BÀI TẬP GIẢI TÍCH 1

Năm học 2025 - 2026

CHƯƠNG 1: GIỚI HẠN VÀ LIÊN TỤC

PHẦN TỰ LUẬN

Bài 1. Tính giới hạn

1)
$$\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 5} - x)$$

2)
$$\lim_{x \to -\infty} (\sqrt{x^2 - 5x - 1} - \sqrt{x^2 + 3x + 3})$$

$$3) \lim_{x \to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x}$$

4)
$$\lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - \sqrt[3]{x}} \right)$$

5)
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x-1} + \frac{1}{x+1} \right)$$

$$6) \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + 1}}$$

$$7) \lim_{x \to \infty} x^2 \left(1 - \cos \frac{1}{x} \right)$$

8)
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x^2} - \cos x}{x^2}$$

9)
$$\lim_{x\to 0} \frac{\sqrt{5} - \sqrt{4 + \cos x}}{x^2}$$

10)
$$\lim_{x \to 2} \frac{2^x - x^2}{x - 2}$$

11)
$$\lim_{x\to 0} \frac{e^{x^3} - 1 + x^2}{x \tan x}$$

12)
$$\lim_{x \to 0} \frac{e^x - \cos x}{\sqrt{1 + 2x} - 1}$$
.

13)
$$\lim_{x \to 0} \frac{1 - \cos x}{\sqrt[4]{1 + 4x^2} - 1}$$
.

14)
$$I = \lim_{x \to 0} \frac{1 - \cos 5x}{\ln(1 + x \sin x)}$$
.

15)
$$I = \lim_{x \to 0} \frac{1 - \sqrt{\cos x} \cdot \sqrt{\cos 2x}}{\sin^2 x}.$$

16)
$$\lim_{x \to 1} (1 - x) \tan \frac{\pi x}{2}$$

$$17) \lim_{x \to \infty} \left(\frac{3x+1}{3x+2}\right)^{4x}$$

18)
$$\lim_{x \to \infty} \left(\frac{3x^2 + 1}{3x^2 + 5} \right)^{2x^2 + x}$$

19)
$$\lim_{x \to \infty} \left(\frac{2x^2 + 1}{2x^2 - 5} \right)^{x^2}$$

$$20) \lim_{x \to \infty} \left(\frac{x+2}{x+1}\right)^{3x}$$

21)
$$\lim_{x \to 1} (1 + \sin \pi x)^{\cot \pi x}$$

22)
$$\lim_{x\to 0} (1-2x^2)^{\cot^2 x}$$

$$23) \lim_{x\to 0^+} \sqrt[x]{\cos\sqrt{x}}$$

Bài 2. Vô cùng bé, vô cùng lớn

1) So sánh các VCB sau:

(a)
$$f(x) = 1 - \cos 2x$$
 và $g(x) = x$ khi $x \to 0$.

(b)
$$f(x) = \ln(1 + \sin x)$$
 và $g(x) = 2x$ khi $x \to 0$.

(c)
$$f(x) = \sqrt{1+x} - \sqrt{1-x}$$
 và $g(x) = x^2$ khi $x \to 0$.

(d)
$$f(x) = x - 1$$
 và $g(x) = \cot \frac{\pi x}{2}$ khi $x \to 1$.

(e)
$$f(x) = 1 - \cos^2 x$$
 và $g(x) = \ln(1 + x^2)$ khi $x \to 0$.

- (f) $f(x) = \sqrt{1+x} \sqrt{1-x}$ và $g(x) = \sin x$ khi $x \to 0$.
- (g) $f(x) = \cos\frac{2}{x} \cos\frac{1}{x}$ và $g(x) = \frac{1}{x}$ khi $x \to \infty$.
- (h) $f(x) = x \cdot \cos \frac{1}{x}$ và g(x) = x khi $x \to 0$.
- 2) So sánh các VCL $f(x) = e^x + e^{-x}$, $g(x) = e^x e^{-x}$ khi
 - (a) $x \to +\infty$.

- 3) Tìm phần chính dạng Cx^{α} khi $x \to 0$ của VCB:
 - (a) $f(x) = \sqrt{1-2x} 1 + x$.

(c) $f(x) = e^{x^2} - \cos x$.

(b) $f(x) = \tan x - \sin x$.

(d) $f(x) = \sqrt{3} - \sqrt{2 + \cos x}$.

Bài 3. Xét tính liên tục

1)
$$f(x) = \begin{cases} \frac{2x}{e^{2x} - e^{-x}} & \text{v\'oi} \ x \neq 0\\ a & \text{v\'oi} \ x = 0 \end{cases}$$

4)
$$f(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{x} & \text{n\'eu } x > 0\\ a + 2\cos x & \text{n\'eu } x \le 0 \end{cases}$$

2)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{n\'eu } x \neq 1 \\ a & \text{n\'eu } x = 1 \end{cases}$$

5)
$$f(x) = \begin{cases} (x^2 - 1)\sin\frac{\pi}{x - 1} & \text{n\'eu } x \neq 1\\ a & \text{n\'eu } x = 1 \end{cases}$$

3)
$$f(x) = \begin{cases} \frac{1 - \cos\sqrt{x}}{x} & \text{n\'eu } x > 0\\ a & \text{n\'eu } x \le 0 \end{cases}$$

6)
$$f(x) = \begin{cases} \frac{\sqrt[3]{1+2x}-1}{x} & \text{n\'eu } x > 0\\ a+x^2 & \text{n\'eu } x \le 0 \end{cases}$$

PHẦN TRẮC NGHIỆM

Câu 1. Tìm giới hạn $\lim_{x\to 0} \left(\frac{x-1}{x^2-1}\right)^{x+1}$

(A) 1.

 (\mathbf{C}) 0.

 \bigcirc $\frac{1}{4}$.

Câu 2. Tìm các giới hạn $L_1 = \lim_{x \to 0^+} \frac{1}{1 + e^{\frac{1}{x}}}$ và $L_2 = \lim_{x \to 0^-} \frac{1}{1 + e^{\frac{1}{x}}}$

(A)
$$L_1 = \frac{3}{2}$$
 và $L_2 = \frac{1}{3}$. (B) $L_1 = 0$ và $L_2 = 1$. (C) $L_1 = \frac{1}{2}$ và $L_2 = 1$. (D) $L_1 = 1$ và $L_2 = \frac{1}{2}$.

Câu 3. Tìm các giới hạn
$$L_1 = \lim_{x \to 0^+} \left(\frac{1}{1 + 2^{\frac{1}{x}}} + \frac{\sin x}{x} \right)$$
 và $L_2 = \lim_{x \to 0^-} \left(\frac{1}{1 + 2^{\frac{1}{x}}} + \frac{\sin x}{x} \right)$

(A)
$$L_1 = -\infty$$
, $L_2 = 2$. (B) $L_1 = 2$, $L_2 = +\infty$. (C) $L_1 = 1$, $L_2 = 2$. (D) $L_1 = 2$, $L_2 = 1$.

Câu 4. Tìm các giới hạn
$$L_1 = \lim_{x \to +\infty} \left(\frac{1+2^x}{2+3^x} + \frac{\sin x}{x} \right)$$
 và $L_2 = \lim_{x \to -\infty} \left(\frac{1+2^x}{2+3^x} + \frac{\sin x}{x} \right)$

$$\mathbf{A} L_1 = \frac{1}{2}, L_2 = 0$$

$$\bigcirc L_1 = 0, L_2 = 1$$

(A)
$$L_1 = \frac{1}{2}$$
, $L_2 = 0$. (B) $L_1 = \frac{3}{2}$, $L_2 = \frac{1}{3}$. (C) $L_1 = 0$, $L_2 = 1$. (D) $L_1 = 0$, $L_2 = \frac{1}{2}$.

Câu 5. Tìm các giới hạn $L_1 = \lim_{x \to +\infty} \left(\frac{1+7^x}{2+5^x} + x \sin \frac{1}{x} \right)$ và $L_2 = \lim_{x \to -\infty} \left(\frac{1+7^x}{2+5^x} + x \sin \frac{1}{x} \right)$

$$\mathbf{A} L_1 = \frac{1}{2}, L_2 = 0.$$

B
$$L_1 = +\infty, L_2 = \frac{3}{2}.$$

$$\bigcirc L_1 = \frac{3}{2}, L_2 = +\infty.$$

Câu 6. Tìm các giới hạn $L_1 = \lim_{x \to 0^+} \left(1 + e^{\frac{1}{x}} + x \arctan \frac{1}{x} \right)$ và $L_2 = \lim_{x \to 0^-} \left(1 + e^{\frac{1}{x}} + x \arctan \frac{1}{x} \right)$

(A)
$$L_1 = \frac{1}{2}$$
, $L_2 = 0$.

B
$$L_1 = +\infty, L_2 = \frac{3}{2}$$

$$\widehat{\mathbf{C}} L_1 = 1, L_2 = +\infty.$$

$$(\mathbf{D}) L_1 = +\infty, L_2 = 1.$$

Câu 7. Tìm các giới hạn $L_1 = \lim_{x \to +\infty} \left(x - \sqrt{x^2 - 2x} \right)$ và $L_2 = \lim_{x \to -\infty} \left(x - \sqrt{x^2 - 2x} \right)$

$$(A) L_1 = \frac{1}{2}, L_2 = 0.$$

(B)
$$L_1 = +\infty$$
, $L_2 = \frac{3}{2}$

Câu 8. Tìm giới hạn $\lim_{x\to +\infty} (\sqrt[3]{1-x^3} + x)$

(**A**) 0.

(C) 2.

 $(\mathbf{D}) + \infty$.

Câu 9. Tìm giới hạn $\lim_{x\to +\infty} \left(\sqrt[3]{x^3 + 3x} - \sqrt{x^2 - 2x} \right)$

(A) 1.

(B) 2.

(C) 3.

(**D**) 0.

Câu 10. Tìm giới hạn $\lim_{x\to\pm\infty}\left(\frac{x^2-2x+1}{x^2+4x+5}\right)^x$

(A) e^3 .

(C) 1.

 $(\mathbf{D}) e^{-6}$.

Câu 11. Tìm giới hạn $\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$

(A) e^3 .

 (\mathbf{C}) e.

(D) $\sqrt[4]{e}$.

Câu 12. Tìm giới hạn $\lim_{x\to 0} (\cos x)^{\cot^2 x}$

- $(A) e^{-6}$.

(C) e^4 .

(D) $\sqrt[4]{e}$.

Câu 13. Tìm giới hạn $\lim_{x\to 0} (\cos 3x)^{\frac{2}{x^2}}$

- (A) e^{-9} .

(C) e^4 .

(**D**) $\sqrt[4]{e}$.

Câu 14. Tìm giới hạn $\lim_{x\to 0} (\cos x + \sin x)^{\cot x}$

(A) e^{-9} .

- $\bigcirc B \frac{1}{\sqrt{e}}$.
- (\mathbf{C}) e.

 $(\mathbf{D})\sqrt[4]{e}$.

Câu 15. Tìm giới hạn $\lim_{x\to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x-1)^2}$ (A) 1. (B) $\frac{1}{9}$.

(C) 3.

 $\bigcirc \frac{3}{2}$.

Câu 16. Tìm giới hạn $\lim_{x \to -\infty} \frac{\ln(m+e^x)}{x}, \, m > 0$

 $(\mathbf{A}) m.$

(B) 2m.

- $(\mathbf{C})-m.$
- (**D**) 0.

Câu 17. Tìm giới hạn $\lim_{x\to 0} \frac{\ln(1+\tan^4 x)}{x^2\sin^2 x}$

(A) 1.

(C) 3.

 $(\mathbf{D}) + \infty$.

Câu 18. Tìm giới hạn $\lim_{x\to 0} \frac{5^x - 4^x}{x^2 + x}$

 \bigcirc $\ln \frac{5}{4}$.

 $(\mathbf{C}) \ln 5.$

 $\bigcirc \frac{3}{2}$.

Câu 19. Tìm giới hạn $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{x}} - e^{\frac{1}{x-1}}\right)$

(A) 1.

(C) 2.

(**D**) 0.

Câu 20. Tìm giới hạn $\lim_{x \to +\infty} \left(\frac{x}{1 + e^{\frac{1}{x}}} - \frac{x}{2} \right)$.

