HOMOTOPY THEORY

ISHAN LEVY

1. Fibrations

Definition 1.1. We say that a map $g: A \to B$ satisfies the **homotopy lifting property** with respect to a space X, if for any homotopy $H_t: X \times [0,1] \to B$ and for any lift $h_0: X \to A$ of H_0 , h_0 can be extended to a lift of the whole homotopy. In other words, the dashed arrow h_t in the diagram below can be filled in:

$$X \xrightarrow{h_0} A$$

$$\downarrow_i \xrightarrow{h_t} \downarrow_g$$

$$X \times [0,1] \xrightarrow{H_t} B$$

Definition 1.2. A (Hurewicz) **fibration** is a map $\pi : E \to B$ that satisfies the homotopy lifting property with respect to any space.

We call E the total space and B the base space.

Fibrations, like fibre bundles, are closed under pullbacks.

Lemma 1.3. The pullback of a fibration along any map is a fibration.

Proof. Use the homotopy lifting property and the universal property of pullbacks to verify that the pullback also satisfies the homotopy lifting property. \Box

For example, a fibre bundle is an example of a fibration. Indeed, a fibration is a weaker version of a fibre bundle in that the fibres are no longer homeomorphic, but rather homotopy equivalent.

Proposition 1.4. The fibres of a fibration $\pi: E \to B$ over a path-connected base are homotopy equivalent.

Proof. First note that by Lemma 1.3, by pulling back paths between two points on the base, it suffices to prove this where the B = [0, 1], for the fibres of 0 and 1. Indeed, let $F_i = \pi^{-1}(i)$. Then let r_t be the lift of $R_t : F_0 \times [0, 1] \to [0, 1]$ the projection, where r_0 is the inclusion, and similarly let $s_t : F_0 \times [0, 1] \to [0, 1]$ be the lift of $S_t : F_1 \times [0, 1] \to [0, 1]$ the projection, where s_1 is the inclusion.

Then $s_0: F_1 \to F_0$, and $r_1: F_0 \to F_1$ are homotopy inverses. Indeed, $s_t \circ r_{1-t}$ is a homotopy from s_0