1 Q2. Inventory Pooling

Primitives

D = demands

Q = quantity ordered

P = price

h = inventory costs = c-s

b = backholding costs = p-c

First we will show that $Q_p^* = \sqrt{n}Q^* + \mu(n - \sqrt{n})$

$$G(Q) = hE[(Q - D)]^{+}bE[(D - Q)]^{+}$$

$$G'(Q^{*}) = hP(D \leq Q^{*}) - b(1 - P[(D \leq Q^{*})]) = 0$$

$$P(D \leq Q^{*}) = \frac{b}{h + b}$$

Now, for the pooling we would obtain the same:

$$P(\sum_{L=1}^{n} D_i \leqslant Q_p^*) = \frac{b}{b+R}$$

Since this $\sum_{i=1}^{n} D_i = \sqrt{n}D_i + \mu(n-\sqrt{n}),$

$$P(\sqrt{n}D_1 + \mu(n - \sqrt{n}) \leqslant Q_p^*) = \frac{b}{b + R} \Longleftrightarrow P(D_1 \leqslant \frac{1}{\sqrt{n}}(Q_p^* - \mu(n - \sqrt{n}))) = \frac{b}{b + h}$$

which implies that $\frac{1}{\sqrt{n}}(Q_p^* - \mu(n - \sqrt{n}))) = Q^*$. Thus, $Q_P^* = \sqrt{n}Q^* + \mu(n - \sqrt{n})$. Next, we will apply the hint to prove the desired result:

$$nG(Q^*) = n[hE[(Q^* - D)^+] + bE[(D - Q^*)^+]]$$
$$G(Q_p^*) = [hE[(Q_p^* - \sum_{i=1}^n D_i)^+] + bE[(\sum_{i=1}^n D_i - Q_p^*)^+]]$$

Since $\sum_{i=1}^{n} D_i = \sqrt{n}D_i + \mu(n-\sqrt{n})$ and $Q_P^* = \sqrt{n}Q^* + \mu(n-\sqrt{n})$, we can show that:

$$G(Q_P^*) = [hE[(\sqrt{n}Q^* + \mu(n - \sqrt{n}) - \sqrt{n}D_i - \mu(n - \sqrt{n}))^+]$$

+bE[\sqrt{n}D_i + \mu(n - \sqrt{n}) - \sqrt{n}Q^* + \mu(n - \sqrt{n})^+]]
= \sqrt{n}hE[(Q^* - D_i)^+] + \sqrt{n} bE[(D_i - Q^*)^+] = \frac{nG(Q^*)}{\sqrt{n}}

Q.E.D.

Problem 4 (An Investment Problem): An investor has the opportunity to make N sequential investments: at time k he may invest any amount $u_k \ge 0$ that does not exceed

his current wealth x_k (does not exceed his current wealth, x_0 , plus his gain or minus his loss thus far). He wins his investment back and as much more with probability p, where $\frac{1}{2} , and he loses his investment with probability <math>(1 - p)$. Find the optimal investment strategy.

Primitives:

 x_k : wealth at the beginning of period k.

 u_k : amount invested.

 w_k : outcome (return).

$$w_k = \begin{cases} 2u_k & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
where $\frac{1}{2} .$

Constrains:

 $u_k \geqslant 0$,

 $u_k \leqslant x_k$.

Dynamics:

$$\overline{x_{k+1} = x_k} - u_k + w_k,$$

Cost:

$$g_N(x_N) = x_N$$

$$g_k(x_k, u_k, w_k) = 0.$$

DP algorithm:

To simplify th $J_N(x_N) = \log(x_N)$.

$$J_k(x_k) = \max_{u_k \in \mathcal{U}_k} \mathbb{E}_{w_k} \left[J_{k+1}(x_k - u_k + w_k) \right].$$

We will first prove that $J_k(x_k) = A_k + \ln(x_k)$ by induction.

$$J_{N-1}(x_{N-1}) = \max_{u_{n-1}} \mathbb{E}_{w_{N-1}} \left[\log(x_{N-1} - u_{N-1} + w_{N-1}) \right] = \tag{1}$$

$$= \max_{u_{N-1}} \mathbb{E}_{w_{N-1}} [\log(x_{N-1} - u_{N-1} + w_{N-1})] =$$
 (2)

$$= \max_{u_{N-1}} \left[p \log(x_{N-1} + u_{N-1}) + (1-p) \log(x_{N-1} - u_{N-1}) \right]. \tag{3}$$

Now, we derive and apply FOC to find the maximum,

$$\frac{p}{x_{N-1} + u_{N-1}} - \frac{1 - p}{x_{N-1} - u_{N-1}} = 0 \tag{4}$$

$$px_{N-1} - pu_{N-1} = x_{N-1} + u_{N-1} - px_{N-1} - pu_{N-1},$$
(5)

solving we obtain $u_{N-1} = (2p-1)x_{N-1}$. Plugging into the expression of $J_{N-1}(x_{N-1})$

$$J_{N-1}(x_{N-1}) = (6)$$