TANA21: Projektrapport

Volymen på ett föremål

Namn	Personnummer	Epostaddress
Martin Söderén	900929-1098	marso329@student.liu.se
Alexander Yngve	930320-6651	aleyn573@student.liu.se

1 Inledning

Projektets uppgift är att uppskatta volymen på ett oregelbundet föremål, exempelvis en sten eller en barkbit. Därefter ska felen i uppskattningen bedömas, det totala felet beräknas och antalet signifikanta siffror anges.

2 Metod

Föremålet som valdes är stenen i figur 1.

Figur 1 – Stenen vars volym uppskattades.

Volymen på stenen uppskattades genom att sänka ner stenen i en cylindrisk bägare med vatten och observera skillnaden i vattennivån. Volymen av en cylinder ges av $V=\pi r^2 h$, där r är radien och h är höjden. Om V_1 och h_1 är vattnets volym och nivå i den cylindriska bägaren innan stenen sänks ner och $V_2=V_1+V_{sten}$ och h_2 är volymen respektive vattennivån efter stenen sänks ner blir $V_2-V_1=\pi r^2h_2-\pi r^2h_1\Leftrightarrow V_{sten}=\pi r^2(h_2-h_1)$.

Maximalfeluppskattningen för volymen V_{sten} blir då $|\Delta V_{sten}| = |2\pi \bar{r}(\bar{h_2} - \bar{h_1})\Delta r| + |\pi \bar{r}^2 \Delta h_1| + |\pi \bar{r}^2 \Delta h_2|$, där \bar{r} , $\bar{h_1}$ och $\bar{h_2}$ är närmevärdet för respektive storhet.

 \bar{r} , $\bar{h_1}$ och $\bar{h_2}$ mättes med skjutmått. Då det är lättare att mäta diameter än radie på en cylinder mättes det istället, det vill säga $\bar{r} = \frac{\bar{d}}{2}$. Detta medför att felet Δr halveras.

3 Resultat

Tabell 1 visar de uppmätta storheterna. Skjutmåttet som användes har en tolerans på $\pm 0,00005$ m. Detta ger $\Delta r = \pm 0,000025, \Delta h_1 = \pm 0,00005$ och $\Delta h_2 = \pm 0,00005$.

Storhet	Värde	Enhet
\bar{r}	0,0400	m
h_1	0,0350	m
$\bar{h_2}$	0,0404	m

Tabell 1 – Uppmätta storheter.

Enligt formlerna i avsnitt 2 blir då närmevärdet för stenens volym samt maximalfeluppskattningen $\bar{V}_{sten}=2,714*10^{-5}\mathrm{m}^3$ respektive $|\Delta V_{sten}|=0,05366*10^{-5}\mathrm{m}^3$. Antalet signifikanta siffror är en eftersom antalet korrekta decimaler är fem. Volymen avrundas därför neråt till $\bar{V}_{sten}=2,7*10^{-5}$ vilket introducerar avrudningsfelet $R_B=0,014*10^{-5}$. Svaret är således $\bar{V}_{sten}=2,7*10^{-5}\mathrm{m}^3$ med ett totalt fel på $|\Delta V_{sten}|=0,06766*10^{-5}\mathrm{m}^3$.