(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. Januar 2003 (23.01.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/006065 A2

(51) Internationale Patentklassifikation⁷:

- A61K 47/48
- (21) Internationales Aktenzeichen: PCT/DE02/02564
- (22) Internationales Anmeldedatum:

12. Juli 2002 (12.07.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 33 307.2

12. Juli 2001 (12.07.2001) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DEUTSCHES KREBSFORSCHUNGSZEN-TRUM [DE/DE]; Stiftung des öffentlichen Rechts, Im Neuenheimer Feld 280, 69120 Heidelberg (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BRAUN, Klaus [DE/DE]; Bruchhausen 1B, 69207 Sandhausen (DE). WALDECK, Waldemar [DE/DE]; Tilsiter Strasse 49, 69514 Laudenbach (DE). PIPKORN, Rüdiger [SE/DE]; Adolf-Rauch-Strasse 3, 69120 Heidelberg (DE). BRAUN, Isabell [DE/DE]; Höhenweg 13, 35091 Cölbe-Bürgeln (DE). DEBUS, Jürgen [DE/DE]; Kreuzstrasse 11, 76698 Stettfeld (DE).

- (74) Anwalt: SCHÜSSLER, Andrea; Huber & Schüssler, Truderinger Str. 246, 81825 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: PNA CONJUGATE FOR THE TREATMENT OF DISEASES ASSOCIATED WITH HIV
- (54) Bezeichnung: PNA-KONJUGAT ZUR THERAPIE VON MIT HIV IN ZUSAMMENHANG STEHENDEN ERKRANKUNGEN
- (57) Abstract: The invention relates to peptide nucleic acid (PNA) conjugates which are suitable for the treatment of diseases associated with HIV, the peptide nucleic acid (PNA) inhibiting the gene expression of HIV. The conjugates comprises the following constituents: (a) a transport mediator for the cell membrane, (b) an address protein or peptide for importing into the cell nucleus, and (c) a peptide nucleic acid (PNA) which is to be transported, which can be hybridised with an HIV gene, and which inhibits the expression of the HIV gene.
- (57) Zusammenfassung: Beschrieben werden Peptid-Nukleinsäure(PNA)-Konjugate, die zur Therapie von mit HIV in Zusammenhang stehenden Erkrankungen geeignet sind, wobei die Peptid-Nukleinsäure (PNA) die Genexpression von HIV hemmt. Die Konjugate weisen die folgenden Komponenten auf: (a) einen Transportvermittler für die Zellmembran, (b) ein Adressprotein bzw. -peptid für den Import in den Zellkern, und (c) eine zu transportierende, mit einem HIV-Gen hybridisierbare Peptid-Nukleinsäure (PNA), die die Expression des HIV-Gens hemmen kann.

PNA-Konjugat zur Therapie von mit HIV in Zusammenhang stehenden Erkrankungen

Die vorliegende Erfindung betrifft Peptid-Nukleinsäure(PNA)-Konjugate, die zur Therapie von mit HIV in Zusammenhang stehenden Erkrankungen geeignet sind, wobei die Peptid-Nukleinsäure (PNA) die Genexpression von HIV hemmt.

Weltweit schreitet die Inzidenz des "human immunodeficiency virus (HIV) ungeachtet der bisherigen intensiven Forschungsbemühungen zur Entwicklung effektiver Behandlungsverfahren fort. HIV zählt zur lentiviralen Gruppe der Retroviren und ist eines der am intensivsten untersuchten Viren. Der HIV-Infektionszyklus beginnt mit der Bindung viraler Partikel an die Zellmembran der Zielzellen mittels des viralen Hüllproteins gp120/gp41. Zunächst bindet das Virus an das CD4-Protein, danach folgt eine Anbindung an den obligatorischen Korezeptor, wobei es sich um ein Mitglied der Chemokin-Rezeptor-Familie handelt. Hauptziele der HIV-Infektion sind T-Helferzellen und Makrophagen. Dabei durchdringt der virale "Core"-Komplex die Zelle und das Virus integriert in das virale Genom in mehreren Schritten (reverse Transkription, Eintritt in den Zellkern, Integration in die Chromosomen der Wirtszellen als DNA-Doppelstrang). Ab diesem Zeitpunkt ist HIV permanenter Bestandteil des zellulären Genoms und kann als erworbene genetische Erkrankung betrachtet werden. HIV ist in der CD4⁺-Zelle nicht in der Lage zu replizieren und benötigt zur "Initialzündung" seiner Promotoren in der regulatorischen Region (LTR) zelluläre Transkriptionsfaktoren zur Transkription früher regulatorischer mRNAs, die für Tat-, Rev- und Nef-Proteine kodieren. Das Transaktivatorprotein Tat ist in der frühen Phase der HIV-RNA-Synthese von besonderer Bedeutung. Die Tat-Proteinkonzentration korreliert direkt mit der Menge an HIV-RNA. Die Wechselwirkung zwischen Tat und TAR kann auch zu einer stark erhöhten trans-Aktivierung der viralen Genexpression führen, indem die Initiation der Transkription als auch die Elongation induziert werden.

