Introduction to Machine Learning

Section 2

1. PAC learnability of ℓ_2 -balls around the origin.

Given a real number $R \geq 0$ define the hypothesis $h_R : R^d \to \{0, 1\}$ and we will proof that hypothesis class $H_{ball} = \{h_R | R \geq 0\}$ is PAC learn-able in the realizable case.

lets design an algorithm A_{balls} that learns H_{ball} .

• Given a sample of size $N = \{u_1, ..., u_N\}$ lets find the smallest ball B which is consistent with the sample i.e $B_R : u_k = MAX\{u_1, ..., u_N\} \wedge ||u_k||_2 \leq R$

mistake only by labeling positive points as negative.

• The error of the algorithm is $e_P(h_R) = P[B_0 \setminus B_R]$

We assume that $P(B_R) > \epsilon$. otherwise, we stand with the property and finished. now lets define T to be the real boundary of B_0 , that "extend" to the direction $\to (0,0)$ such that for all ϵ , $P(T) = \epsilon$. since any sample is in the form of $||u_i||_2 = (x_1^2 + x_2^2 ... + x_d^2)^{1/2} \ge 0$ for any $u \in T$, we get

$$e_P(h_R) = P[B_0 \setminus B_R] \le P(T) = \epsilon \Rightarrow$$

since $e_P(h_R) \leq \epsilon$ exists j such that for all $1 \leq i \leq N, u_i \notin T$

$$P[e_P(h_R) > \epsilon] \le P[\exists j \forall i : u(i) \in T]$$

we can notice that

$$P[e_P(h_R) > \epsilon] \le (1 - \epsilon)^n \le e^{-n\epsilon} = \delta \Leftrightarrow n \le \frac{1}{\epsilon} ln \frac{1}{\delta}$$

now lets set $N(\epsilon, \delta) = \frac{1}{\epsilon} l n \frac{1}{\delta}$

we proved that there exists $N(\epsilon,\delta)=\frac{1}{\epsilon}ln\frac{1}{\delta}$, such that for every ϵ,δ and every realizable distribution P over R^d with labeling function $B_0\in H_{ball}$, when running A_{ball} on $n\geq N(\epsilon,\delta)$ training examples drawn i.i.d. from P, it returns a hypothesis $h_R\in H_{ball}$ that hold the property above. moreover we can notice that the complexity is not depend on the dimension d

2. PAC in Expectation.

Theorem. hypothesis class H is PAC learnable if and only if H is PAC learnable in expectation

Proof. \Rightarrow by definition exist A for any δ , ϵ such that $P[e_P(A(s)) > \epsilon] \leq \delta$. and ϵ , $e_P(A(s)) > 0$ now by Markov's inequality we get

$$P[e_P(h_R) > \epsilon] \le \frac{E[e_P(h_R)]}{\epsilon}$$

hence for $n \geq N(a)$ lets define $\hat{N}(\epsilon \delta): (0,1) \to N | \forall a \in (0,1)$ and the following will hold

$$\frac{E[e_P(h_R)]}{\epsilon} \le \frac{\hat{N(a)}}{\epsilon} = \frac{\epsilon \delta}{\epsilon} = \delta$$

witch stand with the PAC in Expectation definition, with the same A.

 \Leftarrow we sow before that the same algorithm A work with both. now using the law of total expectation.

$$E[e_{P}(A(s))]$$

$$= \underbrace{E[e_{P}(A(s))|e_{P}(A(s)) \leq \epsilon]P[e_{P}(A(s)) \leq \epsilon}_{\leq 1\epsilon} + \underbrace{E[e_{P}(A(s))|e_{P}(A(s)) > \epsilon]P[e_{P}(A(s)) > \epsilon]}_{\leq \delta 1}$$

$$\leq \epsilon + \delta$$

and in general its hold for any $\epsilon = 1 - \delta$ hence for $n \geq N(\epsilon, \delta)$ we get the equivalence

3 Union Of Intervals.

we can notice that any 2k distinct points on the real line can be shattered using k intervals. it suffices to shatter each of the k pairs of consecutive points with an interval. now lets look at set of 2k+1 points assume they sorted $x_1 < x_2 < \dots x_{2k+1}$, now lets label any x_i with $(-1)^{i+1}$, hence we need 2k+1 intervals to shatter the set because no interval can contain two consecutive points. and the VC dimension is 2k

4 Prediction by polynomials.

The VC dimension of H is the size of the largest set of examples that can be shattered by $H \Rightarrow$ The VC dimension is infinite if for all m, there is a set of m examples shattered by H.

for all $m \in R$ lets say we have sample set size $m = (y_1, y_2 \dots y_m)$ now using the hint we know there for given n distinct values $x_1, \dots, x_n \in R$ there exists a polynomial P of degree n - 1 such that $P(x_i) = y_i$. now we can set out some $h_p \in H_{poly}$ and reduce each ϵ from each sample set i.e 2^m times. and each time using the hint above we can label 0-1 all the element for all m. Hence the VC dimension of H_{poly} is ∞ .

