Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Orthonormal set of vectors

- ▶ consider a finite set of vectors $\mathcal{Q} := \{q_1, \dots, q_k\} \subset \mathbb{R}^n$
- \mathscr{Q} is orthogonal : $\iff \langle q_i, q_j \rangle := q_i^\top q_j = 0$, for all $i \neq j$
- \mathscr{Q} is normalized : $\iff ||q_i||_2^2 := \langle q_i, q_i \rangle = 1, i = 1, ..., k$
- $ightharpoonup \mathscr{Q}$ is orthogonal + normalized
- $ightharpoonup Q := \begin{bmatrix} q_1 & \cdots & q_k \end{bmatrix}$ orthonormal $\iff Q^\top Q = I_k$
- properties:
 - orthonormal vectors are independent
 - multiplication preserves inner product and norm

$$\langle Qz,Qy\rangle = z^{\top}Q^{\top}Qy = z^{\top}y = \langle z,y\rangle$$

Orthogonal projectors

- ▶ consider an orthonormal set $\mathcal{Q} := \{q_1, ..., q_k\}$
- \mathscr{Q} is an orthonormal basis for $\mathscr{L} := \operatorname{span}(\mathscr{Q}) \subseteq \mathbb{R}^n$
- ▶ $Q^{\top}Q = I_k$, however, for k < n, $QQ^{\top} \neq I_n$
- ▶ $\Pi_{\text{span}(\mathcal{Q})} := QQ^{\top}$ is orthogonal projector on span(\mathcal{Q})

$$\Pi_{\mathscr{L}} x = \arg\min_{y} \|x - y\|_2$$
 subject to $y \in \mathscr{L}$

- Properties:
 - $\blacksquare \Pi = \Pi^2$, $\Pi = \Pi^\top$ (necessary and sufficient conditions)
 - $ightharpoonup \Pi^{\perp} := (I \Pi)$ is orthogonal projector on

 $(\operatorname{span}(\Pi))^{\perp} \subseteq \mathbb{R}^n$ — orth. complement of $\operatorname{span}(\Pi)$

Orthonormal basis for \mathbb{R}^n

- ▶ orthonormal set $\mathscr{Q} := \{q_1, \dots, q_n\} \subset \mathbb{R}^n$ of n vectors
- $ightharpoonup Q := [q_1 \quad \cdots \quad q_n] \text{ is orthogonal and } Q^\top Q = I_n$
- it follows that $Q^{-1} = Q^{\top}$ and

$$QQ^{\top} = \sum_{i=1}^{n} q_i q_i^{\top} = I_n$$

- expansion in orthonormal basis $x = QQ^Tx$
 - $\widetilde{x} := Q^{\top}x$ coordinates of x in the basis \mathscr{Q}
 - $x = Q\tilde{x}$ reconstruct x from the coordinates a
- geometrically multiplication by Q (and Q^{\top}) is rotation

Gram-Schmidt (G-S) procedure

- ▶ given independent set $\{a_1, ..., a_k\} \subset \mathbb{R}^n$
- ▶ G-S produces orthonormal set $\{q_1, ..., q_k\} \subset \mathbb{R}^n$

$$\operatorname{span}(a_1,\ldots,a_r)=\operatorname{span}(q_1,\ldots,q_r),\quad \text{for all }r\leq k$$

- ► G-S procedure: Let $q_1 := a_1/\|a_1\|_2$. For i = 2,...,k1. orthogonalized a_i w.r.t. $q_1,...,q_{i-1}$:
 - $v_i := \underbrace{(I \Pi_{\operatorname{span}(q_1, \dots, q_{i-1})}) a_i}_{\operatorname{projection of } a_i \operatorname{on} \left(\operatorname{span}(q_1, \dots, q_{i-1})\right)^{\perp}}$
 - 2. normalize the result: $q_i := v_i/\|v_i\|_2$

