Machine Learning for Error Verification and Correction

By: Omri Steinberg-Tatman and Jackson Vaughn

Objective

- Using Machine Learning
 - Verification
 - Correction
- Application in circuits
 - Combinational
 - Sequential

Hardware Voting Systems

- Decides on output
 - Takes in multiple inputs
 - Outputs majority vote
- Inefficient
 - Construction time
 - Construction cost
 - Volume
 - Power draw

Hardware Verification

- Aim only correct output
 - Two outputs
 - Signal right or wrong
 - Output
- Output will not proceed if wrong
 - Propagation

Inefficiencies in Verification Design

- At some points may have no output
 - Can cause issues
- Run output architecture through model
 - Output is known to the model and can always be right

Hardware Correction

- Model has two inputs
 - Original inputs
 - Hardware output
- Bypass the hardware
 - Have model directly pass output

Background

Fitting In The Model

- Model needs to incorporate intricacies of the data
 - o Cannot become too focused on a single dataset

Overfitting

Inputs Outputs

Α	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

Loss vs Accuracy

- Accuracy is fraction of correct guesses
 - Loss is difference between perfect certainty and the model's certainty
 - $\{0.55, 0.45\} = \{1.0, 0.0\}$ $\{0.98, 0.02\} = \{1.0, 0.0\}$
- Accuracy can be perfect while loss is not perfect
 - Too low of a loss can lead to overfitting

Epoch 1

 $\{0.55, 0.45\}\ \{0.63, 0.37\}\ \{0.78, 0.22\}\ \{0.90, 0.10\}\ \{0.98, 0.02\}$

Epoch 2

{0.55,0.45} {0.40,0.60} {0.37,0.63} {0.22,0.78}

Epoch 3

Epoch 4

{0.01,0.99}

Epoch 5

Final Test

This is a 4

This is not 4

This is a 4

- {0.55,0.45} {0.64,0.36} {0.80,0.20} {0.88,0.12} {0.97,0.03}

{0.55,0.45} {0.41,0.59} {0.16,0.84}

- {0.11,0.89} {0.06,0.94} This is not 4

Machine Learning Application In this Research

- Overfitting works well
 - o All possible inputs can be encompassed in a single dataset
- Has a consistent power draw
 - Circuits linearly increase in power consumption
 - Main cost input is for the initial model training
- Model can be remotely updated
 - Model is only a set of weights and biases, can be retrained remotely and the new values sent to be used
- Machine learning hardware is getting better
 - Cheaper
 - Smaller
 - More power efficient

Data Generation

- Use Verilog to generate various modules
- Use testbenches to generate the output for every possible input combination
- Testbenches created CSV of approximately 100,000 lines

Injecting Errors

- Randomly generated outputs for certain inputs.
 - Care had to be taken to ensure that the generated output was not the same as the original output.

Proof Of Concept

HighLow Model


```
Total: 4904
Correct: 4904
True 0: 4904
False 1: 0
Accuracy: 1.0
Class 1:
Total: 5095
Correct: 5095
```

True 1: 5095
False 0: 0
Accuracy: 1.0

Class 0:

loss: 6.6736e-04 - accuracy: 1.0000

Combinational

AND Gate Model

Α	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

Class 0:	
Total: 49	54
Correct:	4954
True 0: 4:	954
False 1:	0
Accuracy:	1.0
Class 1:	
Total: 50	45
Correct:	5045
True 1: 5	045
False 0:	0
Accuracy:	1.0

Accuracy: 1.0 Class 1: Total: 2522 Correct: 2522 True 1: 2522 False 0: 0 Accuracy: 1.0

