1. Exercise 1.12.2 section b, e:

section (b):

1	$p \rightarrow (q \land r)$	Hypothesis
2	$\neg q$	Hypothesis
3	$\neg q \lor \neg r$	Addition, 2
4	$\neg (q \land r)$	De Morgans, 3
5	¬р	Modus tollens, 1, 4

section (e):

(4)		
1	$p \lor q$	Hypothesis
2	$q \lor p$	Commutation, 1
3	$\neg q \rightarrow p$	Conditional, 2
4	$\neg p \lor r$	Hypothesis
5	$p \rightarrow r$	Conditional, 4
6	$\neg q \rightarrow r$	Hypothetical Syllogism, 3, 5
7	¬q	Hypothesis
8	r	Modus Ponens, 6, 7

2. Exercise 1.12.3 section c:

section (c):

1	$p \lor q$	Hypothesis
2	¬р	Hypothesis
3	$\neg p \rightarrow q$	Conditional, 1
4	q	Modus Ponens, 3, 2

3. Exercise 1.12.5 section c, d

section(c):

The form of the argument is:

$$(c \land h) \rightarrow j$$

$$\neg j$$

$$\vdots$$

Not valid:

1	¬ j	Hypothesis
2	$(c \land h) \rightarrow j$	Hypothesis
3	$\neg (c \land h)$	Modus tollens, 1,2
4	$\neg c \lor \neg h$	De Morgan, 3

Not valid = when using truth tables, when c = T and h = j = F, the hypotheses of $(c \land h) \rightarrow j$ and $\neg j$ are true while the conclusion $\neg c$ is false.

section(d):

The form of the argument is:

$$(c \land h) \rightarrow j$$

$$\neg j$$

$$h$$

$$\vdots$$

Valid:

1	¬j	Hypothesis
2	$(c \land h) \rightarrow j$	Hypothesis
3	$\neg (c \land h)$	Modus tollens, 1,2
4	$\neg c \lor \neg h$	DeMorgans, 3
5	$\neg h \lor \neg c$	Commutation, 4
6	$h \rightarrow \neg c$	Conditional, 5

7	h	Hypothesis
8	¬с	Modus Ponens, 6, 7

b) Exercise 1.13.3 section b:

 $\exists x (P(x) \lor Q(x))$ $\exists x \neg Q(x)$ $\therefore \exists x P(x)$

	P	Q
a	F	T
b	F	F

 $\exists x \ (P(x) \lor Q(x))$ is true because P(a) is false and Q(b) is true, the statement is true. $\exists x \neg Q(x)$ is true because Q(b) is false therefore $\neg Q(b)$ is true

However, since P(a) = P(b) is false, the statement $\exists x P(x)$ is false. Both hypothesis is true but the conclusion is false

2. Exercise 1.13.5

section(d):

M(x): x missed class D(x): x got a detention

 $\forall x(M(x) \rightarrow D(x))$ Penelope, a student in class \neg M(Penelope) ∴ ¬D(Penelope)

Invalid

The argument is not valid. M(Penelope) \rightarrow D(Penelope) is true based on t=universal instantiation. However, when $D(Penelope) = \neg M(Penelope) = T$, the hypotheses are true and the conclusion is false. When Penelope did not miss the class and got a detention

section (e):

 $\forall x (M(x) \lor D(x) \rightarrow \neg A(x))$ Penelope, a student in class A(Penelope) ∴ ¬D(Penelope)

Valid

1	$\forall x (M(x) \lor D(x) \to \neg A(x))$	Hypothesis
2	Penelope, a student in class	Hypothesis
3	$(M(Penelope) \lor D(Penelope)$ $\rightarrow \neg A(Penelope)$	Universal instantiation,1,2
4	A(Penelope)	Hypothesis
5	¬¬A(Penelope)	Double negation, 4
6	\neg (M(Penelope) \lor D(Penelope))	Modus Tollens, 3,5
7	\neg M(Penelope) $\wedge \neg$ D(Penelope)	DeMorgans, 6
8	\neg D(Penelope) $\land \neg$ M(Penelope)	Commutation, 7
9	¬D(Penelope)	Simplification, 8

Exercise 2.2.1

section(d):

Proof.

Direct proof. Assume that x and y are odd integers. We will show that the product of x * y is also an odd integer. Since x, y are odd numbers, x = 2m + 1 for some integer m, y = 2n + 1 for some integer n. Plugging the two expressions for x, y into x * y.

(2m + 1) * (2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1

Since m, n are integers, then 2mn + m + n is also an integer, Since x * y = 2k + 1, where k = 2mn + m + n is an integer, x * y is equal to 2 times an integer plus 1, then x * y is also an odd integer.

section(c):

Proof.

Direct proof. Assume that x is a real number and $x \le 3$. We will show that $12 - 7x + x2 \ge 0$. Subtract x from both sides of the equality $3 \ge x$ to get $3 - x \ge 0$, Since $4 - x \ge 3 - x$, then $4 - x \ge 3 - x \ge 0$.

Since $4 - x \ge 0$ and $3 - x \ge 0$, then the product of 4 - x and 3 - x is at least 0:

 $(4 - x)(3 - x) \ge 0$, then $12 - 7x + x2 \ge 0$.

Exercise 2.3.1

section(d):

Proof.

Proof by contrapositive. We assume that n is an even integer and show that $n^2 - 2n + 7$ is an odd number. If n is an even number, then n = 2k for some integer k. Plugging in the expression 2k for n into $n^2 - 2n + 7$ gives $(2k)^2 - 2(2k) + 7 = 4k^2 - 4k + 7 = 2(2k^2 - 2k + 3) + 1$

Since k is an integer, $k^2 - 2k + 3$ is an integer. $n^2 - 2n + 7$ is equal to 2 times an integer plus 1. Therefore $n^2 - 2n + 7$ is an odd number.

section(f):

Proof:

Proof by contrapositive. We assume that for non-zero number x that 1/x is not irrational, and prove that x must be rational. Since all real numbers are either rational or irrational, 1/x is not an irrational non-zero number, then 1/x is a rational non-zero number. if 1/x = a/b for $a, b \in R$, then x = b/a where $a, b \in R$. Therefore x is a non-zero rational number.

section(g):

Proof:

Proof by contrapositive. We assume for real numbers x and y that x > y, and prove that $x^3 + xy^2 > x^2y + y^3$. Since x > y, then x, y can't be both zeros. Since $x^2 + y^2 > 0$ for every pair of real number x, y (x > y) For the equality x > y, both sides time a positive number $x^2 + y^2 > 0$ does not change the equality. $x^2 + y^2 > y + y^2 = 0$ then $x^2 + y^2 > y + y^2 = 0$.

section(l):

Proof:

Proof by contrapositive. We assume for real numbers x, y that it is not true that x > 10 or y > 10, and prove $x + y \le 20$. Since it is not true that x > 10 or y < 10, then neither x or y is greater than 10 and therefore they are both less or equal to 10 $x \le 10$ and $y \le 10$, then $x + y \le 20$.

Q8

Exercise 2.4.1, section c, e

section(c):

Proof.

Proof by contradiction. Suppose that the average of three real numbers x, y, z is less than all three numbers. (x + y + z)/3 < x, (x + y + z)/3 < y and (x + y + z)/3 < z, then (x + y + z)/+ (x + y + z)/3 + (x + y + z)/3 < x + y + z x + y + z < x + y + z, which contradicts the fact that x + y + z = x + y + z

section(e):

Proof.

Proof by contradiction. Suppose that there is a smallest integer k. k-1 is an integer and $k-1 \le k$, which contradicts that k is the smallest integer.

Exercise 2.5.1 section c

Proof.

We consider two cases: both x, y are even and both x, y are odd.

Case 1: x is even and y is even, then x = 2m for some integer m and y = 2n for some integer n.

$$x + y = 2m + 2n = 2(m + n)$$

Since m, n are integers, m + n is also an integer. Therefore x + y is equal to 2 times an integer and x + y is even.

Case 2: x is odd and y is odd, then x = 2m + 1 for some integer m and y = 2n + 1 for some integer n.

$$x + y = (2m + 1) + (2n + 1) = 2m + 2n + 2 = 2(m + n + 1)$$

Since m, n are integers, m + n + 1 is also an integer. Therefore x = y is equal to 2 times an integer and x + y is even.