

Linear Algebra

East China University of Science and Technology

目录

第一章	行列式	3
1.1	基础知识	3
	1.1.1 行列式	3
1.2	习题	4
	1.2.1 行列式的计算	4
	1.2.2 余子式和代数余子式的线性组合的计算	6
1.3	总结	6
	1.3.1 重点	6
第二章	矩 <mark>阵</mark>	7
2.1	基础知识	7
	2.1.1 矩阵	7
	2.1.2 矩阵的逆	10
	2.1.3 伴随矩阵	10
	2.1.4 初等矩阵	11
	2.1.5 等价矩阵	11
	2.1.6 矩阵的秩	11
	2.1.7 常见运算汇总	12
2.2	习题	13
第三章	向量组	14
3.1	基础知识	14
	3.1.1 向量	14
	3.1.2 线性组合和线性相关	14
	3.1.3 极大线性无关组和等价向量组	16

目录 2

	3.1.4 等价向量组	16
	3.1.5 向量组的秩	17
3.2	习题	17
第四章	线性方程组	18
4.1		18
		18
		20
第五章	特征值和特征向量	${f 22}$
5.1	基础知识	22
		22
		23
	7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	23
		24
5.2		25
	.,_	25
	· · · · · · · · · · · · · · · · · · ·	25
第六章	二次型	27
6.1		 27
0.1		 27
	 	 27
		-· 28
		-° 28
		-° 29
		30
6.2		30
<u>-</u>	· · ·	30

1.1 基础知识

1.1.1 行列式

定义

- 1. 几何定义
 - n 阶行列式为 n 个 n 维向量组成的 n 维图形的体积.
- 2. 逆序数法定义

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \sum_{j_1, j_2 \dots j_n} (-1)^{r(j_1 j_2 \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

总共有 n! 个项.

3. 展开定义

代数余子式: $A_{ij} = (-1)^{i+j} M_{ij}$

按第 i 行展开: $a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}$

注意, 行列式的某行(列)元素分别乘另一行(列)的元素的代数余子式后再求和为0

性质

- 1. $|\mathbf{A}^T| = |\mathbf{A}|$, 若 $\mathbf{A} = \mathbf{A}^T$, 则矩阵 \mathbf{A} 为对称矩阵, 若 $\mathbf{A} \times \mathbf{A}^T = \mathbf{E}$, 则矩阵 \mathbf{A} 为正交矩阵
- 2. 若行列式中某行(列)全部元素为0,行列式为0

- 3. 若行列式中某行 (列) 元素有公因子 $k(k \neq 0)$, k 可以提到行列式外面
- 4. 行列式某行(列)元素均是两个元素只和,可以拆成两个行列式只和
- 5. 两行(列)互换,值取反
- 6. 两行(列)元素对应成比例,行列式为0
- 7. 行列式中某行 (列)k 倍加到另一行 (列), 值不变

重要行列式

- 1. 主对角线行列式 (上/下三角形行列式): $|A| = \prod_{i=1}^{n} a_{ii}$
- 2. 副对角线行列式: $|\mathbf{A}| = (-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2,n-1} ... a_{n1}$
- 3. 拉普拉斯展开式

A 为 m 阶矩阵, B 为 n 阶矩阵

主对角线:
$$\begin{vmatrix} A & 0 \\ 0 & B \end{vmatrix} = \begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \begin{vmatrix} A & 0 \\ C & B \end{vmatrix} = |A||B|$$

副对角线: $\begin{vmatrix} 0 & A \\ B & 0 \end{vmatrix} = \begin{vmatrix} C & A \\ B & 0 \end{vmatrix} = \begin{vmatrix} 0 & A \\ B & C \end{vmatrix} = (-1)^{mn}|A||B|$

4. 范特蒙德行列式

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix} = \sum_{1 \le i < j \le n} (x_j - x_i)$$

注意, 范氏行列式中全 1 行一定在上方.

1.2 习题

1.2.1 行列式的计算

具体型行列式

1. 化基本形法

- (a) 直接展开: 适用于含 0 较多的行 (列)
- (b) 爪型: 斜爪消平爪
- (c) 异爪型
 - i. 阶数不高, 直接展开
 - ii. 阶数高, 用递推 (尤其适用于一横形行列式)

例题 一横形行列式
$$\begin{bmatrix} 1-x & x & 0 \\ -1 & 1-x & x \\ 0 & -1 & 1-x \end{bmatrix} = ()$$

解 将其按第行展开,得到一个相似的行列式,可以得到一个递推公式.

- (d) 行(列) 和相等: 三种方法
 - i. 提取公因子: 将其余行全都加到第一行上去, 提取公因子
 - ii. 加边法: 例如矩阵

$$\begin{bmatrix} a_1 - b & a_2 & \dots & a_n \\ a_1 & a_2 - b & \dots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n - b \end{bmatrix} = \begin{bmatrix} 1 & a_1 & a_2 & \dots & a_n \\ 0 & a_1 - b & a_2 & \dots & a_n \\ 0 & a_1 & a_2 - b & \dots & a_n \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & a_1 & a_2 & \dots & a_n - b \end{bmatrix}$$

加边后矩阵的值不变, 可以将第 1 行的 -1 倍加到其他行, 再用其他行的 (-1/b) 倍加到第一列.

- iii. 化爪形行列式
- (e) 消零化基本形:
- (f) 拉普拉斯行列式: 一般为 "X 字形"
- (g) 范特蒙德行列式: 化为范式行列式, 看第二行写结果
- 2. 递推法
- 3. 行列式表示的函数和方程

抽象型行列式

1. 目标行列式和矩阵的相互转换: |AB| = |A||B|

例题 设 $\alpha_1, \alpha_2, ..., \alpha_n$ 是 n 维向量, $A = [\alpha_1, \alpha_2, ..., \alpha_n], B = [\alpha_n, \alpha_1, \alpha_2, ..., \alpha_{n-1}].$ 若 |A| = 1, 则 |A - B| = ()

2. 与特征方程相结合

例题 设
$$A = 3$$
 阶方阵, 满足 $|3A+2E| = 0$, $|A-E| = 0$, $|3E-2A| = 0$, 则 $|A| = ($

 \mathbf{F} 特征方程 $|\lambda \mathbf{E} - \mathbf{A}| = 0$,可以根据上面的几个等式求出矩阵 \mathbf{A} 的特征值,根据特征值的性质可以知道矩阵的季和矩阵对应行列式的值

1.2.2 余子式和代数余子式的线性组合的计算

根据行列式的展开定义,有:

$$a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \begin{bmatrix} & & \dots & \\ a_{i1} & a_{i2} & \dots & \dots & a_{in} \\ & & & \dots & \end{bmatrix}$$

则有:

$$k_1 A_{i1} + k_2 A_{i2} + \dots + k_{i1} A_{in} = \begin{bmatrix} & & \dots & \\ k_{i1} & k_{i2} & \dots & k_{in} \end{bmatrix}$$

例题 设
$$|\mathbf{A}| = \begin{bmatrix} 2 & -1 & 2 & 3 \\ 0 & -1 & -1 & 0 \\ 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
,则 $A_{31} + A_{32} + A_{33} + M_{34} = \begin{bmatrix} 2 & -1 & 2 & 3 \\ 0 & -1 & -1 & 0 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

1.3 总结

1.3.1 重点

- 1. 一横形行列式的计算
- 2. 行(列)和相等行列式的计算
- 3. 余子式和代数余子式的计算
- 4. 结合特征方程

2.1 基础知识

2.1.1 矩阵

本质

矩阵的本质是表达系统信息.

定义

由 $m \times n$ 个数排成的 m 行 n 列的矩形表格. 当 m = n 的时候称 A 为 n 阶方阵. 有两个矩阵, 如果 m, n 相同, 称为同型矩阵.

运算

1. 相等: 同型矩阵且对应元素相等

2. 加法: 同型矩阵对应元素相加

3. 数乘矩阵 (重要, 与行列式不同)

$$k\mathbf{A} = \mathbf{A}k = k \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}$$

加法运算和数乘运算统称为矩阵的线性运算,满足以下运算规律:

(a) 交換律: A + B = B + A

(b) 结合律: (A + B) + C = A + (B + C)

- (c) 分配律: $k(\mathbf{A} + \mathbf{B}) = k\mathbf{A} + k\mathbf{B}, (k+l)\mathbf{A} = k\mathbf{A} + l\mathbf{B}$
- (d) 数和矩阵相乘的结合律: $k(l\mathbf{A}) = (kl)\mathbf{A} = l(k\mathbf{A})$
- 4. 乘法: \mathbf{A} 为 $m \times s$ 矩阵, \mathbf{B} 为 $s \times n$ 矩阵, 设 $\mathbf{C} = \mathbf{A}\mathbf{B} = (c_{ij})_{m \times n}$

$$c_{ij} = \sum_{k=1}^{s} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{is} b_{sj} (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

乘法满足下列运算规律:

- (a) 结合律: (AB)C = A(BC)
- (b) 分配律: A(B+C) = AB + AC
- (c) 数乘与矩阵乘积的结合律: (kA)B = A(kB)
- 5. 转置矩阵: 行列互换
- 6. 向量的内积和正交
 - (a) 内积: $\boldsymbol{\alpha} = [\alpha_1, ..., \alpha_n]^T, \boldsymbol{\beta} = [\beta_1, ..., \beta_n]^T$, 内积为

$$\boldsymbol{\alpha}^T \boldsymbol{\beta} = \sum_{i=1}^n a_i b_i = a_1 b_1 + \ldots + a_n b_n$$

记为 $(\boldsymbol{\alpha}, \boldsymbol{\beta})$

- (b) 正交: 内积为 0
- (c) 模: 向量的长度, 记作 $||\alpha||$
- 7. 标准正交向量组: 所有成员两两正交且模都为 1, 即:

$$\alpha_i^T \alpha_j = 0 \ (i \neq j)$$

 $\alpha_i^T \alpha_i = 1 \ (i = j)$

称 $\alpha_1, ..., \alpha_n$ 为单位正交向量组.

- 8. 标准正交矩阵: 由标准正交向量组组成的矩阵
- 9. 施密特正交化 (正交规范化)

$$eta_1 = lpha_1 \ eta_2 = lpha_2 - rac{(lpha_2,eta_1)}{(eta_1,eta_1)}eta_1$$

9

上式得到的是正交向量组, 再进行单位化:

$$oldsymbol{\eta_1} = rac{oldsymbol{eta_1}}{||oldsymbol{eta_1}||}, oldsymbol{\eta_2} = rac{oldsymbol{eta_2}}{||oldsymbol{eta_2}||}$$

得到标准正交向量组.

