计算机组织结构

3 数据的机器级表示

任桐炜

2021年9月14日

教材对应章节

第2章 数据的机器级表示

第9章 计算机算术

信息的二进制编码

- 在冯·诺依曼结构中,所有信息(代码和数据)都采用二进制编码
 - 编码:用少量简单的基本符号对复杂多样的信息进行一定规律的组合
 - 采用二进制的原因
 - 多种物理器件可以表示两种稳定的状态,用于表示0和1
 - 二进制的编码和运算规则简单
 - 1和0可以对应逻辑命题中的 "真"和"假"
 - K位的二进制编码至多表示2^k个不同的值

图 2.1 计算机外部信息与内部数据的转换

整数的二进制数表示

- 无符号整数
- 有符号整数:原码,反码,移码,补码
 - 原码、反码、移码在进行加法运算时都会造成不必要的硬件需求,因此目前计算机中普遍使用补码
 - 二进制补码的运算
 - 二进制-十进制转换

补码表示法的优势

• 补码表示法 vs. 原码表示法

	表示法	原码表			長示法	补码和			
	1001	0000			1001	0000		9	
_	1000	0000	+		1000	0000	+	8	+
17	0001	0001		17	0001	0001		17	
	1001	0000			1001	0000		9	
	1000	1000	+		1000	1111	+	-8	+
-17	0001	1001		1	0001	10000		1	

补码表示

• 类比: 时钟

• 表示范围: 0~11 → -6~5

• 6 ~ 11 → -6 ~-1 (变化: 减12)

• 补码(相对于无符号数)

000…000~011…111:表示的值不变

- 100…000 ~ 111…111: 表示的值由 2^(k-1)~2^k-1变为-2^(k-1)~-1
 - 真值为原来的无符号数对应的 真值减去2^k (取反加1的由来)

补码的真值

• 补码的真值

$$[X]_C = X_n X_{n-1} \dots X_2 X_1$$

$$X = -X_n \times 2^{n-1} + \dots + X_2 \times 2^1 + X_1 \times 2^0$$

(这个式子的由来需要分情况Xn为正和为负讨论)

-128	64	32	16	8	4	2	1	
1	0	0	0	0	0	1	1	
-128						+2	+1	= -125

• 值的范围

$$-2^{n-1} \le X \le 2^{n-1} - 1$$

扩展:不同的整数编码

浮点数的二进制数表示

- 实数表示
- 定点表示法表示值的范围是有限制的
- 科学计数法

$$\pm S \times B^E$$

- ± (符号): 正或负
- S (尾数/有效值)
- B(底/基): 对所有的数都是相同的, 不需要存储的(隐含的)
- E (阶码/指数)

规格化数

- 任何浮点数都能以多种样式来表示 0.110 × 2⁵,110 × 2²,0.0110 × 2⁶
- 规格化表示

$$\pm 1.bbb \dots b \times 2^E$$

- 符号总是位于字的第1位
- 尾数 (S) 的第1位总是1, 不需要存于尾数字段中 (默认省略)
- 阶码(E)的真实值加127后,再存入阶码字段中(移码)
- 底 (B) 默认为2

规格化数的值的范围

• 值的范围

- 介于 $-(2-2^{-23})\times 2^{128}$ 和 -2^{-127} 之间的负数
- 介于 2^{-127} 和 $(2-2^{-23})\times 2^{128}$ 之间的正数

[袁睿, 131250088]

规格化数的变化

- 对于一定长度的规格化数,表示范围和精度之间存在权衡
 - 增加阶码(E)位数:扩大表示范围,降低表示精度
 - 增加尾数 (S) 位数:提高表示精度,减少表示范围
 - 采用更大的底(B): 实现更大的范围, 降低表示精度

非规格化数

- 处理规格化数中的下溢情况
- 当结果的阶值太小时,通过右移进行非规格化;每次右移阶值增,直到阶值落在可表示范围内

IEEE 754 标准

• 定义32位的单精度和64位的双精度两种格式

- 定义两种拓展格式
 - 在阶值字段提供更多的位(拓展范围)和在有效值字段提供更多的位(拓展精度)
 - 减少过度舍入误差和计算过程中溢出的机会

IEEE 754 标准 (cont.)

