Definition: Ring

Ring

A **ring** is a Set equipped with two Binary Operation operations that generalize the arithmetic of integers.

Formal Definition

A ring $(R, +, \cdot)$ consists of a set R together with two binary operations, addition (+) and multiplication (\cdot) , such that:

Addition Axioms

- 1. (R, +) is an abelian Group:
 - Associativity: (a+b) + c = a + (b+c)
 - Commutativity: a + b = b + a
 - **Identity**: There exists $0 \in R$ such that a + 0 = a
 - Inverses: For each $a \in R$, there exists $-a \in R$ such that a + (-a) = 0

Multiplication Axioms

2. Multiplication is associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Distributive Laws

- 3. Left distributivity: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Right distributivity: $(a+b) \cdot c = a \cdot c + b \cdot c$

Types of Rings

- Commutative ring: $a \cdot b = b \cdot a$ for all a, b
- Ring with unity: There exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$
- Integral domain: Commutative ring with unity and no zero divisors
- Field: Commutative ring where every non-zero element has a multiplicative inverse

Examples

- $(\mathbb{Z}, +, \cdot)$ integers under addition and multiplication
- $M_n(\mathbb{R})$ $n \times n$ matrices with real entries
- $\mathbb{Z}[x]$ polynomials with integer coefficients

Dependency Graph

Local dependency graph