模式识别第九章非监督学习方法

北京航空航天大学计算机学院

引言

- * 监督学习(supervised learning): 用已知类别的样本训练分类器,以求对训练集数据达到某种最优,并能推广到对新数据的分类
- * 非监督学习(unsupervised learning): 样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类, clustering)

监督与非监督学习方法比较

- * 监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律;而非监督学习只有一组数据,在该组数据集内寻找规律。
- * 监督学习方法的目的是识别事物,给待识别数据加上标注(label),因此训练样本集必须由带标注的样本组成。而非监督学习方法只有要分析的数据集本身,没有标注。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不以与某种预先的分类标注对上号为目的。

主要的非监督学习方法

- *基于概率密度函数估计的直接方法:设法找到各类别在特征空间的分布参数再进行分类,如直方图方法。
- *基于样本间相似性度量的间接聚类方法:设法定出不同类别的核心或初始类核,然后依据样本与这些核心之间的相似性度量将样本聚集成不同类别。

基于概率密度函数估计的直接方法

*划分整个空间为N个区域,使得每个区域的概率

密度函数是单峰的

*例: 玉米与杂草

基于概率密度函数估计的直接方法

* 多维分布

基于相似性度量的间接聚类方法

- *根据样本间的相似性,使某种准则函数最大(小)
- * C均值方法(K均值方法),使下述准则最小:

$$J = \sum_{i=1}^{C} \sum_{y \in \Gamma_i} ||y - m_i||^2$$

单峰子集的分离方法

*思想:把特征空间分为若干个区域,在每个 区域上混合概率密度函数是单峰的,每个单 峰区域对应一个类别。

*一维空间中的单峰分离:对样本集K_N={x_i}应用 直方图/Parzen窗方法估计概率密度函数,找 到概率密度函数的峰以及峰之间的谷底,以 谷底为阈值对数据进行分割。

一维空间中的单峰子集分离

 $\underset{k=1,...,L}{\operatorname{argmin}} p(k)$

灰度图像二值化算法示例

Count: 65024 Min: 8 Mean: 103.269 Max: 248

StdDev: 71.057 Mode: 48 (10396)

多维空间投影方法

- *多维空间y中直接划分成单峰区域比较困难, 把它投影到一维空间x中来简化问题。
- * 投影方法举例:

如何确定合适的投影方向U

- *使投影{x=u^Ty}的方差最大:方差越大,类之间分离的程度也可能越大
- * 样本协方差矩阵的最大本征值对应的本征向量满足这样的要求
- *存在问题:这样投影有时并不能产生多峰的边缘密度函数

如何确定合适的投影方向U

*存在问题:这样投影有时并不能产生多峰的边缘密度 函数

投影方法算法步骤

- * 计算样本y协方差矩阵的最大本征值对应的本征向量u,把样本数据投影到u上,得到v=uTy
- * 用直方图/Parzen窗法求边缘概率密度函数p(v)
- * 找到边缘概率密度函数的各个谷点,在这些谷点 上作垂直于u的超平面把数据划分成几个子集
- *如果没有谷点,则用下一个最大的本征值代替
- * 对所得到的各个子集进行同样的过程,直至每个子集都是单峰为止

- * 设数据集Y划分为c个子集 Γ_i , i=1,2,...,c
- *每个子集中样本数为 N_i ,总样本数为N
- *考查类条件概率密度的加权估计值:

$$f(y|\Gamma_i) = \frac{N_i}{N} p(y|\Gamma_i)$$

* 定义指标

$$J = \frac{1}{2} \int \sum_{i=1}^{c} \sum_{j=1}^{c} \left[f(y|\Gamma_i) - f(y|\Gamma_j) \right]^2 p(y) \, dy$$
它反映了 $f(y|\Gamma_i)$ 和 $f(y|\Gamma_j)$ 之间的"距离"

*目标:求使】最大的子集划分

$$f(y|\Gamma_i) = \frac{1}{N_i} \sum_{j=1}^{N_i} k(y, y_i), y \in \Gamma_i$$
 (Parzen窗法)

* 考查某个样本 y_k ,若它原属于 Γ_j ,从 Γ_j 移入 Γ_i ,得到新的 Γ_j 和 Γ_i ,则显然

$$f(y|\widetilde{\Gamma}_i) \geq f(y|\Gamma_i)$$
 $f(y|\widetilde{\Gamma}_j) \leq f(y|\Gamma_j)$ 记 $f(y|\widetilde{\Gamma}_i) = f(y|\Gamma_i) + \Delta f_i$, 例 $\Delta f_i = -\Delta f_j = \frac{1}{N} k(y, y_k)$

