Test of Pinpoint Technologies Help Alert

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: RFTC02-U1 Rev A

Test Report Serial No.: RFTC02-U1 Rev A

This report supersedes: NONE

Applicant: Pinpoint Technologies

3125 N. 126th Street Brookfield WI 53005

USA

Product Function: 2.4 GHz Active RFID Tag

Copy No: pdf Issue Date: 9th March 2011

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

ACCREDITED

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 3 of 78

This page has been left intentionally blank

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 4 of 78

TABLE OF CONTENTS

AC		ON, LISTINGS & RECOGNITION	
	TESTING A	ACCREDITATION	5
		ION	
		CERTIFICATION	
1.	TEST RESU	JLT CERTIFICATE	9
2.	REFERENC	ES AND MEASUREMENT UNCERTAINTY	10
		ive References	
		d Uncertainty Procedures	
3.		DETAILS AND TEST CONFIGURATIONS	
0.		cal Details	
		of Test Program	
		nent Model(s) and Serial Number(s)	
		a Details	
		and I/O Ports	
	3.6. Test Co	onfigurations	13
		nent Modifications	
		ons from the Test Standard	
	3.9. Subcon	tracted Testing or Third Party Data	14
4.	TEST SUM	MARY	15
5.	TEST RESU	JLTS	17
•-		Characteristics	
	5.1.1.		
	5.1.2.	Peak Output Power	
	5.1.3.	Peak Power Spectral Density	28
	<i>5.1.4.</i>	Maximum Permissible Exposure	
	5.1.5.	Conducted Spurious Emissions	
	5.1.6.	Radiated Emissions	
	5.1.7.	AC Wireline Conducted Emissions (150 kHz – 30 MHz)	72
6.	PHOTOGR/		74
	6.1. Radiate	ed Emissions Test Configuration	74
	6.2. Genera	Il Measurement Test Set-Up	75
	6.3. Conduc	cted Testing - Test Equipment	76
7	TEST FOUL	DMENT DETAILS	77

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 5 of 78

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. Labs test schedule available http://www.a2la.org/scopepdf/2381-01.pdf

The American Association for Laboratory Accreditation

World Class Accreditation

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 14th day of April 2010.

President & CEO For the Accreditation Council

Certificate Number 2381.01 Valid to November 30, 2011

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 6 of 78

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	тсв	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	VCCI	-	-	No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	US0159
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	030139
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

^{**}EU MRA – European Union Mutual Recognition Agreement.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 7 of 78

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number MiCOM Labs test schedule is available at the following URL; 2381.02. http://www.a2la.org/scopepdf/2381-02.pdf

The American Association for Laboratory Accreditation

World Class Accreditation

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996 General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), and IC (Canada) requirements.

Presented this 24th day of June 2010.

For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2011

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

<u>United States of America – Telecommunication Certification Body (TCB)</u>

TCB Identifier - US0159

Industry Canada – Certification Body

CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 8 of 78

DOCUMENT HISTORY

	Document History					
Revision	Date	Comments				
Draft						
Rev A	9 th March 2011	Initial Release				

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 9 of 78

1. TEST RESULT CERTIFICATE

Applicant: Pinpoint Technologies Tested By: MiCOM Labs, Inc.

3125 N. 126th Street 440 Boulder Court

Brookfield WI 53005 Suite 200

USA Pleasanton

California, 94566, USA

EUT: 2.4 GHz Emergency Call Telephone: +1 925 462 0304

Solution

Model: Help Alert Fax: +1 925 462 0306

S/N: 00066613879

Test Date(s): 14th to 20th February '11 Website: www.micomlabs.com

STANDARD(S) TEST RESULTS

FCC 47 CFR Part15.247 & IC RSS-210 EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED

TESTING CERTIFICATE #2381.01

Graemé Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 10 of 78

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2010	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 8 Dec 2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 3 Dec 2010	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	9 th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 11 of 78

