In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
df

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	
0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	_
1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	
2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	1
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	1
4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	1
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	
215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	٠
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	

215688 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215688 entries, 0 to 215687
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	215688 non-null	object
1	BEN	60082 non-null	float64
2	C0	190801 non-null	float64
3	EBE	60081 non-null	float64
4	MXY	24846 non-null	float64
5	NMHC	74748 non-null	float64
6	N0_2	214562 non-null	float64
7	N0×	214565 non-null	float64
8	0XY	24854 non-null	float64
9	0_3	204482 non-null	float64
10	PM10	196331 non-null	float64
11	PM25	55822 non-null	float64
12	PXY	24854 non-null	float64
13	S0 <u>2</u>	212671 non-null	float64
14	TCH	75213 non-null	float64
15	T0L	59920 non-null	float64
16	station	215688 non-null	int64
dtyp	es: float	64(15), int64(1),	object(1)
momo	r)/ 1162601	20 A . MD	

memory usage: 28.0+ MB

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	2(
20	2009- 10-01 01:00:00	0.38	0.32	0.32	0.89	0.01	17.969999	19.240000	1.00	65.870003	1(
24	2009- 10-01 01:00:00	0.55	0.24	0.65	1.79	0.18	36.619999	43.919998	1.28	48.070000	19
28	2009- 10-01 02:00:00	0.65	0.21	1.20	2.04	0.18	37.169998	48.869999	1.21	26.950001	32
45	2009- 10-01 02:00:00	0.38	0.30	0.50	1.15	0.00	17.889999	19.299999	1.00	60.009998	1;
215659	2009- 05-31 23:00:00	0.54	0.27	1.00	0.69	0.09	28.280001	29.490000	0.86	78.750000	1!
215663	2009- 05-31 23:00:00	0.74	0.35	1.13	1.65	0.15	56.410000	69.870003	1.26	56.799999	1.
215667	2009- 06-01 00:00:00	0.78	0.29	0.99	1.96	0.04	64.870003	82.629997	1.13	58.000000	12
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	1(
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	1!

24717 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fdd01918730>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]:

▼ LinearRegression

LinearRegression()

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fdd11fa0640>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.39
                   1091
          1.36
                   1056
          1.38
                   1046
          1.40
                   1018
          1.37
                   1017
          4.03
                      1
          3.84
                      1
          3.29
                      1
          2.79
                      1
          3.94
                      1
          Name: TCH, Length: 169, dtype: int64
```

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 12963 2.0 11754

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[15]: v Lasso
Lasso(alpha=5)

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fdcf92b15d0>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[18]:

▼ Ridge

Ridge(alpha=1)

In [19]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[19]: <matplotlib.collections.PathCollection at 0x7fdcfba07c10>

In [20]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [21]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[21]:

▼ ElasticNet

ElasticNet()

In [22]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[22]: <matplotlib.collections.PathCollection at 0x7fdcf01d5ea0>

In [23]: ens=en.score(x_test,y_test)

In [24]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.8795101137449133

Out [24]: 0.8929278460152889

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 12963
                 11754
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7fdd01b01750>
          Low
                High
                                                                       Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
                             plt.figure(figsize=(80,40))
                             plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[38]: [Text(0.4756944444444444, 0.9285714285714286, 'BEN <= 0.755\ngini</pre>
                             = 0.499 \times = 10885 \times = [8964, 8337] \times = Yes'),
                                ni = 0.404 \setminus samples = 6200 \setminus samples = [7047, 2747] \setminus samples = Yes'),
                                Text(0.08796296296296297, 0.6428571428571429, 'NOx <= 25.395 \ngin
                             i = 0.229 \setminus samples = 4027 \setminus samples = [5512, 838] \setminus samples = Yes'),
                                Text(0.0277777777777776, 0.5, '0_3 \le 21.875 \setminus gini = 0.077 \setminus gin
                             ples = 2045\nvalue = [3077, 128]\nclass = Yes'),
                                Text(0.018518518518518517, 0.35714285714285715, 'gini = 0.375 \nsa
                             mples = 6\nvalue = [2, 6]\nclass = No'),
                                Text(0.037037037037037035, 0.35714285714285715, 'CO <= 0.425 \ngin
                             i = 0.073 \setminus samples = 2039 \setminus value = [3075, 122] \setminus samples = Yes'),
                                Text(0.018518518518518517, 0.21428571428571427, 'MXY <= 1.175 \ngi
                             ni = 0.024 \setminus samples = 1581 \setminus samples = [2432, 30] \setminus samples = Yes'),
                                Text(0.009259259259259259, 0.07142857142857142, 'gini = 0.019\nsa
                             mples = 1488\nvalue = [2279, 22]\nclass = Yes'),
                                Text(0.0277777777777776, 0.07142857142857142, 'gini = 0.094\nsa
                             mples = 93\nvalue = [153, 8]\nclass = Yes'),
                                print("Linear:",lis)
print("Lasso:",las)
In [39]:
                             print("Ridge:", rrs)
                             print("ElasticNet:",ens)
                             print("Logistic:",los)
                             print("Random Forest:",rfcs)
```

