Web-Engineering

1 / Einführung

World Wide Web

- Ressourcen, z.B. Dokumente, identifizierbar bereitstellen
- Hypertexte : enthalten Verweise auf Ressourcen
- Multimediale Komponenten (Ton/Bild/Video) einbeziehen
- Ergänzung / Integration anderer Internet-Dienste
 - Wie telnet, ftp, ssh, Email-Dienste (pop,imap,smtp) etc.
- Verwendung vorhandener Standardprotokolle
 - TCP, IP

Basiskonzepte (1)

- Bereitstellung Ressourcen
 - Client- / Server-Architektur
 - (viele) Webclients zur Anforderung und Anzeige von Ressourcen
 - (einzelne) Webserver zur zentralen Bereitstellung und Auslieferung der Ressourcen
 - Zustandsloses Protokoll zur Client-Server-Kommunikation :
 - Anforderung Ressource
 - Auslieferung Ressource

Basiskonzepte (2)

- Ressourcen / Dokumente
 - Hypertext
 - Verweise auf Ressourcen oder Marken in Dokumenten
 - Semantische Netze
 - Strukturierte Dokumente
 - Gliederung
 - Auszeichnung von Texten zur Kennzeichnung der Bedeutung
 - Präsentation
 - Standardisiert
 - benutzerdefiniert

Basiskonzepte (3): Erweiterungen

- Ursprünglich weitgehend statische Sicht auf Dokumente
- Benutzerinteraktionen vorgesehen für
 - Die Verwendung von Verweisen (Hyperlinks)
 - Einfache Formulare
- Weiterentwicklung:
 - "Dokument" verallgemeinert als Anforderung einer Ressource, die auch dynamisch erstellt, bearbeitet oder ausgeführt werden kann ⇒ Web-Applikationen, Web-Services
 - Größere Dynamik Benutzerschnittstelle
 - Veränderung der clientseitigen Datenstrukturen
 - Erweiterte Funktionalität Interaktionselemente
 - Integration von Medien

Basiskonzepte (4)

Basiskonzepte (5)

- Übertragung textorientiert
 - "Klartext", keine Verschlüsselung
 - Verschlüsselung nur in den untergeordneten Protokollen
- Übertragung binärer Daten möglich
- HTTP 1.0:
 - Nur ein Request je TCP/IP-Verbindung
- HTTP 1.1:
 - Dauerhafte TCP/IP-Verbindungen
 - Request Pipelining

Webclient (1)

- Auch als "Webbrowser" bezeichnet
 - to browse : blättern, durchsuchen
 - Bezeichnung bezieht sich auf die ursprüngliche Hauptaufgabe (Dokumente anfordern, darstellen)
- Aufgaben
 - Anforderungen (Requests) per HTTP erzeugen
 - Rückmeldungen (Responses) verarbeiten
 - Dokumentbeschreibung interpretieren
 - Dokument als Datenstruktur intern aufbauen
 - Dokument präsentieren ("render")
 - Benutzerinteraktionen verwalten
 - Programme ausführen (z.B. javascript mit Hilfe eines Interpreters)

Webclient (2)

- Weitere Eigenschaften
 - Zwischenspeicherung (Cache) von Inhalten und Ressourcen (Medien etc.)
 - Speicherung persistenter Daten auf dem Client-System
 - "Cookies" / Weitere Mechanismen
 - Einstellungen etc.
 - Kein transparenter Zugriff auf die Fähigkeiten des Client-System!
 - Insbesondere keine transparente Nutzung der Ressourcen des Client (Dateisystem, Prozesse, Hauptspeicher, Dienste)

Webclient (3)

Erweiterungen

Wirt-System

Webserver

Aufgaben

- Protokollbearbeitung
 - Anforderungen (Requests) der Webclients bearbeiten
 - Gelieferte "Namen" = Adresse des Dokuments auf die physikalische Ablage abbilden
 - Rückmeldungen (Responses) erzeugen
 - Angeforderte Dokumente und Medien übertragen
 - Oder Fehlermeldungen liefern
- Anforderungen und Fehler protokollieren
- Erweiterte Request-Bearbeitung:
 - Erzeugung Response durch Programmausführung

HTTP (1)

- HTTP = Hypertext Transfer Protocol
- Protokoll: Vereinbarung zwischen zwei Partnern über den Austausch von Leistungen und Daten
- Zustandslos:
 - Request / Response sind in sich abgeschlossene Transaktion
 - Unabhängig von vorangegangenen Transaktionen
 - Ggf. Zeitüberwachung (Timeout) des Response

HTTP(2)

- Klartext, d.h. keinerlei Binärform oder Verschlüsselung
 - Variante HTTPS :,sichere' Übertragung durch Verschlüsselung des gesamten Datenaustauschs
- Varianten
 - Neu: Version 2.0
 - Komprimierungen, Zusammenfassung von Anforderungen
 - Aktuell : Version 1.1
 - Dauerhafte Verbindungen möglich (→ Netzwerkmanagement)
 - Eindeutige Kennungen für Dokumente (→ Caching)
 - Version 1.0
 - Einführung des Befehls POST
 - Medientypen verwenden
 - Version 0.9
 - Nicht mehr aktuell, nur noch historisch interessant

