5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a *current*. The unit of current is the ampere (A), defined as a rate of movement of charge passing a given reference point (or crossing a given reference plane) of one coulomb per second. Current is symbolized by I, and therefore

$$I = \frac{dQ}{dt} \tag{1}$$

Current is thus defined as the motion of positive charges, even though conduction in metals takes place through the motion of electrons, as we shall see shortly.

In field theory we are usually interested in events occurring at a point rather than within some large region, and we shall find the concept of *current density*, measured in amperes per square meter (A/m^2) , more useful. Current density is a vector¹ represented by **J**.

The increment of current ΔI crossing an incremental surface ΔS normal to the current density is

$$\Delta I = J_N \Delta S$$

and in the case where the current density is not perpendicular to the surface,

$$\Delta I = \mathbf{J} \cdot \Delta \mathbf{S}$$

Total current is obtained by integrating,

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S} \tag{2}$$

Current density may be related to the velocity of volume charge density at a point. Consider the element of charge $\Delta Q = \rho_v \Delta v = \rho_v \Delta S \Delta L$, as shown in Fig. 5.1a. To simplify the explanation, let us assume that the charge element is oriented with its edges parallel to the coordinate axes, and that it possesses only an x component of velocity. In the time interval Δt , the element of charge has moved a distance Δx , as indicated in Fig. 5.1b. We have therefore moved a charge $\Delta Q = \rho_v \Delta S \Delta x$ through a reference plane perpendicular to the direction of motion in a time increment Δt , and the resultant current is

$$\Delta I = \frac{\Delta Q}{\Delta t} = \rho_v \, \Delta S \, \frac{\Delta x}{\Delta t}$$

As we take the limit with respect to time, we have

$$\Delta I = \rho_v \, \Delta S \, v_x$$

¹ Current is not a vector, for it is easy to visualize a problem in which a total current *I* in a conductor of nonuniform cross section (such as a sphere) may have a different direction at each point of a given cross section. Current in an exceedingly fine wire, or a *filamentary current*, is occasionally defined as a vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to the current.

FIGURE 5.1

An increment of charge, $\Delta Q = \rho_v \Delta S \Delta L$, which moves a distance Δx in a time Δt , produces a component of current density in the limit of $J_x = \rho_v v_x$.

where v_x represents the x component of the velocity \mathbf{v} . In terms of current density, we find

$$J_{x} = \rho_{v} v_{x}$$

and in general

$$\mathbf{J} = \rho_v \mathbf{v} \tag{3}$$

This last result shows very clearly that charge in motion constitutes a current. We call this type of current a *convention current*, and $\bf J$ or $\rho_v \bf v$ is the *convection current density*. Note that the convection current density is related linearly to charge density as well as to velocity. The mass rate of flow of cars (cars per square foot per second) in the Holland Tunnel could be increased either by raising the density of cars per cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density $\mathbf{J} = 10\rho^2 z \mathbf{a}_{\rho} - 4\rho \cos^2 \phi \mathbf{a}_{\phi} \text{ A/m}^2$: (a) find the current density at $P(\rho = 3, \phi = 30^{\circ}, z = 2)$; (b) determine the total current flowing outward through the circular band $\rho = 3, 0 < \phi < 2\pi, 2 < z < 2.8$.

Ans.
$$180\mathbf{a}_{\rho} - 9\mathbf{a}_{\phi} \, A/m^2$$
; $518 \, A$

² The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as a vector \mathbf{v} , a component v_x , or a magnitude $|\mathbf{v}|$, while volume appears only in differential form as dv or Δv .

5.2 CONTINUITY OF CURRENT

Although we are supposed to be studying static fields at this time, the introduction of the concept of current is logically followed by a discussion of the conservation of charge and the continuity equation. The principle of conservation of charge states simply that charges can be neither created nor destroyed, although equal amounts of positive and negative charge may be *simultaneously* created, obtained by separation, destroyed, or lost by recombination.

The continuity equation follows from this principle when we consider any region bounded by a closed surface. The current through the closed surface is

$$I = \oint_{S} \mathbf{J} \cdot d\mathbf{S}$$

and this *outward flow* of positive charge must be balanced by a decrease of positive charge (or perhaps an increase of negative charge) within the closed surface. If the charge inside the closed surface is denoted by Q_i , then the rate of decrease is $-dQ_i/dt$ and the principle of conservation of charge requires

$$I = \oint_{S} \mathbf{J} \cdot d\mathbf{S} = -\frac{dQ_{i}}{dt} \tag{4}$$

It might be well to answer here an often-asked question. "Isn't there a sign error? I thought I = dQ/dt." The presence or absence of a negative sign depends on what current and charge we consider. In circuit theory we usually associate the current flow *into* one terminal of a capacitor with the time rate of increase of charge on that plate. The current of (4), however, is an *outward-flowing* current.

