$\sqrt{\text{True}}$

O False

1.	(2 pc	pints) Honor Code		
	I promise that I will complete this quiz independently and will not use any electronic products or paper-based materials during the quiz, nor will I communicate with other students during this quiz.			
	I wi	ll not violate the Honor Code during this quiz.	√ True	○ False
2. (18 points) True or False				
	(a)	(1') A problem in NP is $NP\text{-}Complete$ if any other problems in NP can nomial time.		
	(b)	(1') A problem in NP is NP-Complete if it can be reduced to another protime.	$\sqrt{\text{True}}$ blem in NP \bigcirc True	○ Falsein polynomial√ False
	(c)	(1') A problem in NP is $NP\text{-}Complete$ if it can be reduced to the 3-SA time.	T problem O True	in polynomial $\sqrt{\text{False}}$
	(d)	(1) A problem in NP is NP-Complete if the 3-SAT problem can be rectime.		- v
	(e)	(1') A problem in NP is NP-Complete if some problems in NP can be retime.	$\sqrt{\text{True}}$ duced to it \bigcirc True	\bigcirc False in polynomial \checkmark False
	(f)	(1') A problem in NP is $NP\text{-}Complete$ if there exists another $NP\text{-}Complete$ reduced to it in polynomial time.	ete problem $\sqrt{\text{True}}$	which can be Conversely False
	(g)	(1') According to the Cook-Levin Theorem, any problem in NP can be nomial time.	reduced to	o SAT in poly-
	(h)	(1') If a problem is in NP-Complete, any NP-Complete problem can retime.	$\sqrt{\text{True}}$ educe to it	○ False in polynomial
	(*)		$\sqrt{\text{True}}$	○ False
	(1)	(1') Any problem in P is in NP.	$\sqrt{\text{True}}$	○ False
	(j)	(1') If $L_1 \leq_p L_2$ and L_1 is in NP, then so is L_2 .	O True	$\sqrt{\text{False}}$
	(k)	(1') If $L_1 \leq_p L_2$ and L_1 is in NP-Complete, then so is L_2 .	O True	$\sqrt{\text{False}}$
	(1)	(1') If $L_1 \leq_p L_2$ and $L_1 \in P$, then $L_2 \in P$.	O True	$\sqrt{\text{False}}$
	(m)	(1') If $L_1 \leq_p L_2$ and $L_1 \notin P$, then $L_2 \notin P$.	√ True	○ False
	(n)	(1') For any positive integer $k \geq 2$, k-SAT $\in NP$.	√ True	() False
	(o)	(1') For any positive integer $k \geq 2$, k-SAT \in NP-Complete.	O True	$\sqrt{\text{False}}$
	(p)	(1') For any problem $L \in NP, L \leq_p 3-SAT.$	√ True	○ False

(r) (1') If CLIQUE can be solved in polynomial time, then any problem in NP can be solved in polynomial time. $\sqrt{\mbox{ True}} \quad \bigcirc \mbox{ False}$

(q) (1') 2-COLOR \leq_p 3-COLOR \leq_p 3-SAT.

3. (10 points) P and NP worlds

Give out statements, please select their correctness from the four below.

A. True if and only if P = NP B. True regardless of whether P = NP or not

C. False if and only if P = NP D. False regardless of whether P = NP or not

(a) (2') There are problems in NP that cannot be solved in exponential time.

(b) (2') If problem $L_1 \in \mathsf{NP}$, then for any problem $L_2 \in \mathsf{P}$, L_2 can be reduced to L_1 in polynomial time.

(c) (2') Minimum Spanning Tree Problem is in NP.

(d) (2') Minimum Spanning Tree Problem is in NP-Complete.

(e) (2') 3-SAT \leq_p 2-SAT.

4. (10 points) Venn diagrams for P and NP

Draw Venn diagrams which represent the relationship among P, NP, and NP-Complete under 2 circumstances.

Example: If $A \neq B$, $A \cap B \neq \emptyset$, $A \subset C$, $B \subset C$, then the venn diagrams can be drawn like:

(a) (4') If P = NP, draw Venn diagrams which represent the relationship among P, NP, and NP-Complete under 2 circumstances.

(b) (6') If $P \neq NP$, draw Venn diagrams which represent the relationship among P, NP, and NP-Complete under 2 circumstances.

