Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WQW37
USDA United States
Department of
Agriculture

Natural Resources Conservation Service

Washington Basin Outlook Report March 1, 2001

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Natural Resources Conservation Service Field Office

or Scott Pattee Water Supply Specialist Natural Resources Conservation Service 2021 E. College Way, Suite 214 Mt. Vernon, WA 98273-2873 (360) 428-7684

or Betty Schmitt Public Affairs Specialist Natural Resources Conservation Service 316 W. Boone Ave., Suite 450 Spokane, WA 99201-2348 (509) 323-2912

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all of its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require an alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an Equal Opportunity provider and employer.

Washington Water Supply Outlook

March 2001

General Outlook

Washington State is experiencing one of the worst climatology years on record. Snowpack, precipitation and reservoir storage recordings are at record book levels in most areas in the state and are close to meeting the record low year of 1977. Forecasts or spring and summer streamflows directly reflect the lack of precipitation since October 1 and short term National Weather Service forecasts do not indicate much relief. Water supply cutbacks are eminent, only time will tell just how bad it will be. At this time, conservation and wise use of water resources is the best advise we can give and we should all prepare for a tough season.

Snowpack

The March 1 statewide SNOTEL readings were below average at 60%. The Elwah River Basin snow surveys reported the lowest readings at only 29% of average. Readings taken in the Cedar River Basin reported the highest at 84% of average. Westside averages from SNOTEL and March 1 snow surveys included the North Puget Sound river basins with 55%, the Central Puget river basins with 67%, and the Lewis-Cowlitz basins with 63%. Snowpack along the east slopes of the Cascade Mountains included the Yakima area with 61% and the Wenatchee area with 62%. Snowpack in the Spokane River Basin was at 65% and the Pend Oreille River Basin, including Canadian data, had 60% of average. Basin wide averages remain well below average however no basin has dropped below the previous record.

BASIN	PERCENT	OF LAST YEAR	PERCENT	OF AVERAGE
Spokane Newman Lake Pend Oreille		59		65 72 60
Okanogan		62		58 52
Similkameen		95		69 60
Chelan		49		54 68
Yakima		57		61 48
Walla Walla		59		64
Lower Snake		54		61 54
Lewis		45 55		71 59
Green		52 54		52 59
Cedar		66		84 61
Skykomish		49		60 52
Baker		49		47 55
Olympic Peninsula		48		50

Precipitation

During the month of February, the National Weather Service and Natural Resources Conservation Service climate stations reported well below average precipitation for all Washington river basins. The highest percent of average in the state was at Wenatchee, Washington. Wenatchee reported 85% of average for a total of .74 inches. The average for this site is .87 inches for February. Averages for the water year varied from 62% of average in the Walla Walla river basins to 43% of average in Colville – Pend Oreille river basins. The highest individual site average for the water year was 80% of average at Mill Creek Dam near Walla Walla.

RIVER	FEBRU.	ARY	WATE	R YEAR
BASIN	PERCENT OF	AVERAGE	PERCENT (OF AVERAGE
Spokane				49
Colville-Pend Oreille .	4	5		43
Okanogan-Methow	4	6		47
Wenatchee-Chelan	5	5		49
Upper Yakima	4	8		48
Lower Yakima	5	4		50
Walla Walla	5	1		65
Lower Snake	4	7		59
Cowlitz-Lewis	4	4		46
White-Green-Puyallup	4	9		52
Central Puget Sound	4	8		51
North Puget Sound	3	9		50
Olympic Peninsula	3	4		57

Reservoir

Seasonal reservoir levels in Washington vary greatly due to specific watershed management practices required in preparation for irrigation season, fisheries management and power generation. Reservoir storage in the Yakima Basin was 231,000-acre feet, 41% of average for the Upper Reaches and 106,600-acre feet, 76% of average for Rimrock and Bumping Lakes. Storage at the Okanogan reservoirs was 93% of average for March 1. The power generation reservoirs included the following: Coeur d'Alene Lake, 26,300 acre feet, 11% of average and 18% of capacity; Chelan Lake, 367,700 acre feet, 219% of average and 54% of capacity; and Ross Lake at 257% of average and 56% of capacity.

BASIN	PERCENT	OF	CAPACITY	PERCENT	OF AVERAGE
Spokane		28 55 54 28 46			49 93 219 41 76

Streamflow

Skagit at Concrete

Mid season forecasts indicate much below to below normal summer flows for all streams in the state. They vary from 81% of average for Mill Creek at Walla Walla to 48% of average for Methow River near Pateros. March forecasts for some Western Washington streams include: Cedar River near Cedar Falls, 70%; Green River, 66%; and Skagit River, 66%. Some Eastern Washington streams include the Yakima River near Parker, 57%: Wenatchee River at Peshastin, 57%; and Spokane River near Post Falls, 58%. Volumetric forecasts are developed using current, historic and average snowpack, precipitation and streamflow data collected and coordinated by organizations cooperating with NRCS.

Streamflows reported for February were well below average across the state. The Columbia River at Birchbank, had the highest flows with 66% of average. The Cle Elum River near Roslyn with 18% of average, was the lowest in the state. Other streamflows were the following percentage of average: the Priest River, 25%; the Columbia at The Dalles, 46%; the Spokane at Spokane, 21%; the Columbia below Rock Island Dam, 49%; the Cowlitz River at Castle Rock, 42%; and the Snake River below Ice Harbor Dam, 46%.

BASIN	PERCENT OF AVERAGE MOST PROBABLE FORECAST
	(50 PERCENT CHANCE OF EXCEEDENCE)
Spokane Colville-Pend Oreille Okanogan-Methow Wenatchee-Chelan Upper Yakima Lower Yakima Walla Walla Lower Snake Cowlitz-Lewis White-Green-Puyallup North Puget Sound Olympic Peninsula	50-74 48-55 57-68 60-67 54-69 79-81 65-79 59-69 68-72 67-69
STREAM	PERCENT OF AVERAGE FEBRUARY STREAMFLOWS
Pend Oreille Below Box Canyon Kettle at Laurier Columbia at Birchbank Spokane at Long Lake Similkameen at Nighthawk Okanogan at Tonasket Methow at Pateros Chelan at Chelan Wenatchee at Pashastin Yakima at Cle Elum Yakima at Parker Naches at Naches Grande Ronde at Troy Snake below Lower Granite Dam SF Walla Walla near Milton Freewater Lewis at Ariel Cowlitz below Mayfield Dam	55 66 28 46 45 65 33 29 23 22 24 29 44 57 42

