Licenciatura em Engenharia Informática (LEI/LEICE/LEIRP) Ano Letivo 2022/23

Métodos Estatísticos

CADERNO DE EXERCÍCIOS

Deolinda M. L. D. Rasteiro

Instituto Superior de Engenharia de Coimbra Departamento de Física e Matemática

1. Probabilidades

- 1. Uma caixa contém 5 lâmpadas das quais 2 são defeituosas. Estas têm os números 3 e 5. Considere a experiência aleatória "extracção de duas lâmpadas ao acaso, uma a seguir à outra, sem reposição da primeira".
 - (a) Construa o espaço de resultados associado a esta experiência aleatória.
 - (b) Defina por extenso os acontecimentos:

 $A = \{ saída de lâmpada defeituosa na primeira tiragem \};$

 $B = \{ \text{saída de lâmpada defeituosa na segunda tiragem} \};$

 $C = \{ \text{saída de duas lâmpadas defeituosas} \};$

 $D = \{ \text{não sair qualquer lâmpada defeituosa} \};$

- (c) Se as lâmpadas forem extraídas ao acaso, os resultados possíveis são equiprováveis. Calcule a probabilidade dos acontecimentos $A,\ B,\ C$ e D.
- 2. Calcule a probabilidade de, ao lançar três vezes uma moeda equilibrada, obter:
 - (a) duas caras;
 - (b) pelo menos uma cara.
- 3. Lança-se simultaneamente um dado e uma moeda equilibrados.
 - (a) Construa o espaço de resultados associado a esta experiência aleatória.
 - (b) Defina por extenso os acontecimentos:

 $A = \{ \text{saída de coroa e número par} \};$

 $B = \{ \text{saída de cara e número ímpar} \};$

 $C = \{ \text{saída de múltiplos de três} \};$

e determine as respectivas probabilidades.

4. Sejam A, B, e C acontecimentos de Ω tais que:

$$A \cup B \cup C = \Omega$$
, $P(A) = 0.3$, $P(\overline{B}) = 0.7$, $P(C) = 0.5$ e $A \cap B = C \cap B = \emptyset$.

Determine $P(A \cap C)$.

5. Sejam A e B acontecimentos de um mesmo espaço de probabilidade Ω , tais que P(A) = 0.7, P(B) = 0.6 e $P(A \cup B) - P(A \cap B) = 0.3$. Calcule:

(a)
$$P(\overline{B})$$
; (b) $P(A \cup B) \in P(A \cap B)$.

6. Supondo que A e B são acontecimentos independentes com probabilidade não nula prove que os acontecimentos A e \overline{B} , \overline{A} e \overline{B} , \overline{A} e B também são independentes.

2

- 7. Uma empresa fabrica aparelhos elétricos em duas cadeias de produção A e B. Sabe-se que a probabilidade de um desses artigos ser exportado é 0.2 se produzido pela cadeia A e 0.5 se produzido pela cadeia B. Além disso, a proporção de artigos provenientes da cadeia A é 52%. Escolhe-se, ao acaso, um artigo da produção desta empresa.
 - (a) Determine a probabilidade do artigo ser exportado.
 - (b) Sabendo que o artigo não foi exportado, qual a probabilidade dele ter sido produzido pela cadeia B?
- 8. A central telefónica do INEM de uma grande cidade recebe chamadas, umas genuínas e outras falsas, isto é, correspondentes ou não a verdadeiros acidentes. A central recebe na totalidade 2% de chamadas falsas. Destas, 20% são efectuadas durante o período da manhã, 40% durante o período da tarde e as restantes à noite. Das chamadas genuínas recebidas na central, 30% são feitas durante a manhã.
 - (a) Mostre que a percentagem de chamadas recebidas na central durante o período da manhã é de 29.8%.
 - (b) Considerando que a probabilidade de uma chamada, recebida na central, ser efectuada no período da tarde é de 40%, calcule a probabilidade de uma chamada ser feita durante a noite dado que é uma chamada genuína.
- 9. Em determinada linha de montagem 2% das peças ficam mal colocadas. Um programa para detectar falhas de montagem tem as seguintes propriedades:
 - se a peça está mal colocada, o programa indica essa falha com probabilidade 0.99;
 - se a peça está correctamente colocada, o programa indica falha com probabilidade 0.005.
 - (a) Determine a probabilidade de, ao ser efectuado o referido teste, o programa indicar falha.
 - (b) Se o teste indicar a existência de uma falha, qual a probabilidade de efectivamente existirem peças mal colocadas?
- 10. Uma empresa de fabrico de válvulas de televisão dispões de três sectores de produção: A, B e C. Sabe-se que:
 - a percentagem de válvulas da marca $A \neq 50\%$;
 - a percentagem de válvulas defeituosas é 10%;
 - \bullet em C não há válvulas defeituosas;
 - \bullet 2% das válvulas provêm de B e são defeituosas.

Escolhe-se aleatoriamente uma válvula de televisão da produção da empresa.

- (a) Mostre que a probabilidade da válvula ser defeituosa, sabendo que provém de A é 0.16.
- (b) Calcule a probabilidade da válvula não provir de B sabendo que é defeituosa.

- (c) Sabendo que, das válvulas não defeituosas 40% provêm de C, qual a probabilidade da válvula ser proveniente de C?
- 11. Dos utilizadores de telefones móveis duma determinada localidade, 50% estão ligados à rede A, 40% à rede B e 10% à rede C. Após um estudo de opinião de mercado conclui-se que:
 - 70% dos utilizadores estão satisfeitos com o serviço;
 - dos utilizadores ligados à rede A, 80% estão satisfeitos;
 - \bullet dos utilizadores satisfeitos com o serviço, 10% estão ligados à redeC.

Determine a percentagem de utilizadores:

- (a) da rede B que estão satisfeitos com o serviço;
- (b) não satisfeitos com o serviço, sabendo que estes não estão ligados à rede C.
- 12. O fabrico de uma peça consta de duas operações. Inicialmente a peça é moldada numa máquina M e, em seguida, passa por uma de duas impressoras, I_1 ou I_2 . A probabilidade de uma peça apresentar defeito de moldagem é 0.4 e 70% das peças são impressas em I_1 . Além disso, a probabilidade de surgir um defeito de impressão é de 0.05 para I_1 e de 0.02 para I_2 . Note que defeitos de moldagem e de impressão são independentes entre si.

No final de determinado dia de laboração, da produção total da fábrica retira-se uma peça ao acaso.

- (a) Qual a probabilidade da peça ter defeitos de impressão?
- (b) Qual a probabilidade da peça apresentar um qualquer defeito?
- (c) Supondo que a peça apresenta defeito de impressão, calcule a probabilidade de ter sido impressa em I_1 .

