Занятие 19. Булевы схемы-2.

Если в задаче упоминается граф, предполагается, что схема имеет $\binom{n}{2}$ входов, каждый из которых означает, есть или нет в графе соответствующее ребро.

- 1. Булева функция $f \colon \{0,1\}^n \to \{0,1\}$ называется симметрической, если ее значение не меняется при перестановке переменных. Докажите, что всякую симметрическую булеву функцию можно вычислить булевой схемой полиномиального от n размера.
- 2. Постройте схему полиномиального размера, проверяющую, будет ли граф полным.
- **3.** Постройте схему полиномиального размера для функции $f: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$, которая равна 1 тогда и только тогда, когда данный на вход граф раскрашиваем в два цвета.
- 4. Постройте схему полиномиального размера, проверяющую, будет ли граф регулярным.
- **5. а)** Докажите, что схема, вычисляющая функцию, $f: \{0,1\}^n \to \{0,1\}$, основанная на СДНФ (СКНФ) имеет размер не более $O(n2^n)$.
- **б**) Придумайте, как упростить схему, добившись оценки $O(2^n)$.
- 6. Докажите, что схема, использующая только монотонные функции, вычисляет монотонную функцию.
- 7. Пусть $f(x_1, ..., x_n)$ немонотонная функция. Докажите, что $\neg x_i$ вычисляется в базисе $\{0, 1, f\}$.
- 8. Докажите, что для всех достаточно больших n существует монотонная булева функция $f: \{0,1\}^n \to \{0,1\}$, которую нельзя вычислить схемой размера меньше n^{100} . (Булева функция f называется монотонной, если из неравенств $x_i \leq y_i$ для всех i следует неравенство $f(x_1, \ldots, x_n) \leq f(y_1, \ldots, y_n)$.)

Домашнее задание 19

- 1. Постройте схему полиномиального размера для функции $f: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$, равной единице, тогда и только тогда, когда в данном на вход графе есть изолированные вершины.
- **2.** Треугольником в графе называется тройка вершин, попарно соединенных между собой. Постройте схему полиномиального размера для функции $f \colon \{0,1\}^{\binom{n}{2}} \to \{0,1\}$, равной единице, тогда и только тогда, когда в данном на вход графе нет треугольников.
- **3.** Постройте схему полиномиального размера для функции $f: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$, равной единице, тогда и только тогда, когда данный на вход граф связен и содержит эйлеров цикл.
- **4.** Докажите, что любую монотонную функцию от n переменных можно вычислить схемой размера $O(n2^n)$, используя только дизъюнкцию и конъюнкцию.
- **5.** Докажите, что существует функция от n переменных (n > 2), не вычисляющаяся в базисе $\{\oplus, \cdot, 1\}$ схемой размера n^{100} .
- **6.** Докажите, что в базисе $\{\oplus,\cdot,1\}$ любая функция от n переменных вычисляется схемой размера не более 2^{n+1} .
- 7. Булева функция $f: \{0,1\}^n \to \{0,1\}$ называется линейной, если она представляется в виде

$$f(x_1,\ldots,x_n)=a_0\oplus(a_1\wedge x_1)\oplus\cdots\oplus(a_n\wedge x_n)$$

для некоторого набора $(a_1, \dots a_n) \in \{0, 1\}^n$ булевых коэффициентов.

Докажите, что схема, использующая только линейные функции, вычисляет линейную функцию.

8. Докажите, если $f(x_1, ..., x_n)$ — нелинейная функция, то конъюнкция $x_1 \wedge x_2$ вычисляется схемой в базисе $\{0, 1, \neg, f\}$.