A collaborative LaTeX document

Class of ID2090, Third Trimester of 2021 batch $\label{eq:June 14} \text{June 14, 2022}$

Contents

1	Introduction	3
2	AE21B003	4
3	AE21B028	5
4	AE21B045	6
5	AE21B056	7
6	AE21B062	8
7	AE21B107	9
8	BE21B016	10
9	BE21B040	11
10	CE19B020	12
11	CE21B021	13
12	CE21B088	14
13	CE21B097	15
14	CE21B112	16
15	CE21B115	17
16	CH21B067	18
17	CH21B079	19
18	CH21B101	20
19	ME21B050	21
20	ME21B060	22
21	ME21B065	23

22	m ME21B079	24
23	ME21B088	2 5
24	ME21B091	26
25	ME21B186	27
26	ME21B190	28
27	ME21B196	29
28	ME21B204	30
29	ME21B217 29.1 Bernoulli's Principle 29.2 Description 29.3 Equation	31
30	MM21B012	32
31	MM21B024	33
32	MM21B032	34
33	MM21B044	35
34	MM21B046	36
35	MM21B059	37
36	MM21B063	38
37	NA21B002	39
38	NA21B005	40
39	NA21B006	41
40	NA21B007	42
41	NA21B020	43
42	NA21B048	44
43	NA21B052	45
44	Conclusions	46
45	References	46

List of Figures

List of Tables

1 Introduction

This file includes tex files from the folders of each student. The students are expected to update the file named after their roll number and place any images in the same folder. Students do not have to edit this master document. Once the student has sent a pull request which is accepted and processed successfully, his/her assignment submission is deemed to be complete.

You are also welcome to add references and cite them. Examples on how to do that are on the course repository [?].

8 BE21B016

9 BE21B040

10 CE19B020

16 CH21B067

17 CH21B079

18 CH21B101

29.1 Bernoulli's Principle

Bernoulli's Equation V J Vivek ME21B217

29.2 Description

Bernoulli's theorem, in fluid dynamics, relation among the pressure, velocity, and elevation in a moving fluid (liquid or gas), the compressibility and viscosity (internal friction) of which are negligible and the flow of which is steady, or laminar. First derived (1738) by the Swiss mathematician Daniel Bernoulli, the theorem states, in effect, that the total mechanical energy of the flowing fluid, comprising the energy associated with fluid pressure, the gravitational potential energy of elevation, and the kinetic energy of fluid motion, remains constant. Bernoulli's theorem is the principle of energy conservation for ideal fluids in steady, or streamline, flow and is the basis for many engineering applications.

29.3 Equation

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$
 (1)

P	Pressure of the fluid
ρ	Density of the fluid
v	Velocity of the fluid
h	elevation of the fluid
g	acceleration due to gravitational force

$31\quad \mathrm{MM21B024}$

$35\quad \mathrm{MM21B059}$

44 Conclusions

If this master tex file could be compiled successfully, it means that the class has learnt the concepts of Git as well as LaTeX properly.

45 References

References

[1] Repository for id2090 course. https://github.com/gphanikumar/mm2090. Accessed: 2022-06-13.