Breaking Cloud AutoAl Models

Evaluating the Robustness of AutoAl Models to Adversarial Attacks

Term Project for CSCI-GA 3033-085 Cloud and Machine Learning Prepared by Aashka Trivedi (aht323) and Anya Trivedi (aht324)

Image Classification on Cloud Auto Al Models

AutoA

Automating the Artificial Intelligence Lifecycle

- Ubiquity and performance of Machine Learning Models
- Automation on the Cloud
- Spending on Cloud AI will grow to \$75Billion in 2022¹
- IBM Cloud's AutoAl Service
- Google Cloud Platform's AutoML Tool

How Easily Fooled are Cloud AutoAl Models?

Spoiler: Very Easily

IBM Cloud

Training AutoAl Models for MNIST

- CSV input
- 3 Models with 4 optimization pipelines
- Evaluation Criteria: Validation Accuracy (10-fold cross validation)

Pipeline leaderboard $\ \, \triangledown$

	Rank ↑	Name	Algorithm	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 12	Gradient Boosting Classifier	0.919	HPO-1 FE HPO-2	00:11:08
	2	Pipeline 3	• LGBM Classifier	0.918	HPO-1 FE	00:16:09
	3	Pipeline 4	• LGBM Classifier	0.918	HPO-1 FE HPO-2	00:09:26
	4	Pipeline 2	• LGBM Classifier	0.913	HPO-1	00:05:49
	5	Pipeline 1	• LGBM Classifier	0.911	None	00:01:12
	6	Pipeline 11	• Gradient Boosting Classifier	0.909	HPO-1 FE	00:29:23
	7	Pipeline 10	• Gradient Boosting Classifier	0.907	HPO-1	00:12:12
	8	Pipeline 7	O XGB Classifier	0.905	HPO-1 FE	00:15:51
	9	Pipeline 8	O XGB Classifier	0.905	HPO-1 FE HPO-2	00:22:31
	10	Pipeline 5	O XGB Classifier	0.898	None	00:01:13

Comparison of Experiment Pipelines on IBM AutoAl Platform

Google Cloud Platform

Training AutoML Models for MNIST

- CSV input- Tables, Image Input- Vision
- Black Box
- Evaluation Criteria: Log Loss (Only Criteria for MultiClass Classification)

Target	Feature columns	Optimized for	AUC PR 2	AUC ROC ②	Precision 2	(R	tecall ?	Log loss 🔞
label	784 included 5,910 test rows	Log loss	0.997	0.999	98.9%		9	8.1%	0.057

Micro-averaged precision and recall are generated using a score threshold of 0.5

GCP AutoML Model Performance

Comparison

IBM Cloud AutoAl vs GCP AutoML

	IBM Cloud AutoAl	GCP AutoML				
MNIST Validation Accuracy	96.5	97.3				
MNIST Test Accuracy	99.6	98.6				
Input Data	CSV Only	CSV, Image, Textual Data				
Access to Models	Easily convertible to Jupyter Notebooks	User needs to link model to Notebook				
Hyperparameter Optimization	More Transparent	Less Transparent				
Training Time	Shorter (per pipeline)	Larger				
Deployment and Testing Time	Very Long	Shorter				
Online Resources	Very Widely Available	Not up to date				

Adversarial Robustness

Adversarial Examples

Generating Adversarial Examples for MNIST

- Small Perturbation to input (Hyperparameter: Epsilon)
- Targeted Attacks vs Untargeted Attacks
- Whitebox vs Blackbox attacks¹
- Transferability Property and Substitute Models²

[1] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, Cho-Jui Hsieh, 2017. ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models

[2] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, 2015. Explaining and Harnessing Adversarial Examples

Fast Gradient Sign Method

Whitebox Adversarial Example Generation

- Proposed by Goodfellow et. al¹
- Add noise in direction of gradient to maximise loss
- Hyperparamter Epsilon: how much noise
- Fast, easy, not the most powerful
- Whitebox
- Substitute Model- LeNet 50 trained on MNIST
- Epsilon: 0 (no distortion), 0.10, 0.15, 0.20, 0.25, 0.30

[1] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, 2015. Explaining and Harnessing Adversarial Examples

Original Label: 6 Lenet Prediction : 6 IBMAutoAl Prediction:6 GCPAutoML Prediction:6 0 GCPAutoML Prediction:6

