ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

Chapter 6: Field-Effect Transistors

Islamic University of Gaza

Dr. Talal Skaik

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Depletion-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to *n*-doped regions.
- These *n*-doped regions are connected via an *n*-channel.
- This *n*-channel is connected to the Gate (G) via a thin insulating layer of SiO_2 .
- The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called Substrate (SS).

n-Channel depletion-type MOSFET.

Depletion-Type MOSFET: Basic Operation and Characteristics

- $V_{GS}=0$ and V_{DS} is applied across the drain to source terminals.
- This results to attraction of free electrons of the n-channel to the drain, and hence current flows.

n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and applied voltage V_{DD} .

Depletion-Type MOSFET: Basic Operation and Characteristics

- $\gt V_{GS}$ is set at a negative voltage such as -1 V.
- The negative potential at the gate pressures electrons toward the p-type substrate and attract holes from the p-type substrate.
- This will reduce the number of free electrons in the *n*-channel available for conduction.
- The more negative the V_{GS} , the resulting level of drain current I_D is reduced.
- When V_{GS} is reduced to V_P (Pinchoff voltage), then $I_D=0$ mA.

Depletion-Type MOSFET: Basic Operation and Characteristics

- \triangleright When V_{GS} is reduced to V_P (Pinch-off) [i.e. V_p =-6V], then I_D =0 mA.
- For positive values of V_{GS} , the positive gate will draw additional electrons (free carriers) from the p-type substrate and hence I_D increases.

Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

- Depletion mode
- Enhancement mode

D-Type MOSFET in Depletion Mode

Depletion Mode

The characteristics are similar to a JFET.

- When $V_{GS} = 0 \text{ V}$, $I_D = I_{DSS}$
- When $V_{GS} < 0 \text{ V}$, $I_D < I_{DSS}$
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

D-Type MOSFET in Enhancement Mode

Enhancement Mode

- $V_{GS} > 0 V$
- I_D increases above I_{DSS}
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$V_{P} = V_{P} \frac{V_{P}}{2} = 0.3V_{P}$$

Note that V_{GS} is now a positive polarity

p-Channel D-Type MOSFET

D-Type MOSFET Symbols

n-channel

p-channel

(a) *n*-channel depletion-type MOSFETs (b) *p*-channel depletion-type MOSFETs

Enhancement-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to *n*-doped regions.
- The Gate (G) connects to the *p*-doped substrate via a thin insulating layer of SiO₂

There is no channel

• The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called the **Substrate** (SS)

Enhancement-Type MOSFET Construction

- For $V_{GS}=0$, $I_{D}=0$ (no channel).
- For V_{DS} some positive voltage, and V_{GS} =0, two reverse biased p-n junctions and no significant flow between drain and source.
- For $V_{GS}>0$ and $V_{DS}>0$, the positive voltage at gate pressure holes to enter deeper regions of the p-substrate, and the electrons in p-substrate will be attracted to the positive gate.
- The level of V_{GS} that results in the significant increase in drain current is called *threshold voltage* (V_T) .
- For $V_{GS} < V_T$, $I_D = 0$ mA.

Basic Operation of the E-Type MOSFET

The enhancement-type MOSFET operates only in the enhancement mode.

- \bullet V_{GS} is always positive.
- As V_{GS} increases, I_D increases
- As V_{GS} is kept constant and V_{DS} is increased, then I_D saturates (I_{DSS}) and the saturation level, V_{DSsat} is reached

 V_{DSsat} can be calculated by:

$$V_{Dsat} = V_{GS} - V_{T}$$

E-Type MOSFET Transfer Curve

To determine I_D given V_{GS} :

$$I_{D} = k(V_{GS} - V_{T})^{2}$$

Where: V_T = threshold voltage or voltage at which the MOSFET turns on

k, a constant, can be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(ON)}}{(V_{GS(ON)} - V_T)^2}$$

E-Type MOSFET Transfer Curve

Substituting $I_D(on) = 10$ mA when $V_{GS}(on) = 8V$ from the characteristics:

$$k = \frac{10 \text{ mA}}{(8-2)^2} = 0.278 \times 10^{-3} \text{ A/V}^2 \implies I_D = 0.278 \times 10^{-3} (V_{GS} - 2V)^2$$

p-Channel E-Type MOSFETs

The *p*-channel enhancement-type MOSFET is similar to the *n*-channel, except that the voltage polarities and current directions are reversed.

MOSFET Symbols

Symbols for (a) *n*-channel enhancement-type MOSFETs and (b) *p*-channel enhancement-type MOSFETs.

(b)

(a)