Notas de Aula - Capítulo 1: Lógica

Introdução

Este capítulo apresenta os fundamentos da lógica matemática, essenciais para o desenvolvimento rigoroso da física matemática. A lógica fornece as ferramentas para construir argumentos válidos e demonstrar teoremas.

1 Proposições

Definição

Uma **proposição** é uma sentença declarativa que pode ser classificada como verdadeira (V) ou falsa (F), mas não ambas.

Exemplos

- "2 + 2 = 4" (V)
- "3 > 5" (F)
- "A Terra é plana" (F)
- \bullet " π é um número irracional" (V)

Não são proposições:

- "Que horas são?"
- "x + 1 = 3"
- "Este enunciado é falso"

2 Conectivos Lógicos

2.1 Negação (¬)

Inverte o valor lógico da proposição.

p	$\neg p$
V	F
F	V

 $\overline{\text{Exemplo:}} \ p$: "3 é par" (F)

 $\neg p$: "3 não é par" (V)

2.2 Conjunção (A)

"e" lógico - Verdadeira apenas quando ambas são verdadeiras.

p	q	$p \wedge q$
V	V	V
V	\mathbf{F}	F
F	V	F
F	F	F

Exemplo: p: "2 > 0" (V), q: "2 < 1" (F) $p \land q$: "2 > 0 e 2 < 1" (F)

2.3 Disjunção (V)

"ou" lógico - Falsa apenas quando ambas são falsas.

p	q	$p \lor q$
V	V	V
V	\mathbf{F}	V
F	V	V
F	F	F

Exemplo: p: "3 é primo" (V), q: "4 é primo" (F) $p \lor q$: "3 é primo ou 4 é primo" (V)

2.4 Condicional (\rightarrow)

"Se... então..." - Falsa apenas quando o antecedente é verdadeiro e o consequente é falso.

p	q	$p \to q$
V	V	V
V	\mathbf{F}	F
F	V	V
F	F	V

Exemplo: p: "Chove" (V), q: "A rua fica molhada" (V) $p \rightarrow q$: "Se chove, então a rua fica molhada" (V)

2.5 Bicondicional (\leftrightarrow)

"Se e somente se" - Verdadeira quando ambas têm o mesmo valor.

p	q	$p \leftrightarrow q$
V	V	V
V	\mathbf{F}	F
F	V	F
F	F	V

Exemplo: p: "n é par" (V), q: "n é divisível por 2" (V) $p \leftrightarrow q$: "n é par se e somente se n é divisível por 2" (V)

3 Tautologias, Contradições e Contingências

Definições

• Tautologia: Proposição sempre verdadeira

• Contradição: Proposição sempre falsa

• Contingência: Nem tautologia nem contradição

Exemplos

- $\bullet~p~\vee \neg p$ (Tautologia Princípio do Terceiro Excluído)
- $p \land \neg p$ (Contradição)
- $p \rightarrow q$ (Contingência)

4 Quantificadores

4.1 Quantificador Universal (\forall)

"Para todo" - Afirma que uma propriedade vale para todos os elementos.

Exemplo: $\forall x \in \mathbb{R}, x^2 \geq 0$

4.2 Quantificador Existencial (∃)

"Existe" - Afirma que existe pelo menos um elemento com determinada propriedade.

Exemplo: $\exists x \in \mathbb{R}, x^2 = 2$

4.3 Negação de Quantificadores

$$\neg(\forall x, P(x)) \equiv \exists x, \neg P(x)$$
$$\neg(\exists x, P(x)) \equiv \forall x, \neg P(x)$$

Exemplo:

 $\neg(\forall x \in \mathbb{R}, x > 0) \equiv \exists x \in \mathbb{R}, x \leq 0$

5 Métodos de Demonstração

5.1 Demonstração Direta

Parte das hipóteses e, através de implicações lógicas, chega à tese.

Exemplo: Provar que se n é par, então n^2 é par.

Prova: Se n é par, então n=2k. Logo, $n^2=(2k)^2=4k^2=2(2k^2)$, que é par.

5.2 Redução ao Absurdo

Assume-se a negação da tese e mostra-se que isso leva a uma contradição.

Exemplo: Provar que $\sqrt{2}$ é irracional.

Prova: Suponha que $\sqrt{2}$ é racional. Então $\sqrt{2} = \frac{p}{q}$ com p,q coprimos. Elevando ao quadrado: $2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2$. Logo p é par, p = 2k. Então $4k^2 = 2q^2 \Rightarrow q^2 = 2k^2$, logo q é par. Contradição, pois p e q seriam ambos pares, não coprimos.

Indução Matemática 5.3

Usada para provar proposições sobre números naturais.

- 1. **Base:** Provar que P(1) é verdadeira
- 2. Passo indutivo: Provar que $P(k) \rightarrow P(k+1)$

Exemplo: Provar que $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

Base: n = 1: $1 = \frac{1(2)}{2} = 1$

Indução: Suponha válido para k: $1 + \dots + k = \frac{k(k+1)}{2}$ Para k+1: $1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$

Aplicações em Física Matemática

A lógica matemática é fundamental para:

- Formular teorias físicas de modo preciso
- Demonstrar teoremas e propriedades
- Construir argumentos rigorosos
- Validar deduções em modelos físicos

Importante!

O domínio da lógica matemática é essencial para o estudo da física matemática, pois fornece as ferramentas para construir demonstrações rigorosas e evitar argumentos falaciosos.