CSD Project Control of a Rolling Mill

Nathan Dwek - Thomas Lapauw

December 11th, 2015

Introduction

Description of the Project

- Process steps:
 - Strip is unwound from the right roll
 - Strip is rolled between the middle pair of rolls
 - Strip is wound up by the left roll
 - All rolls are driven by DC motors
- Objectives:
 - Basic: control the traction of the metallic strip
 - Advanced: control the thickness of the metallic strip

Introduction

Sensors and Actuators

- Actuators: 3 DC motors, armature current controlled
- Sensors:
 - 3 velocity sensors
 - 2 traction sensors
 - 2 thickness sensors
- 2 DAC and 8 ADC ports
- 2 "useful" Butterworth filters
- Only basic objective is realistically doable for now

Introduction

Controller Architecture

- Cascade plant
 - ⇒ Cascade controller:
 - Inner loop: DC motor speed control
 - Outer loop: traction control
- Traction system has differential input
 - ⇒ "master-slave" architecture
 - Master: steady speed setpoint
 ⇒ zero static error, disturbance rejection
 - Slave: small signal speed ⇒ tracking

In this Presentation

Control of the Master Motor

Control of the Slave Motor

Outer Loop: Control of the Traction

Discussion: Control of the Thickness

Master Motor (Left)

Setpoint characteristics

- Winds the metal strip
- Higher velocity than feeding motor due to elongation

Identification

Controller Choice

PI Controller

- Zero steady state error
- Disturbance rejection

$$LM(s) = \frac{1.482}{s + 0.274}$$

$$PI(s) = K_p + \frac{K_i}{s}$$

$$= K_p \cdot \frac{s + \frac{K_i}{K_p}}{s}$$

Controller Tuning

- $\frac{K_i}{K_p}$ = chosen at 0.294 to cancel plant pole
- $OL(s) = \frac{1.482}{s}$

Simulation – $K_P = 2$

Verification

Verification

Verification

Conclusion

- ▶ PI Controller for zero steady state error
- ► Gain $K_P = 2$, $K_I = 0.588$ chosen for quickest settling time, reasonable overshoot
- Overshoot is due to non linearities and higher order effects

Slave Motor (Right)

Setpoint Characteristic

- ► Feeds the metal strip
- Lower Velocity

Identification

$$RM(s) \simeq \frac{7.128}{6.0665s + 1}$$
 (1)

Controller Choice

P Controller

- Fast response, better tracking than PI
- Steady state error rejection not necessary due to cascade control

Controller Tuning

Simulation – $K_P = 3$

Verification – $K_P = 2$

Verification – $K_P = 3$

Verification – $K_P = 4$

Conclusion

Final tuning

- ▶ P Controller for fast tracking
- Gain $K_P = 3$ to avoid actuator saturation
- Overshoot is due to non linearities and higher order effects

Closed loop experimental response

Slave(s)
$$\simeq \frac{0.9577}{0.2428s + 1}$$

Gray Box Model

Gray Box Model – Refined

$$Trac(s) = 13.096 \cdot \frac{s + 0.9221}{s(s + 4.063)}$$

Faculty of Engineering

Controller Choice

First tentative: simple P controller

- Integrator in the plant should provide zero steady state error
- Added integrator would degrade the phase margin
- No specification on the transient

Simulation – Simple P Controller

Controller Choice

- Steady state error is due to perturbation from the master speed, constant in regime
- Simple P controller
 - ⇒ No perturbation rejection
 - ⇒ But removes integrator from the closed loop!
- ► Idea: second outer PI loop to reject the constant perturbation
- ► Possible in terms of phase margin thanks to the inner P controller

Final Controller

Controller Tuning – Inner Traction Loop

Controller Tuning – Outer Traction Loop

Simulation

High overshoot ⇒ should be primary tuning constraint

Final Controller Values

Verification: Actuator Input

Thickness

- Thickness control not technically feasible due to numbers of DAC outputs needed
- Design would more be difficult because
 - ► Thickness traction velocity relation: non-linear, look up tables are needed
 - Some bias point parameters must be currently set by hand

Thickness

Sensors and actuators

Actuators:

- Left Motor
- Rolling Motor
- Right Motor

Sensors:

- Thickness sensor before/after the rolling
- Traction sensor before/after the rolling
- Velocity sensors for each of the motors
- Rolling force sensor

Thickness

Controller considerations

- Cascade control:
 - Left Motor P controller
 - Rolling Motor PI controller Master
 - ► Right Motor P controller
- ► Possible to get away with master/slave structure for the traction as well?
- ► Traction control using P-PI for master, probably just P for slave (what about the overshoot?)
- Possible to only work with small signals, or should the look up table be used during operation as well?

Thank you! Questions?

