

SCHOOL OF COMPUTER TECHNOLOGY

AASD 4001 Mathematical Concepts for Machine Learning Lecture 1

Session 1

- Introduction to NumPy
- Vector Space Analysis and Linear Algebra

Introduction to Numpy

NumPy (Numerical Python):

- An open source Python library used in almost every field of science and engineering
- A universal standard for working with numerical data in Python
- NumPy users include everyone from beginner coders to experienced researchers doing state-of-the-art scientific and industrial research and development
- NumPy arrays are used extensively in Pandas, SciPy, Matplotlib, scikitlearn, scikit-image and most other data science, and machine learning Python packages.

Introduction to Numpy (cont'd)

The NumPy library contains multidimensional array and matrix data structures

- It provides ndarray, a homogeneous n-dimensional array object, with methods to efficiently operate on it.
- NumPy can be used to perform a wide variety of mathematical operations on arrays.
- It adds powerful data structures to Python that guarantee efficient calculations with arrays and matrices and it supplies an enormous library of high-level mathematical functions that operate on these arrays and matrices.

What is an array?

- An array is a central data structure of the NumPy library
- A grid of values containing information about the raw data, how to locate an element, and how to interpret an element
- The elements are all of the same type, referred to as the array dtype

Introduction to Numpy (cont'd)

Installing NumPy

- conda install numpy
- pip install numpy

Importing NumPy

import numpy as np

Let's switch to the jupyter notebook and open "Practice 1.ipynb" to practice NumPy!

Linear algebra

 Is the branch of mathematics concerning linear equations. In the context of machine learning, it is the mathematical toolset to work with data (often vectors, matrices, or tensors)

Vector space:

 A vector space (also called a linear space) is a set of vectors, which may be added together and multiplied ("scaled") by scalar numbers.

What are scalars, vectors, matrices and tensors?

Scalar: a scalar value is simply a number

• e.g.: 0.1, -5, 48.2, pi

Vector: an n-by-1 entity with n values (1D)

• e.g.:
$$\begin{bmatrix} 2 \\ 0 \\ -8.3 \end{bmatrix}$$
 is a 3-by-1 vector (3 rows and 1 column)

Matrix: an n-by-m entity with n*m values (2D)

• e.g.:
$$\begin{bmatrix} 4 & 6 & 75 & 8.4 \\ -8 & 5 & 6 & 55 \\ 0 & 0 & 42 & 54 \end{bmatrix}$$
 is a 3-by-4 matrix (3 rows and 4 column)

Tensor: an n-by-m-by-l entity with n*m*l values (3D)

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

Vector operations:

• Addition:
$$\begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \\ 14 \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \\ 18 \end{bmatrix}$$

• Scalar product:
$$3*\begin{bmatrix} 8\\5\\4 \end{bmatrix} = \begin{bmatrix} 24\\15\\12 \end{bmatrix}$$

Vector operations:

• Dot product:
$$\begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix}$$
. $\begin{bmatrix} 0 \\ -2 \\ 14 \end{bmatrix} = 8 * 0 + 5 * (-2) + 4 * 14 = 46$

- The result of vector dot product (aka inner product) is a scalar (just a number!)
- The dot product of a vector with itself is the square of its magnitude: $\begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix}$. $\begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix}$ = 8*8+5*5+4*4=105
- The dot product is also related to the angle between the two vectors: $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$ where θ is the angle btw the two vectors.
- If $\vec{A} \cdot \vec{B} = 0$, it means that the 2 vectors are perpendicular to each other.

Vector operations:

• Cross product:
$$\begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix} \times \begin{bmatrix} 0 \\ -2 \\ 14 \end{bmatrix} = \begin{bmatrix} 5*14 - (-2)*4 \\ -(8*14 - 4*0) \\ 8*(-2) - 0*5 \end{bmatrix} = \begin{bmatrix} 78 \\ -112 \\ -16 \end{bmatrix}$$

- The result of vector cross product is another vector (NOT just a number!)
- The resultant vector is perpendicular to both original vectors.

•
$$\begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix}$$
. $\begin{bmatrix} 78 \\ -112 \\ -16 \end{bmatrix}$ = 0 and $\begin{bmatrix} 0 \\ -2 \\ 14 \end{bmatrix}$. $\begin{bmatrix} 78 \\ -112 \\ -16 \end{bmatrix}$ = 0

- The cross product is also related to the angle between the two vectors: $\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin \theta \, \vec{n}$ where θ is the angle btw the two vectors and \vec{n} is a unit vector perpendicular to the plane containing \vec{A} and \vec{B} .
- If $\vec{A} \times \vec{B} = 0$, it means that the 2 vectors are collinear, either in the same direction or exact opposite direction.

Covariance and correlation

- Covariance is a mathematical term to quantitatively measure how much two vectors are related to each other. Similarly, it measures how two vectors change with respect to one another
 - $cov_{x,y} = \frac{\sum (x_i \bar{x})(y_i \bar{y})}{N-1}$, no need to remember this formula as we will use python to calculate covariance.
 - What is $cov_{x,x}$?

Covariance and correlation

- A problem with covariance is that it is difficult to interpret. What is a large vs. low covariance value? Is 10, 50, 5000 high or low?
- In order to solve that problem, we need a normalized metric, i.e. correlation.

Correlation

- Correlation is obtained from dividing the covariance by the std of both variables
- Correlation is always btw -1 and 1.

Correlation

- $\rho_{x,y} = 1$ means that there is perfect correlation.
- $\rho_{x,y} = 0$ means that there is no correlation.
- $\rho_{x,y} = -1$ means that there is perfect inverse correlation.

Matrix operations:

• Element-wise addition:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \pm \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a \pm e & b \pm f \\ c \pm g & d \pm h \end{bmatrix}$$

• Multiplication:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

• Is AB=BA? Try with A=
$$\begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}$$
 and B= $\begin{bmatrix} 4 & 1 \\ -2 & 0 \end{bmatrix}$

•
$$\begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$$
 can be used to scale a vector by α : $\begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha x \\ \alpha y \end{bmatrix} = \alpha \begin{bmatrix} x \\ y \end{bmatrix}$

Matrix operations:

• Identity matrix:
$$I_n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1 on the main diagonal and zero elsewhere

- Inverse of a matrix (A^{-1}) : $AA^{-1} = A^{-1}A = I_n$
 - The above simple inverse is only defined for square matrices.
 - Even for square matrices, an inverse may NOT always exist.
- Transpose of a matrix (A' or A^T): flipping a matrix over its diagonal; switching the row and column indices of the matrix.
- Determinant of a 2-by-2 matrix: $det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} =$
- Determinant of a 3-by-3 matrix: $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} =$

Matrix operations:

- Inverse of a 2-by-2 matrix: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
- Inverse of a 3-by-3 matrix:

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$
$$\operatorname{adj}(A) = C^{T}$$
$$C = (-1)^{i+j} M_{ij}$$

Adjugate of a matrix is the transpose of the cofactor matrix. M_{ij} , the (i, j) minor, is the determinant of the submatrix formed by deleting the ith row and jth column.

What is the inverse of the following matrix?

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 0.5 & -0.25 & 0 \\ 0 & 0.5 & 0 \\ -1 & 0.5 & 1 \end{bmatrix}$$

Let's switch to jupyter notebook and open "Practice 2.ipynb" to practice what we have learnt!