電腦數值機類編

實習一 (a)

B03702030 吳懿峰 2017.03.04

(a)、運用 Excel 帶入公式計算黑洞半徑

太陽質 量倍數	M 黑洞質量 (kg)	G 重力常數	c 光速(m/s)	r 黑洞半徑(m)
3.2	6.36512E+30	6.67E-11	2.998E+08	9.450E+03
4	7.9564E+30	6.67E-11	2.998E+08	1.181E+04
5	9.9455E+30	6.67E-11	2.998E+08	1.477E+04
6	1.19346E+31	6.67E-11	2.998E+08	1.772E+04
7	1.39237E+31	6.67E-11	2.998E+08	2.067E+04
8	1.59128E+31	6.67E-11	2.998E+08	2.362E+04
9	1.79019E+31	6.67E-11	2.998E+08	2.658E+04
10	1.9891E+31	6.67E-11	2.998E+08	2.953E+04
100	1.9891E+32	6.67E-11	2.998E+08	2.953E+05
1000	1.9891E+33	6.67E-11	2.998E+08	2.953E+06
10000	1.9891E+34	6.67E-11	2.998E+08	2.953E+07

步驟說明

- 1. 在黑洞質量 M 設定方程式=太陽質量倍數*1.9891*1E+30
- 2. 輸入重力常數 G=6.67E-11
- 3. 輸入光速 c=2.998E+08
- 4. 在黑洞半徑 r 欄設定方程式=2*M*G/(c*c)
- 5. 將太陽質量倍數依序填入所要求倍數
- 6. 將各表格向下拉即可得結果如上述附圖

心得發現

將上述整理之表格以折線圖呈現

發現黑洞半徑與其質量之關係是從 3.2 單位的太陽質量開始 以 2G/c²為正斜率之一直線

問題二、 如果地球成為一個 黑洞,其半徑為何? 事實上,地球不可能成為一個黑洞,因為黑洞的生成是源自極大質量的超巨星能量耗盡塌陷,而地球只是一顆行星,內部能量不足以成為一個黑洞。但如果我們假設有一個與地球質量相等且能量足夠成為黑洞的星球,其黑洞半徑算式為: $2*6.00E+24*G/c^2$,經由 excel 計算可得半徑 r=8.908E-03

問題三、本題的心得或想法

在實習一 (a)中,其操作仍屬基本,僅需輸入幾個簡單的算式便能知道結果,看來這只是這堂課的暖身! 比較難的地方反而在於製作圖表部分,如何達到比較清晰明瞭的表達方式的確讓我花了較多的時間,最後成功做出底座標對數刻度為10的圖表,也順便教了不會的同學,也算是學到了不錯的一課!

模擬導論

實習一(b)運用 excel 計算 P-B ratio

B03702030。

2017.03.04

問題一、列出5種金屬的P-B ratio

物質	density	mass	V	P-B ratio
Mg	1.74	24.31	13.97	0.805924
MgO	3.58	40.31	11.26	
Fe	7.87	55.85	7.10	4.525894
Fe ₂ O ₃	5.24	168.30	32.12	
Al	2.70	26.98	9.99	2.574059
Al ₂ O ₃	3.95	101.60	25.72	
Cr	7.15	52.00	7.27	4.003831
Cr ₂ O ₃	5.22	152.00	29.12	
Ti	4.51	47.87	10.61	1.77892
TiO ₂	4.23	79.87	18.88	

操作步骤

- 1.輸入個別物質資料
- 2.利用公式 V=mass/density 算出金 屬及其氧化物的體積
- 3. 再利用 P-B ratio= 氧化物 V/金屬
- 4. 得結果如左表所示

問題二、哪幾種金屬較易生鏽? 各是什麼成因?

根據上述表格可知, P-B ratio 不在 1 與 2 之間的 Mg、Fe、Al、Cr 理論上 是較易生鏽的金屬,然實際上 Mg 與 AI在生鏽時會生成一緻密氧化物以保 護金屬減緩繼續氧化, Cr 也是如此, 如我們市面上看到的不鏽鋼基本上都 含有鉻, 原因是因為鉻在氧化也會生 成「鉻氧化膜」以防止繼續生鏽,因 此總觀來看,上述金屬中最容易生鏽 的金屬應是鐵。

問題三、 上述判斷標準有沒有例外, 若有, 請猜測原因。

首先根據課本與網路上的資料。我得出來的結論是實習講義 的公式並不完整。P-B ratio 除了氧化物體積要除以金屬體 積以外, 還需要除掉每個氧化物分子中所含的金屬離子個 數. 舉例來說, 雖然上術表格 AI 的 P-B ratio 是 2.57, 但 因為要除以氧化物金屬離子個數 2. 所以正確的 P-B ratio 應為 1.285 為一不易生鏽金屬(如同上個問題所說,會形成 緻密保護膜)。 然除此之外, 當然還是有例外的。在 P-B ratio這個公式中的基本假設是氧需要通過氧化物來擴散到 金屬、但現實中通常是金屬離子擴散到空氣與氧化物的介 面, 也就造成這個公式是存在許多例外狀況。

問題四、請再查出另外五種金屬資料並計算其 P-B ratio

物質	density	mass	V	P-B ratio
Ca	1.55	40.08	25.86	0.647392
CaO	3.35	56.08	16.74	
Pb	11.34	207.20	18.27	1.281813
PbO	9.53	223.20	23.42	
Ni	8.91	58.69	6.59	1 700005
NiO	6.67	74.69	11.20	1.700005
Pt	21.45	195.08	9.09	2.447898
PtO ₂	10.20	227.08	22.26	
Cu	8.96	63.55	7.09	1 777 47 4
CuO	6.31	79.55	12.61	1.777474

1.維基百科:

https://en.wikipedia.org/wiki/Pilling%E2%80%93Bedworth_ratio

2. Revolvy:

https://www.revolvy.com/main/index.php?s=Pilling%E2%80%93Bedwort

h%20ratio&item_type=topic