1 April 14

1.1 Completely positive maps

Definition 1.1. Let \mathcal{A} and \mathcal{B} be C*-algebras. A linear map $\varphi : \mathcal{A} \to \mathcal{B}$ is said to be *completely positive* (c.p.) if the inflation $\varphi_n : M_n(\mathcal{A}) \to M_n(\mathcal{B}) : [a_{ij}] \mapsto [\varphi(a_{ij})]$ is positive for each $n \ge 1$.

Remark 1.2. For the positivity in matrix algebras, the following equivalent statements are useful.

- (a) $[a_{ij}] \in M_n(A)$ is positive.
- (b) $[a_{ij}] = [b_{ij}]^*[b_{ij}] = [b_{ji}^*][b_{ij}] = [\sum_k b_{ki}^* b_{kj}]$ for some $[b_{ij}] \in M_n(\mathcal{A})$.
- (c) $\sum_{i,j} \langle \pi(a_{ij})\xi_j, \xi_i \rangle_H \ge 0$ for $[\xi_i] \in H^n$, for a faithful representation $\pi : \mathcal{A} \to B(H)$.
- (d) $\sum_{i,j} \langle \pi(a_{ij})\xi_j, \xi_i \rangle_H \ge 0$ for $[\xi_i] \in H^n$, for every representation $\pi : \mathcal{A} \to B(H)$.

Example 1.3.

- (a) A *-homomorphism is c.p.
- (b) A state is c.p.
- (c) A conjugation $B(\hat{H}) \to B(H)$: $a \mapsto V^*aV$ is c.p. for every bounded linear $V: H \to \hat{H}$.
- (d) The transpose $M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is not c.p.
- (e) The convex combination, composition, restriction of c.p. maps is c.p.

Proof. (a) A *-homomorphism is positive, and its inflations are all *-homomorphisms.

(b) Let $\rho: A \to \mathbb{C}$ be a state. If $[a_{ij}] = [\sum_k b_{ki}^* b_{kj}] \in M_n(A)_+$, then we have for $[x_i] \in \ell_2^n$ that

$$\sum_{i,j} \langle \rho(a_{ij}) x_j, x_i \rangle_{\mathbb{C}} = \sum_{i,j} \overline{x_i} \rho(a_{ij}) x_j = \rho(\sum_{i,j,k} \overline{x_i} b_{ki}^* b_{kj} x_j) = \sum_{k} \rho((\sum_i b_{ki} x_i)^* (\sum_j b_{kj} x_j)) \ge 0.$$

(c) If $[a_{ij}] = [\sum_k b_{ki}^* b_{kj}] \in M_n(B(\widehat{H}))_+$, then we have for $[\xi_i] \in H^n$ that

$$\sum_{i,j} \langle V^* a_{ij} V \xi_j, \xi_i \rangle = \sum_{i,j,k} \langle b_{kj} V \xi_j, b_{ki} V \xi_i \rangle = \sum_k \langle \sum_j b_{kj} V \xi_j, \sum_i b_{ki} V \xi_i \rangle \ge 0.$$

(d) We have a counterexample for $M_2(M_2(\mathbb{C})) \to M_2(M_2(\mathbb{C}))$:

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The former has an eigenvalues $\{2,0\}$, and the latter has $\{\pm 1\}$.

Theorem 1.4 (Stinespring dilation). Let A be a unital C^* -algebra and $\varphi: A \to B(H)$ be a c.p. map. Then, there is a representation $\pi: A \to B(\widehat{H})$ and a bounded linear operator $V: H \to \widehat{H}$ such that the following diagram commutes:

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} B(H) \\
\pi \downarrow & & \\
\downarrow^{V^* \cdot V} \\
B(\widehat{H})
\end{array}$$

Proof. Define a sesquilinear form on the algebraic tensor product $A \odot H$ as

$$\langle \sum_j a_j \otimes \xi_j, \sum_i b_i \otimes \eta_i \rangle := \sum_{i,j} \langle \varphi(b_i^* a_j) \xi_j, \eta_i \rangle.$$

It is positive since

$$\sum_{i,j} \langle a_i^* a_j \xi_j, \xi_i \rangle = \sum_{i,j} \langle a_j \xi_j, a_i \xi_i \rangle = \| \sum_i a_i \xi_i \|^2 \ge 0$$

implies

$$\langle \sum_{i} a_{j} \otimes \xi_{j}, \sum_{i} a_{i} \otimes \xi_{i} \rangle = \sum_{i,j} \langle \varphi(a_{i}^{*} a_{j}) \xi_{j}, \xi_{i} \rangle \geq 0.$$

Taking quotient by the left kernel N and completion, we obtain a hilbert space $\hat{H} := (A \odot H/N)^-$. Define $\pi : A \to B(\hat{H})$ such that

$$\pi(a)(b \otimes \xi + N) := ab \otimes +N,$$

and define $V: H \to \hat{H}$ such that

$$V\xi := 1_{\Delta} \otimes \xi + N$$
.

