- I, Joseph Siu, affirm that this assignment represents entirely my own efforts. I confirm that:
 - I have not copied any portion of this work.
 - I have not allowed someone else in this course to copy this work.
 - This is the final version of my assignment and not a draft.
 - I understand the consequences of violating the University's academic integrity policies as outlined in the Code of Behavior on Academic Matters.

Theorem 1

Recall that we have proved the following theorem in class:

Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then the following statements are equivalent:

- 1. $f \in \mathfrak{R}[a,b]$.
- 2. (Darboux Criterion) $\overline{I}(f) = \underline{I}(f)$.
- 3. $\forall \varepsilon > 0, \forall \delta > 0, \exists \Gamma \in \Omega_{[a,b]} \text{ s.t.}$

$$\sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) > \varepsilon}} |I_k| < \delta.$$

4. (Du Bois Raymond Criterion) $\forall \varepsilon > 0, \forall \delta > 0, \exists n \in \mathbb{N} \text{ and } (a_1, b_1), (a_2, b_2), \dots, (a_n, b_n), \text{ such that}$

$$\left(D_f(\varepsilon, [a, b]) \subseteq \bigcup_{1 \le k \le n} (a_k, b_k)\right) \wedge \left(\sum_{k=1}^n (b_k - a_k) < \delta\right).$$

5. (Lebesgue Criterion) f is continuous almost everywhere on [a, b].

Question 1

Prove that $5 \Rightarrow 4 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1 \Rightarrow 5$. In each part, you should not use criterion other than the two involved in the statement.

Lemma 1

Fix $\varepsilon > 0$. If $x \in D_f(\varepsilon, [a, b])$, then $V_f([c, d]) > \varepsilon$ for any $[c, d] \subseteq [a, b]$ containing x.

Proof. If $x \in D_f(\varepsilon, [a,b])$, by definition we have $V_f(x) > \varepsilon$, that is, $\eta := \lim_{\delta \to 0} V_f(I_\delta(x)) > \varepsilon$. Fix an open neighborhood $I_\zeta(x) \subseteq [c,d]$ of x. Since for all $0 < \delta' < \delta$ we have $I_\delta(x) \supseteq I_{\delta'}(x)$, which implies $V_f(I_\delta(x)) \ge V_f(I_{\delta'}(x))$. Thus, since all sequences of decreasing δ are monotonely decreasing, we have that $\eta < V_f(I_\delta(x))$ for all $\delta > 0$. Thus, $V_f(I_\zeta(x)) \ge \eta > \varepsilon$, this implies our proof.

 $\stackrel{erat}{dem}$

Lemma 2

If $\forall x \in [a, b], V_f(x) \leq \frac{\varepsilon}{3}$, then for all positive epsilon there exists a finite partition Γ of [a, b] such that $V_f(I_i) \leq \varepsilon$ for all partitioned intervals I_i of Γ .

Proof. $V_f(x) \leq \frac{\varepsilon}{3}$ implies there exists an open neighborhood $I_\delta(x)$ of x such that $V_f(I_\delta(x)) \leq \frac{\varepsilon}{3}$. Then, we can see $\{I_\delta(x)\}_{x\in[a,b]}$ forms an open cover of [a,b]. Moreover, since [a,b] is closed and bounded thus compact, by Borel-Lebesgue / Heine-Borel there exists a finite subcover $\{J_i\}_{1\leq i\leq n}$ of $\{I_\delta(x)\}_{x\in[a,b]}$. Then, construct a partition Γ based on the endpoints of the intervals in the finite subcover $\{J_i\}_{1\leq i\leq n}$.

Now, for any partitioned interval $[\alpha, \beta]$ of Γ , we have $(\alpha, \beta) \subseteq J_i$ for some $1 \le i \le n$. Since $V_f(I_\delta(\alpha)) \le \frac{\varepsilon}{3}$, $V_f(J_i) \le \frac{\varepsilon}{3}$, and $V_f(I_\delta(\beta)) \le \frac{\varepsilon}{3}$, we have $V_f([\alpha, \beta]) \le \sup_{x,y \in I_\delta(\alpha) \cup J_i \cup I_\delta(\beta)} |f(x) - f(y)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$.

