	Note
	I II
Name Vorname	
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	
	3
${\bf Unterschrift\ der\ Kandidatin/des\ Kandidaten}$	
	5
TECHNISCHE UNIVERSITÄT MÜNCHEN	
Fakultät für Mathematik	
Probeklausur	7
Mathematik 3 für Physik	'
(Analysis 2)	
Prof. Dr. S. Warzel	
15. Juni 2009, 12:20 – 13:50 Uhr	\sum
Hörsaal: Platz:	I Erstkorrektur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	IIZweitkorrektur
Bearbeitungszeit: 90 min	Zweitkollektul
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter	
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	
Nur von der Aufsicht auszufüllen:	1
Hörsaal verlassen von bis	
Vorzeitig abgegeben um	

 $Musterl\ddot{o}sung \quad \ \ ({\rm mit\; Bewertung})$

Besondere Bemerkungen:

1. Stetigkeit (8 Punkte)

Sei $f \in C(\mathbb{R}^n, \mathbb{R}^m)$ und $M \subset \mathbb{R}^m$ offen. Zeigen Sie, dass das Urbild $f^{-1}(M) \subset \mathbb{R}^n$ offen ist. LÖSUNG:

<u>Beh</u> Das stetige Urbild einer offenen Menge ist offen.

Bew Wir geben drei Alternativen an.

Alternative 1: M offen bedeutet: Für jedes $y \in M$ gibt es ein $\epsilon > 0$, so dass $B_{\epsilon}(y) \subset M$. Annahme: $f^{-1}(M)$ ist nicht offen. Dann gibt es ein $x \in f^{-1}(M)$ und zu jedem $\epsilon = \frac{1}{n}$, $n \in \mathbb{N}$, immer ein x_n mit $x_n \notin f^{-1}(M)$. Offenbar gilt $x_n \to x$. Da f stetig ist, folgt $f(x_n) \to f(x)$. Da M offen ist gibt es ein $\epsilon > 0$ mit $B_{\epsilon}(y) \subset M$. D.h. fast alle $f(x_n)$ liegen in M, im Widerspruch zu $x_n \notin f^{-1}(M)$ für alle $n \in \mathbb{N}$.

Alternative 2: Das Komplement von M, M^c , ist abgeschlossen. D.h., ist $y_n \in M^c$, $n \in \mathbb{N}$, mit $y_n \to y$, so ist auch $y \in M^c$. Wir zeigen, dass $f^{-1}(M)^c$ abgeschlossen und damit, dass $f^{-1}(M)$ offen ist: Sei $x_n \in f^{-1}(M)^c$, $n \in \mathbb{N}$ mit $x_n \to x \in \mathbb{R}^n$. Damit ist $f(x_n) \in M^c$ und, wegen der Stetigkeit von f gilt $f(x_n) \to f(x) \in M^c$, da M^c abgeschlossen ist. Das bedeutet aber, dass $x \in f^{-1}(M)^c$.

Alternative 3: Mit ϵ - δ Definition.

Sei x in $f^{-1}(M)$. Da M offen ist, gibt es ein $\epsilon > 0$ mit $B_{\epsilon}(f(x)) \subset M$. Da f stetig ist gibt es zu diesem ϵ ein $\delta > 0$, so dass für alle $y \in B_{\delta}(x)$ auch $f(y) \in B_{\epsilon}(f(x))$, d.h. $y \in f^{-1}(M)$. Also ist $f^{-1}(M)$ offen.

Ist die Definition von "offen", bzw. "abgeschlossen" richtig benutzt oder explizit angegeben: [2]. Ist die Definition der Stetigkeit (Folgen- oder ϵ – δ -) richtig verwendet oder explizit angegeben: [2]. Für richtige Beweisführung: [4].

2. Krümmung einer Klothoide

(6 Punkte)

[2]

Zeigen Sie, dass die Krümmung $\kappa(t)$ der Kurve

$$\vec{r}(t) = \begin{pmatrix} \int_0^t \cos(u^2/2) \, \mathrm{d}u \\ \int_0^t \sin(u^2/2) \, \mathrm{d}u \end{pmatrix}$$

an der Stelle t > 0 gleich ihrer Länge L(t) ist.

HINWEIS: Die Krümmungsformel lautet $\kappa = |(\dot{x}\ddot{y} - \ddot{x}\dot{y})/(\dot{x}^2 + \dot{y}^2)^{3/2}|$, wobei $\vec{r} = \binom{x}{y}$.