1. Probabilidades

- 1. (c) 0.4; 0.4; 0.1; 0.3
- 2. (a) 0.375 (b) 0.875
- 3. (b) 0.25; 0.25; 0.33
- 4. 0.1
- 5. (a) 0.4 (b) 0.8; 0.5
- 6. —
- 7. (a) 0.344 (b) 0.3659
- 8. (b) 0.3
- 9. (a) 0.0247 (b) 0.8016
- 10. (b) 0.8 (c) 0.36
- 11. (a) 0.575 (b) 0.3
- 12. (a) 0.041 (b) 0.4246 (c) 0.8537

2. Variáveis Aleatórias e Distribuições de Probabilidade Discretas

- \blacksquare . Uma moeda apresenta cara duas vezes mais frequentemente que coroa. Essa moeda é lançada três vezes e X é a variável aleatória que representa o número total de caras que ocorreram.
 - (a) Determine a função de probabilidade de X e represente-a graficamente.
 - (b) Determine a função distribuição de X e represente-a graficamente.
 - (c) Qual é a probabilidade de só saírem caras nos três lançamentos? E de saírem, no máximo, duas caras?
- 2. Suponha que o número de computadores utilizados diariamente numa determinada empresa é uma variável aleatória X com função de probabilidade,

$$P(X=x) = p(x) = \begin{cases} \frac{k2^x}{x!} & \text{se} \quad x = 1, 2, 3, 4\\ 0 & \text{se} \quad \text{caso contrário} \end{cases}.$$

- (a) Determine o valor de k, justificando a sua resposta.
- (b) Defina a função distribuição de X.
- (c) Qual deverá ser o número mínimo de computadores disponíveis no ínicio de cada dia para que a procura diária seja satisfeita com uma probabilidade de pelo menos 0.8?
- (d) Qual é o número médio de computadores utilizados diariamente naquela empresa? E o desvio padrão?
- 3. A função distribuição de uma variável aleatória (v.a.) X é

$$P(X \le x) = F(x) = \begin{cases} 0 & \text{se} \quad x < 0 \\ 0.5 & \text{se} \quad 0 \le x < 1 \\ 0.6 & \text{se} \quad 1 \le x < 2 \\ 0.8 & \text{se} \quad 2 \le x < 3 \\ 0.9 & \text{se} \quad 3 \le x < 3.5 \\ 1 & \text{se} \quad x \ge 3.5 \end{cases}.$$

- (a) Represente graficamente F(x).
- (b) Justifique que a v.a. X é discreta e calcule a sua função de probabilidade.
- (c) Calcule: $P(X \le 1)$, $P(X \ge 2)$, $P(X \ge 3)$, $P(2.5 \le X \le 4)$, $P(X \ge 3.5)$ e $P(2.5 \le X \le 4/X \ge 1)$.
- (d) Calcule E(X), V(X) e $\sigma(X)$.
- (e) Considere a v.a. Y = X 1.15.
 - i. Calcule $P(Y \leq 1)$.
 - ii. Compare as v.a.'s X e Y, em termos de valor esperado e variância.

4. Seja X uma variável aleatória discreta definida por:

x_i		m-1	m	m+3	m+5
P(X =	x_i)	$\frac{k+1}{8}$	$\frac{k}{8}$	$\frac{k-1}{8}$	$\frac{k}{8}$

- (a) Determine as constantes k e m sabendo que $\mathrm{E}(X)=\frac{1}{4}.$
- (b) Calcule E(X-2) e V(3X-2).
- (c) Obtenha a função distribuição da v.a. X.
- (d) Calcule: $P(X \le -5)$, $P(X \le -1)$, $P(-1 < X \le 3)$, $P(X \ge 4)$, P(X < 4) e $P(X \le 6)$.
- 5. Seja X uma variável aleatória discreta definida por:

- (a) Determine o valor de k por forma a que p seja lei de probabilidade de X.
- (b) Deduza a função distribuição de X.
- (c) Calcule o valor médio e a variância de X.
- (d) Calcule o valor de $P(X^2 = 4/X \le 1)$.
- 6. (Exercício ao cuidado do aluno) Seja X uma v. a. discreta de Suporte $S \subset [\mathbf{a}, \mathbf{b}]$, com a e \mathbf{b} dois números inteiros positivos à sua escolha.
 - (a) Gere, aleatoriamente, o suporte de X, S, usando o $Microsoft\ Excel$:
 - 1° Numa célula insira o comando =ALEATÓRIO()*(b-a)+a
 - 2° Formate a célula que contém o número obtido em (1°) :

Formatar células \rightarrow Número \rightarrow Categoria: número \rightarrow casas decimais=1

- $3 \stackrel{\circ}{-}$ Repita a operação até que S tenha dimensão 5.
- (b) Considere o suporte de X, S, obtido na alínea anterior, e assuma que a probabilidade de cada valor é igual à sua frequência relativa em S.
 - i. Calcule as funções de probabilidade e distribuição de X.
 - ii. Calcule, se possível, as seguintes probabilidades:
 - (i) $P(X \ge 0)$

- (ii) $P(0 < X \le 7)$
- (iii) $P(X \le 1.5/X \ge 0.5)$
- (iv) $P(1 < X < 3/X \ge 2)$
- iii. Considere a variável aleatória $g(X) = X^2 4$.

Sem usar o suporte de g(X), calcule E[g(X)] e V[g(X)].

- 7. Uma caixa contém 20 peças das quais 5 são defeituosas. Tiram-se 6 peças da caixa, com reposição da peça extraída em cada tiragem. Seja X o número de peças defeituosas encontradas.
 - (a) Identifique, justificando, a lei de probabilidade de X.
 - (b) Determine: $P(X \le 0)$, $P(2 \le X < 4)$, P(X > 3) e $P(X \le 7)$.
 - (c) Qual é o número esperado de peças defeituosas nas 6 tiragens?
 - (d) Assuma agora que a tiragem das 6 peças é feita sem reposição. Qual é a lei de probabilidade de X? Justifique. Qual a probabilidade de nenhuma peça ser defeituosa?
- 8. Considere o exercício nº 1. A lei da variável aleatória aí definida é especial. Identifique-a, justificando a sua resposta.
- 9. Uma loja quer vender rapidamente os 100 computadores portáteis que tem em armazém, pelo que realizou uma promoção com descontos oferecendo o sistema operativo. O processo de instalação do sistema operativo não é completamente fiável e 10 dos portáteis necessitarão de assistência complementar.

Uma empresa comprou na loja 20 portáteis, seleccionados aleatoriamente no armazém.

- (a) Indique (justificando) a lei de probabilidade do número de portáteis comprados pela empresa, que necessitarão de assistência.
- (b) Qual a probabilidade de nenhum dos portáteis apresentar problemas?
- (c) Indique uma expressão matemática que dê a probabilidade de mais de 5 portáteis necessitarem de assistência.
- (d) Cada um dos portáteis é vendido a 1.520 euros e a sua eventual assistência custará à loja 55 euros. Indique o lucro esperado da loja com a venda dos portáteis à empresa.
- 10. Considere a experiência aleatória "lançamento de um dado equilibrado". Suponha que se efectua uma sucessão de 20 realizações desta experiência. Seja X a v.a. que representa o número de faces 5 que ocorreram nas 20 realizações da experiência. Determine:
 - (a) a lei de probabilidade de X;
 - (b) a probabilidade de ocorrerem 10 faces 5.
- 11. De um grupo de 1000 habitantes de certa região, há 20% que são proprietários da casa que habitam. Se se recolher, ao acaso, uma amostra de 10 indivíduos, qual a probabilidade de 6 terem casa própria?
- 12. Apenas 30% dos habitantes de uma grande cidade pensam que o sistema de trânsito vigente é adequado. Se forem seleccionados 20 habitantes, encontre a probabilidade de, no máximo, 2 concordarem com o sistema de trânsito.

- 13. Suponha que 10% dos vidros fabricados por certa máquina são defeituosos. Se forem seleccionados, ao acaso, 10 vidros da produção total da máquina, qual a probabilidade de
 - (a) nenhum ser defeituoso?
 - (b) o número de vidros defeituosos não ser inferior a 2 nem superior a 6?

Qual é o valor esperado do número de vidros defeituosos entre os seleccionados?

