CHAPTER 9. VARIANCE REDUCTION

Kun Yuan

November 16, 2023

1 Finite-sum minimization

An important practical scenario for stochastic optimization is finite-sum minimization. Suppose the random variable ξ takes samples **uniformly** from a finite dataset $\{\xi_1, \xi_2, \dots, \xi_m\}$, i.e., $\Pr(\xi = \xi_i) = 1/m$, where m is the size of the finite dataset, it then follows that

$$\mathbb{E}[F(x;\xi)] = \frac{1}{m} \sum_{i=1}^{m} F(x;\xi_i) = \frac{1}{m} \sum_{i=1}^{m} F_i(x)$$
 (1)

where $F_i(x) := F(x; \xi_i)$ is defined as the loss function associated with data sample ξ_i . With relation (1), the stochastic optimization problem reduces to

$$\min_{x \in \mathbb{R}^d} \quad f(x) \quad \text{where} \quad f(x) = \frac{1}{m} \sum_{i=1}^m F_i(x), \tag{2}$$

which is referred to as finite-sum minimization or empirical risk minimization.

2 SGD for finite-sum minimization

Since problem (2) is a special example of stochastic optimization, any algorithm that can solve stochastic optimization can also apply to problem (2). Now we examine the SGD algorithm for finite-sum minimization. Since the random variable ξ is sampled from the finite dataset $\{\xi_1, \xi_2, \dots, \xi_m\}$, SGD for finite-sum minimization is

Sample
$$i_t \in [m]$$
 uniformly randomly
$$x^{(t+1)} = x^{(t)} - \gamma \nabla F_{i_t}(x^{(t)}), \quad \forall \ t = 0, 1, 2, \cdots$$
(3)

where $F_i(x) = F(x; \xi_i)$ and i_t is a random index variable at iteration t. In convergence analysis, we typically assume the stochastic gradient $\nabla F_{i_t}(x^{(t)})$ is unbiased and has bounded variance, i.e.

$$\mathbb{E}[\|\nabla F_{i_t}(x^{(t)}) - \nabla f(x^{(t)})\|^2 | \mathcal{F}^t] \le \sigma^2,\tag{4}$$

where $\mathcal{F}^t = \{x^{(t)}, x^{(t-1)}, \dots, x^{(0)}\}$. The non-vanishing gradient variance σ^2 is the root reason resuling in the slow convergence in SGD.

3 Stochastic variance-reduced gradient

We introduce a sequence of auxiliary variables $\{\alpha_j\}_{j=1}^m$ with each $\alpha_j \in \mathbb{R}^d$ share the same dimension as x. Consider the following new stochastic gradient:

$$g_t(x) = \nabla F_{i_t}(x) - \nabla F_{i_t}(\alpha_{i_t}) + u \quad \text{where} \quad u = \frac{1}{m} \sum_{j=1}^m \nabla F_j(\alpha_j)$$
 (5)

where the random index variable $i_t \in [m]$ is sampled uniformly. It is easy to verify that

• $g_t(x)$ is unbiased. To see it, we can derive that

$$\mathbb{E}[g_t(x)] = \frac{1}{m} \sum_{j=1}^{m} \left[\nabla F_j(x) - \nabla F_j(\alpha_j) \right] + \frac{1}{m} \sum_{j=1}^{m} \nabla F_j(\alpha_j) = \frac{1}{m} \sum_{j=1}^{m} \nabla F_j(x) = f(x)$$
 (6)

• $g_t(x)$ has bounded variance. To see it, we can derive that

$$\mathbb{E}\|g_{t}(x) - \nabla f(x)\|^{2} = \mathbb{E}\|\nabla F_{i_{t}}(x) - \nabla F_{i_{t}}(\alpha_{i_{t}}) - (\nabla f(x) - u)\|^{2}$$

$$\leq \mathbb{E}\|\nabla F_{i_{t}}(x) - \nabla F_{i_{t}}(\alpha_{i_{t}})\|^{2}$$

$$\leq \frac{1}{m} \sum_{j=1}^{m} \|\nabla F_{j}(x) - \nabla F_{j}(\alpha_{j})\|^{2}$$

$$\leq \frac{L^{2}}{m} \sum_{j=1}^{m} \|x - \alpha_{j}\|^{2}$$
(7)

where we assume each $F_i(x)$ is L-smooth.

It is worth noting that the variance in (7) is not a constant σ^2 anymore. If we develop strategies that allow $\alpha_j \to x$, the gradient variance can vanish to 0, which will accelerate the convergence rate.

4 SAGA

To achieve $\alpha_j \to x$, a natural strategy is to update auxiliary variables $\{\alpha_j\}_{j=1}^m$ with the most recent $x^{(t)}$:

$$\alpha_i^{(t+1)} = \begin{cases} x^{(t)} & \text{if index } i \text{ is sampled;} \\ \alpha_i^{(t)} & \text{otherwise.} \end{cases}$$
 (8)

Algorithm 1 SAGA for Finite-sum Minimization

```
Input: an arbitrary x^{0}; let \alpha_{j}^{(0)} = x^{0} for any j, and u^{(0)} = \frac{1}{m} \sum_{j=1}^{m} \nabla F_{j}(\alpha_{j}^{(0)}). for t = 0, 1, 2, ..., T - 1 do sample i_{t} \in \{1, 2, \cdots, m\} uniformly randomly update g_{i_{t}} = \nabla F_{i_{t}}(x^{(t)}) - \nabla F_{i_{t}}(\alpha_{i_{t}}^{(t)}) + u^{(t)} update x^{(t+1)} = x^{(t)} - \gamma g_{i_{t}} update \alpha_{i_{t}}^{(t+1)} = x^{(t)} and \alpha_{j}^{(t+1)} = \alpha_{j}^{(t)} if j \neq i_{t} update u^{(t+1)} = u^{(t)} + \frac{1}{m} (\nabla F_{i}(x^{(t)}) - \nabla F_{i}(\alpha_{i}^{(t)})) end for Output: variable x^{(T)}
```

With the above update, we can compute $u^{(t+1)}$ in a cheap recursive manner

$$u^{(t+1)} = \frac{1}{m} \sum_{j=1}^{m} \nabla F_j(\alpha_j^{(t+1)})$$

$$= \frac{1}{m} \sum_{j \neq i} \nabla F_j(\alpha_j^{(t)}) + \frac{1}{m} \nabla F_i(x^{(t)})$$

$$= u^{(t)} + \frac{1}{m} (\nabla F_i(x^{(t)}) - \nabla F_i(\alpha_i^{(t)})). \tag{9}$$

With the above strategy, we can develop the SAGA algorithm [1] in Algorithm 1. It is observed that SAGA achieves an one-loop algorithm by maintaining $\{\alpha_j\}_{j=1}^m$ with O(md) memory, which can be very expensive when d or m is large. In real implementations, we can store $\{\nabla F_j(\alpha_j)\}_{j=1}^m$ instead of $\{\alpha_j\}_{j=1}^m$ which can save the cost to evaluate $\nabla F_{i_t}(\alpha_{i_t}^{(t)})$ in (5).

5 Convergence analysis

5.1 Assumption and supporting lemma

We introduce the following assumption throughout this chapter

Assumption 5.1. We assume each $F_i(x)$ is L-smooth, and each random index variable i_t is sampled uniformly and randomly from set $\{1, \dots, m\}$.

We let $\mathcal{F}^t = \{x^{(t)}, \{\alpha_j^{(t)}\}_{j=1}^m, \cdots, x^{(0)}, \{\alpha_j^{(0)}\}_{j=1}^m\}$. Following the arguments in Sec. 3, we can prove the following lemma:

Lemma 5.2. Under Assumption 5.1, it holds that

$$\mathbb{E}[g_{i_t}|\mathcal{F}^t] = \nabla f(x^{(t)}) \tag{10}$$

$$\mathbb{E}[\|g_{i_t} - \nabla f(x^{(t)})\|^2 | \mathcal{F}^t] \le \frac{L^2}{m} \sum_{i=1}^m \|x^{(t)} - \alpha_j^t\|^2$$
(11)

5.2 Descent lemma

Lemma 5.3. Under Assumption 5.1, if the learning rate $\gamma \leq \frac{1}{L}$, the iterate $x^{(t)}$ generated by SAGA satisfies

$$\mathbb{E}[f(x^{(t+1)})] \le \mathbb{E}[f(x^{(t)})] - \frac{\gamma}{2} \mathbb{E} \|\nabla f(x^{(t)})\|^2 + \frac{L^3 \gamma^2}{2m} \sum_{j=1}^m \mathbb{E} \|x^{(t)} - \alpha_j^{(t)}\|^2.$$
 (12)

Proof. Since f(x) is L-smooth, it holds that

$$\mathbb{E}[f(x^{(t+1)})|\mathcal{F}^{(t)}] \leq f(x^{(t)}) - \gamma \mathbb{E}[\langle \nabla f(x^{(t)}), g_{i_t} \rangle | \mathcal{F}^{(t)}] + \frac{L\gamma^2}{2} \mathbb{E}[\|g_{i_t}\|^2 | \mathcal{F}^{(t)}] \\
\stackrel{(a)}{=} f(x^{(t)}) - \gamma \|\nabla f(x^{(t)})\|^2 + \frac{L\gamma^2}{2} \mathbb{E}[\|g_{i_t}\|^2 | \mathcal{F}^{(t)}] \\
\stackrel{(b)}{\leq} f(x^{(t)}) - (\gamma - \frac{L\gamma^2}{2}) \|\nabla f(x^{(t)})\|^2 + \frac{L^3\gamma^2}{2m} \sum_{j=1}^m \|x^{(t)} - \alpha_j^{(t)}\|^2 \\
\stackrel{(c)}{\leq} f(x^{(t)}) - \frac{\gamma}{2} \|\nabla f(x^{(t)})\|^2 + \frac{L^3\gamma^2}{2m} \sum_{j=1}^m \|x^{(t)} - \alpha_j^{(t)}\|^2 \tag{13}$$

where (a) holds because of equality (10), and (b) holds because

$$\mathbb{E}[\|g_{i_{t}}\|^{2}|\mathcal{F}^{(t)}] = \mathbb{E}[\|g_{i_{t}} - \nabla f(x^{(t)}) + \nabla f(x^{(t)})\|^{2}|\mathcal{F}^{(t)}]$$

$$\leq \mathbb{E}[\|g_{i_{t}} - \nabla f(x^{(t)})\|^{2}|\mathcal{F}^{(t)}] + \|\nabla f(x^{(t)})\|^{2}$$

$$\stackrel{(11)}{\leq} \frac{L^{2}}{m} \sum_{i=1}^{m} \|x^{(t)} - \alpha_{j}^{(t)}\|^{2} + \|\nabla f(x^{(t)})\|^{2}.$$
(14)

Inequality (c) in (13) holds when $\gamma \leq 1/L$. By taking expectations over $\mathcal{F}^{(t)}$ on both sides of (13), we achieve the result in (12).

5.3 Evolution of $\{\alpha_j\}_{j=1}^n$

Lemma 5.4. Under Assumption 5.1, it holds for any $t = 0, 1, 2, \dots, T-1$ and $\beta > 0$ that

$$\frac{1}{m} \sum_{j=1}^{m} \mathbb{E} \|x^{(t+1)} - \alpha_j^{(t+1)}\|^2 \le \left(1 - \frac{1}{m} + \gamma\beta + \gamma^2 L^2\right) \frac{1}{m} \sum_{j=1}^{m} \mathbb{E} \|x^{(t)} - \alpha_i^{(t)}\|^2 + \left(\gamma^2 + \frac{\gamma}{\beta}\right) \mathbb{E} \|\nabla f(x^{(t)})\|^2 \tag{15}$$

Proof. Recalling the update of $\alpha_i^{(t+1)}$ in (8) for a given $i \in [m]$, we have

$$\mathbb{E}[\|x^{(t+1)} - \alpha_i^{(t+1)}\|^2 | \mathcal{F}^{(t)}] \\
= \frac{1}{m} \mathbb{E}[\|x^{(t+1)} - x^{(t)}\|^2 | \mathcal{F}^{(t)}] + \frac{m-1}{m} \mathbb{E}[\|x^{(t+1)} - \alpha_i^{(t)}\|^2 | \mathcal{F}^{(t)}] \\
= \frac{1}{m} \mathbb{E}[\|x^{(t+1)} - x^{(t)}\|^2 | \mathcal{F}^{(t)}] + \frac{m-1}{m} \mathbb{E}[\|x^{(t+1)} - x^{(t)} + x^{(t)} - \alpha_i^{(t)}\|^2 | \mathcal{F}^{(t)}] \\
= \mathbb{E}[\|x^{(t+1)} - x^{(t)}\|^2 | \mathcal{F}^{(t)}] + \frac{m-1}{m} \|x^{(t)} - \alpha_i^{(t)}\|^2 \\
+ \frac{2(m-1)}{m} \mathbb{E}[\langle x^{(t+1)} - x^{(t)}, x^{(t)} - \alpha_i^{(t)} \rangle | \mathcal{F}^{(t)}] \\
= \frac{m-1}{m} \|x^{(t)} - \alpha_i^{(t)}\|^2 + \gamma^2 \mathbb{E}[\|g_{i_t}\|^2 | \mathcal{F}^{(t)}] + \frac{2(m-1)\gamma}{m} \mathbb{E}[\langle g_{i_t}, x^{(t)} - \alpha_i^{(t)} \rangle | \mathcal{F}^{(t)}] \\
= \frac{m-1}{m} \|x^{(t)} - \alpha_i^{(t)}\|^2 + \gamma^2 \mathbb{E}[\|g_{i_t}\|^2 | \mathcal{F}^{(t)}] + \frac{2(m-1)\gamma}{m} \langle \nabla f(x^{(t)}), x^{(t)} - \alpha_i^{(t)} \rangle \\
\stackrel{(a)}{\leq} \frac{m-1}{m} (1+\gamma\beta) \|x^{(t)} - \alpha_i^{(t)}\|^2 + (\gamma^2 + \frac{(m-1)\gamma}{m\beta}) \|\nabla f(x^{(t)})\|^2 \\
+ \frac{\gamma^2 L^2}{m} \sum_{j=1}^m \|x^{(t)} - \alpha_j^{(t)}\|^2 \\
\leq (1 - \frac{1}{m} + \gamma\beta) \|x^{(t)} - \alpha_i^{(t)}\|^2 + (\gamma^2 + \frac{\gamma}{\beta}) \|\nabla f(x^{(t)})\|^2 + \frac{\gamma^2 L^2}{m} \sum_{j=1}^m \|x^{(t)} - \alpha_j^{(t)}\|^2$$
(16)

where inequality (a) holds due to inequality (14) and the fact that $2\langle a,b\rangle \leq \beta \|a\|^2 + \frac{1}{\beta} \|b\|^2$ for any $\beta > 0$ and $a,b, \in \mathbb{R}^d$. By taking average over all indices on both sides of (16) and taking expectations over the filtration, we achieve the result in (15).

5.4 Convergence theorem

Theorem 5.5. Under Assumption 5.1, if learning rate $\gamma = (3Lm^{2/3})^{-1}$, then $x^{(t)}$ generated by SAGA will converge as follows:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^{(t)})\|^2 \le \frac{10Lm^{2/3} \Delta_0}{T}$$
 (17)

where $\Delta_0 = f(x^{(0)}) - f^*$

Proof. We introduce the following Lyapunov function

$$L^{(t+1)} = \mathbb{E}[f(x^{(t+1)})] + \frac{c_{t+1}}{m} \sum_{j=1}^{m} \mathbb{E} \|x^{(t+1)} - \alpha_i^{(t+1)}\|^2$$

$$\leq \mathbb{E}[f(x^{(t)})] - \left[\frac{\gamma}{2} - c_{t+1}(\gamma^2 + \frac{\gamma}{\beta})\right] \mathbb{E} \|\nabla f(x^{(t)})\|^2$$

$$+ \left[c_{t+1}\left(1 - \frac{1}{m} + \gamma\beta + \gamma^2 L^2\right) + \frac{L^3 \gamma^2}{2}\right] \frac{1}{m} \sum_{j=1}^{m} \mathbb{E} \|x^{(t)} - \alpha_j^{(t)}\|^2$$
(18)

If we define

$$c_t = c_{t+1} \left(1 - \frac{1}{m} + \gamma \beta + \gamma^2 L^2 \right) + \frac{L^3 \gamma^2}{2}, \quad c_T = 0$$
 (19)

$$r_t = \frac{\gamma}{2} - c_{t+1}(\gamma^2 + \frac{\gamma}{\beta}) \tag{20}$$

Inequality (16) is equivalent to

$$L^{(t+1)} \le L^{(t)} - r_t \mathbb{E} \|\nabla f(x^{(t)})\|^2. \tag{21}$$

Next we evaluate c_t . Let $\theta = \frac{1}{m} - \gamma \beta - \gamma^2 L^2$. If we let $\beta = L/m^{\frac{1}{3}}$ and $\gamma = 1/(3Lm^{2/3})$, it holds that $\theta < 1$ and $\theta \ge \frac{5}{9m}$. Substituting θ into (19), we have

$$c_t = c_{t+1}(1-\theta) + \frac{L^3\gamma^2}{2}, c_T = 0 \implies c_t \le c_0 \le \frac{L^3\gamma^2}{2\theta} \le \frac{L}{10m^{1/3}}.$$
 (22)

Substituting (22) to (20), we have $r_t \ge 1/(10Lm^{2/3})$ and hence (21) becomes

$$\mathcal{L}^{(t+1)} \le \mathcal{L}^{(t)} - \frac{\mathbb{E}\|\nabla f(x^{(t)})\|^2}{10Lm^{2/3}}.$$
 (23)

By taking average over iterations, and recalling that $\alpha_i^{(0)} = x^{(0)}$, we achieve

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \|\nabla f(x^{(t)})\|^2 \le \frac{10Lm^{2/3} (f(x^{(0)}) - f^*)}{T}.$$
 (24)

Remark. Recall that standard SGD converge at rate $O(1/\sqrt{T})$, we conclude that SAGA has a faster convergence rate.

References

[1] A. Defazio, F. Bach, and S. Lacoste-Julien, "SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives," *Advances in neural information processing systems*, vol. 27, 2014.