## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C09B 67/00, A61K 7/13

(11) International Publication Number:

WO 97/19998

A1 |

(43) International Publication Date:

5 June 1997 (05.06.97)

(21) International Application Number:

PCT/DK96/00498

(22) International Filing Date:

29 November 1996 (29.11.96)

(30) Priority Data:

1356/95

30 November 1995 (30.11.95) DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): AASLYNG, Dorrit [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). SØRENSEN, Niels, Henrik [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK). RØRBÆK, Karen [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK).
- (74) Common Representative: NOVO NORDISK A/S; Corporate Patents, Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### **Published**

With international search report.

(54) Title: AN ENZYME FOR DYING KERATINOUS FIBRES

(57) Abstract

The present invention relates to a dyeing composition, a method for dying keratinous fibres, in particular hair, fur, hide and wool, and the use of a Scytalidium laccase for dyeing.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AM | Armenia                  | GB   | United Kingdom               | MW | Malawi                   |
|----|--------------------------|------|------------------------------|----|--------------------------|
| AT | Austria                  | GE   | Georgia                      | MX | Mexico                   |
| ΛU | Australia                | GN   | Guinea                       | NE | Niger                    |
| BB | Barbados                 | GR   | Greece                       | NL | Netherlands              |
| BE | Belgium                  | HU   | Hungary                      | NO | Norway                   |
| BF | Burkina Faso             | IE   | Ireland                      | NZ | New Zealand              |
| BG | Bulgaria                 | IT   | Italy                        | PL | Poland                   |
| BJ | Benin                    | JP   | Japan                        | PT | Portugal                 |
| BR | Brazil                   | KE   | Kenya                        | RO | Romania                  |
| BY | Belarus                  | KG   | Кутдуятал                    | RU | Russian Federation       |
| CA | Canada                   | KP   | Democratic People's Republic | SD | Sudan                    |
| CF | Central African Republic |      | of Korea                     | SE | Sweden                   |
| CG | Congo                    | KR   | Republic of Korea            | SG | Singapore                |
| CH | Switzerland              | KZ   | Kazakhstan                   | SI | Slovenia                 |
| CI | Côte d'Ivoire            | · LI | Liechtenstein                | SK | Slovakia                 |
| СМ | Cameroon                 | LK   | Sri Lanka                    | SN | Senegal                  |
| CN | China                    | LR   | Liberia                      | SZ | Swaziland                |
| CS | Czechoslovakia           | LT   | Lithuania                    | TD | Chad                     |
| CZ | Czech Republic           | LU   | Luxembourg                   | TG | Togo                     |
| DE | Germany                  | LV   | Latvia                       | TJ | Tajikistan               |
| DK | Denmark                  | MC   | Monaco                       | TT | Trinidad and Tobago      |
| EE | Estonia                  | MD   | Republic of Moldova          | UA | Ukraine                  |
| ES | Spain                    | MG   | Madagascar                   | UG | Uganda                   |
| FI | Finland                  | ML   | Mali                         | US | United States of America |
| FR | France                   | MN   | Mongolia                     | UZ | Uzbekistan               |
| GA | Gabon                    | MR   | Mauritania                   | VN | Viet Nam                 |

Title: An enzyme for dying keratinous fibres

#### 5 FIELD OF THE INVENTION

The present invention relates to a dyeing composition for keratinous fibres, in particular hair, fur, hide and wool, a method for dying and the use of a *Scytalidium* laccase for dyeing.

10

15

20

25

35

### BACKGROUND OF THE INVENTION

It has been used for many years to dye the hair to cover appearing grey hair. The need to do so arises from the fact that grey hair is the first sign of having past adolescence, which can be hard to accept for many people.

For instance, in certain parts of Asia it is widely used by both men and women to dye the hair with dyes often referred to by humorous people as "black shoe polish".

During the last few decades hair dyeing has become more and more popular in the western world. At first Punk Rockers and other society critical groups dyed their hair in extreme colours as a part of their protest against the established society, but today especially many young people also uses hair dyes (in more soft tints than the Punk Rockers) as a sort of "cosmetic" to change or freshen up their "look".

### Hair dyes

In general hair dyeing compositions on the market today can be divided into three main groups:

- 30 temporary hair dyes,
  - semi-permanent hair dyes, and
  - permanent oxidative hair dyes.

The temporary hair dyes are only intended to change the natural hair colour for a short period of time and usually functions by depositing dyes on the surface of the hair. Such hair dyes are easy to remove with normal shampooing.

When using semi-permanent hair dyes the colour of the dyed hair can survive for five or more shampooings. This is achieved

10

15

25

30

35

by using dyes having a high affinity for hair keratin and which is able to penetrate into the interior of the hair shaft.

Permanent hair dyes are very durable to sunlight, shampooing and other hair treatments and need only to be refreshed once a month as new hair grows out. With these dyeing systems the dyes are created directly in and on the hair. Small aromatic colourless dye precursors (e.g. p-phenylene-diamine and o-aminophenol) penetrate deep into the hair where said dye precursors are oxidised by an oxidising agent into coloured polymeric compounds. These coloured compounds are larger than the dye precursors and can not be washed out of the hair.

By including compounds referred to as modifiers (or couplers) in the hair dyeing composition a number of hair colour tints can be obtained. Cathecol and Resorcinol are examples of such modifiers.

Traditionally  $H_2O_2$  is used as the oxidizing agent (colour builder), but also as a bleaching agent. Dyeing compositions comprising  $H_2O_2$  are often referred to as "lightening dyes" due to this lightening effect of  $H_2O_2$ .

The use of  $H_2O_2$  in dye compositions have some disadvantages as  $H_2O_2$  damages the hair. Further, oxidative dyeing often demands high pH (normally around pH 9-10), which also inflicts damage on the hair. Consequently, if using dye compositions comprising  $H_2O_2$  it is not recommendable to dye the hair often.

To overcome the disadvantages of using  $H_2O_2$  it has been suggested to use oxidation enzymes to replace  $H_2O_2$ .

US patent no. 3,251,742 (Revlon) describes a method for dyeing human hair by dye formation in situ (i.e. on the hair). An oxidative enzyme is used to the colour formation reactions at a substantially neutral pH (pH 7-8.5).

Laccases, tyrosinases, polyphenolases and catacolases are mentioned as the suitable oxidation enzymes.

EP patent no. 504.005 (Perma S.A.) concerns compositions for dying hair which do not require the presence of  $H_2O_2$  (hydrogen peroxide). The composition comprises an enzyme capable of catalyzing the formation of the polymeric dyes and also dye precursors, such as bases and couplers, in a buffer solution wherein the pH of said composition is between 6.5 and 8 and

said enzyme has an optimal activity in the pH range between 6.5 and 8.

Rhizoctonia praticola laccase and Rhus vernicifera laccase have a pH-optimum between 6.5 and 8 and can be used to form the polymeric dyes according to this patent.

Abstract of Papers American Chemical Society vol. 209, no. 1-2, 1995 discloses the cloning of a laccase from a *Scytalidium* thermophilum. The abstract does not mention the use of said laccase for dyeing hair.

10

15

20

25

30

35

5

\*\* \* / / / / / / / /

#### SUMMARY OF THE INVENTION

The object of the present invention is to provide improved permanent dyeing compositions for keratinous fibres, in particular hair, fur, hide and wool, which is less damaging to the keratinous fibres than e.g. dyeing compositions for hair using  $H_2O_2$ .

