Лог-периодическая модуляция видимости в двухщелевом эксперименте с электронами

Краткая фальсифицируемая гипотеза и протокол репликаций

Евгений Монахов Независимый исследователь, г.Москва evgeny.monakhov@voscom.online

15 сентября 2025 г.

Аннотация

Предлагается короткая, полностью фальсифицируемая гипотеза для стандартной двухщелевой интерференционной установки с электронами (а также для электронных интерферометров на бипризме). Суть: при сканировании по энергии электронов E или при масштабном рескейлинге геометрии установки $a,d,L\to s\,a,\,s\,d,\,s\,L$ наблюдаемая видимость интерференционных полос V получает слабую лог-периодическую модуляцию с одной и той же лог-частотой ω :

$$V(E) = V_0 \left[1 + \beta \, \cos\!\left(\frac{\omega}{2} \, \ln\!\frac{E}{E_*} + \phi \right) \right], \qquad V(s) = V_0 \left[1 + \beta \, \cos\!\left(\omega \, \ln\!\frac{s}{s_*} + \phi \right) \right]. \tag{1}$$

Здесь V_0 — базовая видимость, $\beta\ll 1$ — относительная амплитуда, ω — логчастота (odна u ma эсе для обоих сканов), ϕ — фаза, E_* , s_* — опорные масштабы. Подтверждение (1) с odной u moй эсе ω для различных масок/геометрий укажет на устойчивый лог-масштабный отпечаток в свободной электронной интерференции. Отрицательный результат при заявленной точности однозначно опровергает гипотезу.

1 Введение: почему это важно и на что это указывает

Двухщелевой опыт с электронами — краеугольный эксперимент квантовой физики: отдельные электроны дают интерференционную картину, а видимость полос V чувствительна к когерентности, геометрии и среде. Обычно анализ ведут по зависимостям на $\mathit{линейной}$ шкале энергии/геометрии и не ищут мелкие эффекты, проявляющиеся при анализе по $\mathit{логарифмической}$ шкале.

Если у видимости V существует *лог-периодическая* составляющая (косинус от логарифма энергии или масштаба), то это указывает на присутствие **узкой дискретной масштабной симметрии** *или* эквивалентного **маргинального канала**, который даёт слабую логарифмическую поправку при изменении масштаба. Это *не* противоречит стандартной интерференции, а добавляет тонкий инвариант,

который до сих пор не был целенаправленно проверен. Наличие такого инварианта, одинакового в энергетическом и геометрическом сканах, было бы важным фактом для тонких тестов квантовой интерференции и смежных волновых систем.

Критерий ценности. Гипотеза легко проверяема на существующих установках; возможен реанализ архивных данных. Положительный результат откроет новое направление точных масштабных тестов (электроны, фотоны, акустика), *без* привязки к какой-либо специфической модели. Отрицательный результат задаст строгие пределы на подобные эффекты.

2 Постановка задачи и ключевая гипотеза

Рассматривается двухщелевая геометрия с параметрами: ширина щели a, межщелевое расстояние d, расстояние до детектора (экрана) L. Поперечная координата на детекторе — x. Для электрона с энергией E длина де Бройля $\lambda \propto E^{-1/2}$. В параксиальном приближении базовая интенсивность (без тонких эффектов) записывается как

$$I_0(x;E) = I_{\text{ref}}(x;E) \left[1 + V_0 \cos\left(2\pi \frac{dx}{\lambda L}\right) \right],\tag{2}$$

где $I_{\rm ref}$ — медленно меняющаяся огибающая (дифракция одиночной щели, профиль пучка). $Bu\partial u mocmb$ полос V определяется стандартно:

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}.$$
 (3)

Гипотеза. Помимо стандартной структуры, V получает слабую лог-периодическую модуляцию вида (1). Ключевые проверяемые утверждения:

- (H1) При скане по энергии E наблюдается гармоника по $\ln E$ с частотой $\omega/2$.
- (Н3) Для одиночной щели лог-гармоника отсутствует в пределах статистической погрешности.

3 Пояснение параметров формулы (1)

- V_0 базовая видимость (определяется когерентностью источника, качеством маски, коллимацией, механическими и электрическими дрейфами). Оценивается локально (по скользящему окну) до извлечения лог-гармоники.
- β $omnocumeльная aмплитуда лог-модуляции. Ожидаемый порядок: <math>\beta \sim 10^{-3} \dots 10^{-2}$ при аккуратной стабилизации. Это соответствует «тонкой ряби» поверх базовой видимости.
- ω лог-частота (частота гармоники по аргументу $\ln X$). Ключевое требование гипотезы: $o\partial$ на u та жее ω извлекается как из $V(\ln E)$, так и из $V(\ln s)$ и не зависит от конкретных a,d,L.

- ϕ фаза лог-гармоники; при геометрическом рескейле ϕ сдвигается как $\phi \to \phi + \omega \ln s$.
- E_*, s_* опорные масштабы (свободные константы), фиксируют начало отсчёта фазы при переходе к логарифму.

