Shape	Point group	Graph	Dimensionality	Example	Dihedrals	Diagram
1	T_d	K_4	Regular Pyramidal	P_4	$\cos^{-1}\left(\frac{1}{3}\right)$	
2	C_{3v}	S_3	Pyramidal	NH_3	$\cos^{-1}\left(\frac{\cos\theta(1-\cos\theta)}{\sin^2\theta}\right)$	
3	C_s	S_3	Pyramidal	$\mathrm{Cl_2OS}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	&
4	D_{2h}	$K_4 - e$	Planar	$\mathrm{Cl}_2\mathrm{Cu}_2$	0 or 180	Cu Ci Cu
5	C_{2v}	$K_4 - e$	Pyramidal	$\mathrm{H_2Si_2}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
6	C_2	P_4	Pyramidal	$\mathrm{H_2O_2}$	$\cos^{-1}\left(\frac{\cos\theta-\cos^2\varphi}{\sin^2\varphi}\right)$	
7	C_1	P_4	Pyramidal	$_{ m H_2OS}$	$\cos^{-1}\left(\frac{\cos\theta-\cos\varphi\cos\phi}{\sin\varphi\sin\phi}\right)$	\$ — @
8	D_{3h}	S_3	Planar	BH_3	0 or 180	
9	C_s	P_4	Planar	HNSi_2	0 or 180	Si1 - B - Si2
10	D_{2h}	C_4	Planar	$\mathrm{Br_2Na_2}$	0 or 180	
11	C_{2v}	P_4	Planar	O_2S_2	0 or 180	
12	C_{2v}	S_3	Planar	CFO_2	0 or 180	
13	$D_{\infty h}$	P_4	Linear	C_2H_2	0 or 180	
14	$C_{\infty v}$	P_4	Linear	$\mathrm{C}_2\mathrm{AuH}$	0 or 180	Au — C — C —
15	C_s	$T_{3,1}$	Planar	$\mathrm{H_2Si_2}$	0 or 180	H(1) Si(1) Si(2)
16	C_s	S_3	Planar	CBrFO	0 or 180	P C G
17	C_{2v}	$K_4 - e$	Planar	C_3Si	0 or 180	SI C(2)
18	C_{2v}	$K_4 - e$	Planar	C_3Si	0 or 180	SC C(1)

Information provided

- r_1 Si-Si bond length
- r_2 Si-H bond length
- φ Dihedral angle between two Si-Si-H planes

Information missing

- r_3 H-H distance
- θ_1 H-Si-H bond angle
- θ_2 Si-H-Si bond angle
- θ_3 Si-Si-H bond angle
- θ_4 H-H-Si angle
- φ_i Dihedral angles between various other pairs of planes

For a z-matrix, in addition to the information provided we would need *at least* one planar angle. For the first column of the z-matrix, we have 6 possibilities which are listed below along with the possible planar angles that could be used for each of these possibilities:

This means that if we know θ_3 or θ_4 then we have enough to complete the planar angles column of the z-matrix, but if we only know θ_1 or θ_2 , we would need to determine two of the angles rather than one. Since θ_3 is a "bond angle" in the original reference and θ_4 is not, we will present a formula for θ_3 (right now we only have θ_1 though, but soon we'll replace the equations below with θ_3 equations):

$$\theta_1 = \cos^{-1} \left(\frac{\cos \varphi \left(4r_1^2 - r_2^2 \right) + r_2^2}{4r_1^2} \right). \tag{1}$$

An alternative formula is:

$$\theta_1 = \sin^{-1} \left(\frac{\sin\left(\frac{\varphi}{2}\right)\sqrt{4r_2^2 - r_1^2}}{r_2} \right). \tag{2}$$

We can now write a z-matrix. Since the first option in the above table will lead to usage of r_1 and r_2 in lexicographical order (these bond angles are presented as they were in Landolt-Bornstein), we will use that option: