

HETEROGENEOUS MULTICORE BASED ON RISC-V PROCESSORS AND FD-SOI SILICON PLATFORM

Outline

- **INTRODUCTION**
- Pulsar platform

SILICON IMPULSE

CONCLUSION

Context

THINGS2DO

- THINGS2DO is a Pilot Line project funded by ENIAC
 - ENIAC is a public-private partnership in nanoelectronics strengthening European competitiveness and sustainability
- Objectives
 - Build a large ecosystem around FD-SOI in Europe
 - Develop IP and chipsets libraries for FD-SOI
 - Develop a complete high level FD-SOI design flow
 - Allow companies, including start-up to have access to FD-SOI foundries in a cost effective manner, for small or medium quantities
 - Show FD-SOI benefit on real demonstrators
 - Build design centers for FD-SOI
- More than 40 partners

FD-SOI technology

What is FD-SO!?

- ☐ FD-SOI advantages
 - Reduce leakage
 - Allow wide voltage range
 - Is more fault tolerant
 - no possible latch-up
 - Allow body-bias

P. Flatresse, G. Cesana and X. Cauchy, "Planar fully depleted silicon technology to design competitive SOC at 28nm and beyond", ST, 2012

Outline

- **INTRODUCTION**
- Pulsar platform

SILICON IMPULSE

CONCLUSION

PuLSAR

- A RISC-V big.LITTLE heterogeneous multicore
 - Two « small » cores
 - Rocket without FPU
 - 8KB L1 caches
 - Two « big » cores
 - 3-way superscalar BOOM
 - 32KB L1 caches
 - L2 cooperative caching
 - Instructions monitor (ROCC)
- AMBA interconnection
 - Generated by Synopsys CoreAssembler
 - AXI4 + AHB + APB network
 - I2C, UART and timers peripherals
- Multiple body-bias zones
- Smart monitoring
 - AntX processor
 - Non-functional parameters management
 - Performance, ageing, power consumption, temperature

Dynamic management of FAMP

- In SMP architectures, extensions accelerate some specific tasks from 4x to 1000x
 - But are used less than 5% of time
 - May consume up to 25% of the processor area
- Functionally Asymmetric Multicore Processor (FAMP)
 - Objectives
 - Maintain a reduced silicon area
 - Limit performance degradation
 - Reduce the energy consumption
 - **Techniques**
 - By limiting the use of costly extensions for critical sections
 - By optimizing task placement according to performance

CORTEX A9 dual core Floorplan From Osprey - 1.9W TDP 2GHz (6.7mm2)

PuLSAR context

- Pedestrian navigation system
 - Composed of a System-on-Glasses (SOG) and a System-in-Pocket (SIP) (e.g. smartphone)
 - Display augmented reality by using accurate positioning data from the IGN datacenter
- SoG architecture
 - SoC: PuLSAR
 - FPGA: dedicated video processing and high-bandwidth connection to peripherals
 - Peripherals: Stereoscopic cameras, inertial measurement unit and see-through display

Pulsar SOC architecture

AntX processor

- CEA Tech tiny processor
 - 32-bit RISC Harvard architecture
 - 70 instructions, 16-bit and 32-bit
 - Small memory footprint
 - Mono-thread, in-order pipeline, 16 registers (32 bits)
 - 5 stages (fetch, decode, execute, memory, write-back)
 - Cache memories (optional), AHB interface
 - Coprocessor (optional)
 - ~4096 coprocessor instructions
 - e.g.: IT controller, 2-cycle multiplier...
 - Body-bias control unit
- ☐ Full SDK
 - GCC, binutils, C standard lib, C++
 - SystemC simulator

Verilog RTL simulation

- Designed RTL
 - Pass ISA & benchmark tests
 - **Boot Linux**
- Quite easy design space exploration with Chisel
 - Number and type of cores, cache sizes, accelerators...
- However, RTL simulations are very long
 - VCS or ModelSim run the design at only few kHz
 - Benchmark tests need minutes to hours depending on the number of cores
 - Booting Linux requires few hours before reaching ash (for four cores)
 - ⇒ Impossible to run and debug applications under Linux with through Verilog RTL simulation
- Spike?
 - Not accurate enough for benchmarking and architecture exploration
 - Not completely same as hardware (heterogeneous, custom modifications?)

