

Pomoce do programu:

Rozwiń swoją karierę z Google Cloud.

SPIS TREŚCI

Wstęp	3
1. Tworzenie VM	5
2. Zmienna środowiskowa	6
3. Tworzenie klastra	7
4. Tworzenie zasobnika/koszyczka	8
5. Role na poziomie konsoli Uprawnień i projektu	8
6. Tworzenie kontroli dostępności (UPTIME CHECK)	9
7. Wykorzystane Pythona w GCP na przykładzie Pub/Sub	10
8. Tworzenie sieci VPC	11
9. Obiekty deployment	12
10. TensorFlow	13
11. Inicjowanie Cloud Dataprep	14
12. Otwarcie konsoli BigQuery	14
13. Tworzenie instancji Cloud SQL	14
14. Docker	15
15. Biblioteka interfejsów API	15
16. Generowanie klucza API	16

Rozwiń swoją karierę z Google Cloud.

Sprawdź

Proponowane ścieżki rozwoju

Zobacz nagranie

Komendy w systemie Linux

curl z argumentami : np -u

łączenie komend linux '| ' oraz &

cat, grep, ls, cd

uruchamianie skryptu: python <skrypt.py>

Tworzenie plików

touch <nazwa_pliku>

Otwieranie za pomocą edytora np. vi/nano

vi <nazwa pliku>

Przydatne frazy z SQL

SELECT, FROM, WHERE, AS, SUM(), COUNT, GROUP BY, ORDER BY, DESC, IN, JOIN, MAX, MIN, UNNEST

1. Tworzenie VM

W menu nawigacyjnym kliknij Compute Engine > Instancje maszyn wirtualnych.

- 1. Aby utworzyć nową instancję maszyny wirtualnej kliknij: Utwórz instancję.
- 2. Przy tworzeniu **nowej instancji** możliwe jest skonfigurowanie różnych parametrów.
- 3. Aby połączyć się z tą maszyną wirtualną przez SSH, w wierszu odpowiadającym maszynie kliknij SSH.

\$STREFA - zmienna środowiskowa zawierająca nazwę strefy (ang. zone), np. europe-west1-b

gcloud compute ssh gcelab2 --zone europe-west1-b

Komenda nawiązuje połączenie z maszyną gcelab2 w strefie europe-west1-b

Częste komendy

sudo apt-get update

aktualizowanie informacji systemowych o repozytoriach pakietów Debiana Linux

gcloud compute instances list podgląd listy instancji VM-ów

Korzystanie z **wiersza poleceń** (gcloud):

gcloud compute instances create gcelab2 \

-machine-type n1-standard-2 \

-zone us-central1-f

Domyślne wartości nowej instancji:

- · Najnowszy obraz Debian 10 (buster).
- Typ maszyny n1-standard-2.
- · Główny dysk stały o takiej samej nazwie jak instancja. Dysk jest automatycznie podłączany do instancji.

2. Zmienna środowiskowa

export PROJECT_ID=<ID_projektu>

Definiowanie zmiennej środowiskowej z nazwą projektu.

Użyj \$PROJECT ID zamiast wpisywania nazwy projektu w linii poleceń.

export ZONE=<strefa>

Definiowanie zmiennej środowiskowej z nazwą strefy.

Praktyczne użycie export do stworzenia zasobnika:

export BUCKET_NAME=<your-unique-name>

gsutil mb gs://\$BUCKET_NAME/

Często wykorzystywane w laboratoriach

Użycie flagi -zone.

Jeżeli jednak zawsze pracujesz w obrębie jednego regionu lub strefy, możesz skonfigurować domyślny region i domyślne strefy w gcloud:

Aby ustawić domyślną strefę na np.: us-central1-a

gcloud config set compute/zone us-central1-a

oraz region na: us-central1

gcloud config set compute/region us-central1

3. Tworzenie klastra

Tworzenie klastra GKE gcloud container clusters create [NAZWA-KLASTRA]

Uwierzytelniające dane klastra gcloud container clusters get-credentials [NAZWA-KLASTRA]

Usuniecie klastra

gcloud container clusters delete [NAZWA-KLASTRA]

Aby utworzyć klaster Cloud Dataproc o nazwie example-cluster, z domyślnymi ustawieniami

uruchom polecenie

gcloud dataproc clusters create example-cluster

Aktualizacja klastra

Aby zmienić liczbę instancji roboczych w klastrze na 4, uruchom następujące polecenie:

gcloud dataproc clusters update example-cluster --num-workers 4

Możliwe jest zmniejszenie liczby instancji roboczych, używając tego samego polecenia:

gcloud dataproc clusters update example-cluster --num-workers 2

Tworzenie VM i opisy tych różnych parametrów

gcloud compute instances create www1 \

- --image-family debian-9 \
- --image-project debian-cloud \
- --zone us-central1-a \
- --tags network-lb-tag \
- --metadata startup-script="#! /bin/bash

sudo apt-get update

sudo apt-get install apache2 -y

sudo service apache2 restart

echo '<!doctype html><html><body><h1>www1</h1></body></html>' | tee /var/www/html/index.html'

4. Tworzenie zasobnika/koszyczka

Tworzenie zasobnika z linii poleceń

gsutil mb -p [PROJECT_ID] gs://[BUCKET_NAME]

Dla wygody, ustaw zmienne środowiskowe \$PROJECT_ID i \$BUCKET_NAME za pomocą komendy export.

