

VORLESUNG **NETZWERKSICHERHEIT**

SOMMERSEMESTER 2023 MO. 14-16 UHR

WIEDERHOLUNG OSI-LAYER 1 + 2

NETZWERKE

Lastverbund

- Aufgabenverteilung an unterschiedliche Endpunkte
- (Optimale) Lastverteilung / Ressourcennutzung

Leistungsverbund

- Unterschiedliche spezialisierte Endpunkte
- Zusammengefasst zu einer logischen Einheit

Verfügbarkeitsverbund

- Redundanz / Load-Balancing
- Problem: Datenhaltung oft nicht redundant

NETZWERKE (FORTS.)

Funktionsverbund

- Geteilte Ressourcennutzung (Festplattenspeicher, Software, etc.)
- Virtuelle Umgebung (Abstraktion f
 ür Benutzer)

Datenverbund

- Zugriff auf gemeinsame Datenbestände (klassische Datenbanken)
- Meist ohne Redundanz und ortsgebunden

Nachrichtenverbund

- Austausch von Nachrichten / Kommunikation
- Ortsübergreifende Erreichbarkeit von Kommunikationspartnern

NETZWERKE (FORTS.)

Achtung!

- Das World Wide Web ist nicht das Internet!
 - Vielmehr bietet das Internet eine technische Basis für das WWW und weitere Dienste
- Das Internet ist nicht das einzige Netzwerk!
 - GAN Global Area Network
 - WAN Wide Area Network
 - MAN Metropolitan Area Network
 - LAN Local Area Network
 - PAN Personal Area Network

NETZWERK-PROTOKOLLE

LOKALE NETZWERKE

IEEE 802.X

- Standards für die OSI-Layer 1 + 2 (lokale Netzwerke / Netzzugang)
- Layer 1 (Bitübertragung)
- Layer 2 (Sicherungsschicht / Ethernet)
 - Layer 2a (Media Access Control)Layer 2b (Logical Link Layer)

so nicht im ISO/OSI-Schichtenmodell

LAYER 1 – BITÜBERTRAGUNGSSCHICHT

Übertragene Einheiten

Bits / Symbole (z.B. mittels Manchesterkodierung)

Protokolle

- ARCNET
- TokenRing
- 1000Base-T

Geräte / Hardware

- Netzwerkkabel
- Repeater / Hub

Pixabay.com - 494654

LAYER 2A – MEDIA ACCESS CONTROL

Übertragene Einheiten

Frames

Protokolle

- 802.3 Ethernet
- 802.11 WLAN
- 802.15.1 Bluetooth

Geräte / Hardware

- Kontrolle der verwendeten Geräte (z.B. Duplex-Settings)
- Zugang zum Übertragungsmedium (z.B. CSMA/CD)

LAYER 2B - LOGICAL LINK CONTROL (LLC)

Übertragene Einheiten

- UFrames (unnumbered) Link control (Disconnect Mode, etc.)
- SFrames (supervisory) Management (Receiver ready, R. not ready, Reject)
- IFrames (information) Sequenziell (Payload-Übertragung)

Unterschiedliche Dienstklassen / Protokoll-Multiplexing

- LLC1 (unbestätigt, verbindungslos)
- LLC2 (bestätigt, verbindungsorientiert)
- LLC3 (bestätigt, verbindungslos)
- LLC4 (Vollduplex Punkt-zu-Punkt)

ZUGANGSNETZE

Standards für den (entfernten) Netzwerkzugang

- Modem/ISDN/DSL (PPP)
 - Über die Telefonleitung (häufig asynchrones DSL)
- Ethernet (PPPoE)
 - Kabelanschluss (PPPoE)
 - WLAN (Eduroam)
 - Root-/V-Server im Rechenzentrum
- Mobiler Zugang
 - GSM/UMTS/LTE
 - 5G

ZUGANGSNETZE

PPP (urspr. RFC 1331)

basiert heute häufig auf HDLC (High-Level Data Link Control; RFC 1662)

ZUGANGSNETZE

PPP (urspr. RFC 1331)

Authentifikation über zusätzliches Authentication Protocol (z.B. PAP, CHAPERIS
 PPoE (RFC 2516) – Basiert auf Ethernet-Frames

PPPoE (RFC 2516) – Basiert auf Ethernet-Frames

PPTP (RFC 2637) – "Microsoft"-Tunnel (z.B. über IP-Netze)

- Microsoft Point-to-Point-Encryption (MPPE)
- Microsoft Point-to-Point Compression (MPPC)

WIEDERHOLUNG: OSI-LAYER 1 + 2 SICHERHEIT

LAYER 1 - SICHERHEITSASPEKTE

Einziges Angriffsszenario: Physikalischer Zugriff

- Rechenzentrum
- Dark-Fiber
- WLAN
- IMSI-Catcher

Mögliche Angreifer (realistisch?)