Hardware emulation with Zebu

Rocket chip base RTL simulation flow

Signal based co-emulation

Transactional based co-emulation

based synchronizations

4th RISC-V Workshop | CEA Tech | 12-13 July 2016 12

Transactional co-emulation flow

Emulation performance

- Achieved performance
 - FPGA clock ~ 7MHz
 - Linux boot ~140s
- ☐ Still possible to create waveform and check register states!
- BBL changes
 - Add the number of cores in the implementation registers
 - ⇒ Remove spike/QEMU dependency
 - Always catch float errors
 - ⇒Soft float

```
0.000000] Linux version 3.14.41-ga2f247d-dirty (tp232448@is006503) (gcc version 5
(GCC) ) #15 SMP Tue Feb 16 17:47:03 CET 2016
 0.000000] Detected 0x7f800000 bytes of physical memory
             Normal [mem 0x00400000-0x7fbfffff]
           Movable zone start for each node
            node 0: [mem 0x00400000-0x7fbfffff]
           PERCPU: Embedded 8 pages/cpu @ffffffff8leb0000 s8856 r0 d23912 u32768
 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 51
 0.000000] Kernel command line: root=/dev/htifblk0
 0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)
 0.000000] Dentry cache hash table entries: 262144 (order: 9, 2097152 bytes)
 0.000000] Inode-cache hash table entries: 131072 (order: 8, 1048576 bytes)
           Memory: 2054364K/2088960K available (1915K kernel code, 123K rwdata, 37
odata, 84K init, 220K bss, 34596K reserved)
 0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1
           Hierarchical RCU implementation.
           RCU restricting CPUs from NR_CPUS=8 to nr_cpu_ids=4.
 0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=4
 0.150000] Calibrating delay using timer specific routine.. 20.04 BogoMIPS (lpj=10
 0.150000] pid max: default: 32768 minimum: 301
 0.150000] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes)
 0.150000] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes)
```


Emulation performance (cont'd)

- Minor change to Linux cpuinfo
 - Display real core ISA
- Run swaptions under Linux from PARSEC [1]
 - Promising results
 - Still some library problems for other benchmarks

```
cat /proc/cpuinfo
        : RV64IMA
       I: Base Integer Instruction Set
       M: Integer Multiplication and Division Standard Extension
        A: Atomic Instructions Standard Extension
hart
isa
        : RV64IMA
       I: Base Integer Instruction Set
       M: Integer Multiplication and Division Standard Extension
       A: Atomic Instructions Standard Extension
hart
        : RV64IMAFD
       I: Base Integer Instruction Set
       M: Integer Multiplication and Division Standard Extension
       A: Atomic Instructions Standard Extension
       F: Single-Precision Floating-Point Standard Extension
       D: Double-Precision Floating-Point Standard Extension
hart
        : RV64IMAFD
       I: Base Integer Instruction Set
       M: Integer Multiplication and Division Standard Extension
       A: Atomic Instructions Standard Extension
        F: Single-Precision Floating-Point Standard Extension
        D: Double-Precision Floating-Point Standard Extension
```


SESAM: virtual prototyping

- A multicore VP framework based on SystemC/TLM 2.0
 - Accept third-parties ISS
 - QEMU, GenIssLib, ArchC...
- Fast and multi-host architectural exploration
 - Performance, energy consumption, temperature
 - Fault-injection , reliability/ageing
- Fast and adaptable accuracy
 - 3 to 1000 MIPS
 - Up to 90% accurate compared to RTL
- Multicore non-intrusive debugging
- Large set of HW IPs
 - NoCs, caches, DDR3 controller...
- Multi-level HW description
 - C/C++, TLM, RTL, SystemC, VHDL...
 - Support co-simulation with 3rd party-tools
 - Support co-emulation with HW emulators