BASIN SUMMARY OF SNOW COURSE DATA

MARCH 2001

SNOW COURSE ELE	VATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE	ELE/	/ATION	DATE	SNOW DEPTH	WATER CONTENT		AVERAGE 1961-90
ABERDEEN LAKE CAN.	4000	2/26/01		4.0	5.0	5.7	HERRIG JUNCTI		4850	2/27/01		11.9	21.4	21.7
AHTANUM R.S. ALPINE MEADOWS	3100 3500	3/01/0: 2/21/0:		3.5E 20.0	7.1 55.9	6.8 33.8	HIGH RIDGE HOLBROOK	PILLOW	4980 4530	3/01/01 2/26/01		14.4 5.5	23.4	21.6 8.8
ALPINE MEADOWS PILL	3500	3/01/03	L	24.7	53.6	37.1	HOODOO BASIN		6050	3/01/03	٠	17.5	35.1	39.7
AMBROSE ASHLEY DIVIDE	6480 4820	2/28/03		6.3 5.3	9.0 5.2		HUMBOLDT GLCH HURRICANE	PILLOW	4250 4500	3/01/01 2/24/01		8.8 5.1	13.1 15.8	12.8 17.4
BADGER PASS	6900	2/27/0	L 57	15.4		33.2	INTERGAARD		6450	2/24/03	L 23	4.6	4.8	6.8
BADGER PASS PILLOW BAREE MIDWAY	6900 4600	3/01/0: 2/27/0:		14.3 17.1	24.2 25.5	30.8 30.5	ISINTOK LAKE JASPER PASS	CAN. AM	5100 5400	2/27/01 2/21/01		5.2 28.8	4.6	6.3 75.0
BAREE TRAIL	3800	2/27/03	L 33	9.0	9.6	8.6	JUNE LAKE	PILLOW	3200	3/01/03	L	24.4	52.1	33.6
BARKER LAKES PILLOW BARNES CREEK CAN.	8250 5320	3/01/0: 2/25/0:		8.3 10.5	7.4 18.0	12.2 16.9	KELLER RIDGE KELLOGG PEAK		3700 5560	2/27/03 3/01/03		4.8 15.6	5.8 29.0	4.4
BASIN CREEK PILLOW	7180	3/01/03	۱	5.3	5.3	6.5	KISHENEHN		3890	2/27/0	1 22	4.8	6.9	26.3 7.5
BASSOO PEAK BEAVER CREEK TRAIL	5150 2200	3/01/03		7.4 8.6	8.4 17.8	10.0 12.6	KIT CARSON PÆ KLESILKWA	CAN.	4950 3450	2/23/03 2/27/03		5.5 4.6	6.9 11.3	7.8 11.1
BEAVER PASS	3680	3/01/03		12.1	25.8	25.1	KRAFT CREEK F		4750	3/01/03		10.2	13.9	14.5
BERNE-MILL CREEK (d) BIG CREEK	3170 6750	2/28/03		17.1 23.1	24.7	24.7 37.4	LIGHTNING LAN LOGAN CREEK	CE CAN.	3700 4300	2/27/03		5.9 5.2	9.7 6.0	10.2 6.7
BIG WHITE MTN CAN.	5510	3/04/0		9.2	15.9		LOLO PASS	PILLOW	5240	3/01/03		12.8	28.4	28.0
BLACK MOUNTAIN BLACK PINE PILLOW	7750 7100	2/26/03 3/01/03		10.8	12.8	12.2 10.5	LONE PINE LOOKOUT	PILLOW PILLOW	3800 5140	3/01/0: 3/01/0:		21.2 16.8	46.9	28.1
BLEWETT PASS#2PILLOW	4270	3/01/0:		8.7	13.6		LOST HORSE	FILLON	5940	2/21/0			28.7	28.0 28.0
BLUE LAKE BRENDA MINE CAN.	5900 4450	2/27/01 3/01/01		11.5 7.2	17.7 10.4	22.0 11.5	LOST HORSE MT	TN CAN.	6300 5000	2/28/0: 3/01/0:			6.7	7.6
BROOKMERE CAN.	3000	2/28/0		5.3	5.1		LOST LAKE	PILLOW	6110	3/01/0		22.5	18.7 48.6	25.6 52.7
BROWN TOP AM	6000	2/27/0:		23.4	50.6		LOWER SANDS (3120	2/27/0			21.8	16.9
BRUSH CREEK TIMBER BULL MOUNTAIN	5000 6600	2/26/03 2/28/03		5.6 4.1	6.3 5.8		LUBRECHT FORE		5450 4650	2/28/0: 2/28/0:			6.1 2.8	6.3 3.1
BUMPING LAKE	3450	2/26/0		10.4		14.0	LUBRECHT FORE		4040	2/28/0		3.8	3.2	3.7
BUMPING LAKE (NEW) BUMPING RIDGE PILLOW	3400 4600	3/01/0:		12.8E 14.1	14.0 26.1		LUBRECHT HYDF LUBRECHT PILI		4200 4680	2/28/01 3/01/01		5.1 5.0	5.5 5.8	6.4 5.8
BUNCHGRASS MDWPILLOW	5000	3/01/0	l	12.5	25.0	22.7	LYMAN LAKE	PILLOW	5900	3/01/0	1	26.2	52.4	48.4
CARMI CAN. CAYUSE PASS	4100 5300	3/04/03		3.5 38.0	4.8 69.8		LYNN LAKE MARIAS PASS		4000 5250	3/01/0: 2/28/0:		8.6E 9.6	23.3 13.7	16.0 14.9
CHESSMAN RESERVOIR	6200	2/23/0	15	2.9	1.4	3.4	MARTEN LAKE	AM	3600	2/21/0	1	31.3		63.6
CHEWALAH CHICKEN CREEK	4930 4060	2/27/0:		8.0 10.0	18.3 15.6		MCCULLOCH MEADOWS CABIN	CAN.	4200 1900	2/28/0: 3/01/0:			5.7 5.1	6.1 6.2
CHIWAUKUM G.S.	2500	2/28/0		7.2	9.4		MEADOWS PASS		3240	3/01/0		16.0	25.6	18.1
CITY CABIN	2390 6500	3/01/0		9.0E	52.1	12.3 32.9	MERRITT	PILLOW	2140 4750	2/28/0: 3/01/0:			11.6 27.3	14.4
CLOUDY PASS AM COMBINATION PILLOW	5600	3/01/03		19.0E 3.5	4.1		MICA CREEK MINERAL CREEK		4000	2/26/0		18.0 10.1	17.2	
COPPER BOTTOM PILLOW	5200	3/01/03		7.0	10.7		MISSEZULA MTN		5080	2/26/0			5.8	8.8
COPPER CREEK COPPER MOUNTAIN	5700 7700	2/27/0:		7.4 7.7	11.0 9.5		MONASHEE PASS MOOSE CREEK	PILLOW	4500 6200	2/25/0: 3/01/0:		6.7 8.4	11.8 15.8	12.0 14.5
CORNER CREEK	3150	2/28/0	L 24	6.6	7.8	6.9	MORRISSEY RIL	GE CAN.	6100	3/01/0	1	9.1		25.4
CORRAL PASS PILLOW COTTONWOOD CREEK	6000 6400	3/01/0: 2/26/0:		15.5 6.7	32.2 6.9		MORSE LAKE MOSES MOUNTAI	PILLOW IN (1)	5400 4800	3/01/0 2/28/0		23.5 7.5	36.8	38.5 14.4
COUGAR MTN. PILLOW	3200	3/01/0	L	10.2	13.7		MOSES MTN	PILLOW	4800	3/01/0	1	6.3	15.8	
COX VALLEY COYOTE HILL	4500 4200	2/25/0: 2/28/0:		16.1 7.0	34.7 8.2		MOSES PEAK (2 MOSQUITO RDG		6650 5200	2/28/0: 3/01/0:		5.8 15.5	33.2	10.3 32.2
DALY CREEK PILLOW	5780	3/01/0	L	6.2	9.2	10.0	MOULTON RESER	RVOIR	6850	2/22/0	1 28		7.6	5.8
DEER PARK DESERT MOUNTAIN	5200 5600	2/26/03 2/27/03		8.4 7.6	16.8 12.1		MOUNT CRAG MT. KOBAU	PILLOW CAN.	4050 5500	3/01/0 2/25/0		17.6 7.7	31.6 8.0	26.5 10.4
DEVILS PARK	5900	2/28/0	1 59	21.2	35.8	36.9	MOUNT TOLMAN		2000	2/26/0	1 11	2.4	2.4	3.5
DISCOVERY BASIN DIX HILL	7050 6400	2/22/0: 2/25/0:		7.4 9.0	6.3 10.8		MOUNT GARDNER MOUNT GARDNER		3300 2860	2/21/0 3/01/0			14.0 15.8	14.2 14.2
DOMMERIE FLATS	2200	2/26/0		7.4	9.1		MUTTON CREEK		5700	2/23/0	1 25		10.0	
EAST FORK R.S. EAST RAGGED SADDLE	5400 3740	3/02/03 3/04/03		3.7 15.7	6.0 23.2		N.F. ELK CR I NEW HOZOMEEN		6250 2800	3/01/0:		7.7 5.2	11.2	10.8 10.9
EASY PASS AM	5200	2/21/0		31.2	62.0		NEZ PERCE CMI		5650	3/01/0		7.8	13.2	
EL DORADO MINE ELBOW LAKE PILLOW	7800	2/25/03 3/01/03		9.9 19.0	12.8	16.7	NEZ PERCE PAS NOISY BASIN I		6570 6040	2/23/0: 3/01/0		9.7 18.0	16.8	
EMERY CREEK PILLOW	4350	3/01/0		8.1	13.1		NORTH FORK JO		6330	2/26/0	1 81		37.9	
ENDERBY CAN. ESPERON CK. UP CAN.	5800 5050	2/28/01 2/24/01		17.3 7.2	35.5 11.2		OLALLIE MDWS OLALLIE MEADO		3960 3630	3/01/0: 3/01/0:			43.5 38.0	
FARRON CAN.	4000	2/27/0		6.3	11.1		OPHIR PARK	742	7150	2/25/0			12.0	
FATTY CREEK FISH CREEK	5500	2/26/03		13.3	19.2		OYAMA LAKE PARADISE PARI	CAN.	4100 5500	2/27/0 3/01/0			5.8 67.3	
FISH LAKE	8000 3370	2/26/03 2/26/03		6.2 18.7	7.5 34.8		PARADISE PARA		4600	3/01/0			40.3	
FISH LAKE PILLOW	3370	3/01/0:		15.7	32.2		PETERSON MDW		7200	3/01/0		6.6	6.1	
FLATTOP MTN PILLOW FLEECER RIDGE	6300 7500	3/01/0: 2/28/0:		18.8 5.6	33.9 9.5		PIGTAIL PEAK PIKE CREEK PI		5900 5930	3/01/0: 3/01/0:		21.0 10.2	35.1 19.3	
FOURTH OF JULY SUM	3200	3/02/0	1 34	9.6	10.4	8.4	PIPESTONE PAS	SS	7200	2/26/0	1 17	3.2	5.2	
FREEZEOUT CK. TRAIL FROHNER MDWS PILLOW	3500 6480	2/28/03 3/01/03		5.4 5.1	10.7 5.3		POPE RIDGE POSTILL LAKE	PILLOW CAN.	3540 4200	3/01/0: 2/26/0:			16.3 7.1	16.7 7.0
GOAT CREEK	3600	2/26/0	18	4.4	5.4	6.4	POTATO HILL	PILLOW	4500	3/01/0	1	14.5	23.7	21.9
GRASS MOUNTAIN #2 GRAVE CRK PILLOW	2900 4300	3/01/0: 3/01/0:		1.5E 8.0	9.2 12.8		QUARTZ PEAK RAGGED MOUNTA	PILLOW	4700 4200	3/01/0:			23.8 26.1	
GRAYSTOKE LAKE CAN.	5500	2/27/0	1 25	5.0		13.3	RAGGED RIDGE		3330	2/28/0	1 25	7.9	10.6	7.4
GREEN LAKE GREEN LAKE PILLOW	6000 6000	3/01/0: 3/01/0:		18.1E 10.9	12.7 23.3		RAINY PASS REX RIVER	PILLOW PILLOW	4780 1900	3/01/0: 3/01/0:			31.2 29.6	
GREYBACK RES CAN.	4700	2/26/03	L 25	4.8	5.1	7.7	ROCKER PEAK	PILLOW	8000	3/01/0	1	9.6	8.7	12.6
GRIFFIN CR DIVIDE GROUSE CAMP PILLOW	5150 5380	3/01/0: 3/01/0:		6.8 9.9	8.0 18.1		ROCKY CREEK RUSTY CREEK	AM	2100 4000	3/01/0: 2/23/0:			28.0 5.5	
HAMILTON HILL CAN.	4550	2/28/0	L 30	8.3	9.7	13.2	SADDLE MTN PI		7900	3/01/0	1	12.3	18.4	21.9
HAND CREEK PILLOW HARTS PASS PILLOW	5030 6500	3/01/0: 3/01/0:		7.1 17.5	10.3 31.3		SAGE CREEK SA SALMON MDWS	ADDLE PILLOW	4080 4500	2/28/01 3/01/01			19.2 7.3	15.9 8.3
HELL ROARING DIVIDE	5770	2/27/0		13.1	23.9			PILLOW	4200	3/01/0		15.4	31.9	27.4

