U8300C 模块硬件接口手册 V2.5

重要声明

版权声明

版权所有: 龙尚科技(上海)有限公司

本资料及其包含的所有内容为龙尚科技(上海)有限公司所有,受中国法律及适用之国际公约中有关著作权法律的保护。未经龙尚科技(上海)有限公司书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。

不保证声明

龙尚科技(上海)有限公司不对此文档中的任何内容作任何明示或暗示的陈述或保证,而且不对特定目的的适销性及适用性或者任何间接、特殊或连带的损失承担任何责任。

保密声明

本文档(包含任何附件)包含的信息是保密信息。接收人了解其获得的本文档是保密的,限用于规定的目的外不得用于任何目的,也不得将本文档泄露给任何第三方。

免责声明

本公司不承担由于客户不正常操作造成的财产或者人身伤害责任。请客户按照手册中的技术规格和参考设计开发相应的产品。在未声明之前,本公司有权根据技术发展的需要对本手册内容进行更改,且更改版本不另行通知。

目录

1.	引言	8
	1.1. 文档目的	8
	1.2. 内容一览	8
	1.3. 相关文档	8
	1.4. 修订记录	9
	1.5. 缩略语	9
2.	产品简介	11
	2.1. 特性列表	
	2.2. U8300C模块工作模式	
	2.3. 系统功能框图	
	2.4. 硬件接口	
3.	应用接口及功能描述	19
	3.1.PCI express Mini Card接口定义	
	3.2. 电源	20
	3.2.1. 电源接口描述及外围电路设计	21
	3.2.1.1. VBAT输入	21
	3.2.1.2. VEXT_1.8V电压输出	21
	3.2.2.1. 上电开机	
	3.2.2.2. 掉电关机	
	3.2.3. 复位控制	
	3.2.3.1. 引脚复位	
	3.2.3.2. AT命令复位	
	3.3. USB接口	
	3.3.1. USB接口描述	
	3.3.2. USB参考电路	
	3.3.3. USB驱动	
	3.3.3.1 Linux系统加载U8300C的USB驱动过程	
	3.3.3.1.1 USB串口驱动添加	
4	3.3.3.1.2 增加具体设备驱动	
	3.3.3.1.3 USB串口驱动过滤NDIS接口	
	3.3.3.1.4 USB串口驱动加载方法	
	3.3.3.2. Linux系统下U8300C交互AT过程	
	3.3.3.3. Linux系统下U8300C拨号上网过程	
	3.3.3.4. Linux系统下U8300C NDIS驱动加载方法	
	3.3.3.4.1 NDIS驱动添加系统组件	
	3.3.3.4.2 NDIS驱动编译	
	3.3.3.4.3 NDIS驱动加载	
	3.3.3.5. Linux系统下U8300C NDIS拨号上网	
	3.3.3.5.1 修改拨号配置文件	34

	3.3.3.5.2 安装dhcp client客户端	34
	3.3.3.5.3 编译运行测试程序	34
	3.3.3.5.4 查看IP地址与网络连接测试	35
	3.4. UART接口	35
	3.4.1. UART接口描述	35
	3.4.2. UART接口参考电路	36
	3.4.3. UART接口描述	36
	3.4.4. U8300C模块休眠和唤醒控制接口	37
	3.5. PCM接口	37
	3.5.1 PCM 开启	37
	3.5.2 PCM 关闭	
	3.6. 模拟音频接口	38
	3.6.1. 模拟音频接口描述	38
	3.6.2. 模拟音频接口参考设计电路	38
	3.7. USIM/SIM接口	39
	3.7.1. USIM/SIM卡接口描述	
	3.7.2. USIM/SIM卡接口参考设计	40
	3.8. 网络指示接口	42
	3.8.1.GPIO输出信号描述	43
	3.8.2. Netlight参考电路	43
	3.9. 飞行模式控制接口	43
	3.9.1. 硬件管脚控制	
	3.9.2. AT指令控制	44
	3.10. 天线接口	
	3.10.1. 天线的安装	
	3.10.1.1. 天线RF连接器	44
	3.10.2. U8300C的RF输出功率	45
	3.10.3. U8300C的RF接收灵敏度	45
	3.10.4. U8300C工作频率	46
	3.10.5. U8300C天线要求	
4.	机械特性	48
	4.1. 模块实物视图	48
4	4.2. 模块 3D图	
	4.3. 模块 2D结构图	
	4.4. 模块应用端U8300C接口原理图和PCB封装推荐	
	4.5. 射频连接器	49
	4.5.1. 模块端射频连接器	
	4.5.2. 应用端RF转接线连接器推荐	50
5.	各种业务下的功耗	51
6.	电气特性	52
	6.1. 极限电压范围	52
	6.2. 环境温度范围	52
	6.3. 接口工作状态电气特性	52

6.4.	环境可靠性要求	53
6.5.	FSD特性	53

Confidential

LONG 🔷 UNG

表格

表 1: 版本修订记录	9
表 2: 缩略语描述对照表	9
表 3: U8300C模块主要特性列表	12
表 4: U8300C工作模式一览	14
表 5: U8300C连接器pin定义表	20
表 6: U8300C电源相关接口	20
表 7: U8300C USB接口	24
表 8: U8300C 枚举接口	
表 9: U8300C模块 UART接口	
表 10: U8300C 休眠和唤醒控制接口	
表 11: 模拟音频接口	38
表 12: U8300C USIM/SIM接口	40
表 13: U8300C GPIO信号接口	
表 14: U8300C 网络指示灯状态描述	43
表 15: U8300C的RF输出功率表	45
表 16: U8300C的RF接收灵敏度表 17: U8300C工作频率	45
表 17: U8300C工作频率	46
表 18: U8300C天线指标要求	
表 19: U8300C模块各频段功耗	
表 20: U8300C模块极限工作电压范围	52
表 21: U8300C模块温度范围	52
表 22: U8300C普通数字IO信号的逻辑电平	52
表 23: U8300C接口电源工作状态电特性	
表 24: U8300C环境可靠性要求	53
表 25: U8300C接口抗ESD特性	54
67	

LONG 🔷 UNG

图表

图 1: U8300C模块系统框图	16
图 2: U8300C模块正面实图	17
图 3: U8300C模块背面实图	17
图 4: U8300C模块pin序图	19
图 5: U8300C模块VBAT输入	21
图 6: 上电开机模式开关机时序图	22
图 7: RESET控制模块复位参考电路	23
图 8: U8300C RESET时序图图 9: U8300C USB接口参考设计图	23
图 9: U8300C USB接口参考设计图	25
图 10: U8300C UART无流控连接设计图 图 11: U8300C模块的模拟音频参考设计图	36
图 11: U8300C模块的模拟音频参考设计图	39
图 12: C707 10M006 512 2 SIM Holder的SPEC	41
图 13: U8300C USIM/SIM接口参考设计图	42
图 14: U8300C Netlight参考设计图 图 15: U8300C RF连接器	43
图 15: U8300C RF连接器	45
图 16: U8300C 正面和背面实物视图	48
图 17: U8300C 2D结构图	
图 18: 模块端RF连接器U.FL-R-SMT-1(80)结构图	50
. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

LONG 🖴 UNG

1. 引言

U8300C 无线模块是一款适用于

FDD-LTE/TDD-LTE/TD-SCDMA/UMTS/EVDO/EDGE/GPRS/GSM/CDMA

多种网络制式和 GPS 定位服务的无线终端产品,在 FDD-LTE 网路下,U8300C 接入速度下行可达 100Mbps,上行可达 50Mbps,在 TDD-LTE 网络下,U8300C 接入速度下行可达 61Mbps,上行可达 18Mbps,在没有 LTE 网络覆盖的情况下,U8300C 还可以通过TD-SCDMA 接入,速率可达下行 4.2Mbps 和上行 2.2Mbps,通过 UMTS 接入,速率可达下行 42Mbps 和上行 5.76Mbps,通过 EVDO 接入,速率可达下行 14.7 Mbps 和上行 5.4Mbps,EGDE 接入速率可达 237kbps,GPRS 接入速率可达 85.6kbps。GPS 可支持55 通道,跟踪导航接收灵敏度达到-161dBm,冷启动时间 32S 内,热启动时间 1S 以内。

