# **6T2:** Fundamental frequency detection

Xavier Serra

Universitat Pompeu Fabra, Barcelona

#### Index

- F0 detection in time domain
  - monophonic signals
- F0 detection in frequency domain
  - monophonic and polyphonic signals







#### F0 detection in time domain

Autocorrelation function (with tapering)

$$r_x[l] = \sum_{n=0}^{n=N-1-l} x[n]x[n+l]$$
  $l = 0,1,...,N-1$ 

where l = lag





## YIN Algorithm (Cheveigné and Kawahara, 2002)

• Based on the difference function

$$d[l] = \sum_{n=0}^{n=N-1-l} (x[n]-x[n+l])^2 \qquad l=0,1,...,N-1$$

mX + f0 (vignesh.wav), YIN: N=2048, H=256



## F0 detection in frequency domain



## F0 in the spectrum

The F0 can be defined as the common divisor of the harmonic series that best explains the spectral peaks.



## Pattern matching

Two-way mismatch algorithm (Maher and Beauchamp, 1994)

$$\begin{split} \operatorname{Err}_{p \to m} &= \sum_{n=1}^{N} E_{\omega} (\Delta f_{n}, f_{n}, a_{n}, A_{\max}) \\ &= \sum_{n=1}^{N} \Delta f_{n} \cdot (f_{n})^{-p} \\ &+ (\frac{a_{n}}{A_{\max}}) \times \left[ q \Delta f_{n} \cdot (f_{n})^{-p} - r \right] \end{split}$$

 $\Delta f_n$ : diff. between predicted and the closest measured peaks  $f_n$ ,  $a_n$ : frequency and magnitude of predicted peaks  $A_{max}$ : maximum peak magnitude



$$\begin{aligned} \operatorname{Err}_{m \to p} &= \sum_{k=1}^{K} E_{\omega} (\Delta f_{k}, f_{k}, a_{k}, A_{\max}) \\ &= \sum_{k=1}^{K} \Delta f_{k} \cdot (f_{k})^{-p} + \left(\frac{a_{k}}{A_{\max}}\right) \times \left[q \Delta f_{k} \cdot (f_{k})^{-p} - r\right] \end{aligned}$$

 $\Delta f_k$ : diff. between predicted and its closest measured peaks  $f_k$ ,  $a_k$ : frequency and magnitude of predicted peaks  $A_{\max}$ : maximum peak magnitude

**Total error:**  $\operatorname{Err}_{\operatorname{total}} = \operatorname{Err}_{p \to m} / N + \rho \operatorname{Err}_{m \to p} / K$ 

Maher and Beauchamp propose: p = 0.5, q = 1.4, r = 0.5,  $\rho = 0.33$ 

|       | Err <sub>p-&gt;m</sub> | Err <sub>m-&gt;p</sub> | Err  |
|-------|------------------------|------------------------|------|
| 50Hz  | 122.58                 | -3.0                   | 7.49 |
| 100Hz | 32.0                   | -3.0                   | 3.83 |
| 200Hz | 10.0                   | 30.66                  | 4.2  |

TWM error calculation from the frequencies: 200, 300, 500, 600, 700, 800.





# F0 in polyphonic signals



## Prominent pitch in polyphonic signals

(Salamon and Gómez, 2012)



#### References and credits

- More information in: http://en.wikipedia.org/wiki/Fundamental\_frequency http://en.wikipedia.org/wiki/Pitch\_detection\_algorithm http://en.wikipedia.org/wiki/Autocorrelation
- F0 detection algorithms:
  - A. de Cheveigné and H. Kawahara. "YIN, a fundamental frequency estimator for speech and music," J. Acoust. Soc. Am. 111, 1917 (2002).
  - R. C. Maher and J. W. Beauchamp, "Fundamental frequency estimation of musical signals using a Two-Way Mismatch procedure," J. Acoust. Soc. Am., vol. 95., no. 4, pp. 2254-2263 (1994).
  - J. Salamon and E. Gómez, "Melody extraction from polyphonic music signals using pitch contour characteristics," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 6, pp. 1759–1770 (2012).
- Sounds from: http://www.freesound.org/people/xserra/packs/13038/
- Slides released under CC Attribution-Noncommercial-Share Alike license and code underAffero GPL license; available from https://github.com/MTG/sms-tools

# **6T2:** Fundamental frequency detection

Xavier Serra

Universitat Pompeu Fabra, Barcelona