

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Projektowanie maszyn Projekt

Rozdrabniarka do gałęzi

Prowadzący:

dr inż. Krzysztof Władzielczyk

Grupa laboratoryjna nr: 03

Autorzy: Paweł Bryzek, Marcin Chruściński

1. Dane

Średnica rozdrabnianych gałęzi

 $d \le 70 \text{ mm}$

Założone obroty wałów roboczych

 $n_r = 160 \text{ obr/min}$

Praca przez 4 miesięcy w roku, 10 godzin na dobę przez 8 lat

Trwałość

 $T := 4 \cdot 8 \cdot 30 \cdot 10 \text{ h} = 9600 \text{ h}$

2. Założenia konstrukcyjne:

Schemat:

1. Motoreduktor, 2. Przekładnia pasowa, 3. Przekładnia zębata

3. Przełożenia

$$i_2 := 2, 5$$

4. Dobór motoreduktora

Dobrany motoreduktor z katalogu Befared: 120-PP-RMw-3-400-B3-Skg132M-4 Wymiary motoreduktora:

wielkoś reduktor gear	ć size silnik motor	а	b	С	е	f	n	n ₁	s ₂	h -0,5	w	r	h ₁	D	L	U h9	t	x	z	L ₃	L ₂	LB	AC	КВ	
	63																				396	191	126	116	
7	71	115	115	17	150	150	50	35	12	90	0	70	172	22	50	6	24,5	M8	106,5	205	415	210	141	105	
١.	80													j 6							437	232	157	115	
	90																				461	256	180	142	
	63																				451	191	126	116	
15	71	180	125	20	214	165	50	40	12	100	7,9	75	187	28	60	8	31	M10	97	260	470	210	141	105	
13	80							'			1 1,1				j 6							492	232	157	115
	90																				516	256	180	142	
	71																				530	210	141	105	
30	80	220	20 170	28	260	220	65	50	14	125	9,1	100	237	38	80	80 10	41	M12	123	320	552	232	157	115	
30	90						"	**			-,.			k 6							576	256	180	142	
	100																				634	314	206	155	
	71																				615	210	141	105	
60	80	265	195	35	315	255	80	60	18	150	9,6	.6 117	117	17 283	45	110 1	14	48,5	5 M16	6 165	405	637 661	232 256	157 180	115 142
60	90	200	100	55	0.0	200	00	"	"	1.00	0,0	l		k 6			10,0			100	719	314	206	155	
	112																				728	323	233	168	
	90																				726	256	180	142	
120	100	345	250	50	415	330	90	80	22	212	22,4	150	380	55	110	16	59	M20	160	470	784	314	206	155	
120	112 132	343	230	30	413	330	30	-00		212	22,4	130	000	m 6	, 10	.0	33	11120	130	7,0	793 870	323 400	233	168 181	
	160																				1034	564	323	210	

Motoreduktor

$$i_1 := 3,55$$

Moment wyjściowy

$$M_{wyj} := 179 \text{ N m}$$

Moc motoreduktora

$$P := 7,5 \text{ kW}$$

Obroty wyjściowe

$$n_{wyj} := 400 \frac{\text{rev}}{\text{min}}$$

5. Szacowana moc na wałach roboczych

a. Sprawności

$$\eta_1 := 0,96$$

$$\eta_2 := 0,95$$

$$\eta_3 := 0,98$$

b. Obliczenie mocy

Moc na wale roboczym 1

$$P_{\text{WYJI}} := \frac{P}{2} \cdot \boldsymbol{\eta}_1 \cdot \boldsymbol{\eta}_2 \cdot \boldsymbol{\eta}_3 = 3,42 \text{ kW}$$

Moc na wale roboczym 2

$$P_{\text{wyj2}} := \frac{P}{2} \cdot \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \eta_4 = 3,3516 \text{ kW}$$

6. Obliczenia przekładni pasowej:

Maszyna napędzająca: motoreduktor 3 stopniowy, moc: N = 7,5 kW, obroty: nc= 400 obr/min.

Maszyna napędzana: noże tnące, obroty: nb= 160 obr/min.

