Subject :	Date:
Problem 10 Ans:	DESCRIPTION OF ROOMS
step 1: A set Gi to with	a binary operation *
is a group if it sati	isfies-
O closure: For all a, b	∈G, axb ∈G
1) Associativity: (axb) *C	= 0 * (6 * c)
@ Identity element; any	e EG such, axez exa = a for all a E G
1 Inverse element: for each	h a E G, there exist
at E G1 such a+ a	= e
if odo = bx a forcall a.	b EGi, the group is obeli
step2: Take set of	odd integer
(et,	3,-1,1,3}
with binarry openation	

Subject: Date:
step3: Verroity group axioms-
O closure odd + odd = Even
Thus closure faits
@ Associativity -
(a+b) + C = a+(b+c) but in rec'
but innelevent since chosure failed.
@ identity element
The additive identity in (2,+) is o
O is not odd so fails.
(iv) invense element
forz an odd integen a, its inverse under
addition is -a.
Example: if 3 € 0, invense is -3, which
is also odd.
:CEFALO

Subject : Date :
step 4! since closure and identiety faits
the set of odd integen with + is not
o group. Therefore it connot be an abelian
group either.
Final ans:
The set of odd integers under addition
is not an abelian gnoup because.
-> it's not closed codd + even & 0)
+ If does not contain the identity
element (since o is not odd)
Delega St 19 341 (Supplement of the Colors o
baparo to thought (1+1) sout it this
and! Goth Began to disaget by one

Subject: Date:
problems 2 Ans:
Problems 2 Ans: (1) if $ G_1 = pq$ with distinct prime p , q then Go is abelian. Ans: False.
G1 is abelian. Ans: Folse.
why? By shly sylow theory the sylow-2
subgroup normal, so G1 50 G1 is
subgroup normal, so G1 50 G1 is a semidineel product PXQ. if PX (2-1)
the semidinect product fonce to be direct
but pl(2-1) nontrival.
Prællem 2
2) if G= pr(P=prime) the G1 is abelian
iff it has (PFI) subgroup of order p.
Ans: True.
why: only group of order prane
:CEFALO

Subject : Date :
Cpr and Cpx Cp. Thus having Pt1 subgrock
of order p characterized abelian cpx cp ease
(3) for finite & and propen H < G
union of all conjugate it cannot equal G
Ans: True
why; let con7 H1, H2. Ak. Fach intensec
another in a proper subset and shows
UiHil Sk (1HI-1)+1 & [G:H] (1H-1)+1 < 1G
so union is smoller than G.
9 If N 4G, N cyclic and G/N cyclic the
G1 is abelian.
Ans: folse.
77.5. 1045 C

つっていっていていていていていていていていていていていていていていていてい

Subject:	Date:
why: In genearal nonab	elian gnoup tension
elements need to be	closed under
multiplication. Example: fix	rite dihedral
10 214 1339 3574 bith	(8) tea mute C
greaup D8. it roof	ation subgroup
Todage of Centrel 638 al	enion chief en
NZ Cu is exclic	and normal.
D8/N = C2 is cyclic	yet De nonobelian
wite Mr. total intens	عاملان و والا دورور و
B) Any group G set of	finite order torons
a sub group.	F(1-1-HT) 2/5/14/10/
Ans: Folse.	als si Lipmin op
=> nonobelian group for	ension element need
CYCING AND GIVIN ONOUCE	
not to be closed i	inder multiplication
	anongo, de la
Example: the finite	2 dihestral D8
	9999 1908
nas many reflection	of order 2.

Subject: Date: (1) if a = b and ab = ba then (ab) = e Ars: False. why: if a, b commute then (ab) = a66. From b= a4 we get b6=(63) = a12. so (ab) = 0 there is no reason a = e in general. in finite cycle group take a=g, $b=g^{2}$ then $a^{4}=g^{4}=b^{2}$ they commute (ab) = g12 + c (8) [G:H] =n, for any n (G, n" EH. Ans: Folse. why! General true statement is x + H for all x EG. Reason the penn action. of G of n cost Gives. O: G -> Sn The order of Q(x) divides no so n' (Ker 9= Ngeg 949" CH exponent n is not sufficient FFALD

Subject :	_ Date:
3 If G has exactly	one subgroce of
oreden pk for each	ch KEN and photologi
the Gr has normal	stow P-subgnoup.
Ans: Trae.	SE SE PA 13 (935)1
why! Let P be the	subgrow of order
pn any consugate o	f p has the same
order of p ⁿ the b	thence moust pequa
by uniqueness. Thus	p is normal and
is the sylow p s	ubgrouf.
(10) If (al=phm with	prince and pxm
and if MSG with	aun limana luni
normal in Gr.	led all x ee.
Ans: Travei	1 12 to 10 10 10 10
100 3 - 30 St. 100 800 1416	(8) \$ 10 Dalans 2/4

Subject: Date:
why! A subgroup of order po is a
sylow P-subgroup. By sylow theorem
the number np of such subgroup divides
m and satisfies np = 1 (modp).
since p + m, the only divisor of m
congruent to 1 (mad of is 1, so np=1
uniqueness implies pormatly normality.

いっとうからならならならならならならならならならならならならならなるなるなる