Algorithmen und Datenstrukturen 0. Start und Organisatorisches zur Vorlesung

Prof. Dr.-Ing. Marc Stamminger

Algorithmen? Kinderleicht!

Quelle: http://www.youtube.com/watch?v=cVMKXKoGu_Y

Als Programmcode

```
public int[] sort(int l, int r) {
                                                               int partition(int l, int r) {
                                                                   int i, j, x = intArr[(l + r) / 2];
 int q;
 if (l < r) {
                                                                   i = l - 1;
   q = partition(l, r);
                                                                   j = r + 1;
                                                                   while (true) {
   sort(l, q);
   sort(q + 1, r);
                                                                     do {
                                                                       j++;
                                                                     } while (intArr[i] < x);</pre>
 return intArr;
                                                                     do {
                                                                      j--;
                                                                     } while (intArr[j] > x);
                                                                     if (i < j) {
                                                                       int k = intArr[i];
                                                                       intArr[i] = intArr[j];
                                                                       intArr[j] = k;
                                                                     } else
                                                                       return j;
https://javabeginners.de
```

Vorlesung "Algorithmen und Datenstrukturen"

Dozent:

- □ Prof. Dr.-Ing. Marc Stamminger Lehrstuhl Graphische Datenverarbeitung
 - marc.stamminger@fau.de
 - http://lgdv.tf.fau.de/

■ Termine: (bitte kommen Sie pünktlich)

□ Dienstag, 08:15 - 09:45,

□ Donnerstag, 16:15 - 17:45,

Optionales Live-Webinar mit Q&A am

□ Dienstag, 08:30 - 10:00,

Vorlesungsaufzeichnungen über StudOn

Zoom-Link siehe StudOn

Vorlesung und Übung im Web (I)

- Adresse:
 - □ https://www.studon.fau.de/crs3063592.html
 - □ Beitritt mit Kurspasswort:
- Dort finden Sie:
 - Organisatorische Hinweise und Ankündigungen:
 Aktuelle Informationen (RSS-Feed abonnieren! Dringendes tlw. auch per E-Mail, bitte beachten!), Literaturempfehlungen,
 Prüfungsmodalitäten, zu verwendende Software und Hinweise zu ihrer Einrichtung, alte Klausuren und alte Übungsblätter früherer Semester, Evaluationsergebnisse,
 FAQ Häufig gestellte Fragen und Antworten

Vorlesung und Übung im Web (II)

- Adresse:
 - https://www.studon.fau.de/crs3063592.html
 - □ Vorlesung: Gliederung, Folien, Zusatzmaterial, ...
 - Die Vorlesungsfolien werden dort i. d. R. bis spätestens am Tag vor der jeweiligen Vorlesung bereitgestellt/aktualisiert. PDF-Format in zwei Varianten: schwarz-weiß und farbig. Änderungen (neue PDFs) im Laufe des Semesters möglich!
 - Übung: Aufgabenblätter und Folien für die Tafelübungen, ggf. Zusatzmaterialien, Abgabetermine für die Lösungen, Übungskoordinatoren und -tutoren, Hinweise zur sog. Intensivübung für Programmieranfänger
 - Abgabe von Hausaufgaben je nach Aufgabe:
 entweder StudOn oder EST (Exercise Submission Tool)

Modulabschluss

- Modul "Algorithmen und Datenstrukturen" bestanden, wenn
 - (unbenoteter) Übungsschein erhalten

und

□ (benotete) Klausur bestanden

- Reihenfolge egal.
- Bei Nichtbestehen eines Teils kann dieser im Folgesemester wiederholt werden.
 - Jede erbrachte Teilleistung bleibt unbegrenzt erhalten.

- Klausur
 - □ Dauer: 120 Minuten
 - Voraussichtlicher Termin: ca. 29. März 2021
 (Achtung: Änderungen auch kurzfristig möglich, daher unbedingt regelmäßig Ankündigungen beachten!)

AuD-Übungsbetrieb (I)

- 1 mal pro Woche: Ihr Übungsblatt
 - Im Laufe des Freitags erscheint ein Übungsblatt mit Theorie- und Programmieraufgaben auf der StudOn-Seite.
 Zweck: Praktische Auseinandersetzung mit dem Vorlesungsstoff.
 - 10 Tage Bearbeitungszeit,
 Montags Abgabe zur Korrektur/Bewertung.
 - □ Die Aufgaben sind
 - Gruppenaufgaben, die im Zweierteam gelöst werden sollen, und
 - individuell zu lösende Einzelaufgaben.
 - □ Pro Übungsblatt gibt es i. d. R. ca. 60 Punkte.
 Voraussichtlich gibt es insgesamt 12+1 Übungsblätter.
 - Insgesamt entfallen jeweils ca. 50% der erreichbaren Punkte auf Einzelbzw. Gruppenaufgaben, wobei am Semesterbeginn mehr Gruppenaufgaben und am Semesterende mehr Einzelaufgaben gestellt werden.
 - Unbenoteten Übungsschein gibt's, wenn sowohl 60% der möglichen Einzelpunkte als auch 60% der Gruppenpunkte erreicht wurden.

