

TRIGONOMETRY

Tomo 05 Session 01

Advisory

1. Determine la variación de a, si:

$$2 < \frac{7a - 6}{4} \le 9$$

Resolución

Dato:
$$2 < \frac{7a - 6}{9} \le 9 \dots (1)$$

Piden: a ... (2)

Dando forma de (1) hacia (2):

∴ $a \in < 2; 6$

2. Si $x \in \langle 1; 4 \rangle$, determine variación de: $S = 2x^2 - 7$

Resolución

Dato:
$$x \in (1; 4) \to 1 < x < 4 ... (1)$$

Piden:
$$S = 2x^2 - 7$$
 ... (2)

Dando forma de (1) hacia (2):

$$\begin{array}{c|c}
 & 1 < x < 4 \\
 & 1 < x^{2} < 16 \\
 & 2 < 2x^{2} < 32 \\
 & -7 & -5 < 2x^{2} - 7 < 25
\end{array}$$

$$\therefore S \in \langle -5; 25 \rangle$$

3. Si $\alpha \in IIIC$, determine la variación de: $Q = 3\cos\alpha + 5$

Resolución

Dato: $\alpha \in IIIC \rightarrow -1 < \cos\alpha < 0 \dots$ (1)

Piden: $Q = 3\cos\alpha + 5...$ (2)

Dando forma de (1) hacia (2):

$$-1 < \cos\alpha < 0$$

$$\times 3$$

$$-3 < 3\cos\alpha < 0$$

$$+5$$

$$2 < 3\cos\alpha + 5 < 5$$

$$Q$$

$$0 \in (2:5)$$

4. A partir del gráfico, determine el valor de x.

Resolución

M ∈ CT entonces se cumple:

$$x^2 + y^2 = 1$$

$$x^2 + \left(-\frac{15}{17}\right)^2 = 1$$

$$x^2 + \frac{225}{289} = 1$$

$$x^2 = \frac{64}{289}$$

$$M \in IIIC \rightarrow x: (-)$$
 $x =$

$$x = -\frac{8}{17}$$

5. En una CT ordene en forma decreciente: cos10°, cos 140°, cos 200° y cos310°.

Resolución

Representando en la CT, tenemos:

Ordenando:

 $\cos 10^{\circ} > \cos 310^{\circ} > \cos 140^{\circ} > \cos 200^{\circ}$

6. Determine la suma del Dando forma de (1) hacia (2): mínimo y máximo valores de k, si:

$$sen \beta = \frac{2k-5}{9}, \beta \in \mathbb{R}$$

Resolución

Dato:
$$sen\beta = \frac{2k-5}{9}, \beta \in \mathbb{R}$$

$$\rightarrow -1 \le sen\beta \le 1 \dots (1)$$

Piden $k_{min} y k_{max} ... (2)$

$$-1 \le \underline{\sin \beta} \le 1$$

$$\times 9$$

$$-1 \le \frac{2k - 5}{9} \le 1$$

$$\times 9$$

$$-9 \le 2k - 5 \le 9$$

$$+5$$

$$-4 \le 2k \le 14$$

$$\div 2$$

$$k_{min}$$

$$k_{máx}$$

$$\therefore k_{min} + k_{max} = 5$$

7. En la figura, trace las líneas tangentes de α , β , θ y ϕ y ordene de forma creciente.

RESOLUCIÓN

8. Si $\phi \in IIC$, determine e mayor valor entero de:

$$P = 5 - 3\tan^2 \phi$$

RESOLUCIÓN

Dato: $\phi \in IIC \rightarrow tan\phi < 0 \dots (1)$

Piden: $P = 5 - 3\tan^2 \phi$... (2)

Dando forma de (1) hacia (2):

partir del gráfico, RESOLUCIÓN determine el área de la región sombreada.

Analizando el gráfico:

Como $\alpha \in IIC$ $tan\alpha: (-)$

$$* |tan\alpha| = -tan\alpha$$

$$|\tan \alpha| \rightarrow S_{\Delta} = \frac{\frac{3}{2} \times (-\tan \alpha)}{2}$$

$$\rightarrow S_{\Delta} = \frac{3}{4} \times (-\tan\alpha) \quad . \quad S_{\Delta} = -\frac{3}{4} \tan\alpha u^{2}$$

10. Humberto tiene un jardín en RESOLUCIÓN forma triangular como muestra en la figura. Calcule el área de dicho jardín.

Analizando el gráfico:

$$\therefore S_{\Delta} = \operatorname{sen}\beta(1 + \cos\beta) \, \mathrm{m}^2$$

MUCHAS GRACIAS POR TU ATENCIÓN Tu curso amigo Trigonometría