*把 y_k 从 Γ_j 移入 Γ_i 引起的指标变化量:

$$\Delta J = \int \left\{ \left[f(y|\widetilde{\Gamma}_i) - f(y|\widetilde{\Gamma}_j) \right]^2 - \left[f(y|\Gamma_i) - f(y|\Gamma_j) \right]^2 \right.$$

$$\left. + \sum_{k=1, k \neq i, j}^c \left[\left(f(y|\Gamma_k) - f(y|\widetilde{\Gamma}_j) \right)^2 - \left(f(y|\Gamma_k) - f(y|\Gamma_j) \right)^2 \right.$$

$$\left. + \left(f(y|\Gamma_k) - f(y|\widetilde{\Gamma}_i) \right)^2 - \left(f(y|\Gamma_k) - f(y|\Gamma_i) \right)^2 \right] \right\} p(y) dy$$

$$= \int \left[2c\Delta f_i \right]^2 p(y) dy + 2c \int \left[f(y|\Gamma_i) - f(y|\Gamma_j) \right] \Delta f_i p(y) dy$$

第一项恒大于0,第二项差越大,ΔJ越大

- * 通过把 y_k 从 Γ_j 移入 Γ_i ,使J增大,故应选择使 ΔJ 尽可能大的 Γ_i 移入,即选择 $f(y_k|\Gamma_i) = \max_l f(y_k|\Gamma_l)$ 以使 $|f(y|\Gamma_i) f(y|\Gamma_i)|$ 最大,从而使 ΔJ 最大。
- * 若存在两个(或以上)子集的 $f(y_k|\Gamma_i)$ 最大(相等),则可移入其中任一类。

* 算法步骤:

- (1) 初始划分Y
- (2) 对每个样本 y_k , k = 1, ..., N, 逐一计算 $f(y_k | \Gamma_i)$, 并 归入使 $f(y_k | \Gamma_i)$ 最大的子集中
- (3) 重复(2), 直到不再有样本发生转移

类别分离的间接方法

- * 目标: 类内元素相似性高, 类间元素相似性低
- * 该类方法的两个要点:
 - *相似性度量
 - * 准则函数
- * 相似性度量:

样本间相似性度量: 特征空间的某种距 离度量

样本与样本聚类间 相似性度量

$$\delta(x_i, x_j) = (x_i - x_j)^T (x_i - x_j)$$

$$\delta(x_i, K_j)$$

总结

- * 不同的聚类方法实际上反映了对聚类(及数据)的不同理解:
 - * 混合模型: 数据服从混合分布, 聚类对应于各分布
 - *单峰子集:聚类即概率分布中的单峰,即样本分布相对集中的区域
 - * 间接方法: 相似的样本聚类,不同聚类的样本不相似

动态聚类方法

* 距离函数: 进行相似性度量

*准则函数:评价聚类结果的质量

* 迭代, 直到准则函数取得极值

K均值算法

- * 给定D维空间上的数据集 $\{x_1,...,x_N\}$, 并不知道这些数据集所对应的类型和标号, 通过聚类方法将这些数据集划分成K类。
- *对于K个聚类中的每一类k,分别建立一个代表点 μ_k ,将每一个样本划归到离该样本最近的 μ_k 所代表的聚类。
- *目的:最小化一个准则函数]

*对于样本 x_n ,定义一个聚类标注 r_n ,即如果样本 x_n 属于第k个聚类,则:

$$r_{nk}=1$$
, $r_{nj}=0$ for $j\neq k$

*希望每个样本与最接近它的聚类代表点之间的距离尽可能小,定义准则函数:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$
 r_{nk}

* 两步走策略

- * 初始化: 对聚类代表点µk进行初始化
- * 迭代进行下述步骤, 直至收敛:
 - * 第一步: 根据 μ_k , 按照最优化准则计算 r_{nk}

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \qquad r_{nk} = \begin{cases} 1 & \text{if } k = \underset{j}{\operatorname{argmin}} ||x_n - \mu_j||^2 \\ 0 & \text{otherwhise.} \end{cases}$$

* 第二步:根据 r_{nk} ,按照最优准则计算 μ_k

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \longrightarrow 2 \sum_{n=1}^{N} r_{nk} (x_n - \mu_k) = 0 \longrightarrow \mu_k = \frac{\sum_{n=1}^{N} r_{nk} x_n}{\sum_{n=1}^{N} r_{nk}}$$

