

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES  
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum  
Internationales Büro



(43) Internationales Veröffentlichungsdatum  
7. März 2002 (07.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer  
**WO 02/18372 A1**

- (51) Internationale Patentklassifikation<sup>7</sup>: **C07D 405/12**, A61K 31/517
- (21) Internationales Aktenzeichen: PCT/EP01/09533
- (22) Internationales Anmeldedatum:  
18. August 2001 (18.08.2001)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:  
100 42 059.1 26. August 2000 (26.08.2000) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **BOEHRINGER INGELHEIM PHARMA KG** [DE/DE]; 55216 Ingelheim/Rhein (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): **HIMMELSBACH, Frank** [DE/DE]; Ahornweg 16, 88441 Mittelbiberach (DE). **LANGKOPF, Elke** [DE/DE]; Schloss 3, 88447 Warthausen (DE). **JUNG, Birgit** [DE/DE]; Muehlstrasse 23, 55270 Schwabenheim (DE). **BLECH, Stefan** [DE/DE]; Müllerweg 9, 88447 Warthausen (DE). **SOLCA, Flavio** [CH/AT]; Fimbingergasse 1/9, A-1230 Vien (AT).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

**Veröffentlicht:**

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) **Title:** BICYCLIC HETEROCYCLES, MEDICAMENTS CONTAINING THESE COMPOUNDS, THEIR USE, AND METHODS FOR THE PRODUCTION THEREOF

(54) **Bezeichnung:** BICYCLISCHE HETEROCYCLEN, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL, DEREN VERWENDUNG UND VERFAHREN ZU IHRER HERSTELLUNG

A1

**(57) Abstract:** The invention relates to bicyclic heterocycles of general formula (I), in which R<sub>a</sub> to R<sub>d</sub> and X are defined as referred to in Claims Nos. 1 to 7, to their tautomers, their stereoisomers, and to their salts, particularly their physiologically compatible salts with inorganic or organic acids or bases, which have valuable pharmacological properties, in particular, an inhibitive effect on the signal transduction imparted by tyrosine kinases. The invention also relates to the use of said bicyclic heterocycles for treating diseases, especially tumor diseases, disorders of the lung and of the respiratory tract, and to the production thereof.

WO 02/18372

**(57) Zusammenfassung:** Die vorliegende Erfindung betrifft bicyclische Heterocyclen der allgemeinen Formel (I), in der R<sub>a</sub> bis R<sub>d</sub> und X wie im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen, von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

- 1 -

Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

5

Gegenstand der vorliegenden Erfindung sind bicyclische Heterocyclen der allgemeinen Formel



10

deren Tautomeren, deren Stereoisomere und deren Salze, insbesonders deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine

15

Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen, von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

20

In der obigen allgemeinen Formel I bedeutet

X eine durch eine Cyangruppe substituierte Methingruppe oder ein Stickstoffatom,

25

R<sub>a</sub> ein Wasserstoffatom oder eine Methylgruppe,

R<sub>b</sub> eine Phenyl-, Benzyl- oder 1-Phenylethylgruppe, in denen der Phenylkern jeweils durch die Reste R<sub>1</sub> bis R<sub>3</sub> substituiert ist, wobei

30

R<sub>1</sub> und R<sub>2</sub>, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom,

- 2 -

eine Methyl-, Ethyl-, Hydroxy-, Methoxy-, Ethoxy-, Amino-, Cyan-, Vinyl- oder Ethinylgruppe,

5 eine Aryl-, Aryloxy-, Arylmethyl- oder Arylmethoxygruppe,

eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe oder

10  $R_1$  zusammen mit  $R_2$ , sofern diese an benachbarte Kohlenstoffatome gebunden sind, eine  $-CH=CH-CH=CH-$ ,  $-CH=CH-NH-$  oder  $-CH=N-NH$ -Gruppe und

$R_3$  ein Wasserstoff-, Fluor-, Chlor- oder Bromatom darstellen,

15 einer der Reste  $R_c$  oder  $R_d$  eine  $-A-B$  Gruppe und

der andere der der Reste  $R_c$  oder  $R_d$  eine  $-C-D$  Gruppe, wobei

20 A eine  $C_{1-6}$ -Alkylengruppe, eine  $-O-C_{1-6}-alkylen$  gruppe, wobei der Alkylenteil mit dem Rest B verknüpft ist, oder ein Sauerstoffatom, wobei dieses nicht mit einem Stickstoffatom des Restes B verknüpft sein kann, und

25 B eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, in der

30 E eine gegebenenfalls durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituierte  $-CH_2-O-CO-CH_2-$ ,  $-CH_2CH_2-O-CO-$ ,  $-CH_2-O-CO-CH_2CH_2-$ ,  $-CH_2CH_2-O-CO-CH_2-$  oder  $-CH_2CH_2CH_2-O-CO$ -Brücke darstellt,

35 eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in 3-Stellung durch eine Gruppe F ersetzt sind, in der

- 3 -

F eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -O-CO-CH<sub>2</sub>CH<sub>2</sub>- , -CH<sub>2</sub>-O-CO-CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>-O-CO- , -O-CO-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- , -CH<sub>2</sub>-O-CO-CH<sub>2</sub>CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>-O-CO-CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-O-CO- , -O-CO-CH<sub>2</sub>-NR<sub>4</sub>-CH<sub>2</sub>- , -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-NR<sub>4</sub>- , 5 -O-CO-CH<sub>2</sub>-O-CH<sub>2</sub>- oder -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-O-Brücke darstellt, wobei R<sub>4</sub> ein Wasserstoffatom oder eine C<sub>1-4</sub>-Alkylgruppe bedeutet,

10 eine Piperidino- oder Hexahydroazepinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

15 eine Piperidino- oder Hexahydroazepinogruppe, in denen jeweils die beiden Wasserstoffatome in 3-Stellung oder in 4-Stellung durch eine Gruppe F ersetzt sind, wobei F wie vorstehend erwähnt definiert ist,

20 eine Piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-piperazinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung oder in 3-Stellung des Piperazinoringes durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

25 eine Pyrrolidino- oder Piperidinogruppe, in denen zwei vicinale Wasserstoffatome durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -O-CO-CH<sub>2</sub>- , -CH<sub>2</sub>-O-CO- , -O-CO-CH<sub>2</sub>CH<sub>2</sub>- , -CH<sub>2</sub>-O-CO-CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>-O-CO- , -O-CO-CH<sub>2</sub>-NR<sub>4</sub>- oder -O-CO-CH<sub>2</sub>-O-Brücke ersetzt sind, wobei

30 R<sub>4</sub> wie vorstehend erwähnt definiert ist und die Heteroatome der vorstehend erwähnten Brücken nicht an die 2- oder 5-Stellung des Pyrrolidinoringes und nicht an die 2- oder 6-Stellung des Piperidinoringes gebunden sind,

35 eine Piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-piperazinogruppe, in denen ein Wasserstoffatom in 2-Stellung zusammen mit einem Wasserstoffatom in 3-Stellung des Piperazinoringes durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen

- 4 -

substituierte  $-\text{CH}_2\text{-O-CO-CH}_2-$  oder  $-\text{CH}_2\text{CH}_2\text{-O-CO-}$  Brücke ersetzt sind,

5 eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine gegebenenfalls durch eine oder zwei  $\text{C}_{1-2}\text{-Alkyl-}$  gruppen substituierte  $-\text{CO-O-CH}_2\text{CH}_2-$  oder  $-\text{CH}_2\text{-O-CO-}$   $\text{CH}_2$ -Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehend erwähnten Brücken an die 3-Stellung des Pipera-  
10 zinoringes gebunden ist,

eine durch den Rest  $R_5$  substituierte Pyrrolidino-, Piperi-  
dino- oder Hexahydroazepinogruppe, in denen

15  $R_5$  eine gegebenenfalls durch eine oder zwei  $\text{C}_{1-2}\text{-Alkyl-}$  gruppen substituierte 2-Oxo-tetrahydrofuranyl-, 2-Oxo-  
tetrahydropyranlyl-, 2-Oxo-1,4-dioxanyl- oder 2-Oxo-  
 $4-(\text{C}_{1-4}\text{-alkyl})$ -morpholinylgruppe darstellt,

20 eine in 3-Stellung durch eine 2-Oxo-morpholinogruppe sub-  
stituierte Pyrrolidinogruppe, wobei die 2-Oxo-morpholino-  
gruppe durch eine oder zwei  $\text{C}_{1-2}\text{-Alkylgruppen substituiert}$  sein kann,

25 eine in 3- oder 4-Stellung durch eine 2-Oxo-morpholinogrup-  
pe substituierte Piperidino- oder Hexahydroazepinogruppe,  
wobei die 2-Oxo-morpholinogruppe durch eine oder zwei  
 $\text{C}_{1-2}\text{-Alkylgruppen substituiert sein kann},$

30 eine an einem Ringkohlenstoffatom durch  $R_5$  substituierte  
 $4-(\text{C}_{1-4}\text{-alkyl})$ -piperazino- oder  $4-(\text{C}_{1-4}\text{-alkyl})$ -homo-  
piperazinogruppe, in denen  $R_5$  wie vorstehend erwähnt de-  
finiert ist,

35 eine in 4-Stellung durch den Rest  $R_6$  substituierte Pipera-  
zino- oder Homopiperazinogruppe, in denen

- 5 -

R<sub>6</sub> eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-tetrahydrofuran-3-yl-, 2-Oxo-tetrahydrofuran-4-yl-, 2-Oxo-tetrahydropyran-3-yl-, 2-Oxo-tetrahydropyran-4-yl- oder 2-Oxo-tetrahydropyran-5-yl-Gruppe darstellt,

5 eine in 3-Stellung durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO- oder R<sub>6</sub>SO<sub>2</sub>-Gruppe substituierte Pyrrolidinogruppe, wobei R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind,

10 eine in 3- oder 4-Stellung durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO- oder R<sub>6</sub>SO<sub>2</sub>-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind,

15 eine durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-, (R<sub>4</sub>NR<sub>6</sub>) -C<sub>1-4</sub>-alkyl-, R<sub>6</sub>O-C<sub>1-4</sub>-alkyl-, R<sub>6</sub>S-C<sub>1-4</sub>-alkyl-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkyl-, R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkyl- oder R<sub>4</sub>NR<sub>6</sub>-CO-Gruppe substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert sind,

20 eine in 3-Stellung durch eine R<sub>5</sub>-CO-NR<sub>4</sub>-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-, (R<sub>4</sub>NR<sub>6</sub>) -C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-, R<sub>6</sub>O-C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-, R<sub>6</sub>S-C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-,

25 R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-, 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen-CONR<sub>4</sub>-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-Y- oder C<sub>2-4</sub>-Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, wobei der C<sub>2-4</sub>-Alkylteil der C<sub>2-4</sub>-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO- oder R<sub>6</sub>SO<sub>2</sub>-Gruppe substituiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann, in denen

30 R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert sind und

35 Y ein Sauerstoff- oder Schwefelatom, eine Imino-, N-(C<sub>1-4</sub>-Alkyl)-imino-, Sulfinyl- oder Sulfonylgruppe darstellt,

eine in 3- oder 4-Stellung durch eine  $R_5\text{-CO-NR}_4^-$ ,  $R_5\text{-C}_{1-4}\text{-alkylen-CONR}_4^-$ ,  $(R_4\text{NR}_6)\text{-C}_{1-4}\text{-alkylen-CONR}_4^-$ ,  $R_6\text{O-C}_{1-4}\text{-alkylen-CONR}_4^-$ ,  $R_6\text{S-C}_{1-4}\text{-alkylen-CONR}_4^-$ ,  $R_6\text{SO-C}_{1-4}\text{-alkylen-CONR}_4^-$ ,  
5  $R_6\text{SO}_2\text{-C}_{1-4}\text{-alkylen-CONR}_4^-$ , 2-Oxo-morpholino- $C_{1-4}$ -alkylen- $\text{CONR}_4^-$ ,  $R_5\text{-C}_{1-4}\text{-alkylen-Y-}$  oder  $C_{2-4}\text{-Alkyl-Y-Gruppe}$  substi-  
tuierte Piperidino- oder Hexahydroazepinogruppe, in denen

Y wie vorstehend erwähnt definiert ist, der 2-Oxo-mor-  
10 pholinoteil durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substi-  
tuiert sein kann und der  $C_{2-4}$ -Alkylteil der  $C_{2-4}$ -Al-  
kyl-Y-Gruppe jeweils ab Position 2 durch eine  $(R_4\text{NR}_6)\text{-}$ ,  
 $R_6\text{O-}$ ,  $R_6\text{S-}$ ,  $R_6\text{SO-}$  oder  $R_6\text{SO}_2\text{-Gruppe}$  substituiert ist, wobei  
15  $R_4$  bis  $R_6$  wie vorstehend erwähnt definiert sind,

20 eine an einem Ringkohlenstoffatom durch eine  $R_5\text{-C}_{1-4}\text{-alkyl-}$ ,  
 $(R_4\text{NR}_6)\text{-C}_{1-4}\text{-alkyl-}$ ,  $R_6\text{O-C}_{1-4}\text{-alkyl-}$ ,  $R_6\text{S-C}_{1-4}\text{-alkyl-}$ ,  
 $R_6\text{SO-C}_{1-4}\text{-alkyl-}$ ,  $R_6\text{SO}_2\text{-C}_{1-4}\text{-alkyl-}$  oder  $R_4\text{NR}_6\text{-CO-Gruppe}$   
25 substituierte 4-( $C_{1-4}$ -Alkyl)-piperazino- oder 4-( $C_{1-4}$ -Alkyl)-  
homopiperazinogruppe, in denen  $R_4$  bis  $R_6$  wie vorstehend  
erwähnt definiert sind,

30 eine in 4-Stellung durch eine  $R_5\text{-C}_{1-4}\text{-alkyl-}$ ,  $R_5\text{-CO-}$ ,  
 $R_5\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $(R_4\text{NR}_6)\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6\text{O-C}_{1-4}\text{-alkylen-}$   
CO-,  $R_6\text{S-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6\text{SO-C}_{1-4}\text{-alkylen-CO-}$  oder  
35  $R_6\text{SO}_2\text{-C}_{1-4}\text{-alkylen-CO-Gruppe}$  substituierte Piperazino- oder  
Homopiperazinogruppe, in denen  $R_4$  bis  $R_6$  wie vorstehend er-  
wähnt definiert sind,

30 eine in 4-Stellung durch eine  $C_{2-4}$ -Alkylgruppe substituierte  
Piperazino- oder Homopiperazinogruppe, in denen die  $C_{2-4}$ -Al-  
kylgruppe jeweils ab Position 2 durch eine  $(R_4\text{NR}_6)\text{-}$ ,  $R_6\text{O-}$ ,  
 $R_6\text{S-}$ ,  $R_6\text{SO-}$  oder  $R_6\text{SO}_2\text{-Gruppe}$  substituiert ist, wobei  $R_4$  und  
35  $R_6$  wie vorstehend erwähnt definiert sind,

eine durch eine 2-Oxo-morpholino- $C_{1-4}$ -alkylgruppe substitu-  
ierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogrup-

- 7 -

pe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

5 eine in 3-Stellung durch eine C<sub>2-4</sub>-Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, in denen

10 Y wie vorstehend erwähnt definiert ist und der C<sub>2-4</sub>-Alkylteil der C<sub>2-4</sub>-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

15 eine in 3- oder 4-Stellung durch eine C<sub>2-4</sub>-Alkyl-Y-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen

20 Y wie vorstehend erwähnt definiert ist und der C<sub>2-4</sub>-Alkylteil der C<sub>2-4</sub>-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

25 eine an einem Ringkohlenstoffatom durch eine 2-Oxo-morpholino-C<sub>1-4</sub>-alkyl-Gruppe substituierte 4-(C<sub>1-4</sub>-Alkyl)-piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

30 eine in 4-Stellung durch eine 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen-CO-Gruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

35 eine in 4-Stellung durch eine C<sub>2-4</sub>-Alkylgruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der C<sub>2-4</sub>-Alkylteil jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

- 8 -

5 eine in 1-Stellung durch den Rest  $R_6$ , durch eine  $R_5\text{-C}_{1-4}\text{-alkyl-}$ ,  $R_5\text{-CO-}$ ,  $R_5\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $(R_4NR_6)\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6O\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6S\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6SO\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6SO_2\text{-C}_{1-4}\text{-alkylen-CO-}$  oder 2-Oxo-morpholino- $C_{1-4}$ -alkylen-CO-Gruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen

10  $R_4$  bis  $R_6$  wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituiert sein kann,

15 eine in 1-Stellung durch eine  $C_{2-4}$ -Alkylgruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen der  $C_{2-4}$ -Alkylteil jeweils ab Position 2 durch eine  $(R_4NR_6)\text{-}$ ,  $R_6O\text{-}$ ,  $R_6S\text{-}$ ,  $R_6SO\text{-}$ ,  $R_6SO_2\text{-}$  oder 2-Oxo-morpholinogruppe substituiert ist, wobei

20  $R_4$  und  $R_6$  wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituiert sein kann,

25 eine jeweils am Ringstickstoffatom durch den Rest  $R_6$ , durch eine  $R_5\text{-C}_{1-4}\text{-alkyl-}$ ,  $R_5\text{-CO-}$ ,  $R_5\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $(R_4NR_6)\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6O\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6S\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6SO\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $R_6SO_2\text{-C}_{1-4}\text{-alkylen-CO-}$  oder 2-Oxo-morpholino- $C_{1-4}$ -alkylen-CO-Gruppe substituierte Pyrrolidin-3-yl- $NR_4\text{-}$ , Piperidin-3-yl- $NR_4\text{-}$  oder Piperidin-4-yl- $NR_4\text{-}$ Gruppe, in denen

30  $R_4$  bis  $R_6$  wie vorstehend erwähnt definiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituiert sein kann,

35 eine jeweils am Ringstickstoffatom durch eine  $C_{2-4}$ -Alkylgruppe substituierte Pyrrolidin-3-yl- $NR_4\text{-}$ , Piperidin-3-yl- $NR_4\text{-}$  oder Piperidin-4-yl- $NR_4\text{-}$ Gruppe, in denen der  $C_{2-4}$ -Alkylteil jeweils ab Position 2 durch eine  $(R_4NR_6)\text{-}$ ,

- 9 -

R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO-, R<sub>6</sub>SO<sub>2</sub>- oder 2-Oxo-morpholinogruppe substituiert ist, wobei

5 R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

10 eine R<sub>5</sub>-C<sub>1-4</sub>-alkylen-NR<sub>4</sub>-Gruppe, in der R<sub>4</sub> und R<sub>5</sub> wie vorstehend erwähnt definiert sind, oder

15 eine C<sub>2-4</sub>-Alkyl-NR<sub>4</sub>-Gruppe, in der der C<sub>2-4</sub>-Alkylteil jeweils ab Position 2 durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO-, R<sub>6</sub>SO<sub>2</sub>- oder 2-Oxo-morpholinogruppe substituiert ist, wobei

20 R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

25 eine durch den Rest R<sub>7</sub> oder durch den Rest R<sub>7</sub> und eine C<sub>1-4</sub>-Alkylgruppe substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei

30 R<sub>7</sub> eine C<sub>3-4</sub>-Alkyl-, Hydroxy-C<sub>1-4</sub>-alkyl-, C<sub>1-4</sub>-Alkoxy-C<sub>1-4</sub>-alkyl-, Di-(C<sub>1-4</sub>-Alkyl)-amino-C<sub>1-4</sub>-alkyl-, Pyrrolidino-C<sub>1-4</sub>-alkyl-, Piperidino-C<sub>1-4</sub>-alkyl-, Morpholino-C<sub>1-4</sub>-alkyl-, 4-(C<sub>1-4</sub>-Alkyl)-piperazino-C<sub>1-4</sub>-alkyl-, C<sub>1-4</sub>-Alkylsulfanyl-C<sub>1-4</sub>-alkyl-, C<sub>1-4</sub>-Alkylsulfinyl-C<sub>1-4</sub>-alkyl-, C<sub>1-4</sub>-Alkylsulfonyl-C<sub>1-4</sub>-alkyl-, Cyan-C<sub>1-4</sub>-alkyl-, C<sub>1-4</sub>-Alkoxy carbonyl-C<sub>1-4</sub>-alkyl-, Aminocarbonyl-C<sub>1-4</sub>-alkyl-, C<sub>1-4</sub>-Alkyl-amino-carbonyl-C<sub>1-4</sub>-alkyl-, Di-(C<sub>1-4</sub>-alkyl)-aminocarbonyl-C<sub>1-4</sub>-alkyl-, Pyrrolidinocarbonyl-C<sub>1-4</sub>-alkyl-, Piperidinocarbonyl-C<sub>1-4</sub>-alkyl-, Morpholinocarbonyl-C<sub>1-4</sub>-alkyl- oder eine 4-(C<sub>1-4</sub>-Alkyl)-piperazinocarbonyl-C<sub>1-4</sub>-alkylgruppe darstellt,

35 eine durch zwei Reste R<sub>7</sub> substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei R<sub>7</sub> wie vorstehend erwähnt definiert ist

- 10 -

und die beiden Reste R, gleich oder verschieden sein können,

5 eine 2-Oxo-morpholin-4-yl-Gruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -(CH<sub>2</sub>)<sub>m</sub>- , -CH<sub>2</sub>-Y-CH<sub>2</sub>- , -CH<sub>2</sub>-Y-CH<sub>2</sub>-CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>-Y-CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>CH<sub>2</sub>-Y-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-Brücke ersetzt sind, wobei

10 Y wie eingangs erwähnt definiert ist und m die Zahl 2, 3, 4, 5 oder 6 darstellt,

15 eine 2-Oxo-morpholin-4-yl-Gruppe, in der ein Wasserstoffatom in 5-Stellung zusammen mit einem Wasserstoffatom in 6-Stellung durch eine -(CH<sub>2</sub>)<sub>n</sub>- , -CH<sub>2</sub>-Y-CH<sub>2</sub>- , -CH<sub>2</sub>-Y-CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>-CH<sub>2</sub>-Y-CH<sub>2</sub>-Brücke ersetzt ist, wobei

20 Y wie eingangs erwähnt definiert ist und n die Zahl 2, 3 oder 4 darstellt,

oder, falls C zusammen mit D eine Gruppe R<sub>e</sub> darstellt, auch eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 bis 4 C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

25 C eine -O-C<sub>1-6</sub>-Alkylengruppe, wobei der Alkylenteil mit dem Rest D verknüpft ist, oder ein Sauerstoffatom, wobei dieses nicht mit einem Stickstoffatom des Restes D verknüpft sein kann, und

30 D eine durch 2 C<sub>1-4</sub>-Alkylgruppen substituierte Aminogruppe, in der die Alkylreste gleich oder verschieden sein können und jeder Alkylteil ab Position 2 durch eine C<sub>1-4</sub>-Alkoxy- oder Di-(C<sub>1-4</sub>-Alkyl)-aminogruppe oder durch eine 4- bis 7-gliedrige Alkyleniminogruppe substituiert sein kann, wobei in den vorstehend erwähnten 6- bis 7-gliedrigen Alkyleniminogruppen jeweils eine Methylengruppe in 4-Stellung durch ein Sauerstoff- oder Schwefelatom, durch eine

- 11 -

Sulfinyl-, Sulfonyl- oder N-(C<sub>1-4</sub>-Alkyl)-iminogruppe ersetzt sein kann,

5 eine gegebenenfalls durch 1 bis 4 Methylgruppen substituierte 4- bis 7-gliedrige Alkyleniminogruppe,

10 eine gegebenenfalls durch 1 oder 2 Methylgruppen substituierte 6- bis 7-gliedrige Alkyleniminogruppe, in der jeweils eine Methylenegruppe in 4-Stellung durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C<sub>1-4</sub>-Alkyl)-iminogruppe ersetzt ist,

15 eine gegebenenfalls durch 1 bis 3 Methylgruppen substituierte Imidazolylgruppe,

20 eine C<sub>5-7</sub>-Cycloalkylgruppe, in der eine Methylenegruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C<sub>1-4</sub>-Alkyl)-iminogruppe ersetzt ist, oder

25 C zusammen mit D ein Wasserstoffatom,

eine gegebenenfalls ab Position 2 durch eine Hydroxy- oder C<sub>1-4</sub>-Alkoxygruppe substituierte C<sub>1-6</sub>-Alkoxygruppe,

30 eine C<sub>3-7</sub>-Cycloalkoxy- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-4</sub>-alkoxygruppe,

eine Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe,

35 oder einen Rest R<sub>e</sub>, wobei

R<sub>e</sub> eine C<sub>2-6</sub>-Alkoxygruppe, die ab Position 2 durch eine C<sub>4-7</sub>-Cycloalkoxy- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-3</sub>-alkoxygruppe substituiert ist,

- 12 -

eine C<sub>4-7</sub>-Cycloalkoxy- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-6</sub>-alkoxygruppe, in denen der Cycloalkylteil jeweils durch eine  
C<sub>1-4</sub>-Alkyl-, C<sub>1-4</sub>-Alkoxy-, Di-(C<sub>1-4</sub>-alkyl)-amino-,  
Pyrrolidino-, Piperidino-, Morpholino-, Piperazino-,  
5 N-(C<sub>1-2</sub>-Alkyl)-piperazino-, C<sub>1-4</sub>-Alkoxy-C<sub>1-2</sub>-alkyl-,  
Di-(C<sub>1-4</sub>-alkyl)-amino-C<sub>1-2</sub>-alkyl-, Pyrrolidino-C<sub>1-2</sub>-alkyl-,  
Piperidino-C<sub>1-2</sub>-alkyl-, Morpholino-C<sub>1-2</sub>-alkyl-, Piperazino-  
C<sub>1-2</sub>-alkyl- oder N-(C<sub>1-2</sub>-Alkyl)-piperazino-C<sub>1-2</sub>-alkylgruppe  
10 substituiert ist, wobei die vorstehend erwähnten Cycloal-  
kylteile zusätzlich durch eine Methyl- oder Ethylgruppe  
substituiert sein können, darstellt,

wobei, soweit nichts anderes erwähnt wurde, unter den bei der  
Definition der vorstehend erwähnten Reste erwähnten Arylteilen  
15 eine Phenylgruppe zu verstehen ist, die durch R' mono- oder  
disubstituiert sein kann, wobei die Substituenten gleich oder  
verschieden sein können; und

20 R' ein Fluor-, Chlor-, Brom- oder Jodatom, eine C<sub>1-2</sub>-Alkyl-,  
Trifluormethyl- oder C<sub>1-2</sub>-Alkoxygruppe darstellt, oder

zwei Reste R', sofern sie an benachbarte Kohlenstoffatome  
gebunden sind, zusammen eine C<sub>3-4</sub>-Alkylen-, Methylendioxy-  
oder 1,3-Butadien-1,4-ylengruppe darstellen.

25 Bevorzugte Verbindungen der obigen allgemeinen Formel I sind  
diejenigen, in denen

X ein Stickstoffatom,

30 R<sub>a</sub> ein Wasserstoffatom,

R<sub>b</sub> eine 1-Phenylethyl-, 3-Methylphenyl-, 3-Chlorphenyl-,  
3-Bromphenyl- oder 3-Chlor-4-fluorphenylgruppe,

35 R<sub>c</sub> eine -A-B Gruppe, in der

- 13 -

A eine  $-\text{OCH}_2\text{CH}_2-$ ,  $-\text{OCH}_2\text{CH}_2\text{CH}_2-$  oder  $-\text{OCH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ -Gruppe, wobei der Alkylanteil jeweils mit dem Rest B verknüpft ist, und

- 5       B eine Piperidinogruppe, in der die beiden Wasserstoffatome in 4-Stellung durch eine  $-\text{CH}_2\text{-O-CO-CH}_2-$ ,  $-\text{CH}_2\text{CH}_2\text{-O-CO-}$ ,  $-\text{CH}_2\text{CH}_2\text{-O-CO-CH}_2-$ ,  $-\text{O-CO-CH}_2\text{-NCH}_3\text{-CH}_2-$  oder  $-\text{O-CO-CH}_2\text{-O-CH}_2-$ Brücke ersetzt sind,
- 10      eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine  $-\text{CO-O-CH}_2\text{-CH}_2-$  oder  $-\text{CH}_2\text{-O-CO-CH}_2-$ Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehenden Brücken an die 3-Stellung des Piperazinoringes gebunden ist,
- 15      eine Piperidinogruppe, die in 4-Stellung durch eine 2-Oxo-morpholino- oder 2-Oxo-morpholinomethylgruppe substituiert ist, wobei der 2-Oxo-morpholinoteil jeweils durch eine oder zwei Methylgruppen substituiert sein kann,
- 20      eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,
- 25      eine Piperidinogruppe, die in 4-Stellung durch eine  $\text{R}_6\text{S-}$ -Gruppe substituiert ist, wobei  
           $\text{R}_6$  eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe darstellt,
- 30      eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranyl carbonylgruppe substituiert ist,
- 35      eine Piperazinogruppe, die in 4-Stellung durch eine [2-(2-Oxo-tetrahydrofuran-3-ylsulfenyl)ethyl]gruppe substituiert ist,

- 14 -

eine Piperidin-4-yl-Gruppe, die in 1-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

5

eine 2-Oxo-morpholin-4-ylgruppe, die durch eine Methoxy-methyl- oder Methoxyethylgruppe substituiert ist,

10 eine 2-Oxo-morpholin-4-ylgruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine  $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ ,  $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ ,  $-\text{CH}_2-\text{O}-\text{CH}_2\text{CH}_2-$  oder  $-\text{CH}_2\text{CH}_2-\text{O}-\text{CH}_2\text{CH}_2-$ Brücke ersetzt sind, darstellen,

15 und  $R_d$  eine Methoxy-, Cyclopropylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofurylmethoxy- oder Tetrahydropyranyl methoxygruppe bedeuten,

deren Tautomere, Stereoisomere und deren Salze.

20

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind auch diejenigen, in denen

25  $X$  ein Stickstoffatom,

$R_a$  ein Wasserstoffatom,

30  $R_b$  eine 1-Phenylethyl-, 3-Methylphenyl-, 3-Chlorphenyl-, 3-Bromphenyl- oder 3-Chlor-4-fluorphenylgruppe,

35  $R_c$  eine Methoxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Cyclopentylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofurylmethoxy- oder Tetrahydropyranyl methoxygruppe und

$R_d$  eine -A-B Gruppe, in der

- 15 -

A eine  $-\text{OCH}_2\text{CH}_2-$ ,  $-\text{OCH}_2\text{CH}_2\text{CH}_2-$  oder  $-\text{OCH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ -Gruppe,  
wobei der Alkylenteil jeweils mit dem Rest B verknüpft ist,  
und

5

B eine Piperidinogruppe, in der die beiden Wasserstoffatome  
in 4-Stellung durch eine  $-\text{CH}_2-\text{O}-\text{CO}-\text{CH}_2-$ ,  $-\text{CH}_2\text{CH}_2-\text{O}-\text{CO}-$ ,  
 $-\text{CH}_2\text{CH}_2-\text{O}-\text{CO}-\text{CH}_2-$ ,  $-\text{O}-\text{CO}-\text{CH}_2-\text{NCH}_3-\text{CH}_2-$  oder  $-\text{O}-\text{CO}-\text{CH}_2-\text{O}-\text{CH}_2-$   
Brücke ersetzt sind,

10

eine Piperazinogruppe, in der ein Wasserstoffatom in  
3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung  
durch eine  $-\text{CO}-\text{O}-\text{CH}_2-\text{CH}_2-$  oder  $-\text{CH}_2-\text{O}-\text{CO}-\text{CH}_2-$ -Brücke ersetzt  
sind, wobei jeweils das linke Ende der vorstehenden Brücken  
15 an die 3-Stellung des Piperazinoringes gebunden ist,

15

eine Piperidinogruppe, die in 4-Stellung durch eine 2-Oxo-  
morpholino- oder 2-Oxo-morpholinomethylgruppe substituiert  
20 ist, wobei der 2-Oxo-morpholinoteil jeweils durch eine oder  
zwei Methylgruppen substituiert sein kann,

20

eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-  
tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-  
Gruppe substituiert ist,

25

eine Piperidinogruppe, die in 4-Stellung durch eine  
 $\text{R}_6\text{S}$ -Gruppe substituiert ist, wobei

30

$\text{R}_6$  eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetra-  
hydrofuran-4-yl-Gruppe darstellt,

eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-  
tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranylcar-  
bonylgruppe substituiert ist,

35

- 16 -

eine Piperazinogruppe, die in 4-Stellung durch eine [2-(2-Oxo-tetrahydrofuran-3-ylsulfenyl)ethyl]gruppe substituiert ist,

5       eine Piperidin-4-yl-Gruppe, die in 1-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

10      eine 2-Oxo-morpholin-4-ylgruppe, die durch eine Methoxy-methyl- oder Methoxyethylgruppe substituiert ist,

15      eine 2-Oxo-morpholin-4-ylgruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- , -CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-Brücke ersetzt sind, darstellen,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen  
20 Formel I sind diejenigen, in denen

X ein Stickstoffatom,

R<sub>a</sub> ein Wasserstoffatom,

25      R<sub>b</sub> eine 3-Chlor-4-fluorphenylgruppe,

30      R<sub>c</sub> eine Cyclopentyloxy-, Cyclopropylmethoxy-, Cyclopentyl-methoxy-, Tetrahydrofuran-3-yloxy- oder Tetrahydrofuran-2-yl-methoxygruppe und

R<sub>d</sub> eine -A-B Gruppe, in der

35      A eine -OCH<sub>2</sub>CH<sub>2</sub>-Gruppe, wobei der Alkylenteil mit dem Rest B verknüpft ist, und

- 17 -

B eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-Brücke ersetzt ist, wobei das linke Ende der vorstehend erwähnten Brücke an die 3-Stellung des Piperazinoringes gebunden ist,

10 eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl-, 2-Oxo-tetrahydrofuran-4-yl-, 2-Oxo-tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranyl carbonylgruppe substituiert ist, darstellen,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

Als besonders bevorzugte Verbindungen seien beispielsweise

15 folgende erwähnt:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-chinazolin,

20

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-chinazolin,

25

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-chinazolin und

30

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-(2-{4-[(R)-(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-1-yl}-ethoxy)-chinazolin,

deren Tautomere, Stereoisomere und deren Salze.

35

Die Verbindungen der allgemeinen Formel I lassen sich beispielsweise nach folgenden Verfahren herstellen:

- 18 -

a) Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel



5

in der

$R_a$ ,  $R_b$  und  $X$  wie eingangs erwähnt definiert sind,  
einer der Reste  $R_c'$  oder  $R_d'$  eine für  $R_c$  oder  $R_a$  eingangs  
erwähnte -C-D Gruppe und

10 der andere der Reste  $R_c'$  oder  $R_d'$  eine  $-A'-Z_1$  Gruppe bedeuten,  
wobei

A' eine  $C_{1-6}$ -Alkylen- oder  $-O-C_{1-6}$ -alkylengruppe und  
15  $Z_1$  eine austauschbare Gruppe wie ein Halogenatom oder eine  
substituierte Sulfinyl- oder Sulfonylgruppe, z. B. ein  
Chlor- oder Bromatom, eine Methylsulfinyl-, Propylsul-  
finyl-, Phenylsulfinyl-, Benzylsulfinyl-, Methylsulfonyl-,  
Propylsulfonyl-, Phenylsulfonyl- oder Benzylsulfonylgruppe  
bedeutet,

20

mit einer Verbindung der allgemeinen Formel



25 in der

G einen der für B eingangs erwähnten Reste darstellt, der über  
ein Stickstoffatom mit dem Rest A verknüpft ist.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel  
30 wie Acetonitril, Tetrahydrofuran, Dioxan, Toluol, Chlorbenzol,  
Dimethylformamid, Dimethylsulfoxid, Methylenchlorid, Ethylen-  
glycoldiethylether oder Sulfolan gegebenenfalls in Gegenwart  
einer anorganischen oder tertiären organischen Base, z.B.

- 19 -

Natriumcarbonat oder Kaliumhydroxid, einer tertiären organischen Base wie Triethylamin oder N-Ethyl-diisopropylamin (Hünig-Base), wobei diese organischen Basen gleichzeitig auch als Lösungsmittel dienen können, und gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie einem Alkaliodid bei Temperaturen zwischen -20 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 100°C, durchgeführt. Die Umsetzung kann jedoch auch ohne Lösungsmittel oder in einem Überschuß der eingesetzten Verbindung der allgemeinen Formel III durchgeführt werden.

b. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der einer der Reste R<sub>c</sub> oder R<sub>d</sub> eine -A-B' Gruppe darstellt, wobei A wie eingangs erwähnt definiert ist und B' eine der für B eingangs erwähnten Gruppen darstellt, die eine durch R<sub>6</sub> oder durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-Gruppe substituierte Imino- oder HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie eingangs erwähnt definiert sind:

Umsetzung einer Verbindung der allgemeinen Formel



in der  
 R<sub>a</sub>, R<sub>b</sub> und X wie eingangs erwähnt definiert sind,  
 einer der Reste R<sub>c</sub>'' oder R<sub>d</sub>'' eine für R<sub>c</sub> oder R<sub>d</sub> eingangs  
 erwähnte -C-D Gruppe und  
 der andere der Reste R<sub>c</sub>'' oder R<sub>d</sub>'' eine -A-B'' Gruppe bedeuten,  
 wobei  
 A, C und D wie eingangs erwähnt definiert sind und  
 B'' eine Gruppe darstellt, die durch Alkylierung in eine  
 Gruppe B' übergeführt werden kann, wobei B' eine der für B

- 20 -

eingangs erwähnten Gruppen darstellt, die eine durch R<sub>6</sub> oder durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-Gruppe substituierte Imino- oder HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie eingangs erwähnt definiert sind,

5

mit einer Verbindung der allgemeinen Formel



10 in der

U den Rest R<sub>6</sub> oder eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-Gruppe bedeutet, wobei R<sub>5</sub> und R<sub>6</sub> wie eingangs erwähnt definiert sind, und Z<sub>2</sub> eine austauschbare Gruppe wie ein Halogenatom oder eine substituierte Sulfonyloxygruppe, z. B. ein Chlor- oder Bromatom, 15 eine Methylsulfonyloxy-, Propylsulfonyloxy-, Phenylsulfonyloxy- oder Benzylsulfonyloxygruppe, oder Z<sub>2</sub> zusammen mit einem benachbarten Wasserstoffatom eine weitere Kohlenstoff-Kohlenstoffbindung, die mit einer Carbonylgruppe verbunden ist, bedeutet.

20

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Acetonitril oder Dimethylformamid und gegebenenfalls in Gegenwart einer Base wie Triethylamin, N-Ethyl-diisopropylamin oder Kaliumcarbonat bei 25 Temperaturen zwischen 0 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen 20 und 100°C, durchgeführt.

