Vandex

The new generation of Gradient Boosting

CatBoost

Gradient Boosting

- Best solution for heterogeneous data
- **Easy to use**
- > Works well for small data

Applications

Music and video recommendations

Sales prediction

Neuralnetworks

NN+GB

Gradient boosting

Algorithm comparison

	CatBoost	LightGBM	XGBoost	H2O
Adult	0.269741	0.276018 + 2.33 %	0.275423 + 2.11%	0.275104 + 1.99%
Amazon	0.137720	0.163600 + 18.79 %	0.163271 +18.55 %	0.162641 + 18.09%
Appet	0.071511	0.071795 + 0.40 %	0.071760 + 0.35 %	0.072457 + 1.32 %
Click	0.390902	0.396328 + 1.39 %	0.396242 + 1.37%	0.397595 + 1.71%
Internet	0.208748	0.223154 + 6.90 %	0.225323 +7.94%	0.222091 + 6.39%
Kdd98	0.194668	0.195759 + 0.56 %	0.195677 + 0.52%	0.195395 + 0.37%
Kddchurn	0.231289	0.232049 + 0.33 %	0.233123 + 0.79%	0.232752 + 0.63%
Kick	0.284793	0.295660 + 3.82 %	0.294647 + 3.46 %	0.294814 + 3.52%

Logloss

Several tree growing strategies

Numerical features

Categorical features

Categorical data

Occupation

Categorical features support

- > One-hot encoding
- > Statistics based on category and category plus label value
- > Usage of several permutations
- Greedy constructed feature combinations

$$\frac{1+1+0+a*Prior}{3+a}$$

Classical boosting

leafValue =
$$\sum_{i=1}^{n} \frac{g(approx(i), target(i))}{n}$$

Ordered boosting

Modes

- Classification
- > Regression
- > Ranking

Ranking

- > What are top N hotels in some city?
- > Training data: ratings

Predicting rating is not necessary!

- Ranking within a group
- > Ranking modes:
 - Ranking (YetiRank, YetiRankPairwise)
 - Pairwise (PairLogit, PairLogitPairwise)
 - Ranking + Classification (QueryCrossEntropy)
 - Ranking + Regression (QueryRMSE)
 - Select top 1 candidate (QuerySoftMax)

Speed

- > CPU training
- > GPU training
- > Prediction speed

CPU: Comparison with other libraries

Parameters:

128 bins, 64 leafs, 400 iterations

Higgs:

28 features, 11M samples

Epsilon:

2000 features, 400K samples

GPU: Comparison with other libraries

- Parameters:
- 128 bins, 64 leafs, 400 iterations
- Higgs:
- 28 features, 11M samples
- Epsilon:
- 2000 features, 400K samples

CPU vs GPU

- Dual-Socket Intel Xeon E5-2660v4 as baseline
- Several modern GPU as competitors
- Dataset: 800 features

Prediction time

CatBoost Appliers

Ways to explore your data

- > Feature importance
 - PredictionValueChange
 - LossFunctionChange
- > Feature interaction
- > Per object feature importance (SHAP)

SHAP values

SHAP values

Ways to explore your data

> Feature statistics

Training visualisation

TensorBoard

Compare several models

Cross-validation

Ways to explore your data

- > Influential documents
- > New features evaluation

Algorithm parameters

- > learning_rate + iterations
- > depth
- > 12_regularization
- > bagging_temperature / sample_rate
- > random_strength
- > grow_policy

Reading

- http://learningsys.org/nips17/assets/papers/paper_11.pdf
- https://arxiv.org/abs/1706.09516
- https://github.com/catboost/tutorials

- catboost.ai
- github.com/catboost
- twitter.com/CatBoostML
- t.me/catboost_en, t.me/catboost_ru
- ods.ai => slack (30k people community)
 => #tool_catboost chanel
- forms.yandex.ru/surveys/10011699

Questions?

Anna Veronika Dorogush

Head of CatBoost team