MTH 210

Assignment 1

Problem Statement 3

Generate 100 observations from a normal distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$. Test whether the generated observations are really "random" or not.

Methodology: using the run test

1. Data generation:

$$X \sim \mathcal{N}(0,1)$$
, for $n = 100$

The data was generated using the rnorm() function in R.

- 2. **Runs Test**: Null Hypothesis (H_0) : The sequence of observations is random. Alternative Hypothesis (H_a) : The sequence of observations is not random. P-value threshold: $\alpha = 0.05$.
- 3. **Recursive Approach**: The dataset was recursively divided into subsets, and the runs test was applied to each subset. A data frame recorded the subset size, p-values, and randomness results.
- 4. Overall Assessment: The mean p-value across all subsets was computed. If the mean p-value > 0.05, the data is concluded to be random; otherwise, it is not random.

Results

1. Runs Test Results: The following table summarizes the results of the runs test for subsets:

Figure 1: this for results.

Figure 2: this for PS3 output.

Subset Size	P-Value	Result
100	0.421	Random
50	0.775	Random
25	0.311	Random

2. Mean P-Value:

$$Mean P-Value = 0.5083$$

3. **Final Conclusion**: Since the mean p-value > 0.05, we fail to reject the null hypothesis. Thus, the data appears to be random.

Conclusion

The runs test indicates that the generated observations from a normal distribution ($\mu = 0, \sigma^2 = 1$) exhibit randomness. Recursive testing confirms this conclusion across different data subsets.