Diabetic Retinopathy Detection

Identify signs of diabetic retinopathy in eye images

Lakshmi, Nagdeesh, Sunil

Introduction

- Diabetic retinopathy is the leading cause of blindness in the working-age population of the developed world. It is estimated to affect over 93 million people.
- Currently, detecting DR is a time-consuming and manual process that requires a trained clinician to examine and evaluate digital color fundus photographs of the retina.
- The need for a comprehensive and automated method of DR screening has long been recognized, and previous efforts have made good progress using image classification, pattern recognition, and machine learning.

NORMAL RETINA

DIABETIC RETINOPATHY

Task

Classification:

Images have five possible ratings

0: no DR

1: mild

2: moderate

3: severe

4: proliferative DR

Dataset: Color Fundus photography

Sample Image

Data Preprocessing

Original Dataset

Flipped Dataset

• Data Augmentation Example

Approaches:

- Convolutional Neural Networks are known for their good performance on image classification tasks.
- We have used the latest Deep Convolutional Network models coupled with Transfer Learning to solve this problem.
- Comparative studies are done on the performance of models
- Models used
 - AlexNet
 - VGG Net
 - Inception V3
 - MobileNet

AlexNet

- Performed classification on Alexnet network
- proposed by Alex Krizhevsky
- Used Keras implementation with Theano Backend
- Network architecture consists of 5 Convolutional layers(followed by maxpool and ReLu) and 3 Fully connected Layers(followed by dropout layer)
- Real time Data Augmentation done on Flipped Dataset with Keras Image Generator (improves performance)
- Trained weights for model from scratch
- Used SGD for training with 80 epochs and batch size 40
- Training time 3-4 hours
- Obtained ~72 % accuracy on augmented dataset

AlexNet Architecture

Inception V3

- Performed Transfer Learning on Inception V3 Model, which is trained on the ImageNet.
- **Transfer Learning:** The last fully connected layer of a pre-trained CNN is removed and treated as a feature extractor for the new dataset. Once we have successfully extracted all the features for all images, we train a classifier on the new dataset.
- Keras Implementation
- Training Results:
- Epoch: 5, Batch size: 10, Training time: 6-7hrs
- Training accuracy on Complete Dataset: 73%
- Training accuracy on augmented dataset: 72%

MobileNet

- Open-Source Models for Efficient On-Device Vision.
- MobileNet are optimized to be small, faster and efficient. But have lower accuracies.
- Performed Transfer learning on MobileNet. A pre-trained model is downloaded, and we added a new final layer. The new Layer is trained on the diabetic retinopathy dataset.
- Training result:
- Epoch: 500, Training time: 1-2hrs
- Accuracy on Complete Dataset: 34%
- Accuracy on Augmented Dataset: 36%

VGG16 Net

Introduced in 2014-In the paper:

Very Deep Convolutional Networks for Large Scale Image Recognition.

- network is characterized by its simplicity
 - 3×3 convolutional layers stacked on top of each other in increasing depth.
 - Reducing volume size is handled by max pooling
 - Two fully-connected layers, each with 4,096 nodes are then followed by a softmax classifier (above).
- Observations:
 - Slow to train. Huge memory
 - Poor performance on the dataset

VGG16 Architecture

Input

layer

224x224

Epoc: 25

Batch Size: 64

Training time: 10hrs

Accuracy: ~35%

150x150

Training Loss and Accuracy

Result

Accuracy

Model	Accuracy
AlexNet	~ 72% (On Flipped Dataset)
VGG Net	~32% (On Original Dataset) ~35.61% (On Flipped Dataset)
Inception V3	73% (On Original Dataset) 72% (On Flipped Dataset)
MobileNet	34% (On Original Dataset) 36% (On Flipped Dataset)

Questions!?