

AI/ML Projects/Internships

Types of Data

Continuous

Categorical

Nominal

- Discrete
- No numerical relationship
- eg: colours

Ordinal

- Discrete
- Ranked or sorted
- eg: Serial numbers

Binary

• 1 & 0

Time

- Time series
- Stock market

Intervals

Regular time difference

Encoding

One-Hot Encoding

Label Encoding

Label Encoding

from sklearn.preprocessing import LabelEncoder
sex_enc=LabelEncoder()

```
data_1 = data.copy()
data_1['Sex'] = sex_enc.fit_transform(data_1['Sex'])

data_1.head()

Survived Pclass Sex Age SibSp Parch Fare

0 0 0 3 1 22.0 1 0 7.2500

1 1 1 0 38.0 1 0 71.2833

2 1 3 0 26.0 0 0 7.9250

3 1 1 0 35.0 1 0 53.1000

4 0 3 1 35.0 0 0 8.0500
```

One-Hot Encoding

```
data_2 = pd.get_dummies(data, columns = ['Sex'])
```

data_2.head()											
	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male			
0	0	3	22.0	1	0	7.2500	0	1			
1	1	1	38.0	1	0	71.2833	1	0			
2	1	3	26.0	0	0	7.9250	1	0			
3	1	1	35.0	1	0	53.1000	1	0			
4	0	3	35.0	0	0	8.0500	0	1			

Normalization

(-1 to 1)

Standard Scalar

x_ra	x_raw_data.head()															
	AreaCode	INT_SQFT	DIST_MAINROAD	N_BEDROOM	N_BATHROOM	OTHER_ROOMS	PARK_FACILITY	BUILDINGTYPE	UTILITY_AVAIL	STREET	MZZONE	QS_ROOMS	QS_BATHROOM	QS_BEDROOM	REG_FEE	COMMIS
0	4	1004	131	1	1	1	1	1	1	2	1	4.0	3.9	4.9	380000	144400
1	2	1986	26	2	1	2	0	1	1	1	4	4.9	4.2	2.5	760122	304049
2	1	909	70	1	1	1	1	1	2	1	5	4.1	3.8	2.2	421094	92114
3	7	1855	14	3	2	0	0	3	3	2	3	4.7	3.9	3.6	356321	77042
4	4	1226	84	1	1	1	1	3	1	1	2	3.0	2.5	4.1	237000	74063

```
from sklearn.preprocessing import StandardScaler
x_scaler = StandardScaler()
x = x_scaler.fit_transform(x_raw_data)
x_df = pd.DataFrame(x)
x_df.head()
                                                                                                          11
                                                                                                                  12
                                                                                                                           13
                                                                                                                                             15
                                               0.230115  0.984944  -1.230105  -1.467485
 1 -1.039004 1.324910 -1.278078
                              0.457292 -0.522621
                                               1.645973 -1.015286 -1.230105 -1.467485 -0.104613 -0.204722
                                                                                                     1.540517
                                                                                                             0.776882 -1.107336
2 -1.588165 -1.035950 -0.512974 -0.791932 -0.522621
                                               0.230115
                                                        0.984944 -1.230105 -0.293066 -0.104613
                                                                                            0.460208
                                                                                                    0.641958
                                                                                                             0.330462 -1.446168
                                                                                                                               0.308210 -0.621982
3 1.706804 1.037749 -1.486743
                             1.706517 1.913433 -1.185743 -1.015286
                                                                 1.233390 0.881352
                                                                                           -0.869652
 4 0.059319 -0.341064 -0.269532 -0.791932 -0.522621
```

Co-relation

data.corr()

data_2.corr()												
	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male				
Survived	1.000000	-0.335549	-0.074673	-0.034040	0.083151	0.255290	0.541585	-0.541585				
Pclass	-0.335549	1.000000	-0.327954	0.081656	0.016824	-0.548193	-0.127741	0.127741				
Age	-0.074673	-0.327954	1.000000	-0.231875	-0.178232	0.088604	-0.089434	0.089434				
SibSp	-0.034040	0.081656	-0.231875	1.000000	0.414542	0.160887	0.116348	-0.116348				
Parch	0.083151	0.016824	-0.178232	0.414542	1.000000	0.217532	0.247508	-0.247508				
Fare	0.255290	-0.548193	0.088604	0.160887	0.217532	1.000000	0.179958	-0.179958				
Sex_female	0.541585	-0.127741	-0.089434	0.116348	0.247508	0.179958	1.000000	-1.000000				
Sex_male	-0.541585	0.127741	0.089434	-0.116348	-0.247508	-0.179958	-1.000000	1.000000				

Heat map

Cluster map

Pairplot

Feature selection

Statistical Inferences

Train – Test Split

Split Validation vs Cross Validation

Class Balance/Imbalance

Assignment

- Check the need for Encoding, Normalization
- Implement and Justify the above the steps
- Perform EDA using Scatterplot, Heatmaps and Pair plots
- Note down your observation
- Drop or Keep features based your Statistical Inference
- Check the class balance

Outliers