

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2015

MATEMATYKA

Poziom podstawowy

Symbol arkusza **E**MAP-P0-**100**-2306

DATA: 2 czerwca 2023 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 46

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania zasad oceniania dostosowania w zw. z dyskalkulią nieprzenoszenia zaznaczeń na kartę.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 31 stron (zadania 1–36). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Odpowiedzi do zadań zamkniętych (1–29) zaznacz na karcie odpowiedzi w części przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (30–36) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

W każdym z zadań od 1. do 29. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba 6³⁰: 4¹⁵ jest równa

- **A.** $(1,5)^{15}$
- **B.** $(1,5)^2$
- **C.** 3³⁰
- **D.** 3⁰

Zadanie 2. (0-1)

Dla każdej dodatniej liczby rzeczywistej x iloczyn $\sqrt{x} \cdot \sqrt[3]{x} \cdot \sqrt[6]{x}$ jest równy

- **A.** *x*
- **B.** $\sqrt[10]{x}$ **C.** $\sqrt[18]{x}$ **D.** x^2

Zadanie 3. (0-1)

Klient wpłacił do banku 30 000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 7% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa

- **A.** 2100 zł
- **B.** 2247 zł
- **C.** 4200 zł
- **D.** 4347 zł

Zadanie 4. (0-1)

Liczba $\log_2 \frac{1}{8} + \log_2 4$ jest równa

- **A.** (-1) **B.** $\frac{1}{2}$

- **C.** 2
- **D.** 5

Zadanie 5. (0-1)

Liczba $(1+\sqrt{5})^2-(1-\sqrt{5})^2$ jest równa

A. 0

- **B.** (-10) **C.** $4\sqrt{5}$
- **D.** $2 + 2\sqrt{5}$

Zadanie 6. (0-1)

Do zbioru rozwiązań nierówności (x-3)(x-2)(x+20) < 0 należy liczba

- **A.** (-20)
- **B.** (-23)
- **C.** 20
- **D.** 23

Informacja do zadań 7.–8.

Na rysunku przedstawiono wykres funkcji f.

Zadanie 7. (0-1)

Dziedziną funkcji f jest zbiór

A. $(-3, -1) \cup (1, 3)$

B. (-3,3)

C. $(-5,-1) \cup (1,5)$

D. (-5,5)

Zadanie 8. (0-1)

Zbiorem wartości funkcji f jest zbiór

A. $(-3, -1) \cup (1, 3)$

B. $\langle -3, -1 \rangle \cup \langle 1, 3 \rangle$

C. $(-5,-1) \cup (1,5)$

D. $\langle -5, -1 \rangle \cup \langle 1, 5 \rangle$

Zadanie 9. (0-1)

Funkcja f jest określona wzorem $f(x) = \frac{x^2+4}{x-2}$ dla każdej liczby rzeczywistej $x \neq 2$.

Wartość funkcji f dla argumentu 4 jest równa

A. 6

- **B.** 2
- **C.** 10
- **D**. 8

Zadanie 10. (0-1)

Prosta o równaniu y = ax + b przechodzi przez punkty A = (-3, -1) oraz B = (4, 3). Współczynnik a w równaniu tej prostej jest równy

- **A.** (-4)
- **B.** $\left(-\frac{1}{2}\right)$ **C.** 2
- **D.** $\frac{4}{7}$

Zadanie 11. (0-1)

Wykresy funkcji liniowych

$$f(x) = (2m + 3)x + 5$$
 oraz $g(x) = -x$

nie mają punktów wspólnych dla

- **A.** m = -2 **B.** m = -1 **C.** m = 1 **D.** m = 2

Zadanie 12. (0-1)

Funkcja kwadratowa f jest określona wzorem $f(x) = ax^2 + bx + 1$, gdzie a oraz b są pewnymi liczbami rzeczywistymi, takimi, że a < 0 i b > 0. Na jednym z rysunków A–D przedstawiono fragment wykresu tej funkcji.

Fragment wykresu funkcji f przedstawiono na rysunku

A.

В.

C.

D.

