Open-Source IC Design Workshop

2.1 Simple schematic-level design: transmisión gate

Jorge Marin N., PhD

Research Associate, AC3E-UTFSM

UCU, Montevideo, Uruguay - June 30, 2025

Agenda

- Introduction
- MOSFET basics
- Transmission gate simulation
- Task: Tgate + inverter

Introduction

Introduction

Transmission gates

- Complementary CMOS switch, used in analog application for its symmetry
- QN and QP in parallel, controlled with complementary signals
- Why symmetry?
 - NMOS passes a good 0 but a poor 1
 - PMOS passes a good 1 but a poor 0
- Operation
 - C high → both transistors are ON
 - C low → both transistors are OFF

Introduction

Motivation: integrated analog muxes for device characterization

 Characterization chips need access to many analog test points with a limited amount of input/output pins

[J. P. Martinez Brito (CEITEC) – "Device Array Testing – without Probe Station"]

Transmission gate simulation

Motivation: MOSBius chip

 Educational chips can benefit from the idea of connecting building blocks for testing

MOSFET basics

MOSFET basic operation

Positive

- Gate → MOS channel control
- Bulk → JFET channel control (body effect, parasitic)

[Sansen, 2006]

MOSFET characteristic curves

- Positive $V_{GS} \rightarrow$ inversion layer/channel below the gate
- Positive $V_{DS} \rightarrow I_{DS}$ current flowing from drain to source
- $V_{GS} V_{T}$ is the most relevant design parameter

Drift vs diffusion current

 μ_B : mobility

ε: electric field

v_d: drift velocity

FIGURE 1.11

Magnitude of drift velocity versus magnitude of electric field.

$$I = \frac{nq(abc)}{\tau}$$
$$= nq(bc)v_d$$

FIGURE 1.12

An n-type semiconductor bar with uniform electron concentration under external bias.

n(x)

charge

ä

[Tsividis, 2010]

D: diffusion constant Φ_t : thermal voltage (kT/q)

FIGURE 1.15

(a) A semiconductor bar with nonuniform electron concentration along its length; (b) the electron concentration in (a) for a special case of interest; (c) charge per unit area corresponding to (b).

Drift vs diffussion current

- Drift current → due to electric field over a piece of semiconductor
 - → dominant in MOSFET
 - → polynomial
- Diffusion current -> due to particle concentration gradient
 - → dominant in BJT
 - → exponential

MOSFET "square-law" (SL) equation: linear region

$$i = \frac{dq}{dt} = \frac{dq}{dx}\frac{dx}{dt}$$
① ②

$$d\mathbf{g} = -C_{ex}(W dx)[v_{GS} - v(x) - V_t]$$

②
$$\frac{dx}{dt} = -\mu_n E(x) = \mu_n \frac{dv(x)}{dx}$$

$$E(x) = -\frac{dv(x)}{dx}$$

$$i = -\mu_n C_{ox} W [v_{GS} - v(x) - V_t] \frac{dv(x)}{dx}$$

$$i_D = -i = \mu_n C_{ox} W[v_{GS} - v(x) - V_i] \frac{dv(x)}{dx}$$

which can be rearranged in the form

$$i_D dx = \mu_n C_{ox} W[v_{GS} - V_i - v(x)] dv(x)$$

$$\int_{0}^{L} i_{D} dx = \int_{0}^{v_{DS}} \mu_{n} C_{ox} W[v_{GS} - V_{t} - v(x)] dv(x)$$

$$i_{D} = (\mu_{n} C_{ox}) \left(\frac{W}{L}\right) \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

[Sedra, 2004]

MOSFET "square-law" (SL) equation: linear region

[Sansen, 2006]

$$\beta = KP \frac{W}{L}$$

$$KP = \mu C_{ox}$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$t_{ox} = \frac{L_{min}}{50}$$

$$KP_n \approx 300 \, \mu A/V^2$$
 $C_{OX} \approx 5 \, 10^{-7} \, F/cm^2$
 $ε_{OX} = 0.34 \, pF/cm$
 $ε_{Si} = 1 \, pF/cm$
 $t_{OX} = 7 \, nm$
 $L_{min} = 0.35 \, \mu m$
 $μ_p \approx 250 \, cm^2/Vs$
 $μ_n \approx 600 \, cm^2/Vs$

$$i_D = \mathsf{KP} \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 (Triode region)

MOSFET "square-law" (SL) equation: saturation region

[Sansen, 2006]

- 3 distinctive regions:
 - → weak inversion (exponential) region → diffusion current
 - → strong inversion (square law) region → drift current
 - → velocity saturation (linear) region → electron collision

NMOS in saturation region: small-signal model

- I_{DS}: bias current + i_{DS}: small signal (or AC) current
- Four technological parameters:
 → V_T, KP, n and V_F
- Design parameters → W, L and V_{GS} V_T

PMOS small-signal model

Body effect – parasitic JFET

[Sansen, 2006]

$$V_{T} = V_{T0} + \gamma \left[\sqrt{|2\Phi_{F}| + V_{BS}} - \sqrt{|2\Phi_{F}|} \right]$$

$$n = \frac{\gamma}{\sqrt{|2\Phi_{F}| + V_{BS}}} = 1 + \frac{C_{D}}{C_{ox}} \qquad |2\Phi_{F}| \approx 0.6 \text{ V}$$

$$n \approx 1.2 \dots 1.5$$

$$\gamma \approx 0.5 \dots 0.8 \text{ V}^{1/2}$$

Reverse v_{BS} increases |V_T| and decreases |i_{DS}|!!!

 $n = 1/\kappa$ subthreshold gate coupling coeff. Tsividis

- γ: junction depletion region parameter, related to parameter n
- ϕ_F : related to Fermi energy \rightarrow characterizes semiconductor material at certain temperature

MOSFET as amplifier

[Sansen, 2006]

$$A_{v} = g_{m} r_{DS} = \frac{2 V_{E} L}{V_{GS} - V_{T}}$$

$$A_V \approx 100$$

If $V_E L \approx 10 \text{ V}$

and $V_{GS} - V_T \approx 0.2 \text{ V}$

MOSFET as switch

For large channel and small VDS:

$$I_D \approx \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS}$$

$$R_{on} pprox rac{1}{\mu C_{ox} rac{W}{L} (V_{GS} - V_{TH})}$$

MOSFET as switch

$$A_{Cc} = \frac{C}{C_{ox}} = nWL$$

Need to consider:

- Overlap capacitance
- Routing capacitance

Transmission gate simulation

Update Workshop repo

- these slides: OS_AnalogIC_UCU_July2025/Day2/docs
- OUTSIDE Docker:
 - → cd [YOUR_INSTALL_FOLDER]\uniccass-icdesign-tools\shared_xserver\OS_AnalogIC_UCU_July2025
 - → git status
 - \rightarrow (git restore .)
 - → git pull

Example #1: Basic inverter

- Github link:
- → https://github.com/JorgeMarinN/OS_AnalogIC_UCU_July2025/blob/main/Day2/tb_transmission_gate.sch

DC simulation

Task: tgate + inverter

Task

- Modify the transmission gate block and testbench to include an inverter
 - Option 1: add stdcell
 - Option 2: use custom circuit
- Size the transistors for RON = 100 Ohm, monitoring the leakage current
 - What about 10 Ohm?
- [extra] Design a 4-bit analog MUX

Thank you! Questions?