Circuito RLC a generatore impulsivo

Coli Simone

Corso di Laurea in Fisica Laboratorio di Onde ed Elettromagnetismo

Luglio 2022

Benazzi, Coli (DIFA) Circuito RLC Luglio 2022 1 / 10

Introduzione

- Obiettivo

Studiare diversi metodi per la generazione di un onda impulsiva e studiarne l'andamento variandone i componenti.

Benazzi, Coli (DIFA) Circuito RLC Luglio 2022 2 / 10

Introduzione

- Obiettivo

Studiare diversi metodi per la generazione di un onda impulsiva e studiarne l'andamento variandone i componenti.

- Andamento Teorico

L'Andamento toerico segue quello di un oscillatore armonico sottosmorzato e lo si ricava risolvendo l'equazione differenziale ottenuta dalla legge di Kirchhoff per le maglie

$$V = Ae^{-\alpha t}\sin(\omega t)$$

Benazzi, Coli (DIFA) Circuito RLC Luglio 2022 2/10

Introduzione

- Obiettivo

Studiare diversi metodi per la generazione di un onda impulsiva e studiarne l'andamento variandone i componenti.

- Andamento Teorico

L'Andamento toerico segue quello di un oscillatore armonico sottosmorzato e lo si ricava risolvendo l'equazione differenziale ottenuta dalla legge di Kirchhoff per le maglie

$$V = Ae^{-\alpha t}\sin(\omega t)$$

$$\alpha = \frac{R}{2L} \qquad \qquad \omega = \frac{1}{2L\sqrt{C}}\sqrt{4L - R^2C}$$

 ♦ □ ▶

Apparato Sperimentale

Circuito RLC in serie in cui vengono misurate le differenze di potenziale ai capi di condensatore e generatore.

Componenti

- Resistenze:

$$R_1 = (101.7 \pm 0.1) \Omega$$

$$R_2 = (678.6 \pm 0.3) \Omega$$

$$R_1^L = (0.46 \pm 0.01) \Omega$$

$$R_2^L = (232.21 \pm 0.11) \Omega$$

- Induttanze:

$$L_1 = (14.7 \pm 0.2) \text{ mH}$$

$$L_2 = (47.0 \pm 0.5) \text{ mH}$$

- Capacità:

$$C = (9.94 \pm 0.01) \text{ nF}$$

Oscillazione Sottosmorzata ad Onda Quadra

Parametri

$$lpha_q = (12.183 \pm 0.013) \; \mathrm{kHz}$$
 $\omega_q = (90.728 \pm 0.004) \; \mathrm{kHz}$ $A_q = (4.90 \pm 0.04) \; \mathrm{V}$

Tipi di Generatori

Oscillazione Sottosmorzato ad Onda Impulsiva

Parametri

 $lpha_i = (9.459 \pm 0.011) \text{ kHz}$ $\omega_i = (92.526 \pm 0.012) \text{kHz}$ $A_i = (4.23 \pm 0.04) \text{ V}$

6/10

Oscillazione Sottosmorzata ad Onda Quadra

Parametri

$$\begin{array}{ll} \alpha_q &= (12.35 \pm 0.04) \; \mathrm{kHz} \\ \omega_q &= (44.90 \pm 0.05) \mathrm{kHz} \\ A_q &= (4.23 \pm 0.04) \; \mathrm{V} \end{array}$$

Errori

Errori sulla Tensione ai Capi del Condensatore: Gli errori sulla tensione ai capi del condensatore sono stati stimati a partire dalle misure del rumore dell'apparato sperimentale calcolando, poi, la relativa deviazione standard (file error.py su GitHub).

