- 01 a)]x; X2-1+0
 - b) Existe quadrado que não é retângulo
 - d'Todos os matemáticos gostam de calcular
 - d) Existem estudantes que não gostam de lógica
- 02) Nenhum número inteiro é negativo
- 03) a) $\forall x : P(x) \longrightarrow B(x)$
 - b)] x; Q(n). P'(x)
 - $C) \exists \chi : Q(\chi) \cdot P(\chi)$
 - d) $\exists | x : P(x) \cdot Q'(x)$ ou $\forall x : P(x) \longrightarrow Q(x)$
- 03 04) α) $\alpha^2 - \alpha + \lambda = 0$, u = N $\Delta = (-1)^2 - 4.1$. $\lambda \Rightarrow \Delta = 1 - 8 = -7$ Quando $\Delta < 0$ Mão há soluções reais e conse que nte mente Naturais. Logo $S = \emptyset$
 - b) 22-2 < 10: U=N 22 < 2+10 => 22 < 12 => 2 < 6 Como U=N e 2 < 6. entao 5= {0.1, 2,3.4.5}
 - C) $10^{2} + 4 = 0$; $U = \mathbb{R}$ $10^{2} = -4 \implies 1 = \pm \sqrt{-4} \notin \mathbb{R}$. hogo $S = \{ \frac{1}{2} \text{ ou } \emptyset \}$

- d) $2n^2 10 = 0$; 11 = 12 $2n^2 = 10 \Rightarrow n^2 = 5 \Rightarrow n = \pm \sqrt{5} \in \mathbb{R}$. $\log_0 5 = \{-\sqrt{5}; +\sqrt{5}\}$
- e) $2n^{2} 10 = 0$, u = R $2n^{2} = 10 = 2n^{2} = 5 = 2n = 1$ $\sqrt{5} \notin R$. Loso $5 = \emptyset$
- 05 04) a) (Hx, x<0] + (∃x, x ≠ 10) b) (∃x, x<7) . (∀x, x>-2)
- 05) Se "Todo homem é bom" é verdadeira, entav "algum homem é bom" é accessariamente verdadeira. Alternativa C
- 06) 9) ($\exists \pi \in A: \chi^2 \chi 6 = 0$); $A = \{1, 2, 3, 4\}$ $\Delta = (-1)^2 - 4.1.(-6) \Rightarrow \Delta = 1 + 24 \Rightarrow \Delta = 25$ $\pi = -(-1) \pm \sqrt{25} \Rightarrow \chi = 1 \pm 5$ $\pi' = 3 \in A$ $\chi'' = -2 \notin A$
 - b) ($\forall n \in A, n^2-1>0$) $A = \{1, 2, 3, 4\}$ A Sentença falha Para n=1, pois $1^2-1>0$ (F) hogo, a sentença é falsa.