

EXPLORE MOON to MAR

Principles of Directed Energy Deposition for Aerospace Applications

Paul Gradl
NASA Marshall Space Flight Center
February 10, 2022

Presentation to:

W.M. Keck Center for 3D Innovation University of Texas El Paso (UTEP)

Introduction and Agenda

- Introduction of Metal AM
- Case Study using DED
- Introduction to Metal AM Processes
- Comparisons to L-PBF
- Why the need for DED?
- Materials for DED
- DED Process Overview
- Other Considerations
- Wrap-up

Hot-fire testing of bimetallic additively manufactured combustion chamber using **Electron Beam DED** Jacket

Terminology

Course will focus exclusively on metal additive manufacturing

- AM = Additive Manufacturing
- DED = Directed Energy Deposition
- LP-DED = Laser Powder DED
- LW-DED = Laser Wire DED
- AW-DED = Arc Wire DED
- EB-DED = Electron Beam DED
- L-PBF = Laser Powder Bed Fusion
- Metal Additive Manufacturing Build, print, grow, AM, fabricate...

Why use AM? (Rocket Engines)

- Metal Additive Manufacturing (AM) provides significant advantages for lead time and cost over traditional manufacturing for rocket engines.
 - Lead times reduced by 2-10x
 - Cost reduced by more than 50%
- Complexity is inherent in liquid rocket engines and AM provides new design and performance opportunities.
- Materials that are difficult to process using traditional techniques, long-lead, or not previously possible are now accessible using metal additive manufacturing.

Case Study for AM – Combustion Chambers

Category	Traditional Manufacturing	Initial AM Development	Evolving AM Development
Design and Manufacturing Approach	Multiple forgings, machining, slotting, and joining operations to complete a final multi-alloy chamber assembly	Four-piece assembly using multiple AM processes; limited by AM machine size. Two-piece L-PBF GRCop-84 liner and EBW-DED Inconel 625 jacket	Three-piece assembly with AM machine size restrictions reduced and industrialized. Multi-alloy processing; one-piece L-PBF GRCop-42 liner and Inconel 625 LP-DED jacket
Schedule (Reduction)	18 months	8 months (56%)	5 months (72%)
Cost (Reduction)	\$310k	\$200k (35%)	\$125k (60%)

As AM process technologies evolve using multi-materials and processes, additional design and programmatic advantages are being discovered

Case Study – RS25 Powerhead

Traditional Manufacturing

Forged => Machined

L-PBF Development

>90 days using L-PBF (Large Platform)

LP-DED Development

<14 days deposition using LP-DED

Metal AM Technologies - Overview

Based on Ref:

- Gradl, P., Tinker, D., Park, A., Mireles, P., Garcia, M., Wilkerson, R., Mckinney, C. (2022). "Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components". Journal of Material Engineering and Performance (JMEP). Article in Review.
- ASTM Committee F42 on Additive Manufacturing Technologies. Standard Terminology for Additive Manufacturing Technologies ASTM Standard: F2792-12a. (2012).
- Gradl, P.R., Greene, S.E., Protz, C., Bullard, B., Buzzell, J., Garcia, C., Wood, J., Osborne, R., Hulka, J. and Cooper, K.G., 2018. Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing Results. In 2018 Joint Propulsion Conference (p. 4625).

*Does not include all metal AM processes

AM Processes for various applications

Image Credits: A) Laser Powder Bed Fusion [https://doi.org/10.1016/j.actamat.2017.09.051], B) Electron Beam Powder Bed Fusion [Credit: Courtesy of Freemelt AB, Sweden], C) Laser Powder DED [Credit: Formalloy], D) Laser Wire DED [Credit: Ramlab and Cavitar], E) Arc Wire DED [Credit: Institut Maupertuis and Cavitar], F) Electron Beam DED [NASA], G) Cold spray [Credit: LLNL], H) Additive Friction Stir Deposition [NASA], I) Ultrasonic AM [Credit: Fabrisonic].

AM Component Development at NASA for Liquid Rocket Engines

environment

How do we select the proper AM process?

- What is the alloy required for the application?
- What is the overall part size?
- What is the feature resolution and internal complexities?
- Is it a single alloy or multiple?
- What are programmatic requirements such as cost, schedule, risk tolerance?
- What are the end-use environments and properties required?
- What is the qualification/certification path for the application/process?

Criteria and Comparison Various Metal AM Processes

Why DED?

- Each Metal AM technique provides advantages and disadvantages
- DED offers advantages for various applications
 - Large Scale
 - Multi-axis
 - Use wire or powder feedstock
 - Ability to use multiple materials in same build
 - Ability to add material in a secondary operation
 - High deposition rates
 - Integration of secondary processes (machining)
 - Process feedback and closed loop control
- Disadvantages
 - Residual stresses (more heat input)
 - Lower resolution (less detailed complexity)
 - Higher surface roughness

Comparison of L-PBF and DED

Laser Powder Bed Fusion (L-PBF)

Directed Energy Deposition (DED)

Different methods for different components!

