Propiedades de los estimadores de Máxima verosimilitud

Se puede probar que los estimadores de máxima verosimilitud poseen una propiedad de invarianza : Si $\hat{\theta}$ es el MLE de θ entonces el MLE de $h(\theta)$ es $h(\hat{\theta})$

Por ejemplo

$$h(\theta) = h(\mu, \mathbf{\Sigma}) = \mu' \mathbf{\Sigma}^{-1} \mu$$

El MLE de $h(\theta)$ está dado por

$$h(\hat{\theta}) = h(\hat{\mu}, \hat{\Sigma}) = \hat{\mu} \hat{\Sigma}^{-1} \hat{\mu} = \overline{x} \left(\left(\frac{n-1}{n} \right) S \right)^{-1} \overline{x}$$

El MLE de $h(\sigma_{ii}) = \sqrt{\sigma_{ii}}$ está dado por $\sqrt{\hat{\sigma}_{ii}}$

$$\hat{\sigma}_{ii} = \frac{1}{n} \sum_{j=1}^{n} (x_{ij} - \overline{x}_i)^2$$

es el MLE de $\sigma_{ii} = Var(x_i)$

Propiedades de los estimadores de Máxima verosimilitud

La densidad conjunta sobre la muestra completa de observaciones x_1, \ldots, x_n :

$$\begin{split} f(\mathbf{x}_1, \dots, \mathbf{x}_n) &= \frac{1}{(2\pi)^{np/2} |\mathbf{\Sigma}|^{n/2}} e^{-\frac{1}{2} \left[tr \left[\mathbf{\Sigma}^{-1} \left(\sum_{j=1}^n (\mathbf{x}_j - \overline{\mathbf{x}}) (\mathbf{x}_j - \overline{\mathbf{x}})^{\top} \right) \right] + n(\overline{\mathbf{x}} - \mu) \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \mu)^{\top} \right]} \\ &= (2\pi)^{-np/2} |\mathbf{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \left[tr \left[\mathbf{\Sigma}^{-1} \left(\sum_{j=1}^n (\mathbf{x}_j - \overline{\mathbf{x}}) (\mathbf{x}_j - \overline{\mathbf{x}})^{\top} \right) \right] + n(\overline{\mathbf{x}} - \mu) \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \mu)^{\top} \right] \right\} \end{split}$$

depende únicamente de $\overline{\mathbf{x}}$ y $(n-1)\mathbf{S}$

Toda la información sobre los parámetros de la población normal multivariada, μ y Σ , está contenida en $\overline{\mathbf{x}}$ y $(n-1)\mathbf{S}$ obtenida a traves de la matriz de datos \mathbf{X} . Entonces decimos que $\overline{\mathbf{x}}$ y $(n-1)\mathbf{S}$ son estadísticos *suficientes* para la densidad conjunta normal multivariada.

Distribuciones muestrales de \overline{x} y S

- La suposición de que x_1, \ldots, x_n constituye una muestra aleatoria de una población normal multivariada con media μ y covarianza Σ determina completamente las distribuciones muestrales de $\overline{\mathbf{x}}$ y \mathbf{S} .
- ullet En el caso univariado (p=1) sabemos que \overline{x} es normal con

media
$$=\mu$$
 y varianza $=\frac{1}{n}\sigma^2=\frac{\text{varianza poblacional}}{\text{tamaño de la muestra}}$

