

gnupg.org

- Il progetto GnuPG
- Caratteristiche tecniche
- Il Backend
- I Front-End
- La crittografia del GnuPG
- La release attuale 1.0.4
- Confronto con il PGP
- Lo standard OpenPGP (RFC2440)

Il progetto GnuPG

Il progetto tedesco GnuPG (GNU Privacy Guard) nasce nel 1997 per opera di Werner Koch, sviluppatore indipendente interessato alla crittografia OpenSource.

L'obiettivo del progetto è la realizzazione di un engine crittografico, alternativo al Pgp, totalmente open source basato su algoritmi crittografici standard e non proprietari.

Il progetto GnuPG

Basato su di un sistema di crittografia "ibrido", simile al Pgp, con algoritmi simmetrici (crittografia tradizionale) e asimmetrici (crittografia a chiave pubblica).

Rappresenta, allo stato attuale, un vero e proprio engine crittografico in grado di cifrare/decifrare, firmare ed autenticare file e messaggi di posta elettronica (standard MIME).

Caratteristiche tecniche

- Standard OpenPgP
- Piena compatibilità con Pgp 2
- Decifra, verifica msg Pgp 5,6,7
- Supporto algoritmi crittografici ElGamal, DSA, RSA, AES, 3DES, Blowfish, Twofish, CAST5, MD5, SHA-1, RIPE-MD-160 e TIGER
- Supporto modulare per nuovi algoritmi crittografici
- Gestione delle date di scadenza per chiavi e firme

Caratteristiche tecniche

- Gestione forzata degli User Id standard
- Supporto multi-lingue: English, Danish, Dutch, Esperanto, French, German, Japanese, Italian, Polish, Portuguese (Brazilian), Portuguese (Portuguese), Russian, Spanish e Swedish
- Sistema di help on-line
- Supporto integrato per HKP keyservers (www.eys.pgp.net).
- Supporto opzionale per la gestione di messaggi anonimi

Sistemi operativi supportati

GNU/Linux with x86, alpha, mips, sparc64,

m68k or powerpc CPUs FreeBSD with x86 CPU works fine. OpenBSD works fine (x86 CPU?). NetBSD works fine (x86 CPU?). **AIX** v4.3, **BSDI** v4.0.1 with i386, **HPUX** v9.x, v10.x and v11.0 with HPPA CPU, IRIX v6.3 with MIPS R10000 CPU, MP-RAS v3.02, **OSF1** V4.0 with Alpha CPU, OS/2 version 2. SCO UnixWare/7.1.0. SunOS, Solaris on Sparc and x86, **USL Unixware** v1.1.2,

Windows 95 and **WNT** with x86 CPUs.

Il Backend

- •Sistema compatto a linea di comando sintassi: gpg [options] [files]
- •Funzionalità ed interfaccia simile al Pgp.
- •Utilizzabile come engine per applicazioni crittografiche.
- •Gestione ottimizzata del flusso dati input/output (standard pipe).

Il Front-End

Esistono diverse interfaccie per GnuPG, la più famosa è GPA GNU Privacy Assistent, basata su GIMP Tool Kit (GTK).

Altri front-end: Seahorse (Gnome), GnomePgp (Gnome), Geheimniss (Kde), TkPgp, pgpgpg (interprete di script pgp per gnupg), Mutt (gnupg email), MailCrypt (Emacs), pgp4pine, pgpenvelope, exmh, etc.

La crittografia del GnuPG

Basata su algoritmi standard non proprietari (possibilità di espansione con moduli software).
Gli algoritmi di default sono:

- ElGamal/DSA (asimmetrici) utilizzati per la generazione delle chiavi, la cifratura/ decifratura dei dati e la firma digitale (DSA)
- Blowfish (simmetrico) per la cifratura "veloce" dei dati

La crittografia del GnuPG

Simile al Pgp con un sistema crittografico "ibrido".

Al posto dell'RSA per la cifratura della chiave random è presente l'ElGamal (passaggio matematico dalla teoria dei numeri primi ai logaritmi discreti).

Al posto dell'IDEA per la cifratura "veloce" dei dati e dei msg su chiave random di sessione c'è il Blowfish più performante.

La release attuale 1.0.4

La release attuale, la 1.0.4 rilasciata il 17 Ottobre 2000, rappresenta un security update importante.

Release stabile.

Si tratta di una versione nata dopo 2 anni di sviluppo con un'architettura crittografica modulare con più di 20 algoritmi implementati.

Dalla versione 1.0.3 è presente il supporto dell'algoritmo RSA

Il confronto con il Pgp

PGP:

Architettura crittografica chiusa (DSS, RSA, IDEA...).

Software proprietario della PGP Inc. - NAI Inc.

Presenza di features "poco trasparenti" vedi ultimo bug sulle ADK.

GNUPG:

Architettura aperta (algoritmi modulari) Software non proprietario (libero), licenza GPL.

Ottimizzazione del codice, engine leggero, features essenziali

Lo standard OpenPgp (RFC2440)

Primo standard crittografico completo con filosofia open source.

Standard aperto per la cifratura/decifratura dei dati, firma digitale, autenticazione, gestione delle chiavi pubbliche/private

Tentativo di affermare uno standard libero per applicazioni crittografiche in un ottica di difesa delle libertà digitali

Perchè solo le istituzioni o grandi aziende possono utilizzare strong encryption?