- Teoría de Números 2
 - Ejercicios
 - Problema 1
 - Solución
 - Problema 2
 - Solución
 - Problema 3
 - Solución
 - Problema 4
 - Solución
 - Solución (Leydis Laura)
 - Problema 5
 - Solución
 - Problema 6
 - Solución
 - Problema 7
 - Solución
 - Problema 8
 - Solución
 - Problema 9
 - 1. Solución
 - 2. Solución
 - 3. Solución
 - 4. Solución

Teoría de Números 2

Ejercicios

Problema 1

Sean a, b_1, b_2, \ldots, b_n enteros con a = 0. Prueba que si $a \div b_1 * b_2 * \cdots * b_n$ y a es primo relativo con todos los b_i excepto b_n , entonces $a \div b_n$

Solución

Procedamos por induccion:

• Caso base: para n=2: Si $a\div b_1b_2$ y $mcd(a,b_1)=1 \Longrightarrow a\div b_2$

Notese que si $mcd(a, b_1) = 1$ existen x, y tales que mcd(x, y) = 1 cumpliéndose que:

$$ax + b_1y = 1$$

Luego, al multiplicar por b_2 queda que:

$$ab_2x + b_1b_2y = b_2$$

Pero como $a \div ab_2$ y $a \div b_1b_2$ por datos $\implies a \div b_2$

- Hipótesis de inducción: Supongamos que para n=k se cumple que $a \div b_1b_2\cdots b_k$ y a es primo relativo con todos los b_i excepto b_k , entonces $a \div b_k$
- Entonces, para n = k + 1 se cumple que: como a es coprimo con $b_1, b_2 \implies a$ es coprimo con b_1b_2 . Demostrémoslo.
 - Si $mcd(a, b_1) = 1 \implies$ existen x, y tal que

$$ax + b_1y = 1 \implies ab_2x + b_1b_2y = b_2$$

Como $mcd(b_2, a) = 1$ y $a \div ab_2 \implies a$ no divide a b_1b_2 .

Entonces sea $b_1b_2=t$, luego $b_1b_2\cdots b_{k+1}=tb_2\cdots b_{k+1}$ y tendríamos k números de los cuales a es coprimo con los primeros k-1, por lo que $a\div b_{k+1}$ por hipótesis de inducción

Problema 2

Prueba que $mcd(n, 6) = 1 \implies n^2 - 1$ es divisible por 24

Solución

Notemos que $n^2 - 1 = (n+1)(n-1)$ y como $mcd(n,6) = 1 \implies n$ es impar, luego entre n+1 y n-1 uno de ellos será múltiplo de 2 y el otro múltiplo de 4 por ser dos

números pares consecutivos.

Para que sea divisible n^2-1 por 24, como ya probamos que es divisible entre 8 (por ser divisible por 2 y 4 simultáneamente) basta demostrar que entre n-1 y n+1 hay un factor 3. Observemos que de tres números consecutivos hay uno que es múltiplo de 3, luego, (n-1)n(n+1) es múltiplo de 3, pero como $mcd(n,6)=1 \implies mcd(n,3)=1 \implies 3 \div (n-1)(n+1)$ que es lo que queríamos probar.

Problema_3

Sean a, b enteros con b = 0. Prueba que si a = b * q + r para algun q, r entonces mcd(a, b) = mcd(b, r)

Solución

Supongamos que $mcd(a,b)=d_1\geq mcd(b,r)=d_2$, como $d_1\div a$ y $d_1\div b$ \implies $d_1\div r \implies d_1\div mcd(b,r)$ y como $d_1\geq d_2$ \implies $d_1=d_2$. Análogamente suponiendo que $d_2\geq d_1$

Problema 4

Sean a_1, a_2, \ldots, a_n enteros no todos ceros. Prueba que $mcd(a_1, a_2, \ldots, a_n) = mcd(a_1, mcd(a_2, \ldots, a_n))$

Solución

El problema podemos transformarlo en demostrar que todo divisor del miembro derecho divide al miembro iquierdo y todo divisor del miembro izquierdo divide al miembro derecho.

Supongamos que $d \div mcd(a_1, a_2, \dots, a_n) \implies d \div a_1, d \div d_2, \dots, d \div a_n$ entonces como $d \div a_1$ y d divide al resto entonces divide a su mcd y por tanto divide al $mcd(a_1, mcd(a_2, \dots, a_n))$

Supongamos que $d \div mcd(a_1, mcd(a_2, \dots, a_n)) \implies d \div a_1 \ y \ d \div mcd(a_2, \dots, a_n) \implies d \div a_1, d \div d_2, \dots, d \div a_n \implies d \div mcd(a_1, a_2, \dots, a_n)$

Solución (Leydis Laura)

Idea de la demostración: Agrupar los divisores comunes de a y b en un conjunto A; agrupar los divisores comunes de b y R en un conjunto B. Demostrar que A = B.

