

AUTODOCTOR Prototype Presentation

Nicola Ramacciotti - Tommaso Califano - Gabriele Suma

LM-Computer Engineering

Table of contents

Ol Introduction

State-of-Art

System Description

04

Prototype Description

05

Performance Evaluation

06

CPU Usage In Depth

How to evaluate health conditions?

Glascow Coma Scale Parameters:

Continuous monitoring of passenger heart rate during an accident

Real time eye tracking

Real-time eye tracking system classifies eye status as Closed, Slightly Closed, or Open

Voice assistant

Voice assistant assesses the patient's verbal state, with text-to-speech used to interpret responses

Movement detection

Real-time movement detection system classifies movement or stationary behavior

State of Art

Accurate contactless heart rate monitoring with Philips' vital signs camera for automotive

This paper presents an integrated monitoring system for the driver and the vehicle in a single case of study easy to configure and replicate. On-board vehicle sensors and remote sensors are combined to model algorithms for estimating polluting emissions, fuel consumption, driving style and driver's health.

SSW: Smart Steering Wheel for Real-Time Heart Rate Monitoring of Drivers

This work is aiming for the development of a system which includes multiple sensors incorporated with the steering wheel which is capable to measure the pulse rate and alert the rescue team dynamically about the health-related data of a driver, to prevent accidents.

Sapra A, Malik A, Bhandari P. Vital Sign Assessment.

Improvements in emergency response can help prevent deaths and life-changing injuries in road collisions. However, emergency response has not been getting a fair share of attention in terms of research, best practice exchange and measures in the European Union. (Source: European Transport Safety Council)

System Description

Elaboration System

Raspberry Pi 3 model B+

Specifications

- Broadcom BCM2837B0 system-on-chip
- 64-bit quad-core ARM Cortex-A53 processor running at 1.4 GHz
- 1 GB of LPDDR2 SDRAM
- Integrated dual-band Wi-Fi (2.4 and 5 GHz)
- Bluetooth 4.2/BLE
- Gigabit Ethernet interface routed via USB 2.0
- HDMI 1.3a

Camera

Raspberry Pi Camera Module 2

Specifications

- Sony IMX219 sensor with 8 MP resolution, capturing still images up to 3280 × 2464 pixels
- Records video up to 1080p at 30 fps, 720p at 60 fps, and 640 × 480 at 90 fps
- Fixed-focus lens

Raspberry Pi Camera Module 2

Face Recognition

Histogram of Oriented Gradients (HOG) combined with a Support Vector Machine(SVM), predicts 68 landmarks, including the eyes

Eye tracking

Pupil position is estimated from eye landmarks using contrast-based analysis for real-time tracking

Heart rate sensor

Polar T34

HR Software Integration

How to handle GPIO in Python?

pip install RPi.GPIO

Implementation:

This package provides a Python module to control the GPIO on a Raspberry Pi.

HR Software Integration

Microphone

Specifications

- Model name MI-305
- USB 2.0 (digital audio)
- Sensitivity -67 dBV/pBar, -47 dBV/Pa ± 4 dB
- Frequency response 100 Hz 16 kHz
- Noise Cancellation
- Dimensions 22 mm x 19 mm x 7 mm

Voice Transcription

GCS computation

Glasgow Coma Scale score is estimated based on:

- 1. The most frequent eye state:
 - Open: 5 points
 - Slightly-Closed: 3 points
 - Closed: 1 point
- 2. The most frequent movement state:
 - Moving: 5 points
 - Stationary: 2 point
- 3. The number of affirmative answers:
 - 3 affirmatives answers: 5 points
 - 2 affirmatives answers: 3 points
 - 1 affirmative answer: 1 point

Total Score: 1 + 2 + 3

Maximum score: 15 Minimum score: 3

Prototype GUI

Local or Remote?

Voice Protocol Average Time

Whisper thread time

Framerate

CPU usage

CPU usage

CPU usage

Framerate

RAM usage

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

