3000788 Intro to Comp Molec Biol

Week 4: Metagenomics and microarray

Fall 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Part I: Metagenomics

- Mixture data sequencing reads from multiple species
- Environmental samples → Monitoring & discovery
- Capture species that cannot be isolated / cultured
- Challenging to process alignment and assembly

Microbiome and meta-omics

Microbiomes

http://www.lallemandplantcare.com/en/our-solutions/rhizosphere-inoculants/

Moya and Ferrer, Trends in Microbiology 24: 402-413 (2016)

Microbiome is dynamics

Mostly metagenomics

- Metatranscriptomics:
 - Difficult sample preparation
 - RNA are fragile
 - Challenging to determine whether a gene is ON or OFF in which subpopulations
- Metaproteomics:
 - Require reference protein database to interpret mass spectrometry data

Applications of meta-omics

Lactate-utilizing bacteria in athelete guts

Increased athletic ability in mice with transplanted microbiome

Wildlife conservation

Père David's deer and their gut microbiome

Dissimilarity

Conservation

Next-generation sequencing bioinformatics' analysis

Gut microbial

composition

Gut microbial function (cellulose digestion, salt-related metabolism) Reflecting increased evolutionary potential and resilience in response to environment changes

Helping us select a putative translocation region

Yao, R. et al. Evol Bioinfo 15:1-3 (2019)

Rapid pathogen detection for clinical decision

Research questions in meta-omics

- Health
 - Host-pathogen association
 - Drug resistance genes
 - Gut microbiome, cancer microbiome
- Ecology
 - Change in microbiome due to human actions
 - Factory and hospital wastes
 - Global warming
 - Microbiome of extreme conditions
- Agriculture = pathogens and yield
- Surveillance

Challenges in meta-omics

- Grouping of DNA from the same organism facilitate assembly
- Gene operon structure is required for functional interpretation
 - Read assembly
- Small genomic differences across species and sub-species
- Presence of plasmids

Operational texonomic unit (OTU)

Cluster of sequences with high similarity

Blurry boundary between species

- Genus Shigella are pathogens that evolved from an E. coli ancestor
- 80-90% similarity to some E.
 coli clades
- Definition of taxonomy may require both genotypes and phenotypes

Functional view of taxonomy

Liu et al., Marine Life Science & Technology 1: 112-128 (2019)

Taxonomy analysis via rRNA loci

16S rRNA in prokaryotes

Ramazzotti and Bacci, Metagenomics: Perspectives, Methods, and Applications, 103-119 (2018)

Internal transcribed spacer (ITS)

- Located between rRNA repeats
- ITS1 and ITS2
- 400-1000 bp
- Phylogenetics analysis of fungi and algae

rRNA BLAST

- Endpoint of rRNA amplicon analysis is taxonomic assignment
- Abundance profiles of taxa can be correlated to environment condition or disease status

Some analyses of rRNA data

Chimeric reads in amplicon sequencing

- Produced during PCR amplification
- Detected by alignment different portion of the reads to rRNA databases
- Mismatch of hits = chimeric reads

Edgar et al. Bioinformatics 27:2194-2200 (2011)

Rarefaction curve for evaluating depth of sequencing

Complexity of microbiome composition

Diversity indices/ Parameters	Description	Formula
Shannon diversity index (H)	Estimator of species richness and species evenness: more weight on species richness	$H = -\sum_{i=1}^{s} (p_i \ln p_i)$ where s is the number of OTUs and p_i is the proportion of the community represented by OTU i .
Simpson's index (D)	Estimator of species richness and species evenness: more weight on species evenness	$D = \frac{1}{\sum_{i=1}^{s} p_i^2}$ where <i>s</i> is the total number of species in the community and <i>p_i</i> is the proportion of community represented by OTU <i>i</i> .

Kim, B.-R. et al. J Microbiol Biotechnol 27:2089-2093 (2017)

- Richness = number of distinct species
- Evenness = no dominant species

Comparing microbiome composition

- S_1 = # of individuals in sample 1 = 6
- S_2 = # of individuals in sample 2 = 5
- Overlap = 1 + 2 + 1 = 4
- Bray-Curtis dissimilarity = $1 \frac{2 \times \text{Overlap}}{S_1 + S_2} = 1 \frac{8}{11} = \frac{3}{11}$

Impact of sequencing depth

Bray-Curtis is suitable between samples with similar sequencing depths

Impact of taxonomic similarity

Bray-Curtis does not take into account taxonomic similarity

UniFrac distance

Lozupone, C. and Knight, R. Applied and Environmental Microbiology 71 (2005)

