COMPUTER NETWORKS AND INTERNET PROTOCOLS

IP Routing - I [Intra-domain routing]

SOUMYA K GHOSH

COMPUTER SCIENCE AND ENGINEERING
IIT KHARAGPUR

SANDIP CHAKRABORTY

COMPUTER SCIENCE AND ENGINEERING
IIT KHARAGPUR

Routing?

- Forwarding moving packets between ports
 - Look up destination address in forwarding table
 - Find out-port or <out-port, MAC Addr> pair
- Routing is process of populating forwarding table
 - Routers exchange messages about nets they can reach
 - Goal: Find optimal route for every destination

Routing...

Stability

- Stable routes are often preferred over rapidly changing ones
- Reason 1: management
 - Hard to debug a problem if it's transient
- Reason 2: higher layer optimizations
 - E.g., TCP RTT estimation
 - Imagine alternating over 500ms and 50ms routes
- Choosing between optimality and stability!

Routing algorithms

- Global (centralized) vs. Decentralized
- Global: All routers have complete topology
- Decentralized: Only know neighbors and share information from them
- Intra-domain vs. Inter-domain routing
 - Intra : All routers under same administrative control
 - Inter : Decentralized, scale to Internet

Optimality

- View network as a graph
- Assign cost to each edge
 - Can be based on latency, b/w, utilization, queue length, . . .
- Problem: Find lowest cost path between two nodes
 - Each node individually computes the cost

Scaling issues

- Every router must be able to forward based on any destination IP address
 - Given address, it needs to know "next hop" (table)
 - Naive: Have an entry for each address
 - There may be huge number of entries!
- Solution? Entry covers range of addresses
 - Can't do this if addresses are assigned randomly! (e.g., Ethernet addresses)
 - Address aggregation is important
 - Addresses allocation should be based on network structure

Routing/Forwarding Packets in the Internet

b. Indirect and direct delivery

Ref: Data Communication and Networking by B.A. Forouzan

Route method vs. Next-hop method

Host-specific vs. Network-specific method

Default Route

Basic Routing module in classless address

Example Routing Configuration

Routing table for router R1

Mask	Network Address	Next Hop	Interface
/26	180.70.65.192		m2
/25	180.70.65.128		m0
/24	201.4.22.0		m3
/22	201.4.16.0	••••	m1
Any	Any	180.70.65.200	m2

Example: forwarding process if a packet arrives at R1 in with the destination address 180.70.65.140.

Router performs the following steps:

- 1. The first mask (/26) is applied to the destination address. The result is 180.70.65.128, which does not match the corresponding network address.
- 2. The second mask (/25) is applied to the destination address. The result is 180.70.65.128, which matches the corresponding network address. The next-hop address and the interface number m0 are passed to ARP for further processing.

Example: Show the forwarding process if a packet arrives at R1 with the destination address 201.4.22.35.

The router performs the following steps:

- 1. The first mask (/26) is applied to the destination address. The result is 201.4.22.0, which does not match the corresponding network address.
- 2. The second mask (/25) is applied to the destination address. The result is 201.4.22.0, which does not match the corresponding network address (row 2).
- 3. The third mask (/24) is applied to the destination address. The result is 201.4.22.0, which matches the corresponding network address. The destination address of the packet and the interface number m3 are passed to ARP.

Address aggregation

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/26	140.24.7.192		m3
/0	0.0.0.0	Default	m4

Mask	Network address	Next-hop address	Interface
/24	140.24.7.0		m0
/0	0.0.0.0	Default	m1

Routing table for R2

Routing table for R1

Autonomous Systems (AS)

- Correspond to an administrative domain
 - Internet is not a single network
 - ASes reflect organization of the Internet
 - e.g., Stanford, large company, etc.
- Goals:
 - ASes want to choose their own local routing algorithm
 - ASes want to set policies about non-local routing
 - Each AS assigned unique 16-bit number

Autonomous systems

AS Traffic

- Local traffic packets with src or dst in local AS
- Transit traffic passes through an AS
- Stub AS -Connects to only a single other AS
- Multihomed AS
 - Connects to multiple ASes
 - Carries no transit traffic
- Transit AS Connects to multiple ASes and carries transit traffic

Intra-domain Routing

- Intra-domain routing: within an AS
- Single administrative control: optimality is important
 - Contrast with inter-AS routing, where policy dominates
 - Next lecture will cover inter-domain routing (BGP)

Intra-domain Routing Algorithms

- Distance vector
 - Require only local state (less overhead, smaller footprint)
 - Harder to debug
 - Can suffer from loops
- Link state
 - Have a global view of the network
 - Simpler to debug
 - Require global state

Popular routing protocols

Distance vector routing

In distance vector routing, each node shares its routing table with its immediate neighbors periodically and when there is a change.

Distance Vector routing: Initialization of tables