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Pinpoint Technologies Help Alert to FCC
	Part 15.247.
Applicant:	Pinpoint Technologies
	3125 N. 126th Street
	Brookfield WI 53005
Manufacturer:	USA As Applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
Laboratory performing the tests.	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	RFTC02-U1 Rev A
Date EUT received:	14 th February 2011
Standard(s) applied:	
Dates of test (from - to):	14th to 20th February '11
No of Units Tested:	1
Type of Equipment:	DSSS/802.11b/g RFID active tag
Model:	Pinpoint Technologies Help Alert
Location for use:	Indoor/Outdoor use
Declared Frequency Range(s):	2412 - 2462 MHz
Type of Modulation:	Per 802.11b/g –CCK, BPSK, QPSK, OFDM
Declared Nominal Output Power:	+18 dBm
EUT Modes of Operation:	802.11b/g
Transmit/Receive Operation:	Half Duplex
Rated Input Voltage and Current:	Nominal: +3.0 Vdc
	Min: +2.0 Vdc
	Max: +3.3 Vdc
Operating Temperature Range:	Declared range -30 to +85°C
ITU Emission Designator:	802.11b: 15M8W7D
	802.11g: 16M4W7D
Clock/Oscillator(s):	32.768 kHz, 40 MHz, 44 MHz, 80 MHz
Frequency Stability:	±1 ppm/year
Equipment Dimensions:	37 x 20 x 4 mm
Weight:	5 grams
Primary function of equipment:	WiFi interoperability - RFID and real time local
	positioning and tracking device

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A lssue Date: 9th March 2011

Page: 12 of 78

3.2. Scope of Test Program

The scope of the test program was to test the Pinpoint Technologies, RFID and real time local positioning and tracking device for compliance against FCC 47 CFR Part 15.247 and IC RSS-210.

Pinpoint Technologies 2.4 GHz Help Alert

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 13 of 78

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	802.11bg RFID Wireless Module	Pinpoint Technologies	1000-9110	00066613879
Support	Laptop	Dell		

3.4. Antenna Details

Antenna Type	Gain (dBi)	Integral	Manufacture	Model
Printed monopole/Chip	2.0	Yes	Antenova/GigaAnt	Rufa

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. None

3.6. Test Configurations

Matrix of test configurations

Operational Mode	Data Rates (MBit/s)	Frequencies (MHz)
802.11b	1	2412, 2437, 2462
802.11g	6	2412, 2437, 2402

The device was connected to an external power supply to complete the conducted test suite. A battery was utilized for all radiated testing. The voltage on the battery was continually monitored and replaced when necessary.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 14 of 78

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

The following subcontracted testing was required in order to complete the test program:

1. NONE

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 15 of 78

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥ 500 kHz	Conducted	Complies	5.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	5.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	5.1.3
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.4
15.247(d) 15.205 / 15.209 A8.5 2.2	Spurious Emissions (30MHz - 26 GHz)	The radiated emission in any 100 kHz of outband shall be at least 20 dB below the highest inband spectral density	Conducted	Complies	5.1.5

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 16 of 78

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6	Radiated Emissions	Restricted Bands	Radiated	Complies	5.1.6
•	Transmitter Radiated Spurious Emissions, Peak Emissions, Band Edge	Emissions above 1 GHz		Complies	5.1.6.1
Industry Canada only RSS-Gen §4.8, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.6.2
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	5.1.6.3
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Not Applicable Device battery powered	5.1.7

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 17 of 78

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. 6 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.247(a)(2) Industry Canada RSS-210 §A8.2 Industry Canada RSS-Gen §4.4

Test Procedure

The bandwidth at 6 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. The analyzer was set for a 6 dB resolution bandwidth filter during this measurement.

