Random experiments and Sample space

- Random experiment : Experiment involving randomness
 - Coin toss
 - Roll a dice
 - \triangleright Pick a number at random from [0,1].
- Sample space Ω : set of all possible outcomes of the random experiment. It could be a finite or infinite set.

 - $\Omega_d = \{1, 2, \dots, 6\}$
 - $\Omega_u = [0, 1]$
 - ▶ A subset $A \subseteq \Omega$ is called an **event**.
 - Probability of event A is denoted by $\mathbb{P}(A)$.

Probability theory

{Random experiment, Sample space, Events} are the key ingredients in probability theory.

In probability theory, we are interested in **measuring** the probability of subsets of Ω (events).

Probability measure \mathbb{P} is a **set function**, i.e. it acts on sets and measures the probability of such sets.

sigma-algebra as domain for $\mathbb P$

- ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of subsets of Ω that satisfy
 - $\bullet \emptyset \in \mathcal{F} \quad \bullet A \in \mathcal{F} \implies A^c \in \mathcal{F}$ $\bullet A_1, A_2, \dots A_n, \dots \in \mathcal{F} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- The σ -algebra is said to be closed under formation of compliments and countable unions.
- ► It is also closed under the formation of countable intersections

When Ω is countable and finite, we will consider power-set $\mathcal{P}(\Omega)$ as the domain.

Formal definition of Probability measure \mathbb{P}

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.

Conditional probability

- ► Given/If dice rolls odd, what is the probability that the outcome is 1?
- The conditional probability of event B given event A is defined as $\mathbb{P}(B/A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$ when $\mathbb{P}(A) > 0$.
- ► Easy to see that P(A/B)P(B) = P(B/A)P(A).
- ▶ This gives the Bayes rule: $P(B/A) = \frac{P(A/B)P(B)}{P(A)}$.

Law of total probability: Let $B_1, B_2, \dots B_n$ be the partition of the sample space Ω . Then for any event A we have

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A/B_i)P(B_i).$$

Independence & Mutually Exclusive

- Two events A, B are independent iff P(A/B) = P(A) and P(B/A) = P(B).
- Two events A, B are mutually exclusive iff $P(A \cap B) = 0$.

Random variable

- ▶ Given a random experiment with associated $(\Omega, \mathcal{F}, \mathbb{P})$, it is sometimes difficult to deal directly with $\omega \in \Omega$. eg. rolling a dice ten times.
- Notice that each sample point $\omega \in \Omega$ is not a number but a sequence of numbers.
- ➤ Also, we may be interested in functions of these sample points rather than samples themselves. eg: Number of times 6 appears in the 10 rolls.
- In either case, it is often convenient to work in a new *simpler* probability space rather than the original space.
- Pandom variable is a device which precisely helps us make this mapping from Ω to a 'simpler' Ω' , i.e. $X:\Omega\to\Omega'$

Random variable

- If Ω' is countable, then the random variable is called a discrete random variable.
- If $\Omega' \subseteq \mathbb{R}$ or uncountable, then the random variable is a continuous random variable.
- Notation: Random variables denoted by capital letters like X, Y, Z etc. and their realizations by small letters x, y, z..

PMF and CDF of a Discrete r.v.

- ▶ Let $X : \Omega \to \Omega'$ be a discrete r.v.
- Let $p_X(x)$ for $x \in \Omega'$ denote the probability that X takes the value x.
- $ightharpoonup p_X(x)$ is called as a probability mass function.
- The cumulative distribution function (CDF) $F_X(\cdot)$ is defined as $F_X(x_1) := \sum_{x \le x_1} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \le x_1\}.$

Expectation, Moments, Variance

- The mean or expectation of a random variable X is denoted by E[X] and is given by $E[X] = \sum_{x \in \Omega'} x p_X(x)$.
- The n^{th} moment of a random variable X is denoted by $E[X^n]$ and is given by $E[X^n] = \sum_{x \in \Omega'} x^n p_X(x)$.
- Functions of random variables are random variables.
- For a function $g(\cdot)$ of a random variable X, its expectation is given by $E[g(X)] := \sum_{x \in \Omega'} g(x) p_X(x)$
- $ightharpoonup Var(X) := E[(X E[X])^2] = E[X^2] E[X]^2$
- Linearity of Expectation: For Y = aX + b, we have E[Y] = aE[X] + b.

Examples of random variable

- ▶ Bernoulli random variable $X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{otherwise.} \end{cases}$
- Basic models of Multi-arm bandit problem assume Bernoulli Bandits. $E[X] = p, E[X^n] = p$.
- ➤ X is a Binomial variable with parameters n and p if $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ for $k \in \{0, ..., n\}$.
- ▶ Some other discrete r.v.: Poisson, Geometric

Continuous random variables

- ▶ The cdf $F_X(x)$ is defined as $F_X(x) := \mathbb{P}\{\omega \in \Omega : X(\omega) \leq x\}$.
- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- $P_X(B) = \int_{u \in B} f_X(u) du. \ P_X(\mathbb{R}) = \int_{u = -\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(X=a)=0.$ (no mass at any point)

$$\frac{dF_X(x)}{dx} = f_X(x) \text{ or } P_X(x < X \le x + h) \simeq f_X(x)h.$$

Mean, Variance, Moments

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- \triangleright $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.
- ► For Y = aX + b, E[Y] = aE[X] + b.
- For Y = aX + b, $F_Y(y) = F_X(\frac{y-b}{a})$ when $a \ge 0$.
- For Y = aX + b and a < 0, $F_Y(y) = 1 F_X(\frac{y-b}{a})$.

List of Probability distributions ...

Uniform, Exponential(λ), Gaussian $\mathcal{N}(\mu, \sigma^2)$

Other interesting ones are Beta, Gamma, Erlang, Logistic, Weibull.

https://en.wikipedia.org/wiki/List_of_probability_distributions

Summary: Multiple random variables

$$p_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) = x \text{ and } Y(\omega) = y\}.$$

 $F_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) \le x \text{ and } Y(\omega) \le y\}.$

The marginal PMF's p_X and p_Y can be obtained from the joint PMF as follows:

$$p_X(x) = \sum_y p_{XY}(x, y)$$
 and $p_Y(y) = \sum_x p_{XY}(x, y)$.

Two random variables, X and Y are independent if the following is true:

$$p_{XY}(x,y) = p_X(x)p_Y(y), F_{XY}(x,y) = F_X(x)F_Y(y)$$
 and $E[XY] = E[X]E[Y].$

$$E[g(X,Y)] = \sum_{xy} g(xy) p_{XY}(xy)$$

The rules for more than 2 discrete random variables are similar.

Summary for Continuous random variable

- $ightharpoonup f_{XY}(x,y)$ denotes the joint pdf for X and Y.
- $F_{XY}(x,y) := \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(s,t) ds dt. \ f_{X,Y}(x,y) := \frac{\partial^{2} F_{XY}(x,y)}{\partial x \partial y}.$

The marginal pdf's f_X and f_Y can be obtained from the joint PDF as follows:

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$

Two random variables, X and Y are independent if the following is true:

$$f_{XY}(x,y) = f_X(x)f_Y(y), F_{XY}(x,y) = F_X(x)F_Y(y)$$
 and $E[XY] = E[X]E[Y].$

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dxdy$$

Rules similar for more than 2 random variables.