Test-varianta: 2011–12-os120111 – termín 3

Vyhodnocení testu

1. okruh: Architektura a koncepce OS – OS a HW

Aby fungoval OS s preemptivním multitaskingem, musí HW obsahovat:

- 1. (+2)

 ✓ přerušovací systém (interrupt system)
- 2. (+2) **▼** časovač
- 3. (−2) [□] řadič SCSI (Small Computer System Interface)
- 4. (−2) [□] vícejádrový procesor
- 5. (−2) [□] žádná z výše uvedených možností
- 2. okruh: Architektura a koncepce OS Typy OS

Mezi vestavěné OS patří:

- 1. $(-1)^{\square}$ Windows 2008 Server
- 2. (−1) Ubuntu Server Linux
- 3. (+1) **♥** QNX
- 4. (+1) **V**xWorks
- 5. (+1) OpenWRT Linux
- 6. (−1) [□] žádná z výše uvedených možností
- 3. okruh: Souborové systémy Alokační bloky na FS

Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 64 sektorů uloží 3 soubory o velikostech 68 kB, 148 B a 535 B?

- 1. (-1) 98 %
- 2. (-1) 1 %
- 3. (+1) **5**8 %
- 4. (-1) 43 %
- 5. (−1) [□] žádná z výše uvedených možností
- 4. okruh: Souborové systémy FAT (velikost souborového systému)

Při velikosti clusteru (alokační jednotky) 4 sektory je maximální velikost souborového systému FAT16:

- 1. $(-2)^{\square}$ 32 MB
- 2. (-2) ¹ 64 MB
- 3. (+2) 128 MB

	4. $(-2)^{\square}$ 256 MB
	5. (-2) zádná z výše uvedených možností
j.	okruh: Souborové systémy – FAT (velikost tabulky)
	Jaká bude velikost tabulky FAT12 při velikosti clusteru (alokační jednotky) 64 sektorů a velikosti souborového systému 30 MB:
	1. $(-2) \frac{\Box}{=} 2 \text{ kB}$

2.
$$(-2)^{\square}$$
 1 kB

3.
$$(-2)^{\square}$$
 512 B

6. okruh: Správa paměti – Převod adres

Pokud proces je rozdělen na 6 segmentů, offset v adrese je 32bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit
0x71F4587	0x07FFFFFF
0x79D3606	0x000FFFFF
0x2B32861	0x00FFFFFF
0x6D3467D	0x7FFFFFFF
0x1E7B237	0x007FFFFF
0x4FC0DF1	0x007FFFFF

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x102120140 je:

5. (+3) Žádná z výše uvedených možností

7. okruh: Správa paměti – Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 26 kB, 32 kB, 6 kB, 13 kB a 19 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 15 kB, 13 kB a 11 kB, použije-li se algoritmus best-fit?

3.
$$(-2)^{\square}$$
 1., 2., 2.

8. okruh: Správa paměti – Metody alokace (velikost bloků)

1. (-3)	□ 1 kB, 18 kB, 4 kB, 10 kB a 17 kB
2. (-3)	□ 11 kB, 30 kB, 4 kB, 1 kB a 4 kB
3. (+3)	10 kB, 9 kB, 4 kB, 10 kB a 17 kB
4. (-3)	□ 11 kB, 8 kB, 4 kB, 10 kB a 17 kB
5. (-3)	žádná z výše uvedených možností
9. okruh: Správ	va paměti – Pojmy o paměti
Vnější fragn	nentace paměti:
1. (-2)	znamená, že paměť procesu je v nesouvislých blocích
2. (+1)	je odstraněna použitím stránkování
3. (-1)	vzniká při přidělení paměti procesu, který její část nevyužije
4. (-1)	je metoda obrany před přetížením řadiče operační paměti
	žádná z výše uvedených možností
10. okruh: Sdile	ní prostředků – Kritická sekce
	resy na superskalárním víceprocesorovém systému s pamětí cache bez sekvenční na procesorech lze vstup do kritické sekce dostatečně ošetřit pomocí:
	SW metody, pomocí jediné sdílené proměnné booleovského typu
	SW metody, pomocí dvou sdílených proměnných booleovského typu
	SW metody, pomocí tří sdílených proměnných booleovského typu
4. (-2)	
5. (+2) 11. okruh: Sdíle	žádná z výše uvedených možností ní prostředků – Synchronizace
Synchronizo	vání procesů tak, aby od bariéry běžely oba současně, lze dosáhnout dostatečně pomocí
` ′	prostředků OS, pomocí jednoho binárního semaforu
, ,	prostředků OS, pomocí předávání zpráv
	SW metody, pomocí jedné sdílené proměnné booleovského typu
	HW metody, pomocí instrukce zakázání přerušení
5. (-2)	žádná z výše uvedených možností

V paměti jsou volné bloky o velikostech 23 kB, 30 kB, 4 kB, 10 kB a 17 kB. Jak velké budou volné bloky po postupné alokaci 13 kB, 12 kB a 9 kB, použije-li se algoritmus next-fit?

Test-varianta: 2011–12-os120130b – termín 4b

Vyhodnocení testu

1. okruh: Souborové systémy – Alokační bloky na FS

Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 16 sektorů uloží 3 soubory o velikostech 54 kB, 256 B a 453 B?

- 1. (-1) [□] 97 %
- 2. $(-1)^{\square}$ 3 %
- 3. (+1) **2**5 %
- 4. (−1) [□] 75 %
- 5. (-1) zádná z výše uvedených možností
- 2. okruh: Souborové systémy FAT (velikost souborového systému)

Při velikosti clusteru (alokační jednotky) 64 sektorů je maximální velikost souborového systému FAT12:

- 1. (−2) [□] 32 MB
- 2. $(-2)^{\square}$ 64 MB
- 3. (+2) **№** 128 MB
- 4. $(-2)^{\square}$ 256 MB
- 5. (−2) [□] žádná z výše uvedených možností
- 3. okruh: Souborové systémy FAT (velikost tabulky)

Jaká bude velikost tabulky FAT12 při velikosti clusteru (alokační jednotky) 32 sektorů a velikosti souborového systému 180 MB:

- 1. $(-2)^{\square}$ 32 kB
- 2. $(-2)^{\square}$ 16 kB
- 3. $(-2)^{\square}$ 8 kB
- 4. $(-2)^{\Box}$ 4 kB
- 5. (+2) [▼] žádná z výše uvedených možností
- 4. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 3 stránky velikosti 4 kB a stránková tabulka obsahuje (mj.) položky:

frame
0x80A3
0x60A3
0x1C23

	Fyzická adresa proměnné s lineární (logickou) adresou (v procesu) 0x25A0 je:			
	1. (+3)			
	2. $(-3)^{\square}$	0x21C3		
	3. (-3) ^{\Bigsigma}	0x41C3		
	4. (-3)	0x8643		
5.	5. (-3) ckruh: Správa p	žádná z výše uvedených možností aměti – Metody alokace (pořadí bloky)		
		olné bloky o velikostech 17 kB, 23 kB, 29 kB, 4 kB a 10 kB. Jaké bude pořadí ů při postupné alokaci 5 kB, 13 kB a 11 kB, použije-li se algoritmus best-fit?		
	1. (-2)	1., 2., 1.		
	2. (+2)	5., 1., 2.		
	3. (-2) [□]	1., 2., 3.		
	4. (−2) [□]	3., 3., 3.		
6.		žádná z výše uvedených možností raměti – Metody alokace (velikost bloků)		
		rolné bloky o velikostech 11 kB, 4 kB, 21 kB, 17 kB a 7 kB. Jak velké budou volné pnoé alokaci 12 kB, 10 kB a 8 kB, použije-li se algoritmus next-fit?		
	1. (-3)	1 kB, 4 kB, 1 kB, 17 kB a 7 kB		
	2. (+3)	3 kB, 4 kB, 9 kB, 7 kB a 7 kB		
	3. (-3) [□]	1 kB, 4 kB, 13 kB, 5 kB a 7 kB		
	4. (−3) [□]	1 kB, 4 kB, 9 kB, 9 kB a 7 kB		
7.	5. (- 3)	žádná z výše uvedených možností vaměti – Pojmy o paměti		
	Položka stránko	ové tabulky obsahuje:		
	1 (1)	Y/ 1		
		číslo stránky číslo rámce		
	3. (+1)			
		velikost stránky		
	` _	žádná z výše uvedených možností		
8.		ké OS – Systémy reálného času		
	Mezi typické vla	astnosti RTOS patří:		
	1. (+1) 🔽	rychlé přepínání kontextu		
		nepreemptivní plánování		
	_	multitasking		

