Pirouette - Theory

Shruti Gupta Prashant Godhwani

February 2024

1 Syntax

```
Locations
                                                   \mathcal{L}
                                             \in
                                            := L \mid R
Synchronization Labels
                                     d
Binary Operations
                                          ::= + | - | * | / |=|<=|>=|!=|>|<| && ||
Choreography
                                      C ::= () \mid X \mid \ell.e \mid C \leadsto \ell \mid \text{if } C \text{ then } C_1 \text{ else } C_2
                                                   \ell_1[d] \leadsto \ell_2; \ C \mid \mathbf{let} \ \ell.x := C_1 \ \mathbf{in} \ C_2 \mid \mathbf{fun} \ X \Rightarrow C \mid C_1 \ C_2
                                                    (C_1,C_2) \mid \text{fst } C \mid \text{snd } C \mid \text{left } C \mid \text{right } C
                                                   match C with left X \Rightarrow C_1; right Y \Rightarrow C_2
                                                   () | num | x | e_1 \ binop \ e_2 | \ \mathbf{let} \ x := e_1 \ in \ e_2 | \ (e_1, e_2) | \ \mathbf{fst} \ e
Local Expressions
                                                   snd e \mid \text{left } e \mid \text{right } e \mid \text{match } e \text{ with left } x \Rightarrow e_1; \text{ right } y \Rightarrow e_2
                                      E
Network Expressions
                                           := X \mid () \mid \mathbf{fun} \ X \Rightarrow E \mid E_1 \ E_2 \mid \mathsf{ret}(e)
                                                   let ret(x) := E_1 in E_2 | send e to \ell; E | receive x from \ell; E
                                                   if E_1 then E_2 else E_3 | choose d for \ell; E
                                                    allow \ell choice L \Rightarrow E_1; R \Rightarrow E_2 \mid (E_1, E_2)
                                                   fst E \mid \text{snd } E \mid \text{left } E \mid \text{right } E
                                                   match E with left X \Rightarrow E_1; right Y \Rightarrow E_2
Choreographic Types
                                                   unit \mid \ell.t \mid \tau_1 \rightarrow \tau_2 \mid \tau_1 \times \tau_2 \mid \tau_1 + \tau_2
                                           ::=
                                            := unit | int | bool | string | t_1 \times t_2 \mid t_1 + t_2
Local Types
Network Types
                                      T
                                           := unit |T| \mid T_1 \rightarrow T_2 \mid T_1 \times T_2 \mid T_1 + T_2
```

2 Type System

2.1 Local Language

$$\frac{\text{Loc - UNIT}}{\Gamma \vdash \text{() : unit}} \qquad \frac{x : t \in \Gamma}{\Gamma \vdash x : t} \qquad \frac{\frac{\text{Loc - PAIR}}{\Gamma \vdash e_1 : t_1 \quad \Gamma \vdash e_2 : t_2}}{\Gamma \vdash (e_1, e_2) : t_1 \times t_2} \qquad \frac{\frac{\text{Loc - FST}}{\Gamma \vdash e : t_1 \times t_2}}{\Gamma \vdash \text{fst } e : t_1}$$

$$\begin{array}{ccc} \text{Loc - snd} & \text{Loc - left} \\ \Gamma \vdash e: t_1 \times t_2 \\ \hline \Gamma \vdash \text{snd } e: t_2 & \hline \Gamma \vdash \text{left } e_1: t_1 + t_2 & \hline \Gamma \vdash \text{right } e_2: t_1 + t_2 \end{array}$$

$$\frac{\Gamma}{\Gamma \vdash e: t_1 + t_2} \frac{\Gamma, \, \mathsf{x}: \, t_1 \vdash e_1: t_3}{\Gamma \vdash (\mathsf{match} \; \mathsf{e} \; \mathsf{with} \; \mathsf{left} \; \mathsf{x} \; \Rightarrow e_1 \; \mathsf{; \; right} \; \mathsf{y} \; \Rightarrow e_2): t_3}{\Gamma \vdash (\mathsf{match} \; \mathsf{e} \; \mathsf{with} \; \mathsf{left} \; \mathsf{x} \; \Rightarrow e_1 \; \mathsf{; \; right} \; \mathsf{y} \; \Rightarrow e_2): t_3}$$

