Handout 3: Bernoulli and Poisson processes

Due date : February 24^{th}

Brief recap

1.

Exercise 2. Let X_i (i = 1, 2, ...) be i.i.d. random variables with mean 0 and variance 2; Y_i (i = 1, 2, ...) be i.i.d. random variables with mean 2. Assume that all variables X_i , Y_j are independent. Consider the following statements:

- (A) $\frac{X_1 + \dots + X_n}{n}$ converges to 0 in probability as $n \to \infty$.
- (B) $\frac{X_1^2 + \dots + X_n^2}{n}$ converges to 2 in probability as $n \to \infty$.
- (C) $\frac{X_1Y_1+\cdots+X_nY_n}{n}$ converges to 0 in probability as $n\to\infty$.

Which of these statements are always true? Write True or False in each of the boxes below.

A. C.

Exercise 3. Problem 21.4.

In the fair Gambler's Ruin game with initial stake of n dollars and target of T dollars, let e_n be the number of \$1 bets the gambler makes until the game ends (because he reaches his target or goes broke).

1. Describe constants a, b, c such that

$$e_n = ae_{n-1} + be_{n-2} + c (1)$$

for 1 < n < T.

2.	Let e_n be defined by (1) for all $n > 1$, where $e_0 = 0$ and $e_1 = d$ for some constant d .	Derive a c	closed
	form (involving d) for the generating function $E(x) = \sum_{n=0}^{\infty} e_n x^n$.		

3. Find a closed form (involving d) for e_n .

4. Use part (c) to solve for d.

5. Prove that $e_n = n(T - n)$.