

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 2nd Semester Examination, 2022

MLBHGEC02T/MLBGCOR02T-MOLECULAR BIOLOGY (GE2/DSC2)

Time Allotted: 2 Hours	Full Marks: 40						
The figures in the margin inc Candidates should answer in their own words and							
1. Answer any <i>ten</i> questions from the following:	1×10 = 10						
(i) Amino acids with non-polar aliphatic side chain	Amino acids with non-polar aliphatic side chain (R-group) are						
(A) Glycine, Alanine, Leucine							
(B) Serine, Threonine, Cysteine							
(C) Lysine, Arginine, Histidine							
(D) Phenylalanine, Tyrosine, Tryptophan							
(ii) The enzyme which is responsible for the phosphoenolpyruvate is:	ne conversion of pyruvate to						
(A) Pyruvate carboxylase (B)	Pyruvate carboxykinase						
(C) Glucose 6-phosphatase (D)	Phosphofructokinase						
(iii) Which of the following amino acid is essential adults?	Which of the following amino acid is essential in infants and non-essential in adults?						
(A) Lysine (B) Arginine (C)	Leucine (D) Tryptophan						
(iv) Derivatives of water-soluble vitamins function a	ıs:						
(A) Holoenzyme (B) Isozymes (C)	Co-enzymes (D) Hormones						
(v) Most of the digestive enzymes belong to the class	ss of						
(A) Lyases (B)	Hydrolases						
(C) Oxidoreductases (D)	Transferases						
(vi) How is the rate of enzyme catalyzed reactions temperature?	s changed by every 10° C rise in						
(A) Halves (B)	Four times						
(C) Doubles (D)	Remains unchanged						
(vii) The optically inactive amino acid is							
(A) Glycine (B) Serine (C)	Threonine (D) Valine						
(viii) In α -helical structure of proteins distance between nm is:) In α -helical structure of proteins distance between adjacent amino acid residues in nm is:						
(A) 0.15 (B) 0.10 (C)	0.12 (D) 0.20						
(ix) Sulphur containing amino acid is	x) Sulphur containing amino acid is						

(D) Asparagine

(B) Leucine (C) Valine

(A) Methionine

CBCS/B.Sc./Hons./Programme/2nd Sem./MLBHGEC02T/MLBGCOR02T/2022

(x)	An a	mino acid that does	s not form α -helix	is					
	(A)	Valine (H	B) Proline	(C) Tyrosine	(D)	Tryptophan			
(xi)	i) Tertiary structure of a protein describes								
	(A) The order of amino acids(B) Location of disulphide bonds								
	(C)	Loop regions of pr	roteins						
	(D)	The ways of protein folding in 3D							
(xii)		Let generation of energy on complete oxidation of palmitic acid by β -oxidation and TCA cycle is							
	(A)	129 ATP equivalent	nts	(B) 131 ATP equiv	alents				
	(C)	146 ATP equivalent	nts	(D) 148 ATP equiv	alents				
(xiii)	In enzyme kinetics K_M implies								
	(A) The substrate concentration that gives one half V_{max} (B) The dissociation constant for the enzyme substrate complex								
	` ′	Concentration of e	•						
				quired to achieve V _m	ax				
(xiv)		ompetitive enzyme							
		Apparent K_M is de	creased	(B) Apparent K_M is		ased			
		V _{max} is increased		(D) V_{max} is decrease	ed				
(xv)		enzymes are							
	(A) Heat stable, dialyzable, non-protein organic molecules(B) Soluble, colloidal, protein molecules								
	(C) Structural analogue of enzymes								
	(D)	Different forms of	enzymes						
2.	Answer any <i>ten</i> questions from the following:								
(a)	Give	ve example of one glucogenic and one ketogenic amino acid.							
(b)	Writ	ite down the zwitterionic structure of lysine.							
(c)	Wha	at do you mean by an 'isoenzyme'?							
(d)	Wha	nat are 'ketone bodies'?							
(e)	Wha	hat is a conjugated protein? Give one example.							
(f)	Wha	That is a non-competitive inhibitor?							
(g)	Defi	efine 'Turnover number' of an enzyme.							
(h)	Men	Mention the important features of α -helical structures of proteins.							
(i)	Wha	What is β -oxidation?							
(i)	Defi	Define Transamination							

2127 2

CBCS/B.Sc./Hons./Programme/2nd Sem./MLBHGEC02T/MLBGCOR02T/2022

- (k) Write down the reaction catalyzed by Glyceraldehyde 3-phosphate dehydrogenase mentioning the co-enzyme.
- (1) Name one inhibitor each of Glycolysis and TCA cycle.
- (m) What is Feedback inhibition? Give an example.
- (n) Write down the name of a Mg²⁺ requiring enzyme. Mention the reaction catalyzed by it.
- (o) Define prosthetic group of an enzyme. Give example.

3. Write any *two* questions from the following:

 $5 \times 2 = 10$

5

- (a) Mention the role of carnitine for transport of fatty acid in mitochondria with a schematic diagram.
- (b) State the reactions of urea cycle taking place in mitochondria, mentioning the enzymes and co-enzymes.
- (c) (i) Draw the Lineweaver Burk plot of an enzyme catalyzed reaction in absence of inhibitor.
 - of inhibitor.

 (ii) How is an enzyme catalyzed reaction affected by temperature and pH? $1\frac{1}{2}+1\frac{1}{2}$
- (d) Write short notes on any *two* of the following:

 $2\frac{1}{2} \times 2 = 5$

- (i) Oxidative phosphorylation
 - (ii) Gluconeogenesis
 - (iii) Tertiary structure of proteins
 - (iv) Edman Degradation.

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

___×__

2127 3