Actividad: Trabajo práctico 1.	Ponderación: 5%		Fecha: 14 de febrero 2023	
Programa académico: Ingeniería de Sistemas				
Asignatura: Inteligencia Artificial		Código IAI84-4		Grupo 4
Período académico: 2023-1	Fecha límite de entrega: 28 de febrero 2023			

I. <u>Regresión lineal con múltiples variables, análisis del error, y</u> preparación de los datos (1 punto)

- 1. Con los datos entregados por el docente (datos2.txt: tercera columna son los datos Y), implemente un programa en gradientes para encontrar los valores de los parámetros β que minimicen el valor de la función "cost" ($J(\beta)$). Comentar el código utilizado explicando sus partes principales. (0.8 puntos)
- 2. Grafique: (0.1 punto)

Valores de la función "cost" ($J(\beta)$) y valores de los parámetros β (valores obtenidos en cada ciclo).

- 3. Please answer in English: (0.1 punto)
 - 3.1 ¿Why is it necessary to normalize the X variables?
 - 3.2 ¿What can happen if the variable alpha (α) increases or decreases?

II. Clasificación con regresión logística (2,5 puntos)

Con los datos entregados por el docente (datos3.txt: tercera columna son los datos Y), implemente un programa de regresión logística para encontrar la función hipótesis de clasificación (función sigmoid). Explique las partes principales del código.

Guía para la implementación del código:

1. Almacene los datos de entrenamiento en una matriz con nombre "data". Luego almacene las variables "x1", "x2", y "y". Calcule el número total de datos de entrenamiento.

```
data = load("datos3.txt");
y = data(:,3);
x1 = data(:,1);
x1 = data(:,2);
m = length(y);
```

2. Segregue los datos de entrenamiento "x1" y "x2" en dos grupos: el primero que corresponda a valores de "y" igual a 0, y el segundo que corresponda a

- valores de "y" iguales a 1. Haga una gráfica x1 vs. X2 en la cual en color rojo resalte los datos correspondiente a "y=0", y en color azul los datos que corresponden a "y=1".
- **3.** Crear una matriz "X" de 3 columnas, en la cual: la primera columna corresponda a un vector de valores 1, la segunda corresponda a los datos "x1", la tercera corresponda a los datos "x2".
- **4.** Hacer el cálculo del gradiente descendente para hallar los valores de los parámetros β .
- 5. Utilizando los valores de β encontrados en el cálculo del gradiente descendente, calcule y dibuje la recta que separa los datos de la figura realizada en el numeral 2.

III. <u>Evaluación del desempeño de la clasificación con regresión logística (1 punto)</u>

1. Implemente una de las métricas vistas en clase para evaluar el desempeño del programa de clasificación implementado en el numeral II.

IV. <u>Tipos de Aprendizaje de máquina (0,5 punto)</u>

1. En máximo 300 palabras, indique cuál es la diferencia entre un aprendizaje supervisado y uno no supervisado. ¿En qué tipos de problemas se pueden utilizar estos aprendizajes?