Apresentação_stat4good

Fernando de Souza Bastos

Introdução

Foi desenvolvido no artigo "A new family of life distributions" por Birnbaum e Saunders a distribuição que ora apresento. A mesma modela o tempo de vida de materiais e equipamentos sujeitos a cargas dinâmicas através de modelos de dano acumulado e tem sido amplamente utilizada na área de engenharia, na indústria, em negócios, na análise de confiabilidade, na análise de sobrevivência, em ciências ambientais e ciências médicas e em diversas outras áreas, pois possui propriedades interessantes e uma relação próxima com a distribuição normal, o que a torna, do ponto de vista de aplicação, uma alternativa mais atraente para as bem conhecidas distribuições Weibull, log-logística, log-normal, gama e modelos inversos Gaussianos.

Função de Distribuição Acumulada Birnbaum-Saunders

Suponha que T seja uma variável aleatória que representa o tempo total até que ocorra a falha, então a distribuição de T proposta por Birnbaum e Saunders (1969a) tem função de distribuição acumulada (fda) dada por:

$$F_T(t;\alpha,\beta) = P(T \le t) = \Phi\left[\frac{1}{\alpha}\left(\sqrt{\frac{t}{\beta}} - \sqrt{\frac{\beta}{t}}\right)\right], \ t > 0$$
 (1)

em que $\Phi(.)$ é a f
da de uma distribuição normal padrão. Dizemos que T segue uma distribuição BS, com
 parâmetros de forma $\alpha > 0$ e de escala $\beta > 0$, que é usualmente denotada por $T \sim BS(\alpha, \beta)$.

Função Densidade

Considerando a distribuição acumulada da variável aleatória T dada em (1) a sua correspondente função densidade de probabilidade (fdp) é dada por

$$f_T(t) = \frac{t^{-\frac{3}{2}}(t+\beta)}{2\sqrt{2\pi}\alpha\sqrt{\beta}} \exp\left[-\frac{1}{2\alpha^2}\left(\frac{t}{\beta} + \frac{\beta}{t} - 2\right)\right]$$
 (2)

em que $\alpha > 0$ e $\beta > 0$.

Função de distribuição acumulada, função densidade e seus respectivos gráficos no ${\bf R}.$

```
#Shape=alpha, scala=beta
acbs<-function(t,alpha,beta){
  ff<-pnorm((1/alpha)*(sqrt(t/beta)-sqrt(beta/t)))
  return(ff)
}
#Função densidade
bs<-function(t,alpha,beta){</pre>
```

Conta simples para verificar se a integral da função densidade é igua a 1. Isso é somente uma forma de analisar se a digitação da densidade esta correta.

```
alpha=10
beta=2
integrand <- function(t){((t+beta)/(2*alpha*sqrt(2*pi*beta)))*(t^(-3/2))*
        exp((-1/(2*alpha^2))*((t/beta)+(beta/t)-2))}
integrate(integrand, lower = 0, upper = Inf)</pre>
```

1 with absolute error < 4.1e-05

Note que com a mudança de alpha, mantendo beta fixo, há uma alteração na assimetria do gráfico, veja os gráficos da distribuição acumulada e da densidade:

T ~ Birnbaum-Saunders(shape, scale=1)

T ~ Birnbaum-Saunders(shape, scale=1)

Enquanto que ao manter alpha fixo e mudar o beta há uma mudança na média e na variança da variável aleatória.

T~Birnbaum-Saunders(shape=0.1,scale)

T~Birnbaum-Saunders(shape=0.1,scale)

Observações:

- A função de distribuição acumulada da $BS(\alpha, \beta)$ é identificável.
- $F_T(\beta) = 0.5$, ou seja, β é a mediana da $BS(\alpha, \beta)$
- Se $T \sim BS(\alpha, \beta)$, então

$$a > 0$$
, $aT \sim BS(\alpha, a\beta)$ e $T^{-1} \sim BS(\alpha, \beta^{-1})$

• A partir da FDA, fazendo $Z=\frac{1}{\alpha}\left(\sqrt{\frac{t}{\beta}}-\sqrt{\frac{\beta}{t}}\right)$ temos: $T=\frac{\beta}{4}\left[\alpha Z+\sqrt{(\alpha Z)^2+4}\right]^2 \eqno(3)$

