# Queens' College Cambridge

# **Data Science**



Alistair O'Brien

Department of Computer Science

March 28, 2021

# Contents

| 1        | Pro                            | robability Models |                                          |    |  |  |
|----------|--------------------------------|-------------------|------------------------------------------|----|--|--|
|          | 1.1                            | Specify           | ying and Fitting Models                  | 4  |  |  |
|          |                                | 1.1.1             | Parametric Models and Fitting Parameters | 4  |  |  |
|          |                                | 1.1.2             | Maximum Likelihood Estimation            | 4  |  |  |
|          |                                | 1.1.3             | Numerical Optimization with Scipy        | 7  |  |  |
|          |                                | 1.1.4             | Standard Distributions in Numpy          | 9  |  |  |
|          |                                | 1.1.5             | Unsupervised Learning                    | 10 |  |  |
|          |                                | 1.1.6             | Supervised Learning                      | 11 |  |  |
|          | 1.2                            | Linear            | Regression                               | 13 |  |  |
|          |                                | 1.2.1             | Linear Models                            | 13 |  |  |
|          |                                | 1.2.2             | Feature Design                           | 16 |  |  |
|          |                                | 1.2.3             | Linear Regression                        | 20 |  |  |
|          | 1.3                            | Compi             | utational Methods                        | 21 |  |  |
|          |                                | 1.3.1             | Monte Carlo Integration                  |    |  |  |
|          |                                | 1.3.2             |                                          |    |  |  |
|          | 1.4                            | Empiri            | ical Methods                             |    |  |  |
|          |                                | 1.4.1             | The Empirical Distribution               |    |  |  |
|          |                                | 1.4.2             | KL Divergence                            | 28 |  |  |
| <b>2</b> | T <sub>10</sub> f <sub>0</sub> | rence             |                                          | 33 |  |  |
| 4        |                                |                   |                                          |    |  |  |
|          | 2.1                            |                   | anism                                    | 33 |  |  |
|          |                                | 2.1.1             | Finding the Posterior                    | 34 |  |  |
|          |                                | 2.1.2             | Interpreting the Posterior Distribution  |    |  |  |
|          | 2.2                            | 2.1.3             | Posterior Predictive Distribution        | 41 |  |  |
|          | 2.2                            | _                 | entism                                   | 43 |  |  |
|          |                                | 2.2.1             | Parametric and Non-Parametric Resampling | 43 |  |  |
|          |                                | 2.2.2             | Hypothesis Testing                       | 47 |  |  |

| 3 | Markov Chains |        |                                      |    |  |  |  |  |
|---|---------------|--------|--------------------------------------|----|--|--|--|--|
|   | 3.1           | Causal | Diagrams                             | 50 |  |  |  |  |
|   |               | 3.1.1  | Causal Diagram Analysis              | 51 |  |  |  |  |
|   | 3.2           | Marko  | v Chains                             | 51 |  |  |  |  |
|   |               | 3.2.1  | The <i>n</i> -step Transition Matrix | 54 |  |  |  |  |
|   |               | 3.2.2  | Class Structure and Irreducibility   | 56 |  |  |  |  |
|   |               | 3.2.3  | Hitting Probabilities                | 57 |  |  |  |  |
|   |               | 3.2.4  | Stationary Distributions             | 58 |  |  |  |  |
|   |               | 3.2.5  | Limit Theorems                       | 60 |  |  |  |  |

# 1 Probability Models

## 1.1 Specifying and Fitting Models

#### 1.1.1 Parametric Models and Fitting Parameters

- A parametric probability model assumes a theoretical distribution (e.g. a Binomial, Normal, etc distribution). Theoretical distributions are parameterized by  $\boldsymbol{\theta}$ , the parameter vector.
- Conversely, a non-parametric model assumes no distribution.
- Estimating  $\boldsymbol{\theta}$ , denoted  $\hat{\boldsymbol{\theta}}$  is referred to as fitting the model.

#### 1.1.2 Maximum Likelihood Estimation

- The most popular method for learning parametric models.
- Consider a dataset  $\langle x_i \rangle$  of a sample  $\langle X_i \rangle$  of size n with a joint pmf  $p_{X_1,...,X_n}$ . The joint pmf p depends on parameters  $\boldsymbol{\theta}$ , we emphasize this by denoting

$$p_{\boldsymbol{\theta}} = p_{X_1,\dots,X_n}$$
.

**Definition 1.1.1.** (Likelihood Function) For a dataset  $\langle x_i \rangle$  with realizations  $x_1, \ldots, x_n$  of a sample  $\langle X_i \rangle$  of size n with joint pmf  $p_{\theta}$ , where  $\theta$  is a vector of parameters, the likelihood function is

$$\mathcal{L}_{X_1,\dots,X_n}(x_1,\dots,x_n\mid\boldsymbol{\theta})=p_{\boldsymbol{\theta}}(x_1,\dots,x_n).$$

If the random sample consists of continuous random variables with a joint pdf  $f_{\theta}$ , then the likelihood function is

$$\mathcal{L}_{X_1,\ldots,X_n}(x_1,\ldots,x_n\mid\boldsymbol{\theta})=f_{\boldsymbol{\theta}}(x_1,\ldots,x_n).$$

- The log-likelihood function is  $\log \mathcal{L}_{X_1,...,X_n}(x_1,...,x_n \mid \boldsymbol{\theta})$ .
- When the data are modelled as iid (independent and identical) samples, the likelihood factors into a product, so the log likelihood can be decomposed into a sum.

Definition 1.1.2. (Maximum-likelihood estimator) The maximum likelihood estimator (MLE) for the vector of parameters  $\boldsymbol{\theta}$  is

MLE 
$$[\boldsymbol{\theta}] = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \mathcal{L}_{X_1,\dots,X_n} (x_1,\dots,x_n \mid \boldsymbol{\theta})$$
  
=  $\underset{\boldsymbol{\theta}}{\operatorname{arg max}} \log \mathcal{L}_{X_1,\dots,X_n} (x_1,\dots,x_n \mid \boldsymbol{\theta})$ 

since log is a monotonically increasing function.

• Note that MLE  $[\theta]$  is an estimator, and therefore should be a function  $\delta(X_1, \ldots, X_n)$  where  $\langle X_i \rangle$  is a sample of size n with a distribution F that is indexed by  $\theta$ . (Hence the MLE shouldn't contain any parameters, just random variables / realizations of the random variables).

**Example 1.1.1.** (MLE for Bernoulli Distribution) For random sample  $\langle X_i \rangle$  of size n s.t  $X_1, \ldots, X_n \sim \text{Bern}(p)$ . Recall that the pmf is

$$P(X = x) = p_X(x) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$$
.

Hence the likelihood function is given by

$$\mathcal{L}_{X_1,...,X_n} (x_1,...,x_n \mid p) = p_{(p)}(x_1,...,x_n)$$

$$= \prod_{i=1}^n p_X(x_i)$$

$$= p^k (1-p)^{n-k}$$

where k are the number of realizations of the samples equal to 1. Hence the MLE of the parameter p is

MLE 
$$[p]$$
 =  $\underset{p}{\operatorname{arg max}} \log \mathcal{L}_{X_1,\dots,X_n} (x_1,\dots,x_n \mid p)$   
=  $\underset{p}{\operatorname{arg max}} k \log p + (n-k) \log(1-p)$ 

We compute the derivative (and second derivative) of log-likelihood function

$$\frac{\mathrm{d} \log \mathcal{L}_{X_1, \dots, X_n} (x_1, \dots, x_n \mid p)}{\mathrm{d} p} = \frac{k}{p} - \frac{n - k}{1 - p}$$
$$\frac{\mathrm{d}^2 \log \mathcal{L}_{X_1, \dots, X_n} (x_1, \dots, x_n \mid p)}{\mathrm{d} p^2} = -\frac{k}{p^2} + \frac{n - k}{(1 - p)^2}$$

We have a stationary point at

$$p = \frac{k}{n}.$$

At this point, the second derivative is negative, hence the stationary point is maximum. Hence

$$MLE[p] = \frac{k}{n}.$$

**Example 1.1.2.** (MLE for Normal Distribution) For random sample  $\langle X_i \rangle$  of size n s.t.  $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$  with parameters  $\mu \in \mathbb{R}, \sigma^2 > 0$ . Recall that the pdf is

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right].$$

Hence the likelihood function is given by

$$\mathcal{L}_{X_1,\dots,X_n}(x_1,\dots,x_n \mid \mu,\sigma) = f_{\mu,\sigma}(x_1,\dots,x_n)$$

$$= \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x_i-\mu)^2}{2\sigma^2}\right]$$

and the log-likelihood function is

$$\mathcal{L}_{X_1,...,X_n}(x_1,...,x_n \mid \mu,\sigma) = -\frac{n\log(2\pi)}{2} - n\log\sigma - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

So the MLE of the parameters  $\mu$  and  $\sigma$  is

MLE 
$$[(\mu, \sigma)]$$
 =  $\underset{\mu, \sigma}{\operatorname{arg max}} \log \mathcal{L}_{X_1, \dots, X_n} (x_1, \dots, x_n \mid \mu, \sigma)$   
=  $\underset{\mu, \sigma}{\operatorname{arg max}} - n \log \sigma - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$ 

We compute the partial derivatives of the log-likelihood function,

$$\frac{\partial \log \mathcal{L}_{X_1,\dots,X_n} (x_1,\dots,x_n \mid \mu,\sigma)}{\partial \mu} = -\sum_{i=1}^n \frac{x_i - \mu}{\sigma^2}$$
$$\frac{\partial \log \mathcal{L}_{X_1,\dots,X_n} (x_1,\dots,x_n \mid \mu,\sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^3}$$

So the stationary points are at

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

To show these points maximize  $\mu, \sigma$ , we would use the Hessian (see vector calculus notes). Hence

MLE 
$$[\mu] = \frac{1}{n} \sum_{i=1}^{n} x_i$$
MLE  $[\sigma] = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$ 

• Plug-in Principle. Suppose we have an estimator  $\hat{\theta} = \delta_{\theta}(X_1, \dots, X_n)$  for the parameter  $\theta$  and a statistic  $t = \delta_t(\theta) = \delta'_t(X_1, \dots, X_n)$ . We have

$$\hat{t} = \delta_t(\hat{\theta}) = \delta_t(\delta_{\theta}(X_1, \dots, X_n)).$$

## 1.1.3 Numerical Optimization with Scipy

• To find the minimum of a function  $f: \mathbb{R}^n \to \mathbb{R}$ ,

```
\begin{array}{lll} & \text{import scipy.optimize} \\ 2 & \\ 3 & \# f: \mathbb{R}^k \to \mathbb{R} \\ 4 & \text{def } f(x): \\ 5 & \# \text{ The function to minimize. Input } x \text{ is a length-}k \text{ vector.} \\ 6 & \text{return } \dots \\ 7 & \\ 8 & x_0 = [\dots] \\ 9 & \hat{x} = \text{scipy.optimize.fmin}(f, x_0) \end{array}
```

- To maximize f, simply minimize -f e.g. 1  $\hat{x} = \text{scipy.optimize.fmin}(\text{lambda } x: -f(x), x_0)$
- The initial value  $x_0$  must be well-chosen to obtain a local minimum.
- Optimization will only obtain a local minimum (not necessarily a global minimum).
- Optimization is performed over  $\mathbb{R}^k$ . To optimize over a constrained domain  $\mathcal{D}$ , a mapping  $T: \mathbb{R}^\ell \to \mathcal{D}$  must be used.
  - Minimizing over  $\mathcal{D} = x \in \mathbb{R} : x > 0$ . Minimize over  $y \in \mathbb{R}$  with  $T(y) = e^y$ .
  - Minimizing over  $\mathcal{D} = [0,1]$ . Minimize over  $y \in \mathbb{R}$  with  $T(y) = \frac{e^y}{1+e^y}$ .
  - Minimizing over  $\mathcal{D} = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ . Minimize over  $(x, y) \in \mathbb{R}^2$  with T(x, y) = (x, y, 1 x y).
  - Minimizing over  $\mathcal{D}=\{(x,y,z)\in[0,1]^3:x+y+z=1\}$ . Minimize over  $(x,y,z)\in\mathbb{R}^3$  with

$$T(x, y, z) = \left(\frac{e^x}{e^x + e^y + e^z}, \frac{e^y}{e^x + e^y + e^z}, \frac{e^z}{e^x + e^y + e^z}\right).$$

This is known as the softmax transformation

```
def f(x): # The function to minimize. Input x \in \mathcal{D}

def T(y): # The function representing the transformation T: \mathbb{R}^\ell \to \mathcal{D}

return ...

x_0 = [\dots] \# y_0 \in \mathcal{D}

\hat{y} = \text{scipy.optimize.fmin(lambda } y: \text{f(T(y)), T}^{-1}(x_0))

\hat{x} = \text{T}(\hat{y})
```

# 1.1.4 Standard Distributions in Numpy

### Discrete Distributions

| Distribution     | Notation                         | Probability Mass Function                                                                            | Numpy                                            |
|------------------|----------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Bernoulli        | $X \sim \mathrm{Bern}(p)$        | $p_X(x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & \text{otherwise} \end{cases}$                | x = np.random.binomial(1,p)                      |
| Discrete Uniform | $X \sim U(a, b)$                 | $p_X(x) = \begin{cases} \frac{1}{b+1-a} & x \in \{a, \dots, b\} \\ 0 & \text{otherwise} \end{cases}$ | $x = np.random.randint(low{=}a, \ high{=}b + 1)$ |
| Binomial         | $X \sim B(n,p)$                  | $p_X(x) = \begin{cases} \frac{1}{b+1-a} & x \in \{a, \dots, b\} \\ 0 & \text{otherwise} \end{cases}$ | x = np.random.binomial(n, p)                     |
| Geometric        | $X \sim \mathrm{Geo}(p)$         | $P(X = x) = p_X(x) = p(1 - p)^{x-1}$                                                                 | x = np.random.geometric(p) - 1                   |
| Poisson          | $X \sim \text{Poisson}(\lambda)$ | $P(X = x) = p_X(x) = \frac{\lambda^x e^{-\lambda}}{x!}$                                              | $x = np.random.poisson(lam = \lambda)$           |

## Continuous Distributions

| Distribution | Notation                             | Probability Density Function                                                                 | Numpy                                                |
|--------------|--------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|
| Uniform      | $X \sim U[a,b]$                      | $f_X(x) = \begin{cases} \frac{1}{b-1} & x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$     | x = np.random.random(low = a,  high = b)             |
| Exponential  | $X \sim \operatorname{Exp}(\lambda)$ | $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$ | $x = \text{np.random.exponential(scale} = \lambda)$  |
| Normal       | $X \sim \mathcal{N}(\mu, \sigma^2)$  | $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$       | $x=$ np.random.normal(loc= $\mu$ , scale= $\sigma$ ) |

# Example 1.1.3. (Deriving Likelihood Function from Python) Consider

where  $\boldsymbol{\theta} = (p, \mu_1, \mu_2, \sigma_1, \sigma_2) \in [0, 1] \times \mathbb{R}^2 \times \mathbb{R}^2_{>0}$ . Let X be a discrete random variable on  $(\Omega, \mathcal{F}, P)$  s.t  $X \sim \text{Bern}(p)$ . Let Y be a continuous random variable on  $(\Omega, \mathcal{F}, P)$  s.t  $Y \sim \mathcal{N}(\mu_X, \sigma_X^2)$ . Let us consider the pdf  $f_Y$  given X = x,

$$f_Y(y \mid X = x) = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left[-\frac{(y - \mu_x)^2}{2\sigma_x^2}\right]$$

Recall that the mixed joint density function is given by

$$f_Y(x,y) = f_Y(y \mid X = x) \cdot P(X = x) = \begin{cases} \frac{1-p}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(y-\mu_0)^2}{2\sigma_0^2}\right] & x = 0\\ \frac{p}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{(y-\mu_1)^2}{2\sigma_1^2}\right] & x = 1 \end{cases},$$

hence

$$f_y(y) = \sum_{x \in \overrightarrow{X}(\Omega)} f_Y(x, y) = \frac{1 - p}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(y - \mu_0)^2}{2\sigma_0^2}\right] + \frac{p}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{(y - \mu_1)^2}{2\sigma_1^2}\right].$$

So by the definition of the likelihood function,

$$\mathcal{L}_Y(y \mid \boldsymbol{\theta}) = \frac{1 - p}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(y - \mu_0)^2}{2\sigma_0^2}\right] + \frac{p}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{(y - \mu_1)^2}{2\sigma_1^2}\right].$$

### 1.1.5 Unsupervised Learning

**Definition 1.1.3.** (Parameterised Unsupervised Learning) Unsupervised learning is the process:

- 1. Given a dataset  $\langle x_i \rangle$  of the sample  $\langle X_i \rangle$  of size n,
- 2. Select a distribution F indexed by parameters  $\theta$  that models  $X_i$ .
- 3. Fit the distribution using MLE on  $\theta$ .

Sometimes referred to as generative modelling.

**Example 1.1.4.** Fit the distribution F with likelihood function

$$\mathcal{L}_Y(y \mid \boldsymbol{\theta}) = \frac{1 - p}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{(y - \mu_0)^2}{2\sigma_0^2}\right] + \frac{p}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{(y - \mu_1)^2}{2\sigma_1^2}\right],$$

indexed by  $\boldsymbol{\theta} = (p, \mu_0, \mu_1, \sigma_0, \sigma_1) \in [0, 1] \times \mathbb{R}^2 \times \mathbb{R}^2_{>0}$  using the data mp\_expenses. Use numerical optimization by Scipy. Note that we have the constrained domain  $[0, 1] \times \mathbb{R}^2 \times \mathbb{R}^2_{>0}$ , so let us apply the transformations

$$p = \frac{e^q}{1 + e^q} \qquad \qquad \sigma_i = e^{\tau_i}$$

giving us the parameter vector  $\boldsymbol{\theta'} = (q, \mu_0, \mu_1, \tau_0, \tau_1) \in \mathbb{R}^5$ . So we have

```
def f(\theta, y):
               p, \mu_0, \mu_1, \sigma_0, \sigma_1 = \boldsymbol{\theta}
                lik =(1-p)*\Phi(y , loc=\mu_0 , scale=\sigma_0) + p * \Phi(y , loc=\mu_1 , scale=\sigma_1)
       def T(\theta'):
               q, \mu_0, \mu_1, \tau_0, \tau_1 = \boldsymbol{\theta}'
               p = \mathsf{np.exp}(q) / (1 + \mathsf{np.exp}(q))
               \sigma_0, \sigma_1 = \mathsf{np.exp}([\tau_0, \tau_1])
 9
10
                return p, \mu_0, \mu_1, \sigma_0, \sigma_1
11
12 \quad y = \text{np.log10}(\text{mp\_expenses})
13 \theta'_0 = [...]
15 # Maximize the sum of likelihoods
16 \hat{\boldsymbol{\theta}}' = \text{scipy.optimize.fmin}(\text{lambda } \boldsymbol{\theta}': -\text{np.sum}(f(T(\boldsymbol{\theta}'), y)), \boldsymbol{\theta}'_0)
17 \hat{\boldsymbol{\theta}} = \mathsf{T}(\hat{\boldsymbol{\theta}}')
```

where  $\Phi$  is a vectorized Normal pdf.

### 1.1.6 Supervised Learning

**Definition 1.1.4.** (Parameterised Supervised Learning) Supervised learning is the process:

- 1. Given a labelled dataset  $\langle (x_i, y_i) \rangle$  of the sample  $\langle (X_i, Y_i) \rangle$  of size n, where  $x_i$  is the predictor variable and  $y_i$  is the label.
- 2. Select a distribution  $F_{Y_i}$  indexed by parameters  $\boldsymbol{\theta}$  and  $X_i$  that models  $Y_i$ .

3. Fit the distribution using MLE on  $\theta$ .

**Example 1.1.5.** (Straight-line Fit) Given labelled dataset  $\langle (x_i, y_i) \rangle$  of the sample  $\langle (X_i, Y_i) \rangle$  of size n s.t

$$(Y_i \mid X_i = x_i) \sim a + bx_i + \mathcal{N}(0, \sigma^2) = \mathcal{N}(a + bx_i, \sigma^2),$$

where  $\boldsymbol{\theta} = (a, b) \in \mathbb{R}^2$  and  $\sigma$  is known.

Recall that the pdf is

$$f_Y(y \mid x, a, b) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y - a - bx)^2}{2\sigma^2}\right].$$

Hence the likelihood function is given by

$$\mathcal{L}_{Y_1,...,Y_n}(y_1,...,y_n \mid x_1,...,x_n,a,b) = \prod_{i=1}^n f_Y(y_i \mid x_i,a,b)$$

$$= \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y_i - a - bx_i)^2}{2\sigma^2}\right]$$

and the log-likelihood function is

$$\mathcal{L}_{Y_1,\dots,Y_n}(y_1,\dots,y_n \mid x_1,\dots,x_n,a,b) = -\frac{n\log 2\pi}{2} - n\log \sigma - \sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{2\sigma^2}$$

So the MLE of a and b is

MLE 
$$[(a, b)] = \underset{a,b}{\operatorname{arg max}} \mathcal{L}_{Y_1, \dots, Y_n}(y_1, \dots, y_n \mid x_1, \dots, x_n, a, b)$$
  
=  $\underset{a,b}{\operatorname{arg max}} \sum_{i=1}^{n} (y_i - a - bx_i)^2$ 

Computing the partial derivatives of the log-likelihood function yields:

$$\frac{\partial \log \mathcal{L}_{Y_1,\dots,Y_n}(y_1,\dots,y_n \mid x_1,\dots,x_n,a,b)}{\partial a} = -2\sum_{i=1}^n (y_i - a - bx_i)$$
$$\frac{\partial \log \mathcal{L}_{Y_1,\dots,Y_n}(y_1,\dots,y_n \mid x_1,\dots,x_n,a,b)}{\partial b} = -2\sum_{i=1}^n (y_i - a - bx_i)x_i$$

So the stationary points are at:

$$a = \frac{1}{n} \sum_{i=1}^{n} y_i - bx_i = \overline{y} - b\overline{x}$$
$$b = \frac{\sum_{i=1}^{n} x_i y_i - ax_i}{\sum_{i=1}^{n} x_i^2}$$

Hence

$$MLE [a] = \overline{y} - MLE [b] \overline{x}$$

$$MLE [b] = \frac{\sum_{i} x_{i} y_{i} - a x_{i}}{\sum_{i} x_{i}^{2}}$$

Alternatively, using Scipy optimization, we have

```
\begin{array}{lll} & \mathbf{x}, \ \mathbf{y} = [ \ \dots \ ], \ [ \ \dots \ ] \\ & 2 & \sigma = \dots \\ & 3 \\ & 4 & \Phi = \mathsf{scipy.stats.norm.pdf} \\ & 5 \\ & 6 & \mathsf{def} \ \mathsf{f}(y, \ x, \ \theta) \\ & 7 & a, b = \theta \\ & 8 & \mathsf{lik} = \Phi(y, \ \mathsf{loc} = a + b \ * \ x, \ \mathsf{scale} = \sigma) \\ & 9 & \mathsf{return} \ \mathsf{np.log}(\mathsf{lik}) \\ & 10 \\ & 11 & \theta_0 = [ \ \dots \ ] \\ & 12 & \hat{a}, \hat{b} = \mathsf{scipy.optimize.fmin}(\mathsf{lambda} \ \theta \colon -\mathsf{np.sum}(\mathsf{f}(y, \ x, \ \theta)), \ \theta_0) \end{array}
```

## 1.2 Linear Regression

#### 1.2.1 Linear Models

• A type of supervised learning.

**Definition 1.2.1.** (Linear Model) Given a labelled data set  $\langle (\mathbf{x}_i, y_i) \rangle$  of the sample  $\langle (\mathbf{X}_i, Y_i) \rangle$  of size  $n, Y_i$  is said to have a linear model if for all  $y_i$ ,

$$y_i = \beta_0 x_{i0} + \dots + \beta_m x_{im} + \varepsilon_i,$$

where  $\varepsilon_i$  is the error term and  $\mathbf{x}_i = (x_{i0}, \dots, x_{im})$ , a vector of features and  $\beta_i \in \mathbb{R}$  is the parameter weighting for the jth feature.

• We often write

$$y = X\beta + \varepsilon$$
,

where

$$\mathbf{y} = (y_i)$$
  $\mathbf{X} = (\mathbf{x}_i^T)$   $\boldsymbol{\beta} = (\beta_i)$   $\boldsymbol{\varepsilon} = (\varepsilon_i)$ 

#### • Notation and Terminology:

- $\mathbf{y}$  is called the *response vector*,  $\mathbf{X}$  is a matrix of *regressors* or *features*. This matrix may contain values that are (non-linear) functions of other features. The model is still linear since it's linear in  $\boldsymbol{\beta}$ .
- Usually  $\mathbf{x}_{i0} = 1$ . The corresponding  $\beta_0$  is the *intercept*.
- $-\beta$  is a (m+1)-dimensional parameter vector. Sometimes called the regression coefficients. These elements  $\beta_j$  can be as the partial derivative

$$\forall i.\beta_j = \frac{\partial y_i}{\partial x_{ij}}.$$

 $-\varepsilon$  is a vector of error, or noise, terms

#### • Fitting a linear model:

- 1. Given a dataset  $\langle (\mathbf{x}_i, y_i) \rangle$  from a sample  $\langle (\mathbf{X}_i, Y_i) \rangle$  where  $Y_i$  is modelled by a linear model, that is to say  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ .
- 2. Estimate  $\beta$  such that the error term

$$\varepsilon = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$$

is minimized.

3. Commonly we use mean square error to minimize  $\beta$ 

$$MSE[\boldsymbol{\varepsilon}] = \frac{1}{n} \sum_{i} \varepsilon_i^2.$$

That is

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

**Theorem 1.2.1.** Given a data set  $\langle (\mathbf{x}_i, y_i) \rangle$  from the sample of  $\langle (\mathbf{X}_i, Y_i) \rangle$  of size n with the linear model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ . Then

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

*Proof.* We have

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} = \underset{\beta}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} \left( y_{i} - \sum_{j=1}^{m} x_{ij} \beta_{j} \right)^{2}}_{S}$$

Taking the partial derivative of S with reject to  $\beta_i$  yields:

$$\frac{\partial S}{\partial \beta_j} = 2\sum_{i=1}^n \varepsilon_i \frac{\partial \varepsilon_i}{\partial \beta_j} = -2\sum_{i=1}^n x_{ij} \left( y_i - \sum_{k=1}^m x_{ik} \beta_k \right)$$

Note that S is minimized when  $\partial_{\beta_j} S = 0$  for all  $0 \le j \le m$ , since S is convex. Hence

$$-2\sum_{i=1}^{n} x_{ij} \left( y_i - \sum_{k=1}^{m} x_{ik} \beta_k \right) = 0$$

$$\iff \sum_{k=1}^{m} \sum_{i=1}^{n} (x_{ij} x_{ik}) \beta_k = \sum_{i=1}^{n} x_{ij} y_i$$

$$\iff \sum_{k=1}^{m} (\mathbf{X}^T \mathbf{X})_{jk} \beta_k = (\mathbf{X}^T \mathbf{y})_j$$

$$\iff (\mathbf{X}^T \mathbf{X}) \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}$$

Hence  $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ .

Example 1.2.1. Fit the model

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

using computational methods. We have

```
 \begin{array}{lll} & \mathbf{x}, \ \mathbf{y} = [ \ \dots \ ], \ [ \ \dots \ ] \\ 2 & n = \mathsf{len}(\mathbf{y}) \\ 3 & \\ 4 & \mathbf{X} = \mathsf{np.column\_stack}\left([\mathsf{np.ones}(n), \ \mathbf{x}]\right) \\ 5 & \mathsf{model} = \mathsf{sklearn.linear\_model.LinearRegression}\left(\mathsf{fit\_intercept=False}\right) \\ 6 & \mathsf{model.fit}\left(\mathbf{X}, \ \mathbf{y}\right) \\ \end{array}
```

```
7 \alpha, \beta = \text{model.coef}_{-8}
9 # Sklearn always includes a one vector (without fit_intercept=False)
10 model = sklearn.linear_model.LinearRegression()
11 model.fit(np.column_stack([x]), y)
12 \alpha, (\beta,) = \text{model.intercept}_{-}, model.coef_
```

#### 1.2.2 Feature Design

#### **One-Hot Encoding**

• One-Hot Encoding: A feature encoding technique where categorical variables (or *factors*) are converted into binary vectors  $\mathbf{x}_i$  s.t  $\exists ! j.x_{ij} = 1 \land (\forall j' \neq j.x_{ij} = 0)$ . Where  $x_{ij} = 1$  implies that category j is observed. We denote this using the indicator function:  $\mathbf{I}_{cat=j}$ .

#### • Notation:

– Suppose we have a labelled dataset  $\langle (\mathbf{x}_i, y_i) \rangle$  from a sample  $\langle (\mathbf{X}_i, Y_i) \rangle$  of size n, with categories  $k_1, \ldots, k_\ell$ . Then the linear model is given by

$$\mathbf{y} = \sum_{1 \leq i \leq \ell} \mathbf{I}_{cat=i} \otimes (\mathbf{X}oldsymbol{eta}_i) + oldsymbol{arepsilon},$$

where  $\beta_i$  is the parameter vector for category i and  $\otimes$  is the tensor product (in this context, elementwise multiplication).

- Alternatively, we write

$$\mathbf{X} = egin{bmatrix} \mathbf{I}_{cat=i} \otimes \mathbf{x}_{i0} & \cdots & \mathbf{I}_{cat=i} \otimes \mathbf{x}_{im} & \cdots \\ \downarrow & & \downarrow & & \downarrow \end{bmatrix}$$

with  $\beta$  s.t

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_1 \ dots \ oldsymbol{eta}_\ell \ dots \ \end{pmatrix} \,.$$

This yields the model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ .

#### Example 1.2.2. Fit the model

Petal.Length = 
$$\alpha_s + \beta_s$$
Sepal.Length +  $\varepsilon$ ,

where  $\alpha_s$  and  $\beta_s$  are species-dependent parameters. We have the species setosa, versicolor, virginica.

#### Non-Linear Response

• Non-Linear Response: A linear model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$  is said to have a non-linear response iff  $\mathbf{x}_i$  is given by  $\mathbf{x}_i = f(\mathbf{t})$  where  $\mathbf{t}$  is some feature.

#### Periodic Patterns

- Periodic Pattern: A linear model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$  is said to have a periodic pattern iff  $\mathbf{x}_i$  is a periodic function of  $\mathbf{t}$ . e.g.  $\sin(2\pi\mathbf{t})$
- For example, a model for climate temperature may be:

$$T = \alpha + \beta \sin(2\pi t + \phi 1) + \varepsilon$$
,

where  $\boldsymbol{\beta} = \begin{bmatrix} \alpha & \beta & \phi \end{bmatrix}^T$ . Not linear, however, using the composite angle formulae, we have

$$\mathbf{T} = \alpha + \beta_1 \sin(2\pi \mathbf{t}) + \beta_2 \cos(2\pi \mathbf{t}),$$

where  $\beta' = \begin{bmatrix} \alpha & \beta_1 & \beta_2 \end{bmatrix}^T$  with  $\beta_1 = \beta \cos \phi$  and  $\beta_2 = \beta \sin \phi$ .

#### Secular Trend

• Secular Trend: A linear model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$  is said to have a secular trend if  $\mathbf{y}$  is a time-series that is monotonically increasing.

• For example, a model for climate temperature (with global warming):

$$\mathbf{T} = \alpha + \beta_1 \sin(2\pi \mathbf{t}) + \beta_2 \cos(2\pi \mathbf{t}) + \gamma \mathbf{t},$$

where  $\gamma \mathbf{t}$  is secular trend.

#### Diagnosing a Linear Model

- To determine whether a linear model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$  has the correct features, we can plot the error vector  $\boldsymbol{\varepsilon}$ .
- If  $\varepsilon$  varies with some feature t then we may rewrite our model as:

$$\mathbf{y} = \begin{bmatrix} \mathbf{X} & \mathbf{t} \end{bmatrix} \boldsymbol{\beta}' + \boldsymbol{\varepsilon}.$$

#### **Feature Spaces**

**Definition 1.2.2.** (Linear Span) Suppose  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq V$  of a space V over K. The span of S is defined as

$$\operatorname{span}(S) = \{(\lambda_k \cdot \mathbf{v}_k) : \lambda_k \in K\}.$$

**Definition 1.2.3.** (Linearly Dependent) Let V be a space over K. The vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$  are linearly dependent if

$$\exists \lambda_1, \dots, \lambda_n \in K. \sum_{k=1}^n \lambda_k \cdot \mathbf{v}_k = \mathbf{0} \implies \exists \lambda_k. \lambda_k \neq 0.$$

**Definition 1.2.4.** (Linearly Independent) Let V be a space over K, The vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$  are linearly independent if

$$\exists \lambda_1, \cdots, \lambda_n \in K. \sum_{k=1}^n \lambda_k \cdot \mathbf{v}_k = \mathbf{0} \implies \forall \lambda_k. \lambda_k = 0.$$

• We may determine whether the vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n$  are linearly independent using Numpy:

 $1 \ k = \mathsf{np.linalg.matrix\_rank} \left( \mathsf{np.column\_stack} \left( \left[ \mathbf{v}_1, \ldots, \mathbf{v}_n \right] \right) \right)$ 

If  $k = n \implies$  linear independence by definition of matrix rank (dimension of space spanned by columns)

• Given a feature space S spanned by  $\{\mathbf{x}_{i0}, \dots, \mathbf{x}_{im}\}$ , the feature vectors, and any vector  $\mathbf{x}$  (not necessarily a member of S), there exists a unique vector  $\tilde{x} \in S$  s.t

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{y} \in S} \|\mathbf{x} - \mathbf{y}\|^2.$$



 $\tilde{\mathbf{x}}$  is the *projection* of  $\mathbf{x}$  onto S. Note that  $(\mathbf{x} - \tilde{\mathbf{x}}) \cdot \mathbf{y} = 0$  for all  $\mathbf{y} \in S$ . Since  $\tilde{\mathbf{x}} \in S$ , there exists  $\beta_j$  s.t

$$\tilde{\mathbf{x}} = \sum_{j} \beta_{j} \mathbf{x}_{ij}.$$

Finding  $\beta_j$  is least squares estimation. If  $\mathbf{x}_{ij}$  are independent, then unique solution.

Method 1.2.1. (Interpreting Parameters) To interpret parameters of a linear model  $y = X\beta + \varepsilon$ :

- Inspect the relation between  $\mathbf{y}$  and  $\boldsymbol{\beta}$  for certain datapoints. (Gain some intuition)
- Ensure the feature vectors  $\mathbf{x}_0, \dots, \mathbf{x}_n$  are linearly independent. If not  $\implies$  parameters are non-identifiable and features are confounded.

### 1.2.3 Linear Regression

**Definition 1.2.5.** (Linear Regression) Given a labelled sample  $\langle (\mathbf{X}_i, Y_i) \rangle$  of size  $n, Y_i$  is said to be a linear regression if for all  $Y_i$ 

$$(Y_i \mid \mathbf{X}_i) \sim \beta_0 X_{i0} + \dots + \beta_m X_{im} + \mathcal{N}(0, \sigma^2),$$

where  $\mathbf{X}_i = (X_{i0}, \dots, X_{im})$  is the random variable feature vector and  $\beta_j, \sigma \in \mathbb{R}$  are parameters. We may write this as

$$(\mathbf{Y} \mid \mathbf{X}) \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I_n).$$

- **Note**: Not all linear models are linear regressions, since non-trivial assumptions:
  - Linearity:  $\mathbb{E}[Y_i \mid \mathbf{x}_i] = \sum_i \beta_k x_{ij}$
  - Normality:  $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$
  - Independence of errors:  $\varepsilon_1, \ldots, \varepsilon_n$  are independent / uncorrelated Cov  $[\varepsilon_i, \varepsilon_j] = \mathbb{E}[\varepsilon_i \varepsilon_j] = 0$  for all  $i \neq j$ .
- Given the data set  $\langle (\mathbf{x}_i, y_i) \rangle$ , we may fit the regression using least squares estimation on the model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.$$

**Theorem 1.2.2.** The maximum likelihood estimator of  $\beta$  is the least squares estimate:

$$\mathrm{MLE}\left[\boldsymbol{\beta}\right] = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \mathbf{y}.$$

*Proof.* Recall that the pdf  $f_Y$  is given by

$$f_Y(y \mid \mathbf{x}, \boldsymbol{\beta}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[ -\frac{(y - \sum_{j=1}^m x_j \beta_j)}{2\sigma^2} \right].$$

Hence the log-likelihood function is

$$\log \mathcal{L}_{Y_1,\dots,Y_n}(y_1,\dots,y_n \mid \mathbf{X},\boldsymbol{\beta},\sigma) = \sum_{i=1}^n \log f_{Y_i}(y_i \mid \mathbf{x}_i,\boldsymbol{\beta},\sigma)$$

$$= -\frac{n \log 2\pi}{2} - n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n \left( y_i - \sum_{j=1}^m x_{ij}\beta_j \right)^2$$

So the MLE of  $\boldsymbol{\beta}$  is

MLE 
$$[\boldsymbol{\beta}]$$
 =  $\underset{\boldsymbol{\beta}}{\operatorname{arg max}} \log \mathcal{L}_{Y_1,\dots,Y_n}(y_1,\dots,y_n \mid \mathbf{X},\boldsymbol{\beta},\sigma)$   
=  $\underset{\boldsymbol{\beta}}{\operatorname{arg max}} -\frac{1}{2\sigma^2} \sum_{i=1}^n \left( y_i - \sum_{j=1}^m x_{ij}\beta_j \right)^2$   
=  $\underset{\boldsymbol{\beta}}{\operatorname{arg min}} \sum_{i=1}^n \left( y_i - \sum_{j=1}^m x_{ij}\beta_j \right)^2$ 

By Theorem ??,

$$\mathrm{MLE}\left[\boldsymbol{\beta}\right] = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \mathbf{y}.$$

So we are done.

• Note that

$$\frac{\partial \log \mathcal{L}_{Y_1,\dots,Y_n}(y_1,\dots,y_n \mid \mathbf{X},\boldsymbol{\beta},\sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

$$\iff \sigma^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

So MLE 
$$[\sigma] = \sqrt{\frac{1}{n} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})}.$$

# 1.3 Computational Methods

## 1.3.1 Monte Carlo Integration

• Computational method for integrating multidimensional definite integral

$$I = \int_{\mathcal{D}} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \,.$$

• Recall for a continuous random variable X on  $(\Omega, \mathcal{F}, P)$ , for all  $g: \overrightarrow{X}(\Omega) \to \mathbb{R}$ ,

$$\mathbb{E}[g(X)] = \int_{\overrightarrow{X}(\Omega)} g(x) f_X(x) dx.$$

So define  $f(\mathbf{x}) = g(\mathbf{x})f_X(\mathbf{x})$ , then  $I = \mathbb{E}[g(\mathbf{X})]$ 

- Construct a sample  $\langle \mathbf{X}_i \rangle$  of size N, distributed over  $\mathcal{D}$  with pdf  $f_X$ .
- The Monte Carlo estimator of I, denoted  $\langle I^N \rangle$ , is

$$\langle I^N \rangle = \frac{1}{N} \sum_{i=1}^N \underbrace{\frac{f(\mathbf{X}_i)}{f_X(\mathbf{X_i})}}_{g(\mathbf{X}_i)} = \overline{Y_N},$$

where  $Y_i = g(\mathbf{X}_i) = f(\mathbf{X}_i)/f_X(\mathbf{X}_i)$ .

So by Strong Law of Large Numbers:

$$\lim_{N \to \infty} P\left(\left\langle I^N \right\rangle = I\right) = P(\overline{Y_N} - \mathbb{E}[Y]) = 1.$$

• Expectation:

$$\mathbb{E}\left[\left\langle I^{N}\right\rangle\right] = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\frac{f(\mathbf{X}_{i})}{f_{X}(\mathbf{X}_{i})}\right]$$
$$= \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[\frac{f(\mathbf{X}_{i})}{f_{X}(\mathbf{X}_{i})}\right]$$
$$= \frac{1}{N}\sum_{i=1}^{N}\int_{\mathbf{x}\in\overrightarrow{\mathbf{X}}(\Omega)}f(\mathbf{x})\,\mathrm{d}\mathbf{x}$$
$$= \int_{\mathcal{D}}f(\mathbf{x})\,\mathrm{d}\mathbf{x}$$

So unbiased estimator.

• Variance:

$$\operatorname{Var}\left[\left\langle I^{N}\right\rangle\right] = \operatorname{Var}\left[\frac{V}{N}\sum_{i=1}^{N}f(\mathbf{X}_{i})\right]$$

$$= \frac{1}{N^{2}}\operatorname{Var}\left[\sum_{i=1}^{N}\frac{f(\mathbf{X}_{i})}{f_{X}(\mathbf{X}_{i})}\right] \qquad \text{Non-linearity of variance}$$

$$= \frac{1}{N^{2}}\sum_{i=1}^{N}\operatorname{Var}\left[Y_{i}\right] \qquad \text{Variance of independent variables}$$

$$= \frac{1}{N}\operatorname{Var}\left[Y\right] \qquad \text{Identical distributions}$$

#### Uniform Monte Carlo

• Construct a sample  $\langle \mathbf{X}_i \rangle$  of size N, distributed uniformly in  $\mathcal{D}$ . So

$$f_X(\mathbf{x}) = \begin{cases} \frac{1}{V} & \text{if } \mathbf{x} \in \mathcal{D} \\ 0 & \text{otherwise} \end{cases}$$

where V is the volume over  $\mathcal{D}$ :  $V = \int_{\mathcal{D}} d\mathbf{x}$ 

• The Monte Carlo estimator of I is

$$\langle I^N \rangle = \frac{V}{N} \sum_{i=1}^N f(\mathbf{X}_i) = V \overline{Y_N},$$

where  $Y_i = f(\mathbf{X}_i)$ .

- **Problem**: Thus standard deviation of  $\langle I^N \rangle$  converges with rate  $O(\sqrt{N})$ .
- Solutions:
  - Use stratified sampling. Split the domain  $\mathcal{D}$  to N subdomains  $\mathcal{D}_1, \ldots, \mathcal{D}_N$ . This converges with O(N).
  - Use importance sampling.

**Example 1.3.1.** Compute the integral  $I = \int_a^b f(x) dx$  using computational methods.

```
\begin{array}{lll} 1 & N = & \dots \\ 2 & \mathbf{x} = \text{np.random.uniform}(a, b, \text{size}{=}N) \\ 3 & \left\langle I^N \right\rangle = (b-a) * \text{np.mean}(\mathbf{f}(\mathbf{x})) \end{array}
```

#### Importance Sampling

• Construct a sample  $\langle \tilde{\mathbf{X}}_i \rangle$  of size N, distributed over  $\mathcal{D}$  with pdf  $f_{\tilde{X}}$ . Define h such that

$$h(\mathbf{x}) = g(\mathbf{x}) \frac{f_X(\mathbf{x})}{f_{\tilde{X}}(\mathbf{x})}.$$

Then

$$\mathbb{E}\left[h(\tilde{\mathbf{X}})\right] = \mathbb{E}\left[g(\tilde{\mathbf{X}})\frac{f_X(\tilde{\mathbf{X}})}{f_{\tilde{X}}(\tilde{\mathbf{X}})}\right]$$
$$= \int_{\mathbf{x} \in \overrightarrow{\mathbf{X}}(\Omega)} g(\mathbf{x})\frac{f_X(\mathbf{x})}{f_{\tilde{X}}(\mathbf{x})}f_{\tilde{X}}(\mathbf{x}) d\mathbf{x}$$
$$= \int_{\mathcal{D}} g(\mathbf{x})f_X(\mathbf{x}) d\mathbf{x} = I$$

• Hence the importance sampling Monte Carlo estimator is

$$\langle I^N \rangle = \frac{1}{N} \sum_{i=1}^N \underbrace{g(\tilde{\mathbf{X}}_i) \frac{f_X(\tilde{\mathbf{X}}_i)}{f_{\tilde{X}}(\tilde{\mathbf{X}}_i)}}_{Y_i} = \frac{1}{N} \sum_{i=1}^N \frac{f(\tilde{\mathbf{X}}_i)}{f_{\tilde{X}}(\tilde{\mathbf{X}}_i)}.$$

• Select  $f_{\tilde{X}}$  s.t Var[Y] is minimized. This occurs if  $Y_i = \kappa$  where  $\kappa$  is some constant (since variance of constant is zero). Hence

$$f_{\tilde{X}}(\tilde{x}) = \frac{1}{\kappa} g(\tilde{x}) f_X(\tilde{x})$$

Note that  $\kappa = \int_{x \in \widetilde{X}(\Omega)} g(x) f_X(x) dx = I$ . So we approximate s.t  $f_{\widetilde{X}}(\widetilde{x}) \propto g(\widetilde{x}) f_X(\widetilde{x}) = f(\widetilde{x})$ .

## 1.3.2 Estimating Probabilities

#### Computational Probability

• Consider estimating  $P(X \in \mathcal{I})$  and we have a function to sample:  $\kappa()$ . Note that

$$\mathbb{E}\left[I_{X\in\mathcal{I}}\right] = P(X\in\mathcal{I}) = \int_{\overrightarrow{X}(\Omega)} I_{x\in\mathcal{I}} f_X(x) \, \mathrm{d}x.$$

• Using a Monte Carlo estimator, we have

$$\langle P(X \in \mathcal{I})^N \rangle = \frac{1}{N} \sum_{i=1}^N I_{X_i \in \mathcal{I}}.$$

```
 \begin{array}{lll} 1 & N, & \mathcal{I} = & \dots \\ 2 & \mathbf{x} = [\mathsf{rx}() \; \mathsf{for} \; \_ \; \mathsf{in} \; \mathsf{range}(N)] \\ 3 & p = \mathsf{np.mean}(\mathsf{np.where}(\mathbf{x} \; \mathsf{in} \; \mathcal{I}, \; 1, \; 0)) \end{array}
```

#### Computational Bayes

• Recall that Bayes' Law states:

$$\mathcal{L}_{X|Y}(x \mid Y = y) = \frac{\mathcal{L}_X(x)\mathcal{L}_{Y|X}(y \mid X = x)}{\mathcal{L}_Y(y)}.$$

- Suppose we have a function to sample:  $\kappa()$  and  $\mathcal{L}_{Y|X}$ :
  - 1. Generate a dataset  $\langle x_i \rangle$  of size N (using  $\kappa()$ )
  - 2. Compute the weights  $(w_i)$ :

$$w_i = \frac{\mathcal{L}_{Y|X}(y \mid X = x_i)}{\mathcal{L}_{Y}(y)},$$

where 
$$\mathcal{L}_Y(y) = \sum_i \mathcal{L}_{Y|X}(y \mid X = x_i)$$

3. Compute

$$\left\langle \mathbb{E}\left[h(X) \mid Y = y\right]^N \right\rangle = \frac{1}{N} \sum_{i=1}^N w_i h(x_i),$$

using a Monte Carlo estimator.

*Proof.* We have

$$\mathbb{E}\left[h(X) \mid Y = y\right] = \int_{x \in \overrightarrow{X}(\Omega)} h(x) f_{X|Y}(x \mid Y = y) \, \mathrm{d}x$$

$$= \int_{x \in \overrightarrow{X}(\Omega)} \underbrace{h(x) \kappa f_{Y|X}(y \mid X = x)}_{g(x)} f_X(x) \, \mathrm{d}x$$

$$= \int_{x \in \overrightarrow{X}(\Omega)} g(x) f_X(x) \, \mathrm{d}x$$

$$\left\langle \mathbb{E}\left[h(X) \mid Y = y\right]^N \right\rangle = \frac{1}{N} \sum_{i=1}^N g(x_i)$$
Monte Carlo Estimator

The constant  $\kappa$  is determined using

$$\kappa = 1 / \int_{x \in \overrightarrow{X}(\Omega)} \underbrace{f_{Y|X}(y \mid X = x)}_{g(x)} f_X(x) dx$$
$$= 1 / \mathbb{E} [g(X)]$$
$$\langle \kappa^N \rangle = 1 / \frac{1}{N} \sum_{i=1}^N f_{Y|X}(y \mid X = x_i)$$

So

$$\left\langle \mathbb{E}\left[h(X) \mid Y = y\right]^{N} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \kappa h(x_{i}) \mathcal{L}_{Y|X}(y \mid X = x) = \sum_{i=1}^{n} \frac{h(x_{i}) \mathcal{L}_{Y|X}(y \mid X = x)}{\sum_{j} \mathcal{L}_{Y|X}(y \mid X = x_{j})}.$$

- Note that for estimating  $P(X \in \mathcal{I} \mid Y = y)$ , use  $h(X) = I_{X \in \mathcal{I}}$ .
- Useful to plot the distribution  $(X \mid Y = y)$ , using histogram.

bar height = 
$$P(X \in \mathcal{I} \mid Y = y) = \sum_{i=1}^{N} w_i I_{x_i in \mathcal{I}} = \sum_{x_i in \mathcal{I}} w_i$$
.

In Python:

1 plt.hist(x, weights=w, density=True)

 $density = True \ ensures \ area = 1.$ 

**Example 1.3.2.** Given  $\Theta \sim U[0,1]$  and  $(Y \mid \Theta = \theta) \sim B(n,\theta)$ . Compute  $(\Theta \mid Y = y)$ .

## 1.4 Empirical Methods

• Empirical methods are based on datasets (observed).

#### 1.4.1 The Empirical Distribution

**Definition 1.4.1.** (Empirical Distribution) Let  $\langle X_i \rangle$  be a random sample of size n on  $(\Omega, \mathcal{F}, P)$  with cdf F. The empirical distribution function is defined as

$$F_n^*(x) = \frac{n(X_i \le x)}{n} = \frac{1}{n} \sum_{i=1}^n I_{X_i \le x}.$$

• Plotted:

```
\begin{array}{lll} 1 & \mathbf{x} = [ & \dots & ] \ \# \ \mathsf{dataset} \\ 2 & y = \mathsf{np.arange}(\mathbf{1}, \ \mathsf{len}(\mathbf{x}) \ + \ 1) \ / \ \mathsf{len}(\mathbf{x}) \ \# \ 1/n \, , \ \dots \\ 3 & \mathsf{plt.plot}(\mathsf{np.sort}(\mathbf{x}) \, , \ y \, , \ \mathsf{drawstyle="steps"}) \end{array}
```

• By strong law of large numbers:

$$\lim_{n \to 0} F_n^*(x) = F(x).$$

**Definition 1.4.2.** (Ordered Sample) Let  $\langle X_i \rangle$  be a random sample of size n. Let  $\pi: [1, n] \to [1, n]$  be a permutation s.t  $X_{\pi(i)} < X_{\pi(j)}$  for all i < j. We define the ordered sample to be  $\langle X_{(i)} \rangle$  s.t  $X_{(i)} = X_{\pi(i)}$ 

• Ordered samples reorder the sample s.t  $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ . Useful for defining  $X^*$ .

**Definition 1.4.3.** (Empirical Random Variable) Let be a random ordered sample  $\langle X_{(i)} \rangle$  of size n on  $(\Omega, \mathcal{F}, P)$  with cdf F. The empirical random variable  $X^*$  is random variable defined as  $X^* = X_{(K)}$  where  $K \sim U[1, n]$ . Hence the pmf is

$$P(X^* = x) = p_{X^*}(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i = x}.$$

- The cdf of  $X^*$  is  $F_n^*$ .
- $X^*$  models taking values from the dataset  $\langle x_i \rangle$  w/ uniform probability.
- The function rx\_star () is given by

```
1 x = [ ... ] # dataset of size n
2 def rx_star():
3 return np.random.choice(x, size=n) # generate dataset (size n)
```

• Expectation:

$$\mathbb{E}[X^*] = \mathbb{E}[X_{(K)}]$$

$$= \sum_{k=1}^n X_{(k)} P(K = k)$$

$$= \frac{1}{n} \sum_{k=1}^n X_{(k)}$$

• Variance:

$$Var [X^*] = \mathbb{E} \left[ \left( X_{(K)} - \mathbb{E} [X^*] \right)^2 \right]$$
$$= \sum_{k=1}^n \left( X_{(k)} - \mu \right)^2 P(K = k)$$
$$= \frac{1}{n} \sum_{i=1}^n \left( X_{(k)} - \mu \right)^2$$

• Suppose we have a random sample  $\langle X_i \rangle$  of size N. Let  $X^*$  be the empirical random variable of  $\langle X_i \rangle$ .

The Monte Carlo estimator of  $I = \int f(x) f_X(x) dx$  using  $\langle X_i \rangle$  is given by

$$\langle I^N \rangle = \frac{1}{N} \sum_{i=1}^N f(X_i) = \mathbb{E}\left[f(X^*)\right].$$

- Empirical distribution used:
  - No knowledge about the sample (dataset) apart from the realizations ⇒ cannot make any assumptions
  - No storage constraints.

## 1.4.2 KL Divergence

• In generative modelling, we have a dataset  $\langle x_i \rangle$  from a random sample  $\langle X_i \rangle$  of size n. We fit a parametric model  $\mathcal{M}$  for X with likelihood  $\mathcal{L}_X(x \mid \boldsymbol{\theta})$ .

• **Problem**: Is  $\mathcal{M}$  a "good fit" for the dataset. The KL diverge is a metric to measure whether  $\mathcal{M}$  is a "good fit".

**Definition 1.4.4.** (Kullback-Leibler Divergence) Let  $\mathcal{L}_{X^*}(\cdot)$  be the likelihood of the empirical distribution  $X^*$ , and  $\mathcal{L}_X(\cdot \mid \boldsymbol{\theta})$  be the likelihood of the proposed model  $\mathcal{M}$  with parameters  $\boldsymbol{\theta}$ . The KL divergence is

$$\mathrm{KL}\left(\mathcal{L}_{X^*}(\cdot) \mid\mid \mathcal{L}_X(\cdot \mid \boldsymbol{\theta})\right) = \sum_{x \in \overrightarrow{X^*}(\Omega)} \mathcal{L}_{X^*}(x) \log \frac{\mathcal{L}_{X^*}(x)}{\mathcal{L}_X(x \mid \boldsymbol{\theta})}.$$

This can be applied to any distribution, for continuous  $X^*$ , replace sum with integral

- Intuition:
  - The log-likelihood of the dataset  $\langle x_i \rangle$  is:

$$\log \mathcal{L}_{(X_i)}(x_1, \dots, x_n \mid \boldsymbol{\theta}) = \sum_{i=1}^n \log \mathcal{L}_X(x_i \mid \boldsymbol{\theta}) = \sum_{x \in \overrightarrow{X^*}(\Omega)} N_x \log \mathcal{L}_X(x \mid \boldsymbol{\theta}),$$

where  $N_x = \#$  of occurrences of  $x = n\mathcal{L}_{X^*}(x)$ .

- Above metric depends on n. Metric should be independent of dataset size:

$$\frac{1}{n}\log \mathcal{L}_{(X_i)}(x_1,\ldots,x_n\mid \boldsymbol{\theta}) = \sum_{x\in \overrightarrow{X^*}(\Omega)} \mathcal{L}_{X^*}(x)\log \mathcal{L}_X(x\mid \boldsymbol{\theta}).$$

– Metric should have a reference point. Define reference point as best-possible fit to  $\langle x_i \rangle$  (the empirical distribution). So

$$KL\left(\mathcal{L}_{X^*}(\cdot) \mid\mid \mathcal{L}_X(\cdot \mid \boldsymbol{\theta})\right) = \frac{1}{n} \log \mathcal{L}_{(X^*)}(x_1, \dots, x_n) - \log \mathcal{L}_{(X_i)}(x_1, \dots, x_n \mid \boldsymbol{\theta})$$
$$= \sum_{x \in \overrightarrow{X^*}(\Omega)} \mathcal{L}_{X^*}(x) \log \frac{\mathcal{L}_{X^*}(x)}{\mathcal{L}_{(X_i)}(x \mid \boldsymbol{\theta})}$$

• Properties:

 $-\overrightarrow{\mathrm{KL}}(P||Q) = [0,\infty)$ . Recall that Jensen's Inequality states that for X on  $(\Omega, \mathcal{F}, P)$ . If g is convex, then

$$E[g(X)] \ge g(\mathbb{E}[X]).$$

Instantiating for a discrete random variable X with pmf  $p_X$ :

$$\sum_{x \in \overrightarrow{X}(\Omega)} g(x) p_X(x) \ge g \left( \sum_{x \in \overrightarrow{X}(\Omega)} x p_X(x) \right).$$

Since  $-\log$  is concave, it follows that

$$KL(P || Q) = -\sum_{x \in \overrightarrow{X}(\Omega)} P(x) \log \frac{Q(x)}{P(x)}$$

$$\geq -\log \left(\sum_{x \in \overrightarrow{X}(\Omega)} P(x)\right)$$

$$= -\log 1 = 0$$

- If KL(P || Q) = 0, it follows that P(x) = Q(x).
- If  $\mathrm{KL}(P || Q) = \infty$ , exists  $x \in \overrightarrow{X}(\Omega)$  (in our dataset) s.t the proposed model Q(x) = 0 (proposed model says x shouldn't be in dataset)  $\Longrightarrow Q$  is a bad fit.

**Example 1.4.1.** (KL Divergence of Gaussians) Consider the continuous random variables X, Y on  $(\Omega, \mathcal{F}, P)$  with  $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$  and  $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ . We have

$$\mathcal{L}_X(x \mid \mu_X, \sigma_X^2) = \frac{1}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right]$$
$$\mathcal{L}_Y(y \mid \mu_Y, \sigma_Y^2) = \frac{1}{\sqrt{2\pi}\sigma_Y} \exp\left[-\frac{(y - \mu_Y)^2}{2\sigma_Y^2}\right]$$

By definition ??, we have

$$KL(\mathcal{L}_X(\cdot \mid \mu_X, \sigma_X^2) || \mathcal{L}_Y(\cdot \mid \mu_Y, \sigma_Y^2)) = \int_{x \in \overrightarrow{X}(\Omega)} \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) \log \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) \, \mathrm{d}x$$
$$- \int_{x \in \overrightarrow{X}(\Omega)} \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) \log \mathcal{L}_Y(x \mid \mu_Y, \sigma_Y^2) \, \mathrm{d}x$$

Let us first consider

$$\int_{x \in \overrightarrow{X}(\Omega)} \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) \log \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) dx$$

$$= \int_{x \in \overrightarrow{X}(\Omega)} \frac{1}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right] \log\left(\frac{1}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right]\right) dx$$

$$= \frac{1}{\sqrt{2\pi}\sigma_X} \int_{x \in \overrightarrow{X}(\Omega)} \left(-\log\sqrt{2\pi}\sigma_X - \frac{(x - \mu_X)^2}{2\sigma_X^2}\right) \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right] dx$$

$$= -\log\sqrt{2\pi}\sigma_X \int_{x \in \overrightarrow{X}(\Omega)} \frac{1}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right] dx$$

$$- \frac{1}{2\sigma_X^2} \int_{x \in \overrightarrow{X}(\Omega)} \frac{(x - \mu_X)^2}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right] dx$$

$$= -\frac{1}{2} \left(1 + \log 2\pi\sigma_X^2\right)$$

Similarly, we have

$$\int_{x \in \overrightarrow{X}(\Omega)} \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) \log \mathcal{L}_Y(x \mid \mu_Y, \sigma_Y^2) dx$$

$$= \frac{1}{\sqrt{2\pi}\sigma_X} \int_{x \in \overrightarrow{X}(\Omega)} \left( -\log \sqrt{2\pi}\sigma_Y - \frac{(x - \mu_Y)^2}{2\sigma_Y^2} \right) \exp \left[ -\frac{(x - \mu_X)^2}{2\sigma_X^2} \right] dx$$

$$= -\frac{1}{2} \log 2\pi \sigma_Y^2 \underbrace{\int_{x \in \overrightarrow{X}(\Omega)} \frac{1}{\sqrt{2\pi}\sigma_X} \exp \left[ -\frac{(x - \mu_X)^2}{2\sigma_X^2} \right] dx}_{1}$$

$$-\frac{1}{2\sigma_Y^2} \int_{x \in \overrightarrow{X}(\Omega)} \frac{(x - \mu_Y)^2}{\sqrt{2\pi}\sigma_X} \exp \left[ -\frac{(x - \mu_X)^2}{2\sigma_X^2} \right] dx$$

Note that

$$\int_{x \in \overrightarrow{X}(\Omega)} \frac{(x - \mu_Y)^2}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right] dx$$

$$= \int_{x \in \overrightarrow{X}(\Omega)} x^2 \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) dx - 2\mu_Y \int_{x \in \overrightarrow{X}(\Omega)} x \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) dx + \mu_Y^2 \int_{x \in \overrightarrow{X}(\Omega)} \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) dx$$

$$= \mathbb{E}\left[X^2\right] - 2\mu_Y \mu_X + \mu_Y^2$$

Recall that  $\sigma_X^2 = \mathbb{E}[X^2] - \underbrace{(\mathbb{E}[X])^2}_{\mu_X^2}$ . So we have

$$\int_{x \in \overrightarrow{X}(\Omega)} \frac{(x - \mu_Y)^2}{\sqrt{2\pi}\sigma_X} \exp\left[-\frac{(x - \mu_X)^2}{2\sigma_X^2}\right] dx = \sigma_X^2 + \mu_X^2 - 2\mu_Y \mu_X + \mu_Y^2$$
$$= \sigma_X^2 + (\mu_X - \mu_Y)^2$$

Hence

$$\int_{x \in \overrightarrow{X}(\Omega)} \mathcal{L}_X(x \mid \mu_X, \sigma_X^2) \log \mathcal{L}_Y(x \mid \mu_Y, \sigma_Y^2) dx = -\frac{1}{2} \log 2\pi \sigma_Y^2 - \frac{\sigma_X^2 + (\mu_X - \mu_Y)^2}{2\sigma_Y^2}$$

So the KL divergence is given by

$$KL(\mathcal{L}_X(\cdot \mid \mu_X, \sigma_X^2) || \mathcal{L}_Y(\cdot \mid \mu_Y, \sigma_Y^2)) = -\frac{1}{2} \left( 1 + \log 2\pi \sigma_X^2 \right) + \frac{1}{2} \log 2\pi \sigma_Y^2 + \frac{\sigma_X^2 + (\mu_X - \mu_Y)^2}{2\sigma_Y^2}$$
$$= \log \frac{\sigma_Y}{\sigma_X} + \frac{\sigma_X^2 + (\mu_X - \mu_Y)^2}{2\sigma_Y^2} - \frac{1}{2}$$

# 2 Inference

• *Inference* is the process of deducing properties of an unknown probably model using datasets.

# 2.1 Bayesianism

• Philosophy:

probability is the right way to describe uncertainity.

**Definition 2.1.1.** (Bayesian Inference) For some hypothesis H, dependent on the random sample  $\langle X_i \rangle$  of size n, referred to as *evidence*, then

$$\mathcal{L}_{H|(X_i)}(H \mid X_1, \dots, X_n) = \frac{\mathcal{L}_{(X_i)|H}(X_1, \dots, X_n \mid H)\mathcal{L}_H(H)}{\mathcal{L}_{(X_i)}(X_1, \dots, X_n)},$$

where

- $\mathcal{L}_H(H)$  is the prior likelihood.
- $\mathcal{L}_{H|(X_i)}(H \mid X_1, \dots, X_n)$  is the posterior likelihood. The likelihood of the hypothesis given the evidence.
- $\mathcal{L}_{(X_i)|H}(X_1,\ldots,X_n\mid H)$  is the likelihood of the evidence, given the hypothesis H.
- $\mathcal{L}_{(X_i)}(X_1,\ldots,X_n)$  is the marginal likelihood.

**Bayesian Inference** is the process of computing  $\mathcal{L}_{H|(X_i)}$ , the posterior likelihood.

- Often denote  $\{\Theta = \theta\}$  as H where  $\Theta$  is a random variable.
- **Problem**: The prior distribution isn't specified by Bayesianism, therefore varies from one statistician to another.

### 2.1.1 Finding the Posterior

• Two methods for finding the posterior distribution,  $(\Theta \mid \mathbf{X} = \mathbf{x})$ :

#### - Computational:

- \* Method:
  - 1. Generate a dataset  $\langle \theta_i \rangle$  of size N using the prior distribution of  $\Theta$ .
  - 2. Compute the weights  $(w_i)$  given the dataset  $\langle x_i \rangle$  of size m:

$$w_i = \frac{\mathcal{L}_{(X_i)\mid\Theta}(\mathbf{x}\mid\Theta=\theta_i)}{\sum_j \mathcal{L}_{(X_i)\mid\Theta}(\mathbf{x}\mid\Theta=\theta_j)}.$$

3. Approximate  $(\Theta \mid \mathbf{X} = \mathbf{x})$  using

$$\langle P(\Theta \in \mathcal{I} \mid \mathbf{X} = \mathbf{x})^N \rangle = \frac{1}{N} \sum_{i=1}^N w_i I_{\theta_i \in \mathcal{I}}.$$

See section??

- \* **Problem**: For large m,  $\mathcal{L}_{(X_i)|\Theta}(x_1, \ldots, x_m \mid \Theta = \theta_i)$  will be infinitesimally small  $\Longrightarrow$  underflow.
- \* Solution: Use log likelihood function  $\log \mathcal{L}_{(X_i)|\Theta}$ :

$$\log \mathcal{L}_{(X_i)|\Theta}(x_1,\ldots,x_m \mid \Theta = \theta) = \sum_{i=1}^m \log \mathcal{L}_{X_i|\Theta}(x_i \mid \Theta = \theta).$$

#### - Mathematical:

- \* Method:
  - 1. Let  $\Theta$  be a random variables on  $(\Omega, \mathcal{F}, P)$  and  $\langle X_i \rangle$  be a random sample on  $(\Omega, \mathcal{F}, P)$  of size m. Determine the prior likelihood  $\mathcal{L}_{\Theta}$ .
  - 2. Determine the posterior likelihood using Bayes' Theorem:

$$\mathcal{L}_{\Theta|(X_i)}(\theta \mid \mathbf{X} = \mathbf{x}) = \kappa \mathcal{L}_{(X_i)|\Theta}(\mathbf{x} \mid \Theta = \theta) \mathcal{L}_{\Theta}(\theta),$$

where (for a continuous random variable  $\Theta$ )

$$\kappa = \frac{1}{\mathcal{L}_{(X_i)}(\mathbf{x})} = 1 / \int_{\theta \in \overrightarrow{\Theta}(\Omega)} \mathcal{L}_{(X_i)|\Theta}(\mathbf{x} \mid \Theta = \theta) \mathcal{L}_{\Theta}(\theta) \, d\theta.$$

- 3. Reason about  $(\Theta \mid \mathbf{X} = \mathbf{x})$  using  $\mathcal{L}_{\Theta \mid (X_i)}(\theta \mid \mathbf{X} = \mathbf{x})$ .
- \* **Problem**: Mathematical Bayes' can result in intractable integrals.
- \* Solution: Use Computational Bayes'.

**Example 2.1.1.** For  $\Theta \sim U[0,1]$ . For the sample  $\langle X_i \rangle$  of size n s.t  $(X_i \mid \Theta = \theta) \sim \text{Bernoulli}(\theta)$ . Determine  $(\Theta \mid \mathbf{X})$ .

We have

$$\mathcal{L}_{\Theta}(\theta) = 1$$
  $\mathcal{L}_{X_i \mid \Theta}(x \mid \theta) = \theta$ 

Hence by Bayes' Theorem

$$\mathcal{L}_{\Theta|(X_i)}(\theta \mid \mathbf{x}) = \kappa \mathcal{L}_{(X_i)|\Theta}(\mathbf{x} \mid \theta) \mathcal{L}_{\Theta}(\theta)$$
$$= \kappa \theta^{S} (1 - \theta)^{n - S}$$

where  $S = \sum_{i=1}^{n} I_{X_i=1}$ . By inspection, we have

$$(\Theta \mid \mathbf{X}) \sim \text{Beta}(S+1, n-S+1),$$

with

$$\kappa = \frac{\Gamma(n+2)}{\Gamma(S+1)\Gamma(n-S+1)}.$$

**Example 2.1.2.** For  $\Theta = (\Theta_1, \Theta_2) \sim (\operatorname{Exp}(\lambda_1), \operatorname{Exp}(\lambda_2))$  with the sample  $\langle X_i \rangle$  of size n s.t  $(X_i \mid \Theta = (\theta_1, \theta_2)) \sim U[\theta_1, \theta_1 + \theta_2]$ . Determine  $(\Theta \mid \mathbf{X})$  (both computationally and mathemeatically).

We have

$$\mathcal{L}_{\Theta_i}(\theta_i) = \lambda_i e^{-\lambda_i \theta_i}$$

So the joint likelihood is given by

$$\mathcal{L}_{\Theta}(\theta = (\theta_1, \theta_2)) = \prod_{i=1}^{2} L_{\Theta_i}(\theta_i) = \left(\prod_{i=1}^{2} \lambda_i\right) \exp\left[-\sum_{i} \lambda_i \theta_i\right].$$

We note that

$$\mathcal{L}_{X|\Theta}(x \mid \theta_1, \theta_2) = \frac{1}{b} I_{\theta_1 \le x \le \theta_1 + \theta_2}.$$

Hence

$$\mathcal{L}_{(X_i)|\Theta}(\mathbf{x} \mid \theta_1, \theta_2) = \prod_{i=1}^n I_{\theta_1 \le x_i \le \theta_1 + \theta_2}$$
$$= \frac{1}{\theta_2^n} I_{\theta_1 \le \min_i x_i} I_{\max_i x_i \le \theta_1 + \theta_2}$$

So by Bayes' Theorem, we have

$$\mathcal{L}_{\Theta|(X_i)}(\theta_1, \theta_2 \mid \mathbf{x}) = \kappa \mathcal{L}_{(X_i)\mid\Theta}(\mathbf{x} \mid \theta_1, \theta_2) \mathcal{L}_{\Theta}(\theta_1, \theta_2)$$

$$= \frac{\kappa}{\theta_2^n} I_{\theta_1 \leq \min_i x_i} I_{\max_i x_i \leq \theta_1 + \theta_2} \lambda_1 \lambda_2 \exp\left[-\lambda_1 \theta_1 - \lambda_2 \theta_2\right]$$

Computationally, we have

**Example 2.1.3.** (Model Comparison) Consider K parameteric models  $\mathcal{M}_1, \ldots, \mathcal{M}_K$ . Let the discrete random variable M model the correct (or optimal model) s.t  $\overrightarrow{M}(\Omega) = \{\mathcal{M}_1, \ldots, \mathcal{M}_K\}$ . Let  $\Theta_j$  denote the random variable modelling the model  $\mathcal{M}_j$ 's parameters, with the priors  $\mathcal{L}_M(\cdot)$  ad  $\mathcal{L}_{\Theta_j}(\cdot)$ .

Let  $\langle X_i \rangle$  be a random sample of size n. For the model  $\mathcal{M}_j$ , we have the likelihood  $\mathcal{L}_{X|\Theta_j}^{\mathcal{M}_j}(x \mid \boldsymbol{\theta}_j)$ . Hence our combined prior is given by

$$\mathcal{L}_{M,(\boldsymbol{\Theta}_j)}(m,\boldsymbol{\theta}_1\ldots,\boldsymbol{\theta}_K) = \mathcal{L}_M(m)\prod_{j=1}^K \mathcal{L}_{\boldsymbol{\Theta}_j}(\boldsymbol{\theta}_j).$$

We note that

$$\mathcal{L}_{X|M,(\boldsymbol{\Theta}_j)}(x \mid m, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K) = \sum_{j=1}^K I_{m=\mathcal{M}_j} \mathcal{L}_{X|\boldsymbol{\Theta}_j}^{\mathcal{M}_j}(x \mid \boldsymbol{\theta}_j).$$

So our evidence is given by

$$\mathcal{L}_{(X_i)|M,(\boldsymbol{\Theta}_j)}(\mathbf{x} \mid m, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K) = \prod_{i=1}^n \mathcal{L}_{X_i|M,(\boldsymbol{\Theta}_j)}(x_i \mid m, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K)$$
$$= \prod_{i=1}^n \sum_{j=1}^K I_{m=\mathcal{M}_j} \mathcal{L}_{X|\boldsymbol{\Theta}_j}^{\mathcal{M}_j}(x_i \mid \boldsymbol{\theta}_j)$$

So by Bayes' Theorem, we have

$$\mathcal{L}_{M,(\boldsymbol{\Theta}_{j})|(X_{i})}(m,\boldsymbol{\theta}_{1},\ldots,\boldsymbol{\theta}_{K}\mid\mathbf{x}) = \kappa\mathcal{L}_{(X_{i})|M,(\boldsymbol{\Theta}_{j})}(\mathbf{x}\mid m,\boldsymbol{\theta}_{1},\ldots,\boldsymbol{\theta}_{K})\mathcal{L}_{M,(\boldsymbol{\Theta}_{j})}(m,\boldsymbol{\theta}_{1},\ldots,\boldsymbol{\theta}_{K})$$

$$= \kappa\left(\prod_{i=1}^{n}\sum_{j=1}^{K}I_{m=\mathcal{M}_{j}}\mathcal{L}_{X|\boldsymbol{\Theta}_{j}}^{\mathcal{M}_{j}}(x_{i}\mid\boldsymbol{\theta}_{j})\right)\left(\mathcal{L}_{M}(m)\prod_{j=1}^{K}\mathcal{L}_{\boldsymbol{\Theta}_{j}}(\boldsymbol{\theta}_{j})\right)$$

Let us consider the marginal distribution  $\mathcal{L}_{M|(X_i)}(m \mid \mathbf{x})$ . So we have

$$\mathcal{L}_{M|(X_{i})}(m \mid \mathbf{x}) = \int_{\prod_{j=1}^{K} \overrightarrow{\Theta_{j}}(\Omega)} \mathcal{L}_{M,(\Theta_{j})|(X_{i})}(m, \boldsymbol{\theta}_{1}, \dots, \boldsymbol{\theta}_{K} \mid \mathbf{x}) d\boldsymbol{\theta}_{1} \cdots d\boldsymbol{\theta}_{K}$$

$$= \kappa \mathcal{L}_{M}(m) \int_{\prod_{j=1}^{K} \overrightarrow{\Theta_{j}}(\Omega)} \prod_{i=1}^{n} \sum_{j=1}^{K} I_{m=\mathcal{M}_{j}} \mathcal{L}_{X|\Theta_{j}}^{\mathcal{M}_{j}}(x_{i} \mid \boldsymbol{\theta}_{j}) \prod_{j=1}^{K} \mathcal{L}_{\Theta_{j}}(\boldsymbol{\theta}_{j}) d\boldsymbol{\theta}_{1} \cdots d\boldsymbol{\theta}_{K}$$

Without loss of generality, let  $m = \mathcal{M}_{\alpha}$ , so we have

$$\mathcal{L}_{M|(X_{i})}(\mathcal{M}_{\alpha} \mid \mathbf{x}) = \kappa \mathcal{L}_{M}(\mathcal{M}_{\alpha}) \int_{\prod_{j=1}^{K} \overrightarrow{\Theta_{j}}(\Omega)} \prod_{i=1}^{n} \mathcal{L}_{X|\Theta_{\alpha}}^{\mathcal{M}_{\alpha}}(x_{i} \mid \boldsymbol{\theta}_{\alpha}) \prod_{j=1}^{K} \mathcal{L}_{\Theta_{j}}(\boldsymbol{\theta}_{j}) d\boldsymbol{\theta}_{1} \cdots d\boldsymbol{\theta}_{K}$$

$$= \kappa \mathcal{L}_{M}(\mathcal{M}_{\alpha}) \int_{\overrightarrow{\Theta_{1}}(\Omega)} \mathcal{L}_{\Theta_{1}}(\boldsymbol{\theta}_{1}) d\boldsymbol{\theta}_{1} \cdots \int_{\overrightarrow{\Theta_{\alpha}}(\Omega)} \prod_{i=1}^{n} \mathcal{L}_{X|\Theta_{\alpha}}^{\mathcal{M}_{\alpha}}(x_{i} \mid \boldsymbol{\theta}_{\alpha}) \mathcal{L}_{\Theta_{\alpha}}(\boldsymbol{\theta}_{\alpha}) d\boldsymbol{\theta}_{\alpha}$$

$$\cdots \int_{\overrightarrow{\Theta_{n}}(\Omega)} \mathcal{L}_{\Theta_{n}}(\boldsymbol{\theta}_{n}) d\boldsymbol{\theta}_{n}$$

$$= \kappa \mathcal{L}_{M}(\mathcal{M}_{\alpha}) \int_{\overrightarrow{\Theta_{\alpha}}(\Omega)} \prod_{i=1}^{n} \mathcal{L}_{X|\Theta_{\alpha}}^{\mathcal{M}_{\alpha}}(x_{i} \mid \boldsymbol{\theta}_{\alpha}) \mathcal{L}_{\Theta_{\alpha}}(\boldsymbol{\theta}_{\alpha}) d\boldsymbol{\theta}_{\alpha}$$

## 2.1.2 Interpreting the Posterior Distribution

• Desire to summarize posterior distribution.

#### Posterior Point Estimates

• Maximum a posteriori: The maximum a posteriori (MAP) estimates  $\Theta$ , denoted  $\hat{\theta}_{MAP}$  as the mode of the posterior distribution ( $\Theta \mid \mathbf{X} = \mathbf{x}$ ):

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{arg max}} \mathcal{L}_{\Theta|(X_i)}(\theta \mid \mathbf{X} = \mathbf{x}).$$

For computational Bayes':

```
\begin{array}{ccc} 1 & \mathsf{def} \ \hat{\theta}_{MAP} \big( \theta \mathsf{\_sample} \;,\; w \big) \colon \\ 2 & \mathsf{return} \ \theta \mathsf{\_sample} \big[ \mathsf{np.argmax} \big( w \big) \big] \end{array}
```

• Mean and Median: Estimates  $\Theta$  using the mean or median of the posterior distribution ( $\Theta \mid \mathbf{X} = \mathbf{x}$ )

$$\begin{split} \hat{\theta}_{\mu} &= \mathbb{E}\left[\Theta \mid \mathbf{x} = \mathbf{x}\right] \\ \hat{\theta}_{median} &= \max_{\theta} \left\{\theta \in \mathbb{R} : P(X \leq \theta) \geq \frac{1}{2} \land P(X \geq \theta) \geq \frac{1}{2} \right\} \end{split}$$

For computational Bayes':

```
\begin{array}{lll} & \operatorname{def} \ \hat{\theta}_{\mu}\big(\theta\_\operatorname{sample}\,,\ w\big) \colon \\ 2 & \operatorname{return}\ \operatorname{np.sum}\big(w\ *\ \theta\_\operatorname{sample}\big) \\ 3 & \\ 4 & \operatorname{def} \ \hat{\theta}_{median}\big(\theta\_\operatorname{sample}\,,\ w\big) \colon \\ 5 & \theta\_\operatorname{sample}\,,\ w = \operatorname{np.sort}\big(\theta\_\operatorname{sample}\big)\,,\ \operatorname{np.sort}\big(w\big) \\ 6 & F_{\Theta|(X_i)} = \operatorname{np.cumsum}(w) \\ 7 & \operatorname{return}\ \theta\_\operatorname{sample}\big[F_{\Theta|(X_i)}\ <=\ 0.5\big]\big[-1\big] \end{array}
```

• Expected Posterior Loss: Define a loss function:  $L(\phi, \theta)$  which determines the loss if  $\phi$  is the estimate and  $\theta$  is the true value. The estimate  $\hat{\theta}$  is

$$\hat{\theta} = \operatorname*{arg\,min}_{\phi} \mathbb{E} \left[ L(\phi, \Theta) \mid \mathbf{X} = \mathbf{x} \right].$$

**Example 2.1.4.** (Bayesian Linear Models) For the labelled sample  $\langle (\mathbf{X}_i, Y_i) \rangle$  of size n with  $(Y_i \mid \mathbf{X}_i = \mathbf{x}_i, \boldsymbol{\beta}, \Sigma^2 = \sigma^2) \sim \mathcal{N}(\boldsymbol{\beta}^T \mathbf{x}_i, \sigma^2)$ , where  $\Sigma^2$  and  $\boldsymbol{\beta}$  have the prior distributions:

$$\Sigma^2 \sim \text{InverseGamma}(a, b)$$
  $(\beta \mid \sigma^2) \sim \mathcal{N}_m(\boldsymbol{\mu}_{\boldsymbol{\beta}}^0, \sigma^2 \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^0)$ 

where a, b > 0 and  $\Lambda^0_{\beta}$  is a positive symmetric matrix. Hence

$$\mathcal{L}_{\Sigma^2}(\sigma^2) = \frac{b^a}{\Gamma(a)} (\sigma^2)^{a-1} \exp\left[-\frac{b}{\sigma^2}\right]$$

$$\mathcal{L}_{\boldsymbol{\beta}|\Sigma^2}(\boldsymbol{\beta} \mid \sigma^2) = (2\pi\sigma^2)^{-\frac{m}{2}} (\det \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^0)^{-\frac{m}{2}} \exp\left[-\frac{1}{2\sigma^2} (\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^0)^T (\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^0)^{-1} (\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^0)\right]$$

Find the MAP estimate for  $\boldsymbol{\beta}$  given  $\boldsymbol{\mu}_{\boldsymbol{\beta}}^0 = \mathbf{0}$  and  $\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^0 = \mathbf{I}_m$ . We note that  $(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\beta}, \sigma^2) \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$ . Hence

$$\mathcal{L}_{(Y_i)\mid(X_i),\boldsymbol{\beta},\Sigma^2}(\mathbf{y}\mid\mathbf{X},\boldsymbol{\beta},\sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}}\exp\left[-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})^T(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})\right]$$

and

$$\mathcal{L}_{\boldsymbol{\beta},\Sigma^2}(\boldsymbol{\beta},\sigma^2) = \mathcal{L}_{\boldsymbol{\beta}\mid\Sigma^2}(\boldsymbol{\beta}\mid\sigma^2)\mathcal{L}_{\Sigma^2}(\sigma^2).$$

Hence, by Bayes' Theorem we have

$$\mathcal{L}_{\boldsymbol{\beta}, \Sigma^{2} \mid ((X_{i}, Y_{i}))}(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}, \mathbf{X}) = \kappa \mathcal{L}_{(Y_{i}) \mid (X_{i}), \boldsymbol{\beta}, \Sigma^{2}}(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\beta}, \sigma^{2}) \mathcal{L}_{\boldsymbol{\beta}, \Sigma^{2}}(\boldsymbol{\beta}, \sigma^{2})$$

$$= \kappa \left(2\pi\sigma^{2}\right)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right]$$

$$\times (2\pi\sigma^{2})^{-\frac{m}{2}}(\det \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-\frac{m}{2}} \exp\left[-\frac{1}{2\sigma^{2}}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})\right]$$

$$\times \frac{b^{a}}{\Gamma(a)}(\sigma^{2})^{a-1} \exp\left[-\frac{b}{\sigma^{2}}\right]$$

$$= \kappa'(\sigma^{2})^{-\frac{n}{2} - \frac{m}{2} + a - 1} \exp\left[-\frac{A}{2\sigma^{2}}\right]$$

where

$$A = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + (\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0}) + 2b$$

$$= \mathbf{y}^{T}\mathbf{y} - \mathbf{y}\mathbf{X}\boldsymbol{\beta} - \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{y} + \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}$$

$$+ \boldsymbol{\beta}^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\beta} - \boldsymbol{\beta}^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0} - (\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\beta} + (\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0}$$

$$+ 2b$$

$$= \boldsymbol{\beta}^{T}\left[\mathbf{X}^{T}\mathbf{X} + (\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\right]\boldsymbol{\beta} - \boldsymbol{\beta}^{T}\left[\mathbf{X}^{T}\mathbf{y} + (\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0}\right] - \left[\mathbf{y}^{T}\mathbf{X} + (\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\right]\boldsymbol{\beta}$$

$$+ \left[(\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0} + 2b + \mathbf{y}^{T}\mathbf{y}\right]$$

Let us define

$$oldsymbol{\Lambda}_{oldsymbol{eta}} = \left[ \mathbf{X}^T \mathbf{X} + (oldsymbol{\Lambda}_{oldsymbol{eta}}^0)^{-1} 
ight]^{-1} \ oldsymbol{\mu}_{oldsymbol{eta}} = oldsymbol{\Lambda}_{oldsymbol{eta}} \left[ \mathbf{X}^T \mathbf{y} + \left( oldsymbol{\Lambda}_{oldsymbol{eta}}^0 
ight)^{-1} oldsymbol{\mu}_{oldsymbol{eta}}^0 
ight]$$

So we have

$$A = \boldsymbol{\beta}^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\beta} - \boldsymbol{\beta}^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\beta} + \left[ (\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T} (\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0} + 2b + \mathbf{y}^{T} \mathbf{y} \right]$$
$$= (\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}})^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} (\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}}) - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}} + \left[ (\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T} (\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0} + 2b + \mathbf{y}^{T} \mathbf{y} \right]$$

Hence

$$\mathcal{L}_{\boldsymbol{\beta}, \Sigma^{2} | ((X_{i}, Y_{i}))}(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}, \mathbf{X}) = \kappa'(\sigma^{2})^{-\frac{m}{2}} \exp \left[ -\frac{(\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}})^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} (\boldsymbol{\beta} - \boldsymbol{\mu}_{\boldsymbol{\beta}})}{2\sigma^{2}} \right] \times (\sigma^{2})^{-\frac{n}{2} + a - 1} \exp \left[ -\frac{(\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T} (\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}}^{0} + 2b + \mathbf{y}^{T} \mathbf{y} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{T} \boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\mu}_{\boldsymbol{\beta}}}{2\sigma^{2}} \right]$$

We also note that

$$\mathcal{L}_{\boldsymbol{\beta}, \Sigma^2 \mid ((X_i, Y_i))}(\boldsymbol{\beta}, \sigma^2 \mid \mathbf{y}, \mathbf{X}) = \mathcal{L}_{\boldsymbol{\beta} \mid \Sigma^2, ((X_i, Y_i))}(\boldsymbol{\beta} \mid \sigma^2, \mathbf{y}, \mathbf{X}) \mathcal{L}_{\Sigma^2 \mid ((X_i, Y_i))}(\sigma^2 \mid \mathbf{y}, \mathbf{X}).$$

Hence

$$(\boldsymbol{\beta} \mid \sigma^{2}, \mathbf{y}, \mathbf{X}) \sim \mathcal{N}_{m}(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \sigma^{2}\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})$$

$$(\Sigma^{2} \mid \mathbf{y}, \mathbf{X}) \sim \text{InverseGamma}\left(-\frac{n}{2} + a, \frac{(\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0})^{T}(\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{0})^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}^{0} + 2b + \mathbf{y}^{T}\mathbf{y} - \boldsymbol{\mu}_{\boldsymbol{\beta}}^{T}\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}}{2}\right)$$

Note that the MAP estimate for  $\boldsymbol{\beta}$  given  $\boldsymbol{\mu}_{\boldsymbol{\beta}}^0 = \mathbf{0}$  and  $\boldsymbol{\Lambda}_{\boldsymbol{\beta}}^0 = \mathbf{I}_m$  is the MLE / Least sequares estimate

$$\hat{\boldsymbol{\beta}}_{MAP} = \underset{\boldsymbol{\beta}}{\operatorname{arg max}} \, \mathcal{L}_{\boldsymbol{\beta} \mid \Sigma^{2}, ((X_{i}, Y_{i}))}(\boldsymbol{\beta} \mid \sigma^{2}, \mathbf{y}, \mathbf{X})$$

$$= \underset{\boldsymbol{\beta}}{\operatorname{arg min}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \boldsymbol{\beta}^{T} \boldsymbol{\beta}$$

$$= (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X} \mathbf{y}$$

#### Posterior Confidence Intervals

**Definition 2.1.2.** (Confidence Interval) Let  $\langle X_i \rangle$  be a random sample on  $(\Omega, \mathcal{F}, P)$  of size n and  $t : \langle X_i \rangle \to \mathbb{R}$  be a statistic.

A confidence interval for the statistic t with confidence level  $\gamma \in [0, 1]$  is the interval  $[l(\mathbf{X}), h(\mathbf{X})]$  such that

$$P(l(\mathbf{X}) \le t(\mathbf{X}) \le h(\mathbf{X})) = \gamma.$$

- To determine  $[l(\mathbf{X}), h(\mathbf{X})]$ :
  - Find the cumulative distribution  $F_{t(\mathbf{X})}$  of  $t(\mathbf{X})$ .
  - Determine it's inverse, denoted  $F_{t(\mathbf{X})}^{-1}$ .
  - Since

$$P(l(\mathbf{X}) \le t(\mathbf{X}) \le h(\mathbf{X})) = 1 - \alpha$$

$$\iff P(t(\mathbf{X}) < l(\mathbf{X})) = \alpha/2 \qquad P(t(\mathbf{X}) > h(\mathbf{X})) = \alpha/2$$

$$\iff l(\mathbf{X}) = F_{t(\mathbf{x})}^{-1}(\alpha/2) \qquad h(\mathbf{X}) = F_{t(\mathbf{X})}^{-1}(1 - \alpha/2)$$

where  $\alpha$  is the significance level s.t  $\gamma = 1 - \alpha$ .

• For computational methods:

```
\begin{array}{ll} 1 & \# \ p \ \ \text{is the likelihood vector for} \ X \\ 2 & F_X = \operatorname{np.cumsum}(p) \\ 3 & \mathsf{I., h} = x\_\mathsf{sample}[F_X < \alpha/2][-1], \ x\_\mathsf{sample}[F_X > 1 - \alpha/2][0] \\ \\ \text{Or} \\ 1 & l., \ h = \operatorname{np.quantile}(x\_\mathsf{sample, [\alpha/2, 1 - \alpha/2]}) \end{array}
```

• To interpret the posterior distribution ( $\Theta \mid \mathbf{X} = \mathbf{x}$ ), we may compute a confidence interval e.g. 95 %:

$$P(l \le \Theta \le h \mid \mathbf{X} = \mathbf{x}) = 0.95.$$

#### 2.1.3 Posterior Predictive Distribution

• Suppose  $\langle Y_i \rangle$  is a sample on  $(\Omega, \mathcal{F}, P)$  of size M with causal diagram:



• We have, by the Law of Iterated Expectation,

$$\mathbb{E}\left[\mathbf{Y} \mid \mathbf{X} = \mathbf{x}\right] = \int_{\theta \in \overrightarrow{\Theta}(\Omega)} \mathbb{E}(\mathbf{Y} \mid \Theta = \theta, \mathbf{X} = \mathbf{x}) \mathcal{L}_{\Theta}(\theta \mid \mathbf{X} = \mathbf{x}) d\theta$$
$$= \int_{\theta \in \overrightarrow{\Theta}(\Omega)} \mathbb{E}(\mathbf{Y} \mid \Theta = \theta) \mathcal{L}_{\Theta}(\theta \mid \mathbf{X} = \mathbf{x}) d\theta$$

**Definition 2.1.3.** (Posterior Predictive Distribution) The posterior predictive distribution is the distribution of  $\langle Y_i \rangle$  marginalized over the posterior:

$$\mathcal{L}_{(Y_i)\mid(X_i)}(y\mid \mathbf{x}) = \int_{\theta\in\overrightarrow{\Theta}(\Omega)} \mathcal{L}_{(Y_i)\mid\Theta}(\mathbf{Y}\mid\Theta=\theta)\mathcal{L}_{\Theta}(\theta\mid \mathbf{X}=\mathbf{x}) \,\mathrm{d}\theta.$$

**Example 2.1.5.** For the sample  $\langle X_i \rangle$  of size n with  $(X_i \mid \Theta) \sim \text{Bernoulli}(\theta)$  where  $\Theta \sim U[0, 1]$ . Given that  $(Y \mid \Theta) \sim \text{Bernoulli}(\theta)$ , determine the predictive posterior distribution  $(Y \mid \mathbf{X})$ .

From example ?? we have  $(\Theta \mid \mathbf{X}) \sim \text{Beta}(S+1, n-S+1)$  where  $S = \sum_{i=1}^{n} I_{X_{i}=1}$ . Hence by definition ?? we have

$$\mathcal{L}_{Y|(X_i)}(y \mid \mathbf{x}) = \int_0^1 (\theta I_{y=1} + (1-\theta)I_{y=0}) \frac{\Gamma(n+2)}{\Gamma(S+1)\Gamma(n-S+1)} \theta^S (1-\theta)^{n-S} d\theta$$

$$= \frac{\Gamma(n+2)}{\Gamma(S+1)\Gamma(n-S+1)} \left[ I_{y=1} \int_0^1 \theta^{S+1} (1-\theta)^{n-S} d\theta + I_{y=0} \int_0^1 \theta^S (1-\theta)^{n-S+1} d\theta \right]$$

Define

$$I(x,y) = \int_0^1 \theta^x (1-\theta)^y d\theta.$$

Integrating by parts and determining I(x,0) yields

$$I(x,y) = \frac{x!y!}{(x+y+1)!} = \frac{\Gamma(x+1)\Gamma(y+1)}{\Gamma(x+y+2)}.$$

Hence

$$\mathcal{L}_{Y|(X_i)}(y \mid \mathbf{x}) = \frac{\Gamma(n+2)}{\Gamma(S+1)\Gamma(n-S+1)} \left[ I_{y=1}I(S+1, n-S) + I_{y=0}I(S, n-S+1) \right]$$

$$= \frac{\Gamma(n+2)}{\Gamma(S+1)\Gamma(n-S+1)} \left[ I_{y=1}\frac{\Gamma(S+2)\Gamma(n-S+1)}{\Gamma(n+3)} + I_{y=0}\frac{\Gamma(S+1)\Gamma(n-S+2)}{\Gamma(n+3)} \right]$$

Recall that  $\Gamma(z+1) = z\Gamma(z)$ , hence

$$\mathcal{L}_{Y|(X_i)}(y \mid \mathbf{x}) = \frac{1}{n+2} \begin{cases} S+1 & \text{if } y = 1\\ n-S+1 & \text{otherwise} \end{cases}$$

S the predictive posterior distribution is  $(Y \mid \mathbf{X}) \sim \text{Bernoulli}\left(\frac{S+1}{n+2}\right)$ .

# 2.2 Frequentism

• Philosophy:

Frequentist definition of probability holds

**Definition 2.2.1.** (Frequentist Definition of Probability) The probability measure P on  $(\Omega, \mathcal{F}, P)$  of some event  $A \in \mathcal{F}$  is

$$P(A) = \lim_{n \to \infty} \frac{n(A)}{n},$$

where n(A) is the number of trials where A occurs and n is the number of trials.

• Determine parameters  $\theta$  of model using resampling. Reason about them using probability (or confidence intervals)

# 2.2.1 Parametric and Non-Parametric Resampling

- Parametric Resampling: Let  $\langle x_i \rangle$  be a dataset from  $\langle X_i \rangle$  of size n. We have parametric model  $\mathcal{L}_X(x \mid \boldsymbol{\theta})$ :
  - 1. Define a test statistic  $t: \langle X_i \rangle \to \mathbb{R}$  on the sample  $\langle X_i \rangle$ .

- 2. Fit the model, determine  $MLE[\theta]$ .
- 3. Define the synthetic sample of size  $n \langle X_i^* \rangle$  generated by  $\mathcal{L}_X(\cdot \mid \text{MLE}[\boldsymbol{\theta}])$ .
- 4. Generate N synthetic datasets  $\langle x_{ij}^* \rangle$ . This is parametric resampling.
- 5. Compute  $t(\langle x_{ij}^* \rangle)$  for all  $1 \leq j \leq N$ .

Example 2.2.1. (Distribution and Confidence Interval of  $\text{MLE}[\mu]$ ) For the dataset  $\langle x_i \rangle$  of the sample  $\langle X_i \rangle$  of size n distributed by  $X_i \sim \mathcal{N}(\mu, \sigma^2)$  where  $\mu, \sigma^2$  are unknown parameters. Determine the distribution and the 95% confidence interval of  $\text{MLE}[\mu]$  using parametric resampling.

```
\begin{array}{ccc}
1 & \mathbf{x} = [ & \dots \\ 2 & n = \mathsf{len}(\mathbf{x})
\end{array}

 4 # Define our test statistic MLE[\mu]
     \operatorname{def} \hat{\mu}(\mathbf{x}): return np.mean(\mathbf{x})
 7 # Fit the model
 8 MLE [\mu] = \hat{\mu}(\mathbf{x})
 9 MLE [\sigma] = np. sqrt (np. mean ((\mathbf{x} - \hat{\mu}(\mathbf{x})) ** 2))
10
11 # Define synthetic sample
12 def x^*():
            return np.random.normal(loc=MLE[\mu], scale=MLE[\sigma], size=n)
13
14
15\ \# Generate synthetic datasets and compute test statistic
16 N = ...
17 \hat{\mu}_{\text{-}}sample = [\hat{\mu}(x^*()) \text{ for } \underline{\quad} \text{in range}(N)]
18
19 # Plot distributon of MLE[\mu]
20 \quad M = \dots
21 plt.hist(\hat{\mu}_sample, bins=M)
22
23 # Determine confidence interval
l, h = \text{np.quantile}(\hat{\mu}_{\text{-}} \text{sample}, [.025, 0.975])
```

**Example 2.2.2.** (Comparing Groups) For two random samples  $\langle X_i \rangle$  and  $\langle Y_i \rangle$  of size m and n respectively s.t  $X_i \sim \mathcal{N}(\mu, \sigma^2)$  and  $Y_i \sim \mathcal{N}(\mu + \delta, \sigma^2)$  with parameters  $\mu, \delta \in \mathbb{R}$  and  $\sigma^2 > 0$ . Determine the distribution of MLE[ $\delta$ ]

From supervision 1, we note that

MLE 
$$[\mu] = \frac{1}{m} \sum_{i=1}^{m} x_i$$
  
MLE  $[\delta] = \frac{1}{n} \sum_{i=1}^{n} y_i - \frac{1}{m} \sum_{i=1}^{m} x_i$   
MLE  $[\sigma] = \sqrt{\frac{1}{m+n} \left( \sum_{i=1}^{m} (x_i - \mu)^2 + \sum_{i=1}^{n} (y_i - \mu - \delta)^2 \right)}$ 

So we have

```
\mathbf{x},\mathbf{y} = [ \ \dots \ ], \ [ \ \dots \ ]
    m, n = \dots
     # Define test statistic
    def t(\mathbf{x}, \mathbf{y}):
           return np.mean(y) - np.mean(x)
     # Fit model
 9 MLE [\mu] = np.mean (\mathbf{x})
10 MLE [\delta] = t(\mathbf{x}, \mathbf{y})
11 MLE [\sigma] = np. sqrt (
           (\mathsf{np.sum}(\mathbf{x} - \mathsf{MLE}[\mu]) ** 2) + (\mathsf{np.sum}(\mathbf{y} - \mathsf{MLE}[\mu] - \mathsf{MLE}[\delta]) ** 2)
12
13
14
    # Define synthetic sample
16 def xy^*():
           return (np.random.normal(loc=MLE[\mu], scale=MLE[\sigma], size=m),
17
18
                       np.random.normal(loc=MLE[\mu] + MLE[\delta], scale=MLE[\sigma], size=n))
19
    \# Generate synthetic datasets and compute t
21
22
    t_{\text{-}}sample = [t(*xy^*()) \text{ for } _{\text{-}} \text{ in } range(N)]
23
24 # Plot distributon of t
    plt.hist(t_{-}sample, bins=M)
```

- **Problem**: Model  $\mathcal{L}_X(x \mid \boldsymbol{\theta})$  can't always be determined.
- **Solution**: Use empirical distribution (best fit for the given dataset). This is *non-parametric resampling*
- Non-parametric Resampling: Let  $\langle x_i \rangle$  be a dataset from  $\langle X_i \rangle$  of size n.
  - 1. Define a test statistic  $t: \langle X_i \rangle \to \mathbb{R}$  on the sample  $\langle X_i \rangle$ .

- 2. Define synthetic sample of size  $n \langle X_i^* \rangle$  using empirical distribution  $X^*$ . See ??
- 3. Generate N synthetic datasets  $\langle x_{ij}^* \rangle$ .
- 4. Compute  $t(\langle x_i^j \rangle)$  for all  $1 \leq j \leq N$ .

**Example 2.2.3.** (Comparing Groups) For two random samples  $\langle X_i \rangle$  and  $\langle Y_i \rangle$  of size m and n respectively. Determine the distribution of  $t = \overline{Y} - \overline{X}$  using non-parameteric resampling.

```
\mathbf{x}, \mathbf{y} = [\dots], [\dots]
   m, n = len(\mathbf{x}), len(\mathbf{y})
    # Define test statistic
    def t(x, y):
         return np.mean(y) - np.mean(x)
8
   # Define synthetic sample
9
    def xy^*():
10
         return (np.random.choice(x, size=m),
11
                   np.random.choice(y, size=n)
13 # Generate synthetic datasets
14 N = ...
15 t_{\text{sample}} = [t(*xy^*()) \text{ for } _{\text{in range}}(N)]
```

**Example 2.2.4.** (Coin Toss) For a random sample  $\langle X_i \rangle$  of size n where  $X_i \sim \text{Bernoulli}(p)$  models the result of the ith coin toss. Find a 95% confidence interval of MLE [p] using non-parameteric resampling.

```
\mathbf{x} = [ \dots ]
     n = \mathsf{len}(\mathbf{x})
    # Define test statistic
    \mathsf{def} \ \hat{p}(\mathbf{x}):
           return np.mean(x)
 8\ \#\ \mathsf{Define}\ \mathsf{synthetic}\ \mathsf{sample}
    def x^*():
           return np.random.choice(\mathbf{x}, size=n)
10
11
12 # Generate synthetic datasets and compute \hat{p}
13 N = ...
14 \hat{p}_sample = [\hat{p}(x^*())] for _ in range(N)
15
16 # Compute confidence interval
l,h = \mathsf{np.quantile}(\hat{p}_{\mathsf{-sample}}, [.025, .975])
```

### 2.2.2 Hypothesis Testing

• Desire to "prove" statements based on samples  $\langle X_i \rangle$  within a confidence interval  $\gamma = 1 - \alpha$ .

- Hypothesis Testing: Let  $\langle x_i \rangle$  be a dataset from  $\langle X_i \rangle$  of size n.
  - 1. Define a test statistic  $t: \langle X_i \rangle \to \mathbb{R}$  on the sample  $\langle X_i \rangle$ .
  - 2. Define the null and alternate hypothesizes  $H_0$ ,  $H_1$  using t.
  - 3. Generate N synthetic datasets  $\langle x_{ij}^* \rangle$  using resampling assuming  $H_0$  holds.
  - 4. Compute  $t(\langle x_i^j \rangle)$  for all  $1 \leq j \leq N$  and the observed t, denoted  $t(\langle x_i \rangle)$ . Plotting it's distribution using a Histogram.
  - 5. Determine p-value: the probability of a more extreme value than  $t(\langle x_i \rangle)$ .
  - 6. If  $p \leq \alpha$ , the significance level, then reject  $H_0$ .
- Two types of tests:
  - One-sided:  $H_0: \theta = \theta_0$ , and  $H_1: \theta > \theta_0$  (or  $\theta < \theta_0$ ).  $\alpha$  corresponds to the critical value  $t_c$  s.t  $P(t(\mathbf{X}) \geq t_c) = \alpha$ :

```
\begin{array}{lll} 1 & \mathsf{def} & \mathsf{reject}\_H_0(t\_\mathsf{dataset} \;,\; t,\; \alpha) \colon \\ 2 & p_1 \;,\; p_2 = \mathsf{np.mean}(t\_\mathsf{dataset} >= t) \;,\; \mathsf{np.mean}(t\_\mathsf{dataset} <= t) \\ 3 & \mathsf{return} & \min(p_1 \;,\; p_2) \; < \; \alpha \end{array}
```

- **Two-sided**:  $H_0: \theta = \theta_0$  and  $H_1: \theta \neq \theta_0$ .  $\alpha$  corresponds to the critical value  $t_c$  s.t  $2P(t(\mathbf{X}) \geq t_c) = \alpha$ :

```
\begin{array}{lll} 1 & \mathsf{def} & \mathsf{reject}\_H_0(t\_\mathsf{dataset} \;,\; t,\; \alpha) \colon \\ 2 & p_1 \;,\; p_2 = \mathsf{np.mean}(t\_\mathsf{dataset} \;>=\; t) \;,\; \mathsf{np.mean}(t\_\mathsf{dataset} \;<=\; t) \\ 3 & \mathsf{return} \;\; 2 \; * \; \min(p_1 \;,\; p_2) \; <\; \alpha \end{array}
```

• The significance level  $\alpha$  is the probability of rejecting the null hypothesis given it is true.

**Example 2.2.5.** (Sign Test) Let  $\langle (X_i, Y_i) \rangle$  be a random sample of size n. Define  $Z_i = X_i - Y_i$ . Let  $W = \sum_{i=1}^n I_{Z_i > 0}$  with  $W \sim B(n, p)$ . Define  $H_0$  and  $H_1$  s.t

$$H_0: p = \frac{1}{2}$$
  $H_1: p \neq \frac{1}{2}$ 

So we have the following test:

```
1 \mathbf{x}, \mathbf{y} = [\ldots], [\ldots]
 2 n = len(\mathbf{x})
    # Define test statistic
    def p(\mathbf{w}):
         return np.mean(w)
8
    \# Define synthetic sample assuming H_0
9
    def w^*():
         return np.random.binomial(n=n, p=1/2)
10
11
12 # Compute observed p
    p_{-}observed = p(np.where(x - y > 0, 1, 0))
13
    \# Generate synthetic datasets and compute p
15
16 N = ...
17 p_{\text{-}}dataset = [p(w^*()) \text{ for } \_in \text{ range}(N)]
18
19 # Plot distribution
20 plt.hist(p_{-}dataset, bins=...)
21 plt.axvline (p_observed)
22
23 # Determine p-value
24
    def reject_-H_0(t_-dataset, t, \alpha):
         p_1, p_2 = \mathsf{np.mean}(t\_\mathsf{dataset}) >= t), \mathsf{np.mean}(t\_\mathsf{dataset} <= t)
25
26
         return \min(p_1, p_2) < \alpha
27
28 # Reject H_0?
29
    \alpha = .05
30 print(f" Reject H_0 w/ \alpha = \{ \alpha \}? {reject_H_0(p_dataset, p_dobserved, \alpha) }")
```

**Example 2.2.6.** (Equality of  $\mu$ ) For the two random samples  $\langle X_i \rangle$  and  $\langle Y_i \rangle$  of sizes m and n, respectively s.t  $X_i \sim \mathcal{N}(\mu_X, \sigma^2)$  and  $Y_i \sim \mathcal{N}(\mu_Y, \sigma^2)$ . Let us define

$$H_0: \mu_X = \mu_Y \qquad H_1: \mu_X \neq \mu_Y$$

with the test statistic

$$t = (\text{MLE} [\mu_X] - \text{MLE} [\mu])^2 + (\text{MLE} [\mu_Y] - \text{MLE} [\mu])^2,$$

where  $X_i, Y_i \sim \mathcal{N}(\mu, \sigma^2)$ , assuming  $H_0$  holds.

So we have

```
9
10 # Define synthetic sample
11 def xy^*():
           \hat{\mu}=\mathsf{np.mean}(\mathsf{np.concatenate}([\mathbf{x},\ \mathbf{y}]))
12
13
           return (np.random.normal(loc=\hat{\mu}, scale=\sigma, size=m),
                       np.random.normal(loc=\hat{\mu}, scale=\sigma, size=n)
14
15
16~~\#~{\sf Compute}~{\sf observed}~t
17
     t_{-}observed = t(\mathbf{x}, \mathbf{y})
18
19\ \#\ \mathsf{Generate}\ \mathsf{synthetic}\ \mathsf{datasets}\ \mathsf{and}\ \mathsf{compute}\ t
20 N = ...
21 t_{\text{-}}dataset = [t(*xy^*()) \text{ for } \_in \text{ range}(N)]
22
23 # Plot distribution
24 plt.hist(t_{-}dataset, bins=...)
25 plt.axvline(t_{-}observed)
26
27
     \# Determine p	ext{-}value
     \mathsf{def} reject_H_0(t_{\mathsf{-}}\mathsf{dataset} , t , \alpha) :
28
29
           p_1, p_2 = \text{np.mean}(t\_\text{dataset} >= t), \text{np.mean}(t\_\text{dataset} <= t)
30
           return \min(p_1, p_2) < \alpha
31
32
    # Reject H_0?
33 \quad \alpha = .05
34 print(f" Reject H_0 w/ \alpha = \{ \alpha \}? {reject_H_0(t_{-} \text{dataset}, t_{-} \text{observed}, \alpha) }")
```

# 3 Markov Chains

# 3.1 Causal Diagrams

**Definition 3.1.1.** A causal diagram is a directed acyclic graph G = (V, E, P) where V is the set of random variables, P is the set of (hyper)parameters and  $E \subseteq (V \cup P)^2$  is the edges or dependencies between variables.



• Causal diagrams capture dependencies and are useful for describing probability models.

$$\mathcal{L}_{X,Y,Z}(x,y,z) = \mathcal{L}_{X}(x)\mathcal{L}_{Y|X}(y\mid x)\mathcal{L}_{Z|Y}(z,y)$$

$$\mathcal{L}_{X,Y,Z}(x,y,z) = \mathcal{L}_{X}(x)\mathcal{L}_{Y|X}(y\mid x)\mathcal{L}_{Z|Y}(z,y)$$

$$\mathcal{L}_{\Theta,X,Y}(\theta,x,y) = \mathcal{L}_{\Theta}(\theta)\mathcal{L}_{X|\Theta}(x\mid \theta)\mathcal{L}_{Y|\Theta}(y\mid \theta)$$

$$\mathcal{L}_{M,H,X,Y}(m,h,x,y) = \mathcal{L}_{M}(m)\mathcal{L}_{H}(h)\mathcal{L}_{X|M}(x\mid m)\mathcal{L}_{Y|M,H}(y\mid m,h)$$

$$\mathcal{L}_{M,H,X,Y}(m,h,x,y) = \mathcal{L}_{M}(m)\mathcal{L}_{H}(h)\mathcal{L}_{X|M}(x\mid m)\mathcal{L}_{Y|M,H}(y\mid m,h)$$

### 3.1.1 Causal Diagram Analysis

#### • Method:

- Use the law of total probability to include the *parents* into the expression
- Use Bayes' Theorem to calculate probability conditional on the children
- Use independence for simplification

#### • Examples:

$$\begin{array}{c}
K \\
\downarrow \\
X \\
K \\
\downarrow \\
X
\end{array}$$

$$\begin{array}{c}
X \\
X \\
X
\end{array}$$

$$\mathcal{L}_X(x) = \sum_{k \in \overrightarrow{K}(\Omega)} \mathcal{L}_{X|K}(x \mid k) \mathcal{L}_K(k)$$
 Total Probability

$$\mathcal{L}_{K|X}(k \mid x) = \kappa \mathcal{L}_K(k) \mathcal{L}_{X|K}(x \mid k)$$
 Bayes' Theorem

$$\mathcal{L}_{X|A}(x \mid a) = \sum_{b \in \overrightarrow{B}(\Omega)} \mathcal{L}_{X|A,B}(x \mid a,b) \mathcal{L}_{B}(b)$$
 Total Probability with Baggage  $A = a$ 

$$\begin{array}{c} M & H \\ \downarrow & \downarrow \\ X & Y \end{array}$$

$$\mathcal{L}_{H|X,Y}(h \mid x, y) = \sum_{m \in \overrightarrow{M}(\Omega)} \mathcal{L}_{H|M,X,Y}(h \mid m, x, y) \mathcal{L}_{M|X,Y}(m \mid x, y)$$
Both
$$= \kappa \sum_{m \in \overrightarrow{M}(\Omega)} \mathcal{L}_{H}(h) \mathcal{L}_{M}(m) \mathcal{L}_{X|M}(x \mid m) \mathcal{L}_{Y|H,M}(y \mid h, m)$$

# 3.2 Markov Chains

- $\bullet$   $\, \mathcal{S}$  is the state space (a countable set).
- Working on probability space  $(\Omega, \mathcal{F}, P)$  with random variables  $X : \Omega \to \mathcal{S}$ .

**Definition 3.2.1.** (Markov Chain)  $(X_i)_{n\geq 0}$  is a *Markov Chain* with initial distribution  $\lambda$  and transition matrix P, denoted  $(\lambda, P)$ , if for all  $n \geq 0$ ,  $s_0, \ldots, s_{n+1} \in \mathcal{S}$ :

- 1.  $P(X_0 = s_0) = \lambda_{s_0}$
- 2.  $P(X_{n+1} = s_{n+1} \mid X_0 = s_0, \dots, X_n = s_n) = P(X_{n+1} = s_{n+1} \mid X_n = s_n) = p_{s_n s_{n+1}}$
- (2) introduces memorylessness property.
- Useful to reason about Markov Chains using causal diagram.  $(X_i)_{n\geq 0}$  is a Markov Chain  $(\lambda, P)$  if  $(X_i)_{n\geq 0}$  has the following causal diagram:

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots$$
.

• P is a stochastic matrix (each row of P is a distribution over S):

$$\forall s, t \in \mathcal{S}. p_{st} \ge 0$$
  $\forall s \in \mathcal{S}. \sum_{t \in \mathcal{S}} p_{st} = 1.$ 

**Theorem 3.2.1.**  $(X_i)_{n\geq 0}$  with  $(\lambda, P)$  is a Markov Chain iff

$$\forall n \geq 0, s_0, \dots, s_n \in \mathcal{S}.P(X_0 = s_0, \dots, X_n = s_n) = \lambda_{s_0} p_{s_0 s_1} \cdots p_{s_{n-1} s_n}.$$

*Proof.* ( $\Longrightarrow$ ) Let us assume  $(X_i)_{n\geq 0}$  with  $(\lambda, P)$  is a Markov Chain. Let  $n\geq 0, s_0, \ldots, s_n\in \mathcal{S}$  be arbitrary.

$$P(X_0 = s_0, \dots, X_n = s_n) = P(X_n = s_n \mid X_0 = s_0, \dots, X_{n-1} = s_{n-1}) P(X_0 = s_0, \dots, X_{n-1} = s_{n-1})$$

$$= P(X_0 = s_0) P(X_1 = s_1 \mid X_0 = s_0) \cdots P(X_n = s_n \mid X_{n-1} = s_{n-1})$$

$$= \lambda_{s_0} p_{s_0 s_1} \cdots p_{s_{n-1} s_n}$$

 $(\Leftarrow)$  Let  $n \geq 0, s_0, \ldots, s_n \in \mathcal{S}$  be arbitrary. Assume  $P(X_0 = s_0, \ldots, X_n = s_n) = \lambda_{s_0} p_{s_0 s_1} \cdots p_{s_{n-1} s_n}$ . Then

$$P(X_0 = s_0) = \sum_{s_1, \dots, s_n \in \mathcal{S}} P(X_0 = s_0, \dots, X_n = s_n) = \lambda_{s_0} \sum_{s_1, \dots, s_n \in \mathcal{S}} p_{s_0 s_1} \cdots p_{s_{n-1} s_n}$$

$$= \lambda_{s_0} \sum_{s_1 \in \mathcal{S}} p_{s_0 s_1} \sum_{s_2 \in \mathcal{S}} p_{s_1 s_2} \cdots \sum_{s_n \in \mathcal{S}} p_{s_{n-1} s_n}$$

$$= \lambda_{s_0}$$

and

$$P(X_n = s_n \mid X_0 = s_0, \dots, X_{n-1} = s_{n-1}) = \frac{P(X_0 = s_0, \dots, X_n = s_n)}{P(X_0 = s_0, \dots, X_{n-1} = s_{n-1})} = p_{s_{n-1}s_n}$$

**Example 3.2.1.** (Weather Model) For a Markov chain with *state space diagram* and transition matrix:



where the states r, g, d correspond to rain, grey and drizzle respectively. We have the following implementation:

```
 \begin{array}{lll} 1 & \mathcal{S} = ["\,r"\,, "\,g"\,, "\,d"] \\ 2 & P = \mathsf{np.array}\,([\\ 3 & [.2\,, .6\,, .2]\,, \\ 4 & [.3\,, 0\,, .7]\,, \\ 5 & [0\,, .5\,, .5] \\ 6 & ]) \\ 7 & \# \mathsf{Assert} \ P \ \mathsf{is} \ \mathsf{stochastic} \\ 8 & \mathsf{assert} \ \mathsf{all}\,(\mathsf{P.sum}(\mathsf{axis} = 1) == 1) \\ 9 & \mathsf{def} \ \mathsf{weather}\,(x_0)\,; \\ 10 & \mathsf{def} \ \mathsf{weather}\,(x_0)\,; \\ 11 & i = \mathcal{S}.\,\mathsf{index}\,(x_0) \\ 12 & \mathsf{while} \ \mathsf{True}\,; \\ 13 & i = \mathsf{np.random.choice}\,(\mathsf{len}\,(\mathcal{S})\,,\ p\!=\!\!P[i]) \\ \end{array}
```

#### • Sliding window technique:

- For a causal diagram:

$$X_0 \xrightarrow{X_1 \to X_2 \to X_3 \to X_4 \to X_5 \to \cdots}$$

- Define a "sliding window"  $Y_n = (X_n, X_{n+1})$ , which yields the causal diagram:

$$Y_0 \longrightarrow Y_1 \longrightarrow Y_2 \longrightarrow \cdots$$
.

which is a Markov Chain  $(Y_i)_{n\geq 0}$ .

### 3.2.1 The *n*-step Transition Matrix

**Theorem 3.2.2.** For Markov Chain  $(X_i)_{n>0}$  with  $(\lambda, P)$ :

$$P(X_n = s_n) = \sum_{s_0, \dots, s_{n-1} \in \mathcal{S}} \lambda_{s_0} p_{s_0 s_1} \cdots p_{s_{n-1} s_n} = (\lambda P^n)_{s_n}.$$

Proof.

$$P(X_{n} = s_{n}) = \sum_{s_{0}, \dots, s_{n-1} \in \mathcal{S}} P(X_{0} = s_{0}, \dots, X_{n} = s_{n})$$

$$= \sum_{s_{0}, \dots, s_{n-1} \in \mathcal{S}} \lambda_{s_{0}} p_{s_{0}s_{1}} \cdots p_{s_{n-1}s_{n}}$$

$$= \sum_{s_{0}} \lambda_{s_{0}} \left( \sum_{s_{n-1}} \cdots \left( \sum_{s_{2}} \left( \sum_{s_{1}} p_{s_{0}s_{1}} p_{s_{1}s_{2}} \right) p_{s_{2}s_{3}} \right) \cdots p_{s_{n-1}s_{n}} \right)$$

$$= \sum_{s_{0}} \lambda_{s_{0}} p_{s_{0}s_{n}}^{(n)} = (\lambda P^{n})_{s_{n}}$$

• Numpy calculations with *n*-step transition matrices:

Example 3.2.2. (Hidden Markov Model (Particle Filter)) A *Hidden Markov Model* is defined by the causal diagram:

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y_0 \qquad Y_1 \qquad Y_2 \qquad Y_3$$

where  $(X_i)_{n\geq 0}$  is a Markov Chain w/  $(\lambda, P)$ , state-space  $\overrightarrow{X}(\Omega) = Q$  and  $Y_i$  is a random variable on  $(\Omega, \mathcal{F}, P)$  defined on  $\overrightarrow{Y}(\Omega) = O$ , the emission or observation space, with emission matrix E = (e), where  $e_x(y) = p_{Y|X}(y \mid x)$ .

Suppose we have the dataset  $\langle y_i \rangle$  from the random sample  $\langle Y_i \rangle$  of size n. For  $n \geq 0$ , let us define  $\pi_n(\cdot)$  as

$$\pi_n(x) = p_{X_n|(Y_i)}(x \mid Y_0 = y_1, \dots, Y_n = y_n) = p_{X_n|(Y_i)}(x \mid y_1, \dots, y_n).$$

For n = 0, we have

$$\pi_0(x_0) = p_{X_0|Y_0}(x_0 \mid y_0)$$

$$= \kappa p_{Y_0|X_0}(y_0 \mid x_0) p_{X_0}(x_0)$$

$$= \kappa p_{Y_0|X_0}(y_0 \mid x_0) \lambda_{x_0}$$
(Bayes' Theorem)

For  $n \geq 1$ , we have

$$\pi_{n}(x_{n}) = p_{X_{n}|(Y_{i})}(x_{n} \mid y_{0}, \dots, y_{n})$$

$$= \kappa' p_{Y_{n}|(Y_{i}), X_{n}}(y_{n} \mid y_{0}, \dots, y_{n-1}, x_{n}) \cdot p_{X_{n}|(Y_{i})}(x_{n} \mid y_{0}, \dots, y_{n-1})$$

$$= \kappa' p_{Y_{n}|X_{n}}(y_{n} \mid x_{n}) \cdot p_{X_{n}|(Y_{i})}(x_{n} \mid y_{0}, \dots, y_{n-1})$$

$$= \kappa' e_{x_{n}}(y_{n}) \cdot p_{X_{n}|(Y_{i})}(x_{n} \mid y_{0}, \dots, y_{n-1})$$

where  $e_x(y) = p_{Y_i|X_i}(y \mid x)$ . By the law of total probability, we have

$$p_{X_n|(Y_i)}(x_n \mid y_0, \dots, y_{n-1}) = \sum_{x_{n-1} \in Q} p_{X_n|(Y_i), X_{n-1}}(x_n \mid y_0, \dots, y_{n-1}, x_{n-1})$$

$$\cdot p_{X_{n-1}|(Y_i)}(x_{n-1} \mid y_0, \dots, y_{n-1})$$

$$= \sum_{x_{n-1} \in Q} p_{X_n|X_{n-1}}(x_n \mid x_{n-1}) p_{X_{n-1}|(Y_i)}(x_{n-1} \mid y_0, \dots, y_{n-1})$$

by definition of a Markov chain. So we have

$$\pi_0(x_0) = \kappa e_{x_0}(y_0) \lambda_{x_0}$$

$$\pi_n(x_n) = \kappa \sum_{x_{n-1} \in Q} p_{x_{n-1}x_n} \pi_{n-1}(x_{n-1}) e_{x_n}(y_n)$$

Supposing we have functions  $e(y,x) = e_x(y)$  and  $p(i,j) = p_{ij}$ , we have the following Python code for computing the vector  $\pi = (\pi_n)$  gives dataset  $\mathbf{y} = [y_0, ..., y_n]$ .

### 3.2.2 Class Structure and Irreducibility

**Definition 3.2.2.** State s is said to lead to t if

$$\exists n > 0. P(X_n = t \mid X_0 = s) > 0.$$

Denoted  $s \to t$ .

- We write  $s \leftrightarrow t \iff s \to t \land t \to s$ .
- Note that  $s \to t \iff \exists n \ge 0.p_{st}^{(n)} > 0.$
- $\leftrightarrow$  is an equivalent relation on  $\mathcal{S}$ , thus partitions  $\mathcal{S}$  into classes  $C_1, \ldots, C_m$ . IMAGE

**Definition 3.2.3. Closed Class** A class C is said to be closed if:

$$\forall s \in C, t \in \mathcal{S}.s \to t \implies t \in C.$$

- A class that is not closed is said to be *open*.
- The Markov Chain  $(X_i)_{n\geq 0}$  is said to be **irreducible** if  $\mathcal{S}$  is the only class. (The state-space diagram is connected)



### 3.2.3 Hitting Probabilities

• Let  $(X_i)_{n\geq 0}$  be a Markov Chain  $(\lambda, P)$ .

**Definition 3.2.4.** (**Hitting Time**) The hitting time of the set of states  $A \subseteq \mathcal{S}$  is the random variable  $H^A : \Omega \to \mathbb{N} \cup \{\infty\}$  s.t

$$H^A(\omega) = \min \{ n \ge 0 : X_n(\omega) \in A \},$$

where  $\min \emptyset = \infty$ .

**Definition 3.2.5.** (Hitting Probability) The hitting probability is the probability that  $(X_n)_{n\geq 0}$  hits A given  $X_0 = s$ :

$$h_s^A = P(H^A < \infty \mid X_0 = s).$$

**Theorem 3.2.3.** The vector of hitting probabilities  $h^A$  satisfies:

$$h_s^A = \begin{cases} 1 & s \in A \\ \sum_{t \in \mathcal{S}} p_{st} h_t^A & s \notin A \end{cases}.$$

*Proof.* Let  $s \in \mathcal{S}$  be arbitrary Two cases:

- Case  $X_0 = s \in A$ : Then  $H^A = 0$ . Hence  $h_s^A = 1$ .
- Case  $X_0 = s \notin A$ : Then  $H^A \ge 1$ . So

$$h_s^A = P(H^A < \infty \mid X_0 = s) = \sum_{t \in S} P(H^A < \infty, X_1 = t \mid X_0 = s)$$
$$= \sum_{t \in S} P(H^A < \infty \mid X_1 = t, X_0 = s) P(X_1 = t \mid X_0 = s)$$

Note that  $P(H^A < \infty \mid X_1 = t, X_0 = s) = P(H^A < \infty \mid X_1 = t) = h_t^A$  by the Markov Property (a sub-chain conditional on  $X_m = s$  is a chain). Hence

$$h_s^A = \sum_{t \in S} P(X_1 = t \mid X_0 = s) h_t^A = \sum_{t \in S} p_{st} h_t^A$$

• Computationally, this consists of solving the set of equations

$$h_s^A = 1 s \in A$$

$$h_s^A = \sum_{t \in S} p_{st} h_t^A s \notin A$$

```
 \begin{array}{lll} 1 & P = & \operatorname{np.array} \left( [ \  \, \dots \  \, ] \right) \\ 2 & n = & \operatorname{len} \left( P \right) \\ 3 \\ 4 & \operatorname{assert} & \operatorname{all} \left( P.\operatorname{sum} \left( \operatorname{axis} = 1 \right) == 1 \right) \\ 5 \\ 6 & A = [ \  \, \dots \  \, ] \\ 7 & \# & \operatorname{Solve} & Ph = h \text{ or } (P - I_n)h = \mathbf{0} \text{ (except for } s \in A) \\ 8 & B = P - & \operatorname{np.eye} \left( n \right) \\ 9 & x = & \operatorname{np.zeros} \left( n \right) \\ 10 \\ 11 & \# & \operatorname{Set} & h_s^A = 1 \text{ for all } s \in A \\ 12 & \operatorname{for } s \text{ in } A: \\ 13 & B[s, :] = & \operatorname{np.zeros} \left( n \right) \\ 14 & B[s, s] = 1 \\ 15 & x[s] = 1 \\ 16 \\ 17 & \# & \operatorname{Compute} & h \text{ s.t } Bh = x \\ 18 & h, * - & \operatorname{np.linalg.lstsq} \left( B, x \right) \\ \end{array}
```

# 3.2.4 Stationary Distributions

**Definition 3.2.6.** (Stationary Distribution) A distribution  $\lambda$  is said to be stationary if  $\lambda P = \lambda$ .

• Hence for a stationary Markov Chain  $(X_i)_{n\geq 0}$  with  $(\lambda, P)$ , there exists  $\mu$  s.t:

$$\forall s \in \mathcal{S}, n \ge 0.P(X_n = s) = \mu_s = (\mu P^n)_s.$$

• Computationally, this consists of solving:

$$(P - I_n)^T \lambda = \mathbf{0}$$
$$\mathbf{1}^T \lambda = 1$$

```
\begin{array}{lll} 1 & P = \operatorname{np.array}\left(\left[ \ \dots \ \right]\right) \\ 2 & n = \operatorname{len}\left(P\right) \\ 3 & \\ 4 & \# \operatorname{Compute}\ (P - I_n)^T \ \operatorname{and}\ \mathbf{1}^T \ \operatorname{and}\ \operatorname{concatenate}\ \operatorname{into}\ \operatorname{matrix}\ A \\ 5 & A = \operatorname{np.concatenate}\left(\left[P - \operatorname{np.eye}(n).\operatorname{transpose}(\right),\ \operatorname{np.ones}\left(\left(1,\ n\right)\right)\ \right]\right) \\ 6 & x = \operatorname{np.concatenate}\left(\left[\ \operatorname{np.zeros}(n),\ \left[1\right]\ \right]\right) \\ 7 & \\ 8 & \pi,\ \ast_- = \operatorname{np.linalg.lstsq}\left(A,\ x\right) \end{array}
```

**Example 3.2.3.** Suppose we have the Markov chain  $(X_n)_{n\geq 0}$  w/ state-space  $\overrightarrow{X}(\Omega) = Q = \{0, 1, \dots, 9\}$  initial distribution  $\lambda = (1, 0, \dots, 0)$ , and causal diagram:



So we have the following transition matrix P such that

$$p_{00} = p_{99} = \frac{3}{4},$$

$$p_{ii} = \frac{1}{2}, 1 \le i \le 8$$

$$p_{i(i+1)} = \frac{1}{4}, 0 \le i \le 8$$

$$p_{i(i-1)} = \frac{1}{4}, 1 \le i \le 9$$

and  $p_{ij} = 0$ , otherwise.

We wish to compute the stationary distribution  $\pi$  of  $(X_n)_{n\geq 0}$ . Giving us the following Python code for calculating  $\pi$ :

```
P = np.array([
          [.75, .25, .0, .0, .0, .0, .0, .0, .0],
          [.25, .5, .25, .0, .0, .0, .0, .0, .0],
          [.0, .25, .5, .25, .0, .0, .0, .0, .0]
          [.0, .0, .25, .5, .25, .0, .0, .0, .0], [.0, .0, .0, .25, .5, .25, .0, .0, .0], [.0, .0, .0, .0, .0],
 5
          [.0, .0, .0, .0, .0, .25, .5, .25, .0],
          [.0, .0, .0, .0, .0, .0, .25, .5, .25], [.0, .0, .0, .0, .0, .0, .25, .75]
 9
10
11
12
13
    A = \text{np.concatenate}([(P - \text{np.eye}(9)).\text{transpose}(), \text{np.ones}((1,9))])
14
    x = np.concatenate([np.zeros(9), [1]])
15
    \pi, *_ = np.linalg.lstsq(A, x)
```

**Theorem 3.2.4.** If P is irreducible, then there is a unique stationary distribution  $\mu$ .

**Definition 3.2.7.** (Detailed Balance) A Markov Chain  $(X_i)_{n\geq 0}$  with  $(\lambda, P)$  is said to be in detailed balance if there exists  $\mu$  s.t

$$\forall t, s \in \mathcal{S}.\mu_s p_{st} = \mu_t p_{ts}.$$

**Theorem 3.2.5.** If P and  $\mu$  are in detailed balance, then  $\mu$  is stationary for P, that is

$$\mu = \mu P$$
.

Proof. 
$$(\mu P)_s = \sum_{t \in \mathcal{S}} \mu_t p_{ts} = \sum_{t \in \mathcal{S}} \mu_s p_{st} = \mu_s.$$

#### 3.2.5 Limit Theorems

- Define the first return to state s as  $T_s = \min\{n \geq 1 : X_n = s\}$  with  $\min \emptyset = \infty$ .
- $V_s(n) = \sum_{t=0}^{n-1} I_{X_t=s}$ . The number of visits to state s before time n.
- $V_s^t = V_s(T_t)$ . The number of visits to s before first return to t.
- $\gamma_s^t = \mathbb{E}\left[V_s^t \mid X_0 = t\right]$ . The mean number of visits to s between successive visits to t.

**Theorem 3.2.6.** If P is irreducible with stationary distribution  $\mu$  and  $(X_i)_{n\geq 0}$  is a Markov Chain  $(\lambda, P)$ , then

$$P\left(\lim_{n\to\infty}\frac{V_s(n)}{n}=\mu_s\right)=1.$$

**Definition 3.2.8.** (Aperiodic) A state s is said to be aperiodic if there exists  $n \ge 1$  s.t

$$\forall N \ge n. p_{ss}^{(N)} > 0.$$

**Theorem 3.2.7.** For irreducible P and aperiodic state s, then for all states are aperiodic.

*Proof.* Let  $t, r \in \mathcal{S}$  be arbitrary. Since P is irreducible, then there exists  $n_t, n_r > 0$  s.t  $p_{ts}^{(n_t)}, p_{sr}^{(n_r)} > 0$ . Then

$$\forall N \ge n_s. p_{tr}^{(n_t+N+n_r)} = \sum_{i,j \in \mathcal{S}} p_{ti}^{(n_t)} p_{ij}^{(N)} p_{jr}^{(n_r)} \ge p_{ts}^{(n_t)} p_{ss}^{(N)} p_{sr}^{(n_r)} > 0.$$

Instantiating the above for t=r=i yields  $p_{ii}^{(N')}>0$  for all  $N'\geq n_t+n_s+n_r$ . Hence all states are aperiodic.

**Theorem 3.2.8.** For irreducible and aperiodic P with stationary distribution  $\mu$ . Then for any Markov Chain  $(X_i)_{n\geq 0}$  with  $(\lambda, P)$ 

$$\forall s, t \in \mathcal{S}. \lim_{n \to \infty} P(X_n = t) = p_{st}^{(n)} = \mu_s.$$