2.2Network Language

 Γ ; $\Delta \vdash \text{receive } x \text{ from } \ell$; E : T

$$\begin{array}{lll} \textbf{Network Language} \\ & \frac{\text{Network - Unit}}{\Gamma; \Delta \vdash (\): \ \text{unit}} & \frac{X: T \in \Delta}{\Gamma; \Delta \vdash X: T} & \frac{\text{RET}}{\Gamma; \Delta \vdash e: t} \\ & \frac{X: T \in \Delta}{\Gamma; \Delta \vdash X: T} & \frac{\Gamma; \Delta \vdash e: t}{\Gamma; \Delta \vdash e: t} \\ & \frac{\text{Network - Fun}}{\Gamma; \Delta, X: T_1 \vdash E: T_2} & \frac{\text{Network - APP}}{\Gamma; \Delta \vdash E_1: T_1 \to T_2} & \frac{\Gamma; \Delta \vdash E_1: T_1 \to T_2 \quad \Gamma; \Delta \vdash E_2: T_1}{\Gamma; \Delta \vdash E_1: E_2: T_2} \\ & \frac{\text{Network - IF}}{\Gamma; \Delta \vdash E_1: T_1} & \frac{\Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_2} \\ & \frac{\text{Network - IF}}{\Gamma; \Delta \vdash E_1: T_1} & \frac{\Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_2: T_2} \\ & \frac{\text{Network - IF}}{\Gamma; \Delta \vdash E_1: T_1} & \frac{\Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_2: T_2} \\ & \frac{\text{Network - IF}}{\Gamma; \Delta \vdash E_1: T_1} & \frac{\Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_2: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_2: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_2: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2 \quad \Gamma; \Delta \vdash E_3: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1 \quad \Gamma; \Delta \vdash E_2: T_2}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_2} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash E_1: T_1}{\Gamma; \Delta \vdash E_1: T_1} \\ & \frac{\Gamma; \Delta \vdash$$

$$\begin{array}{ll} \text{Network - def} \\ \underline{\Gamma; \Delta \vdash E_1 : \boxed{t}} \quad \Gamma, x : t; \Delta \vdash E_2 : T_2 \\ \hline \Gamma; \Delta \vdash \text{let ret } (x) = E_1 \text{ in } E_2 : T_2 \\ \end{array} \qquad \begin{array}{ll} \text{Network - send} \\ \underline{\Gamma; \Delta \vdash e : t} \quad \Gamma; \Delta \vdash E : T \\ \hline \\ \text{Network - rcv} \\ \Gamma, x : t; \Delta \vdash E : T \\ \end{array}$$

$$\frac{ \substack{ \text{NETWORK - ALLOW} \\ \Gamma; \Delta \vdash E_1 : T \quad \Gamma; \Delta \vdash E_2 : T \\ \Gamma; \Delta \vdash \text{(allow ℓ choice L} \Rightarrow E_1 \ ; \ \mathsf{R} \Rightarrow E_2 \text{)} : T }$$

 Γ ; $\Delta \vdash$ choose d for ℓ ; E:T

$$\begin{array}{ll} \text{Network - Pair} \\ \frac{\Gamma; \Delta \vdash E_1 : T_1 \quad \Gamma; \Delta \vdash E_2 : T_2}{\Gamma; \Delta \vdash (E_1, E_2) : T_1 \times T_2} & \frac{\Gamma; \Delta \vdash E : T_1 \times T_2}{\Gamma; \Delta \vdash \text{fst } E : T_1} & \frac{\Gamma; \Delta \vdash E : T_1 \times T_2}{\Gamma; \Delta \vdash \text{snd } E : T_2} \\ \frac{\text{Network - Left}}{\Gamma; \Delta \vdash E_1 : T_1} & \frac{\text{Network - Right}}{\Gamma; \Delta \vdash E_2 : T_2} \\ \frac{\Gamma; \Delta \vdash \text{left } E_1 : T_1 + T_2}{\Gamma; \Delta \vdash \text{left } E_2 : T_1 + T_2} & \frac{\Gamma; \Delta \vdash \text{right } E_2 : T_1 + T_2}{\Gamma; \Delta \vdash \text{right } E_2 : T_1 + T_2} \end{array}$$

$$\frac{ \overset{\text{Network - Match}}{\Gamma \vdash E: T_1 + T_2 \quad \Gamma; \Delta, X: T_1 \vdash E_1: T_3 \quad \Gamma; \Delta, Y: T_2 \vdash E_2: T_3}{\Gamma \vdash \text{(match E with left X} \Rightarrow E_1 \text{ ; right Y} \Rightarrow E_2\text{)}: T_3}$$

