## STA 235H - Potential Outcomes II

Fall 2022

McCombs School of Business, UT Austin

## Housekeeping

- Homework 2 is due this Friday
  - Note on Chatter: In Task 2, use *price000s* from 2.2 onwards.
  - Send your questions until Friday 5.00pm.
- Remember to send re-grading requests for Homework 1 until Thursday
- No OH this Thursday (changed to Wed and Friday; check OH calendar).

## Homework 3 will be posted this Friday

(Half the length of a homework)

#### Last week

- Finished our chapter on multiple regression.
  - How to handle binary outcomes: Linear Probability Models.
  - Video posted online about heteroskedasticity.
- Introduced Causal Inference



## **Today**



- Continue with causal inference:
  - Potential outcomes
  - o Ignorability assumption
- Introduction to Randomized Controlled Trials

### Before we start, let's check this week's JITT

"You are trying to analyze what variables contribute to someone donating or not to a charity. You are running the following linear probability mode to analyze the association between different covariates and a binary response of whether someone responds with a charitable gift or not."

"The variables used in this model are the following:

- respond: Binary variable of whether the person responded with a gift (1) or not (0).
- mailsyear: number of mailings per year
- propresp: response rate to mailings. Continuous variable, measured from 0 to 1.
- avggift: average amount of past gifts (in US\$)."

TRUE OR FALSE: "For one additional dollar donated in the past, the probability of donating increases by 0.0002, on average, holding other variables constant."

### Before we start, let's check this week's JITT

"You are trying to analyze what variables contribute to someone donating or not to a charity. You are running the following linear probability mode to analyze the association between different covariates and a binary response of whether someone responds with a charitable gift or not."

"The variables used in this model are the following:

- respond: Binary variable of whether the person responded with a gift (1) or not (0).
- mailsyear: number of mailings per year
- propresp: response rate to mailings. Continuous variable, measured from 0 to 1.
- avggift: average amount of past gifts (in US\$)."

TRUE OR FALSE: "Holding mailings per year and average past gift constant, increasing the response rate of mailings from 0% to 100% is associated with an average 84 percentage point increase in the probability of donating."

#### Before we start, let's check this week's JITT

"You are trying to analyze what variables contribute to someone donating or not to a charity. You are running the following linear probability mode to analyze the association between different covariates and a binary response of whether someone responds with a charitable gift or not."

"The variables used in this model are the following:

- respond: Binary variable of whether the person responded with a gift (1) or not (0).
- mailsyear: number of mailings per year
- propresp: response rate to mailings. Continuous variable, measured from 0 to 1.
- avggift: average amount of past gifts (in US\$)."

TRUE OR FALSE: "Holding mailings per year and average past gift constant, a 1% increase in the response rate of mailings is associated with an average 84% increase in the probability of donating."

# Causal Inference: Terminology and Notation

#### **Potential Outcomes**

• Last week we discussed potential outcomes, (e.g.  $Y_i(1)$  and  $Y_i(0)$ ):

"The outcome that we would have observed under different scenarios"

- Potential outcomes are related to your choices/possible conditions:
  - One for each path!
  - Do not confuse them with the values that your outcome variable can take.
  - Q: "You have to choose between three portfolios (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>) for investing your money. What are your potential outcomes?"
- Definition of Individual Causal Effect:

$$ICE_i = Y_i(1) - Y_i(0)$$

What was the Fundamental Problem of Causal Inference?

**Estimand** 

A quantity we want to estimate

**Estimator** 

A rule for calculating an estimate based on data

**Estimate** 

The result of an estimation

#### **Estimand**

A quantity we want to estimate

E.g.: Population mean

 $\mu$ 

#### **Estimator**

A rule for calculating an estimate based on data

E.g.: Sample mean

$$\frac{1}{n} \sum_i Y_i$$

#### **Estimate**

The result of an estimation

E.g.: Result of the sample mean for a given sample *S* 





Source: Deng, 2022

Some important estimands that we need to keep in mind:

Average Treatment Effect (ATE)

Average Treatment Effect on the Treated (ATT)

Conditional Average Treatment Effect (CATE)

• Some important estimands that we need to keep in mind:

$$ATE = E[Y(1) - Y(0)]$$

$$ATT = E[Y(1) - Y(0)|Z = 1]$$

$$CATE = E[Y(1) - Y(0)|X]$$

• Let's go back to our original example: Does a pill help reduce headaches?

| i | Z | Υ | Y(1) | Y(0) | Y(1)-Y(0) |
|---|---|---|------|------|-----------|
| 1 | 0 | 1 | ?    | 1    | ?         |
| 2 | 1 | 1 | 1    | ?    | ?         |
| 3 | 1 | 0 | 0    | ?    | ?         |
| 4 | 0 | 0 | ?    | 0    | ?         |
| 5 | 0 | 1 | ?    | 1    | ?         |
| 6 | 1 | 0 | 0    | ?    | ?         |

• We have a missing data problem

| i | Z | Υ | Y(1) | Y(0) | Y(1)-Y(0) |
|---|---|---|------|------|-----------|
| 1 | 0 | 1 | ?    | 1    | ?         |
| 2 | 1 | 1 | 1    | ?    | ?         |
| 3 | 1 | 0 | 0    | ?    | ?         |
| 4 | 0 | 0 | ?    | 0    | ?         |
| 5 | 0 | 1 | ?    | 1    | ?         |
| 6 | 1 | 0 | 0    | ?    | ?         |

• Compare those who took the pill to the ones did not take it.

| i | Z | Υ | Y(1) | Y(0) | Y(1)-Y(0) |
|---|---|---|------|------|-----------|
| 1 | 0 | 1 | ?    | 1    | ?         |
| 2 | 1 | 1 | 1    | ?    | ?         |
| 3 | 1 | 0 | 0    | ?    | ?         |
| 4 | 0 | 0 | ?    | 0    | ?         |
| 5 | 0 | 1 | ?    | 1    | ?         |
| 6 | 1 | 0 | 0    | ?    | ?         |

• Compare those who took the pill to the ones did not take it.

| i | Z | Υ | Y(1) | Y(0) | Y(1)-Y(0) |
|---|---|---|------|------|-----------|
| 1 | 0 | 1 | ?    | 1    | ?         |
| 2 | 1 | 1 | 1    | ?    | ?         |
| 3 | 1 | 0 | 0    | ?    | ?         |
| 4 | 0 | 0 | ?    | 0    | ?         |
| 5 | 0 | 1 | ?    | 1    | ?         |
| 6 | 1 | 0 | 0    | ?    | ?         |

• Compare those who took the pill to the ones did not take it.

| i | Z | Υ | Y(1) | Y(0) | Y(1)-Y(0) |
|---|---|---|------|------|-----------|
| 1 | 0 | 1 | ?    | 1    | ?         |
| 2 | 1 | 1 | 1    | ?    | ?         |
| 3 | 1 | 0 | 0    | ?    | ?         |
| 4 | 0 | 0 | ?    | 0    | ?         |
| 5 | 0 | 1 | ?    | 1    | ?         |
| 6 | 1 | 0 | 0    | ?    | ?         |

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

• What is the **estimand**?

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

• What is the estimand?

**Average Treatment Effect** 

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

• What is the estimand?

**Average Treatment Effect** 

• What is the estimator?

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

• What is the estimand?

**Average Treatment Effect** 

• What is the estimator?

Difference in sample means

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

• What is the **estimand**?

**Average Treatment Effect** 

• What is the **estimator**?

Difference in sample means

• What is the **estimate** and *how do we interpret it*?

$$\hat{ au} = rac{1}{3}(\sum_{i \in Z=1} Y_i - \sum_{i \in Z=0} Y_i) = -0.333$$

• What is the estimand?

**Average Treatment Effect** 

• What is the **estimator**?

Difference in sample means

• What is the **estimate** and *how do we interpret if*?

33.3 percentage point decrease in probability of having a headache



#### Remember our exercise last week!





We are using:

$$\hat{ au}=rac{1}{3}(\sum_{i\in Z=1}Y_i-\sum_{i\in Z=0}Y_i)$$

to estimate:

$$\tau = E[Y_i(1) - Y_i(0)]$$

We are using:

$$\hat{ au}=rac{1}{3}(\sum_{i\in Z=1}Y_i-\sum_{i\in Z=0}Y_i)$$

to estimate:

$$\tau = E[Y_i(1) - Y_i(0)]$$

Let's do some math

$$\tau = E[Y_i(1) - Y_i(0)]$$

$$= E[Y_i(1)] - E[Y_i(0)]$$

#### Key assumption:

#### **Ignorability**

$$\tau = E[Y_i(1) - Y_i(0)]$$

$$= E[Y_i(1)] - E[Y_i(0)]$$

#### Key assumption:

#### **Ignorability**

- Ignorability means that the potential outcomes Y(0) and Y(1) are independent of the treatment, e.g.  $(Y(0),Y(1)) \perp \!\!\! \perp Z.$ 
  - $\circ$  Remember that if  $A \perp\!\!\!\perp B \,
    ightarrow \, E[A|B] = E[A]$
  - $\circ$  Remember that if Z=1, then  $Y_i=Y_i(1)$ , and if Z=0, then  $Y_i=Y_i(0)$

$$\tau = E[Y_i(1) - Y_i(0)]$$

$$= E[Y_i(1)] - E[Y_i(0)]$$

#### Key assumption:

#### **Ignorability**

$$au = E[Y_i(1)] - E[Y_i(0)] = E[Y_i(1)|Z=1] - E[Y_i(0)|Z=0]$$

$$au = E[Y_i(1) - Y_i(0)]$$
 $= E[Y_i(1)] - E[Y_i(0)]$ 

#### Key assumption:

#### **Ignorability**

$$au = E[Y_i(1)] - E[Y_i(0)] = \underbrace{E[Y_i(1)|Z=1]}_{ ext{Obs. Outcome for T}} - \underbrace{E[Y_i(0)|Z=0]}_{ ext{Obs. Outcome for T}}$$

$$\tau = E[Y_i(1) - Y_i(0)]$$

$$= E[Y_i(1)] - E[Y_i(0)]$$

#### Key assumption:

#### **Ignorability**

$$au = E[Y_i(1)] - E[Y_i(0)] = E[Y_i(1)|Z=1] - E[Y_i(0)|Z=0] =$$
  $= E[Y_i|Z=1] - E[Y_i|Z=0]$ 

#### References

- Angrist, J. & S. Pischke. (2015). "Mastering Metrics". Chapter 1.
- Cunningham, S. (2021). "Causal Inference: The Mixtape". Chapter 4: Potential Outcomes Causal Model.
- Neil, B. (2020). "Introduction to Causal Inference". Fall 2020 Course