Chapitre 1

Rappel: suite et algorithme

1.1 Suite : généralité

1.1.1 Définition

D'efinition:

• 1 suite $(u_n)_{n\geqslant 0}$ est 1 fonction de $\mathbb N$ dans $\mathbb R$; à 1 rang donné n, on associe 1 réel u_n

 $\begin{array}{cccc}
 & (u_n)_{n\geqslant 0} & : & \mathbb{N} & \mapsto & \mathbb{R} \\
 & & n & \mapsto & u_n
\end{array}$

Remarque:

- la suite peut commencer à 1 autre indice : 1, 2, ...; l'ensemble de définition est alors adapté par exemple $(u_n)_{n\geqslant p}$ est 1 suite démarrant au rang p
- u_n s'appelle le <u>terme général</u> de la suite

Ex 1 : suite arithmétique

 $(u_n)_{n\geqslant 0}:2;5;8;11...$

 $(v_n)_{n\geqslant 1}$: de premier terme 8 et de raison -4

$Ex\ 2: suite\ g\'{e}om\'{e}trique$

 $(u_n)_{n\geqslant 0}:3;6;12;24...$

 $(v_n)_{n\geqslant 1}$: de premier terme 6 et de raison $-\frac{1}{2}$

Ex 3 : suite définie de façon explicite :

 $\forall n \in \mathbb{N}^* , u_n = \frac{1}{n}$

 $\forall n \geqslant 3 , v_n = \sqrt{n-3}$

 $T^{ale} S$ - math13net 2024 - 2025

Ex 4 : suite récurrente à 1 ou 2 terme(s)

$$\begin{cases} u_0 = 4 \\ u_{n+1} = 0,75u_n + 2 \end{cases}$$
$$\begin{cases} u_0 = 1 & u_1 = 1 \\ u_{n+2} = u_{n+1} + u_n \end{cases}$$

Ex 5 : suite définie par l'intermédiaire d'une autre ou bien par une somme

On définie les 2 suites suivantes :

- la série harmonique, $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{n=1}^{n} \frac{1}{p}$
- la suite $b_n = a_n \ln n$ qui tend vers la constante γ

Culture:

- $\gamma \approx 0,57721$ est 1 constante importante, comme π
- on ne sait pas si γ est 1 rationnel ou non!!
- on a prouvé que π est irrationnel en 1760 (lambert) puis transcendant en 1882 (lindermann)

1.1.2 Variation (ou monotonie) d'1 suite

Définition: $(u_n)_{n\geqslant 0}$ une suite

- (u_n) est <u>croissante</u> (à partir d'1 certain rang k) $\underline{si} \ \forall n \geqslant k \ , u_{n+1} \geqslant u_n$
- (u_n) est <u>décroissante</u> (à partir d'1 certain rang k) <u>si</u> $\forall n \geq k$, $u_{n+1} \leq u_n$
- (u_n) est <u>strictement croissante</u> (à partir d'1 certain rang k) <u>si</u> $\forall n \ge k$, $u_{n+1} > u_n$
- (u_n) est <u>strictement décroissante</u> (à partir d'1 certain rang k) <u>si</u> $\forall n \ge k$, $u_{n+1} < u_n$
- (u_n) est <u>monotone</u> (à partir d'1 certain rang k) <u>si</u> elle est croissante ou décroissante à partir d'1 certain rang k
- (u_n) est **stationnaire** (à partir d'un certain rang k) $si \exists k$ tel que $\forall n \geqslant k$, $u_{n+1} = u_n$

Remarque:

- \triangle il existe des suites qui ne sont ni croissantes ni décroissantes; par exemple, $u_n = (-1)^n$
- regarder les 1^{er} termes de la suite permet souvent de conjecturer une possible monotonie ou CV; mais il faudra rester prudent, et ceci ne sera pas 1 preuve, simplement 1 conjecture!

1.1.3 Montrer la croissance ou décroissance d'1 suite

Méthode: pour montrer la monotonie d'1 suite, quelques idées ... il en existe beaucoup d'autres ...

