Econometrics (Econ 452) – Fall 2022 – Instructor: Daniele Girardi

SECTION 5 – LINEAR REGRESSION, PART 2 THE PLAN

- 1. Omitted Variable Bias Motivation
- 2. The Multiple Regression Model
- 3. OLS Estimation of the Multiple Regression Model
- 4. Measures of Fit in Multiple Regression
- 5. Multiple Regression and Causality: Control Variables & the CIA
- 6. Multicollinearity
- 7. Statistical Inference about a single coefficient
- 8. Statistical Inference about multiple coefficients at the same time
- 9. Model specification and presentation

MULTIPLE LINEAR REGRESSION: OVERVIEW

Why multiple regressors at the same time?

CAUSAL RELATIONS BETWEEN CLASS SIZE & TEST SCORES

OMITTED VARIABLES BIAS

Omitted Variables Bias (OVB) occurs if:

1. The omitted variable is correlated with the included regressor X.

AND

2. The omitted variable affects the dependent variable Y.

Linear regression model:

$$TestScores_i = \beta_0 + \beta_1 STR + u_i$$

- Do these variables cause OVB?
 - 1. Financial resources of the school district.
 - 2. Outside temperature during the test.
 - 3. Average parking lot space.
 - 4. Percentage of English learners

- Let β_1^* be the true causal effect of X on Y in the population.
- Let $\rho_{Xu} = corr(X_i, u_i)$
- OLS coefficient gives you:

$$E(\hat{\beta}_1) = \beta_1^* + \rho_{Xu} \left(\frac{\sigma_u}{\sigma_X} \right)$$

(proof in Appendixes 4.3 & 6.1)

- Y = dependent variable
- X = independent variable
- Z = omitted variable

$$E(\hat{\beta}_1) = \beta_1^* + \rho_{Xu} \left(\frac{\sigma_u}{\sigma_X} \right)$$

$$Corr(Z,X) > 0$$
 $Corr(Z,X) < 0$

Z increases Y (& u_i)

Z decreases Y (& u_i)

- Y = dependent variable
- X = independent variable
- Z = omitted variable

$$E(\hat{\beta}_1) = \beta_1^* + \rho_{Xu} \left(\frac{\sigma_u}{\sigma_X} \right)$$

$$Corr(Z,X) > 0$$
 $Corr(Z,X) < 0$

Z increases Y (& u_i)

Upward bias 1

Z decreases Y (& u_i)

- Y = dependent variable
- X = independent variable
- Z = omitted variable

$$E(\hat{\beta}_1) = \beta_1^* + \rho_{Xu} \left(\frac{\sigma_u}{\sigma_X} \right)$$

$$Corr(Z,X) > 0$$
 $Corr(Z,X) < 0$

Z increases Y (& u_i)

Upward bias 1

Downward bias

Z decreases Y (& u_i)

- Y = dependent variable
- X = independent variable
- Z = omitted variable

$$E(\hat{\beta}_1) = \beta_1^* + \rho_{Xu} \left(\frac{\sigma_u}{\sigma_X} \right)$$

Z increases Y (& u_i)

Upward bias 1

Downward bias

Z decreases Y (& u_i)

Downward bias

- Y = dependent variable
- X = independent variable
- Z = omitted variable

$$E(\hat{\beta}_1) = \beta_1^* + \rho_{Xu} \left(\frac{\sigma_u}{\sigma_X} \right)$$

Z increases Y (& u_i)

Upward bias 1

Downward bias

Z decreases Y (& u_i)

Downward bias ↓

Upward bias 1

RANDOMIZATION AS A SOLUTION

- Randomized Controlled Trials (RCTs).
- Random assignment of X → no OVB (& no reverse causality).
- Same E(X) for all units, independent of other factors affecting Y.
- E(u) does not vary with $X \rightarrow corr(X, u) = 0$.

"CONTROLLING FOR" OMITTED VARIABLES

- Observational data \rightarrow no guarantee that corr(X, u) = 0.
- But if we can observe the omitted variables that affect both Y and X, we can try to "control for" them.
- Compare Y between units with similar levels of Z but different levels of X.

