Weekly Report

•	Training	2D	CNN
	Hanning		OITIT

- Our imagenet data
- Fine tuning (simply)
- Visualization
- Deconvolution Network (our data)

This week

Visualization

- Apply another visualization method

Next week

- Apply to 1D (our data)
- Training 2D CNN
- Retrain cleaned data

Interesting and new finding

- Visualization
- Data Cleaning

The aim of this month / Discussion

The aim of this month: To study brain data.

Training 2D CNN - Data

Data is very imbalanced

Train: 235111, Val: 3183

Training is based on undersampling

Label	Train	Val
Bed	2690	30
Bird	72641	1050
Cat	6500	78
Dog	149006	1940
House	1611	34
Tree	2663	51

Training 2D CNN - Change

Change (Because of input data's shape)

Input: $16000X1 \rightarrow 172X172X3$, Output: $16 \rightarrow 6$ ('bed', 'bird', 'cat', 'dog', 'house', 'tree')

filter size: $1X5 \rightarrow 5X5$, pool size: $1X3 \rightarrow 2X2$, number of conv: $8 \rightarrow 7$ (Best Fit)

Training 2D CNN - Result

- To find best fit model, Tuning the depth and start channel (32, 64)
- Most of case, 0.75 dropout rate show better performance than 0.5.
 But, To train more faster, Setting the dropout rate as 0.5.
- I think 'CH32, DO0.5, 6 Conv' model is best, for this task.

Architecture	CH32+DO0.5	Params	CH64+DO0.5	Params
1 CONV(5X5)	X	1,422,470	X	2,844,934
2 CONV(5X5)	X	383,078	X	817,350
3 CONV(5X5)	0.7338	265,190	0.8325	683,974
4 CONV(5X5)	0.8130	228,262	0.8998	814,918
5 CONV(5X5)	0.8014	414,374	0.9258	1,596,742
6 CONV(5X5)	(0.9044)	803,366	0.9242	3,193,926
7 CONV(5X5)	0.8881	1,622,054	0.9359	6,469,702

Training 2D CNN - Result

- In the best architecture, It seems pretty good. except confusing cat as dog......
- Maybe It's because the model is not complicated enough.

		A	Actua	al clas	ss				precision	recall	f1-score	support
Predict Class	28 5 0 4 0	0 932 3 29 0 1	1 12 62 75 0	1 85 13 1831 1 1	0 2 0 0 32 2	0] 14] 0] 1] 1] 47]]	-	bed bird cat dog house tree weighted avg	0.76 0.97 0.41 0.95 0.89 0.75	0.93 0.89 0.79 0.94 0.92	0.84 0.93 0.54 0.95 0.91 0.82	30 1050 78 1940 34 51

<Best Architecture>

(Acc: 0.9044)

2DConv, MP 2DConv, MP 2DConv, MP

2DConv. MP

2DConv, MP

Fully-Connected

Training 2D-Model for visualization (MNIST)

Change (Because of input data's shape)

Input: $16000X1 \rightarrow 28X28X1$, Output: $16 \rightarrow 10 (0 \sim 9)$

filter size: 1X5 \rightarrow 3X3, pool size: 1X3 \rightarrow 2X2, number of conv layer: 8 \rightarrow 3

Train: 40000, Val: 20000, Test:10000

Visualization – mnist (1st Conv)

Visualization – mnist (2nd Conv)

Visualization – mnist (3rd Conv)

Visualization – Imagenet (Bed)

In the front of layers, the model see the overall outline.

Visualization – Imagenet (Bed)

In the backward of layers, the model see the detail object(ex.pillow).

Visualization – Imagenet (Bird)

In the front of layers, the model especially see the wing(ex. shape, pattern)

Visualization – Imagenet (Bird)

- In the backward of layers, the model also see the wing.
- The wing is important feature to classify whether it is bird or not.

Visualization – Imagenet (Cat)

- In the second of layers, the model see the eyes and nose.
- In the third of layers, the model see the ears and tail.

Visualization – Imagenet (Cat)

- In the backward of layers, the model see the overall face.
- Maybe this model see the nose to classify whether it is animal or not. (remind that this model confuse cat and dog)

Visualization – Imagenet (Dog)

- In the second of layers, the model see the overall outline.
- In the third of layers, the model see the eyes and nose.

Visualization – Imagenet (Dog)

- In the backward of layers, the model see the overall face. (eyes, nose)
- And... the nose of cat and dog are very similar... I think...

Visualization – Imagenet (House)

• In the front of layers, the model see the object of house (proof, window, fence, door)

Visualization – Imagenet (House)

- In the backward layers, the model especially see the windows.
- The window is good feature to classify whether it is a house or not

Visualization – Imagenet (Tree)

- In the second of layers, the model see the overall branch.
- In the third of layers, the model see the overall leaves.

Visualization – Imagenet (Tree)

In the backward of layers, the model see the branch and leaves both.

Any Question?

Thank you

