Plotting

2023-10-03

```
library(tidyverse)
library(showtext)
library(ggtext)

df <- read_csv("data/lemurs.csv")
font_add_google("DM Serif Display", "dm")
showtext_auto()</pre>
```

Exploratory Data Analysis

Shannon Entropy

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Shannon Entropy Over Time by Season and Species

• Shows that L. catta tends to see higher Shannon Entropy than P. coquereli in the summer, but this is reversed in the spring.

Faith PD

'geom_smooth()' using method = 'loess' and formula = 'y \sim x'

Phylogenetic Diversity Over Time by Season and Species

• Shows that L. catta consistently has higher phylogenetic diversity than P. coquereli, with season seemingly having an insignificant impact.

Observed Features

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Observed Features Over Time by Season and Species

• Shows that L. catta consistently has more observed features than P. coquereli, but this difference seems to be significantly exacerbated in the summer, suggesting a seasonal impact.

Initial Exploration

AMPM
Histogram of df\$shannon_entropy

##
Welch Two Sample t-test
##

```
## data: df.AM$shannon_entropy and df.PM$shannon_entropy
## t = 1.9961, df = 288.84, p-value = 0.04686
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.001120301 0.159286809
## sample estimates:
## mean of x mean of y
## 6.541293 6.461089
```


'geom_smooth()' using method = 'loess' and formula = 'y \sim x'

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

