# Física NS

Apunts Batxillerat



# $\mathbf{\acute{I}ndex}$

| 1 | Cinemàtica 1      |                                                             |  |  |  |  |  |
|---|-------------------|-------------------------------------------------------------|--|--|--|--|--|
|   | 1.1               | Moviment Rectilini Uniforme (MRU)                           |  |  |  |  |  |
|   | 1.2               | Moviment Rectilini Uniformement Accelerat (MRUA)            |  |  |  |  |  |
|   | 1.3               | Tir Parabòlic                                               |  |  |  |  |  |
|   | 1.4               | Moviment Circular                                           |  |  |  |  |  |
| 2 | Din               | àmica                                                       |  |  |  |  |  |
| _ | 2.1               | Lleis de Newton                                             |  |  |  |  |  |
|   | 2.1               | 2.1.1 1a llei (inèrcia)                                     |  |  |  |  |  |
|   |                   | 2.1.2 2a llei (fonamental)                                  |  |  |  |  |  |
|   |                   | 2.1.3 3a llei (acció-reacció)                               |  |  |  |  |  |
|   | 2.2               | Força de fricció                                            |  |  |  |  |  |
|   | $\frac{2.2}{2.3}$ | La màquina d'Atwood                                         |  |  |  |  |  |
|   | 2.5               | La maquina d'Atwood                                         |  |  |  |  |  |
| 3 | Trel              | ball i energia                                              |  |  |  |  |  |
|   | 3.1               | Forces Conservatives                                        |  |  |  |  |  |
|   | 3.2               | Conservació de l'energia                                    |  |  |  |  |  |
|   | 3.3               | Potència                                                    |  |  |  |  |  |
| 4 | Xoc               | es :                                                        |  |  |  |  |  |
| 4 | 4.1               | Impuls                                                      |  |  |  |  |  |
|   | 4.1               | Inelàstics                                                  |  |  |  |  |  |
|   | 4.2               | Elàstics                                                    |  |  |  |  |  |
|   |                   |                                                             |  |  |  |  |  |
|   | 4.4               | Coeficient de restitució                                    |  |  |  |  |  |
| 5 | Din               | àmica de rotació                                            |  |  |  |  |  |
|   | 5.1               | Moment                                                      |  |  |  |  |  |
|   | 5.2               | Energia de rotació                                          |  |  |  |  |  |
|   | 5.3               | Rodament amb desplaçament                                   |  |  |  |  |  |
|   | 5.4               | $Moment\ angular(L)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$ |  |  |  |  |  |
|   |                   | 5.4.1 Teorema de Steiner                                    |  |  |  |  |  |
| 6 | Can               | np gravitatori                                              |  |  |  |  |  |
| Ū | 6.1               | Llei de la gravitació universal de Newton                   |  |  |  |  |  |
|   | 6.2               | Intensitat del camp                                         |  |  |  |  |  |
|   | 6.3               | Velocitat orbital                                           |  |  |  |  |  |
|   | 6.4               | Velocitat d'escapament                                      |  |  |  |  |  |
|   | 6.5               | Potencial gravitatori                                       |  |  |  |  |  |
|   | 6.6               | Energies                                                    |  |  |  |  |  |
|   | 0.0               | 6.6.1 Energia Potencial                                     |  |  |  |  |  |
|   |                   | 6.6.2 Energia cinètica                                      |  |  |  |  |  |
|   |                   | 6.6.3 Energia mecànica                                      |  |  |  |  |  |
|   | 6.7               |                                                             |  |  |  |  |  |
|   | 6.8               | Lleis de Kepler                                             |  |  |  |  |  |
|   | v.o               | reorema de Gauss del Camb gravitatori                       |  |  |  |  |  |

| 7 | Can  | np elèctric 10                                   |
|---|------|--------------------------------------------------|
|   | 7.1  | Llei de Coulomb                                  |
|   | 7.2  | Camp elèctric d'una càrrega                      |
|   | 7.3  | Energia electrostàtica                           |
|   | 7.4  | Potencial electrostàtic (Voltatge)               |
|   |      | 7.4.1 Relació entre E i V                        |
|   | 7.5  | Llei de Gauss per a un camp elèctric             |
|   | 7.6  | Densitat de càrrega                              |
|   | 7.7  | Camp elèctric al exterior d'una esfera           |
|   | 7.8  | Camp elèctric d'una escorça                      |
|   | 7.9  | Camp elèctric d'una placa                        |
|   |      | Camp elèctric d'un cable                         |
|   | 1.10 |                                                  |
| 8 | Can  | np magnètic 13                                   |
|   | 8.1  | Llei de Lorenz                                   |
|   | 8.2  | Efectes d'un camp magnètic sobre un cable        |
|   | 8.3  | Llei de Biot i Savart                            |
|   | 8.4  | Camp magnètic d'un cable recte i infinit         |
|   | 8.5  | Força magnètica entre dos cables                 |
|   | 8.6  | Camp magnètic d'una espira                       |
|   | 8.7  | Camp magnètic d'un solenoide                     |
|   | 8.8  | Camp magnètic d'un toroide                       |
|   | 8.9  | Experiment de Henry                              |
|   | 8.10 | Circulació                                       |
|   | 8.11 | Teorema d'Ampère                                 |
|   |      | Flux                                             |
|   | 8.13 | Llei de Faraday-Lenz (Inducció electromagnètica) |
|   |      | Llei de Gauss per a un camp magnètic             |
|   |      | Transformadors (Inductància mútua)               |
|   |      | 8.15.1 Autoinductància                           |
|   |      |                                                  |
| 9 | Circ | uits elèctrics 19                                |
|   | 9.1  | Intensitat                                       |
|   | 9.2  | Velocitat de deriva                              |
|   | 9.3  | Llei d'Ohm                                       |
|   | 9.4  | Efecte Joule                                     |
|   | 9.5  | Resistències                                     |
|   |      | 9.5.1 En sèrie                                   |
|   |      | 9.5.2 En paral·lel                               |
|   | 9.6  | Condensadors                                     |
|   |      | 9.6.1 Energia acumulada                          |
|   |      | 9.6.2 Càrrega d'un condensador                   |
|   |      | 9.6.3 Descàrrega d'un condensador                |
|   |      | 9.6.4 En sèrie                                   |
|   |      | 9.6.5 En paral·lel                               |
|   | 9.7  | Teorema de Kirchoff                              |
|   | J.,  | 9.7.1 Nus                                        |
|   |      | 9.7.2 Malles                                     |

| <b>10</b> | Òpt  | ca                                           | <b>23</b> |  |  |  |  |  |
|-----------|------|----------------------------------------------|-----------|--|--|--|--|--|
|           | 10.1 | Índex de refracció entre dos medis           | 23        |  |  |  |  |  |
|           | 10.2 | Índex de refracció absolut                   | 23        |  |  |  |  |  |
|           | 10.3 | Llei de Snell                                | 23        |  |  |  |  |  |
|           | 10.4 | lleis dels miralls                           | 23        |  |  |  |  |  |
|           | 10.5 | lleis de la lent                             | 23        |  |  |  |  |  |
|           |      |                                              |           |  |  |  |  |  |
| 11        | Flui | ds                                           | <b>24</b> |  |  |  |  |  |
|           | 11.1 | Principi de Pascal                           | 24        |  |  |  |  |  |
|           | 11.2 | Principi d'Arquímedes                        | 24        |  |  |  |  |  |
|           | 11.3 | Equació de continuïtat                       | 25        |  |  |  |  |  |
|           |      | Equació de Bernoulli                         | 25        |  |  |  |  |  |
|           | 11.5 | Nombre de Reynolds                           | 25        |  |  |  |  |  |
|           |      |                                              |           |  |  |  |  |  |
| <b>12</b> |      | nodinàmica                                   | <b>26</b> |  |  |  |  |  |
|           |      | 1r principi                                  | 26        |  |  |  |  |  |
|           | 12.2 | Isobàric                                     | 26        |  |  |  |  |  |
|           | 12.3 | Isotèrmic                                    | 26        |  |  |  |  |  |
|           | 12.4 | Isocòric                                     | 26        |  |  |  |  |  |
|           | 12.5 | Adiabàtic                                    | 27        |  |  |  |  |  |
|           | 12.6 | Eficiència                                   | 27        |  |  |  |  |  |
|           |      | 12.6.1 Màquina de Carnot                     | 27        |  |  |  |  |  |
|           | 12.7 | Segon principi                               | 27        |  |  |  |  |  |
|           |      |                                              |           |  |  |  |  |  |
| 13        |      | iment harmònic simple (MHS)                  | <b>28</b> |  |  |  |  |  |
|           |      | Posició, velocitat i acceleració màximes     | 28        |  |  |  |  |  |
|           | 13.2 | Llei de Hooke                                | 28        |  |  |  |  |  |
|           | 13.3 | Període d'un pèndul simple                   | 29        |  |  |  |  |  |
|           | 13.4 | Energia                                      | 29        |  |  |  |  |  |
|           |      |                                              |           |  |  |  |  |  |
| 14        | One  |                                              | 30        |  |  |  |  |  |
|           |      | Equació d'ones                               | 30        |  |  |  |  |  |
|           | 14.2 | Intensitat                                   | 30        |  |  |  |  |  |
|           |      | 14.2.1 Llei de Malus                         | 30        |  |  |  |  |  |
|           | 14.3 | Qualitats del so                             | 30        |  |  |  |  |  |
|           |      | 14.3.1 Intensitat sonora                     | 31        |  |  |  |  |  |
|           | 14.4 | Absorció d'una ona                           | 31        |  |  |  |  |  |
|           |      | 14.4.1 Espessor de semi absorció             | 31        |  |  |  |  |  |
|           | 14.5 | Interferència d'ones                         | 31        |  |  |  |  |  |
|           |      | 14.5.1 Dues ones coherents                   | 31        |  |  |  |  |  |
|           |      | 14.5.2 Ones estacionàries                    | 32        |  |  |  |  |  |
|           | 14.6 | Diferència de fase                           | 32        |  |  |  |  |  |
|           | 14.7 | Ona estacionària o tub obert per dos extrems | 32        |  |  |  |  |  |
|           | 14.8 | Tub tancat per un extrem                     | 32        |  |  |  |  |  |
|           | 14.9 | Principi de Huygens                          | 32        |  |  |  |  |  |
|           |      | Doble escletxa de Young                      | 32        |  |  |  |  |  |
|           |      | Difracció d'una escletxa                     | 33        |  |  |  |  |  |
|           |      | Resolució d'un sistema òptic                 | 33        |  |  |  |  |  |
|           |      | Efecte Doppler                               | 33        |  |  |  |  |  |
|           |      | * *                                          |           |  |  |  |  |  |

| <b>15</b> |       | ca nuclear                         | 34        |
|-----------|-------|------------------------------------|-----------|
|           | 15.1  | Energia d'enllaç                   | 34        |
|           |       | Energia d'enllaç per nucleó        | 34        |
|           |       | Desintegració de Soddy-Fajans      | 34        |
|           |       | 15.3.1 Alfa $(\alpha)$             | 34        |
|           |       | 15.3.2 Beta positiu $(\beta^+)$    | 35        |
|           |       | 15.3.3 Beta negatiu $(\beta^-)$    | 35        |
|           |       | 15.3.4 Gamma $(\gamma)$            | 35        |
|           | 15.4  | Llei de desintegració radioactiva  | 35        |
|           |       | Període de semi-desintegració      | 35        |
|           |       | Vida mitja $(\tau)$                | 35        |
|           |       | Reaccions nuclears                 | 35        |
|           | 10.1  | 15.7.1 Fissió nuclear              | 35        |
|           |       | 15.7.2 Fusió nuclear               | 36        |
|           | 15.8  | Experiment de Rutherford           | 36        |
|           |       | Densitat nuclear                   | 36        |
|           |       |                                    | 36        |
|           | 10.10 | )Model estàndard de partícules     | 37        |
|           |       | 15.10.1 Leptons                    |           |
|           |       | 15.10.2 Quarks                     | 37        |
|           |       | 15.10.3 Hadrons                    | 38        |
|           |       | 15.10.4 Teoria del confinament     | 38        |
|           |       | 15.10.5 Diagrames de Feynman       | 38        |
| 16        | Fícia | ca Quàntica                        | 39        |
| 10        |       | Hipòtesi de Planck                 | <b>39</b> |
|           |       |                                    | 39        |
|           |       | Efecte fotoelèctric                |           |
|           |       | Llei de desplaçament de Wien       | 39        |
|           |       | Lambda de de Broglie               | 39        |
|           |       | Model atòmic de Bohr               | 40        |
|           |       | Schrödinger                        | 40        |
|           |       | Principi d'incertesa de Heisenberg |           |
|           | 16.8  | Principi de complementaritat       | 40        |
| 17        | Dolo  | ativitat                           | 41        |
| 11        |       |                                    |           |
|           | 11.1  | Teoria especial de la relativitat  | 41        |
|           |       | 17.1.1 Factor de Lorenz            | 41        |
|           |       | 17.1.2 Dilatació del temps         | 41        |
|           |       | 17.1.3 Contracció de l'espai       | 41        |
|           | 150   | 17.1.4 Transformacions de Lorenz   | 41        |
|           |       | Energia relativista                | 41        |
|           | 17.3  | Teoria general de la relativitat   | 42        |
|           |       | 17.3.1 Principi d'equivalència     | 42        |
|           |       | 17.3.2 Redshift gravitacional      | 42        |
|           |       | 17.3.3 Forats negres               | 42        |
| 18        | Unit  | tats del SI                        | 43        |
| 19        | Con   | stants                             | 44        |

## 1 Cinemàtica

$$\vec{V_m} = \frac{\Delta \vec{r}}{\Delta t} \qquad \vec{A_m} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{v} = \frac{d\vec{r}}{dt} \qquad \vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{r}}{dt^2}$$
(1)

## 1.1 Moviment Rectilini Uniforme (MRU)

$$v = ctt$$

$$v = \frac{d\vec{r}}{dt}$$

$$\rightarrow \int_{r_0}^r dr = \int_{t_0}^t v dt$$

$$v \int_0^t dt = r \Big|_{r_0}^r$$

$$r = r_0 + vt$$
(2)

## 1.2 Moviment Rectilini Uniformement Accelerat (MRUA)

$$a = ctt$$

$$a = \frac{d\vec{v}}{dt}$$

$$\rightarrow \int_{v_0}^{v} dv = \int_{t_0}^{t} adt$$

$$a \int_{0}^{t} dt = v \Big|_{v_0}^{v}$$

$$v = v_0 + at$$
(3)

$$v = v_0 + at$$

$$v = \frac{d\vec{r}}{dt}$$

$$\rightarrow \int_{r_0}^r dr = \int_{t_0}^t v_0 + at dt$$

$$v_0 \int_0^t dt + \int_0^t at dt = r \Big|_{r_0}^r$$

$$r - r_0 = v_0 t + \frac{1}{2} a t^2$$

$$(4)$$

## 1.3 Tir Parabòlic

$$\vec{r} = X(t)\hat{\imath} + Y(t)\hat{\jmath}$$

$$MRU$$

$$\downarrow$$

$$\vec{r} = (x_0 + v_0 \cos \theta t)\hat{\imath} + \left(y_0 + v_0 \sin \theta t - \frac{1}{2}gt^2\right)\hat{\jmath}$$
(5)

Inclinació en un punt P:

$$\beta = tan^{-1} \left( \left| \frac{v_{Py}}{v_{Px}} \right| \right) \tag{6}$$

### 1.4 Moviment Circular

$$R = \text{radi} \qquad = ctt$$

$$\phi = \text{angle} \qquad = \phi_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega = \text{velocitat angular} \qquad = \frac{d\phi}{dt} = \omega_0 + \alpha t$$

$$\alpha = \text{acceleració angular} \qquad = \frac{d\omega}{dt}$$

$$\omega_m = \text{velocitat angular mitja} \qquad = \frac{\Delta \phi}{\Delta t}$$

$$T = \text{període} \qquad = \frac{2\pi}{\omega} = \frac{1}{\nu}$$

$$\nu = \text{freqüència} \qquad = \omega R$$

$$\vec{a}_t = \text{acceleració tangencial} \qquad = \omega R$$

$$\vec{a}_c = \text{acceleració centrípeta} \qquad = \omega^2 R = \frac{v^2}{R}$$

$$\vec{a} = \text{acceleració total} \qquad = \vec{a}_c + \vec{a}_t$$

## 2 Dinàmica

### 2.1 Lleis de Newton

### 2.1.1 1a llei (inèrcia)

$$\sum \vec{F} = 0 \iff$$
 objecte en MRU o repòs.