Alternatywny sposób:

- 1. Wybierz menu nawigacyjne > Cloud Storage > Przeglądarka.
- 2. Kliknij Utwórz zasobnik, ustaw nazwę i wybierz parametry.

Cały opis znajduje się tutaj.

Przesyłanie obiektu do zasobnika

- 1. Na stronie przeglądarki Cloud Storage kliknij nazwę utworzonego zasobnika.
- 2. Na karcie Obiekty kliknij Prześlij pliki (np.jpg).
- 3. Sprawdzenie czy plik został przesłany tutaj.

5. Role na poziomie konsoli Uprawnień i projektu

- Wybierz menu nawigacyjne > Administracja > Uprawnienia.
 Jesteś teraz w konsoli "Administracja".
- 2. U góry strony kliknij przycisk **+DODAJ** i przejrzyj role w projekcie, klikając menu "Wybierz rolę":

role/wyświetlający, role/edytujący, role/właściciel, role/przeglądający (beta)

6. Tworzenie kontroli dostępności (UPTIME CHECK)

1. W menu Cloud Console po lewej kliknij **Kontrola dostępności**, a następnie kliknij **Utwórz kontrolę dostępności**.

Zastosowanie

Możliwe jest utworzenie kontroli dostępności sprawdzającej czy maszyna wirtualna działa.

Wdrożenie funkcji na przykładzie helloWorld

cloud functions deploy helloWorld -- <parametry>

Sprawdzenie stanu funkcji gcloud functions describe helloWorld

Sprawdzanie dzienników funkcji gcloud functions logs read helloWorld

7. Wykorzystane Pythona w GCP na przykładzie Pub/Sub

Otwórz wiersz poleceń sudo apt-get update

Zainstaluj wirtualne środowisko Pythona

sudo apt-get install virtualenv

virtualenv -p python3 venv

source venv/bin/activate Aktywuj

Po zainstalowaniu środowiska możesz korzystać z Pythona.

Instalacja biblioteki Pub/Sub pip install --upgrade google-cloud-pubsub

Klonowanie repozytoriów z Github: git clone

Po pobraniu przejdź komenda linuxową cd cd python-pubsub/samples/snippets

Aby wyświetlić pomoc jak obchodzić się ze skryptem (w tym przypadku)

publisher.py

wpisz

python publisher.py -h

8. Tworzenie sieci VPC

Rozdział Google Cloud Skills Boost poświęcony VPC Multiple VPC Networks

- 1. Aby móc utworzyć sieć VCP otwórz Menu nawigacyjne i kliknij Sieć VPC > Sieci VPC.
- 2. Utwórz sieć VPC.
- 3. Podaj wartości i parametry.
- 4. Utwórz.

Tworzenie sieci z wiersza poleceń

Np. sieć privatenet

gcloud compute networks create privatenet \

---ew parametry>

Tworzenie podsieci:

gcloud compute networks subnets create privatesubnet-us \

--<ew parametry>

Sprawdzenie dostępnych sieci VPC gcloud compute networks list

Lista dostępnych podsieci VPC

gcloud compute networks subnets list

Tworzenie reguły zapory sieciowej

- 1. Otwórz menu nawigacyjne i kliknij Sieć VPC > Zapora sieciowa.
- 2. Kliknij + Utwórz regułę zapory sieciowej.
- 3. Ustaw wartości i parametry.
- 4. Utwórz.

Sprawdzenie czy reguła zapory sieciowej jest gotowa gcloud compute firewall-rules list

9. Obiekty deployment

Polecenie explain w kubectl opisze isteniejący obiekt Deployment (wdrożenie)

kubectl explain deployment

Możliwe jest użycie opcji rekursywnej

kubectl explain deployment -recursive

Możliwe jest użycie polecenia explain podczas przechodzenia przez laboratorium, aby zrozumieć strukturę obiektu Deployment i zrozumieć, co robią poszczególne pola.

kubectl explain deployment.metadata.name

Stworzenie obiektu wdrażania za pomocą kubectl create:

kubectl create -f deployments/auth.yaml

Sprawdzenie czy obiekt został utworzony:

kubectl get deployments

Po utworzeniu wdrożenia Kubernetes utworzy zestaw replik dla wdrożenia.

Możliwe jest zweryfikowanie czy dla wdrożenia utworzono ReplicaSet

kubectl get replicasets

Zestaw replik będzie nosił nazwę

auth-xxxxxxx

Możliwe jest wyświetlenie **podów**, które zostały utworzone w ramach wdrożenia. Pojedynczy pod jest tworzony przez Kubernetes podczas tworzenia zestawu ReplicaSet.

Usługa uwierzytelniania

Użyj polecenia **kubectl create**

kubectl create -f services/auth.yaml

Po utworzeniu wdrożenia możliwe jest skalowanie, uruchamianie aktualizacji, wstrzymywanie, wycofywanie.

