EECE5644 - Assignment 2

Dhruv Agarwal

November 2024

1 Question 1

1.1 Data Generation

Data is generated using the following method:

$$\mathbf{x}_i = r \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} + \mathbf{n}$$

where, r is chosen according to the label:

$$r = \begin{cases} 2, & \text{if } l = -1\\ 4, & \text{if } l = +1 \end{cases}$$

l is chosen to be -1 with probability 0.5 and +1 with probability 0.5

$$\theta \sim \text{Uniform}[-\pi, \pi]$$

$$\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

1000 i.i.d. training samples are generated:

10000 i.i.d. test samples are generated:

1.2 Support Vector Machine Model

• Parameter Space: Define the parameter search space:

$$C \in \{10^{-2}, 10^{-1}, 10^{0}, 10^{1}, 10^{2}\}, \quad \gamma \in \{10^{-2}, 10^{-1}, 10^{0}, 10^{1}, 10^{2}\}$$

• Objective Function: The support vector machine (SVM) minimizes the following objective function:

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

subject to:

$$y_i(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \, \forall i$$

where $\phi(\mathbf{x})$ is the mapping defined by the RBF kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2\right)$$

• Cross-Validation: Perform 10-fold cross-validation (CV) for all combinations of (C, γ) :

$$\label{eq:cvac} \text{CV Accuracy} = \frac{\text{Correct Predictions}}{\text{Total Predictions}}$$

The best hyperparameters (C^*, γ^*) maximize the CV accuracy.

• The heatmap represents the cross-validation mean accuracy for each (C,γ) pair:

Accuracy Matrix: $A_{ij} = \text{CV}$ Accuracy for C_i and γ_j

Best Parameters: {'C': 100.0, 'gamma': 0.1} Best Cross-Validation Accuracy: 0.8280

• Plotting Decision Boundary For visualization, the decision boundary is computed by evaluating the SVM's decision function over a grid of points:

$$Z(x,y) = \operatorname{sign}(\mathbf{w} \cdot \phi(\mathbf{x}) + b)$$

The boundary is defined where Z(x, y) = 0.

The data points are plotted with:

- Red for class -1 (y = -1)
- Blue for class +1 (y = +1)

Contours represent the decision boundary:

$$\{(x,y): Z(x,y) = 0\}$$

• Prediction: Predict the labels for the test set:

$$\hat{y}_i = \operatorname{sign}(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b)$$

Test Accuracy: Compute the test accuracy:

Test Accuracy =
$$\frac{\sum_{i=1}^{N} \mathbb{1}(\hat{y}_i = y_i)}{N}$$

where $\mathbb{1}(\cdot)$ is the indicator function.

Probability of Error: The probability of error is:

$$P_{\text{error}} = 1 - \text{Test Accuracy}$$

Classification Report: Generate metrics such as precision, recall, and F1-score for each class:

$$\label{eq:Precision} \begin{aligned} \text{Precision} &= \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \end{aligned}$$

$$\label{eq:Recall} \text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$$

$$\label{eq:F1-Score} \begin{split} \text{F1-Score} &= 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \end{split}$$

1.3 Multi Layer Perceptron Model

• Defining the MLP Model and Parameter search We aim to optimize the hyperparameters of a Multi-Layer Perceptron (MLP) model using 10-fold cross-validation. Let:

$$\mathcal{H} = \{(5,), (10,), (15,), (20,)\}$$

be the set of hidden layer sizes, and

$$\mathcal{A} = \{ logistic, relu \}$$

be the set of activation functions. We are not using quadratic activation functions because the in-built function for MLP in sklearn library only

supports identity, relu, logistic and tanh. The regularization parameter is fixed as:

$$\alpha = 0.01$$
.

The grid search evaluates each combination of parameters from \mathcal{H} and \mathcal{A} using 10-fold cross-validation.

For i = 1, 2, ..., 10 (cross-validation folds), define:

Training Sets:
$$\{(X_{\text{train}}^i, Y_{\text{train}}^i)\}$$
, Validation Sets: $\{(X_{\text{val}}^i, Y_{\text{val}}^i)\}$.

The accuracy score for each parameter set (h, a) is computed as:

$$\operatorname{Accuracy}(h, a) = \frac{1}{10} \sum_{i=1}^{10} \operatorname{Accuracy}\left(f_{h, a}(X_{\operatorname{val}}^{i}), Y_{\operatorname{val}}^{i}\right),$$

where $f_{h,a}$ represents the MLP model trained with parameters h and a. The optimal parameters (h^*, a^*) are:

$$(h^*, a^*) = \underset{(h,a)}{\operatorname{argmax}} \operatorname{Accuracy}(h, a).$$

- Visualize Cross-Validation Results A pivot table is created with:
 - Rows indexed by \mathcal{H} (hidden layer sizes).
 - Columns indexed by \mathcal{A} (activation functions).
 - Values given by Accuracy(h, a).

A heatmap represents these results.

Best Parameters: {'activation': 'logistic', 'alpha': 0.01, 'hidden_layer_sizes': (20,)} Best Cross-Validation Accuracy: 0.8280

- Decision Boundary Visualization To visualize the decision boundary:
 - 1. Create a grid of points (x', y') where:

$$x', y' \in [\min(X_1) - 1, \max(X_1) + 1] \times [\min(X_2) - 1, \max(X_2) + 1].$$

- 2. Predict the class Z(x',y') for each grid point using f_{h^*,a^*} .
- 3. Plot the boundary where:

$$Z(x', y') = 0$$
 (decision boundary).

Overlay the scatter plot of the data points:

- $X_{\text{test}}^{(-1)} \text{ (class } -1) \text{ in red.}$ $X_{\text{test}}^{(+1)} \text{ (class } +1) \text{ in blue.}$

• Testing the Best Model After selecting the best model f_{h^*,a^*} , test it on $(X_{\text{test}}, Y_{\text{test}})$:

Test Accuracy = Accuracy
$$(f_{h^*,a^*}(X_{\text{test}}), Y_{\text{test}})$$
.

The estimated probability of error is:

Error Probability =
$$1 - \text{Test Accuracy}$$
.

Additionally, generate the classification report:

Precision, Recall, F1-Score for each class.

SVM Test Accura Estimated Proba Classification	ability of E	rror: 0.1	684	
	precision	recall	f1-score	support
-1	0.84	0.83	0.83	5099
1	0.82	0.84	0.83	4901
accuracy			0.83	10000
macro avg	0.83	0.83	0.83	10000
weighted avg	0.83	0.83	0.83	10000

2 Question 2

2.1 Image Feature Vector Calculation

- Image Dimensions Let the image I have dimensions $H \times W$ (height \times width) with 3 color channels (red, green, blue). The pixel intensity values are denoted as I(r,c) for row $r \in \{0,\ldots,H-1\}$ and column $c \in \{0,\ldots,W-1\}$.
- Pixel Position Indices

row_indices
$$(r, c) = r$$
, col_indices $(r, c) = c \quad \forall r, c$

• Color Normalization

$$\operatorname{red_values}(r,c) = \frac{I(r,c,\operatorname{Red})}{255}, \quad \operatorname{green_values}(r,c) = \frac{I(r,c,\operatorname{Green})}{255}, \quad \operatorname{blue_values}(r,c) = \frac{I(r,c,\operatorname{Blue})}{255}$$

• Feature Vector For each pixel, the feature vector is:

$$f(r,c) = \begin{bmatrix} r \\ c \\ \text{red_values}(r,c) \\ \text{green_values}(r,c) \\ \text{blue_values}(r,c) \end{bmatrix}$$

The feature vectors for all pixels are stacked together:

features =
$$\{f(r,c)\}_{r=0,c=0}^{H-1,W-1}$$

• Normalization Features are normalized using Min-Max scaling:

$$features_normalized = \frac{features - min(features)}{max(features) - min(features)}$$

2.2 K-Fold Training of Gaussian Mixture Model (GMM)

- **K-Fold Splitting** Divide the dataset into K subsets (folds) $\{D_1, D_2, \dots, D_K\}$.
- Log-Likelihood Evaluation For $n_{\text{components}} \in \{1, ..., 10\}$, train a Gaussian Mixture Model $GMM(n_{\text{components}})$ and compute the average log-likelihood:

$$\operatorname{Log_Likelihood}_k = \frac{1}{|D_k|} \sum_{x \in D_k} \log P(x \mid GMM(n_{\text{components}}))$$

The average log-likelihood across folds is:

$$Avg_Log_Likelihood(n_{components}) = \frac{1}{K} \sum_{k=1}^{K} Log_Likelihood_k$$

• Model Selection Choose the number of components that maximizes the average log-likelihood:

$$n_{\rm best} = \arg\max_{n_{\rm components}} {\rm Avg_Log_Likelihood}(n_{\rm components})$$

• Fit the Final GMM Train $GMM(n_{\text{best}})$ on the full normalized feature set:

$$GMM_{\text{final}} = GMM(n_{\text{best}})$$

• Label Assignment Predict cluster labels for the pixels:

labels =
$$\{GMM_{\text{final}}.\text{predict}(f(r,c))\}_{r=0,c=0}^{H-1,W-1}$$

• Label Reshaping Reshape the label vector into an image:

$$labels_image(r, c) = labels[(r \cdot W) + c]$$

2.3 Grayscale Image Segmentation

• Normalize Labels to Grayscale Map cluster labels to grayscale values:

$$\label_image_gray(r,c) = 255 \cdot \frac{\text{labels_image}(r,c) - \min(\text{labels_image})}{\max(\text{labels_image}) - \min(\text{labels_image})}$$

• **Visualization** Display the original image:

Original Image
$$= I$$

Display the grayscale segmentation:

Segmented $Image = label_image_gray$

2.4 Color Image Segmentation

• Unique Labels and Palette Generation The unique labels in the segmented image are:

$$L = {\ell_1, \ell_2, \dots, \ell_N}, \quad N = |L|$$

Generate a random color palette for each label:

palette(
$$\ell_i$$
) = $[R_i, G_i, B_i] \in \{0, 1, \dots, 255\}^3$, $i = 1, \dots, N$

• Constructing the Color Image Initialize a color image of size $H \times W$: label_image_color $(r,c) = [0,0,0], \quad \forall (r,c) \in \{0,\dots,H-1\} \times \{0,\dots,W-1\}$ Assign colors based on labels:

label_image_color
$$(r, c)$$
 = palette(labels_image (r, c)), $\forall (r, c)$

• Visualization Display the original image:

Original Image
$$= I$$

Display the color-labeled segmentation:

Segmented Image (Color) = $label_image_color$

Link to the GitHub Folder or copy this into your web browser: https://github.com/Dhruv-2020EE30592/EECE-5644/tree/main/Assignment-4