Since we have consturcted such finite partition Γ for arbitrary $\varepsilon > 0$, this completes our proof.

quou erat dem∎

Proof. $(5 \Rightarrow 4)$

Assume f is continuous almost everywhere on [a, b]. By definition of almost everywhere, this implies the set of discontinuous points of f forms a null set D.

By definition of continuity, we have

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I_{\delta}(x), |f(x) - f(x_0)| < \varepsilon.$$

Fix $\varepsilon = \frac{\xi}{4}$, then $V_f(I_{\delta}(x)) \leq \frac{\xi}{2}$.

For continuous points x in [a, b], we construct the open neighborhood $I_{\delta}(x)$ as above, let I_x denote such open neighborhood of x. For discontinuous points x' in [a, b], since $x' \in D$ and D forms a null set, by definition this implies

$$\forall \delta > 0, \exists \{I_i\}_{i \in \mathbb{N}}, \left(D \subseteq \bigcup_{i \in \mathbb{N}} I_i\right) \wedge \left(\sum_{i=1}^{\infty} |I_i| < \delta\right).$$

Fix $\delta = \frac{\xi}{4}$, then we have $\exists \{I_i\}_{i \in \mathbb{N}}$, $\left(D \subseteq \bigcup_{i \in \mathbb{N}} I_i\right) \land \left(\sum_{i=1}^{\infty} |I_i| < \frac{\xi}{4}\right)$, fix such $\{I_i\}_{i \in \mathbb{N}}$. Now, let $I_{x'}$ be the open interval that covers x'.

So, since [a,b] is closed and bounded that compact, and $\{I_x\}_{x\in[a,b]\setminus D}\cup\{I_{x'}\}_{x'\in D}$ forms a cover of [a,b], hence by Borel-Lebesgue / Heine-Borel Theorem this implies a finite subcover $\{J_i\}_{1\leq i\leq N}$ of $\{I_x\}_{x\in[a,b]\setminus D}\cup\{I_{x'}\}_{x'\in D}$ where N is the number of intervals in the finite subcover.

Now, let Γ be the partition based on the endpoints of the intervals in the finite subcover $\{J_i\}_{1 \leq i \leq N}$, consider 2 of the cases of the partitioned intervals $[\alpha, \beta]$:

Case 1. $(\alpha, \beta) \subseteq I_x$ for some $x \in [a, b] \setminus D$.

In this case we have $V_f([\alpha, \beta]) \leq V_f(I_x) \leq \frac{\xi}{2} < \xi$. That is, $D_f(\xi, [a, b]) \cap [\alpha, \beta] = \emptyset$. We may ignore these intervals for proving Du Bois Raymond Criterion (4).

Case 2. $(\alpha, \beta) \subseteq I_{x'}$ for some $x' \in D$.

In this case we have

$$([\alpha, \beta] \subseteq I_{x'}) \land \left(|I_{x'}| < \frac{\xi}{4}\right) \implies (\beta - \alpha) < \frac{\xi}{4}.$$

Let M denote the number of all such $[\alpha, \beta]$, since the cover $\{J_i\}_{1 \leq i \leq N}$ is finite, this implies the partition of Γ is finite, thus M also needs to be finite.

Let $[\alpha_i, \beta_i]$ denote the i^{th} such interval where $1 \leq i \leq M$, this is allowed because of the order of the partition of Γ

Homework 5 👺

Since there are only finitely many such α and β by our partition Γ , let N be the set containing all partitions of Γ , i.e., containing a, b, and all α, β . Then, since N is a collection of finitely many points, we can see N is also a null set. Hence, by definition of null set, we have

$$\forall \delta > 0, \exists \{I_i\}_{i \in \mathbb{N}}, \left(N \subseteq \bigcup_{i \in \mathbb{N}} I_i\right) \wedge \left(\sum_{i=1}^{\infty} |I_i| < \delta\right).$$

Fix $\delta = \frac{\xi}{4}$, let $\{K_i\}_{i \in \mathbb{N}}$ be the open cover that covers N and $\sum_{i=1}^{\infty} |K_i| < \frac{\xi}{4}$. Moreover, since N is finite and closed thus bounded. By Borel-Lebesgue / Heine-Borel Theorem, we can find a finite subcover $\{K_i'\}_{1 \leq i \leq P}$ of $\{K_i\}_{i \in \mathbb{N}}$ where P is the number of intervals in the finite subcover.

