CS/ECE/ME532 Period 11 Activity

Estimated time: 30 mins for Q1 and 30 mins for Q2.

1. We return to the movies rating problem considered previously. The movies and ratings from your friends on a scale of 1-10 are:

Movie	Jake	Jennifer	Julia	Justin	Jackson	James	Jasmine
Star Trek	4	7	2	8	7	4	2
Pride and Prejudice	9	3	5	6	10	5	5
The Martian	4	8	3	7	6	4	1
Sense and Sensibility	9	2	6	5	9	5	4
Star Wars: Empire Strikes	4	9	2	8	7	4	1

A script is available to help you complete this activity.

- a) Use the K-means algorithm to represent the columns of X with two clusters.
 - i. Express the rank-2 approximation to X based on this cluster as TW^T where the columns of T contains the cluster centers and W is a vector of ones and zeros.
 - ii. Compare the rank-2 clustering approximation to the original matrix.
- b) Use the K-means algorithm to represent the columns of X with three clusters.
 - i. Express the rank-3 approximation to X based on this cluster as TW^T where the column T contains the cluster centers and W is a vector of ones and zeros.
 - ii. Compare the rank-3 clustering approximation to the original matrix.
- c) Use SVD to approximate X using r "tastes", the columns of T, that is, $X \approx TW$ where T is 5-by-r and has orthonormal columns.
 - i. Express T and W as a function of the matrices in the SVD $X = USV^T$. (In equation form, not numbers.)
 - ii. Find T, W and the rank-r approximation to X for r = 1. What aspects of the ratings does the first taste capture?
 - iii. Find T, W and the rank-r approximation to X for r = 2. What aspects of the ratings does the second taste capture?
 - iv. Your friend Jon rates Star Trek 6 and Pride and Prejudice 4. You use the first two tastes of your other friends to predict his ratings of the remaining three movies.
 - A. Formulate a system of equations that can be solved to predict Jon's preferences for the remaining three movies.

B. Predict Jon's ratings for the remaining three movies.

- 2. Let a 4-by-2 matrix \boldsymbol{X} have SVD $\boldsymbol{X} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^T$ where $\boldsymbol{U} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$, $\boldsymbol{S} = \begin{bmatrix} 1 & 0 \\ 0 & \gamma \end{bmatrix}$, and $\boldsymbol{V} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - a) Express the solution to the least-squares problem $\min_{\boldsymbol{w}} ||\boldsymbol{X}\boldsymbol{w} \boldsymbol{y}||_2^2$ as a function of \boldsymbol{U} , \boldsymbol{S} , \boldsymbol{V} , and \boldsymbol{y} .
 - b) Let $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find the weights \mathbf{w} as a function of γ . Calculate $||\mathbf{y} \mathbf{X}\mathbf{w}||_2^2$ and $||\mathbf{w}||_2^2$ as a function of γ . What happens to $||\mathbf{w}||_2^2$ as $\gamma \to 0$?
 - c) Now consider a "low-rank" inverse. Instead of writing

$$(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^T = \sum_{i=1}^p rac{1}{\sigma_i}oldsymbol{v}_ioldsymbol{u}_i^T$$

where p is the number of columns of \boldsymbol{X} (assumed less than the number of rows), we approximate

$$(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T pprox \sum_{i=1}^r rac{1}{\sigma_i} \boldsymbol{v}_i \boldsymbol{u}_i^T$$

In this approximation we only invert the largest r singular values, and ignore all of them smaller than σ_r . If r = 1, use the low-rank inverse to find \boldsymbol{w} , $||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||_2^2$,

and
$$||\boldsymbol{w}||_2^2$$
 when $\boldsymbol{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ as in part b). Compare $||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||_2^2$, and $||\boldsymbol{w}||_2^2$ to

the results for part b).