Bisherige Therapieansätze, die eine kausale Behandlung zum Ziel hatten, brachten keinen entscheidenden Durchbruch bei der Bekämpfung von HIV-

PCT/DE02/02564

2

Infektionen. Medikamentöse Therapien waren bisher weder in der Lage, HIV-Infektionen zu stoppen noch hierdurch hervorgerufene Krankheiten zu heilen. Immunologische Strategien, z.B. Impfungen, waren aufgrund der hohen Variabilität der Expressionsmuster der HIV-Virushüllproteine jedoch bisher auch nicht erfolgreich und erscheinen auch weiterhin wenig erfolgversprechend. Ein auf einer molekularen Therapieansatz basiert anderer theoretischer Blockierung über Antisense-RNAs zur viraler Virusinaktivierung, z.B. Nukleinsäuren. Zwar bietet sich gerade bei HIV dieser Therapieansatz an, aber dieser scheint gerade wegen der transienten Kontrolle des HIV-Infektionszyklus und dem bisher kaum bekannten viralen Expressionsmuster sehr problematisch. Auch mit Ribozymen scheint eine HIV-Proliferationskontrolle nur sehr schwer realisierbar, da für eine solche Strategie spezielle geeignete CUG-Sequenzen des Virusgenoms identifiziert werden müssen (da die Ribozyme nur an diesem Sequenzmotiv schneiden), dies erscheint vor allem im Hinblick auf die sehr hohe Mutationsrate von HIV aber als äußerst schwierig.

Bei all den vorstehend diskutierten Vorgehensweisen taucht außerdem das Problem des wirksamen Einschleusens der Antisense- bzw. Ribozym-Moleküle an den Zielort auf. Die bisher dazu verwendeten Vektoren, z.B. Adeno-assoziierte Viren (AAV), weisen zahlreiche Nachteile auf. AAV sind kleine Parvoviren mit Einzelstrang-DNA. Ihr Potential liegt in ihrer Fähigkeit, teilende wie auch nichtteilende Zellen infizieren und sich ins Wirtsgenom integrieren zu können. Der Hauptnachteil liegt jedoch in der mangelnden Synthese ausreichender Mengen und mangelnder Stabilität als Vektor für hämatopoietische Zellen. Auf MLV ("murine leukemia virus") basierende Vektoren wurden ebenfalls in zahlreichen klinischen Studien getestet. Sie scheinen zwar untoxisch und theoretisch als möglicher Carrier für Antisense-Konstrukte geeignet zu sein, weisen jedoch den Nachteil auf, daß im Wirt nur sehr geringe Titer erreicht werden. Schließlich könnten noch auf LV (Lentiviren) basierende Vektoren in Frage kommen, allerdings ist bei diesen der große Nachteil, daß sie nur nicht-proliferierende Zellen infizieren können. Diese Eigenschaft würde zwar die Superinfektion HIVinfizierter Zellen erlauben, aufgrund ihres natürlichen viralen Tropismus sind sie jedoch trotzdem ungeeignet.

WO 03/006065

Somit liegt der vorliegenden Erfindung das technische Problem zugrunde, Mittel bereitzustellen, die eine spezifische und effiziente auf einer Hemmung der Genexpression von HIV basierende Therapie erlauben.

Die Lösung dieses technischen Problems erfolgte durch die Bereitstellung der in den Patentansprüchen gekennzeichneten Ausführungsformen.

Von den Erfindern wurde zur Erzielung der Lösung des technischen Problems ein Konjugat entwickelt, das die folgenden Komponenten umfaßt:

- einen Transportvermittler für die Zellmembran ("P"),
- ein Adressprotein bzw. -peptid ("AP") für den Import in den Zellkern, und
- eine zu transportierende , mit einem HIV-Gen hybridisierbare
 Peptid-Nukleinsäure, die dessen Expression hemmt ("PNA")

Dieses modular aufgebaute Konjugat weist zwei entscheidende Vorteile auf:

- (a) Mittels der Komponenten "P" und "AP" wird ein effizienter und gerichteter Transport der PNA zu dem Zielort und somit eine Gentherapie ermöglicht. Diese Komponenten erlauben nicht nur einen schnellen und effektiven Transport von Makromolekülen wie PNA durch Zellmembranen lebender Zellen ins Zytoplasma, sondern auch, nach zytoplasmatischer Aktivierung von Adresspeptidsequenzen, einen effizienten Transport in den Zellkern.
- (b) Der Einsatz der protease- und nukleaseresistenten Peptid-Nukleinsäuren (PNA), bei denen es sich um Oligonukleotid-Derivate handelt, bei denen das Zuckerphosphat-Rückgrat bevorzugt durch Ethyl-Amin verbundene α-Amino-Ethyl-Glycin-Einheiten substituiert ist, erlaubt aufgrund ihrer physiko-chemischen Eigenschaften unter physiologischen Bedingungen eine stabile und effiziente Blockierung der Transkription des gewünschten Gens. Mit diesen PNAs wird eine auf dem Antisense-Prinzip basierende Anti-Gen-Strategie verfolgt, bei der jedoch nicht die mRNA sondern das Gen selbst, beispielsweise ein virales DNA-Intermediat oder die in genomische DNA des Wirts integrierte virale DNA, das Ziel

ist. Dabei hybridisieren die PNAs über die Bildung einer Triple-Helix an die Ziel-DNA. Der Zielbereich kann einerseits ein transkribierter Bereich der Ziel-DNA sein, andererseits ein regulatorischer Bereich, dessen Blockierung über die PNAs ebenfalls die Transkription hemmt.

Bezüglich Verfahren zur Herstellung der einzelnen Komponenten der Konjugate und zu deren Verknüpfung wird auf die deutsche Patentanmeldung Nr. 199 33 492.7 verwiesen. Die Synthese von PNAs ist dem Fachmann bekannt und z.B. auch in Nielsen et al., Science 254 (1991), 1497-1500, beschrieben.

