Tablas de contrastes de hipótesis más usuales I: una muestra

En este documento recogemos los contrastes de hipótesis paramétricos más usuales para una muestra que se pueden llevar a cabo "a mano." Para cada contraste damos: las condiciones, el estadístico de contraste, la región crítica, el intervalo de confianza y el p-valor.

En la definición de los estadísticos hemos usado las notaciones siguientes:

- Z: Distribución normal estándard N(0,1).
- t_n : Distribución t de Student con n grados de libertad.
- χ_n^2 : Distribución khi-cuadrado con n grados de libertad.
- X_{α} : Indica el α -cuantil de la variable aleatoria X, es decir (si X es continua, que es siempre el caso en este documento), el valor donde la función de distribución de X_{α} vale α : $P(X \leq X_{\alpha}) = \alpha$. Recordemos las propiedades de simetría de Z y t:
 - Simetría de la normal: $z_{\alpha} = -z_{1-\alpha}$.
 - Simetría de la t de Student: $t_{n,\alpha} = -t_{n,1-\alpha}$.

Tipo de contraste y condiciones							
Hipótesis nula	Condiciones	Muestra	Hipótesis al- ternativa	Caso			
$H_0: \mu = \mu_0$	Población normal o n grande. σ conocida.	n observaciones independientes.	$H_1: \mu \neq \mu_0$	I			
			$H_1: \mu < \mu_0$	II			
			$H_1: \mu > \mu_0$	III			
	Población normal. σ desconocida.	n observaciones independientes.	$H_1: \mu \neq \mu_0$	IV			
			$H_1: \mu < \mu_0$	$oxed{\mathbf{V}}$			
			$H_1: \mu > \mu_0$	VI			
	Población cualquiera. σ desconocida. n grande.	n observaciones independientes.	$H_1: \mu \neq \mu_0$	VII			
			$H_1: \mu < \mu_0$	VIII			
			$H_1: \mu > \mu_0$	IX			
$H_0: p = p_0$	Población Bernoulli. $n \ge 100$, $n\widehat{p} \ge 10$, $n(1 - \widehat{p}) \ge 10$	n observaciones independientes.	$H_1: p \neq p_0$	X			
			$H_1: p < p_0$	XI			
			$H_1: p > p_0$	XII			
$H_0: \sigma^2 = \sigma_0^2$	Población Normal. μ desconocida	n observaciones independientes.	$H_1: \sigma^2 \neq \sigma_0^2$	XIII			
			$H_1: \sigma^2 < \sigma_0^2$	XIV			
			$H_1: \sigma^2 > \sigma_0^2$	XV			

Detalles del contraste							
Caso	Estadístico	Región crítica	Intervalo confianza	p-valor			
I	$Z = \overline{X} - \mu_0$	$\{Z{\leqslant}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\geqslant}z_{1-\frac{\alpha}{2}}\}$	$\left]\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right[$	$2P(Z\geqslant z)$			
II	$Z = \frac{X - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$\{Z{\leqslant}z_{\alpha}\}$	$\left]-\infty, \overline{X}-z_{lpha}\cdotrac{\sigma}{\sqrt{n}} ight[$	$P(Z \leqslant z)$			
III	es $N(0,1)$	$\{Z\geqslant z_{1-\alpha}\}$	$\overline{X} - z_{1-lpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty$	$P(Z\geqslant z)$			
IV	$T = \frac{\overline{X} - \mu_0}{\frac{\tilde{S}}{\sqrt{n}}}$	$\{T{\leqslant}{-t_{n-1,1-\frac{\alpha}{2}}}\}{\cup}\{T{\geqslant}t_{n-1,1-\frac{\alpha}{2}}\}$	$\boxed{\overline{X} - t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{\bar{S}}{\sqrt{n}}, \overline{X} + t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{\bar{S}}{\sqrt{n}}} \Big[$	$2P(t_{n-1}\geqslant T)$			
V		$\{T \leqslant t_{n-1,\alpha}\}$	$\left]-\infty,\overline{X}-t_{n-1,\alpha}\cdot\frac{\overline{S}}{\sqrt{n}}\right[$	$P(t_{n-1} \leqslant T)$			
VI	es t_{n-1}	$\{T\geqslant t_{n-1,1-\alpha}\}$	$\overline{X} - t_{n-1,1-\alpha} \cdot \frac{\tilde{S}}{\sqrt{n}}, \infty$	$P(t_{n-1}\geqslant T)$			
VII	$Z = rac{\overline{X} - \mu_0}{rac{\overline{S}}{\sqrt{n}}}$ es aprox.	$\{Z{\leqslant}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\geqslant}z_{1-\frac{\alpha}{2}}\}$	$\left]\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{\bar{S}}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\bar{S}}{\sqrt{n}}\right[$	$2P(Z\geqslant z)$			
VIII	es aprox.	$\{Z{\leqslant}z_{\alpha}\}$	$\left]-\infty, \overline{X}-z_{lpha}\cdotrac{ ilde{S}}{\sqrt{n}} ight[$	$P(Z \leqslant z)$			
IX	N(0, 1)	$\{Z\geqslant z_{1-\alpha}\}$	$\left] \overline{X} - z_{1-lpha} \cdot rac{ ilde{S}}{\sqrt{n}}, \infty ight[$	$P(Z \geqslant z)$			
X	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$\{Z{\leqslant}z_{\frac{\alpha}{2}}\}{\cup}\{Z{\geqslant}z_{1-\frac{\alpha}{2}}\}$	$\left[\begin{array}{c} \left]\widehat{p}+z_{\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},\widehat{p}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \right[\end{array}\right]$	$2P(Z\geqslant z)$			
XI	$ \sqrt{\frac{p_0(1-p_0)}{n}} $ es $N(0,1)$	$\{Z \leqslant z_{\alpha}\}$	$-\infty,\widehat{p}-z_{lpha}\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}$	$P(Z \leqslant z)$			
XII	05 17 (0, 1)	$\{Z\geqslant z_{1-lpha}\}$	$\widehat{p} - z_{1-lpha} \sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}, \infty$	$P(Z\geqslant z)$			
$XIII^1$	$\chi^2 = \frac{(n-1)\tilde{S}^2}{\sigma_0^2} /$	$\{\chi^2 \leq \chi^2_{n-1,\frac{\alpha}{2}}\} \cup \{\chi^2 \geqslant \chi^2_{n-1,1-\frac{\alpha}{2}}\}$	$\left] \frac{(n-1)\bar{S}^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{(n-1)\bar{S}^2}{\chi^2_{n-1,\frac{\alpha}{2}}} \right[$	$2\min\{P(\chi_{n-1}^2 \leqslant \chi^2),$ $P(\chi_{n-1}^2 \geqslant \chi^2)$			
XIV	es $\chi_{n-1}^2/$	$\{\chi^2 \leqslant \chi^2_{n-1,\alpha}\}$	$\left]0, \frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,\alpha}}\right[$	$P(\chi_{n-1}^2 \leqslant \chi^2)$			
XV		$\{\chi^2 \geqslant \chi^2_{n-1,1-\alpha}\}$	$\left[\frac{(n-1)\tilde{S}2}{\chi^2_{n-1,1-\alpha}},\infty\right[$	$P(\chi_{n-1}^2 \geqslant \chi^2)$			

¹En este caso (**XIII**), si μ es conocida, se puede usar el estadístico $\chi^2 = \frac{\sum\limits_{i=1}^n (X_i - \mu)^2}{\sigma_0^2}$, que tendrá distribución χ_n^2 .