Problems for Individual Contest

Problem 1. Choose (1) or (2), but not both.

- (1) Let p be a prime number, and k, n a positive integer. Count the number of subgroups of the group $(\mathbb{Z}/p\mathbb{Z})^n$ with p^k elements.
- (2) Classify all groups of the form $\mathbb{Z}^5/A\mathbb{Z}^n$ up to isomorphisms, where A is an $5 \times n$ integer matrix and n is an arbitrary positive integer.

Problem 2. Let V be a complex vector space of dimension n. Let u_1, \ldots, u_n be nilpotent linear endomorphisms of V, which pairwise commute. What can we say about their composition $u_1 \circ \cdots \circ u_n$?

Problem 3. (1) Let $\rho: G \to GL(V)$ be a finite dimensional representation of a finite group G. Let V^G be the subspace of fixed points. Prove that

$$\dim V^G = \frac{1}{|G|} \sum_{G \in G} \chi(g)$$

where $\chi: G \to \mathbb{C}, \ g \to \operatorname{tr} \rho(g)$ is the character.

(2) Consider the graded ring $S = \mathbb{C}[x_1, \dots, x_n] = \bigoplus_{d \geq 0} S_d$. Let $G \subset GL(n)$ be any finite subgroup with the induced action on S. We have $S^G = \bigoplus_{d \geq 0} S^G \cap S_d$. Prove that

$$\sum_{d\geq 0} (\dim S^G \cap S_d) t^d = \frac{1}{|G|} \sum_{A \in G} \frac{1}{\det(I_n - tA)}.$$