- 10. 幂: \mathbf{A} 为一个 n 阶方阵, 则 $\mathbf{A}^n = \mathbf{A}\mathbf{A}...\mathbf{A}\mathbf{A}(\sharp n \uparrow \mathbf{A})$
- 11. 方阵乘积的行列式

$$|AB| = |A||B|$$

重要矩阵

- 1. 零矩阵
- 2. 单位矩阵
- 3. 数量矩阵: 数 k 和单位矩阵的乘积
- 4. 对角矩阵: 非主对角线元素均为 0 的矩阵
- 5. 上(下)三角矩阵
- 6. 对称矩阵: $\mathbf{A}^T = \mathbf{A}$
- 7. 反对称矩阵: $\mathbf{A}^T = -\mathbf{A}$
- 8. 标准正交矩阵: $A^T A = E$, 即行 (列) 向量的组合是标准正交向量组
- 9. 分块矩阵

分块矩阵的加法和数乘与行列式不同:

(a) 加法

$$egin{bmatrix} A_1 & A_2 \ A_3 & A_4 \end{bmatrix} + egin{bmatrix} B_1 & B_2 \ B_3 & B_4 \end{bmatrix} = egin{bmatrix} A_1 + B_1 & A_2 + B_2 \ A_3 + B_3 & A_4 + B_4 \end{bmatrix}$$

(b) 数乘

$$k \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} kA & kB \\ kC & kD \end{bmatrix}$$

(c) 乘法: 与矩阵乘法相同

2.1.2 矩阵的逆

定义

若 AB = BA = E, 则矩阵 A 可逆, B 为 A 的逆矩阵.

性质

设 A, B 为同阶可逆矩阵

1.
$$(k\mathbf{A})^{-1} = \frac{1}{k}\mathbf{A}^{-1} \ (k \neq 0)$$

2.
$$(AB)^{-1} = B^{-1}A^{-1}$$
 $(AB$ 也可逆)

3.
$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T (\mathbf{A}^T$$
也可逆)

4.
$$(A + B)^{-1} \neq A^{-1} + B^{-1}$$

5.
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

6.
$$|A^{-1}| = |A|^{-1}$$

推导: $|A^{-1}A| = |A^{-1}||A| = 1$

2.1.3 伴随矩阵

定义

矩阵 A 的伴随矩阵为:

$$\mathbf{A}^* = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}$$

其中 A 为对应元素的代数余子式.

性质

1.
$$AA^* = A^*A = |A|E$$

2.
$$|A^*| = |A|^{n-1}$$

3.
$$(A^*)^* = |A|^{n-2}A$$

4.
$$(A)^{-1} = \frac{A^*}{|A|}$$

2.1.4 初等矩阵

定义

单位矩阵经过一次初等变换后得到的矩阵称为初等矩阵, 有三种:

1. 倍乘初等矩阵

$$\boldsymbol{E}_2(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. 互换初等矩阵

$$\boldsymbol{E}_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3. 倍加初等矩阵

$$\boldsymbol{E}_{31}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix}$$

注意是第一行的 k 倍加到第三行或者是第三列的 k 倍加到第一列 (别搞错顺序).

性质

1.
$$[\mathbf{E}_{ij}]^T = \mathbf{E}_{ij}, [\mathbf{E}_i(k)]^T = \mathbf{E}_i(k), [\mathbf{E}_{ij}(k)]^T = \mathbf{E}_{ji}(k)$$

2.
$$[\boldsymbol{E}_{ij}]^{-1} = \boldsymbol{E}_{ij}, [\boldsymbol{E}_i(k)]^{-1} = \boldsymbol{E}_i(\frac{1}{k}), [\boldsymbol{E}_{ij}(k)]^{-1} = \boldsymbol{E}_{ij}(-k)$$

- 3. 左行右列定理
- 4. 若 A 为可逆矩阵,则可以表示为有限个可逆矩阵的乘积

2.1.5 等价矩阵

若 A, B 均为 $m \times n$ 矩阵, 且 r(A) = r(B), 则 A, B 为等价矩阵, 记作 $A \cong B$.

2.1.6 矩阵的秩

定义

设 A 为 $m \times n$ 矩阵, A 中最高阶非零子式的阶数为矩阵 A 的秩. 如果 A 为 $n \times n$ 矩阵, 则 r(A) = n (满秩) $\Leftrightarrow |A| \neq 0 \Leftrightarrow A$ 可逆.

初等变换不改变矩阵的秩

$$r(\mathbf{A}) = r(\mathbf{P}\mathbf{A}) = r(\mathbf{A}\mathbf{Q}) = r(\mathbf{P}\mathbf{A}\mathbf{Q})$$

重要式子

设 A 为 $m \times n$ 矩阵, B 为满足有关矩阵运算要求的矩阵, 则

1.
$$0 \le r(\mathbf{A}) \le \min\{m, n\}$$

2. 数乘:
$$r(kA) = r(A)$$

3.
$$r(AB) \leq \min\{r(A), r(B)\}$$

4.
$$r(A + B) < r(A) + r(B)$$

5.
$$r(\mathbf{A}^*) = \begin{cases} n & r(\mathbf{A}) = n \\ 1 & r(\mathbf{A}) = n - 1$$
 其中 \mathbf{A} 为 n 阶方阵 $0 & r(\mathbf{A}) < n - 1 \end{cases}$