Feature Resolution / Complexity	High resolution of features Wall thicknesses and holes < 0.010"	Medium resolution of features Walls >0.040" and limited holes
Deposition Rate	Low build rates <0.3 lb/hr	High Build rates lbs per hour (some systems >20lb/hr)
Multi-alloys / Gradient Materials	Monolithic materials in single build	Option for multi-alloys or gradients within single build
Materials Available	High number of materials available and being developed	High number of materials available and being developed
Production Rates	Higher volume with several parts in a single build	Generally limited to single builds; longer programming/setup time
Scale / Size of components	Limited to existing build volumes <15.6" dia (400mm) or 16"x24"x19"	Scale is limited to gantry or robot size
Added Features / Repair	No (limited) ability to add material to existing part	Can add material or features to an existing part

Material Availability for Metal AM (DED)

As available materials and processes continue to grow, so does complexity of characterization and standardization

Ni-Base

Inconel 625

Inconel 713

Inconel 718

Inconel 738

Inconel 939

Hastelloy-X

Haynes 214

Havnes 230

Haynes 233

Haynes 282

Monel K-500

C276

Rene 80

Rene 142

Waspalloy

Fe-Base

SS 17-4PH

SS 15-5 GP1

SS 304

SS 316L

SS 410

SS 420

SS 440

4140/4340

Invar 36

SS347

JBK-75

NASA HR-1

Co-Base

CoCr/CoCrMo Haynes 188 Stellite 6, 21, 31

Cu-Base

Pure Cu

GRCop-84

GRCop-42

C18150

C18200

Glidcop

CU110

Monel K500

Ti-Base

Ti6Al4V γ-TiAl

Ti-6-2-4-2

Refractory

W

WRe

Мо

MoW

MoRe

Ta

TaW

Re

Nb

C103

FS85

High Entropy

Al-Base

AlSi10Mg

A205

F357

1000

6061

2024

707

7075

7050

Scalmalloy

7A77

Bimetallic

GRCop-84/IN625 C-18150/IN625

MMC

Al-base

Fe-base

Ni-base

Platinum Group

Ir, Pt, Rh, Ru, Pd, Au, Ag

Industry Materials developed for L-PBF, E-PBF, and DED processes (not fully inclusive)

Feedstock Material for DED

Feedstock can be Powder or Wire

Process	Type of Feedstock	Typical Feedstock Size	Stock Lead Times
L-PBF	Powder	10-45 um	Short
EB-PBF	Powder	10-45 um	Short
LP-DED	Powder	45-105 um	Short
AW-DED	Wire	1.14 – 2mm dia	Short
LW-DED	Wire	0.76 – 1.52mm dia	Medium
LHW-DED	Wire	1.14mm dia	Short
EB-DED	Wire	1.14mm dia	Short
UAM	Sheet	Varies	Long
Friction Stir AM	Bar	Varies	Long
Coldspray	Powder	10-45 um	Short
Binderjet	Powder w/ Binder	3-22 um	Medium

Aspects of AM DED Systems

Various DED Technologies

Freeform fabrication technique focused on near net shapes as a forging or casting replacement and also near-final geometry fabrication. Can be implemented using powder or wire as additive medium.

Laser Powder DED (LP-DED)

Melt pool created by laser and off-axis nozzles inject powder into melt pool; installed on gantry or robotic system

Laser Wire DED (LW-DED) / Hotwire

A melt pool is created by a laser and uses an offaxis wire-fed deposition to create freeform shapes, attached to robot system

Integrated and Hybrid DED

- ➤ Combine L-PBF/DED
- Combine AM with subtractive
- Wrought and DED

NASA L-PBF/DED

*Photos courtesy DMG Mori Seiki and DM3D

Arc Wire DED (AW-DED)

Pulsed-wire metal inert gas (MIG) welding process creates near net shapes with the deposition heat integral to a robot

Electron Beam DED (EB-DED)

An off-axis wire-fed deposition technique using electron beam as energy source; completed in a vacuum.

