

CSC380: Principles of Data Science

Statistics 5 & Midterm review

Xinchen Yu

- HW5 has been out.
 - Due Friday, Mar 15
- Practice problems will be out by end of this weekend.
 - Solutions will be out by Mar 10.
- Lecture on Tuesday Mar 12:
 - Another review session
 - revisit solutions of some questions in HW1 4
 - Q & A

- Midterm
 - - Cheat sheet: letter size, double-sided
 - Scientific calculator
 - Time: Mar 14, Thursday, 3:30-4:45 pm
 - Location: same as lecture room

Review: Interval estimate

Review: Gaussian (Corrected)

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim N(0, 1)$$

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-z, z]) = 1 - 2(1 - \Phi(z))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

Review: Gaussian (Corrected)

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim N(0,1)$$
 T-dist
(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-z, z]) = 1 - 2(1 - \Phi(z))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$(2.58\sigma \quad 2.58\sigma)$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

Q: what if X from an arbitrary distribution (e.g. uniform)?

Q: what if σ^2 is unknown and sample size is small (< 30)?

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

Z score versus T score

When alpha is 0.05:

• For standard normal distribution:

$$P(X \in [-1.96, 1.96]) = 0.95$$

• For T distribution when n = 2:

$$P(X \in [-4.30, 4.30]) = 0.95$$

Review: T scores for different df

Let's compare t scores when we only have 3 and 6 observations in the sample:

$$\left[\hat{\mu}-t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}},\hat{\mu}+t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}}\right]$$


```
(recall: 1.96 for gaussian)
import scipy stats as st
```

alpha = 0.05 st.t.ppf(1-alpha/2,df=2) => 4.302652729911275

st.t.ppf(1-alpha/2,df=5) => 2.5705818366147395

st.t.ppf(1-alpha/2,df=10) => 2.2281388519649385

st.t.ppf(1-alpha/2,df=30) => 2.0422724563012373

st.t.ppf(1-alpha/2,df=100) => 1.9839715184496334

Method 2: Bootstrap

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-\mathbf{z}, \mathbf{z}]) = 1 - 2(1 - \Phi(\mathbf{z}))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

Directly approximate distributions of $\widehat{\mu} - \mu$

- Key idea: approximate ν , the distribution of $\hat{\theta}_n \theta$
- Insight:

- Use empirical distribution of $\hat{\theta}_{n,b}-\hat{\theta}_{\rm n}$'s to approximate u, obtaining approximations of $v_{lpha/2}$ and $v_{1-lpha/2}$
- This empirical distribution can be obtained by drawing multiple S_b 's (bootstrap subsample)

Method 2: Bootstrap

Method 2: Bootstrap example

Sample data: 30, 37, 36, 43, 42, 43, 43, 46, 41, 42

Sample mean: $\overline{x} = 40.3$

We want to know the distribution of: $\delta = \overline{x} - \mu$

Can approximate the distribution: $\delta^* = \overline{x}^* - \overline{x}$

Let's resample data with same size and generate 20 bootstrap samples:

4	.3	36	46	30	43	43	43	37	42	42	43	37	36	42	43	43	42	43	42	43
4	3	41	37	37	43	43	46	36	41	43	43	42	41	43	46	36	43	43	43	42
4	2	43	37	43	46	37	36	41	36	43	41	36	37	30	46	46	42	36	36	43
3	37	42	43	41	41	42	36	42	42	43	42	43	41	43	36	43	43	41	42	46
4	2	36	43	43	42	37	42	42	42	46	30	43	36	43	43	42	37	36	42	30
3	86	36	42	42	36	36	43	41	30	42	37	43	41	41	43	43	42	46	43	37
4	3	37	41	43	41	42	43	46	46	36	43	42	43	30	41	46	43	46	30	43
4	1	42	30	42	37	43	43	42	43	43	46	43	30	42	30	42	30	43	43	42
4	6	42	42	43	41	42	30	37	30	42	43	42	43	37	37	37	42	43	43	46
4	2	43	43	41	42	36	43	30	37	43	42	43	41	36	37	41	43	42	43	43

