HW1 Solution, CSE 569 Fall 2018

Name: Kunal Vinay Kumar Suthar

ASUrite ID: 1215112535

• Question 1:

	Oucotion 1.
01-	SOLUTION:
1	ljuen o
/13	of is a t
	DDT D(XI)
(2)	PDFs $p(x w_1)$ and $p(x w_2)$ are Gaussians $N(0, \sigma^2)$ and $N(1, \sigma^2)$
	ruspectively.
(3)	Assumption: $\lambda_{11} = \lambda_{22} = 0$
	The state of the s
•	To show: The threshold to minimizing the average risk is equal
	To show: The threshold to minimizing the average risk is equal to $\chi_0 = \frac{1 - \sigma^2 \ln \lambda_{12} P(\omega_2)}{2}$
	$\frac{1}{2}$ $\frac{1}{\lambda}$ $\frac{P(\omega_1)}{2}$
	We know that average locates and I be taking action of ince
D.	We know that average loss (or risk) for taking action a; is ?
	$R = \int R(x_i x)\rho(x) dx$
	Let Ry denote the feature space where classifier decides w, & likeliese of for R2 & W2. Then Expanding K for the two classes we get :
	for R2 & W2. Then Expanding R for the two classes we get &
	$R = \int (\lambda_1 P(\omega_1) \rho(x \omega_1) + \lambda_1 \rho(\omega_2) \rho(x \omega_2) dx$
	N C
200	$+\int (\lambda_2 P(\omega_1)P(\alpha \omega_1)+\lambda_2 P(\omega_2)P(\alpha \omega_2))dx$
	A STATE OF THE STA
	is Differentiating the above with respect to x and equaling it to 0,
	by Differentiating the above with respect to x and equaling it to 0, we get the threshold to for minimizing the average risk
	$\Rightarrow \frac{dR}{dt} = 0 \Rightarrow \lambda_1 P(\omega_1) P(x_1 \omega_1) + \lambda_{12} P(\omega_2) P(x_1 \omega_2) + \lambda_{21} P(\omega_1) P(x_1 \omega_1) + \lambda_{22} P(\omega_2) P(x_1 \omega_2) = 0$
	dxly
	Putting $\lambda_{H} = \lambda_{22} = 0$, we get 8
	Putting $N_{\parallel} = N_{22} = 0$, we get 0 $\frac{1}{12} \frac{f(\omega_2) f(\omega_1) f(\omega_2)}{21} \frac{1}{21} \frac{f(\omega_1) f(\omega_1)}{20} = 0$
	$\Rightarrow \lambda_{12} P(\omega_2) P(z_0 \omega_2) - \lambda_{21} P(\omega_1) P(z_0 \omega_1) = 0$
	Rearranging terms, we get o
	$\Rightarrow \text{lip}(x_0(\omega_1)) = \lambda_{12} P(\omega_2)$
200	$P(x_0 \omega_2)$ $\lambda_1 P(\omega_1)$
	H. Contract

1) Part 1 Solution:

	Page
	PROBLEM 2: SOLUTION
	GIVEN:
(i)	There are c classes. Therefore $\sum_{i=1}^{c} P(w_i x) = 1$
(ii)	$P(\omega_{\max} x) \ge P(\omega_i x)$
(1)	To Prove: $P(\omega_{max} x) \ge 1/c$
	PROOF: We know that: P(Wmax x) > P(wilx) (from (ii) in given)
	New applying summation operator from i=1 to c, on the above
	equation, we get: $\Rightarrow \sum_{i=1}^{E} P(\omega_{max} x) \geq \sum_{i=1}^{E} P(\omega_{i} x)$
	$\Rightarrow \sum_{i=1}^{L} P(\omega_{max} x) \geq 1 \qquad (from (i) \text{ in given})$
	\Rightarrow $c P(\omega_{\text{max}} x) \geq 1$
	$\Rightarrow P(\omega_{\max} x) \geq 1/c$
-	Hence proved.