It has now surprisingly been found that it is possible to provide such an improved dyeing composition by using an enzyme derived from a strain of the filamentous fungus genus *Scytali-dium* as the oxidation enzyme.

In the first aspect the invention relates to a permanent dyeing composition for keratinous fibres, in particular hair, fur, hide and wool, comprising an oxidation enzyme comprising

- 1) one or more oxidation enzymes derived from a strain of the genus Scytalidium,
- one or more dye precursors, and optionally 3) one or more modifiers.

In a preferred embodiment of the invention the oxidation enzyme is a laccase derived from a strain of the genus Scytalidium, in particular from a strain of the species Scytalidium thermophilum.

Secondly, it is the object of the invention to provide a method for dying keratinous fibres, comprising contacting a laccase derived from a strain of the genus Scytalidium with the keratinous fibres and at least one dye precursor in the presence or absence of at least one modifier for a suitable period of time and under conditions sufficient to permit oxidation of the dye precursor into a coloured compound.

WU 7//1778 PCT/DK96/00498

4

Finally the invention relates to the use of an oxidation enzyme derived from a strain of the genus *Scytalidium* for oxidative dyeing of keratinous fibres, in particular hair, fur, hide and wool.

5

20

25

#### BRIEF DESCRIPTION OF THE DRAWING

Figure 1 shows the dyeing effect of the Scytalidium thermophilum laccase (rStL-FXu-1)

#### 10 DETAILED DESCRIPTION OF THE INVENTION

The object of the present invention is to provide improved permanent dyeing compositions for keratinous fibres, in particular hair, fur, hide and wool, which is less damaging to the keratinous fibres than e.g. hair dyeing compositions using  $H_2O_2$ .

It has surprisingly be found that it is possible to provide such an improved dyeing composition by using an oxidation enzyme derived from a strain of the filamentous fungus genus Scytalidium.

When using said oxidation enzyme derived from a strain of the genus Scytalidium the colour developed is as wash stable as oxidative dyeing of e.g. hair using  $H_2O_2$  and the light fastness is as good as when dyeing chemically.

Consequently, in the first aspect the present invention relates to a permanent dye composition for keratinous fibres, in particular hair, fur, hide and wool, comprising

- 1) one or more oxidation enzymes derived from a strain of the genus Scytalidium,
- 2) one or more dye precursors, and optionally 3) one or more modifiers.
- In an embodiment of the invention the oxidation enzyme is a laccase derived from a strain of genus Scytalidium, such as a strain of Scytalidium thermophilum e.g. the purified laccase described in WO 95/33837 (PCT/US95/06816) from Novo Nordisk, which is hereby incorporated. SEQ ID No 1 shows a DNA sequence encoding a suitable laccase derivable from a strain of the species Scytalidium thermophilum.
  - E. coli JM101 containing the expression vector pShTh15 comprising SEQ ID NO 1 has been deposited under the Budapest

Treaty with the Agricultural Research Service Patent Culture Collection, Northern Regional Research Center, 1815 University Street, Peoria, Illinois, 61604. The vector have been given the Accession Number NRRL B-21262.

Also contemplated according to the invention are laccases derived from other microorganisms being more than 80% homologous to SEQ ID NO 1 derived from a strain of the species Scytalidium thermophilum.

5

20

25

30

35

In addition, Scytalidium laccases also encompass alternative forms of laccases which may be found in S. thermophilum and as well as laccases which may be found in other fungi which are synonyms of fall within the definition of S. thermophilum as defined by Straatsma and Samson, (1993), Mycol. Res. 97, 321-328). These include S. indonesiacum, Torula thermophila, Humi-cola brevis var. thermoidea, Humicola brevispora, H. grisea var. thermoidea, Humicola insolens, and Humicola lanuginosa (also known as Thermomyces lanuginosus).

It is to be understood that the *Scytalidium* laccase may be produced homologously, or heterologously using filamentous fungus, yeast or bacteria as the host cell.

Examples of filamentous fungi host cells include strains of the species of Trichoderma, preferably a strain of Trichoderma harzianum or Trichoderma reesei, or a species of Aspergillus, most preferably Aspergillus oryzae or Aspergillus niger, or yeast cells, such as e.g. a strain of Saccharomyces, in parti-Saccharomyces kluyveri Saccharomyces cerevisiae, Saccharomyces uvarum, a strain of Schizosaccharomyces sp., such as Schizosaccharomyces pombe, a strain of Hansenula sp., Pichia sp., Yarrowia sp., such as Yarrowia lipolytica, or Kluyveromyces sp., such as Kluyveromyces lactis, or a bacteria, such as gram-positive bacteria such as strains of Bacillus, such as strains of B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium or B. thuringiensis, or strains of Streptomyces, such as S. lividans or S. murinus, or gram-negative bacteria such as Escherichia coli.

Laccases (benzenediol:oxygen oxidoreductases) (E.C. class

5

10

15

20

25

30

35

1.10.3.2 according to Enzyme Nomenclature (1992) Academic Press, Inc) are multi-copper containing enzymes that catalyze the oxidation of phenols. Laccase-mediated oxidations result in the production of aryloxy-radical intermediates from suitable phenolic substrates; the ultimate coupling of the intermediates so produced provides a combination of dimeric, oligomeric, and polymeric reaction products. Certain reaction products can be used to form dyes suitable for dyeing hair (see below).

In an embodiment of the invention the *Scytalidium* laccase is neutral. In the context of laccases of the present invention this means that the pH optimum lies in the range from between 6.0 and 8.0.

To obtain dyeing of the keratinous fibres, such as hair, the dyeing composition of the invention also comprises a dye precursor which is converted into a coloured compound (i.e. a dye) by the oxidation agent which according to the invention is an oxidation enzyme derived from a strain of the species Scytalidium, such as a strain of Scytalidium thermophilum.

Without being limited thereto the dye precursor(s) may be (an) aromatic compound(s) belonging to one of three major chemical families: the diamines, aminophenols (or aminonaphtols) and the phenols. Examples of isatin derivative dye precursors can be found in DE 4,314,317-Al. Further, a number of indole or indoline derivative dye precursors are disclosed in WO 94/00100. Said dye precursors mentioned in these documents are hereby incorporated herein by reference.

Examples of such suitable dye precursors include compounds from the group comprising p-phenylene-diamine (pPD), p-toluylene-diamine, chloro-p-phenylenediamine, p-aminophenol, o-aminophenol and 3,4-diaminotoluene, 2-methyl-1,4-diaminobenzene, 4-methyl-o-phenylenediamine, 2-methoxy-p-phenylenediamine, 2-chloro-1,4-diamino-benzene, 4-amino diphenylamine, 1-amino-4-β-methoxyethylamino-benzene, 1-amino-4-bis-(β-hydroxyethyl)-amonibenzene, 1-3-diamino-benzene, 2-methyl-1,3-diamino-benzene, 2,4-diaminotoluene, 2,6-diaminopyridine, 1-hydroxy-2-amino-benzene, 1-hydroxy-3-amino-benzene, 1-methyl-2-hydroxy-4-amino-benzene, 1-methyl-2-hydroxy-4-amino-benzene, 1-methyl-2-hydroxy-4-benzene, 1-methyl-2-hydroxy-4-amino-benzene, 1-methyl-2-hydroxy-4-benzene, 1-m

