X-hiporgeom (H,M,p)	a	L.	Y-întregistreară câte produse din categoria a, din celen selectate (= (0 1 h n.) Câ Cr	$M(x) = m \cdot p$ $\nabla^{2}(x) = \frac{M - M}{M - 1} \cdot m \cdot p \cdot q$
X~ Pois (r) 2 = mr. mediu de produceri ale ev. într-un interval		X	$ \begin{array}{c} $	$M(x) = \lambda$ $\nabla^{2}(x) = \lambda$
fireat				
	de 1 = m		wri de leiti dinter., leiti de 1 înter-un i	
Y2 = (ng 13 = (ng 2a fel după	0	P(y3=1	$A) = P(x_1 = 0) x_2$ $A = P(x_2 = 0), x_3$	
Za fel după N= 5 i=1 M (N)= 5) V· 9	
$p(x) = \begin{cases} \frac{1}{x} \\ \frac{1}{x} \\ \frac{1}{x} \end{cases}$	1 - p, daca 0, ir	x = 0 rest		

Cazul n = 3, $\Omega = \{(Aruncarea 1, Aruncarea 2, Aruncarea 3)\}$, avem:

- nu se obţine banul la nicio aruncare \leftrightarrow se obţine (S,S,S); $P(X=0)=\frac{1}{2\cdot 2\cdot 2}=C_3^0(\frac{1}{2})^0(\frac{1}{2})^3$
- se obţine banul la o aruncare din cele trei ↔ (B,S,S) sau (S,B,S) sau (S, S, B);

 $P(X = \frac{1}{1}) = \frac{3}{2 \cdot 2 \cdot 2} = C_3^1 (\frac{1}{2})^1 (\frac{1}{2})^2$

se obține banul la două aruncări din cele trei \leftrightarrow (B,B,S) sau (S,B,B) sau (B, S, B);

 $P(X = 2) = \frac{3}{2 \cdot 2 \cdot 2} = C_3^2 (\frac{1}{2})^2 (\frac{1}{2})^1$

■ se obține banul la toate cele 3 aruncări \leftrightarrow (B,B,B) $P(X=3) = \frac{1}{2\cdot 2\cdot 2} = C_3^3(\frac{1}{2})^3(\frac{1}{2})^0$

Deci,

$$X = \begin{pmatrix} k \\ C_3^k p^k (1-p)^{n-k} \end{pmatrix}, \quad k = 0, 1, 2, 3, p = 1/2$$

Distribuția de probabilitate geometrică, Geom(p = 0.41),

Observație importantă

Distribuția geometrică se poate defini și ca variabila W ce înregistrează numărul de eșecuri, înaintea primului succes, adică W=Y-1.

In acest caz, $D_W = \{0, 1, 2, ...\}$, iar

$$P(W = k) = P(Y - 1 = k) = P(Y = K + 1) = (1 - p)^{k}p$$

5. Distribution Poisson

$$\begin{array}{c}
\lambda = \begin{pmatrix} 0 & 1 & -\lambda \\ \lambda & -\lambda \end{pmatrix} \\
\lambda = \begin{pmatrix} 1 & -\lambda \\ \lambda & -\lambda \end{pmatrix}$$
 $\begin{array}{c}
\lambda = \lambda \\
\lambda = \lambda
\end{array}$

Distribuția Poisson este o aproximare a distribuției binomiale (n- foarte mare, p-foarte mic, $\lambda=np$ constantă pozitivă)

Teoremă

Fie $X \sim B(n,p=\frac{\lambda}{n})$, cu $\lambda > 0$ fixat. Atunci, $\forall k \in \{0,1,2\ldots\}$, avem

$$\lim_{n\to\infty} P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

Important: In cazuri speciale (n-mare și p-mic) putem folosi distribuția Poisson, care este mult mai simplă decât distribuția binomială.