QR decomposition

G-S gives as a byproduct scalars r_{ji} , $j \le i$, i = 1, ..., k

$$a_i = (q_1^{\top} a_i)q_1 + \dots + (q_{i-1}^{\top} a_i)q_{i-1} + ||v_i||_2 q_i$$

= $r_{1i}q_1 + \dots + r_{ii}q_i$

in a matrix form G-S produces the matrix decomposition

$$\underbrace{\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} q_1 & q_1 & \cdots & q_k \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{kk} \end{bmatrix}}_{R}$$

with orthonormal $Q \in \mathbb{R}^{n \times k}$ and upper triangular $R \in \mathbb{R}^{k \times k}$

▶ If $\{a_1, ..., a_k\}$ are dependent

$$v_i := (I - \Pi_{\text{span}(q_1,...,q_{i-1})})a_i = 0$$
 for some *i*

- ▶ conversely, if $v_i = 0$ for some i, a_i is linearly dependent on $\{a_1, \ldots, a_{i-1}\}$
- ► Modified G-S procedure: when $v_i = 0$, skip to a_{i+1} \implies *R is in upper staircase form,* e.g.,

Full QR

$$A = \underbrace{\begin{bmatrix} Q_1 & Q_2 \end{bmatrix}}_{\text{orthogonal}} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \qquad \begin{aligned} \text{colspan}(A) &= \text{colspan}(Q_1) \\ \left(\text{colspan}(A) \right)^{\perp} &= \text{colspan}(Q_2) \end{aligned}$$

▶ procedure for finding Q_2 $complete \ A \ to \ full \ rank \ matrix, \ e.g.,$ $A_m := \begin{bmatrix} A & I \end{bmatrix}, \ and \ apply \ G-S \ on \ A_m$

application:

complete an orthonormal matrix $Q_1 \in \mathbb{R}^{n \times k}$ to an orthogonal matrix $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \in \mathbb{R}^{n \times n}$ (by computing the full QR of $\begin{bmatrix} Q_1 & I \end{bmatrix}$)

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.

$$\underbrace{\begin{bmatrix} 1.00 & 1.50 \\ 0 & 1.00 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 0.89 & -0.45 \\ 0.45 & 0.89 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 2.00 & 0 \\ 0 & 0.50 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 0.45 & -0.89 \\ 0.89 & 0.45 \end{bmatrix}}_{V^{\top}}$$

Singular value decomposition

any $m \times n$ matrix A of rank r has a reduced SVD

$$A = \underbrace{\begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix}}_{U_1} \underbrace{\begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}}_{\Sigma_1} \underbrace{\begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix}^\top}_{V_1^\top}$$

with U_1 and V_1 orthonormal

- ▶ $\sigma_1 \ge \cdots \ge \sigma_r$ are called singular values
- $ightharpoonup u_1, \dots, u_r$ are called left singular vectors
- \triangleright v_1, \ldots, v_r are called right singular vectors

The SVD is both computational and analytical tool

Full SVD $A = U\Sigma V^{\top}$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and

$$\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \quad \begin{matrix} r \\ m-r \end{matrix} \qquad \text{where} \qquad \Sigma_1 = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$$

the singular values of A are

$$\sigma(A) := (\sigma_1, \dots, \sigma_r, \underbrace{0, \dots, 0}_{\min(n-r, m-r)})$$

- $ightharpoonup \sigma_{\min}(A)$ smallest singular value of A
- $ightharpoonup \sigma_{\max}(A)$ largest singular value of A

Proof of existence of an SVD

- ightharpoonup constructive, based on induction, assume $m \ge n$
- ▶ end of induction: vector $A \in \mathbb{R}^{m \times 1}$ has reduced SVD

$$A = U\Sigma V^{\top}$$
, with $U := A/\|A\|_2$, $\Sigma := \|A\|_2$, $V := 1$

▶ inductive step: let $\sigma_i := ||A_i||_2$, $\exists u_i \in \mathbb{R}^m$ and $v_i \in \mathbb{R}^n$

$$A_i v_i =: \sigma_i u_i$$
, where $||u_i||_2 = 1$, with $||v_i||_2 = 1$

ightharpoonup complete u_i and v_i to orthogonal matrices (QR)

$$U_i := \begin{bmatrix} u_i & \star \end{bmatrix}$$
 and $V_i := \begin{bmatrix} v_i & \star \end{bmatrix}$

