1 Area formula and coarea formula

Věta 1.1

Let (P_1, ϱ_1) , (P_2, ϱ_2) be metric spaces, s > 0, and $f : P_1 \to P_2$ be β -Lipschitz. Then $\varkappa^s(f(P_1)) \leqslant \beta^s \varkappa^s(P_1)$.

 $D\mathring{u}kaz$

Choose $\delta > 0$. Let $P_1 = \bigcup_{i=1}^{\infty} A_i$, diam $A_i < \delta$. Then we have $f(P_1) = \bigcup_{j=1}^{\infty} f(A_j)$, diam $f(A_i) < \beta \cdot \delta$.

$$\varkappa^{s}(f(P_{1}), \beta \cdot \delta) \leqslant \sum_{j=1}^{\infty} (\operatorname{diam} f(A_{j}))^{s} \leqslant \sum_{j=1}^{\infty} \beta^{s} \cdot (\operatorname{diam} A_{j})^{s} = \beta^{s} \cdot \sum_{j=1}^{\infty} (\operatorname{diam} A_{j})^{s}.$$

It holds for all possible choices of (A_j) , so we can take infimum:

$$\varkappa^{s}(f(P_{1})) \leftarrow \varkappa^{s}(f(P_{1}), \beta \cdot \delta) \leqslant \beta^{s} \inf_{(A_{j})} \sum_{j=1}^{\infty} (\operatorname{diam} A_{j})^{s} = \beta^{s} \varkappa^{s}(P_{1}, \delta) \to \beta^{s} \varkappa^{s}(P_{1}).$$

Lemma 1.2

Let $k, n \in \mathbb{N}$, $k \leq n$, and $L : \mathbb{R}^k \to \mathbb{R}^n$ be an injective linear mapping. Then for every λ_k -measurable set $A \subset \mathbb{R}^k$ it holds $H^k(L(A)) = \sqrt{\det(L^T L)\lambda_k(A)}$.

 $D\mathring{u}kaz \ (\dim L(\mathbb{R}^k) = k)$

We find linear isometry Q of \mathbb{R}^k onto $L(\mathbb{R}^k)$, from last semester

$$H^k(L(A)) = H^k(Q^{-1} \circ L(A)) = \lambda^k(Q^{-1} \circ L(A)) = |\det(Q^{-1}L)| \cdot \lambda_k(A).$$

$$(\det(Q^{-1}L))^2 = \det((Q^{-1}L)^T) \cdot \det(Q^{-1}L) = \det((Q^{-1}L)^T \cdot (Q^{-1}L)) = \det((\langle Q^{-1}Le^i, Q^{-1}L^Te^j \rangle)_{i,j}).$$

And because Q is isometry ($\Longrightarrow Q^{-1}$ is isometry), we can remove Q^{-1} from scalar product and we get $\det(L^TL)$.

Lemma 1.3

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping, $x \in G$, and $\beta > 1$. Then there exists a neighbourhood V of the point x such that

- the mapping $y \mapsto \varphi(\varphi'(x)^{-1}(y))$ is β -Lipschitz on $\varphi'(x)(V)$;
- the mapping $z \mapsto \varphi'(x)(\varphi^{-1}(z))$ is β -Lipschitz on $\varphi(V)$.

Důkaz

 x, β fixed. We know, that there exists $\eta > 0$ such that

$$\forall v \in \mathbb{R}^k : \|\varphi'(x)(v)\| \geqslant \eta \cdot \|v\|.$$

We find $\varepsilon \in (0, \frac{1}{2}\eta)$ such that $\frac{2\varepsilon}{\eta} + 1 < \beta$. We find a neighbourhood V of x such that $\forall y \in V : \|\varphi'(x) - \varphi'(y)\| \leq \varepsilon$.

We show that for every $u, v \in V$ we have

$$\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| \le \varepsilon \|u - v\|.$$

Fix $v \in V$ and consider the mapping

$$g: w \mapsto \varphi(w) - \varphi(v) - \varphi'(x)(w - v).$$

For $w \in V$ we have $g'(w) = \varphi'(w) - \varphi'(x)$:

$$\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| = \|g(w) - g(v)\| \le \sup \{\|g'(w)\| \mid w \in V\} \cdot \|u - v\| \le \varepsilon \cdot \|u - v\|.$$

Further we show that for every $u, v \in V$ we have

$$\|\varphi(u) - \varphi(v)\| \geqslant \frac{1}{2}\eta \|u - v\|.$$

For $u - v \in V$ we compute

$$\|\varphi(u) - \varphi(v)\| \ge -\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi'(x)(u - v)\| \ge -\varepsilon \|u - v\| + \eta \|u - v\| \ge \frac{1}{2}\eta \|u - v\|$$

"First point": TODO (řádek nebyl k přečtení)

$$\|\varphi(\varphi^{-1}(x)(a)) - \varphi(\varphi^{-1}(x)(b))\| = \|\varphi(u) - \varphi(v)\| \le$$

$$\le \|phi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi'(x)(u - v)\| \le$$

$$\le \varepsilon \cdot \|u - v\| + \|\varphi'(x)(y - v)\| \le \varepsilon \frac{1}{\eta} \|a - b\| + \|a - b\| = \left(\frac{\varepsilon}{\eta} + 1\right) \|a - b\| \le \beta \cdot \|a - b\|.$$

"Second point": $k, q \in \varphi(V)$. We find $u, v \in V$ such that $\varphi(u) = p$ and $\varphi(v) = q$:

$$\|\varphi'(x)(\varphi^{-1}(p)) - \varphi'(x)(\varphi^{-1}(q))\| = \|\varphi'(x)(u) - \varphi'(x)(v)\| =$$

$$= \|\varphi'(x)(u - v)\| \le \|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi(u) - \varphi(v)\| \le$$

$$\le \varepsilon \cdot \|u - v\| + \|p - q\| \le \frac{2\varepsilon}{\eta} \|\varphi(u) - \varphi(v)\| + \|p - q\| = \left(\frac{2\varepsilon}{\eta} + 1\right) \|p - q\| \le \beta \|p - q\|.$$

Lemma 1.4

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping, $x \in G$, and $\alpha > 1$. Then there exists a neighbourhood of x such that for every λ^k -measurable $E \subset V$ we have

$$\alpha^{-1} \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant H^k(\varphi(E)) \leqslant \alpha \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t).$$

 $D\mathring{u}kaz$

Find $\beta > 1$, $\tau > 1$ such that $\beta^k \tau < \alpha$. By previous lemma we find a neighbourhood V_1 of x such that the conclusion of the lemma holds for β . We find a neighbourhood V_2 of x such that

$$\forall t \in V_2 : \tau^{-1} \operatorname{vol} \varphi'(t) \leq \operatorname{vol} \varphi'(t) \leq \tau \operatorname{vol} \varphi'(x).$$

Set $V = V_1 \cap V_2$.

Assume that $E \subset V$ is a λ^k -measurable set. We have

$$\tau^{-1}\operatorname{vol}\varphi'(x)\cdot\lambda^k(E)\leqslant \int_E\operatorname{vol}\varphi'(t)d\lambda^k(t)\leqslant \tau\operatorname{vol}\varphi'(t)\lambda^k(E).$$

By lemma above we have $\operatorname{vol} \varphi'(t) \lambda^k(E) = H^k(\varphi'(x)(E))$:

$$\tau^{-1}H^k(\varphi'(x)(E)) \leqslant \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant \tau H^k(\varphi'(x)(E)).$$

By previous lemma we get

$$\begin{split} H^k(\varphi(E)) &= H^k\left(\left(\varphi\circ(\varphi'(x))^{-1}\circ\varphi'(x)\right)(E)\right) \leqslant \beta^k H^k(\varphi'(x)(E)) \leqslant \beta^k H^k(\varphi'(x)(E)) \leqslant \\ &\leqslant \beta^k \tau \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant \alpha \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t). \end{split}$$

By lemma above we get

$$H^{k}(\varphi(E)) \geqslant \beta^{-k} H^{k} \left(\left(\varphi'(x) \circ \varphi^{-1} \circ \varphi \right)(E) \right) = \beta^{-k} H^{k}(\varphi'(x)(E)) \geqslant$$
$$\geqslant \beta^{-k} \tau^{-1} \int_{E} \operatorname{vol} \varphi'(t) d\lambda^{k}(t) \geqslant \alpha^{-1} \int_{E} \operatorname{vol} \varphi'(t) d\lambda^{k}(t).$$

Věta 1.5

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping and $f : \varphi(G) \to \mathbb{R}$ be H^k -measurable. Then we have

$$\int_{\varphi(G)} f(x)dH^k(x) = \int_G f(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t),$$

if the integral at the right side converges.

