# Advanced Numerical Mathematics Finite difference method for solving boundary value problems

Marcel Gohsen

Bauhaus-Universität Weimar

August 9, 2020

# The problem

## Differential equation:

$$y''(x) + y(x) = 3\sin x$$

#### **Boundary conditions:**

$$y(0) + y'(0) = 0$$
  
 $y(\frac{\pi}{2}) + y'(\frac{\pi}{2}) = 0$ 

Find solutions *x* to the differential equation which satisfy the boundary conditions.

# Finite difference method

Solve differential equations with the help of finite differences to approximate derivatives.

# Introduce discretization on a grid

Given: boundary values a, b, the number of steps N

$$h = rac{b-a}{N-1}$$
  
 $x_i = a + (i-1)h$  with  $i \in [1, N]$ 

# Finite difference method

#### Discretization of problem

$$a = 0, b = \frac{\pi}{2}, N = 10$$

$$h = \frac{\frac{\pi}{2} - 0}{10 - 1} = \frac{\pi}{18}$$

$$x = \{0 \cdot \frac{\pi}{18}, 1 \cdot \frac{\pi}{18}, \dots, 9 \cdot \frac{\pi}{18}\}$$

# Finite difference operators

#### First-order

Forward: 
$$y'(x_i) \approx \frac{y(x_{i+1}) - y(x_i)}{h}$$
  
Backward:  $y'(x_i) \approx \frac{y(x_i) - y(x_{i-1})}{h}$   
Central:  $y'(x_i) \approx \frac{y(x_{i+1}) - y(x_{i-1})}{2h}$ 

#### Second-order

$$y''(x_i) \approx \frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{h^2}$$

# Finite difference operators

Approximate derivatives in the differential equation with finite difference operators:

$$y''(x_i) + y(x_i) = 3\sin x_i$$

$$\frac{y(x_{i-1}) - 2y(x_i) + y(x_{i+1})}{h^2} + y(x_i) = 3\sin x_i$$

$$\frac{y(x_{i-1}) + (h^2 - 2)y(x_i) + y(x_{i+1})}{h^2} = 3\sin x_i$$

$$y(x_{i-1}) + (h^2 - 2)y(x_i) + y(x_{i+1}) = 3h^2\sin x_i$$

### Finite difference method

Build linear equation system for interior points of discretization

for 
$$i = 2$$
:  $y(x_1) + (h^2 - 2)y(x_2) + y(x_3) = 3h^2 \sin x_2$   
for  $i = 3$ :  $y(x_2) + (h^2 - 2)y(x_3) + y(x_4) = 3h^2 \sin x_3$   
for  $i = 4$ :  $y(x_3) + (h^2 - 2)y(x_4) + y(x_5) = 3h^2 \sin x_4$   
:  
for  $i = 9$ :  $y(x_8) + (h^2 - 2)y(x_9) + y(x_{10}) = 3h^2 \sin x_9$ 

# Boundary conditions

$$y(x_1) + y'(x_1) = 0$$
  
 $y(x_{10}) + y'(x_{10}) = 0$ 

Approximate derivatives in boundary conditions with finite differences.

$$y(x_1) + \frac{y(x_2) - y(x_1)}{h} = 0$$
$$(h-1)y(x_1) + y(x_2) = 0$$

$$y(x_{10}) + \frac{y(x_{10}) - y(x_{9})}{h} = 0$$
$$-y(x_{9}) + (h+1)y(x_{10}) = 0$$

# Linear equation system

#### The final linear equation system:

# Solvers

Solving of the linear equation system is implemented with the following methods:

#### Direct methods:

- Classical Gaussian Elimination
- Gaussian Elimination with pivot selection

#### Iterative methods:

- Jacobi method
- Successive over-relaxation (SOR)

# Classical Gaussian Elimination

Let us consider a linear equation system Ax = b with

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\ \vdots & & & & \\ a_{m,1} & a_{m,2} & \cdots & a_{m,m} \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

We compute factors in the k-th step  $\mu_{i,k}$  with k=1,...,m-1 and i=k+1,...,m.

$$\mu_{i,k} = \frac{a_{i,k}^{(k-1)}}{a_{k,k}^{(k-1)}}$$

Multiply the k-th row with factor and subtract from k+1,...,m row to obtain row echelon form (Stufenform). Back-substitution yields result x.

# Gaussian Elimination with pivot selection

Search for the maximum pivot in k-th step  $a_{i,j}^{(k-1)}$  with k=1,...,m-1 i=k,...,m and j=k,...,m.

$$(i_{max}, j_{max}) = \underset{i,j}{\operatorname{argmax}} a_{i,j}^{(k-1)}$$

Swap k-th row with  $i_{max}$  row and compute factors.

$$\mu_{i,j_{max}} = \frac{a_{i,j_{max}}^{(k-1)}}{a_{i_{max},j_{max}}^{(k-1)}}$$

Multiply the k-th row with factor and subtract from k+1,...,m row to obtain row echelon form (Stufenform). Back-substitution yields result x.

# Jacobi method

$$(L + D + U)x = b$$
  
 $x = -D^{-1}(L + U)x + D^{-1}b$ 

Iteration:

$$C = -D^{-1}(L + U)$$
$$d = D^{-1}b$$
$$x^{(k+1)} = Cx^{(k)} + d$$

with an initial guess  $x_0$ .

Convergence:

$$\sum_{j=1,j\neq i}^m |a_{i,j}| < |a_{j,j}|$$

 $\Rightarrow$  A must be diagonally dominant!



# Successive over-relaxation (SOR)

$$Lx + Dx + Ux = b$$
$$x = x + D^{-1}(b - Lx - Rx - Dx)$$

Introducing a relaxation factor  $\omega$  with  $0<\omega<2$  Iteration:

$$x^{(k+1)} = x^{(k)} + \omega D^{-1} (b - Lx^{(k+1)} - Rx^{(k)} - Dx^{(k)})$$

# **Evaluation**

Exact solutions of the problem described by:

$$\hat{y}(x) = \frac{3}{8} ((\pi + 2) \cos x - (\pi - 2) \sin x) - \frac{3}{2} x \cos x$$

Error calculations:

Absolute error :  $||\hat{y} - y||$ 

Relative error :  $\frac{||\hat{y} - y||}{||\hat{y}||}$ 

# **Evaluation**

| n   | Gauss  |        | Gauss with PS |        | SOR                        |        |
|-----|--------|--------|---------------|--------|----------------------------|--------|
|     | Abs    | Rel    | Abs           | Rel    | Abs                        | Rel    |
| 10  | 0.3962 | 0.1330 | 0.3962        | 0.1330 | 0.4102<br>2.6691<br>4.7574 | 0.1377 |
| 50  | 0.1785 | 0.0285 | 0.1785        | 0.0285 | 2.6691                     | 0.4268 |
| 100 | 0.1263 | 0.0144 | 0.1263        | 0.0144 | 4.7574                     | 0.5422 |

Jacobi method: The equation system obtained by finite difference method is not diagonally dominant and thus achieves no convergence towards the solution.

# **Evaluation**



Figure: Plot of the solution with n = 10