CONTRACTIBLE, NON-COLLAPSIBLE PRODUCTS WITH CUBES

I. BERSTEIN, M. COHEN and R. CONNELLY

(Received 16 June 1977)

§1. INTRODUCTION

A COMPACT polyhedron X is said to be q-collapsible if $X \times I^q$ is PL collapsible, where I^q denotes the unit cube with its usual PL structure. We shall let \mathscr{C}_n denote the class of compact contractible n-dimensional polyhedra.

E. C. Zeeman [18] initiated the study of q-collapsibility when he pointed out that the 3-dimensional Poincaré conjecture is true if every element $X \in \mathscr{C}_2$ which embeds in a 3-manifold is 1-collapsible. On the other hand, Cohen [2] proved that the 3-dimensional Poincaré conjecture is false if there exists an $X \in \mathscr{C}_2$ such that X embeds in a 3-manifold, but X is not 3-collapsible.

The positive collapsibility results, which have been achieved thus far, are that every element of \mathscr{C}_2 is 6-collapsible and every polyhedron in $\mathscr{C}_n (n \ge 3)$ is 2n-collapsible. These results are consequences of the fact [2] that any spine of I^q is q-collapsible. Better lower bounds for q-collapsibility have been achieved in the special cases where X is constructed by attaching 2-cells to circles a and b by the words $a^p b^q$, $a'b^s$, with $ps - qr = \pm 1$. See [5, 8, 10, 11, 14–17]. (It follows from [13] and [2] that all such complexes are 3-collapsible.)

The only non-collapsibility result heretofore has been the fact [3] that for all $n \ge 3$ there is an element $X_n \in \mathcal{C}_n$ which is not 1-collapsible. In this paper we greatly enlarge the known class of non-collapsibility phenomena by proving the following theorems.

THEOREM 1. For every integer $m \ge 5$ there is a polyhedron \mathcal{B}^m , which is topologically an m-ball, such that \mathcal{B}^m is not (m-4)-collapsible, while \mathcal{B}^m is (m+1)-collapsible.

The class of highly non-collapsible polyhedra for which we come closest to completely specifying the integers k for which k-collapsibility occurs is described in

THEOREM 2. Suppose that Σ^n is a non-simply connected PL homology n-sphere $(n \ge 3)$. Suppose $X = X^{n-1}$ is a spine of Σ^n -(Int B^n), for some PL ball B^n in Σ^n . Then S^0*X is not (n-2)-collapsible. But S^0*X is (n+2)-collapsible if Σ^n bounds a contractible PL manifold.

(A PL homology n-sphere is a closed PL n-manifold with the homology of S^n . When $n \ge 4$ they always bound contractible manifolds, by [9].)

The above theorems will be derived from the following Main Proposition (Theorem 1 using R. D. Edwards work on non-combinatorial triangulations of S^n) and the fact that spines of I^q are q-collapsible.

MAIN PROPOSITION. Suppose Σ^n is a non-simply connected PL homology n-sphere. Let S^p denote the standard PL p-sphere $(p \ge 0)$ and let B be a PL (n+p+1)-ball in $(S^p * \Sigma^n) - S^p$. Let $\mathcal{B}^{n+p+1} = (S^p * \Sigma^n) - (\text{Int } B)$. Then \mathcal{B}^{n+p+1} is not (n-2)-collapsible.

Some remarks on stable collapsibility for arbitrarily triangulated topological balls, and a generalization of the first part of Theorem 1 by the third author, will be given in §5.

§2. PROOF OF THE MAIN PROPOSITION

Let $S^p(p \ge 0)$, $\Sigma^n(n \ge 3)$, and $\mathcal{B} = \mathcal{B}^{n+p+1}$ be as in the Main Proposition. We shall prove this proposition via two lemmas. The first lemma gives a homotopy-theoretic

consequence of the geometric hypothesis that \mathcal{B} is k-collapsible. The second lemma, a purely homotopy-theoretic result, shows that this consequence cannot occur if $k \le n-2$.

