Package 'optBuck'

May 9, 2022

Type Package

15

2 BarkFunction

Index 18

BarkFunction BarkFunction

Description

Calculates diametervalues under bark

Usage

```
BarkFunction(
  DiameterValue,
  SpeciesGroupKey,
  SpeciesGroupDefinition,
  Top_ob,
  DBH,
  LogLength
)
```

Arguments

DiameterValue numeric vector of corresponding diameters (mm)

SpeciesGroupKey

Species ID

 ${\tt Species Group Definition}$

List of species group information, with speciesgroupkey as the name of the ele-

ments(see getSpeciesGroupDefinition)

Top_ob Starting position of log along the stem

DBH in mm, for Skogforsk 2004 barkFunction categories

LogLength Optional, in cm

Value

Log volume in m3

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

Buck

equal.lengths 3

equal.lengths equal.lengths

Description

Test whether vectors are of equal lengths

Usage

```
equal.lengths()
```

Value

error when vector lengths are not equal

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

OptApt

Examples

```
a=c(1,2);b=c(1,2,3)
equal.lengths(a,b)
```

getBucking

getBucking

Description

Extract bucking outcomes from a .hpr file

Usage

```
{\tt getBucking(hprfile,\ PriceMatrices,\ ProductData,\ StemProfile)}
```

Arguments

hprfile Path to .hpr file

PriceMatrices list of prices matrices for all ProductKeys

ProductData Matrix containing product data (see getProductData)

StemProfile Stem profiles for all stems in hprfile (see getStemProfile)

Value

Output structure with bucking outcomes

4 getLengthClasses

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

OptBuck, Optbuck_hpr

getHarvestedArea

getHarvestedArea

Description

Extract harvested area

Usage

```
getHarvestedArea(Stems)
```

Arguments

Stems

output of getStems()

Value

Simple feature object of area around harvested trees

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

Examples

```
Stems=getStems(hprfile)
getHarvestedArea(Stems)
```

 ${\tt getLengthClasses}$

Length Classes

Description

Extract the length classes for each assortment from .hpr files, needed for volume calculation when VolumeLengthCategory=="Length as defined in LengthClasses"

Usage

```
getLengthClasses(hprfile)
```

Arguments

hprfile

Path to input .hpr file

getLogs 5

Value

List of length classes for assortments, element names correspond to product keys

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

optBuck

getLogs

getLogs

Description

Extract information on harvested logs from .hpr files

Usage

```
getLogs(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

data table with log information

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

6 getPriceMatrices

getPermittedGrades

getPermittedGrades

Description

Extract the permitted stem grades for each assortment from .hpr files

Usage

```
getPermittedGrades(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

List of permitted grades for assortments, element names correspond to product keys

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

getPriceMatrices

getPriceMatrices

Description

Extract product data from .hpr files

Usage

```
getPriceMatrices(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

list of prices matrices for all ProductKeys. Element names are productkeys.

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

getProductData 7

getProductData

Description

Extract product data from .hpr files

Usage

```
getProductData(hprfile)
```

Arguments

hprfile Path to input .hpr file

Value

Information on ProductKeys, ProductNames, ProductGroupName, SpeciesGroupKey, DiameterUnderBark, DiameterClassLowerLimit, DiameterClassMAX, LengthClassLowerLimit, LengthClassMAX, VolumeDiameterCategory, DiameterTopPositions

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

getSortimentOverview getSortimentOverview

Description

show figure of distribution of harvested volume over assortments

Usage

```
getSortimentOverview(Logs, ProductData)
```

Arguments

Logs otput from getLogs

ProductData output from getProductData

Value

figure in viewer

8 getStemprofile

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

```
getLogs, getProductData
```

```
getSpeciesGroupDefinition
```

 ${\it getSpeciesGroupDefinition}$

Description

Extract information on species groups from .hpr files

Usage

```
getSpeciesGroupDefinition(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

List of species group information, with species groupkey as the name of the elements

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

getStemprofile

getStemprofile

Description

Extract stem profiles from .hpr files

Usage

```
getStemprofile(hprfile)
```

Arguments

hprfile

Path to input .hpr file

getStems 9

Value

Stem profiles of harvested stems with stem grades

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

optBuck

getStems

getStems

Description

Extract information on harvested stems from .hpr files

Usage

```
getStems(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

data table with stem information

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

is.whole

impute_top

impute_top

Description

Impute unused top of stem into result matrix of OptApt (waste)

Usage

```
impute_top(tt)
```

Arguments

tt

matrix of log segments which maximize cumulative value

Value

new matrix which includes the tree top as waste

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

OptApt

is.whole

is.whole

Description

Test if number(s) is/are whole or decimal

Usage

```
is.whole(a, tol = 1e-07)
```

Arguments

a A number tol Tolerance

Value

Logical: "True" if whole and "False" if decimal

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

optBuck 11

See Also

OptApt

Examples

```
a=c(1,2);b=1.2
is.whole(a)
is.whole(b)
```

optBuck

Optimal bucking

Description

Optimizes the bucking

Usage

hello()

Examples

optBuck()

optBuck_hpr

optBuck_hpr

Description

Calculate optimal bucking for hpr files

Usage

```
optBuck_hpr(
  hprfile,
  PriceMatrices,
  ProductData,
  StemProfile,
  PermittedGrades,
  ...
)
```

Arguments

hprfile Path to input .hpr file

PriceMatrices list of price matrices for all ProductKeys (see getPriceMatrices)

ProductData Matrix containing product data (see getProductData)

StemProfile Stem profiles for all stems in hprfile (see getStemProfile)

PermittedGrades

list with the same lenght of assortments, each element containing the stemgrades

allowed in each assortment (see getPermittedGrades)

.. others

12 plotBucking

Value

result structure with optimum bucking solution for the stems in the input hpr file

Author(s)

Lennart Noordermeer < lennart . noordermeer @nmbu . no>

References

 $Skog forsk\ 2011.\ Introduction\ to\ Stan For D\ 2010.\ URL:\ Skog forsk.\ https://www.skog forsk.se/content assets/1a68cdce4af\ 2010-introduction-150826.pdf$

See Also

getPermittedGrades, getPriceMatrices, getProductData

plotBucking

plotBucking

Description

Plot the bucking outcome

Usage

```
plotBucking(diameterPosition, DiameterValue, StemGrade, res)
```

Arguments

 $\hbox{\tt diameterPosition}$

vector of diameter positions (cm) of a stem profile: 0,10,...,end

DiameterValue vector of corresponding diameters (mm) for those diameter positions

StemGrade vector of corresponding stem grades

res the bucome outcome, i.e., output of OptApt()

Value

plot of bucking outcome

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

OptApt

predictStemprofile 13

Description

Predict and extract stem profiles using taper models based on the log dimensions, for cases when no stem profile is recorded in the hpr file.

Usage

```
predictStemprofile(hprfile, ProductData, PermittedGrades)
```

Arguments

hprfile Path to .hpr file

ProductData output of getProductData()

PermittedGrades

output of getPermittedGrades()

Value

Output structure with stem profile containing stem grades

Author(s)

Lennart Noordermeer < lennart . noordermeer @nmbu . no>

PriceVolumeCalc

PriceVolumeCalc

Description

Calculates log price volume, i.e., the volume which is used for price calculation

Usage

```
PriceVolumeCalc(
VolumeDiameterAdjustment,
VolumeDiameterCategory,
VolumeLengthCategory,
diameterPosition,
DiameterValue,
StartPos,
StopPos,
DiameterTopPosition,
DiameterUnderBark = T,
SpeciesGroupKey = NA,
SpeciesGroupDefinition = NA,
DBH = NA,
```

14 PriceVolumeCalc

