

EXERCISE 11.3

Question 1:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$

Ans:

The given equation is $\frac{x^2}{36} + \frac{y^2}{16} = 1$.

Here, the denominator of $\frac{x^2}{36}$ is greater than the denominator of $\frac{y^2}{16}$.

Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we obtain a = 6 and b = 4.

$$c = \sqrt{a^2 - b^2} = \sqrt{36 - 16} = \sqrt{20} = 2\sqrt{5}$$

Therefore,

The coordinates of the foci are $\left(2\sqrt{5},0\right)$ and $\left(-2\sqrt{5},0\right)$

The coordinates of the vertices are (6, 0) and (-6, 0).

Length of major axis = 2a = 12

Length of minor axis = 2b = 8

Eccentricity,
$$e = \frac{c}{a} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3}$$

Length of latus rectum
$$=$$
 $\frac{2b^2}{a} = \frac{2 \times 16}{6} = \frac{16}{3}$

Question 2:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{4} + \frac{y^2}{25} = 1$

The given equation is $\frac{x^2}{4} + \frac{y^2}{25} = 1$ or $\frac{x^2}{2^2} + \frac{y^2}{5^2} = 1$.

Here, the denominator of $\frac{y^2}{25}$ is greater than the denominator of $\frac{x^2}{4}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing the given equation with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 2 and a = 5.

$$c = \sqrt{a^2 - b^2} = \sqrt{25 - 4} = \sqrt{21}$$

Therefore,

The coordinates of the foci are $\left(0,\sqrt{21}\right)$ and $\left(0,-\sqrt{21}\right)$

The coordinates of the vertices are (0, 5) and (0, -5)

Length of major axis = 2a = 10

Length of minor axis = 2b = 4

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{21}}{5}$$

Length of latus rectum
$$=$$
 $\frac{2b^2}{a} = \frac{2 \times 4}{5} = \frac{8}{5}$

Question 3:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Ans:

The given equation is
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 or $\frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$.

Here, the denominator of $\frac{x^2}{16}$ is greater than the denominator of $\frac{y^2}{9}$.

Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we obtain a = 4 and b = 3.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{16 - 9} = \sqrt{7}$$

Therefore,

The coordinates of the foci are $\left(\pm\sqrt{7},0\right)$.

The coordinates of the vertices are $(\pm 4,0)$.

Length of major axis = 2a = 8

Length of minor axis = 2b = 6

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{7}}{4}$$

Length of latus rectum
$$=\frac{2b^2}{a} = \frac{2 \times 9}{4} = \frac{9}{2}$$

Question 4:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{25} + \frac{y^2}{100} = 1$

The given equation is $\frac{x^2}{25} + \frac{y^2}{100} = 1$ or $\frac{x^2}{5^2} + \frac{y^2}{10^2} = 1$.

Here, the denominator of $\frac{y^2}{100}$ is greater than the denominator of $\frac{x^2}{25}$

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing the given equation with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 5 and a = 10.

$$c = \sqrt{a^2 - b^2} = \sqrt{100 - 25} = \sqrt{75} = 5\sqrt{3}$$

Therefore,

The coordinates of the foci are $(0, \pm 5\sqrt{3})$.

The coordinates of the vertices are $(0, \pm 10)$.

Length of major axis = 2a = 20

Length of minor axis = 2b = 10

Eccentricity,
$$e = \frac{c}{a} = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}$$

Length of latus rectum
$$=$$
 $\frac{2b^2}{a} = \frac{2 \times 25}{10} = 5$

Ouestion 5:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{49} + \frac{y^2}{36} = 1$

Ans

The given equation is
$$\frac{x^2}{49} + \frac{y^2}{36} = 1$$
 or $\frac{x^2}{7^2} + \frac{y^2}{6^2} = 1$.

Here, the denominator of $\frac{x^2}{49}$ is greater than the denominator of $\frac{y^2}{36}$.

Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we obtain a = 7 and b = 6.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{49 - 36} = \sqrt{13}$$

Therefore,

The coordinates of the foci are $\left(\pm\sqrt{13},0\right)$.

The coordinates of the vertices are $(\pm 7, 0)$.

Length of major axis = 2a = 14

Length of minor axis = 2b = 12

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{13}}{7}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 36}{7} = \frac{72}{7}$$

Question 6:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{100} + \frac{y^2}{400} = 1$

The given equation is $\frac{x^2}{100} + \frac{y^2}{400} = 1$ or $\frac{x^2}{10^2} + \frac{y^2}{20^2} = 1$.

Here, the denominator of $\frac{y^2}{400}$ is greater than the denominator of $\frac{x^2}{100}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing the given equation with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 10 and a = 20.

$$c = \sqrt{a^2 - b^2} = \sqrt{400 - 100} = \sqrt{300} = 10\sqrt{3}$$

Therefore.

The coordinates of the foci are $\left(0,\pm 10\sqrt{3}\right)$.

The coordinates of the vertices are (0, ±20)

Length of major axis = 2a = 40

Length of minor axis = 2b = 20

Eccentricity,
$$e = \frac{c}{a} = \frac{10\sqrt{3}}{20} = \frac{\sqrt{3}}{2}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 100}{20} = 10$$

Question 7:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36x^2 + 4y^2 = 144$

Ans

The given equation is $36x^2 + 4y^2 = 144$.

It can be written as

$$36x^2 + 4y^2 = 144$$

Or,
$$\frac{x^2}{4} + \frac{y^2}{36} = 1$$

Or,
$$\frac{x^2}{2^2} + \frac{y^2}{6^2} = 1$$
 ...(1)

Here, the denominator of $\frac{y^2}{6^2}$ is greater than the denominator of $\frac{x^2}{2^2}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing equation (1) with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 2 and a = 6.

$$\therefore c = \sqrt{a^2 - b^2} = \sqrt{36 - 4} = \sqrt{32} = 4\sqrt{2}$$

Therefore,

The coordinates of the foci are $(0, \pm 4\sqrt{2})$.

The coordinates of the vertices are $(0, \pm 6)$.

Length of major axis = 2a = 12

Length of minor axis = 2b = 4

Eccentricity,
$$e = \frac{c}{a} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}$$

Length of latus rectum
$$=$$
 $\frac{2b^2}{a} = \frac{2 \times 4}{6} = \frac{4}{3}$

Question 8:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16x^2 + y^2 = 16$

Ans:

The given equation is $16x^2 + y^2 = 16$.

It can be written as

$$16x^2 + v^2 = 16$$

Or,
$$\frac{x^2}{1} + \frac{y^2}{16} = 1$$

Or,
$$\frac{x^2}{1^2} + \frac{y^2}{4^2} = 1$$

Here, the denominator of $\frac{y^2}{4^2}$ is greater than the denominator of $\frac{x^2}{1^2}$.

Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis.

On comparing equation (1) with $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, we obtain b = 1 and a = 4.

$$c = \sqrt{a^2 - b^2} = \sqrt{16 - 1} = \sqrt{15}$$

Therefore,

The coordinates of the foci are $(0, \pm \sqrt{15})$.

The coordinates of the vertices are $(0, \pm 4)$.

Length of major axis = 2a = 8

Length of minor axis = 2b = 2

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{15}}{4}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 1}{4} = \frac{1}{2}$$

Question 9:

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4x^2 + 9y^2 = 36$

Ans:

The given equation is $4x^2 + 9y^2 = 36$.

It can be written as

$$4x^2 + 9y^2 = 36$$

Or,
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Or,
$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$
 ...(1

Here, the denominator of $\frac{x^2}{3^2}$ is greater than the denominator of $\frac{y^2}{2^2}$.

Therefore, the major axis is along the x-axis, while the minor axis is along the y-axis.

