

SÍLABO ARQUITECTURA DE COMPUTADORES I

ÁREA CURRICULAR: SISTEMAS DIGITALES

CICLO VII SEMESTRE ACADÉMICO 2017–I

I. CÓDIGO DEL CURSO : 09014807050

II. CRÈDITOS : 05

III.REQUÍSITOS : 09012706050 Circuitos Digitales II

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso tiene carácter científico - aplicativo. Le permite al estudiante diseñar y conceptuar los sistemas electrónicos a base de FPGAs.

El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Introducción a la programación en VHDL. II. Diseño de sistemas inteligentes basados en máquinas de estados. III. Programación de procesadores de 8 bits (IP PICOBLAZE) en FPGAS IV. Diseño de sistemas basados en procesadores. V. La tarjeta de desarrollo a utilizar será el Kit Nexys 3, basados en FPGAS de Xilinx y la Interfaz de desarrollo será el Project Navigator.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Pedroni, V. (2009). Circuit Design with VHDL. 2a ed. MIT Press.
- · Chu, Pong P. (2007). FPGA prototyping by VHDL examples: Xilinx Spartan-3 Version. John Wiley & Sons.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PROGRAMACIÓN VHDL

OBJETIVOS DE APRENDIZAJE:

- Conocer la programación orientada al hardware: VHDL
- Diseñar circuitos digitales utilizando VHDL

PRIMERA SEMANA

Primera sesión:

Introducción a los FPGA y sus aplicaciones.

Segunda sesión:

Técnicas de modelado de circuitos en VHDL.

Tercera sesión:

Laboratorio 1: Manejo de las herramientas de diseño. Diseño de la primera aplicación. Diseño en Project Navigator.

SEGUNDA SEMANA

Primera sesión:

Fundamentos de VHDL: entidad, librería y arquitectura. Tipo de datos y Librerías. Operadores y Atributos. Programación concurrente. Ejemplos

Segunda sesión:

Diseño y simulación de circuitos utilizando VHDL

Tercera sesión:

Laboratorio 2: Diseño de un sistema simple: Implementación de circuitos lógicos en el FPGA

TERCERA SEMANA

Primera sesión:

Programación Secuencial. Ejemplos

Segunda sesión: Práctica calificada 1 Tercera sesión:

Laboratorio 3: Diseño de un sistema simple: diseño y concepción de un controlador de display de 7 segmentos

CUARTA SEMANA

Primera sesión:

Señales y variables. Ejemplos

Segunda sesión:

Fundamentos de Máquinas de Estados con VHDL. Ejemplos

Tercera sesión:

Laboratorio 4: Diseño de un sistema simple: leer un mensaje que se encuentra en memoria y visualizarlo en un display de 7 segmentos.

UNIDAD II: DISEÑO DE CONTROLADORES CON MÁQUINAS DE ESTADO

OBJETIVOS DE APRENDIZAJE:

- Diseñar circuitos electrónicos inteligentes a base de maquinas de estado
- Identificar la potencia del FPGA para el desarrollo de aplicativos electrónicos

QUINTA SEMANA

Primera sesión:

Diseño de autómatas en VHDL

Segunda sesión:

Aplicaciones de máquinas de estados

Tercera sesión:

Laboratorio 5: Diseño de un contador asíncrono

SEXTA SEMANA

Primera sesión:

Manejo de protocolos con máquinas de estados

Segunda sesión: Práctica calificada 2 Tercera sesión:

Laboratorio 6: Implementación de un UART. Transmisión RS232

SÉPTIMA SEMANA

Primera sesión:

Diseño de un modulo RS232. Receptor

Segunda sesión:

Diseño de sistemas en VHDL

Tercera sesión:

Laboratorio 7: Implementación de un UART. Recepción RS232

OCTAVA SEMANA

Examen Parcial

UNIDAD III: ARQUITECTURA DE PROCESADORES

OBJETIVOS DE APRENDIZAJE:

- Analizar la arquitectura de un procesador e identificar los diferentes bloques de un Procesador
- Analizar el modo de programación en ensamblador
- Identificar y evaluar el modo de programación co-diseño entre VHDL y ensamblador con PICOBLAZE

NOVENA SEMANA

Primera sesión:

El Procesador y su arquitectura. El procesador de 8 bits PICOBLAZE. Ejemplos

Segunda sesión:

Manejo de instrucciones

Tercera sesión:

Laboratorio 8: Implementación de un ALU

DÉCIMA SEMANA

Primera sesión:

Manejo de Retardos y bucles en ensamblador.

Segunda sesión:

Algoritmos para operaciones lógicas. Modos de direccionamiento. Manejo de Entradas y Salidas.

Tercera sesión:

Laboratorio 9: Manejo de herramientas de programación para el procesador PICOBLAZE.

UNDÉCIMA SEMANA

Primera sesión:

Manejo de Interrupciones.

Segunda sesión:

Diseño de un sistema simple a base de un procesador. Captura de datos y control de salidas. Práctica calificada 3

DUODÉCIMA SEMANA

Primera sesión:

Algoritmo de multiplicación

Segunda sesión:

Algoritmo de multiplicación

Tercera sesión:

Laboratorio 10: Arquitectura de un controlador Digital. Manejo de retardos e interrupciones

UNIDAD IV. DISEÑO DE SISTEMAS BASADO EN PROCESADORES

OBJETIVOS DE APRENDIZAJE

- Diseñar un sistema completo a base de un procesador
- Manejo de periféricos de un procesador

DECIMOTERCERA SEMANA

Primera sesión:

Periféricos y protocolos de un procesador

Segunda sesión:

Diseño de un PWM

Tercera sesión:

Laboratorio 11: Manejo de un PWM que controle frecuencia y nivel activo

DECIMOCUARTA SEMANA

Primera sesión:

Diseño de sistemas sincronizados. Manejo de Memorias

Segunda sesión:

Práctica calificada 4

Tercera sesión:

Laboratorio 12: Implementación de un sistema completo a base de un procesador

DECIMOQUINTA SEMANA

Primera sesión:

Exposición de trabajos

Segunda sesión:

Entrega del proyecto del cursos en Laboratorio

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas b. Tópicos de Ingeniería 5 c. Educación General 0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y una computadora personal para cada estudiante del curso, ecran, proyector de multimedia y una impresora.

Materiales: Kit de desarrollo Nexys 3, el IDE Project Navigator y el Simulador ISim.

XI. EVALUACIÓN

El promedio final se obtiene por la siguiente fórmula, siendo la nota mínima aprobatoria de ONCE.

PF = (2*PE+EP+EF)/4PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3PL= (Lb1+Lb2+Lb3+Lb4) / 4

Donde:

EP = Examen parcial escrito W1= Proyecto final del curso **PL** = Promedio de laboratorios **EF** = Examen final escrito **PE** = Promedio de evaluaciones calificados **P** = Práctica calificada escrita. Lb = Notas de laboratorios

MN= Menor nota calificados.

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Electrónica se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacio = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	К
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	R
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	K
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	

(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	R
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	К

XIII. HORAS, SESIONES, DURACIÓN

Práctica Laboratorio Teoría a) Horas de clase: 3 2 2

b) Sesiones por semana: tres sesiones.c) Duración: 7 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. José Cárdenas Martínez

XV. FECHA

La Molina, marzo de 2017.