Method 2: Bootstrap example

```
      43
      36
      46
      30
      43
      43
      43
      37
      42
      42
      43
      37
      36
      42
      43
      43
      42
      43
      42
      43
      42
      43
      43
      42
      43
      43
      42
      43
      42
      43
      43
      46
      36
      41
      43
      43
      42
      41
      43
      46
      36
      43
      42
      41
      43
      46
      36
      43
      42
      41
      43
      46
      36
      43
      42
      43
      46
      36
      43
      42
      43
      42
      41
      43
      46
      46
      42
      36
      36
      43
      41
      36
      43
      41
      36
      43
      41
      43
      36
      43
      41
      42
      46
      30
      43
      41
      43
      41
      42
      46
      43
      41
      43
      46
      46
      43
      43
      41
      42
      43
      41
      43
      43
      41
      42
      43
      44
      43
      43
      44
      43
      43
      <td
```

Calculate sample mean for each column (bootstrap sample), compute: $\delta^* = \overline{x}^* - \overline{x}$ Sort the 20 differences:

$$-1.6, -1.4, -1.4, -0.9, -0.5, -0.2, -0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.7, 0.9, 1.1, 1.2, 1.2, 1.6, 1.6, 2.0$$

If confidence level is 80%, find out top 10% and bottom 10%:

$$-1.6$$
, -1.4 -1.4 , -0.9 , -0.5 , -0.2 , -0.1 , 0.1 , 0.2 , 0.2 , 0.4 , 0.4 , 0.7 , 0.9 , 1.1 , 1.2 , 1.2 , 1.6 , 1.6 , 2.0

The bootstrap confidence interval is:

$$[\overline{x} - \delta_{.1}^*, \ \overline{x} - \delta_{.9}^*] = [40.3 - 1.6, \ 40.3 + 1.4] = [38.7, \ 41.7]$$

Method 2: Bootstrap

Suppose we observe data $X_1, X_2, \dots, X_n \sim P(X; \theta)$:

- 1. Sample new "dataset" $X_1^*, ..., X_n^*$ uniformly from $X_1, ..., X_n$ with replacement
- 2. Compute estimate $\hat{\theta}_n(X_1^*, ..., X_n^*)$
- 3. Repeat B times to get the estimators $\hat{\theta}_{n,1}, \ldots, \hat{\theta}_{n,B}$
- 4. Consider the **empirical distribution** of $\left\{\widehat{\theta}_{n,b} \frac{1}{n}\sum_{i=1}^{n}X_i\right\}_{b=1}^{B}$ and find its top $\frac{\alpha}{2}$ quantile and bottom $\frac{\alpha}{2}$ quantile (denoted by Q_U and Q_L respectively).
- 5. (1- α) Confidence Interval: $\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} |Q_{U}|, \frac{1}{n}\sum_{i=1}^{n}X_{i} + |Q_{L}|\right]$

counterintuitively, upper quantile for lower width, lower quantile for upper width. Why?

$$P\left(v_{\frac{\alpha}{2}} \le \hat{\theta}_n - \theta \le v_{1-\frac{\alpha}{2}}\right) \ge 1 - \alpha$$

Pseudocode

Input: $X_1, \dots, X_n, B, \alpha$

- Compute \bar{X}_n
- Bootstrapping B times to obtain $\{\hat{\theta}_{n,b} \bar{X}_n\}_{n=1}^B$; call this array S
- Sorted S in increasing order.
- $Q_U := \text{the top } \frac{\alpha}{2} \text{ quantile; i.e., S[int(np.ceil((1-alpha/2)*(B-1)))]}$
- $Q_L := \text{the bottom } \frac{\alpha}{2} \text{ quantile; i.e., } S[int(np.floor((alpha/2)*(B-1)))]$
- Return $[\bar{X}_n |Q_U|, \bar{X}_n + |Q_L|]$

Midterm Review

General tips on midterm preparation

- Prioritize reviewing basic concepts & ideas
- Understand the motivations and links between concepts
- "Memorization with understanding"
- Try to solve these on your own, then discuss with classmates
 - examples in the slides
 - HW questions (esp. if you did not get them right the first time)
 - practice problems

- What will not included in the midterm?
 - Code related questions
 - Pure proof questions
 - But may need you to provide justifications

Probability

Probability

- Basic definitions: outcome space, events
- Probability P: maps events to [0, 1] values
 - Three axioms
 - Axiom 3: additivity
- Special case of P: each outcomes is equally likely

$$P(E) = \frac{|E|}{|\Omega|} \begin{tabular}{|c|c|c|c|} Number of elements in event set \\\hline Number of possible outcomes (36) \\\hline \end{tabular}$$

distributive law, inclusion-exclusion rule; law of total probability

•
$$P(E \cap C) = P(E|C)P(C) = P(C|E)P(E)$$

- Conditional probability
 - Chain rule, chain rule + law of total probability, bayes rule
 - Important application: medical diagnosis
 - Approach: write down the joint probability table

