Multi-Model Communication Project University of Wisconsin-Madison

Gershgorin-Majda 2010 System Simulator

Jason Turner

15th December, 2020

Contents

1	Introduction	3
	1.1 The Gershgorin-Majda 2010 System	3
2	Compiling and Running	4
3	Code Structure	4
A	cknowledgements	5
R	oferences	6

1. Introduction

This code is a test example for the multi-model forecast Kalman filter, as initially formulated in November 2020. In particular, we assume linear, Gaussian models and utilize some linear combination of our models to create a psuedo-truth signal for each model that that model observes. The purpose of this code, at least initially, is to be able to run the Gershgorin-Majda 2010 system, as well as the additive and multiplicative models.

This document is inteded to be supplemental documentation for the README.md files included throughout the code repository.

1.1 The Gershgorin-Majda 2010 System

Although this is not the official name for this test system, it was first proposed by Gershgorin and Majda in [1]. Specifically, the exactly solvable test model is

$$\frac{d u(t)}{dt} = (-\gamma(t) + i\omega) u(t) + b(t) + f(t) + \sigma \dot{W}(t), \tag{1}$$

$$\frac{d b(t)}{dt} = \left(-\gamma_b + i \omega_b\right) \left(b(t) + \hat{b}\right) + \sigma_b \dot{W}_b(t), \qquad (2)$$

$$\frac{d\gamma(t)}{dt} = -d_{\gamma}\left(\gamma(t) + \hat{\gamma}\right) + \sigma_{\gamma}\dot{W}_{\gamma}(t), \qquad (3)$$

where u(t) and b(t) are complex-valued and $\gamma(t)$ is real-valued. The terms b(t) and $\gamma(t)$ represent additive and multiplicative bias corrections terms. Also, ω is the oscillation frequency of u(t), f(t) is external forcing, and σ characterizes the strength of the white noise forcing $\dot{W}(t)$. The parameters γ_b and d_γ represent the damping and parameters σ_b and σ_γ represent the strength of the white noise forcing of the additive and multiplicative bias correction terms, respectively. The parameters \hat{b} and $\hat{\gamma}$ are the stationary mean bias correction values of b(t) and $\gamma(t)$, correspondingly, and ω_b is the frequency of the additive noise. Note that the white noise $\dot{W}_\gamma(t)$ is real-valued while the white noises $\dot{W}(t)$ and $\dot{W}_b(t)$ are complex-valueds and their real and imaginary parts are independent real-valued white noises.

In [1], they consider an oscillatory external forcing

$$f(t) = A_f e^{i\omega_f t} \tag{4}$$

with A_f the strength og the external forcing and ω_f its frequency. For the purpose of testing some parameter estimation techniques, Gershgorin and Majda considered an additive model of the original Gershgorin-Majda 2010 system where there is only additive bias correction

$$\frac{d u(t)}{dt} = \left(-\overline{d} + i \omega\right) u(t) + b(t) + f(t) + \sigma \dot{W}(t), \tag{5}$$

$$\frac{d b(t)}{dt} = \left(-\gamma_b + i \omega_b\right) \left(b(t) + \hat{b}\right) + \sigma_b \dot{W}_b(t), \tag{6}$$

where \overline{d} is the mean value of the damping, as well as a multiplicative model where there is only multiplicative bias correction

$$\frac{d u(t)}{dt} = (-\gamma(t) + i\omega) u(t) + f(t) + \sigma \dot{W}(t), \tag{7}$$

$$\frac{d\gamma(t)}{dt} = -d_{\gamma}\left(\gamma(t) + \hat{\gamma}\right) + \sigma_{\gamma}\dot{W}_{\gamma}(t). \tag{8}$$

2. Compiling and Running

This code utilizes CMake as a build system, and was designed for compilation on Ubuntu 20.04.1. In particular, here are the requirements for compiling and running the code:

- CMake (at least version 3.16).
- netCDF-Fortran (at least version 4.8.0).

Once you have these, simply navigate to the build subdirectory and enter the standard CMake commands

```
cmake ..
cmake --build .
```

This will compile the code, build the headers and NAMELIST, and create the executable gersh-gorin_majda_10. To run the code, enter the command

and an output file out . nc will be generated.

3. Code Structure

In the most overview sense, the simulation code contains a single driver subroutine that calls subroutines to perform the following tasks:

1. Initialize the simulation, including reading the NAMELIST.

- 2. Execute the simulation.
- 3. Finalize the simulation.

Acknowledgements

This project took advantage of netCDF software developed by UCAR/Unidata (http://doi.org/ 10.5065/D6H70CW6) and CMake software.

References

[1] B. GERSHGORIN, J. HARLIM, AND A. MAJDA, *Test models for improving filtering with model errors through stochastic parameter estimation*, Journal of Computational Physics, 229 (2020), pp. 1–31.