Exercise of algebra 3——Galois Theory

Exercise 1: Let k be a field and let K = k(t) be the field of rational functions in t over k.

- (a) Let $u \in K$ with $u \notin k$. Calculate [K : k(u)].
- (b) Show that K = k(u) if and only if u = (ax + b)/(cx + d) for some $a, b, c, d \in k$ with $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$.
 - (c) Conclude that $Gal(K/k) \cong PGL_2(k)$.

Exercise 2: Let k be a field and let $K = k(x_1, ..., x_n)$ be the field of rational functions in n variables over k. Let $s_1, ..., s_n$ be the elementary symmetric functions in the x_i , that is, $s_k = \sum_{1 \le i_1 < i_2 < ... < i_k \le n} x_{i_1} ... x_{i_k}$.

(a) We view the symmetric group S_n as a subgroup of Aut(K) by defining

$$\sigma(\frac{f(x_1, ..., x_n)}{g(x_1, ..., x_n)}) = \frac{f(x_{\sigma(1)}, ..., x_{\sigma(n)})}{g(x_{\sigma(1)}, ..., x_{\sigma(n)})}$$

for $\sigma \in S_n$. Let $F = Inv(S_n)$, prove that [K : F] = n!.

- (b) Use (a) to prove that $k(s_1, ..., s_n) = F$.
- (c) Use (b) to prove that $k[s_1, ..., s_n] = F \cap k[x_1, ..., x_n]$.

Exercise 3:

- (a) Let F be a field, and let $f(x) \in F[x]$ be a polynomial of prime degree. Suppose for every field extension K of F that if f(x) has a root in K, then f(x) splits over K. Prove that either f(x) is irreducible over F or f(x) has a root in F.
- (b) Let K be a normal extension of F, and let f(x) be an irreducible polynomial in F[x]. Show that f(x) is irreducible over K or can factor into a product of irreducible polynomials of the same degree over K.

Exercise 4: Let k be a field of characterisitic p > 0. Let K = k(x, y)

be the rational function field in two variables over k, and let $F = (x^p, y^p)$.

- (a) Prove that $[K:F]=p^2$ and $K^p\subseteq F$.
- (b) Prove that there is no $\alpha \in K$ with $K = F(\alpha)$.
- (c) Exhibit an infinite number of intermediates fields of K/F.

Exercise 5: Suppose that K/F is a finite extension with K algebraically closed.

- (a) If char(F) = p > 0 and $\beta \in F F^p$, then $x^{p^r} \beta$ is irreducible over F for all r > 0.
- (b) If char(F) = p > 0 and there is a cyclic extension of degree p, then there are cyclic extensions of F of degree p^r for all r > 0.
- (c) Let p be a prime, suppose that F contains a primitive p-th root of unity for p odd or 4-th root of unity for p = 2. If there is an $a \in F$ with $x^p a$ irreducible over F, then $(x^p)^2 a$ is irreducible over F.
 - (d) Show that char(F) = 0 and $K = F(\sqrt{-1})$.

Exercise 6: Let p be an odd prime number. Define complex number $\zeta = e^{\frac{2i\pi}{p^2}}$ and $\alpha = \sqrt[p]{p}\zeta$, where $\sqrt[p]{p}$ denotes the p-th root of p in the field of real numbers.

- (1) Determine that $[\mathbb{Q}(\alpha,\zeta):\mathbb{Q}]$ and $[\mathbb{Q}(\alpha):\mathbb{Q}]$.
- (2) Find the number of intermediate fields F of the extension $\mathbb{Q}(\alpha,\zeta)/\mathbb{Q}$ such that $[F:\mathbb{Q}]=p^2$.

Yau 2017: Let L/F be a Galois extension, and $x \in L$.

- (a) Show that the set \mathcal{P} of subextensions of L/F not containing x has a maximal element E. Let K/E be a non-trivial finite extensions contained in L. Show that $x \in K$.
- (b) Let K' be the Galois closure of K/E in L. Show that there exists $g \in Gal(K'/E)$ such that $gx \neq x$.
 - (c) Show that K/E is a cyclic Galois extension.