Eclípticas a Ecuatoriales

$$\delta = \operatorname{sen}^{-1} \left(\operatorname{sen} \beta \cos \epsilon + \cos \beta \operatorname{sen} \epsilon \operatorname{sen} \lambda \right)$$
$$\alpha = \operatorname{tan}^{-1} \left(\frac{-\operatorname{sen} \beta \operatorname{sen} \epsilon + \cos \beta \cos \epsilon \operatorname{sen} \lambda}{\cos \lambda \cos \beta} \right)$$

PNC

$$\alpha = \tan^{-1}\left(\frac{p}{q}\right)$$
PNE
$$90 - \lambda$$

$$90 + \alpha$$
Si $p \cdot q < 0$ y $q < 0$ entonces $\alpha = \alpha + 180$,
Si $p \cdot q < 0$ y $q > 0$ entonces $\alpha = \alpha + 360$,
Si $p + q < 0$ entonces $\alpha = \alpha + 180$.

Ecuatoriales a Eclípticas

$$\beta = \operatorname{sen}^{-1} \left(\operatorname{sen} \delta \cos \epsilon - \cos \delta \operatorname{sen} \epsilon \operatorname{sen} \alpha \right)$$
$$\lambda = \tan^{-1} \left(\frac{\operatorname{sen} \delta \operatorname{sen} \epsilon + \cos \delta \cos \epsilon \operatorname{sen} \alpha}{\cos \alpha \cos \delta} \right)$$

$$\lambda = \tan^{-1}\left(\frac{p}{q}\right)$$

$$\lambda = \tan^{-1}\left(\frac{p}{q}\right)$$
Si $p \cdot q < 0$ $y \neq 0$ entonces $\lambda = \lambda + 180$,
Si $p \cdot q < 0$ $y \neq 0$ entonces $\lambda = \lambda + 360$,
Si $p + q < 0$ entonces $\lambda = \lambda + 180$.

Galácticas a Ecuatoriales

$$\delta = \operatorname{sen}^{-1} \left(\operatorname{sen} \delta_{Pg} \operatorname{sen} b + \operatorname{cos} \delta_{Pg} \operatorname{cos} b \operatorname{cos} (l_N - l) \right)$$

$$\alpha = \alpha_{Pg} + \operatorname{tan}^{-1} \left(\frac{\operatorname{cos} b \operatorname{sen} (l_N - l)}{\operatorname{sen} b \operatorname{cos} \delta_{Pg} - \operatorname{cos} b \operatorname{sen} \delta_{Pg} \operatorname{cos} (l_N - l)} \right)$$

$$\alpha = \tan^{-1} \left(\frac{p}{q} \right)$$

Si
$$p \cdot q < 0$$
 y $q < 0$ entonces $\alpha = \alpha + 180$,
Si $p \cdot q < 0$ y $q > 0$ entonces $\alpha = \alpha + 360$,
Si $p + q < 0$ entonces $\alpha = \alpha + 180$.

NOTA: Es importante anotar que α ' no es el mismo α . Es el resultado de la tangente inversa. Una vez se hace la corrección en el a' se debe proceder a sumar α_{Pg} . Si el ángulo resultante queda mayor que 360° (24 h) se debe restar de este último.

Ecuatoriales a Galácticas

$$b = \sin^{-1} \left(\sin \delta_{Pg} \sin \delta + \cos \delta_{Pg} \cos \delta \cos(\alpha - \alpha_{Pg}) \right)$$
$$l = l_N - \tan^{-1} \left(\frac{\cos \delta \sin \left(\alpha - \alpha_{Pg} \right)}{\sin \delta \cos \delta_{Pg} - \cos \delta \sin \delta_{Pg} \cos(\alpha - \alpha_{Pg})} \right)$$