>

> 1

<u>Unit 5 Reinforcement Learning (2</u>

Lecture 17. Reinforcement Learning

Course > weeks)

8. Q-value Iteration

Audit Access Expires May 11, 2020

You lose all access to this course, including your progress, on May 11, 2020.

8. Q-value Iteration Q-value Iteration

0:00 / 0:00

Video

Download video file

Transcripts
<u>Download SubRip (.srt) file</u>
<u>Download Text (.txt) file</u>

The derivation of the Q-value iteration update rule from the equation above is similar to the derivation of the value iteration update rule.

First, recall the Bellman equations:

$$egin{array}{lcl} V^{st}\left(s
ight) &=& \displaystyle\max_{a}Q^{st}\left(s,a
ight) \ & \ Q^{st}\left(s,a
ight) &=& \displaystyle\sum_{s'}T\left(s,a,s'
ight)\left(R\left(s,a,s'
ight)+\gamma V^{st}\left(s'
ight)
ight). \end{array}$$

Plugging first equation into the second, we get:

$$Q^{st}\left(s,a
ight) \;\;\; \equiv \;\;\; \sum_{s^{\prime}}T\left(s,a,s^{\prime}
ight)\left(R\left(s,a,s^{\prime}
ight)+\gamma\max_{a^{\prime}}Q^{st}\left(s^{\prime},a^{\prime}
ight)
ight).$$

Now, let $Q_k^*\left(s,a\right)$ be the expected rewards from state s followed by action a, and then acting optimally for k steps afterwards. (Hence, $V_k^*\left(s\right) = \max_a Q_k^*\left(s,a\right)$.)

Q-Value Iteration Update Rule

1/1 point (graded)

Referring to the equations above, what should the Q-value iteration update rule be?

$$igcup Q_{k+1}^{st}\left(s,a
ight) =\sum_{s^{\prime}}T\left(s,a,s^{\prime}
ight) \left(R\left(s,a,s^{\prime}
ight) +\gamma\mathrm{max}_{s^{\prime}}Q_{k}^{st}\left(s^{\prime},a
ight)
ight)$$

$$igcup Q_{k+1}^{*}\left(s,a
ight) =\sum_{s^{\prime}}T\left(s,a,s^{\prime}
ight) \left(R\left(s,a,s^{\prime}
ight) +\gamma V^{*}\left(s^{\prime}
ight)
ight)$$

$$oldsymbol{oldsymbol{eta}} Q_{k+1}^*\left(s,a
ight) = \sum_{s'} T\left(s,a,s'
ight) \left(R\left(s,a,s'
ight) + \gamma \mathrm{max}_{a'} Q_k^*\left(s',a'
ight)
ight)$$

$$igcup Q_{k+1}^{st}\left(s,a
ight) =\sum_{s^{\prime}}T\left(s,a,s^{\prime}
ight) \left(R\left(s,a,s^{\prime}
ight) +\gamma Q_{k}^{st}\left(s^{\prime},a
ight)
ight)$$

Solution:

Q-value iteration would use the previous iteration of the Q-value on the right hand side of the equation

$$Q^{st}\left(s,a
ight) \;=\; \sum_{s^{\prime}} T\left(s,a,s^{\prime}
ight) \left(R\left(s,a,s^{\prime}
ight) + \gamma \max_{a^{\prime}} Q^{st}\left(s^{\prime},a^{\prime}
ight)
ight)$$

to update the Q value estimate of the current step. Hence, the Q value update for $k^{
m th}$ step would look like:

$$Q_{k+1}^{st}\left(s,a
ight) = \sum_{s'} T\left(s,a,s'
ight) \left(R\left(s,a,s'
ight) + \gamma \mathrm{max}_{a'} Q_{k}^{st}\left(s',a'
ight)
ight).$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 5 Reinforcement Learning (2 weeks) :Lecture 17. Reinforcement Learning 1 / 8. Q-value Iteration

Add a Post

Show all posts by recent a	ictivity
why not? Why not switch between calculating Q from V, then V from Q, until convergence? We've done	1
? Why do we sum up by s'? So the transition is not deterministic? That is not like we have probabilities of taking action "u	1
✓ What is a'? What's the difference between a and a'?	2

8.	O-value It	teration	Lecture	17.	Reinforcement

4 of 4 2020-05-09, 9:49 a.m.