Генеративные модели в SSL для разных типов задач

- Цесарев Даниил Игоревич
- Лебедюк Вероника Владимировна
 - Марьин Геннадий Аркадьевич
 - Сечкарь Константин Сергеевич

Краткий экскурс

Цель: Установить насколько универсален новый метод - использование генеративной модели - в контексте SSL

Method	Evaluation	Params (M)	Acc. %
on CIFAR-10			
WideResNet-28-10 [63]	Supervised	36	96.3
DDAE (EDM)	Linear	36	95.9
SimCLR Res-50 [11]	Linear	24	94.0
SimCLRv2 Res-101-SK [12]	Linear	65	96.4
DDAE (EDM)	Fine-tune	36	97.2
SimCLRv2 Res-101-SK [12]	Fine-tune	65	97.1

Задачи, которые перед нами стояли:

- Реализовать диффузионный энкодер с архитектурой подходящей для любой конечной задачи
- Сравнить качество получающихся репрезентаций с SOTA бейзлайнами
- Поставить дальнейшие эксперименты для оптимальности энкодера

DDAE -Классификация

DDAE - обзор

Идея: решая задачу безусловной генерации модель формирует получает хорошие знания об изображениях

Method	Evaluation	Params (M)	Acc. %
on CIFAR-10			
WideResNet-28-10 [63]	Supervised	36	96.3
DDAE (EDM)	Linear	36	95.9
SimCLR Res-50 [11]	Linear	24	94.0
SimCLRv2 Res-101-SK [12]	Linear	65	96.4
DDAE (EDM)	Fine-tune	36	97.2
SimCLRv2 Res-101-SK [12]	Fine-tune	65	97.1

DDAE - классификация

Результаты:

- CIFAR10 accuracy = 0.916
- CIFAR100 accuracy = 0.716

Итог: результаты статьи не воспроизводились, однако метрики оказались приемлемы

DDAE - Best Practice on CIFAR10

Шум

	Accuracy	
No noize	0.908	
Noize	0.913	
ts50	0.907	
Ema, ts50	0.912	
Ema, ts20	0.913	
Ema, ts10	0.916	

Слой репрезентаций + обратка выхода

	Accuracy
Слой 4/4	0.905
Слой 2/4	0.905
Слой 1/4	0.903
Слой 2/4 + свертка вместо пулинга	0.907

Оптимайзер

	Accuracy	
Adam	0.907	
AdamW	0.913	

Note CIFAR100:

	Accuracy	
No noize	0.55	
Noize ts50	0.716	

SimCLR Object Count

Подсчет количества объектов на изображении

CLEVR - датасет для ответов на вопросы по изображению

Кол-во объектов на изображениях от 3 до 7

Train	70k
Test	15k

SimCLR - классический контрастный подход.

Для задачи выбраны аугментации:

- Random Resized Crop + Horizontal Flip
- Color Jitter
- Random GrayScale

SimCLR baseline

Тип задачи:

Semantic Pixelwise

Датасет: CLEVR

Бейзлайн: SimCLR

Сравнение на CIFAR10

Object Count

CLEVR	Accuracy
SimCLR	0.55
Diffusion	0.46

Depth prediction

Depth prediction

Тип задачи:

Structural Pixelwise

Датасет:

NYU Depth V2

Бейзлайн:

MoCov2

End-task архитектура:

U-Net

Бейзлайн

Ключевые особенности:

- Momentum encoder
- Dynamic queue

Depth prediction

Тип задачи:

Structural Pixelwise

Датасет:

NYU Depth V2

Бейзлайн:

MoCov2

End-task архитектура:

U-Net

Тип задачи:

Semantic Pixelwise

Датасет:

Oxford-IIIT Pet

Бейзлайн:

SwAV

End-task архитектура: DeepLabV3+

Бейзлайн

SwAV avoids explicit pairwise feature comparisons, contrasting between multiple image views by comparing their cluster assignments

 z_{t} , z_{s} image features from two different augmentations of the same image

 q_t , q_s their codes computed by matching to a set of K prototypes $\{c_1...c_K\}$

Contrastive instance learning

Swapping Assignments between Views (Ours)

Датасет:

	trainval	test
n_imgs	3680	3669

Тип задачи:

Semantic Pixelwise

Датасет:

Oxford-IIIT Pet

Бейзлайн:

SwAV

End-task архитектура:

DeepLabV3+

Trainable params

	all	probe	
resnet	78,773,493	55,265,461	
diffusion	140,627,128	26,953,909	

Тип задачи: Semantic Pixelwise

Датасет:

Oxford-IIIT Pet

Бейзлайн:

SwAV

End-task архитектура:

DeepLabV3+

300k				
		defaul t	w/ probe	w/ noise
	MoCov2	0.7	0.65	-
	SwAV	0.74	0.65	-
	Diffusion	0.66	0.65	0.72

IOU

Diff best

resnet best (swav)

Спасибо за внимание!