MHz2k: MPC from HE over \mathbb{Z}_{2^k}

with New Packing, Simpler Reshare, and Better ZKP

Jung Hee Cheon (Seoul National Univ. & Crypto Lab Inc.)

Dongwoo Kim (Western Digital Research)

Keewoo Lee (Seoul National Univ.)

A Brief History (of actively secure dishonest majority MPC in preprocessing model)

SHE LHE BeDOZa [BDOZ;Euro11] SPDZ [DPSZ;Crypto12] \mathbb{Z}_{2^k}

Preprocessing Model

- Preprocessing Phase: Triple Generation
 - \triangleright parties share random $[a]_i$, $[b]_i$, $[c]_i$ such that $a \times b = c$ in \mathbb{Z}_p .
- Online Phase: Secure Computation via Beaver's Trick
 - > consumes Beaver's triple at each mult. gate
- Not enough for malicious setting
 - > e.g. adversaries can deviate from described protocol in online phase

Preprocessing Model (SPDZ)

- Authentication via MAC
 - ightharpoonup Linear MAC: $MAC_{\alpha}(x) = \alpha \cdot x$ in \mathbb{Z}_p , where α is a global MAC key
- Preprocessing Phase: Authenticated Triple Generation
 - \triangleright share random $[a]_i$, $[b]_i$, $[c]_i$ & $[\alpha a]_i$, $[\alpha b]_i$, $[\alpha c]_i$ such that $a \times b = c$ in \mathbb{Z}_p (using Enc(α))
 - \triangleright No one knows the value of α (Enc(α):= \sum Enc(α_i))
 - Online Phase is essentially the same by linearity of MAC

A Brief History (of actively secure dishonest majority MPC in preprocessing model)

SHE LHE OT

BeDOZa [BDOZ;Euro11]

SPDZ [DPSZ;Crypto12]

SPDZ2 [DKL+;ESORICS13]

MASCOT [KOS;CCS16]

Overdrive [KPR;Euro18]

TopGear [BCS;SAC19]

 \mathbb{Z}_{2^k}

SPDZ2k [CDE+;Crypto18]

\mathbb{Z}_p vs \mathbb{Z}_{2^k}

MPC over \mathbb{Z}_{2^k}

- Pros: No overheads for emulations
- Cons: MPC over \mathbb{Z}_{2^k} requires a less efficient $SPD\mathbb{Z}_{2^k}$ MAC
- [DEF+;S&P19] reports upto 5x improvements in online phases.
- Disclaimer: Not an absolute advantage (Preprocessing Phase)

A Brief History (of actively secure dishonest majority MPC in preprocessing model)

SHE LHE OT

BeDOZa [BDOZ;Euro11]

SPDZ [DPSZ;Crypto12]

SPDZ2 [DKL+;ESORICS13]

MASCOT [KOS;CCS16]

Overdrive [KPR;Euro18]

TopGear [BCS;SAC19]

 \mathbb{Z}_{2^k}

SPDZ2k [CDE+;Crypto18]

Overdrive2k [OSV;CT-RSA20]

Monza [CDFG;PKC20]

MHz2k [CKL;Crypto21]

Authenticated Triple Generation (SHE-based)

- Packing method
- Reshare protocol
- ZKP of Plaintext Knowledge

New Packing

Tweaked Interpolation Packing for \mathbb{Z}_{2^k} -messages

HE Packing

- enhances amortized performance (SIMD-like optimizations)
- In SPDZ-family, packing density directly affects the throughput of triple generation.

Conventional Packing Method for \mathbb{Z}_p

$$\Phi_M(x) = \prod (x - \zeta_i) \text{ (mod p)}$$

 ζ_i : Mth root of unity mod p, $p \equiv 1 \pmod{M}$

- Fully homomorphic correspondence & Level-consistent
- No redundancy (perfect packing density)

Packing Method for \mathbb{Z}_{2^k} : HELib

$$\Phi_M(x) = \prod F_i(x) \pmod{2^k}$$
 M: odd
$$\deg F_i = d = ord_M(2)$$

- Use constant coefficients only
- Fully homomorphic correspondence & Level-consistent
- Very low packing density (1/d)

Packing Method for \mathbb{Z}_{2^k} : Overdrive 2k

$$\Phi_M(x) = \prod F_i(x) \pmod{2^k} \qquad \qquad \text{M: odd} \\ \deg F_i = d = ord_M(2)$$

- Use coefficients as much as possible, avoiding interference.
- $(a_0 + a_1x + a_3x^3 + a_4x^4 + a_9x^9)(b_0 + b_1x + b_3x^3 + b_4x^4 + b_9x^9)$ $= a_0b_0 + \dots + a_1b_1x^2 + \dots + a_3b_3x^6 + \dots + a_4b_4x^8 + \dots + a_9b_9x^{18}$
- Somewhat homomorphic correspondence (1 Mult) & Level-dependent
- Packing density $\approx 1/d^{0.4} \approx 1/5$

Packing Method for \mathbb{Z}_{2^k} : Interpolation?

