Лекция 9. Степенные ряды.

Пусть $0 < \alpha \leqslant 1$. Покажем, что ряд

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}} \tag{1}$$

сходится неравномерно на $E = (0, 2\pi)$.

A Рассмотрим последовательность $\{x_n = \frac{1}{2n}\}$. Заметим, что $\frac{1}{2} < kx_n \le 1$, тогда

$$\left| \sum_{k=n+1}^{2n} \frac{\sin kx_n}{k^{\alpha}} \right| = \sum_{k=n+1}^{2n} \frac{\sin kx_n}{k^{\alpha}} \geqslant \frac{n \sin \frac{1}{2}}{(2n)^{\alpha}} \geqslant \frac{1}{2} \sin \frac{1}{2} > 0$$

По критерию Коши ряд (1) не сходится равномерно. ■

Теорема 8 (признак Дини). Пусть f_n, f непрерывны на $[a, b], f_n \to f$ на [a, b] и $\{|f_n(x) - f(x)|\}$ нестрого убывает $\forall x \in [a, b]$. Тогда $f_n \rightrightarrows f$ на [a, b].

 $lack Достаточно доказать, что <math>g_n:=|f_n-f|\rightrightarrows 0$ на [a,b]. Предположим противное. Тогда

$$\exists \varepsilon > 0 \ \forall N \in \mathbb{N} \ \forall x \geqslant N \ \forall x \in [a, b] \ (|f_n(x) - f(x)| \geqslant \varepsilon)$$

или же

$$\exists \varepsilon > 0 \ \exists \{n_k\}, \ n_1 < n_2 < \dots \ \exists \{x_k\} \subseteq [a,b] \ (g_{n_k}(x_k) \geqslant \varepsilon)$$

По теореме Больцано-Вейерштрасса $\exists \{x_{k_i}\}, x_{k_i} \to x \in [a, b]$. В силу монотонности

$$\forall n \in \mathbb{N} \ \exists j_0 \in \mathbb{N} \ \forall j \geqslant j_0 \ \left(g_n(x_{k_j}) \geqslant g_{n_{k_j}}(x_{k_j}) \ \Rightarrow \ g_n(x_{k_j}) \geqslant \varepsilon \right)$$

Перейдя к пределу при $j \to \infty$, получим $g_n(x) \geqslant \varepsilon$, что противоречит $g_n(x) \to 0$.

Следствие. Пусть $\sum_{n=1}^{\infty} f_n$ поточечно сходится к функции S на [a,b], все f_n,f непрерывны на [a,b] и $f_n\geqslant 0$ на [a,b]. Тогда ряд $\sum_{n=1}^{\infty} f_n$ сходится равномерно на [a,b] (достаточно применить признак Дини для последовательности частичных сумм).

Пример (Ван-дер-Варден). Существует непрерывная функция $f: \mathbb{R} \to \mathbb{R}$, не дифференцируемая ни в одной точке.

▲ Рассмотрим $\varphi: \mathbb{R} \to \mathbb{R}, \ \varphi(x) = |x|$ на [-1,1] и $\varphi(x\pm 2) = \varphi(x)$. Заметим, что если $(x,y) \cap \mathbb{Z} = \emptyset$, то сужение $\varphi|_{[x,y]}$ - кусочно-линейная функция с угловым коэффициентом ± 1 и, значит,

$$|\varphi(x) - \varphi(y)| = |x - y| \tag{*}$$

Определим функцию $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \ f_n(x) = 4^{-n} \varphi(4^n x)$$

Заметим, что $\forall x \in \mathbb{R} \ (|f_n(x)| \leqslant 4^{-n})$, следовательно ряд $\sum_{n=1}^{\infty} f_n$ сходится равномерно на \mathbb{R} (по признаку Вейерштрасса). Все функции f_n непрерывны и, значит, f непрерывна на \mathbb{R} .

Пусть $a \in \mathbb{R}$. Определим ненулевую последовательность $\{h_k\}, h_k \to 0$ и $\nexists \lim_{k \to \infty} \frac{f(a+h_k)-f(a)}{h_k}$.

Фиксируем $k \in \mathbb{N}$. Заметим, что

$$\left(4^k a, 4^k a + \frac{1}{2}\right) \cap \mathbb{Z} \neq \varnothing \Rightarrow \left(4^k a - \frac{1}{2}, 4^k a\right) \cap \mathbb{Z} = \varnothing$$
$$\left(4^k a - \frac{1}{2}, 4^k a\right) \cap \mathbb{Z} \neq \varnothing \Rightarrow \left(4^k a, 4^k a + \frac{1}{2}\right) \cap \mathbb{Z} = \varnothing$$

Поэтому существует $h_k=\pm\frac{1}{2}4^{-k}$, что на интервале с концами 4^ka и $4^k(a+h_k)$ нет целых чисел. Более того, на интервале с концами 4^na и $4^n(a+h_k)$ при $n\leqslant k$ также нет целых чисел. Поэтому в силу (*)

$$\left|\varphi\left(4^{n}\left(a+h_{k}\right)\right)-\varphi\left(4^{n}a\right)\right|=4^{n}\left|h_{k}\right|,\ n\leqslant k$$

И в силу 2-периодичности φ

$$|\varphi(4^n (a + h_k)) - \varphi(4^n a)| = 0, n > k$$

Следовательно,

$$|f_n(a+h_k) - f_n(a)| = \begin{cases} |h_k|, & n \leq k \\ 0, & n > k \end{cases}$$

и, значит,

$$\frac{f(a+h_k)-f(a)}{h_k} = \sum_{n=1}^k \frac{f_n(a+h_k)-f_n(a)}{h_k} = \sum_{n=1}^k \pm 1. \blacksquare$$

Степенные ряды.

Определение. Степенным рядом называется функциональный ряд вида

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n \tag{1}$$

где $x_n, z_0 \in \mathbb{C}, z$ - комплексная переменная.

Определение. Неотрицательное число R (или символ $+\infty$) называется радиусом сходимости степенного ряда (1), если

$$orall z\in\mathbb{C} \quad |z-z_0|< R\Rightarrow \sum_{n=1}^\infty c_n(z-z_0)^n$$
 сходится $orall z\in\mathbb{C} \quad |z-z_0|> R\Rightarrow \sum_{n=1}^\infty c_n(z-z_0)^n$ расходится

Теорема 1 (Коши-Адамар). Всякий степенной ряд имеет радиус сходимости. Радиус сходимости ряда (1) выражается формулой

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|c_n|}}} \quad \left(\frac{1}{+\infty} = 0, \ \frac{1}{0} = +\infty\right)$$

 \blacktriangle Пусть $z \neq z_0$. Тогда

$$q = \varlimsup_{n \to \infty} \sqrt[n]{|c_n(z-z_0)^n|} = |z-z_0| \varlimsup_{n \to \infty} \sqrt[n]{|c_n|} = \frac{|z-z_0|}{R} \quad (0, \text{ если } R = +\infty; \ +\infty, \text{ если } R = 0)$$

Поэтому если $|z-z_0| < R$, то q < 1 и по признаку Коши для числовых рядов ряд (1) сходится абсолютно. Если $z-z_0 > R$, то q > 1 и по признаку Коши n-ый член не стремится к нулю. Значит, ряд (1) расходится и абсолютно расходится (т.е. расходится ряд из модулей членов). Следовательно, R - радиус сходимости ряда (1). ■

Определение. Пусть R - радиус сходимости степенного ряда (1). Множество $B_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}$ называется кругом сходимости ряда (1).

Следствие. Если величина $R \in [0, +\infty]$ удовлетворяет условиям

$$orall z\in\mathbb{C}\quad |z-z_0|< R\Rightarrow \sum_{n=1}^\infty c_n(z-z_0)^n$$
 абсолютно сходится $orall z\in\mathbb{C}\quad |z-z_0|> R\Rightarrow \sum_{n=1}^\infty c_n(z-z_0)^n$ абсолютно расходится,

то R - радиус сходимости ряда (1).

Пример. Найдем радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^{2n}$.

A Введем обозначение $u_n(z) = \frac{n!}{n^n} z^{2n}$. Пусть $x \neq 0$:

$$\frac{|u_{n+1}(z)|}{|u_n(z)|} = \frac{(n+1)n^n}{(n+1)^{(n+1)}}|z|^2 = \frac{|z|^2}{(1+\frac{1}{n})^n} \to \frac{|z|^2}{e}$$

Если $|z| < \sqrt{e}$, то по признаку Даламбера ряд сходится абсолютно. Если $|z| > \sqrt{e}$, то по по признаку Даламбера ряд расходится абсолютно. Применяя следствие, получаем, что $R = \sqrt{e}$.

Теорема 2. Пусть ряд (1) имеет радиус сходимости $R \in (0; +\infty]$. Тогда этот ряд сходится равномерно на любом замкнутом круге вида $\overline{B}_r(z_0) = \{z \in \mathbb{C} : |z - z_0| \le r\}, \ 0 \le r < R.$

▲ По теореме 1 в точке $z_* = z_0 + r$ ряд (1) сходится абсолютно, т.е. сходится числовой ряд $\sum_{n=0}^{\infty} |c_n| r^n$. Если $z \in \mathbb{C}, \ |z-z_0| \leqslant r$, то $|c_n(z-z_0)^n| \leqslant |c_n| r^n$ и, значит, ряд (1) сходится равномерно на замкнутом круге $\overline{B}_r(z_0)$ по признаку Вейерштрасса. ■