

多媒体技术

回顾

• 声音

- 一心理变量: 音强/响度、音调、音色
- 物理量纲: 声强度、频率、频谱分析
- 听觉特性: 等响曲线、掩蔽、临界频带、相位、 听觉空间
- -质量标准
- 数字化过程
 - 采样、量化、编码

- 采样输入信号幅度和量化输出数据之间定义了两种对应关系:
 - · µ律压扩算法: 北美和日本, 输入和输出对数关系
 - · A律压扩算法: 中国大陆和欧洲

• 量化

(1) µ律压扩

(2) A律压扩

• 量化

(1) µ律压扩

$$y = y_{\text{max}} \frac{\ln \left[1 + \mu (|x|/x_{\text{max}}) \right]}{\ln (1 + \mu)} \operatorname{sgn} x$$

 $y = y_{\text{max}} \frac{\ln[1 + \mu(|x|/x_{\text{max}})]}{\ln(1 + \mu)} \operatorname{sgn} x$ 是确定压缩量的参数,0 表示无压缩均匀量化,实用时取255

(2) A律压扩

$$\mathbf{y} = \begin{pmatrix} y_{\text{max}} \frac{A(|x|/x_{\text{max}})}{1 + \ln A} \operatorname{sgn} x & \begin{pmatrix} 0 < \frac{|x|}{x_{\text{max}}} \le \frac{1}{A} \end{pmatrix} \\ y_{\text{max}} \frac{1 + \ln[A(|x|/x_{\text{max}})]}{1 + \ln A} \operatorname{sgn} x & \begin{pmatrix} \frac{1}{A} < \frac{|x|}{x_{\text{max}}} < 1 \end{pmatrix} \end{pmatrix}$$

• 量化

1) 13折线 实现A律

电路实现连续曲线函数 复杂,一般利用数字电 路形成折线近似

先非均匀量化,再在同一折 线的小范围内对信号进行均 匀量化,如分成16个量化级

• 量化

线段8斜率: 1/8÷1/2=1/4

线段7斜率: 1/8÷1/4=1/2

线段6斜率: 1/8÷1/8=1

线段5斜率: 1/8÷1/16=2

线段4斜率: 1/8÷1/32=4

线段3斜率: 1/8÷1/64=8

线段2斜率:

1/8 ÷ 1/128=16

线段1斜率:

1/8 ÷ 1/128=16

• 量化

A=87.6与13 折线压缩特性的比较

У	0	1_	2	3		4	5	I _	6	7	1
		8	8	8		8	8		8	8	
X	0	1	1	1		1	1		1	1	1
		128	60.6	30.6	$\frac{1}{5}$	5.4	7.79	3	.93	1.98	
按线段的X	0	1 128	1 64	$\frac{1}{32}$	- ; 1	16	$\frac{1}{8}$	-	$\frac{1}{4}$	$\frac{1}{2}$	1
段落	1	2	2	3	4	5		6	7	7	8
斜率	16	10	6	8	4	2	1	$\frac{1}{2}$		2	1 4

多媒体技术

- 在A律特性中,选A等于87.6有两个目的:
 - · 使曲线在原点附近的斜率等于16, 使16段折线简化 成仅有13段;
 - · 使13折线的转折点上曲线的横坐标x接近1/2i。

• 量化

15 折线 实现μ律!

- 把y轴均分8段;
- 对应于y轴分界点i/8处的x轴分界点根据下式计算:

$$y = \frac{\ln(1+255x)}{\ln(1+255)} \Rightarrow x = \frac{256^{y} - 1}{255} = \frac{256^{i/8} - 1}{255} = \frac{2^{i} - 1}{255}$$

i	0	1		2	2	(3)	3	4	1	4	5		6		7	8
y = i/8	0	1/8		2	2/8 3		/8	4/8		5/8		6/8		7/8		1
$x=(2^i-1)/255$	0	1/2	55	3/2	255	7/2	255	15/2	255	31/	255	63	/255	127	7/255	1
斜率×255	× 255 1/8		1/16 1/		32	1/64		1/128		1/256		1/5	12	1/10	24	
段号	1		2	2	3	3	4	1	5	5	6	6	7	•	8	

- 用13折线法中的(第一和第二段)最小量化间隔作为均匀量化时的量化间隔:
 - (1) 若对13折线法中第1至8段进行均匀量化时共多少个量化间隔,需要比特数是多少?
 - (2)13折线法中第1至8段进行非均匀量化:共多少个量化间隔,需要比特数是多少?

- 用13折线法中的(第一和第二段)最小量化间隔作为均匀量化时的量化间隔:
 - 对于13折线法,第一至第八段包含的均匀量化间隔数分别为 16、16、32、64、128、256、512、1024,共有2048个均匀量 化间隔;
 - 对于非均匀量化,只需128个不同的量化间隔。
- 在保证小信号量化间隔相等的条件下:
 - 均匀量化需要11比特编码;
 - 非均匀量化只要7比特就够了。

· 编码

- 根据一定的协议或格式把模拟信息转换成二进制比特流的过程。
 - 最简单的:直接用量化后的二进制数作为输出的数字信号,叫脉冲编码调制(PCM)编码。
 - 优点: 信号质量好, 最大限度的保留了信号的原始信息。
 - 缺点: 数据量非常大, 需要大量的存储空间。

· 编码

- 自然码
 - 无符号的二进制代码;
- 折叠码
 - 在自然码最高位增加了一个符号位而构成,用以表示信号极性,一般用"0"表示负,而用"1"表示正。
- 格雷码
 - 每增加1个数值时只有一个码元变化的码。

000 001 011 010 110 111 101 100 格雷码 0 1 2 3 4 5 6 7 十进制数

电平 序号	自然码 NBC					折叠码	3 FBC	格雷码 RBC				
	<i>b</i> ₁	b ₂	b ₃	b ₄	b ₁	b_2	b ₃	b ₄	<i>b</i> ₁	b ₂	<i>b</i> ₃	b ₄
15	1	1	1	1	1	1	1	1	1	0	0	0
14	1	1	1	0	1	ı	I	0	1	0	0	1
13	1	1	0	1	1	1	0	1	1	0	1	1
12	1	1	0	0	1	ı	0	0	1	0	1	0
11	1	0	1	1	1	0	1	1	1	1	i	0
10	1	0	1	0	1	0	1	0	1	1	1	1
9	1	0	0	1	1	0	0	1	1	1	0	1
8	1	0	0	0	1	0	0	0	1	1	0	0
7	0	1	1	1	0	0	0	0	0	1	0	0
6	0	1	1	0	0	0	0	1	0	1	0	1
5	0	1	0	1	0	0	1	0	0	1	1	1
4	0	1	0	0	0	0	1	1.	0	1	1	0
3	0	0	1	1	0	1	0	0	0	0	1	0
2	0	0	1	0	0	1	0	1	0	0	1	1
1	0	0	0	1	0	1	1	0	0	0	0	1
0	0	o	0	0	0	1	1	1	0	0	0	0

· 编码

- 多媒体信息的特点之一是存在冗余,可以采用不同的压缩技术进行压缩。
- 编码/压缩技术不同->数字音频文件格式不同-> 播放文件时需要不同的解码技术。

• 例子

一对于采样频率为8kHz,样本精度为13位、14位或者16位的输入信号,使用 μ 律压扩编码或者使用A律压扩编码,经过PCM编码器之后每个样本需8位二进制存储,输出的数据率为64~kb/s。

-这个数据就是CCITT推荐的G.711标准:话音频率脉冲

编码调制。

与数字音频相关的重要特性:

* 采样频率

采样频率与声音的质量关系最为紧密。采样频率越高, 声音质量越接近原始声音,所需的存储量便越多。标准 的采样频率有三个: 44.1KHz, 22.05kHz,和11.025kHz。

* 采样位数

存放一个采样点所需的比特数。一般的采样位数为8位或16位,即把声音采集为256等份或65536等分。

* 声道数

有单声道、双声道和多声道。如多种语言音频混存时,需要多声道

*数据量

(采样频率×每点采样位数×声道数)

数据量= (字节/秒)

质量	采样率 (KHz)	样本精 度(bit)	单声道/ 立体声	数据率(未压缩) (KB/s)	频率范围 (Hz)
电话	8	8	单声道	8	200-3400
AM	11.025	8	单声道	11.0	50-7000
FM	22.050	16	立体声	88.2	20-15000
CD	44.1	16	立体声	176.4	20-20000
DAT	48	16	立体声	192.0	20-20000
DVD	192(最大)	24(最大)	最高6声道	1200.0(最大)	0-96000(最大)

数字录音带

- * 信噪比SNR(Signal Noise Ratio) 信号量化噪声比SQNR
 - 量化噪声:采样点的模拟值和最近的量化值之间的差。
 - 误差最大可以达到离散间距的一半。

$$SQNR = 20 \log_{10} \frac{V_{signal}}{V_{quan_noise}} = 20 \log_{10} \frac{2^{N-1}}{\frac{1}{2}}$$

= $20 \times N \times \log 2 = 6.02 N \text{(dB)}$

- 量化精度为 M位,数值信号的取值范围-2^{M1}到2^{M1}= 1;
- 考虑峰值情况, V_{signal}取为2^{N-1}, V_{quan_noise}取1/2。

* 信噪比SNR(Signal Noise Ratio) 信号量化噪声比SQNR

$$SQNR = 20 \log_{10} \frac{V_{signal}}{V_{quan_noise}} = 20 \log_{10} \frac{2^{N-1}}{\frac{1}{2}}$$

= $20 \times N \times \log 2 = 6.02 N \text{(dB)}$

采样点中每个位增加6dB的分辨率,即采样精度每增加1位, 信噪比增加6dB。

• 数字音频文件格式

- WAV文件

- ·也叫波形文件,是Microsoft公司的声音文件格式, 存储文件扩展名为".wav"。
- 文件由三部分组成:文件头(标明是WAVE文件、文件结构和数据的总字节数)、数字化参数(如采样率、声道数、编码算法等),最后是实际波形数据。
- 数据量大,音质最好。大多数压缩格式的声音在此基础上经过数据的重新编码来实现,压缩前和回放时都是用WAV格式。

- 数字音频文件格式
 - AIF或AIFF文件
 - AIF (Audio Interchange File Format, 音频交换 文件格式)是Apple公司的声音文件格式,被很多 程序支持。
 - Windows的Convert工具可以把AIF格式的文件转 换成Microsoft的WAV格式的文件。

- 数字音频文件格式
 - -WMA文件
 - · Windows Media Audio,是Microsoft公司开发的 网上流式数字音频压缩技术,可以一边下载一边播 放,因此可以轻松的实现在线广播。
 - 同时兼顾了保真度和网络传输的要求,在64kbit/s的码率下,达到接近CD的音质。
 - 支持防复制功能,可以限制播放时间和播放次数甚至于播放的机器等。

- 数字音频文件格式
 - RA文件(RM、RAM)
 - · 是Real Networks公司开发的一种流媒体音频文件。 很流行,在低速率的广域网上实时传输音频信息。
 - 网络连接速率不同,客户端获得的声音质量也不相同
 - 14.4kbit/s的网络连接: 获得调幅质量的音质;
 - 28.8kbit/s的网络连接: 获得广播级的音质;
 - ISDN或更快的: CD音质的声音。
 - 不但支持边下载边播放,也同样支持使用特殊协议来 隐匿文件的真实网络地址,实现只在线播放而不提供 下载的方式。

- 数字音频文件格式
 - PCM格式
 - 是模拟的音频信号经模/数转换直接形成二进制序列的文件。没有附加的文件头和文件介绍标志。
 - · 可将PCM格式转换为VOC格式、WAV格式。

- 数字音频文件格式
 - MP1、MP2、MP3
 - · 是指MPEG运动图像专家组所制定的音频文件格式, 根据压缩质量和编码复杂程度的不同分为3层。
 - · 是一种有损压缩,具有很高的压缩率,MP1、MP2 的压缩率是4:1-8:1,而MP3的压缩率高达12:1。
 - MP3体积小、有较好的声音质量。是目前最流行的音乐文件。

- 数字音频文件格式
 - MIDI文件
 - 是数字音乐电子合成乐器的统一国际标准,规定计算机音乐程序、电子合成器和其他电子设备之间交换信息和控制信号的方法。
 - · MIDI文件是"乐谱和指挥"。
 - MIDI的数据量较小,适合作为背景音乐音响效果, 用来播长时间、高质量的音乐。
 - · 扩展名为.mid和.rmi。

- 数字音频文件格式
 - CD-DA文件
 - · 是CD光盘采用的文件格式,是一个.cda文件,这只是个索引信息,并不是真正的包含声音信息。不论 CD音乐的长度,文件都是44字节长。
 - · 不能直接复制文件到硬盘上播放,需要使用软件把 CD格式的文件转换成WAV格式。

• 数字音频文件格式

- MP4

- · 是对MP3的大众化、无版权的一种保护格式。
- 使用MPEG-2 AAC(Advanced Audio Coding,a2b、AAC)技术,MPEG-2是MPEG针对数码电视提出的。特点是音质更加完美而压缩比更加大(1:15)。

2. 声音的符号化

波形声音可以把音乐、语音都进行数据化并且表示出来,但是并没有把它看成音乐和语音。

对于声音的符号化(也可以称为抽象化)表示包括两种类型:一种是音乐,一种是语音。

音乐的符号化-MIDI

- MIDI(Music Instrument Digital Interface)是指乐器数字接口的国际标准,是音乐与计算机结合的产物。
- MIDI标准规定了不同厂家的电子乐器与计算机连接的电缆和硬件,还指定了从一个装置传送数据到另一个装置的通信协议。
- 任何电子乐器,只要有处理MIDI消息的微处理器和 合适的硬件接口,就构成了一个MIDI设备。

MIDI不是把音乐的波形进行数字化采样和编码,而是将数字式电子乐器的弹奏过程以命令符号的形式记录下来,如按了哪一个键、力度多大、时间多长等。

例如:按下MIDI键盘中间的一个"C"键时,MIDI键盘会发送一个三字节组成的消息,用16进制表示为:903C40

其中90是状态字节,表示字符开始,且向0号声道传送;

3C表示击键位置; 40表示击键的速度

在播放这首乐曲时,根据记录的乐谱指令,通过音乐合成器生成音乐声波,放大后由扬声器播出。

- · MIDI基本结构
 - MIDI乐器、MIDI指令、MIDI接口、音序器、MIDI文件、 合成器

- MIDI乐器(输入设备):制作MIDI音乐,演奏通过 MIDI接口被音序器接收并存储为音序内容。能产生特 定声音的合成器,如MIDI键盘、MIDI吉他等;它们相 互间的数据传送符合MIDI的通信约定。
- MIDI指令(消息): 是指乐谱的数字描述。MIDI软件通信协议,用数字指令描述的音乐乐谱,其中包含音符、强度、定时及乐器的指派等(903C40)。
- MIDI接口: MIDI硬件通信协议,可使电子乐器互连或与计算机硬件端口相连,可发送和接收MIDI消息。

- 音序器(编曲机):实际上是记录了音乐的一般要素, 拍子、音高、节奏等,以数字的形式记录下它们,让 音源发音。MIDI文件的本质内容实际上就是音序内容。

最初专用硬件,现多指计算机上用于编辑音乐的软件,如:FL Studio (Fruity Loops Studio)

合成器/音源:是一个装了很多音色的东西,所以它是用来发声音的;声卡。

波表合成: 把真实乐器发出的声音以数字的形式记录下来,播放时再加以调整、修饰和放大,生成各种音阶的音符。

不同机器音色库不一样,同样MIDI文件可能效果差别。

MIDI

- 音轨

- 在音序器中, 音乐按照音轨来组织;
- 在录音和回放时,可以打开或关闭一个音轨。

-通道

- ·某种乐器和一个专门的MIDI通道相对应;
- 用来分隔消息,一共16个通道(0-15),消息的后4位用来存储通道编号。
 - 例如, 通道1代表钢琴, 通道10代表鼓
- MIDI消息: 通道消息、系统消息

1、通道消息

- 由1个状态字节和随后的2个数据字节组成;
 - 状态字节: 通道编号等
- 状态字节: 最高位是1; 数据字节: 最高位是0。

十六进制 二进制 数据 描述

8x 1000xxxx nn vv 音符关闭 (释放键盘) nn=音符号 vv=速度

9x 1001xxxx nn vv 音符打开 (按下键盘) nn=音符号 vv=速度

Ax ~ Ex

- 1、通道消息
- · 要在13号通道上以最高速度来播放80号音符,MIDI设备 会发送3个16进制值:

9C 50 7F 10011100 01010000 01111111

2、系统消息

- 不带通道编号,表示不是针对某一个具体的通道,如同步的时钟信号等。
- 种类 + 参数: 如以FF开头的命令 字节数 数据

FF 51 03 xx xx xx: 四分音符的绝对时间长度

FF 51 03 07 A1 20:07A120 (500000) 微秒

00 78:120 tick

1个tick: 500000 / 120 = 4166 微秒

2、系统消息

- 不带通道编号,表示不是针对某一个具体的通道,如同步的时钟信号等。
- 种类 + 参数: 如以FF开头的命令 字节数 数据

FF 59 02 sf mi: 音调符号

sf: 升调/降调 0: 基准C调

mi: 大调/小调 0: 大调; 1: 小调

FF 59 02 00 00

MIDI文件结构:

- ❖一个MIDI文件基本上由两部分组成,一个头块和紧接的一个或者多个轨道块
 - ❖ 头块: MThd, 描述文件的格式、轨道块数量等内容
 - 轨道块: MTrk

MIDI文件结构:

Ch	Chunk 块结构						
MIDI 文件	类型	长度	数据				
	MThd	6	<格式>	<tracks></tracks>	<division></division>		
	MTrk	<长度>	<delta-time><event></event></delta-time>				
	MTrk	<长度>	<delta-time><event></event></delta-time>				

MIDI头块结构:

- ❖头块出现在文件的开头,当头块数据为4D 54 6864 00 00 00 06 ff ff nn nn dd dd时
 - ❖ 前4个字节等同于ASCII码MThd;
 - ❖ 接着的4个字节是头的大小,一直是6,因 为现行的头信息是6个字节;
 - * ff ff是文件的格式,有3种格式
 - 0: 单轨; 1: 多轨, 同步; 2: 多轨, 异步

MIDI头块结构:

- ❖头块出现在文件的开头,当头块数据为4D 54 6864 00 00 00 06 ff ff nn nn dd dd时
 - nn nn是MIDI文件中的轨道数;
 - 🔖 dd dd是每个4分音符delta-time节奏数。

MIDI头块结构:

Header Chunk								
Chunk 类型	长度	数据						
4字节	4 字节	<长度>						
		16 位	16 位	16 位				
(ASCII)	(32 位二进制)	<格式>	<tracks></tracks>	<division></division>				
	Chunk 数据部 分的长度。这 个是一个32位 二进制数。	MIDI 文件的格 式。这是一个 16 位二进制 数,有效格式 是: 0、1 和 2。	MIDI 文件中 track chunk 的数量。这 是一个 16 位 二进制数。	这个定义在 MIDI 文件中(一个) 单位的 delta-time 数。这是一个 16 位二进制数。				
MThd	<长度>	<delta-time><event></event></delta-time>						