Machine Learning en el estudio del Alzheimer. Aplicaciones desde la ingeniería para la clínica

Carmen Jiménez Mesa

Sobre mi: Carmen Jiménez Mesa

Investigadora postdoctoral (PhD 2023)

Signal Processing and Biomedical Applications (SiPBA)

Departamento de Teoría de la Señal, Telemática y Comunicaciones

Universidad de Granada

Línea de investigación: procesado de señales biomédicas, especialmente neuroimagen, a través de la aplicación de aprendizaje máquina. Generación de sistemas de ayuda al diagnóstico (sistemas CAD)

ENFERMEDAD DE ALZHEIMER

ENFERMEDAD DE ALZHEIMER

Modelo de aprendizaje máquina

Diseñar/Seleccionar el algoritmo

Diseñar/Seleccionar el algoritmo

Explicabilidad

Diseñar/Seleccionar el algoritmo **Explicabilidad**

Burocracia / Acuerdos

Consentimiento del paciente

Tomar imágenes en hospitales

Procesado de imagen

Diferencias de imágenes entre centros

Diferencias entre las imágenes

Diseñar/Seleccionar el algoritmo

Explicabilidad

Burocracia / Acuerdos

Consentimiento del paciente

Problema del pequeño tamaño muestral

Diferencias de imágenes entre centros

Diferencias entre las imágenes

PROCESO DE APRENDIZAJE VALIDACIÓN CRUZADA

BASE DE DATOS

VALIDACIÓN CRUZADA: 10-Fold

$$\hat{E}_{L}^{KCV} = \frac{1}{card\left(S^{k}\right)} \sum_{i \in S^{k}} I\{L_{S^{(k)}}\left(x_{i}\right) \neq y_{i}\}$$

PROPUESTO

PROCESO DE APRENDIZAJE RESUSTITUCIÓN CON CORRECCIÓN

CONJUNTO DE DATOS

Conjunto de entrenamiento

$$\hat{E}_L^{resub} = \frac{1}{n} \sum_{i=1}^n I\{L_S(x_i) \neq y_i\}$$

$$u_{VC} \leq \sqrt{\frac{h\left(\ln\left(\frac{2n}{h}\right) + 1\right) - \ln\left(\frac{\eta}{4}\right)}{n}} \qquad u_{i.g.p} \leq \sqrt{\frac{1}{2n}\ln\frac{2\sum_{k=0}^{d-1}\binom{n-1}{k}}{\eta}}$$

$$\hat{E}_L^{RUB} = \hat{E}_L^{resub} + \mu$$
 Límite superior

Dependiente del número de muestras, de características y de un nivel de significancia predefinido

PROCESO DE APRENDIZAJE PROPUESTO

Técnicas de **EXPLICABILIDAD**en Machine Learning

Capacidad de un modelo de aprendizaje automático para ser entendido y explicado de manera clara y comprensible por los humanos

Técnicas de **EXPLICABILIDAD**

Grad-CAM

Técnicas de **EXPLICABILIDAD**

Grad-CAM

Test del Reloj

Test del Reloj

Fully-connected layers

Personas con Alzheimer

Personas con Alzheimer

Personas con Alzheimer

CONCLUSIONES

- La colaboración con el equipo médico es clave para aplicar IA en el ámbito clínico y garantizar la relevancia de los estudios realizados.
- Un desafío crucial es abordar la maldición de la dimensionalidad, especialmente con el auge del análisis de datos ómicos.

Machine Learning en el estudio del Alzheimer. Aplicaciones desde la ingeniería para la clínica

Carmen Jiménez Mesa

carmenj@ugr.es

