here with *p*-substituted aromatic amines, but it worked as well with *o*- and *m*-substituted arenamines (not shown).

The purity of all compounds was checked by 1 H-NMR, in some cases additionally by 13 C-NMR and by mass spectroscopy (see *Exper. Part*). An unusual electrochemical technique was used to monitor the progress of the exchange reaction of the (dinitrophenyl)bipyridinium salts reacting with the arenamine compounds, *e.g.*, **14–20** being transformed to **21–26**. The 1,3-dinitrobenzene is electroactive and shows two reduction processes at -0.92 and -1.25 V vs. SCE in MeCN [20]. *Fig. 2* shows the cyclic voltammograms of 1-(2,4-dinitrophenyl)-1'-(4-ethoxyphenyl)-4,4'-bipyridinium bis(hexafluorophosphate) (**19**·2 PF $_{6}^{-}$) and that of the corresponding product after reaction with 4-aminobenzenemethanol, *i.e.*, 1-(4-ethoxyphenyl)-1'-[(4-hydroxymethyl)phenyl]-4,4'-bipyridinium bis(hexafluorophosphate) (**25**·2 PF $_{6}^{-}$), the two waves corresponding to the dinitrophenyl moiety having disappeared in the product. Preliminary electrochemical studies with the products reveal that tuning of the first reduction potential is possible over a broad range from -0.04 to -0.300 V vs. Ag/AgCl (*cf. Table*).

D. B. thanks the Interdisciplinary Graduate College 612 of the University of Osnabrück for financial support.

Final product	$E_{1/2}\left[\mathbf{V}\right] ^{\mathrm{a}})$	Dinitrophenyl intermediate	$E_{1/2} [V]^a$
12 ^b)	-0.044		
	-0.261		
24°)	-0.223	18 ^c)	-0.090
	-0.450	,	-0.325
			-0.961
			-1.220
25 °)	-0.161	19 ^c)	-0.072
	-0.464		-0.238
			-0.892
			-1.180
11 ^b)	-0.334		
	-0.689		

Table. Selected Half-Wave Potentials

Experimental Part

General. Compound 1 [17] and 2,4-dinitrophenyl 4-methylbenzenesulfonate (13) [18] [19] were prepared according to published procedures. Pyridine-4-amine was from Sigma-Aldrich, and the preparation of 4-(pyridin-4-ylmethyl)benzenamine for the synthesis of 28 is described in [21]. Electrochemical measurements: three-electrode systems under Ar with a potentiostat PGSTAT-20 from AUTOLAB. NMR Spectra: Bruker-Avance-250 (250 MHz) spectrometer; δ in ppm, J in Hz. MS: Agilent-HP-1100 spectrometer operating in the API-ES mode; in m/z (rel. %).

Synthesis of 2, 3, and 6–8: General Procedure A. To 1-(2,4-dinitrophenyl)-4,4'-bipyridinium hexafluorophosphate ($1 \cdot PF_6^-$; 2 mmol) dissolved in 80% EtOH (50 ml), the corresponding 4-substituted benzenamine (3 mmol) was added, and the mixture was stirred for 24 h at 90°. The mixture was evaporated, the residue dissolved in H₂O, the aq. soln. washed with Et₂O (3×) and evaporated, and the residue dissolved in MeOH and added to 3M NH₄PF₆. The precipitate was collected and dried *in vacuo*.

1-(4-Hydroxyphenyl)-4,4'-bipyridinium Hexafluorophosphate ($\mathbf{2} \cdot \mathrm{PF}_{6}^{-}$): Yield 88%. Brown powder. M.p. 245°. ¹H-NMR (250 MHz, CD₃CN): 7.15 (d, ${}^{3}J$ =8.9, arom. H); 7.61 (d, ${}^{3}J$ =8.9, arom. H); 7.89 (d, ${}^{3}J$ =6.1, Vio); 8.46 (d, ${}^{3}J$ =6.8, Vio); 8.91 (d, ${}^{3}J$ =6.1, Vio); 8.98 (d, ${}^{3}J$ =6.9, Vio). API-ES-MS: 249.3 (100), 250.2 (18).

a) Measured on glassy carbon vs. Ag/AgCl at 25°. b) 0.2m LiClO₄/MeCN. c) 0.2m (Bu₄N)PF₆/MeCN.