Machine Learning

Aradhana Behura BTECH:VSSUT, MTECH:VSSUT, BURLA, PhD:NIT, RKL

Outline

- Problem solving using Computer
 - Solvability and Tractability
- > AI Vs ML Vs DL
- History of AI
- Types of Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Working Principle of Supervised Learning
 - Dataset
 - Splitting dataset into Training, Validation, and Test Sets
 - Classification and Regression
- Performance Evaluation

Can all problems be solvable

- > Can all real world problems be translated to mathematical problem: No
 - How to became a topper

- > Can all mathematical problems be solved by computer: No
 - Halting problem

- > Can all solvable problems be solved in polynomial time or reasonably less time: No
 - Traveling salesman problem

Can all problems be solvable? Continued...

What to do if a problem is not solvable?

➤ Settle for solution with some inaccuracy

Mimic how nature is solving problems

> Keep attempting to reduce inaccuracy by evolving the model that mimics nature

What is Machine Learning?

- Machine learning (MI) is a branch of Artificial Intelligence (AI) that provides computers the ability to automatically learn and improve from experience.
- Machine learning is about designing algorithms that allow a computer to learn from data and experience.
- Machine learning is a data driven model to derives rules from data.
- Machine learning allows computer programs to automatically improve through experience.

Difference bet ween Al and MI

Al ML

- Al is not a system, but it can be ML is a system that can extract implemented on system to make knowledge from dataset. system intelligent.
- Al is used in decision making.

learning from ML used in experience.

Al leads to wisdom or intelligence.

- ML leads to knowledge or experience.
- Al comprises a set of rules which are ML is one of the way to achieve Al. derived based parameters on estimated using ML.

Artificial Intelligence (AI) Vs Machine

6

(ML) Vs Deep Learning (DL)

- Objective of AI: Mimic the process of problem solving by natural intelligence
- Objective of ML: Mimic the process of problem solving by human intelligence
 - Learning algorithm with data can improve performance of the machine
- Objective of DL: Extension of one of the ML technique namely Artificial Neural Network (ANN) by significantly increasing more number of hidden layers

Dataset

TRS DT	TRS_TYP_CD	REF_DT	REF_NUM	CO_CD	GDS_CD	QTY	UT_CD	UT PRIC
21/05/93	00001	04/05/93	25119	10002J	001M	10	CTN	22.000
21/05/93	00001	05/05/93	25124	10002J	032J	200	DOZ	1.370
21/05/93	00001	05/05/93	25124	10002J	033Q	500	DOZ	1.000
21/05/93	00001	13/05/93	25217	10002J	024K	5	CTN	21.000
21/05/93	00001	13/05/93	25216	10026H	006C	20	CTN	69.000
21/05/93	00001	13/05/93	25216	10026H	008Q	10	CTN	114.000
21/05/93	00001	14/05/93	25232	10026H	006C	10	CTN	69.000
21/05/93	00001	14/05/93	25235	10027E	003A	5	CTN	24.000
21/05/93	00001	14/05/93	25235	10027E	001M	5	CTN	24.000
21/05/93	00001	22/04/93	24974	10035E	009F	50	CTN	118.000
21/05/93	00001	27/04/93	25033	10035E	015A	375	GRS	72.000
21/05/93	00001	20/05/93	25313	10041Q	010F	10	CTN	26.000
21/05/93	00001	12/05/93	25197	10054R	002E	25	CTN	24.000

What is Learning?

- ➤ Learning is a process by which a system improves its performance from experience.
- Arthur Lee Samuel coned the term Machine Learning in 1959. Machine Learning (ML) is a category of an algorithm that enables the computers to learn from data, and even improve themselves, without being explicitly programmed.
- Machine learning can be classified into 3 types of algorithms
 - Supervised Learning (Mimicking child learning from parents/teachers)
 - Unsupervised Learning (Mimicking human learning based on some similar and different objects)
 - Reinforcement Learning (Mimicking human learning based on reward/punishment given by environment)

Supervised Vs. Unsupervised

Supervised

- knowledge of output learning with the presence of an "expert" / teacher
 - · data is labelled with a class or value
 - Goal: predict class or value label
 - e.g. Neural Network, Support Vector Machines, Decision Trees, Bayesian Classifiers

Unsupervised

- no knowledge of output class or value
 - data is unlabelled or value un-known
 - Goal: determine data patterns/groupings
- Self-guided learning algorithm
 - (internal self-evaluation against some criteria)
 - e.g. k-means, genetic algorithms, clustering approaches ...

Different Supervised and Unsupervised learning Algorithms

Supervised learning model

Working principle of supervised learning

Main issues of supervised learning

- Splitting dataset into training and test samples
- Selection of classifier
- > Two methods are widely used for splitting dataset
 - Holdout method (Naive approach)
 - Cross Validation
- Holdout method
 - Split dataset into two groups
 - Training set: used to train the classifier
 - Test set: used to estimate the error rate of the trained classifier

- Advantages of holdout method
 - Simple method for splitting dataset (Good for beginners)
 - Computationally take less time for partition of training data and test data
- Disadvantages of holdout method
 - The evaluation may depend heavily on partition of training and test set
 - Increase variance
- ➤ The limitations of the holdout can be overcome with a family of resampling methods at the expense of higher computational cost
 - Cross Validation
 - Random Subsampling
 - K-Fold Cross-Validation
 - Leave-one-out Cross-Validation

Random Subsampling

- Each data split randomly selects a (fixed) number of examples without replacement
- For each data split we retrain the classifier from scratch with the training examples and then estimate E_i with the test examples

- The true error estimate is obtained as the average of the separate estimates E_i
 - This estimate is significantly better than the holdout estimate

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

K-Fold Cross-validation

- Create a K-fold partition of the the dataset
 - For each of K experiments, use K-1 folds for training and a different fold for testing
 - This procedure is illustrated in the following figure for K=4

- K-Fold Cross validation is similar to Random Subsampling
 - The advantage of K-Fold Cross validation is that all the examples in the dataset are eventually used for both training and testing
- As before, the true error is estimated as the average error rate on test examples

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Leave-one-out Cross Validation

- Leave-one-out is the degenerate case of K-Fold Cross Validation, where K is chosen as the total number of examples
 - For a dataset with N examples, perform N experiments
 - For each experiment use N-1 examples for training and the remaining example for testing

■ As usual, the true error is estimated as the average error rate on test examples $E = \frac{1}{N} \sum_{i=1}^{N} E_i$

How many folds are needed?

With a large number of folds

- + The bias of the true error rate estimator will be small (the estimator will be very accurate)
- The variance of the true error rate estimator will be large
- The computational time will be very large as well (many experiments)

With a small number of folds

- + The number of experiments and, therefore, computation time are reduced
- + The variance of the estimator will be small
- The bias of the estimator will be large (conservative or smaller than the true error rate)

In practice, the choice of the number of folds depends on the size of the dataset

- For large datasets, even 3-Fold Cross Validation will be quite accurate
- For very sparse datasets, we may have to use leave-one-out in order to train on as many examples as possible
- A common choice for K-Fold Cross Validation is K=10

Supervised Model Evaluation

Overfitting of Model (Learned the Training Data but not able to generalize.)

High variance Low bias

Underfitting of Model
(Model not able to learn the data properly)

Low variance High bias

Supervised Model Evaluation, Continued...

Model Complexity Vs Performance

Model Complexity Vs Performance

Model Evaluation and Selection

- Evaluation metrics
 - How can we measure accuracy?
 - Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
 - Holdout method
 - Cross-validation
 - Bootstrap (not covered)
- Comparing classifiers:
 - ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted	C_1	¬ C ₁
class		
C_1	True Positives (TP)	False Negatives (FN)
$-C_1$	False Positives (FP)	True Negatives (TN)

 In a confusion matrix w. m classes, CM_{i,j} indicates # of tuples in class i that were labeled by the classifier as class i

Actual class\Predicted class	play_golf = yes	play_golf = no	Total
play_golf = yes	6954	46	7000
play_golf = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

- Classifier accuracy, or recognition rate
 - Percentage of test set tuples that are correctly classified

Error rate: 1 – accuracy, or
 Error rate = (FP + FN)/All

- Class imbalance problem
 - One class may be rare
 - E.g., fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class
 - Measures handle the class imbalance problem
 - **Sensitivity** (recall): True positive recognition rate
 - Sensitivity = TP/P
 - Specificity: True negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

A\P	С	¬C	
С	TP	FN	P
¬C	FP	TN	N
	P'	N'	All

• **Precision**: Exactness: what % of tuples that the classifier labeled as positive are actually positive?

$$P = Precision = \frac{TP}{TP + FP}$$

• **Recall:** Completeness: what % of positive tuples did the classifier label as positive Recall =

$$R = Recall = \frac{TP}{TP + FN}$$

- Range: [0, 1]

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- The "inverse" relationship between precision & recall
- We want one number to say if a classifier is good or not
- F measure (or F-score): harmonic mean of precision and recall
 - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}} = \frac{(\beta^2 + 1)P * R}{\beta^2 P + R}$$
Assigning β times as much weight to recall as to precision

F1-measure (balanced F-measure)

» That is, when $\beta = 1$,

$$F_1 = \frac{2P * R}{P + R}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

 Use the same confusion matrix, calculate the precision, recall, F1-score, Sensitivity, Specificity, Accuracy as model evaluation metrics.

