Fiche d'exercices sur les suites : rappels première

Exercice 1:

Soient α , β et γ trois termes consécutifs d'une suite arithmétique.

Déterminer α , β et γ sachant que $\alpha + \beta + \gamma = 126$ et que $2\alpha - \beta + \gamma = 79$.

Exercice 2:

Soit (u_n) une suite arithmétique de raison -5.

- 1) Calculer u_0 et u_{10} sachant que $u_7 = 11$.
- 2) En déduire l'expression de u_n en fonction de n ainsi que l'expression de u_{n+1} en fonction de u_n .

Exercice 3:

Soit (u_n) la suite définie par $u_n = 4 + 2n$.

- 1) Montrer que la suite (u_n) est arithmétique et déterminer sa raison.
- **2)** Calculer $S_{2017} = u_0 + u_1 + \cdots + u_{2017}$.

Exercice 4:

Soit (u_n) une suite géométrique de raison -5.

Calculer u_0 et u_6 sachant que $u_4 = 5250$.

Exercice 5:

Soit (u_n) la suite définie par $u_n = 3 \times (-2)^n$.

- 1) Montrer que la suite (u_n) est géométrique et déterminer sa raison et son premier terme u_0 .
- **2)** Calculer $S_{10} = u_0 + u_1 + \cdots + u_{10}$.

Exercice 6:

Soit (u_n) une suite géométrique. On sait que $u_3 = \frac{4}{3}$ et que $u_8 = 324$.

- 1) Calculer la raison de la suite (u_n) et son premier terme u_0 .
- 2) En déduire l'expression de u_n en fonction de n ainsi que l'expression de u_{n+1} en fonction de u_n .
- 3) Construire un algorithme permettant de savoir à partir de quel indice n le terme u_n de la suite (u_n) dépasse la valeur $10\,000$.

Exercice 7:

Soit (u_n) la suite définie par $u_0 = 2$ et par la relation de récurrence $u_{n+1} = 0, 5u_n + 2$ et la suite (v_n) définie par $v_n = u_n - 4$.

- 1) Montrer que la suite (v_n) est géométrique. Déterminer son premier terme v_0 et sa raison.
- 2) Exprimer v_n en fonction de n puis en déduire l'expression de u_n en fonction de n.

Solutions:

Exercice 1:

 $\alpha = 37$, $\beta = 42$ et $\gamma = 47$.

Exercice 2:

- 1) $u_0 = 46$ et $u_{10} = -4$.
- **2)** $u_n = u_0 + nr = 46 5n$ et $u_{n+1} = u_n + r = u_n 5$.

Exercice 3:

- 1) $u_{n+1} u_n = 4 + 2(n+1) (4+2n) = 4 + 2n + 2 4 2n = 2$ donc (u_n) est une suite arithmétique de raison r = 2.
- 2) S_{2017} = nombre de termes × $\frac{\text{premier terme} + \text{dernier terme}}{2}$ = $2.018 \times \frac{4+4.038}{2} = 4.078.378$.

Exercice 4:

 $\overline{u_0 = u_4 \times q^{-4}} = 5250 \times (-5)^{-4} = 8,4 \text{ et } u_6 = u_4 \times q^2 = 5250 \times (-5)^2 = 131250.$

Exercice 5:

- 1) $\frac{u_{n+1}}{u_n} = \frac{3 \times (-2)^{n+1}}{3 \times (-2)^n} = \frac{3 \times (-2)^n \times (-2)}{3 \times (-2)^n} = -2$ donc (u_n) est une suites géométrique de raison q = -2 et de premier terme $u_0 = 3 \times (-2)^0 = 3$.
- 2) $S_{10} = \text{premier terme} \times \frac{1 \text{raison}^{\text{nombre de termes}}}{1 \text{raison}} = 3 \times \frac{1 (-2)^{11}}{1 (-2)} = 2049.$

Exercice 6:

- 1) $u_8 = u_3 \times q^5 = \frac{4}{3} \times q^5 = 324 \text{ donc } q^5 = 324 : \frac{4}{3} = 324 \times \frac{3}{4} = 243 \text{ donc}$ $q = q^1 = (q^5)^{\frac{1}{5}} = (243)^{\frac{1}{5}} = 3.$ $u_0 = u_8 \times q^{-8} = 324 \times 3^{-8} = \frac{4}{81}.$
- **2)** $u_n = u_0 \times q^n = \frac{4}{81} \times 3^n$ et $u_{n+1} = u_n \times q = u_n \times 3$.

3)

Variables: u est un réel

n est un entier naturel

Traitement: u prend la valeur $\frac{4}{81}$

n prend la valeur 0

Tant que u < 10000 faire :

u prend la valeur $u \times 3$

n prend la valeur n+1

Fin Tant que

Sortie: Afficher n

exercice 7:

1) $v_{n+1} = u_{n+1} - 4 = 0.5u_n + 2 - 4 = 0.5u_n - 2 = 0.5 \left(u_n - \frac{2}{0.5}\right) = 0.5(u_n - 4) = 0.5v_n$ donc (v_n) est une suite géométrique de raison q = 0.5 et de premier terme $v_0 = u_0 - 4 = 2 - 4 = -2$.

2) $v_n = v_0 \times q^n = -2 \times 0.5^n$. $v_n = u_n - 4$ donc $u_n = v_n + 4$ et donc $u_n = -2 \times 0.5^n + 4$ grâce au résultat précédent.