» Properties of Matrix Multiplication

* Matrices are NOT commutative AB & BA

Let A, B, and C be matrices with dimensions so that the following operations make sense, and let k be a scalar. The following equalities hold:

*
$$A(BC) = (AB)C$$
 Associative

* $A(B+C) = AB + AC$ and $(B+C)A = BA + CA$

* $k(AB) = (kA)B = A(kB)$

* $AI = IA = A$

Cossociative

(3+4) $2 = 3.2 + 4.2$

Cossociative

(3+4) $2 = 3.2 + 4.2$

Cossociative

(3+4) $2 = 3.2 + 4.2$

» Matrix Powers

In the same way that $a^0 = 1$ for a scalar a, We define

$$A^0 = I$$
 identity matrix

for a matrix A.

Similarly, for any **positive** integer n, we define

$$A^n = \underbrace{A \cdot A \cdot \cdots \cdot A}_{n \text{ times}}$$

$$A^2 = A \cdot A$$

$$A^3 = A \cdot A \cdot A$$

Can we compute
$$A^2$$
 if A is not square? No $A = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 3 \end{bmatrix}$

$$A^2 = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 6 \\ 0 & 2 & 3 \end{bmatrix}$$

$$(2\times3) (2\times3)$$

$$\frac{1}{2}$$

$$\frac{$$

» Important Reminders

- * Matrix multiplication is not commutative: $AB \neq BA$
- * If we know that AX = BX, we cannot conclude that A = B.