2.1.7 常见运算汇总

$$1. |k\mathbf{A}| = k^n \mathbf{A}$$

$$(k\mathbf{A})^T = k\mathbf{A}^T$$

$$(kA)^{-1} = \frac{1}{k}A^{-1}$$

$$(k\mathbf{A})^* = k^{n-1}\mathbf{A}^*$$

$$2. \qquad |\boldsymbol{A} + \boldsymbol{B}| \neq |\boldsymbol{A}| + |\boldsymbol{B}|$$

$$(\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T$$

$$(A + B)^{-1} \neq A^{-1} + B^{-1}$$

$$(\boldsymbol{A} + \boldsymbol{B})^* \neq \boldsymbol{A}^* + \boldsymbol{B}^*$$

$$3. \qquad |AB| = |A||B|$$

$$(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)^* = B^*A^*$$

4.
$$(A^{-1})^* = (A^*)^{-1}$$

 $(A^{-1})^T = (A^T)^{-1}$
 $(A^T)^* = (A^*)^T$

2.2 习题

3.1 基础知识

3.1.1 向量

定义

n 个数构成的一个有序数组 $[a_1, a_2, ..., a_n]$ 称为一个 n 维向量, 记为 $\boldsymbol{\alpha} = [a_1, a_2, ..., a_n]$, 并 称 $\boldsymbol{\alpha}$ 为 n 维行向量, $\boldsymbol{\alpha}^T$ 为 n 维列向量. 其中 a_i 称为向量 $\boldsymbol{\alpha}$ 或者 $\boldsymbol{\alpha}^T$ 的第 i 个分量.

3.1.2 线性组合和线性相关

定义

- 1. 线性组合: 设有 m 个 n 维向量 $\alpha_1, \alpha_2, ..., \alpha_m$ 和 m 个数 $k_1, k_2, ..., k_m$. 则向量 $k_1\alpha_1 + k_2\alpha_2 + ... + k_m\alpha_m$ 为向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 的线性组合
- 2. 线性表出: 若向量 β 能表示成向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 的线性组合, 即 $\beta = k_1\alpha_1 + k_2\alpha_2 + ... + k_m\alpha_m$, 则称 β 能够被向量组线性表出
- 3. 线性相关: 存在一组不全为 0 的数 $k_1, k_2, ..., k_m$, 使得下式成立:

$$k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m = 0$$

上式可以进一步写为 $x_1\alpha_1 + x_2\alpha_2 + ... + x_m\alpha_m = 0$, 这个式子有四种形式:

$$Ax = 0$$

或者矩阵形式:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

或者向量形式:

$$oldsymbol{Ax} = x_1 egin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} + x_2 egin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} + \ldots + x_m egin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix} = egin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

或者线性方程组形式:

$$\begin{cases} x_1 a_{11} + x_2 a_{12} + \dots + x_m a_{1m} = 0 \\ x_1 a_{21} + x_2 a_{22} + \dots + x_m a_{2m} = 0 \\ \dots \\ x_1 a_{n1} + x_2 a_{n2} + \dots + x_m a_{nm} = 0 \end{cases}$$

4. 线性无关: 只有当 $k_1, k_2, ..., k_m$ 全为 0 的时候, 才能使上式成立

判别相关性定理

- 1. 相关充要条件: 向量组中至少有一个向量能被其余的 n-1 的向量线性表出
- 2. 相关充要条件: 方程 Ax = 0 有非 0 解
- 3. 若向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性无关,而向量组 $\beta, \alpha_1, \alpha_2, ..., \alpha_m$ 线性相关,则 β 可由向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性表出,且表示方法唯一
- 4. 如果向量 β 能够由向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性表出,则 $r([\alpha_1, \alpha_2, ..., \alpha_m]) = r([\beta, \alpha_1, \alpha_2, ..., \alpha_m])$
- 5. 以少表多, 多的相关: 如果向量组 $\beta_1, \beta_2, ..., \beta_t$ 能够由向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性表示, 且 t > s, 则 $\beta_1, \beta_2, ..., \beta_t$ 线性相关
- 6. 向量组的部分与整体:

如果向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 中有一部分向量线性相关,则整体也线性相关; 如果向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性无关,则其任一部分线性无关

7. 向量的部分与整体:

如果向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性无关,则将所有向量扩展到 s 维得到的向量组 $\alpha_1^*, \alpha_2^*, ..., \alpha_m^*$ 也是线性无关的;

如果向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性相关,则将所有向量缩减到 k 维得到的向量组 $\alpha_1^*, \alpha_2^*, ..., \alpha_m^*$ 也是线性相关的

3.1.3 极大线性无关组和等价向量组

定义

在向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 中, 存在向量组 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_s}$, 满足以下条件:

- $1. \alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_s}$ 线性无关
- 2. 向量组 $\alpha_1, \alpha_2, ..., \alpha_m$ 中的任一向量能够由向量组 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_s}$ 线性表示则称向量组 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_s}$ 为原向量组的极大线性无关组.

3.1.4 等价向量组

定义

若有两个向量组 (1) $\alpha_1, \alpha_2, ..., \alpha_s$ 和 (2) $\beta_1, \beta_2, ..., \beta_t$, 这两个向量组中的任一元素都可以由另一向量组线性表出,则称这两个向量组为等价向量组.

