Fisica CdL in Viticoltura ed Enologia

Problema 1: Un punto materiale P di massa $m=462\,\mathrm{g}$ si muove su un piano orizzontale non ideale, con coefficiente di attrito pari a μ =0.268.

- i) Calcolare la forza massima che si può applicare a P prima che inizi a muoversi partendo da fermo. (1 pt)
- ii) Se si applica a P, inizialmente in quiete, una forza pari a $F=9.37\,\mathrm{N}$, trovare l'accelerazione di P. (1.5 pt)
- iii) Nelle stesse condizioni del punto (ii), calcolare la velocità di P dopo $t=13\,\mathrm{s}$. (1 pt)
- iv) Nelle stesse condizioni del punto (ii), calcolare in quanto tempo (in secondi) P percorre una distanza pari a $s=55\,\mathrm{cm}$. (1.5 pt)
- v) Nelle stesse condizioni del punto (iv), calcolare il lavoro della forza di attrito quando P percorre quella stessa distanza. (2 pt)

Soluzione:

- i) La forza massima che si può applicare a P prima che inizi a muoversi partendo da fermo è pari al valore massimo della forza di attrito, cioè $F_{max} = \mu mg = 1.21 \,\mathrm{N}.$
- ii) Il punto P è soggetto alla forza $F_{tot} = F \mu mg = 8.16$ N, quindi subirà un'accelerazione $a = F_{tot}/m \sim 17.7 \,\mathrm{m/s^2}$.
- iii) Essendo un moto uniformemente accelerato, si ha $v = at \sim 229 \,\mathrm{m/s}$.
- iv) Visto che $s = \frac{1}{2}at^2$, si ottiene $t = \sqrt{2s/a} \sim 0.25$ s.
- v) Il lavoro della forza di attrito è pari a $L_a = F_a s = \mu mgs = 0.67$ J.

Problema 2: Un cilindro con pistone contiene $m_v = 500 \,\mathrm{g}$ di vapore d'acqua alla temperatura $T_i = 130^{\circ}\mathrm{C}$ ed è tenuto a pressione costante pari alla pressione atmosferica ($P_{atm} = 1.013 \times 10^5 \,\mathrm{Pa}$).

- i) Calcolare quanto calore deve essere sottratto al vapore per portarlo alla temperatura $T_1 = 100$ °C. (Assumere che l'acqua sia ancora in forma di vapore dopo questa trasformazione). (1 pt)
- ii) Si continua a sottrarre calore al sistema fino a che esso non arriva alla temperatura di $T_2 = 30$ °C. Quanto calore è stato sottratto al sistema in questa trasformazione? In che fase è l'acqua dopo la trasformazione? (Si noti che il sistema va prima incontro ad una transizione di fase e poi ad un raffreddamento.) (2 pt)
- iii) A questo punto un cubetto di acciaio di massa $m_a = 300 \,\mathrm{g}$ alla temperatura $T_a = 90^{\circ}\mathrm{C}$ viene immerso nell'acqua. Dopo un po' di tempo il sistema raggiunge l'equilibrio termico. Calcolare la temperatura di equilibrio. (Il calore specifico dell'acciaio è $c_a = 448 \,\mathrm{J/kg}$.°C.) (2 pt)
- iv) Quanto calore è ceduto dall'acciaio all'acqua nella trasformazione considerata al punto iii)? (0.5 pt)
- v) Nelle condizioni iniziali del sistema (temperatura T_i e pressione P_{atm}) quale è il volume occupato dal vapore d'acqua. (Si usi il fatto che una mole di vapore di acqua ha massa 18 g e si assuma che il vapore d'acqua si comporti come un gas perfetto.) (1.5 pt)

Soluzione:

i) Durante la trasformazione avviene solamente un cambiamento di temperatura del vapore, quindi il calore sottratto può essere calcolato con la formula dei calori specifici

$$Q = c_{vapore} m_v (T_i - T_1) = (2010 \,\mathrm{J/kg} \cdot ^{\circ} \,\mathrm{C})(0.5 \,\mathrm{kg})(130 \,^{\circ} \mathrm{C} - 100 \,^{\circ} \mathrm{C}) = 30150 \,\mathrm{J}.$$

ii) La trasformazione avviene in due stadi, nel primo il vapore condensa in acqua liquida (transizione di fase) e la temperatura rimane fissa a $T_1 = 100$ °C, successivamente l'acqua viene raffreddata sino a raggingere la temperatura $T_2 = 30$ °C. Il calore sottratto è dato dalla somma del calore sottratto durante la transizione di fase e di quello sottratto durante il raffreddamento