### 2.1.2 2a llei (fonamental)

$$\sum \vec{F} \propto \vec{a}$$

$$\downarrow$$

$$\vec{F} = m\vec{a}$$
(7)

m = massa

(resistència al moviment)

### 2.1.3 3a llei (acció-reacció)

$$\vec{F}_{a \to b} = -\vec{F}_{b \to a}$$
$$|F_{a \to b}| = |F_{b \to a}|$$

### 2.2 Força de fricció

$$\vec{F_r} = \mu N \tag{8}$$

Hi ha dos tipus de coeficients de fricció  $(\mu)$ :

- $\mu_e$  = coeficient de fricció estàtic (quan el cos està en repòs)
- $\mu_d =$  coeficient de fricció dinàmic (quan el cos està en moviment)

La força de fricció sempre va en sentit oposat al moviment.

## 2.3 La màquina d'Atwood

Una politja de la qual pengen dues masses  $m_1 > m_2$ :

$$a = g \frac{m_1 - m_2}{m_1 + m_2} \tag{9}$$

## 3 Treball i energia

$$W = \int \vec{F} dx \tag{10}$$

$$W = \vec{F}\Delta\vec{r} = F\Delta r\cos\theta\tag{11}$$

$$W = \Delta E_c$$
 (teorema treball-energia) (12)

$$W = \int \tau d\theta \tag{13}$$

### 3.1 Forces Conservatives

 $\vec{F}$  és conservativa si:

$$\oint \vec{F} d\vec{r} = 0$$

$$\oint \vec{F} d\vec{r} = ctt$$

(es conservativa si el treball d'un punt a un altre és constant independentment del camí)

$$W_{NC} = \Delta E_M \tag{14}$$

$$E_M = E_P + E_C \tag{15}$$

## 3.2 Conservació de l'energia

Si l'una força  $\vec{F}$  és conservativa, té associada una energia potencial U:

$$U = -\int \vec{F}dx \tag{16}$$

### 3.3 Potència

$$P = \frac{W}{\Delta t} \qquad [W = J/s = \frac{kg \,m^2}{s^3}] \tag{17}$$

## 4 Xocs

Hi ha dos tipus de xocs, els elàstics i els inelàstics:

### 4.1 Impuls

$$\vec{I} = \vec{F}\Delta t = m\vec{a}\Delta t = m\Delta \vec{v} = \Delta \vec{p} \tag{18}$$

$$\frac{d\vec{p}}{dt} = \vec{F} \tag{19}$$

### 4.2 Inelàstics

Son xocs irreals en el que es conserva l'energia:

$$\Delta E = 0 \tag{20}$$

$$\Delta \vec{p} = 0 \tag{21}$$

### 4.3 Elàstics

Son xocs en els que no es conserva l'energia degut a la pèrdua d'energia en forma de calor, soroll, deformació del material...

$$\Delta E \neq 0 \qquad \rightarrow E_f = E_i - E_{\text{perduda}}$$
 (22)

$$\Delta \vec{p} = 0 \tag{23}$$

### 4.4 Coeficient de restitució

Modela la pèrdua d'energia en un xoc inelàstic:

$$E_{\text{perduda}} = \frac{v_{f_1} - v_{f_2}}{v_{i_1} - v_{i_2}} \tag{24}$$

## 5 Dinàmica de rotació

### 5.1 Moment

Si tenim una força  $\vec{F}$  que actua sobre un cos a una distància del centre de masses definida pel vector  $\vec{r}$ , el moment que genera aquesta força es:

$$\vec{\tau} = \vec{r} \times \vec{F} \tag{25}$$

On  $\times$  és el producte vectorial i per tant:





Utilitzarem el símbol  $\odot$  per denotar que  $\vec{\tau}$  va cap~a~fora i el símbol  $\times$  per denotar que va cap~a~dins

$$|\vec{\tau}| = |\vec{r}||\vec{F}|\sin\theta \tag{27}$$

$$= m\vec{a}\vec{r} = mr^2\alpha \quad \text{si } \theta = \pi \tag{28}$$

$$|\vec{\tau}_{\text{total}}| = \alpha \sum m_i r_i^2 = I\alpha$$
 (29)

#### Moment d'inèrcia

$$I \equiv \sum m_i r_i^2 \tag{30}$$

$$I = \int r^2 dm \tag{31}$$

Per a un cilindre massís:

$$I = \frac{1}{2}mr^2\tag{32}$$

## 5.2 Energia de rotació

$$E_r = \frac{1}{2}\omega^2 I \tag{33}$$

En general, l'energia cinètica es:

$$E_c = E_{c1} + E_r = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \tag{34}$$

## 5.3 Rodament amb desplaçament

Si una esfera roda es compleix que:

$$v_{cm} = \omega R \tag{35}$$

Si  $v_{cm} > \omega R$ , l'esfera llisca.

## 5.4 Moment angular(L)

$$\vec{L} = \vec{r} \times \vec{p} \tag{36}$$

$$\vec{L} = I\vec{\omega} \tag{37}$$

$$\frac{d\vec{L}}{dt} = \vec{\tau} \tag{38}$$

### 5.4.1 Teorema de Steiner

El moment d'inèrcia d'un eix desplaçat d unitats del centre de masses es:

$$I_d = I_{cm} + md^2 (39)$$

## 6 Camp gravitatori

## 6.1 Llei de la gravitació universal de Newton

$$\vec{F}_{AB} = -G \frac{m_A m_B}{r^2} \hat{u}_r \tag{40}$$

$$G = (6,67408 \pm 0,00031) \times 10^{-11 \,\mathrm{N} \,\mathrm{m}^2/\mathrm{kg}^2}$$
 (41)

Figura 1: Força gravitatòria entre dos cosos



## 6.2 Intensitat del camp

## 6.4 Velocitat d'escapament

$$\vec{g} = -G\frac{M}{r^2}\hat{u}_r \qquad (42) \qquad \sqrt{2G\frac{M}{r}} = \sqrt{2}v_{\text{orbital}} \qquad (44)$$

6.3 Velocitat orbital

## 6.5 Potencial gravitatori

$$v = \sqrt{\frac{GM}{r}} (43) V = -G\frac{M}{r}$$

### 6.6 Energies

6.6.1 Energia Potencial

$$E_p = -G\frac{Mm}{r}$$
 (46) 
$$E_m = E_c + E_p = -\frac{1}{2}G\frac{Mm}{r}$$
 (48)

6.6.2 Energia cinètica

$$E_c = \frac{1}{2}G\frac{Mm}{r} \tag{47}$$

## 6.7 Lleis de Kepler

1. Els planetes orbiten el sol de forma el·líptica i el sol ocupa un focus.

$$\varepsilon = \frac{a}{b} = \text{excentricitat de l'òrbita}$$
 (49)

- 2. El vector  $\vec{r}$  escombra àrees iguals en temps iguals, per tant, la velocitat varia durant l'òrbita del planeta.
- 3. El període al quadrat és directament proporcional al radi de l'òrbita al cub. Suposant que l'**òrbita sigui circular**:

$$T^2 = \frac{4\pi}{GM}r^3\tag{50}$$



## 6.8 Teorema de Gauss pel camp gravitatori

$$\Phi = \oint \vec{g}d\vec{S} = -4\pi GM \tag{51}$$

## 7 Camp elèctric

### 7.1 Llei de Coulomb

$$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{u}_r \tag{52}$$

$$k = 9 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}^2$$
 (constant de coulomb) (53)

Figura 2: Força elèctrica entre dues càrregues



### 7.2 Camp elèctric d'una càrrega

El camp elèctric  $\vec{E}$  d'una càrrega Q a una distància r de Q ve determinat per:

En general, el camp elèctric a un punt P ve determinat per la suma vectorial dels camps elèctrics de totes les càrregues:

$$\vec{E} = k \frac{Q}{r^2} \hat{u}_r$$
 (54)  $\vec{E}_P = \sum_{i=1}^n \vec{E}_i$ 

## 7.3 Energia electrostàtica

L'energia electrostàtica d'un sistema amb dues càrregues q i Q separades r és:

$$U = k \frac{qQ}{r} \tag{56}$$

En general, l'energia electrostàtica d'un d'energia electrostàtica: sistema amb n càrregues és la suma de l'energia electrostàtica entre totes les càrregues: W = -1

$$U_T = \sum_{i=1}^{n} \sum_{j=i+1}^{n} U_{ji}$$
 (57)

El treball és igual a menys la variació d'energia electrostàtica:

$$W = -\Delta U \tag{58}$$

## 7.4 Potencial electrostàtic (Voltatge)

#### 7.4.1 Relació entre E i V

$$V = \frac{U}{q} = k \frac{Q}{r} \qquad [V = \frac{kg \, m^2}{s^3 \, A}] \qquad (59) \qquad \qquad \vec{E} = -\vec{\nabla}V = -\frac{dV}{dr}\hat{u}_r \qquad (60)$$

### 7.5 Llei de Gauss per a un camp elèctric

El flux elèctric en una superfície tancada S és

$$\Phi = \oint \vec{E}d\vec{S} = \frac{Q}{\varepsilon_0} \tag{61}$$

$$\varepsilon_0 = 8,854\,187\,817\,\dots \times 10^{-12}\,\text{F/m}$$
 (Permitivitat elèctrica del buit) (62)

### 7.6 Densitat de càrrega

La densitat de càrrega d'un objecte és la quantitat de càrrega entre el volum, la superfície o la longitud depenent de com sigui l'objecte pel que circulen les càrregues:

Volumètrica 
$$\rho$$
 C/m<sup>3</sup>  
Superficial  $\sigma$  C/m<sup>2</sup>  
Lineal  $\lambda$  C/m

### 7.7 Camp elèctric al exterior d'una esfera

El camp elèctric al exterior d'una esfera de càrrega Q és igual al d'una càrrega Q puntual:

$$\oint \vec{E}d\vec{S} = \oint EdS = ES = E4\pi r^2$$

$$E4\pi r^2 = \frac{Q}{\varepsilon_0} \Rightarrow E = k\frac{Q}{r^2} \tag{63}$$

### 7.8 Camp elèctric d'una escorça

$$r > R \Rightarrow E = k \frac{Q}{r^2} \tag{64}$$

$$r < R \Rightarrow E = 0 \tag{65}$$

## 7.9 Camp elèctric d'una placa

El camp elèctric d'una placa és constant i no depén de la distància.

$$\oint \vec{E}d\vec{S} = \oint EdS = ES = E\pi r^{2}$$

$$\frac{Q}{S} = \sigma \to Q = \sigma\pi r^{2}$$

$$E\pi r^{2} = \frac{Q}{\varepsilon_{0}} \Rightarrow E = \frac{\sigma}{\varepsilon_{0}}$$
(66)

## 7.10 Camp elèctric d'un cable

$$\oint \vec{E}d\vec{S} = \oint EdS = ES = E2\pi rL$$

$$\frac{Q}{L} = \lambda \to Q = \lambda L$$

$$E2\pi rL = \frac{Q}{\varepsilon_0} \Rightarrow E = \frac{\lambda}{2\pi r \varepsilon_0}$$
(67)

## 8 Camp magnètic

$$\vec{B} \qquad [T = kg/A s^2] \tag{68}$$

### 8.1 Llei de Lorenz

La força electromaètica induïda sobre una càrrega q que travessa un camp magnètic  $\vec{B}$  a una velocitat  $\vec{v}$  ve determinada per:

$$\vec{F} = q\vec{v} \times \vec{B} \tag{69}$$

Figura 3: Forca magnètica induïda sobre una càrrega en moviment



La força de Lorenz és sempre perpendicular a  $\vec{v}$  i a  $\vec{B}$ , la magnitud de la força és

$$qvB\sin\widehat{vB}\tag{70}$$

## 8.2 Efectes d'un camp magnètic sobre un cable

Un camp magnètic  $\vec{B}$  genera una força sobre un cable on hi circula una intensitat I:

$$\vec{F} = I\vec{\ell} \times \vec{B} \tag{71}$$

$$\vec{B} \odot \odot \odot \odot \vec{I} \odot \odot \odot \odot$$

$$\odot \odot \odot \odot \vec{F}$$

$$\odot \odot \odot \odot \odot \odot \odot$$

### 8.3 Llei de Biot i Savart

El camp magnètic creat per una càrrega q que es mou a una velocitat v és:

$$B = \frac{\mu_0}{4\pi} \frac{qv}{r^2} \tag{72}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\text{N/A}^2$$
 (Permeabilitat elèctrica del buit) (73)



## 8.4 Camp magnètic d'un cable recte i infinit

$$B = \frac{\mu_0 I}{2\pi r} \tag{74}$$

## 8.5 Força magnètica entre dos cables

Dos cables pels quals circula unes corrents  $I_1$  i  $I_2$  generen una força un sobre l'altre degut als camp magnètic que formen.

$$\frac{F}{\ell} = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d} \tag{75}$$

## 8.6 Camp magnètic d'una espira

El camp magnètic al centre d'una espira de radi r on circula una intensitat I és:

$$B = \frac{\mu_0 I}{2R} \tag{76}$$



El camp magnètic a una distància z del centre de l'espira a través del eix és:

$$B = \frac{\mu_0 R^2 I}{2\left(z^2 + R^2\right)^{\frac{3}{2}}} \tag{77}$$



## 8.7 Camp magnètic d'un solenoide

$$B = \mu_0 nI \tag{78}$$

$$n = \frac{N}{\ell} \tag{79}$$

On N és el nombre d'espires i  $\ell$  és la longitud del solenoide.



## 8.8 Camp magnètic d'un toroide

El camp magnètic al **interior** d'un toroide de radiR on circula una intensitat I i amb N espires es:

$$B = \mu_0 nI \tag{80}$$

$$n = \frac{N}{2\pi R} \qquad \to \qquad B = \frac{\mu_0 NI}{2\pi} \tag{81}$$



## 8.9 Experiment de Henry

$$\varepsilon = vBL \tag{82}$$

### 8.10 Circulació

La circulació C d'un vector A al llarg d'un vector  $\vec{\ell}$  és:

$$C = \int \vec{A}d\vec{\ell} \tag{83}$$

## 8.11 Teorema d'Ampère

En un camí tancat:

$$C = \oint \vec{B} d\vec{\ell} = \mu_0 I \tag{84}$$

#### 8.12 Flux

El flux magnètic  $\Phi$  d'un cos amb un vector superfície S on hi actua un camp magnètic B és:

$$\Phi = \int \vec{B} d\vec{S}$$
 [Wb = J/A = Vs = kg m<sup>2</sup>/s<sup>2</sup> A] (85)

Si  $\vec{B}$  i  $\vec{S}$  són constants i no varia l'angle  $\theta$  entre els dos en cap punt de la superfície, podem simplificar l'expressió a:

$$\Phi = BS\cos\theta \tag{86}$$

## 8.13 Llei de Faraday-Lenz (Inducció electromagnètica)

La força electromotriu induïda  $\varepsilon$  és igual a la variació de flux  $\Phi$  respecte el temps per el nombre d'espires.

$$\varepsilon = -N \frac{d\Phi}{dt} \qquad [V] \tag{87}$$

En un interval de temps discret:

$$\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \tag{88}$$

## 8.14 Llei de Gauss per a un camp magnètic

El flux magnètic en una superfície tancada S és

$$\Phi = \oint \vec{B}d\vec{S} = 0 \tag{89}$$

## 8.15 Transformadors (Inductància mútua)



### 8.15.1 Autoinductància

$$N\Phi = LI \tag{91}$$

$$L =$$
Coeficient d'inductància [H] (92)

## 9 Circuits elèctrics

### 9.1 Intensitat

$$I = \frac{\Delta Q}{\Delta t} \qquad [A] \tag{93}$$

### 9.2 Velocitat de deriva

La velocitat v a la que es mou una partícula de càrrega Q a través d'un conductor d'àrea A \* on hi ha n partícules per metre cúbic es relaciona amb la intensitat:

$$I = nAvQ (94)$$

### 9.3 Llei d'Ohm

$$V = IR \tag{95}$$

### 9.4 Efecte Joule

L'energia dissipada per l'efecte Joule (Q) ve determinada per:

$$P = RI^2 = VI$$
 [W = J/s =  $\frac{\text{kg m}^2}{\text{s}^3}$ ] (96)

$$Q = Pt$$
  $[J = N m = \frac{kg m^2}{s^2}]$  (97)

<sup>\*</sup>secció perpendicular al flux de càrregues

### 9.5 Resistències

La resistència d'un material de longitud  $\ell$  àrea A i resistivitat elèctrica  $\rho$   $^{\dagger}$  [ $\Omega\,\mathrm{m}]$  és:

$$R = \rho \frac{\ell}{A} \qquad \left[\Omega = \frac{\text{kg m}^2}{\text{s}^3 \text{ A}^2}\right] \tag{98}$$

### 9.5.1 En sèrie

$$R_T = \sum_{i=1}^n R_i \tag{99}$$

$$I_T = I_i \quad \forall \ i \ \exists \{1, \dots, n\}$$
 (100)

### 9.5.2 En paral $\cdot$ lel



$$\frac{1}{R_T} = \sum_{i=1}^n \frac{1}{R_i} \tag{101}$$

$$I_T = \sum_{i=1}^n I_i \tag{102}$$

 $<sup>^{\</sup>dagger}rho$ 

### 9.6 Condensadors

$$C = \frac{Q}{\Delta V} = \varepsilon \frac{A}{d}$$
 [C/v = F] (103)

