Quality-of-Service (QoS) Estimation in Software-Defined Networks

CS544 Project Report Xin Liu, A20314819

Background

- Multimedia applications has strict requirements of QoS
 - Throughput
 - Latency
 - 0 ...
- It's difficult to measure QoS parameters at run time
 - Multiplexed flows at intermediate nodes
 - Best-effort forwarding

Software-Defined Networks

- Separate packet forwarding and control logic
 - Centralized view
 - Dynamic configuration
 - Open standard interface

Software-Defined Networks

OpenFlow Protocol

OpenFlow Protocol

- Controller action
 - Add / delete / modify table entries
 - Pull table entry stats
 - # packets processed
 - # bytes processed

10

10

0

10

10

true

false

false

Added

Added

Added

0

32

32

0

3,136

3,136

0x10000f1040206

0x390000254b7805

0x39000046d73db4

57

57

0x0

0x0

0x0

0

Throughput Estimation

- Assume a flow has stats
 - X bytes processed
 - The flow has been installed t seconds
 - Throughput = (X * 8) / t bits/sec

Validation Using Emulation

- Mininet emulator
 - Each virtual host is a Linux process
 - Generate real traffic
 - Software switch
 - Process real packets
 - TC link
 - Limit bandwidth and delay

Experiment Setup

Objective

- measured end-to-end throughput
 - Run iperf client / server
- Calculated throughput
 - Stats from ingress/egress switch
- Three scenarios
 - Linear-5
 - Linear-100
 - Linear-100 with contention
- All Links has 1 Mbps bandwidth
- Repeated 10 times

Experiment Setup

Compare Linear-5 and Linear-100

Compare Linear-5 and Linear-100

Compare Linear-100 with contention

- Compare Each Trial
 - Three values are close
 - Tail is closer to iperf data

Conclusion

- Simple calculation works in linear topology
 - Switch close to sink has better estimation
- Large-scale network?
 - How to choose which switches to monitor, to achieve optimal estimation?