Now, combining the above 2 cases we have shown that

$$\left(D_f(\xi, [a, b]) \subseteq \left(\bigcup_{1 \le i \le M} (\alpha_i, \beta_i)\right) \bigcup \left(\bigcup_{1 \le i \le P} K_i'\right)\right) \wedge \left(\sum_{i=1}^M (\beta_i - \alpha_i) + \sum_{i=1}^P |K_i'| < \frac{\xi}{4} + \frac{\xi}{4} < \xi\right).$$

Hence, since our ξ is arbitrary, for arbitrary $\varepsilon, \delta > 0$ by letting $\xi := \min\{\varepsilon, \delta\}, n := M + P$, leting $(a_1, b_1), \ldots, (a_n, b_n)$ be the intervals that covers $D_f(\xi, [a, b])$, we have shown that

$$\left(D_f(\varepsilon,[a,b])\subseteq D_f(\xi,[a,b])\subseteq \bigcup_{1\leq k\leq n}(a_k,b_k)\right)\wedge \left(\sum_{k=1}^n(b_k-a_k)<\xi\leq \delta\right).$$

Therefore, $\forall \varepsilon > 0, \forall \delta > 0, \exists n \in \mathbb{N} \text{ and } (a_1, b_1), (a_2, b_2), \dots, (a_n, b_n), \text{ such that}$

$$\left(D_f(\varepsilon, [a, b]) \subseteq \bigcup_{1 \le k \le n} (a_k, b_k)\right) \wedge \left(\sum_{k=1}^n (b_k - a_k) < \delta\right),$$

this completes our proof.

quod $\begin{array}{c} erat \\ dem \blacksquare \end{array}$

Proof. $(4 \Rightarrow 3)$

Fix $\frac{\varepsilon}{3} > 0$, $\delta > 0$. By Criterion 4 there exist a natural number n and a finite open cover $\{J_k\}_{1 \le k \le n}$ such that

$$\left(D_f(\frac{\varepsilon}{3}, [a, b]) \subseteq \bigcup_{1 \le k \le n} J_k\right) \wedge \left(\sum_{k=1}^n |J_k| < \delta\right).$$

Fix such $n \in \mathbb{N}$, then there exists $n_1 \in \mathbb{N}$ and a finite open cover $\{J'_k\}_{1 < k < n_1}$ such that

$$\left(D_f(\frac{\varepsilon}{3}, [a, b]) \subseteq \bigcup_{1 \le k \le n_1} J_k'\right) \wedge \left(\sum_{k=1}^{n_1} |J_k'| < \frac{\delta}{n}\right).$$

Let Γ be the partition based on the endpoints of $\{J'_k\}_{1\leq k\leq n}$. Split the partitioned intervals $[\alpha,\beta]$ into 2 parts:

Case 1. $[\alpha, \beta] \cap D_f(\frac{\varepsilon}{3}, [a, b]) = \emptyset$.

By Lemma 2, this implies there exists a finite partition of $[\alpha, \beta]$ such that for all partitioned interval $[\gamma, \zeta]$ we have $V_f([\gamma,\zeta]) \leq \varepsilon$. Refine our Γ to include these partitions, let Γ^* denote the refined partition.

Let m_1 denote the total number of all such intervals' partitioned intervals. Let $[\alpha_k, \beta_k]$ denote the endpoints of each interval where $0 \le k \le m_1 - 1$. After we refine our original Γ to include the finite partitions for all the " $[\alpha, \beta]$ ", we can see $\sum_{\substack{0 \le k \le m_1 - 1 \\ 0 \le k \le m_1 - 1}}^{0 \le k \le m_1 - 1} |\beta_k - \alpha_k| = 0$ since any partitioned interval $[\alpha_k, \beta_k]$ has the property that

 $V_f([\alpha_k, \beta_k]) \leq \varepsilon.$

Case 2. $[\alpha', \beta'] \cap D_f(\frac{\varepsilon}{3}, [a, b]) \neq \emptyset$, that is, $(\alpha', \beta') \subseteq J_i \cup J_j \cup J_k$ for some $1 \le i \le n, 1 \le j \le n, 1 \le k \le n$ by our construction of partitions.

