

Credits

- Christopher Manning
- Prabhakar Raghavan
- → Francesco Ricci

Relevance Feedback

- Relevance feedback: user feedback on relevance of docs in initial set of results
 - ✓ User issues a (short, simple) query
 - The user marks some results as relevant or nonrelevant
 - The system computes a better representation of the information need based on feedback
 - Relevance feedback can go through one or more iterations
- → Idea: it may be difficult to formulate a good query when you don't know the collection well, so iterate.

Relevance Feedback

- → The process of query modification is commonly referred as
 - relevance feedback, when the user provides information on relevant documents to a query, or
 - query expansion, when information related to the query is used to expand it
- We refer to both of them as feedback methods
- Two basic approaches of feedback methods:
 - explicit feedback, in which the information for query reformulation is provided directly by the users
 - ✓ implicit feedback, in which the information for query reformulation is implicitly derived by the system

Example: search images

AitchEye.com Photos of Bikes in cities all over the world

Related searches: cartoon bike bmx bike mountain bike bicycle Feedback

Sponsored Link

Available bikes and 1207 x 753 - 326k - aif uwadmnweb.uwvo.edu Find similar images

Six Crazy Concept 640 x 463 - 67k - ipo wired.com Find similar images

sneaker meets bike 500 x 375 - 52k - jpg enveeapparel... Find similar images

The Youth Clinic i 379 x 385 - 152k - png suitcaseclinic.org Find similar images

Mountain bikes 400 x 300 - 31k - ipa adventure... Find similar images

Key concept: Centroid

- The centroid is the center of mass of a set of points
- → Recall that we represent documents as points in a high-dimensional space
- → Definition: Centroid $\vec{\mu}(C) = \frac{1}{|C|} \sum_{d \in C} \vec{d}$

where C is a set of documents.

Example

Rocchio Algorithm

- → Let us define terminology regarding the processing of a given query q, as follows:
 - \checkmark D_r : set of *relevant* documents among the documents retrieved
 - $\sim N_r$: number of documents in set D_r
 - \checkmark D_n : set of *non-relevant* documents among the documents retrieved
 - \checkmark N_n : number of documents in set D_n
 - \checkmark C_r : set of relevant docs among all documents in the collection
 - ✓ N: number of documents in the collection
 - \checkmark α , β , γ : tuning constants

Rocchio Algorithm

- → The Rocchio algorithm uses the vector space model to pick a relevance feedback query
- → Tries to separate docs marked relevant and nonrelevant – the solution is:

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\vec{d}_j \in C_r} \vec{d}_j - \frac{1}{N - |C_r|} \sum_{\vec{d}_j \notin C_r} \vec{d}_j$$

→ Problem: we don't know the truly relevant docs (C_r) .

Rocchio Algorithm

- $ightharpoonup C_r$ is not known a priori
- To solve this problem, we can formulate an initial query and to incrementally change the initial query vector

Rocchio 1971 Algorithm (SMART)

Used in practice:

$$\vec{q}_m = \alpha \vec{q}_0 + \frac{\beta}{N_r} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \frac{\gamma}{N_n} \sum_{\vec{d}_j \in D_n} \vec{d}_j$$

- → D_r = set of known relevant doc vectors
- → D_n = set of known irrelevant doc vectors
 - \checkmark These are different from $C_r!$
- $q_m =$ modified query vector; $q_0 =$ original query vector; a, β, γ: weights (hand-chosen or set empirically)
- New query moves toward relevant documents and away from irrelevant documents.

Relevance feedback on initial query

Subtleties to note

- Tradeoff α vs. β and γ : If we have a lot of judged documents, we want a higher β and γ
- Some weights in query vector can go negative:
 - ✓ Negative term weights are ignored (set to 0)
- Positive feedback is more valuable than negative feedback (so, set $\gamma < \beta$; e.g. $\gamma = 0.25$, $\beta = 0.75$) many systems only allow positive feedback ($\gamma = 0$)
- Relevance feedback can improve recall and precision

Relevance Feedback: Problems

- → Long queries are inefficient for typical IR engine
 - ✓ Long response times for user
 - High cost for retrieval system
 - ✓ Partial solution:
 - Only reweight certain prominent terms perhaps top 20 by term frequency
- → Users are often reluctant to provide explicit feedback
- → It's often harder to understand why a particular document was retrieved after applying relevance feedback
- → Information needs may change during the interaction (so what?).

