I will define metaplectic in a way similar to spinor group.

Consider the vector space $V \oplus V^*$ with canonical symplectic form < , >.

Let $\hat{a}=\hat{a}_{\mathbf{X}}$ be a linear operator which is canonically assigned to the vector \mathbf{R} , such that

$$[\hat{a}_{\mathbf{X}}, \hat{a}_{\mathbf{Y}}] = \langle \mathbf{x}, \mathbf{Y} \rangle . \tag{1}$$

We consider transformations on the space of functions on V such that for an arbitrary $\mathbf{X} \in V \oplus V^*$,

$$S^{-1}a_{\mathbf{X}}S = a_{F(\mathbf{X})} \tag{2}$$

One can see that for an arbitrary vectors $\mathbf{X},\mathbf{Y}\in V\oplus V^*$,

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \langle F(\mathbf{X}), F(\mathbf{Y}) \rangle$$
.

Thus we define the group of transformations of space of the functions on V, metaplectic group, and its epimorphsim on symplectic group.

Now instead V consider the space C^n , and assign to every vector ${\bf X}$, the matrix $M_{\bf X}=X^m\gamma_m$.

We have instead equation (1) the following relation:

$$[M_{\mathbf{X}}, M_{\mathbf{Y}}]_{+} = 2 < \mathbf{x}, \mathbf{Y} > . \tag{1a}$$

where $[\,\,,\,\,]_+$ is the anticommutator, and $<\,,\,>$ now is the scalar product.

Now instead equation (2) we come to consider transformations O on the space matrices such that for an arbitrary $\mathbf{X} \in C^n$

$$O^{-1}M_{\mathbf{X}}O = M_{F(\mathbf{X})} \tag{2a}$$

One can see that for an arbitrary vectors \mathbf{X}, \mathbf{Y} ,

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \langle F(\mathbf{X}), F(\mathbf{Y}) \rangle$$
.

Thus we define the group ofpinor transformations and its epimorphsim on orthogonal group.

THis I already know