EECS 445

Introduction to Machine Learning

Hierarchical Clustering

Prof. Kutty

Announcements

• HW3 is out – start early!

https://forms.gle/ffiBvNbPjHF8ghi77

clustering review

(hard) clustering algorithms

- k-means clustering
- spectral clustering
- agglomerative clustering

k-means Clustering

k is a hyperparameter; k = 2

spectral clustering review

spectral clustering: Big idea

could be high dimensional data

for each pair of datapoints

$$w_{ij} = exp\left\{-\frac{\left\|\bar{x}^{(i)} - \bar{x}^{(j)}\right\|^2}{2\sigma^2}\right\}$$

$$0 \le \omega_{ij} \le 1$$

 $\min_{A_1,\ldots,A_k} RatioCut(A_1,\ldots,A_k)$

$$A_1 \cup A_2 \cup ... \cup A_k = V$$
 $i \neq j \quad A_i \cap A_j = \emptyset$

Spectral Clustering for k partitions

quen: Sn={\z(i)}

Input: valid similarity metric, number of clusters k

- 1. Build adjacency matrix $W \longrightarrow n \times n$
- 2. Compute graph Laplacian L = D W
- 3. Compute (eigenvector, eigenvalue) pairs of L
- 4. Build matrix with the first k eigenvectors (corresponding to the k smallest eigenvalues) as columns interpret rows as new data points Low dimensional embedding ($\in \mathbb{R}^k$) of the original dataset ($\in \mathbb{R}^d$)
- 5. Apply k-means to new data representation

Output: clusters assignments

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W

Graph Laplacian $L_{\longrightarrow Lf=\lambda f}^{if}$

The graph Laplacian is the matrix L=D-WProperties of $\cal L$

- *L* is symmetric
- L is PSD
 - $-\ L$ has n non-negative real-valued eigenvalues

$$0 \le \lambda_1 \le \dots \le \lambda_n$$

- Fact: the multiplicity of the eigenvalue 0 is the number of connected components in the graph
- Examples

image from: https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

Input: similarity metric, number of clusters k

- 3. Compute eigenvectors/eigenvalues of L

(eigenvector, eigenvalue) pairs

$$\begin{bmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \\ 0 \\ 0 \end{bmatrix}, 0 \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, 0 \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}, 0 \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, 0.5 \qquad \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \\ 0 \end{bmatrix}, 1$$

Input: similarity metric, number of clusters k

- 1. Build adjacency matrix W
- 2. Compute graph Laplacian L = D W
- 3. Compute eigenvectors of L
- 4. Build matrix with the first k eigenvectors (corresponding to the *k* smallest eigenvalues) as columns interpret rows as new data points
- 5. Apply k-means to new data representation

Output: clusters assignments

Eigenvalues

Eigenvalues

$$k = 3$$

k dimensional embedding

$$\mathbf{A} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{B} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 1.00 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{E} = \begin{bmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}^{\mathsf{T}}$$

Run k-means clustering on this embedding Return clusters

Spectral Clustering:

intuition for k=2

Example: for k=2

Specify a cut as an indicator vector $\bar{f} \in \mathbb{R}^n$ where for cut A and \bar{A}

Sut
$$A$$
 and A
$$f_i = \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A \\ -\sqrt{|A|/|\overline{A}|} & \text{if } v_i \in \overline{A}. \end{cases}$$

Example: for k=2

Specify a cut as an indicator vector $\overline{f} \in \mathbb{R}^n$ where for cut A and \overline{A} $f_i = \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A \\ -\sqrt{|A|/|\overline{A}|} & \text{if } v_i \in \overline{A}. \end{cases}$

Can show that $\bar{f}^T L \bar{f} \propto RatioCut(A, \bar{A})$ and $\sum_i f_i = 0$ and $\|\bar{f}\|^2 = n$

Example: for k=2

Goal: $\min_{\bar{f}} \bar{f}^T L \bar{f}$ subject to $\sum_i f_i = 0$ and $\|\bar{f}\|^2 = n$ where \bar{f} is an indicator vector as defined

NP hard

eigenvalue / eigenvector

if
$$\lambda$$
, \bar{f} of L

 $e = \lambda \bar{f}$

Modified Goal:

$$\min_{\bar{f} \in \mathbb{R}^n} \bar{f}^T L \bar{f} \text{ subject to } \sum_i f_i = 0 \text{ and } \|\bar{f}\|^2 = n$$

solution: eigenvector corresponding to the (second*) smallest eigenvalue of L Why?