迭代 r_{nk} **Expectation** 迭代 μ_k **Maximization**

- *初始划分:一般可先选代表点,再进行初始分类
- * 代表点选择方法:
 - * 1. 经验选择
 - * 2. 随机分成c类, 选各类重心作为代表点
 - * 3. "密度"法
 - * 计算每个样本的一定球形领域内的样本数作为"密度",选"密度"最大的样本点作为第一个代表点,在离它一定距离之外选最大"密度"点作为第二个代表点,…,依次类推

- * 4. 用前c个样本点作为代表点
- *5. 用c-1聚类求c个代表点:各类中心外加离它们最远的样本点,从1类开始
- * •••••

- * K均值聚类方法用于非监督模式识别的问题:
 - *1.要求类别数已知;
 - * 2. 是最小方差划分,并不一定能反映内在分布;
 - * 3. 与初始划分有关,不保证全局最优。

如何获取类别C

- *一种实验确定方法:
 - * 对c = 1, 2, 3, ...,取类,求 $J_e(c)$,如图找其中的拐点(图中 $\hat{c} = 3$)

(此方法并不总有效,并非所有情况都能找到明显的转折点)

- * 迭代自组织数据分析算法
- * ISODATA算法功能于K均值算法相比,在以下几方面有所改进:
 - *考虑了类别的合并与分裂,因而有自我调整类别数的能力。合并主要发上在某一类内样本个数太少的情况,或两类聚类中心之间的距离太小的情况
 - * 算法具有自我调整的能力

- * ISODATA算法与K均值算法有相似之处,即聚类中心根据样本的均值来修改。
- *不同的是,这种算法进行的过程中聚类中心的数目不是固定不变、而是反复进行修改。聚类既有合并也有分裂,合并与分裂是在一组预先选定的参数指导下进行的。

* 算法步骤:

- *(1)初始化,聚类数c,中心 m_i , i=1,...,c (期望聚类数k)
- * (2) 把所有样本分到距离最近的类中, Γ_i ,i=1,...,c
- *(3) 若某个类 Γ_j 中样本数过少($N_j < \theta_N$),则去掉这一类(合入其他类),置c = c 1
- * (4) 重新计算均值 $m_j = \frac{1}{N_j} \sum_{y \in \Gamma_j} y$, y = 1, ..., c

* (5) 计算第 j 类样本与其中心的平均距离

$$\overline{\delta}_j = \frac{1}{N_j} \sum_{y \in \Gamma_j} \|y - m_j\|, \quad j = 1, ..., c$$

和总平均距离 $\overline{\delta} = \frac{1}{N} \sum_{j=1}^{c} N_j \, \overline{\delta}_j$

*(6)若是最后一次迭代(由参数I确定),则程序停止;

若 $c \le k/2$,则转(7)(分裂)(聚类中心小于或等于希望数的一半):

若 $c \geq 2k$, 或是偶数次迭代,则转(8)(合并)(聚类中心数目大于或等于希望数的两倍)。

*(7)(分裂)

7-1 对每个类,求各维标准偏差 $\sigma_j = [\sigma_{j1}, \sigma_{j2}, ..., \sigma_{jd}]^T$

$$\sigma_{ji} = \sqrt{\frac{1}{N_j} \sum_{y_k \in \Gamma_j} (y_{ki} - m_{ji})^2}, j = 1, ..., c, i = 1, ..., d$$

7-2 对每个类, 求出标准偏差最大的分量 $\sigma_{i \max}$, j=1,...,c

7-3 若对 $\sigma_{j \max}$, j=1,...,c, 存在 $\sigma_{j \max} > \theta_s$ (标准偏差参数,即该类样本在 $\sigma_{j \max}$ 对应方向上的标准偏差大于允许的值)

且 $\overline{\delta_j} > \overline{\delta}$ 且 $N_j > 2(\theta_N + 1)$ (类内平均距离大于总体平均距离,并且该类中样本数很大)

或 $c \leq k/2$ (聚类数小于或等于希望数目的一半)

则 Γ_j 分裂为两类,中心分别为 m_j^+ 和 m_j^- ,置c=c+1

$$m_j^+ = m_j + r_j, \qquad m_j^- = m_j - r_j$$

其中 $r_j = k\sigma_{j\, ext{max}}, \quad 0 < k \le 1$

- *(8)(合并)
 - 8-1 计算各类中心之间的距离

$$\boldsymbol{\delta_{ij}} = \|\boldsymbol{m_i} - \boldsymbol{m_j}\|, i, j = 1, ..., c, i \neq j$$

