Notatki z Analizy matematycznej ze źródeł wszelakich

Contents

1	Licz	by naturalne	1
	1.1	Przykład indukcji - nierówność Bernoulliego	1
2	Wła	asności ciągów liczbowych	2
	2.1	Granica iloczynu ciągów jest równa iloczynowi granic tych ciągów	2
	2.2	Dowód, że $\lim_{n\to\infty}(x_n+y_n)=x+y$	2
3	Cią	gi liczb rzeczywistych	3
	3.1	Granica $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0$ gdy $\alpha>0$	5
	3.2	Granica $\lim_{n\to\infty} a^n = 0$, gdy $0 \le a < 1$	5
	3.3	Granica $\lim_{n\to\infty} \sqrt[n]{a} = 1$ gdy $a > 0$	6
	3.4	Granica $\lim_{n\to\infty} \sqrt[n]{n} = 1$	8
	3.5	Granica $\lim_{n\to\infty} \frac{n^k}{a^n} = 0$, dla $a > 1$, $k \in \mathbb{R}$	9
	3.6	Granica z $\lim_{n\to\infty} x_n^p = 0^p = 0$ gdy $x_n \xrightarrow[n\to\infty]{} 0$	10
	3.7	Przykłady jak liczyć granice ciągów - Rudnicki	11
		3.7.1 Granica z ilorazu wielomianu i.e $\frac{P(n)}{n^k}$	11
		$3.7.2$ Granica z ilorazu wielomianów i.e $\frac{P(n)}{Q(n)}$	11
		3.7.3 Przykład 3 Rudnicki, 2.2 Ciągi	12
		3.7.4 Przykład 4 Rudnicki, 2.2 Ciągi	13

1 Liczby naturalne

1.1 Przykład indukcji - nierówność Bernoulliego

Twierdzenie 1. Jeśli x > -1 oraz $x \neq 0$ i $n \geq 2$, to:

$$(1+x)^n > 1 + nx.$$

Baza indukcji: Dla n=2 sprawdzamy, czy nierówność Bernoulliego jest prawdziwa. Mamy zatem:

$$(1+x)^{2} > 1 + 2x$$

$$1 + 2x + x^{2} > 1 + 2x / + (-1 - 2x)$$

$$x^{2} > 0$$

Z założenia wiemy, że $x \neq 0$, kwadrat liczby rzeczywistej jest zawsze większy niż 0, więc nierówność jest spełniona.

Krok indukcyjny Zakładamy, że $(1+x)^n > 1 + nx$ jest spełnione dla pewnego $n \ge 2$.

Dowodzimy że nierówność jest spełniona dla n+1: Dowodzimy, że $(1+x)^{n+1} > 1 + (n+1)x$.

$$(1+x)^{n+1} = (1+x)^n (1+x)^1$$

Zauważmy, że możemy powyższą informację wykorzystać do odpowiedniego dobrania nierówności, używając nierówności z kroku indukcyjnego (gdy opuścimy wyrażenie (1+x) wracamy po prostu do nierówności z kroku indukcyjnego):

$$(1+x)^{n+1} = (1+x)^n (1+x)^1 > (1+nx)(1+x) = 1+x+nx+nx^2 = 1+(n+1)x+nx^2$$

$$(1+x)^{n+1} > 1 + (n+1)x + nx^2 > 1 + (n+1)x$$

Jeżeli dodamy "coś" (u nas nx^2) do 1+(n+1)x to i tak widzimy, że $(1+x)^{n+1}$ nadal jest większe. Jako, że $x \neq 0$ (ważne, gdyby było inaczej, nierówność ostra nie byłaby spełniona) to wyrażenie nx^2 jest dodatnie. Tym bardziej $(1+x)^{n+1}$ jest większe od wyrażenia bez nx^2 . Z tego można wywnioskować końcowy wniosek, który na mocy zasady indukcji pokazuje, że dla $n \geq 2$ nierówność Bernoulliego jest spełniona, czyli udowodnione zostało, że dla n+1:

$$(1+x)^{n+1} > 1 + (n+1)x$$

2 Własności ciągów liczbowych

2.1 Granica iloczynu ciągów jest równa iloczynowi granic tych ciągów

Twierdzenie 2. Jeżeli $\lim_{n\to\infty} x_n = x$ i $\lim_{n\to\infty} y_n = y$ to $\lim_{n\to\infty} (x_n y_n) = xy$.

2.2 Dowód, że $\lim_{n\to\infty}(x_n+y_n)=x+y$

Niech x_n oraz y_n będą ciągami o wyrazach rzeczywistych lub zespolonych.

Twierdzenie 3. Jeżeli
$$\lim_{n\to\infty} x_n = x$$
 i $\lim_{n\to\infty} y_n = y$ to $\lim_{n\to\infty} (x_n + y_n) = x + y$.

