Parseo y Generación de Código

Analizadores léxicos Autómatas finitos Expresiones regulares

Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Analizadores léxicos

Problemas de análisis léxico

Problemas que uno quisiera resolver programando:

- ▶ Implementar herramientas de búsqueda tipo *glob* o grep.
 - *.txt (sintaxis tipo Unix)
 - ▶ (Jorge Luis|J. L.) Borges
 - ▶ Jorge()+Luis()+Borges
 - ▶ [jJ]orge [lL]uis [bB]orges
 - Centro Cultural (General)?San Martín
 - ▶ [GJX]imena
 - ▶ [a-z]*@unq.edu.ar
 - ▶ 192.168.[0-9]+.1

Usos comunes:

- Extraer datos de fuentes que no están normalizadas.
- Buscar y reemplazar en archivos de texto, bases de datos, código fuente, paquetes de red.

Problemas de análisis léxico

Más problemas que uno quisiera resolver programando:

- Implementar analizadores léxicos.
 - ► [_a-zA-Z][_a-zA-Z0-9]*

 - //[^\n]+

Usos comunes:

- ► Componente de un intérprete o compilador.
- Resaltado de sintaxis.
- Algunos preprocesadores como cpp trabajan a nivel léxico.
- Especificar o documentar la sintaxis de un lenguaje formal. Por ejemplo, un protocolo:
 - ightharpoonup ((READ|WRITE) [a-z]+\n)*

Un analizador léxico sencillo

Para empezar, veremos cómo implementar manualmente un analizador léxico (alias lexer, tokenizer, scanner) para un lenguaje con las siguientes convenciones léxicas.

- ► Palabras clave: if, else.
- ► Símbolos: {, }, =, ==.
- Identificadores: [a-z]+ (excepto las palabras clave).
- ▶ Números: [0-9]+
- ► Se ignoran espacios, tabs y enters.
- Comentarios comienzan con # y terminan al final de la línea.

Los símbolos terminales o *tokens* son un tipo enumerado:

Representación del analizador léxico:

```
#define MAX_BUFFER 1024
typedef struct {
  FILE *archivo;
  int linea;
  int columna;
  char buffer[MAX_BUFFER];
} Tokenizador;
void inicializar(Tokenizador *t, FILE *archivo) {
  t->archivo = archivo;
  t \rightarrow linea = 1;
 t \rightarrow columna = 1;
```

```
void comer_comentario(Tokenizador *t) {
  int c = fgetc(t->archivo);
  while (c != EOF && !es_fin_de_linea(c)) {
    t->columna++;
    c = fgetc(t->archivo);
  }
  ungetc(c, t->archivo);
}
```

```
void comer_blancos(Tokenizador *t) {
  int c = fgetc(t->archivo);
  while (es_blanco(c) || c == '#') {
    if (c == '#') {
      t->columna++;
      comer_comentario();
    } else if (es_fin_de_linea(c)) {
      t->linea++;
      t \rightarrow columna = 1;
    } else {
      t->columna++;
    c = fgetc(t->archivo);
  ungetc(c, t->archivo);
```

```
Token siguiente_token(Tokenizador *t) {
  comer_blancos(t);
  int c = fgetc(t->archivo);
  if (c == EOF) {
    return T_EOF;
 } else if (c == '{') {
    t->columna++:
    return T_LBRACE;
  } else if (c == '}') {
    t->columna++;
    return T_RBRACE;
  } else if (c == '=') {
    t->columna++:
    c = fgetc(t->archivo);
    if (c == '=') {
      t->columna++;
      return T_EQUAL;
    } else {
      ungetc(c, t->archivo);
      return T_ASSIGN;
    }
```

```
} else if (es_numerico(c)) {
  int i = 0;
  t->columna++;
  while (es_numerico(c) && i + 1 < MAX_BUFFER) {
    t->buffer[i] = c;
    i++:
    c = fgetc(t->archivo);
    t->columna++;
  t->columna--;
  t \rightarrow buffer[i] = '\0';
  ungetc(c, t->archivo);
  return T_NUM;
```

```
} else if (es_alfabetico(c)) {
  int i = 0;
 t->columna++;
  while (es_alfabetico(c) && i + 1 < MAX_BUFFER) {
    t->buffer[i] = c;
    i++:
    c = fgetc(t->archivo);
    t->columna++;
 t->columna--;
 t \rightarrow buffer[i] = '\0';
  ungetc(c, t->archivo);
  if (!strcmp(t->buffer, "if")) {
    return T_IF;
 } else if (!strcmp(t->buffer, "else")) {
    return T_ELSE;
 } else {
    return T_ID;
```

