Internet Of Things

Lab - 6

11 September 2020

Aim:

To Perform IoT Automation like to Display the Electricity usage bill, integrate Google Maps with the help of SVG editor, Node-RED, its Dashboard Component and concepts of IoT.

Software:

Node-Red Software.

Methodology:

This video instructions are followed: https://www.youtube.com/watch?v=zbSufot6qXg

Simulation And Output:

1) To display interactive messages using SVG Graphics Node and perform IoT Automation

(1.1) SVG Graphics Node

Edit SVG graphics node	
Delete	Cancel
Properties	
⊞ Group	[EB] Electricity Board 💠
恒 Size	auto
Name	Name
Editor	SVG source Animations Events Input Bind Settings
1 < <svg 2="" 3="" <circle="" <text="" cx="50" cy="100" fill="red" height="200" id="cir" r="40" stroke="black" stroke-widi="" viewbox="0 0 100 100" width="100" x="10" xm]="" y="20"> Power Station 4 < </svg>	

(1.2) SVG Graphics Node Code

(1.3) Text Node

(1.4) Debug Node

(1.5) Complete Circuit Flow

(1.6) Complete Circuit Flow Code

[{"id":"c6efbfa4.7d085","type":"tab","label":"lab 6 electricity board", "disabled": false, "info": ""}, {"id":"fc678b88.8d9f78","type":"ui_svg_graphics","z":"c6efbfa4.7d085","group":"16c5 3fcc.777ba","order":0,"width":0,"height":0,"svgString":"<svg x=\"0\" y=\"0\" height=\"200\" viewBox=\"0 0 100 100\" width=\"100\" xmlns=\"http:// www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" $xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n<circle id=\"cir\" cx=\"50\"$ $cy=\"100\" r=\"40\" stroke=\"black\" stroke-width=\"3\" fill=\"red\" />\n<text$ $x=\"10\" v=\"20\" fill=\"red\"> Power Station </text>\n</svg>","clickableShapes":$ [{"targetId":"#cir","action":"click","payload":"Power On", "payloadType": "str", "topic": "#cir" }], "smilAnimations": [], "bindings": [], "showCoordinates": false, "autoFormatAfterEdit": false, "showBrowserErrors": false, " outputField":"payload","editorUrl":"//drawsvg.org/ drawsvg.html", "directory": "", "panning": "disabled", "zooming": "disabled", "panOnlyWhe nZoomed":false,"doubleClickZoomEnabled":false,"mouseWheelZoomEnabled":false,"n ame":"","x":280,"y":220,"wires":[["3e814d13.e80872","37ee986f.f85ce8"]]}, {"id":"37ee986f.f85ce8","type":"debug","z":"c6efbfa4.7d085","name":"","active":true,"t osidebar":true, "console":false, "tostatus":false, "complete": "payload", "targetType": "msg ","statusVal":"","statusType":"auto","x":510,"y":240,"wires":[]}, {"id":"3e814d13.e80872","type":"ui text","z":"c6efbfa4.7d085","group":"16c53fcc.777 ba", "order": 1, "width": 0, "height": 0, "name": "", "label": "Power Status", "format": "{ {msg.payload} }", "layout": "row-spread", "x": 520, "y": 180, "wires": [] }, {"id":"16c53fcc.777ba","type":"ui_group","z":"","name":"Electricity Board","tab": "d4af2056.81534", "order": 2, "disp": true, "width": "6", "collapse": false }, {"id":"d4af2056.81534","type":"ui_tab","z":"","name":"EB","icon":"dashboard","disabled" :false,"hidden":false}]

(1.6) Complete Circuit Flow Code

2) To display and perform IoT Automation of changing colour of diagrams using Node red and SVG Vector Graphics

(2.1) Inject Node

(2.2) Function Node

(2.3) SVG Graphics Node

(2.4) SVG Graphics Code

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/
xlink" x="0" y="0" height="100" viewBox="0 0 100 100" width="100"><rect
id="svgEditorBackground" x="0" y="0" width="100" height="100" style="fill: none;
stroke: none;"/><defs id="svgEditorDefs">

