CHBE 344: Course Overview

Unit 1: Characterization and Creation of Particles

Unit 2: Mechanical Separations

Unit 3: Thermal Separations and Other Unit

Operations

Unit 3: Thermal Separations and Other Unit Operations

Topics:

Evaporation

- energy balance (review), overall heat transfer coefficient, single effect vs.
 multiple effect
- boiling point elevation, enthalpy of mixing, steam economy

Pumping

- Bernoulli equation, frictional losses, efficiency, cavitation
- pump selection, pump types, pump curves

Fluidized Beds

fluidization types, minimum fluidization velocity

Unit 3: Thermal Separations and Other Unit Operations

Objectives:

- Describe the fundamental physics underlying the following unit operations
 - single-effect evaporator, multiple-effect evaporator, pump, fluidized bed
- Apply basic process design equations for the unit operations listed above to calculate some process parameters such as
 - heat exchanger area, energy requirements, steam economy, temperature difference, boiling point elevation
 - pump head, frictional losses, flow rate, net positive suction head
 - minimum fluidization velocity
- Apply computing programming to carry out processing calculations using the following techniques in Matlab or Python
 - functions, plotting, root finding, lookup tables and data interpolation

Evaporation

Maple Syrup
Wiped film evaporator
Steam Trap

Venturi steam trap

Evaporator

Overall Heat Transfer Coefficient

Table 10.1
Typical overall coefficients in evaporators

^	II C	000 .	4 T1
Over	all Cc	efficie	nt. U
~		, viiiviv	, -

Туре	W/m^2 - $^{\circ}C$	Btu/ft ² -h-°F
Long-tube vertical evaporators	1000-2500	200-500
Natural circulation	2000-5000	400-1000
Forced circulation		
Agitated-film evaporator, Newtonian liq	uid	
1 cP	2000	400
1 P	1500	300
100 P	600	120

Overall Heat Transfer Coefficient

Overall heat transfer coefficients for preliminary design of natural convection evaporators (water-based systems).

Overall Heat Transfer Coefficient

Overall heat transfer coefficients and specific power consumption for preliminary design of forced-circulation evaporators (water-based systems).

Boiling Point Elevation: Duhring's Diagram

Heat of Mixing (Dilution)

Sodium Hydroxide

Multiple-Effect Evaporators

Alternate Configurations

(a) Forward feed.

Mass Balance in Fluid Flow

Energy Balance in Fluid Flow

Friction Factor

$$E_{\mathit{friction}} = E_{\mathit{f},\mathit{major}} + E_{\mathit{f},\mathit{expansion}} + E_{\mathit{f},\mathit{contraction}} + E_{\mathit{f},\mathit{fittings}}$$

Type of Fitting	C _{ff}
Elbows	
Long radius 45°, flanged	0.2
Long radius 90°, threaded	0.7
Long radius 90°, flanged	0.2
Regular 45°, threaded	0.4
Regular 90°, flanged	0.3
Regular 90°, threaded	1.5
180° Return bends	
180° return bend, flanged	0.2
180° return bend, threaded	1.5
Tees	
Branch flow, flanged	1.0
Branch flow, threaded	2.0
Line flow, flanged	0.2
Line flow, threaded	0.9
Union threaded	0.8
Valves	
Angle, fully open	2
Ball valve, ⅓ closed	5.5
Ball valve, ² / ₃ closed	210
Ball valve, fully open	0.05
Diaphragm valve, open	2.3
Diaphragm valve, ¼ closed	2.6
Diaphragm valve, ½ closed	4.3
Gate, ¾ closed	17
Gate, ¼ closed	0.26
Gate, ½ closed	2.1
Gate, fully open	0.15
Globe, fully open	10
Swing check, backward flow	∞
Swing check, forward flow	2

Frictional Losses

$$E_{f,i} = C_{f,i} \frac{\overline{u}^2}{2} = \frac{\Delta P_{f,i}}{\rho}$$

$$C_{f,contraction} = \frac{2}{5} \left[\frac{5}{4} - \frac{A_2}{A_1} \right] \rightarrow \frac{A_2}{A_1} < 0.715$$

$$C_{f,contraction} = \frac{3}{4} \left[1 - \frac{A_2}{A_1} \right] \rightarrow \frac{A_2}{A_1} > 0.715$$

$$C_{f,contraction} = \frac{3}{4} \left[1 - \frac{A_2}{A_1} \right] \rightarrow \frac{A_2}{A_1} > 0.715$$

$$C_{f, \text{expansion}} = \left[1 - \frac{A_1}{A_2}\right]^2$$

Valves

Moving Liquids

Centrifugal pump (0:00-3:00)

Positive Displacement Pumps

- Rotary pump
- Reciprocating pump

Pump selector tools

- Pump selector
- Pump info

Moving Gases

Fan (Propeller)

Blower (Impeller)

Jet Engine (Compressor and Turbine)

Starting Point for Pump Selection

Characteristic Curves of Centrifugal Pump

Example: At 3,450 RPM and a flow rate of 200 gal/min: The total head will be 88 ft, the power required is ~5.5 hp and the efficiency is 80%.

Combinations of Pumps

Pumps in Parallel

Pumps in Series

Fluidization

Scientific fluidization video (0 - 1:30)Fun fluidization video (0 - 0:30)

Types of Fluidization

Minimum Fluidization Velocity

Bed Expansion

Porosity versus fluid velocity in a fluidized bed (McCabe, Smith and Harriott, 1993).

Fluidized Cengtrifugation

Knelson Concentrator