Introduction to Time Series Econometrics

Romain Lafarguette, Ph.D.

Quant & IMF External Consultant

Singapore Training Institute, 08 November 2022

Outline

- 1. **Data concepts**: population, sample, data types, data generating process, etc.
- 2. Estimation strategy

NB: this slide-deck is heavily inspired by the excellent course of ChristopheHurlinhttps://sites.google.com/view/christophe-hurlin/teaching-resources

Overview

Financial econometrics (including time-series econometrics) are based on four main elements:

- 1. A sample of data
- 2. An econometric model, based on a theory or not
- 3. An estimation method to estimate the coefficients of the model
- 4. Inference/testing approach to validate the estimation

Population vs. Sample

Definition: Population

A **population** is defined as including all entities (e.g. banks or firms) or all the time periods of the processus that has to be explained

- In most cases, it is impossible to observe the entire statistical population, due to constraints (recording period, cost, etc.)
- A researcher would instead observe a **statistical sample** from the population. He will estimate an econometric model to understand the **properties on the population** as a whole.

Data Generating Process

Definition: Data Generating Process

A Data Generating Process (DGP) is a process in the real world that "generates" the data (or the sample) of interest

Example: Data Generating Process

Let us assume that there is a linear relationship between interest rates in two countries (R, R^*) , their forward (F) and their spot exchange rate (S).

$$\frac{F}{S} = \frac{1+R}{1+R^*}$$

This non-arbitrage relationship (CIP) can be used in the foreign exchange market to determine the forward exchange rate

$$\mathbb{E}[\mathbb{F}|\mathbb{S} = \sim, \mathbb{R} = \backslash, \mathbb{R}^* = \backslash^*] = \sim * \frac{\mathbb{F} + \backslash}{\mathbb{F} + \backslash^*}$$

This relationship is the **Data Generating Process** for FThe equivalent of population for time series econometrics is the 5/19

Econometrics Challenge

The challenge of econometrics is to draw conclusions about a DGP (or population), after observing only one realization $\{x_1, \ldots X_N\}$ of a random sample (the dataset).

Data Types

In econometrics, sets can be mainly distinguished in three types:

- 1. Cross-sectional data
- 2. Time series data
- 3. Panel data

Cross-Sectional Data

Cross-sectional data are the most common type of data encountered in statistics and econometrics.

- ▶ Data at the entities level: banks, countries, individuals, households, etc.
- No time dimension: only one "wave" or multiple waves of different entities
- Order of data does not matter: no time structure

Time Series Data

Time series data are very common in financial econometrics and central banking. They entail specific estimation methods to do the **time-dependence**.

- Data for a single entity (person, bank, country, etc.) collected at multiple time periods. Repeated observations of the same variables (interest rate, GDP, prices, etc.)
- Order of data is important!
- ▶ The observations are typically not independent over time
- ► In this case, the notion of population corresponds to the Data Generating Process (DGP)

Panel Data

Also called longitudinal data. They contain the most information and allow for more complex estimation and analysis.

- ▶ Data for multiple entities (individuals, firms, countries, banks, etc.) in which outcomes and characteristics of each entity are observed at multiple points in time
- ▶ Combine cross-sectional and time-series information
- Present several advantages with respect to cross-sectional and time series data, depending on the topic at hands

Econometric Model

Definition: Econometric Model

An econometric model specificies the statistical relationship between different economic variables, that are expected to be stable over time

1. Parametric model: fully characterization of the relationship by a set of parameters θ and a link function f supposed to be known; the specification can be linear or non linear, and includes some randomness ϵ

$$Y = f(X; \theta) + \epsilon$$

2. Non-parametric and semi-parametric models: the link function can not be described using a finite number of parameters. The link function is assumed to be unknown and has to be estimated

Empirical Strategy

The general approach of (financial) econometrics is as follows:

- 1. Specification of the model
- 2. Estimation of the parameters
- 3. Diagnostic tests
 - Significance tests
 - Specification tests
 - Backtesting tests
 - etc.
- 4. Interpretation and use of the model

Random variable

- A random variable is a function $f: \Omega \mapsto \mathcal{R}$ that assigns to a set of outcome Ω a value, often a real number.
- ▶ The probability of an outcome is equal to its **measure** divided by the measure of all possible outcomes
 - Example: obtaining an even number by rolling a dice: $\{2,4,6\}$
 - ▶ Probability to obtain an even number by rolling a dice: $m(\{2,4,6\})/m(\{1,2,3,4,5,6\}) = \frac{1}{2}$ (here, the measure simply "counts" the outcomes with equal weights)
- ▶ Random variables are the "building block" of statistics:
 - Random variables are characterized by their distribution (generating function, moments, quantiles, etc.)
 - ▶ The behavior of two or more random variables can be characterized by their dependence/independence, matrix of variance-covariance, joint distribution, etc.
 - ▶ The main theorem of statistics (law of large numbers, central limit theorem, etc.) leverages the properties of random variables

Stochastic Process

• A stochastic process is a sequence of random variables indexed by time (t):

$$\ldots, Y_1, Y_2, \ldots, Y_t, Y_{t+1}, \ldots =$$

Stationarity

Ergodicity

Moments

Estimator

Convergence

Biais

Efficiency