

Ch12.2 Representing Boolean Functions (Week 9)

Sum-of-Products Expansions

- Find a Boolean expression given the values of a Boolean function
- A *literal* is a Boolean variable or its complement. A *minterm* of the Boolean variables $x_1, x_2, ..., x_n$ is a Boolean product $y_1y_2...y_n$, where $y_i=x_i$ or $y_i=\overline{x_i}$. Hence, a minterm is a product of n literals, with one literal for each variable.

Sum-of-Products or **Disjunctive normal form**

• The sum of minterms that represents the function

Product-of-sums expansion or Conjunctive normal form

- A Boolean expression that represents a Boolean function by taking a Boolean product of Boolean sums.
- Can be found from sum-of-product expansions by taking duals.
- ▼ Example 3

Find the sum-of-products expansion of $F(x,y,z)=(x+y)\overline{z}.$

1. Boolean identities

$$F(x,y,z) = (x+y) \, \overline{z}$$
 $= x \, \overline{z} + y \, \overline{z}$ Distributive law
 $= x 1 \overline{z} + 1 y \overline{z}$ Identity law
 $= x \, (y + \overline{y}) \, \overline{z} + (x + \overline{x}) \, y \, \overline{z}$ Unit property
 $= x y \overline{z} + x \, \overline{y} \, \overline{z} + x y \overline{z} + \overline{x} y \overline{z}$ Distributive law
 $= x y \overline{z} + x \, \overline{y} \, \overline{z} + \overline{x} y \overline{z}$ Idempotent law

2. Table values

TABLE 2					
х	у	z	x + y	\overline{z}	$(x+y)\overline{z}$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	0
0	0	0	0	1	0

$$F(x,y,z)=x\;y\;\overline{z}+x\;\overline{y}\;\overline{z}+\overline{x}\;y\;\overline{z}\;$$
 $ightarrow$ The function that is all 1s.

Functional Completeness

Functionally complete

- every Boolean function can be represented using these operators
- $\{\cdot, +, \overline{\ }\}, \{\cdot, \overline{\ }\}, \{+, \overline{\ }\}$
- $\{ \mid \}$ and $\{ \downarrow \}$

 \mid or NAND operator

 \downarrow or NOR operator

•
$$1 \mid 1 = 0, \ 1 \mid 0 = 0 \mid 1 = 0 \mid 0 = 1$$

•
$$1 \downarrow 1 = 1 \downarrow 0 = 0 \downarrow 1 = 0, 0 \downarrow 0 = 1$$

1