"CONTROLLING FOR" OMITTED VARIABLES

TABLE 6.1 Differences in Test Scores for California School Districts with Low and High Student-Teacher Ratios, by the Percentage of English Learners in the District **Difference in Test Scores.** Student-Teacher Student-Teacher Low vs. High Student-Ratio < 20Ratio ≥ 20 **Teacher Ratio Average Average Test Score Test Score** Difference t-statistic n n All districts 238 657.4 650.0 182 7.4 4.04 Percentage of English learners < 1.9% 664.5 76 665.4 27 -0.9-0.301.9-8.8% 665.2 661.8 64 44 3.3 1.13 654.9 649.7 5.2 8.8-23.0% 54 50 1.72 > 23.0%636.7 634.8 1.9 44 61 0.68

5.2 THE MULTIPLE REGRESSION MODEL

MULTIPLE REGRESSION MODEL WITH 2 REGRESSORS

$$E(Y_i|X_1, X_2) = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i}$$

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

• How do you interpret β_1 ?

MULTIPLE REGRESSION MODEL WITH 2 REGRESSORS

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

- $\beta_1 = \frac{\Delta Y}{\Delta X_i}$, holding X_2 constant.
- Partial effect of X₁
- How do you interpret β_2 ? and β_0 ? and u_i ?

"CONTROLLING FOR" OMITTED VARIABLES

Multiple regression model with k regressors:

$$E(Y_i|X_1,X_2,...,X_n) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki}$$

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i$$

5.3 OLS ESTIMATION OF THE MULTIPLE REGRESSION MODEL

OLS ESTIMATION OF MULTIPLE REGRESSION

- OLS strategy: Select $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ to best fit the data.
- Best fit the data = minimize (squared) prediction errors:

$$\min_{b_0, b_1, \dots, b_k} \sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_{i,1} + b_2 X_{i,2} + \dots + b_k X_{k,1}])^2$$

• OLS estimators $(\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_k)$ = the values of $b_0, b_1, ..., b_k$ that minimize this expression

OLS ESTIMATOR OF MULTIPLE REGRESSION

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki} + \hat{u}_i$$

- Linear multiple regression model...
- ...but with sample OLS coefficients $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$ as estimators of population coefficients $\beta_0, \beta_1, ..., \beta_k$.
- $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki}$ = predicted value
- $\hat{u}_i = Y_i \hat{Y}_i$ = regression residual (estimator of error term u_i)

THE FRISCH-WAUGH-LOVELL THEOREM

• With one regressor $(Y_i = \beta_0 + \beta_1 X_i + u_i)$:

$$\hat{\beta}_1 = \frac{cov(X, Y)}{var(X)}$$

• With multiple regressors $(Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + u_i)$:

$$\hat{\beta}_1 = \frac{cov(\tilde{X}_1, \tilde{Y})}{var(\tilde{X}_1)}$$

- \tilde{X}_1 = residual from regression of X_1 on all other regressors $(X_2, ..., X_k)$.
- \tilde{Y} = residual from regression of Y on all other regressors $(X_2, ..., X_k)$.

THE FRISCH-WAUGH-LOVELL THEOREM

- FWL theorem means that you can compute $\hat{\beta}_1$ in 3 steps:
 - 1. Regress X_1 on $X_2, X_3, ..., X_k$ and obtain residuals \tilde{X}_1 .
 - 2. Regress Y_1 on $X_2, X_3, ..., X_k$ and obtain residuals \tilde{Y}_1 .
 - 3. Regress \tilde{Y}_1 on \tilde{X}_1

$$\circ \quad \tilde{Y}_i = \beta_0 + \beta_1 \tilde{X}_i + u_i$$

EXAMPLE: CLASS SIZE & TEST SCORES

- Back to our dataset of 420 California school districts in 1999.
- We estimated:

$$TestScore = 698.9 - 2.28 \times STR$$

Now include percent English Learners in the district (PctEL):

$$TestScore = 686.0 - 1.10 \times STR - 0.65 \times PctEL$$

What happened to the coefficient on STR? Why?

