

Submitted by Simon Dorrer

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Österreich iku.at

Thesis Organization

IIC-OSIC-TOOLS

Theoretical Background

Nyquist vs. Event-Based ADC

- Nyquist ADCs sample input at a fixed sample rate → uniform samples
- Voltage values are quantized and encoded → amplitude quantization
- Event-based ADCs only produce samples when input exceeds a predefined threshold θ → non-uniform event pulses (spikes)
- Time between spikes is measured and encoded → time quantization
- For sparse signals, event-based ADCs significantly decrease:
 - number of samples
 - storage resources
 - computational effort
 - power consumption

Nyquist vs. Event-Based ADC – Time Domain

(a) Nyquist ADC

(b) Event-Based ADC

ASIC Design

Block Diagram

Top-Level in Xschem

DT Comparator – Circuit

DT Comparator – MC Simulation

- Monte Carlo process variation simulation with CACE
- 200 iterations

Capacitive DAC

• Reset: $\Phi_7 = \Phi_8 = 1$

• Tracking: $\Phi_7 = \Phi_8 = 0$

$$C_1 = C_{\mathbf{U}} 2^{M-1}$$

$$V_{\text{LSB}} = 2\frac{C_1}{C_2} = 2\frac{C_{\text{U}}2^{M-1}}{C_2} = \frac{2V_{\text{DD}}}{2^F}$$

Upper DAC + Comparator – Transient Simulation

Lower DAC + Comparator – Transient Simulation

Amplifier Core in Xschem

Testbenches in Xschem

- Different testbenches are available for:
 - Open-loop gain
 - Closed-loop gain
 - Loop gain
 - Common-Mode Rejection Ratio (CMRR)
 - Power-Supply Rejection Ratio (PSRR)
 - Input impedance
- Problem with switched-capacitor circuits:
 - No periodic AC analysis → long looped transient analysis
 - Temporarily swapped with idealized resistors

Simulation Results - Closed-Loop Gain

Fully-Differential OTA – Loop Gain Simulation

Simulation Results – Loop Gain

Gate-level Analog Mixed-Signal Simulation

- Gate-level synthesized digital design included in Xschem
- VHDL to Verilog with GHDL / Yosys
- Verilog to Xspice
 - QFlow scripts: vlog2Verilog, vlog2Spice and spi2xspice.py
 - Timing information
 - Decision levels
- Template & step-by-step instruction for SG13G2 and IIC-OSIC-TOOLS: <u>https://github.com/simi1505/SG13G2_ASIC-Design-Template</u>
- Also supports layout generation with OpenROAD Flow Scripts (ORFS)

Digital Core - OpenROAD GUI

Conclusion

Conclusion

Achievements:

- Important theoretical findings
- Development of new architecture
- Transistor-level design
- Set up of gate-level analog mixed-signal simulation

Outlook:

- Analog layout
- Post-layout simulation
- Tape-out
- Chip verification with measurements

Resources

- Analog Circuit Design Course @ JKU:
 https://github.com/iic-jku/analog-circuit-design
- GitHub Repository (Event-Based ADC):
 https://github.com/iic-jku/SG13G2 ATBS-ADC
- GitHub Repository (SG13G2 ASIC Design Template): https://github.com/simi1505/SG13G2_ASIC-Design-Template
- Master Thesis:
 https://epub.jku.at/obvulihs/content/titleinfo/12118473?query=dorrer
- YouTube Video: coming soon!

JOHANNES KEPLER UNIVERSITY LINZ

Applications for Event-Based ADCs

- Bio-signal acquisition with battery-powered, wireless, and wearable devices such as:
 - Fitness trackers
 - Emergency medical sensors
 - Internet of Things (IoT) devices

Floating-Window Architecture

• If $V_{\rm in} > V_{\rm H}$, the upper comparator outputs a logic one, and both DAC voltages shift up by θ and vice versa for $V_{\rm in} < V_{\rm L}$.

Fixed-Window Architecture

• $V_{\rm in}$ is wrapped within $V_{\rm H}$ and $V_{\rm L}$ whenever a threshold crossing occurs, by subtracting the current DAC voltage from $V_{\rm in}$.

Nyquist vs. Event-Based ADC – Aliasing

 Nyquist ADC: The sampling limit induced by aliasing is defined by the Shannon-Nyquist theorem:

$$f_s > 2f_{\text{max}}$$

Event-based ADC: The aliasing effect is caused by their slew rate:

$$SR = \max \left| \frac{dV_{in}(t)}{dt} \right| < \frac{\theta}{t_{loop}} = \frac{V_{REF}/2^F}{t_{loop}}$$

$$t_{\text{loop}} = t_{\text{pd}} + t_{\text{core}} + t_{\text{settle}}$$

• The maximum frequency for sine waves (SR = $2\pi A f_{\rm max}$) for event-based ADCs with fixed thresholds can be expressed as:

$$f_{\max} = \frac{V_{\text{REF}}}{2\pi t_{\text{loop}} A_{\max} 2^F}$$

Nyquist vs. Event-Based ADC – SQNR

 Nyquist ADC: The time- and frequency-domain SQNR for a full-scale amplitude sine wave, resulting from uniformly distributed amplitude quantization, depends on the ADC resolution (N):

$$SQNR = 6.02N + 1.76$$

• Event-based ADCs: The SQNR, resulting from time quantization, depends on the clock resolution ($T_{\rm clk}$) and the input signal's frequency ($f_{\rm sig}$):

$$SQNR = 20 \log_{10} (R) - 14.2$$

where R is the resolution or oversampling ratio:

$$R = \frac{1}{f_{\text{sig}}T_{\text{clk}}} = \frac{f_{\text{clk}}}{f_{\text{sig}}}$$

• Event-based ADCs can achieve an SQNR equivalent to that of an N-bit Nyquist ADC while requiring only a DAC with fewer than N bits (F < N).

Continuous-Time vs. Discrete-Time

- Continuous-time (CT) system:
 - CT comparator, CT DAC, and asynchronous or clockless digital core
 - Minimize clock uncertainty and loop delay
 - Ideally, no amplitude and no time quantization and no aliasing!
 - Limited by high power consumption and nonidealities of AFE
- Discrete-time (DT) system:
 - Trigger AFE periodically or adaptively
 - Reduction of power consumption
 - Introduction of clock uncertainty and limiting the slew rate to:

$$T_{\text{trig}} \ge (t_{\text{pd}} + t_{\text{core}} + t_{\text{settle}}) = t_{\text{loop}}$$

Adaptive Threshold-Based Sampling

- Input signal dependent adaption of threshold θ
- Reduce number of samples
- Increase maximum slew rate
- Calculation of Weyl's discrepancy within a defined time window

• If the discrepancy is larger / lower than a certain value, θ is doubled / halved.

State of the Art

References	floating-window / fixed-window	single-ended / fully-differential	adaptive thresholds / adaptive trigger	continuous-time / discrete-time	
Werzi, 2025	floating-window	single-ended	adaptive thresholds	continuous-time AFE / synchronous digital core	
Van Assche, 2024	floating-window	single-ended	adaptive trigger	discrete-time	
Timmermans, 2023	fixed-window	fully-differential	fixed thresholds	continuous-time	
Jing, 2023	floating-window	single-ended	adaptive thresholds	continuous-time	
Yazdani, 2022	fixed-window	fully-differential	fixed thresholds	${\rm continuous\text{-}time}$	
Maslik, 2018	floating-window	single-ended	fixed thresholds	continuous-time	
Zhang, 2014	floating-window	single-ended	fixed thresholds	continuous-time	
Weltin-Wu, 2013	floating-window	single-ended	adaptive thresholds	continuous-time	
Trakimas, 2011	floating-window	fully-differential	adaptive thresholds	continuous-time	
Li, 2011	fixed-window	single-ended	fixed thresholds	continuous-time	
This work - demonstrator	floating-window	single-ended	fixed & adaptive thresholds	continuous-time AFE / synchronous digital core	
This work - ASIC	fixed-window	fully-differential	fixed & adaptive thresholds	discrete-time	

$g_{\rm m}/I_{\rm D}$ -Methodology

- Sizing transistors depends on numerous design specifications and tradeoffs
- Analytical models:
 - Square-law equations deviate from actual transistor behavior
 - Even worse in deep submicron processes
 - Especially problematic for moderate and weak inversion
- $g_{\rm m}/I_{\rm D}$ -Methodology:
 - Compute lookup tables over a wide range of operating points
 - Sizing scripts with Jupyter notebooks
 - Easier migration to different circuit specifications and PDKs
 - https://github.com/iic-jku/analog-circuit-design

Tradeoffs in Analog Circuit Design

Bandwidth & Gain

- **EEG**: $B \approx 100 \,\mathrm{Hz}, \, 20 \,\mathrm{\mu V} \,\mathrm{to} \,800 \,\mathrm{\mu V}$
- ECG: $B \approx 500 \,\mathrm{Hz}$, $70 \,\mathrm{\mu V}$ to $5 \,\mathrm{mV}$

Input / Electrode Impedance

- High input impedance of bio-signal AFEs
- High impedance of non-invasive electrodes

Material	Impedance (M Ω) @ 10 Hz	Impedance (M Ω) @ 125 Hz	
Ag/AgCl	0.23	0.05	
Metal Plate	0.66	0.10	
Thin Film	64	6	
Cotton	185	33	
MEMS	0.65	0.65	
Silver Coated	_	0.25	
Gold Alloy	-	0.21	

β-Multiplier Reference

$$I_{\rm ref} = \frac{V_{\rm GS2} - V_{\rm GS1}}{R_1}$$

β-Multiplier Reference

β-Multiplier Reference

Telescopic Input Stage

OTA Topology	Gain	Output Swing	Speed	Power Dissipation	Noise
Telescopic	medium	medium	highest	low	low
Folded-cascode	medium	medium	high	medium	medium
Two-stage	high	highest	low	medium	low
Gain-boosted	high	medium	medium	high	medium

$g_{\rm m}/I_{\rm D}$ (simulation)

$$H_{\rm dm,0} = \frac{g_{\rm m12}}{g_{\rm ds12} \frac{g_{\rm ds12C}}{g_{\rm m12C}} + g_{\rm ds34}} = 44.78 \,\rm dB \, (44.94 \,\rm dB)$$

$$f_{\rm c} = \frac{g_{\rm ds12} \frac{g_{\rm ds12C}}{g_{\rm m12C}} + g_{\rm ds34}}{2\pi C_{\rm L}} = 4.32 \,\text{kHz} \,(4.48 \,\text{kHz})$$

$$f_{\rm T} = H_{\rm dm,0} f_{\rm c} = \frac{g_{\rm m12}}{2\pi C_{\rm L}} = 749.34 \,\text{kHz} \,(791.18 \,\text{kHz})$$

Push-Pull Output Stage

- Increases output voltage swing
- Increases open-loop gain

