

BC35-G&BC95 R2.0 JC 和 JB 差异说明

LPWA 模块系列

版本: BC35-G&BC95 R2.0_JC 和 JB 差异说明_V1.1

日期: 2019-05-10

状态: 临时文件

上海移远通信技术股份有限公司始终以为客户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司 上海市徐汇区虹梅路 1801 号宏业大厦 7 楼 邮编: 200233 电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/cn/support/sales.htm

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/cn/support/technical.htm

或发送邮件至: support@quectel.com

前言

上海移远通信技术股份有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范、参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,上海移远通信技术股份有限公司有权对该文档进行更新。

版权申明

本文档版权属于上海移远通信技术股份有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2018, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2018.

文档历史

修订记录

版本	日期	作者	变更描述
1.0	2018-12-27	鲁义文/唐正/李继承	初始版本
1.1	2019-05-10	鲁义文/唐正/李继承	 更新模块系列名称; 更新模块 Idle 模式耗流数据(表 5、表6)。

目录

文材	当历史		2
1	引言		5
2	硬件差	皇异列表	6
	2.1.	采购编码	6
	2.2.	模块镭雕标签	6
	2.3.	硬件物料差异说明	7
		硬件接口	
	2.5.	模块特性	11
2	松州学	皇异	15
3			
	3.1.	软件版本名称差异说明	15

表格索引

表 1:	BC35-G/BC95 R2.0 模块 JC 和 JB 版本采购编码对比	6
表 2:	BC35-G/BC95 R2.0 模块 JC 和 JB 版本镭雕标签对比	6
表 3:	硬件物料差异对比	7
表 4:	硬件接口对比	8
	BC35-G JC 与 BC35-G JB 模块耗流数据	
表 6:	BC95 R2.0 JC 与 BC95 R2.0 JB 模块耗流数据	. 11
表 7:	绝对值对比	12
表 8:	工作温度范围对比	12
表 9:	RF 传导功率对比(上行 QPSK 和 BPSK 调制)	13
	: BC35-G JC 与 BC35-G JB 模块工作频率对比	
表 11:	: BC95 R2.0 JC 与 BC95 R2.0 JB 模块工作频率对比	13
	: RF 传导灵敏度对比(THROUGHPUT ≥ 95%)	
表 13	: ESD 性能参数对比(温度: 25 ℃,湿度: 45 %)	14
	: BC35-G JC 与 BC35-G JB 软件版本名称差异对比	
表 15	: BC95-B5 R2.0 JC 与 BC95-B5 R2.0 JB 软件版本名称差异对比	15
表 16	: BC95-B8 R2.0 JC 与 BC95-B8 R2.0 JB 软件版本名称差异对比	15

1 引言

与 BC35-G/BC95 R2.0 JB 相比, BC35-G/BC95 R2.0 JC 采用了不同但是引脚完全兼容的 Load Switch、PA 器件。BC35-G/BC95 R2.0 JC 与 BC35-G/BC95 R2.0 JB 的引脚完全兼容,软件功能也完全相同。可共用规格书、硬件设计手册、参考设计手册等文档以及认证信息。客户无需修改参考设计或软件流程即可直接替换使用。

本文档主要列举了 BC35-G、BC95 R2.0 ¹⁾ 模块的 JC 和 JB 版本因 Load Switch、PA 器件更换造成的 硬件特性指标差异,旨在帮助客户通过对比更好地了解和使用 BC35-G/BC95 R2.0 JC 版本模块。

备注

- 1. 1) BC95 R2.0 包含 BC95-B5 R2.0 和 BC95-B8 R2.0 两个型号。
- 2. BC35-G、BC95 R2.0 仅限于国内推广和使用。

