Homework 5	● Graded
Student	
Boyuan Deng	
Total Points	
4 / 4 pts	
Question 1	
1	1 / 1 pt
✓ - 0 pts Correct	
Question 2	
2	1 / 1 pt
→ - 0 pts Correct	
Question 3	
3	1 / 1 pt
✓ - 0 pts Correct	
Question 4	
4	1 / 1 pt
✓ - 0 pts Correct	

No questions assigned to the following page.					

Partial differential equations Homework 5 Due date: March 8

Saman H. Esfahani

001	1- Use the mean value property to prove that the	(d) Find v the solution to the equation (1).	
002	zeros of a harmonic function	4- The Legendre transform of a C^2 convex function	029
003	$u:U\subset\mathbb{R}^n\to\mathbb{R},$	$f: \mathbb{R}^n \to \mathbb{R}$ is defined by	030
004	are never isolated.	$f^*(p) = \sup_{x \in \mathbb{R}^n} \{x \cdot p - f(x)\}.$	031
005	2- Let $\Omega \subset \mathbb{R}^n$ be a smooth and bounded domain,	(a) Prove $f^*(p)$ is a convex function.	032
006	$c > 0$ and $T > 0$ constants, given functions $f \in C(0, 0, T)$		
007 008	$C(\Omega \times [0,T]), g \in C(\partial \Omega \times [0,T]), \text{ and } \varphi \in C(\Omega).$ Use the energy method	(b) Let $H(p) = \frac{1}{r} p ^r$, for some $1 < r < \infty$. Let s be the number where	033 034
009	$E(u)(t) := \int_{\Omega \times \{t\}} u^2(x,t) dx,$	$\frac{1}{r} + \frac{1}{s} = 1.$	035
010	to prove the uniquenes of the solution to the initial	Let $L(v) = \frac{1}{s} v ^s$. We want to show $H^* = L$. To	036
011	boundary value problem:	do so, first prove:	037
	u_t $-(c\Delta u = f \text{ in } \Omega \times (0, \overline{D}),$	$H^*(v) \ge L(v).$	038
012	$u = g$ on $\partial \Omega \times (0, T]$,	Hint: Do this using the fact that the supremum of	039
	$u = \varphi$ on $\Omega \times \{0\}$.	a function is greater than the value of the function	040
		obtained at a specific point.	041
013	3- The following fully non-linear PDE	(c) Prove with the use of the Young's inequality.	042
014	$v_{tt}v_{xx} - 2v_{xt}v_{xt} + v_t^2v_{xx} = 0 (1)$	$H^*(v) \le L(v).$	043
015	$v_{tt}v_{xx} - 2v_{xt}v_{xt} + v_t^2v_{xx} = 0 $ (1) $v_{xx}(v_{tt} + v_t^2) = 2v_{xt}^2$ is a special case of the so-called Monge-Ampère		
016	equation. Here, you will reduce this PDE to an	Theorem 1. Let $u \in C^2(U)$ be a solution to a	044
017	equivalent first-order equation and then solve it.	non-linear first-order PDE:	045
018	(a) The equation (1) is equivalent to a simpler equa-	•	
019	tion for a new function $u = v_t/v_x$. Find this equa-	$F(\nabla u(x), u(x), x) = 0.$	046
020	tion for the function u .	Let $p(s) = \nabla u(x(s))$ and $z(s) = u(x(s))$. Then,	047
021	(b) For the given initial conditions	Let $p(s) = \sqrt{u(x(s))}$ and $z(s) = u(x(s))$. Then,	047
	-(-0) 1 . $0.3r$	$x'(s) = \nabla_p F,$	048
022	$v(x,0) = 1 + 2e^{3x},$	$p'(s) = -\nabla_x F - \nabla_z F p,$	049
023	$v_t(x,0) = 4e^{3x},$	$z'(s) = p \cdot \nabla_p F.$	050
024	on $-\infty < x < \infty$, find the corresponding initial	Theorem 2 (Young's inequality).	
025	conditions for u .		
026	(c) Solve the equation for u using the method of	If $\frac{1}{r} + \frac{1}{s} = 1$ and r, s are positive, then $ab \leq \frac{a^r}{r} + \frac{b^s}{s}$.	051
027	characteristics.	$r \cdot s = r \cdot s$	