▶ for certain $w \in \mathbb{R}^{n-1}$ and $A_{i+1} \in \mathbb{R}^{(n-1)\times (n-1)}$

$$U_i^{\mathsf{T}} A_i V_i = \begin{bmatrix} \sigma_i & \mathbf{w}^{\mathsf{T}} \\ 0 & A_{i+1} \end{bmatrix}$$

• next we show that w = 0

$$\sigma_{i}^{2} = \|A_{i}\|_{2}^{2} = \max_{v} \frac{\|A_{i}v\|_{2}^{2}}{\|v\|_{2}^{2}} \ge \frac{\|A_{i}[_{w}^{\sigma_{i}}]\|_{2}^{2}}{\|[_{w}^{\sigma_{i}}]\|_{2}^{2}}$$

$$= \frac{1}{\sigma_{i}^{2} + w^{\top}w} \| \begin{bmatrix} \sigma_{i}^{2} + w^{\top}w \\ A_{i+1}w \end{bmatrix} \|_{2}^{2}$$

$$\ge \frac{1}{\sigma_{i}^{2} + w^{\top}w} (\sigma_{i}^{2} + w^{\top}w)^{2} = \sigma_{i}^{2} + w^{\top}w$$

Low-rank approximation

given

- ▶ a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and
- ▶ an integer r, 0 < r < n,

find

$$\widehat{A} := \arg\min_{\widehat{A}} \|A - \widehat{A}\|$$
 subject to $\operatorname{rank}(\widehat{A}) \leq r$

▶ Interpretation: \widehat{A}^* is optimal rank-r approx. of A w.r.t.

$$||A||_{\mathsf{F}}^2 := \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$$
 or $||A||_2 := \max_{x} \frac{||Ax||_2}{||x||_2}$

 $\rightarrow \widehat{A}^*$ is optimal in any unitarily invariant norm

Solution via truncated SVD

$$\widehat{A}^* := \underset{\widehat{A}}{\operatorname{arg\,min}} \|A - \widehat{A}\|_{\mathsf{F}} \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r \quad (\mathsf{LRA})$$

Theorem Let $A = U\Sigma V^{\top}$ be the SVD of A and define

$$U =: \begin{bmatrix} r & r-n \\ U_1 & U_2 \end{bmatrix} \quad n \quad , \quad \Sigma =: \begin{bmatrix} r & r-n \\ \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \quad \begin{matrix} r \\ r-n \end{matrix} \quad , \quad V =: \begin{bmatrix} V_1 & V_2 \end{bmatrix} \quad n$$

A solution to (LRA) is

$$\widehat{A}^* = U_1 \Sigma_1 V_1^{\top}$$

It is unique if and only if $\sigma_r \neq \sigma_{r+1}$

Numerical rank

distance of A to the manifold of rank-r matrices

$$\sqrt{\sum_{i=r+1}^{n} \sigma_{i}^{2}} = \min_{\widehat{A}} \|A - \widehat{A}\|_{F} \text{ subject to } \operatorname{rank}(\widehat{A}) \leq r$$

$$\sigma_{r+1} = \min_{\widehat{A}} \|A - \widehat{A}\|_{2} \text{ subject to } \operatorname{rank}(\widehat{A}) \leq r$$

- $ightharpoonup \sigma_{\min}(A)$ is the distance of A to rank deficiency
- ▶ numerical rank: rank(A, ε) := # of singular values > ε
- rank (A, ε) depends on an a priori given tolerance ε

