1 Уран

Уран — седьмая по удаленности от Солнца планета солнечной системы. Как и Нептун, она относится к классу ледяных гигантов. Её ядро состоит из нагретого льда. Как и у газовых гигантов, у Урана есть спутники и кольца.

Планету наблюдали очень давно, но принимали её за звезду. По-настоящему открыть её удалось лишь Уильяму Гершелю (он изображен на рисунке 1). 13 марта 1781 года Гершель увидел ее через телескоп собственной конструкции, находясь в саду своего дома в Англии. Поначалу он принял ее за комету, но исходя из расчетов Андрея Ивановича Лекселя, таковой объект быть не мог в силу большого перигелейного расстояния. За свои заслуги Гершель получил от короля Георга III пожизненную стипендию в 200 фунтов стерлингов.

Рис. 1: У. Гершель

Рис. 2: Изображения, полученные Voyager 2

Первые фотографии планеты были получены в 1986 году аппаратом "Voyager 2". Из них был склеен рисунок 2. На них видна блеклая планета, без облачных полос и атмосферных штормов. Однако в настоящее время удалось различить признаки изменений погоды и сезонов.

2 Спутники

Как и другие планеты-гиганты, Уран обладает многочисленными спутниками (крупнейшие из них видны на рисунке 3). Всего их 27 штук (информация об

Рис. 3: Крупнейшие спутники Урана

основных указана в таблице 1). Шекспира и Александра Поупа. Первые два спутника — Титанию и Оберон открыл еще Гершель. Ариэль и Умбриэль были обнаружены Уильямом Ласселом в 1851 году, в 1948 Джерард Койпер открыл Миранду. Об остальных стало известно лишь в конце XX века благодаря "Voyager 2"и мощным наземным телескопам.

Первые спутники называли в честь персонажей пьес Шекспира и поэмы Поупа "Похищение локона". Позднее международным астрономическим союзом было принято соглашение называть спутники Урана лишь именами героев этих произведений.

Название	Диаметр (км)	Масса (кг)	Период	Год
			обращения	открытия
Корделия	42	5.0×10^{16}	0.335034	1986
Офелия	46	5.1×10^{16}	0.376400	1986
Бианка	54	9.2×10^{16}	0.434579	1986
Крессида	82	3.4×10^{17}	0.463570	1986
Дездемона	68	2.3×10^{17}	0.473650	1986
Джульетта	106	8.2×10^{17}	0.493065	1986
Порция	140	1.7×10^{18}	0.513196	1986
Розалинда	72	2.5×10^{17}	0.558460	1986
Купидон	18	3.8×10^{15}	0.618	2003
Белинда	90	4.9×10^{17}	0.623527	1986
Пердита	30	1.8×10^{16}	0.638	1986
Пак	162	2.9×10^{18}	0.761833	1985
Маб	25	1.0×10^{16}	0.923	2003

Таблица 1: Основные данные крупнейших спутников Урана

3 Интегрируй!

$$f(x) = \begin{cases} \cos x & \frac{-\pi}{2} \leqslant x \leqslant 0\\ \frac{1}{\sqrt{1+x}} & 0 \leqslant x \leqslant 3\\ \frac{17}{14}x - \frac{44}{14} & 3 \leqslant x \leqslant 10\\ (x-7)^2 & 10 \leqslant 11\\ x+5 & 11 \leqslant x \leqslant 12 \end{cases}$$
(3.1)

Независимо посчитаем производную на всех отрезках, где определена функция. Несмотря на громоздкий ее вид в целом, на каждом отдельном отрезке вычислить производную не составляет труда. Процесс подробно описан в формуле 3.2.

