importing pandas

import pandas as pd df=pd.read_csv("temperatures.csv")

display data

df

-	\mathbf{v}

$\overline{2}$														
]		YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	D
	0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.
	1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.
	2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.
	3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.
	4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.
	112	2013	24.56	26.59	30.62	32.66	34.46	32.44	31.07	30.76	31.04	30.27	27.83	25.
	113	2014	23.83	25.97	28.95	32.74	33.77	34.15	31.85	31.32	30.68	30.29	28.05	25.
	114	2015	24.58	26.89	29.07	31.87	34.09	32.48	31.88	31.52	31.55	31.04	28.10	25.
	115	2016	26.94	29.72	32.62	35.38	35.72	34.03	31.64	31.79	31.66	31.98	30.11	28.
	116	2017	26.45	29.46	31.60	34.95	35.84	33.82	31.88	31.72	32.22	32.29	29.60	27.
	4													•

Next steps: Generate code with

View recommended plots

New interactive sheet

df.head()

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63
4													•

Next steps:

Generate code with

View recommended plots

New interactive sheet

display all columns

importing required libraries

dtype='object')

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

initialize x and y coordinates

```
X = df[['YEAR']]
y = df[['JAN']]
```

import library for splitting data

```
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

split the data

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
```

prepare model

```
model = LinearRegression()
model.fit(X_train, y_train)

v LinearRegression
LinearRegression()
```

predict target variable

```
y_pred = model.predict(X_test)
```

calculate mse

plot the graph

```
plt.scatter(X_train, y_train, color='blue', label='Actual data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted data')
plt.title('simple Linear regression')
plt.xlabel('year')
plt.ylabel('January Temperature (Celsius)')
plt.legend()
plt.grid(True)
plt.show()
```



```
print(f'Mean Squared Error: {mse}')

A mean Squared Error: 0.5567563295289469

X = df[['YEAR']]
y = df[['MAY']]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=24)

model = LinearRegression()
model.fit(X_train, y_train)

T LinearRegression
```

LinearRegression()

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

```
plt.scatter(X_train, y_train, color='blue', label='Actual data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted data')
plt.title('simple Linear regression')
plt.xlabel('year')
plt.ylabel('May Temperature (Celsius)')
plt.legend()
plt.grid(True)
plt.show()
```

 $\overline{\mathbf{T}}$

simple Linear regression


```
plt.scatter(X_train, y_train, color='blue', label='Actual data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted data')
plt.title('simple Linear regression')
plt.xlabel('year')
plt.ylabel('July Temperature (Celsius)')
plt.legend()
plt.grid(True)
plt.show()
```


simple Linear regression


```
plt.scatter(X_train, y_train, color='blue', label='Actual data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted data')
plt.title('simple Linear regression')
plt.xlabel('year')
plt.ylabel('AUGUST Temperature (Celsius)')
plt.legend()
plt.grid(True)
plt.show()
```


print(mse)

simple Linear regression


```
X = df[['YEAR']]
y = df[['DEC']]

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=60, random_state=42

model = LinearRegression()
```

mse = mean_squared_error(y_test, y_pred)

model.fit(X_train, y_train)
y_pred = model.predict(X_test)

```
plt.scatter(X_train, y_train, color='blue', label='Actual data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted data')
plt.title('simple Linear regression')
plt.xlabel('year')
plt.ylabel('December Temperature (Celsius)')
plt.legend()
plt.grid(True)
plt.show()
```

 $\overline{\mathbf{T}}$

simple Linear regression


```
plt.scatter(X_train, y_train, color='blue', label='Actual data')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted data')
plt.title('simple Linear regression')
plt.xlabel('year')
plt.ylabel('March Temperature (Celsius)')
plt.legend()
plt.grid(True)
plt.show()
```


simple Linear regression

print(mse)

0.7641028200376099