Essa relação é extremamente útil e pode ser usada para obtenção de números pseudo-aleatórios.

a média, a variância, o coeficiente de variação e os coeficientes de assimetria (μ_3) e curtose (μ_4) da distribuição BS são, respectivamente:

$$E(T) = \beta \left(1 + \frac{\alpha^2}{2} \right), \ Var(T) = (\alpha \beta)^2 \left(1 + \frac{5\alpha^2}{4} \right)$$
$$CV(T) = \frac{\sqrt{5\alpha^4 + 4\alpha^2}}{\alpha^2 + 2}$$
$$\mu_3 = \frac{16\alpha^2 (11\alpha^2 + 6)}{(5\alpha^2 + 4)^3}, \ \mu_4 = 3 + \frac{6\alpha^2 (93\alpha^2 + 41)}{5 + \alpha^2 + 4}$$

A Função de Verossimilhança

Se T_1, \dots, T_n é uma amostra de n observações independentes da distribuição $BS(\alpha, \beta)$. Então, o logaritmo da função de verossimilhança para $\theta = (\alpha, \beta)$, possui a seguinte forma:

$$l(\theta) = -\frac{3}{2} \sum_{i=1}^{n} \log(t_i) - n \log(2\alpha) - \frac{n}{2} \log(2\pi)\beta - \frac{1}{2\alpha^2} \sum_{i=1}^{n} \left(\frac{t_i}{\beta} + \frac{\beta}{t_i} - 2\right) + \sum_{i=1}^{n} (t_i + \beta)$$

Estimadores de Máxima Verossimilhança

Os estimadores de máxima verossimilhança (EMV) de α e β são obtidos maximizando $l(\theta)$ a partir das soluções das equações:

$$\frac{\partial l(\alpha,\beta)}{\partial \alpha} = -\frac{n}{\alpha} \left(1 + \frac{2}{\alpha^2} \right) + \frac{1}{\beta \alpha^3} \sum_{i=1}^n t_i + \frac{\beta}{\alpha^3} \sum_{i=1}^n \frac{1}{t_i} = 0$$

$$\frac{\partial l(\alpha,\beta)}{\partial \beta} = -\frac{n}{2\beta} + \frac{\sum_{i=1}^{n} t_i}{2\alpha^2 \beta^2} + \sum_{i=1}^{n} \frac{1}{t_i + \beta} - \frac{1}{2\alpha^2} \sum_{i=1}^{n} \frac{1}{t_i} = 0$$

Antes de apresentar a simulação de Monte Carlo para estimação dos parâmetros veja o gráfico da função log de verossimilhança:

```
require(plot3D)
alpha=2
beta=1
n=1000
set.seed(355)
z1 < -rnorm(1000, 0, 1)
dados<-beta*((alpha*z1/2)+sqrt((alpha*z1/2)^2+1))^2
alpha= seq(1.5, 2.5, l=100)
beta=seq(0.5,1.5,l=100)
# A função de verossimilhança para fazer o gráfico:
f<-function(alpha, beta) {
  t=dados
  sum(log(t+beta))-n*log(2*alpha)-(n/2)*(log(2*pi*beta))-(3/2)*sum(log(t))-
    ((1/(2*alpha^2))*sum((t/beta)+(beta/t)-2))
}
f <- Vectorize(f)
z <- outer(alpha, beta, f)
persp3D(x=alpha, y=beta, z=z, contour=TRUE, facets=TRUE, curtain=F, phi=30,theta=0)
```


hist3D(x=alpha, y=beta, z=z, contour=TRUE, facets=TRUE, curtain=F, phi=-30,theta=30)


```
contour(x=alpha, y=beta, z=z,levels = pretty(c(-1780,-2000),20))
points(x=c(2,1),pch=19)
```


Simulação de Monte Carlo

O método de Monte Carlo é um método de simulação estatística que utiliza sequencias de números aleatórios para desenvolver simulações. Em outras palavras, é visto como método numérico universal para resolver problemas por meio de amostragem aleatória.

