Project Design Phase-II

Technology Stack (Architecture & Stack)

Date	23 June 2025
Team ID	LTVIP2025TMID47397
Project Name	Visualization Tool for Electric Vehicle Charge and Range Analysis
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the Table-1 & Table-2

Example: EV Charge Data Collection & Visualization Platform

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1	User Interface	User dashboard for	React.js,
		EV data insights via	TailwindCSS,
		browser or mobile	HTML5
2	Application Logic-1	EV charge & range	Python, FastAPI
		data processing	
3	Application Logic-2	User behavior	Python ML libraries
		analytics	(scikit-learn,
			pandas)
4	Application Logic-3	Geolocation-based	Google Maps API,
		recommendations	OpenRouteService
5	Database	Storing user	PostgreSQL
		profiles, session	
		logs, raw EV data	
6	Cloud Database	Cloud-hosted	AWS RDS, Amazon
		scalable data	DynamoDB
		storage	
7	File Storage	Storing data	AWS S3, local FS
		exports,	
		visualizations	
8	External API-1	Fetch real-time EV	NREL API, Open
		station data	Charge Map API
9	External API-2	Weather or	OpenWeatherMap
		temperature-	API
		dependent range	
		prediction	
10	Machine Learning	Forecast range and	Regression + Time
	Model	suggest efficiency	Series Models
		improvements	
11	Infrastructure	Deploying services	AWS EC2, Lambda,
	(Server / Cloud)		Kubernetes

Table-2 : Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source	Frontend and	React.js, FastAPI,
	Frameworks	backend using open-	PostgreSQL
		source tools	
2	Security	Authentication,	JWT, OAuth 2.0,
	Implementations	encryption, access	HTTPS, IAM Roles
		control	
3	Scalable	Microservices &	Docker, Kubernetes,
	Architecture	cloud containers	REST APIs
4	Availability	Highly available	AWS Load Balancer,
		multi-zone cloud	Multi-AZ RDS
		setup	
5	Performance	Optimized charts,	Redis, CloudFront
		caching, async jobs	CDN, Async APIs

References:

https://c4model.com/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-

architecture-diagrams-2d20c9fda90d

https://openchargemap.org/site/develop/api

https://openweathermap.org/api

https://developer.nrel.gov/docs/transportation/alt-fuel-stations-v1/