Patent claims

- Method for determining a deviation of at least one regulating variable on chip removal machines with a mechanical drive for a tool and/or a workpiece (1), regulated by a control system, wherein the regulation comprises a plurality of values C, X, Z of at least three spatial axes c, x, z for the control system and for the drive, and the values C, X, Z have a functional relation f_{bi} such as Z = f_{bi} (C, X) with the axes c, x, z, characterized in that:
 - a) a protocol is prepared from a plurality of control system actual values $(C_{p,s}, X_{p,s}, Z_{p,s})$ detected by measuring means and/or selected drive actual values $(C_{p,a}, X_{p,a}, Z_{p,a})$,
 - b) a control system nominal value according to $Z_{bi,s} = f_{bi}$ ($C_{p,s}$, $X_{p,s}$) and/or a drive nominal value according to $Z_{bi,a} = f_{bi}$ ($C_{p,a}$, $X_{p,a}$) is calculated at least in relation to the z-axis,
 - c) and a control system differential value according to $D_{z,s} = Z_{p,s} Z_{bi,s}$ and/or a drive differential value according to $D_{z,a} = Z_{p,a} Z_{bi,a}$ is calculated at least in relation to the z-axis.

2. Method per claim 1, characterized in that at least for the drive and the z-axis a contouring differential value is determined according to

$$D_{z,a}^{\varphi} = Z_{p,a} - Z_{bi,a}^{\varphi}$$

with

$$Z_{bi,a}^{\phi} = f_{bi} (C_{p,a} + \Delta \varphi, X_{p,a}),$$

where the value $\Delta \phi$ corresponds to a phase shift of the c-axis, which results in a torsion of the generated lens contour.

- 3. Method per claim 2, characterized in that the phase shift $\Delta \phi$ is between 0.5° and 3°, especially 1.0°, and the determination of $Z_{bi,a}{}^{\phi}$ is done between + $\Delta \phi$ and - $\Delta \phi$ with an increment between 0.05° and 0.2°, especially 0.1°.
- 4. Method per one of claims 2 or 3, characterized in that one computes, at least from the differential values $D_{z,s}$, $D_{z,a}$ and/or the contouring differential values $D_{z,a}^{\phi}$ at least for the z-axis, one peak-to-valley value for the control system according to

$$D_{z,s,ptv} = D_{z,s,max} - D_{z,s,min}$$

and for the drive according to

$$D_{z,a,ptv} = D_{z,a,max} - D_{z,a,min}$$

$$D_{z,a}^{\varphi}_{ptv} = D_{z,a,max}^{\varphi} - D_{z,a,min}^{\varphi},$$

where $D_{z,s/a,min}$ corresponds to the minimum and $D_{z,s/a,max}$ to the maximum differential value of the respective measurement and $D_{z,a,max}^{\ \phi}$, $D_{z,a,min}^{\ \phi}$ corresponds to the respective position ϕ , $+\Delta\phi$ and $-\Delta\phi$ of the c-axis, taking into account $+/-\Delta\phi$.

 Method per one of the preceding claims, characterized in that one determines an error differential value according to

$$D_{z,a}{}^f = Z_{p,a} - Z_{bi,a}{}^f$$

with

$$Z_{bi,a}^{f} = f_{bi} (C_{p,s}, X_{p,s})$$

at least for the drive and at least in relation to the z-axis.

- 6. Method per one of the preceding claims, characterized in that the function f_{bi} is a 3D bicubic surface spline and/or spiral spline.
- 7. Method per one of claims 4 to 6, characterized in that the differential values $D_{z,a}$, $D_{z,s}$, the contouring differential values $D_{z,a}^{\varphi}$, the respective peak-to-valley values $D_{z,s,ptv}$, $D_{z,a,ptv}$, $D_{z,a}^{\varphi}$ ptv and/or the actual value $Z_{p,s}$, $Z_{p,a}$ of at least the z-axis are represented, and at least the representation of $D_{z,s,ptv}$, $D_{z,a,ptv}$, and/or $D_{z,a}^{\varphi}$ ptv is done with the smallest possible peak-to-valley value.
- 8. Method per one of claims 4 to 7, characterized in that the size and/or the deviation of at least the **peak-to-valley value** $D_{z,s,ptv}$, $D_{z,a,ptv}$, $D_{z,a,ptv}$, $D_{z,a,ptv}$ and/or the actual value $Z_{p,s}$, $Z_{p,a}$ is represented in terms of the respective workpiece position.

