API "Iotronic WS-10" V 1.00 15.10.2018

1.Введение

Настоящий документ предназначен для разработчиков программного обеспечения и описывает интерфейс взаимодействия с устройством Iotronic WS-10.

Интерфейс взаимодействия частично реализует парадигму REST. Практически ЭТО означает, ЧТО любое взаимодействие C **VCTDOЙСТВОМ** собой Устройство представляет завершенную операцию. принимает обрабатывает его, отвечает на запрос, затем разрывает соединение при НТТР соединении, либо считает запрос завершенным при доступе по протоколу MQTT.

Формат данных в запросе и ответе одинаковый для обоих протоколов, различается лишь обертка этих данных, специфичная для каждого из них.

Специфика обмена данными для протокола HTTP описана в разделах 2, для протокола MQTT в разделе 3.

Описание данных, доступных для чтения описан в разделе 4, данных для записи в разделе 5.

В Приложении описывается структура содержимого EEPROM.

2. Подключение по протоколу НТТР

При HTTP соединении взаимодействие с устройством выполняются с помощью GET и POST запросов. На запросы устройство отвечает в соответствии с протоколом HTTP и при необходимости передает в ответ данные в формате JSON. GET и POST запросы требуют базовой авторизации.

Пример минимального GET запроса:

```
GET http://192.168.0.127/status.json HTTP/1.1
Authorization: Basic dXNlcjpwYXNzd29yZA==
Host: 192.168.0.127
```

Здесь IP устройства 192.168.0.127, запрашиваются данные из status.json, строка авторизации соответствует логину user и паролю password. Обращаем ваше внимание на необходимость, в соответствии с протоколом HTTP, пустой строки после заголовка запроса.

Ответ на этот запрос будет выглядеть примерно так:

```
HTTP/1.1 200 OK
Connection: close
Cache-Control: no-cache

{"time":"1539595703","uptime":"489826","wlev":"-55
dBm","urms":"0","irms":"0","pwr":"0","status":"OFF","chname":"channel01","dname":"WS10_123
0000001"}
```

Пример минимального POST запроса:

```
POST http://192.168.0.127/index41.html HTTP/1.1 Content-Length: 46
Authorization: Basic dXNlcjpwYXNzd29yZA==
```

Ответ на запрос может иметь такой вид:

```
HTTP/1.1 200 OK
Connection: close
Content-Type: text/htmljson
Cache-Control: no-cache

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta charset='windows-1251' />
<meta name="viewport" content="width=device-width, user-scalable=no" />
< rel="stylesheet" href="style.css" />
<script src="ioscr.js"></script></script>
```

...далее продолжается html код загружаемой из index41.html страницы

Все данные доступные в веб-интерфейсе, продублированы в JSON файлах, для удобства их машинной обработки.

Извлечение данных журнала событий и истории потребления электроэнергии должно осуществляться с помощью прямого доступа к EEPROM, с последующей обработкой в пользовательском приложении. Для этого в ПРИЛОЖЕНИИ опубликована структура EEPROM памяти. Извлечение произвольной области EEPROM доступно через запросы и описано в разделах 4 и 5.

Назначение полей в извлекаемых из устройства JSON данных, во всех доступных для запроса файлах, описан в разделе 4. Все значения полей данных являются строками, а столбец «Интерпретация данных» содержит информацию к каким типам эти строки преобразовывать.

Назначение переменных в передаваемых в устройство данных описано в разделе 5.

3. Подключение по протоколу МОТТ

При взаимодействии через MQTT брокер, запросы передаются в стиле POST и GET запросов в урезанном виде. В ответ устройство отвечает теми же JSON данными что и при HTTP. Дополнительная авторизация не требуется т. к. она реализуется на стадии подключения к MQTT брокеру.

Все темы для взаимодействия с устройством располагаются относительно корневой темы (например roottopic/), которая устанавливается в процессе настройки MQTT протокола. Имя корневой темы произвольно, настраивается пользователем и должно совпадать с такой же темой у всех приложений взаимодействующих с устройством.

