·	ragi 	GCTGGCTGT 138	NdeI 	agaagaaaa 276	AACAGAGGT 345	/ v
HindIII	AluI ATGGGAAGCTTATTTCT 52 50	Saci Alui NTGGAGCTCTAAAGGTT 119 121	CTCTGAAAGTGCTTCT	IGATGATGAACAGCCGA	GGTCGTCGTCCCATGA	Je Je
AF A	1 GTCGAGGCAGTCACTAACATGAAGTTTGACGAGGAGCCCAACTATGGGAAGCTTATTTCTCTTTTTCGAT 52 66 50	Saci Hhal Xbal Alu1	Nde. - 139 TTTCTTGTATATGATTAACTTGTGTATAAATATTCTCTGAAAGTGCTTCTTTTGGCATA 150	208 TGTAGGTTGGGCAAAAACGAGGAAGATTGCTTCTCAATTTGGAAGATGATGAAGAACAGCCGAAGAAAAA	Sau3AI DdeI	
	CACTAACATGAAGTTT	Hhai Xbai GCCGTGCGCTCTATCTAG; 89 95	Ndel - TATGATTAACTTCTAA/ 150	CAAAAACGAGGAAGAT	AGTCCTGCTACTCAATG	
pgn1	1 GTCGAGGCAGT	70 ACTCTAATTGA	139 TYYCTYGTICA	208 TGTAGGTTGGG	277 TAAGAATAGGC	-
					·	

FIG.

414	483	552	621
ECORV ATATCACTA 408	Alui 	CAAGTTTA	TGATTTGT
CTTTTGGTAG	HaeIII - TGGCCTTTTT 	HinfI ATTCACTTC1 535	HinfI AGAATCAATC 606
ICTGTGTAAT (Gaaatgaaga	CTGGAACTGG	SAAGCAATTA
ECORV	MSpI Hpail Alur Hhai Will Hail Wall Haelli Alua Wall Haelli Alu	AluI 	MSDI: Hpall
CTTTGATAGT	MSPI HPAII Alur Hhai GCTGCGCJRCATAT 434 439 440 440	CTGGGCTCTC	ACACAAGGTA
TGCATATACA	Al AGACAANGCTA	AluI !AGCTAATCTX 498	Mspi Hpali CGGrcTrccry 564 564
ACACATTITIT	atgittggag)	TGTAGCATCAGO	AGTTGTCACC 5 5
346 AJ	415 C?	484 TG	553 TG

622 AGTAAACTAAGAAGTTACCTTATGATTTCCCCGCAGGACTGGATTATGGAACAATGGGAAAAGAAC FIG.

٠,

690

828

996 897 898 TGGAAAGAAGATTTTCATGTAAACCTCCATGACAACTGCTGGTAATCGTTGGGGTGTGGTAATGTCGAGG 962 TagI HinfI DdeI

967 AACTCTGGCTTCTCTGATCAGGTAGGTTTTTGTCTCTTATTGTCTGGTGTTTTTTATTTCCCCTGATAG 1035 Sau3AI BclI 982

RsaI

FIG. 1C

1105 CATAGGAGGTGGGAGAATGGGTATAGAATAACATCAATGGCAGCAACTGCGGATCAAGCAGCTTTCATA 1173 Sau3AI

ACTCATGTCAAGGTTGGTTTCTTTAGCTTTGAACACAGATTTTGGATCTTTTTTGTTTTTGTTTTCCATATAC 1311 Sau3AI AluI Scal RsaI 1243

1381 CATCAATATGCTATGGCAGGACAGTGTGCTGATGATACACACTTAAGCATCATGTGTTGTGTTAGAAAG 1449

rig. id

KsaI

1588 ATTGAGTAGTAGAAATTTGAGAGCTTTTTAAAGCCCTTCAAGTGTGTGCTTTTTATCTTATTGATATC 1656 1613 1619 AluI DraI

1657 ATCCATTTGCGTTGTTTAATGCGTCTTTAGATATGTTTCTGTTTCTTTTCTGTGTCTGAATATCTGAF 1725

HinfI

EcoRI

FIG. 1E

		:	
	001	070	139
SphI	CA 2(2000	13 S C	. A
01 –	VTGC 2	Ndei \TATG 2067	Tri
	AGC?	CAC!) 5990
	ATT	ACA (SCTX
	CAT	CACI	GAG
	TCA	CAG	TTA
	ACA	TCA	AAA
AluI	- CTAC! 1978	CTC	TAT
<i>A</i> . –	AGC 1	Alui crrcr 2043	ACC
	ATC	A1 GCT 20	CTC
BstNI	AGGAC 1968	AAG?	CAT
<u>~</u>	-3CAC	ľaa	CTC.
	ACG	AluI Hercantanterenterenterenterenterenterenteren	AAT
٠	ינבת	AAAC	· GCA
-	AGA7	TTCAA	I CCA1
	ATA	CAC.	Sau3AI GATCGC 2089
	TTC	ACT	Sa HTGA 20
	TCG	GTO	ACG
	ATA	TTT	TAC
	AA.	ACGA	raty 5
	rtg.	2667	Sphi sii CCAAT? 073
	T'TY.	ATG(Sphi Nsii ATGCAAT) 2073
	1933 TTTTTGAAAAATATCGTTCATAAGATGTCACGCC ^I GGACATGAG ^L TACACATCACATATTAGCATGCA 2001 1968 1978 .	2002 GATGCGG	Sphi Nsii sau3AI .
	193	200	207

FIG. 1F

AluI | 2140 CTTTTTACTCAAAACTCATCACTACAAAACATACACAAAGGGGGAACAAGCTCTTC 2200 Met 2195

		1801	CTTTTCGAT 66
		Hindil	atgggaģģttattet 50 50
	LENGTH = 4325	AGTITCACCACCACCACCACCACCACCACCACCACCACCACCAC	TO T
Lambda CGNI-2	McG-186 Linear LE Xhoi Taqi	Avai CTCGAGGCAGTCACTAACATGA	2 3 5 5 5 66

69

89 95

277 TAAGAATAGGCAGTCCTGCTACTCAATGGATCTCAGTCTATAACGGTCGTCGTCCATGAAACAGAGGT 345

346 AAAACATTTTTGCATATACACTTTGAAAGTICCTCACTAACTGTGTAATCTTTTGGTAGATATCACTA

Alui I ITAGCTG 483	481	AAGTTTA 552		٠.
Haelll I AGATGGCCTTTTGA1	469	Hinfi TGGATTCACTTCTC	535	HINTI
ATACAAAGGGAAATGA		.ATCATGGATGCTGGAAC		
FIG. 2B Haelil Batell Batell Haelil Alui Alui Haelil Alui Haelil Alui Haelil Alui Haelil Alui A	439 439 440 440 440	Alul Hinfi 484 TGTAGCATCAGCAGCTAATCTCATGGATGCTGGAACTGGATTCACTTCTCAAGTTTA 552	498	Mspl
FIG. 2B		484 TGTAGCATCAGC		ET-

622 AGTAAACTAAGAAGAACTTACCTTATGTTTTCCCCGCAGGACTGGATTATGGAACAATGGGAAAAGAAC 690

629

553 IGAGTIGICACCGGTCTTCCTACACAAGGTAATAATCAGTTGAAGCAATTAAGAATCAATTTGATTTGT 621

pdei

909

691 TACTATATAAGCTCCATAGCTGGTTCAGATAACGGGAGCTCTTTAGTTGTTATGTCAAAAGGTTAGTGT 759 Alul Alul

702

829°GAACTACTTATTC†CAGCAGTCATACAAAGTGAGTGÁCTCATTTCCGTTCAAGTGGATAÁATAAGAAAT 897

898 GGAAAGAAGAITTCATGTAACCTCCATGACAACTGCTGGTAATCGTTGGGGTGTGGGTAATGTCGAGGA 966

967 ACTCTGGCTTCTCTGATCAGGTAGGTTTTTGTCTCTTATTGTCTGGTGTTTTATTTTCCCCTGATAGT 1035

Rsal

1174 TAAGCATACCAAAGCGTAAGATGGTGGAGAACTCAAGAGÁCTCTCCGCACCACCGCCTTTCCAAGTÁ 1242

.

1215

FIG. 2C

l apu	CATATACT 1311	1311	-
Şau3AI	гтвеатсттттвтттвтт	1285	Hinfl Deal
A) A)	1243 CTCATGTCAAGGTTGGTTTCTTTAGCTTTGAACACAGATTTGGATCTTTTTGTTTTGTTTCCATATACT 1311	1268	Ddel Alu?
	1243 CTCATGTCAAGO	٤	Ddel

1381 ATATECTATEGCAGGACAGTGTGCTGATACACTTAAGCATCATGTGGAAAGCCAAAGACAATTGGAG 1449

1450 CGAGÁCÍCAGGGTCGTCATAATACCAATCAAAGACGTAAAACCAGACGCAACCTCTTTGGTTGAATGTA 1518

1456 1456 . Ksa1 1519 ATGAAAGGGATGTGTCTTGGTATGTACGAATAACAAAAGAGAAGATGGAATTAGTAGTAGAAATA 1587

1548

xpal pc

FIG. 2D 1657 TGCGTCTCTAGATATGTTCCTATATCTTTCTCAGTGTCATAGTGAAATGTGAGAAAACCATACCAA 1725

1687

1726 ACCAAAÄTATTCAAATCTTATTTTTAATAATGTTGÄATCACTCGGAGTTGCCACCTTCTGTGCCAATTG 1794

1761

1864 TCATTAAGTTTTTATTTTCTGAAGTTTAAGTTTTACCTTCTGTTTTGAAATATATCGTTCATAAGATG 1932

Sph1 Sau3A1

1950 1940

1973 1971

Sausal

Ddel Alul Hhal Ndel Nsil Sausal
2002 CACCIAAGAGCTTCTCTCACAGCGCACACATATGCATGCATATTTACACGTGATCGCCATGCAA 2070

2036 2042 2044

2006 2012

2071 ATCTCCATTCTCACCTATAAATTAGAGCCTCGGCTTCACTCTTTACTCAAAACCAAAACTCATCACTACA 2139

Alui

FIG. 2E

Page	11 111 2277 Phe	CAC 2346 IIIs	GAC 2415 Asp	Saci Alui CTCCAC 2484 Equilis 2479		
Acci Hacil Hincil Hacil Acci Hocil Acci Hacil Acci Hacil Acci Hacil Acci Acci Acci Acci Acci Acci Acci A	Nael Mspl IIpall IIael Iael IbaspalathrasnProalaGlyProf 2268 2269	IIIndiii Alui CCTGAAAGCTTGCCAACAATGGCTC SLeulysAiaCysGinGinirpLeu 2325	Taqi CGATGGTGAGTTTGATTTTGAAGAC UASpGIyGTuPheAspPheGTuAsp 2388	S Alu GCTCCAGCAGTGCTGCAACGAGCTC ULeuGInGInCysCysAsnGluLeu 242	IIIII ATCCAAAGCCGTTAAACAACAGATTO aSerLysAlaValLysGInGInTle	
Servalga Servalga Servalga Servalga Secanda Se	Sall Sall Hincll Acci CAGGACGGTTGTGGAAGTCGACGAGA ArgthryalvalGluvalAspGluAs 2239 22340	TAGGAAGGAGTTTCAGCAAGCACAACA SAF9LysGluPheGInGInAlaGInIII	Hpall Avall Alul GTCCGGTAGTGGTCCAAGCTGGACCCT nSerGlySerGlyProSerTrpThrLe 2364	Naelli Apal ACAGGCCCGCAGCAGGCCACCGCT NGINGIYPGGINGINAF9PFOPFOLE	TTGCGTTTGCCCAACCTTGAAAGGAGC uCysValCysProThrLeuLysGlyAl	
2209 AATGC ASNA 16 2278 AGGAT 2347 AAGCA 2416 GTGGA 2485 CAGGA 2485 CAGGA 2485 CAGGA	AATGCCTCCGTCTA ASNATASerVally	HINTI AGGATTCCAAAATG AFGLEPFOLYSCY		GTGGAGAACCAACA ValGluAsnGlnGl	BstNI CAGGAAGAGCCACT	

