Deductive Arguments

Sound: All premises are true \bigwedge conclusion is true

Valid: All premises are true ⇒ conclusion is true

Invalid: All premises are true Λ conclusion is false

Premises	Conclusions	Validity	Soundness
Т	Т	Valid (T)	Sound (T)
Т	F	Invalid (F)	Not Sound (F)
F	Т	Valid (T)	Not Sound (F)
F	F	Valid (T)	Not Sound (F)

Logical Connectives

Symbol	Name	Formal Name	Туре	Hierarchy of Connectives
~	Not And Or If then If and only if	Negation Conjunction Disjunction Conditional Biconditional	Unary Binary Binary Binary Binary	Low Medium Medium High High

Atomic: Statement with no logical connectives (use letters P to Z)

Molecular: Statement with logical connectives

Official Notation

- 1. () around binary connective $(\Lambda, V, \rightarrow, \leftrightarrow)$
- 2. No () around unary connective (~) and atomic statement

Informal Notation

- 1. () around *some* binary connectives $(\bigwedge, \bigvee, \rightarrow, \leftrightarrow)$
- 2. No () around unary connective (~) and atomic statement
- 3. Use hierarchy of connectives to disambiguate

eg. (P
$$\bigvee$$
 (Q \longrightarrow (P \bigwedge R))) = P \bigvee (Q \longrightarrow P \bigwedge R)

4. Use right-most rule to disambiguate collections of all Λ and all ${\sf V}$

eg. (((P
$$\bigwedge$$
 Q) \bigwedge R) \bigwedge S) = P \bigwedge Q \bigwedge R \bigwedge S

Main Connective: Basically the main/central logical connective of an argument. Scope applies to the entire argument.

Antecedent: Left side of conditional/biconditional (condition)

Consequent: Right side of conditional/biconditional (consequence)

Truth Value: Whether a statement is true or false

Truth Value Assignment (TVA): An assignment of T or V values to all variables in a statement (ie. T and F tables)

Statements	Set of Statements
Tautology: True under every TVA	Consistent: If there's a TVA that makes them all true
Contradiction: False under every TVA	Inconsistent: If no TVA makes all of them true
Contingent: If there're TVAs that can make them true	Logically Equivalent: If all of them have the same truth values for all TVAs
and false	

A statement/set of statements is	Find
Not Tautology Not Contradiction	TVA that makes it F TVA that makes it T
Contingent	2 TVAs that makes statement T and F
Not Logically Equivalent	TVA that makes one statement T, the other F
Consistent	TVA that makes it T
Not Inconsistent	TVA that makes it T
Invalid	Case where premises T, conclusion F

Symbolization

Comma = Can help disambiguate, group everything before or after it into a statement

Phrase	Logic	
P, provided Q	$Q \longrightarrow P$	
P is necessary for Q		
Only if/when P, then (is it the case that) Q		
P if Q		
P assuming Q		
P given that Q		
P on the condition of Q		
P in case Q		
P, only provided Q	$P \longrightarrow Q$	
Assuming/if/whenever P, then Q		
For P, Q (is necessary)		
For P, it is necessary that Q		
P is enough/sufficient for Q		
P, only if/when Q		
P, only on the condition of Q		
P only if/when Q		
P means Q		

