Einführung in die Bayes-Statistik

Volker Schmid

30. Mai 2017

Thomas Bayes

Bayes und die Billardkugeln

Bayesianische Inferenz

Bayesianische Modellierung

Regression

Generalisierte Lineare Regression

Multivariate Regression

Hierarchische Modellierung

Thomas Bayes

Thomas Bayes

- Priester (wie der Vater) und Mathematiker
- lebte in Tunbridge Wells (südöstlich von London)
- beeinflusst von Abraham de Moivre (frz. Mathematiker, unter anderem Thema Glücksspiel, Satz von de Moivre-Laplace = Grenzwertsatz für Bionomialverteilung)
- Drei bekannte Werke:
 - Göttliche Barmherzigkeit, oder ein Versuch zu beweisen, dass das Ziel der göttlichen Fürsorge und Gewalt das Glück seiner Geschöpfe ist
 - Eine Einführung in die Lehre der Analysis und eine Verteidigung der Mathematiker gegen die Einwände des Autor von "The Analyst" (George Berkeley, anonym erschienen)
 - ► An Essay towards solving a Problem in the Doctrine of Chance (1763)

Kurze Geschichtlicher Überblick

- ▶ Mitte 18. Jahrhundert: Bayes entwickelt die Bayes-Formel
- ► Anfang 19. Jahrhundert: Pierre-Simon Laplace entwickelt die Bayes-Formel, prägt den Begriff "Inverse Wahrscheinlichkeit"
- Anfang 20. Jahrhundert: Ronald Fisher entwickelt den Frequentismus, Maximum-Likelihood-Schätzer, prägt den Begriff "Bayes-Statistik"
- ► Ende des 20. Jahrhunderts: Bayes-Verfahren werden wieder aktuell, komplexe Modelle dank Computer möglich

Literatur: Stephen E. Fienberg: When Did Bayesian Inference Become "Bayesian"? Bayesian Analysis (2006) 1(1), pp. 1–40.*

Bayes und die Billardkugeln

An Essay towards solving a Problem in the Doctrine of Chance (1763)

Eine weiße Billiardkugel wird auf eine Gerade der Länge 1 gerollt. Die Wahrscheinlichkeit dafür, dass sie an einem Punkt π zu liegen kommt, ist konstant für alle $\pi \in [0,1]$. Eine rote Kugel wird unter den selben Bedinungen n-mal gerollt. Sei x die Zahl der Versuche, in denen die rote Kugel links von der ersten Kugel, also links von π zu liegen kommt.

Welche Information über π erhalten wir aus der Beobachtung x?

Billiardkugeln

Sei die weiße Kugel bereits gerollt und liege auf dem Punkt π . Die rote Kugel gerollt. Dann ist die Wahrscheinlichkeit, dass die rote Kugel links von der weißen zu liegen kommt gleich π . Rollen wir n-mal, so handelt es sich um ein Binomialexperiment mit Erfolgswahrscheinlichkeit π . Gegeben $\Pi = \pi$ ist also:

$$P(X=x|\Pi=\pi)=f(x|\pi)=\binom{n}{x}\pi^{x}(1-\pi)^{n-x}.$$

Um nun mit dem Satz von Bayes eine Aussage über pi gegeben x zu machen, brauchen wir $f(\pi)$. Was wissen wir über π vor der Beobachtung?

Priori und Posteriori

Annahme: Vor der Beobachtung, lateinisch *a priori*, wissen wir nichts über π . Wir folgen dem Prinzip von unzureichenden Grund und nehmen $\pi \sim U[0,1]$.

