Filing of Summary and Discussion Reports of Reviewed Articles.

Question: How can the collapse of generative Al models affect the accuracy and quality of responses provided by autonomous agents in interactions with human users in the corporate environment?				
Phrases chosen for queries:	Collapse of generative AI models; Quality of AI responses; Autonomous AI agents; Autonomous AI agents in corporate applications; Impact of AI model degradation; Synthetic distributed data; Multi-agents in corporate applications; Bias in Multi-Agents; AI ethics and hallucinations; Agents AI in recommendation; Hallucinations in LLMs; Poisoning in data distribution for LLMs; Collapse models improve bias;			
Sources (magazines, conferences, etc.) of papers used:	Nature; International Journal of Science and Research Archive; Frontiers of Computer Science; arXiv; IEEE; Electronic Commerce Research; Scientific Reports;			
Name of selected papers:	Al models collapse when trained on recursively generated data			
	Review of autonomous systems and collaborative Al agent frameworks			
	A Survey on Large Language Model based Autonomous Agents			
	Can We Trust Al Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for Al Ethics			
	Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and			

Language

Models in Modern Organizations

Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and

Language

Models in Modern Organizations

Multi-Agent Large Language Models for Conversational Task-Solving

Strong Model Collapse

How to Synthesize Text Data without Model Collapse?

The Impact of Large Language Models in Academia: from Writing to Speaking

Mitigating Social Bias in Large Language Models: A Multi-Objective Approach

Within a Multi-Agent Framework

Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions

Fairness in Multi-Agent AI: A Unified Framework for Ethical and Equitable Autonomous Systems

Agentic AI: Autonomous Intelligence for Complex Goals—A Comprehensive Survey

Personalized Recommendation Systems using Multimodal, Autonomous, Multi Agent Systems

Consumer reactions to technology in retail: choice

uncertainty and reduced perceived control in decisions assisted by recommendation agents

Investigating Bias in LLM-Based Bias Detection:
Disparities between LLMs and Human Perception

Bias of Al-generated content: an examination of news produced by large language models

A Multi-Agent Conversational Recommender System

Poisoning and Backdooring Contrastive Learning

General Summary

These studies show how LLM models and multi-agent systems are increasingly influencing technology, especially in areas such as recommendation, ethics and performance. One of the main points discussed is "model collapse", which happens when AI is trained with uncurated and synthetic data, which causes it to lose data diversity and impair its performance. This can also increase biases in models, which is concerning, especially in areas like decision-making and product recommendations. In the case of multi-agent systems, many studies explore how these agents can improve interaction with users, helping to control the flow of conversations and collect feedback to adjust model responses. These systems have shown potential in various industries, such as e-commerce, finance and healthcare, by personalizing experiences and improving adaptation to different contexts.

Another big topic is bias in Al models. This has been a challenge, and several approaches are being tested to reduce these biases, such as using multiple agents and adjusting the prompts that are given to models. There are also discussions about how to deal with ethics in Al, creating systems that are more transparent and accountable.

Based on the summary read, it was observed that model collapse is a phenomenon that can occur in any generative model. This collapse is characterized as a degenerative process in which, in its initial phase, the original distribution of data begins to lose its tails, that is, the states of lower probability.

This phenomenon tends to become increasingly common, as the content available on the internet has been progressively influenced by texts generated by models, reducing the presence of content produced exclusively by humans. As a consequence, during data scraping, the distribution begins to reflect more and more artificially generated information, further accelerating the collapse of the models.

Understanding the Discussion/Conclusion:

In the "Discussion" section of the paper, it was proven that collapse really happens with generative AI models and, given this fact, it is necessary to ensure that low

probability events are considered during the regrouping of data distribution for model training, ensuring the generation of fair responses to the user. Furthermore, some actions were recommended in response to the collapse problem, such as ensuring that the original distribution of data, arising from interaction with human content, is part of the training of successor models. Furthermore, it was suggested the creation of an international coordination that ensures the sharing of information between different groups of developers, with the aim of guaranteeing the development of quality LLMs, based on reliable data distribution.

