

Triangulation of Solid Models having Flat Shapes

Guided By: Dr. Gaurav Ameta

Deepak Raina (M15ME003) Thani Ashwanth (UG201212036)

MECHANICAL ENGINEERING DEPARTMENT INDIAN INSTITUTE OF TECHNOLOGY, JODHPUR (RAJ.), INDIA

Problem Definition

To Triangulate a flat shaped solid model of SOLIDWORKS® using Delaunay Triangulation and then generate a .STL file.

Fig : Solid Model

Problem Definition

To Triangulate a flat shaped solid model of SOLIDWORKS® using Delaunay Triangulation and then generate a .STL file.

Fig: Triangulated Model

Application

Rapid Prototyping Industry:

- In all RP processes, the solid model of a component to be produced is created in CAD environment. A tessellated (.STL) version of the CAD model can then be exported and is sliced before transferring the data to the RP machine.
- Tessellated CAD model has become a standard of RP technology

Fig: Rapid Prototyping Process

Application

Rapid Prototyping Process

Background Research

Keywords: Delaunay Triangulation, .STL File

1. Delaunay Triangulation: A Delaunay triangulation for a set P of points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P).

Background Research

2. STL File:

- STL is a file format native to the stereo lithography CAD software created by 3D Systems.
- STL stands for "Standard Triangle Language" and "Standard Tessellation Language.
- An STL file describes a raw unstructured triangulated surface by the unit normal and vertices (ordered by the right-hand rule) of the triangles using a three-dimensional Cartesian coordinate system

• Syntax:

```
facet normal ni nj nk
outer loop
vertex vlx vly vlz
vertex v2x v2y v2z
vertex v3x v3y v3z
endloop
endfacet
```


Import the Given part file (.sldprt) in SOLIDWORKS

Read the Text file using MATLAB.

Apply Delaunay Triangulation on each face

Obtain the Output as .STL file.

1. Obtain the vertices of all faces as .txt file:

The Following Syntax of **SW API Programming** are used for generating the .txt file:

Operation	Syntax
Number of Faces:	swBody.GetFaceCount
Select a Face	swBody.GetFaces
Number of Edges	swFace.GetEdgeCount
Select a Edge	swFace.GetEdges
Get Start Point	startVertexObj.GetPoint
Get End Point	endVertexObj.GetPoint
Create Text file	file.CreateTextFile("Points.txt")
Write Text File	filecreate.WriteLine
Execute MATLAB	Interaction.Shell ("matlab.exe")

2. Read the Text file using MATLAB:
The Code has been written for reading the following text file.

MATLAB code:

```
%% Input Points
Data = fileread('Points.txt');
Data = strrep(Data, ',', '');
Data = strrep(Data, ';', ' ');
FID = fopen('Points1.txt', 'w');
fwrite(FID, Data, 'char');
fclose(FID);
N = textread('points1.txt');
```

2. Apply Delaunay Triangulation on each face.

The Delaunay Triangulation is done with following steps:

Step 1: Rotation of any Arbitrary Plane:

- An arbitrary plane is rotated such that it is parallel to x-y plane
- \triangleright $x_{o_i}y_o$, z_o are the original coordinates (i,j,k).
- > w is the unit normal vector to the plane.
- u,v are the orthonormal vectors with respect to w.
- $(P^1)^T = (P^0)^T * R$
- $R = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$
- ightharpoonup Syntax: R = [null(w), transpose(w)];

Source: Mark W. Spong, "Robot Modeling and Control", First Edition, John Wiley & Sons, Inc., New York.

STEP 2: Make a super Triangle

STEP 3: Insert points of plane one by one.

STEP 4: Check whether the point violates the Delaunay Triangulation Principle. If yes, Collect all the edges of violated triangles.

STEP 5: Join those edges with a added point to form new triangles.

STEP 6: Delete the super Triangle

STEP 7: Get the number of faces (triangle) and vertices of all triangles.

<u>STEP 8:</u> Retransform the Triangle back to its plane and obtain new triangle vertices. Calculate its normal.

3. Obtain the Output as .STL file format:

```
File Edit Format View Help
solid Part1
  facet normal -1.000000e+00 0.000000e+00 0.000000e+00
      outer loop
         vertex 0.000000e+00 0.000000e+00 0.000000e+00
         vertex 0.000000e+00 0.000000e+00 3.000000e-02
         vertex 0.000000e+00 6.352088e-02 3.000000e-02
      endloop
  endfacet
  facet normal -1.000000e+00 0.000000e+00 0.000000e+00
      outer loop
         vertex 0.000000e+00 0.000000e+00 0.000000e+00
         vertex 0.000000e+00 6.352088e-02 3.000000e-02
         vertex 0.000000e+00 6.352088e-02 0.000000e+00
      endloop
  endfacet
  facet normal 0.000000e+00 1.000000e+00 0.000000e+00
      outer loop
         vertex 0.000000e+00 0.000000e+00 0.000000e+00
        vertex 0.000000e+00 0.000000e+00 3.000000e-02
         vertex 1.150124e-01 0.000000e+00 3.000000e-02
      endloop
  endfacet
```

MATLAB code:

```
88 STL File
fid = fopen('stl.txt', 'at');
for st=1:NF
    for v=1:3
    xv(v)=X(T out(st,v));
    yv(v)=Y(T out(st,v));
    zv(v)=Z(T out(st,v));
    end
    TM=[xv',yv',zv'];
    Tnew=TM*(inv(RM));
    Tnew=round(Tnew, 5);
    v1=Tnew(2,:)-Tnew(1,:);
    v2=Tnew(3,:)-Tnew(1,:);
    ntc=cross(v1, v2);
    nt(st,:)=ntc/norm(ntc);
```

References

1. SOLIDWORKS API HELP:

http://help.solidworks.com/2012/English/api/sldworksapiprogguide/Welcome.htm

2. Create .txt file using SW Macro:

https://msdn.microsoft.com/en-us/library/aa265018(v=vs.60).aspx

3. Rotate 3D object to align with x-y plane.

Book: Mark W. Spong, "Robot Modeling and Control", First Edition, John Wiley & Sons, Inc., New York.

http://in.mathworks.com/matlabcentral/newsreader/view_thread/30 6882

4. Free online STL viewer.

http://www.viewstl.com/