Since there can only be n such intervals. By assumption the total length of all such intervals is less than δ. Namely, let m_2 denote the number of all such intervals of Γ (clearly $m_2 \le n$), then $\sum_{1 \le k \le m_2} |\beta_k' - \alpha_k'| \le n$

$$m_2 \cdot \sum_{k=1}^{n_1} |J_k'| < n \cdot \frac{\delta}{n} = \delta.$$

Since these 2 cases cover the entire interval, we conclude

$$\sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) > \varepsilon}} |I_k| \leq 0 + \sum_{\substack{0 \leq k \leq m_2-1 \\ V_f(\alpha_k', \beta_k']) > \varepsilon}} |\beta_k' - \alpha_k'| < \delta.$$

Since ε and δ are arbitrary, and we have constructed such Γ , this completes our proof.

quod $\stackrel{l}{e}rat \\ dem$

Proof. $(3 \Rightarrow 2)$

For all $\varepsilon > 0$ and $\delta > 0$, by Criterion 3, there exists a partition Γ such that

$$\sum_{\substack{0 \le k \le n-1 \\ V_f(\bar{I}_k) > \delta}} |I_k| < \frac{\varepsilon}{8|M|+1},$$

where f is bounded by M (integrable implies boundedness).

Fix $\delta = \frac{\varepsilon}{4(b-a)+1}$.

Then, by the supremum and infimum definition we have

$$\overline{I}(f) \leq \sum_{k=0}^{n-1} M_{x_k, x_{k+1}} \Delta x_k$$

$$\sum_{k=0}^{n-1} m_{x_k, x_{k+1}} \Delta x_k \leq \underline{I}(f)$$

$$\overline{I}(f) - \underline{I}(f) \leq \sum_{k=0}^{n-1} M_{x_k, x_{k+1}} \Delta x_k - \sum_{k=0}^{n-1} m_{x_k, x_{k+1}} \Delta x_k$$

$$\leq \sum_{k=0}^{n-1} (M_{x_k, x_{k+1}} - m_{x_k, x_{k+1}}) \Delta x_k$$

$$\leq \sum_{k=0}^{n-1} (V_f([x_k, x_{k+1}])) \Delta x_k,$$

now we separate the intervals into $V_f(I_k) > \delta$ and $V_f(I_k) \le \delta$ where $I_k = [x_k, x_{k+1}]$, then:

$$\leq \sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) > \delta}} (V_f(I_k)) \Delta x_k + \sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) \leq \delta}} (V_f(I_k)) \Delta x_k,$$

since f is bounded by M, by our assumption then we have:

$$\leq 2M \sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) > \delta}} \Delta x_k + \sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) \leq \delta}} (V_f(I_k)) \Delta x_k$$

$$\leq \frac{\varepsilon}{4} + \sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) \leq \delta}} (V_f(I_k)) |I_k|,$$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4(b-a)+1} \sum_{\substack{0 \leq k \leq n-1 \\ V_f(I_k) \leq \delta}} |I_k|$$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4}$$

$$\leq \frac{\varepsilon}{2}$$

$$< \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, we conclude $\overline{I}(f) - \underline{I}(f) = 0$, therefore $\overline{I}(f) = \underline{I}(f)$ as needed.

quod $\stackrel{\cdot}{e}rat \\ dem$

Proof. $(2 \Rightarrow 1)$

By Proposition 2.3 we have for any two partitions $\Gamma_1, \Gamma_2 \in \Omega[a, b], \underline{S}(f, \Gamma_1) \leq \overline{S}(f, \Gamma_2)$. So, by definition for any marked partition $(\Gamma, \eta) \in \Omega^*[a, b]$ we have

$$\underline{S}(f, \Gamma_1) \leq \sum_{i=0}^{n-1} f(\eta_i) \Delta x_i \leq \overline{S}(f, \Gamma_2).$$

By letting $||\Gamma|| \to 0$, we have

$$\underline{I}(f) \le \sum_{i=0}^{n-1} f(\eta_i) \Delta x_i \le \overline{I}(f).$$

Since $\overline{I}(f) = \underline{I}(f)$, we can claim that $f \in \mathfrak{R}[a,b]$, moreover $\int_a^b f(x) \, \mathrm{d}x = \overline{I}(f) = \underline{I}(f)$:

When $||\Gamma|| < \delta$, this is equivalent to $||\Gamma|| \to 0$, and by squeeze theorem we have that $0 - \frac{\varepsilon}{2} \le \sum_{i=1}^{n-1} f(\eta_i) \Delta x_i - \int_{a}^{b} f(x) dx \le 1$

 $0 + \frac{\varepsilon}{2}$, which gives $\left| \sum_{i=0}^{n-1} f(\eta_i) \Delta x_i - \int_a^b f(x) \, \mathrm{d}x \right| \leq \frac{\varepsilon}{2} < \varepsilon$, since (Γ, η) is arbitrary, this gives the definition of Riemann integrability, as needed.

