PKU 数学分析 (I)2022 秋期中

2023年11月14日

1.(30') 求序列或函数的极限

$$(1) \lim_{n \to \infty} [\sin \ln(n+1) - \sin \ln n]; \ (2) \lim_{x \to 0} \frac{\sqrt[3]{1 + x \sin x} - 1}{\arctan x^2}; \ (3) \lim_{x \to 0} (1 + 2x)^{\frac{(x+1)^2}{x}}$$

;

$$(4) \lim_{n \to \infty} [(n + \ln n)^{\alpha} - n^{\alpha}], \ 0 < \alpha < 1; \ (5) \lim_{x \to +\infty} (\frac{2^{1/x} + 8^{1/x}}{2})^x$$

.

2.(8') 讨论下列函数的连续性,若有间断点,说明间断点类型(若为第一类间断点,需区分可去间断点和跳跃间断点):

$$(1)f(x) = [|\cos x|]; \ (2)f(x) = \frac{1}{1 - e^{\frac{x}{1-x}}}$$

.

3.(6') 当 $x \to 0$ 时, $e^{x^n}-1$ 是比 $x(\cos\sqrt{x}-1)(\sqrt[3]{x+1}-1)$ 低阶但比 $\sqrt{x}\ln(1+\sqrt[3]{x})$ 高阶的无穷小量,求正整数 n.

4.(15') 求下列函数的导数:

$$(1)f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}, \ x > 0; \ (2)f(x) = x^{x^{\sin x}}, \ x > 0$$

;

(3)
$$y'(0)$$
 st. $y \sin x + e^{x-y} = 1$

.

- 5.(7') 已知函数 f(x) 满足 $\lim_{x\to 0}(1+x+rac{f(x)}{x})^{rac{1}{x}}=e^3$ 。证明 $\lim_{x\to 0}rac{f(x)}{x^2}$ 存在并求其值。
- 6.(7') 序列 $\{x_n\}$ 满足 $x_1=0,\; x_{2k}=rac{x_{2k-1}}{2},\; x_{2k+1}=x_{2k}+rac{1}{2}.\;$ 求该序列的上下极限。
- 7.(7') 假设 $x_0=1,\; x_{n+1}=\frac{1}{x_n^3+4}.$ 证明序列 $\{x_n\}$ 收敛到方程 $x^4+4x-1=0$ 的唯一正根。
- 8.(6') 设方程 $4 \ln x x^2 + a \ln 4 = 0$ 在 $[\frac{1}{e}, 2]$ 中恰有两根,求 a 满足的条件。
- 9.(7') 用闭区间套定理证明单调有界原理。
- 10.(7') 设 f(x) 在 $[1,+\infty)$ 上满足 Lipschitz 条件,即存在常数 C,使得 $\forall x,y \in [1,+\infty), |f(x)-f(y)| \leq C|x-y|$ 。证明: $\frac{f(x)}{x}$ 在 $[1,+\infty)$ 上一致连续。