Olympics Data Analysis

By: Purnima Agarwal

1) Data set used

We have taken the data set from Kaggle. It is information on the Olympic Games, from Athens 1896 to Rio 2016.

The data set has two files:

- athlete_events.csv
- noc_regions.csv

2) Understanding the data

i) We first import the needed libraries.

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
```

ii) Read the files

at	n=pd	.read_csv(' <mark>at</mark>	nlete	_ever	nts.csv	')									
at	n.he	ad()													
	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal
0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	NaN
1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	Judo	Judo Men's Extra- Lightweight	NaN
2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer	Antwerpen	Football	Football Men's Football	NaN
3	4	Edgar Lindenau Aabye	M	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of-War	Tug-Of-War Men's Tug- Of-War	Gold
4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter	Calgary	Speed Skating	Speed Skating Women's 500 metres	NaN

```
regions=pd.read_csv('noc_regions.csv')
regions.head()
   NOC
            region
                              notes
0 AFG Afghanistan
1 AHO
           Curacao Netherlands Antilles
2 ALB
            Albania
3 ALG
                               NaN
            Algeria
4 AND
           Andorra
                               NaN
```

iii) Exploring the data

• Number of rows and columns in the **athlete table**- 271116, 15 and column names in the table.

```
ath.shape

(271116, 15)

ath.columns

Index(['ID', 'Name', 'Sex', 'Age', 'Height', 'Weight', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event', 'Medal'], dtype='object')
```

• Different datatypes in the table:

```
ath.dtypes
ID
           int64
Name
         object
         object
Sex
         float64
Age
Height
         float64
         float64
Weight
Team
         object
NOC
         object
        object
Games
          int64
Year
Season
        object
        object
City
        object
Sport
Event
        object
Medal
          object
dtype: object
```

• Finding the number of null values:

```
ath.isnull().sum()

ID 0
Name 0
Sex 0
Age 9474
Height 60171
Weight 62875
Team 0
NOC 0
Games 0
Year 0
Season 0
City 0
Sport 0
Event 0
Medal 231333
dtype: int64
```

Using Describe Function:

ath.de	scribe()				
	ID	Age	Height	Weight	Year
count	271116.000000	261642.000000	210945.000000	208241.000000	271116.000000
mean	68248.954396	25.556898	175.338970	70.702393	1978.378480
std	39022.286345	6.393561	10.518462	14.348020	29.877632
min	1.000000	10.000000	127.000000	25.000000	1896.000000
25%	34643.000000	21.000000	168.000000	60.000000	1960.000000
50%	68205.000000	24.000000	175.000000	70.000000	1988.000000
75%	102097.250000	28.000000	183.000000	79.000000	2002.000000
max	135571.000000	97.000000	226.000000	214.000000	2016.000000

• Using info() function:

```
ath.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):
# Column Non-Null Count Dtype
           -----
    ID
           271116 non-null int64
1
    Name
           271116 non-null object
           271116 non-null object
    Sex
 3 Age
           261642 non-null float64
   Height 210945 non-null float64
    Weight 208241 non-null float64
           271116 non-null object
6
    Team
           271116 non-null object
 7 NOC
8 Games 271116 non-null object
           271116 non-null int64
9
   Year
10 Season 271116 non-null object
           271116 non-null object
11 City
12 Sport 271116 non-null object
13 Event 271116 non-null object
14 Medal 39783 non-null object
dtypes: float64(3), int64(2), object(10)
memory usage: 31.0+ MB
```

• Now for the regions table

```
regions.shape

(230, 3)

regions.columns

Index(['NOC', 'region', 'notes'], dtype='object')
```

Describing the data

regions.describe()

	NOC	region	notes
count	230	227	21
unique	230	206	21
top	ANT	Germany	Virgin Islands
freq	1	4	1

```
regions.isnull().sum()

NOC 0
region 3
notes 209
dtype: int64

regions.dtypes

NOC object
region object
notes object
dtype: object
```

• Using info() function:

3) Merging the data set

We will merge both the tables for easy analysis.

We will join the two data frames using as key the NOC column with the Pandas merge() function.

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	region	notes
0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	NaN	China	NaN
1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	Judo	Judo Men's Extra- Lightweight	NaN	China	NaN
2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer	Antwerpen	Football	Football Men's Football	NaN	Denmark	NaN
3	4	Edgar Lindenau	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of- War	Tug-Of-War Men's Tug-Of-	Gold	Denmark	NaN

