Banco de Dados

Introdução

Prof. Me. Paulo Henrique dos Santos

- Mestre em Computação Aplicada Engenharia de Sistemas Computacionais (UTFPR).
- Especialização em Banco de Dados Oracle (FESPPR).
- Especialização em Banco de Dados SQL Server (MCTS-Microsoft).
- Bacharel em Sistemas de Informação (PUCPR) .
- Atuação como Profissional de TI em empresas de grande porte (nos últimos anos atuando com: Middleware,
 Adm. Sistemas, Computação em Nuvem e DevOps).
- E-mails: phscuritiba@gmail.com ou paulo.santos@sistemafiep.gov.br

Sistemática de avaliação

Nesta disciplina, os alunos(as) serão avaliados(as) tanto pelo seu conhecimento, como pela capacidade de exercitar este entendimento na prática, assim como também a sinergia do trabalho em equipe.

Nota do semestre será composta de: i) 02 provas com valores de 3,0 + 3,0 = 6,0; ii) atividades em sala de aula com valor de 2,0; e projeto da disciplina (soma das APSs) com valor de 2,0 totalizando 10,0.

As provas, APSs e atividades em sala de aula terão como base: o conteúdo das aulas, materiais complementares passados previamente e questões do ENADE.

Bibliografia Básica

DATE, C. J. Introdução a Sistemas de Banco de dados. 7a. Edição. São Paulo: Campus, 2003.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistema de Banco de Dados. Rio de Janeiro: Elsevier, 2006.

MACHADO, Felipe Necy Rodrigues; ABREU, Maurício Pereira de. Projeto de Banco de Dados: Uma visão Prática. 15 ed, 3 tr. São Paulo: Érica, 2008.

Bibliografia Complementar

GUIMARÃES, Celio Cardoso. Fundamentos de banco de dados. UNICAMP: 2008.

ALVES, William Pereira. Banco de dados teoria e desenvolvimento. Érica: 2009.

GRAVES, Mark. Projeto de Banco de Dados com XML. São Paulo: Marcos Jorge, 2003. 518 p.: il; 24.

ELMASRI, Ramez; NOVATHE, Shamkant B. Sistemas de Banco de Dados.4 ed. São Paulo: Pearson Addison Wesley, 2005.

MACHADO, Felipe Necy Rodrigues; RITTER, Maurício Teichmann. Tecnologia e projeto de data warehouse: uma visão multidimencional. 4 ed, rev, atual. São Paulo: Érica, 2008.

LAUDON, Kenneth C., 1944-; LAUDON, Jane Price. Sistemas de informação: com Internet. 4. ed. Rio de Janeiro: LTC, 1999.

Bibliografia Complementar

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistema de Banco de Dados 6ª ed. Rio de Janeiro: Elsevier, 2011.

ROB P.; CORONEL C. Sistemas De Banco De Dados Projeto, Implementação e Administração 8ª ED. São Paulo: Cengage, 2011.

OLIVEIRA C. H. P. SQL - Curso Prático: Curso Prático. São Paulo: Novatec, 2002.

Conceitos básicos

O **Banco de Dados** é uma estrutura computacional compartilhada e integrada que armazena um conjunto de dados, ou seja, "o dado em baixo nível, bruto". As bases de dados evoluíram a partir de sistemas de arquivos (é importante conhecer as características dos sistemas de arquivos).

Os **Metadados**, por sua vez, fornecem uma descrição das características dos dados e do conjunto de relacionamentos que os integram, ou seja, complementam todo este sistema complexo.

Conceitos básicos

Tomadas de decisões exigem informações consistentes derivadas de "dados em baixo nível, brutos".

Os dados são gerenciados de forma mais eficiente quando armazenados em um banco de dados.

Projetistas, programadores e usuários olham os dados de diferentes formas:

- diferentes pontos de vista para o mesmo dado leva a projetos que não refletem a visão da organização;
- a modelagem de dados reduz as complexidades do projeto;
- os modelos de dados podem facilitar a interação entre o projetista, o programador e o usuário final;
- A modelagem de dados organiza os dados para diferentes usuários.

Modelagem e Modelos de Dados

Modelo de dados é uma representação relativamente simples, normalmente gráfica, de estruturas de dados reais mais complexas.

Modelo é abstração de um objeto ou evento real de maior complexidade, sua principal função é auxiliar na compreensão das complexidades do ambiente real.

A **Modelagem de dados** é um processo iterativo e progressivo.

Blocos Básicos de Construção de Modelos de Dados

Entidade é onde são coletados e armazenados dados.

Atributo é uma característica de uma entidade.

Relacionamento descreve uma associação entre entidades, por exemplo:

- relacionamento um para muitos (1:M ou 1..*);
- relacionamento de muitos para muitos (M:N ou *..*);
- relacionamento um para um (1:1 ou 1..1).

Restrição é uma limitação imposta aos dados.

Evolução dos Modelos de dados

Modelo Hierárquico

Este modelo foi desenvolvido na década de 1960 para gerenciar grandes quantidades de dados para projetos complexos de fabricação. Sua estrutura lógica básica é representada por uma estrutura de árvore "de cima para baixo".

Modelo em Rede

Este modelo foi criado para representar relacionamentos de dados complexos com mais eficiência e com isso obteve-se:

- Melhora no desempenho dos bancos de dados;
- Padronização para os bancos de dados;
- Esquema constitui uma organização conceitual do banco como um todo, conforme visto por seu administrador;
- Subesquema parte do banco de dados "vista" pelos aplicativos;

Modelo em Rede

Modelo Relacional

Este modelo foi apresentado em 1970 por E. F. Codd (da IBM).

Descreve tabelas e relacionamentos entre estas tabelas, ou seja, uma matriz composta por intersecções de linhas e colunas.

Diagrama Relacional – representação gráfica das entidades, dos atributos e dos relacionamentos de um banco de dados relacional.

Modelo Relacional

Nome da tabela: CORRETOR (seis primeiros atributos) Nome	e do banco de dados: Ch02 InsureCo
--	------------------------------------

AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
501	Alby	Alex	В	713	228-1249
502	Hahn	Leah	F	615	882-1244
503	Okon	John	T	615	123-5589

Ligação por meio de AGENT_CODE

Nome da tabela: CLIENTE

CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_INSURE_TYPE	CUS_INSURE_AMT	CUS_RENEW_DATE	AGENT_CODE
10010	Ramas	Alfred	A	615	844-2573	T1	100.00	05-Apr-2008	502
10011	Dunne	Leona	K	713	894-1238	T1	250.00	16-Jun-2008	501
10012	Smith	Kathy	W	615	894-2285	S2	150.00	29-Jan-2009	502
10013	Olovski	Paul	F	615	894-2180	S1	300.00	14-Oct-2008	502
10014	Orlando	Myron		615	222-1672	T1	100.00	28-Dec-2008	501
10015	O'Brian	Amy	В	713	442-3381	T2	850.00	22-Sep-2008	503
10016	Brown	James	G	615	297-1228	S1	120.00	25-Mar-2009	502
10017	√Villiams	George		615	290-2556	S1	250.00	17-Jul-2008	503
10018	Farriss	Anne	G	713	382-7185	T2	100.00	03-Dec-2008	501
10019	Smith	Olette	K	615	297-3809	S2	500.00	14-Mar-2009	503

Modelo Relacional

SQL (Structured Query Language, com a tradução, Linguagem Estruturada de Consulta), envolve três partes:

- Interface com usuário permite que o usuário interaja com os dados.
- Conjunto de tabelas armazenadas no banco de dados cada tabela é independente uma da outra; as linhas de tabelas diferentes são relacionadas com base em valores comuns de atributos comuns.
- Mecanismo de SQL executa todas as consultas ou solicitações de dados.

Modelo Entidade e Relacionamento

Padrão amplamente aceito para a modelagem de dados, apresentado por Peter Chen em 1976, e descreve:

- Uma representação gráfica de entidades e de seus relacionamentos da estrutura de banco de dados.
- Diagrama Entidade Relacionamento (DER), que utiliza representações gráficas para modelar os componentes do banco de dados.
- Instância de entidade (ocorrência de entidade) representada por cada linha da tabela.
- Cada entidade é definida como um conjunto de atributos que descrevem suas características particulares.
- A conectividade identifica os tipos de relacionamento.
- Os relacionamentos que utilizam as notações de Chen: são representados por um losango e seu nome é escrito dentro do losango.

Modelo Entidade e Relacionamento

Modelo Orientado a Objetos

No Modelo Orientado a Objetos, dados e relacionamentos são contidos em uma única estrutura conhecida como objeto.

Desta forma, um objeto é uma abstração de uma entidade real; os atributos descrevem as propriedades de um objeto; os objetos que compartilham características similares são agrupados em classes; as classes organizam-se em uma hierarquia de classes.

A Herança é a capacidade de um objeto, no interior da hierarquia de classe, herdar os atributos e métodos das classes superiores

A UML (*Unified Modeling Language*, ou seja, Linguagem de Modelagem Unificada) tem sua base em conceitos de OO que descreve um conjunto de diagramas e símbolos que podem ser utilizados para modelar graficamente um sistema.

O Modelo de Dados Orientado a Objetos (MDOO), é a base para o Sistema de Gerenciamento de Banco de Dados Orientados a Objetos (SGBDOO).

Modelo Orientado a Objetos

Interação com Banco de Dados

Atividade

Fazer um pesquisa sobre a Modelo Logico de Banco de Dados, elaborar um modelo simples usando notação de Chen para resolver a modelagem de dados envolvendo um sistema de atendimento médico.

Sistema = Fiep =

FIEP SESI SENAI IEL

nosso i é de indústria.