Regresión lineal

3.19 3.75 181.0 170.4 176.0 3.96 171.2 2.85 177.0 3.09 183.1 4.78 171.2 3.42 177.0 4.05 183.6 4.56 171.3 3.20 177.0 5.43 183.7 4.68

VEF

3.78

4.32

3.60

Altura

178.0

180.7

VEF

2.98

4.80

La tabla siguiente nos da las alturas (en cm) y el VEF (en

Altura

172.0

174.0

177.4

1/44

Problema básico

Problema básico

Problema básico

Altura

164.0

167.0

172.0

litros) de 20 estudiantes varones

VEF

3.54

3.54

3.60

Tenemos pares de observaciones de dos variables X, Y:

$$(x_i, y_i)_{i=1,2,...,n}$$

- La variable (no necesariamente aleatoria) X es la variable independiente
- La variable aleatoria Y es la variable dependiente

Queremos encontrar la relación lineal

$$Y = b_0 + b_1 X$$

que mejor explique los valores de Y en función de los de X

3/44

Regresión lineal simple

Suponemos que (en la vida real)

$$\mu_{Y|x} = \beta_0 + \beta_1 x$$

donde

- Y|x es la v.a. Y restringida a los individuos en los que X vale x
- $\mu_{Y|X}$ es el valor esperado de Y cuando X vale x
- β_0 (término independiente) y β_1 (pendiente) son parámetros que queremos estimar

(Porque... si no creemos que esta relación existe, ¿para qué vamos a buscar una expresión de Y lineal en X?)

5/44

Mínimos cuadrados

Dados b_0 , b_1 , el residuo, o error, *i*-ésimo del modelo $\hat{y} = b_0 + b_1 x$ es

$$\underline{e_i} = y_i - b_0 - b_1 x_i$$

Regresión lineal simple

Con una muestra $(x_i, y_i)_{i=1,...,n}$, calcularemos estimaciones b_0 y b_1 de β_0 y β_1

Esto nos dará la recta de regresión para nuestra muestra:

$$\widehat{y} = b_0 + b_1 x$$

Esta recta sirve, por ejemplo, para, dado un valor x_0 de X, estimar el valor (esperado)

$$\widehat{y}_0 = b_0 + b_1 x_0$$

de Y sobre un individuo para el que X valga x_0

Mínimos cuadrados

Los estimadores por mínimos cuadrados de β_0 y β_1 son los valores b_0 , b_1 que minimizan la suma de los cuadrados de los errores: es decir, tales que

$$\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2 \qquad \text{sea mínimo}$$

Derivando, igualando a 0, operando etc. obtenemos

Teorema

Los estimadores por mínimos cuadrados b_0 y b_1 de β_0 y β_1 son

$$b_1 = rac{\widetilde{s}_{xy}}{\widetilde{s}_x^2}, \quad b_0 = \overline{y} - b_1 \overline{x}$$

7 / 44 8 / 44

Mínimos cuadrados

La recta de regresión por mínimos cuadrados de Y en función de X se calcula con $lm(y^x)$

Sus coeficientes b_0 y b_1 son $lm(y^x)$ \$coefficients

Obtenemos la recta

$$\widehat{\text{VEF}} = -9.1904 + 0.0744 \cdot \text{Alturas}$$

9 / 44

¡Cuidado!

Los cálculos involucrados en la regresión lineal son muy poco robustos: los redondeos pueden influir mucho en el resultado final

En http:

//en.wikipedia.org/wiki/simple_linear_regression encontraréis un ejemplo detallado de una regresión de peso en función de altura

Si la calculamos en pulgadas y la pasamos a metros redondeando a cm da

$$\hat{y} = 61.675x - 39.746$$

Si primero traducimos las pulgadas a metros redondeando a cm y calculamos la recta de regresión, da

$$\hat{y} = 61.272x - 39.062$$

Mínimos cuadrados

Comprobemos el teorema

¿Qué VEF esperamos en un estudiante de 175 cm?

```
> round(b0+b1*175,2)
[1] 3.83
```

