Zestaw 5 — Relacje

Cześć A

1. Niech $X = \{0, 1, 2\}$. Zdefiniujmy relację $R \le X \le n$ w ten sposób, że mRn wtedy i tylko wtedy, gdy

a) $m \leq n$,

c) $m^2 + n^2 = 2$,

b) mn = 0,

d) $m+n \in X$.

Zapisać relację R jako zbiór par uporządkowanych.

2. Czy relacja mniejszości < w zbiorze \mathbb{R} jest relacja porządku?

3. Czy relacja podzielności | w zbiorze $\mathbb{Z} \setminus \{0\}$ jest relacją porządku?

4. Niech X bedzie zbiorem wszystkich ludzi. Które z poniższych relacji sa relacjami równoważności?

a) $xRy \equiv x$ i y mieszkają w tym samym kraju.

b) $xRy \equiv x$ i y mieszkają w tym samym lub sąsiednim kraju.

c) $xRy \equiv x$ i y mają wspólnego rodzica.

d) $xRy \equiv x$ i y mają tę samą matkę.

Dla relacji równoważności opisać klasy abstrakcji względem tej relacji.

Część B

5. Sprawdzić, czy następujące relacje R w zbiorze X są zwrotne, symetryczne, antysymetryczne, przechodnie i spójne:

a) $X = \mathbb{Z}, xRy \equiv 3|x-y,$

g) $X = \mathbb{R}, xRy \equiv x^3 = y^3,$

b) $X = \mathbb{N}, xRy \equiv 2|x+y|$

h) $X = \mathbb{R}, xRy \equiv |x| < |y|,$

c) $X = \mathbb{N}, xRy \equiv 3|x+y|$

i) $X = \mathbb{R}, xRy \equiv |x| + |y| = 3,$

d) $X = \mathbb{Z}, xRy \equiv 5|x^3 - y^3,$

j) $X = \mathbb{N}, xRy \equiv x > y \lor y > x,$

e) $X = \mathbb{R}, xRy \equiv x^2 = y^2,$

k) $X = \mathbb{R}, xRy \equiv x - y \in \mathbb{Q},$

f) $X = \mathbb{R}, xRy \equiv x^2 \neq y^2$,

1) $X = 2^{\mathbb{N}}, xRy \equiv x \triangle y$ jest zbiorem skończonym.

6. Wykazać, że jeśli relacja $R \le X$ jest spójna i symetryczna, to $R = X \times X$.

7. Podać przykład relacji, która jest

a) zwrotna i antysymetryczna, ale nie przechodnia,

b) zwrotna i przechodnia, ale nie jest antysymetryczna,

c) przechodnia i antysymetryczna, ale nie jest zwrotna.

8. Niech zbiór $X = \{3, 5, 7, 9, \dots, 19, 21\}$ będzie uporządkowany przez relację podzielności. Znaleźć elementy wyróżnione.

9. Niech

a) $X = \{2n-1 : n \in \mathbb{N}\}, A = \{3, 7, 9, 21, 27\},\$

b) $X = \{3n \colon n \in \mathbb{N}\}, A = \{18, 21, 36\},\$

c) $X = \{2^n \cdot 3^k : n, k \in \mathbb{N}_0\}, A = X \cap \{20, 21, \dots, 119, 120\},$

przy czym X jest zbiorem uporządkowanym przez relację podzielności. Wyznaczyć kresy zbioru A.

1

10. Niech

$$X = \{2^n \colon n \in \mathbb{N}\} \cup \{5^n \colon n \in \mathbb{N}\} \cup \{6, 7, 10\}.$$

Wyznaczyć elementy wyróżnione oraz kresy zbioru X uporządkowanego przez relację podzielności

11. W zbiorze \mathbb{N}^2 relacja R jest zdefiniowana wzorem

$$(x,y)R(s,t) \equiv x \leqslant s \land y|t.$$

Wyznaczyć elementy wyróżnione oraz kresy zbiorów

$$A = \{(2,1), (1,3), (1,4), (1,6)\}, \qquad B = \{(1,2), (2,1), (1,4), (3,2), (3,8)\}.$$

- 12. Dla ustalonego $k \in \mathbb{N}$ podać przykład zbioru uporządkowanego, w którym jest dokładnie
 - a) k+1 elementów, z czego jeden to element minimalny, a reszta to elementy maksymalne,
 - b) k elementów, przy czym wszystkie są minimalne i maksymalne.
- 13. Uzasadnić, że w każdym uporządkowanym zbiorze skończonym istnieje co najmniej jeden element minimalny i co najmniej jeden element maksymalny.
- 14. Załóżmy, że w uporządkowanym zbiorze skończonym istnieje dokładnie jeden element maksymalny (minimalny). Wykazać, że jest to również element największy (najmniejszy).
- 15. Niech X będzie zbiorem skończonym całkowicie uporządkowanym przez relację \prec . Udowodnić, że elementy zbioru X można ustawić w ciągu x_1, x_2, \ldots, x_n w ten sposób, że

$$x_1 \prec x_2 \prec \cdots \prec x_n$$
.

- 16. Podać przykład nieskończonego zbioru uporządkowanego, w którym jest
 - a) nieskończenie wiele elementów minimalnych i k maksymalnych, dla ustalonego $k \in \mathbb{N}$,
 - b) dokładnie jeden element minimalny, a pozostałe są maksymalne.
- 17. Które z następujących relacji R w zbiorze X są relacjami równoważności?
 - a) $X = \mathbb{Z}, xRy \equiv 3|x y|$
 - b) $X = \mathbb{N}, xRy \equiv xy$ jest liczbą nieparzystą.
 - c) $X = \mathbb{N}, xRy \equiv \bigvee_{t \in \mathbb{N}} xy = t^2.$
 - d) $X = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}, (x, y)R(s, t) \equiv x, s \neq 0 \land xs > 0.$
 - e) $X = 2^Y$ dla pewnego zbioru Y, $ARB \equiv A \subset B \vee B \subset A$.
 - f) $X = \mathbb{N}_0^2 = \mathbb{N}_0 \times \mathbb{N}_0, (m, n)R(a, b) \equiv m + b = n + a.$
 - g) $X = \mathbb{Z} \times \mathbb{N}, (m, n)R(a, b) \equiv mb = na.$

Dla relacji równoważności opisać klasy abstrakcji względem tej relacji.

18. Niech R będzie relacją zwrotną i przechodnią. Wykazać, że relacja R' zdefiniowana wzorem $xR'y \equiv xRy \wedge yRx$ jest relacją równoważności.