Home Work #1 DUE: 1pm Saturday September 5 (portrait-mode PDF)

- Handwritten assignments will not be accepted.
- Write your name at the top of the page.
- Start your assignment with the following text if you can honestly agree with it.
 - I certify that every answer in this assignment is the result of my own work; that
 I have neither copied off the Internet nor from any one else's work; and I have
 not shared my answers or attempts at answers with anyone else.
- 1. Compute the worst-case time requirement of the following algorithm as a function of *n*, the length of the input array *A*. Assume a constant cost of 2 for the loop control statements and 1 for every other executable statement (and, of course, zero for comments).

Insert entries in a table with 3 columns: *Line*#, *Cost*, and #*Times*.

Next, use those entries to obtain a closed-form expression (a polynomial in n) for T(n). *Hint*: see the slides for INSERTIONSORT.

Repeat the above for best-case.

```
BUBBLESORT(A)
    n \leftarrow A.length \triangleright A[1..n] comprises the input array
2
    for pass \leftarrow 1 to (n-1) do
3
         flag \leftarrow FALSE
4
         for j \leftarrow 1 to (n - pass) do
5
              ▷ each pass puts one element in proper place:
6
              ▷ so there is one less element to consider per pass
7
              if A[j] > A[j+1] then
8
                   tmp \leftarrow A|j|
9
                   A[j] \leftarrow A[j+1]
10
                   A[j+1] \leftarrow tmp
                  flag \leftarrow TRUE
11
12
         if not flag then
13
              return ()
```

2. For each of the following statements, answer if it is true or false as per the definition of the three asymptotic notations $O() / \Omega() / \Theta()$. If true, then provide appropriate corresponding constant(s) $c / c_1, c_2$ when n_0 is chosen as 2. If false, then correct the RHS (righthand side) by replacing the function family but retaining the asymptotic notation (i.e., do not change O() to something else like $\Theta()$). Provide as tight a

bound as possible and provide appropriate constant(s) $c / c_1, c_2$ when n_0 is chosen as 2.

TRUE /FALSE $2n \lg n + 100n + 10 = O(n^2)$

TRUE /FALSE $2n \lg n + n + 10 = \Omega(n^2)$

TRUE /FALSE $10n \lg n + n^2 + n + 10 = \Theta(n^2)$

Notation: lg *n* is logarithm to the base 2.