Partie n°1: points fixes dans \mathbb{R}

1. Point fixe d'une application continue.

On définit l'application g par g(x) = f(x) - x pour $x \in [a, b]$. Ainsi $g(a) = f(a) - a \le 0$ alors que $g(b) = f(b) - b \ge 0$, une simple application du théorème des valeurs intermédiaires à l'application continue g permet de conclure. il existe $c \in [a, b]$ tel que g(c) = 0 ie f(c) = c.

Il n'y a pas unicité en général (prendre par exemple f(x) = x).

2. Point fixe d'une application croissante.

Soit f une application croissante de [0, 1] dans lui-même.

On pose $A = \{x \in [0,1]/f(x) \ge x\}.$

- (a) $A = \{x \in [0,1]/f(x) \ge x\}$ est non vide $(0 \in A)$ et majoré (par 1). D'où l'existence de $a = \sup A \in [0,1]$
- (b) Si a=0 c'est fini, sinon on prend une suite x_n strictement croissante dans A et qui converge vers a (c'est possible par définition de a).

On a alors $f(x_n) \ge x_n$ et comme $a \ge x_n$, $f(a) \ge f(x_n)$, on garde $f(a) \ge x_n$. On peut alors faire un passage à la limite $x_n \to a$ lorsque $n \to +\infty$, on obtient $f(a) \ge a$.

- (c) D'aprés $f(a) \ge a$ et la croissance de f, on obtient $f(f(a)) \ge f(a)$. Donc $f(a) \in A$ et par définition de a, on a forcement $f(a) \le a$.
 - Tout est fait f(a) = a.
- (d) Non. Même exemple que 1) (et *Id* est même strictement croissante).

Partie n°2: Théorèmes de points fixes avec différentes hypothèses

1. Théorème de point fixe de Banach-Picard

(a) Avec les notations classiques, on pose $u_n = u_n^+ - u_n^-$.

Dire que $\sum u_n$ est absolument convergente signifie que $\sum u_n$ est une série à termes positifs convergente. Comme $0 \le u_n^+ \le |u_n|$ et $0 \le u_n^- \le |u_n|$, ces deux séries sont aussi convergentes et par sommes la série de terme général u_n est aussi convergente. Coordonnées par coordonnées, ce résultat s'étend au cas des séries à valeurs dans un espace de dimension **finie**.

NB : Ce qui suit sera valable dans tout espace où l'absolue convergence des séries entraine la convergence (même en dimension quelconque).

(b) $||x_{n+1} - x_n|| = ||T(x_n) - T(x_{n-1})|| \le k||x_n - x_{n-1}|| \le \cdots \le k^n ||x_1 - x_0||$ de proche en proche (ou par une récurrence évidente).

Ainsi la série $\sum x_{n+1} - x_n$ converge absolument par principe de comparaison des séries à termes positifs (ici la série géométrique). Cela entraine la convergence de la série elle-même.

- (c) Par comparaison suite-série, on en conclue que la suite u_n converge vers $\ell \in F$.
- (d) Passant à la limite dans $x_{n+1} = f(x_n)$ on trouve (par continuité de f lipschitzienne), $\ell = f(\ell)$ ce qui contraint ℓ à être fixe par f.
- (e) S'il y avait un autre point fixe λ , on aurait :

$$||\ell - \lambda|| = ||f(\ell) - f(\lambda)|| \leqslant k||\ell - \lambda||$$

ce qui est absurde si $\lambda \neq \ell$. Ainsi, il y a unicité du point fixe. Le théorème est prouvé.

(f) $a-l = a - f(a) + f(a) - f(l) \operatorname{car} l = f(l)$.

Par l'inégalité triangulaire , on obtient $||a-l|| \leq ||a-f(a)|| + k||a-l||$.

On regroupe : $||a - l|| \le \frac{1}{1 - k} ||a - f(a)||$.

Par récurrence en utilisant le fait que $||x_{n+1} - l|| = ||f(x_n) - f(l)|| \le k||x_n - l||$, on obtient le résultat annoncé.

