

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Β΄, ΤΜΗΜΑ Ρ-Ω, ΑΚΑΔ. ΕΤΟΣ 2022–2023 ΔΙΔΑΣΚΩΝ: ΓΡΗΓΟΡΙΟΣ ΖΟΥΡΟΣ

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Μαγνητικά υλικά, Μαγνήτιση, Κατοπτρισμός σε μαγνητικά υλικά

Άσκηση 1

Στη διάταξη του διπλανού σχήματος, η περιοχή 1 με 0 < z < h καλύπτεται από μόνιμο μαγνήτη με μαγνήτιση $\mathbf{M}_1 = M_0(1+z/h)\hat{x}$, ενώ έχει ἀπειρες διαστάσεις στις διευθύνσεις x και y. Οι περιοχές 2 και 3 καλύπτονται με αέρα.

- (α΄) Να υπολογιστούν όλες οι πυκνότητες φευμάτων μαγνήτισης (χωφικές \mathbf{J}_M και επιφανειακές \mathbf{K}_M) που αναπτύσσονται στη διάταξη.
- (β') Να υπολογιστούν η μαγνητική επαγωγή $\bf B$ και η ένταση του μαγνητικού πεδίου $\bf H$ παντού στο χώρο.
- (γ΄) Να υπολογιστεί το διανυσματικό δυναμικό ${\bf A}$ παντού στο χώρο, με αναφορά ${\bf A}(z=0)=0.$

Άσκηση 2

Στη διάταξη του διπλανού σχήματος, ο χώρος z>0 καλύπτεται από αξρα με $\mu_1=\mu_0$, ενώ ο χώρος z<0 από μαγνητικό υλικό με $\mu_2=\mu_r\mu_0$. Στις θέσεις z=h και z=-h υπάρχουν νηματοειδείς αγωγοί, άπειρου μήκους, οι οποίοι φέρουν συνεχή ρεύματα βI και $(1-\beta)I$, αντίστοιχα, με την ομόρροπη φορά που υποδεικνύεται στο σχήμα, όπου β γνωστή σταθερά.

Ζητείται ο υπολογισμός της έντασης του μαγνητικού πεδίου Η και της μαγνητικής επαγωγής Β, παντού στο χώρο.

[Υπόδειξη: αναφορικά με τα μοναδιαία διανύσματα που αναλύεται το ${\bf H}$ (και κατά συνέπεια το ${\bf B}$), ορίστε δύο διανύσματα, ένα με κέντρο συντεταγμένων το (x,y,z)=(0,0,h), και ένα με κέντρο συντεταγμένων το (x,y,z)=(0,0,-h). Συνοδέψτε την απάντησή σας με ένα σκαρίφημα.]