자료구조론

1장 자료구조 개요

□ 이 장에서 다를 내용

1 자료구조 개요
2 자료구조의 분류
3 자료의 표현

□ 자료구조 개요

❖ 자료구조란?

 자료를 효율적으로 사용하기 위해서 자료의 특성에 따라서 분류하여 구성하고 저장 및 처리하는 모든 작업

[나쁜 자료구조]

[좋은 자료구조]

□ 자료구조 개요

■ 컴퓨터에 의한 문제 해결 과정

- 컴퓨터가 효율적으로 문제를 처리하기 위해서는 문제를 정의하고 분석하여 그에 대한 최적의 프로그램을 작성해야 한다.
- 프로그램은 <u>자료를 표현</u>하고 그 <u>자료를 처리</u>하여 결과를 얻음

자료구조

알고리증

☞ 자료구조에 대한 개념과 활용 능력 필요!

□ 자료구조의 분류

□ 자료구조의 분류

❖ 자료의 형태에 따른 분류

- 단순 구조
 - 정수, 실수, 문자, 문자열 등의 기본 자료형
- 선형구조(linear)
 - 자료들 간의 앞뒤 관계가 1:1의 선형 관계
 - 리스트, 연결리스트, 스택(stack), 큐(queue), 덱(deque) 등

■ 비선형구조

- 자료들 간의 앞뒤 관계가 1:多, 또는 多:多의 관계
- 계층구조(hierarchical), 망구조(network)
- 트리, 그래프 등

■ 파일구조

- 레코드의 집합인 파일에 대한 구조
- 순차파일, 색인파일, 직접파일 등

□ 자료구조의 분류

❖ 자료구조의 선택

- 자료구조 선택의 중요성
 - 자료구조는 처리하고자 하는 자료의 표현과 저장 방법을 결정
 - 자료구조와 알고르즘은 밀접한 관계
 - 따라서 어떤 자료구조를 선택하느냐에 따라 처리 능률이 크게 달라짐

• 자료구조의 선택의 기준

- 자료의 양
- 자료의 활용 빈도
- 자료의 갱신 정도
- 자료 처리를 위해 사용 가능한 기억장치 용량
- 자료처리 시간의 제한
- 자료처리를 위한 프로그래밍의 용이성

□ 자료의 표현

- ❖ 디지털 시스템에서의 자료의 표현
 - 숫자, 문자, 그림, 소리, 기호 등 모든 형식의 자료를 2진수 코드로 표현하여 저장 및 처리
 - 2진수 코드
 - 1과 0, ON과 OFF, 참(True)과 거짓(False)의 조합
 - 2진수 코드의 단위

□ 자료의 표현

■ n개의 비트로 2ⁿ개의 상태수 표현

4개(2ⁿ = 2² = 4)의 상태값 표현

예) n=4 인 경우

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
U	'	'	'
1	0	0	0
	0	0	0
1	0	0	0
1 1	0 0	0 0 1	0 1 0
1 1	0 0 0	0 0 1 1	0 1 0 1
1 1 1 1	0 0 0 0 1	0 0 1 1 0	0 1 0 1 0

16개(2ⁿ = 2⁴ = 16)의 상태값 표현

□ 자료의 표현

❖ 컴퓨터 내부에서 표현할 수 있는 자료의 종류

❖ 2진수의 정수 표현

- n비트의 부호 절대값 형식
 - 최상위 1비트 부호 표시
 - 양수(+):0
 - 음수(-):1
 - 나머지 n-1 비트 이진수 표시
 - 1바이트를 사용하는 부호 절대값 형식의 예

1비트	←	_	7	' 비년	-	→		
0	0	0	1	0	1	0	1	
부호		7	절대	값 =	= 2	1		

1비트	~	_	7	비!	_		>	
1	0	0	1	0	1	0	1	
부호		7	절대	값 =	= 2	1		

- 1의 보수(1' Complement) 형식
 - 음수의 표현에서 부호 비트를 사용하는 대신 1의 보수를 사용하는 방법
 - n비트의 2진수를 1의 보수로 만드는 방법
 - n비트를 1로 한 이진수에서 변환하고자 하는 이진수를 뺀다.
 - 예) 10진수 21을 1의 보수로 만들기 (1바이트 사용)

• 1바이트를 사용하는 1의 보수 형식의 예

☞ 부호절대값형식의 양수 표현과 같음!