Der Aufbau des erfindungsgemäßen Konjugats ist vorzugsweise:

ganz bevorzugt mit einem Spacer ("SP"):

Den Transportvermittler für die Zellmembran (vorstehend mit "P" abgekürzt) stellt ein Peptid bzw. Protein dar, das die Plasmamembran überwinden kann. Die Länge dieses Peptids bzw. Proteins unterliegt keiner Beschränkung, solange es die obige Eigenschaft aufweist. Beispiele für "P" stammen vorzugsweise aus der Penetratin-Familie (Derossi et al., Trends Cell Biol. <u>8</u> (1988), S. 84-87) oder sind Transportan bzw. Teile davon (Pooga et al., The Faseb Journal <u>12</u> (1998), S. 68 ff.). wobei solche aus der Penetratin-Familie bevorzugt sind. Ein Beispiel für "P" stellt ein Penetratin mit der folgenden Sequenz dar:

NH2-RQIKIWFQNRRMKWKK-

Hergestellt wird die ausgewählte "P"-Sequenz auf biologischem Weg (Reinigung natürlicher Transportvermittlerproteine oder Klonierung und Expression der Sequenz in einem eukaryotischen oder prokaryotischen Expressionssystem), bevorzugt aber auf synthetischem Weg, z.B. nach dem Merrifield-Verfahren

(Merrifield, J. Am. Chem. Soc. 85 (1963), 2149).

Die Auswahl des Adressproteins bzw. -peptids (vorstehend mit "AP" abgekürzt) kann der Fachmann anhand der bekannten Aminosäuresequenzen für den Import in den Zellkern steuernde Peptide bzw. Polypeptide auswählen. Prinzipiell unterliegt die Länge dieses Adresspeptids bzw. -proteins keiner Beschränkung, solange es die Eigenschaft aufweist, einen zellkernspezifischen Transport zu gewährleisten. Für die Einbringung der PNAs werden im allgemeinen "AP" ausgewählt, die ein zellkernspezifisches Erkennungssignal enthalten und dadurch die PNAs in den Zellkern dirigieren. Grundsätzlich ist für den Transport in den Zellkern die reine Adressequenz ausreichend. Es können aber auch "AP" ausgewählt werden, die über eine zellkernspezifische Peptidasespaltstelle verfügen. Diese Spaltstelle liegt im günstigsten Fall innerhalb der Signalsequenz, kann aber auch an diese durch zusätzliche Aminosäuren angefügt werden, um nach Erreichen des Zellkerns das Abspalten der Adresseguenz sicherzustellen. Hergestellt wird die ausgewählte "AP"-Sequenz auf biologischem (Reinigung natürlicher Transportvermittlerproteine oder Klonierung und Expression der Sequenz in einem eukaryontischen oder prokaryontischen Expressionssystem), bevorzugt aber auf synthetischem Weg, z.B. nach dem Merrifield-Verfahren (Merrifield, J. Am. Chem. Soc. 85 (1963), 2149). Beispiele für geeignete Adressproteine bzw. -peptide sind:

-Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val; und H₃N⁺-Pro-Lys-Lys-Lys-Arg-Lys-Val-(= "Nuclear localisation sequence" aus SV40-T-Antigen)

Weiter kann das Konjugat ggf. einen Spacer (vorstehend mit "SP" abgekürzt) enthalten, der sich vorzugsweise zwischen dem Adressprotein/-peptid und der zu transportierenden Peptid-Nukleinsäure (PNA) befindet. Er kann aber zusätzlich oder alternativ auch zwischen dem Transportvermittler und dem Adressprotein vorliegen. Der Spacer dient dazu, ggf. vorhandene sterische Wechselwirkungen zwischen den Komponenten aufzuheben bzw. günstig zu beeinflussen. Der Spacer kann beispielsweise ausgewählt sein aus: Glycin, Polylysin,

Polyethylenglykol (PEG), Derivate der Poly-Methacrylsäure oder Polyvinylpyrrolidon (PVP).

Zwischen dem Transportvermittler und dem Adressprotein/-peptid ist vorzugsweise eine Redoxspaltstelle, z.B. -Cystein-S-S-Cystein-O-N-H-. Die zwischen Transportvermittler und Adressprotein entstehende Bindung ist eine Redoxkopplung (schonende zellimmanente Verknüpfung mittels DMSO; Rietsch und Beckwith, Annu. Rev. Genet. 32 (1998), 163-84):

Die Peptid-Nukleinsäure (PNA) erlaubt die Hemmung der Transkription von für HIV essentiellen Genen, z.B. dadurch, daß sie mit einem Bereich eines Gens hybridisiert, der transkribiert wird, oder einem regulatorischen Bereich, d.h. einem Bereich, der für die Aktivierung der Expression eines bestimmten Gens bzw. bestimmter Gene verantwortlich ist. Geeignete Gene bzw. geeignete Bereiche können vom Fachmann anhand der bisher bekannten Gene von HIV bzw. deren Funktion identifiziert werden. Vorzugsweise weisen die Peptid-Nukleinsäuren eine Länge von mindestens 18 Basen auf, besonders bevorzugt sind Peptid-Nukleinsäuren mit einer Länge von mindestens 20 Basen. Die Peptid-Nukleinsäure kann ggf. auch markiert sein, z.B. radioaktiv (z.B. mit einem alpha-, beta- oder gamma-Strahler gekoppelt), mit einem Farbstoff, mit Biotin/Avidin usw.

Die Synthese der Konjugatbestandteile "P" und "AP" erfolgt vorzugsweise synthetisch nach dem Merrifield-Verfahren (Merrifield, J. Am. Chem. Soc. <u>85</u> (1963), 2149) Die Ankopplung der anderen Bestandteile (z.B. Spacer und/oder PNA) daran erfolgt durch kovalente chemische Bindung. Die Einfügung der Redoxspaltstelle zwischen "P" und "AP" erfolgt auf chemischen Wege durch die oben erwähnte Redoxkopplung. Auch zwischen einem ggf. vorhandenen Spacer und der PNA bzw. dem Adressprotein und der PNA liegt eine kovalente Bindung vor, bevorzugt eine Säureamid-Bindung. Mögliche Alternativen sind Ether- oder Ester-Bindungen, je nach den in der zu konjugierenden Substanz vorhandenen funktionellen Gruppe(n).

