IX Международная конференция «Лазерные, плазменные исследования и технологии» ЛаПлаз-2023

Секция "Ускорители заряженных частиц и радиационные технологи"

Спиновая Когерентность и Бетатронная Хроматичность Дейтронного Пучка в Режиме Квазизамороженного Спина.

Докладчик: Колокольчиков С. (kolokolchikov@inr.ru)

Со-авторы: Сеничев Ю., Аксентьев А., Мельников А.,

Институт Ядерных Исследований РАН, Москва, Россия

Москва, 29 марта 2023 г.

TABLE OF CONTENTS

- «Quasi-Frozen Spin»
- **☐** Spin Tune Decoherence Effects
 - Equilibrium Level Energy Shift
 - Orbit Lengthening and Betatron Chromaticity
- **☐** Sextupole Correction
 - Betatron Chromaticity
 - Spin Coherence
 - $-\alpha_1/\eta_1$ Correction
- Conclusions

«Quasi-Frozen Spin»

T-BMT Equations

Spin-tunes in E, B fields

$$\begin{split} \frac{d\vec{S}}{dt} &= \vec{S} \times \left(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM} \right), \\ \overrightarrow{\Omega}_{MDM} &= \frac{q}{m\gamma} \left\{ (\gamma G + 1) \overrightarrow{B}_{\perp} + (G + 1) \overrightarrow{B}_{\parallel} - \left(\gamma G + \frac{\gamma}{\gamma + 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right\}, \\ \overrightarrow{\Omega}_{EDM} &= \frac{q\eta}{2m} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right), G = \frac{g - 2}{2}, \end{split}$$

$$v_s^B = \gamma G$$

$$v_s^E = \frac{G+1}{\gamma} - G\gamma$$

Optimization in ByPass NICA Storage Ring

Spin Tune Decoherence Effects

Equilibrium Level Energy Shift

$$\gamma_{eff} = \gamma_{s} + \beta_{s}^{2} \gamma_{s} \Delta \delta_{eq}$$

$$\Delta \delta_{eq} = \frac{\gamma_s^2}{\gamma_s^2 \alpha_0 - 1} \left[\frac{\delta_0^2}{2} \left(\alpha_1 + \frac{3}{2} \frac{\beta_s^2}{\gamma_s^2} - \frac{\alpha_0}{\gamma_s^2} + \frac{1}{\gamma_s^4} \right) + \left(\frac{\Delta L}{L} \right)_{\beta} \right], \qquad \left(\frac{\Delta L}{L} \right)_{\beta} = -\frac{\pi}{L_0} \left[\varepsilon_x \nu_x + \varepsilon_y \nu_y \right]$$

Orbit Lengthening and Betatron Chromaticity

$$\Delta C_{\Sigma} = -\pi \left(\varepsilon_{x} \xi_{x} + \varepsilon_{y} \xi_{y} \right) + \delta_{0} (\alpha_{0} + \alpha_{1} \delta_{0} + \cdots)$$

Sextupole Correction

Betatron Chromaticity

Spin Coherence

α_1/η_1 Correction

- <u>3</u> sextupole families
- <u>Zero</u> betatron chromaticity
- No spin coherence
- α_1/η_1 up to zero value

$$\gamma_{eff} = \gamma_s + \beta_s^2 \gamma_s \Delta \delta_{eq}$$

$$\Delta \delta_{eq} = \frac{\gamma_s^2}{\gamma_s^2 \alpha_0 - 1} \left[\frac{\delta_0^2}{2} \left(\alpha_1 + \frac{3}{2} \frac{\beta_s^2}{\gamma_s^2} - \frac{\alpha_0}{\gamma_s^2} + \frac{1}{\gamma_s^4} \right) + \left(\frac{\Delta L}{L} \right)_\beta \right],$$

$$\left(\frac{\Delta L}{L}\right)_{\beta} = -\frac{\pi}{L_0} \left[\varepsilon_{x} \nu_{x} + \varepsilon_{y} \nu_{y} \right]$$

$$\Delta C_{\Sigma} = -\pi \left(\varepsilon_{x} \xi_{x} + \varepsilon_{y} \xi_{y} \right) + \delta_{0} (\alpha_{0} + \alpha_{1} \delta_{0} + \cdots)$$

Optimization Summary Table

Optimization	No optimization	Chromaticity	Spin Coherence	Chromaticity + α_1	Chromaticity + η_1
Tunes	-17/-17	0/0	-13/-18	0/0	0/0
α_1	0.2	-0.4	$-0.37 \cdot 10^{-2}$	$\sim -10^{-12}$	-0.85
quadK _x	$-0.16 \cdot 10^{-1}$	$0.55 \cdot 10^{-1}$	$0.27 \cdot 10^{-13}$	$0.55 \cdot 10^{-1}$	$0.56 \cdot 10^{-1}$
quadK _y	$0.51 \cdot 10^{-2}$	$0.76 \cdot 10^{-1}$	$-0.12 \cdot 10^{-12}$	$0.78\cdot 10^{-1}$	$0.78 \cdot 10^{-1}$
quadKz	$-0.43 \cdot 10^{-1}$	$0.20 \cdot 10^{-1}$	$0.13 \cdot 10^{-12}$	$0.13 \cdot 10^{-1}$	$1.6 \cdot 10^{-1}$
Sextupole families	No sextupoles	2	3	3	3
Max. sextupole coefficient, m ⁻³	_	2.7	19.4	4.9	104.2

Conclusions

- Considered the phenomenon of spin decoherence simultaneously with betatron chromaticity in ByPass NICA Storage Ring.
- Different cases of sextupole optimizations.
- 3 sextupole families in regular structure can't compensate both betatron chromaticities and get spin coherence.
- It can be possible to modulate dispersion function in such way to get now 3 linear independent sextupole families.
- One of the possible problem decisions is using cooled beam at the level of $dp/p \sim 10^{-5}$. This can help to minimize γ -effective.
- Maximum value of sextupole coefficient not satisfactory and can cause non-linear instabilities.