(A) 1.

 \bigcirc $-\frac{1}{4}$.

Câu 21. Tìm giới hạn $\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$.

(A) 1.

(**B**) 3.

(C) 2.

 $\bigcirc \frac{3}{2}$.

Câu 22. Tìm giới hạn $\lim_{x\to +\infty} \frac{\ln(m+e^x)}{x}, m>0.$

 $(\mathbf{A}) m$.

(**D**) 0.

Câu 23. Tìm giới hạn $\lim_{x \to 1} \frac{(1 - \sqrt{x})(1 - \sqrt[3]{x}) \cdots (1 - \sqrt[n]{x})}{(x - 1)^{n - 1}}, n \ge 2.$ $\textcircled{A} \frac{(-1)^{n - 1}}{n!}. \qquad \textcircled{B} \frac{(-1)^n}{n!}. \qquad \textcircled{C} \frac{(-1)^{n + 1}}{n!}.$

Câu 24. Tìm giới hạn $\lim_{x\to 1} \frac{x^{mx}-1}{x \ln x}$

 $(\mathbf{A}) 2m$.

 $(\mathbf{C})-m.$

(D) m+1.

Câu 25. Tìm giới hạn $\lim_{x\to 0} \frac{x-\sin 5x+\sin^2 x}{4x+\arcsin^2 x+x^2}$.

(A) 1.

(C) -1.

(**D**) 0.

Câu 26. Cho $f(x) = 1 - \cos x + \ln(1 + \arctan^2 x) + \arcsin^2 x$. Khi $x \to 0$ thì $(A) f(x) \sim x$. $(B) f(x) \sim \frac{3x^2}{2}$. $(C) f(x) \sim \frac{5x^2}{2}$.

Câu 27. Cho $f(x) = \ln(1 + \tan 3x) + (\sqrt{1 + 2\sin x} - 1) (\arcsin 2x + x^2)$. Khi $x \to 0$ thì

 $(\mathbf{A}) f(x) \sim 3x.$

 $\textcircled{B} f(x) \sim \frac{3x^2}{2}$.

 $\bigcirc f(x) \sim \frac{5x^2}{2}$.

Câu 28. Cho hàm số y=f(x) xác định bởi phương trình tham số $\begin{cases} x=\arctan t \\ y=\frac{t^2}{2}. \end{cases}$ Khi $x\to 0$ thì $y=\frac{t^2}{2}$. $x\to 0$ thì $x\to 0$ thì thì $x\to 0$ t

Câu 29. Cho $f(x) = 1 - \cos 2x + \ln (1 + \tan^2 2x) + 2 \arcsin x$. Khi $x \to 0$ thì (A) $f(x) \sim 2x$. (B) $f(x) \sim \frac{3x^2}{2}$. (C) $f(x) \sim \frac{5x^2}{2}$.

 $\bigcirc f(x) \sim \frac{5x^2}{2}$. $\bigcirc f(x) \sim -\frac{x^2}{2}$.

Câu 30. Cho
$$f(x) = \ln(1+x^2) + \left(\sqrt{1+2x} - 1\right) \left(\arcsin 2x + x^2\right)$$
. Khi $x \to 0$ thì

(B)
$$f(x) \sim \frac{3x^2}{2}$$
. (C) $f(x) \sim \frac{5x^2}{2}$. (D) $f(x) \sim -\frac{x^2}{2}$.

Câu 31. Xác định
$$m$$
 để hàm số $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{nếu } x \neq 0 \\ m, & \text{nếu } x = 0 \end{cases}$ liên tục tại $x = 0$.

(A) $m = 1$.
(B) $m = 2$.
(C) $m = 3$.

$$\bigcirc$$
 $M = 1$.

$$\mathbf{B}$$
 $m=2$.

$$(\widehat{\mathbf{C}}) m = 3.$$

$$\mathbf{\widehat{D}} m = 0.$$

$$\widehat{\mathbf{A}} m = 1.$$

$$\widehat{\mathbf{B}}$$
 $m=2$.

$$\bigcirc m = 3.$$

$$\bigcirc$$
 Không tồn tại m .

Câu 33. Xác định
$$m$$
 để hàm số $f(x) = \begin{cases} \arctan \frac{1}{(x-1)^2}, & \text{nếu } x < 1 \\ \frac{x^2 + 3x + m}{x^2 + 1}, & \text{nếu } x \ge 1 \end{cases}$ liên tục tại $x = 1$.

Câu 34. Xác định m để hàm số $f(x) = \begin{cases} \frac{x \sin x + 2 \tan^2 x}{x^2}, & \text{nếu } x < 0 \\ \cos^2 x + 2m, & \text{nếu } x \ge 0 \end{cases}$ liên tục tại $x = 0$.

A $m = 0$. B $m = 1$. C $m = 2$. D $m = 3$.

Câu 35. Xác định m để hàm số $f(x) = \begin{cases} \frac{x \arcsin x}{\ln(1 + x^2)}, & \text{nếu } x \in (-1; 1) \setminus \{0\} \\ 1 + 3m, & \text{nếu } x = 0 \end{cases}$ liên tục tại $x = 0$.

A $m = 0$. B $m = 1$. C $m = 2$. D $m = 3$.

Câu 36. Tìm m để hàm số $f(x) = \begin{cases} \arctan \frac{1}{x-2}, & \text{nếu } x \ne 2 \\ 1 + 2m, & \text{nếu } x = 2 \end{cases}$ liên tục tại $x = 2$.

A $m = 1$. B $m = 2$. C $m = 3$. D Không tồn tại

$$\mathbf{A} m = 1$$

$$\bigcirc$$
 $m=2$

$$\bigcirc m = \pi - 4$$

$$\widehat{\mathbf{D}} m = -\pi - 4$$

Câu 34. Xác định
$$m$$
 để hàm số $f(x) = \begin{cases} \frac{x \sin x + 2 \tan^2 x}{x^2}, & \text{nếu } x < 0 \\ \cos^2 x + 2m, & \text{nếu } x \ge 0 \end{cases}$ liên tục tại $x = 0$.

$$\mathbf{A} m = 0.$$

$$(\widehat{\mathbf{B}}) m = 1.$$

$$(\widehat{\mathbf{C}}) m = 2$$

$$\widehat{\mathbf{D}} m = 3.$$

Câu 35. Xác định
$$m$$
 để hàm số $f(x) = \begin{cases} \frac{x \arcsin x}{\ln(1+x^2)}, & \text{nếu } x \in (-1;1) \setminus \{0\} \\ 1+3m, & \text{nếu } x = 0 \end{cases}$ liên tục tại $x = 0$

$$\widehat{\mathbf{A}} m = 0.$$

$$\bigcirc$$
 $m=1.$

$$\bigcirc$$
 $m=2.$

$$\widehat{\mathbf{D}} m = 3.$$

$$\mathbf{\widehat{A}} m = 1.$$

$$\bigcirc$$
 $m=2.$

$$\bigcirc$$
 $m=3.$

 (\mathbf{D}) Không tồn tại m.

Câu 37. Tìm
$$m$$
 để hàm số $f(x) = \begin{cases} \frac{\ln(1 + \tan^4 x)}{x \sin x}, & \text{nếu } x \in (-1; 1) \setminus \{0\} \\ m, & \text{nếu } x = 0 \end{cases}$ liên tục tại $x = 0$.
$$m, & \text{nếu } x = 0$$

$$m = 1.$$

$$m = 2.$$

$$m = 0.$$

$$m = 0.$$

$$m = 0.$$

$$m = 0.$$

$$\mathbf{\widehat{A}} m = 1.$$

$$\bigcirc$$
 $m=2$

$$\bigcirc m = 0.$$

Câu 38. Tìm
$$m$$
 để $f(x)=\left\{ egin{align*} \frac{\sqrt{2x+1}-\cos x}{x}, & \text{nếu } x\in\left(-\frac{1}{2};+\infty\right)\setminus\{0\}\\ m, & \text{nếu } x=0 \end{array} \right.$ liên tục tại $x=0.$

$$\mathbf{\widehat{A}} m = 0.$$

$$\widehat{\mathbf{B}}$$
 $m=1$.

$$\bigcirc$$
 $m=2.$

$$\bigcirc$$
 Không tồn tại $m.$

CHƯƠNG 2: ĐẠO HÀM VÀ VI PHÂN

PHẦN TỰ LUẬN

Bài 1. Tính đạo hàm

1) Tính đạo hàm của các hàm số sau:

(a)
$$y(x) = x|x|$$
.

(b)
$$y(x) = |(x-1)^2(x+1)|$$
.

(c)
$$y(x) = |(x+1)^2(x+2)^3|$$

(d)
$$f(x) = \begin{cases} x(x+1)^2 & \text{v\'oi } x \ge 0, \\ -x(x+1)^2 & \text{v\'oi } x < 0. \end{cases}$$

(e)
$$f(x) = \begin{cases} e^x & \text{v\'oi } x < 0, \\ 1 + x & \text{v\'oi } x \ge 0. \end{cases}$$

(f)
$$f(x) = \begin{cases} x^2 - 2x & \text{n\'eu } x < 2\\ 2x - 4 & \text{n\'eu } x \ge 2 \end{cases}$$

(g)
$$f(x) = \begin{cases} x^2 + 1 & \text{v\'oi } x \le 2, \\ 9 - 2x & \text{v\'oi } x > 2. \end{cases}$$

(h)
$$f(x) = \begin{cases} 2x^2 + 3x & \text{n\'eu } x \le 0, \\ \ln(1+x) - x & \text{n\'eu } x > 0. \end{cases}$$

(i)
$$f(x) = \begin{cases} 2^x - 1 & \text{n\'eu } x \le 0, \\ \ln(1+x) & \text{n\'eu } x > 0. \end{cases}$$

(j)
$$f(x) = \begin{cases} \arctan x - x & \text{n\'eu } x < 0, \\ x^2 + 2x & \text{n\'eu } x \ge 0. \end{cases}$$

(k)
$$f(x) = \begin{cases} \arctan x & \text{v\'oi} \ x \ge 0 \\ x^2 + x & \text{v\'oi} \ x < 0 \end{cases}$$

2) Tính y'(0) bằng định nghĩa. Biết:

$$y = x(x-1)(x-2)...(x-2020)(x-2021)$$

3) Tính
$$f'_{+}(0)$$
, $f'_{-}(0)$ của: $f(x) = \begin{cases} \frac{x}{1 + e^{1/x}} & \text{nếu } x \neq 0 \\ 0 & \text{nếu } x = 0 \end{cases}$

4) Tính y'(x), y''(x) của hàm số cho dưới dạng tham số:

(a)
$$\begin{cases} x = e^t \cos 2t \\ y = e^t \sin 2t \end{cases}$$
 (c)
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 (e)
$$\begin{cases} x = t + e^t \\ y = t^2 + 2t^3 \end{cases}$$
 (b)
$$\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$$
 (d)
$$\begin{cases} x = 2e^t \cos t \\ y = 3e^t \sin t \end{cases}$$

Bài 2. Xét tính khả vi

1) y = (x+2)|x-1|.

2)
$$f(x) = \begin{cases} 1 - \cos x & \text{n\'eu } x \le 0\\ \ln(1+x) & \text{n\'eu } x > 0 \end{cases}$$

3)
$$f(x) = \begin{cases} x^2 & \text{n\'eu } x \le 0\\ \ln(1+x) - x & \text{n\'eu } x > 0 \end{cases}$$

4)
$$f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{2} & \text{n\'eu } x > 0\\ 0 & \text{n\'eu } x \le 0 \end{cases}$$

5)
$$f(x) = \begin{cases} \frac{x-1}{4}(x+1)^2 & \text{n\'eu } x \ge 1\\ x-1 & \text{n\'eu } x < 1 \end{cases}$$

6) Xét tính khả vi tại x = 1 của hàm số:

$$y(x) = \begin{cases} x^2 e^{1-x^2} & \text{n\'eu } x \le 1\\ \frac{1}{x} & \text{n\'eu } x > 1 \end{cases}$$

7) Xét tính khả vi tại x = 0 của hàm số: $f(x) = \begin{cases} x^2 \arctan \frac{1}{x} & \text{nếu } x \neq 0 \\ 0 & \text{nếu } x = 0 \end{cases}$

8) Tìm a, b để hàm số sau khả vi trên \mathbb{R} $f(x) = \begin{cases} x^2 - 3x + 4 & \text{nếu } x < 2\\ ax + b & \text{nếu } x \ge 2 \end{cases}$

Bài 3. Đạo hàm cấp cao

1) Tính đạo hàm cấp n của hàm số

(a)
$$f(x) = \frac{x-1}{x^2 + 5x + 6}$$
.

