

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-16 (canceled)

1 17.(New) An enzyme bioreactor comprising a murine Fuc-TVII enzyme, a
2 GDP-fucose donor substrate and a sialyl-N-acetyl-lactosamine acceptor substrate.

1 18. (New) The enzyme bioreactor of claim 17, wherein the Fuc-TVII enzyme
2 is in solution.

1 19. (New) The enzyme bioreactor of claim 17, wherein the Fuc-TVII enzyme
2 is immobilized on a solid phase matrix.

1 20. (New) The enzyme bioreactor of claim 17, wherein the Fuc-TVII enzyme
2 is a recombinant enzyme.

1 21. (New) The enzyme bioreactor of claim 20, wherein the Fuc-TVII enzyme
2 is produced in a mammalian host cell.

1 22. (New) The enzyme bioreactor of claim 20, wherein the Fuc-TVII enzyme
2 is produced in a baculovirus host.

1 23. (New) The enzyme bioreactor of claim 17, wherein the sialyl-N-acetyl-
2 lactosamine acceptor is on a glycoprotein.

1 24. (New) The enzyme bioreactor of claim 17, wherein the sialyl-N-acetyl-
2 lactosamine acceptor is on a glycolipid.

1 25. (New) The enzyme bioreactor of claim 17, wherein the sialyl-N-acetyl-
2 lactosamine acceptor is a free oligosaccharide.

1 26. (New) The enzyme bioreactor of claim 17, wherein the Fuc-TVII enzyme
2 comprises a catalytic domain that is encoded by a nucleic acid segment amplified by a 5' primer
3 as shown in SEQ ID NO:3 and a 3' primer as shown in SEQ ID NO:4.

1 27. (New) A method of preparing a sialyl Lewis x determinant, the method
2 comprising contacting a murine Fuc-TVII enzyme with a GDP-fucose donor substrate and a
3 sialyl-N-acetyl-lactosamine acceptor substrate in an enzyme bioreactor under conditions that
4 allow the addition of an α 1,3 linked fucose to the sialyl-N-acetyl-lactosamine acceptor substrate.

1 28. (New) The method of claim 27, wherein the Fuc-TVII enzyme is in
2 solution.

1 29. (New) The method of claim 27, wherein the Fuc-TVII enzyme is
2 immobilized on a solid phase matrix.

1 30. (New) The method of claim 27, wherein the Fuc-TVII enzyme is a
2 recombinant enzyme.

1 31. (New) The method of claim 20, wherein the Fuc-TVII enzyme is
2 produced in a mammalian host cell.

1 32. (New) The method of claim 20, wherein the Fuc-TVII enzyme is
2 produced in a baculovirus host.

1 33. (New) The method of claim 27, wherein the sialyl-N-acetyl-lactosamine
2 acceptor is on a glycoprotein.

1 34. (New) The method of claim 27, wherein the sialyl-N-acetyl-lactosamine
2 acceptor is on a glycolipid.

1 35. (New) The method of claim 27, wherein the sialyl-N-acetyl-lactosamine
2 acceptor is a free oligosaccharide.

1 36. (New) The method of claim 27, wherein the Fuc-TVII enzyme comprises
2 a catalytic domain that is encoded by a nucleic acid segment amplified by a 5' primer as shown
3 in SEQ ID NO:3 and a 3' primer as shown in SEQ ID NO:4.

1 37. (New) A murine Fuc-TVII enzyme comprising a catalytic domain that is
2 encoded by a nucleic acid sequence segment amplified by a 5' primer as shown in SEQ ID NO:3
3 and a 3' primer as shown in SEQ ID NO:4.

38. (New) The murine Fuc-TVII enzyme of claim 37, wherein the catalytic
domain is encoded by a nucleic acid segment consisting of residue 2194 to residue 3085 of SEQ
ID NO: 1.