

CHEMISTRY HANDBOOK

DEPARTMENT OF CHEMISTRY

RV College of Engineering®

(Autonomous Institution affiliated to VTU, Belagavi)

RV Vidyaniketan Post, 8th Mile, Mysuru Road

Bengaluru – 560 059

Ph: 080 68188228

Email ID: hod.chemistry@rvce.edu.in

DECLARATION

All the data in this Chemistry Handbook is taken from CRC Handbook of Chemistry and Physics 97th Edition for the use of chemistry calculations and experiments.

Index

		1
Sl No.	List of tables	Page No.
1	PERIODIC TABLE	3
2	INTERNATIONAL SYSTEM OF UNITS (SI)	4
3	CONVERSION FACTORS	4
4	CONVERSION OF TEMPERATURES	4
5	VALUES OF GAS CONSTANT IN DIFFERENT TERMS	4
6	MELTING, BOILING, TRIPLE, AND CRITICAL POINTS OF SOME ELEMENTS:	5
7	ENTHALPY OF HYDRATION OF GASES (at 298.15 K)	5
8	PHYSICAL CONSTANTS AND UNIT CONVERSIONS	6
9	IMPORTANT PROPERTIES OF SOLUTIONS	6
10	SOLUBILITY OF SELECTED COMPOUNDS AT 298K	7
11	INDEX OF REFRACTION OF INORGANIC LIQUIDS	7
12	STANDARD KCI SOLUTIONS FOR CALIBRATING CONDUCTIVITY CELLS	8
13	IONIC CONDUCTIVITY AND DIFFUSION AT INFINITE DILUTION	8
14	VAPOUR PRESSURES (TEMPERATURE AT WHICH PRESSURE REACHES INDICATED VALUE), BOILING POINTS, AND HEATS OF SUBLIMATION OF RARE EARTH METALS	9
15	VALUES OF PKw (H2O) AND pKw(D2O)	9
16	FIXED-POINT PROPERTIES OF H ₂ O AND D ₂ O	10
17	SOLUBILITY OF SELECTED GASES IN WATER	10
18	VAPOUR PRESSURE, ENHALPY OF VAPORISATION AND SURFACE TENSION OF WATER	11
19	THERMOPHYSICAL PROPERTIES	11
20	DENSITY OF WATER AT DIFFERENT TEMPERATURES	12
21	ELECTRICAL CONDUCTIVITY OF AQUEOUS IONS	12
22	THERMODYNAMIC PROPERTIES OF SOME AQUEOUS IONS	13
23	MOLAR IONIC CONDUCTIVITY	14
24	ELECTRON AFFINITIES AND 1ST IONIZATION ENERGY OF ELEMENTS	14
25	ELECTRICAL CONDUCTIVITY AND RESISTIVITY OF PURE METALS	15
26	CALCULATION OF EQUIVALENT MASS	16
27	MEAN ACTIVITY COEFFICIENTS AT 25 °C	16
28	ELECTROCHEMICAL SERIES	17
29	REDUCTION REACTIONS HAVING E° VALUES MORE POSITIVE THAN	17
	THAT OF THE STANDARD HYDROGEN ELECTRODE	
30	PROPERTIES THAT OCCUR DURING EQUILIBRIUM	18
31	DISSOCIATION CONSTANTS OF INORGANIC ACIDS AND BASES	19
32	IMPORTANT FORMULAS	19

33	pH SCALE FOR AQUEOUS SOLUTIONS	20
34	INDICATORS FOR ACIDS AND BASES	20
35	PROPERTIES OF CARRIER GASES FOR GAS CHROMATOGRAPHY	21
36	PROPERTIES OF CRYOGENIC FLUIDS	22
37	PROPERTIES OF LIQUID HELIUM	23
38	PROPETRTIES OF FLUIDS	24
39	DIFFUSION COEFFICIENTS AT INFINITE DILUTION	25
40	BOND LENGTHS IN ORGANOMETALLIC COMPOUNDS	25
41	PROPERTIES OF SEMICONDUCTORS	26
42	PROPERTIES OF SUPERCONDUCTORS	26
43	PROPERTIES OF SELECTED POLYMERS	27
44	ADVERSE EFFECTS OF GLOBAL WARMING	27

PERIODIC TABLE

18 VIIIA 2 Helium 4.0026 2	10	Neon 20.18	18 Ar	Argon 39.95 2-8-8	36	Krypton 83.80 2-8-18-8	54	Xenon 131.29 2-8-18-18-8	98	Radon [222]	08 Oganesson [294] 2-8-18-32-32-18-8
17 VIIA	6	Fluorine 18.998 2-7	12 CI	35.45 2-8-7	35	Bromine 79.90 2-8-18-7	53	Todine 126.90 2-8-18-18-7	85	At Astatine [210] 2-8-18-32-18-7	115 116 117 M.C. LV TS Moscovium Livermorium Teamessine E3001 E3011 E3011 sebigagasika sebigagasika sebigagasika
16 VIA	8	Oxygen 15.999 2-6	92 🐼	32.06 2-8-6	34	Selenium 74.92 2-8-18-6	25	$\mathop{\mathrm{Tellurium}}_{127.60}$	84	P0 Polonium [209] 2-8-18-32-18-6	116 [Ly Livermorium [293] 2-8-18-32-32-18-6
15 VA	7	Nitrogen 14.007 2-5	15 P	Phosphorus 30.97 2-8-5	33	Arsenic 74.92 2-8-18-5	21	Sh Antimony 121.76 2-8-18-18-5	83	Bismuth 208.98 2-8-18-32-18-5	
14 IVA	9	Carbon 12.011	4 .2	28.085 2-8-4	35	Germanium 72.63 2-8-18-4	20	Tin 118.71 2-8-18-18-4	82	Ph Lead 207.2 2-8-18-3-18-4	114 Flerovium [289] 2-8-18-32-32-18-4
13 IIIA	2	Boron 10.81 2-3	13 M	Aluminium 26.98 2-8-3	31	Gallium 69.72 2-8-18-3	49	Indium 114.82 2-8-18-18-3	81	Thallium 204.38 2-8-18-3-18-3	NID Nihomium [286] 2-8-18-32-32-18-3
				12 IIB	30	Zinc 63.38 2-8-18-2	48	Cadmium 112.41 2-8-18-18-2	80	HECUTY 200.59 2-8-18-32-18-2	Copernicium [285]
		metals	operties	11 IB	50	Copper 63.55	47	$\mathop{\mathrm{Ag}}_{\mathop{\mathrm{silver}}\atop{107.87}\atop{2\text{-}8\text{-}18\text{-}18\text{-}18\text{-}1}}^{\mathop{\mathrm{Ag}}}$	80	Au Gold 196.97	Roentgenium [282]
	ls	Metalloids Reactive non metals	Noble gases Unknown properties	10 VIIIB	58	Nickel 55.69 2-8-16-2	46	$\underset{\substack{\text{Palladium}\\106.42\\2-8-18-18}}{\text{Pd}}$	78	Pl 1.8-5	109 110 Wit Darmstadtium [278] [281]
- Symbol Atomic weight	metalloi			9 VIIIB	27	Cobalt 55-93 2-8-15-2	45	Rhodium 102.91 2-8-18-16-1	4	II.	109 Mft Meitnerium [278] 2-8-18-32-32-15-2
	etals, and	Lanthanides	Actinides Post transition metals	8 VIIIB	56	Fe Iron 55.84 2-8-14-2	4	$\underset{101.07}{Ruthenium}$	92	OS Osmium 190.23 2-8-18-32-14-2	HS Hassium [277] 2-8-18-32-32-44-2
→ 1 Hydrogen 1.008 ←	Subcategory metals, nonmetals, and metalloids	Lant	Actii Post	7 VIIB	25	Manganese 54.94 2-8-13-2	43	$\mathop{\Gamma c}_{\text{Technetium}}^{\text{Technetium}}_{\text{[98]}}$	75	Rhenium 186.21	Bh Bohrium [270]
Î	gory meta	etals	Alkaline earth metals Transition metals	6 VIB	54	Chromium 51.996 2-8-13-1	45	Molybdenum 95.95 2-8-18-13-1	74	W Tungsten 183.84 2-8-18-32-12-2	Sg Seaborgum [269] 2-8-18-32-32-12-2
Atomic number— Name — Electrons per shell—	Subcate	Alkali metals	Alkaline earth mei Transition metals	5 VB	23	Vanadium 50.94 2-8-11-2	41	$\mathop{\mathrm{Niobium}}_{92.90}$	73	Tantalum 180.95	105 Db Dubnium [268]
я				4 IVB	55	Titanium 47.87 2-8-10-2	40	Zirconium 91.22 2-8-18-10-2	72	Hafnium 178.49 2-8-18-32-10-2	104 Rf Rutherfordium [267] 2-8-18-32-10-2
				3 IIIB	21	Scandium 44.96 2-8-9-2	39	Y Yttrium 88.90 2-8-18-9-2	57 - 71	so.	89 - 103 Actinides
2 11	4	Beryllium 9.013	12 Mg	Magnesium 24.32 2-8-2	20	Calcium 40.08 2-8-8-2	38	Sr Strontium 87.62 2-8-18-8-2	26	Barium 137-33 2-8-18-18-8-2	88 [Ke] Radium [226] 2-8-18-3-18-8-2
1 IA 1 Hydrogen 1.008	3	Lithium 6.94		Sodium 22.98 2-8-1	19	Potassium 39.10 2-8-8-1	37	Rubidium 85.47 2-8-18-8-1	22	Cesium Barium 132.91 137.33 2-8-18-18-8-1 2-8-18-18-8-2	RT RA Francium Radium [223] [226] 2-8-18-32-18-8-1

