On considère $S = \{z \in \mathbb{C} \mid |z| = 2\}.$

- 1. Rappeler la nature géométrique de S. Soit $f: \mathbb{C} \to \mathbb{C}$ la fonction définie par $f(z) = \frac{2z+1}{z+1}$. Déterminer D_f le domaine de définition de f. Est elle bien définie pour tous les points de S?
- 2. (a) Mettre $f(z) \frac{7}{3}$ sous la forme d'une fraction.
 - (b) Montrer que pour tout z dans l'ensemble de définition de f,

$$\left| f(z) - \frac{7}{3} \right|^2 = \frac{|z|^2 + 8\Re(z) + 16}{9(|z|^2 + 2\Re(z) + 1)}$$

- (c) On note S_2 le cercle de centre 7/3 et de rayon r_0 . Montrer que $f(S) \subset S_2$
- 3. (a) Soit y = f(z), exprimer z en fonction de y quand cela a un sens.
 - (b) Déterminer l'ensemble F tel que $f: D_f \to F$ soit bijective. Déterminer l'expression de f^{-1}
 - (c) (Difficile) Montrer que pour tout $y \in S_2$, $f^{-1}(y) \in S$.
 - (d) En déduire f(S).