Bathi

2813 illnc 1 277.1

Acc 1

2830 TACTCCGTAGACGGTAATAAAAGAGAAGTTTTTTTTTTACTCTTGCTACTTTCCTATAAAGTGATGAT 2898

2838

2899 TAACAACAGATACACCAAAAAGAAACAATTAATCTATATTCACAATGAAGCAGTÄCTAGTCTATTGAA 2967 Scal

2954 2954

FIG. 2G

2968 CAIGICAGAITIICITIIICTAAAIGICIAAIIAAGCCIICAAGGCIAGIGAIGAIAAAAGAICAICCA 3036

3037 ATGGGATCCAACAAAGACTCAAATCTGGTTTTGATCAGATACTTCAAAACTATTTTTGTATTCATTAAA 3105

3016 TTATGCAAGTGTTCTTTTATTTGGTGAAGACTCTTTAGAAGCAAAGAACGACAAGCAGTAATAAAAAA 3174

iiin(l

3313 TATATTAAGTITCATTTCTGTTCAAACAIATGATAAGATGGTCAAATGATTATGAGTTTTGTTATTTAC 3381

3382 CTGAAGAAAAGATAAGTGAGCTTCGAGTTTCTGAAGGGTACGTCATCTTCATTTCTTGGCTAAAAGCGA 3450 Sau3AI

3402 3405

3451 ATATGACATCACCTAGAGAAAGCCGATAATAGTAAACTCTGTTCTTGGTTTTTGGTTTAATCAAACCGA 3519 FIG. 2H

	CITITAATCTAATTITIGCA 3657
	Msp Msp 1 Msp 1

HINTI HINCII Bstri

3727 CAAATAAAACCCGAAGATGAGACCACCACGTGCGGCGGGACGTTCAGGGGACGGGGGGGAAGAGAATGR 3795

3804

Jaul EcoRV Avall
3865 CCTTTGGTGGGATATCGTGACGAACGTCCAGTGAAGTCATTGGTTCGTTACTCTTTTCTTAG 3933

3880

3930

3934	Taglari Ilgarettattettete	Ilindiii Alul	Ddel
	3937	3937 3935 3976 3976	AAGTTCICA 4002 4000
4003	Alui GCTTTGAATGTGAATGAACT	Alui Xmni Ami Alui Alui Alui Alui Alui Alui Alui Alu	l pde! ACTGTCÎTA 4071
•	4004 Hinfl 4023	4023	6904
40/2	: GCACTTTGTTAGATTCATC 4085 UINCTT	40/2 GCACIIIIGIIAGAITCATCIIIGIGITIAAGITAAAAGGTAGAAACTIIGIGACIIGICCGGTTATG 4140 4085 Ulincii	TCC671A16 4140
4141	ACAAGGTTAACTTTGTTGGT 4146	4141 ACAAGGTTAACTITGTTGGTTATAACAGAAGTTGCGACCTTTCTCCATGCTTGTGAGGGTGATGCTGTG 4209 4146	GATGCTGTG 4209
4210	Avall Alul pde!	AVBII AIUI DOBI SAUBAI 4210 GACCAAGCICTCICAGGCGAAGATCCCTTACTICAATGCCCCAATCTACTTGGAAAACAAGACACAGAT 4278	GACACAGAT 4278
	4210 4217 4222 Sauth	1222 (23) Tag) Sal1 Pst Ilindt Fillingt Sal12	-
4279	TGGGAAAGTTGATGAGATCC	4279 TGGGAAAGTTGATGAGATCCAAGCTTGGGCTGCAGGICGACGAATIC 4325	
		1364 0154 1300 1351	

4316 4321

Brassica campestris ACP Genomic Sequence

		Ç.		
DdeI	AluI AluI	AAGAGTATGTCTACTACTACTCTATATCAAGTTTCAAGAAGCTGAGCTTGGCTCTCACTTTATAT	46 51	47
1	Acci —	AAGAGTATGTGTACTACTACTCT	11	

70 GTTTGATGTTGTTGTAGGTATGGTAATCATGGAAAGAGATAAAGAATGCAAACCCTGAAGTATTGG 138

	207
DdeI 	.39 CAGAGAGCACTGAGAGAGCATGTCACTTTTGTGTTACTCATCTGAATTATCTTATATGCGAATT 207
	39

	27 <i>6</i>
RsaI	${\tt GTAAGTGGTACTAAAAGGTTTGTAACTTTTGGTGGATTTTGAAGGATAAATGGAGGAACTTGCTTC } 276$
	TAAGT
	208 G

	345	
PvuII AluI	 GTATCAGCAGCTGTGGAG 338 338	
Hindili Alui	277 GGTAGCGGTAACAAGTTTTATATTGCTATGAAGGTTTTTTTGCGTGCG	
	27.	

MspI

Tth111I 484 GACTIGITGNGTAIGCITTITITAACITGAGGGGGITIGTIGTIGTIAGITAGGAACITGACITIGICT 415 GGTTAAGACTTGTTGAGAGACGTGTGGGGTTTTTTGATGTATAATTAGTCTGTGTTTTAGAACGAAACAA 346 AAGATGGTATTAGAAAGGGTCTTTTCACATTTTGTGTTGTGACAAATATTAATTCGGCCGGTATGGTTT 622 GAGTCACTGTGGCCCATTGACTTTAAATTAGGCTGGTATATTTTTTTGGTTTTAAAACCGGTCTGAGATAG 553 CTTTCTCTCAAGATCTGATTGGTAAGGTCTGGTAGTACTGTTTGGTTTAATTTGTTTTGACTATT Dral Mspl Ddel Hpall HaeIII Scal Rsal HaeIII Sau3AI Bglii HinfI

FIG. 3B

759	828	897	996
STATAGTTTTAAGAC	HindIII AluI CCAGCTTATAAAAT 819	HaeIII AGGCCCATGTTATCA 886	Stur HaeIII TTAACAGGCCTTAA 961
ATGGGCTGAATACTT	attgtttagagtgca	`TTAACATTCCTTAAA	StuI HaeIII BstNI SCCAGGCCTTAAAAGA(939 942 942
DraI TTAAATTCTTCAAGGT? 715	II TGTTATCATAAAACGTC	StuI HaeIII AACAGGCCTTAAAAGAC 857 857	AluI CACCAAGCTAAATGTAG 927
raqi Hinfi Drai 	Stul Haeili Haeili 	StuI HaeIII StuI BstNI HaeIII 829 GTAGCCAGGCCTTAAAAGACTTAAAAAGGCCCATGTTATCA 835 857 857 838 857	StuI HaeIII HaeIII HaeIII HaeIII
691 TGCA	760 TTAAC	829 GTAGG	898 TAAA

FIG. 3C

AluI AvaI	CCTC 1035 9 1034	TaqI	ATCG 1104 1103		TTCT 1173		GTTT 1242
Alu	TGTAGCCAGCTA 102	AI I AvaI	TCTCTCGGAATATCG 1104 1093		AATCTCATCTCC		sau3AI GATCTGTTGCTTGAT 1224
HindIII AluI	CAAGCTTATAAA 1012 1010	Anoi Tagi Sau3AI Avai Bglii	CTCTCGAGCAGATCTC 1078 1085 1079 1085	8 0 1	:CACTTCTCGG1 .aThrSerLeu		.I - TTGCCTCTGATC
	TTTTGAGTGCAC		ATCTCTCTCT		CTCCATGCAAGC		Sau3AI TCTTTTAGATCAT 1210
	PAAACGCCGTCG	RsaI	GTACACTCCGCC 1055		rCTGCTCTTCCGT neCysSerSerVa		Sau3AI BclI CTGATCATACTT 1193
HaeIII 	967 AAGGCCCATGTTATCATAAACGCCGTCGTTTTGAGTGCACCCAAGCTTATAAATGTAGCCAGCTACCTC 1035 1012 1010 1010		1036 GGGACATCACGCTCTTTGTACACTCCGCCATCTCTCTCT 1055	Tthlili Taqi Sali Hincii	ACCI ACAATGTCGACCACTTT METSerThrThrPh 1112	1110 1111 1112 1108	Sau3AI Sau3AI Sau3AI Sau3AI Sau3AI Sau3AI
	1 196		1036 (1105 7		1174 1

FIG. 3D

1450 TGGAACAACAGGCAGCAACAACGAGGATTAGTTTCCAGAAGCCAGCTTTGGTTTCAACGACTAATCTC 1518 AlaalaThrThrargIleSerPheGlnLysProAlaLeuValSerThrThrAsnLeu

AluI

1519 TCCTTCAACCTCCGCCGTTCAATCCCCACTCGTTTCTCAATCTCCTGCGCGGTATGTTCTCATTCTCAG 1587 1584 DdeI HhaI SerPheAsnLeuArgArgSerIleProThrArgPheSerIleSerCysAla

FIG. SE

HaeIII	STITTGCATGCATGATA 1863	DdeI AluI CCTCAGAAGATTGCTACTGTG 1932 sAlaGlnLysIleAlaThrVal 1913 1914
TagI AluI RsaI HaeIII	Sau3AI HinfI TaqI 1726 CGGAGACCAAGTTTGCTGAACTGTTGGAGTCATCATCTTTATG 1794 1726 LAGIUThrLysPheAlaAspLeuGlyAlaAspSerLeuAspThr 1743 1756 1763 DdeI Sphi 1795 TGAATAAAGAGATTTGTTTTTTAACATATTAACTGAGTTTTGCATGCA	TagI EcoRV AluI

With Many

|--|

FIG. 3G

Brassica Campestris Seed Specific cDNA-EA9

1 TTCAACTTTTTCTAAACCAAATGGCTTTTAACACAGATCCAAATCTTTCTCATTGTCTCTTAGTCTCATC METAlaLeuThrGlnIleGlnIlePheLeuIleValSerLeuValSerSe Sau3AI

69

TaqI Sau3AI ClaI

138 70 ATTCAGTTTATĊĠATCACTCTTTCTCGTCCATTACTĊGATGAAGTCGCCATGCAAAAGAGACATGCCGA ${ t rPheSerLeuSerIleThrLeuSerArgProLeuLeuAspGluValAlaMETGlnLysArgHisAlaGlu}$

81

87

139 GTGGATGACCGAACACGGCCGTGTTTACGCAGATGCGAACGAGAAAAACAACCGCTACGCTGTTTTCAA $\verb"uTrpMETThrGluHisGlyArgValTyrAlaAspAlaAsnGluLysAsnAsnArgTyrAlaValPheLyr \\ 157$

208 ACGCAACGTGGAACGCATTGAACGCTTAAATGACGTTCAATCCGGACTAACGTTTAAACTCGCGGTGAA sArgAsnValGluArgIleGluArgLeuAsnAspValGlnSerGlyLeuThrPheLysLeuAlaValAs 250 HpaII

Complete nucleotide sequence of B. campestris cDNA EA9. The longest open reading frame is designated by three letter amino acid code. PolyA tails are evident at the end of the sequence and a potential polyadenylation signal is underlined.

TIG. 4A

345	414	483	552
Sau3AI EcoRI RsaI 	RSAI KpnI KpnI HpaII	AluI Sau3AI Sau3AI 415 TGATTGGAGGAAAAGGAGCTGTGACTCCTATCAAGGATCAAGGCTTAATGCGGATCTTGTTGGCGTT lAspTrpArgLysLysGlyAlaValThrProlleLysAspGlnGlyLeuCysGlySerCysTrpAlaPh 435	PvuII AluI

...:

FIG. 4B

Tagi Sali Hincii	
AGAGĊTTĞTCGACTGCGACAAACGATGGTGGCTGCATGGGCGGTTTGATGGATACAGCGTTTAACTA 6 nGluLeuValAspCysAspThrAsnAspGlyĠlyCysMETGlyGlyLeuMETAspThrAlaPheAsnTy 557 562 561 562	621
622 CACAATAACTATYGGCGGCTTAACCTCTGAATCAAATTATCCTTATAAAAGCACAAACGGCACTYGCAA 6 rThrIleThrIleGlyGlyLeuThrSerGluSerAsnTyrProTyrLysSerThrAsnGlyThrCysAs HpaII	069
CTTCAATAAAACTAAACAGATAGCAACTTCTATCAAAGGTTTTGAGGATGTCCCGGCTAACGATGAGAA 7 nPheAsnLysThrLysGlnIleAlaThrSerIleLysGlyPheGluAspValProAlaAsnAspGluLy 744 HpaII	759
760 AGCCCTAATGAAGGCAGTGGCACCCCCCGGTTAGCATTGGAATAGCGGGAGGAGATATTGGTTTCCA 8 SAlaLeuMETLysAlaValAlaHisHisProValSerIleGlyIleAlaGlyGlyAspIleGlyPheGl 789 Sau3AI HpaII HpaII	
829 ATTCTATTCGTCCGGTGTGTTCAGCGGAGAATGCACAACTCATCTTCATCTGGGGGTAACTGCGGTTGG 8 nPheTyrSerSerGlyValPheSerGlyGluCysThrThrHisLeuAspHisGlyValThrAlaValGl 875 875	897

FIG. 4C

996	1035
Avali - PGIyProLysTrpGlyGl 951	TGGTCTTGCCATGAATGC
ECORI AGAATTCATC YSASnSerTr 941	acgacaatg isGlyGlnCy
Scal Rsal BamHI BamHI AAAGTACTGGATCCTCA ULYSTYTTTPIleLeuL 927 927	ECORV GATATCAAGCCTAAAC, ASDIleLysProLysH, 995
Scal Sau3AI Rsal HaeIII BamHI ECORI AVAII	Sau3AI EcoRV
86	7 L96

1105 TTATAATTTAAGACTCTGTTGCATGTAATTTGTGAAATGGTAAGTTTATGTGATGCAAAAGATTTGATA 1173

1036 TTCGTÁCCCAACTATGTGAAAAAATCGGTTCAATATCCGGTTAÁGCTTTAG<u>AATAAA</u>TGTGTGTGTTGG 1104

aSerTyrProThrMET

RsaI

1081 1079

1073

HindIII AluI

Hpall

1174 AAAAAAAAAAAA 1186

3н11	TTTTTTTGAGCAAAGGCCAACTCAGATATCCAACATATA	51
3Н11	GCTTACAGCTGGGAGAACATTGTCTAACTCTTCTGAAATTTAAATGTTATC	102
3H11	CAGAATCCTTCATCATAAAATAATATCAAAATGCAAATCTATTTTTCTAC	153
3H11	TCTTGTCTAGCTTCAACTTTCTTCTTCTGCTCATCAATTAGCAATTAATCC TGCTCATCAATTAGCAATTAAT \underline{CC}	204
3H11 2A11	AAAACCATTATGGCTGCCAAAAATTCAGAGATGAAGTTTGCTATCTTCTTC <u>AAAACCATTATGGCTGCC</u> AAAAATTCAGAGATGAAGTTTGCTATCTTCTTC METAlaAlaLysAsnSerGluMETLysPheAlaIlePhePhe	255
3H11 2A11	GTTGTTCTTTTGACGACCACTTTAGTTGATATGTCTGGAAATTGGTTGTTCTTTTGACGACCACTTTAGTTGATATGTCTGGAATTTCGAAAATGValValLeuLeuThrThrThrLeuValAspMETSerGlyIleSerLysMET	306
3H11 2A11		357
3H11 2A11	AAGCTACTTCCCACAAATATTTTGGGACTTTGTAACGAACCTTGCAGCTCA AAGCTACTTCCCACAAATATTTTGGGACTTTGTAACGAACCTTGCAGCTCA LysLeuLeuProThrAsnIleLeuGlyLeuCysAsnGluProCysSerSer	408
3H11 2A11	AACTCTGATTGCATCGGAATTACCCTTTGCCAATTTTGTAAGGAGAAGACG AACTCTGATTGCATCGGAATTACCCTTTGCCAATTTTGTAAGGAGAAGACG AsnSerAspCysIleGlyIleThrLeuCysGlnPheCysLysGluLysThr	459
3H11 2A11	GACCAGTATGGTTTAACATACCGTACATGCAACCTGTTGCCTTGAACAATA GACCAGTATGGTTTAACATACCGTACATGCAACCTGTTGCCTTGAACAATA AspGlnTyr?lyLeuThrTyrArgThrCysAsnLeuLeuPro .	51.0

FIGURE 5A

3H11 2A11		TATCTATTTATCTGTCTCTGCGCGTA TATCTATTTATCTGTCTCTGCGCGTA	561
3H11 2A11		AAGAATATGAATAAAGGGATACATAT AAGAATATGAATAAAGGGATACATAT	612
3H11 2A11	ATCTAGATATATTCTAGGTAATGTC ATCTAGATATATTCTAGGTAATGTC	CTATTGTATTTAAAATTTGTAGCAAT CTATTGTATTTAAAATTTGTAGCAAT	663
3H11 2A11	GATTGTTTGAATAAAAÁCATACCAT GATTGTTTGAATAAAAAACATACCAT	GAGTGAAATAATTATTCCACATTAAT GAGTGAAATAATTATTCC	714
3H11	TCACGTATTTATTTCACTTATGATA	CGTATTTTTGTTCCTTTCGCGTAAAA	765
3H1,1	ААААААА 774		

•	
2A11	THIEBLEHEPCSSHSDER
PAlb	GSPLCRCIPAGLVIGNCR
Barley chloroform methanol-soluble protein d	TNLLGNCR-FYLVQQTCA
Where amylase inhibitor 0.28	VSALTGER-AMVELQ CV
Wheat albumin	VPALPACRPL-LRLQ-CN
Millet bi-functional inhibitor	HHPLD SCR WYVSATER .T, CG
Castor bean 2S small subunit	QQNLRQCQEYIEQQVSGQ
Napin small subunic	AQHERACQQWENKQAMQS

FIGURE 6

١

		:			
2A11	GENOM.	20	30	40	50
	10	TTAAAAAGTA	TACTCAATAT	TTACGGTGAC	
CTCC	AGCCCT 60	70	80	90	100
~~.	00	TATATAATTT			
TTA	110	120	130	140	150
N C N I	110	CTAATCAAGG	GAAAACATGG	ATGTGAAAAA	
AGAA	160	170	180	190	200
T 3 3 7	AAATSAA	AAAAAATGTG	AAATTTTGTT		
1 777	210	220	230	240	250
ጥጥ እባ	TTGAGC		TTTACAAATA	CCTAATAGAA	
IIA	260	270	280	290	300
TCCC	200 የመሮሞ እጥ እ	TATGTAAATT			
IGC	310	320	330	340	350
	O1C	ATACATTAAT			
TIA		370	380	390	400
	360	ATCTACACTT	CARTARACT		
GTA		ATCTACACTT	430	440	450
	410	ACATGTCAAC	OCF TETTERATER		
CAA		ACATGTCAAC	AAIAAAIIAI	490	500
	460	4 70	480 AAATATAAAA		
CTA	AACAATC	TTTACTTTTG.	AAAIAIAAAA	540	550
	510	AGCACTTGTT	530	CATTTTCAGA	ACCTAACCÁA
CTC	AAAGTAA	AGCACTTGTT 570	580	590	600
	560	CATAATAGTÇ	ACAACTAAAA	DATAAAATAT	ATTTCATTAG
ATT	GATGGTG 610	CATAATAGU	630	640	650
T 3 3 1	AATTGTT		TTTATATATA		
IAA	660	670	680	690	700
CTA	GTTAAT	ТАТАТТСТТА	ACTTCTTGTT		AATAAGACAA
GIA	710	720·		740	750
CART	AAATTAA		CAATAAAAAT		
GAA.	760	`170	780	790	800
CTT	TCTTAT	TCTTCTTTCA	ATAAGTATCA	TCAAGTGTAT	ACAATATAAA
GII.	810	820	830	840	850
TTT	776 7747	TTTGATCTAT			AAGCATACAA
111.	860	870	880	890	900
AAG	TCAGTC	ATAAATATGA		GAAAATAATG	AAAGAGATTA
ممري	910	920	930	940	950
тсай	AGGCGTA	AGGTTACTAG		ATTAAAAAAA	GGGGTTATCT
LON	960	970	980	990	1000
тта	TAATTGA	ATAATTGATG		GATAATTAGT	GAGCATAAAT
	1010	1020	1030	1040	1050
ተ ተተ	AAAATTI	AAATGGACAT		ATATTTTATA	ACACTTTCCC
	1060	1070	1080	1090	1100
TTA	AACATCT	AGGTATAAAT	AATGAGTCTT	GTCAAAATCT	TAGTAGGAAA

1110 1120 1130 140 AATTCTGTGA AATTTTTTTA GTGAAAACAA ATGATATAAA TATCTTGAAT 1170 1180 1190 1220 1230 1240 1250 TTATTTGCTC AACTCAAAAT AGTTTTTCAT TCTAAAATTA GTATAATTAT 1280 1290- 1300 1270 TAGTGAATAT TTAATTAACA TAATTGTATA CTAAGGGGCC TATAAATTGG 1330 1320 1340 ATTOTTCTCA AAGAAAAATA AAATCACCAC ACAACTTTCT TCTTCTGCTC 1360 1370 1381 -1390 ATCAATTAGC AATTAATCCA AAACCATT ATG GCT GCC AAA AAT MET Ala Ala Lys Asn 1408 1399 1417 TCA GAG ATG AAG TTT GCT ATC TTC TTC GTT GTT CTT TTG Ser Glu MET Lys Phe Ala Ile Phe Phe Val Val Leu Leu 1444 1454 1464 ACG ACC ACT TTA GGTTCACAAC ACTTCTCCCT TATTTTGTTT Thr Thr Thr Leu 1494 1504 1514 1484 TCTTAATTTC TTGGAAGTCA TATGCATGTG TTTGGTATCA TGGTATATAT 1534 1544 1554 1564 ATAAAGGAAA ATATTTTCT TAATTACTGG TTTTCTAATG TTTGGTAGGT 1594 1604 1614 1584 1624 AATCGGAAAT TATTATGAGA TAATGAACTT. GCAAAGTCAT TATTATATAA 1644 1654 1664 CTTTTTTTT ATACTTTGAT TTAAGAATTC ATTTTTCTCA TTTTATATAA 1694 1704 1714 ACTTATTTT CAACAGAAAA TATTTTTCGA ACTATTCAAA CACACCCTAA 1734 1744 1754 1764 1774 GACATTACAT ATATATAT ATACAGGGTG, CGTTTTATAT TACTTAATGC 1784 1794 1804 1814 1824 TOTAL CONTROL OF THE SECOND CONTROL OF THE S 1834 1844 1854 1864 1874 ACTAAATTAA CCTATGCTTT AAGACTCTAA ATTTGGCTAT TACTATTTTA 1894 1904 1914 1884 CGTTGTAATT TAATGACAAA CATTTCATAA TGACTATAGT CTGAACTTAA 1944 1954 1964 1934 TTAGACAGAC GTATCTATAG TTTGCTTACT AATGATTCAT AGCTATATAT 1994 2004 2014 TTGGAGAGGA GAGAGACAAA CGATATTAAG AAAGGGAGGA GAGAGGCGAG 2054 2064 2044 2034 GTAAATCTGA AATAGAGAAG AGAAAGGCAA CCAATTTTGA TCATCTATCA 2094 2104 2114 TACTTTTGAT TATTATTTTT ATTATATGTA CGTTTACATT ACAGTTTTCG

AATTCTTACA TTAATCTTAA TCATAATATA TACA GTT GAT ATG Val Asp MET TCT GGA ATT TCG AAA ATG CAA GTG ATG GCT CTT CGA GAC Ser Gly Ile Ser Lys MET Gln Val MET Ala Leu Arg Asp ATA CCC CCA CAA GAA ACA TTG CTG AAA ATG AAG CTA CTT Ile Pro Pro Gln Glu Thr Leu Leu Lys MET Lys Leu Leu CCC ACA AAT ATT TTG GGA CTT TGT AAC GAA CCT TGC AGC Pro Thr Asn Ile Leu Gly Leu Cys Asn Glu Pro Cys Ser TCA AAC TCT GAT TGC ATC GGA ATT ACC CTT TGC CAA TTT Ser Asn Ser Asp Cys Ile Gly Ile Thr Leu Cys Gln Phe TGT AAG GAG AAG ACG GAC CAG TAT GGT TTA ACA TAC CGT Cys Lys Glu Lys Thr Asp Gln Tyr Gly Leu Thr Tyr Arg 2393: ACA TGC AAC CTG TTG CCT TGA ACAATATCAA TGATCTATCG Thr Cys Asn Leu Leu Pro ATCGATCTAT CTATCTATTT ATCTGTCTCT GCGCGTATAG TGTTGTCTGT 2483 2493 ACCTTTGGTG TGAAGAATAT GAATAAAGGG ATACATATAT CTAGATATAT TCTAGGTAAT GTCCTATTGT ATTTAAAATT TGTAGCAATG ATTGTTTGAA 2583 2593 TAAAAACATA CCATGAGTGA AATAATTATT CCACATTAAT TCACGTATTT ATTTCACTTA TGATACGTAT TTTTGTTCCT TTCGCGTAGA TTTTTGATCC TTTTCCCTTT TGAATATTAA ACATTAAACA CAAATAATGT TTATTAAATT AAGTTAATAT TTTTATTTAG CTATTTATAT TTTTATTTGA AATCAAACTT GATAAATATT TATAAAGATA ATTAACAAGT AATGTGACAC TAACACCATG TAATATTATC TTGTCGTTAT TTATGATAAT ATTTTAAAAT TATAATTTCA GTTAAAAAT TATTAAAAAA ACATACTTTT AAAAAGTGAG TTAGCCTCCG CTACCCACAT ACTTATGAAT TGGACTAGTT GTTTTTTGAC CCACAAAAAG AATGGGCTAA TTAAACCTGA CCTATCAAAT TTCAGAATCT GCATAGATTA

GTCCGAACGA AATGAGTCAG CCCGTATTGA ACAAAATATC AACAAGGACG TTATGTAAAG ATGTTTAAGA AGGAAAAAAG ATTTCTAATA CATATGGACT . 3133 TTCAATATCC CAACTTTGTC TGGCGATCTG AACCCTGCTT AGTTTGTTGA TCATTAACTT GTCTTGCTAT GTATTTAAGA TTTAAACTTT ATATGTTTAA ACTTACAGAA AATACATATA AATCTCTCAA GACTTGGCAA CATAATTTAC TTTAGTACTT AAACTACATG AAAATTTAAA TATCCTTTTA ACATCTTTGA AGTGAATTAA ATTATCACAA TCCGAGCCTA CACCTTGGAC GTGGCCGGCA CTCAAGAACC AGTGCTGGTC CCCAAGCTAA CCCTCATCCT GACTGACTAC . 3443 34.63 ACTITACAAG GITTIAACAC AAATGAACAA CITTGAAGAA AATAATATAT TCAACTAGEC ATAAAATAGA CAACTTTAGT CTTTAAAACA TTTAATAAAA TAAATGCAAA ATATAGACTC CTTAACTAAA CTGACTATCT ATGGAGCCTC 3613 📡 🚐 TAATTGATAA AGATGGAAGT CGGGACAAGA CCACGAGATC CTGACTAAAC ~3.6.63; ;; TGAGAAGTAA ATAAAATCCC CCGGAAAAAA AGGAGCCTCA CCATGGCTAA ~ 3713 CTCGAACTCG GGGATATATC AATGAAGCTC CTGTTGATGA TCTTGAAGAC × 3763 ATGTCTCTGC ATCATCAAAA AGATGCAGGC CAAATGGCTC AGTACGTAAA ATGTACGAGT ATGTAAGGGA AATTCTAAAG TATAACATAA GCTTGATACT ATAAGATACT CAACTCAAAG ATTAGGTATT CAACGCAAAT ATGGCACTCT ACTCAATGAA GTACAAATTA ACTCAGGATA CTCGACTTAA GATACTCAAC TCCCGACACT CAACTGAACT CATTTCAATA TAAAGCAGCT TAAAACAAGT TCAGTATAAA GTAAAGTTGT TTAAAAACAT GATGTCAACT CTGTGTGTAT AATAAGGGAT ACAACATAAC TTTGAAATGT. ATATAAAAT ACAATTAACT

PG GENOMIC

	10	20	30	40	50
	AAGCTTCTTA	AAAAGGCAAA	TTGATTAATT	TGAAGTCAAA	ATAATTAATT
	60	70	80	90	100
	ATAACAGTGG	TAAAGCACCT	TAAGAAACCA	TAGTTTGAAA	GGTTACCAAT
·	110	120	130	140	150
	GCGCTATATA	TTAATCAACT	TGATAATATA	AAAAAAATTT	CAATTCGAAA
	160	170	180	190	200
	AGGGCCTAAA	ATATTCTCAA	AGTATTCGAA	ATGGTACAAA	ACTACCATCC
	210	220	230	240	250
	GTCCACCTAT	TGACTCCAAA	ATAAAATTAT	TATCCACCTT	TGAGTTTAAA
	260	270	280	290	300
	ATTGACTACT	TATATAACAA	TTCTAAATTT	AAACTATTTT	AATACTTTTA
	310 AAAATACATG	320 GCGTTCAAAT	330 ATTTAATATA	340 ATTTAATTTA	350 TGAATATCAT
	360	370	380	390	400
	TTATAAACCA	ACCAACTACC	AACTCATTAA	TCATTAAATC	CCACCCAAAT
21,182	410 TCTACTATCA	420 AAATTGTCCT	430 AAACACTACT	440 AAAACAAGAC	450 GAAATTGTTC
	460	470	480	490	500
	GAGTCCGAAT	CGAAGCACCA	ATCTAATTTA	GGTTGAGCCG	CATATTTAGG
		520	530	540	550
	560	570	580	590	600
	TAATGGTAAA	GAAGTAGTAC	ATCCCGAATT	AATTCATGCC	TTTTTTAAAT
	- 610	620	630	640	
	660	670	680	690	700
	ATTATTTTT	TAAAAATTAT	CTATTAAGTA	CCATCACATA	ATTGAGACGA
	710	720	730	740	750
	AGGAATAATT	AAGATGAACA	TAGTGTTTAA	TTAGTAATGG	ATGGGTAGTA

770 780 790 AATTTATTTA TAAATTATAT CAATAAGTTA AATTATAACA AATATTTGAG 820 830 840 CGCCATGTAT TTTAAAAAAT ATTAAATAGT TTGAATTTAA AACCGTTAGA 870 880 890 TAAATGGTCA ATTTTGAACC CAAAAGTGGA TGAGAAGGGT ATTTTAGAGC 920 930 940 · 950 910 CAATAGGRGG ATGAGAAGGA TATTTTGAAG CCAATATGTG ATGGATGAAG 970 980 990 1000 GATAATTTTG TATCATTTCT AATACTTTAA AGATATTTTA GGTCATTTTC 1030 1040 1020 1010 CCTTCTTTAG TTTATAGACT ATAGTGTTAG TTCATCGAAT ATCATCTATT 1070 1080 1090 1100 ATTTCCGTCT TAAATTATTT TTTATTTTAT AAATTTTTA AAAATAAATT 1120 1130 1140 1150 1110 ATTTTTCCA TTTAACTTTG ATTGTAATTA ATTTTTAAAA ATTACCAACA 1160 1170 1180 1190 TATAAATAAA ATTAATATTT AACAAAGAAT TGTAACATAA TATTTTTTTA 1210 1220 1230 1240 1250 ATTATTCAAA ATAAATATTT TTAAACATCA TATAAAAGAA ATACGACAAA 1260 1270 1280 1290 1300 AAAATTGAGA CGGGAGAAGA CAAGCCAGAC AAAAATGTCC AAGAAACTCT 1310 1320 1330 1340 1350 TTCGTCTAAA TATCTCTCAT CCAAACTAAT ATAATACCCA TTATAATTAA 1380 1390 1370 1360 CCATATTGAC CAACTCAAAC CCCTTAAAAT CTATAAATAG ACAAACCCTT 1430 1440 1420 CCCATACCTC TTATCATAAA AAAAATAATA ATCTTTTTCA ATAGACAAGT 1460 1470 1480 1490 1500 TTAAAAACCA TACCATATAA CAATATATCA TGGTTATCCA AAGGAATAGT

FIGURE 8B

CGAATTC

FIGURE 8C

FIGURE 9

FIGURE 10