69 Thm Thulium Y 168.93	Md Nobelium [258] [259] [259]
	101 Md endelevium [258] 8:18:32:31:8:2
68 Err 3rbium 167.26 518-30-8-2	× *
1 8-8	100 Fermium [257] 2-8-18-32-30-8-2
67 Holmium 164.93 2-8-18-29-8-2	99 Einsteinium [252] 2-8-18-32-29-8-2
66 Dy Dysprosium 162.50 2-8-18-28-8-2	98 Californium [251] 2-8-18-32-28-8-2
65 Terbium 158.93 2-8-18-27-8-2	$\begin{array}{c} 97 \\ \hline \textbf{BK} \\ \text{Berkelium} \\ \text{[247]} \\ \text{2-8-18-32-27-8-2} \end{array}$
64 (Çd Gadolinium 157.25 2-8-18-25-9-2	96 Curium [247] 2-8-18-22-25-9-2
63 Europium 151.96 2-8-18-25-8-2	95 Am Americium [243] 2-8-18-32-25-8-2
62 Sm Samarium 150.36 2-8-18-24-8-2	$\Pr_{\text{Plutonium}}^{94}$ Plutonium [244] 2-8-18-32-24-8-2
61 Pm Promethium [145] 2-8-18-23-8-2	$\sum_{\substack{N \text{optunium} \\ [237]\\ z \cdot \theta \cdot 18 \cdot 3z \cdot 2z \cdot 9 \cdot z}} 93$
60 NG Neodymium 144.24 2-8-18-22-8-2	92 Uranium 238.03 2-8-18-32-21-9-2
59 Preseedymium 140.91 2-8-18-21	91 Pa Protactinium 231.04 2-8-18-32-20-9-2
58 Cerium 140.12 2-8-18-19-9-2	90 Thorium 232.04 2-8-18-32-18-10-2
577 Lanthanum 138.91 2-8-18-18-9-2	89 Actinium [227] 2-8-18-32-18-9-2

INTERNATIONAL SYSTEM OF UNITS (SI)

Quantity	Name	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Area	Square meter	m ²
Volume	Cubic meter	m³
Speed/Velocity	Meter per second	m/s
Density	kilogram per cubic meter	kg/m³
Amount of Substance	Mole	mol

CONVERSION FACTORS

To convert from	То	Multiply by
Ampere-hour	Coloumb	3.6 X 10 ³
Angstrong	Meter	10 ⁻¹⁰
Angstrong	Nanometer	10-1
Fermi meter	Meter	10 ⁻¹⁵
Atmosphere, standard(atm)	Pascal	1.01325 X 10 ⁵
Calorie	Joule	4.184

CONVERSION OF TEMPERATURES

From	to	Conversion formula
	Fahrenheit	$T/^{\circ}F = (9/5)t/^{\circ}C + 32$
Celsi <mark>us</mark>	Kelvin	$T/K = t/^{\circ}C + 273.15$
1 0 1	Rankine	$T/^{\circ}R = (9/5) (t/^{\circ}C + 273.15)$
	Celsius	$T/^{\circ}C = (5/9)[(t/^{\circ}F) - 32]$
Fahrenhe <mark>it</mark>	Kelvin	$T/K = (5/9)[(t/^{\circ}F) - 32] + 273.15$
1	Rankine	$T/^{\circ}R = t/^{\circ}F + 459.67$
Kelvin	Celsius	t/°C = T/K - 273.15
15/	Rankine	T/°R = (9/5)T/K
Rankine	Fahrenheit	T/°F = T/°R - 459.67
(0.3	Kelvin	T/K = (5/9)T/°R

VALUES OF GAS CONSTANT IN DIFFERENT TERMS

In SI Units: $R = 8.314472 \text{ Pa m3 } \text{K}^{-1} \text{ mol}^{-1}$

= 8314.472 Pa L K⁻¹ mol⁻¹

 $= 0.08314472 \text{ bar L K}^{-1} \text{ mol}^{-1}$

MELTING, BOILING, TRIPLE, AND CRITICAL POINTS OF SOME ELEMENTS

Element	t _m (°C)	t _b (°C)	t _c (°C)
Aluminium	1050	≈3200	6427
Carbon (graphite)	4489	3825	-
Carbon (diamond)	4440	-	-
Copper	1084.62	2560	-
Hydrogen (H ₂)	-259.16	-252.879	-240.212
Iodine (I ₂)	113.7	184.4	546
Iron	1538	2861	9067
Mercury (Hg)	-38.8290	356.619	1491
Nitrogen (N ₂)	-210.00	-195.795	-146.958
Oxygen (O ₂)	-218.79	-182.962	-118.569

ENTHALPY OF HYDRATION OF GASES (at 298.15 K)

Name	Mol. form	Δ _{hyd} H [∞] / kJ mol ⁻¹
Acetic acid	C ₂ H ₄ O ₂	-52.8
Acetone	C₃H ₆ O	-39.7
Acetonitr <mark>ile</mark>	C_2H_3N	-34.9
Ammo <mark>nia</mark>	H ₃ N	-35.4
<u>Anili<mark>ne</mark></u>	C ₆ H ₇ N	-56.5
Anis <mark>ole</mark>	C ₇ H ₈ O	-41.4
Arg <mark>on</mark>	Ar	-12.2
Benzald <mark>ehyde</mark>	C ₇ H ₆ O	-42.1
Benze <mark>ne</mark>	C ₆ H ₆	-28.1
Benzyl alc <mark>ohol</mark>	C ₇ H ₈ O	-66.9
Butane	C ₄ H ₁₀	-24.8
1-Butanol	C ₄ H ₁₀ O	-61.9
2-Butanol	C ₄ H ₁₀ O	-62.7
2-Butanone	C ₄ H ₈ O	-41.9
1-Butene	C ₄ H ₈	-24.1
Butyl acetate	C ₆ H ₁₂ O ₂	-52.7
Carbon dioxide	CO ₂	-17.9
Carbon monoxide	СО	-11.1
Dichloromethane	CH ₂ Cl ₂	-30.3
Diethyl amine	$C_4H_{11}N$	-64.3
Diethyl ether	C ₄ H ₁₀ O	-46.4
Ethane	C_2H_6	-17.9
Ethanol	C ₂ H ₆ O	-50.6
Ethyl acetate	C ₄ H ₈ O ₂	-45.3
Glycerol	C ₃ H ₈ O ₃	-103.5
Helium	He	-0.67
Hexane	C_6H_{14}	-31.9
Hydrogen	H ₂	-0.402

