

Uncertainty-based Continual Learning with Adaptive Regularization Hongjoon Ahn*1, Sungmin Cha*2, Donggyu Lee2, and Taesup Moon 1,2

Department of Artificial Intelligence¹, Department of Electrical and Computer Engineering² Sungkyunkwan University

{hong0805, csm9493, ldk308, tsmoon}@skku.edu

Regularization-based Continual Learning

Regularization prevents catastrophic forgetting by penalizing large updates of the important parameters for previous tasks

Current task loss
$$-\log p(Y_t|X_t,w_t) + \left|\Omega_{t-1}\odot(w_t-w_{t-1})\right|_2^2$$

Regularization penalty

for parameters

Caveats:

- Large memory cost (e.g., EWC, SI, Riemannian-walk, etc.)
- Regularization penalty not learnable
- No mechanism for gracefully forgetting

Bayesian Online Learning

A fresh interpretation of the KL-term in the ELBO

$$\mathcal{F}(D_t, \boldsymbol{\theta}_t) = \mathbb{E}_{q(\boldsymbol{\mathcal{W}}|\boldsymbol{\theta}_t)}[-\log p(D_t|\boldsymbol{\mathcal{W}})] + D_{KL}(q(\boldsymbol{\mathcal{W}}|\boldsymbol{\theta}_t)||q(\boldsymbol{\mathcal{W}}|\boldsymbol{\theta}_{t-1}))$$

For $q(\mathcal{W}|m{ heta}) = \prod_i \mathcal{N}(w_i|\mu_i,\sigma_i)$ $m{ heta}_t^{(l)} = (m{\mu}_t^{(l)}, m{\sigma}_t^{(l)})$:

$$\frac{1}{2} \sum_{l=1}^{L} \left[\left\| \frac{\boldsymbol{\mu}_{t}^{(l)} - \boldsymbol{\mu}_{t-1}^{(l)}}{\boldsymbol{\sigma}_{t-1}^{(l)}} \right\|_{2}^{2} + \mathbf{1}^{\top} \left\{ \left(\frac{\boldsymbol{\sigma}_{t}^{(l)}}{\boldsymbol{\sigma}_{t-1}^{(l)}} \right)^{2} - \log \left(\frac{\boldsymbol{\sigma}_{t}^{(l)}}{\boldsymbol{\sigma}_{t-1}^{(l)}} \right)^{2} \right\} \right]$$

$$(a) \qquad \qquad \textbf{Closed form}$$

- **Term (a)**: regularization for $\mu_t^{(i)}$ (mean parameter)
 - $oldsymbol{\sigma}_{t-1}^{(l)}$: $oldsymbol{Uncertainty}$ measure for $oldsymbol{\mu}_{t}^{(l)}$,
 - A parameter with High/Low uncertainty gets Weak/Strong regularization!
- **Term (b)**: regularization for $\sigma_t^{(l)}$ (std of parameter)
 - Enforces the uncertainty to stay the same!
- Cf.) VCL: Uses the same ELBO and variational inference
 - **Huge memory cost:** Requires twice the memory to store $\sigma_t^{\prime\prime}$
 - Multiple number of samplings: Slow, No RL results

Uncertainty-based Continual Learning (UCL)

Information loss and negative transfer cause catastrophic forgetting

Summary of main contributions

- Define the uncertainty of a node (**tied** σ of incoming weights)
 - → Reduces the # of parameters
- Devise novel loss terms to prevent information loss and negative transfer via adaptive regularization
- Introduce a novel loss term to induce gracefully forgetting

Final loss function for UCL

High regularization strengths on all connected weights of important (certain) nodes

Sample only once

Modification of **Term (b)**

Enables the uncertainty of a node grow again

> Intend gracefully forgetting

1. Randomly initialized weights

Modification of Term (a)

3. Result of gracefully forgetting

Freeze the important weights → Prevent negative transfer

to Task 2

Illustration of the regularization mechanism of UCL

2. Small σ for important nodes

Experimental Results

Vision datasets (Deep CNN)

Roboschool RL tasks (FCNN, algorithm: PPO)

