Physically Based Animation

National Cheng Kung University, Fall 2017

Instructor: Shih-Chin Weng 翁士欽 (Style.Me)

Motivations

- The goal of animation is bringing character to life
 - It is about *timing and spacing*
- Few animation principles (like secondary motion, following through, etc.) are inspired from physical effects
- But using keyframe animation for physical effects is quite hard to match the timing and movements of interacting objects
- Physically-based animation (or modeling) is about using the principles of physics to model dynamically evolving phenomena

Foundations of Physically-Based Animation

- Model
 - A set of rules govering how something behaves (e.g. classical physics)
- Simulation
 - Predict the evolution over time
 - Time integration
 - Collision detection & response

Dynamics & Numerical Integration

Classical Physics

- The physics before the advent of quantum mechanics
 - The related physical laws are *deterministic*
- The job of classical physics is to *predict future behavior*
 - It also needs to be revertible (able to trace the history)
 - The *state* is everything we need to predict the future by using governing laws
- System: a collection of objects (i.e., particles, fields, waves, etc.)
- Dynamical system: a system changes with *time*

Particle System

- Particles are objects
 - have mass, position and velocity
 - respond to force
 - have no spatial extent
- Physical properties
 - Position: $\mathbf{x}(t)$
 - Velocity: $\mathbf{v}(t) = \frac{d\mathbf{x}}{dt} = \dot{\mathbf{x}}$
 - Acceleration: $\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \dot{\mathbf{v}} = \frac{d^2\mathbf{x}}{dt^2} = \ddot{\mathbf{x}}$
- How do we update acceleration at any instant of time?
 - Newton 2nd law: $\mathbf{f} = m\mathbf{a}$

Evolve the Particle System

- *State* (x, v): all the things we need to update the position
 - $v' = v + \Delta v = v + (a * \Delta t)$
 - $\blacksquare x' = x + \Delta x = x + (v' * \Delta t)$
- The *state* of the *n* particles in \mathbb{R}^3 is:

$$(x_1, v_1, x_2, v_2, ..., x_N, v_N), x_i, v_i \in \mathbb{R}^3$$

■ The space of state is called phase space sometimes

Dynamical System

- \blacksquare Configuration: $\mathbf{q}(t)$
 - This is what we want to solve (e.g. the *state*) in generalized perspective
- Velocity (time derivative): $\dot{\mathbf{q}} \coloneqq \frac{d}{dt}\mathbf{q}$
- Mass: M
- Forces: F
- Constraints: $c(\mathbf{q}, \dot{\mathbf{q}}, t) = 0$

Generalized Coordinates

- Often describing systems with many moving pieces
- The configuration (state vector) is a single vector with all states:

$$\mathbf{q}(t) = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$

■ The motion of the system is the trajectory of *state* vector

Generalized Velocity

■ The time derivative of generalized coordinates:

$$\dot{\mathbf{q}} = (\dot{x}_1, \dot{x}_2, \dots, \dot{x}_n)$$

■ Tells us how the system evolves in small amount of time

Why Using Numerical Integration?

$$\dot{q}(t) = \frac{d}{dt}q(t) = f(q(t))$$

$$q(t+h) = q(t) + \int_{t}^{t+h} \dot{q}(t)dt$$

$$= q(t) + \int_{t}^{t+h} f(q(t))dt$$

$$= no analytic form usually!$$

Numerical Integration

■ Key idea: replace derivatives with differences

$$\frac{d}{dt}q(t) = f(q(t))$$

$$\downarrow \downarrow$$

new configuration (unknown)
$$\frac{q_{k+1}-q_k}{q_k}=f(q(t_?))$$
 evaluate q at t_{k+1} or t_k ?

"time step", i.e., the time interval between $q_{k+1} - q_k$

Ordinary Differential Equation (ODE)

'Ordinary' means that it only depends on time

$$\frac{d}{dt}u(t) = -au, \qquad a > 0$$

the exact solution is:
$$u(t) = e^{-at}$$

it should decay: when $t \to \infty$, $u \to 0$

Forward Euler Method

$$q_{k+1} - q_k = h * f(q_k)$$

- Evaluate velocity at current configuration
 - Easy to implement, it's straight forward
- Unstable with large step size *h*
 - $\blacksquare h \uparrow \Rightarrow error \uparrow$
 - Overshooting or 'blowing up'

Two Problems of Forward Euler

Shrinking the step size will slow the drift, but **NEVER** eliminate it!

Example of Forward Euler Integration

$$\dot{u} = -au, \qquad a > 0$$

$$u_{k+1} - u_k = h(-au_k)$$

$$u_{k+1} = (1 - ha)u_k$$

after n steps...
$$u_n = (1 - ha)^n u_0$$

converges **ONLY** if |1 - ha| < 1

if *a* is large, *h* needs to be very small!

How Accurate is Forward Euler?

- The Taylor expansion of x(t) at t_0 is

 - The *order* of integration schemes: how many levels of derivatives represent in the expansion
- Forward Euler is a *first-order* method and its error term is
 - $\ddot{x}(t_0) \frac{h^2}{2!} + \dots + \frac{\partial^n x(t_0)}{\partial t^n} \frac{h^n}{n!} + \dots \approx O(h^2)$
 - It's only correct if all derivatives beyond the first is zero!
 - In general, an order n method will have $O(h^{n+1})$ error
- Reduce the step size to h/2, the error becomes 1/4
 - But the accumulated error is still linearly proportional to h (since we need double the accumulation steps)

Runge-Kutta Methods

■ Key idea: use the *slope* at more than one point to extrapolate the value at the future time step

$$\dot{q}(t) = \frac{d}{dt}q(t) = f(t,q(t))$$

$$q(t+h) = q(t) + \int_{t}^{t+h} \dot{q}(t)dt \approx q(t) + h \sum_{i} w_{i}f(t+v_{i}h,q(t+v_{i}h)) \quad v_{i} \in \mathbb{R}$$

Second Order Runge-Kutta

■ Use previous slope k_1 to approximate the temporary q for k_2

$$k_1 = f(t_n, q_n)$$

$$k_2 = f(t_n + \alpha h, q_n + \beta h k_1) \Rightarrow k_2 \approx f(t_n, q_n) + \alpha h \frac{\partial f}{\partial t}(t_n, q_n) + \beta h k_1 \frac{\partial f}{\partial q}(t_n, q_n) + O(h^2)$$

$$q_{n+1} = q_n + h(w_1 k_1 + w_2 k_2)$$

$$\begin{aligned} q_{n+1} &= q_n + h w_1 f(t_n, q_n) + h w_2 \left(f(t_n, q_n) + \alpha h \frac{\partial f}{\partial t}(t_n, q_n) + \beta h \frac{\partial f}{\partial q} \frac{\partial q}{\partial t} \left(t_n, q_n \right) \right) \\ &= q_n + h (w_1 + w_2) f(t_n, q_n) + h^2 w_2 \left(\alpha f_t + \beta f_q f \right) \end{aligned}$$

Second Order Runge-Kutta (Cont.)

