

GROWTH OF INTERFACE CRACKS ON CONSECUTIVE FIBERS: ON THE SAME OR ON THE OPPOSITE SIDES?

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

12th International Conference on Composite Science and Technology (ICCST/12) Sorrento (IT), May 8-10, 2019

Outline

- Initiation of Transverse Cracks in FRPCs
- Modeling the Fiber-Matrix Interface Crack
- Debond Energy Release Rate
- Conclusions

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion Microscopic Observations Micromechanics of Initiation Objective of the study

Initiation of Transverse Cracks in FRPCs

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions

Microscopic Observations Micromechanics of Initiation Objective of the study

Microscopic Observations

Left: front view of $[0, 90_2]_S$, visual inspection.

risual inspection.

Center:

edge view of $[0, 90]_S$, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Initiation of Transverse Cracks in FRPCs | Modeling the Fiber-Matrix Interface Crack | Debond Energy Release Rate | Conclusions Microscopic Observations | Micromechanics of Initiation | Objective of the study

Micromechanics of Initiation

Stage 1: isolated debonds

Initiation of Transverse Cracks in FRPCs | Modeling the Fiber-Matrix Interface Crack | Debond Energy Release Rate | Conclusions Microscopic Observations | Micromechanics of Initiation | Objective of the study

Micromechanics of Initiation

Stage 2: consecutive debonds

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Microscopic Observations Micromechanics of Initiation Objective of the study

Micromechanics of Initiation

Stage 3: kinking

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Microscopic Observations Micromechanics of Initiation Objective of the study

Micromechanics of Initiation

Stage 4: coalescence

Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Microscopic Observations Micromechanics of Initiation Objective of the study

Objective of the study

Stage 2: consecutive debonds

- → Effect of debond-fiber interaction?
- → Effect of debond-debond interaction?
 - Effect of relative debond position on consecutive fibers: same or opposite sides?

MODELING THE FIBER-MATRIX INTERFACE CRACK

Geometry

- L, W >> t
- \rightarrow $L, W \rightarrow \infty$
 - Square packing
- \rightarrow $L_d >> \Delta \theta_d$
- → 2D RVE

Representative Volume Elements

$$n \times k$$
 – coupling

 $n \times k$ – asymm

Equivalent Boundary Conditions

Symmetric Coupling

$$u_z(x,h)=u_z^{\nu}$$

Anti-symmetric Coupling

$$u_z(x,h) - u_z(0,h) = -(u_z(-x,h) - u_z(0,h))$$

 $u_x(x,h) = -u_x(-x,h)$

Assumptions

$$R_f = 1 \ [\mu m] \quad L = rac{R_f}{2} \sqrt{rac{\pi}{V_f}}$$

Material	Е	ν
glass fiber	70.0	0.2
ероху	3.5	0.4

- → Linear elastic, homogeneous and isotropic materials
- → Plane strain
- Frictionless contact interaction
- → Symmetric w.r.t. x-axis
- → Coupling of x-displacements on left and right side (repeating unit cell)
- Applied uniaxial tensile strain $\bar{\varepsilon}_x = 1\%$

ransverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Solution

Solution

$$\begin{split} &\inf \Omega_f, \Omega_m: \\ &\frac{\partial^2 \varepsilon_{xx}}{\partial z^2} + \frac{\partial^2 \varepsilon_{zz}}{\partial x^2} = \frac{\partial^2 \gamma_{zx}}{\partial x \partial z} & \text{for } 0^\circ \leq \alpha \leq \Delta \theta: \\ &\varepsilon_f = \gamma_{xy} = \gamma_{yz} = 0 & \text{for } \Delta \theta \leq \alpha \leq 180^\circ: \\ &\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{zx}}{\partial z} = 0 & \overrightarrow{u}_m(R_f, \alpha) - \overrightarrow{u}_f(R_f, \alpha) = 0 \\ &\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} = 0 & \sigma_{ij} = E_{ijkl} \varepsilon_{kl} \\ &\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} = 0 & +BC \end{split}$$

Oscillating singularity

$$\sigma \sim r^{-\frac{1}{2}} \sin(\varepsilon \log r), \quad V_f \to 0$$

$$\begin{split} \varepsilon &= \frac{1}{2\pi} \log \left(\frac{1-\beta}{1+\beta} \right) \\ \beta &= \frac{\mu_2 \left(\kappa_1 - 1 \right) - \mu_1 \left(\kappa_2 - 1 \right)}{\mu_2 \left(\kappa_1 + 1 \right) + \mu_1 \left(\kappa_2 + 1 \right)} \end{split}$$

- Finite Element Method (FEM) in AbaqusTM
- 2nd order shape functions
- 6-nodes triangles & 8-nodes quadrilaterals
- regular mesh of quadrilaterals at the crack tip:
 - AR ~ 1
 - $-\delta = 0.05^{\circ}$

 $\sigma_{VV} = \nu \left(\sigma_{XX} + \sigma_{ZZ} \right)$

Strain Magnification

Debond Energy Release Rate Initiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Strain Magnification Crack Shielding Consecutive Debonds: Mode I Consecutive Debonds: Mode II Non-Consecutive Debonds

Strain Magnification

 $11 \times 1 - asymm$

Strain Magnification

.

.

Strain Magnification

.

-

Crack Shielding

Crack Shielding

.

Crack Shielding

- -

Crack Shielding

Consecutive Debonds: Mode I

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Non-Consecutive Debonds

 3×3 – coupling

nitiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions

nitiation of Transverse Cracks in FRPCs Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion

Conclusions

- → Debond-debond interaction in the through-the-thickness direction is extremely localized: with only a couple of undamaged fibers in between, no effect can be seen!
- → For debonds on consecutive vertically-aligned fibers, G_I is higher and contact zone onset delayed if debonds are on the same side of their respective fiber.
- → No significant difference in G_{II} observed, except in the range $80^{\circ} 100^{\circ}$.
- → In the range $80^{\circ} 100^{\circ}$, G_{II} is higher when debonds are located on opposite sides of consecutive vertically-aligned fibers.

