CPA Security and Pseudorandom Functions (CPA 安全 与伪随机函数)

Sheng Zhong Yuan Zhang

Computer Science and Technology Department
Nanjing University

Outline

- Need for Stronger Security
 - The indistinguishable multiple encryptions
 - CPA-security
- Pseudorandom Functions
 - Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
 - Constructing CPA-secure encryptions with PRFs
- The existence of PRFs
 - Pseudorandom permutations
 - Pseudorandom permutations and PRFs
 - PRFs and block ciphers
 - PRFs and PRGs

- Need for Stronger Security
 - The indistinguishable multiple encryptions
 - CPA-security
- 2 Pseudorandom Functions
- 3 Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs

Single encryption v.s. multiple encryptions

- In $PrivK_{\mathcal{A},\Pi}^{eav}$, the adversary is only allowed to observe one ciphertext. What if the adversary can observe multiple ciphertexts (encrypted with the same key)?
- We use a new experiment $PrivK_{A,\Pi}^{mult}$ to model this case.

The multiple-message eavesdropping experiment

The multiple-message eavesdropping experiment $PrivK_{A,\Pi}^{mult}$:

- Given the security parameter n, \mathcal{A} outputs a pair of equal-length lists of messages $\vec{M}_0 = (m_{0,1}, \ldots, m_{0,t})$ and $\vec{M}_1 = (m_{1,1}, \ldots, m_{1,t})$, with $|m_{0,i}| = |m_{1,i}|$ for all i, and sends them to the challenger \mathcal{C} .
- ② \mathcal{C} computes a key k by running $Gen(1^n)$, a uniform bit $b \in \{0, 1\}$, $c_i \leftarrow Enc_k(m_{b,i})$ for all i, and sends $\vec{\mathcal{C}} = (c_1, \ldots, c_t)$ to \mathcal{A} .
- \odot \mathcal{A} outputs a bit b'.
- The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

The indistinguishable multiple encryptions

DEFINITION 3.19 Indistinguishable multiple encryptions in the presence of an eavesdropper

A private-key encryption scheme $\Pi=(\mathit{Gen}, \mathit{Enc}, \mathit{Dec})$ has indistinguishable multiple encryptions in the presence of an eavesdropper if for all PPT adversaries $\mathcal A$ there is a negligible function negl such that

$$\Pr[\mathit{PrivK}^{\mathit{mult}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] \leq \frac{1}{2} + \mathit{negl}(\mathit{n}),$$

where the probability is taken over the randomness used by ${\cal A}$ and the randomness used in the experiment.

Indistinguishable encryption \neq indistinguishable multiple encryptions

Consider the indistinguishable encryption scheme constructed using a PRG:

图 1: An indistinguishable encryption scheme

- Assuming the PRG generates 3-bit pseudo-random pads, can a adversary differentiate the ciphertext of "cat,cat" and the ciphertext of "cat,dog"?
- Yes.
- Lessons learnt: Probabilistic encryption is needed.

- Need for Stronger Security
 - The indistinguishable multiple encryptions
 - CPA-security
- 2 Pseudorandom Functions
- 3 Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs

What are chosen-plaintext attacks?

- When an adversary performs chosen-plaintext attacks, it can exercise (partial) control over what the honest parties encrypt.
- Chosen-plaintext attacks encompass known-plaintext attacks.

The CPA indistinguishability experiment

The CPA indistinguishability experiment $PrivK_{\mathcal{A},\Pi}^{cpa}(n)$:

- **1** A key k is generated by running $Gen(1^n)$.
- ② The adversary \mathcal{A} is given input 1^n and oracle access to $Enc_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- **3** A uniform bit $b \in \{0, 1\}$ is chosen, and then a ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to \mathcal{A} .
- **1** The adversary \mathcal{A} continues to have oracle access to $Enc_k(\cdot)$, and outputs a bit b'.
- **1** The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. In the former case, we say that \mathcal{A} succeeds.

What is CPA-security?

DEFINITION 3.22

A private-key encryption scheme $\Pi=(\mathit{Gen}, \mathit{Enc}, \mathit{Dec})$ has indistinguishable encryptions under a chosen-plaintext attack, or is CPA-secure, if for all PPT adversaries $\mathcal A$ there is a negligible function negl such that

$$\Pr[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi} = 1] \leq \frac{1}{2} + \mathit{negl}(\mathit{n}),$$

where the probability is taken over the randomness used by \mathcal{A} , as well as the randomness used in the experiment.

 We can use pseudorandom functions to construct a CPA-secure encryption scheme.

- Need for Stronger Security
- 2 Pseudorandom Functions
 - Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs

What are pseudorandom functions used for?

- If we want "random-looking" strings, we resort to pseudorandom generators.
- If we want "random-looking" functions, we resort to pseudorandom functions.

What is a function? a random function?

We use functions on $\{0,1\}$ to explain:

What is a function? a random function?