$$f'(x) = \begin{cases} (\cos x)' = -\sin x & \frac{-\pi}{2} \leqslant x \leqslant 0\\ \left(\frac{1}{\sqrt{1+x}}\right)' = \frac{0 \cdot \sqrt{1+x} - \frac{1}{2 \cdot \sqrt{1+x}}}{\sqrt{1+x^2}} = -\frac{1}{2 \cdot \sqrt{1+x^3}} & 0 \leqslant x \leqslant 3\\ \left(\frac{17}{14}x - \frac{44}{14}\right)' = \frac{17}{14} & 3 \leqslant x \leqslant 10\\ ((x-7)^2)' = 2 * (x-7) & 10 \leqslant 11\\ (x+5)' = 1 & 11 \leqslant x \leqslant 12 \end{cases}$$
(3.2)

Проинтегрируем функцию 3.1 на отрезке [0;12]. Для этого просуммируем значения первообразных по всем отрезкам. Чтобы их вычислить, воспользуемся формулой Ньютона-Лейбница. Подробные выкладки представлены в формуле 3.3.

$$\int_{0}^{12} f(x) dx = \sum_{i=1}^{5} F(b_i) - F(a_i) = \sin(x) \Big|_{-\frac{\pi}{2}}^{0} + 2\sqrt{1+x} \Big|_{0}^{3} + \left(\frac{17}{28}x^2 - \frac{44}{14}x\right) \Big|_{3}^{10} + \left(x^3 - 7x^2 + 49x\right) \Big|_{10}^{11} + (x+5) \Big|_{11}^{12} = \sin(0) - \sin\left(-\frac{\pi}{2}\right) + 2 \cdot \sqrt{1+3} - 2 \cdot \sqrt{1+1} + \frac{17}{28} \cdot 10^2 - \frac{44}{14} \cdot 10 - \frac{17}{28} \cdot 3^2 + \frac{44}{14} \cdot 3 + \frac{11^3}{2} - 7 \cdot 11^2 + 49 \cdot 11 - \frac{10^3}{2} + 7 \cdot 10^2 - 49 \cdot 10 + \frac{12^2}{2} + 5 \cdot 12 - \frac{11^2}{2} - 5 \cdot 11 = 1 - 0 + 8 - 2 + \frac{425}{7} - \frac{220}{7} - \frac{153}{28} + \frac{66}{7} + \frac{1331}{2} - 847 + 539 - 500 + 700 - 490 + 72 + 60 - \frac{121}{2} - 55 = \frac{497}{4}$$
 (3.3)

4 Затмения

Затмение — астрономическая ситуация, при которой одно небесное тело заслоняет свет от другого небесного тела. Наиболее известными из них являются солнечные и лунные затмения.

В древности простые люди воспринимали затмения как негативные события.

Причиной этому в частности был красный цвет затененной луны, который обыватели связывали с кровью. В некоторых мифологиях затмения трактуются как борьба высших сил, одна из которых пытается погасить свет во всем мире, а другая — сохранить его.

Ученым же затмения помогали в изучении небесной механики. Аристотель впервые указал на то, что Земля шарообразная, потому что форма тени Луны при затмении округлая. Ломоносов же, наблюдая в 1761 году прохождение Венеры по диску Солнца, открыл атмосферу Венеры, обнаружив преломление солнечных лучей при вхождении и выходе Венеры с солнечного диска. Уже в XX веке Во время солнечных затмений впервые были зафиксированы явления гравитационного искривления хода световых лучей вблизи значительной массы, что стало одним из первых экспериментальных доказательств выводов общей теории относительности.

В настоящее же время затмения достаточно хорошо изучены, существуют математические модели, которые позволяют довольно точно предсказать время и место следующего затмения. Да и люди в массе своей уже затмений не боятся, наоборот с удовольствием за ними наблюдают.

Рис. 4: Затмение Сатурна

Соответствует ныне и классификация затмений. Основные их виды представлены на иллюстрации 5. Также не стоит забывать, что случаются эти явления не только с Солнцем и Луной, но и с Сатурном, затмение которого представлено на рисунке 4. На этом мы завершаем наше краткое обозрение этого удивительного явления.

Рис. 5: Виды затмений