

Universität Ulm

Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2019

Übungen Analysis 1 für Ingenieure und Informatiker: Blatt 8

37. Bestimme die Ableitungen von $f:(0,\infty)\to\mathbb{R}$, falls f gegeben ist durch

a)
$$(x^x)^x$$

b) $x^{(x^x)}$

c) $x^{1/x}$

d) $\log \log(1+x)$

f) $\sqrt[3]{x^{3/5} + \sin^3(1/x) - \tan^2(x)}$ g) $\frac{\cos x}{2 + \sin \log x}$.

38. Die Legendreschen Polynome, P_n , werden durch

$$P_n(x) := \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right], \quad n \in \mathbb{N},$$

definiert, wobei $\frac{d^n}{dx^n}$ die *n*-fache Ableitung bezeichne. Man berechne P_0, P_1, \dots, P_5 .

39. Es seien $I_1, I_2 \subset \mathbb{R}$ zwei offene Intervalle. Betrachte das offene Rechteck $C \subset \mathbb{C}$ in der komplexen Ebene, welches durch

$$C := \{ z \in \mathbb{C} : z = x + iy \text{ mit } x \in I_1, y \in I_2 \}$$

definiert ist. Es sei $z_0 \in C$. Eine Funktion $f: C \to \mathbb{C}$ heißt im Punkt z_0 differenzierbar, falls

$$\exists c \in \mathbb{C} : c = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Zeige, dass die Funktion $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \overline{z}$ in keinem Punkt differenzierbar ist.

40. Es seien $I \subset \mathbb{R}$ ein offenes Intervall, $x_0 \in I$ und $f: I \to \mathbb{R}$. Man beweise oder widerlege folgende Aussagen:

(a) Ist f in x_0 differenzierbar, so gilt

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$
 (1)

(b) Existiert $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{2h}$, so ist f in x_0 differenzierbar und es gilt (1).

41. Es seien $I \subset \mathbb{R}$ ein offenes Intervall mit $0 \in I$ und $f: I \to \mathbb{R}$.

- (a) Gibt es Zahlen K > 0 und $\alpha > 1$ mit $|f(x)| \le K|x|^{\alpha}$ für $x \in I$, so ist f in 0 differenzierbar.
- (b) Gilt f(0) = 0 und gibt es K > 0 und $\alpha \in (0,1)$ mit $|f(x)| \ge K|x|^{\alpha}$ für $x \in I$, so ist f in 0nicht differenzierbar.

(a) Bestimme mithilfe der Definition die Ableitung von $f:(0,\infty)\to\mathbb{R}, f(x)=\sqrt{x}$. **42**.

(b) Für jede reelle Zahl bezeichnet

$$[x] := \max \{ k \in \mathbb{Z} : k \le x \}$$

die größte ganze Zahl, welche x nicht übersteigt. Wir definieren die Abbildung

$$[\cdot]: \mathbb{R} \to \mathbb{Z}, \quad x \mapsto [x].$$

Diese Abbildung wird auch Gaußklammer genannt.

Sei nun die Funktion f definiert durch

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto [x] + \sqrt{x - [x]}.$$

Man bestimme die links- und rechtsseitige Ableitung von f. Wo ist f differenzierbar?