Dann erhalten wir nach der Beobachtung, lateinisch *a posteriori*, mit dem Satz von Bayes

$$f(\pi|x) = \frac{f(x|\pi)f(\pi)}{\int f(x|\tilde{\pi})f(\tilde{\pi})d\tilde{\pi}} = \frac{\binom{n}{x}\pi^{x}(1-\pi)^{n-x}\cdot 1}{f(x)}$$

= $C(x)\cdot \pi^{x}(1-\pi)^{n-x} = C(x)\cdot \pi^{(x+1)-1}(1-\pi)^{(n-x+1)}(1^{\frac{1}{2}})$

Dabei ist C(x) eine Konstante bezüglich π (hängt nicht von π , nur von x ab). (1) sieht bis auf die Konstante aus wie die Dichte der Beta(x+1,n-x+1)-Verteilung. Wir sagen: $\pi^{(x+1)-1}\pi^{(n-x+1)-1}$ ist der "Kern" der Beta-Verteilung.

Zusammenfassung

- Nir haben Vorwissen über die Wahrscheinlichkeit π in Form einer **Priori-Verteilung** bzw. Priori -Dichte formuliert.
- Nach der Beobachtung x wissen wir mehr über π ; wir haben die **Posteriori-Verteilung** bzw. Posteriori-Dichte erhalten.
- Bayes-Prinzip: Alle Schlüsse werden aus der Posteriori-Verteilung gezogen.
- ▶ Zur Berechnung der Posteriori brauchen wir zudem das Beobachtungsmodell bzw. **Datendichte** $f(x|\pi)$ (auch als Likelihood bezeichnet)
- und die Normalisierungskonstante (auch marginale Likelihood), die wir hier nicht explizit berechnen mussten.

Priori und Posteriori

Bayesianische Inferenz

Bayesianische Inferenz

- Wir beobachten n Daten x_i , die aus einem Zufallsprozess entstanden sind
- ▶ **Annahme**: x_i ist die Realisierung einer Zufallsvariable X_i
- ▶ **Annahme**: X_i hat Verteilung F mit Dichte f(x)
- ▶ Parametrische Annahme: Die Dichte ist bekannt bis auf einen Parameter θ : $f(x|\theta)$
- $m{ heta}$ ist unbekannt und die Information über heta lässt sich in Form einer Wahrscheinlichkeitsverteilung mit Dichte darstellen
- ▶ Vor der Beobachtung (a priori) ist unsere Information $p(\theta)$
- Durch Beobachtung erhalten wir mehr Information, ausgedrückt durch die a posteriori-Verteilung θ|x
- Sowohl x als auch θ können mehrdimensional sein!

Aufgaben in der Bayesianischen Inferenz

- ► Festlegung des statistischen Modells für x, Datendichte (Likelihood) $f(x|\theta)$
- ▶ Festlegung des *a priori*-Wissens über θ , Priori-Dichte $p(\theta)$
- ▶ Berechnung der Posteriori $p(\theta|x)$ (insbesondere Normalisierungskonstante)

Bayes-Prinzip

▶ Die Dichte der Posteriori-Verteilung erhalten wir über die Bayes-Formel

$$f(\theta|x) = \frac{f(x|\theta) \cdot f(\theta)}{\int f(x|\tilde{\theta}) f(\tilde{\theta}) d\tilde{\theta}}$$

 Bayes-Prinzip: Alle Schlüsse werden nur aus der Posteriori-Verteilung gezogen

Punktschätzer

Billiard-Kugel-Beispiel: sei n=30 und x=5. Wie lautet dann unser Schätzer für π ?

▶ Posteriori-Erwartungswert: Nach Beobachtung von x, welchen Wert erwarten wir für π ?

$$E(\pi) = \frac{x+1}{n+1} = \frac{6}{31} \approx 0.194$$

▶ Posteriori-Modus: Welcher Wert von π maximiert die Posteriori?

$$\hat{\pi}_{\mathsf{MAP}} = \frac{x}{n} = \frac{5}{30} \approx 0.167$$

Posteriori-Median: Welcher Wert hat die mittlere Wahrscheinlichkeit?

$$\hat{\pi}_{\mathsf{med}} \approx 0.181$$

Kredibilitätsintervall

Aus der Posteriori-Verteilung lässt sich ein Intervall $[\theta_u, \theta_o]$ bestimmen, das den Parameter θ mit Wahrscheinlichkeit $(1 - \alpha)$ enthält.