HTTP(3)

HTTP2: (siehe RFC 7540)

- abwärtskompatibel
- Performance-Probleme bei HTTP 1.0 / 1.1:
 - Bei vielen Requests sind viele TCP/IP-Verbindungen erforderlich
 - Umfangreiche HTTP-Header verschlechtern die Performance der TCP/IP-Übertragung
- Neue Eigenschaften
 - Maßnahmen zur besseren Nutzung der TCP/IP-Verbindungen
 - Frames: einzelne Requests / Responses aufteilen
 - Flow Control / Prioritäten
 - Request Multiplexing / Streams
 - Server Push
 - Server an Client (ohne vorherige Anfrage durch Client!)

HTTP (4)

- Requests:
 - Message-Header
 - Request-Line
 - Methode, z.B. GET oder POST
 - Angefordertes Dokument / angeforderte Ressource
 - HTTP-Version
 - Verschiedene Informationen / Einstellungen
 - Message-Body
 - Z.B. Daten, die zum Webserver übertragen werden sollen
- Wichtigste Methoden:
 - GET zur Anforderung von Dokumenten
 - POST zur Anforderung von Leistungen mit Übertragung von (umfangreicheren) Daten vom Webclient zum Webserver

HTTP(5)

- Responses:
 - Message-Header
 - Status-Line
 - HTTP-Version
 - Statuscode
 - Erläuterung
 - Message-Body
 - Der eigentliche Inhalt der Antwort

HTTP (6)

- Datenübertragung mit GET und POST
 - Daten (z.B. aus Formularen) des Webclient werden stets als Key/Value-Paare übertragen
 - Bei GET
 - Daten werden an die Dokument-Adresse angehangen
 - Sind daher bei Webbrowsern i.d.R. in der Adresseingabe sichtbar
 - Sind auch in der Liste der besuchten Dokumente sichtbar
 - Datenmenge ist begrenzt; Sonderzeichen kodieren!
 - Bei POST
 - Getrennte Übertragung der Daten
 - Umfangreicher möglich

HTTP(7)

- Weitere Methoden
 - HEAD : nur Header senden
 - PUT : Dateien hochladen
 - DELETE: Ressource auf dem Server löschen
 - TRACE : Anfrage spiegeln
 - OPTIONS : Fähigkeiten des Server mitteilen
 - CONNECT : spezielle Verbindungen herstellen

Identifikation von Ressourcen (1)

- Uniform Resource Identifier
 - Ziel: nach einheitlicher Syntax benannte Adressen, die im Anwendungskontext eindeutig sind
 - Anwendungskontext Web: URI muss "weltweit" eindeutig sein
 - D.h. aber auch : ein im Anwendungskontext Web gültigen URI kann man als eindeutigen Bezeichner nutzen !
 - i.d.R. logische Adresse, d.h. Umsetzung in eine physikalische Adresse (z.B. welcher Webserver, welche Datei auf dem Webserver) durch verschiedene Mechanismen
- Unterbegriff URL (uniform resource locator): Auffinden von Ressourcen beschreiben
- URN (uniform resource name): inzwischen veralteter Begriff

Identifikation von Ressourcen (2)

- URI-Syntax allgemein :
 - <Schema>:<Schema-spezifischer Teil>
 - Typische Schemata : http ftp mailto file
- Schema http:

• Beispiele:

```
http://www.hsnr.de/
http://lionel.kr.hs-niederrhein.de/~beims/testseite.html#web
```


Identifikation von Ressourcen (3)

Schema http:

- Authority : Benutzer ... Port
- Server : eindeutige Identifikation einer Domain oder IP-Adresse
- Port : Kennzeichnung eines Dienstes, der auf dem Server ausgeführt wird
- Pfad : der logische Zugriffspfad zur Ressource, muss vom Webserver interpretiert und umgesetzt werden
- Anfrage : bei GET übertragene Werte
- Fragment : Verweis auf einen Anker im Dokument (nur sinnvoll, wenn die Ressource ein HTML- oder XHTML-Dokument ist)

SGML, HTML, XML, XHTML (1)

- SGML: Standard Generalized Markup Language
 - Texte mit Auszeichnungen versehen, die Hinweise auf die logische Struktur und Bedeutung geben
 - i.d.R. ergeben sich Baumstrukturen
 - Strikte Trennung von Struktur (SGML-Dokument) und Präsentation
 - Bei einheitlicher Struktur kann Präsentation auf unterschiedlichen Medien in verschiedener Weise erfolgen
 - Definition der Dokument-Struktur
 - Sog. DTD = Document Type Definition
 - Damit Überprüfung der Gültigkeit eines Dokuments möglich (Validierung)

