ESPAÇOS EUCLIDIANOS

Produto interno

Definição [2.3]: Produto interno em espaços lineares reais

Seja V um espaço linear real $(\Omega = \mathbb{R})$, sendo 0_V o seu elemento zero. Um *produto interno* em V é uma aplicação que associa a cada par de elementos x e y de V um único escalar de \mathbb{R} , representado por $\langle x,y \rangle$, satisfazendo os seguintes *axiomas*:

Axioma 1) Comutatividade ou simetria

$$\forall x, y \in V \ \langle x, y \rangle = \langle y, x \rangle$$

Axioma 2) Distributividade ou linearidade

$$\forall x, y, z \in V \ \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

Axioma 3) Associatividade ou homogeneidade

$$\forall x, y \in V \ \forall \alpha \in \mathbb{R} \ \alpha \langle x, y \rangle = \langle \alpha x, y \rangle$$

Axioma 4) Positividade

$$\forall x \in V \ \langle x, x \rangle > 0$$
 , se $x \neq 0_V$

Exemplo 1 [2.15]: O produto escalar definido para o espaço linear (vectorial) \mathbb{R}^n

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

é um produto interno.

Definição [2.4]: Produto interno em espaços lineares complexos

Seja V um espaço linear complexo $(\Omega = \mathbb{C})$, sendo 0_V o seu elemento zero. Um *produto interno* em V é uma aplicação que associa a cada par de elementos x e y de V um único escalar de \mathbb{C} , representado por $\langle x,y\rangle$, satisfazendo os seguintes *axiomas*:

Axioma 1) Simetria hermiteana

$$\forall x, y \in V \ \langle x, y \rangle = \overline{\langle y, x \rangle}$$

Axioma 2) Distributividade ou linearidade

$$\forall x, y, z \in V \ \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

Axioma 3) Associatividade ou homogeneidade

$$\forall x, y \in V \ \forall \alpha \in \mathbb{C} \ \alpha \langle x, y \rangle = \langle \alpha x, y \rangle$$

Axioma 4) Positividade

$$\forall x \in V \ \langle x, x \rangle > 0$$
 , se $x \neq 0_V$

Refira-se que $\overline{\langle y, x \rangle}$ representa o *complexo conjugado* de $\langle y, x \rangle$.

 Um espaço linear munido com a operação produto interno é chamado espaço linear com produto interno.

Espaço euclidiano

Definição [2.5]: Espaço euclidiano

Designa-se por *espaço euclidiano*, um espaço linear V sobre um corpo Ω no qual se define uma operação *produto interno*.

- Convém realçar o seguinte:
 - i) Se $\Omega = \mathbb{R}$, então V é um *espaço euclidiano real*;
 - ii) Se $\Omega = \mathbb{C}$, então V é um *espaço euclidiano complexo* ou *espaço unitário*.

Exemplo 2 [2.13]: O conjunto \mathbb{R} é um *espaço euclidiano real*, em que a multiplicação de dois números reais é um produto interno

Exemplo 3 [2.14;15]: O espaço linear \mathbb{R}^n do **exemplo 1** é um *espaço euclidiano real*; o mesmo acontece com os espaços \mathbb{R}^2 e \mathbb{R}^3 .

Exemplo 4 [2.16]: Seja C[a,b] o espaço linear (vectorial) de todas as funções reais de variável real contínuas no intervalo [a,b]. A operação

$$\forall f,g \in C[a,b] \quad \langle f,g \rangle = \int_a^b f(t)g(t) \ dt$$

é um produto interno. O espaço C[a,b] é um espaço euclidiano real.

