Advanced Coding Theory and Cryptography

Notes by: Alex Pellegrini

Contents

1	An introduction to Gröbner bases	2
2	Gröbner bases and 0-dim ideals	6
3	Affine Variety Codes	9

Chapter 1

An introduction to Gröbner bases

Theorem 2.1.10 (Hilbert's Basis Theorem)

Proof. We proceed by induction on the number of variables. Let $I \subset A[X]$ be an ideal not finitely generated, we may assume it can be constructed by an infinite sequence $(f_i)_{i\in\mathbb{N}}$ of independent polynomials of minimal degree. "Independent" means that $f_i \in I \setminus J_i$ where we set $J_i := \langle f_0, \ldots, f_{i-1} \rangle$. Now let $a_i := lc(f_i)$ be the leading coefficient of f_i and consider $J := a_0, a_1, \ldots \subset A$. We know that J can be a basis for an ideal in A but since A is a Noetherian ring we have that there exists a finite basis for such ideal, say $J = \langle a_1, \ldots, a_N \rangle$. We claim that $I = \langle f_1, \ldots, f_N \rangle =: I'$.

Suppose by contrary that this is not true then take a polynomial $f_{N+1} \in I$, we want to show that it is a linear combination of elements of I', so first of all let's look at the leading coefficient:

$$a_{N+1} = u_1 a_1 + u_2 a_2 + \dots + u_N a_N$$

this is true since A is Noetherian ring. Consider

$$g := \sum_{i=1}^{N} u_i f_i x^{deg(f_{N+1}) - deg(f_i)} \in I'$$

it has the same degree and same leading coefficient as f_{N+1} . Now $f_{N+1} - g \notin I'$ and has degree strictly less than f_{N+1} contraddicting its minimality. Therefore $f_{N+1} - g$ must be 0 and $f_{N+1} \in I'$.

The induction follows since we can consider $A[X_1, \ldots, X_m] = A'[X_m]$ where $A' := A[X_1, \ldots, X_{m-1}]$ which we know is a Noetherian ring.

Lemma 2.1.13 (Dickson's Lemma)

Proof. We proceed by induction on the number of variables, by first proving the case with one variable. So we are considering $\mathcal{M}=\{X_1^{\alpha}|\alpha\in\mathbb{N}\}$, and $T\subset\mathcal{M}$ a semigroup ideal. Since every $t_i\in T$ is of the form $t=X_1^{\alpha_i}$ we consider $\beta=\min\{\alpha_i|X_1^{\alpha_i}\in T\}$. We claim that $T=< X_1^{\beta}>$. Indeed let $t_j\in T$ then it is of the form $t_j=X_1^{\alpha_j}$ so $\frac{t_j}{t_i}=X_1^{\alpha_j-\beta}$ is well defined where $\alpha_j-\beta>0$ by minimality of β . We can take $\gamma=\alpha_j-\beta$ hence:

$$t_i = X_1^{\beta} \cdot X_1^{\gamma} \in \langle X_1^{\beta} \rangle = T$$

We prove the more general case so let be $m \in \mathbb{N}$ arbitrary and assume the lemma proved for m-1.

Let $T \subset \mathcal{M} = \{X_1^{a_1} \cdots X_m^{a_m} \mid (a_1, \dots, a_m) \in \mathbb{N}^m\}$. Consider also the projection map $\pi(X_1^{a_1} \cdots X_m^{a_m}) = X_1^{a_1} \cdots X_{m-1}^{a_{m-1}}$. By induction hypothesis $\pi(T)$ is a finitely generated semigroup ideal so we can find a basis, say $\pi(T) = \langle t_1, \dots, t_k \rangle$. Now let:

$$A_i := \min\{a_m \mid X_m^{a_m} | t, t \in T, \pi(t) = t_i\} \ \forall i = 1, \dots, k$$

and furthermore

$$A := \min\{a_m \mid X_m^{a_m} \in T\}$$

We claim that $T = \langle t_1 X_m^{A_1}, \dots, t_k X_m^{A_k}, X_m^A \rangle$ which is a finite set. So pick an arbitrary $t \in T$ so $t = \pi(t) X_m^{a_{m_t}}$ for some $a_{m_t} \in \mathbb{N}$, we know that $\exists t_i$ such that $\pi(t) = s \cdot t_i$, therefore $t = s \cdot t_i \cdot X_m^{a_{m_t}}$ and by minimality of A_i we obtain that for:

$$t = s \cdot t_i \cdot X_m^{a_{m_t}} = s \cdot t_i \cdot X_m^{A_i} \cdot X_m^{\gamma}$$

for $\gamma = a_{m_t} - A_i$. Now $\forall t \in T$ we have proved that $t \in \langle t_i \cdot X_m^{A_i} \rangle$ which is contained in $\langle t_1 X_m^{A_1}, \dots, t_k X_m^{A_k}, X_m^A \rangle$

Theorem 2.1.14

Proof. \Rightarrow Let $f \in I$ then we can write:

$$f = \sum_{i=1}^{k} f_i \cdot p_i = f_1 \cdot p_1 + f_2 \cdot p_2 + \ldots + f_k \cdot p_k, \ f_i \in \mathcal{P}$$

So evaluating f(A) means to evaluate every p_i so:

$$f(A) = f_1 \cdot p_1(A) + f_2 \cdot p_2(A) + \dots + f_k \cdot p_k(A) =$$

$$= f_1 \cdot 0 + f_2 \cdot 0 + \dots + f_k \cdot 0 = 0$$

 \Leftarrow Trivial by setting $f = p_i \ \forall i = 1, \dots, k$

Theorem 2.1.17

Proof. We already know that I and J are finitely generated so by keeping in mind that $I \subset J$ we can let:

$$I = \langle p_1, \dots, p_k \rangle$$
 and $J = \langle p_1, \dots, p_h \rangle, h \ge k$

Now pick $A \in \mathcal{V}_{\mathbb{F}}(J)$ arbitrary, for every $g \in I$ we have that $g \in J$ therefore g(A) = 0 which means that $A \in \mathcal{V}_{\mathbb{F}}(I)$ for every A. Therefore $\mathcal{V}_{\mathbb{F}}(J) \subset \mathcal{V}_{\mathbb{F}}(I)$

Proposition 2.2.6

Proof. Assume that

$$f = h_1 g_{i_1} + h_2 g_{i_2} + \ldots + h_s g_{i_s} + r_1 = k_1 g_{j_1} + k_2 g_{j_2} + \ldots + k_t g_{j_t} + r_2$$

with $g_{i_l}, g_{j_l} \in \mathcal{G}$ and $h_l, k_l, r_1, r_2 \in \mathcal{P}$. We obtain that neither r_1 nor r_2 are divisible by any $lm(g), g \in \mathcal{G}$. Therefore we can write:

$$0 = f - f = (h_1 g_{i_1} + h_2 g_{i_2} + \ldots + h_s g_{i_s} + r_1) - (k_1 g_{j_1} + k_2 g_{j_2} + \ldots + k_t g_{j_t} + r_2)$$

Hence:

$$r_2 - r_1 = (h_1g_{i_1} + h_2g_{i_2} + \ldots + h_sg_{i_s}) - (k_1g_{j_1} + k_2g_{j_2} + \ldots + k_tg_{j_t})$$

Now the LHS belongs to the ideal by definition, i.e. $\exists g \in \mathcal{G}$ such that $lm(g)|lm(r_2-r_1)$ but $lm(r_2-r_1)$ is $lm(r_2)$ or $lm(r_1)$, so the only way to be divisible is to be 0.

Corollary 2.2.9

Proof. $\Rightarrow \mathcal{V}(I) = \emptyset$ means that there exists $f \in I$ that has no roots in $\overline{\mathbb{K}}^m$, but this is possible only for a polynomial of degree 0, i.e. a constant, say c in the base field of K. $c = X^0 * c = 1 * c$ therefore $1 \in I$.

 \Leftarrow For $f = 1 \in I$ we have no roots, therefore $\mathcal{V}(I) = \emptyset$.

Lemma 2.2.13

Proof. Since $gcd(lm(p_1), lm(p_2)) = 1$ we can write the S-polynomial as follows:

$$S(p_1, p_2) = p_1 lt(p_2) - p_2 lt(p_1)$$

We assume $lc(p_i) = 1, i = 1, 2$ therefore $lt(p_i) = lm(p_i)$ for reading simplicity. Furthermore we write $p_i = lm(p_i) + r_i$ hence:

$$p_1 lt(p_2) - p_2 lt(p_1) = lm(p_2)(lm(p_1) + r_1) - lm(p_1)(lm(p_2) + r_2) =$$

$$= lm(p_2)r_1 - lm(p_1)r_2 = r_1(p_2 - r_2) - r_2(p_1 - r_1) =$$

$$= r_1p_2 - r_2p_1$$

Now since $lm(r_1) < lm(p_1)$, $lm(r_2) < lm(p_2)$ and $gcd(lm(p_1), lm(p_2)) = 1$ we have that lm(S) is $lm(r_1p_2)$ or $lm(r_2p_1)$ but not both.

Assume $lm(S) = lm(r_1p_2)$ therefore lm(S) is divisible by $lm(p_2)$ by a factor of $lm(r_1)$. Therefore in the division algorithm:

$$S \xrightarrow{p_2} r_1 p_2 - r_2 p_1 - lm(r_1) p_2 =$$

= $(r_1 - lm(r_1)) p_2 - r_2 p_1$

Which has the same form as the starting point, therefore we can repeat the algorithm til we obtain 0.

Proposition 2.2.14

Proof. Set $J_i := lm(g) \mid g \in G_i$, we want to prove is that $G_{i+1} \supsetneq G_i$ implies that $J_{i+1} \supsetneq J_i$. By construction of the algorithm we have that $G_{i+1} = G_i \cup \{r\}$ hence $J_{i+1} = J_i \cup \{lm(r)\}$ because $lm(g) \nmid lm(r)$ for any $g \in G_i$. As we know J is a semigroup ideal of \mathcal{P} . But \mathcal{P} is Noetherian which means that we do not have infinite ideal chains, or in other words J is finitely generated. So the algorithm stops.

Chapter 2

Gröbner bases and 0-dim ideals

Theorem 3.1.4

Proof. To check that I is 0-dimensional we prove that its variety contains a finite number of points. Let $E:=< X_i^q - X_i \mid 1 \leq i \leq m >$ whose variety is exactly the vector space \mathbb{F}_q^m . Now let $J:=I\setminus E$, it is easy to see that $\mathcal{V}(I)=\mathcal{V}(E)\cap\mathcal{V}(J)\subseteq\mathbb{F}_q^m$ hence $\#\mathcal{V}(I)\leq\#\mathbb{F}_q^m=q^m$ which is finite, thus I is 0-dimensional.

To prove that I is radical it is sufficient to show that $\sqrt{I} \subseteq I$ since the other way around is trivial by definition of radical ideal. Given a polynomial $f \in \sqrt{I}$ this belongs to I if and only if $\exists n \in \mathbb{N}$ such that $f^n \in I$ or in other words $f^n \equiv 0$ rem I. To begin with notice that $f^q \equiv f$ rem I, indeed take:

$$f := a_1 X_1^{\alpha_{(1,1)}} \cdots X_m^{\alpha_{(m,1)}} + \dots + a_n X_1^{\alpha_{(1,n)}} \cdots X_m^{\alpha_{(m,n)}}$$

Where $\alpha_{(i,j)} \in \mathbb{N}$ and $a_j \in \mathbb{F}$. Now by rising to the power of q e obtain:

$$f^{q} = (a_{1}X_{1}^{\alpha_{(1,1)}} \cdots X_{m}^{\alpha_{(m,1)}} + \cdots + a_{n}X_{1}^{\alpha_{(1,n)}} \cdots X_{m}^{\alpha_{(m,n)}})^{q} =$$

$$= (a_{1}X_{1}^{\alpha_{(1,1)}} \cdots X_{m}^{\alpha_{(m,1)}})^{q} + \cdots + (a_{n}X_{1}^{\alpha_{(1,n)}} \cdots X_{m}^{\alpha_{(m,n)}})^{q} =$$

