Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Югорский государственный университет Институт цифровой экономики

Отчет

по проекту С " Модель павильона метро"

Руководитель, Семенов С.П. Исполнитель, Свита А.Н. группа 11916

г. Ханты-Мансийск 2022 г.

Оглавление

Концептуальная модель реального процесса	3
Формализация	4
Компьютерная модель.	6
Планирования эксперимента	8
Заключение	15
Список литературы	16

Концептуальная модель реального процесса

Описание: Пассажиры входят в павильон станции метро через произвольные (случайные) интервалы времени. Внутри павильона расположены турникеты, проверяющие наличие билетов, билетные кассы и платформа отправления. Перед тем, как пройти к поездам метро, пассажиры проходят через турникеты. Те пассажиры, которые не купили билеты заранее, должны будут вначале приобрести их в билетной кассе, и только потом они смогут пройти к поездам.

Проблема: При высокой интенсивности потока пешеходов к билетным кассам образуются очереди, которые препятствуют движению в павильоне. Требуется собрать статистику движения пешеходов, визуализировать пешеходный процесс, построить карты плотности пешеходов в павильоне, вычислить время пребывания пешеходов, выявить проблемы, которые могут возникнуть при перепланировке интерьера здания, и т.д.

Цель моделирования: Формализация движения пешеходов, знакомство с пешеходной библиотекой, построение простой пешеходной модели.

Задача:

- 1. Вычислить среднее время задержки у турникета
- 2. Вычислить среднее время обслуживания автомата по выдаче билетов
- 3. Вычислить среднее время пребывания пассажира в павильоне метро
- 4. Вычислить пропускную способность павильона метро
- 5. Построить карты плотности пешеходов в павильоне

Формализация

Для проведения эксперимента мы взяли павильон станции метро который имеет один в ход и один выход в метро (Рис. 1), в котором будет рассматривать данный из таблицы 1 и таблица 2. Единица модельного времени – минута. Длительность экспериментов – 1 час.

Рисунок 1 – Павильон станции метро

Структурно-функциональная схема иметь следующий вид:

Таблица 1. Входные данные эксперимента

Обозначение	Название				
x1	Интенсивность пребывания пешеходов в единицу времени,				
	количество в час				

x2	Турникеты, количество
х3	Распределение времени проверки билетов, в секундах
x4	Доля пассажиров с билетами, коэффициент предпочтения
x5	Автоматы по продаже билетов, количество
х6	Время покупки билетов в автомате, в секундах
x7	Эскалаторы, количеств
x8	Время спуска на эскалаторе, в секундах

Таблица 2. Выходные данные эксперимента

Обозначение	Название	Значение
y1	Среднее время задержки у	
	турникета	
y2	Среднее время обслуживания	
	автомата по выдаче билетов	
у3	Среднее время пребывания	
	пассажира в павильоне метро (с	
	момента входа и до момента	
	выхода на перрон)	
у4	Пропускная способность	
	павильона метро	

Компьютерная модель.

Модель павильона метро.

PedSorce(inflowSource) Создает пешеходов. Обычно используется в качестве начальной точки диаграммы пешеходного процесса. Пешеходы чаще всего создаются согласно заданной интенсивности появления.

PedSink(inflowSink)Удаляет поступивших в объект пешеходов из моделируемой среды. Обычно используется в качестве конечной точки диаграммы пешеходного процесса.

PedSelectOutput(routePassengers)Направляет входящих в объект пешеходов на один из пяти выходных портов согласно заданным вероятностям, либо в зависимости от того, для какого из этих портов будет выполнено заданное условие (эти условия проверяются последовательно, вначале для 1-го порта, и т.д.).

PedService(atTVM, checkTickets) Моделирует, как пешеходы обслуживаются в сервисах, таких, как турникеты, билетные кассы, банкоматы, стойки регистрации, пункты досмотра, офисы банков. Сервисы рисуются графически

с помощью специальных фигур разметки пространства: Сервис с очередями, либо Сервис с областью.

