

- He tenido algunas dificultades al intentar resolver las ecuaciones con *Mathematica*, así que finalmente lo he hecho con *Python*, integrando con el método de Runge-Kutta.
- En las ecuaciones aparece el Yukawa y_t , cuyo running depende de las constantes de acoplo de los tres grupos gauge g_1 , g_2 , g_3 . En el artículo desprecian los términos con g_1 y g_2 , yo no lo he hecho (aunque el resultado es similar).
- Las ecuaciones para g_1 , g_2 , g_3 y g_4 se pueden resolver fácilmente de forma analítica, así que he empleado las soluciones exactas.
- Para g_4 en el artículo no da ningún valor $g_4(\mu_0)$ para fijar la constante de integración.
- Usando la fórmula (11) del artículo con $N_s = 10$ y $N_f = 54$, como indican, g_4 decrece más rápido que en su gráfica.
- Modificando el valor de $g_4(m_s)$ las curvas de λ_s y λ_{hs} apenas cambian. En cambio, la parte de alta energía de λ_h es muy sensible a este valor.
- Para los valores iniciales de las constantes del potencial he usado $\lambda_s(m_s) = 0$ (como dicen en el pie de la gráfica) y $N_s \lambda_{hs}^2(m_s) = 40$ (la condición para que el Higgs tenga la masa medida, como indican justo antes de la ecuación (12)).
- En el caso de λ_h tengo más dudas: en la gráfica he usado $\lambda_h = -1/16$. En el artículo dicen que $\hat{\lambda}_h = (\lambda_h + \delta \lambda)e^{4\Gamma} = -1/16$. Pero haciendo numéricamente la integral para $\Gamma(\mu)$ y sustituyendo para que $\hat{\lambda}_h = -1/16$, se obtiene un valor de λ_h mucho menor que el que aparece en la gráfica del artículo.