Leading Zeroes in C++

```
#include <iostream>
using namespace std;

int countLeadingZeros(int num) {
   int leadingZeros = 0;
   while ((num & (1 << 31)) == 0) {
      leadingZeros++;
      num <<= 1;
   }
   return leadingZeros;
}

int main() {
   int num = 7; // Binary: 00000111
   int leadingZeros = countLeadingZeros(num);
   cout << "Leading zeros: " << leadingZeros << endl; // Output: 28

   return 0;
}</pre>
```

Objective:

Count **leading zeros** in the 32-bit binary form of num

Step-by-step:

The number 7 in binary (32-bit) is:

 $00000000\ 00000000\ 00000000\ 00000111$

That's **3 bits set** on the right side — so we expect **29 leading zeros** before the first 1.

Let's walk through it more carefully.

• First thing to note:

• 1 << 31 results in a mask:

10000000 00000000 00000000 00000000

• So the code is checking:
"Is the **leftmost (31st)** bit in num set?"

Hoop Simulation:

Each time, we:

- Check MSB (bit 31)
- If zero, we increment leadingZeros
- Then do num <<= 1 (left shift)

Let's track just leadingZeros:

Iteration	num (binary)	MSB	leadingZeros		
0	00000000	0	0		
	00000000				
	00000000		U		
	00000111				
1	00000000	0			
	00000000		1		
	00000000				
	00001110				
2	00000000	0	2		
	00000000				
	00000000				

	00011100			
3	00000000 00000000 00000000 00111000	0	3	
28	01000000 00000000 00000000 00000000	0	28	
29	10000000 00000000 00000000 00000000	1	29 (exit loop)	
✓ So yes — the loop runs 29 times, because the				

✓ So yes — the loop runs 29 times, because the first 1 in the 32-bit form appears at bit position 2 (from right), i.e., bit index 29 (from left).

Leading zeros: 29