

BÁO CÁO BÀI THỰC HÀNH SỐ 1 Tính toán bit

Môn học: Lập trình hệ thống

Giảng viên hướng dẫn	ThS. Đỗ Thị Hương Lan
Sinh viên thực hiện	Nguyễn Phan Hữu Khánh (22520645) Trần Anh Khôi(22520701)
Mức độ hoàn thành	Hoàn thành
Thời gian thực hiện	06/03/2024-11/03/2024
Tự chấm điểm	9/10

A. Phần trên lớp:

(file cpp có bổ sung giải thích)

B. Phần về nhà:

2.1

Để so sánh dấu của 2 số, ta so sánh bit dấu của chúng(x_sign và y_sign)

Vì cùng dấu phải trả về 1, khác dấu trả về 0 -> Bảng chân trị phép XNOR

Nếu dùng XNOR thì:"return ~(x sign^y sign) +2", vì trong C++ ~(0)=-1, ~(1)=-2

Để không cần +2 ta có thể XOR, sau đó dùng "!" để đúng ý đồ mà ta muốn.

2.2

Để chia hết cho 8 thì 3 bit cuối phải là 0 (vì chia 8 đồng nghĩa với dịch phải 3 bit)

```
VD: 8/8=1 du 0, 1000>>3=1
9/8=1 du 1, 1001>>3=1
10/8=1 du 2, 1010>>3=1
```

Để lấy 3 bit cuối thì cần AND với mask 0b111

Nếu 3 bit cuối đều là 0 thì ta cần in ra 1, còn lại tất cả đều in 0->dùng dấu "!" vì !(a) với a khác 0 thì đều cho kết quả 0

2.3

X dương thì in 1, ngược lại in 0

X âm bit dấu là 1, x dương bit dấu là 0->NOT bit dấu, nhưng vậy thì không thỏa khi x=0

Ta thay bằng lấy bit dấu số bù 2 của nó (vẫn cho kết quả như mong muốn) và thỏa cả trường hợp x=0:

X âm, số bù 2 của nó là số dương có bit dấu là 0->trả về 0 X=0, số bù 2 của 0 là 0 nên có bit dấu là 0 -> trả về 0 X dương, số bù 2 của nó là số âm có bit dấu là 1 ->trả về 1 (thỏa)

2.4

Ta viết lại biểu thức là : $x*2^{-1}$ (vì n dương nên 2^{n} luôn dương)

Ta tính được x*2^(-n) dựa vào dịch bit

Sau khi làm một vài ví dụ:

```
VD: x=10, n=2 ->trả về 0
x>>2=0b10
x=7, n=2 ->trả về 0
x>>2=0b01
x=2, n=2 ->trả về 1
```

Lab 1: Tính toán bit

x>>2=0x0 x=1, n=2 -> trả về 1 x>>2=0x0

Ta thấy quy luật ở đây là nếu trả về 1 thì x sau khi dịch bit đều có giá trị là 0x0 ngược lại thì sẽ có các giá trị khác

Từ đây, ta chỉ cần xem sau khi x dịch bit thì x có bằng 0x0 không là được.