Syntax and Semantics of Propositional Logic

Dr. Avipsita Chatterjee

I.E.M

Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of propositions. The set of propositional formulas (over A) is inductively defined as follows:

- ▶ Every $a \in A$ is a propositional formula over A.
- ▶ If ϕ is a propositional formula over A, then so is its negation $\neg \phi$.
- ▶ If ϕ and ψ are propositional formulas over A, then so is the conjunction $(\phi \wedge \psi)$.
- ▶ If ϕ and ψ are propositional formulas over A, then so is the disjunction $(\phi \lor \psi)$.

The implication $(\phi \to \psi)$ is an abbreviation for $(\neg \phi \lor \psi)$. The biconditional $(\phi \leftrightarrow \psi)$ is an abbrev. for $((\phi \to \psi) \land (\psi \to \phi))$.

Syntax: Examples

Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences? Which kinds of formula are they (conjunction, disjunction, ...)?

- ► (A ∧ (B ∨ C))
- ► ((EatFish ∧ Drink Water) → ¬Eat Ice Cream)
- ¬(∧ Rain ∨ StreetWet)
- ¬(Rain ∨ StreetWet)
- $ightharpoonup \neg (A = B)$
- $\blacktriangleright (A \land \neg (B \leftrightarrow)C)$
- **►** (A ∨ ¬(B ↔ C))
- \blacktriangleright ((A \leq B) \land C)
- $\blacktriangleright ((A_1 \land A_2) \lor \neg (A_3 \leftrightarrow A_2))$

Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean:

((Eat Fish \land Drink Water) $\rightarrow \neg$ Eat Ice Cream)?

We need semantics!

Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of propositions A is a function $I: A \to \{0, 1\}$.

A propositional formula ϕ (over A) holds under I (written as I $|=\phi$) according to the following definition:

```
\begin{array}{lll} \mathrm{I} & |= a & \mathrm{iff} & \mathrm{I}(a) = 1 & (\text{for } a \in A) \\ \mathrm{I} & |= \neg \phi & \mathrm{iff} & \mathrm{not} \ \mathrm{I} \ |= \phi \\ \mathrm{I} & |= (\phi \wedge \psi) & \mathrm{iff} & \mathrm{I} \ |= \phi \ \mathrm{and} \ \mathrm{I} \ |= \psi \\ \mathrm{I} & |= (\phi \vee \psi) & \mathrm{iff} & \mathrm{I} \ |= \phi \ \mathrm{or} \ \mathrm{I} \ |= \psi \end{array}
```

Question: should we define semantics of $(\phi \rightarrow \psi)$ and $(\phi \leftrightarrow \psi)$?

Semantics of Propositional Logic: Terminology

- For $I \models \phi$ we also say I is a model of ϕ
- and that ϕ is true under I.
- If ϕ does not hold under I, we write this as $I \models \phi$
- and say that I is no model of ϕ
- and that ϕ is false under I.
- Note: \models is not part of the formula
 - but part of the meta language (speaking about a formula).

Summary

- propositional logic based on propositions
- syntax defines what well-formed formulas are
- semantics defines when a formula is true
- ▶ interpretations are the basis of semantics