性质

- 1. 反身性: (1) ~ (1)
- 2. 对称性: $(1) \simeq (2) \Leftrightarrow (2) \simeq (1)$
- 3. 传递性: $(1) \simeq (2), (2) \simeq (3) \Rightarrow (1) \simeq (3)$
- 4. 向量组和它的极大线性无关组是等价向量组
- 5. 等价向量组有相等的秩

3.1.5 向量组的秩

定义

向量组的秩是极大线性无关组成员的个数,是线性无关向量的个数,是向量空间的维数,是 最简化的向量数.

性质

- 1. 三秩相等: r(A) 矩阵的秩 = A 的行秩 = A 的列秩
- 2. 若 $A \xrightarrow{\text{初等行变换}} B$, 则
 - (a) A 的行向量组和 B 的行向量组是等价向量组
 - (b) A 和 B 的任何相应部分列向量具有相同的线性相关性
- 3. 设向量组 (1) $\alpha_1, \alpha_2, ..., \alpha_s$ 和 (2) $\beta_1, \beta_2, ..., \beta_t$, 若 β_i 均可由 $\alpha_1, \alpha_2, ..., \alpha_s$ 线性表出,则 $r(\beta_1, \beta_2, ..., \beta_t) \leq r(\alpha_1, \alpha_2, ..., \alpha_s)$

可以这么理解: 秩其实就是一种多样性, 多样的数据的集合肯定能够表示单一的数据的集合, 即如果秩越大, 则这些数据的多样性就越大. 所以 $\alpha_1, \alpha_2, ..., \alpha_s$ 的秩一定大.

3.2 习题

4.1 基础知识

4.1.1 齐次线性方程组

设有一齐次线性方程组:

$$\begin{cases} x_1 a_{11} + x_2 a_{12} + \dots + x_m a_{1m} = 0 \\ x_1 a_{21} + x_2 a_{22} + \dots + x_m a_{2m} = 0 \\ \dots \\ x_1 a_{n1} + x_2 a_{n2} + \dots + x_m a_{nm} = 0 \end{cases}$$

其矩阵形式为:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

有解的条件

由上矩阵可以得到, 未知数的个数为 m, 方程的个数为 n.

- 1. 若 m > n, 则必有非零解
- 2. 若 m = n, 用秩判断:
 - (a) 若 r(A) = m(向量组线性无关, $|A| \neq 0$), 则仅有零解 说明:由于行秩 = 列秩,所以列秩为m,说明独立方程组个数为m.
 - (b) 若 r(A) = r < m(向量组线性相关, |A| = 0), 则必有非零解, 且有 m r 个线性无关解

说明: 由于行秩 = 列秩, 所以列秩为 r, 说明独立方程组个数为 r.

3. 若 m < n,

解的性质

若 $A\xi_1 = 0$, $A\xi_2 = 0$, 则 $k_1\xi_1 + k_2\xi_2 = 0$, 其中 k_1, k_2 为任意常数.

基础解系和解的结构

1. 基础解系

设 $\xi_1, \xi_2, ..., \xi_{m-r}$ 满足:

- (a) 是方程组 Ax = 0 的解
- (b) 线性无关
- (c) 方程组 Ax = 0 的任一解均可由 $\xi_1, \xi_2, ..., \xi_{m-r}$ 线性表出,则称 $\xi_1, \xi_2, ..., \xi_{m-r}$ 是 方程组 Ax = 0 的基础解系
- 2. 通解

设 $\xi_1, \xi_2, ..., \xi_{m-r}$ 是方程 Ax = 0 的基础解系,则 $k_1 \xi_1 + k_2 \xi_2 + ... + k_{m-r} \xi_{m-r}$ 是其通解.

求解方法

1. $\mathbf{A} \xrightarrow{\text{初等行变换}} \mathbf{B}$, 其中 \mathbf{B} 为行阶梯形矩阵, $r(\mathbf{A}) = r$

高斯消元法:

- ① 保证最靠左的非全 0 列的最上方为非 0 元素, 如果不是, 通过"互换"初等行变换使最靠左非全 0 列的最上方为非 0 元素
- ② 通过"倍加"初等行变换使这个非 0 元素所在列的下方元素全为 0
- ③ 遮住矩阵的最上面一行不看,将其余行看作一个新矩阵,重复①②,直至矩阵化为阶梯形高斯-若当消元法:
- ① 由高斯消元法得到阶梯形矩阵
- ② 对于每一个非全 0 行, 通过"倍乘"初等行变换使得这一行的非 0 首位为 1
- ③ 对于每一个非全 0 行, 通过"倍加"初等行变换使得这一行的非 0 首项所在列的上方元素全为 0, 直至得到简化行阶梯型矩阵

- 2. 按列找出一个秩为r的子矩阵,剩余列位置对应的未知数设为自由变量
- 3. 算出共有 m-r 个线性无关解, 求出 $\xi_1, \xi_2, ..., \xi_{m-r}$, 写出通解

4.1.2 非齐次线性方程组

设有一非齐次线性方程组:

$$\begin{cases} x_1 a_{11} + x_2 a_{12} + \dots + x_m a_{1m} = b_1 \\ x_1 a_{21} + x_2 a_{22} + \dots + x_m a_{2m} = b_2 \\ \dots \\ x_1 a_{n1} + x_2 a_{n2} + \dots + x_m a_{nm} = b_n \end{cases}$$

其矩阵形式为:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

特殊的有矩阵 A 的增广矩阵:

$$[m{A}, m{b}] = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} & b_1 \ a_{21} & a_{22} & \dots & a_{2m} & b_2 \ dots & dots & \ddots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{nm} & b_n \end{bmatrix}$$