WO 03/006065

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Konjugats hybridisiert die Peptid-Nukleinsäure (PNA) mit dem HIV-tat-Gen oder HIV-rev-Gen. Basierend auf dem speziellen viralen Zyklus von HIV stellen die tatund rev-Gene zwei bevorzugte molekulare Ziele für eine Anti-HIV-Therapie dar.
Die Produkte beider Gene agieren als essentielle Regulatorproteine zur *trans*Aktivierung der HIV-Genexpression, indem sie an HIV-mRNA binden. Tat bindet an TAR ("trans-activating-response-element"), nahe dem 5'-Ende der HIV-RNA und Rev interagiert mit RRE("Rev-responsive-element") des env-Gens.

Die genomische Organisation von HIV-1 ist in Fig. 1 gezeigt.

Die für HIV-1 codierenden Sequenzen sind in Ratner et al., Nature 313, S. 277-284 (1985) veröffentlicht.

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Konjugats hybridisieren die PNAs mit Sequenzen der LTR-Region von HIV-1 (Fig. 2). Vorteilhafte PNAs umfassen die nachfolgenden Sequenzen:

TTATTTCCTCTTTTGTTG

ATTAC*TAC*GTC*TC*C*GTT

TATC*GGTTTTTAAC*GTC*C*C*

TC*C*TTTTC*C*C*C*GAC*AAC*C*TTTAC*

C* = Pseudo-Isocytosin

Die Verwendung von Pseudo-Isocytosin hat den Vorteil, daß eine pH-unabhängige Hybridisierung möglich ist.

In einer weiteren bevorzugten Ausführungsform richten sich die PNAs gegen den Polypurin-Tract, zentralen DNA-Flap, Nef oder NCp7 (Vpr, Vpu) [s. Fig. 7]. Hierzu wurden von den Erfindern verschiedene Experimente durchgeführt, die in den Fig. 9 bis 13 gezeigt sind.

Bevorzugte PNAs gegen die vorstehend genannten Bereiche sind:

Sequenzen HIV-1 (es wird hier auf die Fig. 7-13 Bezug genommen)

Abkürzungen:

L = Linker;

J = Pseudoisocytosin oder Cytosin

Für HIV:

c-PPT und 3'-PPT 4821-36 / 9116-31 (allg. Sequenz):

PNA I

(Polypurintrakt)

N- TCC CCC CTT TTC TTT T-L-TTT TJT T

c-PPT target:

DNA (+) or RNA 4821-39

N- CA ATC CCC CCT TTT CTT T-L-TT TJT TT

PNA Ia
1) nbIaNLS+
2) nbIaNLS-

N- CA ATC CCC CCT TTT CTT T (dieselbe Sequenz ohne Linker-Teil

PNA Ib
3) nbIbNLS+
4) nbIbNLS-

DNA (-) 4800-20

N- GTA TTC ATC CAC AAT TTT

PNA II
5) nbIIaNLS+
6) nbIIbNLS-

DNA (+) 4800-20

N-AAA TTG TGG ATG AAT ACT

PNA III
7) nbIIIaNLS+
8) nbIIIbNLS-

Flap:

PNA IV

DNA (-) 4861-80

N- TAG TAG ACA TAA TAG CAA

PNA IVa
9) nbIVaNLS-

Eine andere DNA (-) zwischen c-PPT and Tar, um die Länge des "Flap" zu verkürzen:

DNA (+) 4841-60

WO 03/006065

PCT/DE02/02564

9

N- TCC CCT GCA CTG TAC CCC

PNA IVb
10) nbVbNLS-

Nef: PNA V

DNA (-) 9095-9115

N-AGA TCT TAG CCA CTT TTT-C

PNA Va
11) nbVaNLS+

9136-56

N-GGC TAA TTC ACT CCC AAC-C PNA Vb
12) nbVbNLS+

IN site (3') 9746-66:

N- TAG AGA TTT TCC ACA CTG

PNA Vc

13) nbVcNLS+

Seq is gerichtet gegen den Start von gag:

N- cac cca tct ctc tcc ttc (kein Linker)

PNA VI

14) nbVINLS-

splice acceptor site:

N-jtt jtt-L-ttc ttc ctg cca tag

PNA VII

15) nbXNLS+

16) nbXNLS-

TAR:

N-cag gct caa atc tgg tct-L-tjt PNA VII

17) nbXNLS-

NCp7: PNA VIII

N-ATT ACT ACG TCT CTC CGT (nicht getestet) 18)smVIIIaNLS+

N-TAT CGG TTT TTA ACG TCC 19)smVIIIaNLS+

N T TTT JJT- linker -TCC TTT TCC CCG ACA ACC 20)smVIIIc NLS+

Random Sequenz als Kontrolle : PNA IX

N-CAT ACT TGA CTC GTT ATC-C 21) IX NLS-

N-CAT ACT TGA CTC GTT ATC-C 22) IX NLS+

BDV PNA: (diese Sequenz wurde für das BDV spreading getestet; Fig. 8)

N- TCC CTA CGC CGC CTT CTC-C terminus

In einer weiteren bevorzugten Ausführungsform richten sich die PNAs (z.B. PNA VI oben) gegen die virale RNA, wobei das molekulare Target die Gag-Splice-Akzeptorstelle darstellt.

