# Statistical Learning and Text Classification with NLTK and scikit-learn

Olivier Grisel http://twitter.com/ogrisel

PyCON FR - 2010

# Applications of Text Classification

| Task                                   | Predicted outcome                       |  |
|----------------------------------------|-----------------------------------------|--|
| Spam filtering                         | Spam, Ham                               |  |
| Language guessing                      | English, Spanish, French,               |  |
| Sentiment Analysis for Product Reviews | Positive, Neutral, Negative             |  |
| News Feed Topic<br>Categorization      | Politics, Business, Technology, Sports, |  |
| Pay-per-click optimal ads placement    | Will yield money, Won't                 |  |
| Personal twitter filter                | Will interest me, Won't                 |  |
| Malware detection in log files         | Normal, Malware                         |  |

# Supervised Learning Overview

- Convert training data to a set of vectors of features (input) & label (output)
- Build a model based on the statistical properties of features in the training set, e.g.
  - Naïve Bayesian Classifier
  - Logistic Regression / Maxent Classifier
  - Support Vector Machines
- For each new text document to classify
  - Extract features
  - Asked model to predict the most likely outcome

# Supervised Learning Summary



# Typical features for text documents

Tokenize document into list of words: uni-grams

```
['the', 'quick', 'brown', 'fox', 'jumps', 'over',
'the', 'lazy', 'dog']
```

- Then chose one of:
  - Binary occurrences of uni-grams:

```
{'the': True, 'quick': True, ...}
```

 Frequencies of uni-grams: nb times word\_i / nb words in document:

```
{ 'the': 0.22, 'quick': 0.11, ...}
```

• **TF-IDF** of uni-grams (see next slides)

# Better than freqs: TF-IDF

Term Frequency

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$$

Inverse Document Frequency

$$idf_i = log \frac{|D|}{|\{d : t_i \in d\}|}$$

=> No real need for stop words any more, non informative words such as "the" are scaled done by IDF term

#### More advanced features

- Instead of uni-grams use
  - bi-grams of words: "New York", "very bad", "not good"
  - n-grams of chars: "the", "ed ", " a " (useful for language guessing)
- And the combine with:
  - Binary occurrences
  - Frequencies
  - TF-IDF

#### **NLTK**

- Code: ASL 2.0 & Book: CC-BY-NC-ND
- Tokenizers, Stemmers, Parsers, Classifiers, Clusterers, Corpus Readers



### **NLTK Corpus Downloader**

- >>> import nltk
- >>> nltk.download()

| Identifier        | Name                                                      | Size                 | Status                         |
|-------------------|-----------------------------------------------------------|----------------------|--------------------------------|
| gazetteers        | Gazeteer Lists                                            | 8.1 KB               | installed                      |
| genesis           | Genesis Corpus                                            | 462.1 KB             | not installed                  |
| gutenberg         | Project Gutenberg Selections                              | 4.1 MB               | installed                      |
| ieer<br>inaugural | NIST IE-ER DATA SAMPLE<br>C-Span Inaugural Address Corpus | 162.3 KB<br>313.8 KB | not installed<br>not installed |
| indian            | Indian Language POS-Tagged Corpus                         | 194.5 KB             | not installed                  |
| kimmo             | PC-KIMMO Data Files                                       | 182.6 KB             | not installed                  |
| langid            | Language Id Corpus                                        | 5.0 MB               | not installed                  |
| mac_morpho        | MAC-MORPHO: Brazilian Portuguese news text with part-of-  | 2.9 MB               | not installed                  |
| machado           | Machado de Assis Obra Completa                            | 5.9 MB               | not installed                  |
| movie_reviews     | Sentiment Polarity Dataset Version 2.0                    | 3.8 MB               | installed                      |
| names             | Names Corpus, Version 1.3 (1994-03-29)                    | 20.8 KB              | not installed                  |
| nombank.1.0       | NomBank Corpus 1.0                                        | 6.4 MB               | not installed                  |
| nps_chat          | NPS Chat                                                  | 294.3 KB             | not installed                  |
| paradigms         | Paradigm Corpus                                           | 24.3 KB              | not installed                  |
| pe08              | Cross-Framework and Cross-Domain Parser Evaluation Sha    | 78.8 KB              | not installed                  |
| Download          |                                                           |                      | Refresh                        |
| Convertedove b++  | p://nltk.googlecode.com/svn/trunk/nltk                    | · data/in            | ndov vml                       |

# Using a NLTK corpus

```
>>> from nltk.corpus import movie reviews
>>> pos ids = movie reviews.fileids('pos')
>>> neg ids = movie reviews.fileids('neg')
>>> len(pos ids), len(neg ids)
1000, 1000
>>> print movie reviews.raw(pos ids[0])[:100]
films adapted from comic books have had plenty of success ,
whether they're about superheroes ( batm
>>> movie reviews.words(pos ids[0])
['films', 'adapted', 'from', 'comic', 'books', 'have', ...]
```

### Common data cleanup operations

- Switch to lower case: s.lower()
- Remove accentuated chars:

- Extract only word tokens of at least 2 chars
  - Using NLTK tokenizers & stemmers
  - Using a simple regexp:

```
re.compile(r"\b\w\w+\b", re.U).findall(s)
```