Test Measurement Set up

Measurement set up for 6 dB and 99 % bandwidth test

Measurement Results for 6 dB and 99 % Operational Bandwidth(s)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 18 of 78

TABLE OF RESULTS - 802.11b

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99 % BW (MHz)
2,412	10.120	15.832
2,437	10.020	15.832
2,462	10.020	15.832

2412 MHz 6 dB and 99% Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 19 of 78

2437 MHz 6 dB and 99% Bandwidth

Date: 16.FEB.2011 10:53:37

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 20 of 78

2462 MHz 6 dB and 99% Bandwidth

Date: 16.FEB.2011 11:11:43

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 21 of 78

TABLE OF RESULTS - 802.11a

Center Frequency (MHz)	6 dB Bandwidth (MHz)	99 % BW (MHz)
2,412	16.333	16.433
2,437	16.333	16.433
2,462	16.333	16.433

2412 MHz 6 dB and 99% Bandwidth

Date: 16.FEB.2011 11:32:48

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 22 of 78

2437 MHz 6 dB and 99% Bandwidth

Date: 16.FEB.2011 11:52:31

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 23 of 78

2462 MHz 6 dB and 99% Bandwidth

Date: 16.FEB.2011 12:10:12

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 24 of 78

Specification

Limits

§15.247 (a)(2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 25 of 78

5.1.2. Peak Output Power

FCC, Part 15 Subpart C §15.247(b)(3), §15.31(e) Industry Canada RSS-210 §A8.4(4)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak output power. Initial measurements were employed to define which data rate provided the highest output power. Measurements were made while EUT was operating in a continuous transmission mode i.e. 100 % duty cycle at the appropriate center frequency.

Test Measurement Set up

Measurement set up for Transmitter Peak Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EIRP Calculation based on 2 dBi antenna

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 26 of 78

Note: The Help Alert equipment falls under the Portable Device Classification and as such Time Average Power measurements are required in order to prove it complies with SAR limits.

TABLE OF RESULTS - 802.11b

Center Frequency	Average			Margin
(MHz)	mW	(dBm)	(dBm)	ma giii
2,412	65.61	+18.17	+20.17	-9.83
2,437	66.53	+18.23	+20.23	-9.77
2,462	73.62	+18.67	+20.67	-9.33

TABLE OF RESULTS - 802.11a

Center Frequency	Average Power EIRP	Margin		
(MHz)	mW	(dBm)	(dBm)	.
2,412	54.20	+17.34	+19.34	-10.66
2,437	56.62	+17.53	+19.53	-10.47
2,462	57.94	+17.63	+19.63	-10.37

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 27 of 78

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 28 of 78

5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.247(e) Industry Canada RSS-210 §A8.2

Test Procedure

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time => span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth. Spectrum analyzer settings:

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Pressure: 999 to 1012 mbar Relative humidity: 31 to 57 %

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 29 of 78

TABLE OF RESULTS - 802.11b

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
2412	2412.93687	-3.41	+8	-11.41
2437	2438.001100	-3.12	+8	-11.12
2462	2462.74649	-2.26	+8	-10.26

Peak Power Spectral Density Ch 1 2412 MHz 802.11b

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 30 of 78

Peak Power Spectral Density Ch 6 2437 MHz 802.11b

Date: 16.FEB.2011 11:01:29

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 31 of 78

Peak Power Spectral Density Ch 11 2462 MHz 802.11b

Date: 16.FEB.2011 11:22:23

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 32 of 78

TABLE OF RESULTS - 802.11g

Center Frequency (MHz)	Peak Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dBm)
2412	2417.87876	-6.46	+8	-14.46
2437	2437.62826	-6.32	+8	-14.32
2462	2456.37575	-5.97	+8	-13.97

Peak Power Spectral Density Ch 1 2412 MHz 802.11g

Date: 16.FEB.2011 11:43:27

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 33 of 78

Peak Power Spectral Density Ch 6 2437 MHz 802.11g

Date: 16.FEB.2011 12:00:23

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 34 of 78

Peak Power Spectral Density Ch 11 2462 MHz 802.11g

Date: 16.FEB.2011 12:20:52

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 35 of 78

Specification Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 36 of 78

5.1.4. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels – Portable Device

Pinpoint Technologies have, based on their document "Wi-Fi Pendant Tag Worst Case Operation Rev 2.1, 9th March 2011" that the device duty cycle and source-based time-averaged output power in any given 100ms time period complies with the SAR limit of less than 1 mW/cm².

