Cluster_Summary.csv

https://drive.google.com/file/d/1vYyPBwCW5z-jEmMTtOaHBCco7mFrxy4X/view?usp=sharing

Clustered_Customers.csv

https://drive.google.com/file/d/1Y49WpAuLV4MggJm1-bpBLihcrs6osFRx/view?usp=sharing

Clustering_metrics.csv

https://drive.google.com/file/d/12doSV2vdFNjlgzSGTLzr8SVZmQsV8Cdb/view?usp=sharing

Davies-Bouldin Index: 0.807 Silhouette Score: 0.361

Data Preparation Report

Step 1: Data Preparation

1.1 Load the Data

Two datasets, Customers.csv and Transactions.csv, were loaded into pandas dataframes for analysis.

Customers Data

- Contains columns: CustomerID, CustomerName, Region, SignupDate.
- Sample data shows various customers from regions like South America and Asia.

• Transactions Data

- Contains columns: TransactionID, CustomerID, ProductID, TransactionDate, Quantity, TotalValue, Price.
- Sample data shows transaction records for customers, including product IDs, quantities, and values.

1.2 Merge Customer and Transaction Data

- The datasets were merged using the CustomerID column to provide comprehensive customer transaction data.
- The resulting merged_data contains the transaction details along with customer information, such as Name, Region, and Signup Date.

1.3 Handle Missing Values

• No missing values were found in the merged dataset after inspection.

Step 2: Feature Engineering

2.1 Aggregate Transactional Data

Aggregated transaction data for each customer was calculated, including:

- Total Purchase Value (sum of Total Value).
- Average Purchase Value (mean of Total Value).

- Frequency of Purchases (count of transactions).
- Number of Transactions (count of TransactionDate).

2.2 Add Time-Based Features

- Extracted the day of the week and month from TransactionDate.
- Aggregated these features to find the most frequent transaction day and month for each customer.
- Combined these time features with the previously aggregated transactional data.

2.3 Normalize or Scale Features

• Numerical features (TotalValue, AveragePurchase, Frequency, TransactionCount) were normalized using MinMaxScaler to scale them to a range between 0 and 1.

2.4 Select Features for Clustering

- Categorical feature (TransactionDay) was one-hot encoded.
- Final features selected for clustering included:
 - Numerical features: TotalValue, AveragePurchase, Frequency, TransactionCount, TransactionMonth.
 - o One-hot encoded TransactionDay.

Step 3: Clustering

3.1 Choose Clustering Algorithm

• KMeans and DBSCAN were selected as potential clustering algorithms.

3.2 Determine the Optimal Number of Clusters

- Elbow Method and Silhouette Scores were plotted to determine the optimal number of clusters.
 - Elbow method suggested that 4 clusters might be optimal based on inertia.

• Silhouette scores also indicated 4 as a reasonable choice for optimal clustering.

3.3 Implement KMeans Clustering

- KMeans with n clusters=4 was applied to the selected features.
- The resulting clusters were added to the customer_features dataframe.

3.4 Implement DBSCAN Clustering

• DBSCAN was applied with eps=0.5 and min_samples=5, resulting in a different set of clusters.

Cluster Summary

- KMeans clustering grouped customers into 4 clusters based on purchasing behavior, frequency, and transaction patterns.
- DBSCAN clustering provided a density-based clustering that could potentially identify outliers and dense customer groups.

Step 4: Exploratory Data Analysis (EDA)

1. Distribution of Key Features

- Plots were generated to visualize the distribution of key numerical features like TotalValue, AveragePurchase, and Frequency.
- Histograms and box plots showed the spread of values, helping to identify outliers and trends in customer spending patterns.

2. Correlation Analysis

- A heatmap of correlations between numerical features was created to understand relationships.
- Features like Frequency and TotalValue showed a strong positive correlation, indicating that more frequent purchases are linked to higher spending.

3. Customer Segmentation Visualization

• The customer segmentation results from K-Means clustering were visualized using scatter plots and pair plots.

• Different clusters exhibited distinct patterns in terms of spending, frequency, and product preferences.

Step 5: Analysis of Clusters

1. Cluster Summary

- Cluster 1: High spending, frequent purchases, and premium products.
- Cluster 2: Moderate spending and occasional purchases.
- Cluster 3: Low spending, less frequent purchases, and budget products.
- Cluster 4: Sporadic transactions, high-value but low-frequency purchases.

2. Cluster Profiling

 Each cluster was profiled based on key features like TotalValue, Frequency, and product preferences. This provides insights into customer behavior for targeted marketing.

3. Customer Lifetime Value (CLV) Analysis

- The CLV of each cluster was estimated to determine which segments are most profitable in the long term.
- Cluster 1 showed the highest CLV, while Cluster 3 exhibited the lowest CLV.

Step 6: Insights for Strategy Development

1. Targeted Marketing Campaigns

- Cluster 1: High-value customers; campaigns should focus on loyalty programs and premium offerings.
- Cluster 2: Moderate value; offer personalized discounts to encourage higher frequency.
- Cluster 3: Low-value customers; offer bundle deals and more affordable products to increase purchase volume.
- **Cluster 4**: Engage with targeted promotional offers to drive repeat purchases.

2. Product Recommendations

• Based on the clustering, product recommendations were personalized for each segment.

 High-value clusters (Cluster 1) received recommendations for premium products, while low-value clusters (Cluster 3) were offered budget-friendly alternatives.

3. Customer Retention Strategies

- For high-value customers, retention strategies like exclusive membership benefits were suggested.
- For low-value customers, strategies focused on increasing purchase frequency and product variety were recommended.