Then for any $\xi, \eta \in H$,

$$\langle V^*\pi(a)V\xi,\eta\rangle=\langle \pi(a)(1_A\otimes\xi+N),1_A\otimes\xi+N\rangle=\langle a_A\otimes\xi+N,1_A\otimes\xi+N\rangle=\langle \varphi(a)\xi,\eta\rangle. \quad \Box$$

Remark 1.5.

- (a) If φ is unital, then V is an isometry since $V^*V = V^*\pi(1)V = \varphi(1) = 1$.
- (b) If φ is unital and $H = \mathbb{C}$, then it is just the GNS-construction with the cyclic vector $V1_{\mathbb{C}}$.
- (c) If $\varphi : A \to B$ is c.p., then by embedding B into B(H) and applying the Stinespring dilation,

$$\|\varphi(a)\| = \|V^*\pi(a)V\| \le \|V\|\|a\|\|V\| = \|a\|\|V^*V\| = \|a\|\|\varphi(1)\|$$

implies $\|\varphi\| \le \|\varphi(1)\|$, hence $\|\varphi\| = \|\varphi(1)\|$.

(d) It has a physical meaning: a unital completely positive map is called quantum channel or quantum operation in quantum information theory. They are interpreted as an evolution in open quantum system, and taking \hat{H} means introducing a closed ambient system in which unitary evolution occurs.

Theorem 1.6 (Completely positive maps for matrix algebras). Let \mathcal{A} be a C^* -algebra. Let $e_i \in \ell_2^n$ be standard orthonormal basis and let $e_{ij} = e_i \otimes e_j = |e_i\rangle\langle e_j| \in M_n(\mathbb{C})$ be unit matrix elements.

(a) There is a 1-1 correspondence

$$CP(M_n(\mathbb{C}), \mathcal{A}) \to M_n(\mathcal{A})_+ : \psi \mapsto [\psi(e_{ij})].$$

(b) Let A be unital. There is a 1-1 correspondence

$$\mathrm{CP}(\mathcal{A}, M_n(\mathbb{C})) \to M_n(\mathcal{A})_+^* : \varphi \mapsto (\widehat{\varphi} : [a_{ij}] \mapsto \sum_{i,j} \langle \varphi(a_{ij}) e_j, e_i \rangle).$$

Proof. (a) Fix $A \to B(H)$ a faithful representation and just write $A \subset B(H)$.

Suppose $\psi: M_n(\mathbb{C}) \to \mathcal{A}$ is a c.p. map. Identify $M_n(\mathbb{C}) = B(\ell_2^n)$. Since $[e_{ij}] \in M_n(B(\ell_2^n))_+$ is positive because

$$\sum_{i,j} \langle e_{ij} \xi_j, \xi_i \rangle = \sum_{i,j} \langle e_j, \xi_j \rangle \langle \xi_i, e_i \rangle = |\sum_i \langle e_i, \xi_i \rangle|^2 \ge 0, \qquad \forall [\xi_i] \in (\ell_2^n)^n,$$

it follows that $[\psi(e_{ij})] \in M_n(A)_+$ by the complete positivity of ψ .

Conversely, let $[\psi(e_{ij})] = [\sum_k b_{ki}^* b_{kj}] \in M_n(B(H))_+$, For $T = [t_{ij}] \in M_n(\mathbb{C})$ and $\xi, \eta \in H$, write

$$\begin{split} \langle \psi(T)\xi, \eta \rangle &= t_{ij} \langle \psi(e_{ij})\xi, \eta \rangle \\ &= t_{ij} \langle b_{kj}\xi, b_{ki}\eta \rangle \\ &= t_{ij} \delta_{kl} \langle b_{lj}\xi, b_{ki}\eta \rangle \\ &= \langle Te_j, e_i \rangle \langle e_l, e_k \rangle \langle b_{lj}\xi, b_{ki}\eta \rangle \\ &= \langle (T \otimes 1 \otimes 1)(e_i \otimes e_l \otimes (b_{li}\xi)), (e_i \otimes e_k \otimes (b_{ki}\eta)) \rangle. \end{split}$$

The summation symols are omitted in each row. Then, if we define

$$V: H \to \ell_2^n \otimes \ell_2^n \otimes H: \xi \mapsto \sum_{i,k} e_i \otimes e_k \otimes (b_{ki}\eta),$$

we have an expression

$$\langle \psi(T)\xi, \eta \rangle = \langle V^*(T \otimes 1 \otimes 1)V\xi, \eta \rangle,$$

which implies that ψ is c.p. because $T \mapsto T \otimes 1_{\ell_2^n} \otimes 1_H$ is a *-homomorphism.