SNOW COURSE	ELE	VATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90	SNOW COURSE EL	EVATION	DATE	SNOW DEPTH	WATER CONTENT	LAST YEAR	AVERAGE 1961-90
 					·									
	PILLOW	6170	3/01/0		12.5	21.5	22.9	TEN MILE MIDDLE	6800	2/23/01		6.9	5.5	9.5
SAWMILL RIDGE		4700	3/01/0		17.5E	28.0		THUNDER BASIN	4200	3/01/01		8.9E	20.2	18.5
SCHREIBERS MD		3400	2/21/0		26.2			TINKHAM CREEK PILLOW		3/01/01		18.0	24.8	17.2
SHEEP CANYON	PILLOW	4050	3/01/0		7.0	43.7		TOUCHET #2 PILLOW		3/01/01		17.2	30.4	27.8
SILVER STAR M	TN CAN.	5600	2/23/0	1 45	13.7	27.0		TRAPPING CK UP CAN.	4100	3/01/01		2.8E		7.9
SKALKAHO PILLO	OW	7260	3/01/0	1	11.2	18.3	20.8	TRINKUS LAKE	6100	2/27/01		23.4	35.2	36.7
SKITWISH RIDG	E	5110	2/27/0	1 58	18.5	31.2	27.5	TROUGH #2 PILLOW		3/01/01		6.0	10.1	9.0
SKOOKUM CREEK	PILLOW	3920	3/01/0	1 163	16.3	35.4	24.9	TROUT CREEK CAN.	5650	2/25/01	21		6.3	6.5
SLIDE ROCK MO	UNTAIN	7100	2/22/0	1 31	7.3	9.4	13.3	TRUMAN CREEK	4060	2/27/01	23	5.1	3.6	5.0
SPENCER MDW	PILLOW	3400	3/01/0	1	18.6	43.7	27.2	TUNNEL AVENUE	2450	2/27/01	45	15.9	19.2	19.2
SPIRIT LAKE	PILLOW	3100	3/01/0	1	2.8	11.4	6.6	TV MOUNTAIN	6800	2/26/01	41	9.6	14.4	15.6
SPOTTED BEAR I	MTN.	7000	2/27/0	1 40	9.7	12.4	13.3	TWELVEMILE PILLOW	5600	3/01/01		9.6	17.2	16.4
STAHL PEAK PI	LLOW	6030	3/01/0	1	12.7	25.0	30.2	TWIN CREEKS	3580	2/27/01	34	7.9	11.2	10.7
STAMPEDE PASS	PILLOW	3860	3/01/0	1	22.3	41.4	38.2	TWIN LAKES	2700	2/26/01	20	4.2	6.7	8.7
STEMILT SLIDE		5000	3/01/0	1	8.3E	12.1	12.7	TWIN LAKES PILLOW	6400	3/01/01		18.8	36.0	34.3
STEMPLE PASS		6600	2/27/0	1 24	5.0	8.6	8.5	TWIN SPIRIT DIVIDE	3480	3/04/01	35	10.2	13.7	13.8
STEVENS PASS	PILLOW	4070	3/01/0	1	19.1	28.6	34.7	UPPER HOLLAND LAKE	6200	2/27/01	64	20.3	31.9	30.4
STEVENS PASS :	SAND SD	3700	2/28/0		18.4	30.7	31.1	UPPER WHEELER PILLOW	4400	3/01/01		8.5	9.3	12.1
STORM LAKE		7780	2/22/0		8.4	7.0	10.8	VASEUX CREEK CAN.	4250	2/26/01	14	2.4	3.3	5.5
STRYKER BASIN		6180	2/27/0		13.2	26.2	28.5	WARM SPRINGS PILLOW	7800	3/01/01		12.3	15.5	18.2
SUMMERLAND RES	S CAN.	4200	2/26/0	1 21	4.6	6.3	8.4	WEASEL DIVIDE	5450	2/28/01	43	11.4	26.2	29.5
SUMMIT G.S.		4600	2/26/0		6.3	7.9	7.1	WELLS CREEK PILLOW	4200	3/01/01		15.5	27.8	33.2
SUNSET	PILLOW	5540	3/01/0		13.3	21.8		WHITE PASS ES PILLOW	4500	3/01/01		10.5	20.9	20.7
	PILLOW	4250	3/01/0		25.5	56.0		WHITE ROCKS MTN CAN.		2/28/01		10.4	16.8	19.3
TEN MILE LOWE		6600	2/23/0		4.9	4.0				,				

March 1 - Snowpack and Precipitation Conditions at a Glance

Columbia Basin Snowpack Summary

For the Water Year: 2001

Columbia above The Dalles

March, 2001

The Columbia Basin snowpack percent of average was 52.3 for February 1st and on March 1st 52.6 percent. The snowfall during February was only enough to maintain the already low situation. In the upper basin, Canada and the Kootenay remained within 1% of last month (now 54 and 46 percent, respectively). These two sub-basins account for 43% of the average flow at The Dalles. The Kootenay at 46% edges out the Salmon Basin in central Idaho (47%) for holding the lowest snowpack.

Two sub-basins also vie for the best snowpack in the Columbia (a mere 62%) held by the Snake headwaters and the Eastern Oregon Wallawa Mountains. Oregon's John Day and Deschutes basins dropped from the upper 60 percent range to an even 60% each. In Washington, the North Cascades went up 1% to 55% while the Yakima dropped 2% to 58%.

Overall, the snowpack above The Dalles is 45% of a normal year's peak accumulation, with only 1977, at 37%, being a lower year on record. The most similar year of more recent times was 1988, which held a March snowpack at 63% of peak.

The upper basin is still setting records for low snowpack. The Columbia above Castlegar is at 51%, dropping below 1977's previous record of 54%. The Columbia above Grand Coulee set new records for January 1st and February 1st, but for March 1st, comes up slightly to tie the 1977 value at 52%.

Last year was as close to average as the record has seen and 2001 follows with a definitive low year. One thing seems sure: variation is nature's specialty.

Natural Resources Conservation Service

Washington State Snow, Water and Climate Services

Program Contacts

Leonard Jordan State Conservationist W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 phone: 509-323-2961 fax: 509-323-2979 leonard.jordan@wa.usda.gov

Betty Schmitt Public Affairs Specialist W. 316 Boone Ave., Suite 450 Spokane, WA 99201-2348 phone: 509-323-2912

fax: 509-323-2909 betty.schmitt@wa.usda.gov

Scott Pattee Water Supply Specialist 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873 phone: 360-428-7684 fax: 360-424-6172 scott.pattee@wa.usda.gov

Chris Pacheco Resource Conservationist National Water and Climate Center 101 SW Main St., Suite 1600 Portland, OR 97204-3224 phone: 503-414-3056 fax: 503-414-3101 cpacheco@wcc.nrcs.usda.gov

Helpful Internet Addresses

NRCS Snow Survey and Climate Services Homepages

Washington:

http://www.wa.nrcs.usda.gov/snow/snow.htm

Oregon:

http://crystal.or.nrcs.usda.gov/snowsurveys

Idaho:

http://idsnow.id.nrcs.usda.gov

National Water and Climate Center (NWCC): http://www.wcc.nrcs.usda.gov

NWCC Anonymous FTP Server: ftp.wcc.nrcs.usda.gov

USDA-NRCS Agency Homepages

Washington:

http://www.wa.nrcs.usda.gov/nrcs

NRCS National: http://www.ftw.nrcs.usda.gov

Spokane River Basin

*Based on selected stations

The March 1 forecasts for summer runoff within the Spokane River Basin are 58% of average near Post Falls and 60% at Long Lake. The forecast is based on a basin snowpack that is 65% of average and precipitation that is 49% of average for the water year. Precipitation for February was much below normal at 55% of average. Streamflow on the Spokane River at Long Lake, was 28% of average for February. March 1 storage in Coeur d'Alene Lake, was 26,300-acre feet, 18% of average and 11% of capacity. Snowpack at Quartz Peak SNOTEL site contained 10.9 inches of water, compared to the average March 1 reading of 18.6 inches. Average temperatures in the Spokane basin were 7 degrees below normal for February and 3 degrees below for the water year.

=======================================	=======================================			======		:========	========		=========
	Stre	amflow	Forecas	sts -	March	1, 2001			
	=======================================								
SPOKANE near Post Falls (2)	APR-SEP	1000	1345		1580	58	1815	2160	2720
	APR-JUL	1014	1348		1575	60	1802	2136	2627
SPOKANE at Long Lake (2)	APR~JUL	1095	1482		1745	60	2008	2395	2905
-	APR-SEP	1188	1597		1875	60	2153	2562	3128
SPOKA	NE RIVER BASIN					SP	OKANE RIVER B	ASIN	
Reservoir Storage (1000 AF) - End	of Febru	ary		Į V	latershed Sno	wpack Analysi	s - March 1	, 2001
	Usable	*** Usa	ble Storage	***	======== 		Number	This Y	ear as % of
'Reservoir	Capacity	This	Last		Waters	shed	of	======	
		Year	Year	Avg			Data Sit	es Last Y	r Average
COEUR D'ALENE	238.5	26.3	124.5	149.1	SPOKAN	======================================	17	59	65
					NEWMAI	LAKE	2	55	72

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Spokane River Basin Percent of Average March 1, 2001

Snowpack - 65% Precipitation - 49% Reservoir - 18%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Colville - Pend Oreille River Basins

*Based on selected stations

The April – September average forecast for the Kettle River streamflow is 62%, Colville at Kettle Falls is 50%, and Priest River near the town of Priest River is 50%. February streamflow was 44% of average on the Pend Oreille River, 66% on the Columbia at the International Boundary and 55% on the Kettle River. March 1 snow cover was 60% of average in the Pend Oreille Basin, 56% in the Kettle River Basin and 59% in the Colveille River Basin. Bunchgrass Meadows SNOTEL site had only 12.5 inches of snow water. Normally Bunchgrass would have 22.7 inches on March 1. Precipitation during February was 45% of average, bringing the year-to-date precipitation to 43% of average. Reservoir storage in Roosevelt and Banks lakes was reported to be 49% of average and 28% of capacity on March 1. Average temperatures were 8 degrees below normal for February and 3 below for the water year.