Pseudo-inverse
$$A^+ := V_1 \Sigma_1^{-1} U_1^{\top} \in \mathbb{R}^{n \times m}$$

$$\operatorname{rank}(A) = n = m \implies A^{+} = A^{-1}$$
 $\operatorname{rank}(A) = n \implies A^{+} = (A^{\top}A)^{-1}A^{\top}$
 $\operatorname{rank}(A) = m \implies A^{+} = A^{\top}(AA^{\top})^{-1}$

- $ightharpoonup A^+ y$ is least squares-least norm solution of Ax = y
- the pseudo-inverse depends on the rank of A
- ightharpoonup in practice, the numerical rank rank(A, ε) is used
- the SVD, gives reliable way of solving Ax = y

Condition number $\kappa(A) := \sigma_{\max}(A)/\sigma_{\min}(A)$

 $ightharpoonup \kappa(A)$ is eccentricity of hyperellipsoid $A\{x \mid ||x||_2 = 1\}$

- $\kappa(A)$ sensitivity of A^+y to perturbations in y, A
- for large $\kappa(A)$ (\geq 1000) A is called ill-conditioned

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Least squares

- overdetermined system of linear equations Ax = b
- ▶ given $A \in \mathbb{R}^{m \times n}$, m > n and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$
- for "most" A and b, there is no solution x
- Least squares approximation:
 choose x that minimizes 2-norm of the residual

$$e(x) := b - Ax$$

least squares approximate solution

$$\widehat{x}_{ls} := \arg\min_{x} \| \underbrace{b - Ax}_{e(x)} \|_{2}$$

Geometric interpretation:

project b onto the image of A

$$(\widehat{b}_{ls} := A\widehat{x}_{ls} \text{ is the projection})$$

$$e_{\mathsf{ls}} := \widehat{b}_{\mathsf{ls}} - A\widehat{x}_{\mathsf{ls}}$$

Another geometric interpretation of the LS approximation:

$$A\widehat{x}_{ls} = \widehat{b}_{ls} \iff \begin{bmatrix} A & \widehat{b}_{ls} \end{bmatrix} \begin{bmatrix} \widehat{x}_{ls} \\ -1 \end{bmatrix} = 0 \\
\iff \begin{bmatrix} a_i & \widehat{b}_{ls,i} \end{bmatrix} \begin{bmatrix} \widehat{x}_{ls} \\ -1 \end{bmatrix} = 0, \text{ for } i = 1, \dots, m \\
(a_i \text{ is the } i \text{th row of } A)$$

- ▶ $\begin{bmatrix} a_i \\ \widehat{b}_{ls,i} \end{bmatrix}$ lies on subspace perpendicular to span($\begin{bmatrix} \widehat{x}_{ls} \\ -1 \end{bmatrix}$)
- "data point" $\begin{bmatrix} a_i \\ b_i \end{bmatrix} = \begin{bmatrix} a_i \\ \widehat{b}_{ls,i} \end{bmatrix} + \begin{bmatrix} 0 \\ e_{ls,i} \end{bmatrix}$
- ▶ approx. error $\begin{bmatrix} 0 \\ e_{ls,i} \end{bmatrix}$ is the vertical distance

Notes

▶ assuming $m \ge n = \text{rank}(A)$, *i.e.*, A is full column rank,

$$\widehat{x}_{ls} = (A^{\top}A)^{-1}A^{\top}b$$

is the unique least squares approximate solution

- $\rightarrow \hat{x}_{ls}$ is a linear function of *b*
- if A is square, $\widehat{x}_{ls} = A^{-1}b$
- \hat{x}_{ls} is an exact solution if Ax = b has an exact solution
- $\widehat{b}_{ls} := A\widehat{x}_{ls} = A(A^{\top}A)^{-1}A^{\top}b$ is LS approx. of b

Projector onto the span of A

• the $m \times m$ matrix

$$\Pi_{\mathsf{colspan}(A)} := A(A^{\top}A)^{-1}A^{\top}$$

is the orthogonal projector onto $\mathscr{L} := \operatorname{colspan}(A)$

- the columns of A are an arbitrary basis for \mathcal{L}
- ightharpoonup if the columns of Q form an orthonormal basis for \mathscr{L}

$$\Pi_{\mathsf{colspan}(Q)} := QQ^{\top}$$

Orthogonality principle

the least squares residual vector

$$e_{ls} := b - A\widehat{x}_{ls} = \underbrace{(I_m - A(A^{\top}A)^{-1}A^{\top})}_{\Gamma_{(colspan(A))^{\perp}}} b$$

is orthogonal to colspan(A)

$$\langle e_{ls}, A\widehat{x}_{ls} \rangle = b^{\top} (I_m - A(A^{\top}A)^{-1}A^{\top}) A\widehat{x}_{ls} = 0, \text{ for all } b \in \mathbb{R}^m$$

Least squares via QR decomposition

Let A = QR be the reduced QR decomposition of A.

$$(A^{\top}A)^{-1}A^{\top} = (R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top}$$
$$= (R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top} = R^{-1}Q^{\top}$$

$$\widehat{x}_{ls} = R^{-1}Q^{T}b$$
 and $\widehat{b}_{ls} := Ax_{ls} = QQ^{T}b$

we have a sequence of LS problems $(A =: [a_1 \cdots a_n])$

$$A^i x^i = b$$
, where $A^i := \begin{bmatrix} a_1 & \cdots & a_i \end{bmatrix}$, for $i = 1, \dots, n$

 R_i — leading $i \times i$ submatrix of R and $Q_i := [q_1 \cdots q_i]$

$$\widehat{x}_{ls}^i = R_i^{-1} Q_i^{\top} b$$

Least norm solution

underdetermined system Ax = b, with full rank $A \in \mathbb{R}^{m \times n}$

The set of solutions is

$$\{x \in \mathbb{R}^n \mid Ax = b\} = \{x_p + z \mid z \in \text{null}(A)\}$$

where x_p is a particular solution, *i.e.*, $Ax_p = b$.

Least norm problem

$$x_{ln} := \arg\min_{x} ||x||_2$$
 subject to $Ax = b$

Geometric interpretation:

- \rightarrow x_{ln} is the projection of 0 onto the solution set
- orthogonality principle $x_{ln} \perp null(A)$

Derivation via Lagrange multipliers

consider the least norm problem with A full rank

$$\min_{x} ||x||_2^2$$
 subject to $Ax = b$

introduce Lagrange multipliers $\lambda \in \mathbb{R}^m$

$$L(x,\lambda) = xx^{\top} + \lambda^{\top}(Ax - b)$$

the optimality conditions are

$$abla_X L(x,\lambda) = 2x + A^{\top}\lambda = 0$$
 $abla_{\lambda} L(x,\lambda) = Ax - b = 0$

substituting $x = -A^{\top} \lambda / 2$ into the second eqn.

$$\lambda = -2(AA^{\top})^{-1}b \implies x_{\text{ln}} = A^{\top}(AA^{\top})^{-1}b$$

Solution via QR decomposition

Let $A^{\top} = QR$ be the reduced QR decomposition of A^{\top} .

$$A^{\top}(AA^{\top})^{-1} = QR(R^{\top}Q^{\top}QR)^{-1} = Q(R^{\top})^{-1}$$

is a right inverse of A. Then

$$x_{\mathsf{ln}} = Q(R^{\top})^{-1}b$$

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Weighted least squares

▶ weighted 2-norm, defined by $W \in \mathbb{R}^{m \times m}$, W > 0

$$||e||_{W}^{2} := e^{\top} We$$

weighted least squares approximation problem

$$\widehat{x}_{W,ls} := \arg\min_{X} \|b - Ax\|_{W}$$

orthogonality principle holds with inner product

$$\langle e,b \rangle_W := e^{\top} Wb$$

solution

$$\widehat{x}_{W,ls} = (A^{\top}WA)^{-1}A^{\top}Wb$$

Recursive least squares

▶ let a_i^{\top} be the *i*th row of A

$$A = \begin{bmatrix} - & a_1^\top & - \\ & \vdots \\ - & a_m^\top & - \end{bmatrix}$$
$$\|b - Ax\|_2^2 = \sum_{i=1}^m (b_i - a_i^\top x)^2$$
$$\widehat{x}_{|s} = \widehat{x}_{|s}(m) := \left(\sum_{i=1}^m a_i a_i^\top\right)^{-1} \left(\sum_{i=1}^m a_i b_i\right)$$

- (a_i, b_i) correspond to a measurement
- often the (a_i, b_i) 's come sequentially (e.g., in time)

Recursive comput. of
$$\widehat{x}_{ls}(m) = \left(\sum_{i=1}^{m} a_i a_i^{\top}\right)^{-1} \left(\sum_{i=1}^{m} a_i b_i\right)$$

- ▶ $P(0) = 0 \in \mathbb{R}^{n \times n}$, $q(0) = 0 \in \mathbb{R}^n$
- For m = 0, 1, ...
 - $P(m+1) := P(m) + a_{m+1} a_{m+1}^{\top}$ $q(m+1) := q(m) + a_{m+1} b_{m+1}$
 - $x_{ls}(m) = P^{-1}(m)q(m)$

Notes:

- ▶ the algorithm requires inversion of an $n \times n$ matrix
- ▶ P(m) invertible $\implies P(m')$ invertible, for all m' > m

Rank-1 update formula:

$$(P+aa^{\top})^{-1}=P^{-1}-\frac{1}{1+a^{\top}P^{-1}a}(P^{-1}a)(P^{-1}a)^{\top}$$

Notes:

- ► $O(n^2)$ method for computing $P^{-1}(m+1)$ from $P^{-1}(m)$
- ▶ standard methods based on dense LU, QR, or SVD for computing $P^{-1}(m+1)$ require $O(n^3)$ operations

Multiobjective least squares

- ▶ least squares minimizes $J_1(x) := ||b Ax||_2^2$
- consider second cost function $J_2(x) := ||z Bx||_2^2$
- usually $\min_{x} J_1(x)$ and $\min_{x} J_2(x)$ are competing
- ► common example: $J_2(x) := ||x||_2^2$ small x
- feasible objectives:

$$\{(\alpha,\beta)\in\mathbb{R}^2\mid\exists\ x\in\mathbb{R}^n\ \text{subject to}\ J_1(x)=\alpha,\ J_2(x)=\beta\}$$

- trade-off curve: boundary of the feasible objectives
- the corresponding x is called Pareto optimal

Set of Pareto optimal solutions

Example:

green area — feasible
white area — infeasible
black line — marginally
feasible

Pareto optimal solutions → points on the line

 $\widehat{x}(\mu) = \operatorname{arg\,min}_X J_1(x) + \mu J_2(x)$ is Pareto optimal.

varying $\mu \in [0, \infty)$, $\widehat{x}(\mu)$ sweeps the Pareto solutions

Regularized least squares

Tychonov regularization

$$\widehat{x}_{tych}(\mu) = \arg\min_{x} \|b - Ax\|_{2}^{2} + \mu \|x\|_{2}^{2}$$

solution

$$\widehat{\mathbf{x}}_{\mathsf{tych}}(\mu) = (\mathbf{A}^{\top}\mathbf{A} + \mu \mathbf{I}_n)^{-1}\mathbf{A}^{\top}\mathbf{b}$$

- exists for any $\mu > 0$, independent of size / rank of A
- trade-off between
 - fitting accuracy $J_1(x) = ||b Ax||_2$, and
 - solution size $J_2(x) = ||x||_2$

Quadratically constrained least squares

- consider biobjective LS problem $\min_{x} J_1(x)$ and $J_2(x)$
- scalarization approach:

$$\widehat{x}_{\text{tych}}(\mu) = \arg\min_{x} J_1(x) + \mu J_2(x)$$

where μ is trade-off parameter

constrained optimization approach:

$$\widehat{x}_{constr}(\gamma) = \arg\min_{x} J_1(x)$$
 subject to $J_2(x) \leq \gamma$

where γ is upper bound on the J_2 objective

Regularized least squares

- Tychonov regularization is scalarization with
 - fitting accuracy $J_1(x) = ||b Ax||_2$, and
 - ▶ solution size $J_2(x) = ||x||_2$
- the constrained optimization approach leads to

$$\widehat{x}_{\text{constr}}(\gamma) = \arg\min_{x} \|b - Ax\|_2^2$$
 subject to $\|x\|_2^2 \le \gamma^2$

least squares minimization over the ball*

$$\mathscr{U}_{\gamma^2} := \{ x \mid ||x||_2^2 \le \gamma^2 \}$$

solution involves scalar nonlinear equation

Secular equation

- if $||A^+b||_2^2 \le \gamma^2$, then $\widehat{x}_{constr}(\gamma) = ||A^+b||_2^2$
- if $||A^+b||_2^2 > \gamma^2$, then $\widehat{x}_{constr}(\gamma) \in \mathscr{U}_{\gamma^2}$
- the Lagrangian of

$$\begin{aligned} &\text{minimize}_x \quad \|b-Ax\|_2^2 \quad \text{subject to} \quad \|x\|_2^2 = \gamma^2 \\ &\text{is } \|b-Ax\|_2^2 + \mu(\|x\|_2^2 - \gamma^2), \ \mu - \text{Lagrange multiplier} \end{aligned}$$

necessary and sufficient optimality condition

$$x_{\text{tych}}^{\top}(\mu)x_{\text{tych}}(\mu) = \gamma^2$$
, where $x_{\text{tych}}(\mu) := (A^{\top}A + \mu I)^{-1}b$

ightharpoonup secular equation (nonlinear equation in μ)

$$b^{\top}(A^{\top}A + \mu I)^{-2}b = \gamma^2$$

- has unique positive solution because
 - ► $||x_{\text{tych}}(\mu)||$ is monotonically decreasing on $\mu \in [0, \infty)$ (by assumption $||x_{\text{tych}}(0)||_2^2 > \gamma^2$)
 - $||x_{\mathsf{tych}}(\infty)||_2^2 = 0$

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Outline

QR decomposition

SVD decomposition

Least squares and least norm problems

Weighted and regularized least squares problems

Exercise

Total least squares problems

Total least squares (TLS)

- LS minimizes 2-norm of the eqn. error e(x) := b Ax $\min_{x,e} \|e\|_2 \quad \text{subject to} \quad Ax = b e$
- alternatively, e can be viewed as a correction on b
- the TLS method is motivated by the asymmetry both A and b are given data, but only b is corrected
- ► TLS problem:

$$\min_{x,\Delta A,\Delta b} \| [\Delta A \ \Delta b] \|_{\mathsf{F}}$$
 subject to $(A + \Delta A)x = b + \Delta b$

- ▶ $\triangle A$ correction on A, $\triangle b$ correction on b
- Frobenius matrix norm: $\|C\|_{\mathsf{F}} := \sqrt{\sum_{i=1}^m \sum_{j=1}^n c_{ij}^2}$

Geometric interpretation of the TLS criterion

• with
$$n = 1$$
, $x \in \mathbb{R}$, $a = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$

Geometric interpretation:

fit a line $\mathcal{L}(x)$ passing through 0 to the points

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}, \dots, \begin{bmatrix} a_m \\ b_m \end{bmatrix}$$

