Filter Summary Report: TIA,simple,Z3,ZL

Generated by MacAnalog-Symbolix

December 5, 2024

Contents

1	Examined $H(z)$ for TIA simple Z3 ZL: $\frac{Z_3Z_Lg_m}{Z_3g_m+Z_Lg_m}$	7
2	HP	7
	BP 3.1 BP-1 $Z(s) = \left(\infty, \ \infty, \ R_3, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$	7 7
	3.2 BP-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	
	3.3 BP-3 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	8
	3.4 BP-4 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	
	3.5 BP-5 $Z(s) = \left(\infty, \ \infty, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	9
	3.6 BP-6 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \infty, R_L\right)$	9
	3.7 BP-7 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$	10
	3.8 BP-8 $Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} \right)$	
	3.9 BP-9 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$	
	3.10 BP-10 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$	11

	3.11 BP-11 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 12
	3.12 BP-12 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$. 12
	3.13 BP-13 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$. 13
4	LP	13
E	BS	13
Э	5.1 BS-1 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$. 13
	5.2 BS-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$. 14
	5.3 BS-3 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$. 14
	5.4 BS-4 $Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L\right)$. 15
G	GE	15
U	6.1 GE-1 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$. 16
	6.2 GE-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	
	6.3 GE-3 $Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$. 17
	6.4 GE-4 $Z(s) = \left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ R_L\right)$. 17
7	AP	18
8	INVALID-NUMER	18
•	8.1 INVALID-NUMER-1 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3R_3s+1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$. 18
	8.2 INVALID-NUMER-2 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$. 18
9	INVALID-WZ	19
10	O INVALID-ORDER	19
	10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, R_L)$. 19
	10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_{L}s}\right)$. 19

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right) \dots \dots$	19
10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	19
10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	20
10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$	20
10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	20
10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	20
10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	20
10.10INVALID-ORDER-10 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	20
10.11INVALID-ORDER-11 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$	21
10.12INVALID-ORDER-12 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	21
10.13INVALID-ORDER-13 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	21
10.14INVALID-ORDER-14 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L\right)$	21
10.15INVALID-ORDER-15 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s}\right)$	21
10.16INVALID-ORDER-16 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	21
10.17INVALID-ORDER-17 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	22
10.18INVALID-ORDER-18 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 \overline{R}_3 s + 1}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$	22
10.19INVALID-ORDER-19 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$	22
$10.20 \text{INVALID-ORDER-20 } Z(s) = \left(\infty, \ \infty, \ \frac{R_3}{C_3 R_3 s+1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots $	22
10.21INVALID-ORDER-21 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$	22
10.22INVALID-ORDER-22 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$	23
10.23INVALID-ORDER-23 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	23
10.24INVALID-ORDER-24 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	23
$10.25 \text{INVALID-ORDER-} 25 \ Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	23

10.26INVALID-ORDER-26 $Z(s) = ($	$\left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$	23
10.27INVALID-ORDER-27 $Z(s) = ($	$\left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	23
10.28INVALID-ORDER-28 $Z(s) = ($	$\left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots$	24
10.29INVALID-ORDER-29 $Z(s) = 1$	$\left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots $	24
		24
10.31 INVALID-ORDER-31 $Z(s)=\left(\right.$	$\left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls + 1}\right)$	24
10.32INVALID-ORDER-32 $Z(s)=\left(\right.$	$\left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$	24
10.33 INVALID-ORDER-33 $Z(s)=\left(\right.$	$\left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$	25
10.34 INVALID-ORDER-34 $Z(s)=\left(\right.$	$\left(\infty,\ \infty,\ L_3s+rac{1}{C_3s},\ \infty,\ \infty,\ rac{L_Ls}{C_LL_Ls^2+1} ight)$	25
10.35INVALID-ORDER-35 $Z(s) = ($	$\left(\infty, \infty, L_3s + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	25
10.36INVALID-ORDER-36 $Z(s) = ($	$\left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$	25
10.37 INVALID-ORDER-37 $Z(s)=\left(\right.$	$\left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$	25
10.38INVALID-ORDER-38 $Z(s) = 1$	$\left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \dots $	26
10.39 INVALID-ORDER-39 $Z(s)=\left(\right.$	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$	26
10.40INVALID-ORDER-40 $Z(s) = ($	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$	26
10.41INVALID-ORDER-41 $Z(s) = ($	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ L_Ls+\frac{1}{C_Ls}\right)$	26
10.42INVALID-ORDER-42 $Z(s) = ($	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1}\right)$	26
10.43INVALID-ORDER-43 $Z(s) = ($	$\left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	26
10.44INVALID-ORDER-44 $Z(s) = ($	$\left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$	27
10.45INVALID-ORDER-45 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls+\frac{1}{C_Ls}\right)}{L_Ls+R_L+\frac{1}{C_Ls}}\right) \dots $	27
		27
10.47INVALID-ORDER-47 $Z(s) = ($	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right) \dots \dots$	27