• Análogamente para el caso multivariado ($p \ge 2$), $\overline{\mathbf{x}}$ es normal multivariada con

media =
$$\mu$$
 y matriz de covarianzas = $\frac{1}{n}\Sigma$

Distribuciones muestrales de \overline{x} y S

Similarmente, para una muestra aleatoria x_1,\dots,x_n de una distribución normal univariada con media μ y varianza σ^2

$$(n-1)s^2 = \sum_{j=1}^n (x_j - \overline{x})^2 \sim \sigma^2 \chi_{n-1}^2 \sim \sigma^2 \sum_{j=1}^{n-1} z_j^2 = \sum_{j=1}^{n-1} (\sigma z_j)^2$$

donde

$$\sigma z_j \sim \textit{N}(0,\sigma^2), j=1,\ldots,n-1$$
 e independientes

Análogamente, para el caso multivariado ($p \ge 2$) (i.e., \mathbf{x} es normal con media μ y covarianza $\mathbf{\Sigma}$), \mathbf{S} sigue una distribución Wishart, denotada por $W_m(\bullet|\mathbf{\Sigma})$, donde

$$W_m(ullet | oldsymbol{\Sigma}) = distribución \ Wishart \ con \ m \ grados \ de \ libertad$$

$$= distribución \ de \ \sum_{j=1}^m oldsymbol{Z}_j oldsymbol{Z}_j', \ donde \ oldsymbol{Z}_j \sim N_p(0, oldsymbol{\Sigma}) \ y \ oldsymbol{Z}_j \ independientes$$

Propiedades importantes de la distribución Wishart

- La distribución Wishart existe únicamente si n > p
- Si

$$A_1 \sim W_{m_1}(A_1|\mathbf{\Sigma})$$

independiente de

$$A_2 \sim W_{m_2}(A_2|\mathbf{\Sigma})$$

entonces

$$A_1 + A_2 \sim W_{m_1 + m_2}(A_1 + A_2 | \Sigma)$$

donde **\Sigma** es una matriz de covarianza común.

• Si $m{A} \sim m{W_m(A|\Sigma)}$ entonces

$$CAC' \sim W_m(CAC'|C\Sigma C')$$

donde \boldsymbol{C} es una matriz de constantes de orden $h \times p$

Propiedades importantes de la distribución Wishart

- Estas propiedades se obtienen directamente de su definición como suma de los productos independientes Z_iZ'_i
- Cuando existe, la distribución Wishart tiene una densidad de la forma

$$W_{n-1}(\mathbf{A}|\mathbf{\Sigma}) = \frac{|\mathbf{A}|^{(n-p-2)/2} e^{-tr(\mathbf{A}\mathbf{\Sigma}^{-1})/2}}{2^{p(n-1)/2} \pi^{p(p-1)/4} |\mathbf{\Sigma}|^{(n-1)/2} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n-i)\right)}$$

para una matriz simétrica definida positiva $\bf A$ y donde Γ es la funcion gamma.

Resumen de las distribuciones muestrales de \overline{x} y S

Las distribuciones de \overline{x} y S se resumen en el siguiente resultado: Resultado: Sea x_1, \ldots, x_n una muestra aleatoria de tamaño n obtenida de una distribución normal p-variada, con media μ y matriz de covarianza Σ . Entonces

- ② (n-1)S $\sim W_{n-1}(ullet|oldsymbol{\Sigma})$ con n-1 grados de libertad
- \odot \overline{x} y S son independientes

• El teorema central del límite (Univariado) – supone que

$$x = \sum_{i=1}^{n} V_i$$

donde las V_i son independientes y tienen una variabilidad aproximadamente igual.

- Entonces la distribución de x llega a ser aproximadamente normal conforme el tamaño de la muestra n aumente.
- Esto se cumple, no importando la distribución de la población de donde se obtiene la muestra
- Como consecuencia del TCL la distribución muestral de x para un tamaño de muestra grande, se aproxima a una normal sin importar la forma de la distribución de la población raíz.

- Para el caso multivariado, estadísticos como $\overline{\mathbf{x}}$ y \mathbf{S} tienen propiedades análogas para muestras grandes.
- En particular para x̄ se puede enunciar la versión multivariada del teorema central del límite.