■ Match the coefficients to the Taylor expansion:

$$q(t+h) = q(t) + h\frac{dq}{dt} + \frac{h^2}{2}\frac{d^2q}{dt^2} + O(h^3) \qquad \left[\frac{d^2q}{dt^2} = \frac{df(t, q(t))}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial q}\frac{\partial q}{\partial t} = f_t + f_q f \right]$$

$$= q(t) + hf(t_n, q_n) + \frac{h^2}{2}(f_t + f_q f)(t_n, q_n) + O(h^3)$$

$$q_{n+1} = q_n + h(w_1 + w_2)f(t_n, q_n) + h^2w_2(\alpha f_t + \beta f_q f)(t_n, q_n)$$

- Get $w_1 + w_2 = 1$, $\alpha w_2 = \frac{1}{2}$, $\beta w_2 = \frac{1}{2}$
 - There are infinitely many choices!
 - Classical 2nd order RK2: $w_1, w_2 = \frac{1}{2}, \alpha, \beta = 1$

Midpoint Method (RK2)

$$q_{n+1} = q_n + h(w_1 + w_2)f(t_n, q_n) + h^2w_2(\alpha f_t + \beta f_q f)(t_n, q_n) + O(h^3)$$

- By choosing $\alpha = \beta = \frac{1}{2}$, $w_1 = 0$, $w_2 = 1$
- Then $q_{n+1} = q_n + hf(t_n, q_n) + \frac{h^2}{2} (f_t + f_q f)(t_n, q_n)$
- Integration steps:
 - a. Compute an Euler step

$$hk_1 = h * f(t_k, q_k)$$

b. Evaluate f at the midpoint

$$k_2 = f\left(t_k + \frac{h}{2}, q_k + \frac{hk_1}{2}\right)$$

c. Take full step with the slope at the midpoint

$$q_{k+1} = q_k + h * k_2$$

Symplectic Euler

- Key ideas
 - Update velocity using current configuration first
 - Use that new velocity to update next configuration
- Used by many real-time physics engines like Bullet
 - Also known as *semi-explicit Euler*, *semi-implicit Euler*, *Euler-Cromer and Newton-Stormer-Verlet* (so many names ...)
- Benefits: stable and preserving energy

Symplectic Euler

- Key ideas
 - Update velocity using current configuration first
 - Use that new velocity to update next configuration
- Used by many real-time physics engines like Bullet
 - Read More

 Integration Basics, Glenn Fiedler. Also known as semi-explicit Euler. somi Verlet (so many par
- Benefits: stab

Newton-Stormer-

Adaptive Step Sizes

- What is 'good' step size for explicit integrator?
 - The largest step size with acceptable integration error
- Vary step size *h* over the course of solving ODE
 - Compute two estimates of $x(t_0 + h)$
 - 1. x_a : take one full step size
 - 2. x_b : take two steps with size h/2
 - Measure the error $e = |x_a x_b|$
 - Scale the step size w.r.t. the error bound and acceptable error

Adaptive Step Sizes (Cont.)

- Suppose the error bound is $O(h^2)$ and the acceptable error is 10^{-4} per step
- If current error is 10^{-8} , we could increase step size to 100h

$$\left(\frac{10^{-4}}{10^{-8}}\right)^{\frac{1}{2}}h = 100h$$

■ If current error is 10^{-3} , we have to decrease the step size to 0.316h

$$\left(\frac{10^{-4}}{10^{-3}}\right)^{\frac{1}{2}}h \approx 0.316h$$

Backward Euler Method

$$q_{k+1} - q_k = h * f(q_{k+1})$$

- Evaluate function f at new (i.e., k+1) configuration
- Need to solve a linear system for each time step
- Unconditionally stable, even if h is ∞
 - But this does **NOT** mean it is accurate!
- Numercial dissipation
 - Converges to zero when *h* is large
 - Energy lost

Example of Backward Euler Integration

$$\dot{u} = -au, \quad a > 0$$
 $u_{k+1} - u_k = h(-au_{k+1})$
 $u_{k+1} = \frac{1}{1 + ah}u_k$

after n steps...
$$u_n = \left(\frac{1}{1+ah}\right)^n u_0$$

 $a, h > 0 \Rightarrow 1 + ah > 1$, always converges!

'Stiff' System

■ Suppose we are trying to fix a particle movement in y-axis by

$$\dot{\mathbf{X}}(\mathbf{t}) = \frac{d}{dt} \begin{pmatrix} \mathbf{x}(t) \\ \mathbf{y}(t) \end{pmatrix} = \begin{pmatrix} -\mathbf{x}(t) \\ -\mathbf{k}\mathbf{y}(t) \end{pmatrix}$$

 $\blacksquare k$ is a large positive number => a quick decay along y-axis

$$\mathbf{X}_{\text{new}} = \mathbf{X}_0 + h\dot{\mathbf{X}}(t_0) = \begin{pmatrix} (1-h)\mathbf{x}_0 \\ (1-hk)\mathbf{y}_0 \end{pmatrix}$$

- It converges if $|1 hk| < 1 \Rightarrow hk < 2$
 - Where k is large, thus h has to be *small*
- *Stiff*: numerically unstable, unless the step size has to be small

Numerical Integration of Particle System

- Suppose $\ddot{\mathbf{x}}(t) = f(\mathbf{x}(t), \dot{\mathbf{x}}(t))$
- From Newton 2nd law of motion:

$$\frac{d}{dt} \binom{\mathbf{x}}{\mathbf{v}} = \binom{\mathbf{v}(t)}{f(\mathbf{x}(t), \mathbf{v}(t))}$$

which t? at current or new configuration?