- 2의 보수(2' Complement) 형식
 - 음수의 표현에서 부호 비트를 사용하는 대신 2의 보수를 사용하는 방법
 - n비트의 2진수를 2의 보수로 만드는 방법
 - 1의 보수에 1을 더해준다.
 - 예) 10진수 21을 2의 보수로 만들기 (1바이트 사용)

• 1바이트를 사용하는 2의 보수 형식의 예

- ☞ 부호절대값형식의 양수 표현과 같음!
- 2진수 정수의 세 가지 표현 방법에서 양수의 표현은 같고, 음수의 표현만 다르다.

❖ 2진수의 실수 표현

- 고정 소수점 표현
 - 소수점이 항상 최상위 비트의 왼쪽 밖에 고정되어있는 것으로 취급하는 방법
 - 고정 소수점 표현의 00010101 은 0.00010101 의 실수 값을 의미
 - 표현 가능한 범위가 작음
 - 예를 들어 8비트를 사용한다고 한다면
 - » 0.00000000011101을 나타내지 못함
 - » 0.<u>00000011</u>011은 0.<u>00000011</u> 로 표현됨

❖ 2진수의 실수 표현

- 부동 소수점 형식의 표현
 - 고정 소수점 형식에 비해서 표현 가능한 값의 범위가 넓다.
 - 실수를 부호와 지수, 소수의 세 부분으로 구분하여 표현

• 4바이트를 사용하는 부동 소수점 형식

• 고정 소수점 형식에 비해서 표현 가능한 값의 범위가 넓다.

❖ 10진수의 표현

- 존(Zone) 형식의 표현
 - 10진수 한자리를 표현하기 위해서 1바이트(8비트)를 사용하는 형식
 - 존 영역
 - 상위 4비트 : 항상1111로 표시
 - 수치 영역
 - 하위 4비트: 10진수 한자리 값을 2진수로 표시
 - 존 형식의 구조

	존 영	경역		수치 영역				
				8 4 2				
Х	Х	Х	Х	Х	Х	Х	Х	

- 여러 자리의 10진수를 표현하는 방법
 - 10진수의 자릿수 만큼 존 형식을 연결하여 사용
 - 마지막 자리의 존 영역에 부호를 표시
 - » 양수(+): 1100
 - » 음수(-): 1101
 - 존 형식의 10진수 표현 형식

d:10진수 숫자

S : 부호 ①양수(+)일 경우 : 1100=C

②음수(-)일 경우: 1101=D

 존 형식으로 10진수를 표현하는 예 +213

1111	0010	1111	0001	1100	0011
F	2	F	1	C(+)	3
	2	1			

-213

■ 팩(Pack) 형식의 표현

- 10진수 한자리를 표현하기 위해서 존 영역 없이 4비트를 사용하는 형식
- 최하위 4비트에 부호를 표시

- 양수(+):1100

- 음수(-):1101

- 팩 형식의 10진수 표현 형식

d: 10진수 숫자

S : 부호 ①양수(+)일 경우 : 1100=C

②음수(-)일 경우: 1101=D

•팩 형식으로 10진수를 표현하는 예 + 213

0010	0001	0011	1100
2	1	3	C(+)

- 213

0010	0001	0011	1101
2	1	3	D(-)

❖ 문자자료의 표현

- 문자에 대한 이진수 코드를 정의하여 사용
 - 각 문자마다 서로 다른 값을 부여하기로 약속하고 그 약속에 따라 특정 값이 특정 문자를 나타내는 것으로 본다.
- 문자에 대한 이진수 코드표
 - BCD 코드(binary-coded decimal)
 - EBCDIC 코드 (extended binary-coded decimal interchange code)
 - ASCII 코드(American Standard Code for Information Interchange)
 - 유니코드(unicode)

