2019-2020学年第一学期

《数学实验》上机测试题

适用专业: 计算1801-04

一、用MATLAB求解下列各题(只写输入,不写输出)

1. 求解方程
$$x^3 - 5x + 4 = 0$$

2. 求解方程组
$$x^2 + y^2 = 10.4$$
, $x - y = 1.2$ 。

3. 求极限
$$\lim_{x\to 0} \frac{\sin x - x \cos x}{x^2 \sin x}$$
 。

4. 已知
$$f(x,y) = e^{2x}(x^3y + 2xy + y^2)$$
, 求 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial x^2}$ •

5. 计算积分
$$\int x \arctan x dx$$
. 与 $\int_0^1 \int_0^y \ln(1+x^2+y^2) dx dy$.

6. 求微分方程的初值问题的解析解:
$$y''-3y'+2y=\sin x$$
, $y'(0)=1$, $y(0)=0$.

8. 计算
$$\exp(\pi + \ln 2.34) + \sqrt[7]{1.234 \times 10^{56}}$$
, 其中n是你的学号的最后3位数。

9. 在同一坐标系中画出三个函数
$$y = \cos 2x$$
, $y = x^2$, $y = x$ 的图形, 并给坐标横轴和 纵轴分别标记为 x 和 y , 自变量范围为: $-2 \le x \le 2$.

10. 绘制曲面:
$$z = x^2 + y^2$$
, $|x| \le 2$, $|y| \le 2$ 。

11. 绘制曲线:
$$x = \sin t$$
, $y = 2\cos t$, $z = \sin(2t)$, $t \in [0, 2\pi]$.

12. 求方程组
$$\begin{cases} \frac{dx}{dt} + x + 2y = e^t \\ \frac{dy}{dt} - x - y = 0 \end{cases}$$
的通解。

二、用MATLAB求解下列各题(写输入语句,输出仅写最终结果)

1. 编写函数文件
$$f(x) = \begin{cases} \ln(x^2+1), & x \ge 0 \\ e^{-x}-1, & x < 0 \end{cases}$$
,并在[-1,1]上绘制该函数,求 $f(1.5)$ 。

2. 求函数
$$f(x, y) = x^3 + y^3 - 3x^2 - 3y^2$$
 的极值。

- 3. 求函数 $f(x) = x^4 4x^3 + 2x 5$ 的凹凸区间和拐点。
- 4. 对下面4个点(x_i , y_i): (1, 1.1), (2, 2.1), (3, 2.3), (4, 1.5), 用二次多项式拟合,并给出二次多项式在这些点的拟合值。
- 5. 求由曲线 $y = \ln(x+1), x=1$ 与 x 轴所围成的图形的面积。
- 6. 求曲线 $y = x^2$, $0 \le x \le 1$ 的弧长的近似值。
- 7. 计算积分 $\iint_D x y dx dy$, 其中 D 为由曲线 $x=1, y=x^2, y=0$ 所围成的区域。
- 8. 对函数 $f(x) = x^2 + 2x$ 在区间[0,1]上观察拉格朗日中值定理的几何意义。
- 9. 用两种数值近似方法求积分 $\int_1^3 \frac{\sin x}{x} dx$ 近似值。
- **10.** 对于方程 $x^2 + 40\sin x = 0$,绘图观察根的分布情况,选择适当的迭代初值,求出该方程的最大的根。
- **11.** 设数列 $x_n = \frac{1}{1^3} + \frac{1}{2^3} + \dots + \frac{1}{n^3}$, 计算这个数列的前30项的近似值。
- 12. 用 ode45 求方程组 $\begin{cases} x_1' = x_2 \\ x_2' = 1000(1 x_1^2)x_2 x_1 \end{cases}$ 的数值解(仅写输入)。