Monad-Par

Xavier de Bondt Philip de Bruin

November 1, 2018

The Monad-Par

► Based around a monad called Par

The Monad-Par

- Based around a monad called Par
- Run a function parallel by using

```
runPar :: Par a -> a
```

Create parallel tasks with

```
fork :: Par () -> Par ()
```

The Monad-Par

- Based around a monad called Par
- ► Run a function parallel by using

```
runPar :: Par a -> a
```

Create parallel tasks with

```
fork :: Par () -> Par ()
```

Problem: How do we pass data back to the parent?

IVar data type

► IVar introduces the following functions:

```
new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a
```

► We can think of IVar as an empty box

IVar data type

► IVar introduces the following functions:

```
new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a
```

- We can think of IVar as an empty box
- NOTE: put calls deepseq on the value you try to put in

Example: Fibonacci

- ► We want to write the function fib k
- Assumptions: n = k 1, m = k 2

Example: Fibonacci

- We want to write the function fib k
- Assumptions: n = k 1, m = k 2

Figure: Dataflow diagram

Example: Fibonacci

Actual code

Some other functions

spawn

Some other functions

spawn

```
spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do i <- new
              fork (do x <- p; put i x)
              return i
So we can write our Fibonacci as
runPar $ do i <- (spawn . return . fib) n
             j <- (spawn . return . fib) m</pre>
            a <- get i
             b <- get j
            return (a + b)
```

Some other functions

parMap

Back to Rose!

For this example we go back to Assignment 2 to use Roses!

```
data Rose a = a :> [Rose a]
  deriving (Eq, Show)
```

Back to Rose!

For this example we go back to Assignment 2 to use Roses!

```
data Rose a = a :> [Rose a]
  deriving (Eq, Show)
```

We will make the function leaves parallel

```
leaves :: Rose a -> Int
leaves (_ :> []) = 1
leaves (_ :> b ) = sum (map leaves b)
```

Making leaves parallel

Our first instinct would say: "Re-use the fibonacci example!"

These parleaves become messy..

► This gets messy very fast.. for let's say 9 children

```
parleaves9 (\underline{\phantom{a}}:>[a,b,c,d,e,f,g,h,i])
= runPar $ do j <- new
            s <- new
            fork (put j (leaves a))
             . . .
            fork (put s (leaves i))
            a <- get j
             . . .
             i <- get s
            return (a + b + c + d + e + f + g + h + i)
```

Making leaves parallel with parMap

So we use parMap

```
parMap :: NFData b => (a \rightarrow b) \rightarrow [a] \rightarrow Par [b]
parMap f xs = do ys <- mapM (spawn . return . f) xs
mapM get ys
```

Making leaves parallel with parMap

So we use parMap
parMap :: NFData b => (a -> b) -> [a] -> Par [b]

```
parMap f xs = do ys <- mapM (spawn . return . f) xs
mapM get ys
```

Making this look easy!

```
parleaves' (_ :> b)
```

= runPar \$ do solutions <- parMap (leaves) b
 return (sum solutions)</pre>

Mergesort!

We can also make mergesort parallel

Mergesort!

We can also make mergesort parallel

► We will only use this part of the mergesort-algorithm since we can split it up right here by adding this to the where

and replacing

```
| (length xs) > 1 = merge 1 r
```

What are we sorting parallel?

► The normal mergesort flow diagram

What are we sorting parallel?

► Where we go parallel in mergesort

Generalize - parFuncOnList

To make things easier

Generalize - parFuncOnList

To make things easier

Simplified parleaves

```
parleaves (_ :> b) = parFuncOnList b (leaves)
```

Generalize - parFuncOnList

To make things easier

Simplified parleaves

```
parleaves (_ :> b) = parFuncOnList b (leaves)
```

Simplified part of parmergesort

```
[1,r] = parFuncOnList (ls:[rs]) mergesort
```

Quicksort

We can do a similar thing for quicksort

Quicksort

We can do a similar thing for quicksort

We can simply say that

Is it faster?

➤ To test if these variants are faster we use ThreadScope which allows us to see the total runtime (and more)!

Is it faster?

- ➤ To test if these variants are faster we use ThreadScope which allows us to see the total runtime (and more)!
- ► It looks something like this

Testing parleaves with gameTreeComplexity

When testing parleaves with some small handmade examples we note that there is no real time difference, so we had to use something big...

Testing parleaves with gameTreeComplexity

- When testing parleaves with some small handmade examples we note that there is no real time difference, so we had to use something big...
- Remember Assignment 2?

```
gameTreeComplexity :: Int
gameTreeComplexity = leaves (gameTree P1 emptyBoard)
Let's use this as our big data!
```

Results parleaves

With leaves above and parleaves on the bottom

Time Heap G	SC	Spark stats	Spark sizes	Process info	Raw events
Total time:		50s			
Mutator time:	0.	39s			
GC time:	0.	11s			
Productivity:	77	7.7% of muta	ator vs total		
Time Heap G	ic	Spark stats	Spark sizes	Process info	Raw events
Time Heap G	_	Spark stats	Spark sizes	Process info	Raw events
	0.2	27s	Spark sizes	Process info	Raw events
Total time:	0.2	27s 22s	Spark sizes	Process info	Raw events
Total time: Mutator time:	0.2	27s 22s 05s		Process info	Raw events
Total time: Mutator time: GC time:	0.2	27s 22s 05s		Process info	Raw events

► So it's very fast!

Big data for sorting

➤ Similarly for our big data we used 1000 random baby names and put them into a JSON array

Big data for sorting

- Similarly for our big data we used 1000 random baby names and put them into a JSON array
- Here's the result for quicksort with the parallel variant on the bottom

Big data for sorting

- Similarly for our big data we used 1000 random baby names and put them into a JSON array
- Here's the result for quicksort with the parallel variant on the bottom

► Hard to see, but the normal one is 11ms and the parallel one is 6.6ms! The same can be shown for mergesort.

Conclusion

Faster and understandable

- monad-par often much faster when using big data.
- Next to that, it's not very hard to use!