Sebastian Banert

Exercise 4

3 December 2020

Problem 1. Let $f: \mathcal{H} \to \overline{\mathbb{R}}$ be a function (not necessarily convex or lower semicontinuous), and let $x \in \mathcal{H}$. Show that $\partial f(x)$ is closed and convex.

Problem 2. Show that, for a function $f: \mathcal{G} \to \overline{\mathbb{R}}$ and a linear operator $L: \mathcal{H} \to \mathcal{G}$, the subdifferential satisfies

$$L^*\partial f(Lx) := \{L^*a \mid a \in \partial f(Lx)\} \subseteq \partial (f \circ L)(x)$$

for all $x \in \mathcal{H}$. Show that, for two functions $f_1, f_2 \colon \mathcal{H} \to \overline{\mathbb{R}}$, the subdifferential satisfies

$$\partial f_1(x) + \partial f_2(x) \subseteq \partial (f_1 + f_2)(x)$$

for all $x \in \mathcal{H}$.

Problem 3. Find two sets $C_1, C_2 \subseteq \mathbb{R}^2$ (where the inner product on \mathbb{R}^2 is given by $\langle x, y \rangle = x^\top y$ for all $x, y \in \mathbb{R}^2$) and a point $x \in \mathbb{R}^2$ such that $N_{C_1}(x) + N_{C_2}(x) \neq N_{C_1 \cap C_2}(x)$. Visualise the normal cones. Conclude that the inclusions in problem 2 can be strict.

Problem 4. Let $m \geq 1$, and let $f_1, \ldots, f_m \colon \mathcal{H} \to \overline{\mathbb{R}}$ be functions, and let $f \colon \mathcal{H} \to \overline{\mathbb{R}}$ be defined by $f(x) = \max \{f_1(x), \ldots, f_m(x)\}$ for $x \in \mathcal{H}$. For $x \in \mathcal{H}$, let I(x) be the set of active indices, i.e.,

$$I(x) = \{i \in \{1, \dots, m\} \mid f_i(x) = f(x)\}.$$

Show that

$$\operatorname{conv}\left(\bigcup_{i\in I(x)}\partial f_i(x)\right)\subseteq\partial f(x)$$

for all $x \in \mathcal{H}$, the left-hand side being the convex hull of all active subgradients.

Note: Sufficient conditions for equality (also in problem 2) will be discussed later in the part on duality.

Problem 5. Let $f: \mathcal{H} \to \overline{\mathbb{R}}$ be convex, let $x, d \in \mathcal{H}$. Show that the mapping

$$t \mapsto \frac{f(x+td) - f(x)}{t}$$

is monotonically non-increasing for t > 0. Conclude that the directional derivative

$$f'(x;d) := \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$

exists as a value in $\overline{\mathbb{R}}$ and satisfies

$$f'(x;d) = \inf_{t>0} \frac{f(x+td) - f(x)}{t}.$$

Hint: You can use that the above-mentioned limit exists if the values

$$\limsup_{t\downarrow 0}\frac{f(x+td)-f(x)}{t}:=\inf_{\varepsilon>0}\sup_{0< t<\varepsilon}\frac{f(x+td)-f(x)}{t},$$

$$\liminf_{t\downarrow 0}\frac{f(x+td)-f(x)}{t}:=\sup_{\varepsilon>0}\inf_{0< t<\varepsilon}\frac{f(x+td)-f(x)}{t}$$

are equal.