IN THE CLAIMS:

Please CANCEL claims 6 and 16 without prejudice to or disclaimer of the recited subject matter.

Please AMEND claims 2, 12, 22, 29, 34, 36, 38 and 40, and ADD new claims 42-53, as follows. Note that all the claims currently pending in this application, including those not currently being amended, have been reproduced below for the Examiner's convenience.

1. (Cancelled)

2. (Currently Amended) An illumination optical system having a total reflection type light transmitting element, for illuminating a surface to be illuminated, said illumination optical system comprising:

an imaging optical system for forming an image of a light source upon a predetermined plane by use of light from the light source; and

a converting optical system for directing light from the light source image formed by said imaging optical system, to said light transmitting element, wherein said converting optical system is configured so that the light transmitting element has a light entrance surface which is disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between principal points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the

predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element.

- 3. (Previously Presented) An illumination optical system according to Claim 2, wherein the light source image formed by said imaging optical system has an illuminance which is larger in a portion adjacent an optical axis of the light transmitting element than in a peripheral portion about the optical axis.
- 4. (Previously Presented) An illumination optical system according to Claim 2, wherein said imaging optical system includes an elliptical mirror, wherein the light source is disposed at one focal point of said elliptical mirror, and wherein the light source image formed by said imaging optical system is defined at another focal point of said elliptical mirror.
- 5. (Original) An illumination optical system according to Claim 2, wherein the light source comprises a Hg lamp.

6-11. (Cancelled)

12. (Currently Amended) An illumination optical system for illuminating a surface to be illuminated, with light from a light source and by use of an optical fiber bundle, said illumination optical system comprising:

an imaging optical system for forming an image of a light source upon a predetermined plane, by use of light from the light source; and

a converting optical system for directing light from the light source image formed by said imaging optical system, to said optical fiber bundle, wherein said converting optical system is configured so that said optical fiber bundle has a light entrance surface which is disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between principal points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle.

- 13. (Previously Presented) An illumination optical system according to Claim 12, wherein the light source image formed by said imaging optical system has an illuminance which is larger in a portion adjacent an optical axis of the light transmitting element than in a peripheral portion about the optical axis.
- 14. (Previously Presented) An illumination optical system according to Claim 12, wherein said imaging optical system includes an elliptical mirror, wherein the light source is disposed at one focal point of said elliptical mirror, and wherein the light source image formed by said imaging optical system is defined at another focal point of said elliptical mirror.

15. (Previously Presented) An illumination optical system according to Claim 12, wherein the light source comprises a Hg lamp.

16-18. (Cancelled)

- 19. (Previously Presented) An illumination optical system according to Claim 12, wherein said optical fiber bundle has a light entrance of one of square shape and rectangular shape, and a light exit face of arcuate shape.
- 20. (Previously Presented) An illumination optical system according to Claim 12, wherein said optical fiber bundle comprises a total reflection type fiber bundle.
- 21. (Previously Presented) An illumination optical system according to Claim 12, wherein said optical fiber bundle comprises a distributed refractivity type optical fiber bundle.
- 22. (Currently Amended) An illumination optical system having a total reflection type light transmitting element, for illuminating a surface to be illuminated, said illumination optical system comprising:
- a plurality of light sources for illuminating a predetermined plane; and
 a converting optical system, disposed between the predetermined plane and said
 light transmitting element, for directing light from said plurality of light sources to said light

transmitting element, wherein said converting optical system is configured so that the light transmitting element has a light entrance surface disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between principal points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element.

- 23. (Original) An illumination optical system according to Claim 22, wherein said light transmitting element comprises an optical rod.
- 24. (Previously Presented) An illumination optical system according to Claim 22, wherein said plurality of light sources comprise a plurality of laser light sources.
 - 25-28. (Cancelled)
- 29. (Currently Amended) An illumination optical system for illuminating a surface to be illuminated, by use of an optical fiber bundle, said illumination optical system comprising:

 a plurality of light sources for illuminating a predetermined plane; and a converting optical system disposed between the predetermined plane and said optical fiber bundle, for directing light from said plurality of light sources to said optical fiber

bundle, wherein said converting optical system is configured so that said optical fiber bundle has a light entrance surface which is disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between principal points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle.

