Valerio Mante, Matthew Cook, Benjamin Grewe, Giacomo Indiveri, Daniel Kiper, Wolfger von der Behrens Lecture 14

Asst: Ioana Calangiu, Raphaela Kreiser, Nicoletta Risi {calangiu@ini.uzh.ch, rkreiser@student.ethz.ch, risi@ini.uzh.ch}

Exercise 10.1: The Differential Pair

Figure 1: The Differential Pair

- 1. The circuit in fig. 1 is called a differential pair. The current I_1 (and I_2) flowing through transistor M_2 (and M_3) as a function of the voltage difference $V_1 V_2$ looks as drawn in the given plot.
 - This circuit is used ubiquitously in analogue circuit design and specifically also in neuromorphic engineering. Due to which properties might it be so popular? *Hint:* Think about the first part of the name of this circuit and about its asymptotic behavior.
- 2. Find out which function is plotted in fig. 1.(b). *I.e.* calculate the currents I_1 and I_2 as a function of the voltages V_1 and V_2 for the differential pair. By assuming that all transistors are in subthreshold domain in saturation regime, you can approximate the current I flowing through a transistor by:

$$I = I_0 \exp\left(\frac{\kappa V_g - V_s}{U_T}\right).$$

Here I_0 , κ and U_T are parameters. V_g is called the 'gate voltage', and V_s the 'source voltage'; see fig. 2. Then rearrange your terms to express the currents as a function of the voltage difference $V_1 - V_2$.

$$V_g \circ \longrightarrow \bigvee_{V_s} \bigvee_{I} \bigvee_{I}$$

Figure 2: Voltages and current in a simple transistor.