(b) Suppose $\varphi: A \to M_n(\mathbb{C})$ is a c.p. map. Then, $\widehat{\varphi}$ is positive since $[a_{ij}] \in M_n(A)_+$ implies

$$\widehat{\varphi}([a_{ij}]) = \sum_{i,j} \langle \varphi(a_{ij})e_j, e_i \rangle \ge 0.$$

Conversely, let $\hat{\varphi} \in M_n(\mathcal{A})_+^*$. By the GNS-construction, we have a cyclic representation $\pi : M_n(\mathcal{A}) \to B(H)$ with a cyclic vector $\psi \in H$ such that

$$\widehat{\varphi}([a_{ij}]) = \langle \pi([a_{ij}])\psi, \psi \rangle.$$

For $\xi = \sum_{i} \xi_{j} e_{j}$, $\eta = \sum_{i} \eta_{i} e_{i} \in \ell_{2}^{n}$, write

$$\begin{split} \langle \varphi(a)\xi,\eta\rangle &= \sum_{i,j} \langle \varphi(a)\xi_{j}e_{j},\eta_{i}e_{i}\rangle = \sum_{i,j} \langle \varphi(\overline{\eta_{i}}a\xi_{j})e_{j},e_{i}\rangle \\ &= \widehat{\varphi}([\overline{\eta_{i}}a\xi_{j}]) = \langle \pi([\overline{\eta_{i}}a\xi_{j}])\psi,\psi\rangle = \langle \pi([\delta_{ij}\eta_{i}1_{\mathcal{A}}]^{*}[a][\delta_{ij}\xi_{j}1_{\mathcal{A}}])\psi,\psi\rangle \\ &= \langle \pi([a])\pi([\delta_{ij}\xi_{j}1_{\mathcal{A}}])\psi,\pi([\delta_{ij}\eta_{i}1_{\mathcal{A}}])\psi\rangle. \end{split}$$

If we define

$$V: \ell_2^n \to H: \xi \mapsto \pi(\lceil \delta_{ij} \xi_i 1_{\Delta} \rceil) \psi$$

then

$$\langle \varphi(a)\xi, \eta \rangle = \langle V^*\pi(\lceil a \rceil)V\xi, \eta \rangle,$$

П

so φ is c.p. since $A \to M_n(A) : a \mapsto [a]$ is a *-homomorphism.

Theorem 1.7 (Arveson extension). Let $\mathcal{B} \subset \mathcal{A}$ be C^* -algebras such that $1_{\mathcal{A}} \in \mathcal{B}$. Then, every c.p. map $\varphi : \mathcal{B} \to \mathcal{B}(H)$ has an norm-preserving c.p. extension $\widetilde{\varphi} : \mathcal{A} \to \mathcal{B}(H)$, i.e. $\|\widetilde{\varphi}\| = \|\varphi\|$.

1.2 Enveloping von Neumann algebras

Theorem 1.8 (Sherman-Takeda). Let A be a C^* -algebra and $\pi: A \to B(H)$ a faithful representation. Here we can obtain an linear map $\tilde{\pi}: A^{**} \to \pi(A)''$ by taking bitranspose for $\pi: A \to (\pi(A)'', \sigma w)$.

- (a) $\tilde{\pi}$ is an isometric isomorhpism (w.r.t. norms), and is an homeomorphism (w.r.t. weak*-topologies)
- (b) A^{**} enjoys a universal property in the sense that for every *-homomorphism $\varphi: A \to \mathcal{M}$ to a von Neumann algebra \mathcal{M} , there exists a unique σ -weakly continuous extension $\widetilde{\varphi}: A^{**} \to \mathcal{M}$ of φ .

We will always see the bidual A^{**} as a von Neumann algebra.

