Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса Triangle	9
3.2 Алгоритм метода calculatePerimeter класса Triangle	9
3.3 Алгоритм метода calculateArea класса Triangle	10
3.4 Алгоритм функции main	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	12
5 КОД ПРОГРАММЫ	14
5.1 Файл main.cpp	14
5.2 Файл Triangle.cpp	14
5.3 Файл Triangle.h	15
6 ТЕСТИРОВАНИЕ	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект triangle класса Triangle предназначен для хранит длины сторон треугольника и обеспечивает методы для вычисления периметра и площади треугольника;
- объект cout класса потокового вывода предназначен для предназначен для функционирования системы;
- объект cin класса потокового ввода предназначен для предназначен для функционирования системы;
- функция main для основной алгоритм работы программы. Класс Triangle:
- свойства/поля:
 - о поле первая сторона треугольника:
 - наименование side1;
 - тип целочисленный;
 - модификатор доступа private;
 - о поле вторая сторона треугольника:
 - наименование side2;
 - тип целочисленный;
 - модификатор доступа private;
 - о поле третья сторона треугольника:
 - наименование side3;
 - тип целочисленный;
 - модификатор доступа private;
- функционал:
 - метод Triangle конструктор;

- о метод calculatePerimeter вычисление периметра треугольника;
- о метод calculateArea вычисление площади треугольника.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Triangle

Функционал: конструктор.

Параметры: s1, s2, s3 - длины сторон треугольника.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Triangle

N₂	Предикат	Действия			
		п			
1		определяется конструктор класса "Triangle", который принимает три	три 2		
		целых значения в качестве параметров			
2		присваивается значение параметра 's1' переменной 'side1' внутри	3		
		конструктора класса 'Triangle'			
3		присваивается значение параметра 's2' переменной 'side2' внутри	4		
		конструктора класса 'Triangle'			
4		присваивается значение параметра 's3' переменной 'side3' внутри	Ø		
		конструктора класса 'Triangle'			

3.2 Алгоритм метода calculatePerimeter класса Triangle

Функционал: вычисление периметра треугольника.

Параметры: отсутствуют.

Возвращаемое значение: целочисленное значение, равное значению периметру треугольника.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода calculatePerimeter класса Triangle

No	Предикат	Действия	No
			перехода
1		определение метода 'calculatePerimeter()' класса 'Triangle'	2
2		вычисление суммы длин сторон треугольника и ее возврат	Ø

3.3 Алгоритм метода calculateArea класса Triangle

Функционал: вычисление площади треугольника.

Параметры: отсутствуют.

Возвращаемое значение: значение типа 'double' - площадь треугольника.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода calculateArea класса Triangle

N₂	Предикат	Действия			
		r			
1		определение метода 'calculateArea()' класса 'Triangle'	2		
2		инициализация переменной 's' значением полупериметра	3		
		треугольника, которое вычисляется как половина значения,			
	возвращаемого методом 'calculatePerimeter()'				
3		вычисление площади треугольника используя формулу Герона			

3.4 Алгоритм функции main

Функционал: основной алгоритм работы программы.

Параметры: отсутсвуют.

Возвращаемое значение: целочисленный индикатор корректности завершения работы.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

№ Предикат Действия №

			перехода
1		объявление целочисленных переменных s1, s2, s3	2
2		ввод значения переменных s1, s2, s3 с клавиатуры	3
3		создается объект класса 'Triangle' с именем 'triangle', используя конструктор с передачей аргументов 's1', 's2', 's3'	
4		вывод на экран "Р = ", значение периметра треугольника 5	
5	вывод на экран "S = ", значение площади треугольника		Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include "Triangle.h"

using namespace std;

int main() {
   int s1, s2, s3;

   cin >> s1 >> s2 >> s3;

   Triangle triangle(s1, s2, s3);

   cout << "P = " << triangle.calculatePerimeter() << endl;
   cout << "S = " << triangle.calculateArea() << endl;
   return 0;
}</pre>
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
#include <cmath>

Triangle::Triangle(int s1, int s2, int s3) {
    side1 = s1;
    side2 = s2;
    side3 = s3;
}

int Triangle::calculatePerimeter() {
```

```
return side1 + side2 + side3;
}

double Triangle::calculateArea() {
   double s = calculatePerimeter() / 2.0;
   return sqrt(s * (s - side1) * (s - side2) * (s - side3));
}
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

```
#ifndef __TRIANGLE__H
#define __TRIANGLE__H

class Triangle{
  private:
    int side1, side2, side3;

public:
    Triangle(int s1, int s2, int s3);
    int calculatePerimeter();
    double calculateArea();
};

#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
5 10 8	P = 23 S = 19.81	P = 23 S = 19.81

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).