Roles of Coenzyme F_{420} -Reducing Hydrogenases and Hydrogen- and F_{420} -Dependent Methylenetetrahydromethanopterin Dehydrogenases in Reduction of F_{420} and Production of Hydrogen during Methanogenesis $^{\triangledown}$

Erik L. Hendrickson and John A. Leigh*

Department of Microbiology, University of Washington, Seattle, Washington

Received 19 February 2008/Accepted 7 May 2008

Reduced coenzyme F_{420} ($F_{420}H_2$) is an essential intermediate in methanogenesis from CO_2 . During methanogenesis from H_2 and CO_2 , $F_{420}H_2$ is provided by the action of F_{420} -reducing hydrogenases. However, an alternative pathway has been proposed, where H_2 -dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) together reduce F_{420} with H_2 . Here we report the construction of mutants of *Methanococcus maripaludis* that are defective in each putative pathway. Their analysis demonstrates that either pathway supports growth on H_2 and CO_2 . Furthermore, we show that during growth on formate instead of H_2 , where $F_{420}H_2$ is a direct product of formate oxidation, H_2 production occurs. H_2 presumably arises from the oxidation of $F_{420}H_2$, and the analysis of the mutants during growth on formate suggests that this too can occur by either pathway. We designate the alternative pathway for the interconversion of H_2 and $F_{420}H_2$ the Hmd-Mtd cycle.

The methanogenic Archaea (methanogens) occupy a variety of anaerobic habitats, where they play essential roles in the conversion of hydrogen and other intermediates to methane (10). The hydrogenotrophic methanogens use hydrogen to reduce CO_2 to methane. In addition, some hydrogenotrophs use formate, and a few substitute certain low-molecular-weight alcohols for hydrogen.

The deazaflavin F_{420} is an essential coenzyme of methanogenesis. The reduction of CO_2 to methane requires reduced F_{420} ($F_{420}H_2$), since it is the sole electron donor for the step that reduces methylenetetrahydromethanopterin (methylene- H_4MPT) (Mer in Fig. 1). In addition, $F_{420}H_2$ is the electron donor for $F_{420}H_2$ -dependent methylenetetrahydromethanopterin dehydrogenase (Mtd), one of two enzymes that reduce methenyl- H_4MPT . The other enzyme, H_2 -dependent methylenetetrahydromethanopterin dehydrogenase (Hmd), uses H_2 directly. mRNA abundance for mtd increased markedly under hydrogen-limited growth conditions (4), suggesting that Mtd may be more important when H_2 is limiting.

The F_{420} -reducing hydrogenases (Fru and Frc) reduce F_{420} with H_2 . However, an alternative route for this process has been proposed. In *Methanothermobacter marburgensis* the specific activity of F_{420} -reducing hydrogenase, a Ni-Fe hydrogenase, decreased 20-fold under nickel-limited growth conditions. In contrast, the specific activities of Hmd and Mtd, neither of which requires nickel for activity, increased six- and fourfold, respectively (1). These observations led to the proposal that under nickel-limited conditions, F_{420} may be reduced by the concerted action of Hmd and Mtd, the former

working in the forward direction (with respect to the methanogenic pathway) and the latter in the reverse direction (1, 2). This pathway is boxed in Fig. 1.

Here we report on the properties of mutants of *Methanococcus maripaludis* that are deficient in Hmd, Mtd, or the F_{420} -reducing hydrogenases. The results demonstrate that neither Hmd nor Mtd is essential, confirming that either enzyme is sufficient for methenyl- H_4 MPT reduction. The results also indicate that, in vivo, Hmd and Mtd do indeed constitute an alternate pathway for the reduction of F_{420} with H_2 , which we designate the Hmd-Mtd cycle. Furthermore, we show that during growth on formate, H_2 production occurs, evidently by reversal of either the F_{420} -reducing hydrogenase or the Hmd-Mtd cycle.