2 硬件差异列表

2.1. 采购编码

BC35-G/BC95 R2.0 模块 JC 和 JB 版本的采购编码(OC) 差异如下表。

表 1: BC35-G/BC95 R2.0 模块 JC 和 JB 版本采购编码对比

对比项	BC35-G JC	BC35-G JB
采购编码 (OC)	BC35G <mark>JC</mark> -02-STD	BC35GJB-02-STD
对比项	BC95-B5 JC	BC95-B5 JB
采购编码 (OC)	BC95B5 <mark>JC</mark> -02-STD	BC95B5JB-02-STD
对比项	BC95-B8 JC	BC95-B8 JB
采购编码 (OC)	BC95B8 <mark>JC</mark> -02-STD	BC95B8JB-02-STD

2.2. 模块镭雕标签

表 2: BC35-G/BC95 R2.0 模块 JC 和 JB 版本镭雕标签对比

2.3. 硬件物料差异说明

BC35-G/BC95 R2.0 模块的 JC 版本和 JB 版本,目前硬件完全基于量产版本进行物料替代,实现的功能完全相同,唯一的差异是器件厂商不同。

表 3: 硬件物料差异对比

BC35-G JC		BC35-G JB		
主料型号	物料厂商	主料型号	物料厂商	
GLF71311	GLFIPOWER	NCP336FCT2G	ON	
1	1	NCP170AMX280TCG	ON	
RMPAMF769ATF06	WALSIN	RF3628TR13	QORVO	

PCB JC	TRULY TRIPOD	PCB JB	TRULY
BC95-B5 R2.0 JC		BC95-B5 R2.0 JB	
主料型号	物料厂商	主料型号	物料厂商
GLF71311	GLFIPOWER	NCP336FCT2G	ON
1	1	NCP170AMX280TCG	ON
HS8305E	HUNTERSUN	RF3628TR13	QORVO
PCB JC	TRULY TRIPOD	PCB JB	TRULY
BC95-B8 R2.0 JC		BC95-B8 R2.0 JB	
主料型号	物料厂商	主料型号	物料厂商
GLF71311	GLFIPOWER	NCP336FCT2G	ON
1	1	NCP170AMX280TCG	ON
RPM6368-12	RDA	RF3628TR13	QORVO
	TRULY		TDUIN
PCB JC	TRIPOD	PCB JB	TRULY

2.4. 硬件接口

BC35-G/BC95 R2.0 JC 与 BC35-G/BC95 R2.0 JB 在硬件接口设计方面并无差异,具体如下表所示。

表 4: 硬件接口对比

BC35-G/BC95 R2.0 JC		BC35-G/BC95 R2.0 JB	
引脚号	引脚名	引脚号	引脚名
1	RESERVED	1	RESERVED
2	GND	2	GND
3	RESERVED	3	RESERVED
4	RESERVED	4	RESERVED

5	RESERVED	5	RESERVED
6	RESERVED	6	RESERVED
7	RESERVED	7	RESERVED
8	RESERVED	8	RESERVED
9	RESERVED	9	RESERVED
10	RESERVED	10	RESERVED
11	RESERVED	11	RESERVED
12	RESERVED	12	RESERVED
13	RESERVED	13	RESERVED
14	RESERVED	14	RESERVED
15	RESET	15	RESET
16	RESERVED	16	RESERVED
17	RESERVED	17	RESERVED
18	NETLIGHT	18	NETLIGHT
19	DBG_RXD	19	DBG_RXD
20	DBG_TXD	20	DBG_TXD
21	ADC	21	ADC
22	RESERVED	22	RESERVED
23	RESERVED	23	RESERVED
24	RESERVED	24	RESERVED
25	RESERVED	25	RESERVED
26	VDD_EXT	26	VDD_EXT
27	RESERVED	27	RESERVED
28	RESERVED	28	RESERVED
29	RXD(内部已上拉至 VDD_EXT)	29	RXD

30	TXD	30	TXD
31	RESERVED	31	RESERVED
32	RESERVED	32	RESERVED
33	RESERVED	33	RESERVED
34	RI	34	RI
35	RESERVED	35	RESERVED
36	RESERVED	36	RESERVED
37	RESERVED	37	RESERVED
38	USIM_VDD	38	USIM_VDD
39	USIM_RST	39	USIM_RST
40	USIM_DATA	40	USIM_DATA
41	USIM_CLK	41	USIM_CLK
42	USIM_GND	42	USIM_GND
43	GND	43	GND
44	RESERVED	44	RESERVED
45	VBAT	45	VBAT
46	VBAT	46	VBAT
47	GND	47	GND
48	GND	48	GND
49	RESERVED	49	RESERVED
50	RESERVED	50	RESERVED
51	GND	51	GND
52	GND	52	GND
53	RF_ANT	53	RF_ANT
54	GND	54	GND

55~58、		55~58、	
67~70、	DECEDVED	67~70、	DESERVED
75~80、	RESERVED	75~80、	RESERVED
84~91		84~91	
59~66、		59~66、	
71~74、	CND	71~74、	CND
81~83、	GND	81~83、	GND
92~94		92~94	

2.5. 模块特性

BC35-G/BC95 R2.0 JC 与 BC35-G/BC95 R2.0 JB 模块特性完全相同,具体对比如下。

表 5: BC35-G JC 与 BC35-G JB 模块耗流数据

参数	模式	描述	最小值	典型值	最大值	单位
	PSM	睡眠状态		3		uA
	Idle	空闲状态,DRX=2.56s, ECL0		0.5		mA
		射频发射状态, 23dBm (B3)		250		mA
	Active @Single-tone (3.75kHz/15kHz)	射频发射状态, 23dBm (B8/B5)		220		mA
I _{VBAT}		射频发射状态, 12dBm(B3/B8/B5)		130		mA
		射频发射状态, 0dBm(B3/B8/B5)		70		mA
		射频接收状态		60		mA
	Active @Multi-tone (15kHz)	射频发射状态, 23dBm(B3/B8/B5)		350		mA

表 6: BC95 R2.0 JC 与 BC95 R2.0 JB 模块耗流数据

参数	模式	描述	最小值	典型值	最大值	单位
I _{VBAT}	PSM	睡眠状态		3		uA
	Idle	空闲状态,DRX=2.56s, ECL0		0.5		mA

Active @Multi-tone (15kHz)	射频发射状态, 23dBm(B8/B5)	350	mA
	射频接收状态	60	mA
(3.75kHz/15kHz)	射频发射状态, OdBm(B8/B5)	70	mA
Active @Single-tone	射频发射状态, 12dBm (B8/B5)	130	mA
	射频发射状态, 23dBm (B8/B5)	220	mA

表 7: 绝对值对比

对比项	BC35-G/BC95 R2.0 JC		BC35-G/BC95 R2.0 JB	
刈石坝	最小值	最大值	最小值	最大值
VBAT	-0.3V	+4.25V	-0.3V	+4.25V
电源供电电流	0	0.8A	0	0.8A
数字引脚处电压	-0.3V	+4.25V	-0.3V	+4.25V
模拟引脚处电压	-0.3V	+4.25V	-0.3V	+4.25V
关机模式下数字/模拟引脚处电压	-0.25V	+0.25V	-0.25V	+0.25V

表 8: 工作温度范围对比

과 나가 가득	BC35-G/BC95 R2.0 JC		BC35-G/BC95 R2.0 JB			
对比项	最小值	典型值	最大值	最小值	典型值	最大值
正常工作温度 1)	-35 °C	+25 °C	+75 °C	-35 °C	+25 °C	+75 °C
扩展温度 2)	-40 °C		+85 °C	-40 °C		+85 °C
存储温度	-40 °C		+90 °C	-40 °C		+90 °C

备注

- 1. 1) 当模块在此温度范围工作时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 当模块在此温度范围工作时,模块仍能保持正常工作状态,具备短信、数据传输等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响。仅个别指标如输出功率等参数的值可能会超出