(b)
$$f(x) = \frac{12x+7}{6x^2+7x+2}$$

(c)
$$f(x) = \frac{1+x}{1-x}$$
.

(d)
$$f(x) = \ln \sqrt[3]{1 - 4x}$$

(e)
$$f(x) = \cos^4 x + \sin^4 x$$
.

(f)
$$f(x) = e^{2x}(3x+5)$$
.

(g)
$$f(x) = (2x+1)\sin x$$
.

2) Cho hàm số
$$f(x) = \ln(1 - 3x)$$
. Tính $f^{(n)}(0)$.

3) Cho
$$y = \frac{x^4}{2 - x}$$
. Tính d^4y .

Bài 4. Áp dụng quy tắc L'Hospital, tính giới hạn

1)
$$\lim_{x\to 0} \frac{\ln(1+x)-x}{r^2}$$

2)
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x \cdot \sin x}$$

3)
$$\lim_{x\to 0} \frac{4\arctan(1+x)-\pi}{x}$$

4)
$$\lim_{x \to 0} \frac{\arctan x - x}{x^3}$$

$$5) \lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{2x^2}.$$

6)
$$\lim_{x \to 0} \frac{\sqrt{1+2x} - e^x}{x^2}$$
.

7)
$$\lim_{x \to +\infty} \frac{\ln^3 x}{x}$$

8)
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$$

9)
$$\lim_{x \to 0^+} (\sin x)^{\tan 2x}$$

10)
$$\lim_{x \to +\infty} x(\pi - 2 \arctan x)$$

11)
$$\lim_{x \to 0} \frac{x - \sin x}{\sqrt{1 + 2x} - e^x}$$

12)
$$\lim_{x \to 0^+} x^2 \ln x$$

13)
$$\lim_{x \to +\infty} x \left(\frac{\pi}{4} - \arctan \frac{x}{x+1} \right)$$

$$16) \lim_{x\to 0} \left(\frac{1}{x^2}\right)^{\sin x}$$

14)
$$\lim_{x \to 0} \frac{x^2}{\sqrt[5]{1+5x} - (1+x)}$$

17)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$

15)
$$\lim_{x \to +\infty} \frac{x^{2017}}{e^x}$$

PHẦN TRẮC NGHIỆM

Câu 1. Viết phương trình tiếp tuyến của đường cong $y = \ln(x^2 + e)$ tại điểm có hoành độ x = 0.

$$\widehat{\mathbf{A}} y = 0.$$

$$\widehat{\mathbf{B}}$$
 $y = 1$.

$$(\widehat{\mathbf{C}}) y = x + 1.$$

$$\widehat{\mathbf{D}} y = x - 1$$

Câu 2. Tính đạo hàm của hàm số $f(x) = \frac{e^x}{\sin x}$.

$$\mathbf{A} f'(x) = \frac{e^x(\sin x - \cos x)}{\sin^2 x}.$$

Câu 3. Tính đạo hàm của hàm số $f(x) = (1+x)^x$, x > 1.

(A)
$$f'(x) = (1+x)^x \left[\ln(1+x) + \frac{x}{x+1} \right].$$

$$\bigcirc f'(x) = \ln(1+x) + \frac{x}{x+1}.$$

Câu 4. Tính đạo hàm cấp n của hàm số $y = e^{-3x}$.

$$\mathbf{A} y^{(n)}(x) = (-3)^n e^{3x}$$

$$\widehat{\mathbf{B}} y^{(n)}(x) = (-3)^{n+1} e^{-3x}.$$

$$(\widehat{\mathbf{C}}) y^{(n)}(x) = (-3)^{n-1} e^{-3x}$$

$$(\widehat{\mathbf{D}}) y^{(n)}(x) = (-3)^n e^{-3x}.$$

Câu 5. Tính đạo hàm cấp n của hàm số $f(x) = \ln |x+2|$.

(B)
$$f^{(n)}(x) = \frac{(-1)^n (n-1)!}{(x+2)^n}$$
.

Câu 6. Tính đạo hàm cấp n của hàm số $f(x) = \ln|x^2 - 3x + 2|$.

(A)
$$f^{(n)}(x) = (-1)^n (n-1)! \left[\frac{1}{(x-1)^n} + \frac{1}{(x-2)^n} \right].$$

Câu 7. Tính $y' = \frac{\mathrm{d}y}{\mathrm{d}x}$ của hàm số y = y(x) cho bởi phương trình tham số $\begin{cases} x = \cos t \\ y = \sin^2 t \end{cases}$

$$\mathbf{\widehat{A}} y' = 2\sin t.$$

$$\widehat{\mathbf{D}}y' = -2x.$$

Câu 8. Tính $y'\left(\frac{\pi}{3}\right) = \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=\frac{\pi}{3}}$ của hàm y = y(x) cho bởi phương trình tham số $\begin{cases} x = \arctan t \\ y = \frac{t^2}{\pi}. \end{cases}$

$$\mathbf{A} y'\left(\frac{\pi}{3}\right) = 4\sqrt{3}$$

Câu 9. Tính $y' = \frac{dy}{dx}$ của hàm y = y(x) cho bởi phương trình tham số $\begin{cases} x = \arctan t \\ y = \ln t, \end{cases}$ với t > 0.

$$\mathbf{A} y'(x) = \frac{t}{1+t^2}.$$

(A)
$$y'(x) = \frac{t}{1+t^2}$$
. **(B)** $y'(x) = -\frac{1+t^2}{t}$. **(C)** $y'(x) = \frac{1+t^2}{t}$. **(D)** $y'(x) = -\frac{t}{1+t^2}$.

Câu 10. Tính $y'\left(\frac{\pi}{4}\right) = \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=\frac{\pi}{4}}$ của hàm y = y(x) cho bởi phương trình tham số $\begin{cases} x = \arctan t \\ y = \ln t. \end{cases}$

$$(\mathbf{A}) y' \left(\frac{\pi}{4}\right) = 1.$$

Câu 11. Tính vi phân của hàm $y = (3x)^x$.

$$\widehat{\mathbf{B}} \, \mathrm{d}y = (\ln 3x + 1) \, \mathrm{d}x.$$

Câu 12. Tính vi phân dy của hàm $y = \arctan\left(\frac{\ln x}{3}\right)$.

$$\mathbf{A} \, \mathrm{d}y = -\frac{3}{x(9+\ln^2 x)} \mathrm{d}x.$$

$$\mathbf{\widehat{C}} \, \mathrm{d}y = \frac{1}{x(9 + \ln^2 x)} \mathrm{d}x.$$

Câu 13. Tính vi phân cấp 2 của hàm $y = \ln(1 + x^2)$

(A)
$$d^2y = \frac{2x^2 - 2}{(1+x^2)^2} dx^2$$
.

B
$$d^2y = \frac{2x^2 + 2}{(1 + x^2)^2} dx^2$$
.

Câu 14. Tính vi phân cấp 2 của hàm $y = \arctan(x^2)$.

(A)
$$d^2y = \frac{2+6x^4}{(1+x^4)^2}dx^2$$
.

Câu 15. Tìm giới hạn $\lim_{x\to 1} \frac{\sqrt[2024]{x}-1}{\sqrt[2025]{x}-1}$

(A)
$$\frac{2024}{2025}$$
.

$$(\mathbf{C})$$
 0.

$$(\mathbf{D}) + \infty$$
.

Câu 16. Xác định m để hàm số $f(x) = \begin{cases} \frac{e^{2x} - 2x - 1}{\sin^2 x}, & \text{nếu } x \in (-1; 1) \setminus \{0\} \\ 3m - 1, & \text{nếu } x = 0 \end{cases}$

0.

$$(\mathbf{A}) m = 1.$$

$$\mathbf{\widehat{B}}$$
 $m=2$.

$$(\widehat{\mathbf{C}}) m = 3$$

$$(\widehat{\mathbf{D}}) m = 0.$$

Câu 17. Xác định m để hàm số $f(x) = \begin{cases} \frac{e^{-2x} + e^{2x} - 2}{2x^2}, & \text{nếu } x \neq 0 \\ 2m, & \text{nếu } x = 0 \end{cases}$ liên tục tại x = 0.

(B) m = 2.
(C) m = 3.
(D) m = 1.

$$\widehat{\mathbf{A}} m = 0.$$

$$\bigcirc$$
 $m=2$

$$\bigcirc$$
 $m=3$

$$(\widehat{\mathbf{D}}) m = 1.$$

 Câu 18. Xác định m để hàm số $f(x)=\begin{cases} \dfrac{\ln(1+x)-x}{\sin^2 x}, & \text{nếu } -1 < x < 0\\ m-\dfrac{1}{2}, & \text{nếu } x=0 \end{cases}$ liên tục tại x = 0.

(A) m = 3.

(B) m = 2.

(**C**) m = 1.

(D) m = 0.

Câu 19. Tính giới hạn $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$.

 $(\mathbf{C})\sqrt{e}$.

Câu 20. Tính giới hạn $\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$. (B) $\frac{1}{144}$.

 \bigcirc $\frac{1}{36}$.

 \bigcirc $-\frac{1}{36}$.

Câu 21. Tính giới hạn $\lim_{x\to 0} \frac{\sqrt[5]{32+2x}-2}{\sqrt[4]{x+16}-2}$. B $-\frac{2}{5}$.

 $\bigcirc \frac{4}{5}$.

Câu 22. Tính giới hạn $\lim_{x\to 0} \frac{x^2}{\sqrt[5]{1+5x}-1-x}$. (B) $-\frac{2}{5}$.

Câu 23. Tính giới hạn $\lim_{x\to 0^+} (\cos 2x + x^2)^{\cot^3 x}$.

(A) 0.

(B) 1.

 (\mathbf{C}) 2.

 $(\mathbf{D}) + \infty$.

Câu 24. Tính giới hạn $\lim_{x\to 0} (\cos x + \sin^2 x)^{\cot^2 x}$.

 $(\mathbf{B})\sqrt{e}$.

 $(\mathbf{C})\sqrt[3]{e}$.

(D) $\sqrt[4]{e}$.

Câu 25. Xác định a, b để hàm số $f(x) = \begin{cases} x(x-1)+1, & \text{nếu } x \geq 0 \\ ax+b, & \text{nếu } x < 0 \end{cases}$ có đạo hàm tại x=0.

B a = 1; b = 1. **C** a = -1; b = -1.

(D) a = 1; b = -1.

Câu 26. Tính $y''(1) = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\Big|_{x=1}$ của hàm y = y(x) cho bởi phương trình tham số $\begin{cases} x = \ln t \\ y = t^3, \end{cases}$ với t > 0.

 $\mathbf{\widehat{A}} y''(1) = 9e^2.$

(B) $y''(1) = 9e^3$. **(C)** y''(1) = 9e.

 $\mathbf{\widehat{D}}\,y''(1) = 9e^4.$

CHƯƠNG 3: TÍCH PHÂN

PHẦN TỰ LUẬN

Bài 1. Ứng dụng của tích phân xác định

1) Tính độ dài của các đường cong sau:

(a)
$$y = \ln x$$
, với $1 \le x \le e$.

(b)
$$y = e^x$$
, $0 < x < 1$.

(c)
$$y = x^2 - \frac{1}{8} \ln x$$
; $1 \le x \le e$.

(d)
$$x = \frac{1}{4}y^2 - \frac{1}{2}\ln y$$
, $1 \le y \le e$.

(e)
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} ; 0 \le t \le 2\pi$$

2) Tính diện tích hình phẳng giới hạn bởi:

(a)
$$y = x^2 - 1$$
 và $y = 3 - x^2$.

(b)
$$y = 1 + 2x - x^2$$
 và $y = 3 - x$.

