GATE - 2007 - XE

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 18 - 34

- 1) The volume of the prism whose base is the triangle in the xy plane bounded by the x - axis and the lines y = x and x = 2 and whose top lies in the plane z = 5 - x - y is
 - a) 2
 - b) 4
 - c) 6
 - d) 10
- 2) The general solution of

$$x(z^2 - y^2)\frac{\partial z}{\partial x} + y(x^2 - z^2)\frac{\partial z}{\partial y} = z(y^2 - x^2)$$

a)
$$F(x^2 + y^2 + z^2, xyz) = 0$$

b)
$$F(x^2 + y^2 - z^2, xyz) = 0$$

c)
$$F(x^2 - y^2 + z^2, xyz) = 0$$

d)
$$F(-x^2 + y^2 + z^2, xyz) = 0$$

- 3) Choose a point uniformly distributed at random on the disc $x^2 + y^2 \le 1$. Let the random variable X denote the distance of this point from the center of the disc. Then the variance of X is
 - a) $\frac{1}{16}$ b) $\frac{1}{17}$ c) $\frac{1}{18}$ d) $\frac{1}{19}$
- 4) If Runge-Kutta method of order 4 is used to solve the differential equation $\frac{dy}{dx} = f(x)$, y(0) = 0 in the interval [0, h] with step size h, then

a)
$$y(h) = \frac{h}{6} \left[f(0) + 4f(\frac{h}{2}) + f(h) \right]$$

b) $y(h) = \frac{h}{6} \left[f(0) + f(h) \right]$
c) $y(h) = \frac{h}{2} \left[f(0) + f(h) \right]$

b)
$$y(h) = \frac{h}{6} [f(0) + f(h)]$$

c)
$$y(h) = \frac{h}{2} [f(0) + f(h)]$$

d)
$$y(h) = \frac{h}{6} \left[f(0) + 2f(\frac{h}{2}) + f(h) \right]$$

- 5) If a polynomial of degree three interpolates a function f(x) at the points (0,3), (1, 13), (3, 99) and (4, 187), then f(2) is
 - a) 20
 - b) 36
 - c) 43
 - d) 58

Common Data for Questions 23, 24:

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ for $-\pi \le x \le \pi$ and $f(x + 2\pi) = f(x)$.

- 6) The Fourier series of f in $[-\pi, \pi]$ is
 - a) $\frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$

 - b) $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{(-1)^n \cos(nx)}{n^2}$ c) $\frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^2 \cos(nx)}{n^2}$ d) $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$
- 7) The sum of the absolute values of the Fourier coefficients of f is

 - a) $\frac{\pi^2}{6}$ b) $\frac{\pi^2}{3}$ c) $\frac{2\pi^2}{3}$ d) π^2

Statement for Linked Answer Questions 25 & 26:

Let $y(x) = \sum_{n=0}^{\infty} a_n x^n$ be a solution of the differential equation $\frac{d^2 y}{dx^2} + xy = 0$.

- 8) The value of a_{11} is
 - a) 0
 - b) 1
 - c) 2
 - d) 3
- 9) The solution of the differential equation given above satisfying y(0) = 1 and y'(0) = 0is

a)
$$y(x) = 1 + \frac{1}{2,3}x^2 - \frac{1}{2.3,5.6}x^4 + \frac{1}{2.3.5,6.8.9}x^6 - \cdots$$

b) $y(x) = 1 - \frac{1}{2,3}x^2 + \frac{1}{2.3,5.6}x^4 - \frac{1}{2.3.5,6.8.9}x^6 + \cdots$
c) $y(x) = 1 + \frac{1}{2,3}x^3 - \frac{1}{2.3,5.6}x^6 + \frac{1}{2.3.5,6.8.9}x^9 - \cdots$
d) $y(x) = 1 - \frac{1}{2.3}x^3 + \frac{1}{2.3.5.6}x^6 - \frac{1}{2.3.5,6.8.9}x^9 + \cdots$

b)
$$y(x) = 1 - \frac{213}{23}x^2 + \frac{23350}{2356}x^4 - \frac{2335089}{235689}x^6 + \cdots$$

c)
$$y(x) = 1 + \frac{1}{2.3}x^3 - \frac{1}{2.3.5.6}x^6 + \frac{1}{2.3.5.6.8.9}x^9 - \cdots$$

d)
$$y(x) = 1 - \frac{1}{2.3}x^3 + \frac{2.515.6}{2.3.5.6}x^6 - \frac{2.515.68.9}{2.3.5.6.8.9}x^9 + \cdots$$

Statement for Linked Answer Questions 27 & 28:

The potential u(x,y) satisfies the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the square $0 \le x \le \pi$, $0 \le y \le \pi$. Three of the edges x = 0, $x = \pi$ and y = 0 of the square are kept at zero potential and the edge $y = \pi$ is kept at nonzero potential.

