Investigación Operativa – Doble Grado (12/11/2020)

1. (0.35 puntos)

Una compañía de petróleos produce en sus refinerías gasóleo (G), gasolina sin plomo (P) y gasolina súper (S) a partir de dos tipos de crudos, C_1 y C_2 . Las refinerías están dotadas de dos tipos de tecnologías. La tecnología nueva T_n utiliza en cada sesión de destilación 7 unidades de C_1 y 12 unidades de C_2 , para producir 8 unidades de G, 6 unidades de G y unidades de G y 12 unidades de G y 13 unidades de G y 14 unidades de G y 15 unidades de G y 16 unidades de G y 17 unidades de G y 18 unidades de G y 24 unidades de G y 25 unidades de G y 26 unidades de G y 27 unidades de G y 28 unidades de G y 29 unidades de G y 29 unidades de G y 20 unid

Para el próximo mes se deben producir al menos 900 unidades de G, al menos 300 unidades de P y, respecto de S, al menos 800 unidades y a lo sumo 1700 unidades. La disponibilidad, para el próximo mes, de crudo C_1 es de 1400 unidades y de crudo C_2 es de 2000 unidades. Los beneficios por unidad producida son:

Gasolina	G	P	S
Beneficio	4	6	7

La compañía desea conocer cómo utilizar ambos procesos de destilación, que se pueden realizar total o parcialmente, para que el beneficio sea máximo.

Solución.

Variables de decisión:

 x_1 es el número de veces que debe utilizarse la tecnología nueva T_n .

 x_2 es el número de veces que debe utilizarse la tecnología antigua T_a .

Se debe resolver el problema:

$$\max \quad z = 4(8x_1 + 10x_2) + 6(6x_1 + 7x_2) + 7(5x_1 + 4x_2)$$
s.a.:
$$8x_1 + 10x_2 \ge 900$$

$$6x_1 + 7x_2 \ge 300$$

$$5x_1 + 4x_2 \ge 800$$

$$5x_1 + 4x_2 \le 1700$$

$$7x_1 + 10x_2 \le 1400$$

$$12x_1 + 8x_2 \le 2000$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

2. (0.30 puntos)

En la resolución del siguiente problema, mediante el algoritmo del Simplex, se llega a la tabla que se presenta.

$$min \quad z = x_1 + 6x_2 + x_3 + x_4$$
s.a.:
$$3x_1 + 3x_2 + 2x_4 + x_5 = 6$$

$$x_1 + 2x_2 + x_3 + x_4 = 7$$

$$x_1 + x_2 + x_3 = 5$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0, \quad x_4 \ge 0, \quad x_5 \ge 0.$$

	\mathcal{X}_1	χ_2	χ_3	χ_4	χ_5	
\mathcal{X}_2	0	1	0	1	0	2
\mathcal{X}_3	0	0	1	-2/3	-1/3	3
x_1	1	0	0	-1/3	1/3	0
	0	0	0	-4	0	Z – 15

Obtener el conjunto de soluciones óptimas del problema.

Solución.

	x_1	χ_2	<i>X</i> ₃	χ_4	χ_5	
χ_4	0	1	0	1	0	2
χ_3	0	2/3	1	0	-1/3	13/3
x_1	1	1/3	0	0	1/3	2/3
	0	4	0	0	0	Z – 7

La tabla presenta solución básica óptima \bar{x}^* (no única).

	x_1	χ_2	χ_3	χ_4	χ_5	
χ_4	0	1	0	1	0	2
χ_3	1	1	1	0	0	5
χ_5	3	1	0	0	1	2
	0	4	0	0	0	Z-7

La tabla presenta solución básica óptima alternativa $\bar{\bar{x}}^*$.

Conjunto de soluciones óptimas:

$$\{x^*(\lambda) = \lambda \,\bar{x}^* + (1-\lambda) \,\bar{x}^* \mid 0 \le \lambda \le 1\}.$$

3. (0.35 puntos)

En la resolución del siguiente problema, mediante el algoritmo del Simplex, se llega a la tabla que se presenta.

min
$$z = 2x_1 + 12x_2 - 14x_3 + 7x_4 - 10x_5$$

s. a.: $5x_1 - 4x_2 + 10x_3 - 2x_4 + x_5 = 20$
 $x_1 - x_2 + 5x_3 - x_4 + x_5 = 6$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$.

	x_1	χ_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	
x_1	1	$-\frac{2}{3}$	0	0	- ¹ / ₃	8/3
x_3	0	- ¹ / ₁₅	1	-1/ ₅	4/15	2/3
	0	62/5	0	21/5	$-\frac{28}{5}$	z-(- 4)

Obtener el conjunto de soluciones óptimas del problema.

Solución.

	x_1	χ_2	χ_3	χ_4	χ_5	
x_1	1	$-\frac{3}{4}$	5/4	-1/4	0	⁷ / ₂
<i>X</i> ₅	0	$-\frac{1}{4}$	15/4	$-\frac{3}{4}$	1	5/2
	0	11	21	0	0	z - (-18)

Solución óptima única no única:

$$\overline{x}_1^* = 7/2$$
, $\overline{x}_2^* = 0$, $\overline{x}_3^* = 0$, $\overline{x}_4^* = 0$, $\overline{x}_5^* = 5/2$

$$z^* = -18$$

Conjunto de soluciones óptimas:

$$\{ x^*(\mu) = \overline{x}^* + \mu d \mid \mu \ge 0 \}$$
 siendo $\overline{x}^{*t} = (\frac{7}{2}, 0, 0, 0, \frac{5}{2})$ y $d^t = (\frac{1}{4}, 0, 0, 1, \frac{3}{4})$.