Subdividing Alpha Complex

Alan Cheng Ho-lun and Tony Tan

Basic Definitions

Let B be a set of balls and D_B be its Delaunay complex.

• A Delaunay simplex δ is an alpha simplex if its corresponding balls intersect with the dual of δ .

An Example of alpha complex

Figure 1:

Subdividing Alpha Complex

An alpha complex \mathcal{K}_B subdivides a simplicial complex \mathcal{C} if:

- $-|\mathcal{K}_B| = |\mathcal{C}|$, and
- every simplex in \mathcal{K}_B is contained in a simplex in \mathcal{C}

Problem: Given a simplicial complex C, construct a set of balls B such that K_B subdivides set C

Assumption: We are given the constraint triangulation of \mathcal{C} , i.e. the triangulation of he convex hull of \mathcal{C} which contains \mathcal{C} .

Main Theorem

Theorem. Let B be a set of balls and C be a simplicial complex. If B satisfies the following Conditions C1 and C2:

- **C1.** for a subset $X \subseteq B$, if $\bigcap X \neq \emptyset$ then $z(X) \subseteq \sigma$ for some $\sigma \in \mathcal{C}$, and,
- **C2.** for each $\sigma \in \mathcal{C}$, define $B(\sigma) = \{b \in B \mid b \cap \sigma \neq \emptyset\}$. Then we have: $z(B(\sigma)) \subseteq \sigma \subseteq \bigcup B(\sigma)$,

then \mathcal{K}_B subdivides \mathcal{C} .

Satisfying Condition 1

Subdivision

Figure 2:

Satisfying Condition 1

Protecting cells

Figure 3:

Satisfying Condition 1

For a point $p \in \rho$, MaxWeight(p) is the weight of the smallest ball centered on p that intersects the protecting cell of ρ .

The Algorithm

Restricted Voronoi complex:

Let $\sigma \in \mathcal{C}$ and X a set of balls.

- Restricted Voronoi complex $V_X(\sigma)$ is the restriction of V_X on ρ .
- A Voronoi vertex v is called a *positive* vertex, if v is outside every ball in X.

The Main Algorithm:

```
1: for i=0,\ldots,d
2: for all \rho\in\mathcal{C} of dimension i
3: ConstructBalls(\rho)
```

The Procedure ConstructBalls(σ):

```
if dim \sigma = 0
        B(\sigma) := (\sigma, \gamma \cdot \text{MaxWeight}(\sigma))
2:
3:
     else
4: Let l := \dim \sigma
5: Let \tau_1, \ldots, \tau_{l+1} be the (l-1)-faces of \sigma.
6: X := B(\tau_1) \cup \cdots \cup B(\tau_{l+1})
7: while \exists a positive vertex u in V_X(\sigma)
          w := \gamma \cdot \text{MaxWeight(u)}
8:
9:
         X := X \cup \{(u, w)\}
10:
     endwhile
       B(\sigma) := X
11:
12:endif
```

Proof of Correctness:

Condition C2 follows from the following proposition:

Proposition. Let X be a set of balls. Suppose $z(X) \subseteq \sigma$. Then $\sigma \subseteq \bigcup X$ if and only if there is no positive vertex in $V_*(\sigma)$.

Proof of Termination:

Fact. Let Λ be a subset of σ whose boundary lies entirely in the interior of σ . Then there exists a constant c > 0 such that for all $p \in \Lambda$, MaxWeight(p) > c.

Termination follows from the fact and the compactness of ρ .

Object Approximation