Optimisation Linéaire - TD 3

Algorithme de simplexe Résolution des problèmes avec membres droits négatifs

Exercice 1. Trouver une solution initiale pour le problème \mathcal{P}_1 donné ci-dessous. Résoudre ce problème d'optimisation linéaire.

$$\mathcal{P}_1: \max x_1 - 3x_2 \\ -x_1 + x_2 \le 5 \\ 4x_1 + x_2 \le 25 \\ -x_1 - 2x_2 \le -6 \\ x_1, x_2 \ge 0$$

Corrigé:

La forme standard:

x_0	x_1	x_2	x_3	x_4	x_5	b
0	1	-3	0	0	0	0
0	-1	1	1	0	0	5
0	4	1	0	1	0	25
0	-1	-2	0	0	1	-6

Il faut ajouter $-x_0$ à chaque contrainte à membre droit négatif et maximiser $-x_0$. Donc le problème auxiliaire est le suivant.

x_0	x_1	x_2	x_3	x_4	x_5	b
-1	0	0	0	0	0	0
0	-1	1	1	0	0	5
0	4	1	0	1	0	25
-1*	-1	-2	0	0	1	-6

Le pivot est forcément dans la colonne de x_0 et de la ligne à b le plus négatif (contrainte 3). Il est noté par * dans ce tableau qui n'a pas la forme habituelle puisqu'il comprend (au moins) un membre de droite négatif. Par conséquent le tableau doit d'abord subir le pivotage.

1ère iteration :

$$v_e = x_1 , c_a = 3 , v_s = x_0$$

2ème iteration:

x_0	x_1	x_2	x_3	x_4	x_5	b
-1	0	0	0	0	0	0
1	0	3	1	0	-1	11
-4	0	-7	0	1	4	1
1	1	2	0	0	-1	6

La phase initiale est terminé avec $x_0 = 0$, donc il existe bien une solution du problème initial. $(x_0, x_1, x_2, x_3, x_4, x_5) = (0, 6, 0, 11, 1, 0)$

Ici on remarque que les colonnes correspondant à la matrice identité, celles de x_1 , x_3 et x_4 indiquent que ces variables ont comme valeur celles des membres de droite de la ligne où apparaissent leur seul élément à 1: ainsi $x_1 = 6$, etc...

Alors en ignorant x_0 (c.à.d. en mettant à zéro tous les éléments de la colonne 0) et reprenant la fonction objectif originelle on résoudra le problème initial.

Naturellement, on peut vérifier que $(x_1, x_2) = (6, 0)$ vérifie les contraintes originelles en forme d'inégalité et que, mieux encore, $(x_0, x_1, x_2, x_3, x_4, x_5) = (0, 6, 0, 11, 1, 0)$ vérifie à l'égalité toutes les contraintes de la forme standard du problème auxiliaire.

Problème Initial démarrant du sommet trouvé :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	1	-3	0	0	0	0
0	0	3	1	0	-1	11
0	0	-7	0	1	4	1
0	1*	2	0	0	-1	6

$$v_e = x_1 , c_a = 3 , v_s = x_1.$$

Puisqu'il y a des variables apparaissant avec un coefficient non nul dans les colonnes de la matrice identité il faut commencer par des pivotages. Ceci peut paraître bizarre mais en fait correspond à mettre en conformité la fonction objectif que l'on vient de changer. La fonction onjectif ne doit pas contenir les variables de base. Ici on n'a que x_1 dans ce cas. S'il y en avait plusieurs (parmi les variables structurelles, car les variables d'écart sont naturellement inexistantes dans la fonction objectif originelle) il faudra faire cette opération avec chacune d'elles. Cela donne :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	0	-5	0	0	1	-6
0	0	3	1	0	-1	11
0	0	-7	0	1	4*	1
0	1	2	0	0	-1	6

$$v_e = x_5, c_a = 2, v_s = x_4.$$

Le seul candidat comme pivot est le 4 dans la colonne de x_5 En divisant la ligne 2 par 4 on obtient :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	0	-5	0	0	1	-6
0	0	3	1	0	-1	11
0	0	-7/4	0	1/4	1*	1/4
0	1	2	0	0	-1	6