11 10 71117770

25

30

35

hydroxy-4-amino-ebnzene, 1-hydroxy-4-methylamino-benzene, 1-methoxy-2, 4-diamino-benzene, 1-ethoxy-2, 3-diamino-benzene, hydroxyethyloxy-2,4-diamino-benzene, phenazines, such as 4,7phenazinedicarboxylic acid, 2,7-phenazinedicarboxylic acid, 2phenazinecarboxylic acid, 2,7-diaminophenazine, 2,8-diamino-5 phenazine, 2,7-diamino-3,8-dimethoxyphenazine, 2,7-diamino-3methoxyphenazine, 2,7-diamino 3-methoxyphenazine, 3-dimethyl 2,8-phenazinediamine, 2,2'-[(8-amino-7-methyl-2-phenazinyl)imi-2,2'-[(8-amino-7-methoxy-2-phenazinyl)iminolbis-ethanol, no]bis-ethanol, 2,2'-[(8-amino-7-chloro-2-phenazinyl)imino]bis-10 2-[(8-amino-7-methyl-2-phenazinyl)amino]-ethanol, ethanol, 2,2'-[(8-amino-2-phenazinyl)imino]bis-ethanol, 3-amino-7-9-(diethylami-(dimethylamino) -2, 8-dimethyl-5-phenyl-chloride, no) - benzo[a]phenazine-1,5-diol, N-[8-(diethylamino)-2-phenazinyl]- methanesulfonamide, N-(8-methoxy-2-phenazinyl)- Methane-15 sulfonamide, N,N,N',N'-tetramethyl-2,7-phenazinediamine, dimethyl-2-phenazinamine, p-amino benzoic acids, such as pamino benzoic acid ethyl, p-amino benzoic acid glycerid, pamino benzoic acid isobutyl, p-dimethylamino benzoic acid amil, p-dimethylamino benzoic acid octyl, p-diethoxy amino benzoic 20 amil, p- dipropoxy amino benzoic acid ethyl, acetylsalicylic acid, isatin derivatives, such as 2,3-diamino benzoic acid.

In an embodiment the laccase is used with the dye precursor directly to oxidise it into a coloured compound. The dye precursor may be used alone or in combination with other dye precursors.

However, it is believed that when using a diamine or an aminophenol as the dye precursor at least one of the intermediate in the copolymerisation must be an *ortho-* or *paradiamine* or aminophenol. Examples of such are described in US patent no. 3,251,742 (Revlon), the contents of which are incorporated herein by reference.

Optionally the dyeing composition of the invention (especially hair dyeing compositions) also comprises a modifier (coupler) by which a number of colour tints can be obtained. In general modifiers are used in hair dyeing compositions, as the colours resulting from hair dyeing compositions without modifier(s) are usually unacceptable for most people.

15

20

30

Modifiers are typically m-diamines, m-aminophenols, or polyphenols. The modifier (coupler) reacts with the dye precursor(s) in the presence of the oxidative enzyme, converting it into a coloured compound.

of modifiers (couplers) 5 Examples include m-phenylenediamine, 2,4-diaminoanisole, 1-hydroxynaphthalene ( $\alpha$ -naphthol), 1,4-dihydroxybenzene(hydroquinone), 1,5-dihydroxynapthalene, 1,2-dihydroxybenzene (pyrocatechol), 1,3-dihydroxybenzene 1,3-dihydroxy-2-methylbenzene, sorcinol), 1,3-dihydroxy-4-10 chlorobenzene (4-chlororesorcinol), 1,2,3, trihydroxybenzene, 1,2,4-trihydroxybenzene, 1,2,4-trihydroxy-5-methylbenzene, 1,2,4-trihydroxytoluene.

In the second aspect the invention relates to a method for dying keratinous fibres, in particular hair, fur, hide and wool, comprising contacting a laccase derived from a strain of the genus *Scytalidium* with the keratinous fibres and at least one dye precursor in the presence or absence of at least one modifier, for a period of time and under conditions sufficient to permit oxidation of the dye precursor into coloured compounds (i.e. a dye).

The dyeing method can be conducted with one or more dye precursors, either alone or in combination with one or more modifiers.

The amount of dye precursor(s) and other ingredients used in the composition of the invention are in accordance with usual commercial amounts.

When using a Scytalidium laccase, such as the Scytalidium thermophilum laccase mentioned above, the method for dyeing keratinous fibres of the invention may be carried out at room temperature, preferably around the optimum temperature of the enzyme, at a pH in the range from 3.0 to 9.0, preferably 4.0 to 8.0, especially pH 6.0 to 8.0.

Suitable dye precursors and optional modifiers are described above.

35 The use of this Scytalidium laccase is an improvement over the more traditional use of  $H_2O_2$  as the latter can damage the keratinous fibres, such as hair. Further, normally prior art methods requires a high pH, which is also damaging to the

keratinous fibres. In contrast hereto, the reaction with laccase can be conducted at acidic or neutral pH, and the oxygen needed for oxidation comes from the air, rather than via harsh chemical oxidation.

The result provided by the use of the *Scytalidium* laccase is comparable to that achieved with use of  $H_2O_2$ , not only in colour development, but also in wash stability and light fastness. An additional commercial advantage is that a single container package can be made containing both the laccase and the precursor, in an oxygen free atmosphere, which arrangement is not possible with the use of  $H_2O_2$ .

#### MATERIALS AND METHODS

#### Materials:

15 Hair:

6" De Meo Virgin Natural White Hair (De Meo Brothers Inc. US)

#### Enzymes:

Laccase from Scytalidium thermophilum described in

20 WO 95/33837 (PCT/US95/06816) from Novo Nordisk

#### Deposit of Biological Material

The following biological material has been deposited on the 25<sup>th</sup> May 1994 under the terms of the Budapest Treaty with the 25 Agricultural Research Service Patent Culture Collection, Northern Regional Research Center, 1815 University Street, Peoria, Illinois, 61604 and given the following accession number.

30 Deposit Accession Number E. coli JM101 containing pShTh15 NRRL B-21262.

### Dye precursors:

- 0.1 % w/w p-phenylene-diamine in 0.1 M K-phosphate buffer, pH 7.0. (pPD)
  - 0.1 % w/w p-toluylene-diamine in 0.1 M K-phosphate buffer, pH 7.0.
  - 0.1 % w/w chloro-p-phenylenediamine in 0.1 M K-phosphate

11 U 7 // 17770

PC1/DKY0/004Y8

buffer, pH 7.0.

- 0.1 % w/w p-aminophenol in 0.1 M K-phosphate buffer, pH 7.0.
- 0.1 % w/w o-aminophenol in 0.1 M K-phosphate buffer, pH 7.0.
- 0.1 % w/w 3,4-diaminotoluene in 0.1 M K-phosphate, buffer pH 7.0.

### Modifiers:

5

- 0.1 % w/w m-phenylene-diamine in 0.1 M K-phosphate buffer, pH 7.0.
- 10 0.1 % w/w 2,4-diaminoanisole in 0,1 M K-phosphate buffer, pH 7.0.
  - 0.1 % w/w a-naphthol in 0.1 M K-phosphate buffer, pH 7.0.
  - 0.1 % w/w hydroquinone in 0.1 M K-phosphate buffer, pH 7.0.
  - 0.1 % w/w pyrocatechol in 0.1 M K-phosphate buffer, pH 7.0.
- 15 0.1% w/w resorcinol in 0.1 M K-phosphate buffer, pH 7.0.
  - 0.1 % w/w 4-chlororesorcinol in 0.1 M K-phosphate buffer, pH 7.0.

