2022 形式语言自动机期末模拟试卷

**题型仅供参考,与期末考试不一定相同,

1. Give a DFA accepting the language that meets the following requirements over the alphabet $\{0, 1\}$.

The number of Os is even and don't end in O1

2. Give a NFA accepting the following language. $\{xwx^R | x, w \in \{0,1\}^+\}$

3. Write a regular expression accepting the strings that represent a number divisible by 5 in binary.

思路:设计dfa,再转re

$$(\theta + 100)^* (0+11) . (01^*01+01^*00 (10)^* (0+11)^*. 1)^+.$$

 $(0+1) (10+(0+11) (01^*01)^* 0100)^*. (0+11) . (01^*01)^*1)^+$

4. Prove that the language $\{a^mb^nc^{2k}d^{2z}|z\neq m+n+k\}$ is not regular with pumping lemma.

思路一.直接使用泵引理

可取
$$m = N$$
, $n = N$, $k = N$, $z = 3N + N!$,

则分为xyz后, $y = a^s$,1 < s < n,

则对于
$$xy^fz$$
, $m = N + (f-1)s$, $n = N$, $k = N$, $z = 3N + N!$,

取
$$(f-1) = \frac{N!}{S}$$
即可

思路二. 利用封闭性和泵引理

$$L1 = \{a^m b^n c^{2k} d^{2z} | z, m, n, k 非负\}$$

$$L2 = \{a^m b^n c^{2k} d^{2z} | z = m + n + k\}$$

$$L3 = \{a^m b^n c^{2k} d^{2z} | z \neq m+n+k\}$$

由泵引理易证 L2 非正则,则若 L3 正则,由 L1-L3=L2 可知 L2 为正则,矛盾! 所以 L3 非正则

5. Convert to a DFA the following NFA:

		0	1	2
Start	q0	{q0, q1}	{q0, q2}	{q0, q2}
	q1	{q0, q3}	Ø	$\{q2\}$
	q2	Ø	{q1, q3}	{q1, q2}
*	q3	{q2, q3}	{q3}	$\{0p\}$

6. Give a context-free grammar over $\{1,2,3,+,*,(,),\emptyset,\epsilon\}$ for all regular expressions over alphabet $\{1,2,3\}$.

答案:

这题考察通过正则表达式的定义来构造 CFG

$$S \rightarrow \emptyset|\epsilon|1|2|3|S + S|S^*|SS|(S)$$

7. Construct CNF equivalent to the following grammar:

 $S \rightarrow aBB|bAA$

 $B \rightarrow aBa|aa|\epsilon$

 $A \rightarrow bbA|\epsilon$

答案:

首先去除空产生式:

观察A和B是可空的,所以对A和B进行替换

 $S \rightarrow a|aB|aBB|b|bA|bAA$

 $B \rightarrow aBa|aa$

 $A \rightarrow bbA|bb$

接着将其转化为乔姆斯基范式 $(A \rightarrow BC 或者 A \rightarrow a 的形式)$

$$S \rightarrow a|S_1B|S_1S_2|b|S_3A|S_3S_4$$

$$S_1 \rightarrow a$$

 $S_2 \rightarrow BB$

 $S_3 \rightarrow b$

 $S_4 \rightarrow AA$

 $B \rightarrow S_1 B_2 | S_1 S_1$

 $B_2 \rightarrow BS_1$

 $A \rightarrow S_3 A_2 | S_3 S_3$

8. Design a PDA for $L(M) = \{1^n 0^n | n \ge 1\}\{1^n 0^{2n} | n \ge 1\}$

答案:

其中, $S-S_2$ 是判断 $\{1^n0^n|n\geq 1\}$ 的过程, S_2-S_4 是判断 $\{1^n0^{2n}|n\geq 1\}$ 的过程, S_5 为判断结束的最终状态。

9. Prove the language L= $\{x\#y|x,y\in\{0,1\}^* \text{ and } y \text{ is a substring of } x\}$ is not CFL with pumping lemma;

答案:

假设 L 是 CFL, N 为泵引理所说的正整数,取字符串 $1^N0^N \# 1^N0^N$ 在 L 中由泵引理存在z = uvwxy满足(1) $|vwx| \le N$; (2) $|vx| \ge 1$ (3) $|vu^iwx^iy| \in L, i =$

0,1,2,

若vwx在#前取 i=0,显然不成立

若vwx在#后取 i>=2, 也不成立

若vwx包含#号

若#在 vx 中,取 i=0 新字符串不包含#显然不成立 若#不在 vx 中取,

 $若|x| \neq 0$,则 $x_1 \neq 0$

取 i=0 由于 $|vwx| \le N$ 字符串变为 $1^N 0^{N-x_1} # 1^{N-x_2} 0^N$,此时 $1^{N-x_2} 0^N$ 不是 $1^N 0^{N-x_1}$ 的子串,也不成立

若 $|v| \neq 0$,则 $x_2 \neq 0$

取 i=2 由于 $|vwx| \le N$ 字符串变为 $1^N 0^{N+x_1} # 1^{N+x_2} 0^N$,此时 $1^{N+x_2} 0^N$ 不是 $1^N 0^{N+x_1}$ 的子串,也不成立

所以 L 不是 CFG

10. Design Turing machine to compute n^2 . (start from 0^n to 0^{n^2})

答案: 起初是 00…00

SO->S1 变为 00···00A

S1->S3 将 A 左边的第一个 0 变成 1 之后返回到 A 的位置,开始一次加 n 操作,S3, S4, S5 循环是将 A 右边 0 的个数加上 A 左边字符的个数,用 3 暂时代替 1, 2 暂时代替 0,代表该数字已经被复制到右边。

变化过程: 00…0011..11A00..00

00…0033..33A00..0000..00 (此时1已经全部复制到右边)

22···2233..33A00..0000..00 (此时 A 右边的 0 已经全部复制到右边)

S3->S6 发现 S 右边的 0, 1 已经全部被替换为 2, 3

S6->S7 发现 串此时为 $33\cdots33A00...0$,说明右边已经进行了 n 次加 n 的操作,可以结束了,这时把 3 和 A 从串里边删去就行了

S6->S9->S1 把 2, 3 还原为 0, 1 开始下一轮的加 n 操作

M=($\{s1, s2, s3, s4, s5, s6, s7, s8, s9\}, \{0\}, \{A, 1, 2, 3\}, \delta, s0, B, \{s8\}$)如下图:

(其实 A 状态是可以省略的,但是为了理解和讨论方便,我还是加上了)

命题人: 计算学部讲师团形式语言自动机命题组 命制时间: 2022.5.4