MACHINE LEARNING BASIC CONCEPTS

Basic workflow for classification (and regression)

Attributes, **features**, predictors, input variables, independent variables, explanatory variables

Instances, examples, data

Label, **class**, output variable, dependent variable, **response**, predictand, target

Future data

Sky	Temperature	Humidity	Wind	Tennis
Sunny	85	85	No	No
Sunny	80	90	Yes	No
Overc ast	83	86	No	Yes
Rainy	70	96	No	So
Rainy	68	80	No	Yes
Overc ast	64	65	Yes	Yes
Sunny	72	95	No	No
Sunny	69	70	No	Yes
Rainy	75	80	No	Yes
Sunny	75	70	Yes	Yes
Overc ast	72	90	Yes	Yes
Overc ast	81	75	No	Yes
Rainy	71	91	Yes	No

Sky	Tempe rature	Humidity	Wind	Tennis
Sunny	60	65	No	?????

ML Algorithm / Method **IF** Sky = Sunny **AND** Humidity <= 75

THEN Tennis = Yes ...

Model (Classifier)

Class = Yes

Prediction

Training Data / Available data

DEFINITIONS: ATTRIBUTES AND RESPONSE

Attributes / features

- A feature is an individual measurable property of an instance
- Types:
 - Numeric: (real numbers or integers):
 - 0, 1, 2
 - 1.3, 7.9, 10.798, ...
 - Categorical: red / green / yellow
 - · Ordinal: cold, lukewarm, hot
 - Typically, they are encoded as integer numbers

Response

- If categorical (e.g. cancer / no cancer) => classification problem
 - If it has two values: binary classification, otherwise, multi-class problem
- If real / integer number => regression problem

DEFINITIONS: FEATURE SPACE (INSTANCE SPACE)

- Instances, examples = tuples
 - In general, they inhabit a d-dimensional space (instance space)
 - (input, output) = $(\mathbf{x}_{i}, y) = (x_{i1}, x_{i2}, ..., x_{id}, y) \in (\mathbf{R}^{d}, Y)$
 - Note: boldface means vector
 - This instance has 4 inputs and 1 output. It inhabits a 4-dimensional space

Sky	Temperature	Humidity	Wind	Tennis
X_1	x_2	X ₃	X_4	у
Sunny	60	65	No	Yes

In 2-dimensions (2 attributes), each instance is a point in instance space

- Example: classify plants into two classes ("versicolor" / red vs.
 "virginica" / blue)
- 2 attributtes = (Petal.Width, Petal.Length) = 2 dimensions
- Classification = finding a boundary between the classes

FEATURE SPACE IN REGRESSION

- In the following case, there is one input variable and an output variable (continuous "label")
- Regression = finding a function that transforms the inputs into the output

MODELS (CLASSIFICATION): RULES

MODELS: DECISION TREES

MODELS: MANY OTHERS

Instances, examples

Label, class, output variable, dependent variable

Future data

Sky	Temperature	Humidity	Wind	Tennis
Sunn	85	85	No	No
Sunn	80	90	Yes	No
Over cast	83	86	No	Yes
Rainy	70	96	No	So
Rainy	68	80	No	Yes
Over cast	64	65	Yes	Yes
Sunn	72	95	No	No
Sunn	69	70	No	Yes
y Rainy	75	80	No	Yes
Sunn	75	70	Yes	Yes
Over cast	72	90	Yes	Yes
Over cast	81	75	No	Yes
Rainy	71	91	Yes	No

Sky	Tempe rature	Humidity	Wind	Tennis
Sunny	60	65	No	?????

ML Algorithm/

- Nearest neighbor
- Ensembles (bagging, boosting, stacking, ...)
- Functions: neural networks, Deep learning, support vector machines,
- Naive bayes, bayesian networks

Model (Classifier)

Class = Yes

Prediction

Training Data

KNN: K-NEAREST NEIGHBOURS

KNN is a lazy method, because the "model" is the data

Training data

Model

Spiral galaxy

K-NEAREST NEIGHBORS (KNN)

K-NEAREST NEIGHBORS (KNN)

K-NEAREST NEIGHBORS (KNN)

K> 2 => classify new instances as the majority class of the k-nearest neighbours

KNN FOR REGRESSION

WHY USE K>1?

