```
<110> Ajinomoto Co., Inc.
```

- 5 <120> A method for improving the thermostability of a protein, a protein having improved thermostability and a nucleic acid sequence encoding the protein
 - <130> OP01088

<140> <141>

<150> JP 2000-201920

<151> 2000-07-04

<150> JP 2001-164332

<151> 2001-05-31

20

<160> 104

<170> PatentIn Ver. 2.1

25 <210> 1

<211> 9

<212> PRT

<213> Sulfolobus sp.

Tyr Asp Met Tyr Ala Asn Ile Arg Pro 1

<210> 2 <211> 9

5

<212> PRT

<213> Sulfolobus sp.

.0 <400> 2

39897407 770301 0 Ile Ala Lys Val Gly Leu Asn Phe Ala

1

<210> 3

<211> 8

<212> PRT

<213> Sulfolobus sp.

<400> 3

1

Val His Gly Ala Ala Phe Asp Ile

25 <210> 4

her.

<211> 6

<212> PRT

<213> Sulfolobus sp.

```
Met Met Tyr Glu Arg Met
 1
                  5
```

<210> 5

⟨211⟩ 9

<212> PRT

<213> Thermus thermophilus

0 <400> 5

1

Gln Asp Leu Phe Ala Asn Leu Arg Pro 5

<210> 6 <211> 9

<212> PRT

<213> Thermus thermophilus

20 <400> 6

1

Val Ala Arg Val Ala Phe Glu Ala Ala

<210> 7 25

<211> 8

<212> PRT

<213> Thermus thermophilus

Val His Gly Ser Ala Pro Asp Ile 1 5

5 <210> 8

⟨211⟩ 6

<212> PRT

<213> Thermus thermophilus

0 <400> 8

Met Met Leu Glu His Ala

1

<210> 9

<211> 9

<212> PRT

<213> Bacillus subtilis

<400> 9

1

Leu Asp Leu Phe Ala Asn Leu Arg Pro

25 <210> 10

<211> 9

<212> PRT

<213> Bacillus subtilis

```
Val Ile Arg Glu Gly Phe Lys Met Ala
1 5
```

5 <210> 11 <211> 8 <212> PRT <213> Bacillus subtilis

> <400> 11 Val His Gly Ser Ala Pro Asp Ile 1 5

<210> 12 <211> 6 <212> PRT <213> Bacillus subtilis

) <400> 12 Met Leu Leu Arg Thr Ser 1 5

Phe Lys Leu Phe Ser Asn Leu Arg Pro

1

5 <210> 14

<211> 9

<212> PRT

<213> Escherichia coli

00007107.07601 <400> 14

1

Ile Ala Arg Ile Ala Phe Glu Ser Ala

<210> 15

<211> 8

<212> PRT

<213> Escherichia coli

<400> 15 Jui .--

1

Ala Gly Gly Ser Ala Pro Asp Ile

25 <210> 16

<211> 6

<212> PRT

<213> Escherichia coli

```
Leu Leu Leu Arg Tyr Ser
 1
                  5
```

<210> 17

⟨211⟩ 9

<212> PRT

<213> Agrobacterium tumefaciens

<400> 17

Leu Glu Leu Phe Ala Asn Leu Arg Pro 5

<210> 18

<211> 9

<212> PRT

<213> Agrobacterium tumefaciens

20 <400> 18

1

Ile Ala Ser Val Ala Phe Glu Leu Ala 5

25 <210> 19

<211> 8

<212> PRT

<213> Agrobacterium tumefaciens

```
Val His Gly Ser Ala Pro Asp Ile
1 5
```

5 <210> 20

<211> 6

<212> PRT

<213> Agrobacterium tumefaciens

<400> 20

Met Cys Leu Arg Tyr Ser

1 5

<210> 21

THERE'S ANY ZORFO

.2tt 20 <211> 9

<212> PRT

<213> Saccharomyces cerevisiae

<400> 21

1

Leu Gln Leu Tyr Ala Asn Leu Arg Pro

25 <210> 22

<211> 9

<212> PRT

<213> Saccharomyces cerevisiae

Ile Thr Arg Met Ala Ala Phe Met Ala 1

<210> 23

⟨211⟩ 8

<212> PRT

<213> Saccharomyces cerevisiae

0 <400> 23

1

Cys His Gly Ser Ala Pro Asp Leu

<210> 24

<211> 6

<212> PRT

<213> Saccharomyces cerevisiae

5

<400> 24

1

100

