Conectando métricas de negocio con nuestros modelos de ML.

Por: Jose Alberto Arango S.

¿Cuál DS crees que ella elegirá?

Problema

Standard Churn Model Scenario

≡ Churn	E Contract	Years as Customer	☆ Home Phone
0	Monthly	7	0
0	Annual	1	0
1	Monthly	3	1
0	Monthly	3	0

Prediction Target

Course Outline

Predicted Probability

¿Cómo escogemos el umbral de decisión?

Traducir los resultados de nuestro modelo en impacto financiero

Profit matrix

		Churned	
		Yes	No
Discount	True	\$200	-\$30
	False	\$0	\$0

Traducir los resultados en impacto financiero

Profit curve

Limitaciones:

- No saber los valores de los TP y FP
- Solo problemas de clasificación
- Valores heterogéneos

La importancia de una variables

Todas las variables

Falta 1 variable

Total pérdida: 1.360 USD

Más allá de los umbrales de decisión

Diferentes grupos de clientes

Profit matrix

Umbral para clientes que pagan menos de \$20 al mes

Umbral para clientes que pagan entre \$20 y \$60/mes

Umbral para clientes que pagan entre \$60 y \$100/mes

Umbral para clientes que pagan más de \$100/mes

Tipos de umbral

Tipo de Umbral	Ganancia esperada
Umbrales flexibles	44.232 USD
Umbral estático	31.000 USD
Diferencia	13.232 USD

Mejoras del modelo

¿Debo seguir mejorando este modelo o pasar a un nuevo proyecto?

Datos sintéticos que sean precisos.

Datos sintéticos que sean precisos.

synth_data = y_pred - errors * closeness_factor

Datos sintéticos que sean precisos.

synth_data_AUC = roc_auc_score(y_true, synth_data)


```
def make_synth_accurate_data(y_pred, y_true, closeness_factor=0.1):
    """Create synthetic data that is accurate.
    Args:
        y_pred (array-like): Predicted probabilities.
        y_true (array-like): True labels.
        closeness_factor (float): A measure of how much to increase the accuracy of the synthetic data.
    Returns:
        array: Synthetic data.
    11 11 11
    errors = y_pred - y_true
    synth_data = y_pred - errors * closeness_factor
    synth_data_AUC = roc_auc_score(y_true, synth_data)
    print(
        f"closeness_factor: {closeness_factor:.2f}. AUC of synthetic data: {synth_data_AUC:.2f}"
    return synth_data
```

Diferentes valores de closeness_factor

```
for i in np.linspace(0, 0.2, 11):
   make synth accurate data(y pred, y test, closeness factor=i)
closeness factor: 0.00. AUC of synthetic data: 0.81
closeness factor: 0.02. AUC of synthetic data: 0.83
closeness factor: 0.04. AUC of synthetic data: 0.84
closeness factor: 0.06.
                         AUC of synthetic data: 0.85
closeness factor: 0.08.
                         AUC of synthetic data: 0.86
closeness factor: 0.10.
                         AUC of synthetic data: 0.87
closeness factor: 0.12.
                         AUC of synthetic data: 0.88
closeness factor: 0.14.
                         AUC of synthetic data: 0.89
closeness factor: 0.16.
                         AUC of synthetic data: 0.90
closeness factor: 0.18.
                         AUC of synthetic data: 0.91
closeness factor: 0.20.
                         AUC of synthetic data: 0.92
```


Profit curve esperada con la mejora

AUC of synthetic data: 0.89

Actual vs Esperada

Referencias

- 1. Dataset usado: <u>Telco Customer Churn</u>
- 2. <u>Machine Learning for Business Decision</u> <u>Optimization W&B AI Academy</u>
- 3. <u>Decision.Al</u>

¿Alguna pregunta?