WHY USE K>1?

Data with noise

(a) 1-NN on noisy data

(b) 3-NN and noisy data

WHY USE K>1?

- With k=1, noisy instances (i.e. class overlap) have a large influence
- With k>1, more neighbors are considered and noisy instances have less influence (it is like averaging)
- But if k is very large, locality is lost
 - What is KNN if k=number of instances?
- If the number of classes is two, use odd k in order to avoid draws
- K is the main hyper-parameter of KNN and has to be tuned properly.

DISTANCES

- instance #i: $\mathbf{x_i} = (\text{weight}_i, \text{height}_i) = (w_i, h_i)$
- instance #k: $\mathbf{x_k} = (\text{weight}_k, \text{height}_k) = (w_k, h_k)$
- For numerical attributes, the Euclidean distance is typically used:
 - 2D: $d(\mathbf{x}_i, \mathbf{x}_k)^2 = (w_i w_k)^2 + (h_i h_k)^2$
 - $d(\mathbf{x_i}, \mathbf{x_k}) = \text{sqrt}[(w_i w_k)^2 + (h_i h_k)^2]$
 - dD: $d(\mathbf{x_i}, \mathbf{x_k})^2 = (x_{i1} x_{k1})^2 + (x_{i2} x_{k2})^2 + ... + (x_{id} x_{kd})^2$
- For nominal / categorical attributes: Hamming distance:
 - If attribute e es nominal (categorical), instead of $(x_{ie}-x_{ke})^2$, the following is used: $\delta(x_{ie},x_{ke})$: 0 if $x_{ie}=x_{ke}$ and 1 otherwise
- or transform the attribute to dummy variables / onehot encoding)

SCALING (NORMALIZATION)

- It is important to scale (normalize) attributes, because ranges can be different (e.g. human body temperature ranges from 35° to 45° celsius, body height ranges from 0 to 2m, body weight ranges from 0 to 100kg, age ranges from 0 to 100 years, etc.)
- Otherwise, attributes with a large range have more weight on the distance
- Scaling attribute x₁:
 - To 0-1 range (minmax): $x'_{1j} = \frac{x_{1j} \min(x_1)}{\max(x_1) \min(x_1)}$
 - Standarization: $x'_{1j} = \frac{x_{1j} \bar{x}_1}{\sigma_1}$

OTHER DISTANCES

- In some cases, it may be better to weight the neighbors so that nearer neighbors contribute more to the classification or regression
- The inverse of the distance is typically used
- "uniform" (euclidean distance) vs. "distance" (inverse euclidean distance)

• Blue square: $\frac{1}{d1}$

• Red triangle: $\frac{1}{d2} + \frac{1}{d3}$

$$\frac{7.3}{\frac{d1}{d1}} + \frac{5.1}{\frac{d2}{d2}} + \frac{2.7}{\frac{d3}{d3}}$$
$$\frac{1}{d1} + \frac{1}{d2} + \frac{1}{d3}$$

LIMITATIONS OF KNN

- Very sensitive to noise.
 - Solution: Large K's
- Slow (when testing): all distances to each training instance must be computed.
 - Solution: ball-trees
- Large storage requirements (all training data is stored).
 - Possible solution: pre-processing with "condensation" (store only the relevant instances)
- Very sensitive to irrelevant attributes and the curse of dimensionality.
 - Solutions: pre-processing with feature selection / feature extraction

Irrelevant attributes

SUMMARY OF KNN

- KNN classifies test instances as the majority class in the neighbourhood of the training set
- KNN is a lazy ML algorithm
 - During training, no model is constructed, but all training instances are stored (model = training instances)
- It is based on the idea that the best model of data is the data itself
- It can be easily extended for regression by computing the average of the k-nearest neighbours

MODELS: TREES (AND RULES) FOR CLASSIFICATION AND REGRESSION

MODELS: DECISION TREES

Decision trees

Decision trees

Algorithms for building decision trees

- The most basic is ID3: decision trees are constructed recursively from the root to the leaves, each time selecting the best node (attribute) to put on the tree
- C4.5 (or J48), is able to deal with continuous attributes and uses statistical criteria to prevent overfitting the tree to the data (too large trees imply that data is memorized rather than generalized)

Simplified ID3 algorithm

- 1. Stop growing the tree if:
 - 1. All examples belong to the same class
 - 2. If there are no remaining instances or attributes
- Otherwise, select the best attribute for that node, according to some criteria (entropy minimization, for instance)
- 3. Build recursively as many subtrees as values in the selected attribute

Simplified C4.5 algorithm

- 1. Stop growing the tree if:
 - 1. All examples belong to the same class
 - 2. If there are no remaining instances or attributes
 - 3. If no improvements are expected by growing the tree
- 2. Otherwise, select the best attribute for that node, according to some criteria (entropy minimization, for instance)
- 3. Build recursively as many subtrees as values in the selected attribute

THE CONSTRUCTION OF THE TREE STARTS WITH AN EMPTY TREE, AT THE ROOT

WHAT IS THE BEST ATTRIBUTE TO PUT IN THE ROOT OF THE TREE?

Let's try with attribute SKY

Sky generates as many partitions as values (3: sunny,

Overcast, rainy)

Sunny
Overcast

Sky

S	T	H	W	Ten
Sun ny	85	85	No	No
Sun ny	80	90	Yes	No
Sun ny	72	95	No	No
Sun ny	69	70	No	Yes
Sun ny	75	70	Yes	Yes

"3 No, 2 Yes"

"no" majority

S	T	Н	W	Ten
Overcast	83	86	No	Yes
Overcast	64	65	Yes	Yes
Overcast	72	90	Yes	Yes
Overcast	81	75	No	Yes

UN	0, 4	Yes

1 37 99

Perfect partition

S	T	Н	W	Ten
Rainy	70	96	No	Yes
Rainy	68	80	No	Yes
Rainy	75	80	No	Yes
Rainy	65	70	Yes	No
Rainy	71	91	Yes	No

Rainy

"2 No, 3 Yes"

How do we know if SKY is a good attribute?

- Perfect partition:
 - 0% No, 100% Yes
 - 100% No, 0% Yes
- Worse partition: 50% No, 50% Yes
- Entropy measures partition quality (the larger, the worse)

$$H(P) = -\sum_{C_i} p_{C_i} \log_2(p_{C_i})$$

$$H(P) = -(p_{yes} \log_2(p_{yes}) + p_{no} \log_2(p_{no}))$$

$$p_{no} = (1 - p_{yes})$$

Proportion of Yes

OTHER WAYS TO MEASURE PARTITION QUALITY

Entropy

$$H(P) = -\sum_{C_i} p_{C_i} \log_2(p_{C_i})$$

Gini

$$Gini(P) = -\sum_{Ci} p_{Ci} (1 - p_{Ci})$$

Majority

$$M(P) = \max(p_{yes}, p_{no})$$

Average entropy for Sky

- Entropy for the three partitions of Sky:
 - 1. "3 No, 2 Yes": $H=-((3/5)*log_2(3/5)+(2/5)*log_2(2/5)) = 0.97$
 - 2. "0 No, 4 Yes": $H=-((0/4)*log_2(0/4)+1*log_2(1))=0$
 - 3. "2 No, 3 Yes": $H=-((2/5)*log_2 (2/5)+(3/5)*log_2 (3/5))=0.97$
- Average Sky entropy:
 - HP=(5/14)*0.97+(4/14)*0+(5/14)*0.97 = 0.69
 - Note: there are 14 instances in the data set

WHAT TO DO FOR CONTINUOUS ATTRIBUTES?

A binary (two-values) attribute is created by computing a threshold X

Note: only some thresholds are shown. The best one is X=84 with average entropy = 0.83

Sky	Temperature	Humidity	Wind	Tennis
Sunny	85	85	No	No
Sunny	80	90	Yes	No
Over cast	83	86	No	Yes
Rainy	70	96	No	Yes
Rainy	68	80	No	Yes
Over cast	64	65	Yes	Yes
Sunny	72	95	No	No
Sunny	69	70	No	Yes
Rainy	75	80	No	Yes
Sunny	75	70	Yes	Yes
Over cast	72	90	Yes	Yes
Over cast	81	75	No	Yes
Rainy	71	91	Yes	No

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

4 No, 9 Yes

HP = 0.83

1 No, 0 Yes

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

X=71.5

HP = 0.93

HP = 0.89

2 No. 4 Yes

3 No, 5 Yes

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

4 No, 5 Yes

1 No, 4 Yes

X=70.5

Possible thresholds

Possible thresholds are transitions from Yes to No, or from No to Yes:

- The actual threshold may depend on the algorithm implementation. Some implementations use the average: Ej: 64.5 = (64+65)/2.
- Other implementations use the maximum of the left partition. In that case, the possible thresholds would have been:

 Notice that entropy computed with the training data is the same in both cases, because in the two cases data is partitioned in the same way.

Humidity

1 No, 6 Yes

4 No, 3 Yes

HP = 0.79

Note: there are other alternatives for the threshold, but this is the best one (minimum entropy)

Recursive tree growth

Now that the attribute for the root node has been determined, the process continues recursively. Now, the algorithm has to construct three new subtrees.

"3 No, 2 Yes"

"0 No, 4 Yes"

"2 No, 3 Yes"

When to stop splitting data?

S	T	H W		Ten
Sun ny	85	85	No	No
Sun ny	80	90	Yes	No
Sun ny	72	95	No	No
Sun ny	69	70	No	Yes
Sun ny	75	70	Yes	Yes

"3 No, 2 Yes"

S	T	Н	W	Ten
Overca st	83	86	No	Yes
Overca st	64	65	Yes	Yes
Overca st	72	90	Yes	Yes
Overca st	81	75	No	Yes

"0 No, 4 Yes"

	Rainy	70	96	No	No
	Rainy	68	80	No	Yes
	Rainy	75	80	No	Yes
	Rainy	65	70	Yes	No
ĺ	Rainy	71	91	Yes	No

Н

W

Ten

"2 No, 3 Yes"

No need to create a new node because all instances belong to the same class

Why stop tree growth?

Why stop tree growth?

Recursive tree growth

Recursive tree growth

Why to stop tree growth?

Why to stop tree growth?

- The algorithm may use a statistical criterion in order to determine whether it is worth to continue tree growth, whether the sample is too small, etc.
- Also, this can be controlled with the min_samples_split hyperparameter.

SOME HYPER-PARAMETERS OF DECISION TREES

- max_depth: maximum depth of the tree
- min_samples_split: minimum number of instances in order to continue subdividing the tree

SOME HYPER-PARAMETERS OF DECISION TREES

max_depth: maximum depth of the tree

SOME HYPER-PARAMETERS OF DECISION TREES

 min_samples_split: minimum number of instances in order to continue subdividing the tree

min_samples_split = 6

min_samples_split = 5

Boundaries in Feature Space

- Decision trees are non-linear. Boundary is made of piece-wise linear segments parallel to axis.
- Therefore, not very good for oblique boundaries (there are "oblique trees", but not widely used)

Maxdepth = 2

V1>=2.02897 "red" V2>=-1.474671 "red" V2< -1.474671 "blue" V1< 2.02897 "blue" 6) V1< -1.797563 "red" 7) V1>=-1.797563 "blue"

Quite commonly, hyper-parameters control the **complexity** of the model

FOR KNN, LARGE K = SIMPLER MODEL

ENTROPY AND INFORMATION GAIN

- Sometimes, instead of entropy (H) (to minimize), information gain (IG) is used (to be maximized)
- IG is the difference between the entropy of the original partition H(P) and the weighted average entropy after using the attribute (HP_{Sky}).
- Maximizing IG is equivalent to minimizing entropy.

