

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 2 of 22

Listing of Claims:

1. (Currently Amended) An apparatus for placing a proximal portion of a penetrating member in a target area after the apparatus is positioned in proximity to an entry point of an object containing the target area by a manipulation device, the penetrating member having a translational axis, said apparatus comprising:

a first arm being configured and arranged to rotatably support the penetrating member about its translational axis;

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced from the initial position, thereby also translating the penetrating member proximal portion along its translational axis in a direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the penetrating member proximal portion is disposed in the target area;

wherein the first arm and first drive mechanism are coupled to the manipulation device such that the manipulation device can position the apparatus in proximity to the entry point of the object containing the target area; and

~~— wherein the first arm is further configured and arranged to rotatably support the penetrating member about the longitudinal axis of the penetrating member; and wherein the apparatus further comprises:~~

a second drive mechanism being coupled to the penetrating member and being configured and arranged so as to cause the penetrating member to rotate about the longitudinal/translational axis of the penetrating member.

2. (Currently Amended) The apparatus of claim 16, wherein the first arm is further configured and arranged to rotatably support the penetrating member about the translational longitudinal axis of the penetrating member; and wherein the apparatus further comprises:

a second drive mechanism being coupled to the penetrating member and being configured and arranged so as to cause the penetrating member to rotate about the translational/longitudinal axis of the penetrating member.

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 3 of 22

3. (Previously Presented) The apparatus of claim 2 wherein the first and second drive mechanisms are configured and arranged so that translating of the first arm and rotating of the penetrating member are separately and independently controlled.

4. (Previously Presented) The apparatus of claim 2, wherein the first and second drive mechanisms are configured and arranged so that translating of the first arm and rotating of the penetrating member are performed at the same time.

5. (Previously Presented) The apparatus of claim 2, wherein the first and second drive mechanisms are configured and arranged so as to do one of translating of the first arm or rotating of the penetrating member.

6. (Original) The apparatus of claim 2, wherein the second drive mechanisms is configured and arranged so as to selectively rotate the penetrating member at one of a number of different rotational speeds.

7. (Previously Presented) The apparatus of claim 16, further comprising a second arm coupled to the first drive mechanism so that the first arm translates towards the second arm.

8. (Original) The apparatus of claim 7, in which the second arm further includes a guide mechanism in which the penetrating member is moveably received.

9. (Original) The apparatus of claim 8, wherein the guide mechanism is selectively configurable so as to be capable of guiding differently sized penetrating members.

10. (Previously Presented) The apparatus of claim 16, wherein the first arm includes a detachable portion and a latching mechanism configured so as to releasably secure the detachable portion to a rest of the first arm.

D. Stoianovici, et al.

U.S.S.N.: 09/943,751

Page 4 of 22

11. (Original) The apparatus of claim 7, wherein the second arm includes a detachable portion and a latching mechanism configured so as to releasably secure the detachable portion to a rest of the second arm.

12. (Original) The apparatus of claim 11 wherein the detachable portion includes at least a portion of a guide mechanism in which the penetrating member is moveably received.

13. (Previously Presented) The apparatus of claim 16, wherein the first drive mechanism includes a slipless transmission assembly.

14. (Previously Presented) The apparatus of claim 16, wherein the first drive mechanism comprises a screw mechanically coupled to the first arm such that rotation of the screw causes the first arm to translate from the first position.

15. (Original) The apparatus of claim 14, wherein the first drive mechanism further includes a bi-directional motor coupled to the screw and wherein the first arm can be translated in one of two directions responsive to the direction of rotation of the motor.

16. (Currently Amended) An apparatus for placing a proximal portion of a penetrating member in a target area, the penetrating member having a translational axis, comprising:

a first arm being configured and arranged to rotatably support the penetrating member about the translational longitudinal axis of the penetrating member;

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced from the initial position, wherein one of the any of a number of other positions corresponds to a condition where the penetrating member proximal portion is disposed in the target area; and

wherein the first drive mechanism includes a linear guide that is configured and arranged so as to restrain motion of the first arm other than in the direction the first arm translates.

