MATH 693A Advanced Numerical Methods: Computational Optimization Homework #1

Due in Canvas, September 25 Dr. Uduak George, Fall 2022

Problem 1 [70pts] (NW^{2nd}-3.1):

Program the steepest descent and Newton algorithms using the backtracking line search. Use them to minimize the Rosenbrock function

$$f(\mathbf{\bar{x}}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Set the initial step length $\alpha_0 = 1$ and report the step length used by each method at each iteration. First try the initial point $\bar{\mathbf{x}}_0^T = [1.2, 1.2]$ and then the more difficult point $\bar{\mathbf{x}}_0^T = [-1.2, 1]$.

Suggested values: $\overline{\alpha} = 1$, $\rho = \frac{1}{2}$, $c = 10^{-4}$.

a. Stop when: $\|\nabla f(\vec{x}_k)\| < 10^{-8}$.

You should hand in (i) your code (ii) the first 6 and last 6 values of \vec{x}_k obtained from your program for steepest descent and Newton algorithms and (iii) determine the minimizer of the Rosenbrock function x^* .

b. Repeat (a.) above but stop when $|f(\vec{x}_k)| < 10^{-8}$. Compare your results with those from (a.) and discuss your observation with regards to number of iterations required in order to achieve convergence.

Problem 2 [10pts]:

Using the \vec{x}_k values you obtained in Problem 1:

- (i) Plot the value of objective function $f(\vec{x}_k)$ against the iteration number for the steepest descent algorithm.
- (ii) Plot the value of objective function $f(\vec{x}_k)$ against the iteration number for the Newton algorithms.
- (iii) Compare the graph obtained in (i) with the one obtained in (ii). What can you infer about the convergence of the steepest descent and Newton algorithm.

Problem 3 [10pts]:

[a.] Determine if the following function of two variables is convex. [b.] Create a contour plot of the function using a programming language of your choice:

$$f(x,y) = 5 - 5x - 2y + 2x^2 + 5xy + 6y^2$$

Problem 4 [10pts]:

- (i) Show that the sequence $x_k = 1 + (0.5)^{2^k}$ is Q-quadratically convergent to 1.
- (ii) Does the sequence $x_k = 1/k!$ converge Q-superlinearly? or Q-quadratically?