Notas de Métodos de Geoestatística

Luciano Garim

June 21, 2022

1 Krigagem de Indicadores

A krigagem de indicadores é uma forma não linear e não paramétrica de krigagem, que se aplica a variáveis que são indicadores binários da ocorrência de um evento.

$$I_k(\mathbf{u}) = \begin{cases} 1, & \text{se o evento ocorre na localização } \mathbf{u} \\ 0, & \text{caso contrário.} \end{cases}$$
 (1)

Para uma váriável contínua:

$$I_k(\mathbf{u}; z_k) = \begin{cases} 1, & \text{se } Z(\mathbf{u}) \le z_k \\ 0, & \text{caso contrário.} \end{cases}$$
 (2)

O resultado é a estimação de uma função de distribuição acumulada condicional, que se representa como um mapa o modelo de probabilidades de ocorrência de um evento.

A particularidade de um indicador de krigagem é que ele nos fornece uma estimação de krigagem que se pode interpretar diretamente como uma estimação de probabilidade de que um evento não amostrado ocorra na posição ${\bf u}$ condicionada aos dados observados $n({\bf u})$.

$$I_{SK}^*(\mathbf{u}) = P^*\{I(\mathbf{u}) = 1 | n(\mathbf{u})\} = \sum_{\alpha=1}^{n(\mathbf{u})} \lambda_{\alpha}(\mathbf{u}) I_k(\mathbf{u}_{\alpha}) + \left[1 - \sum_{\alpha=1}^{n(\mathbf{u})} \lambda_{\alpha}(\mathbf{u})\right] \cdot p_0, \quad (3)$$

onde $p_0 = E\{I(\mathbf{u})\} = P\{I(\mathbf{u}) = 1\}$ (probabilidade média de que o evento ocorra independente da localização de \mathbf{u}).

1.1 Variograma de Indicadores

Define-se o variograma indicador para uma categoria S_k , como o variograma dos indicadores codificados para tal categoria. Os indicadores podem tomar valores numéricos 1 e 0.

$$\hat{g}_I(\mathbf{h}; s_k) = \frac{1}{2|N(\mathbf{h})|} \sum_{N(\mathbf{h})} \left[I(\mathbf{u}; s_k) - I(\mathbf{u} + \mathbf{h}; s_k) \right]^2 \tag{4}$$

Existem 4 cenários possíveis quando se calcula o variograma de indicador:

• Ambos os pontos \mathbf{u} e $\mathbf{u} + \mathbf{h}$ prevalecem na categoria k.

$$(1-1)^2 = 0$$

• Ambos os pontos \mathbf{u} e $\mathbf{u} + \mathbf{h}$ não prevalecem na categoria k.

$$(0-0)^2=0$$

• O ponto \mathbf{u} prevalece na categoria $k \in \mathbf{u} + \mathbf{h}$ não.

$$(1-0)^2 = 1$$

• O ponto ${\bf u}$ não prevalece na categoria k e ${\bf u}+{\bf h}$ sim.

$$(0-1)^2 = 1$$

Note que só há contribuição no cálculo do variograma do indicador quando ocorre uma transição de uma categoria para outra.

1.1.1 Exemplo

Para ilustrar a técnica apresentada, considere 3 pontos amostrais, dois deles são da categoria A e um da categoria B. Na Figura 1, o ponto marcado com um xis é o qual devemos classificar, em categoria A ou B.

Figure 1: Exemplo

Para cada rocha, temos um indicador específico.

Figure 2: Direita: Indicador da Rocha A. Esquerda: Indicador da Rocha B

Rocha A (Indicador 1)

$$I(\mathbf{u};k) = \begin{cases} 1, & \text{se } Z(\mathbf{u}) = A \\ 0, & \text{caso contrário.} \end{cases}$$
 (5)

Rocha B (Indicador B)

$$I(\mathbf{u};k) = \begin{cases} 1, & \text{se } Z(\mathbf{u}) = B\\ 0, & \text{caso contrário.} \end{cases}$$
 (6)

Considere o seguinte variograma:

$$V(h) = 0.25 \cdot sph\left(\frac{\mathbf{h}}{30}\right) \tag{7}$$

Ou seja,

$$V(\mathbf{h}) = 0.25 \cdot \begin{cases} 0, & \text{se } \mathbf{h} = 0 \\ 1.5 \cdot \left(\frac{\mathbf{h}}{30}\right) - 0.5 \cdot \left(\frac{\mathbf{h}}{30}\right)^3, & \text{se } 0 \le \mathbf{h} \le 30 \\ 1, & \text{se } \mathbf{h} > 30 \end{cases}$$
(8)

Para facilitar a notação, conside m_1 , m_2 e m_3 a localização das rochas A superior, A inferior e B, respectivamente. Calculando **h**:

V(h)	m1	m2	m3
m1	0	26	38.42
m2	26	0	40
m3	38.42	40	0
$I^*(\mathbf{u})$	24	10	30

Agora, calculando a semivariancia $V(\mathbf{h})$, temos:

V(h)	m1	m2	m3
m1	0	0.24	0.25
m2	0.24	0	0.25
m3	0.25	0.25	0
$I^*(\mathbf{u})$	0.24	0.12	0.25

Logo após, obtemos a covariância:

V(h)	m1	m2	m3
m1	0.25	0.01	0
m2	0.01	0.25	0
m3	0	0	0.25
$I^*(\mathbf{u})$	0.01	0.13	0

Partimos, então para a resolução do sistema linear de equações:

$$\begin{bmatrix} C(X_1, X_1) & \dots & C(X_1, X_n) \\ \vdots & \vdots & \vdots & \vdots \\ C(X_n, X_1) & \dots & C(X_n, X_n) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} = \begin{bmatrix} C(X_1, X) \\ \vdots \\ C(X_n, X) \end{bmatrix}.$$
(9)

Em particular,

$$\begin{bmatrix} 0.25 & 0.01 & 0 \\ 0.01 & 0.25 & 0 \\ 0 & 0 & 0.25 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.13 \\ 0 \end{bmatrix}.$$
 (10)

A solução do sistema acima é: $\lambda_1=0.02,\ \lambda_2=0.52$ e $\lambda_3=0$. Finalmente, temos o valor $I^*(\mathbf{u})$ para cada rocha:

Rocha A:

$$I^*(\mathbf{u}) = 0.02 \cdot 1 + 0.52 \cdot 1 + 0 \cdot 0 + (1 - (0.02 + 0.52 + 0)) \cdot 0.5$$

= 0.77

Rocha B:

$$I^*(\mathbf{u}) = 0.02 \cdot 0 + 0.52 \cdot 0 + 0 \cdot 1 + (1 - (0.02 + 0.52 + 0)) \cdot 0.5$$

= 0.23

Tomando a maior probabilidade, temos que o ponto não amostrado é uma rocha do tipo ${\bf A}.$