ENTROPY AND INFORMATION GAIN

Choosing the attribute with highest IG is equivalent to choosing the attribute with smallest entropy, because H(P) is the same for all attributes.

$$IG_{Sky} = H(P) - HP_{Sky}(P_1, P_2, P_3)$$

$$IG_{Humidity} = H(P) - HP_{Humidity}(P_1, P_2)$$

$$IG_{Temperature} = H(P) - HP_{Temperature}(P_1, P_2)$$

$$IG_{Wind} = H(P) - HP_{Wind}(P_1, P_2)$$

CATEGORICAL ATTRIBUTES WITH MANY VALUES

- Some attributes have many values and therefore many branches.
- In an extreme case (e.g. personal identity number ID), each branch is going to contain just one instance. Therefore, each partition is going to have zero entropy, and so ID. Despite ID's not being particularly useful for prediction (e.g. for predicting whether a loan is going to be returned)

- In less extreme cases, this kind of attributes reduces too much the number of instances that go down into each branch.
- A solution is to penalize attributes with lots of different values. A metric called "gain ratio" is typically used:
 - gain_ratio = information_gain / penalization_distinct_values
- Another solution is to use binary nodes.

BINARY NODES FOR CATEGORICAL ATTRIBUTES

Sometimes, a trick similar to that of the threshold, can also be used for categorical attributes, so that all nodes are binary (two branches)

HANDLING "MISSING VALUES"

Rules (created from the decision tree)

Obtain one rule from each path from the root to the leaves

IF Sky = Sunny **AND** Humidity <= 75 **THEN** Tennis = Yes

ELSE IF Sky = Sunny AND Humidity > 75 **THEN** Tennis = No

ELSE IF Sky = Overcast **THEN** Tennis = Yes

ELSE IF Sky = Rainy AND Wind = Yes **THEN** Tennis = Yes

ELSE Tennis = No

But there are algorithms that build rules directly from data

TREES FOR REGRESSION

- What to do if the response variable is continuous (rather than categorical)?
 - Answer: variance reduction (instead of entropy reduction)
- Two types:
 - Model trees
 - Regression trees

TREES FOR REGRESSION: TWO TYPES

EXAMPLE

Training data

Data Miner?	Age		Salary
Yes		20	2000
Yes		25	2500
Yes		30	3000
Yes		35	3500
Yes		40	4000
Yes		45	4500
Yes		50	5000
No		20	2000
No		25	2050
No		30	2100
No		35	2150
No		40	2200
No		45	2250
No		50	2300

MODEL TREES. EXAMPLE

REGRESSION TREES. EXAMPLE

In the leaves, we can see the average salary for data miners (3500 euros) and the average salary for non-data miners (2150 euros)

REGRESSION TREES. EXAMPLE

A larger depth and using age allows the regression tree to approximate the problema, piece-wise.

Data Miner

age <= 30

Yes

No

Salary = 4250

age<=30

Yes

No

No

Salary = 2050

Salary = 2225

Salary = 2500

TREES FOR REGRESSION

- Regression and model trees are built similarly, except that in the leaves
 - For regression trees, the average output value is computed
 - For model trees, a linear model is constructed (M5 (Quinlan, 93))
- Trees for regression are built similarly than trees for classification (decision trees), except that **standard deviation I variance** is reduced (instead of entropy)
- The tree is built recursively until a stopping condition is reached (max_depth, minsplit, ...)

Which attribute is better?

 x_1 or x_2 ?

We will choose the attribute for which the average standard deviation (sd) **after the partition** is small:

$$100/200 * sd(x_i < 0.5) + 100/200 * sd(x_i > 0.5)$$

It can be noticed that x_1 is quite predictive

Instances after the partition are not spread

 $\frac{1}{2}$ *sd(x₁<0.5) + $\frac{1}{2}$ * sd(x₁>0.5) is small

It can be noticed that x_2 is not predictive

Instances after the partition are very spread

 $\frac{1}{2}$ * sd(x₂<0.5) + $\frac{1}{2}$ * sd(x₂>0.5) is very large

ACTUAL METHODS

- Classification and regression trees: C4.5, C5.0, CART
- Model trees: M5P, Cubist

ADVANTAGES OF TREES

- Interpretable.
 - Attributes closer to the root are the most relevant.
- They can handle naturally categorical attributes (no need for dummy variables).
- Training is fast (compared to other methods)
- They can handle multiple classes naturally.
- They can handle missing values.

DISADVANTAGES OF TREES

- Boundaries too simple for some problems (parallel to axes)
 - However, trees are the elements of advanced methods, such as Random Forests and Gradient Tree Boosting (ensembles).
- Hyper-parameters must be tuned carefully (maxdepth, ..), otherwise (deep) trees are prone to overfitting (bad generalization).