Methane	CH ₄	-12
Methanol	CH₄O	-52
Phenol	C ₆ H ₆ O	-57.7

PHYSICAL CONSTANTS AND UNIT CONVERSIONS				
Absolute zero	0 K = -273 ° C			
Atomic mass unit	$1 \text{ amu} = 1.66 \text{ x} 10^{-27} \text{ kg}$			
Avogadro's constant	$NA = 6.02 \times 10^{23} \text{ mo} 1^{-1}$			
Ideal gas constant	R = 8.31 J mori K ⁻¹			
Ionic product constant for water (at 298 K)	$Kw = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$			
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mo } 1^{-1} = 22.7 \text{ dm}^3$			
Specific heat capacity of water (at 298 K)	$cw = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$			
Standard temperature and pressure (STP)	273 K and 100 kPa			
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 . 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$			
Faraday constant (F)	96,500 C mo1 ⁻¹			
Electronic charge (e)	1.6023 x 10 ¹⁹ C			
1 calorie	4.184 joule			
Ideal gas Law	PV =nRT, P=pressure, V=volume, R=ideal gas constant, n=no of moles of gas, T=Absolute temperature			

IMPORTANT PROPERTIES OF SOLUTIONS

Descriptive term	Parts of solvent required for 1 part of solute
Very soluble	Less than 1
Freely soluble	From 1 to 10
Soluble	From 10 to 30
Sparingly soluble	From 30 to 100
Slightly soluble	From 100 to 1000
Very slightly soluble	From 1000 to 10000
Practically insoluble, or Insoluble	Greater than or equal to 10000

	SOLUBILITY OF SELECTED COMPOUNDS AT 298K								
	bromide	carbonate	chloride	hydroxide	Iodide	Nitrate	oxide	Phosphorous	sulphate
Aluminium	S	-	S	I	S	S	I	I	S
Ammonium	S	S	S	S	S	S	-	S	S
Barium	S	I	S	S	S	S	S	I	I
Calcium	S	I	S	Р	S	S	Р	I	Р
Cobalt(II)	S	I	S	I	S	S	I	I	S
Copper(II)	S	-	S	I	I	S	I	I	S
Iron(II)	S	I	S	I	S	S	I	I	S
Iron(III)	S	-	S	I	S	S	I	I	S
Lead(II)	Р	1	S			S	I	I	I
Lithium	S	S	S	S	S	S	S	(0)	S
Magnesium	S	10	S	LLtd://	S	S		Р	S
Silver	1/8	_ 10	101	I	S	S	T		Р
Sodium	S	S	S	S	S	S	S	S	S
Zinc	S	I	S	I	S	S	70.		S
Abbreviation	.00	Explanation							
S		Soluble in Water (solubility greater than 10 g L ⁻¹)							
Р		Partially soluble in Water (solubility between 1 and 10 g L ⁻¹)							
1100		Insoluble in Water (solubility less than 1 g L ⁻¹)							
1 - ED		No Data							

INDEX OF REFRACTION OF INORGANIC LIQUIDS

(All values refer to a wavelength of 589 nm)

Name	Formula	Refractive Index
Ammonia	NH₃	1.3944
Carbon dioxide	CO ₂	1.6630
Carbon disulphide	CS ₂	1.6277
Hydrogen	H_2	1.1096
Nitric acid	HNO₃	1.393
Nitrogen	N_2	1.19876
Oxygen	O ₂	1.2243
Perchloric acid	HCIO ₄	1.3819
Water	H₂O	1.33336

STANDARD KCI SOLUTIONS FOR CALIBRATING CONDUCTIVITY CELLS

(Conductivity of Aqueous Potassium Chloride at Various Concentrations and Temperatures)

<i>T</i> (ºC)	10 ⁴ x(0.01 m)/ _{S m} -1	10 ⁴ x(0.1 m)/ _{S m} -1	10 ⁴ x(1.0 m)/ _{S m} -1	10 ⁴ x(H ₂ 0)/ _{S m} -1
0	772.92	7116.85	63488	0.58
5	890.96	8183.70	72030	0.68
10	1013.95	9291.72	80844	0.79
15	1141.45	10437.1	89900	0.89
18	1219.93	11140.6	-	0.95
20	1273.03	11615.9	99170	0.99
25	1408.23	12824.6	108620	1.10
30	1546.63	14059.2	118240	1.20
35	1687.79	15316.0	127970	1.30

IONIC CONDUCTIVITY AND DIFFUSION AT INFINITE DILUTION

General Formula

 $\Lambda^{\circ} = v_{+} \Lambda_{+} + v_{-} \Lambda_{-}$, where v_{+} and v_{-} refer to the number of moles of cations and anions to which one mole of the electrolyte gives a rise in the solution.

 $\Lambda^{\circ} = \Lambda_{+} + \Lambda_{-}$, where Λ_{+} and Λ_{-} are equivalent ionic conductivities of the cation and anion

lon	Λ± 10 ⁻⁴ m²Smol ⁻	D10 ⁻⁵ cm ² s ⁻
1/2Malate ²⁻	58.8	0.783
1/2Maleate ²⁻	61.9	0.824
1/2Malonate ²⁻	63.5	0.845
Methylsulfate [–]	48.8	1.299
Naphthylacetate ⁻	28.4	0.756
1/20xalate ²⁻	74.11	0.987

VAPOUR PRESSURES (Temperature at Which Pressure Reaches Indicated Value), BOILING POINTS, AND HEATS OF SUBLIMATION OF RARE EARTH METALS

Rare earth metal	10 ⁻⁸ atm (0.001 Pa)	10 ⁻⁶ atm (0.101 Pa)	10 ⁻⁴ atm (10.1Pa)	10 ⁻² atm (1013 Pa)	Boiling point ^a ("C)	Heat of sublimation at 25 "C (kJ/mol)
Sc	1036	1243	1533	1999	2836	377.8
Υ	1222	1460	1812	2360	3345	424.7
La	1301	1566	1938	2506	3464	431.0
Ce	1290	1554	1926	2487	3443	422.6
Pr	1083	1333	1701	2305	3520	355.6
Sm	508	642	835	1150	1794	206.7
Eu	399	515	685	964	1529	175.3
Gd	1167	1408	1760	2306	3273	397.5
Tb	1124	1354	1698	2237	3230	388.7
Dy	804	988	1252	1685	2567	290.4
Но	845	1036	1313	1771	2700	300.8
Er	908	1113	1405	1896	2868	317.1
Tm	599	748	964	1300	1950	232.2
Yb	301	400	541	776	1196	152.1
Lu	1241	1483	1832	2387	3402	427.6

VALUES OF $pK_W(H_2O)$ AND $pK_W(D_2O)$

pK _w =	pK _w = -log10(K _w)			
t/"C	pK _W (H ₂ 0)	pK _W (D ₂ 0)		
0	14.947	15.972		
5	14.734	15.743		
10	14.534	15.527		
15	14.344	15.324		
20	14.165	15.132		
25	13.995	14.951		
30	13.833	14.779		
35	13.680	14.616		

FIXED-POINT PROPERTIES OF H₂O AND D₂O

Properties	Unit	H₂O	D ₂ O
Molar mass	G mol ⁻¹	18.015268	20.02751
Melting point (101.325 kPa)	°C	0.0025	3.81
Boiling point (101.325 kPa)	°C	99.974	101.40
Triple-point temperature	°C	0.01	3.82
Triple-point pressure	Pa	611.657	661
Triple-point density (liquid)	g cm ⁻³	0.99979	1.1055
Critical temperature	°C	373.946	370.697
Critical pressure	MPa	22.064	21.671