10) The potential u(x, y) is given by

a)
$$u(x, y) = \sum_{\substack{n=1 \ \infty}}^{\infty} A_n \cosh(nx) \sin(ny)$$

b)
$$u(x, y) = \sum_{n=1}^{n-1} A_n \sin(nx) \cosh(ny)$$

c)
$$u(x, y) = \sum_{n=1}^{\infty} A_n \sinh(nx) \sin(ny)$$

d)
$$u(x,y) = \sum_{n=1}^{\infty} A_n \sin(nx) \sinh(ny)$$

11) If the edge $y = \pi$ is kept at the potential $\sin(x)$, then the potential u(x, y) is given by

a)
$$u(x, y) = \sum_{n=1}^{\infty} \frac{\sin(nx) \sinh(ny)}{\sinh(n\pi)}$$

b)
$$u(x,y) = \frac{\sin(x)\sinh(y)}{\sinh(x)}$$

c)
$$u(x, y) = \frac{\sin(x)\cosh(y)}{\cosh(\pi)}$$

a)
$$u(x,y) = \sum_{n=1}^{\infty} \frac{\sin(nx) \sinh(ny)}{\sinh(n\pi)}$$

b) $u(x,y) = \frac{\sin(x) \sinh(y)}{\sinh(x)}$
c) $u(x,y) = \frac{\sin(x) \cosh(y)}{\cosh(\pi)}$
d) $u(x,y) = \sum_{n=1}^{\infty} \frac{\cosh(nx) \sin(ny)}{\cosh(n\pi)}$

12) If the 7-base representation of a number is 123, then its octal representation is

- a) 102
- b) 103
- c) 111
- d) 112

13) Consider the following four FORTRAN statements

$$S_1: X = 5^{**}3$$

$$S_2: X = (-5)^{**} 3.0$$

$$S_3: X = 5^{**}(-3)$$

$$S_4: X = 5^{**}3.0$$

Which one of the following sets contains the set of valid statements from above?

- a) $\{S_1, S_3\}$
- b) $\{S_1, S_4\}$
- c) $\{S_2, S_3\}$
- d) $\{S_2, S_4\}$

14) Which one of the following sets contains the set of the basic data types in C?

- a) {char, int, float, logical}
- b) {char, boolean, int, float}

- c) {char, int, long, short, float, double}
- d) {char, int, float, void}
- 15) If a root of $f(x) = x^2 2x + 1 = 0$ is obtained by using the iterative scheme

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

with initial value $x_0 = 0.5$, then the convergence rate is

- a) 1
- b) 1.62
- c) 1.84
- d) 2
- 16) Let S_1 be the sum of the eigen values of a 2×2 matrix P and S_2 be the sum of the eigen values of another 2×2 matrix Q. If $S_1 = S_2$, then P and Q are

 - a) $\begin{pmatrix} 4 & 1 \\ 3 & 5 \end{pmatrix}$ and $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ b) $\begin{pmatrix} 3 & 4 \\ 5 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 4 & 1 \\ 3 & 5 \end{pmatrix}$ and $\begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ and $\begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$
- 17) If y_i denotes the value of y(x) at $x = x_i$ in $x_0 < x_1 < \cdots < x_i < \cdots < x_n$ and $x_i x_{i-1} = h$ for $1 \le i \le n$, then $\frac{d^2y}{dx^2}$ at $x = x_i$, $1 \le i \le n 1$ is approximated using finite difference scheme by
 - a) $\frac{1}{2h} (y_{i+1} 2y_i + y_{i-1})$ b) $\frac{1}{2h} (y_{i+1} y_i + y_{i-1})$ c) $\frac{1}{h^2} (y_{i+1} 2y_i + y_{i-1})$ d) $\frac{1}{h^2} (y_{i+1} y_i + y_{i-1})$