Алгебры и группы Ли

Автор конспекта Федоров И.И. По лекциям Панова А.Н. и Игнатьева М.В.

22 мая 2015 г.

Содержание

1 Алгебры Ли

Определение 1. Алгеброй $\mathcal{J}u$ называется векторное пространство \mathfrak{g} над полем \mathbb{K} , снабжённое билинейным отображением $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}:(a,b)\mapsto [a,b]$, причем выполняются следующие свойства:

- 1. $\forall x \in \mathfrak{g} : [x, x] = 0;$
- 2. $\forall x, y, z : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ (тождество Якоби).

Отображение $[\cdot,\cdot]$ обычно называется коммутатором или скобкой $\mathcal{I}u$.

Замечание. В случае если характеристика поля не равна 2 свойство (1) можно переписать в виде: $\forall x, y \in \mathfrak{g} : [x,y] = -[y,x].$

Замечание. Альтернативная формулировка тождества Якоби: [x, [y, z]] = [[x, y], z] + [y, [x, z]].

Определение 2. Пусть $(\mathfrak{g}, [\cdot, \cdot])$ — алгебра Ли. Подпространство $\mathfrak{h} \subset \mathfrak{g}$ называется *подалгеброй Ли*, если $(\mathfrak{h}, [\cdot, \cdot])$ — алгебра Ли.

Утверждение 1. Подпространство $\mathfrak{h} \subset \mathfrak{g}$ является подалгеброй $\mathcal{J}u \Leftrightarrow \forall x,y \in \mathfrak{h}: [x,y] \in \mathfrak{h}$.

Определение 3. Множество $\mathfrak h$ называется udeanom, если $\forall x \in \mathfrak h, \forall y \in \mathfrak g: [x,y] \in \mathfrak h$.

Определение 4. Алгебра Ли $\mathfrak g$ называется $npocmo\check{u}$, если $\dim \mathfrak g > 1$ и в ней нет идеалов кроме $\{0\}$ и $\mathfrak g$.

Определение 5. Пусть $\mathfrak{g}_1, \mathfrak{g}_2$ - алгебры Ли. Линейное отображение $\Phi: \mathfrak{g}_1 \to \mathfrak{g}_2$ называется *гомоморфизмом*, если

$$\forall x, y \in \mathfrak{g}_1 : \Phi([x, y]) = [\Phi(x), \Phi(y)].$$

Если Φ - биекция, то Φ называются *изоморфизмом*.

Определение 6. Пусть V — векторное пространство над \mathbb{K} , а $\operatorname{End}(V)$ — пространство эндоморфизмов. Введем на $\operatorname{End}(V)$ скобку Ли формулой [x,y]=xy-yx. Полученная алгебра Ли называется полной линейной алгеброй и обозначается $\mathfrak{gl}(V)$. Любая подалгебра в $\mathfrak{gl}(V)$ называется линейной алгеброй Ли.

Определение 7. Пусть V — векторное пространство над полем \mathbb{K} . Представлением алгебры $\mathit{Лu}$ \mathfrak{g} называется отображение $\tau:\mathfrak{g}\to\mathfrak{gl}(V):x\mapsto \tau_x$ такое, что

- 1. $\tau_{x+y} = \tau_x + \tau_y$,
- 2. $\tau_{\alpha x} = \alpha \tau_x$,
- 3. $\tau_{[x,y]} = [\tau_x, \tau_y]$.

Замечание. Представление алгебры Ли $\mathfrak g$ это просто гомоморфизм алгебр Ли $\tau:\mathfrak g \to \mathfrak{gl}(V)$.

Утверждение 2. Пусть $\mathfrak{g}=\mathfrak{gl}(n,\mathbb{K}),\ a\ V=\mathrm{Mat}(n,\mathbb{K}),\ morda\ au_X(A)=XA+AX^T$ - представление.

Определение 8. Пусть \mathfrak{g} — алгебра Ли, а $V = \mathfrak{g}$, тогда гомоморфизм $\mathrm{ad} : \mathfrak{g} \to \mathfrak{gl}(V) : x \mapsto \mathrm{ad}_x$ такой, что $\mathrm{ad}_x(y) = [x,y]$, называется присоединенным представлением.

Определение 9. Пусть \mathfrak{g} — алгебра Ли, а $I \subset \mathfrak{g}$ — идеал. Фактормножество \mathfrak{g} по отношению эквивалентности " $x \equiv y \mod I \Leftrightarrow x-y \in I$ " называется \mathfrak{g} акторалгеброй Ли и обозначается \mathfrak{g}/I . Класс эквивалентности элемента x обычно обозначается x+I или [x].

Утверждение 3. Факторалгебра Ли сама является алгеброй Ли: [x+I,y+I] = [x,y] + I.

Определение 10. Гомоморфизм $\pi: \mathfrak{g} \to \mathfrak{g}/I: x \mapsto x+I$ называется канонической (естественной) проекцией.

Определение 11. Пусть $\Phi:\mathfrak{g}_1\to\mathfrak{g}_2$ - гомоморфизм, тогда

$$\operatorname{Ker} \Phi := \{x \in \mathfrak{g}_1 | \Phi(x) = 0\}$$
 - ядро Φ , $\operatorname{Im} \Phi := \{y \in \mathfrak{g}_2 | \exists x \in \mathfrak{g}_1 : \Phi(x) = y\}$ - образ Φ .

Утверждение 4. Множество $\operatorname{Ker} \Phi - u \operatorname{dean} \ \mathfrak{s} \ \mathfrak{g}_1, \ a \operatorname{Im} \Phi$ - подалгебра $\mathfrak{s} \ \mathfrak{g}_2.$

Теорема 1. Пусть $\Phi:\mathfrak{g}_1\to\mathfrak{g}_2$ — гомоморфизм, тогда существует изоморфизм $\psi:\mathfrak{g}_1/\operatorname{Ker}\Phi\to\operatorname{Im}\Phi.$

Определение 12. Пусть \mathfrak{g} — алгебра Ли, тогда $\beta:\mathfrak{g}\times\mathfrak{g}\to\mathbb{K}:(x,y)\mapsto \mathrm{Tr}(\mathrm{ad}_x\,\mathrm{ad}_y)$ называется формой Киллинга.

Замечание. На английском языке "форма Киллинга" записывается как "Killing form", что дословно переводится как "убивающая форма".

Утверждение 5. Отображение β — симметрическая билиненая форма, причем (x,[y,z]) = ([x,y],z).

2 Гладкие многообразия

Определение 13. Отображение $f: X \to Y$ называется *непрерывным отображением*, если прообраз любого открытого в Y множества открыт в X.

Определение 14. Отображение $f: X \to Y$, где X,Y — топологические пространства, называется гомеоморфизмом, если:

- 1. f биекция.
- 2. f непрерывное отображение.
- 3. f^{-1} непрерывное отображение.

Если существует хоть один гомеоморфизм из X в Y, то их называют гомеоморфными.

Определение 15. Пусть $f: \mathbb{E}^n \to \mathbb{E}, a \in \mathbb{E}^n$, причем существует предел

$$\lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} = f_i'(a)$$

тогда он называется частной производной.

Замечание. Под \mathbb{E} будем подразумевать множество \mathbb{R} или \mathbb{C} .

Определение 16. Если частная производная существует в любой точке $a \in \mathbb{E}^n$, то возникает функция $f_i' : \mathbb{E}^n \to \mathbb{E}$, которая a переводит в $f_i'(a)$. Функция f называется гладкой, если f' - непрерывна.

Определение 17. Отображение $F: \mathbb{E}^n \to \mathbb{E}^m$ называется гладким отображением, если в координатах оно задается гладкими функциями.

Утверждение 6. Любое гладкое отображение непрерывно.

Определение 18. Топологическое пространство называется хаусдорфовым, если у любых двух точек существуют непересекающиеся окрестности.

Определение 19. Пусть M — хаусдорфово топологическое пространство со счетной базой, M — представлено в виде объединения своих открытых подмножеств U_{α} и для любого α задан гомеоморфизм $\phi_{\alpha}: U_{\alpha} \to V_{\alpha}$ (какое-то открытое подмножество в \mathbb{E}^n), причем:

$$(\forall \alpha, \beta)(\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{E}^{n}$$
 - гладкое),

тогда M называется гладким многообразием. Множества U_{α} называются картами на M. Отображения $\phi_{\alpha}:U_{\alpha}\to V_{\alpha}$ называются картирующими гомеоморфизмами. Множество пар $\{(U_{\alpha},\phi_{\alpha})\}$ называется атласом на M.

Определение 20. Пусть M — гладкое многообразие, $\{U_{\alpha},\phi_{\alpha}\}$ — атлас на M. Рассмотрим конкретное U_{α} и $\phi_{\alpha}:U_{\alpha}\to V_{\alpha}\subset \mathbb{E}^n$. Возникает набор функций x^1,\ldots,x^n , где $x^i:U_{\alpha}\to \mathbb{R}:p\mapsto \text{i-ая}$ координата $\phi_{\alpha}(p)$. Функции $\phi_{\alpha}(p)=(x^1(p),\ldots,x^n(p))$ называются локальными координатами в U_{α} .

Утверждение 7. Пусть x^1, \ldots, x^n — локальные координаты в U_{α} , а y^1, \ldots, y^n — локальные координаты в U_{β} , тогда в $U_{\alpha} \cap U_{\beta}$ можно выразить y^j через x^i . Условие гладкости $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ означает, что каждое y^j является гладкой функцией от x^1, \ldots, x^n .

Теорема 2. Пусть X — множество решений некоторой системы гладких уравнений

$$\begin{cases} f_1(x_1, \dots, x_n) = 0, \\ \vdots \\ f_m(x_1, \dots, x_n) = 0. \end{cases}$$

Eсли ранг матрицы якоби $\left(rac{\partial f_i}{\partial x_j}
ight)$ равен r в каждой точке, то X — гладкое многообразие размерности n-r .

Утверждение 8. Пусть X — гладкое многообразие. Отображение $f:X\to\mathbb{E}$ является гладким, если $f\circ\phi_{\alpha}^{-1}$ гладкое для любого α .

Определение 21. Множество всех гладких функций $C^{\infty}(X)$ с поточечными операциями называется алгеброй гладких функций.

Утверждение 9. Пусть X,Y — гладкие мнообразия c атласами $\{(U_{\alpha},\phi_{\alpha})\}$ и $\{(V_{\beta},\psi_{\beta})\}$. Отображение $F:X\to Y$ является гладким, если $\psi_{\beta}\circ F\circ\phi_{\alpha}^{-1}$ гладкое для любого α,β .

Определение 22. Пусть X,Y — гладкие мнообразия с атласами $\{(U_{\alpha},\phi_{\alpha})\}$ и $\{(V_{\beta},\psi_{\beta})\}$, тогда произведение $X\times Y$ это гладкое многообразие с атласом $\{(U_{\alpha}\times V_{\beta},\phi_{\alpha}\times\psi_{\beta})\}$.

Определение 23. Пусть X — гладкое мнообразие, тогда $Y \subset X$ называется *подмногообразием*, если Y является решением системы гладких уравнений и ранг матрицы якоби данной системы равен r в каждой точке.

3 Группы Ли

Определение 24. Множество G называется группой Πu , если

- 1. G группа,
- 2. G гладкое многообразие,
- 3. отображения $(g,h)\mapsto gh$ и $g\mapsto g^{-1}$ гладкие.

Утверждение 10. Пусть группа G — множество решений гладких уравнений, тогда G — группа Au.

Примеры 1. Следующие группы являются группами Ли

- 1. $\operatorname{GL}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}_n(\mathbb{R}) | \det(A) \neq 0 \}$
- 2. $\operatorname{SL}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}_n(\mathbb{R}) | \det(A) = 1 \}$
- 3. $O_n(\mathbb{R}) = \{ A \in Mat_n(\mathbb{R}) | A^t = A^{-1} \}$

4. Aff(
$$\mathbb{R}$$
) = $\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \neq 0; a, b \in \mathbb{R} \right\}$

Определение 25. Пусть G — группа Ли, тогда подгруппа H называется nodгруппой Ли, если H — подмногообразие.

Определение 26. Пусть G — группа Ли, G подгруппа Ли в $\mathrm{GL}_n(\mathbb{R})$. X - косательный вектор к группе G в точке e, если существует кривая g(t) такая, что $\forall t \in \mathbb{R} : g(t) \in G, g(0) = e$ и $\frac{dg(t)}{dt}|_{t=0} = X$

Определение 27. Множество всех касательных векторов в точке e к группе G называется касательным пространством и обозначается $T_e(G)$.

Утверждение 11. Касательное пространство это подалгебра $\mathcal{J}u$ в $\mathfrak{gl}_n(\mathbb{R})$.

Теорема 3. Пусть \mathfrak{g} — алгебра Ли группы G, H — подгруппа Ли \mathfrak{g} G, \mathfrak{h} — алгебра Ли подгруппы H. Если H — нормальная подгруппа \mathfrak{g} G, то \mathfrak{h} — идеал \mathfrak{g} \mathfrak{g} .

Определение 28. Путь из p в q — отображение $x:[0,1] \to X$ такое, что x(0)=p, x(1)=q.

Определение 29. Многообразие X называется связным, если $\forall p,q \in X$ существует непрерывный путь из p в q.

Определение 30. Многообразие X называется односвязным, если любую петлю можно непрерывно стянуть в точку.

Утверждение 12. Пусть G — связная односвязная группа Πu , $\mathfrak{g} = \mathrm{Lie}(G)$, \mathfrak{h} — подалгебра Πu в \mathfrak{g} , тогда в G существует подгруппа Πu H такая, что $\mathrm{Lie}(H) = \mathfrak{h}$.

Определение 31. Пусть G_1, G_2 — группы Ли, $\phi: G_1 \to G_2$. Отображение ϕ называется гомоморфизмом групп Ли, если

- 1. ϕ гомоморфизм групп;
- 2. ϕ гладкое отображение.

Если ϕ — биекция, то ϕ называется изоморфизмом групп Ли.

Теорема 4. Если ϕ - гомоморфизм групп $\mathcal{J}u$, то $\Phi = d_e \phi : \mathfrak{g}_1 \to \mathfrak{g}_2$ — гомоморфизм алгебр $\mathcal{J}u$.

Теорема 5. Пусть G-nodгруппа Ли в $\mathrm{GL}_n(\mathbb{R})$. Тогда $\eth=\mathrm{Lie}(G)-nod$ алгебра в $\mathfrak{gl}_n(\mathbb{R})$ и $exp:\eth\to G$.

Утверждение 13. Отображение $exp: \mathfrak{g} \to G$ — локальный диффеоморфизм окрестности нуля в \mathfrak{g} на окрестности е в G.

Теорема 6. Если ϕ — гомоморфизм групп $\mathcal{I}u\ G_1, G_2, \ mo\ \Phi = d_e\phi$ — гомоморфизм алгебр $\mathcal{I}u\ \mathrm{Lie}(G_1), \mathrm{Lie}(G_2).$ Причем следующая диаграмма коммутативна