Met Met Leu Lys Leu Ser

<210> 25 25

<211> 9

<212> PRT

<213> Neurospora crassa

Leu Gly Thr Tyr Gly Asn Leu Arg Pro

5 <210> 26

⟨211⟩ 9

<212> PRT

<213> Neurospora crassa

<400> 26

Ile Ala Arg Leu Ala Gly Phe Leu Ala 1 5

<210> 27

<211> 8

<212> PRT

(213) Neurospora crassa

<400> 27

1

Ile His Gly Ser Ala Pro Asp Ile

25 <210> 28

<211> 6

<212> PRT

<213> Neurospora crassa

```
Met Met Leu Arg Tyr Ser
         1
     <210> 29
       <211> 9
       <212> PRT
       <213> Saccharomyces cerevisiae
       <400> 29
 Phe Gly Leu Phe Ala Asn Val Arg Pro
  m 1
9
1
1
5 <210> 30
     <211> 9
      <212> PRT
      <213> Bos taurus
    <400> 30
     Val Ile Arg Tyr Ala Phe Glu Tyr Ala
        1
25 \ <210> 31
     <211> 8
     <212> PRT
     <213> Saccharomyces cerevisiae
```

10

30

```
Val His Gly Ser Ala Pro Asp Ile
1 5
```

5 <210> 32

<211> 6

<212> PRT

<213> Saccharomyces cerevisiae

19 (400) 32

Met Met Leu Asn His Met

1 5

⟨210⟩ 33

<211> 9

<212> PRT

<213> Bos taurus

(400) 33

1

Phe Asp Leu Tyr Ala Asn Val Arg Pro

25 <210> 34

<211> 9

<212> PRT

<213> Bos taurus

Ile Ala Glu Phe Ala Phe Glu Tyr Ala

5 <210> 35

1

<211> 8

<212> PRT

<213> Bos taurus

10 <400> 35

Val His Gly Ser Ala Pro Asp Ile

1

<210> 36

<211> 6

<212> PRT

<213> Bos taurus

20 <400> 36

Met Met Leu Arg His Met

1

25 <210> 37

<211> 9

<212> PRT

<213> Bacillus subtilis

<210> 38

<211> 9

<212> PRT

<213> Bacillus subtilis

) <400> 38

Leu Val Arg Ala Ala Ile Asp Tyr Ala

1

<210> 39

COECO, TOTOSOL

⟨211⟩ 8

<212> PRT

<213> Bacillus subtilis

<400> 39

Thr His Gly Thr Ala Pro Lys Tyr

1

25 <210> 40

<211> 6

<212> PRT

<213> Bacillus subtilis

```
Leu Leu Leu Glu His Leu
 1
```

<210> 41

<211> 9

<212> PRT

<213> Escherichia coli

<400> 41 10

> Leu Asp Leu Tyr Ile Cys Leu Arg Pro 1 5

<211> 9

<212> PRT

<213> Escherichia coli

<400> 42

1

Leu Val Arg Ala Ala Ile Glu Tyr Ala

25 <210> 43

<211> 8

<212> PRT

<213> Escherichia coli

Thr His Gly Thr Ala Pro Lys Tyr
1 5

5 <210> 44

<211> 6

<212> PRT

<213> Escherichia coli

<400> 44

Met Met Leu Arg His Met

1

<210> 45

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:predicted
ancestor sequence

<220>

25 <221> UNSURE

<222> (1)

<220>

<221> UNSURE

30 <222> (4)

```
CORRECTION CONTRACT
```

....

```
<400> 45
      Xaa Asp Leu Xaa Ala Asn Leu Arg Pro
         1
  5
       <210> 46
       <211> 10
       <212> PRT
       <213> Artificial Sequence
       <220>
       <223> Description of Artificial Sequence:predicted
             ancestor sequence
       <220>
       <221> UNSURE
       <222> (4)
20
       <220>
       <221> UNSURE
       <222> (6)
       <220>
 25
      <221> UNSURE
       <222> (9)
       <400> 46
       Ile Ala Arg Xaa Ala Xaa Phe Glu Xaa Ala
         1
                         5
                                             10
```

```
03847107.070301
```

25

30

....

```
<210> 47
    <211> 8
5
   <212> PRT
    <213> Artificial Sequence
    <220>
    <223> Description of Artificial Sequence:predicted
0
          ancestor sequence
    <400> 47
    Val His Gly Ser Ala Pro Asp Ile
      1
                      5
    <210> 48
    <211> 6
    <212> PRT
    <213> Artificial Sequence
    <220>
   <223> Description of Artificial Sequence:predicted
          ancestor sequence
   <220>
   <221> UNSURE
   <222> (4)..(6)
```

```
10 05507 107 070300
```

25

5

```
Met Met Leu Xaa Xaa Xaa
  1
                  5
<210> 49
<211> 1014
<212> DNA
<213> Sulfolobus sp.
<220>
<221> CDS
<222> (1).. (1011)
<400> 49
atg ggc ttt act gtt gct tta ata caa gga gat gga att gga cca gaa
                                                                   48
Met Gly Phe Thr Val Ala Leu Ile Gln Gly Asp Gly Ile Gly Pro Glu
                  5
                                      10
                                                          15
  1
ata gta tct aaa tct aag aga ata tta gcc aaa ata aat gag ctt tat
Ile Val Ser Lys Ser Lys Arg Ile Leu Ala Lys Ile Asn Glu Leu Tyr
                                                      30
             20
                                  25
tot tig oot ato gaa tat att gaa gia gaa got ggt gat ogt goa tig
Ser Leu Pro Ile Glu Tyr Ile Glu Val Glu Ala Gly Asp Arg Ala Leu
                              40
                                                  45
         35
                                                                    192
```

gca aga tat ggt gaa gca ttg cca aaa gat agc tta aaa atc att gat 192 Ala Arg Tyr Gly Glu Ala Leu Pro Lys Asp Ser Leu Lys Ile Ile Asp 50 55 60

	aag	ggc	gat	ata	att	tte	g aaa	a gg	cca	gta	a gga	a gaa	a tec	gc	t gc	a gac	240
	Lys	Ala	a Asp	11e	11e	Lei	ı Lys	s Gly	Pro	Va:	l Gly	/ G11	ı Sei	A1:	a Ala	a Asp	ı
	65	5				70)				78	5				80	
5	gtt	gtt	gtc	aag	tta	aga	caa	att	tat	gat	tate	tat	gcc	aat	tati	aga	288
	Val	Val	Va1	Lys	Leu	Arg	Gln	116	Tyr	Asp	Met	Туг	· Ala	Ası	11e	Arg	
					85					90)				95	5	
	cca	gca	aag	tct	ato	ccg	gga	ata	gat	act	aaa	tat	ggt	aat	gtt	gat	336
)	Pro	Ala	Lys	Ser	Ile	Pro	G1y	I1e	Asp	Thr	Lys	Tyr	G1y	Asn	Val	Asp	
				100					105					110			
	ata	ctt	ata	gtg	aga	gaa	aat	act	gag	gat	tta	tac	aaa	ggt	ttt	gaa	384
	Ile	Leu	Ile	Va1	Arg	G1u	Asn	Thr	Glu	Asp	Leu	Tyr	Lys	Gly	Phe	Glu	
			115					120					125				
	cat	att	gtt	tct	gat	gga	gta	gcc	gtt	ggc	atg	aaa	atc	ata	act	aga	432
	His	I1e	Val	Ser	Asp	G1 y	Val	Ala	Val	Gly	Met	Lys	Ile	Ile	Thr	Arg	
		130					135					140					
20																	
	ttt	gct	tct	gag	aga	ata	gca	aaa	gta	ggg	cta	aac	ttt	gca	tta	aga	480
			Ser														
	145					150					155					160	
25	agg	aga	aag	aaa	gta	act	tgt	gtt	cat	aag	gct	aac	gta	atg	aga	att	528
			Lys											_	_		
					165					170					175		
	act	gat	ggt	tta	ttc	gct	gaa	gca	tgc	aga	tct	gta	tta	aaa	gga	aaa	576
30			Gly														