Evaluation of relevance feedback strategies

- \bullet Use q_0 and compute precision and recall graph
- \bullet Use q_m and compute precision recall graph
 - √ 1) Assess on all documents in the collection
 - Spectacular improvements, but ... it's cheating!
 - Known relevant documents ranked higher
 - Must evaluate with respect to documents not seen by user
 - ✓ 2) Use documents in residual collection (all docs minus those assessed relevant)
 - Measures usually lower than for original query
 - But a more realistic evaluation
 - Relative performance can be validly compared
- → Empirically, one round of relevance feedback is often very useful - two rounds is sometimes marginally useful.

Evaluation of relevance feedback

- Most satisfactory use two collections each with their own relevance assessments (i.e., split randomly the collection in two parts)
 - $\checkmark q_0$ and user feedback from first collection
 - $\checkmark q_m$ run on second collection and measured.

Evaluation: Caveat

- → True evaluation of usefulness must compare to other methods taking the same amount of time – or using similar user effort
- → Alternative to relevance feedback: user revises and resubmits query
- Users may prefer revision/resubmission to having to judge relevance of documents
- → There is no clear evidence that relevance feedback is the "best use" of the user's time.

Relevance Feedback on the Web

- → Some search engines offer a similar/related pages feature (this is a trivial form of relevance feedback)
 - ✓ Google (link-based)
 - ✓ Altavista
 - ✓ Stanford WebBase

- ✓ Alltheweb, msn live.com, Yahoo
- → Excite initially had true relevance feedback, but abandoned it due to lack of use.

Pseudo relevance feedback

- Pseudo-relevance feedback automates the "manual" part of true relevance feedback
- Pseudo-relevance algorithm:
 - Retrieve a ranked list of hits for the user's query
 - ✓ Assume that the top k documents are relevant.
 - ✓ Do relevance feedback (e.g., Rocchio)
- Works very well on average
- But can go horribly wrong for some queries: e.g. if the top results of a query are all about a subtopic
- Several iterations can cause query drift
- Why?

Indirect relevance feedback

- → Ranked higher documents that users look at more often
 - Clicked on links are assumed likely to be relevant
 - Assuming the displayed summaries are good, etc.
- Globally: not necessarily user or query specific
 - This is the general area of clickstream mining
- → Today handled as part of machine-learned ranking.

Query Expansion

- → In relevance feedback, users give additional input (relevant/non-relevant) on documents, which is used to reweight terms in the query for documents
- → In query expansion, users give additional input (good/bad search term) on words or phrases.

Example: search images

Web Images Videos Maps Mews Shopping Gmail more ▼

Search settings | Sign in

Search images

Advanced Image Search

Images

Show options...

Results 1 - 20 of about 35,400,000 (0.23 seconds)

Bikes Photos

AitchEye.com Photos of Bikes in cities all over the world

Related searches: cartoon bike bmx bike mountain bike bicycle

Feedback

Sponsored Link

Available bikes and 1207 x 753 - 326k - aif uwadmnweb.uwyo.edu Find similar images

Six Crazy Concept 640 x 463 - 67k - jpg wired.com Find similar images

sneaker meets bike 500 x 375 - 52k - jpg enveeapparel... Find similar images

The Youth Clinic i 379 x 385 - 152k - pna suitcaseclinic.org Find similar images

Mountain bikes 400 x 300 - 31k - jpg adventure... Find similar images

Query assist

How do we augment the user query?

- Manual thesaurus
 - ✓ E.g. MedLine: physician, syn: doc, doctor, MD, medico
 - Can be related queries rather than just synonyms
- Global Analysis: static; based on all documents in collection
 - Automatically derived thesaurus
 - co-occurrence statistics
 - Refinements based on query log mining
 - Common on the web
- → Local Analysis: dynamic
 - ✓ Analysis of documents in result set

Example of manual thesaurus

Thesaurus-based query expansion

- → For each term, t, in a query, expand the query with synonyms and related words of t from the thesaurus
 - ✓ feline → feline cat
- May weight added terms less than original query terms
- **→** Generally increases recall
- Widely used in many science/engineering fields
- May significantly decrease precision, particularly with ambiguous terms
 - ✓ "interest rate" → "interest rate fascinate evaluate"
- There is a high cost of manually producing a thesaurus
 - And for updating it for scientific changes.

Query assist

- Generally done by query log mining
- Recommend frequent recent queries that contain partial string typed by user
- → A ranking problem! View each prior query as a doc – Rank-order those matching partial string ...

