What is claimed is:

1	1. A current steering circuit comprising:
2	a current input node coupled to a first circuit path, the first circuit path
3	drawing current from the current input node during a first mode of operation;
4	a comparator coupled to the current input node, the comparator drawing
5	negligible amount of current from the current input node during the first mode of
6	operation, the comparator drawing significant amount of current from the current input
7	node during a second mode of operation so as to divert current from the first circuit path;
8	and
9	a current mirror coupled to the comparator, the current mirror maintaining
10	current flow through a second circuit path during the second mode of operation but not
11	during the first mode of operation.
1	2. The current steering circuit of claim 1 further comprising:
2	a reference node coupled to the comparator, the reference node providing a
3	reference voltage;
4	a voltage input node coupled to the comparator, the voltage input node
5	providing an input voltage; and
6	wherein the comparator places the current steering circuit in the first mode
7	of operation or the second mode of operation when the input voltage is at a predetermined
8	level relative to the reference voltage.
1	3. The current steering circuit of claim 1 further comprising a p-type
2	differential amplifier coupled to a first circuit path, and an n-type differential amplifier
3	coupled to a second circuit path.
1	4. The current steering circuit of claim 1 further comprising a current
2	source coupled to the current input node.
1	5. The current steering circuit of claim 2 wherein the reference
2	voltage is established by a diode-connected transistor.
-	results to established by a diode-connected transistor.
1	6. The current steering circuit of claim 2 wherein the voltage input
2	node includes an input terminal of a p-type differential amplifier.

1	7. A current steering circuit comprising:
2	a current input node coupled to a first circuit path, the first circuit path
3	drawing current from the current input node during a first mode of operation;
4	a first transistor coupled to the current input node, the first transistor
5	drawing negligible current from the current input node during the first mode of operation,
6	the first transistor drawing current from the current input node during a second mode of
7	operation to divert current from the first circuit path;
8	a second transistor coupled to receive current drawn by the first transistor
9	from the current input node during the second mode of operation, the second transistor
10	forming a current mirror with a third transistor that is coupled to a second circuit path;
11	a reference node providing a reference voltage to a fourth transistor;
12	a fifth transistor forming a current mirror with the fourth transistor, the
13	fifth transistor supplying a reference current to the first transistor, the amount of the
14	reference current being related to the reference voltage; and
15	wherein the current steering circuit is placed in the first mode of operation
16	or the second mode of operation depending on a voltage level on a voltage input node
17	relative to the reference voltage.
1	8. The current steering circuit of claim 7 wherein the current steering
2	circuit is placed in the first mode of operation when the voltage level on the voltage input
3	node is lower than the reference voltage, and in the second mode of operation when the
4	voltage level on the voltage input node is higher than the reference voltage.
•	volume level on the volume input hour is ingher than the reference voltage.
1	9. The current steering circuit of claim 7 wherein the current steering
2	circuit is placed in the first mode of operation when the voltage level on the voltage input
3	node is higher than the reference voltage, and in the second mode of operation when the
4	voltage level on the voltage input node is lower than the reference voltage.
1	10. The current steering circuit of claim 7 wherein the first, second,
2	third, fourth, and fifth transistors are MOS transistors.
L	and, routh, and then transistors are MOS transistors.
1	11. A method for maintaining a substantially constant error in an
2	output voltage sourced by an amplifier comprising a first circuit and a second circuit, said
3	method comprising:

4	driving said output voltage in a first region of operation in each of said
5	first circuit and said second circuit, wherein in said first region of operation, said first
6	circuit substantially drives said output;
7	sensing a condition wherein Vin reaches Vref; and
8	causing a switch over from said first region of operation to a second region
9	of operation in each of said first circuit and said second circuit, wherein in said second
0	region of operation, said second circuit substantially drives said output;
1	wherein Vref is set to provide a substantially constant error within said
2	output voltage.
1	12. The method of claim 11, wherein
2	said first circuit is a p-channel amplifier and said second circuit is an n-
3	channel amplifier.
1	13. The method of claim 12, wherein
2	said first region of operation comprises operation wherein said p-channel
3	amplifier is active and said n-channel is relatively not active; and
4	said second region of operation comprises operation wherein said n-
5	channel amplifier is active and said p-channel is relatively not active.
1	14. The method of claim 11, wherein
2	said first circuit is a n-channel amplifier and said second circuit is an p-
3	channel amplifier.
1	15. The method of claim 14, wherein
2	said first region of operation comprises operation wherein said n-channel
3	amplifier is active and said p-channel is relatively not active; and
4	said second region of operation comprises operation wherein said p-
5	channel amplifier is active and said n-channel is relatively not active.
1	16. The method of claim 11, wherein
2	Vref is set to provide a substantially constant error within said output
3	voltage by making Vref sufficiently large in comparison to Vin.
1	17 The method of claim 11 when in

2	Vref is set to provide a substantially constant error within said output
3	voltage by making Vref sufficiently small in comparison to Vin.
1	18. An apparatus, comprising:
2	means for driving an output voltage in a first region of operation in each of
3	a first circuit and a second circuit;
4	means for sensing a condition wherein an input voltage (Vin) reaches a
5	reference voltage (Vref);
6	means for switching over from a first region of operation to a second
7	region of operation in each of said first circuit and said second circuit; and
8	means for setting Vref to be sufficiently large, thereby maintaining a
9	substantially constant error in said output voltage.
1	19. A method, comprising:
2	driving an output voltage in a first region of operation substantially by a
3	first circuit for a substantial portion of an amplifier's entire range of operation;
4	
5	sensing a condition wherein an input voltage, Vin, reaches a reference voltage, Vref; and
6 7	switching over from the first region of operation to a second region of
	operation;
8	wherein a second circuit substantially drives the output voltage for a
9	remaining portion of the amplifier's range of operation.
1	20. The method of claim 19, wherein
2	the reference voltage, Vref, is made sufficiently large to provide a
3	substantially constant error within the output voltage by causing operation in the first
4	region to occur for a substantial portion of the amplifier's entire range of operation.
1	