	4. (−1) plánování zaměřené na maximální využití CPU
9.	5. (-1) žádná z výše uvedených možností okruh: Procesy – Využití procesoru
	Počítač má paměť pro současný běh 4 procesů. Tyto procesy polovinu času čekají na dokončení V/V operace. Kolik průměrně času je procesor (CPU) nevyužit?
10.	 (-2) □ 1/2 (-2) □ 0 (+2) □ 1/16 (-2) □ 1/4 (-2) □ žádná z výše uvedených možností okruh: Procesy – Přepínání kontextu Kolik procent času CPU je promrháno během 57 ms, pokud context-switch zabere 3 ms a časové
11.	kvantum bude 9 ms a právě bylo přepnuto na proces: 1. (+2) 21 % 2. (-2) 25 % 3. (-2) 75 % 4. (-2) 79 % 5. (-2) žádná z výše uvedených možností okruh: Procesy – Komunikace procesů
	Vyberte správné tvrzení o socketech:
12.	 (+1) slouží ke komunikaci procesů (-1) jsou velmi složité na používání, je nutná znalost architektury jádra OS (+1) v posixových systémech se s nimi pracuje obdobně jako se soubory (-1) prakticky se dnes používají zřídka (-1) žádná z výše uvedených možností okruh: Sdílení prostředků – Kritická sekce
	Kritická sekce je:
	 (-2)

Test-varianta: 2011-12-os120130a - termín 4a

Vyhodnocení testu

Mezi distribuované systémy patří:

- 1. $(-1)^{\square}$ Windows 2000 Server
- 2. (-1) Red Hat Linux do jádra 2.2
- 3. $(+1)^{4}$ Beowulf cluster
- 4. (+1) **ParallelKnoppix**
- 5. (−1) [□] žádná z výše uvedených možností
- 2. okruh: Souborové systémy Alokační bloky na FS

Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 32 sektorů uloží 3 soubory o velikostech 107 kB, 216 B a 242 B?

- 1. (-1) 99 %
- 2. $(-1)^{\square}$ 1%
- 3. (+1) **☑** 26 %
- 4. $(-1)^{\square}$ 74 %
- 5. $(-1)^{\square}$ žádná z výše uvedených možností
- 3. okruh: Souborové systémy FAT (velikost tabulky)

Jaká bude velikost tabulky FAT12 při velikosti clusteru (alokační jednotky) 32 sektorů a velikosti souborového systému 410 MB:

- 1. $(-2)^{\square}$ 76 kB
- 2. $(-2)^{\square}$ 38 kB
- 3. (−2) [□] 19 kB
- 4. $(-2)^{\square}$ 9 kB
- 5. (+2) [▼] žádná z výše uvedených možností
- 4. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 6 stránek velikosti 4 kB a stránková tabulka obsahuje (mj.) položky:

frame		
0x2A2A1		
0x44B3B		
0x5D5D5		
0x77F6E		

0x	108	08
$0x^2$	2A2	2 A 2
Fyz	zick	cá a
	1.	(-
	2.	(-

Fyzická adresa proměnné s lineární (logickou) adresou (v procesu) 0x55B3 je:

- 1. (+3) 0x2A2A25B3
 2. (-3) 0x2A2A255B3
- 3. (−3) □ 0x2A855
- 4. (−3) □ 0x2F855
- 5. (−3) [□] žádná z výše uvedených možností
- 5. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 21 kB, 28 kB, 2 kB, 8 kB a 15 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 8 kB, 15 kB a 13 kB, použije-li se algoritmus next-fit?

- 1. (-2) 1., 2., 1.
- 2. $(-2)^{\square}$ 4., 4., 1.
- 3. (+2) I., 2., 2.
- 4. $(-2)^{\square}$ 4., 4., 2.
- 5. (-2) žádná z výše uvedených možností
- 6. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 17 kB, 23 kB, 29 kB, 4 kB a 10 kB. Jak velké budou volné bloky po postupné alokaci 5 kB, 13 kB a 11 kB, použije-li se algoritmus (exact-or-)worst-fit?

- 1. $(-3)^{\square}$ 1 kB, 10 kB, 29 kB, 4 kB a 10 kB
- 2. (-3) 4 kB, 12 kB, 29 kB, 4 kB a 5 kB
- 3. $(-3)^{\square}$ 12 kB, 10 kB, 18 kB, 4 kB a 10 kB
- 4. (+3) 17 kB, 23 kB, 4 kB a 10 kB
- 5. (−3) [□] žádná z výše uvedených možností
- 7. okruh: Správa paměti Pojmy o paměti

Položka segmentové tabulky neobsahuje:

- 1. (+1) **v** číslo segmentu
- 2. (−1) bázovou adresu segmentu
- 3. $(-1)^{\square}$ řídicí bity
- 4. (+1) offset od bázové adresy
- 5. (−1) [□] žádná z výše uvedených možností
- 8. okruh: Procesy Komunikace procesů

Vyberte správné tvrzení o rourách:

1. (+1) slouží ke komunikaci procesů

2. (-1)	jsou velmi složité na používání, je nutná znalost architektury jádra OS		
3. (+1) 🔽	v posixových systémech se s nimi pracuje obdobně jako se soubory		
4. (-1)	prakticky se dnes pro předávání dat mezi procesy téměř nepoužívají		
5. (−1) □ 9. okruh: Procesy	žádná z výše uvedených možností – Stavy procesů		
Sedmistavový i	Sedmistavový model procesu zahrnuje (mj.) následující stavy:		
	běžící, odložený blokovaný, vypršený (timeout)		
	připravený, odložený, ukončený		
	blokovaný odložený, běžící, nový		
	odložený připravený, připravený, blokovaný		
5. (-1) 10. okruh: Procesy	žádná z výše uvedených možností – Vlákna		
•			
Vlákna sdílejí s	e zbytkem procesu:		
1. (-1)	registry		
2. (-1)			
3. (-1)	stav		
4. (+1)			
5. (−1) □ 11. okruh: Sdílení j	žádná z výše uvedených možností prostředků – Kritická sekce		
	rostředek ošetření vstupu do kritické sekce:		
1 (2) Π	je nevhodný, protože používá aktivní čekání		
_			
	je nevhodný, protože příliš zvyšuje latenci systému nelze použít		
_			
	se běžně používá v jazyce C, C++ a Delphi žádná z výše uvedených možností		
12. okruh: Sdílení j	orostředků – Semafory		
Semafor v OS 1	neobsahuje:		
1. (-1)	čítač (čítací proměnnou)		
2. (-1)	funkci signal (up)		
3. (-1)	funkci wait (down)		
4. (-1)	frontu (proměnnou pro seznam procesů)		
	žádná z výše uvedených možností		
13. okruh: Bezpečr	ost OS		

Mezi nejčastější útoky na systém patří:

1.	(+1) (využití chyby ve službách typu buffer overflow
2.	(+1) V	hádání uživatelských loginů a jejich hesel slovníkovou metodou
3.	(−1) □	dešifrování zabezpečených vzdálených přihlášení (login sessions)
4.	(−1) □	využívání tzv. chyby číslo 2F v jádře OS
5.	(−1) □	žádná z výše uvedených možností

Test-varianta: 2011–12-os120207 – termín 5

Vyhodnocení testu

1. okrul	: Architektura	a koncepce	OS -	- Typy	OS
----------	----------------	------------	------	--------	----

Mezi RT-systémy patří:

- 1. (−1) Windows 2008 Server
- 2. (−1) [□] Linux
- 3. (+1) QNX
- 4. (+1) **V** VxWorks
- 5. (−1) [□] MINIX 3
- 6. (−1) [□] žádná z výše uvedených možností
- 2. okruh: Souborové systémy Alokační bloky na FS

Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 4 sektory uloží 3 soubory o velikostech 104 kB, 194 B a 310 B?

- 1. (-1) 91 %
- 2. $(-1)^{\square}$ 9 %
- 3. (+1) **4** %
- 4. (−1) [□] 96 %
- 5. (−1) [□] žádná z výše uvedených možností
- 3. okruh: Souborové systémy FAT (velikost tabulky)

Jaká bude velikost tabulky FAT16 při velikosti clusteru (alokační jednotky) 4 sektory a velikosti souborového systému 560 MB:

- 1. (−2) [□] 1120 kB
- 2. $(-2)^{\square}$ 560 kB
- 3. (−2) [□] 280 kB
- 4. $(-2)^{\square}$ 140 kB
- 5. (+2) [▼] žádná z výše uvedených možností
- 4. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 4 segmenty, offset v adrese je 28bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit
0xC20A31	0x0FFFFFF
0x5BCCCB	0x0FFFFFF

0x64ABB75	0x0FFFFFF		
0x1FEAD5F	0x00FFFFF		

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x21403423 je:

- 1. (−3) □ 0x78AEF98
- 2. (-3) 0x64ABB751403423
- 3. (−3) □ 0x5BCCCB1403423
- 4. (-3) Ox64ABB751403423
- 5. (+3) ▼ žádná z výše uvedených možností
- 5. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 16 kB, 22 kB, 29 kB, 3 kB a 9 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 10 kB, 8 kB a 5 kB, použije-li se algoritmus first-fit?

