PROMPT-BASED TEXT MATCHING METHODS FOR FAKE NEWS STANCE DETECTION

CMPT 413 FINAL PROJECT

GROUP AWSL

ZEYONG JIN, YUQING WU, ZHI FENG

TABLE OF CONTENTS

- I. Introduction
 - 1. Problem Statement
 - 2. Input & Output
- II. Related Work
 - 1. Text Matching
 - 2. Pre-trained NLP Models
- III. Data Fake News Challenge (FNC-1)
- IV. Approach
 - 1. Pre-processing FNC corpus
 - 2. Preparing BERT base model
 - 3. Fine-tuning BERT model
- V. Evaluation Accuracy, Precision, F1, AUC, ROC, FNC Score
- VI. Experiment Baselines vs BERT-based Method (Ours)
- VII. Conclusion

PART I: INTRODUCTION

- 1. Problem Statement
 - Exploring how AI could be leveraged to combat fake news.

PART I: INTRODUCTION

• 2. Input

• A headline and a body text - either from the same news article or from two different articles.

• 3. Output

- Classify the stance of the body text relative to the claim made in the headline into one of four categories:
 - Agrees: The body text agrees with the headline.
 - Disagrees: The body text disagrees with the headline.
 - Discusses: The body text discuss the same topic as the headline, but does not take a position
 - Unrelated: The body text discusses a different topic than the headline

PART I: INTRODUCTION

- 4. Example headline
 - "Robert Plant Ripped up \$800M Led Zeppelin Reunion Contract"
- 5. Example snippets from body texts and correct classifications
 - Agree:
 - "... Led Zeppelin's Robert Plant turned down £500 MILLION to reform supergroup. ..."
 - Disagree:
 - "... No, Robert Plant did not rip up an \$800 million deal to get Led Zeppelin back together. ..."
 - Discusses:
 - "... Robert Plant reportedly tore up an \$800 million Led Zeppelin reunion deal. ..."
 - Unrelated:
 - "... Richard Branson's Virgin Galactic is set to launch SpaceShipTwo today. ..."

PART II: RELATED WORK

- 1. Traditional Text Matching Models
 - TF-IDF, BM25, Latent Dirichlet Allocation (LDA)
- 2. DNN-based Text Matching Models
 - Deep Structured Semantic Models (DSSM) (Huang et al., 2013)
 - Architecture-I (ACRI) (Hu et al., 2014)
 - Tree-structured LSTM (Tree-LSTM) (Tai et al., 2015)
- 3. Pre-trained-based Text Matching Models
 - ELMo (Peters et al., 2018)
 - GPT (Radford et al., 2018)
 - BERT (Devlin et al., 2018)

PART III: DATA

- Fake News Challenge (FNC-1)
 - 1. Training Set: [headline, body text, label]
 - Pairs of headline and body text with the appropriate class label for each.
 - 2. Testing Set: [headline, body text]
 - Pairs of headline and body text without class labels used to evaluate systems.
 - Headline, Body ID, Stance
 - 2 Police find mass graves with at least '15 bodies' near Mexico town where 43 students disappeared after police clash,712,unrelated
 - 3 Hundreds of Palestinians flee floods in Gaza as Israel opens dams, 158, agree
 - 4 "Christian Bale passes on role of Steve Jobs, actor reportedly felt he wasn't right for part",137,unrelated
 - HBO and Apple in Talks for \$15/Month Apple TV Streaming Service Launching in April, 1034, unrelated
 - 6 Spider burrowed through tourist's stomach and up into his chest, 1923, disagree
 - 'Nasa Confirms Earth Will Experience 6 Days of Total Darkness in December' Fake News Story Goes Viral, 154, agree
 - 8 "Accused Boston Marathon Bomber Severely Injured In Prison, May Never Walk Or Talk Again",962,unrelated
 - 9 Identity of ISIS terrorist known as 'Jihadi John' reportedly revealed, 2033, unrelated
 - 10 Banksy 'Arrested & Real Identity Revealed' Is The Same Hoax From Last Year, 1739, agree
 - 11 British Aid Worker Confirmed Murdered By ISIS,882,unrelated
 - 12 Gateway Pundit, 2327, discuss
 - "Woman detained in Lebanon is not al-Baghdadi's wife, Iraq says",1468,agree
 - 4 Kidnapped Nigerian schoolgirls: Government claims ceasefire deal with Boko Haram that will bring missing girls home,1003,unrelated
 - 15 "No, that high school kid didn't make \$72 million trading stocks",2132,unrelated
 - 6 "Soon Marijuana May Lead to Ticket, Not Arrest, in New York",47,discuss
 - 17 Vandals add rude paint job to \$2.5m Bugatti (but luckily for the owner it all turned out to be a hoax),615,unrelated
 - 19 Paka Hanam Danias Nigania Cassa-Fina Claim 2453 discuss

- 1. Pre-processing FNC corpus
- 2. Preparing BERT base model
- 3. Fine-tuning BERT model

- 1. Pre-processing CSV
 - Join stances.csv and bodies.csv

	UniqueID		Stance		
0	0		unrelated		
1	1		unrelated		
2	2		unrelated		
3	3		unrelated		
4	4		unrelated		
			•••		
25408	25408		agree		
25409	25409		discuss		
25410	25410		disagree		
25411	25411		disagree		
25412	25412		agree		
[25413	rows x 4	col	umns]		

	articleBody
Body ID	•
1	Al-Sisi has denied Israeli reports stating tha
2	A bereaved Afghan mother took revenge on the T
3	CNBC is reporting Tesla has chosen Nevada as t
12	A 4-inch version of the iPhone 6 is said to be
19	GR editor's Note\n\nThere are no reports in th
	-
2582	Congressional Republicans, evidently hoping th
2583	Did Obamacare work?\n\nIt's worth reflecting u
2584	Millions may lose coverage next year if Congre
2585	Come November, the grim trudge across the incr
2586	Remember how much Republicans wanted to repeal
[904 row	s x 1 columns]