LEMMA 1. If \mathcal{B} is k-collapsible, then $S^p \times \Sigma^n$ embeds in a complex $(S^p \times \Sigma^n) \cup Y^{p+k+1}$ such that there is a homotopy equivalence

$$(S^p \times \Sigma^n) \cup Y^{p+k+1} \simeq \Sigma^n \vee S^{p+n}$$

and such that each inclusion map $i_a(a \in S^p)$ induces an isomorphism

$$i_{a^*}: \pi_1(a \times \Sigma^n) \stackrel{\cong}{\to} \pi_1((S^p \times \Sigma^n) \cup Y^{p+k+1}).$$

Proof. By assumption $\mathcal{B} \times I^k$ is collapsible. We triangulate so that it is simplicially collapsible and so that $S^p \times I^k$ is a subcomplex. We collapse in order of decreasing dimension until all of the (p+k+2)-simplexes and some of the (p+k+1)-simplexes are gone, and then we stop before any (p+k)-simplexes are deleted. Hence

$$\mathscr{B} \times I^k \searrow (S^p \times I^k) \cup Y_1^{p+k+1} \tag{1}$$

for some subcomplex Y_1^{p+k+1} . We now use the fact ((3.1) of [3]) that, if $P \searrow Q \supset Q_0$, then $P \searrow$ (a second derived neighborhood of $Q_0 \cup Q$. Using this, (1) implies

$$\mathscr{B} \times I^k \searrow N(S^p \times I^k) \cup Y_2^{p+k+1}. \tag{2}$$

Here, $N(S^p \times I^k)$ is the regular neighborhood of $S^p \times I^k$ in $\mathcal{B} \times I^k$ and $Y_2 = Y_1 - \text{Int } N(S^p \times I^k)$. Ignoring Int $N(S^p \times I^k)$, which is not affected by these collapses, we have

$$(\mathscr{B} \times I^k) - \operatorname{Int} N(S^p \times I^k) \searrow \partial N(S^p \times I^k) \cup Y_2^{p+k+1}. \tag{3}$$

Let $N(S^p)$ denote the regular neighborhood of S^p in \mathcal{B} . Then $N(S^p \times I^k) = N(S^p) \times I^k$ (see (6.1) of [2]). But, since $\mathcal{B} = (S^p * \Sigma^n) - (\operatorname{Int} B)$ (where B is a PL ball missing S^p), $N(S^p)$ is also a regular neighborhood of S^p in $S^p * \Sigma^n$. Hence $N(S^p) \cong S^p \times v\Sigma^n$, $\partial N(S^p) \cong S^p \times v\Sigma^n$ and $\mathcal{B} - \operatorname{Int} N(S^p) \cong (cS^p \times v\Sigma^n) - (\operatorname{Int} B)$ (with $S^p \times v\Sigma^n$). Thus (3) may be rewritten as

$$[(cS^p \times \Sigma^n) - (\operatorname{Int} B)] \times I^k \searrow (S^p \times \Sigma^n) \times I^k \cup Y_2^{p+k+1} \simeq (S^p \times \Sigma^n) \cup Y^{p+k+1}. \tag{4}$$

The last homotopy equivalence is the one which is naturally induced by the projection $\pi: S^p \times \Sigma^n \times I^k \to S^p \times \Sigma^n$, each attaching map g for a cell of Y_2 being replaced by the attaching map πg for a cell of Y.

Note that, for each $a \in S^p$, the inclusion map induces isomorphisms

$$\pi_1(a \times \Sigma^n) \to \pi_1(cS^p \times \Sigma^n) \to \pi_1(cS^p \times \Sigma^n - \text{Int } B).$$

So the assertion that i_{a^*} is an isomorphism follows from (4).

We may, however, collapse $[(cS^p \times \Sigma^n) - (\operatorname{Int} B)] \times I^k$ in another manner, without even using the hypothesis that \mathcal{B} is k-collapsible. Since B is an (n+p+1)-ball in the interior of the PL manifold $cS^p \times \Sigma^n$, we may assume that B is a small ball meeting $\Sigma^n (=\{c\} \times \Sigma^n)$ at a single point and that $cS^p \times \Sigma^n \setminus \Sigma^n \vee B$. (Such balls certainly exist. By homogeneity of manifolds we may assume that B has these properties.) Excising the interior of B and writing $\partial B = S^{p+n}$, we get

$$[(cS^{p} \times \Sigma^{n}) - (\operatorname{Int} B)] \times I^{k} \searrow [(cS^{p} \times \Sigma^{n}) - (\operatorname{Int} B)] \searrow \Sigma^{n} \vee S^{p+n}$$
(5)

Combining (4) and (5) we get a homotopy equivalence $f:(S^p \times \Sigma^n) \cup Y^{p+k+1} \to \Sigma^n \vee S^{p+n}$.