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 37 of 78

5.1.5. Conducted Spurious Emissions

FCC, Part 15 Subpart C §15.247(d); 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2 **Industry Canada RSS-Gen 4.7**

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Pressure: 999 to 1012 mbar Temperature: 17 to 23 °C Relative humidity: 31 to 57 %

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 38 of 78

Conducted Band-Edge Results

Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS - 802.11b

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental) (dBm)	Amplitude @ Band edge (dBm)	Margin (dB)
2412	2,400	-10.83	-30.40	-19.57
2462	2,483.5	-10.22	-46.30	-36.08

Lower Band Edge 802.11b Conducted Spurious Emissions at the 2,400 MHz Band Edge(s)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 39 of 78

Upper Band Edge 802.11b Conducted Spurious Emissions at the 2483.5 MHz Band Edge(s)

Date: 16.FEB.2011 11:14:26

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 40 of 78

TABLE OF RESULTS - 802.11g

Center Frequency (MHz)	Band edge Frequency (MHz)	Limit (20 dB below peak of fundamental) (dBm)	Amplitude @ Band edge (dBm)	Margin (dB)
2412	2,400	-13.12	-23.60	-10.48
2462	2,483.5	-12.36	-34.14	-21.78

Lower Band Edge 802.11g Conducted Spurious Emissions at the 2,400 MHz Band Edge(s)

Date: 16.FEB.2011 11:35:30

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 41 of 78

Upper Band Edge 802.11g Conducted Spurious Emissions at the 2483.5 MHz Band Edge(s)

Date: 16.FEB.2011 12:12:55

Serial #: RFTC02-U1 Rev A

Issue Date: 9th March 2011

Page: 42 of 78

Spurious Emissions (0.03-26 GHz)

TABLE OF RESULTS - 802.11b

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2412	30	26,000	-37.32	-11.65	-25.67
2437	30	26,000	-38.23	-12.30	-25.93
2462	30	26,000	-37.22	-12.13	-25.09

802.11b 2412 MHz Conducted Spurious Emissions 0.03 - 26,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 43 of 78

802.11b 2,437 MHz Conducted Spurious Emissions 0.03 - 26,000 MHz

Date: 16.FEB.2011 12:54:23

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 44 of 78

802.11b 2,462 MHz Conducted Spurious Emissions 0.03 - 26,000 MHz

Date: 16.FEB.2011 11:26:18

To: FCC 47 CFR Part 15.247 & 1C RS: Serial #: RFTC02-U1 Rev A

Issue Date: 9th March 2011

Page: 45 of 78

TABLE OF RESULTS - 802.11g

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
2412	30	26,000	-37.79	-14.16	-23.63
2437	30	26,000	-37.94	-15.26	-22.68
2462	30	26,000	-37.45	-13.26	-24.19

802.11g 2412 MHz Conducted Spurious Emissions 0.03 - 26,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 46 of 78

802.11g 2,437 MHz Conducted Spurious Emissions 0.03 - 26,000 MHz

Date: 16.FEB.2011 12:44:37

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 47 of 78

802.11g 2,462 MHz Conducted Spurious Emissions 0.03 - 26,000 MHz

Date: 16.FEB.2011 12:24:49

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 48 of 78

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400 MHz	2,483.5 MHz	≥ 20 dB

§15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
incasarcine it ancertainty	12.01 UD

Traceability

Method	Test Equipment Used					
Measurements were made per work	0088, 0158, 0193, 0252, 0313, 0314, 0070,					
instruction WI-05 'Measurement of	0116, 0117.					
Spurious Emissions'						

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 49 of 78

5.1.6. Radiated Emissions

5.1.6.1. Transmitter Radiated Spurious Emissions (above 1 GHz)

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

The product was initially tested to find worst case orientation for the maximization of spurious emissions. Worst case orientation was used for all emission testing.

The voltage on the battery was continually monitored and replaced when necessary.

Test Measurement Set up

Measurement set up for Radiated Emission Test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 50 of 78

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of $51.5~dB_{\mu}V$; Antenna Factor of 8.5~dB; Cable Loss of 1.3~dB; Falloff Factor of 0~dB, an Amplifier Gain of 26~dB and Notch Filter Loss of 1~dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

o: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A lssue Date: 9th March 2011

Page: 51 of 78

Integral Antenna

Test Freq.	2412 MHz	Engineer	EVF					
Variant	802.11b; 1 Mbs	Temp (°C)	19.5					
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34					
Power Setting	max	Press. (mBars)	1007					
Antenna	Integral	100						
Test Notes 1	Fundamental attenuated by band stop filter;	Fundamental attenuated by band stop filter; EUT's support equipment is placed on the table						
Test Notes 2	Device is powered with 3Vdc							

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2412.986	65.6	3	-10.9	57.7	Peak [Scan]	Η						FUND
4824.008	54.3	4.5	-9.4	49.4	Peak Max	V	115	9	74.0	-24.6	Pass	RB
2252.826	60.8	2.9	-11.4	52.4	Peak Max	Н	98	221	74	-21.7	Pass	RB
9648.538	45.9	6.3	-3.4	48.8	Peak [Scan]	٧	98	0	54	-5.2	Pass	NRB
4824.008	49.5	4.5	-9.4	44.5	Average Max	V	115	9	54	-9.5	Pass	RB
2252.826	49.4	2.9	-11.4	40.9	Average Max	Н	98	221	54	-13.1	Pass	RB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; HAR = Harmonics

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 52 of 78

802.11b Channel 2412 (2200 - 2390 MHz)

Date: 25.FEB.2011 16:29:40

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 53 of 78

Test Freq.	2437 MHz	Engineer	EVF				
Variant	802.11b; 1 Mbs	Temp (°C)	19.5				
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34				
Power Setting	max	Press. (mBars)	1007				
Antenna	Integral Duty Cycle (%) 100						
Test Notes 1	Fundamental attenuated by band stop filter;	Fundamental attenuated by band stop filter; EUT's support equipment is placed on the table					
Test Notes 2	Device is powered with 3Vdc						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2436.072	61.4	3.0	-11.1	53.3	Peak [Scan]	Н						FUND
17080.160	42.9	8.5	0.0	51.4	Peak [Scan]	V	100	0	54	-2.6	Pass	noise floor
2159.359	58.4	2.8	-11.4	49.9	Peak [Scan]	Н	100	0	54	-4.1	Pass	NRB
4874.078	52.8	4.5	-9.3	47.9	Peak [Scan]	Н	150	0	54	-6.1	Pass	RB
3997.996	52.5	3.9	-9.8	46.7	Peak [Scan]	V	150	0	54	-7.4	Pass	RB
1596.473	56.3	2.5	-14.3	44.5	Peak [Scan]	Н	100	0	54	-9.5	Pass	RB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; HAR = Harmonics

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

Serial #: RFTC02-U1 Rev A lssue Date: 9th March 2011

Page: 54 of 78

Test Freq.	2462 MHz	Engineer	EVF				
Variant	802.11b; 1 Mbs	Temp (°C)	19.5				
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34				
Power Setting	max	Press. (mBars)	1007				
Antenna	Integral	Duty Cycle (%)	100				
Test Notes 1	Fundamental attenuated by band stop filter; EUT's support equipment is placed on the table						
Test Notes 2	Device is powered with 3Vdc						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2462.926	61.08	2.98	-11.1	52.97	Peak [Scan]	Н	100	0	54	-1.03	Pass	FUND
16637.275	42.05	8.72	0.9	51.67	Peak [Scan]	V	200	0	54	-2.33	Pass	noise floor
9848.016	46.25	6.4	-3.23	49.42	Peak [Scan]	V	100	0	54	-4.58	Pass	NRB
2160.882	57.67	2.84	-11.4	49.1	Peak [Scan]	Ι	100	0	54	-4.9	Pass	NRB
4924.068	52.22	4.55	-9.09	47.69	Peak [Scan]	>	100	0	54	-6.31	Pass	RB

Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; HAR = Harmonics

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 55 of 78

802.11b Channel 2462 MHz Band-Edge (2483.5 – 2500 MHz)

