

AU OPTRONICS CORPORATION

- () Preliminary Specifications (V) Final Specifications

Module	10.1"(10.01") WXGA 16:10 Color TFT-LCD
Model Name	B101EAN01.5 (H/W: 0A) LCM
Note (🗭)	LED Backlight with driving circuit design

Customer	Date		Approved by	Date
			<u>YW Lee</u>	Aug 28, 2014
Checked & Approved by	Date		Prepared by	
			NC Yeh	Aug 28, 2014
Note: This Specification is subject to change without notice.				eting Division es corporation

AU OPTRONICS CORPORATION

Contents

Ι.	. nanding Precautions	4
2.	. General Description	5
	2.1 General Specification	5
	2.2 Optical Characteristics	6
3.	. Functional Block Diagram	11
4.	. Absolute Maximum Ratings	12
	4.1 Absolute Ratings of TFT LCD Module	
	4.2 Absolute Ratings of Environment	
5.	. Electrical Characteristics	
	5.1 TFT LCD Module	
	5.2 Backlight Unit	
6.	. Signal Interface Characteristic	
	6.1 Pixel Format Image	
	6.2 Integration Interface Requirement	
	6.3 MIPI Interface Timing	
	6.4 Power ON/OFF Sequence	
7.	. Panel Reliability Test	
	7.1 Vibration Test	
	7.2 Shock Test	
	7.3 Reliability Test	
8.	. Mechanical Characteristics	
	8.1 Standard Front View	
	8.2 Standard Rear View	
9.	. Shipping and Package	
-	9.1 Shipping Label Format	
	9.2 Carton Label Format	
10	0. Appendix	
_ `	10.1 FDID Description	28

AU OPTRONICS CORPORATION

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 08/14/2013		First Edition for Customer		
0.2 09/13/2013	12,23		Modify Absolute Ratings of Environment	
0.2 00/10/2010	12,20		Add Panel Reliability Test	_
0.3 10/02/2013	26,27		Modify 9.1 & 9.2 Label	
			Add 10.1 EDID Description	
0.4 10/23/2013	20	MIPI Pin 28	MIPI Pin 28	
		"NC", Not Connection	"GND", Ground	
0.5 11/14/2013	24	Front View Drawing	Front View Drawing	
		Upper Pol Size&Position	Upper Pol Size&Position	
0.6 11/29/2013	11,22		Functional Block Diagram (Add P Gamma)	
			Power ON/OFF Sequence (No SMBUS)	
0.7 12/17/2013	18		Add 5.2 Backlight Unit	
			5.2.1 LED characteristics	
0.8 01/09/2014	06		Update 2.2 Optical Characteristics	
	18		5.2 Backlight Unit	
0.9 04/01/2014	23		Update 6.4 Power ON/OFF Sequence	
0.10 04/25/2014	18		Update 5.2.2 Backlight input signal	
	20		characteristics	
	21		Update 6.2.2 MIPI Pin Assignment	
0.11 2014/04/28	05	General Specification	Length : Min. : 227.42 mm	
		Physical Size : Length & Width	Width : Min . : 147.5 mm	
0.12 2014/05/05	06	Response Time		
0.13 2014/05/20	0.1	•	Response Time : 38 msec (Max.)	
0.13 2014/05/20	21		Update 6.3.1 Timing Characteristics	
			Horizontal Section:	
			Period(TH): 1,340 Min.; 1,480 Typ.	
			Blanking(THB) : 60 Min.	
0.14 2014/06/03	27		Update 9.1 Shipping Label Format	
0.15 2014/07/18			Update 6.2.2 MIPI Pin Assignment	
	21 23		Update 6.4 Power ON/OFF Sequence	
0.16 2014/07/30		Width: 147.8 +/- 0.3mm		1
	25		Width: 148.3 +/- 0.3mm	
	27		Update 8.1 Standard Front View	
			Update Label HW : 0A -> 1A	

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 11) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