Report	Report 2					
Paper	Review of	Reference:	JOSHI, Satyadhar. (2025).			
name:	autonomous		Review of autonomous systems			
	systems and		and collaborative Al agent			
	collaborative Al		frameworks. International Journal			
	agent		of Science and Research			
	frameworks		Archive. 14. 961-972.			
			10.30574/ijsra.2025.14.2.0439.			
			Disponível em:			
			https://www.researchgate.net/pub			
			lication/389068903_Review_of_a			
			utonomous systems and collab			
			orative_Al_agent_frameworks.			
			Accessed on: 22 Feb. 2025.			

Understanding the Abstract:

The paper in question presents an overview of the current use of Al agents, focusing on frameworks, highlighting the main tools, their advantages and disadvantages.

Furthermore, it explores autonomous agent technology, emphasizing its concept, applications and technical aspects, including limitations and opportunities. It also

discusses future trends, offering a comprehensive view on the topic.

The study continues with an analysis of the application of this technology in different sectors, such as finance, risk management and the corporate environment.

Finally, the paper serves as a guide, consolidating the main recent observations on the evolution and impact of autonomous agents.

Understanding the Discussion/Conclusion:

The conclusion of this paper provides an overview of the rapid advancement of Al agents and the main tools for building this technology, providing an overview of its use in different scenarios. Furthermore, the application of Al agents in highly complex tasks is emphasized. However, the text also highlights its weaknesses and recommends a more rigorous approach in terms of ethics and governance for this emerging technology.

Report	Report 3					
Paper	A Survey on	Reference:	WANG, Lei; MA, Chen; FENG,			
name:	Large Language		Xueyang; ZHANG, Zeyu; YANG,			
	Model based		Hao; ZHANG, Jingsen; CHEN,			
	Autonomous		Zhiyuan; et al. A survey on large			
	Agents		language model based			
			autonomous agents. Frontiers of			
			Computer Science, v. 18, no. 6,			
			2024, p. 186345. Available at:			
			https://arxiv.org/abs/2308.11432			
			Accessed on: February 22nd.			
			2025.			

The study in question demonstrates the evolution of autonomous agents with the help of LLMs in carrying out complex tasks. It explores the advancement of these agents in increasingly diverse activities in different sectors, offering a holistic view of the topic. Furthermore, it presents the most common strategies for integrating these technologies and the challenges involved.

Understanding the Discussion/Conclusion:

The "Conclusion" section of the paper states that the study provided a detailed overview of the main advances in agents assisted by LLMs, addressing their construction, application and evolution, in addition to mentioning technical aspects. Finally, the conclusion emphasizes that the paper highlights the main challenges and shortcomings of these tools.

Report	Report 4					
Paper	Can We Trust Al	Reference:	CERQUEIRA, José Antonio			
name:	Agents? An		Siqueira de; et al. Can we trust Al			
	Experimental		agents? An experimental study			
	Study Towards		towards trustworthy LLM-based			
	Trustworthy		multi-agent systems for Al ethics.			
	LLM-Based		arXiv preprint, arXiv:2411.08881,			
	Multi-Agent		2024. Available at:			
	Systems for Al		https://arxiv.org/abs/2411.08881.			
	Ethics		Accessed on: 22 Feb. 2025.			

Understanding the Abstract:

In this study, we analyzed how LLMs can help in the development of ethical Al. A

prototype called LLM-BMAS was created, which uses multiple agents to discuss real ethical issues, generating detailed ethical code. The system addressed topics such as bias, transparency, responsibility, consent and compliance.

Understanding the Discussion/Conclusion:

The study shows techniques to make AI models more reliable in the area of software engineering. To achieve this, a multi-agent system was created, where each one had a specific role within the process, helping to organize information and improve the quality of responses. Additionally, the system used structured debates and conversations to improve decision-making.

Report	5		
Paper	Transforming	Reference:	CRUZ, Carlos Jose Xavier.
name:	Competition into		Transforming competition into
	Collaboration:		collaboration: The revolutionary
	The		role of multi-agent systems and
	Revolutionary		language models in modern
	Role of		organizations. <i>arXiv preprint</i> ,
	Multi-Agent		arXiv:2403.07769, 2024.
	Systems and		Available at:
	Language		https://arxiv.org/abs/2403.07769.
	Models in		Accessed on: 27 Feb. 2025.
	Modern		
	Organizations		

Understanding the Abstract:

This paper talks about how combining multi-agent systems (SMA) with large language models (LLM) can change the way humans interact with artificial agents. The idea is

to use these agents to help with both day-to-day operational tasks and strategic decisions within companies.