Forward Euler

$${\Delta x \choose \Delta v} = h {v_n \choose f(x_n, v_n)}$$

$$x_{n+1} = x + \Delta x = x + hv_n$$

$$v_{n+1} = v_0 + hf(x_n, v_n)$$

- Force function could be:
 - Unary forces like gravity and drag
 - n-ary forces like springs
 - Forces of spatial interaction
 - Attraction and respulsion between particles

Backward Euler

$$\frac{d}{dt} \binom{x}{v} = \binom{v(t)}{f(x(t), v(t))} \Rightarrow \binom{\Delta x}{\Delta v} = h \binom{v_n + \Delta v}{f(x_n + \Delta x, v_n + \Delta v)}$$

Suppose $\ddot{x}(t) = f(x(t), \dot{x}(t))$ and assume function f is smooth, then f could be approximated by Taylor expansion:

$$f(x_n + \Delta x, v_n + \Delta v) = f(x_n, v_n) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial v} \Delta v$$
$$= f(x_n, v_n) + \frac{\partial f}{\partial x} h(v_n + \Delta v) + \frac{\partial f}{\partial v} \Delta v$$

■ Plug into the linear system and solve Δv :

$$\left(I - h^2 \frac{\partial f}{\partial x} - h \frac{\partial f}{\partial v}\right) \Delta v = f(x_n, v_n) + \frac{\partial f}{\partial x} h v_n \qquad then \ x_{n+1} = x_n + \Delta x = x_n + h(v_n + \Delta v)$$

Forward vs. Backward Euler

- Forward Euler is fast, simple, but not stable
 - Need to reduce the time step to avoid overshootings
- Backward Euler is unconditionaly stable with prices
 - Need to solve system of equations in each time step
 - Temporal details disappear, due to numerical disippation
 - Large time step would lose more energy?
- For 'stiff' system, backward Euler is more stable than forward Euler
- Total evaluation time is:

number of time steps × the computation time in each step

Mass-Spring System

Deformable Objects

Mass-Spring Structure

- A set of point masses connected by springs
- Each spring follows Hook's law and Newton's 3rd law of motion
- Structure for deformable objects:
 - Hair/rope: chain
 - Additional springs for bending and torsional resistance needed
 - Cloth: triangle mesh
 - Need extra springs to model bending
 - Low bending resistance but quite stiff w.r.t. stretching
 - Soft-body: tetrahedral mesh

Physical Formulation

Damping force $\mathbf{f}_{i}^{d} = \mathbf{f}^{d}(\mathbf{x}_{i}, \mathbf{v}_{i}, \mathbf{x}_{j}, \mathbf{v}_{j}) = k_{d} \left[(\mathbf{v}_{j} - \mathbf{v}_{i}) \cdot \left(\frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{|\mathbf{x}_{i} - \mathbf{x}_{i}|} \right) \right] \left(\frac{\mathbf{x}_{j} - \mathbf{x}_{i}}{|\mathbf{x}_{i} - \mathbf{x}_{i}|} \right)$

■ Unified spring force: $f_i = f(x_i, v_i, x_i, v_i) = f^s(x_i, x_i) + f^d(x_i, v_i, x_i, v_i) = -f_i$

Implicit Integration

forces of n particles: $\mathbf{f}: \mathbb{R}^{3n} \to \mathbb{R}^{3n}$ Mass matrix: $\mathbf{M} \in \mathbb{R}^{3n \times 3n}$ positions: $\mathbf{x} \in \mathbb{R}^{3n}$ (diagonal matrix) $\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^t + h * \mathbf{f}(\mathbf{x}^{t+1})$ $\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^t + h * \mathbf{f}(\mathbf{x}^t + h * \mathbf{v}^{t+1})$ **↓** Taylor expansion $\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^{t} + h \left| \mathbf{f}(\mathbf{x}^{t}) + \frac{\partial \mathbf{f}(\mathbf{x}^{t})}{\partial \mathbf{x}} * (h * \mathbf{v}^{t+1}) \right|$

Implicit Integration (Cont.)

$$\mathbf{M}\mathbf{v}^{t+1} = \mathbf{M}\mathbf{v}^{t} + h\left[\mathbf{f}(\mathbf{x}^{t}) + \frac{\partial \mathbf{f}(\mathbf{x}^{t})}{\partial \mathbf{x}} * (h * \mathbf{v}^{t+1})\right]$$
$$= \mathbf{M}\mathbf{v}^{t} + h\mathbf{f}(\mathbf{x}^{t}) + h^{2}\mathbf{K}\mathbf{v}^{t+1}$$

$$(\mathbf{M} - h^2 \mathbf{K}) \mathbf{v^{t+1}} = \mathbf{M} \mathbf{v^t} + h \mathbf{f}(\mathbf{x^t})$$
How to construct matrix **K**?

$$\mathbf{x}^{\mathbf{t+1}} = \mathbf{x}^{\mathbf{t}} + h * \mathbf{v}^{\mathbf{t+1}}$$