- Avoid Degree Overflow: Somewhat homomorphic correspondence (1 Mult)
- Packing density ≈ 1/2
- However, interpolation over \mathbb{Z}_{2^k} is impossible in general: consider f(0) and f(2).

Tweaked Interpolation over \mathbb{Z}_{2^k}

- We devised a method to perform pseudo-interpolation over \mathbb{Z}_{2^k} .
- Lift the target points to a larger ring to cancel out effects of zero-divisors.
- For any $(m_0, \dots, m_{n-1}) \in \mathbb{Z}_{2^k}^n$, there exists $f(x) \in \mathbb{Z}_{2^{k+\delta}}[x]$ s.t.
 - $\ge \deg(f) < n$
 - $> f(i) = m_i \times 2^{\delta}$ for i < n

Packing Method for \mathbb{Z}_{2^k} : Tweaked Interpolation!

$$\Phi_{M}(x) = \prod F_{i}(x) \pmod{2^{k+2\delta}} \qquad \overset{\text{M: odd}}{\deg F_{i}} = d = ord_{M}(2)$$

$$\mathbb{Z}_{2^{k+2\delta}}[x]/\Phi_{M}(x) \qquad \qquad \overset{\mathcal{Z}_{2^{k+2\delta}}[x]}{=} \mathbb{Z}_{2^{k+2\delta}}[x]/F_{1}(x) \qquad \qquad \overset{\mathcal{Z}_{2^{k+2\delta}}[x]}{=} \mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x)$$

$$\mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x) \qquad \qquad \mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x) \qquad \qquad \mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x)$$

$$\mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x) \qquad \qquad \mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x) \qquad \qquad \mathbb{Z}_{2^{k+2\delta}}[x]/F_{r}(x)$$

- Avoid Degree & Modulus Overflow
- Somewhat homomorphic correspondence (1 Mult) & Level-dependent
- Packing density $\approx k/(2k+2d) \approx 1/2$ (This near optimal. See [CL21])

Performance

Upto 2.5x improvements in packing density versus Overdrive2k 18/36

Simpler Reshare

Reshare Protocol for Level-dependent Packings

Level-dependent Packings

- Packings for \mathbb{Z}_{2^k} (Overdrive2k & MHz2k) are "Level-dependent"
 - > i.e. different packing structure after mult.
 - This is inevitable! (See [CL21])
 - \succ in contrast to the conventional level-consistent packing for \mathbb{Z}_p
- Issue: no homomorphic computation between different packing levels

Reshare Protocol for Level-dependent Packings

Reshare: "re-encrypt" a level-0 HE ctxt into a fresh HE ctxt

$$+\operatorname{Enc}^{0}(r) \qquad \operatorname{Dec}(\cdot) \qquad \operatorname{Enc}(\cdot) \qquad -\operatorname{Enc}^{1}(r)$$

$$\operatorname{Enc}^{0}(c) \longrightarrow \operatorname{Enc}^{0}(r+c) \longrightarrow r+c \longrightarrow \operatorname{Enc}^{1}(r+c) \longrightarrow \operatorname{Enc}^{1}(c)$$

- masking ctxt is used twice at different levels
- ctxt level can be adjusted by "modulus switching"
- \triangleright packing level...? (not a problem in level-consistent packing for \mathbb{Z}_p)
- > Overdrive2k provides two masking ctxt with same message and different packing levels

Reshare Protocol for Level-dependent Packings

- We resolve this issue by a technical trick
 - \triangleright Reshare is only used to support an additional mult. with a **constant** (MAC key α)
 - We use different packing structure for MAC key (constant packing)
 - \triangleright closes gap between \mathbb{Z}_p and \mathbb{Z}_{2^k} caused by level-consistency
 - > offers 1.4x reduction in comm. cost compared to the solution of Overdrive2k

Better ZKP

TopGear2k: Better ZKP for Lattice Enc. on $\mathbb{Z}[X]/\Phi_p(X)$

ZKPoPK on HE

- ZKP of Plaintext Knowledge
 - > guarantees that a ciphertext is validly generated from a plaintext
 - > restricts adversaries from submitting maliciously generated ciphertexts

ZKPoPK on HE (TopGear)

- TopGear [BCS;SAC19]: Efficient ZKPoPK with larger challenge space
 - \triangleright leverages the structure of HE plaintext space $\mathbb{Z}[X]/\Phi_M(X)$ with $M=2^m$
 - > favorable in comm. cost, latency, and memory consumption (in batched version)

Math behind the Scene

- 1) Multiplying X^i in $\mathbb{Z}[X]/\Phi_M(X)$ does not increase coefficients (too much).
- 2) There is a "small" "pseudo-inverse" of $(X^i X^j)$ in $\mathbb{Z}[X]/\Phi_M(X)$.
 - > first observed in [BCK+; Asia14] and is being widely employed
 - affects soundness of ZKPoPK

