Obtaining K and D meson properties from lattice QCD

Oscar Simpson
Supervisor: Dr. B. Chakraborty

May 2021

Oscar Simpson May 2021 1/22

QCD Recap

We begin with a recap of QCD[1, 2].

$$\mathcal{L} = \sum_{f} \psi_f^{\dagger} (i \not \! D - m_f) \psi_f - \frac{1}{4} F_{\mu\nu}^a F_a^{\mu\nu}$$

2/22

QCD Recap

We begin with a recap of QCD[1, 2].

$$\mathcal{L} = \sum_{f} \psi_{f}^{\dagger} (i \not \! D - m_{f}) \psi_{f} - \frac{1}{4} F_{\mu\nu}^{a} F_{a}^{\mu\nu}$$

$$F_{\mu
u}^{
m a} = \partial_{\mu} A_{
u}^{
m a} - \partial_{
u} A_{\mu}^{
m a} - g_{s} f_{
m abc} A_{\mu}^{
m b} A_{
u}^{
m c}$$

Lattice QCD Recap

Now we move on to a recap of lattice QCD[3, 2].

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\psi \, \mathcal{O} \exp \left(i \int d^4 x \, \mathcal{L}(\psi, \partial \psi) \right)$$

$$\mathcal{Z} = \int \mathcal{D}\psi \quad \exp \left(i \int d^4 x \, \mathcal{L}(\psi, \partial \psi) \right)$$

Lattice QCD Recap

Figure: An example of a discretisation. Red crosses indicate quark fields, and blue dots indicate gauge fields.

4/22

Highly Improved Staggered Quark

• Fermions placed on a finite lattice give "doubled" fermions[4].

$$M^{-1} = \frac{-i\gamma_{\mu}\sin(ap_{\mu})/a + m}{\sum_{\mu=0}^{3}\sin^{2}(ap_{\mu})/a^{2} + m^{2}}$$
(1)

- These are the reflections of the fermion mass within the Brillouin zone in each of the 4 spacetime dimensions, which gives $16 = 2^4$ extra modes, called "tastes".
- To remove this problem, Wilson[5] used a construction to give these tastes infinite mass, such that they decouple in the continuum limit.
- A procedure called "staggering" transformation[6] allows us to bring the system down to only 4 doublers.
- With some further optimizations this gives the Highly Improved Staggered Quark (HISQ) action, which has very small discretisation errors.

Oscar Simpson May 2021 5 / 22

- Data was provided by Dr. B. Chakraborty.
- Data has been produced using isotropic lattice NRQCD[7].

6/22

- Data was provided by Dr. B. Chakraborty.
- Data has been produced using isotropic lattice NRQCD[7].

Label	Spacing a (fm)	Lattice size (time)	m_I/m_s
Very Coarse	0.1509	48	0.036
Coarse	0.124 04	64	0.2
Fine	0.090 23	96	0.2

Table: Parameters of the data used in the main part of this project. Corresponding to sets 1, 5, 6 from table I in [7] respectively.

- Data was provided by Dr. B. Chakraborty.
- Data has been produced using isotropic lattice NRQCD[7].

Label	Spacing a (fm)	Lattice size (time)	m_I/m_s
Very Coarse	0.1509	48	0.036
Coarse	0.124 04	64	0.2
Fine	0.090 23	96	0.2

Table: Parameters of the data used in the main part of this project. Corresponding to sets 1, 5, 6 from table I in [7] respectively.

Finite lattice leads to discretisation errors: must take continuum limit.

- Data was provided by Dr. B. Chakraborty.
- Data has been produced using isotropic lattice NRQCD[7].

Label	Spacing a (fm)	Lattice size (time)	m_I/m_s
Very Coarse	0.1509	48	0.036
Coarse	0.124 04	64	0.2
Fine	0.090 23	96	0.2

Table: Parameters of the data used in the main part of this project. Corresponding to sets 1, 5, 6 from table I in [7] respectively.

- Finite lattice leads to discretisation errors: must take continuum limit.
- Computations requirements mean we must use unphysical light quark masses: must take chiral limit.

Oscar Simpson May 2021 6/22

Statistical Analysis: Jacknife averaging

• Given a sample of n values $x_i \sim F$, we want to find a way to construct best estimators for F.

