PSALTer results panel $S = \left\{ \iiint \left(\frac{1}{6} \left(2 \left(t_{1} - 2 t_{3} \right) \mathcal{A}^{\alpha_{1}}_{\alpha} \mathcal{A}^{\beta_{1}}_{\theta} + 6 \mathcal{A}^{\alpha \beta \chi}_{\alpha} \mathcal{A}^{\beta_{1}}_{\alpha} + 6 f^{\alpha \beta_{1}}_{\alpha} \tau_{(\Delta + \mathcal{K})_{\alpha \beta}} - 4 t_{1}^{2} \mathcal{A}^{\beta_{1}}_{\alpha} \partial_{\theta} \partial_{\theta} \partial_{\theta}^{\alpha_{1}} + 4 t_{2}^{2} \partial_{\theta} \mathcal{A}^{\alpha_{1}}_{\alpha} \partial_{\theta} \partial_{\theta}^{\alpha_{1}} \partial_{\theta}^{\alpha_$

Wave operator

	${}^{\circ}\mathcal{A}^{\shortparallel}$	ĕ <i>f</i> "	• f =	°. A"										
^{0,⁺} Æ [∥] †	<i>t</i> . 3	9	0	Θ										
⁰ ⁺f [∥] †	$i\sqrt{2}kt$	$\begin{array}{ccc} \cdot & 2 k^2 t \\ 3 & & 3 \end{array}$	Θ	Θ										
${\stackrel{0^+}{\cdot}}f^\perp$ †	Θ	0	0	Θ										
⁰⁻ .Æ [∥] †	0	0	0	$k^2 r_{\bullet} - t_{\bullet}$	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}^{\parallel}{}_{lphaeta}$	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}{\mathcal A}^{\scriptscriptstyle \perp}{}_{lphaeta}$	$ f^{\dagger}_{\bullet}f^{\dagger}_{\alpha\beta}$	${\stackrel{1^-}{\cdot}}\mathscr{H}^{\parallel}{}_{\alpha}$	${}^{1^{-}}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$^{1} \cdot f^{\perp}_{\alpha}$			
				$^{1^{+}}\mathcal{A}^{\parallel}$ † lphaeta	$k^2 r_{.5} - \frac{t_{.1}}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_{\frac{1}{2}}}{\sqrt{2}}$	0	Θ	0	Θ			
				$^{1^{+}}_{\bullet}\mathcal{A}^{\perp}$ † lphaeta	· V Z		0	0	0	0	0			
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	0	Θ	0	0	0	0			
				${}^{1}\overline{\cdot}\mathcal{A}^{\parallel}{}^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_{.5} + t_{.7} + 4 t_{.3} \right)$	$\frac{t_1-2t_3}{3}$	0	$\frac{1}{3} i k \left(t_{1} - 2 t_{3} \right)$			
				1 - \mathcal{A}^{\perp} \dagger^{α}	0	0	Θ	$\frac{t \cdot -2t}{\frac{1}{3}\sqrt{2}}$	$\frac{t \cdot +t \cdot }{\frac{1}{3}}$	0	$\frac{1}{3} i \sqrt{2} k \left(t_1 + t_3\right)$			
				$\frac{1}{\cdot}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{\cdot}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3} i k \left(t_1 - 2 t_3\right)$	$-\frac{1}{3} i \sqrt{2} k \left(t_{1} + t_{3}\right)$	0	$\frac{2}{3} k^2 \left(t_{\cdot \cdot} + t_{\cdot \cdot} \right)$	${}^{2^{\scriptscriptstyle +}}_{\scriptscriptstyle \bullet}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^{+}_{\bullet}f^{\parallel}_{\alpha\beta}$	${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}{}_{\alpha\beta\chi}$
											${}^{2^+}_{ullet}\mathcal{A}^{\parallel} \stackrel{lphaeta}{+}$		$-\frac{i k t}{\sqrt{2}}$	0
											$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t_{\frac{1}{2}}}{\sqrt{2}}$	$k^2 t$.	0
											${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lphaeta\chi}$	0	0	$\frac{t}{\frac{1}{2}}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
${\stackrel{0^+}{\cdot}} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} = 0$	1
$-2 i k \cdot \sigma^{\parallel} + \cdot \tau^{\parallel} = 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- ₁ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = = \partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k \frac{2^{+}}{\cdot} \sigma^{\parallel}^{\alpha\beta} + \frac{2^{+}}{\cdot} \tau^{\parallel}^{\alpha\beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}_{\ \chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\alpha}\partial$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} +$	
	$ 6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} \left(\Delta + \mathcal{K} \right)^{\chi\delta} - 2 \ \eta^{\alpha\beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} - 4 \ i \ \eta^{\alpha\beta} \ k^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0 $	

Massive spectrum

Total expected gauge generators:

Massive par	ticle	Massive particle			
Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$	Pole residue:	$\frac{6t.t.(t.+t.)-3r.(t.}{2r.(t.+t.)(-3t.t.+r)}$		
Square mass: Spin:	$\frac{\frac{t}{1}}{\frac{r}{2}} > 0$	Square mass:	$-\frac{3t.t.}{\frac{1}{1}\frac{3}{3}} > 0$		
Parity:	Odd	Spin:	1		
r direy.	oud	Parity:	Odd		

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0 && r. < 0 && t. < -t.2 3 5 1 3