Podstawy logiki i teorii mnogości

Literatura:

- 1. J. Słupecki, K. Hałkowska, K. Piróg-Rzepecka: "Logika matematyczna".
- 2. A. Wojciechowska: "Elementy logiki i teorii mnogości".
- 3. H. Rasiowa: "Wstęp do matematyki współczesnej".
- 4. K. Kuratowski, A. Mostowski: "Teoria mnogości".
- 5. A. Błaszczyk, S. Turek: "Teoria mnogości".
- 6. W. Marek, J. Onyszkiewicz: "Elementy logiki i teorii mnogości w zadaniach".
- 7. T. Batóg: "Podstawy logiki".
- 8. B. Stanosz: "Ćwiczenia z logiki".

Wykład 1, Wykład 2

Klasyczny Rachunek Zdań

2 wartości logiczne: 1-prawda, 0-fałsz.

Def. Zdaniem w sensie logicznym nazywamy zdanie oznajmujące, które jest prawdziwe lub fałszywe.

Spójniki logiczne (funktory rachunku zdań)

nazwa	wyrażenie	symbol
negacja	nieprawda, że	Г
koniunkcja	i	^
alternatywa	lub	V

implikacja	Jeżeli, to	\rightarrow , \Rightarrow
równoważność	wtedy i tylko wtedy, gdy	\leftrightarrow , \Leftrightarrow

Spójniki logiczne w połączeniu ze zdaniami (argumentami spójnika) tworzą zdania złożone.

Tablice prawdziwościowe spójników.

p	¬р
1	0
0	1

p	q	p∨q	p∧q	$p \rightarrow q$	p↔q
1	1	1	1	1	1
1	0	1	0	0	0
0	1	1	0	1	0
0	0	0	0	1	1

Zmienne zdaniowe: p,q,r,s

Def. Formułami (schematami zdaniowymi) klasycznego rachunku zdań będziemy nazywać wyrażenia zdefiniowane w następujący sposób:

- 1. każda zmienna zdaniowa jest formułą,
- 2. jeżeli p jest formułą, to ¬p jest formułą,
- 3. jeżeli p i q są formułami, to wyrażenia $p \land q$, $p \lor q$, $p \to q$, $p \leftrightarrow q$ są formułami.

Def. Wartościowaniem nazywamy przyporządkowanie wartości logicznych zmiennym zdaniowym.

np.

p	q	r
1	0	1

Def. Tautologią klasycznego rachunku zdań nazywamy formułę, która przyjmuje wartość logiczną 1 dla każdego wartościowania.

Ważniejsze prawa klasycznego rachunku zdań

Prawa rozdzielności:

$$p{\scriptstyle \wedge}(q{\scriptstyle \vee}r) {\longleftrightarrow} (p{\scriptstyle \wedge}q){\scriptstyle \vee}(p{\scriptstyle \wedge}r)$$

$$p\lor(q\land r)\longleftrightarrow(p\lor q)\land(p\lor r)$$

Prawa łączności:

$$(p \land q) \land r \leftrightarrow p \land (q \land r)$$

$$(p\lor q)\lor r\longleftrightarrow p\lor (q\lor r)$$

$$[(p {\longleftrightarrow} q) {\longleftrightarrow} r] {\longleftrightarrow} [p {\longleftrightarrow} (q {\longleftrightarrow} r)]$$

Prawa de Morgana

$$\neg(p{\wedge}q){\longleftrightarrow}\neg p{\vee}\neg q$$

$$\neg (p \lor q) \longleftrightarrow \neg p \land \neg q$$

Prawo eksportacji-importacji

$$(p \land q \rightarrow r) \leftrightarrow [p \rightarrow (q \rightarrow r)]$$

Prawa idempotentności dla \wedge i \vee

$$p \land p \longleftrightarrow p$$

$$p \lor p \longleftrightarrow p$$

Prawa przemienności

$$p \land q \leftrightarrow q \land p$$

$$p \lor q \leftrightarrow q \lor p$$

$$(p \leftrightarrow q) \leftrightarrow (q \leftrightarrow p)$$

Prawa definiowania

$$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$$

$$(p {\longleftrightarrow} q) {\longleftrightarrow} (p {\to} q) {\wedge} (q {\to} p)$$

$$(p \leftrightarrow q) \leftrightarrow (p \land q) \lor (\neg p \land \neg q)$$
$$p \land q \leftrightarrow \neg (\neg p \lor \neg q)$$
$$p \lor q \leftrightarrow \neg (\neg p \land \neg q)$$

Prawo podwójnego przeczenia ¬¬p↔p

Metody sprawdzania, czy dana formuła klasycznego rachunku zdań jest tautologią.

