Machine Learning, Machine Learning (extended)

8 – Supervised Learning: Discriminative Classification Kashif Rajpoot

k.m.rajpoot@cs.bham.ac.uk
School of Computer Science
University of Birmingham

Outline

- Supervised learning
- Discriminative classification
 - Decision boundary
 - The margin
- Maximizing the margin
- Making predictions
- Support vectors
- Hard margin
- Soft margin
- Non-linear decision boundary
- Kernel trick

Supervised learning

- Regression
 - Minimised loss (e.g. least squares)
 - Maximum likelihood
- Classification
 - Generative (e.g. Bayesian)
 - Instance-based (e.g. k-NN)
 - Discriminative (e.g. SVM)

Classification

- A set of N objects with attributes (usually vector) $oldsymbol{x}_n$
- Each object has an associated target label t_n
- Binary classification

$$t_n \in \{0,1\} \text{ or } t_n \in \{-1,1\}$$

Multi-class classification

$$t_n \in \{1, 2, \dots, C\}$$

Generative vs discriminative classification

- Generative classifiers generate a model for each class, based on training samples available
 - Data in each class can be seen as generated by some model
 - For new test samples, they assign these samples to the class that suits best (e.g. by probability measure)
- In contrast, discriminative classifiers attempt to explicitly define the decision boundary that separates the classes
 - Intuitively, these methods are for binary class problems but can be extended to multi-class problems

Support vector machines

 Let's consider a 2-d example where a model needs to learn classification

 Let's consider model as a linear decision boundary (i.e. straight line) that separates the two classes

• SVM is a binary classifier that learns a linear decision boundary from attributes $x_1, x_2, ..., x_N$ and target labels $t_1, t_2, ..., t_N$, with $t_n \in \{-1,1\}$

 SVM is a very popular classifier in bioinformatics, medical imaging, digit classification, and various other areas

Line: refresher

- What's the equation of a straight line?
 - $y = mx + c \Rightarrow \mathbf{w}^T \mathbf{x} + b = 0$? • \mathbf{w} ? b?
 - $y = -\frac{1}{4}x + 3 \Rightarrow \mathbf{w}^T \mathbf{x} + b = 0$ • \mathbf{w} ? b?
- For what points: $\mathbf{w}^T \mathbf{x} + b > 0$?
- For what points: $\mathbf{w}^T \mathbf{x} + b < 0$?
- For what points: $\mathbf{w}^T \mathbf{x} + b = 1$?
- For what points: $\mathbf{w}^T \mathbf{x} + b = -1$?
- Relation of w to the straight line $w^Tx + b = 0$?
 - For example: consider y = 2x

Decision boundary

 Linear decision boundary can be represented as a straight line

•
$$\mathbf{w}^T \mathbf{x} + b = 0$$

• To classify a new test sample x_{new} :

•
$$t_{new} = 1$$
: if $\mathbf{w}^T \mathbf{x}_{new} + b > 0$

•
$$t_{new} = -1$$
: if $\mathbf{w}^T \mathbf{x}_{new} + b < 0$

 The decision function (prediction) becomes:

•
$$t_{new} = sign(\mathbf{w}^T \mathbf{x}_{new} + b)$$

- Decision boundary is determine by w and b
 - How to choose w and b?

The margin

- Given linearly separable two class data, there are infinite number of straight lines that can separate it
 - Which should we choose?
- According to learning theory, a decision boundary that maximizes the margin of the boundary to the training set is the one that will minimize the generalization error
 - Margin: perpendicular distance (γ) between the boundary and closest training points of each class
- SVM finds the decision boundary that maximizes the margin
- How to choose w and b?
 - Optimize the margin γ

- Maximize the perpendicular distance from the decision boundary to the closest points on each side
 - Maximum margin decision boundary better reflects the data characteristics than non-optimal boundary
 - Maximum margin decision boundary classifier generalizes well on unseen test data

