Aufgabe 1 (16 Punkte)

In den folgenden Teilaufgaben sind die Ergebnisse **ohne Begründung** in den dafür vorgegebenen Kästchen anzugeben. Nebenrechnungen und Ergebnisse außerhalb der Kästchen werden **nicht** gewertet. (je 1,5 Punkte für (a) bis (i), 2,5 Punkte für (j))

(a) Geben Sie an, für welche $a \in \mathbb{R}$ das folgende lineare Gleichungssystem (über \mathbb{R}) mindestens eine Lösung hat:

$$x + 2y = a$$

$$x + 3y = 3$$

$$ax + 2ay = 2a$$

Es ist lösbar für $a \in \{$

(b) Gegeben sei eine *surjektive* lineare Abbildung $\varphi : \mathbb{R}[X]_{\leq 14} \to \mathbb{R}^8$. Berechnen Sie die Dimension des Kerns von φ .

$$dim(Kern(\phi)) \quad = \quad$$

(c) Von einer linearen Abbildung $\phi:\mathbb{R}^2\to\mathbb{R}^2$ seien die Werte

$$\varphi\begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}2\\-2\end{pmatrix} \quad \text{ und } \quad \varphi\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix}$$

bekannt. Berechnen Sie den Wert $\varphi(\binom{2}{3})$:

$$\varphi(\binom{2}{3}) =$$

(d) Geben Sie die Menge der Eigenwerte der Matrix $A = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ an:

(e) Geben Sie das Signum der folgenden Permutation an:

$$\operatorname{sgn}\left(\left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{array}\right)\right) = \boxed{}$$

(f) Gegeben sind die Untervektorräume
$$U = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 - x_3 = 0 \}$$
 und

(f) Gegeben sind die Untervektorräume $U=\{\begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}\in\mathbb{R}^3|\ x_1+x_2-x_3=0\}$ und $W=\{\begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}\in\mathbb{R}^3|\ x_1+x_3=0\}.$ Geben Sie den Schnitt $U\cap W$ durch Angabe eines Erzeugendensverteren aus zeugendensystems an:

(g) Es sei $V = \mathbb{R}[x]$ und U sei der Unterraum

$$U = \langle -2x+1, 3x^2+2x, 3x^2+1, 3x^2-2x+2 \rangle$$

von V. Geben Sie die Dimension von U an:

$$\dim(U) =$$

(h) Es sei $V = C^{\infty}(\mathbb{R})$ der Vektorraum der unendlich-oft differenzierbaren Funktionen von \mathbb{R} nach \mathbb{R} , und $\varphi: V \to V, f \mapsto f'$ (Ableitung). Geben Sie einen Eigenvektor $f \in V$ zum Eigenwert 5 von φ an:

$$f(x) =$$

(i) Es sei $A = (a_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$. Geben Sie entweder die Definition der Determinante von A oder die Formel zur Entwicklung nach einer Zeile i (oder Spalte i) an:

$$det(A) =$$

(j) Gegeben sei die (geordnete) Basis $B = \{b_1, b_2\}$ des \mathbb{R}^2 mit $b_1 = \binom{7}{2}$ und $b_2 = \binom{7}{3}$. Geben Sie die Basiswechselmatrizen $S_{E,B}$ und $S_{B,E}$ an (wobei E die Standardbasis ist):

$$S_{E,B} = oxed{S_{B,E}}$$

- (a) Gegeben sei die reelle Matrix $A = \begin{pmatrix} 0 & 1 & -3 & 0 \\ -1 & 0 & -2 & 0 \\ 3 & 2 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$. Berechnen Sie det(A). (3 Punkte)
- (b) Es sei n ungerade und $A \in \mathbb{R}^{n \times n}$ antisymmetrisch, d. h. $A^T = -A$. Zeigen Sie, dass dann det(A) = 0 gilt. (3 Punkte)

Aufgabe 3 (6 Punkte)

Gegeben seien die drei Funktionen $f_1, f_2, f_3 \in \mathrm{Abb}(\mathbb{R}, \mathbb{R})$ mit

$$f_1(x) = \sin(\frac{\pi}{2}x), \quad f_2(x) = e^x, \quad f_3(x) = x.$$

Es sei $U=\langle f_1,f_2,f_3\rangle$ (also ein Unterraum von $Abb(\mathbb{R},\mathbb{R})$). Ferner sei ϕ die Abbildung

$$\varphi: U \to \mathbb{R}^2, \quad f \mapsto \begin{pmatrix} f(0) \\ f(1) \end{pmatrix}.$$

- (a) Zeigen Sie, dass $B := \{f_1, f_2, f_3\}$ eine Basis von U ist. (3 Punkte)
- (b) Zeigen Sie, dass φ linear ist. (2 Punkte)
- (c) Geben Sie die Darstellungsmatrix $D_{B,E}(\varphi)$ an, wobei E die Standardbasis des \mathbb{R}^2 ist. (1 Punkt)

Aufgabe 4 (6 Punkte)

Gegeben sei die lineare Abbildung

$$\varphi = \varphi_A: \quad \mathbb{R}^4 \to \mathbb{R}^3, \qquad x \mapsto A \cdot x \quad \text{mit} \quad A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & 1 \\ 2 & 2 & -4 & 0 \end{pmatrix}.$$

- (a) Geben Sie für $x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ den Bildvektor $\varphi(x) \in \mathbb{R}^3$ explizit an. (1 Punkt)
- (b) Bestimmen Sie eine Basis und die Dimension von $Kern(\varphi)$. (3 Punkte)
- (c) Bestimmen Sie eine Basis und die Dimension von $Bild(\varphi)$. (2 Punkte)

Aufgabe 5 (6 Punkte)

Es sei K ein Körper und V ein endlich-dimensionaler K-Vektorraum. Ferner sei $\phi: V \to V$ eine lineare Abbildung.

- (a) Beweisen Sie: Ist $\phi \circ \phi = 0$ (die Nullabbildung), so gilt $\dim(\operatorname{Kern}(\phi)) \ge \frac{1}{2}\dim(V)$. (3 Punkte)
- (b) Gilt auch die Umkehrung von (a)? Geben Sie einen Beweis oder ein Gegenbeispiel an. (3 Punkte)