1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

2

6	1	2	3	d	st (i)	st(j)
2	2	3	भ	0	Ø	O
5	6	7	8	1	0	1
9	10	7	12	2	٥	2
13	14	15	16	3	0	3

```
0 -> 11 22 33 44
                                                                                       0 -> 11 22 33 44
public static void diagonalTraversal(int[][]mat) {
                                                                      23
                                                          一) 12
                                                                             34
                                                                                       1 -> 12 23 34
   //to select diagonal
   for(int d=0;d < mat.length;d++) {</pre>
      System.out.print(d + " -> ");
                                                                13
                                                                       24
                                                                                       2->1324
      for(int i = 0, j = d; j < mat.length; i++, j++) {
          System.out.print(mat[i][j] + " ");
                                                                                       3 -> 14
      System.out.println();
                                                                    B
                                                                                    2
                                                                                            3
                                           (0 to 3)
                d = 4
                                                                  11
                                                                           12
                                                                                   13
                                                                                            14
                                                                                            24
                                                                  21
                                                                           22
                                                                                   23
                                                                           32
                                                                  31
                                                                                   33
                                                                                            34
                                                             2
                                                                  MI
                                                                          42
                                                                                  43
                                                                                           44
```

Jos (int d=0; d < n; d+1) {

Jos (i=n-d-1; j=n-1; i > = 0; i-1, j-1)

Syso (mod [i] [5]); (i-1, j-1)

3

$$a^{+}h$$

$$| s+(i) = n-d$$

$$| s+(j) = n$$

- 1. You are given a square matrix of size 'n'. You are given n*n elements of the square matrix.
- 2. You are required to find the saddle price of the given matrix and print the saddle price.
- 3. The saddle price is defined as the least price in the row but the maximum price in the column of the matrix.

Col (min) 2 2 saddle

more than one SPX

2 0 α Ь C C (<u>î</u>) h 2 10 m ٥ S 9 8 t V ω y X

i < n < d - (1)
=) (1 < d)

u < g < i - e

N-) saddle point

	0	(2	3
O	11	13	X	19
ſ	20	14	15	2 8
2	15	20	X	18
3	24	13	X	29

no saddle

```
public static void saddlePoint(int[][]mat) {
    for(int i=0; i < mat.length;i++) {</pre>
       //find min elements and its col in ith row
       int min = mat[i][0];
        int col = 0;
       for(int j=1; j < mat[0].length;j++) {</pre>
           if(mat[i][j] < min) {
                min = mat[i][j];
                col = j;
      boolean isSp = true;
       //if min is the maximum value of col
     for(int r = 0; r < mat.length;r++) {</pre>
           if(mat[r][col] > min) {
                isSp = false;
                break;
       if(isSp == true) {
           System.out.println(min);
            return;
   System.out.println("Invalid input");
```


dut li calos

	0	1	2	3
. 0	11	13	y	19
ſ	15	7,	15	2 8
2	16	20	16	18
3	24	13	6	29

min = 16, (=2)

