

Recurrent Neural Networks (RNN)

Jimeng Sun

Recurrent Neural Networks

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

Basic Concepts of RNN

Basic RNN Structure

$$\mathbf{h}^{(t)} = f(\mathbf{U}\mathbf{x}^{(t)} + \mathbf{W}\mathbf{h}^{(t-1)} + \mathbf{b}_1)$$

$$\mathbf{o}^{(t)} = \mathbf{V}\mathbf{h}^{(t)} + \mathbf{b}_2$$

$$\hat{\mathbf{y}}^{(t)} = g(\mathbf{o}^{(t)})$$

Basic RNN Structure

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

Forward Computation

$$\mathbf{z}^{(t)} = \mathbf{U}\mathbf{x}^{(t)} + \mathbf{W}\mathbf{h}^{(t-1)} + \mathbf{b}_{1}$$
 $\mathbf{h}^{(t)} = f(\mathbf{z}^{(t)})$
 $\mathbf{o}^{(t)} = \mathbf{V}\mathbf{h}^{(t)} + \mathbf{b}_{2}$
 $\widehat{\mathbf{y}}^{(t)} = g(\mathbf{o}^{(t)})$
 $L = \sum_{t} L^{(t)} = -\sum_{t} \log p(\mathbf{y}^{(t)} | \{\mathbf{x}^{(t)}, \dots, \mathbf{x}^{(T)}\})$
e. g.

- f is tanh
- g is softmax, which produces a normalized probability over output classes
- $L^{(t)}$ is negative log-likelihood loss e.g., in binary classification $L = -\sum_t y^{(t)} \log \hat{y}^{(t)} + (1 - y^{(t)}) \log(1 - \hat{y}^{(t)})$

Backpropagation through time (BPTT): $\nabla_{o^{(t)}}L$

$$\left(\nabla_{\boldsymbol{o}^{(t)}}L\right)_{i} = \frac{\partial L}{\partial \boldsymbol{o}_{i}^{(t)}} = \frac{\partial L}{\partial L^{(t)}} \frac{\partial L^{(t)}}{\partial \boldsymbol{o}_{i}^{(t)}}$$

Backpropagation through time (BPTT): $\nabla_{h^{(T)}}L$

Last time stamp

$$\nabla_{\boldsymbol{h}^{(T)}}L = V^T \nabla_{\boldsymbol{o}^{(T)}}L$$

Backpropagation through time (BPTT): $\nabla_{h^{(t)}}L$

Last time stamp

$$\nabla_{\boldsymbol{h}^{(T)}}L = V^T \nabla_{\boldsymbol{o}^{(T)}}L$$

Other time stamp

$$\nabla_{\boldsymbol{h}^{(t)}} L = \left(\frac{\partial \boldsymbol{h}^{(t+1)}}{\partial \boldsymbol{h}^{(t)}}\right)^{\boldsymbol{T}} \left(\nabla_{\boldsymbol{h}^{(t+1)}} L\right) + \left(\frac{\partial \boldsymbol{o}^{(t)}}{\partial \boldsymbol{h}^{(t)}}\right)^{\boldsymbol{T}} \left(\nabla_{\boldsymbol{o}^{(t)}} L\right)$$

Backpropagation through time (BPTT)

$$\nabla_{\boldsymbol{V}} \mathcal{L} = \sum_{t} \sum_{k} \left(\frac{\partial \mathcal{L}}{\partial o_{k}^{(t)}} \right) \nabla_{\boldsymbol{V}} o_{k}^{(t)} = \sum_{t} (\nabla_{\boldsymbol{o}^{(t)}} \mathcal{L}) \boldsymbol{h}^{(t)^{T}}$$

$$\nabla_{\boldsymbol{W}} \mathcal{L} = \sum_{t} \sum_{j} \left(\frac{\partial \mathcal{L}}{\partial h_{j}^{(t)}} \right) \nabla_{\boldsymbol{W}} h_{j}^{(t)} = \sum_{t} diag(1 - (\boldsymbol{h}^{(t)})^{2}) (\nabla_{\boldsymbol{h}^{(t)}} \mathcal{L}) \boldsymbol{h}^{(t-1)^{T}}$$