- UniFrac = fraction of shared phylogenetic branches between samples
- Can be weighted or unweighted by taxa abundances

Shotgun metagenomics

Key steps in shotgun metagenomics

- Dealing with contamination
 - Host DNA
- Binning = grouping
 DNA/RNA from the same
 host organisms together
- Direct assembly is possible for abundant species

Sharpton et al. Front. Plant Sci. 5:209 (2014)

Read binning strategies

- Reads originated from the same species should have similar *k*-mer profile
- Pairs of reads originated from the same species should have highly correlated abundances across samples (because their abundances correlated with species abundance)

Kang et al. PeerJ (2015)

k-mer matching to predict taxonomy

A Read k-mers are looked-up in the database and assigned to taxa:

C K-mer count and coverage in taxonomic report show evidence behind classifications:

Metagenomics workflows

Amplicon analysis pipeline (16S rRNA)

Marker gene analyses Raw reads **Exploration** FASTQC SegKit **Processing** FASTX-Toolkit PRINSEQ Trimmomatic fastq-join (paired-end) PEAR (paired-end) OTUS/ASVs estimation QIIME2 mothur DADA2 Deblur **UNOISE3**

Taxonomic classification RDP classifier q2-feature classifier (QIIME2) UCLUST BLAST Functional prediction (optional) PICRUSt2 Tax4Fun PanFP Normalization DesegR (R Bioconductor package) edgeR (R Bioconductor package) metagenomeSeg (R Bioconductor package) R core software Copy number correction rrnDB (R package) CopyRighter pplacer

picante R package

k-mer, machine learning, or alignment

Remove noises, reads with high error, and chimera

Shotgun analysis pipeline

Read binning

Shotgun analysis pipeline

Variability in microbiome analysis

Same sample, different profiles

Source: http://www.cbs.dtu.dk/courses/27626

Batch effects

Red = same batch

Any question?

Part II: Microarray and Nanostring

- Targeted transcriptomics
- Cheap and scalable
- A good illustration of how to apply statistics to biological data

Oligonucleotide microarray

Microarray technology overview

Suarez, E. et al. P R Health Sciences J 28:89-104 (2009)

Microarray fabrication

Unwanted probe interactions

Impact of probe length

Chou, C.-C. NAR 32:e99 (2004)

Probe set = multiple probes per gene

Chou, C.-C. NAR 32:e99 (2004)

Jaksik, R. et al. Biology Direct 10:46 (2015)

Perfect match (PM) and mismatch (MM)

Multi-channel microarray

- Two samples are labeled with different dyes
- Mix and hybridize to microarray
- Relative fluorescence signal (ratio) directly indicates fold difference in gene expression
- Minimize technical variance

Key processing steps

- Redefining probe set
 - BLAST to latest genome annotation
- Intensity correction
 - Model background using probe location & sequence
 - Perfect match (PM) vs mismatch (MM)
 - Global & local correction
- Outlier removal
- Probe set aggregation
- Log transform

Log-normal distribution

Limpert, Stahel, and Abbt. BioScience 2001.

Microarray data are log-normal distributed

Beyond transcriptomics

Comparative genome hybridization (CGH)

Hains, D.S. Pathogens 5:14 (2016)

SNP genotyping array

- Design probes for alternative
 SNPs at each position
 - Relative hybridization
- Single-nucleotide sequencing
 - Probe acts as primer
 - Match to the position up until right before the SNP
 - Incorporation of the next nucleotide determine the genotype

LaFramboise, T. NAR 37:4181-93 (2009)

Methylation array

Nanostring

Transcript-specific probes & fluorescence barcodes

solution phase hybridization

Counting number of molecules

Barcode

Counts

Identity

XLSA

FOX5

INSULIN

Prebuilt barcode set (up to 800 targets)

PanCancer IO 360

Human 🔁 Mouse 🛨

750 cancer-related genes involved in the complex interplay between the tumor, microenvironment and immune response including 20 internal reference controls.

