Московский государственный университет имени М. В. Ломоносова.	
Лабораторная работа №2.	
viacoparopiani pacora vi zi	
	на Дарья
31 И Отчет по курсу "Обработка и распознавание изобр	17 группа Гюнь 2022 ражений"
7,	

1 Введение

В работе с изображениями полезно выделять новые признаки, с помощью которых решаются задачи. Например, новым признаком может быть скелет изображения. В данной работе предлагается использовать изображения ладоней с пальцами. С помощью генерации новых признаков нужно определить сомкнуты или разомкнуты пальцы на изображении.

2 Постановка задачи

Задача состоит в том, чтобы разработать и реализовать программу.

На вход поступают RGB изображения в формате TIF, на которых изображены ладони с пальцами. Ладонь может быть расположена любым образом, то есть под любым углом. Пальцы также могут быть расположены любым образом, могут быть сомкнуты, могут быть разомкнуты.

Рис. 1: Примеры входных данных

На выходе программа выдает:

- Код позы ладони, описывающий сжатые и разомкнутые пальцы. Пусть большой палец будет под номером один. Тогда если большой и указательные пальцы сомкнуты, то в коде должно быть "1+2". Если разомкнуты "1-2".
- Координаты кончиков пальцев.

В результате работы программы формируется файл "Result.txt в котором для каждого изображения в первой строке записан код позы ладони, на второй - координаты кончиков пальцев. Пример:

1 * 2 * 3 * 4 * 5

!,0000.tif,T Xt1 Yt1,T Xt2 Yt2,T Xt3 Yt3,T Xt4 Yt4,T Xt5 Yt5,?

где (Xti, Yti) – координаты пикселей і-й найденной точки, определяющих кончики пальцев Т (tips).

Также программа визуализирует исходное изображение, изображение c отмеченными кончиками пальцев и кодом позы.

Ответ на задачу: 1-2-3-4+5

Рис. 2: Пример визуализации программы

3 Метод решения

Чтобы решить данную задачу прежде всего изображение надо бинаризовать. В данной работе бинаризация была проведена методом Оцу. Метод заключается в том, чтобы выставить порог бинаризации такой, чтобы можно было разделить изображений на два класса, одним из которых будет объект, который нас интересует. Метод сводится к минимизации внутриклассовой дисперсии, которая определяется как взвешенная сумма дисперсий двух классов:

$$\sigma_m^2 = w_1 \sigma_1^2 + w_2 \sigma_2^2$$

Здесь w_1 и w_2 — вероятности первого и второго классов соответственно.

Рис. 3: Бинаризация изображения

Далее по бинаризованному изображению находится контур с помощью метода cv.findContours. Данный метод находит множество контуров. Находим контур, длина которого больше 400. Этот контур соответствует контуру ладони.

Далее находится центр ладони по бинаризованному изображению следующим образом:

$$m00 = binary.sum()$$

$$m01 = binary.sum(axis = 0) * np.arange(binary.shape[1])$$

$$m01 = m01.sum()$$

$$m10 = binary.sum(axis = 1) * np.arange(binary.shape[0])$$

$$m10 = m10.sum()$$

$$y = round(m10/m00)$$

$$x = round(m01/m00)$$

, где " * " - покоординатное умножение, (x, y) - координаты центра.

Рис. 4: Контур с центром.

Ищется расстояние от каждой точки контура до центра. Кончики пальцев - это локальные максимумы графика, где по оси х расположены номер точки на контуре, а по оси у откладывается расстояние до центра. Локальные максимумы находятся с помощью функции findpeaks. Далее будем называть локальные максимумы пиками.

Рис. 5: График пиков и изображение с отмеченными кончиками пальцев.

В пики попадают и лишние точки. Например, иногда в контур попадает запястье или центр ладони вычислен с некоторой погрешностью Поэтому пики надо отобрать.

Предлагается сделать это следующим образом. Для начала уберем вершины, которые находятся рядом друг с другом на графике и на изображении.

Далее посчитаем среднее высот пиков, а затем для каждого пика посчитаем модуль отклонения от среднего. Уберем из пиков те точки, у которых модуль отклонения больше 62(порог вычислялся экспериментальным путем), если пиков больше чем 5.

