In [1]:

The default car dataset that comes with R # It has 50 rows and two columns. One for speed and the other one for distance r equired to stop cars

120	
speed	dist
4	2
4	10
7	4
7	22
8	16
9	10
10	18
10	26
10	34
11	17
11	28
12	14
12	20
12	24
12	28
13	26
13	34
13	34
13	46
14	26
14	36
14	60
14	80
15	20
15	26
15	54
16	32
16	40
17	32
17	40
17	50
18	42
18	56
18	76
18	84
19	36
19	46
19	68
20	32

speed	dist
20	48
20	52
20	56
20	64
22	66
23	54
24	70
24	92
24	93
24	120
25	85

In [2]:

summary(cars)

dist speed Min. : 4.0 Min. : 2.00 1st Qu.:12.0 1st Qu.: 26.00 Median :15.0 Median : 36.00 Mean :15.4 Mean : 42.98 3rd Qu.:19.0 3rd Qu.: 56.00 :25.0 :120.00 Max. Max.

```
In [4]:
```

```
plot(cars, col='green', pch=20, cex=2, main="Relationship between Speed and Stop
ping Distance",
xlab="Speed in mph", ylab="Stopping Distance in feet")
```

Relationship between Speed and Stopping Distance for 50 Cars


```
In [ ]:
```

```
# We know for a fact that there was a relationship between speed and stoping dis
tance.
# The scatter plot above just proves it.
# The higher the speed it takes more distance for a car to stop.
```

In [21]:

```
# The linear Regression Model
speed scaled = scale(cars$speed, center=TRUE, scale=FALSE)
linear regression model=lm(dist~speed scaled,data=cars)
```

In [22]:

```
summary(linear regression model)
```

Residuals:

```
1Q Median
   Min
                           3Q
                                  Max
               -2.272
-29.069 -9.525
                        9.215
                               43.201
```

lm(formula = dist ~ speed scaled, data = cars)

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         2.1750 19.761 < 2e-16 ***
(Intercept)
              42.9800
              3.9324
                         0.4155
                                 9.464 1.49e-12 ***
speed scaled
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
```

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

In [19]:

```
# This is how we interpret the model
# If speed is increase by 1 unit it takes 42.98+(3.93*1) ft to stop the car
# Standard error means the car can stop between +-3.17 ft from 42.98 ft when th
e speed decreases by 3.9 & +- 0.42mph
# t value tells us how far we are from 0 with respect to estimates.
# px(>|t|) means what is the proability of model output being > t value. < 5% is
accepted
# Residual standard error means how many times the model will be correct and it
happens to be close to 40% [15.38/42.98]
# Multiple R-squared: this tells us how well the model is fitting the data. It h
as to be far away from 0
#F-statistic: This simply tells us the relationship between input and output. Th
e higher the better
```

In []:

```
# What can we do with this interpretation
```

In []:

 $\ensuremath{\textit{\#}}$ If someone says that they were in a car and they came to a clear stop at 100ft after hitting the brake

and ask you what thier initial speed was. You can plug in the information and get your answer.

You will be accurate 2/3 of the time with 95% confidence

In []:			