Calcul différentiel

${\rm Quizz}~7$

1) Applicabilité du Théorèmes des Fonctions Implicites (TFI)
Vrai \square Faux \square On peut exprimer localement y fonction de x au voisinage de $(0,0)$, avec x et y liés par la relation $yx^2 + y^2x - 1 = 0$.
Vrai \square Faux \square On peut exprimer localement y fonction de x au voisinage de $(1,1)$, avec x et y liés par la relation $yx^2 + y^2x - 2 = 0$.
Vrai \square Faux \square On peut exprimer localement (y_1, y_2) fonction de x au voisinage de $x = 1$ et $(y_1, y_2) = (1, 0)$, avec x et (y_1, y_2) liés par la relation $y_1x^2 + y_2^2x - 1 = 0$.
2) Calculer les matrices hessiennes (en précisant leurs domaines de définition) des fonctions suivantes : $f(x_1, \dots, x_n) = \frac{1}{2} \sum_{i=1}^n a_i x_i^2 , \ g(x_1, x_2) = x_1 x_2 , \ h(x_1, x_2) = \frac{x_1}{x_2}.$
3) Soit f une fonction à valeurs dans \mathbb{R} , deux fois continûment différentiable au voisinage d'un point $x \in \mathbb{R}^n$. On suppose que l'on connait $\langle H(x) \cdot h h \rangle$ pour tout h de \mathbb{R}^n . Peut on en déduire la matrice $H(x)$?
Oui □ Non □
4) Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} , qui s'écrit $g_1(x_1) + g_2(x_2)$, où g_1 et g_2 sont deux fonctions C^2 de \mathbb{R} dans \mathbb{R} . Alors f est deux fois continûment différentiable sur \mathbb{R}^2 , et la matrice $H(x)$ est diagonale en tout point.
Vrai □ Faux □
5) Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} , qui s'écrit $g(x_2 - x_1)$, où g est une fonction C^2 de \mathbb{R} dans \mathbb{R} .
Vrai \square Faux \square f est deux fois continûment différentiable sur \mathbb{R}^2
Vrai \square Faux \square $H(x)$ est de rang ≤ 1 pour tout $x \in \mathbb{R}^2$
Vrai \square Faux \square Le vecteur $(1,1)$ est dans $\ker H(x)$ pour tout $x \in \mathbb{R}^2$
6) Soit f une fonction de \mathbb{R}^n dans \mathbb{R} , deux fois continûment différentiable sur \mathbb{R}^n , et telle que $H(x)$ est identiquement nulle sur \mathbb{R}^n . Alors f est affine.
Vrai □ Faux □

Exercice 1. On considère un convexe fermé K dans un espace de Hilbert H, et une suite (u_n) d'éléments de K qui converge faiblement vers un élément u de H.

- a) Montrer que $u \in K$ (on dit que K est faiblement séquentiellement fermé).
- b) Montrer que la conclusion peut être invalidée si K n'est pas convexe.

Exercice 2. On appelle demi-espace fermé d'un espace de Hilbert H un ensemble de la forme

$$\{v \in H, \langle h | v \rangle \le \alpha\}$$

avec $h \in H$ non nul, et $\alpha \in \mathbb{R}$.

Montrer qu'un convexe fermé K strictement inclus dans H est l'intersection des demis espaces fermés qui le contiennent.