

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”

Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”

Jawaharlal Nehru

“Step Out From the Old to the New”

IS 6092-2-5 (2004): Methods of Sampling and Test for Fertilizers, Part 2: Determination of Nitrogen, Section 5: Total Nitrogen Content - Titrimetric Method after Distillation [FAD 7: Soil Quality and Gertilizers]

“ज्ञान से एक नये भारत का निर्माण”

Satyanaaranay Gangaram Pitroda

Invent a New India Using Knowledge

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”

Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

BLANK PAGE

PROTECTED BY COPYRIGHT

भारतीय मानक
उर्वरकों के नमूने लेना और परीक्षण पद्धतियां
भाग 2 नाइट्रोजन ज्ञात करना
अनुभाग 5 कुल नाइट्रोजन अंश — आसवन के बाद टाइट्रीमीट्रिक पद्धति

Indian Standard

METHODS OF SAMPLING AND TEST FOR FERTILIZERS

PART 2 DETERMINATION OF NITROGEN

Section 5 Total Nitrogen Content — Titrimetric Method After Distillation

ICS 65.080

© BIS 2004

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

NATIONAL FOREWORD

This Indian Standard (Part 2/Sec 5) which is identical with ISO 5315 : 1984 'Fertilizers — Determination of total nitrogen content — Titrimetric method after distillation' issued by the International Organization for Standardization (ISO) was adopted by the Bureau of Indian Standards on the recommendations of the Fertilizers Sectional Committee and approval of the Petroleum, Coal and Related Products Division Council.

The text of ISO Standard has been proposed to be approved as suitable for publication as an Indian Standard without deviations. Certain conventions are, however, not identical to those used in Indian Standards. Attention is particularly drawn to the following:

- a) Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard'.
- b) Comma (,) has been used as a decimal marker, while in Indian Standards, the current practice is to use a point (.) as the decimal marker.

Indian Standard
**METHODS OF SAMPLING AND TEST
FOR FERTILIZERS**

PART 2 DETERMINATION OF NITROGEN

Section 5 Total Nitrogen Content — Titrimetric Method After Distillation

1 Scope and field of application

This International Standard specifies a titrimetric method, after distillation, for the determination of the total nitrogen content of fertilizers in all forms, including those which have to be digested.

The method is not recommended for fertilizers containing more than 7 % of organic matter.

2 Principle

Reduction of nitrate to ammonia by chromium powder in acid medium. Conversion of organic and urea nitrogen into ammonium sulfate by digestion with concentrated sulfuric acid in the presence of a catalyst. Distillation of the ammonia from an alkaline solution, absorption in an excess of standard volumetric sulfuric acid solution and back-titration with standard volumetric sodium hydroxide solution in the presence of methyl red or screened methyl red as indicator.

3 Reagents

During the analysis, use only reagents of recognized analytical grade having, in particular, low nitrogen contents (see 5.3), and only distilled water or water of equivalent purity.

3.1 Chromium metal, powder, of particle size less than or equal to 250 µm.

3.2 Aluminium oxide, fused. Pumice is suitable.

3.3 Anti-foaming agent, for example paraffin wax of melting point not lower than 100 °C, or a silicone.

3.4 Ammonium nitrate, dried at 100 °C to constant mass.

3.5 Digestion catalyst mixture, finely ground, comprising

- potassium sulfate (K_2SO_4) : 1 000 g;
- copper(II) sulfate pentahydrate ($CuSO_4 \cdot 5H_2O$) : 50 g.

3.6 Sulfuric acid, concentrated, ϱ approximately 1,84 g/ml.

3.7 Hydrochloric acid, concentrated, ϱ approximately 1,18 g/ml.

3.8 Sodium hydroxide, approximately 400 g/l solution.

3.9 Sodium hydroxide, standard volumetric solution, $c(NaOH) = 0,10 \text{ mol/l.}^1)$

3.10 Sulfuric acid, standard volumetric solution, $c(H_2SO_4) = 0,25 \text{ mol/l.}^2)$

3.11 Sulfuric acid, standard volumetric solution, $c(H_2SO_4) = 0,10 \text{ mol/l.}^3)$

3.12 Sulfuric acid, standard volumetric solution, $c(H_2SO_4) = 0,05 \text{ mol/l.}^1)$

3.13 Indicator, solution.

Use either the screened methyl red solution (3.13.1) or the methyl red solution (3.13.2).

3.13.1 Screened methyl red, ethanolic indicator solution.

Mix 50 ml of a 2 g/l ethanolic solution of methyl red with 50 ml of a 1 g/l ethanolic solution of methylene blue.

3.13.2 Methyl red, ethanolic indicator solution.

Dissolve 0,1 g of methyl red in 50 ml of 95 % (V/V) ethanol.

3.14 pH indicator paper, wide range.

1) Hitherto expressed as "0,10 N standard volumetric solution".

2) Hitherto expressed as "0,50 N standard volumetric solution".

3) Hitherto expressed as "0,20 N standard volumetric solution".