AU OPTRONICS CORPORATION

2. General Description

B101EAN01.5 is a 10.1 inch-wide Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The display supports the 16:10 WXGA, 1280(H) x800(V) screen and 16.7M colors (RGB 6-bits data driver with FRC). All input signals are MIPI interface compatible.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}$ C condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	255.85 (10.07	7 inch)				
Active Area	[mm]	216.96(H) x 1	35.6(V)				
Pixels H x V		1280 x 3(RGB) x 800					
Pixel Pitch	[mm]	0.1695 X 0.1695					
Pixel Format		R.G.B. Vertic	al Stripe				
Display Mode		AHVA, Norma	ally Black				
White Luminance (ILED=24mA) (Note: ILED is LED current)	[cd/m2]	350 typ. (5 points average) 295 min. (5 points average)					
Luminance Uniformity		1.25 max. (5 points)					
Contrast Ratio		TYP. 800:1 /	Min 600:1				
Response Time	[ms]	Typ. 30 (White to black)					
Nominal Input Voltage VDD	[Volt]	3.3V typ					
Power Consumption	[Watt]	3.05 W(Max)	w/ LED dri	ver			
Weight	[Grams]	145g Max					
			Min	Тур	Max		
		Length	227.42	227.72	228.02		
		Width	148.0	148.3	148.6		
Physical Size Include bracket	[mm]	Thickness Panel Side		2.37	2.6		
		Thickness PCBA Side			4.6		
Electrical Interface		MIPI		·	·		
Glass Thickness	[mm]	0.25/0.25 (w/o PF)					
Surface Treatment (panel only)		HC (Glare)					

AU OPTRONICS CORPORATION

Support Color		16.7M colors (RGB 6-bit +FRC)
Temperature Range Operating	[°C] [°C]	0 to + 50°C -20 to +60°C
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item Symbol Conditions Min. Typ. Max. Unit Note							Note	
		Symbol	Conditions	Wiin.	ıyp.	wax.	Unit	Note
White Lumir ILED=24m			5 points average	295	350	-	cd/m ²	1, 4, 5.
		heta R	Horizontal (Right)		85	-		
Viewing Angle		heta L	CR = 10 (Left)		85	-	degree	
Viewing / ii	igic	ϕ н	Vertical (Upper)		85	-		4, 9
B. I. II ''		$\phi_{ L}$	CR = 10 (Lower)		85	-		
Brightness Uniformity δ _{5P}		5 Points			1.25		1, 3, 4	
Brightness Uniformity		δ 13P	13 Points			1.50		1, 3, 4
Contrast Ratio		CR		600	800	-		4, 6
Response ⁻	Гіте	T _{RT}	Rising + Falling	-	30	38	msec	4, 8
Viewing Ar Brightness Un Brightness Un	Red	Rx		0.568	0.598	0.628		
	Red	Ry		0.314	0.344	0.374		
	Green	Gx		0.296	0.326	0.356		
	Green	Gy		0.554	0.584	0.614		
,	DI	Bx	CIE 1931	0.124	0.154	0.184		4
	Blue	Ву		0.100	0.130	0.160		
	\A/I. 'I	Wx		0.283	0.313	0.343		
	White	Wy		0.299	0.329	0.359		
NTSC		%			50	_		

AU OPTRONICS CORPORATION

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

2		Maximum Brightness of five points
δ w5	=	Minimum Brightness of five points
6		Maximum Brightness of thirteen points
δ w13	=	Minimum Brightness of thirteen points

AU OPTRONICS CORPORATION

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points , $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inches wide Color TFT/LCD.

