

- (12) Official Gazette for Laid-Open Utility Model Applications (U)
- (11) Japanese Laid-Open Utility Model Application (Kokai) No. Showa 58-136813

(43) Disclosure Date: 14 September 1987

(51) Int. C1.3:

Classification Internal Office

Symbols:

Registration Nos.:

B 60 H 3 00

6968-3L

Request for Examination: Not yet submitted
(All pages)

(54) Car air-conditioner device

(21) Application No.: Showa 57-33820

(22) Filing Date: 12 March 1982

(72) Designer : Yoshiyuki Hagiwara

c/o Oihama Plant, Nissan Automobiles K.K,

1-banchi, Natsujima, Yokosuka-shi

(72) Designer : Kenzo Hirajima

c/o Oihama Plant, Nissan Automobiles K.K,

1-banchi, Natsujima, Yokosuka-shi

(71) Applicant: Nissan Automobiles K.K,

2-banchi, Takara-cho, Kanagawa-ku,

Yokohama-shi

(74) Agent:

Patent Attorney, A. Sugimura (and 1

other)

RECEIVED

DEC 28 2000

TECHNOLOGY CENTER 3700

SPECIFICATION

1. Title of the Design: Car air-conditioner device

2. Claims

1. Car air conditioner which comprises: blow-out ports for blowing out air, separately, from at least 2 positions in the car; an air passage through which air passes separately from an air intake port by way of an evaporator to each of the abovementioned blow-out ports; a common heater core through which passes, to warm the air, a portion of the cool air which flows through each of the air passages; and a warm-air passage in which warm air is taken out from respective separate outlets of the common heater core to, in the vicinity of the abovementioned blow-out port, flow into the cool air of the abovementioned air passage, which air-conditioner device is characterized in that blind shutters are provided in the abovementioned warm-air passage and, in the case where at least one of the blow-out port air passages is in a full cool state, the abovementioned blind shutters of the warm-air passage leading to this air passage are successively cut off.

3. Detailed Description of the Design

The present design relates to a car air=conditioner device, in particular, to the improvement of an air conditioner with a configuration in which, by way of example, there are at least two independent points for air conditioning such as the front seat side and rear seat side.

Examples of conventional air-conditioner devices of this type include the one shown in Figure 1. In the figure, reference 1 is an air conditioner air intake port, and references 2 and 3, which are first and second blow-out ports, are deployed so that the first blow-out port 2 blows out warm air or cool air to the front seat side and the second blow-out port blows out warm air or

cool air to the rear seat side; and reference 4 indicates a defroster blow-out port.

The configuration is such that, a blower motor fan 5 is provided in the downstream side of the air intake port 1 and, the air suctioned in by way of the air intake port 1 by the blower motor fan 5 is cooled and has the moisture removed by an evaporator 6, following which it is saparated to flow through, respectively, a first blowout port side air passage 8 and second blow-out port side air passage 9 partitioned by a partition plate 7 and, in accordance with the open/close position of an air mix door 10 on the passage 8 side and an air mix door 11 on the passage 9 side, part of the air passes through a common heater core 12 and is heated, and, by way of first and second blow-out port side warm-air passages 14, 15 partitioned by a partition plate 13 provided in the outlet side of the heater core 12, it is mixed with the cool air of the first and second blow-out port air passages 8,9 forming a warm air of a temperature correspondent to the degree of opening of the air mix doors 10 and 11, and the warm air which flows through the first blow-out port side air passage 8 and second blowout port side air passage 9 respectively is separated by a through-connecting door 16 and partition plate 13 to be blown out from the first blow-out port 2 and second blowout port 3 without mixing. As a result, separate warm air from the first and second blow-out ports 2, 3 are blown out to respective positions within the car. In addition, when the through-connecting door 16 is in a position in which it closes blow-out port 3, this results in the air which is to be discharged from the blow-out port 3 being converged on the blow-out port 2. Accordingly, by using the blow-out port 2 for the front part seat, and the blow-out port 3 for the rear part seat, if there are no passengers in the rear seat, this can be used to increase the air conditioner capability in the front seat. In addition, it is configured in such a way that the air is

4

sent by way of a defroster blow-out port 4 using a defroster door 17.

However, in a conventional car air conditioner device such as this, there are problems in that, because the structure is one in which one heater core is jointly used, the air directly following the heater core is suctioned at the post heater core flow side whereby performance is reduced at times of full cooling.

The present design is one which focuses on this problem of the prior art, the objective of which is to solve the above-described problems by the deployment of blind shutters in the air passage directly following the heater core outlet wherein, in the case where the air mix door is in the full cool state, the blind shutters are closed whereby the heat from the heater core is successively cuts off.

