

SoundCount: Sound Counting from Raw Audio with Dyadic Decomposition Neural Network

Yuhang He¹, Zhuangzhuang Dai², Long Chen^{3,4}, Niki Trigoni¹, Andrew Markham¹

Department of Computer Science, University of Oxford, UK

²Aston University, UK. ³Institue of Automation, Chinese Academy of Sciences, China. ⁴WAYTOUS Ltd., China

1. Problem Definition

Given one-channel sound raw waveform, we aim to

- 1. count the sound event number.
- 2. regardless of sound class label, start/end time. where,
- 1. acoustic scene is highly polyphonic.
- 2. inter/intra sound overlap in time/freq. domain.

Example: how many seagulls are heard in the audio?

2. Difference from SED

Sound Event Detection (SED) further

- 1. localize sound event's temporal position.
- 2. classify each sound event's semantic label. Sound Count, instead,
- 1. count the present sound number (how many?).
- 2. Analogous to crowd counting in vision

3. Challenges in Sound Count

Learn a time-frequency (TF) map that can handle:

Challenge 1: Loudness Variability.

Challenge 2: Frequency Overlap.

Challenge 3: Polyphonicity.

4. Dyadic Decomposition Network

5. Density Map based Count

6. Count Difficulty Quantification

- 1. Polyphony Ratio
- 2. Max-Polyphonicity
- 3. Mean-Polyphonicity

7. Experiment Result

Dataset: five main categories: Bioacoustics, Indoor, Outdoor, Audio, Music.

Comparing Methods: two signal processing methods, three SED based methods, one source separation method Experiment Result: DyDecNet is best-performing.

Conclusion: 1. Split sound count from SED problem.

2. Propose a new TF map learning framework to handle the count challenge.