MATERIALS AND METHODS

Growth of strains and measurement of H_2 . M. maripaludis was grown on H_2 and CO_2 by standard anaerobic techniques in McCas medium as described elsewhere (6). For growth on formate, McCas medium was modified to contain 200 mM sodium formate and 200 mM MOPS (morpholinepropanesulfonic acid) buffer (pH 7.0), NaCl was decreased to 0.18 M, and the gas atmosphere was 80% N_2 and 20% CO_2 at a pressure of 15 lb/in². Cultures (5-ml volume) were inoculated with 0.25 to 0.5 ml of a culture actively growing on formate. Growth was monitored by optical density at 660 nm. The accumulation of H_2 in the headspace (20-ml volume) was measured using a Hach CARLE Series 100 AGC gas chromatograph equipped with a Supelco 60/80 mesh molecular sieve 5A column (6 ft by 1/8 in.) and a trace analytical RGD2 reduction gas detector.

Construction of plasmids and strains. Primers are listed in Table 1, and strains and plasmids are listed in Table 2. PCR products containing the genes *hmd*, *mtd*, *frcA*, and *fruA* and their flanking regions were generated using the primer pairs hmdcln5for and hmdcln5rev, mtdcln5for and mtdcln5rev, frcAfor2 and frcArev2, and fruAfor and fruArev, respectively. The products were cloned into pCR2.1topo to generate phmdtopo, pmtdtopo, pfrcAtopo, and pfruAtopo. An in-frame deletion of *hmd* was produced by PCR of phmdtopo using primers hmddel1 and hmddel2, followed by digestion with AscI and ligation to produce phmddeltopo. pmtddeltopo, pfrcAdeltopo, and pfruAdeltopol were generated in the same way using pmtdtopo and the primers mtddel1 and mtddel3, pfrcAtopo and the primers frudel1 and

^{*} Corresponding author. Mailing address: University of Washington, Department of Microbiology, Box 357242, Seattle, WA 98195-7242. Phone: (206) 685-1390. Fax: (206) 543-8297. E-mail: leighj@u.washington.edu.

[▽] Published ahead of print on 16 May 2008.

Vol. 190, 2008 THE Hmd-Mtd CYCLE 4819

Formate
$$CO_2$$
 H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_4 H_5 H

FIG. 1. The hydrogenotrophic methanogenic pathway. See reference 3 for a full description of methanogenesis. The Hmd-Mtd cycle is boxed. Abbreviations: CoB, coenzyme B; CoM, coenzyme M; F_{420} , coenzyme F_{420} ; Fd, ferredoxin; Frc, cysteine-containing F_{420} -reducing hydrogenase; Fru, selenocysteine-containing F_{420} -reducing hydrogenase; Mer, methylenetetrahydromethanopterin reductase; MFR, methanofuran.

frudel2, respectively. The in-frame deletion of *hmd* was amplified from phmd-deltopo using the primers hmddelamp1 and hmddelamp3; the resulting fragment was digested with BamHI and ligated into the vector pCRprtneo to produce pCRprtΔmdneo. pCRprtΔmtdneo was produced in the same way from pmtd-deltopo using the primers mtddelamp1 and mtddelamp2 and digesting with BamHI. pCRprtΔfrcneo was produced from pfrcAdeltopo using frcdelamp5 and frcdelamp6 and digesting with XbaI, and pCRprtΔfruneo was produced from pfruAdeltopo using frudelamp5 and frudelamp6 and digesting with XbaI.

Strains containing markerless in-frame deletions of hmd, mtd, frcA, and fnuA were constructed in strain Mm900 as described elsewhere (6) using the plasmids pCRprtΔhmdneo, pCRprtΔmtdneo, pCRprtΔfrcneo, and pCRprtΔfruneo, respectively, to produce strains Mm1097, Mm1020, Mm1183, and Mm1145, respectively. A double mutant of frcA and fnuA was constructed by the same procedure from the frcA mutant strain Mm1183 by using pCRprtΔfruneo to produce Mm1184. Deletions were confirmed by Southern analysis. For experiments testing whether hmd deletion mutations could be made, pCRprtΔhmdneo was transformed into recipient strains. The resultant merodiploids were streak purified, allowed to grow overnight without antibiotic selection, and plated on counterselection plates containing 8-azahypoxanthine. Colonies were analyzed by Southern blotting to distinguish strains containing deletions of the hmd gene from those containing the wild-type hmd gene.

