k-Means algorithm

How to choose initial cluster representatives?

How to choose initial cluster representatives

- 1. Randomly
- 2. Randomly repeat several times
- 3. Sampling + hierarchical clustering
- 4. Furthest points
- 5. k-means++

Iteration 2

Iteration 4

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Choosing randomly several times

- 1. Select initial cluster representatives randomly
- 2. Run k-means
- 3. Repeat steps 1-2 several times and choose the best clustering

Iteration 3

Sampling + hierarchical clustering

- 1. Sample subset \mathcal{D}' of points from the dataset \mathcal{D}
- 2. Cluster D'using a hierarchical clustering technique.
- 3. Extract *k* clusters from the hierarchical clustering.
- 4. Compute the means of these k clusters, and use them as the initial cluster representatives
- 5. Proceed with the standard k-means with these cluster representatives

Sampling + hierarchical clustering

Often works well, but it is practical only if

- 1. The sampled subset \mathcal{D}' is relatively small (a few hundred to a few thousand), as hierarchical clustering is expensive
- 2. k is relatively small compared to the size of the sampled set \mathcal{D}'

Selecting furthest points

For an object \overline{X} in the dataset \mathscr{D} let $R(\overline{X})$ be the distance from \overline{X} to the closest cluster representative we have already chosen.

- 1. Select one representative \overline{Y}_1 uniformly at random from \mathcal{D} .
- 2. For every i = 2,...,k
 - 1. Select representative \overline{Y}_i from \mathscr{D} with the maximum value of $R(\cdot)$
- 3. Proceed with the standard k-means using $\overline{Y}_1, \ldots, \overline{Y}_k$ as initial cluster representatives

Selecting furthest points

The main drawback:

such an approach can select outliers, rather than points in clusters

k-means++

For an object \overline{X} in the dataset \mathcal{D} let $R(\overline{X})$ be the distance from \overline{X} to the closest cluster representative we have already chosen.

- 1. Select one representative \overline{Y}_1 uniformly at random from \mathcal{D} .
- 2. For every i = 2,...,k
 - 1. Select representative \overline{Y}_i from \mathscr{D} with probability $\overline{Y}_i = \overline{X}$ being equal to $\frac{R(\overline{X})^2}{\sum_{\overline{X}} R(\overline{X})^2}$
- 3. Proceed with the standard k-means using $\overline{Y}_1, \ldots, \overline{Y}_k$ as initial cluster representatives

k-means++

Within cluster sum of squares:
$$\phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|^2$$
.

Theorem 3.1. If C is constructed with k-means++, then the corresponding potential function ϕ satisfies, $E[\phi] \leq 8(\ln k + 2)\phi_{\mathrm{OPT}}$.

- Synthetic datasets Norm-10 and Norm-25.
 - Chose 10 (respectively 25) "real" centers uniformly at random from the hypercube of side length 500.
 - Then added points from a Gaussian distribution of variance 1, centered at each of the real centers.
 - Thus, we have a number of well separated Gaussians with the the real centers providing a good approximation to the optimal clustering.

Synthetic datasets Norm-10.

	$\text{Average } \phi$		$\text{Minimum } \phi$	
k	k-means	k-means++	k-means	k-means++
10	10898	5.122	2526.9	5.122
25	787.992	4.46809	4.40205	4.41158
50	3.47662	3.35897	3.40053	3.26072

Table 1: Experimental results on the Norm-10 dataset (n = 10000, d = 5)

Within cluster sum of squares:
$$\phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|^2$$
.

• Synthetic datasets Norm-25.

	$\text{Average } \phi$		$\text{Minimum } \phi$	
k	k-means	k-means++	k-means	k-means++
10	135512	126433	119201	111611
25	48050.5	15.8313	25734.6	15.8313
50	5466.02	14.76	14.79	14.73

Table 2: Experimental results on the Norm-25 dataset (n = 10000, d = 15)

Within cluster sum of squares:
$$\phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|^2$$
.

- The synthetic datasets: the k-means method does not perform well, because
 - the random seeding will inevitably merge clusters together, and the algorithm will never be able to split them apart.
 - the careful seeding method of k-means++ avoids this problem altogether, and it almost always attains the optimal results on the synthetic datasets

Real datasets: Cloud dataset

	$\text{Average } \phi$		$\text{Minimum } \phi$	
k	k-means	k-means++	k-means	k-means++
10	7553.5	6151.2	6139.45	5631.99
25	3626.1	2064.9	2568.2	1988.76
50	2004.2	1133.7	1344	1088

Table 3: Experimental results on the Cloud dataset (n = 1024, d = 10)

Within cluster sum of squares:
$$\phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|^2$$
.

Real datasets: Intrusion dataset

	$\text{Average } \phi$		$\text{Minimum } \phi$	
k	k-means	k-means++	k-means	k-means++
10	$3.45{\cdot}10^8$	$2.31 \cdot 10^7$	$3.25 \cdot 10^8$	$1.79 \cdot 10^7$
25	$3.15 \cdot 10^8$	$2.53 \cdot 10^{6}$	$3.1 \cdot 10^{8}$	$2.06 \cdot 10^{6}$
50	$3.08 \cdot 10^8$	$4.67 \cdot 10^5$	$3.08 \cdot 10^{8}$	$3.98 \cdot 10^5$

Table 4: Experimental results on the *Intrusion* dataset (n = 494019, d = 35)

Within cluster sum of squares:
$$\phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} \|x - c\|^2$$
.

- The real-world datasets
- On the Cloud dataset, k-means++ terminates almost twice as fast while achieving potential function (within cluster sum of squares) values about 20% better.
- On the larger Intrusion dataset: the potential value obtained by k-means++ is better by factors of 10 to 1000 and is also obtained up to 70% faster.