Covariate selection in DAG

Motivating example, revisite

Potential problems

DAG terminology

Directed Acyclic Graphs

Arvid Sjölander

Department of Medical Epidemiology and Biostatistics Karolinska Institutet

A short course on concepts and methods in Causal Inference

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Observational studies

- In observational studies, exchangeability is often implausible
- We may achieve conditional exchangeability by adjusting for an appropriate set of covariates:

$$(Y_0, Y_1) \coprod A \mid L$$

 But selecting an appropriate set of covariates to adjust for is a non-trivial task

Ideal randomized trials

 In ideal randomized trials, exposed and unexposed are exchangeable:

$$(Y_0, Y_1) \coprod A$$

• As a consequence, association = causation

DAG terminolog

ovariate selection in DAG

Motivating example, revisited

Potential problem

Motivating example

- Does smoking during pregnancy (exposure) causes malformations (outcome) in the offspring?
- For a large number of pregnancies, we collect data on both exposure and outcome
- We record five additional covariates:
 - the mothers age at conception
 - the mothers socioeconomic status at conception
 - the mothers diet during pregnancy
 - indicator of whether there is a family history of birth defects
 - indicator of whether the child was liveborn or stillborn

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Motivating example, cont'd

- We observe an unadjusted inverse association between smoking and malformations; risk ratio = 0.8
- However, we suspect that there is confounding of the exposure and outcome
 - if so, exposed and unexposed are not exchangeable, and
 - the observed risk ratio cannot be given a causal interpretation
- To reduce confounding bias we want to adjust for observed covariates

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Traditional covariate selection strategies

- Adjust for covariates that are selected in a stepwise regression procedure
- Adjust for covariates that change the point estimate of interest with more than, say, 10%
- Adjust for covariates that
 - · are associated with the exposure, and
 - are conditionally associated with the outcome, given the exposure, and
 - are not in the causal pathway between exposure and outcome

The need for covariate selection

- One strategy would be to adjust for all measured covariates
- This strategy may not be optimal, because
 - some covariates may not be confounders, and may increase non-exchangeability if adjusted for
 - more covariates requires a bigger model, with a higher potential for bias due to model misspecification
 - some covariates may be prone to measurement errors, and may therefore lead to bias
 - some covariates may reduce statistical power/efficiency when adjusted for
- Therefore, it is often desirable to adjust for a subset of covariates

DAG terminolog

Covariate selection in DA

Notivating example, revisited

Potential problem

Problems with traditional strategies

- They rely on statistical analyses of observed data, rather than a priori knowledge about causal structures
 - require that data is already collected, and cannot not be used at the design stage
- They may select non-confounders, which may increase non-exchangeability if adjusted for

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Covariate selection with DAGs

- Directed Acyclic Graphs (DAGs) can be used to overcome the problems with traditional covariate selection strategies
- A DAG is a graphical representation of underlying causal structures
- DAGs for covariate selection:
 - encode our a priori causal knowledge/beliefs into a DAG
 - apply simple graphical rules to determine what covariates to adjust for

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Outline

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Outline

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

DAG terminology

ovariate selection in DAG

Motivating example, revisited

Potential problems

A simple DAG

- · Each arrow represents a causal influence
- The graph is
 - Directed, since each connection between two variables consists of an arrow
 - Acyclic, since the graph contains no directed cycles
- Formal connection to potential outcomes/counterfactuals through non-parametric structural equations
 - · beyond the scope of this course

ovariate selection in DAG

otivating example, revisited

Potential proble

A note on acyclicness

- We impose acyclicness since a variable can't cause itself
 - e.g. my BMI today has no effect on my BMI today
- Observed variables are often snapshots of time varying processes
 - e.g. my BMI today certainly affects my BMI tomorrow
- Time varying processes can be depicted by explicitly adding one 'realization' of each variable per time unit
 - more later

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Underlying assumptions, cont'd

- Assumptions are encoded by the absence of arrows
 - the presence of an arrow from A to Y means that A may or may not affect Y
 - the absence of an arrow from A to Y means that A does not affect Y

DAG terminology

Underlying assumptions

- Assumptions are encoded by the direction of arrows
 - the arrow from A to Y means that A may affect Y, but not the other way around

DAG terminology

Covariate selection in DAC

Motivating example, revisited

Potential problems

Underlying assumptions, cont'd

- Assumptions are encoded by the absence of common causes
 - the presence of L means that A and Y may or may not have common causes
 - the absence of *L* means that *A* and *Y* do not have any common causes

Ancestors and descendents

- The ancestors of a variable V are all other variables that affect *V*, either directly or indirectly
 - L is the single ancestor of A
- The descendents of a variable V are all other variables that are affected by V, either directly or indirectly
 - Y is the single descendent of A

DAG terminology

Potential problems

Solution

- Four paths between A and Y:
 - \bullet $A \rightarrow Y$
 - $A \rightarrow V \rightarrow Y$
 - $A \leftarrow L \rightarrow Y$
 - $A \rightarrow W \leftarrow Y$

Paths

- · A path is a route between two variables, not necessarily following the direction of arrows
- Which are the paths between A and Y?

DAG terminology

Motivating example, revisited

Causal paths

- A causal path is a route between two variables, following the direction of arrows
 - the causal paths from A to Y mediate the causal effect of A on *Y*, the non-causal paths do not
- Which are the causal paths between A and Y?

Motivating example, revisited

Solution

- Two causal paths from A to Y:
 - \bullet $A \rightarrow Y$
 - $A \rightarrow V \rightarrow Y$

DAG terminology

Potential problems

Rule 1

• A path is blocked if somewhere along the path there is a variable L that sits in a 'chain'

or in a 'fork'

and we have adjusted for L

Blocking of paths

• Paths (both causal and non-causal) are either open or blocked, according to two rules

DAG terminology

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Rule 2

• A path is blocked if somewhere along the path there is a variable L that sits in an 'inverted fork'

and we have **not** adjusted for *L*, or any of its descendents

Covariate selection in DAG

Motivating example, revisited

Potential problems

Once blocked stays blocked

$A \longleftarrow V \longrightarrow W \longleftarrow Y$

- Adjusting for *V* blocks the path from *A* to *Y* (rule 1)
- Adjusting for W leaves the path open (rule 2)
- Adjusting for both V and W blocks the path

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Relation between 'blocking' and independence

- If all paths between A and Y are blocked, then A and Y are independent
- Conversely: if there is an associaton between A and Y, then there is at least one open path between A and Y

Outline

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

DAG terminolog

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Example

- Suppose that the DAG above depicts the true causal structure
- We want to test whether there is a causal effect of A on Y
 - i.e. does the causal path A → Y exist?
- Adjust or not adjust for L?

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Heuristic argument

- A = smoking, Y = malformations, L = age
- Young mothers smoke more often, but their babies have smaller risk for malformations, than old mothers
- Hence, smokers are more likely to be young, and for this reason less likely to have babies with malformations, than non-smokers
- Thus, by not adjusting for age, we may observe an inverse association between smoking and malformations, even in the absence of a causal effect

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Formal solution, cont'd

- Suppose that we adjust for L
 - we block the non-causal path $A \leftarrow L \rightarrow Y$ (Rule 1)
- Suppose that we observe an association between A and Y
 - this can only be explained by the causal path $A \rightarrow Y$
- Hence, an adjusted association between A and Y proves that there is a causal effect of A on Y

Formal solution

- Suppose that we don't adjust for L, and that we observe an association between A and Y
- There are two explanations for this association:
 - the causal path $A \rightarrow Y$
 - the open non-causal path $A \leftarrow L \rightarrow Y$ (Rule 1)
- Hence, an unadjusted association between A and Y does not prove that the causal path A → Y exists

DAG terminolog

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Conclusion

 If the aim is to test for a causal effect of A on Y, then we should adjust for L

Covariate selection in DAGs

Remark

- Adjusting for L does not give a causal effect if the DAG is incorrect, e.g. if
 - Y causes A

there are additional common causes of A and Y

Covariate selection in DAGs

Potential problems

Heuristic argument

- A = smoking, Y = malformations, L = birth status(live/stillborn)
- Smoking and malformations increase the risk for stillbirth
- · Consider the group of woman who has stillbirths: what caused the stillbirths?

Example

- Suppose that the DAG above depicts the true causal structure
- We want to test whether there is a causal effect of A on Y
 - i.e. does the causal path A → Y exist?
- Adjust or not adjust for L?

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Heuristic argument, cont'd

- For the non-smokers who had a stillbirth, smoking was obviously not the cause
 - perhaps malformations then?
- When smoking is ruled out as the cause of malformation, the likelihood of malformation increases
 - an inverse non-causal association between smoking and malformation!
- Thus, by adjusting for (e.g. stratifying on) birth status, we may observe an inverse association between smoking and malformations, even in the absence of a causal effect

Covariate selection in DAGs

Motivating example, revisited

Potential problems

- Suppose that we adjust for L, and that we observe an association between A and Y
- There are two explanations for this association:
 - the causal path $A \rightarrow Y$
 - the open non-causal path $A \rightarrow L \leftarrow Y$ (Rule 2)
- Hence, an adjusted association between A and Y does not prove that the causal path $A \rightarrow Y$ exists

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Conclusion

 If the aim is to test for a causal effect of A on Y, then we should not adjust for L

Formal solution, cont'd

- Suppose that we don't adjust for L
 - we block the non-causal path $A \rightarrow L \leftarrow Y$ (Rule 2)
- Suppose that we observe an association between A and Y
 - ullet this can only be explained by the causal path A o Y
- Hence, an unadjusted association between A and Y proves that there is a causal effect of A on Y

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problem

General strategy for covariate selection

- We should adjust for those covariates that block non-causal paths between the exposure and the outcome
- We should not adjust for those covariates that open non-causal paths between the exposure and the outcome
- If we manage to block all non-causal paths, then any observed association must be due to a causal effect
- Thus, if all non-causal paths are blocked, then we have a valid test for causation

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Relation between 'blocking' and exchangeability

- If all non-causal paths are blocked, then exposed and unexposed are typically exchangeable
- Thus, the observed association can typically be interpreted as a causal effect
 - e.g. the (conditional) risk ratio is equal to the (conditional) causal risk ratio

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problen

Technical note

- If all non-causal paths are blocked, then exposed and unexposed are typically exchangeable
- But it is possible to construct counterexamples

$$A \longrightarrow Y \longrightarrow L$$

- If we adjust for L in the DAG above, then all non-causal paths between A and Y are blocked
 - there are no non-causal paths to start with
- Thus, a conditional association between A and Y proves that there is a causal effect of A on Y
- However, adjusting for L does not give exchangeability
 - e.g. the conditional risk ratio, given *L*, is not equal to the conditional causal risk ratio, given *L*
- Adjusting for L gives a valid test, but not a valid estimate

DA

Covariate selection in DAGs

Examples revisited

In the left DAG we have conditional exchangeability, given
L:

$$(Y_0, Y_1) \coprod A \mid L$$

so that the conditional risk ratio, given L, is equal to the conditional causal risk ratio, given L

• In the right DAG, we have marginal exchangeability:

$$(Y_0, Y_1) \coprod A$$

so that the marginal risk ratio is equal to the marginal causal risk ratio

DAG terminolog

Covariate selection in DAGs

Motivating example, revisited

Potential problems

Confounding

- Common causes of the exposure and the outcome lead to non-causal paths
- We say that there is confounding if the exposure and the outcome have common causes

Covariate selection in DAGs

Notivating example, revisited

Potential problems

Confounder

- A confounder is a variable that blocks a non-causal path between the exposure and the outcome, if adjusted for
 - both L and U are confounders in the DAG above
- A (set of) variable(s) is sufficient for confounding control if the variable(s) blocks all non-causal paths
 - *U* is sufficient for confounding control, *L* is not

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problem

A possible DAG for the motivating example

 Suppose we agree that the causal structures for our data can be described by the DAG below

- Which assumptions are encoded in this DAG?
- Can these assumptions be tested?

Outline

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

DAG terminolog

Covariate selection in DA

Motivating example, revisited

Potential problems

Covariate selection

- Given the DAG, which covariates should we adjust for?
- Which covariates would be selected by the traditional strategies?

DAG terminology Covariate selection in DAGs Motivatin

Gs Motivating example, revisit

Potential problems

Outline

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

DAG terminology

Covariate selection in DAGs

Motivating example, revisited

Potential problems

No a priori knowledge

• Cannot construct a plausible DAG

soc status/education

age

family history

smoking

diet

malformation

birth status

- DAG-based covariate selection cannot be used, and we have to resort to traditional strategies
 - but be aware of the pitfalls

terminology Covariate selection in DAGs Motivating example, revisited

Unmeasured confounding

- Not a problem with DAGs, but with observational studies
- Try to reduce confounding bias as much as possible
 - . i.e. block as many non-causal paths as possible

DAG terminology

Covariate selection in [

Motivating example, revisited

Potential problems

Potential problems

Weak a priori knowledge

• Cannot settle with one plausible DAG

· Present all plausible DAGs, and the implied analyses

G terminology Covariate selection in DAGs Motivating example, revisited Potential problems

A complicated DAG

No/little covariate reduction

- But remember that
 - more covariates requires a bigger model, with a higher potential for bias due to model misspecification
 - some covariates may be prone to measurement errors, and may therefore lead to bias
 - some covariates may reduce statistical power/efficiency when adjusted for
- It may sometimes be reasonable to exclude covariates with a weak 'confounding effect'

DAG terminology Covariate selection in DAGs Motivating example, revisited **Potential problems**

Summary

- Traditional covariate selection strategies
 - are difficult to apply at the design stage
 - may select non-confounders, which may increase non-exchangeability
- DAGs can be used for covariate selection
 - encode our a priori causal knowledge/beliefs into a DAG
 - adjust for those covariates that block non-causal paths between the exposure and the outcome
- DAGs are not only tools for covariate selection
 - generally speaking, they are used to facilitate interpretation and communication in causal inference

