Technischer Hinweis für O-Ringe

Dichtwirkung

wendig ist, ist der Einbau in einer Rechtecknut vorzuziehen.

Der O-Ring ist ein Dichtelement mit dem Fluide und Gase zuverlässig abgedichtet werden können. Die Dichtwirkung ergibt sich beim Einbau aus der axialen oder radialen Verpressung des Querschnittes. Im Betriebszustand verstärkt der Mediumsdruck die Deformation des O-Ringes und erhöht damit die Dichtfunktion.

Einbauarten

<u>D6</u> <u>D5</u>	Flanschdichtung Axialer Einbau statisch dichtend	Bei Druck von innen gilt: O-Ring Außendurchmesser (D1 + 2 x D2) ca. 2% größer als Nutaußendurchmesser D5 D1 ~ D5 x 1,02 -2 x D2
<u>D6</u>	Flanschdichtung Axialer Einbau statisch dichtend	Bei Druck von außen gilt: O-Ring Durchmesser D1 ca. 2% kleiner als Nutinnendurchmesser D6 D1 ~ D6 x 0,98
	Stangendichtung (innendichtend) Radialer Einbau statisch/dynamisch dichtend	Für den innendichtenden Einsatz gilt: O-Ring Durchmessr D1 = D4
	Kolbendichtung (außendichtend) Radialer Einbau statisch/dynamisch dichtend	Für den außendichtenden Einsatz gilt: 0-Ring Durchmesser D1 ≤ D3 cksnut. Da die Herstellung einer Trapeznut und Dreiecksnut schwierig und kostenauf-

Spaltmaße

Durch den Druck wird der 0-Ring an die druckabgewandte Seite angepresst. Um zu vermeiden, dass der 0-Ring dabei in den Dichtspalt gedrückt wird, sollte dieser möglichst klein gehalten werden. Ein zu großer Dichtspalt kann zur Zerstörung des 0-Rings durch Spaltextrusion führen.

Die in der Tabelle aufgeführten Richtwerte der Spaltmaße für Standardelastomere stellen bei zentrischer Anordnung der Bauteile Maximalwerte dar. Die zulässigen Werte für den Dichtspalt sind vom Druck, der Werkstoffhärte und dem Durchmesser abhängig. Sämtliche Angaben beruhen auf Erfahrungswerten und sind lediglich als Richtwerte zu betrachten.

0-Ring Härte 70 Shore A							
Schnurstärke D2	≤ 2	≤ 3	≤ 5	≤7	>7		
Druck (bar)	Spaltmaß S (mm)						
≤3,5	0,08	0,09	0,1	0,13	0,15		
≤7,0	0,05	0,07	0,08	0,09	0,1		
≤10	0,03	0,04	0,05	0,07	0,08		

Nutradien

Die Innen- und Außenkanten dürfen keine scharfen Kanten aufweisen. Alle mit dem O-Ring in Berührung kommenden Kanten müssen komplett entgratet und gerundet sein. Die auf die Schnurstärke bezogenen Radien sind einzuhalten. Schräge Nutflanken bis ca. 5° sind zulässig.

Schnurstärke D2	R1	R2
< 2	0,1	0,3
< 3	0,2	0,3
< 4	0,2	0,5
< 5	0,2	0,6
< 6	0,2	0,6
< 8	0,2	0,8
> 8	0,2	1

Einführschräge E

Um eine fachgerechte Montage zu gewährleisten sind an den Bauteilen Einführschrägen vorzusehen damit der O-Ring bei der Montage nicht beschädigt wird.

Schnurstärke D2	R1	R2
≤1,80	2,5	2
≤2,65	3	2,5
≤3,55	3,5	3
≤5,30	4	3,5
≤7,00	5	4
>7,00	6	4,5

Oberflächenrauheiten

Um eine optimale Dichtwirkung zu erreichen müssen die Kontaktflächen eine Mindestgüte erfüllen. Die Anforderungen an die Oberfläche sind vor allem von dem Anwendungsfall abhängig. Speziell beim dynamischen Dichteinsatz oder bei pulsierenden Drücken muss die Oberfläche feiner sein als bei statischen Anwendungen. Die angegebenen Werte decken den Großteil der Dichtungsanwendungen ab und sind als Empfehlungen zu betrachten.

Fläche	Anwendungsfall	Rz (μm)	Ra (µm)
Dichtfläche A	statisch	≤ 6,3	≤ 1,6
Nutgrund B	statisch	≤ 6,3	≤ 1,6
Nutflanken C	statisch	≤ 6,3	≤ 1,6
Dichtfläche A	dynamisch	≤ 1,6	≤ 0,4
Nutgrund B	dynamisch	≤ 6,3	≤ 1,6
Nutflanken C	dynamisch	≤ 6,3	≤ 1,6
Einführschräge E	-	≤ 6,3	≤ 1,6

Montagehinweise

Damit der O-Ring seine entsprechende Dichtfunktion erfüllen kann muss bei der Montage jegliche Beschädigung des O-Rings vermieden werden, da ansonsten Undichtigkeiten auftreten können. Daher sind folgende Montagehinweise zwingend einzuhalten:

- •definierte Einfahrschrägen und die geforderten Oberflächenrauheiten einhalten
- •alle Kanten über die der O-Ring führt müssen einen gratfreien und abgerundeten Übergang aufweisen.
- •Schmutz, Späne und alle sonstigen Partikel müssen im Einführungsbereich und der Nut entfernt werden
- Montagehilfen (Hülsen) beim Überfahren von Gewinden und unvermeidbaren scharfen Kanten und Ecken verwenden
- •Sofern möglich für die Montage Montagefett/-öl verwenden (Beständigkeit beachten)
- •keine scharfkantigen Montagewerkzeuge und Hilfsmittel verwenden
- •wegen der möglichen Verhärtung dürfen O-Ringe niemals eingeklebt werden
- •die O-Ringe bei der Montage nicht verdrehen/verdrillen
- •ein kurzfristiges Aufdehnen um 20% bezogen auf den Innendurchmesser ist für die Montage zulässig

Dimensionierung und Auswahl von O-Ringen

Für eine optimale Dichtwirkung sind O-Ringe mit einer möglichst großen Schnurstärke zu wählen. Insbesondere bei ungünstigen Toleranzverhältnissen ist die nächst größere Schnurstärke zu wählen.

Die Dichtwirkung des O-Rings wird durch seine Vorpressung erreicht. Je nach Anwendungsfall sollten nachfolgende Werte erreicht werden:

- statische Abdichtung 15 30%
- dynamische Abdichtung 10 18% (Hydraulik
- dynamische Abdichtung 4 12% (Pneumatik)

In der nebenstehenden Tabelle ist eine Empfehlung der O-Ring Vorpressung in Abhängigkeit von Schnurdurchmesser D2 und des Anwendungsfalls aufgelistet.

Im eingebauten Zustand sollte der O-Ring bezogen auf den Innendurchmesser

- max. 6% aufgedehnt
- max. 3% gestaucht werden

Ī	0-Ring	Vorpressung					
	Schnurstärke	Einsatz					
	D2	statisch hydr./pneum.	dynamisch hydraulisch	dynamisch pneumatisch			
	1,78	11,5 - 28,5 %	10,5 - 25,0 %	5,0 - 18,5 %			
	2	11,0 - 27,5 %	10,0 - 23,5 %	4,5 - 17,5 %			
	2,62	10,5 - 25,0 %	9,0 - 20,5 %	4,0 - 15,5 %			
m.	3	10,3 - 24,0 %	8,8 - 20,0 %	3,5 - 15,0 %			
	3,53	10,0 - 23,0 %	8,0 - 18,5 %	3,0 - 14,0 %			
	4	10,0 - 22,0 %	7,5 - 18,0 %	3,0 - 13,7 %			
. [5	10,0 - 21,5 %	7,0 - 17,5 %	3,0 - 13,5 %			
	5,33	10,0 - 20,0 %	7,0 - 17,0 %	3,0 - 13,2 %			
	6	9,8 - 19,5 %	7,0 - 16,5 %	3,0 - 13,0 %			
	7	9,5 - 19,0 %	6,5 - 16,0 %	3,0 - 12,7 %			
	8	9,5 - 19,0 %	6,5 - 16,0 %	3,0 - 12,0 %			

Einbaumaße Rechtecknut

Die in der Tabelle angegebene Werte und Toleranzen gelten für O-Ringe aus NBR 70 Shore A. In der Regel können diese Werte auch für andere Werkstoffe und Werkstoffhärten übernommen werden ggf. ist nur die Nuttiefe anzupassen. Die angegebenen Werte decken den Großteil der Dichtungsanwendungen ab und sind als Empfehlungen zu betrachten.

Beispiel		
Welle D4 = 58	D4 = 58	
Radial Einbau, statisch (innendichtend)		
Auswahl 0-Ring	D1 = 58, D2 = 3.5	
Aus Tabelle 4		
Nutgrunddurchmesser D8	D8 = D4 +5,3 = 63,3	
Nutbreite B1	B1 = 4,6	
Spaltweite S		
Durchmesser D10	$D10 = D4 H8 = 58^{\circ} / 58^{+46}$	
Durchmesser D4	D4 f7 = $58_{-30} / 58_{-60}$	
Maximalspalt S	S = 0.053	

Tabelle Einbaumaße

Einbaumaße							
0-Ring Schnurstärke	Radialer Einbau Nutgrunddurchmesser				Nutbreite	Axialer Einbau Nuttiefe Radius	
	dynamisch	statisch	dynamisch	statisch			
D2	D3h9	D3h9	D8H9	D8H9	B1 +02	T1 +0,05	R2
0,5	-	D9-0,7	-	D4+0,7	0,8	0,35	0,2
0,74	-	D9-1,0	-	D4+1,0	1	0,5	0,2
1,00 1,02	_	D9-1,4	_	D4+1,4	1,4	0,7	0,2
1,2	-	D9-1.7	-	D4+1.7	1,7	0,85	0,2
1,25 1,27	_	D9-1,8	_	D4+1,8	1,7	0,9	0,2
1,3	-	D9-1,9	-	D4+1,9	1,8	0,95	0,2
1,42	_	D9-2,1	_	D4+2,1	1,9	1,05	0,3
1,50 1,52	D9-2,5	D9-2,2	D4+2,5	D4+2,2	2	1,1	0,3
1,60 1,63	D9-2,6	D9-2,4	D4+2,6	D4+2,4	2,1	1,2	0,3
1,78 1,80	D9-2,9	D9-2,6	D4+2,9	D4+2,6	2,4	1,3	0,4
1,83	D9-3,0	D9-2,7	D4+3,0	D4+2,7	2,5	1,35	0,4
1,9	D9-3,1	D9-2,8	D4+3,1	D4+2,8	2,6	1,4	0,4
1,98 2,00	D9-3,3	D9-3,0	D4+3,3	D4+3,0	2,7	1,5	0,4
2,08 2,10	D9-3,5	D9-3,1	D4+3,5	D4+3,1	2,8	1,55	0,4
2,2	D9-3,7	D9-3,2	D4+3,7	D4+3,2	3	1,6	0,4
2,26	D9-3,8	D9-3,4	D4+3,8	D4+3,4	3	1,7	0,4
2,30 2,34	D9-3,9	D9-3,5	D4+3,9	D4+3,5	3,1	1,75	0,4
2,4	D9-4,1	D9-3,6	D4+4,1	D4+3,6	3,2	1,8	0,5
2,46	D9-4,2	D9-3,7	D4+4,2	D4+3,7	3,3	1,85	0,5
2,5	D9-4,3	D9-3,7	D4+4,3	D4+3,7	3,3	1,85	0,5
2,62 2,65	D9-4,5	D9-4,0	D4+4,5	D4+4,0	3,6	2	0,6
2,7	D9-4,6	D9-4,1	D4+4,6	D4+4,1	3,6	2,05	0,6
2,8	D9-4,8	D9-4,2	D4+4,8	D4+4,2	3,7	2,1	0,6
2,92 2,95	D9-5,0	D9-4,4	D4+5,0	D4+4,4	3,9	2,2	0,6
3	D9-5,2	D9-4,6	D4+5,2	D4+4,6	4	2,3	0,6
3,1	D9-5,4	D9-4,8	D4+5,4	D4+4,8	4,1	2,4	0,6
3,5	D9-6,1	D9-5,3	D4+6,1	D4+5,3	4,6	2,65	0,6
3,53 3,55	D9-6,2	D9-5,4	D4+6,2	D4+5,4	4,8	2,7	0,8
3,6	D9-6,3	D9-5,6	D4+6,3	D4+5,6	4,8	2,8	0,8
4	D9-7,0	D9-6,2	D4+7,0	D4+6,2	5,2	3,1	0,8
4,5	D9-8,0	D9-7,0	D4+8,0	D4+7,0	5,8	3,5	0,8
5	D9-8,8	D9-8,0	D4+8,8	D4+8,0	6,6	4	0,8
5,30 5,33	D9-9,4	D9-8,6	D4+9,4	D4+8,6	7,1	4,3	1,2
5,5	D9-9,6	D9-9,0	D4+9,6	D4+9,0	7,1	4,5	1,2
5,7	D9-10,0	D9-9,2	D4+10,0	D4+9,2	7,2	4,6	1,2
6	D9-10,6	D9-9,8	D4+10,6	D4+9,8	7,4	4,9	1,2
6,5	D9-11,4	D9-10,8	D4+11,4	D4+10,8	8	5,4	1,2
6,99 7,00	D9-12,2	D9-11,6	D4+12,2	D4+11,6	9,5	5,8	1,5
7,5	D9-13,2	D9-12,6	D4+13,2	D4+12,6	9,7	6,3	1,5
8	D9-14,2	D9-13,4	D4+14,2	D4+13,4	9,8	6,7	1,5
8,4	D9-15,0	D9-14,2	D4+15,0	D4+14,2	10	7,1	1,5
9	D9-16,2	D9-15,4	D4+16,2	D4+15,4	10,6	7,7	2
9,5	D9-17,2	D9-16,4	D4+17,2	D4+16,4	11	8,2	2
10	D9-18,2	D9-17,2	D4+18,2	D4+17,2	11,6	8,6	2,5
12	D9-22,0	D9-21,2	D4+22,0	D4+21,2	13,5	10,6	2,5

Einbaumaße Dreiecksnut

Anwendung bei Flansch- und Deckelabdichtungen. Der O-Ring liegt bei dieser Nutausführung an drei Seiten an. Dadurch ist keine definierte Anpressung des O-Rings gewährleistet. Auch lässt dies Nutausführung kaum eine eventuelle Quellung des O-Rings zu. Wichtig für die Dichtfunktion ist die genaue Einhaltung der Maße und Toleranzen gemäß nebenstehender Tabelle. Die O-Ring Schnurstärke D2 sollte mehr als 3 mm betragen.

0-Ring Schnurstärke D2	Kantenlänge L	Radius R3
1,78 1,80	2,4 +0,10	0,3
2	2,7 +0,10	0,4
2,4	3,2 +0,15	0,4
2,5	3,4 +0,15	0,6
2,62 2,65	3,5 +0,15	0,6
3	4,0 +0,20	0,6
3,1	4,1 +0,20	0,6
3,53 3,55	4,7 +0,20	0,9
4	5,4 +0,20	1,2
5	6,7 +0,25	1,2
5,30 5,33	7,1 +0,25	1,5
5,7	7,6 +0,25	1,5
6	8,0 +0,30	1,5
7	9,4 +0,30	2

Einbaumaße Trapeznut

Bei der Trapeznut wird der O-Ring in der Nut festgehalten. Aus Gründen der Nutfertigung empfiehlt sich diese Anwendung erst ab einer Schnurstärke D2 von ca. 2,5 mm. Die Nutbreite B2 wird vor dem Entgraten an den Kanten gemessen. Der Nutmittendurchmesser D7 beträgt D7 = D1 + D2.

0-Ring Schnurstärke	Nutbreite	Nuttiefe	Radius	Radius
D2	B2 +/- 0,05	T2 +/- 0,05	R4	R5
2,5	2,05	2	0,4	0,25
2,62 2,65	2,15	2,1	0,4	0,25
3	2,4	2,4	0,4	0,25
3,1	2,4	2,4	0,4	0,25
3,53 3,55	2,9	2,9	0,8	0,25
4	3,1	3,2	0,8	0,25
5	3,9	4,2	0,8	0,25
5,30 5,33	4,1	4,6	0,8	0,4
5,7	4,4	4,8	0,8	0,4
7	5,6	6	1,6	0,4
8	6	6,9	1,6	0,4
8,4	6,3	7,3	1,6	0,4

