CORRIGÉ <u>DÉTAILLÉ</u> DE LA PARTIE "LOGIQUE" DE L'EXAMEN PARTIEL N°1 DE PFSI FISA - 2018-2019

Durée totale: 2h L'épreuve est individuelle et aucun document, calculette ou appareil électronique n'est autorisé.

Vendredi 19 octobre 2018

II - LOGIQUE

(Répondre sur la feuille de copie et la poser sur le tas ''LOGique'')

Rappel de la notation du cours utilisée ici :

EXPRESSION	COMMENTAIRE	EXEMPLE
A∤B	NAND (Non-et) entre les bits A et B	
<u>A</u>	NAND (non-et) bit à bit entre les mots binaires A et B	
<u>A</u> # <u>B</u>	somme (addition) des mots <u>A</u> et <u>B</u>	
A • B	AND (ET) entre les bits A et B	
<u>A</u> - <u>B</u>	Reste de la soustraction du mot <u>B</u> soustrait du mot <u>A</u>	
A + B	OR (OU) entre les bits A et B	
Ā	Complément à 1 (NOT) du bit A	
<u>A</u>	Complément à 1 bit à bit du mot binaire A	
<u>A</u> << 1	Décalage de <u>A</u> de 1 bit vers la gauche	0101 << 1 = 1010

On veut concevoir un petit calculateur CALC séquentiel synchrone commandé et synchronisé sur les fronts montants \underline{\text{du}} du signal d'horloge K.

Il mémorise en interne un mot binaire à 4 bits \underline{Q} disponible en sortie, et calcule sa nouvelle valeur à partir d'une entrée de donnée \underline{D} et d'un code d'opération \underline{P} selon une table de règles événement /action.

Interface:

Nом	LARGEUR	DIRECTION	COMMENTAIRE		
K	1	Entrée	Signal d'horloge de synchronisation		
<u>P</u>	2	Entrée	Code d'opération		
<u>D</u>	4	Entrée	Donnée opérande		
Q	4	Sortie	Valeur mémorisée		

Comportement:

ÉVÉNEMENT	ACTION	Mnémonique	COMMENTAIRE	Түре
P = 01 ∧ K↑	$\underline{Q} \leftarrow \underline{Q} \downarrow \underline{D}$	NAN	Not-And-Not bit à bit	
P = 10 ∧ K↑	$\underline{Q} \leftarrow \underline{Q} \# \underline{D}$	ADD	ADDition	
P = 11 ∧ K↑	$Q \leftarrow Q - D$	SUB	SUBstract: soustraction	

<u>Rappel</u>: il est implicitement spécifié que pour les autres valeurs de \underline{P} (donc ici 00) \underline{Q} garde sa valeur (maintien); il faudra donc ensuite compléter cette table avec une ou plusieurs rangées pour l'indiquer explicitement.

Note: Ce corrigé est très détaillé :

seules les parties encadrées en rouge étaient demandées.

De même, les ballons sont explicatifs et n'étaient pas demandés.

1. SPÉCIFICATION

Décrire graphiquement l'interface de CALC au moyen d'une représentation symbolique.

2. ANALYSE

2.1. Donner la structure interne de CALC sous forme de machine de Moore simplifiée (sans réseau logique de sortie).

2.2. Spécifier le Réseau Logique d'État RLE (qui effectue la fonction de transition):

b/ **comportement** par une table de vérité généralisée (dite aussi étendue) donnant pour chaque valeur de la commande \underline{P} une expression algébrique de **l'état suivant** \underline{S} en fonction de **l'état actuel** \underline{Q} et de **l'entrée de donnée** \underline{D} .