Colville - Pend Oreille River Basins

	Stre	eamflow	Forecast	s - March	1, 2001			
		<<=====	======================================	=== Future Co	nditions ==:	===== Wette1	=======================================	.=========
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
PEND OREILLE Lake Inflow (2)	APR-JUL APR-SEP	4246 3935	5660 5903	6620 7240	50	7580 8577	8994 10545	13150 14370
PRIEST near Priest River (1,2)	APR-JUL	276	372	415	51	458	554	812
	APR-SEP	276	382	430	50	478	584	865
PEND OREILLE bl Box Canyon (2)	APR-JUL	4593	5841	6690	50	7539	8787	13380
	APR-SEP	4091	6002	7300	50	8599	10510	14590
CHAMOKANE CREEK near Long Lake	MAY-AUG	2.40	4.72	6.30	74	7.88	10.20	8.52
COLVILLE at Kettle Falls	APR-SEP	28	51	66	50	81	104	131
	APR-JUL	25	46	60	50	74	95	120
KETTLE near Laurier	APR-SEP	829	1014	1140	62	1266	1451	1854
	APR-JUL	812	979	1092	62	1205	1372	1761
COLUMBIA at Birchbank (1,2)	APR-JUL	18070	21529	23100	66	24671	28130	35140
	APR-SEP	22450	26817	28800	66	30783	35150	43810
COLUMBIA at Grand Coulee Dm (1,2)	APR-SEP	28425	35560	38800	60	42040	49175	64850
	APR-JUL	24100	30014	32700	60	35386	41300	54543
COLVILLE - PEND (Reservoir Storage (100			======================================	<u> </u>	COLVILLE -	PEND OREILLE		

Year Year Ye					Watershed Snowpack Analysis - March 1, 2001					
Reservoir		This	Last	age *** Avg	Watershed	Number of Data Sites		r as % of ======= Average		
ROOSEVELT	5232.0	951.5	3132.0	2763.0	COLVILLE RIVER	1	44	59		
BANKS	715.0	696.5	676.4	606.0	PEND OREILLE RIVER	60	64	58		
					KETTLE RIVER	9	63	56		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Okanogan - Methow River Basins

*Based on selected stations

Summer runoff average forecast for the Okanogan River is 55%, Similkameen River is 54%, Methow River is 49% and Salmon Creek is 54%. March 1 snow cover on the Okanogan was 58% of average and Methow was 52%. Moses Mountain SNOTEL site had a March 1 reading of 54% of average. February precipitation in the Okanogan-Methow was 46% of average, with precipitation for the water year at 47% of average. February streamflow for the Methow River was 65% of average, 45% for the Okanogan River and 46% for the Similkameen. Snow-water -content at the Salmon Meadows SNOTEL, near Conconully, was 4.4 inches. Average for this site is 8.3 inches on March 1. Combined storage in the Conconully Reservoirs was 13,000-acre feet, which is 55% of capacity and 93% of the March 1 average. Temperatures were 3 degrees below normal for the past month and near normal for the water year.

Okanogan - Methow River Basins

Streamflow Forecasts - March 1, 2001

337	=======================================	<<=====	Drier ====	======================================	onditions ==	====== Wetter	=====>>	.========
Forecast Point	Forecast Period	======= 90%	70%		Exceeding * = Probable)	- -	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
SIMILKAMEEN near Nighthawk (1)	APR-JUL	376	613	720	=== == ===============================	827	1064	1304
SIMILIAMEN Hear Nighthawk (1)	APR-SEP	407	657	770	55	883	1133	1399
OKANOGAN near Tonasket (1)	APR-JUL	142	598	805	55	1012	1468	1466
•	APR-SEP	162	663	890	55	1117	1618	1623
SALMON CREEK near Conconully	APR-JUL	0.2	5.1	10.3	54	15.5	23	19.1
	APR-SEP	0.2	5.4	10.8	54	16.2	24	20
METHOW RIVER near Pateros	APR-SEP	317	399	455	48	511	593	942
	APR-JUL	309	385	436	50	487	563	873

OKANOGAN - METHOW RIVER BASINS
Reservoir Storage (1000 AF) - End of February OKANOGAN - METHOW RIVER BASINS Watershed Snowpack Analysis - March 1, 2001 Usable *** Usable Storage *** Number This Year as % of Last Capacity This Watershed of Data Sites Last Yr Average Year Year Avg ______ SALMON LAKE OKANOGAN RIVER CONCONULLY RESERVOIR 13.0 6.1 11.3 OMAK CREEK 6.0 40 54 SANPOIL RIVER 69 SIMILKAMEEN RIVER 69 TOATS COULEE CREEK 100 60 CONCONULLY LAKE 50 METHOW RIVER

* 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural flow actual flow may be affected by upstream water management.

Okanogan-Methow River Basins
Percent of Average
March 1, 2001

Snowpack - 59% Precipitation - 47% Reservoir - 93%

Wenatchee - Chelan River Basins

*Based on selected stations

Precipitation during February was 55% of average in the basin and 49% for the year-to-date. Runoff for Entiat River is forecast to be 57% of average for the summer. The April-September average forecast for Chelan River is 59%, Wenatchee River at Plain is 61% and Stehekin is 64%. Icicle, Stemilt and Squilchuck creeks are all expected to fall into the same forecast range. February average streamflows on the Chelan River were 33% and on the Wenatchee River 29%. March 1 average snowpack in Wenatchee Basin was 60%, in Chelan Basin was 54%; and Stemilt Creek was 68%. Snowpack in the Entiat River Basin was 61% of average. Reservoir storage in Lake Chelan was 367,700-acre feet, 219% of March 1 average and 54% of capacity. Lyman Lake SNOTEL had the most snow water with 26.2 inches of water. This site would normally have 48.4 inches on March 1. Temperatures were about 3 degrees below normal for February.

Wenatchee - Chelan River Basins

Forecast Point	Forecast Period		Drier ====: 70% (1000AF)	== Future Co = Chance Of I 50% (Most (1000AF)		===== Wetter ==================================	====>> ======= 10% (1000AF)	30-Yr Avg. (1000AF)
'CHELAN RIVER near Chelan	APR-SEP	522	619	685	59	751	848	1160
	APR-JUL	478	560	615	60	670	752	1024
STEHEKIN near STEHEKIN	APR-SEP	416	481	525	64	569	634	827
	APR-JUL	369	420	455	65	490	541	701
ENTIAT RIVER near Ardenvoir	APR-SEP	98	116	129	57	142	160	227
	APR-JUL	90	107	118	57	129	146	206
WENATCHEE at Plain	APR-SEP	565	660	725	61	790	885	1190

Streamflow Forecasts - March 1, 2001

STEMILT nr Wenatchee (miners in) ICICLE CREEK near Leavenworth APR-SEP APR-JUL COLUMBIA R. bl Rock Island Dam (2) APR-JUL WENATCHEE - CHELAN RIVER BASINS WENATCHEE - CHELAN RIVER BASINS

Reservoir Storage	(1000 AF) - End	of Febru	ary		Watershed Snowpa	ck Analysis -	March 1,	2001
Reservoir	Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites		r as % of ======= Average
CHELAN LAKE	676.1	367.7	360.5	168.1	CHELAN LAKE BASIN	5	49	54
					ENTIAT RIVER	1	63	61
					WENATCHEE RIVER	11	60	60
					SQUILCHUCK CREEK	0	0	0
					STEMILT CREEK	2	79	68
					COLOCKUM CREEK	1	59	67

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

WENATCHEE R. at Peshastin

APR-JUL

APR-SEP

APR-JUL

Wenatchee-Chelan River Basins Percent of Average March 1, 2001

> Snowpack - 62% Precipitation - 49% Reservoir - 219%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Upper Yakima River Basin

*Based on selected stations

March 1 reservoir storage for the Upper Yakima reservoirs was 231,000-acre feet, 76% of average. Forecasts for the Yakima River at Cle Elum are 63% of average. Lake inflows are all forecasted to be much below average this summer. February streamflows within the basin were Yakima near Cle Elum at 23% and Cle Elum River near Roslyn at 18%. March 1 snowpack was 61% based upon 10 snow courses and SNOTEL readings within the Upper Yakima Basin. Precipitation was 48% of average for February and 48% year-to-date for water. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Upper Yakima River Basin

