Notes for MAT1341A Fall 2023 Part IV

Chapter 4 - Vector Spaces

Definition (4.2.1). Any set V satisfying the following 10 axioms is called a *vector space*.

Closure

- (1) We have an addition on V such that given $\mathbf{x}, \mathbf{y} \in V$, we have $\mathbf{x} + \mathbf{y} \in V$.
- (2) There is a multiplication by scale such that given $\mathbf{x} \in V$ and $c \in \mathbb{R}$, we have $c\mathbf{x} \in V$.

Existence

- (3) There is a zero vector (or a neutral element, or an additive identity), denoted by $\vec{0}$ or simply $\mathbf{0}$ such that $\mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}$.
- (4) $\forall \mathbf{x} \in V$, $\exists -\mathbf{x} \in V$ s.t. $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = 0$. $-\mathbf{x}$ is called the (additive) inverse of \mathbf{x} .

Arithmetic properties

For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and any $c, d \in \mathbb{R}$:

- (5) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (6) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- (7) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- (8) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- $(9) \ c(d\mathbf{u}) = (cd)\mathbf{u}$
- $(10) 1\mathbf{u} = \mathbf{u}$

- [E.g.] \mathbb{R}^n is a vector space.
- [E.g.] Let \mathbb{P}_n be the set of real polynomials of degree at most n.
 - x^2 is a poly of degree _____.
 - x + 3 is a poly of degree _____.
 - $x^3 1$ is a poly of degree _____.

$$\mathbb{P}_n = \{ a_0 + a_1 x + \ldots + a_n x^n \mid a_0, a_1, \ldots, a_n \in \mathbb{R} \}$$

Tf

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n$$

$$q(x) = b_0 + b_1 x + \ldots + b_n x^n$$

then

$$f + g = a_0 + b_0 + (a_1 + b_2)x + \ldots + (a_n + b_n)x^n$$

If $c \in \mathbb{R}$, we have $c \cdot f = ca_0 + ca_1x + \ldots + ca_nx^n$.

If $f, g \in \mathbb{P}_n$, then $f + g \in \mathbb{P}_n$. Axiom 1

If $c \in \mathbb{R}$, $f \in \mathbb{P}_n$, then $c \cdot f \in \mathbb{P}_n$. Axiom 2

The zero vector is the zero polynomial f(x) = 0.

Axiom β

The inverse of $a_0 + a_1x + \ldots + a_nx^n$ is $-a_0 - a_1x - \ldots - a_nx^n$. Axiom 4

Try the rest for yourself!

:

 $\Longrightarrow \mathbb{P}_n$ is a vector space.

 $[E.g.] \ \ \mathrm{Let} \ S = \{x \in \mathbb{R} \mid x \geq 0\}. \ \mathrm{Is} \ S \ \mathrm{a} \ \mathrm{vector} \ \mathrm{space}?$

[E.g.] The line y = 2x + 1 in \mathbb{R}^2 . Is this a vector space?

[E.g.] What about the line L: y = kx, where k is a scalar?

[E.g.] The set $V = \{\mathbf{0}\} \subset \mathbb{R}^n$, with operations given by the rule $\mathbf{0} + \mathbf{0} = \mathbf{0}$, and $c \cdot \mathbf{0} = \mathbf{0}$, is a vector space. This is called the zero vector space or the trivial vector space.

Warning: the zero vector in V is not always the same as the zero scalar.

[E.g.] $M_{m,n}(\mathbb{R})$, the set of all $m \times n$ matrices is a vector space, for any $m, n \geq 1$.

[E.g.] Let a < b be real numbers. The set of continuous functions $f:[a,b] \to \mathbb{R}$ is a vector space.

Chapter 5 - Subspaces

Definition (5.1.2). Suppose V is a vector space. We say that a subset $W \subseteq V$ is a *subspace* if W is also a vector space under the same operations on V.

[E.g.] We know $V = \mathbb{R}^2$ is a vector space. $W = \{(x, kx) | x \in \mathbb{R}\} \subseteq \mathbb{R}^2$ is also a vector space under the same operations as the ones on \mathbb{R}^2 . So W is a subspace of \mathbb{R}^2 .

Theorem (5.1.4 - Subspace Test). If V is a vector space and $W \subseteq V$, then W is a subspace of V if and only if the following 3 conditions hold:

- 1. $0 \in W$
- 2. $\forall \mathbf{u}, \mathbf{v} \in W, \mathbf{u} + \mathbf{v} \in W$
- 3. $\forall c \in \mathbb{R}, \forall \mathbf{u} \in W$, we have $c\mathbf{u} \in W$

[E.g.] Is $S = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ a subspace of \mathbb{R}^2 ?

[E.g.] Let S be a linear system with n unknowns. We suppose that S is homogeneous. Show that set of general solutions to S is a subspace of \mathbb{R}^n .

[E.g.] Is $L = \{(x, y \in \mathbb{R}^2) | x - 3y = 1\}$ closed under addition?

[E.g.] Let $F(\mathbb{R})$ be the set of continuous function on \mathbb{R} . Is the set $T = \{f \in F(\mathbb{R}) | f(1) = 2\}$ closed under multiplication by scalar?

[E.g.] Let \mathbb{P} be the set of polynomials with coefficients in \mathbb{R} . Is $S = \{f(x) \in \mathbb{P} | f(2) = 0\}$ a subspace of \mathbb{P} ?

Chapter 6 - The Span of Vectors

Recall. If $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k$ are k elements in a vector space V, a linear combination of these elements is of the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k$$

where c_i are scalar.

[E.g.] $\begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1 \cdot \hat{i} + 3 \cdot \hat{j}$ is a linear combination of \hat{i} and \hat{j} .

Note that a linear combination may be written as $A \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix}$, where $A = [\mathbf{v}_1 \dots \mathbf{v}_k]$.

[E.g.] Let V be the plane defined by x + 2y - z = 0. Pick x = s, y = t for any real numbers s, t. Then, we have z = s + 2t

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} s \\ t \\ s+2t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

So elements in V are the linear combinations of $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$.

Definition (6.3.1). In general, we write span $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_k$. We say that this set is spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

In our last example: x + 2y - z = 0, we have $V = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$.

In particular, V is spanned by $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\2 \end{bmatrix}$.

[E.g.] Show that span $\left\{ \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$ is a plane and find its cartesian equation.

Definition (6.5.3). Given an $n \times n$ matrix A, define the *trace* of a matrix to be the sum of the entries on the diagonal. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the trace of A is a + d, denoted $\operatorname{tr}(A)$.

[E.g.] Let $S = \{A \in M_{2,2} \mid \operatorname{tr}(A) = 0\}$. Find a set of matrices so that S is spanned by this set.

[E.g.] Let the set $S = \{A \in M_{2,2}, A^{\top} = -A\}$, show that

$$S = \operatorname{span} \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Theorem (6.4.1 aka THE BIG THEOREM). Let V be a vector space. If $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}\subset V$, define $U=\mathrm{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$. Then

- (1) U is always a subspace of V.
- (2) If W is any subspace of V which contains all the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$, then in fact $U \subseteq W$.

 $[E.g.] \ {\rm Show \ that} \ (0,1,1) \ {\rm and} \ (1,0,1) \ {\rm belong \ to} \ {\rm span} \{(1,1,2), (-1,1,0)\}.$

 $[E.g.] \quad \text{Show that span}\{(0,1,1),(1,0,1)\} = \text{span}\{(1,1,2),(-1,1,0)\}.$

Recall. $\mathbb{P}_n = \{\text{polynomials of degree at most } n\}$. An element of \mathbb{P}_3 is of the form $a_0 + a_1x + a_2x^2 + a_3x^3$, where $a_0, a_1, a_2, a_3 \in \mathbb{R}$, so it's a linear combination of $1, x, x^2, x^3$. $\mathbb{P}_3 = \text{span}\{1, x, x^2, x^3\}$.

[E.g.] Find a spanning set for $U = \{f(x) \in \mathbb{P}_2 | f(3) = 0\}.$