- 1. (+2) 1., 2., 1.
- 2. $(-2)^{\square}$ 1., 5., 1.
- 3. $(-2)^{\square}$ 1., 2., 2.
- 4. $(-2)^{\square}$ 3., 2., 3.
- 5. (-2) žádná z výše uvedených možností
- 6. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 17 kB, 23 kB, 30 kB, 4 kB a 10 kB. Jak velké budou volné bloky po postupné alokaci 11 kB, 8 kB a 6 kB, použije-li se algoritmus next-fit?

- 1. $(-3)^{\square}$ 15 kB, 30 kB, 4 kB a 10 kB
- 2. (-3) 23 kB, 30 kB, 4 kB a 2 kB
- 3. (+3) 6 kB, 9 kB, 30 kB, 4 kB a 10 kB
- 4. $(-3)^{\square}$ 17 kB, 15 kB, 13 kB, 4 kB a 10 kB
- 5. (−3) [□] žádná z výše uvedených možností
- 7. okruh: Procesy Využití procesoru

Počítač má paměť pro současný běh 3 procesů. Tyto procesy čekají půměrně třetinu času na dokončení V/V operace. Kolik průměrně času je procesor (CPU) nevyužit?

- 1. (-2) 1/3
- 2. $(-2)^{\square}$ 1/9
- 3. (+2) **▼** 1/27
- 4. (−2) [□] 2/9
- 5. (−2) [□] žádná z výše uvedených možností
- 8. okruh: Procesy Přepínání kontextu

Kolik procent času CPU je promrháno během 50 ms, pokud context-switch zabere 2 ms a časové kvantum bude 11 ms a právě bylo přepnuto na proces:

1. (+2)	
2. (-2)	18 %
3. $(-2)^{\Box}$ 8	82 %
4. (−2) [□] 8	88 %
5. $(-2)^{\square}$	žádná z výše uvedených možností
9. okruh: Procesy –	Plánování
Hlavní cíle pláno	vání procesů na real-timeových systémech jsou:
_	prediktabilita (předvídatelnost)
` ′	minimalizace obratu (turnaround time)
	maximální zátěž (využití) CPU
	dodržení (časových) termínů
5. (-1) ^{\(\sigma\)}	žádná z výše uvedených možností
10. okruh: Procesy –	Vlákna
Nevýhodou imple	ementace vláken bez podpory OS je:
1. (+1) 🔽 p	page-fault způsobí zastavení ostatních vláken
2. $(-1)^{\Box}$	vysoká režie při volání vláknových funkcí
3. (+1) 🔽 1	nutnost převést blokovaná volání na neblokovaná
4. $(-1)^{\Box}$	vyžaduje se přechod do režimu kernel
5. (-1) 2	žádná z výše uvedených možností
11. okruh: Sdílení pro	ostředků – Kritická sekce
Výhodou řešení v	vstupu do kritické sekce pomocí zákazu přerušení je:
1. $(-1)^{\square}$ r	možnost použití na všech systémech
2. (-1)	zlepšení odezvy systému
3. (+1) 🔽 j	jednoduchost použití
4. (+1) 🔽 r	neaktivní čekání
5. (−1) [□] ż 12. okruh: Sdílení pro	žádná z výše uvedených možností ostředků – Synchronizace
Synchronizování	procesů tak, aby od bariéry běžely oba současně, lze dosáhnout dostatečně pomocí:
· · · · · -	prostředků OS, pomocí jednoho binárního semaforu
	prostředků OS, pomocí předávání zpráv
	SW metody, pomocí jedné sdílené proměnné booleovského typu
	HW metody, pomocí instrukce zakázání přerušení
5. (-2) ⁻ 2	žádná z výše uvedených možností

Test-varianta: 2011-12-os120208a - termín 6a

Vyhodnocení testu

1.	okruh: Architektura a koncepce OS – Funkce OS
	Timesharing je:

- (+1) způsob multiprogrammingu
 (+1) sdílení (dělení) času CPU mezi procesy uživatelů OS
 (−1) úspora času při kopírování dat do paměti (z V/V zařízení)
 (−1) způsob posílání tiskových úloh pro tiskárnu
- 2. (-1) zpusob posnaní úskových uloh pro úska
 5. (-1) žádná z výše uvedených možností
- 2. okruh: Architektura a koncepce OS Jádro OS

Která funkce by měla být povolena pouze v režimu kernel?

- 1. (+2)

 ✓ zákaz přerušení
- 2. (−2) [□] čtení času systémových hodin
- 3. (+2) nastavení času systémových hodin
- 4. (−2) zjištění počtu čekajících procesů
- 5. (-2) zádná z výše uvedených možností
- 3. okruh: Architektura a koncepce OS Typy OS

Mezi distribuované systémy patří:

- 1. (−1) Windows 2000 Server
- 2. (-1) Red Hat Linux do jádra 2.2
- 3. (+1) Beowulf cluster
- 4. (+1) ParallelKnoppix
- 5. (-1) žádná z výše uvedených možností
- 4. okruh: Souborové systémy Alokační bloky na FS

Kolik (přibližně) procent místa je promrháno, pokud se na filesystém s alokačním blokem 16 sektorů uloží 3 soubory o velikostech 60 kB, 18 kB a 5 B?

- 1. (+1) 19 %
- 2. $(-1)^{\square}$ 9 %
- 3. $(-1)^{\square}$ 22 %
- 4. (-1) 30 %
- 5. (-1) žádná z výše uvedených možností

5. okruh: Souborové systémy – FAT (velikost tabulky)

Jaká bude velikost tabulky FAT32 při velikosti clusteru (alokační jednotky) 4 sektory a velikosti filesystému 32 GB:

- 1. (−2) □ 32 MB
- 2. $(-2)^{\square}$ 16 MB
- 3. $(-2)^{\square}$ 8 MB
- 4. $(-2)^{\Box}$ 4 MB
- 5. (+2) zádná z výše uvedených možností
- 6. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 4 segmenty, offset v adrese je 24bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit		
0x4667C21	0x7FFFFF		
0x18C57BB	0x007FFF		
0x28EC395	0x007FFF		
0x5A31F4F	0x07FFFF		

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x3044332 je:

- 1. (-3) Ox5A31F4F044332
- 2. (-3) Ox18C57BB044332
- 3. (−3) □ 0x28EC395044332
- 4. (+3) ox5A76281
- 5. (−3) [□] žádná z výše uvedených možností
- 7. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 19 kB, 26 kB, 32 kB, 6 kB a 13 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 6 kB, 15 kB a 13 kB, použije-li se algoritmus (exact-or-)worst-fit?

- 1. (-2) 1., 2., 1.
- 2. $(-2)^{\square}$ 4., 1., 4.
- 3. $(-2)^{\square}$ 1., 2., 3.
- 4. (+2) 4., 3., 4.
- 5. (-2) žádná z výše uvedených možností
- 8. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 22 kB, 29 kB, 3 kB, 9 kB a 16 kB. Jak velké budou volné bloky po postupné alokaci 13 kB, 11 kB a 9 kB, použije-li se algoritmus first-fit?

2. (-3) 11 kB, 29 kB, 3 kB a 3 kB
3. $(-3)^{\square}$ 9 kB, 9 kB, 3 kB, 9 kB a 16 kB
4. $(-3)^{\square}$ 11 kB, 16 kB, 3 kB a 16 kB
5. (-3) zádná z výše uvedených možností
9. okruh: Špráva paměti – Pojmy o paměti
Segmentace:
 (+1) usnadňuje sdílení paměti mezi procesy
2. (-1) není viditelná pro programátora (je transparentní)
 3. (+1) pomáhá implicitně řešit problém ochrany
_
4. (−1) používá lineární adresu společnou všem částem programu
5. (-1) žádná z výše uvedených možností 10. okruh: Procesy – Využití procesoru
Počítač má paměť pro současný běh 4 procesů. Tyto procesy polovinu času čekají na dokončení V/V operace. Kolik průměrně času je procesor (CPU) nevyužit?
1. $(-2)^{\square}$ 1/2
2. $(-2)^{\square}$ 0
3. $(+2)^{4}$ 1/16
4. $(-2)^{\square}$ 1/4
5. (-2) žádná z výše uvedených možností 11. okruh: Procesy – Komunikace procesů
Vyberte správné tvrzení o rourách:
 (+1) slouží ke komunikaci procesů
2. (−1) sou velmi složité na používání, je nutná znalost architektury jádra OS
3. (+1) v posixových systémech se s nimi pracuje obdobně jako se soubory
4. (−1) prakticky se dnes pro předávání dat mezi procesy téměř nepoužívají
5. (-1) zádná z výše uvedených možností

Test-varianta: 2011–12-os120208b – termín 6b

Vyhodnocení testu

1. okruh: Architektura a koncepce OS – Funkce Os
--

Pod pojmem spooling rozumíme v oblasti OS také:

- 1. (+1) techniku ukládání úloh do fronty pro dávkové systémy
- 2. (+1) double odkládání dat pro pomalejší V/V zařízení
- 3. (−1) algoritmus přidělování paměti vláknům
- 4. (−1) sdílení paměti mezi V/V zařízeními
- 5. (−1) [□] žádná z výše uvedených možností
- 2. okruh: Architektura a koncepce OS OS a HW

Při používání DMA:

- 1. (+1) se přenosu neúčastní CPU
- 2. (+1)

 je nutné alokovat od systému kanál (DMA)
- 3. (−1) se na výpočtu podílí více procesorů
- 4. (−1) je nutné použít vícevláknový proces
- 5. (−1) [□] žádná z výše uvedených možností
- 3. okruh: Architektura a koncepce OS Jádro OS

Systémové volání:

- 1. (+1) slouží procesům ke zpřístupnění funkcí OS
- 2. (+1) slouží procesům k ovládání V/V zařízení
- 3. (−1) slouží OS zejména k preemptivnímu plánování
- 4. (−1) slouží HW k předání dat pro OS
- 5. (-1) žádná z výše uvedených možností
- 4. okruh: Souborové systémy Alokační bloky na FS

Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 16 sektorů uloží 3 soubory o velikostech 54 kB, 256 B a 453 B?

- 1. (-1) ¹ 97 %
- 2. (-1) 3 %
- 3. (+1) **■** 25 %
- 4. (−1) [□] 75 %

	Jaká bude velikost tabulky FAT16 při velikosti clusteru (alokační jednotky) 8 sektorů a velikosti filesystému 2 GB:
	1. $(-2)^{\square}$ 2 MB
	2. $(-2)^{\square}$ 1 MB
	3. $(-2)^{\square}$ 512 kB
	4. $(-2)^{\square}$ 128 kB
6.	 5. (+2) [▼] žádná z výše uvedených možností okruh: Správa paměti – Převod adres
	Pokud proces je rozdělen na 5 stránek velikosti 64 kB a stránková tabulka obsahuje (mj.) položky:
	frame 0x7F7F 0x1190 0x35D5 0x77F7 0x1919
	Fyzická adresa proměnné s lineární (logickou) adresou (v procesu) 0x53B2 je:
	1. (-3) Ox119053B2
	2. (-3) av7F7F3B2
	3. (-3) OxD331
	4. (-3) \(\bigcup_{\text{\tint{\text{\tint{\text{\tinit}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\tinit}\tint{\text{\tinit}\text{\text{\text{\text{\text{\tex{\tex
7.	 5. (+3) [▼] žádná z výše uvedených možností okruh: Správa paměti – Metody alokace (pořadí bloky)
	V paměti jsou volné bloky o velikostech 23 kB, 30 kB, 4 kB, 10 kB a 17 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 13 kB, 12 kB a 9 kB, použije-li se algoritmus best-fit?
	1. $(-2)^{\square}$ 1., 2., 1.
	2. (+2) 5., 1., 4.
	3. (-2) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 1., 2., 2.
	4. (-2) $\frac{\Box}{}$ 2., 1., 2.
8.	5. (-2) žádná z výše uvedených možností okruh: Správa paměti – Metody alokace (velikost bloků)
	V paměti jsou volné bloky o velikostech 21 kB, 28 kB, 2 kB, 8 kB a 15 kB. Jak velké budou volné bloky po postupné alokaci 8 kB, 15 kB a 13 kB, použije-li se algoritmus (exact-or)worst-fit?

5. (-1) [□] žádná z výše uvedených možností
5. okruh: Souborové systémy – FAT (velikost tabulky)

1. (-3)	13 kB, 13 kB, 2 kB, 8 kB a 2 kB
2. (-3)	8 kB, 28 kB a 2 kB
3. (-3)	13 kB, 2 kB, 8 kB a 15 kB
4. (+3)	✓ 21 kB, 15 kB a 2 kB
5. (-3)	žádná z výše uvedených možností
9. okruh: Spec	ifické OS – Systémy reálného času
Mezi typick	é vlastnosti RTOS patří:
1. (+1)	rychlé přepínání kontextu
	nepreemptivní plánování
3. (+1)	multitasking
4. (-1)	plánování zaměřené na maximální využití CPU
	žádná z výše uvedených možností
10. okruh: Proc	esy – Využití procesoru
	paměť pro současný běh 3 procesů. Tyto procesy dvě třetiny času čekají na dokončení e. Kolik průměrně času je procesor (CPU) nevyužit?
1. (-2)	□ _{2/3}
2. (-2)	
3. (+2)	▼ 8/27
4. (-2)	□ _{4/9}
5. (-2)	žádná z výše uvedených možností
11. okruh: Proc	esy – Stavy procesů
Sedmistavo	vý model procesu nezahrnuje následující stavy:
1. (-1)	běžící, blokovaný, nový
2. (-1)	připravený, běžící, ukončený
3. (+1)	odložený, spustitelný, spící
4. (+1)	vyčerpaný, naplánovaný, odblokovaný
	žádná z výše uvedených možností
12. okruh: Sdíle	ení prostředků – Kritická sekce
Zbytková se	ekce je:
	čas, kdy proces nealokuje žádné prostředky od OS
	část kódu procesu(ů)
	část datové části paměti procesu s dynamicky alokovanými proměnnými
4. (-2)	závislá na přidělení semaforu od OS
5. (-2)	žádná z výše uvedených možností

Test-varianta: 2011–12-os120209a – termín 7a

Vyhodnocení testu

1.	okruh:	Archite	ktura a .	koncepce	OS –	Funkce	OS

Multiprogramingem můžeme označit:

- 1. (−1) programování v týmu
- 2. (−1) programování aplikací pro audio a video
- 3. (+1) **✓** způsob práce plánovače OS
- 4. (+1) (pseudo)paralelní běh více úloh
- 5. (-1) ^{\subseteq} žádná z výše uvedených možností
- 2. okruh: Architektura a koncepce OS Jádro OS

Která funkce by měla být povolena pouze v režimu kernel?

- 1. (+2)

 ✓ zachycení a obsluha interruptu
- 2. (-2) zachycení a obsluha zachytitelných signálů
- 3. (+2) voládání V/V zařízení
- 4. (−2) tisk prostřednictvím tiskového serveru (subsystému OS)
- 5. (-2) žádná z výše uvedených možností
- 3. okruh: Souborové systémy Alokační bloky na FS

Kolik (přibližně) procent místa je promrháno, pokud se na filesystém s alokačním blokem 16 kB uloží 3 soubory o velikostech 51 kB, 18 B a 17 kB?

- 1. (+1) 40 %
- 2. (-1) 50 %
- 3. (-1) 60 %
- 4. (−1) [□] 30 %
- 5. (−1) [□] žádná z výše uvedených možností
- 4. okruh: Souborové systémy FAT (velikost tabulky)

Jaká bude velikost tabulky FAT12 při velikosti clusteru (alokační jednotky) 32 sektorů a velikosti souborového systému 180 MB:

- 1. (−2) [□] 32 kB
- 2. $(-2)^{\square}$ 16 kB
- 3. $(-2)^{\square}$ 8 kB
- 4. $(-2)^{\square}$ 4 kB

- 5. (+2) [▼] žádná z výše uvedených možností
- 5. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 3 segmenty, offset v adrese je 16bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit		
0x014DB	0x00FFFF		
0xD5348	0x7FFFFF		
0x1AC01	0x0FFFFF		

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x2012 je:

- 1. (−3) □ 0x014DB2012
- 2. (-3) \square 0xD53482012
- 3. $(-3)^{\square}$ 0xD5348012
- 4. (−3) □ 0xD735A
- 5. (+3) žádná z výše uvedených možností
- 6. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 8 kB, 15 kB, 27 kB, 33 kB a 8 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 10 kB, 8 kB a 6 kB, použije-li se algoritmus first-fit?

- 1. (+2) **2**., 1., 2.
- 2. $(-2)^{\square}$ 2., 1., 4.
- 3. $(-2)^{\square}$ 2., 3., 3.
- 4. (−2) [□] 4., 1., 2.
- 5. (−2) [□] žádná z výše uvedených možností
- 7. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 11 kB, 17 kB, 21 kB, 14 kB a 7 kB. Jak velké budou volné bloky po postupnoé alokaci 12 kB, 10 kB a 7 kB, použije-li se algoritmus best-fit?

- 1. (-3) 1 kB, 5 kB, 14 kB, 14 kB a 7 kB
- 2. (-3) 11 kB, 5 kB, 3 kB, 14 kB a 7 kB
- 3. (+3) 1 kB, 17 kB, 21 kB a 2 kB
- 4. (-3) 1 kB, 21 kB, 14 kB a 7 kB
- 5. (-3) žádná z výše uvedených možností
- 8. okruh: Správa paměti Pojmy o paměti

Thrashing:

- 1. (−1) je obecné pojmenování startu OS (boot)
- 2. (+1)

 je neefektivní využití CPU při neustálé výměně paměťových stránek

3. (+1) může být způsobován odkládáním paměti na disk, když je tato část za okamžik
potřebná
4. (−1) metoda ničení hard disků kvůli bezpečnosti
 5. (-1) zádná z výše uvedených možností 9. okruh: Procesy – Přepínání kontextu
Kolik procent času CPU je promrháno během 57 ms, pokud context-switch zabere 3 ms a časové kvantum bude 9 ms a právě bylo přepnuto na proces:
1. (+2) 2 1 %
2. (-2) 25 %
3. (-2) ¹⁷ 75 %
4. (-2) ¹⁷ 79 %
5. (-2) Žádná z výše uvedených možností 10. okruh: Sdílení prostředků – Kritická sekce
Nevýhodou řešení kritické sekce pomocí zákazu přerušení je:
1. (+1) nemožnost použití na SMP-systémech
2. (+1) vyšování latence systému
3. (-1) dlouhá vstupní a výstupní sekce
4. (−1) nemožnost implementace na architektuře Intel/AMD x86 (IA32)
5. (-1) Žádná z výše uvedených možností 11. okruh: Bezpečnost OS
Mezi nejčastější útoky na systém patří:
1. (+1) využití chyby ve službách typu buffer overflow
2. (+1) hádání uživatelských loginů a jejich hesel slovníkovou metodou
3. (-1) dešifrování zabezpečených vzdálených přihlášení (login sessions)
4. (−1) využívání tzv. chyby číslo 2F v jádře OS
 (−1) zádná z výše uvedených možností

Test-varianta: 2011–12-os120209b – termín 7b

Vyhodnocení testu

1.	okruh: A	Architektur	a a koncep	ce OS – Funko	e OS

Multiprogramingem můžeme označit:

- 1. (−1) programování v týmu
- 2. (−1) programování aplikací pro audio a video
- 3. (+1) **✓** způsob práce plánovače OS
- 4. (+1) (pseudo)paralelní běh více úloh
- 5. (-1) ^{\subseteq} žádná z výše uvedených možností
- 2. okruh: Architektura a koncepce OS Jádro OS

Která funkce by měla být povolena pouze v režimu kernel?

- 1. (+2)

 ✓ zachycení a obsluha interruptu
- 2. (-2) zachycení a obsluha zachytitelných signálů
- 3. (+2) voládání V/V zařízení
- 4. (−2) tisk prostřednictvím tiskového serveru (subsystému OS)
- 5. (−2) [□] žádná z výše uvedených možností
- 3. okruh: Souborové systémy Alokační bloky na FS

Kolik (přibližně) procent místa je promrháno, pokud se na filesystém s alokačním blokem 8 sektorů uloží 3 soubory o velikostech 8 B, 17 kB a 250 B?

- 1. (+1) 40 %
- 2. (-1) 98 %
- 3. (-1) ^{\bigcup 2 %}
- 4. (−1) [□] 46 %
- 5. (−1) [□] žádná z výše uvedených možností
- 4. okruh: Souborové systémy FAT (velikost tabulky)

Jaká bude velikost tabulky FAT12 při velikosti clusteru (alokační jednotky) 32 sektorů a velikosti souborového systému 180 MB:

- 1. $(-2)^{\square}$ 32 kB
- 2. $(-2)^{\square}$ 16 kB
- 3. $(-2)^{\square}$ 8 kB
- 4. $(-2)^{\square}$ 4 kB

- 5. (+2) [▼] žádná z výše uvedených možností
- 5. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 3 segmenty, offset v adrese je 16bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit
0x014DB	0x00FFFF
0xD5348	0x7FFFFF
0x1AC01	0x0FFFFF

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x2012 je:

- 1. (-3) Ox014DB2012
- 2. (-3) OxD53482012
- 3. $(-3)^{\square}$ 0xD5348012
- 4. (−3) □ 0xD735A
- 5. (+3) žádná z výše uvedených možností
- 6. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 11 kB, 4 kB, 21 kB, 17 kB a 7 kB. Které bloky jsou vybrány pro postupnou alokaci: 12 kB, 10 kB a 8 kB, použije-li se algoritmus (exact- or) worst-fit?

- 1. $(-2)^{\square}$ 3., 1., 3.
- 2. (+2) 3., 4., 1.
- 3. $(-2)^{\square}$ 4., 1., 3.
- 4. (−2) [□] 3., 1., 4.
- 5. (-2) zádná z výše uvedených možností
- 7. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 8 kB, 15 kB, 27 kB, 33 kB a 8 kB. Jak velké budou volné bloky po postupné alokaci 10 kB, 8 kB a 6 kB, použije-li se algoritmus next-fit?

- 1. $(-3)^{\square}$ 5 kB, 21 kB, 33 kB a 8 kB
- 2. $(-3)^{\square}$ 5 kB, 27 kB, 33 kB a 2 kB
- 3. $(-3)^{\square}$ 8 kB, 5 kB, 33 kB a 8 kB
- 4. (-3) 15 kB, 21 kB, 23 kB a 8 kB
- 5. (+3) žádná z výše uvedených možností
- 8. okruh: Správa paměti Pojmy o paměti

Thrashing:

- 1. (−1) je obecné pojmenování startu OS (boot)
- 2. (+1)

 je neefektivní využití CPU při neustálé výměně paměťových stránek

	3.	(+1) potřebná	může být způsobován odkládáním paměti na disk, když je tato část za okamžik
	4	-	metoda ničení hard disků kvůli bezpečnosti
		_	žádná z výše uvedených možností
9. o			– Přepínání kontextu
			asu CPU je promrháno během 57 ms, pokud context-switch zabere 3 ms a časové ms a právě bylo přepnuto na proces:
	1.	(+2) •	21 %
	2.	(-2)	25 %
	3.	(-2)	75 %
		(−2) □	
10. o	5. kruh:	(−2) □ Sdílení p	žádná z výše uvedených možností rostředků – Kritická sekce
N	levýh	odou řeše	ení kritické sekce pomocí zákazu přerušení je:
	1.	(+1) (nemožnost použití na SMP-systémech
	2.	(+1) •	zvyšování latence systému
			dlouhá vstupní a výstupní sekce
			nemožnost implementace na architektuře Intel/AMD x86 (IA32)
11. o		(−1) Bezpečn	žádná z výše uvedených možností ost OS
N	1ezi n	ıejčastější	útoky na systém patří:
	1.	(+1) •	využití chyby ve službách typu buffer overflow
	2.	(+1) •	hádání uživatelských loginů a jejich hesel slovníkovou metodou
	3.	(-1)	dešifrování zabezpečených vzdálených přihlášení (login sessions)
		_	využívání tzv. chyby číslo 2F v jádře OS
	5.	(-1)	žádná z výše uvedených možností

Test-varianta: 2011–12-os120214 – termín 8

Vyhodnocení testu

1. okruh: Souborové systémy – Alokační bloky na FS

Kolik (přibližně) procent místa je promrháno, pokud se na filesystém s alokačním blokem 16 kB uloží 3 soubory o velikostech 50 kB, 18 kB a 10 B?

