Visual Computing – Grundlagen 2D-/3D-Grafik

Yvonne Jung

2D-Graphik mit Qt

MouseEvents und PaintEvent

Graphische Ausgabe

- Anwendung muss für sinnvolles Update sorgen
 - Nur sie weiß, was geschehen soll, wenn keine Standard-Widgets verwendet werden (z.B. bei Malprogramm oder 3D-Renderer)
 - Betriebssystem kann Ausschnitte, die auf Desktop sichtbar werden, nur primitiv rekonstruieren (indem Pixel kopiert werden)
 - Wird z.B. nötig beim Verschieben oder Vergrößern von Fenstern
- Anwendung muss Inhalt selbst verwalten und aktualisieren
 - Betroffene Klassen müssen Zeichen-Methode neu implementieren
 - Bei Änderungen neu zeichnen (wichtig: zu zeichnende Objekte verwalten)
- Darstellung aktualisieren via update()
 - Zustandsänderungen i.d.R. durch Mouse-/KeyEvents oder Timer-gesteuerte Animationen
 - Danach Neuzeichnen (d.h. Rendern) triggern
 - Neuzeichnen in Qt kann/sollte nur zentral im paintEvent() geschehen

Zeichnen mit Qt

- Geschieht <u>immer</u> in Methode paintEvent()
- Zwei mögliche Herangehensweisen
 - Direkt mit Instanz von QPainter
 - QWidget ist (wie QImage) ein QPaintDevice
 - Kann damit über QPainter "bemalt" werden
 - Zeichenbereiten QPainter für Widget erzeugen:
 - QPainter painter(this); // nur in paintEvent() deklarierbar
 painter.setPen(Qt::red); // setzt Linienfarbe auf Rot
 - Mit Hilfe von QPainter und QPainterPath
 - QPainterPath für komplexere Zeichenoperationen
 - Hat Methoden moveTo() und lineTo(), wobei Parameter je 2D-Punkt vom Typ QPoint ist
 - painter.drawPath(pp); // Parameter ist zu zeichnender QPainterPath

QWidget ist Unterklasse von QPaintDevice Abgeleitete Klassen können daher mit Hilfe von QPainter benutzerdefiniert zeichnen

2D-Objekte: Punkt, Linie, Polygon

Wichtige Methoden der Klasse QPainter:

- void drawEllipse(const QPoint ¢er, int rx, int ry)
 - Sind Halbachsen *r*x und *r*y gleich, wird Kreis mit Radius *r*x um Punkt *center* gezeichnet
- void drawLine(int x1, int y1, int x2, int y2)
- void drawLine(const QPoint &p1, const QPoint &p2)
- void drawRect(int x, int y, int width, int height)
- void drawPolyline(const QPoint *points, int pntCnt)
 - Parameter pntCnt gibt Anzahl der zu betrachtenden Eckpunkte aus Array points an
- void drawPolygon(const QPoint *points, int pntCnt, Qt::FillRule fillRule = Qt::OddEvenFill)
- void drawPath(const QPainterPath &path)

Grafik in Qt aktualisieren


```
void MyWidget::paintEvent(QPaintEvent *event) {
  // 2D-Bild basierend auf Mausinteraktion darstellen. Dazu in Mausevents jeweils
  // Mauspositionen merken und update() aufrufen, dann hier Bild aktualisieren
void MyWidget::mousePressEvent(QMouseEvent *event) {
  if (event->button() == Qt::LeftButton) {
    // Aktuelle Mausposition in event->pos(), diese ggfs. merken und aktualisieren:
    update();
void MyWidget::mouseMoveEvent(QMouseEvent *event) {
  // Aktuelle Mausposition merken und aktualisieren
void MyWidget::mouseReleaseEvent(QMouseEvent *event) {
  // Aktuelle Mausposition merken und aktualisieren
```


MyWidget sei eigene Klasse und von QWidget abgeleitet

Von Problemkoordinaten zu Gerätekoordinaten

Screen Mapping von Koordinaten

Ausblick: Einordnung in Verarbeitungspipeline bei 3D-Rendering

Screen Mapping

Beispiel zur sog. Viewport-Transformation: von der 3D-Szene zum 2D-Bild

Definition des zu rendernden Sichtvolumens

Skalierung der Szene, so dass dieser Bereich im Einheitswürfel [-1,1]³ liegt

Viewport-Transformation transformiert Grafik in Fensterkoordinaten

Abhängig von Auflösung des Ausgabemediums

Abbildungen / Transformationen

- Grundsätzliches Problem: Umrechnungen zw. unterschiedlichen Wertebereichen
- Bsp.: Abbildung von Bereich [a, b] auf [c, d]