Proof. (a) Consider

$$\pi: \mathcal{A} \to (\pi(\mathcal{A})'', \sigma w), \qquad \pi^*: \pi(\mathcal{A})'' \to \mathcal{A}^*, \qquad \widetilde{\pi}:=\pi^{**}: \mathcal{A}^{**} \to \pi(\mathcal{A})'',$$

where $\pi(\mathcal{A})''_*$ denotes the set of σ -weakly continuous(=normal) linear functionals on $\pi(\mathcal{A})''$. Note that π is isometric and has dense range. It implies that π^* is surjective and injective. In fact, π^* is isometric because for $l \in \pi(\mathcal{A})''_*$ we have by the density that

$$\|\pi^*(l)\| = \sup_{\substack{\|a\|=1\\a\in\mathcal{A}}} |l(\pi(a))| = \sup_{\substack{\|b\|=1\\b\in\pi(\mathcal{A})''}} |l(b)| = \|l\|.$$

Then, the claim for π^{**} is now clear.

(b) We can define $\widetilde{\varphi}$ as the bitranspose of $\varphi : \mathcal{A} \to (\mathcal{M}, \sigma w)$ as in the part (a), and it is a unique extension because \mathcal{A} is σ -weakly dense in \mathcal{A}^{**} .

Theorem 1.9 (Tomiyama). Let $\mathcal{B} \subset \mathcal{A}$ be C^* -algebras. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a conditional expectation, i.e. a contractive idempotent linear map.

- (a) φ is *B*-bimodule map.
- (b) φ is completely positive.

Proof. Since each conclusion of (a) and (b) still holds for restriction, we may assume \mathcal{A} and \mathcal{B} are von Neumann algebras by thinking of the bitranspose $\varphi^{**}: \mathcal{A}^{**} \to \mathcal{B}^{**}$.

(a) Since the linear span of projections is σ -weakly dense in a von Neumann algebra, we are enough to show $p\varphi(a) = \varphi(pa)$ and $\varphi(ap) = \varphi(a)p$ for any projection $p \in \mathcal{B}$.

Let $p \in \mathcal{B}$ be a projection and let $a \in \mathcal{A}$. Note that we have

$$p\varphi(a) = pp\varphi(a) = p\varphi(p\varphi(a))$$

and

$$(a-pa)^*(p\varphi(a-pa)) = (p\varphi(a-pa))^*(a-pa) = 0.$$

Then,

$$\begin{aligned} (1+t)^2 \|p\varphi(a-pa)\|^2 &= \|p\varphi(a-pa) + tp\varphi(a-pa)\|^2 \\ &= \|p\varphi((a-pa) + tp\varphi(a-pa))\|^2 \\ &\leq \|(a-pa) + tp\varphi(a-pa)\|^2 \\ &= \|a-pa\|^2 + t^2 \|p\varphi(a-pa)\|^2 \end{aligned}$$

implies $p\varphi(a-pa)=0$ by letting $t\to\infty$. Putting $1_{\mathcal{B}}-p$ and $1_{\mathcal{B}}$ instead of p, we obtain $(1_{\mathcal{B}}-p)\varphi(a-1_{\mathcal{B}}a+pa)=0$ and $\varphi(a-1_{\mathcal{B}}a)=0$, so

$$p\varphi(a) = p\varphi(pa) = \varphi(pa).$$

Similarly, we can show $\varphi(a-ap)p=0$ and $\varphi(ap)(1-p)=0$, we are done.

(b) Let $[a_{ij}] \in M_n(\mathcal{A})_+$. Let $\pi : \mathcal{B} \to B(H)$ be a cyclic representation with a cyclic vector ψ . Then, $[\xi_i] \in H^n$ can be replaced to $[\pi(b_i)\psi]$, so we can check the positivity of inflations φ_n as

$$\sum_{i,j} \langle \pi(\varphi(a_{ij})) \pi(b_j) \psi, \pi(b_i) \psi \rangle = \langle \pi(\varphi(\sum_{i,j} b_i^* a_{ij} b_j)) \psi, \psi \rangle \ge 0,$$

because it follows $\sum_{i,j} b_i^* a_{ij} b_j \ge 0$ by the positivity of a_{ij} from

$$\langle \pi_{\mathcal{A}}(\sum_{i,j} b_i^* a_{ij} b_j) \xi, \xi \rangle = \sum_{i,j} \langle \pi_{\mathcal{A}}(a_{ij}) \pi_{\mathcal{A}}(b_j) \xi, \pi_{\mathcal{A}}(b_i) \xi \rangle \ge 0,$$

where π_A is any representation of A.

Theorem 1.10 (Sakai). Suppose A is a C^* -algebra which admits a predual F.

- (a) There is an injective *-homomorphism $\pi: A \to A^{**}$ with weakly* closed image.
- (b) π is a topological embedding w.r.t. $\sigma(A, F)$ and $\sigma(A^{**}, A^*)$.
- (c) The predual F is unique in A^* .
- (a) In particular, there is a faithful representation $A \to B(H)$ whose image is (σ) -weakly closed.

Proof. By taking the adjoint for the embedding $F \hookrightarrow i\mathcal{A}^*$, we have a conditional expectation $\varepsilon : \mathcal{A}^{**} \twoheadrightarrow \mathcal{A}$. Its kernel is a \mathcal{A} -bimodule, and by the σ -weak density of \mathcal{A} in \mathcal{A}^{**} and the continuity of ε between weak* topologies, so is a \mathcal{A}^{**} -bimodule, which means it is a σ -weakly closed ideal of \mathcal{A}^{**} . Thus we have a central projection $z \in \mathcal{A}^{**}$ such that $\ker \varepsilon = (1-z)\mathcal{A}^{**}$.

Define $\pi: \mathcal{A} \to \mathcal{A}^{**}$ such that $\pi(a) := za$. It is clearly a *-homomorphism. The injectivity follows from $a = \varepsilon(a) = \varepsilon(za)$ for $a \in \mathcal{A}$. The image is weakly* closed because $\varepsilon(x - \varepsilon(x)) = 0$ implies $z(x - \varepsilon(x)) = 0$ for $x \in \mathcal{A}^{**}$ so that $z\mathcal{A}^{**} = z\mathcal{A}$.

(b) Since $\langle a, f \rangle = \langle \varepsilon(za), f \rangle = \langle za, f \rangle$ for $a \in \mathcal{A}$ and $f \in F$, in which the second equality holds by the definition of ε , it is enough to show $\sigma(z\mathcal{A}, \mathcal{A}^*) = \sigma(z\mathcal{A}, F)$.

For $l \in \mathcal{A}^*$, we claim there exists f such that $\langle za, l \rangle = \langle za, f \rangle$. Define $\tilde{l} \in \mathcal{A}^*$ such that $\langle x, \tilde{l} \rangle := \langle zx, l \rangle$ for $x \in \mathcal{A}^{**}$. Then, $\langle zx, l \rangle = \langle z^2x, l \rangle = \langle zx, \tilde{l} \rangle$ for $x \in \mathcal{A}^{**}$. Suppose $\tilde{l} \notin F$. Because F is closed in \mathcal{A}^* , there is $x \in \mathcal{A}^{**}$ such that $\langle x, \tilde{l} \rangle \neq 0$ and $\langle x, f \rangle = 0$ for all $f \in F$ by the Hahn-Banach extension. Then, $0 = \langle x, f \rangle = \langle x, i(f) \rangle = \langle \varepsilon(x), f \rangle$ implies $\varepsilon(x) = 0$ so that zx = 0, which leads a contradiction $\langle x, \tilde{l} \rangle = \langle zx, l \rangle = 0$, so we have $\tilde{l} \in F$.

(c) If closed subspaces F_1 and F_2 of \mathcal{A}^* are preduals of \mathcal{A} , then $\sigma(\mathcal{A}, F_1) = \sigma(\mathcal{A}, F_2)$ by the part (b). If $l \in F_1$, which is obviously continuous on $\sigma(\mathcal{A}, F_1)$, and the continuity in $\sigma(\mathcal{A}, F_2)$ implies that l is contained in a linear span of some finitely many elements of F_2 , hence $F_1 \subset F_2$.

2 May 12

2.1 Nuclear maps

Definition 2.1. A linear map $\theta: \mathcal{A} \to \mathcal{B}$ between C*-algebras is called *nuclear* if it is a limit of finite-rank c.c.p. maps in the point-norm topology. Equivalently, by the following lemma, there is a net of pairs of c.c.p. maps $\varphi_{\alpha}: \mathcal{A} \to M_{n_{\alpha}}(\mathbb{C})$ and $\psi_{\alpha}: M_{n_{\alpha}}(\mathbb{C}) \to \mathcal{B}$ such that $\|\theta(a) - \psi_{\alpha} \circ \varphi_{\alpha}(a)\| \to 0$ for each $a \in \mathcal{A}$.

If \mathcal{B} is a con Neumann algebra, θ is called *weakly nuclear* if it is a limit of finite-rank c.c.p. maps in the point- σ -weak topology.

Lemma 2.2. A c.c.p. map $\theta: A \to \mathcal{B}$ between C^* -algebras is of finite-rank iff there are c.c.p. maps $\varphi: A \to M_n(\mathbb{C})$ and $\psi: M_n(\mathbb{C}) \to \mathcal{B}$ for some n such that $\theta = \psi \circ \varphi$. In Brown-Ozawa, a finite-rank c.c.p. map is called a factorable map.

Proof. (⇐) Clear. (⇒) By the structure theorem of finite-dimensional C*-algebras, we have im $\theta \cong \bigoplus_{i=1}^m M_{n_i}(\mathbb{C})$, so for $n = \sum_{i=1}^m n_i$ there is a unital embedding im $\theta \hookrightarrow M_n(\mathbb{C})$ and conditional expectation $M_n(\mathbb{C}) \to \text{im } \theta : T \mapsto \sum_{i=1}^m P_i T P_i$, where P_i denotes the projection on the image of $M_{n_i}(\mathbb{C})$. Now we are done. (In fact, such a conditional expectation also exists for unital subalgebras beetween von Neumann algebras.)

Proposition 2.3 (Local property). Let $\theta : A \to B$ be a linear map between C^* -algebras. If the restriction of θ on any finite-dimensional subspace of A is nuclear, then θ is nuclear.

Proposition 2.4 (Weak approximations). Let A and B be C^* -algebras, and $M \subset B(H)$ a von Neumann algebra.

(a) $\theta: A \to B$ is nuclear if there is a net $A \xrightarrow{\varphi_a} M_{n_a}(\mathbb{C}) \xrightarrow{\psi_a} B$ such that

$$\lim_{\alpha} \langle \theta(a) - \psi_{\alpha} \circ \varphi_{\alpha}(a), l \rangle = 0 \qquad a \in \mathcal{A}, \ l \in \mathcal{B}^*.$$

(b) $\theta: A \to M$ is weakly nuclear if there is a net $A \xrightarrow{\varphi_a} M_{n_a}(\mathbb{C}) \xrightarrow{\psi_a} M$ such that

$$\lim_{\alpha} \langle (\theta(a) - \psi_{\alpha} \circ \varphi_{\alpha}(a)) \xi, \xi \rangle = 0 \qquad a \in \mathcal{A}, \ \xi \in H.$$

Proof. (a) By applying the Hahn-Banach extension for each $a \in \mathcal{A}$, we can show the closures of a convex set is same with respect to the point-norm topology and the point- $\sigma(\mathcal{B}, \mathcal{B}^*)$ -topology. Thus it suffices to show that the set of finite-rank c.c.p. maps is convex.

Let $\mathcal{A} \xrightarrow{\psi_i} M_{n_i}(\mathbb{C}) \xrightarrow{\varphi_i} \mathcal{B}$ be c.c.p. maps for $i \in \{0,1\}$. Then, we have a diagram

$$\begin{array}{c} \mathcal{A} & \xrightarrow{(1-t)\psi_0\circ\varphi_0+t\psi_1\circ\varphi_1} & \mathcal{B} \\ \downarrow & & \uparrow \\ \mathcal{A} \oplus \mathcal{A} \xrightarrow{\varphi_0 \oplus \varphi_1} M_{n_0}(\mathbb{C}) \oplus M_{n_1}(\mathbb{C}) \xrightarrow{((1-t)\psi_0)\oplus(t\psi_1)} \mathcal{B} \oplus \mathcal{B} \end{array}$$

which is commutative, so we are done.

(b) Fix $a \in \mathcal{A}$. Note that are net is bounded. Since the unit ball is compact in σ -weak topology and hence in the weak operator topology, we are enough to verify the convergence of $\psi_{\alpha} \circ \varphi_{\alpha}$ in the weak operator topology. Using the polarization identity, the claim holds.

nonunital technicalities

2.2 Examples of nuclear C*-algebras

C*-subalgebra of a nuclear C*-algebra may not be nuclear. C*-subalgebra of a exact C*-algebra is exact. injective limit of nuclear C*-algebras is nuclear. $M_n(\mathcal{A})$ is nuclear if \mathcal{A} is nuclear.

Theorem 2.5 (Effros-Lance). If A^{**} is semidiscrete, then A is nuclear. (The converse also holds)

Proof. Since the set of finite-rank c.c.p. maps is convex, and since the closures of a convex set are same in the norm and weak topologies on a Banach space, \Box

Theorem 2.6. An abelian C^* -algebra is nuclear.

3 May 22