- A function is a mapping from $\{0,1\}^{l_{in}}$ to $\{0,1\}^{l_{out}}$. If $l_{in}=l_{out}$, we say the function is length-preserving.
- Let $Func_n$ denote the set of all functions from $\{0,1\}^n$ to $\{0,1\}^n$.
- The size of Func_n equals $2^{n2^n} = 2^n \cdot 2^n \cdot \ldots \cdot 2^n$.
- A (uniformly) random function is a function that is chosen uniformly at random from Func_n.

What is a keyed function? pseudorandom function?

- A keyed function $F: \{0,1\}^{l_{key}} \times \{0,1\}^{l_{in}} \to \{0,1\}^{l_{out}}$ is a two-input function, where the first input is called the a key and denoted k. We only consider F is length-preserving, meaning $l_{key}(n) = l_{in}(n) = l_{out}(n) = n$.
- If there is a polynomial-time algorithm that computes F(k, x) given k and x, we say F is efficient.
- In typical usage, a key k is chosen and fixed, and we are interested in the single-input function $F_k:\{0,1\}^* \to \{0,1\}^*$ denoted by

$$F_k(x) = F(k, x).$$

- If we choose k uniformly at random, the keyed function F induces a natural distribution on Func_n.
- If the function F_k (for a uniformly random key k) is indistinguishable from a (uniformly) random function, we say F_k is pseudorandom.

Formal definition of pseudorandom function

DEFINTION 3.25

Consider a length-preserving keyed function $F: \{0,1\}^{l_{key}(n)} \times \{0,1\}^{l_{in}(n)} \rightarrow \{0,1\}^{l_{out}(n)}$ (i.e. $l_{key}(n) = l_{in}(n) = l_{out}(n) = n$), and f is a random function that is uniformly chosen from $Func_n$. F is a **pseudorandom function** if for all PPT distinguishers D, there is a negligible function negl such that,

$$|Pr[D^{F_k(\cdot)}(1^n) = 1] - Pr[D^{f(\cdot)}(1^n) = 1]| \le negl(n),$$

where $Func_n$ is the set of all functions mapping n-bit string to n-bit string, the first probability is taken over uniform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in Func_n$ and the randomness of D.

- Need for Stronger Security
- 2 Pseudorandom Functions
- 3 Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs

- Need for Stronger Security
- 2 Pseudorandom Functions
- 3 Constructing CPA-secure encryption with PRFs
 - Constructing CPA-secure encryptions with PRFs
- 4 The existence of PRFs

Constructing CPA-secure encryption with PRFs

We can construct a CPA-secure encryption scheme with PRFs as follows.

图 5: Constructing CPA-secure encryption with a PRF

Construction details

Construction 3.30: A CPA-secure scheme from any pseudo-random function

Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- *Gen*: on input 1^n , choose uniform $k \in \{0,1\}^n$ and output it.
- *Enc*: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, choose uniform $r \in \{0,1\}^n$ and outputs the ciphertext

$$c := < r, F_k(r) \oplus m > .$$

• *Dec*: on input a key $k \in \{0,1\}^n$ and a ciphertext $c = \langle r, s \rangle$, output the plaintext message

$$m := F_k(r) \oplus s$$

CPA-security proof

Theorem 3.31

If F is a pseudorandom function, then Construction 3.30 is a CPA-secure private-key encryption scheme for messages of length n.

Proof sketch: Construct a similar encryption scheme $\tilde{\Pi} = (\tilde{Gen}, \tilde{Enc}, \tilde{Dec})$ that differs the scheme Π in Construction 3.30 only by replacing F_k with a truly random function f.

First, we can show no PPT adversary can differentiate the two scheme with a non-negligible probability due to indistinguishability between a PRF and a random function, i.e.

$$|\textit{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\Pi} = 1] - \textit{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}} = 1]| \leq \textit{negl}(\textit{n}).$$

CPA-security proof (Contd.)

Then, we can show no PPT adversary can win the CPA experiment on $\tilde{\Pi}$ with a non-negligible probability:

$$Pr[PrivK_{\mathcal{A}, ilde{\Pi}}^{cpa}=1] \leq rac{1}{2} + rac{q(n)}{2^n},$$

where q(n) is a bound on the number of encryption queries made by A.

CPA-security proof (Contd.)

Specifically,

$$\begin{split} ⪻[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}} = 1] \\ = ⪻[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}} = 1 | \text{no queries match}] \cdot \textit{Pr}[\text{no queries match}] + \\ ⪻[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}} = 1 | \text{>=1 query matches}] \cdot \textit{Pr}[\text{>=1 query matches}] \\ \leq & \frac{1}{2} \cdot 1 + 1 \cdot \frac{q(n)}{2^n} \\ \leq & \frac{1}{2} + \frac{q(n)}{2^n} \end{split}$$

where q(n) is a bound on the number of encryption queries made by A.

CPA-security proof (Contd.)

Finally, combining the two inequations, we know no PPT adversary can win the CPA experiment on Π with a non-negligible advantage over 1/2 since

$$Pr[PrivK_{\mathcal{A},\Pi}^{cpa}=1] \leq rac{1}{2} + rac{q(n)}{2^n} + negl(n).$$

Theorem proved!

