

American International University – Bangladesh (AIUB) Faculty of Engineering Department of Electrical and Electronic Engineering

Final Assignment										
Course Name:	Microprocessor and Embedded Systems	Course Code:	COE 3104							
Semester:	Fall 2024-25	Section:	R							
Faculty Name:	Niloy Goswami									

Assignment No:	1F (individual submission consisting of 30 marks)
----------------	---

Submission Date:	25/01/2025	Due Date:	25/01/2025
-------------------------	------------	-----------	------------

Student Information:

Student Name:	MD	. Ta	nvir	Rah	mar	ı Mo	olla						Section:	R
Can don't ID #	2	2		4	6	0	5	2		1	A 1 D - 4	25 01 2025	D 4	CSE
Student ID #:	р	q	-	a	b	c	d	e	-	r	Assigned Date:	25.01.2025	Department:	652

Special Instruction: Questions may be copied from here through copy-paste. Online submission via TEAMS is allowed.

Assessment Rubrics:

COs-P	Excellent [28-30]	Proficient [22-28]	Good [16-21]	Acceptable [9-15]	Unacceptable [1-8]	No Response [0]	Secured Marks
CO: P.a.4.0	1 1	A few necessary drawings and		All the problems are not solved correctly. The results are generated by combining several wrong or less no of input patterns with in/appropriate outcomes. Some necessary drawings and computations are missing or wrong.	All the problems are not solved correctly. The results are generated by combining mostly wrong input patterns with inappropriate outcomes. Almost all the necessary drawings and computations are missing or wrong.	No responses at all or copied from others	
Comm	nts				Total Marks (30)		

- 1. Find the baud rate for the three operating modes when the oscillator frequency, *fosc* = ac MHz (put side-by-side), and register data is, UBRRn = 010110101110. Calculate the baud error and comment on whether there will be any communication errors or not. Standard Baud rates are 300, 600, 1200, 2400, 4800, 9600, 14400,19200, 38400, 57600, 115200, 230400, ... bps.
- 2. Compute the duty cycle and sketch the waveform obtained at port D of the Arduino. Identify the modes of

operation and compute the operating frequency of that mode based on the following program segment. Identify the Timer of the Arduino Microcontroller. The system clock frequency is rq MHz. Draw the relevant

circuit diagram using Proteus and show its timing diagram.

```
DDRD |= (1<<PD5);
pinMode(5, OUTPUT);
OCR0A = (200+ a + b + c); // Load a value in the OCR0A register
OCR0B= (100 + d + e); // Load a value in the OCR0B register
// Configure TCCR0A and TCCR0B registers for the mode and pre-scaler
TCCR0A |= (1 << COM0B1) | (1 << COM0A0) | (1<<WGM01) | (1<<WGM00);
TCCR0B |= (1<<WGM02) | (1<<CS01) | (1<<CS00);</pre>
```

3. Compute the duty cycle and sketch the waveform obtained at port D of the Arduino. Identify the modes of operation and compute the operating frequency of that mode based on the following program segment. Identify the Timer of the Arduino Microcontroller. The system clock frequency is pq MHz.

```
DDRD |= (1<<PD5);
pinMode(5, OUTPUT);
OCROB= (150+a+b); // Load OCROB for setting its duty cycle
// Configure TCCROA and TCCROB registers for the mode and pre-scaler
TCCROA |= (1 << COMOB1) | (1<<WGMO1) | (1<<WGMO0);
TCCROB |= (1<<CSO2) | (1<<CSO0);</pre>
```

4. Design an *a*-bit shifter circuit for the listed shift functions provided in Table 1. Explain its operation for variouscases of select inputs.

Binary				Functions	of selection var	riables
Code	\boldsymbol{A}	В	D	F with $C_{in}=0$	F with $C_{in} = 1$	H
000	Input Data	Input Data	None	A-1	A	1's to the output Bus
0 0 1	R1	R1	R1	A+B	A+B+1	Shift Left with $I_L = 0$
010	R2	R2	R2	A-B-1	A-B	No Shift
0 1 1	R3	R3	R3	A	A+1	Circulate Left with Carry
100	R4	R4	R4	Ā	X	0's to the output Bus
101	R5	R5	R5	AX OR B	X	0's & 1's to the lower and upper nibbles
110	R6	R6	R6	A AND B	X	Circulate-Right with Carry
111	R7	R7	R7	A OR B	X	Shift Right with $I_R = 0$

Table 1: Functions of control variables

5. Develop the control words in binary and hexadecimal formats using the information provided in Table 1 for the following micro-operations:

i.	Re←Ra+Rb	ii.	Rd←3(Re – 0)/3
iii.	Rq←SHL Rp	iv.	Output←Rc
v.	Rd←Rc	vi.	Rb←0
vii.	Rq←Input	viii.	Rq←Rp-Ra
ix.	Rr←SHR Rb	X.	Rc←CRC Rd

^{*} If any value of a-e goes above 7 then it should be assumed as 7.