RESULTS AND DISCUSSION

 F_{420} reduction during growth on H_2 . We used a genetic approach in M. maripaludis to test whether F_{420} -reducing hydrogenase and the Hmd-Mtd cycle constitute two alternative pathways for the reduction of F_{420} in vivo. M. maripaludis contains genes for Hmd and Mtd and two sets of genes for F_{420} -reducing hydrogenases, fruADGB and frcADGB (5). FruA contains selenocysteine residues, while FrcA contains cysteine residues in corresponding positions, and in the closely related frcMathematical Methanococcus voltae frc expression is repressed in the presence of selenium in the medium (7, 8). We hypothesized that

if Hmd and Mtd can provide an alternative pathway for the reduction of F_{420} , then mutants with deletions in *fru* and *frc* should be viable in the presence of wild-type *hmd* and *mtd*. Conversely, mutants with mutations in either *hmd* or *mtd* should be viable in a fru^+ frc^+ background.

Using H_2 and CO_2 as growth substrates, we made the following mutants, all containing markerless in-frame deletions: $\Delta fruA$, $\Delta frcA$, double mutant $\Delta fruA$ $\Delta frcA$, Δmtd , and Δhmd strains. $\Delta fruA$ $\Delta frcA$, Δmtd , and Δhmd strains each grew normally on H_2 and CO_2 (Fig. 2A). Since $F_{420}H_2$ is essential for methanogenesis, each mutant must retain a pathway for F_{420} reduction using H_2 . Hence, the results imply that F_{420} -reducing hydrogenase and the Mtd-Hmd cycle are each sufficient for this function.

As a formal possibility, a third, unknown pathway for the reduction of F_{420} , different from the F_{420} -reducing hydrogenase and the Mtd-Hmd cycle, could exist. To test this possibility, we attempted to construct an Δhmd mutation in a $\Delta fruA$ $\Delta frcA$ background. Following our regular procedure for generation of markerless mutations (6), we introduced Δhmd (containing the N- and C-terminal flanking regions of hmd) on an integrative vector to produce merodiploids of Δhmd and

TABLE 1. Primers

Name	Sequence	Restriction site
hmdcln5for	GCTGTTGGAATAGACTGCTG	
hmdcln5rev	GCCCTTATTACTTCTTTTCC	
mtdcln5for	CGTTTCAGCAGGTTCGAAGG	
mtdcln5rev	GGGTGTTGCATTAATTGGCG	
frcAfor2	GCACCTCTTTAAAAGCTTT	
frcArev2	AATGAAACAGCGCCATCTAC	
fruAfor	CCAGTACTTCAATATCTTTCAC	
fruArev	TACTTCTTGACAACCGAC	
hmddel1	A <u>GGCGCGCC</u> ACTTTCATATCAT ACACCTCA	AscI
hmddel2	AGGCGCCCCAATAAAACCTTA AGTATTAC	AscI
mtddel1	AGGCGCGCCCATTATATCACCG AAAGATAT	AscI
mtddel2	GGCGCGCCAGAATAAATTTGC ATCAAAAT	AscI
frcdel1	GGCGCGCCTTACCCATCAGATC ACCTATC	AscI
frcdel2	GGCGCGCCAATAAATACTGGTG AATCATGC	AscI
frudel1	GGCGCGCCACTTTATTCACCTCC	AscI
frudel2	GGCGCCCAATTCTAAATTCCT GAAAAGG	AscI
hmddelamp1	ATGGATCCGGCTTGCTGTTGGA ATAGAC	BamHI
hmddelamp3	TTGGATCCGCCCTTATTACTTCT TTTCC	BamHI
mtddelamp1	GAGCTC <u>GGATCC</u> ACTAGTAACG GCCGCCAAGTGT	BamHI
mtddelamp2	AGAATT <u>GGATCC</u> CGTTTCAGCA GGTTCGAAGGA	BamHI
frcdelamp5	A <u>TCTAGA</u> GCACCTTCTTTAAAA GCTTT	XbaI
frcdelamp6	C <u>TCTAGA</u> AATGAAACAGCGCCA TCTAC	XbaI
frudelamp5	TTCTAGACCAGTACTTCAATATC TTTCAC	XbaI
frudelamp6	CTCTAGATACTTCTTCTGACAAC CGAC	XbaI

