MULTILED Enhanced optical Power LED (ThinFilm / ThinGaN) Lead (Pb) Free Product - RoHS Compliant

LTRB GFSF

Released

Besondere Merkmale

- Gehäusetyp: weißes PLCC-6 Gehäuse mit diffusem Silikon-Verguss
- Besonderheit des Bauteils: additive
 Farbmischung durch unabhängige Ansteuerung
 aller Chips
- Wellenlänge: 632 nm (rot), 523 nm (true green), 465 nm (blau)
- Abstrahlwinkel: Lambertscher Strahler (120°)
- Technologie: ThinFilm (rot), ThinGaN (true green, blau)
- optischer Wirkungsgrad: 45 lm/W
 @ Cx=0,31; Cy=0,31
- Gruppierungsparameter: Lichtstärke, Farbort
- Verarbeitungsmethode: für alle SMT-Bestücktechniken geeignet
- · Lötmethode: Reflow Löten
- Vorbehandlung: nach JEDEC Level 4
- Gurtung: 12 mm Gurt mit 1000/Rolle, ø180 mm
- ESD-Festigkeit: ESD-sicher bis 1 kV nach JESD22-A114-D

Anwendungen

- Anzeigen im Innen- und Außenbereich (z.B. im Verkehrsbereich; Laufschriftanzeigen)
- Getrennte Anteuerung der Leuchtdiodenchips zur Darstellung verschiedener Farben inclusive weiß
- Hinterleuchtung (LCD, Schalter, Tasten, Werbebeleuchtung, Allgemeinbeleuchtung)
- · Einkopplung in Lichtleiter
- Beleuchtung im Automobilbereich (z.B. Instrumentenbeleuchtung)

Features

- package: white PLCC-6 package with diffused silicone resin
- feature of the device: well defined white color groups with RGB-LED
- wavelength: 632 nm (red), 523 nm (true green), 465 nm (blue)
- · viewing angle: Lambertian Emitter (120)
- technology: ThinFilm (red), ThinGaN (true green, blue)
- optical efficiency: 45 lm/W
 @ Cx=0.31; Cy=0.31
- grouping parameter: luminous intensity, color coordinates
- assembly methods: suitable for all SMT assembly methods
- · soldering methods: reflow soldering
- · preconditioning: acc. to JEDEC Level 4
- taping: 12 mm tape with 1000/reel, ø180 mm
- ESD-withstand voltage: up to 1 kV acc. to JESD22-A114-D

Applications

1

- indoor and outdoor displays (e.g. displays for traffic; light writing displays)
- LED chips can be controlled seperately to display various colors including white
- backlighting (LCD, switches, keys, illuminated advertising, general lighting)
- · coupling into light guides
- · automotive lighting (e.g. dashboard backlighting)

OSRAM
Opto Semiconductors

Bestellinformation Ordering Information

Тур	Emissionsfarbe Color of Emission	$\label{eq:Lichtstärke} \text{Luminous In} \\ I_{\text{V}} \text{ (mcd)}$	Seite 28 tensity ^{1) page 28}	3
			white	
LTRB GFSF-ABCB-QKYO	true green (20mA) red (20mA) blue (10mA)		1.4004.500	
		red	true green	blue
	lv (typ) @20mA (T,R); (10mA (B)	700	1350	160

Bestellinformation Ordering Information

Typ	Bestellnummer
Type	Ordering Code
LTRB GFSF-ABCB-QKYO	Q65110A9484

Anm.: Die oben genannten Typbezeichnungen umfassen die bestellbaren Selektionen. Diese bestehen aus wenigen Helligkeitsgruppen (siehe **Seite 9** für nähere Informationen). Es wird nur eine einzige Helligkeitsgruppe pro Gurt geliefert. Z.B.: LTRB GFSF-ABCB-QKYO bedeutet, dass auf dem Gurt nur eine der Helligkeitsgruppen AB, BA, BB, CA oder CB enthalten ist.

Um die Liefersicherheit zu gewährleisten, können einzelne Helligkeitsgruppen nicht bestellt werden.

Gleiches gilt für die Farben, bei denen Farbortgruppen gemessen und gruppiert werden. Pro Gurt wird nur eine Farbortgruppe geliefert. Z.B.: LTRB GFSF-ABCB-QKYO bedeutet, dass auf dem Gurt nur eine der Farbortgruppen -QK bis -YO enthalten ist (siehe **Seite 5** für nähere Information). Um die Liefersicherheit zu gewährleisten, können einzelne Farbortgruppen nicht bestellt werden.

Note: The above Type Numbers represent the order groups which include only a few brightness groups (see **page 9** for explanation). Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). E.g. LTRB GFSF-ABCB-QKYO means that only one group AB, BA, BB, CA or CB will be shippable for any one reel.

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where chromaticity coordinate groups are measured and binned, single chromaticity coordinate groups will be shipped on any one reel. E.g. LTRB GFSF-ABCB-OKYO means that only 1 chromaticity coordinate group -QK to -YO will be shippable on each reel (see **page 5** for explanation). In order to ensure availability, single chromaticity coordinate groups will not be orderable..

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol		Werte Values		Einheit Unit
		red	true green	blue	
Betriebstemperatur Operating temperature range	$T_{\sf op}$	_ 2	40 + 1	00	C
Lagertemperatur Storage temperature range	$T_{ m stg}$	_ 2	10 + 1	00	C
Sperrschichttemperatur Junction temperature	T_{j}		+ 125		C
$\begin{array}{ll} \text{Durchlassstrom} & \text{(min.)} \\ \text{Forward current} & \text{(max.)} \\ (T_{\text{S}}{=}25 \text{°C}) & \end{array}$	I_{F}	40	5	5 0	mA
Stoßstrom Surge current $t_p = 10 \ \mu s, D = 0.005, T_S = 25 \ C$	I_{FM}	100	30	00	mA
Sperrspannung ^{2) Seite 28} Reverse voltage ^{2) page 28} (T _S =25℃)	V_{R}	12	Ę	5	V

Kennwerte Characteristics

 $(T_{\rm S}=25~{
m C})$

Bezeichnung Parameter		Symbol Symbol		Werte Values		Einheit Unit
			red	true green	blue	
Wellenlänge des emittierten Lichtes Wavelength at peak emission $I_F = 20 \text{ mA}$	(typ.)	λ_{peak}	632	523	465	nm
Dominantwellenlänge ⁴) Seite 28 Dominant wavelength ⁴) page 28 $I_{\rm F}$ = 20 mA	(min.) (typ.) (max.)	λ_{dom}	619 625 631	519 530 540	457 460 470	nm nm nm
Spektrale Bandbreite bei 50 % $I_{\text{rel max}}$ Spectral bandwidth at 50 % $I_{\text{rel max}}$ $I_{\text{F}} = 20 \text{ mA}$	(typ.)	Δλ	18	33	25	nm
Abstrahlwinkel bei 50 % $\rm I_V$ (Vollwinkel) Viewing angle at 50 % $\rm I_V$	(typ.)	2φ		120		Grad deg.
	(min.) (typ.) (max.)	V_{F} V_{F} V_{F}	1.8 2.05 2.4	3	.9 .2 .7	V V V
Sperrstrom Reverse current $V_R = 5 \text{ V (blue / true green); } 12 \text{ V (red)}$	(typ.) (max.)	I_{R} I_{R}	0.02 10		01 0	μ Α μ Α
Temperaturkoeffizient von $V_{\rm F}$ Temperature coefficient of $V_{\rm F}$ $I_{\rm F}$ = 20 mA; -10°C $\leq T \leq$ 100°C	(typ.)	TC _V	- 2.5	- 3.6	-4.0	mV/K
Wärmewiderstand Thermal resistance Sperrschicht/Umgebung ^{3) Seite 28} Junction/ambient ^{3) page 28} Sperrschicht/Lötpad Junction/solder point	1 chip on (typ.) 3 chips on (typ.) (max.)	$R_{ m th~JA}$ $R_{ m th~JA}$ $R_{ m th~JS}$	440** 700 280**	60	0** 00 0**	K/W K/W K/W

^{*} Einzelgruppen siehe Seite 8 Individual groups on page 8

^{**}R_{th}(max) basiert auf statistischen Werten R_{th}(max) is based on statistic values

$\label{eq:Farbortgruppen} \textbf{Farbortgruppen}^{6) \ 7) \ \textit{Seite 28}} \\ \textbf{Chromaticity Coordinate Groups}^{6) \ 7) \ \textit{page 28}}$