Chcemy okazać, że dla dowolnej liczby rzeczywistej większej niż zero, istnieje jakaś liczba naturalna, taka, że dla n równego bądź większego niż ta liczba, spełniona jest nierówność:

$$|(x_n + y_n) - (x + y)| < \text{Dowolna}$$
 ustalona liczba rzeczywista większa od zera

Niech $\epsilon > 0$ będzie ustaloną liczbą rzeczywistą. Przyjmijmy, że $\delta = \frac{\epsilon}{2}$. Wiemy, że $\delta > 0$. Z założeń wiemy, że oba ciągi są zbieżne, więc dla każdego z tych dwóch ciągów istnieją liczby naturalne $l, m \in \mathbb{N}$ takie że:

$$\bigwedge_{n>l} |x_n - x| < \delta$$

$$\bigwedge_{n>m} |y_n - y| < \delta$$

Oznaczmy $n_0 = \max\{l, m\}$. n_0 jest liczbą, która gwarantuje nam, że gdy $n \geq n_0$, od tego miejsca te dwie nierówności są jednocześnie spełnione. Mamy wtedy:

$$\bigwedge_{n>n_0} (|x_n - x| < \delta \wedge |y_n - y| < \delta) \tag{2.1}$$

Z 2.1 uzyskujemy:

$$\bigwedge_{n \ge n_0} |x_n - x| + |y_n - y| < 2\delta \tag{2.2}$$

Skorzystamy z nierówności trójkąta i rozwiniemy wyrażenie $|(x_n + y_n) - (x + y)|$:

$$|(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - y)| < |x_n - x| + |y_n - y|$$

Widzimy, że dla dowolnego $n \geq n_0$:

$$|(x_n + y_n) - (x + y)| < 2\delta = 2 \cdot \frac{\epsilon}{2} = \epsilon$$

Dla dowolnego $\epsilon > 0$ istnieje takie n_0 , że $\bigwedge_{n \geq n_0} |(x_n + y_n) - (x + y)| < \epsilon$. Zatem x + y jest granicą $(x_n + y_n)$.

3 Ciagi liczb rzeczywistych

W tym rozdziale każdy rozważany ciąg jest o wyrazach rzeczywistych.

Twierdzenie 4. Ciąg monotoniczny jest zbieżny wtedy i tylko wtedy, gdy jest ograniczony.

Każdy ciąg zbieżny jest ograniczony (np. Rudnicki Twierdzenie 3 Punkt 2.1.3). W jedną stronę dowód jest w takim razie gotowy. Pokażemy zatem, że ciąg który jest monotoniczny i ograniczony jest zbieżny.

Załóżmy, że ciąg (x_n) jest nierosnący (ciąg nazywamy monotonicznym gdy jest niemalejący lub nierosnący) oraz, że jest ograniczony. Niech:

$$A = \{x_n : n \in \mathbb{N}\}.$$

Zauważmy, że A jest zbiorem ograniczonym. Co to znaczy, że zbiór jest ograniczony? Mówimy, że zbiór A jest ograniczony jeśli jest ograniczony z góry i z dołu.

Zbiór A jest ograniczony z góry gdy:

$$\bigvee_{M \in \mathbb{R}} \bigwedge_{x \in A} x \le M$$

Zbiór A jest ograniczony z dołu gdy:

$$\bigvee_{m \in \mathbb{R}} \bigwedge_{x \in A} x \ge m$$

Wcześniej założyliśmy, że ciąg (x_n) jest ograniczony. Wtedy istnieje liczba dodatnia ograniczająca wszystkie wyrazy tego ciągu. Niech M>0 będzie taką liczbą, która dla dowolnego n spełnia nierówność $M\geq |x_n|$. Na mocy pewnej znanej własności dotyczącej wartości bezwzględnej (patrz Wikipedia angielska) mamy:

$$M \ge |x_n| \iff -M \le x_n \le M$$

Ciekawe spostrzeżenie jest takie, że przez założenie o ograniczoności ciągu, widzimy powyżej, że jeśli wrzucimy wyrazy tego ciągu do jakiegoś zbioru to ten zbiór będzie ograniczony. Jest nam to niezbędne do posłużenia się aksjomatem ciągłości. Wiemy wtedy, że zbiór A ma kres dolny. Niech zatem $x = \inf A$. Z definicji kresu dolnego mamy wtedy:

$$\bigwedge_{n\in\mathbb{N}} x \le x_n$$

oraz

$$\bigwedge_{\epsilon > 0} \bigvee_{x_{n_0} \in A} x_{n_0} < x + \epsilon$$

Teraz ważny krok, przypomnijmy, że założyliśmy, że nasz ciąg jest nierosnący. Czyli dla każdego $n \in \mathbb{N}$ $x_{n+1} \leq x_n$. Na pierwszy rzut oka może się to nie wydawać oczywiste, ale wykorzystamy tę informację do obsadzenia "własnych" wskaźników. Prawdziwym jest, że dla $n \geq n_0$ mamy $x_n \leq x_{n_0}$. Dlaczego? Wyrazy ciągu wyglądają jakoś tak:

$$x_1, x_2, x_3, x_4, x_5, x_6...$$

Każdy kolejny wyraz ciągu, jest mniejszy niż poprzedni, jeśli wiemy zatem z aksjomatu ciągłości o istnieniu liczby x_{n_0} to jest gdzieś ona w tym zbiorze wyrazów ciągu:

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, \dots, x_{n_0}, \dots$$

Czyli od pewnego indeksu wyrazy ciągu są mniejsze bądź równe niż poprzedni wyraz. Jeżeli np. $n_0 = 3$, to wyrazy z indeksem większym bądź równym niż n = 3 będa automatycznie mniejsze na mocy założenia o ciągu niemalejącym:

$$x_1 \ge x_2 \ge x_{n_0=3} \ge x_4 \ge x_5 \ge x_6 \ge x_7 \ge x_8...$$

W takim razie wykorzystamy tę informację do zapisania nierówności:

$$x \le x_n \le x_{n_0} < x + \epsilon$$
 dla $n \ge n_0$

Z powyższego mamy:

$$x_n < x + \epsilon$$
 dla $n \ge n_0$

oraz

$$x - x_n \le 0 < \epsilon \implies x - \epsilon < x_n \quad \text{dla} \quad n \ge n_0$$

Z tego już łatwo korzystając z własności wartości bezwzględnej mamy:

$$x - \epsilon < x_n < x + \epsilon \iff |x_n - x| < \epsilon \quad \text{dla} \quad n \ge n_0$$

Tak więc pokazaliśmy, że dla dowolnego $\epsilon > 0$, istnieje taka liczba (indeks po naszemu) n_0 , że dla dowolnej liczby $n \geq n_0$ spełniona jest nierówność łudząco przypominająca definicję granicy:

$$\bigwedge_{n \ge n_0} |x_n - x| < \epsilon,$$

tak więc ciąg monotoniczny ograniczony jest zbieżny do x.

3.1 Granica $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0$ gdy $\alpha>0$

Sprawdzamy, że:

$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0 \text{ dla } \alpha>0$$

.

Chcemy sprawdzić, że dla dowolnej liczby $\epsilon > 0$ istnieje takie $n_0 \in \mathbb{N}$, że:

$$\left|\frac{1}{n^{\alpha}} - 0\right| < \epsilon \quad \text{dla} \quad n \ge n_0$$

Jako, że wyrażenie $\frac{1}{n^{\alpha}}$ dla naszych warunków jest zawsze większe niż 0, możemy opuścić wartość bezwzględną:

$$\frac{1}{n^{\alpha}} < \epsilon \quad \text{dla} \quad n \ge n_0$$

Teraz, żeby pokazać, że istnieje liczba od której nierówność z epsilonem jest spełniona, przekształćmy nierówność do równoważnej postaci tak by n było trochę bardziej "widoczne" tj. dla $n \ge n_0$:

$$\frac{1}{n^{\alpha}} < \epsilon / \cdot n^{\alpha}$$

$$1 < \epsilon n^{\alpha} / \frac{1}{\epsilon}$$

$$\frac{1}{\epsilon} < n^{\alpha} / \sqrt{\alpha}$$

$$n > \left(\frac{1}{\epsilon}\right)^{\frac{1}{\alpha}}$$

Teraz, wiemy, że ϵ i α jest dowolną liczbą większą niż zero, to oznacza, że jak zostaną ustalone to będziemy mieli po prawej stronie jakąś liczbę. Zawsze możemy wskazać, liczbę naturalną większą niż ta liczba. Niech w takim razie n_0 będzie liczbą naturalną większą niż $\left(\frac{1}{\epsilon}\right)^{\frac{1}{\alpha}}$ tzn. $n_0 > \left(\frac{1}{\epsilon}\right)^{\frac{1}{\alpha}}$. Wskazaliśmy teraz właśnie istnienie liczby, od której (aż wzwyż, czyli liczby powyżej n_0 też spełniają tę nierówność) nasza przekształcona nierówność jest spełniona. Ta nierówność jest oczywiście równoważna $|\frac{1}{n^{\alpha}}-0|<\epsilon$ dla $n\geq n_0$. Tak więc granicą dla ciągu $\frac{1}{n^{\alpha}}$ jest liczba 0.

