Contribution of traits, phenology, & phylogenetic history to plant-pollinator network structure

Scott Chamberlain
Simon Fraser University

Thanks to!

- Elizabeth Elle
- Jana Vamosi
- Ralph Cartar
- Sarah Semmler
- Anne Worley
- And many more that provided data...

Species in communities form networks

Patterns often similar among networks

Pollinators

Structure matters

What drives network structure?

Traits

Body size

Phenology

Emergence date Or Seasonal activity Phylogenetic History

Study sites

Phylogeny

rriyiogcity

Species level metrics

- Degree
- Specialization (accounts for interaction intensity)
- Within module degree
- Among module connectivity

Traits - Pollinators

- Nest location: above/below ground NS
- Nest type: excavator/renter NS
- Parasitic: yes/no NS

Traits - Pollinators

- Nest location: above/below ground NS
- Nest type: excavator/renter NS
- Parasitic: yes/no NS
- Social: solitary/social
 - Within module degree: social (module hubs), solitary (peripherals)
 - Among module connectivity: social (connectors), solitary (peripherals)
 - Degree: social (higher), solitary (lower)
- Body size larger spp. w/ larger degree

Traits - Plants

- Breeding system
 - Gynomonoecious: less specialized, higher degree
 - Hermaphrodites: more specialized, lower degree

Traits - Plants

- Breeding system
 - Gynomonoecious: less specialized, higher degree
 - Hermaphrodites: more specialized, lower degree
- Growth form
 - Herbaceous: lower within module degree
 - Woody: higher within module degree

Traits - Plants

- Breeding system
 - Gynomonoecious: less specialized, higher degree
 - Hermaphrodites: more specialized, lower degree
- Growth form
 - Herbaceous: lower within module degree
 - Woody: higher within module degree
- Flower symmetry:
 - Bilateral: lower within module degree, lower degree
 - Radial: higher within module degree, higher degree
- Flower size: smaller flowers higher within module degree

Network level

network structure ~

FDisPO + FDisPL + MPDPO + MPDPL

Network level

network structure ~ FDisPO + FDisPL + MPDPO + MPDPL

Pollinator Functional Trait Dispersion

Conclusion

- Species level
 - Sociality important in pollinators
 - Mating systems, flower symmetry & growth form important in plants

- Network level
 - At network level, ↑ pollinator functional diversity w/ ↑ modularity & ♥ connectance
 - Pollinator traits bigger drivers of network structure relative to plants

Phenology

 Species vary in when they start flowering (plants) and start flying (pollinators)

 Variation among species can lead to changes in network structure

Phenology is associated with structures

Robustness differs among groups

Phylogenetic tree shape

Shape easily measured

- Metrics represent whether
 - Branching events recent or old
 - Branching events even across tree, or some groups speciate more than others

Shape could influence who interacts with who

Shape correlated with network structure

Simulations suggest a causal link

Thanks to

- Elizabeth Elle
- Jana Vamosi
- Ralph Cartar
- Sarah Semmler
- Anne Worley

Silhouettes: Phylopic.org

http://phylopic.org/image/070c78bc-e075-4098-a66b-fca2f02680ea/