Gruppe Group	Сх	Су
QK	0,2845	0,2592
	0,2882	0,2543
	0,2841	0,2470
	0,2764	0,2446
	0,2726	0,2494
	0,2766	0,2567
QL	0.2961	0.2568
	0.2996	0.2519
	0.2953	0.2447
	0.2877	0.2423
	0.2841	0.2470
	0.2882	0.2543

Gruppe Group	Cx	Су
TN	0.3230	0.2910
	0.3264	0.2854
	0.3214	0.2773
	0.3132	0.2747
	0.3097	0.2800
	0.3145	0.2883
TM	0.3109	0.2940
	0.3145	0.2883
	0.3097	0.2800
	0.3014	0.2774
	0.2977	0.2828
	0.3024	0.2912

5

Gruppe Group	Сх	Су
VK	0.2873	0.3316
	0.2915	0.3249
	0.2867	0.3154
	0.2778	0.3124
	0.2735	0.3188
	0.2781	0.3285
VJ	0.2737	0.3354
	0.2781	0.3285
	0.2735	0.3188
	0.2645	0.3158
	0.2600	0.3223
	0.2645	0.3322

2014-08-26

Gruppe Group	Сх	Су
QM	0.3074	0.2543
	0.3108	0.2495
	0.3064	0.2425
	0.2988	0.2401
	0.2953	0.2447
	0.2996	0.2519
QN	0.3186	0.2520
	0.3218	0.2472
	0.3172	0.2403
	0.3097	0.2379
	0.3064	0.2425
	0.3108	0.2495
RO	0.3312	0.2618
	0.3342	0.2569
	0.3295	0.2496
	0.3218	0.2472
	0.3186	0.2520
	0.3232	0.2593
RN	0.3200	0.2643
	0.3232	0.2593
	0.3186	0.2520
	0.3108	0.2495
	0.3074	0.2543
	0.3120	0.2618
RM	0.3085	0.2668
	0.3120	0.2618
	0.3074	0.2543
	0.2996	02519
	0.2961	0.2568
	0.3005	0.2643
RL	0.2969	0.2694
	0.3005	0.2643
	0.2961	0.2568
	0.2882	0.2543
	0.2845	0.2592
	0.2888	0.2669

Gruppe Group	Сх	Су
TL	0.2986	0.2970
	0.3024	0.2912
	0.2977	0.2828
	0.2894	0.2802
	0.2856	0.2857
	0.2901	0.2942
TK	0.2861	0.3001
	0.2901	0.2942
	0.2856	0.2857
	0.2772	0.2830
	0.2731	0.2886
	0.2775	0.2973
TJ	0.2733	0.3033
	0.2775	0.2973
	0.2731	0.2886
	0.2647	0.2859
	0.2604	0.2916
	0.2646	0.3004
UJ	0.2735	0.3188
	0.2778	0.3124
	0.2733	0.3033
	0.2646	0.3004
	0.2602	0.3065
	0.2645	0.3158
UK	0.2867	0.3154
	0.2908	0.3091
	0.2861	0.3001
	0.2775	0.2973
	0.2733	0.3033
	0.2778	0.3124
UL	0.2996	0.3121
	0.3035	0.3059
	0.2986	0.2970
	0.2901	0.2942
	0.2861	0.3001
	0.2908	0.3091
	0.2908	0.3091

