Übungsblatt 10 Aufgabe 1

GRUPPE 19

Aufgabenstellung

Nehmen Sie an, ein neuer Berechnungsjob steht zur Verteilung. Drei Rechner A, B und C berechnen

die geschätzte Transportzeit dieses Jobs in Minuten.

A: 5 Minuten

B: 7 Minuten

C: 12 Minuten

Das System vereinbart eine Entschädigung von 3 \in pro Minute und bittet die Rechner um wahrheitsgemäße Einschätzung der Kosten, um den Job an den günstigsten Rechner zu vergeben. Einem Rechner entstehen auch tatsächliche Kosten, weshalb der Nutzen $v_i < 0$ ist, wenn i ausgewählt wird.

Aufgabe 1a

Definieren Sie die Auswahlmenge X und die wahren Bewertungen v_i für $i \in \{A, B, C\}$.

$$X = \{A,B,C\}$$

$$v_A(A) = -3 * 5 = -15$$
 $v_A(B) = 0$ $v_A(C) = 0$
 $v_B(A) = 0$ $v_B(B) = -3 * 7 = -21$ $v_B(C) = 0$
 $v_C(A) = 0$ $v_C(C) = -3 * 12 = -36$

Aufgabe 1b

Wenden Sie VCG für die dominante Strategie $\hat{v}_i = v_i$ für alle Agenten an; welche Entscheidung wird getroffen und welche Bezahlungen ergeben sich daraus für die Agenten?

Definition 1: Vickrey-Clarke-Groves (VCG) Mechanismus

Der Vickrey-Clarke-Groves Mechanismus ist ein direkter quasilinearer Mechanismus (χ, p) , mit

$$\chi(\hat{v}) = \arg \max_{x \in X} \sum_{i} \hat{v}_{i}(x)$$
$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j} \left(\chi(\hat{v}_{-i}) \right) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

Aufgabe 1b

Auswahlregel:

$$\chi(\hat{v}) = \arg\max_{x \in X} \sum_{i} \hat{v}_{i}(x)$$

	v_A	v_B	$v_{\it c}$	Σ
Α	-15	0	0	-15
В	0	-21	0	-21
С	0	0	-36	-36

$$\chi(\hat{v}) = A$$

Aufgabe 1b

Bezahlungsregel:

$$p_{i}(\hat{v}) = \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_{j}(\chi(\hat{v}))$$

$$p_{A}(\hat{v}) = -21 - 0 = -21$$

$$p_{B}(\hat{v}) = -15 - (-15) = 0$$

$$p_{C}(\hat{v}) = -15 - (-15) = 0$$

Individualnutzen:

$$u_A(A, p) = u_A(A) - p_A = -15 + 21 = 6$$

 $u_B(A, p) = u_B(A) - p_B = 0$
 $u_C(A, p) = 0$

Was passiert, wenn ausgewählte Agenten ihre Bewertung nach oben oder unten verändern hinsichtlich der Auszahlungen?

	$oldsymbol{v}_A$	v_B	$v_{\it c}$	Σ
Α	-15	0	0	-15
В	0	-21	0	-21
С	0	0	-36	-36

	v_A	v_B	$v_{\it c}$	Σ
Α	-15	0	0	-15
В	0	-21	0	-21
С	0	0	-36	-36

Agent A:

$$-21 < v_A < 0 \longrightarrow Auszahlung$$

$$-36 < v_A < -21 \longrightarrow Auszahlung$$

$$v_A < -36$$
 — Auszahlung

	A	В	С
Auszahlung	-21	0	0
	A	В	С
Auszahlung	0	v_A	0
	A	В	С
Auszahlung	0	-36	0

	v_A	v_B	$v_{\it c}$	Σ
Α	-15	0	0	-15
В	0	-21	0	-21
С	0	0	-36	-36

Agent B:

$$-15 < v_B < 0$$
 — Auszahlung

$$-36 < v_B < -15 \longrightarrow Auszahlung$$

$$v_B < -36$$
 — Auszahlung

	Α	В	С
Auszahlung	0	-15	0
	A	В	С
Auszahlung	v_B	0	0
	A	В	С
Auszahlung	-36	0	0

	v_A	v_B	$v_{\it c}$	Σ
Α	-15	0	0	-15
В	0	-21	0	-21
С	0	0	-36	-36

Agent C:

$$-15 < v_C < 0$$
 — Auszahlung

$$-21 < v_C < -15 \longrightarrow Auszahlung$$

$$v_C < -21$$
 — Auszahlung

	Α	В	С
Auszahlung	0	0	-15
	A	В	С
Auszahlung	$v_{\mathcal{C}}$	0	0
	Α	В	С
Auszahlung	-21	0	0

v_{c} v_A v_B -15 0 0 -15 В 0 -21 0 -21 -36 0 0 -36

Aufgabe 1c

Anfälligkeit auf Absprachen!!!

A und B arbeiten zusammen. A gibt B Entschädigung wenn B Wert auf -35 setzt.

	v_A	v_B	$v_{\mathcal{C}}$	Σ
Α	-15	0	0	-15
В	0	-35	0	-35
С	0	0	-36	-36

A würde die Auszahlung von -35 bekommen.

Individualnutzen: $u_A(A, p) = u_A(A) - p_A = -15 + 35 = 20$