The study approach proposes creating LLM-based agents with different profiles, which simulate specific behaviors and interact with each other in a guided conversation format.

Understanding the Discussion/Conclusion:

This text ends by emphasizing the interaction between multi-agents and LLMs, highlighting their high positive impact on tasks that require collaboration in organizations. It then presents a summary of the tasks most commonly performed using AI and concludes with a reflection on how this technological interaction will provide new forms of application, reducing complexity and encouraging the creative use of these technologies.

Report	Report 6					
Paper	Multi-Agent	Reference:	BECKER, Jonas. Multi-agent			
name:	Large Language		large language models for			
	Models for		conversational task-solving.			
	Conversational		arXiv preprint,			
	Task-Solving		arXiv:2410.22932, 2024.			
			Available at:			
			https://arxiv.org/abs/2410.22932.			
			Accessed on: 22 Feb. 2025.			

Understanding the Abstract:

This work evaluates multi-agent systems in conversational tasks, analyzing their performance in different paradigms. I propose a taxonomy of 20 studies (2022-2024) and a framework for multi-agent LLMs.

Understanding the Discussion/Conclusion:

This conclusion addresses the main theme of the paper, the interaction between multi-agents in the context of communication. However, the main focus was the relationship between agents when solving tasks, highlighting their reactions in different scenarios and the impact of the duration of conversations on their performance. Furthermore, it is noteworthy that agents are able to guarantee ethics in their interactions, avoiding inappropriate topics. Finally, the text emphasizes that the introduction of LLMs to support multi-agents contributes significantly to the resolution of complex tasks and high performance.

Paper name: Strong Model Reference: Collapse DOHMATOB, Elvis; FENG, Yunzhen; SUBRAMONIAN, Arjun; KEMPE, Julia. Strong model collapse. arXiv preprint, arXiv:2410.04840, 2024. Available at: https://arxiv.org/abs/2410.04840.	Report	7					
Accessed on: 27 Feb. 2025.	·	J	del Re	erence:	Yunzhen; Arjun; KEMP model collaps arXiv:2410.048 Available https://arxiv.org	SUBRAN E, Julia. e. <i>arXiv</i> 840,	MONIAN, Strong preprint, 2024. at: 0.04840.

Understanding the Abstract:

This study analyzes model collapse in large neural networks caused by synthetic data in training. Even 1% synthetic data can lead to performance degradation, making augmenting the training set useless. The impact of increasing model size is also investigated, showing that larger models can amplify the collapse.

Understanding the Discussion/Conclusion:

Report 8					
Paper	How to	Reference:	ZHU, Xuekai; CHENG, Daixuan;		
name:	Synthesize Text		LI, Hengli; ZHANG, Kaiyan;		
	Data without		HUA, Ermo; LV, Xingtai; DING,		
	Model		Ning; LIN, Zhouhan; ZHENG,		
	Collapse?		Zilong; ZHOU, Bowen. How to		
			Synthesize Text Data without		
			Model Collapse? arXiv preprint,		
			arXiv:2412.14689, 2024.		
			Available at:		
			https://arxiv.org/abs/2412.14689.		
			Accessed on: 22 Feb. 2025.		

The study analyzes the impact of synthetic data on training language models, showing that a greater proportion of synthetic data reduces model performance. Statistical analyzes indicate changes in data distribution and excess n-grams. To avoid model collapse, we propose editing tokens on human data to generate semi-synthetic data. Experiments confirm that this technique improves data quality and model performance.

Understanding the Discussion/Conclusion:

The paper in question concludes that the use of synthetic data can compromise the

effectiveness of pre-training when combined with human data, resulting in non-iterative model collapse. Furthermore, to mitigate this problem, the authors propose editing at the token level, adopting a resampling method guided by a pre-trained model.