Gruppe Group Cx Cy WK 0.2879 0.3489 0.2923 0.3418 0.2873 0.3316 0.2781 0.3285 0.2737 0.3354 0.2785 0.3457 WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210			
0.2923 0.3418 0.2873 0.3316 0.2781 0.3285 0.2737 0.3354 0.2785 0.3457 WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		Сх	Су
0.2873 0.3316 0.2781 0.3285 0.2737 0.3354 0.2785 0.3457 WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210	WK	0.2879	0.3489
0.2781 0.3285 0.2737 0.3354 0.2785 0.3457 WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2923	0.3418
0.2737 0.3354 0.2785 0.3457 WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.3316 0.2923 0.3418 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3066 0.3280 0.3058 0.3379 0.3373 0.3318 0.3306 0.3264 0.3210		0.2873	0.3316
WL 0.3017 0.3457 WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2781	0.3285
WL 0.3017 0.3450 0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2737	0.3354
0.3058 0.3379 0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2785	0.3457
0.3006 0.3280 0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210	WL	0.3017	0.3450
0.2915 0.3249 0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.3058	0.3379
0.2873 0.3316 0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.3006	0.3280
0.2923 0.3418 WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2915	0.3249
WM 0.3151 0.3411 0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2873	0.3316
0.3189 0.3342 0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.2923	0.3418
0.3136 0.3244 0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210	WM	0.3151	0.3411
0.3046 0.3214 0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.3189	0.3342
0.3006 0.3280 0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.3136	0.3244
0.3058 0.3379 WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.3046	0.3214
WN 0.3282 0.3373 0.3318 0.3306 0.3264 0.3210		0.3006	0.3280
0.3318 0.3306 0.3264 0.3210		0.3058	0.3379
0.3264 0.3210	WN	0.3282	0.3373
		0.3318	0.3306
0.0474		0.3264	0.3210
0.3174 0.3180		0.3174	0.3180
0.3136 0.3244		0.3136	0.3244
0.3189 0.3342		0.3189	0.3342
WO 0.3410 0.3336	WO	0.3410	0.3336
0.3445 0.3270		0.3445	0.3270
0.3388 0.3176		0.3388	0.3176
0.3299 0.3146		0.3299	0.3146
0.3264 0.3210		0.3264	0.3210
0.3318 0.3306		0.3318	0.3306
WP 0.3536 0.3300	WP	0.3536	0.3300
0.3568 0.3235		0.3568	0.3235
0.3510 0.3142		0.3510	0.3142
0.3422 0.3113		0.3422	0.3113
0.3388 0.3176		0.3388	0.3176
0.3445 0.3270		0.3445	0.3270

LTRB GFSF

Gruppe Group	Сх	Су
RK	0.2850	0.2721
	0.2888	0.2669
	0.2845	0.2592
	0.2766	0.2567
	0.2728	0.2617
	0.2769	0.2695
RJ	0.2729	0.2748
	0.2769	0.2695
	0.2728	0.2617
	0.2648	0.2592
	0.2608	0.2643
	0.2647	0.2722
SJ	0.2731	0.2886
	0.2772	0.2830
	0.2729	0.2748
	0.2647	0.2722
	0.2606	0.2776
	0.2647	0.2859
SK	0.2856	0.2857
	0.2894	0.2802
	0.2850	0.2721
	0.2769	0.2695
	0.2729	0.2748
	0.2772	0.2830
SL	0.2977	0.2828
	0.3014	0.2774
	0.2969	0.2694
	0.2888	0.2669
	0.2850	0.2721
	0.2894	0.2802
SM	0.3097	0.2800
	0.3132	0.2747
	0.3085	0.2668
	0.3005	0.2643
	0.2969	0.2694
	0.3014	0.2774

Gruppe Group	Сх	Су
UM	0.3122	0.3088
	0.3159	0.3027
	0.3109	0.2940
	0.3024	0.2912
	0.2986	0.2970
	0.3035	0.3059
UN	0.3246	0.3055
	0.3281	0.2996
	0.3230	0.2910
	0.3145	0.2883
	0.3109	0.2940
	0.3159	0.3027
UO	0.3367	0.3024
	0.3400	0.2965
	0.3348	0.2881
	0.3264	0.2854
	0.3230	0.2910
	0.3281	0.2996
UP	0.3486	0.2993
	0.3517	0.2935
	0.3463	0.2852
	0.3380	0.2826
	0.3348	0.2881
	0.3400	0.2965
VQ	0.3630	0.3109
	0.3659	0.3049
	0.3602	0.2963
	0.3517	0.2935
	0.3486	0.2993
	0.3542	0.3081
VP	0.3510	0.3142
	0.3542	0.3081
	0.3486	0.2993
	0.3400	0.2965
	0.3367	0.3024
	0.3422	0.3113

Gruppe Group	Сх	Су
WQ	0.3659	0.3265
	0.3689	0.3201
	0.3630	0.3109
	0.3542	0.3081
	0.3510	0.3142
	0.3568	0.3235
XQ	0.3689	0.3430
	0.3720	0.3362
	0.3659	0.3265
	0.3568	0.3235
	0.3536	0.3300
	0.3596	0.3399
XP	0.3563	0.3468
	0.3596	0.3399
	0.3536	0.3300
	0.3445	0.3270
	0.3410	0.3336
	0.3469	0.3437
хо	0.3434	0.3508
	0.3469	0.3437
	0.3410	0.3336
	0.3318	0.3306
	0.3282	0.3373
	0.3339	0.3475
XN	0.3302	0.3548
	0.3339	0.3475
	0.3282	0.3373
	0.3189	0.3342
	0.3151	0.3411
	0.3206	0.3515
XM	0.3166	0.3589
	0.3206	0.3515
	0.3151	0.3411
	0.3058	0.3379
	0.3017	0.3450
	0.3070	0.3555

