omputing essol 0 Ve School ntroducti 100h

"Once, men turned their thinking over to machines in the hope that this would set them free. But that only permitted other men with machines to enslave them."

"Thou shalt not make a machine in the likeness of a man's mind," Paul quoted.

"Right out of the Butlerian Jihad and the Orange Catholic Bible," she said. "But what the O.C. Bible should've said is: 'Thou shalt not make a machine to counterfeit a human mind.' Have you studied the Mentat in your service?"

- Representations are interchangeable.
- Any computation requires a representation.
- Computation requires *values*, *operations*, and *state*.
- All of these can be represented unambiguously on the machine.
- Higher-level languages map to lower-level representations for the machine.

Babylonian numerals (base 60)

Egyptian numerals (base 10)

Maya numerals (base 20)

Kaktovik (Inuit) numerals (base 20)

A counting base is the "tens" place, the unit you use to mark the "rollover".

I Ching numerals
(base 2)
[never actually used for counting]

1110.0001.1011₂

$$2^{11}+2^{10}+2^9+2^8+2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0$$

$$2048+1024+512+16+8+2+1 = 3611_{10}$$

Binary numerals (base 2)

Hexadecimal numerals (base 16)

Representations are interchangeable.

$$1 + \frac{24}{60} + \frac{51}{3600} + \frac{10}{216000} = 1.41417129...$$
(compare $\sqrt{2} \approx 1.41421356...$)

sine-based geometry (modern)

chord-based geometry (ancient Greek)

chord-based geometry (ancient Greek)

sine-based geometry (modern)

$$\operatorname{crd} \, heta = \sqrt{(1-\cos heta)^2+\sin^2 heta} = \sqrt{2-2\cos heta} = 2\sin\!\left(rac{ heta}{2}
ight)$$

- Representations are interchangeable.
- Any computation requires a representation.

- 1) Find the larger of the two.
- 2) Decompose it into powers of two.

3) Multiply each component by the corresponding power of two.

 $25 \times 13 = ???$

- 1) Find the larger of the two.
- 2) Decompose it into powers of two.

3) Multiply each component by the corresponding power of two.

$$25 \times 13 = ???$$

1) Find the larger of the two.

2) Decompose it into powers of two.

3) Multiply each component by the corresponding power of two.

$$25 \times 13 = ???$$

1) Find the larger of the two.

$$25 \times 13 = ???$$

2) Decompose it into powers of two.

$$25 = 16 + 8 + 1$$

3) Multiply each component by the corresponding power of two.

$$25 \times 13 = ???$$

1) Find the larger of the two.

$$25 \times 13 = ???$$

2) Decompose it into powers of two.

$$25 = 16 + 8 + 1$$

3) Multiply each component by the corresponding power of two.

$$25 \times 13 = ???$$

1) Find the larger of the two.

$$25 \times 13 = ???$$

2) Decompose it into powers of two.

$$25 = 16 + 8 + 1$$

3) Multiply each component by the corresponding power of two.

- Representations are interchangeable.
- Any computation requires a representation.
- Computation requires *values*, *operations*, and *state*.

 $\forall a : \sim S a = 0$

Symbo	l	Codon	Mnemonic Justification
0		666	Number of the Beast for the Mysterious Zero
		123	successorship: 1, 2, 3,
=		111	visual resemblance, turned sideways
+		112	1+1=2
		236	$2 \times 3 = 6$
(362	ends in 2
)			ends in 3
<		212	ends in 2 \ these three pairs
>		213	ends in 3 (form a pattern
[312	ends in 2
Ī		313	ends in 3)
a		262	opposite to ♥ (626)
,		163	163 is prime
\wedge		161	'A' is a "graph" of the sequence 1-6-1
V		616	'v' is a "graph" of the sequence 6-1-6
\supset		633	6 "implies" 3 and 3, in some sense
~		223	2 + 2 is not 3
3		333	'∃' looks like '3'
A		626	opposite to a; also a "graph" of 6-2-6

 $\forall a : \sim S a = 0$

Symbol	Codon	Mnemonic Justification
	123 111	
) < >	323 212 213	ends in 3 ends in 2 ends in 3 ends in 3 ends in 2 these three pairs form a pattern ends in 2
å ′	262 163 161	opposite to ♥ (626) 163 is prime '\' is a "graph" of the sequence 1-6-1
>	633 223 333	'√' is a "graph" of the sequence 6-1-6 6 "implies" 3 and 3, in some sense 2 + 2 is not 3 '∃' looks like '3'
∀	626	opposite to a; also a "graph" of 6-2-6

626,262,636,223,123,262,111,666 $\forall a : \sim S a = O$

insert '123'

transitivity

Gödel, Escher, Bach (Hofstadter)

123,362,123,666,112,666,323,111,123,123,666

362,123,666,112,123,666,323,111,123,123,666

0 + S 0) = S

S (S 0 + 0) = S

Computers use assembler (or assembly) language as their fundamental binary language.

