Q (??), and the order $\leq_{\mathbf{P}\times\mathbf{Q}}$ is given by: $\langle p_1,q_1\rangle \leq_{\mathbf{P}\times\mathbf{Q}} \langle p_2,q_2\rangle$

Definition (Product of posets). Given two posets $\langle \mathbf{P}, \leq_{\mathbf{P}} \rangle$ and $\langle \mathbf{Q}, \leq_{\mathbf{Q}} \rangle$, the *prod*-

uct poset is $\langle \mathbf{P} \times \mathbf{Q}, \leq_{\mathbf{P} \times \mathbf{Q}} \rangle$, where $\mathbf{P} \times \mathbf{Q}$ is the Cartesian product of the sets \mathbf{P} and

 $(p_1 \leq_{\mathbf{P}} p_2) \wedge (q_1 \leq_{\mathbf{O}} q_2)$