LTRB GFSF

Gruppe Group	Сх	Су	Gruppe Group	Сх	Су	Gruppe Group	Сх	Су
SN	0.3214	0.2773	VO	0.3388	0.3176	XL	0.3028	0.3631
	0.3247	0.2720	•	0.3422	0.3113		0.3070	0.3555
	0.3200	0.2643		0.3367	0.3024		0.3017	0.3450
	0.3120	0.2618		0.3281	0.2996		0.2923	0.3418
	0.3085	0.2668		0.3246	0.3055		0.2879	0.3489
	0.3132	0.2747		0.3299	0.3146		0.2931	0.3597
so	0.3329	0.2746	VN	0.3264	0.3210	YM	0.3183	0.3778
	0.3361	0.2694		0.3299	0.3146		0.3224	0.3699
	0.3312	0.2618		0.3246	0.3055		0.3166	0.3589
	0.3232	0.2593	-	0.3159	0.3027		0.3070	0.3555
	0.3200	0.2643		0.3122	0.3088		0.3028	0.3631
	0.3247	0.2720		0.3174	0.3180		0.3084	0.3743
TP	0.3463	0.2852	VM	0.3136	0.3244	YN	0.3323	0.3733
	0.3494	0.2798		0.3174	0.3180		0.3361	0.3656
	0.3442	0.2719		0.3122	0.3088	-	0.3302	0.3548
	0.3361	0.2694		0.3035	0.3059		0.3206	0.3515
	0.3329	0.2746		0.2996	0.3121		0.3166	0.3589
	0.3380	0.2826	-	0.3046	0.3214		0.3224	0.3699
то	0.3348	0.2881	VL	0.3006	0.3280	YO	0.3459	0.3690
	0.3380	0.2826		0.3046	0.3214		0.3495	0.3614
	0.3329	0.2746		0.2996	0.3121		0.3434	0.3508
	0.3247	0.2720	:	0.2908	0.3091		0.3339	0.3475
	0.3214	0.2773	•	0.2867	0.3154		0.3302	0.3548
	0.3264	0.2854		0.2915	0.3249		0.3361	0.3656

Anm.: Die Farbkoordinaten des Mischlichtes können innerhalb des gekennzeichneten Bereichs des Farbdreiecks erwartet werden.
Note: The color coordinates of the mixed light can be expected within the marked area of the color triangle

Helligkeits-Gruppierungsschema Brightness Groups

Helligkeitsgruppe Brightness Group	
AB	1.4001.800
BA	1.8002.240
BB	2.2402.800
CA	2.8003.550
СВ	3.5504.500

Anm.: Die Standardlieferform von Serientypen beinhaltet eine Familiengruppe. Diese besteht aus 5 Helligkeitsgruppen. Einzelne Helligkeitsgruppen sind nicht bestellbar.

Note: The standard shipping format for serial types includes a family group of 5 individual brightness groups. Individual brightness groups cannot be ordered.

Gruppenbezeichnung auf Etikett

Group Name on Label Beispiel: BA-QK Example: BA-QK

Helligkeitsgruppe	Farbortgruppe
Brightness Group	Color coordinates
BA	QK

Anm.: In einer Verpackungseinheit / Gurt ist immer nur eine Helligkeitsgruppe pro Farbe enthalten.

Note: No packing unit / tape ever contains more than one brightness group per color.

Relative spektrale Emission^{6) Seite 28}

Relative Spectral Emission^{6) page 28}

 $V(\lambda)$ = spektrale Augenempfindlichkeit / Standard eye response curve

 $I_{rel} = f(\lambda); T_S = 25 \degree C; I_F = 20 \text{ mA}$

Abstrahlcharakteristik^{6) Seite 28}

Radiation Characteristic 6) page 28

Abstrahlcharakteristik^{6) Seite 28}

Radiation Characteristic 6) page 28

 $I_{\rm rel} = f(\phi)$; $T_{\rm S} = 25$ °C, $I_{\rm F} = 20$ mA (T); 20 mA (R); 10 mA (B) true green, red, blue