Sei t > 0. Wir berechnen zuerst die Krümmung mit der Formel aus dem Hinweis. [2]

$$\dot{x}(t) = \cos(t^2/2), \quad \ddot{x}(t) = -t\sin(t^2/2), \quad \dot{y}(t) = \sin(t^2/2), \quad \ddot{y}(t) = t\cos(t^2/2)$$

Einsetzen ergibt nun [2]

$$\kappa(t) = \left| \frac{t \cos^2(t^2/2) + t \sin^2(t^2/2)}{(\cos^2(t^2/2) + \sin^2(t^2/2))^{3/2}} \right| = t.$$

Die Länge berechnet sich aus

 $L(t) = \int_0^t |\dot{\vec{r}}(u)| \, \mathrm{d}u = \int_0^t \sqrt{\dot{x}(u)^2 + \dot{y}(u)^2} \, \mathrm{d}u = t.$

3. Wegintegral (4 Punkte)

Sei $F \in C(\mathbb{R}^3, \mathbb{R}^3)$ ein Kraftfeld und $x \in C^2([t_0, t_1], \mathbb{R}^3)$, $t \mapsto x(t)$, die Bahn eines Teilchens der Masse m = 1, welches sich unter dem Einfluss der Kraft F gemäss des 2. Newtonschen Gesetzes $F(x(t)) = m \ddot{x}(t)$ im Zeitintervall $[t_0, t_1]$ von $x(t_0) = (0, 0, 0)$ nach $x(t_1) = (1, 1, 1)$ bewege und bei $x(t_0)$ die Geschwindigkeit $|\dot{x}(t_0)| = 0$ und bei $x(t_1)$ die Geschwindigkeit $|\dot{x}(t_1)| = 1$ besitze. Wie groß ist die von F geleistete Arbeit, d.h. die entlang der Teilchenbahn integrierte Kraft?

$$\square \quad -1 \qquad \boxtimes \quad \frac{1}{2} \qquad \square \quad \frac{3}{2} \qquad \square \quad \frac{1}{4} \qquad \square \quad -\frac{1}{2}$$

LÖSUNG:

Beh Die Arbeit ist gleich der Differenz der kinetischen Energien.

Bew Wir integrieren die Kraft entlang des Weges,

$$\int_{x} F(y) \cdot dy = \int_{t_0}^{t_1} dt \, F(x(t)) \cdot \dot{x}(t) = \int_{t_0}^{t_1} \ddot{x}(t) \cdot \dot{x}(t) dt = \frac{1}{2} \int_{t_0}^{t_1} \frac{d}{dt} |\dot{x}(t)|^2 dt = \frac{1}{2} (|\dot{x}(t_1)|^2 - |\dot{x}(t_0)|^2)$$

$$= \frac{1}{2}.$$

4. Separierbare Differentialgleichungen

(8 Punkte)

(a) Finden Sie auf ganz \mathbb{R} definierte Lösungen von $yy' = x(1-y^2)$ mit $y(0) = y_0, y_0 \in \mathbb{R} \setminus \{0\}$.

Für $y_0 > 0$: (2) Für $y_0 < 0$: $y(x) = \sqrt{1 - e^{-x^2}(1 - y_0^2)}$ y(x) = -

(b) Wieviele konstante Lösungen gibt es?

(2)

 $\square \ 0 \qquad \square \ 1$

 \Box 1

 \square 3

- \Box 4
- (c) Wieviele auf ganz \mathbb{R} definierte Lösungen mit y(0) = 0 gibt es?

(2)

- $\Box 0$
- X 2

X 2

 $\Box 3 \qquad \Box 4$

LÖSUNG:

(a) Wir lösen durch Separation der Variablen. Für eine Lösung y(x) mit $y(0) = y_0$ muss gelten

$$\int_{y_0}^{y(x)} \frac{y \, dy}{1 - y^2} = \int_0^x x' \, dx', \quad \text{also} \quad -\frac{1}{2} \ln|1 - y(x)|^2 + \frac{1}{2} \ln|1 - y_0|^2 = \frac{1}{2}x^2.$$

Da die Integration über die Singularitäten $y=\pm 1$ nicht möglich ist, müssen $1-y_0^2$ und $1-y(x)^2$ für alle x das gleiche Vorzeichen haben. Somit ergibt beidseitiges exponenzieren

$$1 - y(x)^2 = e^{-x^2}(1 - y_0^2).$$

Die rechte Seite ist immer kleiner als 1. Damit y(x) stetig ist, muss also gelten

$$y(x) = \begin{cases} \sqrt{1 - e^{-x^2}(1 - y_0^2)}, & \text{falls } y_0 > 0, \\ -\sqrt{1 - e^{-x^2}(1 - y_0^2)}, & \text{falls } y_0 < 0, \end{cases}$$

denn der Radikant ist in beiden Fällen immer positiv.

