

LESSON 3: BÀI TẬP VỀ NHÀ

Nguyễn Mạnh Hùng

Al Academy Vietnam

May, 2021

Bài tập về nhà 1 (Moore's law)

Dữ liệu sau là về số transitor N trên 1 chíp vi xử lý theo năm sản xuất t:

	Transistors	Year
	2,250	1971
	2,500	1972
	5,000	1974
	29,000	1978
	120,000	1982
	275,000	1985
	1,180,000	1989
	3,100,000	1993
	7,500,000	1997
	24,000,000	1999
	42,000,000	2000
	220,000,000	2002
	410,000,000	2003

Xây dựng mô hình $\log_{10} N pprox heta_1 + heta_2(t-1970)$ phù hợp với dữ liệu.

Thực hành

Bài tập về nhà 2 (Collocation method)

Xét bài toán biên:

$$L[x(t)] = \frac{d^2x}{dt^2} + e^t \frac{dx}{dt} + x = 0 \; ; \; x(0) = 0 \; , \; x(2) = 1$$

Nghiệm xấp xỉ của bài toán được tìm dưới dạng:

$$x(t) \approx x_n(t) = \sum_{i=0}^n \alpha_i t^i$$

Để xác định các hệ số α_i , ta dựa vào điều kiện biên $x_n(0) = 0$, $x_n(2) = 1$, và chọn thêm n-1 điểm $t_j \in (0,2)$ sao cho $L[x_n(t_j)] = 0$, với $j=1,\ldots,n-1$.

Hãy tìm nghiệm xấp xỉ với: n = 4, $t_1 = 0.5$, $t_2 = 1.0$, $t_3 = 1.5$.

VINBIGDATA

INGROUP

Vd AJ Acced

Thực hành

Bài tập về nhà 3

Tải dữ liệu về (số năm kinh nghiệm,thu nhập) từ file *salary_data.csv* vào mảng bằng lệnh sau:

```
import pandas as pd
data=pd.read_csv("salary_data.csv")
x=data["YearsExperience"].values
y=data["Salary"].values
```

Sử dụng thư viện **Scikit-Learn** để xây dựng hàm hồi quy tuyến tính phù hợp nhất với dữ liệu, mô tả thu nhập theo số năm kinh nghiệm.