Report	Report 9					
Paper	The Impact of	Reference:	GENG, Mingmeng; CHEN, Caixi;			
name:	Large Language		WU, Yanru; CHEN, Dongping;			
	Models in		WAN, Yao; ZHOU, Pan. The			
	Academia:		impact of large language models			
	from Writing to		in academia: from writing to			
	Speaking		speaking. <i>arXiv preprint</i> ,			
			arXiv:2409.13686, 2024.			
			Available at:			
			https://arxiv.org/abs/2409.13686.			
			Accessed on: 22 Feb. 2025.			

Understanding the Abstract:

The study shows that large language models (LLMs) are increasingly impacting human society, especially in textual information. The impact on speech is beginning to emerge and is likely to grow in the future, drawing attention to the implicit influence and ripple effect of LLMs on human society.

Understanding the Discussion/Conclusion:

This paper points out that, in the academic context, an increasing number of people use the response patterns generated by LLMs, influencing both writing and speaking, especially writing. Consequently, the text emphasizes the possible risk of the model collapsing, considering that, as more people use this tool, including in the academic area, the chance of obtaining answers from a collapsed model, that is, with biases,

increases.

Report	Report 10				
Paper	Mitigating Social	Reference:	XU, Zhenjie; CHEN, Wenqing;		
name:	Bias in Large		TANG, Yi; LI, Xuanying; HU,		
	Language		Cheng; CHU, Zhixuan; REN, Kui;		
	Models: A		ZHENG, Zibin; LU, Zhichao.		
	Multi-Objective		Mitigating social bias in large		
	Approach		language models: A		
	Within a		multi-objective approach within a		
	Multi-Agent		multi-agent framework. arXiv		
	Framework		preprint, arXiv:2412.15504, 2024.		
			Available at:		
			https://arxiv.org/abs/2412.15504		
			Accessed on: 22 Feb. 2025.		

Understanding the Abstract:

In this study, a multi-objective approach within a multi-agent framework (MOMA) was proposed to reduce social bias in LLMs without significantly impairing performance. MOMA uses multiple agents to carry out causal interventions on the content related to bias in the questions, breaking the direct connection between this content and the answers.

Understanding the Discussion/Conclusion:

The conclusion of the paper highlights the techniques used to mitigate the bias of LLM models, one of the most effective being the use of multi-agents to address this problem.

Report	Report 11					
Paper	Towards Implicit	Reference:	BORAH, Angana; MIHALCEA,			
name:	Bias Detection		Rada. Towards implicit bias			
	and Mitigation in		detection and mitigation in			
	Multi-Agent LLM		multi-agent LLM interactions.			
	Interactions		arXiv preprint, arXiv:2410.02584,			
			2024. Available at:			
			https://arxiv.org/abs/2410.02584.			
			Accessed on: 22 Feb. 2025.			

In this study, LLM models are being used to gain insights into social aspects, so it is essential to mitigate biases. In this paper, the presence of implicit gender biases in multi-agent interactions with LLMs was investigated and two strategies were proposed to reduce them.

Understanding the Discussion/Conclusion:

The present study demonstrates the presence of bias in LLM models in the context of gender. Researchers developed analysis techniques that highlighted the occurrence of bias on a recurring basis. Furthermore, several conclusions were drawn throughout the study, the main ones being: LLMs generate biases even when trained with data produced by humans; LLM models with a greater number of parameters are more prone to bias; the interaction between multiple agents and LLMs can exacerbate bias; and fine-tuning can be an effective technique for mitigating bias in the context of interaction between generative AI models and multi-agent systems.

Report 12

	1				
Paper	Fairness in	Reference:	RANJAN, Rajesh; GUPTA, Shailja;		
name:	Multi-Agent AI:		SINGH, Surya Narayan. Fairness		
	A Unified		in multi-agent AI: A unified		
	Framework for		framework for ethical and equitable		
	Ethical and		autonomous systems. <i>arXiv</i>		
	Equitable		preprint, arXiv:2502.07254, 2025.		
	Autonomous		Available at:		
	Systems		https://arxiv.org/abs/2502.07254.		
			Accessed on: 22 Feb. 2025.		
	i .				