❖ ASCII 코드

• 7비트를 사용하여 문자 표현

• 상위 3비트 : 존 비트

• 하위 4비트 : 2진수 비트

• 존 비트와 2진수 비트를 조합하여 10진수 0~9와 영어 대문자/소문자와 특수문자를 표현

- ASCII 코드의 구성

←	존 비트	<u> </u>	←	숫자	비트	\longrightarrow
			8	4	2	1
X	Х	X	Х	X	X	X

■ ASCII 코드 표

하위	위 000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	15.	р
0001	SOH	DC1	!	1	A	Q	а	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	END	NAK	%	5	Е	U	е	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	¥	7	G	W	g	w
1000	BS	CAN	(8	н	Х	h	x
1001	нт	EM)	9	- 1	Y	ì	У
1010	LF	SUB	*	i i	J	Z	i	z
1011	VT	ESC	+	;	К	1	k	{
1100	FF	FS	,	<	L	₩ (\)	1	1
1101	CR	GS	-	=	М	j	m	3
1110	SO	RS	Y.s	>	N	٨	n	~
1111	SI	US	1	?	0	570	0	DEL
※ 코드의 의	O							
GS (Group Separato	r	RS	Record S	eparator	US	Unit Sep	parator

• 예) 영문자 A에 대한 ASCII 코드 ☞ 1000001

❖ EBCDIC 코드

8비트를 사용하여 문자 표현

• 상위 4비트 : 존 비트

• 하위 4비트 : 2진수 비트

• 존 비트와 2진수 비트를 조합하여 10진수 0~9와 영어 대문자/소문자와 특수문자를 표현

• EBCDIC 코드의 구성

←	존	비트	→	←	숫자	비트	→
А	В	С	D	8	4	2	1
X	X	X	X	Х	X	Х	X

존 비트 AB의 값 ┌ 00 : 여분 존 비트 CD의 값 ┌ 00 : 문자 A~I(0001~1001)

10 : 영어 소문자

└ 11 : 영어 대문자

01 : 문자 J~R(0001~1001) 10 : 문자 S~Z(0010~1001) - 11 : 숫자 0~9(0000~1001)

■ EBCDIC 코드 표

상위 하위	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	NUL	DLE	DS		SP	&	-						{	}	₩(\)	0
0001	SOH	DC1	SOS				1		а	j	2		A	J		1
0010	STX	DC2	FS	SYN					b	k	s		В	K	S	2
0011	ETX	TM							С	1	t		С	L	Т	3
0100	PF	RES	BYP	PN					d	m	u		D	М	U	4
0101	НТ	NL	LF	RS					е	n	٧		Е	N	٧	5
0110	LC	BS	ETB	UC					f	0	w		F	0	W	6
0111	DEL	IL	ESC	EOT					g	р	х		G	Р	Х	7
1000	GE	CAN							h	q	у		Н	Q	Υ	8
1001	RLF	EM							i	r	z		1	R	Z	9
1010	SMM	СС	SM		Ø	!		:								
1011	VT	CU1	CU2	CU3		\$,	#								
1100	FF	IFS		DC4	<	*	%	@								
1101	CR	IGS	ENQ	NAK	()	_	E								
1110	SO	IRS	ACK		+	;	>	=								
1111	SI	IUS	BEL	SUB	1		?									

• 예) 영문자 A에 대한 EBCDIC 코드 ☞ 11000001

❖ 유니 코드

- 16비트를 사용하여 문자 표현
 - 16비트의 코드값을 4자리의 16진수로 표시
 - 유니 코드의 구성

■ 유니 코드 표

상위16진수 하위16진수	000	001	002	003	004	005	006	007
0	NUL	DEL	SP	0	@	Р	,	р
1	SOH	DC1	!	1	A	Q	а	q
2	STX	DC2	n	2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	V
7	BEL	ETB	1	7	G	W	g	w
8	BS	CAN	(8	Н	Х	h	X
9	HT	EM)	9	ţ	Υ	į	у
А	LF	SUB	*		J	Z	j	Z
В	VT	ESC	+	;	К]	k	{
С	FF	FS	,	<	L	\	ľ	Ī

• 영문자 A에 대한 유니 코드 ☞ 0041 → 0000 0000 0100 0001

•	16 비트																			
	상위 16진수													하위 16진수						
	0 0 4											1								
	상위 2진수													하위 2진수						
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1					

