$$\sum_{\{x_{1}, x_{2}, x_{3}, x_{4}, x_{4}, x_{5}, x_{5}, x_{4}, x_{4}, x_{5}, x_{4}, x_{4}, x_{5}, x_{$$

Esercizio 1 Esercizio 2	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X , eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti calcolare il det di una 2×2 a casos, se det $\neq 0$ allora $rk(A) \ge 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le X in comune alle 3×3 sono quelle che $rk(A) = 2$, tutte le altre $rk(A) = 3$;
Esercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora d² è simmetrica se M = M^T → M^T → M^T = (M · M)^T → M = M^T, sostituised M con A² Sia A ∈ M³, 2(8) di rango 2, allora il sistema lineare AX = B ammetre soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(AB) = 3 allora il sistema lineare AX = B ammetre soluzioni per Rouché-Capelli (∞²-3) A³ - A = I₂ → A(A² - I) = I → (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile) A³ - A = (½ 1/3) → A(A² - I) = 0 → A = 0, A² - I = 0 → A = 0, A² = I quindi A è invertibile so A² = I altrimenti se A = 0 non è invertibile A³ - A = (½ 1/3) → A(A² - I) = (½ 1/2) → A = (½ 1/3) → A² = I quindi A è invertibile so A² = I altrimenti se A = 0 non è invertibile A³ - A = (½ 1/3) → A(A² - I) = 0 → A = 0, A² - I = 0 → A = 0, A² = I quindi A è invertibile A³ - A = (½ 1/3) → A(A² - I) = 0 → A = 0, A² - I = 0 → A = 0, A² = I quindi A è invertibile A³ - A = (½ 1/3) → A(A² - I) = 0 → A = 0, A² - I = 0 → A = 0, A² = I quindi A è invertibile A³ - A = (½ 1/3) → A(A² - I) = 0 → A = 0, A² - I = 0 → A = 0, A² = I quindi A è invertibile A³ - A = (½ 1/3) → A(A² - I) = (½ 1/2) → A = (½ 1/3) → A² = (½ 1/2) → A² = (
Esercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁ v_n) (M matrice composta dai vettori) Base ortogonale di v,w: (det(R₁R₃)/(R₁R₃)), R_i sono le righe dei vettori Dipendenza lineare: αv₁ + βv₂ = 0 oppure la matrice composta dai vettori non ha rango N Indipendenza lineare: αv₁ + βv₂ = 0 → α = β = 0 oppure la matrice composta dai vettori ha rango N v₃ = (x₃³)/_{x₃} è multiplo scalare di v₁ = (x₁ / x₁)/_{x₁} se (x₁ / x₁)/_{x₁} se (x₂ / x₁)/_{x₁} se (x₁ / x₁)/_{x₁} se (x₂ / x₁)/_{x₁} se (x₁ / x₁)/_{x₁} se (x₁ / x₁)/_{x₁} se (x₂ / x₁)/_{x₁} se (x₁ / x₂ / x₁)/_{x₁} se (x₁ / x₁ / x₁)/_{x₁} se (x₁ / x₂ / x₁
	• Gauss: $R_i = R_i + \left(\frac{-a_{ij}}{a_{jj}}\right) \cdot R_j$ • Rouché-Capelli: $\infty \# incognite - \mathrm{rk}(A)$ • A invertible se det $A \neq 0$, det $(A^{-1}) = \frac{1}{\mathrm{det}A}$ • A non invertible se $A^N = 0$ • In prodotto di due matrici diagonale è dimentrica • Tercema di Bineti: det $(AB) = \det A \cdot \det B$ • Calcolo matrice inversa: scriviamo $(M I)$, eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss dal basso verso l'alto), otteniamo $(I M^{-1})$ • $\left(\frac{x_1}{x_2}\right) \cdot \left(\frac{x_2}{x_2}\right) = x_1x_2 + y_1y_2 + z_1z_2$ • $AX = B$ anmette soluzioni se $\mathrm{rk}(A B) = \mathrm{rk}(A)$ • $\frac{\sqrt{1}}{\sqrt{36}} = 1$ • $\frac{\sqrt{1}}{\sqrt{36}} = 1$ • $\frac{\sqrt{1}}{\sqrt{1}} = 1$
	$\sqrt{144} = 12$ $\sqrt{169} = 13$ $\sqrt{196} = 14$ $\sqrt{289} = 17$ $\sqrt{324} = 18$ $\sqrt{361} = 19$ $\sqrt{484} = 22$ $\sqrt{529} = 23$ $\sqrt{576} = 24$ $\sqrt{729} = 27$ $\sqrt{784} = 28$ $\sqrt{841} = 29$