$$Q = L_v m_v + c_{acqua} m_v (T_1 - T_2)$$

= $(2.26 \times 10^6 \text{ J/kg})(0.5 \text{ kg}) + (4186 \text{ J/kg} \cdot ^\circ \text{C})(0.5 \text{ kg})(100^\circ \text{C} - 30^\circ \text{C}) = 1.277 \times 10^6 \text{ J}.$

iii) La temperatura di equilibrio T_{fin} può essere calcolata osservando che il calore ceduto dal cubetto di acciaio è pari al calore assorbito dall'acqua. Quindi otteniamo

$$c_a m_a (T_a - T_{fin}) = -c_{acqua} m_v (T_2 - T_{fin}) \qquad \Rightarrow \qquad T_{fin} = \frac{c_a m_a T_a + c_{acqua} m_v T_2}{c_a m_a + c_{acqua} m_v}$$

Si noti il segno meno al secondo membro della prima equazione, che deriva dal fatto che il calore è *ceduto* dal cubetto di acciaio e *assorbito* dall'acqua. Sostituendo i valori numerici otteniamo

$$T_{fin} = \frac{(448\,\mathrm{J/kg} \cdot ^{\circ}\mathrm{C})(0.3\,\mathrm{kg})(90^{\circ}\mathrm{C}) + (4186\,\mathrm{J/kg} \cdot ^{\circ}\mathrm{C})(0.5\,\mathrm{kg})(30^{\circ}\mathrm{C})}{(448\,\mathrm{J/kg} \cdot ^{\circ}\mathrm{C})(0.3\,\mathrm{kg}) + (4186\,\mathrm{J/kg} \cdot ^{\circ}\mathrm{C})(0.5\,\mathrm{kg})} = 33.62^{\circ}\mathrm{C}\,.$$

iv) Il calore ceduto dall'acciaio è

$$Q = c_a m_a (T_a - T_{fin}) = (448 \,\mathrm{J/kg} \cdot ^{\circ} \,\mathrm{C})(0.3 \,\mathrm{kg})(90 \,^{\circ} \,\mathrm{C} - 33.62 \,^{\circ} \,\mathrm{C}) = 7577 \,\mathrm{J}.$$

v) Il numero di moli di vapore è dato da $n = m_v/(18 \,\mathrm{g/mol}) = 22.78 \,\mathrm{mol}$. Usando l'equazione di stato dei gas perfetti PV = nRT otteniamo che il volume occupato dal vapore è

$$V = \frac{nRT_i}{P_{atm}} = \frac{(22.78\,\mathrm{mol})(8.314\,\mathrm{J/mol\cdot K})((273.15+130)\,\mathrm{K})}{1.013\times10^5\,\mathrm{Pa}} = 0.9191\,\mathrm{m}^3\,.$$

Si noti che la temperatura deve essere espressa in kelvin.

Domande a risposta multipla (risposta corretta 1.5 pt, nessuna risposta 0 pt, risposta errata -0.25 pt)

- 1. Un auto di massa $m=1995\,\mathrm{kg}$ si muove di moto uniformemente accelerato con accelerazione $a=1.87\,\mathrm{m/s^2}$. Quanto spazio (in metri) percorre in un tempo di $t=5\,\mathrm{s}$.
 - a) 46.75 m
- b) 23.38 m
- c) 4.675 m
- d) 9.35 m

Soluzione: La soluzione corretta è la b) dato che $s = 1/2at^2$ - notare che non dipende dalla massa.

- 2. Quale delle seguenti affermazioni non è corretta?
 - a) Un punto materiale non soggetto a forze sta sempre in quiete.
 - b) Un punto materiale soggetto a forze si muove di moto accelerato.
 - c) La massa di un punto materiale è una sua proprietà intrinseca.
 - d) Un punto materiale soggetto a forze acquisisce un'accelerazione proporzionale alla forza applicata.

Soluzione: La soluzione corretta è la a) in quanto un punto materiale non soggetto a forze si può anche muovere di moto rettilineo uniforme (legge di inerzia o primo principio della dinamica di Newton).

- 3. Un auto A si muove su una strada rettilinea a velocità v_A =77 km/h, mentre un auto B in corsia di sorpasso si muove nella stessa direzione alla velocità v_B =85 km/h. Calcolare la velocità relativa di B rispetto ad A (senza segno).
 - a) 77 km/h
- b) $162 \, \text{km/h}$
- c) 8 km/h
- d) 85 km/h

Soluzione: La soluzione corretta è la c). La velocità relativa di B rispetto ad A è $v_B - v_A$.