(a) The decision boundary that maximises the margin

(b) A non-optimal decision boundary

- From all possible linear decision boundaries, the one that maximizes the margin on the training set will minimize the generalization error
 - subject to have seen "enough" training samples and assuming that data isn't "noisy"

(a) The decision boundary that maximises the margin

(b) A non-optimal decision boundary

- Let's consider two closest points to the boundary: x_1 and x_2
- Double margin (2 γ) is equal to the component of vector joining x_1 and x_2 in the direction perpendicular to the boundary
 - $x_1 x_2$ is the vector joining x_1 and x_2
 - $w/\|w\|$ is the direction perpendicular to the boundary
 - Thus $2\gamma = \frac{1}{\|w\|} w^T (x_1 x_2)$

Double margin can be estimated as:

$$2\gamma = \frac{1}{\|\boldsymbol{w}\|} \boldsymbol{w}^T (\boldsymbol{x}_1 - \boldsymbol{x}_2)$$

- Decision function $t_{new} = sign(\mathbf{w}^T \mathbf{x}_{new} + b)$ is invariant to scaling its argument by a positive constant λ
 - $sign(\mathbf{w}^T \mathbf{x}_{new} + b) = sign(\lambda \mathbf{w}^T \mathbf{x}_{new} + \lambda b)$
- Let's set the scale such that:
 - $\mathbf{w}^T \mathbf{x}_1 + b = 1$
 - $\mathbf{w}^T \mathbf{x}_2 + b = -1$

- Considering:
 - $\mathbf{w}^T \mathbf{x}_1 + b = 1$ (line parallel to decision boundary)
 - $\mathbf{w}^T \mathbf{x}_2 + b = -1$ (line parallel to decision boundary)
- By subtracting the above two equations:
 - $(\mathbf{w}^T \mathbf{x}_1 + \mathbf{b}) (\mathbf{w}^T \mathbf{x}_2 + \mathbf{b}) = \mathbf{1} (-1)$
 - $\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2) = 2$
- Thus:

•
$$2\gamma = \frac{1}{\|w\|} w^T (x_1 - x_2) = \frac{1}{\|w\|} 2$$

•
$$\gamma = \frac{1}{\|w\|}$$

- SVM maximizes $2\gamma = \frac{2}{\|w\|}$
 - Equivalent to minimize $\frac{\|w\|}{2}$
 - Equivalent to minimize (due to mathematical simplicity) $\frac{1}{2} || \boldsymbol{w} ||^2 = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$
- There are constraints (to prevent training samples falling in margin band):
 - For x_n with $t_n = 1$: $\mathbf{w}^T x_n + b \ge 1$
 - For x_n with $t_n = -1$: $\mathbf{w}^T x_n + b \le -1$
- This can be expressed as:
 - $t_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$
- This is why using $t_n \in \{-1,1\}$ is beneficial over using $t_n \in \{0,1\}$

SVM optimization problem is:

$$\underset{\pmb{w}}{argmin} \frac{1}{2} \pmb{w}^T \pmb{w}$$
 subject to constraint $t_n(\pmb{w}^T \pmb{x}_n + b) \geq 1$

• By the use of Lagrange multipliers (α_n) , the constraints can be expressed in the minimization function (beyond our module scope):

$$\underset{\mathbf{w},\alpha}{\operatorname{argmin}} \mathcal{L} = \underset{\mathbf{w},\alpha}{\operatorname{argmin}} \left[\frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^{N} \alpha_n \left(t_n (\mathbf{w}^T \mathbf{x}_n + b) - 1 \right) \right]$$
 subject to $\alpha_n \ge 0$

• To find the minimum of minimization function \mathcal{L} , take the 1st derivative with respect to \mathbf{w} and \mathbf{b} and set to 0:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n = 0$$
$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n$$

and

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n t_n = 0$$

$$\sum_{n=1}^{N} \alpha_n t_n = 0$$

Let's recall..

$f(\mathbf{w})$	$\frac{\partial f}{\partial \mathbf{w}}$
$\mathbf{w}^T\mathbf{x}$	x
$\mathbf{x}^T\mathbf{w}$	x
$\mathbf{w}^T\mathbf{w}$	$2\mathbf{w}$
$\mathbf{w}^T \mathbf{C} \mathbf{w}$	2Cw

• By substituting $\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n$ in the SVM minimization function:

$$\underset{\boldsymbol{w},\alpha}{\operatorname{argmin}} \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} - \sum_{n=1}^{N} \alpha_{n} \left(t_{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{n} + b) - 1 \right)$$

we obtain:

$$argmin \frac{1}{2} \left(\sum_{m=1}^{N} \alpha_m t_m \boldsymbol{x}_m^T \right) \left(\sum_{n=1}^{N} \alpha_n t_n \boldsymbol{x}_n \right) - \sum_{n=1}^{N} \alpha_n \left(t_n \left(\sum_{m=1}^{N} \alpha_m t_m \boldsymbol{x}_m^T \boldsymbol{x}_n + b \right) - 1 \right)$$

$$argmin \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} \alpha_{m} \alpha_{n} t_{m} t_{n} x_{m}^{T} x_{n} - \sum_{m=1}^{N} \sum_{n=1}^{N} \alpha_{m} \alpha_{n} t_{m} t_{n} x_{m}^{T} x_{n} - \sum_{n=1}^{N} \alpha_{n} t_{n} b + \sum_{n=1}^{N} \alpha_{n} t_{$$

$$\underset{\alpha}{\operatorname{argmin}} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} \alpha_m \alpha_n t_m t_n \mathbf{x}_m^T \mathbf{x}_n \qquad \boxed{\sum_{n=1}^{N} \alpha_n t_n = 0}$$

$$\sum_{n=1}^{N} \alpha_n t_n = 0$$

SVM optimization function becomes:

$$argmin \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N \alpha_m \alpha_n \, t_m t_n \mathbf{x}_m^T \mathbf{x}_n$$
 subject to

$$\alpha_n \ge 0$$

and

$$\sum_{n=1}^{N} \alpha_n t_n = 0$$

- Where are w and b in optimization?
- This is a standard quadratic programming optimization problem (beyond our module scope) which can be solved numerically in MATLAB (quadprog)
 - There is no analytical solution

Making predictions

• Let's recall that target label t_{new} for a new test sample x_{new} can be predicted as:

$$t_{new} = sign(\mathbf{w}^T \mathbf{x}_{new} + b)$$

- Do we know w and b?
- Let's recall $\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n$, so we get:

$$t_{new} = sign\left(\sum_{n=1}^{N} \alpha_n t_n \, \mathbf{x}_n^T \mathbf{x}_{new} + b\right)$$

Do we know b?

Making predictions

• To find b, consider the closest point x_n to a new test sample x_{new} , for which we already know:

$$\mathbf{w}^{T}\mathbf{x}_{n} + b = \pm 1 = t_{n}$$
 or $t_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + b) = 1$

• Let's recall $\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n$, so we get:

$$t_n \left(\sum_{m=1}^{N} \alpha_m t_m x_m^T x_n + b \right) = 1$$

$$\sum_{m=1}^{N} \alpha_m t_m x_m^T x_n + b = \frac{1}{t_n}$$

$$b = t_n - \sum_{m=1}^{N} \alpha_m t_m x_m^T x_n$$

$$\boxed{\frac{1}{t_n} = t_n}$$

• Thus, we can predict t_{new} :

$$t_{new} = sign\left(\sum_{n=1}^{N} \alpha_n t_n \, \boldsymbol{x}_n^T \boldsymbol{x}_{new} + b\right)$$

Support vectors

- Support vector?
- Support vectors are the training samples closest to the maximum margin decision boundary
 - These vectors "support" the decision boundary
- Maximizing the margin determines the boundary
 - Margin is defined by support vectors
 - Can we discard non-support vectors?