Comme indiqué dans le rappel du sujet, on complète la table de règles pour tenir compte de tous les événements non prévus **explicitement** (ici P = -- sans $K \uparrow$ et $P = 00 \land K \uparrow$);

pour ces derniers la spécification prévoit <u>implicitement</u> que Q ne change pas;

- pour P = -- (quelconque) sans $K \uparrow$, la bascule D ne change de toute façon pas sa valeur mémorisée Q;
- pour $P = 00 \land K \uparrow$ elle le fera et faut donc alors que $Q \leftarrow Q$:

ÉVÉNEMENT ACTION MNÉMONIQUE		COMMENTAIRE	TYPE	
P = 01 ∧ K↑	$\underline{Q} \leftarrow \overline{\underline{Q}} \downarrow \underline{D}$	NAN	NAN : Not-And-Not	Logique
P = 10 ∧ K↑	$\underline{Q} \leftarrow \underline{Q} \# \underline{D}$	ADD	Add: addition	Arithmétique
P = 11 ∧ K↑	$\underline{Q} \leftarrow \underline{Q} - \underline{D}$	SUB	Substract	Arithmétique
<u>P</u> = 00 ∧ K↑	<u>Q</u> ← <u>Q</u>		passage de <u>Q</u>	Transfert

Ensuite on déduit la table de vérité généralisée (ou étendue) :

<u>P</u>	<u>s</u>		
01	<u>Q</u> ∤ <u>D</u>		
10	<u>Q</u> # <u>D</u>		
11	<u>Q</u> - <u>D</u>		
00	<u>Q</u>		
<u> </u>			

2.3. Décomposition en tranches

a/Donner l'expression algébrique du mot reste \underline{R} de la soustraction $\underline{R} = \underline{A} - \underline{B}$ en utilisant une addition #

$$\underline{R} = \underline{A} - \underline{B} = \underline{A} \# (-\underline{B}) = \underline{A} \# Complément \underline{\hat{a}} \underline{2}(\underline{B}) = \underline{A} \# (\overline{\underline{B}} \# 1) = \underline{A} \# \overline{\underline{B}} \# 1$$

$$\underline{\mathbf{R}} = \underline{\mathbf{A}} - \underline{\mathbf{B}} = \underline{\mathbf{A}} \# \overline{\underline{\mathbf{B}}} \# 1$$

b/ On considère un additionneur capable d'effectuer la somme \underline{S} des mots binaires \underline{A} et \underline{B} découpé en tranches de 1 bit. Rappeler (ou retrouver au brouillon puis indiquer) **l'expression du bit de rang n de sortie de somme S_n et de sortie de retenue C_n.**

On a vu en cours (et aussi dans la fiche "additionneur") qu'un additionneur qui fournit $\underline{S} = \underline{A} \# \underline{B} \# I$ avec deux opérandes \underline{A} et \underline{B} une retenue d'entrée I

(à laquelle est égale la retenue d'entrée I_0 de la tranche n°0)

a pour formules de tranche, en appelant I_n la retenue d'entrée de la tranche n°n :

$$S_n = A_n \oplus B_n \oplus I_n$$

$$C_n = A_n . B_n + A_n . I_n + B_n . I_n$$

c/ Dessiner la structure interne du réseau logique d'état avec des tranches identiques (de 1 bit de large) exemplaires (instances) d'une tranche modèle RLE¹.

Pour chaque opération, que vaut le bit de sortie S_n du RLE ? Quels bits d'entrée du RLE sont nécessaires pour le calculer ?

• Pour P=00, passage de Q:

 $\underline{\mathbf{S}} = \underline{\mathbf{Q}} \Rightarrow \mathbf{S}_n = \mathbf{Q}_n \ \forall n \in [0 ... N-1];$ on a seulement besoin de \mathbf{Q}_n ; aucune retenue n'est nécessaire

Ceci peut être fait avec un exemplaire n°n RLE¹_n de tranche modèle RLE¹ où :

$$S = Q$$

Pour chaque tranche exemplaire $n^{\circ}n$ RLE_{n}^{1} , on relie Q sur Q_{n} et S_{n} sur S.

On aura donc bien pour cette tranche n°n:

$$S_n = S = Q = Q_n \text{ d'où } Q_n = Q_n.$$

• Pour P=01, Not and Not:

 $\underline{S} = \overline{Q} \wedge \underline{D} \Rightarrow S_n = \overline{Q}_n \wedge D_n \ \forall n \in [0 ... N-1]$; on a besoin de Q_n et D_n ; aucune retenue n'est nécessaire.