For k > 2, similar idea. Use multiple indicator vectors

$$f L f = f \lambda f = \lambda \|f\|^2$$

constant

^{*} see examples

Why does this work? Spectral Clustering for k partitions

The solution to this is the first k eigenvectors of L

real vectors

Eigenvalues

$$k = 3$$

k dimensional embedding

$$A = \begin{bmatrix} -\frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$B = \begin{bmatrix} -\frac{\sqrt{2}}{2} & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$C = \begin{bmatrix} 0 & 1.00 & 0 \end{bmatrix}^T$$

$$D = \begin{bmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}^{\mathsf{T}}$$

$$E = \begin{bmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{E} = \begin{bmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}^\mathsf{T}$$

Run k-means clustering on this embedding Return clusters

Should be able to construct W, D, L

Eigenvectors

-0.3536	-0.3467	0.0704	0.6000	-0.2702	0.0594	0.4652	-0.3113
-0.3536	-0.2418	-0.0252	0.4060	0.5839	0.0496	-0.3458	0.4337
-0.3536	-0.3997	0.1334	-0.2603	-0.6097	-0.1178	-0.4406	0.2233
-0.3536	-0.3773	0.1106	-0.6251	0.4141	0.0655	0.3339	-0.2059
-0.3536	0.2188	-0.3571	0.0256	0.0968	-0.2652	-0.4338	-0.6566
-0.3536	0.2926	-0.4542	-0.1096	-0.1732	0.7125	0.0785	0.1654
-0.3536	0.3251	-0.2362	-0.0592	-0.0571	-0.6200	0.4008	0.4021
-0.3536	0.5291	0.7582	0.0227	0.0154	0.1160	-0.0583	-0.0509

Eigenvalues

0.0000 0.1349 0.4590 1.2624 1.6492	2 2.2200 2.7575 3.1170
------------------------------------	------------------------

k = 2

Eigenvalues

0.3251

0.5291

-0.2362

0.7582

-0.3536

-0.3536

Н

0.0000 0.1349 0.4590 1.2624 1.6492 2.2200 2.7575 3.	0.0000	0.1349	0.4590	1.2624	1.6492	2.2200	2.7575	3.1170
---	--------	--------	--------	--------	--------	--------	--------	--------

-0.0571

0.0154

-0.6200

0.1160

0.4008

-0.0583

0.4021

-0.0509

-0.0592

0.0227

k = 3

agglomerative hierarchical clustering

Clustering

Angell Hall

Mason Hall

FXB

CSE

GGBL

Chrysler Center

Clustering

Doesn't return additional information on how the clusters relate to one another.

Hierarchical Clustering

Idea: start with each pt. in its own cluster and build a hierarchy

Agglomerative Clustering

- 1. Assign each pt. its own cluster for each point i, $C_i = \{\bar{x}^{(i)}\}$
- 2. Find the closest clusters & merge, repeat until convergence $\arg\min_{i,j} d(C_i, C_j) \text{ where } i \neq j$

Notation: C_i set of all points in cluster i

Linkage Criteria

$$D(C_i, C_j) = \min_{\bar{x} \in C_i; \bar{x}' \in C_j} d(\bar{x}, \bar{x}')$$

susceptible to outliers and chaining phenomenon: larger clusters are naturally biased toward having closer distances to other points and will therefore attract a successively larger number of points

Complete-linkage:
$$D(C_i, C_j) = \max_{\bar{x} \in C_i; \bar{x}' \in C_j} d(\bar{x}, \bar{x}')$$

susceptible to outliers but tends to merge clusters so that all clusters tend to have the same diameter

Average-linkage:
$$D(C_i, C_j) = \frac{1}{|C_i|} \frac{1}{|C_j|} \sum_{\bar{x} \in C_i; \bar{x}' \in C_j} d(\bar{x}, \bar{x}')$$

less susceptible to outliers inefficiency concerns

Notation: C_i set of all points in cluster i

Clustering Algorithms

http://scikit-learn.org/stable/modules/clustering.html

Properties of Clustering Algorithms

K-means:

- -fast, linear in all relevant quantities
- -can be affected by outliers
- -problems arise when clusters are different sizes, densities and shapes

Hierarchical:

- -deterministic, don't need to decide # of clusters ahead of time
- -only input parameters are distance measure and linkage criteria
- -slow

Spectral:

- high performance with smaller datasets
- not very efficient although faster approximate variants exist
 Donghui Yan, Ling Huang, and Michael I. Jordan. 2009. Fast approximate spectral clustering.

Example

 For this dataset with agglomerative clustering and single linkage criteria, the 3 clusters are

assume to scale and euclidean distance

Agglomerative Clustering

1. Assign each pt. its own cluster (-(i))

for each point *i*,
$$C_i = \{\bar{x}^{(i)}\}$$

2. Find the closest clusters & merge, repeat until convergence

 $\arg\min_{i,i} d(C_i, C_j)$ where $i \neq j$ Cut here for 3 clusters Dendogram

assume euclidean distance