ELEC 2141

Final Exam, Session 1, 2012

Qustion 1

i)
(i)
(i)
(i)
$$F = Em(0, 2, 5, 6, 7, 12, 14)$$

(2)
$$F = TIM(1, 3, 4, 8, 9, 10, 11, 13, 15)$$

c) Prime implicants:

d) Essential Prine implicants:

(2)
$$\overline{w} \times \overline{z}$$
, $w \times \overline{z}$, $\overline{w} \times \overline{z}$
e) $F = \overline{w} \times \overline{z} + w \times \overline{z} + \overline{w} \times \overline{z} + \left\{ \begin{array}{c} \overline{w} \times Y \\ \overline{w} Y \overline{z} \\ \text{or} \\ \times Y \overline{z} \end{array} \right\}$

$$f) = \overline{X} + w + w + \overline{w} + \overline{w} \times \overline{Y} = \overline{Y}$$

$$(2)$$

$$F = (x+\overline{z})(\overline{w}+\overline{z})(\overline{w}+x)(w+\overline{x}+Y+z)$$

$$(A+B)(\overline{A}+C)(B+C)=$$

$$\begin{array}{ll}
(4) & A\overline{A}B + A\overline{A}C + ACB + ACC + B\overline{A}B + B\overline{A}C + BCB + BCC = \\
ABC + AC + \overline{A}B + \overline{A}BC + BC + BC = \\
\end{array}$$

$$AC + \overline{A}B + BC = (A + B)(A + C) V$$

i) (onvert to decimal first:

$$3A57.17_{(12)} = 3 \times 12^{3} + 10 \times 12^{1} + 5 \times 12 + 7 + 1 \times 12^{-1} + 7 \times 12^{-2}$$

$$= 5184 + 1440 + 60 + 7 + \frac{1}{12} + \frac{7}{144}$$

$$= 6691 \frac{19}{144} (10)$$

Concert integer part to senany:

$$6691/6 = 1115$$
 $R = 1$
 $1115/6 = 185$ $R = 5$
 $185/6 = 30$ $R = 5$
 $30/6 = 5$ $R = 0$
 $5/6 = 0$ $R = 5$

concert fractional part to senary:

$$\frac{19}{144} \times 6 = \frac{19}{24} \qquad I = 0$$

$$\frac{19}{24} \times 6 = 4\frac{3}{4} \qquad I = 4$$

$$\frac{3}{4} \times 6 = 4\frac{1}{2} \qquad I = 4$$

$$L = 4$$

$$L = 3$$

$$L = 3$$

$$L = 3$$

So!

a) In a Moore machine, the output is a function of the current state only and may change only when the state changes.

In a Mealy machine, the output is a function of both the current input and the current state and may charge when either the input or the state charge.

output = f(input, state)

b)

(2)	current state	next x=0	state X=1	output
	A	B B	A	O
	B	0	C	1
	C	D	C	0
	p	D	A	1

c)

B X		1) 0. (current state	Nex X=0	t state	output
C B~D A~C X	=>	n ~ n	=>	A	B	A	0
D X Anc X A B C				R	R	A	1
				10		, ,	

d (3)) //o	0/1	(B)0/1
		1	

current state	next state, output $x=0$ $x=1$
A	B,1 A,0
ß	B, 1 A, 0

e)

module fsm(clk, x, 2);

input clk, x;

output 2;

Parameter A = 1'bo, B = 1'b1;

reg state = A;

assign == state;

always @ (posedge CLK) begin

State = X? B: A; end

endmodule

Question	L 3					
i)	use Jk	table:	9	QJF	K	
(7)			0	0 0		
			0		×	
			1	O X	0	
			(
current 1	next st	late		flip-flop	inputs	
state	X=0	×=1	1	=0	X=	
9,90	4, 40	9,90		Toko	J.K.	Jo Ko
00	0 0	01	OX	ο×	ΟX	l ×
0 1	0 0	10	OX	×ι	l ×	ΧI
10	00	Ol	×Ι	OX	×(I ×
1 1	11	00	XO	Xo	×I	ΧI
J.: 9.1.	9,	K, :	91	Jo:	9,	Ko: 9,
x 00	0 X X	× × ×	0 1	9.90 OX	IX 0	0 X 1 0 X
×[10]	II X X	×[1]X X		K[I]X	9.	×[1]X X
J,=	9. = 9.×	K, = 9	_ +×	8.	= ×	K = 9, +x
	×	•		1-	7	
				J,		
				J.	7	
				K.		
				CLK		
		-				

() a) This circuit implements on active-low SR-Latch (or: 5 R-Latch) b) set the latch to output Reset the latch to output Latch output 7 ~ Q -> Latch output complemented c) Symbol: function table:

3) d)

CLK Dorce of D

e) Add Igic to the input of the existing 10 flip-flop:

2 possible options:

If s dominates:

5	R	D	IY
O	0	0	0
0	0	1	
O	(0	0
\circ	(1	O
1	0	0	1
1	\circ	(1
1	1	0	1
1	1	1	1

If R dominates:

S	R	0	Y
0	0	0	6
O	0	1	1
\circ	1	0	0
O	(1	0
(0		1
(O		1
1	1 0	5	0
l	(0
D []	0 0	0 0	5
		n	_

$$Y = SR + DR$$

$$= R (S + D)$$

b)
$$F = \overline{(AB+C)D} = \overline{(\overline{AB+C})D} = \overline{(\overline{AB}\cdot\overline{C})D}$$

3

A	B	C	Ŋ	F	Ē
O	0	0	0		O
O	0	0	١	1	0
O	0	(0	1	0
0	O	1	1	0	1
0	1	O	O	1	0
\circ	1	0	1	1	0
\circ	1	1	0	1.	O
O	1	1)	0	1
1	0	O	0	1	0
1	0	0	1	(0
1	O	1	0	1	0
1	O	1	1	0	1
1	1	O	0	1	C
1	1	O	(0	1
(1	1	0	1	O
(1	1	1	0	1

use F to find implementation using Non gate:


```
(i)
```

4-bits prime numbers: 2, 3, 5, 7, 11, 13

8

module Prime(N, F); input [3:0] N; output F; reg F; always @(N) begin if (N==2 || N==3 || N==5 || N==7 || N==13 || N==13

(other implementations one possible).

endmodule

The top row of D flip-flops forms a shift-register such that the input X is sampled on every rising edge of the clock and the previous bits are shifted to the right. Every 8 clock cycles, the right-most flip-flop contains the LSB, while the MSB is available at the input.

The 3 T flip-flops with asynchronous Reset are connected to form a 3-bit counter that will generate a rising edge at its output every 8 clock cycles. This output is used to clock the bottom row of 10 flip-flops that will therefore sample the top row every 8 clock cycles and hold its value for the next 8 clock cycles (while the next Serial number is read in).

The comparator works as Lollons:

and: $b \ge 30$ if $b_1 = b_3 = b_2 = b_1 = 1$ or

any of b_7 , b_6 , $b_7 = 1$

There fore, for b < 30:

F= (b, b2 b3 b4) + b5 + b6 + b7