- 1. (+1) ⁴⁰ %
- 2. (-1) 50 %
- 3. (-1) ^{\(\sigma\)} 60 %
- 4. (-1) 1 30 %
- 5. (−1) [□] žádná z výše uvedených možností
- 2. okruh: Souborové systémy FAT (velikost souborového systému)

Při velikosti clusteru (alokační jednotky) 16 sektorů je maximální velikost filesystému FAT16:

- 1. $(-2)^{\square}$ 128 MB
- 2. $(-2)^{\square}$ 256 MB
- 3. (+2) 512 MB
- 4. $(-2)^{\square}$ 1 GB
- 5. (-2) žádná z výše uvedených možností
- 3. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 12 stránek velikosti 64 kB a stránková tabulka obsahuje (mj.) položky:

0xAAE4 0x2153 0xD2C1 0x4692 0x34C3 0xBAD0 0xBED3 0x1243 0x680F

0xA467 0xED56

0x41B4

	Fyzická adresa proměnné s lineární (logickou) adresou (v procesu) 0x108FC je:
4.	1. (-3) Ox21538FC 2. (+3) Ox215308FC 3. (-3) OxED568FC 4. (-3) OxED56108FC 5. (-3) Zádná z výše uvedených možností okruh: Správa paměti – Metody alokace (pořadí bloky)
	V paměti jsou volné bloky o velikostech 26 kB, 32 kB, 6 kB, 13 kB a 19 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 15 kB, 13 kB a 11 kB, použije-li se algoritmus next-fit?
5.	 (-2) □ 1., 2., 1. (-2) □ 5., 4., 1. (+2) □ 1., 2., 2. (-2) □ 2., 4., 1 (-2) □ žádná z výše uvedených možností okruh: Správa paměti – Metody alokace (velikost bloků)
	V paměti jsou volné bloky o velikostech 17 kB, 23 kB, 29 kB, 4 kB a 10 kB. Jak velké budou volné bloky po postupné alokaci 5 kB, 13 kB a 11 kB, použije-li se algoritmus (exact-or-)worst-fit?
6.	1. (-3) ☐ 1 kB, 10 kB, 29 kB, 4 kB a 10 kB 2. (-3) ☐ 4 kB, 12 kB, 29 kB, 4 kB a 5 kB 3. (-3) ☐ 12 kB, 10 kB, 18 kB, 4 kB a 10 kB 4. (+3) ☐ 17 kB, 23 kB, 4 kB a 10 kB 5. (-3) ☐ žádná z výše uvedených možností okruh: Správa paměti – Pojmy o paměti
	Stránkování paměti:
7.	 (+1) odstraňuje vnější fragmentaci (−1) odstraňuje vnitřní fragmentaci (+1) je pro programátora transparentní (−1) není pro programátora transparentní (−1) žádná z výše uvedených možností okruh: Specifické OS – Vestavěné systémy
	Podíl trhu mikročipů mimo vestavěné systémy je zhruba:
	1. (+1) ✓ < 5 % 2. (-1) ☐ 30 % 3. (-1) ☐ 70 %

	4. (-1	$)^{\square} > 90 \%$
8.	5. (-1 okruh: Pro	žádná z výše uvedených možností cesy – Využití procesoru
		paměť pro současný běh 3 procesů. Tyto procesy dvě třetiny času čekají na dokončení ce. Kolik průměrně času je procesor (CPU) nevyužit?
	1. (-2	$^{\square}$ 2/3
	2. (-2	\Box 0
	3. (+2	8/27
	4. (-2) [—] 4/9
9.	5. (-2 okruh: Pro	žádná z výše uvedených možností cesy – Přepínání kontextu
	-	ent času CPU je promrháno během 158 ms, pokud context-switch zabere 2 ms a časové ude 38 ms a právě bylo přepnuto na proces:
	1. (+2) ✓ <4 %
	2. (-2) 5 %
	3. (-2	95 %
	4. (-2)
10.	5. (-2 okruh: Pro	žádná z výše uvedených možností cesy – Komunikace procesů
	Vyberte sp	rávné tvrzení o socketech:
	1. (+1	slouží ke komunikaci procesů
		jsou velmi složité na používání, je nutná znalost architektury jádra OS
		v posixových systémech se s nimi pracuje obdobně jako se soubory
		prakticky se dnes používají zřídka
		žádná z výše uvedených možností
11.	okruh: Pro	cesy – Vlákna
	Vlákna sdí	lejí se zbytkem procesu:
	1. (-1) registry
	2. (-1	zásobník zásobník
	3. (-1) stav
	4. (+1	paměť paměť
12.	5. (-1	žádná z výše uvedených možností lení prostředků – Kritická sekce

Výhodou řešení vstupu do kritické sekce pomocí instrukce typu test-and-set je:

1.	(+1) •	možnost použití na SMP-systémech
2.	(-1)	nepotřebnost používání spin-locks
3.	(+1) •	jednoduchost použití
4.	(-1)	neaktivní čekání
5. 13. okruh:	(−1) □ Sdílení p	žádná z výše uvedených možností prostředků – Semafory
Semafe	or v OS n	eobsahuje:
1.	(-1)	čítač (čítací proměnnou)
2.	(-1)	funkci signal (up)
3.	(-1)	funkci wait (down)
4.	(-1)	frontu (proměnnou pro seznam procesů)
		žádná z výše uvedených možností
14. okruh:	Bezpečn	ost OS
	-	standadně pro uložení hesel funkci crypt () založenou na algoritmu DES. Jak dlouho očítání původního hesla z uloženého záznamu hesla na běžném PC:
1.	(-1)	desítky let
2.	(-1)	stovky let
3.	(-1)	týdny
4.	(+1) •	nelze
5.	(-1)	žádná z výše uvedených možností

Test-varianta: 2011–12-os120523a – termín 9a

V

3. (−2) [□] 114 kB

4. (−2) [□] 57 kB

yh	yhodnocení testu		
1.	. okruh: Architektura a koncepce OS – Funkce OS		
	Hlavní funkce OS jsou:		
2.	 (+1) management zdrojů (+1) virtualizace a rozšíření HW (−1) GUI (−1) nepreemptivní plánování procesů (−1) žádná z výše uvedených možností okruh: Architektura a koncepce OS – OS a HW 		
	Při používání DMA:		
3.	 (+2) se urychlí činnost systému, protože se nepoužívá CPU (+2) je obvyklé používat také přerušovací systém (−2) se urychlí činnost systému, protože se používá více CPU (nebo HyperThreading) (−2) je nutné použít vícevláknový proces nebo kooperující procesy (−2) žádná z výše uvedených možností okruh: Souborové systémy – Alokační bloky na FS 		
	Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 16 sektorů uloží 3 soubory o velikostech 90 kB, 225 B a 321 B?		
4.	 (-1) □ 98 % (-1) □ 2 % (+1) □ 20 % (-1) □ 80 % (-1) □ žádná z výše uvedených možností okruh: Souborové systémy – FAT (velikost tabulky) Jaká bude velikost tabulky FAT16 při velikosti clusteru (alokační jednotky) 16 sektorů a velikosti		
	souborového systému 912 MB:		
	1. (−2)		

- 5. (+2) [▼] žádná z výše uvedených možností
- 5. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 4 segmenty, offset v adrese je 24bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit
0x014DB	0x00FFFF
0xD5348	0x7FFFFF
0x1AC01	0x0FFFFF
0x51BA8	0x007FFF

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x1001010 je:

- 1. $(-3)^{\square}$ 0x014DB1010
- 2. (-3) OxD53481010
- 3. (-3) \square 0xD5348001010
- 4. (−3) □ 0x10D6358
- 5. (+3) [▼] žádná z výše uvedených možností
- 6. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 22 kB, 29 kB, 3 kB, 9 kB a 16 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 13 kB, 11 kB a 9 kB, použije-li se algoritmus next-fit?

- 1. $(-2)^{\square}$ 1., 2., 1.
- 2. (-2) 5., 1., 4.
- 3. (+2) I., 2., 2.
- 4. $(-2)^{\square}$ 2., 1., 4.
- 5. (-2) žádná z výše uvedených možností
- 7. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 19 kB, 26 kB, 32 kB, 6 kB a 13 kB. Jak velké budou volné bloky po postupné alokaci 6 kB, 15 kB a 13 kB, použije-li se algoritmus best-fit?

- 1. $(-3)^{\square}$ 11 kB, 32 kB, 6 kB a 13 kB
- 2. (+3) 4 kB, 26 kB a 32 kB
- 3. $(-3)^{\square}$ 13 kB, 11 kB, 19 kB, 6 kB a 13 kB
- 4. (-3) 19 kB, 26 kB a 17 kB
- 5. (-3) žádná z výše uvedených možností
- 8. okruh: Procesy Využití procesoru

Počítač má paměť pro současný běh 3 procesů. Tyto procesy polovinu času čekají na dokončení V/V operace. Kolik průměrně času je procesor (CPU) nevyužit?