Statistical Analysis: Jacknife averaging

- Given a sample of n values $x_i \sim F$, we want to find a way to construct best estimators for F.
- For example, estimates for the mean:
 - Construct $\overline{x}_i = \sum_{j \neq i} \frac{x_j}{n-1}$.
 - $\overline{x} = \sum_{i} \frac{\overline{x}_{i}}{n}$ is in fact an unbiased estimator for the mean of F.

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

Oscar Simpson May 2021 7 / 22

Statistical Analysis: Jacknife averaging

- Given a sample of n values $x_i \sim F$, we want to find a way to construct best estimators for F.
- For example, estimates for the mean:
 - Construct $\overline{x}_i = \sum_{j \neq i} \frac{x_j}{n-1}$.
 - $\overline{x} = \sum_{i} \frac{\overline{x}_{i}}{n}$ is in fact an unbiased estimator for the mean of F.
- A more complex variant of this procedure can be used to find an unbiased estimator for any parameter of F[8].

(ロト 4 🗗 ト 4 분 ト 4 분 ト) 본) 어익은

Oscar Simpson May 2021 7 / 22

Statistical Analysis: Bayesian analysis

• We use the corrfitter[9] Python package.

8/22

Statistical Analysis: Bayesian analysis

- We use the corrfitter[9] Python package.
- Perform least-squares regression on 2-point correlator data.

$$G(t) = \sum_{n} a_{n}^{2} (e^{-E_{n}t} + e^{-E_{n}(T-t)}) + (-1)^{t} \sum_{n} a_{on}^{2} (e^{-E_{on}t} + e^{-E_{on}(T-t)})$$

Oscar Simpson May 2021 8/22

Preliminary Study: effective mass

$$G(t) = \sum_{n} a_{n}^{2} (e^{-E_{n}t} + e^{-E_{n}(T-t)}) + (-1)^{t} \sum_{n} a_{on}^{2} (e^{-E_{on}t} + e^{-E_{on}(T-t)})$$

Assuming only the first term dominates, and there is little contribution from the oscillatory terms, then we have:

$$m_{ ext{eff}}(t) = \log \left(rac{G(t)}{G(t+1)}
ight).$$

Preliminary Study: effective mass

$$m_{ ext{eff}}(t) = \log \left(rac{G(t)}{G(t+1)}
ight)$$

Figure: Jacknife averaged correlation data for D^0 meson on a fine lattice.

Oscar Simpson May 2021 10 / 22

Preliminary Study: effective mass

$$m_{ ext{eff}}(t) = \log igg(rac{G(t)}{G(t+1)}igg)$$

Figure: Estimate for effective mass of D^0 meson.

11 / 22

Data Analysis: fine lattice

- Fine dataset has $a \approx 0.09 \, \mathrm{fm}$ and $m_l \approx 0.2 m_s$.
- K meson clearly converges for $n \ge 4$.

Figure: Results of fitting K meson dataset on a fine lattice.

Oscar Simpson May 2021 12 / 22

Data Analysis: fine lattice

Combined fit quality plot shows that the fitting converged for all t_{\min} and $n \ge 4$.

Figure: Fitting quality for fine lattice.

13/22

Data Analysis: coarse lattice

- Coarse dataset has $a \approx 0.12 \, \mathrm{fm}$ and $m_l \approx 0.2 m_s$.
- K meson converges for $n \ge 3$.

Figure: Results of fitting K meson dataset on a coarse lattice.

Oscar Simpson May 2021 14 / 22

Data Analysis: coarse lattice

Combined fit quality plot shows that the fitting converged for all t_{\min} and varying n.

Figure: Fitting quality for coarse lattice.

15 / 22

Data Analysis: very coarse lattice

- Fine dataset has $a \approx 0.15 \, \text{fm}$ and $m_l \approx 0.036 \, m_s$.
- K meson appears to converge for n > 2.

Figure: Results of fitting K meson dataset on a very coarse lattice.

Oscar Simpson May 2021 16 / 22

Data Analysis: very coarse lattice

Combined fit quality plot shows that the fitting converged for a very limited selection of t_{min} and n.

Figure: Fitting quality for very coarse lattice.

Results

For consistency between plots, $t_{min} = 6$ for D mesons, and n = 4 for all results, have been selected.

