(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2000—249948 (P2000—249948A)

(43)公開日 平成12年9月14日(2000.9.14)

(51) Int.Cl. 7

識別記号

FI ·

テーマコート' (参考)

G02B 26/10

B41J 2/44

G02B 26/10

2417 0/00

B 2C362

B41J 3/00

D 2H045

審査請求 未請求 請求項の数9 OL (全11頁)

(21)出願番号

特願平11-55331

(22)出願日

平成11年3月3日(1999.3.3)

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 林 善紀

東京都大田区中馬込1丁目3番6号・株式

会社リコー内

(72)発明者 川村 篤

東京都大田区中馬込1丁目3番6号・株式

会社リコー内

(74)代理人 100067873

弁理士 樺山 亨 (外1名)

Fターム(参考) 2C362 AA26 AA47 BA04 BA58 BA61

BA86

2H045 AA01 BA22 BA33 CA61 CB04

(54)【発明の名称】マルチピーム走査装置および画像形成装置

(57)【要約】

【課題】マルチビーム走査装置において、高価なビーム 合成部品を用いずに複数のビームで被走査面を走査し、 全てのビームについてビームスポット径・ビームビッチ 等の光学特性を良好にする。

【解決手段】第2光学系5からの複数のピームのうち少なくとも2つが偏向回転面内で開き角を有し、最大の開き角: $\theta(\mathbf{rad})$ を有する2ピームが通過する2つのカップリングレンズ3,4の有効径を ϕ 1, ϕ 2、2つのカップリングレンズ3,4と偏向反射面7Bとの距離のうち短い方を \mathbf{L} 1、偏向反射面と被走査面の間にある第3光学系11,12の副走査方向の横倍率を $\boldsymbol{\beta}$ 、偏向反射面から被走査面20に至る距離を \mathbf{L} とするとき、これらが、条件:

- (1) $\theta^1 \times \beta^1 \times A/L < 0.0005$
- (2) $\theta > \tan^{-1}[(\phi 1 + \phi 2)/2L1]$

を満足する。

【特許請求の範囲】

【請求項1】複数の光源と、

これら複数の光源をそれぞれカップリングする複数のカ ップリングレンズにより構成される第1光学系と、

この第1光学系からの各ピームを、主走査方向に長く略 線状に集光する第2光学系と、

上記略線状の集光部の近傍に偏向反射面を有し、上記第 2 光学系からの複数のピームを等角速度的に偏向させ、 偏向反射面とその回転軸とが一定距離:Aだけ離れてい る偏向器と、

この偏向器により偏向された複数の偏向ビームを被走査 面に向けて集光させ、被走査面を略等速的に走査する走 査結像累子を含む第3光学系とを有し、

上記第2光学系からの複数のピームのうち少なくとも2 つは偏向回転面内で開き角を有し、上記開き角のうち最 大のものを $\theta(rad)$ 、この角: θ を開き角として有す る2ピームが通過する2つのカップリングレンズの有効 径を**ø**1, **ø**2、

上記2つのカップリングレンズと上記偏向反射面との距 離のうち短い方をL1、偏向反射面と被走査面の間にある 20 を満足することを特徴とするマルチビーム走査装置。 第3光学系の副走査方向の横倍率をβ、上記偏向反射面 から被走査面に至る距離をLとするとき、これらが、条 件:

- $\theta' \times \beta' \times A / L < 0.0005$ (1)
- $\theta > \tan^{-1} \left[\left(\phi 1 + \phi 2 \right) / 2 L1 \right]$

を満足することを特徴とするマルチピーム走査装置。 【請求項2】複数の光源と、

これら複数の光源をそれぞれカップリングする複数のカ ップリングレンズにより構成される第1光学系と、

この第1光学系からの各ピームを主走査方向に長く略線 30 状に集光する第2光学系と、

上記略線状の集光部の近傍に偏向反射面を有し、上記第 2 光学系からの複数のビームを等角速度的に偏向させ、 偏向反射面とその回転軸とが一定距離:Aだけ離れてい る偏向器と、

この偏向器により偏向された複数の偏向ビームを被走査 面に向けて集光させ、被走査面を略等速的に走査する走 査結像累子を含む第3光学系とを有し、

上記第2光学系からの複数のピームのうち少なくとも2 つは、偏向回転面内で開き角を有し、上記開き角のうち 40 最大のものを θ (rad) とし、この角: θ を開き角と して有する2ビームが共に通過する第2光学系が、少な くとも1つのシリンダレンズを有し、

上記角:hetaを開き角として有する2ビームが通過する2**つのカップリングレンズの有効径をφ1, φ2、シリンダ** レンズと偏向面の距離をL2、上記2ピームが通過する2 つのカップリングレンズと偏向面の距離のうち短い方を L1、偏向反射面と被走査面の間にある第3光学系の副走 **査方向の横倍率をβとするとき、これらが、条件:**

(3) $L2 \times \theta \times |\beta|/L1 < 0.03$

(2) $\theta > \tan^{-1}[(\phi 1 + \phi 2)/2L1]$

を満足することを特徴とするマルチピーム走査装置。

【請求項3】請求項1または2記載のマルチビーム走査 装置において、

複数の光源からのビームのうち1つのビームの両最周辺 像高での副走査方向の結像位置をS1(+), S1(-)、上記1 つのビームとは異なる他の1つのビームの両最周辺像高 での副走査方向の結像位置をS2(+), S2(-)とするとき、 これらが条件:

(4) $(S1(+)-S1(-))\times(S2(+)-S2(-))<0$ 10 を満足することを特徴とするマルチビーム走査装置。 【請求項4】請求項1または2または3記載のマルチビ ーム走査装置において、

複数の光源からのビームのうち1つのビームの両最周辺 像高での主走査方向の結像位置をM1(+), M1(-)、上記1 つのビームとは異なる他の1つのビームの両最周辺像高 での主走査方向の結像位置をM2(+), M2(-)とするとき、 これらが条件:

(5) $(M1(+)-M1(-))\times (M2(+)-M2(-))<0$

【請求項5】請求項1~4の任意の1に記載のマルチビ ーム走査装置において、

光源の数が2であることを特徴とするマルチピーム走査

【請求項6】請求項1~3の任意の1に記載のマルチビ ーム走査装置において、

第3光学系の走査結像索子が1枚のレンズで構成されて いることを特徴とするマルチピーム走査装置。

【請求項7】請求項1~4の任意の1に記載のマルチピ ーム走査装置において、

第3光学系の走査結像索子が2枚のレンズにより構成さ れていることを特徴とするマルチピーム走査装置。

【請求項8】請求項6または7記載のマルチピーム走査 装置において、

第3光学系の走査結像索子を構成するレンズの1以上 が、偏向回転面内でシフトおよび/またはチルトして配 備されていることを特徴とするマルチピーム走査装置。

光走査により静電潜像の書込みを行い、書込みにより形 成された静電潜像を現像してトナー像として可視化する 方式の画像形成装置において、

【請求項9】光導電性の感光体を均一に帯電したのち、

感光体に対する光走査を、請求項1~8の任意の1に記 載のマルチピーム走査装置により行うこと特徴とする画 像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明はマルチピーム走査 装置および画像形成装置に関する。この発明は、デジタ ル複写装置、ファクシミリやレーザプリンタ等に利用で

50 きる。

10

[0002]

【従来の技術】デジタル複写装置やレーザプリンタ等の 画像形成装置に関連して広く知られた光走査装置は一般 に、光源を第1光学系で以後の光学系にカップリング し、第1光学系からのピームを、第2光学系により、主 走査方向(光源から被走査面における光路の屈曲を無視 して、被走査面上における主走査方向と対応する方向を **言う、副走査方向についても同様である)に長く略線状** に集光させ、この線状の集光部の近傍に偏向反射面を有 する偏向器で偏向させ、偏向ビームを第3光学系により 被走査面上に集光させて、被走査面の走査を行うように なっている。近来、光走査の高速化を目して「被走査面 を複数ビームで同時走査するマルチビーム走査装置」の 実用化が意図されている。マルチピーム走査装置では複 数の光源が用いられるが、これら複数の光源からの複数 のビームを被走査面上で近接して集光させるために、偏 光を利用したビーム合成部品を用いて複数ビームを合成 することが提案されている(例えば、特開平8-304 722号公報)。このピーム合成方法はピーム合成部品 が高価であるため、マルチピーム走査装置のコスト引い 20 ては画像形成装置のコストが高くつくと言う問題があ る。これに対し、上記「高価なビーム合成部品」を用い ることなくマルチビーム走査を可能にしたものとして、 複数のビームに偏向回転面(偏向反射面の回転軸に直交 する平面)内で「開き角(上記複数ビームを偏向回転面 に射影したときの各ピームの射影のなす角) 」を持たせ る方式のマルチビーム走査装置が提案されている(特開 平9-146024号公報)。しかし、この場合「偏向 反射面とその回転軸が一定距離離れている偏向器」を用 いると、開き角を有する複数のピームで「サグ量(各ビ ームの線状の集光部と偏向反射面との相対的な位置関係 が偏向反射面の回転に伴いずれる、ずれ量)」が異な り、全てのビームについて良好な光学特性(ビームスポ ット径、ビームビッチ等)を得るには、ビームごとにサ グ量が異なるという事実に立脚した光学設計が必要にな る。また、偏向反射面近傍に主走査方向に長い線像を集 光させるための第2光学系(シリンダレンズや凹シリン ダミラー)を複数のピームに共通化して使用すると第2 光学系の光軸を中心とするチルト誤差により、ビームビ ッチに「ばらつき」が発生する問題がある。

[0003]

【発明が解決しようとする課題】この発明は、マルチビ ーム走査装置及びこれを用いる画像形成装置において、 偏光を利用した高価なビーム合成部品を用いずに複数の ピームで被走査面を走査し、なおかつ、全てのピームに ついてビームスポット径・ビームビッチ等の光学特性を 良好にし、高速化・高画質化を可能にすることを課題と する。

[0004]