Ein Intervall $I = [\theta_u, \theta_o]$, für das gilt

$$\int_{\theta_u}^{\theta_o} p(\theta|x)d\theta = 1 - \alpha$$

nennt man $(1 - \alpha)$ -Kredibilitätsintervall.

HPD-Intervall

Kredibilitätsintervalle sind nicht eindeutig.

Ein $(1-\alpha)$ -Kredibilitätsintervall H heisst **Highest Posteriori Density Interval (HPD-Intervall)**, wenn für alle $\theta \in H$ und alle $\theta^* \notin H$ gilt:

$$p(\theta|x) \ge p(\theta^*|x)$$

Beispiel: Kredibilitätsintervalle Betabinomialmodell

 $\ensuremath{\mbox{\sc end}\{\mbox{\sc Bsp}\}}$

Prädiktive Posterioriverteilung

Die Dichte der Prädiktiven Posteriori-Verteilung lautet

$$p(x_Z|x) = \int_{\Theta} p(x_Z, \theta|x) d\theta = \int p(x_Z|\theta) p(\theta|x) d\theta$$

Die prädiktive Posteriori-Verteilung ermöglicht die Prognose von x zum Zeitpunkt Z. Es gilt:

$$E(x_Z|x) = E(E(x_Z|\theta,x))$$

$$Var(x_Z|x) = E(Var(x_Z|\theta,x)) + Var(E(x_Z|\theta,x))$$

Aufgaben in der Bayesianischen Inferenz

"Bayes-Prinzip: Alle Schlüsse werden **nur** aus der Posteriori-Verteilung gezogen" – Was machen wir nun mit der Posteriori?

- ▶ Grundsätzlich: Komplette Posteriori wichtig (Darstellung bei hochdimensionalem Parameter θ aber schwierig)
- Punktschätzer (Posterior-Erwartungswert, Maximum-a-Posteriori-Schätzer, Posteriori-Modus)
- Intervallschätzer
- Testen
- ▶ Modellvergleich (d.h. verschiedene Annahmen für f(x)!)
- Prädiktion

Bayesianische Modellierung

Normalverteilungsmodel

Gegeben seien n unabhängig normalverteilte Beobachtungen

$$X_i \sim N(\mu, \sigma^2), i = 1, \ldots, n.$$

Die gemeinsame Datendichte lautet

$$f(x|\theta) = \prod (f(x_i|\theta))$$

$$= \left(\frac{1}{\sigma\sqrt(2\pi)}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right)$$

σ^2 bekannt

Konjugierte Priori $\mu \sim N(\mu_0, \sigma_0^2)$. Damit ist die Posteriori

$$\mu|(x_1,\ldots,x_n) \sim N(m/s,1/s)$$

$$m = \frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}$$

$$s = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}$$

Jeffreys Priori: $p(\mu) \propto \text{const.}$ entspricht $\sigma_0^2 \to \infty$.

μ bekannt

Konjugierte Priori: $\sigma^2 \sim IG(a,b)$ führt zur Posteriori

$$\sigma^2 | (x_1, \dots, x_n) \sim IG \left(a + n/2, b + 0.5 \sum_{i=1}^n (x_i - \mu)^2 \right)$$

Jeffreys Priori $p(\sigma^2) \propto \sigma^{-1}$ entspricht "IG(0,0)".

μ bekannt (Alternativ)

Alternativ lässt sich die Inferenz für die Präzision gleich Inverse der Varianz betreiben:

$$\tau = \sigma^{-2}$$
.

Die konjugierte Priori ist dann die Gamma-Verteilung

$$p(\tau) = \frac{b^a}{\Gamma(a)} \tau^{a-1} \exp{-b\tau}.$$

Die Posteriori lautet

$$p(\tau|x) \propto \tau^{n/2} \exp\left(-\tau/2\sum_{i=1}^{n}(x-\mu)^2\right) \cdot \tau^{s-1} \exp(-b\tau),$$

ist also die $Ga(a + n/2, b + 0.5 \sum_{i=1}^{n} (x_i - \mu)^2)$ -Verteilung.