SOLUBILITY OF SELECTED GASES IN WATER

1. <u>Carbon monoxide (CO) Mr = 28.0104</u>

T/K	Solubility(X ₁)	Equations Constant
288.15	2.095 * 10 ⁽⁻⁵⁾	Derived from Henry 's Law
293.15	1.918 * 10 ⁽⁻⁵⁾	Co <mark>nst</mark> ant Equation
298.15	1.774 * 10 ⁽⁻⁵⁾	
303.15	1.657 * 10 ⁽⁻⁵⁾	Std <mark>. dev.= ±</mark> 0.043%
308.15	1.562 * 10 ⁽⁻⁵⁾	Temp. ra <mark>nge = 273.</mark> 15—328.15

2. <u>Carbon dioxide (CO2) Mr = 44.0098</u>

T/K	Solubility(X ₁)	Equations Constant
288.15	8.21 * 10 ⁽⁻⁴⁾	Derived from Henry 's Law
293.15	7.07 * 10 ⁽⁻⁴⁾	Constant Equation
298.15	6.15 * 10 ⁽⁻⁴⁾	/ /
303.15	5.41 * 10 ⁽⁻⁴⁾	Std. dev.= ± 1.1%
308.15	4.80* 10 ⁽⁻⁴⁾	Temp. range = 273.15—353.15

3. Methane (CH4) Mr = 16.0428

T/K	Solubility(X ₁)	Equations Constant
288.15	3.122 * 10 ⁽⁻⁵⁾	C=65.2553
293.15	2.806 * 10 ⁽⁻⁵⁾	D=-6.1698
298.15	2.552 * 10 ⁽⁻⁵⁾	Std. dev.= ± 0.056%
303.15	2.346 * 10 ⁽⁻⁵⁾	Temp. range = 273.15—328.15
308.15	2.180 * 10 ⁽⁻⁵⁾	

4. Ethane (C2H6) Mr = 30.069

T/K	Solubility(X ₁)	Equations Constant
288.15	4.556 * 10 ⁽⁻⁵⁾	A=-90.8225
293.15	3.907 * 10 ⁽⁻⁵⁾	B=126.9559
298.15	3.401 * 10 ⁽⁻⁵⁾	C=34.7413
303.15	3.002 * 10 ⁽⁻⁵⁾	Std. dev.= ± 0.012%
308.15	308.15 * 10 ⁽⁻⁵⁾	Temp. range = 273.15—328.15

5. <u>Butane (C4H10) Mr = 58.123</u>

T/K	Solubility(X ₁)	Equations Constant
288.15	3.274 * 10 ⁽⁻⁵⁾	A=-102.029
293.15	2.687 * 10 ⁽⁻⁵⁾	B=146.040
298.15	2.244 * 10 ⁽⁻⁵⁾	C=53.4651
303.15	1.906 * 10 ⁽⁻⁵⁾	Std. dev.= ± 0.34%
308.15	1.645 * 10 ⁽⁻⁵⁾	Temp. range = 273.15—349.15

6. <u>Isobutene (C4H10) Mr = 58.123</u>

T/K	Solubility(X ₁)	Equations Constant
288.15	2.333 * 10 ⁽⁻⁵⁾	A=-129.714
293.15	1.947 * 10 ⁽⁻⁵⁾	B=183.044
298.15	1.659 * 10 ⁽⁻⁵⁾	C=53.4651
303.15	1.443 * 10 ⁽⁻⁵⁾	Std. dev.= ± 0.034%
308.15	1.278 * 10 ⁽⁻⁵⁾	Temp. range = 278.15—318.15

VAPOUR PRESSURE, ENTHALPY OF VAPORIZATION, AND SURFACE TENSION OF WATER

t/°C	P/kPa	Δ_{vap} H/kJ kg ⁻¹	γ/mN m ⁻¹
0.01	0.61165	2500.9	75.65
2	0.70599	2496.2	75.37
4	0.81355	2491.4	75.08
6	0.93536	2486.7	74.80
8	1.0730	2481.9	74.51
10	1.2282	2477.2	74.22
12	1.4028	2472.5	73.93
14	1.5990	2467.7	73.63

THERMOPHYSICAL PROPERTIES

Temperature (°C)	(MPa)	ρ (Kgm ⁻³)	u (ms ⁻¹)	H (kJ kg ⁻¹)	S (kJ kg ⁻¹ K ⁻¹)
0.01	0.1	999.84	1402.4	0.10186	0.000007
10	0.1	999.70	1447.3	42.118	0.15108
20	0.1	998.21	1482.3	84.006	0.29646
25	0.1	997.05	1496.7	104.92	0.36720
30	0.1	995.65	1509.2	125.82	0.43673
40	0.1	992.22	1528.9	167.62	0.57237
50	0.1	988.03	1542.6	209.42	0.70377
60	0.1	983.20	1551.0	251.25	0.83125

70	0.1	977.76	1554.7	293.12	0.95509
80	0.1	971.79	1554.4	335.05	1.0755
90	0.1	965.31	1550.4	377.06	1.1928
100	0.1	0.58967	472.28	2675.8	7.3610

DENSITY OF WATER AT DIFFERENT TEMPERATURES

Temperature (°C)	Density(kg/m³)
0	917.00
1 51115111	999.82
2	999.94
3	999.98
4	1000.00
5	1000.00
6	999.99
7	999.96
8	999.91
9	999.85
10	999.77

IMPORTANT PROPERTIES OF VARIOUS AQUEOUS IONS

Electrical Conductivity of Aqueous Ions

Electrical Conductivity κ in mS/cm for the Indicated Concentration in Mass Percent

Name	Formula	κ (0.5%)	κ (1%)	к (5%)	к (10%)	к (15%)	к (20%)	κ (25%)	к (30%)	к (50%)
Acetic acid	CH₃COOH	0.3	0.6	1.2	1.5	1.7	1.7	1.6	1.4	0.8
Ammonia	NH₃	0.5	0.7	1.1	1.0	0.7	0.5	0.4		
Ammonium chloride	NH4Cl	10.5	20.4	95.3	180					
Ammonium sulfate	(NH ₄) ₂ SO ₄	7.4	14.2	57.4	105	147	185	215		
Barium chloride	BaCl ₂	4.7	9.1	40.4	76.7	109.0	137.0			
Calcium chloride	CaCl ₂	8.1	15.7	67.0	117	157	177	183	172	
Cesium chloride	CsCl	3.8	7.4	32.9	65.8	102	142			
Citric acid	C(OH)(COO H)₃	1.2	2.1	4.7	6.2	7.0	7.2	7.1		
Copper(II) sulfate	CuSO ₄	2.9	5.4	19.0	32.2	42.3				

Formic acid	НСООН	1.4	2.4	5.6	7.8	9.0	9.9	10.4	10.5	8.6
Hydrogen chloride	HCl	45.1	92.9							
Lithium chloride	LiCl	10.1	19.0	76.4	127	155	170	165	146	
Magnesium chloride	$MgCl_2$	8.6	16.6	66.9	108	129	134	122	98	
Magnesium sulfate	MgSO ₄	4.1	7.6	27.4	42.7	54.2	51.1	44.1		
Manganese(II) sulfate	MnSO ₄		6.2	21.6	34.5	43.7	47.6			
Nitric acid	HNO ₃	28.4	56.1							
Oxalic acid	$H_2C_2O_4$	14.0	21.8	65.6						
Phosphoric acid	H ₃ PO ₄	5.5	10.1	31.5	59.4	88.4	118	146	173)
Potassium chloride	KCl	8.2	15.7	71.9	143	208	9.	1		
Potassium iodide	KI	3.8	7.5	35.2	71.8	110	188	224	/	
Potassium nitrate	KNO₃	5.5	10.7	47.0	87.3	124	157	182	10	
Potassium permanganate	KMnO ₄	3.5	6.9	30.5					4	
Silver(I) nitrate 30.2 70.1 126 171 204 222	AgNO₃	3.1	6.1	26.7	49.8	72.0	92.8	112	129	
Sodium acetate	NaC ₂ H ₃ O ₂	3.9	7.6	30.9	53.4	64.1	69.3	69.2	64.3	
Sodium bromide	NaBr	5.0	9.7	44.0	84.6	122	157	191	216	1
Sodium carbonate	Na ₂ CO ₃	7.0	13.1	47.0	74.4	88.6		7		/
Sodium chloride	NaCl	8.2	16.0	70.1	126	171	204	222	1	
Sodium hydroxide	NaOH	24.8	48.6	206	1	100	. ~	7.		
Sodium nitrate	NaNO ₃	5.4	10.6	46.2	82.6	111	134	152	165	

