Estadística Inferencial

Capítulo VIII - Ejercicio 15

Aaric Llerena Medina

La vida útil en meses de una batería es una variable aleatoria X con distribución exponencial de parámetro β tal que, $P[X > 5/X > 2] = e^{-0.6}$.

- a) Halle el valor de β y la función de densidad.
- b) ¿Cuántas baterías serán necesarias para que duren al menos 20 años con probabilidad 0.0228?

Solución:

a) La distribución exponencial tiene la propiedad de falta de memoria, lo que implica:

$$P(X > x \mid X > y) = e^{\beta(x-y)}$$

En el enunciado se nos indica que:

$$P[X > 5 \mid X > 2] = e^{-0.6}$$

Como 5-2=3, igualamos las expresiones:

$$e^{-\beta \cdot 3} = e^{-0.6}$$

De donde se deduce:

$$3 \cdot \beta = 0.6 \Rightarrow \beta = 0.2$$

Por lo tanto, el valor de β es 0.2, y la función de densidad es:

$$f(x) = 0.2e^{-0.2x} \text{ para } x \ge 0$$

b) Se debe determinar primero el valor esperado $\mathbb{E}[X]$ para una distribución exponencial:

$$\mathbb{E}[X] = \frac{1}{\beta} \Rightarrow \mathbb{E}[X] = \frac{1}{0.2} \Rightarrow \mathbb{E}[X] = 5$$

Por lo tanto, se disponen baterías cuya vida útil es exponencial con parámetro $\beta = 0.2$, lo que implica una vida media de 5 meses y se planea usar baterías de reemplazo de forma secuencial. Sea X_1, X_2, \ldots, X_n los tiempos de vida independientes de cada batería; el tiempo total de funcionamiento del sistema es:

$$T_n = X_1 + X_2 + \dots + X_n$$

Como se ve, la suma de n términos independientes de parámetro β tiene distribución Gamma con parámetro de forma n y tasa β , su media y varianza son:

•
$$\mathbb{E}[T_n] = \frac{n}{\beta} = 5n$$
 • $\operatorname{Var}(T_n) = \frac{n}{\beta^2} = 25n$

Se desea que la probabilidad de que el tiempo total de funcionamiento sea al menos 20 años (es decir, 240 meses) sea 0.0228:

$$P(T_n > 240) = 0.0228$$

Como n es moderadamente grande y la varianza se reduce al aumentar n, se puede utilizar una aproximación normal. Bajo esta aproximación, T_n , es aproximadamente normal con media 5n y desviación estándar $\sqrt{25n}$. Entonces, se escribe:

$$Z = \frac{240 - 5n}{\sqrt{25n}}$$

La probabilidad de exceder 240 meses es

$$P(T_n > 240) = P\left(Z > \frac{240 - 5n}{5\sqrt{n}}\right)$$

Dado que la probabilidad buscada es 0.0228, es decir, P(Z > z), usando las propiedades:

$$P(Z > z) = 0.0228$$

 $1 - P(Z < z) = 0.0228$
 $P(Z < z) = 0.9772$

Buscando en tabla de distribución normal, el valor de Z es 2, por lo que reemplazando en la fórmula anterior:

$$\frac{240 - 5n}{5\sqrt{n}} = 2 \Rightarrow 240 - 5n = 10\sqrt{n} \Rightarrow 5n + 10\sqrt{n} = 240 \Rightarrow n + 2\sqrt{n} = 48$$

Haciendo un cambio de variable: $x=\sqrt{n}$, por lo que $n=x^2$ y la ecuación se transforma en:

$$x^2 + 2x - 48 = 0$$

$$(x-6)(x+8) = 0$$

Igualando a 0 ambos lados, se tiene que $x_1 = 6$ y $x_2 = -8$, pero por las restricciones, solo se toma la raíz positiva. Asimismo, recordando que $n = x^2$, se concluye que n = 36.

Por lo tanto, se necesitará al menos 36 baterías para que dure al menos 20 años con probabilidad 0.0228.