Normalverteilungsmodell mit zwei unbekannten Parametern

Bei jeweils einem unbekanntem Parameter und unter Benutzung der konjugierten Verteilung kennen wir die Posteriori vollständig. Im Folgenden seien beide Parameter (μ und τ) unbekannt.

Wir wollen die selben Prioris wie oben benutzen und gehen von *a priori*-Unabhängigkeit der Parameter aus:

$$p(\mu, \tau) = p(\mu) \cdot p(\tau)$$

Die Posteriori lautet bis auf Konstanten:

$$p(\mu, \tau | x) \propto \exp\left(-\tau_0/2(\mu - \mu_0)^2\right)$$

 $\cdot \tau^{n/2} \exp\left(-\tau/2\sum_{i=1}^{n}(x - \mu)^2\right) \cdot \tau^{a-1} \exp(-b\tau)$

Dabei handelt es sich nicht um eine bekannte zweiparametrische Verteilung.

Bedingte Posteriori

Wir betrachten die bedingte Posteriori eines Parameters, z.B. $p(\mu|\tau,x)$. Nach der Definition der bedingten Dichte gilt

$$p(\mu|\tau,x) = \frac{p(\mu,\tau|x)}{p(\tau|x)} \propto p(\mu,\tau|x)$$

Hier also: Die bedingte Posteriori-Dichte von μ gegeben τ ist die Normalverteilung. Das ergibt sich automatisch aus dem Normalverteilungsmodell mit bekannter Varianz!

Die bedingte Posteriori hilft uns aber nicht weiter, weil wir den Parameter τ nicht kennen.

Vollständig bedingte Posteriori

Sei $\theta = (\theta_1, \dots \theta_p)$. Als vollständig bedingte Posteriori ("full conditional posterior") bezeichnen wir die Verteilung eines Parameters θ_i gegeben allen anderen Parametern θ_{-i} und den Daten x. Es gilt:

$$p(\theta_i|\theta_{-i},x) \propto p(\theta|\mathbf{x}).$$

Semikonjugierte Priori

Eine Familie \mathcal{F} von Verteilungen auf Θ heißt **semikonjugiert** wenn für jede Priori $p(\theta)$ auf \mathcal{F} die vollständig bedingte Posteriori $p(\theta_i|\theta_{-i},x)$ ebenfalls zu \mathcal{F} gehört.

Marginale Posteriori

Wir betrachten die marginale Posteriori eines Parameters, also z.B. $p(\tau|x)$. Diese erhalten wir durch marginalisieren der gemeinsamen Posteriori

$$p(\tau|x) = \int p(\mu, \tau|x) d\mu.$$

Alternativ kann man folgende Formel ausnutzen

$$p(\tau|x) = \frac{p(\mu, \tau|x)}{p(\mu|\tau, x)}$$

Interessiert uns in mehrparametrischen Modellen nur ein Parameter, so ziehen wir die Schlüsse aus der marginalen Posteriori (*Model averaging*).

Regression

Lineare Regression

Übliches Lineares Regressionsmodell:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

$$E(\epsilon) = 0$$

$$Var(\epsilon) = \sigma^2$$

$$Cov(\epsilon_i, \epsilon_j) = 0$$

Bayesianisches lineares Regressionsmodell

$$y_i \sim N(\alpha + \beta x_i, \sigma^2)$$

 $\alpha \sim N(m_\alpha, v_\alpha^2)$
 $\beta \sim N(m_\beta, v_\beta^2)$

Bei festem σ^2 sind dies die konjugierten Prioris. Wir kennen allerdings σ^2 in der Regel nicht. Wir nehmen zusätzlich an:

$$\sigma^2 \sim IG(a,b)$$

Generalisierte Lineare Regression

Bayesianisches generalisiertes lineares Regressionsmodell

Das Modell lässt sich relativ einfach auf beliebige Verteilungen verallgemeinern, z.B. ein Poisson-Modell

$$y_i \sim Po(\lambda_i)$$

 $\log(\lambda_i) = \alpha + \beta x_i$
 $\alpha \sim N(m_\alpha, v_\alpha^2)$
 $\beta \sim N(m_\beta, v_\beta^2)$