The dye precursor is combined with one of the above indicated modifiers so that the final concentration in the dyeing solution is 0.1 % w/w with respect to precursor and 0.1 % w/w with respect to modifier.

#### Other solutions:

 $3\% H_2O_2$  (in the final dye solution)

Commercial shampoo

#### Equipment:

25

35

Minolta CR200 Chroma Meter

30 Day light bulb: 1000 LUX (D65)

#### Determination of Laccase Activity (LACU)

Laccase activity is determined from the oxidation of syringaldazin under aerobic conditions. The violet colour produced is photometered at 530 nm. The analytical conditions are 19 mM syringaldazin, 23.2 mM acetate buffer, pH 5.5, 30°C, 1 min. reaction time.

1 laccase unit (LACU) is the amount of enzyme that catalyses

the conversion of 1.0 micromole syringaldazin per minute at these conditions.

### Assessment of the hair colour

- The quantitative colour of the hair tresses are determined on a Minolta CR200 Chroma Meter by the use the parameters L\* ("0"=black and "100"=white), a\* ("-"=green and "+"=red) and b\* ("-" blue and "+" yellow).
- 10 DL\*, Da\* and Db\* are the delta values of L\*, a\* and b\* respectively compared to L\*, a\* and b\* of untreated hair (e.g. DL\* =  $L_{sample}^* L_{untreated hair}^*$ ).
- DE\* is calculated as DE\*= $\ddot{O}(DL^{*2}+Da^{*2}+Db^{*})$  and is an expression for the total quantitative colour change.

#### **EXAMPLES**

\*\* ひ フルエフフフひ

#### Example 1

20

Dyeing effect

The dyeing effect of a *Scytalidium thermophilum* laccase was tested using the dye precursor o-aminophenol and the modifier m-phenylenediamine.

25

30

Hair dyeing

1 gram De Meo white hair tresses were used.

4 ml dye precursor solution (including modifier) is mixed with 1 ml laccase on a Whirley mixer, applied to the hair tresses and incubated at 30°C for 60 minutes.

The hair tresses are then rinsed with running water, washed with shampoo, rinsed with running water, combed, and air dried.

The a\*, b\* and L\* was determined on the Chroma Meter and the DE\* values were then calculated.

35 A hair tress sample treated without enzyme was used as a blind.

The result of the hair dyeing test is shown in figure 1.

#### Example 2

5

15

25

30

\*\*\* //////

#### Wash stability

Tresses of white De Meo hair (1 gram) is used for testing the wash stability of hair dyed using  $Scytalidium\ thermophilum$  laccase, compared with hair dyed using  $H_2O_2$ , and p-phenylene-diamine (pPD) as the dye precursor. Further the wash stability is compared with a commercial oxidative dye.

The oxidative hair dyeing is carried out as described in 10 Example 1.

#### Hair wash

The dyed hair tresses are wetted and washed for 15 seconds with 50 ml of commercial shampoo, and rinsed with water for 1 minute and air dried. The hair tresses are washed up to 18 times.

The a\*, b\* and L\* is determined om the Chroma Meter and the  $\Delta E^*$  values are then calculated.

#### 20 Example 3

The light fastness

Tresses of blond European hair are used for testing the light fastness of hair dyed using Scytalidium thermophilum laccase in comparison to hair dyed using  $H_2O_2$ . p-phenylene-diamine was used as dye precursor.

The dyeing of the hair was carried out as described in Example 1.

One hair tress is kept dark, while an other is kept at day light (i.e. under a day light bulb (D65)), at approximately 1000 LUX) for up to 275 hours.

The a\*, b\* and L\* parameters are determined immediately after the dyeing of the hair, and further during exposure to day light.

DE\* then calculated from the determined a\*, b\* and L\* 35 values.

SEQUENCE LISTING (1) GENERAL INFORMATION: 5 (i) APPLICANT: (A) NAME: Novo Nordisk A/S (B) STREET: Novo Alle (C) CITY: Bagsvaerd (D) COUNTRY: Denmark 10 (E) POSTAL CODE (ZIP): DK-2880 (F) TELEPHONE: +45 4444 8888 (G) TELEFAX: +45 4449 3256 TITLE OF INVENTION: An enzyme for dying hair (ii) (iii) NUMBER OF SEQUENCES: 2 15 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS 20 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO) (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 2476 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 30 (ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Scytalidium thermophilum 35 (ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 349..411 40 (ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 502..559 (ix) FEATURE: 45 (A) NAME/KEY: intron (B) LOCATION: 632..686 (ix) FEATURE: (A) NAME/KEY: intron 50 (B) LOCATION: 1739..1804 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join (106..348, 412..501, 560..631, 687..1738, 55 1805..2194) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: CTGAATTTAA ATACAGGAAG ATCGCATTCA ATCCAGCCTA GACTGCACAA TGGTTCTGCA 60 60 CGACCGTCGC ACACCTGCCA ATAGTGTTAA TAACGGNCTA ATACC ATG AAG CGC TTC 117 Met Lys Arg Phe 1 65 TTC ATT AAT AGC CTT CTG CTT CTC GCA GGG CTC CTC AAC TCA GGG GCC 165 Phe Ile Asn Ser Leu Leu Leu Leu Ala Gly Leu Leu Asn Ser Gly Ala 10 15 20 5

CTC GCG GCT CCG TCT ACA CAT CCC AGA TCA AAC CCC GAC ATA CTG CTT

213

|    | Leu        | Ala        | Ala               | Pro              | Ser<br>25  | Thr        | His        | Pro               | Arg              | Ser<br>30     | Asn        | Pro               | Asp               | Ile              | Leu<br>35    | Leu        |   |      |
|----|------------|------------|-------------------|------------------|------------|------------|------------|-------------------|------------------|---------------|------------|-------------------|-------------------|------------------|--------------|------------|---|------|
| 5  | GAA<br>Glu | AGA<br>Arg | GAT<br>Asp        | GAC<br>Asp<br>40 | CAC<br>His | TCC<br>Ser | CTT<br>Leu | ACG<br>Thr        | TCT<br>Ser<br>45 | CGG<br>Arg    | CAA<br>Gln | GGT<br>Gly        | AGC<br>Ser        | TGT<br>Cys<br>50 | CAT<br>His   | TCT<br>Ser |   | 261  |
| 10 | CCA<br>Pro | AGC<br>Ser | AAC<br>Asn<br>55  | CGC<br>Arg       | GCC<br>Ala | TGT<br>Cys | TGG<br>Trp | TGC<br>Cys<br>60  | TCT<br>Ser       | GGC<br>Gly    | TTC<br>Phe | GAT<br>Asp        | ATC<br>Ile<br>65  | AAC<br>Asn       | ACG<br>Thr   | GAT<br>Asp |   | 309  |
| 15 |            |            |                   |                  |            |            |            |                   |                  |               |            | CGG<br>Arg<br>80  |                   | GTT              | AGTA!        | rcc        |   | 358  |
| 10 | CAA        | GTTAC      | CGT 7             | TGAC             | CCAA       | SA A       | ATGG!      | ACGTO             | S AAC            | GTGT          | CTG        | ACT               | CTCC              | GC :             | rag          |            |   | 411  |
| 20 | TAC<br>Tyr | ACC<br>Thr | TTT<br>Phe        | GAT<br>Asp<br>85 | ATC<br>Ile | ACC<br>Thr | GAA<br>Glu | GTC<br>Val        | GAC<br>Asp<br>90 | AAC<br>Asn    | CGC<br>Arg | CCC<br>Pro        | GGT<br>Gly        | CCC<br>Pro<br>95 | GAT<br>Asp   | GGG<br>Gly |   | 459  |
| 25 | GTC<br>Val | ATC<br>Ile | AAG<br>Lys<br>100 | GAG<br>Glu       | AAG<br>Lys | CTC<br>Leu | ATG<br>Met | CTT<br>Leu<br>105 | ATC<br>Ile       | AAC<br>Asn    | GAC<br>Asp | AAA<br>Lys        | CTC<br>Leu<br>110 | CTG<br>Leu       | GTA          | GG         |   | 506  |
| 25 | GTC        | CTCT       | CGA 1             | ACGC             | CTGC       | T C        | rgcci      | ACACI             | A GC             | gtaa <i>i</i> | AACT       | AAC               | BAAC              | CGC 1            | r <b>a</b> g |            |   | 559  |
| 30 |            |            |                   |                  |            |            |            |                   |                  |               |            | ATC<br>Ile        |                   |                  |              |            |   | 607  |
| 35 |            |            | CAC<br>His<br>130 |                  |            |            |            |                   | GTA              | AGCG1         | rtc (      | GGAC1             | ACAAI             | AG CO            | CCAG         | CAAC       | C | 661  |
| 33 | TAG        | ACAC       | ACT (             | CAAC!            | rgaco      | CA AC      | GTAG       |                   |                  |               |            | TGG<br>Trp<br>140 |                   |                  |              |            |   | 716  |
| 40 |            |            |                   |                  |            |            |            |                   |                  |               |            | GTG<br>Val        |                   |                  |              |            |   | 764  |
| 45 |            |            |                   |                  |            |            |            |                   |                  |               |            | CGA<br>Arg        |                   |                  |              |            |   | 812  |
| 50 |            |            |                   |                  |            |            |            |                   |                  |               |            | CAG<br>Gln        |                   |                  |              |            |   | 860  |
| 55 |            |            |                   |                  |            |            |            |                   |                  |               |            | TCC<br>Ser<br>205 |                   |                  |              |            |   | 908  |
| 33 |            |            |                   |                  |            |            |            |                   |                  |               |            | TAC<br>Tyr        |                   |                  |              |            |   | 956  |
| 60 |            |            |                   |                  |            |            |            |                   |                  |               |            | AAC<br>Asn        |                   |                  |              |            |   | 1004 |
| 65 |            |            |                   |                  |            |            |            |                   |                  |               |            | CCC<br>Pro        |                   |                  |              |            |   | 1052 |
|    |            |            |                   |                  |            |            |            |                   |                  |               |            | AAA<br>Lys        |                   |                  |              |            |   | 1100 |

|    |      |      | 260        |      |       |       |       | 265   |      |       |       |                   | 270  |      |      |      |      |
|----|------|------|------------|------|-------|-------|-------|-------|------|-------|-------|-------------------|------|------|------|------|------|
| 5  |      |      |            |      |       |       |       |       |      |       |       | CAG<br>Gln<br>285 |      |      |      |      | 1148 |
| 10 |      |      |            |      |       |       |       |       |      |       |       | GTC<br>Val        |      |      |      |      | 1196 |
| 10 |      |      |            |      |       |       |       |       |      |       |       | CAG<br>Gln        |      |      |      |      | 1244 |
| 15 |      |      |            |      |       |       |       |       |      |       |       | TGG<br>Trp        |      |      |      |      | 1292 |
| 20 |      |      |            |      |       |       |       |       |      |       |       | TAA<br>Asn        |      |      |      |      | 1340 |
| 25 |      |      |            |      |       |       |       |       |      |       |       | CTG<br>Leu<br>365 |      |      |      |      | 1388 |
| 30 |      |      |            |      |       |       |       |       |      |       |       | ACT<br>Thr        |      |      |      |      | 1436 |
|    |      |      |            |      |       |       |       |       |      |       |       | TTC<br>Phe        |      |      |      |      | 1484 |
| 35 |      |      |            |      |       |       |       |       |      |       |       | CAG<br>Gln        |      |      |      |      | 1532 |
| 40 |      |      |            |      |       |       |       |       |      |       |       | GCG<br>Ala        |      |      |      |      | 1580 |
| 45 |      |      |            |      |       |       |       |       |      |       |       | GAC<br>Asp<br>445 |      |      |      |      | 1628 |
| 50 |      |      |            |      |       |       |       |       |      |       |       | GTC<br>Val        |      |      |      |      | 1676 |
|    |      |      |            |      |       |       |       |       |      |       |       | CTC<br>Leu        |      |      |      |      | 1724 |
| 55 |      |      | CAT<br>His |      |       | GTA   | AGTC! | ACA ' | rccc | CCACT | ra co | CATTO             | GGAI | A TG | ACCA | CCAG | 1779 |
| 60 | GTAC | CTGA | CAC (      | CCTC | CTCC! | rc ai | ATAG  |       |      |       |       | TTT<br>Phe        |      |      |      |      | 1831 |
| 65 |      |      |            |      |       |       |       |       |      |       |       | TTC<br>Phe        |      |      |      |      | 1879 |
|    |      |      |            |      |       |       |       |       |      |       |       | CCC<br>Pro        |      |      |      |      | 1927 |

| 5  | GTC<br>Val        | ACC<br>Thr        | ATG<br>Met<br>520 | CTT<br>Leu              | CCC<br>Pro             | GCG<br>Ala            | CGC<br>Arg                           | GGC<br>Glu<br>525  | TGG<br>Trp        | CTG<br>Leu        | CTG<br>Leu        | CTG<br>Leu        | GCC<br>Ala<br>530 | TTC<br>Phe        | CGC<br>Arg        | ACG<br>Thr        | 1975 |
|----|-------------------|-------------------|-------------------|-------------------------|------------------------|-----------------------|--------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| J  | GAC<br>Asp        | AAC<br>Asn<br>535 | CCG<br>Pro        | GGC<br>Gly              | GCG<br>Ala             | TGG<br>Trp            | TTG<br>Leu<br>540                    | TTC<br>Phe         | CAC<br>His        | TGC<br>Cys        | CAC<br>His        | ATC<br>Ile<br>545 | GCG<br>Ala        | TGR<br>Trp        | CAC<br>His        | GTG<br>Val        | 2023 |
| 10 | TCG<br>Ser<br>550 | GGC<br>Gly        | GGG<br>Gly        | TTA<br>Leu              | AGC<br>Ser             | GTC<br>Val<br>555     | GAC<br>Asp                           | TTT<br>Phe         | CTG<br>Leu        | GAG<br>Glu        | CGG<br>Arg<br>560 | CCG<br>Pro        | GAC<br>Asp        | GAG<br>Glu        | CTG<br>Leu        | CGC<br>Arg<br>565 | 2071 |
| 15 | GGG<br>Gly        | CAG<br>Gln        | CTG<br>Leu        | ACG<br>Thr              | GGA<br>Gly<br>570      | GAG<br>Glu            | AGC<br>Ser                           | AAG<br>Lys         | GCG<br>Ala        | GAG<br>Glu<br>575 | TTG<br>Leu        | GAG<br>Glu        | CGT<br>Arg        | GTT<br>Val        | TGT<br>Cys<br>580 | CGC<br>Arg        | 2119 |
| 20 | GAG<br>Glu        | TGG<br>Trp        | AAG<br>Lys        | GAT<br>Asp<br>585       | TGG<br>Trp             | GAG<br>Glu            | GCG<br>Ala                           | AAG<br>Lys         | AGC<br>Ser<br>590 | CCG<br>Pro        | CAT<br>His        | GGG<br>Gly        | AAG<br>Lys        | ATC<br>Ile<br>595 | GAT<br>Asp        | TCG<br>Ser        | 2167 |
|    |                   |                   |                   |                         |                        |                       | TGG<br>Trp                           |                    |                   | TGAG              | GTAC              | TT C              | GGCG              | GATI              | rG                |                   | 2214 |
| 25 | TTTA              | ACA               | CGT 1             | AGTGO                   | GTA                    | AG G                  | rtgg                                 | GCG                | G GT              | rtgti             | TGG               | CGTT              | TTCA              | .GG C             | GTT               | GGGTG             | 2274 |
|    | CGGA              | TGC:              | rgg :             | CATO                    | CCGG                   | GA AI                 | ACGG                                 | CTCT               | A CAI             | ACTG              | TGT               | CAAT              | AGAC              | TA A              | TAT               | AGAGTG            | 2334 |
| 30 | ATCA              | \AAGI             | AAC :             | rgago                   | TTC:                   | rg Al                 | AAGAG                                | GCG                | r gg              | AAGTO             | CCC               | TTGT              | GACI              | cc c              | TTTC              | GCCATG            | 2394 |
|    | TTG               | GAAG              | GTG :             | rggc                    | CAA                    | CA T                  | rgtg:                                | rtca(              | G GT              | rtgci             | CAG               | GGT               | CATNI             | CG 1              | ACTO              | GACGTN            | 2454 |
| 35 | TTG               | ATGA              | GGG 1             | TTAT?                   | rgcn'                  | ra G                  | A                                    |                    |                   |                   |                   |                   |                   |                   |                   |                   | 2476 |
|    | (2)               | INF               | ORMA'             | rion                    | FOR                    | SEQ                   | ID I                                 | 10:                | 2:                |                   |                   |                   |                   |                   |                   |                   |      |
| 40 |                   | (i                | · (1              | A) LI<br>B) T:<br>C) S: | engt:<br>YPE :<br>Tran | H: 6<br>ami:<br>DEDN: | CTER<br>16 au<br>no a<br>ESS:<br>lin | mino<br>cid<br>sin | aci               | ds                |                   |                   |                   |                   |                   |                   |      |
| 45 |                   | (ii               | ) MO              | LECU                    | LE T                   | YPE:                  | pro                                  | tein               |                   |                   |                   |                   |                   |                   |                   |                   |      |
|    |                   | (vi               | ) OR              | IGIN<br>(A)             | AL S<br>ORGA           | OURC<br>NISM          | E:<br>: Sc                           | ytal               | idiu              | m the             | ermo              | phil              | ım                |                   |                   |                   |      |
| 50 |                   | -                 |                   |                         |                        |                       |                                      |                    |                   | ID N              |                   |                   |                   |                   |                   |                   |      |
|    | 1                 |                   |                   |                         | 5                      |                       |                                      |                    |                   | Leu<br>10         |                   |                   |                   |                   | 15                |                   |      |
| 55 |                   |                   |                   | 20                      |                        |                       |                                      |                    | 25                | Thr               |                   |                   |                   | 30                |                   |                   |      |
| 60 | •                 |                   | 35                |                         |                        |                       |                                      | 40                 |                   | Ser               |                   |                   | 45                |                   |                   |                   |      |
| -  |                   | 50                |                   |                         |                        |                       | 55                                   |                    |                   |                   |                   | 60                |                   |                   |                   | Asp               |      |
| 65 | 65                |                   |                   |                         |                        | 70                    |                                      |                    |                   |                   | 75                |                   |                   |                   |                   | Arg<br>80         |      |
|    | Arg               | Tyr               | Thr               | Phe                     | Asp<br>85              | Ile                   | Thr                                  | Glu                | ı Val             | . Asp<br>90       | Asn               | Arg               | Pro               | Gly               | Pro<br>95         | Asp               |      |

.. - - .. - - - -

Gly Val Ile Lys Glu Lys Leu Met Leu Ile Asn Asp Lys Leu Leu Gly Pro Thr Val Phe Ala Asn Trp Gly Asp Thr Ile Glu Val Thr Val Asn 5 Asn His Leu Arg Thr Asn Gly Thr Ser Ile His Trp His Gly Leu His Gln Lys Gly Thr Asn Tyr His Asp Gly Ala Asn Gly Val Thr Glu Cys 10 Pro Ile Pro Pro Gly Gly Ser Arg Val Tyr Ser Phe Arg Ala Arg Gln 165 170 175 15 Tyr Gly Thr Ser Trp Tyr His Ser His Phe Ser Ala Gln Tyr Gly Asn 185 Gly Val Ser Gly Ala Ile Gln Ile Asn Gly Pro Ala Ser Leu Pro Tyr 20 200 Asp Ile Asp Leu Gly Val Leu Pro Leu Gln Asp Trp Tyr Tyr Lys Ser 25 Ala Asp Gln Leu Val Ile Glu Thr Leu Ala Lys Gly Asn Ala Pro Phe 230 Ser Asp Asn Val Leu Ile Asn Gly Thr Ala Lys His Pro Thr Thr Gly 30 Glu Gly Glu Tyr Ala Ile Val Lys Leu Thr Pro Asp Lys Arg His Arg 265 Leu Arg Leu Ile Asn Met Ser Val Glu Asn His Phe Gln Val Ser Leu 35 280 Ala Lys His Thr Met Thr Val Ile Ala Ala Asp Met Val Pro Val Asn 295 40 Ala Met Thr Val Asp Ser Leu Phe Met Ala Xaa Gly Gln Arg Tyr Asp 310 Val Thr Ile Asp Ala Ser Gln Ala Val Gly Asn Tyr Trp Phe Asn Ile 330 45 Thr Phe Gly Gly Gln Gln Lys Cys Gly Phe Ser His Asn Pro Ala Pro Ala Ala Ile Phe Arg Tyr Glu Gly Ala Pro Asp Ala Leu Pro Thr Asp 50 Pro Gly Ala Ala Pro Lys Asp His Gln Cys Leu Asp Thr Leu Asp Leu 55 Ser Pro Val Val Gln Lys Asn Val Pro Val Asp Gly Phe Val Lys Glu Pro Gly Asn Thr Leu Pro Val Thr Leu His Val Asp Gln Ala Ala Ala 60 Pro His Val Phe Thr Trp Lys Ile Asn Gly Ser Ala Ala Asp Val Asp 425 Trp Asp Arg Pro Val Leu Glu Tyr Val Met Asn Asn Asp Leu Ser Ser 65 435 Ile Pro Val Lys Asn Asn Ile Val Arg Val Asp Gly Val Asn Glu Trp