Limitaciones del analizador léxico sencillo

- Limitación de la longitud de identificadores. Se puede solucionar haciendo manejo dinámico de memoria. No se hace en el ejemplo anterior por una cuestión didáctica – para no complicar más el código.
- ▶ Entrada/salida. Leer de a un caracter de la entrada por vez puede llegar a ser muy lento. Un tokenizador realista debería leer la entrada de a fragmentos (p.ej. de a 64Kb). Esto requiere cierto cuidado. *Ver* Sec. 3.2 del libro del Dragón.
- ► Estilo cuestionable: "if .. else if .. else if .. else". No es un gran problema en un analizador léxico¹. Se puede mejorar el estilo usando un *dispatch* basado en una tabla o diccionario.

¹Ejercicio: ¿cómo está hecho el analizador léxico de tu lenguaje favorito?

Limitaciones del analizador léxico sencillo

▶ Uso de "if .. else if ..." para distinguir palabras clave. Este es un problema algorítmico más importante/interesante. Se puede solucionar usando un trie.

ajo al ala alado alas aleta aletas vaca vano veta

Limitaciones del analizador léxico sencillo

Naturaleza ad hoc.

El mayor problema del analizador léxico anterior es que es una solución *ad hoc*.

- Ideal utópico de la computación: el programador describe el problema y la computadora lo resuelve sin que el programador indique cómo. La computadora no hace magia: utiliza técnicas generales de resolución de problemas.
- Aproximación al ideal utópico: programar soluciones generales a algunos problemas particulares.
- Aproximación al ideal utópico en este caso: si el programador especifica la sintaxis léxica se puede generar automáticamente un analizador léxico.

Autómatas finitos

Un **autómata finito determinístico** (AFD) es una 5-upla $D = (Q, \Sigma, \delta, q_0, Q_F)$, donde:

- ▶ *Q* es un conjunto finito, el **conjunto de estados**.
- $ightharpoonup \Sigma$ es un conjunto finito de símbolos, el **alfabeto**.
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ es una función, la **función de transición**.
- ▶ $q_0 \in Q$ es un estado, el **estado inicial**.
- ▶ $Q_F \subseteq Q$ es un conjunto de estados, los **estados finales**.

La función de transición se extiende a palabras, definiendo una relación ternaria $\rightarrow_D \subseteq Q \times \Sigma^\star \times Q$ que relaciona una tripla (q_1,α,q_2) si se llega del estado q_1 al estado q_2 consumiendo la cadena α . Se escribe $q_1 \xrightarrow{\alpha}_D q_2$ si la tripla (q_1,α,q_2) está relacionada. Más precisamente:

$$q \xrightarrow{\epsilon}_D q$$
 para todo estado $q \in Q$ $q \xrightarrow{a\alpha}_D q''$ si y sólo si existe $q' \in Q$ tal que $q' = \delta(q, a), \quad q' \xrightarrow{\alpha}_D q''$

Es decir:

$$q_0 \xrightarrow{a_1 a_2 \dots a_n}_D q_n$$

si y sólo si existen $q_1, ..., q_{n-1}$ tales que

$$q_0 \xrightarrow{a_1}_D q_1 \xrightarrow{a_2}_D q_2 \dots \xrightarrow{a_n}_D q_n$$

Ejemplo.

Un AFD $D=(Q,\Sigma,\delta,q_0,Q_F)$ acepta una cadena $\alpha\in\Sigma^\star$ si $q_0\stackrel{\alpha}{\to}_D q'$ donde $q'\in Q_F$ es algún estado final.

El **lenguaje** aceptado por D es el conjunto de cadenas que acepta:

$$L(D) = \{ \alpha \in \Sigma^* \mid q_0 \xrightarrow{\alpha}_D q', \text{ donde } q' \in Q_F \}$$

Ejercicio. Definir un AFD en el alfabeto $\{a, b\}$ que acepte el lenguaje de las cadenas terminadas en abb.

Algoritmo: simulación de un AFD.

```
\begin{array}{lll} \textit{Entrada:} & \text{un AFD } D = (Q, \Sigma, \delta, q_0, Q_{\textit{F}}) \\ & \text{una cadena } \alpha \in \Sigma^{\star} \\ \textit{Salida:} & \text{un booleano indicando si } \alpha \in \textit{L}(D) \\ \\ q := q_0 \\ & \text{foreach } x \text{ in } \alpha \\ & q := \delta(q, x) \\ & \text{end} \\ & \text{return } q \in Q_{\textit{F}} \end{array}
```

- ¿Cuánta memoria auxiliar necesita?
- ightharpoonup ¿Cuánto tarda en decidir si una cadena α está en L(D)?

