Nonparametrics and Local Methods: Semiparametrics

C.Conlon

February 28, 2023

Applied Econometrics

The Seminonparametric Approach

- ▶ If we are "pretty sure" that f is almost $f_{m,\sigma}$ for some family of densities indexed by (m,σ) , then we can choose a family of positive functions of increasing complexity $P_{\theta}^1, P_{\theta}^2, \dots$
- ► Choose some M that goes to infinity as n does (more slowly), and maximize over (m, σ, θ) the loglikelihood

$$\sum_{i=1}^n \log f_{m,\sigma}(y_i) P_{\theta}^M(y_i).$$

It works…but it is hard to constrain it to be a density for large $\it M$.

Mixtures of Normals

A special case of seminonparametrics, and usually a very good approach: Let y|x be drawn from

$$N(m_1(x,\theta),\sigma_1^2(x,\theta))$$
 with probability $q_1(x,\theta)$;

..

$$N(m_K(x, \theta), \sigma_K^2(x, \theta))$$
 with probability $q_K(x, \theta)$.

where you choose some parameterizations, and the q_k 's are positive and sum to 1.

Can be estimated by maximum-likelihood:

$$\max_{\theta} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \frac{q_k(x_i, \theta)}{\sigma_k(x_i, \theta)} \phi \left(\frac{y_i - m_k(x_i, \theta)}{\sigma_k(x_i, \theta)} \right) \right).$$

Usually works very well with $K \leq 3$ (perhaps after transforming y to $\log y$, e.g).

3

Splines: trading off fit and smoothness

Choose some $0 < \lambda < \infty$ and

$$\min_{m(.)} \sum_{i} (y_i - m(x_i))^2 + \lambda J(m),$$

Then we "obtain" the natural cubic spline with knots= (x_1, \ldots, x_n) :

- ightharpoonup m is a cubic polynomial between consecutive x_i 's
- ► it is linear out-of-sample
- ▶ it is C^2 everywhere.

"Consecutive" implies one-dimensional...harder to generalize to $p_x > 1$.

Orthogonal polynomials: check out Chebyshev, $1, x, 2x^2 - 1, 4x^3 - 3x...$ (on [-1, 1] here.)

Additive models

Additive model:
$$y = \alpha + \sum_{j=1}^{p} + f_j(X_j) + +\epsilon$$

Backfitting algorithm: start with $\hat{a} = \overline{y}_n$, and some zero–mean guesses $\hat{f}_j \equiv 0$. Then for $j = 1, \ldots, p, \ldots, 1, 2, \ldots, p, \ldots$

1. Define

$$f_{j} \leftarrow S_{j}[\{y_{i} - \hat{\alpha} - \sum_{k \neq j} \hat{f}_{k}(x_{ik})\}_{1}^{N}]$$

$$f_{j} \leftarrow \hat{f}_{j} - \frac{1}{N} \sum_{i=1}^{N} \hat{f}_{j}(x_{ij}).$$

- 2. Regress \hat{y} on x_j to get R_j ; then replace \hat{r}_j with $R_j \frac{1}{n} \sum_i \hat{r}_j(x_{ji})$ (where S_j is some cubic smoothing spline).
- 3. Iterate until \hat{f}_j doesn't change.

5