Application:

Species:

Human, Mouse

Oncology

770, 770

Inventoried

Genes in panel:

100%, 100%

% Match: Panel type: Platform:

nCounter Analysis System

Canine IO

Canine 🛨

The nCounter® Canine IO Panel includes 780 genes covering 47 annotated pathways involved in canine immune response to IO treatments, and 20 internal reference genes for show more

Application:

Oncology

Species:

Canine

Genes in panel: % Match: 800 100%

Panel type:

Inventoried

Platform:

nCounter Analysis System

Nanostring quality control

- Imaging QC
 - % of successful imaging field of view > 75%
- Binding QC
 - 0.1-2 molecules per square micron
- Positive control
 - Six synthetic DNA ranging from 0.125-128 fM
- Negative control
 - Eight synthetic DNA that do not bind to probe

Nanostring data preprocessing

Negative and positive control

Raw Data							
			Sample 1	Sample 2	Sample 3		
Positive	POS_A	ERCC_00117.1	24573	21007	21856		
Positive	POS_B	ERCC_00112.1	6948	6414	6589		
Positive	POS_C	ERCC_00002.1	2123	1826	1932		
Positive	POS_D	ERCC_00092.1	432	363	425		
Positive	POS_E	ERCC_00035.1	52	68	53		
Positive	POS_F	ERCC_00034.1	49	38	52		
		Geomean of POS:	858.01	783.19	829.55		
	Arithmetic	mean of geomeans:	823.58				
POS	control no	ormalization factors:	0.96	1.05	0.99		

Housekeeping control

Arithmetic Mean vs Geometric Mean

Limpert, Stahel, and Abbt. BioScience 2001.

$$\frac{\log(x) + \log(y)}{2} = \log(\sqrt{xy})$$
 \rightarrow AM of log-transformed = GM of original data

Arithmetic mean of background noises

- Background noises are Normal
- Arithmetic Mean is ok

Geometric mean of positive controls

Raw Data							
			Sample 1	Sample 2	Sample 3		
Positive	POS_A	ERCC_00117.1	24573	21007	21856		
Positive	POS_B	ERCC_00112.1	6948	6414	6589		
Positive	POS_C	ERCC_00002.1	2123	1826	1932		
Positive	POS_D	ERCC_00092.1	432	363	425		
Positive	POS_E	ERCC_00035.1	52	68	53		
Positive	POS_F	ERCC 00034.1	49	38	52		
		Geomean of POS:	858.01	783.19	829.55		
	Arithmetic	mean of geomeans:	823.58				
POS	control no	ormalization factors:	0.96	1.05	0.99		

- Real expression data are closer to Log-Normal
- Use GM to represent AM of log-transformed data
- Positive controls with known concentration serve as correction factor

Simple transcriptomics analysis

Transformed data can be analyzed with t-test

Treatment

		Control			ı	reaume	116		
	J15								
_1	Α	В	С	D	Е	F	G	Н	
1	Acc ID	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6		
2	NM_007818	67540.89	70924.09	80243.76	3501.2	5697.47	2426.72		
3	NM_001105160	811.93	801.36	740.71	128.67	104.42	101.33		
4	NM_028089	190.41	211.06	236.19	9.05	23.33	8.44		
5	NM_016696	66.77	57.56	101.09	750.9	659.84	491.89		
6	NM_013459	3.3	11.29	1.89	735.82	816.46	118.22		
7	NM_007809	45.34	36.12	51.02	245.27	372.13	335.67		
8	NM_009999	103.04	370.21	200.29	17.09	13.33	8.44		
9	NM_133960	7708.78	6976.38	6569.04	1731	1641.81	1853.55		
10	NM_027881	31.32	10.16	24.56	268.39	186.62	135.11		
11	NM_054053	31.32	24.83	19.84	323.68	428.78	116.11		
12	NM_007377	47.81	89.17	70.86	370.93	378.79	279.72		
13	NM_028064	703.95	689.62	662.29	214.11	168.85	144.61		
14	NM_008182	222.56	339.73	226.75	30.16	63.32	26.39		
15	NM_013661	12.36	11.29	8.5	97.51	77.76	71.78		
16	NM_007815	20613.09	25218.13	31540.46	5209.07	7680.3	6312.2		

Control

- Log transform
- Perform t-test on each gene
- Correct the p-values for multiple testing

Choosing the right *t*-test

Two-tailed tests whether the expression is higher or lower

=t.test(A2:A13,B2:B13,2,						
T.TEST(array1, array2, tails, type)						
() 1 - Paired				T.TEST per	forms a pair	ed t-Test
()2 - Two-s	mple equal variar	nce (homosced	lastic)			
() 3 - Two-s	imple unequal var	iance (heteros	cedastic)			

- Use paired only for before & after treatment data of the same sample
- Otherwise, assuming unequal variance (Welch) is safer

Correction with Bonferroni method

- Divide the p-value cutoff by the number of test
- Adjusted p-value cutoff = 0.05 / 1000 = 0.00005
- Applying similar test 1,000 times will result in 0.05 tests on average with smaller p-value than 0.00005 just by chance
- Easy to calculate but lose power

False discovery rate (FDR) vs p-value

- **P-value** = probability of observing the same or more extreme (higher fold change) under the null hypothesis (that there is no differential expression)
- **False Discovery Rate** = probability that a detected differentially expressed gene was not differentially expressed
- P-value is easy to calculate (because it assumes no differential expression)
- But FDR involves alternative hypothesis
- There are ways to control FDR through p-value!