Устройство принимает данные в теме roottopic/rx/. Устройство передает данные в теме roottopic/tx/.

Для получения файла необходимо начинать запрос с ключевого слова GET, имя файла, при необходимости далее через пробел далее через пробел передаются параметры.

Для передачи команды ключевое слово GET не требуется.

```
ПРИМЕР 1.
```

```
Запрос для получения текущих данных:
      roottopic/rx/GET status.json
Ответ должен выглядеть примерно так:
      roottopic/tx/{"time":"1539854658","uptime":"49580","wlev":"-54
dBm","urms":"0","irms":"0","pwr":"0","status":"ON","chname":"channel01","dname":"WS10_1230
000001"}
ПРИМЕР 2.
Запрос для включения реле:
      roottopic/rx/index.html btnpwr=on
Ответ устройства:
      roottopic/tx/{"result":"done"}
```

ПРИМЕР 3.

```
Передача в устройство настроек параметров защиты:
      roottopic/rx/index41.html umin=0&umax=240&imin=0&imax=430&pten=1&sav=prs
Ответ устройства:
      roottopic/tx/{"result":"done"}
```

ПРИМЕР 4.

```
Запрос на извлечения блока EEPROM:
```

```
roottopic/rx/mem.json base=400
```

Ответ устройства:

```
{"mem":[
"0400:5868D320010011015868D320000000002",
"0410:5868D320000000035868D32000000004"
"0420:5868D320000000055868D32000000006",
"0430:5868D320000000075868D32000000008",
"0440:5868D320000000095868D3200000000A",
"0450:5868D3200000000B5868D3200000000C",
"0460:5868D3200000000D5868D3200000000E"
"0470:5868D3200000000F5868D32000000010"]}
```

Описание структуры данных запросов и ответов содержатся в разделах 4 и 5.

4.Структура данных получаемых из устройства.

Данные из устройства могут быть получены запросом следующих файлов:

- status.json
- gendata.json

- tmr.json
- mem.json
- set1.json
- set2.json
- set3.json
- dbg.json
- dbg2.json

4.1. Файл status.json

Содержит данные с текущими измерениями.

Пример полученных данных:

{"time":"1539595703","uptime":"489826","wlev":"-55
dBm","urms":"0","irms":"0","pwr":"0","status":"OFF","chname":"channel01","dname":"WS10_123 0000001"}

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"time"	Целое	Текущее время	Секунды Unix Timestamp
"uptime"	Целое	Время с момента запуска устройства	Секунды
"wlev"	Строка	Уровень сигнала WiFi	Уровень приема в dBm. В режиме точки доступа не отображается
"urms"	Целое	Текущее значение напряжения	Для получение значения в Вольтах необходимо умножить на Ku=1,00
"irms"	Целое	Текущее значение тока	Для получение значения в Амперах необходимо умножить на Ki=0,02
"pwr"	Целое	Текущее значение мощности	Для получения значения в Ваттах необходимо умножить на Ku*Ki
"status"	Строка	Состояние реле устройства: «ON» - включено, «OFF» - выключено	Принимает только значение «ON» или «OFF»
"chname"	Строка	Пользовательское имя канала	
"dname"	Строка	Пользовательское имя устройства	

4.2. Файл gendata.json

Содержит информацию счетчиков потребления, параметров защиты и адресов расположения данных об истории энергопотребления.

```
Пример полученных данных:
{"counter":
{"ctime":"1539599453","pp1":"0.000000","pp2":"0.0000000","tt1":"1539105884","tt2":"15391058
84",
"tar":"3.92","unt":"RUB"},
"protect":{"pen":"","umin":"0","umax":"260","imin":"0","imax":"500"},
"memvect":{"v5m":"4390","v1h":"7582","v1d":"7990"}}
```

Описание данных:

Maccuв "counter" — содержит информацию касающуюся двух счетчиков потребленной энерги

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"ctime"	Целое	Текущее время	Unix Timestamp секунды
"pp1"	Число с плавающей точкой	Потребленная энергия счетчик №1	Единицы измерения кВт*ч
"pp2"	Число с плавающей точкой	Потребленная энергия счетчик №2	Единицы измерения кВт*ч
"tt1"	Целое	Время начала учета счетчика №1	Unix Timestamp секунды
"tt2"	Целое	Время начала учета счетчика №2	Unix Timestamp секунды
"tar"	Число с плавающей точкой	Тариф в денежных единицах	
"unt"	Строка	Наименование денежной единицы	Код из трех заглавных латинских букв — RUB, USD, EUR и т.д.

