# Лабораторная работа 3.4.2. Закон Кюри-Вейсса

Вехов Владимир

27 ноября 2024 г.

#### Краткая теория

В данной лабораторной работе предлагается проверить закон Кюри-Вейсса: при температуре выше температуры Кюри:

$$\chi \sim \frac{1}{T - \theta_P}$$

 $\theta_P$  - парамагнитная точка Кюри.

Исследуемый материал будет помещен в катушку индуктивности, из-за чего её индуктивность будет меняться с температурой:

$$L - L_0 \sim \mu - 1 = \chi$$

Изменение индуктивности будем наблюдать с помощью изменения периода колебаний:  $\tau = 2\pi\sqrt{LC}$ , поэтому

$$L - L_0 \sim \tau^2 - \tau_0^2 \rightarrow \chi \sim \tau^2 - \tau_0^2 \rightarrow \frac{1}{\tau^2 - \tau_0^2} \sim T - \theta_P$$

Здесь  $L_0$  и  $\tau_0$  - индуктивность и период колебаний без образца в катушке соответственно.

#### Экспериментальная установка

Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.



Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и рабочей жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца  $\chi$ , а следовательно, самоиндукция катушки и период колебаний  $\tau$  автогенератора. Для измерения периода используется частотомер.

Измерения проводятся в интервале температур от 14°C до 40°C. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. Эта разность температур фиксируется термопарой, чувствительность которой  $K=24\frac{\text{град}}{\text{мB}}$ . ЭДС термопары измеряется цифровым вольтметром.

| au,     |
|---------|
| 10.0674 |
| 9.964   |
| 9.793   |
| 9.441   |
| 9.129   |
| 8.788   |
| 8.624   |
| 8.543   |
| 8.517   |
| 8.449   |
| 8.381   |
| 8.349   |
| 8.318   |
| 8.313   |
|         |

Таблица 1: Зависимость  $\tau(t)$ 



Рис. 1: f(T)

### ход работы

Исследуем зависимость периода колебаний LC-генератора от температоры образца, не допуская разность температур образца и рабочей жидкости более  $0.5~\mathrm{C}$  (ЭДС термопары не превышает  $0.03~\mathrm{mB}$ ).

$$\tau_0 = 8,252$$

## 1 Обработка результатов

Построим график зависимости  $f = 1/(\tau^2 - \tau_0^2)$  от Т.

 $\Theta_p = 305$ 

При помощи МНК найдем точку Кюри  $\Theta_K$ .  $(\alpha=0.013)\Theta_k=287K$