[19] 中华人民共和国国家知识产权局

[51] Int. Cl.

C03C 4/16 (2006.01)

C03C 3/118 (2006.01)

[12] 发明专利申请公布说明书

[21] 申请号 200710053979.9

[43] 公开日 2007年9月12日

[11] 公开号 CN 101033114A

[22] 申请日 2007.2.12

[21] 申请号 200710053979.9

[71] 申请人 洛玻集团洛阳晶纬玻璃纤维有限公司 地址 471009 河南省洛阳市唐宫中路 9 号

[72] 发明人 蓝红军 郭 卫 王自强 何 沁 郎 明 李广宙 杨淑媛 周建新

[74] 专利代理机构 郑州中民专利代理有限公司 代理人 郭中民

权利要求书1页 说明书7页

[54] 发明名称

低介电常数玻璃

[57] 摘要

本发明公开了一种低介电常数玻璃,所述的玻璃组成及其重量百分比为: SiO_2 48~58%, Al_2O_3 10~20%, B_2O_3 20~30%, TiO_2 0~5%,CaO 0~5%,MgOO~5%, $Na_2O+K_2O \leqslant 0.3\%$, F^- 0.01%~1%, V_2O_5 0.01%~0.5%, CeO_2 0~1.5%。 本发明具有更低的介电常数以及介电正切,同时物理膨胀性能增强,抗化学腐蚀也提高,同时具备良好的可生产性以适应工业的连续化生产,降低生产难度,节约能源以获取更大的经济效益。 本发明玻璃可以用做通讯电子设备中对低介电常数、低介电正切要求很高的基板材料以及电路板元器件,同时本玻璃适用于拉制玻璃纤维。

- 1、一种低介电常数玻璃,其特征是: 所述的玻璃组成及其重量百分比为: SiO_2 $48\sim58\%$, AI_2O_3 $10\sim20\%$, B_2O_3 $20\sim30\%$, TiO_2 $0\sim5\%$, CaO $0\sim5\%$, MgO $0\sim5\%$, $Na_2O+K_2O\leq0$. 3% , $F^ 0.01\%\sim1\%$, V_2O_5 $0.01\%\sim0$. 5%, CeO_2 $0\sim1$. 5%。
- 2、根据权利要求 1 所述的低介电常数玻璃,其特征是: 所述玻璃在室温下,频率在 1MHz 的介电常数在 4.1~5.2 之间,介电正切在 $5~10×10^{-4}$ 内,在 100~400 ℃内膨胀系数在 $27×10^{-7}~34×10^{-7}$ ℃内。
- 3、根据权利要求 1 所述的低介电常数玻璃,其特征是: 在对玻璃性能提高不明显的情况下,玻璃中可含有最多 3%的 Sr0、 Cr_2O_3 、BaO、 ZrO_2 、 As_2O_3 、 Sb_2O_3 、ZnO、 Li_2O 、 Fe_2O_3 或 C1.

低介电常数玻璃

技术领域

本发明是属于一种低介电常数玻璃,具有优良物理化学性能以及低介电性能的增强玻璃材料。适用于对材料的物理、化学性能以及介电性能有较高要求的电子材料行业,同样适用于玻璃纤维的生产。

背景技术

近年来随着社会信息行业的发展,相关数字化电子设备也随子之迅猛发 展,而且越来越向前发展。随着大量电子设备的升级换代,厂家对其使用的 电气元件材料有了更高的要求,对其在高集成度、高频率电流下的性能表现 有了更高要求,以适应发展的需要。普通玻璃作为电子器件,当通过高频交 流时会对电流能量产生损失,增加电子设备的能耗;同时增大电子信号的延 迟,成为电子设备走向高频率的最大障碍。该玻璃能满足厂家的要求,适应 高集成度、高频率电流环境。目前,应用比较多的低介电常数玻璃为 E 玻璃 和 D 玻璃。其中 E 玻璃: 化学组成中碱金属氧化物含量为 0-2%的铝硼硅酸 盐玻璃,最早用于电绝缘材料,成为E玻璃(Electrical glass)。D玻璃:美 国于上世纪 60 年代为适应高效能电子应用研发出的一种低介电常数玻璃, 即 D 玻璃, 又称 D556 玻璃。E 玻璃由于介电性能较差, 在高度集成的电路 中以及高频率的环境下性能表现很差。国内生产的E玻璃在室温情况下,频 率为 1MHz 的介电常数为 6.6~6.7, 介电正切为 12~13×10⁻⁴,已经不适应高集 成度和高频率。而 D 玻璃, 作为 E 玻璃的改良品, 虽然介电性能有所提高, 其室温情况下, 频率为 1MHz 的介电常数为 4.2,介电正切为 10×10^4 ,但是其 由于熔化性能太差,且易于产生气泡以及不均匀现象,使得后期拉丝性能差, 不利于大规模连续生产,市场经济效益差。

发明内容

本发明的目的是提供一种低介电常数玻璃,具有更低的介电常数以及介电正切,同时具备良好的可生产性以适应工业的连续化生产,降低生产难度。

本发明所述的玻璃组成及其重量百分比为:

 SiO_2 48~58%,

 $A1_2O_3$ 10~20%,

 B_2O_3 20~30%,

 $TiO_2 0 \sim 5\%$,

Ca0 $0 \sim 5\%$,

Mg0 $0\sim5\%$,

 $Na_20+K_20 \le 0.3\%$

 F^- 0.01%~1%

 V_2O_5 0.01%~0.5%

 $CeO_2 0 \sim 1.5\%$

本发明中,除了上述成分外,在对玻璃性能提高不明显**的情况**下,也可以含有最多 3%的 Sr0、 Cr_2O_3 、Ba0、 ZrO_2 、 As_2O_3 、 Sb_2O_3 、Zn0、 Li_2O 、 Fe_2O_3 、C1 等。

该成分内玻璃,在室温下,频率在 1MHz 的介电常数在 4.1~5.2 之间,介电正切在 $5~10\times10^{-4}$ 内,在 100~400 ℃内膨胀系数在 $27\times10^{-7}~34\times10^{-7}$ 个。

在本发明的玻璃组成中,SiO₂、Al₂O₃、B₂O₃ 做为玻璃的主要成分,是玻璃网络构架的重要组成,当 SiO₂高于 58%,不利于熔化澄清,低于 48%,化 学稳定性下降,介电常数过大,Al₂O₃ 低于 10%,不利于玻璃态的形成,高于

20%, 高温粘度太大。B₂O₃ 低于 20%, 助熔效果减低,不利于玻璃的熔化,高于 30%, 化学稳定性变差。

TiO₂ 对熔化时的高温粘度起到降低作用,有利于玻璃的熔化,高于 5%则会产生分相。

CaO、MgO 能够提高玻璃的化学稳定性,当 CaO、MgO 超过 5%时,介电常数以及介电正切都过大。

Na₂0+K₂0 高于 0.3%介电正切过高,少量的 Na₂0 和 K₂0 可以起到助熔效果。

F 对玻璃起到熔化澄清作用,为本玻璃成分不可缺少的成分,对于玻璃的熔化起到重要作用,降低了熔化温度和熔化时间,高于 1%容易导致玻璃化学稳定性变差。

V₂O₅,能降低玻璃的表面张力,改善熔化时的玻璃液的浸润性,利于玻璃的熔化。同时可以作为澄清剂使用,起着高温消除玻璃液气泡的作用利于 气泡的排除。

CeO₂用以改善玻璃的澄清效果,有效减少玻璃中的残余气泡。

本发明玻璃化学性能稳定,在沸水中浸泡1小时后,其质量损失量低于 0.8%,有着优良的抗水性能。

本发明玻璃热膨胀系数和 D 玻璃相当,性能优于 E 玻璃。

本发明的玻璃通过引入 F 、V₂O₅等助熔剂以及澄清剂,改善了玻璃的熔化难的情况,且对玻璃中难排出的气泡得到了很好的解决,在以配合原料熔制过程中,在1540℃保温 4 小时即可以获得熔化澄清良好的玻璃样品,无

可见气泡,相对D玻璃的熔制情况有了非常大的改善。

本发明具有更低的介电常数以及介电正切,同时物理膨胀性能增强,抗 化学腐蚀也提高,同时具备良好的可生产性以适应工业的连续化生产,降低 生产难度,节约能源以获取更大的经济效益。本发明玻璃可以用做通讯电子 设备中对低介电常数、低介电正切要求很高的基板材料以及电路板元器件, 同时本玻璃适用于拉制玻璃纤维,以本玻璃成分拉制的玻璃纤维同样适用与 高集成度、高频率下的电路板生产,以及利用到低介电常数、低介电正切的 特性的以该玻璃制作成的复合材料。

具体实施方式

实施例 1: 所述的低介电常数玻璃组成及重量百分比: SiO₂ 54.55%, $A1_2O_3$ 14.6%, B_2O_3 26.3%, TiO_2 1.0%, CaO 1.0%, MgO 2.0%, Na_2O 0.1%, K_2O 0.1%, F 0.2%, V_2O_5 0.1%, CeO_2 0.05%,上述玻璃的介 电常数为 4.1,介电正切×10⁻⁴ 为 6.6,热膨胀系数为 27.8×10⁻⁷ (/ \mathbb{C}),粘度 10^3 泊的温度为 $1335\mathbb{C}$ 。

实施例 2: 所述的低介电常数玻璃组成及重量百分比: SiO₂ 50.02%, $A1_2O_3$ 13.5%, B_2O_3 25.7%, TiO_2 3.0%,CaO 4.0%,MgO 3.0%, Na_2O 0.15%, K_2O 0.15%, F^- 0.3%, V_2O_5 0.1% CeO_2 0.08%,上述玻璃的介电常数 4.1,介电正切×10⁻⁴ 为 9.2,热膨胀系数为 33.2×10⁻⁷ (/ \mathbb{C}),粘度 10³泊的温度为 1315 \mathbb{C} 。

实施例 3: 所述的低介电常数玻璃组成及重量百分比: SiO₂ 53.1%,

 $A1_2O_3$ 14. 3% , B_2O_3 26. 0%, TiO_2 1. 5% ,CaO 1. 5% ,MgO 3. 0% , Na_2O 0. 15%, K_2O 0. 15% , F^- 0. 1% , V_2O_5 0. 1% CeO_2 0. 1%,上述玻璃的介电常数 4. 4,介电正切 \times 10 $^{-4}$ 为 7. 9,热膨胀系数为 29. 2 \times 10 $^{-7}$ (/ $\mathbb C$),粘度 10 3 泊的温度为 1345 $\mathbb C$ 。

实施例 4: 所述的低介电常数玻璃组成及重量百分比: SiO₂ 48.5%, $A1_2O_3$ 15.5%, B_2O_3 26.8%, TiO_2O_2 2%,CaO 3.0%,MgO 3.0%, Na_2O 0.10%, K_2O 0.10%, F^- 0.1%, V_2O_5 0.1% CeO_2 0.5%,上述玻璃的介电常数 4.8, 介电正切×10⁻⁴ 为 9.4,热膨胀系数为 33.0×10⁻⁷ (/ \mathbb{C}),粘度 10^3 泊的温度为 1305 \mathbb{C} 。

实施例 5: 所述的低介电常数玻璃组成及重量百分比: SiO₂ 51.6%, $A1_2O_3$ 13.5%, B_2O_3 24.8%, TiO_2 3.0%,CaO 3.0%,MgO 3.0%, Na_2O 0.15%, K_2O 0.15%, F^- 0.2%, V_2O_5 0.2% CeO_2 0.4%,上述玻璃的介电常数 4.6, 介电正切 $\times 10^{-4}$ 为 8.1,热膨胀系数为 31.6 $\times 10^{-7}$ (/ \mathbb{C}),粘度 10^3 泊的温度为 1308 \mathbb{C} 。

实施例 6: 所述的低介电常数玻璃组成及重量百分比: Si 0_2 49.5%, A1 $_2$ O $_3$ 13.5%,B $_2$ O $_3$ 26.1%,Ti O $_2$ 3.0%,CaO 4.0%,MgO 3.0%,Na $_2$ O 0.10%, K $_2$ O 0.10%, F^- 0.2%, V $_2$ O $_5$ 0.1% CeO $_2$ 0.7%,上述玻璃的介电常数 4.7, 介电正切×10 $^{-4}$ 为 8.9,热膨胀系数为 33.2×10 $^{-7}$ (/ $^{\circ}$ C),粘度 10 3 泊的温度为 1316 $^{\circ}$ C。

本发明的上述实施例与 E 玻璃、D 玻璃对比数据如下表所示:

成分(重量%)	D	E	实施	实施	实施	实施	实施	实施
			例 1	例 2	例 3	例 4	例 5	例 6
SiO ₂	73. 0	54. 6	54. 55	50. 02	53. 1	48. 5	51.6	49. 5
A1 ₂ O ₃	1.0	14. 6	14. 6	13. 5	14. 3	15. 5	13. 5	13. 5
B ₂ O ₃	22. 0	8	26. 3	25. 7	26. 0	26. 8	24. 8	26. 1
TiO ₂	0	0.2	1.0	3.0	1.5	2. 2	3. 0	3. 0
Ca0	0.6	16	1.0	4.0	1.5	3. 0	3. 0	4. 0
MgO	0.5	4.6	2. 0	3. 0	3.0	3. 0	3. 0	3.0
Na ₂ O	1. 2	≤1	0.1	0. 15	0. 15	0. 10	0. 15	0. 10
K ₂ O	1.1	€1	0. 1	0. 15	0. 15	0. 10	0. 15	0. 10
F ⁻	0	0~1	0.2	0.3	0.1	0. 1	0. 2	0. 2
V_2O_5	0	0	0.1	0.1	0.1	0. 1	0. 2	0. 1
CeO ₂	0	0	0. 05	0.08	0.1	0.5	0.4	0.7
介电常数	4. 2	6.6	4. 1	4.6	4.4	4.8	4. 6	4.7
介电正切×10 ⁻⁴	10.0	13.0	6.6	9. 2	7.9	9.4	8. 1	8.9
热膨胀系数	32. 0	55. 0	27.8	33. 2	29. 2	33. 0	31.6	33. 2
×10 ⁻⁷ (/℃)								
粘度 10 ³ 泊的温度	1410	1300	1335	1315	1345	1305	1308	1316
(℃)								

通过上表的数据分析,本发明所列实施例在频率为 1MHz 条件下,介电常数为 4.1 -4.8,介电正切为 (6.6 $-9.2) \times 10$ -4 与 D 玻璃相当,粘度 10° 泊时的温度为 1305 \mathbb{C} -1345 \mathbb{C} ,而 D 玻璃为 1410 \mathbb{C} ,对比发现本发明玻璃的 拉丝温度明显优于 D 玻璃。E 玻璃的介电常数为 6.6,介电正切为 13×10^{-4} 介电性能较差,难以适应高集成度和高频率电子产品的需要。