	gta	gaa	tat	tca	gaa	atg	tat	gta	gac	gca	gca	gcg	gct	aat	tta	gta	624
		Glu															
5			195					200					205				
	aga	aat	cct	caa	atg	ttt	gat	gta	att	gta	act	gag	aac	gta	tat	gga	672
	Arg	Asn	Pro	Gln	Met	Phe	Asp	Val	Ile	Val	Thr	G1u	Asn	Val	Tyr	G1y	
		210					215					220					
1																	
400	gac	att	tta	agt	gac	gaa	gct	agt	caa	att	gcg	ggt	agt	tta	ggt	ata	720
1	Asp	Ile	Leu	Ser	Asp	Glu	Ala	Ser	G1n	I1e	Ala	Gly	Ser	Leu	Gly	Ile	
	225					230					235					240	
1																	
ş		ccc															768
	A1a	Pro	Ser	Ala	Asn	Ile	G1y	Asp	Lys		Ala	Leu	Phe	Glu		Val	
<i>i</i>					245					250					255		
s .																	016
		ggt															816
20	His	G1y	Ala		Phe	Asp	116	Ala		Lys	ASII	116	Gly	270	110	1111	
				260					265					210			
		ttt		-++	+ 0 +	at o	ogt	ata	ata	tat	raa	202	ato	tat.	gag	cta	864
		Phe															001
95	AIS	rne	275	Leu	561	Val	561	280	me c	1,1	Olu		285	.,-			
25			210					200									
	tet	aat	gar	σa+	202	tat	ata	aaa	get	tca	aga	gct	tta	gaa	aac	gct	912
		Asn															

ata tac tta gtc tac aaa gag aga aaa gcg tta acc cca gat gta ggt Ile Tyr Leu Val Tyr Lys Glu Arg Lys Ala Leu Thr Pro Asp Val Gly ggt aat gcg aca act gat gac tta ata aat gaa att tat aat aag cta Gly Asn Ala Thr Thr Asp Asp Leu Ile Asn Glu Ile Tyr Asn Lys Leu ggc taa G₁y <210> 50 <211> 337 <212> PRT <213> Sulfolobus sp. <400> 50 Met Gly Phe Thr Val Ala Leu Ile Gln Gly Asp Gly Ile Gly Pro Glu Ile Val Ser Lys Ser Lys Arg Ile Leu Ala Lys Ile Asn Glu Leu Tyr Ser Leu Pro Ile Glu Tyr Ile Glu Val Glu Ala Gly Asp Arg Ala Leu Ala Arg Tyr Gly Glu Ala Leu Pro Lys Asp Ser Leu Lys Ile Ile Asp

Lys 65	Ala	Asp	Ile	Ile	Leu 70	Lys	G1y	Pro	Val	Gly 75	Glu	Ser	Ala	Ala	Asp 80
	Val	Val	Lys	Leu		G1n	I1e	Tyr	Asp	Met	Tyr	Ala	Asn	Ile	Arg
				85					90					95	
Pro	Ala	Lys	Ser 100	Ile	Pro	Gly	I1e	Asp 105	Thr	Lys	Tyr	Gly	Asn 110	Val	Asp
Ile	Leu	Ile	Val	Arg	Glu	Asn	Thr	Glu	Asp	Leu	Tyr	Lys	G1y	Phe	Glu
		115					120					125			
His	Ile 130	Val	Ser	Asp	Gly	Val	Ala	Val	G1y	Met	Lys 140	Ile	Ile	Thr	Arg
Phe	Ala	Ser	Glu	Arg	Ile	Ala	Lys	Va1	G1 y	Leu	Asn	Phe	Ala	Leu	Arg
145					150					155					160
Arg	Arg	Lys	Lys	Val	Thr	Cys	Val	His	Lys 170		Asn	Va1	Met	Arg 175	Ile
Thr	Asp	G1y	Leu 180	Phe	Ala	G1u	Ala	Cys 185	Arg	Ser	Val	Leu	Lys 190	Gly	Lys
Val	Glu	Tyr 195	Ser	G1u	Met	Tyr	Val	Asp	Ala	Ala	Ala	Ala 205	Asn	Leu	Va1
Arg	Asn 210	Pro	G1n	Met	Phe	Asp 215		Ile	Va1	Thr	G1u 220	Asn	Val	Tyr	G1y