```
[16]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 271116 entries, 0 to 271115
       Data columns (total 17 columns):
        # Column Non-Null Count Dtype
        0 ID 271116 non-null int64
1 Name 271116 non-null object
         2 Sex 271116 non-null object
3 Age 261642 non-null float64
         4 Height 210945 non-null float64
         5 Weight 208241 non-null float64
6 Team 271116 non-null object
         7 NOC 271116 non-null object
8 Games 271116 non-null object
         9 Year 271116 non-null int64
        10 Season 271116 non-null object
11 City 271116 non-null object
        12 Sport 271116 non-null object
13 Event 271116 non-null object
14 Medal 39783 non-null object
        15 region 270746 non-null object
        16 notes 5039 non-null object
        dtypes: float64(3), int64(2), object(12)
       memory usage: 37.2+ MB
```

4) Cleaning the data set

• Checking duplicate values

```
## duplicate values
df.duplicated().sum()
```

1385

This just shows there are multiple participations

df.isnu	ull().sum())		
ID	0			
Name	0			
Sex	0			
Age	9474			
Height	60171			
Weight	62875			
Team	0			
NOC	0			
Games	0			
Year	0			
Season	0			
City	0			
Sport	0			
Event	0			
Medal	231333			
region	370			
notes	266077			
dtype:	int64			

We saw earlier that the data is mostly clean with some null values. There are null values in Age, Height, Columns, notes and Medals columns. The medal column null values are not to be removed as it represents players who haven't won a medal and notes column is not important. We can drop the other rows.

(We will use the table with dropped values in the ML part.)

• Dropping the null values:

```
df1 = df.dropna(axis=0, subset=['Age','Height','Weight','region'])
df1.isnull().sum()
ID
Name
              0
Sex
              0
              0
Age
Height
              0
Weight
Team
NOC
              0
Games
              0
Year
Season
              0
              0
City
Sport
              0
Event
              0
Medal
         175723
region
              0
         202418
notes
dtype: int64
df1.shape
(205895, 17)
```

The number of rows is now reduced to 205895.

5) Analysing the data set

• Analyse for India

Taking out information about the Indian Athletes

df.que	ery('T	eam=="Indi	a"')	.head	1(20)												
	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	region	notes
505	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	Amsterdam	Athletics	Athletics Men's 110 metres Hurdles	NaN	India	NaN
506	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	Amsterdam	Athletics	Athletics Men's 400 metres Hurdles	NaN	India	NaN
895	512	Shiny Kurisingal Abraham- Wilson	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	Los Angeles	Athletics	Athletics Women's 800 metres	NaN	India	NaN
896	512	Shiny Kurisingal Abraham- Wilson	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	Los Angeles	Athletics	Athletics Women's 4 x 400 metres Relay	NaN	India	NaN
897	512	Shiny Kurisingal Abraham- Wilson	F	23.0	167.0	53.0	India	IND	1988 Summer	1988	Summer	Seoul	Athletics	Athletics Women's 800 metres	NaN	India	NaN

• Countries with most medals

Countries with most medals
medal_rank=df.groupby("Team")['Medal'].apply(lambda x: x.notnull().sum()).reset_index(name='Medal')
medal_rank

	Team	Medal
0	30. Februar	0
1	A North American Team	4
2	Acipactli	0
3	Acturus	0
4	Afghanistan	2
1179	Zambia	2
1180	Zefyros	0
1181	Zimbabwe	22
1182	Zut	3
1183	rn-2	0

1184 rows × 2 columns

```
medal_rank=medal_rank.sort_values("Medal",ascending=False)
medal_rank.head(10).reset_index()
```

Plotting the table using seaborn

```
medal=medal_rank.head(10)
  sns.catplot(x="Team", y="Medal", kind="bar", data=medal,aspect=20/8.27)
: <seaborn.axisgrid.FacetGrid at 0x17e564b7520>
      5000
      4000
      3000
      2000
      1000
        0
           United States Soviet Union
                                                                                                                          .
Hungary
                                     Germany
                                               Great Britain
                                                              France
                                                                           Italy
                                                                                      Sweden
                                                                                                  Australia
                                                                                                              Canada
```

• Teams with lowest medal count