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item Symbol		Symbol	Min	Max	Unit	Conditions
	Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 3
Operation Humidity	HOP	0	90	[%RH]	Note 3
Storage Temperature	TST	-20	+60	[°C]	Note 3

Note 1: At Ta (25°℃)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

AU OPTRONICS CORPORATION

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25 $^{\circ}\!\mathbb{C}$ and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.1	-	3.6	[Volt]	
PDD	VDD Power	ı	ı	0.85	[Watt]	Note 1
IDD	IDD Current	ı	1	240	[mA]	Note 1
IRush	Inrush Current	ı	ı	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	1	-	100	[mV] p-p	

Note 1: Maximum Measurement Condition: White Pattern at 3.3V driving voltage. (P_{max}=V_{3.3} x I_{white})

Note 2: Measure Condition

Vin rising time

AU OPTRONICS CORPORATION

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

MIPI DC Characteristics are as follows;

1 BO Onara	MIPI Receiver Differential Input (DC Characteristics)						
Symbol	Parameter	Parameter	Min	Тур	Max	Unit	
LP_CD	Logic 1 contention threshold	VIHCD	450			mV	
LI _OD	Logic 0 contention threshold	VILCD				mV	
	Common-mode voltage(HS Rx mode)	VCMRX(DC)	70		330	mV	
	Differential input high threshold (HS Rx mode)	VIDTH			70	mV	
	Differential input low threshold (HS Rx mode)	VIDTL	-70		n 200 n 330 n 70 n 70 n 460 n 450 n 100 125 n 550 n n 1.2 1.3	mV	
HS_RX	Single-end input high voltage (HS Rx mode)	VIHHS				mV	
	Single-end input low voltage (HS Rx mode)	VILHS	-40	200 n 330 n 70 n 10 n 460 n 450 n 100 125 n 550 n 1.2 1.3	mV		
	Single-ended threshold for HS termination enable	VTERM-EN			200 330 70 460 450 125 550 1.3	mV	
	Differential input impedance	ZID	80	100	125	Ω	
	Logic 1 input voltage (LP Rx mode)	VIH	880			mV	
LP_RX	Logic 0 input voltage (LP Rx mode)	VIL			550	mV	
	Input hysteresis	VHYST	25		200 330 70 460 450 125 550 1.3	mV	
	Output high level (LP Tx mode)	VOH	1.1	1.2	200 330 70 460 450 125 550 1.3	V	
LP_TX	Output low level (LP Tx mode)	VOL	-50			mV	
	Output impedance of LP transmitter	ZOLP	110			Ω	

Line contention detection (Voltage level)

AU OPTRONICS CORPORATION

MIPI High-Speed Data-clock Timing

Host sends a differential clock signal to the IC for data sampling. This signal is a DDR (half-rate) clock and has one transition per data bit time. The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in following figure.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
T _{SKEW[TX]}	Data to Clock Skew (mesured at transmitter)	-0.15		0.15		1
T _{SETUP[RX]}	Data to Clock Setup Time (receiver)	0.15			UI _{INST}	2, 3
T _{HOLD[RX]}	Data to Clock Hold Time (receiver)	0.15			UI _{INST}	2, 3

Note:

- 1. Total silicon and package delay budget of 0.3*UI_{INST}
- 2. Total setup and hold window for receiver of 0.3*UI_{INST}
- 3. $T_{\text{SETUP}[RX]}$ and $T_{\text{HOLD}[RX]}$ without FPCB and connector and guaranteed by design

The timing definitions are listed in below,

Parameter	Description	Min	Тур	Max	Unit
T _{CLK-MISS}	Timeout for receiver to detect absence of Clock transitions and disable the Clock Lane HS-RX.			60	ns
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of THS-TRAIL to the beginning of TCLK-TRAIL.	60 ns + 52*UI			ns
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8			UI
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38		95	ns
T _{CLK-SETTLE}	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions, starting from the beginning of TCLK-PREPARE.	95		300	ns

AU OPTRONICS CORPORATION

T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIL,MAX.	Time for Dn to reach V _{TERM-EN}		38	ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60			ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock.	300			ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses VIL,MAX.	Time for Dn to reach V _{TERM-EN}		35 ns + 4*UI	ns
T _{EOT}	Transmitted time interval from the start of THS-TRAIL or TCLK-TRAIL, to the start of the LP-11 state following a HS burst.			105 ns + 12*Ul	ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100			ns
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40 ns + 4*UI		85 ns + 6*UI	ns
T _{HS-PREPARE} + T _{HS-ZERO}	THS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145 ns + 10*Ul			ns
T _{HS-SETTLE}	Time interval during which the HS receiver shall ignore any Data Lane HS transitions, starting from the beginning of THS-PREPARE.	85 ns + 6*UI		145 ns + 10*UI	ns
T _{HS-SKIP}	Time interval during which the HS-RX should ignore any transitions on the Data Lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.	40		55 ns + 4*UI	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	Max(n*8 *UI, 60ns+ n*4*UI)			ns
T _{INIT}					
T _{LPX}	Transmitted length of any Low-Power state period	50			ns
Ratio T _{LPX}	Ratio of TLPX(MASTER)/TLPX(SLAVE) between Master and Slave side	2/3		3/2	
T _{TA-GET}	Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround.		5*TLPX		ns
T _{TA-GO}	Time that the transmitter drives the Bridge state (LP-00) before releasing control during a Link Turnaround.		4*TLPX		ns
T _{TA-SURE}	Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	TLPX		2*TLPX	ns
T _{WAKEUP}	Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit from ULPS	1			ms

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

High-Speed Data Transmission in Bursts

AU OPTRONICS CORPORATION

Switching the Clock Lane between Clock Transmission and Low-Power Mode

AU OPTRONICS CORPORATION

5.2.1 LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	-	2.2	[Watt]	(Ta=25°C), Note 1 Vin =4.2V
LED Life-Time	N/A	15,000	-	-	Hour	(Ta=25°C), Note 2
						I _F =20 mA

Note 1: Calculator value for reference P_{LED} = VF (Normal Distribution) * IF (Normal Distribution) / Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

5.2.2 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	3	5	13.8	[Volt]	
LED Enable Input High Level		2.4	-	5.0	[Volt]	
LED Enable Input Low Level	LED_EN	-	-	0.8	[Volt]	
PWM Logic Input High Level	LED PWM	2.4	-	5.0	[Volt]	Define as
PWM Logic Input Low Level		-	-	0.8	[Volt]	Connector Interface
PWM Input Frequency	FPWM	700	1K	2K	Hz	(Ta=25°C)
PWM Duty Ratio	Duty	1		100	%	

AU OPTRONICS CORPORATION

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1									1:	28 0					
1st Line	R	G	В	R	G	В		R	G	В	R	G	В				
		•			•				•			•					
		•					•					•					
								.		.							
					.												
								.									
		•			•		•		•			•					
		•					•					•					
		'			'		•		'			•					
800th Line	R	G	В	R	G	В		R	G	В	R	G	В				

AU OPTRONICS CORPORATION

6.2 Integration Interface Requirement

6.2.1 MIPI Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	HIROSE
Type / Part Number	FH34SJ-34S-0.5SH(50)
Mating Housing/Part Number	FPC Cable

6.2.2 MIPI Pin Assignment

MIPI is a differential signal technology for LCD interface and high speed data transfer device.

