A PSF photometry tool for NASA's Kepler, K2, and TESS missions

José Vinícius de Miranda Cardoso^{1,2,4}, Geert Barentsen^{1,2}, Ben Montet^{3,*}, Ann Marie Cody^{1,2}, Christina Hedges^{1,2} and Michael Gully-Santiago^{1,2}

¹NASA Ames Research Center, Moutain View, CA, USA

²Bay Area Environmental Research Institute, Petaluma, CA, USA

³Department of Astrophysics, University of Chicago, IL, USA

⁴Federal University of Campina Grande, Campina Grande, Brazil *NASA Sagan Fellow

Introduction

- NASA's Kepler and K2 missions have been delivering high-precision time series data for a wide range of stellar types
- However, both the official and community developed pipelines [1–3] tend to focus on studying isolated stars using simple aperture photometry, hence performing sub-optimally in crowded fields
- Although Point Spread Function (PSF) photometry methods are well known [4, 5], as of now, there exist no open source tool that takes into account the caveats inherent in Kepler and $\mathcal{K}2$ data
- \bullet To address this issue, we present an open source PSF photometry toolkit for Kepler and K2 and extensible to TESS, as part of the $\mathcal{K}2$ Guest Obverser Office data analysis tool, PyKE

Methods

Fitting multiple PSFs jointly

Consider an experiment that outputs an image with m (m known) stellar objects as a collection of n independent non-identically distributed random variables $\mathbf{Y} \triangleq \{Y_i\}_{i=1}^n$ (pixels), each of which has expected value $\mathbb{E}[Y_i] = \sum_{j=1}^m \lambda_i(\mathbf{\Theta}_j)$, where λ_i is the PSF model at the i-th pixel, $\mathbf{\Theta}_j$ is a random vector that encondes the information about flux and center position of the j-th star. Hence, the likelihood function can be written as

$$P\left(\mathbf{Y} = \mathbf{y} \middle| \left\{\mathbf{\Theta}_{j}\right\}_{j=1}^{m} = \left\{\mathbf{\theta}_{j}\right\}_{j=1}^{m}\right) = \exp\left(-\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{i}(\mathbf{\theta}_{j})\right) \prod_{i=1}^{n} \frac{\left(\sum_{j=1}^{m} \lambda_{i}(\mathbf{\theta}_{j})\right)^{y_{i}}}{y_{i}!}.$$
(1)

Perhaps of more practical interest is the log likelihood function

$$\log P\left(\mathbf{Y} = \mathbf{y} \middle| \left\{\mathbf{\Theta}_{j}\right\}_{j=1}^{m} = \left\{\mathbf{\theta}_{j}\right\}_{j=1}^{m}\right) = \sum_{i=1}^{n} \left(-\sum_{j=1}^{m} \lambda_{i}(\mathbf{\theta}_{j}) + y_{i} \log \sum_{j=1}^{m} \lambda_{i}(\mathbf{\theta}_{j})\right). \tag{2}$$

Hence, the Maximum Likelihood Estimator (MLE) can be formulated as the following optimization problem

$$\boldsymbol{\theta}^*(\boldsymbol{y}) = \underset{\boldsymbol{\theta} \in \Lambda}{\operatorname{arg\,min}} \sum_{i=1}^n \left(\sum_{j=1}^m \lambda_i(\boldsymbol{\theta}_j) - y_i \log \sum_{j=1}^m \lambda_i(\boldsymbol{\theta}_j) \right). \tag{3}$$

Furthermore, prior probability densities (often taken to be uniform on Λ) on the stars positions, fluxes, and sky background, are used.

Estimating uncertainties using the Cramér-Rao Lower Bound

Uncertainties on the fitted values are computed using the Cramér-Rao Lower Bound. Mathematically,

$$cov(\boldsymbol{\theta}^*(\boldsymbol{Y})) \le \left(\mathbb{E}_{\boldsymbol{\theta}} \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{Y}|\boldsymbol{\theta}) \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{Y}|\boldsymbol{\theta}) \right]^T \right] \right)^{-1} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*(\boldsymbol{y})}$$
(4)

The Kepler Pixel Response Function Model

- Kepler's pixel response function (PRF) has been shown to be nonsymmetric and spatially variable across the detector [6]
- The PRF model used in PyKE is constructed following a similar procedure as stated by Bryson *et al.* [6]

An object of the PSF model can be instantied as follows

- >>> from pyke import KeplerTargetPixelFile
- >>> tpf = KeplerTargetPixelFile("ADDRESS_TO_TPF")
- >>> prf = tpf.get_prf_model()

Crowded K2 Clusters

- >>> from pyke.prf import SceneModel, PRFPhotometry
- >>> scene = SceneModel(prfs=5*[prf])
- >>> phot = PRFPhotometry(prior=prior, scene_model=scene)
- >>> results = phot.fit(tpf.flux)

| Scene Model | 1600 | 1400 | 1200 |

- We have presented an open-source tool to perform PSF photometry on Kepler and $\mathcal{K}2$ data which precisely and accurately estimates stellar positions and fluxes on the CCD
- Motion-dependent noise, primarily caused by the subpixel flat-field variations, which are not taken into account in the PSF model, is still present. Nevertheless, it can be easily removed by the procedures developed by detrending pipelines
- As future works, we intend to study novel ways to build the PSF model, especially by using data-driven approaches

References

- [1] Luger R. et al. ArXiv e-prints:1702.05488, February 2017.
- [2] Vanderburg A. et al. PASP, arXiv:1408.3853, 126:948, October 2014.
- [3] Aigrain S. et al. MNRAS, arXiv:1603.09167, 459:2408–2419, July 2016.
- [4] Anderson J. et al. 2000PASP..112.1360A, 112:1360–1382, October 2000.
- [5] Libralato M. et al. MNRAS, arXiv:1510.09180, 456:1137–1162, February 2016.
- [6] Bryson S. T. et al. APJL, arXiv:1001.0331, 713:L97–L102, April 2010.