(c)
$$y = x^3$$
, $y = 4x$.

(d)
$$x + y = 0$$
; $y = 3x - x^2$.

(e)
$$y = x^2$$
, $y = \frac{x^2}{2}$, $y = 2x$.

(f) (E):
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

(g)
$$r = a(1 + \cos \varphi)$$
; $0 \le \varphi \le 2\pi$, $a > 0$.

(h)
$$y = x^2$$
, $y = 4x^2$, $y = 4$.

(f)
$$x^{2/3} + y^{2/3} = a^{2/3}$$
, $a > 0$.

(g)
$$r = a(1 + \cos \varphi), a > 0.$$

(h)
$$y = \arcsin(e^{-x})$$
; $0 \le x \le 1$

(i)
$$r = 2\varphi$$
, $0 \le \varphi \le 2\pi$.

(j)
$$y = \ln(1 - x^2), \quad 0 \le x \le \frac{1}{2}$$

(k)
$$y = \ln(\cos x)$$
, $0 \le x \le \frac{\pi}{3}$.

(i)
$$(x^2 + y^2)^2 = a^2(x^2 - y^2)$$
.

(j)
$$y = -\sqrt{4 - x^2}$$
 và $x^2 + 3y = 0$.

(k)
$$y = 4 - x^2$$
 và $y = 2x + 1$.

(l) Một cung (một nhịp) Xicloit
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (0 \le t \le 2\pi) \text{ và trực}$$

$$Ox.$$

(m)
$$y = x^3 \ (x \ge 0), \ y = x \text{ và } y = 2x.$$

3) Tính thể tích của vật thể tạo thành khi quay hình phẳng giới hạn bởi:

(a)
$$y = 2x - x^2$$
, $y = 0$ quanh trục Ox .

(b)
$$y = 4x - x^2$$
 và $y = x$ quay quanh trục Ox .

(c)
$$y = x^2$$
 và $x = y^2$ quanh trực Ox .

(d)
$$x^{2/3} + y^{2/3} = a^{2/3}, \ a > 0$$
 quanh trực Ox .

(e)
$$x^2 + (y-2)^2 = 1$$
 quanh Ox .

(f)
$$y = x$$
, $x = 0$, $y = \sqrt{1 - x^2}$ quanh trục Oy .

(g)
$$y = \ln x$$
, $y = 0$, $x = e$, quay quanh trục Ox .

- (h) $x^2 + y^2 = 4x 3$ quanh trục Oy.
- (i) $x = y^2 4$ và x = 0 quanh trực Oy.
- (j) $y^2 + x = 9$ và x = 0 quanh trực Oy.
- (k) $y = \frac{x^2}{2}$ và $y = \frac{x^3}{8}$ quanh trực Ox.
- (l) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ quanh trục Oy.

Bài 2. Tính các tích phân suy rộng

$$1) \int_{1}^{+\infty} \frac{dx}{x^2(x+2)}$$

2)
$$\int_{0}^{+\infty} \frac{dx}{(x+1)^2(x+2)}$$

3)
$$\int_{0}^{+\infty} \frac{xdx}{(x^2+1)^3}$$

4)
$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{x^4+1}}$$

$$5) \int_{0}^{+\infty} \frac{dx}{(\sqrt{x}+1)^3}$$

$$6) \int_{2}^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$

$$7) \int_{1}^{+\infty} \frac{dx}{x\sqrt[4]{1+x^3}}$$

$$8) \int_{1}^{+\infty} \frac{\ln x}{x^2} dx$$

9)
$$\int_{1}^{+\infty} \frac{\ln x}{x^3} dx.$$

$$10) \int_{1}^{+\infty} \frac{\arctan x}{x^2} dx$$

$$11) \int\limits_{0}^{+\infty} e^{-\sqrt{x}} dx$$

$$12) \int\limits_{1}^{+\infty} \frac{x^3}{e^{x^2}} dx$$

$$13) \int\limits_{0}^{+\infty} x^2 e^{-x} dx$$

14)
$$\int_{0}^{+\infty} \frac{x \cdot \arctan x}{\sqrt{(1+x^2)^3}} dx$$

$$15) \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 10}.$$

16)
$$\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$$

17)
$$I = \int_{1}^{2} \frac{dx}{\sqrt{x^2 - 1}}$$
.

Bài 3. Xét sự hội tụ của tích phân suy rộng

1)
$$\int_{1}^{+\infty} \sqrt{x} \ln\left(1 + \frac{1}{x^2}\right) dx$$

$$2) \int_{1}^{+\infty} \frac{\sqrt{x}dx}{x^2 + \sin x}$$

$$3) \int_{1}^{+\infty} \frac{\ln(1+x^2)}{x} dx$$

$$4) \int_{1}^{+\infty} \frac{\ln(1+x)}{x^2 \sqrt{x}} dx$$

5)
$$\int_{1}^{+\infty} \frac{\arctan x}{x} dx$$

$$6) \int_{1}^{+\infty} \frac{\arctan x}{x\sqrt{x}} dx$$

7)
$$\int_{1}^{+\infty} \left(1 - \cos\frac{1}{x}\right) dx$$

8)
$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{x^4 + x^2 + 1}}$$
.

9)
$$\int_{4}^{+\infty} \frac{dx}{x(\ln x)^p}.$$

$$10) \int_{1}^{+\infty} \frac{x}{1+x^p} dx$$

11)
$$\int_{0}^{1} \frac{dx}{\sqrt{\tan x}}$$

$$12) \int_{0}^{1} \frac{\sqrt{x}}{e^{\sin x} - 1} dx$$

$$13) \int\limits_{0}^{1} \frac{dx}{e^{\sqrt[4]{x}} - 1}$$

$$14) \int_{0}^{1} \frac{xdx}{\tan x - \sin x}$$

15)
$$\int_{0}^{1} \frac{\sqrt{x}}{e^{\sin 2x} - 1} dx$$

16)
$$\int_{0}^{1} \frac{\sin\sqrt{x}}{e^{\sqrt[3]{x^2}} - 1} dx$$

17)
$$\int_{0}^{1} \frac{\ln(1+\sqrt{x})}{e^{\sin x} - 1} dx$$

$$18) \int_{0}^{1} \frac{1 - \cos\sqrt{x}}{x\sqrt{x}} dx$$

$$19) \int\limits_{0}^{1} \frac{\sqrt{x}}{\ln(1+x)} dx$$

20)
$$\int_{0}^{1} \frac{e^{\sqrt{x}} - 1}{x} dx$$

PHẦN TRẮC NGHIỆM

I. Tích phân bất định

Câu 1. Tính
$$I = \int \frac{3}{x+a} dx$$
.

$$\widehat{\mathbf{A}} I = 3|x+a| + C.$$

$$\bigcirc I = -3\ln(x+a) + C.$$

Câu 2. Tính
$$I = \int \frac{3}{(x+a)^2} dx$$
.

Câu 3. Tính
$$I = \int \frac{\mathrm{d}x}{x^2 - 3x + 2}$$
.

$$\widehat{\mathbf{B}} I = 3\ln(x+a) + C.$$

$$\widehat{\mathbf{D}}I = 3|x+a| + C.$$

Câu 4. Tính $I = \int \sin(3x+1) dx$.

$$\mathbf{A}I = \frac{\cos(3x+1)}{3} + C.$$

$$\widehat{\mathbf{C}} I = \cos(3x+1) + C.$$

Câu 5. Tính $I = \int \cos(5x - 2) dx$.

$$\mathbf{A}I = \frac{\sin(5x - 2)}{5} + C.$$

$$\widehat{\mathbf{C}} I = \sin(5x - 2) + C.$$

Câu 6. Tính $I = \int \frac{\mathrm{d}x}{4x-1}$.

$$\mathbf{\widehat{A}} I = \frac{\ln|4x - 1|}{4} + C.$$

$$\bigcirc I = \ln(4x - 2) + C.$$

Câu 7. Tính $I = \int \frac{e^3}{e^{2x}} dx$.

$$\mathbf{\widehat{A}} I = \frac{e^{3-2x}}{2} + C$$

(A)
$$I = \frac{e^{3-2x}}{2} + C$$
. **(B)** $I = -\frac{e^{3-2x}}{2} + C$.

Câu 8. Tính
$$I = \int (2^x + x^2) dx$$
.

Câu 9. Tính $I = \int \frac{\mathrm{d}x}{7x-3}$.

$$\mathbf{A}I = \frac{\ln(7x - 3)}{7} + C.$$

Câu 10. Tính $I = \int 5^{3x+1} dx$.

$$\widehat{\mathbf{A}} I = 5^{3x+1} + C.$$

(A)
$$I = 5^{3x+1} + C$$
. **(B)** $I = \frac{5^{3x+1}}{3\ln 5} + C$.

$$\frac{5^{3x+1}}{3\ln 5} + C.$$
 © $I =$

$$\bigcirc I = \sin 2x \pm 0$$

(A)
$$I = -\frac{\cos 2x}{4} + C$$
. (B) $I = \cos 2x + C$. (C) $I = \sin 2x + C$. (D) $I = -\sin 2x + C$.

Câu 12. Tính $I = \int \sqrt{9^x + 9^{-x} + 2} dx$.

(A)
$$I = 3^x - 3^{-x} + C$$
. **(B)** I

Câu 11. Tính $I = \int \sin x \cos x dx$.

(B)
$$I = 3^x + 3^{-x} + C$$

$$\bigcirc I = \frac{3^x - 3^{-x}}{1 + 2} + C.$$

Câu 13. Tính $I = \int \frac{dx}{x^2 + x - 2}$.

(B)
$$I = -\frac{\cos(3x+1)}{3} + C$$
.

$$B) I = -\frac{\sin(5x-2)}{5} + C.$$

$$\bigcirc I = e^{3-2x} + C.$$
 $\bigcirc I = -e^{3-2x} + C.$

$$C. \qquad \bigcirc I = -e^{3-2x} + C.$$

(A)
$$I = 2^x + x^3 + C$$
. (B) $I = 2^x + \frac{x^3}{3} + C$. (C) $I = \frac{2^x}{\ln 2} + \frac{x^3}{3} + C$. (D) $I = \frac{2^x}{\ln 2} + x^3 + C$.

$$\bigcirc I = 5^{3x} + C.$$
 $\bigcirc I = \frac{5^{3x+1}}{3} + C.$

(A)
$$I = 3^x - 3^{-x} + C$$
. (B) $I = 3^x + 3^{-x} + C$. (C) $I = \frac{3^x - 3^{-x}}{\ln 3} + C$. (D) $I = \frac{3^x}{\ln 3} + C$.

Câu 14. Tính
$$I = \int \frac{\mathrm{d}x}{x^2 - x - 6}$$
.

$$\bigcirc I = \ln \frac{x-3}{x+2} + C.$$

Câu 15. Tính
$$I = \int \frac{7^2}{7^{5x}} dx$$
.

(A)
$$I = \frac{7^{2-5x}}{\ln 7} + C.$$
 (B) $I = -\frac{7^{2-5x}}{5\ln 7} + C.$

$$\bigcirc I = 7^{5x} + C$$

$$\bigcirc I = 7^{5x} + C.$$
 $\bigcirc I = \frac{7^{1-5x}}{\ln 7} + C.$

Câu 16. Tính
$$I = \int \frac{2e^x}{\sqrt{2 + 2e^x + e^{2x}}} dx$$
.

(A)
$$I = 2 \ln \left(e^x + 1 + \sqrt{2 + 2e^x + e^{2x}} \right) + C.$$

$$\widehat{\mathbf{C}} I = 2\arcsin\left(e^x + 1\right) + C.$$

B
$$I = \ln\left(e^x + 1 + \sqrt{2 + 2e^x + e^{2x}}\right) + C.$$

Câu 17. Tính
$$I = \int \frac{\ln x}{x^3} dx$$
.

$$(A) I = -\frac{2\ln x - 1}{4x^2} + C.$$

Câu 18. Tính
$$I = \int \sin x \cos x e^{\sin x} dx$$
.

$$(\mathbf{A}) I = (\sin x + 1) e^{\sin x} + C.$$

Câu 19. Tính
$$I = \int \frac{\mathrm{d}x}{\sqrt{x}(x+1)}$$
.

$$\widehat{\mathbf{A}} I = \arctan \sqrt{x} + C.$$

Câu 20. Tính
$$I = \int \frac{\sin x dx}{\sqrt{\cos^2 x + 4}}$$
.

$$(A) I = \ln(\cos x + 4 + \sqrt{\cos^2 x + 4}) + C.$$

$$\widehat{\mathbf{B}} I = \sin x e^{\sin x} + C.$$

$$\widehat{\mathbf{D}}I = (\sin x - 1)e^{\sin x} + C.$$

$$\mathbf{\widehat{B}} I = 2 \arctan \sqrt{x} + C.$$

(B)
$$I = \ln(\cos x + 2 + \sqrt{\cos^2 x + 4}) + C$$
.

