Clock Synchronization

When each machine has its own clock, an event that occurred after another event may nevertheless be assigned an earlier time.

Physical Clocks (1)

Computation of the mean solar day.

Physical Clocks (2)

TAI seconds are of constant length, unlike solar seconds. Leap seconds are introduced when necessary to keep in phase with the sun.

Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at different rates.

Cristian's Algorithm

Both T_0 and T_1 are measured with the same clock

Getting the current time from a time server.

The Berkeley Algorithm

- a) The time daemon asks all the other machines for their clock values
- b) The machines answer
- c) The time daemon tells everyone how to adjust their clock

Global State (3)

- b) Process Q receives a marker for the first time and records its local state
- c) Q records all incoming message
- *d*) *Q* receives a marker for its incoming channel and finishes recording the state of the incoming channel

The Bully Algorithm (1)

The bully election algorithm

- Process 4 holds an election
- Process 5 and 6 respond, telling 4 to stop
- Now 5 and 6 each hold an election

Mutual Exclusion: A Centralized Algorithm

- a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted
- b) Process 2 then asks permission to enter the same critical region. The coordinator does not reply.
- c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2

A Distributed Algorithm

- a) Two processes want to enter the same critical region at the same moment.
- b) Process 0 has the lowest timestamp, so it wins.
- When process 0 is done, it sends an OK also, so 2 can now enter the critical region.

A Toke Ring Algorithm

- a) An unordered group of processes on a network.
- b) A logical ring constructed in software.