${\rm FYS2150}$ - Oblig 5

Aleksander Hansen

21. februar 2013

Oppgave 3

Det har den enkle grunnen at lyset fra lynet beveger seg med lysets hastighet, mens lyden beveger seg med lydens hastighet i luft som er mange magnituder lavere enn lysets hastighet i luft. Regelen er at man deler antall sekund mellom man ser lynet til man hører tordenet på tre. Da får man avstanden til hvor lynet slo ned i km. Dette fungerer fordi lyset beveger seg så fort at man ser det så å si med det samme det slår ned, mens lydhastigheten i luft er $\sim 333m/s$.

Oppgave 4

Nei, bølgehastigheten i strengen er en funksjon av snordraget. $v = \sqrt{\frac{S}{\mu}}$. Og siden snordraget øker jo høyere opp man beveger seg, fordi mer av massen til snoren henger under punktet, så vil bølgehastigheten øke på vei opp.

Oppgave 5

Jeg har ingen gummistrikk tilgjengelig, men siden bølgelengden på grunntonen er lik 2 ganger lengden på strengen, så øker bølgelengden når vi strekker strengen slik at vi får en mørkere tone.

Oppgave 6

Det er feil fordi hvert molekyl tar en random walk (Brownsk bevegelse). Men trekker vi fra denne bevegelsen statistisk, svinger hvert molekyl om et likevektspunkt.

Oppgave 7

En longitudinal bølge er symmetrisk om bevegelsesretnigen/aksen. Mens en transversal bryter denne symmetrien.

Oppgave 14

Ja, det har samme form som likningen for harmonisk plan bølge, men er bare forskjøvet $\frac{\pi}{2}$, siden $\sin(\phi) = \cos(\frac{\pi}{2} - \phi)$.

Oppgave 18

$$v = \lambda f \Rightarrow f = \frac{v}{\lambda} = \frac{1500}{0.001} = 1.5MHz$$

Ultralyd er definert som lyd med frekevns høyere enn hva et menneske kan høre, som er ca. alt over 20kHz. Ultralyd er dermed en passende betegnelse.

Oppgave 21

a) Vi kan ignorere massen til strengen mtp. snorkraften, siden det er hovedsaklig loddet som kontribuerer til den. Det betyr at snorkraften i den horisontale delen er tilnærmet konstant lik:

$$S = -m_l \cdot g = 3kg \cdot 10m/s^2 = 30N$$

Massen pr. lengde til strengen er,

$$\mu = \frac{0.003kg}{2m} = 0.0015kg/m$$

Bølgehastigheten til en transversal bølge er dermed:

$$v=\sqrt{\frac{S}{\mu}}=\sqrt{\frac{30}{0.0015}}\approx 140m/s$$

b) Som sagt, siden vi praktisk talt kan ignorere massen til strengen så vil ikke bølgehastigheten endres nevneverdig med lengden på den horisontale delen, men i teorien vil det være en liten endring, av samme grunn som bølgen i oppg. 4 øker hastigheten på vei opp.

c)

$$L = \frac{\lambda}{2} \quad \Rightarrow \quad \lambda = 2L$$

$$v = \lambda f = 2Lf \quad \Rightarrow \quad L = \frac{v}{2f}$$

$$L = \frac{140m/s}{2 \cdot 280s^{-1}} = 0.25m$$

d)

$$v = 2Lf = 2 \cdot 0.25m \cdot 560s^{-1} = 280m/s$$

 $v = \sqrt{\frac{S}{\mu}} \implies S = \mu v^2$
 $S = 0.0015kg/m \cdot (280m/s)^2 = 117.6N$

Loddet må altså veie $m = \frac{S}{g} = 11.76kg$.

Oppgave 23

Summen av de enkeltstående bølgene blir til en stående bølge.