Jacobian Matrix K

- Contains the derivatives of all 3n force components w.r.t. all 3n position components of the particles
 - Also called *tangent stiffness* matrix
- A spring force between particles *i* and *j* constructs four 3x3 sub-matrices:
 - \blacksquare Derivatives w.r.t. positions $\mathbf{x_i}$ and $\mathbf{x_i}$

$$\mathbf{K_{i,i}} = \frac{\partial}{\partial \mathbf{x_i}} \mathbf{f}^{S}(\mathbf{x_i}, \mathbf{x_j}) = k_{S} \frac{\partial}{\partial \mathbf{x_i}} \left((\mathbf{x_j} - \mathbf{x_i}) - l_0 \frac{\mathbf{x_j} - \mathbf{x_i}}{|\mathbf{x_j} - \mathbf{x_i}|} \right) \qquad \left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}$$

$$= k_{S} \left(-\mathbf{I} + l_0 \left[\frac{\mathbf{I} - (\mathbf{x_j} - \mathbf{x_i})(\mathbf{x_j} - \mathbf{x_i})^{\mathsf{T}}}{|\mathbf{x_j} - \mathbf{x_i}|^{\mathsf{T}}} \right] \right)$$

$$= -\mathbf{K_{i,j}} = \mathbf{K_{j,j}} = -\mathbf{K_{j,i}}$$

$$\frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{x}} = \frac{\mathbf{I} \cdot |\mathbf{x}| - \mathbf{x} \cdot \hat{\mathbf{x}}^{\mathsf{T}}}{|\mathbf{x}|^{\mathsf{T}}}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$\frac{\partial |\mathbf{x}|}{\partial \mathbf{x}} = \left(\frac{\mathbf{x}}{|\mathbf{x}|}\right)^T = \hat{\mathbf{x}}^T$$

$$\frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{x}} = \frac{\mathbf{I} \cdot |\mathbf{x}| - \mathbf{x} \cdot \hat{\mathbf{x}}^T}{|\mathbf{x}|^2} = \frac{\mathbf{I} - \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}^T}{|\mathbf{x}|}$$
Read More: The Matrix Cookbook

Solve System Equations

$$(\mathbf{M} - h^2 \mathbf{K}) \mathbf{v^{t+1}} = \mathbf{M} \mathbf{v^t} + h \mathbf{f}(\mathbf{x^t})$$

- For each time step
 - K is reset to zero at first
 - Then add each sub-matrix $K_{i,j}$ of each spring force to K
- K changes at each time step
 - Using direct solver is not practical
 - Solving the system with iterative methods like *Conjugate Gradients* is more common

Three Phases of Collision Handling

■ Collision detection

■ Detect whether there is a collision or not

■ Collision determination

■ Find the collision point **p** and other infomation like contact normal

■ Collision response

■ Update simulation state of each entity such as position, velocity, etc.

Collision Detection

- Broad-phase
 - Using bound volumes to determine if there are any potential intersections
- Narrow-phase
 - Compute closest point, normal and distance/penetration

Types of Bounding Volumes

AABB

sphere

k-DOP

OBB

convex hull

convex

concave

Collision Detection (Cont.)

Board-Phase: not collide

Board-Phase: collide Narrow-Phase: no intersection Board-Phase: collide

Narrow-Phase: intersection

Type of Collisions

- *Genericity:* objects in 'general position'
 - A tiny perturbation does not change the nature of its interaction with the stuff around it
 - *Degenerate*: the objects are **NOT** in general position

Type of Collisions (Cont.)

- There are 9 combinations of collision tests between geometry primitives (e.g. vertex, edge and face)
- But there are only two *generic* types of collisions:
 - Vertex-face
 - Edge-edge
- All other types of collisions are all *degenerate*, which means a very small perturbation will remove them as possibilities

Type of Collisions (Cont.)

- Even degenerate collisions have generic collisons occurring with them
 - Thus it's critical to handle genric collisions
- An edge-face collision occurs when there are

two vertex-face contacts

two edge-edge contacts

Vertex-Face Test

- Suppose all faces have been triangularized
- Find the closest point x_p on the triangle to point x_4

$$\mathbf{x_p} = w_1 \mathbf{x_1} + w_2 \mathbf{x_2} + w_3 \mathbf{x_3} = \mathbf{x_3} + w_1 \mathbf{x_{13}} + w_2 \mathbf{x_{23}}$$

where $w_1 + w_2 + w_3 = 1$, $\mathbf{x_{ij}} = \mathbf{x_j} - \mathbf{x_i}$

$$\vec{\mathbf{x}}_{4p} = \vec{\mathbf{x}}_{43} - w_1 \vec{\mathbf{x}}_{13} - w_2 \vec{\mathbf{x}}_{23} = \mathbf{0}$$

$$\begin{bmatrix} \vec{\mathbf{x}}_{13} & \vec{\mathbf{x}}_{23} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{x}}_{43} \end{bmatrix}$$

Underdetermined! Use normal equation $A^T A x = A^T b \Rightarrow$

$$\begin{bmatrix} \mathbf{x}_{13} \\ \mathbf{x}_{23} \end{bmatrix} \begin{bmatrix} \vec{\mathbf{x}}_{13} & \vec{\mathbf{x}}_{23} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{x}}_{13} \\ \vec{\mathbf{x}}_{23} \end{bmatrix} \begin{bmatrix} \vec{\mathbf{x}}_{43} \end{bmatrix}$$

$$\begin{bmatrix} \vec{x}_{13} \cdot \vec{x}_{13} & \vec{x}_{13} \cdot \vec{x}_{23} \\ \vec{x}_{23} \cdot \vec{x}_{13} & \vec{x}_{23} \cdot \vec{x}_{23} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \vec{x}_{13} \cdot \vec{x}_{43} \\ \vec{x}_{23} \cdot \vec{x}_{43} \end{bmatrix}$$

Edge-Edge Test

$$\mathbf{x_a} = \mathbf{x_1} + a\vec{\mathbf{x}_{21}}, \qquad \mathbf{x_b} = \mathbf{x_3} + b\vec{\mathbf{x}_{43}}, \qquad a, b \in [0,1]$$

$$\mathbf{x_b} - \mathbf{x_a} = \vec{\mathbf{x}}_{31} + b\vec{\mathbf{x}}_{43} - a\vec{\mathbf{x}}_{21} \Rightarrow \begin{bmatrix} \vec{\mathbf{x}}_{21} & -\vec{\mathbf{x}}_{43} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{x}}_{31} \end{bmatrix}$$