Independence of events:

$$P(A,B) = P(A)P(B)$$

Conditional / joint / marginal probability

Probability

• Discrete random variable *X* (e.g., sum of two dice)

- Representation of its distribution: probability mass function (PMF)
 - \circ Tabular representation of joint distribution of 2 RVs (X,Y)
- RVs: law of total probability, conditional probability, chain rule, bayes rule, independence, conditional independence
- Useful discrete distributions
 - Uniform
 - Bernoulli
 - Binominal

- Continuous random variable X: P(X = x) = 0 for any x
- Probability density function (PDF)

$$P(a < X \le b) = \int_a^b p(x) dx$$
 $p(x) = \frac{dF(x)}{dx}$

Cumulative distribution function (CDF)

$$P(a < X \le b) = F(b) - F(a)$$

- Useful continuous distributions
 - Uniform
 - Gaussian (important properties)

(x,y)

- Moments of random variables: expectation, variance, covariance
- Calculate mean (expectation) and variance of RVs
 - Linearity of expectation: E[X + cY] = E[X] + cE[Y] for constant c
 - \circ $\mathsf{E}[X^2]$
 - \circ $\mathsf{E}[XY]$
 - If independent: E[X]E[Y]
 - If not independent: $E[XY] = \sum xy \cdot p(x, y)$
 - \circ E[X | Y = y]
 - \circ Var[c] = 0
 - \circ Var[cX]
 - $\circ \quad Var[X + c] = Var[X]$
 - Var[X+Y] when independent
- Expectation and variance of useful distributions (esp. Bernoulli, Gaussian)

 $\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$

• Measures *linear relationship* between X, Y $Cov(X, Y) = 0 \Rightarrow X \perp Y$

• Pearson correlation:
$$\rho = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$$
, where $\sigma_X = \sqrt{\text{Var}(X)}$

- Important property: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
 - What if X, Y are independent?

Let random variable X and Y independent from each other.

The PMF for X is:
$$P(X = 0) = 0.5$$
, $P(X = 1) = 0.5$

The PMF for Y is: P(Y = 0) = 0.25, P(Y = 1) = 0.5, P(Y = 2) = 0.25

$$E[XY^2]$$
?

$$P(XY^2 = 1) = P(X = 1, Y = 1) = 0.5 \cdot 0.5 = 0.25$$

$$P(XY^2 = 4) = P(X = 1, Y = 2) = 0.5 \cdot 0.25 = 0.125$$

$$P(XY^2 = 0) = 1 - 0.25 - 0.125 = 0.625$$

$$P(XY^2 = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2) + P(X = 1, Y = 0)$$

= 0.125 + 0.25 + 0.125 + 0.125 = 0.625

$$E[XY^2] = 1 \cdot 0.25 + 4 \cdot 0.125 + 0 \cdot 0.625 = 0.75$$

Let random variable X and Y independent from each other.

The PMF for X is:
$$P(X = 0) = 0.5$$
, $P(X = 1) = 0.5$

The PMF for Y is:
$$P(Y = 0) = 0.25$$
, $P(Y = 1) = 0.5$, $P(Y = 2) = 0.25$

$$E[XY^2]$$
?

$$E[XY^{2}] = E[X] \cdot E[Y^{2}]$$

$$E[X] = 0.5$$

$$E[Y^{2}] = 0.25 \cdot 0^{2} + 0.5 \cdot 1^{2} + 0.25 \cdot 2^{2} = 1.5$$

$$E[XY^{2}] = E[X] \cdot E[Y^{2}] = 0.5 \cdot 1.5 = 0.75$$

- Statistics: make statements about data generation process based on data seen; reverse engineering
- Point estimation
 - Given iid samples $X_1, ..., X_n \sim \mathcal{D}_{\theta}$, estimate θ by constructing statistics $\hat{\theta}_n$
 - Basic estimators: sample mean, sample variance
 - Performance measures: unbiasedness, consistency, MSE (efficiency)
 - Bias-variance decomposition:
 - $MSE(\hat{\theta}) = bias(\hat{\theta})^2 + var(\hat{\theta})$
- Useful probability tools:
 - Law of Large Numbers
 - Central Limit Theorem

- · Maximum likelihood (MLE): a general approach for point estimation
- Given $X_1, ..., X_n \sim \mathcal{D}_{\theta^*}$, estimate θ^* by finding the maximizer of the likelihood function

$$\mathcal{L}_n(\theta) = p(x_1, \dots, x_n; \theta) = p(x_1; \theta) \cdot \dots \cdot p(x_n; \theta)$$