THERMODYNAMIC PROPERTIES OF SOME AQUEOUS IONS

(All values refer to standard conditions of 25 °C and 100 kPa pressure)

Cations	Δ _f H°/kJ mol ⁻¹	Δ _f G°/kJ mol ⁻¹	S°/J mol ⁻¹ K ⁻¹	C _p / J mol ⁻¹ K ⁻¹
Ag⁺	105.6	77.1	72.7	21.8
Al ³⁺	-531.0	-485.0	-321.8	
Be ²⁺	-382.8	-379.7	-129.7	
Ca ⁺²	-542.8	-553.6	-53.1	
K ⁺	-252.4	-283.3	102.5	21.8
Mn ⁺²	-220.8	-228.1	-73.6	50.0
NH ⁴⁺	-132.5	-79.3	113.4	79.9
Na⁺	-240.1	-261.9	59.0	46.4
HSO3 ⁻	-626.2	-527.7	139.7	
N3 ⁻	275.1	348.2	107.9	

MOLAR IONIC CONDUCTIVITY

Name	Symbol	Molar ionic conductivity (S.m².mol-¹).10-⁴
Potassium	K ⁺	73.5
Nitrate	NO ₃ -	71.4
Hydroxide	OH-	198.6
Sodium	Na ⁺	50.1
Ammonium	NH ₄ ⁺	73.5
Silver	Ag ⁺	69.1
Bromide	Br ⁻	78.1
Iodide	tvenana	76.8
Chloride	Cl-	76.3
Fluoride	F	54.4

ELECTRON AFFINITIES AND 1ST IONIZATION ENERGY OF ELEMENTS

The electron affinities and 1st ionization energies of a few important elements

Element	Electron Affinity	1 st Ionization Energy		
Н	0.75420817	13.598443		
Не	not stable	24 .587387		
Li	0.618049(0.000020)	5.391719		
Be	not stable	9.32270		
В	0.279723(0.000025)	8.29802		
С	1.262119(0.000020)	11.26030		
N	not stable	14.5341		
0	1.4611135(0.0000009)	13.61805		
Na	0.547926(0.000025)	5.139076		
Al	0.43283(0.00005)	5.985768		
Cl	3.612725(0.000027)	12.96763		
Mg	not stable	7.646235		
K	0.50147(0.00010)	4.3406633		
Ca	0.02455(0.00010)	6.11316		
Cr	0.666(0.012)	6.76651		

ELECTRICAL CONDUCTIVITY AND RESISTIVITY OF PURE METALS

The resistivity of a conductor is defined as the resistance of the conductor of length and unit area of cross-section, the following table gives the values of the electrical conductivity and resistivity of metals at room temperature:

Metal	Electrical Conductivity in 10 ⁻⁸ Sm ⁻¹	Electrical Resistivity in $10^{-8} \Omega$ -m
Be	0.27027	3.70
Li	0.105597	9.47
Al	0.36914	2.709
Ca	0.292398	3.42
Cr	0.079365	12.6
Cu	0.584112	1.712
Fe	0.101317	9.87
Ва	0.029412	34.0
Mg	0.223214	4.48
Mn	0.006944	144
Pb	0.047393	21.1
Au	0.443459	2.255
Hf	0.029674	33.7
Ni	0.140449	7.12
Pd	0.093197	10.73
K	0.135318	7.39
Ag	0.618429	1.617

CALCULATION OF EQUIVALENT MASS

Chemical Entity	Equivalent Factor	Formula for calculating equivalent mas
Acids	Basicity (number of moles of ionisable H ⁺ ions present in 1 mole of Acid)	E= Molar mass of acid/ Basicity of acid
Bases	Acidity (number of moles of ionisable OH- ions present in 1 mole of Acid)	E= Molar mass of acid/ Acidity of acid
Oxidising agent or reducing agent	No. of moles of electrons gained or lost by one mole of the reagent during redox reaction	E=Molar mass of oxidising agent or reducing agent/ No. of moles of electrons gained or lost by one mole of oxidising or reducing agent

MEAN ACTIVITY COEFFICIENTS AT 25 °C

Electrolyte	m/mol kg ⁻¹	γmean
AgNO₃	0.001	0.964
1.50	0.002	0.950
1 60	0.005	0.924
CO	0.010	0.896
	0.020	0.859
	0.050	0.794
	0.100	0.732
	0.200	0.656
	0.500	0.536
BaCl ₂	0.001	0.887
1	0.002	0.849
1	0.005	0.782
10	0.010	0.721
	0.020	0.653
	0.050	0.559
HCI	0.001	0.965
107	0.002	0.952
	0.005	0.929
	0.010	0.905
	0.020	0.876
	0.050	0.832
KNO₃	0.001	0.964
	0.002	0.95
	0.005	0.924

ELECTROCHEMICAL SERIES

Element	Electrode Reaction	E°(V)
Li	Li⁺+ e⁻ → Li	-3.045
К	K⁺ + e⁻ → K	-2.925
Cs	$Cs^+ + e^- \rightarrow Cs$	-2.923
Ва	Ba ²⁺ + 2e ⁻ → Ba	-2.906
Ca	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.866
Na	Na⁺ + e → Na	-2.714
Mg	$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.363
Al	Al ³⁺ + 3e ⁻ → Al	-1.662
Zn	Zn ²⁺ + 2e ⁻ → Zn	-0.763
Fe	Fe ²⁺ + 2e ⁻ → Fe	-0.440
Cd	Cd ²⁺ + 2e ⁻ → Cd	-0.403
Pb	PbSO ₄ + 2e ⁻ → Pb + SO ₄ ²⁻	-0.310
Ni	Ni ²⁺ + 2e ⁻ → Ni	-0.250
Sn	Sn ²⁺ + 2e ⁻ → Sn	-0.136
Pb	Pb ²⁺ + 2e ⁻ → Pb	-0.126
Fe	Fe ³⁺ + 3e ⁻ → Fe	-0.036
H H	2H ⁺ + 2e → H ₂ (SHE)	0
Cu	Cu ²⁺ + e- → Cu ⁺	+0.153
Cu	Cu ²⁺ + 2e ⁻ → Cu	+0.337
Ag	$Ag^+ + e^- \rightarrow Ag$	+0.799
Hg	Hg ⁺⁺ + 2e ⁻ → Hg	+0.854
Br ₂	$Br_2 + 2e^- \rightarrow 2Br$	+1.066
F ₂	F ₂ + 2e ⁻ → 2F ⁻	+2.870