- 14. O número de chamadas que chegam num período de 5 minutos à central telefónica de uma empresa é uma variável aleatória com distribuição de *Poisson* de parâmetro 10.
 - (a) Calcule a probabilidade de, num período de 5 minutos,
 - i. chegarem exactamente 8 chamadas;
 - ii. chegarem menos de 5 chamadas;
 - iii. chegarem, no mínimo, 3 chamadas;
 - iv. não chegar alguma chamada.
 - (b) Qual a probabilidade de chegarem à central telefónica 35 chamadas, num período de 10 minutos consecutivos? Justifique.
- 15. O número de visitantes que entra num *cibercafe* ao longo dos vários períodos diários segue uma lei de Poisson. No entanto, o número médio de visitantes varia consoante o período do dia: no período da manhã espera-se 3 visitantes e no período da tarde 15.

Assuma independência entre o número de visitantes ao cibercafe nos dois períodos diários.

- (a) Qual a probabilidade de numa manhã de um dia qualquer, o número de visitantes ao cibercafe ser pelo menos cinco?
- (b) Qual a probabilidade de, num dia qualquer, o número total de visitantes ao *cibercafe* nos períodos da manhã e da tarde ser menor que 31?
- (c) Qual a probabilidade de, num dia qualquer, o número de visitantes na manhã ser igual a 5 e na tarde ser igual a 20?
- 16. Determinada editora publica um livro com uma tiragem de 100 000 exemplares. A probabilidade de que um dos livros seja encadernado incorrectamente é 10^{-4} . Calcule a probabilidade aproximada de que o número de livros mal encadernados da tiragem seja
 - (a) exactamente 5;
 - (b) pelo menos 4;
 - (c) não mais do que 2.

- 17. O número de petroleiros que chegam em cada dia a determinada refinaria é uma variável aleatória com distribuição de *Poisson* de média 2. As actuais instalações do porto podem atender 3 petroleiros por dia; se acontecer que mais de 3 navios pretendam entrar no porto, os excedentes a 3 deverão seguir para outro destino.
 - (a) Em determinado dia, qual a probabilidade de se ter de mandar petroleiros para outro porto?
 - (b) Qual o número esperado de petroleiros a chegarem por dia?
 - (c) Qual o número mais provável de petroleiros a chegarem por dia?
 - (d) De quanto deverão ser aumentadas as actuais instalações do porto para permitir manobrar todos os petroleiros em 95% dos dias?
 - (e) Deduza a lei de probabilidade do número de petroleiros a serem atendidos por dia.
 - (f) Qual o número esperado de petroleiros a serem atendidos por dia?
- 18. O número de acidentes de trabalho, *por mês*, numa obra de construção civil é uma v.a. com distribuição de *Poisson* de valor médio 2.
 - (a) Determine a probabilidade de não ocorrerem acidentes num determinado mês.
 - (b) Calcule a probabilidade de ocorrerem pelo menos 6 acidentes em 3 meses.
 - (c) Suponha que a obra foi observada durante 6 meses consecutivos. Qual a probabilidade de não ocorrerem acidentes em exactamente 4 meses?
- 19. Seja X a v.a. relativa ao número de defeitos encontrados numa unidade de determinado artigo e Y a v.a. que indica o número da fábrica que o produziu. A tabela seguinte representa a função de probabilidade conjunta do vector (X,Y):

X	0	1	2	3
Y				
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{8}$
2	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$

- (a) Determine as leis de probabilidade marginais de X e Y.
- (b) Calcule P(X = 2), $P(X \ge 2)$, $P(X \le Y)$ e P(Y = 3).
- (c) Determine E(X), V(X), $Cov(X,Y) = \rho_{XY}$. (Nota: E(Y) = 1.5, V(Y) = 0.25).
- (d) O número de defeitos que um artigo apresenta é independente da fábrica que o produziu?
- (e) Sabendo que determinado artigo foi produzido pela fábrica 2, qual a probabilidade de apresentar defeitos?

20. A tabela seguinte indica a função de probabilidade conjunta das variáveis aleatórias X e Y:

	Y	-1	0	1
X				
-1		0	p	0
0		$\frac{1}{4}$	0	$\frac{1}{4}$
1		0	$\frac{1}{4}$	0

- (a) Determine o valor de p, justificando a sua resposta.
- (b) Determine as funções de probabilidade marginais de X e Y.
- (c) Calcule P(X = x/Y = 0).
- (d) Mostre que cov(X,Y) = 0 mas as variáveis aleatórias X e Y não são independentes.
- **21**. Seja $f(x,y) = \frac{x+y}{32}$, x = 1, 2 e y = 1, 2, 3, 4 a função de probabilidade conjunta do par de variáveis aleatórias (X,Y).
 - (a) Deduza as funções de probabilidade marginais de X e Y.
 - (b) Calcule P(X > Y), P(Y = 2X), P(X + Y = 3), $P(X \le 3 Y)$, $P(X \ge 1)$ e $P(0 \le Y \le 3)$.
 - (c) Calcule P(Y = y/X = 2).
 - (d) As variáveis aleatórias X e Y são independentes? Justifique.
- 22. Numa dada loja de componentes para computadores, as vendas diárias de discos rígidos das marcas 1 e 2, respectivamente X_1 e X_2 , têm a seguinte função de probabilidade conjunta:

	X_1	0	1	2
X_2				
0		0.12	0.25	0.13
1		0.05	0.30	0.01
2		0.03	0.10	0.01

- (a) Calcule as funções de probabilidade marginais de X_1 e X_2 .
- (b) Compare o número médio de vendas diárias de discos das duas marcas.
- (c) Calcule a probabilidade de, num dia, a marca 1 ser a mais vendida.
- (d) Calcule a função de probabilidade de X_2 , nos dias em que não há vendas de discos da marca 1.
- (e) As vendas diárias de discos das duas marcas são independentes?
- 23. De um vector aleatório discreto (X,Y) sabe-se que: X e Y são independentes;

$$X \sim B(2,0.3); \quad P(Y=y) = \left\{ \begin{array}{ccc} 0.5^y \, 0.5^{1-y} & \text{se} & y=0 \vee y=1 \\ 0 & \text{se} & \text{caso contrário} \end{array} \right.$$

(a) Construa a tabela representativa da função de probabilidade conjunta do vector (X,Y).

11

(b) Determine P(X > Y).

2. Variáveis Aleatórias e Distribuições de Probabilidade Discretas

1. (a)
$$x_i$$
 0 1 2 3 $p(x_i)$ $\frac{1}{27}$ $\frac{6}{27}$ $\frac{12}{27}$ $\frac{8}{27}$

2. (a)
$$k = \frac{1}{6}$$

2. (a)
$$k = \frac{1}{6}$$
 (b) $F(x) = \begin{cases} 0 & \text{se } x < 1 \\ \frac{1}{3} & \text{se } 1 \le x < 2 \\ \frac{2}{3} & \text{se } 2 \le x < 3 \\ \frac{8}{9} & \text{se } 3 \le x < 4 \\ 1 & \text{se } x \ge 4 \end{cases}$ (c) 3 (d) 2.1, 1.01

$$3. \quad \text{(b) } p(x) = \begin{cases} 0.5 & \text{se} \quad x = 0 \\ 0.1 & \text{se} \quad x \in \{1, 3, 3.5\} \\ 0.2 & \text{se} \quad x = 2 \\ 0 & \text{se} \quad \text{caso contrário} \end{cases}$$
 (c) $0.6, 0.4, 0.2, 0.2, 0.1,04$ (d) $1.15, 1.7025, 1.3048$ (e) i. 0.8 ii. $E(Y) = 0; V(Y) = V(X)$

ii.
$$E(Y) = 0$$
; $V(Y) = V(X)$

4. (a)
$$k = 2, m = -1$$

4. (a)
$$k = 2, m = -1$$
 (b) -1.75, 55.7 (c) $F(x) = \begin{cases} 0 & \text{se } x < -2 \\ \frac{3}{8} & \text{se } -2 \le x < -1 \\ \frac{5}{8} & \text{se } -1 \le x < 2 \\ \frac{6}{8} & \text{se } 2 \le x < 4 \\ 1 & \text{se } x > 4 \end{cases}$