$$\nabla_{\boldsymbol{U}} \mathcal{L} = \sum_{t} \sum_{j} \left(\frac{\partial \mathcal{L}}{\partial h_{j}^{(t)}} \right) \nabla_{\boldsymbol{U}} h_{j}^{(t)} = \sum_{t} diag(1 - (\boldsymbol{h}^{(t)})^{2}) (\nabla_{\boldsymbol{h}^{(t)}} \mathcal{L}) \boldsymbol{x}^{(t)^{T}}$$

$$\nabla_{\boldsymbol{b}_{1}} \mathcal{L} = \sum_{t} \left(\frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{b}^{(t)}} \right)^{T} \nabla_{\boldsymbol{h}^{(t)}} \mathcal{L} = \sum_{t} diag(1 - (\boldsymbol{h}^{(t)})^{2}) \nabla_{\boldsymbol{h}^{(t)}} \mathcal{L}$$

$$\nabla_{\boldsymbol{b}_{2}} \mathcal{L} = \sum_{t} \left(\frac{\partial \boldsymbol{o}^{(t)}}{\partial \boldsymbol{b}_{2}} \right)^{T} \nabla_{\boldsymbol{o}^{(t)}} \mathcal{L} = \sum_{t} \nabla_{\boldsymbol{o}^{(t)}} \mathcal{L}$$

BPTT: Vanishing gradient problem

- Gradient can become very small over a long sequence
- Standard RNN will have difficulty to "remember" state from early part of the input sequence

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

Standard RNN

• Standard RNN has a simple computation cell from input x to latent state h

Long short term memory networks (LSTM)

- Standard RNN has a simple computation *cell* from input x to latent state h
- LSTM provides a more sophisticated *cell*

LSTM: Cell Structure

LSTM: Cell state

LSTM: Forget Gate

LSTM: Input Gate

LSTM: Update cell state

LSTM: Output Gate

LSTM: Cell Structure

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

GRU: Gated Recurrent Unit

GRU: Update Gate

GRU: Reset Gate

GRU: New information to the hidden state

GRU: Final New Hidden State

GRU: Summary

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

Bidirectional RNN

$$\vec{h}^t = f(Ux^{(t)} + Wh^{(t-1)} + b_1)$$

$$\vec{h}^t = f(Ux^{(t)} + Wh^{(t+1)} + b_1)$$

$$y^{(t)} = g(V[\vec{h}^t; \vec{h}^t] + b_2)$$

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

Encoder-Decoder Sequence-to-Sequence Model

- RNN Basics
- Learning RNN with Backpropagation Through Time (BPTT)
- Long-Short Term Memory Networks (LSTM)
- Gated Recurrent Unit (GRU)
- Bidirectional RNN
- Sequence-to-Sequence RNN
- Healthcare Applications

Using Recurrent Neural Network Models For Early Detection Of Heart Failure Onset

How to model temporal relations in EHR

• Given a patient record, predict if the patient will be diagnosed with heart failure in the future

- Input sample x
 - Patient record over time
 - Diagnosis codes, medication codes, procedure codes

- Input sample x
 - Patient record over time
 - Diagnosis codes, medication codes, procedure codes

Number of unique codes in the data

- Feed visits into the RNN
 - One visit at each timestep
 - Use the final hidden layer to predict HF

Data

34K patients from Sutter Health
4K cases, 30K controls
18-months observation window

Case-control selection criteria

Age (40-85)

Types of diagnoses received

Number of hospital visits

Time span between diagnoses

Prediction performance

Doctor AI: Predicting Clinical Events via Recurrent Neural Networks

Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F. Stewart, Jimeng Sun

Machine Learning for Healthcare Conference, 2016

Doctor AI: Background

Disease progression modeling

Doctor AI: Model

- Feed visits into the RNN
 - One visit at each timestep.
 - Predict next events at each timestep.

Doctor AI: Data

- 260K patients from Sutter Health
- Patient records over 10 years
- Input codes
 - Diagnosis codes, medication codes, procedure codes (38,000 codes)
- Output labels
 - 1,183 diagnosis codes

Doctor AI: Sequential Prediction

Predicting diagnoses in the next visit

 $top-k recall = \frac{\# \text{ of true positives in the top } k \text{ predictions}}{\# \text{ of true positives}}$

Doctor AI: Knowledge Transfer

• Generalize RNN model from one hospital to another