```
medal=medal_rank.tail(10)
medal
##sns.catplot(x="Team", y="Medal", kind="bar", data=medal,aspect=20/8.27)
            Team Medal
      India-1 0
487
 488
           India-2
 492
        Indonesia-2
                  0
 493 Inga-Lill XXXXIII
                    0
 494
          Ingegerd 0
 498
          Ireland-1
          Israel-1 0
 503
           Israel-2
 504
                    0
          Italy-3 0
 509
          rn-2
 1183
```

Total medals for India (These values count for individual players in team also)

```
### Medals India
medal_rank.loc[medal_rank['Team'] == 'India']

Team Medal
249 India 96
```

Analysing for Age of the athletes

```
### Analysis of age
plt.figure(figsize=(12, 6))
plt.tight_layout()
plt.title('Age Distribution')
plt.hist(df.Age,bins=np.arange(10,80,2),color='blue',edgecolor='white')
```


Here, we see that most participants are between age 20-30.

We also see there are athletes who are above 50. Let's see the count:

```
df['ID'][df['Age'] > 50].count()
1938
```

• Distribution of gold with age

```
: ### Age distribution for gold medal
goldMedals = df[(df.Medal == 'Gold')]
goldMedals = goldMedals[np.isfinite(goldMedals['Age'])]
plt.figure(figsize=(20, 10))
plt.tight_layout()
sns.countplot(goldMedals['Age'])
plt.title('Distribution of Gold Medals')
```


Total teams

```
## Number of Teams
count_team=len(pd.unique(df['Team']))
count_team
```

1184

There are 1184 total teams.

• Medals for India information:

```
### medals for india
india=df.loc[(df1['Team'] == 'India') & (df['Medal'].notnull())]
india
```

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	region	notes
4736	2703	Syed Mushtaq Ali	М	22.0	165.0	61.0	India	IND	1964 Summer	1964	Summer	Tokyo	Hockey	Hockey Men's Hockey	Gold	India	NaN
8192	4518	Joseph Anthony "Joe" Antic	М	29.0	168.0	59.0	India	IND	1960 Summer	1960	Summer	Roma	Hockey	Hockey Men's Hockey	Silver	India	NaN
21208	11197	Vasudevan Bhaskaran	М	29.0	174.0	68.0	India	IND	1980 Summer	1980	Summer	Moskva	Hockey	Hockey Men's Hockey	Gold	India	NaN
21815	11520	Govinda Billimogaputtaswamy	М	20.0	171.0	60.0	India	IND	1972 Summer	1972	Summer	Munich	Hockey	Hockey Men's Hockey	Bronze	India	NaN
22004	11601	Abhinav Bindra	М	25.0	173.0	70.0	India	IND	2008 Summer	2008	Summer	Beijing	Shooting	Shooting Men's Air Rifle, 10 metres	Gold	India	NaN

• Plotting for Gold, Silver, Bronze:

: sns.countplot(india['Medal'])

Gender Distribution

```
plt.figure(figsize=(12, 6))
plt.tight_layout()
plt.title('Gender Distribution')
plt.pie(gender_count,labels=gender_count.index,autopct='%1.1f%%')
```


Medal won by female participants

• Female participation in each Summer Olympics

```
female=df[(df.Sex=='F') & (df.Season=='Summer')][['Sex','Year']]
female=female.groupby('Year').count().reset_index()
female.tail()
```

	Year	Sex
23	2000	5431
24	2004	5546
25	2008	5816
26	2012	5815
27	2016	6223

In the graph we can see that woman participation has increased in the recent years.

• Correlation among the data

• Plotting the heatmap

```
c=win.corr()
c
```

	Age	Weight	Height	Medal
Age	1.000000	0.211951	0.141736	0.028036
Weight	0.211951	1.000000	0.796652	0.088426
Height	0.141736	0.796652	1.000000	0.089117
Medal	0.028036	0.088426	0.089117	1.000000

```
plt.figure(figsize=(12,6))
sns.heatmap(c,annot=True)
plt.show()
                                                                              0.028
 Age
                                                                                                    - 0.8
                                                                              0.088
 Weight
                                                                                                    - 0.6
                                                                              0.089
                                                                                                    - 0.4
                                                                                                     0.2
             0.028
                                  0.088
                                                        0.089
              Age
                                  Weight
                                                        Height
                                                                              Medal
```

Machine learning model to Predict winning

Creating a new data frame

```
## 1-Winning a medal ## 0- Losing
```

```
### Taking out the numerical Values using the table with non null values
win=df1[['Age','Weight','Height','Medal']]
win.loc[df1['Medal'].notnull(), 'Medal'] = 1
win.loc[df1['Medal'].isnull(), 'Medal'] = 0
win
```

	Age	Weight	Height	Medal
0	24.0	80.0	180.0	0
1	23.0	60.0	170.0	0
4	21.0	82.0	185.0	0
5	21.0	82.0	185.0	0
6	25.0	82.0	185.0	0
271111	29.0	89.0	179.0	0
271112	27.0	59.0	176.0	0
271113	27.0	59.0	176.0	0
271114	30.0	96.0	185.0	0
271115	34.0	96.0	185.0	0

205895 rows × 4 columns

```
win['Medal'].value_counts()
        175723
         30172
Name: Medal, dtype: int64
import pylab as pl
import numpy as np
import scipy.optimize as opt
from sklearn import preprocessing
%matplotlib inline
X = np.asarray(win[['Age','Weight','Height']]).astype('int')
X[0:5]
array([[ 24, 80, 180],
         [ 23, 60, 170],
        [ 21, 82, 185],
[ 21, 82, 185],
[ 25, 82, 185]])
y = np.asarray(win['Medal']).astype('int')
y [0:5]
array([0, 0, 0, 0, 0])
from sklearn import preprocessing
\label{eq:continuous} X \ = \ \mathsf{preprocessing.StandardScaler().fit(X).transform(X)}
X[0:5]
array([[-0.19, 0.65, 0.44],
[-0.38, -0.75, -0.51],
```

normalizing the values

• Logistic Regression

• Let's try Root mean Squared error for error calculation

```
## root mean squared error
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test, yhat))
```

- 0.3851653093161678
- Plotting confusion matrix

```
plt.imshow(cm, interpolation='nearest', cmap=cmap)
   plt.title(title)
   plt.colorbar()
   tick_marks = np.arange(len(classes))
   plt.xticks(tick_marks, classes, rotation=45)
   plt.yticks(tick_marks, classes)
   fmt = '.2f' if normalize else 'd'
   thresh = cm.max() / 2.
   for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
       color="white" if cm[i, j] > thresh else "black")
   plt.tight_layout()
   plt.ylabel('True label')
   plt.xlabel('Predicted label')
print(confusion_matrix(y_test, yhat, labels=[1,0]))
     0 61091
     0 35070]]
```

We are plotting a confusion matrix to evaluate the performance.

```
cnf_matrix = confusion_matrix(y_test, yhat, labels=[1,0])
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=['Medal Win=1','Medal Loss=0'],normalize= False, title='Confusion matrix')
Confusion matrix, without normalization
     0 6109]
      0 35070]]
                           Confusion matrix
                                                           35000
                                                           30000
                           0
                                          6109
      Medal Win=1
                                                           25000
   True label
                                                           20000
                                                           15000
                                                           10000
                           0
                                          35070
      Medal Loss=0
                                                           5000
                                       Medallossao
                             Predicted label
```

Based on the count of each section, we can calculate precision and recall of each label:

- Precision is a measure of the accuracy provided that a class label has been predicted.
- Recall is the true positive rate.

So, we can calculate the precision and recall of each class.

F1 score: Now we are in the position to calculate the F1 scores for each label based on the precision and recall of that label.

The F1 score is the harmonic average of the precision and recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. It is a good way to show that a classifier has a good value for both recall and precision.

print (classi	rint (classification_report(y_test, yhat)) precision recall f1-score					
	precision	recall	f1-score	support		
0	0.85	1.00	0.92	35070		
1	0.00	0.00	0.00	6109		
accuracy			0.85	41179		
macro avg	0.43	0.50	0.46	41179		
weighted avg	0.73	0.85	0.78	41179		

We see here accuracy of the model is 0.85

• Decision Tree Classification

```
from sklearn.tree import DecisionTreeClassifier

## We will first create an instance of the DecisionTreeClassifier called Tree
Tree = DecisionTreeClassifier(criterion="entropy", max_depth = 4)
Tree.fit(X_train,y_train)
## predict the value
predTree = Tree.predict(X_test)

predTree[0:10]

array([0, 0, 0, 0, 0, 0, 0, 0, 0])

## defining the accuracy of the model
from sklearn import metrics
print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_test, predTree))

DecisionTrees's Accuracy: 0.8516476844993808
```

• Let's try Root mean Squared error for error calculation

