LITERATURE SURVEY

Survey on Smart farming using IOT

Team Member's:

KAVIYA S - 620319104013

NIRMALA F - 620319104024

SUJITHA M - 620319104044

SWATHI R - 620319104045

ABSTRACT

India is agriculture sector, on either side, is losing ground every day, affecting the ecosystem output capacity. In order to restore vitality and put agriculture back on a path of higher growth, there is a growing need to resolve the issue. A large-scale agricultural system necessitates a great deal of upkeep, knowledge, and oversight. The IoT is a network of interconnected devices that can transmit and receive data over the internet and carry out tasks without human involvement. Agriculture provides a wealth of data analysis parameters, resulting in increased crop yields. The use of IoT devices in smart farming aids in the modernization of information and communication. For better crop growth moisture, mineral, light and other factors can be assumed. This research looks into a few of these characteristics for data analysis with the goal of assisting users in making better agricultural decisions using IoT. The technique is intended to help farmers increase their agricultural output.

LITERATURE REVIEW

H.G.C.R. Laksiri, H.A.C. Dharmagunawardhana, J.V. Wijayakulasooriya

Development of an effective loT-based smart irrigation system is also a crucial demand for farmers in the field of agriculture. This research develops a low-cost, weather-based smart watering system. To begin, an effective drip irrigation system must be devised that can automatically regulate water flow to plants based on soil moisture levels. Then, to make this water-saving irrigation system even more efficient, an IoT-based communication feature is added, allowing a remote user to monitor soil moisture conditions and manually adjust water flow. The system also includes temperature, humidity, and rain drop sensors, which have been updated to allow remote monitoring of these parameters through the

internet. In real time, these field weather variables are stored in a remote database. Finally, based on the present weather conditions, a weather prediction algorithm is employed to manage water distribution. Farmers would be able to irrigate their crops more efficiently with the proposed smart irrigation system.

Dweepayan Mishra, Arzeena Khan, Rajeev Tiwari, Shuchi Upadhaye

Agriculture is a substantial source of revenue for Indians and has a huge impact on the Indian economy. Crop development is essential for enhanced yield and higher-quality delivery. As a result, crop beds with ideal conditions and appropriate moisture can have a big influence on output. Traditional irrigation systems, such as stream flows from one end to the other, are usually used. As a result of this delivery, the moisture levels in the fields can alter. A designed watering system can help to enhance the management of the water system. This research proposes a terrain-specific programmable water system that will save human work while simultaneously improving water efficiency and agricultural productivity. The setup is made up of an Arduino kit, a moisture sensor, and a Wi-Fi module. Data is acquired by connecting our experimental system to a cloud framework. After then, cloud services analyse the data and take the necessary actions.

Shrihari M

The concept of automating agricultural production has been around since the early 1990s, and one of the primary challenges that both scientists and farmers confront is irrigation. Irrigation is a dynamic system that is heavily reliant on outside influences. This article describes a method that uses a custom-built mathematical model to handle data from wireless sensors on Google Cloud, resulting in a smart system. An IoT-enabled design that can scale up to big farms. According to Holistic Agricultural Studies, around 35 have been damaged by animals and people. This intelligent system uses Tensor flow and deep learning neural networks to recognise animals depending on their threat level, as well as human intruders who are not authorised on the farm, and to alert the farmer immediately. An android application is included with the device, which allows for remote access and surveillance through live video streaming.

G. Sushanth, and S. Sujatha

Smart agriculture is a novel concept since IoT sensors can offer information about agricultural regions and then act on it based on user input. The purpose of this study is to develop a smart agricultural system that utilises cutting-edge technologies such as Arduino, Internet of Things, and wireless sensor networks. Through automation, the research tries to take use of emerging technologies such as the Internet of Things (IoT) and smart agriculture. The capacity to monitor environmental factors is a critical component in increasing crop efficiency. The purpose of this study is to develop a system that can monitor temperature, humidity, wetness, and even the movement of animals that might damage crops in agricultural areas using sensors, and then send an SMS notification as well as a

notification on the app developed for the same to the farmer's smartphone via Wi-Fi/3G/4G if there is a discrepancy. The system uses a duplex communication link based on a cellular Internet interface, which allows data inspection and irrigation schedule to be changed using an android app. Because of its energy independence and inexpensive cost, the gadget has the potential to be useful in water-scarce, geographically isolated areas.

Conclusion

Conclude The proposed work provides the information on various soil parameters that includes soil temperature, soil moisture and atmospheric temperature to predict irrigation suitability. This system helps to analyze the soil parameters thereby ensuring a better system of irrigation for agriculture. The data collected from the sensors are made to learn using machine learning techniques to ensure a fully automated system. Implementing an IoT based smart agriculture system helps in obtaining quality crops and it also reduces the human involvement in agricultural activities.