Análisis numérico

Clase 3: Preliminares, algoritmos y computación

Joaquin Cavieres

Instituto de Estadística, Universidad de Valparaíso

Outline

Matrices

Rango de matrices

Transpuesta y traza de sumas y productos

Si $\mathbf{A} + \mathbf{B}$ estan definidas (por ejemplo, tienen el mismo orden), entonces $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$ y tr $(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$. Si \mathbf{A} es de dimensión $m \times n$ y \mathbf{B} es de orden $n \times p$, entonces $\mathbf{A}\mathbf{B}$ es $m \times n \times n \times p \equiv m \times p$, así que $(\mathbf{A}\mathbf{B})^T$ es de orden $p \times m$. Por lo anterior entonces es fácil demostrar que $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$:

$$(\mathbf{A}\mathbf{B})^T = ((a_{ij})(b_{ij}))^T = (\sum_{j=1}^n a_{ij}b_{jk})^T = (\sum_{j=1}^n a_{kj}b_{bji}) = (b_{jk})^T (a_{ij})^T = \mathbf{B}^T \mathbf{A}^T$$

Note que ${\pmb A}^T$ es $n \times m$ y ${\pmb B}^T$ es $p \times n$ así que el producto ${\pmb A}^T {\pmb B}^T$ no está definido pero si está definido el producto ${\pmb B}^T {\pmb A}^T$.

La $\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}^T)$ y si \boldsymbol{A} y \boldsymbol{B} son matrices de orden $m \times n$ y $n \times m$ entonces $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$ por que la $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ij} = \sum_{j=1}^n \sum_{i=1}^m a_{ij}b_{ij} = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$.

Matrices especiales

Matrices ortogonales

Una matriz cuadrada \boldsymbol{A} de orden $p \times p$ es ortogonal si $\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{A} \boldsymbol{A}^T = \boldsymbol{I}_p$. Note que para una matriz cuadrada si $\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I}_p$ y si \boldsymbol{A} es no singular, entonces necesariamente nosotros tenemos $\boldsymbol{A} \boldsymbol{A}^T = \boldsymbol{I}_p$ ya que $\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I}_p$ entonces $(\boldsymbol{A}^T)^{-1} \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{A}^T = (\boldsymbol{A}^T)^{-1} \boldsymbol{I}_p \boldsymbol{A}^T = \boldsymbol{I}_p$. También $\boldsymbol{A}^{-1} = \boldsymbol{A}^T$ y si \boldsymbol{A} es ortogonal entonces \boldsymbol{A}^T también es ortogonal.

Si A y B son ortogonales y ambas matrices con dimensión $p \times p$ entonces AB es ortogonal, ya que $(AB)^TAB = B^TA^TAB = B^TI_pB = B^TB = I_p$.

Es posible tener una matrix \boldsymbol{B} de orden $m \times n$ tal que $\boldsymbol{B}^T \boldsymbol{B} = \boldsymbol{I}_n$ pero $\boldsymbol{B} \boldsymbol{B}^T \neq \boldsymbol{I}_m$.

Matrices ortogonales

Observación de la composición del composición de la composición de

Dos matrices confortables \boldsymbol{U} y \boldsymbol{V} son llamadas a veces ortogonales si $\boldsymbol{U}\boldsymbol{V}=0$. Aquí se esta usando el termino "ortogonal" en el mismo sentido que si dos vectores son ortogonales. Es más adecuado decir que \boldsymbol{U} es ortogonal a \boldsymbol{V} . De otra manera, si se dice que \boldsymbol{U} y \boldsymbol{V} son ortogonales, esto podría significar que ambas son matrices ortogonales.

Matrices normales

Una matriz $p \times p$ es normal si $\mathbf{A}\mathbf{A}^T = \mathbf{A}^T\mathbf{A}$. Claramente todas las matrices simétricas y ortogonales son matrices normales.

Matrices idempotentes

Una matriz \boldsymbol{A} de orden $p \times p$ es idempotente sii $\boldsymbol{A}^2 = \boldsymbol{A}$. Claramente \boldsymbol{I}_p y $0_{p \times p}$ son idempotentes y también $\boldsymbol{x} \boldsymbol{x}^T$ con $\boldsymbol{x} \boldsymbol{x}^T = 1$.

Las matrices idempotentes juegan un rol clave en las estadísticas porque pueden considerarse proyecciones y, de hecho, también se denominan matrices de proyección.

Matrices unipotentes

Una matriz \boldsymbol{A} de orden $n \times n$ tal que $\boldsymbol{A}^2 = \boldsymbol{I}_n$ es uninpotente. Ejemplos de este tipo de matrices puede ser todas las matrices identidad y por ejemplo

$$\mathbf{A} = \begin{bmatrix} 1 & x \\ 0 & -1 \end{bmatrix}$$

Matrices similares

Dos matrices son \boldsymbol{A} y \boldsymbol{B} se dicen similares si hay una matriz no singular \boldsymbol{C} tal que $\boldsymbol{C}^{-1}\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}$.

<u>Int</u>roducción

Una matriz \boldsymbol{X} de orden $m \times n$ tiene n columnas, $\boldsymbol{x}_1,, \boldsymbol{x}_n$ (llamados "vectores columnas" de largo m) y m filas (llamadas "vectores filas" de largo n). Se dice que \boldsymbol{x}_1 y \boldsymbol{x}_2 son linealmente independiente si $a_1\boldsymbol{x}_1+a_2\boldsymbol{x}_2=0$, donde a_1 y a_2 son números reales. Esto implica que $a_1=a_2=0$. Un conjunto de $\boldsymbol{x}_1,, \boldsymbol{x}_n$ es linealmente independiente si $\sum a_i\boldsymbol{x}_i=0$, lo que implica que todos los a_i00 , o en otras palabras, ellos son linealmente independientes si no hay combinaciones lineales no triviales de ellos que son iguales a 0.

Definición

El rango columna de X es el máximo número de columnas linealmente independientes de X. El rango fila de X es el máximo número de filas linealmente independientes de X. El rango fila de X es el mismo que el rango columna de X^T .

Existe un teorema que no es sencillo de probar el cual dice que el rango fila y el rango columna son iguales, así nosotros podemos hablar sobre el **rango** de \boldsymbol{X} (expresado como $\rho(\boldsymbol{X})$) sin especificar si corresponde a la fila o a la columna. Por lo anterior entonces $\rho(\boldsymbol{A}) = \rho(\boldsymbol{A}^T)$ y además $\rho(\boldsymbol{A}\boldsymbol{A}^T) = \rho(\boldsymbol{A}^T\boldsymbol{A}) = \rho(\boldsymbol{A}) = \rho(\boldsymbol{A})$ [2].

De acuerdo a la definición anterior, el rango columna de $X \le n$ y el rango fila de $X \le m$, así podemos asumir que $\rho(X) \le \min(m, n)$. El rango de una matriz 0 es cero $(\rho(X) = 0)$ solamente si X = 0.

Recordatorio:

Rango

Número de filas o columnas que son linealmente independientes.

Recordatorio:

Rango

Número de filas o columnas que son linealmente independientes.

¿Que significa que sean linealmente independientes?

Ejemplo 1:

Se tiene a $\mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, un vector en \mathbb{R}^2 de orden $m \times 1$, por tanto si multiplicamos al escalar 0 con el vector \mathbf{A} obtenemos el vector $\mathbf{B} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, el cual es

camos al escalar 0 con el vector \mathbf{A} obtenemos el vector $\mathbf{B} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, el cual es una combinación trivial.

Una combinación trivial es aquella en que todos los escalares que multiplican a un vector (o vectores) son iguales a 0.

Para que no exista combinación trivial basta que al menos 1 escalar sea distinto de 0 y aún así el resultado de la sumatoria sea igual a 0. Esta combinación es llamada "combinación no trivial"

Definición: dependencia lineal

Si tenemos n vectores, entonces estos son linealmente dependientes si existe al menos una combinación no trivial en que el resultado de la sumatoria escalar*vector sea 0, esto es $\alpha_1 * v1 + \alpha_2 * v2 +, ..., \alpha_k * vk = 0$.

Se tiene al vector
$$\mathbf{U} = \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$$
 y al vector $\mathbf{V} = \begin{bmatrix} -9 \\ -12 \\ 6 \end{bmatrix}$. ¿Son linealmente

dependientes?

Ya sabemos que la forma trivial sería multiplicar cada vector por 0 para así obtener el vector de $\vec{0}$ en \mathbb{R}^3 . Pero, ¿existe una forma no trivial?

Definición: dependencia lineal

Si tenemos n vectores, entonces estos son linealmente dependientes si existe al menos una combinación no trivial en que el resultado de la sumatoria escalar*vector sea 0, esto es $\alpha_1 * v1 + \alpha_2 * v2 +, ..., \alpha_k * vk = 0$.

Se tiene al vector
$$\mathbf{U} = \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$$
 y al vector $\mathbf{V} = \begin{bmatrix} -9 \\ -12 \\ 6 \end{bmatrix}$. ¿Son linealmente dependientes?

dependientes?

Una de las formas sería multiplicar el escalar 3 y 1 con los respectivos vectores $U \vee V$

Definición: independencia lineal

Si tenemos n vectores, entonces estos son linealmente independientes si existe una única solución trivial en que el resultado de la sumatoria escalar*vector sea 0, esto es $\alpha_1 * v1 + \alpha_2 * v2+, ..., \alpha_k * vk = 0$.

Se tiene al vector
$$\mathbf{U} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
, al vector $\mathbf{V} = \begin{bmatrix} -3 \\ -2 \\ 8 \end{bmatrix}$ y al vector $\mathbf{Z} = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$.

¿Son linealmente dependientes o indepentientes?

Se tiene al vector
$$\boldsymbol{U} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
, al vector $\boldsymbol{V} = \begin{bmatrix} -3 \\ -2 \\ 8 \end{bmatrix}$ y al vector $\boldsymbol{Z} = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$.

¿Son linealmente dependientes o indepentientes?

Utilización de metódos como el de Gauss-Jordan o el de Gauss u otro método iterativo.

Resumen

- Si hay infinitas soluciones (sistema homogéneo), y tenemos una solución no trivial entonces, los vectores son linealmente depentientes.
- Si hay una solución única trivial entonces los vectores son linealmente independientes.

Ejemplo 2:

Se tiene a $\boldsymbol{X}=\begin{bmatrix}1&3&5\\2&4&6\end{bmatrix}$, una matriz de orden 2×3 , por tanto el rango $\rho(\boldsymbol{X})\leq \min(2,3)=2$, así $\rho(\boldsymbol{X})$ puede ser 1 o 2. Si $\rho(\boldsymbol{X})=1$ entonces las filas de \boldsymbol{X} son linealmente independientes, por ejemplo: existen constantes a_1 y a_2 tal que $a_1(1,3,5)+a_2(2,4,6)=0$. Por lo tanto, nosotros necesitamos $a_1+2a_2=0$, $3a_1+4a_2=0$ y $5a_1+6a_2=0$. Restando 3 veces la primera ecuación desde la segunda nos da $2a_2=0$ así que tenemos $a_1=a_2=0$, lo que nos da finalmente que las filas de \boldsymbol{X} son linealmente independientes y $\rho(\boldsymbol{X})\geq 2$, por tanto $\rho(\boldsymbol{X})=2$.

Ejemplo 3:

Se tiene a $\boldsymbol{X}=\begin{bmatrix}4&6\\6&9\end{bmatrix}$, una matriz de orden 2×2 , por tanto el rango $\rho(\boldsymbol{X})\leq 2$. Si $a_1(4,6)+a_2(6,9)=0$ (por ejemplo haciendo $2a_1+3a_2=0$), entonces tenemos que $4a_1+6a_2=0$ y $6a_1+9a_2=0$, así podemos tener que $a_1=3$ y $a_2=-2$, lo que lleva a que las columnas de \boldsymbol{X} sean linealmente independientes y por lo tanto $\rho(\boldsymbol{X})<2$, pero $\rho(\boldsymbol{X})\geq 1$, así concluimos que $\rho(\boldsymbol{X})=1$.

Ejemplo 4:

Se tiene a $\mathbf{X}=\begin{bmatrix}1&2&3&2\\4&5&6&-1\\5&7&9&1\end{bmatrix}$, una matriz de orden 3×4 , por tanto el

rango $\rho(\mathbf{X}) \leq \min(3,4) = 3$. Mirando la matriz nos damos cuenta que la primera fila más la segunda fila es igual a la tercera fila, así que las filas no son linealmente independientes, por lo tanto $\rho(\mathbf{X}) < 3$.