- 한글에 대한 유니코드
 - 초성 19개 imes 중성 21개 imes 종성 28개 = 11,172개

[표 1-6] 유니코드표: 한글에 대한 유니코드 중 일부

상위16진수 하위16진수	AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7
0	7]	감	갠	갰	걀	걐	걠	거
1	각	갑	갡	갱	걁	걑	걡	걱
2	갂	값	갢	갲	걂	걒	걢	걲
3	갃	갓	갣	갳	걃	걓	걣	걳
4	간	갔	갤	갴	걄	걔	걤	건
5	갅	강	갥	갵	걅	걕	걥	걵
6	갆	갖	갦	갶	걆	걖	걦	걶
7	칻	갗	갧	갦	걇	걗	걧	걷
8	갈	갘	갨	갸	걈	걘	걨	걸
9	갉	같	갩	갹	걉	걙	걩	걹
А	갊	갚	갪	갺	걊	걚	걪	걺
В	갋	갛	갫	갻	걋	걛	걫	걻
С	갌	개	갬	갼	걌	걜	걬	걼
D	갍	객	갭	갽	걍	걝	걭	걽
Е	갎	갞	갮	갾	걎	걞	걮	걾
F	갏	갟	갯	갿	걏	걟	걤	걿

• 한글 '가'에 대한 유니 코드 ☞ AC0 0 → 1010 1100 0000 0000

~	16 비트 →																		
	상위 16진수													하위 16진수					
	A C 0												0						
	상위 2진수												하위 2	진수					
1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0				

□ 자료의 표현 - (3) 논리자료의 표현

❖ 논리자료

- 논리값을 표현하기 위한 자료 형식
- 논리값
 - 참(true)과 거짓(false), 1과 0
- 1바이트를 사용하여 논리자료를 표현하는 방법
 - 방법1)
 - 참 최하위 비트를 1로 표시. 0000001
 - 거짓 전체 비트를 0으로 표시. 0000000
 - 방법2)
 - 참 전체 비트를 1로 표시. 11111111
 - 거짓 전체 비트를 0으로 표시. 0000000
 - 방법3)
 - 참 하나 이상의 비트를 1로 표시
 - 거짓 전체 비트를 0으로 표시. 0000000

□ 자료의 표현 - (4) 포인터 자료의 표현

❖ 포인터 자료

- 메모리의 주소를 표현하기 위한 자료 형식
- 변수의 주소나 메모리의 특정 위치에 대한 주소를 저장하고 주소연산하기 위해 사용

❖ 문자열(string) 자료

- 여러 문자로 이루어진 문자의 그룹을 하나의 자료로 취급하여 메모리에 연속적으로 저장하는 자료 형식
- 하나의 문자열 자료에 포함된 부분문자열을 표현하는 방법
 - 방법1) 부분문자열 사이에 구분자를 두고 연속 저장하는 방법
 - 방법2) 가장 긴 부분문자열의 길이에 맞추어 고정 길이로 연속 저장하는 방법
 - 방법3) 부분문자열을 연속 저장하고 각 부분문자열에 대한 포인터를 사용하는 방법

■ 부분문자열의 표현 예

- 표현할 문자열 : {COMPUTER, DATA STRUCTURE, STRING}
- 방법1) 구분자를 사용하는 표현 : 구분자로 세미콜론(;) 사용

С	0	М	Р	U	Τ	Е	R	;	D	Α	Τ	Α	5	3	Τ	R	U	С	Τ	U	R	Е	÷	S	Т	R	l	Ν	G
4		부	분문	자열	1	=	-	20	4					부분	문기	다열	2					-		4	부	분문	자열	3	→

방법2) 고정길이를 사용하는 표현

메모리 주소

■ 부분 문자열 표현 방법의 비교

비교항목 방법	구분자를 사용하는 방법	고정길이로 저장하는 방법	포인터를 사용하는 방법
메모리 이용률	문자열 길이 + 구분자 길이 ☞ 효율적	가장 긴 부분문자열 길이 × 부분문자열의 개수 ☞ 비효율적	문자열 길이 + 포인터 저장공간 ☞ 효율적
부분문자열 탐색시간	문자 비교연산시간 + 구분자 식별시간 ☞ 비효율적	문자 비교연산시간 ☞ 효율적	문자 비교연산시간 + 포인터 주소연산시간 ☞ 효율적