Laser Powder DED

- Coaxial laser energy source with surrounding nozzles that inject powder (within inert gas) fabricating freeform shapes or cladding
- Advantages: Large scale (only limited by gantry or robotic system), multi-alloys in same build, high deposition rate
- **Disadvantages:** Resolution of features, rougher surface than L-PBF, higher heat input

DED NASA HR-1 Liner

Integrated Channel DED Nozzle Inco 718, 1:4 Scale

JBK-75, IN625, NASA HR-1 Manifolds

JBK-75 Integrated Channel

LP-DED Process and Parameter Overview

- Gradl, P. R., & Protz, C. S. (2020). Technology advancements for channel wall nozzle manufacturing in liquid rocket engines. *Acta Astronautica*. https://doi.org/10.1016/j.actaastro.2020.04.067
- AlAA Book: Metal Additive Manufacturing for Propulsion Systems, Gradl et al (unreleased)

Animation of LP-DED Process

Example of LP-DED for large scale

Large-scale Thin Wall Deposition of Nozzles

RPM Innovations (RPMI) under NASA-RAMPT Project

Example of LP-DED with small features

Laser Powder Directed Energy Deposition (LP-DED) Large Scale Nozzles

60" (1.52 m) diameter and 70" (1.78 m) height with integral channels
90 day deposition

95" (2.41 m) dia and 111" (2.82 m) height Near Net Shape Forging Replacement

<u>Reference:</u> P.R. Gradl, T.W. Teasley, C.S. Protz, C. Katsarelis, P. Chen, Process Development and Hot-fire Testing of Additively Manufactured NASA HR-1 for Liquid Rocket Engine Applications, in: AIAA Propuls. Energy 2021, 2021: pp. 1–23. https://doi.org/10.2514/6.2021-3236.

Component Applications using LP-DED

Freedom in DED design and deposition strategies

Ability to use multiple axes for complex features fabricated locally

RS25 Powerhead demonstrator using LP-DED under NASA SLS Artemis Program (Courtesy: RPMI)

Deposition Rate and Geometry

Laser Power: 1070 W	Laser Power: 2000 W	Laser Power: 2620 W
Dep. Rate: 1 in ³ /hr (23 cc/hr)	Dep. Rate: 3 in ³ /hr (49 cc/hr)	Dep. Rate: 5 in ³ /hr (82 cc/hr)
Deposition Time: 24 hours	Deposition Time: 11 hours	Deposition Time: 6 hours

FEATURE RESOLUTION

DEPOSITION SPEED

Courtesy: RPM Innovations

Microstructure of LP-DED — Various Spot Sizes

Different spot sizes and different parameters will result in different microstructure and subsequent properties

Material Properties for Various AM Processes

- Material properties are highly dependent on the type of process (L-PBF, DED, UAM, Cold spray....), the starting feedstock chemistry, the parameters used in the process, and the heat treatment processes used post-build
- Each AM process results in different grain distributions, precipitates, and porosity, all of which influence final properties
- Heat treatments should be developed based on the requirements and environment of the end component use
- Properties should be developed after AM process is stable and parameters confirmed

*Not design data and provided as an example only

Typical AM Process Lifecycle

Proper AM process selection requires an integrated evaluation of all process lifecycle steps

Challenges with DED

- Machining
- Programming / Tooling
- Pre-heating (some processes)
- Surface Roughness
- Smaller supply chain
- Residual Stresses and distortion
- Joining (can differ than wrought)
- Weld/deposition failures:
 - Melt pool instabilities
 - Lack of fusion
 - Oxidation
 - Deposition overrun/under
 - Delamination
 - Elemental segregations
 - Cracking

Surface Roughness

- Modeling by Kevin Wheeler / NASA Ames
- Other images based on work from: Gradl et al "Metal Additive Manufacturing for Propulsion Applications" AIAA Book (Spring 2022)

DED in Rocket Engine Applications

15:23:08

Emerging Areas of Development for Metal AM

- Maturing each of the AM processes and understanding of microstructure, properties, build limitations, and methods for design and post-processing.
- Ongoing development for large scale AM using DED and other processes.
- Continuous hot-fire and component testing to advance various combustion chambers, injectors, nozzles, ignition systems, turbomachinery, valves, lines, ducts, in-space thrusters.
- Polishing (surface enhancements internally) and post-processing development.
- Combining various AM processes for multi-alloy solutions or additional design options.
- Advancement of commercial supply chain for unique alloys (GRCop-42, NASA HR-1, JBK-75).
- New alloy development (Refractory, Ox-rich environments, AM-specific alloys).
- Material database of metal AM properties to allow for conceptual design tensile, fatigue and thermophysical.
- Design complexity using lattices and thin-wall structures.
- Standards and certification of metal AM are evolving for human spaceflight.

General Summary

- It's *all* welding, so same physics apply.
- Additive manufacturing is <u>not a solve-all</u>; consider trading with other manufacturing technologies and use <u>only</u> when it makes sense.
- <u>Complete understanding of the entire process</u> design process, build-process, and post-processing critical to take full advantage of AM.
- Various processes exist each with unique advantages and disadvantages.
- Additive manufacturing takes practice!
- Standards and certification of the processes in-work.
- AM is evolving and there is a lot of work ahead.

