Continuous-Time Filters

생체공학과 임창환

Filter

실 생활에 많은 편의와 정보를 주는 라디오의 원리는 위와 같이 매우 단순합니다. 여기서 우리가 집고 넘어가야 할 부분은 filtering 입니다. Filter의 사전적 의미는 "무엇인가를 걸러내다"라고 인지하고 있으실 것 입니다. 그럼 filtering 이란 무엇인가요? 흔히 신호처리 분야에서 filter 는 주파수(frequency)영역에서 특정 주파수 대역만을 제거(혹은 통과)하는 것을 말합니다.

- Analog implementation of signal processing methods
 - Analog circuit for 60 Hz notch filter

Continuous-Time Filters (Analog Filters)

Figure 8.1 Illustration of Signal Selection Filtering in an AM Radio Receiver

(a) Receiver Input Signal Spectrum

(b) Station-Selection Filter Frequency Response

(c) Station-Selection Filter Output-Signal Spectrum

Distortionless Transmission System

Definition

A distortionless transmission system passes any signal with no change, except possibly amplification and time delay.

The output signal from a distortionless transmission system that has gain K and time delay τ is

$$y(t) = Kx(t - \tau) \tag{8.1}$$

when the input signal is x(t). Computing the Fourier transform of eq. (8.1) we obtain the output-signal spectrum

$$Y(f) = KX(f)e^{-j2\pi f\tau}$$
(8.2)

We then compute the frequency response of the distortionless transmission system as

$$H(f) = Y(f)/X(f) = Ke^{-j2\pi f\tau}$$
 (8.3)

Distortionless vs Physical Transmission System

Figure 8.2 Frequency Response for a Distortionless Transmission System

Figure 8.3 Frequency Response for a Physical Transmission System

Ideal vs Approximated Low-Pass Filter

Filter

- \mathcal{O}_p passband edge frequency
- \mathcal{O}_s stopband edge frequency
- δ_p peak ripple value in the passband
- $\delta_{_S}$ peak ripple value in the stopband

Practical Analog Filters

Figure 8.19 Filter Generation from a Low-Pass Filter Using the Frequency Transformations Given in Eqs. (8.33), (8.34), and (8.35)

Low-pass filter (LPF)

High-pass filter (HPF)

Bandpass filter (BPF)

Band-reject filter (BRF)

Analog Filters

Butterworth, Chebyshev, and elliptic filters: approximation of ideal filters

Figure 8.4
Frequency Response
and Impulse Response
for an Ideal Low-Pass
Filter

Analog Filters – Butterworth filter

Definition

A low-pass Butterworth filter has the amplitude response

$$|H_{bn}(j\omega)| = G_M/\sqrt{1 + (\omega/\omega_c)^{2n}}$$
(8.19)

where $n \ge 1$ is the filter order and the subscript b denotes a Butterworth filter.

Filter cutoff frequency: half-power cutoff frequency or 3-dB cutoff frequency

$$H_{b1}(s) = \frac{G_M \omega_c}{\omega_c + s}$$

$$H_{b2}(s) = \frac{G_M \omega_c^2}{\omega_c^2 + \sqrt{2}\omega_c s + s^2}$$

Analog Filters – Butterworth filter

Figure 8.14
Amplitude and Phase
Responses for First-,
Second-, and
Third-Order Low-Pass
Butterworth Filters

Order의 증가: ideal에 근접, 하지만... (1) 필요한 소자가 많아짐, (2) delay가 커짐

Analog Filters – Chebyshev filter

Definition

A low-pass Chebyshev filter has the amplitude response

$$|H_{cn}(j\omega)| = G_M/\sqrt{1 + \varepsilon^2 T_n^2(\omega/\omega_c)}$$
 (8.26)

where $T_n(x)$ is the *n*th-order Chebyshev polynomial, ε is a constant, $n \ge 1$ is the order of the filter, and the subscript c denotes a Chebyshev filter.