### 9.6.1 Energia acumulada

$$U = \frac{1}{2}QV \tag{104}$$

### 9.6.2 Càrrega d'un condensador

9.6.3 Descàrrega d'un condensador

(113)

$$\tau = RC$$

$$I = \frac{V_0}{R} e^{\frac{-t}{\tau}}$$

$$V = V_0 \left(1 - e^{\frac{-t}{\tau}}\right)$$

$$Q = CV_0 \left(1 - e^{\frac{-t}{\tau}}\right)$$

$$(105)$$

$$I = \frac{V_{Ci}}{R} e^{\frac{-t}{\tau}}$$

$$V = V_{Ci} e^{\frac{-t}{\tau}}$$

$$Q = CV_{Ci} e^{\frac{-t}{\tau}}$$

$$(109)$$

$$Q = CV_{Ci} e^{\frac{-t}{\tau}}$$

$$(111)$$

#### 9.6.4 En sèrie

$$\frac{1}{C_T} = \sum_{i=1}^n \frac{1}{C_i} \tag{112}$$

$$\frac{C_1}{C_1} \qquad C_2 \qquad C_n \qquad C_T \qquad$$

### 9.6.5 En paral · lel

$$C_T = \sum_{i=1}^n C_i$$

$$C_1$$

$$C_2$$

$$C_2$$

$$C_n$$

$$C_n$$

## 9.7 Teorema de Kirchoff

### 9.7.1 Nus

En un nus com el que es mostra a la figura 4, es compleix que<sup>‡</sup>:

$$\sum I = 0 \tag{114}$$

$$\sum I_{\text{entrants}} = \sum I_{\text{sortints}} \tag{115}$$

Figura 4: Nus



### 9.7.2 Malles

En una malla com la que es mostra a la figura 5, es compleix que:

$$\sum V_i = \sum I_i R_i \tag{116}$$

Figura 5: Malla



 $<sup>^{\</sup>ddagger}\mathrm{S'ha}$  de tenir en compte el sentit tant de les intensitats com del voltatge

## 10 Òptica

### 10.1 Índex de refracció entre dos medis

L'índex de refracció entre dos medis és igual a la velocitat de la llum en el primer medi entre la velocitat de la llum en el segon medi:

$$_{1}n_{2} = \frac{v_{1}}{v_{2}} \tag{117}$$

### 10.2 Índex de refracció absolut

L'índex de refracció absolut n d'un medi és la relació entre la velocitat de la llum en el buit c i la velocitat de la llum en el medi v:

$$n = \frac{c}{v} \tag{118}$$

$$c = 299792458 \,\text{m/s} \approx 3 \times 10^9 \,\text{m/s}$$
 (119)

### 10.3 Llei de Snell

L'angle d'incidència  $\hat{\imath}$  per l'índex de refracció absolut del primer medi és igual a l'angle de refracció  $\hat{r}$  per l'índex absolut del segon medi.

$$\frac{n_1}{n_2} = \frac{\sin \hat{r}}{\sin \hat{i}} = \frac{v_2}{v_1} \tag{120}$$



### 10.4 lleis dels miralls

$$\frac{1}{s} + \frac{1}{s'} = \frac{2}{r} \tag{121}$$

### 10.5 lleis de la lent

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \tag{122}$$

## 11 Fluids

### 11.1 Principi de Pascal

La pressió exercida per un fluid incompressible en equilibri dins d'un recipient de parets rígides es transmet d'igual manera en totes direccions i en tots els seus punts.

La diferència de pressió  $\Delta P$  entre dos punts submergits a diferent profunditat h és igual a la diferència d'h per la densitat del fluid  $\rho$  per l'acceleració de la gravetat g:





## 11.2 Principi d'Arquímedes

Un cos insoluble totalment o parcialment submergit en un fluid (líquid o gas) en repòs rep una força de baix cap a dalt igual al pes del volum del fluid que desallotja.

La força de flotació  $\vec{B}$  d'un cos submergit un volum V en un fuid de densitat  $\rho$  i sobre el cual hi actua la força de la gravetat  $\vec{q}$  és:

$$\vec{B} = -\rho V \vec{g} \tag{124}$$



### 11.3 Equació de continuïtat

En un mateix fluid, es compleix que la velocitat del fluid en un punt per l'àrea de la secció perpendicular és igual a la velocitat en un altre punt per l'àrea en aquell punt.



## 11.4 Equació de Bernoulli

$$P_T = P_s + P_d \tag{126}$$

$$P_d = \frac{1}{2}\rho v^2 \tag{127}$$

$$P_s = \rho g h \tag{128}$$

## 11.5 Nombre de Reynolds

El nombre de Reynolds Re caracteritza el moviment del fluid. En un tub, si Re > 4000 el règim és turbulent, si Re < 2300 el règim és laminar.

El nombre de Reynolds Re per a un líquid de densitat  $\rho$  i viscositat cinètica  $\mu$  que circula a una velocitat v per un tub de diàmetre  $D_H$  és:

$$Re = \frac{\rho v D_H}{\mu} \tag{129}$$

## 12 Termodinàmica

$$PV = nRT (130)$$

$$U = \frac{3}{2}nRT \qquad \to \qquad U \propto T \tag{131}$$

$$Q = c_e m \Delta T \tag{132}$$

$$Q = mL (133)$$

$$E_k = \frac{3}{2} \frac{R}{\text{Na}} T = \frac{3}{2} k_B T \tag{134}$$

### 12.1 1r principi

La calor Q [J] despresa durant la variació de les condicions d'un gas és la suma del treball W i la variació d'energia interna del gas durant el procés:

$$Q = W + \Delta U \tag{135}$$

$$W = \int PdV \tag{136}$$

### 12.2 Isobàric

El procés es produeix a **pressió** constant.

$$Q = P\Delta V + \Delta U \tag{137}$$

#### 12.3 Isotèrmic

El procés es produeix a **temperatura** constant.

$$\Delta U = 0 \tag{138}$$

$$Q = W = nRT \ln \frac{V_B}{V_A} \tag{139}$$

### 12.4 Isocòric

El procés es produeix a volum constant.

$$W = 0 ag{140}$$

$$Q = \Delta U \tag{141}$$

### 12.5 Adiabàtic

O isentròpic, el procés es produeix sense intercanvi de calor (Q = 0).

$$Q = 0$$

$$W = -\Delta U \tag{142}$$

$$PV^{\gamma} = ctt \tag{143}$$

$$\frac{T}{V^{\gamma+1}} = ctt$$

$$\gamma = \frac{2}{3}$$
(144)

### 12.6 Eficiència

$$\eta = \frac{W}{Q} \tag{145}$$

#### 12.6.1 Màquina de Carnot

Consta de tres fases:

- 1. Expansió isotèrmica
- 2. Expansió adiabàtica
- 3. Compressió isotèrmica
- 4. Compressió adiabàtica

$$\eta_{Carnot} = 1 - \frac{T_{min}}{T_{max}} \tag{146}$$

### 12.7 Segon principi

L'entropia S d'un sistema és igual a la variació de calor  $\Delta Q$  entre la temperatura. L'entropia de l'univers sempre augmenta.

$$S = \frac{\Delta Q}{T} \tag{147}$$

$$S = k_B \ln \Omega \tag{148}$$

$$S_{\text{univers}} > 0$$
 (149)

 $\Omega$  és el nombre de microestats possibles del sistema.

$$k_B = (1,380\,648\,52 \pm 0,000\,000\,79) \times 10^{-23}\,\text{J/K}$$
 (Constant de Boltzmann) (150)

## 13 Moviment harmònic simple (MHS)

Un cos segueix un moviment harmònic simple si es compleix que:

- 1. La magnitud de la força (i com a consequent de l'acceleració) és proporcional al desplaçament respecte a un punt fix.
- 2. La direcció de la força (i per tant de l'acceleració) és sempre en la direcció del punt fix.

Per tant:

$$a \propto -\Delta x$$
 (151)

$$a = -k\Delta x \tag{152}$$

Les equacions de moviment per a un objecte que es mou seguint un moviment harmònic simple d'amplitud A, freqüència angular  $\omega$  i fase  $\phi$  amb un punt fix  $x_0$ són:

$$ma = -k\Delta x \longrightarrow \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

$$x(t) = x_0 + A\sin(\phi_0 + \omega t)$$
(153)

$$v(t) = A\omega\cos(\phi_0 + \omega t) \tag{154}$$

$$a(t) = -A\omega^2 \sin(\phi_0 + \omega t) \tag{155}$$

$$\omega \equiv \sqrt{\frac{k}{m}} \tag{156}$$

El període T, el període angular  $\omega$  i la frequència  $\nu$  segueixen la relació:

$$T = \frac{1}{\nu} = \frac{2\pi}{\omega} \tag{157}$$

### 13.1 Posició, velocitat i acceleració màximes

$$x_{\text{max}} = x_0 + A \tag{158}$$

$$v_{\text{max}} = A\omega \tag{159}$$

$$a_{\text{max}} = A\omega^2 \tag{160}$$

### 13.2 Llei de Hooke

La força exercida per una molla amb una constant elàstica k segueix un moviment harmònic simple.

$$F = -k\Delta x \tag{161}$$

## 13.3 Període d'un pèndul simple

El període T d'un pèndul simple de longitud  $\ell$  que oscil·la en graus petits § és:

$$T = 2\pi \sqrt{\frac{\ell}{g}} \tag{162}$$

## 13.4 Energia

$$E_p = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$$
 (163)

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega^2\cos^2(\omega t + \phi)$$
 (164)

$$E_m = E_p + E_c = \frac{1}{2}kA^2 \tag{165}$$

 $frac{15}{\circ}$  Inferiors a  $15^{\circ}$ 

#### 14 Ones

Transport d'energia sense desplaçar al matèria. Es transmet una vibració en un moviment harmònic simple.

Les podem classificar de dues maneres:

- 1. Segons el medi en que es propaguen
  - (a) Mecàniques: es desplacen per un medi material
  - (b) Electromagnètiques: poden viatjar pel buit
- 2. Segons el tipus de Moviment Harmònic Simple que descriuen
  - (a) Longitudinals: desplaçament paral·lel a la vibració
  - (b) Transversals: desplaçament perpendicular a la vibració

#### Equació d'ones 14.1

$$y = A\sin\left(\omega t - kx + \phi\right) \tag{166}$$

$$\omega \equiv \frac{2\pi}{T} = 2\pi\nu \tag{167}$$

$$\omega \equiv \frac{2\pi}{T} = 2\pi\nu \tag{167}$$

$$k \equiv \frac{2\pi}{\lambda} \tag{168}$$

On k és el nombre d'ona i  $\omega$  la frequència angular.

#### 14.2 Intensitat

$$I \propto A^2 \tag{169}$$

$$I \propto \Delta x^2 \tag{170}$$

#### Llei de Malus 14.2.1

Intensitat transmesa per la llum incident en un polaritzador:

$$I = I_0 \cos^2 \theta \tag{171}$$

#### Qualitats del so 14.3

El so és una ona mecànica longitudinal. Té tres qualitats:

- 1. to
- 2. timbre
- 3. intensitat

### 14.3.1 Intensitat sonora

$$\beta = 10 \log \frac{I}{I_0} \qquad [dB] \tag{172}$$

$$I_0 \approx 1 \times 10^{-12} \,\mathrm{W/m^2}$$
 (173)

 $I_0$  és la intensitat llindar a partir de la qual un so ja no és audible per l'orella humana.

### 14.4 Absorció d'una ona

$$I = I_0 e^{-\beta x} \tag{174}$$

On  $\beta$  és el coeficient d'absorció del material travessat.

#### 14.4.1 Espessor de semi absorció

Distància tal que  $I = \frac{I_0}{2}$ :

$$D_{1/2} = \frac{\ln 2}{\beta} \tag{175}$$

#### 14.5 Interferència d'ones

Si tenim dos focus d'ona o més, aquests creen una interferència. Podem determinar l'equació d'ona d'un punt p a través de la suma de totes les ones:

$$y_p = \sum_{i}^{n} y_{pi} \tag{176}$$

#### 14.5.1 Dues ones coherents

Si tenim dues ones que són coherents ¶:

$$y = A_p \sin\left(\omega t - kr'\right) \tag{177}$$

$$r' = \frac{r_1 + r_2}{2} \tag{178}$$

$$A_p = 2A\cos\left(k\frac{r_2 - r_1}{2}\right) \tag{179}$$

A partir de la equació, podem obtenir les condicions per tal que la interferència sigui constructiva o destructiva:

- Destructiva:  $r_2 r_1 = (2n+1)\frac{\lambda}{2}$
- Constructiva:  $r_2 r_1 = n\lambda$

<sup>¶</sup>Mateixes  $\lambda, A, \nu$  i  $\phi$ 

#### 14.5.2 Ones estacionàries

$$y = A_p \sin\left(\omega t - k\frac{r_2 + r_1}{2}\right) \tag{180}$$

$$r' = \frac{r_1 + r_2}{2} \tag{181}$$

$$A_p = 2A\cos\left(kr'\right) \tag{182}$$

- Destructiva:  $r' = (2n+1)\frac{\lambda}{4}$
- Constructiva (Ventres):  $r' = n\frac{\lambda}{2}$

### 14.6 Diferència de fase

$$\phi = k\Delta x \tag{183}$$

# 14.7 Ona estacionària o tub obert per dos extrems

$$L = \frac{\lambda}{2}n\tag{184}$$

On n és el nombre harmònic que comença amb 1.

# 14.8 Tub tancat per un extrem

$$L = \frac{\lambda}{4}(2n+1) \tag{185}$$

On el primer harmònic és n=0

# 14.9 Principi de Huygens

Quan un front d'ona està en el medi cada partícula del medi es transforma en un punt d'emissió d'ones i el conjunt forma el nou front d'ona. Això explica el fenomens de la difracció.

# 14.10 Doble escletxa de Young

Espai entre franges s:

$$s = \frac{\lambda D}{d} \tag{186}$$

Interferència constructiva

$$n\lambda$$
 (187)

Interferència destructiva

$$\left(n + \frac{1}{2}\right)\lambda \tag{188}$$

# 14.11 Difracció d'una escletxa

$$\theta = \frac{\lambda}{b} \tag{189}$$

# 14.12 Resolució d'un sistema òptic

Criteri de Rayleigh:

$$\theta > 1.22 \frac{\lambda}{a} \tag{190}$$

# 14.13 Efecte Doppler

$$\nu = \nu_0 \frac{c \pm v_r}{c \mp v_f} \tag{191}$$

# 15 Física nuclear

Diàmetre atòmic = 
$$1 \text{ Å} = 10 \times 10^{-10} \text{ m}$$
 (192)

Diàmetre del nucli atòmic = 
$$1 \times 10^{-4} \text{ Å} = 1 \times 10^{-14} \text{ m}$$
 (193)

$$A = \text{Nombre màssic} = n^{o} p^{+} + n^{o} n \tag{194}$$

$$Z = \text{Nombre atòmic} = n^o p^+$$
 (195)

Expressem una partícula X com:

$$_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X}$$
 (196)

Dos àtoms són el mateix element si tenen igual Z. Dos isòtops del mateix element tenen igual Z però diferent A

## 15.1 Energia d'enllaç

$$1 \text{ amu} = \frac{1}{12} m\binom{12}{6} \text{C} = 931.5 \frac{\text{MeV}^2}{c}$$
 (197)

$$1 \,\mathrm{eV} = 1,602 \times 10^{-19} \,\mathrm{J} \tag{198}$$

$$m_p = 1,0073 \,\mathrm{amu}$$
 (199)

$$m_n = 1,0087 \,\mathrm{amu}$$
 (200)

$$\Delta m = [Zm_p + (A - Z) m_n] - M_{\text{nucli}}$$
(201)

$$E_b = \Delta mc^2 \tag{202}$$

# 15.2 Energia d'enllaç per nucleó

Energia d'enllaç per nucleó = 
$$\frac{E_b}{A}$$
 (203)

# 15.3 Desintegració de Soddy-Fajans

 $\gamma$ és energia alliberada.

### **15.3.1** Alfa ( $\alpha$ )

$${}_{Z}^{A}X \longrightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He +$$
 (204)

### 15.3.2 Beta positiu $(\beta^+)$

$${}_{Z}^{A}X \longrightarrow {}_{Z-1}^{A}Y + {}_{+1}^{0}e + \overline{e} +$$

$$(205)$$

# 15.3.3 Beta negatiu $(\beta^-)$

$${}_{Z}^{A}X \longrightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e + \overline{e} +$$

$$(206)$$

### 15.3.4 Gamma $(\gamma)$

$${}_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X}^{*} \longrightarrow {}_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X} + \tag{207}$$

## 15.4 Llei de desintegració radioactiva

N =nombre de nucleons.