(d)
$$0, \frac{5}{8}, \frac{1}{8}, \frac{2}{8}, \frac{6}{8}, 1$$

5. (a)
$$k = \frac{2}{15}$$

5. (a)
$$k = \frac{2}{15}$$
 (b) $F(x) = \begin{cases} 0 & \text{se} \quad x < -2\\ \frac{1}{3} & \text{se} \quad -2 \le x < -1\\ \frac{7}{15} & \text{se} \quad -1 \le x < 0\\ \frac{8}{15} & \text{se} \quad 0 \le x < 1\\ \frac{10}{15} & \text{se} \quad 1 \le x < 2\\ 1 & \text{se} \quad x > 2 \end{cases}$ (c) 0 ; 2.93 (d) 0.5

6. —

7. (a)
$$X \sim \mathcal{B}(6, 0.25)$$

7. (a)
$$X \sim \mathcal{B}(6, 0.25)$$
 (b) 0.178, 0.4285, 0.0376, 1 (c) 1.5 (d) $X \sim \mathcal{H}(6, 20, 5)$; 0.1291

8.
$$X \sim \mathcal{B}(3, \frac{2}{3})$$

9. (a)
$$X \sim \mathcal{H}(20, 100, 10)$$
 (b) 0.095 (c) $\sum_{x=6}^{10} \frac{C_x^{10} C_{20-x}^{90}}{C_{20}^{100}}$ (d) 30.290 euros

(c)
$$\sum_{x=-c}^{10} \frac{C_x^{10} C_{20-x}^{90}}{C_{20}^{100}}$$

10. (a)
$$P(X = x) = C_x^{20} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{20-x}, \quad x = 0, 1, 2, ..., 20$$
 (b) 4.93×10^{-4}

(b)
$$4.93 \times 10^{-4}$$

- 13. (a) 0.3487 (b) 0.2639; 1
- 14. (a) i. 0.1126 ii. 0.0293 iii. 0.9972 iv. 0.5×10^{-4} (b) 0.0007
- 15. (a) 0.1847 (b) 0.9967 (c) 0.00421
- 16. (a) 0.0378 (b) 0.9897 (c) 0.0028
- 17. (a) 0.1429 (b) 2 (c) 1 ou 2 (d) x = 4 (mais um petroleiro)

(a)	y_i	0	1	2	3	(f) 1.79
(0)	$p(y_i)$	0.1353	0.2707	0.2707	0.3233	(1) 1.7

- 18. (a) 0.1353 (b) 0.5543 (c) 0.0038
- 20. (a) $p = \frac{1}{4}$ (b) $x_i \begin{vmatrix} -1 & 0 & 1 \\ p(x_i) & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \end{vmatrix} \begin{vmatrix} y_i & -1 & 0 & 1 \\ p(y_i) & \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \end{vmatrix}$ (c) $x_i \begin{vmatrix} -1 & 0 & 1 \\ P(X = x_i/Y = 0) & \frac{1}{2} & 0 & \frac{1}{2} \end{vmatrix}$
- 21. (a) $\begin{vmatrix} x_i & 1 & 2 \\ p(x_i) & \frac{14}{32} & \frac{18}{32} \end{vmatrix} \begin{vmatrix} y_i & 1 & 2 & 3 & 4 \\ p(y_i) & \frac{5}{32} & \frac{7}{32} & \frac{9}{32} & \frac{11}{32} \end{vmatrix}$ (b) $\frac{3}{32}, \frac{9}{32}, \frac{6}{32}, \frac{8}{32}, 1, \frac{21}{32}$ (c) $\begin{vmatrix} y_i & 1 & 2 & 3 & 4 \\ p(x_i) & \frac{1}{32} &$

3. Variáveis Aleatórias e Distribuições de Probabilidade Contínuas

1. Uma estação de serviço enche os seus depósitos uma vez por semana. A quantidade de combustível procurada por semana é uma variável aleatória (v.a.) X com função densidade f, definida por

$$f(x) = \begin{cases} 5(1-x)^4 & \text{se } 0 < x \le 1 \\ 0 & \text{se } x \le 0 \lor x > 1 \end{cases}.$$

Esboço do gráfico de f

- (a) Qual a probabilidade de, numa semana qualquer, a quantidade de combustível procurada naquela estação de serviço não exceder 0.5 (*unidades de medida*)? Interprete geometricamente o resultado obtido.
- (b) A função distribuição de X é dada por

$$F(x) = \begin{cases} 0 & , & x < 0 \\ 1 - (1 - x)^5 & , & 0 \le x < 1 \\ 1 & , & x \ge 1 \end{cases}.$$

Usando F, determine:

- i. P(0.2 < X < 0.5);
- ii. a capacidade dos depósitos por forma a que a probabilidade de se esvaziarem numa determinada semana seja de 5%.
- 2. O tempo diário (em horas) de acesso à internet por uma determinada pessoa é representado por uma v.a. X com função densidade e função distribuição dadas, respectivamente, por

$$f(x) = \begin{cases} \frac{1}{25}x & \text{se } 0 \le x \le 5\\ \frac{1}{25}(10-x) & \text{se } 5 < x \le 10\\ 0 & \text{se } x < 0 \lor x > 10 \end{cases}$$
 e
$$F(x) = \begin{cases} 0 & , x < 0\\ \frac{x^2}{50} & , 0 \le x \le 5\\ 1 - \frac{(10-x)^2}{50} & , 5 \le x \le 10\\ 1 & , x > 10 \end{cases} .$$

Assuma que E(X) = 5 e $E(X^2) = \frac{175}{6}$.

- (a) Considere a v.a. Y = 2X 5. Calcule E(Y) e V(Y).
- (b) Consider os acontecimentos: $A = \{X \ge 5\}, B = \{X < 5\} \in C = \{2.5 \le X < 7.5\}.$
 - i. Calcule P(A), P(A/B) e P(A/C).
 - ii. Verifique se A e B são independentes.
- 3. Seja X uma v. a. com função densidade f, cujo esboço gráfico é apresentado na figura seguinte, onde k, a, e b são constantes reais. Note que f(x) = 0, $\forall x \in \mathbb{R} \setminus [a, b]$.