Maccив "protect" - содержит информацию касающуюся системы защиты

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"pen"	Строка	Активности системы защиты: «checked» - включена, «» - отключена	
"umin"	Целое	Минимально допустимое напряжение	Для получение значения в Вольтах необходимо умножить на Ku=1,00

"umax"	Целое	Максимально допустимое напряжение	Для получение значения в Вольтах необходимо умножить на Ku=1,00
"imin"	Целое	Минимально допустимый ток	Для получение значения в Амперах необходимо умножить на Ki=0,02
"imax"	Целое	Максимально допустимый ток	Для получение значения в Амперах необходимо умножить на Ki=0,02

Массив "memvect" — содержит информацию об адресах размещения в ЕЕПРОМ последних записей потребления. Подробно формат записей описан в секции, описывающей прямой доступ к ЕЕПРОМ.

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"v5m"	HEX	Адрес размещения последней записи 5-ти минутных отсчетов потребления	Формат отсчетов описан в секции прямой доступ к ЕЕПРОМ
"v1h"	HEX	Адрес размещения последней записи часовых отсчетов потребления	Формат отсчетов описан в секции прямой доступ к ЕЕПРОМ
"v1d"	HEX	Адрес размещения последней записи суточных отсчетов потребления	Формат отсчетов описан в секции прямой доступ к ЕЕПРОМ

4.3. Файл tmr.json

Содержит информацию о настройках таймеров.

Пример полученных данных:

{"tmr":

Описание данных:

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"tmr"	Массив	16 записей таймера	

Каждая запись вида "ААААААААВВ%СС%DD" соответствует одному таймеру и имеет следующие поля, разделенные знаком «%»:

ААААААА – дата и время начала действия таймера (Unix TimeStamp в шестнадцатиричной форме);

```
ВВ - активность таймера
                      00 — таймер выключен
                      01 — таймер включен;
СС — действие таймера
                      00 — выключить реле
                      01 — включить реле;
DD - повтор срабатывания таймера
                      00 - однократный
                      01 - 1 минута
                      02 - 2 минуты
                      03 - 5 минут
                      04 - 10 минут
                      05 - 15 минут
                      06 - 20 минут
                      07 - 30 минут
                      08 - 1 час
                      09 - 2 часа
                      0А - 3 часа
                      0B - 6 часов
                      0С - 9 часа
                      0D - 12 часов
                      0Е - 18 часов
                      0F - 1 день
                      10 - 2 дня
                      11 - 7 дней;
```

4.4. Файл mem.json

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"mem"	Массив	8 записей по 16 байт содержимого ЕЕПРОМ устройства	

4.5. Файл set1.json

Настройки сетевого соединения

Пример полученных данных:

```
{"lgn":"user","psn":"*******","apn":"
","cln":"checked","wfiap":"WS10_1230000001","wfpap":"*******","ipaap":"192.168.150.1","wf
i":"TRS","wfp":"*******","dhcp":"checked","ipa":"192.168.0.127","mas":"255.255.255.0","gt
e":"192.168.0.7","mac":"00-04-A3-00-00-00"}
```

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"lgn"	Строка	Логин для доступа через веб-интерфейс	
"psn"	Строка	Пароль для доступа через веб-интерфейс	
"apn"	Флаг	Тип соединения «Точка доступа(АР)» «checked» - точка доступа «» - другое	
"cln"	Флаг	Типа соединения «Клиент(CLN)» «checked» - клиент «» - другое	
"wfiap"	Строка	Имя сети в режиме точки доступа	
"ipaap"	Строка	Ключ сети в режиме точки доступа	
"wfi"	Строка	Имя сети в режиме клиента	
"wfp"	Строка	Ключ сети в режиме клиента	
"dhcp"	Флаг	Включить DHCP клиент «checked» - включено «» - выключено	
"ipa"	IP адрес	IP-адрес устройства полученный от DHCP сервера или назначенный вручную	
"mas"	IP адрес	Маска подсети	
"gte"	IP адрес	IP-адрес шлюза полученный от DHCP сервера или назначенный вручную	

"mac"	МАС адрес	МАС-адрес устройства	
	aHbcc	into amped Jorponersa	

4.6. Файл set2.json

Содержит настройки соединения MQTT и настройки времени.

