Poi	lei dermale	loi uniforme	bi gamma X D P(a1p)	be exponentially xx exp(1)
notation X2C(0)	$X \circ \alpha(w_{12})$ $X \circ \alpha(w_{12})$	X a yearb]		
parametro densité fx(x)=	mete t>0 1 = 2002 (0x-m)? 1 = 2002 (0x-m)?	(a1b)eTR2 \[\frac{1}{b-a} \text{ xe[a1b]} \] \[\frac{1}{b-a} \text{ xe[a1b]} \]	(a)0 (17/0) \[\frac{p^{\alpha}}{\Gamma^{\alpha}} \times^{\alpha - 1} \in \text{P} \\ \(\sigma^{\alpha - 1} \in \text{P} \\ \\ \(\sigma^{\alpha - 1} \in \text{P} \\ \\ \(\sigma^{\alpha - 1} \in \text{P} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
fontion de xépartition Fx(x)=	tableau pour d'(0,1)	0 2/a 1 a a a a a a a a a a a a a a a a a a	, 0 a	1 - 200 200 200 200 200 200 200 200 200 2
EXTERNACE V(X)	m	$\frac{a+b}{2}$ $\frac{(b-a)^2}{12}$	P P P2	$\frac{1}{9}$ $\frac{1}{9}$
			V.	
Sondion génératrice des moments M	emt + 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	etbeta t(b-a)	$\left(1-\frac{t}{P}\right)^{-\alpha}$ when $t < p$	(1-E)-1 ELA
Senction canaderistique	imt-1+2+2	eith-eita it(b-a) tetR	(1-12)-a ber	(Liby) 1 terr
propriets	mi X a d (mit) " abis x-m of in X2 o d (mit) " ix X o d (mit) " ix X o d (mit) abis x-tx abis x-tx	(a)=1 pointown	Di XID P(anp) X2 or P(anp) X1 + X2 aloro X1+ X2 or Plant	· Engla)= [(4,9)
	a ste			•

.