Apply normal equation $A^TAx = A^Tb$ to find the closest point

$$\begin{bmatrix} \vec{\mathbf{x}}_{21} \\ -\vec{\mathbf{x}}_{43} \end{bmatrix} \begin{bmatrix} \vec{\mathbf{x}}_{21} & -\vec{\mathbf{x}}_{43} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{x}}_{21} \\ -\vec{\mathbf{x}}_{43} \end{bmatrix} \begin{bmatrix} \vec{\mathbf{x}}_{31} \end{bmatrix}$$

$$\begin{bmatrix} \vec{\mathbf{x}}_{21} \cdot \vec{\mathbf{x}}_{21} & -\vec{\mathbf{x}}_{21} \cdot \vec{\mathbf{x}}_{43} \\ -\vec{\mathbf{x}}_{43} \cdot \vec{\mathbf{x}}_{43} & \vec{\mathbf{x}}_{43} \cdot \vec{\mathbf{x}}_{43} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{x}}_{21} \cdot \vec{\mathbf{x}}_{31} \\ -\vec{\mathbf{x}}_{43} \cdot \vec{\mathbf{x}}_{31} \end{bmatrix}$$

Continuous Intersection Tests

- Assume all vertices move with constant velocity over the time step
 - Suppose contact occurs at time t
 - $\mathbf{x_i}(t)$ is the vertex $\mathbf{x_i}$ at time t, $\mathbf{v_i}$ is the velocity of $\mathbf{x_i}$
 - $\mathbf{\vec{x}_{ij}}(t) = \mathbf{x_{ij}} + t\mathbf{\vec{v}_{ij}}$
- For Vertex-Face contact, vertices x_1, x_2, x_3, x_4 are coplanar
 - $\mathbf{x_4}$ is contained in the triangle: $\mathbf{x_4}(\mathbf{t}) = u\vec{\mathbf{x}}_{31}(t) + v\vec{\mathbf{x}}_{21}(t)$
 - ☐ This is a non-linear system and hard to solve
 - But we could apply use orthogonality:

but we could apply use of Hogorianty.
$$\vec{\mathbf{x}}_{41}(t) \cdot \vec{\mathbf{N}} = \vec{\mathbf{x}}_{41}(t) \cdot \left(\vec{\mathbf{x}}_{21}(t) \times \vec{\mathbf{x}}_{31}(t)\right)$$

$$= (\vec{\mathbf{x}}_{41} + t\vec{\mathbf{v}}_{41}) \cdot \left((\vec{\mathbf{x}}_{21} + t\vec{\mathbf{v}}_{21}) \times (\vec{\mathbf{x}}_{31} + t\vec{\mathbf{v}}_{31})\right) = 0$$

a *cubic* equation for t,

■ For Edge-Edge contant, 4 points are coplanar

$$\left(\vec{\mathbf{x}}_{21}(t) \times \vec{\mathbf{x}}_{43}(t)\right) \cdot \vec{\mathbf{x}}_{13}(t) = \mathbf{0}$$

Collision Response

- Given a surface particle **q** of object A is inside a tetrahedron **t** of an object B
- In the case of self-collision, two objects are identical
 - It's far from trivial to find a stable way to resolve such collision
- Decide the future position of the penetrated vertex **q**
 - Move **q** to the closest surface point of object B
 - Not recommended due to stability issue
 - Move **q** back to where it penetrated object B
 - Backward ray casting along the surface normal at **q**
- Then the collision response force is defined as $\mathbf{f}_{coll} = k(\mathbf{q}' \mathbf{q})$
 - $\blacksquare k$ is stiffness coefficient

Practical Issues

- The object behavior depends on the spring network
- Hard to get desired behavior by tweaking the stiffness of relevant springs
- Simulate inextendibility would make system 'stiff'
- Can't capture volumetric effects directly

Mass-Spring Model for Hair Simulation

- Hair is properties
 - Bending
 - Inextensibility
 - Torsion

[Iben et al., SCA'13]

[Selle et al., SIG'08]

Hair Troubles in Disney's Tangled

Rigid Body Dynamics

Rigid Body

- Collection of particles
- No deformation: the distance between any two particles is constant
- Rigid motion: rotation + translation => 6 DOFs

Orientation

body space

world space

Center of Mass and Body Velocity

- The coordinate of body's geometric center is
 - \blacksquare (0, 0, 0) in body space

$$\sum m_i \boldsymbol{p_i}(0) = \mathbf{0}$$

 $\blacksquare x(t)$ in world space

$$x(t) = \frac{\sum m_i \boldsymbol{p_i}(t)}{\sum m_i}$$

■ The body velocity in world space

$$v(t) = \frac{dx(t)}{dt} = \dot{x}(t)$$

Orientation

- The columns of R(t):
 - The directions of the transformed x, y, z axes in body space at time t

$$p(t) = R(t)p(t) + x(t)$$

$$R(t) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} = x'$$

$$\downarrow \downarrow$$

$$R(t) = \begin{pmatrix} r_{xx} & r_{yx} & r_{zx} \\ r_{xy} & r_{yy} & r_{zy} \\ r_{xz} & r_{yz} & r_{zz} \end{pmatrix}$$

Angular Velocity

- $\blacksquare \omega(t)$ is a vector represents the axis of spin
 - The magnitude $|\omega(t)|$ is the speed of spin
- How are R(t) and $\omega(t)$ related?
 - r(t) = a + b, is a vector fixed to the body
 - ☐ translation-invariant
 - Its time derivative is only related to rotation
 - moving in a circle of radius b

$$\dot{r}(t) = \omega(t) \times b = \omega(t) \times b + \omega(t) \times a$$
$$= \omega(t) \times (a+b) = \omega(t) \times r(t)$$

Skew Matrix

 $\forall a, b \in \mathbb{R}^3$

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_y b_z - b_y a_z \\ -a_x b_z + b_x a_z \\ a_x b_y - b_x a_y \end{pmatrix} = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix} \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \mathbf{a}^* \mathbf{b}$$

Change of Orientation

- The columns of $\dot{R}(t)$
 - \blacksquare The velocity with which the x, y, z axes are being transformed
- Given $\dot{r}(t) = \omega(t) \times r(t)$, and apply it to x, y, z-axis:

$$\dot{R}(t) = \left(\omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right) \\
= \omega^*(t) \left(\begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xy} \\ r_{yz} \end{pmatrix} \quad \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right) = \omega^*(t)R(t) \qquad \qquad \dot{R}(t) = \omega(t)^*R(t)$$

