Расчет ферм¹

Наумова Н. В., доцент кафедры теоретической и прикладной механики СПбГУ, n.v.naumova@spbu.ru

Бондаренко С. О., студент математико-механического факультета СПбГУ, st062459@student.spbu.ru

Аннотация

В работе рассмотрена задача по определению реакций внешних опор и усилий во всех стержнях фермы. Получены точные аналитические выражения для всех компонентов усилий. Приведено сравнение аналитических и численных результатов. Численные результаты получены с использованием программного комплекса ANSYS.

Введение

Ферма (фр. ferme, от лат. firmus – прочный) – стержневая система в строительной механике, остающаяся геометрически неизменяемой после замены ее жестких узлов шарнирными. В элементах фермы, при отсутствии расцентровки стержней и внеузловой нагрузки, возникают только усилия растяжения-сжатия.

Фермы образуются из прямолинейных стержней, соединенных в узлах, в геометрически неизменяемую систему, к которой нагрузка прикладывается только в узлах. Ферменные конструкции — это одна из новых технологий, использованных НАСА при строительстве Международной космической станции. Фермы, доставляемые на орбиту шаттлом, монтируются его экипажем и служат для негерметичного хранения грузов, установки радиаторов, солнечных батарей и различного оборудования.

Преобладающая часть опубликованных работ (см., например, [1], [2]) посвящена расчетам ферм либо только аналитическими, либо численными методами. В предлагаемой статье для проверки достоверности полученных аналитических результатов проведено повторное решение поставленной задачи с использованием программного комплекса ANSYS. Таким образом, решена задача по определению реакций внешних опор и усилий во всех стержнях фермы. Получены точные аналитические выражения для всех компонентов усилий. Приведено сравнение аналитических и численных результатов.

¹ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 19-01-00208-а)

Постановка задачи

Рассмотрим ферменную конструкцию (рис. 1), состоящую из 7 одинаковых стержней длины l. В узлах IV и V приложены внешние нагрузки P и Q, в узле I — шарнирно-неподвижная опора, в узле V - подвижный шарнир. Требуется рассчитать усилия растяжения (или сжатия) в каждом стержне, а также определить силы реакции связей (в узлах I и V).

Рис. 1: Пример ферменной конструкции

Аналитические расчеты

Расчет ферм подразумевает определение реакций внешних связей (опор) фермы, а также нахождение усилий во всех ее стержнях. Для определения реакций внешних связей рассмотрим ферму как одно твердое тело, а усилия, возникающие в стержнях, найдем методом вырезания узлов. Для того, чтобы поставленная задача была статически разрешима, должны быть выполнены следующие условия:

- Так как ферма "в целом" представляет собой твердое тело, для которого можно написать 3 уравнения равновесия (в случае плоской задачи), то количество неизвестных сил реакций связи должно быть не больше трех.
- У фермы не должно быть "лишних" стержней при соблюдении жесткости всей конструкции, это означает, что должна выполняться связь

между количеством узлов и стержней $S=2\cdot N-3$, где N — количество узлов, S — количество стержней.

Стержни фермы работают только на растяжение или сжатие, не испытывают изгибов.

Метод вырезания узлов сводится к последовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов фермы. Суть метода состоит в рассмотрении в качестве объекта равновесия один, "вырезанный" из фермы узел, находящийся под действием заданных сил, действующих на этот узел (для опорных узлов добавляются реакции опор), и сил реакции стержней, соединенных в этом узле (принцип освобождаемости от связей), которые для рассматриваемого узла являются связями.

На каждый узел действует плоская система сходящихся сил. Выпишем условия равновесия такой системы сил в проекциях на оси Ox и Oy. Силы реакции связей в узлах I и V обозначим X_A, Y_A, Y_B .

узел I:
$$X_A + F_1 + F_2 \cdot \cos 60^\circ = 0,$$
 (1)

$$Y_A + F_2 \cdot \sin 60^\circ = 0,\tag{2}$$

узел II :
$$F_4 + F_3 \cdot \cos 60^\circ - F_2 \cdot \cos 60^\circ = 0$$
, (3)

$$-F_2 \cdot \sin 60^\circ - F_3 \cdot \sin 60^\circ = 0, \tag{4}$$

узел III:
$$-F_1 - F_3 \cdot \cos 60^\circ + F_5 \cdot \cos 60^\circ + F_6 = 0,$$
 (5)