On vient de démontrer le théorème de point fixe sur un fermé en dimension finie (Picard) :

Dans (E, ||.||) un espace de dimension finie, si F est une partie fermée non vide de E et $f: F \to F$ une application contractante alors f admet un unique point fixe dans F et pour tout $a \in F$, la suite des itérés $(f^n(a))_{n\in\mathbb{N}}$ converge vers ce point fixe

2. Application directe

Soit (E, ||.||) un espace de dimension finie, F est une partie fermée non vide de E et $f: F \to F$. f^p soit une application contractante (rapport $k \in [0, 1[)$, donc admet un unique point fixe ℓ . Donc $f^p(\ell) = \ell$, en composant par f, $f^p(f(\ell)) = f(\ell)$, et par unicité du point fixe $f(\ell) = \ell$. Il y a bien sûr unicité de ce point fixe pour f (puisque f^p admet un seul point fixe).

3. Théorème de point fixe sur un compact

(a) Déjà g est continue sur le compact K, puis g est minorée par 0 donc elle atteint sa borne inférieure. Si $\alpha = \min g \neq 0$, il existerait $x \in K$ tel que $g(x) = \alpha$, mézalors $g(f(x)) = ||f(f(x)) - f(x)|| < ||f(x) - x|| = g(x) = \alpha$, c'est absurde.

Donc min g = 0, ainsi il existe $\ell \in K$ tel que $g(\ell) = 0$ soit $f(\ell) = \ell$

Il y a unicité du point fixe en raison de l'inégalité stricte : ||f(x) - f(y)|| < ||x - y|| si $x \neq y$.

(b) L'application de K^2 dans \mathbb{R} qui à (x,y) associe ||x-y|| est continue.

 K_{ϵ} est l'image réciproque du fermé $[\epsilon, +\infty[$ par cette application continue, c'est donc un fermé du compact K, ainsi K_{ϵ} est un compact. Remarque : si $(x,y) \in K_{\epsilon}$ on a $x \neq y$.

L'application bien définie sur K_{ϵ} par $(x,y) \to \frac{||f(x)-f(y)||}{||x-y||}$ est continue sur un compact et majorée par 1. Elle atteint sa borne supérieur notée $k \geq 0$. Ainsi il existe (x,y) dans K_{ϵ} avec $k = \frac{||f(x)-f(y)||}{||x-y||} < 1$, soit $k \in [0,1[$ et pour tout $(x,y) \in K_{\epsilon} \quad ||f(x)-f(y)|| < k||x-y||$

(c) Si on avait $(\forall N \in \mathbb{N})$ $(x_N, \ell) \in K_{\epsilon}$, alors on aurait $||l - x_{N+1}|| = ||f(l) - f(x_N)|| \le k||l - x_N||$ d'où $||l - x_N|| \le k^N ||l - x_0||$, la suite $||l - x_N||$ converge vers 0, ce qui est absurde si $(x_N, \ell) \in K_{\epsilon}$. Comme la suite $(||l - x_n||)_{n \in \mathbb{N}}$ est décroissante et d'après ce que l'on vient de prouver :

$$(\forall \epsilon > 0) \quad (\exists N \in \mathbb{N}) \quad ||l - x_N|| < \epsilon$$
$$(\forall \epsilon > 0) \quad (\exists N \in \mathbb{N}) \quad (\forall n \geqslant N) \quad ||l - x_n|| < \epsilon$$

C'est exactement la définition d'une suite convergente vers ℓ .

On vient de démontrer le théorème de point fixe sur un compact :

Dans (E, ||.||) un espace vectoriel normé, si K est un compact non vide de E et $f: K \to K$ une contraction stricte alors f admet un unique point fixe dans K et pour tout $a \in K$, la suite des itérés $(f^n(a))_{n \in \mathbb{N}}$ converge vers ce point fixe