Velocity of a Particle

$$r_i(t) = R(t)r_{0i} + x(t)$$

$$\downarrow time derivative$$

$$\dot{r}_i(t) = \dot{R}(t)r_{0i} + \dot{x}(t) = \omega(t) \times R(t)r_{0i} + v(t)$$

$$= \omega(t) \times (R(t)r_{0i} + x(t) - x(t)) + v(t)$$

$$= \omega(t) \times (r_i(t) - x(t)) + v(t)$$

= angular component + linear component

Force and Torque

- Conceptual model: external force acting on a particular *particle* of the body
- The total external force: $F(t) = \sum F_i(t)$
 - Convey no information about where the various forces acting on
- The external torque acting on the *i*th particle

Total external torque provide some information about the distribution of the forces $F_i(t)$ over the body

Linear Momentum

- For single particle p, its linear momentum is $p_i = m_i v_i$
- While the total linear momentum of a rigid body at time t is

$$P(t) = \sum_{i} m_{i} \dot{r}_{i}(t)$$

$$= \sum_{i} \left(m_{i} v(t) + m_{i} \omega_{i}(t) \times \left(r_{i}(t) - x(t) \right) \right)$$

$$= \sum_{i} m_{i} v(t) + \omega_{i}(t) \times \left[\sum_{i} m_{i} \left(r_{i}(t) - x(t) \right) \right]$$

$$= M v(t)$$

■ The change in linear momentum is the total force exerting on the body

$$\dot{v}(t) = \frac{\dot{P}(t)}{M} \Rightarrow \dot{P}(t) = F(t)$$

Angular Momentum

- Angular momentum of a single particle is $L_i = r_i \times (m_i v_i) = r_i \times p_i$
- All particles within the body has the same angular velocity ω , thus their linearly velocity $v_i = \omega \times r_i$
- The total angular momentum is

$$L(t) = \sum_{i} r_i(t) \times m_i v_i(t)$$

$$= \sum_{i} r_i(t) \times m_i(\omega \times r_i(t))$$

$$= \sum_{i} -m_i r_i(t) \times (r_i(t) \times \omega(t))$$

$$= -m_i r_i^*(t) r_i^*(t) \omega = I(t) \omega(t)$$

The Inertia Tensor

Let
$$r_i' = r_i(t) - x(t)$$

$$I(t) = \sum \begin{pmatrix} m_{i}(r_{iy}'^{2} + r_{iz}'^{2}) & -m_{i}r_{ix}'r_{iy}' & -m_{i}r_{ix}'r_{iz}' \\ -m_{i}r_{iy}'r_{ix}' & m_{i}(r_{ix}'^{2} + r_{iz}'^{2}) & -m_{i}r_{iy}'r_{iz}' \\ -m_{i}r_{iz}'r_{ix}' & -m_{i}r_{iz}'r_{iy}' & m_{i}(r_{ix}'^{2} + r_{iy}'^{2}) \end{pmatrix}$$

$$= \sum m_{i}r_{i}^{T}r_{i}'\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} m_{i}r_{ix}^{T} & m_{i}r_{ix}'r_{iy}' & m_{i}r_{ix}'r_{iz}' \\ m_{i}r_{iy}'r_{ix}' & m_{i}r_{iy}'r_{ix}' & m_{i}r_{iy}'r_{iz}' \\ m_{i}r_{iz}'r_{iy}' & m_{i}r_{iz}'r_{iy}' & m_{i}r_{iz}'^{2} \end{pmatrix} \begin{pmatrix} r_{ix}' & r_{iy}' & r_{iz}' \\ r_{iy}' & r_{iz}' \end{pmatrix} = r'r'^{T}$$

$$= \sum m_{i}\left(\left(r_{i}^{T}r_{i}'\right)\mathbf{1} - r'r'^{T}\right)$$

$$\downarrow \downarrow I(t) = R(t)\left(\sum m_{i}\left(\left(r_{0i}^{T}r_{0i}\right)\mathbf{1} - r_{0i}r_{0i}^{T}\right)\right)R(t)^{T} = R(t)I_{body}R(t)^{T}$$

$$r_{i}' = R(t)r_{0i}, \quad R(t)R(t)^{T} = \mathbf{1}$$
precompute it!

Approximating I_{body}

- Goal: discreteize the mesh volume and accumulate internia tensor
- Bounding boxes, spheres
 - Simple but may not fit to geometry properly
- Convex decomposition
 - Tetrahedralized mesh

Forward Euler Integration

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^*R(t) \\ F(t) \\ \tau(t) \end{pmatrix} \qquad \begin{array}{l} M \leftarrow \sum_i m_i \\ \bar{x}_0 \leftarrow \frac{\sum_i x_{0i}}{M} \\ r_{0i} \leftarrow x_{0i} - \bar{x}_0 \end{array}$$

$$v(t) = P(t)/M$$

$$I(t) = R(t)I_{body}R(t)^{T}$$

$$\omega(t) = I(t)^{-1}L(t)$$

initialization

$$\begin{split} M \leftarrow \sum_{i} m_{i} & F \leftarrow \sum_{i} f_{i} \\ \bar{x}_{0} \leftarrow \frac{\sum_{i} x_{0i}}{M} & \tau \leftarrow \sum_{i} r_{i} \times f_{i} \\ r_{0i} \leftarrow x_{0i} - \bar{x}_{0} & x \leftarrow x + v\Delta t \\ I_{body}^{-1} \leftarrow \left(-\sum_{i} m_{i} r_{0i}^{*} r_{0i}^{*} \right)^{-1} & v \leftarrow v + \frac{F}{M} \Delta t \\ initlaize \mathbf{x}, \mathbf{v}, \mathbf{R}, \mathbf{L} & R \leftarrow R + \omega^{*} R\Delta t \\ I^{-1} \leftarrow R I_{body}^{-1} R^{T} & L \leftarrow L + \tau \Delta t \\ \omega \leftarrow I^{-1} L & \omega \leftarrow I^{-1} L \end{split}$$