2.3 Choreography

3 Theorems

Theorem 1. (Local Progress): For every expression $\cdot \vdash e : t$ either $\exists e'. e \rightarrow e'$ or e is a value

Proof. We will start with induction on e

Case e = ()

() is a value and we are done

Case e = num

num is a value and we are done

Case $e = e_1$ binop e_2

IH1 e_1 is either a value or $\exists e'_1. e_1 \rightarrow e'_1$

if $e_1 \to e_1'$ then e_1 binop $e_2 \to e_1'$ binop e_2

if e_1 is a value, IH2 e_2 is either a value or $\exists e_2'$. $e_2 \rightarrow e_2'$

if e_2 is a value, then e_1 binop $e_2 \to a$ value given e_1 and e_2 are numbers

```
if e_2 \to e_2' then e_1 binop e_2 \to e_1 binop e_2'
```

Case $e = (e_1, e_2)$

IH1 e_1 is either a value or $\exists e_1'. e_1 \rightarrow e_1'$

if $e_1 \to e'_1$ then $(e_1, e_2) \to (e'_1, e_2)$

if e_1 is a value, IH2 e_2 is either a value or $\exists e_2'. e_2 \rightarrow e_2'$

if e_2 is a value, then (e_1, e_2) is a value

if $e_2 \to e_2'$ then $(e_1, e_2) \to (e_1, e_2')$

Case $e = fst e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow e'_1$

if $e_1 \to e_1'$ then fst $e_1 \to \text{fst } e_1'$

if e_1 is a value, this means e_1 is a pair of values as $e_1: t_1xt_2$ so if $e_1=(v_1,v_2)$ then fst $e_1 \to v_1$

Case $e = \text{snd } e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow e'_1$

if $e_1 \to e_1'$ then snd $e_1 \to \text{snd } e_1'$

if e_1 is a value, this means e_1 is a pair of values as $e_1: t_1xt_2$ so if $e_1=(v_1,v_2)$ then snd $e_1\to v_2$

Case $e = left e_1$

IH e_1 is either a value or $\exists e'_1. e_1 \rightarrow e'_1$

if $e_1 \to e_1'$ then left $e_1 \to \text{left } e_1'$

if e_1 is a value, then left e_1 is a value

Case $e = right e_1$

IH e_1 is either a value or $\exists e_1'. e_1 \rightarrow e_1'$

if $e_1 \to e_1'$ then right $e_1 \to \text{right } e_1'$

if e_1 is a value, then right e_1 is a value

Theorem 2. (Local Preservation): If $\Gamma \vdash e : t$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t$ Proof. We will start with induction on $\Gamma \vdash e : t$

Case $\Gamma \vdash e : unit$

 $\Gamma \vdash ()$: unit. () doesn't take a step and we are done

Case x : t

 $\Gamma \vdash x : t. x doesn't take a step and we are done$

Case $\Gamma \vdash e : t_1Xt_2$

This means $e = (e_1, e_2)$

IH If $\Gamma \vdash e_1 : t_1 \text{ and } e_1 \to e_1' \text{ then } \Gamma \vdash e_1' : t_1$

Now we know, $(e_1, e_2) \rightarrow (e'_1, e_2)$ and $\Gamma \vdash (e_1, e_2) : t_1Xt_2$

