4 Coordinate Systems

Let V be a vector space and let \mathcal{B} be a basis for V. If \mathcal{B} contains n vectors, then the coordinate system makes V act like \mathbb{R}^n .

Theorem 4.1 (Unique Representation Theorem). Let V be a vector space and let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis for V. Then for every \vec{v} in V, there exists a unique set of scalars c_1, c_2, \dots, c_n such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n.$$

Proof. Since \mathcal{B} is a basis for V then $V = \operatorname{Span}(\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$. So every element \vec{v} of V is a linear combination of the elements of \mathcal{B} . That is, there exist c_1, c_2, \dots, c_n such that

(i)
$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n$$

Suppose that we have also

(ii)
$$\vec{v} = d_1 \vec{b}_1 + d_2 \vec{b}_2 + \dots + d_n \vec{b}_n$$

Subtracting (i) and (ii), we obtain

(iii)
$$\vec{0} = (c_1 - d_1)\vec{b}_1 + (c_2 - d_2)\vec{b}_2 + \dots + (c_n - d_n)\vec{b}_n$$

Since \mathcal{B} is linearly independent (as \mathcal{B} is a basis), the weights in (iii) are all zero. That is

$$c_1 - d_1 = 0, c_2 - d_2 = 0, \dots, c_n - d_n = 0,$$

hence $c_1 = d_1, c_2 = d_2, \dots, c_n = d_n$ and the representation in (i) is unique.

Definition 4.2. Let V be a vector space and let \mathcal{B} be a basis for V. Let \vec{v} be a vector in V with

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n$$

The coordinates of \vec{v} relative the \mathcal{B} (or \mathcal{B} -coordinates of \vec{v}) are the weights c_1, c_2, \ldots, c_n . We write

$$\left[\begin{array}{c} \vec{v} \end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}\right]$$

The map $T: V \to \mathbb{R}^n$ defined by $T(\vec{v}) = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is called Coordinate mapping (determined by \mathcal{B}).

Example 4.3. Let $\vec{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$. Clearly \mathcal{B} is basis for \mathbb{R}^2 . Compute the \mathcal{B} -coordinate of $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Solution

If

(iv)
$$\vec{u} = x_1 \vec{b}_1 + x_2 \vec{b}_2$$

then $\begin{bmatrix} \vec{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. The vector equation (iv) is equivalent to the linear system with augmented matrix

$$\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 2
\end{array}\right]$$

The matrix is already in row echelon form and we have $x_2 = 2$ and $x_1 = 3$. That is

$$\vec{u} = 3\vec{b}_1 + 2\vec{b}_2$$

Therefore the coordinate of \vec{u} relative to \mathcal{B} is given by $\begin{bmatrix} \vec{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Coordinates in \mathbb{R}^n

Note 4.4. The entries in vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ are the coordinates of \vec{x} relative to the standard basis $\mathcal{E} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

 $\{\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n\}$. We call it standard coordinates

Fact 4.5. Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis for \mathbb{R}^n . Let \vec{u} be in \mathbb{R}^n with

(v)
$$\vec{u} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n$$

that is $\begin{bmatrix} \vec{u} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$. The equality in (v) is the same as

$$\left[\begin{array}{cccc} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}\right] = \vec{u}$$

that is

$$\left[\begin{array}{ccc} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{array}\right] \left[\begin{array}{ccc} \vec{u} \end{array}\right]_{\mathcal{B}} = \vec{u}$$

Since $\mathcal B$ is basis, the matrix $\left[\begin{array}{ccc} \vec b_1 & \vec b_2 & \cdots & \vec b_n \end{array}\right]$ is invertible. So we also have

$$\left[\begin{array}{cccc} \vec{u} \end{array}\right]_{\mathcal{B}} = \left[\begin{array}{cccc} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{array}\right]^{-1} \vec{u}$$

Definition 4.6. Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis for \mathbb{R}^n . The matrix $P_{\mathcal{B}} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{bmatrix}$ is called the change-of-coordinates matrix.

Proposition 4.7. Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ be a basis for a vector space V. Let $T: V \to \mathbb{R}^n$, with $T(\vec{v}) = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$, be the mapping coordinate determined by \mathcal{B} . Then, T is one-to-one linear transformation onto \mathbb{R}^n .

Fact 4.8. Since the coordinate mapping $T: V \to \mathbb{R}^n$ is a linear transformation, we have

- (a) $\left[\vec{u} + \vec{v} \right]_{\mathcal{B}} = \left[\vec{u} \right]_{\mathcal{B}} + \left[\vec{v} \right]_{\mathcal{B}} \text{ for } \vec{u}, \vec{v} \text{ in } V.$
- (b) $\begin{bmatrix} c\vec{v} \end{bmatrix}_{\mathcal{B}} = c \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ for \vec{v} in V and scalar c.
- (c) $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \vec{0}$ if and only if $\vec{v} = \vec{0}$.

Definition 4.9. Let V and W be vector spaces. We say that V and W are isomorphic if there exists a one-to-one linear transformation $T:V\to W$ onto W (we say that T is an isomorphism). In this case we write $V\cong W$.

Note that if V is a vector space with a basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$, then V isomorphic to \mathbb{R}^n as the coordinate mapping $T: V \to \mathbb{R}^n$, $T(\vec{v}) = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$, is an isomorphism. This makes V act like \mathbb{R}^n .

Note 4.10. For the set \mathbb{P}_n of polynomials of degree at most n, the standard basis is $\mathcal{B} = \{1, t, t^2, \dots, t^n\}$. If $p(t) = a_0 + a_1t + a_2t^2 + \dots + a_nt^n$, then

$$\left[\begin{array}{c} p(t) \end{array}\right]_{\mathcal{B}} = \left[\begin{array}{c} a_0 \\ a_1 \\ \vdots \\ a_n \end{array}\right].$$

The mapping coordinate $T: \mathbb{P}_n \to \mathbb{R}^{n+1}$, with $T(p(t)) = \begin{bmatrix} p(t) \end{bmatrix}_{\mathcal{B}}$, is an isomorphism so we can study \mathbb{P}_n as \mathbb{R}^{n+1} .

Example 4.11. Show that $p_1(t) = 1 + 2t^2$, $p_2(t) = 4 + t + 5t^2$ and $p_3(t) = 3 + 2t$ are linearly dependent in \mathbb{P}_2 .

Solution

Since the coordinate mapping $T: \mathbb{P}_2 \to \mathbb{R}^3$ is an isomorphism, if $T(p_1(t)), T(p_2(t)), T(p_3(t))$ are linearly dependent in \mathbb{R}^3 , then $p_1(t), p_2(t), p_3(t)$ are also linearly dependent in \mathbb{P}_2 . We have

$$T(p_1(t)) = \begin{bmatrix} p_1(t) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, T(p_2(t)) = \begin{bmatrix} p_2(t) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}, T(p_3(t)) = \begin{bmatrix} p_3(t) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

The matrix $A = \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \end{bmatrix}$ is row equivalent to $B \begin{bmatrix} 1 & 4 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$, hence $\det(A) = 0$ and the columns of A are

linearly dependent in \mathbb{R}^3 . If follows that $p_1(t), p_2(t), p_3(t)$ are linearly dependent in \mathbb{P}_2 . In fact we can check that

$$p_3(t) = 2p_2(t) - 5p_1(t).$$