ISB 2025 Tutorial Musculoskeletal simulations with biophysical muscle models

Lena Ting, Surabhi Simha, Hansol Ryu, Tim van der Zee, Friedl De Groote

Funded by NIH HD HD90642 + NIH software supplement

Surabhi Simha
ISB talk (T 10am)
Tuning muscle spindle
signals for locomotion

Tim van der Zee
ISB talk (M 2:50), poster (W 5pm)
Biophysical muscle models
for musculoskeletal simulation

Hansol Ryu
ISB talk (M 3:20pm)
Biophysical model for postural control

Transient force properties of muscle are needed to use musculoskeletal modeling to understand unsteady movement

Zajac 1989

Initial 'stiff' response to perturbations of standing balance cannot be captured by Hill muscle model

De Groote et al., J Biomech, 2017; Jakubowsi et al 2025

Initial 'stiff' response to perturbations of standing balance cannot be captured by Hill muscle model

Pendulum test of spasticity is movement history dependent

Typically developing child

Child with cerebral palsy (CP)

Willaert et al 2020, 2024; De Groote et al., J Biomech, 2018

Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University

Simulating muscle force using a biophysical model

Lena Ting, <u>Surabhi Simha</u>, Hansol Ryu, Tim van der Zee, Friedl De Groote

July 27th 2025

Physiology: muscle active force comes from crossbridge binding

Kandell, Schwartz, Jessell 2013

Crossbridge model: spring that continuously transitions b/w attached and detached

Simplify the crossbridge

1 dimensional spring

2 states (detached or attached)

Count number of attached crossbridges

states continuously transition

$$\frac{dn_{attached}}{dt} = \int_{1}^{10} 1000 \qquad 2 \quad 10 \quad 5$$

$$= \int_{1}^{10} (x) \cdot n_{detached} - g(x) \cdot n_{attached}$$
attachment rate detachment rate

count attached crossbridges at single time point (numerical integrator)

A.F. Huxley, 1954 van der Zee et. al. 2025; *in prep* ⁸

Muscle model: distribution of "cross-bridge springs"

Calculate force from one attached crossbridge

spring force
$$F = k_{cb} \cdot \Delta x$$

Add forces from all attached crossbridges

$$F_{total} = \sum_{i=0}^{i=n_{bound}} F_i$$

Muscle model: distribution of "cross-bridge springs"

Calculate force from one attached crossbridge

spring force
$$F = k_{cb} \cdot \Delta x$$

Add forces from all attached crossbridges

$$F_{total} = \sum_{i=0}^{i=n_{bound}} F_i$$

Add 2 more states for good force response to cyclic stretches

van der Zee et. al. 2025, in prep Simha & Ting, *J. Expt. Phys., 2023* 11

Tutorial Part 1: simulating a biophysical muscle model

Attachment and detachment rate functions

- Attachment rate $f(\Delta x) = f(f, w)$
- Detachment The cross-bridge attachment functions f(x) and $\phi(x)$ are gaussians: $f(x) = \frac{f_1}{\sqrt{2\pi \cdot w^2}} \cdot e^{-\frac{x^2}{2 \cdot w^2}}$ $\phi(x) = \frac{\phi_1}{\sqrt{2\pi \cdot w^2}} \cdot e^{-\frac{x^2}{2 \cdot w^2}}$

The cross-bridge detachment function g(x) is the sum of two exponentials:

$$a(x) = \sum_{i=1}^{2} a_i \cdot e^{x \cdot E_i}$$

Tutorial Part 1: generating an equivalent Hill model

Hill-type force-velocity emerges from biophysical model

ISB 2025 Tutorial Musculoskeletal simulations with biophysical muscle models

Lena Ting, Surabhi Simha, Hansol Ryu, Tim van der Zee, Friedl De Groote

Funded by NIH HD HD90642 + NIH software supplement

Surabhi Simha
ISB talk (T 10am)
Tuning muscle spindle
signals for locomotion

Tim van der Zee
ISB talk (M 2:50), poster (W 5pm)
Biophysical muscle models
for musculoskeletal simulation

Hansol Ryu
ISB talk (M 3:20pm)
Biophysical model for postural control

Initial 'stiff' response to perturbations of standing balance cannot be captured by Hill muscle model

Pendulum test of spasticity is movement history dependent

Typically developing childChild with cerebral palsy (CP)

(Horslen et al., 2023)

0.1

0.3

Willaert et al 2020, 2024; De Groote et al., J Biomech, 2018

Four-state cross-bridge model – but not Hill model – captures movement history-dependent short-range stiffness

Using the biophysical muscle model in musculoskeletal simulations

Scale half-sarcomere up to whole muscle

 Distribution moment approximation to improve numerical efficiency

Scaling up a half sarcomere to a muscle

- Scale contractile force based on F_{max}
- Scale resting length based on optimal fiber length from Hill-type muscle model
- Add tendon (T) with stiffness based on Hill model
- Passive stiffness (P) and pennation angle (α) based on Hill-model
- Rate constants estimated from experimental data collected
 in rat soleus muscle fibers at low temperature not representative for in vivo human muscle

 → Estimate rate parameters

Estimate rate constants

6 parameters to specify the attachment and detachment rates

n(x) is distribution of attached XB

$$\frac{dn}{dt} \left(-\frac{\partial x}{\partial t} \cdot \frac{\partial n}{\partial x} \right) = f(x) \cdot DRX \cdot \left(N_{on} - \int n(x) \, dx \right) - g(x) \cdot n(x)$$
open binding sites

Estimate rate constants

3 parameters to specify thin filament dynamics rates

N_{on} is number of available binding sites on active

$$\frac{dN_{on}}{dt} = k_{on} \cdot Ca \cdot \left(F_{overlap} - N_{on}\right) \cdot \left(1 + k_c \cdot \frac{N_{on}}{F_{overlap}}\right) - k_{off} \cdot \left(N_{on} - \int n(x) \, dx\right) \cdot \left(1 + k_{oop} \cdot \frac{f_L - N_{on}}{f_L}\right)$$

Estimate rate constants

Find rate functions by maximizing the fit between target and modelled force-velocity and history dependence

Using the biophysical muscle model in musculoskeletal simulations

Scale half-sarcomere up to whole muscle

 Distribution moment approximation to improve numerical efficiency

Distribution moment approximation to improve computational efficiency

- Need to discretize cross-bridge distribution to perform forward simulations
 → many states → long computational times
- Only lower-order moments of distribution needed to describe macroscopic muscle behavior.
- Approximate distribution by a Gaussian (Zahalak, 1981)
 Moments of Gaussian distribution have physical meaning:
 - Q_0 is number of attached XB/muscle stiffness
 - Q_1 is proportional to force given constant XB stiffness
 - ullet Q_2 is proportional to elastic energy stored in XB

Distribution moment approximation to improve computational efficiency

The equations

The DM approximation accurately captures fiber force in response to stretch

Extra: (refer to comparison of both as extra for tutorial)

Tutorial - option 1 Musculoskeletal simulations through matlab-OpenSim interface

https://github.com/timvanderzee/ISB2025 Part 2 - OpenSim

Example 1: "pendulum test" leg swing

Example 2: perturbed standing balance

Tutorial - option 2 Musculoskeletal simulations based on simple models in Matlab

https://github.com/timvanderzee/ISB2025 Part 2 - Custom