4 Apparatus

Usual laboratory equipment, and

4.1 Digestion apparatus, comprising an 800 ml Kjeldahl flask and a pear-shaped hollow glass stopper.

4.2 Distillation apparatus.

The components of the distillation apparatus may be connected by means of rubber bungs and tubing or by the use of spherical ground glass joints.

Spherical ground glass joints should be held by spring clamps to ensure that they are leak-tight. Rubber bungs and tubing shall be replaced when they begin to perish or show signs of wear.

A suitable apparatus is illustrated in the figure and comprises the following components.

4.2.1 Flask.

Either the Kjeldahl flask (4.1) or 1 000 ml round-bottomed flask may be used.

4.2.2 Single-bulb splash head and separate open-top dropping funnel, of capacity 100 ml, followed by a delivery tube at the outlet.

4.2.3 Allihn condenser, seven bulb (or other suitable condenser), with an expansion bulb, of approximate capacity 100 ml, followed by a delivery tube at the outlet.

4.2.4 Receiver: conical flask or beaker, of capacity 500 ml.

4.3 Anti-bumping granules or an **anti-bumping device** consisting of a 100 mm × 5 mm glass rod connected to a 25 mm length of polyethylene tubing.

4.4 Two burettes, of capacity 50 ml, complying with the requirements of ISO 385/1, class A.

4.5 Glass beads, of diameter 2 to 3 mm.

5 Procedure

5.1 Test portion

Weigh, to the nearest 0,001 g; between 0,5 and 2,0 g of the test sample, containing not more than 60 mg of nitrate nitrogen and 235 mg of total nitrogen.

NOTE — The preparation of test samples of fertilizers will form the subject of a future International Standard.

5.2 Determination

5.2.1 Reduction [this step is not required if nitrate nitrogen is known to be absent]

Transfer the test portion (5.1) to the flask (4.1) and add sufficient water to make up the total volume to 35 ml. Allow the flask to stand for 10 min with occasional gentle swirling to ensure dissolution of all nitrate salts.

Add 1,2 g of the chromium powder (3.1) and 7 ml of the hydrochloric acid solution (3.7). Allow the flask to stand for at least 5 min, but not more than 10 min, at ambient temperature.

Place the flask on a heating device in a fume cupboard with the heat input regulated to pass a 7 to 7,5 min boil test¹⁾ and heat the flask for 4,5 min. Remove from the heat and allow to cool.

5.2.2 Hydrolysis [this step can be used instead of the digestion (5.2.3) if it is known that the only forms of organic nitrogen present are urea and cyanamide forms]

Stand the flask in a fume cupboard and add 1,5 g of the fused aluminium oxide (3.2). Carefully add 25 ml of the sulfuric acid (3.6) to the flask. Insert the pear-shaped hollow glass stopper into the neck of the flask and place on a heating device and initially heat until gently boiling. Then adjust the heat input to pass a 7 to 7,5 min boil test.¹⁾

Continue to heat the flask and contents until dense white fumes of sulfuric acid have been evolving for at least 15 min. Allow the flask to cool to room temperature and carefully add 250 ml of water. Allow the flask to cool.

5.2.3 Digestion [this step is necessary only if organic forms of nitrogen other than urea or cyanamide forms are present (see 5.2.2) or in the case of fertilizers of unknown composition]

Place the flask in a fume cupboard and add 22 g of the digestion catalyst mixture (3.5) and 1,5 g of the fused aluminium oxide (3.2). Carefully add 30 ml of the sulfuric acid (3.6) to the flask and add 0,5 g of the anti-foaming agent (3.3) to reduce foaming. Insert the pear-shaped hollow glass stopper into the neck of the flask and place on a heating device with the heat input adjusted to pass a 7 to 7,5 min boil test.¹⁾

If considerable foaming occurs, reduce the heat input until this phase is over. Continue to heat the flask and contents until dense white fumes are cleared from the bulb of the flask. Gently swirl the flask and continue digestion for a further 60 min or until the solution is clear, whichever is the longer. Allow the flask to cool to room temperature and carefully add 250 ml of water. Allow the flask to cool.

5.2.4 Distillation

If distillation from the round-bottomed flask is preferred, transfer the test portion (5.1) or the hydrolysed (5.2.2) or digested (5.2.3) solution to it quantitatively. Otherwise, place the test portion, or retain the solution, in the Kjeldahl flask.

1) The heat input is that required to bring 250 ml of water at 25 °C to a "rolling" boil in 7 to 7,5 min.

Place the anti-bumping granules or anti-bumping device (4.3), in the latter case with the polyethylene in contact with the bottom of the flask, in the flask, and add a few of the glass beads (4.5). Assemble the apparatus as shown in the figure.

Measure into the receiver (4.2.4), according to the expected mass of nitrogen in the test portion, the appropriate volume shown in the table of one of the sulfuric acid solutions (3.10, 3.11 or 3.12).

Table

Expected mass of nitrogen in the test portion	Concentration of sulfuric acid solution ^a	Volume of sulfuric acid solution
mg	mol/l	ml
0 to 30	0,05	25,0
30 to 50		40,0
50 to 65	(solution 3.12)	50,0
65 to 80	0,10	35,0
80 to 100		40,0
100 to 125	(solution 3.11)	50,0
125 to 170	0,25	25,0
170 to 200		30,0
200 to 235	(solution 3.10)	35,0

Add 4 or 5 drops of the indicator solution (3.13) and place the receiver so that the end of the delivery tube is below the surface of the acid, adding water to the receiver if necessary.