Using IH we can say $\Gamma \vdash (e'_1, e_2) : t_1 X t_2$

```
This means e: t_1Xt_2
IH If \Gamma \vdash e : t_1 X t_2 and e \rightarrow e' then \Gamma \vdash e' : t_1 X t_2
Now we know, fst e \to \text{fst } e' and \Gamma \vdash \text{fst } e : t_1
Using IH we can say \Gamma \vdash \text{fst } e' : t_1
Case \Gamma \vdash \mathbf{snd} \ e : t_2
This means e: t_1Xt_2
IH If \Gamma \vdash e : t_1Xt_2 and e \rightarrow e' then \Gamma \vdash e' : t_1Xt_2
Now we know, snd e \to \operatorname{snd} e' and \Gamma \vdash \operatorname{snd} e : t_2
Using IH we can say \Gamma \vdash \text{snd } e' : t_2
Case \Gamma \vdash left e: t_1 + t_2
This means e:t_1
IH If \Gamma \vdash e : t_1 \text{ and } e \rightarrow e' \text{ then } \Gamma \vdash e' : t_1
Now we know, left e \to \text{left } e' and \Gamma \vdash \text{left } e: t_1 + t_2
Using IH we can say \Gamma \vdash \text{left } e' : t_1 + t_2
Case \Gamma \vdash \mathbf{right} \ e : t_1 + t_2
This means e:t_2
IH If \Gamma \vdash e : t_2 and e \rightarrow e' then \Gamma \vdash e' : t_2
Now we know, right e \to \text{right } e' and \Gamma \vdash \text{right } e: t_1 + t_2
Using IH we can say \Gamma \vdash \text{right } e' : t_1 + t_2
Case \Gamma; x:t_1,y:t_2\vdash match e with left x\Rightarrow e_2; right y\Rightarrow e_3:t_3
This means e: t_1 + t_2
IH If \Gamma \vdash e : t_1 + t_2 and e \rightarrow e' then \Gamma \vdash e' : t_1 + t_2
Now we know, match e with left x \Rightarrow e_2; right y \Rightarrow e_3 \rightarrow match e' with left
x \Rightarrow e_2; right y \Rightarrow e_3 and \Gamma \vdash match e with left x \Rightarrow e_2; right y \Rightarrow e_3 : t_3
Using IH we can say \Gamma \vdash match e' with left x \Rightarrow e_2; right y \Rightarrow e_3 : t_3
Theorem 3. (Progress): For every choreography \cdot \vdash C : \tau either \exists C' . C \to C'
or C is a value
Proof. We will start with induction on C
Case C = ()
() is a value and we are done
Case C = \ell . e
we know from local progress, e is either a value or \exists e'. e \rightarrow e'
So, if e is a value, \ell.e is a value and we are done
If \exists e'. e \rightarrow e' then, \ell.e \rightarrow \ell.e'
Case C = C_1 \leadsto \ell
```

Case $\Gamma \vdash$ fst $e: t_1$

IH C_1 is either a value or $\exists C_1'. C_1 \to C_1'$ if $C_1 \to C_1'$ then $C_1 \leadsto \ell \to C_1' \leadsto \ell$ if C_1 is a value, $C_1 = \ell_1.v$ and we know that $\ell_1.v \leadsto \ell \to \ell.v$

Case $C = \ell_1[d] \leadsto \ell_2; C_1$

IH C_1 is either a value or $\exists C_1'. C_1 \rightarrow C_1'$

if $C_1 \to C_1'$ then $\ell_1[d] \leadsto \ell_2; C_1 \to \ell_1[d] \leadsto \ell_2; C_1'$

if C_1 is a value V, then $\ell_1[d] \leadsto \ell_2; C_1$ steps to the value V

Case $C = if C_1$ then C_2 else C_3

Case $C = (C_1, C_2)$

IH1 C_1 is either a value or $\exists C'_1. C_1 \rightarrow C'_1$

if $C_1 \to C_1'$ then $(C_1, C_2) \to (C_1', C_2)$

if C_1 is a value, IH2 C_2 is either a value or $\exists C_2'$. $C_2 \to C_2'$

if C_2 is a value, then (C_1, C_2) is a value

if $C_2 \to C_2'$ then $(C_1, C_2) \to (C_1, C_2')$

Case $C = fst C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow C'_1$

if $C_1 \to C_1'$ then fst $C_1 \to$ fst C_1'

if C_1 is a value, this means C_1 is a pair of values as C_1 : $\tau_1 \times \tau_2$ so if $C_1 = (v_1, v_2)$ then fst $C_1 \to v_1$

Case $C = \text{snd } C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow C'_1$

if $C_1 \to C_1'$ then snd $C_1 \to \text{snd } C_1'$

if C_1 is a value, this means C_1 is a pair of values as $C_1:\tau_1 \times \tau_2$ so if $C_1=(v_1,v_2)$ then snd $C_1\to v_2$