Benjamini-Hochberg procedure

- Valid under broad assumptions (independent tests, positively correlated tests, etc.)
- Given a series of tests with p-values, $p_1, p_2, ..., p_n$
- To control FDR to be within 0.05
 - Sort p-values from low to high, $p'_1, p'_2, ..., p'_n$
 - Find largest k such that $p'_k \le 0.05 \times k / n$
 - For the smallest p-value, this is equivalent to Bonferroni
 - For other p-values, this technique gradually loosens the cutoff
 - Reject null hypothesis for tests corresponding to $p'_1, p'_2, ..., p'_k$

Correction method comparison

P-value	Bonferroni	В-Н	B-Y
Smallest	0.0005	0.0005	0.0005
2 nd smallest	0.0005	0.001	0.000667
3 rd smallest	0.0005	0.0015	0.000818
4 th smallest	0.0005	0.002	0.00096
5 th smallest	0.0005	0.0025	0.001095

- There are 100 tests
- Target p-value or FDR cutoff = 0.05

Effect of correction

Gene	Sorted p- value	Rank	Benjamini- Hochberg	Result	c(rank)	Benjamini- Yekutieli	Result
Gene M	0.000001	1	0.0005	Pass	1	0.0005	Pass
Gene S	0.0000035	2	0.001	Pass	1.5	0.00067	Pass
Gene A	0.00028	3	0.0015	Pass	1.83	0.00082	Pass
Gene C	0.0011	4	0.002	Pass	2.08	0.00096	Fail
Gene P	0.06	5	0.0025	Fail	2.28	0.0011	

Linear effect model

Background noise correction models

- Null hypothesis
 - Background noise is normally distributed and is the same over the entire array
- Linear effect model
 - Background noise is normally distributed with mean depending on (x, y) positions and a fixed variance

Fitting normally distributed data

- Probe intensities: $n_1, n_2, ..., n_k$
 - Fitted mean and variance: $\mu = \frac{\sum_i n_i}{k}$ and $\sigma^2 = \frac{1}{k-1} \sum_i (n_i \mu)^2$
 - Likelihood: $\prod_i P(n_i | \mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^k e^{-\frac{1}{2}\sum_i \left(\frac{n_i \mu}{\sigma}\right)^2}$

Linear effect model

- Position of probe *i* with intensity n_i is (x_i, y_i)
- Fitted mean: $\mu(x_i, y_i) = ax_i + by_i + c$
 - Solve for a, b, c that minimize MSE: $\sum_{i} (n_i (ax_i + by_i + c))^2$
- Recall calculus:

$$-\frac{\delta MSE}{\delta a} = \sum_{i} 2(n_i - (ax_i + by_i + c))(-x_i)$$

$$-\frac{\delta MSE}{\delta b} = \sum_{i} 2(n_i - (ax_i + by_i + c))(-y_i)$$

$$-\frac{\delta MSE}{\delta c} = \sum_{i} 2(n_i - (ax_i + by_i + c))(-1)$$

Some algebra exercises

- Setting partial derivatives to zero
 - $-0 = \sum_{i} (n_i (ax_i + by_i + c))(-x_i)$
 - $-0 = \sum_{i} (n_i (ax_i + by_i + c))(-y_i)$
 - $-0 = \sum_{i} (n_i (ax_i + by_i + c))$
- Or equivalently
 - $a \sum_{i} x_i^2 + b \sum_{i} x_i y_i + c \sum_{i} x_i = \sum_{i} n_i x_i$
 - $a \sum_{i} x_i y_i + b \sum_{i} y_i^2 + c \sum_{i} y_i = \sum_{i} n_i y_i$
 - $a\sum_{i} x_{i} + b\sum_{i} y_{i} + ck = \sum_{i} n_{i}$
- Three linear equations with three variables ©

Incorporating confounding variable

- Design matrix

Sample	Condition	Batch	Patient's Age
S1	Control	1	35
S2	Control	2	21
S3	Control	3	45
S4	Treatment	1	18
S 5	Treatment	2	37
S6	Treatment	3	52

Any question?