Chapitre 3 : Le deuxième principe de la thermodynamique

3.1. Introduction

L'étude du 1^{er} principe a permis de définir les deux fonctions thermodynamiques U et H : $\Delta U = W + Q$ et (H = U + PV $\Rightarrow \Delta H = \Delta U + RT.\Delta n$) Selon le 1^{er} principe l'énergie n'est ni crée ni détruite lors d'une transformation.

Le 1^{er} principe n'indique pas les conditions et le sens du transfert d'énergie, ni si la transformation qui provoque les échanges se fait réellement ou non. En effet selon le 1^{er} principe :

- ♣ Quand on met en contact thermique un système 1 pris à T₁ avec un système 2 pris à T₂ tel que T1 < T2, le transfert de chaleur se fait toujours du système 2 (chaud) qui refroidit vers le système 1 (froid) qui se réchauffe.
- ♣ Quand on verse de l'acide chlorhydrique (H₃O⁺, Cl⁻) sur du zinc en poudre, on observe spontanément un dégagement d'hydrogène H₂ et formation de chlorure de zinc ZnCl₂ selon la réaction :

$$Zn + 2(H_3O^+,Cl^-) \rightarrow ZnCl_2 + 2H_2O \Delta H^\circ$$

♣Par contre quand on verse de l'eau sur le chlorure de zinc, il ne se passe rien

$$ZnCl_2 + 2H_2O \nearrow Zn + 2(H_3O^+,Cl^-)$$
 (2)

Ainsi certaines transformations se font spontanément dans un sens bien défini. La question qui se pose est : qu'est-ce qui détermine la direction d'une évolution spontanée ? ce n'est pas l'énergie totale du système (car elle se conserve d'après le 1^{er} principe). Pour trouver une réponse, il faut faire appel au second principe de la thermodynamique.

3.2. Enoncé du 2ème principe de la thermodynamique : fonction entropie (S)

Il existe plusieurs formes d'énoncés apparemment différents mais en réalité toute contradiction avec l'un est une contradiction avec tous les autres.

- Selon CLAUSIUS, la chaleur ne passe pas d'elle-même d'une basse température à une haute température.
- Selon KELVIN, de la chaleur prise à une température T ne peut pas être entièrement convertie en travail.

- Enoncé mathématique

L'entropie est une fonction qui traduit le désordre suite à une transformation. Elle se définie de la façon suivante : au cours d'une transformation spontanée, l'entropie de l'univers ne peut que croître. Sa variation est nulle pour une transformation réversible et positive pour une transformation irréversible.

Si Q est la quantité de chaleur transférée à un système qui évolue d'un état 1 à un état 2, il existe une fonction d'état S appelée entropie définie par :

-
$$\Delta S = S_2 - S_1 = Scrée + \int_{1}^{2} \left(\frac{\delta Q}{T} \right)$$

- Pour une évolution réversible : $S_{crée} = 0$ et $\Delta S = S_2 S_1 = \int_{1}^{2} \left(\frac{\delta Q}{T} \right)$
- Pour une évolution irréversible $S_{crée} > 0$ et $\Delta S = S2-S1 > \int_{1}^{2} \left(\frac{\delta Q}{T} \right)$

L'entropie est caractéristique d'une transformation réversible. Pour une transformation irréversible effectuée à température T constante on aura :

$$dS > \frac{\delta Q_{irr\acute{e}v}}{T}$$
 et $\Delta S > \frac{Q_{irr\acute{e}v}}{T}$ car à partir de l'inégalité : $Q_{r\acute{e}v} > Q_{irr\acute{e}v}$ si on divise les deux

membres par T on aura :
$$\frac{Q_{r\acute{e}v}}{T} = \Delta S > \frac{Q_{irr\acute{e}v}}{T}$$

S est une fonction d'état : S est une fonction extensive, S est additive comme U et H Quelque soit la transformation réversible ou irréversible :

$$\Delta S = (Sf - Si)_{r\acute{e}v} = (Sf - Si)_{irr\acute{e}v} = \int_{i}^{f} \frac{\delta Q_{r\acute{e}v}}{T}$$

3.3. Interprétation physique de l'entropie

Si on appelle Ω le nombre d'états microscopiques correspondant à un état macroscopique donné d'un système, la thermodynamique statistique définit l'entropie S du système dans cet état par :

$$S = K \ln \Omega$$
 où K est la constante de Boltzmann

Cela veut dire que le système passe d'un état 1 à un état 2 avec $\Omega_1 > \Omega_2$ alors $S_1 > S_2$.

