# Towards Numerically Stable Co-simulation with FMI 3.0 using On-demand Interpolation

Robert Braun
Linköping University
Division of Fluid and Mechatronic Systems



#### Motivation – Co-simulation

#### **Benefits:**

- Facilitates <u>collaboration</u>
- Useful for <u>multi-domain</u> simulation
- Each sub-model can use its <u>best suitable solver</u>
- Preserves <u>investments</u>



#### Motivation – Co-simulation





#### Motivation

Co-simulation relies on <u>sampled communication</u>:



#### Motivation

#### Co-simulation execution methods:

|                                  | Requires<br>Rollback | Ensures<br>Stability |
|----------------------------------|----------------------|----------------------|
| Fixed communication step         | no                   | no                   |
| Extrapolation                    | no                   | no                   |
| Adaptive communication step-size | yes                  | yes                  |
| Waveform relaxation              | yes                  | yes                  |
| Bi-lateral delay models (TLM)    | no                   | yes                  |



# Transmission Line Modelling (TLM)

Every physical element has a natural time delay:



Wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$



#### TLM for Co-simulation





# **Existing TLM Solution**





# Functional Mockup Interface (FMI)

FMI for Co-simulation



FMI for Model Exchange



Current version: 2.0.1





# Synchronous data exchange



# Asynchronous data exchange

Not available in FMI 2.0





# Asynchronous data exchange

#### Requirements:

- Continuous data exchange
- Access to variables at <u>intermediate solver states</u>



# **UML Sequence Diagram (CVODE)**





#### **Communication Patterns**





Previous work

#### 1D Test Model





#### State-of-the-Art: Zero-order Hold

- Not stable after reducing step-size 1000 times
- Compatible with all FMI tools





# Interpolation using Input Derivatives

- Almost stable without reducing step-size
- Not supported by all FMI tools





## Intermediate Input Variables

- Stable without reducing step-size
- Not supported by FMI standard





# **FMI Change Proposal**

#### Intermediate Variable Access (IVA)

- Send output variables to master whenever produced
- Request input variables at any point during step





# Suggested Implementation

```
typedef struct {
  fmi3Float64 intermediateUpdateTime;
  fmi3Boolean eventOccurred;
  fmi3Boolean clocksTicked;
  fmi3Boolean intermediateVariableSetAllowed;
  fmi3Boolean intermediateVariableGetAllowed;
  fmi3Boolean intermediateStepFinished;
  fmi3Boolean canReturnEarly;
} fmi3IntermediateUpdateInfo;

Master can call setReal()

Master can call setReal()

If false, master can only use output variables to compute immediate input variables
```



# UML Sequence Diagram (CVODE/FMI 3.0)





#### 2D Test Model





# **Experimental Results**

# Custom implementation using FMI 2.0 (not according to standard)



Both models stable with large communcation steps!



#### Conclusions

- FMI 3.0 will (most likely) support TLM
  - Intermediate variable access
  - Eliminates delays and sampling errors
- Prototype
  - Method works well with CVODE solver
  - Minimum implementation effort



## Remaining Work

- Implementation in FMI export tool(s)
  - OpenModelica...
- Implementation in FMI master simulation tool
  - OMSimulator
- Industrially relevant demonstrator









# Thank you!

www.liu.se

