PUBH 501 Biostatistics

STATA: NON-PARAMETRIC TESTS, WILCOXON SIGNED-RANK, RANK SUM TEST

Tip of the day: using the / in Stata

•The single / is used as part of an operator, like in recode where we show Stata a range recode var1 (1/5=1) (6/10=2), gen (var2)

•The /// denotes a comment when added to the beginning of a line ///the next line of code runs a tabulation of my variable 1

•The // adds a comment at the end of a line of code tab var1 //run a tabulation of my var1

•The /// at the end of the line of a code inserts a line break. If you insert a new line without a line break (you hit enter or enter code on the next line without a "///"), Stata thinks it's a unique line of code, not connected to the one above it. Using the line break may help with readability.

```
graph hbar, ///
over(sat) ///
ytitle("Percent of Respondents") ///
title("In general, how satisfied are you with your job?")
```

Overview

- Sign test
- Wilcoxon sign-rank test
- Wilcoxon rank sum test

Checking assumptions in Stata

- •For parametric tests, we are looking for normality
 - Overall
 - Within groups
- •Can use —tab-, -summ-, and —histogram- to look at normality

bysort groups: summ var1, detail

Sign test

Sign test

- •Tests that the median of the differences is zero (null hypothesis)
- Account for change in direction, but not a magnitude of change
 - Would need to use Wilcoxon signed-rank test to look at magnitude of change
- •The Stata command is –signtest-

```
signtest cesdT = cesdTE
```

Sign test

expected	observed	sign
		+-
5	6	positive
5	4	negative
0	0	zero
		+-
10	10	all

Two-sided test:

Ho: median of cesdT - cesdTE = 0 vs.

Ha: median of cesdT - cesdTE != 0

Pr(#positive >= 6 or #negative >= 6) = $\min(1, 2*Binomial(n = 10, x >= 6, p = 0.5)) = 0.7539$

Conclusions

•We do not reject the null hypothesis the median of the differences between the groups is zero

Signed-rank test

Wilcoxon signed-rank test

- •Tests the equality of matched pairs of observations. Account for magnitude of change
- Null hypothesis is that median difference in variables =0
- •The Stata command is –signrank-

```
signrank cesdT = cesdTE
```

Results

Wilcoxon signed-rank test

sign	l obs	sum ranks	expected	unadjusted variance	96.25
	+			adjustment for ties	-0.38
positive	6	36.5	27.5	adjustment for zero	0.00
negative	4	18.5	27.5		
zero	0	0	0	adjusted variance	95.88
	H				
all	10	55	55	Ho: cesdT = cesdTE	
				z =	0.919
				Prob > z =	0.3580
				Exact Prob =	0.4043

Conclusions

- We cannot reject the null hypothesis that the median difference between cesdT and cesdTE = 0
- •The median value of cesdT was 28, with a range of 15-35, and the median value of cesdTE was 26.5 with a range of 12-35.
- •The exact p-value is best used in sample size <200. In our case, we use the exact p-value
 - the approximated p-value is based on a normal approximation of a randomized distribution and is better in larger samples. The exact p-value is computationally intense, so it is not recommended in n>200, and cannot be used at all in n>2000

Rank sum test

Wilcoxon rank sum / Mann-Whitney U test

- Tests the equality of non-matched, unpaired observations.
- •Null hypothesis is that median difference between groups =0
- Tied ranks are averaged
- •The Stata command is -ranksum dependent_var, by(independent_var)-

```
ranksum painscore, by (groups)
```

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

Exact Prob = 0.0001

groups +				<u> </u>			
TENS				132			
Pain killer			86	144			
+							
combined	23		276	276			
unadjusted variance		264.00					
adjustment for ties		-3.52					
adjusted variance		260.48					
Ho: painscore(groups==TENS) = painscore(groups==Pain killer)							
z = 3.594							
Prob > z = 0.0003							

Conclusions

- •We reject the null hypothesis that the median difference between groups in pain score is 0, there was a significant difference in median pain score between groups
- •The median value of painscore for the TENS (nerve stimulation) group was 16, with a range of 12-17, and the median value of painscore for the pain killer group was 6.5 with a range of 3-16.
- •The exact p-value is best used in sample size <200. In our case, we use the exact p-value

Multiple graphs

Storing and recalling graphs

- •set autotabgraphs on //allows more than one graph to be open, by using tab in the graph displayer
- Name graphs to recall them
 - histogram painscore if groups==1, name(histG1) freq
 - histogram painscore, name(histB) by(groups) freq
 - graph display histG1
 - graph drop histB //need to drop the graph name before using it again this session

