Last time:

Moving a line with height f(x) traces out an area

(lires: 10, areas 20)

Volume:
$$V = \int_{a}^{b} A(x) dx$$

Ex1: Show that the volume of a Sphere with radius (is $V = \frac{4}{3}\pi r^3$

Sol: place our sphere's Center at the origin:

Moving a cross section area with area Acc) traces of a volume (areas: 21), Volumes: 3D)

the cross sectional area A(x) is a circle.
The radius of the circle will by y, ie A(x) = TIY

 $y = \sqrt{r^2 - x^2}$ by the pythagorean theorem, ie $A(x) = \pi y^2 = \pi (r^2 - x^2)$

A(x) 13 Even

Thus
$$V = \int_{-r}^{r} A(x)dx = \int_{-r}^{r} T(r^2 - x^2) dx = 2\pi \int_{0}^{r} r^2 - x^2 dx$$

 $= 2\pi \left[r^2 x - \frac{x^3}{3} \right]_{0}^{r}$

$$= 2\pi \left(r^{3} - \frac{r^{3}}{3} \right)$$
$$= 2\pi \left(\frac{2}{3} \right) r^{3}$$

= 4mc3

Ex2: Find the volume of the Solid obtained by rotating about the x-axis the region under the curve y=TX from 0 to 1. Illustrate the definition of volume by sketching a typical approximating cylinder.

First we sketch the region under y= R from 0 to 1

A(x) is a circle with y=IR radio y, $A(x)=Tiy^2$

$$A(x)$$
 is a circle with $y=1x$
radio y , $A(x) = \pi y^2$

$$= \pi (1x)^2$$

$$= \pi x$$

$$V = \int_{0}^{1} A(x) dx = \pi \int_{0}^{1} x dx = \pi \left[\frac{x^{2}}{2} \right]_{0}^{1} = \frac{\pi}{2}$$

Minusched Find the Volume of the Solid obtained by rotating the region bounded by y=1/k, y=0, X=1, X=4 around the x axis. Sketch the region, the Solid, and an approximating cylinder.

Sol:

$$V = \int_{1}^{4} A(x) dx = \int_{1}^{4} \pi y^{2} dx$$

$$= \pi \int_{1}^{4} \left(\frac{1}{X^{2}}\right) dx$$

$$= \pi \left[-\frac{1}{X}\right]_{1}^{4}$$

$$= \pi \left[-\frac{1}{4} + 1\right]$$

$$= \frac{3}{4}\pi$$

 $\frac{E\times 3}{A}$ Find the volume of the Solid obtained by rotating the region bounded by $y=x^3$, y=8, and x=0 around the y-axis.

<u>Sol</u>:

(aka horizontal cross sections will be easier to calculate)

$$y = x^{3}$$
 get $x = \sqrt[3]{y}$
 $y = \int_{0}^{8} A(y) dy = \int_{0}^{8} \pi x^{2} dy = \int_{0}^{8} \pi y^{2/3} dy = \dots = \frac{96\pi}{3}$

 $\frac{E_{\times}4}{}$: The region R enclosed by the curves $y_{<\times}$ and $y_{<\times}^2$ is rotated around the x-axis. Find the volume of the resulting solid.

Sol:

$$A(x) = \pi r_{oAx}^2 - \pi r_{inver}^2$$

$$A(x) = \pi x^{2} - \pi (x^{2})^{2}$$

$$V = \int_{0}^{1} A(x) dx = \pi \int_{0}^{1} x^{2} - x^{4} dx = \dots = \frac{2\pi}{15}$$

Ex5: Find the volume of the Same region R in ex4 rotated around the line y=2.