- The lemmas were known only for $M = 2^m$ case
 - $\blacktriangleright \Phi_{2^m}(X)$ is irreducible modulo 2^k : cannot leverage parallelism via CRT
 - Overdrive2k could not employ TopGear optimization

TopGear2k: ZKPoPK on HE over \mathbb{Z}_{2^k}

- We extended the lemmas to M = p case
 - \triangleright and even to $M = p^s q^t$ case (See [CKKL21])

- TopGear2k: Efficient ZKPoPK over $\mathbb{Z}[X]/\Phi_M(X)$ with $M = p^s q^t$
 - \succ allows to use larger challenge space for \mathbb{Z}_{2^k} as in TopGear for \mathbb{Z}_p
 - > favorable in comm. cost, latency, and memory consumption (in batched version)

ZKPoMK

ZKP of Message Knowledge

Non-surjective Packings

- Packings for \mathbb{Z}_{2^k} (Overdrive2k & MHz2k) are "Non-surjective"
 - > i.e. there exist "invalid" packings in plaintext space
 - This is inevitable! (See [CL21])
 - \succ in contrast to the conventional surjective packing for \mathbb{Z}_p
- Issue: Malicious adversaries may make use of invalid packings

ZKPoMK

- We conceptualize ZKP of Message Knowledge.
 - > which guarantees that a ctxt encrypts a valid packing.
 - ZKPoMK was neglected in Overdrive2k.
 - > ZKPoMK can be easily integrated into ZKPoPK, if the small challenge space {0,1} is used.
- We design an efficient ZKPoMK for our new packing method.

Conclusion

Authenticated Triple Generation (SHE-based)

- Packing method
- Reshare protocol
- ZKPoPK and ZKPoMK

Conclusion

- MHz2k: MPC over \mathbb{Z}_{2^k} secure against actively corrupted majority
 - > 2.2x ~ 4.8x improvements in amortized comm. cost (vs. previous best schemes)
 - 3.7x ~ 6.4x improvements in memory consumption (vs. Overdrive2k)
- New Techniques and Concepts
 - tweaked interpolation & tweaked interpolation packing
 - level-dependency & surjectivity for packings
 - constant packing trick for simpler Reshare
 - generalization of [BCK+;Asia] lemma
 - new notion of ZKPoMK

Thank You!

* Live Session: Aug 20th 15:00-15:50 UTC

* E-mail: activecondor@snu.ac.kr

Abbreviations

- Ctxt : Ciphertext
- Comm. Cost : Communication Cost
- Dec.: Decryption
- Enc.: Encryption
- HE: Homomorphic Encryption
- LHE: Linearly Homomorphic Encryption
- MAC : Message Authentication Code
- MPC: Secure Multi-party Computation
- Mult.: Multiplication

- OT : Oblivious Transfer
- SHE: Somewhat Homomorphic Encryption
- SIMD : Single Instruction Multiple Data
- ZKP: Zero-knowledge Proof
- ZKPoPK: ZKP of Plaintext Knowledge
- ZKPoMK: ZKP of Message Knowledge

References

- [BCK+;Asia14] Better Zero-knowledge Proofs for Lattice Encryption and Their Application to Group Signatures
- [BCS;SAC19] Using TopGear in Overdrive: A more efficient ZKPoK for SPDZ
- [BDOZ;Euro11] Semi-homomorphic Encryption and Multiparty Computation
- [CDE+;Crypto18] SPD \mathbb{Z}_{2^k} : Efficient MPC mod 2^k for Dishonest Majority
- [CDFG;PKC20] Mon \mathbb{Z}_{2^k} a: Fast Maliciously Secure Two Party Computation on \mathbb{Z}_{2^k}
- [CKKL;arXiv21] On the Scaled Inverse of $(x^i x^j)$ modulo Cyclotomic Polynomial of the form $\Phi_{p^s}(x)$ or $\Phi_{p^sq^t}(x)$
- [CL;ePrint21] Limits of Polynomial Packings for \mathbb{Z}_{p^k} and \mathbb{F}_{p^k}
- [DEF+;S&P19] New Primitives for Actively-secure MPC over Rings with Applications to Private Machine Learning
- [DKL+;ESORICS13] Practical Covertly Secure MPC for Dishonest Majority--or: Breaking the SPDZ Limits
- [DPSZ;Crypto12] Multiparty Computation from Somewhat Homomorphic Encryption
- [KOS;CCS16] MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer
- [KPR;Euro18] Overdrive: Making SPDZ Great Again
- [OSV;CT-RSA20] Overdrive2k: Efficient Secure MPC over \mathbb{Z}_{2^k} from Somewhat Homomorphic Encryption