

Betriebssysteme

Prozessor-Scheduling

Uwe Neuhaus

BS: Prozessor-Scheduling

1

Überblick

- Wechsel von CPU- und E/A-Nutzung
- Preemptives und Non-preemptives Scheduling
- Ziele des Prozess-Schedulings
- Scheduling-Strategien
- Beispiele

Uwe Neuhaus

BS: Prozessor-Scheduling

warte auf E/A

rechne schreibe Datei

warte auf E/A

lese Datei

warte auf E/A

... exit

Uwe Neuhaus

BS: Prozessor-Scheduling

3

Non-preemptives Scheduling

- Keine
- Prozesse laufen bis sie

 - auf

Gefahr durch

Prozess

1

oder

an einen anderen

oder

Prozesse

Uwe Neuhaus

BS: Prozessor-Scheduling

Preemptives Scheduling

- des aktiven Prozesses möglich
- Prozesse laufen bis sie
 - freiwillig den Prozessor freigeben oder
 - der Scheduler entzieht.
- Auslöser für die Verdrängung:
 - Strategien
 - Strategien
- durch unkooperative oder fehlerhafte Prozesse

Uwe Neuhaus

BS: Prozessor-Scheduling

5

Ziele des Prozess-Schedulings

- P
- A
- W
- A
- F
- T

Uwe Neuhaus

BS: Prozessor-Scheduling

Scheduling-Strategien (I)

- Bearbeitung in der Reihenfolge des Eintreffens
- Non-preemptive Strategie
- Prozesse mit langen CPU-Nutzungszyklen können behindern (Konvoi-Effekt)
- Auswahl des Prozesses mit dem kürzesten CPU-Nutzungszyklus
- Optimale Strategie, um die durchschnittliche Wartezeit zu minimieren
- Problem: Länge des nächsten CPU-Nutzungszyklus muss geschätzt werden
- Non-preemptive und preemptive Realisierung möglich

Uwe Neuhaus

BS: Prozessor-Scheduling

7

Scheduling-Strategien (II)

- Auswahl nach vergebenen Prioritäten
- Prioritäten können intern oder extern vergeben werden
- Non-preemptive und preemptive Realisierung möglich
- Problem: Prozesse niedriger Priorität können "verhungern" (starving).
- Lösung: Lange Wartezeiten erhöhen langsam die Priorität (aging)

Uwe Neuhaus

BS: Prozessor-Scheduling

Scheduling Strategien (III)

- FCFS mit Zeitscheibenverfahren (preemptiv)
- Verdrängte Prozesse erhalten eine neue Zeitscheibe und reihen sich hinten wieder ein
- Kleine Zeitscheiben -> kurze Antwortzeiten
- Kleine Zeitscheiben -> geringere CPU-Auslastung, da erhöhter Verwaltungsaufwand durch Kontext-Wechsel
- Einsortierung nach der kleinsten verbleibenden Restzeit
- Dynamische, prioritätgesteuerte Warteschlange als Vorstufe vor RR

Uwe Neuhaus

BS: Prozessor-Scheduling

9

Multi-level Scheduling

Uwe Neuhaus

BS: Prozessor-Scheduling

Scheduling in Solaris 2

Uwe Neuhaus BS: Prozessor-Scheduling 11

Scheduling in Windows 2000

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

Uwe Neuhaus

BS: Prozessor-Scheduling