RASPY_SCSGATE V 80.6

SOMMARIO

RASPY_SCSgate v 80.6	1
Sommario	2
COSA SERVE:	3
FASF 1 - smd	4

COSA SERVE:

PCB board.

Saldatore a temperatura controllata con punta a scalpello da 2-3mm

Lega di stagno.

Flussante.

Componenti:

NR	SIGLA	Descrizione		formato	codifica
5C1	PIC18F26K80	Processore microchip	smd	SOIC	Pic18f26k80
1	BC807	Transistor smd	Smd	SOT23	5CW
1	BC817	Transistor smd	Smd	SOT23	6C
1	BAT54S	Diodo schottky	Smd	SOT23	VW4
2	1N4007	Diodo smd	Smd	0805	T7
1	F03A	Fusibile smd 300mA 60V	Smd	1206	
2	PC817C	Fotoaccoppiatore	hole	DIP4	PC817C
3	180	Resistenza smd 180 ohm	Smd	0805	181 oppure 1800
1	100	Resistenza smd 100 ohm	Smd	0805	101 oppure 1000
1	470	Resistenza smd 470 ohm	Smd	0805	471 oppure 4700
1	1K	Resistenza smd 1 Kohm	Smd	0805	102 oppure 1001
1	2.2K	Resistenza smd 2.2 Kohm	Smd	0805	222 oppure 2201
1	3.9K	Resistenza smd 3.9 Kohm	Smd	0805	392 oppure 3901
1	4.7K	Resistenza smd 4.7 Kohm	Smd	0805	472 oppure 4701
1	10K	Resistenza smd 10 Kohm	Smd	0805	103 oppure 1002
1	15K	Resistenza smd 15 Kohm	Smd	0805	153 oppure 1502
1	100	Resistenza smd 100 ohm 1W	Smd	2512	101 oppure 1000
1	1nf	Condensatore smd 1nf	Smd	0603	
4	100nf	Condensatore smd 100nf	Smd	0603	
1	10uF	Condensatore smd 10uf	Smd	0603	
1	Led	Led verde smd	Smd	0603	
1	Conn	Connettore maschio ad angolo 5 pin	hole		
1	Conn	Connettore maschio ad angolo 4 pin	Hole		
1	Conn	Connettore maschio ad angolo 2 pin	Hole		
1	Conn	Connettore maschio ad angolo 2 pin	Hole		
1	Conn	Connettore femmina doppio 5x2 pin	Hole		
1	Conn	Connettore femmina doppio 1x2 pin	Hole		
1	10uH	Induttanza da 10uH 1/4W	Hole	0307	

FASE 1 - SMD

Bagnare col flussante i pad sul pcb e saldate il microprocessore PIC18F26K80

Attenzione al flussante che usate: alcuni tipi sono ottimi per la saldatura ma poi corrodono le piste. lo uso il tipo RMA-218.

Saldare i semiconduttori

D1 = D2 = 1n4007 (T7) – D1 catodo in alto – D2 catodo a sinistra

F1 = fusibile smd da 0,3A

Led verde forma 0603

BC807: 5CW BC817: 6C BAT54S: WV4

Saldare le resistenze piccole

Saldare i condensatori

Saldare la resistenza da 1W

Ora i componenti SMD sono tutti saldati, girare la scheda dall'altro lato ed inserire i componenti con i pin saldandoli al loro posto.

Verso il GPIO raspberry uso solo un connettore doppio per i primi 5x2 pin ed un connettore per i pin 17 e 18. Così è più facile da inserire e togliere da raspberry (o altro). Se vi sembra più comodo potete usare invece un connettore da 9x2 oppure da 13x2.

La parte hardware è finita, al più potete spruzzare un po' di lacca lato smd. Ora il PIC va programmato con il file HEX allegato. Io uso un programmatore pickit3 ed il software di programmazione MPLAB-X IPE.

A questo punto potete montarlo sopra un raspberry e seguire il manuale d'uso.

La scheda (RASPY_SCSGATE) ha 4 connettori:

• Il connettore di sinistra va collegato al bus SCS rispettando le polarità indicate + e − .

Prima di collegarlo al bus controllate con un voltmetro. Il collegamento serve per i segnali di ingresso e uscita.

- Il connettore in basso a doppia fila è la connessione al bus gpio del raspberry da cui viene prelevata sia l'alimentazione che i segnali di comunicazione.
- Il connettore centrale a 5 pin (ICSP) serve a riprogrammare il PIC tramite un programmatore Microchip (es. pickit3): 1=/reset 2=positivo 3.3V 3=negativo 4=PGD 5=PGC
- Il connettore in alto è destinato (ad uso futuro) al collegamento con una o più schede relè e una o più schede pulsanti tramite apposite interfacce I2C.

La scheda va innestata sul connettore gpio di raspberry:

Su raspberry zero W:

Potete anche lasciare la scheda staccata dal raspberry e collegarla con cavetti maschio-femmina. I pin da collegare obbligatoriamente sono: 6-8-10-17 (+3,3 gnd uart rx uart tx).