Case $C = left C_1$

IH C_1 is either a value or $\exists C'_1. C_1 \rightarrow C'_1$

if $C_1 \to C_1'$ then left $C_1 \to \text{left } C_1'$

if C_1 is a value, then left C_1 is a value

Case $C = right C_1$

IH C_1 is either a value or $\exists C_1'. C_1 \rightarrow C_1'$

if $C_1 \to C_1'$ then right $C_1 \to \text{right } C_1'$

if C_1 is a value, then right C_1 is a value

Theorem 4. (*Preservation*): If Γ ; $\Delta \vdash C : \tau$ and $C \to C'$ then Γ ; $\Delta \vdash C' : \tau$ *Proof.* We will start with induction on Γ ; $\Delta \vdash C : \tau$

Case Γ ; $\Delta \vdash C : unit$

 $\Gamma; \Delta \vdash ()$: unit. () doesn't take a step and we are done

Case Γ ; $\Delta \vdash X : \tau$

 Γ ; $\Delta \vdash X : \tau$. X doesn't take a step and we are done

Case Γ ; $\Delta \vdash C : \ell . t$

This means $C = \ell . e$

Using local preservation we can say that, if $\Gamma \vdash e : t$ and $e \rightarrow e'$ then $\Gamma \vdash e' : t$

Now we know, $\ell.e \to \ell.e'$ and $\Gamma; \Delta; \Delta \vdash C : \ell.t$

Using local preservation, Γ ; $\Delta \vdash C' : \ell . t$ where $C' = \ell . e'$

Case $\Gamma; \Delta \vdash C : \tau_1 \mathbf{x} \tau_2$

This means $C = (C_1, C_2)$

IH If $\Gamma; \Delta \vdash C_1 : \tau_1 \text{ and } C_1 \to C'_1 \text{ then } \Gamma; \Delta \vdash C'_1 : \tau_1$

Now we know, $(C_1, C_2) \to (C'_1, C_2)$ and $\Gamma; \Delta \vdash (C_1, C_2) : \tau_1 \times \tau_2$

Using IH we can say Γ ; $\Delta \vdash (C'_1, C_2) : \tau_1 \times \tau_2$

Case Γ ; $\Delta \vdash$ fst $C : \tau_1$

This means $C: \tau_1 \ge \tau_2$

IH If Γ ; $\Delta \vdash C : \tau_1 \times \tau_2$ and $C \to c'$ then Γ ; $\Delta \vdash C' : \tau_1 \times \tau_2$

Now we know, fst $C \to \text{fst } C'$ and $\Gamma; \Delta \vdash \text{fst } C : \tau_1$

Using IH we can say Γ ; $\Delta \vdash$ fst $C' : \tau_1$

Case Γ ; $\Delta \vdash$ snd $C : \tau_2$

This means $C: \tau_1 \ge \tau_2$

IH If $\Gamma; \Delta \vdash C : \tau_1 \ge \tau_2$ and $C \to C'$ then $\Gamma; \Delta \vdash C' : \tau_1 \ge \tau_2$

Now we know, snd $C \to \operatorname{snd} C'$ and $\Gamma; \Delta \vdash \operatorname{snd} C : \tau_2$

Using IH we can say Γ ; $\Delta \vdash$ snd $C' : \tau_2$

Case Γ ; $\Delta \vdash$ left $C : \tau_1 + \tau_2$

This means $C: \tau_1$

IH If $\Gamma; \Delta \vdash C : \tau_1$ and $C \to C'$ then $\Gamma; \Delta \vdash C' : \tau_1$

Now we know, left $C \to \text{left } C'$ and $\Gamma; \Delta \vdash \text{left } C: \tau_1 + \tau_2$

Using IH we can say Γ ; $\Delta \vdash$ left $C' : \tau_1 + \tau_2$

Case Γ ; $\Delta \vdash$ right $C : \tau_1 + \tau_2$

This means $C: \tau_2$

IH If Γ ; $\Delta \vdash C : \tau_2$ and $C \to C'$ then Γ ; $\Delta \vdash C' : \tau_2$

Now we know, right $C \to \text{right } C'$ and $\Gamma; \Delta \vdash \text{right } C: \tau_1 + \tau_2$

Using IH we can say Γ ; $\Delta \vdash \text{right } C' : \tau_1 + \tau_2$

Case Γ ; $\Delta \vdash$ match C with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3 : \tau_3$