17. (Original) The apparatus of claim 16, wherein the linear guide comprises:

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 5 of 22

a rod member;

a track;

a sliding member a portion of which is configured to slidably engage the track and which is secured to the first arm; and

a coupling mechanism secured to the sliding member and slidably coupling the rod member to the sliding member.

18. (Original) The apparatus of claim 2, further comprising:

a controller that is configured and arranged to selectively and separately control the first and second drive mechanisms.

19. (Original) The apparatus of claim 18, wherein the controller is further configured so as to include a plurality of pre-established penetrating member driving protocols for driving the penetrating member end portion from an initial position to the target area.

20. (Previously Presented) The apparatus of claim 18, wherein the controller is configured and arranged so that translating of the first arm and rotating of the penetrating member are performed at the same time.

21. (Previously Presented) The apparatus of claim 18, wherein the controller is configured and arranged so as to do one of translating of the first arm or rotating of the penetrating member.

22. (Original) The apparatus of claim 18, wherein the controller is configured and arranged so as to selectively rotate the penetrating member at one of a number of different rotational speeds.

23. (Original) The apparatus of claim 18, wherein the controller is configured and arranged so as to successively translate the penetrating member in a back and forth manner.

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 6 of 22

24. (Original) The apparatus of claim 18 further comprising a sensor and wherein the controller is configured and arranged to alter the penetrating member driving protocol based on signals from the sensor.

25. (Previously Presented) The apparatus of claim 16, wherein the penetrating member is configured so as to be capable of performing any one of injecting therapeutic agents into the target area, locating an imaging device in the target area, biopsy including tissue biopsy, and locating a medical device in the target area to be used to perform an medical procedure.

26. (Currently Amended) An apparatus for placing a proximal portion of a penetrating member in a target area after the apparatus is positioned in proximity to an entry point of an object containing the target area, the penetrating member having a translational axis, said apparatus comprising:

a first arm being configured and arranged to rotatably support the penetrating member about the translational-longitudinal axis of the penetrating member;

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced from the initial position, thereby also translating the penetrating member along its translational axis, proximal portion-in a direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the penetrating member proximal portion is disposed in the target area;

a second drive mechanism being coupled to the penetrating member and being configured and arranged so as to cause the penetrating member to rotate about the translational longitudinal axis of the penetrating member; and

wherein the second drive mechanism comprises a gear member secured to the penetrating member and being mechanically coupled to a motor such that operation of the motor causes the penetrating member to rotate about its translational the long axis.

27. (Original) The apparatus of claim 26, wherein the second drive mechanism further includes a drive gear that is mechanically coupled to the motor and the penetrating member gear

D. Stoianovici, et al.

U.S.S.N.: 09/943,751

Page 7 of 22

member so that the penetrating member gear member rotates responsive to rotation of the drive gear.

28. (Original) The apparatus of claim 27, wherein the motor is a bi-directional motor and wherein the penetrating member can be rotated in one of a clockwise and counter clockwise direction responsive to the direction of rotation of the motor.

29. (Currently Amended) An apparatus for placing a proximal portion of a penetrating member in a target area after the apparatus is positioned in proximity to an entry point of an object containing the target area, the penetrating member having a translational axis, said apparatus comprising:

a first arm being configured and arranged to rotably support the penetrating member about the translational longitudinal axis of the penetrating member;

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced from the initial position, thereby also translating the penetrating member proximal portion in a direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the penetrating member proximal portion is disposed in the target area;

wherein the first drive mechanism includes a linear guide that is configured and arranged so as to restrain motion of the first arm other than in the direction the first arm translates;

a second arm coupled to the first drive mechanism so that the first arm translates towards the second arm; and

a second drive mechanism being coupled to the penetrating member and being configured and arranged so as to cause the penetrating member to rotate about the translational longitudinal axis of the penetrating member.

30. (Previously Presented) The apparatus of claim 29 wherein the first and second drive mechanisms are configured and arranged so that translating of the first arm and rotating of the penetrating member are separately and independently controlled.

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 8 of 22

31. (Previously Presented) The apparatus of claim 29, wherein the first and second drive mechanisms are configured and arranged so that translating of the first arm and rotating of the penetrating member are performed at the same time.