Butterworth보다 cutoff frequency에서 좀 더 sharp 하지만 ripple 발생

Variation in amplitude between the maximum and minimum values: amplitude-response passband ripple

$$r = 10\log(1 + \varepsilon^2)$$

Analog Filters – Chebyshev filter

Transfer function for the first two orders of low-pass Chebyshev filters with unity DC gain and a passband ripple of 2 dB are

$$H_{c1}(s) = \frac{1.3076\omega_c}{1.3076\omega_c + s}$$

$$H_{c2}(s) = \frac{0.6368\omega_c^2}{0.6368\omega_c^2 + 0.8038\omega_c s + s^2}$$

Figure 8.18 Amplitude and Phase Response for Seventh-Order Butterworth and Chebyshev Filters

High-Pass, Bandpass, and Band-Reject Approximations

Low pass filter → nonlinear frequency transformation → highpass, bandpass, band-reject approximation

 $H_H(j\omega) = H_L(j\omega_L) \big|_{\omega_L = \omega_c \omega_{ch}/\omega}$

for a high-pass filter,

$$H_B(j\omega) = H_L(j\omega_L) \big|_{\omega_L = \omega_c(\omega^2 - \omega_u \omega_\ell) / \omega(\omega_u - \omega_\ell)}$$

for a bandpass filter, and

$$H_R(j\omega) = H_L(j\omega_L) \Big|_{\omega_L = \omega_c \omega(\omega_u - \omega_\ell)/(\omega^2 - \omega_u \omega_\ell)}$$

Filter Design Procedure

- Step 1: Choice of filter type: Butterworth or Chebyshev (depend on the relative importance of passband gain variation and cutoff sharpness)
- Step 2: Selection of the filter cutoff frequency, ω_c .
- Step 3: Determine the filter order (use Curves of the gain in the normalized low-pass filter stopband)
- Step 4: Choose denominator coefficients for a normalized filter of the chosen order. E.g., Table 8.1
- Step 5: Consideration of Gain

$$|a_o| = b_o G_{DC}$$
 (Buttorworth, odd-order Chebyshev)

$$|a_o| = b_o G_M / \sqrt{1 + \varepsilon^2}$$
 (even-order Chebyshev)

Step 6: Frequency Scaling

Table 8.1 Denominator Polynomial Coefficients for Normalized Low-Pass Filters of Order n = 1 Through n = 4

n	b_o	<i>b</i> ₁	b ₂	<i>b</i> ₃	
"	00	01	02		
	Butterworth				
1	1.0000	_	_	-	
2	1.0000	1.4142	-	_	
3	1.0000	2.0000	2.0000	~	
4	1.0000	2.6131	3.4142	2.6131	
0.5-dB Passband Ripple Chebyshev ($\epsilon^2=0.1220$)					
1	2.8628	_		_	
2	1.5162	1.4256	-	_	
3	0.7157	1.5439	1.2529	_	
4	0.3791	1.0255	1.7169	1.1974	
1.0-dB Passband Ripple Chebyshev ($\epsilon^2 = 0.2589$)					
1	1.9652	_	_	_	
2	1.1025	1.0977	_		
3	0.4913	1.2384	0.9883	-	
4	0.2756	0.7426	1.4539	0.9528	
3.0-dB Passband Ripple Chebyshev ($\epsilon^2 = 1.0000$)					
1	1.0000	_	_	_	
2	0.7071	0.6436	_		
3	0.2500	0.9277	0.5961	-	
4	0.1768	0.4039	1.1685	0.5805	

Low-pass filter design

$$H_N(s_N) = \frac{a_o}{b_o + b_1 s_N + \ldots + b_{n-1} s_N^{n-1} + s_N^n}$$

Normalized low-pass filter (cutoff freq. $\omega_c = 1 \text{ rad/s}$)

$$|a_o| = b_o G_{DC}$$
 (positive unless signal inversion is desired)
 $|a_o| = b_o G_M / \sqrt{1 + \varepsilon^2}$

$$H_L(s) = H_N(s_N) \left|_{s_N = s/\omega_c} \right|$$

$$= \frac{a_o}{b_o + b_1(s/\omega_c) + \dots + (s/\omega_c)^n}$$

일반적으로는 Matlab, 각종 cad 프로그램 등등에서 기본적으로 제공. 요즘에는 손으로 계산하지는 않음 → 원하는 ripple 크기, order 수, transition band의 size 등을 입력하면 필터의 계수를 계산해서 output으로 출력해 줌: 함수 찾아볼 것

