Laborator 4

Considerăm problema de regresie descrisă la cursul 3 în *Slides Lecture 3b*: dată fiind o mulțime de exemple de antrenare $S = \{(x_i, u_i)\}_{i=1,n}$ găsiți polinomul optim care descrie cât mai bine corespondența dintre punctele x_i si etichetele u_i .

Realizati următoarele:

- a. scrieți funcția *genereazaExemple.m* care generează n exemple (x_i,u_i) unde $u_i = f(x_i) + \varepsilon_i$, cu x_i repartizat uniform pe [0, 1], ε_i zgomot repartizat normal de medie 0 și deviație standard σ și f funcția definită ca un obiect *inline*.
- b. generați o mulțime de antrenare $S = \{(x_i, u_i)\}_{i=1,n}$ conținând n = 10 exemple cu $u_i = \sin(2\pi x_i) + \varepsilon_i$.
- c. scrieți funcția *ploteazaExemple.m* care plotează exemplele de forma (x_i,u_i) , cu x_i reprezentat pe axa Ox și u_i reprezentat pe axa Oy. Apelați funcția pentru mulțimea de antrenare S.
- d. scrieți funcția *gasestePolinomOptim.m* care pentru o mulțime de antrenare S și pentru un grad n găsește polinomul optim $P_{S,n}$ de grad n care minimizează suma erorilor pătratice dintre eticheta prezisă $P(x_i)$ și eticheta u_i . Pentru găsirea polinomului optim $P_{S,n}$ folosiți funcția Matlab *polyfit.m*.
- e. scrieți funcția *ploteazaGraficPolinom.m* care plotează graficul funcției polinomiale asociate polinomului $P_{S,n}$ pe intervalul [0,1]. Pentru evaluarea polinomului $P_{S,n}$ folosiți funcția Matlab *polyval.m*.
- f. scrieți funcția *calculează Eroare.m* care calculează eroarea E dintre predicțiile realizate pentru punctele x_i și etichetele adevărate u_i .

Pentru $n = 0, 1, \dots, 9$ realizați:

- g. calculați $P_{S,n}$ și vizualizați graficul funcției polinomiale asociate lui $P_{S,n}$.
- h. calculați și vizualizați evoluția erorii $E_{S,n}$ pe mulțimea de antrenare în care predicțiile se realizează folosind $P_{S,n}$.
- i. generați o mulțime test T cu 10 exemple și calculați și vizualizați evoluția erorii $E_{T,n}$ pe mulțimea de exemple T în care predicțiile se realizează folosind $P_{S,n}$.
- j. împărțiți mulțimea de antrenare inițială S în două mulțimi S_I (noua mulțime de antrenare 7 exemple) și S_2 (mulțimea de validare 3

exemple). Puteți folosi în acest sens funcția randperm pentru generarea indicilor. Antrenați modelul $P_{SI,n}$ pe S_1 (considerați gradul n <=6 întrucât aveți 7 exemple) și testați performanța modelului pe mulțimea S_2 . Alegeți din cele 7 de funcții polinomiale posibile pe cea cu cea mai mică eroare pe mulțimea de validare S_2 .