UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO E SISTEMAS

PROJETO DE CANAL LOGÍSTICO

DJONATHAN LUIZ DE OLIVEIRA QUADRAS
MARCUS GIOVANI FRIGHETTO
LUCCA MAGRI ZAGHI
RODRIGO CLARINDO DA SILVEIRA

FLORIANÓPOLIS 2021

RESUMO

Resumo

Keywords: Logística

Lista de Figuras

1	Historio do produto MO0021 em São Paulo	12
2	Série decomposta do produto MO0021 em São Paulo	13
3	Resíduos da previsão para o produto MO0021 em São Paulo	14
4	Previsão para o produto MO0021 em São Paulo	15
5	Histório do produto MO0021 em Tocantins	15
6	Série decomposta do produto MO0021 em Tocantins	16
7	Resíduos da previsão para o produto MO0021 em Tocantins	17
8	Previsão para o produto MO0021 em Tocantins	18
9	Histório do produto MO0021 no Amazonas	18
10	Série decomposta do produto MO0021 no Amazonas	19
11	Resíduos da previsão para o produto MO0021 no Amazonas	20
12	Previsão para o produto MO0021 no Amazonas	21
13	Histório do produto MO0091 em São Paulo	21
14	Série decomposta do produto MO0091 em São Paulo	22
15	Resíduos da previsão para o produto MO0091 em São Paulo	23
16	Previsão para o produto MO0091 em São Paulo	24
17	Histório do produto MO0091 em Tocantins	24
18	Série decomposta do produto MO0091 em Tocantins	25
19	Resíduos da previsão para o produto MO0091 em Tocantins	26
20	Previsão para o produto MO0091 em Tocantins	27
21	Histório do produto MO0091 no Amazonas	27
22	Série decomposta do produto MO0091 no Amazonas	28
23	Resíduos da previsão para o produto MO0091 no Amazonas	29
24	Previsão para o produto MO0091 no Amazonas	30
25	Histório do produto MO1401 em São Paulo	30
26	Série decomposta do produto MO1401 em São Paulo	31
27	Resíduos da previsão para o produto MO1401 em São Paulo	32
28	Previsão para o produto MO1401 em São Paulo	33
29	Histório do produto MO1401 em Tocantins	33
30	Série decomposta do produto MO1401 em Tocantins	34
31	Resíduos da previsão para o produto MO1401 em Tocantins $\ \ \ldots \ \ldots \ \ \ldots$	35
32	Previsão para o produto MO1401 em Tocantins	36
33	Histório do produto MO1401 no Amazonas	36
34	Série decomposta do produto MO1401 no Amazonas	37
35	Resíduos da previsão para o produto MO1401 no Amazonas	38

36	Previsão para	o produto MO1401 no Amazonas		39
----	---------------	------------------------------	--	----

Lista de Tabelas

1	Parâmetros do Centro de Gravidade	Ĝ
2	Comparação entre os modelos	13
3	Previsão de demanda do produto MO0021 para São Paulo	14
4	Comparação entre os modelos	16
5	Previsão de demanda do produto MO 0021 para Tocantins $\ \ \ldots \ \ldots \ \ \ldots$	17
6	Comparação entre os modelos	19
7	Previsão de demanda do produto MO 0021 para Amazonas $\ \ldots \ \ldots \ \ldots$	20
8	Comparação entre os modelos	22
9	Previsão de demanda do produto MO0091 para São Paulo	23
10	Comparação entre os modelos	25
11	Previsão de demanda do produto MO0091 para Tocantins	26
12	Comparação entre os modelos	28
13	Previsão de demanda do produto MO0091 para Amazonas	29
14	Comparação entre os modelos	31
15	Previsão de demanda do produto MO1401 para São Paulo	32
16	Comparação entre os modelos	34
17	Previsão de demanda do produto MO1401 para Tocantins	35
18	Comparação entre os modelos	37
19	Previsão de demanda do produto MO1401 para Amazonas	38
20	Previsão de demanda final para o produto MO0021	39
21	Previsão de demanda final para o produto MO0091	40
22	Previsão de demanda final para o produto MO1401	40
23	Dados Utilizados para Definição do Centro de Distribuição	41
24	Resultado do Centro de Gravidade	42
25	Proximidade dos Centros de Distribuição ao Centro de Gravidade	42
26	Resultados para o Método P-Centro	42
27	Resultados para o Método P-Mediana	43
28	Pesos	43
29	Notas dos critérios	44