10 / 44

Propiedades

• La recta de regresión pasa por el par de medias muestrales $(\overline{x}, \overline{y})$:

$$b_0 + b_1 \overline{x} = \overline{y}$$

 La media de los valores estimados es igual a la media de los observados:

$$\overline{\widehat{y}} = \overline{y}$$

11/44

Coeficiente de determinación

Siguiendo la filosofía ANOVA, entendemos que $\hat{y} = b_0 + b_1 x$ es una buena aproximación de y como función lineal de x cuando la variabilidad de \hat{y} explica mucha parte de la variabilidad de y

Se cuantifica con el coeficiente de determinación R^2 . Con R se calcula con summary($lm(y^x)$)\$r.squared

 R^2 toma valores entre 0 y 1, y cuánto más se acerca a 1, mayor se considera el ajuste de la recta de regresión a la muestra

13 / 44

Coeficiente de determinación

Sean:

- $SS_T = \sum_{i=1}^n (y_i \overline{y})^2 = (n-1) \cdot \widetilde{s}_y^2$: suma total de cuadrados
- $SS_R = \sum_{i=1}^n (\widehat{y}_i \overline{y})^2 = (n-1) \cdot \widetilde{s}_{\widehat{y}}^2$: suma de cuadrados de la regresión
- $SS_E = \sum_{i=1}^{n} e_i^2$: suma de cuadrados de los errores

Teorema

En una regresión lineal por mínimos cuadrados, se tiene que

$$SS_T = SS_R + SS_E$$

Coeficiente de determinación

> plot(Datos,pch=19)
> abline(lm(VEF~Alturas), col="red")

> summary(lm(VEF~Alturas))\$r.squared
[1] 0.3379069

14 / 44

Coeficiente de determinación

El coeficiente de determinación de una regresión lineal es

$$R^2 = \frac{SS_R}{SS_T} = \frac{\widetilde{s}_{\widehat{y}}^2}{\widetilde{s}_y^2}$$

Por lo tanto, R^2 es la fracción de la varianza de y que queda explicada por la varianza de \widehat{y}

Además, operando, se tiene:

Teorema

En una regresión lineal por mínimos cuadrados, $R^2 = r_{xy}^2$

Cuánto más se acerca R^2 (y por lo tanto r_{xy}) a 1, más se acercan los puntos (x_i, y_i) a una recta: la de regresión

15 / 44

¡Cuidado!

No es conveniente valorar la bondad del modelo solo con el valor de \mathbb{R}^2 . Añadid un gráfico.

Considerad los cuatro conjuntos de pares $(x_i, y_i)_{i=1,...,11}$ contenidos en el dataframe anscombe de R:

¡Cuidado!

Calculemos los R^2 de las regresiones

```
> summary(lm(y1~x1,data=anscombe))$r.squared
[1] 0.6665425
> summary(lm(y2~x2,data=anscombe))$r.squared
[1] 0.6665425
> summary(lm(y3~x3,data=anscombe))$r.squared
[1] 0.6665425
> summary(lm(y4~x4,data=anscombe))$r.squared
[1] 0.6665425
```

17 / 44

¡Cuidado!

Pero los cuatro gráficos son:

Más propiedades

Si todas las vv.aa. error, o residuo,

$$E_{x_i} = (Y|x_i) - \beta_0 - \beta_1 x_i$$

son normales de media 0 y la misma varianza, e incorreladas dos a dos:

- $E(b_0) = \beta_0 \text{ y } E(b_1) = \beta_1$
- Entre todos los estimadores insesgados de β_0 y β_1 , b_0 y b_1 son los que tienen menor error estándar
- (Unos estadísticos relacionados con) b_0 y b_1 tienen distribuciones conocidas, que permiten calcular intervalos de confianza para β_0 , β_1 y $\mu_{Y|x_0}$ usando la t de Student

19 / 44 20 / 44

Con R obtenemos mucha información

```
> summary(lm(VEF~Alturas))
Call:
lm(formula = VEF ~ Alturas)
Residuals:
     Min
              1Q Median
-1.07090 -0.32367 0.03446 0.31797 1.45349
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.19039 4.30644 -2.134 0.04684 *
Alturas
            0.07439
                       0.02454 3.031 0.00719 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ',
Residual standard error: 0.5892 on 18 degrees of freedom
Multiple R-squared: 0.3379, Adjusted R-squared: 0.3011
F-statistic: 9.187 on 1 and 18 DF, p-value: 0.007185
```

21 / 44

Intervalos de confianza

Los IC 95% para β_0 y β_1 se obtienen con la función confint $(lm(y^x))$

Con el IC 95% de β_1 también podemos contrastar si $\beta_1=0$ o no

En este caso, el IC 95% va de 0.023 a 0.126, no contiene el 0

¿Tiene sentido una regresión lineal?