U8300C 在提供高速数据接入和 GPS 定位服务的同时,可提供短信、通讯簿等功能,可广泛应用于移动宽带接入、视频监控、手持终端、车载设备等产品。

1.1. 文档目的

本文详细阐述了 U8300C 无线模块的基本功能及主要特点、硬件接口及使用方法、结构特性、功耗指标和电气特性,指导用户将 U8300C 模块嵌入各种应用终端的设计。

1.2. 内容一览

本文共分为以下几部分:

- ◆ 第1章,主要介绍文档目的、相关资料、修订记录、缩略语解释等;
- ◆ 第2章, 描述 U8300C 无线模块的基本功能和主要特点:
- ◆ 第3章,详细描述了U8300C各个硬件接口的功能、特性和使用方法;
- ◆ 第4章,详细描述 U8300C 结构方面的特性和注意事项;
- ◆ 第5章,详细描述 U8300C 各种业务下的功耗;
- ◆ 第6章,详细描述 U8300C 电气特性。

1.3. 相关文档

- ♦ U8300C 模块规格说明;
- ♦ U8300C AT 指令集:
- ♦ U8300C EVB 用户手册:
- ♦ U8300C 参考设计电路;
- ◆ U8300C应用业务流程手册。

1.4. 修订记录

表 1: 版本修订记录

版本	姓名	发布时间	修订描述
V2.3	张华明	2012-12-20	V2.3 版本创建
V2.4	杨建宇	2014-5-26	1.增加频段信息
			2.增加 NDIS 驱动加载内容
			3.增加 SIM 热插拔内容
			4.增加网络指示灯内容
			5.增加 PCM 使用内容
			6.增加模拟音频接口内容
			7.增加休眠与唤醒相关内容
			8.增加 GPS 相关内容
V2.5	张华明	2014-8-8	单独出 U8300C 文档

1.5. 缩略语

表 2: 缩略语描述对照表

缩写	描述	中文描述
AMR	Adaptive Multi-rate	自适应多速率
BER	Bit Error Rate	误码率
BTS	Base Transceiver Station	基站收发信台
PCI	Peripheral Component Interconnect	外设部件互连
CS	Circuit Switched (CS) domain	电路域
CSD	Circuit Switched Data	电路交换数据
DCE	Data communication equipment	数据电路终端设备
DTE	Data terminal equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EDGE	Enhanced Data rates for GSM Evolution	增强型GPRS
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型GSM
EMC	Electromagnetic Compatibility	电磁兼容性
ESD	Electrostatic Discharge	静电释放
FR	Frame Relay	帧中继
GMSK	Gaussian Minimum Shift Keying	高斯最小移频键控
GPIO	General Purpose Input Output	通用输入/输出
GPRS	General Packet Radio Service	通用分组无线系统
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
HR	Half Rate	半速

HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
HSPA	HSPA High-Speed Packet Access	高速分组接入
IEC	International Electro-technical Commission	国际电工技术委员会
IMEI	International Mobile Equipment Identity	国际移动设备标识
I/O	Input/Output	输入/输出
ISO	International Standards Organization	国际标准化组织
ITU	International Telecommunications Union	国际电信联盟
bps	bits per second	比特每秒
LED	Light Emitting Diode	发光二极管
LTE	Long Term Evolution	长期演进技术
M2M	Machine to machine	机器到机器
MCU	Micro Control Unit	微处理单元
МО	Mobile Originated	移动台发起的
MT	Mobile Terminated	移动台终止的
NTC	Negative Temperature Coefficient	负温度系数
PC	Personal Computer	个人计算机
PCB	Printed Circuit Board	印制电路板
PCS	Personal Cellular System	个人蜂窝系统
PCI	Peripheral Component Interconnect	外设部件互连
PCM	Pulse Code Modulation	脉冲编码调制
PCS	Personal Communication System	GSM1900
PDU	Packet Data Unit	分组数据单元
PPP	Point-to-point protocol	点到点协议
PS	Packet Switched	分组交换
QPSK	Quadrate Phase Shift Keying	正交相位移频键控
SIM	Subscriber Identity Module	用户识别模块
TCP/IP	Transmission Control Protocol/ Internet Protocol	传输控制协议/互联网协议
UART	Universal asynchronous receiver-transmitter	通用异步收/发器(机)
USIM	Universal Subscriber Identity Module	通用用户识别模块
UMTS	Universal Mobile Telecommunications System	通用移动通信系统
USB	Universal Serial Bus	通用串行总线
WCDMA	Wideband Code Division Multiple Access	宽带码分多址

2. 产品简介

U8300C 无线模块是一款适用于

FDD-LTE/TDD-LTE/TD-SCDMA/UMTS/EVDO/EDGE/GPRS/GSM/CDMA 多种网络制式的无线终端产品,U8300C 模块支持多种频段,有四模,五模,七模三种版本可供选择。

LTE-TDD Quad-band Band 38/39/40/41;

LTE-FDD Dual-band Band 1/3;

TD-SCDMA Dual-band Band 34/39;

UMTS Single band Band 1;

EVDO Single band 800MHz;

CDMA1x Single band 800MHz;

GSM Quad-band 850/900/1800/1900;

U8300C 同时提供 GPS 定位服务:

GPS 可支持 55 通道;

跟踪导航接收灵敏度达到-161dBm;

冷启动时间 32S 以内,热启动时间 1S 以内;

U8300C 支持 FDD-LTE、TDD-LTE、TD-SCDMA、UMTS 和 EVDO 高速接入以及 GPS 定位服务,同时可提供短信、通讯簿,可广泛应用于移动宽带接入、视频监控、手持终端、车载设备等产品。

U8300C采用先进的高度集成设计方案,将射频、基带集成在一块 PCB上,完成无线接收、发射、基带信号处理和音频信号处理功能,采用双面布局,模块结构尺寸为:51.0×30.0×4.6mm。

U8300C 支持 AT 命令扩展,可以实现用户个性化定制方案。

U8300C 采用 PCI express Mini Card 接口,提供如下功能接口:

- 1) 电源接口
- 2) USB接口
 - 3) UART接口
 - 4) USIM/SIM接口
 - 5) PCM 接口
 - 6) RESET接口
 - 7) 电压输出

U8300C 的射频接口采用: Hirose's U.FL-R-SMT-1(80) 50ohm 天线连接器

2.1. 特性列表

表 3: U8300C 模块主要特性列表

表 3: U8300C 模块主要特					
产品特性		描述			
电源电压		3.3V~3.6V (推荐值 3.3V)			
		LTE-TDD Quad-band Band 38/39/40/41;			
		LTE-FDD Dual-band Band 1	, ,		
			TD-SCDMA Dual-band Band 34/39;		
工作频段		UMTS Single band Band 1;			
		EVDO Single band 800MHz;			
		CDMA1x Single band 800MHz;			
		GSM Quad-band 850/900/1			
		FDD: 100Mbps(DL), 50Mbps			
	LTE	TDD: 61Mbps(DL), 18Mbps(JL)		
		支持 Release 9 category 3			
	TD-SCDMA	TD-SCDMA PS: 4.2Mbps(DL), 2.2Mbps(UL)			
	HSPA+	HSDPA: 21 Mbps, HSUPA: 5	·		
	EVDO	EVDO PS: 14.7Mbps(DL), 5.4			
数据业务		EDGE: Class12, 236.8kbps(DL), 118kbps(UL)			
X/11 //	EDGE	移动台 class B			
		编码方案 MCS1-9			
		GPRS: Class10, 85.6kbps(DL), 85.6kbps(UL)			
	GPRS	移动台 class B			
	GFKS	编码方案 CS1-4			
		支持 Full PBCCH			
	CSD	GSM CSD: 14.4kbps			
	47	点对点 MO、MT			
短信业务		短信小区广播			
	10	支持 Text 和 PDU 模式			
彩信业务		需要 AP 端实现 MMS 协议,模块实现彩信通知			
GPS 部分					
频率		L1 :1575.42 +/-10 MHz			
通道数		55 通道			
定位精度		< 2M			
A-GPS		支持			
接收灵敏度		Cold Start	-145dBm		
		Acquisition	-160dBm		
		Tracking	-161dBm		
首次获星时间		Cold Start	32S		
		Warm Start	29S		
		Hot Start	1S		