Transformation von 2D-Welt-/Problem da koordinaten in Bild-/Gerätekoordinaten und Bild

- Anwendungen beschreiben 2D-/ 3D-/ nD-Daten in anwendungsspezifischen Einheiten (z.B. Meter)
 - Y-Achse zeigt nach oben

- Ausgabegeräte arbeiten aber nur auf 2D-Pixelkoordinaten
 - Dabei Wechsel von rechts- zu linkshändigem Koordinatensystem
 - Y-Achse zeigt nach unten

Von Welt- zu Bildkoordinaten?

- Beispiel Wurfparabel (schräger Wurf)
 - Abschuss/Wurf von Raketen, Bällen, Vögeln...
 - Modellierung mit Hilfe der Weg-Zeit-Funktion

- Idee: Abbildung zweier rechteckiger Bereiche aufeinander
- Seitenverhältnisse von Window und Viewport i.A. verschieden

- Window-Viewport Transformation bildet Problem-Koordinaten (geg. in anwendungsspezifischen Einheiten und Maßstäben) ab auf Geräte-Koordinaten (in Integer-wertige Pixel-Koordinaten)
 - Achtung: dies bedeutet i.d.R. Wechsel von Rechts- auf Linkshändiges Koordinatensystem
 - Eigenschaften: achsparallele Transformationen, aber Verzerrungen möglich
- Beispiel (für x): Bereich [wx_0 , wx_1] soll abgebildet werden auf [dx_0 , dx_1]
 - Analog für y (Vorsicht, $dy_0 > dy_1$ wegen geflippter y-Koordinate)

- Gegeben: dx₀, dx₁, wx₀, wx₁ und wx
- Gesucht: dx (→ analog für y)

Herleitung z.B. mittels Strahlensatz

$$\frac{wx - wx_0}{wx_1 - wx_0} = \frac{dx - dx_0}{dx_1 - dx_0}$$

$$dx = \frac{wx - wx_0}{wx_1 - wx_0} \cdot (dx_1 - dx_0) + dx_0$$

Vorsicht bei Berechnung von dy:

Linke untere Ecke (**dx**₀, **dy**₀) des Viewports in Geräte- bzw. Pixelkoordinaten hat zwar kleinsten x-Wert des betrachteten Ausschnitts, aber größten y-Wert!

Ähnliches gilt für obere rechte Ecke des Viewports...

• Umformen zeigt, dass Formel aus Skalierung (also Streckung oder Stauchung) und Translation (also

Verschiebung) besteht

$$dx = \underbrace{\frac{dx_1 - dx_0}{wx_1 - wx_0}} \cdot wx + \underbrace{\left(dx_0 - \frac{wx_0(dx_1 - dx_0)}{wx_1 - wx_0}\right)}_{\text{Skalierung}}$$
Skalierung

Translation

$$dx = S \cdot wx + T$$

- Skalierung S und Translation T i.d.R. für x u. y je verschieden (→ damit i.A. nicht uniforme Skalierung;
 Verzerrungen also möglich)
- Allgem. vektorielle Darstellung
 - Translation um Vektor $(t_x, t_x)^T$:
 - Skalierung um Faktoren s_x, s_y:

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} x_{alt} + t_x \\ y_{alt} + t_y \end{pmatrix}$$

$$\begin{pmatrix} x_{neu} \\ y_{neu} \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x_{alt} \\ y_{alt} \end{pmatrix} = \begin{pmatrix} s_x x_{alt} \\ s_y y_{alt} \end{pmatrix}$$

Beispiel: Abbildungen im Bildraum

Oberflächen-Normalen als Farbe anzeigen (für VFX oder Debugging)

$$[-1;1]^3 \rightarrow [0;1]^3$$

Voraussetzung: Normalenvektoren sind normiert, x-/y-/z-Komponente liegt also zwischen -1 und 1

Transferfunktion bzw. Lookup-Table (LUT)

z.B. Temperatur als Farbe

$$[a;b] \rightarrow [0;1]$$

Wert als Texturkoordinate nehmen → in 1D-Textur Farbcodierung: Farben als "Skala" für physikalische Werte