Linear: 0.8795129171288489 Lasso: 0.4570177776335941 Ridge: 0.8795101137449133 ElasticNet: 0.737810583117062 Logistic: 0.5242718446601942 Random Forest: 0.8623781005637359

Best Model is Random Forest

In [40]: df2=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_pe
df2

Out[40]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	NaN	68.930000
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN
209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998

209448 rows × 17 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209448 entries, 0 to 209447
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
		200440 non null	
0	date	209448 non-null	_
1	BEN	60268 non-null	float64
2	C0	94982 non-null	float64
3	EBE	60253 non-null	float64
4	MXY	6750 non-null	float64
5	NMHC	51727 non-null	float64
6	N0_2	208219 non-null	float64
7	N0×	208210 non-null	float64
8	0XY	6750 non-null	float64
9	0_3	126684 non-null	float64
10	PM10	106186 non-null	float64
11	PM25	55514 non-null	float64
12	PXY	6740 non-null	float64
13	S0_2	93184 non-null	float64
14	TCH	51730 non-null	float64
15	T0L	60171 non-null	float64
16	station	209448 non-null	int64
dtyp	es: float	64(15), int64(1),	object(1)
momo	r)/ UC2G01	27 2. MD	

In [42]: df3=df2.dropna()
df3

Out[42]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	
11	2010- 03-01 01:00:00	0.78	0.18	0.84	0.73	0.28	10.420000	11.900000	1.0	90.309998	18
23	2010- 03-01 01:00:00	0.70	0.23	1.00	0.73	0.18	17.820000	22.290001	1.0	70.550003	2:
35	2010- 03-01 02:00:00	0.58	0.17	0.84	0.73	0.28	3.500000	4.950000	1.0	68.849998	ţ
47	2010- 03-01 02:00:00	0.33	0.21	0.84	0.73	0.17	10.810000	14.900000	1.0	74.750000	-
59	2010- 03-01 03:00:00	0.38	0.16	0.64	1.00	0.26	2.750000	4.200000	1.0	93.629997	ţ
							•••	•••		•••	
191879	2010- 05-31 22:00:00	0.60	0.26	0.82	0.13	0.16	33.360001	43.779999	1.0	38.459999	2(
191891	2010- 05-31 23:00:00	0.41	0.16	0.71	0.19	0.10	24.299999	26.059999	1.0	50.290001	14
191903	2010- 05-31 23:00:00	0.57	0.28	0.64	0.19	0.18	35.540001	44.590000	1.0	34.020000	2;
191915	2010- 06-01 00:00:00	0.34	0.16	0.69	0.22	0.10	23.559999	25.209999	1.0	45.930000	1(
191927	2010- 06-01 00:00:00	0.43	0.25	0.79	0.22	0.18	34.910000	42.369999	1.0	29.540001	1!

