Section 6.2: Volumes

General Slicing method

slike perp. to x-axis

width

of avea A(x)

Parto of ours area AIW)

Ex. Find the vol. of the solid with circular base of radius 5 whose cross sections perp. to the base and parallel to x-axis are equilaterial triangles. V= S Aly)dy +an T/3= h cos 11/3= h= 13 /25-42 = 2/3/5 (25-42)

3. identify radius = $\sqrt{X-1} - 0$

4,5 set up integral and evaluate.

$$V = \int_{1}^{5} \pi \left(\sqrt{x-1} \right)^{2} dx = \pi \int_{1}^{5} (x-1) dx$$

$$= \pi \left[\frac{x^{2}}{2} - x \right] \Big|_{5}^{5} = 8\pi$$

Example: Let R be the region bounded by $y = x^3$, y = x, and $x \ge 0$. Find the volume of the solid generated when R is rotated about the x-axis.

Example: Let R be the region bounded by $y = \sqrt{x-1}$, y = 0, and x = 5. Set up the integral(s) needed to find the volume of the solid generated when R is rotated about the line y = 2.

3. outer rad =
$$2-0$$

inner rad = $2-\sqrt{X-1}$

4. set up
$$V = \int_{1}^{5} \pi \left[2^{2} - (2 - \sqrt{x} - 1)^{2} \right]_{1}^{2}$$

4.
$$V = S_1^2 \pi \left[(e^{S} + 2)^2 - 2^2 \right] dy$$