Zadanie 13. (0-1)

Ciąg (a_n) jest określony wzorem $a_n=\frac{n-2}{3}$ dla każdej liczby naturalnej $n\geq 1$. Liczba wyrazów tego ciągu mniejszych od 10 jest równa

- **A.** 28
- **B.** 31
- **C.** 32
- **D.** 27

Zadanie 14. (0-1)

Ciąg (a_n) , określony wzorem $a_n=-2^n$ dla każdej liczby naturalnej $n\geq 1$, jest

- A. ciągiem arytmetycznym o różnicy 2.
- **B.** ciągiem arytmetycznym o różnicy (-2).
- C. ciągiem geometrycznym o ilorazie 2.
- **D.** ciagiem geometrycznym o ilorazie (-2).

Zadanie 15. (0-1)

Trzywyrazowy ciąg (1, 4, a + 5) jest arytmetyczny.

Liczba *a* jest równa

A. 0

- **B.** 7
- **C.** 2

D. 11

Zadanie 16. (0-1)

Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej $n \geq 1$. W tym ciągu $a_1 = 3,75$ oraz $a_2 = -7,5$.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa

- **A.** 11,25
- **B.** (-18,75) **C.** 15
- **D.** (-15)

Zadanie 17. (0-1)

Dla każdego kąta ostrego α wyrażenie $\cos \alpha - \cos \alpha \cdot \sin^2 \alpha$ jest równe

- **A.** $\cos^3 \alpha$
- **B.** $\sin^2 \alpha$ **C.** $1 \sin^2 \alpha$
- **D.** $\cos \alpha$

Zadanie 18. (0-1)

Cosinus kąta ostrego α jest równy $\frac{2}{3}$. Wtedy $\lg \alpha$ jest równy

- **A.** $\frac{2\sqrt{5}}{5}$ **B.** $\frac{\sqrt{5}}{2}$
- **C.** 2
- **D.** $\frac{1}{2}$

Zadanie 19. (0-1)

Na łukach AB i CD okręgu są oparte kąty wpisane ADB i DBC, takie że $| \not ADB | = 20^{\circ}$ i $| \not ADBC | = 40^{\circ}$ (zobacz rysunek). Cięciwy AC i BD przecinają się w punkcie K.

Miara kąta DKC jest równa

- **A.** 80°
- **B.** 60°
- **C.** 50°
- **D.** 40°

Zadanie 20. (0-1)

Pole równoległoboku ABCD jest równe $40\sqrt{6}$. Bok AD tego równoległoboku ma długość 10, a kąt ABC równoległoboku ma miarę 135° (zobacz rysunek).

Długość boku AB jest równa

- **A.** $8\sqrt{3}$
- **B.** $8\sqrt{2}$
- **C.** $16\sqrt{2}$
- **D.** $16\sqrt{3}$

Zadanie 21. (0-1)

Odcinek AB jest średnicą okręgu o środku S. Prosta k jest styczna do tego okręgu w punkcie A. Prosta l przecina ten okrąg w punktach B i C. Proste k i l przecinają się w punkcie D, przy czym |BC| = 4 i |CD| = 3 (zobacz rysunek).

Odległość punktu A od prostej l jest równa

A.
$$\frac{7}{2}$$

C.
$$\sqrt{12}$$

C.
$$\sqrt{12}$$
 D. $\sqrt{3} + 2$

Zadanie 22. (0-1)

Funkcja liniowa f jest określona wzorem f(x) = -x + 1. Funkcja g jest liniowa. W prostokątnym układzie współrzędnych wykres funkcji $\,g\,$ przechodzi przez punkt P = (0, -1) i jest prostopadły do wykresu funkcji f.

Wzorem funkcji g jest

A.
$$g(x) = x + 1$$

B.
$$g(x) = -x - 1$$

C.
$$g(x) = -x + 1$$

D.
$$g(x) = x - 1$$

Zadanie 23. (0-1)

Dane są punkty A = (1,7) oraz P = (3,1). Punkt P dzieli odcinek AB tak, że |AP| : |PB| = 1 : 3.

