

Trabajo Práctico Nº2

Transistor Bipolar de Juntura

Objetivos del trabajo

- Analizar las principales características de baja frecuencia de transistores bipolares de juntura tipo NPN a través de mediciones experimentales.
- Familiarizarse con métodos para la obtención de parámetros a partir de curvas experimentales.
- Comparar los resultados obtenidos en forma experimental con los obtenidos mediante cálculos teóricos y simulaciones.

Resumen

En este trabajo práctico se simularán y medirán las curvas de transferencia y salida de un transistor TBJ NPN. Las simulaciones se llevarán a cabo usando LTSpice. De las mediciones se obtendrán, mediante una herramienta de cálculo numérico, los parámetros I_S , n_f y V_A que luego serán usados en las expresiones teóricas estudiadas en clase. Finalmente, se compararán: i) las mediciones, ii) las simulaciones realizadas con LTSpice, y iii) las curvas teóricas obtenidas con los resultados de los ajustes. A partir de estas figuras se realizará un análisis de las diferencias observadas entre las curvas. Para todo el trabajo se debe suponer que la temperatura ambiente es de $T=300\,\mathrm{K}$.

Importante: para realizar las mediciones, la FIUBA proveerá a cada grupo con una fuente de tensión de laboratorio, un amperímetro y un voltímetro. El resto de los materiales deben ser traídos por los/as estudiantes.

Enunciado

Parte I: ganancia de corriente del dispositivo

En esta parte del trabajo se debe obtener el valor de β_F (o h_{FE}) del transistor **2N2222** de forma experimental y simulada.

Para la medición se necesita un transistor NPN **2N2222** con encapsulado TO-92 y un multímetro que posea la capacidad de medir β_F . Es importante mencionar que en el informe deben estar detalladas las condiciones en las que el multímetro realiza esta medición, las cuáles se obtienen del manual del multímetro.

Para determinar β_F usando el LTSpice se deben emular las condiciones de medición del multímetro, es decir, saber qué corriente de base se inyecta y qué tensión se aplica entre los terminales Colector y Emisor. Luego, realizar la simulación de punto de operación (.op) y consultar el parámetro BETADC en el Simulation Output File.

Pregunta 1: suponiendo conocidas las concentraciones de dopaje para cada región del diodo $(N_E = 10^{18} \,\mathrm{cm}^{-3}; \,N_B = 10^{16} \,\mathrm{cm}^{-3}; \,N_C = 4 \times 10^{13} \,\mathrm{cm}^{-3})$, ¿cuál debe ser la relación entre el ancho de las distintas regiones del dispositivo $(W_E; W_B; W_C)$ para obtener el valor β_F medido? Elegir un valor de W_B de forma tal que sea mucho mayor (10 veces mayor) al ancho de la zona de vaciamiento en la base. Considerar $V_{BE} = V_{BE_{on}}$; y V_{CE} igual a la usada por el multímetro. En la búsqueda de los valores de los coeficientes $D_{n,p}$ tenga en cuenta las concentraciones de impurezas de la región correspondiente.

DISPOSITIVOS SEMICONDUCTORES 1^{er} cuatrimestre de 2023

Figura 1: Circuito sugerido para la medición I_C vs. V_{BE} y un esquema del gráfico que se espera obtener.

Parte II: curva de transferencia

Medición:

La segunda medición que debe realizarse es la curva de transferencia, I_C vs. V_{BE} . Para llevarla a cabo se necesita del mismo transistor usado en la Parte 1, una fuente de tensión DC (V_{CC}) , dos multímetros y un resistor variable formado por un resistor de valor fijo (R_B) y un preset multivuelta $(R_{B_{var}})$. El circuito sugerido se muestra en la Figura 1.

La fuente de tensión DC se utiliza para fijar $V_{CE} = 3$ V. La función de R_B es limitar la corriente de base. Las distintas tensiones V_{BE} (entre 0 V y $V_{BE_{max}}$) se obtienen variando $R_{B_{var}}$. El preset se encuentra dispuesto entre R_B y tierra y con el punto medio conectado en el terminal de Base. Un multímetro se usa para medir la tensión V_{BE} y el otro en modo amperímetro para relevar la corriente entrante en el terminal de Colector, conectándolo en serie entre V_{CC} y dicho terminal. Se sugiere medir al menos 30 puntos, manteniendo un paso de tensión constante.

