Problema arma – descrierea soluției

Prof. Sandor Lukacs Liceul Teoretic Onisifor Ghibu Oradea

Metoda 1

Pentru a distruge centrul general al inamicilor situat la distanţa d folosind o cantitate minimă de narun k, trebuie să determinăm puterea maximă p pentru care $d=k^p$.

Pentru aceasta vom descompune d în factori primi.

Fie $d=k^p=x_1^{a1}x_2^{a2}...x_h^{ah}$ descompunerea în factori primi a lui d.

p trebuie să dividă a_1 , a_2 , ..., a_h și să fie maxim posibil. Deci p=cmmdc (a_1 , a_2 , ..., a_h).

Prin urmare
$$k = x_1^{a1/p} x_2^{a2/p} ... x_h^{ah/p}$$

Pentru a ne încadra în timp trebuie să optimizăm descompunerea în factori primi. Pentru aceasta vom precalcula numerele prime <2*10⁹, folosind ciurul lui Eratostene.

Metoda 2.

Se pot genera pe rând valorile de la k <-- 2 la sqrt(2000000000) si se ridică fiecare valoare pe rând la puterile p=2,..., 32 (datorită restricţiilor, nivelul maxim poate fi doar 32). Dacă se găseşte egalitatea $k^p = d$ s-a obţinut cantitatea minimă.

Această soluție nu se încadrează în timp pentru toate testele.