Possíveis problemas na estimação dos parâmetros

Alguns problemas que tive na implementação da verossimilhança e que merecem destaque:

Veja que apesar de 0.3-0.1=0.2 o R diz que isso não é verdade. Isso ocorre porque nesta diferença o R arredonda o resultado, veja abaixo que se aumentamos o número de dígitos a saída é um número próximo mas diferente de 2.

```
0.3-0.1==0.2

## [1] FALSE

isTRUE(0.3-0.1==0.2)

## [1] FALSE

print(0.3-0.1,digits=17)
```

[1] 0.199999999999998

Outro problema possível é aparecer números muito grandes na simulação de forma que o R entende que o mesmo é infinito e a simulação para de forma brusca. Veja o menor número positivo que pode ser representado pela máquina, o maior número e outros valores importantes:

.Machine

```
## $double.eps
## [1] 2.220446e-16
## $double.neg.eps
## [1] 1.110223e-16
## $double.xmin
## [1] 2.225074e-308
## $double.xmax
## [1] 1.797693e+308
##
## $double.base
## [1] 2
##
## $double.digits
## [1] 53
## $double.rounding
## [1] 5
##
## $double.guard
## [1] 0
## $double.ulp.digits
## [1] -52
##
## $double.neg.ulp.digits
## [1] -53
##
## $double.exponent
## [1] 11
## $double.min.exp
## [1] -1022
##
## $double.max.exp
## [1] 1024
## $integer.max
## [1] 2147483647
##
## $sizeof.long
## [1] 4
## $sizeof.longlong
## [1] 8
## $sizeof.longdouble
## [1] 16
##
## $sizeof.pointer
```

[1] 8

Para contornar esse problema, podemos fazer o seguinte truque:

No exemplo específico da Birnbaum-Saunders ao definir a função log de verossimilhança mude alpha e beta para exp(lalpha) e exp(lbeta), respectivamente, onde lalpha=log(alpha) e lbeta=log(beta). Ao fazer esta mudança não altera-se em nada a função pois a substituição usa exp(log(alpha))=alpha e exp(log(beta))=beta, isso é um macete para o R não ter que calcular log de números maiores que o maior valor possível (~exp(709)).

Outra forma de resolver, caso o método de otimização funcione, mas aparece alguns 'Warnings' com valores NA, é manter alpha e beta e acrescentar na função optim o comando abaixo:

```
1-suppressWarnings(optim(start,fn=Loglik,method="BFGS",hessian=T)$par)
```

Neste caso escondemos os avisos. Os mesmos continuarão lá, porém ocultos, não é recomendado! Outra forma é caso na simulação apareça números negativos no argumento do log, podemos acrescentar o código:

```
if (any(c(t, beta, alpha, pi) < 0)) return(NA)
```