	正常工作温度: -20℃~+65℃
工作温度	受限工作温度: -30℃~+75℃
	存储温度: -40℃~+85℃
	VBAT,GND:空气放电±8KV,接触放电±4KV
ESD	射频天线接口:空气放电±8KV,接触放电±4KV
	其它接口:空气放电±4KV,接触放电±2KV
	Class 4 (2 W) for GSM850/900
	Class 1 (1 W) for GSM1800/1900
最大发射功率	Class E2 (0.5 W) for EDGE900
	Class E2 (0.4 W) for EDGE1800
	Class 3 (0.25 W) for TD-LTE/FDD-LTE/TD-SCDMA/UMTS
	关机漏电流: 50μA
功耗	Idle 模式: <40mA
7,771	通话模式: <300mA
	数据模式: <800mA
接口连接器	PCI express Mini Card 接口
及口处技術	Hirose's U.FL-R-SMT-1(80) 50ohm 天线连接接口
	电源接口(5pin VBAT,14pin GND)
	1 路 USB2.0 High-Speed 接口
PCI express Mini Card	1路 UART 接口
接口	1 路标准 USIM/SIM 卡接口(支持 3V、1.8V USIM/SIM)
	1路 PCM 接口(保留)
	2路硬件复位接口
	1 路 1.8V 电压输出
	1 个主 RF 连接器,匹配 50Ω 阻抗特性天线
天线连接口	1个分集接收 RF 连接器,匹配 50Ω 阻抗特性天线
	1个 GPS 接收 RF 连接器(保留)
结构尺寸	51.0×30.0×4.6mm
重量	<11.5 克
固定方式	接地螺丝孔(2个)
	共13个测试点:
	POWER_ON 1 个
	UART 2 个
模块测试点	VEXT_1.8 1 个
	VBAT 1 个
	GND 2 个
	USIM 接口 4 个
	USB接口 2 个
AT 命令	支持标准 AT 指令集(Hayes 3GPP TS 27.007 和 27.005)
	支持 LongSung 扩展 AT 指令集
	СТА
认证	ccc
	RoHS

2.2. U8300C模块工作模式

表 4: U8300C 工作模式一览

模式	描述		
大人			
4-#4 M22	GSM IDLE	模块系统处于工作空闲状态,模块已经注册到 GSM 网络,模	
GSM 模式	COM TALL	块此时已经做好了收发(短信和语音服务)的准备。	
	GSM TALK	此时模块做语音通话服务,模块功耗取决于网络设置。	
	CDDC IDLE	模块已经为 GPRS 数据传输做好了准备。但此时尚无数据收	
	GPRS IDLE	发。模块功耗取决于网络设置和 GPRS 的相关设置 (比如多时	
GPRS 模式		際Class等级设置)。	
	CDDC DATA	GPRS 数据收传输中,模块功耗取决于网络设置(比如功率控制等码)、数据上下行速度和 CPRC 的相关识器(以由发明器)	
	GPRS DATA	制等级)、数据上下行速率和 GPRS 的相关设置(比如多时隙 Class 等级设置)。	
	EDCE IDLE	模块已经为 EDGE 数据传输做好了准备。但此时尚无数据收	
	EDGE IDLE	发。模块功耗取决于网络设置和 EDGE 的相关设置(比如多时隙 Class 等级设置)。	
GPRS 模式		EDGE 数据传输中,模块功耗取决于网络设置(比如功率控制	
	EDGE DATA	等级)、数据上下行速率和 EDGE 的相关设置(比如多时隙	
	EDGE DATA	Class 等级设置)。	
		模块系统处于工作空闲状态,模块已经注册到 CDMA 网络,	
	CDMA IDLE	模块此时已经做好了收发(短信和语音服务)的准备。	
CDMA 模式	CDMA TALK	此时模块做语音通话服务,模块功耗取决于网络设置。	
CDMA	CDMA DATA	CDMA 数据收传输中,模块功耗取决于网络设置(比如功率控	
		制等级)、数据上下行速率和 CDMA 的相关设置	
	EVDO IDLE	模块系统处于工作空闲状态,模块已经注册到 EVDO 网络,	
5/50 #+		模块此时已经做好了收发(短信和语音服务)的准备。	
EVDO 模式	EVDO DATA	EVDO 数据收传输中,模块功耗取决于网络设置(比如功率控	
		制等级)、数据上下行速率和 EVDO 的相关设置	
	TD-SCDMA IDLE	模块系统处于工作空闲状态,模块已经注册到 TD-SCDMA 网	
		络,模块此时已经做好了收发服务的准备。	
TD-SCDMA 模式	TD-SCDMA TALK	模块 TD-SCDMA 语音服务中,模块功耗取决于网络设置。	
	TD CCDMA DATA	TD-SCDMA 数据传输中,模块功耗取决于网络设置(比如功	
	TD-SCDMA DATA	率控制等级)、数据上下行速率和 TD-SCDMA 的相关设置。	
	HSDA IDLE	模块已经为 HSPA 数据传输做好了准备。但此时尚无数据收	
HSPA 模式	HSPA IDLE	发。模块功耗取决于网络设置。	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	HSPA DATA	HSPA 数据传输中,模块功耗取决于网络设置(比如功率控制	
		等级)、数据上下行速率和 HSPA 的相关设置。	
	LTE IDLE	模块已经为 LTE 数据传输做好了准备。但此时尚无数据收发。	
 LTE 模式		模块功耗取决于网络设置。	
	LTE DATA	LTE 数据传输中,模块功耗取决于网络设置(比如功率控制等	
	LIL DAIA	级)、数据上下行速率和 LTE 的相关设置。	

具小功能描述	VBAT 持续供电,使用 AT+CFUN=0 使模块进入最小功能模式,此时模块的射频收	
最小功能模式	发处于关闭状态。使用 AT+CFUN=1 模块重新打开收发注册网络到正常功能模式。	
关机模式	VBAT 低电压关机。	

Confidential Confidential

2.3. 系统功能框图

图 1 是 U8300C 模块系统框图:

2) 存储器,包含 NAND FLASH 和 SDRAM

2.4. 硬件接口

U8300C 模块是双面布局的 PCBA,双面均有屏蔽罩屏蔽和防护,如图 2 和图 3 实图所示。

图 2: U8300C 模块正面实图

图 3: U8300C 模块背面实图

U8300C 的硬件接口包括: 一组测试点、三个天线连接器、一个 PCI express Mini Card 接口。

- ◆ 一组测试点:图 3 中的标识。
 - 1) 图 3 中标记的测试点主要为 USB 和 USIM 相关的,从左至右依次为:
 - ♦ VBAT

- → GND
- ♦ USB_DP
- ♦ USB_DM
- \diamond GND
- ♦ USIM_RESET
- ♦ USIM_CLK
- ♦ USIM_DATA
- ♦ USIM_VCC
- ◆ 射频接口:图2中的标识。

图 2 中有三个天线接口,用的是 Hirose U.FL # CL331-0471-0-10 的 RF 连接器。 关于该 RF 连接器相关的详细说明,将在第 4 章里描述。

◆ PCI express Mini Card 提供了丰富的接口,接口信号将在第3 章中进行详细描述。

3. 应用接口及功能描述

3.1.PCI express Mini Card接口定义

图 4: U8300C 模块 pin 序图

表 5: U8300C 连接器 pin 定义表

PIN No.	PIN Name	I/O	Describe	PIN No.	PIN Name	I/O	Describe
1	MIC_P	I	TBD	2	VBAT	I	3.3~3.6V
3	MIC_N	I	TBD	4	GND	-	
5	RECOP	0	TBD	6	RESERVED	-	TBD
7	RECON	0	TBD	8	USIM_VCC	0	1.8/3.0V
9	GND	-		10	USIM_DATA	I/O	1.8/3.0V
11	VEXT_1.8V	0	1.8V output	12	USIM_CLK	0	1.8/3.0V
13	RESERVED	-	TBD	14	USIM_RESET	0	1.8/3.0V
15	GND	-		16	RESERVED	-	TBD
	凹槽						
17	RESERVED	-	TBD	18	GND	X	
19	WAKEUP_I N	I	1.8V,(Active low)	20	W_DISABLE	I	1.8V,(Active low)
21	GND	-		22	RESET	I	1.8V,(Active low)
23	UART_RX	Ι	1.8V voltage level	24	VBAT	I	3.3~3.6V
25	UART_RTS	0	1.8V voltage level	26	GND	-	
27	GND	-		28	RESERVED	-	TBD
29	GND	-		30	RESERVED	-	TBD
31	UART_TX	0	1.8V voltage level	32	WAKEUP_OU T	0	1.8V,(Active low)
33	RESET	I	1.8V,(Active low)	34	GND	-	
35	GND	-	4	36	USB_DM	I/O	3.3V
37	GND	-		38	USB_DP	I/O	3.3V
39	VBAT	I	3.3~3.6V	40	GND	-	
41	VBAT	L	3.3~3.6V	42	LED_WWAN	0	1.8V
43	GND	Ĵ	J	44	USIM_DET	I	SIM card insert or remove detect
45	PCM_CLK	I/O	1.8V voltage level	46	RESERVED	-	TBD
47	PCM_DIN	I	1.8V voltage level	48	RESERVED	-	TBD
49	PCM_DOUT	0	1.8V voltage level	50	GND	-	
51	PCM_SYNC	I/O	1.8V voltage level	52	VBAT	I	3.3 ~3.6V

3.2. 电源

本节描述和电源相关,开关机相关的接口。涉及的接口包括如下:

表 6: U8300C 电源相关接口

PIN Name I/O		PIN No.	描述	
VDAT	I	2,24,39,41,52	模块供电, 3.3~3.6, 标	
VBAT			称值 3.3V	
VEXT_1.8V	0	11	电压输出, 1.8V, 80mA	

GND		4,9,15,18,21,26,27,29,34,35,37,40,43,50	地
RESET	I	22,33	复位, 1.8V, 低电平有效

3.2.1. 电源接口描述及外围电路设计

3.2.1.1. VBAT输入

U8300C 模块的供电采用单电源供电方式, VBAT 范围在 3.3V-3.6V 之间。在 HSPA/UTMS/GSM 网络下工作,数据传输或者通话时,瞬间大功率发射会形成高达 2A 的电流峰值,从而导致 VBAT 大的纹波出现,如瞬间压降造成 VBAT 供电电压过低,模块将会关机。为保证模块能正常工作,要求电源供电必须具备足够的供电能力。

在确保 VBAT 电源供电能力足够(3.3V,1A 负载)的前提下,电路接法依照下图所示,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容(C_A),若结构受限,可用两个并 联(470uF/6.3V)钽电容(C_A),再并上一个 0.1uF~1uF 的陶瓷电容(C_B)。

图 5: U8300C 模块 VBAT 输入

3.2.1.2. VEXT_1.8V电压输出

当 U8300C 模块正常开机,在 PIN11 上有一个电压输出,输出电压 1.8V,电流负载 80mA。这个输出电压可做外部供电使用,比如 LCD,同时也可以读取 VEXT_1.8V 电平状态判断模块是否开机。

3.2.2. 开关机控制

U8300C 只支持上电开机一种开机方式,用户可以通过查询 VEXT_1.8V 脚是否输出高电平来判断模块是否开机。

U8300C 只支持掉电关机一种方式。用户可以通过查询 VEXT_1.8V 脚是否输出低电平来 判断模块是否关机。

3.2.2.1. 上电开机

确保给 U8300C 的 VBAT 供电电压在 3.3~3.6V, 推荐使用 3.3V。开机时序如下图所示:

图 6: 上电开机模式开关机时序图

3.2.2.2. 掉电关机 VBAT

当 VBAT 掉电时,模块会关机。

注意:此时模块没有进行正常的关机流程,USIM没有走从基站注销的流程。

POWER ON

Ton

3.2.3. 复位控制

Low

U8300C 复位方式有两种: 引脚复位、AT 命令复位。

3.2.3.1. 引脚复位/OUT

U8300C 的 PIN22 和 PIN33 均为 RESET 输入。当需要复位 U8300C 模块时,将其中一个管脚拉低,模块即可复位。

◆ 需要应用端控制 U8 **P) 注** 中的复位,需要给模块一个低电平 **100mS** 脉冲。

关于 RESET 的参考电路如下图, AP RESET 是应用端给的 RESET 控制信号,可以控制

Power-on sequence 共 54 页 第 22 页 U8300C的复位。

图 7: RESET 控制模块复位参考电路

关于 RESET 的时序如下图。

图 8: U8300C RESET 时序图

3.2.3.2. AT命令复位

AT 命令复位有两种方式:

一种是: AT+SYSSHELL"reboot"

另一种是:设置 at+cfun=7 后再设置 at+cfun=6 进行重启;

3.3. USB接口

3.3.1. USB接口描述

U8300C 模块提供一路 USB2.0 High-Speed 接口。U8300C 加载驱动之后,会在操作系统上映射出 6 个逻辑端口,他们的的枚举顺序,端口功能,端口名字如下表所示。

表 7: U8300C USB 接口

PIN Name	I/O	PIN No.	描述
USB_DM	I/O	36	USB 数据通道-
USB_DP	I/O	38	USB 数据通道+
GND		4,9,15,18,21,26,27,29,34,35,37,40,43,50	

表 8: U8300C 枚举接口

	Vendor ID:0x1c9e Produc	et ID:0x9b05
Interface Number	Interface Function	Interface Name
0	Debug	Device Diagnostic Interface
1	Modem	Modem Connector
2	AT	Device Application Interface
3	Pipe	Device Pipe
4	NDIS	Wireless Data Device Ethernet Adapter
5	adb	Android Composite ADB Interface lc

3.3.2. USB参考电路

U8300C模块USB接口应用参考电路如下图所示。

图 9: U8300C USB 接口参考设计图

- 1) 为降低 USB 高速数据传输时的信号干扰,在 USB_DM 和 USB_DP 接口电路上串接 共模滤波器可提高数据传输正确率;
- 2) 为提高 USB 接口的抗静电性能,推荐在 USB_DP、USB_DM 接口电路上加 ESD 保护器件,建议使用结电容小于 5pF 的 ESD 器件;
- 3) 为确保 USB 工作可靠,设计时还需更多考虑对 USB 的保护,比如 Layout 时对 USB 的保护,需要对 USB_DP、USB_DM 做 90 Ω 的阻抗控制,尽可能远离干扰信号。

3.3.3. USB驱动

U8300C 模块支持 Windows 操作系统,嵌入式操作系统: Windows CE5.0/6.0, Windows Mobile5.0/6.0,需要专用的 USB 驱动支持。

U8300C 模块的默认 VID 和 PID 是: VID_1C9E & PID_9B05。

3.3.3.1 Linux系统加载U8300C的USB驱动过程

3.3.3.1.1 USB串口驱动添加

在 Linux 系统中通常使用 USB 转串口的驱动。驱动添加需要配置 Linux 内核,方法如下: cd kernel

make menuconfig

device drivers->usb support->usb serial converter support 选中如下组件:

USB driver for GSM and CDMA modems 选中后保存配置。

3.3.3.1.2 增加具体设备驱动

打开内核源码文件 option.c(路径一般为 drivers/usb/serial/option.c); 在源码中找到 option_ids 数组,在数组中添加 Longsung 产品的 VID(0x1c9e)和 PID(0x9b05);

3.3.3.1.3 USB串口驱动过滤NDIS接口

由于 USB 串口跟 NDIS 都属于非标准 CDC 设备,需要防止 NDIS 口被 USB 串口驱动加载而导致无法正常加载 NDIS 口驱动。有三种方式可以解决:

1、比较新的 kernel 版本(3.8 以上),在 option.c 中的 opiton_ids 中添加 blacklist,驱 动在加载时会自动跳过 blacklist 指定的 interface; 设置 interface 4 不加载 option 驱动:

添加 blacklist 到 option_ids 数组中:

2、对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先增加 U8300C 的 PID 和 VID:

在 probe 函数内判断当前 interface 号进行过滤;

3、对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe()函数 开始增加如下判断来过滤 NDIS 接口:

```
/*******************/
if(interface->cur_altsetting->desc.bInterfaceNumber >= 4)
    return -EDOM;
/************/
```

3.3.3.1.4 USB串口驱动加载方法

加载 USB 串口驱动: sudo modprobe option

使用 dmesg 命令查看系统 log,如下图所示,除了 NDIS 口,其他的 5 个端口都加载上 USB 串口驱动。


```
usb 2-2.1: new full-speed USB device number 5 using uhci_hcd
usb 2-2.1: not running at top speed; connect to a high speed hub
usb 2-2.1: New USB device found, idVendor=1c9e, idProduct=9b05
usb 2-2.1: New USB device strings: Mfr=2, Product=3, SerialNumber=4
usb 2-2.1: Product: USB Modem
usb 2-2.1: Manufacturer: USB Modem
option 2-2.1:1.0: GSM modem (1-port) converter detected
usb 2-2.1: GSM modem (1-port) converter now attached to ttyUSB0
option 2-2.1:1.1: GSM modem (1-port) converter detected
usb 2-2.1: GSM modem (1-port) converter now attached to ttyUSB1
option 2-2.1:1.2: GSM modem (1-port) converter detected
usb 2-2.1: GSM modem (1-port) converter now attached to ttyUSB2
option 2-2.1:1.3: GSM modem (1-port) converter detected
usb 2-2.1: GSM modem (1-port) converter now attached to ttyUSB3
Discover the 4th interface for U8300 NDIS
option 2-2.1:1.5: GSM modem (1-port) converter detected
usb 2-2.1: GSM modem (1-port) converter now attached to ttyUSB4
```

3.3.3.2. Linux系统下U8300C交互AT过程

- 1) 请将 USIM/SIM 正确插入应用终端,将 LTE/TD-SCDMA/GSM 天线连接到 U8300C 的射频连接器。U8300C 开机,加载 USB 驱动,获取 USB 端口: ttyUSB0~ ttyUSB5。
- 2) 启动 Linux 系统串口应用程序 minicom, 使用如下指令:

#minicom -s

在 minicom 菜单中选择 "Serial port setup",配置 "Serial device "为 /dev/ttyUSB2;注意: U8300C 的串口中 AT(ttyUSB2), Modem(ttyUSB1) 可以发 AT 命令,其他不能发 AT 指令;修改完毕后退出到 minicom 菜单,选择"Save setup as df1"保存配置后选择"exit"退出 minicom 配置;

3) 通过 minicom 发送 AT 指令进行系统测试

#minicom

将会得到如下的返回结果:

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB1

Press CTRL-A Z for help on special keys

输入AT指令(打开回显):

ATE

如果系统工作正常,将会得到如下的返回结果:

OK

输入如下指令(查询版本信息):

AT+LCTSW

将会得到如下 U8300C 的 Firmware 版本信息:

SoftwareVersion: LWA0030.1.1_MG39

InnerVersion: LWA0030_3030_0.2.2_L0805_EFS1.3

OK

输入如下指令(查询信号):

AT+CSQ

将会得到如下信号强度和误码率信息:

+CSQ: 20,74

OK

输入如下指令(注册状态):

AT+CREG?

将会得到如下注册信息:

+CREG: 0,1

OK

输入如下指令 (网络运营商信息):

AT+COPS?

将会得到如下运营商信息(不同运营商返回字段不同。以中国移动 USIM 卡为例):

+COPS: 0,0,"CMCC",2

OK

3.3.3.3. Linux 系统下 U8300C 拨号上网过程

- 1) 重复 U8300C 的 USB 加载过程和 AT 交互流程。确保 U8300C 正确注册到网络, 信号强度 CSQ 返回的第一个参数在 13 以上;
- 2) 确认 Linux 系统带有 pppd 应用程序,如果系统没有 pppd,请安装 kppp,里面带有 pppd 应用程序;
- 3) 建立拨号配置文件/etc/ppp/chat/gprs-connect-chat 在其中加入如下配置:

TIMEOUT 15

ABORT "DELAYED"

ABORT "BUSY"

ABORT "ERROR"

ABORT "NO DIALTONE"

ABORT "NO CARRIER"

TIMEOUT 40

'' \rAT

OK ATS0=0

OK ATE0V1

OK AT+CGDCONT=1,"IP","CMNET"

OK ATDT*99***1#

CONNECT "

注:插入不同运营商的卡,AT+CGDCONT=1,"IP","CMNET"最后一个参数不同,请咨询当地的运营商获取 APN。

- 4) 修改 pppd 的配置文件/etc/ppp/options 找到 auth 字样的行然后将其改为#auth, 这样在拨号过程中就不会提示需要身份验证:
- 5) 建立拨号配置文件/etc/ppp/peer/gprs 在其中加入配置如下(必须指定 Modem 口是 ttyUSB1):

Usage: root>pppd call gprs

/dev/ttyUSB1

9600

crtscts

modem

#noauth

debug

nodetach

#hide-password

usepeerdns

noipdefault

defaultroute

0.0.0.0:0.0.0.0

ipcp-accept-local

ipcp-accept-remote

#lcp-echo-failure 12

#lcp-echo-interval 3

#noccp

#novj

#novjccomp

#persist

connect '/usr/sbin/chat -s -v -f /etc/ppp/chat/gprs-connect-chat'

6) 拨号上网,使用如下指令:

#pppd call gprs

ifconfig 如果出现如下回显,多出了一个 ppp0 网口,说明拨号已经成功:

eth0 Link encap:Ethernet HWaddr 00:1D:09:33:A7:E1

inet addr:172.16.180.105 Bcast:172.16.180.255 Mask:255.255.255.0 inet6

MULTICAST MTU:1500 Metric:1 RX packets:39793 errors:0 dropped:0

overruns:0 frame:0 TX packets:17971 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000 RX bytes:3445057 (3.2 MiB) TX bytes:20088925

(19.1 MiB) Interrupt:169 lo Link encap:Local Loopback inet addr:127.0.0.1

Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING

MTU:16436 Metric:1 RX packets:20 errors:0 dropped:0 overruns:0 frame:0 TX

packets:20 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0

RX bytes:1160 (1.1 KiB) TX bytes:1160 (1.1 KiB)

ppp0 Link encap:Point-to-Point Protocol inet addr:10.182.207.113

P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP

MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0

frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0

txqueuelen:3 RX bytes:62 (62.0 b) TX bytes:101 (101.0 b)

7) 测试连接 Internet

测试是否连接 Internet, 用如下指令:

ping 119.75.217.56

测试是否 ping 通 baidu 的 IP 地址。如果 ping 不通,需要给本机加条路由,使用如下指令:

route add default gw 10.64.64.64

注: 10.64.64.64: 运营商的 ip 地址, 即上述红色字体部分。

如果 IP 地址能 ping 通,而 ping 域名不通,如下指令:

ping www.baidu.com

则需要添加 DNS 到/etc/resolv.conf。

- 8) Linux 断开网络(必须 kill 当前的 pppd, 才能进行下一次 pppd), 需要 kill pppd 进程(这个过程需要一段时间,中间可能无响应),使用如下指令:
 - # killall pppd

3.3.3.4. Linux系统下U8300C NDIS驱动加载方法

3.3.3.4.1 NDIS驱动添加系统组件

NDIS 驱动需要系统的 usbnet 驱动支持,因此需要配置 Linux 内核,配置方法如下: cd kernel

make menuconfig

device drivers->Network device support->usb Network Adapters 选中如下组件

Multi-purpose USB Networking Framework 选中后保存配置,重新编译内核。

3.3.3.4.2 NDIS驱动编译

驱动以源代码的形式提供,由用户在自己的系统编译。

lc_cdc_ether.c 为 ndis 口驱动, qmi 开头的文件为 QMI 协议相关文件,用于解析 ioctl 的 QMI 包。用户可以单独编译,也可以将代码放入内核中一起编译。

1) 单独编译

修改 src/Makefile 中 KDIR 的值为 kernel 的编译路径;

在 ndis driver 目录下执行 make modules 命令,即可在 src 目录下生成 lc ether.ko 文件;

2) 与内核一起编译

将 src 下的代码文件复制到用户自己的 kernel 代码的 drivers/net/usb 目录下;

在 drivers/net/usb/Makefile 中增加以下内容:

c ether-objs += qmi oper.o qmi util.o \

lc_cdc_ether.o

obj-m += lc_ether.o

之后每次编译内核都会自动编译 NDIS 驱动。

3.3.3.4.3 NDIS驱动加载

通过 insmod 命令加载 NDIS 驱动:

sudo insmod lc ether.ko

通过 modprobe 命令加载 NDIS 驱动:

在 ndis_driver 目录执行 make install 命令;

sudo make install

会将驱动安装到系统的 module 目录中,并且分析依赖关系,将相关模块同时加载。 使用 ifconfig 命令查看网卡信息,如果出现 wan0 表示驱动加载成功


```
wan0 Link encap:Ethernet HWaddr 00:a0:c6:00:00:00
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
```

也可以直接运行 make_driver.sh 脚本来自动完成驱动的编译和加载 sudo ./make_driver.sh

3.3.3.5. Linux系统下U8300C NDIS拨号上网

NDIS 拨号如下举例测试在 Ubuntu10.04.3-64bit 环境下进行,使用联通 SIM 卡。测试代码在提供的 ndis_app 目录中。

3.3.3.5.1 修改拨号配置文件

修改 profile.init 文件,内容如下所示: [profile] apn=UNINET username= pwd= auth=0

3.3.3.5.2 安装dhcp client客户端

1) 在 Ubuntu PC 上, 执行以下命令:

sudo apt-get install udhcpc

执行完成后就安装上了 dhcp client。

2) 如果在嵌入式系统上,需要配置自己的 kernel 支持 dhcp client 功能,并且配置 busybox 支持 udhcpc 命令。

3.3.3.5.3 编译运行测试程序

在 ndis_app 目录下执行编译脚本 build.sh,输入如下命令:

编译后会生成 ndis_manager 文件。

使用管理员权限运行 ndis manager, 进行 NDIS 拨号, 输入如下命令:

sudo ./ndis_manager -c

./build.sh

测试程序会读取拨号配置文件,并且进行拨号,拨号成功后会启用 dhcp client 获取 IP 地址

和 DNS 地址等,如下图所示:

```
songchenglin@Longsung:~/qmi/version2.12/ndis_app$ sudo ./ndis_manager -c
connection signal ==CONNECT COMMAND.
ndis get lib version success, version=1.5.
ndis connect test!
connection use apn:UNINET,usrname:,pwd:,auth:0.
ndis connect success.
ndis_get_status success.
connected to internet success, .
connect managerect success.
Internet Systems Consortium DHCP Client V3.1.3
Copyright 2004-2009 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Listening on LPF/wan0/00:a0:c6:00:00:00
             LPF/wan0/00:a0:c6:00:00:00
Sending on
Sending on
             Socket/fallback
DHCPDISCOVER on wan0 to 255.255.255.255 port 67 interval 6
DHCPOFFER of 10.5.61.106 from 10.5.61.105
DHCPREQUEST of 10.5.61.106 on wan0 to 255.255.255.255 port 67
DHCPACK of 10.5.61.106 from 10.5.61.105
bound to 10.5.61.106 -- renewal in 3214 seconds
```

3.3.3.5.4 查看IP地址与网络连接测试

输入 ifconfig 命令查看 wan0 的 IP 地址,如下图所示:

```
wan0 Link encap:Ethernet HWaddr 00:a0:c6:00:00:00
   inet addr:10.5.61.106 Bcast:10.5.61.107 Mask:255.255.252
   inet6 addr: fe80::2a0:c6ff:fe00:0/64 Scope:Link
   UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
   RX packets:18 errors:0 dropped:0 overruns:0 frame:0
   TX packets:35 errors:0 dropped:0 overruns:0 carrier:0
   collisions:0 txqueuelen:1000
   RX bytes:2614 (2.6 KB) TX bytes:5795 (5.7 KB)
```

输入 ping www.baidu.com 命令,测试是否可以 ping 通网站;或者打开浏览器上网进行测试。

3.4. UART接口

U8300C模块提供一个UART接口。通过UART接口可以实现对U8300C模块的AT交互,也可以作为数据通道高速接入。

3.4.1. UART接口描述

U8300C 模块的 UART 接口见下表。

表 9: U8300C 模块 UART 接口

PIN Name	I/O	PIN No.	描述
UART_RX	I	23	RX in UART
UART_TX	0	31	TX in UART

3.4.2. UART接口参考电路

U8300C 模块 UART 提供的是 3 线 UART 接口。U8300C 模块作为 DCE (Data Communication Equipment), 客户应用端作为 DTE (Data terminal equipment)。

◆ 若将 U8300C 设计成使用 AT 指令交互的方式,此时可以不考虑硬件流控的连接,此 时的 DCE-DTE 连接方法见下图。

图 10: U8300C UART 无流控连接设计图

3.4.3. UART接口描述

1) UART 的波特率可设置为: 300,600,1200,2400,4800,9600,19200,38400, 57600, 115200;

波特率设置可用 AT 指令设置,设置之后模块保存设置。AT 指令是:

切换波特率的指令是:

AT+IPR=<value>

<value>:

300, 600, 1200, 2400, 4800, 9600, 19

注意: 默认的波特率是 115200,且 Data Bits=8, Parity=None, Stop Bits=1, Flow Control=None。

- 2) U8300C模块的UART接口是TTL电平,如果要转换成RS232电平(比如PC的RS232接口)就需要电平转换芯片(e.g. SP3238EEA)进行电平在转换;
- 3) 建议对 UART 接口进行 ESD 保护设计。

3.4.4. U8300C模块休眠和唤醒控制接口

控制 U8300C 模块的休眠和唤醒相关信号接口见下表。

表 10: U8300C 休眠和唤醒控制接口

PIN Name	I/O	PIN Num.	描述
WAKELID IN	I	l 19	H: DTE唤醒U8300C;
WAKEUP_IN			L: DTE让U8300C进入休眠模式。
WAKELID OUT		32	H: 模块处于唤醒模式,并且串口/USB处于可用状态;
WAKEUP_OUT	0		L: 模块处于睡眠模式,并且串口/USB不可用。

3.5. PCM接口

目前只支持 PCM 语音, MASTER mode, CLK 2048KHZ, SYNC 8KHZ, 16bit linear。

3.5.1 PCM 开启

在未开启 PCM 时,无法进行语音业务。开启 PCM 有两种方法

一种为在 AT 口发送 at+syscmd=start_pcm,返回时间较短,大概 8s,当返回 OK 时通过示波器可以检测到 PCM 的时钟信号

另一种为: 在 AT 口发送 at+syscmd=start_pcm acdb,返回时间较长,大概 17s,当返回 ok 时通过示波器可以检测到 PCM 的时钟信号

PS:以上两种开启方法可以通过 adb shell 在终端执行,例如执行"start_pcm &"或者"start_pcm acdb"。"start_pcm acdb"是开启 PCM 并加载 acdb 对语音进行优化。

当命令执行成功后可以通过 adb shell 查看到 aplay 和 arec 两个进程如图:

F20	0.00 //12 /12
520 root	0:00 /usr/bin/diagrebootapp
531 root	0:00 /usr/bin/atfwd_daemon
547 root	0:00 /usr/bin/qmuxd
554 root	0:00 /usr/bin/netmgrd -u /etc/udhcpc.d/udhcpc.script
610 root	0:00 /bin/sh -
613 root	0:09 /usr/bin/alsaucm test acdb
619 root	0:00 /usr/bin/aplay -D hw:0,2 -P
620 root	0:00 /usr/bin/arec -D hw:0,2 -P -R 8000 -C 1
623 root	0:51 modem_pro -p /dev/smd11 -m /dev/ttyHSL0

3.5.2 PCM 关闭

在开启 PCM 后,可以通过发送 at+syscmd=start_pcm stop 关闭 PCM。

3.6. 模拟音频接口

U8300C 模块提供一路模拟音频接口。这路模拟音频接口包括一对差分输入信号(MIC_P, MIC_N)和一对差分输出信号(RECOP, RECON)。

3.6.1. 模拟音频接口描述

U8300C 模块的音频接口信号见下表。

表 11: 模拟音频接口

PIN Name	I/O	PIN No.	描述
RECOP	0	5	Audio output differential signal +
RECON	0	7	Audio output differential signal -
MIC_P	I	1	Audio input differential signal +
MIC_N	I	3	Audio input differential signal -

3.6.2. 模拟音频接口参考设计电路

U8300C 模块的模拟语音接口参考设计见下图。

图 11: U8300C 模块的模拟音频参考设计图

- 1) 音频输出信号是一对差分信号;
- 2) 推荐使用滤波电容去除内部的信号干扰以提升音频品质;
- 3) 为了抗静电,在音频回路上推荐使用**双向 ESD** 保护器件;
- 4) 设计时需要将系统的模拟地 AGND 和常规地 GND 用磁珠或者 0Ω 电阻连接;
- 5) 布局上滤波电路和 ESD 保护器件靠近音频器件设计,音频线路在 Layout 上需要走差分线,推荐 PCB 走线宽度: MIC 8mils, REC 8mils。

3.7. USIM/SIM接口

U8300C 支持 HSPA/UTMS 模式的 USIM 卡,同时也支持 GSM/GPRS/EDGE 模式的 SIM 卡。

3.7.1. USIM/SIM卡接口描述

U8300C的 USIM/SIM 卡支持 1.8/3.0V的卡, USIM/SIM 接口信号见下表。

表 12: U8300C USIM/SIM 接口

PIN Name	I/O	PIN No. 描述		
USIM_DATA	I/O	10 USIM/SIM DATA		
USIM_CLK	0	12 Clock Signal		
USIM_RESET	0	14	RESET Signal	
USIM_VCC	0	8 USIM/SIM Pow		
USIM_DET	I	44 USIM/SIM de		
GND		4,9,15,18,21,26,27,29,34,35,37,40,43,50		

3.7.2. USIM/SIM卡接口参考设计

USIM/SIM设计需要选用SIM卡座,推荐使用Amphenol公司的C707 10M006 512 2 SIM Holder。相关的信息请参考Amphenlo公司网站: http://www.amphenol.com/ C707 10M006 512 2 SIM Holder 的 SPEC 见下图。

图 12: C707 10M006 512 2 SIM Holder 的 SPEC

USIM/SIM 接口参考设计见下图。

图 13: U8300C USIM/SIM 接口参考设计图

- 1) USIM_DATA 需要一个上拉电阻到 USIM_VCC, 此上拉电阻预留不贴;
- 为避免瞬间电压过载,在 USIM_DATA, USIM_CLK 和 USIM_RESET 线路上串一个
 22Ω 的电阻;
- 3) 为提高抗静电能力,在 USIM_VCC, USIM_DATA, USIM_CLK 和 USIM_RESET 线路上加 ESD 保护器件:
- 4) 为使USIM_VCC更稳定,在USIM_VCC线路上加滤波电容,推荐使用33pF和100nF 并联对地:
- 5) 为消除高频干扰信号的影响,在 USIM_RESET 线路上加滤波,推荐使用 33pF 电容对 地。
- 6) SIM_DET 是 USIM/SIM 卡在位侦测输入接口,需要应用端给出一个电平输入给 U8300C, 这个电平状态和 USIM/SIM 在位与否相关, 和 U8300C 的 firmware 配合 实现 USIM/SIM 的热插拔功能。

注:如果没有实现 USIM/SIM 的热插拔功能,应设计时结构上规避客户 USIM/SIM 热插拔操作。

3.8. 网络指示接口

U8300C 提供一个 GPIO 输出信号接口。U8300C 将此信号默认配置为一个网络指示灯 NETLIGHT 信号。

3.8.1.GPIO输出信号描述

U8300C的 GPIO 信号描述见下表。

表 13: U8300C GPIO 信号接口

PIN Name	I/O	PIN No.	描述
LED_WWAN	0	42	Default Netlight

此信号 U8300C 默认用作网络指示灯信号。状态指示灯的描述见下表。

表 14: U8300C 网络指示灯状态描述

模式	LED Status	描述
1	快闪 (100ms On/800ms Off)	搜网
2	慢闪(100ms On/3000ms Off)	注册成功
3	速闪(100ms On/300ms Off)	数据传输
4	关闭	飞行模式、关机状态或出错状态 (无 SIM 卡或者注册失败)

3.8.2. Netlight参考电路

U8300C的 Netlight 控制参考电路见下图。

图 14: U8300C Netlight 参考设计图

3.9. 飞行模式控制接口

U8300C 支持两种方式进入飞行模式:

- ◆ 硬件管脚控制;
- ◆ AT 指令控制。

3.9.1. 硬件管脚控制

通过 U8300C 的 PIN20 给模块一个低电平信号,模块进入飞行模式,此时射频收发单元将

停止工作。拉高 PIN20 模块将重新进入普通模式。

3.9.2. AT指令控制

发送 AT+CFUN=0,模块将进入飞行模式,此时射频收发单元将停止工作。发送 AT+CFUN=1,模块将重新进入普通模式。

3.10. 天线接口

U8300C 提供了 3 个天线接口,分别为:

- ♦ Main Connector;
- ♦ Div Connector:
- ♦ GPS Connector。

需要连接分集天线,以提高产品的接收性能。

推荐用户使用 RF Connector, 选用匹配的连接器连接一根 50Ω 阻抗的天线;

使用 RF Connector 时,需要仔细选择 RF 转接线。需要选择尽可能小损耗的 RF 转接线。推荐使用如下射频损耗需求的 RF 转接线:

- GSM850/GSM900/CDMA 800 <1db
- DCS1800/PCS1900 /LTE Band39/Band 3 <1.5db
- WCDMA Band1/LTE Band 1 <1.8db
- Band38/Band 40/Band 41 < 2.2db

3.10.1. 天线的安装

3.10.1.1. 天线RF连接器

U8300C 模块端使用 HRS 的 U.FL-R-SMT-1(80)型号的 RF Connector,推荐应用端使用匹配的 RF 转接线。详细内容请参考第 4 章关于 RF 连接器内容。

U8300C的 RF Connctor接口见下图。

图 15: U8300C RF 连接器

3.10.2. U8300C的RF输出功率

U8300C的 RF输出功率见下表。

表 15: U8300C的 RF输出功率表

Band	Max	Min			
GSM/EDGE/GPRS					
GSM900	33dBm±2dB	5dBm ± 5dB			
GSM850	33dBm±2dB	5dBm ± 5dB			
DCS1800	30dBm±2dB	0dBm ± 5dB			
PCS1900	30dBm±2dB	0dBm ± 5dB			
FDD-LTE					
B1	23dBm±2dB	≤ -40 dBm			
В3	23dBm±2dB	≤ -40 dBm			
TDD-LTE					
B38/39/40/41	23dBm±2dB	≤ -40 dBm			
TD-SCDMA					
B34/39	23dBm±2dB	≤ -40 dBm			
CDMA					
800	23dBm~30dBm	≤ -50 dBm			
WCDMA					
B1	23dBm±2dB	≤ -50 dBm			

3.10.3. U8300C的RF接收灵敏度

表 16: U8300C的 RF 接收灵敏度

Band	Receive sensitivity
GSM/EDGE/GPRS	
GSM900	<-106dBm

GSM850	<-106dBm	
DCS1800	<-106dBm	
PCS1900	<-106dBm	
FDD-LTE(10MHz)		
B1	<-98dBm	
В3	<-95dBm	
TDD-LTE(10MHz)		
B38/39/40	<-98dBm	
B41	<-97dBm	
TD-SCDMA()		
B34/39	<-110dBm	
CDMA		
800	<-110dBm	
WCDMA		
B1	<-110dBm	
3.10.4. U83000 表 17: U8300C工作频率	工作频率	6/96/

3.10.4. U8300C工作频率

表 17: U8300C 工作频率

Band	Receive	Transmit	
E-GSM900	925~960MHz	880~915MHz	
GSM850	869~894MHZ	824~849MHZ	
DCS1800	1805~1880MHz	1710~1785MHz	
PCS1900	1930~1990MHZ	1850~1910MHZ	
CDMA800	860~894MHZ	815~849MHZ	
B1	2110~2170MHZ	1920~1980MHZ	
В3	1805~1880MHZ	1710~1785MHZ	
B34	2010~2025MHZ		
B38	2570~2620MHZ		
B39	1880~1920MHZ		
B40	2300~2400MHZ		
B41	2496~2690MHZ	•	

3.10.5. U8300C天线要求

表 18: U8300C 天线指标要求

Band	VSWR	Gain		Efficiency	SAR	TRP	TIS
		Peak	Avg.			(dBm)	(dBm)
GSM900	<2.5:1	>0dBi	>-4dBi	>40%	<1.6	29	<-102
GSM850					W/Kg	29	<-102
DCS1800					, 3	26	<-102
PCS1900						26	<-102
B1 FDD						19	<-94
B1 WCDMA						19	<-106