|    | Thr<br>465 | Tyr        | Trp               | Leu        | Val        | Glu<br>470 | Asn        | Asp        | Pro        | Glu        | Gly<br>475 | Arg        | Leu        | Ser        | Leu        | Pro<br>480 |
|----|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | His        | Pro        | Met               | His        | Leu<br>485 | His        | Gly        | His        | Asp        | Phe<br>490 | Phe        | Val        | Leu        | Gly        | Arg<br>495 | Ser        |
| 10 | Pro        | Asp        | Val               | Ser<br>500 | Pro        | Asp        | Ser        | Glu        | Thr<br>505 | Arg        | Phe        | Val        | Phe        | Asp<br>510 | Pro        | Ala        |
| 10 | Val        | Asp        | Leu<br>515        | Pro        | Arg        | Leu        | Arg        | Gly<br>520 | His        | Asn        | Pro        | Val        | Arg<br>525 | Arg        | Asp        | Val        |
| 15 | Thr        | Met<br>530 | Leu               | Pro        | Ala        | Arg        | Gly<br>535 | Trp        | Leu        | Leu        | Leu        | Ala<br>540 | Phe        | Arg        | Thr        | Asp        |
|    | Asn<br>545 | Pro        | Gly               | Ala        | Trp        | Leu<br>550 | Phe        | His        | Cys        | His        | 11e<br>555 | Ala        | Trp        | His        | Val        | Ser<br>560 |
| 20 | Gly        | Gly        | Leu               | Ser        | Val<br>565 | Asp        | Phe        | Leu        | Glu        | Arg<br>570 | Pro        | Asp        | Glu        | Leu        | Arg<br>575 | Gly        |
| 25 | Gln        | Leu        | Thr               | Gly<br>580 | Glu        | Ser        | Lys        | Ala        | Glu<br>585 | Leu        | Glu        | Arg        | Val        | Cys<br>590 | Arg        | Glu        |
| 23 | Trp        | Lys        | <b>Авр</b><br>595 | Trp        | Glu        | Ala        | Lys        | Ser<br>600 | Pro        | His        | Gly        | Lys        | Ile<br>605 | Asp        | Ser        | Gly        |
| 30 | Leu        | Lув<br>610 | Gln               | Arg        | Arg        | Trp        | Авр<br>615 | Ala        |            |            |            |            |            |            |            |            |

### INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

.. - . . . . . - -

(PCT Rule 13 bis)

| A. The indications made below relate to the microorganism referm on page9, line21-                                                                                                    |                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| B. IDENTIFICATION OF                                                                                                                                                                  | Further deposits are identified on an additional sheet                                     |
| Name of depository institution Agricultural Research Service Patent Culture                                                                                                           | Collection (NRRL)                                                                          |
| Address of depository institution (including postal code and count                                                                                                                    | (יריי)                                                                                     |
| Northern Regional Research Center<br>1815 University Street<br>Peoria, IL 61604, US                                                                                                   |                                                                                            |
| Date of deposit<br>25 May 1994                                                                                                                                                        | Accession Number<br>NRRL B-21262                                                           |
| C. ADDITIONAL INDICATIONS (leave blank if not applicate                                                                                                                               | ole) This information is continued on an additional sheet                                  |
| In respect of those designations in which a Enduring the pendency of the patent application only to be provided to an independent expert (Rule 28(4) EPC/Regulation 3.25 of Australia | , a sample of the deposited microorganism is nominated by the person requesting the sample |
| D. DESIGNATED STATES FOR WHICH INDICATIONS A                                                                                                                                          | RE MADE (if the indications are not for all designated States)                             |
|                                                                                                                                                                                       |                                                                                            |
| E. SEPARATE FURNISHING OF INDICATIONS (leave blan                                                                                                                                     | k if not applicable)                                                                       |
| The indication listed below will be submitted to the International "Accession Number of Deposit")                                                                                     | Bureau Later (specify the general nature of the indications e.g.                           |
| For receiving Office use only                                                                                                                                                         | For International Bureau use only                                                          |
| This sheet was received with the international application                                                                                                                            | This sheet was received with the International Bureau on:                                  |
| Authorized officer                                                                                                                                                                    | Authorized officer                                                                         |
| Town by MANANA CHINA (00)                                                                                                                                                             |                                                                                            |

#### PATENT CLAIMS

\*\* \*\* 7 // 1.7770

1. A dyeing composition comprising an oxidation enzyme characterised in that the composition comprises:

20

- 5 1) one or more oxidation enzymes derived from a strain of the genus Scytalidium,
  - 2) one or more dye precursors, and optionally 3) one or more modifiers.
- 2. The dyeing composition according to claim 1, wherein the 10 oxidation enzyme is derived from a strain of the genus Scytalidium laccase
  - 3. The dyeing composition according to claim 2, wherein the laccase is derived from a strain of the species *Scytalidium* thermophilum.
- 15 4. The dyeing composition according to claims 2 and 3, wherein the laccase is neutral.
  - 5. The dyeing composition according to claim 3, having the sequence shown in SEQ ID No 1.
- 6. The dyeing composition according to claim 5, wherein the 20 sequence encoding the laccase is homologous to the SEQ ID NO 1.
  - 7. The dyeing composition according to claim 6, wherein the sequence encoding the laccase is more than 80% homologous to SEQ ID NO 1.
- 8. The dyeing composition according to any of claims 1 to 7, comprising a dye precursor selected from the group comprising p-phenylene-diamine (pPD), p-toluylene-diamine, chloro-p-phenylenediamine, p-aminophenol, o-aminophenol and 3,4-diaminoto-luene, 2-methyl-1,4-diaminobenzene, 4-methyl-o-phenylenediamine, 2-methoxy-p-phenylenediamine, 2-chloro-1,4-diamino-benzene,
- 4-amino diphenylamine, 1-amino-4-β-methoxyethylamino-benzene, 1-amino-4-bis-(β-hydroxyethyl)-amonibenzene, 1-3-diamino-benzene, 2-methyl-1,3-diamino-benzene, 2,4-diaminotoluene, 2,6-diaminopyridine, 1-hydroxy-2-amino-benzene, 1-hydroxy-3-amino-benzene, 1-methyl-2-hydroxy-4-amino-benzene, 1-methyl-2-hydro-
- xy-4-β-hydroxyethylamino-benzene, 1-hydroxy-4-amino-benzene, 1hydroxy-4-methylamino-benzene, 1-methoxy-2, 4-diamino-benzene,
  1-ethoxy-2, 3-diamino-benzene, 1-β-hydroxyethyloxy-2, 4-diamino-

phenazines, such as 4,7-phenazinedicarboxylic acid, benzene, 2,7-phenazinedicarboxylic acid, 2-phenazinecarboxylic 2,7-diaminophenazine, 2,8-diaminophenazine, 2,7-diamino-3,8dimethoxyphenazine, 2,7-diamino-3-methoxyphenazine, 2,7-diamino 3-methoxyphenazine, 3-dimethyl 2,8-phenazinediamine, 2,2'-[(8-5 amino-7-methyl-2-phenazinyl)imino]bis-ethanol, 2,2'-[(8-amino-7-methoxy-2-phenazinyl)imino]bis-ethanol, 2,2'-[(8-amino-7chloro-2-phenazinyl)imino]bis-ethanol, 2-[(8-amino-7-methyl-2phenazinyl)amino]-ethanol, 2,2'-[(8-amino-2-phenazinyl)imi-10 3-amino-7-(dimethylamino)-2,8-dimethyl-5-pheno]bis-ethanol, nyl-chloride, 9-(diethylamino) - benzo[a]phenazine-1,5-diol, N-[8-(diethylamino)-2-phenazinyl]- methanesulfonamide, methoxy-2-phenazinyl)-Methanesulfonamide, N, N, N', N'-tetramethyl-2,7-phenazinediamine, 3,7-dimethyl-2-phenazinamine, amino benzoic acids, such as p-amino benzoic acid ethyl, p-15 amino benzoic acid glycerid, p-amino benzoic acid isobutyl, pdimethylamino benzoic acid amil, p-dimethylamino benzoic acid octyl, p-diethoxy amino benzoic amil, p- dipropoxy amino benzoic acid ethyl, acetylsalicylic acid, isatin derivatives, 20 such as 2,3-diamino benzoic acid.