• Intuition: $\mathcal{L}_n(\theta)$ measures the "goodness of fit" of \mathcal{D}_{θ} to data $x_1, ..., x_n$

- Sample mean
 - Expectation (unbiased)
 - Variance
- Sample variance
 - biased version
 - unbiased version
 - Compare MSE of two versions
- How to determine an estimator is biased or unbiased?
 - statistics1, page 25; statistics3, page 9

- MSE, Bias, Variance
 - how to calculate expectation and variance if there are more than 1 random variable -- use what we learned in probability lecture 5 & 6
 - Calculate bias and variance

$$\begin{aligned} \mathrm{MSE}(\hat{\theta}_n) &= \mathbf{E}[(\hat{\theta}_n - \theta)^2] \\ &= \left(\mathbf{E}[\hat{\theta}] - \theta\right)^2 + \mathbf{E}[(\hat{\theta} - \mathbf{E}[\hat{\theta}])^2] \\ &= \mathrm{bias}^2(\hat{\theta}) + \mathrm{Var}(\hat{\theta}) \end{aligned}$$

Important properties of Gaussian

• Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$
 $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

• Closed under affine transformation (a and b constant):

$$aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$$

- Confidence interval (interval estimation)
- Definition of confidence intervals:
 - Given data $X_1, ..., X_n \sim \mathcal{D}_{\theta}$ with unknown θ (say, $\mathcal{D}_{\theta} = \mathcal{N}(\theta, 1)$)

confidence

confidence interva

- Confidence intervals for population mean:
 - Gaussian(naive):

$$\left[\hat{\mu} - \frac{z_{1-\alpha/2}\hat{\sigma}}{\sqrt{n}}, \hat{\mu} + \frac{z_{1-\alpha/2}\hat{\sigma}}{\sqrt{n}}\right], z_{1-\alpha/2} = 1 - \alpha/2$$
-quantile of $\mathcal{N}(0,1)$

Gaussian(corrected):

$$\left[\hat{\mu} - \frac{t_{1-\alpha/2}\hat{\sigma}}{\sqrt{n}}, \hat{\mu} + \frac{t_{1-\alpha/2}\hat{\sigma}}{\sqrt{n}}\right]$$
, $t_{1-\alpha/2} = 1 - \alpha/2$ -quantile of t distribution (degree of freedom=?)

- We expect you to be able to compute them on a small dataset
- Confidence intervals for general population parameters: bootstrap

HW4: Problem 2

I would like to build a simple model to predict how many students are likely to come to my office hours this semester. Because this is an arrival process, I will model the number of arrivals during office hours as Poisson distributed. Recall that the Poisson is a discrete distribution over the number of arrivals (or events) in a fixed time-frame. The Poisson distribution has a probability mass function (PMF) of the form,

Poisson
$$(x; \lambda) = \frac{1}{r!} \lambda^x e^{-\lambda}$$
.

Likelihood function:
$$L_n(\lambda) = p(x_1, x_2, x_3, ..., x_n; \lambda) = \prod_{i=1}^n p(x_i; \lambda)$$

Take the log:
$$f(\lambda) = \log L_n(\lambda) = \log \left(\prod_{i=1}^n p(x_i) \right)$$

HW4: Problem 2

Take the log:
$$f(\lambda) = \log L_n(\lambda) = \log \left(\prod_{i=1}^n p(x_i)\right)$$

$$egin{aligned} (\lambda) &= \log \left(\prod_{i=1}^n p(x_i) \right) \ &= \sum_{i=1}^n \log \left(rac{1}{x_i!} \lambda^{x_i} e^{-\lambda} \right) \ &= \sum_{i=1}^n \left(\log(1) - \log(x_i!) + x_i \log \lambda + (-\lambda) \right) \ &= -\sum_{i=1}^n \log(x_i!) + \log(\lambda) \sum_{i=1}^n x_i - n\lambda \end{aligned}$$

HW4: Problem 2

Take the log:
$$f(\lambda)=\log L_n(\lambda)=\log \Big(\prod_{i=1}^n p(x_i)\Big)$$

$$=-\sum_{i=1}^n \log(x_i!)+\log(\lambda)\sum_{i=1}^n x_i-n\lambda$$

$$\frac{df}{d\lambda} = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n = 0$$

$$\Rightarrow \frac{\sum_{i=1}^{n} x_i}{\lambda} = n$$

$$\Rightarrow \lambda^{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

HW2 Problem 4 a)

I have decided to get myself tested for COVID-19 antibodies. However, being comfortable with statistics, I am curious about what the test means for my actual status. Let's investigate these questions, showing all your work.

a) The antibody test I take has a sensitivity (a.k.a. true positive rate) of 97.5% and a specificity (a.k.a. true negative rate) of 99.1%. If you are not familiar with sensitivity vs specificity, please see Wikipedia. Assume that 4% of the population actually have COVID-19 antibodies. Write down the joint probability distribution P(S, R) with events for antibody state $S \in \{\text{true}, \text{false}\}$ and test result $R \in \{\text{true}, \text{false}\}$.

Law of total probability + Conditional probability:
$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(B_i) P(A|B_i) = \sum_{i} P(A) P(B_i|A)$$

$$P(R=True \mid S=True) = 0.975$$

$$P(R=False \mid S=False) = 0.991$$

P(R S)	S = True	S = False
R = True	0.975	0.009
R = False	0.025	0.991

$$P(S = true) = 0.04$$
$$P(S = false) = 0.96$$

P(R and S)	S = True	S = False
R = True	0.039	0.00864
R = False	0.001	0.95136

HW2 Problem 4 a)

I have decided to get myself tested for COVID-19 antibodies. However, being comfortable with statistics, I am curious about what the test means for my actual status. Let's investigate these questions, showing all your work.

a) The antibody test I take has a sensitivity (a.k.a. true positive rate) of 97.5% and a specificity (a.k.a. true negative rate) of 99.1%. If you are not familiar with sensitivity vs specificity, please see Wikipedia. Assume that 4% of the population actually have COVID-19 antibodies. Write down the joint probability distribution P(S, R) with events for antibody state $S \in \{\text{true}, \text{false}\}$ and test result $R \in \{\text{true}, \text{false}\}$.

$$P(R=True \mid S=True) = 0.975$$

$$P(R=False \mid S=False) = 0.991$$
Sensitivity = Specificity = Specificity

False positive: test says antibody T when antibody is not T False negative: test says antibody F when antibody is not F

HW2 Problem 4 d)

d) Assume I take the test twice, and receive a positive result in the first test and a negative result in the second test. Assume that the two test results are conditionally independent given the existence of the antibody. What is the probability that I have COVID-19 antibodies according to Bayes' rule?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

$$P(S = T | R_1 = T, R_2 = F) = \frac{P(R_1 = T, R_2 = F | S = T)P(S = T)}{P(R_1 = T, R_2 = F)}$$

$$= P(R_1 = T, R_2 = F)$$

$$= P(R_1 = T, R_2 = F, S = T) + P(R_1 = T, R_2 = F, S = F)$$

$$= P(R_1 = T, R_2 = F | S = T)P(S = T) + P(R_1 = T, R_2 = F | S = F)P(S = F)$$

$$= P(R_1 = T, R_2 = F | S = T)P(S = T) + P(R_1 = T, R_2 = F | S = F)P(S = F)$$

$$= P(R_1 = T | S = T)P(R_2 = F | S = T)P(S = T) + P(R_1 = T | S = F)P(R_2 = F | S = F)P(S = F)$$

HW2 Problem 4 d)

d) Assume I take the test twice, and receive a positive result in the first test and a negative result in the second test. Assume that the two test results are conditionally independent given the existence of the antibody. What is the probability that I have COVID-19 antibodies according to Bayes' rule?

P(R S)	S = True	S = False
R = True	0.975	0.009
R = False	0.025	0.991

Let T=true and F=false.

$$P(S = T \mid R_{1} = T, R_{2} = F)$$

$$= \frac{P(R_{1} = T, R_{2} = F \mid S = T)P(S = T)}{P(R_{1} = T, R_{2} = F \mid S = T)P(S = T)}$$

$$= \frac{P(R_{1} = T \mid S = T)P(S = T)}{P(R_{1} = T \mid S = T)P(R_{1} = F \mid S = T)P(S = F)}$$

$$= \frac{P(R_{1} = T \mid S = T)P(R_{1} = F \mid S = T)P(S = T)}{P(R_{1} = T \mid S = T)P(R_{2} = F \mid S = F)P(S = F)}$$

$$= \frac{0.975 \cdot 0.025 \cdot 0.04}{0.975 \cdot 0.025 \cdot 0.04 + 0.009 \cdot 0.991 \cdot 0.96}$$

$$\approx 0.1022$$