Пример полученных данных:

{"cld":"m1.iotronic.cloud","clen":"checked","ssen":"checked","prt":"8883","idd":"work01_id 01","top":"work01/","clnm":"work01","clps":"*******,"tsen":"checked","tsr":"ntp4.stratum 1.ru"}

Описание данных:

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"cld"	IР или доменное имя	Адрес MQTT брокера	
"clen"	Флаг	Включить MQTT "cheked" - включено "" - выключено	
"ssen"	Флаг	Использовать SSL соединение "cheked" - включено "" - выключено	
"prt"	Целое	Номер порта брокера	
"idd"	Строка	ID устройства для MQTT	
"top"	Строка	Корневая тема	
"clnm"	Строка	Имя пользователя MQTT	
"clps"	Строка	Пароль пользователя MQTT	
"tsen"	Флаг	Включить SNTP клиент "cheked" - включено "" - выключено	
"tsr"	IР или доменное имя	Адрес SNTP сервера	

4.7. Файл set3.json

Пример полученных данных:

{"nam": "WS10_1230000001", "chn": "channel01", "tar": "3.92", "unt": "RUB", "led": "checked", "fver": "1.00.1663", "fdat": "2018-10-09 9:48", "ser": "1230000001"}

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"nam"	Строка	Пользовательское имя	

		устройства	
"chn"	Строка	Пользовательское имя канала	
"tar"	Число с плавающей точкой	Тариф в денежных единицах	
"unt"	Строка	Наименование денежной единицы	Код из трех заглавных латинских букв — RUB, USD, EUR и т.д.
"led"	Флаг	Включить светодиоды «checked» - включено «» - выключено	
"fver"	Строка	Версия ПО	
"fdat"	Строка	Дата сборки	
"ser"	Целое	Серийный номер	

4.8. Файл dbg.json (отладочная информация, может изменяться по усмотрению производителя без дополнительного уведомления!)

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"Udac"	Целое	АЦП напряжение	
"Idac"	Целое	АЦП ток	
"Pint"	Целое	Мгновенная мощность	
"Iclb1"	Целое	Коррекция 1 диапазона	
"Iclb2"	Целое	Коррекция 2 диапазона	
"ATT"	Строка	Аттеньюатор	«ON» - включен «OFF» -выключен
"Nsumm"	Целое	Сумма выборок возле нулевого значения	
"Ni"	Массив	Распределение выборок возле нулевого значения	
"rfpwr"	Целое	Мощность передатчика WiFi	Значение в диапазоне 0-82. Для получения мощности в dBm, значение необходимо

		умножить на К=0,25
- 1		-

4.9. Файл dbg2.json (отладочная информация, может изменяться по усмотрению производителя без дополнительного уведомления!)

Пример полученных данных:

{"files":"621","pkt":"1283","pkt_lost":"0","http_tmt":"0","mqtt_tmt":"0","wifi_rbt":"0","rx_ovr":"0,"mqttping_err":"0","mqttpub_err":"0"}

Описание данных:

Наименование поля	Интерпретация данных	Содержание данных	Примечания
"files"	Целое	Передано файлов	
"pkt"	Целое	Передано пакетов	
"pkt_lost"	Целое	Потеряно пакетов	
"http_tmt"	Целое	Таймаутов НТТР	
"mqtt_tmt"	Целое	Таймаутов MQTT	
"wifi_rbt"	Целое	Перезагрузок ESP8266	
"rx_ovr"	Целое	Переполнений RX буфера	
"mqttping_err"	Целое	Потерь пинга MQTT	
"mqttpub_err"	Целое	Ошибок публикации MQTT	

5.Структура данных отправляемых в устройство.

С помощью отправки данных в устройство можно изменять его настройки, запрашивать данные с параметром, передавать команды. Данные для отправки в устройство должны быть представлены в формате POST запроса. Общая длина строки данных не должна превышать 240 символов.

Синтаксис передачи данных в устройство различается для связи по HTTP и MQTT протоколам и описан в разделах 2 и 3.

5.1. Запрос по адресу index.html

Пример строки запроса: btnpwr=on

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
btnpwr	Строка	Команда для реле	«on» - включить реле «off» - выключить реле

5.2. Запрос по адресу index21.html

Пример строки запроса: netm=2&lgn=user&psn=*******&wfi=TRS&wfp=******&dhcp=1&mac=00-04-A3-00-00-02&sav=prs

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
sav	Строка	Сохранить данные. Используется для HTTP	«prs» - сохранить данные;
mqtt	Строка	Сохранить данные. Используется для MQTT	«upt» - сохранить данные; «rbt» -перезагрузить;
netm	Флаг	Режим сети устройства	«1» - точка доступа; «2» - клиент;
mac	Строка	МАС-адрес	Строка в формате xx- xx-xx-xx-xx-xx
lgn	Строка	Логин к веб- интерфейсу	3-8 символов*
psn	Строка	Пароль к веб- интерфейсу	5-8 символов*
wfiap	Строка	Имя WiFi сети в режиме точки доступа	3-16 символов*
wfpap	Строка	Ключ WiFi сети в режиме точки доступа	8-16 символов*
іраар	Строка	IP-адрес устройства в режиме точки доступа	Строка в формате xxx.xxx.xxx
wfi	Строка	Имя WiFi сети в режиме клиента	3-16 символов*
wfp	Строка	Ключ WiFi сети в режиме клиента	8-16 символов*
dhcp	Флаг	Активность DHCP клиента	«1» DHCP включен; другие значения или отсутствие параметра — выключен;
ipa	Строка	IP-адрес устройства в режиме клиента	Строка в формате ххх.ххх.ххх
mas	Строка	Маска подсети	Строка в формате

			xxx.xxx.xxx
gte	Строка	IP-адрес шлюза по умолчанию	Строка в формате xxx.xxx.xxx

^{*} Символ может быть буквой латинского алфавита, цифрой, символами «-»,«_».

5.3. Запрос по адресу index22.html

Пример строки запроса: clen=1&cld=m1.iotronic.cloud&ssen=1&prt=8883&idd=workO1_idO1&top=workO1%2F&clnm=workO1&clps=***** ****&tsen=1&tsr=ntp4.stratum1.ru&sav=prs

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
sav	Строка	Сохранить данные. Используется для HTTP	«prs» - сохранить данные;
mqtt	Строка	Сохранить данные. Используется для MQTT	«upt» - сохранить данные; «rbt» -перезагрузить;
timenow	Целое	Текущее время для установки часов	Unix Timestamp секунды
clen	Флаг	Активность MQTT	«1» - MQTT включен; другие значения или отсутствие параметра — выключен;
ssen	Флаг	Активность SSL	«1» - SSL включен; другие значения или отсутствие параметра — выключен;
cld	Строка	IP-адрес или имя хоста MQTT брокера	3-24 символов* или строка в формате xxx.xxx.xxx
prt	Целое	Порт MQTT брокера	
idd	Строка	ID устройства	3-24 символов*
top	Строка	Корневая тема	3-24 символов*
clnm	Строка	Логин к MQTT брокеру	3-24 символов*
clps	Строка	Пароль к MQTT брокеру	3-32 символов*
tsen	Флаг	Активность SNTP клиента	«1» - SNTP включен; другие значения или отсутствие параметра — выключен;
tsr	Строка	IP-адрес или имя хоста SNTP сервера	3-24 символов* или строка в формате xxx.xxx.xxx

^{*} Символ может быть буквой латинского алфавита, цифрой, символами «-»,«_».