II. Tính tích phân suy rộng

Câu 21. Tính
$$I = \int_{\sqrt{2}}^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$
.

$$(\mathbf{A})I = \pi.$$

$$\bigcirc B I = \frac{\pi}{4}.$$

$$\widehat{\mathbf{D}} I = +\infty.$$

Câu 22. Tính
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}$$
.

$$\mathbf{\hat{A}} I = \frac{\pi}{2}.$$

$$\bigcirc I = \frac{\pi}{\sqrt{5}}.$$

Câu 23. Tính
$$I = \int_{0}^{+\infty} \frac{\arctan x}{1+x^2} dx$$
.

(A)
$$I = \frac{\pi^2}{8}$$
. **(B)** $I = \frac{\pi^2}{6}$.

$$B I = \frac{\pi^2}{6}$$

Câu 24. Tính
$$I = \int_{0}^{e^{2}} \frac{dx}{x\sqrt[3]{\ln x - 1}}.$$

$$\bigcirc$$
 $I=2.$

$$\widehat{\mathbf{D}} I = +\infty.$$

Câu 25. Tính
$$I = \int_{1}^{2} \frac{\mathrm{d}x}{\sqrt[3]{(x-1)^2}}$$
.

$$(\mathbf{A}) I = 1.$$

$$\widehat{\mathbf{B}}$$
 $I=3$.

$$\bigcirc$$
 $I=5.$

$$\widehat{\mathbf{D}}I = +\infty.$$

Câu 26. Tính
$$I = \int_{2}^{4} \frac{\mathrm{d}x}{\sqrt{6x - x^2 - 8}}$$
.

$$\mathbf{\widehat{A}} I = \pi.$$

$$\widehat{\mathbf{B}}$$
 $I = 2\pi$.

$$(\widehat{\mathbf{C}}) I = 3\pi.$$

$$\widehat{\mathbf{D}}I = +\infty.$$

Câu 27. Tính
$$I = \int_{0}^{\ln 2} \frac{dx}{\sqrt{e^x - 1}}$$
.

$$B) I = \frac{\pi}{3}.$$

Câu 28. Tính
$$I = \int_{0}^{e} \frac{dx}{x(1 + \ln^{2} x)}$$
.

$$\mathbf{B}$$
 $I = \frac{\pi}{4}$.

$$\bigcirc I = \frac{3\pi}{4}.$$

Câu 29. Tính
$$I = \int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$$
.

$$\bigcirc I = \frac{\pi}{3}.$$

$$\widehat{\mathbf{D}}I = +\infty.$$

III. Xét sư hôi tu của tích phân suy rông

Câu 30. Cho
$$I = \int_{\ln 2}^{+\infty} \frac{\mathrm{d}x}{(x+1)^2 e^x}$$
 và $J = \int_{2}^{+\infty} \frac{e^x \mathrm{d}x}{\sqrt{x}}$.

 $(\mathbf{A})I$ hội tụ; J hội tụ.

 $(\mathbf{B}) I$ hội tụ; J phân kỳ.

 (\mathbf{C}) I phân kỳ; J phân kỳ.

 $(\mathbf{D})I$ phân kỳ; J hội tụ.

Câu 31. Cho
$$I = \int_{-1}^{0} \frac{1 - \sin^2 x}{(x+1)^2} dx$$
 và $J = \int_{-1}^{0} \frac{1 - \cos 4x}{\sqrt[3]{(x+1)^4}} dx$.

 $(\mathbf{A}) I$ hội tụ; J hội tụ.

 $(\mathbf{B}) I$ hội tụ; J phân kỳ.

(C) I phân kỳ; J phân kỳ.

 $(\mathbf{D})I$ phân kỳ; J hội tụ.

Câu 32. Cho
$$I = \int_{2}^{+\infty} \frac{dx}{x^2 + 2\sin^2 x}$$
 và $J = \int_{2}^{+\infty} \frac{dx}{\sqrt{x} - \cos^2 x}$.

 $(\mathbf{A})I$ hội tụ; J hội tụ.

 \bigcirc I hội tụ; J phân kỳ.

 \bigcirc I phân kỳ; J phân kỳ.

 $(\widehat{\mathbf{D}})I$ phân kỳ; J hội tụ.

Câu 33. Cho
$$I = \int_{1}^{+\infty} \frac{1+x^2}{x^3} dx$$
 và $J = \int_{0}^{1} \frac{dx}{e^{\sqrt[3]{x}} - 1}$.

 $(\mathbf{A})I$ hội tụ; J hội tụ.

 \bigcirc I hội tụ; J phân kỳ.

 \bigcirc I phân kỳ; J phân kỳ.

 \bigcirc I phân kỳ; J hội tụ.

Câu 34. Cho
$$I = \int_{1}^{+\infty} \frac{e^{-x^2}}{x^2} dx$$
 và $J = \int_{0}^{1} \frac{dx}{\sqrt{x(x+1)}}$.

 $(\mathbf{A})I$ hội tụ; J hội tụ.

 $(\widehat{\mathbf{B}})$ I hội tụ; J phân kỳ.

 \bigcirc I phân kỳ; J phân kỳ.

 \bigcirc I phân kỳ; J hội tụ.

Câu 35. Cho
$$I = \int_{0}^{1} \frac{x^2}{\sqrt[3]{(1-x^2)^5}} dx$$
 và $J = \int_{0}^{+\infty} \sin x dx$.

 $oldsymbol{A}I$ hội tụ; J hội tụ.

 \bigcirc *I* hội tụ; *J* phân kỳ.

 \bigcirc I phân kỳ; J phân kỳ.

 \bigcirc I phân kỳ; J hội tụ.

Câu 36. Cho
$$I = \int_{0}^{2} \frac{x^{5}}{\sqrt{(4-x^{2})^{5}}} dx$$
 và $J = \int_{0}^{+\infty} \frac{1+e^{-x}}{(x^{2}+2x+3)^{2}} dx$.

 $(\mathbf{A})I$ hội tụ; J hội tụ.

 \bigcirc I hội tụ; J phân kỳ.

 \bigcirc I phân kỳ; J phân kỳ.

 \bigcirc I phân kỳ; J hội tụ.

Câu 37. Cho
$$I = \int_{1}^{+\infty} \frac{x}{x^3 + 1} dx$$
 và $J = \int_{1}^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) dx$.

 $\bigodot{\mathbf{A}} I$ hội tụ; Jhội tụ.

 $\begin{tabular}{l} \hline \begin{tabular}{l} \hline \end{tabular} \end{tabular}$

 \bigcirc I phân kỳ; J phân kỳ.

 $\bigodot I$ phân kỳ; Jhội tụ.

Câu 38. Cho
$$I = \int_{0}^{1} \frac{x+1}{\sqrt{\sin x}} dx$$
 và $J = \int_{1}^{+\infty} \ln\left(1 + \frac{2x}{x^3 + 1}\right) dx$.

 $oldsymbol{\widehat{A}} I$ hội tụ; J hội tụ.

 $\begin{tabular}{l} \hline \begin{tabular}{l} \hline \endth \endth$

 \bigcirc I phân kỳ; J phân kỳ.

 \bigcirc I phân kỳ; J hội tụ.

IV. Xác định tham số để tích phân suy rộng hội tụ

Câu 39. Tích phân $I = \int_{1}^{+\infty} \frac{x^{\alpha} + 2x}{x^3 + x + 1} dx$ hội tụ khi và chỉ khi

- $(\mathbf{A}) \alpha < 2.$
- \bigcirc $\alpha > 2$.
- \bigcirc α < 3.
- \bigcirc $\alpha > 3$.

Câu 40. Tích phân $I=\int\limits_{-\infty}^{+\infty}\frac{x^2+x+1}{x^\alpha+x^4}\mathrm{d}x$ hội tụ khi và chỉ khi

$$(\mathbf{A}) \alpha \in \mathbb{R}.$$

$$(\widehat{\mathbf{B}}) \alpha > 2.$$

$$(\widehat{\mathbf{C}}) \alpha < 3.$$

$$\bigcirc$$
 $\alpha > 3$.

Câu 41. Tích phân $I=\int\limits_{-\infty}^{+\infty}\frac{x^2+x+1}{x^\alpha+x^3}\mathrm{d}x$ hội tụ khi và chỉ khi

$$\mathbf{A}$$
 $\alpha \in \mathbb{R}$.

$$\widehat{\mathbf{B}}$$
 $\alpha > 3$.

$$(\widehat{\mathbf{C}}) \alpha > 2.$$

$$\bigcirc$$
 $\alpha < 3$.

Câu 42. Tích phân $I = \int_{-\infty}^{+\infty} \frac{a + \sin x}{\sqrt{x}} dx$ hội tụ khi và chỉ khi

B
$$-\frac{1}{2} < a < 1$$
.

$$\bigcirc$$
 $a < 1$.

$$\mathbf{\widehat{D}} a = 0.$$

Câu 43. Tích phân $I=\int\limits_{-\infty}^{+\infty}\frac{x\sin(ax)}{x^3+1}\mathrm{d}x$ hội tụ khi và chỉ khi

$$\mathbf{A}$$
 $a \in \mathbb{R}$.

$$\bigcirc$$
 $a < 1$.

Câu 44. Tích phân $I = \int_{3}^{+\infty} \frac{\mathrm{d}x}{x (\ln x)^{2a+1}}$ hội tụ khi và chỉ khi

$$\bigcirc a > 0.$$

$$\bigcirc$$
 $a < 1$.

Câu 45. Tích phân $I = \int\limits_{-\infty}^{+\infty} \frac{\sqrt{\ln^{a-1} x}}{x} \mathrm{d}x$ hội tụ khi và chỉ khi

(B)
$$-\frac{1}{4} < a < 1$$
. (C) $a < -1$.

$$\bigcirc$$
 $a < -1$.

Câu 46. Tích phân $I=\int^1 \frac{x^{a-1}}{\sqrt{(x^2+1)\sin x}} \mathrm{d}x$ hội tụ khi và chỉ khi

$$\bigcirc$$
 $\frac{1}{2} < a < 1.$

$$\bigcirc$$
 $a < 1$.

Câu 47. Tích phân $I = \int_{-\infty}^{1} \frac{a + \sin x}{x\sqrt{x}} dx$ hội tụ khi và chỉ khi

$$\mathbf{\widehat{A}} a = 0.$$

$$(\widehat{\mathbf{B}}) a \neq 0.$$

$$\bigcirc$$
 $a < 1$.

Câu 48. Tích phân $I = \int_{0}^{2} \frac{x^{2a}}{\sqrt{(x^2 + x)(3 - x)}} dx$ hội tụ khi và chỉ khi

$$\mathbf{A}$$
 $a \in \mathbb{R}$.

$$\bigcirc$$
 $a < 1$.

$$\bigcirc$$
 $-\frac{1}{4} < a < 1.$

Câu 49. Tích phân $I = \int\limits_0^1 \frac{x^a}{\sqrt{x(x+1)(2-x)}} \mathrm{d}x$ hội tụ khi và chỉ khi

$$\widehat{\textbf{A}} \ a > -\frac{1}{2}.$$

$$\bigcirc$$
 $a < -1$.

$$\bigodot a$$
tù
y ý.

Câu 50. Tích phân $I = \int_{-\pi}^{\pi} \frac{\left(\sqrt{x+1}-1\right)\sin x}{\sqrt[3]{x^a\ln(x+1)}} \mathrm{d}x$ phân kỳ khi và chỉ khi

$$(A)$$
 0 < a < 8.

