_2=0$ unless indicated otherwise.

Квантизация: назначение значений параметров

An equivalent interpretation is that a weight is pruned if the likelihood for the value 0 under the approximate posterior exceeds the threshold given by the standard-deviation band (Eq. (13)):

$$\mathcal{N}(0|\theta_{ij}, \sigma_{ij}^2) \ge \mathcal{N}(\theta_{ij} \pm \frac{\sigma_{ij}}{\sqrt{T_\alpha}} |\theta_{ij}, \sigma_{ij}^2) = \frac{1}{\sqrt{2\pi}\sigma_{ij}} e^{-\frac{1}{2T_\alpha}}.$$
 (14)

Extending this argument for pruning weights to a quantization setting, we design a post-training quantization scheme that assigns each weight the quantized value c_k with the highest likelihood under the approximate posterior. Since variational posteriors over weights are Gaussian, this translates into minimizing the squared distance between the mean θ_{ij} and the quantized values c_k :

$$\arg\max_{k} \mathcal{N}(c_{k}|\theta_{ij}, \sigma_{ij}^{2}) = \arg\max_{k} e^{-\frac{(c_{k} - \theta_{ij})^{2}}{2\sigma_{ij}^{2}}} = \arg\min_{k} (c_{k} - \theta_{ij})^{2}.$$
 (15)

Квантизация: результаты для МС

21 / 24

Квантизация: вычисление KL

with $\epsilon_{ij} \sim \mathcal{N}(0,1)$. In standard (Gaussian) dropout training, the dropout rates α (or p to be precise) are fixed and the expected log likelihood $L_{\mathcal{D}}(\phi)$ (first term in Eq. [1]) is maximized with respect to the means θ . [Kingma et al. [2015] show that Gaussian dropout training is mathematically equivalent to maximizing the ELBO (both terms in Eq. [1]), under a prior p(w) and fixed α where the KL term does not depend on θ :

$$\mathcal{L}(\alpha, \theta) = \mathbb{E}_{q_{\alpha}}[L_{\mathcal{D}}(\theta)] - D_{\mathrm{KL}}(q_{\alpha}(w)||p(w)), \tag{4}$$

where the dependencies on α and θ of the terms in Eq. (1) have been made explicit. The only prior that meets this requirement is the scale invariant log-uniform prior:

$$p(\log |w_{ij}|) = \text{const.} \Leftrightarrow p(|w_{ij}|) \propto \frac{1}{|w_{ij}|}.$$
 (5)

$$-D_{\mathrm{KL}}(q_{\phi}(w_{ij})||p(w_{ij})) \approx \mathrm{const.} + k_1 S(k_2 + k_3 \log \alpha_{ij}) - 0.5 \log(1 + \alpha_{ij}^{-1}) = F_{\mathrm{KL},\mathrm{LU}}(\theta_{ij}, \sigma_{ij}),$$

$$F_{\mathrm{KL}}(\theta, \sigma, c) = \underbrace{\sum_{k: c_k \neq 0} \Omega(\theta - c_k) F_{\mathrm{KL,LU}}(\theta - c_k, \sigma)}_{\text{local behavior}} + \underbrace{\Omega_0(\theta) F_{\mathrm{KL,LU}}(\theta, \sigma)}_{\text{global behavior}}$$
(16)

with

$$\Omega(\theta) = \exp(-\frac{1}{2}\frac{\theta^2}{\tau^2}) \qquad \Omega_0(\theta) = 1 - \sum_{k:c, t \neq 0} \Omega(\theta - c_k). \tag{17}$$

Квантизация: результаты

Источники

- Zoph, B., Vasudevan, V., Shlens, J. and Le, Q.V., 2018. Learning transferable architectures for scalable image recognition
- David J. C. MacKay, Information Theory, Inference & Learning Algorithms
- Peter Grunwald, A tutorial introduction to the minimum description length principle
- Christopher Bishop, Pattern Recognition and Machine Learning
- A. Graves, Practical Variational Inference for Neural Networks
- Louizos C., Ullrich K., Welling M. Bayesian compression for deep learning
- Achterhold, J., Koehler, J. M., Schmeink, A., & Genewein, T. Variational network quantization.