J. BACTERIOL.

TABLE 2. Strains and plasmids

TABLE 2. Strains and plasmids			
Name	Feature(s)	Source or reference	
Plasmids			
pCR2.1topo	Amp ^r Kan ^r cloning vector	Invitrogen	
pCRprtneo	<i>hmv</i> -promoter- <i>hpt</i> fusion + Neo ^r cassette in pCR2.1topo	6	
phmdtopo	hmd plus flanking DNA in pCR2.1topo	This study	
pmtdtopo	mtd plus flanking DNA in pCR2.1topo	This study	
pfrcAtopo	frcA plus flanking DNA in pCR2.1topo	This study	
pfruAtopo	fruA plus flanking DNA in pCR2.1topo	This study	
phmddeltopo	In-frame deletion of <i>hmd</i> in pCR2.1topo	This study	
pmtddeltopo	In-frame deletion of <i>mtd</i> in pCR2.1topo	This study	
pfrcAdeltopo	In-frame deletion of frcA in pCR2.1topo	This study	
pfruAdeltopo	In-frame deletion of <i>fruA</i> in pCR2.1topo	This study	
$pCRprt\Delta hmdneo$	In-frame deletion of <i>hmd</i> in pCRprtneo	This study	
$pCRprt\Delta mtdneo$	In-frame deletion of <i>mtd</i> in pCRprtneo	This study	
$pCRprt\Delta freneo$	In-frame deletion of frcA in pCRprtneo	This study	
pCRprt∆fruneo	In-frame deletion of <i>fruA</i> in pCRprtneo	This study	
Strains			
Mm900	M. maripaludis Δhpt	6	
Mm1097	Mm900 Δhmd	This study	
Mm1020	Mm900 Δmtd	This study	
Mm1183	Mm900 ΔfrcA	This study	
Mm1145	Mm900 ΔfruA	This study	
Mm1184	Mm900 ΔfrcA ΔfruA	This study	

 hmd^+ . We made such merodiploids in the $\Delta fruA$ $\Delta frcA$, $\Delta frcA$, and fru⁺ frc⁺ backgrounds. We then selected for resolution of the merodiploids via a second recombination event and analyzed the resulting strains by Southern blotting. In principle a mixture of wild-type and deletion strains should result, depending on where the second recombination event occurs. We counted the numbers of resulting Δhmd and hmd^+ strains in each background. In the fru⁺ frc⁺ background six out of eight strains tested contained \(\Delta hmd \) and the remaining two contained hmd^+ . In the $\Delta frcA$ background, which should express fru and therefore retain active F₄₂₀-reducing hydrogenase, three strains contained Δhmd and five contained hmd^+ . In contrast, in the $\Delta fruA$ $\Delta frcA$ background all 40 strains tested contained only hmd+. The results indicate that while Hmd can be eliminated in a strain with active F₄₂₀-reducing hydrogenase, it is essential in a strain lacking F₄₂₀-reducing hydrogenase. Therefore, no evidence could be found for the existence of a third pathway that would produce $F_{420}H_2$ from H_2 .

 H_2 production during growth on formate. Growth on formate differs from growth on H_2 and CO_2 because $F_{420}H_2$ is a direct product of formate oxidation (Fig. 1). Neither the F_{420} -reducing hydrogenase nor the Mtd-Hmd cycle should be necessary for the production of $F_{420}H_2$. However, the reversal of either pathway might result in H_2 production. We character-

ized the growth of the $\Delta fruA$ $\Delta frcA$, Δmtd , and Δhmd mutants on formate. The $\Delta fruA$ $\Delta frcA$ and Δhmd mutants grew normally, while the Δmtd mutant grew after a lag. For each strain, H₂ accumulated in the headspace of the tubes as growth commenced and disappeared when growth ended (Fig. 2B). This observation suggests that H₂ is produced from F₄₂₀H₂ and that either the F₄₂₀-reducing hydrogenase or the Mtd-Hmd cycle can mediate this conversion. H2 accumulated to a substantially higher level in tubes containing cultures of the Δmtd mutant than in tubes containing any of the other strains. In the Δmtd strain, Hmd is the only enzyme for the reduction of methenyl-H₄MPT. Therefore, H₂ production, which would occur by the action of the F₄₂₀-reducing hydrogenase, should be essential. Due to the relatively low affinity of Hmd for H₂ (9), substantially higher H₂ levels accumulate. In contrast, in the other strains Mtd is present and can use F₄₂₀H₂ for the reduction of methenyl-H₄MPT. These results indicate that H₂ production from F₄₂₀H₂ occurs during growth on formate and that either

FIG. 2. Growth and $\rm H_2$ production by wild-type and mutant strains of *M. maripaludis*. (A) Growth on $\rm H_2$; (B) growth and $\rm H_2$ production on formate. For the Δmtd mutant on formate, data from three separate growth experiments are plotted and are represented by a single line. $\rm OD_{660}$, optical density at 660 nm.

