Scientific Notation

In scientific notation, numbers are expressed in the form $N \times 10^n$, where N is a number between 1 and 10, and n is an exponent, which can be positive or negative. Example:

• $232.508 = 2.32508 \times 10^2$ in scientific notation.

Calculations in Scientific Notation:

1. **Multiplication and Division**: Multiply or divide the coefficients, then add or subtract the exponents.

(a)
$$(5.7 \times 10^6) \times (4.2 \times 10^5) = (5.7 \times 4.2) (10^{6+5}) = 23.94 \times 10^{11}$$

(b) $(5.7 \times 10^6) \div (4.2 \times 10^3)$ CBSELabs.com

$$\frac{5.7 \times 10^6}{4.2 \times 10^3} = \frac{5.7}{4.2} \times 10^{6-3} = 1.357 \times 10^3$$

2. **Addition and Subtraction**: Adjust the numbers so they have the same exponent, then add or subtract the coefficients.

(a)
$$4.56 \times 10^{3} + 2.62 \times 10^{2}$$

= $45.6 \times 10^{2} + 2.62 \times 10^{2}$
= $(45.6 + 2.62) \times 10^{2}$
CBSELabs.com = 48.22×10^{2}
(b) $4.5 \times 10^{-3} - 2.6 \times 10^{-4}$
= $4.5 \times 10^{-3} - 0.26 \times 10^{-3}$
= $(4.5 - 0.26) \times 10^{-3}$
= 4.24×10^{-3}

Significant Figures

Significant figures represent the digits that carry meaning and contribute to the precision of a measurement. Here are the rules:

1. All non-zero digits are significant.

Example: 285 cm has 3 significant figures.

2. Leading zeros are not significant.

Example: 0.03 has 1 significant figure.

3. Zeros between non-zero digits are significant.

Example: 2.005 has **4 significant figures**.

4. Trailing zeros are significant if they are after a decimal point.

Example: 0.200 g has 3 significant figures.

5. Exact numbers have infinite significant figures.

Example: 2 = 2.000000 or 20 = 20.000000 (infinite significant figures).

Operations with Significant Figures:

Addition and Subtraction:

• The final result should be reported with the same number of decimal places as the number with the least decimal places. *Example*:

Adding 3.52, 2.3, and 6.24 gives **12.0** (reported to one decimal place).

- 3.52
- 2.3
- 6.24
- 12.06

Multiplication and Division:

• The result should be reported with the same number of significant figures as the least precise number. *Example*:

Multiplying 2.2120×0.011 gives **0.024** (reported to two significant figures).

23.4730

12.11 com

11.3630

Dimensional Analysis

This is a method used to convert units from one system to another, also known as the **factor label method** or **unit factor method**. It involves multiplying by conversion factors to switch between units.