Macroconomic Modeling Lecture 2: Solow Model and applications

Pinar Deniz

Spring, 2023

Outline

- 1. A snapshot to income differences
- 2. Solow Growth Model
- 3. A Basic Deterministic Solow Model in Dynare

Cross-Country Income Differences - 2021

Figure: World Mapping for GDPPC across countries, US\$ constant Source: World Bank (2023)

Cross-Country Income Differences - over time

Figure: Kernel Density for GDPPC, US\$ constant

Cross-Country Income Differences - over time - natural logarithm

Figure: Kernel Density for log of GDPPC, US\$ constant

Economic Growth and Income Differences

Figure: The evolution of income per capita 1960-2021

Solow Growth Model - Assumptions

- continuous time
- single product with continuous technology
- closed economy with no public side
- ► all factors are fully employed
- ▶ labor force grows at a constant rate of $\frac{L}{L} = n$
- ▶ initial values for capital, labor are given, (K_0, L_0)
- price of the final goods are normalized to 1 in all periods

Solow Growth Model

Neoclassical Cobb-Douglas Prod.: $Y_t = A_t K_t^{\alpha} L_t^{1-\alpha} - > \text{CRTS}$ Per worker terms: $y = Ak^{\alpha} - > \text{DRTS}$

Capital Accumulation

 $\dot{\mathcal{K}} = \mathit{sy} - \delta \mathcal{K} o \mathsf{dividing}$ each side by K

$$\Rightarrow \dot{k} = sAk^{\alpha} - (\delta + n)k$$

- $\hookrightarrow \mathsf{Fundamental} \ \mathsf{differential} \ \mathsf{equation} \ \mathsf{of} \ \mathsf{Solow} \ \mathsf{Model}$
 - ► Evaluating Basic Solow Model

If countries are at their SS, rich countries have higher saving rates and lower population growth rates than poor countries.

► Introducing Technological Progress

Labor augmenting production technology $\to Y = K^\alpha (AL)^{1-\alpha}$ $\frac{\dot{A}}{A} = g > 0$ \to growth is exogenous

Solow Growth Model

$$\dot{k} = sAk^{\alpha} - (n + \delta)k$$

- no growth in the SS
- Positive/negative growth along the transition path $g_k=rac{\dot{k}}{\iota}=sAk^{lpha-1}-(n+\delta)$
- SS is a balanced growth path with zero growth rate
- ▶ BGP growth rate equals to the rate of technological progress, variables grow by $g = \frac{\dot{A}}{A}$, no TFP
- source of growth is left unexplained
- ▶ differences in income levels across countries are explained by differences in s, n, δ

Profit Maximization of Firms

Or cost minimization $\max \quad K^{\alpha}(AL)^{1-\alpha} - wL - rK$ FOC wrt K: $\alpha k^{\alpha-1} = r$ FOC wrt L: $(1-\alpha)Ak^{\alpha} = w$, where $\frac{K}{AL} = k$ Capital share: $\frac{rK}{V} = \alpha$ Labor share: $\frac{wL}{V} = 1 - \alpha$

- ▶ in BGP,
 - $k = k^*$, constant over time. Hence, r is constant over time
 - w grows constant over time since A grows at g over time
- output is produced by price taking firms
- ightharpoonup real interest rate $ightharpoonup r \delta$

Applications on Dynare

- Solow Model Transition to Steady State Solow_SS.mod file
- Solow Model Technological Shock basic_solow.mod file

A deterministic Solow Model in Dynare

basic_solow.mod file \hookrightarrow 3 variable model (K, C, Y)

$$y_t = A_t k_{t-1}^{\alpha}$$

$$c_t = (1-s)y_t$$

$$(1+n)k_t = sy_{t-1} + (1-\delta)k_{t-1}$$

References

Acemoglu, D. (2008). Introduction to modern economic growth. Princeton university press.

Solow, R. M. (1956). A contribution to the theory of economic growth.

The quarterly journal of economics, 70(1), 65-94.