- ▶ LS minimizes \sum vertical distances² from $\begin{bmatrix} a_i \\ b_i \end{bmatrix}$ to $\mathcal{L}(x)$
- ► TLS minimizes \sum orth. distances² from $\begin{bmatrix} a_i \\ b_i \end{bmatrix}$ to $\mathcal{L}(x)$

Geometric interpretation of the TLS criterion

Solution of the TLS problem

Let $\begin{bmatrix} A & b \end{bmatrix} = U\Sigma V^{\top}$ be the reduced SVD of $\begin{bmatrix} A & b \end{bmatrix}$ and

$$\Sigma = \begin{bmatrix} \sigma_1 \\ \ddots \\ \sigma_{n+1} \end{bmatrix}, \quad U = \begin{bmatrix} u_1 & \cdots & u_{n+1} \end{bmatrix}, \quad V = \begin{bmatrix} v_1 & \cdots & v_{n+1} \end{bmatrix}$$

TLS solution of Ax = b exists iff $v_{n+1,n+1} \neq 0$ and is unique iff $\sigma_n \neq \sigma_{n+1}$.

In the case when unique TLS solution exists, it is given by

$$\widehat{x}_{tls} = -\frac{1}{v_{n+1,n+1}}v_{n+1}(1:n)$$

The TLS correction is $\begin{bmatrix} \Delta A_{\mathsf{tls}} & \Delta b_{\mathsf{tls}} \end{bmatrix} = -\sigma_{n+1} u_{n+1} v_{n+1}^{\top}$ = $\begin{bmatrix} A & b \end{bmatrix} v_{n+1} v_{n+1}^{\top}$.

Link to low-rank approximation

- ▶ TLS approx. $\left[\widehat{A}_{tls} \ \widehat{b}_{tls}\right] := \left[A \ b\right] \left[\Delta A_{tls} \ \Delta b_{tls}\right]$ is optimal (in the Frobenius norm) LRA of $\begin{bmatrix} A \ b \end{bmatrix}$
- ► TLS approx. solution of Ax = b, $x \in \mathbb{R}^n$ is equivalent to LRA of $D := \begin{bmatrix} A & b \end{bmatrix}$ by rank-n matrix \widehat{D} with

$$\begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \not\in \operatorname{kernel}(\widehat{D})$$
 (*)

- generically, the condition (*) is satisfied
- in nongeneric cases, the TLS solution does not exist
- note that the LRA always exists

Statistical properties of TLS

errors-in-variables (EIV) model

$$A = \overline{A} + \widetilde{A}$$
 and $b = \overline{b} + \widetilde{b}$

- ▶ true values \overline{A} , \overline{b} satisfy $\overline{A}\overline{x} = \overline{b}$, for some $\overline{x} \in \mathbb{R}^n$
- ▶ perturbations \tilde{A} , \tilde{b} are zero mean element-wise i.i.d.
- under additional mild assumptions the TLS approx. solution \hat{x} is a consistent estimator of the true value \bar{x}
- measurement errors model
 - ► A, b measured data
 - \overline{x} / \widehat{x} true/estimated model parameters

Estimation error $e = \overline{x} - \widehat{x}$

Notes

- TLS problem vs EIV model
 - TLS approx. can be used without EIV model
 - EIV model shows the correct testbed TLS approx.
- distinguish
 - \triangleright corrections $\triangle A$, $\triangle b$ in the TLS problem, and
 - noise/perturbations A, b in the EIV model

Confidence bounds

- assume that \widetilde{A} , \widetilde{b} are i.i.d. normal with variance ξ^2
- ► the estimation error e is asymptorically normal \sim confidence bounds for \widehat{x}
- the asymptotic error $e := \overline{x} \widehat{x}$ covariance matrix is

$$V_e = \xi^2 (1 + \hat{x}^{\top} \hat{x}) (A^{\top} A - m \xi^2 I)^{-1}$$

• the noise variance ξ^2 can be estimated from the data

$$\widehat{\xi}^2 = \frac{1}{m} \sigma_{n+1}^2$$

95% confidence ellipsoid