Ceci peut être fait avec un exemplaire n°n RLE¹ de tranche modèle RLE¹ où :

$$S = \overline{Q} \wedge D$$

Pour chaque tranche exemplaire $n^{\circ}n$ RLE $_n^1$, on relie Q sur Q_n , S_n sur S (déjà fait) et D sur D_n . On aura donc bien pour cette tranche $n^{\circ}n$:

$$S_n = S = \overline{Q} \ \ \ \ D = \overline{Q}_n \ \ \ \ \ D_n \ \ d'où \ S_n = \overline{Q}_n \ \ \ \ D_n$$

Corrigé de la partie "Logique" de l'examen n°1 de PFSI FISA 2018-2019 - Alexandre Parodi - Octobre 2019

- Pour P=10, ADDition:
- La sortie S du RLE est alors (cf. b):

$$\underline{S} = \underline{Q} \# \underline{D} = \underline{A} \# \underline{B} \# \underline{I}$$

avec
$$\underline{\mathbf{A}} = \mathbf{Q}$$
, $\underline{\mathbf{B}} = \underline{\mathbf{D}}$, et $\mathbf{I} = \mathbf{0}$.

Chaque tranche aura donc pour équation:

$$S_n = Q_n \oplus D_n \oplus I_n \forall n \in [0 .. N-1];$$

on a besoin de Q_n et D_n et de la retenue d'entrée I_n qui vient de la tranche précédente n°n-1.

- On doit aussi fournir la retenue de sortie C_n à la tranche suivante n°n+1;
- . la retenue de sortie de la tranche n°n est : $C_n = Q_n \cdot D_n + Q_n \cdot I_n + D_n \cdot I_n \forall n \in [0 ... N-1]$;
- . la retenue d'entrée de la tranche n°n est: $I_n = C_{n-1}$ retenue de sortie de la tranche précédente n°n-1 \forall n \in [1 .. N-1] .

Pour la tranche n°0, la retenue d'entrée I_0 doit être nulle: $I_0 = 0$

Chaque tranche peut être faite avec un exemplaire de tranche modèle où :

$$S = Q \oplus D \oplus I$$

$$C = Q.D + Q.I + D.I$$

Pour chaque tranche exemplaire $n^{\circ}n$ RLE $_{n}^{1}$, on relie Q sur Q $_{n}$ et S $_{n}$ sur S, D sur D $_{n}$ (déjà fait) et I sur C de la tranche précédente n° n-1 pour $n \in [1 ... N-1]$ et sur 0 pour n=0 donc pour la première tranche à droite.

On aura donc bien pour cette tranche n°n:

$$S_n = S = Q \oplus D \oplus I = Q_n \oplus D_n \oplus I_n \text{ d'où } S_n = Q_n \oplus D_n \oplus I_n$$

$$I_n = I = C_{n-1} \text{ pour } n > 0 \text{ et } I_0 = 0$$

$$C_n = C = Q . D + Q . I + D . I = Q_n . D_n + Q_n . I_n + D_n . I_n$$

- Pour <u>P</u>=11, SUBstract:
- La sortie S du RLE est alors (cf. a):

$$S = O - D = O \# \overline{D} \# 1$$

Il s'agit donc d'une addition de \underline{Q} , non \underline{D} et 1. Il suffit donc d'utiliser les mêmes formules d'additionneur et d'utiliser \underline{D} au lieu de \underline{D} et de placer $I_o=1$ au lieu de 0, ce qui ajoutera 1.

$$\Rightarrow$$
 $S_n = Q_n \oplus \overline{D}_n \oplus I_n \forall n \in [0 .. N-1];$

on a besoin de Q_n et D_n et de la retenue d'entrée I_n qui est la sortie de retenue C_{n-1} de la tranche précédente n°n-1.

- On doit aussi fournir la retenue de sortie C_n à la tranche suivante n°n+1;
- . la retenue de sortie de la tranche n°n est : $C_n = Q_n \cdot \overline{D}_n + Q_n \cdot I_n + \overline{D}_n \cdot I_n \forall n \in [0 ... N-1]$;
- . la retenue d'entrée de la tranche n°n est: $I_n = C_{n-1}$ retenue de sortie de la tranche précédente n°n-1 \forall n \in [1 .. N-1] .

En revanche pour la tranche n°0, la retenue d'entrée I_0 doit être l'unité: $I_0 = 1$.

Chaque tranche peut être faite avec un exemplaire de tranche modèle où :

$$S = O \oplus \overline{D} \oplus I$$

$$C = Q.\overline{D} + Q.I + \overline{D}.I$$

Pour chaque tranche exemplaire $n^{\circ}n$ RLE $_{n}^{1}$, on relie Q sur Q $_{n}$ et S $_{n}$ sur S, D sur D $_{n}$ (déjà fait) et I sur C de la tranche précédente n° n-1 pour $n \in [1 ... N-1]$ et sur 0 pour n=0 donc pour la première tranche à droite.

On aura donc bien pour cette tranche n°n:

$$S_n = S = Q \oplus D \oplus I = Q_n \oplus D_n \oplus I_n \text{ d'où } S_n = \ Q_n \oplus D_n \oplus I_n$$

$$I_n = I = C_{n-1} \text{ pour } n > 0 \text{ et } I_0 = 1$$

$$C_n = C = Q \;.\; D \;+\; Q \;.\; I \;\; + \;\; D \;.\; I = Q_n \;.\; D_n \;+\; Q_n \;.\; I_n \;+\;\; D_n \;.\; I_n$$

On note que la retenue d'entrée I₀ de la tranche n°0 (et donc l'entrée I de la tranche n°0) doit être:

$$I_0 = 0 \text{ pour } P_1 P_0 = 10$$

$$I_0 = 1 \text{ pour } P_1 P_0 = 11$$

On remarque aussi que I₀ n'est pas utilisée pour calculer C ou S pour les autres valeurs de P:

$$I_0 = - pour P_1 P_0 = 00$$

$$I_0 = - pour P_1 P_0 = 01$$

A priori il faudrait donc une fonction $\ \log$ ique qui calcule I_0 à partir de \underline{P} ; la dont la table de Karnaugh de ctte fonction est:

D'où: $I_0 = P_0$

d/spécifier graphiquement l'interface de la tranche modèle RLE¹.

e/ spécifier le comportement de la tranche modèle RLE¹ au moyen d'une table de vérité étendue:

- la première colonne indique les diverses valeurs de P;
- on a une colonne supplémentaire par bit de sortie;
- chaque rangée correspond à une valeur de la commande <u>P</u> ;

On peut résumer la solution directe de la question 2.3c avec la table de vérité généralisée:

2.4 Déterminer le polynôme booléen réduit de chaque bit de sortie de la tranche modèle

С									
IQD	000	001	011	010	110	111	101	100	noms monômes
$P_1 P_0$			V				<u>'</u>		pas demandés
00	•	۵)		- B	0 -		<u> </u>	<u> </u>	
01	-	-	(- _v	-		1		ء)-	
11	0	0	0	1	1	1	0	1	
10	0	0	1.	. 0	1	6 1	1	0	
				******	*********	T T	1		

On pourra choisir si une case "joker" - est 1 ou 0 pour assurer la meilleure réduction possible.

Il faut couvrir au moins une fois tous les 1 (en couvrant donc éventuellement des -) avec des rectangles aussi grands et peu nombreux que possible, dont largeur w et hauteur h sont des puissances de 2.

Les positions sont contraintes: pour $(w; h) \in \{2, 4, 8\}^2$ la position (x, y) du coin supérieur gauche doit être $(x; y) \in [m \cdot w/2; n \cdot h/2]$ avec m et n entiers.

Le tableau peut être vu comme un cylindre vertical et horizontal (tore), et chaque demi-tableau aussi. Enfin, des cases superposées quand on plie le tableau en deux selon sa médiane peuvent être regroupées.

- Les cases [011.10] et [011.00] forment un même rectangle [011.10 011.00] quand on enroule le tableau comme un cylindre horizontal.
- Il en est de même des cases [111.10] et [111.00] qui forment le rectangle [111.10 111.00].
- Les rectangles [011.10 011.00] et [111.10 111.00] se recouvrent quand on replie le tableau selon la médiane verticale: ils peuvent donc être regroupés.
- Les rectangles [110.01 110.11] et [100.01 100.11] sont sur des bords opposés d'un demi-tableau : ils forment donc en fait un seul rectangle [100.01 110.11] si on considère ce demi-tableau enroulé en un cylindre vertical.

Les divers regroupements sont plus ou moins visibles selon l'ordre des variables choisi; cependant, en appliquant toutes les règles, ils donnent le même résultat.

ZONE	Nom	MONÔME	FACTEURS
$[011.10 - 011.00] \cup [111.10 - 111.00]$	α	$\overline{P_0}$. Q.D	3
[110.00 - 111.10]	β	I.Q	2
[010.01 - 110.11]	γ	P_{0} , Q , \overline{D}	3
[111.10 - 101.00]	δ	\overline{P}_{0} , I.D	3
[100.01 - 110.11]	3	P_0 , I , \overline{D}	3

$$C = \overline{P_0} \cdot Q \cdot D + I \cdot Q + P_0 \cdot Q \cdot \overline{D} + \overline{P_0} \cdot I \cdot D + P_0 \cdot I \cdot \overline{D}$$

Vérification:

$$\begin{array}{l} P_{1} P_{0} = 10 \implies \\ C = \overline{0}. \ Q. \ D + I. \ Q + 0. \ Q. \ \overline{D} + \overline{0}. I. \ D + 0. I. \overline{D} = Q. \ D + I. \ Q + I. \ D \\ P_{1} P_{0} = 11 \implies \\ C = \overline{1}. \ Q. \ D + I. \ Q + 1. \ Q. \ \overline{D} + \overline{1}. I. \ D + 1. \ \overline{D} = I. \ Q + Q. \ \overline{D} + I. \ \overline{D} \end{array}$$

ZONE	Nom	MONÔME	FACTEURS
[011.00 - 111.01]	φ	$\overline{\mathbf{P}_{1}}$. Q	2
$[010.01 - 110.01] \cup [100.01 - 000.01]$	κ	$\overline{P_1}.P_0.\overline{D}$	3
[010.10 - 010.00]	λ	$\overline{P_0}$, \overline{I} , \overline{Q} , \overline{D}	4
[000.01 - 000.11]	μ	P_0 , \overline{I} , \overline{Q} , \overline{D}	4
[011.01 - 011.11]	ω	P_0 , \overline{I} , Q , D	4
[110.01 - 110.11]	π	P_{0} , I , Q , \overline{D}	4
[111.10 - 111.00]	ρ	$\overline{P_0}$. I. Q. D	4
[101.11]	σ	P_1 , P_0 , I , \overline{Q} , D	5
[100.10]	θ	$P_1 \cdot \overline{P_0} \cdot I \cdot \overline{Q} \cdot \overline{D}$	5
[001.10]	τ	P_1 , $\overline{P_0}$, \overline{I} , \overline{Q} , \overline{D}	5

40

$$S = \overline{P_{1}} \cdot Q \\ + \overline{P_{1}} \cdot P_{0} \cdot \overline{D} \\ + \overline{P_{0}} \cdot \overline{I} \cdot Q \cdot \overline{D} \\ + P_{0} \cdot \overline{I} \cdot \overline{Q} \cdot \overline{D} \\ + P_{0} \cdot \overline{I} \cdot Q \cdot \overline{D} \\ + P_{0} \cdot \overline{I} \cdot Q \cdot \overline{D} \\ + \overline{P_{0}} \cdot I \cdot Q \cdot \overline{D} \\ + \overline{P_{0}} \cdot I \cdot Q \cdot \overline{D} \\ + P_{1} \cdot P_{0} \cdot I \cdot \overline{Q} \cdot \overline{D} \\ + P_{1} \cdot \overline{P_{0}} \cdot \overline{I} \cdot \overline{Q} \cdot \overline{D} \\ + P_{1} \cdot \overline{P_{0}} \cdot \overline{I} \cdot \overline{Q} \cdot \overline{D} \\ + P_{1} \cdot \overline{P_{0}} \cdot \overline{I} \cdot \overline{Q} \cdot \overline{D}$$