Vol. 190, 2008 THE Hmd-Mtd CYCLE 4821

the F_{420} -reducing hydrogenase or the Mtd-Hmd cycle can carry out this process.

Whether H_2 is a necessary intermediate during growth on formate cannot be determined from the present data. The generation of a $\Delta fruA$ $\Delta frcA$ Δhmd triple mutant, which is expected to grow in the presence of formate, could resolve this question. Growth of the mutant on formate alone without the addition or generation of H_2 would indicate that H_2 is not a required intermediate. A requirement for added H_2 would indicate that H_2 production is required during growth on formate. Efforts to construct such a mutant are under way.

Concluding remarks. The genetic approach taken here has shown that two alternative pathways, the F_{420} -reducing hydrogenase and the Hmd-Mtd cycle, can function in vivo for the reduction of F_{420} with H_2 . Furthermore, during growth on formate the same pathways function in reverse to produce H_2 from $F_{420}H_2$. The lack of growth differences between the wild-type and mutant strains on H_2 and CO_2 (Fig. 2A) suggests that neither pathway for F_{420} reduction was rate limiting. However, in nature the F_{420} -reducing hydrogenase may constitute the major pathway when sufficient nickel is present, while the Hmd-Mtd cycle may be important when nickel is limiting (1, 2).

ACKNOWLEDGMENTS

This work was supported by Department of Energy Basic Research for the Hydrogen Fuel Initiative grant DE-FG02-05ER15709 and grant NCC 2-1273 from the NASA Astrobiology Institute.

We thank William Whitman for helpful comments.

REFERENCES

- Afting, C., A. Hochheimer, and R. K. Thauer. 1998. Function of H₂-forming methylenetetrahydromethanopterin dehydrogenase from *Methanobacterium* thermoautotrophicum in coenzyme F₄₂₀ reduction with H₂. Arch. Microbiol. 169:206–210.
- Afting, C., E. Kremmer, C. Brucker, A. Hochheimer, and R. K. Thauer. 2000. Regulation of the synthesis of H₂-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in *Methanothermobacter mar*burgensis. Arch. Microbiol. 174:225–232.
- Deppenmeier, U. 2002. The unique biochemistry of methanogenesis. Prog. Nucleic Acid Res. Mol. Biol. 71:223–283.
- Hendrickson, E. L., A. K. Haydock, B. C. Moore, W. B. Whitman, and J. A. Leigh. 2007. Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea. Proc. Natl. Acad. Sci. USA 104:8930– 8934
- 5. Hendrickson, E. L., R. Kaul, Y. Zhou, D. Bovee, P. Chapman, J. Chung, E. Conway de Macario, J. A. Dodsworth, W. Gillett, D. E. Graham, M. Hackett, A. K. Haydock, A. Kang, M. L. Land, R. Levy, T. J. Lie, T. A. Major, B. C. Moore, I. Porat, A. Palmeiri, G. Rouse, C. Saenphimmachak, D. Söll, S. Van Dien, T. Wang, W. B. Whitman, Q. Xia, Y. Zhang, F. W. Larimer, M. V. Olson, and J. A. Leigh. 2004. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J. Bacteriol. 186:6956–6969.
- Moore, B. C., and J. A. Leigh. 2005. Markerless mutagenesis in *Methano-coccus maripaludis* demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J. Bacteriol. 187:972–979.
- Muller, S., and A. Klein. 2001. Coordinate positive regulation of genes encoding [NiFe] hydrogenases in *Methanococcus voltae*. Mol. Genet. Genomics 265:1069–1075.
- Noll, I., S. Muller, and A. Klein. 1999. Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon *Methano-coccus voltae* involves positive and negative control elements. Genetics 152: 1335–1341.
- Thauer, R. K., A. R. Klein, and G. C. Hartmann. 1996. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem. Rev. 96:3031–3042.
- Zinder, S. H. 1993. Physiological ecology of methanogens, p. 128–206. In J. G. Ferry (ed.), Methanogenesis. Chapman and Hall, London, United Kingdom.