8-2 比较 δ_{ij} 与 θ_c (合并参数),对小于 θ_c 者排序:

$$\delta_{i_1j_1} < \delta_{i_2j_2} < ... < \delta_{i_lj_l}$$

8-3 把 m_{i_l} 和 m_{j_l} 合并:

$$m_l = \frac{1}{N_{i_l} + N_{j_l}} [N_{i_l} m_{i_l} + N_{j_k} m_{j_k}]$$

并置c=c-1。每次迭代中避免同一类被合并两次。

ISODATA分法

*(8)若是最后一次迭代,则终止。

否则转(2)。(必要时可调整算法参数)

基于样本与聚类间相似性度量的动态聚类算法

- * C均值方法的缺点:用均值代表类,适用于近似球状分布的类
- * 改进:
 - * 用核 $K_j = k(y, V_j)$ 来代表一个类 Γ_j 。 V_j 是参数集。核 k_j 可以是一个函数、一个点集或某种分类模型
 - * 定义样本y到类 Γ_j (核 k_j)之间的相似性度量 $\Delta(y,k_j)$ 准则函数 $J_k = \sum_{j=1}^c \sum_{y=\Gamma_i} \Delta(y,k_j)$

基于样本与聚类间相似性度量的动态聚类算法

- * (1) 初始划分,得到初始核 k_i , j=1,...,c
- * (2) 按以下规则把各样本分类:

若
$$\Delta(y, k_j) = \min_{h=1,...,c} \Delta(y, k_h)$$

则 $y \in \Gamma_j$

* (3) 更新 k_j , j = 1, ..., c, 若 k_j 不变,则终止; 否则 转 (2)

C均值可看作 k_i 为 m_i , Δ 为欧氏距离下的特例

核函数示例

* 1. 正态核函数:

$$k(y, v_j) = \frac{1}{(2\pi)^{d/2} |\widehat{\Sigma}_j|^{1/2}} \exp\left\{-\frac{1}{2} (y - m_j)^T \widehat{\Sigma}_j^{-1} (y - m_j)\right\}$$
$$\Delta(y, k_j) = \frac{1}{2} (y - m_j)^T \widehat{\Sigma}_j^{-1} (y - m_j) + \frac{1}{2} \log|\widehat{\Sigma}_j|$$

* 2. 主轴核函数:

用K-L变换得到样本子集的主轴方向作为核:

$$k(y, V_j) = U_j^T y$$
 (V_j 表示参数集)

 $U_j^T = \begin{bmatrix} u_1, u_2, ..., u_{d_j} \end{bmatrix}$ 是样本协方差矩阵 $\hat{\Sigma}_j$ 的 d_j 个最大本征值的本征向量系统,则样本到核的相似性度量为:

$$\Delta(y, k_j) = \left[\left(y - m_j \right) - U_j V_j^T (y - m_j) \right]^T \left[\left(y - m_j \right) - U_j V_j^T (y - m_j) \right]$$

- * 在人类认识客观世界过程中,将事物分级分类是一种很有效的手段。
 - * 最典型的例子就是生物学上对物种的分类,将所有生物按照界、门、纲、目、科、属、种等级别进行分类。 越相似的物种就在越低的层次上被归为一类;最相似的物种被分在同一个"种",相似的种又被分在同一个"属",以此类推
- * 这种思想也可以自然运用到聚类分析中,即分级聚类 (hierarchical clustering) 方法

- * 聚类分析是把N个没有类别标签的样本分成一些合理的类,在极端的情况下,最多可以分成N类,即每个样本自成一类;最少可以只有一个类,即全部样本都归为一类。
- *可以从N类到1类逐级地进行类别划分,求得一系列 类别数从多到少的划分方案,然后根据一定的指标 选择中间某个适当的划分方案作为聚类的结果,这 就是分级聚类的基本思想

- * 聚类划分序列: N个样本自底向上逐步合并成一类, 算法步骤为
 - *(1)初始化,每个样本自成一类(划分水平1)
 - *(2) K水平划分的进行(合并): 计算已有的c=N-K+1个类的类间距离矩阵 $\mathbf{D}^{(K-1)}=[d_{ij}]^{(K-1)}$,其最小元素记作 $\mathbf{d}^{(K-1)}$,相应的两个类合并成一类
 - *(3) 重复第2步,直至形成包含所有样本的类(划分水平N)