Cálculos previos antes de comprar el resistor y el preset:

Los valores de R_B y $R_{B_{var}}$ deben determinarse para que el circuito opere adecuadamente durante toda la medición de la curva de transferencia. En este sentido,

- La corriente de colector I_C máxima debe ser igual a 50 mA.
- Para el cálculo del valor de R_B considerar $V_{BE_{max}} = 0,8 \,\mathrm{V}.$
- Tener en cuenta que los valores comerciales de las resistencias son discretos.

Simulación:

Se debe obtener mediante *LTSpice* la curva de transferencia del transistor **2N2222**. Para acceder al modelo hacer click derecho sobre el símbolo del transistor NPN, seleccionar Pick New Transistor y elegir el modelo para el transistor deseado (puede haber más de uno, probar y quedarse con el que ajusta mejor a las mediciones).

Es importante destacar que la simulación debe ser del dispositivo y no del banco de medición experimental.

DISPOSITIVOS SEMICONDUCTORES 1^{er} cuatrimestre de 2023

Figura 2: Circuito sugerido para la medición I_C vs. V_{CE} y un esquema del gráfico que se espera obtener.

¿Cuáles son los pasos a seguir para llevar a cabo esta Parte?

- 1. Conseguir la hoja de datos del dispositivo.
- 2. Determinar los valores de R_B y $R_{B_{var}}$.
- 3. Realizar la simulación para verificar los valores obtenidos en el punto anterior.
- 4. Comprar los componentes para realizar la medición.
- 5. Armar el banco de medición y medir siguiendo los lineamiento detallados en esta guía.

Pregunta 2: considerando que el transistor medido es NPN, ¿cuál es el portador predominante en la corriente de colector?

Parte III: curva de salida

Medición:

La tercera medición a realizar corresponde a la curva de salida I_C vs. V_{CE} . En este caso, se necesita nuevamente el mismo transistor usado en la Parte 1 y 2, una fuente de tensión DC (V_{CC}) , dos multímetros, un resistor de valor fijo (R_B) y un preset multivuelta (R_{Cvar}) . El circuito sugerido se muestra en la Figura 2.

La fuente de tensión DC se debe fijar en 3 V. La R_B se utiliza para obtener la $I_{C(MAD)}$ deseada. El preset $R_{C_{var}}$ debe conectarse entre el terminal de Colector y V_{CC} , lo que permite variar la tensión V_{CE} y recorrer toda la curva de salida cambiando su valor. Un multímetro debe utilizarse para medir la tensión V_{CE} y el otro para medir la corriente entrante en el terminal de Colector. Se sugiere medir al menos 30 puntos.

NOTA: no olvidar al principio de la medición medir la I_B resultante a partir de la caída de tensión en el resistor R_B , cuyo valor de resistencia debe ser medido antes de armar el circuito.

Cálculos previos antes de comprar el resistor y el preset:

Los valores de R_B y $R_{C_{var}}$ deben determinarse para que el circuito opere adecuadamente durante toda la medición de la curva de salida. En este sentido,

• Se debe determinar el valor de R_B para que la corriente de colector en MAD sea alguno de los siguientes: 8 mA, 11 mA, 13 mA o 16 mA (elegir solo uno).

DISPOSITIVOS SEMICONDUCTORES 1^{er} cuatrimestre de 2023

- El valor $R_{C_{var}}$ debe estimarse para medir una tensión V_{CE} máxima de 3 V y conseguir una corriente de colector mínima en el régimen de saturación del 50 % de $I_{C(MAD)}$ o menor.
- Tener en cuenta que los valores comerciales de las resistencias son discretos.

Para realizar los cálculos mencionados arriba se debe obtener de la hoja de datos del transistor h_{FE} , $V_{BE(ON)}$, $V_{CE(SAT)}$, y cualquier otro parámetro que considere necesario.

Simulación:

Para la simulación de la curva de salida, utilizar una fuente de corriente conectada al terminal de Base, asignando la corriente de base I_B necesaria para obtener la misma $I_{C(MAD)}$ de las mediciones experimentales.

¿Cuáles son los pasos a seguir para llevar a cabo esta Parte?

- 1. Conseguir la hoja de datos del dispositivo.
- 2. Elegir la $I_{C(MAD)}$ deseada.
- 3. Determinar los valores de R_B y $R_{C_{var}}$.
- 4. Realizar la simulación para verificar los valores obtenidos en el punto anterior.
- 5. Comprar los componentes para realizar la medición.
- 6. Armar el banco de medición y medir siguiendo los lineamiento detallados en esta guía.

