DA-Final-7) Recommender system

1. Recommender system introduction

1-1. Recommender system 정의

- Basic idea:
 - if two people A and B are similar to each other and A prefers an item X, then B is also likely to prefer X (need to measure user similarity).
 - if two items X and Y are similar to each other and A prefers an item X/then A is also likely to prefer Y
 (need to measure item similarity).
- How to measure the similarity?
 - Represent users and items as feature vectors and compute correlation coefficient or cosine similarity between them.
- How to represent users and items as feature vectors?
 - Content-based approach (CB):
 - Use contents domain specific, e.g.,
 - Movie domain actor, genre, director, year, synopsis, etc.
 - Music domain singer, genre, composer, lyrics.

✓ Collaborative filtering (CF):

- Rating information domain independent, e.g.,
- Users' ratings on items (explicit feedback)
- Users' purchase records or click records on items (implicit feedback)
- CF has shown commercial success/and has been actively researched in the community.
- Recently, hybrid approaches using deep learning technologies has gained popularity, which is beyond the scope of this course.

1-2. Collaborative filtering (CF)

• Use the relationship between users and items

2. Collaborative filtering approaches

2-1. K nearest neighbor

2-1-(1). User-based K nearest neighbor

• User-based nearest neighbor collaborative filtering [Resnick 94]

target		Item 1	Item 2	Item 3	Item 4	Item 5
user >	User A	5	3	4	4	?
	User 1	3	1	2	3	3
	User 2	4	3	4	3	5
	User 3	3	3	1	5	4
7914/	User 4	1	5	5	2	1

• Pearson correlation between two users:

correlation coefficients

→ Hemon & warbattonel Similarity

• $I^{\{x,y\}}$: A set of items, rated by both user x and user y

• r_{ii} : a rating on item j by user i

• $\overline{r_i}$: an average rating of user i

	Item 1	Item 2	Item 3	Item 4	Item 5
User A	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

-cosine similarity.X

$$\begin{array}{c} \text{ items rotings. Add } \\ \text{ items } \\ \text{ items } \\ \text{ rotings. } \\ \text{ } \\ \frac{\sum_{i \in I(1,2)} (r_{1i} - \overline{r_{1}}) (r_{2i} - \overline{r_{2}})}{\sum_{i \in I(1,2)} (r_{1i} - \overline{r_{1}})^{2}} \sqrt{\sum_{i \in I(1,2)} (r_{2i} - \overline{r_{2}})^{2}} \end{array}$$

- $I^{\{x,y\}}$: A set of items, rated by both user x and user y
- r_{ii} : a rating on item j by user i
- $\overline{r_i}$: an average rating of user i

	Item 1	Item 2	Item 3	Item 4	Item 5
User A	5	3	4	4	?)+
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

$$\hat{r}_{ui} = \overline{r_u} + \frac{\sum_{k \in N} \sin (u, k) * (r_{ki} - \overline{r_k})}{\sum_{k \in N} \sin (u, k)}$$

• where N is a k-nearest neighbor set

•
$$\overline{r}_{A} = \frac{5+3+4+4}{4} = 4$$

•
$$\overline{r_1} = \frac{3+1+2+3+3}{5} = 2.4$$

•
$$\overline{r_2} = \frac{4+3+4+3+5}{5} = 3.8$$

•
$$\overline{r_3} = \frac{3+3+1+5+3}{5} = 3.2$$

•
$$\overline{r_4} = \frac{1+5+5+2+1}{2} = 2.8$$

•
$$\sin (u_A, u_1) = \frac{(5-4)(3-2.4)+(3-4)(1-2.4)+\cdots}{\sqrt{(5-4)^2+\cdots}\sqrt{(3-2.4)^2+\cdots}} \approx 0.84$$

• 1-NN,
$$\sin (u_A, u_1) = 0.84$$

• 2-NN,
$$\sin (u_A, u_2) = 0.42$$

• 1-NN,
$$\sin (u_A, u_1) = 0.84$$

• 2-NN,
$$\sin (u_A, u_2) = 0.42$$

•
$$\hat{r}_{A5} = \bar{r}_A + \frac{0.84 \cdot (3 - 2.4) + 0.42 \cdot (5 - 3.8)}{0.84 + 0.42} = 4.88$$

2-X/N; neavest 2 users similarity-weighted mean of target itemal and vatinger 2014

+ target werd 现货

2-1-(2). Item-based K nearest neighbor

• Item-based nearest neighbor collaborative filtering [Sarwar 2001]

	Item 1	Item 2	Item 3	Item 4	Item 5
User A	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

影 雅 到 刘公

• Find kNN items that are similar to item 5.

• Cosine similarity $\sin \left(I_i, I_j \right) = \frac{I_i \cdot I_j}{|I_i| |I_j|}$

• Prediction: Take the ratings/of the most similar items/to predict on item 5.

2-1-(3). K nearest neighbor의 장단점

• Pros

• Intuitive

No training required

Easy to explain to user

• Cons

• Not scalable nor accurate

• Especially bad for sparse matrix

	Item 1	Item 2	Item 3	Item 4	Item 5
UserA	5	1	?	?	?
User 1		1			3
User 2		3		3	
User 3			5	5	
User 4	3		5		1

elable matrix sparsedy

2-2. Matrix factorization

2-2-(1). Matrix factorization गंड

- MF(matrix factorization) factorizes the rating matrix/into user and items matrices/which become the latent model that produces the ratings.
- What is latent model?

