مقدمه ای بر رمزنگاری

اصطلاحات

- Plaintext یا Cleartext: متن رمز نشده
 - Ciphertext: متن رمز شده
- Encryption یا Encipher: عملیات رمز کردن متن رمز نشده
- Decryption یا Decipher: عملیات رمزگشایی متن رمز شده
 - Cryptography: علم رمزنگاری
 - Cryptanalysis: علم شکستن رمز
 - Cryptology: مطالعه Cryptography و Cryptology
 - Cryptosystem: الگوریتم هایی که عملیات Cryption و Cryption.

Decryption ₉ Encryption

Cryptosystem انواع

- متقارن (Symmetric)
- کلیدهای Encryption و Decryption یکسان هستند.
 - C = E(K, P) -
 - P = D(K, C) -
 - Secret Key -
 - نامتقارن (Asymmetric)
- كليدهاى Encryption و Decryption متفاوت هستند.
 - $C = E(K_E, P) -$
 - $P = D(K_D, C) -$
 - Public Key -

Cryptosystem انواع

Cryptanalysis

- شکستن پیام
- شكستن كليد
- شكستن الگوريتم

تکنیک های Encryption

- جایگزینی (Substitution)
- استفاده از یک جدول برای جایگزینی کاراکترهای Plaintext
 - مزیت: سادگی
 - ضعف: به سادگی قابل شکستن است.
 - جایگشتی (Transposition یا Transposition)
 - کاراکترهای Plaintext را جابجا می کنیم
 - مزیت: سادگی
 - ضعف: قابل شكستن است.

جایگزینی (Substitution)

Caesar Cipher

$$c_i = E(p_i) = (p_i + 3) \mod 26$$
 •

Plaintext ABCDEFGHIJKLMNOPQRSTUVWXYZ Ciphertext defghijklmnopqrstuvwxyzabc

One-Time Pads

- استفاده از تعداد زیادی کلید غیر تکراری برای رمز کردن
 - نمونه روش ها
 - Long Random Number Sequences
 - Vernam Cipher
 - Book Cipher -

Plaintext	V	Ε	R	N	A	M	C	I	P	H	E	R
Numeric Equivalent	21	4	17	13	0	12	2	8	15	7	4	17
+ Random Number	76	48	16	82	44	3	58	11	60	5	48	88
= Sum	97	52	33	95	44	15	60	19	75	12	52	105
= mod 26	19	0	7	17	18	15	8	19	23	12	0	1
Ciphertext	t	а	h	r	s	D	i	t	x	m	а	Ъ

جایگشتی (Transposition) یا

Columnar Transposition

- Plaintext: $c_1 c_2 c_3 c_4 c_5 c_6 c_7 c_8 c_9 c_{10} c_{11} c_{12}$
- Ciphertext: $c_1 c_6 c_{11} c_2 c_7 c_{12} c_3 c_8 c_4 c_9 c_5 c_{10}$

ترکیب جایگزینی و جایگشتی

Product Cipher

- خروجی الگوریتم (جایگزینی یا جایگشتی) به عنوان ورودی الگوریتم (جایگزینی یا جایگشتی)
 - $C = E_n(E_{n-1}(...(E_1(P, K_1)), K_{n-1}), K_n) \cdot$

انواع رمزنگاری

- **Stream Cipher** •
- هر یک از کاراکترهای Plaintext را به یک کاراکتر Ciphertext تبدیل می کند
 - more secure Block Cipher •
- کار اکتر های Plaintext را به بلاک های مختلف تقسیم می کند و هر بلاک را به یک بلاک Ciphertext تبدیل می کند

Stream Cipher

- الگوریتم های متقارن
 - RC4
 - مزایا
 - سرعت بالا
- میزان انتشار خطای پایین
 - معایب
 - Low Diffusion –
- آسیب پذیر در مقابل تغییرات ایجاد شده در پیام

Stream Cipher

Block Cipher

- الگوریتم های متقارن
- Data Encryption Standard (DES) -
 - Double DES (2DES)
 - Triple DES (3DES) •
- Advanced Encryption Standard (AES) ✓
 - مزایا
 - High Diffusion -
 - مقاوم در مقابل تغییرات ایجاد شده در پیام

 - سرعت پایین میزان انتشار خطای بالا

Data Encryption Standard (DES)

- الگوريتم متقارن
- طول کلید: ۵۶ بیتی
- طول بلاک: ۶۴ بیت

Key is 56 bit. 8 bits are used for paritiy

نحوه اجرای i Round ام

$F(R_{i-1}, K_i)$ محاسبه

Double DES (2DES)

Triple DES (3DES)

Advanced Encryption Standard (AES)

- الگوريتم متقارن
 - طول کلید:
 - تس ۱۲۸ —
 - ۱۹۲ ست
 - ۲۵۶ بیت
- ٔ طول بلاک: ۱۲۸ بیت

Public-Key Cryptography

- دو کلید مختلف برای Encryption و Decryption
 - Public Key) کلید عمومی کلید
 - کلید خصوصی (Private Key)
- $P = D(K_{PR}, E(K_{PU}, P)) = D(K_{PU}, E(K_{PR}, P)) \cdot$
 - الگوريتم نمونه
 - Rivest-Shamir-Adelman (RSA) –

