Name: Jenny Petrova

Problem Set 5

Due Date: 10/1 at 11:35 AM

Throughout, let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and \mathcal{B} denote the Borel σ -algebra on \mathbb{R} .

(P.1) Let $X: \Omega \mapsto \mathbb{R}$ be a random variable, i.e., a $\langle \mathcal{A}, \mathcal{B} \rangle$ -measurable function. Let

$$\mathcal{F} = \{ A : A = X^{-1}(B), B \in \mathcal{B} \}.$$

Show that X is a $\langle \mathcal{F}, \mathcal{B} \rangle$ -measurable function.

Proof. By definition of measurable function, we know that if X is $\langle \mathcal{A}, \mathcal{B} \rangle$ -measurable then $X^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$. By the given assumption, $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$, and it follows from \mathcal{A} that \mathcal{F} is also closed under countable intersections, countable unions, and complements. Hence $\sigma(\mathcal{F}) \subseteq \mathcal{A}$ and $\mathcal{F} \subseteq \sigma(\mathcal{F})$. Therefore $\mathcal{F} = \mathcal{A}$ and $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$, thus X is a $\langle \mathcal{F}, \mathcal{B} \rangle$ -measurable function.

(P.2) Let $X : \Omega \to \mathbb{R}$ be a random variable and assume that $X(\Omega) = \{0,1\}$. Define

$$\sigma(X) \;\; \coloneqq \;\; \{A \,:\, A = X^{-1}(B),\, B \in \mathcal{B}\}\,.$$

Show that $\sigma(X)$ is a σ -algebra and that it is a Bernoulli σ -algebra.

Proof. First, we know that $X(\Omega) = \{0, 1\}$. Hence $\{0, 1\} \in \mathcal{B}$ such that $X^{-1}(\{0, 1\}) = \Omega$. Thus $\Omega \in \sigma(X)$. Next, let $A_1, A_2, \dots \in \sigma(X)$. Then there exists a $B_n \in \mathcal{B}$ such that $A_n = X^{-1}(B_n)$. Since \mathcal{B} is a σ -algebra, we know $\bigcup_{n=1}^{\infty} B_n \in \mathcal{B}$ and $\bigcap_{n=1}^{\infty} B_n \in \mathcal{B}$, by closure under countable unions and intersections. Thus we show

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} X^{-1}(B_n) = X^{-1}(\bigcup_{n=1}^{\infty} B_n) \in \sigma(X).$$

and

$$\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} X^{-1}(B_n) = X^{-1}(\bigcap_{n=1}^{\infty} B_n) \in \sigma(X).$$

Thus $\sigma(X)$ is closed under countable unions and intersections. Lastly, since \mathcal{B} is a σ -algebra we also know that $B^c \in \mathcal{B}$ by closure under complements. Therefore

$$A^{c} = (X^{-1}(B))^{c} = X^{-1}(B^{c}) \in \sigma(X).$$

Hence $\sigma(X)$ is closed under complements and it follows that $\sigma(X)$ is a σ -algebra. If X is a Bernoulli random variable, then there exist singletons $\{0\}, \{1\} \in \mathcal{B}$ such that $A_0 = X^{-1}(\{0\})$ and $A_1 = X^{-1}(\{1\})$. Since $\sigma(X)$ is closed under unions and intersections, we show that $A_0 \cup A_1 = \Omega$ and $A_0 \cap A_1 = \emptyset$. Thus $\sigma(X)$ is the smallest σ -algebra that contains A_0 and A_1 , and therefore we can define

$$\sigma(X) = \{\emptyset, A_0, A_1, \Omega\},\$$

where $\sigma(X)$ is a Bernoulli σ -algebra generated by the Bernoulli random variable X. \square

(P.3) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable functions, and $D \in \mathcal{B}$. Show that

$$h(x) = \begin{cases} f(x) & \text{if } x \in D \\ g(x) & \text{if } x \in \mathbb{R} \setminus D \end{cases}$$

is likewise a $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable function.