- RZ-Betreiber / Angestellte / Reinigungskraft
- WLAN-Wardriver
- Strafverfolger / Geheimdienste

Exkurs in die Realität

 NSA belauscht unverschlüsselten Google-Traffic (Dark-Fiber)

Exkurs in die Realität

 NSA belauscht unverschlüsselten Google-Traffic (Dark-Fiber)

 IMSI-Catcher in Gefängnissen oder bei Ermittlungen

LAYER 2 - SICHERHEITSASPEKTE

IEEE 802 – MAC-Schicht

- 802.3ab (1000Base-T)
 - Authentifikation verwendeter Hardware (z.B. auf Basis der MAC-Adresse)
 - Einfach zu fälschen (Spoofing)
 - Zertifikatbasierte Authentifikation (802.1X "Port-based Authentication")
 - Zertifikate zur Authentifikation

LAYER 2 - SICHERHEITSASPEKTE

IFFF 802 – MAC-Schicht

- 802.3ab (1000Base-T)
- Authentifikation verwendeter Hardwar z.l. auf ads der MAC-Adresse)

 - thentifikation (802.1X "Port-based Authentication")
 - Zertifikate zur Authentifikation
- 802.11 (WLAN)
 - WEP (Wired equivalent privacy) **UNSICHER!**
 - WPA/WPA2/WPA3 (WiFi Protected Access)
 - Verschlüsselung und Authentifikation

PPP/PPTP/PPPoE

- PAP (Password Authentication Protocol)
 - Unverschlüsselte Übertragung von Benutzername : Passwort
- CHAP (Challenge Handshake Authentication Protocol)
 - Zufallszahl des Servers mit Benutzerpasswort gehashed
 - MS-CHAPv2 mit MD4/DES mit Bruteforce zu knacken
- EAP (Extensible Authentication Protocol)
 - 2-Phasen-Authentifikation (z.B. mit RADIUS)
 - Erlaubt Verwendung von Authentication-Protokollen (z.B. Kerberos)
 - >40 konkrete Verfahren (z.B. EAP-TLS, EAP-MD5, EAP-TTLS, ...)

ARP (Address Resolution Protocol, RFC826)

Kommunikation auf L2 über MAC-Adressen der Netzwerk-Hardware

- Zuordnung übergeordneter Adressen (z.B. IP-Adressen) zu MAC-Adressen
- Keine Sicherheitsmechanismen (Broadcast request; Broadcast/Unicast response)
- ARP findet meist vom Benutzer unbemerkt statt

ARP (Address Resolution Protocol, RFC826)

Rechner pflegt einen ARP-Cache

```
[matze@tschita] ~ $ arp -an
(192.168.2.128) auf ac:6f:bb:84:61:5a [ether]
```


ARP (Address Resolution Protocol, RFC826)

- Manipulation des ARP-Cache durch gefälschte Antworten
 - ARP-Cache poisoning / ARP-Spoofing
 - Ermöglicht Man-in-the-middle
 - Nur in lokalen Netzen möglich (Layer 2!)
 - Angriff ist ohne technisches Verständnis möglich
 - Linux: z.B. Ettercap
 - Windows: z.B. Cain&Abel (oxid.it)

Denial of Service

- Flooding
 - Unicast Flooding eines Hosts (auch mit Hilfe von ARP möglich)
 - Flooding eines Switches mit ARP-Paketen / gefälschten Ethernet Frames

Zusammenfassend:

 Layer-2-Sicherheitsprobleme sind nur bedingt durch Sicherheitsmechanismen auf höheren Schichten zu kompensieren

OSI LAYER 1 + 2: FAZIT

Rückblick

- ISO/OSI-Layer 1 und 2 (MAC & LLC nach IEEE 802)
- Unterschiedliche Protokolle auf beiden Schichten
 - 1000Base-T / ARCNET / Ethernet
 - CSMA/CD
 - Ethernet / WLAN / Bluetooth
- Sicherheitsaspekte
 - ARP-Spoofing / -Cache-Poisoning
 - Denial-of-Service

AUSGABE ÜBUNGSZETTEL

Immer dienstags (vor der Übung) auf der Vorlesungswebseite

- 1 Woche Bearbeitungszeit
- Abgabe in Gruppen

Morgen ist noch keine Übung!

ENDE

Vielen Dank für die Aufmerksamkeit!

Fragen?

Nächste Vorlesung:

Montag, 17. April 2023

Nächste Übung:

- Dienstag, 18. April 2023 16 Uhr
- Abgabe des Übungszettels 1 bis zum 18. 16 Uhr