Determine:

- (a) o valor da constante k;
- (b) o valor esperado, variância e desvio padrão de X;
- (c) a função distribuição de X.
- 4. Alguns cabos utilizados nas instalações de telefones podem ser reaproveitados. Assume-se que o comprimento dos cabos segue uma lei Uniforme no intervalo de 1 a 15, $\mathcal{U}_{[1,15]}$, polegadas. Para um cabo escolhido ao acaso, calcule:
 - (a) o seu comprimento médio e mediana;
 - (b) a sua variância e desvio padrão;
 - (c) a probabilidade de que o seu comprimento seja superior a 5 polegadas;
 - (d) a probabilidade de que o seu comprimento se situe entre 0 e 8 polegadas.
- 5. A duração de vida, em milhares de horas, de uma componente de certo tipo de aparelho de radar é uma v. a. X com distribuição Exponencial de parâmetro 0.1, isto é, com função densidade e distribuição:

$$f(x) = \begin{cases} 0 & \text{se } x \le 0 \\ 0.1 \ e^{-0.1x} & \text{se } x > 0 \end{cases} \qquad F(x) = \begin{cases} 0 & \text{se } x \le 0 \\ 1 - e^{-0.1x} & \text{se } x > 0 \end{cases}.$$

- (a) Determine a probabilidade de uma componente, escolhida ao acaso, durar menos de 4 mil horas.
- (b) Indique a duração média de vida de uma componente e o respectivo desvio padrão.

15

6. A tensão de corrente X numa instalação eléctrica tem distribuição Normal de média $220\,V$ e desvio padrão 2V; $X \sim \mathcal{N}(220, 2)$.

0.4 0 : f(z) 0.2 0.

Gráfico da densidade da lei $\mathcal{N}(220,2)$

Gráfico da densidade da lei $\mathcal{N}(0,1)$

Recorrendo à lei Normal standard, calcule:

- (a) P(X > 223);

- (b) P(220 < X < 223); (c) P(X < 218); (d) $P(X \le 223/X > 221)$.
- 7. Uma empresa fabrica parafusos cujo comprimento é uma v. a. X com distribuição normal de média 0.25 cm e desvio padrão 0.02 cm. Considera-se defeituoso um parafuso cujo comprimento não pertença ao intervalo [0.2, 0.28]. Calcule a proporção de parafusos defeituosos.
- 8. O erro de medição do comprimento do raio de um circulo, em mm, é uma variável aleatória X com distribuição normal de média zero e desvio padrão σ .
 - (a) Calcule σ de modo a que 9.85% das medições apresentem erros superiores a 6.45 mm
 - (b) Determine a percentagem de medições cujo erro varia entre -1 e 1 mm.
- 9. Determinada empresa opera no mercado da União Europeia na área da distribuição de encomendas. A entrega de encomendas é executada em duas etapas. O tempo de entrega duma encomenda na primeira etapa tem distribuição normal de média 24h e desvio-padrão 4h, enquanto que o tempo de entrega na segunda etapa, que leva finalmente a encomenda ao destinatário, segue distribuição normal de média 8h e desvio-padrão 3h. Os tempos nas duas etapas são independentes.
 - (a) Calcule a probabilidade do tempo de entrega duma encomenda na primeira etapa exceder 12h.
 - (b) Sabendo que na primeira etapa uma encomenda demorou mais de 24h, qual a probabilidade de ser entregue ao destinatário durante as próximas 8h?
 - (c) Qual a probabilidade duma encomenda ser entregue ao destinatário num período superior a dois dias após o seu envio?
- 10. O tempo de combustão de uma fita de magnésio de diâmetro A é normalmente distribuído de média $\mu_A=420\,seg$ e desvio padrão $\sigma_A=80\,seg$; para outra fita de diâmetro B, o tempo de combustão é também normalmente distribuído mas com $\mu_B=280\,seg$ e $\sigma_B=45\,seg.$ Admitindo independência entre os tempos de combustão das fitas tipos A e B, calcule:
 - (a) a probabilidade de o tempo de combustão de uma fita tipo A variar entre 400 e 480 seq;
 - (b) a probabilidade de o tempo de combustão de uma fita de diâmetro B ser superior ao de uma fita de diâmetro A.

- 11. O peso de uma peça, produzida com determinado material, segue uma distribuição normal de média $140\,g$ e variância $625\,g^2$.
 - (a) Determine a probabilidade de uma peça ter peso superior a $120\,g$, sabendo que o seu peso não excede $150\,g$.
 - (b) As peças deste tipo são embaladas em caixas contendo 50 unidades. O peso de cada caixa também é aleatório, normalmente distribuído de média $1\,kg$ e desvio-padrão $20\,g$.
 - Determine a probabilidade de o peso de uma caixa completa exceder $8.5 \, kg$.
 - (c) Qual a probabilidade de, numa caixa completa, no máximo uma das peças ter peso superior a $150\,g?$
- 12. Suponha que o consumo de água num dado dia da semana, numa determinada localidade, segue uma distribuição normal de média $200 \ m^3$ e desvio padrão $10 \ m^3$. A capacidade do reservatório que abastece a localidade (e apenas esta) é de $4240 \ m^3$. Sempre que o nível de água no reservatório cai 10% abaixo da sua capacidade é accionado um sistema de alarme.
 - (a) Qual a probabilidade de o consumo de água, num dado dia da semana, estar compreendido entre 200 e 210 m^3 ?
 - (b) Suponha que num dado dia a quantidade de água no reservatório se situa 5 % abaixo da sua capacidade; o abastecimento do referido reservatório processa-se, nesse dia, a uma taxa que segue uma distribuição normal de média $100 \ m^3$ e desvio padrão $30 \ m^3$. Supondo que consumo e abastecimento são independentes, qual a probabilidade de o alarme ser accionado?
- 13. Um inspector de controlo de qualidade rejeita qualquer lote de rolamentos esféricos se 3 ou mais defeituosos são encontrados num lote de 20 testados. Admita que a probabilidade de um rolamento ser defeituoso é 20%.
 - (a) Determine a probabilidade de o lote ser rejeitado.
 - (b) Qual o número esperado de rolamentos defeituosos num lote?
 - (c) Admitindo que vai analisar um lote de 100 rolamentos, calcule um valor *aproximado* para a probabilidade de encontrar pelo menos 24 defeituosos.
- 14. O número de vírus detectados por mês por um departamento de informática segue uma lei de *Poisson* de média 5.
 - (a) Se num determinado mês se detectaram menos de 5 vírus, qual a probabilidade de terem sido detectados exactamente 4 vírus?
 - (b) Identifique a distribuição do número de vírus detectados durante um ano (12 meses consecutivos). Para esse período de tempo, calcule um valor aproximado para a probabilidade de se detectarem pelo menos 40 vírus.

3. Variáveis Aleatórias e Distribuições de Probabilidade Contínuas

- 1. (a) 0.9688
- (b) i. 0.2965 ii. 0.45
- 2. (a) 5; $\frac{50}{3}$
- (b) i. 0.5, 0, 0.5 ii. Não.
- 3. (a) $\frac{1}{b-a}$
- (b) $\frac{b+a}{2}$, $\frac{(b-a)^2}{12}$, $\frac{b-a}{\sqrt{12}}$
- (c) $F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$

- 4. (a) 8; 8
- (b) 16.33; 4.04
- (c) 0.7143
- (d) 0.5

- 5. (a) 0.33
- (b) 10; 10 (milhares de horas)
- 6. (a) 0.0668
- (b) 0.4332
- (c) 0.1587
- (d) 0.7835

- 7. 0.073
- 8. (a) 5
- (b) 0.1586
- 9. (a) 0.99865
- (b) 0.5
- (c) $1 0.999313 \simeq 0$

- 10. (a) 0.3721
- (b) 0.063
- 11. (a) 0.6766
- (b) 0.0025
- $(c) \simeq 0$

- 12. (a) 0.3413
- (b) 0.2×10^{-3}
- 13. (a) 0.7939
- (b) 4
- $(c) \simeq 0.16$

- 14. (a) 0.3984
- (b) P(60); $\simeq 0.995$

4. Amostragem e Distribuições Amostrais

1. A quantidade de chuva que cai por dia, expressa em litros por metro quadrado, pode ser descrita por uma v. a. X com distribuição contínua, admitindo a densidade

$$f(x) = \begin{cases} \frac{21}{8192 \times 10^7} \left(40x^5 - x^6 \right) & \text{se} \quad 0 \le x \le 40 \\ 0 & \text{se} \quad \text{caso contrário} \end{cases}.$$

Admita que E(X) = 30 e V(X) = 33.33.

Sejam $X_1, X_2, ..., X_{100}$ uma amostra aleatória de X, com X_i a quantidade de chuva, em litros por metro quadrado, que cai no i-ésimo dia, i = 1, ..., 100.

- (a) Indique as propriedades de que as v. a.'s que constituem a amostra aleatória de X gozam.
- (b) Considere a v.a. $\overline{X}_{100} = \frac{1}{100} \sum_{i=1}^{100} X_i$.
 - i. Calcule o valor médio e a variância de \overline{X}_{100} .
 - ii. Justifique que $\frac{\overline{X} 30}{0.577} \sim \mathcal{N}(0, 1)$.
 - iii. Calcule uma aproximação para o valor de $P\left(28.5 < \overline{X}_{100} \le 31.5\right)$. Interprete o resultado.
- 2. A energia em Joules (J) de qualquer partícula de um sistema é uma variável aleatória com distribuição Exponencial de parâmetro 2. A energia do sistema é a soma da energia das suas partículas que são independentes. Admita que determinado sistema β contém 1600 partículas.
 - (a) Indique, justificando, a lei aproximada da energia do sistema β .
 - (b) Calcule a probabilidade (aproximada) da energia do sistema β variar entre 780 e 840 J.
- 3. O erro de medição do comprimento do raio de um circulo, em mm, é uma variável aleatória X com distribuição normal de média zero e desvio padrão 5. Considere uma amostra aleatória $X_1, X_2, ..., X_{10}$, daquela população, e as seguintes estatísticas:

$$T_1 = \frac{1}{10} \sum_{i=1}^{10} X_i$$
 $T_2 = \frac{5X_1 + 5X_{10}}{10}$

- (a) Indique (justificando) as distribuições amostrais de T_1 e de T_2 .
- (b) Calcule e interprete $P(T_1 > 3)$.
- 4. Seja X uma medida aleatória de valor esperado $\frac{2}{3}$ e variância $\frac{8}{9}$. Considere uma amostra aleatória de X, X_1, X_2, \dots, X_n , e a média dessa amostra $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) Para $n \in \mathbb{N}$, suficientemente grande, qual a lei de \overline{X}_n ? Justifique.
 - (b) Qual deverá ser a dimensão mínima da amostra para que $P(\overline{X}_n > 0.8) \leq 0.0119$?
- 5. As normas ambientais em vigor exigem que a concentração diária de certo poluente não exceda 120 ng/m^3 (nanogramas por metro cúbico). Admita que essa concentração segue uma lei normal de valor esperado 100 e desvio padrão 9.71 ng/m^3 , e que as concentrações em dias distintos são independentes.
 - (a) Mostre que em 1.97% dos dias as normas ambientais não são cumpridas.
 - (b) Qual a probabilidade da concentração média em 15 dias, escolhidos aleatoriamente, exceder 120 ng/m^3 ?

4. Amostragem e Distribuições Amostrais

ii.
$$\overline{X}_{100} \stackrel{.}{\sim} N(30, 0.577)$$

2. (a)
$$\frac{S-800}{\sqrt{400}} \stackrel{.}{\sim} N(0,1)$$

3. (a)
$$T_1 \sim N(0, \frac{5}{\sqrt{10}})$$
; $T_2 \sim N(0, \sqrt{12.5})$ (b) 0.0294

4. (a)
$$\overline{X}_n \sim N(\frac{2}{3}, \sqrt{\frac{8}{9n}})$$
 (b) 256

5. (b)
$$\simeq 0$$

5. Estimação

1. Uma fábrica produz cabos eléctricos cujo diâmetro X (em milímetros) segue uma lei *Uniforme* no intervalo de 5 a $5 + \theta$, $X \sim \mathcal{U}_{[5, 5+\theta]}$, onde θ é um parâmetro real desconhecido.

Considere uma amostra aleatória (X_1, X_2, \dots, X_n) de X $(n \in \mathbb{N})$.

(a) Considere o estimador de θ , dado por

$$\hat{\Theta}_n = 2\left(\frac{1}{n}\sum_{i=1}^n X_i - 5\right).$$

Prove que $\hat{\Theta}_n$ é um estimador cêntrico de θ .

(b) Seleccionaram-se aleatoriamente **20** cabos eléctricos da produção da fábrica e registaram-se os respectivos diâmetros. Estes foram posteriormente classificados como indicado no quadro seguinte:

classes]5, 5.2]]5.2, 5.4]]5.4, 5.6]]5.6, 5.8]]5.8, 6]
efectivos	4	3	5	4	4

- i. Determine a média e a variância desta amostra.
- ii. Indique uma estimativa cêntrica para θ , com base nesta amostra.
- 2. Seja $(X_1, X_2, ..., X_n)$ uma amostra aleatória de dimensão $n, n \in \mathbb{N}$, de uma população X cuja lei de probabilidade é caracterizada pela seguinte função densidade

$$f_{\theta}(x) = \begin{cases} \frac{2}{\theta} \left(1 - \frac{x}{\theta} \right) & \text{se } 0 < x < \theta \\ 0 & \text{se caso contrário} \end{cases}, \text{ onde } \theta \in \mathbb{R}^+.$$

Assuma que $E(X) = \frac{\theta}{3}$.

- (a) Mostre que $\hat{\Theta}_1 = \sum_{i=1}^n X_i$ é um estimador enviesado de θ .
- (b) Construa, a partir de $\hat{\Theta}_1$, um outro estimador de θ , $\hat{\Theta}_2$, que seja cêntrico.
- (c) Suponha que se recolheu, ao acaso, uma amostra de X, de dimensão 100, $(x_1, x_2, \dots, x_{100})$, para a qual se constatou que $\overline{x} = 20.2$. Indique uma estimativa cêntrica de θ . Sugira uma estimativa para E(X).
- 3. Uma máquina de parafusos está regulada para produzir em série peças de diâmetro médio 150 mm. Admite-se que os diâmetros são normalmente distribuídos. Uma amostra aleatória de 20 parafusos, extraída da população, forneceu os seguintes valores:

$$\sum_{i=1}^{20} x_i = 2900; \qquad \sum_{i=1}^{20} x_i^2 = 432500.$$

Em face destes valores e utilizando um grau de confiança de 0.95, verifique se será de admitir irregularidade de produção na máquina supondo:

- (a) σ conhecido e igual a 25 mm;
- (b) σ desconhecido.