	LONG 🔷 UNG

В3			19	<-91
B34			19	<-106
B38			19	<-93
B39 TDD			19	<-93
B39			19	<-106
TD-SCDMA				
B40			19	<-93
B41			19	<-93
CDMA 800			19	<-106

Confidential

4. 机械特性

4.1. 模块实物视图

U8300C 模块实物正面和背面图如下图所示。

图 16: U8300C 正面和背面实物视图

4.2. 模块 3D图

对于 U8300C 模块, 我们提供完整的结构图。如果需要 3D 图档建模, 请联系索取 U8300C 的 3D 文档。

4.3. 模块 2D结构图

对于 U8300C 模块, 我们提供完整的结构图。2D 结构图请参考下图。

图 17: U8300C 2D 结构图

4.4. 模块应用端U8300C接口原理图和PCB封装推荐

关于 U8300C 模块在应用端需要 PCB 封装,包括原理图封装图和 PCB 封装图。我们有专门的推荐资料,需要时请联系索取。

4.5. 射频连接器

U8300C 使用 3 个 RF 连接器是 Hirose 公司的 U.FL-R-SMT-1(80), 推荐使用匹配的 RF 转接线, 特别要求应用端 RF 转接线的 RF 连接器是 Hirose 公司的。

4.5.1. 模块端射频连接器

U8300C 模块端使用 Hirose U.FL-R-SMT-1(80)。此 RF 连接器的结构图见下图。

图 18: 模块端 RF 连接器 U.FL-R-SMT-1(80)结构图

4.5.2. 应用端RF转接线连接器推荐

U8300C应用端请务必使用Hirose制造的能和U.FL-R-SMT-1(80)匹配的转接线,建议使用U. FL-XLP-04N1-A-(Y)(注: X—1为单头 2为双头 Y—为线长,一般为整数),其他厂家有可能会影响射频性能。

5. 各种业务下的功耗

U8300C 模块各种频段的功耗(VBAT 供电: 3.3V)见下表。

表 19: U8300C 模块各频段功耗

Test Type	Channel/	Power Control	Call Current (mA)			
rest type	Configuration	Level	Powe	Avg.	Min.	Max.
			r	Current	Current	Current
LTE-FDD	CH20850	Max TX	21.3	747.51	740.03	768.90
Band7	CH21100	Power	21.0	818.46	810.64	839.98
Daridy	CH21350	rowei	21.4	814.71	799.83	832.57
LTE TOO	CH37850	Marr TV	22.4	489.19	484.95	507.54
LTE-TDD Band38	CH38000	Max TX Power	22.3	477.44	473.54	492.56
Dariuso	CH38150	rowei	22.3	466.46	462.71	482.66
1.T.F. T.D.D.	CH38350	M T)/	21.7	406.28	402.69	421.29
LTE-TDD Band39	CH38450	Max TX	21.6	404.98	401.73	424.87
Dallu39	CH38550	Power	21.6	406.65	402.62	424.12
	CH38750	Max TX Power	20.8	456.76	451.34	475.68
LTE-TDD Band40	CH39150		20.5	432.97	427.74	453.69
Ballu40	CH39550		20.6	442.93	437.79	463.71
TD-SCDMA210	CH10054		23.1	181.95	178.41	190.47
0	CH10087	Max TX	23.3	185.25	181.51	195.31
1.28M(SC)	CH10121	Power	23.2	188.26	183.87	196.48
TD-SCDMA190	CH9404		23.4	181.29	179.55	188.03
0	CH9500	Max TX	23.7	183.28	181.98	190.22
1.28M(SC)	CH9596	Power	23.5	186.05	184.38	193.12
GPRS900	CH62	PCL5	29.9	488.35	341.12	527.17
GPRS1800	CH698	PCL0	27.5	351.15	251.18	380.98
EGPRS900	CH62	PCL8	22.2	420.17	343.79	534.70
EGPRS1800	CH698	PCL2	21.2	405.59	59.07	520.95

6. 电气特性

6.1. 极限电压范围

极限电压范围指模块电源电压以及数字和模拟输入/输出接口能够承受的最大电压范围。在该范围外工作可能导致本产品损坏。

U8300C的极限电压范围见下表。

表 20: U8300C 模块极限工作电压范围

Parameter	Description	Min	Тур	Max	Unit
	U8300C 供电	3.3	3.3	3.6	V
	RMS 平均供电电流	0	XK	0.9	Α
VBAT	在每个时隙的瞬时压降,				
VDAI	I _{VBAT} 峰值电流可能达到2A			400	ma\/
	(每4.6ms的时隙功率发			400	mV
	射)				
CDIO	数字 IO 的电平供电电压	-0.3	1.8	2.16	٧
GPIO	关机模式供电电压	-0.25		0.25	V

6.2. 环境温度范围

U8300C模块推荐在-20~+65℃环境下工作。建议应用端在环境恶劣条件下考虑温控措施。同时提供模块的受限操作温度范围,此温度条件下,可能某些RF指标超标。同时建议模块应用终端在一定温度条件下储存。超出此范围模块可能不能正常工作或者损坏。

表 21: U8300C 模块温度范围

Temperature	Min	Тур	Max	Unit
环境温度	-20	25	65	$^{\circ}$ C
受限操作温度	-30 ~ -20		65 ~ 75	$^{\circ}$ C
储存温度	-40		85	$^{\circ}$ C

6.3. 接口工作状态电气特性

V_L: 逻辑低电平;V_H: 逻辑高电平;

表 22: U8300C 普通数字 IO 信号的逻辑电平

Signal V _L	V _H	Unit
-----------------------	----------------	------

	Min	Max	Min	Max	
数字输入	-0.3	0.3* V _{DD-PX}	0.7* V _{DD-PX}	V _{DD-PX} +0.5	٧
数字输出	GND	0.45	V _{DD-PX} -0.45	V_{DD-PX}	٧

注: V_{DD-PX}=1.8V

表23: U8300C接口电源工作状态电特性

Parameter	I/O	Min	Тур	Max	Unit
VBAT	I	3.3	3.3	3.6	V
USIM_VCC	0	1.7/2.75	1.8/2.85	1.9/2.95	V

6.4. 环境可靠性要求

表24: U8300C环境可靠性要求

	271元 与非正文小			
测试项目	测试条件			
低温存储测试	温度-40℃±3℃,关机状态下持续24小时			
高温存储测试	温度+85℃±3℃,关机状态下持续24小时			
温度冲击试验	关机状态下,分别在温度-40℃和+85℃环境下持续0.5h,温度转换时间<3min			
血)支件山 风池	共进行24个循环			
高温高湿试验	温度+85℃±3℃,湿度90~95%RH,关机状态下持续24小时			
低温运行测试	温度-20℃±3℃,工作状态下持续24小时			
高温运行测试	温度+65℃±3℃,工作状态下持续24小时			
震动测试	按照下表所示的要求进行震动测试: 频率 随机振动ASD (加速度谱密度) 5~20Hz 0.96m²/s³ 20~500Hz 0.96m²/s³(20Hz处),其它-3dB/倍频程			
连接件寿命试验	板对板连接器接口插拔50次; RF天线接口电缆插拔30次			
ESD 测试	1、模块在通话状态下测试天线接口、电源PAD和大面积地,ESD满足: 1) 接触放电应通过±2KV、±4KV试验等级 2) 空气放电应通过±2KV、±4KV、±8KV试验等级 2、模块在关机状态下,测试EVB的SIM卡座,ESD满足:			
	 接触放电应通过±2KV试验等级 空气放电应通过±2KV、±4KV试验等级 			

6.5. ESD特性

U8300C是一款消费终端产品。虽然模块设计时已经考虑了ESD的问题,并做了ESD防护,但是考虑U8300C模块在运输和二次开发也可能有ESD问题发生,所以开发者要考虑最终产品ESD问题的防护,请参考文档中的接口设计的推荐电路。

对于U8300C模块的ESD允许的放电范围参考下表。

表25: U8300C接口抗ESD特性

Part	Air discharge	Contact discharge
VBAT,GND	±8KV	±4KV
Antenna port	±8KV	±4KV
Other port	±4KV	±2KV

Confidential Confidential