Chương 3	Tích phân
	Câu 1: Cho các hàm $f(x)$ và $F(x)$ xác định trên (a,b) và $F'(x) = f(x)$ với mọi $x \in (a,b)$.
	Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu $G(x)$ là một nguyên hàm của $f(x)$ thì $G(x) - F(x) = 0$.
	B. $F(x)$ là một nguyên hàm của $f(x)$ trên (a,b)
	C. Một nguyên hàm của $2f(x)$ là $2F(x) + 3$.
	D. Hàm $f(2x)$ có nguyên hàm là $\frac{1}{2}F(2x) + C$; C là hằng số tùy ý.
	E. $kF(x)$ là một nguyên hàm của $kf(x)$ trên (a, b) ; với $k \neq 0$ là hằng số.
	F. $f(x)$ có họ nguyên hàm là $F(x) + C$, C là hằng số tùy ý.
	Câu 2: Tính $I = \int (\frac{1}{\sin^2 2x} - \frac{1}{2}\sin 4x) dx$
	A. $f(x) = -\frac{1}{2}\cot 2x + \frac{1}{8}\cos 4x + C$
	B. $f(x) = \frac{1}{2} \cot 2x - \frac{1}{8} \cos 4x + C$
	C. $f(x) = -\frac{1}{2}\tan 2x + \frac{1}{8}\cos 4x + C$
	D. $f(x) = -\frac{1}{2}\cot 2x + \frac{1}{8}\sin 4x + C$
	E. $f(x) = \frac{1}{2}\cot 2x + \frac{1}{8}\cos 4x + C$
	$F. f(x) = -\frac{1}{2}\cot 2x + \frac{1}{8}\cos x + C$
	Câu 3: Tìm hàm các $F(x)$ biết $F'(x) = \frac{1}{\sqrt{2x-3}}$
	A. $F(x) = \frac{1}{2}\sqrt{2x-3} + C$
	$B. F(x) = 2\sqrt{2x-3} + C$
	C. $F(x) = \sqrt{2x - 3} + C$
	D. $F(x) = \frac{1}{(2x-3)\sqrt{2x-3}} + C$
	E. $F(x) = -2\sqrt{2x-3} + C$
	F. $F(x) = -\frac{1}{2}\sqrt{2x-3} + C$
	Câu 4: Hàm số $F(x) = \ln(\sin x - \cos x)$ là 1 nguyên hàm của hàm nào dưới đây (giả sử
	điều kiện xác định được đảm bảo)
	$A. f(x) = \frac{\cos x + \sin x}{\sin x - \cos x}$
	$B. f(x) = \cos x + \sin x$
	$C. f(x) = \frac{-\cos x - \sin x}{\sin x - \cos x}$
	D. $f(x) = \frac{\sin x - \cos x}{\sin x - \cos x}$ E. $f(x) = \frac{-\sin x + \cos x}{\sin x + \cos x}$
	$E. f(x) = \frac{-\sin x + \cos x}{\sin x + \cos x}$
	$F. f(x) = -\cos x - \sin x$
	Câu 5: Tính tích phân $I = \int \frac{x dx}{2x^2 - 21}$
	A. $I = -\frac{1}{(2x^2 - 21)^2} + C$
	B. $I = \frac{1}{(2x^2 - 21)^2} + C$
	C. $I = \frac{1}{2x^2 - 21} + C$

D. $I = -\frac{1}{4} \ln 2x^2 - 21 + C$	
E. $I = -\frac{1}{2x^2 + 21} + C$	
F. $I = \frac{1}{4} \ln 2x^2 - 21 + C$	
Câu 6: Cho $\int_{1}^{2} f(x)dx = 1$ và $\int_{1}^{4} f(t)dt = -3$. Tính $I = \int_{2}^{4} f(u)du$	
A. I = -2	
B. I = 2	
C. I = -4	
D. I = 4	
$E. I = \frac{1}{2}$	
F. $I = -\frac{1}{2}$	
Câu 7: Tính tích phân $I = \int_0^1 \left[\frac{1}{1+x^2} + \frac{1}{\sqrt{4-x^2}} \right] dx$	
$A. I = \frac{7\pi}{}$	
$R I = -\frac{12}{5\pi}$	
A. $I = \frac{7\pi}{12}$ B. $I = -\frac{5\pi}{12}$ C. $I = \frac{\pi}{12}$	
$C. I = \frac{12}{12}$ $C. I = \frac{\pi}{12}$	
$\begin{bmatrix} C. I = \\ 12 \\ 5\pi \end{bmatrix}$	
E. $I = \frac{5\pi}{12}$	
$F. I = -\frac{7\pi}{12}$	
Câu 8: Độ dài cung $y = \ln x$, $\sqrt{3} \le x \le 2\sqrt{2}$ là	
$A.\frac{4}{3}$	
B. $1 - \frac{1}{2} \ln \frac{3}{2}$	
$C. 1 + \ln \frac{3}{2}$	
D. $1 - \ln \frac{3}{2}$	
E. $1 + \frac{1}{2} \ln \frac{3}{2}$	
$F. 1 + \frac{2}{3} \ln \frac{2}{3}$	
Câu 9: Tính $I = 2 \int_0^{+\infty} x^3 e^{-x^2} dx$	
A. I = -1	
B. I = 0	
$C. I = -\frac{1}{2}$	
D. $I = +\infty$	
E. $I = \frac{1}{2}$	
$F. I = \overline{1}$	
Câu 10: Tìm nguyên hàm của $f(x) = \frac{x+1}{\sqrt{4+x^2}}$	
A. $-\sqrt{4+x^2} - \ln x + \sqrt{4+x^2} + C$	
B. $\sqrt{4+x^2} - \ln x+\sqrt{4+x^2} + C$	
$C\ln x + \sqrt{4 + x^2} + C$	
D. $\ln x + \sqrt{4 + x^2} + C$	

E. $\sqrt{4+x^2} + \ln x+\sqrt{4+x^2} + C$
$ F\sqrt{4 + x^2} + \ln x + \sqrt{4 + x^2} + C$
Câu 11: Cho hình phẳng <i>D</i> được giới hạn bởi $y = x^2$, $y = \frac{27}{x}$, $y = \frac{x^2}{27}$. Tính thể tích vật
thể tròn xoay khi quay D quanh trục Ox
$A.\frac{7\pi}{5}$
$\frac{5}{2\pi}$
B. — 5
B. $\frac{72\pi}{5}$ C. $\frac{972\pi}{5}$
D. $\frac{92\pi}{5}$ E. $\frac{97\pi}{5}$ F. $\frac{29\pi}{5}$
$\mathbf{F} = \frac{97\pi}{1}$
Σ. 5 29π
$F.\frac{2\pi}{5}$
Câu 12: Tích phân $\int_{1}^{+\infty} \frac{e^{\alpha x}}{x^{\beta}} dx$; $\alpha < 0$ hội tụ khi và chỉ khi
A. Không có giá trị α, β nào
B. $\alpha \leq 0, \beta > 1$
C. $\alpha < 0, \beta$ tùy ý
D. α tùy \hat{y} ; $\beta > 1$
E. $\alpha < -1$; $\beta > 1$
$\Gamma \sim 10.0 \times 1$
Câu 13: Tích phân $\int_{1}^{+\infty} \frac{e^{\alpha x}}{x + e^{\beta x}} dx$ hội tụ khi và chỉ khi
A. $\beta - \alpha > 0, \beta > 0$
B. $\beta - \alpha < 0$
$C. \alpha = 0, \beta > 0$
D. Không có giá trị α , β nào
E. $\alpha < 0$; β tùy ý
F. $\alpha > 0$; $\beta > 0$
12.00. 0, p. 0

Chương 4	Chuỗi
	Câu 14: Chuỗi $\sum_{n=0}^{+\infty} \left(\frac{2x}{e}\right)^n$ hội tụ nếu
	$A. x \in \left(-\frac{e}{2}, \frac{e}{2}\right)$
	B. $x \in (-\frac{e}{2}, \frac{e}{2}]$
	$C. x \in \left[-\frac{e^2}{2}, \frac{e^2}{2}\right]$
	D. $x \text{ tùy } \acute{y}$
	$E. x \in \left[-\frac{e}{3}, \frac{e}{3}\right]$
	$F. x \in (0, e)^2$
	Câu 15: Cho chuỗi dương $\sum_{n=0}^{+\infty} a_n$. Mệnh đề nào sau đây đúng?
	A. Nếu $a_n \to 0$ khi $n \to \infty$ thì chuỗi trên hội tụ.
	B. Nếu $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$ thì chuỗi hội tụ.
	C. Nếu chuỗi phân kỳ thì $a_n \to 0$ khi $n \to \infty$. D. Nếu $a_n \to 0$ khi $n \to \infty$ thì chuỗi trên phân kỳ.
	E. Nếu $\lim_{n\to\infty} a_n$ không tồn tại thì chuỗi trên hội tụ.
	F. Nếu $\lim_{n\to\infty} a_n = 1$ thì chuỗi trên hội tụ.
	Câu 16: Chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^{2+\alpha}}$ hội tụ nếu
	A. $\alpha > -1$
	$A. \alpha \ge -1$ $B. \alpha \ge -1$
	$C. \alpha < -2$
	D. $\alpha < -1$
	E. $\alpha \le -1$ F. $\alpha \le -2$
	Câu 17: Tổng của chuỗi $1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \cdots$ là
	A. 2
	B. 3
	C. 2 D. 4
	D. 4
	D. $\frac{5}{2}$ F. $\frac{2}{5}$
	J
	Câu 18: Gọi S_n là tổng riêng thứ n của chuỗi chuỗi $\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{1}{2n+1}$; khi đó S_{51} –
	$S_{50} = \frac{1}{1}$
	$A\frac{1}{103}$
	B. $\frac{1}{103}$ C. $\frac{1}{51}$
	$C.\frac{1}{51}$
	D. 1
	E. $\frac{2}{50}$
	F. 0