• 格式参数

42 ¥4.	格式						
参数	单精度 单精度拓展 双精		双精度	双精度拓展			
字宽(位数)	32	≥43	64	≥79			
阶值位宽(位数)	8	≥11	11	≥15			
阶值偏移量	127	未指定	1023	未指定			
最大阶值	127	≥1023	1023	≥16383			
最小阶值	-126	≤-1022	-1022	≤-16382			
数的范围(底为10)	$10^{-38}, 10^{+38}$	未指定	$10^{-308}, 10^{+308}$	未指定			
有效值位宽(位数)	23	≥31	52	≥63			
阶值的数目	254	未指定	2046	未指定			
小数的数目	2^{23}	未指定	2^{52}	未指定			
值的数目	1.98×2^{31}	未指定	1.99×2^{63}	未指定			

IEEE 754 标准 (cont.)

符号: 0 符号: 1

用法:表示未初始化的值,用于捕获异常 用法:表示未定义的算术结果,如除数等于0

		单精度	(32位)			双精度(64位)			
	符号	移码阶值	小数	值	符号	移码阶值	小数	值	
正零	0	0	0	0	0	0	0	0	
负零	1	0	0	-0	1	0	0	-0	
正无穷大	0	255 (all 1s)	0	%	0	2047 (all 1s)	0	∞	
负无穷大	1	255 (all 1s)	0	$-\infty$	1	2047 (all 1s)	0	$-\infty$	
静默式非数	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN	
通知式非数	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN	
正的规格 化非零数	0	0 < e < 255	f	2 ^{e-127} (1.f)	0	0 < e < 2047	f	2 ^{e-1023} (1.f)	
负的规格 化非零数	1	0 < e < 255	f	$-2^{e-127}(1.f)$	1	0 < e < 2047	f	$-2^{e-1023}(1.f)$	
正的非规 格化数	0	0	f ≠ 0	$2^{e-126}(0.f)$	0	0	f ≠ 0	$2^{e-1022}(0.f)$	
负的非规 格化数	1	0	f ≠ 0	$-2^{e-126}(0.f)$	1	0	f ≠ 0	$-2^{e-1022}(0.f)$	

IEEE 754 标准 (cont.)

• 例子

```
0.5 = 0.100...0B = (1.00..0)2\times2^{-1}
0.1111110 000...00 (23)
-0.4375 = -0.01110...0B = - (1.110...0)2\times2^{-2}
1.01111101 110...00 (21)
```


二进制编码的十进制数表示

- 浮点运算的问题
 - 精度限制
 - 转换成本高
- 应用需要
 - 长数字串的计算: 会计,
- 解决方法
 - 用4位二进制编码十进制 (BCD) 表示0, 1, ..., 9, 直接计算

二进制编码的十进制数表示 (cont.)

- 自然BCD码 (NBCD, 8421 码)
 - 0 ~ 9: 0000 ~ 1001
 - 符号: 使用四个最高有效位
 - 正: 1100 / 0
 - 负: 1101 / 1
 - 例子
 - +2039: **1100** 0010 0000 0011 1001 / **0** 0010 0000 0011 1001
 - -1265: 1101 0001 0010 0110 0101 / 1 0001 0010 0110 0101
- 其他BCD码
 - 2421, 5211, 4311, ...

总结

- 信息的二进制编码
- 整数的二进制表示
 - 补码表示的优势,表示方法,真值计算
 - 不同的整数二进制表示
- 浮点数的二进制表示
 - 浮点数表示方法,规格化数,非规格化数,IEEE 754标准
- 二进制编码的十进制数表示
 - NBCD码表示方法

谢谢

rentw@nju.edu.cn

