PENERAPAN K-MEANS DAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN MTSP

(Studi Kasus Pada Perjalanan Menuju Seluruh SMA di Kabupaten Probolinggo)

Muhammad Faiz Nailun Ni'am

Pendidikan Matematika Universitas Nurul Jadid

17 Juli 2022

Daftar Isi

- Latar Belakang
- Tujuan Penelitian
- Manfaat Penelitian
- Batasan Masalah
- Metode Penelitian
- 6 Alur K-means dan Algoritma Genetika
- Masil

Pendahuluan

Tujuan Penelitian

- Mengetahui cara menemukan solusi *Multiple Travelling Salesman Problem* menggunakan algoritma genetika dan *k*-means.
- Menemukan solusi pembagian klaster dan urutan jalur terdekat menuju seluruh SMA di Kabupaten Probolinggo.

Manfaat Penelitian

Bagi Peneliti

Mengetahui cara menyelesaikan kasus permasalahan $Multiple\ Traveling\ Salesman\ Problem$ dengan menggunakan metode k-means clustering dan algoritma genetika serta dapat dikembangkan dan diterapkan dalam kehidupan.

Bagi Program Studi Pendidikan Matematika

Menambah ilmu mengenai metode optimasi dan pencarian rute terdekat yang dapat diterapkan serta dipelajari kembali oleh mahasiswa pendidikan matematika untuk tahun-tahun selanjutnya, serta mengetahui rute-rute terdekat untuk menuju ke seluruh SMA di Kabupaten Probolinggo.

Bagi Masyarakat

Dapat menggunakan metode tersebut untuk menyelesaikan kasus *Multiple Traveling Salesman Problem*, seperti penyebaran pestisida, pengintaian musuh pada militer, pendistribusian barang, dan lain-lain.

Batasan Masalah

- Menggunakan 1 titik asal dan setiap salesman akan berangkat dan kembali pada simpul kota yang sama.
- ② Menggunakan k-means untuk pengklasteran dan algoritma genetika untuk menentukan rute terdekatnya.
- Titik-titik tujuan adalah koordinat lokasi seluruh SMA di Kabupaten Probolinggo baik negeri maupun swasta.
- Setiap titik tujuan diasumsikan selalu terhubung dan berjalan lurus.
- Titik kumpul menggunakan koordinat rata-rata dari semua titik-titik *centroid* karena untuk mengurangi persilangan.
- o Tidak ada prioritas sekolah mana saja yang dilalui terlebih dahulu.

Metode Penelitian

Tahapan Penelitian Pengumpulan Data Pengolahan Data Analisis Implementasi

Data Penelitian

Dalam penelitian ini data yang digunakan adalah nama dan koordinat lokasi dari seluruh SMA di Kabupaten Probolinggo yang dikumpulkan dari:

- 1 https://referensi.data.kemdikbud.go.id/
- 2 https://earth.google.com/.

Alur K-means dan Algoritma Genetika

Alur K-means dan Algoritma Genetika

Banyak Klaster	Total Jarak	Peringkat	Titik Kumpul	
			Latitude (X)	Longitude (Y)
1	10,0503	10	-7,8221841	113,3570412
2	6,858777	9	-7,8241236	113,3236903
3	5,599878	8	-7,8219762	113,3512877
4	5,010994	7	-7,8215022	113,3644199
5	4,805015	6	-7,828521	113,3744846
6	4,43132	3	-7,8265701	113,3475373
7	4,353295	1	-7,8331118	113,3721289
8	4,398984	2	-7,8358502	113,3704048
9	4,48243	4	-7,8321462	113,356253
10	4,780413	5	-7,8406976	113,3665328

Kesimpulan

- Jalur terpendek menuju seluruh SMA di Kabupaten Probolinggo dapat menggunakan algoritma genetika dan k-means dengan pembagian 7 klaster.
- ② Jalur terpendek menuju SMA di Kabupaten Probolinggo dengan 7 klaster dapat menghasilkan jarak terpendek yaitu 4,353294644 satuan koordinat dengan urutan perjalanan sebagai berikut.

Urutan perjalanan pada klaster A

$$11 \rightarrow 30 \rightarrow 29 \rightarrow 47 \rightarrow 21 \rightarrow 72 \rightarrow 32 \rightarrow 56 \rightarrow 13 \rightarrow 37 \rightarrow 55 \rightarrow 36$$

Urutan perjalanan pada klaster B

$$7 \rightarrow 70 \rightarrow 66 \rightarrow 28 \rightarrow 51 \rightarrow 8 \rightarrow 2 \rightarrow 34 \rightarrow 22$$

Kesimpulan

Urutan perjalanan pada klaster C

 $1 \rightarrow 19 \rightarrow 73 \rightarrow 48 \rightarrow 69 \rightarrow 35 \rightarrow 46 \rightarrow 68 \rightarrow 25 \rightarrow 16 \rightarrow 5 \rightarrow 14 \rightarrow 43 \rightarrow 71 \rightarrow 53 \rightarrow 57$

Urutan perjalanan pada klaster D

 $67 \rightarrow 58 \rightarrow 23 \rightarrow 12 \rightarrow 20 \rightarrow 64 \rightarrow 39 \rightarrow 31 \rightarrow 52 \rightarrow 15$

Urutan perjalanan pada klaster E

 $26 \rightarrow 44 \rightarrow 50 \rightarrow 42 \rightarrow 74$

Urutan perjalanan pada klaster F

 $24 \rightarrow 63 \rightarrow 10 \rightarrow 59 \rightarrow 60 \rightarrow 17 \rightarrow 33 \rightarrow 9 \rightarrow 38 \rightarrow 27 \rightarrow 6$

Urutan perjalanan pada klaster G

 $40 \rightarrow 49 \rightarrow 54 \rightarrow 4 \rightarrow 41 \rightarrow 3 \rightarrow 45 \rightarrow 61 \rightarrow 18 \rightarrow 75 \rightarrow 65 \rightarrow 62$