- 2. Preparing BERT model
 - Using Google Colab Pro + HuggingFace Transformer

- 3. Fine-tuning BERT model
 - Method 1: Tokenize bodies-headline texts

- 3. Fine-tuning BERT model
 - Method 2: Generate PyTorch DataSet and DataLoader

```
class FakeNewsDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

def __getitem__(self, idx):
    item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
    item["labels"] = torch.tensor(self.labels[idx])
    return item

def __len__(self):
    return len(self.labels)
```

```
[]: from torch.utils.data import DataLoader test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False) test_dataloader
```

- 3. Fine-tuning BERT model
 - Method 3: Run fine-tuning trainer
 - Set Training Arguments
 - Set Trainer
 - Define Training Metrics


```
    Train BERT model

  [ ] from sklearn.metrics import accuracy score, precision score, f1 score, confusion matrix
       def compute metrics (pred):
        labels = pred.label ids
        preds = pred.predictions.argmax(-1)
        # calculate accuracy using sklearn's function
        acc = accuracy score(labels, preds)
        return {
             'accuracy': acc,
  [ ] training args = TrainingArguments(
          output dir='./results',
                                           # output directory
          num train epochs=3,
                                           # total number of training epochs
          per device train batch size=16,
                                           # batch size per device during training
          per device eval batch size=64,
                                           # batch size for evaluation
          warmup steps=500,
                                           # number of warmup steps for learning rate scheduler
          weight decay=0.01,
                                           # strength of weight decay
          logging dir='./logs',
                                           # directory for storing logs
                                           # load the best model when finished training (default metric is loss)
          load best model at end=True,
          # but you can specify `metric for best model` argument to change to accuracy or other metric
          logging steps=100,
                                            # log & save weights each logging steps
          save steps=1000,
          evaluation strategy="steps",
                                           # evaluate each `logging steps`
  [ ] trainer = Trainer(
          model=model,
                                                # the instantiated Transformers model to be trained
          args=training args,
                                                # training arguments, defined above
          train dataset=train dataset,
                                                # training dataset
          eval dataset=valid dataset,
                                                # evaluation dataset
          compute_metrics=compute_metrics,
                                                # the callback that computes metrics of interest
  [ ] trainer.train()
```

PART V: EVALUATION

- 1. Metrics
 - Accuracy, Precision, F1, AUC, ROC
 - FNC Score (Domain-Specific)

PART V: EVALUATION

- 2. Flowchart
 - Description:
 - Concretely, if a [headline, body text] pair in the test set has the target label unrelated, a team's evaluation score will be incremented by 0.25 if it labels the pair as unrelated.
 - If the [headline, body text] test pair is related, a team's score will be incremented by 0.25 if it labels the pair as any of the three classes: agrees, disagrees, or discusses.
 - The team's evaluation score will so be incremented by an additional 0.75 for each related pair if gets the relationship right by labeling the pair with the single correct class: agrees, disagrees, or discusses.

PART VI: EXPERIMENT

- 1. Baselines (Statistical ML)
 - Bernoulli Naïve Bayes + TF-IDF
 - Bernoulli Naïve Bayes + Count
 - Logistics Regression + TF-IDF
 - Logistics Regression + Count

PART VI: EXPERIMENT

• 2. BERT-based Method (Ours)

PART VI: EXPERIMENT

• 3. Comparison

	Accuracy	Precision	F1	Micro-ROC	Marco-ROC	# FNC	% FNC
LR-Count	71.27%	59.20%	62.58%	96.00%	89.00%	4815.5	41.33%
LR-TFIDF	59.00%	57.94%	58.30%	96.00%	90.00%	5026.75	43.14%
NB-Count	66.51%	56.59%	60.90%	87.00%	84.00%	4834.75	41.49%
NB-TFIDF	66.51%	56.59%	60.90%	87.00%	84.00%	4834.75	41.49%
BERT	90.37%	90.60%	90.43%	99.00%	97.00%	10068.25	86.41%

Table 1: Performance Metrices

PART VII: CONCLUSION

- Achievement
 - Good Result: Accuracy > 90%
- Limitations
 - Not very good FNC Score
- Future Work
 - Learn more about PTMs

REFERENCES

- Blasingame, D. (2020). Blocks of Fact And Fake. The Truth about Fake News. Texas State University. Retrieved December 3, 2021, from https://www.txstate.edu/commonexperience/pastsitearchives/2019-2020/stories/blog/2020-03-30-truth-about-fake-news.html
- 2. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.
- 3. Fake News Challenge. (2021). *Fake News*. Exploring how artificial intelligence technologies could be leveraged to combat fake news. Fake News Challenge. Retrieved December 3, 2021, from http://www.fakenewschallenge.org/
- 4. Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neural network architectures for matching natural language sentences. In *Advances in neural information processing systems*, pages 2042–2050.
- 5. Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In *Proceedings of the 22nd ACM international conference on Information & Knowledge Management*, pages 2333–2338.

REFERENCES

- 6. Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. *arXiv preprint arXiv:1802.05365.*
- 7. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.
- 8. Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.

THANK YOU FOR WATCHING!

PRESENTED BY

ZEYONG JIN, YUQING WU, ZHI FENG

CMPT 413 GROUP AWSL

SCHOOL OF COMPUTING SCIENCE, SIMON FRASER UNIVERSITY