 $\stackrel{\hat{e}rat}{dem}$

Proof. $(1 \Rightarrow 5)$

We will prove the contrapositive. Assume the discontinuous points of f do not form a null set N, namely

$$\exists \varepsilon_1 > 0, \forall \{J_i\}_{i \in \mathbb{N}} \text{ we have } \left(N \not\subseteq \bigcup_{i \in \mathbb{N}} J_i \right) \vee \left(\sum_{i=1}^{\infty} |J_i| \ge \varepsilon_1 \right).$$

Fix such $\varepsilon_1 > 0$. Let $\delta > 0$ be arbitrary, let (Γ, η) be arbitrary such that $||\Gamma|| \le \delta$, let M denotes the number of partitioned intervals.

Let $\{I_k\}_{k\in M}$ be the partitioned intervals of Γ . Let $a=\min\{V_f(I_k)\}_{k\in M}\geq 0$, here $a\neq 0$ because of the non-empty discontinuous set N. then, consider $\varepsilon := a(\varepsilon_1) > 0$.

By specialization, and ignore a, b if they are discontinuous, we may consturct an open cover $\{J_i\}_{i\in\mathbb{N}}$ of the discontinuous set $N \setminus \{a, b\}$ such that $\sum_{i=1}^{\infty} |J_i| \geq \varepsilon_1$ and does not cover a, b, since N do not form a null set, so is $N \setminus \{a, b\}$.

Since $\sum_{i=0}^{M-1} |I_i| \ge \sum_{i=1}^{\infty} |J_i|$ (becasue of the forall quantifier, we may assume the union of the cover $\{J_i\}_{i\in\mathbb{N}}$ is contained within [a,b]), we can see that

$$\sum_{i=0}^{M-1} V_f(\varepsilon, I_i) |I_i| \ge a \sum_{i=0}^{M-1} |I_i|$$

$$\ge a \sum_{i=1}^{\infty} |J_i|$$

$$\ge a\varepsilon_1 \ge \varepsilon$$

So, by the negation of the Riemann integrability in terms of Aggregated Oscillation, we have shown that

$$\exists \varepsilon > 0, \forall \delta > 0, \exists (\Gamma, \eta) \in \Omega^*_{[a,b]}, ||\Gamma|| \leq \delta \wedge \sum_{i=0}^{n-1} V_f(I_i)|I_i| \geq \varepsilon,$$

hence the contrapositive is true, which implies $(1 \Rightarrow 5)$ as needed.

 $\begin{array}{c} quod\\ erat\\ dem \blacksquare \end{array}$

Using Lebesgue Criterion to study the Riemann integrability for the five examples in assignment 4.

?

- 1. Since D(x) is continuous nowhere (as proven in MAT157 Homework), then the sum of any open cover covering [0,1] must be greater than $\varepsilon = \frac{1}{2}$. By Lebesgue Criterion this implies that D(x) is not Riemann integrable.
- 2. Since T(x) is only discontinuous when $x \in \mathbb{Q}$, and \mathbb{Q} is a countable set, thus is also a null set. Hence, by definition of null set and continuous almost everywhere, we conclude T(x) is Riemann integrable by Lebesgue Criterion.
- 3. Similarly, we can also see that H(x) is only discontinuous when $x = \frac{1}{n}$ for some $n \in \mathbb{N}$ or x = 0 (by definition of floor function). Since $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ is a countable set, and $\{0\}$ is finite, the union of these sets is countable thus a null set. Hence, H(x) is continuous almost everywhere and is Riemann integrable by Lebesgue Criterion.
- 4. G(x) is also discontinuous whenever $x = \frac{1}{n}$ for some $n \in \mathbb{N}$ or x = 0 (by observering the values that $\sin\left(\frac{\pi}{x}\right)$ changes its sign), same as H(x), we may conclude that G(x) is Riemann integrable by Lebesgue Criterion.
- 5. $\ln(\frac{1}{x}) = -\ln(x)$ is also continuous everywhere except at x = 0. So, by MAT157 since $\sin x$ is continuous everywhere, we know $\sin\left(\ln\left(\frac{1}{x}\right)\right)$ is continuous everywhere on (0,1], thus it can be discontinuous at most at x = 0 which is a null set. Hence, $\sin\left(\ln\left(\frac{1}{x}\right)\right)$ is Riemann integrable by Lebesgue Criterion.