4. Para estudar a tensão de ruptura de certo tipo de algodão fizeram-se 10 observações com os seguintes resultados, em Kg:

$$7.4;$$
 $7.8;$ $7.1;$ $6.9;$ $7.3;$ $7.6;$ $7.3;$ $7.4;$ $7.7;$ 7.3

Admitindo que a tensão de ruptura segue uma distribuição normal com variância 0.08, determine:

- (a) uma estimativa para a tensão de ruptura média;
- (b) um intervalo com 95% de confiança para a tensão de ruptura média;
- (c) se pretender que o erro dessa estimativa não ultrapasse 0.07, em 95~% dos casos, quantos elementos deveria incluir na amostra?
- 5. Sabe-se que as classificações X de determinado curso são normalmente distribuídas. Foi recolhida uma amostra de 42 classificações para os quais se obteve

$$\sum_{i=1}^{42} x_i = 588 \qquad e \qquad \sum_{i=1}^{42} x_i^2 = 8400.$$

- (a) Determine estimativas cêntricas para a média e para a variância da população.
- (b) Qual o grau de confiança que permite afirmar que o verdadeiro valor da média se encontra no interior de um intervalo de amplitude 1.224?
- 6. Mediu-se uma grandeza X 10 vezes, em condições idênticas, tendo-se obtido os seguintes resultados:

Admitindo a normalidade da população, calcule:

- (a) estimativas da média e do desvio-padrão da população;
- (b) um intervalo de confiança para a média da população ao grau 0.98;
- (c) um intervalo de confiança para o desvio padrão da população ao grau 0.95.
- 7. As medidas dos diâmetros de uma amostra aleatória de 200 rolamentos esféricos apresentam uma média de 0.824 polegadas e desvio padrão de 0.042 polegadas. Determine um intervalo com 99% confiança para o valor médio dos diâmetros.
- 8. Um ecologista ao pretender investigar o nível de poluição por mercúrio em determinado lago, retirou aleatoriamente 20 peixes do referido lago e mediu a concentração de mercúrio nos mesmos. A amostra recolhida foi resumida no seguinte quadro:

classes]0,1]]1, 2]]2, 3]]3, 4]]4, 5]]5, 6]
efectivos	1	4	6	4	3	2

- (a) Construa o histograma, e calcule a média e a variância da amostra.
- (b) Admitindo a normalidade da população, determine um intervalo de confiança para a variância da população em estudo, ao grau de confiança de 0.95. Que conclusão pode tirar sobre a variação do nível de poluição de peixe para peixe relativamente ao valor médio deste nível?
- 9. Num laboratório registaram-se os seguintes pontos de fusão de chumbo (em $^{\circ}C$) numa amostra proveniente de determinado fornecedor:

$$329; \quad 345; \quad 330; \quad 328; \quad 342; \quad 334; \quad 337; \quad 341; \quad 343$$

Assumindo a normalidade dos pontos de fusão:

- (a) determine estimativas centradas para o ponto de fusão médio do chumbo e variância;
- (b) o fornecedor garante que em 98% dos casos o ponto de fusão médio pode ser considerado 335; através da determinação de um intervalo de confiança conveniente, o que pode dizer acerca da garantia do fornecedor?
- (c) indique um intervalo de confiança a 99% para o desvio padrão da população.
- 10. Seja X uma v.a. com distribuição normal $N(\mu, \sigma)$ e $(X_1, X_2, ..., X_9)$ uma amostra aleatória da população X. Uma realização desta amostra conduziu ao seguinte intervalo de confiança para μ , a 90%:]11.728, 12.472[.
 - (a) Determine estimativas para μ e σ^2 .
 - (b) Como varia a amplitude do intervalo de confiança para μ se:
 - i. aumentarmos apenas o grau de confiança?
 - ii. aumentarmos apenas a dimensão da amostra?
 - (c) Determine um intervalo de confiança a 90% para o desvio padrão σ da população .
- 11. Certa empresa opera recentemente no mercado da União Europeia na área da distribuição de encomendas. O tempo de entrega duma encomenda, X, através desta nova empresa ainda não está bem caracterizado.
 - (a) Considere duas amostras aleatórias, $X_1, X_2, ..., X_n \in X'_1, X'_2, ..., X'_m$, com m < n, de X.
 - i. Defina amostra aleatória.
 - ii. Mostre que as médias amostrais, respectivamente \overline{X}_n e \overline{X}_m , são estimadores centrados para o tempo médio de entrega duma encomenda, e compare-os em termos de eficiência.
 - (b) A empresa garante que todas as encomendas chegam ao seu destinatário, **em média**, em menos de 48 horas, com uma **variabilidade** máxima de 8 horas.

Para avaliar este desempenho, foram recolhidos os tempos (em horas) relativos a uma amostra de 51 encomendas, tendo-se obtido os seguintes resultados:

$$\sum_{i=1}^{51} x_i = 3250; \ \sum_{i=1}^{51} x_i^2 = 277500.$$

O que pode concluir, **com confiança 95**%, sobre o desempenho da empresa relativamente às **condições** de entrega **referidas**?

- 12. De uma população activa de 500 pessoas, de certa região, foram encontrados 41 desempregados. Determine um intervalo de confiança a 95% para a taxa de desempregados dessa região.
- 13. Um grupo de cientistas defende a tese de que a taxa de mortalidade devida a certa doença é aproximadamente 10%.
 - (a) Supondo verdadeira a tese daqueles cientistas, calcule a probabilidade de em 10 pessoas, observadas ao acaso entre as afectadas pela referida doença, haver pelo menos uma que acabe por falecer devido à mesma.
 - (b) Com o objectivo de tirar conclusões sobre a veracidade daquela tese, recolheu-se uma amostra de 500 pessoas afectadas pela doença, das quais faleceram 60. Determine um intervalo real que contenha, com uma confiança de 0.9, a proporção de indivíduos que faleceram com tal doença. Terão os cientistas razão?

- 14. Seja $(X_1, X_2, ..., X_n)$ uma amostra aleatória de dimensão n de uma variável aleatória real X de média μ e variância σ^2 .
 - (a) Prove que $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ é um estimador cêntrico de μ .
 - (b) Com o objectivo de estudar a duração de vida média de determinado tipo de peças, recolheu-se uma amostra de 110 elementos que se resumiu no quadro seguinte:

Duração (milhares de horas)]4,4.5]]4.5,5]]5,5.5]]5.5,6]
número de peças	25	35	30	20

- i. Construa o histograma da amostra e calcule estimativas cêntricas para a média e para a variância da população em estudo.
- ii. Supondo que a duração de vida das referidas peças é normalmente distribuída (será razoável?), determine um intervalo de confiança para a sua média, ao grau 0.95.

5. Estimação

1. (a)
$$E(\hat{\Theta}_n) = \theta$$

1. (a)
$$E(\hat{\Theta}_n) = \theta$$
 (b) i. $\overline{x} = 5.51; \ s_n^2 = 0.082$ ii. $\hat{\theta}_{20} = 1.02$

2. (b)
$$E(\hat{\Theta}_1) = \frac{n\theta}{3}$$
 (c) $\hat{\Theta}_2 = \frac{3}{n}\hat{\Theta}_1$ (d) 60.6; 20.2

(c)
$$\hat{\Theta}_2 = \frac{3}{2}\hat{\Theta}_1$$

3. (a)
$$IC_{\mu} =]134.04; 155.96[$$
 (b) $IC_{\mu} =]133.24; 156.76[$

(b)
$$IC_{\mu} =]133.24; 156.76[$$

4. (a)
$$\hat{\mu} = 7.38$$

(b)
$$IC_{\mu} =]7.205; 7.555[$$

(c)
$$n \ge 63$$

5. (a)
$$\hat{\mu} = \overline{x} = 14$$
; $\hat{\sigma}^2 = s_n^2 = 4.098$ (b) 0.95

6. (a)
$$\overline{x} = 125.04$$
; $s_n = 0.227$ (b) $IC_{\mu} =]124.84; 125.243[$ (c) $IC_{\sigma} =]0.156; 0.4144[$