4. Application directe

- (a) Comme C est convexe si $a \in C$ et $x \in C$, on a déjà $f(x) \in C$ et $f_n(x)$ qui est un barycentre de f(x) et a, est aussi dans C. De plus si $y \in C$, $f_n(x) f_n(y) = (1 \frac{1}{n})(f(x) f(y))$. Ainsi, $||f_n(x) f_n(y)|| \le (1 \frac{1}{n})||x y||$, c'est le résultat voulu.
- (b) Les hypothèses du théorème de point fixe sur un compact sont vérifiées pour f_n (puisque $||f_n(x) f_n(y)|| \le (1 \frac{1}{n})||x y|| < ||x y|| \text{ si } x \ne y$), donc f_n admet un point fixe unique notée x_n dans C.
- (c) Comme C est compact, il existe une suite extraite convergente de la suite (x_n) . On note $x \in C$ tel que $x_{\varphi(n)}$ converge vers x. On a $x_{\varphi(n)} = f_{\varphi(n)}(x_{\varphi(n)}) = (1 \frac{1}{\varphi(n)})f(x_{\varphi(n)}) + \frac{1}{\varphi(n)}a$. On peut passer à la limite lorsque $n \to +\infty$ car f est continue donc $f(x_{\varphi(n)})$ converge vers f(x) et $\varphi(n) \to +\infty$. Il reste : x = f(x), ce point fixe n'est pas forcement unique (f = Id).

Partie n°3: Exemples et contre-exemples autour des théorèmes de points fixes

1. Sur la nécessité d'avoir une contraction

(a) $g'(t) = 1 + \frac{1}{1+t^2} \in]0,1[$ pour tout réel t.

Si x et y sont deux réels quelconques, l'égalité des accroissements finis numériques (applicable car g est bien continue sur [x, y] et dérivable sur [x, y] prouve l'existence d'un réel c compris entre x et y tel que g(y) - g(x) = g'(c)(y - x) d'où l'inégalité demandée.

(b) s'il existait un point fixe l pour g, on aurait $arctan l = \frac{\pi}{2}$ ce qui est impossible.

Donc g n'est pas une contraction, sinon le point théorème de point fixe de Picard s'appliquerait (\mathbb{R} est complet). Par contre, g est une contraction stricte (mais \mathbb{R} n'est pas compact).

2. un système non linéaire dans \mathbb{R}^2

On s'intéresse dans cette question au système :

$$(S) \begin{cases} 4x = \sin(x+y) \\ 3y = 3 + 2\arctan(x-y) \end{cases}$$

On munit \mathbb{R}^2 de la norme $||.||_1$ définie par $||(x,y)||_1 = |x| + |y|$ et on considère l'application $\psi : \mathbb{R}^2 \to \mathbb{R}^2$ définie par :

$$\psi(x,y) = \left(\frac{1}{4}\sin(x+y), 1 + \frac{2}{3}\arctan(x-y)\right).$$

- (a) Inégalités immédiates par l'inégalité des accroissements finis.
- (b) Soient (x_1, y_1) et (x_2, y_2) deux éléments quelconques de \mathbb{R}^2 . Il vient :

$$||\psi(x_{2}, y_{2}) - \psi(x_{1}, y_{1})|| = \frac{1}{4} |\sin(x_{2} + y_{2}) - \sin(x_{1} + y_{1})|$$

$$+ \frac{2}{3} |\arctan(x_{2} - y_{2}) - \arctan(x_{1} - y_{1})|$$

$$\leq \frac{1}{4} |(x_{2} + y_{2}) - (x_{1} + y_{1})| + \frac{2}{3} |(x_{2} - y_{2}) - (x_{1} - y_{1})|$$

$$\leq \frac{1}{4} (|x_{2} - x_{1}| - |y_{2} - y_{1}|) + \frac{2}{3} (|x_{2} - x_{1}| - |y_{2} - y_{1}|)$$

$$= \frac{11}{12} ||(x_{2}, y_{2}) - (x_{1}, y_{1})||_{1}$$

Donc ψ est une contraction sur $(\mathbb{R}^2, || ||_1)$ de rapport $\frac{11}{12}$.

- (c) Ainsi, compte tenu du théorème du point fixe de Picard, le système (S) admet une unique solution dans \mathbb{R}^2 .
- (d) Ici \mathbb{R}^2 est muni de la norme $||.||_{\infty}$ définie par $||(x,y)||_{\infty} = \max(|x|,|y|)$ qui en fait toujours un espace de dimension finie (=2).

$$\psi(\frac{1}{2}, -\frac{1}{2}) = (0, 1 + \frac{\pi}{6}) \text{ et } \psi(0, 0) = (0, 1) \text{ donc } ||\psi(\frac{1}{2}, -\frac{1}{2}) - \psi(0, 0)||_{\infty} = \frac{\pi}{6}$$
 alors que $||(\frac{1}{2}, -\frac{1}{2}) - (0, 0)||_{\infty} = \frac{1}{2}$.