Streamflow Forecasts - March 1, 2001

	Deleganization releganded financia i, 2001									
Forecast Point	Forecast Period		Drier ==== 70% (1000AF)	== Future Co = Chance Of 1 50% (Most (1000AF)	Exceeding * : Probable)		====>> ====== 10% (1000AF)	30-Yr Avg. (1000AF)		
, KEECHELUS LAKE INFLOW	APR-JUL APR-SEP	63 66	75 80	83 90	67 67	91	103	124 135		
KACHESS LAKE INFLOW	APR-JUL	50	61	69	62	77	88	111		
	APR-SEP	53	65	73	62	81	93	118		
CLE ELUM LAKE INFLOW	APR-JUL	220	244	260	64	276	300	409		
	APR-SEP	229	259	280	63	301	331	448		
YAKIMA at Cle Elum	APR-JUL	434	488	525	63	562	616	832		
	APR-SEP	477	538	580	63	622	683	915		
TEANAWAY near Cle Elum	APR-JUL	69	78	85	60	92	101	141		
	APR-SEP	71	80	87	60	94	103	145		

	UPPER YAKIMA Reservoir Storage (1000			ary		UPPER YA Watershed Snowpa	KIMA RIVER BAS ck Analysis -		2001
Reservoir		Usable Capacity	*** Usa This Year	ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Yea: ======= Last Yr	r as % of Average
KEECHELUS	·	157.8	23.5	72.6	105.0	UPPER YAKIMA RIVER	10	58	61
KACHESS		239.0	120.5	194.3	179.0				
CLE ELUM		436.9	87.0	296.8	273.0				
				=======	=======				

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Upper Yakima River Basin Percent of Average March 1, 2001

Snowpack - 61% Precipitation - 48% Reservoir - 41%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Lower Yakima River Basin

*Based on selected stations

February average streamflows within the basin were: Yakima River near Parker, 22%; Naches River near Naches, 24%; and Yakima River at Kiona, 38%. March 1 reservoir storage for Bumping and Rimrock reservoirs was 106,600-acre feet, 76% of average. Forecast averages for Yakima River near Parker are 57%; American River near Nile, 64%; Ahtanum Creek, 54%; and Klickitat River near Glenwood, 69%. March 1 snowpack was 61% based upon 9 snow courses and SNOTEL readings within the Lower Yakima Basin. Precipitation was 54% of average for February and 50% year-to-date for water. Temperatures were 3 degrees below normal for the month and 2 degrees below average for the water year. Volume forecasts for Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available, which includes irrigation return flow.

Lower Yakima River Basin

Streamflow Forecasts - March 1, 2001

=======================================			========				========	
		<<======	Drier ====	== Future Co	nditions ==	===== Wetter	. ====>>	
Forecast Point	Forecast	=======		= Chance Of E	xceeding * =		=======	
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
	=	=========	==========	=========		==========	========	=======================================
BUMPING LAKE INFLOW	APR-SEP	61	75	84	62	93	107	136
	APR-JUL	57	70	78	63	86	99	124
AMERICAN RIVER near Nile	APR-SEP	60	70	76	64	82	92	118
	APR-JUL	56	65	71	65	77	86	109
RIMROCK LAKE INFLOW	APR-SEP	107	128	143	60	158	179	238
	APR-JUL	95	111	122	61	133	149	200
NACHES near Naches	APR-SEP	354	426	475	57	524	596	832
	APR-JUL	330	394	438	58	482	546	755
AHTANUM CREEK nr Tampico (2)	APR-SEP	7.3	17.8	25	54	32	43	46
	APR-JUL	6.8	16.4	23	55	30	39	42
YAKIMA near Parker	APR-SEP	864	1023	1130	57	1237	1396	1994
	APR-JUL	816	954	1047	58	1140	1278	1805
KLICKITAT near Glenwood	APR-JUN	55	68	76	69	84	97	110
	APR-SEP	68	85	97	69	109	126	140

Reser	AKIMA RIVER BAS		ıary			YAKIMA RIVER BA: pack Analysis -	
Reservoir	Usable Capacity		able Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year as % of
BUMPING LAKE	33.7	3.0	14.0	10.0		========	
RIMROCK	198.0	103.6	139.9	130.0			

^{*} 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) The value is natural flow actual flow may be affected by upstream water management.

Walla Walla River Basin

*Based on selected stations

February precipitation was 51% of average, dropping the year-to-date precipitation to 65% of average. March 1 average snowpack was at 64%. The forecast for the coming summer is for 79% of average streamflow in the South Fork Walla Walla River and 81% for Mill Creek. February streamflow was 57% of average for the Walla Walla River. The Touchet SNOTEL site had 17.2 inches of snow-water-equivalent. The average March 1 reading for this site is 27.8 inches. Average temperatures were 5 degrees below normal for February and have averaged 2-3 degrees below normal for the water year.

Streamflow Forecasts - March 1, 2001

=======================================	========		.=======					
		<<=====	Drier ====	== Future C	onditions :	====== Wetter	=====>>	
Forecast Point	Forecast		.=========	= Chance Of	Exceeding *		======	
rorccust rome	Period	90% (1000AF)	70% (1000AF)		Probable)	30% (1000AF)	10% (1000AF)	30-Yr Av (1000)
MILL CREEK at Walla Walla	APR-SEP	 6.5	10.9	13.9	81	16.9	21	17.
FILL CREEK AL WALLA WALLA	APR-JUL	6.3	10.7	13.9	81	16.7	21	16.
SF WALLA WALLA near Milton-Freewater	APR-JUL	33	38	43	80	47	53	9
	APR-SEP	41	47	52	79	57	63	(
				l				

WALLA WA Reservoir Storage (1	LLA RIVER BAS		ſγ		WALLA W Watershed Snowpa	ALLA RIVER BAS ck Analysis -		2001
Reservoir	Usable Capacity	*** Usabl This Year	Last Year	ge *** Avg	Watershed	Number of Data Sites		r as % of ======= Average
					WALLA WALLA RIVER	2	59	64

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

Walla Walla River Basin Percent of Average March 1, 2001

Snowpack - 64% Precipitation - 65%

High Ridge 🗖

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Lower Snake River Basin

*Based on selected stations

The April - September forecast is for 57% of average streamflow in the Snake River below Lower Granite Dam, 65% for Grande Ronde at Troy, and 63% for Clearwater River at Spalding. February precipitation was 47% of average, bringing the year-to-date precipitation to 59% of average. March 1 snowpack was at 61% of average. February streamflow was 44% of average for Snake River below Lower Granite Dam and 29% for Grande Ronde River near Troy. Average temperatures 3 degrees below normal for February and remained 2 degrees below normal for the water year.

