∽ Baccalauréat S Polynésie juin 2012 ∾

Exercice 1 5 points

Le plan est rapporté à un repère orthonormal $(0, \overrightarrow{t}, \overrightarrow{j})$.

On considère les points B (100; 100) et C $\left(50; \frac{50}{\sqrt{e}}\right)$ et la droite (D) d'équation y = x.

On note f la fonction définie sur $\mathbb R$ dont la courbe représentative, notée Γ , est donnée en annexe. On suppose de plus qu'il existe deux réels a et b tels que :

- pour tout x réel, $f(x) = xe^{ax+b}$.
- les points B et C appartiennent à la courbe Γ .
- **1. a.** Montrer que le couple (*a* ; *b*) est solution du système :

$$\begin{cases} 100a + b = 0 \\ 50a + b = -\frac{1}{2} \end{cases}$$

- **b.** En déduire que, pour tout x réel, $f(x) = xe^{0.01x-1}$.
- **2.** Déterminer la limite de f en $+\infty$.
- 3. **a.** Montrer que pour tout x réel, $f(x) = \frac{100}{e} \times 0.01 xe^{0.01x}$
 - **b.** En déduire la limite de f en $-\infty$.
- **4.** Étudier les variations de la fonction f. On donnera le tableau de variations complet.
- **5.** Étudier la position relative de la courbe Γ et de la droite (D).
- **6.** a. Calculer à l'aide d'une intégration par parties l'intégrale $\int_0^{100} f(t) dt$.
 - b. On désigne par A l'aire, en unités d'aire, du domaine du plan délimité par les droites d'équations x = 0 et x = 100, la droite (D) et la courbe Γ.
 Calculer A.

Exercice 2 5 points

Dans le plan complexe rapporté au repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives

$$a = -2 + 2i$$
, $b = -3 - 6i$ et $c = 1$.

La figure de l'exercice est donnée en annexe. Elle peut servir à émettre des conjectures, à vérifier des résultats.

- 1. Quelle est la nature du triangle ABC?
- 2. a. Donner l'écriture complexe de la rotation r de centre B et d'angle $\frac{\pi}{2}$.
 - **b.** En déduire l'affixe du point A' image de A par r.
 - **c.** Vérifier que l'affixe s du point S milieu de [AA'] est $s = -\frac{13}{2} \frac{3}{2}i$.
 - d. Démontrer que le point S appartient au cercle circonscrit au triangle ABC.
- 3. On construit de la même manière C' l'image de C par la rotation de centre A et d'angle $\frac{\pi}{2}$, Q le milieu de [CC'], B' l'image de B par la rotation de centre C et d'angle $\frac{\pi}{2}$ et P le milieu de [BB'].

On admet que les affixes respectives de Q et de P sont $q = \frac{1}{2} + \frac{5}{2}i$ et p = 2 - 5i.

- **a.** Démontrer que $\frac{s-q}{p-a} = -i$.
- **b.** En déduire que les droites (AP) et (QS) sont perpendiculaires et que les segments [AP] et [QS] sont de même longueur.
- **4.** Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même infructueuse, sera prise en compte dans l'évaluation.

Démontrer que les droites (AP), (BQ) et (CS) sont concourantes.

Exercice 3 5 points

Partie A

On considère l'algorithme suivant :

Les variables sont le réel U et les entiers naturels k et N.

Entrée

Saisir le nombre entier naturel non nul *N*.

Traitement

Affecter à U la valeur 0 Pour k allant de 0 à N-1

Affecter à U la valeur 3U - 2k + 3

Fin pour

Sortie

Afficher U

Quel est l'affichage en sortie lorsque N = 3?

Partie B

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 3u_n - 2n + 3$.

- **1.** Calculer u_1 et u_2 .
- **2. a.** Démontrer par récurrence que, pour tout entier naturel n, $u_n \ge n$.
 - **b.** En déduire la limite de la suite (u_n) .
- **3.** Démontrer que la suite (u_n) est croissante.
- **4.** Soit la suite (v_n) définie, pour tout entier naturel n, par $v_n = u_n n + 1$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique.
 - **b.** En déduire que, pour tout entier naturel n, $u_n = 3^n + n 1$.
- **5.** Soit *p* un entier naturel non nul.
 - **a.** Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0$, $u_n \ge 10^p$? On s'intéresse maintenant au plus petit entier n_0 .
 - **b.** Justifier que $n_0 \le 3p$.
 - **c.** Déterminer à l'aide de la calculatrice cet entier n_0 pour la valeur p = 3.
 - **d.** Proposer un algorithme qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier n_0 tel que, pour tout $n \ge n_0$, on ait $u_n \ge 10^p$.