L'entropie étant liée au nombre d'états microscopiques (nombre de positions) est considérée comme mesure du désordre moléculaire.

S augmente avec l'agitation thermique (T augmente alors S augmente). Tous les processus naturels correspondent à une dispersion moléculaire doc à une augmentation d'entropie.

La dissolution de NaCl entraine une augmentation d'entropie (NaCl (s) est plus ordonné que NaCl en solution).

3.4. Applications du deuxième principe : variation d'entropie pour quelques transformations

3.4.1. Application au système gazeux sans transformation physico-chimiques

a. Transformation isotherme réversible

Soit la détente isotherme réversible d'un gaz parfait.

$$dS = \frac{\delta Q}{T}$$
 or $dU = \delta W + \delta Q$

La transformation étant isotherme dU = 0 ce qui donne $\delta Q = -\delta W = Pext dV = PgazdV$ $\delta Q = \frac{nRT}{V} dV \text{ en remplaçant dans dS on aura :}$

$$dS = nR\frac{dV}{V}$$
 L'intégration donne : $\Delta S = \int_{V_1}^{V_2} nR\frac{dV}{V} = nR \ln \frac{V_2}{V_1} > 0$

Or PV = cte

$$\Delta S_{syst} = \frac{Q_{r\acute{e}ver}}{T} = nR \ln \frac{V_2}{V_1} = nR \ln \frac{P_1}{P_2}$$

La quantité de chaleur fournie par le système correspond à la quantité de chaleur reçue par le milieu extérieur : $\Delta S_{syst} = -\Delta S_{ext}$ d'où $\Delta S_{univers} = 0$: il y'a conservation d'entropie de l'univers au cours d'une transformation réversible.

b. Transformation isotherme irréversible

Soit la détente isotherme irréversible d'un gaz parfait. La variation d'entropie du système irréversible est identique à la variation d'un système réversible ayant le même état final et le même état final.

$$\Delta S_{Systeme} = \int_{V_1}^{V_2} nR \frac{dV}{V} = nR \ln \frac{V_2}{V_1} > 0$$

$$dS = \frac{\delta Q}{T}$$
 or $dU = \delta W_{irré} + \delta Q_{irré}$

La transformation étant isotherme dU = 0 ce qui donne $\delta Q = -\delta W = Pext dV$

 $\delta Q_{irr\acute{e}v} = P_{ext}(V_2 - V_1)$ en remplaçant dans dS on aura :

L'intégration donne :
$$\Delta S_{ext} = \frac{-Q_{irrév}}{T} = -\frac{P_{ext}(V_2 - V_1)}{T}$$

$$\Delta S_{univers} = \Delta S_{syst} + \Delta S_{ext} = \Delta S_{ext} = \frac{Q_{réver} - Q_{irrév}}{T} = nr \ln \frac{V_2}{V} - \frac{P_{ext}(V_2 - V_1)}{T} > 0$$

La variation d'entropie pour un système irréversible est positive : au cours d'une transformation irréversible il y'a création d'entropie.