1. (-2) ¹ 1/2

2. $(+2)^{\square}$ 3. $(-2)^{\square}$ 4. $(-2)^{\square}$	1/16
9. okruh: Procesy –	Stavy procesů
Sedmistavový m	odel procesu zahrnuje (mj.) následující stavy:
` _	běžící, odložený připravený, odblokovaný
` ′	nový, odložený, rozvedený
	blokovaný odložený, běžící, ukončený
	odložený blokovaný, blokovaný, připravený
	žádná z výše uvedených možností rostředků – Kritická sekce
Řešení vstupu do	kritické sekce pomocí čistě SW metody:
1. (+1) v	nebude funkční na některých víceprocesorových systémech
2. (+1)	lze použít na jednoprocesorových systémech bez podpory vláken
3. (-1)	bude funkční na všech procesorech a používá krátkou vstupní a výstupní sekci
	je výhodné pro používání neaktivního čekání
	žádná z výše uvedených možností
11. okruh: Bezpečno	st OS
	randadně pro uložení hesel funkci crypt () založenou na algoritmu DES. Jak dlouho nutí řádně voleného funkčního hesla na běžném PC, pokud máme k dispozici
1. (-2) ^{\Bigsi}}	týdny
2. (-2)	roky až desítky let
	tisíce až desetitisíce let
4. (-2)	
` ′	žádná z výše uvedených možností
(-)	

Test-varianta: 2011–12-os120523b – termín 9b

V

4. $(-2)^{\Box}$ 57 kB

yh	odnocení testu
1.	okruh: Architektura a koncepce OS – Funkce OS
	Hlavní funkce OS jsou:
	1. (+1) management zdrojů
	2. (+1) virtualizace a rozšíření HW
	3. $(-1)^{\square}$ GUI
	4. (−1) nepreemptivní plánování procesů
2.	5. (-1) žádná z výše uvedených možností okruh: Architektura a koncepce OS – OS a HW
	Při používání DMA:
	1. (+2) ✓ se urychlí činnost systému, protože se nepoužívá CPU
	2. (+2) je obvyklé používat také přerušovací systém
	3. (-2) se urychlí činnost systému, protože se používá více CPU (nebo HyperThreading)
	4. (−2) je nutné použít vícevláknový proces nebo kooperující procesy
3.	5. (-2) žádná z výše uvedených možností okruh: Souborové systémy – Alokační bloky na FS
	Kolik procent místa je přibližně promrháno, pokud se na souborový systém s alokačním blokem 16 sektorů uloží 3 soubory o velikostech 90 kB, 225 B a 321 B?
	1. (−1) [□] 98 %
	2. $(-1)^{\square}$ 2 %
	3. (+1) 20 %
	4. (-1) 80 %
4.	5. (-1) žádná z výše uvedených možností okruh: Souborové systémy – FAT (velikost tabulky)
	Jaká bude velikost tabulky FAT16 při velikosti clusteru (alokační jednotky) 16 sektorů a velikosti souborového systému 912 MB:
	1. (−2) ☐ 456 kB
	2. $(-2)^{\square}$ 228 kB
	3. $(-2)^{\square}$ 114 kB

- 5. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 4 segmenty, offset v adrese je 24bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit
0x014DB	0x00FFFF
0xD5348	0x7FFFFF
0x1AC01	0x0FFFFF
0x51BA8	0x007FFF

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x1001010 je:

- 1. $(-3)^{\square}$ 0x014DB1010
- 2. (-3) OxD53481010
- 3. (-3) \square 0xD5348001010
- 4. (−3) □ 0x10D6358
- 5. (+3) [▼] žádná z výše uvedených možností
- 6. okruh: Správa paměti Metody alokace (pořadí bloky)

V paměti jsou volné bloky o velikostech 22 kB, 29 kB, 3 kB, 9 kB a 16 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 13 kB, 11 kB a 9 kB, použije-li se algoritmus next-fit?

- 1. $(-2)^{\square}$ 1., 2., 1.
- 2. (-2) 5., 1., 4.
- 3. (+2) I., 2., 2.
- 4. (-2) [□] 2., 1., 4.
- 5. (−2) [□] žádná z výše uvedených možností
- 7. okruh: Správa paměti Metody alokace (velikost bloků)

V paměti jsou volné bloky o velikostech 19 kB, 26 kB, 32 kB, 6 kB a 13 kB. Jak velké budou volné bloky po postupné alokaci 6 kB, 15 kB a 13 kB, použije-li se algoritmus best-fit?

- 1. $(-3)^{\square}$ 11 kB, 32 kB, 6 kB a 13 kB
- 2. (+3) 4 kB, 26 kB a 32 kB
- 3. $(-3)^{\square}$ 13 kB, 11 kB, 19 kB, 6 kB a 13 kB
- 4. (-3) 19 kB, 26 kB a 17 kB
- 5. (-3) žádná z výše uvedených možností
- 8. okruh: Procesy Využití procesoru

Počítač má paměť pro současný běh 3 procesů. Tyto procesy polovinu času čekají na dokončení V/V operace. Kolik průměrně času je procesor (CPU) nevyužit?

1. (-2) ¹ 1/2

	2. (+2)	1/8
	3. (-2) [□]	1/16
	4. (−2) [□]	1/4
	5. (-2) [□]	žádná z výše uvedených možností
9.	okruh: Procesy	– Stavy procesů
	Sedmistavový r	model procesu zahrnuje (mj.) následující stavy:
	1. (-1)	běžící, odložený připravený, odblokovaný
	2. $(-1)^{\Box}$	nový, odložený, rozvedený
	3. (+1)	blokovaný odložený, běžící, ukončený
	4. (+1)	odložený blokovaný, blokovaný, připravený
10.		žádná z výše uvedených možností prostředků – Kritická sekce
	Řešení vstupu o	do kritické sekce pomocí čistě SW metody:
	1. (+1)	nebude funkční na některých víceprocesorových systémech
	2. (+1)	lze použít na jednoprocesorových systémech bez podpory vláken
	3. (-1) ^{\subseteq 1}	bude funkční na všech procesorech a používá krátkou vstupní a výstupní sekci
		je výhodné pro používání neaktivního čekání
		žádná z výše uvedených možností
11.	okruh: Bezpečr	nost OS
	_	standadně pro uložení hesel funkci crypt () založenou na algoritmu DES. Jak dlouho odnutí řádně voleného funkčního hesla na běžném PC, pokud máme k dispozici n.
	1. (-2)	týdny
	* *	roky až desítky let
		tisíce až desetitisíce let
	4. (-2)	
	` ′	žádná z výše uvedených možností
	()	

Test-varianta: 2011–12-os120530 – termín 10

Vyhodnocení testu

1. okruh: Souborové systémy – FAT (velikost souborového systému)

Při velikosti clusteru (alokační jednotky) 32 sektorů je maximální velikost souborového systému FAT16:

- 1. (−2) [□] 64 MB
- 2. $(-2)^{\square}$ 128 MB
- 3. $(-2)^{\square}$ 256 MB
- 4. $(-2)^{\square}$ 512 MB
- 5. (+2) [▼] žádná z výše uvedených možností
- 2. okruh: Souborové systémy FAT (velikost tabulky)

Jaká bude minimální velikost clusteru (alokační jednotky) pro FAT12 při velikosti souborového systému 63 MB:

- 1. (−2) [□] 64 sektorů
- 2. (+2) 32 sektorů
- 3. (−2) [□] 16 sektorů
- 4. (−2) [□] 8 sektorů
- 5. (−2) [□] žádná z výše uvedených možností
- 3. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 4 segmenty, offset v adrese je 24bitový a segmentová tabulka obsahuje (mj.) položky (následující čísla jsou v osmičkové soustavě):

base	limit
00012333	001023077
03251510	001010101
00326001	003777777
01215650	000077777

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 01010020 je:

- 1. (-3) 01233301010020
- 2. (-3) [□] 04261530
- 3. (−3) [□] 03261530
- 4. (+3) 01022353

4.	 (-3) [□] žádná z výše uvedených možností okruh: Správa paměti – Metody alokace (pořadí bloky) 		
V paměti jsou volné bloky o velikostech 25 kB, 31 kB, 5 kB, 12 kB a 18 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 14 kB, 13 kB a 10 kB, použije-li se algoritmus next-fit?			
5.	 (-2) □ 1., 2., 1. (-2) □ 5., 1., 1. (+2) □ 1., 2., 2. (-2) □ 2., 1., 5. (-2) □ žádná z výše uvedených možností okruh: Správa paměti – Metody alokace (velikost bloků) 		
	V paměti jsou volné bloky o velikostech 26 kB, 33 kB, 7 kB, 13 kB a 20 kB. Jak velké budou volné bloky po postupné alokaci 15 kB, 13 kB a 11 kB, použije-li se algoritmus first-fit?		
6.	1. (+3)		
	Kombinace segmentace se stránkováním paměti:		
7.	 (+1) netrpí vnější fragmentací (−1) netrpí vnitřní fragmentací (+1) umožňuje segmenty snadno zvětšovat (−1) nepoužívá segmentové tabulky, používá pouze stránkové (−1) žádná z výše uvedených možností okruh: Správa paměti – Pojmy o paměti 		
	Mezi veličiny potřebné pro výpočet střední přístupové doby do paměti s použitím paměti cache nepatří:		
	 (-1)		
8.	okruh: Procesy – Přepínání kontextu		
	Kolik procent času CPU je promrháno během 57 ms, pokud context-switch zabere 3 ms a časové		