Durchlassstrom^{6) Seite 28} Forward Current^{6) page 28}

 $I_{\rm F} = f(V_{\rm F}); T_{\rm S} = 25 \, \rm C;$ true green, blue

Relative Lichtstärke^{6) 7) Seite 28} Relative Luminous Intensity^{6) 7) page 28}

Durchlassstrom^{6) Seite 28} Forward Current^{6) page 28}

 $I_{\mathsf{F}} = f(V_{\mathsf{F}}); T_{\mathsf{S}} = 25 \, \mathsf{C}; \ \mathsf{red}$

Dominante Wellenlänge 6) Seite 28 Dominant Wavelength 6) page 28 blue, $\lambda_{\text{dom}} = f(I_{\text{F}}); T_{\text{S}} = 25 \, ^{\circ}{\text{C}}$

Relative Lichtstärke^{6) Seite 28} Relative Luminous Intensity^{6) page 28}

$$I_V/I_V(25 \text{ C}) = f(T_J); I_F = 20 \text{ mA}$$

Dominante Wellenlänge⁶⁾ Seite 28 Dominant Wavelength⁶⁾ page 28

true green, $\lambda_{dom} = f(I_F)$; $T_S = 25 \,^{\circ}$ C

Relative Lichtstärke^{6) 7) Seite 28} Relative Luminous Intensity^{6) 7) page 28}

Relative Lichtstärke^{6) 7) Seite 28} Relative Luminous Intensity^{6) 7) page 28}

Farbortverschiebung^{2) Seite 28}

1,0 1,5 2,0

2,5

IFgroup

Farbortverschiebung^{2) Seite 28} Chromaticity Coordinate Shift^{2) page 28}

0,20

 I_{Fgroup}

2014-08-26

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

 $I_{\mathsf{F}} = f(T)$; 1 chip on

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

 $I_{\rm F}$ = f (T); 1 chip on

Maximal zulässiger Durchlassstrom rot Max. Permissible Forward Current red

 $I_{\mathsf{F}} = f(T)$; 3 chips on 50

Maximal zulässiger Durchlassstrom true grün Max. Permissible Forward Current true green

 $I_{\rm F} = f(T)$; 3 chips on

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\rm F}$ = f (T); 1 chip on

Maximal zulässiger Durchlassstrom blau Max. Permissible Forward Current blue

 $I_{\rm F} = f(T)$; 3 chips on

2014-08-26

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_S = 25 °C I_F = $f(t_0)$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm S}$ = 85 °C $I_{\rm F}$ = $f(t_{\rm p})$; true green (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm S}$ = 25 °C $I_{\rm F}$ = $f(t_{\rm D})$; true green (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D= parameter, $T_{\rm S}=85$ °C $I_{\rm F}=f(t_{\rm O})$; true green (3 Chips on)

17

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm S}$ = 25 °C $I_{\rm F}$ = $f(t_{\rm p})$; red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_S = 85 °C I_F = $f(t_p)$; red (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm S}$ = 25 °C $I_{\rm F}$ = $f(p_{\rm c})$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm S}$ = 85 $^{\circ}$ C $I_{\rm F}$ = $f(t_{\rm p})$; red (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, $T_{\rm S}$ = 25 °C $I_{\rm F}$ = $f(t_{\rm D})$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_S = 85 °C I_F = $f(t_p)$; blue (1 Chip on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_S = 25 °C I_F = $f(p_i)$; blue (3 Chips on)

Zulässige Impulsbelastbarkeit Permissible Pulse Handling Capability Duty cycle D = parameter, T_S = 85 °C I_F = $f(t_p)$; blue (3 Chips on)

Maßzeichnung^{8) Seite 28} Package Outlines^{8) page 28}

Gewicht / Approx. weight: 40 mg

Gurtung / Polarität und Lage^{8) Seite 28} Verpackungseinheit 1000/Rolle, ø180 mm

Method of Taping / Polarity and Orientation^{8) page 28} Packing unit 1000/reel, ø180 mm

Empfohlenes Lötpaddesign^{8) 9) Seite 28} Recommended Solder Pad^{8) 9) page 28}

Reflow Löten Reflow Soldering

Lötbedingungen Soldering Conditions Reflow Lötprofil für bleifreies Löten Reflow Soldering Profile for lead free soldering Vorbehandlung nach JEDEC Level 4 Preconditioning acc. to JEDEC Level 4 (nach J-STD-020D.01) (acc. to J-STD-020D.01)

