Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos. Todos los ejercicios tienen el mismo valor.

Ejercicio 1.-

1. Comprobar que

$$\begin{vmatrix} 1 & 2 & -1 & 0 \\ a & 1 & 0 & 1 \\ 1 & b & -1 & 4 \\ 0 & 1 & 0 & -2 \end{vmatrix} = 2ab.$$

(Este resultado se puede utilizar, si se estima oportuno, en los siguientes apartados).

2. En el \mathbb{R} -espacio vectorial \mathbb{R}^4 , consideremos los subespacios vectoriales

$$V_a\colon \left\{ \begin{array}{l} x_1+2x_2-x_3=0\\ ax_1+x_2+x_4=0 \end{array} \right., \qquad W_b\colon \left\{ \begin{array}{l} x_1+bx_2-x_3+4x_4=0\\ x_2-2x_4=0 \end{array} \right.$$

Se pide:

- a) Estudiar, según los valores de a y b, las dimensiones de los subespacios $V_a \cap W_b$ y $V_a + W_b$. Indicar, si existen, valores de a y b tales que $V_a \oplus W_b = \mathbb{R}^4$.
- b) Hallar una base de \mathbb{R}^4/V_0 (donde V_0 es el subespacio V_a para a=0). Expresar el vector $(1,1,1,0)+V_0$ con coordenadas respecto de esa base.

Ejercicio 2.- Sean $X, Y \subset \mathbb{A}^5(\mathbb{Q})$ los subespacios afines siguientes:

$$X: \begin{cases} x_1 + 2x_2 & -2x_4 - x_5 = 1, \\ x_2 & -x_4 & = 1, \\ x_3 + x_4 & = 1, \\ x_1 + 3x_2 + x_3 - 2x_4 - x_5 = 3, \end{cases} Y = (-1, 0, 1, 0, 0) + \langle \overline{(0, 1, -1, -1, 1)}; \overline{(0, -1, 1, 1, -1)} \rangle.$$

- 1. Calculad las dimensiones de X e Y así como su posición relativa.
- 2. Hallad unas ecuaciones implícitas de X + Y.
- 3. Probad si que $r \subset \mathbb{A}^5(\mathbb{Q})$ es una recta que corta a X y a Y entonces $r \subset X + Y$ y deducid, usando el apartado anterior, que hay a lo sumo un $\alpha \in \mathbb{Q}$ tal que existe alguna recta r que corta a X y a Y y pasa por el punto

$$Q = (1, 1, \alpha, 1, 1).$$

4. Calculad la recta $r \subset \mathbb{A}^5(\mathbb{Q})$ del apartado anterior para el único valor de $\alpha \in \mathbb{Q}$ para el cual existe y hallad los puntos de intersección $r \cap X$ y $r \cap Y$.

Ejercicio 3.- Se considera $V = \mathbb{R}^4$ con su estructura natural de espacio vectorial y $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ la base canónica en V. Las coordenadas y ecuaciones se darán respecto de esa base. Sea $f: V \to V$ el endomorfismo definido por las igualdades $f(\mathbf{v}_1) = \mathbf{v}_1 - \mathbf{v}_2$, $f(\mathbf{v}_2) = \mathbf{v}_2 - \mathbf{v}_3$, $f(\mathbf{v}_3) = \mathbf{v}_3 - \mathbf{v}_4$ y $f(\mathbf{v}_4) = -2\mathbf{v}_1 + 2\mathbf{v}_4$. Se pide:

- 1. Hallar una base de ker(f) y unas ecuaciones implícitas de Im(f).
- 2. Sea L el subespacio vectorial de V de ecuación $x_1 2x_2 + x_3 = 0$. Probar que $\ker(f) \subset L$ y hallar una base de f(L).
- 3. Sea $L' = \langle f(2,1,0,0), f(0,1,2,0), f(0,0,0,1) \rangle$. Hallar unas ecuaciones implícitas de $f^{-1}(L')$.
- 4. ¿Se verifica la igualdad $L = f^{-1}(L')$? Responder razonadamente.

Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos. Todos los ejercicios tienen el mismo valor.

Ejercicio 4.- En el espacio afín $\mathbb{A}^3(\mathbb{R})$ se consideran las aplicaciones afines $f_a \colon \mathbb{A}^3(\mathbb{R}) \to \mathbb{A}^3(\mathbb{R})$ cuya matriz, respecto del sistema de referencia canónico, es

$$M_a = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & a \\ 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 2 \end{array}\right).$$

Se pide:

- 1. Hallar los valores de a para los cuales el endomorfismo $\overrightarrow{f_a} \colon \mathbb{R}^3 \to \mathbb{R}^3$ es diagonalizable, calculando cuando sea posible una base respecto de la cual su matriz sea diagonal.
- 2. Para a = 1 calcular los puntos y planos fijos de f_1 .
- 3. Para a = 1 calcular las rectas fijas de f_1 .

Ejercicio 5.- En el espacio afín $\mathbb{A}^3(\mathbb{R})$ y respecto del sistema de referencia canónico se consideran las variedades afines

$$L_1: (0,0,-1) + \langle \overline{(1,1,0)}, \overline{(0,1,1)} \rangle,$$

 $L_2: 1 - 2x_1 + 2x_2 - 2x_3 = 0.$

Se pide:

- 1. Estudiar la posición relativa de L_1 y L_2
- 2. Calcular la perpendicular común a L_1 y L_2 que pasa por el punto (0,0,0) y probar que dicha variedad afín está contenida en una variedad afín de dimensión 2 que es perpendicular a L_1 y L_2 y que pasa por los puntos (0,0,0) y (1,1,1).
- 3. Escoger dos vectores $\mathbf{u}_1 \in D(L_1)$ y $\mathbf{u}_2 \in D(L_1)^{\perp}$. Hallar una base ortonormal del espacio vectorial \mathbb{R}^3 que contenga una base ortonormal del subespacio $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$.

Ejercicio 6.- Sea el espacio afín euclídeo $\mathbb{A}^2(\mathbb{R})$, y sea $f: \mathbb{A}^2(\mathbb{R}) \longrightarrow \mathbb{A}^2(\mathbb{R})$ una aplicación afín, distinta de la identidad, tal que para todo par de puntos punto P, Q de $\mathbb{A}^2(\mathbb{R})$ se verifica la condición $\overrightarrow{PQ} = \overrightarrow{f(P)f(Q)}$. Se pide:

- 1. Probar que f es movimiento y clasificarlo.
- 2. Suponiendo que f(0,0) = (1,2), dar la matriz de f respecto del sistema de referencia métrico canónico.
- 3. Suponiendo que f(0,0) = (1,2), descomponer f como producto de simetrías axiales.