Bedeutet in einer Verbindung der allgemeinen Formel V Z<sub>2</sub> eine austauschbare Gruppe, so wird die Umsetzung vorzugsweise in 30 einem Lösungsmittel oder Lösungsmittelgemisch wie Acetonitril, Methylenechlorid, Dimethylformamid, Dimethylsulfoxid, Sulfolan, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan zweckmäßigerweise in Gegenwart einer tertiären organischen Base wie Triethylamin oder N-Ethyl-diisopropylamin (Hünig-Base), wobei diese organischen Basen 35 gleichzeitig auch als Lösungsmittel dienen können, oder in Gegenwart einer anorganischen Base wie Natriumkarbonat,

- 21 -

Kaliumcarbonat oder Natronlauge zweckmäßigerweise bei Temperaturen zwischen -20 und 200°C, vorzugsweise bei Temperaturen zwischen 0 und 150°C, oder

- 5 bedeutet in einer Verbindung der allgemeinen Formel V Z<sub>2</sub> zusammen mit einem benachbarten Wasserstoffatom eine weitere Kohlenstoff-Kohlenstoffbindung, die mit einer Carbonylgruppe verbunden ist, so wird die Umsetzung vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol oder Acetonitril bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei den Temperaturen zwischen 20°C und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

- c. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der einer der Reste R<sub>c</sub> oder R<sub>d</sub> eine -A-B' Gruppe bedeutet, wobei A wie eingangs erwähnt definiert ist und B' eine der für B eingangs erwähnten Gruppen darstellt, die eine durch eine R<sub>5</sub>CO-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-CO-, (R<sub>4</sub>NR<sub>6</sub>)-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>O-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>S-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkylen-CO- oder 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen-CO- Gruppe substituierte Imino- oder HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie eingangs erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann:

25

Umsetzung einer Verbindung der allgemeinen Formel



- 30 in der R<sub>a</sub>, R<sub>b</sub> und X wie eingangs erwähnt definiert sind, einer der Reste R<sub>c</sub>'' oder R<sub>d</sub>'' eine für R<sub>c</sub> oder R<sub>d</sub> eingangs erwähnte -C-D Gruppe und

- 22 -

der andere der Reste  $R_c''$  oder  $R_d''$  eine -A-B" Gruppe bedeuten,  
wobei

A, C und D wie eingangs erwähnt definiert sind und  
 5 B" eine Gruppe darstellt, die durch Acylierung in eine  
Gruppe B' übergeführt werden kann, wobei B' eine der für B  
eingangs erwähnten Gruppen darstellt, die eine durch eine  
 $R_5CO-$ ,  $R_5-C_{1-4}$ -alkylen-CO-,  $(R_4NR_6)-C_{1-4}$ -alkylen-CO-,  
 $R_6O-C_{1-4}$ -alkylen-CO-,  $R_6S-C_{1-4}$ -alkylen-CO-,  $R_6SO-C_{1-4}$ -al-  
 10 kylen-CO-,  $R_6SO_2-C_{1-4}$ -alkylen-CO- oder 2-Oxo-morpholino-  
 $C_{1-4}$ -alkylen-CO-Gruppe substituierte Imino- oder  $HNR_4$ -Gruppe  
enthält, wobei  $R_4$  bis  $R_6$  wie eingangs erwähnt definiert  
sind und der 2-Oxo-morpholinoteil durch eine oder zwei  
C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

15

mit einer Verbindung der allgemeinen Formel



20 in der

W den Rest  $R_5$  oder eine  $R_5-C_{1-4}$ -alkyl-,  $(R_4NR_6)-C_{1-4}$ -alkyl-,  
 $R_6O-C_{1-4}$ -alkyl-,  $R_6S-C_{1-4}$ -alkyl-,  $R_6SO-C_{1-4}$ -alkyl-,  $R_6SO_2-C_{1-4}$ -alkyl-  
oder 2-Oxo-morpholino- $C_{1-4}$ -alkyl-Gruppe darstellt, in denen  $R_4$   
bis  $R_6$  wie eingangs erwähnt definiert sind und der 2-Oxo-mor-  
 25 pholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert  
sein kann.

Die Umsetzung wird gegebenenfalls in einem Lösungsmittel oder  
Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid,  
 30 Benzol, Toluol, Chlorbenzol, Tetrahydrofuran oder Dioxan gege-  
benenfalls in Gegenwart in Gegenwart eines wasserentziehenden  
Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester,  
Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phos-  
phorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexyl-  
 35 carbodiimid/N-Hydroxysuccinimid, N,N'-Carbonyldiimidazol, Tri-  
phenyl-phosphin/Tetrachlorkohlenstoff oder O-(Benzotriazol-  
1-yl)-N,N,N',N'-tetramethyluronium-tetrafluorborat oder mit

einem entsprechenden reaktionsfähigen Derivat wie einem entsprechenden Ester, Säurehalogenid oder -anydrid gegebenenfalls unter Zusatz einer anorganischen oder organischen Base, vorzugsweise unter Zusatz einer organischen Base wie Triethylamin,  
5 N-Ethyl-diisopropylamin oder 4-Dimethylamino-pyridin, zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.  
10

15 Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, Methyl-, Ethyl-, tert.Butyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe, als Schutzreste für eine Carboxygruppe die Trimethylsilyl-,  
20 Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranylgruppe und

als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.-  
25 Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten  
30 Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie  
35 Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0

und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxy-  
5 carbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch,  
z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Pal-  
ladium/Kohle in einem geeigneten Lösungsmittel wie Methanol,  
Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls un-  
ter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen  
10 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen  
20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar,  
vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines  
2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Tri-  
fluoressigsäure in Gegenwart von Anisol.

15 Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonyl-  
restes erfolgt vorzugsweise durch Behandlung mit einer Säure  
wie Trifluoressigsäure oder Salzsäure oder durch Behandlung  
mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines  
20 Lösungsmittels wie Methylenechlorid, Dioxan, Methanol oder Di-  
ethylether.

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise  
durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls  
25 in Gegenwart eines Lösungsmittels wie Essigsäure bei Tempera-  
turen zwischen 50 und 120°C oder durch Behandlung mit Natron-  
lauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Te-  
trahydrofuran bei Temperaturen zwischen 0 und 50°C.

30 Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in  
Gegenwart von Hydrazin oder eines primären Amins wie Methyl-  
amin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie  
Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei  
Temperaturen zwischen 20 und 50°C.

35 Ferner können die erhaltenen Verbindungen der allgemeinen For-  
mel I, wie bereits eingangs erwähnt wurde, in ihre Enantiome-

ren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-Isomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

5

So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe

10 Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971)) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B.

15 durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

20 Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, ins-

25 besondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter

30 Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Wein- säure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt bei-

35 spielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Menthoxycarbonyl in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder 5 organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

10

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis VI sind teilweise literaturbekannt oder man erhält diese nach an sich literaturbekannten Verfahren (siehe Beispiele I bis XIV).

15

Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf die durch den Epidermal 20 Growth Factor-Rezeptor (EGF-R) vermittelte Signaltransduktion, wobei diese beispielsweise durch eine Inhibition der Ligandenbindung, der Rezeptordimerisierung oder der Tyrosinkinase selbst bewirkt werden kann. Außerdem ist es möglich, daß die 25 Signalübertragung an weiter abwärtsliegenden Komponenten blockiert wird.

Die biologischen Eigenschaften der neuen Verbindungen wurden wie folgt geprüft:

30 Die Hemmung der EGF-R vermittelten Signalübertragung kann z.B. mit Zellen nachgewiesen werden, die humanen EGF-R exprimieren und deren Überleben und Proliferation von Stimulierung durch EGF bzw. TGF-alpha abhängt. Hier wurde eine Interleukin-3-(IL-3) abhängige Zelllinie murinen Ursprungs verwendet, die 35 derart genetisch verändert wurde, daß sie funktionellen humanen EGF-R exprimiert. Die Proliferation dieser F/L-HERc genannten Zellen kann daher entweder durch murines IL-3 oder

- 27 -

durch EGF stimuliert werden (siehe von Rüden, T. et al. in EMBO J. 7, 2749-2756 (1988) und Pierce, J. H. et al. in Science 239, 628-631 (1988)).

5 Als Ausgangsmaterial für die F/L-HERc Zellen diente die Zell-  
linie FDC-P1, deren Herstellung von Dexter, T. M. et al. in J. Exp. Med. 152, 1036-1047 (1980) beschrieben wurde. Alternativ  
können aber auch andere Wachstumsfaktor-abhängige Zellen ver-  
wendet werden (siehe beispielsweise Pierce, J. H. et al. in  
10 Science 239, 628-631 (1988), Shibuya, H. et al. in Cell 70,  
57-67 (1992) und Alexander, W. S. et al. in EMBO J. 10, 3683-  
3691 (1991)). Zur Expression der humanen EGF-R cDNA (siehe  
Ullrich, A. et al. in Nature 309, 418-425 (1984)) wurden re-  
kombinante Retroviren verwendet, wie in von Rüden, T. et al.,  
15 EMBO J. 7, 2749-2756 (1988) beschrieben, mit dem Unterschied,  
daß zur Expression der EGF-R cDNA der retrovirale Vektor LXSN  
(siehe Miller, A. D. et al. in BioTechniques 7, 980-990  
(1989)) eingesetzt wurde und als Verpackungszelle die Linie  
GP+E86 (siehe Markowitz, D. et al. in J. Virol. 62, 1120-1124  
20 (1988)) diente.

Der Test wurde wie folgt durchgeführt:

F/L-HERc Zellen wurden in RPMI/1640 Medium (BioWhittaker),  
25 supplementiert mit 10 % foetalem Rinderserum (FCS, Boehringer  
Mannheim), 2 mM Glutamin (BioWhittaker), Standardantibiotika  
und 20 ng/ml humanem EGF (Promega), bei 37°C und 5% CO<sub>2</sub> kulti-  
viert. Zur Untersuchung der inhibitorischen Aktivität der er-  
findungsgemäßen Verbindungen wurden 1,5 x 10<sup>4</sup> Zellen pro Ver-  
30 tiefung in Triplikaten in 96-Loch-Platten in obigem Medium  
(200 µl) kultiviert, wobei die Proliferation der Zellen ent-  
weder mit EGF (20 ng/ml) oder murinem IL-3 stimuliert wurde.  
Als Quelle für IL-3 dienten Kulturüberstände der Zelllinie  
X63/0 mIL-3 (siehe Karasuyama, H. et al. in Eur. J. Immunol.  
35 18, 97-104 (1988)). Die erfindungsgemäßen Verbindungen wurden  
in 100% Dimethylsulfoxid (DMSO) gelöst und in verschiedenen  
Verdünnungen den Kulturen zugefügt, wobei die maximale DMSO

Konzentration 1% betrug. Die Kulturen wurden für 48 Stunden bei 37°C inkubiert.

Zur Bestimmung der inhibitorischen Aktivität der erfindungsgemäßen Verbindungen wurde die relative Zellzahl mit dem Cell Titer 96<sup>TM</sup> AQueous Non-Radioactive Cell Proliferation Assay (Promega) in O.D. Einheiten gemessen. Die relative Zellzahl wurde in Prozent der Kontrolle (F/LHERc Zellen ohne Inhibitor) berechnet und die Wirkstoffkonzentration, die die Proliferation der Zellen zu 50% hemmt ( $IC_{50}$ ), abgeleitet. Hierbei wurden folgende Ergebnisse erhalten:

| Verbindung<br>(Beispiel Nr.) | Hemmung der EGF-abhängigen<br>Proliferation $IC_{50}$ [nM] |
|------------------------------|------------------------------------------------------------|
| 1                            | 4                                                          |
| 3                            | 62                                                         |
| 3 (1)                        | 11                                                         |
| 4                            | 67                                                         |

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I hemmen somit die Signaltransduktion durch Tyrosinkinasen, wie am Beispiel des humanen EGF-Rezeptors gezeigt wurde, und sind daher nützlich zur Behandlung pathophysiologischer Prozesse, die durch Überfunktion von Tyrosinkinasen hervorgerufen werden. Das sind z.B. benigne oder maligne Tumoren, insbesondere Tumoren epithelialen und neuroepithelialen Ursprungs, Metastasierung sowie die abnorme Proliferation vaskulärer Endothelzellen (Neoangiogenese).

Die erfindungsgemäßen Verbindungen sind auch nützlich zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, die mit einer vermehrten oder veränderten Schleimproduktion einhergehen, die durch Stimulation von Tyrosinkinasen hervorgerufen wird, wie z.B. bei entzündlichen Erkrankungen der Atemwege wie chronische Bronchitis, chronisch obstruktive Bronchitis, Asthma, Bronchiektasien, allergische oder nicht-

- 29 -

allergische Rhinitis oder Sinusitis, zystische Fibrose,  $\alpha$ 1-Anitrypsin-Mangel, oder bei Husten, Lungenemphysem, Lungenfibrose und hyperreaktiven Atemwegen.

- 5 Die Verbindungen sind auch geeignet für die Behandlung von Erkrankungen des Magen-Darm-Traktes und der Gallengänge und -blase, die mit einer gestörten Aktivität der Tyrosinkinasen einhergehen, wie sie z.B. bei chronisch entzündlichen Veränderungen zu finden sind, wie Cholezystitis, M. Crohn, Colitis 10 ulcerosa, und Geschwüren im Magen-Darm-Trakt oder wie sie bei Erkrankungen des Magen-Darm-Traktes, die mit einer vermehrten Sekretion einhergehen, vorkommen, wie M. Ménétrier, sezernierende Adenome und Proteinverlustsyndrome,
- 15 desweiteren zur Behandlung von Nasenpolypen sowie von Polypen des Gastrointestinaltraktes unterschiedlicher Genese wie z.B. villöse oder adenomatöse Polypen des Dickdarms, aber auch von Polypen bei familiärer Polyposis coli, bei Darmpolypen im Rahmen des Gardner-Syndroms, bei Polypen im gesamten Magen-Darm-Trakt bei Peutz-Jeghers-Syndrom, bei entzündlichen Pseudopoly- 20 pen, bei juvenilen Polypen, bei Colitis cystica profunda und bei Pneumatoses cystoides intestinales.

Außerdem können die Verbindungen der allgemeinen Formel I und 25 deren physiologisch verträglichen Salze zur Behandlung von Nierenerkrankungen, insbesondere bei zystischen Veränderungen wie bei Zystennieren, zur Behandlung von Nierenzysten, die idiopathischer Genese sein können oder im Rahmen von Syndromen auftreten wie z.B. bei der tuberösen Sklerose, bei dem von-Hippel-Lindau-Syndrom, bei der Nephronophthisis und Mark-schwammniere sowie anderer Krankheiten verwendet werden, die durch aberrante Funktion von Tyrosinkinasen verursacht werden, wie z.B. epidermaler Hyperproliferation (Psoriasis), inflammatorischer Prozesse, Erkrankungen des Immunsystems, Hyper-proliferation hämatopoetischer Zellen etc..

- 30 -

Auf Grund ihrer biologischen Eigenschaften können die erfindungsgemäßen Verbindungen allein oder in Kombination mit anderen pharmakologisch wirksamen Verbindungen angewendet werden, beispielsweise in der Tumorthерапie in Monotherapie oder  
5 in Kombination mit anderen Anti-Tumor Therapeutika, beispielsweise in Kombination mit Topoisomerase-Inhibitoren (z.B. Etoposide), Mitoseinhibitoren (z.B. Vinblastin), mit Nuklein-  
säuren interagierenden Verbindungen (z.B. cis-Platin, Cyclo-  
phosphamid, Adriamycin), Hormon-Antagonisten (z.B. Tamoxifen),  
10 Inhibitoren metabolischer Prozesse (z.B. 5-FU etc.), Zytokinen (z.B. Interferonen), Antikörpern etc. Für die Behandlung von Atemwegserkrankungen können diese Verbindungen allein oder in Kombination mit anderen Atemwegstherapeutika, wie z.B. sekretolytisch, broncholytisch und/oder entzündungshemmend wirk-  
15 samen Substanzen angewendet werden. Für die Behandlung von Erkrankungen im Bereich des Magen-Darm-Traktes können diese Verbindungen ebenfalls alleine oder in Kombination mit Motilitäts- oder Sekretions-beeinflussenden oder entzündungs-  
hemmenden Substanzen gegeben werden. Diese Kombinationen  
20 können entweder simultan oder sequentiell verabreicht werden.

Die Anwendung dieser Verbindungen entweder alleine oder in Kombination mit anderen Wirkstoffen kann intravenös, subkutan, intramuskulär, intrarektal, intraperitoneal, intranasal, durch  
25 Inhalation oder transdermal oder oral erfolgen, wobei zur Inhalation insbesondere Aerosolformulierungen geeignet sind.

Bei der pharmazeutischen Anwendung werden die erfindungsgemäßen Verbindungen in der Regel bei warmblütigen Wirbeltieren, insbesondere beim Menschen, in Dosierungen von 0,01-100 mg/kg  
30 Körpergewicht, vorzugsweise bei 0,1-15 mg/kg verwendet. Zur Verabreichung werden diese mit einem oder mehreren üblichen inerten Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure,  
35 Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/-Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Stearylal-

- 31 -

kohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen, Lösungen, Sprays oder Zäpfchen eingearbeitet.

5

Die nachfolgenden Beispiele sollen die vorliegende Erfindung näher erläutern ohne diese zu beschränken:

Herstellung der Ausgangsverbindungen:

10

Beispiel I

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin

15 Zu 740 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-{2-[4-(tert.butyloxycarbonyl)-piperazin-1-yl]-ethoxy}-chinazolin in 10 ml Methylenchlorid werden 2.00 ml Trifluoressigsäure getropft. Die Reaktionslösung wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch  
20 eingeengt, mit 20 ml Wasser versetzt und mit konzentrierter wässriger Ammoniaklösung alkalisch gestellt. Die wässrige Phase wird mit Essigester extrahiert. Die vereinigten Extrakte werden mit gesättigter Natriumcarbonat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen; über Magnesiumsulfat getrocknet  
25 und eingeengt. Es bleibt ein hellgelber Feststoff zurück.

Ausbeute: 570 mg (93 % der Theorie),

Schmelzpunkt: 134-137,5°C

Massenspektrum (ESI<sup>-</sup>): m/z = 484, 486 [M-H]<sup>-</sup>

30 Analog Beispiel I werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin

R<sub>f</sub>-Wert: 0.05 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 498, 500 [M-H]<sup>-</sup>

- 32 -

(2) Perhydro-pyrazino[2,1-c][1,4]oxazin-3-on x 2 Trifluoressigsäure (Das Reaktionsgemisch wird ohne wäßrige Aufarbeitung eingeengt)

Massenspektrum (ESI<sup>+</sup>): m/z = 157 [M+H]<sup>+</sup>

5

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin

R<sub>f</sub>-Wert: 0.10 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:1)

10 Massenspektrum (ESI<sup>+</sup>): m/z = 472, 474 [M+H]<sup>+</sup>

(4) 2-Oxo-3-[(piperidin-4-yl)sulfanyl]-tetrahydrofuran x Trifluoressigsäure

(Das Reaktionsgemisch wird ohne wäßrige Aufarbeitung eingeengt.)

15 R<sub>f</sub>-Wert: 0.66 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/Trifluoressigsäure = 50:50:1)

Massenspektrum (ESI<sup>+</sup>): m/z = 202 [M+H]<sup>+</sup>

20 Beispiel II

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-{2-[4-(tert.butyloxycarbonyl)-piperazin-1-yl]-ethoxy}-chinazolin

Zu 940 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-(2-brom-ethoxy)-chinazolin und 1.00 g N-(tert.Butyloxycarbonyl)-piperazin in 30 ml Acetonitril werden bei Raumtemperatur 340 mg 1,8-Diazabicyclo[5.4.0]undec-7-en gegeben. Das Reaktionsgemisch wird fünf Stunden auf 60°C erhitzt. Dann werden nochmals 0.2 g N-(tert.Butyloxycarbonyl)-piperazin und etwas 30 1,8-Diazabicyclo[5.4.0]undec-7-en zugesetzt. Die gelbe Reaktionslösung wird zwei Stunden bei 60°C und anschließend über Nacht bei Raumtemperatur gerührt, wobei sich ein weißer Niederschlag bildet. Dieser wird abgesaugt, mit wenig Acetonitril nachgewaschen und getrocknet. Man erhält 453 mg des gewünschten Produktes als weißen Feststoff. Die Mutterlauge wird eingeengt und der Kolbenrückstand über eine Kieselgelsäule mit

- 33 -

Methylenchlorid/Methanol (95:5) chromatographiert. Es werden nochmals 300 mg des gewünschten Produktes erhalten.