OHA04612 Profil-Charakteristik Symbol Pb-Free (SnAgCu) Assembly Einheit **Profile Feature** Symbol Unit Minimum Maximum Recommendation 3 Ramp-up Rate to Preheat*) K/s 25 °C to 150 °C Time t_s 60 100 120 $t_{\rm S}$ s T_{Smin} to T_{Smax} Ramp-up Rate to Peak*) 2 3 K/s T_{Smax} to T_{P} Liquidus Temperature T_{l} 217 °C Time above Liquidus temperature t_L 80 100 s °C 260 Peak Temperature T_P 245 10 Time within 5 °C of the specified peak 20 30 t_{P} s temperature T_P - 5 K 3 K/s 6 Ramp-down Rate* T_P to 100 °C Time 480 s 25 °C to T_P

All temperatures refer to the center of the package, measured on the top of the component

* slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Barcode-Produkt-Etikett (BPL) Barcode-Product-Label (BPL)

Gurtverpackung

Tape and Reel

Tape dimensions in mm (inch)

W	P_0	P_1	P_2	D_0	E	F
12 ⁺ 0.3 - 0.1	4 ± 0.1 (0.157 ± 0.004)	8 ± 0.1 (0.315 ± 0.004)	2 ± 0.05 (0.079 ± 0.002)			5.5 ± 0.05 (0.217 ± 0.002)

Reel dimensions in mm (inch)

A	W	N_{min}	W_1	$W_{2 \; \mathrm{max}}$
180 (7)	12 (0.472)	60 (2.362)	12.4 + 2 (0.488 + 0.079)	18.4 (0.724)

OSRAM
Opto Semiconductors

Trockenverpackung und Materialien Dry Packing Process and Materials

Anm.: Feuchteempfindliche Produkte sind verpackt in einem Trockenbeutel zusammen mit einem Trockenmittel und einer Feuchteindikatorkarte

Bezüglich Trockenverpackung finden Sie weitere Hinweise im Internet und in unserem Short Form Catalog im Kapitel "Gurtung und Verpackung" unter dem Punkt "Trockenverpackung". Hier sind Normenbezüge, unter anderem ein Auszug der JEDEC-Norm, enthalten.

Note: Moisture-senisitve product is packed in a dry bag containing desiccant and a humidity card.

Regarding dry pack you will find further information in the internet and in the Short Form Catalog in chapter

"Tape and Reel" under the topic "Dry Pack". Here you will also find the normative references like JEDEC.

Kartonverpackung und Materialien

Transportation Packing and Materials

Dimensions of transportation box in mm (inch)

Breite / Width	Länge / length	Höhe / height
200 ±5 (7,874 ±0,1968±)	200 ±5 (7,874 ±0,1968)	30 ±5 (1,1811 ±0,1968)

Revision History: 2014-08-26 Previous Version: 2012-04-27

Page	Subjects (major changes since last revision)	Date of change
all	Final Datasheet created	2010-02-12
4	Temperature coefficient of V _F added	2011-12-01
23	OS-IN-2012-005	2012-04-27
26, all	Eye safety advice added; general update	2014-08-26

Augensicherheitsbewertung

Wegen der Streichung der LED aus der IEC 60825 erfolgt die Bewertung der Augensicherheit nach dem Standard IEC

62471:2006 ("photobiological safety of lamps and lamp systems")
Im Risikogruppensystem dieser CIE- Norm erfüllen die in diesem Datenblatt angegebenen LED die "exempt"- Gruppe (die die sich im "sichtbaren" Spektralbereich auf eine Expositionsdauer von 10000 s bezieht). Unter realen Umständen (für Expositionsdauer, Augenpupille, Betrachtungsabstand) geht damit von diesen Bauelementen keinerlei Augengefährdung aus.

Grundsätzlich sollte jedoch erwähnt werden, dass intensive Lichtquellen durch ihre Blendwirkung ein hohes sekundäres Gefahrenpotenzial besitzen. Wie nach dem Blick in andere helle Lichtquellen (z.B. Autoscheinwerfer) auch, können temporär eingeschränktes Sehvermögen und Nachbilder je nach Situation zu Irritationen, Belästigungen, Beeinträchtigungen oder sogar Unfällen führen.

Eye safety advice

Due to the cancellation of the LED from IEC 60825, the evaluation of eye safety occurs according to the standard IEC 62471:2006 ("photobiological safety of lamps and lamp systems").

