Ali Jafar

| 312-972-3192 | ajafar5@uic.edu | <u>LinkedIn</u> |

EDUCATION

University of Illinois at Chicago (UIC)

Masters of Science in Electrical and Computer Engineering

University of Illinois at Chicago (UIC)

Bachelors of Science in Computer Engineering

Chicago, IL

Jan. 2023 - Dec. 2024

Chicago, IL

Aug. 2018 - May 2021

Tracks

Computer and Networked Systems: Design and Optimization of Computer Systems

Digital Systems and VLSI: Design, Analysis and Fabrication of Electronic Components and Systems

Relevant Courses: OS, Embedded Systems, Neural Networks, Robotics Control, HPC & Cloud, Signals & Digital

Communication

Technical Skills

Lab Equipment: Oscilloscope, Multimeter, Function Generator, Power Supply, Soldering Station, Breadboard

Architectures: CPU, GPU, Neural Networks, Data Center & Cloud

Software: C, C++, Python, MATLAB, Assembly, HDL/Verilog

EXPERIENCE

Undergraduate Teaching Assistant

University of Illinois at Chicago (UIC)

Jan. 2019 – May 2021

- Chicago, IL
- Facilitated weekly labs and help sessions, guiding 30+ students through core programming concepts in C and problem-solving techniques.
- Developed instructional materials and visual aids to simplify complex topics, improving student comprehension and engagement.
- Provided one-on-one and group tutoring, boosting student performance and confidence in coding assignments.
- Assisted faculty in evaluating progress and maintaining a collaborative learning environment.

Projects

Line Following Robot | C, Altium, FRDM Micro controller

- Designed and fabricated a custom PCB in Altium to integrate camera sensors, motor drivers, and power regulation circuitry.
- Programmed the FRDM microcontroller in C to process camera sensor input, control steering logic, manage motor speed and implement a PID control algorithm for precise steering and stable path tracking.
- Debugged and validated circuits using oscilloscope, multimeter, and function generator; optimized motor control signals and power delivery for reliable operation.
- Conducted iterative hardware/software testing and tuning of PID parameters, achieving robust performance and securing 1st place in a competitive random-track race.

Lidar Object Detector | Linux, Python, Xbox Kinect, NVIDA Jetson Nano

- Developed a custom K -means clustering computer vision and object detection algorithm to classify and localize obstacles using Lidar point cloud data.
- Configured and deployed a Linux-based environment on the Nvidia Jetson Nano for real-time sensor communication and data acquisition.
- Utilized oscilloscope and multimeter to debug signal integrity and power delivery issues during hardware testing.
- Collaborated with a multidisciplinary team to validate algorithm accuracy and meet project performance benchmarks.

LFSR-Based Multi-Fault Analysis | Python, Digital Circuits Simulation

- Designed and implemented a Python-based circuit Satisfiability simulator to evaluate the effectiveness of LFSRs as pseudo-random pattern generators for detecting multi-faults in digital circuits.
- Generated and tested thousands of two-fault combinations using 8-bit LFSR-generated test vectors, analyzing coverage through automated multi-fault simulation and result tracking.