Asp	Ile	Leu	Ser	Asp	Glu	Ala	Ser	G1n	Ile	Ala	Gly	Ser	Leu	Gly	Ile
225					230					235					240
												D1	0.1	Б	1/ 1
Ala	Pro	Ser	Ala		Ile	Gly	Asp	Lys		Ala	Leu	Phe	Glu	Pro	Val
				245					250					255	
			. 1	DI		т1.	41-	C1	1	1 an	110	G1 v	Aen	Pro	Thr
His	Gly	Ala		Phe	Asp	11e	Ala	265	Lys	ASII	116	GIY	270	Pro	7111
			260					200					210		
Ala	Phe	Leu	Leu	Ser	Va1	Ser	Met	Met	Tyr	Glu	Arg	Met	Tyr	Glu	Leu
MIG	THE	275	Боа	001			280		,			285			
Ser	Asn	Asp	Asp	Arg	Tyr	Ile	Lys	Ala	Ser	Arg	Ala	Leu	Glu	Asn	Ala
	290					295					300				
I1e	Tyr	Leu	Va1	Tyr	Lys	Glu	Arg	Lys	Ala	Leu	Thr	Pro	Asp	Va1	Gly
305					310					315					320
G1y	Asn	Ala	Thr	Thr	Asp	Asp	Leu	He		Glu	Ile	Tyr	Asn	Lys	Leu
				325					330					335	
Gly															
<21	0> 5	1													
	1> 4														
<21	2> D	NA													
(21	3> A	rtif	icia	1 Se	auen	ce									

		<223>	Description of Artificial Sequence:primer for site	
			directed mutagenesis	
	5			
		<400>	51	
		tttgc	tggtc ttaagttggc ataaagatca taaatttgtc	40
177	0	<210>	52	
1		<211>	34	
13		<212>	DNA	
out juk		<213>	Artificial Sequence	
5				
-	.5	<220>		
3		<223>	Description of Artificial Sequence:primer for site	
DESDYINK DYCHO			directed mutagenesis	
Ave		<400>	52	
	20	agttt	agood taogotogog attototoag aago	34
		<210>		
		<211>		
	25	<212>		
		<213>	Artificial Sequence	
		<220>		
		<223>	Description of Artificial Sequence:primer for site	
	30		directed mutagenesis	

<220>

	<400> 53	
	aatgcaaagt ttagcgctac ttttgctatt c	31
5		
	⟨210⟩ 54	
	⟨211⟩ 33	
	<212> DNA	
	<213> Artificial Sequence	
10		
	⟨220⟩	
	<pre><223> Description of Artificial Sequence:primer for site</pre>	
	directed mutagenesis	
.5	⟨400⟩ 54	
	tgcaaagttt agcgctactc ttgctattct ctc	33
	<210> 55	
20	<211> 32	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> Description of Artificial Sequence:primer for site	
	directed mutagenesis	
	/400\ FF	
	<400> 55	20
00	tecageaatg teeggageac tacegtgtae tg	32
30		

```
<211> 29
         <212> DNA
        <213> Artificial Sequence
         <220>
         <223> Description of Artificial Sequence:primer for site
                directed mutagenesis
400> 56
    tcatacattc tctcgagcat catacttac
    ;
;    <210> 57
    <211> 13
    <212> PRT
    <213> Neurospora crassa
         <400> 56
        <400> 57
        Asp Pro Ile Thr Asp Glu Ala Leu Asn Ala Ala Lys Ala
           1
                                5
                                                        10
        <210> 58
        <211> 13
        <212> PRT
        <213> Neurospora crassa
```

<210> 56

5

10

17

1 de

25

30

1 7. . . .

Val Trp Ser Leu Asp Lys Ala Asn Val Leu Ala Ser Ser 1 5 10

5 <210> 59

⟨211⟩ 7

<212> PRT

<213> Neurospora crassa

<400> 59

Lys Thr Lys Asp Leu Gly Gly

5

<210> 60

<211> 13

<212> PRT

<213> Saccharomyces cerevisiae

20 <400> 60

Val Pro Leu Pro Asp Glu Ala Leu Glu Ala Ser Lys Lys

1

5

10

25 <210> 61

<211> 13

<212> PRT

<213> Saccharomyces cerevisiae

```
Ile Trp Ser Leu Asp Lys Ala Asn Val Leu Ala Ser Ser 1 5 10
```

5 <210> 62

<211> 7

<212> PRT

<213> Saccharomyces cerevisiae

0 <400> 62

Arg Thr Gly Asp Leu Gly Gly

1 5

<210> 63

19887127 . 771111

Att.