This means $C: \tau_1 + \tau_2$

IH If $\Gamma; \Delta \vdash C : \tau_1 + \tau_2$ and $C \to C'$ then $\Gamma; \Delta \vdash C' : \tau_1 + \tau_2$

Now we know, match C with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3 \rightarrow$ match C' with left $X \Rightarrow C_2$; right $Y \Rightarrow C_3$ and $\Gamma; \Delta \vdash$ match C with left $X \Rightarrow C_2$; right

 $Y \Rightarrow C_3 : \tau_3$

Operational Semantics

4.1 Local Language

Local values $v ::= () \mid num \mid v_1 \text{ binop } v_2 \mid (v_1, v_2) \mid \text{ left } v \mid \text{ right } v$

$$\begin{array}{c} \text{BINOP 1} \\ \underline{e_1 \rightarrow_l e_1'} \\ e_1 \odot e_2 \rightarrow_l e_1' \widetilde{\odot} e_2 \end{array} \qquad \begin{array}{c} \text{BINOP 2} \\ \underline{e_2 \rightarrow_l e_2'} \\ v \odot e_2 \rightarrow_l v \widetilde{\odot} e_2' \end{array} \qquad \begin{array}{c} \text{BINOP 3} \\ \hline v_1 \odot v_2 \rightarrow_l v_1 \widetilde{\odot} v_2 \ (/ \notin \odot) \end{array} \\ \\ \text{LOC - LET 1} \\ \underline{\text{let } x := e_1 \text{ in } e_2 \rightarrow_l \text{ let } x := e_1' \text{ in } e_2} \qquad \qquad \begin{array}{c} \text{LOC - LET 2} \\ \hline \text{let } x := e_1 \text{ in } e_2 \rightarrow_l \text{ let } x := e_1' \text{ in } e_2 \end{array} \qquad \begin{array}{c} \text{LOC - PAIR 2} \\ \underline{e_1 \rightarrow_l e_1'} \\ (e_1, e_2) \rightarrow_l (e_1', e_2) \end{array} \qquad \begin{array}{c} \text{LOC - PAIR 2} \\ \underline{e_2 \rightarrow_l e_2'} \\ (v, e_2) \rightarrow_l (v, e_2') \end{array} \qquad \begin{array}{c} \text{LOC - FST} \\ \underline{e \rightarrow_l e'} \\ \hline \text{fst } e \rightarrow_l \text{ fst } e' \end{array} \\ \\ \underline{\text{LOC - PAIR ELIM 1}} \\ \overline{\text{fst } (v_1, v_2) \rightarrow_l v_1} \end{array} \qquad \begin{array}{c} \text{LOC - LEFT} \\ \underline{e \rightarrow_l e'} \\ \hline \text{snd } e \rightarrow_l \text{ snd } e' \end{array} \qquad \begin{array}{c} \text{LOC - PAIR ELIM 2} \\ \overline{\text{snd } (v_1, v_2) \rightarrow_l v_2} \end{array} \qquad \begin{array}{c} \text{LOC - LEFT} \\ \underline{\text{left } e \rightarrow_l e'} \\ \hline \text{left } e \rightarrow_l \text{ left } e' \end{array} \qquad \begin{array}{c} \text{LOC - RIGHT} \\ \underline{e \rightarrow_l e'} \\ \hline \text{right } e \rightarrow_l \text{ right } e' \end{array} \\ \\ \underline{\text{LOC - MATCH}} \qquad \qquad \begin{array}{c} \underline{e \rightarrow_l e'} \\ \hline \end{array} \qquad \begin{array}{c} \text{LOC - LEFT} \\ \underline{\text{left } e \rightarrow_l \text{ left } e'} \end{array} \qquad \begin{array}{c} \text{LOC - RIGHT} \\ \underline{\text{right } e \rightarrow_l \text{ right } e'} \\ \hline \end{array}$$

LOC - SUM ELIM 1

(match left v with left x \Rightarrow e_1 ; right y \Rightarrow e_2) $\rightarrow_l e_1$ [x \mapsto v]

LOC - SUM ELIM 2

(match right v with left x \Rightarrow e_1 ; right y \Rightarrow e_2) $\rightarrow_l e_2$ [$y \mapsto v$]