No.	Pin Name	Description
1	VDD	DC-DC circuit supply voltage (3.1V~3.6V)
2	VDD	DC-DC circuit supply voltage (3.1V~3.6V)
3	NC	Not Connection
4	LED_EN	LED driver Enable Input (VIH=1.8V)
5	LED_PWM	Backlight LED driver PWM Input (VIH=1.8V)
6	EDID_SDA	EDID Data Input (VIH=VDD*0.7)
7	EDID_SCL	EDID Clock Input (VIH=VDD*0.7)
8	NC	Not Connection
9	GND	Ground
10	DSI_D2P/Rx-IN2P	MIPI data pair 2 positive signal
11	DSI_D2N/Rx-IN2N	MIPI data pair 2 negative signal
12	GND	Ground
13	DSI_D1P/Rx-IN1P	MIPI data pair 1 positive signal
14	DSI_D1N/Rx-IN1N	MIPI data pair 1 negative signal
15	GND	Ground
16	DSI_CLKP/Rx-CLKP	MIPI Clock positive signal
17	DSI_CLKN/Rx-CLKN	MIPI Clock negative signal
18	GND	Ground
19	DSI_D0P/Rx-IN0P	MIPI data pair 0 positive signal
20	DSI_D0N/Rx-IN0N	MIPI data pair 0 negative signal
21	GND	Ground
22	DSI_D3P/Rx-IN3P	MIPI data pair 3 positive signal
23	DSI_D3N/Rx-IN3N	MIPI data pair 3 negative signal

AU OPTRONICS CORPORATION

24	GND	Ground
25	GND	Ground
26	GND	Ground
27	GND	Ground
28	GND	Ground
29	Aging	Aging Mode Power Supply (AUO only)
30	NC	Not Connection
31	LED+	LED Power Supply (3V – 13.8V)
32	LED+	LED Power Supply (3V – 13.8V)
33	LED+	LED Power Supply (3V – 13.8V)
34	LED+	LED Power Supply (3V – 13.8V)

PS. EDID_SDA/SCL must be GND except the period of EDID reading

6.3 MIPI Interface Timing

6.3.1 Timing Characteristics

Basically, interface timings should match the 1280x800 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate				60		Hz
Clock frequency		1/ T _{Clock}	64	72.46	85	MHz
	Period	T _V	808	816	1023	
Vertical	Active	T _{VD}		800		T_Line
Section	Blanking	T _{VB}	8	16	223	
	Period	T _H	1340	1480	2047	
Horizontal	Active	T _{HD}		1280		T_{Clock}
Section	Blanking	T _{HB}	60	200	767	

Note: DE mode only

AU OPTRONICS CORPORATION

6.3.2 Timing diagram

AU OPTRONICS CORPORATION

6.4 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

Davamatav	Value	Unite	
Parameter	Min.	Max.	Units
T1	0.5	10	
T2	30		
T3	50	-	
T4	0.5	10	
T5	20	-	
T6	20	-	
T7	10	-	
T8	10		ma
T9	10		ms
T10	0.5	10	
T11	10		
T12	0.5	10	
T13	K		
T14	K		
T15	500		
T16	90		

Noraml : K=1, No Flash: K=5xTpwm

* Tpwm =1/PWM Frequecny

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

• Frequency: 10 - 500Hz Random

• Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

Test method: Non-Operation

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40°C, 90%RH, 300h	
High Temperature Operation	Ta= 50°C , Dry, 300h	
Low Temperature Operation	Ta= 0°C, 300h	
High Temperature Storage	Ta= 60°C, 300h	
Low Temperature Storage	Ta= -20°C, 300h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV Air : ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

8. Mechanical Characteristics

8.1 Standard Front View

8.2 Standard Rear View

Note: Back Bezel (Material: SUS 304; 0.2mm)

9. Shipping and Package

9.1 Shipping Label Format

Manufactured YYWW Model No: B101EAN01.5 AU Ontronics Made in China (S01)

HW: 0A FW:0

Manufactured YYWWW Model No: B101EAN01.5 AU Optronics Made in China (S06)

HW: 0A FW:0

9.2 Carton Label Format

10. Appendix

10.1 EDID Description

B101EAN01 5 EDID Code

Address	FUNCTION	Valu e	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	D4	11010100	212	
0B	hex, LSB first	15	00010101	21	
ОС	32-bit ser #	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	23	00100011	35	
11	Year of manufacture	17	00010111	23	
12	EDID Structure Ver.	01	0000001	1	
13	EDID revision #	04	00000100	4	
14	Video input def. (digital I/P, non-TMDS, CRGB)	A0	10100000	160	
15	Max H image size (rounded to cm)	16	00010110	22	
16	Max V image size (rounded to cm)	0E	00001110	14	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	02	0000010	2	
19	Red/green low bits (Lower 2:2:2:2 bits)	99	10011001	153	
1A	Blue/white low bits (Lower 2:2:2:2 bits)	85	10000101	133	
1B	Red x (Upper 8 bits)	95	10010101	149	
1C	Red y/ highER 8 bits	55	01010101	85	
1D	Green x	56	01010110	86	
1E	Green y	92	10010010	146	
1F	Blue x	28	00101000	40	
20	Blue y	22	00100010	34	
21	White x	50	01010000	80	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	_
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	0000001	1	

27		01	0000001	1	
28	Standard timing #2	01	00000001	1	
29	Standard timing #2				
29 2A	Ctandard timing #0	01	00000001	1	
2B	Standard timing #3		00000001	1	
2C	Standard timing #4	01	00000001	1	
2D	Standard timing #4	01	00000001	1	
2E	Ctandard timing #5				
2F	Standard timing #5	01	00000001	1	
30	Charadayal kinsina #C		00000001	1	
	Standard timing #6	01	00000001	1	
31	Chandaud timing #7	01	00000001	1	
32	Standard timing #7	01	00000001	1	
	Charadayd kinsing #0	01	00000001	1	
34	Standard timing #8	01	00000001	1	
35	Bivel Cleek/10000 J.S.P.	01	00000001	1	
36	Pixel Clock/10000 LSB	52	01010010	82	
37	Pixel Clock/10000 USB	1C	00011100	28	
38	Horz active Lower 8bits	00	00000000	0	
39	Horz blanking Lower 8bits	C8	11001000	200	
3A	HorzAct:HorzBlnk Upper 4:4 bits Vertical Active Lower 8bits	50	01010000	80	
3B	Vertical Blanking Lower 8bits	20	00100000	32	
3C	Vert Act : Vertical Blanking (upper 4:4 bit)	10	00010000	16	
3D	HorzSync. Offset	30	00110000	48	
3E	HorzSync. Width	93	10010011	147	
3F	VertSync.Offset : VertSync.Width	20	00100000	32	
40		44	01000100	68	
41	Horz‖ Sync Offset/Width Upper 2bits Horizontal Image Size Lower 8bits	00	00000000	0	
42	Vertical Image Size Lower 8bits	D8	11011000	216	
43	Horizontal & Vertical Image Size (upper 4:4 bits)	87	10000111	135	
44	Horizontal Border (zero for internal LCD)	00	00000000	0	
45	Vertical Border (zero for internal LCD)	00	00000000	0	
46	Signal (non-intr, norm, no stero, sep sync, neg pol)	00	00000000	0	
47		18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A 4B		00 0E	00000000	15	
4B 4C		0F	00001111	15	
		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	

53		00	00000000	0	
54		00	00000000	0	
55		00	00000000	0	
56		00	0000000	0	
57		00	0000000	0	
58		00	0000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C		00	0000000	0	
5D		FE	11111110	254	
5E		00	00000000	0	
5F	Manufacture	41	01000001	65	Α
60	Manufacture	55	01010101	85	U
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	
71	Manufacture P/N	42	01000010	66	В
72	Manufacture P/N	31	00110001	49	1
73	Manufacture P/N	30	00110000	48	0
74	Manufacture P/N	31	00110001	49	1
75	Manufacture P/N	45	01000101	69	E
76	Manufacture P/N	41	01000001	65	Α
77	Manufacture P/N	4E	01001110	78	N
78	Manufacture P/N	30	00110000	48	0
79	Manufacture P/N	31	00110001	49	1
7A	Manufacture P/N	2E	00101110	46	
7B	Manufacture P/N	35	00110101	53	5
7C		20	00100000	32	<u> </u>
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	

7F	Checksum	D9	11011001	217	
		SUM 64		6400	

SUM to HEX 1900