20

<211> 13

<212> PRT

<213> Agrobacterium tumefaciens

<400> 63

Val Ala Ile Ser Asp Ala Asp Asn Glu Lys Ala Leu Ala

1 5

25 <210> 64

<211> 13

<212> PRT

<213> Agrobacterium tumefaciens

30 <400> 64

Val Cys Ser Met Glu Lys Arg Asn Val Met Lys Ser Gly
1 5 10

5 <210> 65

<211> 7

<212> PRT

<213> Agrobacterium tumefaciens

10 <400> 65

1

Arg Thr Ala Asp Ile Met Ala

5 <210> 66

DOSEDIES TOFORIAL

<211> 13

<212> PRT

<213> Bacillus subtilis

3 <400> 66

Asn Pro Leu Pro Glu Glu Thr Val Ala Ala Cys Lys Asn

1

5

10

25 <210> 67

<211> 13

<212> PRT

<213> Bacillus subtilis

Val Thr Ser Val Asp Lys Ala Asn Val Leu Glu Ser Ser

10

1

5 <210> 68

<211> 6

<212> PRT

<213> Bacillus subtilis

<400> 68

Arg Thr Arg Asp Leu Ala

5 1

<210> 69

<211> 13

<212> PRT

<213> Escherichia coli

<400> 69

blitte

Gln Pro Leu Pro Pro Ala Thr Val Glu Gly Cys Glu Gln

10 5 1

25 <210> 70

<211> 13

<212> PRT

<213> Escherichia coli

Val Thr Ser Ile Asp Lys Ala Asn Val Leu Gln Ser Ser

1 5 10

5 <210> 71

<211> 7

<212> PRT

<213> Escherichia coli

(400) 71

Arg Thr Gly Asp Leu Ala Arg

5

<210> 72

00897107.070301

<211> 13

<212> PRT

<213> Thermus thermophilus

.0 <400> 72

Glu Pro Phe Pro Glu Pro Thr Arg Lys Gly Val Glu Glu

1 5 10

25 <210> 73

<211> 13

<212> PRT

<213> Thermus thermophilus

Val Val Ser Val Asp Lys Ala Asn Val Leu Glu Val Gly 10 1

<210> 74 5 <211> 9

<212> PRT

<213> Thermus thermophilus

1.0 <400> 74 07207.07.070304 Glu Thr Pro Pro Pro Asp Leu Gly Gly

1

<210> 75

<211> 13

<212> PRT

<213> Sulfolobus sp.

<400> 75 20

Glu Ala Leu Pro Lys Asp Ser Leu Lys Ile Ile Asp Lys

10 1

<210> 76 25

<211> 13

<212> PRT

<213> Sulfolobus sp.

Val Thr Cys Val His Lys Ala Asn Val Asn Arg Ile Thr 10

5 1

<210> 77 5

<211> 9

<212> PRT

<213> Sulfolobus sp.

) <400> 77

> Lys Ala Leu Thr Pro Asp Val Gly Gly 5

1

<210> 78

<211> 13

<212> PRT

<213> Saccharomyces cerevisiae

20 <400> 78

Thr Thr Ile Pro Asp Pro Ala Val Gln Ser Ile Lys Thr

5 1

25 <210> 79

<211> 13

<212> PRT

<213> Saccharomyces cerevisiae

30 <400> 79

Val Ser Ala Ile His Lys Ala Asn Ile Asn Gln Lys Thr

5 <210> 80

<211> 9

<212> PRT

<213> Saccharomyces cerevisiae

10 <400> 80

1

Glu Asn Arg Thr Gly Asp Leu Ala Gly

15 <210> 81

TELEBRO CONCERSES

<211> 13

<212> PRT

<213> Bos taurus

20 <400> 81

Trp Met Ile Pro Pro Glu Ala Lys Glu Ser Asn Asp Lys

1

25 <210> 82

<211> 13

<212> PRT

<213> Bos taurus

30 <400> 82

Val Thr Ala Val His Lys Ala Asn Ile Asn Arg Met Ser 1 10

- 5 <210> 83

<211> 9

<212> PRT

<213> Bos taurus

. 10 <400> 83

> Asn Met His Thr Pro Asp Ile Gly Gly 5

1

<210> 84

C

<211> 13

<212> PRT

<213> Bacillus subtilis

<400> 84 20

Glu Trp Leu Pro Ala Glu Thr Leu Asp Val Ala Arg Glu

1 5 10

<210> 85 25

<211> 13

<212> PRT

<213> Bacillus subtilis

Val Thr Leu Val His Lys Gly Asn Ile Asn Lys Phe Thr 1 5 10

5 <210> 86

<211> 9

<212> PRT

<213> Bacillus subtilis

10 <400> 86

1

Arg Val Leu Thr Gly Asp Val Val Gly

.

15 <210> 87

<211> 13

<212> PRT

<213> Escherichia coli

20 <400> 87

Val Trp Leu Pro Ala Glu Thr Leu Asp Leu Ile Arg Glu

1

5

10

25 <210> 88

<211> 13

<212> PRT

<213> Escherichia coli

Val Thr Leu Val His Lys Gly Asn Ile Asn Lys Phe Thr 1 5 10

<210> 89

<211> 8

<212> PRT

<213> Escherichia coli

<400> 89

1

Val Val Thr Tyr Asp Phe Ala Arg

<211> 19

<212> DNA

<213> Artificial Sequence

<220> 20

> <223> Description of Artificial Sequence:oligonucleotide for site directed mutagenesis

<400> 90

25 ctagttattg ctcagcggt 19

<210> 91

<211> 20

√ 30 <212> DNA

<213> Artificial Sequence ⟨220⟩ <223> Description of Artificial Sequence:oligonucleotide 5 for site directed mutagenesis <400> 91 20 taatacgact cactataggg 10 0.0897127 15 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:oligonucleotide for site directed mutagenesis 20 <400> 92 20 gggctcgggc aagggctcgc <210> 93 25 <211> 21 <212> DNA <213> Artificial Sequence <220> 30 <223> Description of Artificial Sequence:oligo

nucleotide for site directed mutagenesis

<400> 93 21 aggtccgggg tcggggtctc c 5 <210> 94 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:oligonucleotide for site directed mutagenesis <400> 94 28 cttgtccacg ctcgtcacgt gcttcctg <210> 95 20 <211> 32 <212> PRT <213> Sulfolobus sp. 25 <400> 95 Val Ile Val Thr Glu Asn Val Tyr Gly Asp Ile Leu Ser Asp Glu Ala 1 5 10 15 Ser Gln Ile Ala Gly Ser Leu Gly Ile Ala Pro Ser Ala Asn Ile Gly 30 20 25 30

...

```
5
          <210> 96
          <211> 6
          <212> PRT
          <213> Sulfolobus sp.
    10
19897157.070301
          <400> 96
         Ala Leu Phe Glu Pro Val
                            5
         <210> 97
         <211> 32
         <212> PRT
         <213> Thermus thermophilus
         <400> 97
         Val Ile Val Thr Thr Asn Met Asn Gly Asp Ile Leu Ser Asp Leu Thr
                            5
            1
                                                10
                                                                     15
         Ser Gly Leu Ile Gly Gly Leu Gly Phe Ala Pro Ser Ala Asn Ile Gly
    25
```

20

```
.0501112.01507
```

```
<210> 98
⟨211⟩ 6
<212> PRT
<213> Thermus thermophilus
<400> 98
Ala Ile Phe Glu Ala Val
                  5
  1
<210> 99
<211> 32
<212> PRT
<213> Bos taurus
<400> 99
Val Leu Val Met Pro Asn Leu Tyr Gly Asp Ile Leu Ser Asp Leu Cys
                                                          15
                   5
                                      10
  1
Ala Gly Leu Ile Gly Gly Leu Gly Val Thr Pro Ser Gly Asn Ile Gly
                                                       30
                                  25
             20
<210> 100
<211> 6
<212> PRT
```

```
<213> Bos taurus
```

<400> 100

Ala Ile Phe Glu Ala Val

5 5 1

<210> 101

<211> 33

<212> PRT 00007107.070303

<213> Saccharomyces cerevisiae

<400> 101

Val Ser Val Cys Pro Asn Leu Tyr Gly Asp Ile Leu Ser Asp Leu Asn

5 1 10 15

Ser Gly Leu Ser Ala Gly Ser Leu Gly Leu Thr Pro Ser Ala Asn Ile

20 25 30

G1y

<210> 102

25 <211> 6

<212> PRT

<213> Saccharomyces cerevisiae

<400> 102

30 Ser IIe Phe Glu Ala Val

<210> 103

5 <211> 32

<212> PRT

<213> Caldococcus noboribetus

<400> 103

10 Val Ile Val Thr Pro Asn Leu Asn Gly Asp Tyr Ile Ser Asp Glu Ala

Asn Ala Leu Val Gly Gly Ile Gly Met Ala Ala Gly Leu Asp Met Gly
20 25 30

210> 104 (210) كالمالية

<211> 6

<212> PRT

<213> Caldococcus noboribetus

25 <400> 104

1

Ala Val Ala Glu Pro Val