

Árboles

Árboles de Búsqueda Binaria

Definición

- Un árbol es un conjunto de nodos que cumplen con relaciones de padre, hijo y hermano
- Los cuales e pueden utilizar como diccionarios y colas de prioridad
- Los árboles de búsqueda son estructuras de datos que soportan las siguientes operaciones: Insertar, Eliminar, Buscar, Mínimo, Máximo, Predecesor
- Las operaciones toman un tiempo proporcional a la altura del árbol.

Gráfico

Gráfico

A Raíz, Nivel = 1

В

C

D Padre, Nivel = 2

٤

F

- G
- H

- M Hoja, Nivel = 4

La altura del árbol corresponde al nivel de la hoja mas alejada

Árboles de Búsqueda Binaria

- Un árbol de búsqueda binaria es un árbol ordenado de grado 2, es decir, puede tener un máximo de 2 subárboles a los que se les identifica como subárbol izquierdo y subárbol derecho
- Un árbol binario completo es un árbol donde cada nodo tiene exactamente 2 hijos
- Se puede visitar a todos sus nodos utilizando 3 recorridos: pre-orden, orden y post-orden
- También son válidas las operaciones de inserción, eliminación y búsqueda

Recorridos

Se visita RAÍZ - IZQUIERDA - DERECHA

ORDEN

Se visita IZQUIERDA - RAÍZ - DERECHA

POSTORDEN

Se visita IZQUIERDA - DERECHA - RAÍZ

Insertar

25, 7, 40, 30, 15, 12, 35, 45, 13, 5, 28, 20

Insertar

25, 7, 40, 30, 15, 12, 35, 45, 13, 5, 28, 20

PRE-ORDEN

PRE-ORDEN

25, 7, 5, 15, 12, 13, 20, 40, 30, 28, 35, 45

ORDEN

ORDEN

5, 7, 12, 13, 15, 20, 25, 28, 30, 35, 40, 45

POST-ORDEN

POST-ORDEN

5, 13, 12, 20, 15, 7, 28, 35, 30, 45, 40, 25

ELIMINAR HOJAS

Eliminar hojas no representa ningún problema

ELIMINAR PADRES

Eliminar padres exige reestructurar el árbol sin romper las reglas