Or $\frac{\pi/6}{1/2} = \frac{\pi}{3} > 1$ ce qui prouve que ψ n'est pas une contraction pour la norme $||.||_{\infty}$.

Ainsi la condition de contraction n'est pas superflue comme le prouve 1) mais n'est pas non plus nécessaire.

Remarque : cet exemple prouve aussi qu'une application peut être une contraction pour une norme et ne pas être une contraction pour une norme équivalente.

Partie n°4: Application des théorèmes de points fixes à des homéomorphismes

1. U = I + T est continue comme somme de fonctions continues (T est lipschitzienne).

$$||U(x) - U(y)|| \le ||x - y|| + ||T(x) - T(y)|| \le (1 + k)||x - y||$$

- **2.** Si U(x) = U(y) alors x y = T(y) T(x) or $||T(x) T(y)|| \le k||x y||$, ceci n'est possible que si x = y.
- **3.** Soit $y \in E$. Si x vérifie U(x) = y cela signifie x = y T(x), soit S(x) = x.

On est ramené à chercher les points fixes de S.

Or S définie par S(x) = y - T(x) est contractante car

$$||S(x) - S(z)|| = ||T(x) - T(z)|| \le k ||x - z||$$

donc d'après le théorème de Banach-Picard (E est de dimension finie.), S possède un point fixe unique donc U est surjective et même bijective.

4. On pose $U^{-1}(x) = a$ et $U^{-1}(y) = b$ donc a + T(a) = x et b + T(b) = y.

$$x-y=a-b-(T(b)-T(a)) \hspace{0.2cm} \mathrm{donc} \hspace{0.2cm} \|x-y\|=\|a-b-(T(b)-T(a))\|\geqslant |\|a-b\|-\|T(a)-T(b)\||$$

Or
$$||T(a) - T(b)|| \le k ||a - b||$$
 comme $k \in [0, 1]$

$$||x - y|| \ge ||a - b|| - ||T(a) - T(b)|| \ge (1 - k) ||a - b||$$

Donc
$$||U^{-1}(x) - U^{-1}(y)|| \le \frac{1}{1-k} ||x - y||$$

Partie n°5: Application des théorèmes de points fixes à des projecteurs préliminaires] Norme sur $\mathcal{L}_C(E)$:

- 1. Si $u \in \mathcal{L}_C(E)$, alors u est lipschitzienne (de rapport M par exemple). Ainsi tout $x \in E$ vérifie $||u(x)|| \leq$ M||x||. l'ensemble est donc majoré par M.
- 2. Comme il est non vide il admet une borne supérieure dans \mathbb{R}^+ que l'on note |||u|||.
- **3.** On vient de voir que $(\forall x \in E), ||u(x)|| \le |||u|||.||x||$.

En fait cela définie une norme sur $\mathcal{L}_C(E)$. Par exemple si |||u|||=0, on récupère de suite $u\equiv 0$.

Les autres propriétés se prouvent de la même manière.

On admet que c'est aussi une norme d'algèbre sur $\mathcal{L}_C(E)$. Ainsi

$$(\forall u \in \mathcal{L}_C(E)), (\forall v \in \mathcal{L}_C(E)), |||u \circ v||| \le |||u|||.|||v|||$$

\mathbf{A}

1. On a, par définition de
$$v: X \in \ker(v) \iff u(X) = X$$
.
Donc $\forall m \in \mathbb{N}^*, \forall X \in \ker(v), p_m(X) = \frac{1}{m} \sum_{k=0}^{m-1} X = X$.

2. Pour tout $k \in \mathbb{N}$, $u^k \circ (id_E - u) = u^k - u^{k+1} = (id_E - u) \circ u^k$, par sommation p_m et v commutent . Donc $\forall m \in \mathbb{N}^*, p_m \circ v = v \circ p_m$.

