Feuille de TP n°5 – Processus de Poisson

[Nev85, p34]

Définition 1 (Processus de Poisson). Le processus de Poisson simple $(N_t)_{t\geq 0}$ d'intensité λ est le processus issu de 0 à valeurs dans $\mathbb N$ tel que :

- 1. pour tout $t \in \mathbb{R}_+$, la v.a. N_t suit une loi de Poisson de paramètre λt ,
- 2. pour tout $(s,t) \in \mathbb{R}_+ \times \mathbb{R}_+$, $N_{t+s} N_t$ et N_t sont indépendants.

Remarque 2. Le processus $(N_t)_{t\geq 0}$ se représente facilement à partir de la donnée d'une suite $(S_n)_{n\in\mathbb{N}}$ de v.a. i.i.d. de loi exponentielle de paramètre λ . Posons $T_n=S_1+\cdots+S_n$. Les variables aléatoires

$$N_t = \sum_{n=1}^{\infty} \mathbf{1}_{\{T_n \le t\}}$$

définissent un processus de Poisson d'intensité λ .

Proposition 3 (Loi conditionnelle des temps de saut). Sachant que $N_t = k$ (avec $k \ge 1$), la loi du k-uplet (T_1, \ldots, T_k) a même loi qu'un k-échantillon de v.a. i.i.d. de loi uniforme sur [0, t].

- ▶▶ Simuler et afficher une trajectoire de processus de Poisson simple d'intensité 1 jusqu'au 20^{ième} saut.
- $\blacktriangleright \blacktriangleright$ Simuler une trajectoire de processus de Poisson simple d'intensité 1 jusqu'à l'instant t=20:
 - grâce à une boucle while,
 - grâce à la proposition 3.
- ▶▶ Comparer ces deux méthodes en générant mille trajectoires avec chaque méthode et mesurer le temps de calcul grâce à la commande timer().

Proposition 4 (Comportement asymptotique). On peut établir les comportements asymptotiques suivants pour les trajectoires du processus de Poisson :

$$\frac{N_t}{t} \xrightarrow[t \to +\infty]{p.s.} \lambda, \quad et \quad \sqrt{\frac{t}{\lambda}} \left(\frac{N_t}{t} - \lambda \right) \xrightarrow[t \to +\infty]{\mathcal{L}} \mathcal{N}(0, 1).$$

 $\blacktriangleright \blacktriangleright$ Écrire une fonction qui tire au hasard (loi quelconque) une intensité λ , génère une trajectoire du processus de Poisson d'intensité λ et en déduit une estimation (pour tout $t \ge 0$) de λ grâce à la proposition 4. Proposer aussi un intervalle de confiance asymptotique de probabilité de confiance 0.95^1 .

¹Attention, on ne connaît pas λ donc il faut utiliser un petit lemme de Slutsky pour les bornes de l'intervalle de confiance...

Proposition 5 (Superposition de deux processus de Poisson²). $Si(M_t)_{t\geq 0}$ et $(N_t)_{t\geq 0}$ sont deux processus de Poisson indépendants de paramètres respectifs λ et μ alors $(M_t + N_t)_{t\geq 0}$ est un processus de Poisson de paramètre $\lambda + \mu$.

▶▶ Proposer une illustration de ce résultat³.

Proposition 6 (Décomposition d'un processus de Poisson⁴). Soit $(N_t)_{t\geq 0}$ un processus de Poisson de paramètre λ . On construit les processus $(N_t^1)_{t\geq 0}$ et $(N_t^2)_{t\geq 0}$ de la manière suivante : à chaque saut (indépendamment des autres) du processus $(N_t)_{t\geq 0}$, on choisit de faire sauter $(N_t^1)_{t\geq 0}$ avec probabilité p ou $(N_t^2)_{t\geq 0}$ (avec probabilité 1-p). Alors les processus $(N_t^1)_{t\geq 0}$ et $(N_t^2)_{t\geq 0}$ sont deux processus de Poisson indépendants de paramètres respectifs $p\lambda$ et $(1-p)\lambda$.

 $\blacktriangleright \blacktriangleright$ Écrire une fonction qui trace une trajectoire du processus total et en déduit les deux trajectoires des sous-processus⁵.

Définition 7 (Processus de Poisson composé⁶). Reprenons les notations de la remarque 2. Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de v.a. i.i.d. de loi ν indépendantes de la suite $(S_n)_{n\in\mathbb{N}}$. On définit $(X_t)_{t\geq 0}$ le processus de Poisson composé d'intensité $\lambda > 0$ et de loi de saut ν par

$$X_t = \sum_{n=1}^{\infty} Y_n \mathbf{1}_{\{T_n \le t\}}.$$

Remarque 8. Le processus de Poisson simple correspond à une loi de saut égale à δ_1 .

▶▶ Simuler une trajectoire de processus de Poisson composé d'intensité 1 et de loi de saut $\mathcal{N}(0,1)$.

Proposition 9 (Loi d'une somme aléatoire de variables aléatoires indépendantes). Soit N et $(Y_n)_n \in \mathbb{N}$ des v.a. indépendantes avec N à valeurs dans \mathbb{N} de fonction génératrice G et $(Y_n)_n \in \mathbb{N}$ i.i.d. de fonction caractéristique φ . Alors la v.a.

$$S = \mathbf{1}_{\{N \ge 1\}} \sum_{n=1}^{N} Y_n$$

admet pour fonction caractéristique $\varphi_S(u) = G(\varphi(u))$.

²**Modélisation.** On modélise l'arrivée de clients dans deux files d'attente voisines par deux processus de Poisson indépendants (les guichetiers répondent à des requêtes différentes) et l'on souhaite connaître la distribution du processus d'arrivée global.

³Comment valider le fait que les temps inter-arrivées sont i.i.d. de loi $\mathcal{E}(\lambda + \mu)$?

⁴Modélisation. Au péage d'une autoroute, on modélise l'arrivée des voitures successives par un processus de Poisson que l'on peut décomposer en deux en fonction du sexe du conducteur, p et 1-p représentant les probabilités respectives de trouver une femme et un homme au volant.

⁵Pour illustrer le caractère poissonnien des deux sous-processus, on peut procéder comme dans le cas de la superposition. Mettre en évidence l'indépendance est moins facile...

⁶Modélisation. Ce processus permet par exemple de modéliser l'arrivée aléatoire de groupes de personnes comme des passagers dans un aéroport qui arrivent à des temps aléatoires en paquets aléatoires (avions de tailles différentes).

Corollaire 10. Soit $(X_t)_{t\geq 0}$ le processus de Poisson composé d'intensité λ et de loi de saut ν qui admet un moment d'ordre 2. Notons m et σ^2 les moyenne et variance de ν . Alors, pour tout $t\geq 0$,

$$\mathbb{E}(X_t) = \mathbb{E}(N_t)\mathbb{E}(Y) = m\lambda t \quad et \quad \mathbb{V}(X_t) = \mathbb{E}(N_t)\mathbb{V}(Y) + \mathbb{V}(N_t)\mathbb{E}(Y)^2 = \lambda t\sigma^2 + \lambda tm^2.$$

 $\blacktriangleright \blacktriangleright$ Illustrer ce résultat en faisant varier la loi ν .

Références

- [Nev85] J. Neveu, Introduction aux processus aléatoires, Polycopié de l'École polytechnique, 1985
- [Nor97] J.R. Norris, *Markov chains*, Cambridge Series in Statistical and Probabilistic Mathematics, 1997.
- [Rue89] A. Ruegg, Processus stochastiques, Presses Polytechniques Romandes, 1989.