

VI HOWE, George William Osborn. Elektrotechn. — 1921–46 Prof., '46 Prof. Emer., Univ. of Glasgow; '25–58 Dir., Mullard Radio Valve Co. Ltd.; '46–58 Dir., Philips Hamilton Works Ltd.; '24 Pres. of Sect. G (Engineering) of the British Assoc. for the Advancement of Science. — '14 Hon. D. Sc. (Univ. of Adelaide); '47 Hon. LL. D. (Univ. of Glasgow). — '56 Faraday Medal (Instn. of Electrical Engrs.).

*1875, Dez. 4, Charlton, Kent;
†1960, Nov. 7, Glasgow.

Zur Biogr. Wireless Engr. 33 ('56) 76 (m. Bildn.). — Wireless World 62 ('56) 106 (m. Bildn.).

Nekr. J. Greig, Nature [London] 189 ('61) 183f. — R. L. Smith-Rose, Proc. physic. Soc. 77 ('61) 1229f. — A. J. S., J. Instn. electr. Engr. (N.S.) 7 ('61) 180. — Wireless World 66 ('60) 593.

HZ. Wireless Engr. 1926–1955.

W. The generation and distribution of electric power (Greenock '33) 19 S. (Papers of the Greenock Philosophical Society).

Electrical Rev. The magnetic field: 116 ('35) 481. — The field of luminous flux: 123 ('38) 679f.

Electrician Magnetic field of a rotating cylindrical bar magnet: 118 ('34) 329f. — Electromagnetic induction: 114 ('35) 5–7, 155. — Some magnetic misconceptions. Flux refraction. Lateral pressure: 115 ('35) 601f. — Fundamental dimensions. An injustice to Maxwell: 119 ('37) 601f. — Fundamentals of electromagnetism. Some criticisms of a restatement of principles: 123 ('39) 289f.

Engineer [London] The concepts and language of electrical engineering: 166 ('38) 262–64. — Genesis of the thermionic valve: 198 ('54) 745f.

Engineering Fundamental dimensions in electrical science: 141 ('36) 129. — Electrical dimensions and units: 143 ('37) 145.

J. brit. Instn. Radio Engr. Radio waves and the ionosphere: 7 ('47) 36–42. — The inaugural Clerk Maxwell memorial lecture: 11 ('51) 545–54.

J. Instn. electr. Engr. The genesis of the thermionic valve: (N.S.) 1 ('55) 158.

Nature [London] Magnetic and electrical dimensions: 139 ('37) 473, 844. — The theory of dimensions: 513. — Alexander Graham

Bell and the invention of the telephone: 159 ('47) 455–57.

Proc. Instn. electr. Engr., Part 1 Some electromagnetic problems: 97 ('50) 129–35.

Science Progr. [London] Symbols, units and nomenclature: 30 ('35) 268–71.

Wireless Engr. Acoustic nomenclature and definitions: 9 ('32) 307–09. — A new method of modulation: 367f. — High selectivity tone-corrected circuits: 605–07. — Valve data-diagrams: 665f. — Iron powder compound cores for coils: 10 ('33) 1–3. — Capacitive or capacitative?: 3. — The principles of electromagnetism: 61–64, 179–82. — Editorial: 121f. — Interference with broadcast reception: 237f., 645–47; 11 ('34) 404. — Iron core tuning coils: 10 ('33) 293–95. — The cathode ray oscilloscope in radio research: 351–53. — Electromagnetic induction: 409–12. — Iron-powder cores: 467f. — Some new types of broadcast transmitting aerials: 525f. — The tilt of radio waves and their penetration into the earth: 587–91. — What is demodulation?: 11 ('34) 1f. — Reflection of waves at earth's surface: 59f. — The effect of screening cans on the effective inductance and resistance of coils: 115–17. — Television cables: 173f. — Band-pass filters in receiver design: 231–33. — Recent developments in insulating materials: 291f. — Electromagnetic screening: 347–50. — Radio interference from luminous gas tubes: 403f. — An interesting experiment in the removal of interference: 404f. — Second channel and harmonic reception in super-heterodynes: 461–63. — Recent developments in frequency-changing valves: 581f. — The operation of several transmitters on the same wavelength: 639–41. — Electrically maintained tuning forks: 12 ('35) 1f. — The Tellegen effect: 57f. — The production of ultra-short waves: 119–21. — The broadcasting of sound and vision on ultra-short waves: 177f., 237. — The glow discharge potential divider: 235–37. — The behaviour of high resistances at high frequencies: 291–95, 374. — Electric lines of force and Faraday tubes: 355f. — A further note on high resistances at high frequencies: 413f. — A common defect in cone loudspeakers: 467f. — An interesting problem in acoustics: 581. — The temperature coefficient of inductance: 637f. — The nature of atmospherics: 13 ('36) 1f., 118. — Radiation resistance of aerials: 57f. — A new super-heterodyne principle: 117f. — The magnetic recording of sound: 175–78. — Iron cores for radio coils: 235f. — A new type of wave transmission: 291–93. — Cathode-ray oscilloscopy: 403–05. — Hyper-frequency wave guides: 459–61. — Side-band phase distortion: 517f. — Magnetron oscillators: 573–75. — A new high efficiency power amplifier for broadcast transmitters: 627–29. — Electrical and magnetic dimensions: 14 ('37) 1–4. — Broad-

