Exercice 1. Formules de Taylor Montrer les inégalités suivantes:

1.
$$\forall x \in \mathbb{R}^+, x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$

2.
$$\forall x \in [0, \frac{\pi}{2}], x - \frac{x^3}{6} \le \sin x \le x - \frac{x^3}{6} + \frac{x^5}{120}$$

Exercice 2. Groupes? Les ensembles suivants sont-ils des groupes? Si oui, dire si ils sont abéliens ou non.

- 1. L'ensemble $\{a,\ldots,z\}^*$ des chaines de caractère utilisant les chaines minuscules (y compris la chaîne vide), muni de la concaténation.
- 2. U muni de la multiplication.
- 3. \mathbb{R} muni du max.
- 4. Les fonctions bijectives de E dans E (avec E un ensemble) muni de la composition.
- 5. P(E) avec E un ensemble muni de la différence symétrique $(A \triangle B = (A \backslash B) \cup (B \backslash A))$.

Exercice 3. Groupe d'éléments d'ordre 2 Soit G un groupe tel que $\forall x \in G, x^2 = 1$. Montrer que G est abélien.

Exercice 4. Anneaux et sous anneaux Dans tout cet exercice, A est un anneau, dire si B est un sous anneau de A ou non.

- 1. $A = \mathbb{Z}, B = \mathbb{N}$
- 2. $A = \mathbb{R}, B = \{\frac{k}{10^n} | k \in \mathbb{Z}, n \in \mathbb{N} \}$ l'ensemble des nombres décimaux.
- 3. $A = \mathbb{R}^{\mathbb{N}}, B = \text{les suites convergeant vers } 0.$
- 4. $A = \mathbb{R}^{\mathbb{N}}, B = \text{les suites convergentes.}$
- 5. $A = \mathbb{R}^{\mathbb{R}}, B = \text{les fonctions paires.}$
- 6. $A = \mathbb{R}^{\mathbb{R}}, B = \text{les fonctions impaires.}$

Exercice 5. Périodes d'une fonction Soit $f : \mathbb{R} \to \mathbb{R}$.

On définit
$$Per(f) = \{T \in \mathbb{R} | \forall x \in \mathbb{R}, f(x+T) = f(x) \}.$$

- 1. Montrer que Per(f) est un sous groupe de \mathbb{R} .
- 2. Soit G un sous groupe de \mathbb{R} , construire f telle que Per(f) = G.

Exercice 6. Isomorphisme entre $\mathbb R$ additif et $\mathbb R$ multiplicatif

- 1. Montrer que $(\mathbb{R},+)$ est isomorphe à $(\mathbb{R}^{+*},*)$
- 2. Montrer que $(\mathbb{R}, +)$ n'est pas isomorphe à $(\mathbb{R}^*, *)$

Exercice 7. Endomorphisme d'anneaux Montrer que tout morphisme d'anneaux de $\mathbb Z$ dans $\mathbb Z$ est l'identité.

Exercice 8. Groupe sans sous groupe Soit G un groupe non trivial dont les seuls sous groupes sont $\{1\}$ et G.

- 1. Montrer que G est fini.
- 2. Montrer que G est cyclique.
- 3. Montrer que G est d'ordre premier.