

Slurm Introduction UVA Rivanna

Robert Knuuti <<u>uqq5zz@virqinia.edu</u>>

DS 6013 - Summer 2022 Instructor: Dr. Judy Fox

What is Slurm?

- Cluster and Job management ecosystem
- Provides a series of interactive and batch tools based on a reservation request
- The system ensures that users have confidence that they will have reserved access to system hardware, and to enforce limits on users to prevent abuse.
 - Slurm also provides a cost system based on Service Units that are spent with usage.

• **Fun Fact**: Slurm is what powers all self-service capabilities on Rivanna, if you've requested a Desktop, JupyterLab, or RStudio from the OnDemand portal, you've used a slurm script that the Rivanna team has written to setup these tools.

How to request an Allocation (CLI)

There's two ways

Interactive (ijob)

- You place you request and are placed in a queue.
- Your prompt will pause until the hardware needed for the time of your job can be made
- You are then presented with a prompt within the allocation for the duration of your request
- Once you exit, the allocation is revoked and you are returned to your normal prompt.

Batch (sbatch)

- You write a shell script that has annotations to specify your reservation needs and the commands to be run once the resources are available.
- You issue the command, and the job is registered in the background and you can continue work.
- Your job will be placed in the global queue in the background, allowing you to log off or run asynchronous jobs

Considerations for writing sbatch jobs

- Slurm itself isn't a complex of a system to use, but writing batch jobs that maximize its abilities requires automation to be implemented.
- Your job is triggered as a shell script (bash), and ends when the script either finishes or encounters an error; it may not be immediately obvious if things worked or not.
- Your job does need to run without any type of user input or feedback (headless)
 - This is where most of the work will be.
 - o Tools like <u>lmod</u>, <u>papermill</u> and <u>apptainer/singularity</u> become important.

• To convert a shell script to an slurm-aware script, you simply add the CLI arguments with the prefix of `#SBATCH <argument-here>` in the file.

How to spawn a job

- Login to Rivanna either via SSH, or by using the cluster access at https://rivanna-portal.hpc.virginia.edu/
- 2. Position your desired files on rivanna (either check out your code using git, or upload it to your home directory)
- 3. Request a reservation using **ijob** / **sbatch**

Parts of a Slurm Reservation Request

Expanding	on	Slurm	Argum	ents
------------------	----	-------	--------------	------

Partition	Max time / Partition job		Max cores / job	Max cores / node	Max memory / core	Max memory / node / job	SU Charge Rate	
standard	7 days	1	40	40	9GB	375GB	1.00	
parallel	3 days	25	1000	40	9GB	375GB	1.00	
largemem	4 days	1	16	16	64GB	975GB	1.00	
gpu	3 days	4	10	10	32GB	375GB	3.00 *	
knl	3 days	8	512 cores / 2048 threads	512	3GB (per physical core)	192GB	1.00	
dev	1 hour	2	8	4	6GB	36GB	0.00	

* GPU charge rate = number of cores + 2 * number of GPU devices.

Account → Your UVA ID must be in the allocation listed to be used

You can check your allocations by running the allocations command on rivanna

Gres → On rivanna follows the pattern `gpu:<card_type>:<number_of_gpus>`.

So for a job needing 2 v100 GPUs, you'd use the string `--gres=gpu:v100:2`

Time → You need to specify the total amount of time upfront for your allocation.

Rivanna doesn't allow jobs greater than 3 days in length

There are rules on the maximum concurrently, and your job may go to a queue.

Or in abbreviated values...

ijob -J mydemojob -p standard -c 1 -t 3:00 -A ds6011-sp22-002 --mem=4GB

Example sbatch script

```
#!/usr/bin/env bash
#SBATCH -- job-name=mydemojob
#SBATCH --output=%u-%j.out
#SBATCH --error=%u-%j.err
#SBATCH --partition=standard
#SBATCH --cpus-per-task=1
#SBATCH --mem=4GB
#SBATCH --time=3:00
#SBATCH --account=ds6011-sp22-002
module load anaconda # we do have custom versions of python in /project/ds6011-sp22-002 for native python.
conda create -y -n demo python=3.9
conda activate demo
# your automation code here...
(The same configuration using ijob)
ijob --job-name=mydemojob --partition=standard --cpus-per-task=1 --mem=4GB --time=3:00 --account=ds6011-sp22-002
```

Example sbatch script with GPU

```
#!/usr/bin/env bash
#SBATCH -- job-name=mydemojob
#SBATCH --output=%u-%j.out
#SBATCH --error=%u-%j.err
#SBATCH --partition=qpu
#SBATCH -c 1
#SBATCH --gres="gpu:v100:1"
#SBATCH --mem=4GB
#SBATCH --time=3:00
#SBATCH --account=ds6011-sp22-002
module load cuda cudnn
module load anaconda
conda create -y -n demo python=3.9
conda activate demo
```

your automation code here...