simulation loop

$$F \leftarrow \sum_{i} f_{i}$$

$$\tau \leftarrow \sum_{i} r_{i} \times f_{i}$$

$$x \leftarrow x + v\Delta t$$

$$v \leftarrow v + \frac{F}{M}\Delta t$$

$$R \leftarrow R + \omega^{*}R\Delta t$$

$$L \leftarrow L + \tau\Delta t$$

$$I^{-1} \leftarrow RI_{0}^{-1}R^{T}$$

$$\omega \leftarrow I^{-1}L$$

$$r_{i} \leftarrow Rr_{0i}$$

$$x_{i} \leftarrow x + r_{i}$$

$$v_{i} \leftarrow v + \omega \times r_{i}$$

Rotation Matrix vs. Unit Quaternion

■ Most import reason to avoid rotation matrix is the *numerical drift* in

$$\dot{R}(t) = \omega^*(t)R(t)$$

- The numerical errors in the 9 coefficients in R(t)
- Unit quaternion has far less drift because it only has one extra variable
 - ☐ The the drift could be resolved by renormalization

$$\dot{q}(t) = \frac{1}{2} (0, \omega(t)) * q(t)$$

Types of Rigid Body Contact

- Rigid bodies are non-flexible \Rightarrow no inter-penetration
- At the instant of contact, particles have to change the velocity abruptly
- There are two types of collision contacts
 - Colliding contact
 - Two bodies are in contact at point p, and their velocity towards each other
 - Requires an instantaneous change in velocity
 - Resting contact
 - Bodies are resting on one another at some point p
 - □ Compute a *contact force* that prevents the particle from accelerating downwards

Multi Physics Pipeline in Bullet

Collision Detection Pipeline in Bullet

Handling Colliding Contact

- Goal: find the changes of velocities of two bodies
 - Only consider two generic cases: vertex-face and edge-edge contacts
- Contact normal **n**
 - vertex-face: the outwards pointing unit normal of the contact face
 - edge-edge: the cross product of two edges
- Relative velocity: $v_{rel} = \hat{\mathbf{n}}(t_0) \cdot (\dot{\mathbf{p}}_{\mathbf{a}}(t_0) \dot{\mathbf{p}}_{\mathbf{b}}(t_0))$
 - $\mathbf{p}_{\mathbf{i}}(t_0) = \mathbf{v}_{\mathbf{i}}(t_0) + \mathbf{\omega}_{\mathbf{i}}(t_0) \times (\mathbf{p}_{\mathbf{i}}(t_0) \mathbf{x}_{\mathbf{i}}(t_0))$

$$v_{rel} egin{cases} > 0 & moving apart \ = 0 & resting contact \ < 0 & colliding \end{cases}$$

Collision Impulse J

- Impulse $J = F\Delta t$
 - Concept: apply very large force in a very short amount of time (like delta function)
 - Result in a finite change in momentum $M\Delta \mathbf{v}$
 - Impulses are always exchanged along contact normal $\hat{\mathbf{n}}(t_0)$, $\mathbf{J} = j\hat{\mathbf{n}}$
- Impulse could change both linear and angular momentum of the object

$$\Delta \mathbf{P} = \mathbf{J}$$

$$\Delta \mathbf{L} = \mathbf{r}_{\mathbf{a}} \times \mathbf{J} = j(\mathbf{r}_{\mathbf{a}} \times \widehat{\mathbf{n}})$$

$$\Rightarrow \Delta \mathbf{v}_{\mathbf{a}} = \frac{\Delta \mathbf{P}}{m_a} = \frac{j\widehat{\mathbf{n}}}{m_a}$$

$$\Delta \boldsymbol{\omega}_{\mathbf{a}} = \mathbf{I}^{-1} \Delta \mathbf{L} = j\mathbf{I}^{-1}(\boldsymbol{r}_a \times \widehat{\mathbf{n}})$$

$$\dot{\mathbf{p}}_{a}^{+} = (\mathbf{v}_{a} + \Delta \mathbf{v}_{a}) + (\boldsymbol{\omega}_{a} + \Delta \boldsymbol{\omega}_{a}) \times \mathbf{r}_{a}$$

$$= \mathbf{v}_{a} + \boldsymbol{\omega}_{a} \times \mathbf{r}_{a} + \Delta \mathbf{v}_{a} + \Delta \boldsymbol{\omega}_{a} \times \mathbf{r}_{a}$$

$$= \dot{\mathbf{p}}_{a} + \Delta \mathbf{v}_{a} + \Delta \boldsymbol{\omega}_{a} \times \mathbf{r}_{a} = \dot{\mathbf{p}}_{a} + j \left(\frac{\hat{\mathbf{n}}}{m_{a}} + \mathbf{I}_{a}^{-1} (\mathbf{r}_{a} \times \hat{\mathbf{n}}) \times \mathbf{r}_{a} \right)$$

Handling Colliding Contact (Cont.)

 \blacksquare For colliding contacts, the relative velocity after collision v_{rel}^+ has to be

$$v_{rel}^+ = \widehat{\mathbf{n}} \cdot (\dot{\mathbf{p}}_a^+ - \dot{\mathbf{p}}_b^+) \ge 0, \qquad v_{rel}^+ = -\varepsilon v_{rel}^-, \qquad \varepsilon \in \mathbb{R}$$

 \blacksquare ε is the restitution coefficient: $\varepsilon = 1$ for fully elastic, while $\varepsilon = 0$ for fully inelastic

$$v_{rel}^{+} = \widehat{\mathbf{n}} \cdot \left(\dot{\mathbf{p}}_{a} + j \left(\frac{\widehat{\mathbf{n}}}{m_{a}} + \mathbf{I}_{a}^{-1} (\mathbf{r}_{a} \times \widehat{\mathbf{n}}) \times \mathbf{r}_{a} \right) - \dot{\mathbf{p}}_{b} - j \left(\frac{\widehat{\mathbf{n}}}{m_{b}} + \mathbf{I}_{b}^{-1} (\mathbf{r}_{b} \times \widehat{\mathbf{n}}) \times \mathbf{r}_{b} \right) \right)$$

$$= v_{rel}^{-} + \left(j \left(\frac{1}{m_{a}} + \mathbf{I}_{a}^{-1} (\mathbf{r}_{a} \times \widehat{\mathbf{n}}) \times \mathbf{r}_{a} \cdot \widehat{\mathbf{n}} \right) - j \left(\frac{1}{m_{b}} + \mathbf{I}_{b}^{-1} (\mathbf{r}_{b} \times \widehat{\mathbf{n}}) \times \mathbf{r}_{b} \cdot \widehat{\mathbf{n}} \right) \right) = -\varepsilon v_{rel}^{-}$$

