Travail et énergie potentielle de pesanteur Energie mécanique

I- Energie potentielle de pesanteur

1-Définition:

L'énergie potentielle d'un solide est l'énergie qu'il possède du fait de sa position rapport à la terre.

Exemple

L'eau possède une énergie potentielle due à sa position par rapport à la surface de la terre. Cette énergie est utilisée dans les barrages pour produire de l'électricité.

2- L'expression de l'énergie potentielle de pesanteur

Dans le repère $\Re(O, \vec{k})$, l'énergie potentielle de pesanteur E_{pp} d'un solide est définit par :

$$E_{pp} = m.g.z + C$$
 avec:
$$\begin{cases} m: masse \ du \ solide \ en \ (kg) \\ g: intensit\'e \ de \ pesanteur \ en \ (N/kg) \\ z: altitude \ du \ centre \ de \ gravit\'e \ du \ solide \ en \ (m) \end{cases}$$

L'unité de l'énergie potentielle dans le (SI) est le joule (J).

C est une constante qui représente la valeur de l'énergie potentielle de pesanteur à l'état de référence.

3- L'état de référence

L'état de référence est un état qu'on choisit arbitrairement et pour lequel l'énergie potentielle est nulle.

Application:

Déterminons l'expression de l'énergie potentielle en choisissant l'état de référence ($E_{pp}=0$) à $z=z_0$

Donc:
$$m.g.z_0 + C = 0$$
 d'où: $C = -m.g.z_0$

L'expression de l'énergie potentielle devient :

$$E_{pp} = m.g.z - m.g.z_0$$
 donc: $E_{pp} = m.g.(z - z_0)$

Si on prend $z_0=0\,$ alors l'expression de l'énergie potentielle devient :

$$E_{pp} = m.g.z$$

Remarque

- Si $z>z_0$: on a $E_{pp}>0$
- Si $z < z_0$: on a $E_{pp} < 0$
- L'énergie potentielle de pesanteur d'un solide augmente avec l'altitude z.

3- Variation de l'énergie potentielle de pesanteur :

Quand un corps solide se déplace d'un point A d'altitude z_A à un point B d'altitude z_B , la variation de l'énergie de pesanteur du corps est :

$$\Delta E_{pp} = E_{ppA} - E_{ppB} = m. g. z_A + C - (m. g. z_B + C) = m. g. (z_B - z_A)$$

$$\Delta E_{pp} = -W_{A \to B}(\overrightarrow{P})$$

La variation de l'énergie potentielle de pesanteur entre deux points est égale à l'opposé du travail du poids lors du déplacement entre ces deux points.

II- Energie mécanique :

1- Définition:

L'énergie mécanique d'un solide, à chaque instant, est égale à la somme de son énergie cinétique E_c et de son énergie potentielle de pesanteur E_{pp} :

$$\boldsymbol{E_m} = \boldsymbol{E_c} + \boldsymbol{E_{pp}}$$

Cas de chute libre :

$$E_m = \frac{1}{2}m.\vee^2 + m.g.z + C$$

2- Conservation de l'énergie mécanique:

2-1- Le chute libre

Un corps solide (S) en chute libre (il n'est soumis qu'a son poids), se déplace d'un point A à un point B.

D'après le théorème de l'énergie cinétique :

$$\Delta E_C = E_{CB} - E_{CA} = W_{A \to B}(\vec{P})$$

On sait que:

$$\Delta E_{PP} = -W_{A \to B}(\vec{P})$$

Donc:

$$\Delta E_C = -\Delta E_{PP}$$

$$E_{CB} - E_{CA} = E_{PPA} - E_{PPB}$$

$$E_{CB} + E_{PPB} = E_{CA} + E_{PPA}$$

 $E_{mB} = E_{mA} \rightarrow \text{II y a conservation de l'énergie mécanique}$

Conclusion:

L'énergie mécanique du solide en chute libre reste constante, on dit qu'elle se conserve.

Le poids est une forces conservative, son travail ne varie pas la valeur de l'énergie mécanique.

2-2- Cas d'un corps solide soumis à plusieurs forces sans frottement :

2-2-1- Activité expérimentale :

Etude du mouvement d'un autoporteur sur une table à coussin d'air inclinée

On dispose d'un autoporteur de masse m=732~g, posé sur une table à coussin d'air inclinée d'un angle $\alpha=10^\circ$ par rapport à l'horizontale.

On prend g = 9.8 N/kg.

L'autoporteur est abandonné sans vitesse initiale.

On enregistre les positions du centre d'inertie de l'autoporteur pendant des durées consécutifs et égaux au=60~ms, On obtient l'enregistrement suivant :

2-2-2- Le tableau des résultats :

Position M _i	M_1	M_2	M_3	M_4	M_5	M_6	<i>M</i> ₇	<i>M</i> ₈
t(ms)	0	60	120	180	240	300	360	420
$d = M_{i-1}M_{i+1}$	***	1,30	2,30	3,50	4,60	5,90	7,10	***
$D = M_i M_8 (10^{-1} m)$	1,45	1,40	1,32	1,17	0,97	0,71	0,38	***
$E_c(mJ)$	***	4,295	13,445	31,135	53,782	88,475	128,125	***
$E_{pp}(mJ)$		174,395	164,43	145,745	120,831	88,443	47,336	***
$E_c + E_{pp}(mJ)$	***	178,69	177,875	176,88	174,613	176,918	175,461	

2-2-3- Représentation des énergies $\boldsymbol{\mathit{E}}_{\mathit{c}}$, $\boldsymbol{\mathit{E}}_{\mathit{pp}}$ et $\boldsymbol{\mathit{E}}_{\mathit{m}}$ en fonction du temps :

2-3- Conclusion:

Lorsqu'un système est soumis sous l'action des forces conservatives ou non conservatives, et que le travail des forces non conservatives et nul, alors son énergie mécanique se conserve.