Übung 1

- Sie möchten Bereich [-1, 1] abbilden auf [0, 1], um Richtungsvektoren als RGB-Farben abzuspeichern
 - Wie würden Sie rechnen, auf welchen Wert würde Vektor (0.2, 0.4, -0.8)^T abgebildet werden?
 - Wie würden Sie für einen vorzeichenlosen 8-Bit Datentypen das Ergebnis noch umrechnen?
- Sie möchten den Problemkoordinatenbereich von (-2, -4) bis (10, 4) abbilden auf Pixelkoordinaten zwischen (40, 40) und (640, 440)
 - Wie lauten die Pixelkoordinaten für Punkt P(3, -1)?
- Ist auch Rücktransformation der Window-Viewport-Transformation nötig?

Geometrie-Erzeugung

Geometrische Formen erzeugen

Wdh.: Trigonometrie

$$\sin \partial = \frac{a}{c}$$

$$\cos \partial = \frac{b}{c}$$

$$\cos(\alpha) = \sin(\alpha + \frac{\pi}{2})$$

$$\cos(\alpha) = \cos(-\alpha)$$

$$\sin(-\alpha) = -\sin(\alpha)$$

 $3\pi/2$

Funktionsplotter für Sinuskurve


```
QPainter painter(this);
QPainterPath pp;
QPoint dc;
const int N = 32;
float x, y, dx;
x = wMin.x();
y = \sin(x);
dc = WC to DC(QPointF(x, y));
pp.moveTo(dc);
```

```
dx = (wMax.x() - wMin.x()) / N;
for (int i = 0; i < N; i++) {
  x += dx;
  y = \sin(x);
  dc = WC_to_DC(QPointF(x, y));
  pp.lineTo(dc);
painter.setPen(Qt::red);
painter.drawPath(pp);
```

Kreiskurve in Vektordarstellung

- Kreis mit Radius r um Punkt p mittels Sinus und Kosinus zeichnen

 - Kreisgleichung: $(x p_x)^2 + (y p_y)^2 = r^2$ Parameterdarstellung für Kreis mit Radius r: $\vec{s}(\varphi) = r \cdot \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}$

```
for (i=0; i<=N; i++) {
   phi = i * (2 * M_PI / N);
   x = radius * cos(phi) + p.x();
   y = radius * sin(phi) + p.y();
   //convert to pixel coords
    dc = WC_to_DC(QPointF(x, y));
    if (i == 0)
        pp.moveTo(dc);
    else
       pp.lineTo(dc);
```


Von 2D zu 3D: Kugel

• Berechnung (analog zu Kreis) über Kugelkoordinaten (mit Radius r)

•
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \cdot \begin{pmatrix} \cos \varphi \cdot \sin \Theta \\ \cos \Theta \\ \sin \varphi \cdot \sin \Theta \end{pmatrix}$$

- Komplexere graphische Objekte werden nur einmalig berechnet oder geladen
- Gespeichertes Vertex-Array mit Adjazenz-Information wird zum Rendern genutzt

Polygone

- Einfaches Polygon: Kanten schneiden sich **nicht** (→ gewünschte Form)
- Konvexes Polygon: Verbindungsstrecke zwischen zwei Punkten innerhalb der Fläche liegt ebenfalls in Fläche
 - Bzw. jeder Innenwinkel ≤ 180° (Aufpassen bei Kollinearität)
 - Konkav: nicht alle Linien zwischen Punkten der Fläche liegen in Fläche

Flächenmodelle

Beschreibung der Oberfläche eines 3D-Objekts als Polygonnetz (Mesh)

• Sollte geschlossen u. zusammenhängend sein → Boundary Representation (B-Reps)

- Meshes bestehen aus...
 - Geometrie: Position/Lage der Eckpunkte
 - Gerade (oder selten krummlinige) Verbindung benachbarter Punkte
 - Topologie: Graph
 - Nachbarschaftsbeziehungen von Punkten (Vertices), Kanten (Edges), Flächen (Faces)
 - Links: Gleiche Geometrie, unterschiedliche Topologie (mehr Kanten)
 - Rechts: Gleiche Topologie, unterschiedliche Geometrie (kein Würfel)