6666 rows × 17 columns

In [43]: df3=df3.drop(["date"],axis=1)

```
In [44]: sns.heatmap(df3.corr())
```

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [46]: li=LinearRegression()
li.fit(x_train,y_train)

Out[46]:
▼ LinearRegression
LinearRegression()

```
In [47]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[47]: <matplotlib.collections.PathCollection at 0x7fdcf1c1c670>


```
In [48]: lis=li.score(x_test,y_test)
```

```
In [49]: df3["TCH"].value_counts()
```

```
1.38
         351
1.39
         324
1.35
        323
1.37
         321
2.11
           1
1.98
           1
1.18
           1
2.18
2.04
```

364

Name: TCH, Length: 100, dtype: int64

```
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[50]: 1.0 3340 2.0 3326

Out[49]: 1.36

Name: TCH, dtype: int64

Lasso

```
In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

In [52]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7fdcf2aa4160>

In [53]: las=la.score(x_test,y_test)

Ridge

In [54]: rr=Ridge(alpha=1)
 rr.fit(x_train,y_train)

```
In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[55]: <matplotlib.collections.PathCollection at 0x7fdd026d5210>


```
In [56]: rrs=rr.score(x_test,y_test)
```

ElasticNet

ElasticNet()

```
In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x7fdd0268bc40>


```
In [59]: ens=en.score(x_test,y_test)
```

In [60]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.4495448643204282

Out[60]: 0.45195948083792425

Logistic

```
In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
    df3=df3.replace(g)
    df3["TCH"].value_counts()
```

Out[61]: Low 3340 High 3326

Name: TCH, dtype: int64

```
In [62]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [63]: lo=LogisticRegression()
lo.fit(x_train,y_train)
Out[63]: v LogisticRegression
LogisticRegression()
In [64]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
Out[64]: <matplotlib.collections.PathCollection at 0x7fdd0268bd90>
```

In [65]: los=lo.score(x_test,y_test)

Random Forest

High

In [66]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

Low

Low

```
In [67]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(q1)
In [68]: |x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]:
         parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [71]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid_search.fit(x_train,y_train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: rfcs=grid_search.best_score_
In [73]: | rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
                           plt.figure(figsize=(80,40))
                           plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out [74]: [Text(0.5733418367346939, 0.9285714285714286, 'NOx <= 59.28 \ngini
                           = 0.5 \ln = 2944 \ln = [2307, 2359] \ln = No'),
                              Text(0.30739795918367346, 0.7857142857142857, '0_3 \le 80.6 
                           = 0.47 \times = 2149 \times = [2110, 1284] \times = Yes'),
                              Text(0.16326530612244897, 0.6428571428571429, 'NMHC <= 0.195 \ngin
                           i = 0.497 \setminus samples = 1453 \setminus samples = [1260, 1066] \setminus samples = Yes'),
                              Text(0.08163265306122448, 0.5, 'NOx <= 37.9 \mid = 0.429 
                           s = 534 \setminus value = [578, 262] \setminus class = Yes'),
                              Text(0.04081632653061224, 0.35714285714285715, 'CO <= 0.255 \ngini
                           = 0.337 \times = 303 \times = [355, 97] \times = Yes'),
                              Text(0.02040816326530612, 0.21428571428571427, 'CO <= 0.205 \ngini
                           = 0.261\nsamples = 218\nvalue = [280, 51]\nclass = Yes'),
                              Text(0.01020408163265306, 0.07142857142857142, 'gini = 0.098 \nsam
                           ples = 84\nvalue = [110, 6]\nclass = Yes'),
                              Text(0.030612244897959183, 0.07142857142857142, 'gini = 0.331\nsa
                           mples = 134\nvalue = [170, 45]\nclass = Yes'),
                              Text(0.061224489795918366, 0.21428571428571427, 'BEN <= 0.495 \ngi
                           ni = 0.471 \setminus samples = 85 \setminus value = [75, 46] \setminus class = Yes'),
                              Text(0.05102040816326531, 0.07142857142857142, 'gini = 0.473 \nsam
                          print("Linear:",lis)
print("Lasso:",las)
In [75]:
                           print("Ridge:", rrs)
                           print("ElasticNet:",ens)
                           print("Logistic:",los)
```

Linear: 0.4496582984833126 Lasso: -0.0013142147893867584 Ridge: 0.4495448643204282

print("Random Forest:",rfcs)

ElasticNet: 0.35229329191658254

Logistic: 0.4985

Random Forest: 0.7730390055722246

Best model is Random Forest