15

20

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTER PATENTOF THE UNITED STATES IS:

A. An image forming apparatus, comprising:

a light beam generating and modulating device configured to generate and modulate a light beam in accordance with an image signal;

a light beam deflecting device configured to deflect the light beam modulated by the light beam generating and modulating device and to scan an image carrier so as to form an image;

a pair of light beam detecting device configured to detect the light beam deflected by the deflecting device at two separate positions on a main scanning line, said pair of light beam detecting device generating both of a reference time difference and at a prescribed temperature and a time difference to be compared with the reference time difference in a prescribed timing during image formation;

a time difference measuring device configured to measure a time difference between time periods when the light beam is detected by one of the light beam detecting devices and when that is detected by the other of light beam detecting devices;

an image magnification correcting device configured to change a write clock frequency of the light beam and the rotation number of the light deflecting device in accordance with the

10

15

20

time difference detected by the time difference measuring device so as to correct magnification error in the main scanning direction of the image on the image carrier, said write clock frequency controlling image data writing density of the light beam; and

a visualizing device configured to visualize the image on the image carrier written by the light beam.

An image forming apparatus, comprising:

a plurality of light beam generating and modulating devices each configured to generate and modulate a light beam in accordance with a different mono color image signal;

at least one light beam deflecting device configured to deflect a plurality of light beams modulated by the plurality of light beam generating and modulating devices and to scan an image carrier so as to form a prescribed superimposed image, one of said plurality of light beams being scanned in a direction opposite to that of the other light beam;

a pair of light beam detecting device configured to detect one of the light beams deflected by the at least one light beam deflecting device at two separate positions on a main scanning line, said pair of light beam detecting device generating both of a reference time difference and at a prescribed temperature and a time difference to be compared

10

15

with the reference time difference in a prescribed timing during image formation;

a time difference measuring device configured to measure a time difference between time periods when one of the plurality of light beams is detected by one of the light beam detecting devices and when that is detected by the other of light beam detecting devices;

an image magnification correcting device configured to change a plurality of write clock frequencies of the plurality of laser beams, respectively, and the rotation number of the at least one light beam deflecting device in accordance with the time difference detected by the time difference measuring device so as to correct magnification error in the main scanning direction of the superimposed image on the image carrier, said write clock frequency controlling image data writing density of the light beam; and

a visualizing device configured to visualize the superimposed image on the image carrier written by the plurality of light beams.

20

3. An image forming apparatus according to claim 1, wherein said image magnification correcting device changes the rotation number of the light beam deflecting device if magnification error is not completely corrected by changing

10

15

20

the write clock frequency.

- 4. An image forming apparatus according to claim 1, wherein said image magnification correcting device changes the write clock frequency and the rotation number based on a newly measured time difference after initializing the last rotation number of the light beam deflecting device.
- 5. An image forming apparatus according to claim 1, further comprising an image write start position adjusting device configure to adjust an image write start position in the main scanning direction on the image carrier in accordance with the time difference detected by the time difference measuring device.

6. An image forming apparatus, comprising:

a light beam generating and modulating device configured to generate and modulate a light beam in accordance with an image signal;

a light beam deflecting device configured to deflect the light beam modulated by the light beam generating and modulating device and to scan an image carrier so as to form an image;

an optical unit configured to include an f θ lens

10

15

20

configured to convert the light beam from substantially the uniform angular speed scanning light to substantially the uniform speed scanning light;

a temperature detecting device configured to detect temperature of the optical unit;

an image magnification correcting device configured to change a write clock frequency of the light beam and the rotation number of the light deflecting device in accordance with the temperature detected by the temperature detecting device so as to correct magnification error in the main scanning direction of the image on the image carrier, said write clock frequency controlling image data writing density of the light beam; and a visualizing device configured to visualize the image

on the image carrier written by the light beam.

7. An image forming apparatus, comprising:

a plurality of light beam generating and modulating devices each configured to generate and modulate a light beam in accordance with a different mond color image signal;

at least one light beam deflecting device configured to deflect a plurality of light beams generated and modulated by the plurality of light beam generating and modulating devices and to scan an image carrier so as to form a prescribed superimposed image, one of said plurality of light beams being

15

scanned in a direction opposite to that of the other light beam; an optical unit configured to include an $f\theta$ lens configured to convert the light beam from substantially the uniform angular speed scanning light to substantially the uniform speed scanning light;

a temperature detecting device configured to detect temperature of the optical unit;

an image magnification correcting device configured to change a plurality of write clock frequencies of the plurality of laser beams and the rotation number of the at least one light beam deflecting device in accordance with the temperature of the optical unit so as to correct magnification error in the main scanning direction of the images on the image carrier, said write clock frequency controlling image data writing density by the light beam; and

a visualizing device configured to visualize the superimposed image on the image carrier written by the plurality of light beams.

- 8. An image forming apparatus according to claim 6, wherein said temperature is of the $f\theta$ lens.
 - 9. An image forming apparatus according to claim 1, wherein said time difference measuring device measures the time

difference after lowering a light beam deflection speed of the light beam deflecting device so as to precisely obtain a reference time difference by counting prescribed pulses.

10. An image forming apparatus according to claim 2, wherein said time difference measuring device measures the time difference after lowering a light beam deflection speed of the light beam deflecting device so as to precisely obtain a reference time difference by counting prescribed pulses.

10

5

11. An image forming apparatus according to claims 1 and 2, wherein add light beam deflecting device includes a polygon mirror.

15

12. An image forming apparatus according to claim 9, wherein said light beam deflection speed is only lowered when the time difference is detected, and returned to a level used for image formation.

20

13. An image forming apparatus according to claim 9, wherein said light beam deflection speed is low when starting light beam deflection so as to precisely obtain a reference time difference.

14. An image forming apparatus according to claim 9, wherein said time difference is measured without lowering the light beam deflection speed when continuous printing is executed and time difference is detected so as to only detect needs of image magnification correction, and said magnification correction is executed based on a time difference detected after lowering the light beam deflection speed in a prescribed timing corresponding to an interval of sheets.