Après les opérations entre les lignes on obtient :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	0	-13/4	0	-1/4	0	-25/4
0	0	5/4	1	-1/4	0	45/4
0	0	-7/4	0	1/4	1*	1/4
0	1	1/4	0	1/4	0	25/4

Algorithme est terminé avec $(x_0, x_1, x_2, x_3, x_4, x_5) = (0, 25/4, 0, 45/4, 0, 1/4)$. Cette solution satisfait les contraintes de la forme standard du problème initiale à l'égalité. De même, la restriction de cette solution aux variables structurelles, c'est à dire la solution optimale $(x_1, x_2) = (25/4, 0)$ satisfait les inégalités au sens large de la forme canonique. La fonction objectif vaut 25/4 à l'optimum.

Exercice 2. Résoudre le problème \mathcal{P}_2 suivant en trouvant d'abord une solution initiale :

$$\mathcal{P}_2: \max \quad x_1 + x_2 \\ 5x_1 + x_2 \ge 7 \\ -x_1 + x_2 \le 5 \\ -x_1 - 2x_2 \le -6 \\ x_1, x_2 \ge 0$$

Corrigé:

Mise en forme standard :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	1	1	0	0	0	0
-1	-5	-1	1	0	0	-7
0	-1	1	0	1	0	5
-1	-1	-2	0	0	1	-6

Problème auxiliaire :

x_0	x_1	x_2	x_3	x_4	x_5	b
-1	0	0	0	0	0	0
-1*	-5	-1	1	0	0	-7
0	-1	1	0	1	0	5
-1	-1	-2	0	0	1	-6

$$v_e = x_0 , c_a = 1 , v_s = x_3.$$

Première it rération :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	5	1	-1	0	0	7
1	5	1	-1	0	0	7
0	-1	1	0	1	0	5
0	4*	-1	-1	0	1	1

$$v_e = x_1 , c_a = 3 , v_s = x_5.$$

Seconde itération :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	0	-1/4	1/4	0	-5/4	23/4
1	0	-1/4	1/4*	0	-5/4	23/4
0	0	3/4				
0	1	-1/4	-1/4	0	1/4	1/4

$$v_e = x_3 , c_a = 1 , v_s = x_0.$$

Troisième itération :

x_0	x_1	x_2	x_3	x_4	x_5	b
-1	0	0	0	0	0	0
4	0	-1	1	0	-5	23
1	0	2/4	0	1	-1	11
1	1	-2/4	0	0	-1	6

Solution initiale: $(x_0, x_1, x_2, x_3, x_4, x_5) = (0, 6, 0, 23, 11, 0)$

Problème originelle au sommet initial trouvé :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	1	1	0	0	0	0
0	0	-1	1	0	-5	23
0	0	1/2	0	1	-1	11
0	1	-1/2	0	0	-1	6

 x_1 est une variable de base, son coefficient doit être ramené à zéro dans la fonction objectif en soustrayant la ligne 3 de la ligne 0.

x_0	x_1	x_2	x_3	x_4	x_5	b
0	0	3/2	0	0	1	-6
0	0	-1	1	0	-5	23
0	0	1/2*	0	1	-1	11
0	1	-1/2	0	0	-1	6

$$v_e = x_2 , c_a = 2 , v_s = x_4.$$

Première itération :

x_0	x_1	x_2	x_3	x_4	x_5	b
0	0	0	0	-3	4	-39
0	0	0	1	2	-7	45
0	0	1	0	2	-2	22
0	1	0	0	1	-2	17

 x_4 est le seul candidat comme variable entrante, cependant tous les coefficients dans sa colonne sont négatifs. Par conséquent ce problème n'est pas born'e!

Exercice 3. Résoudre le problème ci-dessous

$$\mathcal{P}_2: \max \quad x_1 + x_2 \\ 4x_1 - x_2 \le 25 \\ 5x_1 + x_2 \ge 7 \\ -x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0$$