Projeto de Circuitos Fotônicos Integrados

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

CURSOS, CAPACITAÇÃO E TREINAMENTOS

Interferômetro de Mach-Zehnder (MZI)

Objetivo:

- Adotando a frequência central igual a 1550 nm e para FSR's iguais a 1, 10 e 20 nm, obter as transmissões do MZI respectivas;
- Para as mesmas FSR's obter a transmissão defasada do MZI;
- Obter a relação FSR x Comprimento de Onda;

Guias ópticos:

Para a seguinte atividade, será utilizada a SOI 450 nm x 220 nm;

Topologia:

• Para essa atividade é adotado dois splitters Y-branch.

Figura 1 – Topologia com dois *splitter*

Primeira etapa – Cálculo de ΔL :

- Para esse cálculo é utilizado o solver FDE, visto a facilidade para se obter o índice de grupo e índice efetivo em comprimentos de onda específico;
- Tomando a equação abaixo, e sabendo que n_{eff} obtido é igual a 2.35370 e n_g obtido é 4.33629, para o comprimento de onda central, obtém-se ΔL igual a 554.045 µm, 55.404 µm e 27.702 µm;

$$FSR = \frac{\lambda}{n_g(\lambda)\Delta L}$$

ullet É adotado um guia retangular menor com comprimento ${
m L_1}$ igual a 50 ${
m \mu m}$.

Segunda etapa – Calculo de x para defasagem:

- Não é possível observar na mesma simulação as transmissões com e sem defasamento devido a topologia;
- Uma simulação é feita considerando o guia retangular maior com comprimento $L_1 + \Delta L$ (sem defasar) e outra simulação com o mesmo guia com comprimento $L_1 + \Delta L + x$, onde:

$$x = \frac{\lambda}{2n_{eff}}$$

x obtido igual a 0.329 μm.

Terceira etapa – Caso Ideal:

- Picos de transmissão em 0 dB (sem perdas);
- Circuito defasador com picos e vales alternados.

Figura 2 – Transmissão para cada FSR – Caso Ideal.

Quarta etapa – PDK SciPIC:

- PDK fornecido pela foundry SciPIC open-source;
- Os picos de transmissão não chegam a ser 0 dB, mas ainda assim possui um comportamento bem otimizado.

Figura 3 – Transmissão para cada FSR – PDK SciPIC.

Quinta etapa – Modelos próprios:

- Parâmetros S para Y-Branch não otimizado obtidos em atividades anteriores;
- Guias retangulares são lineares, logo basta o arquivo .ldf;
- Note que possui a pior das transmissões no pico, porém ainda assim acima de -3 dB.

Figura 4 – Transmissão para cada FSR – Modelos Próprios.

Sexta etapa – FSR x Comprimento de Onda:

1. Caso Ideal:

Figura 5 – FSR para cada ΔL calculado – Caso Ideal.

Sexta etapa – FSR x Comprimento de Onda:

2. PDK SciPIC:

Figura 6 – FSR para cada ΔL calculado – PDK SciPIC.

Sexta etapa – FSR x Comprimento de Onda:

3. Modelos Próprios:

Figura 5 – FSR para cada ΔL calculado – Modelos próprios.

Projeto de Circuitos Fotônicos Integrados

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

Atividade - Interferômetro de Mach-Zehnder

Erick Cândido Sousa

E-mail: erick.Sousa@ee.ufcg.edu.br

GitHub: https://github.com/EriCand-Ss