EE365: Linear Exponential Quadratic Regulator

Linear exponential quadratic regulator

Solution via dynamic programming

Example

Derivation of DP for LEQR

Linear exponential quadratic regulator

Linear dynamics, quadratic costs

- ▶ linear dynamics: $x_{t+1} = A_t x_t + B_t u_t + w_t$
 - $w_t \sim \mathcal{N}(0, W_t)$, $x_0 \sim \mathcal{N}(0, X_0)$ (yes, they need to be Gaussian)
 - $\blacktriangleright x_0, w_0, \ldots, w_{T-1}$ independent
- stage cost is (convex quadratic)

$$g_t(x, u) = (1/2)(x^T Q_t x + u^T R_t u)$$

with $Q_t \geq 0$, $R_t > 0$

- ▶ terminal cost $g_T(x) = (1/2)x^TQ_Tx$, $Q_T \ge 0$
- $ightharpoonup \cot C = \sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)$
- ▶ state feedback: $u_t = \mu_t(x_t)$, t = 0, ..., T-1

Linear exponential quadratic regulator

exponential risk aversion cost

$$J = \frac{1}{\gamma} \log \mathbf{E} \exp \gamma C = R_{\gamma}(C)$$

with $\gamma > 0$

- ▶ LEQR problem: choose policy μ_0, \ldots, μ_{T-1} to minimize J
- ightharpoonup reduces to LQR problem as $\gamma \to 0$
- for γ too large, $J=\infty$ for all policies ('neurotic breakdown')

Solution via dynamic programming

Generic risk averse dynamic programming

ightharpoonup optimal policy μ^{\star} is

$$\mu_t^{\star}(x) \in \underset{u}{\operatorname{argmin}} \left(g_t(x, u) + R_{\gamma} V_{t+1}(f_t(x, u, w_t)) \right)$$

where expectation in R_{γ} is over w_t

 \blacktriangleright (backward) recursion for V_t :

$$V_t(x) = \min_{u} (g_t(x, u) + R_{\gamma} V_{t+1}(f_t(x, u, w_t)))$$

DP for LEQR

we will see that

 $ightharpoonup V_t$ are convex quadratic (with no linear term):

$$V_t(x) = (1/2)(x^T P_t x + r_t)$$

with $P_t \geq 0$

- lacktriangle optimal policy is linear: $\mu_t^\star(x) = K_t x$ (so x_t, u_t are Gaussian)
- $\blacktriangleright \ J = \infty \ {\rm for} \ \gamma \geq \gamma^{\rm crit}$ ('neurotic breakdown')

Modified Riccati recursion

modified Riccati recursion:

$$\begin{split} \tilde{P}_{t+1} &= P_{t+1} + \gamma P_{t+1} (W_t^{-1} - \gamma P_{t+1})^{-1} P_{t+1} \\ K_t &= -(R_t + B_t^T \tilde{P}_{t+1} B_t)^{-1} B_t^T \tilde{P}_{t+1} A_t \\ r_t &= r_{t+1} - (1/\gamma) \log \det(I - \gamma P_{t+1} W_t) \\ P_t &= Q_t + K_t^T R_t K^t + (A_t + B_t K_t)^T \tilde{P}_{t+1} (A_t + B_t K_t) \end{split}$$

- \blacktriangleright neurotic breakdown occurs if $W_t^{-1} \gamma P_{t+1} \not\geqslant 0$ for any t
- ▶ as $\gamma \to 0$, $\tilde{P}_{t+1} \to P_{t+1}$ and $-(1/\gamma) \log \det(I \gamma P_{t+1} W_t) \to \mathbf{Tr} \, P_{t+1} W_t$

and we recover the standard (LQR) Riccati recursion

ightharpoonup as in LQR, r_t keeps track of cost, doesn't affect policy

Example

dynamics and actuators:

- $Q_0 = \cdots = Q_{T-1} = 0, \ Q_T = e_n e_n^T$
- $ightharpoonup R_0 = \cdots = R_{T-1}$ diagonal with increasing values on diagonal
- $lackbox{W}_0 = \cdots = W_{T-1}$ diagonal with decreasing values on diagonal
- $ightharpoonup X_0 = I$

γ	$\mathbf{E} C$	$\operatorname{\mathbf{std}} C$	$R_0(C)$	$R_{1.25}(C)$	$R_{2.00}(C)$
0.00	0.3202	0.3866	0.3202	0.5106	1.0616
1.25	0.3347	0.3543	0.3347	0.4740	0.7918
2.00	0.3858	0.3475	0.3885	0.5106 0.4740 0.5099	0.7353

feedback gain: $\gamma = 0$, $\gamma = 1.2$, $\gamma = 2.0$

sample realization (state): $\gamma = 0$, $\gamma = 1.2$, $\gamma = 2.0$

sample realization (input): $\gamma = 0$, $\gamma = 1.2$, $\gamma = 2.0$

cost histogram

cost histogram (tails)