Pour at least 120 ml of the sodium hydroxide solution (3.8), or 20 ml if there was neither hydrolysis (5.2.2) nor digestion (5.2.3), into the dropping funnel and carefully run all but about 2 ml of this solution into the distillation flask. Close the stopcock, leaving the remaining 2 ml in the dropping funnel. Bring the contents of the flask to the boil, increasing the rate of heating progressively until, finally, the contents of the flask are boiling briskly. The contents of the flask shall remain alkaline during the distillation period.

When at least 150 ml of distillate have been collected, partially withdraw the receiver so that the delivery tube rests on the rim of the receiver. Test the subsequent distillate with the pH indicator paper (3.14) to ensure that all the ammonia is completely distilled. Remove the source of heat.

Detach the splash head from the condenser and wash the insides of the condenser and expansion bulb with water, collecting the rinsings in the receiver. Also rinse the outside of the delivery tube and collect the rinsings in the receiver.

5.2.5 Titration

Back-titrate the excess of acid with the standard volumetric sodium hydroxide solution (3.9) to the neutral colour of the indicator.

5.3 Blank test

Carry out a blank test, at the same time as the determination, using the same procedure, using the same reagents, but omitting the test portion, and using the 0,05 mol/l standard volumetric sulfuric acid solution (3.12).

The result of the blank test should not exceed 1,0 ml of standard volumetric solution. If the result is greater than 1,0 ml, check the reagents, especially the chromium powder (3.1).

5.4 Check test

Carry out a periodic check on the efficiency of the apparatus and the accuracy of the method using an aliquot portion of a solution of freshly prepared ammonium nitrate (3.4) containing 100 mg of nitrogen. The check shall be made using the same conditions as for the determination and the blank test and using the same indicator.

6 Expression of results

6.1 Calculation

The total nitrogen content, expressed as nitrogen (N) as a percentage by mass, is given by the formula

- a) if the 0,05 mol/l sulfuric acid solution (3.12) was used:

$$\frac{[(V_1 - V_2) - (V_3 - V_4)] \times 0,140\ 1}{m}$$

- b) if the 0,10 mol/l sulfuric acid solution (3.11) was used:

$$\frac{[(2\ V_1 - V_2) - (V_3 - V_4)] \times 0,140\ 1}{m}$$

- c) if the 0,25 mol/l sulfuric acid solution (3.10) was used:

$$\frac{[(5\ V_1 - V_2) - (V_3 - V_4)] \times 0,140\ 1}{m}$$

where

V_1 is the volume, in millilitres, of the sulfuric acid solution (3.10, 3.11 or 3.12, as appropriate) used for the determination;

V_2 is the volume, in millilitres, of the sodium hydroxide solution (3.9) used for the determination;

V_3 is the volume, in millilitres, of the sulfuric acid solution (3.12) used for the blank test;

V_4 is the volume, in millilitres, of the sodium hydroxide solution (3.9) used for the blank test;

m is the mass, in grams, of the test portion (5.1).

NOTE — If the concentrations of the standard volumetric solutions are not exactly as specified in the list of reagents, appropriate corrections should be made.

6.2 Precision

Precision data have been analysed statistically from an inter-laboratory study in which 19 laboratories participated with 3 levels. No statistical relationship between repeatability (r) or reproducibility (R) and the mean value of the total nitrogen content of the samples was found.

6.2.1 Repeatability, r

The difference between two individual test results, obtained simultaneously or in rapid succession by the same analyst, using the same apparatus, on identical test material, under the same operating conditions, should not exceed 0,36 % (m/m), expressed as nitrogen (N) content, at a confidence level of 95 %.

6.2.2 Reproducibility, R

The difference between two individual and independent test results, obtained by different analysts in different laboratories, on identical test material, should not exceed 1,3 % (m/m), expressed as nitrogen (N) content, at a confidence level of 95 %.

7 Test report

The test report should include the following information:

- a) the reference of the method used, i.e. ISO 5315;
- b) the result and the method of expression used;
- c) any unusual features noted during the determination;
- d) any operation not included in this International Standard or regarded as optional.

Figure — Typical distillation apparatus (using a round bottomed flask)

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act, 1986* to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. PCD 20 (2063).

Amendments Issued Since Publication

Amend No.	Date of Issue	Text Affected

BUREAU OF INDIAN STANDARDS

Headquarters:

**Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402**

Telegrams: Manaksanstha (Common to all offices)

Regional Offices:

**Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002**

Telephone

{ 2323 7617
{ 2323 3841

**Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
KOLKATA 700054**

{ 2337 8499, 2337 8561
 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022

{ 60 3843
{ 60 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113

{ 2254 1216, 2254 1442
 { 2254 2519, 2254 2315

**Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400093**

{ 2832 9295, 2832 7858
 2832 7891, 2832 7892

Branches : AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.