This paper provides a comprehensive overview of fairness in multi-agent AI, introducing a new framework that integrates fairness constraints, bias mitigation strategies, and incentive mechanisms to align agents' autonomous behaviors with social values, balancing efficiency and robustness.

Understanding the Discussion/Conclusion:

This paper emphasizes the objective of creating a collaborative environment between researchers to mitigate biases in the actions of multi-agent systems, promoting responsibility and transparency. Furthermore, the study highlights the need for techniques that minimize bias and ensure that agents act more fairly. Finally, the research was conducted using modification of the reward system as a strategy to mitigate unwanted actions by multi-agents.

Report	port 13							
Paper	Agentic AI: Reference: ACHARYA, Deepak Bhaskar;							
name:	Autonomous		KUPPAN, Carthigeyan; DIVYA,					
	Intelligence for		B. Agentic AI: Autonomous					
	Complex		intelligence for complex goals -					

A comprehensive survey. IEEE		
Access, 2025. Available at:		
https://ieeexplore.ieee.org/docum		
ent/10849561. Accessed on: 10		
Feb. 2025.		

The study explores the fundamental concepts, unique characteristics and core methodologies that drive agent development. Furthermore, it discusses its applications in areas such as healthcare, finance and adaptive software, highlighting the advantages of implementing agent systems in real-world scenarios. The study also addresses the ethical challenges related to this technology, proposing solutions to issues such as objective alignment, resource constraints and adaptability to the environment.

Understanding the Discussion/Conclusion:

In the "Conclusion" section, this paper highlights the different facets of AI agents, addressing their concepts, applicability and challenges. Furthermore, it emphasizes the broad usability of these systems in different scenarios, but also highlights their limitations. Finally, it warns of the need for more robust governance in order to strengthen ethics in the application of this technology.

Report 14						
Paper	Personalized	Reference:	THAKKAR, Param; YADAV,			
name:	Recommendatio	Anushka. Personalize				
	n Systems using		Recommendation Systems using			
	Multimodal,		Multimodal, Autonomous, Multi			
	Autonomous,		Agent Systems. arXiv preprint			

Multi A	Agent	arXiv:2410.19855, 2024. Availa	able
Systems		at: https://arxiv.org/abs/2410.198	<u>55</u> .
		Accessed on: 22 Feb. 2025.	

The paper describes a personalized recommendation system using multimodal and multi-agent systems to improve the customer experience in e-commerce. The system is made up of three agents: the first recommends products, the second asks follow-up questions based on images and the third performs an autonomous search.

Understanding the Discussion/Conclusion:

The study demonstrates that there was collaboration between agents in a multi-agent system to assist users with product recommendations. It is important to highlight that the data distribution used went beyond the customer's history, also incorporating the use of images.

Report 15							
Paper	Consumer	Reference:	ROHDEN, Simoni F.;				
name:	reactions to		ESPEARTEL, Lélis Balestrin.				
	technology in		Consumer reactions to				
	retail: choice		technology in retail: choice				
	uncertainty and		uncertainty and reduced				
	reduced		perceived control in decisions				
	perceived		assisted by recommendation				
	control in		agents. <i>Electronic Commerce</i>				
	decisions		Research, v. 24, no. 2, p.				
	assisted by		901-923, 2024. Available at:				
	recommendatio		https://link.springer.com/article/10				

n agents	.1007/s10660-024-09808-7.
	Accessed on: 22 Feb. 2025.

The research highlights that recommendation agents can reduce choice overload and facilitate purchasing decisions, but they also generate greater uncertainty in decision making. Purchases assisted by these agents are perceived as more uncertain, with less perceived control over choices, resulting in lower satisfaction and purchase intentions.

Understanding the Discussion/Conclusion:

The present study highlights the positive effects of using agents in reducing the user's cognitive load when choosing and browsing products. However, experiments indicate that this technology can increase the user's perception of uncertainty regarding recommendations.