(B)
$$8 < a < 9$$
.

$$\bigcirc$$
 $a \geq 8$.

$$\bigcirc$$
 $a \in \mathbb{R}$.

V. Ứng dụng của tích phân

Câu 51. Tính độ dài cung có phương trình tham số $\begin{cases} x = a\cos^3 t; \\ y = a\sin^3 t \end{cases} \text{ với } t \in \left[0; \frac{\pi}{2}\right], \ a > 0.$ $\stackrel{\bigcirc}{\bigcirc} 3a \qquad \stackrel{\bigcirc}{\bigcirc} \frac{6a}{2}. \qquad \stackrel{\bigcirc}{\bigcirc} \frac{3a}{2}. \qquad \stackrel{\bigcirc}{\bigcirc} \frac{9a}{2}.$

$$\bigcirc$$
 $\frac{3a}{2}$.

Câu 52. Tính độ dài cung $y = \frac{1}{3}(3-x)\sqrt{x}, \ 0 \le x \le 3.$

$$(\mathbf{A})$$
 2.

(C)
$$2\sqrt{3}$$

(D) 3.

Câu 53. Tính độ dài cung phẳng $y = \frac{1}{4}x^2 - \frac{1}{2n}\ln x$, $0 \le x \le e$.

(A)
$$\frac{1}{2}$$
.

 $\bigcirc \frac{e^2+1}{4}$.

Câu 54. Tính độ dài cung phẳng có phương trình $r = a(1 + \cos \varphi), a > 0.$

 $(\mathbf{A}) 2a.$

(D) 3a.

Câu 55. Tính diện tích hình phẳng giới hạn bởi các đường $y = x^2$, y = 3x.

A
$$\frac{9}{2}$$
.

(D) 3.

Câu 56. Tính diện tích hình phẳng giới hạn bởi các đường $y=x^2,\,x=y^2.$

$$\mathbf{A} \frac{2}{3}.$$

(**D**) 3.

Câu 57. Tính diện tích hình phẳng giới hạn bởi đường $r^2 = a^2 \cos 2\varphi$.

$$\mathbf{A} \frac{a^2}{2}.$$

 $(\mathbf{B}) a^2$.

(**D**) $3a^2$.

Câu 58. Tính diện tích hình phẳng giới hạn bởi đường $r=a\left(1+\cos\varphi\right);\ a>0.$ $\textcircled{A}\ 2a^2. \qquad \textcircled{B}\ a^2. \qquad \textcircled{C}\ \frac{3\pi a^2}{2}.$

Câu 59. Tính diện tích hình phẳng giới hạn bởi đường $\begin{cases} x = a\cos^3 t; \\ y = a\sin^3 t \end{cases}$ với $t \in [0; 2\pi], \ a > 0.$

 $(\mathbf{B}) 2a^2$.

 \bigcirc a^2 .

 \bigcirc $\frac{3\pi a^2}{2}$.

Câu 60. Tính diện tích hình phẳng giới hạn bởi đường $\begin{cases} x = a (t - \sin t); \\ y = a (1 - \cos t) \end{cases}$ với $t \in [0; 2\pi], a > 0$ và

đường y = 0.

 $(\mathbf{A}) \pi a^2$.

 $(\mathbf{B}) 2a^2$.

 $(\mathbf{C}) a^2$.

 $(\mathbf{D}) 3\pi a^2$.

Câu 61. Tính diện tích hình phẳng giới hạn bởi các đường $y=x^2$ và đường y=2x.

Câu 62. Tính thể tích vậ	t thể giới hạn bởi các đư	ờng $y = x^2$, $y = x$ khi qu	ay quanh trục Ox .
$\mathbf{A}\frac{2\pi}{15}.$		\bigcirc $\frac{\pi}{2}$.	
Câu 63. Tính thể tích vậ	àt thể giới hạn bởi các đ	ường $y = 2x - x^2$; đường	y = 0 khi quay quanh
trục Ox .			
$\textcircled{A} \frac{\pi}{15}.$		$\bigcirc \frac{\pi}{2}$.	\bigcirc $\frac{\pi}{3}$.
Câu 64. Tính thể tích và	ật thể giới hạn bởi các ơ	$\text{fu} \text{ for } y = 2x - x^2; \ y =$	0 khi quay quanh trục
Oy.			
$\mathbf{A} \frac{8\pi}{3}.$		$\bigcirc \frac{\pi}{2}$.	
Câu 65. Tính thể tích vật	$\mathrm{t}\;\mathrm{th} \hat{\mathrm{e}}\;\mathrm{gi}$ ới hạn bởi đường y	$y = \sin x; 0 \le x \le \pi \text{ khi q}$	uay quanh trục Ox .
$\textcircled{A}\frac{\pi^2}{2}.$		$\bigcirc \frac{\pi}{2}$.	\bigcirc $\frac{\pi}{3}$.
Câu 66. Tính thể tích vậ	at thể giới hạn bởi các đư	$\text{riving } y = \sin x, y = 0, 0 \le$	$\leq x \leq \pi$ khi quay quanh
trục Oy .			
$igatharpoons \pi^2.$		\bigcirc $2\pi^2$.	
Câu 67. Tính thể tích vậ	àt thể giới hạn bởi đường	$ \begin{cases} x = a\cos^3 t, \\ y = a\sin^3 t, \end{cases} $ $ 0 \le t \le 1 $	2π khi quay quanh trục
$Ox.$ $\textcircled{A} \frac{32\pi a^3}{105}.$	(B) $\frac{2\pi a^3}{105}$.	\bigcirc πa^3 .	\bigcirc $2\pi a^3$.
Câu 68. Tính thể tích và	ật thể giới hạn bởi đườn	$\log y = \sqrt{\sin x}, \ 0 \le x \le$	π khi quay quanh trục
Ox.			
(A) 1.	B 2.	\bigcirc 2π .	\bigcirc π .
Câu 69. Tính thể tích vậ	t thể giới hạn bởi các đư		ay quanh trục Ox .
Câu 69. Tính thể tích vậ $\mathbf{A} \pi$.	B $\frac{176\pi}{3}$.	$\bigcirc \frac{\pi}{3}$.	$\bigcirc \frac{\pi}{2}$.
Câu 70. Tính thể tích vật	t thể tạo thành khi quay l	nình phẳng giới hạn bởi đ	widing $\begin{cases} x = a (t - \sin t); \\ y = a (1 - \cos t) \end{cases}$
với $t \in [0; 2\pi], a > 0$ và đu			(3
	\textcircled{B} πa^2 .	$\bigcirc 2\pi a^2$.	
Câu 71. Tính thể tích vật	t thể tạo thành khi quay l	nình phẳng giới hạn bởi đ	widing $\begin{cases} x = a (t - \sin t); \\ y = a (1 - \cos t) \end{cases}$
với $t \in [0; 2\pi], a > 0$ và đu	$dom y = 0$ quanh trục O_{x}	y.	
		\bigcirc πa^3 .	\bigcirc $2\pi a^3$.

CHƯƠNG 4: CHUỐI

PHẦN TỰ LUẬN

Bài 1. Xét sự hội tụ của chuỗi số

1)
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$$

2)
$$\sum_{n=1}^{+\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$

3)
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^3 + n^2 + 2}$$

4)
$$\sum_{n=2}^{+\infty} \frac{n \ln n}{n^2 - 1}$$

5)
$$\sum_{n=1}^{+\infty} \frac{n^n}{(n+1)^n \cdot 2^n}$$

6)
$$\sum_{n=1}^{+\infty} \frac{3.5.7...(2n+1)}{2.5.8...(3n-1)}$$

$$7) \sum_{n=1}^{+\infty} \frac{3^n \cdot n!}{n^n}$$

8)
$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(1 + \frac{1}{n+1}\right)^{n^2}$$

9)
$$\sum_{n=1}^{+\infty} \left(\tan \frac{1}{3n} - \sin \frac{1}{3n} \right)$$

$$10) \sum_{n=1}^{+\infty} \ln \left(1 + \frac{1}{n\sqrt{n}} \right)$$

11)
$$\sum_{n=1}^{+\infty} \frac{(n+1)^{n^2}}{n^{n^2} 3^n}$$

12)
$$\sum_{n=1}^{+\infty} \frac{\ln(n+1)}{n^3}$$

13)
$$\sum_{n=1}^{+\infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^p} \right)$$

14)
$$\sum_{n=2}^{+\infty} \frac{1}{n \cdot \ln^k n}$$

15)
$$\sum_{n=2}^{+\infty} (-1)^n \frac{n}{n^2 - 1}$$

16)
$$\sum_{n=1}^{+\infty} (-1)^n \cdot \left(\frac{3n+2}{2n+7}\right)^n$$

17)
$$\sum_{n=1}^{+\infty} (-1)^n \cdot \frac{3^n}{n^3}$$

18)
$$\sum_{n=1}^{+\infty} (-1)^n \cdot \left(\frac{n}{n+1}\right)^n$$

Bài 2. Xét sự hội tụ tuyệt đối, hội tụ tương đối

1)
$$\sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{(n+1)(n+2)}$$

2)
$$\sum_{n=1}^{+\infty} (-1)^{n-1} \cdot \frac{2^n}{n!}$$

3)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n \ln(n^2 + 1)}$$

$$4) \sum_{n=1}^{+\infty} \sin \frac{\pi n^2}{n+1}$$

5)
$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{1+n}{n^2} \right)$$

6)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\ln(n+1)}$$

7)
$$\sum_{n=1}^{+\infty} (-1)^n (\sqrt{n+1} - \sqrt{n-1})$$

Bài 3. Tìm miền hội tụ của chuỗi hàm

1)
$$\sum_{n=0}^{+\infty} \frac{(-4)^n \arcsin^n x}{\pi^n (n+1)}$$

2)
$$\sum_{n=1}^{+\infty} \frac{1}{n2^n} \left(\frac{x}{x+1} \right)^n$$

3)
$$\sum_{n=1}^{+\infty} \frac{(-\ln x)^n}{2n+1}$$

4)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n n^2}{3^n} e^{nx}$$

$$5) \sum_{n=1}^{+\infty} \frac{1}{n(\ln x)^n}$$

$$6) \sum_{n=1}^{+\infty} \frac{n}{n+1} \left(\frac{x}{2x+1}\right)^n$$

7)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 \ln^n x}$$

8)
$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(\frac{2x+1}{x+2} \right)^n$$

9)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n+1} \left(\frac{1-x}{1+x}\right)^n$$

10)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n(2x-3)^n}$$

11)
$$\sum_{n=1}^{+\infty} \frac{(x-1)^{2n}}{n4^n}$$

12)
$$\sum_{n=1}^{+\infty} \frac{(x+1)^{2n}}{n4^n}$$

13)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^{2n}}{n(2n-1)}$$

14)
$$\sum_{n=1}^{+\infty} \frac{(x-1)^{2n}}{n9^n}$$

15)
$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{n\pi^n} x^n$$

16)
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^2 + 1} x^n$$

17)
$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{1+n}{n^2}\right) x^n$$

18)
$$\sum_{n=1}^{+\infty} \frac{(x+1)^n}{2^n(2n+1)}$$

19)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n x^n}{n(2n+1)}$$

20)
$$\sum_{n=1}^{+\infty} \frac{(x-1)^n}{2^n(n+2)}$$

21)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n (x+2)^n}{\sqrt{n^2+1}}$$

PHẦN TRẮC NGHIỆM

I. Chuỗi số

Câu 1. Chuỗi $\sum_{n=0}^{+\infty} q^n$ hội tụ nếu

$$(\mathbf{A}) q < 1.$$

$$(\widehat{\mathbf{B}})|q| < 1.$$

$$(\widehat{\mathbf{C}}) q > 1.$$

$$(\widehat{\mathbf{D}}) q > -1.$$

Câu 2. Chuỗi $\sum_{n=0}^{+\infty} \frac{1}{2^n}$

- A hội tụ và có tổng là 2.
- (C) phân kỳ.

- $\bigodot{\bf B}$ hội tụ và có tổng là 1.
- \bigcirc hội tụ và có tổng là $\frac{1}{2}$.