band television cables: 111f. — The invention of the telephone: 165–67. — Bridge for direct impedance measurement: 227f. — The design of coupling filters in broadcast receivers: 289–92. — Some further points in the design of coupled circuit filters: 347–50. — Standardization in science: 401f. — Guglielmo Marconi: 465f. — The physical reality of Zenneck's surface wave: 525f. — The validity of the fundamental laws of electromagnetism: 526. — Symbols in electromagnetism with special reference to incremental magnetization: 585f. — An interesting complex coupling: 586f. — Some new methods of measuring magnetic field strength: 639f. — The magnetron and the generation of ultra-short waves: 15 ('38) 1–3. — The propagation of electromagnetic waves in water: 67f. — Short-wave transmitters with spherical circuits: 125–27. — Accurate measurements of the Luxemburg effect: 187f. — A Faraday discovery: 245f. — A new type of gas-filled amplifying valve: 301f. — Maxwell's equations in terms of the flux-cutting concept: 355–57. — Absolute permittivity: 357. — Should the rationalized M. K. S. system of units be adopted ?: 411–13. — Distribution of magnetic flux in an iron powder core: 471f. — The scale of loudness: 533f. — Reflection and absorption of electromagnetic waves by dielectric strata: 593–95. — Two new loudspeakers: 649f. — Applying transmission line theory to aerials: 16 ('39) 1f. — Heinrich Rudolph Hertz – fifty years after: 55f. — The reception of ultra-short waves by metal horns: 109f. — The use of supersonic waves as a light-relay in television: 167f. — The measurement of the "quality" of coils: 221–23. — A classic experiment: 271–73. — Another classic experiment: 327–29. — A band-pass filter of variable width with constant form-factor and middle-frequency: 381f. — Permeability at very high frequencies: 541f. — Directive acoustic pick-ups: 589–91. — Coercive force: 20 ('43) 469–72. — The network theorem of Pleijel: 472. — Early radio inventions: 521–23. — Phase and group velocity in the ionosphere: 577–80. — The effect of the earth's magnetic field in the ionosphere: 21 ('44) 1–3. — A problem of two electrons and Newton's third law: 105–07, 511. — Resonance in quarter-wave lines: 509–11. — Aerial resistance and cable impedance: 23 ('46) 65f. — Effective length of a half-wave dipole: 95f. — Electromagnetic problems: 181f. — Problem of two electrons: [?]. — The unit-pole definition of magnetic field strength: 207–10. — Simple transmission formula: 235f. — Is rotation relative or absolute ?: 263f. — Permeability of iron-dust cores²⁾: 291f., 313–15. — Stresses in magnetic and electric fields: 319–21. — Use of analogies: 24 ('47) 1–3. — Permeability of dust cores: 33f. — Use of standard terms and symbols: 34. — Alexander Graham Bell, born 3rd March 1847

— died 2nd August 1922: 65–67. — On the use of equivalent circuits to represent the valve: 97–99. — Electric-magnetic analogy³⁾: 131f. — Experimental basis of electromagnetism: 161f. — Amplitude and frequency modulation: 191. — Vicalloy – a workable alloy for permanent magnets: 192. — The velocity of light: 28 ('51) 99f. — Cavity resonator regarded as a transmission line: 29 ('52) 29f. — Duality between triode and transistor: 57f. — Mechanical force on the short side of a long rectangular circuit: 83 f. — Effect of torsion on a longitudinally-magnetized iron wire: 115f., 173. — Further details of the Droom-gole effect: 117f. — The gyrator: 143–45. — The microwave gyrator: 171–73. — Ionic bombardment of silicon: 199f. — Electric force and potential gradient: 225. — Dr. H. C. Pocklington: 255f. — A novel form of D.C. motor: 285–87. — Photoelectric properties of ionically-bombarded silicon: 311f. — The Geiger-Müller counter: 80 ('53) 27f. — Folded dipoles: 51–53. — Microstrip: 75f. — Transmission-line formulae: 101f. — Double-slug transformers: 131f. — The quartz tuning fork: 161–63. — Germanium: 185f. — Dimensional analysis, units and rationalization: 209f. — Sintered magnetic materials: 235–37. — The quantum: 263f. — What is the meaning of total rationalization: 293f. — Negative ions in cathode-ray beams: 31 ('54) 195–97. — The teaching of electromagnetism: 253–55. — Solar field strength: 84 ('57) 31f. — — Zahlreiche weitere Artikel (Editorial), zum Teil anonym, vor allem in den Jahrgängen 9 ('32) und 16 ('39)ff.

Mit: ¹⁾ R. E. Burgess; ²⁾ H. W. Lawson; ³⁾ G. H. Livens.