Introductory Linear Algebra for Al

- Useful Matrix Properties

Find the rank of A and also the rank of A^{T} : (q is unknown)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & q \end{bmatrix}$$

Find the rank of A and also the rank of A^{T} : (q is unknown)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & q \end{bmatrix}$$

Can you find the matrix A that satisfies "The only solution of $Ax = [1,2,3]^{T}$ is $x = [0,1]^{T}$ "?

The complete solution to $Ax = [1,3]^T$ is $x = [1,0]^T + c[0,1]^T$. Find A

Show that $\{v_1, v_2, v_3\}$ are independent but $\{v_1, v_2, v_3, v_4\}$ are not.

$$v_1 = [1,0,0]^{\mathsf{T}}, v_2 = [1,1,0]^{\mathsf{T}}, v_3 = [1,1,1]^{\mathsf{T}}, v_4 = [2,3,4]^{\mathsf{T}}$$

Prove that $if \ a = 0 \ or \ d = 0 \ or \ f = 0$, the colums of U are dependent:

$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$

Is it possible to construct 3x3 matrix that satisfies: Column space contains: $[1,2,-3]^{T}$, $[2,-3,5]^{T}$ Null-space contains: $[1,1,1]^{T}$

If $A^{T}Ax = 0$ then Ax = 0. Why?

Find \hat{x} that makes $||Ax - b||^2$ as small as possible

Suppose $A^{T} + A = 0$. Then, $x^{T}Ax = ?$

Linear Systems and Stability

$$V(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x}, \qquad \mathbf{P} = \mathbf{P}^T > \mathbf{0}$$

$$\dot{V}(\mathbf{x}) = \mathbf{x}^T (\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A}) \mathbf{x}$$