Si $\beta_1=0$, el modelo de regresión lineal no tiene sentido: significa que $\mu_{Y|x}=b_0$ para todo x, es decir, que Y no depende de X

El p-valor del contraste

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

es el valor de la columna Pr(>|t|) y fila correspondiente a la variable independiente (y, para la regresión lineal simple, también el p-value de la última fila)

En el ejemplo anterior vale 0.007185, lo que nos permite concluir que $\beta_1 \neq 0$

Intervalos de confianza

El IC 95% para $\mu_{Y|x_0}$ se obtiene con la construcción siguiente:

```
> Altura.nueva=data.frame(Alturas=175)
> predict.lm(lm(VEF~Alturas), Altura.nueva,
    interval="confidence")
        fit lwr upr
1 3.827732 3.550234 4.10523
```

El IC 95% para $\mu_{Y|x_0}$ es más ancho cuánto más se aleja x_0 de \overline{x} (la estimación $\mu_{Y|\overline{x}}=\overline{y}$ es muy "segura")

```
> Altura.nueva2=data.frame(Alturas=200)
> predict.lm(lm(VEF~Alturas), Altura.nueva2,
        interval="confidence")
        fit lwr upr
1 5.687464 4.388136 6.986792
```

23/44 24/44

Regresión lineal múltiple

Tenemos ahora k variables independientes X_1, \ldots, X_k (no necesariamente aleatorias) y una variable dependiente Y Suponemos que (en la vida real)

$$\mu_{Y|x_1,\dots,x_k} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

donde

- $Y|x_1,...,x_k$ es la v.a. Y restringida a los individuos en los que X_1 vale x_1 , X_2 vale x_2 ,..., y X_k vale x_k
- $\mu_{Y|x_1,...,x_k}$ es el valor esperado de Y cuando X_1 vale x_1 , X_2 vale $x_2,...$, y X_k vale x_k
- $\beta_0, \beta_1, \dots, \beta_k$ son parámetros que queremos estimar a partir de una muestra

$$(x_{i1}, x_{i2}, \ldots, x_{ik}, y_i)_{i=1,\ldots,n}$$

25 / 44

Ejemplo 3

En una muestra de n = 9 niños, los resultados fueron:

У	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
57.5	78	48.2	2.75	29.5
52.8	69	45.5	2.15	26.3
61.3	77	46.3	4.41	32.2
67	88	49	5.52	36.5
53.5	67	43	3.21	27.2
62.7	80	48	4.32	27.7
56.2	74	48	2.31	28.3
68.5	94	53	4.3	30.3
69.2	102	58	3.71	28.7

Queremos estimar $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$ a partir de esta muestra

Ejemplo

Se postula que la altura de un bebé (Y) es una función lineal de su edad en días (X_1) , su altura al nacer en cm (X_2) , su peso en kg al nacer (X_3) y el aumento en % de su peso actual respecto de su peso al nacer (X_4)

El modelo que suponemos es

$$\mu_{Y|x_1,x_2,x_3,x_4} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

26 / 44

Regresión lineal múltiple

Sean b_0, \ldots, b_k estimaciones de β_0, \ldots, β_k

Definen la función de regresión lineal para nuestra muestra:

$$\widehat{y} = b_0 + b_1 x_1 + \dots + b_k x_k$$

El residuo, o error, i-ésimo de este modelo es

$$e_i = y_i - (b_0 + b_1 x_{i1} + \cdots + b_k x_{ik})$$

Los estimadores por mínimos cuadrados de $\beta_0, \beta_1, \dots, \beta_k$ son los valores b_0, b_1, \dots, b_k que minimizan

$$\sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - b_0 - b_1 x_{i1} - \dots - b_k x_{ik})^2.$$

