Simulation of the timing of a car's light

The circuit of the document (1) simulates the timing of the light a car . This circuit comprises:

- \triangleright a generator delivering between its terminals a constant voltage $U_0=12V$;
- \triangleright a capacitor initially uncharged and of capacitance C = 470 μ F
- two resistors R_1 and R_2 where R_1 and R_2 have respectively the resistances R_1 =100 Ω and R_2 = 1000 Ω ;
- \triangleright a small electronic circuit (D) which commands a lamp that remains lie as long as the potential difference u_{MN} is higher than 4.5V. We suppose that the circuit (D)

does not influence the circuit of the capacitor.

- Connecting wires and a switch K which:
- \checkmark when the door of the car is opened, K passes in position (1).
- \checkmark when the door is closed K passes in position (2).

1-Charge of the capacitor

We open the door of the car at the instant $t_0 = 0$, that corresponds to putting the switch K on position (1) at $t_0 = 0$. At the instant t, the voltage across the capacitor is $u_c = u_{AB}$ and the circuit is traversed by a current i.

- 1.1) Using the law of addition of voltages , derive the differential equation describing the variation of the voltage u_c in terms of time .
- **1.2**) The solution of this differential equation is of the form $u_C = A + B e^{-\frac{\tau}{\tau}}$ where A, B and τ are constants. Determine A, B and τ and specify the significance of τ .
- **1.3**) Deduce the minimum duration at the end of which the capacitor will be supposed practically completely charged

2- Discharging the capacitor

We close the door of the car at an instant $t_0=0$, considering as new origin of time, which that corresponds to putting the switch K on position (2) at $t_0=0$.

- **2.1)** Draw a figure of the new circuit showing the real direction of the discharging current i.
- 2.2) Show that the differential equation that governs the variations of u_c in terms of time is of the form:

$$\frac{du_{C}}{dt} + \frac{u_{C}}{R_{2}C} = 0$$

2.3)

- **2.3.1**) What is the initial value of u_c .
- **2.3.2)** $u_C = D + F e^{-\alpha t}$ is a solution of this differential equation .
 - **2.3.2.1)** Determine the numerical values of the constants : D, F and α .
 - **2.3.2.2)** Draw the shape of the graph representing the variations of u_C in terms of time .
 - **2.3.2.3**) Show on the graph the point of abscissa $t = \frac{1}{2}$.

2.4)

- **2.4.1**) Deduce from the graph an approximate value of the duration , during which the lamp remains glowing after closing the door of car .
- **2.4.2**) Determine this duration by calculation .
- **2.4.3**) Will this duration be sufficient if we want that lamp shines between 5 and 10 seconds?

P a rt	First exercise	P oi n ts
1.	$+\frac{1}{R_1C}u_C=\frac{E}{R_1C}.$	0. 5
2. 2	At $t_0 = 0$, $u_C = 0 \Rightarrow A + B = 0$; $\Rightarrow A = -B \Rightarrow u_C = A - Ae^{-\frac{t}{\tau}}$ $\Rightarrow \frac{A}{\tau}e^{-\frac{t}{\tau}} - \frac{A}{R_1C}e^{-\frac{t}{\tau}} + \frac{A}{R_1C} = \frac{E}{R_1C}$ $\Rightarrow A = E$ and $\frac{1}{\tau} = \frac{1}{R_1C} \Rightarrow \tau = R_1C$ $\tau \text{ time constant is the time needed for } u_C = 63\% \text{ of its maximum value E.}$	1
3. 3	Capacitor is totally charged $t = 5\tau = 5 \times 100 \times 470 \times 10^{-6} = 0.235 \text{ s.}$	0. 5
2.	C R ₂	0. 5
2. 2	du _C dt	1
2. 3. 1	At $t_0 = 0$, $u_C = E = 12 \text{ V}$.	0. 2 5
2. 3. 2. 1	$\Rightarrow -\alpha F e^{-\alpha t} + \frac{1}{R_2 C} D + \frac{1}{R_2 C} F e^{-\alpha t} = 0$ $\Rightarrow D = 0;$	1. 5

2. 3. 2. 2	$\frac{1}{\alpha} = 0.47 \text{ s}$ $u_{C} = 0.37 \times 12 = 4.44 \text{ V}.$	1
2. 4. 1	$At u_{min} = 4 V, t = 0.5 s$	0. 2 5
2. 4. 2. 1	$4 = 12 e^{-2.127t} \Rightarrow \ln(\frac{4}{12}) = -2.127 t = -1.098 \Rightarrow t = 0.52 s.$	0. 7 5
2. 4. 3	Since 10 is greater than 2.35 s (5 τ).	0. 2 5