PedGoTo(goToTrains)Заставляет пешеходов перейти в заданное место моделируемого пространства, которое может быть задано фигурой разметки пространства (целевой линией или областью), либо же точкой с заданными координатами.

Планирования эксперимента

Первый эксперимент:

Провести простой эксперимент в соответствии с назначенным вариантом.

- 1. Подсчитать значения выходных данных Y=(y1,...,y5).
- 2. Построить гистограмму распределения времени пребывания в системе
- 3. Построить карту плотности пассажиропотока

Второй эксперимент:

Задание 2.1 Проведите изменение параметра x5 в диапазоне X5S:h5:X5F, где X5S — начальное значение параметра, h5 — шаг, с которым происходит изменения параметра, X5F — конечное значение параметра. Для каждого из экспериментов проанализируйте, как изменение параметра x5 влияет на суммарное количество человек в очереди за билетами?

Задание 2.2 Проведите изменение параметра x2 в диапазоне x2 S: h2:x2F, где x2S — начальное значение параметра, x2 — шаг, с которым происходит изменения параметра, x2F — конечное значение параметра. Для каждого из экспериментов проанализируйте, как изменение параметра x2 влияет на суммарное количество человек в очереди у турникета?

Третий эксперимент:

Задание 3.1 Определите значение параметров x5 и x6, при которых значение y2 будет равно значению, которое указано, согласно вашему варианту. Проанализируйте полученные результаты.

Задание 3.2 Определите значение параметров x2 и x3, при которых значение y1 будет равно значению, которое указано, согласно вашему варианту. Проанализируйте полученные результаты.

Задание 3.3 Определите значение параметров x3 и x6, при которых среднее значение y3 будет равно значению, которое указано, согласно вашему варианту. Проанализируйте полученные результаты.

Эксперимент 1:

Обозначение	Название	Значения
x1	Интенсивность пребывания пешеходов в	4020
	единицу времени, количество в час	
x2	Турникеты, количество	6
x3	Распределение времени проверки билетов, в	uniform(1.9, 4.1)
	секундах	
x4	Доля пассажиров с билетами, коэффициент	0.57/0.43
	предпочтения	
x5	Автоматы по продаже билетов, количество	7
х6	Время покупки билетов в автомате, в	triangular(8, 14, 39)
	секундах	
x7	Эскалаторы, количеств	3
x8	Время спуска на эскалаторе, в секундах	0,22

Рисунок 2 – Гистограмма распределения времени пребывания

Рисунок 3 – Карта плотности

Результат:

Обозначение	Название	Значение
y1	Среднее время задержки у	1.228 сек
	турникета	
y2	Среднее время обслуживания	10.505 сек
	автомата по выдаче билетов	
у3	Среднее время пребывания	5.752 сек
	пассажира в павильоне метро (с	
	момента входа и до момента	
	выхода на перрон)	
y4	Пропускная способность	79,3%
	павильона метро	

Вывод: пропускная способность 79,3%, павильон успевает пропустить через себя большинство пассажиров. Согласно карте плотности, пропускная способность турникетов и у эскалатора достаточная, однако на автоматах по продаже билетов скапливаются очереди, что говорит о их недостаточном количестве или качество обслуживания у банкомата.

Эксперимент 2.1:

Обозначение	Название	Значения	
x1	Интенсивность пребывания пешеходов в	4020	
	единицу времени, количество в час		
x2	Турникеты, количество	6	
х3	Распределение времени проверки билетов, в	uniform(1.9, 4.1)	
	секундах		
x4	Доля пассажиров с билетами, коэффициент	0.57/0.43	
	предпочтения		
x5	Автоматы по продаже билетов, количество	4:1:8	
х6	Время покупки билетов в автомате, в	triangular(8, 14, 39)	
	секундах		
x7	Эскалаторы, количеств	3	
x8	Время спуска на эскалаторе, в секундах	0,22	

Результат:

X5	4	5	6	7	8
Среднее значение в	498.25	381.805	375.581	343.583	263.224
очереди за билетом					

Вывод: в данном эксперименте мы увидели, что при увеличении автоматы по продаже билетов уменьшается количество людей очередей и при 8 банкоматов в среднем в очереди находятся 263.224.

Эксперимент 2.2:

Обозначение	Название	Значения
x1	Интенсивность пребывания пешеходов в	4020
	единицу времени, количество в час	
x2	Турникеты, количество	4:1:7

x3	Распределение времени проверки билетов, в	uniform(1.9, 4.1)
	секундах	
x4	Доля пассажиров с билетами, коэффициент	0.57/0.43
	предпочтения	
x5	Автоматы по продаже билетов, количество	7
х6	Время покупки билетов в автомате, в	triangular(8, 14, 39)
	секундах	
x7	Эскалаторы, количеств	3
x8	Время спуска на эскалаторе, в секундах	0,22

Результат:

X2	4	5	6	7
Средняя очередь у	440.026	200.65	69.228	63.965
турникета				

Вывод: в данном эксперименте мы увидели, что при увеличении количество турникетов будет уменьшаться и очень значительно при наличии 4 турникетов наша очередь в среднем составляет 440, а при 7 турникетов она уменьшилась в 4 раза и если продолжать увеличивать количество турникетов, то очередь будет уменьшатся в незначительном размере.

Эксперимент 3.1:

Определите значение параметров x5 и x6, при которых значение y2 будет равно 18.5

Значе	X5=7	X5=6	X5=5	X5=4	X5=3	X5=4
ния x5 и x6		X6=triang ular(9, 15, 40)	triangul ar(10,	X6= triangul ar(11, 17, 42)	X6= triangul ar(12, 18, 43)	X6= triangul ar(13, 19, 44)
Y2	10.505 сек	13.912	15.664	16.691	19.325	18.564

Вывод: чтобы получить данное среднее значение я **у2** нужно уменьшить количество банкомата и увеличивать время обслуживания.

Эксперимент 3.2:

Определите значение параметров x2 и x3, при которых значение y1 будет равно 2.7.

Значе	X2=6	X2=5	X2=6	X2=6	X2=6
ние x2 и x3		X3=uniform (2.0,4.2)	X3=uniform (2.1,4.3)	X3=uniform (3.1,4.3)	X3=uniform (3.1,4.5)
Y1	1.228	4.121	1.289	1.929	2.725

Вывод: чтобы получить данное среднее значение я y1 нужно увеличивать время обслуживания.

Эксперимент 3.3:

Определите значение параметров **х3** и **х6**, при которых среднее значение **у3** будет равно 21.

Значе	X3=	X3=	X3=	X3=	X3=	X3=	X3=
ние	unifor	uniform	uniform	uniform	uniform	uniform	uniform
	m(1.9,	(3.1,	(6.1,	(8.1,	(11.1,	(14.1,	(14.1,
х3 и	4.1)	4.5)	8.5)	10.5)	13.5)	16.5)	16.5)
хб	X6= triangul ar(8, 14, 39)	X6= triangul ar(12, 18, 43)	X6= triangul ar(12, 18, 43)	X6= triangul ar(12, 20, 45)	X6= triangul ar(14, 20, 45)	X6= triangul ar(17, 23, 48)	X6= triangul ar(17, 23, 48)
Y3	5.752	6.991	12.76	14.528	15.94	18.4	21.26
	сек						

Вывод: чтобы получить данное среднее значение я y3 нужно увеличивать время обслуживания у банкомата и у времени проверки билетов у турникета.

Заключение

После проведения анализа распространения инфекционного заболевания. Выявлена чтобы улучшить движение павильоне и уменьшить количество очереди нужно увеличить количество банкоматов и турникетов и уменьшить время обслуживание возле них.

Список литературы

- 1. https://eluniver.ugrasu.ru/course/view.php?id=1689
- 2. https://help.anylogic.ru/index.jsp?nav=%2F0
- 3. https://studopedia.net/11_23663_shag--dobavlenie-statistiki.html