Teorema central del límite (versión multivariada)

Sean x_1, \ldots, x_n observaciones independientes tomadas de *cualquier* población con media μ y matriz de covarianza Σ finita, no singular Entonces:

$$\overline{\mathbf{x}} \sim \mathsf{N}_{\mathsf{p}} \left[\mu, \frac{1}{\mathsf{n}} \mathbf{\Sigma} \right]$$

para n grande y mayor a p.

Esto es equivalente a

$$\sqrt{n}(\overline{\mathbf{x}}-\mu)\mathring{\sim}N_{p}[\mathbf{0},\mathbf{\Sigma}]$$

para n grande con respecto a p.

- Cuando n es grande, la matriz de covarianza muestral S se aproxima a la covarianza poblacional Σ , con alta probabilidad.
- Frecuentemente se sustituye la covarianza muestral S en la covarianza poblacional Σ, lo cual tiene efectos insignificantes en los cálculos de probabilidades posteriores.
- Por tanto se tiene que

$$\overline{\mathbf{x}} \sim \mathsf{N}_{\mathsf{p}}\left[\mu, \frac{1}{\mathsf{n}} \mathcal{S}\right]$$

para n grande y mayor a p.

Esto es equivalente a

$$\sqrt{n}(\overline{\mathbf{x}}-\mu)\mathring{\sim}N_{p}[\mathbf{0},\mathbf{S}]$$

de nuevo para n grande con respecto a p.

Otro resultado importante como consecuencia del TCL es:

$$n(\overline{x}-\mu)\mathring{S}^{-1}(\overline{x}-\mu)\mathring{\sim}\chi_{\rho}^{2}$$

para n grande y mayor a p.

Este resultado se obtiene de acuerdo a una de las propiedades de la normal multivariada y por el hecho de que

$$\overline{\mathbf{x}} \sim N_{\mathbf{p}} \left[\mu, \frac{1}{\mathbf{n}} \mathbf{S} \right]$$

para n grande y mayor a p.

Entonces sustituimos x por \overline{x} y Σ por S/n en

$$(\mathbf{x} - \mathbf{\mu}) \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

La T^2 de Hotelling

- Si $x \sim N_p(\mu, \Sigma)$, la variable $(x \mu)^{'} \Sigma^{-1}(x \mu)$ sigue una distribución χ_p^2
- Si sustituimos Σ por su estimación $\widehat{\Sigma} = S$, la distribución que se obtiene se denomima T^2 de Hotelling.
- En general, si $\boldsymbol{x} \sim N_p(\mu, \boldsymbol{\Sigma})$ y $(n-1)\boldsymbol{S} \sim W_p(\boldsymbol{S}|\boldsymbol{\Sigma})$, la distribución de la variable escalar

$$T^{2} = (x - \mu)' S^{-1}(x - \mu)$$

se denomina distribución T^2 de Hotelling con p y n-1 grados de libertad. Diremos que $T^2 \sim T^2(p,n-1)$

• Como S converge a Σ cuando n es grande, entonces T^2 converge a la distancia Mahalanobis y por tanto la distribución de Hotelling converge a la distribución χ_p^2

La T^2 de Hotelling

• Si x_1, \ldots, x_n son una muestra de $N_p(\mu, \Sigma)$, sabemos que $\overline{x} \sim N_p(\mu, \frac{\Sigma}{n})$, entonces la distribución de

$$(\overline{\mathbf{x}} - \mu)'(\mathbf{S}/n)^{-1}(\overline{\mathbf{x}} - \mu) = n(\overline{\mathbf{x}} - \mu)'\mathbf{S}^{-1}(\overline{\mathbf{x}} - \mu)$$

es también una T^2 de Hotelling.

