On optimal block Markov coding schemes for multiple-access channel with feedback

Aditya Mahajan McGill University

Motivation

The capacity of multi-terminal communication systems is often characterized by multi-letter directed information expressions which are difficult to compute.

Motivation

The capacity of multi-terminal communication systems is often characterized by multi-letter directed information expressions which are difficult to compute.

Capacity of MAC with feedback

$$C = \bigcup_{\text{code trees}} \left\{ (R_1, R_2) : R_1 \le I_{\infty}(X^1 \to Y \mid X^2) \\ R_2 \le I_{\infty}(X^2 \to Y \mid X^1) \right\}$$

[Kramer-03]

Motivation

The capacity of multi-terminal communication systems is often characterized by multi-letter directed information expressions which are difficult to compute.

Capacity of MAC with feedback

$$C = \bigcup_{\text{code trees}} \left\{ (R_1, R_2) : \begin{array}{c} R_1 \le I_{\infty}(X^1 \to Y \mid X^2) \\ R_2 \le I_{\infty}(X^2 \to Y \mid X^1) \\ R_1 + R_2 \le I_{\infty}(X^1 X^2 \to Y) \end{array} \right\}$$

[Kramer-03]

Block Markov coding schemes are a class of achievable schemes that give inner bounds on capacity

Block Markov coding scheme

Cover-Leung Scheme: decode after one block

[Cover-Leung-81]

Block Markov coding scheme

Cover-Leung Scheme: decode after one block

[Cover-Leung-81]

$$R_{CL} = \bigcup_{P_U P_{X^1 \mid U} P_{X^2 \mid U}} \left\{ (R_1, R_2) : \begin{array}{c} R_1 \leq I(X^1 \wedge Y \mid UX^2) \\ R_2 \leq I(X^2 \wedge Y \mid UX^1) \\ R_1 + R_2 \leq I(X^1 X^2 \wedge Y) \end{array} \right\}$$

Not tight in general

Block Markov coding scheme

Bross-Lapidoth Scheme: decode after two blocks

[Bross-Lapidoth-05]

Block Markov coding scheme

$$R_{BL} = \bigcup_{\substack{P_U P_{X^1 \mid U} P_{X^2 \mid U} \\ g_1: X^1 \times Y \to V^1, g_2: X^2 \times Y \to V^2 \\ \text{stuff}}} \left\{ (R_1, R_2) : \\ R_1 \leq (1 + \eta)^{-1} I(X^1 \wedge Y \mid UX^2 V^1) \\ R_2 \leq (1 + \eta)^{-1} I(X^2 \wedge Y \mid UX^1 V^2) \\ R_1 + R_2 \leq (1 + \eta)^{-1} I(X^1 X^2 \wedge Y \mid V^1 V^2) - R_L \right\} \\ R_L \leq \text{complicated expression} \\ \eta \geq \text{complicated expression}$$

Another block Markov scheme

Venkataramanan Pradhan Scheme

[Venkataramanan-Pradhan-11]

Another block Markov scheme

$$\begin{split} R_{VP} &= \bigcup_{\substack{\tilde{S} = (\tilde{U}, \tilde{V}^1, \tilde{V}^2, \tilde{Y}), S = (U, V^1, V^2, Y) \\ P_{\tilde{S}\tilde{X}^1, \tilde{X}^2} \\ P_{V^1 | \tilde{S}, \tilde{X}^1} P_{V^2 | \tilde{S}, \tilde{X}^2} \\ P_{UX^1 X^2 Y | V^1 V^2} \\ \text{stuff} \\ R_1 &\leq I(X^1 \wedge Y \mid X^2 V^2 U \tilde{S} \tilde{X}^2) - [I(V^1 \wedge X^2 \mid Y V^2 U \tilde{S} \tilde{X}^2) - I(U \wedge Y \mid \tilde{U} \tilde{Y})]^+ \\ R_2 &\leq I(X^2 \wedge Y \mid X^1 V^1 U \tilde{S} \tilde{X}^1) - [I(V^2 \wedge X^1 \mid Y V^1 U \tilde{S} \tilde{X}^1) - I(U \wedge Y \mid \tilde{U} \tilde{Y})]^+ \\ R_1 + R_2 &\leq I(X^1 X^2 \wedge Y \mid U \tilde{S}) + I(U \wedge Y \mid \tilde{U} \tilde{Y}) \end{split}$$

Not tight in general

Comparison of the different schemes

- BL and VP schemes (decode after two blocks) better than CL (decode after one block)
- Relation between BL and VP schemes is not clear.

