

Energie, latence: je t'aime, moi non plus

Le réseau mobile

Le réseau mobile

Standard	3GPP version	Techno	Marketing	Débit	Latence	Modulation
issu de l'ETSI	Release 96	GSM	2G	100-400 Kbit/s	300-1000 ms	TDMA/FDMA
IMT-2000	Release 99	UMTS	3G	0.5-5 Mbit/s	100–500 ms	WCDMA
	Realease 7		3G+ (HSPA)	10 - 150 Mbit/s	50 ms	WCDMA (MIMO/CA)
IMT-Advanced	Release 8	LTE	4G	100 Mbit/s	50 ms	OFDMA
	Release 10	LTE- Advanced	4G+	300 Mbit/s	25 ms	OFDMA
IMT-2020	Release 15	NR	5G	1 - 10 Gbit/s	~1 ms	OFDMA based

Le réseau mobile (ex: GSM)

Le réseau mobile (ex: GSM)

Le réseau mobile (ex: GSM)

Interface radio

- Le récepteur doit être constamment en écoute.
- L'énergie nécessaire à la transmission d'un signal sur une distance données est une relation:
- linéaire sur un réseau filaire
- inverse du carré sur un réseau sans fil.

source: https://en.wikipedia.org/wiki/Inverse-square law

Interface radio

- Plus il y a d'utilisateurs dans une cellule → plus il y a de « bruit » sur l'interface air.
- Plus il y a de bruit sur l'interface air → plus la puissance d'émission augmente.
- Plus le débit de données est grand → plus on a besoin de puissance.
- Un modem peut consommer jusqu'à 2 Watts
 - 10Wh (capacité de batterie) se consomment rapidement

Architecture UMTS

Architecture d'une appli

Architecture

I-DRX (DRX while Idle)

- En fonction de son état, un terminal doit rester en écoute de différents canaux
- Pour réduire la consommation d'énergie, un smartphone doit couper la radio autant que possible.
- Le traffic entrant est signalé sur le canal de Paging
- Ce canal est écouté périodiquement (en général ~ls)

Reduce Network Battery Drain

Sommaire

Performance actions

Requests that your app makes to the network are a major cause of battery drain because they turn on the power-hungry mobile or Wi-Fi radios. Beyond the power needed to send and receive packets, these radios expend extra power just turning on and keeping awake. Something as simple as a network request every 15 seconds can keep the mobile radio on continuously and quickly use up battery power.

Reduce Network Battery Drain

Sommaire

Performance actions

Requests that your app makes to the network are a major cause of battery drain because they turn on the power-hungry mobile or Wi-Fi radios. Beyond the power needed to send and receive packets, these radios expend extra power just turning on and keeping awake.

Something as simple as a network request every 15 seconds can keep the mobile radio on continuously and quickly use up battery power.

RRC (Radio Resource Control)

- Le RRC se décline sous plusieurs formes:
 - une fonction implantée dans le RNC (Radio Network Controller)
 - une connection entre un terminal (UE) et la fonction RRC
 - un protocole (du plan de contrôle)
 - une machine à états

Objectifs:

- établissement/configuration des bearers radio
- paging/notification
- Contrôle de QoS

• ...

Cell_DCH

Cell_FACH

Connected

Cell_PCH URA_PCH

Not Connected

IDLE

Tailing periods

Tailing periods

Callback for use with

ConnectivityManager.addDefaultNetworkActiveListener(ConnectivityManager.OnNetworkActiveListener) to find out when the system default network has gone in to a high power state.

addDefaultNetworkActiveListener

added in API level 21

public void addDefaultNetworkActiveListener (ConnectivityManager.OnNetworkActiveListener 1)

Start listening to reports when the system's default data network is active, meaning it is a good time to perform network traffic. Use isDefaultNetworkActive() to determine the current state of the system's default network after registering the listener.

If the process default network has been set with bindProcessToNetwork(Network) this function will not reflect the process's default, but the system default.

Callback for use with

ConnectivityManager.addDefaultNetworkActiveListener(ConnectivityManager.OnNetworkActiveListener) to find out when the system default network has gone in to a high power state.

addDefaultNetworkActiveListener

added in API level 21

public void addDefaultNetworkActiveListener (ConnectivityManager.OnNetworkActiveListener 1)

Start listening to reports when the system's default data network is active, meaning it is a good time to perform network traffic. Use isDefaultNetworkActive() to determine the current state of the system's default network after registering the listener.

If the process default network has been set with bindProcessToNetwork(Network) this function will not reflect the process's default, but the system default.

Callback for use with

ConnectivityManager.addDefaultNetworkActiveListener(ConnectivityManager.OnNetworkActiveListener) to find out when the system default network has gone in to a high power state.

addDefaultNetworkActiveListener

added in API level 21

public void addDefaultNetworkActiveListener (ConnectivityManager.OnNetworkActiveListener 1)

Start listening to reports when the system's default data network is active, meaning it is a good time to perform network traffic. Use isDefaultNetworkActive() to determine the current state of the system's default network after registering the listener.

If the process default network has been set with bindProcessToNetwork(Network) this function will not reflect the process's default, but the system default.

Use details CPU total 9m 29s CPU foreground 36 sec Stay awake 24m 46s Mobile data received 8214 Mobile data sent 10265 Mobile radio active 1d 15h 18m 46s Adjust power use Stop or uninstall application. APP INFO

C D RX Connected DRX

cDRX (Connected DRX)

QCI	cont. rx(ms)	on time(ms)	short	long	back to idle(s)
9	200	10	20	320	15
9	100	10	80	200	10
9	200	4	X	80	30
9	always on	X	X	X	5
1	10	4	X	40	30

commit 77b987f1a1bb6028a871de01065b94c4cfff0b5c

Author: Dianne Hackborn <hackbod@google.com>

Date: Wed Feb 26 16:20:52 2014 -0800

Hold a wake lock while dispatching network activity events.

Also add new API for determining whether the current data network is active, and thus better scheduling network operations. This API is designed to not be tied to a mobile network -- regardless of the network, apps can use it to determine whether they should initiate activity or wait. On non-mobile networks, it simply always reports as the network being active.

This changed involved reworking how the idle timers are done so that we only register an idle timer with the current default network. This way, we can know whether we currently expect to get callbacks about the network being active, or should just always report that it is active. (Ultimately we need to be getting this radio active data from the radio itself.)

```
commit ed6160d299dadb4898360d55b2fb14e69ebb7ab3
author Adam Lesinski <adamlesinski@google.com>
Date Tue Aug 18 11:47:07 2015 -0700
 Change default cellular activity timeout to 10
 LTE radios take 10 seconds to power down, so we should set the
 activity timeout to 10 seconds.
 Bug: 23294704
 Change-Id: I7478b77f134b0fe2d82e39acd5c370add12735ca
diff --git a/services/core/java/com/android/server/ConnectivityService.java b/services/core/
java/com/android/server/ConnectivityService.java
index 6e0c37f..4919bed 100644
--- a/services/core/java/com/android/server/ConnectivityService.java
+++ b/services/core/java/com/android/server/ConnectivityService.java
@@ -1585,7 +1585,7 @@ NetworkCapabilities.TRANSPORT CELLULAR)) {
             timeout = Settings.Global.getInt(mContext.getContentResolver(),
                                              Settings.Global.DATA ACTIVITY TIMEOUT MOBILE,
                                              5);
             type = ConnectivityManager.TYPE MOBILE;
         } else if (networkAgent.networkCapabilities.hasTransport(
                 NetworkCapabilities.TRANSPORT WIFI)) {
```


VolTE

WB-AMR: ~25kbit/s

IP/UDP/RTP overhead: ~50kbit/s

sample every 20ms

VolTE

default bearer QCI 9: best effort, faible priorité (défaut pour internet), non GBR default bearer QCI 5: signalisation SIP pour l'IMS, haute priorité, nonGBR dedicated bearer QCI 1: flux RTP pour appelle VoIP IMS, (garanteed bitrate) genre 50kbits/s

C D RX Extended DRX

eDRX

C-eDRX:

• Les cycles vont jusque 10.24 s (contre 2,56s en cDRX)

I-eDRX:

• Les cycles peuvent atteindre ~44min en LTE-M (~3hr en NB-IOT)

PSM (Power Saving Mode)

- Quasi équivalent à couper la radio mais en restant attaché au réseau
- Les cycle PSM peuvent atteindre 400 jours!
- Autonomie de batterie: 10 ans ...

PSM (en Wifi)

- Power Saving Mode par opposition au CAM (Constant Awake Mode)
- L'énergie nécessaire à la transmission en Wifi est beaucoup plus faible que sur le réseau mobile (Local area vs Wide area)
- Mais l'énergie requise reste importante (ex: 802.11n)

enhanced Mobile Broadband

eMBB

uRLLC

mMTC

Ultra Reliable Low Latency Communications

massive Machine Type Communications

5QI	type	priority	delay packet budget	usage
1	GBR	20	100ms	Voix
5	non GBR	10	100ms	IMS
9	HOH GBN	90	300ms	Internet
81	delay critical	11	5ms	remote control
83	GBR	13	20ms	Intelligent transport

Conclusion

- Le réseau mobile accorde une attention particulière à la gestion de l'énergie.
- Un compromis entre différentes propriétés comme la latence et la consommation est nécessaire.
- Il est important (IMHO) de s'y intéresser car tout ceci n'est pas forcément visible pour un développeur.
- Une même appli peut être connectée à un large panel de réseaux ayant des propriétés très différentes

Screen-Off Traffic Characterization and Optimization in 3G/4G Networks

Junxian Huang University of Michigan

Feng Qian University of Michigan

University of Michigan

Z. Morley Mao Subhabrata Sen Oliver Spatscheck AT&T Labs - Research

AT&T Labs - Research

utilization. Based on analyzing real smartphone traffic collected from 20 users over five months, we find that off-screen traffic accounts for 58.5% of the total radio energy consumption although their traffic volume contribution is much smaller. Such unexpected results are attributed to the unique cellular resource management policy that is not well understood by developers, leading to cellularunfriendly mobile apps. We then make a further step by propos-

Screen-Off Traffic Characterization and Optimization in 3G/4G Networks

Junxian Huang University of Michigan

Feng Qian University of Michigan

University of Michigan

Z. Morley Mao Subhabrata Sen Oliver Spatscheck AT&T Labs - Research

AT&T Labs - Research

utilization. Based on analyzing real smartphone traffic collected from 20 users over five months, we find that off-screen traffic accounts for 58.5% of the total radio energy consumption although their traffic volume contribution is much smaller. Such unexpected results are attributed to the unique cellular resource management policy that is not well understood by developers, leading to cellularunfriendly mobile apps. We then make a further step by propos-

Thanks