27 / 44 28 / 44

Regresión lineal múltiple

Con R se calculan con

- lm(y~X)\$coefficients, donde X es la matriz de columnas x_1, \ldots, x_k ; o
- $lm(y^x_1+...+xk,data=...)$ \$coefficients, donde ahora $y, x_1,...,x_k$ son columnas del dataframe que indicamos en data

29 / 44

Ejemplo

La función lineal estimada es

```
\hat{y} = 7.1475 + 0.1001x_1 + 0.7264x_2 + 3.0758x_3 - 0.03x_4
```

Ejemplo

```
> X=matrix(c(78,48.2,2.75,29.5,69,45.5,
2.15, 26.3, 77, 46.3, 4.41, 32.2, 88, 49, 5.52,
36.5,67,43,3.21,27.2,80,48,4.32,27.7,74,
48,2.31,28.3,94,53,4.3,30.3,102,58,3.71,
28.7), nrow=9, byrow=TRUE,
dimnames=list(NULL,c("x1","x2","x3","x4")))
> y=c(57.5,52.8,61.3,67,53.5,62.7,56.2,68.5,
69.2)
> cbind(y,X)
         y x1
                 x2
                      x3
                           x4
 [1,] 57.5
           78 48.2 2.75 29.5
 [2,] 52.8
            69 45.5 2.15 26.3
 [3,] 61.3 77 46.3 4.41 32.2
 [4,] 67.0 88 49.0 5.52 36.5
 [5,] 53.5 67 43.0 3.21 27.2
 [6,] 62.7 80 48.0 4.32 27.7
 [7,] 56.2 74 48.0 2.31 28.3
 [8,] 68.5 94 53.0 4.30 30.3
 [9,] 69.2 102 58.0 3.71 28.7
```

Propiedades

• La recta de regresión pasa por el vector de medias muestrales $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k, \overline{y})$:

$$\overline{y} = b_0 + b_1 \overline{x}_1 + \cdots + b_1 \overline{x}_k$$

 La media de los valores estimados es igual a la media de los observados:

$$\overline{\widehat{y}} = \overline{y}$$

31/44 32/44

Coeficiente de determinación

Sean:

- $SS_T = \sum_{i=1}^n (y_i \overline{y})^2 = (n-1) \cdot \widetilde{s}_y^2$: suma total de cuadrados
- $SS_R = \sum_{i=1}^n (\widehat{y}_i \overline{y})^2 = (n-1) \cdot \widetilde{s}_{\widehat{y}}^2$: suma de cuadrados de la regresión
- $SS_E = \sum_{i=1}^n e_i^2$: suma de cuadrados de los errores

Teorema

En una regresión lineal múltiple por mínimos cuadrados, se tiene que

$$SS_T = SS_R + SS_E$$

Coeficiente de determinación

El coeficiente de determinación de una regresión lineal múltiple es

$$R^2 = \frac{SS_R}{SS_T} = \frac{s_{\widehat{y}}^2}{s_y^2}$$

Representa la fracción de la varianza de y que es explicada por la varianza de \hat{y}

El coeficiente de correlación múltiple de y respecto de

$$x_1, \ldots, x_k$$
 es

$$R = \sqrt{R^2}$$

33 / 44

Coeficiente de determinación

 R^2 siempre crece con el número k de variables independientes, incluso si las variables que añadimos no sirven para nada

Para tenerlo en cuenta, en lugar de usar R^2 , se usa el coeficiente de determinación ajustado

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-k-1}$$

Si queremos comparar dos modelos lineales para una misma variable dependiente y diferentes conjuntos de variables independientes con diferentes números de variables, no hay que comparar los R^2 , sino los R^2_{adj} : a mayor valor de R^2_{adj} , mejor es el modelo

Ejemplo

```
> summary(lm(y~X))
...

Residual standard error: 0.861 on 4 degrees of freedom
Multiple R-squared: 0.9908,
   Adjusted R-squared: 0.9815
F-statistic: 107.3 on 4 and 4 DF,
   p-value: 0.0002541
> summary(lm(y~X))$r.squared
[1] 0.9907683
> summary(lm(y~X))$adj.r.squared
[1] 0.9815367
```

$$R^2 = 0.9908$$
, $R_{adi}^2 = 0.9815$

35 / 44 36 / 44

Ejemplo

¿Sería mejor el modelo si no tuviéramos en cuenta X_4 (el aumento de peso en %)?

```
> X1X2X3=X[,1:3]
> summary(lm(y~X1X2X3))$adj.r.squared
[1] 0.9851091
```

Tomando las variables independientes X_1, X_2, X_3, X_4 , obtenemos $R_{adj}^2 = 0.9815$, y tomando solo X_1, X_2, X_3 , obtenemos $R_{adj}^2 = 0.9851$

El modelo es mejor si no tenemos en cuenta X_4

37 / 44

Intervalos de confianza

Los IC 95% para los β_i se obtienen con la función confint $(lm(y^x1+...+xk,data=...))$

Más propiedades

Si todas las vv.aa. error, o residuo,

$$\underline{E_{x_i}} = (Y|\underline{x_i}) - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik})$$

(donde $\underline{x}_i = (x_{i1}, \dots, x_{ik})$) son normales de media 0 y la misma varianza, e incorreladas dos a dos, de nuevo:

- $E(b_i) = \beta_i$, para todo i = 0, ..., k
- Entre todos los estimadores insesgados de los β_i , los b_i son los que tienen menor error estándar
- (Unos estadísticos relacionados con) los b_i tienen distribuciones conocidas, que permiten calcular intervalos de confianza para cada β_i y para $\mu_{Y|_{\Sigma_0}}$ usando la t de Student

38 / 44

Intervalos de confianza

El IC 95% para $\mu_{Y|\underline{x}_0}$ se obtiene con la construcción siguiente

39 / 44 40 / 44

¿Tiene sentido una regresión lineal?

Cómo en el caso simple, nos interesa el contraste

$$\begin{cases} H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0 \\ H_1: \text{hay algún } \beta_i \neq 0 \end{cases}$$

Si la hipótesis nula es verdadera, $\mu_{Y|x_1,...,x_k} = \beta_0$ no depende de $X_1, ..., X_k$, no tiene sentido la regresión lineal

Esto se puede mirar con k contrastes

$$\begin{cases} H_0: \beta_i = 0 \\ H_1: \beta_i \neq 0 \end{cases}$$

usando un estadístico adecuado que sigue una ley t de Student (bajo las suposiciones sobre las vv.aa. $E_{\underline{x}_i}$). Sus p-valores se obtienen en la columna $\Pr(>|t|)$ de la tabla Coefficients del resultado del summay(lm(...)).

También se pueden usar los IC 95% para los β_i

41 / 44

ANOVA en la regresión lineal

Otra posibilidad es emplear un ANOVA:

Si

$$\beta_1 = \beta_2 = \cdots = \beta_k = 0,$$

entonces

$$\mu_{Y|\underline{\mathsf{x}}_1} = \cdots = \mu_{Y|\underline{\mathsf{x}}_k} (=\beta_0)$$

Por lo tanto, si en el contraste

$$\begin{cases} H_0: \mu_{Y|\underline{x}_1} = \dots = \mu_{Y|\underline{x}_k} \\ H_1: \text{no es verdad que.} \dots \end{cases}$$

rechazamos la hipótesis nula, podemos rechazar que $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ y el modelo tendrá sentido

Ejemplo

```
> summary(lm(y~x1+x2+x3+x4,data=DatosYX))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.14753
                       16.45961
             0.10009
x2
             0.72642
                        0.78590
                                  0.924
                                          0.4076
x3
             3.07584
                        1.05918
                                 2.904
                                          0.0439 *
x4
            -0.03004
                        0.16646 -0.180
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ',
. . .
```

Pero son *k* contrastes, y no independientes, por lo tanto garantizar el nivel de significación global es complicado

42 / 44

ANOVA en la regresión lineal

El p-valor de este ANOVA se da en la última fila del summary(lm(...))

```
> summary(lm(y~X))
...
Residual standard error: 0.861 on 4 degrees of
   freedom
Multiple R-squared: 0.9908,
   Adjusted R-squared: 0.9815
F-statistic: 107.3 on 4 and 4 DF,
   p-value: 0.0002541
```