What Types of Assets can Provide Effective Protection Against Inflation for Chinese Citizens?

Haoyue Shi, Yuqing Huang, Yujue Chen, Yingjia Zhu

December 11, 2023

Introduction

- Inflation is a measure of the overall changes in the price of goods and services that erodes the purchasing power of consumers.
- There is a clear gap in the exploration of inflation-hedging assets specifically tailored to the dynamics of the Chinese market.
- This project examines the qualities of a variety of assets as hedges in fighting against the inflation risk in the realm of China.

Content

Data and Methodology

- 1.1 Data
- 1.2 Methodology

Results and Visualization

- 2.1 Results
- 2.2 Visualization

Robustness Tests

- 3.1 Linearity
- 3.2 Independence of Residuals
- 3.3 Homoscadesticity

Conclusion

4. Conclusion

1.1 Data

- The data utilized in our research is spanning the interval from 2010 to 2020.
- The Rate of Inflation from World Bank Inflation Database.
- Asset-related Data.
 Housing price [WIND database],
 Gold price [Shanghai Gold Exchange],
 Fixed deposit rate [People's Bank of China],
 Shanghai Stock Exchange [Shanghai Stock Exchange],
 Short-term (6-month), mid-term (5-year), and long-term(10-year)
 government bond [Chinese National Financial Regulatory
 Administration]

Descriptive Statistics for Asset-related Data

	Mean	SD	Min	Max
House_price	15028.977	5971.002	6399.000	23006.000
$Gold_{-price}$	291.587	47.019	222.990	402.640
Fixed_deposit_rate	3.653	0.719	3.000	5.000
Shanghai_stock_index	2812.791	517.082	1979.206	4277.222
government_bond_sixm	2.679	0.629	1.414	4.174
government_bond_fivey	3.139	0.499	2.337	4.458
government_bond_teny	3.421	0.457	2.590	4.552

1.2 Methodology

• we employ the following model:

$$\beta_i = \alpha_0 + \alpha_1 \ln \beta_{-i} + \epsilon$$

 β_i represents the return rate of a specific asset i; ln_i inflation is the logarithm form of the core inflation; β_{-i} indicates the prices of other assets apart from β_i ; ϵ is the error term.

- Correlation check among assets
- Excluding assets with insignificant p-values and those exhibiting minimal multicollinearity(0-0.19), and rerun the regression above.

2.1 Results

- the coefficient on all assets is insignificant, indicating that there is no statistically significant relation between the inflation rate and the assets' return.
- After multicollinearity test, we obtain similar results.

Regression Model after Correlation Check (Continued)

	Dependent variable:				
	House_Change house (1)	Gold_Change gold (2)	Fixed_deposit_rate fixed (3)	Shanghai_stock_Change stock (4)	
log1p(core_inflation)	9.556 (7.896)	0.555 (8.652)	-0.225 (0.738)	2.028 (15.261)	
Shanghai_stock_Change		-0.103 (0.086)			
House_Change			0.010 (0.015)		
government_bond_yield_sixm	-0.543 (2.755)	-7.113** (3.022)	0.392 (0.253)		
government_bond_yield_fivey	-3.840 (5.543)	3.559 (6.105)	-1.644*** (0.512)		
government_bond_yield_teny	0.919 (4.794)	-0.835 (5.311)	2.084*** (0.440)		
$Gold_{\mathtt{L}}Change$				-0.360 (0.253)	
Constant	10.475 (7.450)	12.205 (8.163)	0.673 (0.701)	0.319 (5.341)	
Observations	44	44	44	44	
R^2	0.103	0.251	0.443	0.049	
Adjusted R ²	0.011	0.153	0.370	0.002	
Residual Std. Error	6.216 (df = 39)	6.809 (df = 38)	0.571 (df = 38)	12.240 (df = 41)	
F Statistic	1.123 (df = 4; 39)	2.552** (df = 5; 38)	6.049*** (df = 5; 38)	1.045 (df = 2; 41)	
Note:			*p<0.	1; **p<0.05; ***p<0.01	

Regression Model after Correlation Check

		Dependent variable:	
	government_bond_yield_sixm	government_bond_yield_fivey	government_bond_yield_teny
	sixm	fivey	teny
	(1)	(2)	(3)
log1p(core_inflation)	0.354	-0.065	0.104
	(0.429)	(0.210)	(0.218)
House_Change	-0.006	-0.001	-0.001
	(0.009)	(0.004)	(0.004)
Gold_Change	-0.018**	0.002	-0.001
	(0.007)	(0.004)	(0.004)
Fixed_deposit_rate	0.145	-0.130***	0.178***
	(0.092)	(0.041)	(0.038)
government_bond_yield_fivey	1.288*** (0.265)		0.869*** (0.095)
government_bond_yield_sixm		0.303*** (0.062)	-0.131 (0.080)
government_bond_yield_teny	-0.511 (0.314)	0.800*** (0.087)	
Constant	-0.214	0.091	0.362*
	(0.426)	(0.207)	(0.208)
Observations	44	44	44
R^2	0.757	0.909	0.883
Adjusted R ²	0.718	0.895	0.863
Residual Std. Error (df = 37)	0.334	0.162	0.169
F Statistic (df = 6; 37)	19.262***	61.790***	46.325***

Haoyue Shi, Yuqing Huang, Yujue Chen, YingWhat Types of Assets can Provide Effective F December 11, 2023 9/25

2.2 Visualization

- First Order Value Trend Overtime
- Second Order Percentage Change in All Assets And Inflation Indicators
- Proportion of Assets vs. Inflation Indicators Over Time

2.2 Visualization - Second Order Percentage Change in All Assets And Inflation Indicators

2.2 Visualization - Second Order Percentage Change in All Assets And Inflation Indicators

2.3 Visualization - Proportion of Assets vs. Inflation Indicators Over Time

3.1 Robustness Tests - Linearity

- We conduct the robustness check by including the Ordinary Least Squares (OLS) model assumption testing.
- By plotting the observed values against the predicted values of the OLS model, we can observe whether the observed values and the predicted values are aligned along a straight line.

3.1 Robustness Tests - Linearity

3.1 Robustness Tests - Independence of Residuals

 Create a scatter plot of the residuals against the fitted values (predicted values). If there is no pattern or structure in the plot, it suggests independence.

3.1 Robustness Tests - Independence of Residuals

3.1 Robustness Tests - Homoscadesticity

 Similar to testing for independence, a scatter plot of the residuals against the fitted values can help visually inspect whether there is a consistent spread of residuals across all levels of the independent variable(s).

3.1 Robustness Tests - Homoscadesticity

Conclusion

- We employed Ordinary Least Squares (OLS) regression models to investigate the impact of the core inflation rate on the returns of real estate, gold, securities, and short, medium, and long-term government bond in the Chinese market.
- Statistically speaking, there are no assets in the Chinese market that exhibit significant hedging capabilities against inflation.

Thanks

Thank You!