MULTIPLE REGRESSION IN STATA

```
reg testscr str pctel, robust
Regression with robust standard errors
                                               Number of obs = 420
                                         F(2, 417) = 223.82
                                         Prob > F = 0.0000
                                         R-squared = 0.4264
                                         Root MSE = 14.464
                        Robust
   testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      str | -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
     pctel -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
     _cons | 686.0322 8.728224 78.60 0.000 668.8754 703.189
```


PICTURING MULTIPLE REGRESSION COEFFICIENTS: A "RESIDUALIZED" SCATTERPLOT

- What is the slope of this regression line equal to?
- Application of Frisch-Waugh-Lovell!

5.4 MEASURES OF FIT IN MULTIPLE REGRESSION

MEASURES OF FIT IN MULTIPLE REGRESSION

- 1. Standard Error of the Regression (SER)
- 2. R²
- 3. Adjusted R²

SER

- Measures the spread of Y_i around the regression line.
- How far from the regression line is the "typical" unit?

$$SER = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n} \hat{u}_i^2}$$

Note: "Root MSE" in STATA regression output is basically the SER.

R² & ADJUSTED R²

•
$$R^2 = \frac{ESS}{TSS} = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

• Equivalently,
$$R^2=1-\frac{SSR}{TSS}=1-\frac{\sum_{i=1}^n\widehat{u}_i^2}{\sum_{i=1}^n(Y_i-\bar{Y})^2}$$

Always increases if you add regressors.

• Adjusted
$$R^2$$
 (or \bar{R}^2) = $1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS}$

MEASURES OF FIT IN MULTIPLE REGRESSION

reg testscr str pctel, robust Regression with robust standard errors Number of obs = 420F(2, 417) = 223.82Prob > F = 0.0000R-squared = 0.4264Root MSE = 14.464Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] testscr str | -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616 pctel | -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786 686.0322 8.728224 78.60 0.000 668.8754 703.189 cons

MEASURES OF FIT IN MULTIPLE REGRESSION

reg testscr str pctel, robust

Regression with robust standard errors

Number of obs = 420F(2, 417) = 223.82Prob > F = 0.0000

R-squared

Root MSE

1		Robust			[95 %(
testscr	Coef.	Std. Err.	t	P > t	
str	-1.101296	.4328472	-2.54	0.011	-1.952
pctel	6497768	.0310318	-20.94	0.000	7107
_cons	686.0322	8.728224	78.60	0.000	668.87

. est tab, stats(r2 r2_a)

Active	Variable	
-1.1012959	str	
64977678	el_pct	
686.03225	_cons	
.42643136	r2	
.42368043	r2_a	

5.5 MULTIPLE REGRESSION AND CAUSALITY

ASSUMPTIONS FOR CAUSAL INFERENCE IN MULTIPLE REGRESSION

1. The regressors X_s are independent of the error term u_i

$$E(u_i|X_{1i}, X_{2i}, ... X_{ki}) = 0$$

- 2. $(Y_i, X_{1i}, X_{2i}, ..., X_{ki}), i = 1, ..., n$, are i.i.d.
- 3. Large outliers are rare.
- 4. No perfect multicollinearity.

ASSUMPTIONS FOR CAUSAL INFERENCE IN MULTIPLE REGRESSION

1. The regressors X_s are independent of the error term u_i

$$E(u_i|X_{1i}, X_{2i}, ... X_{ki}) = 0$$

- 2. $(Y_i, X_{1i}, X_{2i}, ..., X_{ki}), i = 1, ..., n$, are i.i.d.
- 3. Large outliers are rare.
- 4. No perfect multicollinearity.

HYPOTHETICAL EXAMPLE

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

• Hypothetical example: Class size X_1 uncorrelated with the error term only after controlling for financial resources X_2 .

