Assignment XI

Name: Sourav Bikash

Roll No.:11012338

Submission Date: 3/04/2013 Time:23:59 hrs.

Aim of the Problem:

The problem discusses ways to simulate Exponential Brownian Motion in time time intervals [0,5].

Part I:

This question wants us to generate 500 Exponential BM(μ ,6) using recursive technique.

Implementation using R:

```
for(j in 1:10)
{
     z<-rnorm(500,mean=0,sd=1);
     w<-NULL;wm1<-NULL;wm2<-NULL;
     t < -seq(0,5, length.out = 500);
     w[1]=1;
     sig<-0.4;
     mu<-1;
     for(i in 2:500)
           1]))*(z[i]))));
     wm1 < -c(wm1, w[2]);
     wm2 < -c(wm2, w[5]);
     plot(s,type="l",col="black",ylim=c(0,110));
     par(new=TRUE);
k1<-mean(wm1);
k2<-mean(wm2);
```

The following plots were obtained for 10 paths:

a)mean=1,variance=0.2

b)mean=1,variance=0.4

c)mean=-1,variance=0.2

d)mean=-1,variance=0.4

The following table gives the comparison values: (this was done for 100 paths)

mean	variance	E[S(5)]	Var[S(5)]	E[S(5)] (th.)	Var[S(5)](th.)
1	0.2	143.6162	4584.175	148.4132	4876.72
1	0.4	133.661	16882.91	148.4132	26994.34
-1	0.2	0.00688	0.000125	0.006737	0.000105
-1	0.4	0.00557	0.000268	0.006737	0.000556

The density plot of S(5):

density.default(x = wm2)