SGML, HTML, XML, XHTML (2)

 Markup: Elemente, i.d.R. mit öffnender und schließender Marke (*Tag*)

<title>Beispiel eines Titel</title>

- Typische Anwendungen von SGML:
 - HTML
 - Docbook
- Nachteil von SGML:
 - Kompliziert in der Anwendung

SGML, HTML, XML, XHTML (3)

HTML

- Ziel: Beschreibung von Hypertext-Dokumenten
- Im Laufe der Entwicklung (Versionen 2, 3.2, 4, 5) erhebliche Erweiterungen und Änderungen
 - Dabei auch : Einführung von Elementen, die die Präsentation beeinflussen (sollen)
 - Beispiele:
 - Font-Element zur Spezifkation der Schriftart
 - Bold-Element zur Hervorhebung in einer bestimmten Weise
 - Italic-Element zur Hervorhebung in einer bestimmten Weise

SGML, HTML, XML, XHTML (4)

HTML

- In neueren Versionen korrekt definiert, in früheren Versionen dagegen nicht eindeutig oder korrekt
- Webbrowser lassen daher viele Beschreibungsfehler zu!
- Prinzipieller Aufbau eines HTML-Dokuments

SGML, HTML, XML, XHTML (5)

- Head-Abschnitt
 - Nimmt Angaben zum Dokument auf
 - Z.B. Stichworte zur Charakterisierung des Inhalts, kann durch Suchmaschinen ausgewertet werden
 - Führt benötigte Ressourcen auf
- Body-Abschnitt
 - Enthält den eigentlichen Dokumentinhalt
 - Nur dieser Teil wird zur Präsentation ausgewertet

SGML, HTML, XML, XHTML (6)

XML

- Vereinfachung von SGML
- Ursprünglich ebenfalls nur für das Electronic Publishing gedacht
- Inzwischen Beschreibungsstandard für viele Arten von Daten
- Prüfmöglichkeiten :
 - "wohl geformt": wurde die XML-Syntax eingehalten?
 - "valide": wurden die XML-Elemente richtig eingesetzt?

SGML, HTML, XML, XHTML (7)

XML, Beispiel

```
<Vorlesung>
    <Titel>Web-Engineering</Titel>
    <Dozent>Beims</Dozent>
</Vorlesung>
```

- "wohl geformt": prüfbar, weil nur die grundsätzliche XML-Syntax geprüft wird
- "valide": kann nicht geprüft werden, weil eine Beschreibung der zugelassenen Elemente und der zulässigen Baumstruktur fehlt
 - Solche Beschreibungen können als DTD (wie bei SGML) oder mit XML-Schema angegeben werden

SGML, HTML, XML, XHTML (8)

XHTML

- Re-Definition von HTML mit den Mitteln von XML
- Syntax eindeutiger und strenger
 - Schließende Marken zwingend erforderlich
 - Kleinschreibung
 - Attribute von Elementen in Anführungszeichen
- Präsentationsspezifische Elemente entfernt
- erweiterbar

HTML5 (1)

- Weiterentwicklung von HTML4
- Getrieben durch Herstellerkonsortium, Übernahme auch durch das W3C
 - Konkurrierende Spezifikationen W3C Hersteller
 - Konkurrierende Vorgehensweisen bei der Weiterentwicklung
- Löst HTML4 und XHTML ab
- Wichtige Erweiterungen wie canvas, neue Elemente zur Seitengestaltung, endgültiger Verzicht auf einige problematische Elemente
- Verschiedene Erweiterungen wie WebStorage, WebWorkers, WebSockets

HTML5 (2)

Wichtige neue Elemente:

- Zur Strukturierung der Inhalte: article, footer, header, main, section, figure / figcaption
- Zur Verbesserung der Benutzbarkeit: aside, menu, nav, weitere Sub-Typen bei input
- Zur Aufnahme spezieller Inhalte: canvas, audio, video, svg, output

CSS

- Cascading Style Sheets
 - Ziel: auf einfachem Weg angeben, wie die Elemente in einem (X)HTML-Dokument präsentiert werden
 - Besteht aus Regeln
 - Die einen *Selektor* aufweisen, mit dem festgelegt wird, auf welche Elemente die Regel angewendet wird
 - Die keine, eine oder viele Key-Value-Paare enthalten, die die einzelnen Darstellungseigenschaften festlegen
 - Beispiel : alle Absätze (Paragraphen : p) mit rotem
 Hintergrund versehen

```
p { background-color: red; }
```


CSS3

- Weiterentwicklung des CSS-Standards
- In Zusammenhang mit HTML5
- Besteht aus vielen Einzelspezifikationen, mit unterschiedlichem Status (Gültigkeit / Verabschiedung als Standard)
- Relevant:
 - wesentliche Erweiterungen bei den Selektoren
 - Erweiterte Möglichkeiten bei Hintergründen
 - Web-Fonts