有解的条件

- 1. 若 $r(A) \neq r([A, b])(b$ 不能由 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性表出), 方程组无解 实际上, r([A, b]) = r(A) + 1.
- 2. 若 $r(A) = r([A, b]) = m(\alpha_1, \alpha_2, ..., \alpha_m$ 线性无关, $\alpha_1, \alpha_2, ..., \alpha_m, b$ 线性相关), 方程组有唯一解3
- 3. 若 $r(\mathbf{A}) = r([\mathbf{A}, \mathbf{b}]) = r < m$, 方程组有无穷多解

解的性质

设 η_1,η_2,η 是非齐次线性方程组 Ax=b 的解, ξ 是对应齐次线性方程组 Ax=0 的解,则:

- 1. $\eta_1 \eta_2$ 是 Ax = 0 的解
- 2. $k\boldsymbol{\xi} + \boldsymbol{\eta}$ 是 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ 的解

求解方法

- 1. 写出 Ax = b 的导出方程组 Ax = 0,并求出其通解 $k_1\xi_1 + k_2\xi_2 + ... + k_{m-r}\xi_{m-r}$
- 2. 求出 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的一个特解 $\boldsymbol{\eta}$
- 3. Ax = b 的通解为 $k_1\xi_1 + k_2\xi_2 + ... + k_{m-r}\xi_{m-r} + \eta$

第五章 特征值和特征向量

5.1 基础知识

5.1.1 特征值和特征向量

定义

设 \boldsymbol{A} 为 n 阶矩阵, λ 是一个数, 若存在一个非零的 n 维向量 $\boldsymbol{\xi}$, 使得 $\boldsymbol{A}\boldsymbol{\xi}=\lambda\boldsymbol{\xi}$, 则称 $\boldsymbol{\xi}$ 为 \boldsymbol{A} 的特征向量, λ 为 \boldsymbol{A} 的特征值.

上式可以化简成 $|\lambda E - A| = 0$, $|\lambda E - A|$ 被称为特征多项式, $\lambda E - A$ 称为特征矩阵.

推导:由于 $(\lambda E - A)\xi = 0$,且 $\xi \neq 0$,说明方程 $(\lambda E - A)\xi = 0$ 有非零解 (构成特征矩阵的向量线性相关),即 $|\lambda E - A| = 0$.

性质

- 1. 特征值的性质
 - (a) 特征值的个数为 n (包括重根)
 - (b) $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = tr(\mathbf{A})$
 - (c) $\prod_{i=1}^n \lambda_i = |\mathbf{A}|$
- 2. 特征向量的性质
 - (a) 线性无关的特征向量的数量 $\leq n$
 - (b) 每个不同的特征值至少有一个特征向量
 - (c) k 重特征值 λ 至多只有 k 个线性无关的特征向量
 - (d) 若 ξ_1 , ξ_2 是 A 的属于不同特征值的特征的特征向量,则 ξ_1 , ξ_2 线性无关
 - (e) 若 ξ_1, ξ_2 是 \boldsymbol{A} 的属于同一特征值 λ 的特征向量,则 $k_1\xi_1 + k_1\xi_2$ 仍然是 \boldsymbol{A} 的属于特征值 λ 的特征向量

5.1.2 矩阵的相似

定义

设 \boldsymbol{A} 和 \boldsymbol{B} 为两个 n 阶方阵, 若存在 n 阶可逆矩阵 \boldsymbol{P} , 使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}$ 成立, 则称 \boldsymbol{A} 相似于 \boldsymbol{B} , 记成 $\boldsymbol{A} \sim \boldsymbol{B}$.

性质

- 1. **•** 反身性: **A** ~ **A**
 - 对称性: $A \sim B \Rightarrow B \sim A$
 - 传递性: $A \sim B, B \sim C \Rightarrow A \sim C$
- 2. 若 $A \sim B$, 则有
 - $r(\boldsymbol{A}) = r(\boldsymbol{B})$
 - |A| = |B|
 - A,B 具有相同的特征值
 - A,B 特征多项式的值相同
- 3. 若 $A \sim B$, 则有
 - $f(\mathbf{A}) \sim f(\mathbf{B})$
 - $\boldsymbol{A}^T \sim \boldsymbol{B}^T$
 - A 可逆, A* ∼ B*
 - A 可逆, $A^{-1} \sim B^{-1}$

5.1.3 矩阵的相似对角化

定义

设 n 阶矩阵 \boldsymbol{A} , 存在 n 阶可逆矩阵 \boldsymbol{P} , 使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{\Lambda}$, 则 $\boldsymbol{A}\sim\boldsymbol{\Lambda}$, $\boldsymbol{\Lambda}$ 是 \boldsymbol{A} 的相似标准形.

$$oldsymbol{P} = \left[oldsymbol{\xi_1}, oldsymbol{\xi_2}, ... oldsymbol{\xi_n}
ight], oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{bmatrix}$$

条件

如果说 \boldsymbol{A} 可以相似对角化, 即 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{\Lambda}$, 其中 \boldsymbol{P} 可逆, 我们可以将等式两边左乘 \boldsymbol{P} , 得到:

$$oldsymbol{A}_{n imes n}[oldsymbol{\xi_1},oldsymbol{\xi_2},...,oldsymbol{\xi_n}]_{n imes n} egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & \ddots & & \ & & & \lambda_n \end{bmatrix}_{n imes n}$$