32. (Previously Presented) The apparatus of claim 29, wherein the first and second drive mechanisms are configured and arranged so as to do one of translating of the first arm or rotating of the penetrating member.

33. (Original) The apparatus of claim 29, wherein the second drive mechanisms is configured and arranged so as to selectively rotate the penetrating member at one of a number of different rotational speeds.

34. (Original) The apparatus of claim 29, in which the second arm further includes a guide mechanism in which the penetrating member is moveably received.

35. (Original) The apparatus of claim 29, wherein:

the first arm includes a detachable portion and a latching mechanism configured so as to releasably secure the detachable portion to a rest of the first arm; and

the second arm includes a detachable portion and a latching mechanism configured so as to releasably secure the detachable portion to a rest of the second arm.

36. (Original) The apparatus of claim 29, wherein the first drive mechanism comprises:
a screw mechanically coupled to the first arm such that rotation of the screw causes the first arm to translate from the first position;

a bi-directional motor coupled to the screw; and

wherein the first arm is translated in one of two direction responsive to the direction of rotation of the motor.

37. (Canceled)

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 9 of 22

38. (Previously Presented) The apparatus of claim 29, wherein the linear guide comprises:

a rod member;

a track;

a sliding member a portion of which is configured to slidably engage the track and which is secured to the first arm; and

a coupling mechanism secured to the sliding member and slidably coupling the rod member to the sliding member.

39. (Original) The apparatus of claim 29, further comprising a controller that is configured and arranged to selectively and separately control the first and second drive mechanisms.

40. (Original) The apparatus of claim 29, wherein the second drive mechanism comprises:

a gear member secured to the penetrating member; and

a drive gear that is mechanically coupled to the motor and the penetrating member gear member so that the penetrating member gear member rotates responsive to rotation of the motor.

41. (Original) The apparatus of claim 40, wherein the motor is a bi-directional motor and wherein the penetrating member can be rotated in one of a clockwise and counter clockwise direction responsive to the direction of rotation of the motor.

42. (Currently Amended) An apparatus for driving a subcutaneous needle so a proximal portion thereof is located in a target area of a body after the apparatus is positioned in proximity to an entry point of the body, the penetrating member having a translational axis, said apparatus comprising:

a first arm being configured and arranged to rotatably support the needle about the longitudinal-translational axis of the needle;

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 10 of 22

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced from the initial position, thereby also translating the penetrating member proximal portion in a direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the needle proximal portion is disposed in the target area;

a second arm coupled to the first drive mechanism so that the first arm translates towards the second arm;

wherein the first drive mechanism includes a linear guide that is configured and arranged so as to restrain motion of the first arm other than in the direction the first arm translates;

a second drive mechanism being coupled to the needle and being configured and arranged so as to cause the needle to rotate about the translational longitudinal-axis of the needle; |
and

wherein the second arm further includes a guide mechanism in which the needle is moveably received.

43. (Original) The apparatus of claim 42, wherein:

the first arm includes a detachable portion and a latching mechanism configured so as to releasably secure the detachable portion to a rest of the first arm; and

the second arm includes a detachable portion and a latching mechanism configured so as to releasably secure the detachable portion to a rest of the second arm.

44. (Currently Amended) An apparatus for driving a subcutaneous needle so a proximal portion thereof is located in a target area of a body after the apparatus is positioned in proximity to an entry point of the body, said apparatus comprising:

a first arm being configured and arranged to rotatably support the needle about the translational longitudinal-axis of the needle; |

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced from the initial position, thereby also translating the penetrating member proximal portion in a

D. Stoianovici, et al.

U.S.S.N.: 09/943,751

Page 11 of 22

direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the needle proximal portion is disposed in the target area; a second arm coupled to the first drive mechanism so that the first arm translates towards the second arm;

a second drive mechanism being coupled to the needle and being configured and arranged so as to cause the needle to rotate about the translational longitudinal-axis of the needle;

wherein the second arm further includes a guide mechanism in which the needle is moveably received; and

wherein the first drive mechanism comprises:

a screw mechanically coupled to the first arm such that rotation of the screw causes the first arm to translate from the first position;

a bi-directional motor coupled to the screw;

wherein the first arm is translated in one of two direction responsive to the direction of rotation of the motor; and

a linear guide that is configured and arranged so as to restrain motion of the first arm other than in the direction the first arm translates, wherein the linear guide includes:

a rod member,

a track,

a sliding member a portion of which is configured to slidably engage the track and which is secured to the first arm, and

a coupling mechanism secured to the sliding member and slidably coupling the rod member to the sliding member.

