Excerpts from "Bishop's Pattern Recognition and Machine Learning" used for educational purpose. do not republish...

1.2.6 Bayesian curve fitting

Note: the Gaussian curve problem demonstrated, can be/is solved analytically

is the posterior distribution

In a fully Bayesian approach, we should consistently apply the sum and product rules of probability, which requires, as we shall see shortly, that we integrate over all val-ues of w. Such marginalizations lie at the heart of Bayesian methods for pattern recognition.

given the training data x and t, along with a new test point x, and our goal is to predict the value of t.

we assume that the parameters α and β are fixed and known in advance (in later chapters we shall discuss how such parameters

can be inferred from data in a Bayesian setting).

predictive

distribution

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w}.$$
 (1.68)

can be found by normalizing the right-hand side of (1.66).

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha).$$
 (1.66)

posterior ∝ likelihood × prior

omitted the dependence on α and β to simplify the notation

target values
$$\mathbf{t} = (t_1, \dots, t_N)^{\mathrm{T}}$$
. (sometimes t is labels)
$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j \qquad (1.1)$$

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}\left(t|y(x, \mathbf{w}), \beta^{-1}\right) \qquad (1.60)$$

$$\beta \text{ corresponding to the inverse variance of the distribution.}$$

$$N \text{ input values } \mathbf{X} = (x_1, \dots, x_N)^{\mathrm{T}} \text{ where } x \text{ are observations or predictions}$$

1.2.6 Bayesian curve fitting (cont.)

solving 1.60:

 \mathbf{w}_{ML} by minimizing the negative log-likelihood:

ative log-likelihood:
$$\ln p(\mathbf{t}|\mathbf{x},\mathbf{w},\beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi). \tag{1.62}$$

$$\frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n,\mathbf{w}) - t_n \right\}^2 = \mathbf{0}$$
 where $y(x,\mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$

where
$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

One can use regularization to avoid overfitting by a polynomial order that is too high:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

where $\|\mathbf{w}\|^2 \equiv \mathbf{w}^{\mathrm{T}}\mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$, and the coefficient λ governs the relative importance of the regularization term compared with the sum-of-squares error term. Note that often the coefficient w_0 is omitted from the regularizer because its

solve for $eta_{
m ML}$

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}_{\rm ML}) - t_n \right\}^2.$$
 (1.63)

1.2.6 Bayesian curve fitting (cont.)

then 1.60 becomes 1.64:

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}\left(t|y(x, \mathbf{w}), \beta^{-1}\right) \tag{1.60}$$

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right). \tag{1.64}$$

for the prior of 1.66 consider a Gaussian over the polynomial coefficients of w:

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$
(1.65)

where α is the precision of the distribution, and M+1 is the total number of elements in the vector \mathbf{w} for an M^{th} order polynomial. Variables such as α , which control

solve for **W** by minimizing the negative log-likelihood of 1.66:

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}. \tag{1.67}$$

Thus we see that maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function encountered earlier in the form (1.4), with a regularization parameter given by $\lambda = \alpha/\beta$.

Integration of 1.68 can be solved analytically:

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w}.$$
 (1.68)

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right) \tag{1.69}$$

where the mean and variance are given by

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{\infty} \phi(x_n) t_n$$
 (1.70)

$$s^{2}(x) = \beta^{-1} + \phi(x)^{T} \mathbf{S} \phi(x).$$
 (1.71)

Here the matrix S is given by

$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x)^{\mathrm{T}}$$
 (1.72)

where I is the unit matrix, and we have defined the vector $\phi(x)$ with elements $\phi_i(x) = x^i$ for i = 0, ..., M.

x = 10 data points drawn randomly from 0 to 1.

y =the values generated from $sin(2\pi x)$

or use those from figures:

x = (0., 6./60, 13./60, 21./60, 27./60, 34./60, 40./60, 47./60, 54./60, 60./60)

y = (3.5/9, 7.5/9, 9./9, 8.5/9, -1./9, -1.5/9, -8./9, -4./9, -5./9, 2.5.9)

alpha = 5E-3

beta = 11.1

Figure 1 17

The predictive distribution resulting from a Bayesian treatment of polynomial curve fitting using an M=9 polynomial, with the fixed parameters $\alpha=5\times10^{-3}$ and $\beta=11.1$ (corresponding to the known noise variance), in which the red curve denotes the mean of the predictive distribution and the red region corresponds to ± 1 standard deviation around the mean.

where I is the unit matrix, and we have defined the vector $\phi(x)$ with elements $\phi_i(x) = x^i$ for i = 0, ..., M.

 $\phi_i(x) = x^i$. let $x = x_0 = 0$. then $\phi_i(x_0) = 0^i$. $\phi(x_0) = (0^0, 0^1, 0^2, \dots 0^9)$

$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x)^{\mathrm{T}}$$
 (1.72)

x = 10 data points drawn randomly from 0 to 1.

y =the values generated from $sin(2\pi x)$

or use those from figures:

x = (0., 6./60, 13./60, 21./60, 27./60, 34./60, 40./60, 47./60, 54./60, 60./60)

y = (3.5/9, 7.5/9, 9./9, 8.5/9, -1./9, -1.5/9, -8./9, -4./9, -5./9, 2.5/9)

alpha = 5E-3

beta = 11.1

M =order of fit = 9 for this example

 $\varphi_{-i}(x) = x^{i}. \ \ \text{let} \ \ x = x_{-}0 = 0. \ \ \text{then} \ \ \varphi_{-i}(x_{-}0) = 0^{i}. \ \ \ \varphi(x_{-}0) = (0^{\circ}0, 0^{\circ}1, 0^{\circ}2, \ldots 0^{\circ}9)$

1 to N are data element numbers from 1 to 10 (or 0-9)

0 to M are the order (power exponents)

$\Phi_{0}(x) =$	0.^0
FNI ₂₄ 1	6./60^0
	13./60^0
	21./60^0
	27./60^0
	34./60^0
	40./60^0
	47./60^0
	54./60^0
	60./60^0
$\Phi(x) = $	0.^0, 0.^9
	6./60^0, 6./60^9
	13./60^0, 13./60^9
[NxM]	21./60^0, 21./60^9
[14×141]	27./60^0, 27./60^9
	34./60^0, 34./60^9
	40./60^0, 40./60^9
	47./60^0, 47./60^9
	54./60^0, 54./60^9
	, ,
	60./60^0, 60./60^9

φ(x_0)^T=(0^0,0^1,0^2,...0^9) φ(x_1)^T=((6./60)^0,(6./60)^1,...(6./60)^9) φ(x_9)^T=((60./60)^0,(60./60)^1,...(60./60)^9)

each is [1XM]

search literature. Vectors are denoted by <u>lower case bold</u> Roman letters such as \mathbf{x} , and all vectors are assumed to be <u>column vectors</u>. A superscript <u>T</u> denotes the <u>transpose of a matrix or vector</u>, so that \mathbf{x}^{T} will be a row vector. Uppercase bold roman letters, such as M, denote matrices. The notation (w_1, \ldots, w_M) denotes a row vector with M elements, while the corresponding column vector is written as $\mathbf{w} = (w_1, \ldots, w_M)^{\mathrm{T}}$.

If we have N values $\mathbf{x}_1, \dots, \mathbf{x}_N$ of a D-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$, we can combine the observations into a data matrix \mathbf{X} in which the n^{th} row of \mathbf{X} corresponds to the row vector \mathbf{x}_n^T . Thus the n, i element of \mathbf{X} corresponds to the i^{th} element of the n^{th} observation \mathbf{x}_n . For the case of one-dimensional variables we shall denote such a matrix by \mathbf{X} , which is a column vector whose n^{th} element is x_n . Note that \mathbf{X} (which has dimensionality N) uses a different typeface to distinguish it from \mathbf{X} (which has dimensionality N).

training data comprising N input values $\mathbf{x} = (x_1, \dots, x_N)^T$

original data set consists of N data points $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$