4.2 NetIR

$$\operatorname{fst}(E_1,E_2) \to E_1 \qquad \operatorname{snd}(E_1,E_2) \to E_2$$
 (match inl E with inl X \Rightarrow E_1 ; inr Y \Rightarrow $E_2) \to E_1$ [$X \mapsto E$] (match inr E with inl X \Rightarrow E_1 ; inr Y \Rightarrow $E_2) \to E_2$ [$Y \mapsto E$]

4.3 Choreography

Choreographic Values $V ::= () \mid \ell.v \mid (V_1, V_2) \mid \mathbf{left} \ V \mid \mathbf{right} \ V \mid \mathbf{fun} \ X \Rightarrow C$

$$\begin{array}{c} \operatorname{ASSOC} \\ e \to_l e' \\ \hline \ell.e \to_g \ell.e' \\ \hline \\ \ell.e \to_g \ell.e' \\ \hline \end{array} \qquad \begin{array}{c} \operatorname{SEND} 1 \\ \hline C \to_g C' \\ \hline \\ \ell.e \to_g \ell.e' \\ \hline \end{array} \qquad \begin{array}{c} \operatorname{SEND} 2 \\ \hline \ell.v \to \ell \to_g \ell'.v \\ \hline \\ \ell.v \to \ell' \to_g \ell'.v \\ \hline \end{array}$$

5 Glossary

$$\ell$$
 involved in $\tau = \ell \in locs(\tau)$

 $\ell \in locs(\tau) = \text{ getLoc}$ is a function that recursively traverses over τ to construct $locs(\tau)$

$$locs(\tau) = \left\{ \begin{array}{ll} \phi & \text{if } \tau = \mathbf{unit} \\ \{\ell\} & \text{if } \tau = \ell.e \\ \text{getLoc } \tau_1 \cup \text{getLoc } \tau_2 & \text{if } \tau = \tau_1 \to \tau_2 \text{ or } \tau_1 + \tau_2 \text{ or } \tau_1 \times \tau_2 \end{array} \right.$$

6 Endpoint Projection

$$\llbracket \mathbf{fst} \ C \rrbracket_{\ell} = \left\{ \begin{array}{ll} \mathbf{fst} \ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C, \tau_1 \text{ and } \tau_2 \\ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C \\ \mathbf{()} & \text{otherwise} \end{array} \right.$$

$$[\![\mathbf{snd}C]\!]_\ell = \left\{ \begin{array}{ll} \mathbf{snd} \ [\![C]\!]_\ell & \text{if } C: \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C, \tau_1 \text{ and } \tau_2 \\ [\![C]\!]_\ell & \text{if } C: \tau_1 \times \tau_2 \text{ and } \ell \text{ is involved in } C \\ () & \text{otherwise} \end{array} \right.$$

$$\llbracket \mathbf{inl} \ C \rrbracket_{\ell} = \left\{ \begin{array}{ll} \mathbf{inl} \ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \text{ and } \ell \text{ is involved in } C \text{ and } \tau_1 \\ \llbracket C \rrbracket_{\ell} & \text{if } C : \tau_1 \text{ and } \ell \text{ is involved in } C \text{ but not in } \tau_1 \\ \mathbf{()} & \text{if } C : \tau_1 \text{ and } \ell \text{ is not involved in } C \text{ and } \tau_1 \end{array} \right.$$

$$\llbracket \mathbf{inr} \ C \rrbracket_\ell = \left\{ \begin{array}{ll} \mathbf{inr} \ \llbracket C \rrbracket_\ell & \text{if } C : \tau_2 \text{ and } \ell \text{ is involved in } C \text{ and } \tau_2 \\ \llbracket C \rrbracket_\ell & \text{if } C : \tau_2 \text{ and } \ell \text{ is involved in } C \text{ but not in } \tau_2 \\ \mathbf{()} & \text{if } C : \tau_2 \text{ and } \ell \text{ is not involved in } C \text{ and } \tau_2 \end{array} \right.$$