Vejamos como gerar valores aleatório com distribuição Birnbaum-Saunders e a estimação de alpha e beta usando uma simulação de Monte Carlo e as funções optim e nlimb.

```
#geração de valores de uma distribuição Birnbaum-Saunders(alpha,beta)
n<-100
#Gerando uma variável aleatória t com distribuição Birnbaum-Saunders(alpha, beta)
alpha=1
beta=2
truevalue=c(alpha,beta)
#Note que teremos N amostras de tamanho 100 distintas, portanto t
#deve estar dentro do loop do Monte Carlo, alpha e beta deve estar fora do
#Loop pois os mesmos são fixos para todas as amostras.
N=1000
m=matrix(nrow=N,ncol=2)
m1=matrix(nrow=N,ncol=2)
for(i in 1:N){
z < -rnorm(n, 0, 1)
#Gerando uma variável aleatória t com distribuição Birnbaum-Saunders(alpha, beta)
t<-cbind(beta*((alpha*z/2)+sqrt((alpha*z/2)^2+1))^2)
#Verossimilhança
Loglik<-function(par,dados){</pre>
    lalpha=par[1]
    lbeta=par[2]
    t<-dados
    11 < sum(log(t+exp(lbeta))) - n*log(2*exp(lalpha)) - (n/2)*(log(2*pi*exp(lbeta))) - (3/2)*
      sum(log(t))-((1/(2*exp(lalpha)^2))*sum((t/exp(lbeta))+(exp(lbeta)/t)-2))
    return(-11)
}
#Utilizando a verossimilhança e a função optim para estimar os parâmetros alpha e beta que
#deram origem as observações t observadas. Note que foi utilizado o log de alpha e
#beta como chutes iniciais.
lalpha_0=log(2)
lbeta_0=log(2)
start=c(lalpha_0,lbeta_0)
```

```
m[i,]=exp(optim(start,fn=Loglik,method="BFGS",dados=t,hessian=T)$par)
m1[i,]=exp(nlminb(start,Loglik,dados=t)$par)
}
#Calculating the average of each column of the array of parameters m
mest=colMeans(m)
mest1=colMeans(m1)
#calculating the standard deviation of each column of the array of parameters m
dest=apply(m,2,sd)
dest1=apply(m1,2,sd)
#root mean square error in the calculation of each column of the array of parameters m in
#relation to the true value of the parameter
eqm=function(x,poisson_opt){
k=length(x)
sqrt(sum(((x-poisson_opt)^2))/k)}
eqm1=function(x,poisson_nlm){
k=length(x)
sqrt(sum(((x-poisson_nlm)^2))/k)}
#Estimated mean squared error of each parameter
eqmest=c(eqm(x=m[,1],poisson_opt=truevalue[1]),
         eqm(x=m[,2],poisson_opt=truevalue[2]))
#Estimated mean squared error of each parameter
eqmest1=c(eqm1(x=m1[,1],poisson_nlm=truevalue[1]),
          eqm1(x=m1[,2],poisson_nlm=truevalue[2]))
# Table with the true values of the parameters and the average
# Standard deviation and mean square error of the estimated parameters
tab=data.frame(truevalue,mean=mest,sd=dest,eqm=eqmest)
tab1=data.frame(truevalue,mean=mest1,sd=dest1,eqm=eqmest1)
tab
##
    truevalue
                    mean
## 1
            1 0.9908571 0.0696564 0.07021934
## 2
             2 2.0069399 0.1677734 0.16783301
tab1
##
   truevalue
                    mean
                                 sd
## 1
           1 0.9908604 0.06967077 0.07023314
            2 2.0069489 0.16778293 0.16784292
par(mfrow=c(1,2))
hist(m[,1],prob=T);
rug(m[,1])
curve(expr = dnorm(x,mean=mean(m[,1]),sd=sd(m[,1])),add=T, col="red")
hist(m[,2],prob=T);
rug(m[,2])
```


1.0

m[, 1]

1.1

1.2

0.9

8.0

Histogram of m[, 2]


```
hist(m1[,1],prob=T);
rug(m1[,1])
curve(expr = dnorm(x,mean=mean(m1[,1]),sd=sd(m1[,1])),add=T, col="red")
hist(m1[,2],prob=T);
rug(m1[,2])
curve(expr = dnorm(x,mean=mean(m1[,2]),sd=sd(m1[,2])),add=T, col="red")
```

Histogram of m1[, 1]

Histogram of m1[, 2]

Uma Reparametrização Importante

As vezes, reparametrizações são essenciais, pois facilitam o desenvolvimento analítico de algumas distribuições e também podem melhorar a eficiência em simulações, em determinadas situações, como em regressão, quando a distribuição da variável resposta não possui a média como um de seus parâmetros podemos proceder uma reparametrização de forma a atender essa condição e poder ajustar a média da variável resposta. Exemplos de distribuições em que são realizadas reparametrizações com sucesso são: distribuição beta (ver Ferrari e Cribari-Neto 2004) e distribuição gaussiana inversa (ver Tweedie 1957).

Seja $\mu = \beta(1 + \frac{\alpha^2}{2})$ e $\phi = \frac{2}{\alpha^2}$. Então,

$$\alpha = \sqrt{\frac{2}{\phi}} e \beta = \frac{\mu}{(1 + \frac{1}{\phi})}.$$
 (4)

A f
da da $BS(\mu, \phi)$ é obtida substituindo os valores de α
e β definidos em (4) na expressão (1). De onde, temos:

$$F(t;\mu,\phi) = P(T \le t) = \Phi\left[\sqrt{\frac{\phi}{2}}\left(\sqrt{\frac{(\phi+1)t}{\phi\mu}} - \sqrt{\frac{\phi\mu}{(\phi+1)t}}\right)\right],\tag{5}$$

onde $\phi > 0$, $\mu > 0$, t > 0.