On comparing the given equation with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we obtain a = 3 and b = 2.

$$c = \sqrt{a^2 - b^2} = \sqrt{9 - 4} = \sqrt{5}$$

Therefore

The coordinates of the foci are $(\pm \sqrt{5}, 0)$.

The coordinates of the vertices are (±3, 0).

Length of major axis = 2a = 6

Length of minor axis = 2b = 4

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{5}}{3}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 4}{3} = \frac{8}{3}$$

Question 10:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 5, 0)$, foci $(\pm 4, 0)$

Ans:

Vertices (±5, 0), foci (±4, 0)

Here, the vertices are on the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the semi-major axis.

Accordingly, a = 5 and c = 4.

It is known that $a^2 = b^2 + c^2$.

$$\therefore 5^2 = b^2 + 4^2$$

$$\Rightarrow 25 = b^2 + 16$$

$$\Rightarrow b^2 = 25 - 16$$

$$\Rightarrow b = \sqrt{9} = 3$$

Thus, the equation of the ellipse is $\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$ or $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

Question 11:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

Ans:

Vertices (0, ±13), foci (0, ±5)

Here, the vertices are on the y-axis

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where a is the semi-major axis.

Accordingly, a = 13 and c = 5.

It is known that $a^2 = b^2 + c^2$.

$$13^2 = b^2 + 5^2$$

$$\Rightarrow$$
 169 = b^2 + 25

$$\Rightarrow b^2 = 169 - 25$$

$$\Rightarrow b = \sqrt{144} = 12$$

Thus, the equation of the ellipse is $\frac{x^2}{12^2} + \frac{y^2}{13^2} = 1$ or $\frac{x^2}{144} + \frac{y^2}{169} = 1$.

Question 12:

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6, 0)$, foci $(\pm 4, 0)$

Ans:

Vertices (±6, 0), foci (±4, 0)

Here, the vertices are on the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the semi-major axis.

Accordingly, a = 6, c = 4.

It is known that $a^2 = b^2 + c^2$.

$$\therefore 6^2 = b^2 + 4^2$$

$$\Rightarrow$$
 36 = b^2 + 16

$$\Rightarrow b^2 = 36 - 16$$

$$\Rightarrow b = \sqrt{20}$$

Thus, the equation of the ellipse is $\frac{x^2}{6^2} + \frac{y^2}{\left(\sqrt{20}\right)^2} = 1$ or $\frac{x^2}{36} + \frac{y^2}{20} = 1$.

Question 13:

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$

Ans:

Ends of major axis $(\pm 3, 0)$, ends of minor axis $(0, \pm 2)$

Here, the major axis is along the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the semi-major axis.

Accordingly, a = 3 and b = 2.

Thus, the equation of the ellipse is $\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$ i.e., $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

Question 14:

Find the equation for the ellipse that satisfies the given conditions: Ends of major $axis(0, \pm \sqrt{5})$, ends of minor axis (±1, 0)

Ans:

Ends of major axis $\left(0, \pm \sqrt{5}\right)$, ends of minor axis $(\pm 1, 0)$

Here, the major axis is along the y-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where a is the semi-major axis.

Accordingly, $a = \sqrt{5}$ and b = 1.

Thus, the equation of the ellipse is $\frac{x^2}{1^2} + \frac{y^2}{\left(\sqrt{5}\right)^2} = 1$ or $\frac{x^2}{1} + \frac{y^2}{5} = 1$.

Question 15:

Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26, foci $(\pm 5, 0)$

Ans:

Length of major axis = 26; foci = $(\pm 5, 0)$.

Since the foci are on the x-axis, the major axis is along the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the semi-major axis.

Accordingly, $2a = 26 \square a = 13$ and c = 5.

It is known that $a^2 = b^2 + c^2$

$$13^2 = b^2 + 5^2$$

$$\Rightarrow$$
 169 = b^2 + 25

$$\Rightarrow b^2 = 169 - 25$$

$$\Rightarrow b = \sqrt{144} = 12$$

Thus, the equation of the ellipse is $\frac{x^2}{13^2} + \frac{y^2}{12^2} = 1$ or $\frac{x^2}{169} + \frac{y^2}{144} = 1$.

Ouestion 16:

Find the equation for the ellipse that satisfies the given conditions: Length of minor axis 16, foci $(0, \pm 6)$

Length of minor axis = 16; foci = $(0, \pm 6)$.

Since the foci are on the y-axis, the major axis is along the y-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where a is the semi-major axis.

Accordingly, $2b = 16 \square b = 8$ and c = 6.

It is known that $a^2 = b^2 + c^2$.

$$\therefore a^2 = 8^2 + 6^2 = 64 + 36 = 100$$
$$\Rightarrow a = \sqrt{100} = 10$$

Thus, the equation of the ellipse is $\frac{x^2}{8^2} + \frac{y^2}{10^2} = 1$ or $\frac{x^2}{64} + \frac{y^2}{100} = 1$.

Question 17:

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3, 0)$, a = 4

Ans:

Foci $(\pm 3, 0)$, a = 4

Since the foci are on the x-axis, the major axis is along the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the semi-major axis.

Accordingly, c = 3 and a = 4.

It is known that $a^2 = b^2 + c^2$.

$$\therefore 4^2 = b^2 + 3^2$$
$$\Rightarrow 16 = b^2 + 9$$

$$\Rightarrow b^2 = 16 - 9 = 7$$

Thus, the equation of the ellipse is $\frac{x^2}{16} + \frac{y^2}{7} = 1$.

Question 18:

Find the equation for the ellipse that satisfies the given conditions: b = 3, c = 4, centre at the origin; foci on the x axis.

Ans:

It is given that b = 3, c = 4, centre at the origin; foci on the x axis.

Since the foci are on the x-axis, the major axis is along the x-axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a is the semi-major axis.

Accordingly, b = 3, c = 4.

It is known that $a^2 = b^2 + c^2$.

$$\therefore a^2 = 3^2 + 4^2 = 9 + 16 = 25$$

$$\Rightarrow a = 5$$

Thus, the equation of the ellipse is $\frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$ or $\frac{x^2}{25} + \frac{y^2}{9} = 1$.

Question 19:

Find the equation for the ellipse that satisfies the given conditions: Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6).

Since the centre is at (0,0) and the major axis is on the y-axis, the equation of the ellipse will be of the form

$$\frac{x^2}{h^2} + \frac{y^2}{a^2} = 1 \qquad ...(1)$$

Where, a is the semi-major axis

The ellipse passes through points (3, 2) and (1, 6). Hence,

$$\frac{9}{b^2} + \frac{4}{a^2} = 1 \qquad ...(2)$$

$$\frac{1}{b^2} + \frac{36}{a^2} = 1$$
 ...(3)

On solving equations (2) and (3), we obtain $b^2 = 10$ and $a^2 = 40$.

Thus, the equation of the ellipse is $\frac{x^2}{10} + \frac{y^2}{40} = 1$ or $4x^2 + y^2 = 40$.

Question 20:

Find the equation for the ellipse that satisfies the given conditions: Major axis on the x-axis and passes through the points (4, 3) and (6, 2).

Ans:

Since the major axis is on the x-axis, the equation of the ellipse will be of the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad ...(1)$$

Where, a is the semi-major axis

The ellipse passes through points (4, 3) and (6, 2). Hence,

$$\frac{16}{a^2} + \frac{9}{b^2} = 1$$
 ...(2

$$\frac{36}{a^2} + \frac{4}{b^2} = 1$$
 ...(3)

On solving equations (2) and (3), we obtain $a^2 = 52$ and $b^2 = 13$.

Thus, the equation of the ellipse is $\frac{x^2}{52} + \frac{y^2}{13} = 1$ or $x^2 + 4y^2 = 52$.

*********** END ********