Oberflächennormalen

Reihenfolge, in der Punkte in Polygon durchlaufen werden, ist relevant (Umlaufsinn)

$$\vec{a} = P_1 - P_0$$

$$\vec{b} = P_2 - P_1$$

$$\vec{n} = \vec{a} \times \vec{b}$$

- Berechnung der Normalen
 - Z.B. über Kreuzprodukt aufeinander folgender Kanten
 - $\vec{n} = \vec{a} \times \vec{b}$
 - Rechtssystem (Rechte-Hand-Regel)
 - Achtung: $\vec{b} \times \vec{a} = -\vec{n}$
 - Garantiert Orientierung der Flächennormalen nach außen

Polygone zur Körpermodellierung

- Ebene Objekte besonders einfach zu handhaben
 - Aus genügend vielen Objekten lassen sich auch runde Formen annähern → Polygon als Basisobjekt für 3D

Polygon

 Aneinanderhängende Folge von Kanten (Edges), die durch je 2 Punkte (Vertices) definiert werden:

$$((p_0, p_1), ..., (p_{n-1}, p_n))$$

Geforderte Eigenschaften

- Geschlossen: Anfangspunkt entspricht Endpunkt \rightarrow formal: $p_0 = p_n$
- Einfach: Polygon schneidet sich selbst nicht
- Eben: alle Kanten liegen in einer Ebene
- Kanten benachbarter Polygone haben gegenläufige Orientierung (damit gleiche Normalenrichtung)

(0,1,3) and (2,3,1) consistently oriented

Gekrümmte Flächen: Quality vs. Speedh_da

Glättung eines Low-Poly-Modells durch Mittelung der Normalen von an Eckpunkt angrenzenden Flächen

→ Speicherung als Vertexnormale

UNIVERSITY OF APPLIED SCIENCES.


```
struct Vertex {
   Vec3 position;
   Vec3 normal;
   Vec2 texCoord;
};
```

Definition von Meshes

- Vertices definieren Attribute von Eckpunkten
 - Einfaches Beispiel:

```
struct Vertex {
   Vec3 position; // Position im 3D-Raum
   Vec3 normal; // Interpolierte Flächennormale
   Vec2 texCoord; // Texturkoordinate (für Texturen)
};
```


- Vertex-Reihenfolge kann Topologie beschreiben
 - Nicht-indiziertes Dreiecksmesh (naiver Ansatz):
 Vertex nonIndexedTriangleMesh[NUM_TRIS][3];
 - Hier im Bsp.: $P_0P_1P_2P_3P_4P_5P_6P_7P_8P_9P_{10}P_{11}$
 - Problem: Redundanz
 - Mehrfaches Auftreten gleicher Vertices (inkl. zugehöriger Attribute wie Vertex-Normalen etc.)

Definition von Meshes

- Lösung des Problems: indizierte Beschreibung
 - Arrays mit Positionen (u. ggfs. weiteren Attributen wie Vertex-Normalen)
 - Array mit Indizes, welche die Vertices (Eckpunkte) adressieren
 - Spart Speicher, nutzt Vertex Cache besser und vermeidet Rasterisierungsfehler
 (z.B. Löcher zwischen angrenzenden Kanten durch Floating-Point-Ungenauigkeiten)
- GPU erwartet i.d.R. Vertex-Attribute in je separaten Arrays
 - Meist eindimensional gespeichert: x-, y-, z-Koordinaten folgen je aufeinander
 - Indiziertes Dreiecksmesh

```
struct IndexedTriangleMesh {
   Vec3 positions[NUM_VERTS];
   Vec3 normals[NUM_VERTS];
   Vec2 texCoords[NUM_VERTS];
   unsigned indices[NUM_TRIS * 3];
};
```


Indizierte Mesh-Beschreibung

Beispiel: Box im Eigenbau

• Lage der Eckpunkte zum lokalen Ursprung definiert Koordinaten (→ Ortsvektoren)

```
// Dreiecksnetz (Positionen sowie Flächennormale und Indizes)
0,0,0, 0, y,0, x,y,0, x,0,0, // hinten
         0, 0, -1 (0, 1, 2, 2, 3, 0)
0,0,z, 0,y,z, x,y,z, x,0,z, // vorne
        0, 0, 1 (4, 7, 5, 5, 7, 6)
0,0,0, 0,0,z, 0,y,z, 0,y,0, // links
       -1, 0, 0 (8, 9,10, 10,11, 8)
x,0,0, x,0,z, x,y,z, x,y,0, // rechts
        1, 0, 0 (12,14,13, 14,12,15)
0, y, 0, 0, y, z, x, y, z, x, y, 0, // oben
         0, 1, 0 (16,17,18, 18,19,16)
0,0,0, 0,0,z, x,0,z, x,0,0 // unten
         0,-1, 0 (20,22,21, 22,20,23)
```