Segue que a fdp é dada por:

$$f(t;\phi,\mu) = \frac{exp(\frac{\phi}{2})\sqrt{\phi+1}}{4\sqrt{\pi\mu}}t^{-\frac{3}{2}}\left[t+\frac{\phi\mu}{\phi+1}\right]exp\left\{-\frac{\phi}{4}\left(\frac{t(\phi+1)}{\phi\mu}+\frac{\phi\mu}{t(\phi+1)}\right)\right\}$$

A nova média e variância são:

$$E(T) = \mu, \text{ e } Var(T) = \frac{g(\mu)}{h(\phi)}$$
(6)

A distribuição $BS(\mu, \phi)$ satisfaz a propriedade de escala e também satisfaz a propriedade recíproca.

```
bs<-function(t,mu,phi){
   fdp=((exp(phi/2)*sqrt(phi+1))/(4*sqrt(pi*mu)*t^(3/2)))*(t+((phi*mu)/(phi+1)))*
      exp((-phi/4)*((t*(phi+1)/(phi*mu))+(phi*mu/(t*(phi+1)))))
   return(fdp)
}

#Teste para ver se a integral da densidade é igual a 1.
mu=1
phi=2
integrand <- function(t){((exp(phi/2)*sqrt(phi+1))/(4*sqrt(pi*mu)*t^(3/2)))*
      (t+((phi*mu)/(phi+1)))*exp((-phi/4)*((t*(phi+1)/(phi*mu))+(phi*mu/(t*(phi+1)))))}
integrate(integrand, lower = 0, upper = Inf)</pre>
```

1 with absolute error < 7.8e-05

Note que com a mudança de mu, mantendo phi fixo, há uma alteração na curtose da variável aleatória e com o aumento de beta há um aumento da assimetria e uma diminuição da variância do gráfico.

```
#
t=seq(0.5,6,by=0.01)
plot(t,bs(t,1,100),main='T ~ Birnbaum-Saunders(mu, phi=100)',ylab='Densidade',type='l')
lines(t,bs(t,1.5,100),col=2,lty=2, lwd=1)
lines(t,bs(t,2,100),col=3,lty=3, lwd=2)
lines(t,bs(t,2.5,100),col=4,lty=4, lwd=3)
lines(t,bs(t,3,100),col=5,lty=5, lwd=3)
lines(t,bs(t,3.5,100),col=6,lty=6, lwd=2)
```

T ~ Birnbaum-Saunders(mu, phi=100)

T~Birnbaum-Saunders(mu=1, phi)

Ao manter mu fixo e aumentar phi a variância de T (Var(T)) tende a zero.

T~Birnbaum-Saunders(mu=1,phi)

Função Log de Verossimilhança da $BS(\mu, \phi)$

$$l(\mu, \phi; \mathbf{T}) = \frac{n\phi}{2} + \frac{n}{2}\log(\phi + 1) - \frac{3}{2}\sum_{i=1}^{n}\log t_i - n\log(4\sqrt{\pi\mu}) + \sum_{i=1}^{n}\log\left[t_i + \frac{\phi\mu}{\phi + 1}\right] - \frac{\phi}{4}\sum_{i=1}^{n}\left[\frac{t_i(\phi + 1)}{\phi\mu} + \frac{\phi\mu}{t_i(\phi + 1)}\right]$$

Os estimadores (ou estimativas) de máxima verossimilhança de μ e ϕ são obtidos maximizando essa função, a partir da solução das equações formadas com as derivadas parciais em relação μ e ϕ . É possível mostrar que não é possível obter uma solução analítica para os estimadores de máxima verossimilhança e, portanto, métodos iterativos de otimização são utilizados.