2) Part 2 Solution:

-	11
(2.)	To PROVE'S For the minimum-error nate decision rule the average
	probability of error is given by:
	To Prove's For the minimum-error rate decision rule, the average probability of error is given by: $f(evor) = 1 - \int f(w_{max} x)p(x)dx$
	Total average probability of error over all x's is given by & (in space R)
	$\Rightarrow P(error) = \int_{e}^{P(error x)} P(x) dx - equation ①$
	No. of the state o
	Now, P(evron x) = Probability sum of the months posteriors for which
	the observation did not belong to the correct class =
77-4	the observation did not belong to the correct class = $\frac{1}{2}$ =
	Substituting value of P(error/x) in equation 1 we get:
	$P(orror) = \int (1 - P(\omega_{max} x)) p(x) dx$
	$= \int_{\mathcal{B}} p(z) dx - \int_{\mathcal{B}} P(\omega_{\text{max}} x) p(z) dx$
	$\Rightarrow \frac{1 - \int \rho(\omega_{\max} x) \rho(x) dx}{1 - \int \rho(\omega_{\max} x) \rho(x) dx}$
	=> 1 JIC made(~)10.10

3) Part 3 Solution

3) Part 3 So	olution
(2.3)	SOLUTION:
	SOLUTION: To PROVE: P(error) < (C-1)/C
	From part-1; $\frac{p(\omega_{\text{max}} x) \geq 1/c}{p(\omega_{\text{max}} x)} = \frac{1}{c}$ multiplying the above inequality with -1 we get:
	multiplying the above inequality
	multiplying the above wify $ \frac{-\rho(\omega_{\text{max}} x)}{-\rho(\omega_{\text{max}} x)} \leq \frac{-1}{c} $ with p(x), we get $ \frac{-\rho(\omega_{\text{max}} x)}{-\rho(\omega_{\text{max}} x)} \frac{(x)}{\rho(x)} \leq \frac{-\rho(x)}{c} $ $ \frac{-\rho(\omega_{\text{max}} x)}{c} \frac{\rho(x)}{c} \leq \frac{-\rho(x)}{c} $ The above with respect to x, we get:
	integrating the multiplying $\zeta - \rho(x)$
	integrating the above with respect to x , we get: $ \frac{-\int \rho(w_{\text{max}} x)\rho(x) dx}{\xi} \leq -\int \rho(x) dx $ we know that $\int \rho(x) dx = 1$
	integrating the above with respect to a
9	$\int p(\omega_{\text{max}} x)p(x)dx \leq \frac{1}{C} \int p(x)dx$
	we know that $\int p(x)dx = 1$
·	Adding I to the inequality, we get:
	$\frac{1}{1-\int p(w_{\text{max}} x)p(x)dx} \leq 1-1/c$
	we know that I to the inequality, we get: $1 - \int p(w_{\text{max}} x) p(x) dx \leq 1 - 1/c$ $\Rightarrow 1 - \int p(w_{\text{max}} x) p(x) dx \leq \frac{C - 1}{C}$
-	
3	⇒ P(error) ≤ C-1 Hence proved

4) Part 4 Solution

-(2.4)	A situation by which Planner = (C-1/c, would be when
	A situation for which $f(evror) = (c-1)/c$, would be when $P(w_1 x) = P(w_2 x) = P(w_3 x) = \dots = P(w_c x) = P(w_{max} x) = 1/c$
	i.e. general, all the posteriors have equal proparating.
	In that case, according to part(2):
Anto month	$P(evror) = 1 - \int_{c}^{c} P(w_{max} x) p(x) dx$ $\Rightarrow P(evror) = 1 - \frac{1}{c} \int_{c}^{c} p(x) dx$
	$\Rightarrow \ell(evror) = 1 - \underline{1} = (\underline{c-1})$
	c c .

