Hoja 2. Relaciones, aplicaciones, relaciones de equivalencia

Susana Cubillo (2021)

Ejercicios recopilados de los apuntes y Hojas de problemas de los profesores del Dpto. Matemática Aplicada a las TIC (Campus Montegancedo). UPM.

- 1. Dados los conjuntos $A = \{1, 2, 3, 4\}$ y $B = \{1, 3, 5\}$, y la relación R de A en B definida por $a R b \iff a < b$, describe los pares de la relación.
- 2. En el conjunto \mathbb{Z} se define la relación aRb si y sólo si $a^2=b^2$. Averigua si se trata de una relación de equivalencia en \mathbb{Z} y, de ser cierto, encuentra la clase de equivalencia del elemento 5, es decir [5].
- 3. Dados los conjuntos $A = \{2, 3, 4, 5\}$ y $B = \{3, 6, 7, 10\}$ y la relación de divisibilidad R de A en B, $a R b \Leftrightarrow 'a' \ divide \ a'b' \Leftrightarrow b \ es \ m\'ultiplo \ de \ a$, describe los pares de la relación.
- 4. Sea el conjunto $\wp(S)$ de todos los subconjuntos de $S=\{a,b\}$, y la relación R definida en $\wp(S)$ por $A R B \Leftrightarrow |A \cap B| = 1$. Averiguar si es una relación reflexiva, simétrica y/o transitiva.
- 5. Estudiar si las relaciones en el conjunto $A = \{a, b, c\}$, dadas por las siguientes matrices, son reflexivas, simétricas, antisimétricas y transitivas.

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad N = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

6. Dada la relación definida en \mathbb{Z} por: $a R b \Leftrightarrow a - b = 5 \cdot k$, para algún $k \in \mathbb{Z}$, estudiar si es una relación reflexiva, simétrica y transitiva, y encontrar tres números enteros no relacionados entre sí.

1

- 7. Halla el dominio y la imagen (o rango) de cada una de las siguientes relaciones:
 - a) $R = \{(1,5), (4,5), (1,4), (4,6), (3,7), (7,6)\} \subseteq \mathbb{N} \times \mathbb{N}.$
 - b) S definida en \mathbb{N} por $x S y \iff 2x + y = 16$.
 - c) T definida en \mathbb{N} por $x T y \iff 3x + y = 25$.

- 8. En $A = \{a, b, c, d\}$ se consideran las siguientes relaciones:
 - a) $R = \{(a, b), (b, c), (c, d), (d, a)\}$
- c) $S = \{(d, c), (c, b), (a, b), (d, d)\}$
- b) $T = \{(a, a), (b, a), (c, a), (d, d)\}$
- d) $V = \{(b, a), (a, c), (d, d)\}$

Averigua cuáles son aplicaciones y cuáles no lo son.

- 9. Comprueba que la función $f: \mathbb{N} \to \mathbb{Z}$ definida por $f(n) = \begin{cases} \frac{n}{2}, & \text{si } n \text{ es } par \\ -\frac{n-1}{2}, & \text{si } n \text{ es } impar \end{cases}$ es una aplicación, y obtén si es inyectiva, suprayectiva o biyectiva.
- 10. Dado el conjunto $A = \{1, 2, 3, 4, 5\}$ y la relación dada por $R = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}$, obtén sus propiedades. ¿Es una relación de equivalencia? En caso afirmativo, determina el conjunto cociente.
- 11. Sea el conjunto $A = \{a, b, c, d, e, f\}$, y la partición dada por $P = \{\{a, d, e\}, \{c, f\}, \{b\}\}$, define una relación de equivalencia, cuyo conjunto cociente coincida con P.
- 12. En el conjunto $\mathbb{N} \times \mathbb{N}$ se define la relación $(a,b)R(c,d) \iff a \cdot d = b \cdot c$. Averigua si es una relación de equivalencia, y en caso afirmativo, o)btén las clases [(4,8)] y [(8,4)].
- 13. En el conjunto $\mathbb{N} \times \mathbb{N}$ se define la relación $(a,b)R(c,d) \iff a+d=b+c$. Averigua si es una relación de equivalencia, y en caso afirmativo, obtén la clase [(2,5)] y [(8,3)].
- 14. En \mathbb{R}^2 se define la relación (x,y) R $(z,t) \iff x \cdot y = z \cdot t$. Comprueba que es una relación de equivalencia, y obtén el conjunto cociente.
- 15. En \mathbb{Z} se define la relación $x R y \Leftrightarrow x^2 y^2 = x y$. Comprueba que es una relación de equivalencia, y obtén el conjunto cociente.
- 16. En \mathbb{R}^2 se define la relación (x,y) R $(z,t) \iff x+t=y+z$. Comprueba que es una relación de equivalencia, y obtén el conjunto cociente.
- 17. (Examen 2018) En el conjunto \mathbb{Z} de los números enteros se define la relación aRb si y sólo si 7/(b-a), donde / es la relación de divisibilidad (x/y si existe $k \in \mathbb{Z}$ verificando x.

- k=y). Demuestra que se trata de una relación de equivalencia en \mathbb{Z} , y obtén las clases de equivalencia del 0, y del 3; es decir [0] y [3].
- 18. (Examen 2018) En el conjunto de los números naturales \mathbb{N} definimos la siguiente relación: dados $a,b \in \mathbb{N}$, decimos que aRb si a/b^2 (a/b^2 significa que "a divide a b^2 "). Razona qué propiedades (reflexiva, simétrica, antisimétrica, transitiva) cumple la relación y cuáles no.
- 19. (Examen 2017) Sea $X = \{a, b, c\}$. En $\wp(X)$ definimos la siguiente relación: dados $M, N \subseteq X$, decimos que MRN si $|M| \le |N|$. Razona qué propiedades (reflexiva, simétrica, antisimétrica, transitiva) cumple la relación y cuáles no.
- 20. (Examen 2015) En el conjunto \mathbb{Z} se define la relación $a R b \Leftrightarrow a^2 b^2 = 3 (a b)$. Averigua si se trata de una relación de equivalencia y, de ser cierto, encuentra la clase de equivalencia del 2, y obtén el conjunto cociente.