Bayesian Neural Networks Report

Egor Kuznetsov

Moscow State University

June 12, 2023

Bayesian Neural Networks

Bayesian Neural Networks:

- Variational Inference
- Markov Chain Monte Carlo

The idea of treating model's parameters as a random variables.

$$P(\theta|D) = rac{P(D_y|D_x, heta)P(heta)}{\int_{ heta} P(D_y|D_x, heta')P(heta')d heta'},$$
 $P(y|x, D) = \int P(y|x, heta')P(heta'|D)d heta'$
 $pprox rac{1}{\Theta} \sum_{ heta_i \in \Theta} \Phi_{ heta_i}(x).$

Variational Inference

Introduction

$$P(\theta|D) \sim q_{\phi}(\theta)$$
,

where $q_{\phi}(\theta)$ is a family of parameterized distributions (e.g. $N(\mu_{\phi}, \sigma_{\phi}^2)$).

$$D_{\mathit{KL}}(q_{\phi}(heta)||P(heta|D)) \longrightarrow \mathit{min} \Rightarrow \mathbb{E}_{q_{\phi}} \log \left(rac{\hat{P}(D| heta)P(heta)}{q_{\phi}(heta)}
ight) \longrightarrow \mathit{max}_{\phi}.$$

Markov Chain Monte Carlo

Approximating $P(\theta|D)$ using predefined Markov Chain $J(\theta_n|\theta_{n-1})$.

$$r = \frac{P(\theta_*|D)}{P(\theta_{n-1}|D)}, \ p = \min(1,r), \ \hat{P}(\theta|D) \propto P(D|\theta)P(\theta)$$

Could be done through No-U-Turn Sampler.¹ It improves the idea of Hamiltonian Monte Carlo, removing the necessity of choosing step size and amount of "Leapfrog" (Stormer-Verlet integrator) steps.

 $^{^1}$ Hoffman M. D. et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo

MNIST dataset

3471956218 4712506384 4701636123 4701636123 7794662723 7598365885 7598365885 7598365885 7598365885 7598365885 7598365885 759836

Main characteristics:

- Multi-Layer Perceptron
- ReLU
- Batch Normalization

For Variational Inference, "Adam" optimizer was used with exponentially changed learning rate.

Mainly were used while researching Variational Inference. Main characteristics:

- Varying number of convolutional layers and their parameters
- AdaptiveAveragePooling and Flattenning
- ReLU (MaxPool was used in type 4, 5 models), Batch Normalization

CNN types

Table: The first type of CNN model

Layer	Input dim	Output dim	Kern size	Stride	Padding
Conv	1	16	5	1	2
Conv	16	32	3	1	1
Conv	32	64	3	1	1
Conv	64	64	3	2	0
Conv	64	32	3	2	0
Conv	32	16	3	2	0
Linear	16	10	-	-	-

CNN types

Table: The second type of CNN model

Layer	Input dim	Output dim	Kern size	Stride	Padding
Conv	1	16	5	1	0
Conv	16	32	3	1	0
Linear	32	10	-	-	-

CNN types

Table: The third type of CNN model

Layer	Input dim	Output dim	Kern size	Stride	Padding
Conv	1	4	3	1	0
Conv	4	8	3	1	0
Linear	8	10	-	-	-

Results

CNN types

Introduction

Table: The forth type of CNN model

Layer	Input dim	Output dim	Kern size	Stride	Padding
Conv	1	16	3	1	1
Conv	16	32	3	1	1
Conv	32	64	3	1	1
Linear	64	10	-	-	-

Variational Inference

Introduction

Table: MLP model experimental results

Hid. layers	Perc. in layer	Prior distribution	Test accuracy
2	300	Laplace(0,1)	0.1021
1	200	Normal(0,1)	0.1042
2	400	Normal(0,1)	0.1094
2	100	Uniform $(-1,1)$	0.1097
3	400	Uniform(-20,20)	0.1122
1	400	Normal(0,1)	0.2
3	400	Laplace(0,20)	0.21
3	300	Normal(0,20)	0.3024
1	50	Uniform $(-1,1)$	0.3884
1	200	Uniform $(-1,1)$	0.3923
1	100	Normal(0,1)	0.3953
1	400	Laplace(0,1)	0.4047
1	100	Laplace(0,1)	0.5091
1	130	Uniform $(-1,1)$	0.5306
1	100	Uniform $(-1,1)$	0.5352
1	200	Laplace(0,1)	0.5825