10.48INVALID-ORDER-48 $Z(s) = ($	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$	
10.49INVALID-ORDER-49 $Z(s) = ($	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots$	
10.50INVALID-ORDER-50 $Z(s) = ($	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right) \dots \dots$	
10.51INVALID-ORDER-51 $Z(s) = ($	$(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls})$	
10.52INVALID-ORDER-52 $Z(s) = 1$	$\left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right) \ \dots \dots \dots \dots \dots$	
	$\left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right) \dots \dots \dots \dots$	
10.54INVALID-ORDER-54 $Z(s) = 1$	$\left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) \ \dots \dots \dots \dots$	
10.55INVALID-ORDER-55 $Z(s) = 1$	$\left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L + \frac{1}{C_L s}\right) \dots \dots \dots \dots \dots \dots$	
10.56INVALID-ORDER-56 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right) \dots \dots \dots \dots$	
10.57INVALID-ORDER-57 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) \ \dots $	
	$\left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) $	
10.59INVALID-ORDER-59 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right) \dots \dots \dots \dots$	
	$\left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots$	
10.61INVALID-ORDER-61 $Z(s) = ($	$(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{R_L}{C_LR_Ls+1})$	
10.62INVALID-ORDER-62 $Z(s) = ($	$(\infty, \infty, \frac{L_{3s}}{C_3L_{3s}^2+1} + R_3, \infty, \infty, R_L + \frac{1}{C_{Ls}})$	
10.63INVALID-ORDER-63 $Z(s) = ($	$\left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$	
10.64INVALID-ORDER-64 $Z(s) = ($	$(\infty, \infty, \frac{L_{3}s}{C_{3}L_{3}s^{2}+1} + R_{3}, \infty, \infty, \frac{L_{L}s}{C_{L}L_{L}s^{2}+1})$	
10.65INVALID-ORDER-65 $Z(s) = ($	$\left(\infty, \ \infty, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) \ \dots \dots \dots \dots$	
10.66INVALID-ORDER-66 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$	
10.67INVALID-ORDER-67 $Z(s) = ($	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \ \dots \dots \dots \dots$	
10.68INVALID-ORDER-68 $Z(s) = 1$	$\left(\infty, \ \infty, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right) $	

10.69INVALID-ORDER-69 $Z(s) =$	$\left(\infty, \ \infty, \right.$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , \propto	$\left(\frac{1}{C_L s} \right) \dots $		 	 	 	 	32
10.70INVALID-ORDER-70 $Z(s) =$	$\left(\infty, \infty, \right)$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , ∞	$, \frac{R_L}{C_L R_L s + 1} $		 	 	 	 	32
10.71INVALID-ORDER-71 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , \propto	$R_L + \frac{1}{C_L s}$		 	 	 	 	32
10.72INVALID-ORDER-72 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , ∞	$L_L s + \frac{1}{C_L s}$		 	 	 	 	32
10.73INVALID-ORDER-73 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1} $		 	 	 	 	32
10.74INVALID-ORDER-74 $Z(s) =$										
10.75INVALID-ORDER-75 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , ∞	$C_L s + \frac{1}{R_L} + \frac{1}{L_L}$	$\left(\frac{1}{s}\right)$	 	 	 	 	33
10.76INVALID-ORDER-76 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , ∞	$), \frac{L_L s}{C_L L_L s^2 + 1} +$	(R_L) .	 	 	 	 	33
10.77INVALID-ORDER-77 $Z(s) =$	$(\infty, \infty,$	$\frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}},$	∞ , ∞	$, \frac{R_L \left(L_L s + \frac{1}{C_L s} + \frac{1}{C_L s$	$\left(\frac{1}{s}\right)$	 	 	 	 	33