Parametry przekładni: dzienny czas pracy: T = 10 godzin, średnice kół i rozstaw osi - optymalny

- Współczynnik warunków pracy k_T = 1,2
- Moc obliczeniowa N:

$$N_0 := N \cdot k_T = 9 \text{ kW}$$

- Dobrana średnica małego koła:

$$d_p := 224 \text{ mm}$$

- Przekrój pasa:

dobrano pas SPA oraz średnicę małego koła dp = 224

	1
//////////////////// d	p

Pas wąski oznaczenie ISO, DIN	SPZ	SPA
orientacyjna szer. górna I_o	9,7	12,7
szerokość podziałowa I _p	8,5	11
wysokość pasa h _o	8	10
wys. nad linią podzaiłową b ,	2	2,8
min. śr. podziałowa koła d	63	90
masa 1 mb pasa [kg] ≈	0,08	0,14
dopuszczalna pręd. pasa [m/s]		40

- Prędkość pasa v:

$$v := \frac{n_{wyj} \cdot d_p}{19100} \qquad v := 4,61 \frac{m}{s}$$

- Przełożenie i = 2,5
- Średnica dużego koła D_p:

$$D_p := i \cdot d_p \qquad D_p = 560 \text{ mm}$$

- Wstępny rozstaw osi A_o:

$$0, 7 \cdot (D_p + d_p) = 0,5488 \text{ m}$$
$$2 \cdot (D_p + d_p) = 1,568 \text{ m}$$

Przyjęto:

$$A_0 := 0, 7 \text{ m}$$

- Długość pasa L:

$$L_p := 2 \cdot A_0 + 1,57 \cdot \left(D_p + d_p\right) + \frac{\left(D_p - d_p\right)^2}{4 \cdot A_0} = 2,6712 \text{ m}$$

Przyjęto:

$$L_p := 2650 \text{ mm}$$

- Rozstaw osi A:

$$p := 0, 25 \cdot L_p - 0, 393 \cdot (D_p + d_p) = 0, 354388 \text{ m}$$

$$q := 0, 125 \cdot (D_p - d_p)^2 = 14112 \text{ mm}^2$$

$$A := p + \sqrt{p^2 - q} = 688, 2725 \text{ mm}$$

- Przestawienie osi:

$$x := 0,03 \cdot L_p = 79,5 \text{ mm}$$

 $y := 0,015 \cdot L_p = 39,75 \text{ mm}$

- Współczynnik kąta opasania k_a:

$$\frac{D_p - d_p}{A} = 0,4881787$$

$$k_{\varphi} := 0,93$$

$$\Phi := 151^{\circ}$$

$$\cos\left(\frac{\Phi}{2}\right) = 0,25038$$

(2)

- Współczynnik długości pasa k_L:

$$k_{T_i} := 1,01$$

- Moc znamionowa N₁:

$$N_1 := 3,35 \text{ kW}$$

- Wymagana ilość pasów w przekładni z:

$$z := \frac{N \cdot k_T}{N_1 \cdot k_{\varphi} \cdot k_L} = 2,86018$$

Przyjęto 3 pasów.

Kontrola naciągu pasa przez pomiar ugięcia cięgna pasa:

- Statyczna siła w cięgnie pasa T_s:

$$T_s := \frac{500 \cdot \left(2,02 - k_{\varphi}\right) \cdot N \cdot k_T}{k_{\varphi} \cdot z \cdot v} + c \cdot v^2$$

$$T_s := 546 \text{ N}$$

- Wartość ugięcia cięgna pasa U_n:

$$U := 2, 2$$
 $q := 50 \text{ N}$

$$U_p := \frac{U \cdot L}{100} = 14,65969 \text{ mm}$$

Kontrola naciągu pasa przez pomiar statycznej siły osiowej:

- Minimalna siła osiowa w stanie statycznym N_s:

$$N_s := 2 \cdot T_s \cdot \sin\left(\frac{\Phi}{2}\right) \cdot z = 3171,652 \text{ N}$$