Teorema [2.14]: Seja V um *espaço euclidiano real*, em que 0_V é o seu *elemento zero*. Então:

a)
$$\forall x \in V \langle x, 0_V \rangle = \langle 0_V, x \rangle = 0$$

b)
$$\forall x, y \in V \ \forall \alpha \in \mathbb{R} \ \alpha \langle x, y \rangle = \langle x, \alpha y \rangle$$

c)
$$\forall x, y, z \in V \ \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

d) Se
$$\langle x, y \rangle = \langle x, z \rangle \ \forall x, y, z \in V$$
, então $y = z$

e)
$$\forall x \in V \ \langle x, x \rangle = 0$$
, se e só se $x = 0_V$

Teorema [2.15]: Seja V um *espaço euclidiano complexo*, em que 0_V é o seu *elemento zero*. Então:

a)
$$\forall x \in V \langle x, 0_V \rangle = \overline{\langle 0_V, x \rangle} = 0$$

b)
$$\forall x, y \in V \ \forall \alpha \in \mathbb{C} \ \overline{\alpha} \langle x, y \rangle = \langle x, \alpha y \rangle$$

Além disso, mantêm-se válidas as propriedades expostas nas alíneas **c**), **d**) e **e**) do teorema anterior.

Exemplo 5 [2.19;23;26;28]: Considere o *espaço euclidiano real* C[0,1], constituído pelas funções reais de variável real contínuas no intervalo [0,1], em que o *produto interno* é definido por

$$\forall f,g \in C[0,1] \quad \langle f,g \rangle = \int_0^1 f(x)g(x) \ dx$$

Sejam as funções f(x) = x, g(x) = -3x e $h(x) = \sqrt{2 - x^2}$ de C[0,1].

- a) Calcule $\langle f, f \rangle$ e $\langle g, h \rangle$.
- b) Determine a *norma* de cada uma das funções dadas.
- c) Obtenha o ângulo formado pelas funções g(x) e h(x).
- d) Decomponha a função f(x) na direcção da função h(x) e na direcção ortogonal a esta última.

Solução:

a)
$$\langle f, f \rangle = \langle x, x \rangle = \int_0^1 x^2 dx = \frac{1}{3}$$

 $\langle g, h \rangle = \left\langle -3x, \sqrt{2 - x^2} \right\rangle = -\int_0^1 3x \left(2 - x^2\right)^{1/2} dx = 1 - 2\sqrt{2}$

b)
$$||f|| = ||x|| = \langle x, x \rangle^{1/2} = \frac{\sqrt{3}}{3}$$

 $||g|| = ||-3x|| = |-3|||x|| = \sqrt{3}$
 $||h|| = ||\sqrt{2 - x^2}|| = \langle \sqrt{2 - x^2}, \sqrt{2 - x^2} \rangle^{1/2} = \left(\int_0^1 (2 - x^2) dx\right)^{1/2} = \frac{\sqrt{15}}{3}$

c) Designando por $\theta = \measuredangle(g,h)$ o ângulo pretendido, obtém-se

$$\cos \theta = \frac{\langle g, h \rangle}{\|g\| \|h\|} = \frac{3(1 - 2\sqrt{2})}{\sqrt{3}\sqrt{15}} = \frac{\sqrt{5} - 2\sqrt{10}}{5} \iff \theta = \arccos\left(\frac{\sqrt{5} - 2\sqrt{10}}{5}\right)$$

d) Sabendo que

$$\langle f, h \rangle = \langle x, \sqrt{2 - x^2} \rangle = \int_0^1 x (2 - x^2)^{1/2} dx = \frac{2\sqrt{2} - 1}{3} \quad \text{e} \quad ||h||^2 = \frac{5}{3}$$

a projecção ortogonal de f(x) sobre h(x) é

$$f_{||} = \text{proj}_h \ f = \frac{\langle f, h \rangle}{\|h\|^2} = \frac{2\sqrt{2} - 1}{5} \sqrt{2 - x^2}$$

enquanto a componente de f(x) ortogonal a h(x) é

$$f_{\perp} = f - f_{||} = f - \text{proj}_{h} \ f = x - \frac{2\sqrt{2} - 1}{5} \sqrt{2 - x^{2}}$$