M2 ORO: Advanced Integer Programming Final Exam – 2nd session

january 18, 2010

duration: 2 hours.

documents: lecture notes are authorized. No book, no book copy.

grades: 20 points = 3 points (Modeling) + 17 points (Relaxations).

The bonus questions tagged with (*) are optional.

Notations:

conv(X) the convex hull of X

 $\mathbb{R}, \mathbb{R}_+, \mathbb{R}_{*+}$ the sets of real, non-negative real, and positive real numbers

EMN/SD/M2 ORO/AIP/exam-2 page 1/4 EMN/SD/M2 ORO/AIP/exam-2 page 2/4

1 Modeling

Problem 1 Given a certain number of regions, the problem is to decide where to install a set of emergency service centers. For each possible location, we know the cost of installing a service center at this location, and which regions (in the neighborhood) it will be able to service. The goal is to choose a minimum cost set of service centers so that each region is covered.

Question 1 (3 points).

Q1.1. Formulate this problem as an Integer Linear Program.

2 Relaxations

Problem 2 The Generalized Assignment Problem (GAP).

Assign n items to m knapsacks, with:

p_{ij} = profit of item j if assigned to knapsack i,

 $w_{ij} = weight of item j if assigned to knapsack i,$

ci = capacity of knapsack i,

such that:

- (1) each item is assigned to exactly one knapsack,
- (2) the total weight assigned to a knapsack does not exceed its capacity,
- (3) the sum of the profits is maximized.

Question 2 (17 points).

Q2.1. Model problem (GAP) as an Integer Linear Program.

2.1 Relaxation of the semi-assignment constraints

Consider the variant (LEGAP) of problem (GAP) where condition (1) is replaced by

(1') each item is assigned to at most one knapsack.

- **O2.2.** Compare the feasibility of (GAP) and (LEGAP).
- **Q2.3.** Name the problem to which (LEGAP) reduces when the number of knapsacks is $\mathfrak{m}=1$; name the problem to which (LEGAP) reduces when the cost and profit of each item are independent of the knapsack it is assigned to.
- **Q2.4.**(*) Show that any instance (n, m, p, w, c) of (LEGAP) is equivalent to an instance (n', m', p', w', c') of (GAP) such that n' = n and m' = m + 1 (define p', w', and c').

2.2 Relaxation of the capacity constraints

Consider (R_0) the combinatorial relaxation of (GAP) obtained by removing the capacity constraints (2), and let \bar{N} be an optimum solution of (R_0) , defined as follows: for each knapsack i, \bar{N}_i denotes the set of items assigned to i. Furthermore, \bar{M} denotes the set of knapsacks whose capacity is exceeded in the relaxed solution \bar{N} .

- **Q2.5.** Express the optimum value u_0 of (R_0) .
- **Q2.6.** Express a condition under which, \bar{N} is a feasible solution of (GAP).

Note that to make \tilde{N} feasible for (GAP), a number of items assigned to knapsacks with violated capacity have to be reassigned. This observation will allow us to compute an improved upper bound u_1 on u_0 .

Q2.7. For each knapsack $i \in \bar{M}$ with violated capacity and for each item $j \in \bar{N}_i$ assigned to i, consider a feasible solution $\bar{N}(j)$ of (R_0) obtained from \bar{N} by reassigning item j to any knapsack other than i. Estimate the maximum value u(j) of solution $\bar{N}(j)$ compared to the value u_0 of \bar{N} . Let $q_j = u_0 - u(j)$ denote the minimum penalty that is incurred to the profit of \bar{N} if item j is reassigned.

EMN/SD/M2 ORO/AIP/exam-2 page 3/4

Q2.8. For $i \in \overline{M}$, consider the following 0-1 Knapsack Problem in minimization form:

$$\begin{split} (\mathsf{KP}_{\mathfrak{i}}) : & \nu_{\mathfrak{i}} \; = \; \min \sum_{j \in \tilde{N}_{\mathfrak{i}}} q_{j} y_{j} \\ & \quad \text{s.t.} \; \sum_{j \in \tilde{N}_{\mathfrak{i}}} w_{\mathfrak{i} \mathfrak{j}} y_{\mathfrak{j}} \geqslant (\sum_{j \in \tilde{N}_{\mathfrak{i}}} w_{\mathfrak{i} \mathfrak{j}} - c_{\mathfrak{i}}) \\ & \quad y_{\mathfrak{j}} \in \{0,1\} \end{split}$$

Interpret the value ν_i in relation to \bar{N} . (hint: exhibit a solution of (R_0) obtained from \bar{N} and an optimum solution of (KP_i) .)

- **Q2.9.**(*) Show that $u_1 = u_0 \sum_{i \in \bar{M}} v_i$ is an upper bound for (GAP).
- **Q2.10.** For $i \in \overline{M}$, transform (KP_i) into an equivalent 0-1 Knapsack Problem in maximization form. (hint: transform each binary variable y_i into a new binary variable z_i .)
- **Q2.11.** Compute u_0 and u_1 for the instance of (GAP) defined by: n=7, m=2,

2.3 Dualization of the capacity constraints

Consider the lagrangian relaxation of (GAP) obtained by dualizing the capacity constraints (2).

Q2.12. Formulate the dual lagrangian relaxation in the following form:

$$(R_2): u_2 = \max\{fx \mid Ex \leq d, x \in conv(X)\}.$$

where $Ex \leq d$ are the dualized constraints, and $X \in \{0,1\}^{m \times n}$ is the set of feasible solutions of (R_0) .

- **Q2.13.** Let $\bar{X} \in \mathbb{R}^{m \times n}$ be the set of solutions of the LP relaxation of (R_0) ; show that $X = \bar{X}$
- **Q2.14.** Show that u_2 is equal to the optimum value \bar{z} of the LP relaxation of (GAP)
- Q2.15. Express the optimum value of a lagrangian subproblem for any given multipliers.

2.4 Dualization of the assignment constraints

Consider the lagrangian relaxation of (GAP) obtained by dualizing the assignment constraints (1).

- **Q2.16.** Show that each lagrangian subproblem can be decomposed into independent subproblems (name these subproblems).
- Q2.17. Consider the optimum \mathfrak{u}^λ of the lagrangian subproblem associated to the multipliers λ defined by:

$$\lambda_i = \max\{p_{ij} \mid i = 1, \dots, m\} - q_i, \forall j = 1, \dots, n$$

where q_j is defined in question Q2.7. According to Q2.10 and Q2.16, show that $u^{\lambda} = u_1$.

Q2.18. Compare the bounds $\mathfrak{u}_0,\,\mathfrak{u}_1,\,\mathfrak{u}_2$ in terms of quality and complexity.

EMN/SD/M2 ORO/AIP/exam-2 page 4/4