$$F_3 \cdot \sin 60^\circ + F_5 \cdot \sin 60^\circ = 0, \tag{6}$$

узел IV:
$$-F_4 - F_5 \cdot \cos 60^\circ + F_7 \cdot \cos 60^\circ = 0,$$
 (7)

$$-P - F_5 \cdot \sin 60^{\circ} - F_7 \cdot \sin 60^{\circ} = 0, \tag{8}$$

узел V:
$$-F_6 - F_7 \cdot \cos 60^\circ + Q = 0,$$
 (9)

$$Y_B + F_7 \cdot \sin 60^\circ = 0. {10}$$

Решая систему (1) — (10), получим следующие значения для неизвестных сил:

$$F_1 = Q + \frac{P}{4\sqrt{3}}, \quad F_2 = -\frac{P}{2\sqrt{3}}, \quad F_3 = -F_2 = -F_4 = -F_5,$$
 (11)

$$F_6 = Q + \frac{\sqrt{3}}{4} \cdot P$$
, $F_7 = 3 \cdot F_5$, $X_A = -Q$, $Y_A = \frac{1}{4}P$, $Y_B = \frac{3}{4}P$. (12)

Численные расчеты

Для проверки достоверности полученных аналитических результатов проведем повторное решение данной задачи с использованием программного комплекса ANSYS. Геометрические размеры фермы задаются размерами стержней l=10 м. Предполагается, что все стержни имеют одинаковую длину, жесткость, которая определяется модулем упругости $E=2.07\cdot 10^{11}$ Па и площадью поперечного сечения $S=10^{-3}$ м. Величины внешних нагрузок P=1000 H, Q=100 H. Отнесем ферму к декартовой прямоугольной системе координат Oxy, как показано на рис. 1. Координаты узлов фермы могут быть вычислены по параметру длины l.

Во время сеанса работы пользователя все выполняемые команды записываются в файл *.log. Командный файл может быть использован для повторного выполнения некоторых действий и расчета аналогичных задач.

Заключение

В таблице 1 приведены численные значения сил, возникающих в стержнях рассматриваемой фермы, а также значения сил реакции связей в узлах I и V

Номер	Усилие, N	Аналит. формулы	Метод конечых
стержня		(11) — (12)	элементов, ANSYS
1	F_1	244.337	244.34
2	F_2	- 288.675	- 288.676
3	F_3	288.675	288.676
4	F_4	- 288.675	- 288.676
5	F_5	- 288.675	- 288.676
6	F_6	533.012	533.01
7	F_7	- 866.025	-866.025
узел I	R_A	269.26	269.26
узел V	Y_B	750	750

Таблица 1: Сравнение аналитических и численных результатов.

В узле I найдена суммарная реакция R_A . Сравнение численных и аналитических расчетов, полученных по формулам (11) — (12) показывает до-

статочно хорошее совпадение результатов. Максимальная относительная погрешность составляет 2%. Изначально предполагалось, что все неизвестные усилия F_i являются сжимающими, поэтому знак *минус* в таблице 1 означает, что данный стержень, находится под воздействием не сжимающего, а, наоборот, растягивающего усилия.

Литература

- [1] Смоляго Н. А., Яковлев О.А. Совершенствование структуры плоской фермы. Вестник науки и образования Северо-Запада России. 2015. Т.1, Вып. 1. http://vestnik-nauki.ru/
- [2] Воробьев А. В., Фаизов И.Н. Проектирование усиления раскосной фермы. Вестник ПНИПУ. Строительство и архитектура. 2012. Вып. 1.
- [3] Васильев А. А. Металлические конструкции, 1976. Глава IX Фермы. 3 Краткий исторический обзор развития металлических конструкций. Стр. 8–10
- [4] *Васильев А. А.* Металлические конструкции, 1976. Глава IX Фермы. 33 Характеристика, классификация, компоновка и типы сечения ферм. Стр. 210–213.
- [5] Файбишенко В. К. Металлические конструкции, 1984. Глава 5 Фермы. 5.2 Стропильные фермы, очертания и типы решеток. Стр. 92–98.
- [6] *Файбишенко В. К.* Металлические конструкции, 1984. Глава 5 Фермы. 5.5 Работа и расчет стропильных ферм. Стр. 105–110.
- [7] *Будур А. И., Белогуров В. Д.* Стальные конструкции. Справочник конструктора / Под общей ред. Шимановского А. В.. К.: Сталь, 2010. 299 с.