	========	========				==========	========	
	Stre	eamflow	Forecast	s - Marc	h 1, 2001			
					:==========	===========	=========	
		<<=====	= Drier ====	== Future (Conditions =	===== Wetter	. ====>>	
Forecast Point	Forecast			= Chance Of	Exceeding *		=======	
	Period	90%	70%		: Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
GRANDE RONDE at Troy (1)	MAR-JUL	515	818	955	65	1092	1395	1471
	APR-SEP	456	730	855	65	980	1254	1312
GIRADMARED of Coolding (1 2)	100 TH	2172	42.05	4000	63	5335	6468	7618
CLEARWATER at Spalding (1,2)	APR-JUL APR-SEP	3172 3350	4305 4540	4820 5080	63	5620	6810	8051
•	522	3330	1310	3000				5452
SNAKE blw Lower Granite Dam (1,2)	APR-JUL	5030	10029	12300	57	14571	19570	21650
	APR-SEP	5631	11249	13800	57	16351	21969	24360
			=======================================	 ==========			.=======	
LOWER SNAK	E RIVER BAS	IN			LO	WER SNAKE RIVE	R BASIN	
Reservoir Storage (100	0 AF) - End	of Februa:	ry		Watershed S	nowpack Analys	is - March	1, 2001
\$322 6 25	Usable	:=======: 'Isah	=== == ===============================	========= **	========	======================================	r This	Year as % of
Reservoir	Capacity	This	Last		ershed	of		==========
		Year	Year A	vg		Data Si	tes Last	Yr Average
					D CNAKE CDA	NDE BONDE 16	:========= 54	61
				LOWE	IR SNAKE, GRA	NDE RONDE 16	54	91

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Cowlitz - Lewis River Basins

*Based on selected stations

Forecasts for April – September streamflows within the basin are Lewis at Ariel; 65%, Cowlitz at Castle Rock; 63% and the Columbia at The Dalles; 56% of average. February average streamflow for Cowlitz River was 41% and 42% for Lewis River. February precipitation was 44% of average and the water-year average was 46%. March 1 snow cover for Cowlitz River was 54%, and Lewis River was 71% of average. Cayuse Pass snow course reported the most water content for the basin with 38 inches. Average March 1 water content is 65.3 inches. Average temperatures were 4 degrees below normal during February and have remained near average throughout the water year.

Cowlitz - Lewis River Basins

Streamflow Forecasts - March 1, 2001

		<====== Drier ====== Future Conditions ====== Wetter =====>>								
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	Chance Of E 50% (Most (1000AF)	Exceeding * == Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
LEWIS at Ariel (2)	APR-JUL	401	570	685	65	800	969	1053		
	APR-SEP	489	662	780	65	898	1071	1206		
COWLITZ R. bl Mayfield Dam (2)	APR-SEP	200	772	1160	59	1548	2120	1970		
	APR-JUL	64	633	1020	59	1407	1976	1731		
COWLITZ R. at Castle Rock (2)	APR-SEP	322	1125	1670	63	2215	3018	2667		
	APR-JUL	646	1131	1460	63	1789	2274	2325		
KLICKITAT near Glenwood	APR-JUN	55	68	76	69	84	97	110		
	APR-SEP	68	85	97	69	109	126	140		
COLUMBIA R. at The Dalles (2)	APR-SEP	41838	49913	55400	56	60887	68962	98982		
	APR-JUL	31941	41205	47500	56	53795	63059	84760		

	COWLITZ - LEWIS Reservoir Storage (1000			У		COWLITZ - Watershed Snowpa	LEWIS RIVER BA		2001
Reservoir		Usable Capacity	*** Usabl This Year	e Storage Last Year	*** Avg	Watershed	Number of Data Sites	-	r as % of ======= Average
						LEWIS RIVER	4	45	71
						COWLITZ RIVER	7	47	·54

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) The value is natural flow actual flow may be affected by upstream water management.

*Based on selected stations

Summer runoff is forecast to be 66% of normal for the Green River below Howard Hanson Dam and 70% for the White River near Buckley. March 1 snowpack was 59% of average in both White River and Puyallup river basins and 52% in Green River Basin. Water content on March 1 at Corral Pass SNOTEL, at an elevation of 6,000 feet, was 15.5 inches. This site has a March 1 average of 27.6 inches. February precipitation was 49% of average, bringing the water year-to-date to 52% of average for the basins. Average temperatures in the area were 3 degrees below normal.

White - Green - Puyallup River Basins

Streamflow Forecasts - March 1, 2001

		==========			============		
	<<=====	Drier ====	== Future C	onditions =	===== Wetter	====>>	
Forecast	**=====	========					
Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
	(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
=========		========	=========	=========			=========
APR-JUL	225	288	317	71	346	409	447
APR-SEP	269	345	379	70	413	489	542
APR-JUL	96	147	170	66	193	244	257
APR-SEP	109	163	188	66	213	267	285
	Period APR-JUL APR-SEP APR-JUL	Forecast 90% (1000AF) APR-JUL 225 APR-SEP 269 APR-JUL 96	Forecast 90% 70% (1000AF) (1000AF) APR-JUL 225 288 APR-SEP 269 345 APR-JUL 96 147	Forecast 90% 70% 50% (Most (1000AF) (1000AF) (1000AF) APR-JUL 225 288 317 APR-SEP 269 345 379 APR-JUL 96 147 170	Forecast 90% 70% 50% (Most Probable) (1000AF) (1000AF) (1000AF) (25 288 317 71 APR-SEP 269 345 379 70 APR-JUL 96 147 170 66	Forecast Period 90% 70% 50% (Most Probable) 30% (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) 30% APR-JUL 225 288 317 71 346 APR-SEP 269 345 379 70 413 APR-JUL 96 147 170 66 193	Period 90% 70% 50% (Most Probable) 30% 10% (1000AF) (1000AF) (* AVG.) (1000AF) (1000AF) APR-JUL 225 288 317 71 346 409 APR-SEP 269 345 379 70 413 489 APR-JUL 96 147 170 66 193 244

				,					
	EN - PUYALLUP RIVER e (1000 AF) - End o		· = = = = = = = = = = = = = = = = = = =		WHITE - GR Watershed Sn		PUYALLUP RIV Analysis -		
Reservoir	Capacity		Storage Last Year	*** Avg	Watershed	I	Number of Data Sites	This Year	
		=======			WHITE RIVER		3	55	59
					GREEN RIVER		5	52	52

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

Central Puget Sound River Basins

*Based on selected stations

Forecast for spring and summer flows are: 70% for Cedar River near Cedar Falls; 69% for Rex River; 72% for South Fork of the Tolt River; and 68% for Cedar River at Cedar Falls. Basin-wide precipitation for February was 48% of average, bringing water-year-to-date to 51% of average. March 1 average snow cover in Cedar River Basin was 84%, Tolt River Basin was 64%, Snoqualmie River Basin was 61%, and Skykomish River Basin was 60%. Stevens Pass SNOTEL, at 4,070 feet, had 19.1 inches of water content. Average March 1 water content is 34.7 inches. February temperatures were 3 degrees below normal for the past month. Stampede Pass and Olallie Meadows SNOTEL sites both recorded the lowest amount of snow water ever measured, by electronic instruments, at those locations.

Central Puget Sound River Basins

Streamflow Forecasts - March 1, 2001

recast eriod		Drier ====: 70% (1000AF)	= Chance Of E 50% (Most	Exceeding * =	===== Wetter ==================================	====>> ====== 10%	
	90%	70%	50% (Most		30%	102	
			50% (Most		3.0%	109	
		(IOOOAL)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	30-Yr Avg. (1000AF)
		========	=======================================	.========		=========	=======================================
			_				77
R-SEP	40	51	59	70	67	78	84
R-JUL	10.7	15.5	18.8	69	22	27	27
R-SEP	12.2	17.4	21	69	25	30	30
R-JUL	33	46	55	67	64	77	82
R-SEP	34	47	56	68	65	78	83
R-JUL	8.3	9.9	10.9	72	11.9	13.5	15.2
R-SEP	9.5	11.5	12.8	72	14.1	16.1	17.8
	R-SEP R-JUL R-SEP R-JUL	R-SEP 40 R-JUL 10.7 R-SEP 12.2 R-JUL 33 R-SEP 34 R-JUL 8.3	R-SEP 40 51 R-JUL 10.7 15.5 R-SEP 12.2 17.4 R-JUL 33 46 R-SEP 34 47 R-JUL 8.3 9.9	R-SEP 40 51 59 R-JUL 10.7 15.5 18.8 R-SEP 12.2 17.4 21 R-JUL 33 46 55 R-SEP 34 47 56 R-JUL 8.3 9.9 10.9	R-SEP 40 51 59 70 R-JUL 10.7 15.5 18.8 69 R-SEP 12.2 17.4 21 69 R-JUL 33 46 55 67 R-SEP 34 47 56 68 R-JUL 8.3 9.9 10.9 72	R-SEP 40 51 59 70 67 R-JUL 10.7 15.5 18.8 69 22 R-SEP 12.2 17.4 21 69 25 R-JUL 33 46 55 67 64 R-SEP 34 47 56 68 65 R-JUL 8.3 9.9 10.9 72 11.9	R-SEP 40 51 59 70 67 78 R-JUL 10.7 15.5 18.8 69 22 27 R-SEP 12.2 17.4 21 69 25 30 R-JUL 33 46 55 67 64 77 R-SEP 34 47 56 68 65 78 R-JUL 8.3 9.9 10.9 72 11.9 13.5