Sea $d \in A$, $d \div a$ y $d \div b$. Luego $d \div a * x + b * y$, donde $x, y \in Z^+$ (resultado del ejercicio 1 de la primera clase práctica).

Por dato a = b * q + R, entonces R = a - b * q.

R = a * (1) + b * (-q), luego R es combinación lineal de a y b. Luego $d \div R$.

$$d \div b \vee d \div R \implies d \in B$$

$$\forall d \in \mathbb{Z}, d \in A \implies d \in B$$

Luego $A \subseteq B$.

De forma análoga, podemos demostrar que $B \subseteq A$.

$$A \subseteq B \lor B \subseteq A \implies A = B$$

Todo número tiene una cantidad finita de divisores. Luego A y B son conjuntos finitos. Como A=B, el mayor elemento de A, es el mayor elemento del conjunto B.

Sea d el mayor elemento de A y B. Entonces d es el mayor entero positivo que es divisor común de a y b (puesto que $d \in A$), por tanto d = (a, b). Además, d es el mayor entero positivo que es divisor común de b y R (puesto que $d \in B$). Luego d = (b, R). (a, b) = (b, R)

Problema_5

Sean a,b enteros no cero los dos y k entero. Prueba que mcd(ka,kb)=k* mcd(a,b)

Solución

Para demostrar este problema demostremos el siguiente lema:

• Si mcd(a,b)=d, $t\in \mathbb{Z}_+$ un número que divide a a,b,d y x,y números que cumplen que ax+by=d, entonces, al dividir entre t tenemos que esos mismos x,y generan la mínima combinación lineal de $\frac{a}{t}=a_1$ y $\frac{b}{t}=b_1$

Supongamos que es falso, o sea, que $\frac{d}{t}$ no es la mínima combinación lineal de a_1,b_1 , entonces sean x_1,y_1 números tal que $mcd(a_1,b_1)=d_1<\frac{d}{t}$ y $a_1x_1+b_1y_1=d_1$, pero al multiplicar la ecuación por t se cumple que $ax_1+by_1=d_1t< d$, lo cual es falso porque mcd(a,b)=d

Sea $mcd(ka, kb) = d \implies$ existen x, y tal que $kax + kby = d \implies k(ax + by) = d$ y como x, y generan la menor combinación lineal de ka, kb entonces por el lema anteriormente demostrado ax + by = mcd(a, b) y por tanto k * mcd(a, b) = mcd(ka, kb)

Problema 6

Halla el menor entero n compuesto que no es divisible por ninguno de los primeros k primos

Solución

Sea p_{k+1} el primo k+1, entonces si n es compuesto $\implies n=ab$, como n no es divisible por ninguno de los primeros k primos entonces ni a ni b lo deben ser, por lo que, al menos deben ser divisibles por p_{k+1} , luego $n \ge (p_{k+1})^2 \implies$ el menor entero n que cumple es $n=(p_{k+1})^2$

Problema 7

Prueba que para todo n mayor que 2 se cumple que existe p primo tal que n !

Solución

Nótese que para n > 2 entre nyn! existen números, luego como $n! = 1 * 2 * 3 * ... * n \implies n! - 1$ es coprimo con cada número menor igual que n, por tanto, n! - 1 es primo o es divisible entre un primo mayor que n pero menor que n!

Problema 8

Sea p_n el n-esimo primo. Prueba que $p_n \le 2^{2^{n-1}}$

Solución

Demostrémoslo por inducción fuerte:

- Caso base: para n = 1 tomemos 2 como el primer primo, entonces se cumple que $2=2 \implies p_1 \le 2^{2^{1-1}}$
- Hipótesis de inducción: para todo i desde 1 hasta k se cumple que $p_i \leq 2^{2^{i-1}}$
- Demostremos que si multiplicamos todos los primos hasta el k-esimo el resultado será un número mayor que el próximo primo, o sea, $p_1p_2\cdots p_k > p_{k+1}$
- Nótese que si el número $p_1p_2\cdots p_k-1$ es primo ya existe un primo mayor que p_k y menor que $p_1p_2\cdots p_k$, de lo contrario ese número se puede expresar como a*b donde tanto a como b son coprimos con los primeros k primos, sin pérdida de generalidad sea a>1, entonces si a cumple con el primo que estamos buscando, de lo contrario $a=a_1*b_1$ y así se repite el proceso hasta que por el principio del buen orden, como estamos teniendo en cuenta solo los divisores positivos, llegaremos a algún a_m tal que sea primo y este cumplirá con la condición de ser mayor que p_k y menor que $p_1p_2\cdots p_k$
- Luego, utilizando que para todo $i \leq k$ se cumple que $p_i \leq 2^{2^{i-1}}$ y por tanto, teniendo en cuenta lo anteriormente demostrado $p_{k+1} < p_1 p_2 \cdots p_k \leq 2^{2^{n-1}+2^{n-2}+\cdots+2+1} = 2^{2^n-1} < 2^{2^n} \implies p_{k+1} < 2^{2^n}$

Problema 9

Sean a, b enteros, mcd(a, b) = 1 y n entero positivo. Calcule:

- 1. mcd(a+b,ab)
- 2. mcd(a + b, a b)
- 3. $mcd(a+b, a^2+b^2)$
- 4. $mcd(n^2 + 1, (n + 1)^2 + 1)$

1. Solución

Lema: sean d,a,b enteros con d>1 tal que $d\div ab$ entonces siempre existen d_1,d_2 tales que $d=d_1d_2$ y $d_1\div a,d_2\div b$

• Demostración: sea $d_1 = mcd(a, d)$, como $d \div ab \implies \exists r \in \mathbb{Z}$ tal que:

$$dr = ab$$

Dividiento entre d_1 tenemos que:

$$d_2r = a_1b$$

Pero como $d_1=mcd(a,d)\implies mcd(d_2,a_1)=1\implies d_2\div b$ que es lo que queríamos probar: $d=d_1d_2$ con $d_1\div a,d_2\div b$

Supongamos que mcd(a+b,ab)=d>1, entonces si $d=d_1*d_2$ y utilizando el lema anteriormente demostrado, asumamos sin pérdida de generalidad que $d_1>1$ y $d_1\div a$, y como $d_1\div d\implies d_1\div (a+b)\implies d_1\div b$ contradicción porque mcd(a,b)=1

2. Solución

Supongamos que mcd(a+b,a-b)=d entonces $d\div(a+b)$ y $d\div(a-b)$ de donde, al rumar y restar ambas expresiones obtenemos que $d\div 2a$ y $d\div 2b$.

Por el lema demostrado en el ejercicio anterior $d=d_1d_2$ tal que $d_1 \div 2$ y $d_2 \div a$ en la primera expresión, luego si $d_2 \div a$, como $d \div (a+b) \implies d_2 \div (a+b) \implies d_2 \div b \implies d_2 = 1$. Como $d_1 \div 2 \implies d_1 = 1$ o $d_1 = 2$ y por tanto, d=2 cuando a,b son impares y d=1 cuando uno es par y otro impar.

3. Solución

Supongamos que $mcd(a+b,a^2+b^2)=d$ entonces $d\div(a+b)$ y $d\div(a^2+b^2)$ de donde, en la primera expresión se cumple que $d\div(a+b)^2\implies d\div(a^2+b^2+2ab)$ y como $d\div(a^2+b^2)\implies d\div2ab$.

Análogamente a la demostración del último lema usado se puede demostrar que dado $d \div abc$ se cumple que existen d_1, d_2, d_3 tales que $d = d_1 d_2 d_3$ y $d_1 \div a, d_2 \div b, d_3 \div c$, por lo que, de vuelta al problema en el que estabamos, existen d_1, d_2, d_3 tales que $d = d_1 d_2 d_3$ y $d_1 \div 2, d_2 \div a, d_3 \div b$. De manera similar al inciso anterior se demuestra que $d_2, d_3 = 1$, por lo que d = 1 o d = 2

4. Solución

Supongamos que $mcd(n^2 + 1, (n + 1)^2 + 1) = d$ entonces:

$$1. d \div (n^2 + 1)$$

2.
$$d \div ((n+1)^2 + 1)$$

Restando ambas expresiones tenemos:

3.
$$d \div (2n+1)$$

Luego, restando (1) con (3) resulta en:

4.
$$d \div n(n-2)$$

Del lema utilizado en los incisos anteriores $d=d_1d_2$ tal que $d_1 \div n$ y $d_2 \div (n-2)$. Si $d_1 \div n$, teniendo en cuenta (1) llegamos a que $d_1 \div 1 \implies d_1 = 1 \implies$

5.
$$d \div (n-2)$$

Restando (3) con (5) obtenemos que $d \div (n-3)$ y restándole a este ultimo resultado la expresión (5) llegamos a la conclusión que $d \div 5$, de donde d=1 o d=5, caso que es posible cuando por ejemplo n=2.