- 4. Calcolare l'energia cinetica (in Joule) di un punto materiale P di massa $m=1322\,\mathrm{g}$ e velocità di $30\,\mathrm{km/h}$.
 - a) 5.508 J
- b) 45.9 J
- c) 91.81 J
- $d)\ 594900\, J$

<u>Soluzione</u>: La soluzione corretta è la b). L'energia cinetica è $E_c = 1/2mv^2$. Attenzione a convertire le unità di misura nel S.I., in particolare la massa in kg e la velocità in m/s (dividendo per 3.6 da km/h).

- 5. Un punto materiale P di massa $m=3\,\mathrm{kg}$ si muove di moto circolare uniforme su una circonferenza di raggio $R=269\,\mathrm{cm}$. Sapendo che compie un giro completo in $t=7\,\mathrm{s}$, trovare la forza centripeta a cui è soggetto P.
 - a) 724 N
- b) 6.495 N
- c) 649.5 N
- d) 7.24 N

<u>Soluzione</u>: La soluzione corretta è la b). Infatti $F_{centr} = m\omega^2 R$, dove $\omega = 2\pi/T$ e T è il tempo necessario a compiere un giro completo sulla circonferenza (convertire il raggio R da cm a m).

6. Trovare l'energia potenziale elastica di una molla ideale di costante elastica $k=37\,\mathrm{N/m}$, se questa viene compressa di 17.8 cm.

a) 3.293 J

- b) $-0.5862 \,\mathrm{J}$
- c) 5862 J
- d) 0.5862 J

<u>Soluzione</u>: La soluzione corretta è la d). L'energia potenziale elastica di una molla ideale è pari a $E_{el}=1/2k\Delta x^2$, dove Δx è l'allungamento o la compressione della molla (il segno di Δx è irrilevante).

7. A quante calorie corrispondono $Q = 840 \,\mathrm{J}$?

a) 3516 cal

- b) 200.7 cal
- c) 420 cal
- d) 840 cal

Soluzione: La soluzione corretta è la b). Una caloria corrisponde a 4.186 J otteniamo quindi che

$$Q = 840 \,\mathrm{J} = \frac{840 \,\mathrm{J}}{4.186 \,\mathrm{J/cal}} = 200.7 \,\mathrm{cal}\,.$$

8. Un blocco di cemento alla temperatura di $T_0 = -8^{\circ}\text{C}$ ha un volume di $V = 175\,\text{m}^3$. Quanto <u>varia</u> il suo volume quando la temperatura raggiunge il valore $T_1 = 15^{\circ}\text{C}$? (Il coefficiente di dilatazione <u>lineare</u> del cemento è $\alpha = 14 \times 10^{-6} (^{\circ}\text{C})^{-1}$.)

a) $-0.1127 \,\mathrm{m}^3$

- b) $0.1691 \,\mathrm{m}^3$
- c) $0.05635 \,\mathrm{m}^3$
- d) $0 \, \text{m}^3$

<u>Soluzione</u>: La soluzione corretta è la b). Poiché il blocco di cemento si espande in ogni direzione per un fattore $1 + \alpha \cdot (T_1 - T_0)$, ottenizmo che il volume dopo l'espansione è pari a

$$V_{fin} = V \cdot (1 + \alpha \cdot (T_1 - T_0))^3$$
,

ovvero la variazione di volume del blocco di cemento è pari a

$$\Delta V = V_{fin} - V = (1 + \alpha \cdot (T_1 - T_0))^3 \cdot V - V = (1 + 14 \times 10^{-6} (^{\circ}\text{C})^{-1} (15^{\circ}\text{C} - (-8)^{\circ}\text{C}))(175 \text{ m}^3) - 175 \text{ m}^3 = 0.1691 \text{ m}^3.$$

Un metodo (approssimato) equivalente per ottenere il risultato è ricordare che il coefficiente di espansione cubica β è pari a tre volte il coefficiente di espansione lineare, $\beta = 3\alpha$. Quindi

$$\Delta V = \beta (T_1 - T_0)V = 3 \times (14 \times 10^{-6} (^{\circ}\text{C})^{-1})(15^{\circ}\text{C} - (-8)^{\circ}\text{C})(175 \,\text{m}^3) = 0.1691 \,\text{m}^3.$$

