ASP Assignment 8

1. Let $(B_t)_{t\geq 0}$ be a **SBM** (standard Brownian motion) and c>0. Show that the process

$$X_t = \frac{1}{c} B_{c^2 t}, \ t \ge 0$$

is a SBM.

2. Let $(B_t)_{t\geq 0}$ be a SBM and fix $t_0\geq 0$. Prove that

$$\tilde{B}_t := B_{t+t_0} - B_{t_0}, \ t \ge 0$$

is a SBM.

3. Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and $(X_t)_{t\geq 0}$ be the process defined as

$$X_t = B_t - tB_1, \ 0 \le t \le 1.$$

The process $(X_t)_{0 \le t \le 1}$ is called a Brownian Bridge.

- (a) Compute the means $E(X_t)$ and the covariances $E(X_sX_t)$, where $s, t \ge 0$.
- (b) What is the distribution of X_t ?
- 4. Let $(B_t)_{t\geq 0}$ be a SBM.
 - (a) Prove that the moment generating function of B_t is given by

$$E\left[e^{uB_t}\right] = \exp\left(\frac{1}{2}u^2t\right), \text{ for all } u \in \mathbb{R}.$$

(b) Use the power series expansion of the exponential function on both sides, compare the terms with the same power of u and deduce that

$$E[B_t^4] = 3t^2$$

and more generally that

$$E\left[B_t^{2k}\right] = \frac{(2k)!}{2^k \cdot k!} t^k, \ k \in \mathbb{N}.$$

(c) If you feel uneasy about the lack of rigour in the method in b), you can proceed as follows: first note that

$$E[f(B_t)] = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} f(x)e^{-\frac{x^2}{2t}} dx$$

for all functions f such that the integral on the right converges. Then apply this to $f(x) = x^{2k}$ and use integration by parts and induction on k.

1

5. Let $(B_t)_{t\geq 0}$ be a SBM. Find $E(B_1^2B_2B_3)$.

6. Suppose B_t is a standard Brownian motion and let \mathcal{F}_t be its corresponding filtration. Let

$$M_t = B_t^2 - t.$$

Show that M_t is a martingale with respect to \mathcal{F}_t .

7. Let B_t be a standard Brownian motion and let $\{\mathcal{F}_t\}$ denote the usual filtration. Suppose s < t. Compute the following.

- (a) $E[B_t^2 \mid \mathcal{F}_s]$
- (b) $E[B_t^3 \mid \mathcal{F}_s]$
- (c) $E[B_t^4 \mid \mathcal{F}_s]$
- (d) $E\left[e^{4B_t-2} \mid \mathcal{F}_s\right]$

8. Let B_t be a standard Brownian motion and let

$$Y(t) = tB(1/t), \quad t > 0$$

and Y(0) = 0.

- (a) Is Y(t) a Gaussian process?
- (b) Compute Cov(Y(s), Y(t)).
- (c) Does Y(t) have the distribution of a standard Brownian motion?
- 9. Let B_t be a standard Brownian motion. Find the following probabilities. If you cannot give the answer precisely give it up to at least three decimal places using a table of the normal distribution.
 - (a) $\mathbb{P}\{B_3 \ge 1/2\}$
 - (b) $\mathbb{P}\left\{B_1 \le 1/2, B_3 > B_1 + 2\right\}$
 - (c) $\mathbb{P}(E)$, where E is the event that the path stays below the line y = 6 up to time t = 10.
 - (d) $\mathbb{P}\{B_4 \le 0 \mid B_2 \ge 0\}.$
- 10. Suppose B_t is a standard Brownian motion and let \mathcal{F}_t be its corresponding filtration. Let

$$M_t = e^{\sigma B_t - \frac{\sigma^2 t}{2}}.$$

Show that M_t is a martingale with respect to \mathcal{F}_t .

11. Let B_t be a standard (one-dimensional) Brownian motion starting at 0 and let

$$M = \max \left\{ B_t : 0 \le t \le 1 \right\}.$$

Find the density for M and compute its expectation and variance.

12. Let B_t be 2-dimensional Brownian motion, that is

$$B_t = (X_t, Y_t),$$

where (X_t) and (Y_t) are independent standard 1-dimensional Brownian motions. Put

$$D_{\rho} = \left\{ x = (x_1, x_2) \in \mathbf{R}^2 : |x| = \sqrt{x_1^2 + x_2^2} < \rho \right\} \quad \text{for } \rho > 0.$$

Compute

$$\mathbb{P}\left[B_t \in D_\rho\right].$$