 $\lambda$  és la constant de desintegració radioactiva que depen de l'àtom.

$$\frac{dN}{dt} = -\lambda N \tag{208}$$

$$\int_{N_0}^{N} \frac{dN}{dt} = \int_0^t -\lambda dt \to \ln \frac{N}{N_0} = -\lambda t \tag{209}$$

$$R = R_0 A^{\frac{1}{3}} \tag{210}$$

$$N(t) = N_0 e^{-\lambda t} \tag{211}$$

$$A(t) = \lambda N_0 e^{-\lambda t} \tag{212}$$

# 15.5 Període de semi-desintegració

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda} \tag{213}$$

# 15.6 Vida mitja $(\tau)$

$$\tau = \frac{1}{\lambda} \tag{214}$$

#### 15.7 Reaccions nuclears

#### 15.7.1 Fissió nuclear

Trencament d'un nucli atòmic. Allibera energia. Un dels més coneguts es la fissió de l'Urani 235 que s'utilitza en les centrals nuclears:

$$^{235}_{92}U + \frac{1}{2}{}^{0}_{0}n \longrightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n +$$
 (215)

### 15.7.2 Fusió nuclear

Unió de dos nuclis. Succeeix a les estrelles.

$${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n +$$
 (216)

# 15.8 Experiment de Rutherford

Experiment de la làmina d'or, en el que es bombardeja una làmina d'or amb partícules  $\alpha$  i 1 de cada 1800 es desviaven i una de cada 10000 rebotaven a la làmina. Permet calcular el radi d'un àtom sabent que aquestes partícules reboten i l'energia cinètica amb les que s'han llançat ( $E_c$ ):

$$E_c = E_p$$

$$E_p = k \frac{(2e^-)(Ze^-)}{d} \to d = \frac{e^2 2Z}{E_c}$$
(217)

### 15.9 Densitat nuclear

$$V_{\rm nucli} \propto A$$
 (218)

$$V_{\text{nucli}} \propto \frac{4}{3}\pi R^3 \tag{219}$$

$$R \propto A^{\frac{1}{3}} \tag{220}$$

$$R = R_o A^{\frac{1}{3}} \tag{221}$$

$$R_o = \text{Radi de Fermi} = 1,20 \times 10^{-15} \,\text{m}$$
 (222)

$$\rho = \frac{m}{v} = \frac{Au}{\frac{4}{3}\pi r^3} = \frac{3u}{4\pi R_o^3} \approx 2 \times 10^{17} \,\text{kg/m}^3$$
 (223)

La densitat d'un nucli atòmic és comparable a la d'un forat negre.

# 15.10 Model estàndard de partícules

Hi ha 3 grups de partícules fonamentals:

- Leptons
- Quarks
- Bosons

## 15.10.1 Leptons

- electró (e)
- muó  $(\mu)$
- tauó  $(\tau)$
- neutrí electrònic  $(\nu_e)$
- neutrí mònic  $(\mu^+)$
- neutrí tauònic  $(\tau^0)$

Taula 1: Propietats dels leptons

|                    |                       |                       | càrrega (Q) | nombre leptònic (L) |
|--------------------|-----------------------|-----------------------|-------------|---------------------|
|                    | au                    |                       | -1          | +1                  |
| $\overline{e}$     | $\overline{	au}$      | $\overline{\mu}$      | +1          | -1                  |
| $\nu_e$            | $\nu_{\tau}$          | $\nu_{\mu}$           | 0           | +1                  |
| $\overline{\nu_e}$ | $\overline{ u_{	au}}$ | $\overline{ u_{\mu}}$ | 0           | -1                  |

### 15.10.2 Quarks

No poden estar sols, sempre formen grups. Anomenem als grups de Quarks Hadrons.

- up (u)
- charm (c)
- top(t)
- down (d)
- strange (s)
- bottom (b)

Taula 2: Quarks

|                |                |                | càrrega (Q)    |
|----------------|----------------|----------------|----------------|
| u              | c              | t              | $^{2}/_{3}$    |
| d              | s              | b              | -1/3           |
| $\overline{u}$ | $\overline{c}$ | $\overline{t}$ | $-\frac{2}{3}$ |
| $\overline{d}$ | $\overline{s}$ | $\overline{b}$ | 1/3            |

El quark strange (s)té el nombre d'Extranyessa S què és -1 per el quark s i +1 per l'antiquark  $\overline{s}.$ 

#### 15.10.3 Hadrons

Hi ha dos tipus:

- Mesons (2 quarks)
- Barions (3 quarks)

Els quarks que formen un barió tenen nombre bariònic:  $^{1}/_{3}$  pels quarks i  $^{-1}/_{3}$  pels antiquarks.

#### 15.10.4 Teoria del confinament

- Els quarks s'intercanvien gluons (força forta)
- Els hadrons són sensibles tant a la força forta com a la dèbil
- Els leptons no són sensibles a la força forta però si a la dèbil
- El nombre bariònic, el leptònic, l'estrange i la càrrega sempre es conserven

### 15.10.5 Diagrames de Feynman

Representació visual de d'interacció entre partícules. Eixos temps i espai. Les partícules són fletxes. Les antipartícules en direcció oposada. Les interaccions es representen amb línies discontinues si són partícules o amb una ona si és una radiació.



# 16 Física Quàntica

## 16.1 Hipòtesi de Planck

Emissió no es continua sinó discreta ja que l'energia està quantitzada en quantums.

$$E = nh\nu \tag{224}$$

#### 16.2 Efecte fotoelèctric

L'efecte fotoelèctric és la capacitat de la llum per a alliberar electrons d'una superfície metàl·lica. Aquests electrons deixen el metall a una velocitat que no depen de la intensitat de la llum, sinó de la longitud d'ona.

$$E_i = E_0 + E_c \tag{225}$$

$$h\nu = h\nu_0 + |q_0|v\tag{226}$$

Quan  $E_c=0$  obtenim el treball d'extracció:

$$W_{\rm ext} = h\nu_0 \tag{227}$$

# 16.3 Llei de desplaçament de Wien

$$\lambda_{\text{max}} = \frac{b}{T} \tag{228}$$

On T és la temperatura en kelvins i b és la constant de Wien.

$$b = 2,898 \times 10^{-3} \,\mathrm{Km} \tag{229}$$

# 16.4 Lambda de de Broglie

Totes les partícules es comporten com a ones segons la equació:

$$\lambda = \frac{h}{p} = \frac{h}{mv} \tag{230}$$

# 16.5 Model atòmic de Bohr

Es basa en 3 postulats:

- Els electrons orbiten en òrbites estacionàries
- La variació d'energia entre òrbites està quantitzada en quantums
- La longitud de l'òrbita ha de ser proporcional a la constant de Plank normalitzada

$$\frac{1}{\lambda} = R \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{231}$$

$$\Delta E = h\nu \tag{232}$$

$$L = n\frac{h}{2\pi} = n\hbar \tag{233}$$

# 16.6 Schrödinger

$$\frac{\hbar^2}{2m}\frac{\partial\Psi}{\partial x^2} + V\Psi = |E|\Psi\tag{234}$$

On  $\Psi$  és la funció d'ona que serveix per a determinar la probabilitat de trobar una partícula.

# 16.7 Principi d'incertesa de Heisenberg

$$\sigma_x \sigma_p \ge \frac{\hbar}{2} \tag{235}$$

$$\sigma_E \sigma_t \ge \frac{\hbar}{2} \tag{236}$$

# 16.8 Principi de complementaritat

Tota partícula és una ona i una partícula i conviuen els dos estats. L'estat defineix amb l'observació.

#### Relativitat 17

L'experiment de Michael-Morley demostra que l'èter no existeix. S'ha de trobar una explicació per el fet que la llum es desplaci per l'espai tot i no haver-hi matèria.

#### 17.1Teoria especial de la relativitat

Basada en dos postulats:

- 1. Totes les lleis de la física són vàlides a qualsevol sistema de referència inercial.
- 2. La velocitat de la llum és constant per a tot sistema de referència inercial.

#### Factor de Lorenz 17.1.1

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$\beta = \frac{v}{c}$$
(237)

$$\beta = \frac{v}{c} \tag{238}$$

#### 17.1.2Dilatació del temps

$$\Delta t' = \gamma \Delta t \tag{239}$$

#### Contracció de l'espai 17.1.3

$$\Delta x' = \frac{\Delta x}{\gamma} \tag{240}$$

#### Transformacions de Lorenz

$$\Delta t' = \gamma \left( \Delta t + \frac{v \, \Delta x}{c^2} \right) \tag{241}$$

$$\Delta x' = \gamma \, \left( \Delta x + v \, \Delta t \right) \tag{242}$$

$$v_x' = \frac{v_x - v}{1 - \frac{v}{c^2} v_x} \tag{243}$$

#### 17.2Energia relativista

$$W = E_c = \int F dx = \int m_0 \gamma \frac{dv}{dt} dx \tag{244}$$

$$=m_0c^2(\gamma-1)\tag{245}$$

# 17.3 Teoria general de la relativitat

Els efectes gravitatoris afecten a les ones de la llum tot i no tenir massa. Per tant es dedueix que el camp gravitats és una deformació de l'espai-temps.

