## Claims

- 1. (previously presented) A nanocomposite material comprising
  - a) a synthetic polymer,
  - b) a natural or synthetic phyllosilicate or a mixture of such phyllosilicates in nanoparticles, . . . .
  - c) a phenolic antioxidant and/or a processing stabilizer, and
  - d) a mono or polyfunctional compound selected from the class consisting of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, diglycidyl 1,2-cyclohexanedicarboxylate, phenol novolak epoxy resin, oxazolines, oxazolones, oxazines and isocyanates.
- 2. (original) A nanocomposite material according to claim 1, wherein component (a) is a polyolefin.
- 3. (canceled)
- **4. (original)** A nanocomposite material according to claim **1**, wherein component (b) is a montmorillonite, bentonite, beidelite, mica, hectorite, saponite, nontronite, sauconite, vermiculite, ledikite, magadite, kenyaite, stevensite, volkonskoite or a mixture thereof in nanoparticles.
- **5. (original)** A nanocomposite material according to claim **1**, wherein component (b) is modified by an ammonium or phosphonium compound.
- **6.** (previously presented) A nanocomposite material according to claim 1, wherein component (c) is a phenolic antioxidant of the formula I

$$\begin{bmatrix} H_3C & CH_3 & \\ H_3C & CH_3 & \\ HO & X & R_2 & \\ R_1 & D & D & \\ \end{bmatrix}$$
(I)

in which

R<sub>1</sub> is C<sub>1</sub>-C<sub>4</sub>alkyl,

n is 1, 2, 3 or 4,

X is methylene, 
$$-CH_2-CH_2-C-Y-$$
 or  $-CH_2-C-O-CH_2-CH_2-$  ,

Y is hydrogen or -NH-; and,

if n is 1,

$$X$$
 is  $-CH_2-CH_2-C-Y-$ , where Y is attached to  $R_2$ , and

R<sub>2</sub> is C<sub>1</sub>-C<sub>25</sub>alkyl; and,

if n is 2,

$$X$$
 is  $-CH_2-CH_2-C-Y-$ , where Y is attached to  $R_2$ , and

 $R_2$  is  $C_2$ - $C_{12}$ alkylene,  $C_4$ - $C_{12}$ alkylene interrupted by oxygen or sulfur; or, if Y is -NH-,  $R_2$  is additionally a direct bond; and,

if n is 3,

X is methylene or  $-CH_2-C-O-CH_2-CH_2-$  , where the ethylene group is attached to R<sub>2</sub>, and

if n is 4,

$$X$$
 is  $-CH_2-CH_2-C-Y-$ , where Y is attached to  $R_2$ , and

R<sub>2</sub> is C<sub>4</sub>-C<sub>10</sub>alkanetetrayl.

**7.** (previously presented) A nanocomposite material according to claim **1**, whereincomponent (c) is a processing stabilizer of the formula II, III, IV or V

(II) 
$$R'_{1}-Y'-P$$
  $O-R'_{2}$   $A'-X'-P$   $O-R'_{3}$  (III)

$$R'_1 - O - P'_0 - O'_0 - O - R'_1$$
 (IV)

$$E' - P - Z' - R'_{14}$$

$$Q - Q'_{14} - R'_{14}$$

$$Q - Q'_{15} - R'_{14}$$

$$Q - Q'_{14} - R'_{14}$$

in which

n' is the number 2 and y' is the number 1, 2 or 3;

A' is C<sub>2</sub>-C<sub>18</sub>alkylene, p-phenylene or p-biphenylene,

E', if y' is 1, is C<sub>1</sub>-C<sub>18</sub>alkyl, -OR'<sub>1</sub> or fluorine;

E', if y' is 2, is p-biphenylene,

E', if y' is 3, is  $N(CH_2CH_2O_-)_3$ ,

R'<sub>1</sub>, R'<sub>2</sub> and R'<sub>3</sub> independently of one another are C<sub>1</sub>-C<sub>18</sub>alkyl, C<sub>7</sub>-C<sub>9</sub>phenylalkyl, cyclohexyl, phenyl, or phenyl substituted by 1 to 3 alkyl radicals having in total 1 to 18 carbon atoms;

R'<sub>14</sub> is hydrogen or C<sub>1</sub>-C<sub>9</sub>alkyl,

R'<sub>15</sub> is hydrogen or methyl;

X' is a direct bond,

Y' is oxygen,

Z' is a direct bond or -CH(R'16)-, and

R'<sub>16</sub> is C<sub>1</sub>-C<sub>4</sub>alkyl; or a benzofuran-2-one.

**8.** (original) A nanocomposite material according to claim 1, wherein component (c) is tris(2,4-ditert-butylphenyl) phosphite, bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite, bis(2,4-ditert-butylphenyl) pentaerythritol diphosphite, tetrakis(2,4-ditert-butylphenyl) 4,4'-biphenylenediphosphonite, 3-(3,4-dimethylphenyl)-5,7-ditert-butylbenzofuran-2-one, 3-(2,3-dimethylphenyl)-5,7-ditert-butylbenzofuran-2-one, and/or a compound of the formula la, lb, lc, ld or lg

$$H_{3}C$$
 $CH_{3}$ 
 $H_{3}C$ 
 $CH_{2}$ 
 $CH_{2}$ 
 $CH_{2}$ 
 $CH_{3}$ 
 $C$ 

$$\begin{bmatrix} H_3C \\ H_3C \\ HO \\ \end{bmatrix} CH_2 - CH_2 - C - O - CH_2 - CH_2 - O - CH_2 \\ \end{bmatrix}_2$$
 (Id)

, . , . j...

100 5

e e e

| 9. (canceled)                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. (canceled)                                                                                                                                                                                                                                                            |
| <b>11. (original)</b> A nanocomposite material according to claim <b>1</b> , wherein component (d) is bisphenol adiglycidyl ether, bisphenol F diglycidyl ether, diglycidyl 1,2-cyclohexanedicarboxylate or phenol novolak epoxy resin.                                   |
| <b>12.</b> (original) A nanocomposite material according to claim <b>1</b> , wherein component (b) is present in an amount of from 0.01 to 30 %, based on the weight of component (a).                                                                                    |
| <b>13. (original)</b> A nanocomposite material according to claim <b>1</b> , wherein component (c) is present in an amount of from 0.01 to 5 %, based on the weight of component (a).                                                                                     |
| <b>14. (original)</b> A nanocomposite material according to claim <b>1</b> , wherein component (d) is present in an amount of from 0.01 to 5 %, based on the weight of component (a).                                                                                     |
| <b>15. (original)</b> A nanocomposite material according to claim <b>1</b> , comprising in addition, besides components (a), (b), (c) and (d), further additives.                                                                                                         |
| 16. (previously presented) A nanocomposite material according to claim 15, comprising as further additives modification agents for nanocomposites, compatibilizers, light-stabilizers, dispersing or solvating agents, pigments, dyes, plasticizers or toughening agents. |

- **17.** (previously presented) A nanocomposite material according to claim **15**, comprising as further additives modification agents for nanocomposites, compatibilizers or metal passivators.
- **18. (original)** A nanocomposite material according to claim **1** in the form of a masterbatch comprising component (b) in an amount of from 0.03 to 90 %, based on the weight of component (a), component (c) in an amount of from 0.03 to 15 %, based on the weight of component (a), and component (d) in amount of from 0.03 to 15 %, based on the weight of component (a).
- **19. (original)** A process for stabilizing a synthetic polymer against oxidative, thermal or light-induced degradation, which comprises incorporating in or applying to said material at least one each of components (b), (c) and (d) according to claim **1**.
- 20. (canceled)