AuD-Übungsbetrieb (II)

- 1 mal pro Woche: Ihre Tafelübung/Ihr Tutorium (2 SWS)
 - Klärung von Fragen zum Vorlesungsstoff und zum nächsten Übungsblatt, Besprechung der Lösung des letzten Übungsblattes.
 - Verschiedene Termine zur Auswahl
 - Anmeldung über StudOn zwingend erforderlich!
 - □ Eine Schritt-für-Schritt-Anleitung zur Verwendung von StudOn und EST im Übungsbetrieb finden Sie im AuD-StudOn-Kurs!

b.a.w. online!

- Nach Bedarf: Ihre betreute Rechnerübung in den Ele-Poels
 - Bearbeitung der Praxishausaufgaben aus den Tafelübungen,
 Klärung von technischen oder Java- bzw. Programmier-Problemen mit dem jeweils anwesenden Tutor (nach entsprechender Vorbereitung!)
 - Wählen Sie einen (beliebigen) Rechnerübungstermin aus.
 Bei Bedarf können Sie mehrere Rechnerübungen besuchen.
 - Rechner im CIP-Pool stehen allen Studierenden zur Verfügung.
 AuD-Studenten haben an den Rechnerübungsterminen Priorität.
- Tafel-/Rechnerübungen starten regulär am: 09.11.2020

AuD-Übungsbetrieb (III)

- Nach Bedarf: Intensivübungen
 - Freiwillige zusätzliche Veranstaltung
 - insbesondere für Programmieranfänger/-innen
 - späterer Einstieg möglich, keine Anwesenheitspflicht
 - nicht noten- oder scheinrelevant
 - □ Inhalt und Ablauf:
 - Teilnehmer schlagen Themen/Fragen/Aufgaben/... via StudOn vor
 - Antwort/Lösung wird wie in einem "Workshop" gemeinsam erarbeitet
 - Programmierung wird an Beispielen live vorgeführt
 - Termin/Raum-Findung per Umfrage via StudOn
 - Ankündigung in StudOn beachten

Anmeldung zum Übungsbetrieb/Tafelübungen – Termine

- Anmeldung zu einer Tafelübung über StudOn
 in der ersten Vorlesungswoche zwingend erforderlich,
 Angaben zu Wunschterminen/Verfügbarkeiten
 bis spätestens Freitag Nacht aktualisieren!
- Sie werden am darauffolgenden Wochenende automatisch und verbindlich für eine der wöchentlichen Tafelübungen eingeteilt.
- Keine Anmeldung zu Rechnerübungen notwendig.
- Übungsstart ist am 09.11.2020

AuD-Übungsbetrieb: Dozierenden-Team

Übungskoordination

- eMail-Kontakt:
 - □ cs2-aud@fau.de

Abgabe der Lösungen – Allgemeines

- Ausschließlich elektronisch über StudOn bzw. EST.
- Die Abgabefrist endet i.d.R. jeweils 10 Tage nach der Ausgabe des Übungsblatts - am Montag um 9:59 Uhr.
- Laden Sie Ihre Lösung möglichst nicht in der letzten Minute hoch, damit Sie nicht an eventuell auftretenden Rechner/Netz-Problemen scheitert.
- Nachträgliche Abgaben sind <u>nicht</u> möglich!

Mehrmalige Abgabe innerhalb der Frist ist möglich, **letzte** Version gilt!

- Nach der Abgabe erfolgt Korrektur und Bewertung teilautomatisch und durch Ihre/-n jeweilige/-n Tutor/-in.
- Korrigierte Abgabe und Anmerkungen zur Bewertung stellen wir wieder im StudOn bzw. EST zur Einsicht bereit.

Abgabe der Lösungen – Gruppenaufgaben

- Die als Gruppenaufgaben gekennzeichneten Hausaufgaben können und sollten Sie mit einem Partner bearbeiten.
- Diese/n Partner/in können Sie bei Bedarf von Aufgabe zu Aufgabe wechseln (z. B. bei Problemen in der Kooperation).
- Es ist bei Bedarf auch möglich, die Gruppenaufgaben alleine zu bearbeiten.
- Die technischen Details hierzu erfahren Sie in der Übung.
- Sollten Sie einen neuen Partner benötigen, nutzen Sie z. B. das AuD-Forum im StudOn-Kurs für Ihre Anfrage.

Plagiate

- Wir nutzen eine Software, die alle Einzellösungen sowie alle Gruppenlösungen untereinander vergleicht und zu ähnliche Lösungen als Plagiate identifiziert.
- Im Verdachtsfall werden beide Lösungen mit 0 Punkten bewertet.
- Bitte unbedingt die wichtigen Hinweise auf dem organisatorischen "Übungsblatt 0" beachten.

Aufwand für AuD

- Wie viel Zeit müssen Sie für die LV "Algorithmen und Datenstrukturen" investieren, um erfolgreich zu sein?
 - Der LV sind 10 Leistungspunkte (LP) zugeordnet, das entspricht
 300 Std. verteilt auf das gesamte Semester.
 - □ Präsenzveranstaltungen:

```
( 2 Vorlesungen pro Woche (2 x 90 min = 3 h)
```

+ 1 Tafelübung pro Woche (= 1,5 h)

) x 15 Semesterwochen

= 68 Std.

→ Eigenarbeit: 232 Std.

Rechnen Sie mit 2 Tagen / Woche in der Vorlesungszeit

Dranbleiben

- Programmieren lernt man nicht durch Zuschauen, sondern durch ÜBEN
 - → Sie werden dazu in AuD viele Möglichkeiten bekommen
 - → Nutzen Sie diese Möglichkeiten!
 - → Machen Sie die Aufgaben auch selbst!
- Durchfallquoten relativ hoch
 - → Investieren Sie Zeit!
 - → Wir können Sie nur begleiten!
- Manche von Ihnen hatten schon vieles aus AuD in der Schule, Ihr Vorsprung wird aber schnell schmelzen

Übungsergebnisse zu verschiedenen Terminen am Beispiel WS 2012/13

Übungsschein (WS12/13)

Angemeldet: 413 181 x bestanden,

232 x nicht bestanden

Durchfallquote: 56%

Klausurergebnisse früherer Semester

Klausur (WS12/13)

90 x bestanden; 117 x nicht bestanden

Notenverteilung

Nicht erschienen: 213

Ø Note: 3,98

Durchfallquote: 57%

Literaturempfehlungen: Einführung für Anfänger/-innen

- Heinrich Müller, Frank Weichert: Vorkurs Informatik.
 Springer Vieweg, ca. 25,- €
 - □ Leicht lesbare und didaktisch gut aufbereitete Einstiegshilfe für Programmierneulinge

http://dx.doi.org/10.1007/978-3-658-16141-5 kostenlose Download-Version

(innerhalb des Uni-Netzes, auch über OPAC/Uni-Bib erreichbar)

5. Auflage: 2017, 408 S.

Literaturempfehlungen: Standardwerk

 Gunter Saake, Kai-Uwe Sattler: Algorithmen und Datenstrukturen - Eine Einführung mit JAVA. 5. Auflage,

dpunkt.verlag, 2013, 576 S.

- Zweck:
 - Grundlagen- und Vertiefungswerk
 zum Inhalt der Lehrveranstaltung
 - Java-Programmierung
 - □ Algorithmen und Datenstrukturen
- Kosten:
 - □ ca. 45,- EUR

Literaturempfehlungen: Java-Nachschlagewerke

Christian Ullenboom: Java ist auch eine Insel.
 11. Auflage, Galileo Computing, 2014, 1306 S.

http://openbook.galileocomputing.de/javainsel/ Print-Version: ca. 50 EUR, kostenlose Online/Download-Version

 Guido Krüger, Heiko Hansen: Handbuch der JAVA-Programmierung. Addison-Wesley, 2011, 1408 S.

http://www.javabuch.de/

Printversion: ca. 50 EUR, kostenlose Download-Version

- Zweck:
 - Umfassende sehr detailliertes Nachschlagewerke zur Java-Programmierung
 - Hervorragend geeignet, um zu speziellen
 Programmiertechniken detaillierte Informationen zu bekommen.
 - □ Gehen beide weit über den Vorlesungsstoff hinaus.

Literaturempfehlungen: Weiterführende Werke

- Cormen, Leiserson, Rivest, Stein:
 Algorithmen Eine Einführung. Oldenburg Verlag, 2010
 - Vertiefungswerk zum Inhalt der Vorlesung
 - □ Kosten: ca. 80 EUR (1339 S.)

- praxisorientierte Darstellung von Softwareentwicklung
- □ Kosten: ca. 35 EUR (960 S.)
- Joshua Bloch, Neal Gafter: Java Puzzlers: Traps,
 Pitfalls, and Corner Cases. Addison-Wesley, 2005
 - □ Kosten: ca. 30 EUR (282 S.)
 - Code-Beispiele: http://www.javapuzzlers.com/

... und jetzt geht es richtig los!

Me and the boys ready for Zoom