Date: 25.FEB.2011 16:56:06

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 56 of 78

Test Freq.	2412 MHz	Engineer	EVF				
Variant	802.11g; 6 Mbs	Temp (°C)	19.5				
Freq. Range	1000 MHz - 18000 MHz	34					
Power Setting	max	1007					
Antenna	Integral	100					
Test Notes 1	Fundamental attenuated by band stop filter; EUT's support equipment is placed on the table						
Test Notes 2	Device is powered with 3Vdc	Device is powered with 3Vdc					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4822.124	55.73	4.47	-9.4	50.8	Peak Max	Н	117	332	74	-23.2	Pass	RB
2252.745	60.1	2.9	-11.4	51.6	Peak Max	Н	98	348	74.0	-22.4	Pass	RB
4822.124	39.0	4.5	-9.4	34.1	Average Max	Н	117	332	54	-20.0	Pass	RB
2252.745	47.02	2.88	-11.4	38.55	Average Max	Н	98	348	54	-15.45	Pass	RB
2413.788	57.7	3.0	-10.9	49.8	Peak [Scan]	Н						FUND
17114.228	42.1	8.5	0.8	51.4	Peak [Scan]	Н	150	0	54.0	-2.6	Pass	noise floor
3986.774	52.3	3.9	-10.0	46.3	Peak [Scan]	V	150	0	54	-7.7	Pass	RB
1597.916	55.1	2.5	-14.3	43.3	Peak [Scan]	V	100	0	54	-10.7	Pass	RB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; HAR = Harmonics

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 57 of 78

802.11g Channel 2412 MHz Band-Edge 2412 (2200 - 2390 MHz)

Date: 25.FEB.2011 16:43:12

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 58 of 78

Test Freq.	2437 MHz	Engineer	EVF			
Variant	802.11g; 6 Mbs	Temp (°C)	19.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34			
Power Setting	max	Press. (mBars)	1007			
Antenna	Integral Duty Cycle (%) 100					
Test Notes 1	Fundamental attenuated by band stop filter; EUT's support equipment is placed on the table					
Test Notes 2	Device is powered with 3Vdc					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
4877.756	55.6	4.5	-9.3	50.8	Peak Max	Н	179	272	74.0	-23.2	Pass	RB
4877.756	38.3	4.5	-9.3	33.4	Average Max	Н	179	272	54	-20.6	Pass	RB
2431.503	61.24	2.97	-11.1	53.11	Peak [Scan]	Н						FUND
2159.359	60.8	2.84	-11.4	52.24	Peak [Scan]	Н	100	0	54	-1.76	Pass	NRB
16092.184	41.3	8.98	0.75	51.04	Peak [Scan]	Н	100	0	54	-2.96	Pass	noise floor
3988.737	52.08	3.89	-9.92	46.05	Peak [Scan]	V	150	0	54	-7.95	Pass	RB
1598.297	56.91	2.45	-14.3	45.08	Peak [Scan]	Н	100	0	54	-8.92	Pass	RB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; HAR = Harmonics

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 59 of 78

Test Freq.	2462 MHz	Engineer	EVF			
Variant	802.11g; 6 Mbs	Temp (°C)	19.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34			
Power Setting	max	Press. (mBars)	1007			
Antenna	Integral	Duty Cycle (%)	100			
Test Notes 1	Fundamental attenuated by band stop filter; EUT's support equipment is placed on the table					
Test Notes 2	Device is powered with 3Vdc					

Formally measured emission peaks Frequency Raw Cable AF Level Measurement Hgt Azt Limit Margin Pass Pol Comments MHz dBuV Loss dB dBuV/m Type Deg dBuV/m dB /Fail 2462.605 61.67 2.98 -11.1 53.56 Peak [Scan] **FUND** 16569.138 42.61 150 -2.25 Pass 8.77 0.37 51.75 Peak [Scan] Н 0 54 noise floor 2180.04 60.03 2.85 -11.5 51.39 Peak [Scan] Н 100 0 54 -2.61 Pass NRB 3992.144 52.85 0 Pass 3.9 -9.87 46.88 Peak [Scan] 150 -7.12 54 RB 4916.834 50.84 4.55 182 360 -7.84 Pass RB -9.23 46.16 Peak [Scan] Н 54 TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; HAR = Harmonics Legend: RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 60 of 78

