Gráfalgoritmusok

Gaskó Noémi

2023. április 24.

Tartalomjegyzék

Gráfok párosítása

- Algoritmusok
 - Alternáló utak módszere
 - Hopcroft-Karp algoritmus
 - Folyam segítségével

Értelmezés

A G(A,B) gráf páros, ha $V=A\cup B$, $A\cap B=\emptyset$, ha $\{x,y\}\in E(G)$, akkor $x\in A$ és $y\in B$.

Értelmezés

A G(A,B) gráf páros, ha $V=A\cup B$, $A\cap B=\emptyset$, ha $\{x,y\}\in E(G)$, akkor $x\in A$ és $y\in B$.

Teljes páros gráf

 $K_{m,n}$ - minden lehetséges él benne van

Értelmezés

A G(A,B) gráf páros, ha $V=A\cup B$, $A\cap B=\emptyset$, ha $\{x,y\}\in E(G)$, akkor $x\in A$ és $y\in B$.

Teljes páros gráf

 $K_{m,n}$ - minden lehetséges él benne van

Tétel

Páros gráfban nincs páratlan hosszúságú kör.

Értelmezés

A G(A,B) gráf páros, ha $V=A\cup B$, $A\cap B=\emptyset$, ha $\{x,y\}\in E(G)$, akkor $x\in A$ és $y\in B$.

Teljes páros gráf

 $K_{m,n}$ - minden lehetséges él benne van

Tétel

Páros gráfban nincs páratlan hosszúságú kör.

Tétel

A G gráf akkor és csakis akkor páros, ha nem tartalmaz páratlan hosszúságú kört.

Párosítások

Párosítás

Független élek halmaza

Párosítások

Párosítás

Független élek halmaza

Teljes párosítás

Ha a gráf minden csúcsa illeszkedik a párosítás egy éléhez.

Párosítások

Párosítás

Független élek halmaza

Teljes párosítás

Ha a gráf minden csúcsa illeszkedik a párosítás egy éléhez.

Maximális párosítás

Maximális élt tartalmazó párosítás

Maximális párosítás

-nem terjesztehő ki nagyobb párosításá

Maximum párosítás

-a lehető legtöbb élt tartalmazó párosítás

Maximum párosítás

Egy gráfban létezhet több maximum párosítás

Teljes párosítás

-minden csomópontot tartalmazó párosítás

Nincs teljes párosítás

Hall tétele

Egy G(A,B) páros gráfban létezik olyan párosítás, amely illeszkedik az A minden csúcsához akkor és csakis akkor, ha bármely $S\subseteq A$ esetében $|N(S)|\geq |S|$.

Hall tétele

Egy G(A,B) páros gráfban létezik olyan párosítás, amely illeszkedik az A minden csúcsához akkor és csakis akkor, ha bármely $S\subseteq A$ esetében $|N(S)|\geq |S|$.

Következmény

A G(A,B) páros gráfban létezik A-hoz és B-hez illeszkedő párosítás, ha

•
$$|A| = |B|$$

$$\bullet \ \forall X \subseteq A \to |N(X)| \ge |X|.$$

Párosítások típusai

- párosítás páros gráfban
- párosítás általános gráfban
- párosítás páros súlyozott gráfban

Párosítás páros gráfokban

Párosítási algoritmusok

- alternáló utak módszere
- folyam segítségével
- magyar módszer
- lineáris módszer szimplex módszer
- Edmonds algoritmusa

Alternáló utak módszere

Alternáló út: felváltva választunk párosított és nem párosított utak közül pl. d-h-e - alternáló út f-b-h-e nem alternáló út

Gaskó Noémi Gráfalgoritmusok 2023. április 24. 15 / 5

Alapötlet

írjuk fel a "komplementerét" egy párosításnak, így növeljük párosítások számát ("komplementer"=megcseréljük a párosított és nem párosított éleket)

Gaskó Noémi Gráfalgoritmusok 2023. április 24. 16/5

Berge tétele

Egy M párosítás maximum a G-ben, akkor és csakis akkor, ha nem létezik alternáló út.

Bizonyítás

- ightarrow egyértelmû
- ← reductio ad abusrdum

Az algoritmus

- Induljunk ki egy véletlenszerû párosításból
- Amíg találunk alternáló utat keressük meg az alternáló utat keressük meg a "komplementer" éleket (azokat az éleket amik nem szerepelnek a párosításban szereplni fognak, amik meg szerepelnek nem fognak szerepelni)

Az algoritmus bonyolultsága $O(|V|^2+|V||E|)$ redukálható $O(|V|^{0.5}+|V||E|)$ ha párhuzamosan keresünk javító utakat

Gaskó Noémi Gráfalgoritmusok 2023. április 24. 18 / 55

21 / 55

26 / 55

Hopcroft-Karp algoritmus

Az algoritmus lépései:

- $M = \emptyset$ (a maximális párosítás halmaza)
- ismételd ameddig nincs több alternáló út
- szélességi bejárással építsünk fel egy gráfot gyökérnek az A halmaz elemeit használjuk, amelyek nincsenek benne egy párosításban
- M-hez adjuk hozzá a legrövidebb alternáló utakat (mélységi bejárás alapján) "komplementerét"

Példa:

https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-hopcroft-karp/index_en.html

Gaskó Noémi Gráfalgoritmusok 2023. április 24. 27 / 58

Folyam segítségével

Párosítás páros súlyozott gráfokban - Magyar módszer

- König Dénes és Egerváry Jenő munkáira épül, Kuhn írta le 1955-ben, ezért nevezte el magyar módszernek
- teljes súlyozott gráf esetén $K_{n,n}$
- költségek mátrixával dolgozik

Magyar módszer - az algoritmus

Az algoritmus lépései:

- minden sorból vonjuk ki az adott sor legkisebb elemét
- minden oszlopból vonjuk ki az adott oszlop legkisebb elemét
- keressünk maximális számú nullást, melyek közül nincs kettő ugyanabban a sorban vagy oszlopban
- ha ez az érték megegyezik a sorok (oszlopok számával), akkor az optimális megoldás az eredeti mátrix megfelelő elemei
- ha ez az érték kisebb, akkor fedjük le az összes nullást minimális számú sorral és oszloppal
- a nem lefedett elemek közül keressük meg a legkisebet, és ezt vonjuk ki az összes le nem fedett elemből és adjuk hozzá a kétszeresen lefedett elemekhez
- térjünk vissza a 3. lépéshez
- az algoritmus bonyolultásga: $O(n^3)$

From \ To	Denver	Edmonton	Fargo
Austin	250	400	350
Boston	400	600	350
Chicago	200	400	250

$$\begin{bmatrix} 250 & 400 & 350 \\ 400 & 600 & 350 \\ 200 & 400 & 250 \end{bmatrix} \sim \begin{bmatrix} 0 & 150 & 100 \\ 50 & 250 & 0 \\ 0 & 200 & 50 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{150} & 100 \\ 50 & 250 & \mathbf{0} \\ 0 & 200 & 50 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 100 \\ 50 & 100 & 0 \\ 0 & 50 & 50 \end{bmatrix}$$

	A	В	С	D
1	90	75	75	80
2	35	85	55	65
3	125	95	90	105
4	45	110	95	115

megoldás: lásd 8_jegyzet.pdf

Ha $m \neq n$ mit tehetünk?

3	7	5	8
6	3	2	3
3	5	8	6
5	8	6	4
6	5	7	3

Üres oszlop hozzáadásával:

3	7	5	8	0
6	3	2	3	0
3	5	8	6	0
5	8	6	4	0
6	5	7	3	0

Maximális értékû maximális párosítás

6	2	5	8
6	7	1	6
6	3	4	5
5	4	3	4

Maximális értékû maximális párosítás

Átalakítás után:

2	6	3	0
2	1	7	2
2	5	4	3
3	4	5	4

Maximális értékû maximális párosítás

6	2	5	8
6	7	1	6
6	3	4	5
5	4	3	4

Edmonds algoritmusa

-általános gráfokra

Edmonds

M maximum párosítás a G-ben, akkor és csakis akkor, ha M/C maximum párosítás G/C-ben.

Példa: https://algorithms.discrete.ma.tum.de/graphalgorithms/matchings-blossom-algorithm/index_en.html

Független halmazok

Független élhalmaz, független csúcshalmaz

Egy olyan élhalmazt, ahol az éleknek nincs közös végpontja, független élhalmaznak nevezzük. Egy olyan csúcshalmazt, melyben nem létezik két szomszédos csúcs, független csúcshalmaznak nevezzük.

Csúcslefedés

Egy olyan csúcshalmazt nevezünk csúcslefedésnek, mely tartalmazza a gráf minden élének valamekyik végpontját.

Minimum csúcslefedési probléma

A lehet? legkevesebb csomópontttal szeretnénk lefedni a gráfot.

König tétele

Minden páros gráfra a maximális párosítás egyenlő a minimális csúcslefedéssel

Alkalmazások

- stabil házasság
- RNA struktúra feltérképezése
- ütemezési feladatok
- ...

Egy feladat

A 7 törpe házasodni szeretne, mindannyian egy listát írnak a kiválasztottakról.

Hogyan érhetjük el, hogy mindenki a számára legkedvesebbet válassza ki?

51 / 55

Stabil házasság

A feladat

n férfi és n nő: minden személy készít egy preferencia listát, hogy kivel szeretne összeházasodni. Próbáljuk meg úgy összeházasítani az embereket, hogy a lehető legjobban feleljen meg mindenkinek.

Stabil házasság

A feladat

n férfi és n nő: minden személy készít egy preferencia listát, hogy kivel szeretne összeházasodni. Próbáljuk meg úgy összeházasítani az embereket, hogy a lehető legjobban feleljen meg mindenkinek.

Mikor nem stabil egy házasság?

Ha két házas ember egymást jobban kedveli, mint a saját párját.

Egy példa

Stabil-e a következő: A1, B3, C2, D4, E5?

Algoritmus

- Legven X az első férfi
- 2. X megkéri a maradék listája első nőjét (legelső lépésben az első nőt)
- 3. Ha A még nincs eljegyezve

párosítsuk X-t A-val, X pedig legyen a következő férfi, és menjünk vissza az első lépéshez

Ha elvan jegyezve, de X-t jobban szereti, mint az ő Y vőlegényét, akkor párosítsuk X-t A-val, X legyen Y, és menjünk vissza az első lépéshez Megjegyzés: az algoritmus bonyolultsága: $O(n^2)$

Forrásanyag

- Kása jegyzet
- Jean Claude Fournier, Graph Theory and Applications, 2009
- Santana Sahu Ray, Graph Theory with Algorithms and its Applications, Springer, 2013