BRIEF: Computing a Local Binary Descriptor Very Fast

Castleberry, Cherry, and Firth

October 11, 2012

Motivation: A 256-Byte Descriptor?

Figure : A SURF descriptor stores 64 orientation values as 4-byte integers.

Problem Definition: Make It Smaller, Compute It Faster

Figure: Reduce the size by a factor of 8.

Background: Hamming Distance

Background: Hamming Distance

00011101 10010111	01101011101 10010101010	10
10001010 Bit count = 3	10001110101 11000110100	3
XOR EAX, EBX POPCNT EAX, EAX	11101110111 10101010101	?

Method: Sampling Distributions

Figure: Sampling distributions.

Method: Patch Test

$$\tau(p; \mathbf{x}, y) := \begin{cases} 1 & \text{if } I(\mathbf{p}, \mathbf{x}) < I(\mathbf{p}, \mathbf{y}) \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Method: Descriptor Formula

$$\sum_{1 \le i \le n_d} 2^{i-1} \tau(\rho; x_i, y_i) \tag{2}$$

Method: Example of Distribution

Example of Patch Test on Distribution

Γ1	3	5	4	2
3	2 5	1	8	7
9	5	4	6	4
[1 3 9 7 2	9 3	5	2	1
2	3	6	5	2 7 4 1 4

X	у	$\mid au$
2	3	1
3	8	1
9	4	0
1	2	1
6	1	0
11010		

Figure : Sampling distributions.

Example of Patch Test on Distribution

[3	2	1	8	7
9	2 5 9	4	6	4
[3 9 7 1 2	9	5	2	7 4 1 2 4
1	3	5	4	2
2	3	6	5	4

Х	у	au
2	9	1
2	6	1
3	5	1
4	4	0
6	2	0
11100		

Figure: Sampling distributions.


```
1 1 0 1 0
1 1 1 0 0
y y n n y
```

Hamming distance: 2.

Method: Sampling

$$\mathbf{X} \leftarrow Gaussian(0, \frac{1}{25} S^2)$$

 $\mathbf{Y} \leftarrow Gaussian(0, \frac{1}{25} S^2)$ (3)

$$\mathbf{X} \leftarrow Gaussian(0, \frac{1}{25} S^2)$$

 $\mathbf{Y} \leftarrow Gaussian(x, \frac{1}{100} S^2)$ (4)

Method: Sampling Distributions

Figure : Sampling distributions.

Experimental Setup

- U-BRIEF
- S-BRIEF
- O-BRIEF
- D-BRIEF

Conclusion

BRIEF > SURF.

Previous Work: Principal Component Analysis

Previous Work: Floating-Point Quantization

Figure : Quantization with a 3-Bit Mantissa.