```
np.sqrt(mean_squared_error(y_test, predTree))
```

0.3851653093161678

```
cnf_matrix = confusion_matrix(y_test, predTree, labels=[1,0])
np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['Medal Win=1','Medal Loss=0'],normalize= False, title='Confusion matrix')

Confusion matrix, without normalization
[[ 0 6109]
       [ 0 35070]]
```


<pre>print (classification_report(y_test, predTree))</pre>				
	precision	recall	f1-score	support
0	0.85	1.00	0.92	35070
1	0.00	0.00	0.00	6109
accuracy			0.85	41179
macro avg	0.43	0.50	0.46	41179
weighted avg	0.73	0.85	0.78	41179

We see here accuracy of the model is 0.85

• K-Nearest Neighbour

Import the files and predict the values and then calculate root mean squared error

```
### k nearest neighbour

from sklearn.neighbors import KNeighborsClassifier
k = 4
#Train Model and Predict
neigh = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train)
yhat = neigh.predict(X_test)
from sklearn import metrics
print("Train set Accuracy: ", metrics.accuracy_score(y_train, neigh.predict(X_train)))
print("Test set Accuracy: ", metrics.accuracy_score(y_test, yhat))

Train set Accuracy: 0.8548896282085529
Test set Accuracy: 0.8427596590495156

##RMSE
np.sqrt(mean_squared_error(y_test, yhat))
0.39343059676883585
```

Confusion matrix

```
\verb|cnf_matrix = confusion_matrix(y_test, yhat, labels=[1,0])| \\
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['Medal Win=1','Medal Loss=0'],normalize= False, title='Confusion matrix')
Confusion matrix, without normalization
[[ 147 5962]
 [ 412 34658]]
                      Confusion matrix
                                                   30000
                     147
                                   5962
   Medal Win=1
                                                  25000
True label
                                                  20000
                                                  15000
                                                   10000
                     412
                                   34658
  Medal Loss=0
                                                   5000
                        Predicted label
```

Calculate the accuracy

We see here accuracy of the model is 0.85

```
print (classification_report(y_test, yhat))
            precision recall f1-score
                                        support
          0
                 0.85
                        0.99
                                 0.92
                                          35070
          1
                0.26
                         0.02
                                 0.04
                                          6109
                                 0.85
                                         41179
    accuracy
                0.56
                       0.51
                                0.48
                                        41179
   macro avg
weighted avg
                0.77
                        0.85
                                0.79
                                        41179
```

K in KNN, is the number of nearest neighbours to examine. It is supposed to be specified by the user. So, how can we choose right value for K? The general solution is to reserve a part of your data for testing the accuracy of the model. Then choose k =1, use the training part for modelling, and calculate the accuracy of prediction using all samples in your test set. Repeat this process, increasing the k, and see which k is the best for your model.

We can calculate the accuracy of KNN for different values of k.

```
## We can calculate the accuracy of KNN for different values of k.
Ks=10
mean_acc = np.zeros((Ks-1))
std_acc = np.zeros((Ks-1))
for n in range(1,Ks):
    #Train Model and Predict
    neigh = KNeighborsClassifier(n_neighbors = n).fit(X_train,y_train)
    yhat=neigh.predict(X_test)
    mean_acc[n-1] = metrics.accuracy_score(y_test, yhat)
    std\_acc[n-1] = np.std(yhat == y\_test)/np.sqrt(yhat.shape[0])
mean_acc
plt.plot(range(1,Ks),mean_acc,'g')
plt.fill_between(range(1,Ks),mean_acc - 1 * std_acc,mean_acc + 1 * std_acc, alpha=0.10)
plt.fill_between(range(1,Ks),mean_acc - 3 * std_acc,mean_acc + 3 * std_acc, alpha=0.10,color="green")
plt.legend(('Accuracy ', '+/- 1xstd','+/- 3xstd'))
plt.ylabel('Accuracy ')
plt.xlabel('Number of Neighbors (K)')
plt.tight_layout()
plt.show()
```


Accuracy:

• Logistic Regression: 0.85

• Decision Tree: 0.85

• K- Nearest Neighbour: 0.85

Conclusion:

- USA has the most medals
- We see that most participants are between age 20-30.
- Female participation has increased over the years.
- Most gold is won by participants that are between age 20-30.
- People above age 50 are also wining gold medal
- Wining doesn't depend much on age, weight or height.
- We see here that the accuracy shown by all the three models are equal as winning a medal depends on many factors and we have insufficient data for that.
- We need more data to accurately predict the win.