Question 3

Let $f, g: [a, b] \to [a, b]$. Fill in the blanks below regarding the integrability of $g \circ f$ and justify your answers, by giving either a proof or a counter-example.

	$f \in \mathcal{C}[a,b]$	$f\in\Re[a,b]$
$g \in \mathcal{C}[a,b]$	Yes	Yes
$g \in \mathfrak{R}[a,b]$	No	No

Table 1: Integrability of $g \circ f$ under different assumptions.

?

Proof.

- 1. $f \in \mathcal{C}[a,b]$:
 - (a). $g \in \mathcal{C}[a,b]$: Since the composition of continuous functions is continuous, so $g \circ f$ is continuous everywhere. Thus, by Lebesgue Criterion, $g \circ f$ is Riemann integrable.
 - (b). $g \in \mathfrak{R}[a, b]$: See below.
- 2. $f \in \mathfrak{R}[a,b]$:
 - (a). $g \in \mathcal{C}[a,b]$: Let $x \in [a,b]$ be such that $V_f(x) = 0$, then $g \circ f$ is also continuous at x. Since such x are almost everywhere, we conclude $g \circ f$ is continuous almost everywhere and thus Riemann integrable.
 - (b). $g \in \mathfrak{R}[a, b]$: Consider the example:

$$f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q} \in \mathbb{Q}, q > 0, \gcd(p, q) = 1\\ 0, & \text{otherwise} \end{cases}, g(x) = \begin{cases} 0, & x \leq 0\\ 1, & x > 0 \end{cases}.$$

Then, we can see that both $f,g\in\mathfrak{R}[a,b],$ but $(g\circ f)(x)=\begin{cases} 1,&x\in\mathbb{Q}\\ 0,&x\notin\mathbb{Q} \end{cases}$, which is not integrable (the Dirichlet function, as shown in the previous homework).

> quod $\stackrel{\cdot}{erat}_{dem}$

For 1.b., we show $g \circ f$ is false by constructing a counter-example:

Let [a,b] = [0,1]. We want to show that for some $g \in \mathfrak{R}[0,1]$, $f \in \mathcal{C}[0,1]$, $g \circ f$ is not Riemann integrable. To this end, we first define

$$g:[0,1] \to [0,1], g(y) = \begin{cases} 1, & y \neq 0 \\ 0, & y = 0 \end{cases}.$$

Then, we want to construct a function f that is both continuous on [0,1] and has uncountably disconnected many points $x \in [0,1]$ such that f(x) = 0, or f(x) = 1 separately. (so that $g \circ f$ is discontinuous uncountably many points thus does not satisfy Lebesgue Criterion for Riemann Integrability). So, for simplicity we will construct the case when f(x) = 0 based on the fat cantor set (the Smith-Volterra-Cantor set) FC.

Consider the recursively defined set FC as follows:

$$FC_0 = [0, 1].$$

- 1. We take out $(\frac{3}{8}, \frac{5}{8})$, i.e. $\frac{1}{4}$ from the middle of FC_0 : $FC_1 = [0, \frac{3}{8}] \cup [\frac{5}{8}, 1]$ (the length of $(\frac{3}{8}, \frac{5}{8})$ is same as $[\frac{3}{8}, \frac{5}{8}]$ due to $\{\frac{3}{8}, \frac{5}{8}\}$ is a null set / measure zero).
- 2. For each interval in FC_1 , we take out the middle $\frac{1}{16}$ of each interval: $FC_2 = [0, \frac{5}{32}] \cup [\frac{7}{32}, \frac{3}{8}] \cup [\frac{5}{8}, \frac{25}{32}] \cup [\frac{27}{32}, 1]$.

n. For each interval in FC_{n-1} , we take out the middle $\frac{1}{4^n}$ of each interval (totally 2^{n-1} such intervals), the remaining set is FC_n .

