Лабораторная работа №7

Математические основы защиты информации и информационной безопасности

Леонтьева Ксения Андреевна | НПМмд-02-23

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	7
4	Выводы	10
Список литературы		

Список иллюстраций

3.1	р-метод Полларда для дискретного логарифмирования	8
3.2	р-метод Полларда для дискретного логарифмирования	9
3.3	р-метод Полларда для дискретного логарифмирования	Ç

1 Цель работы

Реализовать на языке программирования p-метод Полларда для дискретного логарифмирования.

2 Теоретическое введение

Задача дискретного логарифмирования применяется во многих алгоритмах криптографии с открытым ключом. Предложенная в 1976 году У. Дифии и М. Хеллманом для установления сеансового ключа, эта задача послежила основой для создания протоколов шифрования и цифровой подписи, доказательств с нулевым разглашением и других криптографических протоколов.

Обозначим $F_p=Z/pZ$, p - простое целое число и назовем конечным полем из p элементов. Задача дискретного логарифмирования в конечном поле F_p формулируется так: для данных целых чисел a и b,a>1,b>p, найти логарифм - такое целое число x, что $a^x\equiv b (mod\ p)$ (если такое число существует). По аналогии с вещественными числами используется обозначение $x=log_ab$.

Безопасность соответствующих криптосистем основана на том, что зная числа a,x,p вычислить $a^x \pmod p$ легко, а решить задачу дискретного логарифмирования трудно. Рассмотрим р-метод Полларда, который можно применить и для задач дискретного логарифмирования. При этом случайное отображение f должно обладать не только сжимающими свойствами, но и вычислимостью логарифма (логарифм числа f(c) можно выразить через неизвестный логарифм x и $log_a f(c)$). Для дискретного логарифмирования в качестве случайного отображения f чаще всего используются ветвящиеся отображения, например:

$$f(c) = egin{cases} ac & ext{при } c < rac{p}{2} \ bc & ext{при } c > rac{p}{2} \end{cases}$$

При
$$c<\frac{p}{2}$$
 : $log_af(c)=log_ac+1$, при $c>\frac{p}{2}$: $log_af(c)=log_ac+x$.

Более подробно см. в [1].

3 Выполнение лабораторной работы

р-метод Полларда для дискретного логарифмирования реализуем по следующей схеме:

 $Bxo\partial$. Простое число p, число a порядка r по модулю p, целое число b,1 < b < p, отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

 $\mathit{Bыхоd}.$ Показатель x, для которого $a^x \equiv b (mod \ p)$, если такой показатель существует.

- 1. Выбрать произвольные целые числа u,v и положить $c \leftarrow a^u b^v (mod \ p),$ $d \leftarrow c.$
- 2. Выполнять $c \leftarrow f(c) (mod \ p)$, $d \leftarrow f(f(d)) (mod \ p)$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r вида u+vx, до получения равенства $c \equiv d (mod \ p)$.
- 3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

Код программы (рис. 3.1 - 3.3).

```
import numpy as np
import math
a = 10
b = 64
p = 107
def f(x, u, v):
   if x < r:
       return (a * x) % p, u + 1, v
   if x >= r:
       return (b * x) % p, u, v + 1
def r(a,p):
   r = 1
   while (a**r - 1) % p != 0:
      r = r + 1
   return r
u = 2
V = 2
r = r(a, p)
c = (a**u * b**v) % p
d = c
```

Рис. 3.1: р-метод Полларда для дискретного логарифмирования

```
u_c = u
u_d = u
v_c = v
v_d = v
print(' c', ' | ', 'log_a(c)', ' | ', ' d', ' | ', 'log_a(d)')
print('-----
print('c =', c, ' | ', u_c, '+', v_c, 'x', ' | ', 'd =', d, ' | ', u_d, '+', v_d, 'x')
c, u_c, v_c = f(c, u_c, v_c)
d, u_d, v_d = f(f(d, u_d, v_d)[0], f(d, u_d, v_d)[1], f(d, u_d, v_d)[2])
print('c =', c, ' | ', u_c, '+', v_c, 'x', ' | ', 'd =', d, ' | ', u_d, '+', v_d, 'x')
while c % p != d % p:
   c, u_c, v_c = f(c, u_c, v_c)
   d, u_d, v_d = f(f(d, u_d, v_d)[0], f(d, u_d, v_d)[1], f(d, u_d, v_d)[2])
   print('c =', c, ' | ', u_c, '+', v_c, 'x', ' | ', 'd =', d, ' | ', u_d, '+', v_d, 'x')
x = 1
while (u_c + v_c * x) % r != (u_d + v_d * x) % r:
   x = x + 1
print(' ')
print('Показатель x = ', x)
```

Рис. 3.2: р-метод Полларда для дискретного логарифмирования

c	log_a(c)	d	log_a(d)
c = 4	2 + 2 x	d = 4	2 + 2 x
c = 40	3 + 2 x	d = 79	4 + 2 x
c = 79	4 + 2 x	d = 56	5 + 3 x
c = 27	4 + 3 x	d = 75	5 + 5 x
c = 56	5 + 3 x	d = 3	5 + 7 x
c = 53	5 + 4 x	d = 86	7 + 7 x
c = 75	5 + 5 x	d = 42	8 + 8 x
c = 92	5 + 6 x	d = 23	9 + 9 x
c = 3	5 + 7 x	d = 53	11 + 9 x
c = 30	6 + 7 x	d = 92	11 + 11 x
c = 86	7 + 7 x	d = 30	12 + 12 x
c = 47	7 + 8 x	d = 47	13 + 13 x

Рис. 3.3: р-метод Полларда для дискретного логарифмирования

Показатель x = 20

4 Выводы

В ходе выполнения данной лабораторной работы был реализован р-метод Полларда для дискретного логарифмирования.

Список литературы

1. p-метод Полларда для дискретного логарифмирования [Электронный реcypc]. URL: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_loga rithms.