$$= a_{1}(X_{1}^{q})^{\alpha_{(1,1)}} \cdots (X_{m}^{q})^{\alpha_{(m,1)}} + \cdots + a_{n}(X_{1}^{q})^{\alpha_{(1,n)}} \cdots (X_{m}^{q})^{\alpha_{(m,n)}} =$$

$$= a_{1}X_{1}^{\alpha_{(1,1)}} \cdots X_{m}^{\alpha_{(m,1)}} + \cdots + a_{n}X_{1}^{\alpha_{(1,n)}} \cdots X_{m}^{\alpha_{(m,n)}}$$

$$= f \mod I$$

Therefore given $f \in \sqrt{I}$ then $f^n \in I \iff f^n \equiv 0 \mod I$ we can have two cases for n, i.e. n < q and $n \ge q$ but we know that $f^n \equiv f^{n \mod q} \mod I$ so we can consider only the case n < q. So we can state the result as follows:

$$f \in \sqrt{I} \Rightarrow f^n \in I \Rightarrow f^n \cdot f^{q-n} \in I \iff f^q \in I \iff f \in I$$

We thus get that $I = \sqrt{I}$.

Lemma 3.1.9

Proof. Let $T^* := \{X_1^{z_1}, \dots, X_m^{z_m},\} \subset T$, it is easy to see that $\Delta(T^*)$ forms an m-dimensional rectangle in the space of monomials, therefore we can compute its volume as follows:

$$\#\Delta(T^*) = \prod_{j=1}^m z_j$$

Now the remaining part of T forms an m-dimensional polyhedron which is contained in $\Delta(T)$ and has volume:

$$\prod_{j=1}^{m} (z_j - i_j)$$

so to compute the actual value of $\#\Delta(T)$ one must subtract such volume from $\#\Delta(T^*)$ obtaining:

$$\#\Delta(T) = \prod_{j=1}^{m} z_j - \prod_{j=1}^{m} (z_j - i_j)$$

Theorem 3.2.1

Proof. We have $S := \{P_1, \ldots, P_k\}$ and want a Gröbner basis \mathcal{G}' of $I' := \mathcal{I}(S)$. If $S = \{A\}$ with $A := (a_1, \ldots, a_m)$ then $\mathcal{I}(S) = \langle (X_1 - a_1), \ldots, (X_m - a_m) \rangle$, notice that the leading monomials in the generating basis are relatively coprime therefore $\mathcal{S}(g_i, g_j) = 0 \ \forall \ i \neq j$ therefore it is also a Gröbner basis. What we want to prove in the general case is that given $f \in I$ there exist $g \in \mathcal{G}'$ such that $lm(g) \mid lm(f)$.

So let $f \in \mathcal{I}(S \cup \{B\})$, $B \in \mathbb{K}^m$ this means that $f(B) = 0 \,\forall P_i \in S \cup \{B\}$. It is easy to see that $f \in \mathcal{I}(S)$ so given \mathcal{G} a Gröbner basis of $\mathcal{I}(S)$ we get that exist $g \in \mathcal{G}$ such that $lm(g) \mid lm(f)$. We distinguish three cases here:

- 1. If g(B) = 0 then $g \in \mathcal{G}'$ and this case is trivial.
- 2. Suppose $g(B) \neq 0$ and $lm(g) > lm(g_*)$. in this case:

$$g' := g - \frac{g(B)}{g_*(B)} \cdot g_*$$

Now g'(B) = 0 and the leading monomial is left unchanged so $lm(g') \mid lm(f)$ and so $g' \in \mathcal{G}'$.

3. Suppose $g = g_*$ then $g(B) \neq 0$. We claim that there exist $g_* \cdot (x_i - b_i)$, $0 \leq i \leq m$ such that $lm(g_* \cdot (x_i - b_i)) \mid lm(f)$. Obviously for every i it holds that $(g_* \cdot (x_i - b_i))(B) = 0$. We see that $lm(g_* \cdot (x_i - b_i)) = x_i \cdot lm(g_*)$, if our claim is false then it must be $lm(g_*) = lm(f)$ (the reasoning is as follows: if $lm(g_*) \mid lm(f)$ there must exist x_i such that $x_i \cdot lm(g) \mid lm(f)$ otherwise $lm(g_*) = lm(f)$) therefore keeping in mind that $f \in \mathcal{I}(S)$ we have that:

$$f = g_* + h_1 g_1 + \dots + h_l \cdot g_l$$

with $g_l \in \mathcal{G}$ and $lm(g_i) \prec lm(g_*)$ therefore evaluating in B we obtain:

$$0 = f(B) = g_*(B) + h_1(B)g_1(B) + \dots + h_l(B) \cdot g_l(B) = g_*(B) \neq 0$$

which is a contraddiction. So our claim is true and $g(x_i - b_i) \in \mathcal{G}'$ allowing \mathcal{G}' to be a Gröbner basis.

Proposition 3.4.2

Proof. Recall that N(I) is the set of monomials that are not leading monomials of elements of $I \subseteq \mathbb{F}[X_1, \ldots, X_m]$. Let \mathcal{G} be a Gröbner basis of I. We want to prove that the elements of the set $\{M+I \mid M \in N(I)\}$ are linearly independent and they span all R.

It is easy to prove that they are linealry independent over F since they differ each other by at least a variable (e.g. X_1 and X_1X_2) or a degree in at least one variable (e.g. X_1X_2 and $X_1X_2^2$).

To prove that they span all R let $f \in \mathbb{F}[X_1, \ldots, X_m]$ with $f \neq 0$, it belongs to a nonzero residue class in the quotient algebra $[f] \in R$ whose representative has leading monomial $lm(f \mod I) \in N(I)$ as otherwise there will exist $g \in \mathcal{G}$ such that $lm(g) \mid lm(f \mod I)$. This extends to all the other monomials $M_i \in Supp(f \mod I)$ simply because $M_i \prec lm(f \mod I)$.

Chapter 3

Affine Variety Codes

Theorem 5.1.1

Proof. Write $\mathbb{F}^* = \mathbb{F}_q^* = \{P_1, \dots, P_n\}$ where n = q - 1. Consider the generator matrix of RS_k :

$$G = \begin{pmatrix} 1_{|P_1} & \cdots & 1_{|P_n} \\ \vdots & \ddots & \vdots \\ X_{|P_1}^{k-1} & \cdots & X_{|P_n}^{k-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ P_1 & P_2 & \cdots & P_n \\ \vdots & \vdots & \ddots & \vdots \\ P_1^{k-1} & P_2^{k-1} & \cdots & P_n^{k-1} \end{pmatrix}$$

Notice that a polynomial evaluation (codeword) in $\mathbb{F}[x]$ is precise combination of rows of G Suppose first that there are two polynomials giving the same codeword:

$$c_1 = (f_1(P_1), \dots, f_1(P_n)) = (f_2(P_1), \dots, f_2(P_n)) = c_2$$

Since $deg(f_1), deg(f_2) < k \le n$, $f_1 - f_2$ is a polynomial of degree less than n which has n zeroes that is impossible unless $f_1 = f_2 \Rightarrow c_1 = c_2$. In other words there is no row in G that is a linear combination of the others. Hence dim(G) = #rows(G) = k.

For the distance we prove both \geq and \leq :

Notice that the weight of a codeword:

$$(f_1(P_1),\ldots,f_1(P_n))=(f_2(P_1),\ldots,f_2(P_n))$$

is the number of points of \mathbb{F}^* that are nonzeroes of f. Therefore let f be a polynomial with as many zeroes as possible, i.e. generating a minimum weight codeword. f has at most k-1 zeroes in \mathbb{F}^* hence c can have at most k-1 zero coordinates which means that the code has distance $d=w_H(f)\geq n-k+1$.

On the other hand consider the polynomial:

$$f = \prod_{i=1}^{k-1} (x - P_i)$$

it has degree k-1 and k-1 solutions therefore the codeword it generates has exactly weight n-k+1. So the bound is thight.

Theorem 5.2.1

Proof. Here we write $\mathbb{F}^m = \{P_1, \dots, P_n\}$ with $n = q^m$ Let $c \in RM_s \setminus \{0\}$ then again:

$$c = (f(P_1), \dots, f(P_n))$$

for some $f \in \mathbb{F}[X_1, \dots, X_m]$ and let $lm(f) = X_1^{i_1} \cdots X_m^{i_m}$. By definition of the code $deg(f) \leq s \leq m(q-1) < q^m$ so f can have at most deg(f) zeroes and thank to this we can say that $c = 0 \iff f = 0$.

Obviously $i_1 + \cdots + i_m \leq s$ and $0 \leq i_1, \dots, i_m \leq q - 1$ since every coordinate of $P_{i,j}$ (the j - th coordinate of P_i) is a value of \mathbb{F} so it respects $P_{i,j}^q = P_{i,j}$.

 $P_{i,j}^q = P_{i,j}$. Set $I := \langle f \rangle + \langle X_1^q - X_1, \dots, X_m^q - X_m \rangle$, it is 0-dimensional and radical by theorem 3.1.4. The zeroes of f over \mathbb{F}^m are:

$$\mathcal{V}_{\mathbb{F}^{>}}(I) = N(I) \subseteq \Delta(I) = \langle X_1^q, \dots, X_m^q, X_1^{i_1} \cdots X_m^{i_m} \rangle$$

Therefore we can compute a lower bound for the weight of c that is:

$$w_H(c) = n - N(I) \ge n - \#\Delta(I)$$

$$= q^m - (q^m - \prod_{j=1}^m (q - i_j)) = \prod_{j=1}^m (q - i_j)$$

$$= (q - i_1) \cdots (q - i_m) =: L$$

Now we need to minimize L we want as many $(q - i_h) = 1$ as possible, i.e. $i_h = q - 1$, but since s = a(q - 1) + b, we can do this only for a factors, so take:

$$i_1 = \dots = i_a = q - 1$$
 and $i_{a+1} = b$

Then $i_1 + \cdots + i_m = a(q-1) + b$ and so we get:

$$L = (q - (q - 1))^{a} \cdot (q - b) \cdot q^{m - a - 1} = (q - b) \cdot q^{m - a - 1}$$

To show that this bound is thight we find a polynomial that generates a codeword of weight exactly L. Write $\mathbb{F} = \{\alpha_1, \ldots, \alpha_q\}$ and consider the following polynomial:

$$g := (\prod_{l=1}^{q-1} (\prod_{i=1}^{a} (X_i - \alpha_l))) (\prod_{t=1}^{b} (X_{a+1} - \alpha_t))$$

So $lm(g)=X_1^{q-1}\cdots X_a^{q-1}X_{a+1}^b$, has degree deg(g)=a(q-1)+b and has exactly $(q-b)q^{m-a-1}$ non zeroes.

Exercise 5.8.2

Proof. Let's check that g has actually the claimed number of nonzeroes, we have q-1 values that given to X_1 make g vanish, which means that there are $(q-1)q^{m-1}$ vectors in \mathbb{F}^m that are zeroes because they make a factor of g containing X_1 vanish. We do the same for X_2 but without considering vectors already taken for X_1 , i.e. we can take $(q-1)q^{m-2}$ vectors. We go on like this for a+1 variables obtaining:

$$\underbrace{(q-1)q^{m-1} + (q-1)q^{m-2} + \dots + (q-1)q^{m-a}}_{R} + \underbrace{bq^{m-a-1}}_{Q}$$

Consider the two parts R and Q separately:

$$R = (q-1)(q^{m-a})\frac{(q^a-1)}{q-1} = (q^m - q^{m-a})$$
$$R + Q = (q^m - q^{m-a}) + bq^{m-a-1}$$

Therefore the number of nonzeroes are:

$$q^{m} - (R + Q) = q^{m} - (q^{m} - q^{m-a}) - bq^{m-a-1}$$
$$= q^{m-a} - bq^{m-a-1} = qq^{m-a-1} - bq^{m-a-1}$$
$$= (q - b)q^{m-a-1}$$

Lemma 5.3.1

Proof. Write again $\mathbb{F}^m = \{P_1, \dots, P_n\}$ where $n = q^m$, and the simple field $\mathbb{F} = \{\alpha_1, \dots, \alpha_q\}$. We can simply take the following polynomial:

$$f := \prod_{j=1}^{m} \left(\prod_{t=1}^{i_j} (X_j - \alpha_t) \right)$$

See that $lm(f) = X_1^{i_1} \cdots X_m^{i_m}$, and now we check the number of nonzeroes by counting the number of zeroes as before. Call $I_q = \langle X_1^q - X_1, \dots, X_m^q - X_m, f \rangle$ and recall that for a 0-dimensional ideal $\#N(I) = \#\mathcal{V}(I)$ hence the number of zeroes of f is:

$$#N(I_q) = i_1 q^{m-1} + i_2 q^{m-2} (q - i_1) + \dots + i_m \prod_{j=1}^{m-1} (q - i_j)$$
$$= q^m - \prod_{j=1}^m (q - i_j)$$

Hence the weight of a the codeword c generated by f will be:

$$w_H(c) = q^m - \#N(I_q) = \prod_{j=1}^m (q - i_j)$$

Theorem 5.3.2

Proof. We first fix a monomial ordering \prec and then take a nonzero codeword $c \in Hyp_q(s,m) - \{0\}$. Using the same notation as in Lemma 5.3.1 we have that:

$$c = (f(P_1), \dots, f(P_n))$$

with $f \in \mathbb{F}[X_1, \dots, X_m]$ non zero and having $lm(f) = X_1^{i_1} \cdots X_m^{i_m}$. Let's count the number of nonzeroes of f, call $I_q = \langle X_1^q - X_1, \dots, X_m^q - X_m, f \rangle$:

$$w_H(c) = q^m - \#N(I_q) \ge q^m - \#\Delta(I_q) = \prod_{j=1}^m (q - i_j) \ge q^m - s$$

Notice that the last inequality comes from the definition of hyperbolic code. We can now apply Lemma 5.3.1 to find a polynomial with that leading monomial and $q^m - s$ nonzero points. So the bound is tight.

Lemma 5.4.2

Proof. In order to minimize the value $\prod_{l=1}^{m} (q - i_l)$ we try to have as many small factors (i.e. $(q - i_l) = 1$) as possible. To do this we take $i_1 = s - 1$ and $i_2 = 1$ and $i_3 = \cdots = i_m = 0$. Hence the product becomes:

$$\prod_{l=1}^{m} (q - i_l) = q^m - \overline{s}_1 q^{m-1} + \overline{s}_2 q^{m-2} - \dots (-1)^m \overline{s}_m$$

Where \overline{s}_k for $1 \leq k \leq m$ is the k-th symmetric polynomial in the variables $\{i_1, \ldots, i_m\}$. Notice that for $k \geq 3$ every term of s_k is made up by three variables, which means that at least one of them must be 0. Notice furthermore that for the same reason:

$$\overline{s}_1 = i_1 + i_2 = s$$
 and $\overline{s}_2 = i_1 \cdot i_2 = s - 1$

Therefore what survives of the polynomial is:

$$\prod_{l=1}^{m} (q - i_l) = q^m - \overline{s}_1 q^{m-1} + \overline{s}_2 q^{m-2}$$
$$= q^m - s q^{m-1} + (s-1)q^{m-2}$$

Lemma 5.4.3

Proof. We try to minimize the value $(s-i_1)\prod_{l=2}^m (q-i_l)$. Since $s\leq q-1$ we procede by taking $i_2=q-1$ now by the relation $i_1+\cdots+i_m=q$ we have 1 more to spend. To choose on which i_l we spend it consider the following argument for $a,b\in\mathbb{N},a< b$:

$$(a-1)b = ab - b < ab - a = a(b-1)$$

Therefore by setting a = s and b = q the obvious choice will be $i_1 = 1$. Thus we get:

$$(s-1)\prod_{l=3}^{m}(q-i_l)=(s-1)(q^{m-3}-\overline{s}_1q^{m-4}+\cdots(-1)^{m-2}\overline{s}_{m-2})$$

Now by the same argument we had in Lemma 5.4.2 we see that no \overline{s}_k survives since all the $i_l=0$ for $l\geq 3$. Hence the minimum value is $(s-1)q^{m-2}$. \square