REDUCTION REACTIONS HAVING E° VALUES MORE POSITIVE THAN THAT OF THE STANDARD HYDROGEN ELECTRODE

Reaction	E°/V
2 H ⁺ + 2 e ⇌ H ₂	0.00000
Cul₂ ⁻ + e ⇌ Cu + 2 l ⁻	0.00
$NO_3^- + H_2O + 2 e \rightleftharpoons NO_2^- + 2 OH^-$	0.01
$AgBr + e \rightleftharpoons Ag + Br^{-}$	0.07133
$HgO + H_2O + 2 e \rightleftharpoons Hg + 2 OH^-$	0.0977
$Hg_2Br_2 + 2 e \rightleftharpoons 2 Hg + 2 Br^-$	0.13923
$Pt(OH)_2 + 2 e \rightleftharpoons Pt + 2 OH^-$	0.14
$Ag_4[Fe(CN)_6] + 4 e \rightleftharpoons 4 Ag + [Fe(CN)_6]^{4-}$	0.1478

plagavi	
$2 \text{ NO}_2 - + 3 \text{ H}_2\text{O} + 4 \text{ e} \rightleftharpoons \text{N}_2\text{O} + 6 \text{ OH}^-$	0.15
Sn ⁴⁺ + 2 e ⇌ Sn ²⁺	0.151
$Cu^{2+} + e \rightleftharpoons Cu^+$	0.153
$AgCl + e \rightleftharpoons Ag + Cl^{-}$	0.22233
Ge ²⁺ + 2 e ⇌ Ge	0.24
$PbO_2 + H_2O + 2 e \rightleftharpoons PbO + 2 OH^-$	0.247
$MnO_4 - + 4 H_2O + 5 e \rightleftharpoons Mn(OH)_2 + 6OH^-$	0.34
Cu ₂ + + 2 e ⇌ Cu	0.3419
Cu⁺ + e ⇌ Cu	0.521
I ₂ + 2 e ⇌ 2 I⁻	0.5355
I⁻₃ + 2 e ⇌ 3 I⁻	0.536
$MnO_4 - + e \rightleftharpoons MnO_4^-$	0.558
$Hg_2^{2+} + 2 e \rightleftharpoons 2 Hg$	0.7973
$Ag^+ + e \rightleftharpoons Ag$	0.7996
Hg ²⁺ + 2 e ⇌ Hg	0.851
Br ₂ (I) + 2 e ⇌ 2Br ⁻	1.066
$PbO_2 + 4 H^+ + 2 e \rightleftharpoons Pb^{2+} + 2 H_2O$	1.455
$CrO_2 + 4 H^+ + e \rightleftharpoons Cr^{3+} + 2 H_2O$	1.48
Au³+ + 3 e ⇌ Au	1.498
$MnO_4 - + 4 H^+ + 3 e \rightarrow MnO_2 + 2 H_2O$	1.679
Au⁺ + e ⇌ Au	1.692
$Ag^{3+} + e \rightleftharpoons Ag^{2+}$	1.8
$Au^{2+} + e \rightleftharpoons Au^+$	1.8
$Ag^{3+} + 2 e \rightleftharpoons Ag^+$	1.9
$Co^{3+} + e \rightleftharpoons Co^{2+}$	1.92
$Ag^{2+} + e \rightleftharpoons Ag^{+}$	1.980
OH + e ⇌ OH ⁻	2.02

PROPERTIES THAT OCCUR DURING EQUILIBRIUM

Chemical Equilibrium Systems $K_c \!\!=\!\! [C]^C \; [D]^D \!\!/ \! [A]^a \; [B]^b, \; \text{For the reaction: aA} + bB \rightleftharpoons cC + dD$

$$K_w \! = \! [H^{\scriptscriptstyle +}][OH^{\scriptscriptstyle -}] \quad K_w = K_a * K_b$$

 $pH \!\!=\!\! -log_{10}[H^+]$

 $poH = -log_{10}[OH^{-}]$

 $K_a = [H_3O^+] [A^-]/[HA]$

 $K_b = [BH^+] [OH^-]/[B]$

DISSOCIATION CONSTANTS OF INORGANIC ACIDS AND BASES

Negative Logarithm of the Acid Dissociation Constant at the Indicated Temperature

Name	Formula	Step	t/ºC	рКа
Aluminium ion [AI ⁺³]	Al ⁺³		25	5.0
Ammonia	NH ₃		25	9.25
Barium ion [Ba ⁺²]	Ba ⁺²		25	13.4
Boric acid	H ₃ BO ₃	1	20	9.27
Hydrazine	N ₂ H ₄		25	8.1
Hydrazoic acid	HN ₃		25	4.6
Hydrogen cyanide	HCN	9.5	25	9.21
Hydrogen fluoride	HF		25	3.20
Hydrogen peroxide	H ₂ O ₂		25	11.62
Hydrogen sulphide	H ₂ S	1	25	7.05
Phosphonic acid	H ₃ PO ₃	1	20	1.3
		2	20	6.70
Phosph <mark>oric acid</mark>	H ₃ PO ₄	1	25	2.16
1 00		2	25	7.21
OF .		3	25	12.32

IMPORTANT FORMULAS

% yield =
$$\frac{Actual\ yield\ of\ the\ product}{Theoretical\ yield\ of\ the\ product} X\ 100$$

atom economy = $\frac{\text{molecular weight (MW) of desired product}}{\text{Sum of MW's of all materials produced}} \times 100$

$$E factor = \frac{mass of total waste}{mass of product}$$

Poiseuille's formula is given by, $V = \pi P \eta ^4 / 8 \eta I$

Here, the viscous liquid's flow rate through a tube of length 'l' and radius ' η ' is proportional to the applied pressure P.

Nernst's equation $E_{cell} = E^0 - [RT/nF] \ln Q$, Where $E_{cell} = cell$ potential of the cell, E^0 = cell potential under standard conditions, R = universal gas constant, T = temperature, n = number of electrons transferred in the redox reaction, F = Faraday constant, Q = reaction quotient

Normality (N) = No. of equivalents of solute / Volume of the solution in litre

Molarity (M) = No of moles of solute/volume of solution in litre

Molality (m) =No of Moles of solute / Weight of solvent in kg

pH SCALE FOR AQUEOUS SOLUTIONS

For Primary Standards at 0–50 °C

	Temperature in °C										
Primary standards (PS)	0	5	10	15	20	25	30	35	37	40	50
Sat. potassium hydrogen tartrate (at 25 °C)						3.55	3.55	3.54	3.54	3.54	3.54
0.05 mol kg ⁻¹ potassium dihydrogen citrate	3.86	3.84	3.82	3.80	3.78	3.77	3.76	3.75	3.75	3.75	3.74
0.05 mol kg ⁻¹ potassium hydrogen phthalate	4.00	3.99	3.99	3.99	4.00	4.00	4.01	4.01	4.02	4.02	4.05
0.025 mol kg ⁻¹ disodium hydrogen phosphate + 0.025 mol kg ⁻¹ potassium dihydrogen phosphate	86.9	6.95	6.92	6.900	6.881	6.865	6.853	6.844	6.841	6.838	6.833
0.03043 mol kg ⁻¹ disodium hydrogen phosphate + 0.008695 mol kg ⁻¹ potassium dihydrogen phosphate	7.534	7.5	7.472	7.448	7.429	7.413	7.400	7.389	7.386	7.38	7.367
0.01 mol kg ⁻¹ disodium tetraborate	9.46	9.3	9.33	9.27	9.22	9.18	9.13	9.10	80.6	9.06	9.01

INDICATORS FOR ACIDS AND BASES

The following table lists the most common indicators together with their pH range and colours in acidic and basic media. Since the colour change is not instantaneous at the pKa value, a pH range is given where a combination of colours is present. The list is as follows:

SI. No	Indicator	Indicator pH Range Solvent		Colour change (Acidic to basic)
1	Penta methoxy Red	1.2-2.3	70% ethanol	red-violet to colorless
2	Thymol Blue	1.2-2.8	Aqueous	red to yellow
3	2,4-Dinitrophenol	enol 2.4-4.0 50% ethano		colourless to yellow
4	Methyl Orange	3.1-4.4	Aqueous	red to orange
5	Congo Red	3.0-4.6	Aqueous	yellow to blue
6	Bromocresol Green	4.0-5.6	Aqueous	yellow to blue
7	4-Nitrophenol	5.2-6.8	Aqueous	yellow to purple
8	Bromophenol Blue	6.2-7.6	Aqueous	yellow to blue

9	Phenol Red	6.4-8.0	Aqueous	yellow to red
10	Cresol Red	7.2-8.8	Aqueous	yellow to red
11	Orange I 7.6-8.9 Aqueo		Aqueous	yellow to rose-red
12	Phenolphthalein	8.0-10.0	70% ethanol	colourless to red
13	Alizarin Yellow R	10.0-12.0	Aqueous	yellow to lilac

PROPERTIES OF CARRIER GASES FOR GAS CHROMATOGRAPHY

The following is a list of carrier gases sometimes used in gas chromatography, with properties relevant to the design of chromatographic systems. All data refer to normal atmospheric pressure (101.325 kPa).

