Lecture9: Metal-Oxide-Semiconductor

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

TCAD simulation result

- Integrated densities
 - Oxide thickness of 2 nm
 - P-type substrate doping of 1x10¹⁸ cm⁻³

Surface potential pinning

- Even when the gate voltage is increased above the threshold voltage, the surface potential is <u>almost</u> fixed.
 - (It's just like that the diode voltage is <u>almost</u> fixed to $V_{D,on}$.)

$$n(0) = \frac{n_i^2}{N_A} \exp \frac{\phi(0) - \phi(W_d)}{V_T}$$

GIST On-Line Lecture on April 13, 2020 (Internal use only)

Electron charge density

Usually, we want to know

$$Q_{elec} = (-q) \int_{0}^{\infty} n(x) dx$$

- When $V_G > V_{TH}$,
 - The electron charge density is proportional to $V_G V_{TH}$.

$$|Q_{elec}| = C_{ox}(V_G - V_{TH})$$

- (Here, Q_{elec} and C_{ox} are quantities per area.)
- When $V_G < V_{TH}$,
 - The electron charge density vanishes.

$$Q_{elec} = 0$$

$|Q_{elec}|$ versus V_G

- It is piecewise linear. Therefore, it is nonlinear.
 - Digital application: ON $(V_G = V_{DD})$ / OFF $(V_G = 0)$
 - Analog application: Linear part

Engineering questions

- Which one is good?
 - Large C_{ox} or small C_{ox} ?
 - Answer) We want to have a large C_{ox} . Therefore, a thin oxide layer is desirable.
 - High V_{TH} or low V_{TH} ?
 - Answer) Depending on V_{DD} , an appropriate value of V_{TH} should be chosen. By changing the metal or the substrate doping, we can control V_{TH} .
- These parameters are determined by the manufacturer.
 - Designers select the circuit topology.
 - Designers select sizes of transistors.