Parte IV: curvas teóricas

En esta parte se utilizará lo realizado en las Partes 2 y 3 para obtener las curvas teóricas de transferencia y de salida que mejor se ajusten a los datos medidos, variando los parámetros I_S , n_f y V_A . De las simulaciones también se obtendrán los mismos parámetros pero se usarán solo a los fines de comparar con aquellos provenientes de las mediciones y la hoja de datos.

Obtención de parámetros a partir de las mediciones

A partir de las mediciones se deberán obtener mediante un análisis numérico, los parámetros característicos I_S , V_A y $n_f \cdot V_{th}$. Para ello, se harán distintos ajustes de los datos a las curvas teóricas estudiadas en clase, minimizando el error cuadrático medio y utilizando un programa de cálculo numérico (Octave/Matlab/Python/etc.).

De la curva I_C vs V_{BE} medida se deben obtener los parámetros I_S y $n_f \cdot V_{th}$. Para ello, tomar el logaritmo natural de la corriente:

$$\ln(I_C) = \ln(I_S) + \frac{V_{BE}}{n_f \cdot V_{th}}$$

y con el resultado, realizar un ajuste mediante una recta.

$$y = A x + B$$

luego, como $V_{th} = \frac{kT}{q}$ tiene un valor cercano a 25,9 mV, n_f estará entre 1 y 2.

NOTA: al realizar el ajuste se debe analizar cuidadosamente qué puntos son los que siguen la tendencia de una recta y descartar aquellos que no.

DISPOSITIVOS SEMICONDUCTORES 1^{er} cuatrimestre de 2023

En la región de modo activo directo (MAD) de la curva I_C vs V_{CE} se deberán ajustar los resultados mediante la siguiente expresión:

$$I_C = I_{C(MAD)} \left(1 + \frac{V_{CE}}{V_A} \right) = I_{C(MAD)} + \frac{V_{CE}}{r_o}$$

para obtener los valores de la corriente de colector $I_{C(MAD)}$ para $V_{CE} = V_{CE(sat)}$ y la tensión de Early V_A . En este caso también se minimiza el error cuadrático medio usando un programa de cálculo numérico (Octave/Matlab/Python/etc.).

Pregunta 3: considerando el valor de V_A obtenido y el W_B calculado en la parte I, ¿cómo debería modificarse W_B para que el *Efecto Early* sea despreciable?

Obtención de parámetros a partir de las simulaciones

En este caso, a partir de las simulaciones, se deberán determinar "a mano" los parámetros característicos I_S , n_f (ordenada al origen y pendiente de la curva $\ln(I_C)$ vs V_{BE} , respectivamente) y V_A (pendiente de la curva I_C vs V_{CE}). Es importante destacar que los valores encontrados a partir de las simulaciones serán usados únicamente para comparar con los valores ajustados de las mediciones y los extraídos de la hoja de datos.

Requisitos del informe

- Seguir las pautas del modelo de informe.
- Todo resultado presentado en el informe debe estar analizado. Las comparaciones deben ser realizadas cuantitativamente.
- Explicar todas las suposiciones realizadas y justificarlas.
- Se deben incluir como mínimo las siguientes figuras y/o tablas:
 - 1. Banco de medición y esquemático del circuito empleado para medir y simular β_F , respectivamente.
 - 2. El banco de medición y el esquemático del circuito simulado para obtener la curva de transferencia. En la figura del banco de medición se debe indicar no sólo la conexión del transistor, fuentes de tensión y resistencias, sino también de los instrumentos empleados.
 - 3. Curva de transferencia I_C vs. V_{BE} en escala semilogarítmica del dispositivo bajo prueba, que debe contener lo medido y simulado en la Parte 2 y la curva teórica calculada usando los ajustes de los datos medidos realizados en la Parte 4.
 - 4. El banco de medición y el esquemático del circuito simulado para obtener la curva de salida. En la figura del banco de medición se debe indicar no sólo la conexión del transistor, fuentes de tensión y resistencias, sino también de los instrumentos empleados.
 - 5. Curvas de salida del transistor I_C vs. V_{CE} para la corriente de colector elegida, que debe contener lo medido y simulado en la Parte 3 y la curva teórica calculada usando los ajustes de los datos medidos realizados en la Parte 4.
 - 6. Tabla con los parámetros β_F , I_S y V_A del dispositivo obtenidos de la medición, simulación y hoja de datos.