5.4. Запрос по адресу index23.html

Пример строки запроса:

nam=WS10_1230000001&chn=channel01&tar=3.92&unt=RUB&led=1&sav=prs

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
sav	Строка	Сохранить данные. Используется для HTTP	«prs» - сохранить данные;
mqtt	Строка	Сохранить данные. Используется для MQTT	«upt» - сохранить данные; «rbt» -перезагрузить;
clrmgm	Строка	Команда удаления истории энергопотребления	«prs» - удалить данные
nam	Строка	Пользовательское имя устройства	3-16 символов*
chn	Строка	Пользовательское имя канала	3-16 символов*
tar	Число с плавающей точкой	Тариф в денежных единицах	
unt	Строка	Наименование денежной единицы	Код из трех заглавных латинских букв — RUB, USD, EUR и т.д.
1ed	Флаг	Активация индикаторных светодиодов	«1» - диоды включены; другие значения или отсутствие параметра — выключены;

^{*} Символ может быть буквой латинского алфавита, цифрой, символами «-»,«_».

5.5. Запрос по адресу index24.html

Пример строки запроса:

lgc=prs

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
lgc	Строка	Удалить все данные в журнале событий	«prs» - удалить все данные;

5.6. Запрос по адресу index31.html

Пример строки запроса:

ct1=prs

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
ct1	Строка	Очистить информацию счетчика №1	«prs» - очистить;
ct2	Строка	Очистить информацию счетчика №2	«prs» - очистить;

5.7. Запрос по адресу index41.html

Пример строки запроса:

umin=0&umax=260&imin=0&imax=500&pten=0&sav=prs

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
sav	Строка	Сохранить данные.	«prs» - сохранить данные;
pten	Флаг	Активация защиты от перегрузок	«1» - включена; другие значения или отсутствие параметра — выключена;
umax	Целое	Максимальное напряжение	0-600*
umin	Целое	Минимальное напряжение	0-600*
imax	Целое	Максимальный ток	0-2500**
imin	Целое	Минимальный ток	0-2500**

^{*}для получения напряжения в вольтах, необходимо умножить на Ku=1,00

5.8. Запрос по адресу index42.html

Пример строки запроса:

^{**}для получения тока в амперах, необходимо умножить на Ki=0,02

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
tm[N]	Целое	'	Строка из десятичных цифр и знаков разделителя «%»

Каждая запись вида "AAAAAAAA88%C%D" соответствует одному таймеру и имеет следующие поля, разделенные знаком «%»:

ААААААА – дата и время начала действия таймера (Unix TimeStamp в шестнадцатиричной форме);

В - активность таймера

0 — таймер выключен

1 — таймер включен;

С — действие таймера

0 — выключить реле

1 — включить реле;

D — повтор срабатывания таймера

0 — однократный

1 - 1 минута

2 — 2 минуты

3 — 5 минут

4 - 10 минут

5 - 15 минут

6 - 20 минут

7 — 30 минут

8 — 1 час

9 — 2 часа

10 — 3 часа

11 — 6 часов

12 — 9 часа

13 — 12 часов

14 - 18 часов

15 - 1 день

16 - 2 дня

17 - 7 дней;

В связи с тем, что строка, содержащая настройку всех 16 таймеров превышает допустимые 240 символов, необходимо передавать их частями, с помощью нескольких последовательных запросов.

5.9. Запрос по адресу dbg.json

Пример строки запроса:

rfpwr=55

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
rfpwr	Целое	WiFi (после установки	Значение в диапазоне 0-82. Для получения мощности в dBm, значение необходимо умножить на K=0,25

5.10. Запрос по адресу mem.json

Пример строки запроса:

base=1000

Описание данных:

Имя параметра	Интерпретация данных	Содержание данных	Допустимые значения
base	HEX	Адрес в EEPROM для выгрузки следующих за ним 128 байт, блоками по 16 байт	

6. Приложения

6.1. Структура EEPROM.

EEPROM устройства Iotronic WS-10 реализована на микросхеме 25LC256 и содержит 32 кБайт памяти, соответствующих адресному пространству 0х0000-0x7FFF.