EXPLORE MOON to MARS

Paul Gradl NASA Marshall Space Flight Center Paul.R.Gradl@nasa.gov

Acknowledgements

Chris Protz

Tom Teasley

Omar Mireles

Chance Garcia

Megan Le Corre

Will Tilson

Zach Jones

Po Chen

Will Evans

Matt Medders

Colton Katsarelis

Drew Hope

Matt Melis

John Fikes

Dave Ellis

Laura Evans

Auburn University

National Center for Additive

Manufacturing Excellence (NCAME)

Mike Ogles

Nima Shamsaei

RPM Innovations (RPMI)

Tyler Blumenthal / RPMI

DM3D

Bhaskar Dutta / DM3D

Fraunhofer USA – CLA

BeAM Machines

The Lincoln Electric Company

ASB Industries

Rem Surface Engineering

Procam

Powder Alloy Corp

HMI ATI Praxair

Formalloy
Tal Wammen

Test Stand 115 crew

Kevin Baker Adam Willis

Dale Jackson

Marissa Garcia

Nunley Strong

Brad Bullard

Gregg Jones

James Buzzell

Marissa Garcia

Dwight Goodman

Will Brandsmeier

Jonathan Nelson

Ken Cooper (retired)

Bob Witbrodt

Brian West

John Ivester

John Bili

Bob Carter

Justin Milner

Ivan Locci

Jim Lydon

Keystone / Bryant Walker / Ray Walker

Judy Schneider/UAH

PTR-Precision Technologies

AME

Westmoreland Mechanical Testing

David Myers

Ron Beshears

James Walker

Steve Wofford

Jessica Wood

Robert Hickman

Johnny Heflin

Mike Shadoan

Keegan Jackson

Many others in Industry, commercial space and others

Presenter Bio

Paul Gradl

- Senior Propulsion Engineer at NASA Marshall Space Flight Center (MSFC) in the Propulsion Division, Engine Components Development and Technology Branch.
- Principal investigator and lead several projects for additive manufacturing of liquid rocket engine combustion devices and support a variety of development and flight programs over the last 18 years.
- Authored and co-authored over 70+ conference and professional papers and journal articles; holds four patents in additive.
- Associate Fellow of AIAA, serve on several committees and chairs various sessions at leading conferences on additive manufacturing.
- Active in ASTM, AIAA as a course instructor and advisory board
- Lead author and editor of book *Metal Additive Manufacturing for Propulsion Applications* (AIAA, 2021)

References

- Shamsaei, N., Yadollahi, A., Bian, L., & Thompson, S. M. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. *Additive Manufacturing*, 8, 12-35.
- Thompson, S. M., Bian, L., Shamsaei, N., & Yadollahi, A. (2015). An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. *Additive Manufacturing*, 8, 36-62.
- Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 9(7), 418.
- Gradl, P. R., & Protz, C. S. (2020). Technology advancements for channel wall nozzle manufacturing in liquid rocket engines. *Acta Astronautica*. https://doi.org/10.1016/j.actaastro.2020.04.067
- Gradl, P., Greene, S., Protz, C., Bullard, B., Buzzell, J., Garcia, C., Wood, J., Osborne, R., Hulka, J. Cooper, K. Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing Results. 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA 2018-4625). July 9-12, 2018. Cincinnati, OH.
- Gradl, P., Protz, C., Wammen, T. Additive Manufacturing Development and Hot-fire Testing of Liquid Rocket Channel Wall Nozzles using Blown Powder Directed Energy Deposition Inconel 625 and JBK-75 Alloys. 55th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum. August 19-21, Indianapolis, IN. AIAA-2019-4362
- Gradl, P., Protz, C., Fikes, J., Clark, A., Evans, L., Miller, S., Ellis, D.L., Hudson, T. Lightweight Thrust Chamber Assemblies using Multi-Alloy Additive Manufacturing and Composite Overwrap. AIAA Propulsion and Energy Forum. August 24-26. Virtual. (2020). AIAA-2020-3787.
- Gradl, P.R., Protz, C., Greene, S.E., Ellis, D., Lerch, B., and Locci., I. "Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications", 53rd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA 2017-4670)
- Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of Bi-metallic Interfaces Formed During Direct Energy Deposition Additive Manufacturing Processing. *Metallurgical and Materials Transactions B*, 50(4), 1921–1930.
- Gradl, Mireles, Andrews (2020). Introduction to Additive Manufacturing for Propulsion and Energy Systems. Conference: AIAA Propulsion and Energy 2020, Additive Manufacturing Course. DOI: 10.13140/RG.2.2.23228.05761