Theorem If $X_i \sim N(\mu_i, \sigma_i^2)$ for i = 1, 2, ..., n and $X_1, X_2, ..., X_n$ are mutually independent, then

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

for nonzero real constants a_1, a_2, \ldots, a_n .

Proof The moment generating function of X_i is

$$M_{X_i}(t) = \exp\left(\mu_i t + \frac{1}{2}\sigma_i^2 t^2\right) \qquad -\infty < t < \infty; i = 1, \dots, n.$$

The moment generating function of $a_i X_i$ is

$$M_{a_i X_i}(t) = \exp\left(a_i \mu_i t + \frac{1}{2} a_i^2 \sigma_i^2 t^2\right) - \infty < t < \infty; i = 1, \dots, n.$$

Since X_1, X_2, \ldots, X_n are mutually independent, the moment generating function of the linear combination is

$$M_{a_1X_1 + a_2X_2 + \dots + a_nX_n}(t) = \prod_{i=1}^n M_{a_ix_i}(t) = \exp\left(\left(\sum_{i=1}^n a_i\mu_i\right)t + \frac{1}{2}\left(\sum_{i=1}^n a_i^2\sigma_i^2\right)t^2\right)$$

for $-\infty < t < \infty$. Therefore

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right).$$

APPL illustration: For n = 3 and $a_1 = a_2 = a_3 = 1$, the APPL statements

X1 := NormalRV(mu1, sigma1);

X2 := NormalRV(mu2, sigma2);

X3 := NormalRV(mu3, sigma3);

Convolution(X1, X2, X3);

yield the probability density function of a $N(\mu_1 + \mu_2 + \mu_3, \sigma_1^2 + \sigma_2^2 + \sigma_3^2)$ random variable.