Отчёт по работе с поляризаторами

Лабораторная работа

Высшая школа экономики, Санкт-Петербургская школа физико-математических и компьютерных наук $\Phi \text{изика, 2 курс}$

Андрей Ситников

Никита Афанасьев

Введение

Поляризация волны — одна из основных физических характеристик электромагнитного излучения. Поляризация важна для понимания того, как ведёт себя волна в некоторых средах в том числе при встече с поляризаторами. В результате появляются эффекты двупреломления лучей, изменения яркости и направления света, возможность создания трёхмерного изображения для нашего глаза, и т.д. Из всех волн наиболее простыми для наблюдения и понятными для осознания этих процессов являются электромагнитные волны в видимом диапазоне.

В этой работе мы работем с неидеальными поляризаторами, исследуя свойства материалов с их помощью.

Оборудование

Все, что нажито непосильным трудом! Два поляризатора, два лазера заграничных, вольтметр отечественный, четвертьвольновые пластинки... 2. А также ограниченной количество фруктозы и куча декстрозы, не то чтоб это всё было нужно, но если решил смешивать, то смешивать нужно наверняка.

Теория

Основной закон для поляризаторов, это закон Малюса который гласит, что при прохождении идеального поляризатора, для линейно поляризованного света, выполняется такое равенство:

$$E_{out} = E \cos \alpha$$

Где α — угол между направлением поляризатора и поляризацией света. Теперь рассмотрим систему из 2 поляризаторов, угол между осями которых равен β

$$E_{out} = E \cos \alpha \cos \beta$$

При этом если первый поляризатор зафиксирован, то

$$E_{out} = E_1 \cos \beta$$

Где $_1$ - напряжённость электрического поля при отсутствии второго поляризатора. Ну а тогда интенсивность равна

$$I_{out} = I_1 \cos^2 \beta$$

\

Теперь нужно учесть что лазер выдаёт свет, являющийся суммой линейных поляризаций, для того чтобы разделить его на эти поляризации воспользуемся схемой с 1 вращающимся поляризатором, если поляризатор повёрнут на угол β , то

$$E_{out}(\beta) = \int_0^{2\pi} E(\alpha) \cos(\alpha + \beta) d\alpha$$

Теперь рассмотрим четвертьволновую пластинку в системе из 2 поляризаторов, под углом β друг к другу, и пластинкой между ними, под углом γ . Для начала посмотрим на поле после пластинки:

$$\vec{E_{plate}} = E_1 \cos \gamma \vec{e_y} + E_1 \sin \gamma * e^{-i\pi/2} \vec{e_x}$$

А теперь посмотрим на поле после второго поляризатора:

$$\vec{E_o ut} = E_1(\cos\gamma\cos(\gamma - \beta) - i\sin\gamma\sin(\gamma - \beta))$$

Тогда интенсивноть равна

$$\vec{I_o u t} = I_1 |\cos \gamma \cos(\gamma - \beta) - i \sin \gamma \sin(\gamma - \beta)|^2$$

В таком случае, можно определить направление главной оси пластинки установив вторую пластинку так, что $\beta = \frac{\pi}{2}$, тогда выражение упрощается до:

$$\vec{I_o ut} = \frac{I_1}{4} |\sin 2\gamma - i\sin 2\gamma|^2 \le \frac{I_1}{2}$$

При этом максимум достигается при $\sin 2\gamma = 1 \Rightarrow \gamma = \frac{\pi}{4}$

Осталось доказать что при повороте пластинки на $\frac{\pi}{4}$ относительно поляризации волны, мы будем получать свет с циклической поляризацией:

$$\vec{E_{plate}} = \frac{E_1}{\sqrt{2}} (\vec{e_y} - i * \vec{e_x})$$

что является выражением для циркулярно поляризованного света.