In this way if we let $FC = \bigcap_{n=0}^{\infty} FC_n$, then FC is the fat cantor set.

We can verify the following properties of FC:

Lemma 1

The 'length' of FC on [0,1] is $\frac{1}{2}$.

Proof. We consider the length of the intervals removed at each step of the construction. At the *n*-th step, the length of 2^{n-1} intervals removed is $\frac{2^{n-1}}{4^n} = \frac{1}{2^{n+1}}$, thus the total length of the intervals removed is $\sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2}$, which implies the length of FC is $\frac{1}{2}$.

dem

Lemma 2

FC is totally disconnected and is closed.

Proof. Let $x, y \in FC$ be arbitrary such that $x \neq y$, w.l.o.g. we let x < y. Moreover all points in FC are endpoints of the intervals in the construction thus so are x, y.

To obtain a contradiction, assume x and y are connected, that is, $[x,y] \subseteq FC$. However, by our construction of $[x,y] \subseteq FC$, such [x,y] always has to take out a middle interval from [x,y] by some positive length interval to get a new set FC' such that $FC' \subseteq FC$, which contradicts the fact that FC is the intersection of all FC_n . Thus, FC is totally disconnected.

Moreover, since FC is constructed by taking out open intervals from [0,1], this implies FC is closed.

 $\stackrel{\cdot}{e}rat \\ dem$

Now, we construct f(x) as follows:

$$f(x) = \begin{cases} 0, & x \in FC \\ -(x - x_1)(x - x_2), & x \notin FC \text{ where } x \in (x_1, x_2) \subseteq [0, 1] \setminus FC \text{ s.t. } x_1, x_2 \in FC \end{cases}$$
Page 9 of 12 Page 9.

MAT159: Analysis II Joseph Siu

Homework 5 👺

Claim 1

f is defined for all $x \in [0,1]$.

Proof. It suffices to show that whenever $x \notin FC$, there always exists an open interval (x_1, x_2) such that $x_1, x_2 \in FC$ and $(x_1, x_2) \subseteq [0, 1] \setminus FC$.

By our construction of FC, if $x \notin FC$, this implies there exists an open interval (x_1, x_2) such that this entire open interval is 'removed' from FC, thus $(x_1, x_2) \subseteq [0, 1] \setminus FC$, showing all the middle points are also removed from FC.

Moreover, since by our construction, we can see the boundary / end points of FC are all in FC(we are always keeping the endpoints from the previous generation), thus we have $x_1, x_2 \in FC$.

Since both conditions must be satisfied when $x \notin FC$, we conclude that f(x) is defined for all $x \in [0, 1].$

> quoderat dem

 \Diamond

Claim 2

f is continuous on [0,1].

Proof. We consider the cases when $x \in FC$ and $x \notin FC$ separately.

- 1. When $x \in FC$, since by our Lemma 2 FC is totally disconnected and is closed, this implies there exists $x_1, x_3 \in FC$ such that $x_1 < x < x_3$, and $(x_1, x) \subseteq [0, 1] \setminus FC$, $(x, x_3) \subseteq [0, 1] \setminus FC$, $x_1, x, x_3 \in FC$. Then, we can see the left limit of f(x) is $\lim_{x'\to x^-} f(x') = -(x'-x_1)(x'-x) = 0$ and the right limit of f(x) is $\lim_{x'\to x^+} f(x') = -(x'-x)(x'-x_3) = 0$, thus since both the limit of f(x) is 0 and f(x) = 0, we conclude f(x) is continuous at x.
- 2. When $x \notin FC$, we have $f(x) = -(x x_1)(x x_2)$ for some $x_1, x_2 \in FC$ such that $x \in (x_1, x_2) \subseteq [0, 1] \setminus FC$. Then, since (x_1, x_2) is open, we can always find an open neighborhood of x such that $f(x') = -(x' - x_1)(x' - x_2)$ for all $x' \in I_{\delta}(x)$, since polynomial is continuous everywhere by MAT157, we conclude f(x) is continuous at x locally.

