Math CS 122A HW7

Zih-Yu Hsieh

February 22, 2025

1

Question 1 Apply the representation $f(z) = w_0 + \zeta(z)^n$ to $\cos(z)$ with $z_0 = 0$. Determine $\zeta(z)$ explicitly.

Pf:

Given $z_0 = 0$, which $\cos(z_0) = \cos(0) = 1$. So, since $\cos(z) - 1$ has zero ath z = 0, and it is not identically 0, there exists some order $n \in \mathbb{N}$ and analytic function g(z) such that $g(0) \neq 0$, with $\cos(z) - 1 = (z - 0)^n g(z) = z^n g(z)$.

Now, consider the derivatives of $\cos(z) - 1$, and their evaluation at $z_0 = 0$:

$$\frac{d}{dz}(\cos(z) - 1) = -\sin(z), \quad -\sin(0) = 0$$

$$\frac{d}{dz}(-\sin(z)) = -\cos(z), \quad -\cos(0) = 1 \neq 0$$

Notice that this implies the order of the zero is 2, hence $\cos(z) - 1 = z^2 g(z)$, where the goal is to find the analytic branch $\zeta(z)$ such that $\cos(z) - 1 = \zeta(z)^2$.

Now, notice that $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$, hence:

$$\cos(z) - 1 = \frac{e^{iz} + e^{-iz}}{2} - 1 = \frac{e^{iz} + e^{-zi} - 2}{2} = \frac{\left(e^{\frac{iz}{2}} - e^{\frac{-iz}{2}}\right)^2}{2}$$

So, define the branch $\zeta(z) = \frac{e^{\frac{iz}{2}} - e^{\frac{-iz}{2}}}{\sqrt{2}}$ would satisfy $\zeta(z)^2 = \cos(z) - 1$, its negative representation is also fitting the desired condition.

Question 2 Show by use of (36), or directly, that $|f(z)| \le 1$ for $|z| \le 1$ implies

$$\frac{|f'(z)|}{(1-|f(z)|^2)} \le \frac{1}{1-|z|^2}$$

Pf:

In the textbook, given an analytic function f, with $w_0 = f(z_0)$ with $|z_0| < R$ and $|w_0| < M$ for some R, M > 0, then for |z| < R, we have the following inequality:

$$\left| \frac{M(f(z) - w_0)}{M^2 - \bar{w_0}f(z)} \right| \le \left| \frac{R(z - z_0)}{R^2 - \bar{z_0}z} \right|$$

In the problem, the statement has R = M = 1, hence fixing any z_0 with $|z_0| < 1$, for all $z \neq z_0$ with |z| < 1, it satisfies the following:

$$\left| \frac{f(z) - f(z_0)}{1 - \overline{f(z_0)} f(z)} \right| \le \left| \frac{z - z_0}{1 - \overline{z_0} z} \right|$$

(Note: the original equation has $w_0 = f(z_0)$).

Which, since $z \neq z_0$, $|z - z_0| \neq 0$. Modify the equation, we get:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| \cdot \left| \frac{1}{1 - \overline{f(z_0)} f(z)} \right| \le \frac{1}{|1 - \overline{z_0} z|}$$

Now, notice that $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0} = f'(z_0)$, $\lim_{z\to z_0} (1-\overline{f(z_0)}f(z)) = (1-\overline{f(z_0)}f(z_0)) = (1-|f(z_0)|^2)$, and $\lim_{n\to\infty} (1-\bar{z_0}z) = (1-\bar{z_0}z_0) = (1-|z_0|^2)$.

Which, for $|z_0| < 1$, then $(1 - |z_0|^2) > 0$; similarly, by Maximal Principle, since $|z_0| < 1$ z_0 is not on the boundary of the unit disk \mathbb{D} . Hence, $|f(z_0)|$ cannot be the maximum, showing that $|f(z_0)| < 1$ (since if $|f(z_0)| = 1$, because it is not the maximum, there exists $z_1 \in \mathbb{D}$, with $1 = |f(z_0)| < |f(z_1)|$, which contradicts the fact that $|f(z_1)| \le 1$ when $|z_1| \le 1$). Hence, $(1 - |f(z_0)|^2) > 0$.

So, the above inequality can be reduce to the following:

$$\lim_{z \to z_0} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| \cdot \left| \frac{1}{1 - \overline{f(z_0)} f(z)} \right| \le \lim_{z \to z_0} \frac{1}{|1 - \overline{z_0} z|}$$
$$|f'(z_0)| \cdot \frac{1}{|1 - |f(z_0)|^2|} \le \frac{1}{|1 - |z_0|^2|}$$

Hence, for |z| < 1, we can conclude the following:

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

Question 3 Prove that the arc of smallest noneuclidean length that joins two given points in the unit disk is a circular arc which is orthogonal to the unit circle. (Make use of a linear transformation that carries one end point to the origin, the other to a point on the positive real axis.) The shortest noneuclidean length is called the noneuclidean distance between the end points. Derive a formula for the noneuclidean distance between z_1 and z_2 . Answer:

$$\frac{1}{2}\log\frac{1+\left|\frac{z_1-z_2}{1-\bar{z_1}z_2}\right|}{1-\left|\frac{z_1-z_2}{1-\bar{z_1}z_2}\right|}$$

Pf:

For any distinct $z_1, z_2 \in \mathbb{D}$ (which $|z_1|, |z_2| < 1$), consider the map $S(z) = \frac{z_1 - z}{1 - \bar{z}_1 z}$: Recall that in **HW 1** Question 4 Part (b), we've proven that given |w| < 1, the map $T(z) = \frac{w - z}{1 - \bar{w}z}$ is in fact a bijection of the unit disk \mathbb{D} , hence the map S(z) here is also a bijection of the unit disk, and specifically $S(z_1) = 0$.