D'où :
$$p_m \circ v = v \circ p_m = p_m - u \circ p_m$$
. Or $u \circ p_m = \frac{1}{m} \sum_{k=0}^{m-1} u^{k+1} = \frac{1}{m} \sum_{k=1}^m u^k$.

Par téléscopage, on obtient : $p_m \circ v = \frac{1}{m} (id_E - u^m)$.

3.(a) On a : $X \in \text{Im}(v)$ donc il existe $Y \in E$ tel que X = v(Y).

Alors
$$p_m(X) = (p_m \circ v)(Y) = \frac{1}{m} (Y - u^m(Y)).$$

D'où : $||p_m(X)|| \le \frac{1}{m} (||Y|| + ||u^m(Y)||) \le \frac{1}{m} (||Y|| + C ||Y||)$. En posant K = ||Y|| (constante qui dépend de X), on obtient

$$\forall m \in \mathbb{N}^*, \parallel p_m(X) \parallel \leqslant \frac{K}{m}(1+C).$$

(b) $\lim_{m\to+\infty}\frac{K}{m}(1+C)=0$. on en déduit que : la suite $(p_m(X))_{m\in\mathbb{N}^*}$ converge vers 0_E

4. Soit $X \in \ker(v) \cap \operatorname{Im}(v)$;

D'après la question 1., en utilisant le fait que $X \in \ker(v)$, on se rappelle que $\forall m \in \mathbb{N}^*, p_m(X) = X$.

D'autre part, par passage à la limite quand m tend vers l'infini, comme $X \in \text{Im}(v)$, d'après la question **3.b**, $\lim_{m \to +\infty} p_m(X) = 0_E = X$.

Donc $\ker(v) \cap \operatorname{Im}(v) = \{0_E\}$ et | la somme est directe |

- 5. Mais, d'après le théorème du rang, on a : $\dim E = \dim(\ker(v)) + \dim(\operatorname{Im}(v)) = \dim H$. Donc |H = E|
- **6.** On a, d'après ce qui précède, $E = \ker(v) \oplus \operatorname{Im}(v)$ donc :

 $\forall X \in E, \exists !(X_1, X_2) \in \ker(v) \times \operatorname{Im}(v), X = X_1 + X_2.$

On a alors : $p_m(X) = X_1 + p_m(X_2)$. D'après la question 3.2, $\lim_{m \to +\infty} p_m(X_2) = 0_E$ donc

 $\lim_{m \to +\infty} p_m(X) = X_1 = p(X).$ La suite $(p_m)_{m \in \mathbb{N}^*}$ converge donc simplement sur E vers p

 \mathbf{B}

- 1. Si $X \in E, Y = u(X)$ est une sous-suite de X donc reste bornée. Donc $Y \in E$. La linéarité est évidente. Donc $\mid u$ est bien un endomorphisme de $E \mid$
- **2.** Soient $X \in E$ et Y = u(X). On a : $||Y|| = \sup_{n \in \mathbb{N}} |x_{n+1}| = \sup_{n \in \mathbb{N}^*} |x_n| \leqslant \sup_{n \in \mathbb{N}} |x_n| = ||X||$. D'où : $\forall X \in E, ||u(X)|| \leq ||X||$. Donc u est continu et $||u|| \leq 1$. Mais, si l'on considère la suite constante X égale à 1, on a : u(X) = X. Donc ||||u||| = 1.
- **3.** On a : $X \in \ker(v)$ ssi $\forall n \in \mathbb{N}, x_n = x_{n+1}$ ssi X est constante. Donc $|\ker(v)|$ est l'ensemble des suites constantes
- **4.** Soit $X \in \text{Im}(v)$; il existe $Y \in E$ tel que X = v(Y) c'est-à-dire : $\forall n \in \mathbb{N}, x_n = y_n y_{n+1}$.

On a alors: $\forall n \in \mathbb{N}^*, s_n = \sum_{k=0}^{n-1} x_k = \sum_{k=0}^{n-1} (y_k - y_{k+1}) = y_0 - y_n.$ D'où : $\forall n \in \mathbb{N}^* \mid s = 1 \le 1 \le n$

D'où : $\forall n \in \mathbb{N}^*, |s_n| \leq |y_0| + |y_n| \leq 2 ||Y||$ car Y est bornée. Donc S est bornée.