Un **autómata finito no determinístico** (AFN) es una 5-upla $(Q, \Sigma, \delta, q_0, Q_F)$, donde:

- Q es un conjunto finito, el conjunto de estados.
- \triangleright Σ es un conjunto finito de símbolos, el **alfabeto**.
- Para cada estado $q \in Q$ y cada símbolo $x \in \Sigma \cup \{\epsilon\}$, la expresión $\delta(q,x)$ denota un conjunto de estados. Más precisamente, $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ es la función de transición no determinística.
- ▶ $q_0 \in Q$ es un estado, el **estado inicial**.
- ▶ $Q_F \subseteq Q$ es un conjunto de estados, los **estados finales**.

La función de transición no determinística δ se extiende a palabras. Pero veamos primero un ejemplo.

Todavía no definimos formalmente aceptación para AFNs, pero podemos preguntarnos:

- ▶ ¿Este AFN acepta la cadena abbab?
- ► ¿Qué lenguaje acepta?

Dado un AFN $N=(Q,\Sigma,\delta,q_0,Q_F)$, se define la relación binaria $\stackrel{\epsilon}{\Rightarrow}_N\subseteq Q\times Q$ de tal manera que un par de estados (q_1,q_2) está relacionado si se puede llegar de q_1 a q_2 usando solamente transiciones etiquetadas con ϵ . Más precisamente:

$$\begin{array}{ll} q \overset{\epsilon}{\Rightarrow}_N q & \text{para todo estado } q \in Q \\ q \overset{\epsilon}{\Rightarrow}_N q'' & \text{si existe un estado } q' \in Q \text{ tal que} \\ q' \in \delta(q, \epsilon), \quad q' \overset{\epsilon}{\Rightarrow}_N q'' \end{array}$$

La **clausura**- ϵ de un estado q es el conjunto de estados alcanzables por medio de transiciones ϵ :

$$\mathsf{cl}_\epsilon(q) = \{ q' \in Q \mid q \stackrel{\epsilon}{\Rightarrow}_N q' \}$$

La clausura- ϵ de un conjunto de estados $\{q_1, \ldots, q_n\} \subseteq Q$ se define como la unión de sus respectivas clausuras:

$$\mathsf{cl}_\epsilon(\{q_1,\ldots,q_n\}) = igcup_{i=1}^n \mathsf{cl}_\epsilon(q_i)$$

Algoritmo: cómputo de la clausura- ϵ .

```
\begin{array}{lll} \textit{Entrada:} & \text{un AFN } N = (Q, \Sigma, \delta, q_0, Q_F) \\ & \text{un conjunto de estados } A \subseteq Q \\ \textit{Salida:} & \text{el conjunto de estados } C = \mathsf{cl}_\epsilon(A) \\ \\ C := A \\ & \text{while existe un estado } q \in C \text{ tal que } \delta(q, \epsilon) \not\subseteq C \\ & C := C \cup \delta(q, \epsilon) \\ & \text{end} \\ & \text{return } C \end{array}
```

Algoritmo: cómputo de la clausura- ϵ . Variante más concreta/explícita. Entrada: un AFN $N = (Q, \Sigma, \delta, q_0, Q_F)$ un conjunto de estados $A\subseteq Q$ Salida: el conjunto de estados $C = \operatorname{cl}_{\epsilon}(A)$ pila := [] $C := \emptyset$ meter todos los estados de A en pila while $pila \neq []$ q := pila.pop()foreach $q' \in \delta(q, \epsilon)$ if $a' \notin C$ $C := C \cup \{q'\}$ pila.push(q')end end end return C

La función de transición no determinística δ se extiende a palabras, definiendo una relación ternaria \to_N : $Q \times \Sigma^* \times Q$ de tal manera que una tripla (q_1, α, q_2) está relacionada si se puede llegar del estado q_1 al estado q_2 consumiendo la cadena α . Se escribe $q_1 \xrightarrow{\alpha}_N q_2$ si la tripla (q_1, α, q_2) está relacionada. Más precisamente:

$$\begin{array}{cccc} q \xrightarrow{\epsilon}_N q' & \text{si } q \xrightarrow{\epsilon}_N q' \\ q \xrightarrow{a\alpha}_N q''' & \text{si existen } q', q'' \in Q \text{ tales que} \\ q \xrightarrow{\epsilon}_N q', & q'' \in \delta(q', a), & q'' \xrightarrow{\alpha}_N q''' \end{array}$$

Un AFN $N=(Q,\Sigma,\delta,q_0,Q_F)$ acepta una cadena $\alpha\in\Sigma^\star$ si $q_0\stackrel{\alpha}{\longrightarrow}_N q'$ donde $q'\in Q_F$ es algún estado final.