9. Una vasca cilindrica aperta alta $h = 147 \,\mathrm{cm}$ contiene $V = 3594 \,\mathrm{L}$ di olio. Se l'olio riempie completamente la vasca, quale è la differenza tra la pressione sul fondo del recipiente stesso e la pressione atmosferica? (Si usi il valore $\rho_{olio} = 920 \,\mathrm{kg/m^3}$ per la densità dell'olio.)

a) 1352 Pa

- b) $1.327 \times 10^6 \, \text{Pa}$
- c) 13270 Pa
- d) 14420 Pa

Soluzione: La soluzione corretta è la a). La pressione esercitata da una colonna di fluido alta h è, secondo a legge di Stevino, data da

$$P = \rho g h = (920 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(1.47 \text{ m}) = 13270 \text{ Pa}.$$

Si noti che il problema chiede la differenza di pressione rispetto alla pressione atmosferica, ovvero richiede solamente la pressione aggiuntiva esercitata dall'olio. La pressione assoluta sul fondo della vasca è invece data dalla somma della pressione calcolata prima e della pressione atmosferica.

- 10. Quale delle seguenti affermazioni collegate al principio dei vasi comunicanti è corretta? (Si consideri un liquido fermo e si trascurino gli effetti di capillarità.)
 - a) Il liquido raggiunge la stessa altezza in tutti i vasi comunicanti.
 - b) L'altezza del liquido nei diversi vasi è proporzionale alla densità del liquido.
 - c) L'altezza del liquido nei diversi vasi è inversamente proporzionale all'area della sezione di ciascun vaso.
 - d) L'altezza del liquido nei diversi vasi è direttamente proporzionale all'area della sezione di ciascun vaso.

<u>Soluzione</u>: La soluzione corretta è la a). Nel limite in cui si trascura la capillarità l'altezza del liquido nei vari vasi non dipende dalle caratteristiche dei vasi nè dalle proprietà del liquido.

11. Tre resistori con resistenza $R_1 = 11.3 \,\Omega$, $R_2 = 9.76 \,\Omega$ e $R_3 = 19.1 \,\Omega$ sono collegati in serie. Quanto vale la resistenza equivalente?

a) $0.2433 \,\Omega$

- b) $0.0249\,\Omega$
- c) 4.11 Ω
- d) $40.16\,\Omega$

Soluzione: La soluzione corretta è la d). La resistenza equivalente di resistori in serie è pari alla somma delle resistenze

$$R_{eq} = R_1 + R_2 + R_3 = (11.3 \,\Omega) + (9.76 \,\Omega) + (19.1 \,\Omega) = 40.16 \,\Omega.$$

- 12. Un circuito è costituito da un generatore che produce una differenza di potenziale $\Delta V = 209\,\mathrm{V}$ collegato ad un resistore. Sapendo che il resistore assorbe una potenza $P = 3.87\,\mathrm{kW}$, determinare la sua resistenza.
 - a) 0.0886Ω
- b) 0.05401Ω
- c) 54.01 Ω
- d) $11.29\,\Omega$

<u>Soluzione:</u> La soluzione corretta è la d). La potenza assorbita dal resistore può essere calcolata usando la formula $P = \Delta V^2/R$. Quindi otteniamo

$$R = \frac{\Delta V^2}{P} = \frac{(209 \,\mathrm{V})^2}{3870 \,\mathrm{W}} = 11.29 \,\Omega \,.$$

Costanti fisiche

• • •	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
gravità	
acc. gravità Terra	$g = 9.81 \mathrm{m/s^2}$
acc. gravità Luna	$g_L = 1.62\mathrm{m/s^2}$
densità	
acqua	$\rho = 1000 \mathrm{kg/m^3}$
olio	$\rho = 920\mathrm{kg/m^3}$
calori specifici	
acqua	$c = 4186 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$
ghiaccio	$c = 2090 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$
vapore (a pressione costante)	$c = 2010 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$
acciaio	$c = 448 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$
calori latenti	
fusione ghiaccio	$L_f = 3.33 \times 10^5 \mathrm{J/kg}$
vaporizzazione acqua	$L_v = 2.26 \times 10^6 \mathrm{J/kg}$
costanti termodinamiche	
costante universale dei gas	$R = 8.314 \mathrm{J/mol \cdot K}$
costante di Boltzmann	$k_B = 1.38 \times 10^{-23} \mathrm{J/K}$
numero di Avogadro	$N_A = 6.022 \times 10^{23} / \text{mol}$
equiv. meccanico del calore	$1\mathrm{cal} = 4.186\mathrm{J}$
zero assoluto	$-273.15^{\circ}{\rm C}$