

Live 06: Componentes Eletrônicos LED e Buzzer

Profa. Esp. Nidia Castelli nidia.castelli@etec.sp.gov.br

O que você pode fazer com

Arduino?

- Automatizar a sua casa, seu carro, seu escritório, criar um novo brinquedo, um novo equipamento ou melhorar um já existente.
- Para isso, o Arduino é capaz de integrar uma quantidade enorme de sensores e COMPONENTES ELETRÔNICOS como resistores, capacitores, BUZZERS e LEDs, que podemos utilizar em projetos.
- Existem módulos disponíveis, que são pequenas placas que contém os sensores e outros componentes já prontos para uso.

Exemplos de componentes

eletrônicos

BUZZER

POTENCIÔMETRO

LED

PUSH-BUTTON

Tipos de diodo

- Diodo é um componente eletrônico que permite a passagem de energia elétrica em apenas um sentido.
- Tipos x Símbolos

Tipos	Símbolo
Díodo Retificador	<u>^</u> ▶ ⊢ ^K
Diodo Varicap	^ → ►
Diodo Schottky	AK
Fotodiodo	<u> </u>
Diodos Gunn	→

Tipos	Símbolo
Diodo Zener	<u>^</u> K
Diodo Túnel	<u>А</u>
Diodo com característica dependente da temperatura	A t ⁰
Diodo Emissor de Luz (LED)	AK
Diodo PIN	<u>A</u> → T K

LED

 Diodo Emissor de Luz (sigla LED, em inglês: Light Emitting Diode)

- Utilização
 - produtos de microeletrônica (ex: ligado/desligado);
 - painéis de LED, cortinas de LED e pistas de LED;
 - postes de iluminação pública.
- Principal característica
 - Transformar energia em luz.

Conceito de LED

- É um componente eletrônico semicondutor, composto de cristal semicondutor de silício ou germânio.
- A emissão de luz acontece quando a corrente elétrica percorre o material de junção PN (diodo semicondutor), emitindo radiação infravermelha.
- É um componente bipolar, possui dois terminais, chamados de anodo (+) e catodo (-), os quais determinam ou não a polarização do LED.

Tipos de LED

LEDs difusos comuns

LEDs de alto brilho

Fitas de LEDs

LEDs bicolores

LEDs SMD

Matriz de LED

Leis de Ohm

 A Primeira Lei de Ohm postula que um condutor ôhmico (resistência constante) mantido à temperatura constante, a intensidade (i) de corrente elétrica será proporcional à diferença de potencial (ddp) aplicada entre suas extremidades.

$$R = U$$
ou $U = R.I$

- Onde:
 - R: resistência, medida em Ohm (Ω)
 - U: diferença de potencial elétrico (ddp), medido em Volts (V)
 - I: intensidade da corrente elétrica, medida em Ampére (A).

Diodo emissor de

luz infravermelha

- É um tipo de componente eletrônico que emite luz infravermelha, invisível aos olhos humanos.
- Pode ser utilizado em circuitos eletrônicos para controle de alarmes, relés, automação residencial e outros projetos que necessitem de controle via sinal infravermelho.

LED Emissor
Infravermelho (IR)
5mm 940nm e um
Fototransistor /
Receptor IR 5MM

Buzzer - Piezo

Campainha sonora

- O Buzzer é um componente que se baseia no efeito piezoelétrico para emitir sons a partir de uma tensão elétrica em seus terminais.
- Apesar de não ser tão eficiente como um alto falante, o Buzzer pode ser utilizado para emitir alertas sonoros simples em circuitos eletrônicos.

Buzzer passivo

- Um BUZZER ou alto-falante passivo é um dispositivo que permite converter um sinal elétrico em uma onda sonora.
 - A campainha passiva não possui um oscilador interno e, portanto, a frequência do som deve ser feita no Arduino, para isso temos a função tone().
 - É o mais apropriado para fazer melodias, porque tem o controle sobre os tons gerados.
 - Por norma, a traseira tem o PCB à mostra com os pinos do mesmo tamanho.

Buzzer ativo

- Um Buzzer ativo, possui um oscilador interno, portanto, precisamos apenas ligar o dispositivo para que o som seja produzido.
 - A campainha ativa é a que possui o adesivo.
 - É mais apropriado para alarmes/avisos/sinalização.
 - Por norma, a traseira do Buzzer é lacrada com um pino maior (VCC) e outro menor (GND).

Exemplo Prático

 Objetivo: controlar o acendimento de 2 LEDs e um Buzzer com um controle remoto.

- Componentes eletrônicos:
 - 2 LEDs (vermelho e verde)
 - Controle Remoto Ir + Receptor Ir
 - Buzzer passivo

DEMONSTRAÇÃO

Formulário Teste

Acesse este link para realizar o teste relativo ao conteúdo abordado nesta Live:

https://cutt.ly/5sG9QR6

Próxima Live...

Live 07: LDR e Botões 19/08/2020 às 16 horas

Para acompanhar as Lives acesse:

www.robotica.cpscetec.com.br/lives

A Equipe da Robótica Paula Souza agradece a participação!