CG1111: Engineering Principles and Practice I

Debrief and Tutorial for Week 3

- Energy, Power & Efficiency:
 - –Instantaneous power:

$$\checkmark P = \frac{dW(t)}{dt}$$

–Efficiency

$$\checkmark \eta = \frac{P_{out}}{P_{in}} = \frac{P_{out}}{P_{out} + P_{Total Loss}}$$

- -C-rate of battery
 - ✓ A "1C" rate means that the discharge current will
 discharge the entire battery in 1 hour

Series vs Parallel Connection of Batteries

Two Batteries connected in Series: double the voltage but have the same capacity

Two Batteries connected in Parallel: double the capacity but have the same voltage

Battery Discharging Characteristics

Battery Design

- Fundamentals of electricity:
 - -What is Resistance?
 - ✓ All materials present some opposition to electric current
 - -Ohm's Law
 - ✓ Empirical observation that $V \propto I$ for purely resistive element, and resistance is defined as V/I
 - -How is electrical power calculated?
 - ✓ P = VI (always true regardless of type of element)
 - ✓ For resistors, we have $P = I^2R$ because V = IR<u>Never, never</u> use $P = I^2R$ for non-resistive elements (e.g., LEDs)!!

- Basic circuit concepts
 - -Practical voltage sources have internal resistances

- -How do we go about measuring voltage & current?
 - ✓ Connect voltmeter in parallel; ammeter in series

Principles & techniques for circuit analysis

- –KCL (conservation of mass/charge)
 - ✓ The sum of all currents entering the node must be equal to the sum of all currents leaving the node
- –KVL (conservation of energy & power)
 - ✓ Around any closed loop, the sum of voltage drops must equal the sum of voltage rises
- -Resistances in series/parallel (derived from KVL/KCL)
 - ✓ Series: $R_{eq} = R_1 + R_2 + ... + R_N$
 - ✓ Parallel: $1/R_{eq} = 1/R_1 + 1/R_2 + ... + 1/R_N$

Calculate the total capacity of a battery given that it can provide a current of 3 A for 9 hrs

Capacity normally calculated as:

Current x Time (in hrs)

• Hence, capacity = 3 A x 9 hrs= 27 Ah or 27,000 mAh

How long would a 6000 mAh battery last if it is operated at 10C rate?

```
Operating time (hrs) = 1 / C-rate= 0.1 hrs or 6 mins
```

An electric device has an input power of 100 W. The device has converted 4500 J into useful work in 1 min. Find the power efficiency of the device.

- Output power
 - = (work done in J)/(time in s)
 - = 4500 J / 60 s
 - = 75 W
- Hence, efficiency = P_{out} / P_{in} = 75 / 100 = 75%

What is the discharging C-rate of a battery of capacity 6000 mAh if the discharge current is 3 A?

 Remember: 1C is the current that discharges the battery in 1 hr

Hence, in this case, 1C is 6 A

So, 3 A is 0.5C

Consider the following battery with open-circuit voltage $V_1 = 12 \text{ V}$, and internal resistance $R_1 = 0.15 \Omega$. Find the load current I_L and the corresponding power efficiency η_L for the following load:

(i)
$$R_L = 10 \Omega$$

- $I_L = 12 / (10 + 0.15)$ = 1.18 A
- $\eta_{L} = (I_{L})^{2} R_{L} / V_{1} I_{L}$ = 98.5%

Question 5 (Cont'd)

(ii)
$$R_L = 1 \Omega$$

$$I_L = 12 / (1 + 0.15)$$

= 10.4 A

$$\eta_{L} = (I_{L})^{2} R_{L} / V_{1} I_{L}$$

$$= 87.0\%$$

Notice the big drop in efficiency when I1

A lot of power is lost in internal resistance when I↑

The figure below shows a loaded voltage divider circuit. Calculate the voltage difference V_{AB} (given by $V_{A} - V_{B}$).

• 150
$$\Omega$$
 // 100 Ω
= 60 Ω

 $V_{AB} = 60/(100+60) \times 10$ = 3.75 V

Considering the circuit diagram shown in the figure above, which one of the following correctly applies both KVL and KCL?

a)
$$V_1 - V_{R1} - V_{R2} - V_{R3} = 0$$
; * $i_{R1} - i_{R2} - i_{R4} = 0$

b)
$$V_1 + V_{R3} - V_{R1} - V_{R2} = 0$$
; \checkmark $i_{R1} + i_{R3} = 0$

c)
$$V_2 + V_{R4} + V_{R2} + V_{R5} = 0$$
; \times $i_{R4} + i_{R5} = 0$

d)
$$V_2 + V_{R4} - V_{R2} - V_{R5} = 0$$
; \checkmark $i_{R3} - i_{R2} - i_{R5} = 0$ *