

TRAVAUX DIRIGES n°3-1

Mécanique du solide 1 - 2^{ème} Année

Centre d'intérêt : Statique graphique

Support d'étude : Pince pour câbles

Dossier Pédagogique

Objectif : Déterminer l'effort de serrage du câble

Pré-requis : C&F 1A, Etude des mécanismes 2A

Durée approximative du TD: 2h

Matériel à utiliser : Mises en plan

Compétences attendues : Autonomie devant un exercice de statique graphique

<u>Critères d'évaluation</u>: présentation du TD, pertinence des raisonnements, rigueur de

l'analyse, justesse des calculs mis en œuvre, rapidité

d'exécution et compréhension.

Pince pour câble

Hypothèses générales

- Hypothèse de problème de statique plane dans le plan (x,y),
- Les liaisons sont parfaites et sans frottement,
- Le poids des pièces est négligé devant les autres actions mécaniques,
- Liaisons pivots en : B, C, D, E, K, liaisons ponctuelles en : A, I, J, S, T.
- Glisseur $\overrightarrow{A_{8\rightarrow2}}$ = 320 \overrightarrow{y} (Norme : 320 N).

L'objet de cette étude est de déterminer l'action de serrage $\overline{T_{7\rightarrow 6}}$.

I.2. Travail à réaliser.

Tous les tracés seront à réaliser sur la feuille A3

1- Etude de l'équilibre de la came 2.

Rédiger l'étude de cette pièce 2 (graphe d'isolement, théorème utilisé, tableau, ...). Tracer les supports des actions respectivement en I de $3\rightarrow 2$ et en J de $4\rightarrow 2$. Déterminer, par construction graphique les actions $\overrightarrow{I_{3\rightarrow 2}}$ et $\overrightarrow{J_{4\rightarrow 2}}$.

2- Etude de l'équilibre de l'ensemble isolé {5, 6, 7}.

L'ensemble n'est soumis qu'à deux forces extérieures.

Rédiger l'étude de cet ensemble (graphe d'isolement, théorème utilisé, tableau, ...). En déduire et tracer pour l'instant les supports des actions respectivement en E de $4\rightarrow 5$ et en C de $3\rightarrow 6$.

3- Etude de l'équilibre du levier 3.

Rédiger l'étude de cette pièce 3 (graphe d'isolement, théorème utilisé, tableau, ...). Tracer les supports des actions respectivement en I de $2\rightarrow3$, B de $1\rightarrow3$ et en C de $6\rightarrow3$. Déterminer, par construction graphique les actions $\overrightarrow{I_{2\rightarrow3}}$, $\overrightarrow{B_{1\rightarrow3}}$ et en $\overrightarrow{C_{6\rightarrow3}}$.

4- Etude de l'équilibre du bras 6.

Rédiger l'étude de cette pièce 6 (graphe d'isolement, théorème utilisé, tableau, ...). Tracer les supports des actions respectivement en C de $3\rightarrow 6$, K de $5\rightarrow 6$ et en T de $7\rightarrow 6$. Déterminer, par construction graphique les actions $\overrightarrow{C_{3\rightarrow 6}}$, $\overrightarrow{K_{5\rightarrow 6}}$ et en $\overrightarrow{T_{7\rightarrow 6}}$.

5- On désire remplacer la vis par un vérin qui devra générer le même effort 320 N. Sachant que le vérin est alimenté sous 6 bars (0,6 MPa), calculer le diamètre de piston nécessaire.

E. J. 2020 Page 3

