Блок-схема алгоритма вычислений

Пояснение

Обозначения

- *a*: параметр
 - Например, $G_{\text{онт}} = 250 \text{ кг/с};$
- [a]: коллекция. Эквивалентно одному столбцу в таблице экселя
 - Например, входные данные или все рассчитанные параметры закрутки потока для одного сечения.
- [a].b: параметр b из коллекции [a]
 - ightharpoonup Например, [C].n частота вращения турбины из исходных данных
- $[a]^c.b$: параметр b из с-той части коллекции [a]. Эквивалентно с-тому столбцу из таблицы экселя.
 - Например, $[R]^5.\alpha_2$ угол α_2 для периферийного (пятого) сечения в расчете закрутки потока

Поиск оптимальных параметров расчета по ступеням

Для каждых φ, ψ существует лишь один расход $G_{\text{опт}}$, обеспечивающий осевой выход, что показано на графике 1, полученном в результате варьирования расхода в некотором промежутке. Этот расход должен совпасть с расходом G_{A2GTP} , полученном от расчета турбоагрегата, для этого надо варьировать параметры φ, ψ .

Производится это так: есть "ручка" которую можно двигать по плоскости, её координаты соответствуют параметрам φ, ψ . Перемещением этой "ручки" надо совместить красную и синюю линии на графике.

Рисунок 1 — График зависимости α_2 от G при заданных φ, ψ

Поиск "хороших" параметров для закрутки потока

Эти значения я называю "хорошими", а не оптимальными, потому что сформулировать критерии оптимальности в этом расчете невозможно. "Хорошим" я считаю случай, когда выход по всем сечениям максимально близок к осевому - предполагается, что это ведёт к максимизации КПД.

Вручную выбираются углы α_1 и β_2^* , с ними для всех возможных значений F и ρ_k производится расчет закрутки потока. По результатам расчета строится скалярное поле рассматриваемых элементов расчета в координатах F и ρ_k , вырезаются значения, не обеспечивающие монотонное повышение давления по радиусу.

На рисунке 2 представлено такое поле, построенное для угла выхода потока на периферии в абсолютном движении и разницы суммарной полиномиальной и кинематической степени реактивности.

Чем краснее точка на левом графике, тем лучше. Чем зеленее на правом - тем лучше. Получается, "хорошие" точки сконцентрированы в левом верхнем углу допустимой области.

Все из них подходят, чтобы выбрать одну и обеспечить сохранение декларативности, выбирается точка с наименьшим градиентом, потому что в случае ошибки моделирования или изготовления влияние этой ошибки на анализируемый параметр будет также минимизировано.

Рисунок 2 — Зависимости α_2 и $\Delta \rho_k$ от F и ρ_k при заданных α_1 и β_2^*

В случае неверного выбора углов α_1 и β_2^* поле распределения параметров может выглядеть как на рисунке 3. Здесь "хороших" точек нет, помимо того, что график имеет нефизический вид.

Рисунок 3 — Зависимости α_2 и $\Delta \rho_k$ от F и ρ_k при неудачных α_1 и β_2^*

Помимо угла выхода потока в абсолютных координатах, можно исследовать градиент давления в радиальном направлении: его величину и линейность, можно исследовать угол установки лопатки, степени реактивности.