Die vorliegende Erfindung betrifft schließlich auch ein erfindungsgemäßes Konjugat, gegebenenfalls zusammen mit einem geeigneten Träger, enthaltendes Arzneimittel sowie dessen Verwendung zur HIV-Therapie. Als geeignet hat sich dabei insbesondere die parenterale oder intravenöse Applikation herausgestellt.

Die Erfindung wird weiter anhand der Figuren beschrieben, welche zeigen:

Fig. 1:	genomische Organisation von HIV-1
Fig. 2:	Sequenzen der LTR-Region von HIV-1
Fig. 3:	Plasmid-Karte von pEGFP-C3
Fig. 4:	Virale Angriffsorte der Pseudo-Isocytosin enthaltenden PNAs
Fig. 5:	CLSM-Aufnahmen (Nicht aktivierte Kontrolle in HeLa)
Fig. 6:	CLSM-Aufnahmen (Nach Aktivierung in HeLa)
Fig. 7:	PNA-"Targets"
Fig. 8:	Untersuchung von BDV (Borna disease virus; retrovirus) anstatt von
	HIV zum Beweis, daß auch andere Retroviren durch PNA-
	Konstrukte inhibierbar sind
Fig. 9:	Effizienz von PNA in der frühen Phase viraler Infektion
	Der biologische Effekt wurde gemessen durch Transaktivierung
	eines Reporter-Genkonstrukts (LacZ)
Fig. 10:	Ergebnisse des Reporter-Genassays nach Behandlung mit

- verschiedenen PNAs. Signifikante Ergebnisse wurden mit PNAs gegen cPPT (Polypurin-Tract) gesehen

 Fig. 11: Verwendung von PNAs in der frühen und späten Phase viraler
- Infektion; Testung durch ELISA gegen p24 Virenprotein.

 Verschiedene PNAs gegen cPPT/Flap/Nef/gag/Random waren fähig,
 das virale p24 drastisch zu reduzieren
- Fig. 12: Reporter-Genassay mit anti-FLAP PNA kombiniert mit anderen PNAs. Die Kombination von PNA[IV b] + PNA [IIINLS] + PNA [V b]

(500 nM Konzentration) resultierte in optimaler ß-Gal Reduktion.

Fig. 13: Chronisch HIV infizierte Zellen wurden nach PNA Behandlung durch viralen p24 ELISA untersucht (72 und 144 Std. nach PNA-Applikation). Der beste Effekt wurde bei cPPT (Polypurin-Trakt) durch PNA [IINLS] erhalten.

Die Erfindung wird weiter anhand der nachfolgenden Beispiele beschrieben.

Beispiel 1

Der HIV-1 "long terminal repeat" (LTR) codiert für den Transkriptionspromotor. Sequenzanalysen belegen die Existenz einer einzigen LTR Enhancer-Promotor Konfiguration für sämtliche bisher untersuchten HIV-1 Subtypen. Transkriptionsstudien mit EGF-Reporter-Konstrukten zeigen seine Funktionalität.

LTR-EGF-Konstrukt:

Basierend auf Biocomputing Daten wurden mit dem HUSAR-Progamm des DKFZ, dem SRS (Sequence Retrieval System) und dem multiplen Alignement-Algorithmus (MALIGN) repräsentativ die Sequenz AC S72615, die den HIV-Subtyp HIV4B6 betrifft, ausgewählt (Shiramizu et al., Cancer Res. 54, S. 2069-2072 (1994)).

HIV4B6-LTR:

CCAATAAAGG AGAAAACAAC TGCTTGTTAC ACCC₍₋₁₈₎TATAAG CCAGCATAAA GC₍₊₁₎**ATG** GA

Das Ase I (8/-52)-Nhe I (64/+1)-LTR-Fragment wurde gemäß dem bekannten Phosphoramidit-Verfahren synthetisiert und in eine pEGFP-C3/Variante (ohne PCMV) (Fig. 3) (Fa. Clontech, Heidelberg) einkloniert.

Einkloniertes Fragment:

3'-₍₋₅₂₎CC<mark>AATAAAGG AGAAAACAAC</mark> TGCCTTGTTAC ACCC₍₋₁₈₎TATAAG CCAGCATAAA GC-5'

Als nächstes wurde die Plasmid-DNA in E.coli in LB-Amp-Kulturmedium unter Ampicillin-Selektionsdruck vermehrt. Die Isolation und Aufbereitung der Plasmid-DNA wurde mit dem Mini-Prep-DNA Kit (Fa. Clontech) gemäß Herstellerangaben durchgeführt.

Zellkultur und Transfektions-Assay:

Verwendet wurde die humane Cervix-Karzinom Suspensions-Zellinie HeLa-S (Tumorbank DKFZ). Die Zellen wurden in MEM"Joklik" (Minimal Essential Medium; Fa. Sigma) mit 10% FCS (Fa. Sigma), Glutamin (Fa. Gibco) in einer CO₂ Atmosphäre bei 37°C kultiviert.

Es wurde folgendes "Shuttle-Konstrukt" hergestellt:

RQQIKIWFQNRRMKWKK-SS-PKKKEKV-GG-GK-TTA TTT CCT CCT TTG TTG

Dieses Konstrukt wurde nach dem Protokoll von Britten und Kohne (Science, Vol. 161, No. 3841, S. 529-540, 1986) in die HeLa-Zellen transfiziert. Die Transfektion der HeLa-S erfolgt durch direkte Zugabe des "Shuttle-Konstrukts" in das Kulturmedium, in einer Konzentration von 100 pM, über 3 Stunden bei 37°C unter Inkubation in 5% CO2-Atmosphäre. Danach erfolgte die Hybridisierung mit dem LTR-EGF-Konstrukt anlog dem oben erwähnten Britten und Kohne-Protokoll. Dabei entsteht folgender "Komplex":

Die Kultivierung der HeLa-S Zellen erfolgt in 8-Kammer Glasplatten in Petrischalen unter 5% CO2 bei 37°C über 48 Stunden.

