PYTHON CASE STUDY

Automate the loan eligibility process based on user details provided in an online form.

1.Loading Data in Pandas Data Frame

import pandas as pd
df = pd.read_csv("/content/LoanData (1) (1).csv")
df.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_Hist
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	

2. Printing the Column Names

df.columns

3. Summary of the DataFrame

df.info()

4.Descriptive Statistical Measures

df.describe()

5. Missing Data Handling

• Check Missing Values

df.isnull().sum()

• Fill Missing

df['Gender'].fillna(df['Gender'].mode()[0], inplace=True)
df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
df.head()

6.Sorting DataFrame Values

df.sort values(by='ApplicantIncome', ascending=False)

7. Merge DataFrame

```
df1 = pd.read_csv("/content/LoanData (1) (1).csv")
df2 = pd.read_csv("/content/LoanData (1) (1).csv")
df = pd.merge(df1, df2)
print(df)
```

```
| Loan_ID | Gender Married Dependents | Education Self_Employed | Male | No | 0 | Graduate | No | No | 1 | LP001003 | Male | Yes | 1 | Graduate | No | No | Self_Employed | No | No | No | Self_Employed | No | No | No | No | No | Self_Employed | No | Self
```

8. Apply Function

df['LoanAmount_k'] = df['LoanAmount'].apply(lambda x: x / 1000)
df.head()

9. Using Lambda Operator

df['IncomeLevel'] = df['ApplicantIncome'].apply(lambda x: 'High' if x > 5000 else 'Low')

df.head()

10. Visualizing DataFrame

import matplotlib.pyplot as plt

import seaborn as sns

#barchart

sns.countplot(x='Loan_Status', data=df)

plt.title('Loan Approval Count')

plt.show()

#histogram

df['ApplicantIncome'].hist(bins=30)

plt.title("Applicant Income Distribution")

plt.show()