```
LogLength = NA,
LengthClasses = NA,
ProductKey = NA
)
```

Arguments

VolumeDiameterAdjustment

Volume diameter adjustment according to stanford2010 (see getProductData()).

VolumeDiameterCategory

Volume calculation method according to stanford2010 (see getProductData()).

VolumeLengthCategory

Volume length category according to stanford2010 (see getProductData()).

diameterPosition

numeric vector of diameter positions (cm) of a stem profile; 0,10,...,end

DiameterValue numeric vector of corresponding diameters (mm)

StartPos Starting position of log along the stem

StopPos Ending position of log

DiameterTopPosition

Position from top end of log where top diameter is measured. Cm

DiameterUnderBark

Logical TRUE/FALSE

SpeciesGroupKey

Species ID

SpeciesGroupDefinition

List of species group information, with speciesgroupkey as the name of the ele-

ments(see getSpeciesGroupDefinition)

DBH Optional, in mm (see BarkFunction)

LogLength Optional, in cm (see BarkFunction)

LengthClasses List of length classes for the assortments (see getLengthClasses)

ProductKey Assortment key (see getProductData())

Value

Log volume in m3

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

Buck

StemprofileIncrement 15

StemprofileIncrement StemprofileIncrement

Description

Predict Stemprofile at another point in time given a vector of new DBHs

Usage

StemprofileIncrement(Stemprofile, DBH2, breastheight)

Arguments

Stemprofile Stem profiles for all stems in hprfile (see getStemProfile)

DBH2 a numeric vector of new DBHs, of the same length as unique StemKeys in Stem-

profile

breastheight height in cm which is considered breastheight (numeric), typically 110 or 130.

Value

A new Stemprofile object in which the new diameters are added

Author(s)

Lennart Noordermeer < lennart . noordermeer @nmbu . no>

strsplits strsplits

Description

modified strsplit for multiple splits

Usage

```
strsplits(x, splits)
```

Arguments

x character vector to split

splits vector of character patterns used to split

Value

List of permitted grades for assortments

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

16 VolumeCalc

See Also

getPriceMatrices

track_trace

track_trace

Description

Back-track optimum bucking solution

Usage

```
track_trace(m, tt)
```

Arguments

m matrix of potential cuts

tt matrix of log segment which maximize cumulative value

Value

Logical: "True" if whole and "False" if decimal

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

OptApt

VolumeCalc

VolumeCalc

Description

Calculates log volume from all diameters as solid volume

Usage

```
VolumeCalc(
  diameterPosition,
  DiameterValue,
  StartPos,
  StopPos,
  DiameterTopPosition,
  DiameterUnderBark = T,
  SpeciesGroupKey = NA,
  SpeciesGroupDefinition = NA,
  DBH = NA,
  LogLength = NA
)
```

VolumeCalc 17

Arguments

diameter Position

numeric vector of diameter positions (cm) of a stem profile; 0,10,...,end

DiameterValue numeric vector of corresponding diameters (mm)

StartPos Starting position of log along the stem

StopPos Ending position of log

DiameterTopPosition

Position from top end of log where top diameter is measured. Cm

DiameterUnderBark

Logical TRUE/FALSE

SpeciesGroupKey

Species ID

 ${\tt Species Group Definition}$

List of species group information, with speciesgroupkey as the name of the ele-

ments(see getSpeciesGroupDefinition)

DBH Optional, in mm (see BarkFunction)
LogLength Optional, in cm (see BarkFunction)

Value

Log volume in m3

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

Buck

Index

```
BarkFunction, 2
equal.lengths, 3
getBucking, 3
getHarvestedArea, 4
{\tt getLengthClasses,4}
getLogs, 5
getPermittedGrades, 6
{\tt getPriceMatrices}, {\color{red} 6}
getProductData, 7
{\tt getSortimentOverview}, \\ 7
getSpeciesGroupDefinition, 8
getStemprofile, 8
{\tt getStems}, {\color{red} 9}
impute_top, 10
is.whole, 10
optBuck, 11
optBuck_hpr, 11
plotBucking, \\ 12
predictStemprofile, 13
PriceVolumeCalc, 13
StemprofileIncrement, 15
strsplits, 15
track_trace, 16
VolumeCalc, 16
```