Public-Key Cryptography

Rivest-Shamir-Adelman (RSA)

- دو عدد اول و بزرگ ۱۰۲۴ بیتی p و q را انتخاب می کنیم
 - دو عدد n و z را حساب می کنیم:
 - n = pq –
 - z = (p-1)(q-1) -
 - عدد e را انتخاب می کنیم به طوری که:
 - e < n
 - و z نسبت به هم اول هستند e
 - عدد d را انتخاب می کنیم به طوری که:
 - ed mod z = 1 –
 - دو کلید عمومی و خصوصی را محاسبه می کنیم
 - (n,e): کلید عمومی -
 - کلید خصوصی: (n,d)

(Key Exchange) تبادل کلید

- اشتراک کلید بین فرستند و گیرنده برای تبادل اطلاعات
 - کلید نشست (Session Key)
 - روش
 - Public-Key Key Exchange –

Public-Key Key Exchange

 $A: MSG = E(PU_B, E(K_{session}, PR_A))$

 $B: K_{session} = D(PU_A, D(MSG, PR_B))$

Diffie-Hellman Key Exchange

Two public big prime number (a, p), a < p

$$PR_A < p, PR_B < p$$

$$PU_A = a^{PR_A} \mod p$$

$$PU_B = a^{PR_B} \mod p$$

$$K_{session} = (PU_A)^{PR_B} \mod p = (PU_B)^{PR_A} \mod p$$

صحت پیام (Message Integrity)

- تابع Hash
- Message Authentication Code (MAC)
 - امضای دیجیتال (Digital Signature)
 - گواهینامه (Certificate)

To reach Confidentiality: EncryptionTo

صحت ييام

- Bob پیامی از Alice دریافت می کند
- Bob باید مطمئن باشد که پیام واقعاً از طرف Alice است
 - پیام Alice در بین راه تغییر نکرده باشد

• تابع Hash

- پیام ورودی با هر طولی را به یک پیام با طول ثابت تبدیل می کند
- احتمال اینکه دو پیام مختلف دارای Hashهای یکسان باشند، خیلی پایین است.
 - تابع Hash یک طرفه (One-way Function) است و از روی پیام خروجی نمی توان به پیام اصلی رسید

Message Authentication Code (MAC)

الگوريتم هاى موجود MAC

- Message Digest (MD5)
 - پیام خروجی ۱۲۸ بیتی
- Secure Hash Algorithm (SHA-1)
 - پیام خروجی ۱۶۰ بیتی

امضای دیجیتال (Digital Signature)

- تأیید هویت فرستنده
 - بررسی صحت پیام
 - MAC امضا شده

نحوه کار امضای دیجیتال

Bob پیام امضا شده را می فرستد

Alice صحت و هویت پیام را بررسی می کند

گواهینامه (Certificate)

- اشتراک گذاری کلید عمومی به طور امن — حمله Man-In-The-Middle (MITM)
 - استفاده از امضای دیجیتال
 - Certificate Authority (CA) مرکز صدور گواهینامه

صدور گواهینامه

- Bob کلید عمومی خود را به CA می دهد
- CA، با استفاده از کلید خصوصی خود، کلید عمومی Bob را امضا می کند (گواهینامه)

دریافت کلید عمومی

- Alice می خواهد کلید عمومی Bob را بدست آورد
 - گواهینامه Bob را دریافت می کند.
- از کلید عمومی CA استفاده می کند و کلید عمومی Bob را بدست می آورد.

Certificate Authority

black list of CA: revealed private keys related to certs.

Secure Email

• Alice می خواهد به Bob ایمیل بفرستد - محرمانه باشد

Secure Email

- Alice می خواهد به Bob یک ایمیل بفرستد
 - هویت فرستنده قابل تایید باشد
 - صحت پیام ایمیل قابل تایید باشد

Secure Email

- Alice می خواهد به Bob یک ایمیل بفرستد
 - محرمانه باشد
 - هویت فرستنده قابل تایید باشد

Pretty Good Privacy (PGP)

- استانداردی برای ارسال ایمیل های امن
 - استفاده از:
 - رمزنگاری متقارن
 - رمزنگاری کلید عمومی
 - Hash تابع
 - امضای دیجیتال
 - فراهم کردن:
 - محرمانگی
 - تاييد هويت فرستند
 - صحت پيام

خلاصه

Stream Cipher یا Block Cipher	Symmetric یا Asymmetric	الگوريتم
Block Cipher	Symmetric	DES
Block Cipher	Symmetric	2DES
Block Cipher	Symmetric	3DES
Block Cipher	Symmetric	AES
Stream Cipher	Symmetric	RC4
Block Cipher	Asymmetric	RSA

خلاصه

Public Key (Asymmetric)	Secret Key (Symmectric)	خصوصیت
٢	١	تعداد كليد
کلید خصوصی باید به صورت امن نگهداری شود کلید عمومی می تواند در معرض عموم قرار گیرد	باید به صورت امن نگهداری شود	نگهداری کلید
تعويض كليد وتأييد هويت	رمز کردن و صحت	استفاده
کلید عمومی می تواند برای توزیع دیگر کلیدها استفاده شود	مشکل دارد	تبادل کلید
خیلی پایین	بالا	سرعت