Since $x \in [0,1]$ is arbitrary, we conclude that f is continuous on [0,1].

quod

Claim 3

 $f([0,1]) \subseteq [0,1]$ (so that f is a function $f:[0,1] \to [0,1]$).

Proof. If $x \in FC$, then $f(x) = 0 \in [0, 1]$.

If $x \notin FC$, then there exist $x_1, x_2 \in FC$ such that $x \in (x_1, x_2) \subseteq [0, 1] \setminus FC$. Now, we can see

$$f(x) = -(x - x_1)(x - x_2),$$

since this parabola achieves its maximum at the midpoint of the interval, so we have:

$$\leq -\left(\frac{x_1 + x_2}{2} - x_1\right) \left(\frac{x_1 + x_2}{2} - x_2\right)$$

$$= -\left(\frac{x_2 - x_1}{2}\right) \left(\frac{x_1 - x_2}{2}\right)$$

$$= \frac{1}{4} (x_2 - x_1)^2$$
< 1.

Also $x_1 < x, x < x_2$ imply $f(x) = -(x - x_1)(x - x_2) \ge 0$, thus $f(x) \in [0, 1]$.

Since $x \in [0, 1]$ is arbitrary, we conclude $f([0, 1]) \subseteq [0, 1]$.

 $quod\ erat\ dem$

\Diamond

Claim 4

f(x) = 0 if and only if $x \in FC$.

Proof. The backward direction holds by our definition of f.

For the forward direction, we will prove the contrapositive. Assume $x \notin FC$, then by our construction of f we have $f(x) = -(x - x_1)(x - x_2)$ for some $x_1, x_2 \in FC$ such that $x \in (x_1, x_2) \subseteq [0, 1] \setminus FC$. Then, $x \neq x_1, x \neq x_2$ imply $f(x) = -(x - x_1)(x - x_2) \neq 0$, thus $f(x) \neq 0$ which shows the contrapositive of the forward direction holds.

Hence we conclude f(x) = 0 if and only if $x \in FC$.

 $quod\ erat\ dem$

Now, consider $g \circ f$, by Claim 4 we have

$$(g \circ f)(x) = \begin{cases} 0, & x \in FC \\ 1, & x \notin FC \end{cases}.$$

Since by Lemma 1 FC has 'length' $\frac{1}{2}$, to show it does not satisfy Lebesgue Criterion it suffices to show the discontinuous points of $g \circ f$ do not form a null set. Namely,

$$\exists \varepsilon > 0, \forall \{(a_i,b_i)\}_{i \in \mathbb{N}} \text{ we have } \left(FC \not\subseteq \bigcup_{i \in \mathbb{N}} (a_i,b_i)\right) \vee \left(\sum_{i=1}^{\infty} (b_i-a_i) \geq \varepsilon\right),$$

which is equivalent to

$$\exists \varepsilon > 0, \forall \{(a_i, b_i)\}_{i \in \mathbb{N}} \text{ we have } \left(FC \subseteq \bigcup_{i \in \mathbb{N}} (a_i, b_i)\right) \implies \left(\sum_{i=1}^{\infty} (b_i - a_i) \ge \varepsilon\right).$$

Homework 5

Since FC is totally disconnected, we can see the set FC contains the discontinuous points of $g \circ f$ (all points in FC are also discontinuous points of $g \circ f$), thus it is enough to show FC does not form a null set.

So, fix $\varepsilon = \frac{1}{8} > 0$. Let $\{(a_i, b_i)\}_{i \in \mathbb{N}}$ be an arbitrary open cover of FC. Since FC has a total length of $\frac{1}{2}$, and we know the total length of the cover is at least the length of FC, i.e. $\frac{1}{2}$, thus we have $\sum_{i=1}^{\infty} (b_i - a_i) \ge \frac{1}{2} \ge \frac{1}{8} = \varepsilon$.

Since our open cover is arbitrary, and we have constructed such $\varepsilon > 0$, we conclude that $g \circ f$ does not satisfy Lebesgue Criterion, and thus is not Riemann integrable. Moreover, since f is a continuous function from [0,1] to [0,1] as shown in Claim 2 and Claim 3, and $g:[0,1] \to [0,1]$ is Riemann integrable, we thus found a counter-example to show that $g \circ f$ is not Riemann integrable when $f \in \mathcal{C}[a,b]$ and $g \in \mathfrak{R}[a,b]$.