Inne rodzaje wdrożeń: Canary deployments, Blue-green deployments.

10. TensorFlow

Najczęściej używany model do AI w laboratoriach to TensorFlow. W laboratoriach dowiesz się jak wdrażać aktywny model (do prognozowania) w AI Platform.

- 1. Kliknij **menu nawigacyjne**. Otwórz **Al Platform** i wybierz **Notatki**.
- 2. Na stronie Instancje Notebook kliknij **Nowa instancja**. Wybierz najnowszą wersję TensorFlow 2.x bez procesorów graficznych.
- 3. Otwórz **JupyterLab**. Pojawią się do wyboru Notebook, Console i other. W laboratoriach najczęściej wykorzystuje się terminal (Console).
- 4. Zaimportuj dane

git clone https://github.com/GoogleCloudPlatform/training-data-analyst

W Notatkach w Al Platform możliwe jest przejście do

training-data-analyst/self-paced-labs/ai-platform-qwikstart

i otworzenie

ai_platform_qwik_start.ipynb

Należy wyczyścić wszystkie komórki w notatkach. Aby to zrobić, na pasku narzędzi notatek znajdź przycisk **Wyczyść**, a następnie wybierz **Uruchom**.

Do przesuwania się w notebooku użyj Run lub SHIFT + ENTER.

11. Inicjowanie Cloud Dataprep

- 1. Wybierz menu nawigacyjne > Dataprep.
- 2. AKCEPTUJĘ > Zgadzam się i chcę przejść dalej > Continue

Aby utworzyć **zbiór danych** o nazwie taxirides (przejazdy_taksówką) z poziomu wiersza poleceń, należy uruchomić polecenie **bq mk taxirides**

mk make(stwórz)

bq bigquery

12. Otwarcie konsoli BigQuery

1. Menu nawigacyjne > BigQuery: > DONE

Stworzenie zbioru danych (dataset):

- 1. Menu nawigacyjne > BigQuery.
- 2. W panelu po prawej kliknij View actions, a następnie Create dataset.
- 3. Podaj ID i dalsze parametry. -> Create Dataset.

Przejdź do EDYTORA BigQuery i wpisz lub wklej zapytania, aby utworzyć np. model.

13. Tworzenie instancji Cloud SQL

- 1. Menu nawigacyjne > SQL.
- 2. UTWÓRZ INSTANCJĘ.
- 3. Wybranie silnika bazy danych. Wybierz MySQL > CREATE.

Przesyłanie plików CSV do tabel z Cloud Storage

- 1. Na stronie instancji SQL kliknij IMPORTUJ.
- 2. W polu pliku w Cloud Storage kliknij Przeglądaj.
- 3. Wybierz z listy w Database.
- 4. W polu "Table" podaj nazwę tabeli.

14. Docker

Uruchomienie kontenera Hello world docker run hello-world

Podgląd na obraz kontenera pobrany z Docker Hub docker images

Start po ponownym uruchomieniu docker run hello-world

Sprawdzenie aktualnie działających kontenerów docker ps

Wpisanie z parametrem -a pokazuje także te, które zakończyły działanie docker ps -a

Podgląd zbudowanych obrazów docker images

Zatrzymanie i usunięcie wszystkich kontenerów:

docker stop \$(docker ps -q)

docker rm \$(docker ps -aq)

15. Biblioteka interfejsów API

Włączenie interfejsu API:

- 1. Otwórz Navigation menu > APIs & Services > Dashboard > Enable APIs and Services
- 2. Wpisz np. Dialogflow i kliknij "enable".
- 3. Otwórz https://dialogflow.cloud.google.com/
- 4. Zaakceptuj > create agent i podaj parametry.

Dodawanie plików do katalogu

W sesji Cloud Shell, w prawym górnym rogu strony kliknij ikonę menu z trzema kropkami, a następnie kliknij **Upload file** (Prześlij plik).

Wybierz plik np. demo-image.png. Spowoduje to dodanie obrazu do Twojego katalogu.

Aby otrzymać konkretną ścieżkę realpath demo-image.png

Sprawdzanie folderów komenda Is!

16. Generowanie klucza API

- 1. Navigation Menu > APIs & services > Credentials.
- 2. Kliknij + Create Credentials.
- 3. Wybierz API key.
- 4. Po skopiowaniu możliwe jest wyeksportowanie do zmiennej środowiskowej.

Zapisanie zdjęcia na Cloud Storage

- 1. Navigation menu > Cloud Storage.
- 2. Stwórz zasobnik: CREATE BUCKET.
- 3. Po podaniu nazwy i stworzeniu bucketu możesz nadać mu uprawnienia/role.
- 4. Wybierz > UPLOAD FILES aby wgrać pliki.

Materiał przygotowany przez zespół Google Cloud for Higher Education.

Niniejszy materiał stanowi jedynie pomoc dydaktyczną do programu Rozwiń karierę z Google Cloud. Podstawowym źródłem wiedzy w ramach programu Rozwiń karierę z Google Cloud pozostają laboratoria dostępne na platformie szkoleniowej Google Cloud Skills Boost.