

```
18 - ## Question c: Analyze the summary of your data.
19 - ```{r}
20 summary(zeta)
21 - * * * *
                        zipCode
                                         sex
                                                           meanage
                                                                        meaneducation
                                                                                        meanemployment
                                                        Min. : 0.00
      Min.
           : 1 Min. : 601
                                    Length:64076
                                                                        Min. : 0.00
                                                                                        Min. :0.000
                                                                                        1st Qu.:1.542
                                                                        1st Qu.:11.91
      1st Qu.:16020
                     1st Qu.:27305
                                    Class :character
                                                        1st Qu.: 36.65
      Median :32038
                     Median :49909
                                     Mode :character
                                                        Median : 39.30
                                                                        Median :12.46
                                                                                        Median :1.813
      Mean :32038
                     Mean :49801
                                                        Mean : 39.68
                                                                        Mean :12.53
                                                                                        Mean :1.787
      3rd Qu.:48057
                     3rd Qu.:72007
                                                        3rd Qu.: 42.28
                                                                        3rd Qu.:13.11
                                                                                        3rd Qu.:2.077
            :64076
                     Max. :99950
                                                        Max. :137.08
                                                                        Max. :19.00 Max. :3.000
      Max.
          income
      Min. :
      1st Qu.: 37642
      Median : 44163
      Mean : 48245
      3rd Qu.: 54373
      Max. :250000
22 * ## What are the mean and median average incomes?
23 + ```{r}
24 # Mean average Income = 48245
25 # Median average Income = 44163
 27 * ## Question d: Plot a scatter plot of the data. Although this graph is not too informative,
 28 * ## do you see any outlier values? If so, what are they?
 30 + ```{r}
 31 library(ggplot2)
 32 ggplot(zeta,aes(x= zipCode, y=income)) +geom_point(alpha=0.2) +labs(x="Zip
     Code",y="Income",title="Scaterrplot Income vs Zip Code")
 33 *
                Scaterrplot Income vs Zip Code
         250000 -
         200000 -
         150000
       Income
         100000 -
          50000 -
                                                                           75000
                                                                                              100000
                                    25000
                                                        50000
                                                      Zip Code
     There seem to be two outlier values are 0 and 250000
 35
```

```
36 - ## Question e: In order to omit outliers, create a subset of the data so that: $7,000 < income < $200,000,
37 * ## What's your new mean?
39 newData <- subset(zeta, income <200000 & income >7000)
40 summary(newData)
41 - `
                     zipCode
                                     sex
                                                    meanage
                                                                meaneducation meanemployment
                                                 Min. : 0.00
     Min. : 1 Min. : 601 Length:63742
                                                                Min. : 0.00 Min. :0.000
                                                                1st Qu.:11.91 1st Qu.:1.546
      Mode :character Median : 39.31
     Median :32076 Median :49935
                                                                Median :12.46 Median :1.816
      Mean :32051 Mean :49817
                                                  Mean : 39.78
                                                                Mean :12.57
                                                                              Mean :1.795
      3rd Qu.:48047 3rd Qu.:72003
                                                  3rd Qu.: 42.28
                                                                3rd Qu.:13.11 3rd Qu.:2.078
      Max. :64076 Max. :99950
                                                  Max. :133.11 Max. :19.00 Max. :3.000
         income
      Min. : 8465
      1st Qu.: 37755
      Median : 44234
      Mean : 48465
      3rd Qu.: 54444
     Max.
           :194135
42 * ```{r}
43 # New Mean average Income = 48465
45 - ## Question f: Create a simple box plot of your data. Be sure to add a title and label the axes.
47 boxplot(col="white", data = newData, income ~ zipCode, main = "Average Household Income by Zip Code", xlab =
   "Zip Codes", ylab = "Income")
48
49
                                                                                       Average Household Income by Zip Code
         150000
     Income
               601 12025 22044 31903 43152 52037 61024 70605 80007 95642
                                            Zip Codes
```



```
57 * ## Question h: Use the ggplot library in R, which enables you to create graphs with several different
58 * ## types of plots layered over each other. Be sure to read the documentation for
59 * ## and load the library ggplot2 (you may have to install this package into R).
60 * ```{r}
61 library(ggplot2)
62 #Make a ggplot that consists of just a scatter plot using the function geom_point() with position = "jitter"
63 ggplot(newData, aes(x = as.factor(zipCode), y=income))+geom_point(position="jitter", alpha=0.2)+scale_y_log10()
64 * ```
```


74 * ## Question i: Make a ggplot that consists of just a scatter plot using the function geom_point() 75 * ## with position = "jitter" so that the data points are grouped by zip code. Be sure to use applot's 76 * ## function for taking the log10 of the y-axis data. (Hint: for geom_point, have alpha=0.2). 77 * ```{r} 78 library(ggplot2) $ggplot(newData, aes(x = as.factor(newData$zipCode), y = newData$income))+geom_point(pes(colour=factor(zipCode)), position = aes(x =$ jitter',alpha=0.2)+ geom_boxplot(alpha=0.1,outlier.size =-Inf) + scale_y_log10()+labs(color="Region",x="Zip' Code",y="Income",title="Average Income by Zip Code") + theme(plot.title = element_text(size =11, face="plain",hjust = 0.5)) 80 -81 - ## Question j: Create a new ggplot by adding a box plot layer to your previous graph. 82 * ## To do this, add the applot function geom_boxplot(). Also, add color to the scatter plot so 83 - ## that data points between different zip codes are different colors. Be sure to label the axes and 84 - ## add a title to the graph. (Hint: for geom_boxplot, have alpha=0.1 and outlier.size=0). 85 - ```{r} 86 library(ggplot2) $87 \\ \hline ggplot(newData, aes(x=as.factor(zipCode), y=income)) \\ + geom_point(aes(colour=factor(zipCode)), position = 'jitter', alpha=0.2) \\ + geom$ geom_boxplot(alpha=0.1,outlier.size =0) + scale_y_log10()+ ylab("Income") + xlab("Zip Code") + ggtitle ("Average Income by Zip Code") + labs(color="Region") + theme(plot.title = element_text(size =11, face="plain",hjust = 0.5)) 88 -89 * ## Question k: What can you conclude from this data analysis/visualization? 90 + ```{r} ∰ ¥ ▶ 91 # - It is important to visualize your data in different ways. 92 93 # - Visualization enables you to better understand what your data is telling you. 94 95 # - Visualization enables you to better communicate your results to stakeholders. 96 97 # - Zip codes starting in 0 (New England) and 9 (West Coast) have higher average household incomes. 98 - ` 99

```
96 - ## Question k: What can you conclude from this data analysis/visualization?
98 # - It is important to visualize your data in different ways.
    # - Visualization enables you to better understand what your data is telling you.
100
101
102
    # - Visualization enables you to better communicate your results to stakeholders.
103
    # - Zip codes starting in 0 (New England) and 9 (West Coast) have higher average household incomes.
104
105 -
106
107
 101 - #### Exercise 2.2 ####
 103 • ## Question a: Cluster the data and plot all 52 data points, along with the centroids.
 104 - ## Mark all data points and centroids belonging to a given cluster with their own color. Here, let k=10.
 105 - ```{r}
 106 load('income_elec_state.Rdata')
107 k = kmeans(income_elec_state, 10)
108 plot(income_elec_state, col = k$cluster)
      points(k$centers, col=1:10, pch=8)
 110 -
                                                                                                                                    1300
                                                       0
                                                  0
                                                             0
                                                                  8
                                                    0
                                                                   0
                                              0
              1100
                                                         0
                                                                                                °*°
              900
                                                      0
                                                                                    0*
              800
                                                0
                                                      0
              700
              009
```

income


```
130
131 + ```{r}
132 # Sizes, centers' position, sum of squares of clusters can change after each time repeat above step.
133 # Because by default nstart = 1: having only one random starting set can result in different
134 # clusterings over multiple runs.
135
136
    # To prevent these changes from occurring, we can:
     # - Increase "nstart" to improve the likelihood of obtaining the globally optimal clustering.
137
      # - Increasing the "iter.max" parameter reduces the likelihood that the kmeans algorithm terminates
138
139
      # prematurely.
140 -
141
142 * ```{r}
                                                                                                                                 143 k = kmeans(income_elec_state, 10, nstart=100, iter.max = 50)
144 plot(income_elec_state, col = k$cluster)
points(k$centers, col=1:10, pch=8)
146 -
                                                                                                                                    0
                                                               8
            1100
                                                                                     0
                                                                                             0*0
            900
                                                                  0
                                                                                 0*
            800
            700
                                                                  8
                        30000
                                       40000
                                                      50000
                                                                                    70000
                                                                     60000
                                                       income
```



```
Repeat the modeling with k=3
164
165
      ```{r}
166 -
 k = kmeans(income_elec_state, 3, nstart=100, iter.max = 50)
plot(income_elec_state, col = k$cluster)
167
168
169
 points(k$centers, col=1:4, pch=8)
170 -
 1300
 0
 0
 0
 0
 8
 0
 0
 0
 1100
 0
 0 0
 900
 0
 0
 800
 0
 0
 0
 700
 8
 0
 009
 30000
 40000
 50000
 60000
 70000
 income
 Repeat the modeling with k=5
171
172
173 * ```{r}
 ∰ ▼ →
 k = kmeans(income_elec_state, 5, nstart=100, iter.max = 50)
plot(income_elec_state, col = k$cluster)
174
175
176
 points(k$centers, col=1:4, pch=8)
177 -
 1300
 0
 0
 0
 8
 0
 0
 1100
 0
 0
 900
 0
 800
 700
 009
 30000
 40000
 50000
 60000
 70000
 income
178
 Chosen k=4. Because we see that Puerto Rico is an outlier, and should perhaps belong to its own cluster. It is the smallest k such
 that Puerto Rico
 belongs to its own cluster, so this k would be a good value to suggest.
```

```
183 - ## Question d: Convert the mean household income and mean electricity usage to a log10 scale and
184 * ## cluster this transformed dataset. How has the clustering changed? Why?
185 - ``{r}
186
 new = log10(income_elec_state)
 k = kmeans(new, 10, nstart=100, iter.max = 50)
187
188
 plot(new, col = k$cluster)
189
 points(k$centers, col=1:10, pch=8)
190 -
 3.10
 0
 0
 8
 0
 3.00
 2.90
 80
 4.4
 4.5
 4.6
 4.7
 4.8
 4.9
 income
 K-means clustering is not scale-invariant, so any adjustments made to the units of the data may impact the clustering.
191
192
 193 - ## Question e: Reevaluate your choice of k. Would you now choose k differently? Why or why not?
 194 + ```{r}
 ∰ ▼ →
 195
 wss =numeric(10)
 196
 for (i in 1:10) wss[i] = sum(kmeans(new, centers=i, nstart = 100, iter.max = 50)$tot.withinss)
 plot(1:10, wss, type="b", xlab="Number of Clusters", ylab="Total within-clusters sum of squares")
 197
 198 -
 9.0
 Total within-clusters sum of squares
 0.5
 0.4
 0.3
 0.2
 0.1
 0
 2
 6
 8
 4
 10
 Number of Clusters
```

199

We see more clear elbow in the different position: k=5



```
Question g: Color a map of the U.S. according to the clustering you obtained. To simplify this task, use

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color only the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and color in the 48 contiguous states and Washington D.C.

the "maps" package and the 48 contiguous states and Was
```