- Obciążenie osi od sił w cięgnach czynnych T_c:

$$T_{c} := \frac{1020 \cdot N \cdot k_{T}}{k_{\phi} \cdot V}$$

$$T_c := 2141, 2 \text{ N}$$

- Obciążenie osi od sił w cięgnach biernych T_b:

$$\mathbf{T_b} := \frac{1020 \cdot \left(\mathbf{1,02 \cdot k_{\phi}}\right) \cdot \mathbf{N \cdot k_{T}}}{\mathbf{k_{\phi} \cdot \mathbf{V}}}$$

$$T_b := 2031, 2 \text{ N}$$

- wypadkowa siła dynamiczna N_{sdyn} :

$$N_{sdyn} := \sqrt{T_c^2 + T_b^2 - 2 \cdot T_c \cdot T_b \cdot \cos(\Phi)} = 4039,5931 \text{ N}$$

Obliczenia Konstrukcyjne:

- Wymiary kół rowkowych dla pasów:

pas wąski oznaczenie ISO i D	SPA		
pas	oznacze	nie ISO	A
klasyczny	oznacze	nie DIN	13
szerokość po	11		
orientacyjna szer	12,7		
wysokość rowka nac	2,8		
minimalna głęboł	13,8		
podziałk	15 ^{±0,3}		
podziałka b	10±0,8		
max. S odcl	kole	±0,6	
	wąski pro	90	
d _{p min}	klasyczny	71	
		α = 34°	<118
średnica podziałowa d p		α = 36°	-
pouziaiowa u p		α = 38°	>180
dopuszcza	±0,5°		
szerokość wi koła pasoweg dla z pasó	o s	1 2 3 4 5 6	20 35 50 65 80 95
s = (z - 1) · (e + 2f	7 8 9 10	110 125 140 155

$$s = (z-1) \cdot e + 2f = 50mm$$

wartości pomiarowe wałeczkami:

wąski profil ozn. I	SO I DIN SPA
klasyczny oznacze	enie ISO A
profil oznacze	enie DIN 13
średnica wałe pomiaroweg	11 1 6 70042
orientacyjny w korekcyjny ź	· II II

Średnica wałka na kole biernym:

Z warunku wytrzymałości na skręcanie $au_s = T_s / w_s \leqslant k_s$ przy obniżonych wartościach naprężeń dopuszczalnych:

$$d_{wal} := \sqrt[3]{\frac{10^3 \cdot T_2}{0, 2 \cdot ks}}$$

ks := 20 MPa

Moc na wale:

$$P_2 := P_1 \cdot \eta_1 \cdot \eta_2 = 6,84 \text{ kW}$$

Obroty na wale:

$$n_2 := \frac{n}{u} = 160 \frac{\text{rev}}{\text{min}}$$

Momenty obrotowe na wale:

$$T_2 := 9550 \cdot \frac{P2}{n2}$$
 $T_2 := 408,26 \text{ N m}$

$$T_2 := 408,26 \text{ N m}$$

po podstawieniu:

$$d_{wal} := 46,73321 \text{ mm}$$

dobieram wał 50 mm

 Obliczenia połączenia wpustowego na wale koła biernego: szerokość:

$$b_2 \coloneqq 16~\mathrm{mm}$$

głębokość:

$$h_2 := 10 \text{ mm}$$

Materiał na wpust: S235

$$kd := 129 \text{ MPa}$$

Moment na wale:

$$M_2 := 447500 \text{ N mm}$$

Długość wpustu:

$$L_2 := \frac{4 \cdot M_2}{h_2 \cdot b_2 \cdot kd} = 86,7248 \text{ mm}$$

Stosuje połączenie 2 wpustowe, a więc:

$$L0 := \frac{L_2}{2} = 43,3624 \text{ mm}$$

dobeiramy L0 jednego wpustu 45mm

- Liczba ramion:

$$n_r = \frac{1}{7} \cdot \sqrt{D} = 3,94,$$
 Dobieram $n_r = 4$

Wymiary ramion

$$c_1 := \sqrt[3]{\frac{10^3 \cdot T_2}{0, 4 \cdot n}} \qquad c_1 := 76, 5 \text{ mm}$$

$$c_2 := 0, 8 \cdot c_1 = 61, 2 \text{ mm}$$

$$a_1 := 0, 4 \cdot c_1 = 30, 6 \text{ mm}$$

$$a_2 := 0, 8 \cdot a_1 = 24,48 \text{ mm}$$