Exercice 4 5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

On désigne par x un réel appartenant à l'intervalle [0; 80].

Une urne contient 100 petits cubes en bois dont 60 sont bleus et les autres rouges.

Parmi les cubes bleus, 40 % ont leurs faces marquées d'un cercle, 20 % ont leurs faces marquées d'un losange et les autres ont leurs faces marquées d'une étoile.

Parmi les cubes rouges, 20% ont leurs faces marquées d'un cercle, x% ont leurs faces marquées d'un losange et les autres ont leurs faces marquées d'une étoile.

Partie A: expérience 1

On tire au hasard un cube de l'urne.

- 1. Démontrer que la probabilité que soit tiré un cube marqué d'un losange est égale à 0,12+0,004x.
- **2.** Déterminer *x* pour que la probabilité de tirer un cube marqué d'un losange soit égale à celle de tirer un cube marqué d'une étoile.

Polynésie Page 2/4 juin 2012

- **3.** Déterminer *x* pour que les évènements « tirer un cube bleu » et « tirer un cube marqué d'un losange » soient indépendants.
- **4.** On suppose dans cette question que *x* = 50. Calculer la probabilité que soit tiré un cube bleu sachant qu'il est marqué d'un losange.

Partie B: expérience 2

On tire au hasard simultanément 3 cubes de l'urne.

Les résultats seront arrondis au millième.

- 1. Quelle est la probabilité de tirer au moins un cube rouge?
- 2. Quelle est la probabilité que les cubes tirés soient de la même couleur?
- 3. Quelle est la probabilité de tirer exactement un cube marqué d'un cercle?

Exercice 4 5 points

Pour les candidats ayant suivi l'enseignement de spécialité

Partie A

On considère l'équation (E) : 25x - 108y = 1 où x et y sont des entiers relatifs.

- 1. Vérifier que le couple (13 ; 3) est solution de cette équation.
- 2. Déterminer l'ensemble des couples d'entiers relatifs solutions de l'équation (E).

Partie B

Dans cette partie, a désigne un entier naturel et les nombres c et g sont des entiers naturels vérifiant la relation 25g - 108c = 1.

On rappelle le petit théorème de Fermat :

Si p est un nombre premier et a un entier non divisible par p, alors a^{p-1} est congru à 1 modulo p que l'on note $a^{p-1} \equiv 1$ [p].

1. Soit *x* un entier naturel.

Démontrer que si $x \equiv a$ [7] et $x \equiv a$ [19], alors $x \equiv a$ [133].

2. a. On suppose que *a* n'est pas un multiple de 7.

Démontrer que $a^6 \equiv 1$ [7] puis que $a^{108} \equiv 1$ [7].

En déduire que $(a^{25})^g \equiv a$ [7].

b. On suppose que a est un multiple de 7.

Démontrer que $(a^{25})^g \equiv a$ [7].

c. On admet que pour tout entier naturel a, $(a^{25})^g \equiv a$ [19].

Démontrer que $(a^{25})^g \equiv a$ [133].

Partie C

On note A l'ensemble des entiers naturels a tels que : $1 \le a \le 26$.

Un message, constitué d'entiers appartenant à A, est codé puis décodé.

La phase de codage consiste à associer, à chaque entier a de A, l'entier r tel que $a^{25} \equiv r$ [133] avec $0 \le r < 133$. La phase de décodage consiste à associer à r, l'entier r_1 tel que $r^{13} \equiv r_1$ [133] avec $0 \le r_1 < 133$.

- **1.** Justifier que $r_1 \equiv a$ [133].
- 2. Un message codé conduit à la suite des deux entiers suivants : 128 59. Décoder ce message.

Annexe de l'exercice 1

Annexe de l'exercice 2

