Lecture 27 Compare Two Populations - Proportion

BIO210 Biostatistics

Xi Chen

Spring, 2024

School of Life Sciences
Southern University of Science and Technology

Compare two proportions

Whether the proportions of colour blindness are the same in two different populations (e.g. male vs female, Asian vs European) ?

Whether chemical A is better than chemical B for culturing cells in petri dishes (can be measured by percentage of cells that express *Pou5f1*)?

Whether drug A is more efficient than drug B in terms of curing a certain disease (can be measured by percentage of cured patients)?

ABO Blood Types And The COVID-19

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao,^{1,a} Yan Yang,^{2,a} Hanping Huang,^{3,a} Dong Li,^{4,a} Dongfeng Gu,¹ Xiangfeng Lu,⁵ Zheng Zhang,² Lei Liu,² Ting Liu,³ Yukun Liu,⁶ Yunjiao He,¹ Bin Sun,¹ Meilan Wei,¹ Guangyu Yang,^{7,b} Xinghuan Wang,^{8,b} Li Zhang,^{3,b} Xiaoyang Zhou,^{4,b} Mingzhao Xing,^{1,b} and Peng George Wang^{1,b}

¹School of Medicine, The Southern University of Science and Technology, Shenzhen,

Type A blood in normal people and COVID-19 patients

Strategy 1: Use One-sample Hypothesis Testing ??

Two choices:

•
$$H_0: \pi_1 = 0.38$$

$$H_1: \pi_1 \neq 0.38$$

•
$$H_0: \pi_2 = 0.32$$

$$H_1: \pi_2 \neq 0.32$$

Two anwsers:

•
$$z = -7.5$$

 $p = 6.4 \times 10^{-14}$

•
$$z = 4.4$$

$$p = 1.1 \times 10^{-5}$$

Strategy 2: Figure Out The Sampling Distribution of The Difference

- Let the random variable P_1 represent the proportion of blood type A in a sample $(n_1 = 3694)$ drawn from normal people.
- Let the random variable P_2 represent the proportion of blood type A in a sample $(n_2 = 1775)$ drawn from COVID-19 patients.

Normal
$$\pi_1$$

COVID-19
$$\pi_2$$

$$egin{aligned} oldsymbol{P}_1 &\sim \mathcal{N}\left(\mu_{oldsymbol{P}} = \pi_1, \ \sigma_{oldsymbol{P}}^2 = rac{\pi_1(1-\pi_1)}{n_1}
ight) & oldsymbol{\delta} = oldsymbol{\pi_1} - oldsymbol{\pi_2} \ oldsymbol{P} = oldsymbol{P}_1 - oldsymbol{P}_2 \ \mathcal{P}_2 &\sim \mathcal{N}\left(\mu_{oldsymbol{P}} = \pi_2, \ \sigma_{oldsymbol{P}}^2 = rac{\pi_2(1-\pi_2)}{n_2}
ight) & oldsymbol{D} &\sim ? \end{aligned}$$

$$oldsymbol{\delta} = oldsymbol{\pi_1} - oldsymbol{\pi_2} \ oldsymbol{D} = oldsymbol{P}_1 - oldsymbol{P}_2 \ oldsymbol{D} \sim ?$$

Sampling Distribution of The Difference of The Sample Proportion

•
$$D \sim \mathcal{N}\left(\pi_1 - \pi_2, \ \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}\right)$$

ullet $oldsymbol{D} = oldsymbol{P}_1 - oldsymbol{P}_2$ and $d = p_1 - p_2$ are the point estimator/estimate of δ

• 95% CI:
$$(p_1 - p_2) \pm 1.96 \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Type A blood in normal people and COVID-19 patients

Is π_1 different from π_2 ?

$$H_0: \ \pi_1 = \pi_2$$

 $H_1: \ \pi_1 \neq \pi_2$

$$H_0: \ \delta = \pi_1 - \pi_2 = 0$$

$$H_1: \ \delta = \pi_1 - \pi_2 \neq 0$$

Two-sample Hypothesis Testing For Proportion

$$H_0: \ \delta = \pi_1 - \pi_2 = 0$$
 if H_0
$$H_1: \ \delta = \pi_1 - \pi_2 \neq 0$$
 were true
$$D \sim \mathcal{N}\left(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}\right)$$

- 1. What we observe is: $d = p_1 p_2$
- 2. What is the probability of observing d or more extreme?

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)}} = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)}}$$

Two-sample Hypothesis Testing For Proportion

	Normal	COVID-19
А	a	b
Non-A	c	d
Total	n_1	n_2
'		

Sample size: bigger is always better:

$$\pi: \frac{a+b}{n_1+n_2} = \frac{n_1p_1 + n_2p_2}{n_1+n_2} = \mathbf{p}$$

The test statistic:

$$z = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)p(1-p)}}$$

The test statistic:

$$p = \frac{1188 + 670}{3694 + 1775} = 0.34, \ z = \frac{0.32 - 0.38}{\sqrt{\left(\frac{1}{3694} + \frac{1}{1775}\right) \times 0.34 \times 0.66}} = -4.4$$

Example: Two-sample Hypothesis Testing For Proportion

Myopia: Researchers suspect that myopia, or nearsightedness, is becoming more common over time. A study from the year 2000 showed 139 cases of myopia in 420 randomly selected people. A separate study from 2015 showed 228 cases in 600 randomly selected people. Perform a hypothesis testing to see if the researchers' suspicion is true or not.

Sample statistics:
$$n_1 = 420, p_1 = \frac{139}{420} = 0.33, n_2 = 600, p_2 = \frac{228}{600} = 0.38$$

Pooled estimate for
$$\pi$$
: $p = \frac{139 + 228}{420 + 600} = 0.36$

The test statistics:
$$z = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)p(1-p)}} = \frac{0.33 - 0.38}{\sqrt{\left(\frac{1}{420} + \frac{1}{600}\right) \times 0.36 \times 0.64}}$$