Scale: parallel SystemC kernel

- SCale: A new parallel SystemC kernel
 - Compliant with Accellera standards
 - TLM, TLM2.0, SystemC 2.3.1
 - Supports multiple parallel architectures
 - Tilera64, AMD Bulldozer, i7...
 - Published at DATE 2016

Up to **x34** on 64 x86 cores

Main Foundations

- Parallel and deterministic
 - Online conflict checking mechanism, repeatable simulations...
- Can be used with any VP environment / easy to integrate
 - No structural modeling or usage limitation
 - Support RTL / TLM simulations (LT, AT)
 - SystemC models can use any communication layers
 - TLM, DMI, global variables or SystemC channels

PuLSAR virtual prototype

Synthesis results

- **FD-SOI** libraries
 - Core 12 LL, typical, 0.90V, 25°C for the quad core design
 - SPReg/DPReg, typical, 0.90V, 25°C for L1 & 256 KB L2 caches
- 2.64mm², 0.6W, 700MHz

Criteria	Design without caches	Caches Memories	Total
Design area (mm²)			2.64
Combinational	0.435	-	0.435
Non Combinational	0.442	1.77	2.21
Power (mW)			621
Internal	421	190	611
Leakage	9.4	< 1	10

Outline

- **INTRODUCTION**
- Pulsar platform

- SILICON IMPULSE
- CONCLUSION

From concept to prototype or product

Easy access to advanced technologies and R&D skills

Inclusion into partner ecosystem

Help you to access CEA Tech advanced technologies mainly Ultra Low Power technology

Focus on FD-SOI technologies

- CEA Tech is a pioneer in FD-SOI technology development
- CEA Tech has been a key contributor to the FD-SOI process development from its onset
- Silicon Impulse helps FD-SOI adoption by developing the ecosystem
- Unique expertise in design flow and IP offering to leverage the advantages of FD-SOI guaranteeing success

FD-SOI is our DIFFERENCIATOR

Targeted applications

CONSUMER

Ultra-Wide Voltage range operation

IOT

Effective Analog/RF integration

Automotive, Space

Reliability & robustness

Help COMPANIES LAUNCH innovative products powered by leading edge design solutions

Business model

From concept to production ramp-up

SILICON IMPULSE

CONSULTING

- Feasibility analysis
- System architecture
- Solution evaluation
- Benchmarking
- **Trainings**

DESIGN

- IP Development
- Circuit Design
- System Design

PROTOTYPING

- MPW Shuttle
- Assembly
- Test

PRODUCTION RAMP-UP

- Qualification
- Transfer to foundry
- **Supply Chain**

PRODUCTION

• (foundry)

CEA tech & Partners

Silicon Impulse can help EVERY step of the way

In-house industrial tools

Automated 12" Wafer Sort

Mentor -Veloce 2 (240Mgate capacity) and Synopsys-EVE Emulation Platform

Verigy 93K Tester Platform (ATE) with Mixed Signal and RF extensions

Industrial equipment from emulation to test

Pick & Place Handler

Silicon Impulse partners

Embedded solution

A collaborative platform

Conclusions

- **PuLSAR**
 - Development of an heterogeneous platform based on RISC-V
 - Fast software and hardware development/test capabilities
 - Fast virtual prototyping platform based on QEMU
 - Encouraging FD-SOI 28 nm syntheses
- Silicon Impulse
 - An IC gateway between R&D and Industry
 - Early access to advanced technologies
 - Leverage the advantages of FD-SOI
 - A one stop-shop platform from a concept to its production ramp-up
- Next steps
 - Cooperative cache and lockstep mechanisms
 - Hardware debug capabilities (e.g. JTAG)
 - Advanced FAMP management in Linux
 - Complete PuLSAR virtual prototyping platform in SESAM

THANK YOU!

thomas.peyret@cea.fr nicolas.ventroux@cea.fr olivier.thomas@cea.fr

38054 Grenoble Cedex

