模拟集成电路课程设计(版图) Layout in Analog Integrated Circuits

Assist. Prof. Jian Zhao Prof. Guoxing Wang

Shanghai Jiao Tong University School of Microelectronics zhaojianycc@situ.edu.cn

Instructors

- Time
 - Lecture: Tuesday 14:00 to 15:00
 - Lab: Tuesday 15:00~17:30, Friday 14:00~17:30
- Lecturer
 - Assist. Prof. Jian Zhao (赵健) & Prof. Guoxing Wang
 - School of Microelectronics, Room 427
 - zhaojianycc@sjtu.edu.cn
- Teaching Assistant
 - Dr. Luo Jing (罗京)
 - School of Microelectronics, Room 404.
 - luojing@sjtu.edu.cn

Syllabus (New)

- L1: Introduction
- L2: Process, Active & Passive Components
- L3: Process variation & Matching Issues (匹配问题)
- L4: Noise & Shield
- L5: Floor planning & Package
- L6: Design for Manufacture (Prof. Li Yongfu)
- L7: Tracy (Advanced EDA tools by cadence)
- L8: Project Review

Review of Lecture #1 & #2

- Introduction of layout
 - What is layout? Why we need layout?
- CMOS process brief
- Introduction of design rules
 - Intra layer rules; Inter layer rules
- Layout of basic cells
 - Active (Transistor), Passive (Resistor, Capacitor)
- Layout design flow
 - Layout, DRC, LVS, PEX

Outline of Lecture #3

- Source of Variations
- Corner Analysis (工艺角分析)
- Random Var., Mismatch (失配) & Monte-carlo
- Deterministic Mismatch
 - Intrinsic & Extrinsic Mismatch
 - Matching for MOSFET (Current & Voltage)
 - Matching for Resistor & Capacitor

Process Variability

- Process variability become increasingly significant
 - Shrinking devices (W, L, t_{ox})
 - Thin Gate Oxide, Fewer Dopants, sensitive to geometry
 - Higher integrity (Number of devices)
 - Billions of devices per die, higher chance of failure
 - Ultra-low voltage (ΔV_{th})
 - Vth is not scaling by Vdd, Less headroom, more sensitive to ΔV_{th}

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2$$

Process variation

- Global: die-to-die, waferto-wafer
 - t_{ox} (thickness of oxide)
 - Transistor W & L
 - N/PweII doping (V_{th})
 - Stress induced effects (V_{th})
- Local: within the die variations
 - Transistor W & L
 - V_{th} mismatch

Width and length variations (Geometry)

- Caused by variations in the lithographic process
- Width and Length variations are uncorrelated
- Small transistors more sensitive to W/L changes

65nm CMOS NAND cell

Intel 65nm 6T SRAM cell

V_{th} Variation

- Random fluctuations due to relatively small number of dopants (掺杂) in the channel.
- V_{th} variance is inversely proportional to transistor area
- Pelgrom's Law:

$$\sigma(V_{th}) = K/\sqrt{W \times L}$$

Environmental variations

- Temperature
 - Ambient temperature ranges
 - On-die temperature elevated by chip self-power consumption

Thermal distribution of a tablet

Thermal distribution of an CPU

Variation classifications

- According to the features
 - Deterministic & Random
- According to the consequence:

Process Variation & Matching Issue

- Source of Variations
- Corner Analysis 工艺角分析 (PVT analysis)
- Random Var., Mismatch & Monte-carlo
- Deterministic Mismatch
 - Intrinsic & Extrinsic Mismatch
 - Matching for MOSFET (Current & Voltage)
 - Matching for Resistor & Capacitor

Corner analysis for Common-mode Var.

- Model extremes of process variations in simulation
- Corners
 - Typical (T)
 - Fast (F)
 - Slow (S)
- Factors
 - nMOS speed
 - pMOS speed
 - C&R (wire)
 - Voltage
 - Temp.

Corner	Voltage	Temperature
F	1.98	0 °C
Т	1.8	70 °C
S	1.62	125 °C

Corner analysis for Common-mode Var.

