Aula 11 – Circuitos Aritméticos

Prof. Dr. Emerson Carlos Pedrino

024376 – Circuitos Digitais

DC/UFSCar

www.dc.ufscar.br/~emerson

Circuitos Somadores

- Circuitos que realizam operações aritméticas com números binários;
- Geralmente operação de soma e subtração;
- Utilizados na ALU (Arithmetic/Logic Unit) dos microprocessadores;

Meio Somador

- O meio somador (Half-Adder) possibilita a soma de 2 números binários de 1 bit;
- Possui 2 bits de entrada e 2 bits de saída (soma + Carry).

Meio Somador

Meio Somador

Circuito: Meio Somador

- O somador completo (Full-Adder) possibilita a soma de 2 números binários de 1 bit + o carry anterior;
- Possui 3 bits de entrada (A + B + Carry) e
 2 bits de saída (Soma + Carry).

					<u> </u>
A	В	Cin	5	Cout	AB Cin 0 1
0	0	0	0	0	00 0 1
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	11 0 1
1	0	0	1	0	10 1 0
1	0	1	0	1	
1	1	0	0	1	S = A \oplus B \oplus C _{in}
1	1	1	1	1	

					C_{out}
A	В	Cin	5	Cout	AB C _{in} 0 1
0	0	0	0	0	
0	0	1	1	0	00 0
0	1	0	1	0	01 0 1
0	1	1	0	1	11 (1)
1	0	0	1	0	10 0 1
1	0	1	0	1	
1	1	0	0	1	C - AB - AC - BC
1	1	1	1	1	$C_{out} = AB + AC_{in} + BC_{in}$

Somador de *n bits*

• Exemplo: n=4. Utilizam-se 4 somadores completos, um para cada *bit;* conecta-se cada C_{out} no C_{in} do próximo *bit;* Para o LSB pode ser utilizado um meio somador.

Somador de 4 bits

Somador Completo usando dois Meio Somadores

$$C_{out} = AB + AC_{in} + BC_{in}$$

$$00 \quad 0 \quad 0$$

$$01 \quad 0 \quad 1$$

$$C_{out} = \overline{ABC_{in}} + \overline{ABC_{in}} + AB$$

$$11 \quad 1 \quad 1$$

$$10 \quad 0 \quad 1$$

$$C_{out} = (\overline{AB} + A\overline{B})C_{in} + AB = (\overline{A} \oplus B)C_{in} + AB$$

Somador Completo usando dois Meio Somadores

Somador Completo usando dois Meio Somadores

Meio Subtrator

 O meio subtrator (Half-Subtractor) possibilita a subtração de 2 números binários de 1 bit;

 Possui 2 bits de entrada e 2 bits de saída (Subtração + Borrow).

Meio Subtrator

Circuito: Meio Subtrator

- O subtrator completo (Full-Subtractor) possibilita a subtração de 2 números binários de 1 bit + o borrow anterior;
- Possui 3 bits de entrada (A + B + Borrow) e
 2 bits de saída (Subtração + Borrow).

					5
A	В	Tin	5	Tout	AB Tin 0 1
0	0	0	0	0	AB
0	0	1	1	1	00 0 1
0	1	0	1	1	01 1 0
0	1	1	0	1	11 0 1
1	0	0	1	0	10 1 0
1	0	1	0	0	
1	1	0	0	0	$S = A \oplus B \oplus T_{in}$
1	1	1	1	1	

					Tout
A	В	Tin	5	Tout	AB Tin 0 1
0	0	0	0	0	
0	0	1	1	1	00 0 1
0	1	0	1	1	01 1 1
0	1	1	0	1	11 0 1
1	0	0	1	0	10 0 0
1	0	1	0	0	
1	1	0	0	0	T - AB . AT . BT
1	1	1	1	1	$T_{out} = \overline{AB} + \overline{AT_{in}} + \overline{BT_{in}}$

Subtrator de *n bits*

• Exemplo: n=4. Utilizam-se 4 subtratores completos, um para cada *bit;* conecta-se cada T_{out} no T_{in} do próximo *bit;* Para o LSB pode ser utilizado um meio subtrator.

Subtrator de 4 bits

Subtrator Completo usando dois Meio Subtratores

$$T_{out} = \overline{AB} + \overline{AT_{in}} + \overline{BT_{in}}$$

$$00 \quad 0 \quad 1$$

$$01 \quad 1 \quad 1$$

$$T_{out} = \overline{ABT_{in}} + \overline{ABT_{in}} + \overline{AB}$$

$$11 \quad 0 \quad 1$$

$$10 \quad 0 \quad 0$$

$$T_{out} = (\overline{AB} + \overline{AB})T_{in} + \overline{AB} = (\overline{A} \oplus \overline{B})T_{in} + \overline{AB}$$

Subtrator Completo usando dois Meio Subtratores

Subtrator Completo usando dois Meio Subtratores

Circuito Somador/Subtrator

 Pode-se construir um circuito único que seja somador/subtrator, utilizando-se uma entrada extra M para definir qual operação será realizada. Note que a saída S é a mesma para as duas operações.

Circuito Somador/Subtrator

- Essa entrada "extra" deve ser de um inversor para a entrada A no cálculo do Borrow na subtração.
- Esse inversor deve ser "controlado", pois no caso de soma, a entrada A não deve ser invertida (Carry).

Somador Completo

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$
 $T_{out} = \overline{AB} + \overline{AT}_{in} + BT_{in}$

Inversor Controlado – Porta Xor

Circuito Somador/Subtrator

• M=0 -> soma; M=1 -> subtração.

Circuito Somador/Subtrator de 4 bits

Circuito Somador/Subtrator de 8 bits

Soma

Subtração

Soma e Subtração

ULA (Unidade Lógica e Aritmética)

Tabela de funções

S ₂	S ₁	S ₀	Operação Comentários
0	0	0	CLEAR F ₃ F ₂ F ₁ F ₀ = 0000
0	1	Ó	A menos B Necessariamente C _N = 1
0	1	1	A mais B Necessariamente C _N = 0 A ⊕ B Exclusive-OR
1	0	1	A+B OR
1	1	0	AB AND
- 1	1	1	PRESET $ F_3F_2F_1F_0 = 1111$

Notas: Entradas S selecionam a operação

OVR = 1 para overflow de número com sinal.

(b)

A = número de entrada de 4 bits B = número de entrada de 4 bits

C_N = carry na posição LSB

S = entradas de seleção de 3 bits

F = número de saída de 4 bits

C_{N+4} = carry de saída da posição MSB

OVR = indicador de overflow

Exercícios*©

• 1. Provar:

Exercícios*©

• 2. Para a ULA anterior, determine F, OVR e C_{n+4} nas seguintes condições:

- a. S=010; A=0100; B=0001; C_n =1.

- b. S=011; A=0100; B=0001; C_n=1.

Obs.: Faça comentários.

Referências

- Tocci, R. J. et al. Sistemas Digitais (princípios e aplicações), 10a Edição. Pearson, 2007.
- Vieira, M. A. C. SEL-0414-Sistemas Digitais, EESC-USP.