 $[\![$ match C in inl $\mathbf{X} \Rightarrow C_1;$ inr $\mathbf{Y} \Rightarrow C_2]\!]_{\ell}$

$$= \left\{ \begin{array}{ll} \mathbf{match} \ [\![C]\!]_\ell \ \mathbf{in} \ \mathbf{inl} \ \mathbf{X} \ \Rightarrow [\![C_1]\!]_\ell; \ \mathbf{inr} \ \mathbf{Y} \ \Rightarrow [\![C_2]\!]_\ell \\ \\ [\![C]\!]_\ell; \ [\![C_1]\!]_\ell \sqcup [\![C_2]\!]_\ell \\ \\ [\![C_1]\!]_\ell \sqcup [\![C_2]\!]_\ell \end{array} \right. \quad \text{if } C: \tau_1 + \tau_2 \text{ and } \ell \text{ is involved in } \\ \tau_1 \text{ or } \tau_2 \text{ or } C \\ \text{if } C: \tau_1 + \tau_2 \text{ and } \ell \text{ is involved in } \\ \tau_1 \text{ or } \tau_2 \text{ or } C \\ \text{if } C: \tau_1 + \tau_2 \text{ and } \ell \text{ is not involved in } \\ C, \ \tau_1 \text{ and } \tau_2 \end{array} \right.$$

7 Type Projection

$$[\![\mathbf{unit}]\!]_\ell = \mathbf{unit}$$

$$\llbracket \ell_1.t
rbracket_{\ell_2} = \left\{ egin{array}{ll} t & ext{if $\ell_1 = \ell_2$} \\ ext{unit} & ext{otherwise} \end{array}
ight.$$

$$\llbracket \tau_1 \to \tau_2 \rrbracket_\ell = \left\{ \begin{array}{ll} \llbracket \tau_1 \rrbracket_\ell \to \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_1 or τ_2 or both} \\ \mathbf{unit} & \text{otherwise} \end{array} \right.$$

$$[\![\tau_1+\tau_2]\!]_\ell=\left\{\begin{array}{ll} [\![\tau_1]\!]_\ell+[\![\tau_2]\!]_\ell & \text{if ℓ is involved in τ_1 or τ_2 or both}\\ \mathbf{unit} & \text{otherwise} \end{array}\right.$$

$$\llbracket \tau_1 \times \tau_2 \rrbracket_\ell = \begin{cases} & \llbracket \tau_1 \rrbracket_\ell \times \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_1 and τ_2} \\ & \llbracket \tau_1 \rrbracket_\ell & \text{if ℓ is involved in τ_1 but not τ_2} \\ & \llbracket \tau_2 \rrbracket_\ell & \text{if ℓ is involved in τ_2 but not τ_1} \\ & \mathbf{unit} & \text{otherwise} \end{cases}$$

8 Lemmas

```
Lemma 1 : If \ell is not involved in \tau then [\![\tau]\!]_{\ell} = \text{unit}
Proof: By Induction on \tau
Case \tau = \text{unit}:
   From type projection we know, [\![\mathbf{unit}]\!]_{\ell} = \mathsf{unit}
Case \tau = \ell.t:
   Here we know that, \ell_1 \neq \ell as \ell is not involved in \tau
   so using type projection for [\![\ell_1.t]\!]_\ell
   we can say, [\![\ell_1.t]\!]_\ell = \mathbf{unit}
Case \tau = [\![\tau_1 \to \tau_2]\!]_{\ell}:
   By IH, \ell is not involved in 	au_1 and \ell is not involved in 	au_2
   so using type projection for [\![\tau_1 \to \tau_2]\!]_\ell
   we can say, [\![\tau_1 \to \tau_2]\!]_\ell = \mathbf{unit}
Case \tau = [\![\tau_1 + \tau_2]\!]_{\ell}:
   By IH, \ell is not involved in 	au_1 and \ell is not involved in 	au_2
   so using type projection for [\![\tau_1+\tau_2]\!]_\ell
   we can say, \llbracket \tau_1 + \tau_2 \rrbracket_\ell = \mathbf{unit}
Case \tau = [\![\tau_1 \times \tau_2]\!]_{\ell}:
   By IH, \ell is not involved in \tau_1 and \ell is not involved in \tau_2
   so using type projection for [\![\tau_1 	imes 	au_2]\!]_\ell
   we can say, [\![\tau_1*\tau_2]\!]_\ell=\mathbf{unit}
Lemma 2 : If \ell \notin locs(C) then [\![C]\!]_{\ell} = ()
Lemma 3 : If \vdash C : \tau, then \vdash \llbracket C \rrbracket_{\ell} : \llbracket \tau \rrbracket_{\ell}
```