=> Irreflexive Relation: A relation R on that set A is irreflexive if for every $a \in A$, $(a, 0) \notin R$. $R = \{(1,1), (1,2)\}$ — Not Irreflouve $R = \{(1,2), (1,3), (2,1)\}$ - Irreflexive

-> Non-Reflaxive Relation: A relation R on the set A is non-Reflaxive if for some a CA, (9,9) ER, but not all.

R= { (1,1), (1,2) } - Non-Reflaxive

-> Asymmetric Relation: A relation Ron the set A is called asymmetric if $(a,b) \in \mathbb{R} \implies (b,a) \notin \mathbb{R}$.

* Combining Relations (Operation) Because relations from A to B are subsets of AXB, turo relations from A to B can be combined in any way two sets can be countined.

Ex. $A = \{1, 2, 3\}$ $B = \{1, 2, 3, 4\}$ $R_1 = \{(1,1),(2,2),(3,3)\}$

 $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$

 $R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$ RINR2 = { (1,1) }

 $R_1 - R_2 = \{(2,2), (3,3)\}$

 $R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$

 $R_1 \oplus R_2 = \{(1,2), (1,3), (1,4), (2,2), (3,3)\}$

Composite Relation

Sa relation from B to set A to a set B and S a relation from B to set C. The composite of pair (0,c), where a $\in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$.

 $R: \{1,2,3\} \rightarrow \{1,2,3,4\}$ $R: \{1,1,2,3\} \rightarrow \{1,2,3,4\}$ $S: \{1,1,2,3\} \rightarrow \{0,1,2\}$ $S: \{1,2,3,4\} \rightarrow \{0,1,2\}$ $S=\{(1,0),(1,0),(3,1),(3,2),(4,1)\}$ $S\circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$

The powers of a transitive relation R are subsets of this relation; that is, RMCR, m=1,2,3,...