- (b) Die rechte Seite der Differentialgleichung ist Null für alle x, genau dann, wenn $y = \pm 1$ ist. Somit sind $y(x) = \pm 1$ genau zwei konstante Lösungen.
- (c) Für $y_0 = 0$ sind $y_{\pm}(x) = \pm \sqrt{1 e^{-x^2}}$ die einzigen zwei Lösungen auf $\mathbb{R} \setminus \{0\}$ mit $\lim_{x \to 0} y_{\pm}(x) = 0$. Für kleine x gilt $y_{\pm}(x) \approx \pm \sqrt{x^2} = \pm |x|$. Somit gibt es genau zwei Lösungen

$$y_1(x) = \begin{cases} y_+(x), & \text{für } x > 0, \\ 0, & \text{für } x = 0, \\ y_-(x), & \text{für } x < 0, \end{cases} \quad \text{und} \quad y_2(x) = -y_1(x),$$

die auf ganz \mathbb{R} differenzierbar und Lösungen der Differentialgleichung mit y(0) = 0 sind.

5. Lineare Differentialgleichungen

(8 Punkte)

Gegeben ist die Differentialgleichung y''' + 7y'' + 15y' + 9y = 0 (*).

(a) Welche Dimension hat der Lösungsraum von (*)?

(2)

 $\square \ 0 \qquad \square \ 1 \qquad \square \ 2 \qquad \boxtimes \ 3 \qquad \square \ 4$

(b) Welche der folgenden Funktionen von x sind Lösungen von (*)?

(2)

 $\Box - \ln x$ $\boxtimes 0$ $\Box 1$ $\boxtimes 2e^{-x}$ $\Box 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$

(c) Geben Sie ein Fundamentalsystem von (*) an:

(2)

$$(e^{-x}, e^{-3x}, xe^{-3x})$$

(d) Geben Sie die Menge aller reellen Lösungen der Differentialgleichung y''' + 7y'' + 15y' + 9y = 3 an: (2)

$$\left\{ \frac{1}{3} + a_1 e^{-x} + a_2 e^{-3x} + a_3 x e^{-3x} \mid a_1, a_2, a_3 \in \mathbb{R} \right\}$$

LÖSUNG:

- (a) (*) ist eine homogene lineare Differentialgleichung dritter Ordnung, ihr Lösungsraum ist also dreidimensional.
- (b) (*) hat konstante Koeffizienten, somit sind ihre Lösungen Produkte von Polynomen (maximal 2. Grades) und Exponentialfunktionen, und Linearkombinationen davon. Die Nullfunktion ist immer eine Lösung. Man überprüft leicht, dass auch e^{-x} eine Lösung ist, da -1 Nullstelle des charakteristischen Polynoms ist.
- (c) Das charakteristische Polynom ist $\chi(\lambda) = \lambda^3 + 7\lambda^2 + 15\lambda + 9$ mit der aus (b) bekannten Nullstelle -1. Polynomdivision ergibt $\chi(\lambda) = (\lambda+1)(\lambda^2+6\lambda+9) = (\lambda+1)(\lambda+3)^2$. Also ist -3 noch eine doppelte Nullstelle. Somit ist $(e^{-x}, e^{-3x}, xe^{-3x})$ Basis des Lösungsraums.
- (d) Offenbar ist die konstante Lösung $y(x) = \frac{1}{3}$ Lösung der inhomogenen Dgl. Der gesamte Lösungsraum besteht aus der Summe dieser konstanten Lösung und einer beliebigen Lösung des inhomogenen Systems.

6. Differenzierbarkeit

(8 Punkte)

Sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \frac{x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

(a) Für den Punkt a = (0,0) und den Vektor $v = (v_1, v_2) \in \mathbb{R}^2$ mit |v| = 1 berechne man

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = v_1^2 v_2$$

und

[2]

$$\partial_x f(a) = 0$$

$$\partial_y f(a) = 0$$

(b) Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist.

[4]

LÖSUNG:

(a) Die Richtungsableitung von f im Punkt a in Richtung v ist

$$\partial_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = \lim_{t \to 0} \left(\frac{t^3 v_1^2 v_2}{t t^2 (v_1^2 + v_2^2)} - 0 \right) = f(v) = v_1^2 v_2,$$

da |v| = 1

[2 Punkte]

Wegen
$$f(x,0) = 0$$
 ist $\partial_x f(0,0) = 0$ und wegen $f(0,y) = 0$ ist $\partial_y f(0,0) = 0$

[2 Punkte]

(b) $\underline{\text{Beh}}$ f ist im Ursprung nicht total differenzierbar.

Bew Gemäss Definition aus der Vorlesung ist f total differenzierbar im Punkt $(x_0, y_0) \in \mathbb{R}^2$, falls eine lineare Abbildung $A \in \mathbb{R}^{1 \times 2}$ existiert, so dass

$$\lim_{(h_1,h_2)\to(0,0)} \frac{f((x_0,y_0)+(h_1,h_2))-f(x_0,y_0)-A(h_1,h_2)}{|(h_1,h_2)|} = 0.$$

[1 Punkt]

Außerdem ist die Matrix A eindeutig bestimmt und gleich der Jacobi-Matrix $Df(x_0, y_0)$ an der Stelle (x_0, y_0) . [1 Punkt]

Nach Aufgabenteil (a) gilt im Ursprung $(x_0, y_0) = (0, 0)$, dass $Df(0, 0) = (\partial_x f(0, 0), \partial_y f(0, 0)) = (0, 0)$. Wählen wir nun $(h_1, h_2) = (h, h) \neq 0$, so lautet obiger Differenzenquotient im Ursprung

$$\frac{f(h,h) - f(0,0) - Df(0,0)(h,h)}{|(h,h)|} = 2^{-3/2} \frac{h}{|h|}.$$

Daraus folgt, dass der Differenzenquotient im Limes $h \to 0$ gegen $\pm 2^{-3/2}$ und nicht gegen 0 strebt, was im Widerspruch steht zur Definition der totalen Differenzierbarkeit. [2 Punkte]

7. Extrema (Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,	8 Punkte)
$f(u,v) := u^3 + v^3 + u^2 + v^2,$	
und die folgenden Punkte in \mathbb{R}^2 ,	
$x_1 = (0,0), x_2 = (0,2/3), x_3 = (-2/3,0), x_4 = (-1,0), x_5 = (-2/3,-2/3), x_7 = (-1,0), x_8 =$	[/] 3).
Welche Aussagen sind richtig?	
(a) f besitzt einen kritischen Punkt in $\boxtimes x_1 \Box x_2 \boxtimes x_3 \Box x_4 \boxtimes x_5$	[2]
(b) f besitzt eine lokales Maximum in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \boxtimes x_5$	[2]
(c) f besitzt eine lokales Minimum in $X x_1 \square x_2 \square x_3 \square x_4 \square x_5$	[2]
(d) f besitzt einen Sattelpunkt in $\Box x_1 \Box x_2 \boxtimes x_3 \Box x_4 \Box x_5$	[2]
LÖSUNG:	
(a) Beh x_1, x_3 und x_5 sind kritische Punkte von f . Bew Um die kritischen Punkte zu bestimmen, berechnen wir die Nullstellen des von f , $\nabla f(u, v) = (u(3u + 2), v(3v + 2)) = (0, 0),$	s Gradienten
woraus folgt, dass x_1 , x_3 und x_5 kritische Punkte sind. x_2 und x_4 sind keine kritische	chen Punkte.
(b) <u>Beh</u> f besitzt in x_5 ein lokales Maximum. <u>Bew</u> Wir berechnen die Hesse-Matrix, $H_f(u,v) = \begin{pmatrix} 6u+2 & 0 \\ 0 & 6v+2 \end{pmatrix}.$	
An den kritischen Punkten x_1 , x_3 und x_5 erhalten wir,	
$H_f(x_1) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, H_f(x_3) = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}, H_f(x_5) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}.$	
$H_f(x_1)$ hat den doppelten Eigenwert $2 > 0$, $H_f(x_3)$ die Eigenwerte $-2 < 0$ und $H_f(x_5)$ den doppelten Eigenwert $-2 < 0$. Also hat f in x_5 ein lokales Maximum.	1 2 > 0 und

(c) <u>Beh</u> f besitzt in x_1 ein lokales Minimum. <u>Bew</u> $H_f(x_1)$ hat den doppelten Eigenwerte 2>0.

(d) <u>Beh</u> f besitzt in x_3 einen Sattelpunkt. <u>Bew</u> $H_f(x_3)$ die Eigenwerte -2 < 0 und 2 > 0. 8. Taylor-Formel (8 Punkte)

(a) Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$, $a, x \in U$. Welches sind die Voraussetzungen für die Gültigkeit der Taylorformel 1. Ordnung für f(x) im Entwicklungspunkt a, in der das Restglied durch die Hesse-Matrix in einem Punkt ausgedrückt wird?

(b) Wie lautet die Taylor-Formel in diesem Fall? [6]

$$f(x) = f(a) + \operatorname{grad} f(a) \cdot (x-a) + \frac{1}{2} (x-a) \cdot H_f(a + \theta(x-a))(x-a) \quad \text{für ein } \theta \in [0,1]$$

LÖSUNG:

LÖSUNG

(a) Die Voraussetzungen lauten:

- (1) $f \in C^2(U, \mathbb{R})$ [1 Punkt] (2) U konvex, oder zumindest $(1-t)a + tx \in U$ für alle $t \in [0,1]$ [1 Punkt]
- (b) Nach dem Satz von Taylor existiert ein $\theta \in [0, 1]$, sodass [1 Punkt]

$$f(x) = f(a) + (\nabla f)(a) \cdot (x - a) + \frac{1}{2}(x - a) \cdot H_f(a + \theta(x - a))(x - a).$$

[1+2+2 Punkte]