

Monitoring and Visualising the Simulations

Outline

- 1 Multiple Replications and Fetch the Monitor Data
- 2 Monitor the Resources, Arrivals and Attributes Data
- 3 Visualise the Resources Data
- 4 Utilise the Arrivals Data to Compute the Mean Waiting Time
- **5** Summary

Learning Objectives

In this video, we will

- Run the simulations multiple times.
- Monitor and visualise the results of the simulations: arrivals, attributes and resources.

Multiple Replications

- The simulation model simulates the STEM event for 360 minutes.
- We will run the simulation model 50 times.

```
set.seed(2909)
mm2.envs <- replicate(50,
    simmer("mixer") %>%
    add_resource("MalWart", capacity = 2) %>%
    add_resource("JHBunt", capacity = 3) %>%
    add_generator("Student", student,
    function() rexp(1, 1/2), mon = 2) %>%
    run(until = 360) %>% wrap())
```

. . .

```
357.646: Student172: Here I am
358.139: Student172: I have affixed my name tag!
358.657: Student167: I shall join the queue and talk to a MalWart recruiter
359.777: Student173: Here I am
```

Target Outcomes

- Recall that we were interested to study three particular performance measures.
 - ► The utilisation of the recruiters at each company booth.
 - ► The number of students waiting in line at each booth.
 - ► The mean wait time of students during the mixer.
- To extract the relevant monitor data that we need, we run the following three lines of code on the 50 simulation environments that we have generated.

```
mon_resources <- get_mon_resources(mm2.envs)
mon_arrivals <- get_mon_arrivals(mm2.envs)
mon_attributes <- get_mon_attributes(mm2.envs)</pre>
```

Monitor the Resources Data

• Let's begin by inspecting the rows in the 'mon_resources' table.

```
knitr::kable(head(mon_resources))
```

resource	-	time	server	queue	capacity	system	limit	replication
:	- -	: I	:	:	: I	:	:	:
MalWart	-	5.156790	1	0	21	1	Inf	1
MalWart	-	5.436570	0	0	21	01	Inf	1
JHBunt	-	5.436570	1	0	31	1	Inf	1
MalWart	-	9.106437	1	0	21	1	Inf	1
MalWart	-	11.495920	0	0	21	01	Inf	1
JHBunt	-	11.495920	2	0	31	2	Inf	1

 We can conclude that a student talked to a Malwart recruiter at 5.16 minutes, and he left the counter at 5.44 minutes.

Monitor the Arrivals Data

Now, let us inspect the rows in the 'mon_arrivals' table.

```
knitr::kable(head(mon_arrivals))
```

```
Iname
         | start time | end time | activity time | finished | replication |
1:----:1:----1-----1-----:1
|Student3 | 8.642642| 12.76900|
                                  4.126363 | TRUE
                                                            1 I
|Student1 | 4.484858| 25.34722|
                                 20.862361 | TRUE
|Student8 | 20.554220| 25.36857|
                                 4.814350|TRUE
| Student2 | 4.874769| 28.54394|
                                 23.669175|TRUE
|Student11 | 27.536154| 34.41472|
                                  6.878562 | TRUE
|Student0 |
            2.255781 38.55244
                                 33.108475 | TRUE
```

• For example, the student 3 arrived at 8.64 minutes, and left at 12.77 minutes. In total, he spent 4.13 minutes in the activities.

Monitor the Arrivals Data

cont'd

To know the breakdown activity time per resource, we can use the following code.

```
mon arrivals sub <- get mon arrivals(mm2.envs, per resource = TRUE)
knitr::kable(head(mon arrivals sub))
       | start time | end time | activity time | resource | replication |
lname
|:----:|:----|----:|-----:|
|Student1 | 5.156790| 5.43657|
                             0.2797801|MalWart |
|Student3 | 9.106437 | 11.49592 | 2.3894828 | Mal Wart |
|Student3 | 11.495920 | 12.76900 | 1.2730851 | JHBunt |
|Student8 | 20.950618 | 23.24390 | 2.2932834 | MalWart |
|Student2 | 23.704085| 24.68430| 0.9802124|MalWart |
11
queueing_time = (end_time - start_time) - activity_time
```

Monitor the Attributes Data

Next, let us inspect the rows in the 'mon_attributes' table.

```
knitr::kable(tail(mon_attributes))
```

```
time | name | key | value | replication |
|:----|----:|:-----:|:----:|----:|
| 13367 | 352.5556|Student169 | type |
                                                   50 l
| 13368 | 352.6140 | Student 170 | type |
                                                   50 l
                                       21
|13369 | 355.8731|Student161 | type |
                                                   50 I
|13370 | 357.0327|Student171 | type |
                                                   50 l
|13371 | 358.1386|Student172 | type |
                                                   50 l
| 13372 | 358.6568 | Student 167 | type |
                                       21
                                                   50 L
```

In total, there are 3 types of students.