3.2 Granica $\lim_{n\to\infty} a^n = 0$, gdy $0 \le a < 1$

Postępujemy podobnie jak w granicy ciągu $\frac{1}{n^{\alpha}}$. Chcemy sprawdzić, że 0 jest granicą ciągu a^n dla warunków $0 \le a < 1$. W takim razie sprawdzamy, że dla dowolnej liczby $\epsilon > 0$, istnieje takie $n_0 \in \mathbb{N}$, że

$$|a^n - 0| < \epsilon$$
 dla $n \ge n_0$

Z podanych warunków, wiemy, że wyrażenie w środku wartości bezwzględnej nie będzie ujemne, możemy ją więc opuścić:

$$a^n < \epsilon$$
 dla $n \ge n_0$

Ważne wtrącenie: Dla a=0 ciąg jest stały o wyrazie 0 już od pierwszego wyrazu, więc ma on granicę równą 0. W dalszych rozważaniach ograniczmy więc a do przypadku 0 < a < 1 (pozwoli nam to swobodnie używać logarytmu, jako, że gdy przyjmiemy za podstawę a mógłby być 'kłopot' z ϵ w nierówności, z powodu zera w podstawie). Skorzystajmy z własności logarytmu ($\log_a a^b = b$) i dokonajmy przekształcenia powyższej nierówności, aby n było bardziej widoczne, oczywiście nierówność ta będzie równoważna pierwotnej, zatem dla $n \geq n_0$ zachodzi (Uwaga na zmianę znaku w nierówności!):

$$a^n < \epsilon / \log_a$$

$$\log_a a^n = n > \log_a \epsilon$$

Teraz, gdy ϵ oraz a zostaną ustalone, po prawej stronie powyższej nierówności mamy jakąś skończoną liczbę. Niech zatem n_0 będzie liczbą naturalną taką, że $n_0 > \log_a \epsilon$. Właśnie pokazaliśmy, że istnieje liczba (i jako, że jest to liczba naturalna jej następnik etc.) od której nierówność $n > \log_a \epsilon$ jest spełniona, która jest równoważna pierwotnej nierówności. Pokazaliśmy zatem, że dla dowolnego $\epsilon > 0$ istnieje liczba naturalna n_0 która dla każdego $n \geq n_0$ spełnia:

$$|a^n - 0| < \epsilon$$

wiec $\lim_{n\to\infty} a^n = 0$, gdy $0 \le a < 1$.

3.3 Granica $\lim_{n\to\infty} \sqrt[n]{a} = 1$ gdy a > 0

Mamy udowodnić, że granica z $\lim_{n\to\infty} \sqrt[n]{a}$ gdy a>0 wynosi 1. Na starcie zobaczmy co się dzieje w momencie gdy $a\geq 1$. Weźmy wtedy pierwiastek n-tego stopnia z obydwu stron nierówności, nie musimy uważać na znak nierówności ponieważ a jest dodatnie tak samo jak 1. Mamy zatem:

$$a \ge 1/\sqrt{r}$$

$$\sqrt[n]{a} \ge \sqrt[n]{1} = 1$$

Weźmy teraz $b_n = \sqrt[n]{a} - 1$. Wyliczmy z tej równości a:

$$b_n = \sqrt[n]{a} - 1 / + 1$$

 $b_n + 1 = \sqrt[n]{a} / (.)^n$
 $(b_n + 1)^n = a$

Ważna uwaga, korzystamy z nierówności Bernoulliego, odwołując się do (1.1.1), udowodniliśmy, wersję dla nierówności ostrej, w dowodzie tej granicy wykorzystamy wersję nieostrą:

$$a = (b_n + 1)^n \ge 1 + b_n n$$

Przekształćmy nierówność, aby wydobyć b_n :

$$a \ge 1 + b_n n / -1$$

$$a - 1 \ge b_n n / \cdot \frac{1}{n}$$

$$\frac{a - 1}{n} \ge b_n$$

Stworzymy teraz nierówność, która da nam podstawę do użycia twierdzenia o trzech ciągach. Wiemy, że $b_n \geq 0$ (dlatego, że $b_n = \sqrt[n]{a} - 1 \geq 0$ a $a \geq 1$). Ustawmy w takim razie następującą nierówność:

$$0 \le b_n \le \frac{a-1}{n}$$

 $\lim_{n\to\infty} 0$ wynosi 0 (na mocy twierdzenia o granicy ciągu stałego). Granica $\lim_{n\to\infty} \frac{a-1}{n}$ jest równa:

$$\lim_{n\to\infty}\frac{a-1}{n}=\lim_{n\to\infty}(a-1)\cdot\frac{1}{n}=\lim_{n\to\infty}(a-1)\cdot\lim_{n\to\infty}\frac{1}{n}=\left(\lim_{n\to\infty}(a-1)\right)\cdot 0=0$$

Z twierdzenia o trzech ciągach mamy zatem $\lim_{n\to\infty} b_n = 0$. Rezultatu tego użyjemy w wyrażeniu opisującym b_n :

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} (\sqrt[n]{a}) - \lim_{n \to \infty} (1)$$

$$0 = \lim_{n \to \infty} (\sqrt[n]{a}) - 1 / + 1$$

$$1 = \lim_{n \to \infty} (\sqrt[n]{a})$$

Dla $a \geq 1$ udowodniliśmy, że granica wynosi 1. Pozostaje sprawdzić przypadek dla $a \in (0,1)$. Ale najpierw pokażemy, że wyrażenie $\sqrt[n]{a}$ da się przedstawić trochę inaczej. Będzie to kluczowe dla dostrzeżenia czemu granica dla tego przypadku również wynosi 1.