	CENTRAL PUGET SOUND RIVER Reservoir Storage (1000 AF) - End	CENTRAL PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - March 1, 2001				
Reservoir	Usable Capacity	Watershed	Number of Data Sites		r as % of ====== Average	
		 	CEDAR RIVER	6	66	84
			TOLT RIVER	3	42	64
			SNOQUALMIE RIVER	6	49	61
			SKYKOMISH RIVER	4	49	60

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
(2) - The value is natural flow - actual flow may be affected by upstream water management.

North Puget Sound River Basins

*Based on selected stations

Forecast for Skagit River streamflow is 66% of average for the spring and summer period. February streamflow in Skagit River was 46% of average. Other forecast points included Baker River at 67% and Thunder Creek at 69% of average. Basin-wide precipitation for February was 39% of average, bringing water-year-to-date to 50% of average. March 1 average snow cover in Skagit River Basin was 52%, Baker River Basin was 47% and Nooksack River Basin was 55%. Rainy Pass SNOTEL, at 4,780 feet, had 18 inches of water content. Average March 1 water content was 32.7 inches. March 1 Skagit River reservoir storage was 257% of average and 56% of capacity. Average February temperatures were 4 degrees below normal for the basin but remain near average for the water year. All three long-term SNOTEL sites in the basin recorded new record low snowpack. Beating the, most recent, previous record low years of 1993 and 1994 at Rainy Pass, Harts Pass and Thunder Basin SNOTEL sites.

For more information contact your local Natural Resources Conservation Service office.

North Puget Sound River Basins

Streamflow Forecasts - March 1, 2001

		<<=====	Drier =====	= Future C	onditions =	===== Wetter	====>>	
Forecast Point	Forecast	=======		: Chance Of 1	Exceeding *	========		
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
			********			100		.===========
THUNDER CREEK near Newhalem	APR-JUL	133	148	159	69	170	185	230
	APR-SEP	196	214	226	69	238	256	328
SKAGIT at Newhalem (2)	APR-JUL	1025	1153	1240	66	1327	1455	1879
	APR-SEP	1209	1350	1445	66	1540	1681	2191
BAKER RIVER near Concrete	APR-JUL	443	517	568	68	619	693	836
	APR-SEP	563	650	710	67	770	857	1064

NORTH PUGET SO Reservoir Storage (100	NORTH PUGET SOUND RIVER BASINS Watershed Snowpack Analysis - March 1, 2001							
Usable *** Usable Storage *** Reservoir Capacity This Last Year Year Avg					Watershed	Number of Data Sites		r as % of Average
ROSS	1404.1	789.7	791.2	307.6	SKAGIT RIVER	13	49	52
DIABLO RESERVOIR	90.6	88.2	86.9		BAKER RIVER	5	49	47
GORGE RESERVOIR NO REPORT			NOOKSACK RIVER	2	49	55		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

North Puget Sound Basins Percent of Average March 1, 2001

> Snowpack - 55% Precipitation - 50% Reservoir - 257%

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Olympic Peninsula River Basins

*Based on selected stations

Forecasted average runoff for streamflow in Dungeness River Basin is 69% and 69% for Elwha River. Big Quilcene and Wynoochee rivers should expect below average runoff this summer also. February precipitation was 34% of average. Precipitation has accumulated at 57% of average for the water year. February precipitation at Quillayute was 3.48 inches. The thirty-year average for February is 12.01 inches. March 1 snow cover in the Elwah River Basin was at 29% of average, Morse Creek Basin was 50%, Dungeness River Basin was 49% and Quilcene River Basin was 66%. The Mount Crag SNOTEL near Quilcene had 17.6 inches of snow-water-equivalent on March 1. Average for this site is 26.5 inches. Hurricane Ridge snow course measurements report only 5.1 inches of snow water. Normally Hurricane Ridge would have 13.7 inches. Temperatures were 1 degree above average for the month and near average for the water year.

For more information contact your local Natural Resources Conservation Service office.

Olympic Peninsula River Basins

Streamflow Forecasts - March 1, 2001

		<<======	Drier ====	== Future C	onditions =	===== Wetter	. =====>>			
Forecast Point	Forecast	=======	========	- Chance Of	Exceeding *	=========	=======			
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
	 ====================================	(IUUUAF)	(1000AF)	(1000AF)	(% AVG./	(1000AF)	==========	(1000AF)		
DUNGENESS near Sequim	APR-SEP	89	99	106	69	113	123	153		
	APR-JUL	74	82	87	70	92	100	125		
ELWHA near Port Angeles	APR-SEP	281	323	352	69	381	423	510		
	APR-JUL	243	275	297	70	319	351	424		
9										

	OLYMPIC PENINSULA RIVER B Reservoir Storage (1000 AF) - End	OLYMPIC PENINSULA RIVER BASINS Watershed Snowpack Analysis - March 1, 2001							
Reservoir	Usable Capacity	*** Usab This Year	le Storage *** Last Year Avg	Watershed	Number of Data Sites	This Yea: ======= Last Yr	r as % of ====== Average		
				OLYMPIC PENINSULA	4	48	50		
				ELWHA RIVER	1	32	29		
				MORSE CREEK	1	46	50		
				DUNGENESS RIVER	1	52	49		
				QUILCENE RIVER	1	56	66		
				WYNOOCHEE RIVER	0	0	0		

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1990 base period.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Issued by

Released by

Pearlie S. Reed

Chief

Natural Resources Conservation Service

U.S. Department of Agriculture

Leonard Jordan **State Conservationist**

Natural Resources Conservation Service

Spokane, Washington

The Following Organizations Cooperate with the Natural Resources Conservation Service in Snow Survey Work*:

Canada Ministry of the Environment

Investigations Branch, Victoria, British Columbia

State Washington State Department of Ecology

Washington State Department of Natural Resources

Federal Department of the Army

Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce

NOAA, National Weather Service

U.S. Department of Interior

Bonneville Power Administration

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local City of Tacoma

City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company

Puget Sound Power and Light Company Washington Water Power Company

Snohomish County P.U.D.

Colville Confederated Tribes

Spokane County Yakama Indian Nation Whatcom County Pierce County

Private Okanogan Irrigation District

> Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Whitestone Reclamation District

146 6035 \$ 00.970 PB8615738 0895 MOUNT VERNON WA 98273

Washington Snow Survey Office 2021 E. College Way, Suite 214 Mount Vernon, WA 98273-2873

FOR OFFICIAL USE ONLY

U. S. DEPT. OF AGRICULTURE NATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS ROOM 002 BELTSVILLE, MD 20705-2351

Washington Basin Outlook Report

Natural Resources Conservation Service Spokane, WA