3амечание. Множитель $\frac{\omega}{2}$ в энергетическом скане обусловлен зависимостью $\lambda \propto E^{-1/2}.$

4 Экспериментальная установка и требования

Вакуум: $\leq 10^{-7} \; \text{mbar}$. Стабильность энергии: $\Delta E/E \lesssim 10^{-3}$. Антивибрация и экранирование: подавление механики и электростатики.

Маски: несколько наборов (a,d); дополнительно — электронная бипризма (как независимый контроль). **Детектор:** ПЗС/МПД с известной линейностью; стабильная геометрия (или калибруемый масштаб).

5 Протокол измерений

5.1 Энергетический скан V(E)

Фиксировать геометрию и один/несколько пикселей x_* (например, по максимуму/минимуму с номером m). Собрать $N\sim 300\dots 500$ точек V(E) на равномерной сетке $no\ln E$ в диапазоне $[E_{\min},E_{\max}]$. Каждую точку интегрировать до статистической ошибки $\sigma_V\lesssim 10^{-3}$. Сопровождать записью служебных каналов (дрейф, ток эмиссии, температура).

${f 5.2}$ Геометрический скан V(s)

Масштабировать a,d,L общей факторой s (или эквивалентно менять L и компенсировать масштаб линзой/магнификацией), при фиксированном E. Получить 10–20 точек V(s) на равномерной сетке $no \ln s$. Проверить воспроизведение той же ω и фазовый закон $\phi \to \phi + \omega \ln s$.

6 Контроль систематики и фальсификация

Одиночная щель. Лог-гармоника должна исчезать в пределах погрешности. Замена маски/материала. Извлечённая ω сохраняется; ϕ и V_0 могут меняться. Поворот маски на 90° . ω сохраняется; ϕ меняется предсказуемо. Фальсификация. (i) отсутствие узкой гармоники по $\ln E$; (ii) значимая зависимость ω от (a,d,L); (iii) несогласие ω_E и ω_s в пределах ошибок.

7 Анализ данных: извлечение ω, β, ϕ

Обозначим $x = \ln(E/E_*)$ (или $x = \ln(s/s_*)$). Рекомендуем следующую процедуру:

- 1. **Предобработка.** Ресемплинг V на равномерную сетку по x; мягкая детрендировка (удаление медленной составляющей), без подавления узких гармоник.
- 2. Гармоническая регрессия. Фит $V(x) \approx C + A\cos(\alpha x) + B\sin(\alpha x)$ на сетке $\alpha \in [\alpha_{\min}, \alpha_{\max}]$. Выбор α по минимуму остаточной дисперсии. Итог: $\omega = \alpha$, $\phi = \tan 2(-B, A), \ \beta = \sqrt{A^2 + B^2}/C$.
- 3. **Оценка ошибок.** Бутстрэп/перестановочные тесты; сравнение с моделью без гармоники (AIC/BIC).
- 4. Согласие сканов. Сравнить ω_E и ω_s , проверить фазовый закон $\phi_s \approx \phi_E + \omega \ln s$.

Альтернатива пункту 2 — периодограмма Ломба—Скаргла по x; результат должен совпадать в пределах ошибок.

8 Чувствительность: порядки величин и счёт статистики

Пусть дисперсия единичных оценок видимости ${\rm Var}[V]\approx\sigma_V^2$ (доминирует счётная статистика). Для регрессии на M точках по x стандартная ошибка амплитуды гармоники $\propto \sigma_V/\sqrt{M/2}$. Чтобы надёжно увидеть $\beta\sim 5\times 10^{-3}$ на уровне SNR ~ 5 , при $M\sim 400$ нужно $\sigma_V\lesssim 10^{-3}$, что достижимо при интеграциях $\mathcal{O}(\text{секунды})$ на точку и стабильном источнике. Точный бюджет a-nocmepuopu оценивается бутстрэпом на ваших данных.

9 Реанализ архивных данных

Если доступны серии V(E) (или исходные профили интенсивности, позволяющие восстановить V), достаточно: (i) перейти к равномерной сетке по $\ln E$; (ii) применить гармоническую регрессию/периодограмму; (iii) опубликовать извлечённые ω, β, ϕ и их ошибки. Отрицательные результаты важны наряду с положительными.

10 Что означает положительный/отрицательный результат

11 Дорожная карта репликаций

- (1) Повторить оба скана на нескольких установках (двухщель, бипризма).
- (2) Проверить фазовый закон при множественных рескейлах s.
- (3) Исследовать устойчивость ω к внешним полям (магнитное/электрическое), температуре, материалам маски.
- (4) Провести аналогичный тест в фотонных и акустических интерферометрах.

Сводка

Предложен конкретный, компактный и фальсифицируемый тест: лог-периодическая гармоника по $\ln E$ и $\ln s$ с одной и той же частотой ω в видимости двухщелевой интерференции электронов. Это можно проверить на стандартных установках и переанализом архивных данных. Результат — какой бы он ни был — имеет самостоятельную ценность.

Благодарности

Автор благодарит коллег за обсуждения. Конфликт интересов отсутствует.

Краткая библиография для ориентира

- Y. Tonomura et al., Observation of single-electron interference patterns (классические эксперименты).
- Возможные обзоры по электронной бипризме и интерферометрии (Hasselbach и др.).