

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría I Examen VII

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Geometría I.

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Ana María Hurtado Cortegana y Antonio Ros Mulero¹.

Descripción Convocatoria Ordinaria.

Fecha 15 de enero de 2024.

Duración 3 horas.

¹El examen lo pone el departamento.

Ejercicio 1 (2.5 puntos). Enuncia y demuestra la fórmula de Grassmann.

Ejercicio 2 (1.5 puntos). Sea $f:V\to V'$ una aplicación lineal entre espacios vectoriales finitamente generados sobre el mismo cuerpo K. Razonar si las siguientes afirmaciones son verdaderas o falsas:

- 1. La aplicación f es sobreyectiva si y sólo si f^t es inyectiva, donde f^t es la aplicación transpuesta de f.
- 2. Si $S = \{v_1, \ldots, v_k\} \subset V$ es un subconjunto de V tal que $\{f(v_1), \ldots, f(v_k)\}$ es un sistema de generadores de V', entonces S es un sistema de generadores de V.

Ejercicio 3 (3 puntos). Para cada $\lambda \in \mathbb{R}$, se considera el endomorfismo $f_{\lambda} : \mathbb{R}^3 \to \mathbb{R}^3$ cuya matriz asociada en la base usual es la siguiente:

$$\begin{pmatrix} 2 & 1 & 2\lambda - 3 \\ 0 & 2 - \lambda & -\lambda \\ 0 & -1 & -1 \end{pmatrix}$$

- 1. Hallar bases de $\operatorname{Im}(f_{\lambda})$ y $\operatorname{Ker}(f_{\lambda})$ según los valores del parámetro λ . Determinar para qué valores de λ , f_{λ} es un isomorfismo.
- 2. Obtener, según los valores de λ , una base de $\mathrm{Ker}(f_{\lambda}) \cap \mathrm{Im}(f_{\lambda})$ y otra base de $\mathrm{Ker}(f_{\lambda}) + \mathrm{Im}(f_{\lambda})$. ¿Para qué valores $\mathbb{R}^3 = \mathrm{Ker}(f_{\lambda}) \oplus \mathrm{Im}(f_{\lambda})$?.
- 3. Hallar bases de $\operatorname{Im}(f_{\lambda}^{t})$ y $\operatorname{Ker}(f_{\lambda}^{t})$ para cada valor de λ .

Ejercicio 4 (3 puntos). Sea $C = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ y definimos el subconjunto de $\mathcal{M}_2(\mathbb{R})$

$$U = \{ A \in \mathcal{M}_2(\mathbb{R}) : CA^t = A \}.$$

- 1. Demostrar que U es un subespacio vectorial de $\mathcal{M}_2(\mathbb{R})$ y obtener una base \mathcal{B}_U de U.
- 2. Ampliar \mathcal{B}_U a una base \mathcal{B} de $\mathcal{M}_2(\mathbb{R})$ y calcular la base dual de \mathcal{B} .
- 3. Hallar una base del espacio vectorial cociente $\mathcal{M}_2(\mathbb{R})/U$ y obtener las coordenadas de $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} + U$ en dicha base.