The Main Proposition will now follow directly from

LEMMA 2. If, as in the conclusion of Lemma 1, $f:(S^p \times \Sigma^n) \cup Y^{p+k+1} \to \Sigma^n \vee S^{p+n}$ is a homotopy equivalence such that $f|(a \times \Sigma^n)$ induces an isomorphism on fundamental groups for all $a \in S^p$, then $k \ge n-1$.

Remark. Under this hypothesis it can occur that k = n - 1. For, let $Y = cS^p \times X^{n-1}$ and consider $(S^p \times \Sigma^n) \cup (cS^p \times X^{n-1}) \subset cS^p \times \Sigma^n$, where $X = X^{n-1}$ is a spine of $\Sigma^n - \text{Int}(PL \ n\text{-ball})$. Let N(X) be a regular neighborhood of X in Σ^n , $B_0 = \text{Cl}(\Sigma^n - N(X))$, $B_1 = (1/2)(cS^p)$ (a smaller concentric cone) and $B = B_0 \times B_1$. One easily checks that

$$(S^p \times \Sigma^n) \cup (cS^p \times X) \nearrow (cS^p \times \Sigma^n) - \text{Int } B \searrow \Sigma^n \vee S^{p+n}.$$

(In fact the second collapse was given in the proof of Lemma 1.) Define f to be the composition of this expansion and collapse.

Proof of Lemma 2. Suppose, on the contrary, that $k \le n-2$. Consider the lift of f to universal covering spaces

$$\tilde{Z} = \overbrace{(S^{\rho} \times \Sigma^{n}) \cup Y^{\rho+k+1}}^{\tilde{J}} \xrightarrow{\tilde{J}} \Sigma^{n} \vee S^{\rho+n}$$

$$\downarrow^{q} \qquad \qquad \downarrow^{q'}$$

$$Z = (S^{\rho} \times \Sigma^{n}) \cup Y^{\rho+k+1} \xrightarrow{\tilde{J}} \Sigma^{n} \vee S^{\rho+n}$$

Since $k \le n-2$, Y^{p+k+1} has no cells of dimension greater than (p+n-1). So $H_{p+n}(\tilde{Z}) = H_{p+n}(q^{-1}(S^p \times \Sigma^n))$, where we set $Z = (S^p \times \Sigma^n) \cup Y^{p+k+1}$. However, $q^{-1}(S^p \times \Sigma^n)$ is a (p+n)-manifold. It is connected if p>0 and has at most two components if p=0. [This is because the composition $\pi_1(a \times \Sigma^n) \xrightarrow{i_*} \pi_1(S^p \times \Sigma^n) \xrightarrow{i_*} \pi_1(Z)$ is an isomorphism if i and j are inclusion maps. So $\pi_1(S^p \times \Sigma^n)$ goes onto $\pi_1(Z)$ if p>0 and $\pi_1(a_i \times \Sigma^n)$ goes onto $\pi_1(Z)$ if $S^0 = \{a_1, a_2\}$.] Thus $H_{p+n}(\tilde{Z})$ is a free abelian group of rank at most two. But $H_{p+n}(\tilde{Z}) \cong H_{p+n}(\Sigma^n \vee S^{p+n})$, where the latter is a free abelian group of rank equal to the cardinality of $\pi_1\Sigma^n$, if $p \neq 0$ or $\pi_1\Sigma^n$ is infinite, and to $1 + [\text{cardinality of } \pi_1\Sigma^n]$ otherwise. Since $\pi_1\Sigma^n$ is a non-trivial group with trivial abelianization this rank is certainly greater than two! Having reached a contradiction, we conclude that $k \ge n-1$.

§3. PROOF OF THEOREM 1

THEOREM 1. For every integer $m \ge 5$ there is a polyhedron \mathcal{B}^m , which is topologically an m-ball, such that \mathcal{B}^m is not (m-4)-collapsible, while \mathcal{B}^m is (m+1)-collapsible.

