

STM32L0 Low-Power Modes

OBJECTIVES 2

- Remind ARM Cortex-Mx Low-Power modes architecture
- Introduce STM32L0 Low-Power modes implementation
- Discuss the differences and possible application
 - Check the consumption (exercises)

After this part of workshop you will know the differences and capabilities of STM32L0 Low-Power modes.

Low-Power Modes ARM Cortex-Mx Support

ARM Cortex-Mx Low Power Features

Cortex-Mx low-power modes:

- SLEEP
 - Stops only processor clocks → higher power consumption, but the shortest wakeup time
- DEEP SLEEP
 - System clock stopped, PLL and FLASH turned off, SRAM and registers are still powered
- Entry mechanisms:
 - WFI (Wait for Interrupt) instruction
 - WFE (Wait for Event) instruction
 - SLEEP ON EXIT

SLEEP NOW! 5

 MCU enters SLEEP mode as soon as the WFI / WFE instruction is executed

WFI

- Exit: any peripheral interrupt, which vector is enabled in the Nested Vectored Interrupt Controller (NVIC)
- Wake-up: Additional Interrupt entry latency

WFE

- Exit: An event can be an interrupt enabled in the peripheral control register but NOT in the NVIC or an EXTI line configured in event mode
- Wake-up: No time wasted in interrupt entry/exit

SLEEP ON EXIT! 6

- MCU enters SLEEP or DEEP SLEEP mode as soon as it exits the lowest priority interrupt service routine (ISR)
- Controlled by SLEEPONEXIT bit in Cortex-Mx System Control Register of System Control Block (SCB_SCR)
- Exit: any peripheral interrupt acknowledged by the Nested Vectored Interrupt Controller (NVIC)
- Wake-up: The processor state is not un-stacked → faster wake up on interrupt

Low-Power Modes STM32L0 implementation

RUN

- clocks gating, FLASH can be put in power-down mode
- SLEEP: CPU stopped
 - optional automatic clocks gating, FLASH can be put in power-down mode
- LP RUN: power regulator in LP mode, 131kHz Max
 - clocks gating, FLASH can be put in power-down mode
- LP SLEEP: CPU stopped + power regulator in LP mode, 131kHz Max
 - optional automatic clocks gating, FLASH can be put in power-down mode
- STOP: power regulator in LP mode + all clock stopped except LSI (LSE)
 - HSI can be kept running, FLASH can be kept in power-down mode after Wake-Up
 - LPTIM, LPUART and some other peripherals are available in STOP mode
- STANDBY: V_{Core} switched OFF

RUN Mode

- Everything can be ON
- Any peripheral clocks can be gated (* examples)
- After reset peripherals clock are disabled
- Code can RUN from RAM and FLASH be OFF

STM32L0 Clock Subsystem

Clock controller: the "Gearbox"

Clock Sources Parameters 12

	Clock Source	Frequency	Conso	Precision 25°C/0-85°C	Wakeup time	
•	MSI (default)	65kHz-4.2MHz (2.1MHz default)	0.7-15μΑ	±0.5% / ±3%	3.5 µs (Vcore Range 1/2	
	HSI	16MHz	100μΑ	±1% / ±2.5%	3.7 µs	
	HSE external crystal	1-24MHz	~500µA	~±0.01% (100ppm)	1ms	
	HSE external clock	1-32MHz		N/A	N/A	
	PLL	2-32MHz	~350µA	N/A	100µs (2MHz input)	+ Clock Source Wake-Up time
	LSI	37kHz	0.4µA	50%	200µs	
	LSE external crystal	32.768kHz (typically)	~0.3µA	~0.002% (20ppm)	~1s	
	LSE external clock	1-1000kHz		N/A	N/A	

Peripheral clocks gating

The clock tree toward each register increase consumption

So clock toward each peripheral register group can be gated (Default)

is gated)

Consumption (L1 data):

(L0 data coming soon)

	range 1	range 2		LP Sleep and run	
Condition:	32MHz	16MHz	4MHz	65kHz	
GPIOA	7	6	5	6	
GPIOB	7	6	5	6	
CRC	0.5	0.5	0.5	1	
DMA1	18	15	13	18	
SYSCFG & RI	3	2	2	3	μΑ/MHZ
TIM2	13	11	9	11	
TIM6	4	4	4	. 4	
LCD	4	3	3	4	
WWDG	3	2.5	2.5	3	
USB	15	7	7	7	
PWR	3	3	3	3	
DAC	6	5	4.5	5	
ALL	279	221	219	215	

STM32L0 Power Supply Subsystem

Voltage Regulator 17

- The Voltage regulator has three different modes
 - Main voltage regulator mode (MVR)
 - no output current limitation
 - consumption of the regulator is 8µA (typ)
 - Ultra low power regulator mode
 - output current limited
 - consumption of the regulator is 0.1µA (typ)
 - Regulator OFF mode
 - no output current
 - Time for the regulator to wakeup is 3.5µs (max)

V_{CORE} Dynamic Voltage Scaling

- Voltage scaling optimizes the product efficiency (Consumption vs Performance)
- User selects a Range (voltage scaling) according to :
 - External V_{DD}
 - DMIPS performance required (=w/ or w/o Wait State)
 - Max power consumption