Punkt B ma współrzędne

- **A.** (9, -5)
- **B.** (9,-17) **C.** (7,-11) **D.** (5,-5)

Zadanie 24. (0-1)

Punkty A = (-1,5) oraz C = (3,-3) są przeciwległymi wierzchołkami kwadratu ABCD. Pole kwadratu ABCD jest równe

- **A.** $8\sqrt{10}$
- **B.** $16\sqrt{5}$ **C.** 40
- **D.** 80

Zadanie 25. (0-1)

Punkt S' = (3,7) jest obrazem punktu S = (3a - 1, b + 7) w symetrii osiowej względem osi Ox układu współrzędnych, gdy

A.
$$a = \frac{4}{3}$$
 oraz $b = 0$.

B.
$$a = \frac{4}{3}$$
 oraz $b = -14$.

C.
$$a = -\frac{2}{3}$$
 oraz $b = -14$.

D.
$$a = -\frac{2}{3}$$
 oraz $b = 0$.

Zadanie 26. (0-1)

Objętość ostrosłupa prawidłowego trójkatnego o wysokości 8 jest równa $2\sqrt{3}$. Długość krawędzi podstawy tego ostrosłupa jest równa

- **A.** 3
- **B.** $\frac{\sqrt{6}}{2}$
- **C.** 1
- D. $\sqrt{3}$

Zadanie 27. (0-1)

Dany jest graniastosłup prawidłowy sześciokątny ABCDEFA'B'C'D'E'F', w którym krawędź podstawy ma długość 5. Przekątna AD' tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem 45° (zobacz rysunek).

Pole ściany bocznej tego graniastosłupa jest równe

- **A.** 12,5
- **B.** 25
- **C.** 50
- **D.** 100

Zadanie 28. (0-1)

Średnia arytmetyczna zestawu pewnych stu liczb całkowitych dodatnich jest równa s. Każdą z liczb tego zestawu zwiększamy o 4, w wyniku czego otrzymujemy nowy zestaw stu liczb. Średnia arytmetyczna nowego zestawu stu liczb jest równa

- **A.** s + 4
- **B.** $s + \frac{4}{100}$ **C.** $\frac{s+4}{100}$
- **D.** 4s

Zadanie 29. (0-1)

Wszystkich liczb naturalnych trzycyfrowych o sumie cyfr równej 3 jest

A. 8

- **B.** 4
- **C.** 5
- **D**. 6

Zadanie 30. (0-2)

Rozwiąż nierówność

$$x(2x-1) < 2x$$

Zadanie 31. (0-2)

Rozwiąż równanie

$$(2x^2 + 3x)(x^2 - 7) = 0$$

Zadanie 32. (0-2)

Wykaż, że dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b takiej, że $b \neq a$, prawdziwa jest nierówność

$$a^2 + 3b^2 + 4 > 2a + 6b$$

Zadanie 33. (0-2)

Wykresem funkcji kwadratowej f jest parabola o wierzchołku w punkcie A=(0,3). Punkt B=(2,0) leży na wykresie funkcji f.

Wyznacz wzór funkcji f.

Zadanie 34. (0-2)

W trójkącie prostokątnym równoramiennym ABC o przeciwprostokątnej BC punkt D jest środkiem ramienia AB. Odcinek CD ma długość 5 (zobacz rysunek). Oblicz obwód trójkąta ABC.

Zadanie 35. (0-2)

Ze zbioru ośmiu kolejnych liczb naturalnych – od 1 do 8 – losujemy kolejno bez zwracania dwa razy po jednej liczbie.

Niech $\it A$ oznacza zdarzenie polegające na tym, że suma wylosowanych liczb jest dzielnikiem liczby 8.

Oblicz prawdopodobieństwo zdarzenia A.

Zadanie 36. (0-5)

W trapezie równoramiennym ABCD podstawa CD ma długość 5. Punkt F=(3,11) jest środkiem odcinka CD. Prosta o równaniu $y=-\frac{4}{3}x+15$ jest osią symetrii tego trapezu oraz $B=\left(\frac{23}{2},8\right)$.

Oblicz współrzędne wierzchołka A oraz pole tego trapezu.

MATEMATYKA Poziom podstawowy

Formula 2015

MATEMATYKA Poziom podstawowy Formuła 2015

Formula 2015

MATEMATYKA Poziom podstawowy

Formula 2015