走査装置は、複数の光源と、第1光学系と、第2光学系 と、偏向器と、第3光学系とを有する。「複数の光源」 は光走査用のビームをそれぞれ独立して放射する。これ ら光源としては半導体レーザ (LD) が好適である。 「第1光学系」は、これら複数の光源をそれぞれカップ リングする複数のカップリングレンズにより構成され る。カップリングレンズは、各光源に1対1に対応させ て設けても良いし、1つのカップリングレンズが2以上 の光源をカップリングするようにしてもよい。カップリ ングされたビームは「平行ビーム」となってもよいし 「弱い収束ビームもしくは弱い発散ビーム」となっても よい。「第2光学系」は、第1光学系からの各ピームを 主走査方向に長く略線状に集光させる光学系であり、シ リンダレンズや凹シリンダミラーを好適に利用すること ができる。この第2光学系は、各光源からのビームごと に、即ち、光源と同数設けても良いが、複数光源に共通 して配備してもよい。「偏向器」は、第2光学系による 各ビームの略線状の集光部の近傍に偏向反射面を有し、 第2光学系からの複数ビームを等角速度的に偏向させ る。偏向器は、偏向反射面とその回転軸とが一定距離: Aだけ離れている。即ち、偏向器は、複数の光源からの 各ピームに共通して用いられ、複数の光源からのピーム は、共通の偏向反射面により偏向される。かかる偏向器 としては、回転多面鏡や回転2面鏡を好適に用いること ができるが、偏向反射面とその回転軸の離れた「回転単 面鏡」を用いることもできる。「第3光学系」は、偏向 器により偏向された複数の偏向ビームを被走査面に向け て集光させ、被走査面を略等速的に走査する「走査結像 索子」を含む。第3光学系は、光学系のレイアウトに応 じ、偏向ピームの光路を屈曲させる折り返しミラー等、 パワーを持たない光学累子を含むことができる。「走査 結像索子」は1枚あるいは2枚以上のレンズ、または1 以上の結像ミラーにより構成することができ、更には1 以上のレンズと1以上の結像ミラーの複合系として構成 することもできる。第2光学系からの複数のピームのう ち少なくとも2つは偏向回転面内で開き角を有する。 「偏向回転面」は、前述のように「偏向反射面の回転軸 に直交する平面」であり、「開き角」は上記2つのビー ムを「偏向回転面に射影した状態」において「各ビーム 40 が偏向反射面の側から第2光学系の側へ向かって開くよ うになす角」を言う。上記開き角のうち最大のものを

【0005】請求項1記載のマルチビーム走査装置は、 以下の如き特徴を有する。即ち、上記最大の開き角: θ ・ を、開き角として有する2ビームが通過する2つのカッ プリングレンズの有効径を ø1, ø2、これら 2 つのカッ プリングレンズと偏向反射面との距離のうち短い方をL 1、偏向反射面と被走査面の間にある第3光学系の副走 **査方向の横倍率をβ、偏向反射面から被走査面に至る距** 【課題を解決するための手段】この発明のマルチビーム 50 離をLとするとき、これらは、条件:

 $\theta' \times \beta' \times A / L < 0.0005$ (1)

$\theta > \tan^{-1} \left[\left(\phi 1 + \phi 2 \right) / 2 L1 \right]$ (2)

を満足する。請求項2記載のマルチビーム走査装置は、 以下の如き特徴を有する。即ち、上記最大の開き角:hetaを開き角として有する2ピームが共に通過する第2光学 系が、少なくとも1つのシリンダレンズを有し、角: θ を開き角として有する上記2ピームが通過する2つのカ ップリングレンズの有効径をφ1, φ2、シリンダレンズ と偏向面の距離をL2、上記2ビームが通過する2つのカ ップリングレンズと偏向面の距離のうち短い方をL1、偏 10 向反射面と被走査面の間にある第3光学系の副走査横倍 率 α を β とするとき、これらは、条件:

- (3) $L2 \times \theta \times |\beta|/L1 < 0.03$
- $\theta > \tan^{-1} \left[\left(\phi 1 + \phi 2 \right) / 2 L1 \right]$ (2)

を満足する。上記請求項1または2記載のマルチピーム 走査装置において、複数の光源からのビームのうち1つ のピームの両最周辺像高での副走査方向の結像位置をSI (+), \$1(-)、上記1つのビームとは異なる他の1つのビ ームの両最周辺像高での副走査方向の結像位置をS2

(+), S2(-)とするとき、これらは条件:

 $(4) \quad (S1(+)-S1(-))\times(S2(+)-S2(-))<0$ を満足することが好ましい (請求項3)。また、上記請 求項1または2または3記載のマルチビーム走査装置に おいて、複数の光源からのビームのうち1つのビームの 両最周辺像高での主走査方向の結像位置をM1(+), M1 (-)、上記1つのビームとは異なる他の1つのビームの 両最周辺像高での主走査方向の結像位置をM2(+), M2(-) とするとき、これらは条件:

(5) $(M1(+)-M1(-))\times(M2(+)-M2(-))<0$ を満足することが好ましい。

【0006】上記請求項1~4の任意の1に記載のマル チピーム走査装置において、光源の数を2とすることが できる(請求項5)。また、請求項1~3の任意の1に 記載のマルチビーム走査装置において、第3光学系の走 査結像索子を「1枚のレンズで構成」する(請求項6) ことも、「2枚のレンズで構成」することもできる(請 求項7)。これら請求項6または7記載のマルチビーム 走査装置において、第3光学系の走査結像索子を構成す るレンズの1以上を、偏向回転面内でシフトおよび/ま たはチルトして配備することができる(請求項8)。こ 40 の発明の画像形成装置は、光導電性の感光体を均一に帯 電したのち、光走査により静電潜像の鸖込みを行い、電 込みにより形成された静電潜像を現像してトナー像とし て可視化する方式の画像形成装置において、感光体に対 する光走査を上記請求項1~8の任意の1に記載のマル チビーム走査装置により行うこと特徴とする(請求項 9)。上記の条件(1)を満足することにより、偏向器 のサグによる複数ビーム間の光学特性の差を低減でき、 各ピームについて、良好な像面湾曲特性(小径で安定し たビームスポット径)及び等速性が得ることが可能にな 50 実施例1

る。また、条件(2)を満足することにより、偏光プリ ズム等の合成光学索子を用いずに、複数のビームで被走 査面を走査することが可能になる。条件(3)を満足す ることにより、光学累子の取り付け誤差によるヒームビ ッチ変動を低減でき、高画質を実現できる。条件(4) および/または(5)を満足することにより、低コスト に少ない部品点数で、複数のビームにつき、良好な像面 湾曲特性 (小径で安定したビームスポット径) を実現で

【0007】また、請求項8記載のマルチピーム走査装 置のように、第3光学系の走査結像索子を構成するレン ズの1以上に、偏向回転面内でシフトおよび/またはチ ルトを与えることにより、サグの影響を有効に軽減させ ることが可能である。

[0008]

【発明の実施の形態】図1に示す実施の形態において、 「複数の光源」であるLD1、LD2から出射された各 ピームは、「第1光学系」を構成するカップリングレン ズ3,4によりカップリングされ、「第2光学系」をな 20 すシリンダレンズ5によりそれぞれ、回転多面鏡である 偏向器7の偏向反射面7Bの近傍で主走査方向に長い略 線状に集光する。2 ビームとも、偏向器7の偏向反射面 7 Bにより反射されて等角速度的に偏向され、「第 3 光 学系の走査結像索子」をなす走査レンズ11、12によ り被走査面20の近傍にピームを結像させ、被走査面2 0上に形成されるビームスポットにより被走査面20を 略等速に走査する。各ビームスポットは被走査面上で副 走査方向に所定の間隔をもって分離する。従って、該間 隔で離れた2本の走査ラインが同時に走査される。この 30.とき、第2光学系であるシリンダレンズ5を出射した2 ビームは、偏向回転面 (図1の図面に平行な面) 内で開 **き角:θを有し、偏向器7の「偏向反射面7Bとその回** 転軸7Aは一定距離:Aだけ離れ」ている。被走査面2 0 は実体的には光導電性の感光体である。この感光体は 円筒状やベルト状に形成されて感光面を走行させ、均一 に帯電されたのち、LD1, LD2からのビームで走査 されて静電潜像を書き込まれる。書き込まれた静電潜像 は現像されてトナー像として可視化される。トナー像は 記録シート(転写紙やオーバヘッドプロジェクタ用のプ ラスチックシート等) に直接もしくは中間転写ベルトの 如き中間転写媒体を介して転写される。多色画像やカラ 一画像を形成する場合には、上記のプロセスがトナーの 色の種類だけ繰り返され、各色トナー画像が記録シート 上で重ね合わせられて多色画像もしくはカラー画像が形 成される。記録シート上に転写されたトナー像は記録シ ート上に定着されて記録画像となる。

[0009]

【実施例】以下に、具体的な例を2例、実施例1,2と して挙げる。

図1に示す構成において、光源であるLD1、LD2か ら出射するビームをそれぞれ第1ビーム、第2ビームと する。第1,第2ビームは、第1光学系をなすカップリ ングレンズ3,4で個別的にカップリング作用を受け、 共通の第2光学系であるシリンダレンズ5を介して偏向 器7の偏向反射面7Bに入射する。図1において、第1 ビームが偏向反射面7Bにより反射されたのち、その主 光線が被走査面20に直交する状態となる(走査結像索 子11,12の作用は考慮しない)とき、この反射ビー ムの主光線を第1基準線と呼び、図中に符号L10で示 10 す。同様に、第2ビームが偏向反射面7Bにより反射さ れたのち、その主光線が被走査面20に直交する状態と なるとき、この反射ビームの主光線を第2基準線と呼 び、図中に符号L20で示す。実施例1において、LD 1から出射する第1ビームと第1基準線L10とのなす 角は60度、LD2から出射する第2ビームと第2基準 線L20とのなす角は63. 6度である。従って、第一 1, 第2ピームの開き角: θ は3.6度で、ラジアン単

位では $\theta=0.0628$ radである。第1,第2ビー ムとも、カップリングレンズからは弱い収束性のピーム となって射出する。これらの収束性のビームが、他の光 学系の影響を受けないとしたときに、自らの収束性によ り集光する位置を「自然集光点」と呼ぶが、実施例1に おいて第1, 第2ビームの自然集光点はそれぞれ、偏向 器7の偏向反射面7Bから、第1,第2基準線L10, L20にそって被走査面側へ1860mmの位置にあ る。偏向器7は、偏向反射面を6面有する回転多面鏡 で、回転中心7Aから偏向反射面までの距離(偏向反射 面の内接円半径) Aは18mmである。第1ピームが第 1基準線 L 10の方向へ反射されるとき、偏向反射面7 Bへの第1ビームの入射角は30度、第2ビームが第2 基準線L20の方向へ反射されるとき、偏向反射面7B への第2ビームの入射角は31.8度である。第2光学 系としてのシリンダレンズ5は、第1,第2ビームに共 通に用いられるものである。

第1面 (入射側) :副走査方向にのみ正のパワーを持つシリンダ面

曲率半径:R (シリンダ面) = 24 mm

第2面(射出側):平面

中心肉厚=3mm

使用波長での屈折率=1.51375

第1ビームの偏向器7による反射ビームの主光線が第1 基準線L10と一致するとき、第1ビームのシリンダレ ンズ5から偏向反射面7Bまでの距離:

L2 = 43.6 mm

第2ピームの偏向器7による反射ピームの主光線が第2 基準線L20と一致するとき、第2ビームのシリンダレ ンズ5から偏向反射面7Bまでの距離:

L2=43.6 mm

シリンダレンズ5の光軸は、偏向反射面7Bに向かう第 1, 第2ビームに対して共に1.8度傾き、第1, 第2 ピームに対して共通に用いることができる。即ち、第

 $X=r^{1}/[R1+R1 \cdot \sqrt{(1-(1+K1)r^{1}/R1^{1})}]+R1A4 \cdot r^{4}+R1A6 \cdot r^{4}+\cdots (A)$ 上の表記で、長さの次元を持つ量の単位は「mm」であ

実施例1において、走査レンズ11の第1面の各定数は 以下の通りである。

-174.41R1 -4.30K1 1.410E-08 R1A4 -3.060E-11 R1A6 -2.700E-13 R1A8 4.737E-17 R1A10 6.560E-21 R1A12 22.0 中心肉厚:D 使用波長での屈折率: N 1.52706

 $X=Y'/[R+R \cdot \sqrt{(1+K)Y'/R'}]+A4 \cdot Y'+A6 \cdot Y'+A8 \cdot Y'+\cdots$ (B)

K

走査レンズ11の第2面の主走査断面内の非円弧形状に おける各定数は以下の通りである。

4.977E-07 A4 50 A6 -5.799E-11

1, 第2ビームは、シリンダレンズ5の光軸を対称軸と して、図1の面内で互いに逆の方向へ1.8度傾いてい る。

【0010】第3光学系の走査結像索子は、走査レンズ 11,12により構成されるが、走査レンズ11の第1 面(入射側面)は「共軸非球面」であり、光軸方向の座 標をX、頂点からの距離をr、近軸曲率半径をR1、高次 の係数をR1A3、R1A4、R1A5、R1A6、…として以下のよう に表現できる。

[0.011]

る。また、例えば「E-08」は「10^つ」を意味し、この 数値が直前の数値にかかるのである。以下、同様であ る。走査レンズ12の第2面(射出側面)は、主走査断 40 面 (光軸を含み、主走査方向に平行な平断面) 内の形状 が非円弧形状であり、副走査断面(光軸と副走査方向と に平行な平断面)の形状は、副走査断面の各位置におい て直線(即ち、パワー:0)となっている。主走査断面 の「非円弧形状」は、光軸方向の座標をX、頂点からの 主走査方向の距離をY、近軸曲率半径をR、高次の係数

をA4、A6、…として以下のように表現できる。

-0.113

-58.8

•

9		10
A8 1.392E-14		の形状が非円弧形状となっており、前記(B)式と同様の
A10 -4.327E-17		表現ができる。また、副走査断面内の曲率半径は、主走
第3光学系の走査レンズ12は、両面とも主走査断面内		査方向の座標:Yの関数として、
$rs(Y)=RSO+a1 \cdot Y+a2 \cdot Y'+a3 $	a4 • '	Y' +a5 · Y' +··· (C)
(RSOはY=Oでの曲率半径)のように表すことができる。		m m
走査レンズ12の第1面 (入射側面)	٠	走査レンズ11の第2面と走査レンズ12の第1面との
主走査断面内の非円弧形状		距離:51.5mm
R -341.72		走査レンズ12の第2面と被走査面との距離:106.
K -88:49		9 mm
A3 0.000	10	偏向反射面から被走査面までの距離:L=229.5m
A4 -1.093E-07		m .
A5 0.000		なお、上記距離:Lは第1基準線L10に沿った距離で
A6 -1.154E-11		ある。図1に示すように、
A7 0.000		第1基準線L10から走査レンズ11の第1面頂点まで
A8 -1.387E-15		の距離:Δ1
A9 0.000		第2基準線L20から走査レンズ11の第1面頂点まで
A10 2.570E-19		の距離:Δ2
副走査断面内の曲率半径の主走査方向に於ける変化		第1基準線L10から走査レンズ12の第1面頂点まで
RSO -37.25		の距離:Δ1'
a2 2.868E-03	20	第2基準線L20から走査レンズ12の第1面頂点まで
a3 1.312E-06		の距離: Δ2'
a4 -9.056E-07		(全て、偏向器への入射ビーム側をプラス方向とする)
a5 -2.529E-10		第1,第2基準線L10,L20に対する走査レンズ1
a6 1.309E-11	٠	1の偏向反射面内の傾き角:α、第1,第2基準線L1
a7 -1.833E-13	·	0, L20に対する走査レンズ12の偏向反射面内の傾
a8 2.564E-14		き角: α'(ともに反時計回りを正とする)とすると、 これらは、
a9 .2.986E-17		$\Delta 1 = 0.80 \text{mm}, \ \Delta 2 = 0.84 \text{mm}, \ \Delta 1' = 0.71 \text{mm},$
a10 -7.083E-18 a11 1.541E-21		$\Delta 2' = 0.75 \text{mm}$
a11 1.541E-21 a12 5.928E-22	30	であり、第1,第2基準線L10,L20の両方に対し
中心肉厚:D 3.5	00	て、偏向反射面に向かうビーム側にシフトしている。ま
使用波長での屈折率: N 1.52706		た、 $\alpha = -0.04$ 度、 $\alpha' = -0.17$ 度となり、走査レンズ1
走査レンズ12の第2面(射出側面)		1、12とも第1,第2基準線L10, L20に対して
主走査断面内の非円弧形状		チルトしている。
R -680.32		【0012】前述の開き角: 8と、偏向反射面と被走査
К -79.39		面間の副走査横倍率:βとは、
A3 0.000E		$\theta = 0.0628(rad)$
A4 -2.376E-07		$\beta = -0.84$
A5 0.000		であって、前記A=18mm、L=229.5mmを用いる
A6 -8.612E-12	40	と、 $ heta' imeseta' imes A/L=0.00022$ となり、条件 (1) を満足
A7 0.000 .		する。
A8 -1.278E-16		【0013】また、カップリングレンズ3,4と偏向反
A9 0.000 '		射面7Bとの距離は、2ビームとも140mmであるの
A10 1.268E-21		で、前記L1=140mmである。カップリングレンズ3,
副走査断面内の形状		4 の有効径は 2 ピームとも同じで、 $\phi1=\phi2=4$ mmで
RSO16.62		ある。従って、
$a1 = a2 = a3 = \cdot \cdot \cdot = 0.0$		$\tan^{-1}[(\phi 1+\phi 2)/2L1]=0.029(rad)$
即ち、副走査断面内の曲率半径は、副走査断面の位置に		となり、条件(2)を満足する(請求項1)。また、
よらず一定である。第1基準線L10の、偏向反射面で		$L2 \times \theta \times \beta / L1 = 0.0172$
の反射点と走査レンズ11の第1面との距離:45.6	50	となり、条件(3)を満足する。これにより、シリンダレ

12

11

ンズ 5 に、光軸中心のチルト誤差が多少あってもピームピッチの変動は小さい。第1,第2 ピームの発光点位置をそれぞれ「対応するカップリングレンズの光軸に対し、副走査方向へ互いに逆向き」に3.95 μ mずらしたとき、設計上の狙いの走査線ピッチは2 1.2 μ m (1 2 0 0 0 1)となる。このとき、シリンダレンズ 5 が光軸中心について3、チルトしても、ピームピッチの変動は2 μ m以下となり、十分許容範囲内である。

【0014】また、シリンダレンズ5につき、L2=117. 7mm、第1面(シリンダ面)の副走査方向の曲率半径 10を=65mmとすると、ビーム1、ビーム2の発光点位置をそれぞれカップリングレンズ光軸に対し副走査方向に逆方向に1.57 μ mずらしたとき、設計の狙いのビッチは21.2 μ m(1200dpi)となる。このとき、シリンダレンズ5が光軸中心について3、チルトすると、走査線ビッチの変動は±5 μ mとなり、大きな値となる。このときL2× θ ×| β |/L1=0.044となり、条件(3)をオーバする。また上記実施例1において、S1(+)=-0.29、S1(-)=-0.08、S2(+)=-0.01、S2(-)=-0.20であって、20

 $(S1(+)-S1(-))\times(S2(+)-S2(-))=-0.0399<0$ であり、条件式(4)を満足する (請求項3)。また、M1 (+)=-0.10, M1(-)=0.00, M2(+)=-0.18, M2(-)=-0.20であって、

(M1(+)-M1(-))×(M2(+)-M2(-))=-0.002 < 0 であり、条件式(5)を満足する (請求項4)。図2に、上 記実施例1における第1,第2ビームに関する像面湾曲 (実線は副走査方向、破線は主走査方向)と、等速性 (リニアリティ)の図を示す。像面湾曲および等速性は 第1,第2ビームとも極めて良好であり、良好なマルチ ピーム走査が可能であることを示している。

【0015】実施例2

実施例2では、第3光学系の走査結像案子が1枚の走査レンズで構成される。図1において、第3光学系を1枚の走査レンズで置き換えたものを想定し、光源、カップリングレンズ、シリンダレンズ、偏向器、第1基準線、第2基準線等は、実施例1における説明に準じて説明を行う。

【0016】実施例1におけると同様、LD1、LD2 から出射するビームをそれぞれ第1,第2ビームとする。

LD1から出射する第1ビームと第1基準線L10のな す角:60度

LD2から出射する第2ビームと第2基準線L20のなす角:61.6度

である。従って、第11,第2ビームの開き角 θ :0.0279radである。カップリングされたビームは、第1,第2ビームとも弱い収束ビームで、偏向反射面から自然集光点までの距離は、第1,第2ビームとも、1473mmである。

偏向器7は偏向反射面数:6面の回転多面鏡で、回転中心7Aから偏向反射面7Bまでの距離:Aは18mmである。第1ビームが第1基準線L10の方向へ反射されるとき、偏向反射面7Bへの第1ビームの入射角は30度、第2ビームが第2基準線L20の方向へ反射されるとき、偏向反射面7Bへの第2ビームの入射角は30.8度である。第2光学系としてのシリンダレンズ5は第1,第2ビームに共通に用いられるものである。

第1面 (入射側) : 副走査方向にのみ正のパワーを持つシリンダ面

曲率半径:R(シリンダ面)=13.9mm

第2面(射出側):平面中心肉厚=3mm

使用波長での屈折率=1.5244

第1ビームの偏向器7による反射ビームの主光線が第1 基準線L10と一致するとき、第1ビームのシリンダレンズ5から偏向反射面7Bまでの距離:

L2=25.0 mm

第2ビームの偏向器7による反射ビームの主光線が第2 基準線L20と一致するとき、第2ビームのシリンダレ 40 ンズ5から偏向反射面7Bまでの距離:

L2=25.0mm

シリンダレンズ5の光軸は、偏向反射面7Bに向かう第 1,第2ビームに対して共に0.8度傾き、第1,第2 ビームに対して共通に用いることができる。即ち、第 1,第2ビームは、シリンダレンズ5の光軸を対称軸と して、図1の面内(偏向回転面内)で互いに逆の方向へ 0.8度傾いている。第3光学系の「走査レンズ」の第 1面は主走査断面が非円弧形状である。この非円弧形状 は、前述の(B)式で表すことができ、実施例2におけ 50

る走査レンズ第1面の非円弧形状の各定数は、以下の通りである。

R 160.4 K -59.97 A4 -9.465E-07 A6 3.847E-10 A8 -8.113E-14 A10 1.000E-17 中心肉厚: D 13.5

使用波長での屈折率: N 1.5244

実施例2の上記走査レンズの副走査断面内の曲率半径は、主走査方向の座標: Y関数として、前述の(C)式で表され、各定数は以下の通りである。

RS0 -98.8 a1 -1.40E-02 a2 2.98E-02

持!	耝	2	0	0	0 -	2	4	9	9	4	8
----	---	---	---	---	-----	---	---	---	---	---	---

4	4
	4

	,	• ,	1,04-000
	13		14 .
a3	0.000E-00		0.35度となり、走査レンズは基準線に対してチルトして
a4	-9.91E-05		いる。
a5	0.000E-00		【 0 0 1 7】第 1 ,第 2 ピームの開き角: $ heta$ 、偏向反射
a6	2.31E-07		面と被走査面との間の第3光学系の副走査横倍率: β
a7	0.000E-00		は、それぞれ、
a8	-3.35E-10		$\theta = 0.0279$
a9	0.000E-00		$\beta = -2.3$
a10	2.71E-13		であり、 $A=18mm$ 、 $L=175mm$ を用いると、
a11	0.000E-00		$\theta^1 \times \beta^1 \times A / L = 0.00032$
a12	-8.81E-17	10	となり条件(1)を満足する。また、実施例2において、
走査レンズの第2	面(射出側)		カップリングレンズと偏向反射面との距離は、第1,第
主走査断面内の非	円弧形状		2 ビームとも 2 0 0 mm であって、L1 = 2 0 0 mm であ
R -	141.3		り、第1,第2ビームをカップリングする各カップリン
K	-4.7		グレンズの有効径は共に 4 mmであって、 $\phi1=\phi2=4$
A4	-1.02E-06		mmである。従って
A6	2.44E-10 .		$tan-1[(\phi 1+\phi 2)/2L1]=0.020(rad)$
A8	-7.86E-14		となり、条件(2)を満足する。さらに、
A10	2.80E-17		$L2 \times \theta \times \beta / L1 = 0.009$
副走査断面内の曲	率半径の主走査方向の変化		となり、条件(3)を満足する。第1,第2ビームの発光
RS0	-15.25	20	点位置を、それぞれ対応するカップリングレンズの光軸
a1	0.00E-00		に対し、副走査方向に互いに逆方向に1.10μmずら
a2	-1.92E-03		したとき、設計上の走査線ビッチは21.2μm(12
a3	0.000E-00		00dpi)となる。このとき、シリンダレンズが光軸
a4	3.77E-06		中心について3'チルトしても、走査線ピッチの変動は
a5	0.000E-00		±1.7μm以下となり、十分許容範囲内である。
a6	-3.17E-09		【0018】また実施例2において、S1(+)=-1.02, S1
a7	0.000E-00		(-)=-0.87, S2(+)=-0.19, S2(-)=-2.50となるから、
a8	8.24E-13		$(S1(+)-S1(-))\times(S2(+)-S2(-))=-0.35 < 0$
a9	0.000E-00		となり条件式(4)を満足する(請求項3)。図3に、実
a10	1.09E-15	30	施例2における第1,第2ビームに関する像面湾曲と等
a11	0.000E-00		速性 (リニアリティ) の図を、図2に倣って示す。像面
a12	-5.91E-19		湾曲・等速性は第1,第2ビームとも極めて良好であ
	の、偏向反射面での反射点と走査レン		り、良好なマルチビーム走査が可能である。
ズの第1面との距	離:33.2mm		【0019】即ち、実施例1,2に示すマルチピーム走
走査レンズの第 1	面と第2面の距離(中心肉厚):1		査装置は、複数の光源1,2と、これら複数の光源をそ
3.5 mm			れぞれカップリングする複数のカップリングレンズ3,
走査レンズの第2	面と被走査面との距離:128.3m		4により構成される第1光学系と、この第1光学系から
m			の各ピームを、主走査方向に長く略線状に集光する第2
	面までの距離:L(第1基準線に沿っ		光学系5と、略線状の集光部の近傍に偏向反射面7Bを
た距離) = 175	•	40	有し、第2光学系からの複数のビームを等角速度的に偏
第1基準線から走	査レンズの第1面頂点までの距離を △		向させ、偏向反射面 7 Bとその回転軸 7 Aとが一定距
1			離:Aだけ離れている偏向器7と、この偏向器により偏
第2基準線から走	査レンズの第1面頂点までの距離を△		向された複数の偏向ビームを被走査面に向けて集光さ
2		•	せ、被走査面を略等速的に走査する走査結像寮子を含む
• • •	の入射ビーム側をプラス方向とする)		第3光学系11,12 (または走査レンズ) とを有し、
	に対する走査レンズの偏向面内の傾き		第2光学系からの複数のビームのうち少なくとも2つ
]りを正とする)とすると、		は、偏向回転面内で開き角を有し、開き角のうち最大の
$\Delta 1=0.40$ mm, Δ			ものを θ (rad)、この角: θ を開き角として有する2
	51, 第2基準線の両方に対して偏向反		ピームが通過する2つのカップリングレンズ3,4の有
射面に向かうピー	-ム側にシフトしている。また、α=-	50	効径を、 ϕ 1, ϕ 2、2つのカップリングレンズ3, 4と

15

偏向反射面7Bとの距離のうち短い方をL1、偏向反射面 と被走査面の間にある第3光学系の副走査方向の横倍率 をβ、偏向反射面から被走査面に至る距離をLとすると き、これらは、条件:

- (1) $\theta^1 \times \beta^1 \times A/L < 0.0005$
- (2) $\theta > \tan^{-1}[(\phi 1 + \phi 2)/2 L 1]$

を満足する (請求項1)。また、最大の開き角: θ を有 する2ビームが共に通過する第2光学系が、少なくとも 1つのシリンダレンズ5を有し、このシリンダレンズ5 プリングレンズと偏向面の距離のうち短い方をL1、偏向 反射面と被走査面の間にある第3光学系の副走査方向の 横倍率をβとするとき、これらが、条件:

(3) $L2 \times \theta \times |\beta|/L1 < 0.03$

を満足する (請求項2)。また、複数の光源からのビー ムのうち1つのビームの両最周辺像高での副走査方向の 結像位置をS1(+), S1(-)、上記1つのビームとは異なる 他の1つのビームの両最周辺像高での副走査方向の結像 位置をS2(+), S2(-)とするとき、これらが条件:

(4) $(S1(+)-S1(-))\times(S2(+)-S2(-))<0$ を満足する(請求項3)。また、上記請求項1は、複数 の光源からのビームのうち1つのビームの両最周辺像高 での主走査方向の結像位置をM1(+), M1(-)、上記1つの ビームとは異なる他の1つのビームの両最周辺像高での 主走査方向の結像位置をM2(+), M2(-)とするとき、これ らが条件:

(5) $(M1(+)-M1(-))\times(M2(+)-M2(-))<0$

を満足する(請求項4)。さらに実施例1,2とも、光 源の数が2であり(請求項5)、実施例2では、第3光 学系の走査結像累子が1枚のレンズ (上記走査レンズ) で構成され(請求項6)、実施例2では、第3光学系の 走査結像素子が2枚のレンズにより構成されている(請 求項7)。また、実施例1,2とも、第3光学系の走査 結像案子を構成するレンズの1以上が、偏向回転面内で シフトおよび/またはチルトして配備されている(請求 項8)。そして、実施例1,2において、被走査面を光 導電性の感光体の感光面とする画像形成装置は、光導電 性の感光体を均一に帯電したのち、光走査により静電潜 像の鸖込みを行い、鸖込みにより形成された静電潜像を 現像してトナー像として可視化する方式の画像形成装置 40 16

において、感光体に対する光走査を、請求項1~8の任 意の1に記載のマルチピーム走査装置により行うこと特 徴とする画像形成装置である(請求項9)。上の実施例 1,2では第3光学系の走査結像案子を1枚または2枚 の走査レンズで構成したが、走査レンズを3枚以上有し ても差し支えない。また第3光学系が走査ミラーを含ん でいても良い。また、上記実施例における走査レンズの 光軸は「各面の主走査断面の頂点を結んだ直線」とす る。条件(2), (3)の充足には、距離:L1を長くす と偏向面の距離をL2、2ビームが通過する2つのカッ 10 るのが有利であり、カップリングレンズと偏向反射面と の間、例えば、カップリングレンズとシリンダレンズと の間に「折り返しミラー等」を介して、上記距離:L1を 「かせぐ」ようにしてもよい。

[0020]

【発明の効果】以上に説明したように、この発明によれ ば新規なマルチビーム走査装置および画像形成装置を実 現できる。この発明のマルチビーム走査装置は、高価な ビーム合成部品を用いずに、複数のビームで被走査面を 走査することができ、偏向器のサグによる複数ビーム間 20 の光学特性の差を低減でき、各ピームごとに、良好な像 面湾曲特性(小径で安定したビームスポット径)及び等 速性が得られる。また、この発明の画像形成装置は、上 記マルチビーム走査装置を用いることにより、高速で良 好な画像形成を行うことができる。

【図面の簡単な説明】

【図1】この発明の実施の1形態を説明するための図で ある。

【図2】実施例1における第1,第2ビームの像面湾曲 と等速性とを示す図である。

【図3】実施例2における第1、第2ピームの像面湾曲 と等速性とを示す図である。

【符号の説明】

1, 2 光源としての半導体レーザ

第1光学系を構成するカップリングレンズ 3, 4

第2光学系としてのシリンダレンズ 5

偏向器としての回転多面鏡

11,12 第3光学系の走査結像累子をなす走査 レンズ

20 被走査面

[図1]

[図2]

(実施例1)

【図3】

(実施例2)