即:

$$[A\xi_1, A\xi_2, ..., A\xi_n] = [\lambda_1\xi_1, \lambda_2\xi_2, ..., \lambda_n\xi_n]$$

也即:

$$A\xi_i = \lambda_i \xi_i, i = 1, 2, ..., n$$

- 1. n 阶矩阵 \boldsymbol{A} 可以相似对角化 \Leftrightarrow \boldsymbol{A} 有 n 个线性无关的特征向量 ($|\boldsymbol{P}| \neq 0$) 解释: 由于 \boldsymbol{P} 可逆, 故 $\boldsymbol{\xi_1}, \boldsymbol{\xi_2}, ..., \boldsymbol{\xi_n}$ 线性无关,且上述过程可逆
- 2. n 阶矩阵 A 可以相似对角化 $\Leftrightarrow n$ 重特征值对应的解空间是 n 维 (A 对应于每个 k_i 重特征值都有 k_i 个线性无关的特征向量)

解释: ki 重特征值至多有 ki 个线性无关的特征向量

- 3. n 阶矩阵 A 有 n 个不同特征值 \Rightarrow A 可以相似对角化解释: 每个特征值至少有一个特征向量
- 4. n 阶矩阵 A 为实对称矩阵 $\Rightarrow A$ 可以相似对角化

上述总共两个充要条件,两个充分条件.

总结: 一个萝卜一个坑, 八重萝卜八个坑. 一个特征值一个特征向量, 八重特征值八个线性 无关的特征向量.

5.1.4 实对称矩阵

定义

若 $A^T = A$, 则 A 为是对称矩阵, 如果在此基础上 A 的元素都是实数, 则 A 是实对称矩阵.

性质

- 1. 实对称矩阵 A 的属于不同特征值的特征向量相互正交
- 2. 实对称矩阵 A 必相似于对角矩阵, 必有可逆矩阵 $P = [\xi_1, \xi_2, ..., \xi_n]$, 使得 $P^{-1}AP = \Lambda$. 且存在正交矩阵 Q, 使得 $Q^{-1}AQ = Q^TAQ = \Lambda$

$$oldsymbol{P} = \left[oldsymbol{\xi_1}, oldsymbol{\xi_2}, ... oldsymbol{\xi_n}
ight], oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{bmatrix}$$

5.2 习题

5.2.1 特征值和特征向量

求具体型矩阵的特征值和特征向量

- 1. 用特征方程 $|\lambda E A| = 0$ 求出 λ , 可以使用试根法对 λ 的高次方程进行求解
- 2. 用求得的 λ 解齐次线性方程组 $(\lambda E A)\xi = 0$, 求出特征向量

求解抽象型矩阵的特征值和特征向量

矩阵	\boldsymbol{A}	k A	$oldsymbol{A}^k$	$f(\boldsymbol{A})$	A^{-1}	$oldsymbol{A}^*$	$P^{-1}AP$
特征值	λ	$k\lambda$	λ^k	$f(\lambda)$	λ^{-1}	$\frac{ A }{\lambda}$	λ
特征向量	ξ	ξ	ξ	ξ	ξ	ξ	$oldsymbol{P}^{-1}oldsymbol{\xi}$

f(x) 为多项式, 若矩阵 **A** 满足 $f(\mathbf{A}) = \mathbf{0} \Rightarrow f(\lambda) = 0$.

5.2.2 实对称矩阵

求正交矩阵 Q

- 1. 求 **A** 的 λ 与 **ξ**
- 2. $\xi_1, \xi_2, ..., \xi_n$ 施密特正交化, 单位化至 $\eta_1, \eta_2, ..., \eta_n$
- 3. $\diamondsuit Q = (\eta_1, \eta_2, ..., \eta_n)$

不同的特征值 λ_i 对应的特征矩阵 $\boldsymbol{\xi_i}$ 之间是正交的. 施密特正交化: $\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1.$ 单位化: $\eta_1=\frac{\beta_1}{||\beta_1||}.$

总结

- 1. 普通矩阵 **A**
 - (a) $\lambda_1 \neq \lambda_2 \Rightarrow \xi_1, \xi_2$ 无关
 - (b) $\lambda_1 = \lambda_2 \Rightarrow \xi_1, \xi_2$
 - i. *ξ*₁, *ξ*₂ 无关
 - ii. *ξ*₁, *ξ*₂ 相关
- 2. 实对称矩阵 A
 - (a) $\lambda_1 \neq \lambda_2 \Rightarrow \xi_1 \perp \xi_2 \quad \xi_1, \xi_2$ 无关
 - (b) $\lambda_1 = \lambda_2 \Rightarrow$
 - i. $\xi_1 \perp \xi_2 \quad \xi_1, \xi_2$ 无关
 - ii. ξ_1 不垂直于 ξ_2 ξ_1, ξ_2 无关

6.1 基础知识

6.1.1 二次型

定义

n 元变量 $x_1, x_2, ..., x_n$ 的二次齐次多项式称为 n 元二次型,简称二次型. 二次型可以表示为 $\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$,由此可以得出二次型的矩阵表达式,令:

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, m{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

则二次型可以表示为:

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$$

必须强调的是,这里的 A 是一个对称矩阵.

6.1.2 线性变换

对于 n 元二次型 $f(x_1, x_2, ..., x_n)$, 若令

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n, \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n, \\ \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n, \end{cases}$$

記
$$oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}, oldsymbol{C} = egin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \ c_{21} & c_{22} & \dots & c_{2n} \ dots & dots & & dots \ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}, oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

则上式可以写为 $\boldsymbol{x} = \boldsymbol{C}\boldsymbol{y}$. 上式成为从 $y_1, y_2, ..., y_n$ 到 $x_1, x_2, ..., x_n$ 的线性变换. 如果 \boldsymbol{C} 可逆, 则称为可逆线性变换.

如果 $f(x) = x^T A x$, 令 x = C y, 则有 $f(x) = (C y)^T A (C y) = y^T (C^T A C) y$.

记 $\boldsymbol{B} = \boldsymbol{C}^T \boldsymbol{A} \boldsymbol{C}$, 则有 $f(\boldsymbol{x}) = \boldsymbol{y}^T \boldsymbol{B} \boldsymbol{y}) = g(\boldsymbol{y})$. 至此我们通过线性变换得到了一个新的二次型.

6.1.3 矩阵合同

定义

设 A, B 为 n 阶矩阵, 若存在可逆矩阵 C, 使得:

$$C^T A C = B$$

则称 A 和 B 合同,记作 $A \simeq B$.此时称 f(x) 与 g(x) 为合同二次型. 所谓合同,就是指同一个二次型在可逆线性变换下的两个不同状态的联系.

性质

- 1. 反身性: $A \simeq A$
- 2. 对称性: $\mathbf{A} \simeq \mathbf{B} \Rightarrow \mathbf{B} \simeq \mathbf{A}$
- 3. 传递性: $A \simeq B, B \simeq C \Rightarrow A \simeq C$

6.1.4 标准形/规范形

定义

若二次型中只含有平方项,没有交叉项,形如

$$d_1x_1^2 + d_2x_2^2 + \dots + d_nx_n^2$$

的二次型称为标准形.

若标准形中, 系数 d_i 仅为 1, -1, 0 的二次型称为规范形.

求法

我们的目标是使得 B 矩阵是一个对角矩阵, 即只有主对角线有元素, 才可以得到标准型. 有两种方法:

1. 任何二次型可以通过配方法 (作可逆线性变换) 化为标准形和规范形, 它求得的对角矩阵 (标准形) 形式如下 (不一定是特征值 λ):

$$oldsymbol{\Lambda} = egin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & d_n \end{bmatrix}$$

此外, 它还可以转化成规范形:

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & -1 & & & \\ & & & \ddots & & & \\ & & & & 0 & & \\ & & & & \ddots & \\ & & & & 0 \end{bmatrix}$$

2. 任何二次型可以通过正交变换化成标准形 (见6.2.1), 它求得的对角矩阵 (标准形) 形式如下 (特征值不一定是 0,1,-1):

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & \ & & \ddots & \ & & & \lambda_n \end{bmatrix}$$

6.1.5 惯性定理

定义

无论选取什么样的线性变换 (配方还是正交合同变换),将二次型化为标准形或者规范形,其正项系数个数 p,负项个数 q 都是不变的,p 称为正惯性指数,q 称为负惯性指数.

性质

- 1. 若二次型的秩为 r, 则 r = p + q, 可逆线性变换不改变正/负惯性指数
- 2. 两个二次型(或者实对称矩阵)合同的条件是有相同的正/负惯性指数

6.1.6 正定二次型及其判别

定义

n 元二次型 $f(x_1, x_2, ..., x_n) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, 若对于任意的 $\mathbf{x} = [x_1, x_2, ..., x_n]^T \neq \mathbf{0}$ 均有二次型大于 0, 即 $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$, 则称 f 为正定二次型, \mathbf{A} 为正定矩阵.

条件

1. 充要条件:

n元二次型正定 \Leftrightarrow 对于任意 $x \neq 0$, 有 $x^T A x > 0$

⇔ f的正惯性指数p = n(所有的系数全正)

 \Leftrightarrow 存在可逆矩阵 \mathbf{D} , 使 $\mathbf{A} = \mathbf{D}^T \mathbf{D}$

 $\Leftrightarrow A \simeq E$

 \Leftrightarrow **A**的特征值 $\lambda_i > 0 (i = 1, 2, ..., n)$

⇔ **A**的全部顺序主子式均大于 0(左上角行列式)

2. 必要条件:

$$n$$
元二次型正定 $\Leftarrow a_{ii} > 0 (i = 1, 2, ..., n)$
 $\Leftarrow |\mathbf{A}| > 0$

6.2 习题

6.2.1 标准形/规范形

用正交变换法化二次型为标准形

- 1. 写出二次型矩阵 A
- 2. 求 A 的特征值 λ 和特征向量 ξ
- 3. 将 $\boldsymbol{\xi_1},...,\boldsymbol{\xi_n}$ 通过正交化/单位化成正交矩阵 $\boldsymbol{Q}=(\boldsymbol{\eta_1},...,\boldsymbol{\eta_n})$

4.
$$\diamondsuit$$
 $\boldsymbol{x} = \boldsymbol{Q}\boldsymbol{y} \Rightarrow f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{Q}\boldsymbol{y})^T \boldsymbol{A} \boldsymbol{Q} \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q} \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{\lambda} \boldsymbol{y} \Rightarrow f(y_1, ..., y_n) = \lambda_1 y_1^2 + ... + \lambda_n y_n^2$

注意 正交变换只能化二次型为标准形,不能化为规范形 (除非特征值都是 0,1,-1)