참고: elliptic filter: stopband에서의 ripple을 허용하여 좀 더 sharp하게

Table 8.1 Denominator Polynomial Coefficients for Normalized Low-Pass Filters of Order n = 1 Through n = 4

n	b_o	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	
	Butterworth				
1	1.0000	_	_		
2	1.0000	1.4142	_		
3	1.0000	2.0000	2.0000		
4	1.0000	2.6131	3.4142	2.6131	
0.5-d	0.5-dB Passband Ripple Chebyshev ($\varepsilon^2 = 0.1220$)				
1	2.8628		_	_	
2	1.5162	1.4256			
3	0.7157	1.5439	1.2529		
4	0.3791	1.0255	1.7169	1.1974	
1.0-d	1.0-dB Passband Ripple Chebyshev ($\varepsilon^2 = 0.2589$)				
1	1.9652		_	_	
2	1.1025	1.0977			
3	0.4913	1.2384	0.9883		
4	0.2756	0.7426	1.4539	0.9528	
3.0-dB Passband Ripple Chebyshev ($\varepsilon^2 = 1.0000$)					
1	1.0000	_		_	
2	0.7071	0.6436	_		
3	0.2500	0.9277	0.5961	_	
4	0.1768	0.4039	1.1685	0.5805	

Filter Design

Design a first-order Chebyshev low-pass filter with 3-dB passband ripple, maximum gain of unity, and cutoff frequency of 100 Hz

Analog Filter의 설계

$$H_{aN}(s_N) = \frac{a_0}{1 + s_N}$$

$$a_0 = G_M b_0 = (1)(1) = 1 \leftarrow maximum gain of unity$$

$$H_L(s) = H_N(s_N) \Big|_{s_N = s/\omega_c}$$

$$= \frac{a_o}{b_o + b_1(s/\omega_c) + \ldots + (s/\omega_c)^n}$$

$$H_a(s) = H_{aN}(s_N) \left|_{s_N = s/2\pi(100)} \right| = \frac{1}{1 + (s/200\pi)} = \frac{628.32}{628.32 + s}$$

$$(\text{cutoff} = 100 \text{ Hz})$$

Table 8.1 Denominator Polynomial Coefficients for Normalized Low-Pass Filters of Order n = 1 Through n = 4

n	b_o	b_1	b ₂	<i>b</i> ₃		
	Butterworth					
1	1.0000	_	_	~		
2	1.0000	1.4142	_			
3	1.0000	2.0000	2.0000			
4	1.0000	2.6131	3.4142	2.6131		
0.5-d	0.5-dB Passband Ripple Chebyshev ($\varepsilon^2 = 0.1220$)					
1	2.8628		_	_		
2	1.5162	1.4256	_			
3	0.7157	1.5439	1.2529			
4	0.3791	1.0255	1.7169	1.1974		
1.0-6	1.0-dB Passband Ripple Chebyshev ($\varepsilon^2 = 0.2589$)					
1	1.9652	_	_			
2	1.1025	1.0977				
3	0.4913	1.2384	0.9883			
4	0.2756	0.7426	1.4539	0.9528		
3.0-0	3.0-dB Passband Ripple Chebyshev ($\epsilon^2 = 1.0000$)					
1	1.0000	_	_			
2	0.7071	0.6436	_			
3	0.2500	0.9277	0.5961			
4	0.1768	0.4039	1.1685	0.5805		

Figure 8.20 Stopband Gain as a Function of Normalized Frequency $\omega_N = \omega/\omega_c$ for a Normalized Low-Pass Butterworth Filter

Figure 8.21
Stopband Gain as a Function of
Normalized Frequency $\omega_N = \omega/\omega_c$ for a
Normalized Low-Pass
Chebyshev Filter with a 0.5-dB Passband
Ripple

Figure 8.22 Stopband Gain as a Function of Normalized Frequency $\omega_N = \omega/\omega_c$ for a Normalized Low-Pass Chebyshev Filter with a 1.0-dB Passband Ripple

Figure 8.23 Stopband Gain as a Function of Normalized Frequency $\omega_N = \omega/\omega_c$ for a Normalized Low-Pass Chebyshev Filter with a 3.0-dB Passband Ripple

Example

We need a low-pass filter to reduce noise that is present on a signal received from a strain gauge that monitors a bridge beam's deflection. The filter is to satisfy the specifications.