If P, then Q	
	$P \leftrightarrow Q$
P is necessary & sufficient for Q P exactly on the condition of Q	r G Q
P exactly on the condition of Q P if and only if Q	
P just in case Q	
r just iii case Q	
Neither P nor Q	~P
	~(P V Q)
	- \/ -
Not P and Q	~P V ~Q
	~(P \(\Lambda\) Q)
P exclusive or Q	$(P \lor O) \land \sim (P \land O)$
. Creasive of Q	(P ∧ ~O) V (~P ∧ O)
	$\sim (P \leftrightarrow Q)$
	~[r < > Q)
P unless Q	$\sim Q \longrightarrow P$
P except for/when Q	P V Q
Either P or Q	$\sim P \longrightarrow Q$
P or Q	
All of P, Q, R	P ∧ Q ∧ R
At	None ${\sf V}$ Exactly One ${\sf V}$ Exactly Two
At most two of P, Q, R	None \mathbf{V} Exactly One \mathbf{V} Exactly Iwo (~P Λ ~Q Λ ~R) \mathbf{V}
	$(P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R) \lor$
	$(P \ $
	or \sim (P Λ Q Λ R)
At most one of P, Q, R	None V Exactly One
, a most one or i, Q, ii	(~P \(\lambda\) ~ R) \(\nabla\)
	$(P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R)$
	(r / 1 ~ Q / 1 ~ n)
At least two of P, Q, R	$(P \; \bigwedge \; Q) \; V \; (P \; \bigwedge \; R) \; V \; (Q \; \bigwedge \; Q)$
At least one of P, Q, R	$_{P}\;V\;_{Q}\;V\;_{R}$
Exactly two of P, Q, R	$(P \; \bigwedge \; Q \; \bigwedge \; \sim R) \; V \; (P \; \bigwedge \; \sim Q \; \bigwedge \; R) \; V \; (\sim P \; \bigwedge \; Q \; \bigwedge \; R)$
Exactly one of P, Q, R	$(P \; \bigwedge \; \sim Q \; \bigwedge \; \sim R) \; V \; (\sim P \; \bigwedge \; Q \; \bigwedge \; \sim R) \; V \; (\sim P \; \bigwedge \; \sim Q \; \bigwedge \; R)$
None of P, Q, R	~(P V Q V R)
None of L, Q, II	~P \ ~Q \ \ ~R
	V v. v. V v. v. v.
X, which is P, Q	P \bigwedge Q
·	

X, who is P, Q

P and Q

P but Q

P, although Q

P, even though Q

P; Q

If P, then Q, and in that case, R

$$(P \longrightarrow Q) \bigwedge (Q \longrightarrow R)$$

Derivation

A__: Assume __

CD: Conditional derivation

ID: Indirect derivation

DD: Direct derivation

Repetition R	Modus Ponens MP	Modus Tollens MT	Double Negation
Р	$P \longrightarrow R$	$P \longrightarrow R$	~~P
P	P R	~R •• ~P	∴ P
Adjunction ADJ	Simplification S/SL/SR	Modus Tollendo Ponens MTP	Addition ADD
Р	P ∧ R	P V R	Р
R ∴ P ∧ R	P R	~P	∴ p V R
Bicondi	itional-Conditional BC	Conditional-B	
$P \longleftrightarrow R$		P→R	
p→RR—	→ P	R→P ∴ P ↔ R	

Notes:

- Can't simplify P \leftrightarrow ~~Q. Double negation only works when ~ is in front.
- Using Modus Tollens on $\sim P \longrightarrow \sim R$, you have to write $\sim \sim R$, ••• $\sim \sim P$.

Negation of Conditional		Negation of Biconditional (Exclusive Or)		
	NC	NB		
\sim (P \longrightarrow R)	P ∧ ~R	$\sim (P \leftrightarrow Q)$	P ↔ ~Q	
∴ P ∧ ~R	∴ ~(P → R)	p ↔ ~Q	. • ~(P ↔ Q)	

De Morgan's Law		Separation of Cases	
~(P V R) ∴ ~P ∧ ~R	~(P ∧ R) ∴ ~P ∨ ~R	$P \bigvee Q$ $P \rightarrow R$ $Q \rightarrow R$ $\therefore R$	$P \to R$ $\sim P \to R$ $\therefore R$
Conditional as Disjunction CDJ			
$P \longrightarrow R$	~P V R	$\sim P \longrightarrow R$	P ∨ R
∴ ~P V R	$P \rightarrow R$	∴ p V R	∴ ~P → R

Predicate Logic

Atomic Sentence Letters P-Z
Individual Constants/Names a-h
Variables i-z

Operation Letters $a-h, \ or \ a^0, \ a^1, \ a^2, \dots$ $Predicate \ Letters \\ A-O, \ or \ F^0, \ F^1, \ F^2, \dots$

Logical Connectives $\sim, \rightarrow, \leftarrow, \lor, \land$

Brackets/Parentheses (), []
Quantifiers \exists , \forall Identity Sign

Operator Logical Connectives + Quantifiers

 $\exists x \forall y = All y \text{ and one specific } x$ $\forall y \exists x = A \text{ unique } x \text{ for all } y$

 $\exists x(Fx \land \forall xGx) \equiv \exists x(Fx \land \forall yGy)$

"All x isn't y, except for z" - doesn't imply z is y

Implicature: Not logical, but implied in everyday language

Implication: Logical

Logical Equivalences

Contrapositive	Biconditional	Exportation	Quantifier N	Negation
$P \longrightarrow Q$ \equiv $\sim Q \longrightarrow \sim P$	$P \leftrightarrow Q$ \equiv $(P \rightarrow Q) \bigwedge (Q \rightarrow P)$	$P \land Q \rightarrow R$ \equiv $P \rightarrow (Q \rightarrow R)$	~ ♥ xAx ≡ ∃ x~Ax	~∃xAx ≡ ∀x~Ax

Symbolization

All A are B $\forall x(Ax \rightarrow Bx)$

A are B

The A is B

Any A is B

If you're A, then you're B

Some A are B $\exists x(Ax \land Bx)$

At least one A is B

There exists/is an A that is B

Only A are B	$\forall_{X(Bx} \longrightarrow Ax)$
x is y's only Z	$x = Zy \wedge \sim \exists a(a \neq x \wedge Za)$
	x is y's only Z, and no other a is
	$x = Zy \wedge \forall a(Za \rightarrow a = x)$
	x is t's only Z, and every a that is y's Z is actually just x
	\forall a(a = Zy \leftrightarrow a = x)
	Every a is y's Z iff it is x
X is the best	$\forall a(a \neq x \longrightarrow B(xa))$
	x is better than every a that isn't x
	~ ∃ a(B(ax))
	There is no a that is better than x
X did at least 1 thing.	\exists aD(Xa)
X did at least 2 (unique) things.	$\exists a(D(Xa) \land \exists b(a \neq b \land D(Xb)))$
	X did a, X did b, and a ≠ b
X did at least 3 (unique) things.	$\exists a(D(Xa) \land \exists b(a \neq b \land D(Xb) \land \exists c(a \neq c \land b \neq c \land D(Xc))))$
	X did a , X did b , X did C , $a \neq b$, $a \neq c$, and $b \neq c$
X did at most 1 thing.	$\forall a(D(Xa) \rightarrow \forall n(D(Xn) \rightarrow n = a))$
	If X did any a , then if X did any n , then $n=a$
	$\sim \exists a(D(Xa) \land \exists b(a \neq b \land D(Xb)))$
	X did not do at least 2 things
X did at most 2 (unique) things.	$\forall a(D(Xa) \rightarrow \forall b(D(Xb) \rightarrow \forall n(D(Xn) \rightarrow n = a \lor n = b \lor a = b)))$
	$\forall a \forall b \forall n(D(Xa) \land D(Xb) \land D(Xn) \rightarrow n = a \lor n = b \lor a = b)$
	$\sim \exists a(D(Xa) \land \exists b(a \neq b \land D(Xb) \land \exists c(a \neq c \land b \neq c \land D(Xc))))$
X did exactly 1 thing.	$\exists aD(Xa) \land \forall n(D(Xn) \rightarrow n = a)$
	X did a, and if X did any n, then n = a
	$\exists aD(Xa) \land \sim \exists n(D(Xn) \land n \neq a)$
	X did a , and there is no $n \neq a$ that X did
	\forall n \exists a(D(na))
	n did a if and only if $n = X$

Symbolic sentence can only have bound variables (previously introduced by $\exists \ / \ \forall$), no free variables

- Eg. \exists x(Ax \land Bx), where x is a bound variable. Good.
- Eg. \exists x(Ax \bigwedge By), where y is a free variable. Bad.

Universe of Discourse: Everything in the bounds of a quantifier

Direction Derivation (DD)

Conditional Derivation (CD) - a conditional statement

Indirect Derivation (ID) - assuming the opposite, getting a contradiction

Universal Derivation (UD) - pick an arbitrary member of the universe, prove something for it

Derivation

Universal Instantiation UI	Existential Instantiation EI	Existential Generalization EG			r Negation QN	
∀ xAx	∃xAx	Ax	~ V xAx	∃ x~Ax	~∃xAx	∀ x~Ax
• • Ay	•• Ay	∴∃уАу	∴∃x~Ax	∴ ∀xAx	∴ ∀ x~Ax	~ 3 xAx

Alphabetic Variance	
∀ xAx	∃ xAx
 ∀ yAy	∴∃уАу

eg. No one watches every movie

Watches(no one, every movie)

No one = $\sim \exists x(Someone(x) \land ...)$ Every movie = $\forall y(Movie(y) \rightarrow ...)$

 $\sim \exists x(Someone(x) \land \forall y(Movie(y) \rightarrow Watches(xy)))$