Programming theory endterm test - sample

1.
$$A = (x:\mathbb{N}, n:\mathbb{N}, y:\mathbb{N})$$

 $B = (x':\mathbb{N}, n':\mathbb{N})$
 $Q = (x = x' \land n = n' \land x > 0)$
 $R = (Q \land y = x^n)$

 $b:\mathbb{N}$ and $i:\mathbb{N}$ are auxiliary variables of the program S.

S			
	y, b, i := 1, x, n $i > 0$		
		2 <i>i</i>	$2 \nmid i$
		$i,b:=i\mathrel{/} 2,b^2$	$i, y := i - 1, y \cdot b$

 $Q'=(Q\wedge y=1 \wedge b=x \wedge i=n)$ is the intermediate condition of the program, $Inv=(Q\wedge y\cdot b^i=x^n)$ is the loop invariant, t:i is the variant function of the loop. Prove that $Q\Longrightarrow lf(S,R)$ holds. Detailed explanation is required. (25 points)

2. $A = (a:\mathbb{Z}^n, b:\mathbb{Z}^n)$

 $i:\mathbb{N}$ and $j:\mathbb{N}$ are auxiliary variables.

Prove that the following program is free from deadlock.

parbegin $S_1 || S_2$ parend

```
S_1: \{Inv\} while i \leq n do \{Inv \wedge i \leq n\} await i = j then x, i := a[i], i+1 ta \{Inv\} do \{Inv \wedge i = n+1\}
```

```
S_2: \{Inv\} while j \le n do \{Inv \land j \le n\} await i > j then b[j], j := x, j+1 ta \{Inv\} od \{Inv \land j = n+1\}
```

```
Inv = (a = a' \land 0 \le i - 1 \le j \le i \le n + 1 \land \forall k \in [1..j - 1] \colon b[k] = a[k]) \land (i > j \to x = a[i - 1])) (10 points)
```

3. $A = (x:\mathbb{Z})$

```
S_1:

\{x = 0 \lor x = 3\}

x := x + 2

\{x = 2 \lor x = 5\}
```

```
S_2:

\{x = 0 \lor x = 2\}

x := x + 3

\{x = 3 \lor x = 5\}
```

Prove that $x = 0 \implies wp(\mathbf{parbegin} \ S_1 \parallel S_2 \ \mathbf{parend}, x = 5) \ \mathsf{holds}.$ (10 points)