45. (Currently Amended) An apparatus for driving a subcutaneous needle so a proximal portion thereof is located in a target area of a body after the apparatus is positioned in proximity to an entry point of the body, said apparatus comprising:

a first arm being configured and arranged to rotatably support the needle about the translational longitudinal-axis of the needle;

a first drive mechanism being coupled to the first arm and being configured and arranged to translate the first arm from an initial position to any of a number of other positions spaced

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 12 of 22

from the initial position, , thereby also translating the penetrating member proximal portion in a direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the needle proximal portion is disposed in the target area;

a second arm coupled to the first drive mechanism so that the first arm translates towards the second arm;

a second drive mechanism being coupled to the needle and being configured and arranged so as to cause the needle to rotate about the translational longitudinal-axis of the needle;

wherein the second arm further includes a guide mechanism in which the needle is moveably received; and

wherein the second drive mechanism comprises:

a gear member secured to the penetrating member;

a drive gear that is mechanically coupled to the motor and the penetrating member gear member so that the penetrating member gear member rotates responsive to rotation of the motor;

wherein the motor is a bi-directional motor; and

wherein the penetrating member can be rotated in one of a clockwise and counter clockwise direction responsive to the direction of rotation of the motor.

46. (Currently Amended) A method for localizing a proximal portion of a penetrating member in a target area of a body, the penetrating member having a translational axis, comprising the steps of:

supporting the penetrating member from a first arm;

positioning the first arm with respect to the body so the translational axis of the penetrating member passes through the target area;

linearly translating the first arm from an initial position to any of a number of other positions spaced from the initial, thereby also translating the penetrating member proximal portion in a direction towards the target area, wherein one of the any of a number of other positions corresponds to a condition where the penetrating member proximal portion is disposed in the target area; and

rotating the penetrating member about the longitudinal-translational axis of the penetrating member.

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 13 of 22

47. (Cancelled)

48. (Previously Presented) The method of claim 46, wherein said steps of rotating said penetrating member and translating the first arm are concurrently performed as the penetrating member proximal portion is translated through a surface of the body.

49. (Previously Presented) The apparatus of claim 1, wherein the first arm is operably coupled to the manipulation device that positions the first arm with respect to the entry point of the object containing the target area so a long axis of the penetrating member passes through the target area.

50. (Previously Presented) The apparatus of claim 29, wherein the first arm is operably coupled to an apparatus that positions the first arm with respect to the entry point of the object containing the target area so a long axis of the penetrating member passes through the target area.

51. (Previously Presented) The apparatus of claim 42, wherein the first arm is operably coupled to an apparatus that positions the first arm with respect to the entry point of the object containing the target area so a long axis of the needle passes through the target area.

52. (Previously Presented) The apparatus of claim 1, wherein the first drive mechanism is configured and arranged to translate the first arm so that the penetrating member proximal portion moves along a translation axis that passes through the target area.

53. (Previously Presented) The apparatus of claim 29, wherein the first drive mechanism is configured and arranged to translate the first arm so that the penetrating member proximal portion moves along a translation axis that passes through the target area.

D. Stoianovici, et al.
U.S.S.N.: 09/943,751
Page 14 of 22

54. (Previously Presented) The apparatus of claim 42, wherein the first drive mechanism is configured and arranged to translate the first arm so that the needle moves along a translation axis that passes through the target area.

55. (Canceled)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
 - IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
 - FADED TEXT OR DRAWING**
 - BLURRED OR ILLEGIBLE TEXT OR DRAWING**
 - SKEWED/SLANTED IMAGES**
 - COLOR OR BLACK AND WHITE PHOTOGRAPHS**
 - GRAY SCALE DOCUMENTS**
 - LINES OR MARKS ON ORIGINAL DOCUMENT**
 - REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
 - OTHER:** _____
-

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.