Clasa a VIII-a

Soluții

Problema 1

- a) Avem $a^2 = \frac{3+2\sqrt{2}}{4}$ şi $b^2 = \frac{3-2\sqrt{2}}{4}$, deci $a^2 + b = a + b^2 = \frac{5}{4} \in \mathbf{Q}$.
- b) Avem $a^2 + b (b^2 + a) \in \mathbf{Q}$ deci $(a b)(a + b 1) \in \mathbf{Q}$. Deoarece $a + b 1 \neq 0$ este un număr rațional, rezultă că $a b \in \mathbf{Q}$. Cum $a + b \in \mathbf{Q}$ deducem că $2a, 2b \in \mathbf{Q}$ de unde $a, b \in \mathbf{Q}$.
- c) Există $k \in \mathbf{Q} \setminus \{0,1\}$ astfel încât a = bk. Atunci $b(1+k^2b) \in \mathbf{Q}$ și $b(b+k) \in \mathbf{Q}$, de unde $\frac{1+k^2b}{b+k} = r \in \mathbf{Q}$. Dacă $r = k^2$, atunci $k^3 = 1$. Obţinem k = 1 și a = b, contradicție. Prin urmare, $r \neq k^2$, de unde $b = \frac{1-rk}{r-k^2} \in \mathbf{Q}$ și apoi $a = \frac{a}{b} \cdot b \in \mathbf{Q}$.

Punctaj recomandat: a) 2 puncte; b) 3 puncte; c) 2 puncte.

Problema 2

a) Avem $a^2-b^2+c^2-d^2=(a-b)(a+b)+(c-d)(c+d)\geq a+b+c+d=2004$. Dacă a-b>1 sau c-d>1, atunci $a^2-b^2+c^2-d^2>2004$. Rezultă a-b=1, c-d=1, adică b=a-1, d=c-1. Atunci

$$a+b+c+d = 2a+2c-2 = 2004$$

de unde a+c=1003. Cum a>c rezultă $a\geq 502$. Dacă a=503, atunci b=501, c=501, d=500, deci b=c, ceea ce nu convine problemei.

Pentru a = 503 avem b = 502, c = 500, d = 499.

b) Valoarea maximă a lui a se obține pentru cea mai mică valoare a lui d. Dacă d=1 atunci $c=2,\ a=1001$. Prin urmare $a\in\{503,504,\ldots,1001\}$. Deci a poate lua 1001-503+1=499 valori.

Observăm că fiecare valoare a lui a din mulțimea $\{503, 504, \ldots, 1001\}$ este admisibilă; într-adevăr, considerăm b=a-1, c=1003-a, d=102-a și avem a>b>c>d cu proprietățile cerute.

Punctaj recomandat: a) 4 puncte; b) 3 puncte.

Problema 3

a) Orice mulțime aritmetică este de forma $B=\{a,a+r,a+2r\}$ cu $a\geq 1,r\geq 1$. Cum $a+2r\leq 10$ obținem $r\leq 4$.

Pentru r=1 rezultă $a\leq 8$, deci există 8 mulțimi aritmetice de forma $\{a,a+1,a+2\},$ $a\in\{1,2,\ldots,8\}.$

Pentru r=2 rezultă $a\leq 6$, deci există 6 mulțimi aritmetice de forma $\{a,a+2,a+4\}$, $a\in\{1,2,\ldots,6\}$.

Pentru r=3, rezultă $a\leq 4$. Deci există 4 mulțimi aritmetice de forma $\{a,a+3,a+6\}$ cu $a\in\{1,2,3,4\}$.

Pentru r=4 rezultă $a\leq 2$ deci există 2 mulțimi aritmetice: $\{1,5,9\}$ și $\{2,6,10\}$. Există deci 20 de submulțimi aritmetice ale lui A_{10}

b) Fie $B = \{a, a+r, a+2r\}$ o multţime aritmetică. Cum pentru $r \le 45$ şi $1 \le a \le 91-2r$, rezultă că $B \subset A_n$, atunci pentru fiecare $r \in \{1, 2, ..., 45\}$ avem cel puţin 91-2r submulţimi aritmetice. Rezultă că există $1+3+5+\cdots+89=2025$ astfel de submulţimi.

Punctaj recomandat: a) 3 puncte; b) 4 puncte.

Problema 4

a) Proiecția triunghiului PMN pe planul (ABC) este triunghiul AMD. Rezultă

$$\cos \alpha = \frac{S_{AMD}}{S_{PMN}} = \frac{\sqrt{3}}{3},$$

unde α este unghiul considerat.

b) Notăm AB = b și BC = c. Cum triunghiul MNP este echilateral, rezultă că

$$b^{2} + \frac{c^{2}}{4} + \frac{a^{2}}{4} = \frac{b^{2}}{4} + \frac{c^{2}}{4} + a^{2} = c^{2} + \frac{b^{2}}{4} + \frac{a^{2}}{4},$$

de unde a = b = c.

Dacă O este mijlocul segmentului [MN], atunci $PO \perp (DMN)$, de unde $(PNM) \perp (DMN)$. Dacă $DF \perp NM$, $F \in NM$, atunci $DF \perp (MNP)$.

$$DF = \frac{DN \cdot DM}{NM} = \frac{a\sqrt{3}}{3}.$$

Punctaj recomandat: a) 4 puncte; b) 3 puncte.