El **lenguaje** aceptado por N es el conjunto de cadenas que acepta:

$$L(N) = \{ \alpha \in \Sigma^* \mid q_0 \xrightarrow{\alpha}_N q', \text{ donde } q' \in Q_F \}$$

Ejemplo.

► En el AFN de antes, determinar el conjunto de estados q' tales que:

$$q_0 \xrightarrow{abb}_N q'$$

Algoritmo: simulación de un AFN.

```
\begin{array}{ll} \textit{Entrada:} & \text{un AFN } \textit{N} = (Q, \Sigma, \delta, q_0, Q_F) \\ & \text{una cadena } \alpha \in \Sigma^* \\ \textit{Salida:} & \text{un booleano indicando si } \alpha \in \textit{L}(\textit{N}) \\ \\ \textit{S} := \operatorname{cl}_\epsilon(q_0) \\ & \text{foreach } x \text{ in } \alpha \\ & \textit{S} := \operatorname{cl}_\epsilon(\bigcup_{q \in S} \delta(q, x)) \\ & \text{end} \\ & \text{return } \textit{S} \cap \textit{Q}_F \neq \emptyset \end{array}
```

- ▶ Dado un AFD D, es inmediato construir un AFN que acepte el mismo lenguaje que D.
- ▶ Dado un AFN N, ¿se puede construir un AFD que acepte el mismo lenguaje que D?

- ▶ Dado un AFD D, es inmediato construir un AFN que acepte el mismo lenguaje que D.
- ▶ Dado un AFN N, ¿se puede construir un AFD que acepte el mismo lenguaje que D? ¡Sí!

Construcción de subconjuntos.

Si $N=(Q,\Sigma,\delta,q_0,Q_F)$ es un AFN, podemos construir el siguiente AFD $D=(\mathcal{P}(Q),\Sigma,\Delta,\operatorname{cl}_\epsilon(q_0),S_F)$:

- ▶ Un estado de D es un **conjunto** $S \subseteq Q$. (S es subconjunto de los estados de N).
- ► El alfabeto es el mismo.
- La función de transición

$$\Delta: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$$

está dada por:

$$\Delta(S, x) = \mathsf{cl}_{\epsilon}(\cup_{q \in S} \delta(q, x))$$

- ▶ El estado inicial es el conjunto cl_{ϵ}(q_0).
- Un conjunto de estados del AFN es un estado final para el AFD si contiene algún estado final:

$$S_F = \{S \subseteq Q \mid S \cap Q_F \neq \emptyset\}$$

Teorema. Si N es un AFN y D es el AFD que resulta de la construcción de subconjuntos de N, entonces N y D aceptan el mismo lenguaje.

Demostración. No vamos a probarlo rigurosamente, pero la observación esencial es la siguiente propiedad técnica²:

$$\operatorname{cl}_\epsilon(q_0) \xrightarrow{\alpha}_D S$$
 en el AFD construido si y sólo si $S = \{q' \in Q \mid q_0 \xrightarrow{\alpha}_N q'\}$ en el AFN original

Por lo tanto dada una cadena cualquiera α :

El AFD
$$D$$
 acepta α si y sólo si $\operatorname{cl}_{\epsilon}(q_0) \xrightarrow{\alpha}_D S \in S_F$ si y sólo si $q_0 \xrightarrow{\alpha}_N q$ para algún $q \in Q_F$ si y sólo si el AFN N acepta α .

$$\mathsf{cl}_{\epsilon}(S) \xrightarrow{lpha}_{\mathcal{D}} S' \qquad \Longleftrightarrow \qquad S' = \{q' \in Q \mid \exists q \in S. \ q \xrightarrow{lpha}_{\mathcal{N}} q'\}$$

Por inducción en la longitud de la cadena α .

²Se puede ver demostrando algo un poco más general:

Ejercicio. Construir un AFD que acepte el mismo lenguaje que el siguiente AFN en el alfabeto $\{a,b\}$.