Vérification:

$$P_{1}P_{0} = 00 \Rightarrow S = Q + \overline{1}. Q.\overline{D} + I.Q.D = Q.(1 + \overline{1}.\overline{D} + I.D) = Q.1 = Q$$

$$P_{1}P_{0} = 01 \Rightarrow S = Q + \overline{D} + \overline{I}.\overline{Q}.\overline{D} + \overline{I}.Q.D + I.Q.\overline{D} = Q.(1 + \overline{I}.D + I.\overline{D}) + \overline{D}.(1 + \overline{I}.\overline{Q}) = Q.(1 + \overline{D}.1 = Q + \overline{D} = \overline{Q}.D = \overline{Q}.D = \overline{Q}.D = \overline{Q}.D = Q.(1 + \overline{I}.D + I.\overline{D}) + \overline{D}.(1 + \overline{I}.\overline{Q}) = Q.(1 + \overline{D}.D = \overline{D}.D =$$

3. SYNTHÈSE:

 $\bf 3.1.$ Réécrire les polynômes booléens réduits des sorties de la tranche modèle $\it RLE^l$ avec seulement des opérateurs NOT et NAND .

Il s'agit d'un polynôme, donc on peut remplacer OU et ET par NAND, <u>mais avec des parenthèses</u> car <u>NAND n'est pas associatif</u>:

$$C = (\overrightarrow{P_0} \land Q \land D) \land (\overrightarrow{I} \land Q) \land (\overrightarrow{P_0} \land Q \land \overrightarrow{D}) \land (\overrightarrow{P_0} \land \overrightarrow{I} \land D) \land (\overrightarrow{P_0} \land \overrightarrow{I} \land \overrightarrow{D})$$

$$S = (\overline{P_1} \land Q)$$

$$\land (\overline{P_1} \land P_0 \land \overline{D})$$

$$\land (\overline{P_0} \land \overline{1} \land Q \land \overline{D})$$

$$\land (P_0 \land \overline{1} \land \overline{Q} \land \overline{D})$$

$$\land (P_0 \land \overline{1} \land Q \land \overline{D})$$

$$\land (P_0 \land \overline{1} \land Q \land \overline{D})$$

$$\land (\overline{P_0} \land \overline{1} \land Q \land \overline{D})$$

$$\land (\overline{P_0} \land \overline{1} \land Q \land \overline{D})$$

$$\land (P_1 \land \overline{P_0} \land \overline{1} \land \overline{Q} \land \overline{D})$$

$$\land (P_1 \land \overline{P_0} \land \overline{1} \land \overline{Q} \land \overline{D})$$

$$\land (P_1 \land \overline{P_0} \land \overline{1} \land \overline{Q} \land \overline{D})$$

$$\land (P_1 \land \overline{P_0} \land \overline{1} \land \overline{Q} \land \overline{D})$$

3.2. Dessiner le réseau logique de la tranche modèle RLE¹ aussi ordonné que possible avec des portes NOT et NAND.

Nous dessinons ci-après la tranche modèle du RLE sous forme matricielle :

Corrigé de la partie "Logique" de l'examen n°1 de PFSI 2016-2017 - Alexandre Parodi - Octobre 2016

Non demandé: Calcul de la complexité de la synthèse

C'est le nombre d'entrées de porte, donc le nombre de croix:

	C	S	
entrées de portes NOT uniques (utilisées une ou plusieurs fois)			5
facteurs de monômes uniques (utilisés une ou plusieurs fois)	14	40	54
utilisations des monômes	5	10	15
Total:			74

On note que les sorties de porte NOT sont souvent réutilisées ; en revanche, les monômes ne sont utilisés qu'une seule fois chacun.

L'ensemble du calculateur aura donc une complexité de 4 tranches x 74 = 296

Une entrée de porte nécessitant 2 transistors en CMOS, il faudra donc 296 x 2 = 592 transistors.