

Continuous Distributions

Notation

For **continuous distributions**, point probabilities are always zero, i.e, P(X=x) = 0.

Hence, we will use $P(X \le x)$ and $P(X \le x)$ interchangeably, $P(X \le x) = P(X \le x)$.

Also,
$$P(X>=x) = P(X>x)$$

Also, since sum of probabilities over the entire range of x is 1, hence,

$$P(Xx)$$

or

$$P(X>x) = 1 - P(X$$

Uniform Distribution

X takes values between two specified numbers α and β say,

Probability density function:
$$f_X(x) = \frac{1}{\beta - \alpha} \alpha < x < \beta$$

 $X \sim U(\alpha, \beta)$ is often written as shorthand for "the random variable X has a continuous uniform distribution between α and β ".

Moments:
$$\mu = \frac{\alpha + \beta}{2}$$
, by symmetry, the mid-point of the range of possible values

$$\sigma^2 = \frac{(\beta - \alpha)^2}{12}$$

Normal Distribution

This distribution is of fundamental importance in both statistical theory and practice.

It has a symmetrical "bell-shaped" density curve.

The distribution has 2 parameters, which can conveniently be expressed directly as the mean, μ and the standard deviation, σ of the distribution. The distribution is symmetrical about μ .

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \quad \text{for } -\infty < x < \infty$$

Standard Normal Distribution

It is not possible to find an explicit expression for $F_X(x) = P(X \le x)$, so tables have to be used.

These are provided for the distribution of **Z** = $(X-\mu)/\sigma$, which is the **standard normal variable** – it has mean 0 and standard deviation 1.

The x-values μ , μ + σ , μ +2 σ , μ +3 σ correspond to the z-values 0, 1, 2, 3 respectively, and so on. The z-value measures how many standard deviations the corresponding x value is above or below the mean.

$$P(X < x) = P(Z < (x-\mu)/\sigma)$$

P(Z<z) can be looked up from tables and is also denoted by $\Phi(z)$.

Since Z is symmetric about zero, it follows that: P(Z < -z) = P(Z>z)=1-P(Z<z)P(Z>-z) = P(Z<z)

Exponential Distribution

PDF:
$$f_X(x) = \lambda e^{-\lambda x}, x > 0$$

 $X \sim Exp(\lambda)$ is often written as shorthand for "the random variable X has an exponential distribution with parameter λ ".

Moments:
$$\mu = \frac{1}{\lambda}$$
, $\sigma^2 = \frac{1}{\lambda^2}$

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$

Exponential <> Poisson

The exponential distribution is used as a simple model for the lifetimes of certain types of equipment. Very importantly, it also gives the distribution of the waiting-time, T, from one event to the next in a Poisson process with rate λ .

$$P(T > t) = P(0 \text{ events in time t})$$

= $P(X = 0)$ where $X \sim Poisson(\lambda t)$, so
= $e^{-\lambda t}$

$$P(T < t) = 1 - e^{-\lambda t}$$

$$f_T(t) = \lambda e^{-\lambda t}$$

Gamma Function

First note that the gamma function $\Gamma(\alpha)$ is defined for $\alpha > 0$ as follows:

$$\Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy$$

Note in particular that $\Gamma(1)=1$, $\Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1)$ for $\alpha>1$ (ie if α is an integer $\Gamma(\alpha)=(\alpha-1)!$), and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

Chi-square Distribution

So the PDF of a χ^2 distribution is:

$$f_X(x) = \frac{\binom{1/2}{2}^{1/2} v}{\Gamma(1/2) v} x^{1/2} v^{-1} e^{-1/2} x \quad \text{for } x > 0.$$

Moments: $\mu = v$, $\sigma^2 = 2v$

t-Distribution

If the variable X has a χ^2_{ν} distribution and another independent variable Z has the standard normal distribution of the form N(0,1) then the function:

$$\frac{Z}{\sqrt{X/v}}$$

is said to have a t-distribution with parameter "degrees of freedom" ν .

The *t*-distribution, like the normal, is symmetrical about 0.

The PDF of the *t*-distribution is defined by:

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \cdot \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \quad \text{for } -\infty < x < \infty$$

F-Distribution

If two independent random variables, X and Y have χ^2 distributions with parameter n_1 and n_2 respectively, then the function:

$$\frac{X/n_1}{Y/n_2}$$

is said to have an F distribution with parameters "degrees of freedom" n_1 and n_2 .

The PDF of the *F* distribution is defined by:

$$f(x) = \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} \cdot x^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2}x\right)^{-\frac{1}{2}(n_1 + n_2)}$$

for x > 0 and f(x) = 0 elsewhere.

Notations

Uniform: U(40, 50)

Normal: N(5, 10^2)

Standard Normal : Z

Exponential: Exp(5)

Chi-square : χ_4^2

t: t₄

F: F_(7, 4)