M_r: Molecular weight (relative molar mass)

ρ₂₅: Density at 25 °C in g L⁻¹

λ: Thermal conductivity in mW m⁻¹ °C⁻¹

η: Viscosity in μ Pa s (equal to 10^{-3} cP)

cp : Specific heat at 25 °C in J g⁻¹ °C⁻¹

TE I		ρ ₂₅	At 25 °C		At 250 *C		c _r (25 *C)
Gas	M	(gL ⁻¹)	λ mW m ⁻ ' *C ⁻ '	η μPa s	λ mW m ^{-'} *C ^{-'}	η μPa s a	1
Hydrogen	2.016	0.082	185.9	8.9	280	13.1	14.3
Helium	4.003	0.163	154.6	19.9	230	29.5	5.20
Argon	39.95	1.632	17.8	22.7	27.7	35.3	0.521
Nitrogen	28.01	1.144	25.9	17.9	39.6	26.8	1.039
Oxygen	32.00	1.308	26.2	20.7	42.6	31.8	0.919
Carbon monoxide	28.01	1.144	24.8	17.8	40.7	26.5	1.039
Carbon dioxide	44.01	1.798	16.7	14.9	35.5	24.9	0.843
Sulfur	146.05	5.969	13.1	28.1	15.3	24.8	0.664
Methane	16.04	0.655	34.5	11.1	75.0	17.6	2.23
Ethane	30.07	1.229	20.9	9.4	57.7	15.5	1.75
Ethylene	28.05	1.146	20.5	10.3	53.8	17.2	1.53
Propane	44.10	1.802	17.9	8.3	49.2	14.0	1.67

PROPERTIES OF CRYOGENIC FLUIDS

This table gives physical and thermodynamic properties of ten cryogenic fluids. The properties are:

- M Molar mass
- > T_t Triple-point temperature
- > Pt Triple-point pressure
- \triangleright ρ_t (I) Liquid density at the triple point
- \triangleright $\Delta_{fus}H$ at Tt Enthalpy of fusion at the triple point
- ➤ T_b Normal boiling point at a pressure of 101.325 kPa (760 mmHg)
- ΔvapH at Tb Enthalpy of vaporization at the normal boiling point
- ➤ At T_b Density at the normal boiling point for the liquid (I) or vapour (v)
- C_p at T_b Heat capacity at constant pressure at the normal boiling point for the liquid (I) or vapour (v)
- u at Tb Speed of sound at the normal boiling point for the liquid (I) or vapour (v)
- > Tc Critical temperature
- P_c Critical pressure , ρ_c Critical density

The references for all fluids except air, helium, neon, krypton, and xenon are given in the thermophysical properties of fluids table. The properties of hydrogen are given for the para form of the molecule. The triple-point temperature of air is the solidification temperature of the liquid. The boiling-point temperature for air is the bubble-point temperature (i.e., the temperature at which boiling begins as the pressure of the liquid is lowered). The dew-point (vapour) properties of air at 101.325 kPa are calculated at a temperature of 81.72 K; the liquid and vapour properties of these two state points are not in equilibrium. The triple-point properties of helium are given at the temperature of the lambda line (change from normal-to-superfluid helium) for the saturated-liquid state.

Property	Units	Air	N,	02	Н	He	Ar	CH ₄
M	g	28.9655	28.0134	31.9988	2.01588	4.0026	39.948	16.0428
T _t	К	59.75	63.151	54.361	13.8033	2.1768	83.8058	90.6941
P _t	kPa	5.265	12.52	0.1463	7.041	5.043	68.89	11.70
ρ _t (I)	g cm ⁻³	0.9578	0.8672	1.306	0.07698	0.1459	1.417	0.4515
Enthalpy of fusion	J g ⁻¹		25.3	13.7	59.5		28.0	58.41
T _b	К	78.903	77.355	90.188	20.271	4.222	87.302	111.667
Enthalpy of vaporiza	J g ⁻¹	204.8	199.2	213.1	446.1	20.91	161.1	510.8
ρ(l)@ T _b	g cm ⁻³	0.8752	0.8061	1.141	0.07083	0.1250	1.395	0.4224

ρ (v)@ T _b	g dm ⁻³	4.497	4.612	4.467	1.339	16.70	5.774	1.816
C _p (I)@	J g ⁻¹ K ⁻¹	1.933	2.041	1.699	9.729	5.105	1.117	3.481
Ть С _р (v)@ Ть	J g ⁻¹ K ⁻¹	1.090	1.124	0.9707	12.03	9.327	0.5658	2.218
u (I)@ T _b	m s ⁻¹	865.5	851.4	904.3	1111	177.3	838.3	1338
u (I)@ T _b	m s ⁻¹	177.1	174.8	177.5	355.0	101.5	170.9	271.5
T _C	К	131530	126.192	154.581	32.938	5.1953	150.687	190.564
Pc	MPa	3.7860	33958	5.0430	1.2858	0.22746	4.8630	4.5992
ρς	g cm ⁻³	0.3426	0.3133	0.4361	0.03132	0.06958	0.5356	0.1627

PROPERTIES OF LIQUID HELIUM

The following data were obtained by a critical evaluation of all existing experimental measurements on liquid helium, using a fitting procedure described in the reference. All values refer to liquid helium at saturated vapor pressure; temperatures are on the ITS-90 scale. Several properties show a singularity at the lambda point (2.1768 K).

T/K	p/kPa	p/g cm ⁻³	C./J mo1 ⁴ K"	$\Delta vapH(J)$	3	σ (mN m ⁻¹)	10 ³ α _ν (K ⁻¹)	η/μPa s	λ/W (cm-K) ⁻¹
	1			A 34	130				
0.0	9	0.1451	0.00	59.83	1.05725	. 1	0.000		N.
0.5		0.1451	0.010	70.24	1.057254	0.3530	0.107	- 7	
1.0	0.01558	0.1451	0.415	80.33	1.057246	0.3471	0.309	3.873	
1.5	0.4715	0.1451	4.468	89.35	1.057265	0.3322	-2.36	1.346	
2.0	3.130	0.1456	21.28	93.07	1.057449	0.3021	-12.2	1.468	
2.5	10.23	0.1448	9.083	92.50	1.057135	0.2623	39.4	3.259	0.1497
3.0	24.05	0.1412	9.944	94.11	1.055683	0.2161	61	3.517	0.1717
3.5	47.05	0.1360	12.37	92.84	1.053615	0.1626	88.7	3.509	0.1868
4.0	81.62	0.1289	15.96	87.00	1.050770	0.1095	129	3.319	0.1965
4.5	130.3	0.1188	21.8	75.86	1.046725	0.0609	211		
5.0	196.0		44.7	47.67		0.0157			

PROPETRTIES OF FLUIDS

The absolute viscosity of some common liquids at temperatures between -25 °C and 100 °C is given in this table. Values were derived by fitting experimental data to suitable expressions for the temperature dependence. All values are given in units of milli pascal seconds (mPa s); this unit is identical to centipoise (cp).