Errori sui Parametri: L'errore sui parametri è stato stimato propagando gli errori sulle misure delle componenti in quadratura (sotto riportate), per quanto riguarda le stime teoriche di α e ω . Mentre, per le misure sperimentali, si è utilizzata la matrice di covarianza.

$$\delta\alpha = \sqrt{\frac{R^2}{4L^4}(\delta L)^2 + \frac{1}{4L^2}(\delta R)^2}$$

$$\delta\omega = \sqrt{\frac{(CR^2 - 2L)^2}{4CL^4(AL - CR^2)}} (\delta L)^2 + \frac{(\delta C)^2}{C^3(4L - CR^2)} + \frac{R^2C}{4L^2(4L - CR^2)} (\delta R)^2$$

Benazzi, Coli (DIFA) Circuito RLC Luglio 2022 8/10

Risultati e Conclusioni

Risultati: I valori riportati nella tabella sono stati ottenuti per via teorica, a partire dalle misure delle componenti di resistenza, capacità e induttanza, e attraverso il fit dei dati, per le misure sperimentali.

Generatore	lpha Teorica	lphaSperimentale	ω Teorica	ω Sperimentale
U. Misura	(kHz)	(kHz)	(kHz)	(kHz)
Quadra 1	$\textbf{5.19} \pm \textbf{0.06}$	12.183 ± 0.013	82.7 ± 0.6	90.728 ± 0.004
Impulsiva 1	$\textbf{5.19} \pm \textbf{0.06}$	$\boldsymbol{9.450 \pm 0.011}$	82.7 ± 0.6	92.526 ± 0.012
Quadra 2	10.23 ± 0.10	12.35 ± 0.04	$\textbf{45.1} \pm \textbf{0.4}$	44.90 ± 0.05

Risultati e Conclusioni

Risultati: I valori riportati nella tabella sono stati ottenuti per via teorica, a partire dalle misure delle componenti di resistenza, capacità e induttanza, e attraverso il fit dei dati, per le misure sperimentali.

Generatore	lpha Teorica	lphaSperimentale	ω Teorica	ω Sperimentale
U. Misura	(kHz)	(kHz)	(kHz)	(kHz)
Quadra 1	5.19 ± 0.06	12.183 ± 0.013	82.7 ± 0.6	90.728 ± 0.004
Impulsiva 1	5.19 ± 0.06	$\boldsymbol{9.450 \pm 0.011}$	82.7 ± 0.6	92.526 ± 0.012
Quadra 2	10.23 ± 0.10	12.35 ± 0.04	$\textbf{45.1} \pm \textbf{0.4}$	44.90 ± 0.05

Conclusioni: I risultati ottenuti dall'analisi mostrano un'incompatibilità tra il modello ed l'evidenza sperimentale. In particolare sembra essere presente in tutte le misure un errore sistematico dovuto alla presenza di una resistenza parassita.

Risultati e Conclusioni

Risultati: I valori riportati nella tabella sono stati ottenuti per via teorica, a partire dalle misure delle componenti di resistenza, capacità e induttanza, e attraverso il fit dei dati, per le misure sperimentali.

Generatore	lpha Teorica	lphaSperimentale	ω Teorica	ω Sperimentale
U. Misura	(kHz)	(kHz)	(kHz)	(kHz)
Quadra 1	$\textbf{5.19} \pm \textbf{0.06}$	12.183 ± 0.013	82.7 ± 0.6	90.728 ± 0.004
Impulsiva 1	$\textbf{5.19} \pm \textbf{0.06}$	$\boldsymbol{9.450 \pm 0.011}$	82.7 ± 0.6	92.526 ± 0.012
Quadra 2	10.23 ± 0.10	12.35 ± 0.04	$\textbf{45.1} \pm \textbf{0.4}$	44.90 ± 0.05

Conclusioni: I risultati ottenuti dall'analisi mostrano un'incompatibilità tra il modello ed l'evidenza sperimentale. In particolare sembra essere presente in tutte le misure un errore sistematico dovuto alla presenza di una resistenza parassita.

 ${\bf Link\ al\ GitHub:\ https://github.com/JustSimone/Impulsive_RLC_Experiment.git}$

Benazzi, Coli (DIFA) Circuito RLC Luglio 2022 9/10

Fine? Spazio alle Domande

Fine? Spazio alle Domande