The achievable rate region of both schemes is given by the solutions of complicated non-linear optimization problems. As such, it is hard to evaluate the entire region.

Comparison of the different schemes

- BL and VP schemes (decode after two blocks) better than CL (decode after one block)
- © Relation between BL and VP schemes is not clear.

The achievable rate region of both schemes is given by the solutions of complicated non-linear optimization problems. As such, it is hard to evaluate the entire region.

Is there another block Markov coding scheme that **decodes after two blocks** and beats both BL and VP?

What is the structure of optimal

block Markov coding schemes

that decode after a fixed delay?

Block Markov coding scheme

Let

N: Block length

B: Number of blocks

 M^i : Message sizes

d: Decoding delay (in blocks)

A (N,B,M^1,M^2,d) block Markov (BM) coding scheme is a tuple (f^1,f^2,g) where $f^i=(f^i_1,\ldots,f^i_B),\,g=(g_1,\ldots,g_B)$, and

$$f_b^i: (\mathcal{M}^i)^b \times \mathcal{Y}^{(b-1)N} \mapsto (\mathcal{X}^i)^N$$

$$g_b:\mathcal{Y}_{1:b}\mapsto (\mathcal{M}^i,\mathcal{M}^2)$$

Block Markov coding scheme

Cost function

For any scheme $S = (f^1, f^2, g)$ and all b > d

$$\begin{split} J_b(S) &= \mathbb{P}(W_{1:b-d} \neq \hat{W}_{d+1:b} \mid S) \\ &+ \mathbb{P}(W_{b-d+1:B-d} \neq \hat{W}_{b+1:B} \mid W_{1:b-d} = \hat{W}_{d+1:b}, S) \end{split}$$

ε -strong achievability

For any $\varepsilon > 0$, the rate pair (R^1, R^2) is ε -strongly achievable if for all sufficiently large block length and number of blocks, \exists coding schemes $S = (f^1, f^2, g)$ such that

1.
$$(B-d)\frac{\log M^i}{BN} \ge R^i - \varepsilon$$

2.
$$J_b(S) \le \varepsilon$$
 for all $b > d$.

Problem formulation

Can we restrict attention to a subclass S^* of all coding schemes S such that $\exists S^* \in S^*$ and

$$J_b(S^*) \le J_b(S), \quad \forall S \in \mathcal{S} \text{ and } \forall b > d.$$

Structure of optimal decoder

Optimistic MAP decoder

$$g_b(y_{1:b}) = \arg\min_{w} \mathbb{P}(W_{b-d} = w \mid Y_{1:b} = y_{1:b}, \hat{W}_{d+1:b-1} = W_{1:b-1}, f^1, f^2)$$

Structure of optimal decoder

Optimistic MAP decoder

$$g_b(y_{1:b}) = \arg\min_{w} \mathbb{P}(W_{b-d} = w \mid Y_{1:b} = y_{1:b}, \hat{W}_{d+1:b-1} = W_{1:b-1}, f^1, f^2)$$

Lemma (Optimal decoder)

For any coding scheme S, changing the decoder to be an optimistic MAP decoder improves J_b universally (i.e., for all b > d).

Recall

$$J_b(S) = \mathbb{P}(W_{1:b-d} \neq \hat{W}_{d+1:b} \mid S)$$

+ $\mathbb{P}(W_{b-d+1:B-d} \neq \hat{W}_{b+1:B} \mid W_{1:b-d} = \hat{W}_{d+1:b}, S)$

 W_{b-d} depends on $Y_{1:b}$ through the channel inputs $X_{b-d+1:b}$.

 W_{b-d} depends on $Y_{1:b}$ through the channel inputs $X_{b-d+1:b}$.

