Ejemplos de solución de ecuaciones no lineales

Profesor
Edgar Miguel Vargas Chaparro
Monitor
Sebastian Guerrero Salinas

- La función $h(x) = x \sin(x)$ aparece en el estudio de vibraciones forzadas no amortiguadas.
- Hay que hallar el valor de x que está dentro del intervalo [0,2] y en el que la función vale h(x) = 1 (el ángulo x en la función sin(x) se mide en radianes).

• Usamos el método de bisección para hallar un cero de la función $f(x) = x\sin(x) - 1$. Empezamos con $a_0 = 0$ y $b_0 = 2$, calculamos

$$f_0 = -1.000000$$
 y $f_2 = 0.818595$

de manera que hay una raíz de f(x) = 0 en el intervalo [0,2].

• En el punto medio $c_0=1$ tenemos que f(1)=-0.158529, luego la función cambia de signo en el intervalo $[c_0,b_0]=[1,2]$

- Continuando, se recorta el intervalo por la izquierda y se pone $a_1 = c_0$ y $b_1 = b_0$
- El nuevo punto medio es $c_1=1.5$ y se tiene $f(c_1)=0.496242$
- Puesto que f(1) = -0.158529 y f(1.5) = 0.496242, la raíz está en $[a_1, c_1] = [1.0, 1.5]$ y la siguiente decisión es recortar por la derecha y poner $a_2 = a_1$ y $b_2 = c_1$

- De esta forma obtenemos una sucesión c_k que converge a $r \approx 1.114157141$
- Los cálculos de los ocho primeros pasos se pueden ver en la siguiente tabla

k	Ext izq a_k	Punto medio c_k	Ext der b_k	Valor función $f(c_k)$
0	0	1	2	-0.158529
1	1.0	1.5	2.0	0.496242
2	1.00	1.25	1.50	0.186231
3	1.000	1.125	1.250	0.015051
4	1.0000	1.0625	1.1250	-0.071827
5	1.06250	1.09375	1.12500	-0.028362
6	1.093750	1.109375	1.125000	-0.006643
7	1.1093750	1.1171875	1.1250000	0.004208
8	1.10937500	1.11328125	1.11718750	-0.001216

Tabla: Resolución de $x \sin(x) - 1 = 0$ por el método de bisección

Vamos a usar el método de la posición falsa o *régula falsi* para hallar la raíz de $x \sin(x) - 1 = 0$ que está en el intervalo [0,2] (de nuevo con el ángulo x medido en radianes)

• Empezando con $a_0 = 0$ y $b_0 = 2$, tenemos f(0) = -1.00000000 y f(2) = 0.81859485, de manera que hay una raíz en [0, 2].

Usando la fórmula:

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$
 (1)

tenemos

$$c_0 = 2 - \frac{0.81859485(2-0)}{0.81859485-(-1)} = 1.09975017$$
 y $f(c_0) = -0.02001921$

- La función cambia de signo en el intervalo $[c_0, b_0] = [1.09975017, 2]$, así que recortamos por la izquierda y ponemos $a_1 = c_0$ y $b_1 = b_0$.
- Usamos otra vez la fórmula (1) para hallar la siguiente aproximación:

$$c_1 = 2 - \frac{0.81859485(2 - 1.09975017)}{0.81859485 - (-0.02001921)} = 1.12124074$$

y

$$f(c_1) = 0.00983461$$

• Ahora f(x) cambia de signo en $[a_1, c_1] = [1.09975017, 1.12124074]$, así que la siguiente decisión es recortar por la derecha y poner $a_2 = a_1$ y $b_2 = c_1$. Estos cálculos se recogen en la siguiente tabla

k	Ext izq a_k	Pto intermedio c_k	Ext der b_k	Val función $f(c_k)$
0	0.00000000	1.09975017	2.00000000	-0.02001921
1	1.09975017	1.12124074	2.00000000	0.00983461
2	1.09975017	1.11416120	1.12124074	0.00000563
3	1.09975017	1.11415714	1.11416120	0.00000000

Tabla: Resolución de $x \sin(x) - 1 = 0$ por el método de la posición falsa

Se dispara un proyectil con un ángulo de elevación $b_0=45^\circ$, velocidades iniciales $v_y=v_x=100m/s$ y C=10. Vamos a determinar el tiempo transcurrido hasta el impacto en el suelo

Usando las fórmulas

$$y = f(t) = (Cv_y + 9.8C^2)(1 - e^{-t/C}) - 9.8Ct$$
 (2)

$$x = r(t) = Cv_x(1 - e^{-t/C})$$
 (3)

las ecuaciones del movimiento del proyectil son:

$$y = f(t) = 1980(1 - e^{-t/10}) - 98t$$
 y $x = r(t) = 1000(1 - e^{-t/10})$.

- Puesto que f(16) = 12.24489437 y f(17) = -47.71337762, usaremos como aproximación inicial $p_0 = 16$.
- La derivada es $f'(t) = 198e^{-t/10} 98$ y, en el punto inicial, vale $f'(p_0) = f'(16) = -58.02448937$ que, en la fórmula

$$p_k = g(p_{k-1}) = p_{k-1} - rac{f(p_{k-1})}{f'(p_{k-1})}$$
 para $k = 1, 2, ...$

Nos proporciona

$$p_1 = 16 - \frac{12.24489437}{-58.02448937} = 16.21102977$$

Los cálculos se muestran en la siguiente tabla

k	Tiempo <i>p_k</i>	$p_{k+1}-p_k$	Altura $f(p_k)$
0	16.00000000	0.21102977	12.24489437
1	16.21102977	-0.00150171	-0.08838974
2	16.20952805	-0.00000007	-0.00000441
3	16.20952798	0.00000000	0.00000000
4	16.20957798	0.00000000	0.00000000

Tabla: Cálculo del instante en el que la altura f(t) vale cero

- El valor p_4 tiene ocho cifras decimales de precisión y el instante del impacto en el suelo es $t \approx 16.20957798$ segundos.
- Podemos calcular el alcance usando r(t) y obtenemos

$$r(16.20957798) = 1000(1 - e^{-1.620957798}) = 802.28976853 m$$

Método de la secante

Empezando con $p_0 = -2.6$ y $p_1 = -2.4$, vamos a usar el método de la secante para aproximarnos a la raíz p = -2 de la función polinomial $f(x) = x^3 - 3x + 2$

• En este caso, la fórmula de iteración

$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{f(p_k)(p_k - p_{k-1})}{f(p_k) - f(p_{k-1})}$$
(4)

es:

$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{(p_k^3 - 3p_k + 2)(p_k - p_{k-1})}{p_k^3 - p_{k-1}^3 - 3p_k + 3p_{k-1}}$$

