Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и открытий ОПИСАНИЕ БА ИЗОБРЕТЕНИЯ

HOECOMOSHAR

659260

к авторскому свидетельству

(61) Дополнительное к авт. свид-ву-

(22) Заявлено 051277 (21) 2552906/25-27

с присоединением заявки № -

(23) Приоритет -

Опубликовано 30,04.79. Бюллетень № 16

Дата опубликования описания 30.0479

(51) M. Ka.²

B 21 H 8/00 B 21 B 3/00

(53) **УДК** 621.77.04 (088.8)

(72) Авторы изобретения А.В.Фролов, В.Ф.Калугин, Е.И.Разуваев, Б.Н.Аксенов, В.С.Теренин и Д.Е.Герасимов

(71) Заявитель

и др.

(54) СПОСОЕ ПОЛУЧЕНИЯ ТОЛСТЫХ ЛИСТОВ ИЗ АЛЖМИНИЕВЫХ, ЖАРОПРОЧНЫХ И ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стальных конструкций, резервуаров, корпусов морских сосудов, труб из алюминиевых б жаропрочных и титановых сплавов, применяемых в различных отраслях народного хозяйства, таких как судостроение, энергетическое и транспортное машиностроение, самолетостроение

Известен способ получения толстых листов методом горячей прокатки на гладких валках [1].

недостатком известного способа является то, что он не обеспечивает получение качественных толстых листов из-за недостаточной проработки структуры и сечения заготовки.

Известен способ получения толстых листов из алюминиевых, жаропрочных и титановых сплавов путем штамповки исходной заготовки с последующей ее прокаткой [2].

Однако недостаточные степени обжатий приводят к неравномерному зерну по сечениям и снижению механических характеристик. целью изобретения является повышение физико-механических свойств получаемых изделий.

Для достижения цели прокатку ведут при соотношении длины дуги захвата залков к средней геометрической толщине заготовки, равном 0,9-2,7, причем обжатие за проход составляет 39-50%.

Для спределения численных значения указанного соотношения задавались различными диаметрами прскатных вал-ков, исходными и коксуными толщина-ми прокатываемых листов и различными степенями деформации, после чего взяли нижний и верхний пределы результатов подсчетов по формуле

$$\frac{e_{o}}{H_{cp}} = \frac{\sqrt{R \Delta H}}{\sqrt{H \cdot h}}$$

где R - радиус прокатного валка;

Н - исходная толшина заготовки;

h — конечная толюжна листа.

Для большего выравнивания скоростей течения поверхностных и серединных слоев произволится подстуживание поверхности металла при входе заготовки в валки струей сжатого воздуха.

Прокатка с соотношением $\ell_0/H_{CP}=0,9-$ 2,7 позволяет увеличить угол зах-

2

вата валков, катать заготовки практических любых толщин и давать обжатия до 30-50% за проход. Скорость вращения валков для лучшей проработки структуры и более полного прохождения процессов рекристаллизации колеблется в пределах 0,3-0,6 м/сек.

Получение более равномерного зерна требует, чтобы температура конца прокатки была достаточно высокой:для жаропрочных сплавов не ниже температуры рекристаллизации, для титановых - на 30-50°C ниже температуры рекристаллизации и для труднодеформируемых алюминиевых на 50-60°C ниже температуры начала прокатки.

В конечном итоге полученные после прокатки толстые листы подвергаются термической обработке - отжигу по стандартному режиму для каждой группы сплавов для снятия наклепа после пластической деформации и выравнивания структуры по сечению.

Горячая прокатка с обжатиями в 30-50% за проход позволяет улучшить проработку структуры по сечению заготовки, получить более равномерное зерно, увеличить производительность труда из-за снижения количества пропусков. Применение обжатий ниже пропусков. применение сометия струк30% не обеспечивает проработку структуры заготовки по глубине, а выше 50% не поэволяют возможности современного оборудования.

В опытно-лабораторных условиях проводилось опробование предлагаемого способа. Проводилась прокатка толстых листов из титанового сплава ВТ6. Химический состав сплава, %: 6,1 At 15,0 V; 0,08 C;0,25 Fe; 0,1 Si; 0,15 O2; 0,03 N2; 0,01 H; 0,25 прочих примесей, остальное ти-

Предварительно штампованная заготовка размером 40х300х600 мм нагревалась до 1050°C, после чего производилась прокатка на валках, обеспечивающих коэффициент трения между контактной поверхностью валка и толстого листа 0,5 отношением (9/ /Нср =1,1 и обжатиями 30% за прохол. Последние 2 прохода производились на гладких валках для получения качественной поверхности и выравнивания разницы по толщине. Скорость вращения валков составляла 0,5 м/с.

При входе металла в валки осушествлялось подстуживание поверхностных слоев заготовки направленной струей сжатого воздуха. Полученные после прокатки толстые листы полвергались термообработке по режиму: нагрев до 800° С, выдержка 30 мин 30 мин. охлаждение с печью до 500°C, далее на воздухе.

Результаты испытания полученных толстых листов из материала ВТ6 и размеры исходной и конечной заготовок приведены в таблице.

	•									
Способ	Состояние контроль- ных образ цов	nepa-	Механиче свойства напряже- ние Ов 2 кгс/см ²		ходн	1	БІОВКЯ.	Разм ной дли- на, мм	шири-	BKR
Пред- лага- емый	Отоженный	20	95	8	600	300	40	1500	315	15
Изве- стныя	; _!!_	20	88	8	1200	1000	400	2900	1100	150

Использование способа обеспечивает по сравнению с существующими способами возможность получения толстых листов из алюминиевых, жаропрочных и титановых сплавов с проработкой структуры на всю глубину заготовки с получением равномерного зерна по всему сечению полученной: заготовки, кроме того, предлагаемыя способ поэволяет получить физико-механические свойства выше на 3,0%.

Формула изобретения Способ получения толстых листов из алюминиевых, жаропрочных и титановых сплавов путем штамповки исходной заготовки с последующей ее прокаткой, отличающий с я тем, что, с целью повышения физикомеханических свойств получаемых изделий, прокатку ведут при соотноше-

нии длины дуги эахвата валков к

средней геометрической толщине за-

готовки, равном 0,9-2,7, причем обжатие за проход составляет 20-50%. Источники информации, принятые

во внимание при экспертизе 1. Бровман М.Я., Зеличенок Б.Ю., Герцев А.И. Усовершенствование тех-

кологии прокатки толстых листов.
''Металлургия'', М., 1969, с.22-27.
2. Заявка в 2435814/27,
кл. В 23 Р 3/00, 1977, по которой было принято решение о выдаче авторского свидетельства.

Составитель И.Ментягова Редактор Т. Морозова Техред С. Мигай Корректор И. Муска Тираж 1033 Подписное Заказ 2098/2 ЦНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, ж-35, Раушская наб., д. 4/5 Филиал IIIII ''Патент'', г.Ужгород, ул.Проектная,4