4 □ ▶ 4 圖 ▶ 4 ≧

Results

00000000000

Variational Inference

Table: CNN models experimental results

Туре	Prior distribution	Test accuracy
3	Uniform(-1,1)	0.1032
1	Uniform(-20,20)	0.106
2	Uniform(-1,1)	0.1096
2	Normal(0,1)	0.1125
1	Normal(0,10)	0.6593
4	Normal(0,20)	0.6683
1	Normal(0,20)	0.6812
1	Laplace(0,20)	0.6938

Variational Inference

Figure: Confusion matrix. Laplace(0,1) priors, 1 hidden layer, 200 perc. in layer

Variational Inference

Figure: Confusion matrix. CNN. Normal(0,20) priors, 1-st type of architecture

Results

000000000000

Markov Chain Monte Carlo

Introduction

prior dist/model type	1	2	3
Normal(0,10)	0.9758	0.9742	0.9731
Laplace(0,10)	0.9739	0.9511	0.9759
Uniform(-10,10)	0.9461	0.9737	0.9743

Table: Averaged accuracy on validation set for different types of models and weights priors

In the table all models are MLPs, type 1 model contains 1 hidden layer with 200 parameters, type 2-1 hidden layer, 400 parameters, type 3-2hidden layers, 200 parameters.

To somehow estimate, whether the model had converged or not, for every weight r-hat estimation 2 (so called potential scale reduction) were computed:

$$\sqrt{\hat{R}} = \sqrt{\left(\frac{n-1}{n} + \frac{m+1}{mn} \frac{B}{W}\right) \frac{df}{df - 2}},$$

where n is the amount of total parameters, m is the amount of samples, B and W are modelled through F-distribution, df are the degrees of freedom.

If the following estimation is close to 1 it means, that the parameter has converged and will not change drastically with more samples.

²Gelman A., Rubin D. B. Inference from iterative simulation using multiple sequences

Results

00000000000

Markov Chain Monte Carlo

Introduction

Figure: R-hat estimation for weights in layers. 1-st type of model, Normal(0,10) priors 4 □ ▶ 4 圖 ▶ 4 圖 ▶ 4

Markov Chain Monte Carlo

Introduction

Figure: R-hat estimation for weights in layers. 1-st type of model, Uniform(0,10) priors

Markov Chain Monte Carlo

Introduction

Robustness test. The noise was sampled from N(100, 20) and applied to the validation sets of models, trained without noise.

Figure: The number before and after noise addition

dist/type	1	2	3
Normal(0,10)	0.9519	0.9519	0.9610
Laplace(0,10)	0.9604	0.9130	0.9609
Uniform(-10,10)	0.9247	0.9603	0.9623

Table: Averaged accuracy for different types of models and weights priors. Noised dataset.

In the table all models are MLPs, type 1 model contains 1 hidden layer with 200 parameters, type 2-1 hidden layer, 400 parameters, type 3-2 hidden layers, 200 parameters.

Markov Chain Monte Carlo

CNN experiments

Introduction

Table: Experiments with CNN type 5 model

Normal(0,10)	Laplace(0,10)	Uniform(-10,10)
0.2627	0.3772	0.2842

Type 5 model had two convolutional layers:

$$(k = 3, in_dim_1 = 1, out_dim_1 = 4, in_dim_2 = out_dim_2 = 4)$$

and one linear output layer (4, 10).

Markov Chain Monte Carlo

Introduction

Figure: Confusion matrix. Laplace(0,10) priors, type 5 CNN model

- There is no exact prior distribution, that is better than another ones.
- It is important to change the characteristics of the prior distributions.
- It is always better to begin the experiments with Bayesian networks from one deterministic model, that have the best results for the task.

- Although it's training of MCMC a lot of time, the results on MNIST dataset turned out to be quite good and consistent.
- As in the case with variational inference it is hard to tell, which prior distribution is better.
- To evaluate, whether our model has converged or not it is proposed to use histograms of r-hat estimation for each layer.
- MCMC's trained models showed their robustness on noised validation set.

Code is available on GitHub: https://github.com/MrSkonr/Bayesian-Neural-Net