$$\sqrt[n]{a} = \sqrt[n]{\frac{1}{\frac{1}{a}}} = \sqrt[n]{(\frac{1}{a})^{-1}} = (\frac{1}{a})^{\frac{-1}{n}} = \frac{1}{(\frac{1}{a})^{\frac{1}{n}}} = \frac{1}{\sqrt[n]{\frac{1}{a}}}$$

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\frac{1}{a}}}$$

Ważne spostrzeżenie, $a \in (0,1)$, powyżej udowodniliśmy, że granica z $\sqrt[n]{a}$ wynosi 1 gdy $a \ge 1$. Oznacza to dla nas tyle, że w wyrażeniu pod pierwiastkiem jest ułamek, którego wynikiem jest liczba większa niż 1. Wiemy zatem jaki jest wynik dla tej granicy, znamy granicę licznika oraz mianownika, separując:

$$\lim_{n \to \infty} \sqrt[n]{a} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{a}}} = \frac{1}{1} = 1$$

3.4 Granica $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Chcemy sprawdzić, że $\lim_{n\to\infty} \sqrt[n]{n} = 1$. Przyjmijmy zatem, że $1 + b_n = \sqrt[n]{n}$. Wtedy:

$$1 + b_n = \sqrt[n]{n} / -1$$
$$b_n = \sqrt[n]{n} - 1 > 0$$

Skąd wiemy, że $b_n \ge 0$? Po pierwsze, wiemy na pewno, że b_n może przyjąć 0 dla n=1 $(b_{n=1}=\sqrt[4]{1}-1=0)$. W takim razie co by się stało, gdyby $b_n<0$? Otóż:

$$b_n = \sqrt[n]{n} - 1 < 0$$

$$\sqrt[n]{n} - 1 < 0 / + 1$$

$$\sqrt[n]{n} < 1 / (\cdot)^n$$

$$(\sqrt[n]{n})^n = (n^{\frac{1}{n}})^n = n^1 = n < 1^n = 1$$

SPRZECZNOŚĆ! Żadna liczba n nie będzie mniejsza niż 1.

Wiemy już dlaczego na pewno $b_n \geq 0$. Wyliczmy, n:

$$1 + b_n = \sqrt[n]{n} / (\cdot)^n$$
$$(1 + b_n)^n = n$$

Skorzystamy teraz ze wzoru Newtona na potęgę dwumianu (Wikipedia nazywa ten szczególny przypadek Szeregiem Newton'a? Sprawdzić). Rozwińmy wyrażenie $(1 + b_n)^n$ tymże wzorem:

$$(1+b_n)^n = \sum_{k=0}^n \binom{n}{k} b_n^k = \binom{n}{0} b_n^0 + \binom{n}{1} b_n^1 + \binom{n}{2} b_n^2 + \dots$$
$$\sum_{k=0}^n \binom{n}{k} b_n^k = 1 + \binom{n}{1} b_n + \binom{n}{2} b_n^2 + \dots$$

Mamy w takim razie dla $n \geq 2$:

$$(1+b_n)^n \ge 1 + \binom{n}{1}b_n + \binom{n}{2}b_n^2 \ge 1 + \binom{n}{2}b_n^2$$

$$(1+b_n)^n \ge 1 + \binom{n}{2}b_n^2 / -1$$

$$(1+b_n)^n - 1 = n - 1 \ge \binom{n}{2}b_n^2 / (:)\binom{n}{2}$$

$$\frac{(n-1)}{\binom{n}{2}} \ge b_n^2$$

$$\frac{(n-1)}{\binom{n}{2}} \ge b_n^2$$

$$\frac{(n-1)}{\frac{n!}{2!(n-2)!}} \ge b_n^2$$

Zauważmy, że $\frac{n!}{2!(n-2)!}$ da się zapisać w sposób wygodniejszy do uproszczenia powyższej nierówności:

$$\frac{n!}{2!(n-2)!} = \frac{n(n-1)(n-2)!}{(n-2)!2!} = \frac{n(n-1)}{2}$$

Z tego mamy zatem:

$$\frac{(n-1)}{\frac{n!}{2!(n-2)!}} = \frac{n-1}{\frac{n(n-1)}{2}} = (n-1)\frac{2}{n(n-1)} = \frac{2}{n} \ge b_n^2 / \sqrt{2}$$

$$\frac{\sqrt{2}}{\sqrt{n}} \ge b_n$$

Teraz, pamiętając jak na samym początku pokazaliśmy, że $b_n \ge 0$ stwórzmy na tej kanwie bazę pod twierdzenie o trzech ciągach:

$$0 \le b_n \le \frac{\sqrt{2}}{\sqrt{n}}$$

Z 3.1 możemy wywnioskować, że (hint: zamień pierwiastek na równoważną wersję z potęgą i wyciąg stałą przed granicę, stałą jest pierwiastek nad 2):

$$\lim_{n \to \infty} \frac{\sqrt{2}}{\sqrt{n}} = 0$$

Podobnie granica ciągu składającego się z samych 0 jest równa zero. Z twierdzenia o trzech ciągach wnioskujemy, że:

$$\lim_{n\to\infty} b_n = 0$$

Podsumowując:

$$\lim_{n \to \infty} \sqrt[n]{n} = \lim_{n \to \infty} (1 + b_n) = 1 + 0 = 1$$

3.5 Granica $\lim_{n\to\infty} \frac{n^k}{a^n} = 0$, dla a > 1, $k \in \mathbb{R}$

Najpierw sprawdzimy, że $\lim_{n\to\infty}\frac{n}{b^n}=0$ dla b>1. Niech b=1+c. Wtedy:

$$b = 1 + c > 1 / -1$$
$$c > 0$$

Rozwińmy, b^n przy użyciu wzoru Newtona:

$$b^{n} = (1+c)^{n} = \sum_{k=0}^{n} \binom{n}{k} c^{k} = \binom{n}{0} c^{0} + \binom{n}{1} c^{1} + \binom{n}{2} c^{2} \dots$$

Dla $n \geq 2$:

$$b^{n} \ge \binom{n}{0}c^{0} + \binom{n}{1}c^{1} + \binom{n}{2}c^{2} \ge \binom{n}{2}c^{2},$$
$$b^{n} \ge \binom{n}{2}c^{2},$$

Teraz przygotujemy grunt pod użycie twierdzenia o trzech ciągach, pamiętając o tym, że jeśli ułamki mają takie same liczniki to większy jest ten który ma mniejszy mianownik. Poczyńmy również pewną obserwację:

$$\binom{n}{2}c^2 = \frac{n!}{2!(n-2)!} \cdot c^2 = \frac{n(n-1)(n-2)!}{2!(n-2)!} \cdot c^2 = \frac{n(n-1)c^2}{2}$$

Wykorzystamy te informację by lepiej uwidocznić jedno wyrażenie, ustawiając w nierówność:

$$0 \le \frac{n}{b^n} \le \frac{n}{\binom{n}{2}c^2} \le \frac{n}{\binom{n}{2}c^2} = \frac{n}{\frac{n(n-1)c^2}{2}} = \frac{2}{(n-1)c^2}$$
$$0 \le \frac{n}{b^n} \le \frac{2}{(n-1)c^2}$$

Teraz, wiemy, że granica z ciągu 0 jest równa zero (ciąg stały). A co z granicą $\lim_{n\to\infty} \frac{2}{(n-1)c^2}$? c jest stałą wyciągnijmy ją zatem przed granicę:

$$\lim_{n \to \infty} \frac{2}{(n-1)c^2} = \frac{2}{c^2} \lim_{n \to \infty} \frac{1}{n-1} = \frac{2}{c^2} \cdot 0$$

Korzystając zatem z twierdzenia o trzech ciągach:

$$\lim_{n \to \infty} \frac{n}{b^n} = 0 \quad \text{Dla} \quad b > 1.$$

Wróćmy teraz do głównej granicy którą zamierzaliśmy sprawdzić. Wiemy, że $k \in \mathbb{R}$. Zatem istnieje liczba naturalna większa niż k, niech będzie to p, p > k. Niech $b = \sqrt[p]{a}$. Zauważmy, że jeśli najpierw podniesiemy b do potęgi p a później do n to $a^n = b^{pn}$ Połóżmy pewną nierówność jako grunt pod użycie twierdzenia o trzech ciągach:

$$0 \le \frac{n^k}{a^n} \le \frac{n^p}{a^n} = \frac{n^p}{b^{pn}} = \left(\frac{n}{b^n}\right)^p$$

Wiemy, że dla potęgi naturalnej p i $\lim_{n\to\infty} x_n = x$ mamy $\lim_{n\to\infty} x_n^p = x^p$. Z tego zatem mamy, że:

$$\lim_{n \to \infty} \left(\frac{n}{b^n} \right)^p = 0^p = 0$$

Z twierdzenia o trzech ciągach dostajemy granicę równą 0 dla ciągu $\frac{n^k}{a^n}$ o ile a>1 a $k\in\mathbb{R}$

3.6 Granica z $\lim_{n\to\infty} x_n^p = 0^p = 0$ gdy $x_n \xrightarrow[n\to\infty]{} 0$

Niech x_n będzie ciągiem liczb rzeczywistych takim, że $x_n \ge 0$ dla $n \in \mathbb{N}$. Niech p > 0. Jeśli $\lim_{n \to \infty} x_n = 0$ to wtedy $\lim_{n \to \infty} x_n^p = 0$.

Ustalmy $\epsilon > 0$. Wówczas możemy przyjąć, że $\delta = \epsilon^{1/p}$. Zatem $\delta > 0$ i istnieje liczba n_0 która dla $n \geq n_0$ spełnia następującą nierówność:

$$|x_n - 0| = x_n < \delta / (.)^{(p)}$$

Przy potęgowaniu znaku nierówności nie musimy zmieniać, ponieważ po lewej i po prawej nie będzie wartości ujemnych:

$$x_n^p < \delta^p = \left(\epsilon^{1/p}\right)^p = \epsilon$$

Zatem dla dowolnego ϵ istnieje n_0 , które dla $n \geq n_0$ spełnia $|x_n^p - 0| < \epsilon$.

3.7 Przykłady jak liczyć granice ciągów - Rudnicki

3.7.1 Granica z ilorazu wielomianu i.e $\frac{P(n)}{n^k}$

Niech P będzie wielomianem stopnia k, $P(n) = a_0 + a_1 n + ... + a_k n^k$, wtedy:

$$\lim_{n \to \infty} \frac{P(n)}{n^k} = \lim_{n \to \infty} \frac{a_0 + a_1 n + \dots + a_k n^k}{n^k} = \lim_{n \to \infty} \frac{a_0}{n^k} + \frac{a_1 n}{n^k} + \dots + \frac{a_k n^k}{n^k} =$$

$$= \lim_{n \to \infty} a_0 n^{-k} + a_1 n^{1-k} + a_2 n^{2-k} + \dots + a_k$$

Warto zauważyć, że możemy użyć twierdzenia 3.1 aby obliczyć tę granicę. k jest stopniem wielomianu i jest to nieujemna liczba całkowita, zatem każde n ma wykładnik ujemny poza ostatnim, (k > k-1 > k-2 etc.). Wobec tego biorąc odwrotności z tych wyrażeń (pamiętamy, potęga ujemna) mamy po prostu sumowanie zer AŻ do a_k kiedy to n^k się skraca do jedności:

$$\lim_{n \to \infty} a_0 n^{-k} + a_1 n^{1-k} + a_2 n^{2-k} + \dots + a_k = 0 + 0 + 0 + \dots + a_k = a_k.$$

3.7.2 Granica z ilorazu wielomianów i.e $\frac{P(n)}{Q(n)}$

Niech P będzie wielomianem stopnia k, $P(n) = a_0 + a_1 n + ... + a_k n^k$ oraz $Q(n) = b_0 + b_1 n + ... + b_l n^l$, chcemy oczywiście aby współczynniki przy najwyższch stopniach nie sprawiały, że będziemy dzielić przez zero przy liczeniu granicy, więc również $a_k \neq 0$ oraz $b_l \neq 0$ i (kluczowe) $k \leq l$. Użyjemy poprzedniego przykładu i będziemy sprytni. Rozbijemy ułamek wielomianów, tak aby dzielić P(n) przez n^k i dzielić n^l przez Q(n). Całość konstrukcji musi być oczywiście równa $\frac{P(n)}{Q(n)}$, dlatego pomnożymy wszystko przez n^{k-l} :

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \lim_{n \to \infty} \frac{P(n)}{n^k} \frac{n^l}{Q(n)} \cdot n^{k-l}$$

Korzystamy ze wzoru na arytmetykę granic przy iloczynie. $\frac{P(n)}{n^k}$ wiemy z przykładu wcześniej, że granica z tego wyrażenia to a_k . Teraz poczynimy uwagę, wiemy, że:

$$\lim_{n \to \infty} \frac{Q(n)}{n^l} = b_l$$

Jest nam również znany wzór na granicę ciągu do ujemnej potęgi naturalnej, tj:

$$\lim_{n \to \infty} (\frac{Q(n)}{n^l})^{-1} = b_l^{-1} = \frac{1}{b_l}$$

Wzór oczywiście działa, bo "oryginalna" granica wynosi b_l , a ciąg dla dowolnego N nie jest równy zero. Mamy wtedy prostą drogę do podsumowania granicy ilorazu wielomianów.

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \lim_{n \to \infty} \frac{P(n)}{n^k} \frac{n^l}{Q(n)} \cdot n^{k-l} = \frac{a_k}{b_l} \cdot \lim_{n \to \infty} n^{k-l}.$$

Teraz, zastanówmy się jaka może być granica z $\lim_{n\to\infty} n^{k-l}$. Z naszych założeń, k=l albo k < l. Gdy k=l, sprawa jest prosta, mamy po prostu:

$$\lim_{n\to\infty} n^{l-l} = \lim_{n\to\infty} n^0 = \lim_{n\to\infty} 1 = 1$$

I wtedy:

$$\frac{a_k}{b_l} \cdot \lim_{n \to \infty} n^{k-l} = \frac{a_k}{b_l} \cdot 1 = \frac{a_k}{b_l}.$$

Gdy k < l mamy, ze wzoru 3.1:

$$\frac{a_k}{b_l} \cdot \lim_{n \to \infty} n^{k-l} = \frac{a_k}{b_l} \cdot 0 = 0$$

Podsumowując:

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} \frac{a_k}{b_l}, & \text{gdy } k = l, \\ 0, & \text{gdy } k < l. \end{cases}$$

3.7.3 Przykład 3 Rudnicki, 2.2 Ciągi

Obliczymy granicę ciągu:

$$a_n = \frac{\sqrt[3]{n^2 \sin n!}}{n+1}$$

Rozbijmy ciąg (a_n) na iloczyn dwóch ciągów. Niech $x_n = \frac{n^{2/3}}{(n+1)}$ oraz $y_n = \sin n!$. Wtedy $a_n = x_n \cdot y_n$. Zauważymy, że ciąg (y_n) jest ograniczony. Funkcja $\sin(\cdot)$ przyjmuje wartości na przedziale [-1,1]. Zatem dla dowolnego $n \in \mathbb{N}$, $|y_n| \leq 1$, tzn. (y_n) jest ograniczony. Teraz stwórzmy nierówność jako podstawa pod użycie twierdzenia o trzech ciągach:

$$0 \le x_n \le \frac{1}{n^{1/3}}$$

Dobrym pytaniem byłoby teraz: "A skąd wiadomo w ogóle że to działa?". Kolejnym pytaniem: "Jaki właściwie był proces myślowy, aby to oszacować?". Widzimy, że w mianowniku ciągu (x_n) jest (n+1). Wiemy, też, że przy takich samych licznikach, ułamek z mniejszym mianownikiem jest większy, zapiszmy zatem:

$$\frac{1}{n+1} \le \frac{1}{n}$$

Przemnóżmy obie strone przez $n^{2/3}$:

$$x_n = \frac{n^{2/3}}{n+1} \le \frac{n^{2/3}}{n} = n^{-1/3} = \frac{1}{n^{1/3}}.$$

Granica z 0 to 0, $\lim_{n\to\infty} \frac{1}{n^{1/3}}$ równa się 0 (wzór 3.1). Zatem na mocy twierdzenia o trzech ciągach:

$$\lim_{n \to \infty} x_n = 0$$

A na mocy twierdzenia o iloczynie granic ciągu ograniczonego oraz ciągu który jest zbieżny do zera uzyskujemy:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} x_n \cdot y_n = \lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin n!}{n+1} = 0$$

3.7.4 Przykład 4 Rudnicki, 2.2 Ciągi

Obliczmy granicę $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$. Zacznijmy od pokazania pewnego na pierwszy rzut oka nieoczywistego szacowania. Popatrzmy:

$$3^n \ge 3^n \ge 2^n$$

Z tego mamy zatem:

$$3^n - 3^n > 0$$
 oraz $3^n - 2^n > 0$

Obie nierówności są większe bądź równe zeru. Jeśli je dodamy, to ciągle albo nierówność będzie równa zero albo większa niż zero:

$$3^n - 3^n + 3^n - 2^n \ge 0$$

$$2 \cdot 3^n \ge 3^n + 2^n \qquad /(\sqrt[n]{})$$

Ponieważ, obie strony są nieujemne, możemy bezpieczenie wziąć ułamek stopnia n bez zmiany znaku:

$$\sqrt[n]{2 \cdot 3^n} = \sqrt[n]{3^n} \cdot \sqrt[n]{2} = 3\sqrt[n]{2} > \sqrt[n]{3^n + 2^n}$$

Zauważmy także, że:

$$2^{n} + 3^{n} \ge 3^{n} \quad /(\sqrt[n]{n})$$
$$\sqrt[n]{2^{n} + 3^{n}} > \sqrt[n]{3^{n}}$$

Ale po co to wszystko? Nie chcieliśmy przypadkiem policzyć granicy zaproponowanej na początku? Popatrzmy:

$$3 = 3^1 = 3^{\frac{n}{n}} = \sqrt[n]{3^n} < \sqrt[n]{2^n + 3^n} < 3\sqrt[n]{2}$$

Ustawiając nierówność pod twierdzenie o trzech ciągach:

$$3 \le \sqrt[n]{2^n + 3^n} \le 3\sqrt[n]{2}$$

$$\lim_{n \to \infty} 3 = 3$$

$$\lim_{n \to \infty} 3\sqrt[n]{2} = 3\lim_{n \to \infty} \sqrt[n]{2}$$

Ze wzoru w 3.4:

$$3\lim_{n\to\infty} \sqrt[n]{2} = 3 \cdot 1 = 3$$

Zatem ostatecznie granica z $\lim_{n\to\infty}\sqrt[n]{2^n+3^n}=3.$