Осталось описать поведение оптически активных растворов, для них наблюдается поворот поляризации в определённую сторону (в зависимости от веществ). Для объяснения этого явления необходимо рассмотреть линейно поляризованную волну как сумму циклически поляризованных. Введём систему координат такую, что x и y отклонены от \vec{E} на угол $\pi/4$

$$\vec{E} = \frac{\frac{E}{\sqrt{2}}(\vec{e_y} - i * \vec{e_x}) + \frac{E}{\sqrt{2}}(\vec{e_y} + i * \vec{e_x})}{2}$$

Эти вещества поворачивают циклические поляризацию в одну из сторон

Неидеальные элементы установки

Если же считать поляризатор не идеальным, то:

$$E_{out} = \sqrt{(aE\cos\alpha)^2 + (bE\sin\alpha)^2}$$

Где a и b коэффициеты прохождения света через пластину, причём $a \approx 1$, $b \approx 0$. Как следствие для 2 одинаковых поляризаторов отклонённых друг от друга на угол β , и при падении на них света:

$$E_{out} = \sqrt{(a^2 E(\cos\alpha\cos\beta \pm b^2\sin\alpha\sin\beta))^2 + (abE(\sin\alpha\cos\beta + \cos\alpha\sin\beta))^2}$$

В этом выражении можно пренебречь элементом с b^2

$$E_{out} = E\sqrt{(a^2\cos\alpha\cos\beta)^2 + (ab\sin(\alpha+\beta))^2}$$

Методика

Для начала проверим работоспособность оборудования и стабильную работу лазера, так как данные которыми мы обладаем разнесены по времени, и для их точного сравнения требуется независимость показаний системы от времени. При подготовке к проведению эксперимента было установлено, что лазер, выданный изначально для этой работы, сильно изменяет яркость выдаваемого пучка света от температуры. Из-за чего мы решили заменить лазер на другой, показавший более стабильные результаты (мощность этого лазера меньше зависит от температуры). Для более точного результата было решено возвращать подвижный поляризатор в крайнее положение и калибровать лазер относительно изначальных данных путём "дутья" на него (тем самым охлаждая его).

После проведения подготовки мы начали заниматься получением экспериментальных данных. Начали мы с того что решили сравнить поведение поляризаторов с предсказываемым законом Малюса. Для этого мы собрали следующую схему:

Рис. 1: Схема для проверки закона Малюса

После чего мы зафиксировали первый поляризатор в главном направлении поляризации света от лазера (нашли угол поляризатора, при котором яркость пропускаемого света — наибольшая). И начали изменять положение второго поляризатора, записывая результаты получаемые на датчике. А затем сравнили эти результаты с прогнозами соответствующие закону Малюса.

Как уже было выше упомянуто, свет от лазера также состоит и потоков различной мощности с различными поляризациями. Поэтому очевидным шагом будет измерение яркости света в зависимости от направления поляризатора в этой системе.

Рис. 2: Установка 2

Используя результаты нашего первого измерения мы сможем построить, график величины яркости создаваемого источником света в зависимости от направления его поляризации.

Следующим объектом для изучения будет четверть-волновая пластинка. Для того, чтобы узнать направ-

ления быстрой и медленной осей, потребуется найти направление между ними, сделать это можно с помощью схемы состоящей из двух поляризаторов и пластинки.

Рис. 3: Установка 3

Согласно теории, если эта ось будет направлена под углом 45 градусов к каждому из поляризаторов, то яркость на выходе - будет максимальной.

После определения этого предполагаемого направления, стоит доказать, что это именно четверть-волновая пластинка, а не поляризатор, и что на выходе действительно получается свет с круговой поляризацией. Воспользуемся уже собранной установкой, и начнём вращать 2-ой поляризатор, записывая яркость света на выходе. Согласно теории, если волна круговая, то показания датчика не должны зависеть от направления второй пластинки.

После выполнения всех этих подготовительных действий, настало время переходить к сахарному раствору. Для работы с ним соберём такую систему.

Рис. 4: Установка 4

Целью данного эксперимента будет найти или опровергнуть наличие связи между углом поворота поляризации света при прохождении раствора и концентрацией сахара в нём, и поиск коэффициентов этой зависимости при её наличии. Для этого мы быдем ненамного увеличивать количество сахара в расворе и

вращать второй поляризатор так, чтобы показания датчика были нулевыми. И записывать угол наклона этого поляризатора относительно первого, которой будет равен углу отклонения поляризации $-\frac{\pi}{2}$, также будем снимать данные на изначальном угле поворота в $\frac{\pi}{2}$ и сравним результаты.

Оораоотка	результатов		

Исследование поляризационных свойств материалов

Пластик

- Пакеты
- Прочее

Кристаллы