Introduction to ChIP-seq peak calling and differential peak calling

Matthias Heinig
Institute of Computational Biology

ChIP-seq tracks

- Signal to noise ratio
 - High for peak like features
 - Low(er) for large domain features

Coverage / read counts

Coverage: how many fragments are aligned to each position?

Read counts: how many fragments start in each bin?

Peak calling strategies

- Statistical testing
 - Modeling the null (background) distribution
 e.g. MACS (Zhang 2008)
- Probabilistic modeling
 - Modeling the signal and the background distribution

e.g. Zinba (Rashid 2011)

- Signal processing approaches
 - Filtere.g. Dfilter (Kumar 2013)

MACS

Probabilistic modeling: ZINBA

Typically NGS data show overdispersion (variance greater than Poisson lambda)

- Negative binomial distribution

Many empty bins distort estimation of background

- Zero inflation component

ZINBA (zero inflated negative binomial algorithm)

- 3 component mixture model

Comparison of epigenetic tracks

Goal: identify regions that differ between samples

Comparison of epigenetic tracks

Challenges:

- Actually two problems
 - Identification of features
 - Comparison of features
- Calling absence of peaks
- Use of input tracks?
- No gold standard for the evaluation of methods

Strategies

Where to look?

- Independent peak detection analyses
- Sliding window approaches
- Binning

How to compare?

- Comparison absence / presence of calls
- Quantitative comparison
- Normalization
- Hypothesis testing
- Probabilistic modeling
- Considering local dependencies

Available tools (selection)

Tool		Diffbind	PePr	diffReps	RSEG	Chipdiff	$\ \ his tone HMM$
where to look	peak detection	/	X	prescreening	X	prescreening	X
	sliding window	X	✓	✓	X	X	X
	binning	X	X	×	✓	✓	✓
how to compare	use of input	X	substract input	X	X	X	X
	normalization	scaling	scaling	scaling	X	X	X
	hypothesis testing	•	negative binomial	•	X	X	X
	probabilistic	X	X	X	NBDiff	Hierarchical binomial model	Multivariate NB
	dependencies	×	merging	merging, hotspot detection	HMM	HMM	HMM

METHOD

histoneHMM: Differential analysis of histone modifications with broad genomic footprints

Matthias Heinig^{1*}, Maria Colomé-Tatché³, Aaron Taudt³, Carola Rintisch², Sebastian Schafer², Michal Pravenec⁴, Norbert Hubner², Martin Vingron¹ and Frank Johannes⁵

Matthias Heinig

Max Planck Institute for molecular genetics

HMM for region calling

Evaluation with qPCR data

HMM for differential analysis

Evaluation with qPCR data

Evaluation with expression data

-log10(P)

-log10(P)