Suppose
$$\hat{W}_{d+1:b-1} = W_{1:b-d-1}$$
.

$$x_{b-d}^i = f_b^i(w_{1:b-d}, y_{1:b-d-1}) = \varphi_{b-d}^{i,(0)}(w_{b-d})$$

 W_{b-d} depends on $Y_{1:b}$ through the channel inputs $X_{b-d+1:b}$.

Suppose
$$\hat{W}_{d+1:b-1} = W_{1:b-d-1}$$
.

$$\begin{split} x_{b-d}^i &= f_b^i(w_{1:b-d}, y_{1:b-d-1}) = \varphi_{b-d}^{i,(0)}(w_{b-d}) \\ x_{b-d+1}^i &= f_b^i(w_{1:b-d+1}, y_{1:b-d}) = \varphi_{b-d+1}^{i,(1)}(w_{b-d}, w_{b-d+1}) \end{split}$$

 W_{b-d} depends on $Y_{1:b}$ through the channel inputs $X_{b-d+1:b}$. Suppose $\hat{W}_{d+1:b-1} = W_{1:b-d-1}$.

$$\begin{aligned} x_{b-d}^i &= f_b^i(w_{1:b-d}, y_{1:b-d-1}) = \varphi_{b-d}^{i,(0)}(w_{b-d}) \\ x_{b-d+1}^i &= f_b^i(w_{1:b-d+1}, y_{1:b-d}) = \varphi_{b-d+1}^{i,(1)}(w_{b-d}, w_{b-d+1}) \\ &\dots &= \dots \\ x_{b-d+k}^i &= f_b^i(w_{1:b-d+k}, y_{1:b-d+k}) = \varphi_{b-d+k}^{i,(k)}(w_{b-d:b-d+k}) \\ &- \end{aligned}$$

 W_{b-d} depends on $Y_{1:b}$ through the channel inputs $X_{b-d+1:b}$.

Suppose
$$\hat{W}_{d+1:b-1} = W_{1:b-d-1}$$
.

$$\begin{aligned} x_{b-d}^{i} &= f_{b}^{i}(w_{1:b-d}, y_{1:b-d-1}) = \varphi_{b-d}^{i,(0)}(w_{b-d}) \\ x_{b-d+1}^{i} &= f_{b}^{i}(w_{1:b-d+1}, y_{1:b-d}) = \varphi_{b-d+1}^{i,(1)}(w_{b-d}, w_{b-d+1}) \\ &\dots &= \dots \\ x_{b-d+k}^{i} &= f_{b}^{i}(w_{1:b-d+k}, y_{1:b-d+k}) = \varphi_{b-d+k}^{i,(k)}(w_{b-d:b-d+k}) \\ &\dots &= \dots \end{aligned}$$

 $\mathbb{P}(W_{b-d} \mid Y_{1:b}, \hat{W}_{d+1:b-1} = W_{1:b-d-1}) \text{ can be computed using the partially evaluated functions } \phi_{b-d}^{i,(0)}(\cdot), \ldots, \phi_b^{i,(d)}(\cdot).$

Structure of optimal decoder

$$\begin{split} g_b(y_{1:b}) &= \arg\min_{w} \mathbb{P}(W_{b-d} = w \mid Y_{1:b} = y_{1:b}, \hat{W}_{d+1:b-1} = W_{1:b-1}, f^1, f^2) \\ &= \tilde{g}_b(\varphi_{b-d}^{(0)}, \dots, \varphi_b^{(d)}) \end{split}$$

where for k < d

$$\varphi_b^{i,(k)}(w_{b-k:b}^i) = f_i(w_{1:b-k-1}^i, w_{b-k:b}^i, y_{1:b-1})$$

and
$$\varphi_b^{(d)} = \left(\varphi_b^{1,(d)}, \varphi_b^{2,(d)}\right)$$

Note that the decoder \tilde{g}_b is a **fixed memory** decoder.

Structure of optimal decoder

$$\begin{split} g_b(y_{1:b}) &= \arg\min_{w} \mathbb{P}(W_{b-d} = w \mid Y_{1:b} = y_{1:b}, \hat{W}_{d+1:b-1} = W_{1:b-1}, f^1, f^2) \\ &= \tilde{g}_b(\varphi_{b-d}^{(0)}, \dots, \varphi_b^{(d)}) \end{split}$$

where for k < d

$$\varphi_b^{i,(k)}(w_{b-k:b}^i) = f_i(w_{1:b-k-1}^i, w_{b-k:b}^i, y_{1:b-1})$$

and
$$\varphi_b^{(d)} = \left(\varphi_b^{1,(d)}, \varphi_b^{2,(d)}\right)$$

Note that the decoder \tilde{g}_b is a **fixed memory** decoder.