Ausbeute: 753 mg (66 % der Theorie),

R<sub>f</sub>-Wert: 0.53 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 584, 586 [M-H]<sup>-</sup>

Analog Beispiel II werden folgende Verbindungen erhalten:

10 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-{2-[4-(tert.butyloxycarbonyl)-piperazin-1-yl]-ethoxy}-chinazolin (Die Reaktion wird in Gegenwart von Kaliumcarbonat, Diisopropylethylamin und Benzyl-tributyl-ammoniumchlorid in Dioxan/Wasser (20:1) durchgeführt)

15 R<sub>f</sub>-Wert: 0.55 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 598, 600 [M-H]<sup>-</sup>

20 (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-{2-[4-(tert.butyloxycarbonyl)-piperazin-1-yl]-chinazolin}

R<sub>f</sub>-Wert: 0.43 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 570, 572 [M-H]<sup>-</sup>

25 (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-(4-{N-[ (tert.-butyloxycarbonyl)methyl]-N-(2-hydroxy-ethyl)-amino}-piperidin-1-yl)-ethoxy]-7-methoxy-chinazolin

(Die Reaktion wird in Gegenwart von Diisopropylethylamin als Hilfsbase durchgeführt.)

30 R<sub>f</sub>-Wert: 0.22 (Kieselgel, Essigester/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:0.5)

Massenspektrum (ESI<sup>-</sup>): m/z = 602, 604 [M-H]<sup>-</sup>

35 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-(4-{N-[ (tert.-butyloxycarbonyl)methyl]-N-(2-hydroxy-ethyl)-amino}-piperidin-1-yl)-ethoxy]-7-((R)-tetrahydrofuran-3-yloxy)-chinazolin

- 34 -

(Die Reaktion wird in Gegenwart von Diisopropylethylamin als Hilfsbase durchgeführt.)

R<sub>f</sub>-Wert: 0.24 (Kieselgel, Essigester/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.5)

5 Massenspektrum (ESI<sup>+</sup>): m/z = 660, 662 [M+H]<sup>+</sup>

### Beispiel III

10 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-  
7-(2-brom-ethoxy)-chinazolin

Zu 3.50 g 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-hydroxy-chinazolin und 6.89 ml 1,2-Dibromethan in 40 ml N,N-Dimethylformamid werden 4.84 g Kaliumcarbonat gegeben. Das Reaktionsgemisch wird unter Stickstoff-Atmosphäre  
15 1.5 Stunden bei 80°C gerührt. Nach Abkühlung auf Raumtemperatur wird das Reaktionsgemisch filtriert und das Filtrat im Vakuum eingeengt. Der ölige, braune Rückstand wird im Eisbad abgekühlt und mit wenig Methanol verrieben, wobei ein gelblicher Feststoff auskristallisiert. Der Niederschlag wird abgesaugt, mit kaltem Methanol nachgewaschen und im Vakuumexsikator getrocknet.

Ausbeute: 2.60 g (58 % der Theorie),

R<sub>f</sub>-Wert: 0.82 (Kieselgel, Methylenechlorid/Methanol 9:1)

Massenspektrum (ESI<sup>+</sup>): m/z = 494, 496, 498 [M+H]<sup>+</sup>

25

Analog Beispiel III werden folgende Verbindungen erhalten:

(1) (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-  
7-(2-brom-ethoxy)-chinazolin

30 R<sub>f</sub>-Wert: 0.65 (Kieselgel, Methylenechlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 478, 480, 482 [M-H]<sup>-</sup>

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-  
35 7-(2-brom-ethoxy)-chinazolin (Die Reaktion wird in Acetonitril durchgeführt)

- 35 -

R<sub>f</sub>-Wert: 0.72 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 464, 466, 468 [M-H]<sup>-</sup>

- 5 (3) 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-(2-brom-ethoxy)-7-((R)-tetrahydrofuran-3-yloxy)-chinazolin

(Die Reaktion wird in Acetonitril bei 60 °C durchgeführt.)

R<sub>f</sub>-Wert: 0.37 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI<sup>-</sup>): m/z = 480, 482, 484 [M-H]<sup>-</sup>

10

#### Beispiel IV

4-[ (3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-hydroxy-chinazolin

- 15 4.99 g 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-methylcarbonyloxy-chinazolin werden in 80 ml Methanol suspendiert und mit 1.80 ml konzentrierter wäßriger Ammoniaklösung versetzt. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 500 ml Methylenchlorid verdünnt, mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Man erhält 4.30 g eines bräunlichen Feststoffes. Das Rohprodukt wird mit tert.Butylmethylether verrührt, abgesaugt, mit wenig tert.Butylmethyl-
- 20 ether nachgewaschen und bei Raumtemperatur im Vakuum getrocknet.

Ausbeute: 3.59 g (80 % der Theorie),

R<sub>f</sub>-Wert: 0.48 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:0.1)

- 30 Massenspektrum (ESI<sup>+</sup>): m/z = 388, 340 [M+H]<sup>+</sup>

Analog Beispiel IV werden folgende Verbindungen erhalten:

(1) 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-

- 35 7-hydroxy-chinazolin

- 36 -

R<sub>f</sub>-Wert: 0.53 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>+</sup>): m/z = 374, 376 [M+H]<sup>+</sup>

5 (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-hydroxy-chinazolin

R<sub>f</sub>-Wert: 0.56 (Kieselgel, Methylenchlorid/Methanol = 9:1)  
Massenspektrum (ESI<sup>+</sup>): m/z = 358, 360 [M-H]<sup>-</sup>

10 Beispiel V

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-methylcarbonyloxy-chinazolin

15 4.03 g 4-Chlor-6-cyclopentylmethoxy-7-methylcarbonyloxy-chinazolin werden in 70 ml Isopropanol suspendiert und mit 1.95 g 3-Chlor-4-fluor-anilin versetzt. Das Reaktionsgemisch wird zwei Stunden unter Stickstoff-Atmosphäre unter Rückfluß erhitzt. Nach Abkühlung auf Raumtemperatur wird der entstandene helle Niederschlag abgesaugt, mit wenig Isopropanol nachgewaschen und an der Luft getrocknet.

20 Ausbeute: 4.99 g (92 % der Theorie),

R<sub>f</sub>-Wert: 0.80 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>+</sup>): m/z = 430, 432 [M+H]<sup>+</sup>

25

Analog Beispiel V werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-methylcarbonyloxy-chinazolin

30 R<sub>f</sub>-Wert: 0.73 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>+</sup>): m/z = 416, 418 [M+H]<sup>+</sup>

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-methylcarbonyloxy-chinazolin

R<sub>f</sub>-Wert: 0.86 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI<sup>+</sup>): m/z = 402, 404 [M+H]<sup>+</sup>

Beispiel VI4-Chlor-6-cyclopentylmethoxy-7-methylcarbonyloxy-chinazolin

- 5 3.80 g 4-Hydroxy-6-cyclopentylmethoxy-7-methylcarbonyloxy-chinazolin werden in 90 ml Thionylchlorid suspendiert und unter Stickstoff-Atmosphäre zum Sieden erhitzt. Nach Zugabe von vier Tropfen N,N-Dimethylformamid wird das Reaktionsgemisch noch zwei Stunden unter Rückfluß erhitzt. Nach Abkühlung  
10 auf Raumtemperatur wird das überschüssige Thionylchlorid im Wasserstrahlvakuum abdestilliert. Der braune Rückstand wird mit 30 ml Toluol verrührt. Das Lösungsmittel wird abdestilliert und es bleiben 4.30 g eines graubraunen Feststoffes zurück, welcher ohne weitere Reinigung weiter umgesetzt wird.  
15 R<sub>f</sub>-Wert: 0.89 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Analog Beispiel VI werden folgende Verbindungen erhalten:

- 20 (1) 4-Chlor-6-cyclopentyloxy-7-methylcarbonyloxy-chinazolin  
R<sub>f</sub>-Wert: 0.69 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)  
25 (2) 4-Chlor-6-cyclopropylmethoxy-7-methylcarbonyloxy-chinazolin  
R<sub>f</sub>-Wert: 0.84 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Beispiel VII

- 30 4-Hydroxy-6-cyclopentylmethoxy-7-methylcarbonyloxy-chinazolin  
4.30 g 4,7-Dihydroxy-6-cyclopentylmethoxy-chinazolin in 100 ml Pyridin werden unter Stickstoff-Atmosphäre auf 80°C erhitzt. Zur dunkelbraunen Suspension werden 1.80 ml Essigsäureanhydrid gegeben. Das Reaktionsgemisch wird drei Stunden bei 80°C gerührt, wobei eine vollständige Lösung entsteht. Nach Abkühlung auf Raumtemperatur wird das Reaktionsgemisch auf ca. 800 ml Eiswasser gegossen. Der entstandene Niederschlag wird abge-

- 38 -

saugt und gründlich mit Wasser nachgewaschen. Der hellgraue Feststoff wird im Vakuumexsikkator getrocknet.

Ausbeute: 3.82 g (77% der Theorie),

R<sub>f</sub>-Wert: 0.49 (Kieselgel, Methylenchlorid/Methanol = 9:1)

5 Massenspektrum (ESI<sup>-</sup>): m/z = 301 [M-H]<sup>-</sup>

Analog Beispiel VII werden folgende Verbindungen erhalten:

(1) 4-Hydroxy-6-cyclopentyloxy-7-methylcarbonyloxy-chinazolin

10 Schmelzpunkt: 209-212°C

Massenspektrum (ESI<sup>-</sup>): m/z = 287 [M-H]<sup>-</sup>

(2) 4-Hydroxy-6-cyclopropylmethoxy-7-methylcarbonyloxy-china-  
zolin

15 R<sub>f</sub>-Wert: 0.53 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI<sup>-</sup>): m/z = 273 [M-H]<sup>-</sup>

### Beispiel VIII

20 4,7-Dihydroxy-6-cyclopentylmethoxy-chinazolin

5.76 g 2-Amino-5-cyclopentylmethoxy-4-hydroxy-benzoësäure und  
6.52 g Formamidinacetat in 140 ml Ethanol werden ca. drei  
Stunden unter Rückfluß erhitzt. Zur Aufarbeitung wird das Re-  
aktionsgemisch auf etwa 100 ml eingeengt und mit 300 ml Eis-  
25 wasser versetzt, wobei ein grauer Niederschlag ausfällt. Der  
Niederschlag wird abgesaugt, mit Wasser nachgewaschen und im  
Vakuumexsikkator getrocknet.

Ausbeute: 4.57 g (77 % der Theorie),

R<sub>f</sub>-Wert: 0.25 (Kieselgel, Methylenchlorid/Methanol = 95:5)

30 Massenspektrum (ESI<sup>-</sup>): m/z = 259 [M-H]<sup>-</sup>

Analog Beispiel VIII werden folgende Verbindungen erhalten:

(1) 4,7-Dihydroxy-6-cyclopentyloxy-chinazolin

35 R<sub>f</sub>-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol/konzentrier-  
te wäßrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (EI): m/z = 246 [M]<sup>+</sup>

- 39 -

(2) 4,7-Dihydroxy-6-cyclopropylmethoxy-chinazolin

R<sub>f</sub>-Wert: 0.45 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

5 Massenspektrum (ESI<sup>-</sup>): m/z = 231 [M-H]<sup>-</sup>

Beispiel IX

2-Amino-5-cyclopentylmethoxy-4-hydroxy-benzoësäure

10 6.50 g 5-Cyclopentylmethoxy-4-hydroxy-2-nitro-benzoësäure werden in 130 ml Methanol gelöst, mit 2.00 g Raney-Nickel versetzt und unter einem Wasserstoffdruck von 50 psi etwa drei Stunden bei Raumtemperatur hydriert, bis die berechnete Menge Wasserstoff aufgenommen ist. Der Katalysator wird abfiltriert  
15 und mit heißem Methanol nachgewaschen. Das Filtrat wird im Vakuum eingeengt. Es bleibt ein bräunlicher Feststoff zurück, welcher ohne weitere Reinigung weiter umgesetzt wird.

Ausbeute: 5.79 g (100 % der Theorie),

R<sub>f</sub>-Wert: 0.67 (Kieselgel, Methylenchlorid/Methanol = 9:1)

20 Massenspektrum (ESI<sup>-</sup>): m/z = 250 [M-H]<sup>-</sup>

Analog Beispiel IX werden folgende Verbindungen erhalten:

(1) 2-Amino-5-cyclopentyloxy-4-hydroxy-benzoësäure

25 R<sub>f</sub>-Wert: 0.38 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>+</sup>): m/z = 238 [M+H]<sup>+</sup>

(2) 2-Amino-5-cyclopropylmethoxy-4-hydroxy-benzoësäure

30 R<sub>f</sub>-Wert: 0.51 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 222 [M-H]<sup>-</sup>

Beispiel X

35

5-Cyclopentylmethoxy-4-hydroxy-2-nitro-benzoësäure

- 40 -

15.37 g 4,5-Methyldioxy-2-nitro-benzoësäure und 51.84 ml Cyclopentylmethanol werden in 100 ml Dimethylsulfoxid gelöst und unter Stickstoff-Atmosphäre im Eisbad abgekühlt. Nun werden portionsweise 3.90 g Natrium zugegeben. Das Reaktionsgemisch wird 30 Minuten unter Eisbad-Kühlung gerührt, dann kurzzeitig auf 35-40°C erwärmt und anschließend noch weitere drei Stunden unter Eisbad-Kühlung gerührt. Anschließend wird das Eisbad entfernt und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Die dunkelbraunrote Reaktionslösung wird auf ca. 800 ml Aceton gegossen, wobei ein dunkelbrauner Niederschlag ausfällt. Der Niederschlag wird abgesaugt, mit Aceton nachgewaschen, in 300-400 ml Wasser gelöst und mit 60 ml 2N Salzsäure auf etwa pH 2 eingestellt. Die wäßrige Lösung wird mehrmals mit Methylenchlorid extrahiert. Die vereinigten Extrakte werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Der dunkelbraune, ölige Kolbenrückstand wird in 800 ml Methylenchlorid gelöst und über ein Kieselgelpackung mit Methylenchlorid/Methanol (9:1) gereinigt. Man erhält ein braunes Öl, welches durch verrühren mit Wasser unter Eisbad-Kühlung zur Kristallisation gebracht wird. Der entstandene bräunliche Niederschlag wird abgesaugt, mit wenig Wasser nachgewaschen und im Vakuumexsikkator getrocknet.  
Ausbeute: 9.55 g (47 % der Theorie),  
 $R_f$ -Wert: 0.67 (Kieselgel, Toluol/Dioxan/Ethanol/Eisessig = 90:10:10:6)  
Massenspektrum (ESI<sup>-</sup>): m/z = 280 [M-H]<sup>-</sup>

- Analog Beispiel X werden folgende Verbindungen erhalten:
- (1) 5-Cyclopentyloxy-4-hydroxy-2-nitro-benzoësäure  
 $R_f$ -Wert: 0.62 (Kieselgel, Toluol/Dioxan/Ethanol/Eisessig = 90:10:10:6)  
Massenspektrum (ESI<sup>-</sup>): m/z = 266 [M-H]<sup>-</sup>
- (2) 5-Cyclopropylmethoxy-4-hydroxy-2-nitro-benzoësäure

- 41 -

R<sub>f</sub>-Wert: 0.61 (Kieselgel, Toluol/Dioxan/Ethanol/Eisessig = 90:10:10:6)

Massenspektrum (ESI<sup>-</sup>): m/z = 252 [M-H]<sup>-</sup>

5 Beispiel XI

8-(tert.Butyloxycarbonyl)-perhydro-pyrazino[2,1-c][1,4]oxazin-3-on

2.00 g 1-(tert.Butyloxycarbonyl)-4-[(ethoxycarbonyl)methyl]-3-hydroxymethyl-piperazin in 2.5 ml Acetonitril werden mit 500 mg p-Toluolsulfonsäure-monohydrat versetzt. Das Reaktionsgemisch wird drei Stunden unter Rückfluß erhitzt, bis die Umsetzung vollständig ist. Anschließend wird das Lösungsmittel im Vakuum abdestilliert. Das Rohprodukt wird ohne weitere Reinigung direkt weiter umgesetzt.

R<sub>f</sub>-Wert: 0.80 (Kieselgel, Essigester/Methanol = 9:1)

Beispiel XII

20 1-(tert.Butyloxycarbonyl)-4-[(ethoxycarbonyl)methyl]-3-hydroxymethyl-piperazin und 8-(tert.Butyloxycarbonyl)-perhydro-pyrazino[2,1-c][1,4]oxazin-3-on

Zu 5.80 g 1-(tert.Butyloxycarbonyl)-3-hydroxymethyl-piperazin und 4.50 ml Triethylamin in 60 ml Acetonitril werden 3.90 ml Bromessigsäureethylester gegeben. Das Reaktionsgemisch wird über Nacht unter Rückfluß erhitzt, wobei laut Dünnschichtchromatographie zwei Produkte entstehen. Zur Aufarbeitung wird das Reaktionsgemisch im Vakuum eingeengt und der Rückstand zwischen Essigester und Wasser verteilt. Die organische Phase wird über Magnesiumsulfat getrocknet, eingeengt und über eine Kieselgelsäule mit Essigester/Methanol (97:3) chromatographiert. Man erhält die beiden folgenden Produkte als gelbliche Öle:

30 8-(tert.Butyloxycarbonyl)-perhydro-pyrazino[2,1-c][1,4]oxazin-3-on

Ausbeute: 3.43 g (50 % der Theorie),

35 R<sub>f</sub>-Wert: 0.80 (Kieselgel, Essigester/Methanol = 9:1)

- 42 -

1-(tert.Butyloxycarbonyl)-4-[(ethoxycarbonyl)methyl]-3-hydroxymethyl-piperazin

Ausbeute: 2.08 g (26 % der Theorie),

5 R<sub>f</sub>-Wert: 0.58 (Kieselgel, Essigester/Methanol = 9:1)  
Massenspektrum (ESI<sup>+</sup>): m/z = 303 [M+H]<sup>+</sup>

Beispiel XIII

10 1-(tert.Butyloxycarbonyl)-3-hydroxymethyl-piperazin

Eine Suspension aus 900 mg Lithiumborhydrid in 20 ml Tetrahydrofuran wird tropfenweise mit einer Lösung aus 8.00 g 1-(tert.Butyloxycarbonyl)-3-ethoxycarbonyl-piperazin in 10 ml Tetrahydrofuran versetzt und anschließend drei Stunden unter Rückfluß erhitzt. Zur Aufarbeitung wird das Reaktionsgemisch eingeengt, mit 10%iger wäßriger Zitronensäurelösung auf pH 4 eingestellt und etwa 40 Minuten unter Eisbad-Kühlung gerührt. Anschließend wird das Gemisch mit konzentrierter Natronlauge alkalisch gestellt und über Nacht stehengelassen. Am nächsten Morgen wird es mit tert.Butylmethylether extrahiert. Die organische Phase wird über Magnesiumsulfat getrocknet und eingeengt. Es bleibt ein klares Öl zurück, welches langsam kristallisiert.

Ausbeute: 5.80 g (87 % der Theorie),

25 R<sub>f</sub>-Wert: 0.28 (Kieselgel, Essigester/Methanol = 4:1)  
Massenspektrum (ESI<sup>+</sup>): m/z = 217 [M+H]<sup>+</sup>

Beispiel XIV

30 1-(tert.Butyloxycarbonyl)-3-ethoxycarbonyl-piperazin

Zu 15.80 g 2-Ethoxycarbonyl-piperazin in 400 ml Ethanol werden unter Eisbad-Kühlung 21.80 g Pyrokohlensäure-di-tert.butylester gegeben. Das Reaktionsgemisch wird noch drei Stunden bei 0°C gerührt. Anschließend wird es eingeengt und der Rückstand zwischen Essigester und Wasser verteilt. Die organische Phase wird über Magnesiumsulfat getrocknet, eingeengt und chromat-

- 43 -

graphisch über eine Kieselgelsäule mit Essigester/Methanol (95:5) als Laufmittel gereinigt.

Ausbeute: 24.30 g (94 % der Theorie),

R<sub>f</sub>-Wert: 0.40 (Kieselgel, Essigester/Methanol = 9:1)

5 Massenspektrum (ESI<sup>+</sup>): m/z = 281 [M+Na]<sup>+</sup>

#### Beispiel XV

4-{N-[ (tert.-Butyloxycarbonyl)methyl]-N-(2-hydroxy-ethyl)-  
10 amino}-piperidin

Die Verbindung wird durch Hydrierung von 1-Benzylloxycarbonyl-4-{N-[ (tert.-butyloxycarbonyl)methyl]-N-(2-hydroxy-ethyl)-amino}-piperidin in Ethanol in Gegenwart von 10% Palladium auf Aktivkohle in einer Parr-Apparatur erhalten.

15 Massenspektrum (ESI<sup>+</sup>): m/z = 259 [M+H]<sup>+</sup>

#### Beispiel XVI

1-Benzylloxycarbonyl-4-{N-[ (tert.-butyloxycarbonyl)methyl]-  
20 N-(2-hydroxy-ethyl)-amino}-piperidin

4.89 g 1-Benzylloxycarbonyl-4-oxo-piperidin und 3.67 g (2-Hydroxy-ethylamino)-essigsäure-tert.-butylester in 100 ml Methylenechlorid werden mit 1.2 ml Eisessig versetzt und in einem Eisswasserbad abgekühlt. Nun werden insgesamt 4.44 g  
25 Natriumtriacetoxyborhydrid portionsweise über einen Zeitraum von einer Stunde zugegeben. Man lässt das Reaktionsgemisch über Nacht auf Raumtemperatur erwärmen. Zur Aufarbeitung wird das Gemisch mit gesättigter Natriumhydrogencarbonat-Lösung versetzt. Die organische Phase wird abgetrennt, über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird chromatographisch über eine Kieselgelsäule mit  
30 Essigester/Petrolether (1:1) als Laufmittel gereinigt.

Ausbeute: 3.52 g (43 % der Theorie)

R<sub>f</sub>-Wert: 0.40 (Kieselgel, Cyclohexan/Essigester = 1:1)

- 44 -

Massenspektrum (ESI<sup>+</sup>): m/z = 393 [M+H]<sup>+</sup>

Beispiel XVII

5 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-hydroxy-7-((R)-tetra-  
hydrofuran-3-yloxy)-chinazolin

Die Verbindung wird durch Behandeln von 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-benzyloxy-7-((R)-tetrahydrofuran-3-yloxy)-chinazolin mit Trifluoressigsäure unter Rückfluß erhalten.

10 R<sub>f</sub>-Wert: 0.32 (Kieselgel, Methylenechlorid/Methanol = 9:1)

Beispiel XVIII

15 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-benzyloxy-7-((R)-tetra-  
hydrofuran-3-yloxy) chinazolin

Zu einer Lösung aus 8.00 g 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-benzyloxy-7-hydroxy-chinazolin (siehe WO 0055141 A1) und 2.42 ml (S)-(+)-3-Hydroxy-tetrahydrofuran und 7.95 g Triphenylphosphin in 160 ml Tetrahydrofuran werden 5.03 ml 20 Azodicarbonsäurediethylester getropft. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt und anschließend am Rotationsverdampfer eingeengt. Der Kolbenrückstand wird chromatographisch über eine Kieselgelsäule mit Methylenchlorid/Essigester (Gradient von 2:1 auf 1:2) als 25 Laufmittel gereinigt.

Ausbeute: 7.34 g (78 % der Theorie)

Schmelzpunkt: 165-168 °C

Massenspektrum (ESI<sup>+</sup>): m/z = 466, 468 [M+H]<sup>+</sup>

30 Beispiel XIX

2-Oxo-3-{[1-(tert.-butyloxycarbonyl)-piperidin-4-yl]sulfanyl}-tetrahydrofuran

- 45 -

Die Verbindung wird durch Umsetzung von 1-(tert.-Butyloxy-carbonyl)-4-mercaptopiperidin mit 3-Brom-dihydro-furan-2-on in N,N-Dimethylformamid in Gegenwart von Kalium-tert.-butylat erhalten.

5 R<sub>f</sub>-Wert: 0.35 (Kieselgel, Cyclohexan/Essigester = 3:2)

Massenspektrum (ESI<sup>-</sup>): m/z = 300 [M-H]<sup>-</sup>

Herstellung der Endverbindungen:

10

Beispiel 1

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-{2-[4-(2-oxo-tetrahydrofuran-3-yl)-piperazin-1-yl]-ethoxy}-chinazolin

15 Zu 180 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin und 0.14 ml Triethylamin in 4 ml Tetrahydrofuran werden 67 mg 3-Brom-dihydrofuran-2-on gegeben. Das Reaktionsgemisch wird übers Wochenende bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Reaktionsgemisch am Rotationsverdampfer im Vakuum eingeengt. Der Rückstand wird über eine Kieselgelsäule mit Methylenechlorid/Methanol (95:5 bis 90:10) chromatographiert. Der so erhaltene helle Feststoff wird mit Diethylether verrührt, abgesaugt und in einer Trockenpistole bei 60°C im Vakuum getrocknet.

20 Ausbeute: 120 mg ( % der Theorie),

R<sub>f</sub>-Wert: 0.38 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 568, 570 [M-H]<sup>-</sup>

30 Beispiel 2

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-(2-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-ethoxy)-chinazolin

35 72 mg (S)-(+)-5-Oxo-tetrahydrofuran-2-carbonsäure werden in 2.5 ml N,N-Dimethylformamid gelöst, mit 183 mg (Benzotriazol-

- 46 -

1-yl) -N,N,N^,N^- -tetramethyl-uronium-tetrafluoroborat versetzt und 30 Minuten bei Raumtemperatur gerührt. Diese Lösung wird anschließend zu einer Mischung aus 250 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin und 110 µl Triethylamin in 2.5 ml N,N-Dimethylformamid gegeben. Das Reaktionsgemisch wird fünf Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Gemisch auf 50 ml Wasser gegossen. Es fällt ein weißer Niederschlag aus, welcher abgesaugt und mit Wasser nachgewaschen wird. Das Rohprodukt wird chromatographisch über eine Alox-Säule (Aktivitätsstufe III) mit Methylenchlorid/Methanol (98:2) als Laufmittel gereinigt. Man erhält das gewünschte Produkt als hellen Feststoff.

Ausbeute: 78 mg (26 % der Theorie),  
R<sub>f</sub>-Wert: 0.46 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 610, 612 [M-H]<sup>-</sup>

Analog Beispiel 2 wird folgende Verbindung erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-[2-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-ethoxy]-chinazolin  
R<sub>f</sub>-Wert: 0.37 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 596, 598 [M-H]<sup>-</sup>

### Beispiel 3

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-[2-{4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl}-ethoxy]-chinazolin

Zu einer Lösung aus 230 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin in 2 ml Methanol werden 46 mg (5H)-Furan-2-on gegeben. Das Reaktionsgemisch wird 24 Stunden bei Raumtemperatur, dann weitere sechs Stunden bei 50°C gerührt. Es werden insgesamt noch-

- 47 -

mals sechs Tropfen (5H)-Furan-2-on zugegeben, bis die Umsetzung vollständig ist. Das Lösungsmittel wird am Rotationsverdampfer abdestilliert und das Rohprodukt chromatographisch über eine Alox-Säule (Aktivitätsstufe III) mit Methylenchlorid/Methanol (98:2) als Laufmittel gereinigt. Man erhält das gewünschte Produkt als farblosen Feststoff.

Ausbeute: 106 mg (40 % der Theorie),  
 $R_f$ -Wert: 0.50 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI<sup>-</sup>): m/z = 582, 584 [M-H]<sup>-</sup>

Analog Beispiel 3 werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-chinazolin  
 $R_f$ -Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:1)  
 Massenspektrum (ESI<sup>-</sup>): m/z = 468, 470 [M-H]<sup>-</sup>

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-chinazolin  
 $R_f$ -Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol/konzentrierte wäßrige Ammoniaklösung = 90:10:1)  
 Massenspektrum (ESI<sup>-</sup>): m/z = 554, 556 [M-H]<sup>-</sup>

#### Beispiel 4

4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-(2-{4-[(R)-(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-1-yl}-ethoxy)-chinazolin  
 Zu 300 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-7-[2-(piperazin-1-yl)-ethoxy]-chinazolin in 20 ml Acetonitril werden 160 mg Kaliumcarbonat und 50 mg Natriumiodid gegeben. Dann werden 170 mg (R)-5-[(Methansulfonyloxy)methyl]-2-oxo-tetrahydrofuran zugegeben. Das Reaktionsgemisch wird vier

- 48 -

Stunden unter Rückfluß erhitzt, dann werden nochmals 0.10 g (R)-5-[(Methansulfonyloxy)methyl]-2-oxo-tetrahydrofuran zugesetzt. Nach weiteren zehn Stunden unter Rückfluß werden erneut 0.12 g (R)-5-[(Methansulfonyloxy)methyl]-2-oxo-tetrahydrofuran  
5 sowie 0.20 g Kaliumcarbonat und 70 mg Natriumiodid zugegeben. Das Reaktionsgemisch wird noch fünf Stunden unter Rückfluß gekocht und anschließend übers Wochenende stehengelassen. Zur Aufarbeitung wird das Reaktionsgemisch filtriert und das Filtrat eingeengt. Das Rohprodukt wird chromatographisch über  
10 eine Kieselgelsäule mit Methylenchlorid/Methanol/konzentrierter wäßriger Ammoniaklösung (95:5:0.05, später 93:7:0.1) als Laufmittel gereinigt. Man erhält die Titelverbindung als weißen Feststoff.

Ausbeute: 170 mg (47 % der Theorie),  
15 R<sub>f</sub>-Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol/konzentrierter wäßrige Ammoniaklösung = 90:10:1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 582, 584 [M-H]<sup>-</sup>

Analog Beispiel 4 werden folgende Verbindungen erhalten:

20 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-7-(2-{4-[(R)-(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-1-yl}-ethoxy)-chinazolin  
R<sub>f</sub>-Wert: 0.50 (Kieselgel, Methylenchlorid/Methanol/konzentrier-  
25 te wäßrige Ammoniaklösung = 90:10:0.1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 596, 598 [M-H]<sup>-</sup>

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-(2-{4-[(R)-(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-1-yl}-ethoxy)-chinazolin  
30 R<sub>f</sub>-Wert: 0.36 (Kieselgel, Methylenchlorid/Methanol/konzentrier-  
te wäßrige Ammoniaklösung = 90:10:1)  
Massenspektrum (ESI<sup>-</sup>): m/z = 568, 570 [M-H]<sup>-</sup>

35 Beispiel 5

- 49 -

4- [(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-  
7- [2- (3-oxo-perhydro-pyrazino[2,1-c] [1,4]oxazin-8-yl) -ethoxy] -  
chinazolin

---

Zu 150 mg 4- [(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropyl-

5 methoxy-7- (2-brom-ethoxy) -chinazolin in 15 ml Acetonitril werden 0.25 ml Diisopropylethylamin und 260 mg Perhydro-pyrazino[2,1-c] [1,4]oxazin-3-on x 2 Trifluoressigsäure gegeben.

Das Reaktionsgemisch wird eine Stunde bei Raumtemperatur ge-  
röhrt und anschließend zwei Stunden unter Rückfluß erhitzt.

10 Dann werden 70 mg Kaliumcarbonat und 75 mg Natriumiodid zu-  
gegeben. Das Reaktionsgemisch wird noch etwa 14 Stunden unter  
Rückfluß erhitzt, dabei werden sukzessive insgesamt weitere  
175 mg Perhydro-pyrazino[2,1-c] [1,4]oxazin-3-on x 2 Trifluo-  
ressigsäure und 300 mg Kaliumcarbonat zugesetzt, bis die Umset-  
15 zung vollständig ist. Zur Aufarbeitung werden die anorga-  
nischen Salze abfiltriert und das Filtrat wird im Vakuum ein-  
geengt. Der Kolbenrückstand wird über eine Kieselgelsäule mit  
Methylenchlorid/Methanol (95:5) als Laufmittel chromatogra-  
phiert. Man erhält das gewünschte Produkt als hellbraunes  
20 Harz.

Ausbeute: 27 mg (16 % der Theorie),

R<sub>f</sub>-Wert: 0.50 (Kieselgel, Methylenchlorid/Methanol/konzentrierte  
wäßrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (EI): m/z = 541, 543 [M]<sup>+</sup>

25

Analog Beispiel 5 wird folgende Verbindung erhalten:

(1) 4- [(3-Chlor-4-fluor-phenyl)amino]-6- (2- {4- [(2-oxo-  
tetrahydrofuran-3-yl)sulfanyl]-piperidin-1-yl} -ethoxy) -7-  
30 methoxy-chinazolin

R<sub>f</sub>-Wert: 0.42 (Kieselgel, Essigester/Methanol/konzentrierte,  
wäßrige Ammoniaklösung = 90:10:0.5)

Massenspektrum (EI): m/z = 546, 548 [M]<sup>+</sup>

35

- 50 -

Beispiel 6

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-7-methoxy-chinazolin

5 Die Verbindung wird durch Behandeln von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[2-(4-{N-[(tert.-butyloxycarbonyl)methyl]-N-(2-hydroxy-ethyl)-amino}-piperidin-1-yl)-ethoxy]-7-methoxy-chinazolin mit Trifluoressigsäure in Acetonitril unter Rückfluß erhalten.

10 R<sub>f</sub>-Wert: 0.10 (Kieselgel, Essigester/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.5)

Massenspektrum (ESI<sup>-</sup>): m/z = 528, 530 [M-H]<sup>-</sup>

Analog Beispiel 6 wird folgende Verbindung erhalten:

15 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-7-(*(R)*-tetrahydrofuran-3-yloxy)-chinazolin

R<sub>f</sub>-Wert: 0.11 (Kieselgel, Essigester/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.5)

Massenspektrum (ESI<sup>-</sup>): m/z = 584, 586 [M-H]<sup>-</sup>

Analog den vorstehenden Beispielen werden folgende Verbindungen erhalten:

25 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-chinazolin

30 (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-(3-{4-[(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-1-yl}-propyloxy)-chinazolin

- 51 -

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-(3-{4-[(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-propyloxy)-chinazolin

5 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-(3-{4-[2-[(2-oxo-tetrahydrofuran-3-yl)sulfanyl]ethyl]-piperazin-1-yl}-propyloxy)-chinazolin

10 (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-{3-[1-(2-oxo-tetrahydrofuran-4-yl)-piperidin-4-yl]-propyloxy}-chinazolin

15 (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(3-oxo-perhydro-pyrazino[2,1-c][1,4]oxazin-8-yl)-propyloxy]-chinazolin

20 (7) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(1-oxo-perhydro-pyrazino[2,1-c][1,4]oxazin-8-yl)-propyloxy]-chinazolin

(8) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(2-oxa-3-oxo-8-aza-spiro[4.5]dec-8-yl)-propyloxy]-chinazolin

25 (9) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

(10) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-6-[3-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

30 (11) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[2-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-ethoxy]-chinazolin

35 (12) 4-[(R)-(1-Phenyl-ethyl)amino]-7-methoxy-6-[2-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-ethoxy]-chinazolin

- 52 -

(13) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(1,4-di-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

5 (14) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

10 (15) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-6-[3-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

15 (16) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-6-[2-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-ethoxy]-chinazolin

(17) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-{3-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy}-chinazolin

20 (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

25 (19) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-{3-[4-(6-methyl-2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy}-chinazolin

(20) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-6-{3-[4-(6-methyl-2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy}-chinazolin

30 (21) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-(3-{4-[(6-methyl-2-oxo-morpholin-4-yl)methyl]-piperidin-1-yl}-propyl-oxy)-chinazolin

35 (22) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-(3-{4-[(2-oxo-tetrahydrofuran-3-yl)sulfanyl]-piperidin-1-yl}-propyloxy)-chinazolin

- 53 -

(23) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(6-methoxymethyl-2-oxo-morpholin-4-yl)-propyloxy]-chinazolin

5 (24) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-{3-[6-(2-methoxy-ethyl)-2-oxo-morpholin-4-yl]-propyloxy}-chinazolin

(25) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-methoxy-6-[3-(1,9-dioxa-2-oxo-4-aza-spiro[5.5]undecan-4-yl)-propyloxy]-chinazolin

10 (26) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-chinazolin

15 (27) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-(3-{4-(2-oxo-tetrahydrofuran-5-yl)methyl}-piperazin-1-yl)-propyloxy)-chinazolin

20 (28) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-(3-{4-(2-oxo-tetrahydrofuran-5-yl)carbonyl}-piperazin-1-yl)-propyloxy)-chinazolin

25 (29) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-(3-{4-{2-[(2-oxo-tetrahydrofuran-3-yl)sulfanyl]-ethyl}}-piperazin-1-yl)-propyloxy)-chinazolin

(30) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-{3-[1-(2-oxo-tetrahydrofuran-4-yl)-piperidin-4-yl]-propyloxy}-chinazolin

30 (31) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(3-oxo-perhydro-pyrazino[2,1-c][1,4]oxazin-8-yl)-propyloxy]-chinazolin

35 (32) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(1-oxo-perhydro-pyrazino[2,1-c][1,4]oxazin-8-yl)-propyloxy]-chinazolin

- 54 -

(33) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(2-oxa-3-oxo-8-aza-spiro[4.5]dec-8-yl)-propyloxy]-chinazolin

5 (34) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

(35) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-[3-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

10

(36) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[2-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-ethoxy]-chinazolin

15

(37) 4-[(R)-(1-Phenyl-ethyl)amino]-6-methoxy-7-[2-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-ethoxy]-chinazolin

(38) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(1,4-dioxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

20

(39) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

25

(40) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-[3-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-propyloxy]-chinazolin

30

(41) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-[2-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-ethoxy]-chinazolin

(42) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-{3-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy}-chinazolin

35

(43) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

- 55 -

(44) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-{3-[4-(6-methyl-2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy}-chinazolin

5 (45) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-7-{3-[4-(6-methyl-2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy}-chinazolin

10 (46) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-(3-{4-[6-methyl-2-oxo-morpholin-4-yl]methyl}-piperidin-1-yl)-propyloxy)-chinazolin

15 (47) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-(3-{4-[(2-oxo-tetrahydrofuran-3-yl)sulfanyl]-piperidin-1-yl}-propyloxy)-chinazolin

(48) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(6-methoxymethyl-2-oxo-morpholin-4-yl)-propyloxy]-chinazolin

20 (49) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-{3-[6-(2-methoxy-ethyl)-2-oxo-morpholin-4-yl]-propyloxy}-chinazolin

(50) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-methoxy-7-[3-(1,9-dioxa-2-oxo-4-aza-spiro[5.5]undecan-4-yl)-propyloxy]-chinazolin

25

(51) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(tetrahydrofuran-3-yloxy)-6-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

30 (52) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(tetrahydropyran-4-yloxy)-6-{4-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-butyloxy}-chinazolin

35 (53) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(tetrahydrofuran-2-ylmethoxy)-6-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

- 56 -

(54) 4-[ (3-Chlor-4-fluor-phenyl)amino]-7-(tetrahydropyran-4-ylmethoxy)-6-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

5

(55) 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydrofuran-3-yloxy)-7-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

10 (56) 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-yloxy)-7-{4-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-butyloxy}-chinazolin

15 (57) 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydrofuran-2-ylmethoxy)-7-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

20 (58) 4-[ (3-Chlor-4-fluor-phenyl)amino]-6-(tetrahydropyran-4-ylmethoxy)-7-{2-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-ethoxy}-chinazolin

Beispiel 7

Dragées mit 75 mg Wirksubstanz

25

1 Dragéekern enthält:

|                              |               |
|------------------------------|---------------|
| Wirksubstanz                 | 75,0 mg       |
| Calciumphosphat              | 93,0 mg       |
| Maisstärke                   | 35,5 mg       |
| Polyvinylpyrrolidon          | 10,0 mg       |
| Hydroxypropylmethylcellulose | 15,0 mg       |
| Magnesiumstearat             | <u>1,5 mg</u> |
|                              | 230,0 mg      |

Herstellung:

Die Wirksubstanz wird mit Calciumphosphat, Maisstärke, Polyvinylpyrrolidon, Hydroxypropylmethylcellulose und der Hälfte der  
5 angegebenen Menge Magnesiumstearat gemischt. Auf einer Tabletteriaschine werden Preßlinge mit einem Durchmesser von ca.  
13 mm hergestellt, diese werden auf einer geeigneten Maschine durch ein Sieb mit 1,5 mm-Maschenweite gerieben und mit der  
restlichen Menge Magnesiumstearat vermischt. Dieses Granulat  
10 wird auf einer Tablettiermaschine zu Tabletten mit der gewünschten Form gepreßt.

Kerngewicht: 230 mg

Stempel: 9 mm, gewölbt

15 Die so hergestellten Dragéekerne werden mit einem Film überzogen, der im wesentlichen aus Hydroxypropylmethylcellulose besteht. Die fertigen Filmdragées werden mit Bienenwachs gegläntzt.  
20 Dragéegewicht: 245 mg.

Beispiel 8Tabletten mit 100 mg Wirksubstanz

25 Zusammensetzung:  
1 Tablette enthält:

|                     |               |
|---------------------|---------------|
| Wirksubstanz        | 100,0 mg      |
| Milchzucker         | 80,0 mg       |
| 30 Maisstärke       | 34,0 mg       |
| Polyvinylpyrrolidon | 4,0 mg        |
| Magnesiumstearat    | <u>2,0 mg</u> |
|                     | 220,0 mg      |

35 Herstellungverfahren:

- 58 -

Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wässrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2,0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird erneut gesiebt (1,5 mm-Maschenweite) und das Schmiermittel zu gemischt. Die preßfertige Mischung wird zu Tabletten verarbeitet.

5      Tablettengewicht: 220 mg  
Durchmesser: 10 mm, biplan mit beidseitiger Facette und  
10     einseitiger Teilkerbe.

Beispiel 9

Tabletten mit 150 mg Wirksubstanz

15     Zusammensetzung:  
1      1 Tablette enthält:  
          Wirksubstanz                        150,0 mg  
          Milchzucker pulv.                89,0 mg  
20      Maisstärke                            40,0 mg  
          Kolloide Kieselgelsäure        10,0 mg  
          Polyvinylpyrrolidon            10,0 mg  
          Magnesiumstearat                1,0 mg  
                                              300,0 mg

25     Herstellung:

Die mit Milchzucker, Maisstärke und Kieselgelsäure gemischte Wirksubstanz wird mit einer 20%igen wässrigen Polyvinylpyrrolidolösung befeuchtet und durch ein Sieb mit 1,5 mm-Maschenweite geschlagen.

Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden Tabletten gepreßt.

35      Tablettengewicht: 300 mg  
          Stempel:                        10 mm, flach

- 59 -

Beispiel 10

Hartgelatine-Kapseln mit 150 mg Wirksubstanz

5 1 Kapsel enthält:

|                   |               |
|-------------------|---------------|
| Wirkstoff         | 150,0 mg      |
| Maisstärke getr.  | ca. 180,0 mg  |
| Milchzucker pulv. | ca. 87,0 mg   |
| Magnesiumstearat  | <u>3,0 mg</u> |

10 ca. 420,0 mg

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein  
15 Sieb von 0,75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.

Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.

Kapselfüllung: ca. 320 mg

20 Kapselhülle: Hartgelatine-Kapsel Größe 1.

Beispiel 11

Suppositorien mit 150 mg Wirksubstanz

25

1 Zäpfchen enthält:

|                                   |                 |
|-----------------------------------|-----------------|
| Wirkstoff                         | 150,0 mg        |
| Polyäthylenglykol 1500            | 550,0 mg        |
| Polyäthylenglykol 6000            | 460,0 mg        |
| Polyoxyäthylensorbitanmonostearat | <u>840,0 mg</u> |

2 000,0 mg

Herstellung:

35 Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Form gossen.

- 60 -

### Beispiel 12

#### Suspension mit 50 mg Wirksubstanz

5

100 ml Suspension enthalten:

|    |                                 |           |
|----|---------------------------------|-----------|
|    | Wirkstoff                       | 1,00 g    |
|    | Carboxymethylcellulose-Na-Salz  | 0,10 g    |
|    | p-Hydroxybenzoësäuremethylester | 0,05 g    |
| 10 | p-Hydroxybenzoësäurepropylester | 0,01 g    |
|    | Rohrzucker                      | 10,00 g   |
|    | Glycerin                        | 5,00 g    |
|    | Sorbitlösung 70%ig              | 20,00 g   |
|    | Aroma                           | 0,30 g    |
| 15 | Wasser dest.                    | ad 100 ml |

#### Herstellung:

Dest. Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren  
 20 p-Hydroxybenzoësäuremethylester und -propylester sowie Glycerin und Carboxymethylcellulose-Natriumsalz gelöst. Es wird auf Raumtemperatur abgekühlt und unter Rühren der Wirkstoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des Zuckers, der Sorbitlösung und des Aromas wird die Suspension  
 25 zur Entlüftung unter Rühren evakuiert.  
 5 ml Suspension enthalten 50 mg Wirkstoff.

### Beispiel 13

#### Ampullen mit 10 mg Wirksubstanz

##### Zusammensetzung:

|    |                      |           |
|----|----------------------|-----------|
|    | Wirkstoff            | 10,0 mg   |
|    | 0,01N Salzsäure s.q. |           |
| 35 | Aqua bidest          | ad 2,0 ml |

##### Herstellung:

- 61 -

Die Wirksubstanz wird in der erforderlichen Menge 0,01N HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt.

5

Beispiel 14

Ampullen mit 50 mg Wirksubstanz

10 Zusammensetzung:

|                      |            |
|----------------------|------------|
| Wirkstoff            | 50,0 mg    |
| 0,01N Salzsäure s.q. |            |
| Aqua bidest          | ad 10,0 ml |

15 Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0,01N HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

20

Beispiel 15

Kapseln zur Pulverinhalation mit 5 mg Wirksubstanz

25 1 Kapsel enthält:

|                               |                |
|-------------------------------|----------------|
| Wirksubstanz                  | 5,0 mg         |
| Lactose für Inhalationszwecke | <u>15,0 mg</u> |
|                               | 20,0 mg        |

30

Herstellung:

Die Wirksubstanz wird mit Lactose für Inhalationszwecke gemischt. Die Mischung wird auf einer Kapselmaschine in Kapseln (Gewicht der Leerkapsel ca. 50 mg) abgefüllt.

Kapselgewicht: 70,0 mg

Kapselgröße: 3

Beispiel 16Inhalationslösung für Handvernebler mit 2,5 mg Wirksubstanz

5

1 Hub enthält:

|                        |              |
|------------------------|--------------|
| Wirksubstanz           | 2,500 mg     |
| Benzalkoniumchlorid    | 0,001 mg     |
| 10 1N-Salzsäure q.s.   |              |
| Ethanol/Wasser (50/50) | ad 15,000 mg |

Herstellung:

- 15 Die Wirksubstanz und Benzalkoniumchlorid werden in Ethanol/-Wasser (50/50) gelöst. Der pH-Wert der Lösung wird mit 1N-Salzsäure eingestellt. Die eingestellte Lösung wird filtriert und in für den Handvernebler geeignete Behälter (Kartuschen) abgefüllt.
- 20 Füllmasse des Behälters: 4,5 g

Patentansprüche

## 5 1. Bicyclische Heterocyclen der allgemeinen Formel



in der

10 X eine durch eine Cyangruppe substituierte Methingruppe oder ein Stickstoffatom,

R<sub>a</sub> ein Wasserstoffatom oder eine Methylgruppe,15 R<sub>b</sub> eine Phenyl-, Benzyl- oder 1-Phenylethylgruppe, in denen der Phenylkern jeweils durch die Reste R<sub>1</sub> bis R<sub>3</sub> substituiert ist, wobei20 R<sub>1</sub> und R<sub>2</sub>, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom,

eine Methyl-, Ethyl-, Hydroxy-, Methoxy-, Ethoxy-, Amino-, Cyan-, Vinyl- oder Ethinylgruppe,

25 eine Aryl-, Aryloxy-, Arylmethyl- oder Arylmethoxygruppe,

eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe oder

30 R<sub>1</sub> zusammen mit R<sub>2</sub>, sofern diese an benachbarte Kohlenstoffatome gebunden sind, eine -CH=CH-CH=CH-, -CH=CH-NH- oder -CH=N-NH-Gruppe und

- 64 -

R<sub>3</sub> ein Wasserstoff-, Fluor-, Chlor- oder Bromatom darstellen,

einer der Reste R<sub>c</sub> oder R<sub>d</sub> eine -A-B Gruppe und

5

der andere der der Reste R<sub>c</sub> oder R<sub>d</sub> eine -C-D Gruppe, wobei

10

A eine C<sub>1-6</sub>-Alkylengruppe, eine -O-C<sub>1-6</sub>-alkylengruppe, wobei der Alkylenteil mit dem Rest B verknüpft ist, oder ein Sauerstoffatom, wobei dieses nicht mit einem Stickstoffatom des Restes B verknüpft sein kann, und

15

B eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, in der

20

E eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-O-CO-, -CH<sub>2</sub>-O-CO-CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-O-CO-CH<sub>2</sub>- oder -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-O-CO-Brücke darstellt,

25

eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in 3-Stellung durch eine Gruppe F ersetzt sind, in der

30

F eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -O-CO-CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-O-CO-, -O-CO-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>-O-CO-CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-O-CO-CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-O-CO-, -O-CO-CH<sub>2</sub>-NR<sub>4</sub>-CH<sub>2</sub>-, -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-NR<sub>4</sub>-, -O-CO-CH<sub>2</sub>-O-CH<sub>2</sub>- oder -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-O-Brücke darstellt, wobei R<sub>4</sub> ein Wasserstoffatom oder eine C<sub>1-4</sub>-Alkylgruppe bedeutet,

35

eine Piperidino- oder Hexahydroazepinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

- 65 -

eine Piperidino- oder Hexahydroazepinogruppe, in denen jeweils die beiden Wasserstoffatome in 3-Stellung oder in 4-Stellung durch eine Gruppe F ersetzt sind, wobei F wie vorstehend erwähnt definiert ist,

5

eine Piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-piperazinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung oder in 3-Stellung des Piperazinoringes durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

10

eine Pyrrolidino- oder Piperidinogruppe, in denen zwei vicinale Wasserstoffatome durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -O-CO-CH<sub>2</sub>-, -CH<sub>2</sub>-O-CO-, -O-CO-CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-O-CO-, 15 -O-CO-CH<sub>2</sub>-NR<sub>4</sub>- oder -O-CO-CH<sub>2</sub>-O-Brücke ersetzt sind, wobei

15

R<sub>4</sub> wie vorstehend erwähnt definiert ist und die Heteroatome der vorstehend erwähnten Brücken nicht an die 2- oder 5-Stellung des Pyrrolidinoringes und nicht an die 2- oder 6-Stellung des Piperidinoringes gebunden sind,

20

eine Piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-piperazinogruppe, in denen ein Wasserstoffatom in 2-Stellung zusammen mit einem Wasserstoffatom in 3-Stellung des Piperazinoringes durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -CH<sub>2</sub>-O-CO-CH<sub>2</sub>- oder -CH<sub>2</sub>CH<sub>2</sub>-O-CO-Brücke ersetzt sind,

25

eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte -CO-O-CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehend erwähnten Brücken an die 3-Stellung des Piperazinoringes gebunden ist,

30

35

- 66 -

eine durch den Rest R<sub>5</sub> substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen

R<sub>5</sub> eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-tetrahydrofuranyl-, 2-Oxo-tetrahydropyranyl-, 2-Oxo-1,4-dioxanyl- oder 2-Oxo-4-(C<sub>1-4</sub>-alkyl)-morpholinylgruppe darstellt,

eine in 3-Stellung durch eine 2-Oxo-morpholinogruppe substituierte Pyrrolidinogruppe, wobei die 2-Oxo-morpholinogruppe durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

eine in 3- oder 4-Stellung durch eine 2-Oxo-morpholinogruppe substituierte Piperidino- oder Hexahydroazepinogruppe, wobei die 2-Oxo-morpholinogruppe durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

eine an einem Ringkohlenstoffatom durch R<sub>5</sub> substituierte 4-(C<sub>1-4</sub>-Alkyl)-piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-homopiperazinogruppe, in denen R<sub>5</sub> wie vorstehend erwähnt definiert ist,

eine in 4-Stellung durch den Rest R<sub>6</sub> substituierte Piperazino- oder Homopiperazinogruppe, in denen

R<sub>6</sub> eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-tetrahydrofuran-3-yl-, 2-Oxo-tetrahydrofuran-4-yl-, 2-Oxo-tetrahydropyran-3-yl-, 2-Oxo-tetrahydropyran-4-yl- oder 2-Oxo-tetrahydropyran-5-yl-Gruppe darstellt,

eine in 3-Stellung durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO- oder R<sub>6</sub>SO<sub>2</sub>-Gruppe substituierte Pyrrolidinogruppe, wobei R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind,

eine in 3- oder 4-Stellung durch eine  $(R_4NR_6)-$ ,  $R_6O-$ ,  $R_6S-$ ,  $R_6SO-$  oder  $R_6SO_2$ -Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen  $R_4$  und  $R_6$  wie vorstehend erwähnt definiert sind,

5

eine durch eine  $R_5-C_{1-4}$ -alkyl-,  $(R_4NR_6)-C_{1-4}$ -alkyl-,  $R_6O-C_{1-4}$ -alkyl-,  $R_6S-C_{1-4}$ -alkyl-,  $R_6SO-C_{1-4}$ -alkyl-,  $R_6SO_2-C_{1-4}$ -alkyl- oder  $R_4NR_6-CO$ -Gruppe substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen  $R_4$  bis  $R_6$  wie vorstehend erwähnt definiert sind,

10

eine in 3-Stellung durch eine  $R_5-CO-NR_4-$ ,  $R_5-C_{1-4}$ -alkylen- $CONR_4-$ ,  $(R_4NR_6)-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6O-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6S-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6SO-C_{1-4}$ -alkylen- $CONR_4-$ ,

15

$R_6SO_2-C_{1-4}$ -alkylen- $CONR_4-$ , 2-Oxo-morpholino- $C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_5-C_{1-4}$ -alkylen-Y- oder  $C_{2-4}$ -Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, wobei der  $C_{2-4}$ -Alkylteil der  $C_{2-4}$ -Alkyl-Y-Gruppe jeweils ab Position 2 durch eine  $(R_4NR_6)-$ ,  $R_6O-$ ,  $R_6S-$ ,  $R_6SO-$  oder  $R_6SO_2$ -Gruppe substituiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituiert sein kann, in denen

20

$R_4$  bis  $R_6$  wie vorstehend erwähnt definiert sind und

25

Y ein Sauerstoff- oder Schwefelatom, eine Imino-, N- $(C_{1-4}$ -Alkyl)-imino-, Sulfinyl- oder Sulfonylgruppe darstellt,

30

eine in 3- oder 4-Stellung durch eine  $R_5-CO-NR_4-$ ,  $R_5-C_{1-4}$ -alkylen- $CONR_4-$ ,  $(R_4NR_6)-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6O-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6S-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6SO-C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_6SO_2-C_{1-4}$ -alkylen- $CONR_4-$ , 2-Oxo-morpholino- $C_{1-4}$ -alkylen- $CONR_4-$ ,  $R_5-C_{1-4}$ -alkylen-Y- oder  $C_{2-4}$ -Alkyl-Y-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen

35

Y wie vorstehend erwähnt definiert ist, der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann und der C<sub>2-4</sub>-Alkylteil der C<sub>2-4</sub>-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO- oder R<sub>6</sub>SO<sub>2</sub>-Gruppe substituiert ist, wobei R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert sind,

5        eine an einem Ringkohlenstoffatom durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-, (R<sub>4</sub>NR<sub>6</sub>)<sub>1-4</sub>-alkyl-, R<sub>6</sub>O-C<sub>1-4</sub>-alkyl-, R<sub>6</sub>S-C<sub>1-4</sub>-alkyl-,

10      R<sub>6</sub>SO-C<sub>1-4</sub>-alkyl-, R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkyl- oder R<sub>4</sub>NR<sub>6</sub>-CO-Gruppe substituierte 4-(C<sub>1-4</sub>-Alkyl)-piperazino- oder 4-(C<sub>1-4</sub>-Alkyl)-homopiperazinogruppe, in denen R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert sind,

15      eine in 4-Stellung durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-, R<sub>5</sub>-CO-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-CO-, (R<sub>4</sub>NR<sub>6</sub>)<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>O-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>S-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkylen-CO- oder R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkylen-CO-Gruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert sind,

20      eine in 4-Stellung durch eine C<sub>2-4</sub>-Alkylgruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen die C<sub>2-4</sub>-Alkylgruppe jeweils ab Position 2 durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO- oder R<sub>6</sub>SO<sub>2</sub>-Gruppe substituiert ist, wobei R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind,

25      eine durch eine 2-Oxo-morpholino-C<sub>1-4</sub>-alkylgruppe substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepino-gruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

30      eine in 3-Stellung durch eine C<sub>2-4</sub>-Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, in denen

35      Y wie vorstehend erwähnt definiert ist und der C<sub>2-4</sub>-Alkylteil der C<sub>2-4</sub>-Alkyl-Y-Gruppe jeweils ab Position 2 durch

eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

5       eine in 3- oder 4-Stellung durch eine C<sub>2-4</sub>-Alkyl-Y-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen

10       Y wie vorstehend erwähnt definiert ist und der C<sub>2-4</sub>-Alkyl- teil der C<sub>2-4</sub>-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

15       eine an einem Ringkohlenstoffatom durch eine 2-Oxo-morpho- lino-C<sub>1-4</sub>-alkyl-Gruppe substituierte 4-(C<sub>1-4</sub>-Alkyl)-pipe- razino- oder 4-(C<sub>1-4</sub>-Alkyl)-homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkyl- gruppen substituiert sein kann,

20       eine in 4-Stellung durch eine 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen- CO-Gruppe substituierte Piperazino- oder Homopiperazino- gruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

25       eine in 4-Stellung durch eine C<sub>2-4</sub>-Alkylgruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der C<sub>2-4</sub>-Al- kylteil jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituierte 2-Oxo- morpholinogruppe substituiert ist,

30       eine in 1-Stellung durch den Rest R<sub>6</sub>, durch eine R<sub>5</sub>-C<sub>1-4</sub>-al- kyl-, R<sub>5</sub>-CO-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-CO-, (R<sub>4</sub>NR<sub>6</sub>)<sub>n</sub>-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>O-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>S-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkylen- CO-, R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkylen-CO- oder 2-Oxo-morpholino-C<sub>1-4</sub>-al- kylen-CO-Gruppe substituierte Pyrrolidinyl- oder Piperidi- nylgruppe, in denen

- 70 -

R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

5       eine in 1-Stellung durch eine C<sub>2-4</sub>-Alkylgruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen der C<sub>2-4</sub>-Alkylteil jeweils ab Position 2 durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO-, R<sub>6</sub>SO<sub>2</sub>- oder 2-Oxo-morpholinogruppe substituiert ist, wobei

10      R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

15      eine jeweils am Ringstickstoffatom durch den Rest R<sub>6</sub>, durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-, R<sub>5</sub>-CO-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-CO-, (R<sub>4</sub>NR<sub>6</sub>)-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>O-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>S-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkylen-CO- oder 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen-CO-Gruppe substituierte Pyrrolidin-3-yl-NR<sub>4</sub>-, Piperidin-3-yl-NR<sub>4</sub>- oder Piperidin-4-yl-NR<sub>4</sub>-Gruppe, in denen

20      R<sub>4</sub> bis R<sub>6</sub> wie vorstehend erwähnt definiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

25      eine jeweils am Ringstickstoffatom durch eine C<sub>2-4</sub>-Alkylgruppe substituierte Pyrrolidin-3-yl-NR<sub>4</sub>-, Piperidin-3-yl-NR<sub>4</sub>- oder Piperidin-4-yl-NR<sub>4</sub>-Gruppe, in denen der C<sub>2-4</sub>-Alkylteil jeweils ab Position 2 durch eine (R<sub>4</sub>NR<sub>6</sub>)-, R<sub>6</sub>O-, R<sub>6</sub>S-, R<sub>6</sub>SO-, R<sub>6</sub>SO<sub>2</sub>- oder 2-Oxo-morpholinogruppe substituiert ist, wobei