The necessary bits for the control word are presented in Table 2.

Table 2: 16-bit control word sequence

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	\boldsymbol{A}			B			D			F		C_{in}		H	

One example is shown as follows:

Micro-operation	A	В	D	F	C_{in}	Н	In Hex
R5← CRC (R3+R4)	011	100	101	001	0	110	7296h

6. Prepare a flow chart that will count the number of 1's in a register, R4 and then store the counts in register R6.

Determine the outputs of the R6 (in binary) and R4 (in decimal) registers as well as of the carry flag (C) after each clock cycle or timing state.

Timing States				R	4				С	R6
Timing States	1	1	0	1	0	0	1	1	0	0
T1										
T2										
T3										
T4										
T5										
T6										
T7										
Т8										

Solution-1

My ID: 22-46052-1 pg - abede - n

forc = ac MHZ = 40 MHZ = 40 × 106 HZ

> UBRRn = 0101101011110 - 1454

> > For Asynchronous Normal Mode:

Band rate = $\frac{40 \times 10^6}{16(1454+1)} = 17196ps$

Ennon = 1200 -1719 X200%

= -43.25% 7+24

So, there will be communication erron.

For Anynchronom double opeed mode,

Band note = 40×10⁶
8(1959+1) = 3937 6pa

Ennon = 2400-3437 ×200%

= -43.20% > +2%

So, there will be communication error

For synchronous moster mode

Bound note = $\frac{40 \times 10^6}{2(1454+1)} = 13746$ Erron = $\frac{9600-13746}{9600} \times 100\% = -43.18\%.742\%$

So, there will be communication erron.

Solution:2

IO: 22-46052-2 P2-abede-n

airem,

WGM01 = WGM00 = WGM02 = 1

OCROA = (200+a+b+c) = (200+4+6+0) = 210

OCROB = (100+d+e) = (100+5+2) = 107

. This is Fast PWM with mode 7 (211).

And, CS01=CS00=1

-- Prescaler = 64

And

COM 0B1 = 1

.: Non-Investing Mode

Duty cycle for OCROA,

$$D = \frac{(210+1)100}{256} = 82.42 \%$$

82.42% dwy cycle

For OCROB,

$$OCROB = \frac{256D}{100} - 1$$

$$\Rightarrow D = \frac{(107+1)\times100}{256} = 42.19\%$$

hiven,

$$\frac{f_{\text{CNNpwM}}}{\text{NX256}} = \frac{f_{\text{CW-IO}}}{\text{NX256}}$$

$$= \frac{12 \times 10^6}{64 \times 256}$$

$$= 732.42 \text{ Hz}$$
Operation frequency = 6732.42 Hz

Solution: 3

ID: 22-46052-1

P2-abede-n

= 160

WGMO1 = WAM WGMOO = 1

i. Mode of operation in Fast PWM Mode 3(022)

: Non-inverting Mode

Now

Duty cycle,

$$D = \frac{(\text{ockob}+1)\times 100}{256} = \frac{(160+1)\times 100}{256}$$

= 62.89%

62 89% July cycle

$$focnnpwm = \frac{fcw-I0}{Nx256} = \frac{22x10^6}{64x256}$$

= 1342.77 Hz

:. Operating frequency in 7342.77 Hz

P: mother Los

ID: 22-96052-1

₽ P2-abede-n

a-bit shifter

4-bit shifter

Solution: 05

ID: 22-46052-1

P2-abcde-r

Microsperation	A	В	D	F	Cin	H
R2 = R4+R6	160	110	010	001	0	000
R5 < 3(R2-0)/3	010	000	202	010	0	000
R2 - SHLR2	010	000	010	033	0	000
Output (Ro	000	000	000	200	0	001
R54-Ro	000	000	202	000	0	000
RG-O	000	000	210	201	0	000
R2<-Input	000	000	010	110	0	001
R2 - R2 - R4	020	200	020	010	0	000
RatsHR RG	220	120	001	111	0	000
Roter R5	707	101	000	200	0	000

Flow chart:

							- 10					
Timing		and the public colored annual species, so we should be seen suight or model	unity in Administration Committee (1995) and the Source consists the	Contact (Indian Section 2015) Market (Indian Section 2015) Market (Indian Section 2015)	24						C	RE
States	1	11	0	1	.10	10	12	project ja	1		0	0
72	0	West and the second	1	0	1	-0	0		1		1	12
12	0	0	1	1	0	1	. 0		0	:	1	2
73	0	0	0	1	12	0	1		0)	2
- Land	0	0	0	0	1	12	. 0		1			2
6.5	0	0	0	0	0	1	1		0	1	L 3	
76	0	0	0	0	0	0	1	1		0		3
Ta	0	0	0	0	0	0	0	1		1	1	7
78	0	0	0	0	0	0	0	0	,	1	1	5