講到大數據,

一定要分類分析呀!

- ✔ 分類
- ✔ 決策樹
- ✔ 實作
- ✔ 評估指標

大數據分類是將數據按照特定標準劃分為多個類別

是

非

大數據分類是將數據按照特定標準劃分為多個類別

2 大數據分類的目的是為了減少數據儲存成本

是非

大數據分類的目的是為了減少數據儲存成本

3 大數據分類只能使用結構化數據進行

是

非

3 大數據分類只能使用結構化數據進行

何謂分類?

- 分類是一種監督式學習
- 帶有類標籤的樣本訓練集
- 根據訓練集對新數據進行分類

- •目標:預測新樣本的分類標籤
- •輸入:一組訓練樣本,每個樣本都要貼類標籤
- •輸出:基於訓練集和分類標籤的模型(分類器)

分類演算法

- 單純貝式 (Naive Bayes)
- 邏輯斯回歸 (Logistic Regression)
- 決策樹 (Decision Tree)
- 支援向量機 (Support Vector Machine, SVM)
- K-近鄰演算法 (K Nearest Neighbor, KNN)

分類常見應用

預測類別

- 貸款者是否會違約
- 顧客是否會消費
- 就醫者是否患病
- 員工是否傾向跳槽

決策樹

決策樹過程

1-特徵選擇

亂度(Entropy, 熵)

- ID3演算法:資訊增益(Information gain, IG)
- C4.5演算法:資訊增益率 (Gain Ratio, GR)
- CART演算法:吉尼不純度 (Gini Impurity)

2-產生決策樹

決策樹過度擬合 (Overfitting)

- 最小樣本數 (Minimum Samples (Size) Split)
 內部節點資料筆數最小值
- 最大深度 (Maximum depth)決定建立多少層的決策樹

實作-資料集

Iris dataset

- 由英國統計學家 Ronald Fisher 爵士 在 1936 年
- 依照山鳶尾、變色鳶尾、維吉尼亞鳶尾三類進行標示
- 特徵選取:花瓣花萼的長寬數據資料
- 採集地點:加斯帕半島上的鳶尾屬花朵

鳶尾花介紹

圖片	名稱		特徴
	Setosa 山鳶尾	1. 2. 3.	
	Versicolor 變色鳶尾	1. 2.	美國田納西州的官方州花被認為其根莖能帶來財運,因此許多人都愛把它放在收銀機中來提高營業額。
	Virginica 維吉尼亞鳶尾	1. 2. 3.	花朵散發淡淡香氣,可以用來製作香水。 觀賞性植物 帶有輕微毒性

資料集 - 敘述統計

欄位名稱	資料型態	欄位名稱(中文)	
sepal length	Real	花萼長度 (cm)	
sepal width	Real	花萼寬度 (cm)	
petal length	Real	花瓣長度 (cm)	
petal width	Real	花瓣寬度 (cm)	
species	Nominal	花卉名稱	

• 資料來源: Kaggle-Iris Species

•資料筆數:150 筆

每種花卉皆為 50 筆

•欄位數量:5個

•預測欄位:species

◎ 資料來源: https://www.kaggle.com/datasets/uciml/iris

導入資料集

導入資料集

導入資料集

設定目標欄位

- Operator: Set Role
- 位置:讀取資料之後
- 參數設置:將「species」設為 label (Label 值為預測欄位)

建立模型 - 決策樹

- Operator: Decision Tree
- **位置:**Set Role 後面
- 參數設置:
 - 決策樹深度:10
 - Confidence: 0.1
 - Minimal leaf size: 2

▲ 決策樹流程圖

執行流程

• setosa 山鳶尾

• 1. 花瓣長度 0-2.45, 花瓣寬度 0-∞

• virginica 維吉尼亞鳶尾

- 2. 花瓣長度2.46-∞, 花瓣寬度 1.76-∞
- 3. 花瓣長度4.96-5.35, 花瓣寬度 0-1.55
- 4. 花瓣長度5.36-∞, 花瓣寬度 0-1.75

• versicolor 變色鳶尾

- 5. 花瓣長度4.96-5.35, 花瓣寬度 1.56-1.75
- 6. 花瓣長度2.46-4.95, 花瓣寬度 0-1.75

評估指標

混餚矩陣	Positive	Negative	
Positive	True Positive (TP)	False Positive (FP)	
Negative	False Negative (FN)	True Negative (TN)	

精確率
$$= \frac{TP}{TP + FP}$$
 (Precision)

召回率
$$= \frac{TP}{TP + FN}$$
 (Recall)

評估指標

混餚矩陣		預測的類別		
		貓	狗	
實際的類別	貓	5	3	
	狗	2	3	

準確率
$$\frac{5+3}{13} = 61.5\%$$
 (Accuracy)

精確率
$$\frac{5}{5+3} = 62.5\%$$

召回率
$$\frac{5}{(Recall)} = 71.4\%$$

切割資料

- Operator: Split Data
- 位置:Set Role 與 Decision Tree 之間
- 參數設置:
 - partitions:包括訓練集和測試集
 - sampling type: stratified sampling

建立應用模型分支

- Operator: Apply Model
- 連接方式:
 - mod: Decision Tree 的訓練集
 - unl:Split Data 的測試集

建立評估模型

- Operator: Performance
- 位置:Apply Model 的<u>lab</u>連結<u>lab</u>

▲ 決策樹流程圖

執行流程

setosa 山鳶尾

- 1. 花瓣長度 0-2.45, 花瓣寬度 0-∞
- virginica 維吉尼亞鳶尾
 - 2. 花瓣長度 4.76-∞, 花瓣寬度 1.76-∞
 - 3. 花瓣長度 5.36-∞, 花瓣寬度 0-1.75
- versicolor 變色鳶尾
 - 4. 花瓣長度 2.46-4.75, 花瓣寬度 0-∞
 - 5. 花瓣長度 4.76-5.35, 花瓣寬度 0-1.75

▲ 100%數據

▲ 80% Stratified Sampling數據

決策樹分別

評估模型

accuracy: 96.67%

	true setosa	true versicolor	true virginica	class precision
pred. setosa	10	0	0	100.00%
pred. versicolor	0	10	1	90.91%
pred. virginica	0	0	9	100.00%
class recall	100.00%	100.00%	90.00%	

- •混淆矩陣3x3:用來表示分類器的分類結果和真實標籤之間的關係
- 模型的準確度為 96.67%

- 1 大數據分類是將數據...?
- A 按照特定標準劃分為多個類別
- B儲存在多個資料庫中
- C用於製作大型統計報告
- D 轉換為有意義的信息

1 大數據分類是將數據...?

A 按照特定標準劃分為多個類別

- 2 大數據分類的目的是什麼 ?
- A 減少數據儲存成本
 - B 清理數據
- C 為未來的決策提供準確的數據
- D 創建數據

2 大數據分類的目的是什麼?

C 為未來的決策提供準確的數據

- 3 決策樹是一種什麼樣的演算法?
 - A 監督式學習
 - B非監督式學習
 - C強化學習
- D前饋神經網路

3 決策樹是一種什麼樣的演算法?

A 監督式學習