Рассмотрим следующую пятимерную систему с неотрицательными переменными $x=(x_1,x_2,x_3,x_4,x_5)$ и положительными параметрами:

$$\begin{cases} \dot{x}_{1} = r_{1}x_{1} \left(1 - \frac{x_{1}}{c_{1}}\right) - \frac{1}{x_{4} + e_{1}} (\alpha_{1}x_{2} + \alpha_{2}x_{3}) \frac{x_{1}}{x_{1} + k_{1}}, \\ \dot{x}_{2} = r_{2}x_{2} \left(1 - \frac{x_{2}}{c_{2}}\right) + \frac{x_{5}}{k_{4} + x_{5}} a_{1} \frac{1}{x_{4} + e_{2}} - \alpha_{3} \frac{x_{1}}{x_{1} + k_{2}} x_{2}, \\ \dot{x}_{3} = a_{2} \frac{x_{1}}{k_{5} + x_{4}} - \mu_{1}x_{3} - \alpha_{4} \frac{x_{1}}{x_{1} + k_{3}} x_{3}, \\ \dot{x}_{4} = s_{1} + b_{1}x_{1} - \mu_{2}x_{4}, \\ \dot{x}_{5} = b_{2}x_{3} - \mu_{3}x_{5}, \end{cases}$$

$$(1)$$

где $t \geqslant 0$ — время;

 x_1 — количество клеток глиомы;

 x_2 — количество макрофагов;

 x_3 — количество т-киллеров;

 x_4 — количество белков TGF- β ;

 x_5 — количество γ -интерферонов.

Теорема 1. Все компактные инвариантные множества системы (1) содержатся в положительно инвариантных множествах

$$K_{1} = \{0 \leqslant x_{1} \leqslant \overline{x}_{1} = c_{1}\} \cap D,$$

$$K_{2} = \left\{\frac{s_{1}}{\mu_{2}} = \underline{x}_{4} \leqslant x_{4} \leqslant \overline{x}_{4} = \frac{s_{1}}{\mu_{2}} + b_{1}c_{1}\right\} \cap K_{1},$$

$$K_{3} = \left\{0 \leqslant x_{3} \leqslant \overline{x}_{3} = \frac{a_{2}\overline{x}_{1}}{k_{5} + \underline{x}_{4}} \cdot \frac{\overline{x}_{1} + k_{2}}{\mu_{1}k_{2}}\right\} \cap K_{2},$$

$$K_{4} = \left\{0 \leqslant x_{5} \leqslant \overline{x}_{5} = \frac{b_{2}\overline{x}_{3}}{\mu_{3}}\right\} \cap K_{3},$$

$$K_{5} = \left\{0 \leqslant x_{2} \leqslant \overline{x}_{2} = \frac{c_{2}}{2} + \sqrt{\frac{c_{2}^{2}}{4} + \frac{a_{1}\overline{x}_{5}}{k_{4}(\underline{x}_{4} + e_{2})}}\right\} \cap K_{4}.$$

 \blacktriangleleft . . . Следовательно, множества $K_5(\tau_1,\,\tau_2,\,\tilde{ au}_2,\, au_3,\, au_4,\, au_5)$ положительно инвариантны. Также можно заметить, что множества $K_5(au_1,\, au_2,\,\tilde{ au}_2,\, au_3,\, au_4,\, au_5)$ компактны при

$$\tau_1, \ \tau_2, \ \tilde{\tau}_2, \ \tau_3, \ \tau_4, \ \tau_5 \geqslant 0.$$

Покажем, что множество K_5 содержит аттрактор системы. Решение автономной системы дифференциальных уравнений $\dot{x} = F(x)$, где F(x) гладкое векторное поле, с начальным значением из любого компакта продолжается вперед неограниченно, либо до границы этого компакта [1, с. 84]. Для любой траектории системы (1) существует такой набор $\tau_i = \hat{\tau}_i$, что ее начальная точка будет содержаться в множестве $\hat{K}_5 = K_5(\hat{\tau}_1, \, \hat{\tau}_2, \, \hat{\tilde{\tau}}_2, \, \hat{\tau}_3, \, \hat{\tau}_4, \, \hat{\tau}_5).$ Т.к. компакт \hat{K}_5 положительно инвариантен и $\dot{\varphi}_i(x) < 0$ на границе \hat{K}_5 , решения, начинающиеся в $\hat{K}_5 \setminus K_5$, не будут достигать границы \hat{K}_5 и могут быть неограниченно продолжены. Тогда траектории, начинающиеся в \hat{K}_5 ограничены и принадлежат этому компакту при $t \geqslant 0$. Следовательно, предельные множества траекторий из \hat{K}_5 — непустые инвариантные компакты. Согласно теореме 1, K_5 содержит все инвариантные компакты системы, т.е. K_5 также содержит предельные множества траекторий из \hat{K}_5 . Т.к. для любой точки из D можно подобрать τ_i такие, что соответствующий компакт $K_5(\tau_1, \tau_2, \tilde{\tau}_2, \tau_3, \tau_4, \tau_5)$ ее содержит, можно сделать вывод о том, что K_5 содержит предельные множества всех траекторий, начинающихся в D. Таким образом, K_5 — положительно инвариантный компакт, содержащий аттрактор системы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Арнольд, B. И., Обыкновенные дифференциальные уравнения: учеб. пособие для вузов. — 3-е изд., перераб. и доп., М., Наука, 1984, 271 с..