Trigonometry and modelling 7B

1 a
$$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ})$$

 $= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$
 $= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2}$
 $= \frac{\sqrt{2}\sqrt{3} + \sqrt{2}}{4} = \frac{\sqrt{2}(\sqrt{3} + 1)}{4}$

b
$$\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$$

 $= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$
 $= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2}$
 $= \frac{\sqrt{2}\sqrt{3} + \sqrt{2}}{4} = \frac{\sqrt{2}(\sqrt{3} + 1)}{4}$

Note $\sin 75^{\circ} = \cos(90^{\circ} - 75^{\circ}) = \cos 15^{\circ}$

$$c \sin(120^{\circ} + 45^{\circ})$$

$$= \sin 120^{\circ} \cos 45^{\circ} + \cos 120^{\circ} \sin 45^{\circ}$$

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \left(-\frac{1}{2}\right) \times \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}\sqrt{3} - \sqrt{2}}{4} = \frac{\sqrt{2}\left(\sqrt{3} - 1\right)}{4}$$

$$\frac{d}{\tan 165^{\circ}} = \tan(120^{\circ} + 45^{\circ})$$

$$= \frac{\tan 120^{\circ} + \tan 45^{\circ}}{1 - \tan 120^{\circ} \tan 45^{\circ}}$$

$$\tan 120^{\circ} = \frac{\sin 120^{\circ}}{\cos 120^{\circ}} = \frac{\sin 60^{\circ}}{-\cos 60^{\circ}}$$

$$= -\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$$
So $\tan 120^{\circ} = \frac{-\sqrt{3} + 1}{1 + \sqrt{3}}$

$$= \frac{\left(1 - \sqrt{3} + 1\right)\left(\sqrt{3} - 1\right)}{\left(\sqrt{3} + 1\right)\left(\sqrt{3} - 1\right)}$$

$$= \frac{-4 + 2\sqrt{3}}{2}$$

$$= -2 + \sqrt{3}$$

2 a Using
$$\sin(A + B)$$
 expansion
 $\sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ}$
 $= \sin(30^{\circ} + 60^{\circ}) = \sin 90^{\circ} = 1$

b
$$\cos 110^{\circ} \cos 20^{\circ} + \sin 110^{\circ} \sin 20^{\circ}$$

= $\cos (110^{\circ} - 20^{\circ}) = \cos 90^{\circ} = 0$

c
$$\sin 33^{\circ} \cos 27^{\circ} + \cos 33^{\circ} \sin 27^{\circ}$$

= $\sin(33^{\circ} + 27^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$

$$\mathbf{d} \quad \cos\frac{\pi}{8}\cos\frac{\pi}{8} - \sin\frac{\pi}{8}\sin\frac{\pi}{8}$$
$$= \cos\left(\frac{\pi}{8} + \frac{\pi}{8}\right) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

e
$$\sin 60^{\circ} \cos 15^{\circ} - \cos 60^{\circ} \sin 15^{\circ}$$

= $\sin (60^{\circ} - 15^{\circ}) = \sin 45^{\circ} = \frac{\sqrt{2}}{2}$

f
$$\cos 70^{\circ} \cos 50^{\circ} - \cos 70^{\circ} \tan 70^{\circ} \sin 50^{\circ}$$

= $\cos 70^{\circ} \cos 50^{\circ} - \sin 70^{\circ} \sin 50^{\circ}$

Simplifying as
$$\left(\cos\theta \times \tan\theta = \cos\theta \times \frac{\sin\theta}{\cos\theta} = \sin\theta\right)$$

So
$$\cos 70^{\circ} (\cos 50^{\circ} - \tan^{\circ} \sin 50^{\circ})$$

= $\cos (70^{\circ} + 50^{\circ})$
= $\cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$

$$\mathbf{g} \quad \frac{\tan 45^{\circ} + \tan 15^{\circ}}{1 - \tan 45^{\circ} \tan 15^{\circ}}$$
$$= \tan (45 + 15)^{\circ} = \tan 60^{\circ} = \sqrt{3}$$

h Use the fact that
$$\tan 45^{\circ} = 1$$
 to rewrite as
$$\frac{1 - \tan 15^{\circ}}{1 + \tan 15^{\circ}} = \frac{\tan 45^{\circ} - \tan 15^{\circ}}{1 + \tan 45^{\circ} \tan 15^{\circ}}$$

$$= \tan(45^{\circ} - 15^{\circ}) = \tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

$$\tan \frac{7\pi}{12} - \tan \frac{\pi}{2}$$

i
$$\frac{\tan\frac{7\pi}{12} - \tan\frac{\pi}{3}}{1 + \tan\frac{7\pi}{12}\tan\frac{\pi}{3}} = \tan\left(\frac{7\pi}{12} - \frac{\pi}{3}\right)$$