802.11g Channel 2462 MHz Band-Edge (2483.5 - 2500 MHz)

Date: 25.FEB.2011 17:17:32

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 61 of 78

Worst case system peak emission is 802.11b channel 2437 MHz = 107.5 dBµV/m

Test Freq.	2437 MHz	Engineer	EVF			
Variant	802.11b; 1 Mbs	Temp (°C)	19.5			
Freq. Range	2400 - 2483.5 MHz	35				
Power Setting	max	Press. (mBars)	997			
Antenna	integral Duty Cycle (%) 100					
Test Notes 1	EUT's support equipment is placed on the table					
Test Notes 2	Device is powered with 3Vdc					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
2437.978	62.3	13.0	32.2	107.5	Peak [Scan]	Н						FUND

Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 62 of 78

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 63 of 78

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 64 of 78

5.1.6.2. Receiver Radiated Spurious Emissions (above 1 GHz)

Industry Canada RSS-Gen §4.8, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 65 of 78

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

The voltage on the battery was continually monitored and replaced when necessary.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 66 of 78

Receiver Radiated Spurious Emissions above 1 GHz

Receiver results cover all variants

TABLE OF RESULTS

802.11bg Channel 2437 MHz Integral Antenna

The above plot identifies peak emissions only

No emissions found within 6 dB of the limit line

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 67 of 78

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

a. If a radiated measurement is made, all spurious emissions hall comply with the limits of Table 1.

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 68 of 78

5.1.6.3. Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Preliminary radiated emissions are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with a CISPR compliant receiver. Only the highest emissions relative to the limit are listed.

Test Measurement Set up

The product was initially tested to find worst case orientation for the maximization of spurious emissions. Worst case orientation was used for all emission testing.

The voltage on the battery was continually monitored and replaced when necessary.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 69 of 78

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Measurement Results for Spurious Emissions (30 MHz – 1 GHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 70 of 78

Test Freq.	N/A (2437MHz)	Engineer	EVF		
Variant	Digital Emissions (FCC)	Temp (°C)	18		
Freq. Range	30 - 1000 MHz	Rel. Hum.(%)	39		
Power Setting	Maximum	Press. (mBars)	996		
Antenna	Integral Duty Cycle (%)		100		
Test Notes 1	Tx: CH. 6; all channels were checked, no radio emissions were found				
Test Notes 2	Device is powered with 3Vdc				

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
882.553	26.5	7.3	-7.5	26.3	Quasi Max	V	401	260	46.0	-19.8	Pass	
30.978	24.2	3.4	-10.2	17.4	Quasi Max	V	234	312	40.0	-22.6	Pass	
198.976	31.7	4.8	-17.9	18.5	Quasi Max	V	317	103	43.5	-25.0	Pass	
486.806	29.8	6.0	-12.4	23.3	Quasi Max	V	393	327	46	-22.7	Pass	
372.292	35.1	5.6	-15.3	25.4	Quasi Max	V	378	360	46	-20.6	Pass	
63.648	29.3	3.9	-23.3	9.9	Quasi Max	V	98	113	40	-30.2	Pass	

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; AMB-Ambient

NRB = Non-Restricted Band. RB = Restricted Band.

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 71 of 78

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used		
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312		

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 72 of 78

5.1.7. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

All six transmitters were operational and terminated in a 50Ω load.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

No test required the device was battery operated

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 73 of 78

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0193, 0190, 0293, 0307

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 74 of 78

6. PHOTOGRAPHS

6.1. Radiated Emissions Test Configuration

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 75 of 78

6.2. General Measurement Test Set-Up

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 76 of 78

6.3. Conducted Testing - Test Equipment

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: RFTC02-U1 Rev A Issue Date: 9th March 2011

Page: 77 of 78

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0104	1-18GHz Horn Antenna	The Electro-Mechanics Company	3115	9205-3882
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0252	SMA Cable	Megaphase	Sucoflex 104	None
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com