

Figure 9.13 The Bike class from the Wheels class diagram

Bike

Bike No.	Available	Туре	Size	Make	Model	Daily hire rate	Deposit
249	On hire	mountain	woman's	Scott	Atlantic Trail	£8.00	£50.00
250	Available	tourer	man's	Raleigh	Pioneer	£9.00	£60.00
251	On hire	mountain	woman's	Scott	Atlantic Trail	£8.00	£50.00
252	On hire	tourer	man's	Dawes	Galaxy	£8.00	£50.00
253	Available	mountain	child's	Raleigh	Chopper	£5.00	£25.00

Figure 9.14 The Bike class implemented as a table

uniquely identifies each individual bike). An extract from the table is shown in Figure 9.14.

One to many associations. Figure 9.15 shows an association between the Customer and the Payment class from the Wheels class diagram. This is a one to many association indicating that one customer can make one or any number of payments, but a specific payment is only made by one customer.

There are two ways in which one to many associations can be implemented. The first of these is to create a table for each of the two linked classes, and a third table to implement the association. We will also need to assign an identifier to the Payment table to

Figure 9.15 One to many association between the Customer and Payment classes