Proof. Set n=m-2. Let Σ^n be a non-simply connected PL homology n-sphere such that $\Sigma^n = \partial C^{n+1}$ for some PL manifold C^{n+1} with $C^{n+1} \times I \cong I^m$. Such Σ^n are well known to exist for all $n \geq 3$. (See [12] and [9] and use the high-dimensional Poincaré conjecture.) R. D. Edwards [6] (see also [7]) has proved that $S^1 * \Sigma^n$ is a topological m-sphere. Thus, by the Generalized Schonflies Theorem [1], $\mathcal{B}^m = (S^1 * \Sigma^n) - \text{Int } B$ is a topological ball, if B is a PL m-ball in $(S^1 * \Sigma^n) - S^1$. The Main Proposition asserts that this ball \mathcal{B}^m is not (m-4)-collapsible.

To see that \mathfrak{B}^m is (m+1)-collapsible we show that it is a spine of I^{m+1} and apply [2]: Since $C^{n+1} \times I$ is an (n+2)-ball we may think of S^{n+1} as the double of C^{n+1} . Thus $S^{n+1} = C_1 \cup C_2$ where $C_1 \cong C_2 \cong C^{n+1}$ and $C_1 \cap C_2 = \Sigma^n$. We consider $S^1 * \Sigma^n \subset S^1 * S^{n+1}$. Define the exterior of one polyhedron in another to be the closure of the complement of its regular neighborhood. Let $C_i' = C_i$ -(half-open collar) be the exterior of Σ^n in C_i (i = 1, 2). The exterior, E_i , of $S^1 * \mathbb{D}^n$ in $S^1 * C_i$ is PL equivalent to the ball $I^2 \times C_i'$ (Fig. 1). [To see this, note that the exterior of S^1 in $S^1 * C_i$ is PL equivalent to $CS^1 \times C_i$. Enlarging to a regular neighborhood of $S^1 * \Sigma^n$ subtracts $CS^1 \times (\text{collar})$ from the exterior, leaving $CS^1 \times C_i'$]. Therefore the exterior of $S^1 * \Sigma^n$ in $S^1 * S^{n+1}$ is the disjoint union of 2-balls E_1 and E_2 . Connect these two balls by a tube T which meets $S^1 * \mathbb{D}^n$ in an T^n -ball T^n which is transverse to T^n (Fig. 2). Then $T^n \cap T^n \cap T^n$ is an T^n -ball. By

Newman's theorem its closed complement—the regular neighborhood of \mathcal{B}^m in $S^1*S^{n+1}=S^{n+3}$ —is also a PL(m+1)-ball. Thus \mathcal{B}^m is (m+1)-collapsible.

§4. PROOF OF THEOREM 2

THEOREM 2. Suppose that Σ^n is a non-simply connected PL homology n-sphere $(n \ge 3)$. Suppose $X = X^{n-1}$ is a spine of $\Sigma^n - (\operatorname{Int} B^n)$ for some PL ball B^n in Σ^n . Then $S^0 * X$ is not (n-2)-collapsible. But $S^0 * X$ is (n+2)-collapsible if Σ^n bounds a contractible PL (n+1)-manifold.

Proof. Let $\mathcal{B}^{n+1} = (S^0 * \Sigma^n) - (\text{Int } Q)$ where $Q = (1/2)(cS^0) \times B^n \subset S^0 * \Sigma^n$. By the Main Proposition, \mathcal{B}^{n+1} is not (n-2)-collapsible. But one sees easily that

$$\mathcal{B}^{n+1} = (S^0 * | \Sigma^n) - \text{Int } Q)$$

$$\searrow (S^0 * \Sigma^n) - \text{Int}(S^0 * B^n)$$

$$\searrow S^0 * X.$$

Therefore $\mathcal{B}^{n+1} \times I^{n-2} \setminus (S^0 * X) \times I^{n-2}$. Since \mathcal{B}^{n+1} is not (n-2)-collapsible it follows that $S^0 * X$ is not (n-2)-collapsible.

If Σ^n bounds a contractible manifold then, by the proof of Theorem 1, \mathcal{B}^{n+1} is the spine of a PL(n+2)-ball. Since $\mathcal{B}^{n+1} \setminus S^0 * X$, $S^0 * X$ is also the spine of a PL(n+2)-ball and is thus (n+2)-collapsible.

