

Position vector of P is アーデースルナッシャンド

position vector of a is

Shen in DOPA,

EXP: (5,3,4) P(2,413)

Then
$$\overrightarrow{PA} = (5-2)^{\frac{1}{2}} + (3-4)^{\frac{1}{2}} + (4-3)^{\frac{1}{4}}$$

$$= 3^{\frac{1}{2}} - 3^{\frac{1}{2}} + 2^{\frac{1}{2}}$$

Projection of a vector on other vector:

let $\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ is a given

vector. B = bi2+bi3+bi37 is another rector.

vector B is b (suppose).

Now projection of the rector of on the other vector is in A. 6.

Problembi

and $\vec{E} = 2di + di - 4i$ are purpordientale.

7. 管 = 1月11萬1 400

Since the 10 two, vectors one perfendicular to eath olive,

$$(\alpha-2)(\alpha+1)=0$$

:. $\alpha=20,-1$

on the vector L+2) +27.

Aug. let
$$\vec{R} = 2\hat{1} - 3\hat{j} + 6\hat{k}$$
; and $\vec{B} = \hat{1} + 2\hat{j} + 2\hat{k}$.

Unit vector in the direction of \hat{B} is $\hat{b} = \frac{\hat{1} + 2\hat{3} + 2\hat{7}}{\sqrt{r_{+} 2\hat{7} + 2\hat{7}}}$ $= \frac{1}{3} (\hat{1} + 2\hat{3} + 2\hat{7})$

Now Projection of \vec{A} on \vec{B} is $= \vec{A} \cdot \hat{b}$ $= (2\hat{i} - 3\hat{i} + 6\hat{k}) \cdot \frac{1}{3}(\hat{i} + 2\hat{i} + 2\hat{k})$ $= \frac{1}{3}(2 - 6 + i2)$

$$=\frac{8}{3}$$
 And:

A3: Find the work done in moving an object along the straight line from (3,2,-1) to (2,-1,4) in a force field given by $\vec{F} = 4\hat{1} - 3\hat{j} + 2\hat{1}$.

Ant: Let it be the vector Parses through the points from (3,2,-1) to (2,-1,4). Then

$$\vec{r} = (2-3)\hat{i}_{1} + (-1-2)\hat{i}_{2} + (4+1)\hat{i}_{3}$$

$$= -\hat{i}_{1} - 3\hat{i}_{2} + 5\hat{i}_{3}$$

Now work done = (magnitude of force intre direction of motion) (distance moved)

=
$$(F \cos \theta)(\Upsilon)$$

= $F \Upsilon \cos \theta = \vec{F} \cdot \vec{\Upsilon}$
= $(4\hat{\lambda} - 3\hat{j} + 2\hat{Y}) \cdot (-\hat{\lambda} - 3\hat{j} + 5\hat{Y})$
= $-4 + 9 + 10 = 15$ Ans.

Note: Cross product (vector froduct):

Note: Let
$$\vec{A} = a_1 \hat{i}_1 + a_2 \hat{j}_1 + a_3 \hat{k}$$

$$\vec{B} = b_1 \hat{i}_1 + b_2 \hat{j}_1 + b_3 \hat{k}$$

TXB =
$$\begin{vmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda_1 & \lambda_2 & \lambda_3 \end{vmatrix}$$