Lista 2

1. Coloque na forma padrão os seguintes problemas de programação linear:

a) Maximizar
$$-X_1 - 7 X_2 + 8 X_3 + X_4$$

Sujeito a
$$X_1 + X_2 - X_3 + X_4 \leq 4$$
$$X_1 + X_3 \geq 9$$
$$X_2 + X_3 + X_4 \geq 6$$
$$X_1 \geq 0, X_2 \geq 0, X_3 \geq 0, X_4 \geq 0$$

b) Minimizar
$$3 X_1 - 3 X_2 + 7 X_3$$

Sujeito a
 $X_1 + X_2 + X_3 \le 40$
 $X_1 + 9 X_2 - 7 X_3 \ge -5$
 $5 X_1 + 3 X_2 \ge 2$
 $X_1 \ge 0, X_2 \ge 0, X_3 \le 0$

- c) Maximizar $-X_1 + X_2 3X_3$ Sujeito a $X_1 + X_2 + X_3 \leq 25$ $X_1 + X_2 - X_3 \geq 10$ $|5 X_1 + 3 X_2| \leq 100$ $X_1 \geq 0, X_2 \geq 0, X_3$ livre
- 2. Escreva uma solução factível para o problema 1(a). A solução que voce escreveu é básica? Senão for escreva uma solução básica para o problema 1(a).
- 3. Escreva o problema 1(a) na forma matricial.
- 4. Escreva a matriz A e os vetores b e c (função objetivo) do problema 1(c).
- 5. Transforme o problema 1(a) em um problema de mínimo equivalente.
- 6. Esboce as regiões factíveis do conjunto $\{x \mid Ax \le b \ e \ x \ge 0\}$ onde A e b são dados abaixo. A região factível é vazia? É limitada ?

a)
$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 1 \end{bmatrix}$$
 $b = \begin{bmatrix} 6 \\ 6 \\ 2 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \\ -1 & 0 \end{bmatrix}$ $b = \begin{bmatrix} 4 \\ -12 \\ 0 \end{bmatrix}$ c) $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 3 \\ 1 & -3 \end{bmatrix}$ $b = \begin{bmatrix} 0 \\ 0 \\ 12 \\ 5 \end{bmatrix}$

- 7. Dado o problema de Programação Linear abaixo, transforme as restrições em um sistema de equações lineares, calcule todas as soluções básicas, informe quais soluções são viáveis e indique qual é a solução ótima.
 - a) maximizar $z = x_1 + x_2$ sujeito a: $x_1 + 5.x_2 \le 5$ $2.x_1 + x_2 \le 4$ $\mathbf{x} \ge \mathbf{0}$
 - b) maximizar $z = 3.x_1 + 4.x_2$ sujeito a: $2.x_1 + x_2 \le 6$ $2.x_1 + 3.x_2 \le 9$ $\mathbf{x} \ge \mathbf{0}$

c) maximizar
$$z = 5.x_1 + 2.x_2$$
 sujeito a: $x_1 + 2.x_2 \le 9$ $x_1 \le 3$ $x_2 \le 4$ $\mathbf{x} \ge \mathbf{0}$

- 8. Para a forma padrão da programação linear, defina clara e sucintamente:
 - a) solução básica;
 - b) solução factível;
 - c) solução básica factível;
 - d) solução ótima;
 - e) solução básica ótima;
 - f) indique as condições para que uma solução factível não seja básica;
 - g) indique as condições para que uma solução factível não seja ótima.
- 9. Considere os problemas:

a)
$$\textit{Maximizar } f(x_1, x_2) = -3x_1 + 2 \ x_2$$
 Sujeito a: Sujeito a: Sujeito a: $x_1 + 2x_2 \ge 4$ $x_1 + x_2 \le 1$ $x_1 + x_2 \le 3$ $x_1 \ge 0, \ x_2 \ge 0$ Resp. $(0\ 1)$ Resp. $(0\ 2)$ C) $\textit{Minimizar } f(x_1, x_2) = x_1 + x_2$ Sujeito a: Sujeito a: Sujeito a: Sujeito a: $-x_1 + x_2 \ge 2$ $2x_1 - x_2 \le 6$ $2x_1 - x_2 \le 6$ $x_1 \ge 0, \ x_2 \ge 0$. Resp. $(0\ 2)$ Resp. $(0\ 2)$ $x_1 \ge 0, \ x_2 \ge 0$.

Resp. Infactível

Para cada um dos problemas, responda as seguintes questões:

- a. Resolva o problema graficamente (isto é, desenhe a região factível e a(s) solução(ões) ótima(s)).
- b. A solução $x_1 = x_2 = 0$ é um vértice da região factível? Identifique todos os vértices da região factível.
- c. Desenhe as soluções $\mathbf{x}^1 = (x_1^1 \ x_2^1) = (1 \ 1)$ e $\mathbf{x}^2 = (x_1^2 \ x_2^2) = (5, \ 1)$. Estas soluções são factíveis? Por que?
- d. Considere agora uma outra função objetivo: *Minimizar* $f(x_1, x_2) = x_1 x_2$. Verifique se a solução ótima obtida no item a. é também ótima considerando esta nova função objetivo. Há múltiplas soluções ótimas? Identifique no gráfico.
- e. Considere que o valor de b_I seja incrementado de 1 unidade, o que aconteceria com a solução do problema?
- 10. Considere a região de factibilidade dada pelas seguintes restrições:

$$x_1 + x_2 \le 2$$

 $2x_1 - x_2 \le 6$
 $x_1 + x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$

- a) reescreva as restrições na forma padrão.
- b) encontre todas as soluções básicas para o sistema.
- c) dada a solução básica (0 0 2 6 1), escreva o sistema na forma B $X_B = b NB X_{NB}$.
 - d) qual o valor máximo que x₁ pode assumir no sistema dado em (c) de modo que obtenhamos uma nova solução básica factível?
- 11) Utilize o Método Simplex para resolver os seguintes problemas
- 1. maximizar z = $10.x_1 + 1.x_2$ sujeito a: $2.x_1 + 5.x_2 \le 11$ $\mathbf{x} \ge \mathbf{0}$
- 2. maximizar z = $1.x_1 + 1.x_2$ sujeito a: $1.x_1 + 5.x_2 \le 5$ $2.x_1 + 1.x_2 \le 4$ $\mathbf{x} \ge \mathbf{0}$
- 3. maximizar z = $3.x_1 + 4.x_2$ sujeito a: $2.x_1 + 1.x_2 \le 6$ $2.x_1 + 3.x_2 \le 9$ $\mathbf{x} \ge \mathbf{0}$
- 4. minimizar z = $1.x_1 + 2.x_2$ sujeito a: $1.x_1 + 3.x_2 \le 11$ $2.x_1 + 1.x_2 \le 9$ $\mathbf{x} \ge \mathbf{0}$
- 12) Utilize o Método Simplex na forma de tabelas para resolver os seguintes problemas.
- **a.** maximizar z = $1.x_1 + 2.x_2 + 3.x_3 + 1.x_4$ sujeito a: $3.x_1 + 2.x_2 + 1.x_3 + 4.x_4 \le 10$ $5.x_1 + 3.x_2 + 2.x_3 + 5.x_4 \le 5$ $\mathbf{x} \ge \mathbf{0}$
- **b.** maximizar z = 1. x_1 + 9. x_2 + 1. x_3 sujeito a: 1. x_1 + 2. x_2 + 3. x_3 \leq 9 3. x_1 + 2. x_2 + 2. x_3 \leq 15 \mathbf{x} \geq 0