Zur Aktivierung des Plasmids ist es notwendig, das "Shuttle-System" von der Plasmid-DNA zu trennen. Hierzu werden die Platten über 1 Minute auf 45°C im Wasserbad erhitzt. Nach Mediumwechsel werden die HeLa-S-Zellen weiterkultiviert. Die Transkriptionsbestimmung von GFP unter LTR-Kontrolle erfolgt mittels Fluoreszenz-Reader-Analyse nach 48, 72 und 96 Stunden (Anregung: 488 nm; Emission: 520 nm). Die Lokalisierung des GFP mittels konfokaler Laser Scanning Mikroskopie (CLSM) erfolgt analog, jedoch in 8-Kammer-Glasplatten in Petrischalen unter 5% CO₂ bei 37°C über 48, 72 und 96 Stunden (Anregung: 488 nm; Emission: 520 nm). Die Ergebnisse sind in Fig. 5 und 6 gezeigt.

Beispiel 2

Hier ist eine Methode beschrieben, die erlaubt, einen PNA Effekt in einer frühen Infektionsphase von HIV-1 zu bestimmen. Es wird hier Bezug auf die Fig. 9-11 genommen.

Als Modell wurden HeLa Zellen verwendet, die mit einem stabil exprimierten LacZ Reportergen transfiziert wurden. Durchgeführt wurde der Test in einem 96-Wellplate. HeLa Zellen werden in RPMI Medium suspendiert und ausplattiert. Die Zellzahl war 20000 Zellen pro Well. Das Pipettiervolumen beträgt 100 µl/Well. Getestet wurden 18 unterschiedliche PNA-Sequenzen (s. Fig. 10) plus eine Kontrolle (X = weitere virale Kontrolle (z.B. BDV)). Die PNA-Konstrukt-Konzentration waren 10 pM, 100 pM und 1 nM. Die PNA-Konstrukte waren analog Beispiel 1 hergestellt. Nach einer Stunde erfolgte dann die virale Infektion. Der virale Effekt auf den LTR Promotor wurde über die LacZ Aktivität mittels

Photometer ermittelt.

Patentansprüche

- Konjugat zur Vermittlung eines zellkernspezifischen Transports einer an ein transkribiertes oder ein an der Regulation der Genexpression beteiligtes HIV-Gen oder einen Teil davon hybridisierbaren Peptid-Nukleinsäure (PNA), wobei das Konjugat die folgenden Komponenten aufweist:
 - einen Transportvermittler für die Zellmembran,
 - ein Adressprotein bzw. -peptid f

 ür den Import in den Zellkern, und
 - eine zu transportierende, mit einem HIV-Gen hybridisierbare Peptid-Nukleinsäure (PNA).
- 2. Konjugat nach Anspruch 1, wobei der Transportvermittler ein Peptid oder Protein ist, das die Plasmamembran überwinden kann.
- 3. Konjugat nach Anspruch 1 oder 2, wobei der Transportvermittler aus der Penetratin-Familie stammt oder Transportan oder Teile davon ist.
- 4. Konjugat nach Anspruch 3, wobei eines der Penetratine folgende Sequenz hat:

NH2-RQIKIWFQNRRMKWKK-

Konjugat nach einem der Ansprüche 1 bis 4, wobei das Adressprotein bzw.-peptid ausgewählt ist aus:

-Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val,; und H₃N⁺-Pro-Lys-Lys-Lys-Arg-Lys-Val-(= Nuclear localisation sequence aus SV40-T-Antigen)

6. Konjugat nach einem der Ansprüche 1 bis 5, wobei das Konjugat folgenden Aufbau hat:

Transportvermittler - Adressprotein - Peptid-Nukleinsäure (PNA)

- 7. Konjugat nach einem der Ansprüche 1 bis 6, wobei ggf. weiter ein Spacer vorhanden ist.
- 8. Konjugat nach Anspruch 7, wobei sich der Spacer zwischen dem Adressprotein und der Peptid-Nukleinsäure (PNA) befindet.
- Konjugat nach Anspruch 7 oder 8, wobei der Spacer Polylysin,
 Polyethylenglykol oder Polyvinylpyrrolidon ist.
- 10. Konjugat nach einem der Ansprüche 1 bis 9, wobei die Peptid-Nukleinsäure mit dem HIV-tat-Gen oder HIV-rev-Gen oder einem Teil davon hybridisiert.
- 11. Konjugat nach Anspruch 10, wobei die Peptid-Nukleinsäure eine Sequenz ausgewählt aus der folgenden Gruppe umfaßt:

TTATTTCCTCTTTTGTTG

ATTAC*TAC*GTC*TC*TC*C*GTT

TATC*GGTTTTTAAC*GTC*C*C*

TC*C*TTTTC*C*C*C*GAC*AAC*C*TTTAC*

(mit: C* = Pseudo-Isocytosin)

- 12. Konjugat nach einem der Ansprüche 1 bis 9, wobei die Peptid-Nukleinsäure gegen den Polypurin-Tract, zentralen DNA-Flap, Nef, NCp7; oder die Gag-Splicestelle auf RNA-Ebene gerichtet ist.
- 13. Arzneimittel, ein Konjugat nach einem der Ansprüche 1 bis 12 enthaltend.
- 14. Verwendung eines Konjugats nach einem der Ansprüche 1 bis 12 zur HIV-Therapie.