Equivalencia entre AFDs y AFNs

- ➤ Si un AFN tiene *n* estados, ¿cuántos estados tiene el AFD que resulta de la construcción de subconjuntos?
- Observación: no es necesario incluir todos estos subconjuntos de estados en la construcción del AFD, basta con incluir los subconjuntos de estados alcanzables.

Operaciones entre lenguajes

Si Σ es un alfabeto y $L, L' \subseteq \Sigma^{\star}$ son lenguajes, definimos las siguientes operaciones:

- **▶** Concatenación. $L \cdot L' = \{\alpha\beta \mid \alpha \in L, \beta \in L'\}.$
- ▶ Unión. $L \cup L' = \{\alpha \mid \alpha \in L \lor \alpha \in L'\}$. (Es la unión de conjuntos).
- ► Concatenación de un lenguaje consigo mismo.

$$L^0 = \{\epsilon\}$$

$$L^{n+1} = L \cdot L^n$$

- ► Clausura de Kleene. $L^* = \bigcup_{i=0}^{\infty} L^i$ Es decir, $\alpha \in L^*$ si existe $n \ge 0$ y existen palabras $\alpha_1, \ldots, \alpha_n$ tales que $\alpha = \alpha_1 \ldots \alpha_n$ y $\alpha_i \in L$ para cada i. Notar que $\epsilon \in L^*$ siempre.
- ► Clausura positiva. $L^+ = \bigcup_{i=1}^{\infty} L^i$ Es decir, $\alpha \in L^+$ si existe $n \ge 1$ y existen palabras $\alpha_1, \ldots, \alpha_n$ tales que $\alpha = \alpha_1 \ldots \alpha_n$ y $\alpha_i \in L$ para cada i. Notar que $\epsilon \in L^+$ si y solamente si $\epsilon \in L$.

Operaciones entre lenguajes

Ejemplo. Si el alfabeto es $\Sigma = \{a, b, c, d\}$ y tenemos los lenguajes:

$$L_1 = \{aa, bb\} \qquad \qquad L_2 = \{ccc, d\}$$

Entonces:

Dado un alfabeto Σ , las **expresiones regulares** en el alfabeto Σ son expresiones (es decir, *árboles*) que se construyen inductivamente con las siguientes reglas:

- ► El símbolo Ø es una expresión regular.
- El símbolo ϵ es una expresión regular.
- ► Cualquier símbolo $x \in \Sigma$ es una expresión regular.
- ▶ Si R y S son expresiones regulares, $R \cdot S$ es una expresión regular. Se abrevia RS.
- ▶ Si R y S son expresiones regulares, $R \mid S$ es una expresión regular.
- ▶ Si R es una expresión regular, R^* es una expresión regular.

Cada expresión regular *R* denota un lenguaje. Inductivamente:

- $ightharpoonup L(\emptyset) = \emptyset$
- $L(\epsilon) = \{\epsilon\}$
- ▶ Si $x \in \Sigma$, entonces $L(x) = \{x\}$.
- $L(R \cdot S) = L(R) \cdot L(S)$
- $L(R \mid S) = L(R) \cup L(S)$
- $L(R^*) = L(R)^*$

Convenciones:

- ▶ El operador de mayor precedencia es la clausura (*), seguido por la concatenación (\cdot) , seguido por la unión (|).
- **Ejemplo:**

$$aba^* | bab^* = ((ab)(a^*)) | ((ba)(b^*))$$

Las expresiones regulares:

$$R \mid (S \mid T)$$
 $(R \mid S) \mid T$

son distintas, pero generalmente se pueden identificar.

Las expresiones regulares:

$$R \cdot (S \cdot T)$$
 $(R \cdot S) \cdot T$

son distintas, pero generalmente se pueden identificar.

Ejercicio. Describir el lenguaje generado por la siguiente gramática en el alfabeto $\{a, b, c, d, e, f\}$ usando una expresión regular:

Dada una expresión regular R, se puede construir un AFN N(R) que acepta el lenguaje denotado por R. Inductivamente, se puede construir un autómata que tiene un único estado final:

► Construcción de N(∅):

▶ Construcción de $N(\epsilon)$:

▶ Construcción de N(x) si $x \in \Sigma$:

► Construcción de *N*(*RS*):

► Construcción de $N(R \mid S)$:

► Construcción de $N(R^*)$:

Ejercicio. Usando la construcción de Thompson, construir un AFN que acepte el lenguaje denotado por: