12

MULTIPLE INTEGRALS

(f(x) du a 14 6 f(x) du area = f(x)du fouldr = infinite sum of fouldr

$$\int \int x \, dA = ?? = \int \int \int x \, dy \, dy$$

$$= \int \int \int |xy|^{x=1} \, dx = \int x \, dx$$

$$= \int \int \int x \, dy = 2$$

$$= \int \int \int x \, dy = 2$$

EXAMPLE 2 If $R = \{(x, y) \mid -1 \le x \le 1, -2 \le y \le 2\}$, evaluate the integral

$$\iint\limits_R \sqrt{1-x^2} \, dA$$

$$f(x,y) = \sqrt{1-x^2}$$

$$Z = \sqrt{1-x^2}$$

$$Z^2 + x^2 = 1$$

EXAMPLE 4 Evaluate the iterated integrals.

(a)
$$\int_0^3 \int_1^2 x^2 y \, dy \, dx$$

(b)
$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy$$

FUBINI'S THEOREM If f is continuous on the rectangle

$$R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$$
, then

$$\iint_{B} f(x, y) \, dA = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$$

Evaluate $\iint_R y \sin(xy) dA$, where $R = [1, 2] \times [0, \pi]$.

EXAMPLE 7 Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes.

PROPERTIES OF DOUBLE INTEGRALS

$$\iint\limits_R \left[f(x,y) + g(x,y) \right] dA = \iint\limits_R f(x,y) \, dA + \iint\limits_R g(x,y) \, dA$$

$$\iint\limits_R cf(x,y) \, dA = c \iint\limits_R f(x,y) \, dA \qquad \text{where } c \text{ is a constant}$$

If $f(x, y) \ge g(x, y)$ for all (x, y) in R, then

$$\iint\limits_R f(x, y) \, dA \ge \iint\limits_R g(x, y) \, dA$$

12.2 DOUBLE INTEGRALS OVER GENERAL REGIONS

EXAMPLE I Evaluate $\iint_D (x + 2y) dA$, where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes x + 2y + z = 2, x = 2y, x = 0, and z = 0.