Derivation of DP for LEQR

Expectation of exponential of quadratic of Gaussian

- suppose $z \sim \mathcal{N}(\bar{z}, Z)$, P > 0
- $\mathbf{E}(1/2)z^T P z = (1/2) \mathbf{Tr} P Z$
- ▶ let $J = R_{\gamma}(z^T P z / 2) = \frac{1}{\gamma} \log \mathbf{E} \exp(\gamma / 2) z^T P z$
- ▶ then $J = \infty$ if $Z^{-1} \not > \gamma P$
- ▶ when $Z^{-1} > \gamma P$,

$$J = \frac{1}{2} \left(\bar{z}^T \tilde{P} \bar{z} - (1/\gamma) \log \det(I - \gamma PZ) \right)$$

where
$$\tilde{P} = P + \gamma P (Z^{-1} - \gamma P)^{-1} P$$

ightharpoonup as $\gamma o 0$, $\tilde{P} o P$, $J o (1/2) \, {f Tr} \, PZ$

Derivation

▶ to get formula above start with integral

$$\mathbf{E} \exp(\gamma/2) z^T P z = \frac{1}{(2\pi)^{n/2} (\det Z)^{1/2}} \int e^{\gamma x^T P x/2} e^{-(x-\bar{z})^T Z^{-1} (x-\bar{z})/2} dx$$

▶ simplify integrand, complete squares, and use

$$\frac{1}{(2\pi)^{n/2}(\det \Sigma)^{1/2}} \int e^{-(x-\mu)^T \Sigma^{-1}(x-\mu)/2} dx = 1$$

to get formula above

Limit

For any $Z \in \mathbb{R}^{n \times n}$

$$\lim_{\gamma \to 0} -\frac{1}{\gamma} \log \det(I - \gamma Z) = \mathbf{Tr}(Z).$$

let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of Z, then

$$-\frac{1}{t}\log\det(I - tZ) = -\frac{1}{t}\log\prod_{i=1}^{n}(1 - t\lambda_{i}) = -\frac{1}{t}\sum_{i=1}^{n}\log(1 - t\lambda_{i})$$

$$= \frac{1}{t}\sum_{i=1}^{n}\sum_{k=1}^{\infty}\frac{1}{k}(t\lambda_{i})^{k}$$

$$= \sum_{k=1}^{\infty}\frac{1}{k}\sum_{i=1}^{n}\lambda_{i}^{k}t^{k-1}$$

$$= \sum_{k=0}^{\infty}\left(\frac{1}{k+1}\sum_{i=1}^{n}\lambda_{i}^{k+1}\right)t^{k}$$

as $t \to 0$, we are left with the term corresponding to k = 0

$$\lim_{t \to \infty} -\frac{1}{t} \log \det(I - tZ) = \sum_{i=1}^{n} \lambda_i = \mathbf{Tr}(Z).$$

Derivation of DP for LEQR

- ▶ proof by induction: suppose $V_{t+1}(x) = (1/2)(x^T P_{t+1}x + r_{t+1})$
- ▶ we need to minimize over u

$$g_t(x, u) + R_{\gamma}(V_{t+1}(f_t(x, u, w_t)))$$

$$= (1/2)(x^T Q_t x + u^T R_t u)$$

$$+ R_{\gamma} ((1/2)((A_t x + B_t u + w_t)^T P_{t+1}(A_t x + B_t u + w_t) + r_{t+1}))$$

▶ same as minimizing

$$(1/2)u^TR_tu+R_{\gamma}\left((1/2)z^TP_{t+1}z\right)$$
 where $z\sim\mathcal{N}(A_tx+B_tu,W_t)$

Derivation of DP for LEQR

▶ using formula for $R_{\gamma}\left((1/2)z^{T}P_{t+1}z\right)$ above, need to minimize over u

$$\frac{1}{2} \left(u^T R_t u + (A_t x + B_t u)^T \tilde{P} (A_t x + B_t u) - (1/\gamma) \log \det(I - \gamma Z P) \right)$$

where
$$\tilde{P} = P + \gamma P (Z^{-1} - \gamma P)^{-1} P$$

- ▶ this expression is ∞ if $Z^{-1} \not> \gamma P$
- otherwise: last term is constant, so

$$\mu_t^{\star}(x) = -(R_t + B_t^T \tilde{P}_{t+1} B_t)^{-1} B_t^T \tilde{P}_{t+1} A_t x$$

ightharpoonup adding back in constant terms to get V_t , we get modified Riccati recursion given above