STAT406- Methods of Statistical Learning Lecture 7

Matias Salibian-Barrera

UBC - Sep / Dec 2018

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Correlation: 99.26%

http://www.tylervigen.com/spurious-correlations

 Another regularized method is given by LASSO

$$\min_{\alpha,\beta} \sum_{i=1}^{n} (y_i - \alpha - \beta' \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\min_{\alpha,\beta} \sum_{i=1}^{n} (y_i - \alpha - \beta' \mathbf{x}_i)^2 + \lambda \|\beta\|_1$$

for some $\lambda > 0$

• The above is equivalent to

$$\min_{\alpha,\beta} \sum_{i=1}^{n} (y_i - \alpha - \beta' \mathbf{x}_i)^2$$

subject to

$$\sum_{j=1}^{p} |\beta_j| \leq K$$

for some K > 0

LASSO

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

[©] Hastie, Tibshirani and Friedman, 2001.

Credit data - glmnet output

Credit data - glmnet output

```
a <- glmnet(x=xm, y=yc, lambda=lambdas,
   family='gaussian', alpha=1, intercept=FALSE)
> coef(a, s=1)
7 x 1 sparse Matrix of class "dqCMatrix"
(Intercept)
Income
         -7.4285710
Limit 0.1078894
Rating 2.3006418
Cards 9.7499618
      -0.8515917
Age
Education 1.7182477
```

Credit data - glmnet output

```
> coef(a, s=exp(4))
7 x 1 sparse Matrix of class "dgCMatrix"
(Intercept)
         -0.63094341
Income
Limit.
             0.02749778
             1.91772580
Rating
Cards
Age
Education
```

Credit data - another implementation

```
> library(lars)
> b <- lars(x=xm, y=yc, type='lasso', intercept=FALSE)
> coef(b)
      Income Limit Rating Cards Age Education
[2,] 0.000000 0.00000000 1.835963 0.000000 0.0000000 0.000000
[3,] 0.000000 0.01226464 2.018929 0.000000 0.0000000 0.000000
[4,] -4.703898 0.05638653 2.433088 0.000000 0.0000000 0.000000
[5,] -5.802948 0.06600083 2.545810 0.000000 -0.3234748 0.000000
[6,] -6.772905 0.10049065 2.257218 6.369873 -0.6349138 0.000000
[7,] -7.558037 0.12585115 2.063101 11.591558 -0.8923978 1.998283
> b
Call:
lars(x = xm, y = yc, type = "lasso", intercept = FALSE)
R-squared: 0.878
Sequence of LASSO moves:
    Rating Limit Income Age Cards Education
Var 3 2 1 5 4
Step 1 2 3 4 5
```

Credit data - lars output

Credit data - CV - glmnet

Credit data - CV - another run

Credit data - CV - zoom

Model / feature selection - LASSO Credit - 10 runs 5-fold CV

- Worse estimated MSPE than Ridge Regression in this case
- It provides a sequence of explanatory variables, an ordered set of models
- Much like stepwise, but with better MSPE in this case

- Why does it work? It is the convex proxy for the "nuclear norm"
- Also generates infinitely many estimates, but there's a clever algorithm
- Inference?

- When covariates are correlated, LASSO will typically pick any one of them, and ignore the rest
- Ridge Regression, on the other hand, combines the coefficients of correlated covariates, but doesn't provide sparse models

Ridge vs. LASSO

 Compare Ridge and LASSO on the air pollution data

Air pollution example

```
airp <- read.table('..-30861 CSV-1.csv',
    header=TRUE, sep=',')
v <- as.vector(airp$MORT)</pre>
xm <- as.matrix(airp[, names(airp) != 'MORT'])</pre>
# Ridge
set.seed(123)
air.12 <- cv.qlmnet(x=xm, y=y, lambda=lambdas,
    nfolds=5, alpha=0, family='gaussian',
    intercept=TRUE)
# LASSO
set.seed(23)
air.11 <- cv.glmnet(x=xm, y=y, lambda=lambdas,
    nfolds=5, alpha=1, family='gaussian',
    intercept=TRUE)
```

Air pollution - Ridge

Air pollution - LASSO

Air pollution example

	Ridge	LASSO
(Intercept)	1179.335	1100.355
PREC	1.570	1.503
JANT	-1.109	-1.189
JULT	-1.276	-1.247
OVR65	-2.571	
POPN	-10.135	
EDUC	-8.479	-10.510
HOUS	-1.164	-0.503
DENS	0.005	0.004
NONW	3.126	3.979
WWDRK	-0.476	-0.002
POOR	0.576	
HC	-0.035	
NOX	0.064	
SO.	0.240	0.228
HUMID	0.372	

Air pollution - Correlations

- Oracle consistency
- Problem: when n < p, LASSO will only choose up to n variables
- When covariates are correlated, LASSO will typically pick any one of them, and ignore the rest
- Ridge Regression, on the other hand, combines the coefficients of correlated covariates, but doesn't provide sparse models

Elastic Net

 Elastic Net is a compromise between the two:

$$\min_{\beta_0,\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \beta' \mathbf{x}_i)^2 + \frac{\lambda}{2} \left[\alpha \|\beta\|_1 + \frac{(1-\alpha)}{2} \|\beta\|_2^2 \right]$$

for some $\lambda > 0$ and $0 < \alpha < 1$.

Elastic Net

- $\alpha = 0$ reduces to Ridge Regression
- $\alpha = 1$ reduces to LASSO
- α needs to be chosen... how would you find a good choice for α ?

Air pollution example

- There are correlated covariates
- LASSO solution picks one of each group early on and relegates the rest to the end of the sequence
- Ridge Regression includes all variables always
- EN with $\alpha = 0.10$ gives a nice path of solutions...
- CV? bivariate search, unless α can be chosen beforehand