This line is critical for CUDA and Deep Learning frameworks on rivanna.

If you do not load these modules, it's very likely you'll be using a CPU workloads unless you install your own version of GPU libraries.

Try it out!

- Go to https://rivanna-portal.hpc.virginia.edu/pun/sys/dashboard
- Click on "Clusters" then "Rivanna Shell Access"
- Try to run the below

```
nvidia-smi # this command should fail
# you may need to conda init bash if you haven't run anaconda on rivanna before
# Request a very small resource allocation (optionally you can use k80, p100, or a100)
ijob -A ds6011-sp22-002 --gres=gpu:v100:1 --partition=gpu -c 1 --mem 8GB --time=10:00
# Wait for allocation; you will see several salloc messages
nvidia-smi # this command should work
module load cuda cudnn anaconda
conda create -y -n rivanna-demo python=3.9 tensorflow-gpu
conda activate rivanna-demo
python
>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
# you should see a lot of output and an array of the Physical Devices namedtuple
>>> exit()
conda deactivate && conda env remove -y -n rivanna-demo
exit # this command will end your allocation request (automatically happens at --time)
```


Additional Thoughts

- Establish an experiment management plan (complex parameter grids aren't out-of-the-box)
- Build asynchronous feedback loops (create verbose logs)
- Expect lead-time for testing (consider creating dummy jobs to get more rapid feedback)
- Don't overallocate your reservation (this will make you wait in the queue longer)
- Not a silver bullet for performance (other system limitations may still have impacts)

Experiment Management using Cloudmesh Sbatch

- Slurm has a basic configuration system and runs batch jobs well, but does not do parameterization well
 - You can run sbatch and ijob without this tool, but it becomes difficult to scale out experiments consistently.
- Completely lacks a framework for generating multiple permutation based experiments, used when running models as scale
- Cloudmesh Sbatch was built as a templating and parameterization solution to address this gap, so generating 90 different permutations of experiments can be done using a single code baseline.
 - Extremely useful as it automates much of the script generation process

How it Works

YAML file including:

- (1) attributes (direct subtitutions)
- (2) experiments (substitutions that are permutations)
- (3) Run configurations

Examples can be found in the sbatch repo:

https://github.com/cloudmesh/cloudmesh-sbatch

Visual Generation Workflow

Experiment	epoch	x	у												
1	1	1	10	4	1	4	10	7	1	1	11	10	1	4	11
2	2	1	10	5	2	4	10	8	2	1	11	11	2	4	11
3	3	1	10	6	3	4	10	9	3	1	11	12	3	4	11

Additional Resources

- Rivanna Tensorflow Tutorial
 https://www.rc.virginia.edu/userinfo/rivanna/software/tensorflow/
- Rivanna Slurm Reference / Tutorial
 https://www.rc.virginia.edu/userinfo/rivanna/slurm/
- GPU GRES Line Reference
 https://www.rc.virginia.edu/userinfo/rivanna/slurm/#gpu-computations

Rivanna has regular office hours meetings

See: https://www.rc.virginia.edu/support/

Tuesdays 3:00-5:00pm

Join us via Zoom

Thursdays 10:00-12:00pm

Join us via Zoom No office hours on June 9th

New to Rivanna? We offer Rivanna orientation sessions on Wednesdays (appointment required).

Wednesdays 3:00-4:00pm

Sign up for an "Intro to Rivanna" session

Example Slurm Script

```
#!/bin/bash -1
# --- this job will be run on any available node
#SBATCH --job-name="TF1_2+4_Smoothed_3142"
#SBATCH --partition=bii-gpu
#SBATCH --gres=gpu:v100:1
#SBATCH --time=10:00:00
#SBATCH --mem=120GB
#SBATCH --account=ds6011-sp22-002
#SBATCH --export=NONE
# Load CUDA and CUDNN for training deep learning models
module load cuda cudnn anaconda
# Activate Conda
conda deactivate
conda activate ~/anaconda3/envs/ml
# Automation Code
python tft1_v1_full.py --mode 0 --features 0 4 9 10 12 14 --runname "TF1_2+4_Smoothed_3142" --county_size 3142
```