Tutorial 04 – OpenMP

Dennis-Florian Herr, M.Sc.
Chair for Computer Architecture and Parallel Systems (CAPS)
Technical University Munich
24.05.2024

Web Resource

https://caps-tum.github.io/parprog-visualizations/openmp-schedules/omp_schedules.html

Theory Quiz In-Class Exercise Homework Questions

Explicit Sharing

Implicit Sharing

Data Racing

Privatization

First Private

First Private + Last Private

```
Shared Data
                                                                  T1 Data
                                                                                   T2 Data
Code
 int data = 0;
                                            data = 0;
 #pragma omp parallel for firstprivate(data)\
                                                                  data = 0;
                                                                                   data = 0;
                               lastprivate(data)
 for(int i = 0; i < 2; i++) {
    data++;
                                            data = 0;
                                                                  data=0\rightarrow 1; i=0; data=0\rightarrow 1; i=1;
 output(data);
                                            data = 1; ←
```

Reduction

OpenMP: Synchronization

Critical

```
#pragma omp critical {
    globalVariable++;
}
```

Alternatives: atomic, single, master,

etc.

Also available: omp_lock_t

Critical

```
#pragma omp critical
{
    globalVariable++;
}
```

Alternatives: atomic, single, master, etc.

Also available: omp_lock_t

Barrier

Moodle Quiz

https://www.moodle.tum.de/mod/quiz/view.php?id=2976068

In-Class Exercise

Theory Quiz In-Class Exercise Homework Questions 12

Facebook Harry Potter House Test

Each data point has a class label

For a point in the input point cloud, find its distance to all the points in the data point cloud

Find the nearest k points in the data point cloud (here k=4)

count the number of neighboring points belonging to each class (here only consider 3 classes)

assign the class label that is owned by most neighboring points to the input point

repeat the above process for every point in the input cloud and assign class labels for them

count the number of points that belong to each class and print as output

Where to find the exercise?

• Go to the following repository to get the exercise: https: //gitlab.lrz.de/lrr-tum/teaching/parprog/ss2024/published-assignments

If you haven't done this before, use git to clone the exercise to your local machine:
 cd your_folder
 git clone https:
 //gitlab.lrz.de/lrr-tum/teaching/parprog/ss2024/published-assignments.git

Use git pull to get the repository updated
 cd <repository_folder>
 git pull

• Go to folder in-class-3 for this week's task, you can also find a README.md there

Theory Quiz In-Class Exercise Homework Questions 13

In-class exercise 3: use OpenMP

- You will find the sequential code in student_submission.cpp
- Your tasks
 - Use the correct OpenMP pragma to parallelize for loop(s)
 - Add the correct arguments to the pragma(s) above
 - Use the correct OpenMP pragma to synchronize shared variable access
- Achieve a speedup of 15 (on the server)
- Our server has 16 cores with 2 way hyperthreading (i.e. 32 threads)

Homework

Theory Quiz In-Class Exercise Homework Questions 15

More on Mandelbrot Set: https://mathworld.wolfram.com/MandelbrotSet.html

• Problem solved : $Z_{n+1} = Z_n^2 + C$

Homework - Mandelbrot

Speed up Requirement:

Your solution should have a speedup ≥ 16

Build the program

Makefile: make

Usage of the program

- Sequential:
 - ./sequential_implementation -r 480x380 -i 1000 -f mandelbrot.ppm
- Parallel:
 - ./student_submission -r 480x380 -i 1000 -f mandelbrot.ppm

Recap & Questions

Covered today:

- #pragma omp parallel for
- Schedules
- Sharing
- Synchronization

Questions

Parallel Programming 2024 Tutorial 04

This slide is intentionally left blank.