By Wenjie

• Range based search in a kD-Tree

- Given a set of points $P = \{p_n, ..., p_n\}$, find the points in a range [a, b]
- o Build the kD-tree: use an AVL tree, but put all data in the leaves
- Search is very similar with BST:
 - If dataToFind <= node.data, go left
 - If dataToFind > node.data, go right
- o If the exact data was not found (eg. find 42), we get **one past the data**, an upper bound
- We want to find all numbers between [11,41] efficiently
 - Need to jump from 11 to 41 efficiently
 - So we make a linked list on data nodes

nodes depth

- o This is like running a binary search on a linked list
- Runtime for finding all integers in a range [a, b]
 - find lower bound \mathbf{a} in the tree: $\mathbf{O}(\lg \mathbf{n})$
 - find upper bound **b** in the tree: $O(\lg n)$
 - traverse the linked list to find the elements in the middle: O(k), where
 k is the number of elements in this range
 - So total is O(lg(n) + k)
- Analysis
 - \blacksquare runtime depends on the situation: **k** or lg(n) might dominate the term
 - No better than running a binary search on an array, but no worse

By Wenjie

• Range search in 2-dimensions

- Given $P = \{p_0, p_1, ..., p_n\}$, where each p_i is a point in 2-D space
 - find all the points in a rectangle $\{(x_1, y_1), (x_2, y_2)\}$
 - \blacksquare find the nearest point to (x, y)
- o Very widely asked questions in the real world. Eg: in image recognition
- We still want to do a binary search, but an simple array will not suffice. We build a kD-tree.

■ Build a root node: find a proper **x** value to divide the space into 2 parts

■ Continue partitioning: find a proper **y** value for each subspace, and further divide each subspace into 2

By Wenjie

Continue partitioning, and iterating through dimensions. So next we will partition each part depending on the **x** value (for 3-D spaces, we divide on **x**, **y**, **z** dimension)

■ Stop until every part only has one point. That point will be the leaf data.

By Wenjie

■ The actual tree will be like this

- o Search: similar to a binary search
 - lacktriangle Compare on the f x value, then the f y value, then the f x value....
 - Alternating until we find the point we want
 - Each comparison eliminates half of the points in the search

BTrees

- Motivation
 - We cannot always keep data in the memory
 - Where do we put data?

By Wenjie

- Disk
- "Cloud" -_(ツ)_/-
- Quantum Protons

Runtime

- 3GHz CPU performs 3 million operations in 1ms
- Hard Drives
 - Bleeding-edge Disks can be very fast, ~32MB/ms
 - But most large disks are very slow, ~30 MB/s
- The Cloud is slow
 - o good ping time is 20-40 ms
 - takes ~40ms to going through an edge in a tree: very slow
 - o want to lower the height even more!

• BTree (of order m)

- Please note that BTree is not a binary tree at all.
- Goal: to minimize the number of reads.
- In practice, every node will store exactly (1 network packet/1 disk block/...)
- o BTree node:
 - Every node is a sorted array
 - Contains up to m 1 keys
 - For example: Btree of m = 9

-3	8	23	25	31	42	43	55	
----	---	----	----	----	----	----	----	--

m = 9

○ Insertion (m=5)

We add to the tree until we reach the maximum number of keys in a node.

_				
		l'		
	2	1 1	l Q	16
- 1	~	-	0	10
		II.	l	l

■ If we insert for example 19, we will exceed the allowed number of keys in this node. This is a overfilled array

By Wenjie

• we split the data and throw up the middle element.

■ Now we have a BTree with order m=5

- o Recursive call of split
 - m = 3