Report	Report 16						
Paper	Investigating	Reference:	LIN, Lean; WANG, Lingzhi; GUO,				
name:	Bias in		Jinsong; WONG, Kam-Fai.				
	LLM-Based Bias Investiga		Investigating bias in LLM-based				
	Detection:		bias detection: disparities				
	Disparities		between LLMs and human				
	between		perception. arXiv preprint,				
	LLMs and		arXiv:2403.14896, 2024.				
	Human		Available at:				
	Perception		https://arxiv.org/abs/2403.14896.				
			Accessed on: 22 Feb. 2025.				

In this research, although robust large language models (LLMs) have emerged as fundamental tools for bias prediction, concerns persist about the biases inherent in these models. Furthermore, the presence and nature of bias in LLMs and its consequent impact on the detection of bias in the media were investigated.

Understanding the Discussion/Conclusion:

The text emphasizes the presence of bias in LLM models and insists on the urgency of policies, guidelines and governance to mitigate this problem.

Report 17								
Paper	Bias of	Reference:	FANG, X.; CHE, S.; MAO, M. et al.					
name:	Al-generated		Bias of Al-generated content: an					
	content: an		examination of news produced by					
	examination of		large language models. Sci Rep, v.					
	news produced		14, p. 5224, 2024. Available at:					
	by large		https://doi.org/10.1038/s41598-024-5					
language			<u>5686-2</u> . Accessed on: 22 Feb. 2025.					
	models							

Understanding the Abstract:

The study investigates gender and racial bias in AIGC produced by seven LLMs, including ChatGPT and LLaMA, using news articles from The New York Times and Reuters. Research reveals that LLMs demonstrate substantial biases, especially against women and individuals of color. ChatGPT has the lowest level of bias and is the only model capable of opting out of generating content with biased prompts.

Understanding the Discussion/Conclusion:

The text emphasizes the presence of bias in LLM models, showing that the AIGC (AI-Generated Content) produced by these models presents gender and racial biases at different levels. The effectiveness of RLHF (Reinforcement from Human Feedback) in mitigating these biases stands out.

Report 18							
Paper	A Multi-Agent	Reference:	FANG, Jiabao; GAO, Shen; REN,				
name:	Conversational		Pengjie; CHEN, Xiuying;				
	Recommender		VERBERNE, Suzan; REN,				
	System		Zhaochun. A multi-agent				
			conversational recommender				
			system. <i>arXiv preprint</i> ,				
			arXiv:2402.01135, 2024. Available				
		at:					
			https://arxiv.org/abs/2402.01135.				
			Accessed on: 22 Feb. 2025.				

Understanding the Abstract:

The paper proposes the Multi-Agent Conversational Recommendation System (MACRS), which improves the dialogue flow and collection of user preferences. MACRS uses a multi-agent cooperative framework to generate and choose appropriate responses and a reflection mechanism to adjust dialogue planning based on user feedback.

Understanding the Discussion/Conclusion:

The study demonstrates the techniques used to improve the user recommendation

approach, adopting a multi-agent system, in which each agent is responsible for a part of the dialogue strategy, with the support of LLM models. Furthermore, a mechanism for continuous user feedback and integration of user information was employed to increase agent accuracy.

Report	port 19							
Paper	Poisoning and	Reference:	CARLINI,	Nicholas;	TERZIS,			
name:	Backdooring		Andreas. Poisoning		j and			
	Contrastive backdooring contrastive lear				learning.			
	Learning arXiv preprint, arXiv:2106.096				06.09667,			
			2021.	Available	at:			
	https://arxiv.org/abs/2106.09667							
			Accessed o	n: 10 Feb. 20)25.			

Understanding the Abstract:

In this study, even poisoning just 0.01% of a dataset, it was shown that it is possible to induce the model to make errors, raising questions about the feasibility of training with uncurated data from the internet.

Understanding the Discussion/Conclusion:

The study shows how using unfiltered datasets can increase the risks of poisoning attacks on machine learning models. He explains that modern models train with large volumes of data taken from the Internet, without rigorous review, which makes it easier for adversaries to insert malicious information. Researchers have demonstrated that these attacks can be done with less effort than traditional methods and that increasing the amount of data does not prevent attacks. To solve this problem, the study suggests that new forms of defense be developed, as manually reviewing all the data is not viable.