Proposition (Optimal decoder)

Restricting attention to finite memory decoders of the above form does not affect the ε -strongly-achievable region.

Structure of optimal encoders

- Finite memory decoder
- **▶** *d*-block decoding delay

The argument of Witsenhausen-79 for the structure of optimal real-time encoder applies, although we are looking at multi-terminal setup with a different objective function.

Structure of optimal encoders

- Finite memory decoder
- ► *d*-block decoding delay

The argument of Witsenhausen-79 for the structure of optimal real-time encoder applies, although we are looking at multi-terminal setup with a different objective function.

Proposition (Optimal Encoder)

Restricting attention to encoders of the form

$$x_b^i = f_b^i(w_{b-d:b}^i, \varphi_{b-d}^{(0)}(\cdot), \dots, \varphi_{b-1}^{(d-1)}(\cdot))$$

does not affect the ε -strongly-achievable region.

Proof idea

Proof proceeds by backward induction. Assume both encoders from block b + 1 : B have the desired structure.

Pick any encoder and look at f_b^i . The costs of interests are J_b , J_{b+1} , ..., J_B .

Proof idea

Proof proceeds by backward induction. Assume both encoders from block b + 1 : B have the desired structure.

Pick any encoder and look at f_b^i . The costs of interests are J_b , J_{b+1} , ..., J_B .

Assume $\hat{W}_{1:b-1} = W_{d+1:b-d-1}$.

Can pick a randomized encoder \tilde{f}_b^i that induces the same distribution on the future realizations of the partially evaluated functions $\{(\varphi_{c-d}^{(0)}(\cdot),\ldots,\varphi_c^{(d)}(\cdot))\}_{c=b}^B$ as given by f_b^i .

Summary

Structure of Encoder

$$x_b^i = f_b^i(w_{b-d:b}^i, \varphi_{b-d}^{(0)}(\cdot), \dots, \varphi_{b-1}^{(d-1)}(\cdot))$$

Structure of Decoder

$$\hat{w}_b = \tilde{g}_b(\varphi_{b-d}^{(0)}, \dots, \varphi_b^{(d)})$$

Comparison with achievable schemes

Decoding with one block delay

Our result

$$\begin{aligned} x_b^i &= f_b^i(w_{b-1}^i, w_b^i, \varphi_{b-1}^{(0)}(\cdot)) \\ \hat{w}_b &= \tilde{g}_b(\varphi_{b-1}^{(0)}, \varphi_b^{(1)}) \end{aligned}$$

© Cover-Leung

$$x_b^i = f_b^i(w^i, w_{b-1}^i, u)$$

The decoder is a typicality decoder.

Comparison with achievable schemes

- 9 At the encoder, $\varphi_{b-1}^{(0)}$ plays the role of the auxiliary random variable u.
- © Compare from coding with causal side information (code function = auxiliary random variable). This case is different because the code function is at a block level, while the auxiliary random variable is at the symbol level.

Comparison with achievable schemes

Coding with two blocks of delay

Our result

$$\begin{split} x_b^i &= f_b^i(w_{b-2}^i, w_{b-1}^i, w_b^i, \varphi_{b-2}^{(0)}(\cdot), \varphi_{b-1}^{(1)}) \\ \hat{w}_b &= \tilde{g}_b(\varphi_{b-2}^{(0)}, \varphi_{b-1}^{(1)}, \varphi_b^{(2)}) \end{split}$$

Bross-Lapidoth and Venkataramanan-Pradhan

Both have multiple auxiliary random variables and many other conditions. Difficult to make a direct comparison.

Conclusion

- At the block level, block Markov coding schemes are similar to real-time communication.
- Stochastic control provides some insights into design of block Markov coding schemes and some intuition on the choice of auxiliary variables.
- MAC with multiple encoders and feedback?
- Other multi-terminal communication systems?

Thank you