THE CIA

- X = regressor (or "treatment") of interest.
- W_1 , W_2 , ..., W_k = control variables.
- Conditional Independence Assumption (CIA):

$$E(u_i|X, W_1, ..., W_k) = E(u_i|W_1, ..., W_k)$$

In words: u and X are uncorrelated, after controlling for the W_s

CONTROL VARIABLES: GOOD AND BAD

- Not all variables are suitable as control variables.
- Bad controls: variables that are affected by the X of interest.
 - By "holding them fixed", you create bias.
- Good controls are pre-determined with respect to the X of interest.
- In estimating the effect of class size on test scores, the amount of *learning* by students (if observable) would be a *bad control*.

EXAMPLE OF BAD CONTROL VARIABLES

- We are after the effect of class size on test scores.
- Don't control for *learning!* we don't want to hold learning fixed
- Similarly, don't control for grades!
 Doesn't make sense to hold them fixed,
 when class size affects them through learning.
- "Learning" and grades are bad controls.
- Don't control for anything that is affected by the regressor of interest!

ASSUMPTIONS FOR CAUSAL INFERENCE IN MULTIPLE REGRESSION

1. The regressors X_s are independent of the error term u_i

$$E(u_i|X_{1i}, X_{2i}, ... X_{ki}) = 0$$

- 2. $(Y_i, X_{1i}, X_{2i}, ..., X_{ki}), i = 1, ..., n$, are i.i.d.
- 3. Large outliers are rare.
- 4. No perfect multicollinearity.

5.6 MULTICOLLINEARITY

PERFECT MULTICOLLINEARITY: EXAMPLE

$$TestScores_i = \beta_0 + \beta_1 STR_i + \beta_2 PctEL_i + \beta_3 FracEL_i + u_i$$

- PctEL = percentage of English learners (from 0 to 100).
- FracEL = fraction of English learners (from 0 to 1).
- Perfect multicollinearity: PctEL = 100xFracEL
- β_2 = effect of increasing PctEL by 1 while keeping FracEL fixed. Nonsense!!
- STATA will drop one of the two multicollinear regressors.

THE DUMMY VARIABLE TRAP

- 2 indicator variables for sex at birth
 - ☐ Female =1 if woman; 0 if man.
 - ☐ Male =1 if man; 0 if woman
- $Y_i = \beta_0 + \beta_1 Female + \beta_2 Male + u_i$ cannot be estimated
 - Perfect multicollinearity: $Female_i + Male_i = 1 = X_{oi}$
- Can estimate one of these three:

1.
$$Y_i = \beta_0 + \beta_1 Female + u_i$$

2.
$$Y_i = \beta_0 + \beta_1 Male + u_i$$

3.
$$Y_i = \beta_1 Female + \beta_2 Male + u_i$$

THE DUMMY VARIABLE TRAP

- General rule:
 If you have G indicator variables, and each observation falls into one (and only one) category, you cannot estimate all G indicators plus an intercept.
- Conventional solution: include G-1 indicators + the intercept
- Then coefficient on one included indicator = difference between that category and the "excluded category".
- Can also exclude the intercept and include all G indicators.

IMPERFECT MULTICOLLINEARITY

Example:

$$AHE_i = \beta_0 + \beta_1 Age + \beta_2 Experience + u_i$$

- AHE = average hourly earnings.
- Experience=years since entering the labor force.
- Nothing wrong with this regression.
- But β_1 & β_2 will probably be imprecisely estimated (large SE).
- There is probably little variation in experience within each given age group.

5.7 STATISTICAL INFERENCE ABOUT A SINGLE COEFFICIENT

DISTRIBUTION OF OLS ESTIMATORS

- $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ are random variables.
- $E(\hat{\beta}_j) = \beta_j$ for j = 1, ..., k.
- $Var(\hat{\beta}_j)$ is inversely proportional to n.
- $\hat{\beta}_j \rightarrow \beta_j$ (law of large numbers)

HYPOTHESIS TESTS & CI_S FOR SINGLE COEFFICIENTS

- 1. Specify $H_0 \& H_1$.
- 2. Estimate $\hat{\beta}_i$ and $SE(\hat{\beta}_i)$.
- 3. Compute t-statistics: $t = \frac{\hat{\beta}_j \beta_{j,0}}{SE(\hat{\beta}_j)}$
- 4. Compute p-value: $p = 2\Phi(-|t|)$.
- 5. Compute 95% CI: $\{\hat{\beta}_j \pm 1.96 \times SE(\hat{\beta}_j)\}$.