Total: 7477 Correct: 7477

True 0: 7477 False 1: 0

Class 0:

loss: 1.0585e-06 - accuracy: 1.0000

loss: 1.6351e-04 - accuracy: 1.0000

Verification Model

Correction Model

OR Gate Model

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

Class 0: Class 0: Total: 2518 Total: 5048 Correct: 2518 Correct: 5048 True 0: 2518 True 0: 5048 False 1: 0 False 1: 0 Accuracy: 1.0 Accuracy: 1.0 Class 1: Class 1: Total: 4951 Total: 7481 Correct: 4951 Correct: 7481 True 1: 4951 True 1: 7481 False 0: 0 False 0: 0 Accuracy: 1.0 Accuracy: 1.0 loss: 1.6073e-04 - accuracy: 1.0000 loss: 1.6268e-04 - accuracy: 1.0000 Verification Model Correction Model

XOR Gate Model

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

Class 0:
Total: 4933
Correct: 4933
True 0: 4933
False 1: 0
Accuracy: 1.0
Class 1:
Total: 5066
Correct: 5066
True 1: 5066
False 0: 0
Accuracy: 1.0

Total: 5081 Correct: 5081 True 1: 5081 False 0: 0 Accuracy: 1.0

Class 0:

Class 1:

Total: 4918

Correct: 4918

Accuracy: 1.0

True 0: 4918

False 1: 0

loss: 1.2419e-06 - accuracy: 1.0000 loss: 1.0376e-06 - accuracy: 1.0000

Verification Model

Correction Model

Classes
Inputs Outputs

Possible Output States

0,0

0,1

1,0

1,1

Mapped Classes

0

C17 Model

Class 0: Total: 11583 Correct: 11583 True 0: 11583 False 1: 0 Accuracy: 1.0 Class 1: Total: 11748 Correct: 11748 True 1: 11748 False 0: 0 Accuracy: 1.0

loss: 8.8454e-07 - accuracy: 1.0000

Class 0: Total: 3597 Total: 6571 Correct: 6571 Correct: 3597 True 0: 6571 True 2: 3597 False 1: 0 False 0: 0 False 1: 0 False 2: 0 False 3: 0 False 3: 0 Accuracy: 1.0 Accuracy: 1.0 Class 1: Class 3: Total: 3602 Total: 9561 Correct: 9561 Correct: 3602 True 3: 9561 True 1: 3602 False 0: 0 False 0: 0 False 2: 0 False 1: 0 False 2: 0 False 3: 0 Accuracy: 1.0 Accuracy: 1.0

Class 2:

loss: 7.1704e-07 - accuracy: 1.0000

Verification Model

Correction Model

8-TO-1 Multiplexer Model

S1	S2	S3	Output
0	0	0	Α
0	0	1	В
0	1	0	С
0	1	1	D
1	0	0	Е
1	0	1	F
1	1	0	G
1	1	1	Н

Class 0:	Class 0:
Total: 5048	Total: 16718
Correct: 5048	Correct: 16718
True 0: 5048	True 0: 16718
False 1: 0	False 1: 0
Accuracy: 1.0	Accuracy: 1.0
Class 1:	Class 1:
Total: 4951	Total: 16612
Correct: 4951	Correct: 16612
True 1: 4951	True 1: 16612
False 0: 0	False 0: 0
Accuracy: 1.0	Accuracy: 1.0
1.6073e-04 - accuracy: 1.0000	loss: 5.7934e-07 - accuracy:

loss: 1.6073e-04 - accuracy: 1.0000 loss: 5.7934e-07 - accuracy: 1.000

Verification Model Correction Model

1-T0-8 DeMultiplexer Model

I	S1	S2	S3	Α	В	С	D	Е	F	G	Н
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1
0	X	Х	Х	0	0	0	0	0	0	0	0