 Circuits are simulated in different corners to verify different performance and correctness specifications

Corner					Purpose
nMOS	pMOS	Wire	V_{DD}	Temp	
Т	Т	Т	S	S	Timing specifications (binned parts)
S	S	S	S	S	Timing specifications (conservative)
F	F	F	F	F	Race conditions, hold time constraints, pulse collapse, noise
S	S	5	F	S	Dynamic power
F	F	F	F	S	Subthreshold leakage noise and power, overall noise analysis
S	S	F	S	S	Races of gates against wires
F	F	S	F	F	Races of wires against gates
S	F	Т	F	F	Pseudo-nMOS and ratioed circuits noise margins, memory read/write, race of pMOS against nMOS
F	S	Т	F	F	Ratioed circuits, memory read/write, race of nMOS against pMOS

Process (P) Temperature (T) Voltage (V)

FEOL & BEOL Corners Design grid is 0.25um x 0.25um Packaging" 1.1 N-well width >= 8um Silicon (Si) Polysilicon (Poly-Si) Undoped silicon glass (USG, SiO;) Silicon dioxide (TEOS oxide, SiO;) Cobalt disilicide (CoSi.) 1.2 N-well spacing and notch >= 8um 2.1 GASAD width >= 2um Spin-on dielectric (SOD) Phosphor-silicate glass (PSG) Tungsten (W) Copper (Cu) 2.2 GASAD spacing and notch >= 4um back-end / 2.3 N-well enclosure of P-plus active >= 5um Silicon nitride (SiN) Silicon nitride (SiN) Silicon carbide (SiC) N-well spacing to N-plus active >= 5um 2.4 lead-free Po1 solder bump 3.1 "Advanced Front-end of line 3.2 Pol Po1 3.3 前端工艺 4.1.a FEOL. Cr, Cu and Au liners 4.1.b 4.2 seal layer (nitride or oxide) 4.3 GASAD extension of Poly1 >= 3um Poly1 extension of GASAD >= 2.5um SiN seal layer 4.5 Poly1 spacing to GASAD >= 1.25um PolyO enclosure of Poly1 >= 3um SOD N-plus enclosure of GASAD >= 2.5um 5.1 N-plus spacing to P-plus active >= 2.5um 5.2 5.3 N-plus spacing to Poly1 inside P-plus active >= 2um N-plus extension of Poly1 inside N-plus active >= 1.5um 5.5 N-plus width >= 2.5um Cu 4 Cu 4 Cu 4 N-plus spacing and notch >= 2.5um Exact contact size = 2.5um x 2.5um EOL Ta/TaN barrier layer SiC etch stop laver Contact spacing >= 3um 6.3 GASAD enclosure of Contact >= 1um Poly1 enclosure of Contact >= 1.25um Cu 3 Poly1 Contact spacing to GASAD >= 2.5um 6.6 Contact spacing to Poly1 inside GASAD >= 2um SiC etch stop layer 🔍 6.9 PolyO enclosure of Contact >= 4um 6.10 Contact spacing to Poly1 & Poly0 >= 4um Cu 2 7.1 Metal1 width >= 2.5um 7.2 **BEOL**• Back-end of line 7.3 front-end SOD PE-TEOS 8.1 后端工艺 8.2 SOD SiC seal laver 8.3 8.4 8.5 Via spacing to Polv1 >= 2.5um Metal2 width >= 3.5um 9.2 Metal2 spacing and notch >= 3.5um 9.3 Metal2 enclosure of Via >= 1.25um Exact passivation window size = 100um x 100um

FEOL & BEOL Corners 前端工艺角 Packaging" Silicon (Si) Silicon (Si) Polysilicon (Poly-Si) Vindoped silicon glass (USG, SiO;) Silicon dioxide (TEOS oxide, SiO;) Cobalt disilicide (CoSi;) Spin-on dielectric (SOD) Phosphor-silicate glass (PSG) Tungsten (W) Copper (Cu) back-end / For MOSFET only lead-free 3 Corners: Fast, solder bump "Advanced **FEOL** Typical, Slow Cr, Cu and Au liners Corner seal layer (nitride or oxide) SiN seal layer SOD Cu 4 Cu 4 Cu 4 BEOL Ta/TaN barrier layer SiC etch stop laver 后端工艺角 SiC etch stop layer For Interconnections Cu 2 **BEOL** For smaller tech. nodes front-end PE-TEOS ' Process, Voltage, Corner SiC seal laver Temperature (PVT) RC_best, RC_worst

An example of Corner Analysis

- · Common source amplifier with diode-type load
- Differential circuit is more sensitive to mismatch!

 $R_{in} = (1/g_{m2})//r_{02}$

-o Vout

An example of Corner Analysis

- Common source amplifier with diode-type load
- Differential circuit is sensitive to mismatch!
- Corner can help to check whether all the devices are correctly biased

Single-end

Process Variation & Matching Issue

- Source of Variations
- Corner Analysis
- Random Var., Mismatch & Monte-carlo
- Deterministic Mismatch
 - Intrinsic & Extrinsic Mismatch
 - Matching for MOSFET (Current & Voltage)
 - Matching for Resistor & Capacitor

Application of CMOS cap.

