Problem C Subgraph Selection

Time limit: 1 second

Memory limit: 2048 megabytes

Problem Description

Given a simple undirected graph with n vertices and m undirected edges, where the vertices are numbered from 1 to n. Each edge has a weight w_i while each vertex has a weight v_i .

A subgraph within a graph constitutes a collection of selected graph vertices and edges. For a valid subgraph, the set of edges must adhere to this condition: both ends of each edge from the chosen set must be part of the selected vertices.

Your goal is to choose a subgraph with the maximum value. This value, for a subgraph, is calculated by summing the w_i values of all edges within the subgraph and then subtracting the sum of v_i values corresponding to the vertices in that subgraph. Output the maximum value for a subgraph.

Input Format

The first line of the input contains two integers n and m. Each of the following m lines contains three integers u_i , v_i and w_i , where the i-th line denotes that there is an undirected edge from vertex u_i to v_i in the graph.

Output Format

Output the maximum value for a subgraph.

Technical Specification

- $1 \le n \le 500$
- $0 \le m \le \min(500, \frac{n(n-1)}{2})$
- $1 \le v_i \le 10^9 \text{ for } i = 1, 2, \dots, n$
- $1 \le u_i, v_i \le n$ and $u_i \ne v_i$ for $i = 1, 2, \dots, m$
- $1 \le w_i \le 10^9 \text{ for } i = 1, 2, \dots, m$
- It is guaranteed that the input graph does not contain loops and multiple edges.

Scoring

1. (100 points) No additional constraints.

Introduction to Algorithms, Fall, 2023 Programming Homework 6

Sample Input 1

Sample Output 1

8

Sample Input 2

3	3	
	7	8
1	2	1
2	3	2
	3	

Sample Output 2

0

Hint

This problem is in fact a maximum flow problem. Try to reduce the problem to a maximum flow (or minimum cut) problem discussed in the class.