= $\tan\frac{3\pi}{12} = \tan\frac{\pi}{4} = 1$

2 j This is very similar to part (e) but to appreciate this you need to rewrite the equation as

$$\sqrt{3}\cos 15^{\circ} - \sin 15^{\circ}$$

$$\equiv 2\left(\frac{\sqrt{3}}{2}\cos 15^{\circ} - \frac{1}{2}\sin 15^{\circ}\right)$$

$$\equiv 2(\sin 60^{\circ}\cos 15^{\circ} - \cos 60^{\circ}\sin 15^{\circ})$$

$$\equiv 2\sin (60 - 15)^{\circ}$$

$$\equiv 2\sin 45^{\circ}$$

$$= \sqrt{2}$$

- 3 a $\tan(45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 \tan 45^\circ \tan 30^\circ}$
 - **b** $\tan 75^\circ = \frac{1 + \frac{\sqrt{3}}{3}}{1 \frac{\sqrt{3}}{3}}$ $= \frac{3 + \sqrt{3}}{3 - \sqrt{3}} = \frac{\left(3 + \sqrt{3}\right)\left(3 + \sqrt{3}\right)}{\left(3 - \sqrt{3}\right)\left(3 + \sqrt{3}\right)}$ $= \frac{12 + 6\sqrt{3}}{6} = 2 + \sqrt{3}$
- 4 $\cot(A+B) = 2$ $\Rightarrow \tan(A+B) = \frac{1}{2}$ $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{1}{2}$

But as $\cot A = \frac{1}{4}$, then $\tan A = 4$.

So
$$\frac{4 + \tan B}{1 - 4 \tan B} = \frac{1}{2}$$

 $\Rightarrow 8 + 2 \tan B = 1 - 4 \tan B$
 $\Rightarrow 6 \tan B = -7$
 $\Rightarrow \tan B = -\frac{7}{6}$
So $\cot B = \frac{1}{\tan B} = -\frac{6}{7}$

- 5 a $\cos 105^{\circ} = \cos(45^{\circ} + 60^{\circ})$ $= \cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ}$ $= \frac{1}{\sqrt{2}} \times \frac{1}{2} - \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}$ $= \frac{1 - \sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{2} - \sqrt{6}}{4}$
 - **b** $\sec 105^{\circ} = \frac{1}{\cos 105^{\circ}}$ $= \frac{1}{\sqrt{2} \sqrt{6}} = \frac{4}{\sqrt{2} \sqrt{6}}$ $= \frac{4}{\sqrt{2} \sqrt{6}} \times \frac{\sqrt{2} + \sqrt{6}}{\sqrt{2} + \sqrt{6}}$ $= \frac{4(\sqrt{2} + \sqrt{6})}{-4} = -\sqrt{2}(1 + \sqrt{3})$ So a = 2 and b = 3
- **6** Draw the right-angled triangles containing *A* and *B*

Using Pythagoras' theorem gives x = 3 and $y = \sqrt{3}$

- **a** $\sin(A+B) = \sin A \cos B + \cos A \sin B$ = $\frac{4}{5} \times \frac{\sqrt{3}}{2} + \frac{3}{5} \times \frac{1}{2} = \frac{4\sqrt{3} + 3}{10}$
- **b** $\cos(A B) = \cos A \cos B + \sin A \sin B$ = $\frac{3}{5} \times \frac{\sqrt{3}}{2} + \frac{4}{5} \times \frac{1}{2} = \frac{3\sqrt{3} + 4}{10}$
- $\mathbf{c} \quad \sec(A B) = \frac{1}{\cos(A B)} = \frac{10}{3\sqrt{3} + 4}$ $= \frac{10(3\sqrt{3} 4)}{(3\sqrt{3} + 4)(3\sqrt{3} 4)}$ $= \frac{10(3\sqrt{3} 4)}{27 16}$ $= \frac{10(3\sqrt{3} 4)}{11}$

7 Let $A' = 180^{\circ} - A$. As A is the second quadrant $\cos A' = -\cos A$

Draw a right-angled triangle where $\cos A' = \frac{4}{5}$

Using Pythagoras' theorem x = 3So $\sin A' = \frac{3}{5}$, $\tan A' = \frac{3}{4}$

- **a** As *A* is in the second quadrant, $\sin A = \sin A'$, $\sin A = \frac{3}{5}$
- **b** $\cos(\pi + A) = \cos \pi \cos A \sin \pi \sin A$ $= -\cos A$ As $\cos \pi = -1$, $\sin \pi = 0$ So $\cos(\pi + A) = \frac{4}{5}$
- $\mathbf{c} \quad \sin\left(\frac{\pi}{3} + A\right) = \sin\frac{\pi}{3}\cos A + \cos\frac{\pi}{3}\sin A$ $= \left(\frac{\sqrt{3}}{2}\right)\left(-\frac{4}{5}\right) + \left(\frac{1}{2}\right)\left(\frac{3}{5}\right)$ $= \frac{3 4\sqrt{3}}{10}$
- **d** As A is in the second quadrant,

$$\tan A = -\tan A' = -\frac{3}{4}$$

$$\tan\left(\frac{\pi}{4} + A\right) = \frac{\tan\frac{\pi}{4} + \tan A}{1 - \tan\frac{\pi}{4}\tan A}$$
$$= \frac{1 + \tan A}{1 - \tan A} = \frac{\frac{1}{4}}{\frac{7}{4}} = \frac{1}{7}$$

8 Let $B' = 180^{\circ} - B$. As B is in the second quadrant $\cos B' = -\cos B$, $\sin B' = \sin B$ and $\tan B' = -\tan B$.

Drawing right-angled triangles for *A* and *B'*, use Pythagoras' theorem to find the missing sides, which are 15 and 3.

So
$$\sin A = \frac{8}{17}$$
, $\cos A = \frac{15}{17}$, $\tan A = \frac{8}{15}$
and $\sin B = \frac{3}{5}$, $\cos B = -\frac{4}{5}$, $\tan B = -\frac{3}{4}$

- $\mathbf{a} \quad \sin(A B) = \sin A \cos B \cos A \sin B$ $= \left(\frac{8}{17}\right) \left(-\frac{4}{5}\right) \left(\frac{15}{17}\right) \left(\frac{3}{5}\right)$ $= \frac{-32 45}{85} = -\frac{77}{85}$
- **b** $\cos(A B) = \cos A \cos B + \sin A \sin B$ = $\left(\frac{15}{17}\right)\left(-\frac{4}{5}\right) + \left(\frac{8}{17}\right)\left(\frac{3}{5}\right)$ = $\frac{-60 + 24}{85} = -\frac{36}{85}$
- $\mathbf{c} \quad \tan(A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$ $= \frac{\frac{8}{15} + \frac{3}{4}}{1 \frac{24}{60}} = \frac{\frac{77}{60}}{\frac{36}{60}} = \frac{77}{36}$ So $\cot(A B) = \frac{1}{\tan(A B)} = \frac{36}{77}$

9 Angle A is in the third quadrant as it is reflex and $\tan A$ is positive. Let $A' = A - 180^{\circ}$, so $\sin A = -\sin A'$, $\cos A = -\cos A'$, $\tan A = \tan A'$ Let $B' = 180^{\circ} - B$. As B is in the second quadrant $\cos B' = -\cos B$, $\sin B' = \sin B$ and $\tan B' = -\tan B$.

Drawing right-angled triangles for A' and B' use Pythagoras' theorem to find the missing sides, which are 25 and 12.

So
$$\sin A = -\frac{7}{25}$$
, $\cos A = -\frac{24}{25}$, $\tan A = \frac{7}{24}$
and $\sin B = \frac{5}{13}$, $\cos B = -\frac{12}{13}$, $\tan B = -\frac{5}{12}$

- **a** $\sin(A+B) = \sin A \cos B + \cos A \sin B$ = $\left(-\frac{7}{25}\right)\left(-\frac{12}{13}\right) + \left(-\frac{24}{25}\right)\left(\frac{5}{13}\right)$ = $\frac{84-120}{325} = -\frac{36}{325}$
- $\mathbf{b} \quad \tan(A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$ $= \frac{\frac{7}{24} + \frac{5}{12}}{1 \left(\frac{7}{24}\right)\left(\frac{5}{12}\right)} = \frac{\frac{17}{24}}{\frac{253}{288}} = \frac{204}{253}$

$$\mathbf{c} \quad \csc(A+B) = \frac{1}{\sin(A+B)} = -\frac{325}{36}$$

10 a
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

= $\frac{\frac{1}{5} + \frac{2}{3}}{1 - \frac{1}{5} \times \frac{2}{3}} = \frac{\frac{13}{15}}{\frac{15-2}{15}} = \frac{\frac{13}{15}}{\frac{13}{15}} = 1$

As $\tan (A + B)$ is positive, A + B is in the first or third quadrants, but as A and B are both acute A + B cannot be in the third quadrant, so $A + B = \tan^{-1} 1 = 45^{\circ}$

- **b** A is reflex but $\tan A^{\circ}$ is positive, so A is in the third quadrant, i.e. $180^{\circ} < A < 270^{\circ}$ and $0^{\circ} < B < 90^{\circ}$. As $\tan (A + B)$ is positive, A + B is in the first or third quadrants.
 - As $180^{\circ} < A + B < 360^{\circ}$, it must be in the third quadrant, so $A + B = \tan^{-1} 1 = 225^{\circ}$