CPA-security implies CPA-security for multiple encryptions

THEOREM 3.24

Any private-key encryption scheme that is CPA-secure is also CPA-secure for **multiple** encryptions.

- A significant advantage of CPA-security: It suffices to prove that a scheme is CPA-secure (for a single encryption), and we then obtain "for free" that it is CPA-secure for multiple encryptions as well.
- Why is the theorem true? Basically, we can see:
 - CPA-secure encryption is NOT deterministic.
 - What an adversary can see in the CPA indistinguishability experiment covers what the adversary sees in the CPA multiple-encryption distinguishability experiment.

- Need for Stronger Security
- Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs

- Need for Stronger Security
- 2 Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
- The existence of PRFs
 - Pseudorandom permutations
 - Pseudorandom permutations and PRFs
 - PRFs and block ciphers
 - PRFs and PRGs

What is a permutation? a random permutation?

We use permutations on $\{0,1\}$ to explain:

图 6: A permutation (function) on $\{0,1\}$.

$$\begin{bmatrix}
0 & 0 & \longrightarrow 0 \\
1 & 1 & \longrightarrow 1
\end{bmatrix}$$
Perm,

 \mathfrak{Z} 7: $Perm_1$: the set of all permutations on $\{0,1\}$

8: A random permutation on $\{0,1\}$ is a function that is chosen uniformly at random from Perm₁

What is a permutation? a random permutation?

- A permutation (function) is a bijection or a one-to-one mapping from $\{0,1\}^n$ to $\{0,1\}^n$.
- Let $Perm_n$ be the set of all permutations on $\{0,1\}^n$.
- The size of $Perm_n$ equals $(2^n)! = 2^n \cdot (2^n 1) \cdot \ldots \cdot 1$.
- A random permutation on $\{0,1\}^n$ f is a permutation that is chosen uniformly at random from $Perm_n$.

Pseudorandom permutations

- Let F be a keyed function. If $l_{in} = l_{out}$, and for all k the function $F_k : \{0,1\}^{l_{in}} \to \{0,1\}^{l_{out}}$ is one-to-one, we call F a keyed permutation.
- We call l_{in} the block length of F.
- If both $F_k(x)$ and its inverse function $F_k^{-1}(y)$ can be computed within polynomial time given k, x and k, y resp., we say F is efficient.
- If NO efficient algorithm can distinguish between a F_k (for uniform key k) and a random permutation, i.e. a function that is chosen uniformly at random from $Perm_n$, we say F_k is a pseudorandom permutation.

- Need for Stronger Security
- Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs
 - Pseudorandom permutations
 - Pseudorandom permutations and PRFs
 - PRFs and block ciphers
 - PRFs and PRGs

Pseudorandom permutations are PRFs when the block size is long

In fact, when a pseudorandom permutation's block size is sufficiently long, it is indistinguishable from a random function or a PRF.

PROPOSITION 3.27

If F is a pseudorandom permutation, and additionally $l_{in} \ge n$, then F is also a pseudorandom function.

• Intuitively, this is due to the fact that a uniform function f looks identical to a uniform permutation unless distinct values x and y are witnessed for which f(x) = f(y). However, the probability of finding such values using a polynomial number of queries is negligible when the block size is large.

- Need for Stronger Security
- 2 Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
- The existence of PRFs
 - Pseudorandom permutations
 - Pseudorandom permutations and PRFs
 - PRFs and block ciphers
 - PRFs and PRGs

Strong pseudorandom permutation

Often, a honest party may be required to compute the inverse function F_k^{-1} in addition to F_k itself, therefore we may assume the adversary is able to perform such computations also, and require F_k is indistinguishable from a uniform permutation EVEN IF the distinguisher is additionally given oracle access to the inverse of the permutation. If F has such probability, we call it a strong pseudorandom permutation.

DEFINTION 3.28

Let $F:\{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed permutation. F is a strong pseudorandom permutation if for all PPT distinguishers D, there exists a negligible function negl such that:

$$|Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n)=1] - Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n)=1]| \le negl(n),$$

where the first probability is taken over uniform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in Perm_n$ and the randomness of D.

Strong pseudorandom permutation and block ciphers

 In practice, block ciphers are designed to be secure instantiations of (strong) pseudorandom permutations/PRFs with some fixed key length and block length.

- Need for Stronger Security
- 2 Pseudorandom Functions
- Constructing CPA-secure encryption with PRFs
- 4 The existence of PRFs
 - Pseudorandom permutations
 - Pseudorandom permutations and PRFs
 - PRFs and block ciphers
 - PRFs and PRGs

PRFs and PRGs

 One can easily construct a PRG G from a PRF F for any desired I as follows:

$$G(s) \stackrel{\text{def}}{=} F_s(1)||F_s(2)||\dots||F_s(I).$$

• Also, a PRG G with expansion factor $n \cdot 2^{t(n)}$ can be used to construct a PRF $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{t(n)}$ by setting

$$F_k(x) = y_{x \cdot t(n)} y_{x \cdot t(n)+1} \dots y_{x \cdot t(n)+t(n)-1},$$

where y_0, y_1, \ldots , are the bits generated by G(k).