Modelos de Regressão Birnbaum-Saunders

Modelo de regressão Birnbaum-Saunders para μ

Criou-se agora uma estrutura de regressão para a média da distribuição $BS(\alpha, \beta)$ fazendo $g(\mu) = \beta_0 + \beta_1 * X$

```
rm(list=ls())
cat("\014")

N=1000
#m e m1 são as matrizes que receberão as estimativas no final do processo de estimação
m=matrix(ncol=2,nrow=N)
m1=matrix(ncol=2,nrow=N)
```

```
#Valores iniciais dos parâmetros usados para gerar t
#Ou seja, Valor verdadeiro dos parâmetros
beta0=2
beta1=1
truevalue=c(beta0,beta1)
#Tamanho das amostras
n=100
#Vetor de parâmetros
beta=matrix(c(beta0,beta1),nrow=2,ncol=1)
#Vetor de 1's
const1 \leftarrow rep(1,n);
const <- cbind(const1);</pre>
#Vetor de cováriavel com distribuição unif(0,1)
X1=matrix(runif(n, 0, 1),nrow=n,ncol=1)
#Matriz de covariáveis
X <-matrix(c(const,X1),nrow=n,ncol=ncol(X1)+1)</pre>
#Número de colunas de X
p=ncol(X)
#Vetor de médias
mu=exp(X%*%beta)
#Gerando uma variável aleatória t com distribuição Birnbaum-Saunders(mu,phi)
phi=2
remove(beta, beta0, beta1)
#Monte Carlo para estimação dos parâmetros beta0, beta1 e beta2
for (i in 1:N){
z<-cbind(rnorm(n,0,1))
t<-((phi*mu)/(phi+1))*((z/sqrt(2*phi))+(sqrt((z/sqrt(2*phi))^2+1)))^2
Loglik<-function(beta,dados){
p=ncol(X)
mu=exp(X%*%beta[1:p])
phi=phi
 lv=sum((phi/2)-(3/2)*log(t)+(1/2)*log(phi+1)-log(4*sqrt(pi*mu))+log(t+(phi*mu/(phi+1)))
        -(phi/4)*((t*(phi+1)/(phi*mu))+(phi*mu/(t*(phi+1)))))
return(-lv)
#Chute inicial para as funções de estimação
start=c(10,20)
#Estimation with function optim
bs_op=optim(start,Loglik,method="BFGS",dados=t,hessian = T)
m[i,]=bs_op$par
bs_nl=nlminb(start, Loglik)
m1[i,]=bs_nl$par
}
mest=colMeans(m)
mest1=colMeans(m1)
#calculating the standard deviation of each column of the array of parameters m
```

```
dest=apply(m,2,sd)
dest1=apply(m1,2,sd)
#root mean square error in the calculation of each column of the array of parameters m in
#relation to the true value of the parameter
eqm=function(x,bs_op){
 k=length(x)
  sqrt(sum(((x-bs_op)^2))/k))
eqm1=function(x,bs_nl){
 k=length(x)
  sqrt(sum(((x-bs_nl)^2))/k))
#Estimated mean squared error of each parameter
eqmest=c(eqm(x=m[,1],bs_op=truevalue[1]),
         eqm(x=m[,2],bs_op=truevalue[2]))
#Estimated mean squared error of each parameter
eqmest1=c(eqm1(x=m1[,1],bs_nl=truevalue[1]),
          eqm1(x=m1[,2],bs_nl=truevalue[2]))
# Table with the true values of the parameters and the average
# Standard deviation and mean square error of the estimated parameters
tab=data.frame(truevalue, mean=mest, sd=dest, eqm=eqmest)
tab1=data.frame(truevalue,mean=mest1,sd=dest1,eqm=eqmest1)
tab
##
     truevalue
                    mean
                                sd
                                         eqm
## 1
             2 2.0038803 0.1923609 0.1923039
## 2
             1 0.9980659 0.3470936 0.3469254
tab1
    truevalue
##
                    mean
                                sd
## 1
             2 2.0038928 0.1923613 0.1923045
## 2
             1 0.9980388 0.3470922 0.3469241
par(mfrow=c(2,2))
hist(m[,1],prob=T);
rug(m[,1])
curve(expr = dnorm(x,mean=mean(m[,1]),sd=sd(m[,1])),add=T, col="red")
hist(m[,2],prob=T);
rug(m[,2])
curve(expr = dnorm(x,mean=mean(m[,2]),sd=sd(m[,2])),add=T, col="red")
hist(m1[,1],prob=T);
rug(m1[,1])
curve(expr = dnorm(x,mean=mean(m1[,1]),sd=sd(m1[,1])),add=T, col="red")
hist(m1[,2],prob=T);
rug(m1[,2])
curve(expr = dnorm(x,mean=mean(m1[,2]),sd=sd(m1[,2])),add=T, col="red")
```


Histogram of m[, 2]

Histogram of m1[, 1]

Histogram of m1[, 2]

Modelo de regressão Birnbaum-Saunders para μ e ϕ

Agora, vamos criar uma estrutura de regressão para μ e ϕ , de tal forma que $g(\mu) = \beta_0 + \beta_1 X$ e $h(\phi) = \alpha_0 + \alpha_1 Z$

```
N=100
#m e m1 são as matrizes que receberão as estimativas no final do processo de
#estimação
m=matrix(ncol=4,nrow=N)
m1=matrix(ncol=4,nrow=N)
#Valores iniciais dos parâmetros usados para gerar t
#Ou seja, Valor verdadeiro dos parâmetros
beta0=2
beta1=-1
alpha0=3
alpha1=1
truevalue=c(beta0,beta1,alpha0,alpha1)
#Tamanho das amostras
n=100
#Vetor de parâmetros
beta=matrix(c(beta0,beta1),nrow=2,ncol=1)
alpha=matrix(c(alpha0,alpha1),nrow=2,ncol=1)
#Vetor de 1's
const1 \leftarrow rep(1,n);
const <- cbind(const1);</pre>
#Vetor de cováriavel com distribuição unif(0,1)
```

```
X1=matrix(runif(n, 0, 1),nrow=n,ncol=1)
Z1=matrix(runif(n, 0, 1),nrow=n,ncol=1)
#Matrizes de covariáveis
X <-matrix(c(const,X1),nrow=n,ncol=ncol(X1)+1)</pre>
Z <-matrix(c(const,Z1),nrow=n,ncol=ncol(Z1)+1)</pre>
#Número de colunas de X e Z
p=ncol(X)
q=ncol(Z)
#Vetor de médias
mu=exp(X%*%beta)
#Vetor de dispersão
phi=exp(Z%*%alpha)
remove(beta, beta0, beta1, alpha, alpha0, alpha1)
#Monte Carlo para estimação dos parâmetros beta0, beta1 e beta2
for (i in 1:N){
  z<-cbind(rnorm(n,0,1))
  t<-((phi*mu)/(phi+1))*((z/sqrt(2*phi))+(sqrt((z/sqrt(2*phi))^2+1)))^2
  #Um motivo de erro comum na função abaixo é esquecer o parentêses dentro do colchete
  #de theta[(p+1):(p+q)]
  Loglik<-function(theta, dados) {
    p=ncol(X)
    q=ncol(Z)
    beta=theta[1:p]
    alpha=theta[(p+1):(p+q)]
    mu=exp(X%*%beta)
    phi=exp(Z%*%alpha)
    lv=sum((phi/2)-(3/2)*log(t)+(1/2)*log(phi+1)-log(4*sqrt(pi*mu))+log(t+(phi*mu/(phi+1)))
           -(phi/4)*((t*(phi+1)/(phi*mu))+(phi*mu/(t*(phi+1)))))
    return(-lv)
  }
  #Chute inicial para as funções de estimação
  start=cbind(5,3,1,-1)
  \#alpha=c(1,2)
  \#beta = c(2, 1)
  #Estimation with function optim
  bs_op=optim(start,Loglik,method="BFGS",dados=t,hessian = T)
  m[i,]=bs_op$par
  bs_nl=nlminb(start, Loglik,dados=t)
  m1[i,]=bs_nl$par
}
mest=colMeans(m)
mest1=colMeans(m1)
#calculating the standard deviation of each column of the array of parameters m
dest=apply(m,2,sd)
dest1=apply(m1,2,sd)
```

```
#root mean square error in the calculation of each column of the array of parameters m
#in relation to the true value of the parameter
eqm=function(x,bs_op){
  k=length(x)
  sqrt(sum(((x-bs_op)^2))/k))
eqm1=function(x,bs_nl){
  k=length(x)
  sqrt(sum(((x-bs_nl)^2))/k)}
#Estimated mean squared error of each parameter
eqmest=c(eqm(x=m[,1],bs_op=truevalue[1]),
         eqm(x=m[,2],bs_op=truevalue[2]),
         eqm(x=m[,3],bs_op=truevalue[3]),
         eqm(x=m[,4],bs_op=truevalue[4]))
#Estimated mean squared error of each parameter
eqmest1=c(eqm1(x=m1[,1],bs_nl=truevalue[1]),
          eqm1(x=m1[,2],bs nl=truevalue[2]),
          eqm1(x=m1[,3],bs nl=truevalue[3]),
          eqm1(x=m1[,4],bs_nl=truevalue[4]))
# Table with the true values of the parameters and the average
# Standard deviation and mean square error of the estimated parameters
tab=data.frame(truevalue,mean=mest,sd=dest,eqm=eqmest)
tab1=data.frame(truevalue,mean=mest1,sd=dest1,eqm=eqmest1)
tab
     truevalue
##
                     mean
                                  sd
## 1
            2 1.9956970 0.03977914 0.03981296
            -1 -0.9921276 0.07143938 0.07151591
## 2
## 3
             3 3.0509759 0.29273883 0.29569851
## 4
             1 1.0150031 0.49249533 0.49025629
tab1
    truevalue
##
                     mean
                                  sd
## 1
           2 1.9956954 0.03977809 0.03981210
## 2
            -1 -0.9921228 0.07143437 0.07151147
            3 3.0510414 0.29273832 0.29570930
## 3
             1 1.0148709 0.49248056 0.49023757
par(mfrow=c(2,2))
hist(m[,1],prob=T);
rug(m[,1])
curve(expr = dnorm(x,mean=mean(m[,1]),sd=sd(m[,1])),add=T, col="red")
hist(m[,2],prob=T);
rug(m[,2])
curve(expr = dnorm(x,mean=mean(m[,2]),sd=sd(m[,2])),add=T, col="red")
hist(m[,3],prob=T);
rug(m[,3])
curve(expr = dnorm(x,mean=mean(m[,3]),sd=sd(m[,3])),add=T, col="red")
```

```
hist(m[,4],prob=T);
rug(m[,4])
curve(expr = dnorm(x,mean=mean(m[,4]),sd=sd(m[,4])),add=T, col="red")
```

