Department of Physics Indian Institute of Technology Guwahati

1. A rectangular loop of wire is situated so that one end (height h) is between the plates of a parallel plate capacitor (shown in figure 3), oriented parallel to the field \vec{E} . The other end is way outside, where the field is essentially zero. What is the emf in this loop? If the total resistance is R, what current flows? Explain.

Figure 1: Figure for take home problem 2.

2. A square loop is cut out of a thick sheet of aluminium. It is then placed so that the top portion is in a uniform magnetic field \vec{B} , and allowed to fall under gravity (shown in figure 2 where the shading indicates the field region and \vec{B} points into the page). If the magnetic field is 1 T, find the terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity? What would happen if you cut a tiny slit in the ring, breaking the circuit? Write your final answer in numbers by using acceleration due to gravity $g = 9.8 \text{ m/s}^2$, mass density of aluminium $\eta = 2.7 \times 10^3 \text{ kg/m}^3$, resistivity of aluminium $\rho = 2.8 \times 10^{-8} \ \Omega \text{m}.$

Figure 2: Figure for take home problem 3.

- 3. Find the energy stored in a section of length l of a long solenoid (radius R, current I, n turns per unit length) using the following formulas discussed in the class:
 - (a) $W = \frac{1}{2}LI^2$ where L is the inductance.
 - (b) $W = \frac{1}{2} \oint (\vec{A} \cdot \vec{I}) dl$ where \vec{A} is the magnetic vector potential. (c) $W = \frac{1}{2\mu_0} \int_{\text{all space}} B^2 d\tau$.

 - (d) $W = \frac{1}{2\mu_0} \left[\int_V B^2 d\tau \oint_S (\vec{A} \times \vec{B}) \cdot d\vec{a} \right]$, where S is the surface bounding the volume

V. Take as your volume the cylindrical tube from radius a < R out to radius b > R.

4. A circular loop of radius a is at a distance D above a tiny magnetic dipole of infinitesimal area dS carrying a current I_1 , as shown in figure 3. Assume current through the circular loop $I_2 = 0$, for the time being. Also, the distance D and loop radius a are related as $D = \sqrt{3}a$. Write your final answers only in terms of I_1 , dS, a and fundamental constants.

Figure 3: Figure for problem 5

- (i) How much magnetic flux of the dipole passes through the circular loop?
- (ii) What is the mutual inductance between the dipole and the loop?
- (iii) Now, consider the loop to be carrying a current $I_2 \neq 0$. The relation between D and a remains same as before $D = \sqrt{3}a$. How much magnetic flux due to I_2 passes through the magnetic dipole? What is the mutual inductance between the loop and the dipole in this case?
- 5. Replace the tiny magnetic dipole in above problem by a loop L_1 with no current. It is now placed on top (at the axis which coincides with z-axis) of a loop L_2 of radius a, as shown in figure 4. If the loop L_1 is made up from a paramagnetic material, which direction it will move once a current I_2 is sent through loop L_2 in anticlockwise direction?

Figure 4: Figure for problem 6

6. Consider a rectangular loop of wire of width a, length b, rotating with an angular velocity ω about the axis PQ (dashed line in figure 5) and lying in a uniform, time dependent magnetic field $B = B_0 \sin \omega t$ perpendicular to the plane of the loop at t = 0. Find the angular frequency at which the induced emf of the loop alternates.

Figure 5: Figure for problem 7