Ch 11 DFT and FFT Processing

- ➤ The **DFT** (Discrete Fourier Transform) identifies the frequency contents in a signal from a set of the signal's samples.
- ➤ Most efficient implementation of DFT is **FFT** (Fast Fourier Transform)

The definition of DTFT was given

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
$$= |X(\Omega)|e^{j\theta(\Omega)}$$

Problems of implementing DTFT on a computer: An infinite number of samples are required.

Solution: DFT – by making the number of samples finite.

The DFT equation: This equation transforms a time domain signal x[n] into a frequency domain signal X[k].

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n}$$
 for $k = 0 \dots N-1$
$$= |X[k]| e^{j\theta[k]}$$

The number, N, of time samples x[n] used as input to the DFT is the same as the number, N, of frequency samples X[k] produced as output.

- \triangleright DFT magnitude spectrum against k.
- \triangleright DFT phase spectrum against k.
- \triangleright X[k] is periodic.

$$x[k+N] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{(k+N)}{N}n}$$

$$= \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n}e^{-j2\pi \frac{N}{N}n}$$

$$= \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n} \underbrace{e^{-j2\pi \frac{N}{N}n}}_{=1}$$

$$= \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{k}{N}n} = x[k]$$

The \mathbf{IDFT} (Inverse Discrete Fourier Transform) is also periodic with period, N

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{k}{N}n}$$
 for $k = 0 \dots N-1$

When the DFT and DTFT operate on the same set of time samples, the DFT matches the DTFT exactly, but **at a finite number of points only.**

Given the following x[n]

$$x[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

- a. Find the Fourier transform of x[n], that is $FT\{x[n]\} = X(e^{j\Omega})$, and plot the $|X(e^{j\Omega})|$
- b. Give the magnitude of the four-point DFT of the first four samples of x[n] and plot
- c. Give the magnitude of the eight-point DFT of the first eight samples of x[n] and plot
- d. Is the DFT the sampled version of $X(e^{j\Omega})$
- e. Is it possible to reconstruct the $X\left(e^{j\Omega}\right)$ from the eight-point DFT of part (c)

$$X(e^{j\Omega}) = 1 + e^{-j\Omega} + e^{-2j\Omega} = e^{-j\Omega}(e^{-j\Omega} + 1 + e^{j\Omega})$$
$$= e^{-j\Omega} \left[1 + 2\cos(\Omega)\right]$$

$$\left|X\left(e^{j\Omega}\right)\right| = \left|e^{-j\Omega}\left[1 + 2\cos\left(\Omega\right)\right]\right| = \left|e^{-jw}\right|\left|1 + 2\cos\left(\Omega\right)\right| = \left|1 + 2\cos\left(\Omega\right)\right|$$

-0.5000 + 0.8660i -0.5000 - 0.8660i

3.0000 1.0000 1.0000 1.0000

Columns 1 through 7

3.0000 2.4142 1.0000 0.4142 1.0000

Column 8

2.4142

- d. Is the DFT the sampled version of $X\left(e^{j\omega}\right)$: YES
- e. Is it possible to reconstruct the $X\left(e^{j\omega}\right)$ from the eight-point DFT of part (c)

YES from complex values

NO from only magnitudes unless other info are given.

Ex 11.1)

Find the DFT magnitude and phase spectra for samples of the signal and verify that the inverse DFT reproduces these samples

$$x[n] = 5\delta[n] + 2\delta[n-1] - 2\delta[n-2] + 4\delta[n-3]$$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi\frac{k}{N}n} = x[0] + x[1]e^{-j2\pi\frac{k}{4}1} + x[2]e^{-j2\pi\frac{k}{4}2} + x[3]e^{-j2\pi\frac{k}{4}3}$$

$$= 5 + 2e^{-j\pi\frac{k}{2}} - 2e^{-j\pi k} + 4e^{-j\pi\frac{k3}{2}}$$

$$X[0] = 5 + 2 - 2 + 4 = 9$$

$$X[1] = 5 + 2(-j) - 2(-1) + 4(j) = 7 + 2j$$

$$X[2] = 5 + 2(-1) - 2(1) + 4(-1) = -3$$

$$X[3] = 5 + 2(j) - 2(-1) + 4(-j) = 7 - 2j$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{k}{N}n} \qquad \text{for } k = 0 \dots N-1$$

$$= \frac{1}{N} \left[X[0] + X[1] e^{j\pi \frac{n}{2}} + X[2] e^{j\pi} + X[3] e^{j\pi \frac{3n}{2}} \right]$$

$$x[0] = \frac{1}{4} \left[9 + (7 + 2j) - 3 + (7 - 2j) \right]$$

$$= \frac{1}{4} \left[9 + 7 + 7 - 3 + (+2j - 2j) \right]$$

$$= \frac{20}{4}$$

$$= 5$$