Human Computer Interaction

The Computer

Lecture #3

Imran Siddiqi imran.siddiqi@gmail.com

Interacting with Computers

to understand human—computer interaction ... need to understand computers!

Interaction = Transfer of information

The Computer

- A computer system is made up of various elements
 - Each of these elements affects the interaction
- Input devices text entry and pointing
- Output devices screens, digital paper
- Interaction e.g. sound, haptic etc.
- Paper as output (print) and input (scan)
- Memory RAM & permanent media
- Processing Speed of processing, networks

Contents

- Introduction
- Text Entry Devices
- Positioning, Pointing & Drawing
- Display Devices
- Physical Controls, Sensors & Special Devices
- Paper: Printing & Scanning

A Typical Computer System

Computer

Variations

In your house ...

In your pockets ...

And many more ...

More Devices – More Interaction

Contents

- Introduction
- Text Entry Devices
- Positioning, Pointing & Drawing
- Display Devices
- Physical Controls, Sensors & Special Devices
- Paper: Printing & Scanning

Text Entry Devices

- Keyboards
- Chord keyboards
- Phone Pads
- Handwriting
- Speech

Keyboards

- Most common text input device
- Allows rapid entry of text by experienced users
- Usually connected by cable, but can be wireless
- Standardized layouts: first six letters of first row
 - QWERTY, AZERTY

Layout - QWERTY

- Standardized layout But:
 - Non-alphanumeric keys are placed differently
 - Accented symbols for different scripts
 - é, è, à, ù etc.
 - Minor differences: \$,£,€
 - QWERTY arrangement not optimal for typing
 - Layout to prevent typewriters jamming

Layout QWERTY

Alternative Keyboard Layouts

- Alphabetic
 - Keys arranged in alphabetic order
 - Not faster for trained typists
 - Not faster for beginners either!

A	В	С	J	D	Е		F	G	Н		Back	Up	Link
I	J	K					N	О	P		Enter	Down	Link
Q	R	S		Γ	U		V	W	X		Left	Right	Escape
Y	Z	!	?	,		Spac	ebar			Tab	Shift	Caps Lock	

Copyright (c) Applied Human Factors, Inc. 1997-2005

DVORAK* Keyboard

- Common letters under dominant fingers
- Biased towards right hand
- Common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change

^{*}August Dvorak (1894 –1975) was an educational psychologist and professor at the University of Washington

DVORAK Keyboard

Ergonomic Designs

Chord Keyboards

- Only a few keys Four or Five
- Letters typed as combination of key presses
- Similar to playing a chord on a Piano
- Compact size
 - Ideal for portable applications
- Fast once you have trained
- BUT social resistance, plus fatigue after extended use

Chord Keyboard

Chord Keyboards

- Each key is mapped to a number and then can be mapped to a corresponding letter or command
- By pressing two or more keys together the user can generate

many combinations

- Original mapping, five keys: 1,2,4,8,16
- Key Mappings

$$a = 1$$

$$b = 2$$

$$c = 3$$

$$d = 4$$
 etc.

- User presses keys 1 + 2 = 3 simultaneously the letter "c" appears
- Each finger controls one key which corresponds to one BIT

Phone Pad & T9 Entry

Use numeric keys with multiple presses

Surprisingly fast!

The Computer

- T9 predictive entry
- Type as if single key for each letter
- Use dictionary to 'guess' the right word
 - Word completion

Example

- If you type 4-3 the phone might guess "he"
- Changes its guess to "gel" when you continue with the next letter (4-3-5).
- When you add the fourth letter (4-3-5-5) it will guess "hello" and you can press the space key (#) to enter the whole word plus a space
- But 26 -> menu 'am' or 'an'

Handwriting Recognition

Handwriting Recognition

- Text can be input into the computer, using a pen and a tablet
- Technical problems:
 - Segmenting joined up writing into individual letters
 - Interpreting individual letters
 - Coping with different styles of handwriting
- Used in PDAs, and tablet computers ...
 - ... leave the keyboard on the desk!

Speech Recognition

- Improving rapidly
- Most successful when:
 - Single user initial training and learns peculiarities
 - Limited vocabulary systems
- Problems with
 - External noise interfering
 - Imprecision of pronunciation
 - Large vocabularies
 - Different speakers

Numeric Keypads

- For entering numbers quickly
 - Calculator, Phone, PC Keyboard, Telephones
- Two different layouts

Numeric Keypads

Calculator-style vs. Telephone-style

The Computer

Contents

- Introduction
- Text Entry Devices
- Positioning, Pointing & Drawing
- Display Devices
- Physical Controls, Sensors & Special Devices
- Paper: Printing & Scanning

Positioning, Pointing & Drawing

- Mouse
- Touchpad
- Trackballs & Thumbwheels
- Joysticks & Keyboard nipples
- Touch screens
- Tablets

The Mouse

- Handheld pointing device
 - Very common
 - Easy to use

- Usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing etc.
- Relative movement is detected
- Mapping transformation
 - Left/right movement Direct mapping
 - Up/down movement Away/towards the user

The Mouse

Two methods for detecting movement

Mechanical

 Ball on underside of mouse turns as mouse is moved

Optical

- Light emitting diode on underside of mouse
- Less susceptible to dust and dirt
- Detects fluctuating alterations in reflected light intensity to calculate relative motion

The Computer 32

The Mouse

- Footmouse
- Some experiments with the footmouse
 - Controlling mouse movement with feet ...
 - Not very common
- But foot controls are common elsewhere:
 - Car pedals
 - Sewing machine speed control
 - Organ and piano pedals

Touchpad

- Small touch sensitive tablets
- Finger strokes to move mouse pointer
- Used mainly in laptop computers
- Acceleration settings
 - Fast stroke
 - Lots of pixels per inch moved
 - Initial movement to the target
 - Slow stroke
 - Less pixels per inch
 - For accurate positioning

Trackball

- Ball is rotated inside static housing
- Like an upside down mouse!
- Relative motion moves cursor
- Separate buttons for picking
- Fairly Accurate
- Hard to draw
 - Long movements are difficult

Thumbwheels

- Two orthogonal Dials
 - X-Y cursor position
 - Cheap
 - Slow and difficult to manipulate
- For fast scrolling single thumbwheel dial on mouse

Joystick

- Movement of stick Movement of cursor
- Buttons for control
- Absolute Joystick
 - Position of joystick controls cursor
- Isometric Joystick
 - Pressure on the joystick controls velocity
- Used widely in computer games

Keyboard Nipple

- For laptop computers
- Miniature joystick in the middle of the keyboard

Touch Screens

- Detect the presence of finger or stylus on the screen
- Direct pointing device
- Advantages:
 - Fast, and requires no specialised pointer
 - Good for menu selection
 - Input as well as output device
 - Examples?

ATM, Ticketing machines, Iphone

Touch Screens

- Disadvantages:
 - Finger can mark screen
 - Imprecise (finger is a fairly blunt instrument!)
 - Difficult to select small regions or perform accurate drawing
 - Lifting arm can be tiring

Stylus & Light Pen

Stylus

- Small pen-like pointer to draw directly on screen
- On touch sensitive surfaces
- Used in PDA, tablets PCs and drawing tables

Light Pen

- Uses light from screen to detect location
- Now rarely used

Both

- Very Direct and obvious to use
- Can obscure the screen

Digitizing Tablet

- Freehand Drawing
- Substitute to Mouse
- Surface Contact
 - Pen or Puck
- Can be used for text input
 - Provided: handwriting recognition support

Eyegaze

- Control interface by eye gaze direction
 - e.g. look at a menu item to select it
- Special Glasses, Headset or built into the Screen
- Uses laser beam reflected off retina
- Potential for hands-free control
- Uses
 - Hands occupied
 - Good for Selection but not for Drawing
 - Distinguish: Deliberate gaze or accidental glance

Cursor Keys

- Four keys (up, down, left, right) on keyboard
- Positioning within lists (menus), spread sheets etc.
- Basic motion for text-editing tasks
- No standardised layout, but inverted "T", most common

Discrete Positioning Controls

- In phones, TV controls etc.
 - Cursor pads or mini-joysticks
 - Dedicated Function/Menu Selection
 - Mainly for menu selection

Contents

- Introduction
- Text Entry Devices
- Positioning, Pointing & Drawing
- Display Devices
- Physical Controls, Sensors & Special Devices
- Paper: Printing & Scanning

Display Devices

- Bitmap Screens
 - CRT & LCD
- Large and Situated Displays
- Digital Paper

Bitmap Displays

Screen: Vast number of color dots

Resolution

- Resolution ... used (inconsistently) for
 - Number of pixels on screen (width x height)
 - e.g. 1024x768 pixels
 - Density of pixels (in pixels or dots per inch dpi)
 - Typically between 72 and 96 dpi
- Aspect ratio
 - Ration between width and height
 - 4:3 for most screens, 16:9 for wide-screen TV

Color Depth

- How many different colours for each pixel?
- One bit per pixel On/Off
- 8 bits per pixel 256(28) Colours
- 8 bits for each red, blue, green
 - Millions of colours

Technologies

- Cathode Ray Tube
 - Television Screens & Computer Monitors
 - Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows

Technologies

- Liquid Crystal Display (LCD)
 - PDAs, Notebooks etc.
 - Increasingly for desktop and home tv
 - Smaller and lighter
 - Layer of liquid crystal b/w two glass plates

Large Displays

- Used for meetings, lectures etc.
- Technology
 - Plasma Usually wide screen
 - Video Wall Several small screens
 - Video Projectors

Situated Displays

- Displays in public places
- Display only
 - Information relevant to the location
- Interactive
 - May use stylus, touch sensitive screen
- In All Cases
 - Meaning of information or interaction is related to the location

Hermes – A situated display

Small displays beside office doors

Handwritten notes left using stylus

Office owner reads notes using web interface

Digital Paper

- Thin and flexible Electronically written
- Keep contents when removed from electric supply
- Uses?
 - o Banners Updates are not frequent
 - o 'Soft' Book

References

- Chapter 2: Human Computer Interaction by Dix et al.
- User Interface Hall of Fame/Shame