1. Metoda zero-jedynkowa.

Przykłady.

$$1. (p \rightarrow q) \rightarrow (q \rightarrow q p)$$

p	q	ηр	7 q	$p \rightarrow q$	¬ q→¬ p	$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
1	1	0	0	1	1	1
1	0	0	1	0	0	1
0	1	1	0	1	1	1
0	0	1	1	1	1	1

Odp. Formuła jest tautologią.

2.
$$(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$$

p	q	r	$p \rightarrow q$	q→r	$(p \to q) \land (q \to r)$	p→r	$(p \to q) \land (q \to r) \to (p \to r)$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	1	0	1	0	1	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

Odp. Formuła jest tautologią.

2. Metoda nie-wprost. Przykłady.

1.
$$(p \rightarrow q) \rightarrow \neg p \lor q$$

Zakładamy, że formuła nie jest tautologią.

Wtedy w(p \rightarrow q)=1 i w($\neg p \lor q$)=0 dla pewnego wartościowania w.

Z drugiego warunku w $(\neg p)$ =0 i w(q)=0. Stąd w(p)=1 i w(q)=0.

Podstawiamy te wartości za p i q do pierwszego warunku:

w(1→0)=0. Otrzymaliśmy sprzeczność.

Zatem formuła jest tautologią.

2.
$$(p \rightarrow q) \rightarrow (\neg p \rightarrow \neg q)$$

Zakładamy, że formuła nie jest tautologią.

Wtedy w(p \rightarrow q)=1 i w($\neg p \rightarrow \neg q$)=0 dla pewnego wartościowania w.

Z warunku drugiego w $(\neg p)=1$ i w $(\neg q)=0$. Stąd w(p)=0 i w(q)=1.

Podstawiamy te wartości za p i q do warunku pierwszego:

 $w(0\rightarrow 1)=1$. Jest on przy tych wartościach spełniony.

Zatem formuła nie jest tautologią.

Def. Mówimy, że schemat B wynika logicznie ze schematu A_1, \ldots, A_n w klasycznym rachunku zdań, jeżeli schemat zdaniowy $A_1 \land \ldots \land A_n \rightarrow B$ jest tautologią klasycznego rachunku zdań.

Poprawne schematy wnioskowania

p	$q \rightarrow r$
$p \rightarrow q$	$p \rightarrow q$
Reguła odrywania	Reguła sylogizmu warunkowego

 $q p \rightarrow r$

Reguła wprowadzania koniunkcji Reguły opuszczania koniunkcji

p	$p \land q$	$p \land q$
q		
	p	q
p∧q		

Reguły wprowadzania alternatywy Reguła eliminacji alternatywy

p

 $p \vee q$

p∨q

 $p \lor q$

 $p \rightarrow r$

 $q \rightarrow r$

r

Reguły odrywania dla alternatywy Reguła wprowadzania równoważności

 $p \vee q$

 $p \vee q$

 $\neg p$

 $\neg q$

q

p

 $p \rightarrow q$

 $q \rightarrow p$

 $p \leftrightarrow q$

Przykład. Sprawdzić, czy schemat $p \rightarrow q$ jest poprawnym schematem wnioskowania.

$$p \rightarrow q$$

$$r \rightarrow q$$

$$p \lor r \rightarrow q$$

W tym celu należy sprawdzić, czy formuła $(p \to q) \land (r \to q) \to (p \lor r \to q)$ jest tautologią.

p	q	r	$p \rightarrow q$	$r \rightarrow q$	$(p \leftarrow q) \land (r \rightarrow q)$	$p \vee r$	$(p \lor r \to q)$	$(p \to q) \land (r \to q) \to (p \lor r \to q)$
1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	0	1	0	0	0	1	0	1
1	0	0	0	1	0	1	0	1
0	1	1	1	1	1	1	1	1
0	1	0	1	1	1	0	1	1
0	0	1	1	0	0	1	0	1
0	0	0	1	1	1	0	1	1

Formuła jest tautologią, zatem schemat wnioskowania jest poprawny.

Tw. O podstawianiu

Jeżeli formuła jest tautologią klasycznego rachunku zdań i za zmienne w tej formule konsekwentnie podstawimy pewne schematy zdaniowe, to otrzymana w ten sposób formuła też jest tautologią klasycznego rachunku zdań.

Wniosek.

Jeżeli w poprawnym schemacie wnioskowania podstawimy konsekwentnie dowolne formuły za zmienne, to otrzymany w ten sposób schemat też jest poprawnym schematem wnioskowania klasycznego rachunku zdań.