3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

3. "*"表示正在开发中。

表 9: RF 传导功率对比(上行 QPSK 和 BPSK 调制)

74 LL/176	BC35-G/BC95 R2.0 JC		BC35-G/BC95 R2.0 JB	
对比项	最小值	最大值	最小值	最大值
RF 传导功率	<-40dBm	23dBm±2dB	<-40dBm	23dBm±2dB

表 10: BC35-G JC 与 BC35-G JB 模块工作频率对比

BC35-G JC 对比项			BC35-G JB	
刈垃圾	接收频率	发射频率	接收频率	发射频率
ВЗ	1805MHz~1880MHz	1710MHz~1785MHz	1805MHz~1880MHz	1710MHz~1785MHz
B8	925MHz~960MHz	880MHz~915MHz	925MHz~960MHz	880MHz~915MHz
B5	869MHz~894MHz	824MHz~849MHz	869MHz~894MHz	824MHz~849MHz

表 11: BC95 R2.0 JC 与 BC95 R2.0 JB 模块工作频率对比

がいる	BC95-B5 R2.0 JC 对比项		BC95-B5 R2.0 JB	
刈垃圾	接收频率	发射频率	接收频率	发射频率
B5	869MHz~894MHz	824MHz~849MHz	869MHz~894MHz	824MHz~849MHz
ᆉᅛᅚ	BC95-B8 R2.0 JC		BC95-B8 R2.0 JB	
对比项	BC95-B8 R2.0 JC 接收频率	发射频率	BC95-B8 R2.0 JB 接收频率	发射频率

表 12: RF 传导灵敏度对比(Throughput ≥ 95%)

对比项	BC35-G/BC95 R2.0 JC	BC35-G/BC95 R2.0 JB
对比坝	接收灵敏度	接收灵敏度
RF 传导灵敏度	-129dBm±1dB	-129dBm±1dB

表 13: ESD 性能参数对比(温度: 25°C, 湿度: 45%)

44 17 1元	BC35-G/BC95 R2	.0 JC	BC35-G/BC95 R2.0 JB	
对比项	接触放电	空气放电	接触放电	空气放电
VBAT、GND	±5kV	±10kV	±5kV	±10kV
天线接口	±5kV	±10kV	±5kV	±10kV
其他接口	±0.5kV	±1kV	±0.5kV	±1kV

3 软件差异

3.1. 软件版本名称差异说明

BC35-G、BC95 R2.0 模块的 JC 版本和 JB 版本的相对应固件实现的功能完全相同,主要差异是版本 名称的差异,以便于区别 JC 和 JB 版本。下表中分别列出了 R01A02 版本的版本号差异。

表 14: BC35-G JC 与 BC35-G JB 软件版本名称差异对比

模块	BC35-G JC 版本	BC35-G JB 版本
软件版本名称	BC35GJCRxxAxx_ONT	BC35GJBRxxAxx_ONT
例如	BC35G <mark>JC</mark> R01A <mark>02</mark> _ONT	BC35GJBR01A <mark>02</mark> _ONT

表 15: BC95-B5 R2.0 JC 与 BC95-B5 R2.0 JB 软件版本名称差异对比

模块	BC95-B5 R2.0 JC 版本	BC95-B5 R2.0 JB 版本
软件版本名称	BC95B5 <mark>JC</mark> RxxAxx	BC95B5 <mark>JB</mark> RxxAxx
例如	BC95B5 <mark>JC</mark> R01A <mark>02</mark>	BC95B5JBR01A02

表 16: BC95-B8 R2.0 JC 与 BC95-B8 R2.0 JB 软件版本名称差异对比

模块	BC95-B8 R2.0 JC 版本	BC95-B8 R2.0 JB 版本
软件版本名称	BC95B8 <mark>JC</mark> RxxAxx_ONT	BC95B8JBRxxAxx_ONT
例如	BC95B8 <mark>JC</mark> R01A <mark>02</mark> _ONT	BC95B8JBR01A02_ONT