Depth estimation with images captured from multiple views

Prasan Shedligeri ee16d409@ee.iitm.ac.in

What is depth estimation?

- Determining the distance of each scene point with respect to the camera

Applications

- Autonomous Navigation
 - Indoor (Humanoid)
 - Roads (Cars)
 - Aerial (Drones)
- Virtual/Augmented Reality
 - Virtual Meeting Rooms
 - Gaming
 - Robotic Surgeries
- Scene Understanding
 - Semantic Summarization
 - Large Scale 3D Mapping
 - Architecture/Heritage Capture

How to Estimate Depth?

- Depth from single image
- Depth from Multi-view Images / Video
- Depth from X: Shading, Focus, ...
- Depth from Active Sensing : Kinect; LIDAR; Structured Light etc

Simple case: Depth from stereo images

Parallax effect

Images taken from two cameras

One of the cameras is horizontally shifted with respect to the other

Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches

Fig courtesy: Zbontar et al. 2015

Results

Results

Unsupervised Learning of Depth and Ego-Motion from Video

Arbitrary motion of the camera

Results

Figure courtesy: Zhou et al. '17

References

- 1) Ummenhofer, Benjamin, et al. "Demon: Depth and motion network for learning monocular stereo." *IEEE Conference on computer vision and pattern recognition (CVPR)*. Vol. 5. 2017.
- 2) Zhou, Tinghui, et al. "Unsupervised learning of depth and ego-motion from video." *CVPR*. Vol. 2. No. 6. 2017.
- 3) Wang, Chaoyang, et al. "Learning Depth from Monocular Videos using Direct Methods." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.
- 4) Mahjourian, Reza, Martin Wicke, and Anelia Angelova. "Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.
- 5) Zbontar, Jure, and Yann LeCun. "Computing the stereo matching cost with a convolutional neural network." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.