

Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Bacharelado em Engenharia de Computação

Circuitos Digitais

Aula T9

Parte Operativa
Circuitos Combinacionais: Meio somador, somador completo e somador paralelo.

Profs. Leomar S. Rosa Jr. leomarjr@ufpel.edu.br

Circuitos Combinacionais

Tipos de Circuitos Combinacionais

Um circuito combinacional pode ser classificados segundo sua aplicação:

- Circuitos de interconexão: seletores (também chamados de multiplexadores), decodificadores e codificadores
- Circuitos lógico-aritméticos: somadores, subtratores, somadores/subtratores, multiplicadores, deslocadores, comparadores e ULAS (circuitos que combinam mais de duas operações aritméticas e/ou lógicas).

Computação UFPel Circuitos Digitais slide T9.2

Circuitos Combinacionais Revisão da Adição Binária Generalizando, para bits a partir do 2º bit O 1 1 0 1 1 0 0 O 1 1 0 1 1 0 1 O 1 1 0 0 1 1 0 1 O 1 1 0 1 1 0 O 1 1 0 1 1 0

A Função OU Exclusivo (XOR)

A função XOR realiza uma adição sem o carry

X	Y	X⊕Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Computação UFPel Circuitos Digitais

slide T9.13

Projetando um Somador Paralelo

Projetando um circuito para as demais colunas

entradas			saidas	
ci	ai	bi	ci+1	si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

ci+1 = ai·bi+ ai·ci+ bi·ci

Computação UFPel Circuitos Digitais slide T9.17

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Projetando um Somador Paralelo

Projetando um circuito para as demais colunas

	entradas 人			saídas 人				
	ci	ai	bi	ci+1	si			
	0	0	0	0	0			
	0	0	1	0	1			
	0	1	0	0	1			
	0	1	1	1	0			
	1	0	0	0	1			
	1	0	1	1	0			
	1	1	0	1	0			
	1	1	1	1	1			
Computação UFPel Circuitos Digitais								

si = ai·bi·ci + ai·bi·ci + ai·bi·ci + ai·bi·ci

$$= \overrightarrow{ci} \left(\overrightarrow{ai \cdot bi + ai \cdot bi} \right) + \overrightarrow{ci} \left(\overrightarrow{ai \cdot bi + ai \cdot bi} \right)$$

$$= \overrightarrow{ci} \left(\overrightarrow{ai \oplus bi} \right) + \overrightarrow{ci} \left(\overrightarrow{ai \oplus bi} \right)$$

$$= \overrightarrow{ci} \oplus \overrightarrow{ai \oplus bi}$$

slide T9.18

Somador Binário Paralelo (de 4 bits)

Versão 2: somente com somadores completos

O Custo é ligeiramente maior, porém funciona!

Computação UFPel Circuitos Digitais

slide T9.21

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

E se os números que quisermos operar tiverem sinal?

- Precisaremos considerar uma representação que sirva tanto para binários positivos quanto binários negativos
- A representação mais usada, neste caso, é complemento de 2
- Lembremos do porquê disto...

Computação UFPel Circuitos Digitais slide T9.22

Revisão da Adição Binária

Representação de Números Positivos e Negativos em Binário Representação em sinal-magnitude

Exemplos: +9 e -9 representados com 8 bits

Computação UFPel Circuitos Digitais slide T9.23

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Revisão da Adição Binária

Representação de Números Positivos e Negativos em Binário

Representação em complemento de 2

Exemplos: +9 e -9 representados com 8 bits

Computação UFPel Circuitos Digitais slide T9.24

Revisão da Adição Binária

Adição de números binários em complemento de 2

Para os próximos exemplos, considere números com 4 bits (ou seja, o intervalo de representação será [-8,+7])

Exemplo 1: dois números positivos, cuja soma seja ≤ +7

Computação UFPel Circuitos Digitais slide T9.27

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Revisão da Adição Binária

Adição de números binários em complemento de 2

Exemplo 2: dois números negativos, cuja soma seja ≥ -8

Computação UFPel Circuitos Digitais slide T9.28

Revisão da Adição Binária

Adição de números binários em complemento de 2

Exemplo 3: um número positivo e um número negativo, tais que o resultado é positivo

Computação UFPel Circuitos Digitais slide T9.29

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Revisão da Adição Binária

Adição de números binários em complemento de 2

Exemplo 4: um número positivo e um número negativo, tais que o resultado é negativo

Computação UFPel Circuitos Digitais slide T9.30

Revisão da Adição Binária

Adição de números binários em complemento de 2

Exemplo 5: um positivo e um negativo, iguais em módulo

Computação UFPel Circuitos Digitais slide T9.31

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Revisão da Adição Binária

Adição de números binários em complemento de 2

Exemplo 6: 2 números positivos

o resultado excede o intervalo de representação = overflow

Computação UFPel Circuitos Digitais slide T9.32

Circuitos Combinacionais Revisão da Adição Binária Adição de números binários em complemento de 2 Exemplo 7: 2 números negativos 1000 0 transporte ("carry") 1100 (-4) 1101 (-5) 0111 (+7) Resultado errado!

Circuitos Combinacionais

o resultado excede o intervalo de representação = overflow

slide T9.33

Revisão da Adição Binária

Adição de números binários em complemento de 2

Conclusões:

Computação UFPel

Circuitos Digitais

- Números binários em complemento de 2 podem ser adicionados como se fossem número binários sem sinal
- Neste caso, a detecção de overflow se dá comparando-se os dois últimos sinais de carry

Computação UFPe Circuitos Digitais slide T9.34

Prof. Leomar S. Rosa Jr.