LTR-Kontrollregion, Genom, Genlocus, Protein und Funktionen

1/13

WO 03/006065 PCT/DE02/02564

2/13 Locus HIVHXB2CG 9719 bp ss-DEFINITION Human immunodeficiency virus type 1 (HXB2), complete genome; HIV1/HTLV-III/LAV reference genome. ACCESSION K03455 M38432 VERSION K03455.1 GI:1906382 TAR protein; acquired immune deficiency syndrome; complete enome; env KEYWORDS protein; gag protein; long terminal repeat (LTR); pol protein; polyprotein; proviral gene; reverse transcriptase; transactivator. SOURCE Human immunodeficiency virus type 1. **FEATURES** Location/Qualifiers 1..9719 source /organism="Human immunodeficiency virus type 1" /db_xref="taxon:11676" /note="HTLV-III/LAV" LTR 1..634 /note="5' LTR" 454..551 repeat_region /note="R repeat 5' copy" mRNA 455..9635 /note="HXB2 genomic mRNA" prim_transcript 455..9635 /note="tat, trs, 27K subgenomic mRNA" intron 744..5777 /note="tat, trs, 27K mRNA intron 1" CDS 790.,2292 BASE COUNT 3411 a 1772 c 2373 g 2163 t ORIGIN TGGAAGGGCT AATTCACTCC CAACGAAGAC AAGATATCCT TGATCTGTGG ATCTACCACA 60 CACAAGGCTA CTTCCCTGAT TAGCAGAACT ACACACCAGG GCCAGGGATC AGATATCCAC 120 TGACCTTTGG ATGGTGCTAC AAGCTAGTAC CAGTTGAGCC AGAGAAGTTA GAAGAAGCCA 180 ACAAAGGAGA GAACACCAGC TTGTTACACC CTGTGAGCCT GCATGGAATG GATGACCCGG AGAGAGAAGT GTTAGAGTGG AGGTTTGACA GCCGCCTAGC ATTTCATCAC ATGGCCCGAG 240 300 AGCTGCATCC GGAGTACTTC AAGAACTGCT GACATCGAGC TTGCTACAAG GGACTTTCCG 360 CTGGGGACTT TCCAGGGAGG CGTGGCCTGG GCGGGACTGG GGAGTGGCGA GCCCTCAGAT 420 CCTGCATATA AGCAGCTGCT TTTTGCCTGT ACTGGGTCTC TCTGGTTAGA CCAGATCTGA 480 GCCTGGGAGC TCTCTGGCTA ACTAGGGAAC CCACTGCTTA AGCCTCAATA AAGCTTGCCT 540 TGAGTGCTTC AAGTAGTGTG TGCCCGTCTG TTGTGTGACT CTGGTAACTA GAGATCCCTC 600 AGACCCTTTT AGTCAGTGTG GAAAATCTCT AGCAGTGGCG CCCGAACAGG GACCTGAAAG 660 CGAAAGGGAA ACCAGAGGAG CTCTCTCGAC GCAGGACTCG GCTTGCTGAA GCGCGCACGG 720 CAAGAGGCGA GGGGCGGCGA CTGGTGAGTA CGCCAAAAAT TTTGACTAGC GGAGGCTAGA 780 AGGAGAGAGA TGGGTGCGAG AGCGTCAGTA TTAAGCGGGG GAGAATTAGA TCGATGGGAA 840 AAAATTCGGT TAAGGCCAGG GGGAAAGAAA AAATATAAAT TAAAACATAT AGTATGGGCA AGCAGGGAGC TAGAACGATT CGCAGTTAAT CCTGGCCTGT TAGAAACATC AGAAGGCTGT 900 960 AGACAAATAC TGGGACAGCT ACAACCATCC CTTCAGACAG GATCAGAAGA ACTTAGATCA 1020 TTATATAATA CAGTAGCAAC CCTCTATTGT GTGCATCAAA GGATAGAGAT AAAAGACACC 1080 1140 GCAGCAGCTG ACACAGGACA CAGCAATCAG GTCAGCCAAA ATTACCCTAT AGTGCAGAAC 1200 ATCCAGGGGC AAATGGTACA TCAGGCCATA TCACCTAGAA CTTTAAATGC ATGGGTAAAA 1260 GTAGTAGAAG AGAAGGCTTT CAGCCCAGAA GTGATACCCA TGTTTTCAGC ATTATCAGAA 1320 GGAGCCACCC CACAAGATTT AAACACCATG CTAAACACAG TGGGGGGACA TCAAGCAGCC 1380 ATGCAAATGT TAAAAGAGAC CATCAATGAG GAAGCTGCAG AATGGGATAG AGTGCATCCA 1440 GTGCATGCAG GGCCTATTGC ACCAGGCCAG ATGAGAGAAC CAAGGGGAAG TGACATAGCA 1500 GGAACTACTA GTACCCTTCA GGAACAAATA GGATGGATGA CAAATAATCC ACCTATCCCA 1560 GTAGGAGAAA TTTATAAAAG ATGGATAATC CTGGGATTAA ATAAAATAGT AAGAATGTAT 1620 AGCCCTACCA GCATTCTGGA CATAAGACAA GGACCAAAGG AACCCTTTAG AGACTATGTA 1680 GACCGGTTCT ATAAAACTCT AAGAGCCGAG CAAGCTTCAC AGGAGGTAAA AAATTGGATG 1740 ACAGAAACCT TGTTGGTCCA AAATGCGAAC CCAGATTGTA AGACTATTT AAAAGCATTG 1800 GGACCAGCGG CTACACTAGA AGAAATGATG ACAGCATGTC AGGGAGTAGG AGGACCCGGC 1860 CATAAGGCAA GAGTTTTGGC TGAAGCAATG AGCCAAGTAA CAAATTCAGC TACCATAATG 1920 ATGCAGAGAG GCAATTTTAG GAACCAAAGA AAGATTGTTA AGTGTTTCAA TTGTGGCAAA 1980 GAAGGCCACA CAGCCAGAAA TTGCAGGGCC CCTAGGAAAA AGGGCTGTTG GAAATGTGGA 2040 AAGGAAGGAC ACCAAATGAA AGATTGTACT GAGAGACAGG CTAATTTTTT AGGGAAGATC. 2100 TGGCCTTCCT ACAAGGGAAG GCCAGGGAAT TTTCTTCAGA GCAGACCAGA GCCAACAGCC 2160 CCACCAGAAG AGAGCTTCAG GTCTGGGGTA GAGACAACAA CTCCCCCTCA GAAGCAGGAG 2220

