Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Somadores BCD

RELATÓRIO DA DISCI-PLINA LABORATÓRIO DE ELETRÔNICA 1 COM O PROF. GILBERTO CUARELLI E O PROF. HAROLDO GUIBU.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SÃO PAULO

SUMÁRIO

1	INTRODUÇÃO TEÓRICA !
1.1	Objetivos
1.2	Materiais e Equipamentos utilizados
2	PROCEDIMENTOS EXPERIMENTAIS
3	QUESTÕES 9
4	CONCLUSÃO
	REFERÊNCIAS

LISTA DE FIGURAS

Figura 1 –	Circuito somador de 4 bits	7
Figura 2 –	Circuito somador BCD	8
Figura 3 –	Circuito somador BCD utilizando o CI 7483	9

LISTA DE TABELAS

Tabela 1 –	Correspondência E	BCD -	deci	imal	l .									5
Tabela 2 –	Testes de soma .													8

1 INTRODUÇÃO TEÓRICA

Como já vimos em experimentos anteriores, há várias formas de representar um número decimal em um sistema digital, uma delas que exploramos um pouco no último relatório é a forma no complemento de 2.

Uma outra forma é chamada BCD sigla para binary coded decimal. Esse tipo de código é uma forma de trabalhar com números binários de forma decimal, ou seja uma forma mais simples para um humano entender (TUTORIALS, 2016).

Esse tipo de código é normalmente utilizado para dispositivos que fazem uma interface com humanos, por exemplo um display de LED de 7-segmentos. O código BCD transforma cada dígito decimal em um número binário de 4 bits segundo a tabela 1 (DAVIS, 1998).

Tabela 1 – Correspondência BCD - decimal

A	В	C	D	Decimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	—
1	0	1	1	_
1	1	0	0	_
1	1	0	1	_
1	1	1	0	
1	1	1	1	_

Fonte: Elaborada pelos autores

Como visto na tabela os números binários de 0000_2 até 1001_2 representam seus respectivos decimais de 0_{10} até 9_{10} , já os binários de 1010_2 até 1111_2 não são utilizados.

1.1 Objetivos

Estudar o código BCD e projetar um circuito que realize somas utilizando o mesmo.

1.2 Materiais e Equipamentos utilizados

- 1 Circuito integrado 7408 (Porta AND);
- 1 Circuito integrado 7432 (Porta OR);
- 1 Circuito integrado 7486 (Porta XOR);
- 2 Circuitos integrados 7483 (Somador 4 bits)
- 1 fonte de alimentação DC;
- Software Proteus para simulações

2 PROCEDIMENTOS EXPERIMENTAIS

O experimento dessa experiência possui um enunciado simples: construir um somador BCD utilizando somadores binários de 4 bits. Para isso, foi necessário inicialmente montar os somadores paralelos. Como já sabemos é possível criar um somador de n bits ao juntar n circuitos do tipo somador completo, assim um somador paralelo de 4 bits é montado conforme na figura 1.

Figura 1 – Circuito somador de 4 bits

Fonte: Elaborada pelos autores

A saída do somador BCD deve ser exatamente igual à saída dos somador quando ela for entre 0 e 9, já que a representação binária em BCD nesse caso é a mesma como já visto na tabela 1. Porém, caso a saída do somador seja maior que 9 devemos adicionar a essa saída o número 6 para que possamos separa-la em dois dígitos BCD.

Por isso, devemos passar os 8 bits de entrada (4 de cada número BCD) por um somador de 4 bits e, em seguida, passar o valor de resultado como uma entrada de um outro somador de bits cuja outra entrada será 0000 caso a soma seja menor ou igual a 9 e 0110 caso contrário. O circuito que realiza essa operação pode ser visto na figura 2.

Conforme o circuito da figura há três casos em que a saída da porta OR é 1: a soma inicial cause um carry, ou seja, seja maior do que 16 (9 + 9 por exemplo), tanto o bit S3 quanto S2 ($Soma \ge 1100_2 = 12_{10}$) são 1 ou tanto o bit S3 quanto S1 são 1 ($Soma \ge 1010_2 = 10_{10}$). Todos esses casos são números que precisam de dois dígitos BCD, por isso em todos eles somamos 6 à soma inicial (ligando a saída da porta OR nos pinos de entrada $B_1 \to b_2$ do somador de 4 bits). Dessa fora, na saída haverá os 4 bits do primeiro dígito da soma e o carry que seria o primeiro bit do próximo dígito. Após montar esse circuito realizamos alguns testes com entradas diversas, os resultados podem ser vistos na tabela 2.

SOMADOR DE 4 BITS 1

SOMADOR DE 4 BITS 2

AI

AZ

SOMADOR DE 4 BITS 2

AZ

AZ

SOMADOR DE 4 BITS 2

AZ

AZ

SOMADOR DE 4 BITS 2

AZ

SOMADOR DE 4

Figura 2 – Circuito somador BCD

Fonte: Elaborada pelos autores

Tabela 2 – Testes de soma

A_0	A_1	A_2	A_3	B_0	B_1	B_2	B_3	C_{in}	S_0	S_1	S_2	S_3	C_{out}
1	0	1	0	1	1	0	0	0	0	0	0	1	0
0	0	0	0	1	0	0	1	1	0	0	0	0	1
0	0	1	0	1	1	1	0	1	0	1	0	0	1
1	0	0	1	1	0	0	1	0	0	0	0	1	1
1	1	1	0	1	0	1	0	0	0	1	0	1	1
0	0	1	0	0	0	1	0	1	1	0	0	1	1
0	0	0	0	1	0	0	1	0	1	0	0	1	0
1	0	0	0	0	0	1	0	1	0	0	0	0	1

Fonte: Elaborada pelos autores

3 QUESTÕES

A questão proposta foi a construção do mesmo circuito porém utilizando o circuito integrado 7483, um somador digital de 4 bits. Como na montagem para o experimento fizemos o uso de um somador de 4 bits, para refazer o circuito utilizando esse CI basta colocá-lo no lugar dos nossos somadores, a figura 3 representa esse circuito montado.

Figura 3 – Circuito somador BCD utilizando o CI 7483

Fonte: Elaborada pelos autores

4 CONCLUSÃO

Nesse experimento vimos o funcionamento do código BCD, uma forma de binária de representação de números que utiliza 4 bits para identificar cada algarismo decimal. Além disso entendemos e construímos o circuito aritmético mais simples e importante que atua com números representados nessa forma: um somador BCD.

O código BCD é extremamente importante pois é uma forma de representar números que se torna mais fácil para o ser humano entender, por isso é utilizado em dispositivos que fazem interface com alguma pessoa. Dessa forma compreender como essa codificação funciona e suas operações básicas pe de extrema importância para a formação do engenheiro já que praticamente todas as vezes que ele construíra um dispositivo que comunica com alguém ele terá de utilizar o BCD e suas operações e propriedades.

REFERÊNCIAS

DAVIS, L. Glossary of Electronic and Engineering Terms, Gray Code Circuit. 1998. Disponível em: http://www.interfacebus.com/Glossary-of-Terms-gray-code-circuit.html. Acesso em: 11 de mar. de 2021. Citado na página 5.

TUTORIALS electroncis. **Binary Coded Decimal or BCD Numbering System**. 2016. Disponível em: https://www.electronics-tutorials.ws/binary/binary-coded-decimal.html>. Acesso em: 11 de mar. de 2021. Citado na página 5.