tions under the spectral theoretical point of view and collect a number of technical properties for later use.

We start by studying the spectrum of subspace and quotient semigroups. To that purpose assume that the strongly continuous semigroup $T = (T(t))_{t \geq 0}$ leaves invariant some closed subspace N of the Banach space E. There are canonically induced semigroups T_{\parallel} on N, resp. T_{\parallel} on T_{\parallel} on their generators T_{\parallel} on the generator A of T_{\parallel} (see A-I,Section 3). The following example shows that the spectra of A , A and A may differ quite drastically.

Example 4.1. As in the example in A-I,3.3 we consider the translation semigroup on E = L¹(R) and the invariant subspace N:= {f \in E : f(x) = 0 for x \ge 1} . Then σ (A) = iR but σ (A_|) = { λ \in C : Re(λ) \le 0} . Next we take the translation invariant subspace M := {f \in N : f(x) = 0 for 0 \le x \le 1} and obtain σ (A_|/) = \emptyset for the generator A_|/ of the quotient semigroup T_|/ (use the fact that T_|/ is nilpotent).

In the next proposition we collect the information on $\sigma(A)$ which in general can be obtained from the 'subspace spectrum' $\sigma(A_{\parallel})$ and the 'quotient spectrum' $\sigma(A_{\parallel})$.

<u>Proposition</u> 4.2. Using the standard notations the following inclusions hold:

 $\rho_{+}(A) \subset [\rho(A_{|}) \cap \rho(A_{/})] \subset \rho(A) \subset [\rho(A_{|}) \cap \rho(A_{/})] \cup [\sigma(A_{|}) \cap \sigma(A_{/})],$ (iii) (ii)

where $\rho_+(A)$ denotes the connected component of $\rho\left(A\right)$ which is unbounded to the right.

<u>Proof.</u> (i) Assume $\lambda \in \rho(A)$, i.e. $(\lambda - A)$ is a bijection from D(A) onto E. Since N is T-invariant we have D(A_|) = D(A) \cap N and $(\lambda - A)D(A_{|}) \subset N$. If $(\lambda - A)D(A_{|}) = N$ then $R(\lambda,A)N = D(A_{|})$ and the induced operators $R(\lambda,A)_{|}$, resp. $R(\lambda,A)_{|}$ are the inverses of $(\lambda - A_{|})$, resp. $(\lambda - A_{|})$. If $(\lambda - A)D(A_{|}) \neq N$ then $\lambda \in \sigma(A_{|})$. In addition there exists $f \in D(A) \setminus N$ such that $g := (\lambda - A)f \in N$. Hence for $\hat{f} := f + N$, $\hat{g} := g + N \in E_{|}$ it follows that $(\lambda - A_{|})\hat{f} = \hat{g} = 0$, i.e. $\lambda \in \sigma(A_{|})$.

(ii) Take $\lambda \in \rho(A_{\parallel}) \cap \rho(A_{\parallel})$. Then $(\lambda-A)$ is injective: $(\lambda-A)f = 0$ implies $(\lambda-A_{\parallel})\hat{f} = 0$, hence $\hat{f} = 0$, i.e. $f \in N$ and therefore f = 0.