1 Examined H(z) for TIA simple Z3 ZL: $\frac{Z_3Z_Lg_m}{Z_3g_m+Z_Lg_m}$

$$H(z) = \frac{Z_3 Z_L g_m}{Z_3 g_m + Z_L g_m}$$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Parameters:

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
 Qz: 0 Wz: None

3.3 BP-3
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.4 BP-4
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)$$

wo:
$$\sqrt{\frac{1}{L_L(C_3+C_L)}}$$

bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

${\bf Parameters:}$

Q:
$$C_3 R_L \sqrt{\frac{1}{C_3 L_3}}$$

wo: $\sqrt{\frac{1}{C_3 L_3}}$

bandwidth:
$$\frac{1}{C_3R_L}$$

K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_3L_LR_Ls}{C_3L_3L_LR_Ls^2 + C_LL_3L_LR_Ls^2 + L_3L_Ls + L_3R_L + L_LR_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$

K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.9 BP-9
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_{3}R_{3}R_{L}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{3}+R_{L}}{C_{3}R_{3}R_{L}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.10 BP-10
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0

K-HP: 0K-BP: R_3 Qz: 0Wz: None

3.11 BP-11
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{3}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.12 BP-12
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 (C_3+C_L) wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{1}{R_3(C_3+C_L)}$ K-LP: 0 K-HP: 0

K-BP: R_3 Qz: 0 Wz: None

3.13 BP-13
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

Parameters:

$$Q: \frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}$$
 wo: $\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$ bandwidth: $\frac{R_3+R_L}{R_3R_L(C_3+C_L)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1 \right)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
 wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
 bandwidth:
$$\frac{R_3}{L_L}$$
 K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.2 BS-2
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{K-HP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.3 BS-3
$$Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{L}}{L_{3}} \\ \text{K-LP:} \ R_{L} \\ \text{K-HP:} \ R_{L} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

5.4 BS-4
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \\ \text{K-HP:} \ \frac{R_3R_L}{R_3 + R_L} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

GE

6.1 GE-1
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} & \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ & \text{bandwidth:} \ \frac{R_3 + R_L}{L_L} \\ & \text{K-LP:} \ R_3 \\ & \text{K-HP:} \ R_3 \\ & \text{K-BP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ & \text{Qz:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_3 + R_L)}$
K-LP: $\frac{R_3 R_L}{R_3 + R_L}$
K-HP: $\frac{R_3 R_L}{R_3 + R_L}$
K-BP: R_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.3 GE-3
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L} \\ \text{wo: } \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth: } \frac{R_3+R_L}{L_3} \\ \text{K-LP: } R_L \\ \text{K-HP: } R_L \\ \text{K-BP: } \frac{R_3R_L}{R_3+R_L} \\ \text{Qz: } \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz: } \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.4 GE-4
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}(R_3+R_L)$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

7 AP

INVALID-NUMER

8.1 INVALID-NUMER-1
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_LR_3+C_LR_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ & \text{bandwidth:} \ \frac{C_3R_3+C_LR_3+C_LR_L}{C_3C_LR_3R_L} \\ & \text{K-LP:} \ R_3 \\ & \text{K-HP:} \ 0 \\ & \text{K-BP:} \ \frac{C_LR_3R_L}{C_3R_3+C_LR_3+C_LR_L} \\ & \text{Qz:} \ 0 \end{aligned}$$

Wz: None

8.2 INVALID-NUMER-2
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_LR_3R_L\sqrt{\frac{1}{C_3C_LR_3R_L}}}{C_3R_3+C_3R_L+C_LR_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_LR_3R_L}} \\ \text{bandwidth:} \ \frac{C_3R_3+C_3R_L+C_LR_L}{C_3C_LR_3R_L} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \end{array}$$