Original Label : 6 Lenet Prediction : 1 IBMAutoAl Prediction:6

Original Label : 6 Lenet Prediction : 0 IBMAutoAl Prediction:8 GCPAutoML Prediction:6

Original Label: 6 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label: 6 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label: 6 Lenet Prediction: 4 IBMAutoAl Prediction:8 GCPAutoML Prediction:7

Original Label: 9 Lenet Prediction : 9 IBMAutoAl Prediction:9 GCPAutoML Prediction:9

Original Label: 9 Lenet Prediction : 4 IBMAutoAl Prediction:7 GCPAutoML Prediction:7

Original Label: 9 Lenet Prediction : 4 IBMAutoAl Prediction:8 GCPAutoML Prediction:7

Original Label: 9 Lenet Prediction: 4 IBMAutoAl Prediction:8 GCPAutoML Prediction:7

Original Label : 9 Lenet Prediction: 8 IBMAutoAl Prediction:5 GCPAutoML Prediction:7

Original Label: 9 Lenet Prediction: 2 IBMAutoAl Prediction:5 GCPAutoML Prediction:8

Original Label: 3 Lenet Prediction: 3 IBMAutoAl Prediction:3 GCPAutoML Prediction:3

Original Label: 3 Lenet Prediction : 5 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label: 3 Lenet Prediction : 5 IBMAutoAl Prediction:8 GCPAutoML Prediction:7

Original Label: 3 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label : 3 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label: 3 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:0

Original Label: 4 Lenet Prediction : 4 IBMAutoAl Prediction:4 GCPAutoML Prediction:4

Original Label: 4 Lenet Prediction : 6 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label: 4 Lenet Prediction: 9 IBMAutoAl Prediction:9 GCPAutoML Prediction:8

Original Label: 4 Lenet Prediction: 9 IBMAutoAl Prediction:8 GCPAutoML Prediction:0

Original Label: 4 Lenet Prediction: 8 IBMAutoAl Prediction:9 GCPAutoML Prediction:9

Original Label: 4 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label : 1 Lenet Prediction: 1 IBMAutoAl Prediction:1 GCPAutoML Prediction:1

Original Label : 1 Lenet Prediction: 8 IBMAutoAl Prediction:1 GCPAutoML Prediction:1

Original Label : 1 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Original Label : 1 Lenet Prediction: 2 IBMAutoAl Prediction:7 GCPAutoML Prediction:7

Original Label : 1 Lenet Prediction: 8 IBMAutoAl Prediction:4 GCPAutoML Prediction:8

Original Label: 1 Lenet Prediction: 8 IBMAutoAl Prediction:8 GCPAutoML Prediction:8

Generated Adversarial Examples with Different Values of Epsilon

Robustness of Auto Al Model

Accuracy of models on Adversarial Examples

Model Performance with Changing Epsilon.

The IBM Model and the GCP Model gave 0.99 and 0.98 accuracy on the original test case (eps=0)

Defensive Distillation

Distilling Defensively

A Defense against Adversarial Attacks

- Proposed by Papernot et. al¹
- Use distillation² to improve robustness
 - Teach a student how a teacher "learns"
 - Prediction Probabilities ("logits") as soft target labels
- Not effective as a measure of defense^{3,4}
- [1] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha and Ananthram Swami, 2016. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
- [2] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, 2015. Distilling the Knowledge in a Neural Network
- [3] Nicholas Carlini and David Wagner, 2016. Defensive Distillation is Not Robust to Adversarial Example
- [4] Nicholas Carlini and David Wagner, 2017. Towards Evaluating the Robustnessof Neural Networks

Distilling AutoAl Models

Defensive Distillation for IBM Cloud's and GCP's AutoAl Model

Performance of Models on Adversarial Examples (With and Without Distillation)

Model Robustness with and Without Distillation

Conclusion

Major Findings

- Using AutoAl to build Image Classification Models
- AutoAl models are not robust against adversarial attacks
 - GCP vs IBM AutoAl
 - Most Guessed Label
- Defensive distillation is not completely robust to adversarial attacks, but may improve performance to an extent

Github Repository: https://github.com/aashka-trivedi/cloud-autoai-adversarial-robustness

Questions