6CCS3AIN & 7CCSMAIN, 2018, Tutorial 07

(Version 1.1: changed Q2aii from "The set $\{a3\}$ defends $\{a3\}$ " to "The set $\{a3\}$ defends a3")

- 1. Consider the abstract argumentation framework (S, R), where $S = \{a1, a2, a3, a4, a5\}$ and the attack relation $R = \{(a1, a2), (a2, a1), (a2, a3), (a3, a4), (a4, a5), (a5, a3)\}$
 - (a) Draw the graph that represents $\langle S, R \rangle$.
 - (b) What are the conflict-free subsets of $\langle S, R \rangle$?
 - (c) What are the admissible subsets of $\langle S, R \rangle$?
 - (d) What are the complete extensions of $\langle S, R \rangle$?
 - (e) What is the grounded extension of $\langle S, R \rangle$?
 - (f) What are the preferred extensions of $\langle S, R \rangle$?
 - (g) List any stable extensions of $\langle S, R \rangle$.
 - (h) Which arguments are skeptically accepted under the preferred semantics?
 - (i) Which arguments are credulously accepted under the preferred semantics?
- 2. Consider the following argumentation framework.

- (a) Which of the following statements are true?
 - i. The set $\{a3, a4\}$ is conflict-free.
 - ii. The set $\{a1, a6, a7\}$ is conflict-free.
 - iii. The set $\{a3\}$ defends a3.
 - iv. The only arguments that the set $\{a1, a5\}$ defends are a1 and a5.
 - v. The empty set does not defend any arguments.
 - vi. The empty set is admissible.
 - vii. The empty set is a complete extension.
 - viii. The set $\{a2, a6\}$ is admissible.
 - ix. The set $\{a1, a3\}$ is admissible.
 - x. The set $\{a2, a5, a6\}$ is a complete extension.
 - xi. The set $\{a1, a4, a7\}$ is a complete extension.
 - xii. The set $\{a7\}$ is a complete extension.
- (b) What is the grounded extension?