- suite de *type connu* : arithmétique ou géométrique
- analyser le <u>signe de</u> $u_{n+1} u_n$:

positif \Rightarrow suite croissante négatif \Rightarrow suite décroissante

• si tous les termes de la suite sont $\boxed{ ? }$ strictement positifs, comparer $\frac{u_{n+1}}{u_n}$ et 1:

 $\frac{u_{n+1}}{u_n} \geqslant 1 \Rightarrow$ suite croissante $\frac{u_{n+1}}{u_n} \leqslant 1 \Rightarrow$ suite décroissante

- pour une suite définie de façon explicite $u_n = f(n)$, étudier les variations de f sur \mathbb{R}
- utiliser un *raisonnement par récurrence* (vu ultérieurement)

 $T^{ale} S$ - math 13 net 2024 - 2025

Exemples:

• Montrer que la suite (u_n) définie par $\forall n \ge 0$, $u_n = n^2 - n$ est croissante.

• Mq $(u_n)_{n\geqslant 1}$ définie par : $u_n=\frac{2^n}{n}$ est croissante.

• Mq $(u_n)_{n\geqslant 2}$ définie par : $u_n=\frac{2n+1}{n-1}$ est décroissante.

1.1.4 Visualiser 1 suite

<u>Méthode</u>: visualisation d'1 suite définie par récurrence $u_{n+1} = f(u_n)$ (vidéo ici)

- 1. tracer la droite y = x
- 2. tracer la fonction support de la suite y = f(x)
- 3. placer, sur l'axe des abscisses, le terme u_0
- 4. construire u_1 : à partir de u_0 , monter à la verticale, cogner f, puis partir à l'horizontale jusqu'à toucher l'axe des ordonnées
- 5. rapatrier u_1 sur l'axe des abscisses, grâce à la droite y=x
- 6. recommencer pour construire $u_2, u_3 \dots$

Exemple: on considère (u_n) définie par $\begin{cases} u_0 = 0, 1 \\ u_{n+1} = 2u_n(1 - u_n) & \forall n \geqslant 0 \end{cases}$

Grâce au graphe de f(x) = 2x(1-x) et y = x, on obtient la construction des termes de la suite :

🛕 à savoir saisir dans sa calculatrice

1.2 Suite arithmétique (rappels)

1.2.1 Définition et Propriété

Définition: 1 suite arithmétique (u_n) est définie par :

- 1 premier terme u_0 ou u_p
- $\bullet\,$ 1 relation de récurrence : $u_{n+1}=u_n+r$, r étant la raison de la suite

Propriété: 1 suite est arithmétique ssi la différence entre 2 termes consécutifs de la suite est constante : c'est la raison

• $\forall n \geq p$ $u_{n+1} - u_n = r \Leftrightarrow (u_n)$ arithmétique de raison r

Exemple:

• $(u_n): \begin{cases} u_0 = 2 \\ u_{n+1} = u_n + 3 \quad \forall n \geqslant 0 \end{cases} \Rightarrow 2 \quad 5 \quad 8 \quad 11 \quad \dots$

 $T^{ale} S$ - math 13 net 2024 - 2025

1.2.2 Expression du terme général, Somme des premiers termes

Propriété: $(u_n)_{n\geqslant 0}$ arithmétique de raison r

- ainsi : $u_n = u_0 + nr$
- $S_n = \text{Nbre Terme} \times \frac{PremierTerme + DernierTerme}{2}$

Remarque, exemple:

• connaître les 2 preuves :

preuve 1:

preuve 2:

- savoir adapter les formules à votre besoin ($\underline{\text{ex}}$: démarrage à 1 au lieu de 0 ...)
- Culture:

somme des n 1 er entiers : $S_n = \frac{n(n+1)}{2}$

somme des n 1 er carrés : $T_n = \frac{(2n+1)n(n+1)}{6}$

somme des n 1 er cubes : $U_n = (\frac{n(n+1)}{2})^2$

1.3 Suite géométrique (rappels)

1.3.1 Définition

Définition: 1 suite géométrie $(u_n)_{n\geqslant 0}$ est définie par :

- 1 premier terme u_0 ou u_p
- 1 relation de récurrence : $u_{n+1} = qu_n$, q étant la raison de la suite

