WHAT YOU WILL STUDY IN TODAY VIDEO?

- ► Weight Initialization Techniques ✓
- ► Weight Initialization Practical Implementation ✓

Weight Initialization

- 1) Prevents Vanishing [Exploding gradient
- 2) Model convergence 1

Uniform Vs Normal

1) Normal > weight spread across Zero deep neural networks
(Istable grad flow)

Weight spread across a range (-a, a)Shallow neural networks (avoid outliers) Ly (avoid outliers)

Xavier Glorat 4 input neuron 3 output neuron nout - no of (3) output $\mathbb{O} \ \mathbb{W} \sim \mathbb{U} \left(\frac{-\sqrt{6}}{\sqrt{n_{in} + n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in} + n_{out}}} \right)$ $\sqrt{2}$ W \sim N $\left(0, \frac{1}{n_{in}+n_{out}}\right)$ + Example himit = $\left(\frac{-\sqrt{6}}{\sqrt{4+3}}, \frac{\sqrt{6}}{\sqrt{4+3}}\right)$ (Uniform) $=\left(-0.925,0.925\right)$

 $=\left(-0.925,0.925\right)$

Now will be picked randomly from above range.

* Main Use

/ Vanishing Gradient

He intialization

$$\mathbb{O} \, \mathcal{W} \sim \mathcal{U} \left(- \sqrt{\frac{6}{n_{in}}} , \sqrt{\frac{6}{n_{in}}} \right)$$

$$= N \left(0, \frac{2}{n_{in}}\right)$$

Example

himit $= \left(-\sqrt{\frac{6}{4}}, \sqrt{\frac{6}{4}}\right)$ (uniform)

$$= \left(-1.22, 1.22\right)$$

Wighty above younge you donly above // picked from

Picker

* Main Use

Exploding Gradient