2.1 A Brief Introduction to Recursion:

Mathematical function

1.
$$C=2(F-32)/9$$

2.
$$y = \sin(x) * pi$$

3.
$$f(x) = 2f(x-1)+x^2$$

 $f(0)=0$, x nonnegative integer

Circular logic?

2.1 A Brief Introduction to Recursion:

Mathematical function

1.
$$C=2(F-32)/9$$

2.
$$y = \sin(x) * pi$$

3.
$$f(x) = 2f(x-1)+x^2$$

 $f(0)=0$, x nonnegative integer

4. Factorial กำหนด x เป็นจำนวนเต็มที่ไม่เป็นลบ f(x) = x * f(x-1) , f(1) = 1 และ f(0)=1

5. Fibonacci number

$$f(n) = f(n-1) + f(n-2)$$

 $f(0)=0$, $f(1) = 1$

Example 1

```
#include <stdio.h>
int fact(int x)
\{ if(x <= 1) \}
      return 1;
  else
     return x* fact(x-1);
```

```
int main()
   int ans;
   ans = fact(3);
   cout << ans;
```


Example 2 Factorial

```
int main()
    int ans;
   ans =
   cout << ans;
int fact(int x)
\{ if(x \le 1) \}
     return 1;
  else
    return x*
```

```
int fact(int x) \frac{1}{2}
\{ if(x <= 1) \}
     return 1;
  else
  return x*
int fact(int x)
\{ if(x <= 1) \}
      return 1;
  else
      return x* fact(x-1);
```


Example 3 0 int bad(int n) 1 { if (n==0) 2 return 0; 3 else 4 return bad(n/3 + 1+ n - 1); 5 } Example 4 0 void printout(int n) 1 { if (n >= 10) 2 printout(n/10); 3 cout << n%10; 4 }

Example 5

<u>การบ้าน 1</u>

1. จงเขียนโปรแกรมหาค่า Fibonacci กำหนด function Fibonacci ดังนี้ F_0 =0, F_1 =1 and F_n = F_{n-1} + F_{n-2} for n>1 แสดงผลลัพธ์เป็นค่า fibonacci ตั้งแต่ 0-19

$$F(0) = 1$$

$$F(1) = 1$$

$$F(2) = 1$$

• • •

$$F(19) = 4181$$

<u>การบ้าน 2</u>

2. จากตัวอย่าง printout จงเขียนโปรแกรมรับตัวเลขจำนวนเต็ม 1 ค่า พิมพ์เลขจากหลังไปหน้า และหน้าไปหลัง ด้วยการใช้วิธีการ recursive แสดงผลลัพธ์ 4 ค่า ดังตัวอย่าง

•	Input	ตย. 123456	<u>ผลลัพธ์</u>
•	Back to front	ตย. 654321	Input : 123456
•	Back to front cut last	ตย. 54321	Output:
•	Front to back	ตย. 123456	1) 654321
•	Front to back cut last	ตย. 12345	2) 54321
			3) 123456
			4) 12345

2.2 Algorithm Analysis

Definition: An algorithm is a clearly specified set of simple instructions to be followed to solve a problem.

- correct
- time or space

Example 5 Running time Calculations

```
int sum(int n)
      int partialSum;
      partialSum=0;
      for(int i=1; i<=n; i++)
             partialSum += i*i*i;
      return partialSum;
```


Example 6 Maximum subsequence sum

4 + -3

4 + -3 + 5

4 + -3 + 5 + -2

$$4 + -3 + 5 + -2 + -1 + 2 + 6 + -2$$
 $-3 + 5 + -2 + -1 + 2 + 6 + -2$

-3

-3 + 5

-3 + 5 + -2

-3 + 5 + -2 + -1

Example 6 Maximum subsequence sum

```
4 -3 5 -2 -1 2 6 -2
int MasSubsequenceSum(int a[], int N)
       int ThisSum, MaxSum, j;
       for(j=0; j<N; j++)
               ThisSum += A[j];
               if( ThisSum > MaxSum)
                       MaxSum = ThisSum;
               else if( ThisSum < 0 )
                       ThisSum=0;
       return MaxSum;
```

2.2.1 Mathematics Reviews

1) Exponents

$$X^AX^B = X^{A+B}$$

$$\frac{X^A}{X^B} = \chi^{A-B}$$

$$(X^A)^B = X^{AB}$$

$$X^N+X^N = 2X^N \neq X^{2N}$$

$$2^{N}+2^{N}=2^{N+1}$$

2) Logarithms

$$X^A = B -> log_x B = A$$

$$log_A B = \frac{log_c A}{log_c B}$$

3) Series

$$1 + 2 + 3 + ... + N$$

$$1^2 + 2^2 + 3^2 + ... + N^2$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

$$\sum_{i=1}^{N} i^2 = \frac{N(N+1)(2N+1)}{6}$$

คำถาม

$$1 + 2 + 3 + ... + (N-1) = ?$$

y03603212 : Module2–Recursive and BigO16

2.2.2) Mathematical Background

Big O Notation : เป็น Notation หรือรูปแบบ หรือระบบทาง คณิตศาสตร์

- ใช้ในการ อธิบายประสิทธิภาพของอัลกอริทึม หรือฟังก์ชัน
- เมื่อขนาดของข้อมูลอินพุต (N) มีขนาดใหญ่ขึ้นมากๆ