Область памяти 0х0000-0х0200 занимает конфигурация устройства и недоступна для пользователя по соображением безопасности, т. к. там размещена критичная информация (ключи wifi, пароли к веб-интерфейсу и т.д). Остальная область памяти 0х0200-07FFF доступна для чтения посредством запроса файла mem.json.

Чтение осуществляется блоками по 128 байт, начиная с базового адреса, передаваемого при запросе mem.json.

EEPROM устройства имеет следующую структуру:

0х0400 - 0х47F - 16 записей таймера по 8 байт каждая;

0х0480 — 1 байт вектор журнала событий;

0х0481 — 0х0700 - 128 записей журнала по 5 байт каждая;

0x0FF0 - 1 байт состояние реле;

0х1000 - 2 байта вектор записей 5-ти минутных отсчетов;

0х1002 - 2 байта вектор записей часовых отсчетов;

0х1004 - 2 байта вектор записей суточных отсчетов;

0x1006 — 0x1905 — область данных 5-ти минутных отсчетов, 288 записей по 8 байт каждая;

0x1906 - 0x1F05 - область данных часовых отсчетов, 192 записи по 8 байт каждая;

0x1F06 - 0x2B05 - область данных суточных отсчетов, 384 записи по 8 байт каждая;

Формат записей таймера:

Каждая запись таймера содержит 8 байт AAAAAAABBCCDDEE: AAAAAAAA — дата и время начала действия таймера (Unix TimeStamp в шестнадцатиричной форме);

ВВ - активность таймера

00 — таймер выключен

01 — таймер включен;

СС — действие таймера

00 — выключить реле

01 — включить реле;

DD — повтор срабатывания таймера

00 — однократный

01 — 1 минута

02 - 2 минуты

03 - 5 минут

04 - 10 минут

05 - 15 MUHVT

06 - 20 минут

07 - 30 MUHYT

08 — 1 час

09 - 2 часа

0А - 3 часа

0B — 6 часов

0С - 9 часа

0D - 12 часов

0Е - 18 часов

0F — 1 день

10 - 2 дня

ЕЕ – порядковый номер таймера;

Байт состояния реле:

0х55 - реле включено;

0хАА - реле выключено;

Используется для сохранения в энергонезависимой памяти текущего состояния реле, для восстановления состояние после перезагрузки устройства.

Формат записей системного журнала:

Каждая запись содержит 5 байт TTTTTTTDD. Первые 4 байта TTTTTTT целое 32 бит Unix Timestamp соответствующее моменту события, байт DD соответствует коду события:

0х00 - 'не используется',

0х01 - 'Часы установлены',

0х02 - 'Включено по таймеру',

0х03 - 'Выключено по таймеру',

0х04 - 'Включено пользователем',

0х05 - 'Выключено пользователем',

0x06 - 'ESP8266 перезагружен',

0х07 - 'Устройство перезагружено',

0x08 - 'MQTT подключен',

0x09 - 'MQTT потеря связи',

0х0А - 'Отключено по току',

0х0В - 'Отключено по напряжению'

Записи журнала циклически перезаписываются в своей области памяти, на последнюю запись указывает вектор размером 1 байт по адресу 0х0480.

Формат записей потребленного электричества:

Каждая запись 8 байт данных TTTTTTTDDDDDDDD. Первые 4 байта TTTTTTT целое 32 бит Unix Timestamp соответствующее концу интервала измерений, вторые 4 байта DDDDDDDD должны интерпретироваться как 32 bit float, содержащее потребленную электроэнергию. В сыром виде данные потребления передаются без учета калибровочных коэффициентов. Для приведения данных потребления к BT*c, необходимо дополнительно умножить их на коэффициенты KU и Ki. Для получения данных в KBT*v необходимо дополнительно разделить значение в BT*v на 3600000.

Записи циклически перезаписываются внутри своей области памяти, на последнюю по времени запись указывает соответствующий вектор. Вектора имеют размер 2 байта каждый и доступны по адресу 0x1000-0x1005.