

Chapter 04. 자연어처리 (Natural Language Processing)

Seq2seq (Attention)

Seq2seq Model

Seq2seq 모델은 번역 문제를 학습하기 위해 널리 사용되고 있는 RNN 구조이다.

Context를 개선하려면?

Encoder hidden state를 모아서 Decoder로 전달하면 Context를 향상시킬 수 있을 것!

Query, Key-Value

Query : 질의. 찾고자 하는 대상

Key: 키. 저장된 데이터를 찾고자 할 때 참조하는 값

Value: 값. 저장되는 데이터

Dictionary: Key-Value Pair로 이루어진 집합

Querying

	"2018"
"2019"	0
"2018"	1
"2012"	0
l	
비교	

0 "2019": "EndGame"1 "2018": "InfinityWar"0 "2012": "Avengers"

값 출력

Attention mechanism

Q에 대해 어떤 K가 유사한지 비교하고, 유사도를 반영하여 V들을 합성한 것이 Attention value이다.

Seq2seq

Attention mechanism이 Seq2seq 모델에 어떻게 적용 가능한지 알아보자.

Seq2seq – Key-Value

대부분의 attention network에서는 key와 value를 같은 값을 사용한다.

Seq2seq에서는 Encoder의 hidden layer들을 key와 value로 사용한다.

Seq2seq – Query

Seq2seq에서는 Decoder의 hidden layer들을 Query로 사용한다.

주의할 점은, Encoder와 달리 <mark>하나 앞선 time-step</mark>의 hidden layer를 사용한다는 점.

Seq2seq – Attention mechanism

i번째 decoder에 대해서 a_i 의 attention value를 얻는다.

Seq2seq – Application

RNN으로 Hidden state를 입력하기 전에, attention value를 concatenate하여 입력한다.