Réciproquement, soit $X = (x_k)_{k \in \mathbb{N}}$ telle que la suite S définie par le texte soit bornée.

Alors il existe M > 0 tel que : $\forall n \in \mathbb{N}, |s_n| \leq M$.

D'où : $\forall n \in \mathbb{N}, |x_n| = |s_{n+1} - s_n| \le |s_{n+1}| + |s_n| \le 2M$. Donc X est bornée.

En posant : $\forall n \in \mathbb{N}, y_n = -s_n$, on a : $\forall n \in \mathbb{N}, y_n - y_{n+1} = -s_n + s_{n+1} = x_n$. Donc v(Y) = X et $X \in \text{Im}(v)$. D'où l'équivalence : $X \in \text{Im}(v)$ ssi S définie par $s_0 = 0$ et $\forall n \in \mathbb{N}^*, s_n = \sum_{k=0}^{n-1} x_k$ est bornée.

5. On construit la suite $X=(x_n)_{n\in\mathbb{N}}$ de la façon suivante : $\forall n\in\mathbb{N}, \forall k\in[m(m+1),(m+1)^2-1], x_k=1$ et $\forall k \in [(m+1)^2, (m+1)(m+2) - 1], x_k = 0$. Donc $X = (1,0,1,1,0,0,1,1,1,0,0,0,\ldots)$. Pour tout $m \in \mathbb{N}^*$, on pose : $p_m(X) = (y_n^{(m)})_{n \in \mathbb{N}^*}$. La suite $(p_m(X))_{m \in \mathbb{N}^*}$ est divergente car elle ne vérifie pas le

critère de Cauchy. En effet, on a : $\forall m \in \mathbb{N}^*, \forall n \in \mathbb{N}, y_n^{(m)} = \frac{1}{m} \sum_{k=-n}^{m+m-1} x_k$.

Par construction de la suite X, on a : $\forall m \in \mathbb{N}^*, y_{m(m-1)}^{(m)} = 1$ et $y_{m(m-1)}^{(2m)} = \frac{1}{2}$.

D'où : $\forall m \in \mathbb{N}^*, \parallel p_m(X) - p_{2m}(X) \parallel \geqslant \mid y_{m(m-1)}^{(m)} - y_{m(m-1)}^{(2m)} \mid = \frac{1}{2}$

Il existe donc une suite $X \in \overline{E}$ telle que la suite $(p_m(X))_{m \in \mathbb{N}^*}$ diverge

Partie n°6: Une application géométrique

1. Les droites (MP_M) et $(M'P_{M'})$ sont parallèles, donc d'après le théorème de Thalès, appliqué dans le triangle (MP_MC) , on a

$$\frac{P_M P_{M'}}{MM'} = \frac{P_M C}{MC} = |\cos c|$$

2. si $M \neq M'$, alors $P_M \neq P_{M'}$ et $Q_M \neq Q_{M'}$, en considérant les triangles (AP_MQ_M) et (BQ_MR_m) , on aura aussi :

$$\frac{Q_M Q_{M'}}{P_M P_{M'}} = |\cos a| \quad \text{et} \quad \frac{R_M R_{M'}}{Q_M Q_{M'}} = |\cos b|$$

donc $R_M R_{M'} = |\cos a| |\cos b| |\cos c| M M' \le k M M'$ avec une constante $k = |\cos a| |\cos b| |\cos c| \in [0, 1[$ (car $a, b, c \in]0, \pi[$). Cette inégalité se traduit à l'aide de φ par une autre inégalité :

$$|\varphi(x) - \varphi(x')| \le k|x - x'|.$$

Autrement dit, la fonction φ est une contraction (ou application contractante), donc elle admet un unique point fixe $x \in \mathbb{R}$.

Cela revient à dire qu'il existe un unique point géométrique $M \in (BC)$ tel que $R_M = M$ (M revient à sa place).

On ne peut pas terminer sans un dessin...à vous