(b)
$$IC_{\mu} =]124.84; 125.243[$$

(c)
$$IC_{\sigma} =]0.156; 0.4144[$$

7.
$$IC_{\mu} =]0.8163; 0.8316[$$

8. (a)
$$\overline{x} = 3$$
; $s_n^2 = 1.947$ (b) $IC_{\sigma^2} =]1.124; 4.152[$

(b)
$$IC_{\sigma^2} =]1.124; 4.152[$$

9. (a)
$$\overline{x} = 336.56$$
; $s_n^2 = 42.772$ (b) $IC_{\mu} =]330.247; 342.87[$ (c) $IC_{\sigma} =]3.9437; 15.9797[$

(b)
$$IC_{ii} = [330.247; 342.87]$$

(c)
$$IC_{\sigma} =]3.9437; 15.9797[$$

10. (a)
$$\overline{x} = 12.1$$
; $s_n^2 = 0.36$ (b) i. aumenta ii. diminui (c) $IC_{\sigma} =]0.430; 1.023[$

(c)
$$IC_{\sigma} =]0.430; 1.023[$$

11. (b)

$$I.C._{\mu} =]53.435, 74.025[~;~I.C._{\sigma} =]31.39, 46.63[$$

12.
$$IC_p =]0.058; 0.106[$$

(b)
$$IC_p =]0.096; 0.144[$$

14. (a)
$$E(\overline{X}) = \mu$$

14. (a)
$$E(\overline{X}) = \mu$$
 (b) i. $\overline{x} = 4.955$; $s_n^2 = 0.263$ ii. $IC_{\mu} =]4.859; 5.051[$

6. Testes de Hipóteses Paramétricos

- 1. Uma empresa garante que, se os seus p
neus forem utilizados em condições normais, têm um tempo médio de vida superior a 40000 Km. Uma amostra constituída por 31 p
neus, utilizados em condições normais, proporcionou os seguintes dados:
 $\overline{x}=43200$ e $s_{31}=8000$ km.
 - Teste, ao nível de significância de 5%, se os pneus têm a vida média que a empresa reivindica.
- 2. Um molde de injecção tem produzido peças de um determinado material isolante térmico com uma resistência à compressão de valor médio $5.18~kg/cm^2$ e variância $0.0625~(kg/cm^2)^2$. As últimas 12 peças produzidas nesse molde foram recolhidas e ensaiadas, tendo-se obtido para a resistência média à compressão o valor $4.95~kg/cm^2$. Assuma que a resistência à compressão tem distribuição normal.
 - Poder-se-á afirmar, ao nível de significância de 0.05, que as peças produzidas recentemente são menos resistentes do que o habitual?
- 3. Considere uma fábrica que produz cabos eléctricos cujos diâmetros são normalmente distribuídos com valor médio μ e desvio padrão $\sigma > 0$. Seleccionaram-se aleatoriamente 20 cabos eléctricos da produção da fábrica e registaram-se os seguintes valores:

$$\sum_{i=1}^{20} x_i = 130.27; \qquad \sum_{i=1}^{20} x_i^2 = 849.98.$$

Com base na informação anterior, teste ao nível de significância de 1%:

- (a) $H_o: \mu = 6.3$ **vs** $\mu \neq 6.3$;
- (b) $H_o: \sigma = 0.5$ vs $\sigma = 1$.
- 4. Certo equipamento de empacotamento automático encontra-se regulado para encher embalagens de 1000 gramas de certo produto. O seu deficiente funcionamento origina prejuízo para a empresa. Aceita-se da experiência passada que o peso das embalagens se comporta normalmente com desvio padrão de 12 gramas. Para verificar a afinação do equipamento, seleccionaram-se aleatoriamente 9 embalagens com os resultados: $\overline{x} = 993.78 \, gr$ e $s_9 = 11.29 \, gr$.
 - Teste, ao nível de significância de 10%, se a máquina está a encher correctamente ou não as embalagens.
- 5. Numa fábrica de automóveis existe uma secção destinada à produção de determinado tipo de peças, cujo comprimento médio deverá ser aproximadamente de 2.5 cm. A secção de controlo de qualidade da referida fábrica afirma que as peças apresentam comprimentos inferiores aos exigidos.
 - Com o objectivo de avaliar a veracidade da afirmação proferida pela secção de controlo de qualidade, seleccionou-se ao acaso uma amostra de 26 peças na produção de um dia, tendo sido obtido os resultados seguintes:

$$\sum_{i=1}^{26} x_i = 52; \qquad \sum_{i=1}^{26} (x_i - \overline{x})^2 = 13.$$

Admitindo a normalidade da população subjacente aos dados, teste, ao nível de significância de 5%, se secção de controlo de qualidade tem razão.

26

6. Sabe-se que o tempo diário (em horas) de utilização de um determinado terminal de computador é normalmente distribuído. Foram observados os tempos de utilização durante 10 dias consecutivos, tendo sido obtido os resultados seguintes:

$$\sum_{i=1}^{10} x_i = 56; \qquad \sum_{i=1}^{10} (x_i - \overline{x})^2 = 129.6.$$

- (a) Estime pontualmente o tempo médio diário (em horas) de utilização do referido terminal e a variância.
- (b) Determine intervalos de confiança a 95% para a média e variância da população em estudo.
- (c) Teste, ao nível de significância de 5%:
 - (i) se o tempo médio diário de utilização do terminal é superior a 6 horas;
 - (ii) se o desvio padrão excede as 8 horas.
- 7. Um agente de compras de um determinado supermercado testou uma amostra aleatória de 100 latas de conserva na própria fábrica de enlatados. O peso médio (em decagramas) encontrado por lata foi de 15.97 com $s_{100} = 0.15$. O fabricante afirma que o peso líquido médio por lata era de 16. Pode esta afirmação ser rejeitada? (use $\alpha = 0.1$)
- 8. Uma determinada pessoa, interessada em alugar uma loja, é informada que a renda média na área é de 750 euros. Suponha que, para o tipo de zona em questão, é possível dizer que as rendas têm distribuição aproximadamente normal com desvio padrão 50 euros. Para uma amostra aleatória de 15 lojas, a renda média foi de 800 euros.

A pessoa em causa está convencida de que o valor de 750 euros para a renda média está desactualizada. Terá a pessoa razão? Justifique convenientemente a sua resposta, utilizando um teste adequado a 2% de significância.

6. Testes de Hipóteses Paramétricos

- 1. R.C.= $[1.645, +\infty[$; Rejeitar H_0 .
- 2. R.C.=] $-\infty$, -1.645]; Rejeitar H_0 .
- 3. (a) R.C.=] $-\infty$, -2.861] \cup [2.861, $+\infty$ [; Não rejeitar H_0 .
 - (b) R.C.= $[36.19, +\infty[$; Não rejeitar H_0 .
- 4. R.C.=] $-\infty$, -1.645] \cup [1.645, $+\infty$ [; Não rejeitar H_0 .
- 5. R.C.=] $-\infty$, -1.708]; Rejeitar H_0 .
- 6. (a) $\overline{x} = 5.6$; $s_{10}^2 = 14.4$.
 - (b) $IC_{\mu} =]2.8856; 8.3144[; IC_{\sigma^2} =]6.821; 48[.$
 - (c) R.C.(μ)=[1.833, $+\infty$ [; Não rejeitar H_0 . R.C.(σ)=[16.92, $+\infty$ [; Não rejeitar H_0 .
- 7. R.C.=] $-\infty$, -1.645] \cup [1.645, $+\infty$ [; Rejeitar H_0 .
- 8. R.C.= $[2.06, +\infty[$; Rejeitar H_0 .