.				3.7	
Imie	1	nazwis	άΟ:άΟ:	Numer	ındeksu:

Egzamin z Rachunku Prawdopodobieństwa II* 5 lutego 2013

Część zadaniowa

Spośród poniższych zadań należy **wybrać cztery** i napisać ich pełne rozwiązania na osobnych kartkach podpisanych imieniem, nazwiskiem, numerem indeksu i zadania.. Każde zadanie będzie oceniane w skali 0–10 pkt. Można (i należy) wykorzystywać fakty udowodnione na wykładzie i ćwiczeniach.

- 1. Zmienne X_n i Y_n są niezależne i mają rozkład Poissona z parametrem 5n.
 - a) Zbadaj zbieżność według rozkładu ciągu $n^{-5/2}(X_n^3 Y_n^3)$.
 - b) Wyznacz wszystkie ciągi a_n takie, że $(a_n X_n)_{n \ge 1}$ jest ciasny.
- 2. Niech $(p_n)_{n=0}^{\infty}$ będzie ciągiem liczb z przedziału (0,1). Rozważmy łańcuch Markowa $(X_n)_{n=1}^{\infty}$ o przestrzeni stanów $E = \{0,1,2,\ldots\}$ i macierzy przejścia danej wzorami $p_{n,0} = p_n, p_{n,n+1} = 1 p_n$ dla $n = 0,1,2,\ldots$
 - a) Czy jest to łańcuch nieprzywiedlny? Czy jest on okresowy?
 - b) Dla jakich ciągów (p_n) łańcuch (X_n) jest powracający?
 - c) Załóżmy, że $p_n = \frac{1}{2}$ dla wszystkich n. Oblicz dla $k, l \in E$,

$$\lim_{n \to \infty} \mathbb{P}(X_n = k | X_0 = l)$$

- 3. Rzucamy monetą dopóki nie wypadną 2 orły pod rząd. Oblicz
 - a) prawdopodobieństwo tego, że wyrzucimy w sumie parzystą liczbę orłów,
 - b) wartość oczekiwaną liczby oddanych rzutów,
 - c) wartość oczekiwaną liczby wyrzuconych orłów.
- 4. Ciąg $(M_n, \mathcal{F}_n)_{n\geqslant 0}$ jest martyngałem o wyrazach całkowitych takim, że $M_0=1, |M_{n+1}-M_n|\leqslant 1$ dla $n=0,1,2\ldots$ oraz $\limsup M_n=\infty$ p.n.. Określmy

$$\tau := \inf\{n \ge 0: \ M_n = 10\} \quad \text{oraz} \quad \sigma := \inf\{n \ge 0: \ |M_n| = 10\}.$$

- a) Oblicz $\mathbb{P}(\tau = \sigma)$.
- b) Wykaż, że jeśli $N_n = M_n$ dla $n \le \tau$ i $N_n = 20 M_n$ dla $n \ge \tau$, to N_n też jest martyngałem względem \mathcal{F}_n .
- 5. Zmienne X_1,X_2,\ldots są niezależne i mają rozkład jednostajny na [-1,1]. Określmy $S_n=X_1+X_2+\ldots+X_n$ i $\tau:=\inf\{n\geqslant 1\colon\, X_n\geqslant 0\}$. Oblicz
 - a) $\mathbb{E}\tau$ i $\mathbb{E}S_{\tau}$,
 - b) funkcję charakterystyczną zmiennej S_{τ} .

Część testowa

1. (4pkt) Niech X_n będzie łańcuchem Markowa o przestrzeni stanów $\{1,2,3\}$ i macierzy przejścia $P=\frac{1}{5}\begin{pmatrix}1&2&2\\3&1&1\\0&2&3\end{pmatrix}$, zaś π będzie rozkładem stacjonarnym dla tego łańcucha. Oblicz $\mathbb{P}(X_2=X_1|X_0=1)=(\pi(\{1\}),\pi(\{2\}),\pi(\{3\}))=$

- 2. (3pkt) Sformułuj twierdzenie o zbieżności martyngałów w L_2 .
- 3. (4pkt) Zmienne X_n są niezależne i zbiegają według rozkładu do rozkładu normalnego $\mathcal{N}(1,1)$. Oblicz
 - i) $\lim_{n\to\infty} \mathbb{P}(X_n \leqslant 0) =$
 - ii) $\lim_{n\to\infty} \mathbb{P}(X_n + X_{n+1} \leqslant 0) =$
 - iii) $\lim_{n\to\infty} \varphi_{2X_n-X_{n+1}}(t) =$
- 4. (3pkt) Załóżmy, że $S_n=X_1+X_2+\ldots+X_n$, gdzie X_n są niezależnymi zmiennymi losowymi o rozkładzie wykładniczym z parametrem 1. Wówczas ciąg e^{na-S_n} jest nadmartyngałem względem filtracji generowanej przez zmienne X_n wtedy i tylko wtedy, gdy
- 5. (4pkt) Zmienna losowa X ma skończone wszystkie momenty. Wyraź za pomocą funkcji charakterystycznej X następujące wielkości:

$$\mathbb{E}X = \dots$$

 $\operatorname{Var}(X) = \dots$

- $Var(X^2) = \dots$
- 6. (3pkt) Co to znaczy, że wektor losowy $X=(X_1,\ldots,X_n)$ ma rozkład gaussowski (podaj jedną z definicji)?
- 7. (3pkt) Podaj definicję momentu zatrzymania τ względem filtracji \mathcal{F}_n i sigma-ciała \mathcal{F}_{τ} .
- 8. (3pkt) Które z następujących warunków implikują jednostajną całkowalność zmiennych X_n (podkreśl właściwe odpowiedzi): ciasność ciągu rozkładów μ_{X_n} ; zbieżność X_n prawie na pewno; zbieżność X_n w L^1 ; $\mathbb{E}\sup_n |X_n| < \infty$.
- 9. (3pkt) Sformułuj Centralne Twierdzenie Graniczne Lindeberga-Levy'ego.