LiMo WiSe 16/17 Sheet 4: Ex 4

Task:

Let $x = (x_1, \ldots, x_n)'$ be a random vector with $x_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$ for $i = 1, \ldots, n$ and μ is known. The parameter σ^2 should be estimated. Look at the estimator

$$T = T(x) = \sum_{i=1}^{n} (x_i - \mu)^2$$

Is T sufficient for σ^2 ?

Solution:

Background

A statistic T(x) is sufficient for a parameter θ if $f(x|T(x)=t,\theta)=f(x|T(x)=t)$. That means, x|T(x)=t does not depend on θ . Or, all information is contained in the statistic. Equivalently we can use the factorization theorem:

$$f(x|\theta) = h(x) \cdot g(T(x)|\theta)$$

Note that,

- h(x) does not depend on the parameter
- $g(T(x)|\theta)$ depends via the statistic on the parameter

Answer

$$T(x) = \sum_{i=1}^{n} (x_i - \mu)^2$$

$$f(x|\sigma^2) \stackrel{iid}{=} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{1}{2\sigma^2}(x_i - \mu)^2\right)$$

$$= \sigma^{-n} \exp\left(\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right) \underbrace{(2\pi)^{-\frac{n}{2}}}_{=h(x)}$$

According to the factorization theorem T(x) is sufficient for σ^2 .

More examples (not from the sheet)

Exponential distribution

Let
$$x = (x_1, ..., x_n) \stackrel{iid}{=} Exp(\lambda)$$
 and $T(x) = \sum_{i=1}^n x_i$. Is $T(x)$ sufficient for λ ?

$$T(x) = \sum_{i=1}^{n} x_i$$

$$f(x|\lambda) \stackrel{iid}{=} \prod_{i=1}^{n} f(x_i|\lambda)$$

$$= \underbrace{\lambda^n \exp(-\lambda \sum_{i=1}^{n} x_i)}_{=g(T(x)|\sigma^2)} \underbrace{(1)}_{=h(x)}$$

T(x) is sufficient.

Binomial distribution

Let $x_i \stackrel{iid}{\sim} Bin(1,p), i = 1, \dots, 4$; are $T(x) = \sum_{i=1}^n x_i$ and $\tilde{T}(x) = x_1$ sufficient on p?

For T(x):

$$p((1,1,0,1)) = pp(1-p)p$$
$$p((1,1,0,1)|T(x) = 3) = \frac{1}{\binom{4}{3}} = \frac{1}{4}$$

x|T(x) does not depend on p and is hence sufficient.

For $\tilde{T}(x)$:

$$p((1,1,0,1)) = pp(1-p)p$$
$$p((1,1,0,1)|\tilde{T}(x) = 1) = p(1-p)p$$

 $x|\tilde{T}(x)$ depends on p and is not sufficient.