Data Mining and Analysis Finding similar items

CSCE 676 :: Fall 2019

Texas A&M University

Department of Computer Science & Engineering

Prof. James Caverlee

Resources

MMDS Chapter 3 + slides

http://i.stanford.edu/~ullman/mmds/ch3n.pdf

http://www.mmds.org/mmds/v2.1/ch03lsh.pdf

Carlos Castillo course on Data Mining [https://github.com/chatox/data-mining-course]

Example

- Assume the following case:
 - Suppose 100,000 columns of M (100k docs)
 - Signatures of 100 integers (rows)
 (Therefore, signatures take 40Mb)
 - Choose b = 20 bands of r = 5 integers/
 band
- Goal: Find pairs of documents that
 are at least s = 0.8 similar

Example: Suppose $sim(C_1,C_2) = 0.8$

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair:
 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are **false negatives** (we miss them)
 - We would find 99.965% pairs of truly similar documents

Example: Suppose $sim(C_1,C_2) = 0.3$

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 $(1 0.00243)^{20} = 0.0474$
- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH involves a trade-off

• Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

LSH: what we want

Similarity $t = sim(C_1, C_2)$ of two ———— sets

What 1 band of 1 row gives you

Similarity $t = sim(C_1, C_2)$ of two ———— sets

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal =
 - tr
 - Prob. that some row in band unequal =
 - 1 tr
- Prob. that no band identical =
 - $\bullet \quad (1 t^r)^b$
- Prob. that at least 1 band identical =
 - $1 (1 t^r)^b$

What b bands of r rows gives you

Example: b=20, r=5

Similarity threshold s

Probability that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: the S curve

Picking r and b to get the best S-curve

50 hash-functions (r=5, b=10)

Blue area: False Negative rate

Green area: False Positive rate

Picking r and b to get the best S-curve

50 hash-functions (r=5, b=10)

Blue area: False Negative rate
Green area: False Positive rate

Blue area X: False Negative rate These are pairs with sim > s but the X fraction won't share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation!

Picking r and b to get the best S-curve

50 hash-functions (r=5, b=10)

Blue area: False Negative rate
Green area: False Positive rate

Green area Y: False positive rate.

These are pairs with sim < s but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them

Suppose we have 50 hash functions (r * b = 50)

LSH Summary

Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

Check in main memory that candidate pairs really do have similar signatures

Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents