

Introduction to Programming for Control & Application

IK6016 Control and Optimization Technology

Table of contents

01

Basic Programming

Variables and arithmetic operations, matrix operations, loop and conditionals, plotting graphs, and defining functions

02

Control Application

Complex numbers, polynomials, transfer functions, simulating system responses, and control system design

02

Control Application

Complex numbers, polynomials, transfer functions, simulating system responses, and control system design

Complex Numbers

- Complex numbers are used to represent signals and system responses.
- Poles and zeros in control systems are often complex.

$$z = a + bi$$

Where:

- a = real part
- b = imaginary part
- $i = \text{imaginary unit } \sqrt{-1}$

Basic operations on complex numbers:

Addition

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Multiplication

$$(a+bi) \times (c+di) = (ac-bd) + (ad+bc)i$$

Conjugate

$$(a+bi) = (a-bi)$$

Complex Numbers

Example in Python:

```
# Two ways of defining complex number in
Python
z1 = 3 + 4j
z2 = complex(1, -2)

# Operations
z_sum = z1 + z2
z_product = z1 * z2
z_conjugate = z1.conjugate()

print("Sum:", z_sum)
print("Product:", z_product)
print("Conjugate:", z_conjugate)
```

```
% Defining complex numbers in MATLAB
z1 = 3 + 4i;
z2 = 1 - 2i;

% Operations
z_sum = z1 + z2;
z_product = z1 * z2;
z_conjugate = conj(z1);

disp(['Sum: ', num2str(z_sum)])
disp(['Product: ', num2str(z_product)])
disp(['Conjugate: ', num2str(z_conjugate)])
```


Polynomials

Used to represent the numerator and denominator of transfer functions.

$$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Polynomials operations:

- Addition
- Multiplication
- Roots of polynomials

Example in Python:

```
import numpy as np

# Define a polynomial P(s) = s^2 + 5s + 6
coefficients = [1, 5, 6]

# Roots of the polynomial
roots = np.roots(coefficients)
print("Roots of the polynomial:", roots)
```

```
% Define a polynomial P(s) = s^2 + 5s + 6
coefficients = [1 5 6];

% Find the roots of the polynomial
roots = roots(coefficients);
disp('Roots of the polynomial:')
disp(roots)
```


Transfer Functions

What is a transfer function?

 Represents the relationship between the input and output of a system in the Laplace domain

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}{a_m s^m + a_{m-1} s^{m-1} + \dots + a_0}$$

Example:

$$H(s) = \frac{1}{s^2 + 5s + 6}$$

Why use transfer functions?

- Simplifies analysis
- Provides insight into stability, resonance, and system dynamics

Properties of transfer functions:

- Poles → Values of s that make the denominator zero
- Zeros → Values of s that make the numerator zero
- System stability → Stable if all poles lie in the left half of the complex plane

Transfer Functions

Example in Python:

```
import scipy.signal as signal
# Define the transfer function: H(s) = 1 /
(s^2 + 5s + 6)
num = [1] # Numerator coefficients
den = [1, 5, 6] # Denominator coefficients
# Create the transfer function
system = signal.TransferFunction(num, den)
# Display the transfer function
print("Transfer function:", system)
# Analyze poles and zeros
poles, zeros, gain = signal.tf2zpk(num, den)
print("Poles:", poles)
print("Zeros:", zeros)
```

```
% Define the transfer function: H(s) = 1 /
(s^2 + 5s + 6)
num = [1]; % Numerator coefficients
den = [1 5 6]; % Denominator coefficients
% Create the transfer function
H = tf(num, den);
% Display the transfer function
disp('Transfer function:')
% Analyze poles and zeros
pzmap(H) % Plot poles and zeros
```


Example: Multiplication

Example in Python:

```
import scipy.signal as signal
num1 = [1]
den1 = [1, 5, 6]
num2 = [2]
den2 = [1, 3]
# Multiply two transfer functions
system1 = signal.TransferFunction(num1, den1)
system2 = signal.TransferFunction(num2, den2)
system product =
signal.TransferFunction(np.polymul(num1,
num2), np.polymul(den1, den2))
print("Product of transfer functions:",
system product)
```

```
num1 = [1];
den1 = [1 5 6];
num2 = [2];
den2 = [1 3];

% Multiply two transfer functions
H1 = tf(num1, den1);
H2 = tf(num2, den2);
H_product = H1 * H2;

disp('Product of transfer functions:')
H_product
```


System Responses

What is system response?

- How a system reacts over time to a given input
- Used to determine system behaviour (stability, speed, and accuracy)

Types of responses:

- Impulse response
- Step response
- Others

Why simulate system responses?

- To predict system behavior before physical implementation
- To analyze:
 - Stability
 - Settling time
 - Overshoot
 - Steady-state error

Example: Step Response

Example in Python:

```
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
# Define the transfer function
num = [1] # Numerator coefficients
den = [1, 5, 6] # Denominator coefficients
system = signal.TransferFunction(num, den)
# Simulate the step response
time, response = signal.step(system)
# Plot the step response
plt.plot(time, response)
plt.title('Step Response')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
```

```
% Define the transfer function
num = [1];
den = [1 5 6];

% Create transfer function
H = tf(num, den);

% Simulate and plot the step response
step(H)
title('Step Response')
grid on
```


Example: Impulse Response

Example in Python:

```
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
# Define the transfer function
num = [1] # Numerator coefficients
den = [1, 5, 6] # Denominator coefficients
system = signal.TransferFunction(num, den)
# Simulate the impulse response
time, response = signal.impulse(system)
# Plot the impulse response
plt.plot(time, response)
plt.title('Impulse Response')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
```

```
% Define the transfer function
num = [1];
den = [1 5 6];

% Create transfer function
H = tf(num, den);

% Simulate and plot the impulse response
impulse(H)
title('Impulse Response')
grid on
```


What is control system design?

