Chapter 6

The Riemann-Stieltjes Integral Selected Exercise

List of Exercise

1	Exercise .																			4
2	Exercise .																			5
3	Exercise .																			6
4	Exercise .																			7
5	Exercise .																			8
6	Exercise .																			9
2.44	Sec (The C	\mathbb{C}_{i}	ar	nte	or	\mathbf{S}	et)												9
7	Exercise .																			11
8	Exercise .																			12
9	Exercise .																			13
10	Exercise .																			14
11	Exercise .																			16
17	Exercise .																			17

Exercise 1. Suppose α increases on [a, b], $a \leq x_0 \leq b$, α is countinuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

Exercise 2. Suppose $f \ge 0$, f is countinuous on [a, b], and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. (Compare this with **Exercise 1**.) *Proof.*

Exercise 3. Define three functions β_1 , β_2 , β_3 as follows: $\beta_j(x) = 0$ if x < 0, $\beta_j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta_1(0) = 0$, $\beta_2(0) = 1$, $\beta_3(0) = \frac{1}{2}$. Let f be a bounded function on [-1, 1].

(a) Prove that $f \in \mathcal{R}(\beta_1)$ if and only if f(0+) = f(0) and that then

$$\int f \, d\beta_1 = f(0).$$

- (b) State and prove a similar result for β_2 .
- (c) Prove that $f \in \mathcal{R}(\beta_3)$ if and only if f is continuous at 0.
- (d) If f is continuous at 0, prove that

$$\int f d\beta_1 = \int f d\beta_2 = \int f d\beta_3 = f(0).$$

Exercise 4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a, b] for any a < b.

Exercise 5. Suppose f is a bounded real function on [a, b], and $f^2 \in \mathcal{R}$ on [a, b]. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^3 \in \mathcal{R}$?

Exercise 6. Let P be the Cantor set constructed in **Sec. 2.44**. Let f be a bounded real function on [0, 1] which is continuous at every point outside P. Prove that $f \in \mathcal{R}$ on [0, 1].

Hint: P can be covered be finitely many segments whose total length can be made as small as desired. Proceed as in **Theroem 6.10**.

Sec 2.44 (The Cantor set). The set which we are now going to construct shows that there exist perfect sets in R^1 which contain no segment.

Let E_0 be the intrval [0, 1]. Remove the segment $(\frac{1}{3}, \frac{2}{3})$, and let E_1 be the union of the intervals

 $\left[0, \frac{1}{3}\right] \quad \left[\frac{2}{3}, 1\right]$

Remove the middle thirds of these intervals, and let E_2 be the union of the intervals

 $\begin{bmatrix} 0, \frac{1}{9} \end{bmatrix} \quad \begin{bmatrix} \frac{2}{9}, \frac{3}{9} \end{bmatrix} \quad \begin{bmatrix} \frac{6}{9}, \frac{7}{9} \end{bmatrix} \quad \begin{bmatrix} \frac{8}{9}, 1 \end{bmatrix}$

Continuing in this way, we obtain a sequence of compact sets E_n , such that

- (a) $E_1 \supset E_2 \supset E_3 \supset \cdots$;
- (b) E_n is the union of 2^n intervals, each of length 3^{-n} .

The set

$$P = \bigcap_{n=1}^{\infty} E_n$$

is called the Cantor set. P is clearly compact, and P is not empty.

Proof. (Continued...)

Exercise 7. Suppose f is a real function on (0, 1] and $f \in \mathcal{R}$ on [c, 1] for every c > 0. Define

$$\int_0^1 f(x)dx = \lim_{c \to 0} \int_c^1 f(x)dx$$

if this limit exists (and is finite).

- (a) If $f \in \mathcal{R}$ on [0, 1], show that this definition of the integral agrees with the old one.
- (b) Construct a function f such that the above limit exists, although it fails to exist with |f| in place of f.

Exercise 8. Suppose $f \in \mathcal{R}$ on [a, b] for every b > a where a is fixed. Define

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

if the limit exists (and is finite). In that case, we say that the integral on the left converges. If it also converges after f has been replaced by |f|, it is said to converge absolutely.

Assume that $f(x) \geq 0$ and that f decreases monotonically on $[1, \infty)$. Prove that

$$\int_{1}^{\infty} f(x)dx$$

converges if and only if

$$\sum_{n=1}^{\infty} f(n)$$

converges. (This is the so-called "integral test" for convergence of series.) Proof.

Exercise 9. Show that integration by parts can sometimes be applied to the "improper" integrals defined in **Exercise 7** and **Exercise 8**. (State appropriate hypotheses, formulate a theorem, and prove it!) For instance show that

 $\int_0^\infty \frac{\cos x}{1+x} dx = \int_0^\infty \frac{\sin x}{(1+x)^2} dx.$

Show that one of these integrals converges absolutely, but that the other does not.

Exercise 10. Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(a) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds if and only if $u^p = v^q$.

(b) If $f \in \mathcal{R}(\alpha)$, $g \in \mathcal{R}(\alpha)$, $f \ge 0$, $g \ge 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha,$$

then

$$\int_{a}^{b} fg \, d\alpha \le 1.$$

(c) If f and g are complex functions in $\mathcal{R}(\alpha)$, then

$$\left| \int_a^b fg \, d\alpha \right| \le \left\{ \int_a^b |f|^p \, d\alpha \right\}^{1/p} \left\{ \int_a^b |g|^q \, d\alpha \right\}^{1/q}.$$

This is $H\ddot{o}lder's$ inequality. When p=q=2 it is usually called the Schwarz inequality.

(d) Show that *Hölder's inequality* is also true for the "improper" integrals described in **Exercise 7** and **Exercise 8**.

Exercise 11. Let α be a fixed increasing function on [a, b]. For $u \in \mathcal{R}(\alpha)$, define

$$||u||_2 = \left\{ \int_a^b |u|^2 d\alpha \right\}^{1/2}.$$

Suppose $f, g, h \in \mathcal{R}(\alpha)$, and prove the triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

as a consequence of the Schwarz inequality, as in the proof of **Theorem 1.37.**

Exercise 17. Suppose α increases monotonically on [a, b], g is continuous, and g(x) = G'(x) for $a \le x \le b$. Prove that

$$\int_{a}^{b} \alpha(x)g(x) dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} G d\alpha.$$

Hint: Take g real, without loss of generality. Given $P = \{x_0, x_1, \ldots, x_n\}$, choose $t_i \in (x_{i-1}, x_i)$ so that $g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$. Show that

$$\sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta \alpha_i.$$