- 30. (Previously Presented) An illumination optical system according to Claim 2, wherein a luminous intensity distribution upon the predetermined plane has a distribution of a shape with a central void, and wherein said converting optical system is effective to make a luminous intensity distribution upon a light entrance surface of said light transmitting element into a distribution of a shape without a central void.
- 31. (Previously Presented) An illumination optical system according to Claim 12, wherein a luminous intensity distribution upon the predetermined plane has a distribution of a shape with a central void, and wherein said converting optical system is effective to make a luminous intensity distribution upon a light entrance surface of said optical fiber bundle into a distribution of a shape without a central void.

- 32. (Previously Presented) An illumination optical system according to Claim 22, wherein a luminous intensity distribution upon the predetermined plane has a distribution of a shape with a central void, and wherein said converting optical system is effective to make a luminous intensity distribution upon a light entrance surface of said light transmitting element into a distribution of a shape without a central void.
- 33. (Previously Presented) An illumination optical system according to Claim 29, wherein a luminous intensity distribution upon the predetermined plane has a distribution of a shape with a central void, and wherein said converting optical system is effective to make a luminous intensity distribution upon a light entrance surface of said optical fiber bundle into a distribution of a shape without a central void.

34. (Currently Amended) An exposure apparatus comprising:

an illumination optical system having a total reflection type light transmitting element, for illuminating a mask, wherein said illumination optical system includes (i) an imaging optical system for forming an image of a light source upon a predetermined plane by use of light from the light source, and (ii) a converting optical system for directing light from the light source image formed by said imaging optical system, to said light transmitting element, wherein said converting optical system is configured so that the light transmitting element has a light entrance surface which is disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so

that a distance between principal points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element; and a projection optical system for projecting a pattern of the mask onto a wafer.

35. (Previously Presented) A device manufacturing method, comprising steps of: applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 34; and

developing the wafer having the pattern transferred thereto.

36. (Currently Amended) An exposure apparatus comprising:

an illumination optical system for illuminating a mask with light from a light source and by use of an optical fiber bundle, wherein said illumination optical system includes (i) an imaging optical system for forming an image of a light source upon a predetermined plane by use of light from the light source, and (ii) a converting optical system for directing light from the light source image formed by said imaging optical system, to said optical fiber bundle, wherein said converting optical system is configured so that said a light entrance surface which is disposed in a Fourier transform relation with said_predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between principal

points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle; and

a projection optical system for projecting a pattern of the mask onto a wafer.

37. (Previously Presented) A device manufacturing method, comprising the steps of: applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 36; and

developing the wafer having the pattern transferred thereto.

38. (Currently Amended) An exposure apparatus comprising:

an illumination optical system having a total reflection type light transmitting element, for illuminating a mask, wherein said illumination optical system includes (i) a plurality of light sources for illuminating a predetermined plane, and (ii) a converting optical system disposed between the predetermined plane and said light transmitting element, for directing light from said plurality of light sources, to said light transmitting element, wherein said converting optical system is configured so that the light transmitting element has a light entrance surface which is disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between

principal points of the two lens units becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element; and a projection optical system for projecting a pattern of the mask onto a wafer.

39. (Previously Presented) A device manufacturing method, comprising the steps of: applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 38; and

developing the wafer having the pattern transferred thereto.

40. (Currently Amended) An exposure apparatus comprising:

an illumination optical system for illuminating a mask by use of an optical fiber bundle, wherein said illumination optical system includes (i) a plurality of light sources for illuminating a predetermined plane, and (ii) a converting optical system disposed between the predetermined plane and said optical fiber bundle, for directing light from said plurality of light sources, to said optical fiber bundle, wherein said converting optical system is configured so that said optical fiber bundle has a light entrance surface which is disposed in a Fourier transform relation with said predetermined plane includes first and second lens units having the same focal distance and being disposed so that a distance between principal points of the two lens units

becomes equal to the focal distance, and wherein an entrance pupil of the first lens unit is disposed substantially in coincidence with the predetermined plane, while an exit pupil of the second lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle; and

a projection optical system for projecting a pattern of the mask onto a wafer.

41. (Previously Presented) A device manufacturing method, comprising the steps of: applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 40; and

developing the wafer having the pattern transferred thereto.

