Researched Notebooks

All notebooks are listed below:

Table of Contents

1.1. Data Preprocessing	
	1
1.2. Recommend similar products using Apriori	
3. Delivery Days, Payments, Customers Analysis	
4. Olist Data Pre Processing	
5. E-Commerce predicting customer lifetime value	

1. Perform Market basket analysis with E-comm data

https://www.kaggle.com/sasha18/perform-market-basket-analysis-with-e-comm-data

Here we attempt to group common patterns of items together using **Association rules** using **Apriori** algorithm.

Data: brazilian-ecommerce/olist order items dataset.csv

Using only half data due to memory issues

```
o data = data.head(30000)
```

Append Quantity column. Since, there's 1 product on every row we can easily use Quantity as 1 which will be added subsequently.

```
o data.insert(7, 'quantity',1)
o data.shape: (30000,7) -> (30000, 8)
```

We can't use this data the way it is, we got to further convert this into a format that is accepted by Apriori algorithm.

1.1. Data Preprocessing

Things to do:

- Total no. of unique orders and products
- Whether to drop products that are purchased within a given threshold
- Average no. of products purchased in a given order
- ▶ Drop Some products that were purchased below 10 times

```
item_freq = data['product_id'].value_counts()
data = data[data.isin(item_freq.index[item_freq >= 10]).values]
```

```
data['product_id'].value_counts()
```

1.2. Recommend similar products using Apriori

Things to do:

- Create a basket of all products, orders and quantity
- Perform One hot encoding so as to convert all quantities into format suitable for apriori algorithm
- Build list of frequent itemsets
- Generate rules based on your requirements (conf>0.5)
- Create a basket of all products, orders and quantity

```
basket = (data.groupby(['order_id','product_id'])['quantity']).sum().unstac
k().reset_index().fillna(0).set_index('order_id')
```

Convert 0.0 to 0, convert the units to One hot encoded values

```
def encode_units(x):
    if x<= 0:
        return 0
    if x>=1:
        return 1
```

Building Frequent Itemsets

```
frequent_itemsets = apriori(basket_sets, min_support = 0.0001, use_colnames
= True)
frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x:
len(x))
```

Create Rules

```
rules = association_rules(frequent_itemsets, metric = 'support', min_thresh
old = 0.0001)
```

> Products having 50% confidence likely to be purchased together

```
rules[rules['confidence'] >= 0.50]
```

Sample Result:

İnd	antecedents	consequents	ante	cons	sup	Confi	lift	leve	conv
ex			cede	eque	port	denc		rag	ictio
			nt	nt		е		е	n
			supp	supp					
			ort	ort					

87	(368c6c730842d78	(53759a2ecddad2	0.00	0.01	0.00	1	78.3	0.00	inf
	016ad823897a372	bb87a079a1f1519f	0166	2757	016		896	016	
	db, 0bcc3eeca39	73)			6		1	4	

3. Delivery Days, Payments, Customers Analysis

https://www.kaggle.com/dhruvgupta2801/delivery-days-payments-customers-analysis

Graph for sellers per state
sns.barplot(x=df1['seller_state'].value_counts().index,y=df1['seller_state'].value_counts().values)

> Delivery Time Frequency Graphic

```
X=pd.to_datetime(df2['order_delivered_customer_date'])-pd.to_datetime(df2['
order_purchase_timestamp'])
for i in range(0,len(X)):
    X[i]=X[i].days
sns.barplot(x=X.value_counts().sort_values(ascending=False).head(30).index,
y=X.value_counts().sort_values(ascending=False).head(30).values)
```


Amount Paid by Payment Type

```
sum1=[]
group=[]
```

```
for groups,frame in df5.groupby('payment_type'):
    sum1.append(sum(frame['payment_value']))
    group.append(groups)
plt.figure()
sns.barplot(x=group,y=sum1)
```


Number of Transaction by Payment Type

sns.barplot(x=df5['payment_type'].value_counts().index,y=df5['payment_type'
].value_counts().values)

Customers Per State

sns.barplot(x=df6['customer_state'].value_counts().index,y=df6['customer_state'].value_counts().values)

4. Olist Data Pre Processing

https://www.kaggle.com/samuraijack013/olist-data-pre-processing

> Getting one order id where payment was made through more than one method

```
print(olist_payment[olist_payment['payment_sequential'] > 1].head())
```

```
order_id payment_sequential payment_type
25
     5cfd514482e22bc992e7693f0e3e8df7
                                                        2
                                                               voucher
75
     3689194c14ad4e2e7361ebd1df0e77b0
                                                        2
                                                               voucher
102 21b8b46679ea6482cbf911d960490048
                                                        2
                                                               voucher
     ea9184ad433a404df1d72fa0a8764232
                                                        4
                                                               voucher
139 82ffe097d8ddbf319a523b9bbe7725d5
                                                        2
                                                               voucher
```

Distribution of price

```
print(olist_item_order.price.describe())
```

```
count
         112650.000000
            120.653739
mean
std
            183.633928
min
              0.850000
25%
             39.900000
50%
             74.990000
75%
            134.900000
           6735.000000
max
Name: price, dtype: float64
```

Merging Tables

```
# merge order and customer demo data
df_process_v1 = olist_order.merge(olist_customer,on = 'customer_id', how = 'in
ner')

# merge order item information with order information, this will bring data at
order_id - item_id level

df_process_v2 = olist_item_order.merge(df_process_v1,on = 'order_id',how = 'le
ft')

# merge product data with above trasnaction data

#check shape
print(df_process_v2.shape)
```

```
df_process_v2 = df_process_v2.merge(olist_products, on = 'product_id', how = 'in
ner')
```

> Filling the missing values

```
df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_heigh
t_cm'].mean(),inplace = True)
df_transaction_v1['product_weight_g'].fillna(df_transaction_v1['product_weight
_g'].mean(),inplace = True)
df_transaction_v1['product_width_cm'].fillna(df_transaction_v1['product_width_cm'].mean(),inplace = True)
df_transaction_v1['product_length_cm'].fillna(df_transaction_v1['product_length_cm'].mean(),inplace = True)
df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(df_transaction_v1['product_height_cm'].fillna(d
```

Bring the payment info

```
#filtering out payment type as voucher separately and rest as others
olist_payment.loc[olist_payment.payment_type.isin(['voucher']), 'payment_type_n
ew'] = 'voucher'
olist_payment['payment_type_new'].fillna('other',inplace = True)

olist_payment_grp = olist_payment.groupby(['order_id','payment_type_new']).agg
({'payment_value':'sum'}).reset_index()

# pivot up data to get voucher, non voucher revenue corresponding to each orde
r_id
olist_payment_grp_pvt = olist_payment_grp.pivot(index = 'order_id',columns='pa
yment_type_new',values = 'payment_value').reset_index()
olist_payment_grp_pvt.fillna(0,inplace = True)

#merge this information with transactional data
df_transaction_v2 = df_transaction_v1.merge(olist_payment_grp_pvt[['order_id',
'other','voucher']],on = 'order_id', how = 'left')
```

Creating Campaign Data

5. E-Commerce predicting customer lifetime value

https://www.kaggle.com/dhimananubhav/e-commerce-predicting-customer-lifetime-value

Objectives

The primary goal of this work is to build a probabilistic model for forecasting customer lifetime value in non-contractual setting on an individual level.

Using the results of this exercise, managers should be able to:

- Distinguish active customers from inactive customers.
- Generate transaction forecasts for individual customers.
- Predict the purchase volume of the entire customer base.
- Creating new data named elog

	CUSTOMER_ID	ORDER_DATE
52263	2d1bf256227e4d22d10ea6c0b81809d7	2018-06-12
46645	12bf514b8d413d8cbe66a2665f4b724c	2018-01-20
37546	83c6df0d47130de38c99cebe96521e8a	2018-06-16
94756	29b186723b197669f69b7d63c3e27c07	2017-08-30
14771	a59129ed35da4c3e3f2a005b4c6582fc	2017-08-10

What is RFM Matrix:

Recency: when your customer last bought a product from you **Frequency:** how many times your customers have bought from you

Monetary value: monetary value, total purchase

- Creating RFM matrix based on transaction logs
 - o Spliting calibration and holdout period

	from	lifetimes.utils	import	calibration	and	holdout	data
--	------	-----------------	--------	-------------	-----	---------	------

	frequency_cal	recency_cal	T_cal	frequency_holdout	duration_holdout
CUSTOMER_ID					
0000366f3b9a7992bf8c76cfdf3221e2	0.0	0.0	51.0	0.0	90
0000b849f77a49e4a4ce2b2a4ca5be3f	0.0	0.0	54.0	0.0	90
0000f46a3911fa3c0805444483337064	0.0	0.0	477.0	0.0	90
0000f6ccb0745a6a4b88665a16c9f078	0.0	0.0	261.0	0.0	90
0004aac84e0df4da2b147fca70cf8255	0.0	0.0	228.0	0.0	90

➤ Training model - MBG/NBD

from lifetimes import ModifiedBetaGeoFitter

- Estimating customer lifetime value using the Gamma-Gamma model
- Predictions for each customer

t = 90 # days to predict in the future

CUSTOMER_ID	a12a52a129241056f2224794d70774ee	f2ba66a2a2704983864ee770bb9afdb6
frequency_cal	0.000000	0.000000
recency_cal	0.000000	0.000000
T_cal	352.000000	466.000000
frequency_holdout	0.000000	0.000000
duration_holdout	90.00000	90.000000
predicted_purchases	0.004967	0.004098
p_alive	0.340000	0.330000

Model Evaluating