Die (vollständig bedingten) Posterioris sind jedoch keine Standardverteilungen mehr.

$$f(y_i|\lambda) = \frac{\lambda_i^{y_i}}{y_i!} \exp{-\lambda_i}$$
$$\lambda_i = \exp(\alpha + \beta x_i)$$

Multivariate Regression

Multivariate Normal-Regression

$$y_i \sim N(\mathbf{x}_i \boldsymbol{\beta}, \sigma^2)$$
 (2)
 $\sigma^2 \sim IG(a, b)$ (3)
 $\boldsymbol{\beta} \sim N(\mu_0, \boldsymbol{\Lambda}_0^{-1})$ (4)

Posteriori

$$\begin{split} \rho(\beta,\sigma^2|\mathbf{y}) & \propto & f(\mathbf{y}|\beta,\sigma^2) \rho(\beta) \rho(\sigma^2) \\ & \propto & (\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\beta)^\mathrm{T}(\mathbf{y}-\mathbf{X}\beta)\right) \\ & \cdot & |\mathbf{\Lambda}_0|^{1/2} \exp\left(-\frac{1}{2}(\beta-\mu_0)^\mathrm{T}\mathbf{\Lambda}_0(\beta-\mu_0)\right) \\ & \cdot & (\sigma^2)^{-(a_0+1)} \exp\left(-\frac{b_0}{\sigma^2}\right) \end{split}$$

$$p(eta|\sigma^2,\mathbf{y}) \propto \exp\left(-rac{1}{2}eta^{\mathrm{T}}(\sigma^2\mathbf{X}^{\mathrm{T}}\mathbf{X}+\mathbf{\Lambda}_0)eta+(\sigma^2\mathbf{y}^{\mathrm{T}}\mathbf{X}+oldsymbol{\mu}_0^{\mathrm{T}}\mathbf{\Lambda}_0)eta)
ight)$$

Full conditionals

Damit

$$\beta | \sigma^{2}, \mathbf{y}, \mathbf{x} \sim N(\mu_{n}, \sigma^{2} \mathbf{\Lambda}_{n}^{-1})$$

$$\sigma^{2} | \beta, \mathbf{y}, \mathbf{x} \sim IG(a_{n}, b_{n})$$

$$\mu_{n} = (\sigma^{2} \mathbf{X}^{T} \mathbf{X} + \mathbf{\Lambda}_{0})^{-1} (\mathbf{\Lambda}_{0} \mu_{0} + \sigma^{2} \mathbf{y}^{T} \mathbf{X} \hat{\boldsymbol{\beta}})$$

$$\mathbf{\Lambda}_{n} = (\sigma^{2} \mathbf{X}^{T} \mathbf{X} + \mathbf{\Lambda}_{0})$$

$$a_{n} = a_{0} + \frac{n}{2}$$

$$b_{n} = b_{0} + \frac{1}{2} (\mathbf{y}^{T} \mathbf{y} + \mu_{0}^{T} \mathbf{\Lambda}_{0} \mu_{0} - \mu_{n}^{T} \mathbf{\Lambda}_{n} \mu_{n})$$

Random Walk Priori

Über die Kovarianz- oder die Präzisionsmatrix lassen sich Korrelationen zwischen den Kovariableneffekten modellieren. Z.B. ein zeitlich geglätterer Trend.