Histogram of m[, 1]

Histogram of m[, 2]

Histogram of m[, 3]

Histogram of m[, 4]


```
par(mfrow=c(2,2))
hist(m1[,1],prob=T);
rug(m1[,1])
curve(expr = dnorm(x,mean=mean(m1[,1]),sd=sd(m1[,1])),add=T, col="red")
hist(m1[,2],prob=T);
rug(m1[,2])
curve(expr = dnorm(x,mean=mean(m1[,2]),sd=sd(m1[,2])),add=T, col="red")
hist(m1[,3],prob=T);
rug(m1[,3])
curve(expr = dnorm(x,mean=mean(m1[,3]),sd=sd(m1[,3])),add=T, col="red")
hist(m1[,4],prob=T);
rug(m1[,4])
curve(expr = dnorm(x,mean=mean(m1[,4]),sd=sd(m1[,4])),add=T, col="red")
```

Histogram of m1[, 1]

Histogram of m1[, 2]

Histogram of m1[, 3]

Histogram of m1[, 4]

Referências

- 1-Z.W. Birnbaum & S.C. Saunders. A new family of life distributions. Journal of Applied Probability, 6 (1969), 319-327.
- 2-B.S, Luis Enrique, Modelos Birnbaum-Saunders bivariados Campinas, SP: [s.n.], 2014.
- 3-S.N, Manoel Ferreira, Estimação e Modelagem com a distribuição Birnbaum-Saunders: Uma nova reparametrização Recife, PE, 2010.
- 4-Barros, M., Paula, G. A., Leiva, V. (2009). An R implementation for generalized Birnbaum-Saunders distributions. Computational Statistics and Data Analysis, 53(5), 1511-1528.

Pensamento

- "Há três caminhos para o sucesso:
- 1- Ensinar o que se sabe Generosidade Mental
- 2- Praticar o que se ensina Coerência Ética
- 3- Perguntar o que se ignora Humildade Intelectual"
- *Mario Sergio Cortella