</svg>

(2.5) SVG Graphics Editor

(2.6) Debug Node

(2.7) Complete Circuit Flow

(2.8) Complete Circuit Flow Code

```
[{"id":"878ab3de.901b5","type":"tab","label":"IoT Automation Change Color Lab
6", "disabled": false, "info": ""},
{"id":"8f85068.d719af8","type":"inject","z":"878ab3de.901b5","name":"inject","props":
[{"p":"payload"},
{"p":"topic","vt":"str"}],"repeat":"","crontab":"","once":false,"onceDelay":0.1,"topic":"","pa
yload":"","payloadType":"date","x":140,"y":100,"wires":[["4d4a7393.11f124"]]},
{"id":"88a4f730.b2187","type":"debug","z":"878ab3de.901b5","name":"","active":true,"t
osidebar":true, "console":false, "tostatus":false, "complete": "payload", "targetType": "msg
","statusVal":"","statusType":"auto","x":470,"y":100,"wires":[]},
{"id":"4d4a7393.11f124","type":"function","z":"878ab3de.901b5","name":"","func":"var
msg;\nmsg.icon fill = \"green\";\nreturn
msg;","outputs":1,"noerr":0,"initialize":"","finalize":"","x":300,"y":160,"wires":
[["88a4f730.b2187","170c4d40.1908c3"]]},
{"id":"170c4d40.1908c3","type":"ui_svg_graphics","z":"878ab3de.901b5","group":"6fe
8belb.6eff4", "order": 0, "width": 0, "height": 0, "svgString": "<svg xmlns=\"http://
www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" x=\"0\"
y=\"0\" height=\"100\" viewBox=\"0 0 100 100\" width=\"100\"><rect
id=\svgEditorBackground\ x=\"0\" y=\"0\" width=\"100\" height=\"100\"
style=\"fill: none; stroke: none;\"/><defs id=\"svgEditorDefs\">\n <polygon
id=\"svgEditorIconDefs\" style=\"fill:rosybrown;\"/><polygon
id=\"svgEditorShapeDefs\" style=\"fill:rosybrown;stroke:black;vector-effect:non-
scaling-stroke;stroke-width:1px;\"/></defs><path
d=\"M13.84615421295166,2.769233465194702v-1.5a2,2,0,0,0,-2,-2h-4a2,2,0,0,0,-
2,2v3a2,2,0,0,0,2,2h4a2,2,0,0,0,2,-2Z\" style=\"fill:{{msg.icon_fill}}; stroke:black;
vector-effect:non-scaling-stroke; stroke-width:lpx;\"id=\"switch\"
transform=\"matrix(4.86829 0 0 4.86829 -4.45652 26.2383)\"/>\n</
svg>","clickableShapes":[{"targetId":"#switch","action":"click","payload":"Power
On", "payloadType": "str", "topic": "#switch" }], "smilAnimations": [], "bindings":
[],"showCoordinates":false,"autoFormatAfterEdit":false,"showBrowserErrors":false,"
outputField":"payload","editorUrl":"//drawsvg.org/
drawsvg.html", "directory": "", "panning": "disabled", "zooming": "disabled", "panOnlyWhe
nZoomed":false,"doubleClickZoomEnabled":false,"mouseWheelZoomEnabled":false,"n
ame":"","x":480,"y":220,"wires":[[]]},
{"id":"6fe8be1b.6eff4","type":"ui_group","z":"","name":"EB2","tab":"e4ad83f4.147fc8","o
rder":1,"disp":true,"width":"6","collapse":false},
{"id":"e4ad83f4.147fc8","type":"ui_tab","z":"","name":"Electricity
Board", "icon": "dashboard", "disabled": false, "hidden": false }]
```

(2.9) Output

3) To display a Map and Automate it using Node red and SVG Vector Graphics

(3.1) SVG Graphics Node

(3.2) SVG Graphics Editor

(3.3) Text Node

(3.4) Debug Node

(3.5) Complete Circuit Flow

(3.6) Output

Result:

Thus, with the help of Node-RED we have designed a graphic diagrams, used automation to automate the diagrams colours, and implemented a Map with location and have analysed it using Node Red, SVG Vector Graphics, visualised it through the Node-red UI Dashboard and have put the learnt concepts to practical use.