5 Structural Risk Minimization.

Lets $\hat{H} = \bigcup_{i=1}^{k} H_i$ be k finite hypothesis such that $|H_1| \leq \cdots \leq |H_k|$, using the relating empirical and true errors property for any $h_j \in H_i$

$$P[\sup_{h \in H} |e_s(h) - e_p(h)|] \le 2|H|e^{-2n\epsilon^2}$$

now using the union bound we will get

$$\begin{split} &\bigcup_{i=1}^k P[|e_s(h) - e_p(h)| > \sqrt{\frac{1}{2|S|}ln\frac{2k|H_i|}{\delta}}] \leq \\ &\sum_{i=1}^k P[sup_{h\in H}|e_s(h) - e_p(h)| > \sqrt{\frac{1}{2|S|}ln\frac{2k|H_i|}{\delta}}]] \leq \\ &kP[|e_s(h) - e_p(h)| > \sqrt{\frac{1}{2|S|}ln\frac{2k|H_i|}{\delta}}]] \leq 2k|H|e^{-2n\epsilon^2} \end{split}$$
 for $|S| = n$ and $\epsilon = \sqrt{\frac{1}{2|S|}ln\frac{2k|H_i|}{\delta}}$
$$\leq 2k|H_i|exp(-2|S|\sqrt{(\frac{1}{2|S|}ln\frac{2k|H_i|}{\delta}})^2) = 2k|H_i|(\frac{2k|H_i|}{\delta})^{-1} = \delta$$

$$\Leftrightarrow \forall i \in \hat{H} \Rightarrow P[|e_s(h) - e_p(h)| > \sqrt{\frac{1}{2|S|}ln\frac{2k|H_i|}{\delta}}]] < 1 - \delta$$

(b)

Lets \hat{i} be the hypothesis s.t SRM return $\text{ERM}_{\hat{i}}$. and lets i^* be index of h^*

$$e_p(SRM) \le e_s(\text{ERM}_{\hat{i}}) + \sqrt{\frac{1}{2n}ln\frac{2k|H_{\hat{i}}|}{\delta}} \le \underbrace{e_s(\text{ERM}_{i^*}) + \sqrt{\frac{1}{2n}ln\frac{2k|H_{i^*}|}{\delta}}}_{\text{result from section a}}$$

now lets reduce h^* from the following and using the ERM property we get

$$e_s(\mathrm{ERM}_{i^*}(S)) - e_p(h^*) + \sqrt{\frac{1}{2n}ln\frac{2k|H_{i^*}|}{\delta}} \le e_s(h^*) - e_p(h^*) + \sqrt{\frac{1}{2n}ln\frac{2k|H_{i^*}|}{\delta}} \le 2\sqrt{\frac{1}{2n}ln\frac{2k|H_{i^*}|}{\delta}} \le \epsilon \Rightarrow n \ge \frac{2}{\epsilon^2}ln\frac{2k|H_{i^*}|}{\delta}$$

hence for $n \geq \frac{2}{\epsilon^2} ln \frac{2k|H_{i^*}|}{\delta}$ we will get the 1- δ probability

6. Programming Assignment Union Of Intervals

(a)

Lets the true distribution Pr[x, y] = Pr[y|x] Pr[x] is as x is distributed uniformly on the interval [0, 1], and

$$\Pr[y = 1|x] = \begin{cases} 0.8 & \text{if } x \in [0, 0.2] \cup [0.4, 0.6] \cup [0.8, 1] \\ 0.1 & \text{if } x \in (0.2, 0.4) \cup (0.6, 0.8) \end{cases}$$

hence we looking for $h=(\hat{x})\arg\max_{y\in 0,1}\Pr[Y=y,X=\hat{x}]$ when $x\in[0,0.2]\cup[0.4,0.6]\cup[0.8,1]$,

$$\Pr[Y = 1 | X = \hat{x}] = 0.8 > \Pr[Y = 0 | X = \hat{x}] = 0.2$$

and $x \notin [0, 0.2] \cup [0.4, 0.6] \cup [0.8, 1]$

$$Pr[Y = 0|X = \hat{x}] = 0.9 > Pr[Y = 1|X = \hat{x}] = 0.1$$

and x is distributed uniformly on the interval [0, 1], and the optimal hypothesis for H_{10}

$$h(x) = \begin{cases} 1 & \text{if } x \in [0, 0.2] \cup [0.4, 0.6] \cup [0.8, 1] \\ 0 & \text{else} \end{cases}$$

(b)

From the plot, we can notice that the empirical error increasing according to the amount of samples taken since the probability to see samples outside the 3 intervals is increasing, moreover we can see that the empirical error approach to 0.15 since its the middle of the false-positive and true-negtive error from section a . i.e (0.2+0.1)/2. the true error is decreeing since we test more samples since we getting closer to the real distribution P

(c)

The empirical risk decreeing while k increase since the ERM algorithm have more option of disjoint interval to choose for given data so its can cover more samples. on the other hand while k>3 we can notice the true error increasing since the model over fitting to the sample set. and k=3 is the one with the best behaviour

(d)

We can notice that when the when h come from H_3 the sum of the pendalty and the empirical error is minimizing.

(e)

best hypothesis found

after drawing the data we can notice that the following stand with the hold out property for $1 - \delta$, witch is close to the optimal true error