Contrôle de géométrie analytique $N^{\circ}3$

Γ	Ourée : 1 heure 45 minutes	Barème sur 15 points	
NOM:		Groupe	Groupo
PRENOM:			

1. Le plan est muni d'un repère orthonormé d'origine $\,O\,.\,$

On donne les points A(-2;0) et B(2;0).

Soient le cercle γ de diamètre AB et P un point courant de γ .

On considère les droites a = (AP) et $b = (B, \overrightarrow{\Omega P})$, où Ω est le centre de γ .

Lorsque P décrit le cercle γ , déterminer l'équation cartésienne du lieu de S intersection des droites a et b.

Caractériser avec précision ce lieu.

3.5 pts

2. Dans le plan muni d'un repère orthonormé, on donne les équations cartésiennes de deux cercles γ_1 et γ_2 et les coordonnées d'un point P:

$$\gamma_1 : (x-6)^2 + (y-3)^2 - 1 = 0, \qquad \gamma_2 : x^2 + y^2 - 4 = 0$$
 et $P(0; -1)$.

On considère les cercles $\gamma(\Omega, r)$ orthogonaux à γ_1 et tels que la polaire de Ω par rapport à γ_2 passe par P.

- a) Déterminer l'équation cartésienne de la famille $\mathcal F$ des cercles γ dépendante d'un paramètre.
- b) Soit M un point du plan et γ un cercle de la famille \mathcal{F} . Déterminer les coordonnées de ce point M et de ce cercle γ sachant que les tangentes à γ_1 , γ_2 et γ issues de M sont isométriques et de longueur $2\sqrt{3}$.

Donner la solution pour laquelle les coordonnées de M sont des entiers.

4 pts

3. On considère la famille de coniques dépendante du paramètre réel λ suivantes:

$$\mathcal{F}: \frac{(x-2-\lambda)^2}{(2+\lambda)^2} + \frac{(y-4\lambda)^2}{(\lambda+1)(\lambda+3)} - 1 = 0 , \quad \lambda \neq -3, -2, -1.$$

- a) Déterminer les valeurs de λ de sorte que cette équation, relativement à un repère orthonormé du plan, soit une ellipse.
- b) Déterminer la direction du grand-axe de ces ellipses selon les valeurs prises par le paramètre λ .
- c) On considère l'ellipse dont le centre est sur l'axe Ox. Déterminer le(s) point(s) de l'ellipse dont la tangente a pour pente $m = \frac{1}{2}$.

5 pts

4. Dans le plan, on considère un cercle $\gamma_1(\Omega_1, r_1)$, une droite t, un point S appartenant à t et une droite p.

Soit γ un cercle de centre Ω et rayon r tel que :

- ullet la droite $\,t\,$ est une tangente à $\,\gamma\,$.
- le point S est le centre d'un cercle orthogonal à γ et à γ_1 .
- le pôle de p par rapport à γ_1 appartient à γ .

Construire rigoureusement (règle, équerre, compas), sur la donnée graphique de la page suivante, le cercle γ .

2.5 pts

