

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE MATEMÁTICA

LA FUNCIÓN DE PRODUCCIÓN COBB-DOUGLAS Y SUS APLICACIONES

C. Aznarán Laos, K. Fernandez Huidobro, B. Torres Ayala, A. Berrospi Casano. caznaranl, kfernandezh, btorresa, aaberrospic, (@uni.pe)

Resumen

La función de producción Cobb-Douglas es un enfoque neoclásico para estimar la función de producción de un país y proyectar de esta manera su crecimiento económico esperado. Para representar las relaciones entre la producción obtenida se utiliza las variaciones de los insumos como el capital (K) y el trabajo (L), a los que más tarde se añadió la tecnología, llamada también productividad total de los factores (PTF). Es una función de producción frecuentemente utilizada en Economía.

1. Introducción

En economía, una función de producción es una función que especifica la máxima salida posible de una empresa, industria o una economía entera para todas las posibles entradas. En general, una función de producción puede darse como $y=f\left(x_1,x_2,\ldots,x_n\right)$ donde y es la cantidad de salida, x_1,x_2,\ldots,x_n son las entras de factores de producción (tales como el capital, trabajo, tierra o materias primas).

2. Marco teórico

Formulación

En su forma generalizada, la función de Cobb-Douglas modela más de dos productos. La función de Cobb-Douglas puede ser escrita como:

$$f(\boldsymbol{x}) = A \prod_{i=1}^{L} x_i^{\lambda_i}, \quad \boldsymbol{x} = (x_1, \dots, x_L),$$
(1)

Esta función es

- homogénea, es decir, $\forall \boldsymbol{x} \in \mathbb{R}_+^L, \forall t > 0: f(tx_1, \dots, tx_n) = t^L f(x_1, \dots, x_n)$.
- homotética, es decir, $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}_+^L, \forall t > 0: f(\boldsymbol{x}) = f(\boldsymbol{y}) \implies f(t\boldsymbol{x}) = f(t\boldsymbol{y}).$
- \blacksquare rendimiento de escala constante, es decir, cuando $\sum_{i=1}^{L} \lambda_i = 1$.

Modelos de crecimiento de Solow-Swan

Este modelo de crecimiento neoclásico está basado en la ecuación diferencial

$$\dot{k} = sf(k) - \lambda k \tag{2}$$

La función de producción agregada para el único producto final es

$$Y\left(t\right) = F\left[K\left(t\right), L\left(t\right), A\left(t\right)\right]. \tag{3}$$

Modelos de crecimiento de Ramsey

El modelo Ramsey comienza con una función de producción agregada que satisface las condiciones de Inada:

$$F\left(0,0\right)=0,\quad H_{ij}=\left(\frac{\partial^2 f}{\partial x_i\partial x_j}\right) \text{ es semidefinida positiva.}$$

$$\lim_{K\to 0}\left(\frac{\partial F}{\partial K}\right)=\lim_{L\to 0}\left(\frac{\partial F}{\partial L}\right)=\infty,\quad \lim_{K\to \infty}\left(\frac{\partial F}{\partial K}\right)=\lim_{L\to \infty}\left(\frac{\partial F}{\partial L}\right)=0.$$

El movimiento de la acumulación del capital está dado por

$$\dot{k} = f(k) - \delta k - c, \qquad U_0 = \int_0^\infty e^{-\rho t} U(C) \, \mathrm{d}t. \tag{4}$$

3. Metodología

Regresión lineal

En el modelo de predicción de regresión lineal, hablamos acerca de la relación lineal entre una variable independiente y una variable dependiente.

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n \tag{5}$$

Esto puede ser escrita de manera más concisa usando la forma vectorizada como se muestra en (6)

$$\hat{y} = h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{\theta} \cdot \boldsymbol{x} \tag{6}$$

La manera más común de medir el desempeño de un modelo de regresión es el error cuadrático medio (RMSE):

RMSE
$$(\boldsymbol{X}, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(h\left(\boldsymbol{x}^{((i))}\right) - y^{(i)} \right)^2}$$
 (7)

Así, necesitamos encontrar el valor de θ que minimice (7). Emplearemos la ecuación normal dada en (8):

$$\hat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{8}$$

4. Resultados y discusiones

Resumen de la regresión aplicando el logaritmo natural

Coeficientes de regresión [1.1687037615161289, 0.09780730277594096] [0.16932231828446775, 0.11723802655574904] Errores estándar t-statistic [6.902242854675917, 0.8342626163997363] Coeficiente de determinación 0.054819977618199456 Coeficiente de determinación (ajustado) -0.023945024246950553Prueba F 0.6959941131221332 Estadístico de Durbin-Watson 1.314540695276015 Test de Jarque-Bera 3.2485704377525 Número de condición de X^tX

Resumen de la regresión sin aplicar el logaritmo natural

Coeficientes de regresión $[8.58674050e+05\ 5.08391856e-02\ 3.39104154e+00]$ [1.3124624631576653e-07, 0.15076226211150578, 0.6214176830790832]Errores estándar t-statistic [6542465589583.899, 0.3372142664718635, 5.456944064305498] Coeficiente de determinación 0.9769612968040216 Coeficiente de determinación (ajustado) 0.97277244167748 Prueba F 233.22871459880125 Estadístico de Durbin-Watson 1.4110239549583616 Test de Jarque-Bera 2.9459768424711723 Número de condición de X^tX 5.97791003838628e+16

5. Conclusiones

- De la figura 1, aplicado la transformación logarítmica, este se ajusta bien a la ecuación de regresión lineal en comparación de la figura 2.
- De la tabla 2, sin aplicar la transformación logarítmica, el coeficiente de correlación es próximo a 1, es decir, la relación entre los factores es casi perfecta.

Referencias

- [1] P. H. Douglas. The cobb-douglas production function once again: Its history, its testing, and some new empirical values. *Journal of Political Economy*, 84(5):903–915, 1976. ISSN 00223808, 1537534X.
- [2] W. H. Greene. *Econometric Analysis*. Pearson Education, 2018. ISBN 9780134461366.
- [3] K.-I. Inada. On the stability of growth equilibria in two-sector models. *The Review of Economic Studies*, 31(2):127–142, 1964. ISSN 00346527, 1467937X.
- [4] K. Sydsaeter, P. Hammond, A. Strom, and A. Carvajal. *Essential Mathematics for Economic Analysis*. Pearson Education, 2016. ISBN 9781292074610.

6. Agradecimientos

Este trabajo fue apoyado por la Facultad de Ciencias. Los autores agradecen las discusiones útiles proporcionadas por el MSc. Clifford Torres Ponce.