Introduction to the bartMachine R package Saint Louis R User Group

John Snyder

April 11, 2019

Outline

- 1. Brief BART overview
- 2. Installation and features
- 3. Demo
- 4. Further Considerations

What is BART?

Bayesian Additive Regression Trees

Interpretation

- ► Emsamble method combining many shallow trees
- Bayesian means variation is fully quantified
 - Yay Statistics

Powerful Predictive Performance

► Test RMSE of 100 random datasets simulated from various nonlinear functions (added noise with s=1)

Function	BART	XGBoost	Random Forest	Linear Reg(lol)
Friedman	1.08	1.21	1.64	2.61
Mirsha's Bird	1.53	2.78	2.90	26.59
Weird Exp	1.04	1.05	1.07	6.08
Linear	1.025	1.032	1.034	1.004

- bartMachine is relatively unknown
 - xgboost: ~43k downloads per month
 - ▶ randomForest: ~88k downloads per month
 - ▶ bartMachine: ~2k downloads per month

Package Features:

- Functions for Cross Validation
- Model fitting:
 - ▶ Is done in parallel¹
 - Can incorporate missing data
- Lots of fun statistical things
 - Credible iterval calculation
 - Diagnostic plots/tests
- Variable selection
- Interaction detection
- Export fit trees

Installation and loading steps

- 1. Google "How to install rJava on [your OS]"
- 2. Do that
- 3. Run the following

```
install.packages("bartMachine")
```

To load the package with:

- ▶ 10GB of memory
- ► All but one core available for compute

```
options(java.parameters = "-Xmx10g")
library(bartMachine)
numcores <- parallel::detectCores()
set_bart_machine_num_cores(numcores - 1)</pre>
```

Code Time

Coding demo

Computational Considerations

► Table with memory/time

John's Final Thought

- ▶ BART is a powerful technique which brings many advantages
 - ► At the expense of computational efficiency.
- Good results with removing expected variation and feeding residuals into BART.