Winter 2013-2014 February 28, 2014

Homework Assignment 4 Discussed Wednesday March 12, 2014

Optional Reading. Read selected sections in Luenberger and Ye's *Linear and Nonlinear Programming Third Edition* Chapters 8, 9 and 10.

Solve the following problems:

1. Consider the unconstrained optimization problem:

$$\min_{x} \quad \exp(x) + \exp(-x)$$

- (a) (5pt) Solve the problem by first writing down the first order necessary condition.
- (b) (5pt) Suppose we want to solve the first order necessary condition using Newton's method, write down the iteration formula.
- (c) (5pt) Find the rate of convergence of $\{x_k\}$. i.e. let $x^* = \lim_{k \to \infty} x_k$, find constant q > 1, c > 0 such that

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^q} = c.$$

(Hint: use Taylor expansion)

- 2. Consider the bounded region $A = \{(x, y) : y \ge 0, y \le 1 x^2\}$
 - (a) (5pt) Find the analytic center of A, which in this case is defined by

$$\underset{(x,y)}{\arg\min} \quad -(\log y + \log(1 - x^2 - y)).$$

Now approximate A with polygon A_n 's. In particular, A_n approximates the parabola $(y = 1 - x^2)$ with (2n - 1) lines, each line is tangent to the parabola with tangent point $x = \frac{k}{n}$ (and hence $y = 1 - \frac{k^2}{n^2}$), for k = -(n - 1), -(n - 2), ..., -1, 0, 1, ..., (n - 1).

(b) (5pt) Describe A_n , i.e. write down all the constraints for bounded region A_n .

- (c) (5pt) Write down the optimization problem for finding the analytic center for A_n , and the KKT first order necessary condition.
- (d) (10pt) What does the analytic center converge to as $n \to \infty$? (Hint: 1. It might be difficult to solve for explicit solutions to the analytic center, but one can still find its limit. 2. use squeeze theorem, which says if $a_n \le x_n \le b_n$ for all n, and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ (both limits exist and are equal), then $\{x_n\}$ converges to that limit as well.)
- (e) (5pt) Does the limit found in part (d) match the answer to part (a)? Is it consistent with what you expected? Why or why not?
- 3. Consider the unconstrained optimization problem below:

$$\min_{\mathbf{x}} \max_{1 \le i \le m} (\mathbf{a}_i^T \mathbf{x} + b_i), \tag{1}$$

given $\mathbf{a}_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$.

- (a) (5pt) Derive an equivalent LP problem and write down its dual.
- (b) (5pt) Suppose we approximate the objective function $\max_{1 \le i \le m} (\mathbf{a}_i^T \mathbf{x} + b_i)$ with a smooth function and consider a different optimization problem:

$$\min_{\mathbf{x}} \log \left(\sum_{i=1}^{m} \exp(\mathbf{a}_i^T \mathbf{x} + b_i) \right)$$
 (2)

Let z_1 and z_2 be the optimal values of (1) and (2), prove that

$$0 \le z_2 - z_1 \le \log m.$$

(c) (5pt) Suppose we use a different function for approximation:

$$\min_{\mathbf{x}} \frac{1}{\gamma} \log \left(\sum_{i=1}^{m} \exp(\gamma(\mathbf{a}_{i}^{T} \mathbf{x} + b_{i})) \right), \tag{3}$$

for some $\gamma > 0$. Suppose the optimal value to (3) is z_3 , derive a bound for $z_3 - z_1$ similar as above. What happens as $\gamma \to \infty$?

4. Consider the LP problem

minimize
$$x_1 + x_2$$

subject to $x_1 + x_2 + x_3 = 1$, $(x_1, x_2, x_3) \ge 0$.

- a) What is the analytic center of the feasible region?
- b) Find the central path point $\mathbf{x}(\mu) = (x_1(\mu), x_2(\mu), x_3(\mu)).$
- c) Show that as μ decreases to 0, $\mathbf{x}(\mu)$ converges to the unique optimal solution.
- d) Let the objective function be just minimizing x_1 . Then, find the central path point $\mathbf{x}(\mu)$ again. Which point does the central path converge to now?
- e) Draw \mathbf{x} part of the primal-dual potential function level sets:

$$\psi_6(\mathbf{x}, \mathbf{s}) \le 0$$
 and $\psi_6(\mathbf{x}, \mathbf{s}) \le -10$,

and

$$\psi_{12}(\mathbf{x}, \mathbf{s}) \le 0$$
 and $\psi_{12}(\mathbf{x}, \mathbf{s}) \le -10$;

respectively in the primal feasible region (on a plane) for the above two different objective functions.

The last question can be done by forming a team of 1-3 persons and sampling interior points in the primal and dual feasible regions.

Hint: To plot the **x** part of the level set of potential function, say $\psi_6(\mathbf{x}, \mathbf{s}) \leq 0$, in primal feasible region F_p , you plot

$$\{\mathbf{x} \in F_p : \min_{\mathbf{s} \in F_d} \psi_6(\mathbf{x}, \mathbf{s}) \le 0\}$$

where F_d represents the dual feasible region. This can be approximately done by sampling as follows.

You randomly generate N interior feasible points of the primal \mathbf{x}^p and the dual (y^q, \mathbf{s}^q) , respectively. For each primal point \mathbf{x}^p , you find if it is true that

$$\min_{q=1,\dots,N} \psi_6(\mathbf{x}^p, \mathbf{s}^q) \le 0\}.$$

Then, you plot those \mathbf{x}^p who give an "yes" answer.