AMENDMENTS TO THE CLAIMS

1-16. (Cancelled)

17. (New) A method for collecting acrylic acid comprising:

introducing a reaction gas into a collection column at a temperature of 140 to 250°C, the reaction gas comprising acrylic acid obtained by catalytic vapor-phase oxidation of propane, propylene, and/or acrolein;

introducing an aqueous medium into the collection column at a temperature of 20 to 50°C whereby the acrylic acid in the reaction gas is collected in the aqueous medium to produce an acrylic acid aqueous solution;

causing the acrylic acid aqueous solution to flow out from the bottom of the collection column;

causing the reaction gas remaining after the collection step to flow out from the top of the collection column; and

performing heat removal in the collection column by using a heat-removing device on the collection column to maintain the following condition: 0.8< (B/A) < 1.25, wherein A represents a weight fraction of acrylic acid to all condensable ingredients in the reaction gas before collecting acrylic acid and B represents a weight fraction of acrylic acid in the bottom of the collection column.

- 18. (New) The method according to claim 17, wherein the aqueous medium introduced into the collection column is an aqueous solution that comprises at least 90 wt% of water.
- 19. (New) The method according to claim 17, wherein the temperature at the top of the collection column is 72°C or less, and the temperature of the bottom at the collection column is 86°C or less.

- 20. (New) The method according to claim 17, wherein a water content in the aqueous medium introduced into the collection column is 0.5- to 2-fold of a water content in the reaction gas introduced into the collection column.
- 21. (New) The method according to claim 17, wherein a degree of fluctuation of the temperature at the top of the collection column is within 2°C in steady operation conditions.
- 22. (New) The method according to claim 21, wherein the temperature at the top of the collection column is kept within \pm 1°C of a temperature in steady operation conditions.
- 23. (New) The method according to claim 17, wherein the aqueous medium introduced into the collection column comprises at least 90 wt% of water, and the water content in the aqueous medium is 0.5- to 2-fold of a water content in the reaction gas introduced into the collection column.
- 24. (New) The method according to claim 23, wherein a degree of fluctuation of the temperature at the top of the collection column is within 2°C in steady operation conditions.
- 25. (New) The method according to claim 24, wherein the temperature at the top of the collection column is kept within \pm 1°C of a temperature in steady operation conditions.
- 26. (New) The method according to claim 17, wherein the aqueous medium introduced into the collection column comprises at least 90 wt% of water, wherein the water content in the aqueous medium is 0.5- to 2-fold of a water content in the reaction gas introduced into the collection column, and B/A is $0.8 < (B/A) \le 1.15$.