Kolik procent času CPU je promrháno během 57 ms, pokud context-switch zabere 3 ms a časové kvantum bude 9 ms a právě bylo přepnuto na proces:

	1.	(+2) ▼	21 %
		(−2) [□]	
		(-2)	
		(-2)	
9.	5. okruh:	(-2) Procesy	žádná z výše uvedených možností – Plánování
	Hlavní	í cíle plán	ování procesů na interaktivních systémech jsou:
	1.	(-1)	maximalizace počtu dokončených procesů
	2.	(+1) V	nízká latence a odezva
	3.	(-1)	maximální zátěž (využití) CPU
	4.	(+1) V	proporcionalita (přiměřenost) k očekávání uživatelů
10.	5.	(-1)	žádná z výše uvedených možností – Stavy procesů
	Linuxo	ový stavo	vý model procesu zahrnuje (mj.) následující stavy:
	1.	(+1) V	běžící či běhuschopný, pozastavený, spící
			nepřerušitelně spící, spící, ukončený
			nepřerušitelně spící, nový, odložený
	4.	(-1)	připravený, nový, blokovaný
	5.	(-1)	žádná z výše uvedených možností
11.	okruh:	Procesy	– Vlákna
	Vlákna	a sdílejí s	e zbytkem procesu (s ostatními vlákny):
	1.	(+1) (přidělené prostředky (např. otevřené soubory)
	2.	(-1)	zásobník
			stav (kontext)
		(+1) (_
	5.	(-1)	žádná z výše uvedených možností
12.	okruh:	Sdílení p	prostředků – Kritická sekce
	Ošetře	ní vstupu	do kritické sekce pomocí monitoru se provede:
	1.	(−2) □	pomocí volání funkce monitoru cwait ()
			pomocí volání funkce monitoru csignal()
	3.	(+2) •	vložením kódu kritické sekce do funkce monitoru
	4.	(-2)	čekáním na posixový signál SIGCONT
			žádná z výše uvedených možností

Test-varianta: 2011–12-os120904 – termín 11

Vyhodnocení testu

1. okruh: Souborové systémy – FAT (velikost souborového systému)

Jaká bude minimální velikost clusteru (alokační jednotky) pro FAT16 při velikosti souborového systému 140 MB:

Velikost clusteru musí být mocninou 2.

2. okruh: Souborové systémy – FAT (velikost tabulky)

Jaká bude velikost tabulky FAT32 při velikosti clusteru (alokační jednotky) 64 sektorů a velikosti souborového systému 160 GB:

- 1. (-2) ☐ 30 MB 2. (-2) ☐ 10 MB 3. (-2) ☐ 5 MB 4. (-2) ☐ 2 MB
- 5. (+2) zádná z výše uvedených možností
- 3. okruh: Správa paměti Převod adres

Pokud proces je rozdělen na 3 segmenty, offset v adrese je 32bitový a segmentová tabulka obsahuje (mj.) položky:

base	limit
0x3E60E23	0x07FFFFFF
0x6FA69DD	0x07FFFFFF
0x20ED597	0x07FFFFFF

Lineární adresa proměnné s virtuální (logickou) adresou (v procesu) 0x2121100 je:

1. (+3) ○ 0x5F81F23
2. (-3) ○ 0x3E60E2302121100
3. (-3) ○ 0x220E697
4. (-3) ○ 0x420E697

 (-3) [™] žádná z výše uvedených možností
Prefix čísla 0x značí, že číslo je v hexadecimální soustavě.
okruh: Správa paměti – Metody alokace (pořadí bloky)
V paměti jsou volné bloky o velikostech 10 kB, 28 kB, 13 kB, 31 kB a 17 kB. Jaké bude pořadí vybraných bloků při postupné alokaci 14 kB, 10 kB a 10 kB, použije-li se algoritmus best-fit?
 (-2) □ 2., 1., 1. (+2) ▼ 5., 1., 2. (-2) □ 2., 2., 3. (-2) □ 4., 1., 1. (-2) □ žádná z výše uvedených možností okruh: Správa paměti – Metody alokace (velikost bloků) V paměti jsou volné bloky o velikostech 18 kB, 24 kB, 30 kB, 5 kB a 11 kB. Jak velké budou volné bloky po postupné alokaci 11 kB, 10 kB a 7 kB, použije-li se algoritmus next-fit?
1. (-3) ☐ 14 kB, 30 kB, 5 kB a 11 kB 2. (-3) ☐ 1 kB, 24 kB, 30 kB a 5 kB 3. (+3) ☑ 7 kB, 7 kB, 30 kB, 5 kB a 11 kB 4. (-3) ☐ 18 kB, 17 kB, 20 kB a 5 kB 5. (-3) ☐ žádná z výše uvedených možností okruh: Správa paměti – Pojmy o paměti
Mezi veličiny potřebné pro výpočet střední přístupové doby procesoru (s pamětí cache) do paměti patří:
 (-1) taktovací frekvence procesoru (+1) doba přístupu do operační paměti (+1) doba přístupu do paměti cache (-1) doba přístupu k sekundární paměti (disku) (-1) žádná z výše uvedených možností okruh: Správa paměti – Pojmy o paměti
Statická (pevná) alokace paměti:
 (+1) netrpí vnější fragmentací (−1) netrpí vnitřní fragmentací (+1) neumožňuje současný běh více procesů než je statických bloků (−1) používá algoritmus worst-fit pro výběr paměťového bloku pro proces (−1) žádná z výše uvedených možností okruh: Specifické OS – Víceprocesorové systémy

	Mezi víceprocesorová systémy s volnou vazbou nepatří systémy:				
9.	2. (-1) ☐ 3. (-1) ☐ 4. (+1) ☑ 5. (-1) ☐ Sekundární pan	sdílející pouze sběrnici sdílející pouze sekundární paměť nesdílející nic (maximálně propojené sítí) sdílející operační paměť žádná z výše uvedených možností něť je jakákoliv trvalá paměť (bez nutnosti trvalého napájení). – Přepínání kontextu			
		rasu CPU je promrháno během 170 ms, pokud context-switch zabere 4 ms a časové 25 ms a právě bylo přepnuto na proces:			
10.	1. (+2) 2. (-2) 4. (-2) 5. (-2) okruh: Procesy	16 % 84 %			
	Linuxový stavový model procesu nezahrnuje (mj.) následující stavy:				
11.	2. (-1) (-1) (-1) (-1) (-1) (-1) (-1) (-1)	běžící či běhuschopný, pozastavený, spící nepřerušitelně spící, spící, ukončený nepřerušitelně běžící, nový, odložený připravený, odložený blokovaný, nový žádná z výše uvedených možností – Vlákna			
	Nevýhodou imp	plementace vláken s podporou OS je:			
12.	2. (+1) 3. (-1) 4. (+1) 5. (-1) okruh: Sdílení p	page-fault způsobí zastavení ostatních vláken vyšší režie při volání vláknových funkcí nutnost převést blokující systémová volání na neblokující volání vláknových funkcí vyžaduje přechod do režimu kernel žádná z výše uvedených možností prostředků – Synchronizace			
	K synchronizac vlákna V2, stači	ci vláken $V1$ a $V2$ pomocí monitoru, kdy vlákno $V1$ musí počkat na dokončení akce í pouze:			
	1. (−2) [□]	volání funkce monitoru cwait (cv) po akci ve vlákně V2 a volání csignal (cv)			

v místě synchronizace ve vlákně VI

2.	(-2)	volání funkce monitoru cwait (cv) v místě synchronizace ve vlákně VI a volání
	csignal	(cv) před akcí ve vlákně V2, kdy akce i volání csignal (cv) jsou v téže funkci
	monitor	u
3.	(-2)	vložení kódu akce do funkce monitoru
4.	(−2) [□]	vložení kódu akce do funkce monitoru a volání csignal (cv) po akci ve vlákně V2
5.	(+2) •	žádná z výše uvedených možností

Proměnná cv uváděná v možnostech je deklarovaná jako podmínková proměnná monitoru.