1 Постановка задачи

Рассмотрим куб $[0,a]^d$ в \mathbb{R}^d , $d\geqslant 1$, где a — положительный параметр, который мы будем устремлять к бесконечности. И рассмотрим случайный набор шаров с центрами в кубе. Этот набор определим так: пусть центры шаров ξ_i — случайные величины, распределенные равномерно в $[0,a]^d$, радиусы R_i — некоторые неотрицательные случайные величины, а количество шаров N — пуассоновская случайная величина с параметром $\lambda>1$.

Обозначим через $B(\xi_i, R_i)$ шар с центром в ξ_i радиуса R_i (пока что мы не фиксируем метрику в \mathbb{R}^d). Мы будем рассматривать "картинку", образованную этим наборов шаров:

$$S_a = \bigcup_{i=1}^{N} B(\xi_i, R_i) \cap [0, a]^d.$$

Назовем минимальным числом видимых на картинке шаров такую величину:

$$K_a = \min\{r \geqslant 1 | \exists i_1, \dots, i_r \subset \{1, \dots, N\} : S_a = \bigcup_{l=1}^r B(\xi_{i_l}, R_{i_l}) \cap [0, a]^d \}.$$

Наша задача — найти асимптотику оценки вероятности больших отклонений для K_a , то есть $\mathbb{P}[K_a\geqslant n]$, при n и a стремящихся к бесконечности.

% Тут надо дописать про то, что если a=1, то есть хорошие результаты.

При этом будем предполагать, что $a = o(n^{1/d})$.

Заметим, что тривиальная оценка, вытекающая из свойств пуассоновского распределения, такова:

$$\mathbb{P}[K_a \geqslant n] \leqslant \mathbb{P}[N \geqslant n] = \exp((-n\log n + n\log a^d) \cdot (1 + o(1))), \ n \to \infty,$$

и наша задача — улучшить эту оценку. Заметим также, что, в силу предположения $a=o(n^{1/d})$, вероятность больших отклонений K_a стремится к нулю. %И это хорошо.

% А потом хотим оценить среднюю ошибку дискретизации.

2 Важная переформулировка

Рассмотрим следующую аналогичную переформулировку нашей задачи, которая, хоть и менее интуитивна, более приятна для работы. Будем рассматривать единичный куб в \mathbb{R}^d и следующий случайный набор шаров с центрами в нём. Пусть центры шаров $\widetilde{\xi}_i$ равномерно распределены в единичном кубе, радиусы \widetilde{R}_i — некоторые неотрицательные случайные величины (они связаны с исходными радиусами соотношениями $\widetilde{R}_i = R_i/a$), а количество шаров \widetilde{N} — пуассоновская случайная величина с параметром $a^d\lambda$.

Тогда наша случайная картинка определяется как

$$\widetilde{S}_a = \bigcup_{i=1}^N B(\widetilde{\xi}_i, \widetilde{R}_i) \cap [0, 1]^d,$$

а минимальное число видимых шаров:

$$\widetilde{K_a} = \min\{r \geqslant 1 | \exists i_1, \dots, i_r \subset \{1, \dots, \widetilde{N}\} : \widetilde{S_a} = \bigcup_{l=1}^r B(\widetilde{\xi_{i_l}}, \widetilde{R_{i_l}}) \cap [0, 1]^d \}.$$

Задача оценки остается такой же.

3 Нижние оценки для вероятности больших отклонений

Будем пользоваться второй переформулировкой (когда размер куба фиксирован) задачи и рассмотрим случай, когда радиусы — это константа c/a, где a — наш параметр, c < 1. Это соответствует ситуации, когда размер куба стремится к бесконечности, а радиусы шаров п.н. равны некоторой константе c.