2280

2340

2400

2460

CCGATAGACA AGGAACTGTA TCCTTTAACT TCCCTCAGGT CACTCTTTGG CAACGACCCC

TCGTCACAAT AAAGATAGGG GGGCAACTAA AGGAAGCTCT ATTAGATACA GGAGCAGATG

ATACAGTATT AGAAGAAATG AGTTTGCCAG GAAGATGGAA ACCAAAAATG ATAGGGGGAA

TTGGAGGTTT TATCAAAGTA AGACAGTATG ATCAGATACT CATAGAAATC TGTGGACATA

WO 03/006065

3/13

Fig. 3

HIUU70276	G-CCTGGCCATAAAGCAAGAATTTTGGCTGAGGCAATGAGCC
HIUU70291	CATGTCGGGGAGTGGGAGGACCTAGCCACAAAGCCAGAGTGTTGGCTGAGGCAATGAGCC
HIUU70281	CATGTCASGGAGTGGG-GGACCCGGCCATAAAGCAAGAGTTTTGGCTGAAGCAATGAGCC
HIVU70290	CATAANGCAAGAGTTTTGGCTGAAGCAATGAGCC
HÍUU70292	AGTGGGAGGMCCCGGCCAMAAAGCAAGGGTTTTGGCGGAAGCAATGAGCC
HIVU70292	AGTGGGAGGMCCCGGCCAMAAAGCAAGGGTTTTGGCGGAAGCAATGAGCC
	THR (I)
	· · · · · · · · · · · · · · · · · · ·
HIUU70276	AGGTAACAAATACRGCTGTAATGATGCAGCGAAACAACTTTAAGGGTCAAAGAAA
HIUU70291	AAGCAAATAATACAAACATAATGATGCAGAGAAACAACTTTAAAGGC-CCTAA-AAG
HIUU70281	AAGTAACACCACCAGCTAACATAATGATGCAGAGAGGCAATTTTAGGAACCAAAGAAA
HIVU70290	AAGTAACACCAGCTACCATAATGATGCAGAGAGGCAATTTTAGGAACCAAAGAAA
HIUU70292	AAGTAACAAATTCACCTGCCATAATGATGCAGAGAGGCAATTTTAGGAACCAAAGAAA
HIVU70292	AAGTAACAAATTCACCTGCCA <u>TAATGATGCAGAGAGGCAA</u> TTTTAGGAACCAAAGAAA
	TNA ②
	<u> </u>
HIUU70276	AATTATTAAATGTTTCAACTGTGGCANGGAGGGACACTTAGCAAAAAATTGCAGGCCCCC
HIUU70291	AATTATTAAATGTTTCAACTGTGGCAAGGAAGGGCACTTAGCCAGAAATTGCAGGCCCCC
HIUU70281	GACTGTTAAGTGTTTCAATTGTNNNDAAGAAGGGCAYATAGCCAAAAATTGCAGGCCCC
HIVU70290	GACTGTTAAGTGTTTCAATTGBBBVAAAGAAGGGCACATAGCCAAAAATTGCAGGCCCC
HIUU70292	AACTGTTAAGTGTTTCAATTGTGGCAAAGAAGGGCACATAGCCAAAAATTGCAGGCCCC
HIVU70292	AACTGTTAAGTGTTTCAATTGTGGCAAAGAAGGGCA <u>AATAGCCAAAAATTGCAGGG</u> CCCC
	PMK 3
HIUU70276	TAGGDDGDGGGTTGTTGGAAATGTAA
HIUU70291	TAGGAAAAAAGGCTGTTGGAAATGTGGAAAGGAAGGAC
HIUU70281	TAGGAADAAGGCTGTTGGAAATGT
HIVU70290	TAGGAAAAAGGGCTGTTGGAAATGTGGTAGGGAAGGACAC
HIUU70290	TAGGAAAAGGGCTGTTGGAAATGTGGTAGGGAAGGACAC
HIVU70292	TAGGAAAAGGGCTGTTGGAAATGTGGHAAGGAAGGAM

- ① ATTAC*TAC*GTC*TC*C*GTT
- (2) TATC*GGTTTTTAAC*GTC*C*C*
- TC*C*TTTTC*C*C*GAC*AAC*C*TTTAC*

LTR-EGFP Reportergen Nicht aktivierte Kontrolle in HeLa

Excit.: 488 nm Em.: 520 nm

Nukleus: DAPI Färbung

CLSM

LTR-EGFP Reportergen Nach Aktivierung in HeLa

Excit.: 488 nm Em.: 520 nm

Nukleus: DAPI Färbung

CLSM

7/13

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant

documents submitted by the applicant.
Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:
IMACES ARE REST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)