Example of Traffic Analysis Attacks

Components of Tor

- □ **Client**: the user of the Tor network
- Server: the target TCP applications such as web servers
- Tor (onion) router: the special proxy relays the application data
- Directory server: servers holding Tor router information

How Tor Works? --- Circuits

- Alice herself chooses the relay routers and creates circuits through the relay routers
 - Source routing
 - Circuit: communication tunnel from Alice to Bob
 - These circuits are dedicated for Alice

How Tor Works? --- Onion Routing

- A circuit is built incrementally one hop by one hop
- Onion-like encryption
 - Alice negotiates an AES key with each router
 - Messages are divided into equal sized cells
 - Each router knows only its predecessor and successor
 - Only the Exit router (OR3) can see the message, however it does not know where the message is from

Traffic Analysis Attack against Tor

Alice is sending messages to Bob through an encrypted and anonymous circuit, how can Evil confirm the communication relationship between Alice and Bob?

Traffic Analysis Attack?

□ Idea?????

- Passive based
- Active based

Active Traffic Marking

- Change traffic flow rates, packet timing, packet size
- Traffic rate changes represent a "mark", i.e. a special secret code

Investigator knows that Sender communicates with Receiver!

Problem Space of Active Traffic Analysis

Traffic Camouflage in Networking Security

Camouflage – A General Principle

- Camouflage
 - Conduct covert acts or operations
- Broad Applications

Tiger exhibits mimicry to remain indiscernible from the surrounding

Army cadets put on camouflage clothing and face paint

Motivation

- In cyberspace networking systems, a large number of attacks and defenses exist
 - Attacks: worms, critical infrastructure identification, denialof-service
 - Defenses: detection of attacks, traceback of malicious origins
- Existing attacks and defenses have limitations
 - A worm can propagate fast, but can easily be detected
 - A defender traces attackers, but alarms them
- Sophisticated attacks and intelligent defenses are more effective
 - In hiding the propagation, a worm can ultimately infect more computers
 - In hiding itself, a defender can secretly identify attackers.

Classification of Traffic Camouflage

Classification of Traffic Camouflage (cont.)

Proactively identify defense system and bypass detection

Silently manipulate attack traffic to avoid detection

Classification of Traffic Camouflage (cont.)