Câu 3. Chuỗi $\sum_{n=1}^{+\infty} \left(\frac{1}{n^{p-2}} + \frac{1}{n^{1-q}} \right)$ hội tụ nếu và chỉ nếu

(A)
$$p > 3$$
; $q > 0$.

(B)
$$p > 3; q < 0.$$

$$\bigcirc p \le 3; \ q < 0.$$

$$\widehat{\mathbf{D}} p \ge 3; q < 0.$$

Câu 4. Chuỗi nào trong ba chuỗi sau $S_1 = \sum_{n=0}^{+\infty} \left(\frac{\sin 2}{\pi}\right)^n$; $S_2 = \sum_{n=1}^{+\infty} \frac{1}{\sqrt[3]{n}}$; $S_3 = \sum_{n=1}^{+\infty} \left(\frac{2n}{n+1}\right)^n$ phân

 $(\mathbf{A}) S_2$ và S_3 .

 (\mathbf{B}) S_1 và S_3 .

 \bigcirc S_1 và S_2 .

(D) Cả ba chuỗi phân kỳ.

Câu 5. Chuỗi $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + A^2}$ (A là tham số) hội tụ tuyệt đối khi và chỉ khi

$$(\widehat{\mathbf{A}}) A \ge 1.$$

$$\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$$

$$(\widehat{\mathbf{C}}) A > 2.$$

$$(\widehat{\mathbf{D}}) A > 1.$$

Câu 6. Tìm p để chuỗi $\sum_{n=1}^{+\infty} \frac{n^2+3}{(n+1)(n^p+1)}$ (p là tham số)
hội tụ

$$(\mathbf{A}) p < 2.$$

$$(\mathbf{B}) p \ge 2$$

$$(\widehat{\mathbf{C}}) p > 2$$

Câu 7. Bằng cách so sánh với chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$, mệnh đề nào sau đây đúng?

$$\bigcirc \sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$$
 hội tụ.

Câu 8. Bằng cách so sánh với chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$, mệnh đề nào sau đây đúng?

$$(\underbrace{\mathbf{A}} \sum_{n=1}^{+\infty} \frac{n+1}{n^2 + \ln n} \ \mathrm{hội} \ \mathrm{tụ}.$$

$$\bigcirc$$
 $\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$ hội tụ.

Câu 9. Chuỗi $\sum_{n=1}^{+\infty} \frac{n^2+2n}{(3n+1)n^{\alpha-1}}$ hội tụ khi và chỉ khi

$$(\mathbf{A}) \alpha > 3.$$

$$\bigcirc \mathbf{B}$$
 $\alpha < 3$

$$(\widehat{\mathbf{C}}) \alpha \leq 3.$$

$$(\widehat{\mathbf{D}}) \alpha \geq 3.$$

Câu 10. Chuỗi $\sum_{n=1}^{+\infty} \frac{n^2+2n}{n^3+n^\alpha+1}$ hội tụ khi và chỉ khi

$$(\mathbf{A}) \alpha > 1.$$

$$(\widehat{\mathbf{B}}) \alpha < 3.$$

$$(\widehat{\mathbf{C}}) \alpha > 3.$$

$$\bigcirc$$
 $\alpha > 3$.

Câu 11. Chuỗi $\sum_{n=1}^{+\infty} \frac{n^2 + 2n}{n^4 + n^{\alpha} + 1}$ hội tụ khi và chỉ khi

$$(\mathbf{A}) \alpha > 1.$$

$$\bigcirc$$
 \mathbf{B} $\alpha < 3$.

$$(\widehat{\mathbf{C}}) \alpha \in \mathbb{R}.$$

$$(\widehat{\mathbf{D}}) \alpha > 3.$$

Câu 12. Chuỗi $\sum_{n=1}^{+\infty} \frac{n^2 + n^{\alpha} + 2n}{n^4 + 1}$ hội tụ khi và chỉ khi

- $(\mathbf{A}) \alpha > 1.$
- $(\mathbf{B}) \alpha < 3.$
- $(\mathbf{C}) \alpha > 3.$
- (D) $\alpha > 3$.

Câu 13. Chuỗi $\sum_{n=1}^{+\infty} \frac{n^2 + n^{\alpha} + 2}{n^3 + 1}$ phân kỳ khi và chỉ khi

- $(\mathbf{A}) \alpha > 2.$
- $(\mathbf{B}) \alpha < 2.$
- $(\mathbf{C}) \alpha \in \mathbb{R}.$
- (**D**) Không tồn tại α .

Câu 14. Chuỗi $\sum_{n=0}^{+\infty} \left(\frac{1}{n^{\alpha-1}} + \frac{1}{n^{3-\beta}} \right)$ hội tụ khi và chỉ khi

- $(\widehat{\mathbf{D}}) \alpha > 2 \text{ và } \beta < 2.$

Câu 15. Chuỗi $\sum_{n=0}^{+\infty} \left(\frac{1}{n^{\alpha-1}} + 3^n\right)$ phân kỳ khi và chỉ khi

- $(\mathbf{A}) \alpha > 2.$
- $\widehat{\mathbf{B}}$ $\alpha < 2$.
- $(\mathbf{C}) \alpha > 1.$
- $(\mathbf{D}) \alpha \in \mathbb{R}.$

Câu 16. Chuỗi $\sum_{i=1}^{+\infty} \frac{3}{(q^2+1)^n}$ hội tụ khi và chỉ khi

- **(A)** q > 1.
- $(\mathbf{B}) 1 < q < 1.$
- (D) $0 < q < \sqrt{2}$.

Câu 17. Chuỗi $\sum_{n=1}^{+\infty} \frac{2^n + q^{2n}}{9^n}$ hội tụ khi và chỉ khi

- (B) -2 < q < 2.
- **(D)** q > 3.

Câu 18. Chuỗi $\sum_{n=1}^{+\infty} \left[(p+1)^{2n} + q^{2n} \right]$ hội tụ khi và chỉ khi

 $(\mathbf{A}) - 3$

(B) -2 và <math>0 < q < 1.

 $(\widehat{\mathbf{C}})$ 0 < p < 2 và -1 < q < 1

 $(\widehat{\mathbf{D}}) - 2$

Câu 19. Xét chuỗi đan dấu $S = \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}+3}$. Mệnh đề nào sau đây đúng?

- $(\mathbf{A}) S$ bán hội tụ (hội tụ tương đối).
- (\mathbf{B}) S hôi tu tuyết đối.

 (\mathbf{C}) S phân kỳ.

 (\mathbf{D}) S hội tụ tuyệt đối nhưng phân kỳ.

Câu 20. Xét chuỗi đan dấu $S = \sum_{n=1}^{+\infty} (-1)^n \frac{n+1}{n(\sqrt{n^3}+3)}$. Mệnh đề nào sau đây đúng?

- $(\mathbf{A}) S$ bán hội tụ (hội tụ tương đối).
- (\mathbf{B}) S hội tụ tuyệt đối.

 (\mathbf{C}) S phân kỳ.

 (\mathbf{D}) S hội tụ tuyệt đối nhưng phân kỳ.

Câu 21. Xét chuỗi đan dấu $S = \sum_{n=0}^{\infty} (-1)^n \arctan \frac{n+1}{n+3}$. Mệnh đề nào sau đây đúng?

- (\mathbf{A}) S bán hôi tu (hôi tu tương đối).
- (\mathbf{B}) S hôi tu tuyết đối.
- (\mathbf{C}) S phân kỳ theo tiêu chuẩn Leibnitz.
- $(\mathbf{D})S$ phân kỳ theo điều kiện cần.

Câu 22. Chuỗi đan dấu $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha-1}}$ hội tụ khi và chỉ khi

- (A) $\alpha > 2$.
- **(B)** $\alpha < 2$.
- (C) $\alpha > 1$.
- $(\mathbf{D}) \alpha \in \mathbb{R}.$

Câu 23. Chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2+1}{n^{\alpha}+n+2}$ hội tụ khi và chỉ khi

$$(\mathbf{A}) \alpha > 2.$$

$$\widehat{\mathbf{B}}$$
 $\alpha < 2$.

$$(\widehat{\mathbf{C}}) \alpha > 1.$$

$$(\widehat{\mathbf{D}}) \alpha \in \mathbb{R}.$$

Câu 24. Chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2+1}{n^3+A^2}$ hội tụ khi và chỉ khi

$$(\mathbf{A}) A > 2.$$

$$\mathbf{B}$$
 $A < 2$.

$$(\widehat{\mathbf{C}}) A > 1$$

$$(\widehat{\mathbf{D}}) A \in \mathbb{R}.$$

Câu 25. Cho chuỗi số $\sum_{n=1}^{+\infty} \frac{(p^2+3)n^2+5}{2^n}$ với p là tham số. Mệnh đề nào sau đây đúng?

 (\mathbf{A}) Chuỗi hội tụ với mọi p.

- (\mathbf{B}) Chuỗi phân kỳ với mọi |p| > 1.
- \bigcirc Nếu $|p| > \sqrt{3}$ thì chuỗi phân kỳ.
- \bigcirc Chuỗi hội tụ khi và chỉ khi |p| < 2.

Câu 26. Chuỗi số $\sum_{n=1}^{+\infty} \left(\frac{pn^2+n+1}{2n^2+3}\right)^n$ với p là tham số hội tụ khi và chỉ khi

$$(\mathbf{A}) - 2 \le p < 2.$$

B
$$-2 .$$

$$(C)$$
 $-2 .$

Câu 27. Chuỗi số $\sum_{n=1}^{+\infty} \left(\frac{2n^2+n+1}{pn^2+3}\right)^n$ với p là tham số hội tụ khi và chỉ khi

$$(A) p \le -2 \text{ hoặc } p \ge 2. \quad (B) p < -2.$$

(C)
$$p > 2$$
.

Câu 28. Chuỗi số $\sum_{n=1}^{+\infty} \left(\frac{pn^2+n+1}{2n^3+3}\right)^n$ với p là tham số hội tụ khi và chỉ khi

$$(\widehat{\mathbf{A}}) - 2 \le p < 2.$$

$$\widehat{\mathbf{B}}$$
 $-2 .$

$$(\widehat{\mathbf{C}}) - 2$$

$$(\widehat{\mathbf{D}}) p \in \mathbb{R}.$$

Câu 29. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} (-1)^{n-1}$, $S_2 = \sum_{n=1}^{+\infty} \frac{1}{n} \left(\frac{2}{5}\right)^n$. Chọn khẳng định đúng.

 $igatharpoonup S_1, S_2$ cùng hội tụ.

B S_1 hội tụ, S_2 phân kỳ.

 $\bigodot S_1$ phân kỳ, S_2 hội tụ.

 \bigcirc S_1 , S_2 cùng phân kỳ.

Câu 30. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{2^n}{n}$, $S_2 = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 31. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{1}{(3n-1)^2}$, $S_2 = \sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 $(\widehat{\mathbf{B}}) S_1$ hội tụ, S_2 phân kỳ.

 $(\widehat{\mathbf{C}})$ S_1 phân kỳ, S_2 hội tụ.

 $(\widehat{\mathbf{D}}) S_1, S_2$ cùng phân kỳ.

Câu 32. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \left(\frac{n}{3n-1}\right)^n$, $S_2 = \sum_{n=1}^{+\infty} \left(\frac{n+1}{2n-1}\right)^n$. Chọn khẳng định đúng.

 $igatharpoonup S_1, S_2$ cùng hội tụ.

 (\mathbf{B}) S_1 hội tụ, S_2 phân kỳ.

 $\bigodot S_1$ phân kỳ, S_2 hội tụ.

 $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 33. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{1}{n!}$, $S_2 = \sum_{n=1}^{+\infty} \frac{1}{(n+1)^2 - 1}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 \bigcirc S_1 , S_2 cùng phân kỳ.

Câu 34. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \left(\frac{4n}{3n+1}\right)^n$, $S_2 = \sum_{n=1}^{+\infty} \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 \bigcirc C S_1 phân kỳ, S_2 hội tụ.

 $(\widehat{\mathbf{D}}) S_1, S_2$ cùng phân kỳ.

