# Computing in/using memory

#### Asif Ali Khan

Fall Semester 2024

Department of Computer Systems Engineering

UET Peshawar, Pakistan

Nov 7, 2024

# **Recap: Near-memory computing architectures**

- Compute-near-memory tries to mitigate the data movement over the external bus by integrating small compute units on/closer to the memory chips
- UPMEM, is a commercially available, general-purpose CNM system
- Samsung and SK Hynix have developed ML-specific CNM systems
- ☐ These systems come with their software stacks
- But their programmability is still challenging
- ☐ High-level compilation flows, e.g., Cinnamon, target lowering high-level representations to these emerging architectures

# **Terminology overview**



**Do read:** Khan et al., "The Landscape of Compute-near-memory and Compute-in-memory: A Research and Commercial Overview", Arxiv 2024

□ The CIM paradigm aims to completely eliminate the data movement in the system

- The CIM paradigm aims to completely eliminate the data movement in the system
- The fundamental idea is to exploit the physical properties of the memory devices to perform computations

- The CIM paradigm aims to completely eliminate the data movement in the system
- The fundamental idea is to exploit the physical properties of the memory devices to perform computations
- Not every computation can be performed with every technology

- The CIM paradigm aims to completely eliminate the data movement in the system
- The fundamental idea is to exploit the physical properties of the memory devices to perform computations
- Not every computation can be performed with every technology







## The memory system organization



The most mature and widely used memory technologies

- The most mature and widely used memory technologies
- Have scaled nicely until recently

- The most mature and widely used memory technologies
- Have scaled nicely until recently



- The most mature and widely used memory technologies
- Have scaled nicely until recently





- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline
  - Each cell then pulls-down one of the bit-lines (depending on the cell value)

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline
  - □ Each cell then pulls-down one of the bit-lines (depending on the cell value)

- DRAM read operation
  - □ Precharge all bitlines to Vdd/2

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline
  - □ Each cell then pulls-down one of the bit-lines (depending on the cell value)

- DRAM read operation
  - □ Precharge all bitlines to Vdd/2
  - Activate wordline

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline
  - □ Each cell then pulls-down one of the bit-lines (depending on the cell value)

- DRAM read operation
  - Precharge all bitlines to Vdd/2
  - Activate wordline
  - Capacitor and bitline share charge
    - If capacitor is charged, bitlines voltage increases, i.e.,  $Vdd/2 + \delta$
    - lacktriangle If capacitor is discharged, bitline's voltage becomes Vdd/2  $\delta$

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline
  - Each cell then pulls-down one of the bit-lines (depending on the cell value)

- DRAM read operation
  - Precharge all bitlines to Vdd/2
  - Activate wordline
  - Capacitor and bitline share charge
    - lacktriangle If capacitor is charged, bitlines voltage increases, i.e.,  $Vdd/2+\delta$
    - lacktriangle If capacitor is discharged, bitline's voltage becomes Vdd/2  $\delta$
  - Senseamps sense the difference to determine 1 or 0

- SRAM read operation
  - Precharge all bitlines to Vdd and leave them floating
  - Activate the wordline
  - Each cell then pulls-down one of the bit-lines (depending on the cell value)

- DRAM read operation
  - Precharge all bitlines to Vdd/2
  - Activate wordline
  - Capacitor and bitline share charge
    - If capacitor is charged, bitlines voltage increases, i.e.,  $Vdd/2 + \delta$
    - lacktriangle If capacitor is discharged, bitline's voltage becomes Vdd/2  $\delta$
  - Senseamps sense the difference to determine 1 or 0

Note: Reads are destructive















Sources: Report on the HPC application bottlenecks, ExaNoDe, 2017, AMD



#### The rise of nonvolatile memories (NVMs)

#### Momentum is building around NVMs



(Source: MRAM Technology and Business 2019 report, Yole Développement, 2019)

#### The rise of nonvolatile memories (NVMs)

#### Momentum is building around NVMs



(Source: MRAM Technology and Business 2019 report, Yole Développement, 2019)



Zhang et al., 2020







Zhang et al., 2020

G. Yu, 2020

Lim et al, 2015





Parkin et al, 2008

- Each technology has its strengths and challenges
- □ PCM and MRAM receive a lot of traction in industry

# Memory technologies comparison

| Device                         | SRAM                 | DRAM               | RRAM             | PCM                    | STT-MRAM             | FeFET            |
|--------------------------------|----------------------|--------------------|------------------|------------------------|----------------------|------------------|
| Write time<br>Read time        | 1 - 10ns<br>1 - 10ns | > 20ns<br>> 20ns   | > 10ns<br>> 10ns | ~ 50ns<br>> 10ns       | > 10ns<br>> 10ns     | ~ 10ns<br>~ 10ns |
| Drift                          | No                   | No                 | Weak             | Yes                    | No                   | No               |
| Write energy (per bit) Density | 1 - 10fJ<br>Low      | 10 - 100 fJ Medium | 0.1-1 pJHigh     | 100 <i>p J</i><br>High | $\sim 100 fJ$ Medium | > 1fJ<br>High    |
| Endurance                      | > 10 <sup>16</sup>   | $> 10^{16}$        | $> 10^5 - 10^8$  | $> 10^5 - 10^8$        | > 10 <sup>15</sup>   | $> 10^{15}$      |
| Retention                      | Low                  | Very Low           | Medium           | long                   | Medium               | long             |

#### Parameter's relevance to applications









□ Program one operand into memristors devices (conductance)



□ Program one operand into memristors devices (conductance)

 Enable all wordlines simultaneously and apply another operand as input

Khan et al., Arxiv 2024



Program one operand into memristors devices (conductance)

 Enable all wordlines simultaneously and apply another operand as input

 The accumulated current at the bitlines using kirchoff's law produces the outcome of dot product



□ Program one operand into memristors devices (conductance)

 Enable all wordlines simultaneously and apply another operand as input

- The accumulated current at the bitlines using kirchoff's law produces the outcome of dot product
- □ Is an approximation and not the accurate result





One of the pioneering work from HP



- One of the pioneering work from HP
- The memristive devices can store multiple bits per cell



- One of the pioneering work from HP
- The memristive devices can store multiple bits per cell
- For higher precision input, it needs be bit-sliced and stored in multiple columns



#### The PUMA architecture



(a) PUMA's tile architecture

(b) PUMA's core architecture

# Thank you! asif.ali@uetpeshawar.edu.pk