APPLICATION: STR & TEST SCORES

$$\widehat{TestScore} = 686.0 - 1.10 \times STR - 0.650 \times PctEL.$$
(8.7) (0.43) (0.031)

- 1. Null hypothesis: $H_0: \beta_1 = 0$
- 2. t-statistic: $t = \frac{-1.10-0}{0.43} = -2.54$
- 3. p-value: $2\Phi(-2.54) = 0.011 = 1.1\%$.
- 4. 95% confidence interval for β_1 :

$$-1.10 \pm 1.96 \times 0.43 = (-1.95, -0.26)$$

APPLICATION: STR & TEST SCORES

$$\widehat{TestScore} = 686.0 - 1.10 \times STR - 0.650 \times PctEL.$$
(8.7) (0.43) (0.031)

• YOUR TURN: Test H_0 : $\beta_2 = 0$ and compute 95% c.i. for β_2 .

APPLICATION: STR & TEST SCORES

$$\widehat{TestScore} = 686.0 - 1.10 \times STR - 0.650 \times PctEL.$$
(8.7) (0.43) (0.031)

- YOUR TURN: Test H_0 : $\beta_2 = 0$ and compute 95% c.i. for β_2
- t-statistic: $t = \frac{-0.650-0}{0.031} = -20.9$
- p-value: $2\Phi(-20.9) = 5.3 \times 10^{-97}$
- 95% confidence interval for β_1 :

$$-0.65 \pm 1.96 \times 0.031 = (-0.71, -0.59)$$

IN STATA

```
reg testscr str pctel, robust
Regression with robust standard errors
                                               Number of obs = 420
                                         F(2, 417) = 223.82
                                         Prob > F = 0.0000
                                         R-squared = 0.4264
                                         Root MSE = 14.464
                       Robust
            Coef. Std. Err. t P>|t| [95% Conf. Interval]
   testscr
      str | -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
     pctel -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
            686.0322 8.728224 78.60 0.000 668.8754 703.189
     cons
```


5.8 JOINT HYPOTHESES: STATISTICAL INFERENCE ABOUT MULTIPLE COEFFICIENTS AT THE SAME TIME

TESTS OF JOINT HYPOTHESES

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i$$

Example of joint hypotheses:

$$H_0$$
: $\beta_1 = 0$ and $\beta_2 = 0$

$$H_1$$
: $\beta_1 \neq 0$ and/or $\beta_2 \neq 0$

- Can also test more than two restrictions.
- In general:

$$H_0$$
: $\beta_i = \beta_{i,0}$, $\beta_m = \beta_{m,0}$, ... up to q restrictions

 H_1 : one or more of the q restrictions doesn't hold

THE F-STATISTIC

- Tests all components of the joint hypothesis at once.
- With q=2 restrictions (H_0 : $\beta_1 = \beta_{1,0}$ and $\beta_2 = \beta_{2,0}$):

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1, t_2}}{1 - \hat{\rho}_{t_1, t_2}^2} \right)$$

- o t_1 = individual t-stat for $\beta_1 = \beta_{1,0}$
- o t_2 = individual t-stat for $\beta_2 = \beta_{2,0}$
- o $\hat{\rho}_{t_1,t_2}$ =correlation between t_1 & t_2

THE F-STATISTIC

- In large samples, the F-stat is distributed $F_{q,\infty}$.
- p-value= $\Pr[F_{q,\infty} > F^{act}]$
- 'test' command in STATA
 - o it's a post-estimation command

F-STATISTICS: APPLICATION

$$TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$$

$$H_0$$
: $\beta_1 = 0$ and $\beta_2 = 0$ vs.

$$H_1: \beta_1 \neq 0$$
 and/or $\beta_2 \neq 0$.