## 17.3.1 Principi d'equivalència

Un sistema de referència no inercial accelerat és equivalent a una sistema en repòs sotmès a una força gravitacional.

## 17.3.2 Redshift gravitacional

$$\frac{\Delta\nu}{\nu_0} = \frac{g\Delta h}{c^2} \tag{246}$$

### 17.3.3 Forats negres

Schwarzschild postula l'existència dels forats negres:

$$r_s = 2\frac{GM}{c^2} \tag{247}$$

 $r_s$ és el radi d'Schwarzschild a partir del qual la llum no pot escapar.

# 18 Unitats del SI

Taula 3: Les 7 Unitats bàsiques del SI

| Símbol                    | Nom               | Magnitud                |
|---------------------------|-------------------|-------------------------|
| m                         | metre             | Longitud<br>Massa       |
| $rac{	ext{kg}}{	ext{s}}$ | kilogram<br>segon | Temps                   |
| A                         | ampere            | Intensitat elèctrica    |
| K                         | Kelvin            | Temperatura             |
| mol                       | Mols              | Quantitat de substància |
| $\operatorname{cd}$       | Candela           | Intensitat Lluminosa    |

Taula 4: Prefixos del SI

| Símbol   | Nom   | Factor    | • | Símbol  | Nom                                        | Factor     |
|----------|-------|-----------|---|---------|--------------------------------------------|------------|
| da       | deca  | $10^{1}$  | • | d       | deci                                       | $10^{-1}$  |
| h        | hecto | $10^{2}$  |   | c       | centi                                      | $10^{-2}$  |
| k        | quilo | $10^{3}$  |   | m       | $\operatorname{mil}\cdot\operatorname{li}$ | $10^{-3}$  |
| M        | mega  | $10^{6}$  |   | μ       | micro                                      | $10^{-6}$  |
| G        | giga  | $10^{9}$  |   | n       | nano                                       | $10^{-9}$  |
| ${ m T}$ | tera  | $10^{12}$ |   | p       | pico                                       | $10^{-12}$ |
| Р        | peta  | $10^{15}$ |   | f       | femto                                      | $10^{-15}$ |
| ${ m E}$ | exa   | $10^{18}$ |   | a       | atto                                       | $10^{-18}$ |
| ${ m Z}$ | zetta | $10^{21}$ |   | ${f z}$ | zepto                                      | $10^{-21}$ |
| Y        | yotta | $10^{24}$ |   | У       | yocto                                      | $10^{-24}$ |

Taula 5: Unitats derivades

| Símbol       | Nom     | En funció d'altres              | En unitats bàsiques                                |
|--------------|---------|---------------------------------|----------------------------------------------------|
| Hz           | hertz   |                                 | 1/s                                                |
| N            | newton  |                                 | $kg m/s^2$                                         |
| Pa           | pascal  | $N/m^2$                         | $kg/m s^2$                                         |
| J            | joule   | ${ m Nm}$                       | $\mathrm{kg}\mathrm{m}^2/\mathrm{s}^2$             |
| W            | watt    | J/s                             | $kg m^2/s^3$                                       |
| $\mathbf{C}$ | coulomb |                                 | As                                                 |
| V            | volt    | $A\Omega = J/C$                 | $kg m^2/s^3 A$                                     |
| $\mathbf{F}$ | faraday | $^{\mathrm{C}}\!/_{\mathrm{V}}$ | $s^4 A^2/kg m^2$                                   |
| $\Omega$     | ohm     | V/A = 1/S                       | $\mathrm{kg}\mathrm{m}^2/\mathrm{s}^3\mathrm{A}^2$ |
| $\mathbf{S}$ | siemens | $A/V = 1/\Omega$                | $s^3 A^2/kg m^2$                                   |
| Wb           | weber   | J/A = V s                       | $kg m^2/s^2 A$                                     |
| ${ m T}$     | tesla   | $Wb/m^2$                        | $kg/A s^2$                                         |
| Н            | henry   | Wb/A                            | $\mathrm{kg}\mathrm{m}^2/\mathrm{s}^2\mathrm{A}^2$ |

# 19 Constants

```
G = (6.67408 \pm 0.00031) \times 10^{-11} \,\mathrm{N}\,\mathrm{m}^2/\mathrm{kg}^2
                                                                                        (Constant de la gravitació Universal)
       q \approx 9.80665 \, \text{m/s}^2
                                                                                                     (Acceleració de la gravetat<sup>∥</sup>)
     k_B = (1,38064852 \pm 0,00000079) \times 10^{-23} \,\text{J/K}
                                                                                                          (Constant de Boltzmann)
       k = 8.9875517873681764 \times 10^{9 \,\mathrm{N} \,\mathrm{m}^2/\mathrm{C}^2}
         \approx 9 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}^2
                                                                                                             (Constant de coulomb)
      R = (8.3144598 \pm 0.0000048)^{\text{J mol/K}}
          = (8.2057338 \pm 0.0000047) \times 10^{-2} \, \text{Latm mol/K}
                                                                                                        (Constant ideal dels gasos)
       c = 299792458 \,\mathrm{m/s} \approx 3 \times 10^9 \,\mathrm{m/s}
                                                                                                                (Velocitat de la llum)
     \mu_0 = 4\pi \times 10^{-7} \,\text{N/A}^2
                                                                                                            (Permeabilitat del buit)
     \varepsilon_0 = 8.854\,187\,817\,\cdots\times 10^{-12}\,\mathrm{F/m}
                                                                                                              (Permitivitat del buit)
      h = (6.626\,070\,040 \pm 0.000\,000\,081) \times 10^{-34}\,\mathrm{J}\,\mathrm{s}
                                                                                                                (Constant de Planck)
      u = (1,660539040 \pm 0,00000000) \times 10^{-27} \text{ kg}
          = (931,4940954 \pm 0,0000057) \text{ MeV}/c_0^2
                                                                                                        (Unitat de massa atòmica)
    Na = (6.022140857 \pm 0.0000000074) \times 10^{23} \text{ l/mol}
                                                                                                               (Nombre d'Avogadro)
      \sigma = (5,670\,367 \pm 0,000\,013) \times 10^{-8}\,\mathrm{W/m^2\,K^4}
                                                                                               (Constant de Stefan-Boltzmann)
     I_0 \approx 1 \times 10^{-12} \, \text{W/m}^2
                                                                                                                    (Intensitat llindar)
       b = (2,8977729 \pm 0,0000017) \times 10^{-3} \,\mathrm{Km}
                                                                                                                  (Constant de Wien)
      S \approx 1.361 \, \text{kW/m}^2
                                                                                                                       (Constant solar)
     R_0 \approx 1.20 \times 10^{-15} \,\mathrm{m}
                                                                                                                        (Radi de Fermi)
M_{\text{Terra}} = (5.9722 \pm 0.0006) \times 10^{24} \,\text{kg}
R_{\rm Terra} \approx 6378 \, {\rm km}
g_{\rm Lluna} = 1,625 \, \text{m/s}^2
    q_{p\pm} = (1,602\,176\,565\pm0,000\,000\,035)\times10^{-19}\,\mathrm{C}
  m_{n^{+}} = (1.672621637 \pm 0.0000000083) \times 10^{-27} \,\mathrm{kg}
    m_n = (1,674\,927\,471\pm0,000\,000\,021)\times10^{-27}\,\mathrm{kg}
    q_{e^-} = (-1,602\,176\,565\pm0,000\,000\,035)\times10^{-19}\,\mathrm{C}
  m_{e^-} = (9.10938356 \pm 0.00000011) \times 10^{-31} \,\mathrm{kg}
                                                                                                                                  (En aire)
    v_{\rm so} = 343.2 \, \text{m/s}
    v_{\rm so} = 1484 \, \text{m/s}
                                                                                                                                (En aigua)
    v_{\rm so} = 5120 \, \text{m/s}
                                                                                                                                 (En ferro)
    v_{\rm so} = 12\,000\,{\rm m/s}
                                                                                                                            (En diamant)
```

A la superfície de la Terra i a nivell de mar