Each instruction has a determinate length.

The first number represents the *operation*, which determines the interpretation of the other numbers (*values* or *addresses*, which access stored state).

0b11.0101.1110.0000.0000.0000.0110.0101.1110.0000.0001.0000.0111.0000.0010.0101.1110.0000.0010

0x35e.0006.5e01.0702.5e02

MOVMA	5E00	; Move data from address 0x5e00 into A
MOVBA	5E01	; Move data from address 0x5e01 into A
ADDAB		; Add A and B and put result in A
MOVAM	5E02	; Move data from A to address 0x5e02

Computers use assembler (or assembly) language as their fundamental binary language.

Each instruction has a determinate length.

The first number represents the *operation*, which determines the interpretation of the other numbers (*values* or *addresses*, which access stored state).

```
0b11.0101.1110.0000.0000.0000.0110.0101.1110.0000.0001.0000.0111.0000.0010.0101.1110.0000.0010
```

0x35e.0006.5e01.0702.5e02

MOVMA	5E00	; Move data from address 0x5e00 into A
MOVBA	5E01	; Move data from address 0x5e01 into A
ADDAB		; Add A and B and put result in A
MOVAM	5E02	; Move data from A to address 0x5e02

- 8-bit: $2^8 = 256$ [NES, IBM System/360]
- 16-bit: $2^{16} = 65,536$ [8088, SNES]
- 32-bit: $2^{32} \approx 4MM$ [Pentium Pro, PS]
- 64-bit: $2^{64} \approx 1.8 \times 10^{19}$ [modern CPUs]

- Representations are interchangeable.
- Any computation requires a representation.
- Computation requires *values*, *operations*, and *state*.
- All of these can be represented unambiguously on the machine.

Fibonacci sequence

 $F_n = F_{n-1} + F_{n-2}$ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Fibonacci sequence

 $F_n = F_{n-1} + F_{n-2}$ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

```
def fib(n):
   if n <= 2:
      return 1
   return fib(n-1) + fib(n-2)</pre>
```

Fibonacci sequence

$$F_n = F_{n-1} + F_{n-2}$$

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

```
def fib(n):
   if n <= 2:
      return 1
   return fib(n-1) + fib(n-2)</pre>
```

0	LOAD FAST	0	(n)
2	LOAD_CONST		(2)
4	COMPARE_OP	1	(<=)
6	POP_JUMP_IF_FALSE	12	
8	LOAD_CONST	2	(1)
10	RETURN_VALUE		
12	LOAD_GLOBAL	0	(fib)
14	LOAD_FAST	0	(n)
16	LOAD_CONST	2	(1)
18	BINARY_SUBTRACT		
20	CALL_FUNCTION	1	
22	LOAD_GLOBAL	0	(fib)
24	LOAD_FAST		(n)
26	LOAD_CONST	1	(2)
28	BINARY_SUBTRACT		
30	CALL_FUNCTION	1	
32	BINARY_ADD		
34	RETURN_VALUE		

- Representations are interchangeable.
- Any computation requires a representation.
- Computation requires *values*, *operations*, and *state*.
- All of these can be represented unambiguously on the machine.
- Higher-level languages map to lower-level representations for the machine.

The *lambda calculus* is a formal mathematical specification for computation.

1) Mathematical functions are anonymous.

$$f(x) = (x+1)^2 \implies (x) \mapsto (x+1)^2 \implies \lambda x.(\lambda x.x^2 (\lambda x.x + 1 x))$$

2) The lambda calculus consists of *lambda terms* and defines a set of formal operations for manipulating them.

TRUE := $\lambda x.\lambda y.x$ AND := $\lambda p.\lambda q.p \ q \ p$ I := $\lambda x.x$ FALSE := $\lambda x.\lambda y.y$ OR := $\lambda p.\lambda q.p \ p \ q$ S := $\lambda x.\lambda y.\lambda z.x \ z \ (y \ z)$ NOT := $\lambda p.p$ FALSE TRUE K := $\lambda x.\lambda y.\lambda z.x \ z \ (y \ z)$ C := $\lambda x.\lambda y.\lambda z.x \ z \ y$

 $:= \lambda x. \lambda y. x y y$

 $\omega/\Delta := \lambda x.x.x$

 $:= \omega \omega$

3) Other (equivalent) logic systems exist; Urbit's Nock language is most closely related to the SKI combinator calculus.

ONI COMBINATOR CATCATAS.

- Urbit consists of these parts:
 - Nock is a virtual machine, a computational behavior specification (like assembler).
 - Hoon is a high-level language which compiles to Nock (like C or Python).
 - Arvo is the Urbit OS, the event handler and event log which together define system state.
 - **Azimuth** is the *identity* system.