Proof. For a $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable function, we know that $f^{-1}(B), g^{-1}(B) \in \mathcal{B}$ for all $B \in \mathcal{B}$. We can define the pre-image of B by h as

$$h^{-1}(B) = (f^{-1}(B) \cap D) \cup (g^{-1}(B) \cap \mathbb{R} \setminus D).$$

Since $D \in \mathcal{B}$, and \mathcal{B} is closed under countable intersections, then

$$f^{-1}(B) \cap D \in \mathcal{B}$$

and

$$g^{-1}(B) \cap \mathbb{R} \setminus D \in \mathcal{B}.$$

Since \mathcal{B} is closed under countable unions, then $h^{-1}(B) \in \mathcal{B}$ for all $B \in \mathcal{B}$. Therefore h is a $(\mathcal{B}, \mathcal{B})$ -measurable function.

(P.4) Let $(A_n)_{n\in\mathbb{Z}^+}$ be a countable partition of \mathbb{R} such that $A_n \in \mathcal{B}$ for each $n \in \mathbb{Z}^+$, and let $f_n : A_n \mapsto \mathbb{R}$ $(n \in \mathbb{Z}^+)$ be $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable functions. Show that

$$h(x) = \begin{cases} f_1(x) & \text{if } x \in A_1 \\ f_2(x) & \text{if } x \in A_2 \\ \vdots & \vdots \end{cases}$$

is a $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable function.

Proof. Since f_n is a $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable function, then $f_n^{-1}(B) \in \mathcal{B}$ for all $B \in \mathcal{B}$. Thus for all $A_n \in \mathcal{B}$, we know that $f_n^{-1}(B) \cap A_n \in \mathcal{B}$ since \mathcal{B} is closed under countable intersections. We can define the pre-image of B by h as

$$h^{-1}(B) = \bigcup_{n \in \mathbb{Z}^+} (f_n^{-1}(B) \cap A_n).$$

Since \mathcal{B} is closed under countable unions, then we have $h^{-1}(B) \in \mathcal{B}$ for any $B \in \mathcal{B}$. Therefore h is a $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable function.

- **(P.5)** Consider the following functions $f : \mathbb{F} \to \mathbb{R}$. For each, prove or disprove whether the function is $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable:
 - (a) $f(x) = \sqrt{x}$ where $\mathbb{F} = (0, \infty)$.
 - (b) $f(x) = x^2$ where $\mathbb{F} = \mathbb{R}$.
 - (c) $f(x) = \log(1+x)$ where $\mathbb{F} = [0, \infty)$.
 - (d) $f(x) = \exp(-x^2)$ where $\mathbb{F} = \mathbb{R}$.

Proof. We know $(\mathbb{F}, \mathcal{B})$ and $(\mathbb{R}, \mathcal{B})$ are topological spaces with with Borel σ -algebra \mathcal{B} .

- (a) Since $f(x) = \sqrt{x}$ is continuous on domain $\mathbb{F} = (0, \infty)$ then by Theorem 8.3 it follows that f(x) is $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable.
- (b) Since $f(x) = x^2$ is continuous on domain $\mathbb{F} = \mathbb{R}$, then by Theorem 8.3 we have that f(x) is $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable.
- (c) Let $h(x) = \log(x)$ and let g(x) = 1 + x. We know that h(x) is continuous on domain $\mathbb{F} = (0, \infty)$ and h(x) is continuous on domain $F = \mathbb{R}$. Then by Theorem 8.3 we know that h(x) and g(x) are measurable functions. Since the composition of continuous functions is continuous, then $h(g(x)) = f(x) = \log(1+x)$ is continuous on domain $\mathbb{F} = [0, \infty)$ and from Theorem 8.2 it follows that the composition of measurable functions is measurable. Hence f(x) is $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable.
- (d) Let $h(x) = e^x$ and let $g(x) = -x^2$. We know that h(x) is continuous on domain $\mathbb{F} = \mathbb{R}$ and h(x) is continuous on domain $F = \mathbb{R}$. Then by Theorem 8.3 we know that h(x) and g(x) are measurable functions. Since the composition of continuous functions is continuous, then $h(g(x)) = f(x) = e^{(-x^2)}$ is continuous on domain $\mathbb{F} = \mathbb{R}$ and from Theorem 8.2 it follows that the composition of measurable functions is measurable. Hence f(x) is $\langle \mathcal{B}, \mathcal{B} \rangle$ -measurable.