Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №6

Подгонка кривых.

 $ext{Cанкт-} \Pi$ етербург 2023

Содержание

1.	Под	Подгонка кривых						
	1.1.	Цель работы						
	1.2.	Программа работы						
	1.3.	Результаты работы						
		1.3.1. Протокол испытаний						
	1.4.	Сравнение кривых, отобранных по Adjusted R-Square						
	1.5.	Вывол						

1. Подгонка кривых

1.1. Цель работы

Целью работы является освоение методики получения адекватного аналитического описания зависимости Y=f(X), по данным, содержащим случайные погрешности. Наиболее совершенным программным средством для решения данной задачи является пакет программ MATLAB. MATLAB является средой разработки программ обработки данных и, одновременно, содержит большое количество готовых программ, в частности, программу подгонки кривых Curve Fitting.

1.2. Программа работы

- 1. Загрузить данные из папки соответствующие варианту (censu5.mat).
- 2. Провести визуальный отбор кривых, которые потенциально могли бы использоваться для аналитического описания заданной зависимости. Внести результаты измерений в протокол.
- 3. Среди отобранных визуально кривых выделить в каждом классе кривых кривые с максимальным значением adjusted R-square.
- 4. Среди кривых, отобранных на шаге 3, выделить кривые с самым простым аналитическим описанием.

1.3. Результаты работы

1.3.1. Протокол испытаний

В данной работе выполнялась подгонка кривых для данных, представленных в файле censu5.mat. Кривые, прошедшие этап визуального отбора выделены желтым. Лучшие в каждом классе кривые, выбранные по значению Adjusted R-square, обозначены зеленым цветом.

Вид модели	Порядок модели	Качество подгонки (+ / -	Диапазон погрешностей	R-square	Adjusted R-square	RMSE
Полиномиальная	1	-	-1220 0.8496		0.8417	10,33
	2	+	-3.13.1	0.9962	0.9958	1.677
	3	+	-0.0240.021	1	1	0.01424
	4	+	-0.0280.026	1	1	0.01411
	5	+	-0.0290.026	1	1	0.01456
Фурье	1	+	-3.13.1	0.9962	0.9956	1.726
	2	+	-0.0280.024	1	1	0.01456
	3	+	-0.0280.024	1	1	0.01545
	4	+	-0.0280.024	1	1	0.01661
	5	+	-0.0210.011	1	1	0.01167
Экспоненциальная	1	+	-43	0.9918	0.9914	2.406
	2	-	-189.6	0.949	0.9399	6.365
Гауссиан	1	+	-0.510.51	0.9998	0.9998	0.3695
	2	+	-0.510.51	0.9998	0.9998	0.4047
	3	+	-0.11 0.21	1	1	0.08463
	4	+	-0.04 0.09	1	1	0.04247
	5	+	-0.09 0.17	1	1	0.1007
Показательная (power)	1	+	-0.180.53	0.9999	0.9999	0.3027
	2	-	-0.022 0.022	1	1	0.01404

Вид модели	Порядок модели	Качество подгонки	Диапазон погрешностей	R-square	Adjusted R-square	RMSE
Рациональная	1/1	-	-1216	0.8496	0.8329	10.62
	1/2	+	-2.8 4.1	0.9927	0.9914	2.406
	1/3	-	-0.5 82	-0.796	-1.245	38.92
	1/4	-	0 82	-0.851	-1.468	40.8
	1/5	-	0 82	-0.8513	-1.645	42.24
	2/1	+	-3.13.1	0.9962	0.9956	1.726
	2/2	+	-0.0370.069	0.998	0.998	0,4062
	2/3	-	-1868	-0.1224	-0.4965	31.77
	2/4	-	-180	-0.8109	-1.587	41.78
	2/5	+	-182	-0.8269	-1.811	43.54
	3/1	-	-33	0.9965	0.9957	1.71
	3/2	+	-2,54.2	0.9914	0.9885	2.788
	3/3	+	-0.230.15	1	1	0.1309
	3/4	-	-1870	-0.1283	-0.7358	34.22
	3/5	-	-2 82	-0.7751	-1.958	44.67
	4/1	+	-0.0290.029	1	1	0.01457
	4/2	-	-0.0220.022	1	1	0.01658
	4/3	+	-0.0420.058	1	1	0.03386
	4/4	+	-0.0470.062	0.9998	0.9997	0.4852
	4/5	-	-0.070.069	1	1	0.06278
	5/1	+	-0.0280.028	1	1	0.01478
	5/2	+	-0.0250.025	1	1	0.01819
	5/3	+	-0.0270.025	1	1	0.01468
	5/4	+	-0.110.026	1	1	0.1221
	5/5	-	-0.0440.023	1	1	0.02616

1.4. Сравнение кривых, отобранных по Adjusted R-Square

Ниже приведены лучшие визуально отобранные кривые по виду модели.

Рисунок 1.1. Полимиальная 3 порядка

Рисунок 1.2. Фурье 2 порядка

Рисунок 1.3. Экспоненциальная 2 порядка

Рисунок 1.4. Гауссовская модель 3 порядка

Рисунок 1.5. Показательная модель 2 порядка

Рисунок 1.6. Рациональная модель 4/2 порядка

В качестве окончательной выбрана полиномиальная зависимость 3 порядка, как наиболее простая и более подходящая для дальнейшего численного анализа.

1.5. Вывод

Из анализа данных таблицы и визуального анализа понятно, что при достаточно высоком порядке для описания данных можно использовать любую зависимость.

Итоговый выбор модели зависит от данных (отклонения и точности). В принципе можно использовать любое аналитическое описание (в зависимости от порядка) и получить максимально похожую модель.

Поэтому была выбрана полиномиальная зависимость 3 порядка (2 порядка не подходит), поскольку она больше всего подходит для дальнейшего численного анализа в силу своей простоты.