Name	Mol. Fom.	η(-25°C)/ mPas	η(0°C)/ mPas	η(025°C)/ mPas	η(50°C)/ mPas	η(100°C)/ mPas
Acetic acid	C ₂ H ₄ O ₂			1.056	0.786	0.464
Acetic anhydride	C ₄ H ₆ O ₃	och:	1.241	0.843	0.614	0.377
Acetone	C ₃ H ₆ O	0.540	0.39	0.306	0.247	9
Acetonitrile	C ₂ H ₃ N		0.40	0.369	0.284	
Acetophenone	C ₅ H ₅ O			1.681	6	0.634
Acetyl chloride	C ₂ H ₃ CIO			0.368	0.294	(
Allyl alcohol	C₃H ₆ O			1.218	0.759	1
Aniline	C₀H ₇ N			3.85	2.03	0.850
Anisole	C ₇ H ₈ O		4	1.056	0.747	0.427
Benzene	C ₆ H ₆	- /1		0.604	0.436	1
Benzonitrile	C ₇ H ₂ N		3/	1.267	0.883	0.524
Benzyl alcohol	C ₇ H ₈ O	1/4	W	5.47	2.76	1.055
Benzylamine	C ₇ H ₉ N			1.624	1.080	0.577
Bromoethane	C₂H₅Br	0.635	0.47	0.374		1
1-Bromopropane	C ₃ H ₃ Br		0.64	0.489	0.387	100
2-Bromopropane	C ₃ H ₇ Br		0.61	0.458	0.359	
3-Bromopropene	C ₃ H ₅ Br		0.62	0.471	0.373	
Butanenitrile	C ₄ H ₇ N	7-1	-	0.553	0.418	0.268
Butanoic acid	C ₄ H ₈ O	7.30	2.22	1.426	0.982	0.542
2-Butanone	C ₄ H ₈ O	0.720	0.53	0.405	0.315	
Butyl acetate	C ₆ H ₁₂ O ₂		1.00	0.685	0.500	0.305
Butylamine	C ₄ H ₁₁ N		0.83	0.574	0.409	
Butylbenzene	C ₁₀ H ₁₄			0.950	0.683	
Butyl formate	C₅H ₁₀ O ₂		0.93	0.644	0.472	0.289

LISTS OF DIFFUSION COEFFICIENTS DAB AT INFINITE DILUTION FOR SOME BINARY LIQUID MIXTURES

Solute	Solvent	t/°C	D _{AB} /10 ⁻⁵ cm ² s ⁻¹
Acetic Acid	Acetone	25	3.31
Benzene	Acetone	25	4.25
Benzoic Acid	Acetone	25	2.62
Formic Acid	Acetone	25	3.77
Nitrobenzene	Acetone	20	2.94
Water	Acetone	25	4.56
Acetic Acid	Benzene	25	2.09
Bromobenzene	Benzene	8	1.45
Chloroethene	Benzene	8	1.77
Cyclohexane	Benzene	25	2.09
Chlorobenzene	Cyclohexane	25	1.34
Perylene	Cyclohexane	25	0.79
Pyrene	Cyclohexane	25	0.95
Allyl Alcohol	Ethanol	20	0.98
Toluene	Decane	25	1.93
Iodine	Ethanol	25	1.32
Benzene	Ethanol	25	1.88
Water	Ethanol	25	1.24

BOND LENGTHS IN ORGANOMETALLIC COMPOUNDS

This table summarizes the average values of interatomic distances of representative metal-ligand bonds. Sigma bonds between d- and f-block metals and the elements C, O and N are included. If four or more measurements are available, the standard deviation is given in parentheses. All values are in Angstrom units (10–10 m).[M here is the metal]

Cr	2.168	NCF	NCF	2.035(0.009)
Fe	2.074	2.091(0.030)	2.044	1.991(0.039)
Metal (M)	M-CH₃	M-CH ₂ -R	M-C-(=O)R (Carbonyl	M-CR=CR2
	(Methyl group attached)	(Alkyl group attached)	group)	(Alkene group)
Со	2.014(0.023)	2.039(0.032)	1.990	1.934(0.019)
Ni	2.029	1.964	1.850(0.059)	1.892(0.017)
Zn	NCF	1.964	NCF	NCF
Hf	2.275(0.049)	NCF	NCF	2.205
W	2.189(0.039)	2.175	NCF	2.224
Zr	2.292(0.049)	NCF	NCF	2.257
Pt	2.083(0.045)	2.062(0.031)	2.019	2.024(0.037)
Та	2.217(0.035)	2.225(0.056)	NCF	NCF
Hg	2.072(0.026	2.125	NCF	2.042
Pd	NCF	2.028	1.982(0.029)	2.000(0.024)

NCF stands for No Compound Formed

PROPERTIES OF SEMICONDUCTORS

The major properties of a few important semiconductors are:

- Density: It is defined as weight per volume of the semiconductor
- Thermal Conductivity: It is defined as the rate at which heat is transferred by conduction through a unit cross-section area of a material, when a temperature gradient exits perpendicular to the area.

Semiconductor	Density (g/cm³)	Thermal Conductivity [mW/cm-K (300K)]	
Si	2.329	1240	
Ge	5.323	640	
Sn	5.769	67	
CuCl	3.53	8.4	
AgBr	6.473	0.15	
AgI	5.67	4.2	
ZnS	5. 4.079	251	
CdS	4.826	200	
ZnSe	5.42	140	
ZnTe	6.34	108	

PROPERTIES OF SUPERCONDUCTORS

The two major properties of a superconductor are:

- Critical Temperature: It is denoted by T_c and is defined at which the resistivity of the superconductor tends to zero.
- Electronic Specific Heat: It is denoted by γ and is defined as the amount of heat energy required to raise the temperature of one mole of electrons by one degree Celsius.

The following table gives the information about the important elemental superconductors:

Metal	Critical Temperature(K)	Electron Heat Capacity (mJ mol ⁻¹ K ⁻¹)
Al	1.175 ± 0.002	1.35
Be	0.026	0.21
Cd	0.517 ± 0.002	0.69
Ga	1.083 ± 0.001	0.60
Hf	0.128	2.21
In	3.408 ± 0.001	1.672
Мо	0.915 ± 0.005	1.83
Nb	9.25 ± 0.02	7.80
Os	0.66 ± 0.03	2.35
Pb	7.196 ± 0.006	3.1
Th	1.38 ± 0.02	4.32
V	5.40 ± 0.05	9.82

PROPERTIES OF SELECTED POLYMERS

The following are the properties of a few selected polymers that are to be discussed:

- The coefficient of linear thermal expansion is the fractional change in length per °C change in temperature at constant pressure.
- The flexural strength, or cross-breaking strength, of a material is a measure of the bending strength or stiffness.
- The heat deflection temperature (HDT), or heat distortion temperature, is the temperature at which a polymer or plastic sample deforms under a specified load.

These properties are listed in the table below:

Polymer	Coefficient of linear expansion (10 ⁻⁵ /°C)	Flexural Strength (kPa)	Heat Deflection Temperature (°C)
PET	6.5	1.1×10^5	100
PBC	7.0	9.6 × 10 ⁴	65
PT	6.8	9.3 × 10 ⁴	130
Nylon 6,6	8.0	1 × 10 ⁵	75
Nylon 6	8.0	9.7×10^4	80
iPP	9.0	5 × 10 ⁴	55
Plasticized PVC	12.0	Not fixed	Not fixed
Rigid PVC	6.0	9 × 10 ⁴	75

PET: poly (ethylene terephthalate)
PBC: poly (butylene terephthalate)

PC: polycarbonate

iPP: isotactic polypropylene PVC: Poly Vinyl Chloride

ADVERSE EFFECTS OF GLOBAL WARMING

Adverse effects of Greenhouse effect

In the greenhouse effect, gases like carbon dioxide and methane entrap the heat from the Sun and does not let it escape out of the atmosphere. This results in effects like:

- Increase in heat in the surroundings,
- Extreme weather conditions, like heavy floods and draughts,
- Migration of species

The following table indicates the concentration of CO₂ in the atmosphere increased from 1961 to 2011, expressed in parts per million:

Year	Presence of CO ₂ (ppm)
1961	317.61
1971	326.62
1981	340.10
1991	355.5
2001	371.13
2011	391.63

The following graph indicates the production of carbon dioxide in the atmosphere:

The following table expresses the rise in the annual mean global surface temperature, and can be expressed as in terms of every decade below:

Year	Global Mean Surface Temperature(°C)
<mark>1961</mark>	14.05
1971	13.91
1981	14.33
<u>1991</u>	14.42
2001	14.54
2011	14.60

As we can see, mainly due to global warming, there has been an overall rise in the temperature of the surface of the Earth. A graph can show the exact depiction:

