Handy Soliman

FIG. 1a

FIG. 1b

FIG. 2

FIG. 3

4)(17

Handy Solinan CA receives a dynamic session key generation request from a user U_s to communicate with user U_d , along with its frozen $U_s_DAK_NRC$. 18 CA forks a child communication process, which asks U_d to send its DAK_NRC . 20 NO Received NO YES DAK NRC from TIME-OUT? U_d ? ¥ YES Receive a snapshot copy of $CA_DAK[U_s]$ and $CA_DAK[U_d]$ and their counts CA $NRC[U_s]$ and CA $NRC[U_d]$ from their corresponding daemon. Then, CA aligns with U_s and U_d (FIG. 5) 24 Successful NO YES synchronization of both users? 26 CA ignores the last synchronization effects of the non-synchronized user, sends an "ABORT" message to both users, and terminates its child process. 28 CA authenticates both U_s and U_d (FIG. 6a) 30 Successful NO YES authentication of 34 32 both users? CA generates a dynamic session key DSK and sends a "SESSION_KEY" CA ignores the last synchronization message to U_s and U_d , including DSK encrypted by each user's dynamic effects of the non-authenticated authentication key (CA DAK $[U_s]$ and CA DAK $[U_d]$). The DSK along with user, sends an "ABORT" message the frozen/snapshot DAKs, at both user and CA nodes, are used as a new to both users, and terminates its state, in the DAK regeneration process, by the key management daemons. child process. Then, CA's child communication process terminates.

FIG. 4

Handy Soli man

FIG. 5

FIG. 6b

FIG. 7a

FIG. 7b

Handy Soliman

FIG. 8

Handy Soliman 108 U_d receives a request of communication with U_s from CA. 110 Fork a child process to stop regenerating DAK; send the frozen DAK_NRC to CA. 112 Start handshaking with the CA. (FIG.10) -114 Resume from Fig 10, i.e., handshaking is a success; received initial DSK Using DSK as a seed, generate n new DSKs ($DSK_1, ...,$ -116 DSK_n) each of the same size as the DSK size. Receive the cipher records: Cipheri, -118 for i=1,...,n. 120 Decrypt cipher records Cipher, using corresponding DSK_i, resulting in a decrypted record $Record_i$, for i=1,...,n. (FIG. 12) 122 Restore the original message data by assembling decrypted records (Record₁, ..., Record,) - 124 Regenerate new DSK_i , for i=1,...,n(FIGS. 13a and 13b) 126 YES More data to receive? NO. **END**

FIG. 9

Handy Soliman

FIG. 10

FIG. 11

FIG. 12

FIG. 14

16/17 Handy Solinan _196 DAK[m]DAK [1] DAK [2] 198 Initial DAK DAK[m]DAK [1] DAK [2] Initial DAK **ExpK** ExpK[2m] ExpK [3]/ ExpK[1] $\operatorname{Exp}K[4]$ Exp\([2] Seed of Random generation = DAK [1]< K[m]K[1]K[2]- 206

FIG. 15a

FIG. 15b