1) Part 1 Solution

(Q3) GIVEN:
(i) two-class two dimensional classification task. (ii) class-conditional pdfs:
(ii) class-conditional pdfs:
$\rho(x \omega_1) = \frac{1}{\sqrt{2\pi}\sigma_1^2} \exp\left(-\frac{1}{2\sigma_1^2}(x-\mu_1)^{\top}(x-\mu_1)\right)$
$\sqrt{2\pi\sigma_1^2}$ $2\overline{\sigma_1}^2$
$\rho(x \omega_2) = \frac{1}{2} \exp\left(-\frac{1}{2}(x-\mu_2)(x-\mu_2)\right)$
$\rho(x \omega_2) = \frac{1}{\sqrt{2\pi\delta_2^2}} \exp\left(-\frac{1}{2\delta_2^2}(x-\mu_2)^{T}(x-\mu_2)\right)$
$\mu_1 = [1,1]^T$, $\mu_2 = [1.5,1.5]^T$, $\sigma_1^2 = \sigma_2^2 = 0.2 = \sigma^2$
(11) $P(\omega_1) = P(\omega_2)$
3.1 SOLUTION: Design a Bayesian classifier that minimizes the error probability.
probability.
probability. We know that the minimum error-rate classification can be achieved by the discriminant function: $g_i(x) = P(w_i^* x)$
achieved by the discriminant function:
$q_{\circ}(x) = P(\omega_{\circ} x)$
$\Rightarrow g_i^{\circ}(x) = p(x \omega_i) P(\omega_i)$
As p(x) will be the same for all i's, we treat it as a constant
and impose it.
$\Rightarrow g_i^{\circ}(x) = \rho(x w_i) \rho(w_i)$ $\Rightarrow g_i^{\circ}(x) = \rho(x w_i) \rho(w_i)$
$ \Rightarrow g_i^{\circ}(x) = \rho(x \omega_i) \rho(\omega_i) $ $ taking natural logarithm, we get g_i^{\circ}(x) = \rho(x \omega_i) \rho(\omega_i) \ln \rho(x \omega_i) + \ln \rho(\omega_i) g_i^{\circ}(x) = \ln \rho(x \omega_i) + \ln \rho(\omega_i), g_i^{\circ}(x) = \ln \rho(x \omega_i) + \ln \rho(\omega_i) g_i^{\circ}(x) = \ln \rho(x \omega_i) + \ln \rho(\omega_i), g_i^{\circ}(x) = g_i^{\circ}(x) - g_i^{\circ}(x) $
$g(x) = \ln \ell(x \omega_1) + \ln \ell(\omega_1), g_2(x) = \ln (\ell(x \omega_2)) + \ln \ell(\omega_2)$
Now, for a 2-class problem: $g(x) = g_1(x) - g_2(x)$
$l_{1}(\omega)$
$\Rightarrow g(x) = \ln \rho(x \omega_1) - \ln \rho(x \omega_2) \dots \{as(iii) \text{ in given ln } \ell(\omega_1), \ln(\ell(\omega_2))\}$
$\Rightarrow g(x) = \ln p(x w_1)$
$\rho(x \omega_2)$
$\Rightarrow \ln \exp\left(-\frac{1}{2\sigma^{2}}\left((x-\mu_{1})^{T}(x-\mu_{1}) - (x-\mu_{1})^{T}(x-\mu_{2})\right)\right)\left(i \delta^{2} \delta_{1}^{2} = \delta_{2}^{2} \cdot 02\right)$
1 t x he [x, x,]T
$\Rightarrow ln exp\left(\frac{-1}{0.4} \left[(x_1 - 1 x_2 - 1.0) (x_1 - 1) - (x_1 - 1.5 x_2 - 1.5) (x_1 - 1.5) \right] $ $\Rightarrow ln exp\left(\frac{-1}{0.4} \left[(x_1 - 1 x_2 - 1.0) (x_2 - 1.0) - (x_1 - 1.5 x_2 - 1.5) (x_2 - 1.5) \right] $
> In en [2-1.5]

1) Part 1 Solution Continued:

$$| \Rightarrow \ln \left(\exp \left(-\frac{1}{0 \cdot 4} \left((x_1 - 1)^2 + (x_2 - 1)^2 - (x_1 - 15)^2 - (x_2 - 15)^2 \right) \right) \right)$$

$$\Rightarrow \frac{5}{2} \left((x_1 - 1 \cdot 5)^2 + (x_2 - 15)^2 - (x_1 - 1)^2 - (x_2 - 1)^2 \right)$$

$$\Rightarrow \frac{5}{2} \left[x_1^2 + 2 \cdot 25 - 3x_1 + x_2^2 + 2 \cdot 25 - 3x_2 - x_1^2 - 1 + 2x_1 - x_2^2 - 1 + 2x_2 \right]$$

$$\Rightarrow \frac{5}{2} \left[4 \cdot 5 - 2 - (x_1 + x_2) \right]$$

$$\Rightarrow \frac{2 \cdot 5}{2} \left[2 \cdot 5 - (x_1 + x_2) \right] = g(x)$$

$$| \text{Now } \frac{\text{stext } b \text{ classify as class } w_1 \text{, if } g(x) > 0 \right]$$

$$\Rightarrow \frac{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) > 0 }{2 \cdot 4 + x_2 \cdot 2 \cdot 5}$$

$$| \text{else } \text{ classify as } w_2 \text{ 3f } g(x) < 0$$

$$= \frac{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) < 0 }{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) < 0}$$

$$\Rightarrow \frac{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) < 0 }{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) < 0}$$

$$\Rightarrow \frac{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) < 0 }{2 \cdot 5 \left(2 \cdot 5 - (x_1 + x_2) \right) < 0}$$

2) Part 2 Solution:

	$(\alpha (x) + \beta (x)) dx$
3.2	We know that average risk = $R = \int R(\alpha_i x) P(\alpha_i) dx$
	$\Rightarrow x = x = x = x = x = x = x = x = x = x $
	Let the decision boundary be at $x = \mathbf{K} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$
	~ 0
	$\Rightarrow R = \int \left(\lambda_{11} P(\omega_1) P(x \omega_1) + \lambda_{12} P(\omega_2) P(x \omega_2) \right) dx$
	, d
1	$+ \int (\lambda_{21} P(\omega_1) P(x \omega_1) + \lambda_{22} P(\omega_2) P(x \omega_2)) dx$
	7
4	and we know that $^{\circ}$ $\Lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0.5 & 0 \end{bmatrix}$
	LA ₂₁ A ₂₂ L0.5 0
	$\Rightarrow R = \int_{12}^{\infty} \lambda_{12} P(\omega_2) P(x \omega_2) dx - \int_{\infty}^{\infty} \lambda_{21} P(\omega_1) P(x \omega_1) dx$
	0 12 (2)
	Now minimizing k w.r.t x , at $x = d_0 = [x_1 \ x_2]^{\frac{1}{2}}$ $\frac{dk}{dx}\Big _{x=x_0} = 0 \qquad \lambda_{12}P(\omega_2)P(\alpha_1 \omega_2) - \lambda_{21}P(\omega_1)P(\alpha_1 \omega_1) = 0$
	$dl = 0 \Rightarrow \lambda, \rho(\omega,)\rho(\alpha \omega_1) - \lambda, \rho(\omega,)\rho(\alpha \omega_1) = 0$
	dx
	X-X ₀

2) Part 2 Solution Continued:

Date
$\Rightarrow P(\omega_1) = P(\omega_2) = 1/2$, for 2-class classification
$\Rightarrow (1) \left(\frac{1}{2} \right) P(\alpha_0 \omega_2) - \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) P(\alpha_0 \omega_1) = 0$
$\Rightarrow P(\alpha_0 \omega_2) = 1$
$P(\alpha_0 \omega_1)$ 2
taking natural logarithm
$\frac{\Rightarrow}{\int \ln \frac{f(\alpha_0 \omega_2)}{f(\alpha_0 \omega_1)} = \ln \left(\frac{1}{2}\right)}$
$= \frac{\ln \exp\left(-\frac{1}{0.4} \left(\frac{x_1 - 1.5}{x_2 - 1.5}\right)^{T} \left(\frac{x_1 - 1.5}{x_2 - 1.5}\right)\right)}{\exp\left(-\frac{1}{0.4} \left(\frac{x_1 - 1}{x_2 - 1}\right)^{T} \left(\frac{x_1 - 1}{x_2 - 1}\right)\right)} = \ln\left(\frac{1}{2}\right)$
$\Rightarrow \ln \exp\left(-\frac{1}{0.4}\left[\frac{\chi^2+2.25-3\chi_1+\chi_2^2+2.95-3\chi_2-\chi_1^2-1+2\chi_1-\chi_2^2-1+2\chi_2}{0.4}\right] = \ln\left(\frac{1}{2}\right)$
$\Rightarrow \frac{1}{0.4} \left[2.5 - (24 + 22) \right] = \ln(1/2)$
$\Rightarrow x_1 + x_2 - 2.5 = 0.4 \left(ln(1) - ln(2) \right)$
$\Rightarrow \chi_1 + \chi_2 - 2.5 = 0.4(0-0.693)$
$\Rightarrow x_1 + x_2 - 2.5 = -0.2772$
$\Rightarrow \qquad \alpha_1 + \lambda_2 = 2.2228$
Hence, if the feature vectors $x = [x_4 \ x_2]^T$ follows the above equation, then we get the minimum average risk
equation, then we get the minimum average risk
U

1) Part 1 Solution:

1) 1 a	II Joiuton.
1 (I)	
T•(1)	SOLUTION:
	Given?
(i)	Soft evidence on the season of
	SOLUTION: Given: Soft evidence on the season of in which the fish was caught: $p(x_1) = (0.5, 0, 0, 0.5)$ The lightness has not been measured. So, we remove the variable X_3 from the retwork. New network:
(ji)	The lightness has not been measured network :
	the variable X2 from the network. New
	73 9.0711.
	(x) Season
	X ₂ Fish
	Thickness.
(iii)	This fish is thin
SOL:	Now we want to find the probability of the type of the
_	Now we want to find the probability of the type of fish, given the above factors. Lets calculate for salmon first:
	Lete calculate for salmon first:
	700000000000000000000000000000000000000
	P(X2= salmon X4= thin) = P(X2= salmon, X4 = thin)
	$P(X_4 = thin)$
	⇒ d ∑ P(X ₁ , X = M salmon, X ₄ = thin)
	~ SP(X) P(X = salmon X1) P(X = thin X = cal.
	> $\alpha \leq \beta(x_1) P(x_2 + salmon x_1) P(x_4 = thin x_2 = salmon)$
23 1 1 1 2	10(V-H. Y-CL-1) \(\)
	⇒ α P(X4=thin X2=salmon) Σ (P(X4) P(X2=salmon 24))
	$\Rightarrow \alpha(0.6)(0.5)(0.9) + (0)(0.3) + (0)(0.4) + (0.5)(0.8)$
	$\Rightarrow \alpha (0.6) (0.85) = 0.51\alpha$
	Similarly for P(X2=sea-bass X4=thin) we get:
17,544	
	$\Rightarrow \alpha(000000000000000000000000000000000000$
	(0.5) (0.5) (0.5) (0.5) (0.6) + (0.5) (0.2)
	$\Rightarrow \alpha \left(0.05\right) \left(0.15\right) = 0.0075\alpha$

1) Part 1 Solution Continued:

	Classmate Date Page
	Now P(X2= salmon X4=thin) + P(X2= seabass X4=thin) = 1
and the state of t	$\Rightarrow 0.51x + 0.0075x = 1$
	$\alpha = 1.9323$
	Thus, after normalizing :
	Thus, after normalizing of P(X2=Salmon X4=thin) = 0.985 P(X2=Seabass X4=thin) = 0.015
	P(X2 = Seabass / X4 = thin) = 0.015
	Hence, the fish is SALMON.

2) Part 2 Solution:

4.(2)	lynen: This fish is thin and medium lightness.
	To -find & P(X, X3 = medium, X4 = thin)
11	/ daylown (room
>	1(X1 X3=medium, X4=thin) = \(\sum_{\pi_2} \) \(\lambda_1 \rangle \lambda_2 \rangle (\lambda_1) \rangle (\lambda_2 \rangle (\lambda_1) \rangle (\lambda_2 \rangle (\lambda_4 \rangle \lambda_2) \rangle (\lambda_4 \rangle \lambda_4) \rangle (\lambda_4 \rangle \lambda_4) \rangle (\lambda_4 \rangle \lambda_4) \rangle (\lambda_4) \rangle (\l
1	
(i)	For X_1 = uninter, we get: $P(X_1 = \text{uninter} X_2 = \text{medium}, X_4 = \text{thin}) = \alpha(0.25)(0.9)(0.33)(0.6) + (0.1)(0.1)(0.05)]$ $\Rightarrow \alpha 0.25 [0.1782 + 0.0005] = 0.044675$ For $X_1 = \text{spring}$, we get
	P(X = uinter X = medium Xy=thin)=d((0.25)((0.9)(0.33)(0.6) + (0.1)(0.1)(0.05)
	$\Rightarrow \angle 0.25 \left[0.1782 + 0.0005 \right] = 0.044675$
(11)	For X_1 : spring, we get $P(X_1 = \text{spring} X_2 = \text{med}, X_4 = \text{thin}) = \alpha \left(0.25\right) \left(0.33\right) \left(0.6\right) + \left(0.7\right) \left(0.1\right) \left(0.05\right)$ $\Rightarrow \alpha \left(0.25\right) \left(0.0594 + 0.0035\right) = 0.015725$
	P(X1 = spring X = med, X4 = thin) = d(0.25) (0.33) (0.6) + (0.7) (0.1) (0.05)
	⇒ x(0.25) (0.0594 + 0.0035)=
(iii)	For X1 = Summer o
	$P(X_1 = \text{summer} \mid X_2, X_4) = \alpha(0.25) (0.4) (0.33) (0.6) + (0.6) (0.1) (0.05)$
	$P(X_{1} = summer \mid X_{3}, X_{4}) = \alpha(0.25) [0.4] (0.33) (0.6) + (0.6) (0.1) (0.05) = \alpha(0.25) [0.0792 + 0.003] = 0 = 0 = 0.02055 \alpha$
(iv)	For $X_1 = fall$:
	$0/\sqrt{(0.01)} \times 10^{-2}$
	Normalizing them, we got a a = 8.278145 + & provabilities as o
(1)	Winter = 0.37 (1v) fall = 0.33
_ (ii)	Spring = 0.13
(111)	Summar 0.17
	Hence, it is most probably/likely WINTER.

Ouestion 5:

Explore how the empirical error does or does not approach the Bhattacharyya bound as follows:

1) Write a procedure to generate sample points in d dimensions with a normal distribution having mean μ and covariance matrix Σ .

Solution 1:

Language used: Python Libraries used: Numpy, Scipy

Code Snippet for a normal distribution with mean μ and covariance matrix Σ :

```
import matplotlib.pyplot as plt
import math
import numpy as np
import os
from scipy.stats import multivariate_normal
from scipy import random
d=3 # d dimension
# creating random covariance matrix
matrixSiz<u>e</u> = <u>d</u>
A = random.rand(matrixSize,matrixSize)
covariance = np.dot(A,A.transpose())
mu= random.rand(d) #mean
xlist,ylist=[],[]
# generating 1000 sample points in the value range between 0 and 1
for i in range(0,1000):
      x=np.random.rand(d) # d dimensional x feature vector
      y=multivariate_normal.pdf(x,mean=mu,cov=covariance) # class conditional
probability with x, mean mu and covariance matrix
      xlist.append(x)
      ylist.append(y)
print(xlist)
print(ylist)
```

2) Consider the normal distributions $p(x \mid \omega 1) \sim N([0, 2]^T, I)$ and $p(x \mid \omega 2) \sim N([0, 3]^T, I)$ with $P(\omega 1) = P(\omega 2) = 1/2$. By inspection, state the Bayes decision boundary.

Solution 2:

Code snippet for generating the two pdfs and their 3d plots:

```
import matplotlib.pyplot as plt
import math
import numpy as np
import os
from scipy.stats import multivariate_normal
from scipy import random
from scipy.stats import norm
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
mean1= np.array([0, 2])
cov1= np.array([[1, 0],[0, 1]])
mean2= np.array([0, 3])
cov2= np.array([[1, 0],[0, 1]])
x1, x2= np.mgrid[-3:4:.01, -3:7:.01] # feature space for vector x=[x1 \ x2]
pos = np.dstack((x1, x2))
#generating pdf for the first distribution
rv = multivariate_normal(mean1, cov1)
pdf1=rv.pdf(pos)
#generating pdf for the second distribution
rv2=multivariate_normal(mean2,cov2)
pdf2=rv2.pdf(pos)
#for displaying the pdfs
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(x1, x2, pdf1, rstride=3, cstride=3, linewidth=1,
antialiased=True, cmap=cm.viridis)
cset = ax.contourf(x1, x2, pdf1, zdir='z', offset=-0.15, cmap=cm.viridis)
ax.plot_surface(x1, x2, pdf2, rstride=3, cstride=3, linewidth=1,
antialiased=True,cmap=cm.coolwarm)
cset = ax.contourf(x1, x2, pdf2, zdir='z', offset=-0.15, cmap=cm.coolwarm)
# Adjust the limits, ticks and view angle
ax.set_zlim(-0.15,0.2)
ax.set_zticks(np.linspace(0,0.2,5))
ax.view_init(27, -21)
plt.show()
```

Image of the 3D Plot of the two distributions with the decision boundary: The boundary is actually a plane.

3) Generate n = 100 points (50 for ω 1 and 50 for ω 2) and calculate the empirical error.

```
import matplotlib.pyplot as plt
import math
import numpy as np
import os
from scipy.stats import multivariate_normal
from scipy import random
from scipy.stats import norm
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
mean1= np.array([0, 2])
cov1= np.array([[1, 0], [0, 1]])
mean2= np.array([0, 3])
cov2= np.array([[1, 0],[0, 1]])
x1=np.linspace(-100,100,50)
x2=np.linspace(-100,100,50)
X1,X2= np.meshgrid(x1,x2)
pos = np.dstack((X1, X2))
```

```
#generating pdf for the first distribution
rv = multivariate_normal(mean1, cov1)
pdf1=rv.pdf(pos)

#generating pdf for the second distribution
rv2=multivariate_normal(mean2,cov2)
pdf2=rv2.pdf(pos)

#calculating sum of probability of misclassified points in pdf1 and pdf2
error= sum(pdf1)+sum(pdf2)

print 0.5*sum(error)
```

This gives an **empirical error** of **0.0325**.

The above solution is based on the following:

4) Repeat for increasing values of n, $100 \le n \le 1000$, in steps of 100 and plot your empirical error.

Solution:

```
import matplotlib.pyplot as plt
import math
import numpy as np
import os
from scipy.stats import multivariate_normal
from scipy import random
from scipy.stats import norm
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
mean1= np.array([0, 2])
cov1= np.array([[1, 0],[0, 1]])
mean2= np.array([0, 3])
cov2= np.array([[1, 0],[0, 1]])
errorlist=[]
for i in range(1,11):
      x1=np.linspace(-1000,1000,100*i)
      x2=np.linspace(-1000,1000,100*i)
      X1,X2 = np.meshgrid(x1,x2)
      pos = np.dstack((X1, X2))
      #generating pdf for the first distribution
      rv = multivariate_normal(mean1, cov1)
      pdf1=rv.pdf(pos)
      #generating pdf for the second distribution
      rv2=multivariate_normal(mean2,cov2)
      pdf2=rv2.pdf(pos)
      error= sum(pdf1)+sum(pdf2)
      errorlist.append(0.5*sum(error))
xaxis=[100,200,300,400,500,600,700,800,900,1000]
plt.plot(xaxis,errorlist,color='red')
plt.show()
```


Plot of Empirical Error(Y-axis) against the number of sample points(X-axis)

5) Discuss your results. In particular, is it ever possible that the empirical error is greater than the Bhattacharyya or Chernoff bound?

Solution:

The results above show that as the number of sample points increase, the empirical error increases. This might indicate that as the number of sample points increase, there is a possibility that more number of points may get misclassified. Therefore empirical error increases. No, it is never possible that the empirical/true error would be greater than the Bhattacharyya or Chernoff bound. The Chernoff bound analytically gives us an upper bound on the error. Bhattacharyya bound gives a looser bound than the chernoff bound, therefore Bhattacharyya bound would always be slightly higher than the Chernoff bound. Therefore, it is never possible that empirical/true error would be greater than the Bhattacharyya or Chernoff bound.