These slides are by courtesy of Prof. 李稻葵 and Prof. 郑捷.

Chapter Four

Utility 效用

Utility Functions

A utility function U(x) represents a preference relation \succeq if and only if:

$$x' \succ x''$$
 $U(x') > U(x'')$
 $x' \prec x''$
 $U(x') < U(x'')$
 $U(x'') = U(x'')$

Utility Functions & Indiff. Curves

All bundles in an indifference curve have the same utility level.

U(x1, x2)=Constant is the equation of an indifference curve.

Goods, Bads and Neutrals

A good is a commodity which increases utility (gives a more preferred bundle).

A bad is a commodity which decreases utility (gives a less preferred bundle).

A neutral is a commodity which does not change utility (gives an equally preferred bundle).

Goods, Bads and Neutrals

Around x' units, a little extra water is a neutral.

Some Utility Functions and Their Indifference Curves

Consider

$$U(x_1,x_2) = x_1 + x_2.$$

What do the indifference curves for this "perfect substitution" utility function look like?

Perfect Substitution Indifference Curves

All are linear and parallel.

Some Other Utility Functions and Their Indifference Curves

Consider

$$U(x_1,x_2) = min\{x_1,x_2\}.$$

What do the indifference curves for this "perfect complementarity" utility function look like?

Perfect Complementarity Indifference Curves

All right angles are on the 45° line.

Some Other Utility Functions and Their Indifference Curves

A utility function of the form

$$U(x_1,x_2) = f(x_1) + x_2$$

is linear in just x₂ and is called quasilinear.

E.g.
$$U(x_1,x_2) = 2x_1^{1/2} + x_2$$
.

Quasi-linear Indifference Curves

Some Other Utility Functions and Their Indifference Curves

Any utility function of the form

$$U(x_1,x_2) = x_1^a x_2^b$$

with a > 0 and b > 0 is called a Cobb-Douglas utility function.

E.g.
$$U(x_1,x_2) = x_1^{1/2} x_2^{1/2}$$
 (a = b = 1/2)
 $U(x_1,x_2) = x_1 x_2^3$ (a = 1, b = 3)

Cobb-Douglas Indifference

Marginal Utilities

Marginal means "incremental".

The marginal utility of commodity i is the rate-of-change of total utility as the quantity of commodity i consumed changes; *i.e.*

$$MU_i = \frac{\partial U}{\partial x_i}$$

Marginal Utilities and MRS

The general equation for an indifference curve is $U(x_1,x_2)\equiv k$, a constant. Totally differentiating this identity gives

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

Marginal Utilities and MRS

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0$$

rearranged is

$$\frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}.$$

This is the MRS.

MRS for Quasi-linear Utility Functions

A quasi-linear utility function is of the form $U(x_1,x_2) = f(x_1) + x_2$.

$$\frac{\partial U}{\partial x_1} = f'(x_1) \qquad \frac{\partial U}{\partial x_2} = 1$$

so
$$MRS = \frac{dx_2}{dx_1} = -\frac{\partial U / \partial x_1}{\partial U / \partial x_2} = -f'(x_1)$$
.

MRS for Quasi-linear Utility Functions

MRS = - $f'(x_1)$ does not depend upon x_2 .

So the slope of indifference curves for a quasi-linear utility function is constant along vertical lines.

MRS for Quasi-linear Utility Functions

Ordinal vs Cardinal

Utility is usually an ordinal (i.e. ordering) concept.

E.g. if U(x) = 6 and U(y) = 2 then bundle x is strictly preferred to bundle y. But x is not preferred three times as much as is y.

Strictly Increasing Transformation

lf

- U is a utility function that represents a preference relation ≿ and
- f is a strictly increasing function, then V = f(U) is also a utility function representing \succeq .

MRS

Moreover, note that

$$\begin{aligned} MRS &= -\frac{\partial V / \partial x_1}{\partial V / \partial x_2} = -\frac{f'(U) \times \partial U / \partial x_1}{f'(U) \times \partial U / \partial x_2} \\ &= -\frac{\partial U / \partial x_1}{\partial U / \partial x_2}. \end{aligned}$$

So MRS is unchanged by a strictly increasing transformation.

Key Concepts

Utility

- Its relation to preferences, indifference curves, and MRS
- -Some commonly used utility functional forms