13 Topology of \mathbb{R} I

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 13
Topology of \mathbb{R} I
Monday 4 February 2019

Announcements

Assignment 3 was posted on Saturday. Due Friday 15 Feb 2019 at 1:25pm. IMPORTANT CHANGE:

- For the remainder of the term, assignments must be submitted electronically, not as a hardcopy.
- You should have received a link for Assignment 3 via e-mail from crowdmark. If you have not received such an e-mail, please e-mail earn@math.mcmaster.ca.
- If you write your solutions by hand, you will need to scan or photograph them to submit them via the online system.
- If you use LATEX to create a pdf file, you will need to separate your solutions for each question.
- Marked assignments will be available online, rather than being returned in tutorial.
- Today: "How big is \mathbb{R} ?" (see last few slides for Lecture 12) and intro to "Topology of \mathbb{R} "

Topology of $\mathbb R$

Intervals

Open interval:

$$(a, b) = \{x : a < x < b\}$$

Closed interval:

$$[c,d] = \{x : c \le x \le d\}$$

Half-open interval:

$$(e, f] = \{x : e < x \le f\}$$

Interior point

Definition (Interior point)

If $E \subseteq \mathbb{R}$ then x is an **interior point** of E if x lies in an open interval that is contained in E, *i.e.*, $\exists c > 0$ such that $(x - c, x + c) \subset E$.

Interior point examples

Set E	Interior points?
(-1,1)	Every point
[0, 1]	Every point except the endpoints
N	│ ∌
\mathbb{R}	Every point
Q	∄
$(-1,1) \cup [0,1]$	Every point except 1
$(-1,1)\setminus\{\tfrac{1}{2}\}$	Every point

Neighbourhood

Definition (Neighbourhood)

A **neighbourhood** of a point $x \in \mathbb{R}$ is an open interval containing x.

Deleted neighbourhood

Definition (Deleted neighbourhood)

A **deleted neighbourhood** of a point $x \in \mathbb{R}$ is a set formed by removing x from a neighbourhood of x.

$$(a,b)\setminus\{x\}$$

Isolated point

$$E = (a_1, b_1) \cup [a_2, b_2) \cup \{x\}$$

Definition (Isolated point)

If $x \in E \subseteq \mathbb{R}$ then x is an **isolated point** of E if there is a neighbourhood of x for which the only point in E is x itself, *i.e.*, $\exists c > 0$ such that $(x - c, x + c) \cap E = \{x\}$.

Isolated point examples

Set E	Isolated points?
(-1,1)	∄
[0, 1]	∄
\mathbb{N}	Every point
\mathbb{R}	∄
$\mathbb Q$	∄
$(-1,1) \cup [0,1]$	∄
$(-1,1)\setminus\{rac{1}{2}\}$	∄

Accumulation point

Definition (Accumulation Point or Limit Point)

If $E \subseteq \mathbb{R}$ then x is an accumulation point or limit point of E if every neighbourhood of x contains infinitely many points of E,

i.e.,
$$\forall c > 0$$
 $(x - c, x + c) \cap (E \setminus \{x\}) \neq \emptyset$.

Notes:

- It is possible but not necessary that $x \in E$.
- The shorthand condition is equivalent to saying that every deleted neighbourhood of x contains at least one point of E.

Accumulation point examples

Set E	Accumulation points?
(-1, 1)	
[0, 1]	
\mathbb{N}	
\mathbb{R}	
Q	
$(-1,1) \cup [0,1]$	
$\left(-1,1 ight)\setminus\left\{rac{1}{2} ight\}$	
$\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$	