§5. GENERALIZATION TO ARBITRARY TRIANGULATED BALLS

The first part of Theorem 1 has been generalized by the third author to the

THEOREM. Let \mathcal{B}^m be any complex homeomorphic to an m-ball. Suppose there is a subcomplex $X \subset \operatorname{Int} \mathcal{B}^m$ such that $p = \dim X \leq m-3$ and $\pi_1(\mathcal{B}^m - X) \neq 1$. Then \mathcal{B}^m is not (m-p-3)-collapsible.

Remarks. (1). The subcomplex X in this theorem is "wild" in the same way that S^p was "wild" in Theorem 1: They have codimension at least three and non-simply connected complements. Notice that, by topological general position, this could not happen for any subcomplex each of whose simplexes is locally flat. But failure of some simplex of \mathcal{B}^m to be locally flat does not by itself imply non-collapsibility. For example, if B^p $(p \ge 2)$ is a triangulated PL ball and Σ^n is a non-simply connected PL

homology sphere which bounds a contractible manifold, then $B^p * \Sigma^n \stackrel{PL}{=} v * (\partial B^p * \Sigma^n)$ is a PL collapsible topological ball for which any p-simplex in Int B^p fails to be locally flat since it has a non-simply connected link. Notice however that such a simplex does have a simply connected complement.

(2). The proof of the theorem above is similar to the proof of Theorem 1. X plays the role of S^p and the boundary of a regular neighborhood of X in \mathcal{B}^m plays the role

of $S^p \times \Sigma^n$. In the analogue of Lemma 1, however, we only know (from Van Kampen's Theorem) that the homotopy equivalence, f, gives a map into $S^{m-1} \vee K^{m-1}$ for some complex K^{m-1} , and when restricted to some component of the boundary this map induces a non-trivial homomorphism of fundamental groups. Fortunately, this is all that is needed in the analogue of Lemma 2 to show that the lift of f to universal covering spaces does not induce a $(\mathbf{Z}\pi_1)$ isomorphism of the top dimensional homology modules.

REFERENCES

- 1. M. BROWN: A proof of the generalized Schonflies Theorem, Bull. Am. math. Soc. 66 (1960), 74-76.
- 2. M. COHEN: Dimension estimates in collapsing $X \times I^4$, Topology 14 (1975), 253-256.
- 3. M. COHEN: Whitehead torsion, group extensions and Zeeman's conjecture in high dimensions, *Topology* 16 (1977), 79-88.
- 4. M. COHEN: A general theory of relative regular neighborhoods, Trans. Am. math. Soc. 136 (1969), 189-229.
- 5. P. DIERKER: Note on collapsing $K \times I$ where K is a contractible polyhedron, *Proc. Am. math. Soc.* 19 (1968), 425-428.
- 6. R. D. EDWARDS, to appear.
- 7. C. GRIFFEN: Disciplining dunce hats in 4-manifolds, to appear in Ann. Math.
- 8. M. A. GRAJEK: Collapsing $K \times I$ when K is a triodic 2-complex, Notices Am. math. Soc. 20 (1973), p.A-96, 7T-G130.
- 9. M. A. KERVAIRE: Smooth homology spheres and their fundamental groups, *Trans. Am. math. Soc.* 144 (1969), 67-72.
- W. B. R. LICKORISH: On collapsing X² × I, Topology of Manifolds (Eds J. C. Cantrell and C. H. Edwards), pp. 157-160. Markham, Chicago (1970).
- 11. W. B. R. LICKORISH: An improbable collapse, Topology 12 (1973), 5-8.
- 12. B. MAZUR: A note on some contractible 4-manifolds, Ann. Math. 73 (1961), 221-228.
- 13. R. S. STEVENS: Classification of 3-manifolds with certain spines, Trans. Am. math. Soc. 205 (1975), 151-166.
- 14. L. WAJDA: Collapsing of K × In, Notices Am. math. Soc. 24 (1977), p. A-260, 77T-G26.
- 15. D. E. Webster: Collapsing K × I, Proc. Camb. Phil. Soc. 74 (1973), 39-42.
- 16. P. WRIGHT: On the collapsibility of $K \times I^m$, Q.J. Math. Oxord (2), 2 (1971), 491–494.
- 17. P. WRIGHT: Collapsing $K \times I$ to vertical segments, Proc. Camb. Phil. Soc. 69 (1971), 71-74.
- 18. E. C. ZEEMAN: On the dunce hat, Topology 2 (1964), 341-358.

Cornell University

Syracuse University