Beispiel: Random Walk Gegeben sei eine Zeitreihe y_t mit $t=1,\ldots,T$. Wir wollen die Zeitreihe glätten. Sei $\mathbf{X}=\mathbf{I}_T$, dann ist obiges Modell gleich

$$y_t = \beta_t + \epsilon_t$$
 für $t = 1, \dots, T$

Als Priori für β nehmen wir einen "Random Walk":

$$\beta_1 \sim N(0, \tau_0^2)$$
 $\beta_t \sim N(\beta_{t-1}, \tau^2)$

Der Parameter τ steuert die *Glattheit* der Zeitreihe β_t .

Präzisionsmatrix

Es lässt sich zeigen (mit $\tau_0 \to \infty$):

$$\Lambda = \tau^{-2} \begin{pmatrix} 1 & -1 & 0 & \cdots & & & 0 \\ -1 & 2 & -1 & 0 & \cdots & & 0 \\ 0 & -1 & 2 & -1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ & & \cdots & 0 & -1 & 2 & -1 \\ & & & \cdots & 0 & -1 & 1 \end{pmatrix}$$

!(pics/globalwarming-rw.png)

Hierarchische Modellierung

Hierarchische Bayesianische Modelle

- ▶ Level 1: Datenmodell, Definition der Likelihood
- ▶ Level 2: Priori-Modell der unbekannten Parameter
- ► Level 3: (Hyper-)Prioris der Prioriparameter in Level 2

Kann an sich beliebig erweitert werden, i.d.R. reichen aber drei Level. Inferenz üblicherweise mit MCMC.

Beispiel: Räumliches APC-Modell

Anzahl männliche Magenkrebstote in Westdeutschland

- ▶ Jahre 1976 1990
- ▶ 13 Altersgruppen a 5 Jahre (15-19 bis 85-89)
- ► Geburtskohorten von 1896-1975
- ► 30 Regierungsbezirke

Hierarchisches Bayes-Modell: Level 1

$$\begin{aligned} y_{ijt} &\sim \mathsf{B}(n_{ijt}, \pi_{ijt}) \\ \mathsf{logit}(\pi_{jtl}) &= & \xi_{jtl} \\ &= \mu + \theta_j + \phi_t + \psi_k + \alpha_l + \begin{bmatrix} \delta_{jl} \\ \delta_{kl} \end{bmatrix} + z_{jtl} \end{aligned}$$

Hierarchisches Bayes-Modell: Parameter

- $\blacktriangleright \mu$: Intercept (1 Parameter)
- \bullet θ_i : Effekt der Altersgruppe j (15 Parameter)
- ϕ_t : Effekt der Periode t (13 Parameter)
- ψ_k : Effekt der Kohorte k = k(j, t) (75 Parameter)
- $ightharpoonup \alpha_I$: Räumlicher Effekt / (30 Parameter)
- δ_{tl} : Interaktion zwischen Perioden- und räumlichen Effekt (390 Parameter)
- $ightharpoonup z_{jtl}$: zufälliger Effekt (Überdispersion, 5850 Parameter)

Hierarchisches Bayes-Modell: Level 2

- Random Walk Priori für APC-Effekte mit Glättungsparameter (Präzision)
- ► 2D-Random-Walk (Gauss-Markovzufallsfeld) für räumlichen Effekt mit Glättungsparameter
- Interaktion: Unabhängiger Random Walk pro Region oder 3D-GMZF mit Glättungsparameter
- iid normalverteilter zufälliger Effekt mit unbekannter Varianz/Präzision

Alle Prioris haben die Form

$$p(\theta|\kappa) \propto \exp\left(-rac{\kappa}{2}\, heta^{T}\mathbf{K}_{ heta} heta
ight)$$

Hierarchisches Bayes-Modell: Level 3

Gamma-Prioris auf alle Präzisionsparameter. Hyperprioriparameter können Ergebnis beeinflußen \rightarrow Sensitivitätsanalyse.

- Sehr komplexe Posteriori
- Marginale Posterioris nicht geschlossen herleitbar
- Bedingte Posterioris leicht anzugeben und (mit Trick)
 Standardverteilungen

Ergebnisse I

Ergebnisse II

Figure 1: