CS-454 HW3 Report

Mustafa Alper Sayan

S015674

1. Introduction

In this assignment we are expected to implement a single layer perception and a multi-layer perceptron. We are excepted to train the perceptron algorithms on the MNIST dataset. MNIST dataset consists of handwritten (28*28) pixel images.

2. Implementation Details

For classifying digits, we have 10 classes K = 10. These classes are categorical therefore we need to represent the outputs using encoding. An example is as follows:

If, K = 10 And $K_{actual} = 5$ Then array representing this class should be $r_{classes} = [0,0,0,0,0,1,0,0,0]$

a. Single Layer perception

Initialize the weights randomly using shapes [K=10, Dimensions = 784]. Then the following equations should be used

$$X = \{x^t, r^t\}_t$$

Where x^t = input array shaped with dimensions in the case of MNIST 784 Where r^t = Output class in the case of MNIST a value from 0 – 9

$$o = log \frac{p(x \mid C_i)}{p(x \mid C_k)} = w_i^T x + w_{i0}^o$$

Where W_i = Weight matrix of the class i Where W_{io} = Bias of the class i Where x = input

$$y = P(C_i \mid x) = \frac{e^{o_i}}{\sum_{i=1}^{K} e^{o_i}}$$
, $i = 1, ..., K$

$$I(\{w_{i}, w_{i0}\}_{i} | X) = \prod_{t} \prod_{i} y_{i}^{t} r_{i}^{t})$$

$$E(\{w_{i}, w_{i0}\}_{i} | X) = -\sum_{t} r_{i}^{t} \log y_{i}^{t}$$

$$\Delta w_{j} = \alpha \sum_{t} (r_{j}^{t} - y_{j}^{t}) x^{t}$$

$$\Delta w_{j0} = \alpha \sum_{t} (r_{j}^{t} - y_{j}^{t})$$

Where α = Learning rate Where Δw_i , Δw_{i0} = Updated weights

b. Multi-Layer Perceptron

Initialize the weights randomly using shapes for input layer weights w = [H = (25, 50, 75), Dimensions = 784] for output layer weights v = [K=10, H= (25, 50, 75)]

$$o_i^t = \sum_{h=1}^H v_{ih} w_h^t + v_{i0}$$

Where v = output layer weights Where w = input layer weights Where h = hidden layer neurons

$$y_i^t = \frac{e^{o_i^t}}{\sum_k e^{o_k^t}}$$

Where k = classes Where t = sample number

$$E(W, v | X) = -\sum_{t} \sum_{i} r_i^t \log y_i^t$$

$$\Delta v_{ih} = \alpha \sum_{t} (r_i^t - y_i^t) z_h^t$$

$$\Delta w_{hj} = \alpha \sum_{t} \left[\sum_{i} (r_i^t - y_i^t) v_{ih} \right] z_h^t (1 - z_h^t) x_j^t$$

3. Results

Confusion matrix of the highest accuracy reached on train set single layer perceptron

Single layer perceptron on training set

b.

a.

d.

c.

Confusion matrix of the highest accuracy reached on test set single layer perceptron

e.

Confusion matrix of the highest accuracy reached on train set multi layer perceptron

h= 25 accuracy= %92.0916666666667

			-							
0 -	683	3 0	11	6	11	12	36	3	154	7
1 -	1 6		945	21	11	23	7	12	111	12
2 -	34	39!	529	63	95	11	99	74	221	26
3 -	28	29	122	5400	5	167	30	47	229	74
4 -	12	26	19	5 !	40	. 2	45	6	63	263
5 -	84	27	28	131	404	4809	107	14	133	48
6 -	39	18	22	6	30	45	5609	0	145	4
7 -	19	51	86	31	87	10	10	678	50	243
8 -	28	73	27	81	12	54	39	5 !	5431	101
9 -	30	33	12	64	122	27	3	117	92	449
										_
	0	\sim	2	B	D.	5	6	1	&	9

g.

Confusion matrix of the highest accuracy reached on train set multi layer perceptron

h= 50 accuracy= %92.968333333333333

```
0 571 4 1 9 6 8 13 40 2 122 8
1 - 2 652 0 52 20 9 26 13 12 79 9
2 - 41 40 538 0 53 96 6 65 87 176 14
3 - 22 25 145 547 0 7 128 31 62 186 55
4 - 12 21 32 1 538 3 2 70 5 62 254
5 - 67 20 25 117 42 491 103 10 73 51
6 - 43 16 24 2 32 55 565 3 0 91 2
7 - 27 37 64 13 87 11 4 583 7 40 145
8 - 24 79 39 66 15 47 44 8 547 257
9 - 34 26 15 79 130 27 4 95 100 543 5
```

h.

Confusion matrix of the highest accuracy reached on train set multi layer perceptron

h= 75 accuracy= %92.8116666666667

			,							
0 -	699	5 0	7	9	8	25	35	3	134	7
1 -	16	550	543	17	10	38	11	9	92	16
2 -	33	32	537	751	87	17	77	64	200	20
3 -	28	26	119	5418	3 7	164	34	52	225	58
4 -	10	20	25	4 !	5418	3 5	50	5	53	252
5 -	74	16	21	128	414	4870	98	11	103	59
6 -	34	18	19	1	27	60	5659	2	98	0
7 -	23	56	88	18	74	11	2 5		232	169
8 -	24	82	25	63	21	52	42	6	5472	264
9 -	30	19	10	67	129	27	4	94	88 !	5481
	0	~	2	3	D.	5	6	1	প্ত	9

errors v with epocs on training set with changing h values

j.

i.

errors w with epocs on training set with changing h values

mse v with epocs on training set with changing h values

I.

k.

m. mse with epocs on training set with changing h values

n.

accuracy with epocs on training set with changing h values

Confusion matrix of the highest accuracy reached on test set multi layer perceptron

h= 25 accuracy= %92.49000000000001

p.

ο.

Confusion matrix of the highest accuracy reached on test set multi layer perceptron

h= 50 accuracy= %92.4900000000001

0 -	956	0	0	1	0	4	9	1	9	0
1 -	0 1	10	. 3	3	0	1	4	2	21	0
2 -	6	4	920	15	10	1	12	12	41	11
3 -	3	0	12	921	0	18	3	9	33	11
4 -	1	3	3	2	894	0	13	2	5	59
5 -	11	2	0	22	7	786	18	6	31	9
6 -	8	3	0	2	5	10	905	0	24	1
7 -	2	15	23	9	9	0	1	924	5	40
8 -	7	3	3	10	7	9	8	4	903	20
9 -	6	7	1	9	19	3	0	7	18	939
										\neg
	0	~	2	3	D.	5	6	1	જ	9

Confusion matrix of the highest accuracy reached on test set multi layer perceptron

h= 75 accuracy= %92.97

q.

r.