利用VAR预测水资源供给问题

以中国华北地区为例

Xiaonan Cao

数学与统计学院

2025-07-14

Outline

1.	问题分析与假设2	4.1 模型验证	25
	1.1 问题分析3	4.2 模型总结	29
	1.2 条件假设5	Bibliography	31
2.	模型建立6		
	2.1 约束条件7		
	2.2 目标函数9		
	2.3 预测模型10		
3.	模型求解12		
	3.1 问题一13		
	3.2 问题二14		
	3.3 问题三17		
4.	模型验证与总结24		

1. 问题分析与假设

1.1 问题分析

1. 问题分析与假设

本题旨在构建一个供水能力满足人口用水需求的模型,并对一个缺水 国家或地区的供水现状(本题选择华北地区),成因与未来变化趋势进 行分析与预测,提出应对水资源稀缺的策略.

- 1. 核心目标:设计模型使得华北区域净水供应满足人口需求
- 2. 关键因素:
 - 供给侧:自然水资源(降水,河流,地下水),技术手段(海水淡化,污水处理)
 - 需求侧: 由工业, 农业, 生活用水等构成, 与人口、经济、气候等因素密切相关。
 - 稀缺类型:
 - ▶ 物理稀缺(自然资源不足,如中亚,北非等),
 - ▶ 经济稀缺(技术手段不足,如南非等),

1.1 问题分析

1. 问题分析与假设

- ▶ 管理稀缺(政策管理不当)
- 3. 影响因素:
 - 社会因素: 政策管理效率, 基础设施投资, 节水意识
 - 环境因素: 气候变化, 环境变化

1.2 条件假设

1. 问题分析与假设

为了简化模型, 我们做出以下假设:

- 1. 水资源供需动态平衡,但需要考虑时滞影响
- 2. 技术手段可以部分缓解水资源短缺问题, 但受限于成本及地理环境限制
- 3. 人口增长率及发展速度可预测,不考虑突发事件(如战争,疫情,科技大爆发等)
- 4. 政策干预可以提升水资源开发, 净化能力, 不存在时滞影响

2. 模型建立

2.1 约束条件

2. 模型建立

只需要考虑约束条件中供给量大于需求量即可[1],

$$S \ge D \times (1 + \beta),\tag{1}$$

其中 β 表示冗余安全系数(取 $\beta = 5\%$), S表示水资源供给量,

$$S = S_n + S_t, (2)$$

D表示水资源需求量,

$$D = D_l + D_i + D_a + D_c \tag{3}$$

它们的计算公式如下

Xiaonan Cao

2.1 约束条件

2. 模型建立

$$S_n =$$
 年降水量 + 地表水储量 + 地下水可持续开采量 (4.1)

$$D_l = \Lambda \, \Box \times \Lambda \, \beta \, \Pi \, \Lambda \, \mathbb{D} \tag{4.3}$$

$$D_i = GDP \times 单位产值用水量 \tag{4.4}$$

$$D_a = 耕地面积 \times 单位面积用水量 \times 灌溉用水效率 (4.5)$$

$$D_c = (1-污水处理率) \times 污水产生量 \tag{4.6}$$

2.2 目标函数

2. 模型建立

目标函数应为最大社会效益之

$$\max z = \alpha_1 D_l + \alpha_2 D_i + \alpha_3 D_a + \alpha_4 D_c \tag{5}$$

其中 $\alpha_1,...,\alpha_4 \in (0,1)$ 为对应权重系数, 且 $\sum \alpha_i = 1$.

考虑到实际的生产生活条件, 应再增加一约束条件

• 优先保证基本的生活及生态用水需求, 故 α_1 的系数应为最大, 考虑 到华北地区的经济发展水平, 取 $\alpha_1 = 0.5$.

2.3 预测模型

2. 模型建立

考虑到降水量受多因素影响,故采用多变量自回归(VAR)模型进行预测,以灰色模型 GM(1,1)及主成分分析(PCA)作为对比,

利用过去25年的降水量,用水结构,以及气候变化等数据,预测未来15年的水资源情形

Definition 2.3.1 (VAR) 用于刻画多变量时间序列之间的动态相互关系。其一般形式为:

$$y_t = c + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + \varepsilon_t,$$
 (6)

其中:

2.3 预测模型

2. 模型建立

11 / 32

- 1. $y_t \in \mathbb{R}^k$ 为 k 维内生变量向量;
- 2. $c \in \mathbb{R}^k$ 为常数项向量;
- 3. $A_i \in \mathbb{R}^{\{k \times k\}}$ 为系数矩阵, i = 1, 2, ..., p;
- 4. $\varepsilon_t \sim N(0, \Sigma)$ 为白噪声误差项,协方差矩阵为 Σ 。

该模型假设所有变量为内生变量,其当前值由自身及其他变量的滞后项共同决定.

3. 模型求解

考虑到我国南水北调工程对华北地区用水的重要影响[2],现对上面模型增加新参数:南水北调工程的供水量 S_s ,即

$$S = S_n + S_t + S_s \tag{7}$$

其中 S_s 为南水北调工程对华北地区的供水量,取值为110亿立方米/年[3].其余不变,则得到如下优化问题:

$$\max z = \alpha_1 D_l + \alpha_2 D_i + \alpha_3 D_a + \alpha_4 D_c \tag{8.1}$$

s.t.
$$\begin{cases} S \ge D \times (1 + \beta) \\ S = S_n + S_t + S_s \\ D = D_l + D_i + D_a + D_c \\ \sum \alpha_i = 1 \end{cases}$$
(8.2)

3.2.1 华北地区缺水情况

华北地区是我国人口密度高,工业农业活动强的地区之一,但降水偏少,水资源匮乏.多年平均水资源总量占全国比重不足 6%,却承载了超过 20% 的人口和 30% 以上的 GDP,属于典型的经济性与物理性稀缺叠加区。

此外,华北平原地下水严重超采,引发地面沉降,水质恶化,农业危机,是我国实施"南水北调"工程的重点区域[4]。

3.2.2 物理性稀缺(自然水资源不足)

3.2.2.1 环境因素

- 1. 降水时空分布不均: 华北地区年降水量仅 400 600mm, 且 70% 集中在夏季, 导致季节性缺水
- 2. 地表地下水系统退化:
 - · 地表水污染严重, 海河劣 V 类水体占比超 15%
 - 地下水超采严重, 华北地区地下水超采量达 50 亿立方米/年, 深层地下水位年均下降 0.8m

3.2.2.2 社会因素

1. 人口与农业需求激增

3.2 问题二

- 3. 模型求解
- 华北地区承载全国 10% 人口, 城镇化率超 65%, 生活用水需求持续增长,
- 农业用水占比超 60%, 传统大水漫灌概率底下
- 2. 高耗水工业密集,如河钢首钢等钢铁厂;中环电子,芯动力科技等芯片产业以及山西的煤炭开采等.

3.2.3 经济性稀缺(技术或管理手段不足)

- 1. 极端气候事件频发: 如今年河南连续 100 天无有效降雨, 陕西遭遇 60 年一遇极端大旱
- 2. 水资源管理低效:
 - 水资源配置不合理,如京津冀地区水资源分配矛盾突出
 - 农业灌溉普遍使用漫灌而非喷灌/滴灌(滴灌覆盖率< 10%)

3.3 问题三

3. 模型求解

3.3.1 数据来源

数据来源为中华人民共和国水利厅[5]及华北各省水利厅水资源公报[6],[7],[8],[9],1999-2023年水资源公报数据,完全来自政务公开内容.

3.3.2 预测结果

→ y1: 降水(历史)

-- y6: 人均用水(预测)

— 预测起点

Figure 1: GM(1,1) 模型预测结果图

◆ y1: 降水(历史)

y6: 人均用水(历史)→ y6: 人均用水(预测)→ 预测起点

Figure 2: VAR 模型预测结果图

其中人均用水单位为立方米/人/年,其余单位为亿立方米/年,下同.

下面为具体数值,为展示方便,数据取整(舍去小数部分).单位同上

3.3.2.1 GM(1,1)

年份	2026	2028	2030	2032	2034	2036	2038	2040
降水量	1250	1312	1315	1279	1292	1319	1323	1325
地表水	239	226	212	216	211	207	202	198
地下水	173	171	168	166	162	160	158	155
供水量	236	238	240	242	244	246	248	250
盈余量	110	102	97	92	88	84	80	76

3.3 问题三

年份	2026	2028	2030	2032	2034	2036	2038	2040
人均用水	237	237	237	237	237	239	239	$\overline{240}$

可以发现 GM(1,1) 的预测基本属于线性变化, 这是因为 GM(1,1) 假设数据满足一阶线性微分方程, 对于水资源供需这种非线性问题, 预测效果较差.

3.3.2.2 VAR

年份	2026	2028	2030	2032	2034	2036	2038	2040
降水量	1189	1626	1178	1473	1296	1160	1357	1380
地表水	665	379	236	388	243	193	202	274
地下水	173	232	179	223	188	167	192	190
供水量	291	238	240	242	244	246	248	250

3.3 问题三

年份							2038	
盈余量	609	309	127	298	132	63	168	157
人均用水	232	197	223	242	226	236	241	230

而 VAR 可以更好的预测非线性趋势, 这一点在模型验证中也有体现.

VAR 模型预测显示:

2024年后华北地区降水量将在1200亿立方米左右(降水量700 ml)徘徊,供水量在223亿立方米左右,盈余水量190.5亿立方米,且盈余量逐年下跌的趋势,属于水资源相对匮乏.另一方面人均用水在230-240立方米/人/年,仍大幅低于国内平均水平421m³[10],华北地区的缺水情况并未得到根本性改善,

但到时南水北调二期工程已经投入使用,考虑到二期工程供水量会比一期高50%-70%,故到2030年后华北地区的供水量将达到350亿立方米/年,盈余水量将达到230亿立方米/年,接近国内平均水平.

对当地居民的影响如下

- 生活用水:人均用水量仍低于国内平均水平,但相比今天得到改善, 满足基本生产生活需求
- 工业用水: 由于工业用水份额变高, 预计倒是会有更多企业迁入华北地区.
- 农业用水:缓解用水困难

4. 模型验证与总结

模型验证采用历史数据对比法,通过与实际水资源供需情况进行对比,验证模型的准确性和可靠性.

由于水资源数据存在时序差异,不可使用交叉验证,故考虑时间序列交叉验证及滑动窗口验证.

下面仅以河南地区为例验证水资源的的供需情况.

以下为对应数据的的时序交叉验证, 滑动窗口验证, 预测误差对比, 预测值 vs 真实值图像 验证结果如下

Figure 3: VAR 模型性能综合对比

4.1 模型验证

4. 模型验证与总结

Figure 4: VAR 模型预测性能对比

Figure 5: VAR 地表水验证(2016-2023)

4.2.1 模型优点

- 1. 综合考虑了供给侧和需求侧的多种因素,包括自然资源,技术手段,人口经济等.
- 2. 计算简单, 利用线性规划即可求解
- 3. 适用于不同地区的水资源供需分析,可根据实际情况调整参数.

4.2.2 模型缺点

- 1. 未考虑人口变化的影响.
- 2. 中国发展迅速, 过往经验不能完全适用于未来.
- 3. 模型未考虑政策干预的时滞影响, 可能导致预测结果偏差.
- 4. 数据量过少导致模型预测不准确, 仅有近24年数据

4.2.3 未来水资源管理建议

- 1. 加强水资源管理,提高水资源利用效率,如推广节水灌溉技术,提升污水处理率.
- 2. 加强水资源监测与数据收集,定期更新模型参数,以反映最新的水资源供需情况.
- 3. 发展新技术,如工业水回收,雨水收集等,提高供水能力.
- 4. 加强政策干预, 如实施水资源税, 提高水资源使用成本, 促进节水意识提升.

Bibliography

- [1] 黄垒, 李磊, and 王威, "基于 GIS 的华北地区自然资源综合评价区划研究," 华北地质, vol. 46, no. 4, pp. 83-88, 2023, doi: 10.19948/j.12-1471/P.2023.04.11.
- [2] 谢泽宇, 静峥, and 杨冕, "水资源约束缓解与区域经济增长——来自"南水北调"工程的经验证据," 数量经济技术经济研究, vol. 40, no. 9, pp. 93-115, 2023, doi: 10.13653/j.cnki.jqte.20230725.007.
- [3] 中华人民共和国水利部,"南水北调中线工程简介." Accessed: Apr. 05, 2025. [Online]. Available: http://nsbd.mwr.gov.cn/zw/gcgk/gczs/202209/t20220918_1608830.html
- [4] 王亦宁 and 高龙, "从南北经济平衡视角看水资源"空间均衡"问题," 水利发展研究, vol. 25, no. 3, pp. 11-16, 2025, doi: 10.13928/j.cnki.wrdr.2025.03.003.
- [5] 中华人民共和国水利部,"水资源公报." Accessed: Apr. 05, 2025. [Online]. Available: http://www.mwr.gov.cn/sj/tjgb/szygb/
- [6] 河南省水利厅, "河南省水利厅水资源公报." Accessed: Aug. 2024. [Online]. Available: https://slt.henan.gov.cn/bmzl/szygl/szygb/

- [7] 河北省水利厅, "2024 年河北省水资源公报," 2025. [Online]. Available: http://slt.hebei.gov.cn/resources/43/202505/1747965252831023377.pdf
- [8] 山东省水利厅, "山东省水资源公报." Accessed: Apr. 05, 2025. [Online]. Available: http://wr. shandong.gov.cn/zwgk_319/fdzdgknr/tjsj/szygb/
- [9] 陕西省水利厅,"陕西省水资源公报." Accessed: Apr. 05, 2025. [Online]. Available: https://slt. shaanxi.gov.cn/zfxxgk/fdzdgknr/zdgz/szygb/
- [10] 中华人民共和国水利部,"水资源公报(2024年)." Accessed: May 05, 2025. [Online]. Available: http://www.mwr.gov.cn/sj/tjgb/szygb/202506/t20250610_1732735.html