Classifier Evaluation Metrics: Example

Use the same confusion matrix, calculate the measure just introduced

Actual Class\Predicted class	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

- Sensitivity = TP/P = 90/300 = 30%
- Specificity = TN/N = 9560/9700 = 98.56%
- Accuracy = (TP + TN)/All = (90+9560)/10000 = 96.50%
- Error rate = (FP + FN)/AII = (140 + 210)/10000 = 3.50%
- Precision = TP/(TP + FP) = 90/(90 + 140) = 90/230 = 39.13%
- Recall = TP/ (TP + FN) = 90/(90 + 210) = 90/300 = 30.00%
- F1 = $2 P \times R / (P + R) = 2 \times 39.13\% \times 30.00\% / (39.13\% + 30\%) = 33.96\%$

Training Error VS Testing Error

Classifier Evaluation: Holdout

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Repeated random sub-sampling validation: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained

Classifier Evaluation: Cross-Validation

- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class distribution, in each fold is approximately the same as that in the initial data

Model Selection: ROC Curves

- **ROC** (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve (AUC: Area Under Curve) is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate (TP/P)
- Horizontal axis rep. the false positive rate (FP/N)
- ☐ The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Bias, Variance and Bias-variance trade-off

Introduction to under fitting and over fitting and best fit

- **Underfitting:** A model or a ML algorithm is said to have underfitting when it cannot capture the underlying trend of the data.
- **Overfitting:** A model or a ML algorithm is said to have overfitting when it capture the underlying trend of the data very accurately.
- **3 Best fit:** A model or a ML algorithm is said to have best fit when it capture the underlying trend of the data moderately.

Bias and variance

- 1 Bias: It shows the degree of randomness of the training data.
 - (a) Based on the training data a suitable model may be created for the regression or classification problem.
 - (b) Regression: Linear, logistic, polynomial
 - (c) Classification: Decision tree, random forest, naive baye's, KNN, SVM
- 2 Variance: It shows the degree of randomness of the testing data.
 - (i) Testing data validates the accuracy of a model, that has been made with the help of training data set.
 - (ii) Testing data is nothing but the unlabeled or unknown data.

Underfitting, overfitting, best fit and bias, variance

Note:

- ⇒ The objective of ML algorithm not only fit for the training data but also fit for the testing data.
- ⇒ In other words, low bias and low variance is the appropriate solution.

Underfitting	Overfitting	Best fit
High bias	Very low bias	Low bias
High variance	High variance	Low variance

Underfitting, overfitting, and best fit in classification problem

A classifier (Decision tree, random forest, naive baye's, KNN, SVM) works on two types of data

- Training data
- Testing data

Example:

Classifier comes under the category of underfitting, overfitting, and best fit based on its training and testing accuracy.

Underfitting	Overfitting	Best fit
Train error=25%	Train error=1%	Train error=8%
Test error= 27%	Test error= 23%	Test error=9%

Mathematical intuition

$$bias(\hat{f}(x)) = \mathbb{E}[\hat{f}(x)] - f(x) \tag{1}$$

$$variance(\hat{f}(x)) = \mathbb{E}\left[\left(\hat{f}(x) - \mathbb{E}[\hat{f}(x)]\right)^{2}\right]$$
 (2)

- $\Rightarrow \hat{f}(x) \rightarrow$ output observed through the training model
- \Rightarrow For linear model $\hat{f}(x) = w_1x + w_0$
- \Rightarrow For complex model $\hat{f}(x) = \sum_{i=1}^{p} w_i x^i + w_0$
- \Rightarrow We don't have idea regarding the true f(x).
- ⇒ **Simple model:** Low bias & high variance
- ⇒ Complex model: High bias & low variance

$$\mathbb{E}[(y - \hat{f}(x))^2] = bias^2 + Variance + \sigma^2 (Irreducible error)$$
 (3)

 \Rightarrow Let there be n + m sample data in a given data set in which n and m samples are taken for the training and testing (validation) purpose then

$$train_{err} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

$$test_{err} = \frac{1}{m} \sum_{i=n+1}^{n+m} (y_i - \hat{f}(x_i))^2$$

- \Rightarrow If model complexity is increased the training model becomes too optimistic gives a wrong picture of how close \hat{f} to f.
- \Rightarrow Let $\mathcal{D} = \{x_i, y_i\}_1^{n+m}$ is a given data set, where

$$y_i = f(x_i) + \epsilon_i$$

$$\Rightarrow \epsilon \sim \mathcal{N}(0, \sigma^2)$$

 \Rightarrow We use \hat{f} to approximate f, where training set $T \subset \mathcal{D}$ such that

$$y_i = \hat{f}(x_i)$$

⇒ We are interested to know

$$\mathbb{E}\Big[\big(\hat{f}(x_i) - f(x_i)\big)^2\Big]$$

 \Rightarrow We cannot estimate the above expression directly, because we don't know $f(x_i)$

$$\mathbb{E}[(\hat{y}_i - y_i)^2] = \mathbb{E}[(\hat{f}(x_i) - f(x_i) - \epsilon_i)^2] \Leftarrow y_i = f(x_i) + \epsilon_i$$

$$= \mathbb{E}[(\hat{f}(x_i) - f(x_i))^2 - 2\epsilon_i(\hat{f}(x_i) - f(x_i)) + \epsilon_i^2]$$

$$= \mathbb{E}[(\hat{f}(x_i) - f(x_i))^2] - 2\mathbb{E}[\epsilon_i(\hat{f}(x_i) - f(x_i))] + \mathbb{E}[\epsilon_i^2]$$

$$\mathbb{E}\left[(\hat{f}(x_i) - f(x_i))^2\right] = \mathbb{E}\left[(\hat{y}_i - y_i)^2\right] + 2\mathbb{E}\left[\epsilon_i(\hat{f}(x_i) - f(x_i))\right] - \mathbb{E}\left[\epsilon_i^2\right]$$
 (4)

 \Rightarrow Empirical estimate: Let $Z = \{z_i\}_{i=1}^n$

$$\mathbb{E}(Z) = \frac{1}{n} \sum_{i=1}^{n} z_i$$

 \Rightarrow We can empirically evaluate R.H.S using training or test observation

Case 1: Using test observation:

$$\mathbb{E}\left[(\hat{f}(x_{i}) - f(x_{i}))^{2}\right] = \mathbb{E}\left[(\hat{y}_{i} - y_{i})^{2}\right] + 2\mathbb{E}\left[\epsilon_{i}(\hat{f}(x_{i}) - f(x_{i}))\right] - \mathbb{E}\left[\epsilon_{i}^{2}\right]$$

$$= \underbrace{\frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{y}_{i} - y_{i})^{2} - \frac{1}{m} \sum_{i=n+1}^{n+m} (\epsilon_{i})^{2} + 2\mathbb{E}\left[\epsilon_{i}(\hat{f}(x_{i}) - f(x_{i}))\right]}_{Covariance}$$

$$= \underbrace{\frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{y}_{i} - y_{i})^{2} - \frac{1}{m} \sum_{i=n+1}^{n+m} (\epsilon_{i})^{2} + 2\mathbb{E}\left[\epsilon_{i}(\hat{f}(x_{i}) - f(x_{i}))\right]}_{Covariance}$$

$$:: Cov(X, Y) = \mathbb{E} \Big[(X - \mu_X)(Y - \mu_Y) \Big]$$
 let $\epsilon_i = X$ and $Y = (\hat{f}(x_i) - f(x_i))$

$$\Rightarrow \mathbb{E}\Big[(X - \mu_{x})(Y - \mu_{y})\Big] = \mathbb{E}\Big[X(Y - \mu_{y})\Big] = \mathbb{E}\big[XY\big] - \mu_{y}\mathbb{E}\big[X\big]$$
$$= \mathbb{E}[XY]$$

- \Rightarrow None of the test data participated for estimating the $\hat{f}(x_i)$.
- $\Rightarrow \hat{f}(x_i)$ is estimated only using the training data.

$$\Rightarrow :: \epsilon_i \perp (\hat{f}(x_i) - f(x_i))$$
$$:: \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0$$

 \Rightarrow True error=Empirical error+Small constant \leftarrow Test data

Case 2: For training observation:

$$\mathbb{E}[XY] \neq 0$$

Using Stein's Lemma

$$\frac{1}{n}\sum_{i=1}^n \epsilon_i(\hat{f}(x_i) - f(x_i)) = \frac{\sigma^2}{n}\sum_{i=1}^n \frac{\partial \hat{f}(x_i)}{\partial y_i}$$

Graphical visualization of bias and variance

Bias and variance trade-off relation

References

E. Alpaydin, Introduction to machine learning. MIT press, 2020.

J. Grus, Data science from scratch: first principles with python. O'Reilly Media, 2019.

T. M. Mitchell, *The discipline of machine learning*. Carnegie Mellon University, School of Computer Science, Machine Learning, 2006, vol. 9.