Computerorientierte Mathematik I Übung 5

Gideon Schröder¹ Samanta Scharmacher² Nicolas Lehmann³ (Dipl. Kfm., BSC)

 Freie Universität Berlin, FB Physik, Institut für Physik, gideon.2610@hotmail.de
 Freie Universität Berlin, FB Mathematik und Informatik, Institut für Informatik, scharbrecht@zedat.fu-berlin.de
 Freie Universität Berlin, FB Mathematik und Informatik, Institut für Informatik, AG Datenbanksysteme, Raum 170, mail@nicolaslehmann.de, http://www.nicolaslehmann.de

Lösungen zu den gestellten Aufgaben

Aufgabe 1

Teilaufgabe a)

z.z.: $\kappa_{abs}(f, x) \leq \kappa_{abs}(g, x) + \kappa_{abs}(h, x)$ mit f = g + hAus der VL ist bekannt für $\kappa_{abs}(f, x)$:

$$|f(x_0) - f(x)| \le \kappa_{abs}(f, x) \cdot |x_0 - x| \qquad \Leftrightarrow$$

$$\frac{|f(x_0) - f(x)|}{|x_0 - x|} \le \kappa_{abs}(f, x) \qquad \Leftrightarrow$$

$$\lim \sup_{x \to x_0} \frac{|f(x_0) - f(x)|}{|x_0 - x|} = \kappa_{abs}(f, x)$$

Analog gilt die absolute Konditionen für g und h mit:

$$\kappa_{abs}(g, x) = \limsup_{x \to x_0} \frac{|g(x_0) - g(x)|}{|x_0 - x|}$$
$$\kappa_{abs}(h, x) = \limsup_{x \to x_0} \frac{|h(x_0) - h(x)|}{|x_0 - x|}$$

Setze nun f = g + h in $\kappa_{abs}(f, x) \Rightarrow \kappa_{abs}(f, x) = \kappa_{abs}(g + h, x)$

$$\kappa_{abs}(f, x) = \limsup_{x \to x_0} \frac{|f(x_0) - f(x)|}{|x_0 - x|} \Leftrightarrow \\
\kappa_{abs}(f, x) = \limsup_{x \to x_0} \frac{|(g(x_0) + h(x_0)) - (g(x) + h(x))|}{|x_0 - x|} \Leftrightarrow \\
\kappa_{abs}(f, x) = \limsup_{x \to x_0} \frac{|(g(x_0) - g(x)) + (h(x_0) - h(x))|}{|x_0 - x|}$$

Wir nutzen nun die Subadditivität von lim sup definiert als:

$$\limsup (x \pm y) \le \limsup x \pm \limsup y$$

$$\kappa_{abs}(f,x) \leq \limsup_{x \to x_0} \frac{|(g(x_0) - g(x))|}{|x_0 - x|} + \limsup_{x \to x_0} \frac{|(h(x_0) - h(x))|}{|x_0 - x|}$$

Es ist ersichtlich, dass die beiden Summanden jeweils den Werten für $\kappa_{abs}(g,x)$ und $\kappa_{abs}(h,x)$ entsprechen. Es folgt:

$$\kappa_{abs}(f, x) \le \kappa_{abs}(h, x) + \kappa_{abs}(g, x)$$

Bemerkung:

Das Auseinanderziehen der Beträge gilt, da wir diese Teilbeträge addieren (können nicht negativ werden) und wir eine Abschätzung machen. Dieser Wert ist mindestens genau so groß wie der vorherige.

Teilaufgabe b)

Gesucht: $\kappa_{abs}(f,x)$ und $\kappa_{rel}(f,x)$ mit $f(x) = x^5 + |x^3|$ Seien nun $g(x) = x^5$ und $h(x) = |x^3|$ und f(x) = g(x) + h(x). Die Funktionen g(x) und h(x) sind differenzierbar.

Somit können wir mit Hilfe der Ableitung die absolute Konditionen berechnen.

Seinen:

$$g(x) = x^5$$
 \Rightarrow $g'(x) = 5x^4$
 $h(x) = |x^3|$ \Rightarrow $h'(x) = 3x|x|$

Somit erhalten wir folgende absolute und relativen Konditionen:

$$\kappa_{abs}(g,x) = |g'(x_0)| = |5x_0^4|$$

$$\kappa_{abs}(h,x) = |h'(x_0)| = |3x_0|x_0|| = |3x_0^2|$$

$$\kappa_{rel}(g,x) = \frac{|x_0|}{|g(x_0)|} \cdot \kappa_{abs}(g,x) = \frac{|x_0|}{|x_0^5|} \cdot |5x_0^4| = 5$$

$$\kappa_{rel}(h,x) = \frac{|x_0|}{|h(x_0)|} \cdot \kappa_{abs}(h,x) = \frac{|x_0|}{|x_0^3|} \cdot |3x_0^2| = 3$$

Nach UB5-A1-a) gilt nun:

$$\kappa_{abs}(f, x) \le \kappa_{abs}(g, x) + \kappa_{abs}(h, x)$$

Es folgt:

$$\kappa_{abs}(f, x) \leq |5x_0^4| + |3x_0^2|$$

Es folgt weiter für die relative Kondition:

$$\kappa_{rel}(f,x) = \frac{|x_0|}{|f(x_0)|} \cdot \kappa_{abs}(f,x)$$

$$= \frac{|x_0|}{|g(x_0) + h(x_0)|} \cdot \kappa_{abs}(f,x)$$

$$\leq \frac{|x_0|}{|x_0^5 + |x_0^3||} \cdot (|5x_0^4| + |3x_0^2|)$$

$$\leq \frac{|5x_0^5| + |3x_0^3|}{|x_0^5 + |x_0^3||}$$

$$\leq \frac{5|x_0|^5 + 3|x_0|^3}{|x_0^5 + |x_0|^3|}$$

$$\leq \frac{|x_0|^3 (5|x_0|^2 + 3)}{|x_0|^3 \cdot |x_0^2 + 1|}$$

$$\leq \frac{(5|x_0|^2 + 3)}{|x_0^2 + 1|}$$

Teilaufgabe c)

Gesucht: $\kappa_{abs}(f,x)$ und $\kappa_{rel}(f,x)$ mit $f(x) = \sin^2(x) + \cos^2(x)$ Seien nun $g(x) = \sin^2(x)$ und $h(x) = \cos^2(x)$. Bereits aus der Schule ist bekannt, dass cos und sin differenzierbar sind und für ein beliebiges $x \in \mathbb{R}$ gilt $f(x) = \sin^2(x) + \cos^2(x) = 1$. Seien nun folgende Ableitungen gegeben:

$$g(x) = \sin^2(x)$$
 \Rightarrow $g'(x) = 2\sin(x)\cos(x)$ $= \sin(2x)$
 $h(x) = \cos^2(x)$ \Rightarrow $h'(x) = -2\sin(x)\cos(x)$ $= -\sin(2x)$

Damit erhalten wir folgende absoluten Konditionen für g(x) und h(x):

$$\kappa_{abs}(g,x) = |g'(x_0)| = |\sin(2x_0)|
\kappa_{abs}(h,x) = |h'(x_0)| = |-\sin(2x_0)|
\kappa_{rel}(g,x) = \frac{|x_0|}{|g(x_0)|} \cdot \kappa_{abs}(g,x) = \frac{|x_0|}{|\sin^2(x_0)|} \cdot |2\sin(x_0)\cos(x_0)| = \frac{|x_0|}{|\sin(x_0)|} \cdot |2\cos(x_0)|
\kappa_{rel}(h,x) = \frac{|x_0|}{|h(x_0)|} \cdot \kappa_{abs}(h,x) = \frac{|x_0|}{|\cos^2(x_0)|} \cdot |-2\sin(x_0)\cos(x_0)| = \frac{|x_0|}{|\cos(x_0)|} \cdot |-2\sin(x_0)|$$

Nach UB5-A1-a) gilt nun:

$$\kappa_{abs}(f, x) \le \kappa_{abs}(g, x) + \kappa_{abs}(h, x)$$

Es folgt:

$$\kappa_{abs}(f, x) \le |\sin(2x_0)| + |-\sin(2x_0)| = 2|\sin(2x_0)| ; \text{ denn } |-x| = x = |x|$$

Für die relative Kondition gilt somit:

$$\kappa_{rel}(f, x) = \frac{|x_0|}{|f(x_0)|} \cdot \kappa_{abs}(f, x)$$

$$= \frac{|x_0|}{|g(x_0) + h(x_0)|} \cdot \kappa_{abs}(f, x)$$

$$\leq \frac{|x_0|}{|\sin^2(x) + \cos^2(x)|} \cdot (2|\sin(2x_0)|)$$

$$\leq \frac{|x_0|}{1} \cdot (2|\sin(2x_0)|)$$

$$\leq |x_0| \cdot 2|\sin(2x_0)|$$

Berechnung der Konditionen mit x = 0:

$$\Rightarrow \kappa_{abs}$$

$$\kappa_{abs}(f, x) \le 2|\sin(2x_0)|$$

$$\kappa_{abs}(f, 0) \le 2|\sin(2 \cdot 0)|$$

$$\le 2|0|$$

$$\le 0$$

$$\Rightarrow \kappa_{rel}$$

$$\begin{split} \kappa_{rel}(f,x) &\leq |x_0| \cdot 2|\sin(2x_0)| \\ \kappa_{rel}(f,0) &\leq |0| \cdot 2|\sin(2\cdot 0)| \\ &\leq 0 \end{split}$$

