Gate

Fig. XOR schematic

Fig. AND schematic

Fig. OR schematic

Fig. Half Adder

Approximate Adders

Ripple Carry Adder

Fig. Schematic of 1-bit Full adder

Fig. Schematic of 8-bit Full adder (RCA)

Fig. Schematic of 8-bit Precise part (upper bit) of RCA

Fig. Schematic of 8-bit OR gate

Fig. Schematic of Approximate Part (lower bit)

Fig. Schematic of Approximate Ripple Carry Adder

Carry Look Ahead

Fig. Schematic of Carry Lookahead Adder logic

Fig. Schematic of Accuracy part

Fig. Schematic of Approximate Adder (CLA)

Approximate Multiplier

Fig. Schematic of 4x4 Wallace tree multiplier

Fig. Schematic of Approximate Wallace tree multiplier 8x8 (CLA)

Replace the Adder part by RCA, then you will have a Approximate Wallace tree multiplier 8x8 (RCA).