A description of the present design is given below based on the diagrams.

Figure 2 shows one embodiment of the present design; the same sections as the conventional structure are represented by the same reference symbols as used in Figure 1, and the description thereof is omitted. The present example, as shown in the figure, is configured in such a way that a plurality of rotary-type blind shutters 18, 19 are respectively deployed in one row in a first blow-out port warm-air passage 14 and a second blow-out port warm-air passage 15 directly following the heater core 12n outlet, and by interlocking with an open/close operation of the air mix door 10 and 11, the blind shutters 18, 19 are opened and closed.

By virtue of the above-described configuration, as shown in Figure 2, when the first blow-out port 2 side is in a full cool state with the air mix door 10 in the fully open position as shown by the dotted line, the other blow-out port 3 side forms a warm air region and, even if the air mix door 11 is in a half-open position as shown by the dotted line, by virtue of the fact that the blind shutter of the first blow-out port warm-air passage

14 is closed, a blow out of adequately cocled air from the first blow-out port 2 can be achieved without flow of the warm air from the heater core into the first blow-out port passage 3 occurring.

Figure 3 shows another embodiment of the present design and, in this embodiment, the inlet side air mix door of the heater core 12 is omitted and, rotary type blind shutters 20 and 21, and 22 and 23 are deployed respectively in first and second blow out side air passages 8 and 9 and first and second blow-out port side warm air passages 14 and 15 and, by the control of the respective opening/closing positions of each of the blind shutters 20, 21, 22, 23, the mixing ratio of the cool air wand warm air is separately adjusted in the air passages (Swherein, when the one blow-out port 3 is in the full cool state, by controlling the blind shutter 21 of the second blow-out port air passage 9 to a fully open position and the blind shutter 23 of the second blow out side warm air passage 15 to a fully closed position, the heat from the heater core is successively cuts off whereby an increase in the temperature of the full cool side blow cut air can be prevented.

As is described above, according to the present design, because it is a configuration in which blind shutters are provided respectively in each warm-air passage leading from a common heater core outlet to each blow-out port, and the flow of warm air to the blow-out ports is able to be separately and successively cuts off, in the case where one blow-out port is in the full cool state and the other blow-out port is in the warm air region state, an increase in the temperature of the full cool side blow out air can be prevented.

In addition, by the provision of rotary-type blind shutters instead of an air mix door, the size of the air conditioner device can be reduced and the structure simplified.

4. Brief Description of the Diagrams

Fig. 1 is a schematic diagram of the structure of a conventional air conditioner device;

Fig. 2 is a schematic diagram of the air conditioner device based on the present design;

and Figure 3 is a schematic diagram which shows another embodiment of the present invention.

- 1 Air intake port
- 2, 3 First and second blow-out ports
- 4 Defroster blow-out port
- 6 Evaporator
- 7 Partition plate
- 8, 9 Air passages
- 10, 11 Air mix door
- 12 Heater core
- 13 Partition plate
- 14, 15 Warm-air passages
- 16 Through-connecting door
- 17 Defroster door
- 18, 19, 30, 31, 22, 23 Blind shutters
 - Fig. 1
- Fig. 2
- Fig. 3

129 実際58-136813

123 実開58-136813

19 日本国特許庁 (JP)

並実用新業出願公開

12 公開実用新案公報 (U)

昭58-136813

51 Int. Cl.³ B 60 H 3 00

識別記号

庁内整理番号 6968-3L 43公開 昭和58年(1983)9月14日

害查請求 未請求

(全 頁)

以中两用空調装置

21実

東 昭57—33820

22出 順昭57(1982)3月12日

72 考 者 获原義之

横須賀市夏島町1番地日産自動

单株式会社追浜工場内

沙考 来 者 平峭健三

横須賀市夏島町 1 善地日産自動

章株式会社追浜工場内

事出 瞬 人 日産自動車株式会社

横浜市神奈川区宝町2番地

74代 理 人 弁理士 杉村晩秀

外1名

- 1. 考案の名称 草両用空調装置
- 1. 実用新案登録請求の範囲
- & 考案の詳細な説明

本考案は、車両用空調装體、停化、車盤内の

1

例えば、前部医療側と後部座席側のような少なく。 ともよ婚所を独立に空機するよう構成された空間 毎世の改良に関するものである。

従来のとの種の車両用空間装置としては、例えば、第1図に示すようなものがある。

図において、1は空崩装置の空気取入口。8か よび8は第1かよび第8吹出し口で、第1吹出し 口8は前部座席に対して異異または冷異を吹出し、 第8吹出し口8は後部座席に対して異異または冷 異を吹出すよう配置されてかり、また、4はデフー ロスタ吹出し口を示す。

空気取入口1の下流解にプロワモータファン 6
が設けられ、とのプロワモータファン 6 により空気取入口1を経て吸込まれた空気は、エバボレータので含れた様と仕切板1によって冷し口側空気通路をおよび第 5 吹出し口側空気通路をおよび痛い出し口側空気通路をおれて流れ、通路を解のエアミックスドア10かよび通路を開いている。 で気が共通のヒータコア 1 8 を通り無限となり、

・ヒーメコア18の出口供に設けられた仕切板18 により仕切られた終1かよび第2次出し口側展開 通路14かよび15を経て第1かよび第3吹出し 口傷空気通路8、9内の冷風に混合され、エアミ ックスドア10かよび11の開閉度に対応する量 崖の眞風となる。第1次出し口舞空気通路8から び第3次出し口貨空気通路3のそれぞれに流れる 温嶌は仕切板18かよび違通ドア18によつて分 離され、混合することなく第1吹出し口8および 第8吹出し口aゕら吹き出されるよう構成されて いる。との結果、第1かよび第3吹出し口3、8 からは質別の量量が卓室内のそれぞれの場所に 吹き出される。また、連通ドナ18が吹出し口をを 閉ぐ位置になると吹出し口8から出るべき見は吹 出し口まへ集約される結果となる。したがつて、 吹出し口』を前部座席用とし、吹出し口』を後書 ない場合に前部協席に対する空隔能力の増大に利 用することができる。また、デフロスタドア11 によりデフロスメ吹出口もを軽て送風するととも

'できるよう構成されている。

しかしながら、このような従来の享両用空調袋 置にあつては、1個のヒータコアを共用する構成 となつていたため、ヒータコア後先何でヒータコ ア直接の空気が吸引され、フルクール時の性能が 低下してしまうと云う問題点があつた。

本考集は、このような従来の問題点に着目して なされたもので、ヒータコア出口直後の怨気通路 にプラインドシヤッタを配設し、エアミックスド アがフルクール状態の場合にプラインドシヤッタ *** を閉じてヒータコアからの無を離断することによ り上配問態点を解決することを目的としている。

第8 闷は本海楽の一実施例を示し、従来構造と 向一部分は第1 凶と向じ符号で示し、その説明を「 省略する。

以下、本考案を図面に基づいて説明する。

本例では、図に示すよりに、ヒータコア13の 出口直後の第1次出し口情報馬通路14かよび第 3次出し口慣程風通路15のそれぞれに複数個の ロータリ型プラインドシャッタ18,19をそれぞ れ1列に配殺し、エアミックスドア10かよび 11の開閉作助に達動してプラインドシャッチ 18かよび19が開閉されるように構成している。 上述の構成としたことにより、第3回に示すよ 5にエアミックスドア10を実績で示す金別位置 として第1吹出し口3個をフルクール状態とする

クにエアミックスドア10を実績で示す全閉位置として第1吹出し口8個をフルクール状態とする際、他方の吹出し口8個が延欝域であつてエアミックスドア11が実績で示す半間位置にあつても、第1吹出し口側延尾近路18のプラインドックストであるとによつて、ヒータコア18から温度が第1吹出し口側近路8に能入することがなく、第1吹出し口8から充分に冷えた冷気を吹出させることができる。

第3回は、本考案の他の実施例を示してかり、 との実施例では、ヒータコア11の入口側エアミ ックスドアをなくし、第1かよび第3吹出し口側 空気通路3かよび3ならびに第1かよび第1吹出 し口側を気通路14かよび15のそれぞれにロー タリー型プラインドシヤッタ30かよび31なら びに23かよび33を配散し、各プラインドシャ マタミ 0、ミ 1、ミミ、ミシのそれぞれの開閉位置! を倒算することによつて、冷風と直風との混合比 を各空気がで別々に調整できるとともに、一方 の吹出し口側を気通路のプラインドシャン ミ 1 を全閉にし、 第ミ吹出し口側を気通路のプラインドシャンタミミを全閉位置に制御すると アラインドンヤッタミミを全閉位置に制御すると とにしてヒータコアからの熱を適断してアルケール側の吹出し空気の温度が高くなるのを防止すると となできる。

また、エアミックスドアの代りにロータリー式 プラインドシャッタを設けることによつて空間姿。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to t	the items checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE PO	OOR QUALITY
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