#### Feature Extraction with NLTK

Simple word binary occurrence features:

```
def word_features(words):
    return dict((word, True) for word in words)
```

Word Bigrams occurrence features:

```
from nltk.collocations import BigramCollocationFinder from nltk.metrics import BigramAssocMeasures as BAM from itertools import chain
```

```
def bigram_word_features(words, score_fn=BAM.chi_sq, n=200):
    bigram_finder = BigramCollocationFinder.from_words(words)
    bigrams = bigram_finder.nbest(score_fn, n)
    return dict((bg, True) for bg in chain(words, bigrams))
```

# The NLTK - Naïve Bayes Classifier

```
from nltk.classify import NaiveBayesClassifier
mr = movie reviews
neg examples = [(features(mr.words(i)), 'neg')
                for i in neg ids]
pos examples = [(features(mr.words(i)), 'pos')
                for i in pos ids]
train set = pos examples + neg examples
classifier = NaiveBayesClassifier.train(train set)
# later on a previously unseed document
predicted label = classifier.classify(new doc features)
```

#### Most informative features

```
>>> classifier.show most informative features()
        magnificent = True
                                                          15.0 : 1.0
                                        pos : neg
        outstanding = True
                                                          13.6:1.0
                                        pos : neg
          insulting = True
                                        neq : pos
                                                          13.0:1.0
         vulnerable = True
                                                          12.3:1.0
                                        pos : neg
          ludicrous = True
                                        neg : pos
                                                          11.8 : 1.0
             avoids = True
                                                          11.7 : 1.0
                                        pos : neg
        uninvolving = True
                                                          11.7 : 1.0
                                        neg : pos
         astounding = True
                                                          10.3:1.0
                                        pos : neg
        fascination = True
                                                          10.3:1.0
                                        pos : neg
            idiotic = True
                                                          9.8:1.0
                                        neg : pos
```

#### scikit-learn



#### Features Extraction in scikit-learn

```
from scikits.learn.features.text import *
text = u"J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas
tr\xeas bon."
print WordNGramAnalyzer(min n=1, max n=2).analyze(text)
[u'ai', u'mange', u'du', u'kangourou', u'ce', u'midi',
u'etait', u'pas', u'tres', u'bon', u'ai mange', u'mange du',
u'du kangourou', u'kangourou ce', u'ce midi', u'midi etait',
u'etait pas', u'pas tres', u'tres bon']
char ngrams = CharNGramAnalyzer(min n=3, max n=6)
print char ngrams[:5] + char ngrams[-5:]
[u"j'a", u"'ai", u'ai ', u'i m', u' ma', u's tres', u' tres
', u'tres b', u'res bo', u'es bon']
```

#### TF-IDF features & SVMs

```
from scikits.learn.features.text import *
from scikits.learn.sparse.svm import LinearSVC
hv = SparseHashingVectorizer(dim=1000000, analyzer=)
hv.vectorize(list of documents)
features = hv.get tfidf()
clf = SparseLinearSVC(C=10, dual=false)
clf.fit(features, labels)
# later with the same clf instance
predicted labels = clf.predict(features of new docs)
```

# Typical performance results

- Naïve Bayesian Classifier with unigram occurrences on movie reviews: ~ 70%
- Same as above selecting the top 10000 most informative features only: ~ 93%
- TF-IDF unigram features + Linear SVC on 20 newsgroups ~93% (with 20 target categories)
- Language guessing with character ngram frequencies features + Linear SVC: almost perfect if document is long enough

# Confusion Matrix (20 newsgroups)

00 alt.atheism

01 comp.graphics

02 comp.os.ms-windows.misc

03 comp.sys.ibm.pc.hardware

04 comp.sys.mac.hardware

05 comp.windows.x

06 misc forsale

07 rec.autos

08 rec.motorcycles

09 rec.sport.baseball

10 rec.sport.hockey

11 sci.crypt

12 sci.electronics

13 sci.med

14 sci.space

15 soc.religion.christian

16 talk.politics.guns

17 talk.politics.mideast

18 talk.politics.misc

19 talk.religion.misc



# Handling many possible outcomes

- Example: possible outcomes are all the categories of Wikipedia (565,108)
- Document Categorization becomes Information Retrieval
- Instead of building one linear model for each outcome build a fulltext index and perform TF-IDF similarity queries
- Smart way to find the top 10 search keywords
- Use Apache Lucene / Solr MoreLikeThisQuery

#### NLTK – Online demos



#### NLTK - REST APIs

% curl -d "text=Inception is the best movie ever" \
http://text-processing.com/api/sentiment/

```
"probability": {
    "neg": 0.36647424288117808,
    "pos": 0.63352575711882186
    },
    "label": "pos"
```

# Google Prediction API



# Some pointers

- http://www.nltk.org (Code & Doc & PDF Book)
- http://scikit-learn.sf.net (Doc & Examples)
   http://github.com/scikit-learn (Code)
- http://www.slideshare.net/ogrisel (These slides)

- http://streamhacker.com/(Blog on NLTK & APIs)
- http://github.com/hmason/tc (Twitter classifier work in progress)