Schrodinger 3D Formulas

xyz Laplacian Operator:
$$\nabla^2 F(x, y, z) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) F(x, y, z)$$

xyz Time-Dependent Schrodinger:
$$i\hbar \frac{\partial \psi(x,y,z)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(x,y,z) + V(x,y,z) \psi(x,y,z)$$

Free-Particle with Momentum
$$\vec{p}$$
: $\psi(\vec{x},t) = A \exp(i[\vec{k} \cdot \vec{x} - \omega t])$ $\vec{k} = \frac{\vec{p}}{\hbar}$ $\omega = \frac{E}{\hbar} = \frac{\vec{p}^2}{2m\hbar} = \frac{\hbar}{2m}\vec{k}^2$

xyz Time-Independent Schrodinger:
$$-\frac{\hbar^2}{2m}\nabla^2\psi(x,y,z) + V(x,y,z)\psi(x,y,z) = E\psi(x,y,z)$$

Rectangular Box: V = 0 for $0 < x < w_x$ and $0 < y < w_y$ and $0 < z < w_z$ and $V = \infty$ elsewhere

Solutions:
$$\psi_{nx,ny,nz} = \sin\left(\frac{n_x \pi x}{w_x}\right) \cdot \sin\left(\frac{n_y \pi y}{w_y}\right) \cdot \sin\left(\frac{n_z \pi z}{w_z}\right) n_x, n_y, n_z = 1, 2, 3, ... \text{ in any combination}$$

Energies:
$$E_{nx,ny,nz} = \frac{\hbar^2 \pi^2}{2m} \cdot \left[\frac{n_x^2}{w_x^2} + \frac{n_y^2}{w_y^2} + \frac{n_z^2}{w_z^2} \right] = (0.3763 \text{ eV-nm}^2) \cdot \left[\frac{n_x^2}{w_x^2} + \frac{n_y^2}{w_y^2} + \frac{n_z^2}{w_z^2} \right]$$
 for electron

xyz Harmonic Oscillator Energies:
$$E_{nx,ny,nz} = \frac{\hbar}{\sqrt{m}} \cdot \left[\left(n_x + \frac{1}{2} \right) \sqrt{k_x} + \left(n_y + \frac{1}{2} \right) \sqrt{k_y} + \left(n_z + \frac{1}{2} \right) \sqrt{k_z} \right]$$

if
$$k_x = k_y = k_z = k$$
: $E_{nx,ny,nz} = \hbar \sqrt{\frac{k}{m}} \cdot \left[n_x + n_y + n_z + \frac{3}{2} \right] = \left[n_x + n_y + n_z + \frac{3}{2} \right] \cdot \left(0.2761 \sqrt{\text{eV}} - \text{nm} \right) \cdot \sqrt{k}$ for electron

Spherical Gradient:
$$\vec{\nabla}F = \hat{r}\frac{\partial F}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial F}{\partial \theta} + \hat{\phi}\frac{1}{r\sin\theta}\frac{\partial F}{\partial \phi}$$

Spherical Divergence:
$$\vec{\nabla} \cdot \vec{G} = \frac{1}{r^2} \frac{\partial \left[r^2 G_r \right]}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial \left[\sin \theta \ G_{\theta} \right]}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial G_{\phi}}{\partial \phi}$$

Spherical Laplacian:
$$\nabla^2 F = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial F}{\partial r} \right] + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial F}{\partial \theta} \right] + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 F}{\partial \phi^2}$$

Spherical Schrodinger:
$$-\frac{\hbar^2}{2M} \left\{ \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \psi}{\partial r} \right] + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial \psi}{\partial \theta} \right] + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right\} + V(r) \psi = E \psi(r, \theta, \phi)$$

Separation: $\psi = F(r) \cdot G(\theta) \cdot H(\phi)$

$$\frac{2Mr^{2}}{\hbar^{2}} \left[E - V(r) \right] + \frac{\partial}{\partial r} \left[r^{2} \frac{\partial F}{\partial r} \right] \frac{1}{F} = \lambda = -\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial G}{\partial \theta} \right] \frac{1}{G} - \frac{1}{\sin^{2} \theta} \left[\frac{\partial^{2} H}{\partial \phi^{2}} \right] \frac{1}{H}$$

$$\lambda \sin^2 \theta + \sin \theta \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial G}{\partial \theta} \right] \frac{1}{G} = \mu = -\left[\frac{\partial^2 H}{\partial \phi^2} \right] \frac{1}{H}$$

Solutions: $H_m(\phi) = \exp[im\phi]$ with integer m and $\mu = m^2$ $G_{\ell m}(\theta) = P_{\ell}^m(\theta)$ Legendre Functions

Spherical Harmonics $Y_{\ell}^{m}(\theta,\phi) = P_{\ell}^{m}(\theta) \cdot H_{m}(\phi)$ $\ell = 0,1,2,3,...$ and $|m| \le \ell$

Transformation:
$$F(r) \rightarrow \frac{U(r)}{r}$$
 so $\psi_{k\ell m}(r,\theta,\phi) = \frac{U_{k\ell}(r)}{r} \cdot Y_{\ell}^{m}(\theta,\phi)$

Reduced Radial Schrodinger:
$$-\frac{\hbar^2}{2M} \frac{\partial^2 U(r)}{\partial r^2} + \left[V(r) + \frac{\hbar^2 \ell \cdot (\ell+1)}{2Mr^2} \right] \cdot U(r) = EU(r)$$

Boundary Condition: U(r) = 0 at r = 0

Solution $U_{k\ell}(r)$ and $E_{k\ell}$ depend on k and ℓ but don't depend on m

Infinite Spherical Well: V(r) = 0 for r < R and $V = \infty$ elsewhere

$$\ell = 0$$
 Solutions: $\psi_{k00}(r, \theta, \phi) = \frac{U_{k0}(r)}{r}$ $U_{k0}(r) = \sin(\frac{k\pi r}{R})$ with $k = 1, 2, 3, ...$

$$E_{k0} = k^2 \frac{\hbar^2 \pi^2}{2mR^2} = k^2 \frac{0.3763 \text{ eV-nm}^2}{R^2} \text{ for electron}$$

For $\frac{1}{r}$ potential ONLY, E depends on the combination $n = k + \ell$, with k > 0

Hydrogen Reduced Radial Equation:
$$-\frac{\hbar^2}{2M} \frac{\partial^2 U}{\partial r^2} + \left[\frac{\hbar^2 \ell \cdot (\ell+1)}{2Mr^2} - \frac{q_e^2}{4\pi \epsilon_0 r} \right] \cdot U = EU$$

Solutions:
$$a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_e q_e^2} = 52.97 \text{ pm}$$
 $E_n = -n^2 \cdot \frac{m_e}{2} \cdot \left(\frac{q_e^2}{4\pi\varepsilon_0\hbar}\right)^2 = -n^2 \cdot 13.6 \text{ eV}$ $n = 1, 2, 3, ...$

$$\rho = \frac{r}{a_0} \begin{cases} U_{n\ell}(\rho) & \ell = 0, m = 0 \\ n = 3 & \left[\rho^3 - 9\rho^2 + \frac{27}{2}\rho \right] \cdot e^{\frac{-\rho}{3}} & \left[\rho^3 - 6\rho^2 \right] \cdot e^{\frac{-\rho}{3}} & \rho^3 \cdot e^{\frac{-\rho}{3}} \\ n = 2 & \left[\rho^2 - 2\rho \right] \cdot e^{\frac{-\rho}{2}} & \rho^2 \cdot e^{\frac{-\rho}{2}} \\ n = 1 & \rho \cdot e^{-\rho} \end{cases}$$