3- Non conservation de l'énergie mécanique:

3-1-Etude du mouvement d'un corps solide avec frottement sur un plan incliné:

La variation de l'énergie mécanique s'écrit :

$$\Delta E_m = E_{mB} - E_{mA}$$

$$\Delta E_m = E_{CB} + E_{PPB} - E_{CA} - E_{PPA}$$

$$\Delta E_m = \Delta E_C + \Delta E_{PP}$$

D'après le théorème de l'énergie cinétique :

$$\Delta E_C = E_{CB} - E_{CA} = W_{A \to B}(\vec{P}) + W_{A \to B}(\vec{R})$$

On sait que:

$$\Delta E_{PP} = -W_{A\to B}(\vec{P})$$

Donc:

$$\Delta E_C = -\Delta E_{PP} + W_{A \to B}(\vec{R})$$

$$\Delta E_m = \Delta E_C + \Delta E_{PP}$$

$$\Delta E_m = W_{A \to B}(\vec{R})$$

On a : $\vec{R} = \vec{R}_N + \vec{f}$

$$W_{A\to B}(\vec{R}) = W_{A\to B}(\vec{R}_N) + W_{A\to B}(\vec{f})$$

$$\vec{R}_N \perp \overrightarrow{AB}$$
 Donc: $W_{A \to B}(\vec{R}_N) = 0$ et $W_{A \to B}(\vec{f}) = \vec{f} \cdot \overrightarrow{AB} = -f \cdot AB$

Donc:

$$\Delta E_m = W_{A \to B}(\vec{f}) = -f.AB < 0$$

Conclusion:

La variation de l'énergie mécanique est égale au travail des forces de frottement. Une partie de l'énergie mécanique du système est convertie en chaleur Q :

$$\Delta \boldsymbol{E}_{\boldsymbol{m}} = \boldsymbol{W}_{A \to B}(\overrightarrow{\boldsymbol{f}}) = -\boldsymbol{Q}$$

3-2- Application:

Un corps solide (S) de masse m=0.4~kg, peut glisser sans frottement sur un plan incliné AB de longueur L=1.2~m, d'un angle $\alpha=30^\circ$ par rapport à l'horizontale.

Le solide (S) part du point A avec une vitesse $V_A = 2 \, m/s$ et passe par le point B avec une vitesse $V_B = 1 \, m/s$.

- 1- Calculer la variation de l'énergie mécanique ΔE_m
- 2- En appliquant la variation de l'énergie cinétique, montrer que : $\Delta E_m = W_{A o B}(\vec{f})$

Solution:

Calcul de ΔE_m

On sait que $\Delta E_m = \Delta E_C + \Delta E_{PP}$

Avec
$$\Delta E_C = E_{CB} - E_{CA} = \frac{1}{2}$$
. $m.(\vee_B^2 - \vee_A^2) = \frac{1}{2} \times 0.2 \times (2^2 - 1^2) = 0.3 J$

$$\Delta E_{pp} = -W_{A \to B}(\vec{P}) = -m.g.h$$
 avec $h = L. sin\alpha$

$$\Delta E_{pp} = -m. g. L. \sin \alpha = -0.2 \times 10 \times 0.2 \times \sin(30^{\circ}) = -0.4 J$$

$$\Delta E_m = \Delta E_C + \Delta E_{PP} = 0.3 - 0.4 = -0.1 J$$

2- On applique le T.E.C entre les deux points A et B :

$$\Delta E_C = W_{A \to B}(\vec{P}) + W_{A \to B}(\vec{R})$$

$$\Delta E_{PP} = -W_{A \to B}(\vec{P})$$

$$\Delta E_C = -\Delta E_{PP} + W_{A \to B}(\vec{R})$$

$$\Delta E_C + \Delta E_{PP} = W_{A \to B}(\vec{R})$$

$$\Delta E_m = W_{A \to B}(\vec{R})$$

$$W_{A \to B}(\vec{R}) = \underbrace{W_{A \to B}(\vec{R}_N)}_{=0} + W_{A \to B}(\vec{f}) = W_{A \to B}(\vec{f})$$

$$\Delta E_m = W_{A \to B}(\vec{f}) = -0.1 J < 0$$

Exercice 1:

Un objet ponctuel S, de masse $m = 2,00 \, kg$, glisse sans frottement sur une piste horizontale (HA). Il aborde au point A une piste plane (AB) inclinée d'un angle $\alpha = 20^{\circ}$ par rapport à l'horizontale. Sa vitesse au point A est $V_A = 8,00 \, m. \, s^{-1}$. Déterminer la

longueur L = AB dont l'objet remonte sur la piste AB.

Exercice 2:

Un solide ponctuel de masse m est lancé du point A sur une piste horizontale prolongée par un demi-cercle vertical de rayon R.

On donne : AB = 1m ; R = 1m ; m = 0.5 kg ; g = 9.81 N/kg 1- Les frottements étant négligeable, calculer en A la vitesse minimale V_{min} que doit avoir l'objet pour qu'elle atteigne le pont C.

2- Même question lorsque les frottements entre l'objet et la piste sont assimilables à une force constante de norme f = 1N.

