Nombre derivé

 $\chi_{\rho} \rightarrow f(\chi_{\rho})$ f(χ_{ρ}) est l'inseque de χ_{ρ} par f. To est la droite tangente en χ_{ρ} à la courbe C_{f} . T_{H} est la droite tangente en χ_{H} à la courbe C_{F} .

Le nombre derivé en x_p est la valeur du coefficient directeur de la droite tangente en x_p . On note $f'(x_p)$.

Équation de la droite tangente en x_p : T_p : $y = f'(x_p)(x - x_p) + f(x_p)$

$$f'(x_p) > 0 \Rightarrow f$$
 est croissante

$$f'(x_n) < 0 \Rightarrow f$$
 est
décraissante

- 1) Déterminer le nombre derivé en x_p et en x_n .
- 2) Déterminar l'équation de Tp et Tn.
 - 3) Dresser le tableau de variation de f.
- 1) Le nombre dérivé en x_p est le coefficient directeur de la tangente en x_p (T_p) .

 Danc $f'(x_p) = f'(3) = -2$

le nombre derivé en x_{μ} est le coefficient directeur de la tongente en x_{μ} (T_{μ}) .

Danc f'(xn) = f'(6) = 4

2)
$$T_{p}$$
: $y = f'(x_{p})(x - x_{p}) + f(x_{p})$
 $x_{p} = 3$ $f'(x_{p}) = -2$ $f(x_{p}) = 2$
 $y = -2(x-3) + 2 = -2x + 6 + 2 = -2x + 8$

$$T_{M}: \quad y = f'(x_{M})(x - x_{M}) + f(x_{M})$$

$$x_{M} = 6 \quad f'(x_{M}) = 4 \quad f(x_{M}) = 5$$

$$y = 4(x - 6) + 5 = 4x - 24 + 5 = 4x - 19$$

3)
$$T_A: y=1$$
 $f'(x_A)=f'(4)=0$

Tableau de variations:

$$f(h) = 1$$
 $f(+\infty) = \lim_{x \to +\infty} f = +\infty$

Exemple:

