Moment Generating Function of Gaussian Distribution

Pepper All You Bra - Best Bra for AA, A, & B Cups 30A / Black

For Small-Chested Women, the All You Bra from Pepper Will Be Your Best Fit Yet. Say Goodbye to Awkward Bra Gaps, Uncomfortable Push Up Padding, or Feeling Like Your Body's Not Enough. Our Authentic Lift Design Hugs and Lifts Your... Рерр€

Contents

Theorem

Proof

Examples

First Moment Second Moment Third Moment

Fourth Moment

Theorem

Let $X \sim N(\mu, \sigma^2)$ for some $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}_{>0}$, where N is the Gaussian distribution.

Then the moment generating function M_X of X is given by:

$$M_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

Proof

From the definition of the Gaussian distribution, X has probability density function:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

From the definition of a moment generating function:

$$M_X(t) = \mathsf{E}\left(e^{tX}\right) = \int_{-\infty}^{\infty} e^{tx} f_X(x) \, \mathrm{d}x$$

So:

$$M_X(t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(tx - \frac{(x-\mu)^2}{2\sigma^2}\right) dx$$

$$= \frac{\sqrt{2}\sigma}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left((\sqrt{2}\sigma u + \mu)t - u^2\right) du \qquad \text{substituting } u = \frac{x-\mu}{\sqrt{2}\sigma}$$

$$= \frac{\exp \mu t}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\left(-\left(u^2 - \sqrt{2}\sigma ut\right)\right) du$$

$$= \frac{\exp \mu t}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\left(-\left(u - \frac{\sqrt{2}}{2}\sigma t\right)^2 + \frac{1}{2}\sigma^2 t^2\right) du$$

$$= \frac{\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp\left(-v^2\right) dv \qquad \text{substituting } v = u - \frac{\sqrt{2}}{2}\sigma t$$

$$= \frac{\sqrt{\pi} \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)}{\sqrt{\pi}}$$

$$= \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$
Gaussian Integral

Examples

First Moment

The first moment generating function of X is given by:

$$M_{X}'(t) = \left(\mu + \sigma^2 t\right) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

Second Moment

The second moment generating function of *X* is given by:

$$M_X''(t) = \left(\sigma^2 + \left(\mu + \sigma^2 t\right)^2\right) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

Third Moment

The third moment generating function of X is given by:

$$M_X'''(t) = \left(3\sigma^2\left(\mu + \sigma^2 t\right) + \left(\mu + \sigma^2 t\right)^3\right) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

Fourth Moment

The fourth moment generating function of X is given by:

$$M_X^{(4)}(t) = \left(3\sigma^4 + 6\sigma^2(\mu + \sigma^2 t)^2 + (\mu + \sigma^2 t)^4\right) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

 $Retrieved from \verb|"https://proofwiki.org/w/index.php?title=Moment_Generating_Function_of_Gaussian_Distribution\&oldid=519141" | Additional content of the following of the follo$

This page was last modified on 7 May 2021, at 01:54 and is 2,208 bytes

Content is available under Creative Commons Attribution-ShareAlike License unless otherwise noted.