Теорема 1. Пусть $R_1 \equiv \frac{c}{a}$ п.н., где c < 1, шары берутся в l_1 -норме, $u \ d \geqslant 2$. Тогда

$$\mathbb{P}[K_a \geqslant n] \geqslant \exp\left(-\left(1 + \frac{1}{d-1}\right)n\log n(1 + o(1))\right), n \to \infty, a \to \infty.$$

Доказательство. Доказательство копирует приведенное в статье. Рассмотрим набор ячеек:

$$\left\{ \prod_{m=1}^{d-1} \left[\frac{k_m + 1/4}{a(2n)^{1/(d-1)}}, \frac{k_m + 3/4}{a(2n)^{1/(d-1)}} \right] \right\} \times \left[0, \frac{c_1}{an^{1/(d-1)}} \right],$$

где $k_m \in \{0, \dots, \lfloor a(2n)^{1/(d-1)} \rfloor - 1\}, c_1 = 2^{-(2+1/(d-1))}$. Затем выберем n непересекающихся ячеек V_1, \dots, V_n и рассмотрим событие

$$E = \{N = n\} \cap \bigcup_{\pi \text{ - nepectahobka } \{1,...,n\}} \{\xi_i \in V_{\pi(i)}, i = 1,...,n\}.$$

Заметим, что событие Е влечет событие $K \geqslant n$. Действительно, пусть выполнено Е. Докажем, что тогда в каждом шаре $B(\xi_i, R_1)$ есть точка, не покрытая никаким другим шаром $B(\xi_j, R_1)$. Это будет точка $x_i = \xi_i + (0, \dots, 0, R_1)$. Заметим, что для достаточно больших n и a эта точка действительно лежит в кубе $[0, 1]^d$. Итак, при $j \neq i$

$$||x_{i} - \xi_{j}||_{1} = |\xi_{i}^{(d)} + R_{1} - \xi_{j}^{(d)}| + \sum_{m=1}^{d-1} |\xi_{i}^{(m)} - \xi_{j}^{(m)}| \geqslant$$

$$\geqslant R_{1} - |\xi_{i}^{(d)} - \xi_{j}^{(d)}| + \sum_{m=1}^{d-1} |\xi_{i}^{(m)} - \xi_{j}^{(m)}| \geqslant R_{1} - \frac{c_{1}}{an^{1/(d-1)}} + \frac{1/2}{a(2n)^{1/(d-1)}} > R_{1}.$$

Следовательно,

$$\mathbb{P}[K_a \geqslant n] \geqslant \mathbb{P}[E] = \frac{(a^d \lambda)^n}{n!} e^{-a^d \lambda} \cdot n! \cdot \left(\left(\frac{1/2}{a(2n)^{1/(d-1)}} \right)^{d-1} \cdot \frac{c_1}{an^{1/(d-1)}} \right)^n =$$

$$= \exp\left(dn \log a - a^d \lambda - \left(1 + \frac{1}{d-1} \right) n \log n - dn \log a + O(n) \right) \geqslant$$

$$\geqslant \exp\left(-\left(1 + \frac{1}{d-1} \right) n \log n (1 + o(1)) \right).$$

Теорема 2. Пусть $R_1 \equiv \frac{c}{a}$ п.н., где c < 1, шары берутся в l_2 -норме, $u \ d \geqslant 2$. Тогда

$$\mathbb{P}[K_a \geqslant n] \geqslant \exp\left(\left(-\left(1 + \frac{2}{d-1}\right)n\log n + dn\log a\right)(1 + o(1))\right), n \to \infty, a \to \infty.$$

Доказательство. Аналогично случаю l_1 , только константу c_1 надо взять равной $2^{-(4+2/(d-1))}$, чтобы событие E действительно влекло событие $K_a \geqslant n$ с некоторого момента.

Теорема 3. Пусть $R_1 \equiv \frac{c}{a}$ п.н., где c < 1, шары берутся в l_{∞} -норме, $u \ d \geqslant 2$. Тогда

$$\mathbb{P}[K_a \geqslant n] \geqslant \exp\left(\left(-\left(1 + \frac{1}{d-1}\right)n\log n + dn\log a\right)(1 + o(1))\right), n \to \infty, a \to \infty.$$

Доказательство. Зафиксируем ρ_1, ρ_2 , такие, что $c < \rho_1 < \rho_2 < 1$. Заметим, что тогда $c/a < \rho_1 < \rho_2 < 1$ для любого $a \geqslant 1$. Далее сделаем все то же самое, что в статье. Рассмотрим гиперплоскость

$$H = \left\{ x \in [0, 1]^d \colon \sum_{m=1}^d x^{(m)} = d\rho_2, \min_{1 \le m \le d} x^{(m)} > \rho_1 \right\}.$$

Для достаточно малой константы c_1 выберем n точек β_1, \ldots, β_n из H, чтобы выполнялось $\|\beta_i - \beta_j\|_1 > c_1 n^{1/(d-1)}$ для всех $i \neq j$. Теперь рассмотрим ячейки $V_i = B(\beta_i, c_2 n^{-1/(d-1)})$, где $c_2 < c_1/(4d)$. И определим следующее событие

$$E = \{N = n\} \cap \bigcup_{\pi \text{ - перестановка } \{1,...,n\}} \{\xi_i \in V_{\pi(i)}, i = 1,\ldots,n\}.$$

Затем показывается, что из события E следует событие $K_a\geqslant n.$ В итоге получаем:

$$\mathbb{P}[K_a \geqslant n] \geqslant \mathbb{P}[E] = \frac{a^d \lambda}{n!} e^{-a^d \lambda} \cdot n! \cdot \left(c_2 n^{-1/(d-1)}\right)^d n =$$

$$= \exp\left(\left(-\left(1 + \frac{1}{d-1}\right) n \log n + dn \log a\right) (1 + o(1))\right).$$

4 Верхние оценки для вероятности больших отклонений

Теорема 4. Пусть $R_1 \equiv \frac{c}{a}$ п.н., где c < 1, шары берутся в l_1 -норме, $u \ d \geqslant 2$. Тогда

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp\left(\left(-\left(1 + \frac{1}{d-1}\right)n\log n + (d+1)n\log a\right)(1 + o(1))\right), n \to \infty, a \to \infty.$$

Доказательство. В точности такое же, как в Proposition 19 в статье, но теперь константы, используемые в доказательстве, начинают зависеть от параметра a следующим образом (штрихованные – новые константы, нештрихованные – старые): c_1 и c_2 зависели только от нормы и размерности, поэтому остаются такими же. $c_3 = c_2 r/2$, поэтому $c_3' = c_3/a$. Далее, $c_4 = d\lceil c_3^{-1} \rceil$, следовательно, $c_4' = c_4 a$, и $c_5 = 2dc_4$, поэтому $c_5' = c_5 a$. Наконец, $c_6 = c_1 r^{-d}$, и значит, $c_6' = c_6 a^d$. Также, интенсивность λ теперь стала равнятся $a^d \lambda$

Таким образом, так же, как и раньше, мы получаем оценку

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp\left(\frac{c_5 dna}{A^{d-1}(d-1)} \log n(1+o(1))\right) \left(\frac{(a^d \lambda A c_5 a e)n^{-1/(d-1)}}{n - c_6 a^d}\right)^{n - c_6 a^a} = \exp\left(\frac{c_5 dna}{A^{d-1}(d-1)} \log n(1+o(1)) + n \log a^{d+1} - \frac{1}{d-1} n \log n - n \log(n - c_6 a^d) - -c_6 da^d \log a + c_6 \cdot \frac{1}{d-1} a^d \log n + c_6 a^d \log(n - c_6)\right).$$

Слагаемые в последней строчке меньшего порядка, чем те, что перед ними. Разберемся с непонятным слагаемым $n \log(n - c_6 a^d)$:

$$n \log(n - c_6 a^d) = n \log(n - c_6 a^d) - n \log n + n \log n = n \log(1 - c_6 a^d/n) + n \log n = n \log n + o(n).$$

Так как A может быть выбрана сколь угодно большой, получаем:

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp\left(\left(-\left(1 + \frac{1}{d-1}\right)n\log n + (d+1)n\log a\right)(1 + o(1))\right).$$

% Интересно, является какая-нибудь из этих оценок точной?

Теорема 5. Пусть $R_1 \equiv \frac{c}{a}$ п.н., где c < 1, шары берутся в l_2 -норме, $u \ d \geqslant 2$. Тогда

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp\left(\left(-\left(1 + \frac{1}{d-1}\right)n\log n + (d+2)n\log a\right)(1 + o(1))\right), n \to \infty, a \to \infty.$$

% Как-то тут совсем все не сходится.

Доказательство. Аналогично случаю l_1 , как и в статье.