			E ₀ (MeV)		a ₀	
Label	a (fm)	m_I/m_s	K	D	К	D
Very Coarse	0.15	0.036	495.92(08)	1887.3(51)	0.28101(11)	0.2286(65)
Coarse	0.12	0.2	528.28(15)	1893.0(15)	0.608 53(37)	0.1880(12)
Fine	0.09	0.2	530.16(24)	1889.3(11)	0.139 78(12)	0.1242(07)

Table: Results from fitting all datasets. Uncertainties given in parentheses are statistical.

These are reasonable mass values as literature[10] quotes $m_K \approx 498\, {\rm MeV}$ and $m_D \approx 1865\, {\rm MeV}$.

(ロ) (個) (重) (重) (回) (の)

May 2021

18 / 22

Chiral/Continuum Extrapolation

- Full extrapolation[11] requires 7 pairs of parameters.
- As we have very few datasets, we restrict to first order in each parameter.

$$m = m_{
m phys} \Big(1 + c_\delta \frac{m_I}{m_s} \Big) \Big(1 + c_{a^2} a^2 \Big)$$

19 / 22

Chiral/Continuum Extrapolation

The fit has $\chi^2/\mathrm{dof}=0.23$ so we have a good quality fit, and importantly not an overfit.

			E ₀ (MeV)		<i>a</i> ₀	
Label	a (fm)	m_I/m_S	K	D	K	D
Very Coarse	0.15	0.036	495.92(08)	1887.3(51)	0.281 01(11)	0.2286(65)
Coarse Fine	0.12 0.09	0.2 0.2	528.28(15) 530.16(24)	1893.0(15) 1889.3(11)	0.608 53(37) 0.139 78(12)	0.1880(12) 0.1242(07)

Table: Comparison of observed and predicted mass values, including the extrapolated chiral/continuum limit values.

The extrapolated values are consistent with results from the literature[10], $m_{K^0}=497.611(13)\,\mathrm{MeV}$ and $m_{D^0}=1864.83(5)\,\mathrm{MeV}$ to within 3σ of our statistical uncertainty.

4 □ ▶ 4 ∰ ▶ 4 € ▶ 4 € ▶ € *)Q(*

20 / 22

Remaining Work

• Compute partial decay widths, using amplitudes a_0 .

21 / 22

Bibliography

- [1] G. Shaw F. Mandl. Quantum Field Theory. John Wiley & Sons, 2010.
- Brian Colquhoun. "Bottomonium and B Physics with Lattice NRQCD b Quarks". University of Glasgow, 2015.
- [3] R. P. Feynman. "Space-Time Approach to Non-Relativistic Quantum Mechanics". In: Rev. Mod. Phys. 20 (2 Apr. 1948), pp. 367–387. DOI: 10.1103/RevModPhys.20.367.
- [4] Bipasha Chakraborty. "Precision tests of the standard model using lattice QCD". University of Glasgow, 2016.
- [5] Kenneth G. Wilson. "Confinement of quarks". In: Phys. Rev. D 10 (8 Oct. 1974), pp. 2445–2459. DOI: 10.1103/PhysRevD.10.2445.
- [6] Quentin Mason et al. "High-precision determination of the light-quark masses from realistic lattice QCD". In: Physical Review D 73.11 (2006), p. 114501.
- [7] Bipasha Chakraborty et al. "Improved V_{cs} determination using precise lattice QCD form factors for $D \to Kl\nu$ ". In: arXiv e-prints (2021), arXiv=2104.
- [8] Bradley Efron. The jackknife, the bootstrap and other resampling plans. SIAM, 1982.
- [9] G Peter Lepage. corrfitter. Version 8.1.1. 2020. URL: https://github.com/gplepage/corrfitter.
- [10] Particle Data Group et al. "Review of Particle Physics". In: Progress of Theoretical and Experimental Physics 2020.8 (Aug. 2020). 083C01. ISSN: 2050-3911. DOI: 10.1093/ptep/ptaa104. eprint: https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673740/rpp2020-vol2-2015-2092_18.pdf. URL: https://doi.org/10.1093/ptep/ptaa104.
- [11] Bipasha Chakraborty et al. "Nonperturbative comparison of clover and HISQ quarks in lattice QCD and the properties of the phi meson". In: arXiv preprint arXiv:1703.05552 (2017).

4 □ ▷ 〈□ ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ 〈일 ○

Oscar Simpson May 2021 22 / 22