 Selecting and tuning controller to meet the desired performance criteria for a system

Goal: Modify the system's behavior

Open-loop control:

- No feedback from the system
- Can be used for simple tasks where disturbances are minimal

Example: A heater that maintains a fixed temperature without adjusting based on actual room temperature.

Closed-loop control:

- Feedback is used to adjust the system in real-time
- More robust and compensates for disturbances

Example: A thermostat that measures the actual room temperature and adjusts the heater accordingly

PID Controller:

$$u(t) = K_p e(t) + K_i \int e(t)dt + K_d \frac{de(t)}{dt}$$

where:

- K_p = proportional gain
- K_i = integral gain
- K_p = derivative gain
- e(t) = error signal (difference between set point and actual output)

Effect of each term:

- Proportional (P): Increase response speed but may introduce steady-state error
- **Integral (I):** Eliminates steady-state error but can slow down the response
- Derivative (D): Improves system stability and reduces overshoot but can amplify noise

Example in Python:

```
import control as ctrl # pip install control
import matplotlib.pyplot as plt
# Define the transfer function of a simple
system G(s) = 1 / (s^2 + 5s + 6)
num = [1]
den = [1, 5, 6]
system = ctrl.TransferFunction(num, den)
# Define a PID controller with Kp, Ki, and Kd
values
Kp = 10
Ki = 1
Kd = 1
pid controller = ctrl.TransferFunction([Kd,
Kp, Ki], [1, 0])
```

```
# Closed-loop system
closed loop = ctrl.feedback(pid controller *
system)
# Simulate step response
time, response =
ctrl.step response(closed loop)
# Plot the response
plt.plot(time, response)
plt.title('Step Response with PID')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
```



```
% Define transfer function G(s) = 1 / (s^2 +
5s + 6
num = [1];
den = [1 5 6];
G = tf(num, den);
% Define PID controller with Kp, Ki, and Kd
values
Kp = 10;
Ki = 1;
Kd = 1;
C = pid(Kp, Ki, Kd);
% Closed-loop system
T = feedback(C*G, 1);
```

```
% Simulate and plot step response
step(T)
title('Step Response with PID')
grid on
```


Assignments

1. Transfer Functions:

Create a Python/MATLAB program that connects two transfer functions in cascade:

$$H_1(s) = \frac{5s+1}{s^2+3s+2}, \qquad H_2 = \frac{2s+4}{s+5}$$

Find the poles and zeros of the combined system. Plot them on the complex plane and discuss the stability of the system.

2. System Response:

Simulate and compare the step responses of two systems:

$$G_1(s) = \frac{5}{s^2 + 2s + 5}, \qquad G_2(s) = \frac{5}{s^2 + 5s + 6}$$

Analyze the difference in response characteristics (settling time, overshoot, etc.) and discuss the implication for control design.

Assignments

3. System Response:

Create a Python/MATLAB program that simulate the response of the system G(s) = 1

```
\frac{10}{s^2+5s+10} to the following inputs:
```

- a. a unit step
- b. a sinusoidal input
- c. a ramp input

Plot and compare the system responses for each type of input.

4. System Response:

Model a simple real-world system (you can choose any system, e.g., spring-mass-damper, RLC circuit, etc.) and simulate its response to different inputs using Python/MATLAB program.

Assignments

5. PID Controller:

Implement a PID controller to maintain the temperature of a room at a desired setpoint $T_{\text{setpoint}} = 25^{\circ}C$. The current room temperature T(t) is affected by the heating power P(t) applied at time t. The rate of temperature change is modeled as:

$$\frac{dT(t)}{dt} = -K(T(t) - T_{\text{ambient}}) + \frac{P(t)}{C}$$

where K is a heat loss constant (K = 0.1), C is the thermal capacity of the room (C = 5), and $T_{\rm ambient}$ is the ambient temperature ($T_{\rm ambient} = 20^{\circ}C$).

Create a Python/MATLAB program that implement the PID controller and simulate the system for a total of 100 time steps and plot the temperature over time.

Bonus challenge: Tune the PID parameters for the best system response, minimizing overshoot and settling time

Resources to Study

Course materials: <u>irinamrdhtllh/ik6016-lecture-notes (github.com)</u>

Python

- Python: 3.12.6 Documentation (python.org)
- Numpy: <u>NumPy documentation NumPy v2.1 Manual</u>
- Matplotlib: <u>Matplotlib documentation Matplotlib 3.9.2 documentation</u>
- Scipy: SciPy documentation SciPy v1.14.1 Manual
- Control: <u>Python Control Systems Library Python Control Systems Library 0.10.1</u> documentation (python-control.readthedocs.io)

MATLAB: Programming with MATLAB - MATLAB & Simulink (mathworks.com)

There's only one way to master programming: **Read the documentation, implement, and keep experimenting.**