Functionality dependent on Power Supply

1.8V min still at Power-On-Reset

Functionality dependent on the operating power supply range					
$V_{DD} = V_{DDA}$	V _{Core}	f _{CPU} (max. CPU frequency)	ADC (max. sampling rate)	USB	
1 CF 1 71V	Range 3 – 1.2V	4.2MHz (0 WS)	N/A	N/A	
1.65~1.71V	Range 2 – 1.5V	16MHz (1 WS) 8MHz (0 WS)			
1.71~1.8V			N/A		
1.8~2.0V	(Range 3 – 1.2V)*		0.5 MSPS	F	
2.0~2.4V	(Range 2 – 1.5V)* 2.0~2.4V Range 1 – 1.8V	32MHz (1ws) 16MHz (0ws)	0.5 MSPS	Functional**	
2.4~3.6V	2.4~3.6V		1 MSPS		

^{*} For V_{Core} Range 2 and Range 3, the lower CPU frequency limits apply always

** USB transceiver requires external VDD_USB>=3V

LP RUN Mode

- Everything can be ON
- Any peripheral clocks can be gated (* examples)
- After reset peripherals clock are disabled
- Power regulator switched to Low Power mode

SLEEP Mode 21

- Core GPIO's **FLASH** CM0+ RTC/backup reg. RAM **IWDG DMA** Clock **GP** timers HSI **LP Timer** MSI LP USART SPI HSE LSI **USB USART** LSE DAC I2C Reset **ADC** Glass LCD Touch sensing Comparator Power regulator
- **Core is stopped**
- **Peripherals are running**

LP SLEEP Mode 22

- Core is stopped
- Peripherals are running
- Power regulator is in Low Power mode
- FLASH can be in Power Down mode
- VREFINT can be OFF

SLEEP Modes

- Core is stopped
- Peripherals are running
- Power regulator is in Low Power mode
- FLASH can be in Power Down mode
- VREFINT can be OFF
- Peripherals can be gated automatically when entering SLEEP mode

RUN

SLEEP Modes 24

Entry & Exit

- WFI (Wait For Interrupt)
 - Exit: any peripheral interrupt acknowledged by the Nested Vectored Interrupt Controller (NVIC)
- WFE (Wait For Event)
 - Exit: as soon as the event occurs → No time wasted in interrupt entry/exit
- Two entry options for SLEEP mode
 - Sleep Now: MCU enters SLEEP mode as soon as WFI/WFE instruction are executed
 - Sleep on Exit: MCU enters SLEEP mode as soon as it exits the lowest priority ISR

STOP Mode

- Core is stopped
- HSE, MSI clocks are OFF
- SRAM and registers content is preserved
- Peripherals with HSI, LSI, LSE clock option can be ON
- GPIO's keep their setup

STOP Mode

- Core is stopped
- HSE, MSI clocks are OFF
- SRAM and registers content is preserved
- Peripherals with HSI, LSI, LSE clock option can be ON
- GPIO's keep their setup
- Power regulator is in Low Power mode
- FLASH is in Power Down mode
- VREFINT, BOR can be OFF

STOP Mode 27

- Entry by WFI or WFE while SLEEPDEEP bit is set and PDDS bit is reset
- Exit by any EXTI line configured in interrupt mode or in event mode
- **EXTI lines sources**
 - Any of the 16 external lines (any IO)
 - RTC alarms, RTC Tamper, RTC Time Stamp, RTC Wakeup, Comparators 1&2 events, USB wake-up, PVD
- After resuming from STOP the clock configuration returns to its reset state (MSI, HSI16 or HSI16/4 used as system clock)

Wake-up time from Stop	on MSI at 4.2MHz	on HSI at 16MHz
Wake-up to Flash	7.8 µs	5 μs
Wake-up to RAM	3.5 µs	3.7 µs

Wake-Up from STOP Timing Diagram

STANDBY Mode

- Core and all peripherals are OFF, except RTC and IWDG if enabled
- HSE, MSI, HSI clocks are OFF, LSI LSE can be ON
- SRAM and registers content is lost, except RTC, and standby circuitry
- GPIO's are in high Z, except Reset, RTC OUT and WKUP 1,2,3

STANDBY Mode

- Entry by WFI or WFE while SLEEPDEEP and PDDS bits are set
- Wake up sources
 - WKUP1 or WKUP2 pins rising edge
 - RTC alarm A, RTC alarm B, Wakeup Timer, Tamper event, TimeStamp
 - LSECSS ⊗, IWDG reset ⊚, External reset in NRST pin ⊚⊚
- After wake-up from STANDBY mode, program execution will restart in the same way as after a RESET (startup sequence implementation is crucial)

Wake-up time from STANDBY mode	on MSI at 2.1 MHz
STANDBY with V _{REFINT} ON	50 μs
STANDBY with V _{REFINT} OFF	2.5 ms

Low power modes summary

References 32

Datasheet

- 3.1 Low power modes
- 3.4.3 Voltage regulator
- 3.5 Clock management
- 6.3.4 Supply current characteristics

Reference Manual

- 6 Power control (PWR)
- 7 Reset and clock control (RCC)

Application note

AN4445 STM32L05x ultra-low-power features overview

Debug capability in LP modes 33

- Depends on DBGMCU Control Register configuration
- DBG SLEEP = 1
 - In this case, when entering Sleep mode, previously configured system clocks are kept running and used
- DBG STOP = 1
 - In this case, when entering STOP mode, clocks are provided by the internal RC oscillator which remains active in STOP mode
- DBG STANDBY =1
 - In this case, the digital part is not unpowered and the clocks are provided by the internal RC oscillator which remains active.
- DBG_STANDBY, DBG_STOP, DBG_SLEEP = 0: No clock, no debug

If the debug mode is kept in STANDBY/STOP/SLEEP, the consumption is higher than in non debug state.

Thank you

www.st.com/stm32l0