 $\underline{\textit{Propriété}}$: 1 suite est géométrique si le quotient entre 2 termes consécutifs de la suite est constant : c'est la raison

• $\forall n \geqslant p \quad \frac{u_{n+1}}{u_n} = q \Leftrightarrow (u_n)$ géométrique de raison q

Exemple:

 $\bullet \ (u_n): \left\{ \begin{array}{ll} u_0 = 3 \\ u_{n+1} = 2u_n \quad \forall n \geqslant 0 \end{array} \right. \Rightarrow \quad 3 \quad 6 \quad 12 \quad 24 \quad \dots$

1.3.2 Expression du terme général, Somme des premiers termes

Propriété: $(u_n)_{n\geqslant 0}$ géométrique de raison q

- $\bullet \ u_n = q^n u_0$
- $S_n = 1^{\text{er}} \text{ Terme} \times \frac{1 q^{Nbre-de-Termes}}{1 q}$ avec $q \neq 1$

 $T^{ale} S - math 13net$ 2024 - 2025

Remarque, exemple:

- /! savoir démontrer ces 2 résultats
- un bon exemple est la somme des puissances de $2:\sum_{k=0}^{n}2^{k}=2^{n+1}-1$
- un autre exemple (chap nombre complexe), sont les sommes $C_n = \sum_{k=0}^n \cos(k\theta)$ et $S_n = \sum_{k=0}^n \sin(k\theta)$

1.3.3 Limite d'1 suite géométrique

```
    Propriété : (u_n)_{n\geqslant 0} géométrique de raison q et de premier terme 1: \forall n\geqslant 0 u_n=q^n

    • \underline{Si}\ q>1 \underline{Alors}\ (u_n) DIV et \lim_{n\to +\infty}q^n=+\infty

    • \underline{Si}\ q=1 \underline{Alors}\ (u_n) est CTE et \forall n\geqslant 0 u_n=1

    • \underline{Si}\ -1 < q < 1 \underline{Alors}\ (u_n) CV et \lim_{n\to +\infty}q^n=0

    • \underline{Si}\ q\le -1 \underline{Alors}\ (u_n) DIV et (bien comprendre que) n'a pas de limite
```

Remarque, exemple:

- lorsque $u_0 \neq 0$, Penser au signe de u_0
- (u_n) géométrique avec $u_0 = -2$ et q = 1, 5; $\lim_{x \to +\infty} u_n = -\infty$ car 1, 5 > 1
- (v_n) géométrique avec $u_0=4$ et $q=\frac{3}{4}$; $\lim_{x\to+\infty}u_n=0$ car $-1<\frac{3}{4}<1$

1.4 Algorithme

Petits programmes à tester pour se rafraîchir la mémoire :

1.4.1 Test : recherche des solutions d'une équation du $2^{\rm nd}$ degré

```
def Solution_Second_Degre(a,b,c):
   # cherche les solutions d'1 trinome du 2
                                                  degr
   # en fonction de la valeur de delta
4
 5
     delta = b**2 - 4*a*c
     print (" Delta =",delta )
6
7
     if delta <0:</pre>
8
       print ("Pas de solutions ")
9
     if delta ==0:
       print ("Une solution ")
10
11
       x=-b/2*a
12
       print ("X=",x)
13
     if delta >0:
14
       print (" Deux solutions ")
       x1 = (-b - sqrt(delta)) / (2*a)
15
16
       x2 = (-b + sqrt(delta)) / (2*a)
17
       print ("X1=",x1)
        print ("X2=",x2)
```

 $T^{ale} S - math 13net$ 2024 - 2025

1.4.2 Boucle Tant Que : trouver n tel que $1 + 2 + ... n > 10^p$

Écrire une fonction qui a pour paramètre p un nombre positif et renvoie le premier entier n tel que : $1+2+...n>10^p$

Solution: python

1.4.3 Boucle For : calcul de factorielle n

Écrire une fonction qui a pour paramètre n un nombre positif et renvoie factorielle n, notée n!, c'est à dire 1*2*3...*n

Solution: python