solve
$$j = \frac{-(1+\varepsilon)v_{rel}^{-}}{\frac{1}{m_a} + \mathbf{I}_a^{-1}(\mathbf{r}_a \times \hat{\mathbf{n}}) \times \mathbf{r}_a \cdot \hat{\mathbf{n}} + \frac{1}{m_b} + \mathbf{I}_b^{-1}(\mathbf{r}_b \times \hat{\mathbf{n}}) \times \mathbf{r}_b \cdot \hat{\mathbf{n}}}$$

update

$$\mathbf{v}_{\mathbf{a}}^{+} = \mathbf{v}_{\mathbf{a}} + \frac{j\widehat{\mathbf{n}}}{m_{a}}, \quad \mathbf{v}_{\mathbf{b}}^{+} = \mathbf{v}_{\mathbf{b}} + \frac{j\widehat{\mathbf{n}}}{m_{b}}$$

$$\boldsymbol{\omega}_{\mathbf{a}}^{+} = \boldsymbol{\omega}_{\mathbf{a}} + j\mathbf{I}_{\mathbf{a}}^{-1}(\boldsymbol{r}_{\mathbf{a}} \times \widehat{\mathbf{n}}), \quad \boldsymbol{\omega}_{\mathbf{b}}^{+} = \boldsymbol{\omega}_{\mathbf{b}} + j\mathbf{I}_{\mathbf{b}}^{-1}(\boldsymbol{r}_{\mathbf{b}} \times \widehat{\mathbf{n}})$$

Handling Resting Contacts

- Goal: determaine all *contact force* at the same time
 - Contact force is along contact normal: $\mathbf{f_i} = f_i \hat{\mathbf{n}_i}(t_0)$
 - Requirements for contact forces
 - 1. Must prevent inter-penetration
 - 2. Repulsive: push bodies apart, never act like glue
 - 3. Become zero if the bodies begin to separate

■ The separation between A and B near $\mathbf{p_a}(\mathbf{t})$

 $\Box d_i(t) = 0$: at *i*-th contact point

 $\Box d_i(t) > 0$: lost contact

 $\Box d_i(t) < 0$: inter-penetrate

Handling Resting Contacts (Cont.)

- At the contact moment $d_i(t_0) = 0$, we want to keep it from decreasing at time t_0 (e.g. $\dot{d}_i(t_0) \ge 0$)
- \blacksquare The separation velocity at time t

$$\dot{d}_i(t) = \dot{\hat{\mathbf{n}}}_i(t) \cdot (\mathbf{p}_a(t) - \mathbf{p}_b(t)) + \hat{\mathbf{n}}_i(t) \cdot (\dot{\mathbf{p}}_a(t) - \dot{\mathbf{p}}_b(t))$$

 \blacksquare At time t_0 when contact occurs

$$\square \mathbf{p_a}(t_0) = \mathbf{p_b}(t_0) \Rightarrow \dot{d}_i(t_0) = \widehat{\mathbf{n}_i}(t_0) \cdot (\dot{\mathbf{p}_a}(t_0) - \dot{\mathbf{p}_b}(t_0))$$

■ For resting contact $d_i(t_0) = \dot{d}_i(t_0) = 0$, and the second time derivative is:

$$\ddot{d}_{i}(t_{0}) = \ddot{\hat{\mathbf{n}}}(t_{0}) \cdot \left[\left(\mathbf{p}_{\mathbf{a}}(t_{0}) - \mathbf{p}_{\mathbf{b}}(t_{0}) \right) \right] + 2\dot{\hat{\mathbf{n}}}_{i}(t_{0}) \cdot \left(\dot{\mathbf{p}}_{\mathbf{a}}(t_{0}) - \dot{\mathbf{p}}_{\mathbf{b}}(t_{0}) \right) + \hat{\mathbf{n}}_{i}(t_{0}) \cdot \left(\ddot{\mathbf{p}}_{\mathbf{a}}(t_{0}) - \ddot{\mathbf{p}}_{\mathbf{b}}(t_{0}) \right) \\
= 2\dot{\hat{\mathbf{n}}}_{i}(t_{0}) \cdot \left(\dot{\mathbf{p}}_{\mathbf{a}}(t_{0}) - \dot{\mathbf{p}}_{\mathbf{b}}(t_{0}) \right) + \hat{\mathbf{n}}_{i}(t_{0}) \cdot \left(\ddot{\mathbf{p}}_{\mathbf{a}}(t_{0}) - \ddot{\mathbf{p}}_{\mathbf{b}}(t_{0}) \right)$$

Solve Contact Forces

- $\vec{d}_i(t_0)$ measures how the two bodies are accelerating towards each other
- Formulate the requirements of contact forces
 - 1. $\ddot{d}_i(t_0) \ge 0$: prevent inter-penetration
 - 2. $f_i \ge 0$: be repulsive
 - 3. $f_i \ddot{d}_i(t_0) = 0$: become zero if the bodies begin to separate
- To find the contact forces satisfying above requirements, we express each $\ddot{d}_i(t_0)$ as a function of the unknown $f_i's$

$$\ddot{d}_i(t_0) = a_{i1}f_1 + a_{i2}f_2 + \dots + a_{in}f_n + b_i$$

$$\begin{pmatrix} \ddot{d}_1(t_0) \\ \vdots \\ \ddot{d}_n(t_0) \end{pmatrix} = A \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} + \begin{pmatrix} b_i \\ \vdots \\ b_n \end{pmatrix}$$

WEE GAFFES

SOMETIMES THE COMPUTER MAKES MISTAKES.

IT'S NOT OUR FAULT.

References

- Real-Time Physics, SIGGRAPH Course Notes, 2008.
- David Baraff and Andrew Witkin, <u>Physically Based Modeling</u>, SIGGRAPH Course Notes, 2001.
- Interactive Simulation of Rigid Body Dynamics in Computer Graphics, STAR, EUROGRAPHICS, 2012.
- Donald House, John C. Keyser, <u>Foundations of Physically Based Modeling</u> and <u>Animation</u>, CRC Press, 2017.