Conteúdo

1	Intr	odução		6					
2	Rev	visão da	a Literatura	7					
	2.1	Previsa	ão de Demanda	7					
		2.1.1	Suavização Exponencial (SE)	7					
		2.1.2	Modelos Autoregressivos Integrados e de Médias Móveis (ARIMA) .	8					
		2.1.3	Redes Neurais Artificiais (RNA)	8					
	2.2	Métod	o do Centro de Gravidade	9					
		2.2.1	Método p-centro	9					
		2.2.2	Método p-mediana	10					
3	Met	todolog	gia	11					
	3.1	Definiç	ção do Centro de Distribuição	11					
4	Pre	visão d	le Demanda	12					
	4.1	Produt	to MO0021	12					
		4.1.1	Centro de São Paulo	12					
		4.1.2	Centro de Tocantins	15					
		4.1.3	Centro do Amazonas	18					
	4.2	Produt	to MO0091	21					
		4.2.1	Centro de São Paulo	21					
		4.2.2	Centro de Tocantins	24					
		4.2.3	Centro do Amazonas	27					
	4.3	Produ	to MO1401	30					
		4.3.1	Centro de São Paulo	30					
		4.3.2	Centro de Tocantins	33					
		4.3.3	Centro do Amazonas	36					
	4.4	Result	ado Final	39					
5	Centro de Distribuição								
	5.1	Escolh	a do Centro de Distribuição	41					
6	Cor	nclusão		15					

1 Introdução

O trabalho vigente tem por objetivo estudar os dados históricos de demanda para traçar um modelo preditivo de demanda para os próximos períodos. Dentro deste estudo, serão abordados tópicos referentes às metodologias utilizadas para a previsão desta respectiva demanda, a qual foi desenhada e projetada dentro da linguagem de programação R. São abordados ao todo 3 produtos, cada qual com 3 destinos diferentes, sendo eles Tocantins, São Paulo e Amazonas e portanto, temos 9 previsões distintas para serem abordadas. Ao fim do estudo, traremos a conclusão de como a demanda se comporta dentro dos próximos períodos para cada um dos produtos e em cada um de seus respectivos destinos.

2 Revisão da Literatura

2.1 Previsão de Demanda

Dentro desta temática apresentaremos os métodos abordados para a realização do estudo de previsão de demanda para as 9 diferentes combinações existentes (Produtos x Localização). O estudo leva em consideração 3 métodos matemáticos diferentes para o modelo predictivo de demanda. São eles: Suavização Exponencial (SE), Arima e Redes Neurais Auto Regressivas (RNA).

2.1.1 Suavização Exponencial (SE)

A suavização exponencial (SE) baseia os seus resultados de acordo com os acontecimentos passados, mas diferentemente de uma média móvel que considera os eventos passados isobáricos dentro do modelo preditivo, a SE não segue o mesmo efeito. A suavização passa a considerar que os eventos mais recentes e próximos têm maior peso dentro do modelo preditivo quando comparados com eventos mais distantes da série temporal, os quais decaem de forma exponencial da mais recente à mais distante observação (William J, 2011).

O método é um dos mais utilizados dentro da indústria para a predição de produtos e as suas respectivas demandas e a razão para tal é o baixo custo e simplicidade (Teixeira, 2004). Quando utilizamos este método, devemos ter ciência que o mesmo tem melhores resultados, ou seja, possui melhor ajustamento para séries que não possuem tendência ou sazonalidade.

O modelo foi proposto primeiramente por Robert Goodell Brown e a expressão que suporta a suavização exponencial é dada por:

$$\widehat{P}_{t+1} = \alpha \widehat{P}_t + (1 - \alpha)\widehat{P}_t \tag{1}$$

O ponto \hat{P}_{t+1} é a próxima observação da demanda, é a constante que varia referente à suavização e seu valor está contido entre 0 e 1 e \hat{P}_t representa a mais recente observação da série. A Combinação dos valores dos referentes pesos de com os valores observados atuais \hat{P}_t geram as previsões para as próximas observações. Note que o valor de α como constante é arbitrário e sua determinação pode ser realizada por diferentes métodos que minimizem os erros causados pela mesma (Métodos Estatísticos de Suavização Exponencial, 2012).

2.1.2 Modelos Autoregressivos Integrados e de Médias Móveis (ARIMA)

Esta metodologia consiste em ajustar modelos autorregressivos integrados de médias móveis, ARIMA(p,d,q), a um conjunto de dados. Para a construção do modelo seguimos um algorítimo no qual a escolha da estrutura do modelo é baseado nos próprios dados. Podemos descrever o algorítimo através dos seguintes passos:

- 1. Considerar uma classe geral de modelos para a análise;
- 2. Identificar um modelo com base na análise de autocorrelações, autocorrelações parciais e outros critérios;
- 3. Estimar os parâmetros do modelo identificado; Verificar se o modelo ajustado é adequado aos dados através de uma análise de resíduos.
- 4. Caso o modelo não seja adequado o algoritmo é repetido, voltando à fase de identificação.
- 5. Existem vários critérios para identificação de um modelo, por isso, é possível identificar modelos diferentes dependendo do critério que foi escolhido para identificação.

2.1.2.1 Modelos Autorregressivos (AR) Dizemos que o modelo X_t , t pertencente a \mathbb{Z} é um modelo autoregressivo de ordem p e escrevemos $X_t \cong AR(p)$ se pudermos escrever da forma:

$$X_t = \phi_0 + \phi_1 X_t - 1 + \dots + \phi_p X_t - p + \epsilon_t \tag{2}$$

Onde ϕ_0 , ϕ_1 e ϕ_t são parâmetros reais, e ϵ_t são variáveis independentes aleatórias com $E(\epsilon_t) = 0$ e $VAR(\epsilon_t) = \sigma^2$.

2.1.2.2 Modelos de médias móveis (MA). Consiste em um modelo de médias móveis de ordem p e q, representado por:

$$X_t = \phi_1 X_t - 1 + \dots + \phi_p X_t - p + \alpha_t - \theta_1 \alpha_t - 1 - \dots - \theta_q \alpha_t - q \tag{3}$$

Um processo de MA(p,q) tem função de autocovariância infinita, decaindo de acordo com exponenciais ou senóides amortecidas após o lag p-q.

2.1.3 Redes Neurais Artificiais (RNA)

Funcionam analogamente ao cérebro e neurônios, tentando entender padrões e regularidades.Uma de suas vantagens é a aproximação de séries temporais não lineares

(Kashei; Bijari 2010; Zhang 2003).

Modelo descrito por três camadas, entrada, saída e escondida. Os neurônios nestas camadas só se conectam com as camadas subsequentes. A camada escondida necessita ser definida, se for muito grande estará memorizando os padrões assim perdendo capacidade de generalização, se muito pequena necessita de muitas interações, por consequência força computacional para chegar a precisão desejada. (FERNADES, L. G.; PORTUGAL, M. S.; NAVAUX, P. O).

Para o sucesso da previsão é necessário dividir as amostras em pares de treinamento e teste e assim avaliar a camada oculta.

2.2 Método do Centro de Gravidade

O método do centro de gravidade visa encontrar a melhor localização que corresponde ao menor custos de transporte com base em todos os lugares para onde as mercadorias são transportadas. Procura-se, portanto, um local para a instalação do CD intermediário para a entrega nos CD finais. O local da instalação é determinado pelas coordenadas x e y conforme segue na equação (??). É importante ressaltar que este método não considera fatores qualitativos como incentivos fiscais, restrições sociais, restrições urbanas e facilidade de acesso aos modais de transporte.

$$x = \frac{\sum V_i C_i x_i}{\sum V_i C_i}, \quad y = \frac{\sum V_i C_i y_i}{\sum V_i C_i}$$
 (4)

Onde:

Tabela 1: Parâmetros do Centro de Gravidade

Parâmetro	Descrição
$\overline{V_i}$	Volume Transportado para o local i
C_i	Custo por unidade de volume transportado para o local i
x_i	Coordenada na direção x do local i
y_i	Coordenada na direção y do local i

2.2.1 Método p-centro

Método que ranqueia as cidades pré-definidas como CDI pela distância máxima entre o CDI até o CDF. Para isto é analisado todas as distâncias do CDI até todos os CDF e com base na distância máxima é ranqueado como melhor opção o CDI que possuir a menor distância máxima.

2.2.2 Método p-mediana

Com os pontos de demanda definidas, os locais pré-definidos como potenciais para CDI, a distância entre os CDI e CDF e o número p de facilidades a serem instaladas o método que tem como objetivo localizar P CDI para entregar nos 3 centros de demanda com a objetivo de minimizar as distâncias médias ponderadas entre os CDF e os CDI. A seguir tem a tabela p-mediana com a distância máxima do CDI aos CDF multiplicado pela demanda:

3 Metodologia

3.1 Definição do Centro de Distribuição

Para a realização da escolha do CD foram utilizados um conjunto de dados e métodos para atingirmos um ranking final que nos permitiu priorizar qual o CD mais adequado para a nossa demanda. Utilizando o método de centro de gravidade, foram coletadas as demandas dos 3 estados para os meses de 2021 obtidas como resultado da previsão de demanda.

4 Previsão de Demanda

A previsão de demanda irá isolar os produtos para realizar as previsões de forma isolada. Assim, essa seção será dividida entre os produtos MO0021, MO0091 e MO1401.

4.1 Produto MO0021

Será realizada uma previsão para cada um dos centros de distribuição: São Paulo, Tocantins e Amazonas.

4.1.1 Centro de São Paulo

A Figura 1 apresenta o histórico de vendas para este centro.

Figura 1: Histório do produto MO0021 em São Paulo

A Figura 2 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma tendência negativa (queda da demanda ao longo do tempo), com uma sazonalidade bastante clara.

Figura 2: Série decomposta do produto MO0021 em São Paulo

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 2.

Tabela 2: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	3.98	5.37	4.26

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Suavização Exponencial. Ademais, a Figura 3 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 3: Resíduos da previsão para o produto MO
0021 em São Paulo

A Tabela 3 apresenta os valores previstos para o ano de 2021.

Tabela 3: Previsão de demanda do produto MO0021 para São Paulo

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
265.82	231.47	228.68	240.97	211.92	203.22	188.37	186.82	221.32	259.74

O gráfico da previsão está apresentado na Figura 4.

Figura 4: Previsão para o produto MO0021 em São Paulo

4.1.2 Centro de Tocantins

A Figura 5 apresenta o histórico de vendas para este centro.

Figura 5: Histório do produto MO0021 em Tocantins

A Figura 6 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma tendência negativa (diminuição da demanda ao longo do tempo) com uma sazonalidade bastante clara.

Figura 6: Série decomposta do produto MO0021 em Tocantins

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 4.

Tabela 4: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	10.67	11.05	8.76

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Redes Neurais Artificiais. Ademais, a Figura 3 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 7: Resíduos da previsão para o produto MO0021 em Tocantins

A Tabela 5 apresenta os valores previstos para o ano de 2021.

Tabela 5: Previsão de demanda do produto MO0021 para Tocantins

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
1414.6	1125.51	1099.32	1090.5	549.67	733.86	923.62	998.75	1051.54	1140.69

O gráfico da previsão está apresentado na Figura 8.

Figura 8: Previsão para o produto MO0021 em Tocantins

4.1.3 Centro do Amazonas

A Figura 9 apresenta o histórico de vendas para este centro.

Figura 9: Histório do produto MO0021 no Amazonas

A Figura 10 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma tendência positiva (aumento da demanda ao longo do tempo) com uma sazonalidade bastante clara.

Figura 10: Série decomposta do produto MO0021 no Amazonas

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 6.

Tabela 6: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	6.32	4.84	5.07

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o ARIMA. Ademais, a Figura 11 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 11: Resíduos da previsão para o produto MO0021 no Amazonas

A Tabela 7 apresenta os valores previstos para o ano de 2021.

Tabela 7: Previsão de demanda do produto MO0021 para Amazonas

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
910.99	1030.59	1414.69	1281.29	1053.59	768.39	959.29	910.99	881.09	759.19

O gráfico da previsão está apresentado na Figura 12.

Figura 12: Previsão para o produto MO0021 no Amazonas

4.2 Produto MO0091

Será realizada uma previsão para cada um dos centros de distribuição: São Paulo, Tocantins e Amazonas.

4.2.1 Centro de São Paulo

A Figura 13 apresenta o histórico de vendas para este centro.

Figura 13: Histório do produto MO0091 em São Paulo

A Figura 14 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma tendência positiva (aumento da demanda ao longo do tempo) com uma sazonalidade bastante clara.

Figura 14: Série decomposta do produto MO0091 em São Paulo

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 8.

Tabela 8: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	20.01	19.23	10.45

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Redes Neurais Artificiais. Ademais, a Figura 15 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 15: Resíduos da previsão para o produto MO0091 em São Paulo

A Tabela 9 apresenta os valores previstos para o ano de 2021.

Tabela 9: Previsão de demanda do produto MO0091 para São Paulo

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
1708.6	1797.23	1808.35	1793.29	1793.37	1716.98	1782.82	1788.34	1907.64	1716.34

O gráfico da previsão está apresentado na Figura 16.

Figura 16: Previsão para o produto MO0091 em São Paulo

4.2.2 Centro de Tocantins

A Figura 17 apresenta o histórico de vendas para este centro.

Figura 17: Histório do produto MO0091 em Tocantins

A Figura 18 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma leve tendência positiva (aumento da demanda

ao longo do tempo), sendo predominantemente linear, com uma sazonalidade bastante clara.

Figura 18: Série decomposta do produto MO0091 em Tocantins

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 10.

Tabela 10: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	9.15	9.86	9.95

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Suavização Exponencial. Ademais, a Figura 15 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 19: Resíduos da previsão para o produto MO0091 em Tocantins

A Tabela 11 apresenta os valores previstos para o ano de 2021.

Tabela 11: Previsão de demanda do produto MO0091 para Tocantins

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
1129.11	974.03	1061.11	1592.61	1359.4	1285.07	1587.77	1088.8	984.45	980.72

O gráfico da previsão está apresentado na Figura 20.

Figura 20: Previsão para o produto MO0091 em Tocantins

4.2.3 Centro do Amazonas

A Figura 21 apresenta o histórico de vendas para este centro.

Figura 21: Histório do produto MO0091 no Amazonas

A Figura 22 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma tendência positiva (aumento da demanda ao longo do tempo), com uma sazonalidade bastante clara.

Figura 22: Série decomposta do produto MO0091 no Amazonas

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 12.

Tabela 12: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	20.03	11.24	11.12

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Redes Neurais Artificiais. Ademais, a Figura 23 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 23: Resíduos da previsão para o produto MO0091 no Amazonas

A Tabela 13 apresenta os valores previstos para o ano de 2021.

Tabela 13: Previsão de demanda do produto MO0091 para Amazonas

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
926.46	1200.63	801.17	888.3	778.47	911.75	805.75	1115.29	766.54	492.24

O gráfico da previsão está apresentado na Figura 24.

Figura 24: Previsão para o produto MO0091 no Amazonas

4.3 Produto MO1401

Será realizada uma previsão para cada um dos centros de distribuição: São Paulo, Tocantins e Amazonas.

4.3.1 Centro de São Paulo

A Figura 25 apresenta o histórico de vendas para este centro.

Figura 25: Histório do produto MO1401 em São Paulo

A Figura 26 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma tendência negativa (queda da demanda ao longo do tempo), com uma sazonalidade bastante clara.

Figura 26: Série decomposta do produto MO1401 em São Paulo

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 14.

Tabela 14: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	5.75	7.73	6.39

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Suavização Exponencial. Ademais, a Figura 27 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 27: Resíduos da previsão para o produto MO1401 em São Paulo

A Tabela 15 apresenta os valores previstos para o ano de 2021.

Tabela 15: Previsão de demanda do produto MO1401 para São Paulo

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
431.94	493.07	565.47	612.52	396.51	379.52	339.67	286.75	253.18	224.73

O gráfico da previsão está apresentado na Figura 28.

Figura 28: Previsão para o produto MO1401 em São Paulo

4.3.2 Centro de Tocantins

A Figura 29 apresenta o histórico de vendas para este centro.

Figura 29: Histório do produto MO1401 em Tocantins

A Figura 30 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma leve tendência positiva (queda da demanda ao longo do tempo), com uma sazonalidade bastante clara.

Figura 30: Série decomposta do produto MO1401 em Tocantins

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 16.

Tabela 16: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	5.16	5.15	5.27

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o ARIMA. Por outro lado, a Figura 27 apresenta a análise de resíduos que apresenta uma inconsistência no parâmetro ACF (fator de autocorrelação) mostrando um valor que apresenta autocorrelação (uma das linhas pretas extrapola os limites em azul). Como a extrapolação é pequena e nao apresenta grandes perdas ela será desconsiderada, uma vez que como esperado os resíduos variam em torno de zero sem tendência positiva ou negativa e os erros apresentam uma característica normal.

Figura 31: Resíduos da previsão para o produto MO1401 em Tocantins

A Tabela 17 apresenta os valores previstos para o ano de 2021.

Tabela 17: Previsão de demanda do produto MO1401 para Tocantins

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
2006.4	2448	2606.4	3417.6	2448	2352	1977.6	1963.2	1886.4	1411.2

O gráfico da previsão está apresentado na Figura 32.

Figura 32: Previsão para o produto MO1401 em Tocantins

4.3.3 Centro do Amazonas

A Figura 33 apresenta o histórico de vendas para este centro.

Figura 33: Histório do produto MO1401 no Amazonas

A Figura 34 apresenta a série de forma decomposta em tendência, sazonalidade e restante. Percebe-se pela figura que há uma leve tendência aparentemente linear (nem queda nem aumento na demanda), com uma sazonalidade bastante clara. De fato a

tendência se apresenta linear nos últimos meses, mas se recupera de uma tendência de queda no ano de 2019.

Figura 34: Série decomposta do produto MO1401 no Amazonas

A aplicação dos métodos Suavização Exponencial (SE), ARIMA e Redes Neurais Autoregresivas (RNA) retornou os MAPE's apresentados na Tabela 18.

Tabela 18: Comparação entre os modelos

Método	SE	ARIMA	RNA
MAPE	8.06	9.44	5.61

Portanto, por ter o menor MAPE, o método utilizado para a previsão é o de Redes Neurais Artificiais. Ademais, a Figura 35 apresenta a análise de resíduos. Como esperado, os resíduos variam em torno de zero sem tendência positiva ou negativa, o parâmetro ACF (fator de autocorrelação) mostra resultados positivos uma vez que os resíduos não apresentam autocorrelação (as linhas pretas não extrapolam os limites em azul) e os erros apresentam uma característica normal.

Figura 35: Resíduos da previsão para o produto MO1401 no Amazonas

A Tabela 19 apresenta os valores previstos para o ano de 2021.

Tabela 19: Previsão de demanda do produto MO1401 para Amazonas

03/21	04/21	05/21	06/21	07/21	08/21	09/21	10/21	11/21	12/21
467.29	543.47	881.44	698.72	419.69	536.17	573.22	1097.58	727.44	529.43

O gráfico da previsão está apresentado na Figura 36.

Figura 36: Previsão para o produto MO1401 no Amazonas

4.4 Resultado Final

A Tabela 20 presenta um resumo das demandas finais para o produto MO0021.

Tabela 20: Previsão de demanda final para o produto MO0021

Data	São Paulo	Tocantins	Amazonas
03/21	265.82	1414.60	910.99
04/21	231.47	1125.51	1030.59
05/21	228.68	1099.32	1414.69
06/21	240.97	1090.50	1281.29
07/21	211.92	549.67	1053.59
08/21	203.22	733.86	768.39
09/21	188.37	923.62	959.29
10/21	186.82	998.75	910.99
11/21	221.32	1051.54	881.09
12/21	259.74	1140.69	759.19

A Tabela 20 presenta um resumo das demandas finais para o produto MO0091.

Por fim, a Tabela 22 presenta um resumo das demandas finais para o produto $\rm MO1401.$

Tabela 21: Previsão de demanda final para o produto MO0091

Data	São Paulo	Tocantins	Amazonas
03/21	1708.60	1129.11	926.46
04/21	1797.23	974.03	1200.63
05/21	1808.35	1061.11	801.17
06/21	1793.29	1592.61	888.30
07/21	1793.37	1359.40	778.47
08/21	1716.98	1285.07	911.75
09/21	1782.82	1587.77	805.75
10/21	1788.34	1088.80	1115.29
11/21	1907.64	984.45	766.54
12/21	1716.34	980.72	492.24

Tabela 22: Previsão de demanda final para o produto MO1401

Data	São Paulo	Tocantins	Amazonas
03/21	431.94	2006.4	467.29
04/21	493.07	2448.0	543.47
05/21	565.47	2606.4	881.44
06/21	612.52	3417.6	698.72
07/21	396.51	2448.0	419.69
08/21	379.52	2352.0	536.17
09/21	339.67	1977.6	573.22
10/21	286.75	1963.2	1097.58
11/21	253.18	1886.4	727.44
12/21	224.73	1411.2	529.43

5 Centro de Distribuição

Esta seção será com base na previsão de demanda definida na entrega 1 para os produtos MO0021, MO0091 e MO1401 que têm como centro de distribuição final (CDF) São Paulo - SP, Palmas - TO e Manaus - AM vamos definir o local do centro de distribuição intermediário (CDI) que é obrigatório para este projeto e as estratégias de rotas de distribuição sendo as cidades disponíveis para o CD intermediário:

Serão considerados os seguintes Centros de Distribuição Intermediários:

- Belém PA;
- Goiânia GO;
- Itajaí SC;
- Manaus AM;
- Palmas TO;
- Santos SP;
- Porto Belo SC;
- São Paulo SP;
- Suape PE.

5.1 Escolha do Centro de Distribuição

A Tabela 23 apresenta os valores utilizados para a aplicação do método de Centro de Gravidade.

Tabela 23: Dados Utilizados para Definição do Centro de Distribuição

Localização	Demanda	x_i	y_i
São Paulo	24034.67	-46.646	-23.548
Tocantins	44687.93	-48.328	-10.167
Amazonas	25131.16	-60.025	-3.102

Com os dados acima é possível aplicar a equação característica para o Centro de Gravidade. Dessa forma, o resultado para a Localização do Centro de Distribuição é apresentado na Tabela 24.

Para comparar as distâncias entre o ponto ideal e o CD, foi utilizada a ferramenta Google maps a fim de identificar quais seriam os CD's mais próximos ao local. A Tabela 25 apresenta o resultado dessa análise.

Em seguida, foi utilizado o método do P-Centro. Foram aplicadas as distâncias

Tabela 24: Resultado do Centro de Gravidade

Parâmetro	Valor
$x \\ y$	-51.0293612066242 -11.7019009723653
Coordenada Correspondente	São Félix do Araguaia - MT, 78670-000

Tabela 25: Proximidade dos Centros de Distribuição ao Centro de Gravidade

CD	Distância de São Félix do Araguaia	Ranking
Belém	1578	3
Goiânia	771	2
Itajaí	2270	6
Manaus	2997	9
Palmas	425	1
Porto Belo	2305	7
Porto de Santos	1766	5
São Paulo	1692	4
Suape	2308	8

existentes entre os CD's e os mercados consumidores para, entam, ser escolhido o centro de distribuição com menor P-Centro. O resultado é apresentado na Tabela 26.

Tabela 26: Resultados para o Método P-Centro

CD	Palmas	são Paulo	Manaus	Máximo	Ranking
Belém	1224	2880	3049	3049	1
Goiânia	861	900	3249	3249	2
Itajaí	2393	606	4262	4262	7
Manaus	3892	3872	0	3892	4
Palmas	0	1816	3895	3895	5
Porto Belo	2427	640	4296	4296	8
Porto de Santos	1886	78	3947	3947	6
São Paulo	1814	0	3875	3875	3
Suape	2109	2634	4716	4716	9

O método da P-Mediana foi aplicado considerando as distâncias em função da demanda de cada localidade dos mercados consumidores. A Tabela 27 apresenta os resultados obtidos.

A Tabela 28 apresenta os critérios e seus respectivos pesos. Os pesos variam 1 a 5.

Tabela 27: Resultados para o Método P-Mediana

CD	Palmas	são Paulo	Manaus	Máxima demanda	Ranking
Belém	54698022	69219842	76624914	200542778	5
Goiânia	38476305	21631201	81651147	141758652	2
Itajaí	106938208	14565008	107109014	228612231	6
Manaus	173925410	93062232	0	266987642	8
Palmas	0	43646956	97885878	141532833	1
Porto Belo	108457597	15382187	107963474	231803258	7
Porto de Santos	84281429	1874704	99192698	185348831	4
São Paulo	81063899	0	97383254	178447153	3
Suape	94246837	63307314	118518562	276072713	9

Para esta classificação, quanto maior a pontuação, melhor em seu respectivo critério este atributo está.

Tabela 28: Pesos

Código	Critérios	Pesos
C1	Aluguel	3
C2	Energia/Água/Manutenção	3
C3	IPTU	2
C4	Manutenção/Depreciação Equipamentos/Operações	2
C5	salários	5
C6	Custo de Capital	2
C7	Manutenção	1

A Tabela 29 apresenta as notas para os critérios. As notas variam de 1 a 3.

Tabela 29: Notas dos critérios

CD	C1	C2	С3	C4	C5	C6	C7
Belém	3	3	3	3	3	3	3
Goiânia	2	2	2	2	2	2	2
Itajaí	1	1	2	1	1	2	1
Manaus	2	2	3	2	2	2	2
Palmas	3	3	3	2	3	3	3
Porto de Santos	2	2	2	2	2	2	2
Porto Belo	1	1	1	1	1	1	1
São Paulo	1	2	2	1	1	2	1
Suape	3	3	3	3	3	3	3

6 Conclusão