30      R<sub>4</sub> und R<sub>6</sub> wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

- 71 -

eine  $R_5-C_{1-4}$ -alkylen- $NR_4$ -Gruppe, in der  $R_4$  und  $R_5$  wie vorstehend erwähnt definiert sind, oder

5 eine  $C_{2-4}$ -Alkyl- $NR_4$ -Gruppe, in der der  $C_{2-4}$ -Alkylteil jeweils ab Position 2 durch eine  $(R_4NR_6)^-$ ,  $R_6O^-$ ,  $R_6S^-$ ,  $R_6SO^-$ ,  $R_6SO_2^-$  oder 2-Oxo-morpholinogruppe substituiert ist, wobei

10  $R_4$  und  $R_6$  wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituiert sein kann,

15 eine durch den Rest  $R_7$ , oder durch den Rest  $R_7$  und eine  $C_{1-4}$ -Alkylgruppe substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei

15  $R_7$ , eine  $C_{3-4}$ -Alkyl-, Hydroxy- $C_{1-4}$ -alkyl-,  $C_{1-4}$ -Alkoxy- $C_{1-4}$ -alkyl-, Di-( $C_{1-4}$ -Alkyl)-amino- $C_{1-4}$ -alkyl-, Pyrrolidino- $C_{1-4}$ -alkyl-, Piperidino- $C_{1-4}$ -alkyl-, Morpholino- $C_{1-4}$ -alkyl-, 4-( $C_{1-4}$ -Alkyl)-piperazino- $C_{1-4}$ -alkyl-,  $C_{1-4}$ -Alkylsulfanyl- $C_{1-4}$ -alkyl-,  $C_{1-4}$ -Alkylsulfinyl- $C_{1-4}$ -alkyl-,  $C_{1-4}$ -Alkylsulfonyl- $C_{1-4}$ -alkyl-, Cyan- $C_{1-4}$ -alkyl-,  $C_{1-4}$ -Alkoxy carbonyl- $C_{1-4}$ -alkyl-, Aminocarbonyl- $C_{1-4}$ -alkyl-,  $C_{1-4}$ -Alkyl-amino-carbonyl- $C_{1-4}$ -alkyl-, Di-( $C_{1-4}$ -alkyl)-aminocarbonyl- $C_{1-4}$ -alkyl-, Pyrrolidinocarbonyl- $C_{1-4}$ -alkyl-, Piperidinocarbonyl- $C_{1-4}$ -alkyl-, Morpholinocarbonyl- $C_{1-4}$ -alkyl- oder eine 4-( $C_{1-4}$ -Alkyl)-piperazinocarbonyl- $C_{1-4}$ -alkylgruppe darstellt,

25 eine durch zwei Reste  $R_7$ , substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei  $R_7$ , wie vorstehend erwähnt definiert ist und die beiden Reste  $R_7$ , gleich oder verschieden sein können,

30 eine 2-Oxo-morpholin-4-yl-Gruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine gegebenenfalls durch eine oder zwei  $C_{1-2}$ -Alkylgruppen substituierte  $-(CH_2)_m^-$ ,  $-CH_2-Y-CH_2^-$ ,  $-CH_2-Y-CH_2-CH_2^-$ ,

- 72 -

-CH<sub>2</sub>CH<sub>2</sub>-Y-CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>CH<sub>2</sub>-Y-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-Brücke ersetzt sind, wobei

5 Y wie eingangs erwähnt definiert ist und m die Zahl 2, 3, 4, 5 oder 6 darstellt,

10 eine 2-Oxo-morpholin-4-yl-Gruppe, in der ein Wasserstoffatom in 5-Stellung zusammen mit einem Wasserstoffatom in 6-Stellung durch eine -(CH<sub>2</sub>)<sub>n</sub>-, -CH<sub>2</sub>-Y-CH<sub>2</sub>-, -CH<sub>2</sub>-Y-CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>-CH<sub>2</sub>-Y-CH<sub>2</sub>-Brücke ersetzt ist, wobei

Y wie eingangs erwähnt definiert ist und n die Zahl 2, 3 oder 4 darstellt,

15 oder, falls C zusammen mit D eine Gruppe R<sub>e</sub> darstellt, auch eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 bis 4 C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

20 C eine -O-C<sub>1-6</sub>-Alkylengruppe, wobei der Alkylenteil mit dem Rest D verknüpft ist, oder ein Sauerstoffatom, wobei dieses nicht mit einem Stickstoffatom des Restes D verknüpft sein kann, und

25 D eine durch 2 C<sub>1-4</sub>-Alkylgruppen substituierte Aminogruppe, in der die Alkylreste gleich oder verschieden sein können und jeder Alkylteil ab Position 2 durch eine C<sub>1-4</sub>-Alkoxy- oder Di-(C<sub>1-4</sub>-Alkyl)-aminogruppe oder durch eine 4- bis 7-gliedrige Alkyleniminogruppe substituiert sein kann, wobei in den vorstehend erwähnten 6- bis 7-gliedrigen Alkyleniminogruppen jeweils eine Methylenegruppe in 4-Stellung durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C<sub>1-4</sub>-Alkyl)-iminogruppe ersetzt sein kann,

35 eine gegebenenfalls durch 1 bis 4 Methylgruppen substituierte 4- bis 7-gliedrige Alkyleniminogruppe,

- 73 -

eine gegebenenfalls durch 1 oder 2 Methylgruppen substituierte 6- bis 7-gliedrige Alkyleniminogruppe, in der jeweils eine Methylenegruppe in 4-Stellung durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C<sub>1-4</sub>-Alkyl)-iminogruppe ersetzt ist,

eine gegebenenfalls durch 1 bis 3 Methylgruppen substituierte Imidazolylgruppe,

10 eine C<sub>5-7</sub>-Cycloalkylgruppe, in der eine Methylenegruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C<sub>1-4</sub>-Alkyl)-iminogruppe ersetzt ist, oder

C zusammen mit D ein Wasserstoffatom,

15 eine gegebenenfalls ab Position 2 durch eine Hydroxy- oder C<sub>1-4</sub>-Alkoxygruppe substituierte C<sub>1-6</sub>-Alkoxygruppe,

eine C<sub>3-7</sub>-Cycloalkoxy- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-4</sub>-alkoxygruppe,

20. eine Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyryanylmethoxygruppe

25 oder einen Rest R<sub>e</sub>, wobei

R<sub>e</sub> eine C<sub>2-6</sub>-Alkoxygruppe, die ab Position 2 durch eine C<sub>4-7</sub>-Cycloalkoxy- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-3</sub>-alkoxygruppe substituiert ist,

30 eine C<sub>4-7</sub>-Cycloalkoxy- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-6</sub>-alkoxygruppe, in denen der Cycloalkylteil jeweils durch eine C<sub>1-4</sub>-Alkyl-, C<sub>1-4</sub>-Alkoxy-, Di-(C<sub>1-4</sub>-alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino-, Piperazino-, N-(C<sub>1-2</sub>-Alkyl)-piperazino-, C<sub>1-4</sub>-Alkoxy-C<sub>1-2</sub>-alkyl-, Di-(C<sub>1-4</sub>-alkyl)-amino-C<sub>1-2</sub>-alkyl-, Pyrrolidino-C<sub>1-2</sub>-alkyl-, Piperidino-C<sub>1-2</sub>-alkyl-, Morpholino-C<sub>1-2</sub>-alkyl-, Piperazino-

$C_{1-2}$ -alkyl- oder N-( $C_{1-2}$ -Alkyl)-piperazino- $C_{1-2}$ -alkylgruppe substituiert ist, wobei die vorstehend erwähnten Cycloalkylteile zusätzlich durch eine Methyl- oder Ethylgruppe substituiert sein können, darstellt,

5

wobei, soweit nichts anderes erwähnt wurde, unter den bei der Definition der vorstehend erwähnten Reste erwähnten Arylteilen eine Phenylgruppe zu verstehen ist, die durch R' mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder 10 verschieden sein können, und

R' ein Fluor-, Chlor-, Brom- oder Jodatom, eine  $C_{1-2}$ -Alkyl-, Trifluormethyl- oder  $C_{1-2}$ -Alkoxygruppe darstellt, oder

15 zwei Reste R', sofern sie an benachbarte Kohlenstoffatome gebunden sind, zusammen eine  $C_{3-4}$ -Alkylen-, Methylenedioxy- oder 1,3-Butadien-1,4-ylengruppe darstellen,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

20

2. Bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in der

X ein Stickstoffatom,

25

R<sub>a</sub> ein Wasserstoffatom,

R<sub>b</sub> eine 1-Phenylethyl-, 3-Methylphenyl-, 3-Chlorphenyl-, 3-Bromphenyl- oder 3-Chlor-4-fluorphenylgruppe,

30

R<sub>c</sub> eine -A-B Gruppe, in der

A eine -OCH<sub>2</sub>CH<sub>2</sub>-, -OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- oder -OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- Gruppe, wobei der Alkylenteil jeweils mit dem Rest B verknüpft ist, 35 und

- 75 -

B eine Piperidinogruppe, in der die beiden Wasserstoffatome in 4-Stellung durch eine  $-\text{CH}_2\text{-O-CO-CH}_2-$ ,  $-\text{CH}_2\text{CH}_2\text{-O-CO-}$ ,  
 $-\text{CH}_2\text{CH}_2\text{-O-CO-CH}_2-$ ,  $-\text{O-CO-CH}_2\text{-NCH}_3\text{-CH}_2-$  oder  $-\text{O-CO-CH}_2\text{-O-CH}_2-$  Brücke ersetzt sind,

5

eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine  $-\text{CO-O-CH}_2\text{-CH}_2-$  oder  $-\text{CH}_2\text{-O-CO-CH}_2-$  Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehenden Brücken an die 3-Stellung des Piperazinoringes gebunden ist,

10

eine Piperidinogruppe, die in 4-Stellung durch eine 2-Oxo-morpholino- oder 2-Oxo-morpholinomethylgruppe substituiert ist, wobei der 2-Oxo-morpholinoteil jeweils durch eine oder 15 zwei Methylgruppen substituiert sein kann,

15

eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

20

eine Piperidinogruppe, die in 4-Stellung durch eine  $\text{R}_6\text{S}$ -Gruppe substituiert ist, wobei

25

$\text{R}_6$  eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe darstellt,

eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranyl carbonylgruppe substituiert ist,

30

eine Piperazinogruppe, die in 4-Stellung durch eine [2-(2-Oxo-tetrahydrofuran-3-ylsulfenyl)ethyl]gruppe substituiert ist,

35

eine Piperidin-4-yl-Gruppe, die in 1-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

eine 2-Oxo-morpholin-4-ylgruppe, die durch eine Methoxy-

methyl- oder Methoxyethylgruppe substituiert ist,

- 5       eine 2-Oxo-morpholin-4-ylgruppe, in der die beiden Wasser-
- stoffatome einer Methylengruppe durch eine  $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ -,  
 $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ -,  $-\text{CH}_2-\text{O}-\text{CH}_2\text{CH}_2-$  oder  $-\text{CH}_2\text{CH}_2-\text{O}-\text{CH}_2\text{CH}_2-$ -Brücke  
ersetzt sind, darstellen,
- 10      und  $R_d$  eine Methoxy-, Cyclopropylmethoxy-, Tetrahydrofuran-3-
- yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-,  
Tetrahydrofuranylmethoxy oder Tetrahydropyranylmethoxygruppe  
bedeuten,
- 15      deren Tautomere, Stereoisomere und deren Salze.

3. Bicyclische Heterocyclen der allgemeinen Formel I gemäß  
Anspruch 1, in der

- 20      X ein Stickstoffatom,
- $R_a$  ein Wasserstoffatom,
- $R_b$  eine 1-Phenylethyl-, 3-Methylphenyl-, 3-Chlorphenyl-,  
25      3-Bromphenyl- oder 3-Chlor-4-fluorphenylgruppe,
- $R_c$  eine Methoxy-, Cyclopentyloxy-, Cyclopropylmethoxy-,  
          Cyclopentylmethoxy-, Tetrahydrofuran-3-yloxy-,  
          Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-,  
30      Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe  
          und
- $R_d$  eine -A-B Gruppe, in der
- 35      A eine  $-\text{OCH}_2\text{CH}_2-$ ,  $-\text{OCH}_2\text{CH}_2\text{CH}_2-$  oder  $-\text{OCH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ -Gruppe,  
          wobei der Alkylanteil jeweils mit dem Rest B verknüpft ist,  
          und

- 77 -

5       B eine Piperidinogruppe, in der die beiden Wasserstoffatome  
in 4-Stellung durch eine -CH<sub>2</sub>-O-CO-CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>-O-CO- ,  
-CH<sub>2</sub>CH<sub>2</sub>-O-CO-CH<sub>2</sub>- , -O-CO-CH<sub>2</sub>-NCH<sub>3</sub>-CH<sub>2</sub>- oder -O-CO-CH<sub>2</sub>-O-CH<sub>2</sub>-  
Brücke ersetzt sind,

10      eine Piperazinogruppe, in der ein Wasserstoffatom in  
3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung  
durch eine -CO-O-CH<sub>2</sub>-CH<sub>2</sub>- oder -CH<sub>2</sub>-O-CO-CH<sub>2</sub>-Brücke ersetzt  
sind, wobei jeweils das linke Ende der vorstehenden Brücken  
an die 3-Stellung des Piperazinoringes gebunden ist,

15      eine Piperidinogruppe, die in 4-Stellung durch eine 2-Oxo-  
morpholino- oder 2-Oxo-morpholinomethylgruppe substituiert  
ist, wobei der 2-Oxo-morpholinoteil jeweils durch eine oder  
zwei Methylgruppen substituiert sein kann,

20      eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-  
tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-  
Gruppe substituiert ist,

25      eine Piperidinogruppe, die in 4-Stellung durch eine  
R<sub>6</sub>S-Gruppe substituiert ist, wobei

R<sub>6</sub> eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetra-  
hydrofuran-4-yl-Gruppe darstellt,

30      eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-  
tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranylcar-  
bonylgruppe substituiert ist,

35      eine Piperazinogruppe, die in 4-Stellung durch eine  
[2-(2-Oxo-tetrahydrofuran-3-ylsulfenyl)ethyl]gruppe  
substituiert ist,

eine Piperidin-4-yl-Gruppe, die in 1-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

5 eine 2-Oxo-morpholin-4-ylgruppe, die durch eine Methoxy-methyl- oder Methoxyethylgruppe substituiert ist,

10 eine 2-Oxo-morpholin-4-ylgruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine  $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ ,  $-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2-$ ,  $-\text{CH}_2-\text{O}-\text{CH}_2\text{CH}_2-$  oder  $-\text{CH}_2\text{CH}_2-\text{O}-\text{CH}_2\text{CH}_2-$ -Brücke ersetzt sind, darstellen,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

15 4. Bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in der

X ein Stickstoffatom,

20 R<sub>a</sub> ein Wasserstoffatom,

R<sub>b</sub> eine 3-Chlor-4-fluorphenylgruppe,

25 R<sub>c</sub> eine Cyclopentyloxy-, Cyclopropylmethoxy-, Cyclopentylmethoxy-, Tetrahydrofuran-3-yloxy- oder Tetrahydrofuran-2-ylmethoxygruppe und

R<sub>d</sub> eine -A-B Gruppe, in der

30 A eine  $-\text{OCH}_2\text{CH}_2$ -Gruppe, wobei der Alkylenteil mit dem Rest B verknüpft ist, und

35 B eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine  $-\text{CH}_2-\text{O}-\text{CO}-\text{CH}_2-$ -Brücke ersetzt ist, wobei das linke Ende der vorstehend erwähnten Brücke an die 3-Stellung des Piperazinoringes gebunden ist,

eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl-, 2-Oxo-tetrahydrofuran-4-yl-, 2-Oxo-tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranyl carbonylgruppe substituiert ist, darstellen,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

5 5. Folgende Verbindungen der allgemeinen Formel I gemäß An-  
10 spruch 1:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentylmethoxy-  
7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-  
15 chinazolin,

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopentyloxy-  
7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-  
chinazolin,

20 (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-  
7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-  
chinazolin und

25 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-cyclopropylmethoxy-  
7-(2-{4-[(R)-(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-  
1-yl}-ethoxy)-chinazolin,

deren Tautomere, Stereoisomere und deren Salze.

30 6. Physiologisch verträgliche Salze der Verbindungen nach min-  
destens einem der Ansprüche 1 bis 5 mit anorganischen oder or-  
ganischen Säuren oder Basen.

35 7. Arzneimittel, enthaltend eine Verbindung nach mindestens  
einem der Ansprüche 1 bis 5 oder ein physiologisch verträg-  
liches Salz gemäß Anspruch 6 neben gegebenenfalls einem oder  
mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.

- 80 -

8. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 6 zur Herstellung eines Arzneimittels, das zur Behandlung von benignen oder malignen Tumoren, zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, zur Behandlung von Polypen, von Erkrankungen des Magen-Darm-Traktes, der Gallengänge und -blase sowie der Niere und der Haut geeignet ist.

5

10 9. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 7, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.

15

10. Verfahren zur Herstellung einer Verbindung der allgemeinen Formel I nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass

20 a) eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel



- 25 in der  
R<sub>a</sub>, R<sub>b</sub> und X wie in den Ansprüchen 1 bis 5 erwähnt definiert  
sind,  
einer der Reste R<sub>c</sub>' oder R<sub>d</sub>' eine für R<sub>c</sub> oder R<sub>d</sub> in den  
Ansprüchen 1 bis 5 erwähnte -C-D Gruppe und  
30 der andere der Reste R<sub>c</sub>' oder R<sub>d</sub>' eine -A'-Z<sub>1</sub> Gruppe bedeuten,  
wobei  
  
A' eine C<sub>1-6</sub>-Alkylen- oder -O-C<sub>1-6</sub>-alkylengruppe und

- 81 -

Z<sub>1</sub> eine austauschbare Gruppe bedeutet,

mit einer Verbindung der allgemeinen Formel

5 H - G , (III)

in der

G einen der für B in den Ansprüchen 1 bis 5 erwähnten Reste darstellt, der über ein Stickstoffatom mit dem Rest A ver-

10 knüpft ist, umgesetzt wird oder

b. zur Herstellung einer Verbindung der allgemeinen Formel I, in der einer der Reste R<sub>c</sub> oder R<sub>d</sub> eine -A-B' Gruppe darstellt, wobei A wie in den Ansprüchen 1 bis 5 erwähnt definiert ist  
 15 und B' eine der für B in den Ansprüchen 1 bis 5 erwähnten Gruppen darstellt, die eine durch R<sub>6</sub> oder durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-Gruppe substituierte Imino- oder HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, eine Verbindung der allgemeinen Formel

20



in der

R<sub>a</sub>, R<sub>b</sub> und X wie in den Ansprüchen 1 bis 5 erwähnt definiert  
 25 sind,

einer der Reste R<sub>c</sub>" oder R<sub>d</sub>" eine für R<sub>c</sub> oder R<sub>d</sub> in den Ansprüchen 1 bis 5 erwähnte -C-D Gruppe und  
 der andere der Reste R<sub>c</sub>" oder R<sub>d</sub>" eine -A-B" Gruppe bedeuten,  
 wobei

30

A, C und D wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

B" eine Gruppe darstellt, die durch Alkylierung in eine Gruppe B' übergeführt werden kann, wobei B' eine der für B in den Ansprüchen 1 bis 5 erwähnten Gruppen darstellt, die eine durch R<sub>6</sub> oder durch eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-Gruppe substituierte Imino- oder HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie in den Ansprüchen 1 bis 5 erwähnt definiert sind,

mit einer Verbindung der allgemeinen Formel

10 Z<sub>2</sub> - U , (V)

in der

U den Rest R<sub>6</sub> oder eine R<sub>5</sub>-C<sub>1-4</sub>-alkyl-Gruppe bedeutet, wobei R<sub>5</sub> und R<sub>6</sub> wie in den Ansprüchen 1 bis 5 erwähnt definiert sind,