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Wz: None

INVALID-WZ

INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, R_L)$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L\right)$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{1}{s(C_3 + C_L)}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.10 INVALID-ORDER-10 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.15 INVALID-ORDER-15
$$Z(s)=\left(\infty,\ \infty,\ \frac{R_3}{C_3R_3s+1},\ \infty,\ \infty,\ \frac{1}{C_Ls}\right)$$

$$H(s)=\frac{R_3}{C_3R_3s+C_LR_3s+1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3}{C_3 R_3 s + 1}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1\right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \ \infty, \ R_3 + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L\left(C_3 R_3 s + 1\right)\left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, \ \infty, \ L_3 s + \frac{1}{C_3 s}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_Ls^4 + C_3L_3L_Ls^3 + C_3L_3R_Ls^2 + C_3L_LR_Ls^2 + C_LL_LR_Ls^2 + L_Ls + R_Ls^2}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_Ls^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, \ \infty, \ L_3s + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_1R_Ls^3 + C_3L_3s^2 + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1}, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, \infty, \frac{L_{3}s}{C_{3}L_{3}s^{2}+1}, \infty, \infty, L_{L}s + R_{L} + \frac{1}{C_{L}s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, \ \infty, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L R_L s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_Ls\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3L_3s^2 + C_3L_Ls^2 + C_3R_3s + C_LL_Ls^2 + 1}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{s\left(C_3C_LL_3s^2 + C_3C_LL_Ls^2 + C_3C_LR_3s + C_3C_LR_Ls + C_3 + C_L\right)}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_LR_3s^3 + C_3C_LL_LR_Ls^3 + C_3L_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + 1}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\infty, \ \infty, \ L_3s + R_3 + \frac{1}{C_3s}, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls + \frac{1}{C_Ls}\right)}{L_Ls + R_L + \frac{1}{C_Ls}}\right)$$

$$H(s) = \frac{R_L\left(C_LL_Ls^2 + 1\right)\left(C_3L_3s^2 + C_3R_3s + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_Ls^3 + C_3C_LL_LR_3s^3 + C_3C_LL_RL_s^3 + C_3C_LR_3R_Ls^2 + C_3R_3s + C_3R_Ls + C_LL_Ls^2 + C_LR_Ls + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\infty, \infty, \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L L_4 R_3 s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

$$\begin{aligned} \textbf{10.58} \quad & \textbf{INVALID-ORDER-58} \ Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1} + R_L \right) \\ H(s) &= \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_3 s + L_3 R_L s + L_L R_3 s + R_3 R_L s^2 + L_3 L_L R$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, \ \infty, \ \frac{1}{C_3 s + \frac{1}{R_3} + \frac{1}{L_3 s}}, \ \infty, \ \infty, \ \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_L s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^3 + C_L L_3 R_3 R_L s$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 R_3 s^2 + L_3 s + R_3)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_1 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_2 s^3 + C_L L_L R_3 R_L s^2 + L_3 L_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^3 + C_4 R_4 s^3$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_4s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_4s^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\infty, \infty, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3s^3 + C_3L_3s^2 + C_3R_3s + C_LR_3s + 1}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls + 1}\right)$$

$$H(s) = \frac{R_3R_L\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3R_3R_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_3R_3R_Ls + C_LR_3R_Ls + R_3 + R_L}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LR_Ls + 1\right)}{C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LR_3R_Ls^2 + C_3L_3s^2 + C_3R_3s + C_LR_3s + C_LR_Ls + 1}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_LR_3s^3 + C_3L_3s^2 + C_3R_3s + C_LL_Ls^2 + C_LR_3s + 1}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_LR_3s\left(C_3L_3s^2 + 1\right)}{C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_LR_3s^2 + C_LL_LR_3s^2 + L_Ls + R_3}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\infty, \infty, \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_Ls^2 + C_LR_Ls + 1\right)}{C_3C_LL_3L_Ls^4 + C_3C_LL_3R_3s^3 + C_3C_LL_3R_Ls^3 + C_3C_LL_3R_3s^3 + C_3$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{1}{C_Ls + \frac{1}{R_L} + \frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3s + \frac{1}{C_3s}\right)}{L_3s + R_3 + \frac{1}{C_3s}}, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_2R_3R_1s^3 + C_3L_3L_2s^3 + C_3L_3R_3s^2 + C_3L_3R_3s^2 + C_3L_3R_3s^2 + C_3R_3R_1s + C_LL_1R_3s^2 + C_LL_1R_2s^2 + L_Ls + R_3 + R_L}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(L_3 s + \frac{1}{C_3 s}\right)}{L_3 s + R_3 + \frac{1}{C_3 s}}, \ \infty, \ \infty, \ \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_L s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L R_3 s^2 +$$