- 9. Method per claim 7 or 8, characterized in that one distinguishes optically between negative (3) and positive (2) values when representing the differential value and/or the contouring differential value D_{z,a}, D_{z,a}, D_{z,a} and/or optically in terms of the magnitude (3.1 3.3, 2.1 2.3) of the values.
- 10. Method per claim 7 or 8, characterized in that positive (2) and/or negative (3) differential values and/or contouring differential values $D_{z,a}$, $D_{z,s}$, $D_{z,a}^{\varphi}$ are optically graduated by different color tones in terms of their magnitude (3.1 3.3, 2.1 2.3) and/or by different color tone intensities in terms of the magnitude (3.1 3.3, 2.1 2.3) of the values.
- 11. Method per one of claims 7 to 9, characterized in that one provides for a superimposed representation of the differential value and/or the contouring differential value $D_{z,a}$, $D_{z,s}$, $D_{z,a}$ and the actual value $Z_{p,s}$, $Z_{p,a}$, the respective scale being different for the two values.
- 12. Method per claim 1 to 6, characterized in that one calculates, for one or more other axes x, c, the nominal values C_{bi} , X_{bi} , the differential values $D_{x/c,a}$, $D_{x/c,s}$, the peak-to-valley value $D_{x/c,a,ptv}$, $D_{x/c,a}^{\varphi}$ $_{ptv}$, $D_{x/c,s,ptv}$, $D_{x/c,s}^{\varphi}$ $_{ptv}$, the error differential value $D_{x/c,a}^{f}$, $D_{x/c,s}^{f}$ and/or the contouring differential value $D_{x/c,s}^{\varphi}$, $D_{x/c,a}^{\varphi}$ for the control system and/or for the drive.

- 13. Method per one of claims 2 to 6 or 12, characterized in that one provides for a correction cut, in addition to a main cut and an optional precision cut during the chip removal machining of the workpiece (1), at least making use of the differential values $D_{z,a}$, $D_{z,s}$, $D_{z,a}$.
- 14. Method for a chip removal machine for the production of optical lenses from plastic according to one of claims 1 to 12.
- 15. Method per one of claims 1 or 2, characterized in that one converts the values C, X, Z of the axes c, x, z into the Cartesian system of coordinates or into the polar system of coordinates.
- 16. Method per one of claims 1 or 2, characterized in that one starts from a theoretical cutting point of an ideal point-like tool and convert the values C, X, Z of the axes c, x, z for use of a circular carbide tip, with the circular carbide tip having a center point corresponding to the theoretical cutting point.
- 17. Method per one of claims 2 to 16, characterized in that one uses at least one differential value $D_{z,a}$ and/or one contouring differential value $D_{z,a}^{\phi}$ as an exclusion criterion for the control system's actual values ($C_{p,s}$, $X_{p,s}$, $Z_{p,s}$) and/or as an adjustment criterion for the various machine parameters and the machine's control system.

- 18. Chip removal machine with a mechanical drive for a tool and/or a workpiece (1), regulated by a control system, wherein the regulation comprises a plurality of values C, X, Z of at least three spatial axes c, x, z for the control system and for the drive, characterized in that a method according to one of claims 1 to 12 is used to determine the deviation of the regulating variables.
- 19. Chip removal machine per claim 17, characterized in that an output unit is provided for the representation of the values according to one of claims 6 to 11.