Exam I Math 407

Spring 2015

Part I

Do 4 problems (13 points each)

- 1. Determine the prime factorization of 2015.
- 2. Find all ordered pairs (a, b) of positive integers so that $a^2 b^2 = 2015$.
- 3. Determine the first two (ones and tens) digits of 7⁴² (base 10).
- 4. Find the general solution x to the following system: (Hint: Problem 8)

 $x \equiv 3 \pmod{14}$

 $x \equiv 4 \pmod{15}$

(Extra Credit: Determine all positive solutions)

5. Give an example of a pair of functions f and g on $\mathbb N$ having $g \circ f$ onto, yet f is not onto.

Part II

Do 3 problems (16 points each)

- 6. Let $f: \mathbb{X} \to \mathbb{X}$ be a function so that for any $x \in \mathbb{X}$ there is $k \in \mathbb{N}$ so that the k-th iterate $f^k(x)$ is x. Show that f is onto.
- 7. Verify by induction that $1 + x^{n+1} = (1+x)(1-x+x^2+...+(-x)^n)$ for all even $n \in \mathbb{N}$ (x is a variable).
- 8. Let n_1 and n_2 be relatively prime and larger than 1. Let $n = n_1 n_2$. Show that if x_1 is a solution of $x \equiv a \mod n_1$ and $x \equiv b \mod n_2$, then x_2 is another solution iff $n|(x_1-x_2)$.
- 9. If $n \in \mathbb{N}$ has prime factorization $p_1^{r_1} \dots p_k^{r_k}$ with $p_1 < p_2 < \dots < p_k$ and all $r_i > 0$, set f(n) = n. Show that $\lim_{n \to \infty} f(n) = \infty$. (Hint: Show that if $M \in \mathbb{N}$ only finitely many n have $f(n) \leq M$).

 10. Let fac(n) denote the number of factors of an $n \in \mathbb{N}$. Characterize, using
- the prime factorization of n, all n so that fac(n) is even.
- 11. Define the relation $m \sim n$ on N to hold iff there are i and j in N with $n|m^i$ and $m|n^j$.
 - (a) Show that ∼ is an equivalence relation
 - (b) Describe $[n]_{\sim}$ using the prime factorization of n.
- 12. (Bonus) In Problem 6, show that f is also 1-1.