Álgebra Linear - Lista de Exercícios 9

Yuri F. Saporito

1. Seja B uma matriz 3×3 com autovalores 0, 1 e 2. Com essa informação, ache:

- (a) o posto de B;
- (b) o determinante de $B^T B$;
- (c) os autovalores de $B^T B$;
- (d) os autovalores de $(B^2 + I)^{-1}$.

2. Ache os autovalores das seguintes matrizes

$$\text{(a) } A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \text{; (b) } B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix} \text{; (c) } C = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

3. Descreva todas as matrizes S que diagonalizam as matrizes A e A^{-1} :

$$A = \begin{bmatrix} 0 & 4 \\ 1 & 2 \end{bmatrix}.$$

4. Ache Λ e S que diagonalizem A

$$A = \begin{bmatrix} 0.6 & 0.9 \\ 0.4 & 0.1 \end{bmatrix}.$$

Qual limite de Λ^k quando $k \to +\infty$? E o limite de A^k ?

5. Seja $Q(\theta)$ a matriz de rotação do ângulo θ em \mathbb{R}^2 :

$$Q(\theta) = \begin{bmatrix} \cos \theta & -\mathrm{sen}\theta \\ \mathrm{sen}\theta & \cos \theta \end{bmatrix}.$$

Ache os autovalores e autovetores de $Q(\theta)$ (eles podem ser complexos).

- 6. Suponha que A e B são duas matrizes $n \times n$ com os mesmo autovalores $\lambda_1, \ldots, \lambda_n$ e os mesmos autovetores x_1, \ldots, x_n . Suponha ainda que x_1, \ldots, x_n são LI. Prove que A = B.
- 7. Seja $Q(\theta)$ como na Questão 5. Diagonalize $Q(\theta)$ e mostre que

$$Q(\theta)^n = Q(n\theta).$$

8. Suponha que G_{k+2} é a média dos dois números anteriores G_{k+1} e G_k . Ache a matriz A que faz com que

$$\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}.$$

- (a) Ache os autovalores e autovetores de A;
- (b) Ache o limite de A^n quando $n \to +\infty$;
- (c) Mostre que G_n converge para 2/3 quando $G_0 = 0$ e $G_1 = 1$.
- 9. Ache a solução do sistema de EDOs usando o método de diagonalização:

$$\begin{cases} u_1'(t) = 8u_1(t) + 3u_2(t), \\ u_2'(t) = 2u_1(t) + 7u_2(t), \end{cases}$$

1

onde u(0) = (5, 10).

10. Seja $\mathcal{F}(\mathbb{R};\mathbb{R})$ o espaço vetorial das funções reais de uma variável real. Considere em $\mathcal{F}(\mathbb{R};\mathbb{R})$ o subespaço

$$S := \text{Span} \left\{ e^{2x} \operatorname{sen} x, e^{2x} \cos x, e^{2x} \right\}.$$

e o operador linear $D:S\to S$ definido por D(f)=f'. Considere, ainda, as funções $f_1(x)=e^{2x}\sin x, f_2(x)=e^{2x}\cos x$ e $f_3(x)=e^{2x}$ em $\mathcal{F}(\mathbb{R};\mathbb{R})$. Determine:

(a) a matriz de D em relação à base $\mathcal{B} = \{f_1, f_2, f_3\}$. Lembre-se de que, dada a base \mathcal{B} , podemos enxergar os elementos de como vetores em \mathbb{R}^3 . Por exemplo:

$$(1,2,3)_{\mathcal{B}} = f_1 + 2f_2 + 3f_3.$$

(b) os autovalores de D e as funções de S que são autovetores de D.