Câu 35. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{n^3}{e^n}$, $S_2 = \sum_{n=1}^{+\infty} \frac{2^{n-1}}{n^n}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

B S_1 hội tụ, S_2 phân kỳ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 36. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{n!}{2^n + 1}$, $S_2 = \sum_{n=1}^{+\infty} \frac{2^{n-1}}{(n+1)!}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 $\bigcirc S_1, S_2$ cùng phân kỳ.

Câu 37. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \arcsin \frac{1}{\sqrt{n}}$, $S_2 = \sum_{n=1}^{+\infty} \sin \frac{1}{n^2}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

B S_1 hội tụ, S_2 phân kỳ.

 $\bigodot S_1$ phân kỳ, S_2 hội tụ.

 \bigcirc S_1 , S_2 cùng phân kỳ.

Câu 38. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n}\right)$, $S_2 = \sum_{n=1}^{+\infty} \ln\frac{n^2 + 1}{n^2}$. Chọn khẳng định đúng.

 $igatharpoonup S_1, S_2$ cùng hội tụ.

 (\mathbf{B}) S_1 hội tụ, S_2 phân kỳ.

 $(\widehat{\mathbf{C}})$ S_1 phân kỳ, S_2 hội tụ.

 $(\widehat{\mathbf{D}}) S_1, S_2$ cùng phân kỳ.

Câu 39. Cho hai chuỗi số $S_1 = \sum_{n=2}^{+\infty} \frac{1}{\ln n}$, $S_2 = \sum_{n=2}^{+\infty} \frac{1}{n \ln n}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 40. Cho hai chuỗi số $S_1 = \sum_{n=2}^{+\infty} \frac{1}{n \ln^2 n}$, $S_2 = \sum_{n=10}^{+\infty} \frac{1}{n \ln n \cdot \ln (\ln n)}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

B S_1 hội tụ, S_2 phân kỳ.

 \bigcirc C S_1 phân kỳ, S_2 hội tụ.

 \bigcirc \bigcirc S_1, S_2 cùng phân kỳ.

Câu 41. Cho hai chuỗi số $S_1 = \sum_{n=2}^{+\infty} \frac{1}{\sqrt{n \ln n}}$, $S_2 = \sum_{n=2}^{+\infty} \frac{1}{n \ln n + \sqrt{\ln^3 n}}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 (\mathbf{B}) S_1 hội tụ, S_2 phân kỳ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 \bigcirc O S_1 , S_2 cùng phân kỳ.

Câu 42. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{2^n n!}{n^n}$, $S_2 = \sum_{n=1}^{+\infty} \frac{3^n n!}{n^n}$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 \bigcirc S_1 , S_2 cùng phân kỳ.

Câu 43. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \left(1 - \cos\frac{\pi}{n}\right)$, $S_2 = \sum_{n=1}^{+\infty} \frac{n!}{n^n}$. Chọn khẳng định đúng.

 $oxed{\mathbf{A}} S_1, S_2$ cùng hội tụ.

 $(\widehat{\mathbf{B}}) S_1$ hội tụ, S_2 phân kỳ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 44. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{e^n n!}{n^n}$, $S_2 = \sum_{n=1}^{+\infty} \left(\frac{3n^2 + n + 2}{5n^2 + 2n + 1} \right)^n$. Chọn khẳng định đúng.

 $(\mathbf{A}) S_1, S_2$ cùng hội tụ.

 (\mathbf{B}) S_1 hội tụ, S_2 phân kỳ.

 \bigcirc S_1 phân kỳ, S_2 hội tụ.

 $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 45. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1}$, $S_2 = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$. Chọn khẳng định đúng.

- $igatharpoonup S_1, S_2$ cùng hội tụ tuyệt đối.
- $\textcircled{\mathbf{B}}$ S_1 bán hội tụ, S_2 hội tụ tuyệt đối.
- \bigcirc S_1 hội tụ tuyệt đối, S_2 bán hội tụ.
- $\bigcirc S_1$, S_2 cùng phân kỳ.

Câu 46. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{6n-5}$, $S_2 = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{2n+1}{n(n+1)}$. Chọn khẳng định đúng.

- $(\widehat{\mathbf{A}}) S_1, S_2$ cùng hội tụ tuyệt đối.
- (\mathbf{B}) S_1 phân kỳ, S_2 bán hội tụ.
- \bigcirc S_1 hội tụ tuyệt đối, S_2 bán hội tụ.
- \bigcirc S_1 , S_2 cùng phân kỳ.

Câu 47. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{2^n}$, $S_2 = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n+3}{n\sqrt{n+1}-1}$. Chọn khẳng định đúng.

- $(\mathbf{A}) S_1, S_2$ cùng hội tụ tuyệt đối.
- $\bigodot S_1$ hội tụ tuyệt đối, S_2 bán hội tụ.
- \bigcirc S_1 , S_2 cùng phân kỳ.

Câu 48. Cho hai chuỗi số $S_1 = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\ln n}{n}$, $S_2 = \sum_{n=1}^{+\infty} (-1)^{n-1} \tan \frac{1}{n\sqrt{n}}$. Chọn khẳng định đúng.

- $oldsymbol{A} S_1, S_2$ cùng hội tụ tuyệt đối.
- B S_1 bán hội tụ, S_2 hội tụ tuyệt đối.
- $\bigodot S_1$ hội tụ tuyệt đối, S_2 bán hội tụ.
- \bigcirc S_1 , S_2 cùng phân kỳ.

II. Chuỗi hàm

Câu 49. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{n}{3^n+1} (x-1)^n$. Chọn khẳng định đúng.

- (A) [-1; 3].
- (C) (-2; 4).
- \bigcirc [-2; 4].

Câu 50. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{n!}{3^n+1} (x-2)^n$. Chọn khẳng định đúng.

- (A) [-1; 5].
- **(B)** (-1; 5].
- (C) (-1;5).

Câu 51. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{3^n+2}{n!} (x-3)^n$. Chọn khẳng định đúng.

- (A) [0; 6].
- **(B)** (-0; 6].
- (\mathbf{C}) (0; 6).

Câu 52. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} (x-1)^n$. Chọn khẳng định đúng.

- (A) [-1; 3].
- $(\mathbf{B}) (0; 2].$

Câu 53. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2+1} (x-1)^n$. Chọn khẳng định đúng.

- (A) [-1; 3].
- (C) (0; 2).

Câu 54. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n2^n} (x-5)^n$. Chọn khẳng định đúng.

- (A) [2; 8].
- (\mathbf{B}) (3; 7].
- (\mathbf{C}) (2; 8).
- $(\mathbf{D})[3;7].$

Câu 55. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \frac{1}{n \ln n} (x-5)^n$. Chọn khẳng định đúng.

- (A)[2;8].
- (\mathbf{B}) (4; 6].
- (\mathbf{C}) (2; 8).
- $(\mathbf{D})[4;6).$

Câu 56. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{+\infty} \left(\frac{n+1}{3n}\right)^n (x-5)^n$. Chọn khẳng định đúng.

- **(A)** [3;7].
- (B) (3; 7].
- (C) (2; 8).
- $(\mathbf{D})[2;8].$

Câu 57. Cho chuỗi lũy thừa $S = \sum_{n=0}^{+\infty} (-1)^n (n+2)^2 x^n$ với hai mệnh đề

- (a) S hội tụ tuyệt đối khi -1 < x < 1
- (b) S phân kỳ khi $|x| \ge 1$

Khẳng định nào sau đây đúng?

- (\mathbf{A}) (a), (b) đều đúng.
- (B) (a) đúng, (b) sai. (C) (a) sai, (b) đúng. (D) (a), (b) đều sai.

Câu 58. Cho chuỗi lũy thừa $S = \sum_{n=1}^{+\infty} \frac{x^n}{n}$ với hai mệnh đề

- (a) S hội tụ tuyệt đối khi -1 < x < 1
- (b) S bán hội tụ khi x = -1

Khẳng định nào sau đây đúng?

- (\mathbf{A}) (a), (b) đều đúng.
- **(B)** (a) đúng, (b) sai.
- **(C)** (a) sai, (b) đúng.
- (**D**) (a), (b) đều sai.

Câu 59. Cho chuỗi lũy thừa $S = \sum_{n=1}^{+\infty} \frac{x^n}{n}$ với hai mệnh đề

- (a) S hội tụ tuyệt đối khi -1 < x < 1
- (b) S bán hội tụ khi x=1

Khẳng định nào sau đây đúng?

- (\mathbf{A}) (a), (b) đều đúng.
- **(B)** (a) dúng, (b) sai. **(C)** (a) sai, (b) dúng.
- (**D**) (a), (b) đều sai.

Câu 60. Cho chuỗi lũy thừa $S = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ với hai mệnh đề

- (a) Shội tụ tuyệt đối khi $-1 \leq x \leq 1$
- (b) S phân kỳ khi và chỉ khi x < -1

Chọn khẳng định đúng nhất

- (\mathbf{A}) (a), (b) đều đúng.
- $\textcircled{\textbf{B}}$ (a) đúng, (b) sai. $\textcircled{\textbf{C}}$ (a) sai, (b) đúng. $\textcircled{\textbf{D}}$ (a), (b) đều sai.

Câu 61. Cho chuỗi lũy thừa $S = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ với hai mệnh đề

- (a) Shội tụ tuyệt đối khi $-1 \leq x \leq 1$
- (b) S phân kỳ khi và chỉ khi x > 1

Chọn khẳng định đúng nhất

- (\mathbf{A}) (a), (b) đều đúng.
- (B) (a) đúng, (b) sai. (C) (a) sai, (b) đúng.
- **D** (a), (b) đều sai.

– HÊT ——

ĐÁP ÁN CHƯƠNG 1

1.	A	2.	В	3.	C	4.	D	5.	В	6.	D	7.	C	8.	A	9.	В	10.	D
11.	\mathbf{C}	12.	В	13.	A	14.	\mathbf{C}	15.	В	16.	D	17.	A	18.	A	19.	В	20.	C
21.	D	22.	В	23.	A	24.	\mathbf{B}	25.	C	26.	\mathbf{C}	27.	A	28.	В	29.	A	30.	\mathbf{C}
31.	A	32.	D	33.	C	34.	В	35.	A	36.	D	37.	C	38.	В				

ĐÁP ÁN CHƯƠNG 2

1.	B 2.	A 3.	A 4.	D 5.	C 6	B 7.	D 8.	A 9.	C 10.	В
11.	C 12.	D 13.	C 14.	B 15.	B 1	6. A 17.	D 18.	D 19.	A 20.	В
21.	C 22.	D 23.	A 24.	B 25.	A 2	6. B				

ĐÁP ÁN CHƯƠNG 3

1.	D	2.	A	3.	В	4.	В	5.	A	6.	A	7.	В	8.	C	9.	D	10.	В
11.	A	12.	C	13.	A	14.	A	15.	В	16.	A	17.	D	18.	D	19.	В	20.	C
21.	В	22.	C	23.	A	24.	В	25.	В	26.	A	27.	A	28.	C	29.	В	30.	В
31.	C	32.	В	33.	D	34.	A	35.	C	36.	D	37.	A	38.	A	39.	A	40.	A
41.	В	42.	D	43.	A	44.	C	45.	C	46.	В	47.	A	48.	C	49.	A	50.	C
51.	C	52.	C	53.	D	54.	C	55.	A	56.	В	57.	В	58.	C	59.	D	60.	D
61.	В	62.	D	63.	В	64.	A	65.	A	66.	C	67.	A	68.	C	69.	В	70.	D
71.	В																		

ĐÁP ÁN CHƯƠNG 4

1.	В	2.	A	3.	В	4.	A	5.	В	6.	C	7.	В	8.	D	9.	A	10.	D
11.	C	12.	В	13.	C	14.	D	15.	В	16.	C	17.	A	18.	A	19.	A	20.	В
21.	D	22.	\mathbf{C}	23.	A	24.	D	25.	A	26.	\mathbf{C}	27.	D	28.	D	29.	C	30.	D
31.	A	32.	A	33.	A	34.	C	35.	A	36.	\mathbf{C}	37.	C	38.	C	39.	D	40.	В
41.	D	42.	В	43.	A	44.	C	45.	В	46.	В	47.	C	48.	В	49.	C	50.	D
51.	D	52.	В	53.	D	54.	В	55.	D	56.	C	57.	A	58.	A	59.	В	60.	В
61.	В																		