Zerlegung in Dreiecke

- Geg.: alle Punkte einer Fläche (z.B. in Array)
- Wähle beliebigen Start-Eckpunkt P_i
- Erzeuge Dreieck aus Eckpunkt P_i und dessen beiden Nachfolgern
- Teste, ob Innenwinkel < 180° und keine Schnittpunkte mit Kanten
 - Ja: Verwende Dreieck u. streiche mittleren Punkt weg; führe Verfahren fort, bis nur noch 2 Punkte existieren behalte ursprünglichen Punkt je bei
 - Nein: Verwerfe Dreieck und setze Verfahren beim nächstmöglichen, noch nicht gestrichenen Eckpunkt neu an

Übung 2

Zerlegen Sie das gezeigte
 2D-Polygon in Dreiecke!

```
float positions[] = {
    -3,     1,
    3,     1,
    2,     -2.5,
    6.5, -1.5,
    8,     2.5,
    3,     6,
    -1.5,     3,
    -3,     5,
};

unsigned short indices[] = {
    0, 1, 2, 3, 4, 5, 6, 7
};
```


Einfache Interaktionen

Bounding Box und Inside Test

Bounding Box und Inside Test

 Analog für Kreis: Punkt P (x, y) liegt innerhalb, wenn Distanz d zwischen P und M kleiner als Radius r ist

- 2D-Selektion am einfachsten mit Rechtecken
 - → daher Grundform von Buttons
- Implementierung:

```
bool inside(float x, float y) {
    return xmin <= x && ymin <= y &&
    x <= xmax && y <= ymax;
}</pre>
```


Bounding Volumes (1)

 Müssen einfach sein, damit sich Schnitttests mit anderen "Primitiven" (für Sichtvolumen, Sehstrahl, Kollision) leicht berechnen lassen

Bounding Volumes (2)

- Konvexe Hülle: kleinstes konvexes Polygon (bzw. Polyeder in 3D), das Objekt enthält
- Übung: Geben Sie die konvexe Hülle des in voriger Übung gezeigten Polygons an!

Inside-Test bei Polygonen (in 2D)

- Test, ob Punkt P innerhalb oder außerhalb Fläche F
 - 3D: ggfs. Projektion auf eine der 3 Koordinatenebenen
- Strahl r durch P legen (z.B. entlang x- oder y-Achse)
 - Strahlkonstruktion: $r(t) = P + t \cdot {1 \choose 0} \min t > 0$
- Anzahl *n* der Schnittpunkte mit Kanten bestimmen
 - Ist *n* gerade, so liegt *P* außerhalb, sonst innerhalb, d.h. $P \in F$
 - LGS am einfachsten lösbar, wenn konstruierter Strahl entlang x- oder y-Achse geht
- Alternativen:
 - Ausgehend von P auf Eckpunkte blicken und Summe S aller Innenwinkel berechnen
 - $S = 360^{\circ} \Rightarrow P \in F$
 - Zuerst in Dreiecke zerlegen und dann auf gültige baryzentrische Koordinaten testen

Dazu Achse wählen, die zu größter Projektion führt Koordinate, deren Koeffizient in Ebenengleichung größten Absolutbetrag hat, auf Null setzen

Linien und Kanten

- Geg.: Zwei Punkte $P_1(x_1, y_1)$ und $P_2(x_2, y_2)$
 - Strecke zwischen zwei Punkten P_i und $P_{(i+1)\%n}$ eines n-Ecks heißt Kante
- Parametrische Gleichung der zugehörigen Geraden

•
$$L(t) = P_1 + t (P_2 - P_1) = P_1 + t \mathbf{v}$$

•
$$t \in [0; 1] \rightarrow \text{Kante/Strecke}; t \in IR \rightarrow \text{Gerade}; t \in IR_0^+ \rightarrow \text{Strahl}$$

•
$$\Leftrightarrow$$
 (R - (P + t_0 \mathbf{v})) · \mathbf{v} = 0

•
$$\Leftrightarrow$$
 (R - P) · \mathbf{v} - t_0 · \mathbf{v} · \mathbf{v} = 0

•
$$\Leftrightarrow$$
 (R - P) · $\mathbf{v} = t_0$ · $|\mathbf{v}|^2$ \rightarrow $t_0 = (R - P) · $\mathbf{v} / |\mathbf{v}|^2$$

 $L(t_0)$ liegt auf Strecke P_1P_2 , wenn $t_0 \in [0, 1]$

Selektion in 3D-Szenen (Picking)

- (Maus-) Interaktion mit 3D-Objekten
- Über Strahl, von Auge durch Mausposition bzw. Fingerspitze
 - Is-over: Strahl trifft Objekt (Raycasting)
 - Trigger: User klickt Button
- Von 2D nach 3D durch "Umkehroperation" der Projektion
 - Problem: Mausposition (x, y) nur 2-dimensional gegeben
 - Kein eindeutiger z-Wert möglich,
 2D-Position definiert nur Strahl:
 - → Strahltest nötig

Rasterisierung

Vektor- vs. Rasterverfahren

(a) ideal line drawing

(b) Vector scan

Beispielformat:

BMP

Beispielformat:

SVG

(c) Raster scan with outline primitives

(d) Raster scan with filled primitives

Pixelspeicherung

- Videospeicher linear in horizontalen Pixelreihen (sog. Scanlines) ausgerichtet
 - Grafikkarte speichert pro Pixel einen 4 Byte großen Farbwert
 - Farbwert setzt sich aus vier Kanälen zusammen (RGBA)

Bresenham-Algorithmus

- Approximation einer Linie im kontinuierlichen Raum durch Punktmenge im diskreten Raum
 - Zum Rastern von Linien auf Rasterdisplays
- Nur Integer-Arithmetik (Addition, Subtraktion und Linksshift, d.h. Multiplikation mit 2)
 - Da bereits 1965 veröffentlicht...
- Jeder Punkt wird nur einmal erzeugt und hat kürzesten Abstand zur idealen Gerade
 - Inkrementelles Verfahren ($\rightarrow x++$)
 - Inkrement von y durch Betrachtung von Fehler ϵ bei Steigung $m={}^{dy}/{}_{dx}$

Herleitung

 $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \tan \alpha$

- Zugrunde liegende Idee:
 - DDA-Algorithmus (Digital Differential Analyzer)
 - Differentialquotient für Gerade $y = m \cdot x + b$ ist Steigung $m = \frac{dy}{dx}$
 - Anfangs- und Endpunkt liegen auf Raster
- Vereinfachende Annahme:
 - Nur 1. Oktanten betrachten, d.h. $0 \le m \le 1$
 - Vereinfachung: y nach oben
 - $0 < dy <= dx <= 1 \rightarrow dx >= dy$
 - Für negative Steigung y negieren
 - Für Steigungen > 45° x und y vertauschen

Fehlerbetrachtung

Algorithmus (V1, Simple DDA)

```
int dx = x1 - x0, dy = y1 - y0;
float m = dy/(float)dx, y = y0;
for (int x=x0; x<=x1; x++) {
   setPixel(x, round(y));
   y += m;
}</pre>
```


- Problem: Floats & Rundungen
- Verbesserung
 - Welcher Pixelmittelpunkt liegt n\u00e4her zur Geraden?
 - y-Inkrement in separater Variable ϵ summieren
 - y nur erhöhen, falls Fehler ε näher zu y+1 liegt, also ε >0.5

Fehlerbetrachtung

```
int dx = x1 - x0, dy = y1 - y0;
float e = 0, m = dy / dx, y = y0;
for (int x = x0; x \le x1; x++) {
  setPixel(x, y);
 e += m;
  if (e > .5f) {
   y++;
    e--;
```


Problem:

Immer noch 2 Floats (→ m und 0.5)
Floating-Point-Operationen waren teuer und sind ungenau

Lösung:

Tatsächlicher Wert von ε ist unwichtig, nur Abschätzung ist interessant

→ mit 2 * dx multiplizieren

Bresenham-Algorithmus


```
void line(int x0, int y0, int x1, int y1) {
  int dx = x1 - x0, dy = y1 - y0;
  int e = 0, dx2 = dx << 1, dy2 = dy << 1;
  for (int x = x0, y = y0; x \le x1; x++) {
    setPixel(x, y);
    e += dy2;
    if (e > dx) {
     y++;
      e = -= dx2;
```


Bresenham am Beispiel

- Geg.: Pixel-Gitter des Bildschirms
 - Startpunkt der Linie in (3, 2), Endpunkt in (10, 7)

•
$$x0 = 3$$
, $y0 = 2$;
 $dx = 10 - 3 = 7 \ (\ge 0)$
 $dy = 7 - 2 = 5 \ (\ge 0)$

- $dx \ge dy$ und $m = dy / dx = 5 / 7 (\le 1)$
- Berechnungsschritte für alle Pixel auf Linie:

Schritt	0	1	2	3	4	5	6	7
е	0	-4	6	2	-2	-6	4	0
х	3	4	5	6	7	8	9	10
у	2	3	3	4	5	6	6	7

Ergebnis: Linie, die nur einen Pixel pro Zeile benötigt – bzw. pro Spalte, falls Steigung m > 1

Exkurs: Kantenglättung

• Auflösung des Bildschirms begrenzt ⇒ perfekte Linie nicht möglich:

Treppenstufen

Exkurs: Kantenglättung

• Aufweichung der Stufen durch Übergangsfarben/ -intensitäten

(je nach Abstand zur Originallinie)

Exkurs: Antialiasing

- Monitor-Auflösung vergleichsweise gering
 - Besonders an Kanten u. Linien einzelne Pixelsprünge sichtbar (Aliasing)
 - Anti-Aliasing versucht dies durch Farbmischung abzuschwächen
- Multisampling
 - Bild wird in höherer (z.B. 2x / 4x / ...) Auflösung berechnet und z.B. 2x2 bzw.
 4x4 Pixel gemittelt
 - Analytisch: für jeden Pixel wird berechnet, welcher Anteil vom Primitiv bedeckt ist
 - Anteil wird als Wichtungsfaktor zur Mittelung von Primitivfarbe und vorhandener Farbe verwendet
 - MSAA (Multisample Antialiasing) Sampling Patterns (grün ist eigentliches Pixel, rot sind Samples)

Einschub: Bit Block Transfer

- Blitting ist Operation, bei der Pixelblock bitweise entsprechend geg.
 RasterOp kombiniert wird
 - Möglichkeiten: Constant, Copy, AND, OR, XOR, NOT
 - XOR für Rubberband oder Mauscursor eingesetzt
 - \rightarrow Zweimal XOR stellt alten Wert wieder her: $(S \oplus D) \oplus D = S \oplus (D \oplus D) = S \oplus 0 = S$
- Zeichenmodus
 - Bsp.: Logische Verknüpfung mit XOR

Source-Pixel:

Destination-Pixel:

Ergebnis:

Heute meist durch sog. Alpha Blending ersetzt

Polygonfüllen

- Old-School auf CPU: Mit Scanline-Algorithmus
- Erst Polygon in Dreiecke zerlegen (Tessellierung)
 - Trivial bei konvexen Flächen: Eckpunkte eines Dreiecks bilden immer eine Ebene!
- Dann Flächen zeilenweise mit Farbverlauf füllen
 - Alternativ direkt Pixel mit ungerader Parität* einfärben

* Von links kommend Kanten zählen: Nur Füllen bei ungerader Kantenzahl

Dreiecke bevorzugt

• Konvexe Flächen erlauben Füllen mit zusammenhängender waagrechter Pixelreihe

pro Zeile

Dreiecke sind konvex und Eckpunkte bilden immer Ebene

Eckpunkte eines n-Ecks müssen nicht auf einer Ebene liegen

Dreiecke bevorzugt

- Angabe einer Farbe pro Dreieck auf GPU nicht möglich
 - Farben können für GPU nur für gesamtes 3D-Objekt oder pro Eckpunkt definiert werden
 - Geometrie beinhaltet neben Farben u.a. auch Vertexnormalen und Texturkoordinaten
- Vertices haben damit evtl. unterschiedliche Farben
 - Mit welcher Farbe wird Dreieck gefüllt?
- Eckpunkte eines Dreiecks bilden glücklicherweise Ebene
- Lineare Interpolation pro Pixel zwischen Eckpunkten
 - Lineare Interpolation zw. Punkten P und Q für Interpolationswert $t \in [0, 1]$ ergibt sich aus: $R(t) = P + t \cdot (Q P) = (1 t) \cdot P + t \cdot Q$
 - Interpoliert damit entlang der Kante von P (für t = 0) nach Q (t = 1)
 - Geschieht auf GPU beim Rasterisieren

Bilineare Interpolation

- Interpolationsverfahren für Flächen
- $C = C_1 + \frac{C_2 C_1}{X_2 X_1} \cdot (X X_1)$
- Erledigt GPU für uns 😊

