GDA Project: 3D Gaussian Splatting

Pierrick Bournez, Amruth Srivathsan,
Paul Tabbara

Problem: From a Series of Images, Create a 3D reconstructed scene

Application:

Robotics, Virtual Reality...

Prior Works: NeRF

History:

NeRF used Deep Learning

Drawbacks:

- Long Training time
- Slow Inference

(from the NeRF paper)

NeRF

3D Gaussian Splatting

Methodology of Original Paper

Initialization (3D scene from 2D Images)

• Input: Set Of Images

Output: Set of 3D Gaussians (from SfM Points)

Building Block: 3D Gaussian

3D Gaussians Space Parameters:

3D positions

Covariance

Color Parameters:

Spherical Harmonics

Opacity

Color Parameters:

Visualization of spherical harmonics behaviours

Color Parameters: Different opacity value ₇

Rendering

Optimization

Parameter optimization:

$$L = (1 - \lambda)L_1 + \lambda L_{\{D-SSIM\}} \longrightarrow \alpha, \mu, c, r, s$$

Optimization of number of Gaussians:

Over-reconstruction:

Under-reconstruction:

Limitations and Extensions

Limitation 1: Holes Due to Missing Camera Views

Extension 1: Fixing with "Inpainting"

Input Image

Fill in the black sections »(Didn't give satisfactory result)

« Fill in the missing black sky » (Improved Result)

Limitation 2 : Color artifacts

Black Specks

Chromatic aberration

Spherical Harmonics induce blurry artifacts

Extension 2: Adding Depth Regularization

Using a Depth Estimator, (like DepthAnythingv2)

Extension 3: SFM Comparison CoLMAP/GLOMAP

Dataset	COLMAP (s)	GLOMAP (s)	Speedup (%)
Bicycle	73.74	40.33	82.8%
Bonsai	998.32	232.32	329.7%
Counter	605.83	114.03	431.3%
Flowers	68.48	40.42	69.4%
Garden	555.17	94.10	490.0%
Kitchen	1176.02	173.00	579.8%
Room	727.07	168.50	331.5%
Stump	50.16	18.00	178.7%
Treehill	120.26	48.40	148.5%
Average	486	103	293

Colmap

GLOMAP

GLOMAP is a faster in average SFM solver

Qualitative differences in the output of Gaussian splatting with different solvers

Conclusion

 3D Gaussian Splatting: Revolutionizing 3D Reconstruction

A new paper published almost every day on the topic!

Our Contributions:

Identified key limitations and proposed potential extensions.

Future Directions:

Explore mesh reconstruction.

Investigate temporal Gaussian representations.

Limitations	Extensions	
Holes due to missing camera views	Fix them with Stable Diffusion	
Color artifacts	Depth Regularization	
Possible Speed Ups	Compare two SfM algorithm	

THE END!