• To address the question of queue lengths at the two booths, we can begin with a plot.

cont'd

To zoom into one specific simulation, say, the first replication, we can use the following code.

```
plot(mon_resources[mon_resources$replication == 1, ],
    items=c("queue", "server"), limits=FALSE)
```


cont'd

If our interest is the instantaneous number of students in the queue, we can use the following code.

```
plot(mon_resources[mon_resources$replication == 1, ],
    items=c("queue", "server"), limits=FALSE, step = TRUE)
```


cont'd

plot(mon_resources, metric="utilization")

• In conclusion, the utilisation of 3 recruiters at the JHBunt booth is close to 85%, and the utilisation of 2 recruiters at the Malwart booth is slightly above 65%.

Utilise the Arrivals Data

to compute the waiting time at booths

- The arrivals data contain all the information we need to compute the waiting time for each student.
- To answer the last question on the mean waiting time at booths, our approach is going to be as follows:
 - ▶ We first write a simple function to extract the summary measure that we need for a single replication.
 - We next split the data frame by the replication number and use sapply to call this function on each sub data frame.

Waiting Time at Booths

define a function, split the data frame, and calculate the mean for each replication

 Our function is going to take in a data frame, and compute the mean waiting time for all students in that particular replication.

```
ave_wait_time <- function(df) {
  mean(df$end_time - df$start_time - df$activity_time)
}</pre>
```

• To split the arrivals data frame, we can use the **split** function from R. It returns a list of data frames, which we can then feed into **sapply**.

```
s_out <- split(mon_arrivals, ~replication)
w_vec <- sapply(s_out, ave_wait_time)</pre>
```

• **w_vec** records a vector of 50 values, which are some mean waiting time of students over the course of a 6-hour mixer, for each replication.

```
mean(w_vec)
```

[1] 12.1311

Waiting Time at Booths

visualise the mean waiting time across the replications

We can check the distribution of the mean waiting time across the replications.

Histogram of w_vec

Waiting Time at Booths

calculate the standard normal-based 95% confidence interval

We can compute a confidence interval to study the mean wait time of students.

```
summary(w vec)
  Min.
          1st Qu.
                  Median
                            Mean
                                     3rd Qu.
                                               Max.
  1.926
          6.118
                  10.481
                            12.131
                                     16.066
                                               34,994
ci_95 <- c(mean(w_vec) + qnorm(0.025)*sd(w_vec)/sqrt(length(w_vec)),</pre>
           mean(w vec) - qnorm(0.025)*sd(w vec)/sqrt(length(w vec)))
ci 95
```

- [1] 9.894196 14.367997
- We are 95% confident that the population mean wait time is between 9.89 and 14.37 minutes.

Decision Time and Future Plan

- From the earlier results, it is clear that the booths are being under-utilised.
- As an organiser, we have a powerful tool, Simulation, in our hands.
- We could experiment with several ways to make our operation more efficient.
 - ► We could, for instance, increase or reduce the number of recruiters at each booth, and see how that affects the waiting times.
 - ► If our priority is the utilisation, we could either keep the current arrangement, or slightly reduce the number of recruiters.
 - If our priority is to further reduce the mean waiting time, we could possibly increase the number of recruiters.
 - With a little more data manipulation, we can compute time-averaged numbers of wandering students to see if they are taking up a lot of physical space at the mixer.

Summary

In this video, we have:

- Fetched the monitor data: arrivals, attributes and resources.
- Visualised the monitor data.
- ▶ Utilised the monitor data to answer our research guestions.

Overall.

we hope that this week's set of videos have given you a good indication of the overall process of setting up, executing, and studying the output of a discrete event simulation using R.

References

Rossetti, M.D. (2021) Simulation Modeling and Arena

Iñaki Ucar, Bart Smeets (2022) Package 'simmer'

https://cran.r-project.org/web/packages/simmer/simmer.pdf

Iñaki Ucar, Bart Smeets (2022)

Package 'simmer.plot'

https://cran.r-project.org/web/packages/simmer.plot/simmer.plot.pdf