Hartshorne: Varieties

February 2024

February 9, 2024

Contents

1	Affi	ne Varieties	2
	1.1	Familiar Definitions	2
	1.2	The Zariski Topology	2

1 Affine Varieties

1.1 Familiar Definitions

Let k be an algebraically closed field. We define **affine space** over k, denoted \mathbb{A}^n_k or \mathbb{A}^n , as the set of all n-tuples with components in k. The elements $P \in \mathbb{A}^n$ are called **points** — and if $P = (a_1, \ldots, a_n)$, the elements a_1, \ldots, a_n are called **components**.

The set $R = k[x_1, ..., x_n]$ denotes the commutative ring of polynomials with variables $x_1, ..., x_n$ with coefficients in k. We may interpret each $f \in R$ as a function from \mathbb{A}^n to k, defined by $f(P) = f(a_1, ..., a_n)$. We may thus define the **zeroes** of f, given by the set $Z(f) = \{P \in \mathbb{A}^n_k \mid f(P) = 0\}$. More generally, for any subset T of polynomials R, its **zeroes** are given by

$$Z(T) = \{ P \in \mathbb{A}^n \mid f(P) = 0 \text{ for each } f \in T \}.$$

Ideals in R are quite elegant: since R is Noetherian, each ideal \mathfrak{a} has a finite set of generators f_1, \ldots, f_n . Thus \mathfrak{a} may be expressed as the common zeroes of f_1, \ldots, f_n . It is easy to verify that if \mathfrak{b} is the ideal generated by T, then $Z(T) = Z(\mathfrak{b})$.

1.2 The Zariski Topology

A subset $Y \subseteq \mathbb{A}^n$ is an **algebraic set** if there exists a subset $T \subseteq Y$ such that Y = Z(T).

Theorem 1. The following two results hold:

- 1. The union of two algebraic sets $X, Y \subseteq \mathbb{A}^n$ is algebraic.
- 2. The intersection of any family of algebraic sets Y_{α} is an algebraic set.

Proof. For (1), let X = Z(T) and Y = Z(S). We claim that $Z(T \cup S) = Z(TS)$, where TS is the set of all ts with $t \in T$ and $s \in S$.

- 1. Suppose $P \in Z(TS)$ that is, ts(P) = 0 for all $ts \in TS$. Since R is an integral domain, we have t(P) or s(P) = 0, so $P \in Z(T)$ or $P \in Z(S)$. Hence $P \in Z(T) \cup Z(S)$.
- 2. Suppose $P \in Z(T) \cup Z(S)$. Then $P \in Z(T)$ or $P \in S(T)$ in which case, t(P) = 0 for all t or s(P) = 0 for all s. In either case, ts(P) = 0 for all $ts \in TS$, so $P \in Z(TS)$.

Thus $X \cup Y = Z(T) \cup Z(S) = Z(TS)$. We deduce that $X \cup Y$ is an algebraic set. For (2), let $Y_{\alpha} = T_a$. It is easy to verify that $\bigcap_{\alpha \in A} Z(T_{\alpha}) = Z(\bigcup_{\alpha \in A} T_{\alpha})$; hence $\bigcup_{\alpha \in A} Y_{\alpha}$ is an algebraic set.

Noting that ;0 and \mathbb{A}^n are algebraic sets (since $\{0\} = Z(1)$ and $\mathbb{A}^n = Z(0)$), we deduce that algebraic sets in R satisfy the closed set axioms to be a topological space. The ensuing topology is called the **Zariski topology**.