

Name: Prudhvi Reddy Araga

Login ID: praraga

1. $F(n) = \Omega(g(n))$ implies g(n) = 0(f(n))

Answer: True

By definition

$$f(n) = \Omega(g(n))$$
 which implies $O \le c.g(n) \le f(n)$

$$g(n) = 0(f(n))$$
 which implies $O \le g(n) \le c.f(n)$

Let us assume that $f(n) = 100n^2$, $g(n) = n^2$

$$f(n) >= c.g(n)$$

$$100.n^2 >= c.n^2$$

Consider the constant c = 50

$$100n^2 >= 50n^2$$

$$2 >= 1$$

g(n) = O(f(n)) which is equal to

$$c.f(n) >= g(n)$$

 $c.100.n^2 >= n^2$

$$c.100.n^2 >= n^2$$

$$50.100.n^2 >= n^2$$

$$5000 >= 1$$

Based on the above equations $F(n) = \Omega(g(n))$ implies g(n) = O(f(n)) is true.

2. $T(n) = 2T(n/2) + n^4$

Let us assume that n = n/2

$$T(n/2) = 2T(n/4) + (n/2)^4$$

$$T(n/2) = 2T(n/4) + n^4/16$$