_	
	t
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA	
SÃO PAÚLO	ŀ

Curso: Eng. de Controle e Automação	Data: 07/10/25	Nota
Período: Integral	Prova 1/2	
Disciplina: Microprocessadores e Microcontroladores	Peso: 30%	
Prof.: Marcos Aparecido Chaves Ferreira	Revisão do Aluno:	

Aluno (a):

Questões sem consulta

1) Qual o valor ao final do registrador **AUX** após a execução dos seguintes trechos em Assembly-AVR executados em um microcontrolador ATMEGA 328P (1.5)

ATMEGA328P (1,5)	
a) .def aux =R16 LDI R16,0b11110101 LDI R17,0b11110000 EOR R16, R17 ADD R16,R17	b) .def aux = R16 LDI R17, 0b00000111 DEC R16 STS 0x100,R16 SUB R16,R17
c) .def aux =R16 LDI R16,0b00000011 OUT DDRB,R16 OUT PORTB,R16 SBIC PORTB,1 RJMP PASSO_1 PASSO_0: LDI R16,20 RJMP FIM PASSO_1: LDI R16,21 RJMP FIM FIM:	d) .def aux = r16 LDI R16,11 LDI R17,0b00000111 LOOP:
FIM:	RJMP FIM FIM:

Obs: BRNE label ; desvia quando Z=0 (operação não zerada).

- 2) Coloque V (verdadeiro) ou F (falso). Em relação aos elementos internos constituintes de um sistema microcontrolado considerando AVR Atmega 328P. **(1,5)**
- () A memória EEPROM é um recurso de memorização volátil para o programa de um microcontrolador.
- () O AVR Atmega328P possui 32 registradores com função específica entre R0 e R31.
- () Os pinos de entrada são configurados com registradores PINx e saídas através de registradores OUTx.
- () Microntroladores de arquitetura Harvard executam instruções CISC de forma mais rápida comparada a arquitetura Von Neumman.
- () O recurso de pipeline consiste em executar apenas uma instrução na CPU.
- () Os registradores de GPR são utilizados para acionar funções específicas e periféricos internos.
- () A instrução em Assembly LDI tem efeito sobre o registrador DDRB
- () A instrução em Assembly SBIC tem efeito

sobre o registrador R16.

- () O registrador PC armazena o valor lido de uma porta digital, para que a próxima instrução saiba qual pino será utilizado.
- () Ao mover o valor 0xF0 para o registrador DDRB, o pino PB0 estará configurado como saída
- () Ao mover o valor 0xF0 para o registrador PINB, o pino PB1 estará configurado como entrada.
- () A arquitetura RISC sempre terá instruções do tipo Harvard
- () A arquitetura CISC possui uma configuração de barramentos de dados e programa compartilhados.
- () A memória RAM (Random Access Memory) é utilizada para armazenar dados não voláteis para o programa.
- () A ULA do ATmega controla diretamente os pinos das portas B, C e D.
- 3) Elabore o trecho inicial de um programa Assembly. **Altere** a figura a seguir e **defina** corretamente os registradores de I/O e respectivos pinos para o PORTC de um ATMEGA. Um botão com pull-up conectado ao pino PCO, ao ser pressionado, é curto-circuitado ao GND. Enquanto pressionado, os pinos de PC4 até PC7 devem piscar em sequência a alternando 1 segundo; caso contrário, permanecem em LOW **(2,0).**

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO	Curso: Eng. Controle e Automação	Data: 07/10/2025	Nota
	Período: Integral	Prova 2/2	
	Disciplina: Micro. Microcontroladores	Peso: 30%	
	Prof.: Marcos Aparecido Chaves Ferreira	Revisão do Alu	no.
Aluno (a):		- Kevisao do Aluno.	

Projeto com consulta

Uma determinada fábrica de estampo possui uma máquina controlada por um CLP ilustrada na figura. O setor de manutenção da empresa solicitou a um programador para que o mesmo substitua o CLP por um microcontrolador ATMEGA328P. Elabore as rotinas do programa em Assembly-AVR que atenda ao projeto solicitado. (5,0)

Defina pinos de entrada e saídas (PORTB E PORTC) e faça uma legenda para cada entrada e saída utilizada. A porta D esta conectada ao LCD

Utilize máquina de estados ou sequência de eventos para sua programação.

Um display lcd indica o estado atual de cada ciclo para monitoramento para o usuário.

Ao ligar a máquina, esta aguarda até que o botão START seja pressionado; [Aguardando Start] (0,5)

Ao pressionar o botão Start, a válvula V4 será fechado (HIGH), a válvula V1 abrirá até que o sensor nível 1 detecte a presença de líquido; [V1 ON] (0,5)

Em seguida a válvula V3 será ligada por 3 segundos; [V3 ON]

Em seguida a válvula V2 será ligada por 2 segundos; [V2 ON] (0,5)

após este tempo o agitador é acionado durante 2 segundos. [AGITADOR ON] (0,5)

Ao final V4 deverá ser aberto até que o sensor nível 0 fique em nível LOW retornando ao estado inicial; [Esvaziando] (0,5)

Utilize interrupção INTO para a função de [Parada Emergencial] e realiza a parada em qualquer instante, sendo desligando todas as saídas e retornando ao início do programa. (1,5)

O botão CLEAR não será utilizado.

Utilizando uma saída disponível, pisque um led a cada 1 segundo utilizando interrupção timer 0 enquanto em funcionamento. (1,0)

Considere o uso de clock de 16MHz.

CD1 10	W1 '11' 4 1
.equ SP1 = pb0	# biblioteca.h
.equ AL = pb4	.def delay_time = r25
.equ M1 = pb5	.def display_number = r24
.def caixas = r0	def aux = r16
.ORG 0x00	delay seconds:
include "biblioteca.h"	ldi r31,82
rjmp Start	ldi r30,0
Start:	ldi r29,0
cbi ddrb,0	1
sbi portb,0	loop_delay:
sbi ddrb,4	dec r29
sbi ddrb,5	brne loop_delay
ldi r16,0b01010000	dec r30
out TCCR0A,r16	brne loop_delay
ldi r16,0b00000001	dec r31
sts TIMSK0,r16	brne loop delay
ldi r16,0b00000101	dec delay time
out TCCR0B,r16	brne delay seconds
ldi r16,100	1
out TCNT0,r16	ret
sei	;//// biblioteca display led reall led init
ldi aux,0	rcall lcd clear;
mov caixas,aux	ldi lcd_col,3 ;define coluna3
mov display number, caixas	rcall lcd_lin0_col ;define linha 0
reall display write	ldi lcd_caracter,'O'
Loop:	rcall lcd_write_caracter ldi lcd_caracter,'I'
sbi portb,M1	rcall lcd write caracter
cbi portb,AL	
SP1ON:	TIM0 OV:
sbic pinb,SP1	ldi r16,100
rjmp SP1ON	out TCNT0,r16
ldi delay time,1	inc r17
rcall delay seconds	ldi r18,50
SP1OFF:	cp r17,r18
sbis pinb,SP1	breq alterna
rjmp SP1OFF	reti
inc caixas	alterna:
mov display number,caixas	clr r17
rcall display_write	sbic portb,1
ldi aux,9	rjmp apagaled
eor aux,caixas	sbi portb,1
brne Loop	reti
breq ALERTA	apagaled: ; pisca o amarelo
rjmp Loop	cbi portb,1
ALERTA:	reti
cbi portb,M1	144
sbi portb,AL	
ldi delay time,1	
reall delay seconds	
cbi portb,AL	
ldi delay time,1	
rcall delay_seconds	
rjmp ALERTA	