

Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 4(g)

Additional Chapter 4 Examples

Example: Polarization Field

The voltage difference applied to a parallel-plate capacitor is 6 V.

The distance between the two plates is 2 mm.

The dielectric placed between the plates is polystyrene, $\varepsilon_r = 2.55$.

Within the plates, calculate (a) \mathbf{E} , (b) \mathbf{D} , and (c) \mathbf{P} .

Example: Resistance, Coaxial

Determine the total resistance between the inner conductor at radius a and the outer conductor at radius b.

The length of the structure is L and the conductivity of the material between radius a and radius b is σ .

Example: Vector Field, Sketch

Sketch this vector field:
$$\mathbf{J} = \begin{cases} 0 \frac{\text{mA}}{\text{mm}^2} & |y| > 2\\ 100e^{-|y|} \hat{\mathbf{x}} & \frac{\text{mA}}{\text{mm}^2} & |y| \leq 2 \end{cases}$$

Example: Capacitance, Coaxial

Determine the capacitance of this <u>coaxial</u> structure (in terms of a, b, L, and ε).

$$\mathbf{E} = -\frac{\rho_l}{2\pi\varepsilon \, r} \, \hat{\mathbf{r}}$$

Example: Current Density

If $\mathbf{J} = \mathbf{z} \, 25/r$ (mA/mm²) inside a wire centered on the z axis, find the current I flowing through the wire if its radius is 5 mm.

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

Example: Grounded Conductor

The space $x \le 0$, $y \le 0$ is occupied by a grounded conductor.

(In other words, Quadrant I is the only quadrant that is not grounded.)

A charge of 100 nC is placed at (3 m, 4 m, 0).

At the point (3 m, 5 m, 0), determine (a) the absolute electric potential and

(b) the electric field intensity.

Assume $\varepsilon = \varepsilon_0$.