IN THE CLAIMS:

- 1. (Currently Amended) A gerotor and bearing apparatus for a downhole whirling mass orbital vibrator generating vibration in a borehole, which apparatus comprises:

 a gerotor with an inner gear rotated by a shaft having one less lobe than an outer gear:

 a whirling mass attached to said shaft:

 at least one an upper track roller bearing attached to said shaft engaging and rolling on an upper at least one sleeve; and

 a lower track roller bearing attached to said shaft engaging and rolling on a lower sleeve; and

 means to rotate said inner gear, said mass, and said bearing bearings in a selected rotational direction to cause said mass, said inner gear and said bearing bearings to backwards whirl in an opposite rotational direction.
 - (Canceled) A gerotor and bearing apparatus as set forth in Claim 1 wherein said bearing is a track roller bearing.
 - (Canceled) A gerotor and bearing apparatus as set forth in Claim 1 including a pair
 of bearings attached to said shaft engaging a pair of sleeves.
- (Currently Amended) A gerotor and bearing apparatus as set forth in Claim 3
 wherein said pair of bearings and said pair of sleeves are replaceable.

(Currently Amended) A gerotor and bearing apparatus as set forth in Claim 3 1
 wherein said bearings are on opposite ends of said whirling mass.
 (Original) A gerotor and bearing apparatus as set forth in Claim 1 wherein said means to rotate said inner gear, said mass, and said bearing in a selected rotational direction includes

1

1

3

1

2

3

1

2

1

2

1

2

1

2

a drive shaft with a plurality of U-joints.

- (Currently Amended) A gerotor and bearing apparatus as set forth in Claim 1
 including a fluid pump powered by said shaft providing a self-contained drip lubrication system
 having a fluid pump moving lubricating oil from an oil sump.
- (Original) A gerotor and bearing apparatus as set forth in Claim 7 including a pair of U-ioint assemblies.
 - (Original) A gerotor and bearing apparatus as set forth in Claim 1 including a pair of said gerotors spaced from each other and coaxially aligned.
- (Original) A gerotor and bearing apparatus as set forth in Claim 1 wherein said backwards whirling mass is an elongated cylinder.
- (Original) A gerotor and bearing apparatus as set forth in Claim 1 wherein said backwards whirling mass produces vibration energy which is used in enhanced fluid recovery.

12. (Original) A gerotor and bearing apparatus as set forth in Claim 1 wherein said backwards whirling mass produces vibration energy which is used as a seismic source.

1

1

2

3

1

1

3

4

5

6

7

8

9

10

- 13. (Original) A gerotor and bearing apparatus as set forth in Claim 1 wherein said backwards whirling mass is an elongated cylindrical configuration with a diameter less than said housing.
 - 14. (Original) A gerotor and bearing apparatus as set forth in Claim 1 wherein said inner gear backwards whirl at a speed defined by a factor

 $K = \underline{n}$ where n = number of lobes on inner rotor and $N = \underline{n}$ $N = \underline{n}$ where $n = \underline{n}$ $N = \underline{n$

- 15. (Currently Amended) A method to generate vibrational energy in a borehole, which method comprises:
- rotating an inner gear of a gerotor by a shaft in a selected rotational direction wherein said inner gear has one less lobe than an outer gear;
- rotating a whirling mass in a selected rotational direction by rotation of said shaft so that said mass and said inner gear backwards whirl in a direction opposite to said selected rotational direction; and
- transmitting centrifugal force created by said whirling mass from at least one an upper bearing to at least one an upper cylindrical sleeve and from a lower bearing to a lower cylindrical sleeve by contacting and rolling on said sleeve sleeves.

16.	(Original) A method to generate vibrational energy in a borehole as set forth in
Claim 15 inc	luding transmitting said centrifugal force to a downhole casing.
17.	(Original) A method to generate vibrational energy in a borehole as set forth in
Claim 15 wh	erein said centrifugal force generates vibrational energy.
18.	(Canceled) A method to generate vibrational energy in a borehole as set forth in
Claim 15 inc	luding contacting a sleeve with at least one bearing rotated by said shaft.
19.	(Currently Amended) A method to generate vibrational energy in a borehole as set
forth in Clain	n 15 including transmitting said centrifugal force from said sleeve sleeves to slips and
to a casing.	
20.	(Currently Amended) A gerotor and bearing apparatus for a downhole whirling mass
	or generating vibration in a borehole, which apparatus comprises:
	a pair of gerotors spaced from each other, each gerotor with an inner gear rotated by
a shaft havin	g one less lobe than an outer gear;
	a whirling mass attached to said shaft;
	a pair of track roller bearings attached to said shaft on opposite ends of said whirling
mass;	
	means to rotate said inner gears, said mass, and said bearings in a selected rotational
direction to	rause said gears, said mass, and said hearings to backwards whirl in an opposite

1 2

rotational direction so that said track roller bearings roll on cylindrical sleeves; and

- means to maintain angular radial position and angular alignment between said ends
- 12 of said rotating mass.

11