Support vectors

- Can we discard non-support vectors?
- At the optimum, non-support vectors will have zero α_n $t_{new} = sign(\sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n^T \mathbf{x}_{new} + b)$

- We get a sparse solution
 - Decision boundary is a function
 of a small subset (i.e. support vectors)
- How does this compare to kNN classification?
 - kNN finds distance to all objects and finds k closest ones

Support vectors

- At times, a sparse solution can result in problems
- Why does this happen?
 - Hard margin: decision boundary is completely determined by training samples: $t_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$
 - All training samples need to reside on correct side of decision boundary
- Soft margin: permit some points to lie within margin band or even on the wrong side of boundary

Soft margin

- Permit some training points to lie within margin band or even on the wrong side of boundary
 - Relax the constraint $t_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1$ to $t_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1-\xi_n$, subject to $\xi_n\geq 0$
- The optimization problem becomes:

$$argmin \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \xi_n$$
 subject to $t_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \xi_n$ and $\xi_n \geq 0$

 Parameter C controls to what extent the algorithm will permit the training samples to reside within margin band or on the wrong side of the boundary

Soft margin

 With use of Lagrange multipliers and similar math work as before, the optimization problem becomes:

$$\underset{\alpha}{argmax} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_m \alpha_n \, t_m t_n \pmb{x}_m^T \pmb{x}_n$$
 subject to

$$0 \le \alpha_n \le C$$

and

$$\sum_{n=1}^{N} \alpha_n t_n = 0$$

• Note that the only difference, compared to hard margin classifier, is an upper bound $\mathcal C$ on α_n

Soft margin

- For the stray support vector: $\alpha_n = 5.45$
- Setting C can bring a change in decision boundary
 - Some other α_n will have to become non-zero to bring change in the decision boundary
- With decreasing C, maximum potential influence of each training point is reduced
 - More training points become involved in the decision function
- How to choose C?
 - Cross-validation

- SVM can determine linear decision boundary
 - What if data is not linearly separable?
 - Can soft margin help?

- How about transforming data in to a new space where it can be separable?
 - $x \to \phi(x)$
- For this example, consider:

$$\phi(x_n) = x_{n1}^2 + x_{n2}^2$$

 Transform (or project) the data in to a space where it's linearly separable

SVM optimization function:

$$argmax \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_m \alpha_n t_m t_n \mathbf{x}_m^T \mathbf{x}_n$$

• Use $\phi(x_n)$ instead of x_n in optimization:

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{m} \alpha_{n} t_{m} t_{n} \phi(\mathbf{x}_{m})^{T} \phi(\mathbf{x}_{n})$$

and in prediction:
$$t_{new} = sign\left(\sum_{n=1}^{N} \alpha_n t_n \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_{new}) + b\right)$$
• Note that the data \mathbf{x}_m , \mathbf{x}_n , and \mathbf{x}_{new} always app

- Note that the data x_m , x_n , and x_{new} always appear within dot product
- After the transformation, the dot product is calculated in the new space

Kernel trick

Let's consider:

$$\phi(\mathbf{x}_m)^T \phi(\mathbf{x}_n) = (x_{m1}^2 + x_{m2}^2)(x_{n1}^2 + x_{n2}^2) = k(\mathbf{x}_m, \mathbf{x}_n)$$

- Dot product in the transformed space can be considered as a function of the original space
- Kernel function: a function that is equivalent to the dot product of vectors in the transformed $\phi(...)$ space
 - $\phi(\mathbf{x}_m)^T \phi(\mathbf{x}_n) = k(\mathbf{x}_m, \mathbf{x}_n)$
- Kernel trick: very neat trick which doesn't even require the explicit data transformation

Kernel function

- There are a number of off-the-shelf kernels that have been shown to work well
 - Think of kernel as a similarity metric
- Linear kernel
 - $k(\mathbf{x}_m, \mathbf{x}_n) = \mathbf{x}_m^T \mathbf{x}_n$
- Gaussian kernel
 - $k(x_m, x_n) = exp\{-\beta(x_m x_n)^T(x_m x_n)\} = exp\{-\beta||x_m x_n||^2\}$
- Polynomial kernel
 - $k(\mathbf{x}_m, \mathbf{x}_n) = (\mathbf{x}_m^T \mathbf{x}_n + c)^{\beta}$
- $k(x_m, x_n)$ corresponds to $\phi(x_m)^T \phi(x_n)$ for some transformation $\phi(x_n)$
 - Don't even need to know what is $\phi(x_n)$

• Use $k(x_m, x_n)$ instead of $\phi(x_m)^T \phi(x_n)$ in optimization function:

$$\underset{\alpha}{\operatorname{argmax}} \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{m} \alpha_{n} t_{m} t_{n} k(\mathbf{x}_{m}, \mathbf{x}_{n})$$

and in prediction function:

$$t_{new} = sign\left(\sum_{n=1}^{N} \alpha_n t_n \, k(\mathbf{x}_n, \mathbf{x}_{new}) + b\right)$$

- SVM is still finding linear boundaries...
 - ...but in some other space

- Non-linear data classification with SVM using Gaussian kernel
 - C = 10
- β controls the model complexity
 - Very small $\beta \Rightarrow$ too simple (under-fitting)
 - Very large $\beta \Rightarrow$ too complex (over-fitting)
- Non-sparse model for too small or too large β

Parameter selection

- How to choose C and β ?
 - Parameter choice is data dependent
- Cross-validation
 - Search over C and β
- Extra computational burden

Kernelizing other algorithms

- Other algorithms can be kernelized
 - As long as they have data appearing only in inner products in model learning and prediction
- Simple algorithms can learn complex decision boundaries
 - We have seen its usefulness in k-means clustering
- kNN requires distance between each training sample x_n and test sample x_{new}
 - The distance can be written as: $(x_n x_{new})^T (x_n x_{new})$
 - Can we kernelize kNN classifier?

SVM multi-class classification

- How to use a binary classifier (e.g. SVM) for multiclass classification?
- Consider that we have C number of classes
 - C not to be confused with C parameter for soft margin (they're different!!)
- There are two common strategies
 - One-vs-all
 - One-vs-one

SVM multi-class classification

- One-vs-all
 - This is the most frequently used option
 - Train C distinct binary classifiers, each classifier learning one-vs-rest (one: +1, rest: -1)
 - For classification:

$$t_{new} = \arg\max_{c \in 1 \dots C} f_c(x_{new})$$

where f_c is the classifier function that predicts confidence score for label c

- This approach creates class imbalance problem
 - i.e. one class has many more samples than the other one

SVM multi-class classification

- One-vs-one
 - Train C(C-1)/2 distinct binary classifiers, each classifier learning one-vs-one (+1 vs -1)
 - For classification, all classifiers are used and t_{new} is assigned according to maximum voting
 - Addresses class imbalance problem in data
 - Some test samples may receive same number of votes for multiple classes

Summary

- Discriminative classification
- SVM: non-probabilistic linear binary classifier
 - Margin maximization
- Support vectors
- Hard margin vs soft margin
- Non-linear boundary learning with kernel trick
- Multi-class classification with a binary classifier

Exercise (ungraded)

- Try MATLAB code svmhard.m (from FCML book website)
 - Requires quadprog from Optimization Toolbox
- Try MATLAB code svmsoft.m (from FCML book website)
 - Requires quadprog from Optimization Toolbox
- Try MATLAB code svmgauss.m (from FCML book website)
 - Requires quadprog from Optimization Toolbox

Author's material (Simon Rogers)

Ata Kaban

Thankyou