2017 TARML I10

Tristan Shin

20 May 2017

Let T be the set of four-digit decimal integers \underline{ARML} with four distinct positive digits such that

$$\underline{AR}_{ML} = \underline{ARM}_{L},$$

where subscripts are in decimal and all bases make sense. Compute

$$\sum_{ARML \in T} R$$

(if a certain digit is repeated twice as R, include it twice in the sum).

This is equivalent to

$$A(10M + L) + R = AL^2 + RL + M.$$

This rearranges to

$$M(10A - 1) = (AL + R)(L - 1).$$

Note that A, R, M < L, so $L \le 9$ and $A, R, M \le 8$.

First, assume that M = L - 1. Then 10A - 1 = AL + R. This implies that

$$(10 - L) A = R + 1 < 9.$$

We now casework on all possible values of A and L:

A	R	M	$\mid L$
8		8	9
7		8	9
6		8	9
5		8	9
4		8	9
8 7 6 5 4 4		8 7	8
3			9
3		8 7	8
3			7
2		6 8	9
2		7	8
2		6	7
3 2 2 2 2 1		5	9 9 9 9 8 9 8 7 6 k
1		k-1	k

(k is at least 3). M is also determined by L. We can now eliminate the first row because it has A = M. We can then compute the value of R, as R = (10 - L) A - 1:

2017 TARML I10 Tristan Shin

A	R	M	$\mid L$
7	6	8	9
6	6 5 4 3 7 2 5 8 1 3 5 7	8 8 8 7 8 7 6 8 7 6	9
5	4	8	9
4	3	8	9
4	7	7	8
3	2	8	9
3	5	7	8
3	8	6	7
2	1	8	9
2	3	7	8
2	5	6	7
7 6 5 4 4 3 3 2 2 2 1	7	5	9 9 9 9 8 9 8 7 9 8 7 6 k
1	9 - k	k-1	$\mid k \mid$

We can eliminate any rows that have $R \ge L$ (including those for A = 1 when k = 3 or 4), or any of A, R, M, and L equaling another (including those for A = 1 when k = 5 or 8), or any term being 0 (only A = 1 and k = 9):

A	R	M	$\mid L \mid$
7	6	8	9
6	5	8	9
5	4	8	9
4	3	8	9
3	2	8	9
3 3 2	5	7	8
2	1	8	9
2	3	7	8
2	5	6	7
1	2	6	7
1	3	5	6

This gives 11 solutions when M = L - 1: 7689, 6589, 5489, 4389, 3289, 3578, 2189, 2378, 2567, 1267, and 1356.

Now, assume that M < L - 1. Note that 10A - 1 > AL + R (otherwise M(10A - 1) < (AL + R)(L - 1), contradiction).

Assume that 10A - 1 is prime (A = 2, 3, 6, 8). Then 10A - 1 divides either AL + R or L - 1. But $10A - 1 \ge 19 > L - 1 > 0$, so 10A - 1 must divide AL + R. But then $10A - 1 \le AL + R$ (because AL + R > 0), contradiction. Thus, 10A - 1 is not prime and thus A = 1, 4, 5, or 7. We casework on A.

Case 1: A = 1.

Then 9M = (L+R)(L-1). Note that 9 cannot divide L-1. If 3 divides L-1, then 3 must also divide L+R and 9 > L+R, so L+R=3 or 6. But note that $L \equiv 1 \pmod{3}$,

2017 TARML I10 Tristan Shin

so since L < 6, L = 4. Then L + R = 3 is not possible, so L + R = 6 and R = 2. Then M = 2, contradiction.

Otherwise, 9 divides L + R, so $L + R \ge 9$, contradiction. No solutions.

Case 2: A = 4.

Then 39M = (4L + R)(L - 1). Note that 13 cannot divide L - 1. Thus, 13 divides 4L + R, which is less than 39. Thus, 4L + R = 13 or 26. Then since 3 does not divide 4L + R, 3 divides L - 1. In particular, L = 4 or 7. If 4L + R = 13, then $L \leq 3$, contradiction. Thus, 4L + R = 26. But then $5 \leq L \leq 6$, contradiction. No solutions.

Case 3: A = 5.

Then 49M = (5L + R)(L - 1). Note that 49 cannot divide L - 1. If 7 divides L - 1, then L = 8. Then 7M = R + 40, so either M = 6 and R = 2 or M = 7 and R = 9. In the latter case, R > L, contradiction. The former case works though, so an additional solution of 5268 is gained.

Otherwise, 49 divides 5L + R, so $5L + R \ge 49$, contradiction. One solution of 5268.

Case 4: A = 7.

Then 69M = (7L + R)(L - 1). Note that 23 cannot divide L - 1. Thus, 23 divides 7L + R, which is less than 69. Thus, 7L + R = 23 or 46. Then since 3 does not divide 7L + R, 3 divides L - 1. In particular, L = 4 or 7. If 7L + R = 23, then $L \leq 3$, contradiction. If 7L + R = 46, then $L \leq 6$, so L = 4, but then R = 18 > 9, contradiction. No solutions.

In conclusion, we get that the solutions are 1356, 1267, 2567, 2378, 3578, 5268, and d(d-1) 89 with d=2,3,4,5,6,7. The sum of all the R's is then

$$3+2+5+3+5+2+\sum_{i=1}^{6} i = 20+21 = \boxed{41}.$$

3