Definition: T(N)=O(f(N)) if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

T(N): ฟังก์ชันที่แทนเวลาจริง หรือ จำนวนการดำเนินการจริง ที่อัลกอริทึม ใช้ในการทำงาน โดยขึ้นอยู่กับขนาดของข้อมูลอินพุต N

F(N): คือฟังก์ชันที่ใช้ เป็นตัวแทนหรือขีดจำกัดบน (upper bound) ของ การเติบโตของ T(N) , F(N) มักจะเป็นฟังก์ชันที่ง่ายกว่า เช่น N, N ² , logN, NlogN, หรือ 1 (ค่าคงที่)

เราเลือก F(N) ที่เป็นฟังก์ชันที่ครอบคลุมการเติบโตของ T(N) ในกรณีที่ N มีค่ามากพอ

Definition: T(N)=O(f(N)) if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

c (positive constant): คือ ค่าคงที่ที่เป็นบวก มีไว้เพื่อ "ปรับขนาด" หรือ "ขยาย" ฟังก์ชัน f(N) ให้ครอบคลุม T(N) ได้

เมื่อ N มีค่ามากพอ T(N) ก็จะไม่มีทางเกิน c⋅F(N)

เราไม่สนใจประสิทธิภาพของอัลกอริทึมเมื่อ N มีค่าน้อยๆ แต่เราสนใจเมื่อ N โตขึ้นมากๆ ว่าอัลกอริทึมจะยังคงมีประสิทธิภาพดีอยู่ หรือไม่

Definition: T(N)=O(f(N)) if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

- Give two functions
- •we compare their relative rates of growth.

Although 1000N is larger than N^2 for small value of N, N^2 grow at a faster rate, and thus N^2 will eventually be the larger function.

The local of the property of t

03603212 : Module2–Recursive and BigO20

T(N)=O(f(N)) if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

- T(N) = 1000N
- $F(N) = N^2$
- เมื่อ N=1, c=1 จะเห็นว่า 1000N > N²
- เมื่อ N มีค่ามากขึ้น จนถึง 1000 1000N = N²
- เมื่อ N มากกว่า 1000
 1000N <= N²

We can say that 1000N = O(N²)
1000N เป็นฟังก์ชันที่โตไม่เร็วกว่า N²

T(N)=O(f(N)) if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

ตัวอย่างเพิ่มเติม

- $T(N) = 2 N^2 + 4$
- $F(N) = N^2$
- เมื่อ N=1, c=3 จะเห็นว่า 2 N² + 4> 3*N²
- เมื่อ N = 2 จะเห็นว่า 2 N² + 4<= 3*N²
 เมื่อ N มากกว่า 2 จะเห็นว่า 2 N² + 4<= 3*N²

We can say that $2 N^2 + 4 = O(N^2)$ ตามนิยามตัด c ออก

Function	Name
С	Constant
logN	Logarithmic
log^2N	Log-squared
N	Linear
NlogN	
N^2	Quadratic
N^3	Cubic
2 ^N	Exponential

2.2.3) General Rules

Rule 1– For loop

The running time of a for loop is at most the running time of the statements inside the for loop(including tests) times the number of iterations.

for(i=0; i<n; i++)

Rule 2– Nested loops

Analyze these inside out. The total running time of a statement inside a group of nested loop is the running time of the statement multiplied by the product of the sizes of all the loops.

```
for(i=0; i<n; i++)
for(j=0; j<n; j++)
k++;
```

k++;

Rule 3— Consecutive statement For loop

Add.

```
for(i=0; i<n; i++)

a[i]=0;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

a[i]+=a[j]+i+j;
```


Rule 4– If/Else

The running time of an if/else statement is never more than the running time of the test plus the running times of S1 and S2

```
if (condition)
S1
else
S2
```


คำถาม จาก code ด้านล่าง จงหาค่า bigO

```
1. int example(int numbers[], int size)
{
    int total = 0;
    for (int i = 0; i < size; i++)
    {
        total += numbers[i];
    }
    return total;
}</pre>
```


คำถาม จาก code ด้านล่าง จงหาค่า bigO

```
2. int example(int matrix[][3], int rows, int cols) {
    int total = 0;
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            total += matrix[i][j];
        }
    }
    return total;
}</pre>
```


คำถาม จาก code ด้านล่าง จงหาค่า bigO

```
int example(int numbers[], int size)
{
    if (size > 0)
        return numbers[0];
    else
        return -1;
}
```