reg testscr str expn stu pctel, robust

Regression with robust standard errors

Number of obs = 420 F(3, 416) = 147.20 Prob > F = 0.0000 R-squared = 0.4366 Root MSE = 14.353

testscr						Interval]
str expn_stu pctel	2863992 .0038679 6560227	.4820728 .0015807 .0317844	-0.59 2.45 -20.64	0.553 0.015 0.000	-1.234001 .0007607 7185008	.661203 .0069751 5935446 679.9641
						5935

test str expn_stu

- (1) str = 0.0
- (2) expn_stu = 0.0
 F(2, 416) = 5.43
 Prob > F = 0.0047

THE "OVERALL" REGRESSION F-STAT

•
$$H_0$$
: $\beta_1 = 0$, $\beta_2 = 0$, ..., $\beta_k = 0$

- H_1 : $\beta_i \neq 0$ for at least one j
- → does any of the included regressors help explain Y?
- → Does the model do better than simply computing the sample mean?
- Part of STATA 'regress' output


```
reg testscr str expn_stu pctel, r;
Regression with robust standard errors
                                      Number of obs = 420
                                       F(3, 416) = 147.20
                                       Prob > F = 0.0000
                                       R-squared = 0.4366
                                       Root MSE = 14.353
             Robust
   testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
   str | -.2863992 .4820728 -0.59 0.553 -1.234001 .661203
  expn_stu | .0038679 .0015807 2.45 0.015 .0007607 .0069751
    el_pct | -.6560227 .0317844 -20.64 0.000 -.7185008 -.5935446
    _cons | 649.5779 15.45834 42.02 0.000 619.1917 679.9641
```


TESTING SINGLE RESTRICTIONS ON MULTIPLE COEFFICIENTS

Example:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

Hypothesis:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

- One single hypothesis...
- ...but about multiple coefficients.

TESTING SINGLE RESTRICTIONS ON MULTIPLE COEFFICIENTS

Example:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

Hypothesis:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

- Two ways to test this:
- 1. Rearrange ("transform") the regression
- 2. Perform the test directly

METHOD 1: REARRANGE THE REGRESSION

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

- We want to test $H_0: \beta_1 = \beta_2$ vs $H_1: \beta_1 \neq \beta_2$
- Add and subtract $\beta_2 X_{1,i}$:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1,i} - \beta_{2}X_{1,i} + \beta_{2}X_{2,i} + \beta_{2}X_{1,i} + u_{i}$$

$$Y_{i} = \beta_{0} + X_{1,i}(\beta_{1} - \beta_{2}) + \beta_{2}(X_{1,i} + X_{2,i}) + u_{i}$$

$$Y_{i} = \beta_{0} + \gamma_{1}X_{1,i} + \beta_{2}(X_{1,i} + X_{2,i}) + u_{i}$$
With $\gamma_{1} = \beta_{1} - \beta_{2}$

METHOD 1: REARRANGE THE REGRESSION

$$(a) Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

$$(b) Y_i = \beta_0 + \gamma_1 X_{1,i} + \beta_2 (X_{1,i} + X_{2,i}) + u_i$$

- (b) and (b) are equivalent
 - o same R², predicted values, and residuals.
- But now the test boils down to whether $\gamma_1=0$ in regression (b)!

METHOD 2: PERFORM THE TEST DIRECTLY USING SOFTWARE

- Regression: $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$
- Hypothesis: $H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$
- Example:

$$TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$$

- 'test' command in STATA after running the regression:
- 1. regress testscr str expn_stu el_pct, r
- 2. test str=expn

. regress testscr str expn_stu el_pct, r

Linear regression

Number of obs	=	42
F(3, 416)	=	147.2
Prob > F	=	0.000
R-squared	=	0.436
Root MSE	=	14.35

testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
str	2863992	.4820728	-0.59	0.553	-1.234002	.661203
expn_stu	.0038679	.0015807	2.45	0.015	.0007607	.0069751
el_pct	6560227	.0317844	-20.64	0.000	7185008	5935446
_cons	649.5779	15.45834	42.02	0.000	619.1917	679.9641

. test str=expn

(1)
$$str - expn_stu = 0$$
 $\gamma_1 = \beta_1 - \beta_2$
F(1, 416) = 0.36
Prob > F = 0.5467

CONFIDENCE SETS FOR MULTIPLE COEFFICIENTS

- Regression: $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$
- A *joint* confidence set for β_1 and β_2 :
 - A set of pairs of values (β_1, β_2) such that it is 95% likely to contain the true pair.
 - The set of pairs of values (β_1, β_2) that cannot be rejected at the 5% significance level (using F-stat)

CONFIDENCE SETS FOR MULTIPLE COEFFICIENTS

FIGURE 7.1 95% Confidence Set for Coefficients on STR and Expn from Equation (7.6)

The 95% confidence set for the coefficients on STR (β_1) and Expn (β_2) is an ellipse. The ellipse contains the pairs of values of β_1 and β_2 that cannot be rejected using the F-statistic at the 5% significance level. The point $(\beta_1, \beta_2) = (0, 0)$ is not contained in the confidence set, so the null hypothesis H_0 : $\beta_1 = 0$ and $\beta_2 = 0$ is rejected at the 5% significance level.

Coefficient on Expn (β_2) 95% confidence set 6 5 4 3 2 $(\hat{\beta}_1, \hat{\beta}_2) = (-0.29, 3.87)$ $(\boldsymbol{\beta}_1, \, \boldsymbol{\beta}_2) = (0, \, 0)$ 0 -1.5-1.00.5 -2.0-0.50.0 1.0 1.5 Coefficient on STR (β_1)

5.9 MODEL SPECIFICATION & PRESENTATION

HOW TO CHOOSE REGRESSORS

- You want to estimate the effect of X_1 on Y.
- Include control variables W_i that are correlated with X_1 and affect Y.
 - Objective: $E(u_i|X_1,W_i) = E(u_i|W_i)$
 - X should be as if randomly assigned among units w/ same value of W_i .
 - Some things are hard to measure, so we use proxies.
- Can also include variables that affect Y but are not expected to correlate with X, to increase precision.
- Baseline specification & alternative specifications (robustness).

PRESENTING REGRESSION RESULTS

- We usually run several regressions (baseline + alternative specification).
- Use tables to present results from multiple specifications.
- Each specification is a column.
- Table should include, for each specification:
 - 1. Estimated Coefficients.
 - 2. Standard Errors.
 - 3. Number of observations.
 - 4. Measures of fit.
 - 5. Relevant F-stats, if any.

TABLE 7.1 Results of Regressions of Test Scores on the Student-Teacher Ratio and Student **Characteristic Control Variables Using California Elementary School Districts** Dependent variable: average test score in the district. (3) (4) (5) Regressor -2.28-1.10-1.00-1.31-1.01Student-teacher ratio (X_1) (0.52)(0.43)(0.27)(0.34)(0.27)[-3.30, -1.26] [-1.95, -0.25] [-1.53, -0.47] [-1.97, -0.64] [-1.54, -0.49]Control variables -0.122-0.488-0.130Percentage English learners (X_2) -0.650(0.036)(0.031)(0.033)(0.030)Percentage eligible for subsidized -0.547-0.529lunch (X_3) (0.024)(0.038)Percentage qualifying for income -0.7900.048 (0.068)(0.059)assistance (X_4) 698.9 686.0 700.2 698.0 700.4 Intercept (10.4)(8.7)(5.6)(6.9)(5.5)**Summary Statistics** 18.58 9.08 11.65 9.08 SER14.46 \overline{R}^2 0.773 0.626 0.0490.4240.773420 420 420 420 420 n

These regressions were estimated using the data on K–8 school districts in California, described in Appendix 4.1. Heteroskedasticity-robust standard errors are given in parentheses under coefficients. For the variable of interest, the student–teacher ratio, the 95% confidence interval is given in brackets below the standard error.

- SE in parenthesis.
- Start from simplest specification (column 1)
- (3) & (4) use two alternative proxies for financial resources.
- Column (5) uses both.
- Coefficient on STR falls from (1) to (2) but is relatively stable across (2)-(5).

