FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					1	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

CRACK WIDTH CALCULATION (BS8110:PART1:1997)

STEP 1

Calculate the neutral axis depth of the cracked section

$$x = \frac{-\alpha_e A_s \pm \sqrt{(\alpha_e A_s)^2 + 2b\alpha_e A_s d}}{b}$$

$$x =$$

STEP 2

Calculate the design service stress at steel f_s

$$f_s = \frac{M}{\left(d - \frac{x}{3}\right)A_S}$$

$$f_s =$$

$$\frac{\text{STEP 3}}{\varepsilon_1} = \frac{(h-x) \times f_S}{(d-x) \times E_S}$$

$$\varepsilon_1 =$$

$$\frac{\text{STEP 4}}{\varepsilon_{m}} = \varepsilon_{1} - \frac{b_{t}(h-x) \times (a'-x)}{3E_{S}A_{S}(d-x)}$$

$$\varepsilon_m =$$

$$\frac{\text{STEP 5}}{w_{max}} = \frac{3a_{cr}\varepsilon_m}{1 + 2\left(\frac{a_{cr} - c_{min}}{h - x}\right)}$$

$$w_{max} =$$