Within the risk grouping system of this CIE standard, the LEDs specified in this data sheet fall into the "exempt" group (relating to devices in the visible spectrum with an exposure time of 10000 s). Under real circumstances (for exposure time, eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices.

As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. As is also true when viewing other bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb. Falls Sie diese Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein sollten, wenden Sie sich bitte an das nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein! Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Scherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für (a) die Implantierung in den menschlichen Körper oder (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended(a) to be implanted in the human body,or(b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Fußnoten:

- Helligkeitswerte werden während eines Strompulses einer typischen Dauer von 25 ms, mit einer internen Reproduzierbarkeit von +/- 8 % und einer erweiterten Messunsicherheit von +/- 11 % gemessen (gemäß GUM mit Erweiterungsfaktor k = 3).
- ²⁾ Die LED kann kurzzeitig in Sperrichtung betrieben werden.
- ³⁾ R_{thJA} ergibt sich bei Montage auf PC-Board FR 4 (Padgröße ≥ 16 mm² je Pad)
- ⁴⁾ Die dominante Wellenlänge wird während eines Strompulses einer typischen Dauer von 25 ms, mit einer internen Reproduzierbarkeit von +/- 0,5 nm und einer erweiterten Messunsicherheit von +/- 1 nm gemessen (gemäß GUM mit Erweiterungsfaktor k = 3).
- 5) Vorwärtsspannungen werden während eines Strompulses einer typischen Dauer von 8 ms, mit einer internen Reproduzierbarkeit von +/- 0,05 V und einer erweiterten Messunsicherheit von +/- 0,1 V gemessen (gemäß GUM mit Erweiterungsfaktor k=3).
- Wegen der besonderen Prozessbedingungen bei der Herstellung von LED k\u00f6nnen typische oder abgeleitete technische Parameter nur aufgrund statistischer Werte wiedergegeben werden. Diese stimmen nicht notwendigerweise mit den Werten jedes einzelnen Produktes \u00fcberein, dessen Werte sich von typischen und abgeleiteten Werten oder typischen Kennlinien unterscheiden k\u00f6nnen. Falls erforderlich, z.B. aufgrund technischer Verbesserungen, werden diese typischen Werte ohne weitere Ank\u00fcndigung ge\u00e4ndert.
- 7) Im gestrichelten Bereich der Kennlinien muss mit erhöhten Helligkeitsunterschieden zwischen Leuchtdioden innerhalb einer Verpackungseinheit gerechnet werden. Dimmverhältnis im Gleichstrom-Betrieb max. 5:1 für red
- 8) Maße werden wie folgt angegeben: mm (inch)
- 9) Gehäuse hält TTW-Löthitze aus nach CECC 00802
- (10) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- Lebenserhaltende Apparate oder Systeme sind für

 (a) die Implantierung in den menschlichen K\u00f6rper oder
 - (b) für die Lebenserhaltung bestimmt.

Falls sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Remarks:

- Brightness values are measured during a current pulse of typical 25 ms, with an internal reproducibility of +/- 8 % and an expanded uncertainty of +/- 11 % (acc. to GUM with a coverage factor of k = 3).
- 2) Driving the LED in reverse direction is suitable for short term application.
- B) R_{thJA} results from mounting on PC board FR 4 (pad size ≥ 16 mm² per pad)
- ⁴⁾ The dominant wavelength is measured at a current pulse of typical 25 ms, with an internal reproducibility of +/- 0,5 nm and an expanded uncertainty of +/- 1 nm (acc. to GUM with a coverage factor of k=3).
- 5) The forward voltage is measured during a current pulse of typical 8 ms, with an internal reproducibility of +/- 0,05 V and an expanded uncertainty of +/- 0,1 V (acc. to GUM with a coverage factor of k=3).
- ⁶⁾ Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 7) In the range where the line of the graph is broken, you must expect higher brightness differences between single LEDs within one packing unit.
 - Dimming range for direct current mode max. 5:1 for red
 Dimensions are specified as follows: mm (inch)
- 9) Package able to withstand TTW-soldering heat acc. to CECC 00802
- 10) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- Life support devices or systems are intended (a) to be implanted in the human body,
 - or
 - (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Published by OSRAM Opto Semiconductors GmbH Leibnizstrasse 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved. EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

2014-08-26

28