Câu 19: Cho chuỗi $\sum_{n=1}^{+\infty} \frac{n^2}{n^{\alpha-1}+1}$; (α là tham số). Mệnh đề nào sau đây đúng?
A. Chuỗi trên hội tụ khi và chỉ khi $\alpha > 2$.
B. Chuỗi trên hội tụ khi và chỉ khi $\alpha > 4$.
C. Chuỗi trên phân kỳ.
D. Chuỗi trên hội tụ khi và chỉ khi $\alpha < 4$. E. Chuỗi trên hội tụ khi và chỉ khi $\alpha < 2$.
F. Chuỗi trên hội tụ khi và chỉ khi $2 < \alpha < 4$
Câu 20: Chuỗi $\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}$ có
A. tổng riêng thứ n là $S_n = 1 - \frac{1}{2n+1}$
B. tổng riêng thứ n là $S_n = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$
C. tổng riêng thứ n là $S_n = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2n+1} \right)$
C. tổng riêng thứ n là $S_n = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2n+1} \right)$ D. tổng riêng thứ n là $S_n = \frac{1}{2} - \frac{1}{2n+1}$
E. tổng riêng thứ n là $S_n = 1 + \frac{1}{2n+1}$
F. tổng riêng thứ n là $S_n = \frac{1}{2} + \frac{1}{2n+1}$
Câu 21: Bằng cách so sánh với chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$, phát biểu nào sau đây đúng
A. Chuỗi $\sum_{n=0}^{+\infty} \frac{n+1}{\sqrt{n^3}+1}$ hội tụ
B. Chuỗi $\sum_{n=1}^{+\infty} \frac{2n+1}{n^2+\ln n}$ hội tụ
C. Chuỗi $\sum_{n=1}^{+\infty} \frac{2n+1}{n(\sqrt{n^3}+2)}$ hội tụ
D. Chuỗi $\sum_{n=1}^{+\infty} \frac{2n^2+2}{5n^3+3}$ hội tụ
E. Chuỗi $\sum_{n=1}^{+\infty} \frac{3n}{3n^3 + \ln(n+1)}$ phân kỳ
F. Chuỗi $\sum_{n=1}^{+\infty} \frac{2n+5}{n^2+8}$ hội tụ
Câu 22: Cho chuỗi $\sum_{n=1}^{+\infty} \frac{4n}{8^n + \alpha n - 5}$ (α là tham số). Mệnh đề nào đúng?
A. Chuỗi trên luôn hội tụ.
B. Chuỗi hội tụ khi và chỉ khi $\alpha < 0$
C. Chuỗi hội tụ khi và chỉ khi $\alpha \leq 0$
D. Chuỗi hội tụ khi và chỉ khi $\alpha > 0$ E. Chuỗi hội tụ khi và chỉ khi $\alpha \geq 0$
F. Chuỗi hội tụ khi và chỉ khi $\alpha \leq 1$
Câu 23: Chuỗi $\sum_{n=1}^{+\infty} \frac{\cos(\pi n)}{n^2}$
A. hội tụ tuyệt đối
B. phân kỳ
C. hội tụ tương đối
D. có số hạng tổng quát dần về $\frac{1}{2}$
E. có số hạng tổng quát dần đến +∞
F. các khẳng định đều sai.

Câu 24: Tìm miền hội tụ của $\sum_{n=1}^{+\infty} (-1)^n n! (x-2)^n$
A. [-1,1)
B. [-1,1]
C. (-1,1]
D. (1,3)
E. {2}
F. [1,3]
Câu 25: Chuỗi $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\ln^{\alpha}(n+1)}$; (α là tham số) hội tụ khi và chỉ khi
A. $\alpha > 1$
B. $\alpha < 0$
$C. \alpha > 0$
$D. \alpha \geq 0$
E. $\alpha \geq 1$
F. $\alpha = 0$