42. (New) An illumination optical system having a total reflection type light transmitting element, for illuminating a surface to be illuminated, said illumination optical system comprising:

an imaging optical system for forming an image of a light source upon a predetermined plane by use of light from the light source; and

a converting optical system for directing light from the light source image formed by said imaging optical system, to said light transmitting element, wherein said converting optical system includes an optical rod and a lens unit, wherein a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element.

43. (New) An illumination optical system for illuminating a surface to be illuminated, with light from a light source and by use of an optical fiber bundle, said illumination optical system comprising:

an imaging optical system for forming an image of a light source upon a predetermined plane, by use of light from the light source; and

a converting optical system for directing light from the light source image formed by said imaging optical system, to said optical fiber bundle, wherein said converting optical system includes an optical rod and a lens unit, wherein a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle.

44. (New) An illumination optical system having a total reflection type light transmitting element, for illuminating a surface to be illuminated, said illumination optical system comprising:

a plurality of light sources for illuminating a predetermined plane; and

a converting optical system, disposed between the predetermined plane and said light transmitting element, for directing light from said plurality of light sources to said light transmitting element, wherein said converting optical system includes an optical rod and a lens unit, wherein a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element.

45. (New) An illumination optical system for illuminating a surface to be illuminated, by use of an optical fiber bundle, said illumination optical system comprising:

a plurality of light sources for illuminating a predetermined plane; and
a converting optical system disposed between the predetermined plane and said
optical fiber bundle, for directing light from said plurality of light sources to said optical fiber
bundle, wherein said converting optical system includes an optical rod and a lens unit, wherein a
light entrance surface of said optical rod is disposed substantially in coincidence with the
predetermined plane, while a light exit surface of said optical rod is disposed substantially in
coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is
disposed substantially in coincidence with a light entrance surface of said optical fiber bundle.

an illumination optical system having a total reflection type light transmitting element, for illuminating a surface to be illuminated, wherein said illumination optical system includes (i) an imaging optical system for forming an image of a light source upon a predetermined plane by use of light from the light source, and (ii) a converting optical system for directing light from the light source image formed by said imaging optical system, to said light transmitting element, wherein said converting optical system includes an optical rod and a lens unit, a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element; and

a projection optical system for projecting a pattern of a mask onto a wafer.

47. (New) A device manufacturing method, comprising the steps of:

applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 46; and

an illumination optical system for illuminating a surface to be illuminated, with light from a light source and by use of an optical fiber bundle, wherein said illumination optical system includes (i) an imaging optical system for forming an image of a light source upon a predetermined plane, by use of light from the light source, and (ii) a converting optical system for directing light from the light source image formed by said imaging optical system, to said optical fiber bundle, wherein said converting optical system includes an optical rod and a lens unit, a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle; and

a projection optical system for projecting a pattern of a mask onto a wafer.

49. (New) A device manufacturing method, comprising the steps of:

applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 49; and

an illumination optical system having a total reflection type light transmitting element, for illuminating a surface to be illuminated, wherein said illumination optical system includes (i) a plurality of light sources for illuminating a predetermined plane, and (ii) a converting optical system, disposed between the predetermined plane and said light transmitting element, for directing light from said plurality of light sources to said light transmitting element, wherein said converting optical system includes an optical rod and a lens unit, a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said light transmitting element; and

a projection optical system for projecting a pattern of a mask onto a wafer.

51. (New) A device manufacturing method, comprising the steps of:

applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 50; and

an illumination optical system for illuminating a surface to be illuminated, by use of an optical fiber bundle, wherein said illumination optical system includes (i) a plurality of light sources for illuminating a predetermined plane, and (ii) a converting optical system disposed between the predetermined plane and said optical fiber bundle, for directing light from said plurality of light sources to said optical fiber bundle, wherein said converting optical system includes an optical rod and a lens unit, a light entrance surface of said optical rod is disposed substantially in coincidence with the predetermined plane, while a light exit surface of said optical rod is disposed substantially in coincidence with a front focal plane of said lens unit, and a rear focal plane of said lens unit is disposed substantially in coincidence with a light entrance surface of said optical fiber bundle; and

a projection optical system for projecting a pattern of a mask onto a wafer.

53. (New) A device manufacturing method, comprising the steps of:

applying a resist to a wafer;

transferring, by exposure, a pattern of a mask onto the wafer by use of an exposure apparatus as recited in Claim 52; and