

FUNDAMENTALS OF COMBUSTION

Final Report

<u>Hydrogen - air pre-mixed combustion in a</u> <u>rough micro combustor</u>

Group Members:

- 1. Arghya Das 21JE0155
- 2. Arghadip Biswas 21JE0154
- 3. Ankit Kumar 21JE0123

OBJECTIVES:

The objective of this submission is to present final verification work performed in Ansys. We intend to perform the final tests based on a smooth micro combustor.

PROBLEM FORMULATION:

In order to obtain proper dimensions of the micro combustor, species and their reactions and boundary conditions for combustion of a premixed H₂/Air mixture, we have referred to the paper <u>Comparative</u> <u>analysis of hydrogen/air combustion CFD-modelling for 3D and 2D computational domain of micro-cylindrical combustor</u>. This paper is available in the <u>INTERNATIONAL JOURNAL OF HYDROGEN ENERGY</u>. This paper has been authored by Dmitry Pashchenko. We have used a 2-dimensional axisymmetric model in this paper.

Micro- Combustor:

• **Diagrams and Dimensions:**

Dimensions: 6	
H12	18 mm
H14	20 mm
H15	2 mm
□ V11	2 mm
□ V13	3 mm
V16	1 mm

MESH:

We had initially generated a coarse mesh which has been refined by reducing the size of each mesh element. Details are attached below:

Statistics	100 M	
Nodes	36826	
Elements	36250	

BOUNDARY CONDITIONS:

No.	Parameter	Inlet	Outlet
1	Excess air ratio	1.0	-
2	Mass flow rate H ₂ +air	1.8551×10 ⁻⁵ kg/s	
3	H ₂ mass flow rate	5.25×10 ⁻⁷ kg/s	
4	Mass fraction: H ₂ /O ₂ /N ₂	0.028301/0.22641/0.745289	_
5	Turbulent intensity	5%	5%
6	Hydraulic diameter	2×10 ⁻³ m	3×10^{-3} m
7	Gauge pressure	0.0 Pa	0.0 Pa

• The inlet temperature is 1000K

Chemistry Of Combustion:

We have used a 9 species, 19 reaction mechanism imported from Chemkin database.

Table 2 H₂/air chemical reaction mechanism

Reaction	A (m³/kmol s)	β	E (J/kmol)
$H + O_2 = O + OH$	5.1×10 ¹³	-0.82	6.91×10^{7}
$H_2 + O = H + OH$	1.8×10 ⁷	1.0	3.7×10^{7}
$H_2 + OH = H_2O + H$	1.2×10 ⁷	1.3	1.52×10 ⁷
$OH + OH = H_2O + O$	6.0×10 ⁶	1.3	0.0
$H + OH + M = H_2O + M^a$	7.5×10 ¹⁷	-2.6	0.0
$O_2 + M = O + O + M$	1.9×10 ⁸	0.5	4.001×10 ⁸
$H_2 + M = H + H + M^b$	2.2×10 ⁹	0.5	3.877×10 ⁸
$H_2 + O_2 = OH + OH$	1.7×10 ⁸	0.0	2.0×10 ⁸
$H + O_2 + M = HO_2 + M^c$	2.1×10 ¹²	-1.0	0.0
$H + O_2 + O_2 = HO_2 + O_2$	6.7×10 ¹³	-1.42	0.0
$H + O_2 + N_2 = HO_2 + N_2$	6.7×10 ¹³	-1.42	0.0
$HO_2 + H = H_2 + O_2$	2.5×10 ¹⁰	0.0	2.9×10^{6}
$HO_2+H = OH+OH$	2.5×10 ¹¹	0.0	7.9×10^{6}
$HO_2 + O = OH + O_2$	4.8×10 ¹⁰	0.0	4.2×10 ⁶
$HO2 + OH = H2O + O_2$	5.0×10 ¹⁰	0.0	4.2×10 ⁶
$HO_2 + HO_2 = H_2O_2 + O_2$	2.0×10 ¹⁰	0.0	0.0
$H_2O_2 + M = OH + OH + M$	1.3×10 ¹⁴	0.0	1.905×10 ⁸
$H_2O_2 + H = HO_2 + H_2$	1.7×10 ⁹	0.0	1.57×10 ⁷
$H_2O_2 + OH = H_2O + HO_2$	1.0×10 ¹⁰	0.0	7.5×10 ⁶

^a Enhancement factors: H₂O/20/.

^b Enhancement factors: H₂O/6/, H/2/, H₂/3/.

^c Enhancement factors: H₂O/21/, H₂/3.3/, O₂/0/, N₂/0/.

VISCOUS MODEL:

Radiation Model:

In this study, P-1 radiation model is used for developed numerical model. The chosen P-1 radiation model is the simplest case of the more general P-N model, which considers the influence of geometry on the radiative heat transfer.

Result Obtained from Our Simulation:

STATIC TEMPERATURE DISRTIBUTION

STATIC PRESSURE DISTRIBUTION

AXIAL VELOCITY DISTRIBUTION

MASS FRACTION OF H₂O

MASS FRACTION OF N₂