- Latent model is a hidden model which well describes phenomena or observations.
- <u>Users and Items</u> can be represented as <u>vectors</u>/in the shared latent space
- Rating score is generated by dot product of user latent vector (p_i) and item latent vector (q_i)

2-2-(2). Matrix factorization formal description

• Latent model:

• Goal: Find ${\it P}$ and ${\it Q}$ which minimizes the error (RMSE)

$$\underset{P,Q}{\operatorname{argmin}}\,RM\,S\!E(R,P^TQ)$$

•
$$\sqrt{\frac{1}{|R|}\sum_{(i,j)\in R} (r_{ij} - \widehat{r_{ij}})^2}$$

Minimizing RMSE is equal to minimizing unnormalized MSE

•
$$\sqrt{\frac{1}{|R|}\sum_{(i,j)\in R} (r_{ij} - \widehat{r_{ij}})^2} \Rightarrow \sum_{(i,j)\in R} (r_{ij} - [P^TQ]_{ij})^2$$

•
$$\left\| \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \right\|^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

•
$$Tr\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}^T\right) = Tr\left(\begin{bmatrix} x_1^2 + x_2^2 & x_1x_3 + x_2x_4 \\ x_3x_1 + x_4x_2 & x_3^2 + x_4^2 \end{bmatrix}\right) = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

2-2-(3). Matrix factorization에서의 Gradient descent

Gradient Descent (GD)

- First-order optimization algorithm to minimize an objective function:
 - f(x): objective function/to minimize in terms of x
- Start with a random x and take steps proportional to the negative of the gradient of the function/at the current point

•
$$x_{n+1} = x_n - \eta \nabla f(x_n)$$

• η : step size

Figure. Illustration of gradient descent

• Objective function for MF

•
$$||R - P^T \cdot Q||_2^2 = \operatorname{Tr}((R - P^T \cdot Q) \cdot (R - P^T \cdot Q)^T)$$

•
$$||R - P^T \cdot Q||_2^2 = \text{Tr}((R - P^T \cdot Q) \cdot (R - P^T \cdot Q)^T)$$

• Derivative rule expective function
• $\frac{\partial}{\partial X} Tr[(C + AXB)(C + AXB)^T] = 2A^T(C + AXB)B^T$
• Gradient for the objective function
• $\frac{\partial f(P,Q)}{\partial X} = -2(R - P^T \cdot Q)Q^T$

•
$$\frac{\partial f(P,Q)}{\partial P} = -2(R - P^T \cdot Q)Q^T$$

• $\frac{\partial f(P,Q)}{\partial Q} = -2P(R - P^T \cdot Q)$
• Updating rule for gradient descent

• $\frac{\partial f(P,Q)}{\partial P} = -2P(R - P^T \cdot Q)$

•
$$x_{n+1} = x_n - \eta \nabla F(x_n)$$

•
$$x_{n+1} = x_n - \eta \nabla F(x_n)$$

• $P^T = P^T - \eta \frac{\partial f(P,Q)}{\partial P} = P^T + \eta'(R - P^T \cdot Q)Q^T$
• $Q = Q - \eta \frac{\partial f(P,Q)}{\partial Q} = Q + \eta'P(R - P^T \cdot Q)$

•
$$\underline{Q} = Q - \eta \frac{\partial f(P,Q)}{\partial Q} = \underline{Q + \eta' P(R - P^T \cdot Q)}$$

Dimensionality check:

- $R = m \times n$

2-2-(4). Matrix factorization에서의 Stochastic Gradient descent

Rating matrix R User factor matrix P^T

- Computing the standard GD is expensive.
- SGD is a lightweight algorithm which repeats following procedure.
 - 1. Randomly pick a data instance
 - 2. Calculate a gradient associated with the instance
 - Update the solution by the gradient of the instance
- Objective function with the regularizers $\min_{P,Q} \sum_{(i,j) \in \mathbb{R}} \left\{ \left(r_{ij} - \boldsymbol{p}_{i}^{T} \cdot \boldsymbol{q}_{j} \right)^{2} + \lambda_{P} \|\boldsymbol{p}_{i}\|_{2}^{2} + \lambda_{Q} \|\boldsymbol{q}_{j}\|_{2}^{2} \right\}$ Gradient $\operatorname{Gradient}$

 - Updating rules $(r_{ij} p_i^T \cdot q_j) \cdot q_j \lambda_P \cdot p_i)$ $\cdot \frac{p_i \leftarrow p_i + \eta' \left((r_{ij} p_i^T \cdot q_j) \cdot q_j \lambda_P \cdot p_i \right)}{q_j \leftarrow q_j + \eta' \left((r_{ij} p_i^T \cdot q_j) \cdot p_i \overline{\lambda_Q} \cdot q_j \right)}$

2-3. Random walk on graph

- Users and items are represented as a <u>bipartite graph</u> users and items are nodes/and the ratings are links between them.
- Unknown ratings (links) between users and items are estimated by <u>random walk</u> similar to the <u>PageRank</u> algorithm.
- The $s(u, i_{unseen})$ can be proportionally obtained by the fraction of trials reaching i_{unxen} via random walk

3. Recommender system summary

- Rating matrices are extremely sparse in practice!
 - MF (or random walk) also fails
- Hybrid approaches merges CB and CF
 - Multimodal learning
 - Deep learning approaches
 - · Cold-start recommendation
- Other issues (SPTN)
 - Scalability: Huge matrix → factorization problem
 Privacy-preserving: matrix = 34 37 ×

 - Timing 津世
 - · Novelty or diversity 到 雅 Henry 赵义 幽 能 Henry 赵