Далее найдем средний палец. Средний палец - это палец, который расположен дальше всех от центра. Его пик будет максимальным.

Далее оставшиеся пики провернем циклически так, чтобы средний палец оказался 3-им по счету и возьмем первые пять пиков. Это и будут пики, соответствущие кончикам пальцев. Далее для каждой последовательной пары точек координат кончиков пальцев найдем расстояние между ними и по порогу определим сомкнуты или разомкнуты пальцы.

4 Программная реализация

Программа была реализована на языке python с помощью библиотеки OpenCV.

- 1. $H o H_{red}$. В исходном изображении H выделяется красная компонента RGB изображения.
- 2. $H_{red} \to Bin$. Бинаризация по Оцу изображения, полученного на предыдущем шаге.
- 3. $Bin \to Contour$. Находится контур ладони.
- 4. $Bin \to Center$. Вычисляется центр ладони.
- 5. Center, Contour o Dist. Формирует Dist массив расстояний от каждой точки в контуре до центра ладони.
- 6. $Dist \to peaks, peaks_heights$. Находятся точки, в которых расстояние до центра максимально (максимумы локальные). Также выделяется информация о высоте пиков(см. Метод решения.).
- 7. $peaks_heights \rightarrow peaks_heights$. Убираем пики, которые находятся слишком близко друг к другу.
- 8. peaks, peaks $heights \rightarrow var$. Находим отклонение от средней высоты пиков.
- 9. $peaks_heights, var \rightarrow peaks_heights$. Убираем пики, у которых отклонение от средней высоты слишком большое.
- 10. $peaks, peaks_heights \rightarrow middle_finger$. Сортируем пики(peaks) по их высоте, и находим средний палец, как палец с наибольшей высотой.
- 11. $peaks, middle_finger \rightarrow peaks_sort$. Прокручиваем(циклически) массив peaks так, чтобы на третьем месте находился средний палец.
- 12. $peak_sort, Contour \to tips$. В массиве реакs находятся индексы точек в массиве Contour, соответствующие кончикам пальцев. В tips под индексом 0 большой палец, дальше по порядку указательный, средний и т.д.
- 13. $tips \to res$. Находим расстояние между 1 и 2 пальцами, между 2 и 3 и т.д. Если расстояние между первым и втором пальцами больше 174 то в переменной res записывается "- иначе "+". Так делаем для каждой пары пальцев со своим порогом. Для 2 и 3 пальцев порог равен 62, для 2 и 4 55, для 4 и 5 90. Пороги подбирались экспериментальным путем.
- 14. Записываем результат в файл и визуализируем.

5 Эксперименты

Главный недостаток данной реализации в том, что если средний палец определяется неправильно, дальше алгоритм точно ошибется.

Далее после определения среднего пальца нам никто не гарантирует, что пики слева и справа от него будут пиками, соответствующие кончикам пальцев. Таким образом на 13 изображениях из 67 кончики пальцев визуально определяются неправильно.

1+2-3-4-5

Рис. 6: Пример неправильного определения кончиков пальцев.

Иногда пороги, которые используется на этапе 13 определения сомкнуты или разомкнуты пальцы не подходят для данной картинки. Код позы определяется неверно и данный порог было бы хорошо подбирать к каждой ладошке индивидуально. Итак, на 5-ти изображениях с правильно определенными кончиками пальцев код позы был неверным.

1-2+3+4-5

Рис. 7: Пример неправильного определения кончиков пальцев.

Итого, из 67 изображениях алгоритм ошибается на 18-ти изображениях, что соответствует точности 73%.

6 Вывод

Данный алгоритм хорошо решает задачу. Также он имеет ряд недостатков. Следующий шаг: улучшить распознавание пиков, соответствующие кончикам пальцев. Также алгоритм имеет фиксированные пороги, которые могут не подойти, так как люди уникальны и данные пороги надо подбирать исходя из параметров ладони. Предложенные алгоритм выделяет следующие признаки, которые могут помочь для других задач центр ладони и кончики пальцев. Следующий шаг: находить точки, которые ладони между пальцами.