รายงานผลการทดลอง : 3HA01: Introduction to FPGA design

รูปที่ 4 องค์ประกอบของบอร์ด FPGA Shield

รูปที่1 Layout อุปกรณ์ย่อยของบอร์ด

ผลการทดลอง Check Point #1

Named: * V 💨 Edit: 🗶 🗸			
Node Name	Direction	Location	
in_ dk	Input	PIN_125	
out digit	Output	PIN_99	
in_ rst	Input	PIN_60	
º seg[7]	Output	PIN_121	
eut seg[6]	Output	PIN_120	
eut seg[5]	Output	PIN_119	
eut seg[4]	Output	PIN_118	
eut seg[3]	Output	PIN_115	
eut seg[2]	Output	PIN_114	
eut seg[1]	Output	PIN_113	
out seg[0]	Output	PIN_112	

PIN	คือ	
125	Switch5 [Clock] input	
99	Output ที่ Digit #4	
60	S3 ซ้ายสุด	
Seg[7:0]	แสดงผล Segmentย่อย	

รูปที่2 Pin Planner

*ดูแต่ละPinคืออะไรได้ที่ Document : คู่มือการใช้งานบอร์ด Altera FPGA Shield-v03.doc

รูปที่ 3 Block Diagram

การออกแบบวงจร

1. Module หลัก Top.v

```
module top (clk,rst,seg,digit);
input clk,rst;
output [7:0] seg;
output digit;
wire [3:0] q_bcd;

counter u0 (clk,rst,q_bcd);
segment ul (q_bcd, seg, digit);
endmodule
```

- counter u0 (clk,rst,q_bcd); // เชื่อมสัญญาณตาม Block Diagram
- segment u1 (q_bcd,seg,digit); // เชื่อมสัญญาณตาม Block Diagram
- 2. Module Counter.v : ไม่ต้องทำการแก้ไข
- Module Segment.v : Segment เป็น Segment แบบ common Cathode
 จ่าย 1 เพื่อให้ Segmentติด

รูปที่ 5 Segment.V

Counter และ 7-Segment Display บน FPGA Board

- 1. การทดสอบ Counter
- ข**ั้นตอนการทดลอง**: กดปุ่ม Switch S5 เพื่อให้สัญญาณ clock เข้าสู่วงจร counter
- ผลที่ได้: 7-segment display แสดงตัวเลขเพิ่มขึ้นตามลำดับ ดังนี้
 - o เริ่มต้นแสดง "0"
 - o กดปุ่ม S5 ครั้งที่ 1 แสดง "1"
 - o กดปุ่ม S5 ครั้งที่ 2 แสดง "2"
 - o กดปุ่ม S5 ครั้งที่ 3 แสดง "3"
 - ดำเนินการต่อไปจนถึง "9"
 - o เมื่อกดต่อไปจะแสดงเฉพาะ segment g ("-") เนื่องจากเกิดการนับเกินค่า 9

รูปที่ 6 แสดงผล เลข4 เมื่อ กด SW5 เป็นครั้งที่ 5 เพื่อเพื่อ Counter

รูปที่ 7 แสดงผล "-" เมื่อ กด SW5 เป็นครั้งที่ 11 เพื่อเพื่อ Counter

รูปที่ 8 แสดงผล "-" เมื่อ กด SW5 เป็นครั้งที่ 5 เพื่อเพื่อ Counter

2. การทดสอบ Reset Function

• ขั้นตอนการทดลอง:

- 1. ให้ counter นับไปยังค่าใดค่าหนึ่ง (เช่น "5" หรือ "8")
- 2. โยก DipSwitch ที่เชื่อมต่อกับขา rst

• ผลที่ได้:

- o 7-segment display แสดง "0" ทันที่
- วงจรพร้อมสำหรับการเริ่มนับใหม่
- o เมื่อโยก DipSwitch กลับไปที่ตำแหน่งเดิม สามารถกดปุ่ม S5 เพื่อนับต่อได้ปกติ

3. การทดสอบ 7-Segment Display Pattern

จากโค้ดในส่วน segment module พบว่า:

- แต่ละตัวเลข 0-9 จะแสดงผลตาม pattern ที่กำหนด
- ตัวอย่างการแสดงผล:
 - o "0": แสดง segments a,b,c,d,e,f (ไม่แสดง g)
 - o "1": แสดง segments b,c
 - o "2": แสดง segments a,b,g,e,d
 - o "9": แสดง segments a,b,c,d,f,g

สรุปผลการทดลอง

- 1. Counter Function: ทำงานได้อย่างถูกต้อง นับเพิ่มทีละ 1 ทุกครั้งที่กดปุ่ม S5
- 2. **7-Segment Display**: แสดงผลตัวเลข 0-9 ได้อย่างชัดเจน และแสดง "-" เมื่อนับเกิน
- 3. Reset Function: ทำงานได้อย่างสมบูรณ์ สามารถรีเซ็ตค่าเป็น "0" และเริ่มนับใหม่ได้

Check Point #2: Automatic Counter with 1Hz Clock

	Named: * V 🖔 Edit: 🗶 🗸		
다 라	Node Name	Direction	Location
· I	in_ dk	Input	PIN_17
	out digit	Output	PIN_99
	in_ rst	Input	PIN_60
	eut seg[7]	Output	PIN_121
	eut seg[6]	Output	PIN_120
	out seg[5]	Output	PIN_119
	eut seg[4]	Output	PIN_118
	eut seg[3]	Output	PIN_115
	eut seg[2]	Output	PIN_114
	out seg[1]	Output	PIN_113
	out seg[0]	Output	PIN_112

PIN	คือ
17	50MHz Clock จากบอร์ด
99	Output ที่ Digit #4
60	S3 ซ้ายสุด Reset

รูปที่9 Pin Planner

การทำงานของ Clock Divider

- รับสัญญาณนาพิกา 50 MHz จาก PIN_17
- หารความถี่ลงเหลือประมาณ 1 Hz โดยใช้ parameter max_count2 = 50000000/2
- ใช้ 22-bit counter สำหรับนับ
- สร้าง toggle output เมื่อ counter ถึง 0

ผลการทดลอง Check Point #2

การแสดงผลที่ปรับปรุงแล้ว

- การนับอัตโนมัติ: 7-Segment แสดงตัวเลขเปลี่ยนอัตโนมัติทุกๆ 1 วินาที
- ช่วงการนับ: นับเฉพาะ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 เท่านั้น
- การวนรอบ: เมื่อนับถึง 9 แล้วจะกลับไปนับ 0 ทันที (ไม่แสดงเครื่องหมาย "-")
- ไม่ต้อว Switch Bouncing: เนื่องจากใช้สัญญาณนาฬิกาที่เสถียร นับครบทุกเลข

การทำงานของ Reset Function

- ฟังก์ชัน Reset ยังคงทำงานได้: เมื่อโยก DIP Switch ที่ต่อกับขา rst
- Reset เป็น 0: 7-Segment จะแสดงเลข 0 ทันที
- กลับมานับต่อได้: เมื่อปล่อย reset วงจรจะเริ่มนับใหม่จาก 0

1. เพิ่ม Clock Divider Module

```
疆 | 船 🐫 📝 | 窪 ∉ | 凸 凸 つ つ 👠 🛝 | 0 🔼 | 🤡 | 288 ab/
odule clk_divider_to_lhz(clk, f_out);
🗸 🔤 top 🔠
                                                    input clk;
output f_out;
     counter:u0
                                                     parameter max_count2 = 50000000/2;
     abd segment:u1
                                                     reg [21:0] counter;
always @(posedge clk)
     dk_divider_to_1hz:u2
                                                        if(counter==0)
                                                            counter <= max_count2 -1;
                                                           counter <= counter-1;</pre>
                                                     reg f_out;
always @(posedge clk)
                                          11
12
                                                        if(counter==0)
                                          14
15
                                                            f_out <= ~f_out;
                                                 endmodule
```

รูปที่10 Code Clock_divider_1Hz.v

2. ปรับปรุง Counter Module : เพิ่มการตรวจ เมื่อถึง 9 ให้ชี้ไปที่ 0

```
Cvclone II: EP2C5T144C8
                                                          odule counter (clk, rst, Q);
V 🏴 top ै
                                                             input clk, rst;
output [3:0] Q;
     ebd counter:u0
                                                             reg [3:0] tmp;
      abd segment:u1
      dk_divider_to_1hz:u2
                                                             always @(posedge clk or negedge rst)
                                                                 in
  if (!rst) // Active low reset
    tmp <= 4'b0000; // Reset to 0
else if (tmp == 4'b1001) // Check if tmp is 9 (decimal)
    tmp <= 4'b0000; // Reset to 0 if it exceeds 9</pre>
                                                10
                                                11
12
                                                13
14
15
                                                                       tmp <= tmp + l'bl; // Increment the counter
                                                             assign Q = tmp;
                                                        endmodule
```

รูปที่11 Code Counter.v

- 3. ปรับปรุง Top Module เพิ่ม
 - counter u0 (clk_1Hz,rst,q_bcd); // ใช้ clk_1Hz แทน clk
 - clk_divider_to_1hz u2 (clk,clk_1Hz);

รูปที่12 Code Top.v

• Vdo Link ผลการทดลอง Checkpoint #2 : https://youtu.be/cdxIHFyhgvs

Check Point #3: Up/Down Counter with Mode Control

Node Name	Direction	Location
in_ dk	Input	PIN_17
out digit	Output	PIN_99
in_ mode	Input	PIN_51
in_ rst	Input	PIN_60
out seg[7]	Output	PIN_121
out seg[6]	Output	PIN_120
out seg[5]	Output	PIN_119
out seg[4]	Output	PIN_118
out seg[3]	Output	PIN_115
out seg[2]	Output	PIN_114
out seg[1]	Output	PIN_113
out seg[0]	Output	PIN_112
< <new node="">></new>		

PIN	คือ
17	50MHz Clock จากบอร์ด
99	Output ที่ Digit #4
51	S3 ขวาสุด Mode Change
60	S3 ซ้ายสุด Reset

รูปที่13 Pin Planner

ผลการทดลอง Check Point #3

การทดสอบ Count Up Mode

- ตั้ง DIP switch ที่ต่อกับ PIN_51 เป็น logic high (1)
- ผลลัพธ์: 7-Segment นับขึ้น 0→1→2→3→4→5→6→7→8→9→0→...
- ความเร็ว: เปลี่ยนทุกๆ 1 วินาที (ตาม clock divider)

การทดสอบ Count Down Mode

- ตั้ง DIP switch ที่ต่อกับ PIN_51 เป็น logic low (0)
- ผลลัพธ์: 7-Segment นับลง 9→8→7→6→5→4→3→2→1→0→9→...
- ความเร็ว: เปลี่ยนทุกๆ 1 วินาที (เหมือนกับ count up)

การทดสอบ Reset Function

- Reset ใน Count Up Mode: รีเซ็ตไป 0 แล้วนับขึ้นต่อ
- Reset ใน Count Down Mode: รีเซ็ตไป 0 แล้วนับลงไป 9, 8, 7...

การทดสอบการเปลี่ยน Mode ระหว่างการทำงาน

- เปลี่ยนจาก Up เป็น Down: เปลี่ยนทิศทางการนับทันทีจากตัวเลขปัจจุบัน
- เปลี่ยนจาก Down เป็น Up: เปลี่ยนทิศทางการนับทันทีจากตัวเลขปัจจุบัน

1. ปรับปรุง Counter Module : เพิ่ม mode เพื่อกำหนด นับขึ้น / นั่งลง

รูปที่14 Code counter

2. ปรับปรุง Top Module : เพิ่ม Mode control input + mode input

```
module top (clk,rst,seg,digit,mode);
2
     input clk, rst, mode;
3
     output [7:0] seg;
4
     output digit;
     wire [3:0] q bcd;
5
6
      wire clk lHz;
7
8
     counter u0 (clk_lHz,rst,mode,q_bcd);
9
      segment ul (q bcd, seg, digit);
      clk_divider_to_lhz u2 (clk,clk_lHz);
10
11
      endmodule
```

รูปที่15 Code counter

3. Segment Module : ไม่ต้องทำการแก้ไข

4. Clock Divider Module : ไม่ต้องทำการแก้ไข

Vdo Link ผลการทดลอง Checkpoint #2 : https://youtu.be/5XNxqK7RQKA