15 und

Z<sub>2</sub> eine austauschbare Gruppe oder

Z<sub>2</sub> zusammen mit einem benachbarten Wasserstoffatom eine weitere Kohlenstoff-Kohlenstoffbindung, die mit einer Carbonylgruppe verbunden ist, umgesetzt wird oder

20

c. zur Herstellung einer Verbindung der allgemeinen Formel I, in der einer der Reste R<sub>c</sub> oder R<sub>d</sub> eine -A-B' Gruppe bedeutet, wobei A wie in den Ansprüchen 1 bis 5 erwähnt definiert ist und B' eine der für B in den Ansprüchen 1 bis 5 erwähnten

25 Gruppen darstellt, die eine durch eine R<sub>5</sub>CO-, R<sub>5</sub>-C<sub>1-4</sub>-alkylen-CO-, (R<sub>4</sub>NR<sub>6</sub>)-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>O-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>S-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO-C<sub>1-4</sub>-alkylen-CO-, R<sub>6</sub>SO<sub>2</sub>-C<sub>1-4</sub>-alkylen-CO- oder 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen-CO-Gruppe substituierte Imino- oder HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann, eine Verbindung der allgemeinen Formel

- 83 -



in der

$\text{R}_a$ ,  $\text{R}_b$  und  $\text{X}$  wie in den Ansprüchen 1 bis 5 erwähnt definiert

5 sind,

einer der Reste  $\text{R}_c''$  oder  $\text{R}_d''$  eine für  $\text{R}_c$  oder  $\text{R}_d$  in den Ansprüchen 1 bis 5 erwähnte -C-D Gruppe und der andere der Reste  $\text{R}_c''$  oder  $\text{R}_d''$  eine -A-B" Gruppe bedeuten, wobei

10

A, C und D wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

B" eine Gruppe darstellt, die durch Acylierung in eine Gruppe B' übergeführt werden kann, wobei B' eine der für B in den Ansprüchen 1 bis 5 erwähnten Gruppen darstellt, die eine durch eine  $\text{R}_5\text{CO}-$ ,  $\text{R}_5\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $(\text{R}_4\text{NR}_6)\text{-C}_{1-4}\text{-alkylen-CO-}$ ,  $\text{R}_6\text{O-C}_{1-4}\text{-alkylen-CO-}$ ,  $\text{R}_6\text{S-C}_{1-4}\text{-alkylen-CO-}$ ,

$\text{R}_6\text{SO-C}_{1-4}\text{-alkylen-CO-}$ ,  $\text{R}_6\text{SO}_2\text{-C}_{1-4}\text{-alkylen-CO-}$  oder 2-Oxo-morpholino-C<sub>1-4</sub>-alkylen-CO-Gruppe substituierte Imino- oder

15

HNR<sub>4</sub>-Gruppe enthält, wobei R<sub>4</sub> bis R<sub>6</sub> wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann,

20

mit einer Verbindung der allgemeinen Formel



in der

25

W den Rest  $\text{R}_5$  oder eine  $\text{R}_5\text{-C}_{1-4}\text{-alkyl-}$ ,  $(\text{R}_4\text{NR}_6)\text{-C}_{1-4}\text{-alkyl-}$ ,  $\text{R}_6\text{O-C}_{1-4}\text{-alkyl-}$ ,  $\text{R}_6\text{S-C}_{1-4}\text{-alkyl-}$ ,  $\text{R}_6\text{SO-C}_{1-4}\text{-alkyl-}$ ,  $\text{R}_6\text{SO}_2\text{-C}_{1-4}\text{-alkyl-}$  oder 2-Oxo-morpholino-C<sub>1-4</sub>-alkyl-Gruppe darstellt, in denen R<sub>4</sub> bis R<sub>6</sub> wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

- 84 -

der 2-Oxo-morpholinoteil durch eine oder zwei C<sub>1-2</sub>-Alkylgruppen substituiert sein kann, umgesetzt wird und

erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder

gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträgliche Salze übergeführt wird.

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/09533

**A. CLASSIFICATION OF SUBJECT MATTER**  
 IPC 7 C07D405/12 A61K31/517

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal, WPI Data, BEILSTEIN Data, PAJ

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                  | Relevant to claim No. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| P, X       | WO 00 55141 A (METZ THOMAS ;SOLCA FLAVIO (AT); BOEHRINGER INGELHEIM PHARMA (DE);)<br>21 September 2000 (2000-09-21)<br>claims<br>example 174<br>--- | 3-5                   |
| Y          | EP 0 566 226 A (ZENECA LTD., UK)<br>20 October 1993 (1993-10-20)<br>claims<br>example 41<br>---                                                     | 3-5                   |
| Y          | WO 96 33980 A (ZENECA LTD ;GIBSON KEITH HOPKINSON (GB))<br>31 October 1996 (1996-10-31)<br>claims<br>examples<br>---                                | 3-5                   |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

## ° Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

- \*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- \*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- \*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- \*&\* document member of the same patent family

Date of the actual completion of the international search

10 January 2002

Date of mailing of the international search report

17/01/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
 Fax: (+31-70) 340-3016

Authorized officer

Stix-Malaun, E

**INTERNATIONAL SEARCH REPORT**

International Application No

PCT/EP 01/09533

**C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category | Citation of document, with indication, where appropriate, of the relevant passages                  | Relevant to claim No. |
|----------|-----------------------------------------------------------------------------------------------------|-----------------------|
| Y        | WO 00 18740 A (AMERICAN CYANAMID CO)<br>6 April 2000 (2000-04-06)<br>claims<br>example 145<br>----- | 3-5                   |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/EP 01/09533

| Patent document cited in search report |   | Publication date |    | Patent family member(s) |  | Publication date |
|----------------------------------------|---|------------------|----|-------------------------|--|------------------|
| WO 0055141                             | A | 21-09-2000       | DE | 19911509 A1             |  | 21-09-2000       |
|                                        |   |                  | AU | 3166700 A               |  | 04-10-2000       |
|                                        |   |                  | WO | 0055141 A1              |  | 21-09-2000       |
|                                        |   |                  | EP | 1163227 A1              |  | 19-12-2001       |
|                                        |   |                  | NO | 20014487 A              |  | 14-09-2001       |
| -----                                  |   |                  |    |                         |  |                  |
| EP 0566226                             | A | 20-10-1993       | AT | 130000 T                |  | 15-11-1995       |
|                                        |   |                  | AU | 661533 B2               |  | 27-07-1995       |
|                                        |   |                  | AU | 3101093 A               |  | 22-07-1993       |
|                                        |   |                  | CA | 2086968 A1              |  | 21-07-1993       |
|                                        |   |                  | CZ | 282038 B6               |  | 16-04-1997       |
|                                        |   |                  | DE | 69300754 D1             |  | 14-12-1995       |
|                                        |   |                  | DE | 69300754 T2             |  | 28-03-1996       |
|                                        |   |                  | DK | 566226 T3               |  | 18-03-1996       |
|                                        |   |                  | EP | 0566226 A1              |  | 20-10-1993       |
|                                        |   |                  | ES | 2078798 T3              |  | 16-12-1995       |
|                                        |   |                  | FI | 930208 A                |  | 21-07-1993       |
|                                        |   |                  | GR | 3018143 T3              |  | 29-02-1996       |
|                                        |   |                  | HK | 36497 A                 |  | 04-04-1997       |
|                                        |   |                  | HU | 63153 A2                |  | 28-07-1993       |
|                                        |   |                  | HU | 9500185 A3              |  | 28-07-1995       |
|                                        |   |                  | IL | 104479 A                |  | 22-12-1999       |
|                                        |   |                  | KR | 229294 B1               |  | 01-11-1999       |
|                                        |   |                  | MX | 9300277 A1              |  | 30-06-1994       |
|                                        |   |                  | NO | 301541 B1               |  | 10-11-1997       |
|                                        |   |                  | NZ | 245662 A                |  | 26-09-1995       |
|                                        |   |                  | RU | 2127263 C1              |  | 10-03-1999       |
|                                        |   |                  | SK | 1693 A3                 |  | 09-09-1993       |
|                                        |   |                  | US | 5457105 A               |  | 10-10-1995       |
|                                        |   |                  | US | 5616582 A               |  | 01-04-1997       |
|                                        |   |                  | ZA | 9300015 A               |  | 20-07-1993       |
|                                        |   |                  | JP | 2994165 B2              |  | 27-12-1999       |
|                                        |   |                  | JP | 6073025 A               |  | 15-03-1994       |
| -----                                  |   |                  |    |                         |  |                  |
| WO 9633980                             | A | 31-10-1996       | AT | 198329 T                |  | 15-01-2001       |
|                                        |   |                  | AU | 699163 B2               |  | 26-11-1998       |
|                                        |   |                  | AU | 5343396 A               |  | 18-11-1996       |
|                                        |   |                  | BG | 62730 B1                |  | 30-06-2000       |
|                                        |   |                  | BG | 102052 A                |  | 31-08-1998       |
|                                        |   |                  | BR | 9608082 A               |  | 26-01-1999       |
|                                        |   |                  | CA | 2215732 A1              |  | 31-10-1996       |
|                                        |   |                  | CN | 1182421 A               |  | 20-05-1998       |
|                                        |   |                  | CZ | 9703396 A3              |  | 18-02-1998       |
|                                        |   |                  | DE | 69611361 D1             |  | 01-02-2001       |
|                                        |   |                  | DE | 69611361 T2             |  | 26-04-2001       |
|                                        |   |                  | DK | 823900 T3               |  | 02-04-2001       |
|                                        |   |                  | EE | 9700252 A               |  | 15-04-1998       |
|                                        |   |                  | EP | 0823900 A1              |  | 18-02-1998       |
|                                        |   |                  | ES | 2153098 T3              |  | 16-02-2001       |
|                                        |   |                  | WO | 9633980 A1              |  | 31-10-1996       |
|                                        |   |                  | HR | 960204 A1               |  | 31-08-1997       |
|                                        |   |                  | HU | 9802839 A2              |  | 29-03-1999       |
|                                        |   |                  | JP | 3040486 B2              |  | 15-05-2000       |
|                                        |   |                  | JP | 11504033 T              |  | 06-04-1999       |
|                                        |   |                  | NO | 974940 A                |  | 24-10-1997       |
|                                        |   |                  | NZ | 305444 A                |  | 29-03-1999       |
|                                        |   |                  | PL | 323066 A1               |  | 02-03-1998       |
|                                        |   |                  | PT | 823900 T                |  | 30-04-2001       |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/EP 01/09533

| Patent document cited in search report | Publication date | Patent family member(s) |            | Publication date |
|----------------------------------------|------------------|-------------------------|------------|------------------|
| WO 9633980                             | A                | SI                      | 823900 T1  | 30-06-2001       |
|                                        |                  | SK                      | 145497 A3  | 04-02-1998       |
|                                        |                  | TW                      | 436486 B   | 28-05-2001       |
|                                        |                  | US                      | 5770599 A  | 23-06-1998       |
|                                        |                  | ZA                      | 9603358 A  | 28-10-1996       |
| WO 0018740                             | A 06-04-2000     | AU                      | 6159499 A  | 17-04-2000       |
|                                        |                  | BR                      | 9914164 A  | 26-06-2001       |
|                                        |                  | CN                      | 1320118 T  | 31-10-2001       |
|                                        |                  | EP                      | 1117649 A1 | 25-07-2001       |
|                                        |                  | NO                      | 20011574 A | 28-05-2001       |
|                                        |                  | WO                      | 0018740 A1 | 06-04-2000       |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/EP 01/09533

Additional matter PCT/ISA/210

Continuation of Field I.2

Claims Nos. 1, 2, 6-10

In view of the wording of the relevant patent claims, which makes it difficult if not entirely impossible to determine the scope of protection sought by these claims, the present patent application does not, to a certain extent, comply with the requirements of PCT Article 6 (cf. also PCT Rule 6.1(a)) such that it appears to be unfeasible to conduct a meaningful search. Relevant Patent Claims Nos. 1, 6-10 refer to an excessively large number of possible compounds/products/methods, which comprise countless inconcisely formulated alternatives, variants and/or limitations. For this reason, the search was directed at the portions of the patent claims which can be regarded as clear and concise, namely at Claims Nos. 3, 4, 5.

The applicant is therefore advised that patent claims or sections of patent claims laid to inventions for which no international search report was drafted normally cannot be the subject of an international preliminary examination (PCT Rule 66.1(e)). Similar to the authority entrusted with the task of carrying out the international preliminary examination, the EPO also does not generally carry out a preliminary examination of subject matter for which no search has been conducted. This is also valid in the case when the patent claims have been amended after receipt of the international search report (PCT Article 19), or in the case when the applicant submits new patent claims pursuant to the procedure in accordance with PCT Chapter II.

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 01/09533

**A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**  
IPK 7 C07D405/12 A61K31/517

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)  
IPK 7 C07D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

CHEM ABS Data, EPO-Internal, WPI Data, BEILSTEIN Data, PAJ

**C. ALS WESENTLICH ANGESEHENE UNTERLAGEN**

| Kategorie° | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                       | Betr. Anspruch Nr. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| P, X       | WO 00 55141 A (METZ THOMAS ;SOLCA FLAVIO (AT); BOEHRINGER INGELHEIM PHARMA (DE);)<br>21. September 2000 (2000-09-21)<br>Ansprüche<br>Beispiel 174<br>--- | 3-5                |
| Y          | EP 0 566 226 A (ZENECA LTD., UK)<br>20. Oktober 1993 (1993-10-20)<br>Ansprüche<br>Beispiel 41<br>---                                                     | 3-5                |
| Y          | WO 96 33980 A (ZENECA LTD ;GIBSON KEITH HOPKINSON (GB))<br>31. Oktober 1996 (1996-10-31)<br>Ansprüche<br>Beispiele<br>---                                | 3-5                |



Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen



Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- \*A\* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- \*E\* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- \*L\* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- \*O\* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- \*P\* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- \*T\* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- \*X\* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- \*Y\* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- \*&\* Veröffentlichung, die Mitglied derselben Patentfamilie ist

|                                                                                                                                                                                                                 |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Datum des Abschlusses der internationalen Recherche                                                                                                                                                             | Absendedatum des internationalen Recherchenberichts |
| 10. Januar 2002                                                                                                                                                                                                 | 17/01/2002                                          |
| Name und Postanschrift der Internationalen Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016 | Bevollmächtigter Bediensteter<br><br>Stix-Malaun, E |

## INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 01/09533

## C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie° | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile       | Betr. Anspruch Nr. |
|------------|----------------------------------------------------------------------------------------------------------|--------------------|
| Y          | WO 00 18740 A (AMERICAN CYANAMID CO)<br>6. April 2000 (2000-04-06)<br>Ansprüche<br>Beispiel 145<br>----- | 3-5                |

**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 01/09533

| Im Recherchenbericht angeführtes Patentdokument |   | Datum der Veröffentlichung |                                                                                                                                                                | Mitglied(er) der Patentfamilie                                                                                                                                                                                                                                                                                                                                 |  | Datum der Veröffentlichung                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------|---|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WO 0055141                                      | A | 21-09-2000                 | DE<br>AU<br>WO<br>EP<br>NO                                                                                                                                     | 19911509 A1<br>3166700 A<br>0055141 A1<br>1163227 A1<br>20014487 A                                                                                                                                                                                                                                                                                             |  | 21-09-2000<br>04-10-2000<br>21-09-2000<br>19-12-2001<br>14-09-2001                                                                                                                                                                                                                                                                                                                     |
| EP 0566226                                      | A | 20-10-1993                 | AT<br>AU<br>AU<br>CA<br>CZ<br>DE<br>DE<br>DK<br>EP<br>ES<br>FI<br>GR<br>HK<br>HU<br>HU<br>IL<br>KR<br>MX<br>NO<br>NZ<br>RU<br>SK<br>US<br>US<br>ZA<br>JP<br>JP | 130000 T<br>661533 B2<br>3101093 A<br>2086968 A1<br>282038 B6<br>69300754 D1<br>69300754 T2<br>566226 T3<br>0566226 A1<br>2078798 T3<br>930208 A<br>3018143 T3<br>36497 A<br>63153 A2<br>9500185 A3<br>104479 A<br>229294 B1<br>9300277 A1<br>301541 B1<br>245662 A<br>2127263 C1<br>1693 A3<br>5457105 A<br>5616582 A<br>9300015 A<br>2994165 B2<br>6073025 A |  | 15-11-1995<br>27-07-1995<br>22-07-1993<br>21-07-1993<br>16-04-1997<br>14-12-1995<br>28-03-1996<br>18-03-1996<br>20-10-1993<br>16-12-1995<br>21-07-1993<br>29-02-1996<br>04-04-1997<br>28-07-1993<br>28-07-1995<br>22-12-1999<br>01-11-1999<br>30-06-1994<br>10-11-1997<br>26-09-1995<br>10-03-1999<br>09-09-1993<br>10-10-1995<br>01-04-1997<br>20-07-1993<br>27-12-1999<br>15-03-1994 |
| WO 9633980                                      | A | 31-10-1996                 | AT<br>AU<br>AU<br>BG<br>BG<br>BR<br>CA<br>CN<br>CZ<br>DE<br>DE<br>DK<br>EE<br>EP<br>ES<br>WO<br>HR<br>HU<br>JP<br>JP<br>NO<br>NZ<br>PL<br>PT                   | 198329 T<br>699163 B2<br>5343396 A<br>62730 B1<br>102052 A<br>9608082 A<br>2215732 A1<br>1182421 A<br>9703396 A3<br>69611361 D1<br>69611361 T2<br>823900 T3<br>9700252 A<br>0823900 A1<br>2153098 T3<br>9633980 A1<br>960204 A1<br>9802839 A2<br>3040486 B2<br>11504033 T<br>974940 A<br>305444 A<br>323066 A1<br>823900 T                                     |  | 15-01-2001<br>26-11-1998<br>18-11-1996<br>30-06-2000<br>31-08-1998<br>26-01-1999<br>31-10-1996<br>20-05-1998<br>18-02-1998<br>01-02-2001<br>26-04-2001<br>02-04-2001<br>15-04-1998<br>18-02-1998<br>16-02-2001<br>31-10-1996<br>31-08-1997<br>29-03-1999<br>15-05-2000<br>06-04-1999<br>24-10-1997<br>29-03-1999<br>02-03-1998<br>30-04-2001                                           |

**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 01/09533

| Im Recherchenbericht angeführtes Patentdokument | Datum der Veröffentlichung | Mitglied(er) der Patentfamilie   | Datum der Veröffentlichung                                                       |
|-------------------------------------------------|----------------------------|----------------------------------|----------------------------------------------------------------------------------|
| WO 9633980                                      | A                          | SI<br>SK<br>TW<br>US<br>ZA       | 823900 T1<br>145497 A3<br>436486 B<br>5770599 A<br>9603358 A                     |
| WO 0018740                                      | A 06-04-2000               | AU<br>BR<br>CN<br>EP<br>NO<br>WO | 6159499 A<br>9914164 A<br>1320118 T<br>1117649 A1<br>20011574 A<br>0018740 A1    |
|                                                 |                            |                                  | 30-06-2001<br>04-02-1998<br>28-05-2001<br>23-06-1998<br>28-10-1996               |
|                                                 |                            |                                  | 17-04-2000<br>26-06-2001<br>31-10-2001<br>25-07-2001<br>28-05-2001<br>06-04-2000 |

## WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 1,2,6-10

Angesichts des Wortlauts der geltenden Patentansprüche, welche es erschweren wenn nicht gar unmöglich machen, den durch sie erstrebten Schutzmfang zu bestimmen, entspricht die vorliegende Patentanmeldung den Anforderungen des Artikels 6 PCT (vgl. auch Regel 6.1(a) PCT) in einem Maße nicht, daß eine sinnvolle Recherche undurchführbar ist. Die geltenden Patentansprüche 1,6-10 beziehen sich auf eine unverhältnismäßig große Zahl möglicher Verbindungen/Produkte/Verfahren, welche unzählige, nicht konzis formulierte Wahlmöglichkeiten, Veränderliche, und/oder Einschränkungen umfassen. Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, die als klar und knapp gefaßt gelten können, nämlich Ansprüche 3,4,5.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.