Class 0:	Class 0: Total: 16613 Correct: 16613	
Total: 25055	True 0: 16613 False: [0, 0, 0, 0, 0, 0, 0, 0, 0]	Class 5:
Correct: 25055	Accuracy: 1.0 Class 1:	Total: 2110 Correct: 2110
True 0: 25055	Total: 2097 Correct: 2097 True 1: 2097	True 5: 2110 False: [0, 0, 0, 0, 0, 0, 0, 0] Accuracy: 1.0
False 1: 0	False: [0, 0, 0, 0, 0, 0, 0, 0, 0] Accuracy: 1.0	Class 6: Total: 2112
Accuracy: 1.0	Class 2: Total: 2117 Correct: 2117	Correct: 2112 True 6: 2112 False: [0, 0, 0, 0, 0, 0, 0, 0, 0]
Class 1:	True 2: 2117 False: [0, 0, 0, 0, 0, 0, 0, 0]	Accuracy: 1.0 Class 7:
Total: 24945	Accuracy: 1.0 Class 3: Total: 2048	Total: 2079 Correct: 2079 True 7: 2079
Correct: 24945	Correct: 2048 True 3: 2048 False: [0, 0, 0, 0, 0, 0, 0, 0, 0]	False: [0, 0, 0, 0, 0, 0, 0, 0, 0] Accuracy: 1.0
True 1: 24945	Accuracy: 1.0	Class 8: Total: 2107
False 0: 0	Total: 2047 Correct: 2047 True 4: 2047	Correct: 2107 True 8: 2107 False: [0, 0, 0, 0, 0, 0, 0, 0, 0]
Accuracy: 1.0	False: [0, 0, 0, 0, 0, 0, 0, 0, 0] Accuracy: 1.0	Accuracy: 1.0

loss: 4.6966e-07 - accuracy: 1.0000

loss: 3.1348e-06 - accuracy: 1.0000

Verification Model Correction Model

ALU Model

Sel	Out	Sel	Out
0000	A + B	1000	A and B
0001	A - B	1001	A or B
0010	A * B	1010	A xor B
0011	A/B	1011	A nor B
0100	A << 1	1100	A nand B
0101	A >> 1	1101	A xnor B
0110	A rot left by 1	1110	Out = 1 if A > B
0111	A rot right by 1	1111	Out = 1 if A = B

Class 0:
Total: 82028
Correct: 82028
True 0: 82028
False 1: 0
Accuracy: 1.0
Class 1:
Total: 81812
Correct: 81812
True 1: 81812
False 0: 0
Accuracy: 1.0

loss: 4.7324e-06 - accuracy: 1.0000

Class 0:		Class 25:			
Accuracy:	1.0	Accuracy:	1.0		
Class 1:		Class 26:			
Accuracyi	1.0	Accuracy:	1.0		
Class 2:		Class 27:			
Accuracy:	1.0	Accuracy:	1.0		
Class 3:		Class 28:			
Accuracy:	1.0	Accuracy:	1.0		
Class 4:		Class 29:			
Accuracy:	1.0	Accuracy:	1.0		
Class 5:		Class 30:	1000	Class 51:	
Accuracy:	1.0	Accuracy:	1.0	Accuracy:	-
Class 6:		Class 31:	1277271	Class 52:	
Accuracy:	1.0	Accuracy:	1.0		
Class 7:		Class 32:		Accuracy:	
Accuracy:	1.0	Accuracy:	1.0	Class 53:	
Class 8:	4.0	Class 33:	000000	Accuracy:	1
Accuracy:	1.0	Accuracy: Class 34:	1.0	Class 54:	
Class 9:	4.0			Accuracy:	1
Accuracy:	1.0	Accuracy:	1.0	Class 55:	
Class 10:	1.0	Class 35: Accuracy:	1.0	Accuracy:	1
Accuracy:	1.0	Class 36:	1.0	Class 56:	
Class 11:	1.0	Accuracy:	1.0	Accuracy:	1
Accuracy:	1.0	Class 37:	2.0	Class 57:	
Class 12:	1.0	Accuracy	1.0	Accuracy:	1
Accuracy:	1.0	Class 38:	1.0	Class 58:	
Class 13:	1.0	Accuracy:	1.0	Accuracy:	1
Accuracy:	1.0	Class 39:	100	Class 59:	
Class 14:	1.0	Accuracy:	1.0	Accuracy	1
Accuracy:	1.0	Class 40:		Class 60:	
Class 15:	1.0	Accuracy:	1.0	Accuracy:	1
Accuracy:	1.0	Class 41:		Class 61:	
Class 16:	1.0	Accuracy	1.0	Accuracy:	
Accuracy:		Class 42:		Class 62:	
Class 17:	1.0	Accuracy:	1.0		
Accuracy	1.0	Class 43:		Accuracy:	*
Class 18:	1.0	Accuracy:	1.0	Class 63:	
Accuracy:		Class 44:		Accuracy:	- 1
Class 19:	1.0	Accuracy:	1.0	Class 64:	
	1.0	Class 45:		Accuracy:	1
Accuracy: Class 20:	1.0	Accuracy:	1.0		
	1.0	Class 46:			
Accuracy:	1.0	Accuracy:	1.0		
Class 21:		Class 47:			
Accuracy:	1.0	Accuracy:	1.0		
Class 22:	1.0	Class 48:			
Accuracy:	1.0	Accuracy:	1.0		
Class 23:		Class 49:	K88501		
Accuracy: Class 24:	1.0	Accuracy:	1.0		
Accuracy:		Class 50:			