Now, since S is a linear transformation, the noneuclidean distance is preserved (based on a statement given in the previous problem in the textbook); and, by the Maximum Principle, since the maximum of the function's modulus could only appear at the boundary, hence since $|z_2| < 1$ (not on the boundary of \mathbb{D}), then $|f(z_2)| < 1$ (since S is a bijection on \mathbb{D} , hence the maximum is given by $\max |S(z)| = 1$).

So, we can conclude that the Noneuclidean distance is achieved by some path γ connecting the origin and the point $S(z_2) \in \mathbb{D}$ (because the noneuclidean distance of a path is invariant under linear transformation, therefore it is sufficient to find such path after the transformation).

The Path γ is a Straight Line:

WLOG, let $\gamma:[0,1]\to\mathbb{D}$ be a differentiable path, such that $\gamma(0)=0$, and $\gamma(1)=S(z_2)$. Which, at every input, $\gamma(t)=r(t)e^{i\theta(t)}$ for some real-valued differentiable function r(t) and $\theta(t)$ (Which, one can assume that $1>r(t)\geq 0$ for all $t\in[0,1]$ to fit γ in the unit disk \mathbb{D}). Also, it satisfies r(0)=0, and $r(1)=|S(z_2)|$.

Then, we get the following:

$$|\gamma(t)| = r(t), \quad \gamma'(t) = r'(t)e^{i\theta(t)} + i\theta'(t)r(t)e^{i\theta(t)} = (r'(t) + i\theta'(t)r(t))e^{i\theta(t)}$$
$$|\gamma'(t)| = |r'(t) + i\theta'(t)r(t)| = \sqrt{(r'(t))^2 + (\theta'(t)r(t))^2}$$

Which, consider the noneuclidean distance, it is given as follow:

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2} = \int_0^1 \frac{|\gamma'(t)|}{1 - |\gamma(t)|^2} dt = \int_0^1 \frac{\sqrt{(r'(t))^2 + (\theta'(t)r(t))^2}}{1 - (r(t))^2} dt$$

And, since $\sqrt{(r'(t))^2 + (\theta'(t)r(t))^2} \ge \sqrt{(r'(t))^2} = |r'(t)| \ge r'(t)$, the above integral satisfy the inequality:

$$\int_0^1 \frac{\sqrt{(r'(t))^2 + (\theta'(t)r(t))^2}}{1 - (r(t))^2} dt \ge \int_0^1 \frac{r'(t)}{1 - (r(t))^2} dt$$

So, doing the substitution u = r(t), du = r'(t)dt (which t = 0 satisfies u = r(0) = 0, and t = 1 satisfies $u = r(1) = |S(z_2)|$), we get the following:

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2} \ge \int_{0}^{|S(z_2)|} \frac{1}{1 - u^2} du = \frac{1}{2} \int_{0}^{|S(z_2)|} \left(\frac{1}{1 - u} + \frac{1}{1 + u} \right) du$$

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2} \ge \frac{1}{2} \left(-\ln|1 - u| + \ln|1 + u| \right) \Big|_{0}^{|S(z_2)|} = \frac{1}{2} \ln \left| \frac{1 + u}{1 - u} \right| \Big|_{0}^{|S(z_2)|} = \frac{1}{2} \ln \left| \frac{1 + |S(z_2)|}{1 - |S(z_2)|} \right|$$

With $|S(z_2)| = \left| \frac{z_1 - z_2}{1 - \bar{z_1} z_2} \right| < 1$, then $\frac{1 + |S(z_2)|}{1 - |S(z_2)|} > 0$, the above inequality becomes:

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2} \ge \frac{1}{2} \ln \frac{1 + \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}{1 - \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}$$

Notice that for the straight path $\gamma(t) = S(z_2)t$ ($\gamma'(t) = S(z_2)$), the path integral produces the above value, so we can claim that the shortest distance is given as the above value, and the path is given by a straight line joining 0 and $S(z_2)$.

Eventually, we can claim that the smallest noneuclidean distance between two points, is given as:

$$\frac{1}{2} \ln \frac{1 + \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}{1 - \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|}$$

Also, because this minimum is achieved by having a straight path γ going through 0 and $S(z_2)$ (which is a straight line through the center, and it is orthogonal to the unit circle). Hence, the preimage $S^{-1}(\gamma)$ must be a circular arc that's orthogonal to the preimage of the unit circle, which is the unit circle itself (since the Mobius Transoformation S with $|z_1| < 1$ maps the boundary onto the boundary).

With $S(z_1) = 0$ and $S(z_2) = S(z_2)$, z_1 and z_2 are both on the preimage $S^{-1}(\gamma)$, so the shortest noneuclidean path joining the two arbitrary points in \mathbb{D} , is a circular arce orthogonal to the unit circle.