- 1. Maximum gain equals 2.
- 2. Gain variation less than or equal to 3 dB from DC to 50 Hz.
- 3. Gain less than or equal to -50 dB with respect to maximum gain for $f \ge 250$ Hz.

Design the filter with Butterworth filter

Filter cutoff frequency was set as

$$\omega_c = 2\pi (50) = 100\pi \text{ rad/s}$$

Filter stopband frequency was set as

$$\omega_1 = 2\pi (250) = 500\pi \text{ rad/s}$$

Next is "**Determination of filter order**"

Figure 8.20 Stopband Gain as a Function of Normalized Frequency $\omega_N = \omega/\omega_c$ for a Normalized Low-Pass Butterworth Filter

$$\frac{\omega_1}{\omega_c} = \frac{500\pi}{100\pi} = 5$$

3. Gain less than or equal to -50 dB with respect to maximum gain for $f \ge 250$ Hz.

Example – Cont'd

$$H_N(s_N) = \frac{a_o}{1 + 2.6131s_N + 3.4142s_N^2 + 2.6131s_N^3 + s_N^4}$$

Since maximum gain equals 2,

$$a_o = b_o G_M = (1)(2) = 2$$

$$H_L(s) = \frac{2}{1 + 2.6131 \left(\frac{s}{100\pi}\right) + 3.4142 \left(\frac{s}{100\pi}\right)^2 + 2.6131 \left(\frac{s}{100\pi}\right)^3 + \left(\frac{s}{100\pi}\right)^4}$$
$$= \frac{1.948 \times 10^{10}}{9.741 \times 10^9 + (8.102 \times 10^7)s + (3.370 \times 10^5)s^2 + 820.9s^3 + s^4}$$

b3

2.6131

 b_2

2.0000

3.4142

Example 2 – Chebyshev filter

We need a low-pass filter to reduce noise that is present on a signal received from a strain gauge that monitors a bridge beam's deflection. The filter is to satisfy the specifications.

- 1. Maximum gain equals 2.
- 2. Gain variation less than or equal to 3 dB from DC to 50 Hz.
- 3. Gain less than or equal to -50 dB with respect to maximum gain for $f \ge 250$ Hz.

Design the filter with Chebyshev filter

Filter cutoff frequency was set as

$$\omega_c = 2\pi (50) = 100\pi \text{ rad/s}$$

Filter stopband frequency was set as

$$\omega_1 = 2\pi (250) = 500\pi \text{ rad/s}$$

Next is "**Determination of filter order**"

Figure 8.23 Stopband Gain as a Function of Normalized Frequency $\omega_N = \omega/\omega_c$ for a Normalized Low-Pass Chebyshev Filter with a 3.0-dB Passband Ripple

$$\frac{\omega_1}{\omega_c} = \frac{500\pi}{100\pi} = 5$$

3. Gain less than or equal to -50 dB with respect to maximum gain for $f \ge 250$ Hz.

Example – Cont'd

$$H_N(s_N) = \frac{a_o}{b_o + b_1 s_N + \ldots + b_{n-1} s_N^{n-1} + s_N^n}$$

	3.0-d	3.0-dB Passband Ripple Chebyshev ($\varepsilon^2 = 1.0000$)				
	1	1.0000	_	_		
	2	0.7071	0.6436	_		
ı	3	0.2500	0.9277	0.5961		
	4	0.1768	0.4039	1.1685	0.5805	

$$H_N(s_N) = \frac{a_o}{0.2506 + 0.9283s_N + 0.5972s_N^2 + s_N^3}$$

Since maximum gain equals 2,

$$a_o = b_o G_M = (0.2506)(2) = 0.5012$$

$$H_L(s) = \frac{0.5012}{0.2506 + 0.9283 \left(\frac{s}{100\pi}\right) + 0.5972 \left(\frac{s}{100\pi}\right)^2 + \left(\frac{s}{100\pi}\right)^3}$$
$$= \frac{1.554 \times 10^7}{7.770 \times 10^7 + (9.162 \times 10^4)s + 187.6s^2 + s^3}$$

Figure 8.24 Butterworth and Chebyshev Low-Pass Filter Amplitude Responses for Example 8.6