loss: 8.2208e-04 - accuracy: 1.0000

Verification Model Correction Model

Sequential

DFF Model

CLK	D	Q	~Q
Ţ	Х	Q	~Q
1	0	0	1
1	1	1	0

Class 0:
 Total: 16638
 Correct: 16638
 True 0: 16638
 False 1: 0
 Accuracy: 1.0
Class 1:
 Total: 16692
 Correct: 16692
 True 1: 16692
 False 0: 0
 Accuracy: 1.0

Class 0:
 Total: 5559
 Correct: 5559
 True 0: 5559
 False 1: 0
 Accuracy: 1.0
Class 1:
 Total: 27771
 Correct: 27771
 True 1: 27771
 False 0: 0
 Accuracy: 1.0

loss: 5.2936e-06 - accuracy: 1.0000 loss: 1.0865e-06 - accuracy: 1.0000

Verification Model

Correction Model

TFF Model

Т	Q	Q+
0	0	0
0	1	1
1	0	1
1	1	0

Class 0:
 Total: 16648
 Correct: 16648
 True 0: 16648
 False 1: 0
 Accuracy: 1.0
Class 1:

Total: 16682 Correct: 16682 True 1: 16682 False 0: 0

Accuracy: 1.0

loss: 6.0118e-07 - accuracy: 1.0000

1100414071 111

Class 0:

Total: 16496 Correct: 16496 True 0: 16496 False 1: 0 Accuracy: 1.0

Class 1:

Total: 16834 Correct: 16834 True 1: 16834 False 0: 0 Accuracy: 1.0

loss: 1.0268e-06 - accuracy: 1.0000

Verification Model

Correction Model

Conclusion

Outcome

- Models achieved perfect accuracy with little loss in all cases
 - Predictions tested after training were all perfect
- Both combinational and sequential worked
- Large and small circuits performed equally
 - Larger circuits took longer to train

Application In The World

- Replacement of voter systems
 - Theoretically can reduce power consumption at scale
- Replacement of FPGA
 - Emulate with machine learning model instead
- Sensitive hardware systems
 - Saturn V rocket had a voter system with 3 sets of hardware
 - Could instead have 3 machine learning models running

Issues

- Machine learning still has to run on hardware
 - o Processor, GPU
- Machine learning does not guarantee accuracy
 - Properly built hardware does
- Initial cost of training is high
 - Data processing
 - Model training
- All modules tested were relatively small and simple
 - Requires much more extensive testing

Further Research

- Partial datasets
 - o 25%, 50%, 75%
 - Can the model still emulate general behaviour
 - ALU
- Power consumption
 - Hard built circuit vs FPGA vs Model
- Circuit Emulation
 - FPGA vs Machine Learning Model
 - Speed in setting up
 - Edge cases

Acknowledgments

Professor Hussain Al-Asaad

Gali Steinberg-Tatman

Hans O'Flaherty

Bella Doherty

Aman Ganapathy

Alexander Gardner

Marji K. LeGrand

Questions?