 $D\mathring{u}kaz$

 φ^{-1} is well defined": If $H \subset G$ is open, then we can write $H = \bigcup_{n=1}^{\infty} K_n$, where K_n is compact for every $n \in \mathbb{N}$. Then we have $\varphi(H) = \bigcup_{n=1}^{\infty} \underbrace{\varphi(K_n)}_{\text{compact}}$ is F_{σ} . This implies that

 φ^{-1} is Borel. The mappings φ , φ^{-1} are locally Lipschitz by lemma above. ($\varphi(G)$ is Borel.) $\varphi(G)$ is H^k - σ -finite.

1. $f = \chi_L$, $L \subset \varphi(G)$ is H^k -measurable": We show $H^k(L) = \int_{\varphi^{-1}(L)} \varphi'(t) d\lambda^k(t)$. Choose $\alpha > 1$. By previous lemma we find for every $y \in G$ neighbourhood $V_y \subset G$ of the point y such that for every λ^k -measurable set $E \subset V_y$ we have

$$\alpha^{-1} \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant H^k(\varphi(E)) \leqslant \alpha \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t).$$

We have $\subset \{V_y | y \in G\} = G$. There exists a sequence $\{y_j\}_{j=1}^{\infty}$ such that $\bigcup_{i=1}^{\infty} V_{y_j} = G$. Using lemma from previous semester we find Borel sets $B, N \subset \varphi(G)$ such that $B \subset L \subset B \cup N$, $H^k(N) = 0$.

 $\lambda^k(\varphi^{-1}(N)) = 0. \ \varphi^{-1}(B) \subset \varphi^{-1}(L) \subset \varphi^{-1}(B) \cup \varphi^{-1}(N) \implies \varphi^{-1}(L) \text{ is } \lambda^k\text{-measurable.}$ We set

$$A_j = \varphi^{-1}(L) \cap \left(V_{y_j} \setminus \bigcup_{i=1}^{j-1} V_{y_j}\right).$$

Then we have

- A_i is λ^k -measurable;
- $A_j \subset V_{y_j}$ for every $j \in \mathbb{N}$;
- $\forall j, j' \in \mathbb{N}, j \neq j' : A_j \cap A_{j'} = \emptyset;$
- $\bigcup_{j=1}^{\infty} A_j = \varphi^{-1}(L);$
- for every $j \in \mathbb{N}$ we have

$$\alpha^{-1} \int_{A_j} \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant H^k(\varphi(A_j)) \leqslant \alpha \int_{A_j} \operatorname{vol} \varphi'(t) d\lambda^k(t).$$

From all except for second point we have

$$\alpha^{-1} \int_{\varphi^{-1}(L)} \operatorname{vol} \varphi'(t) d\lambda^{k}(L) \leqslant \sum_{\underline{j=1}}^{\infty} H^{k}(\varphi(A_{j})) \leqslant \alpha \int_{\varphi^{-1}(L)} \operatorname{vol} \varphi'(t) d\lambda^{k}(t).$$

$$= H^{k}(\bigcup_{j=1}^{\infty} \varphi(A_{j})) = H^{k}(L)$$

2. " $f \ge 0$ simple H^k -measurable": From linearity of integrals. 3. " $f \ge 0$ H^k -measurable": we approximate f by $0 \le f_j \le f_{j+1}$ simple functions and from Levi

$$\lim_{j \to \infty} \int_{\varphi(G)} f_j(x) dH^k(x) = \int_{\varphi(G)} f(x) dH^k(x), \qquad \lim_{j \to \infty} \int_G f_j(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t) = \int_G f(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t)$$

3. " $f\ H^k$ -measurable": We add positive and negative part.