- * 划分处于K水平时,类数c=N-K+1,类间距离矩阵 $\mathbf{D}^{(K)}=[d_{ii}]^{(K)}$,其最小元素记作 $\mathbf{d}^{(K)}$
- *如果d(K)>阈值dT,则说明此水平上的聚类是适宜的

分级聚类树表示方法

两聚类间的距离度量

- * 聚类 K_i 与 K_j 间的距离度量
 - * 最近距离: $\Delta(K_i, K_j) = \min_{x \in K_i, y \in K_j} \delta(x, y)$
 - * 最远距离: $\Delta(K_i, K_j) = \max_{x \in K_i, y \in K_j} \delta(x, y)$

* 均值距离: $\Delta(K_i, K_j) = \delta(m_i, m_j)$

非监督学习的一些问题

- * 非监督学习存在更大的不确定性: 可利用信息少
 - * 相似性度量一般对数据尺度较敏感
- *影响聚类结果的因素:样本的分布、样本数量、聚类准则、相似性度量、预分类数等
- *针对不同数据、不同目标选择不同的聚类算法
- *动态聚类算法计算效率高,实际应用多

非监督学习的一些问题

- *一些解决办法:
 - * 先验知识
 - * 多次试算
 - * 改进算法(如自组织映射SOM, 模糊C均值方法Fuzzy C-means)
 - *实现确定类别数
 - * 对相似性度量的依赖性

具体实现及应用

- * K均值聚类算法具体实现
- * K均值聚类算法的应用
 - * 基于K均值聚类的图像分割

- *以K=2为例,说明K均值的实现过程
- *初始化:对聚类代表点µk进行初始化
 - *图中蓝色及红色的x: 初始化的两个聚类代 表点μ₁及μ₂

- * 迭代进行下述步骤, 直至收敛:
 - * 第一步:根据 μ_k ,按照最优化准则计算 r_{nk}

$$r_{nk} = \begin{cases} 1 & \text{if } k = \underset{j}{\operatorname{argmin}} \|x_n - \mu_j\|^2 \\ 0 & \text{otherwhise.} \end{cases}$$

- * 对每个蓝色圆点代表的 样本n,有 $r_{n1} = 1$ 且 $r_{n2} = 0$
- * 对每个红色圆点代表的 样本n,有 $r_{n1}=0$ 且 $r_{n2}=1$

- * 迭代进行下述步骤, 直至收敛:
 - * 第二步:根据 r_{nk} ,按照最优准则计算 μ_k

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

*图中蓝色及红色x: 更新后的两个类别的 代表点µ₁及µ₂

- * 迭代进行两步走策略
 - * 第一步: 根据 μ_k , 按照最优化准则计算 r_{nk}
 - * 第二步:根据 r_{nk} ,按照最优准则计算 μ_k

- * 迭代进行两步走策略
 - * 第一步: 根据 μ_k , 按照最优化准则计算 r_{nk}
 - * 第二步: 根据 r_{nk} , 按照最优准则计算 μ_k

- * 迭代进行两步走策略
 - * 第一步: 根据 μ_k , 按照最优化准则计算 r_{nk}
 - * 第二步: 根据 r_{nk} , 按照最优准则计算 μ_k

- * 迭代何时停止?
 - *判断聚类代表点µk是否改变
 - *判断准则函数/是否收敛
 - * 迭代超过一定的次数
 - *

*准则函数]的变化曲线

- * 数字图像
 - * M行N列构成的一个像素矩阵 (M×N)
- * 像素
 - * R, G, B
- * 数字图像就是一个三维矩阵 (M×N×3)
- * 图像分割就是把图像分成若干个特定的、 具有独特性质的区域的过程,而分割的目 的是将图像分解不同部分,这些分解结果 对于特定应用具有意义
- * 我们可以将每个像素视为是一个样本点, 利用K均值聚类算法,得到每个像素点对 应的聚类标注,那么就可以得到图像的分 割结果

* K=2时图像的分割结果 (蓝色及黄色分别对应两个聚 类,显示了所有对应像素的均值)

原始图像

图像分割结果 (K=2)

* K=3时图像的分割结果

原始图像

图像分割结果 (K=3)

* K=10时图像的分割结果

原始图像

图像分割结果 (K=10)

- 可以通过图像分割,对图像进行压缩
- 当图像分割的目标时图像压缩时,在聚类时,需要对压缩率和压缩后的图像质量进行权衡。聚类数K值越大,压缩率越低,压缩后的图像质量越高,越接近原始图像

K=2

K=3

K=10

原始图像

谢谢