Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

CLASA a VII-a

SOLUŢII ŞI BAREME ORIENTATIVE

Problema 1. a) Arătați că pentru orice numere reale a și b are loc relația:

 $(a^2+1)(b^2+1)+50 \ge 2(2a+1)(3b+1)$.

b) Determinați numerele naturale n și p care verifică relația:

$$(n^2+1)(p^2+1)+45=2(2n+1)(3p+1).$$

Problema 2. Fie numerele reale a, b, c astfel încât:

$$|a - b| \ge |c|$$
, $|b - c| \ge |a|$, $|c - a| \ge |b|$.

Arătați că unul dintre numerele a, b, c este suma celorlalte două.

Problema 3. Se consideră triunghiul ABC în care $m(\hat{A}) = 135^{\circ}$. Perpendiculara în A pe dreapta AB intersectează latura [BC] în punctul D, iar bisectoarea unghiului B intersectează latura [AC] în punctul E. Determinați $m(\widehat{BED})$.

Soluţie. Dacă $I \in (BE)$ astfel încât IA este bisectoarea unghiului DAB ,
de unde ID bisectoarea unghiului \widehat{ADB}
Din $m(\widehat{ADB}) + m(\widehat{ABD}) = 90^{\circ}$ şi $m(\widehat{IDB}) + m(\widehat{IBD}) = 45^{\circ}$ deducem
că $m(\widehat{DIB}) = 135^{\circ} \dots 1$
$\wedge ABE \sim \wedge IBD$
Implicația $\frac{AB}{IB} = \frac{BE}{BD} \Rightarrow \frac{AB}{EB} = \frac{BI}{BD}$
$\triangle ABI \sim \triangle DBE$ BD BB BD 11p
$m(\widehat{BED}) = m(\widehat{BAI})$ 1p
$m(\widehat{BED}) = 45^{\circ}$
Problema 4. Se consideră pătratul $ABCD$ şi punctele $K \in (AB)$, $L \in (BC)$ şi $M \in (CD)$ astfel încât triunghiul KLM este dreptunghic isoscel, cu unghiul drept în L . Demonstrați că dreptele AL şi DK sunt perpendiculare.
Soluţie. $\triangle KLB \equiv \triangle LMC$

 $\begin{array}{ll} \text{Din } AB = BC \text{ deducem } AK = BL & ... & ... \\ \triangle AKD \equiv \triangle BLA & ... & ... & ... \\ \text{Din } AK \perp BL \text{ și } AD \perp BA \text{, rezultă } AL \perp KD & ... & ... \\ \mathbf{1p} \end{array}$

 $Timp\ de\ lucru\ 4\ ore.$

Fiecare problemă este notată cu 7 puncte.