

Lista de Exerícios de Geometria Analítica Professor Marcio Antônio de Andrade Bortoloti

11/11/2022

1.

2. Nos exercícios a seguir, determine a equação polar, dada a sua equação cartesiana:

a)
$$x^2 + y^2 = a^2$$

b)
$$x + y = 1$$

c)
$$y^2 = 4(x+1)$$

d)
$$x^3 = 4y^2$$

e)
$$x^2 = 6y - y^2$$

f)
$$x^2 - y^2 = 16$$

g)
$$(x^2 + y^2)^2 = 4(x^2 - y^2)$$

h)
$$2xy = a^2$$

i)
$$x^3 + y^3 - 3axy = 0$$

$$j) \ y = \frac{2x}{x^2 + 1}$$

3. Nos exercícios a seguir, determine a equação cartesiana de cada equação polar dada.

a)
$$r^2 = 2 \sin 2\theta$$

b)
$$r^2 \cos 2\theta = 10$$

c)
$$r^2 = \cos \theta$$

d)
$$r = 2 \sin 3\theta$$

e)
$$r^2 = \theta$$

f)
$$r\cos\theta = -1$$

g)
$$r^6 = r^2 \cos^2 \theta$$

$$h) \ r = \frac{6}{2 - 3 \sin \theta}$$

$$i) r = \frac{4}{3 - 2\cos\theta}$$

Para fazer alguns gráficos, como os abaixo solicitados:

Vamos usar como exemplo, a construção do gráfico de

$$r = 1 - 2\cos\theta$$
.

Inicialmente, construa um sistema de coordenadas polares como a proposta na figura abaixo.

Agora, para cada valor de θ determine o valor correspondente de r, utilizando a equação anterior. Dessa forma será obtida uma tabela, como a seguinte:

heta	r
0	-1
$\pi/6$	$1-\sqrt{3}$
$\pi/3$	0
$\pi/2$	1
$2\pi/3$	2
$5\pi/6$	$1+\sqrt{3}$
π	3

Com esses pontos (r, θ) , fazemos a marcação de cada um deles no sistema polar, tomando como referência o ângulo e marcando o valor correspondente r sobre o "lado" do ângulo. Obtendo assim, a figura abaixo.

- 4. Nos exercícios a seguir, faça um esboço do gráfico da equação dada:
 - a) $\theta = \pi/3$
 - b) $r = \pi/3$
 - c) $r\cos\theta = 4$
 - d) $r = 4\cos\theta$
 - e) $r \operatorname{sen} \theta = 2$
 - f) $r = 2 \operatorname{sen} \theta$
 - g) $r = 4 4\cos\theta$
 - h) $r = 2 + 2 \operatorname{sen} \theta$
 - i) $r = 3 2\cos\theta$
 - j) $r = 2 \sin 3\theta$
 - k) $r = e^{\theta}$ (espiral logarítmica)
 - l) $r = 1/\theta$ (espiral recíproca)
 - m) $r = 2\theta$ (espiral de Arquimedes)
 - n) $r^2 = 9 \operatorname{sen} 2\theta$ (lemniscata)
 - o) $r = 2 \sin \theta \tan \theta$ (cissóide)