Rasterisierung im Detail

- 1. Bestimmung der Pixel-Koordinaten der Vertices
- 2. Interpolation aller Vertex-Attribute entlang der Dreieckskanten
 - Parameter t_1 geht von 0 bis 1: $R(t_1) = V_1 + t_1 \cdot (V_2 V_1) = (1 t_1) \cdot V_1 + t_1 \cdot V_2$
- 3. Interpolation der Pixelwerte entlang der einzelnen Rasterzeilen
 - Berechnet beim Füllen der Fläche bilinear interpolierte Vertex-Attribute

Lineare Farbinterpolation

 Wie berechnet man den Farbverlauf innerhalb einer Linie oder eines Dreiecks, wenn jeder Eckpunkt (d.h. Vertex) eine andere (Vertex-)Farbe hat?

$$F(t) = (1 - t) \cdot F(0) + t \cdot F(1)$$

$$F(t) = (1 - \frac{1}{4}) \cdot F(0) + \frac{1}{4} \cdot F(1)$$

$$F(t) = \frac{3}{4} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{4} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ 0 \\ \frac{1}{4} \end{pmatrix}$$

- Auf die gleiche Weise werden alle Vertex-Attribute interpoliert
- Zuordnung erfolgt durch gleichen Attributnamen in Vertex- sowie in Fragment-Shader

Exkurs: Parallelität

- GPU erlaubt massiv parallele Abarbeitung der gleichen einfachen Abläufe (nämlich u.a. Pixelfärben)
 - Wenige arithmetische Instruktionen, geringe Anzahl von Verzweigungen
- Füllen eines Dreiecks erfordert gleiche Instruktionen für alle Pixel (geschieht in Shader-Programm)
 - Geschieht heutzutage nicht mehr zeilenweise sondern parallel

Primitive Clipping

Ausblick: Einordnung in Verarbeitungspipeline bei 3D-Rendering

Bounding Box und Bereichscode


```
int LEFT = 1, RIGHT = 2,
BOTTOM = 4, TOP = 8,
MIDDLE = 0;
```

```
int code (float x, float y)
    int c = MIDDLE;
    if (x < xmin) c += LEFT;
    if (x > xmax) c += RIGHT;
    if (y < ymin) c += BOTTOM;
    if (y > ymax) c += TOP;
    return c;
```

Line Clipping

- Clipping algorithms ensure that elements outside given area are cut off
- A computational efficient method based on coarse preselection was developed by *Cohen* & Sutherland
 - Only works for lines, not with faces!

- Check, which lines are completely inside or outside
 - → Inside test for both endpoints
 - Inside, if both endpoints inside rectangle
 - Line definitely outside, if bitwise AND (&) of both endpoints' code is not 0
- 2. Else, without loss of generality, calculate intersection for point (x_{min}, y) to the left of clipping rectangle
 - Equation of line: $y = m \cdot x + b$

• With
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \tan(\alpha)$$

(intercept theorem)
$$\frac{y - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{y - y_1}{x_{\min} - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\Rightarrow y = y_1 + m \cdot (x_{\min} - x_1)$$

Cohen-Sutherland Line Clipping


```
bool clip(float &x1, float &y1, float &x2, float &y2)
  float x, y;
  int c1 = code(x1, y1);
  int c2 = code(x2, y2);
  while ((c1 != MIDDLE) || (c2 != MIDDLE))
  // line completely outside clipping rect
  if ((c1 \& c2) != 0)
     return false;
  int c = (c1 == MIDDLE) ? c2 : c1;
  if (c & LEFT) {
     x = xmin;
     y = y1 + (y2-y1) * (xmin-x1)/(x2-x1);
  else if (c & RIGHT) {
      x = xmax;
     y = y1 + (y2-y1) * (xmax-x1)/(x2-x1);
```

```
else if (c & BOTTOM) {
   y = ymin;
    x = x1 + (x2-x1) * (ymin-y1)/(y2-y1);
 else if (c & TOP) {
    y = ymax;
   x = x1 + (x2-x1) * (ymax-y1)/(y2-y1);
 if (c == c1) {
   x1 = x; y1 = y;
    c1 = code(x1, y1);
 else {
   x2 = x; y2 = y;
    c2 = code(x2, y2);
// line (x1, y1, x2, y2) inside rect -> can draw
return true;
```

Exkurs: Clippen von Polygonen – Lösung nach Sutherland-Hodgman

2P-Transformationen

Ausblick: Objekte transformieren

Vielen Dank!

Noch Fragen?