• Observemos que si p = 1, la T^2 se reduce a

$$T^2 = \frac{n(\overline{x} - \mu)^2}{s^2} = t^2$$

y coincide con el estadístico t de Student. Por tanto $\mathcal{T}^2(1,m)=t_m^2$

La T^2 de Hotelling

• La T^2 de Hotelling está también relacionada con la distribución F del análisis de varianza de Fisher. Se puede probar que mediante una simple transformación, T^2 se reduce a la distribución F. Así, esta transformación esta dada por

$$F_{p,n-p} = \frac{n-p}{p(n-1)} T^2(p, n-1)$$

- Esto permite calcular la distribución de \mathcal{T}^2 en función de las tablas de la distribución \mathcal{F} .
- Este resultado es consistente con la convergencia de T^2 a la χ_p^2 , cuando n es grande, ya que implica que $pF_{p,n-p}$ tiende a una distribución χ_p^2

- Muchas de las técnicas estadísticas multivariadas, asumen que los vectores x; de observaciones provienen de una distribución normal multivariada.
- Sin embargo sabemos también que si la muestra de observaciones es grande y las técnicas dependen únicamente de \overline{x} o de distancias que implican \overline{x} de la forma $n(\overline{x} \mu' \mathbf{S}^{-1}(\overline{x} \mu))$, entonces la suposición de normalidad para las observaciones individuales x_i no es tan crucial (esto por el TCL).
- En cualquiera de estas situaciones, la calidad de las inferencias que se harán dependerá de que tan cercana esté la población real raíz a la forma normal multivariada supuesta.
- Por tanto es necesario tener procedimientos para detectar los casos en los que los datos se desvían de forma moderada a extrema de una distribución normal multivariada

De acuerdo a las propiedades de la distribución normal multivariada, sabemos que

- Todas las combinaciones lineales de normales son normales
- Los contornos de la densidad normal multivariada son elipsoides concéntricos

Estos hechos sugieren la investigación de las siguientes preguntas:

- Las distribuciones marginales de los elementos de x son normales? Que se puede decir acerca de algunas pocas combinaciones lineales de los componentes x_i?
- 2 Los scatterplots bivariados tendrán forma de elipses, como se esperaría de poblaciones normales multivariadas?
- Existen algunas observaciones inusuales (outliers) que deben ser revisadas?

- Nos enfocaremos en evaluar la normalidad de las observaciones, en una o dos dimensiones, por ejemplo, distribuciones marginales y scatter plots de pares de variables.
- Es difícil construir una prueba global confiable de normalidad conjunta en más de dos dimensiones, debido a que existen un gran número de factores que no se pueden controlar, causando confusión, derivando en pruebas poco confiables.
- Sin embargo debemos pagar un precio por concentrarnos únicamente en examinar los casos univariados y bivariados de normalidad.

- Nunca podremos estar seguros que no hemos perdido alguna característica que es relevante únicamente en dimensiones mas grandes. Por ejemplo, es posible construir distribuciones bivariadas no-normales con marginales normales.
- Sin embargo muchos tipos de no-normalidad en los datos multivariados son frecuentemente reflejados en sus distribuciones marginales y scatter plots.
- En el trabajo práctico, la investigación de normalidad en una o dos dimensiones es basicamente suficiente.
- Afortunadamente no es muy frecuente encontrar conjuntos de datos que sean normales en una representación en baja dimensión, pero no-normales en dimensiones superiores.

Las herramientas usadas frecuentemente para determinar normalidad univariada incluyen

La regla empírica

$$P(\mu - 1\sigma \le x \le \mu + 1\sigma) = 0.68$$

$$P(\mu - 2\sigma \le x \le \mu + 2\sigma) = 0.95$$

$$P(\mu - 3\sigma \le x \le \mu + 3\sigma) = 0.997$$

- Diagramas de puntos (para muestras pequeñas) e histogramas (para muestras grandes)
- Pruebas de bondad de ajuste tales como la prueba Chi-cuadrada y la prueba de Kolmogorov-Smirnov.
- La prueba desarrollada por Shapiro y Wilk [1965] llamada la prueba de Shapiro-Wilk.
- Q-Q plots (de los cuantiles muestrales contra los cuantiles esperados si los datos siguen una distribución normal)

Supongamos que tenemos las siguientes 15 observaciones muestrales(ordenadas) sobre alguna variable aleatoria x:

Observacione
s ordenadasx _(j)
1.43
1.62
2.46
2.48
2.97
4.03
4.47
5.76
6.61
6.68
6.79
7.46
7.88
8.92
9.42

Apoyan estos datos la suposición de que fueron elegidos de una población normal?

Para determinar normalidad por la regla empírica, estandarizamos los datos a z (restandoles su media y diviendolos entre su desviación estándar). Para nuestros datos tenemos

$$\overline{x} = 5.26, \ \sqrt{s} = 2.669$$

así los valores estandarizados z

Nueve de las observaciones (o 60%) están en una desviación estandar de la media, y las 15 observaciones están en dos desviaciones estandar de la media. Esto apoya la suposición de que fueron elegidas de una pobla-

ción normal?

Ordered Observations X _(j)	Standard Normal Variable z _(j)
1.43	-1.436
1.62	-1.367
2.46	-1.050
2.48	-1.045
2.97	-0.860
4.03	-0.461
4.47	-0.299
5.76	0.185
6.61	0.504
6.68	0.530
6.79	0.570
7.46	0.822
7.88	0.981
8.92	1.371
9.42	1.556

Se puede utilizar R o cualquier otro paquete para calcular la prueba de Shapiro-Wilk y el p-valor correspondiente:

```
#R#
x < -c(1.43.1.62.2.46.2.48.2.97.4.03.
4.47,5.76,6.61,6.68,6.79,7.46,7.88,8.92,9.42)
shapiro.test(X)
DATA stuff:
INPUT x:
LABEL x='Observed Values of X':
CARDS:
1.43
1.62
2 46
2.48
2.97
4.03
4.47
5.76
6.61
6 68
6.79
7.46
7 88
8.92
9.42
PROC UNIVARIATE DATA=stuff NORMAL:
TITLE4 'Using PROC UNIVARIATE for tests of univariate normality';
VAR x;
RUN:
```

Tests for Normality

Test	sta	tistic			p Val	ue
Shapiro-Wilk	W	0.935851	Pr	<	W	0.3331
Kolmogorov-Smirnov	D	0.159493	Pr	>	D	>0.1500
Cramer-von Mises	W-Sq	0.058767	Pr	>	W-Sq	>0.2500
Anderson-Darling	A-Sq	0.362615	Pr	>	A-Sq	>0.2500

Q-Q plot

- Una herramienta gráfica también muy útil para evaluar la suposición de normalidad son los Q-Q plot.
- Los Q-Q plot grafican los cuantiles muestrales vs los cuantiles esperados si las observaciones fueran normalmente distribuidas.
- Si los puntos están muy cercanos a una línea recta de 45 grados, la suposición de normalidad es coherente.
- Si los puntos están alejados de esta linea, entonces la normalidad de los datos está en entredicho

Construcción de un Q-Q plot

- Colocamos los valores observados en orden creciente, $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$. Los $x_{(j)}$ son los cuantiles muestrales.
- ② Se calcula el nivel corregido de continuidad de la probabilidad acumulada dada por (j-0.5)/n, para los datos de la muestra.
- \odot Se encuentran los cuantiles normales estandar (valores de la normal estándar z) que tienen un nivel de probabilidad acumulada de (j-0.5)/n, llamando a estos los $q_{(j)}$. Es decir, se encuentran los valores de $q_{(j)}$ tal que

$$p\left[z \le q_{(j)}\right] = \int_{-\infty}^{q_{(j)}} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \frac{j - \frac{1}{2}}{n}$$

3 Se grafican los pares $(q_{(j)}, x_{(j)})$. Si los puntos están sobre o cerca de una linea recta, las observaciones apoyan la suposición de que los datos pudieron ser elegidos de una población normal.

Ejemplo de como obtener un Q-Q Plot

Obtener el Q-Q plot para la muestra de 15 datos:

Ordered	Adjusted	Standard
Observations	Probability	Normal
	Level	Quantiles
x _(i)	(j-0.5)/n	$\mathbf{q}_{(j)}$
1.43	0.033	-1.834
1.62	0.100	-1.282
2.46	0.167	-0.967
2.48	0.233	-0.728
2.97	0.300	-0.524
4.03	0.367	-0.341
4.47	0.433	-0.168
5.76	0.500	0.000
6.61	0.567	0.168
6.68	0.633	0.341
6.79	0.700	0.524
7.46	0.767	0.728
7.88	0.833	0.967
8.92	0.900	1.282
9.42	0.967	1.834

Ejemplo de como obtener un Q-Q Plot

...y el Q-Q plot resultante tiene la forma

- No aparecen grandes desviaciones de la línea de 45° dibujada a través de los puntos, pero el ajuste tampoco es muy bueno...
- Los QQ-plots no son particularmente informativos, a menos que la muestra sea suficientemente grande
- Puede existir variabilidad en la rectitud del QQ-plot para muestras pequeñas, aun cuando los datos provienen de una población normal

Prueba de normalidad basada en la rectitud del QQ plot

- La rectitud o linealidad de los puntos en el QQ plot se puede medir mediante el coeficiente de correlación de los puntos $q_{(j)}$ y $x_{(j)}$
- El coeficiente de correlación entre $q_{(j)}$ y $x_{(j)}$ mide la relación lineal entre ellos, entonces entre mayor sea la correlación, mayor será la relación lineal entre $q_{(j)}$ y $x_{(j)}$.
- Por tanto, mayor la rectitud del Q-Q plot y en consecuencia se concluirá que los datos son normales.
- Esta prueba es una versión modificada de la prueba de Shapiro-Wilks. Para muestras grandes, las dos pruebas son aproximadamente la misma.

Prueba de normalidad basada en la rectitud del QQ plot

• Esta prueba fue construida por Looney & Gulledge [1985]. Ellos sugieren calcular el coeficiente de correlación de Pearson entre $q_{(j)}$ y $x_{(j)}$ mediante la expresión

$$r_{Q} = \frac{\sum_{j=1}^{n} (x_{(j)} - \overline{x})(q_{(j)} - \overline{q})}{\sqrt{\sum_{j=1}^{n} (x_{(j)} - \overline{x})^{2}} \sqrt{\sum_{j=1}^{n} (q_{(j)} - \overline{q})^{2}}}$$

• Se rechaza la hipotesis de normalidad en un nivel de significancia α , si r_Q está por debajo de los puntos críticos dados.

Tabla de los valores lpha de la prueba para r_Q

Critical Points for Q-Q Plot Correlation Coefficient Test for Normality*

Sample Size	$\alpha = 0.01$	a = 0.05	$\alpha = 0.10$
n			
5	0.8299	0.8788	0.9032
10	0.8801	0.9198	0.9351
15	0.9126	0.9389	0.9503
20	0.9269	0.9508	0.9604
25	0.9410	0.9591	0.9665
30	0.9479	0.9652	0.9715
35	0.9538	0.9682	0.9740
40	0.9599	0.9726	0.9771
45	0.9632	0.9749	0.9792
50	0.9671	0.9768	0.9809
55	0.9695	0.9787	0.9822
60	0.9720	0.9801	0.9836
75	0.9771	0.9838	0.9866
100	0.9822	0.9873	0.9895
150	0.9879	0.9913	0.9928
200	0.9905	0.9931	0.9942
300	0.9935	0.9953	0.9960

^{*}Table 4.2 p. 182 from Johnson, R.A. & Wichern, D.W. *Applied Multivariate Statistical Analysis* (5^{th} Ed.)

Ejemplo: Prueba de normalidad basada en la rectitud del QQ plot

Para el ejemplo, los cálculos intermedios para obtener r_Q están dados en la siguiente tabla:

x _(j) - x	$(x_{(j)} - \bar{x})^2$	q _(j) - q	$(q_{(j)} - \overline{q})^2$	$(x_{(j)} - \bar{x})(q_{(j)} - \bar{q})$
-3.83	14.697	-1.834	3.363	7.031
-3.65	13.314	-1.282	1.642	4.676
-2.80	7.855	-0.967	0.936	2.711
-2.79	7.777	-0.728	0.530	2.030
-2.30	5.270	-0.524	0.275	1.204
-1.23	1.514	-0.341	0.116	0.419
-0.80	0.637	-0.168	0.028	0.134
0.49	0.244	0.000	0.000	0.000
1.35	1.810	0.168	0.028	0.226
1.41	2.001	0.341	0.116	0.482
1.52	2.315	0.524	0.275	0.798
2.19	4.808	0.728	0.530	1.596
2.62	6.860	0.967	0.936	2.534
3.66	13.387	1.282	1.642	4.689
4.15	17.235	1.834	3.363	7.614
0.00	99.724	0.000	13.781	36.143

Ejemplo: Prueba de normalidad basada en la rectitud del QQ plot

Se evalua el coeficiente de correlación de Pearson entre $q_{(j)}$ y $x_{(j)}$, obteniendo:

$$r_{Q} = \frac{\sum_{j=1}^{n} (x_{(j)} - \overline{x}) (q_{(j)} - \overline{q})}{\sqrt{\sum_{j=1}^{n} (x_{(j)} - \overline{x})^{2}} \sqrt{\sum_{j=1}^{n} (q_{(j)} - \overline{q})^{2}}}$$

$$= \frac{36.143}{\sqrt{99.724} \sqrt{13.781}}$$

$$= 0.9749513$$

El tamaño de muestra es n=15, así los puntos críticos para la prueba de normalidad son 0.9503 en $\alpha=0.10$, 0.9389 en $\alpha=0.05$, y 0.9126 en $\alpha=0.01$. Por tanto no rechazamos la hipótesis de normalidad en cualquier α mas grande que 0.01.

Evaluando normalidad Bivariada

- Al abordar el tema de la normalidad multivariada, las herramientas anteriores ayudan en la determinación de normalidad para las distribuciones marginales univariadas.
- Sin embargo, también debemos evaluar las distribuciones bivariadas (que deben ser normales si la distribución conjunta global es normal multivariada).
- Los métodos comúnmente usados para evaluar la normalidad bivariada son:
 - Diagramas de dispersión
 - Diagramas Chi-Cuadrado

Ejemplo: Evaluando normalidad Bivariada

Consideremos las siguientes quince observaciones muestrales (ordenadas) tomadas de las variables aleatoria x_1 y x_2 :

x _{j1}	X _{j2}
1.43	-0.69
1.62	-5.00
2.46	-1.13
2.48	-5.20
2.97	-6.39
4.03	2.87
4.47	-7.88
5.76	-3.97
6.61	2.32
6.68	-3.24
6.79	-3.56
7.46	1.61
7.88	-1.87
8.92	-6.60
9.42	-7.64

¿Estos datos apoyan la suposición que fueron extraídos de una población padre normal bivariada?

Ejemplo: Evaluando normalidad Bivariada

El diagrama de dispersión de los pares (x_1, x_2) tiene una forma parecida a un elipse, por tanto esto apoya la suposición que estos datos fueron extraídos de una distribución normal bivariada (y que tienen poco o nada de correlación).

Evaluación por resultado de normal bivariada

 Otra forma de evaluar la normalidad bivariada de los datos, se obtiene a partir de un resultado de la normal multivariada: El conjunto de resultados bivariados x tal que

$$(x-\mu)^{\prime} \mathbf{\Sigma}^{-1} (x-\mu) \leq \chi_2^2(0.5)$$

tiene probabilidad .5.

 Por tanto, se debería esperar que aproximadamente el mismo porcentaje, 50 %, de las observaciones muestrales estén en la elipse dada por

$$\left\{\forall \mathbf{x}: (\mathbf{x}-\overline{\mathbf{x}})'\mathbf{S}^{-1}(\mathbf{x}-\overline{\mathbf{x}}) \leq \chi_2^2(0.5)\right\}$$

donde μ se reemplaza por \overline{x} y Σ^{-1} por S^{-1} . De lo contrario, la suposición de normalidad sería sospechosa.

Ejemplo: Evaluación por resultado de normal bivariada

Consideremos la misma muestra de datos bivariados:

X _{j1}	X _{j2}
1.43	-0.69
1.62	-5.00
2.46	-1.13
2.48	-5.20
2.97	-6.39
4.03	2.87
4.47	-7.88
5.76	-3.97
6.61	2.32
6.68	-3.24
6.79	-3.56
7.46	1.61
7.88	-1.87
8.92	-6.60
9.42	-7.64

$$\overline{\mathbf{x}} = \begin{bmatrix} 5.26 \\ -3.09 \end{bmatrix}, \mathbf{S} = \begin{bmatrix} 7.12 & -0.67 \\ -067 & 12.43 \end{bmatrix}$$

$$\rightarrow \mathbf{S}^{-1} = \begin{bmatrix} 0.1411 & 0.0076 \\ 0.0076 & 0.0808 \end{bmatrix}$$

$$\chi_2^2(0.5) = 1.39$$

Ejemplo: Evaluación por resultado de normal bivariada

Así, cualquier observación $\mathbf{x} = (x_1, x_2)$ que cumple

$$\left(\begin{array}{cc} x_1 - 5.26, & x_2 + 3.09 \end{array} \right) \left(\begin{array}{cc} 0.1411 & 0.0076 \\ 0.0076 & 0.0808 \end{array} \right) \left(\begin{array}{c} x_1 - 5.26 \\ x_2 + 3.09 \end{array} \right) \leq 1.39$$

cae dentro o sobre el contorno estimado del 50 %. De lo contrario, la observación está fuera de este contorno.

El primer par de observaciones es $\mathbf{x} = (1.43, -.69)$, entonces

$$\left(\begin{array}{ccc} 1.43 - 5.26, & -0.69 + 3.09 \end{array}\right) \left(\begin{array}{ccc} 0.1411 & 0.0076 \\ 0.0076 & 0.0808 \end{array}\right) \left(\begin{array}{ccc} 1.43 - 5.26 \\ -0.69 + 3.09 \end{array}\right)$$

$$\left(\begin{array}{ccc} -3.83 & 2.4 \end{array}\right) \left(\begin{array}{ccc} 0.1411 & 0.0076 \\ 0.0076 & 0.0808 \end{array}\right) \left(\begin{array}{c} -3.83 \\ 2.4 \end{array}\right)$$

$$= 2.4 > 1.39$$

Por tanto este punto cae fuera del contorno del 50 %

Ejemplo:

En la tabla se presentan las distancias cuadradas generalizadas de cada dato al centroide $\overline{\mathbf{x}}$

X _{j1}	X _{j2}	d² _j
1.43	-0.69	2.400
1.62	-5.00	2.279
2.46	-1.13	1.336
2.48	-5.20	1.548
2.97	-6.39	1.739
4.03	2.87	2.976
4.47	-7.88	2.005
5.76	-3.97	0.090
6.61	2.32	2.737
6.68	-3.24	0.281
6.79	-3.56	0.333
7.46	1.61	2.622
7.88	-1.87	1.138
8.92	-6.60	2.686
9.42	-7.64	3.819

5 distancias son menores a 1.39, es decir, 33 % de los datos caen dentro del contorno del 50 %. Esta diferencia en proporciones podria proveer evidencia para rechazar el supuesto de normalidad bivariada.

Sin embargo, el tamaño de la muestra (15) es muy pequeña para llegar a esta conclusión.