

VECTOR ->

mathematical object that encodes a length and direction

Vector in R

VECTOR ALGERA

Addition | Substruction

$$V_1 = (1,3)$$
 and $v_2 = (1,1)$

n component of v, + n component of v2
y component of v, + y component of v2

Similarly

Dot Product

longth / Magnitude

$\nabla = (n_1, n_2, \dots, n_n)$

$$\vec{v} = (n_1, n_2, n_n)$$
Angle: $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^n$
 $|\vec{v}| = \vec{v} = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{v}$

$$\{x - \vec{J} = (1, -1, 2) \}$$

$$(\vec{V} = \vec{J}^2 + (-1)^2 + (2)^2$$

$$= \vec{J} + 1 + 4 = \vec{J} =$$

2 : In R3, v, = (1,1,-1) Y₂ = (2, 3,1)

V1. V2 = (2+3-1) = 4

(13)

(1,1)

Bright between two vectors

$$co = cos^{-1} \left(\frac{v_1 \cdot v_2}{|v_1| |v_2|} \right)$$

Unear Combination of Vectors
Consider a set S = {