Nach obiger Regel $\cos^2(x) + \sin^2(x) = 1$ kann sogar recht einfach der genaue Wert für die relative und absolute Kondition berechnet werden:

$$\kappa_{abs}(f, x) = |f'(x_0)| = 0
\kappa_{rel}(f, 0) = \frac{|x_0|}{|f(x_0)|} \cdot \kappa_{abs}(f, x) = \frac{|x_0|}{1} \cdot 0 = 0$$

Daraus lässt sich nun folgern, dass unsere obige Abschätzung scharf ist. Suche ein x, für die unsere Abschätzung unscharf ist! Wähle $x=\frac{\pi}{12}$:

 $\Rightarrow \kappa_{abs}$

$$\kappa_{abs}(f, x) \le |\sin(2x_0)| + |-\sin(2x_0)| = 2|\sin(2x_0)|$$

$$\kappa_{abs}(f, \frac{\pi}{12}) \le 2|\sin(2 \cdot \frac{\pi}{12})|$$

$$\le 2|\sin(\frac{\pi}{6})|$$

$$\le 2|\frac{1}{2}|$$

$$\le 1$$

 $\Rightarrow \kappa_{rel}$

$$\kappa_{rel}(f, x) \leq |x_0| \cdot 2|\sin(2x_0)|$$

$$\kappa_{rel}(f, \frac{\pi}{12}) \leq |\frac{\pi}{12}| \cdot 2|\sin(2 \cdot \frac{\pi}{12})|$$

$$\leq |\frac{\pi}{12}| \cdot 2|\sin(\frac{\pi}{6})|$$

$$\leq |\frac{\pi}{12}| \cdot 2|\frac{1}{2}|$$

$$\leq |\frac{\pi}{12}|$$

Aufgabe 2

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$\kappa_{abs} = f'(x) = e^{x}$$

$$\kappa_{rel} = \frac{|x_{0}|}{|f(x_{0})|} \cdot \kappa_{abs} = \frac{|x_{0}|}{|e^{x_{0}}|} \cdot e^{x_{0}} = |x_{0}|$$

Teilaufgabe a)

$$\begin{split} x_a &= -\frac{1}{2} \\ \kappa_{abs} &= |e^{-\frac{1}{2}}| < 1 \\ \kappa_{rel} &= |-\frac{1}{2}| < 1 \end{split}$$

Teilaufgabe b)

$$x_b = -2$$

$$\kappa_{abs} = |e^{-2}| < 1$$

$$\kappa_{rel} = |-2| > 1$$

Teilaufgabe c)

$$\begin{split} x_c &= \frac{9}{10} \\ \kappa_{abs} &= |e^{\frac{9}{10}}| > 1 \\ \kappa_{rel} &= |\frac{9}{10}| < 1 \end{split}$$

Teilaufgabe d)

$$x_d = 5$$

$$\kappa_{abs} = |e^5| > 1$$

$$\kappa_{rel} = |5| > 1$$

Aufgabe 3

Teilaufgabe a)

Die absolute Kondition von $f_k(x_0)$ ist die Ableitung der Funktion f_k an der Stelle x_0 .

Drei-Term-Rekursionsform:

$$f_k(x_0) = a \cdot f_{k-1}(x_0) + b \cdot f_{k-2}(x_0)$$

Geschlossene Form:

$$f_k(x_0) = \frac{\left(a + \sqrt{a^2 + 4b}\right)^{x_0} + \left(a - \sqrt{a^2 + 4b}\right)^{x_0}}{2^{x_0}}$$

Ableitung der geschlossenen Form:

$$\begin{split} \frac{df_k}{dx_0} &= f_k'(x_0) = \kappa_{abs}^k \\ f_k'(x_0) &= \frac{\log(a - \sqrt{a^2 + 4b}) \cdot (a - \sqrt{a^2 + 4b})^{x_0}}{2^{x_0}} \\ &+ \frac{\log(a + \sqrt{a^2 + 4b}) \cdot (a + \sqrt{a^2 + 4b})^{x_0}}{2^{x_0}} \\ &- \frac{\log(2) \cdot ((a - \sqrt{a^2 + 4b})^{x_0} + (a + \sqrt{a^2 + 4b})^{x_0})}{2^{x_0}} \\ &= \kappa_{abs}^k \end{split}$$

Hinweis: Ableitung der geschlossenen Form mit MATLAB berechnet.

Teilaufgabe b)

 κ^k_{abs} ist gleichmäßig beschränkt in $k\Rightarrow a=1 \wedge b=1 \wedge x_{-1} \geq 0$, da für alle κ^{k-i}_{abs} gilt: $|\kappa^{k-i}_{abs}| \leq \kappa^k_{abs}$, für alle i>0.

 $a=1 \wedge b=1 \wedge x_{-1} \geq 0 \Rightarrow \kappa^k_{abs}$ ist gleichmäßig beschränkt in k, da für alle κ^{k-i}_{abs} gilt: $|\kappa^{k-i}_{abs}| \leq \kappa^k_{abs}$, für alle i>0.