c. Transformation isobare (respectivement isochore)

$$\begin{aligned} \mathbf{P} &= \mathbf{Cte} & \text{(respectivement } \mathbf{V} &= \mathbf{Cte}) \\ \text{Soit } \mathrm{dS} &= \mathrm{nC_P} \frac{dT}{T} & \text{(respectivement } \mathrm{dS} &= \mathrm{nC_V} \frac{dT}{T}) \\ \Delta \mathbf{S} &= \int\limits_{i}^{f} \mathrm{nC_P} \frac{\mathrm{dT}}{T} & \text{(respectivement } \Delta \mathbf{S} &= \int\limits_{i}^{f} \mathrm{nC_V} \frac{\mathrm{dT}}{T} &) \\ \Delta \mathbf{S} &= \int\limits_{T_i}^{T_f} \mathrm{nC_P} \frac{\mathrm{dT}}{T} & \text{(respectivement } \Delta \mathbf{S} &= \int\limits_{T_i}^{T_f} \mathrm{nC_V} \frac{\mathrm{dT}}{T} &) \\ \Delta \mathbf{S} &= \mathbf{S}_{Tf} - \mathbf{S}_{Ti} &= \int\limits_{T_i}^{T_f} \mathrm{nC_P} \frac{\mathrm{dT}}{T} & \text{(respective ment } \Delta \mathbf{S} &= \mathbf{S}_{Tf} - \mathbf{S}_{Ti} &= \int\limits_{T_i}^{T_f} \mathrm{nC_V} \frac{\mathrm{dT}}{T} &) \end{aligned}$$

3.4.2. Variation d'entropie pour un changement d'état d'un corps pur

Il s'agit d'une transformation qui a lieu à P constante à T déterminée ($T\phi_{1}\rightarrow\phi_{2}$) La chaleur mise en jeu est la chaleur de changement d'état $\Delta H\phi_{1}\rightarrow\phi_{2}$.

$$\Delta S = \frac{\Delta H_{\varphi 1} \to \varphi 2}{T_{\varphi 1} \to \varphi 2}$$

3.4.3. Variation d'entropie d'un système isolé et d'un système non isolé

Pour un système isolé ou il n'ya pas d'échange thermique avec le milieu extérieur Q_{ext} = 0 d'où ΔS_{ext} = 0.

 $\Delta S_{univers} = \Delta S_{syst} + \Delta S_{ext} \ge 0$ ce qui donne $\Delta S_{univers} = \Delta S_{syst} \ge 0$

- ♣ ΔSsyst = 0 si la réaction est réversible (éta d'équilibre)
- ♣ ΔSsyst > 0 si la réaction est irréversible (spontanée)

Pour un système non isolé $\Delta S_{univers} = \Delta S_{syst} + \Delta S_{ext} \geq 0$ implique $\Delta S_{syst} \geq -\Delta S_{ext}$. La condition de spontanéité est satisfaite même si $\Delta S_{syst} < 0$ car la diminution de l'entropie du système est compensée par une augmentation de l'entropie du milieu extérieur.

3.5. Troisième principe (ou principe de Nernst) de la thermodynamique

- ♣ Enoncé : l'entropie d'un cristal parfait de chaque élément et de chaque corps est nulle au zéro absolue (0K).
- Conséquence : au zéro absolu, il règne un ordre parfait.

Contrairement à U et H, le troisième principe permet de déterminer S ; il est alors possible d'attribuer une entropie absolue à tous les corps purs à n'importe quelle température T.

3.6. Variation d'entropie au cours de réactions chimiques

3.6.1. Entropie d'une réaction

L'entropie étant une fonction d'état, il est possible de déterminer ΔS qui accompagne toute réaction chimique.

$$aA + bB \rightarrow cC + dD$$

Par utilisation de la loi de HESS:
$$\Delta S_T^0 = (c S_C^0 + d S_D^0) - (a S_A^0 + b S_B^0)$$
$$\Delta S_T^0 = \sum_{produits} (n S_T^0) - \sum_{réactifs} (n S_T^0)$$

L'entropie absolue standard S^0_{HCl} est différente de l'entropie standard de formation $\Delta S^0_f(HCl)$.Exemple : Sachant que :

$$S^{\circ}_{HCl}=186,\!43.\,k^{-1}mol^{-1}, S^{\circ}_{H_2}=130,\!16J.\,k^{-1}mol^{-1}et\,\,S^{-}_{Cl_2}=222,\!376J.\,k^{-1}.\,mol^{-1},\,calculer\,\,\Delta S^{\circ}_{298k}\,\,de\,\,la\,\,r\'eaction\,\,de\,\,formation\,\,de\,\,HCl$$

♣ Par utilisation de la méthode des additions ou des cycles

3.6.2. Influence de la température sur la variation d'entropie

On considère la réaction : aA + bB \rightarrow cC + dD qui se déroule à T_0 avec $\Delta S_{T_0}^0$; la même réaction se déroulant à T on voudrait déterminer ΔS_T^0 en fonction de T, ($T \neq T_0$).