Equation (4) is the integral form of the continuity equation, and the differential, or point, form is obtained by using the divergence theorem to change the surface integral into a volume integral:

$$\oint_{S} \mathbf{J} \cdot d\mathbf{S} = \int_{\text{vol}} (\nabla \cdot \mathbf{J}) \, dv$$

We next represent the enclosed charge Q_i by the volume integral of the charge density,

$$\int_{\text{vol}} (\nabla \cdot \mathbf{J}) \, dv = -\frac{d}{dt} \int_{\text{vol}} \rho_v \, dv$$

If we agree to keep the surface constant, the derivative becomes a partial derivative and may appear within the integral,

$$\int_{\text{vol}} (\nabla \cdot \mathbf{J}) \, dv = \int_{\text{vol}} -\frac{\partial \rho_v}{\partial t} \, dv$$

Since the expression is true for any volume, however small, it is true for an incremental volume,

$$(\nabla \cdot \mathbf{J}) \, \Delta v = -\frac{\partial \rho_v}{\partial t} \, \Delta v$$

from which we have our point form of the continuity equation,

$$(\nabla \cdot \mathbf{J}) = -\frac{\partial \rho_v}{\partial t} \tag{5}$$

Remembering the physical interpretation of divergence, this equation indicates that the current, or charge per second, diverging from a small volume per unit volume is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sections, let us consider a current density that is directed radially outward and decreases exponentially with time,

$$\mathbf{J} = \frac{1}{r} e^{-t} \mathbf{a}_r \quad A/\mathrm{m}^2$$

Selecting an instant of time t = 1 s, we may calculate the total outward current at r = 5 m:

$$I = J_r S = (\frac{1}{5}e^{-1})(4\pi 5^2) = 23.1$$
 A

At the same instant, but for a slightly larger radius, $r = 6 \,\mathrm{m}$, we have

$$I = J_r S = (\frac{1}{6}e^{-1})(4\pi 6^2) = 27.7$$
 A

Thus, the total current is larger at r = 6 than it is at r = 5.

To see why this happens, we need to look at the volume charge density and the velocity. We use the continuity equation first:

$$-\frac{\partial \rho_v}{\partial t} = \nabla \cdot \mathbf{J} = \nabla \cdot \left(\frac{1}{r}e^{-t}\mathbf{a}_r\right) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{1}{r}e^{-t}\right) = \frac{1}{r^2}e^{-t}$$

We next seek the volume charge density by integrating with respect to t. Since ρ_v is given by a partial derivative with respect to time, the "constant" of integration may be a function of r:

$$\rho_v = -\int \frac{1}{r^2} e^{-t} dt + K(r) = \frac{1}{r^2} e^{-t} + K(r)$$

If we assume that $\rho_v \to 0$ as $t \to \infty$, then K(r) = 0, and

$$\rho_v = \frac{1}{r^2} e^{-t} \quad C/m^3$$

We may now use $\mathbf{J} = \rho_v \mathbf{v}$ to find the velocity,

$$v_r = \frac{J_r}{\rho_v} = \frac{\frac{1}{r}e^{-t}}{\frac{1}{r^2}e^{-t}} = r$$
 m/s

The velocity is greater at r = 6 than it is at r = 5, and we see that some (unspecified) force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r, a charge density that is inversely proportional to r^2 , and a velocity and total current that are proportional to r. All quantities vary as e^{-t} .

D5.2. Current density is given in cylindrical coordinates as $\mathbf{J} = -10^6 z^{1.5} \mathbf{a}_z \, \text{A/m}^2$ in the region $0 \le \rho \le 20 \, \mu \text{m}$; for $\rho \ge 20 \, \mu \text{m}$, $\mathbf{J} = 0$. (a) Find the total current crossing the surface $z = 0.1 \, \text{m}$ in the \mathbf{a}_z direction. (b) If the charge velocity is $2 \times 10^6 \, \text{m/s}$ at $z = 0.1 \, \text{m}$, find ρ_v there. (c) If the volume charge density at $z = 0.15 \, \text{m}$ is $-2000 \, \text{C/m}^3$, find the charge velocity there.

Ans. $-39.7 \,\mathrm{mA}; -15.81 \,\mathrm{kC/m^3}; -2900 \,\mathrm{m/s}$

5.3 METALLIC CONDUCTORS

Physicists today describe the behavior of the electrons surrounding the positive atomic nucleus in terms of the total energy of the electron with respect to a zero reference level for an electron at an infinite distance from the nucleus. The total energy is the sum of the kinetic and potential energies, and since energy must be given to an electron to pull it away from the nucleus, the energy of every electron in the atom is a negative quantity. Even though the picture has some limitations, it is convenient to associate these energy values with orbits surrounding the nucleus, the more negative energies corresponding to orbits of smaller radius. According to the quantum theory, only certain discrete energy levels, or energy states, are permissible in a given atom, and an electron must therefore absorb or emit discrete amounts of energy, or quanta, in passing from one level to another. A normal atom at absolute zero temperature has an electron occupying every one of the lower energy shells, starting outward from the nucleus and continuing until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely together, many more electrons are present, and many more permissible energy levels are available because of the interaction forces between adjacent atoms. We find that the energies which may be possessed by electrons are grouped into broad ranges, or "bands," each band consisting of very numerous, closely spaced, discrete levels. At a temperature of absolute zero, the normal solid also has every level occupied, starting with the lowest and proceeding in order until all the electrons are located. The electrons with the highest (least negative) energy levels, the valence electrons, are located in the *valence band*. If there are permissible higher-energy levels in the valence band, or if the valence band merges smoothly into a *conduction band*, then additional kinetic energy may be given to the valence electrons by an external field, resulting in an electron flow. The solid is called a *metallic conductor*. The filled valence band and the unfilled conduction band for a conductor at 0 K are suggested by the sketch in Fig. 5.2a.