- Capacitor array is widely used (ADC, Switch Cap...)
- Capacitor array requires accurate ratio

Variation classifications

- According to the features
 - Deterministic & Random
- According to the consequence:
 - Common-mode & Mismatch

Random Mismatch

- Same with random variations
- Geometry & V_{th} mismatch decrease with area

$$\sigma(V_{th}) = K/\sqrt{W \times L}$$

Statistical Models

- More realistic than corner models (Corner to bad)
 - Especially when the number of devices is very large
- Can work without linearcontinuous assumption
 - Suitable for nonlinear or complex circuit
- Possible to evaluate the mismatch issue

General Concept

- Monte Carlo involves simulating a circuit over a wide range of randomly chosen devices parameters
- The result is a distribution plot of design constraints, e.g., delay or noise margin (need enough samples)

Variation classifications

- Common mode variations, mismatch
- According to the consequence:
 - Common-mode & Mismatch

Process Variation & Matching Issue

- Source of Variations
- Corner Analysis
- Random Var., Mismatch & Monte-carlo
- Deterministic Mismatch
 - Intrinsic & Extrinsic Mismatch
 - Matching for MOSFET (Current & Voltage)
 - Matching for Resistor & Capacitor

Extrinsic-Anisotropic

- Extrinsic mismatch
 - Annealing (Asymmetry Fabrication)
 - Etching (Undercut, Nonlinear Fabrication)

Extrinsic-Anisotropic

- Extrinsic mismatch
 - Annealing (Asymmetry Fabrication)
 - Etching (Undercut, Nonlinear Fabrication)

Extrinsic-Surroundings

- Extrinsic mismatch
 - Annealing Mismatch (Solution: Direction+Dummy)
 - Etching (Solution: Dummy)

Source of deterministic process error

- Polishing seriously affects t_{ox} (within wafer)
- Photolithography are not uniform (within die)

deterministic error cancelling in Layout

- 1st order error cancelling
 - 1D case: symmetrical placement

deterministic error cancelling in Layout

- 1st order error cancelling
 - 1D case: symmetrical placement
 - 2D case: centroid placement & Coincidence

Example: A:B:C:D=4:2:1:1

$$P_x = k_2 x^2 + k_1 x + P_0$$

Small
$$t_{ox}$$
 \Longrightarrow large t_{ox}

Source of deterministic process error

- Polishing seriously affects t_{ox} (within wafer)
- Photolithography are not uniform (within die)

deterministic error cancelling in Layout

- 2nd order error reduction (difficult to be cancelled)
 - Dispersion (交错排列)
 - Compactness (紧凑排列)

Intrinsic Mismatch (Environmental)

- Temperature effect is similar to process var.
- Single source generates 1st order var., Multi-source generates higher order var.

Process Variation & Matching Issue

- Source of Variations
- Corner Analysis
- Random Var., Mismatch & Monte-carlo
- Deterministic Mismatch
 - Intrinsic & Extrinsic Mismatch
 - Matching for MOSFET (Current & Voltage)
 - Matching for Resistor & Capacitor
 - (Additional) Few examples

Rule of thumb in Analog layout

- Symmetry
 - Axial symmetry (1-D), Centroid (2-D), dummy, direction
- Dispersion
 - Interdigitated
- Compact

Interdigitated Layout for Transistors & Res.

Interdigitated components for better matching

Dummy for active & passive devices

Dummy block for to achieve identical surroundings.

Example layout (1D matching)

- Interdigitating with dummy for better matching.
- Ex. Commonmode feedback circuit

Symmetry? Dispersion? Compact?

Example layout (1D matching)

- Interdigitating with dummy for better matching.
- Ex. Input pair of an opam

Symmetry? Dispersion? Compact?

Example layout (2D matching)

- Centroid layout can cancel the 1st order deterministic error.
- Ex. Input pair of an opam
- However it introduces the complexity of wiring.

Wiring for centroid MOSFETs

- Wiring for centroid MOSFETs is difficult
- Extra- overlaps in the connector and base wiring (dummy)
- Same length, same metals, same overlaps

Layout and wiring for cap. array

- Centroid + dummy cap. to cancel the deterministic error.
- Ex. SAR ADC cap. array

Summary

- Source of Variations
 - Geometry, V_{th}, Environment
- Corner Analysis
- Random Var., Mismatch & Monte-carlo
- Deterministic Mismatch
 - Intrinsic & Extrinsic Mismatch
 - Examples for layout matching

Better understanding requires more practice !!!

Variation classifications

- Common mode variations, mismatch
- According to the consequence:
 - Common-mode & Mismatch

Reminder for next week

- Homework #1
 - Due on May 7th
- Homework #2
 - Corner of monte-carlo simulation (pre-layout, post-layout)