Test Statistics

This document provides definitions and some results for tests that detect the presence of a condition (a test result is either "positive" or "negative", which may be "true" or "false").

Definition 1. A **true positive** test result is one that detects the condition when the condition is present.

Definition 2. A **true negative** test result is one that does not detect the condition when the condition is absent.

Definition 3. A **false positive** test result is one that detects the condition when the condition is absent.

Definition 4. A **false negative** test result is one that does not detect the condition when the condition is present.

		condition	
		present	absent
Test	positive	true positive	false positive
	negative	false negative	true negative

Let TP denote the number of true positives, TN the number of true negatives, FP the number of false positives, and FN the number of false negatives.

Definition 5. Sensitivity measures the ability of a test to detect the condition when the condition is present. Thus, Sensitivity = TP/(TP+FN).

Definition 6. Specificity measures the ability of a test to correctly exclude the condition (not detect the condition) when the condition is absent. Thus, Specificity = TN/(TN+FP).

Definition 7. Predictive value positive is the proportion of positives that correspond to the presence of the condition. Thus, Predictive value positive = TP/(TP+FP).

Definition 8. Predictive value negative is the proportion of negatives that correspond to the absence of the condition. Thus, Predictive value negative = TN/(TN+FN).

		Condition	
		present	Absent
test	positive	True positive	False positive
	negative	False negative	True negative

Sensitivity

		condition	
		Present	absent
st	Positive	True positive	false positive
test	negative	False negative	true negative

Specificity

		Condition	
		present	Absent
test	positive	True positive	False positive
	negative	False negative	True negative

Predictive value positive

		condition	
		Present	absent
st	positive	True positive	false positive
test	negative	False negative	true negative

Predictive value negative

Definition 9. A parallel combination of tests is a test that is positive if at least one of the combining tests is positive; otherwise it is negative (alternative definition: a parallel combination of tests is a test that is negative only if all the combining tests are negative; otherwise it is positive).

Definition 10. A series combination of tests is a test that is negative if at least one of the combining tests is negative; otherwise it is positive (alternative definition: a series combination of tests is a test that is positive only if all the combining tests are positive; otherwise it is negative).

Definition 10. Two (or more) tests are **independent** if the result of any of the tests does not depend on the result of the other test(s).

Result 1. The sensitivity (SEN) and specificity (SPE) of a parallel combination of N independent tests are

$$SEN = 1 - (1 - SEN_1) \cdot (1 - SEN_2) \cdot \cdot \cdot (1 - SEN_N),$$

 $SPE = SPE_1 \cdot SPE_2 \cdot \cdot \cdot SPE_N,$

respectively, where SEN_i is the sensitivity and SPE_i the specificity of the i-th combining test.

Comment: It is not difficult to show that $SEN \ge SEN_i$ and $SPE \le SPE_i$ for i = 1,...,N. Thus, a parallel combination of tests increases the sensitivity and decreases the specificity.

Result 2. The sensitivity (SEN) and specificity (SPE) of a series combination of N independent tests are

$$SEN = SEN_1 \cdot SEN_2 \cdots SEN_N,$$

$$SPE = 1 - (1 - SPE_1) \cdot (1 - SPE_2) \cdots (1 - SPE_N),$$

respectively, where SEN_i is the sensitivity and SPE_i the specificity of the i-th combining test.

Comment: It is not difficult to show that $SEN \leq SEN_i$ and $SPE \geq SPE_i$ for i = 1,...,N. Thus, a series combination of tests decreases the sensitivity and increases the specificity.