Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 1 giugno 2022

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (8 punti)

a) Sia

$$W = \{ p(x) \in \mathbb{R}_3[x] \mid 2p(-1) = p(3) \} \subseteq \mathbb{R}_3[x].$$

Si stabilisca se W è un sottospazio di $\mathbb{R}_3[x]$ e in caso affermativo se ne determini una base. [W è un sottospazio di dimensione 3]

b) Si stabilisca se esiste una applicazione lineare $F: \mathbb{R}^3 \to \mathbb{R}^3$ tale che Im $F = \langle \mathbf{e}_1 + 3\mathbf{e}_2 - \mathbf{e}_3, \mathbf{e}_1 + \mathbf{e}_2 \rangle$ e \mathbf{e}_2 è autovettore di F di autovalore -1. In caso affermativo, si stabilisca se una tale F è unica. [F non esiste]

Esercizio 2. (12 punti)

Sia $F_k: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$F_k(x_1, x_2, x_3, x_4) = (x_1 + x_3 + x_4, kx_1 + x_2 + 5x_3 + 5x_4, kx_2 - 14x_3 - 14x_4).$$

- a) Si determini per quali valori di k si ha che il nucleo di F_k ha dimensione 2. Scelto un tale valore a di k si calcolino una base di Ker F_a una base di Im F_a . [k=-2,7]
- b) Per lo stesso a del punto precedente, si calcoli $F_a^{-1}(1,5,-14)$, e si determinino se possibile, 3 vettori linearmente indipendenti appartenenti a $F_a^{-1}(1,5,-14)$.
- c) Sia $\mathcal{B} = \{\mathbf{e}_3, \mathbf{e}_2 4\mathbf{e}_1, \mathbf{e}_1 \mathbf{e}_3\}$ un'altra base ordinata di \mathbb{R}^3 . Posto k = 0, si determini la matrice $A_{\mathcal{C},\mathcal{B}}$ associata ad F_0 rispetto alla base canonica \mathcal{C} di \mathbb{R}^4 nel dominio e alla base \mathcal{B} nel codominio.
- d) Si determinino le coordinate del vettore (1,2,3) rispetto alla base \mathcal{B} del punto precedente.

Esercizio 3. (6 punti) Sia $T_k : \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(x_1, x_2, x_3) = (x_1 + x_2, (k-3)x_1 + 3x_2, -6x_1 + 3x_2 + 5x_3)$$

- a) Si stabilisca per quali valori di k si ha che T_k è diagonalizzabile. $[k > 2, k \neq 11]$
- b) Si stabilisca se esistono valori di k tali k il vettore $\mathbf{e}_1 + 2\mathbf{e}_2$ sia autovettore di T_k . In caso affermativo, determinare tali valori di k. [k=3]
- c) Si stabilisca se esistono valori di k tali che la matrice $A_{\mathcal{B}}$ associata a T_k rispetto ad una opportuna base sia: $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. In caso affermativo, determinare tali valori di k.

Esercizio 4 (4 punti)

- a) Si calcoli l'inverso di [38] $_{55}$ in \mathbb{Z}_{55} .
- b) Si stabilisca se la congruenza $26x \equiv_{91} -39$ ammette soluzioni.