

本讲内容:

- 一、基本和常用逻辑运算
- 二、逻辑函数常用公式和定理

111

- 1.1 基本概念、公式和定理
- 1.1.1 基本和常用逻辑运算
- 一、三种基本逻辑运算
- 1. 与逻辑: 当决定一事件的所有条件都具备时,事件才发生的逻辑关系。

功能表

A B	Y
断断	灭
断合	灭
合 断	灭
合 合	亮

与逻辑的表示方法:

真值表 (Truth table)

功能表

\boldsymbol{A}	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

A B	Y
断断	灭
断合	灭
合 断	灭
合 合	亮

逻辑函数式

$$Y = A \cdot B = AB$$

逻 辑符 号

与门 (AND gate)

2. 或逻辑:

决定一事件结果的诸条件中,只要有一个或一个 以上具备时,事件就会发生的逻辑关系。

真值表

\boldsymbol{A}	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

逻辑函数式

$$Y = A + B$$

3. 非逻辑:

只要条件具备,事件便不会发生;条件不具备, 事件一定发生的逻辑关系。

真值表

A	Y
0	1
1	0

逻辑函数式

$$Y = A$$

二、逻辑变量与逻辑函数及常用复合逻辑运算

1. 逻辑变量与逻辑函数

逻辑变量:在逻辑代数中,用英文字母表示的变量称为逻辑变量。在二值逻辑中,变量的取值不是1就是0。

原变量和反变量:字母上面无反号的称为原变量,有反号的叫做反变量。

逻辑函数:如果输入逻辑变量 A、B、C···的取值确定之后,输出逻辑变量 Y的值也被唯一确定,则称 Y 是 A、B、C···的逻辑函数。并记作 Y = F(A, B, C···

2. 几种常用复合逻辑运算

(1)与非逻辑

$$Y_1 = AB$$

(2) 或非逻辑

$$Y_2 = \overline{A + B}$$

Y_1 、 Y_2 的真值表

A B	Y_1	Y_2
0 0	1	1
0 1	1	0
1 0	1	0
1 1	0	0

(3) 与或非逻辑

$$(AND - OR - INVERT)^B$$

$$Y_3 = \overline{AB + CD}$$

(真值表略)

$$A = 1$$
 $B = 1$
 Y_4

$$Y_4 = A \oplus B = A\overline{B} + \overline{A}B$$

\boldsymbol{A}	В	Y_4
0	0	0
0	1	1
1	0	1
1	1	0

(5) 同或逻辑 (异或非)

(Exclusive—NOR)

$$Y_{5} = \overline{A \oplus B}$$

$$= \overline{AB + AB}$$

$$= A \odot B$$

\boldsymbol{A}	В	Y_5
0	0	1
0	1	0
1	0	0
1	1	1

3. 逻辑符号对照

国标符号

曾用符号

国际符号

$$A - B - B$$

$$A \longrightarrow Y$$

$$A - 1 = \overline{A}$$

国标符号

曾用符号

国际符号

$$A - B - Y$$

$$A \longrightarrow Y$$

$$A \longrightarrow Y$$

$$A = \begin{bmatrix} -1 \\ B \end{bmatrix}$$

$$A \longrightarrow P$$

1.1.2 公式和定理

一、常量之间的关系(常量:0和1)

与:
$$0 \cdot 0 = 0$$
 或: $1 + 1 = 1$ 非: $0 = 1$

$$\mathbf{0} \cdot \mathbf{1} = \mathbf{0}$$

$$1 + 0 = 1$$

$$\overline{1} = 0$$

$$1 \cdot 1 = 1$$

$$1 \cdot 1 = 1$$
 $0 + 0 = 0$

二、变量和常量的关系(变量: A、B、C...)

与: $A \cdot 1 = A$ 或: A + 0 = A 非: $A \cdot A = 0$

$$A \cdot 0 = 0$$

$$A \cdot 0 = 0$$
 $A + 1 = 1$ $A + A = 1$

$$A + A = 1$$

三、与普通代数相似的定理

交換律
$$A \cdot B = B \cdot A$$

$$A + B = B + A$$

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$(A+B)+C=A+(B+C)$$

$$A(B+C) = AB + AC$$

$$A + BC = (A + B)(A + C)$$

[例 1.1.1] 证明公式 A+BC=(A+B)(A+C)

[解] 方法一: 公式法

右式=
$$(A+B)(A+C) = A \cdot A + A \cdot C + A \cdot B + B \cdot C$$

= $A+AC+AB+BC = A(1+C+B)+BC$
= $A+BC=$ 左式

证明公式 A+BC=(A+B)(A+C)

方法二: 真值表法(将变量的各种取值代入等式 两边,进行计算并填入表中)

\boldsymbol{A}	В	C	$B \cdot C$	A + BC	A + B	A+C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

相等

四、逻辑代数的一些特殊定理

同一律

$$A \cdot A = A$$

$$A \cdot A = A$$
 $A + A = A$

德•摩根定理

$$A \cdot B = A + B$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 $A + B = A \cdot B$

还原律

$$\overline{\overline{A}} = A$$

[例 1.1.2] 证明: 德 • 摩根定理

\boldsymbol{A}	В	$A \cdot B$	$\overline{A \cdot B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$	A+B	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	0	1	1	0	1	1	0	0
1	0	0	1	0	1	1	1	0	0
1	1	1	0	0	0	0	1	0	0

相等

1. 代入规则: 等式中某一变量都代之以一个逻 辑函数,则等式仍然成立。

例如,已知 $\overline{A+B} = A \cdot B$ (用函数 A+C 代替 A) 则 $(A+C)+B=A+C\cdot B=A\cdot C\cdot B$

2. 反演规则:

将Y式中"."换成"+","+"换成"." "0"换成"1","1"换成"0" 原变量换成反变量, 反变量换成原变量

反演规则的应用: 求逻辑函数的反函数

将 Y 式中 "."换成 "+","+"换成 "." "0"换成 "1","1"换成 "0" 原变量换成反变量,反变量换成原变量

例如: 己知 $Y_1 = A(B+C)+CD$

运算顺序: 括号→与→或

 $\overline{Y}_1 = (\overline{A} + \overline{BC})(\overline{C} + \overline{D})$

不属于单个变量上的反号应保留不变

已知
$$Y_2 = \overline{AB + C} + D + C$$

则
$$\overline{Y_2} = \overline{(\overline{A} + B) \cdot \overline{C}} \cdot \overline{D} \cdot \overline{C}$$

3. 对偶规则:如果两个表达式相等,则它们的对 偶式也一定相等。

将 Y 中 "."换成 "+","+"换成 "." "0" 换成 "1","1"换成 "0"

Y → (对偶式)

例如
$$Y_1 = A(B+C) + CD \longrightarrow Y_1^D = (A+BC) (C+D)$$

$$Y_2 = \overline{AB} + C + D + C \longrightarrow Y_2^D = (A + \overline{B}) C \cdot D \cdot C$$

对偶规则的应用:证明等式成立

$$0 \cdot 0 = 0 \longrightarrow 1 + 1 = 1$$

$$A \cdot A = 0 \longrightarrow A + \overline{A} = 1$$

运算顺序:

括号→与→或

六、若干常用公式

(1)
$$AB + AB = A(B + B) = A$$

(2)
$$A + AB = A(1 + B) = A$$
 $A + A() = A$

(3)
$$A + \overline{AB} = (A + \overline{A})(A + B) = A + B$$

$$(4) AB + \overline{AC} + BC = AB + \overline{AC}$$

(5)
$$A\overline{B} + \overline{AB} = \overline{A}\overline{B} + AB$$

(6)
$$AB + \overline{AC} = (\overline{A} + \overline{B})(A + \overline{C}) = A \overline{B} + \overline{A} \overline{C}$$

公式 (4) 证明:
$$AB + AC + BC = AB + AC$$

推论
$$AB + AC + BCD = AB + AC$$

公式 (5) 证明:
$$A\overline{B} + \overline{AB} = \overline{A} \overline{B} + AB$$

$$=\overline{A}\cdot A + \overline{A}\overline{B} + AB + B\cdot \overline{B} = \overline{A}\overline{B} + AB$$

即
$$\overline{A \oplus B} = A \odot B$$
 同理可证 $\overline{A \odot B} = A \oplus B$

七、关于异或运算的一些公式

异或
$$A \oplus B = AB + AB$$

$$\overline{A \oplus B} = A \odot B$$

同或
$$A \odot B = AB + \overline{A} \overline{B}$$

$$\overline{A \odot B} = A \oplus B$$

$$A \oplus B = B \oplus A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

$$A \cdot (B \oplus C) = AB \oplus AC$$

(4) 常量和变量的异或运算
$$A \oplus 1 = A$$
 $A \oplus 0 = A$

$$A \oplus 1 = \overline{A}$$

$$A \oplus 0 = A$$

$$A \oplus A = 0$$
 $A \oplus A = 1$

如果 $A \oplus B = C$

$$A \oplus C = B$$

$$B \oplus C = A$$