- The dyeing composition according to claims 8, comprising a dye modifier selected from the group comprising m-phenylene-diamine, 2,4-diaminoanisole, 1-hydroxynaphthalene(α-naphthol), 1,4-dihydroxybenzene(hydroquinone), 1,5-dihydroxynapthalene, 1,2-dihydroxybenzene(pyrocatechol), 1,3-dihydroxybenzene (resorcinol), 1,3-dihydroxy-2-methylbenzene, 1,3-dihydroxy-4-chlorobenzene (4-chlororesorcinol), 1,2,3,trihydroxybenzene, 1,2,4-trihydroxybenzene, 1,2,4-trihydroxybenzene, 1,2,4-trihydroxytoluene.
- 30 10. A method for dying comprising contacting a laccase derived from a strain of the genus *Scytalidium* with the keratinous fibres and at least one dye precursor in the presence or absence of at least one modifier for a period of time and under conditions sufficient to permit oxidation of the dye precursor into a coloured compound.
  - 11. The method according to claim 10, wherein the dyeing is carried out at a pH in the range from 3.0 to 9.0, preferably 4.0 to 8.0, especially 6.0 to 8.0.

I C I/D 1070/00470

- 12. Use of an oxidation enzyme derived from a strain of the genus *Scytalidium* for oxidative dyeing keratinous fibres, in particular hair, fur, hide and wool.
- 13. The use according to claim 14, wherein the oxidation 5 enzyme is derived from a strain of the species Scytalidium thermophilum.



### INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 96/00498

### CLASSIFICATION OF SUBJECT MATTER IPC6: C098 67/00, A61K 7/13 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC6: C09B, A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category\* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X WO 9533837 A1 (NOVO NORDISK BIOTECH, INC.), 1-13 14 December 1995 (14.12.95), claims 28, 29; page 15, line 34 - page 16 P,A WO 9533836 A1 (NOVO NORDISK BIOTECH, INC.), 1-13 14 December 1995 (14.12.95), claims 31-42; page 16, line 12 - page 17, line 27; page 34, line 20 -X EP 0504005 A1 (PERMA SOCIETE ANONYME). 1-13 16 Sept 1992 (16.09.92) X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand "A" document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance erlier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone special reason (as specified) "Y" document of particular relevance: the claimed invention cannot be document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 1 -03- 1997 **28 February 1997** Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Gerd Strandell Facsimile No. +46 8 666 02 86 Telephone No. + 46 8 782 25 00

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 96/00498

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                     | Relevant to claim No |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Х         | US 3251742 A (SAUL SOLOWAY), 17 May 1966<br>(17.05.66)                                                                                                                                                                 | 1-13                 |
|           |                                                                                                                                                                                                                        |                      |
| X         | WO 9600290 A1 (NOVO NORDISK BIOTECH, INC.),<br>4 January 1996 (04.01.96), claims 37-48; page 48,<br>line 25 - page 54, line 24                                                                                         | 1-13                 |
|           | <b></b>                                                                                                                                                                                                                |                      |
| x         | STN International, File CAPLUS, CAPLUS accession no. 1991:498981, Saruno, Rinjiro: "Hair- dyeing preparations containing melanin or other polyphenol pigments and manufacture of the pigments"; & JP,A2,910403         | 1-13                 |
| :         | . <del></del>                                                                                                                                                                                                          |                      |
| x         | STN International, File CAPLUS, CAPLUS accession no. 1995:974547, Chivukula, Muralikrishna et al: "Phenolic azo dye oxidation by laccase from Pyricularia oryzae"; & Appl. Environ. Microbiol. (1995), 61(12), 4374-77 | 1-13                 |
|           |                                                                                                                                                                                                                        |                      |
| A         | DE 4314317 A1 (HENKEL KGAA), 3 November 1994 (03.11.94)                                                                                                                                                                | 8                    |
|           | <del></del>                                                                                                                                                                                                            |                      |
| A         | WO 9400100 A1 (L'OREAL), 6 January 1994 (06.01.94)                                                                                                                                                                     | 8                    |
|           |                                                                                                                                                                                                                        |                      |
| A         | WO 9507988 A1 (NOVO NORDISK A/S), 23 March 1995 (23.03.95), claim 41                                                                                                                                                   | 1-13                 |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |
|           |                                                                                                                                                                                                                        |                      |

# INTERNATIONAL SEARCH REPORT

Information on patent family members

03/02/97

International application No.
PCT/DK 96/00498

| Patent d cited in sea | ocument<br>uch report | Publication date | Patent<br>mer                                          | Publication date                                               |                                                                      |  |
|-----------------------|-----------------------|------------------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--|
| 10-A1-                | 9533837               | 14/12/95         | AU-A-                                                  | 2656695                                                        | 04/01/96                                                             |  |
| ₩0-A1-                | 9533836               | 14/12/95         | AU-A-                                                  | 2656595                                                        | 04/01/96                                                             |  |
| EP-A1-                | 0504005               | 16/09/92         | AT-T-<br>CA-A-<br>DE-D,T-<br>ES-T-<br>FR-A,B-<br>JP-A- | 121931<br>2061826<br>69202290<br>2072720<br>2673534<br>6172145 | 15/05/95<br>09/09/92<br>09/11/95<br>16/07/95<br>11/09/92<br>21/06/94 |  |
| JS-A-                 | 3251742               | 17/05/66         | FR-A-<br>GB-A-                                         | 1363462<br>993923                                              | 00/00/00                                                             |  |
| √0-A1-                | 9600290               | 04/01/96         | AU-A-                                                  | 2827895                                                        | 19/01/96                                                             |  |
| DE-A1-                | 4314317               | 03/11/94         | EP-A-<br>JP-T-<br>WO-A-                                | 0695162<br>8509478<br>9424988                                  | 07/02/96<br>08/10/96<br>10/11/94                                     |  |
| VO-A1-                | 9400100               | 06/01/94         | DE-D,T-<br>EP-A,B-<br>FR-A,B-<br>JP-T-<br>US-A-        | 69301464<br>0645999<br>2692782<br>7508271<br>5538517           | 05/06/96<br>05/04/95<br>31/12/93<br>14/09/95<br>23/07/96             |  |
| VO-A1-                | 9507988               | 23/03/95         | AU-A-<br>CA-A-<br>CN-A-<br>EP-A-<br>FI-A-<br>US-A-     | 7833694<br>2171288<br>1133067<br>0719337<br>961250<br>5480801  | 03/04/95<br>23/03/95<br>09/10/96<br>03/07/96<br>18/03/96<br>02/01/96 |  |