A partir du cycle ci-dessus on aura : $\Delta S_{T_0}^0 = \Delta S_1 + \Delta S_T^0 + \Delta S_2$

Si on considère qu'il n'intervient aucun changement d'état entre T₀ et T, on peut écrire :

ightharpoonup Pour P = Cte :

$$\Delta S_{1} = \int_{T_{0}}^{T} (aC_{PA} + bC_{PB}) \cdot \frac{dT}{T} \quad \text{et} \quad \Delta S_{2} = -\int_{T_{0}}^{T} (cC_{PC} + dC_{PD}) \frac{dT}{T}.$$

$$\Delta S_{T}^{0} = \int_{T_{0}}^{T} [(cC_{PC} + dC_{PD}) - (aC_{PA + b}C_{PB})] \frac{dT}{T}$$

$$\Delta S_{T}^{0} = \int_{T_{0}}^{T} (\Delta nC_{P}) \frac{dT}{T}$$

 \blacksquare Pour V = Cte :

$$\Delta S_{1} = \int_{T_{0}}^{T} (aC_{VA} + bC_{VB}) \cdot \frac{dT}{T} \quad \text{et} \quad \Delta S_{2} = -\int_{T_{0}}^{T} (cC_{VC} + dC_{VD}) \frac{dT}{T}.$$

$$\Delta S_{T}^{0} = \int_{T_{0}}^{T} [(cC_{VC} + dC_{VD}) - (aC_{VA + b}C_{VB})] \frac{dT}{T}$$

$$\Delta S_{T}^{0} = \int_{T_{0}}^{T} (\Delta nC_{V}) \frac{dT}{T}$$

S'il intervient au moins un changement d'état on reconstruit le cycle en prenant en compte ce ou ces changements d'état.

3.7. Autres fonctions thermodynamiques

3.7.1. Définition

Afin de trouver un critère propre au système c'est-à-dire lié aux variables d'état du système, on définit en fonction des couples de variables deux fonctions d'état :

- Energie libre (F) ou énergie utilisable ou fonction de Helmotz pour le couple (V, T) définie par : F = U TS
- \blacksquare Enthalpie libre G ou fonction de Gibbs pour le couple (P, T) : G = H TS.

Ces définitions permettent d'écrire les expressions différentielles de F et G.

- Pour (V, T):
$$dF = dU - d(TS) = \delta Q + \delta W - d(TS)$$

 $dF = \delta Q - PdV - TdS - SdT$

Pour (P, T):
$$dG = dH - d(TS) = dU + d(PV) - d(TS)$$

$$dG = \delta O - PdV + PdV + VdP - TdS - SdT$$

- Si les transformations sont réversibles, $\delta Q = TdS$ et :

$$dF = -PdV - SdT \quad \text{et} \quad dG = VdP - SdT$$

$$\left(\frac{\partial F}{\partial T}\right)_{V} = \left(\frac{\partial G}{\partial T}\right)_{P} = -S$$

$$\left(\frac{\partial F}{\partial V}\right)_{T} = -P \quad et \quad \left(\frac{\partial G}{\partial P}\right)_{T} = V$$

- Pour une transformation finie effectuée à T = Cte on a :

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta F = \Delta U - T \Delta S$$

Remarque : par soustraction membre à membre on tire : $\Delta G - \Delta F = \Delta H - \Delta U = RT$. Δn

$$\Delta G - \Delta F = RT. \Delta n$$

3.7.2. Enthalpie libre et critère d'évolution :

Comme dans le cas de H et U, nous utiliserons surtout la fonction G. Selon le 2^{ème} principe, les transformations permises sont telles que :

Processus réversibles

Processus irréversibles ou spontanés

$$\mathrm{dS} = \frac{\delta Q_{r\acute{e}v}}{T}$$

$$\mathrm{TdS} = \delta Q_{r\acute{e}v}$$

$$\mathrm{TdS} > \delta Q_{irr\acute{e}v}$$

$$\mathrm{TdS} > \delta Q_{irr\acute{e}v}$$

Si on a
$$T = Cte$$
 et $P = Cte$ (respect $T = Cte$, $V = Cte$)

$$TdS = dQ_P$$

$$dQ_P - TdS = 0$$

$$dQ_P - TdS < 0$$

$$dG = 0$$

$$dG < 0$$

Pour une transformation finie

$$Q_P - T\Delta S = 0$$

$$Q_P - T\Delta S < 0$$

$$\Delta H = T\Delta S < 0$$

$$\Delta G = 0$$

$$\Delta G < 0$$

A T et P constante $\Delta G = 0$ (respectivement à T et V cte $\Delta F = 0$): critère d'équilibre A T et P constante $\Delta G < 0$ (respectivement à T et V cte $\Delta F < 0$): critère de spontanéité

Notons que pour une réaction chimique $\Delta G < 0$ signifie qu'elle est spontanée. La réaction est thermodynamiquement possible. Cela n'est pourtant pas suffisant pour conclure à l'accomplissement de la réaction chimique. En effet une réaction chimique est le résultat d'un mécanisme c'est-à-dire d'une succession d'étapes plus ou moins complexes astreintes à une certaine vitesse. La vitesse d'une étape peut être telle que cette étape rende la réaction impossible à notre échelle.

Pour une réaction chimique, deux critères doivent être pris en compte pour son accomplissement :

- critère thermodynamique $\Delta G < 0$
- critère cinétique

 $\Delta G > 0$ est caractéristique d'une réaction non spontanée (ce qui signifie en somme impossible dans les conditions ordinaires) ; c'est la réaction inverse qui se produit spontanément.

 $\Delta G < 0$ étant vérifiée pour une réaction chimique, cette réaction est thermodynamiquement possible. Trois cas peuvent se présenter :

- cinétique rapide ⇒ réaction immédiate
- cinétique lente \Rightarrow l'équilibre es atteint après un certain temps (on réduit le temps par utilisation d'un catalyseur). Le catalyseur n'est d'aucune utilité dès que $\Delta G > 0$.
- Cinétique nulle la thermodynamique dit que la réaction est possible, mais elle ne se produit pas.

3.7.3. Calcul de ΔG accompagnant une réaction chimique

L'enthalpie libre (G = H – TS) étant une fonction d'état on aura : $\Delta G = G_f - G_i$.

Tout comme U et H, on n'a pas d'origine pour la fonction G. On définit comme dans le cas de H, une enthalpie libre standard de formation à T et P_0 pour les différents composés. Ces grandeurs ΔG_f^0 sont rassemblées dans des tables à T = 298 K.

 ΔG_f^0 des éléments et des corps purs simples sont nulles. Il est possible de calculer ΔG_T^0 de toute réaction réalisée à T et P_0 par :

- Application de la loi de HESS:

$$\Delta G_T^0 = \sum_{\text{Produits}} \Delta G_f^0 - \sum_{r\'eactifss} \Delta G_f^0$$

- Utilisation de la méthode des additions ou des cycles

- Utilisation de la relation : $\Delta G_T^0 = \Delta H_T^0 - T \Delta S_T^0$

3.7.4. Variation de l'enthalpie libre molaire d'un corps pur avec T et P

L'expression différentielle de G est : dG = VdP - SdT

$$T = Cte \implies dG = VdP$$

 $P = Cte \implies dG = - SdT$

Considérons n moles de gaz parfait (PV =RT) qui subit une transformation réversible isotherme (T = Cte) entre Pi et P_f .

$$\begin{aligned} \mathrm{d} \mathrm{G} &= \mathrm{Vd} \mathrm{P} \Rightarrow \Delta \mathrm{G} = \mathrm{G_f} - \mathrm{G_i} = \int\limits_{P_i}^{P_f} V dP \\ \Delta \mathrm{G} &= \mathrm{G_f} - \mathrm{G_i} = \int\limits_{P_i}^{P_f} nRT \, \frac{dP}{P} \Rightarrow \Delta \mathrm{G} = \mathrm{G_f} - \mathrm{G_i} = \mathrm{nRT} \mathrm{ln} \, \frac{P_f}{P_i} \\ \mathrm{si} \quad \mathrm{G_f} &= G_T^P \quad \mathrm{et} \quad \mathrm{G_i} = G_T^{P_0} = G_T^0 \\ \mathrm{G_f} - \mathrm{G_i} &= G_T^P - G_T^{P_0} = \mathrm{nRT} \mathrm{ln} \, \frac{P}{P_0} \\ G_T^P &= G_T^{P_0} + \mathrm{nRT} \mathrm{ln} \, \frac{P}{P_0} = G_T^0 + \mathrm{nRT} \mathrm{ln} \, \frac{P}{P_0} \end{aligned}$$

Si on exprime la pression en atmosphères et si on admet $P_0 = 1$ atm on aura :

$$G_T^P = G_T^0 + \text{nRT ln } P$$

 $G_T^{\,P}\,$: enthalpie libre de n moles de gaz parfait à la température T sous la pression P

 G_T° : enthalpie libre de n moles de gaz parfait à la température T dans les condition standard.

3.7.5. Potentiel chimique

Le potentiel chimique est par définition la dérivée partielle de G par rapport au nombre de moles ni du constituant Ai à P, T et nj constituants. Le potentiel chimique noté µi de l'espèce i est donc son enthalpie libre molaire partielle

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{P, T, nj = Cte} j \neq i.$$

$$\mu_{i} \Rightarrow G = \sum_{i} n_{i} \mu_{i}$$

♣ Pour un système thermodynamique, la variation du potentiel chimique avec la pression est donnée par :

$$\mu_i(P,T) = \mu_i^{\circ}(P,T) + RT \ln Pi$$

lacktriangleq De façon générale pour un système thermodynamique le potentiel chimique est donné par : $\mu_i(P,T) = \mu_i^*(P,T) + RT \ln a_i$

avec µ*: potentiel chimique de référence du constituant i

ai : l'activité du constituant i

Exercice d'application 3.1

- **1.** Calculer $\Delta S^{\circ}298$ qui accompagne la réaction : ½ $H_2 + \frac{1}{2} Cl_2$ → HCl connaissant $S_{HCl}^{\circ} = 186,43 \text{ J.K}^{-1}.mol^{-}$; $S_{H2}^{\circ} = 130,41 \text{ J.K}^{-1}.mol^{-1}$; $S_{Cl2}^{\circ} = 222,37 \text{ J.K}^{-1}.mol^{-1}$;
- 2. Calculer l'entropie standard de la réaction de synthèse de :
 - a- L'eau liquide à 25 °C
 - b- L'eau liquide à 100 °C
 - c- L'eau vapeur à 100 °C

On donne: $S_{H2}^{\circ} = 130,41 \text{ J.K}^{-1}.mol^{-1}$; $S_{O2}^{\circ} = 205,2 \text{ J.K}^{-1}.mol^{-1}$; $S_{H2O}^{\circ} = 70,0 \text{ J.K}^{-1}.mol^{-1}$; C_{P} , H2O(l) = 75,3; C_{P} , $H2O(g) = 30,01 C_{P}$, O2(g) = 28,26; C_{P} , $H2(g) = 29,97\text{J.K}^{-1}.mol^{-1}$

3. Calculer la variation d'enthalpie libre quand 1 mole de gaz parfait passe de $P_0 = 1$ atm à P = 2atm.