Probabilistic Graphical Models

Jiří Materna

@mlcollegecom

@mlcollegecom

About me

- Ph.D. in Natural Language Processing and Artificial Intelligence at Masaryk University
- 10 years at <u>seznam.cz</u> (last 8 years as Head Of Research)
- Founder and co-organizer of ML Prague
- Mentor at StartupYard
- ML Freelancer and consultant

Outline

- Topic modeling
- Basics of the Probability theory
- Probabilistic Graphical Models
- Inference in Bayesian Networks
- Gaussian Linear Regression
- Gaussian Mixtures
- Gaussian Mixtures for clustering
- (Probabilistic) Latent Semantic Analysis
- Latent Dirichlet Allocation

Probabilistic Graphical Models

Conditional probability and independence

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}$$

$$A \perp B \iff P(A \cap B) = P(A)P(B)$$

Probability distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Discriminative vs. generative models

Topic Modeling

Topics

gene 0.04 dna 0.02 genetic 0.01

```
life 0.02
evolve 0.01
organism 0.01
```

```
brain 0.04
neuron 0.02
nerve 0.01
```

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions & assignments

Generative model of people's heights

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$X = \{x_1, x_2 \dots x_n\}$$

$$X \sim N(\mu, \sigma^2), \alpha = (\mu, \sigma^2)$$

$$\bar{\alpha} = \underset{\alpha}{\operatorname{arg\,max}} P(\alpha|X)$$

$$P(\alpha|X) = \frac{P(X|\alpha).P(\alpha)}{P(X)}$$

posterior likelihood prior

Probabilistic graphical models

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$X = \{x_1, x_2 \dots x_n\}$$

$$X \sim N(\mu, \sigma^2), \alpha = (\mu, \sigma^2)$$

Inference in graphical models

$$P(\alpha|X) = \frac{P(X|\alpha).P(\alpha)}{P(X)} \propto P(X|\alpha).P(\alpha) = \prod_{i=1}^{n} P(x_i|\alpha).P(\alpha)$$

$$\bar{\alpha} = \underset{\alpha}{\operatorname{arg\,max}} P(\alpha|X)$$

Variational inference

- 1. Approximate the posterior function with a simpler one
- 2. Compute the hidden variables by minimization of KL Divergence of the true and simpler distributions

Sampling (e.g. Gibbs sampling)

- 1. Draw samples from the true posterior
- 2. Compute mean of the samples

Gibbs sampling

- 1 Initialize $z_i : i \in 1, ..., M$
- **2** For $\tau \in 1, ..., T$:
 - Sample $z_1^{(\tau+1)} \sim P(z_1|z_2^{(\tau)}, z_3^{(\tau)}, \dots, z_M^{(\tau)})$
 - Sample $z_2^{(\tau+1)} \sim P(z_2|z_1^{(\tau+1)}, z_3^{(\tau)}, \dots, z_M^{(\tau)})$
 - Sample $z_3^{(\tau+1)} \sim P(z_3|z_1^{(\tau+1)}, z_2^{(\tau+1)}, \dots, z_M^{(\tau)})$

. . .

• Sample $z_M^{(\tau+1)} \sim P(z_M | z_1^{(\tau+1)}, z_2^{(\tau+1)}, \dots, z_{M-1}^{(\tau+1)})$

Generative model for linear regression

$$\boldsymbol{x} = \{x_1, x_2, \dots, x_N\}$$

$$f(\boldsymbol{x}) = a\boldsymbol{x} + b$$

$$\boldsymbol{y} \sim \mathcal{N}(a\boldsymbol{x} + b, \sigma_y)$$

$$a \sim \mathcal{N}(\mu_a, \sigma_a)$$

$$b \sim \mathcal{N}(\mu_b, \sigma_b)$$

Generative model for linear regression in Edward

01-Generative-linear-regression-pyro.ipynb

Binomial distribution

$$Bin(k|n,p) = \binom{n}{k} p^k \cdot (1-p)^{n-k} =$$

Bin
$$(x_1, x_2|p_1, p_2) = \frac{(x_1 + x_2)!}{x_1!x_2!} p_1^{x_1}.p_2^{x_2}$$

 $p_1 + p_2 = 1$

Example: n = 10, p = 0.25

Beta distribution

Beta
$$(p_1, p_2 | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p_1^{\alpha - 1}.p_2^{\beta - 1}$$

$$p_1 + p_2 = 1$$

$$\Gamma(x) = (x - 1)!$$

Multinomial and Dirichlet distributions

Multinomial

Mult
$$(x_1 ... x_n | p_1 ... p_n) = \frac{(\sum x_i)!}{\prod x_i!} \prod_{i=1}^n p_i^{x_i}$$

Dirichlet

$$Dir(p_1 \dots p_n | \alpha_1 \dots \alpha_n) = \frac{\Gamma(\sum \alpha_i)}{\prod \Gamma(\alpha_i)} \prod_{i=1}^n p_i^{\alpha_i - 1}$$

Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates in the plane of the simplex and the vertical axis corresponds to the value of the density. Here $\{\alpha_k\}=0.1$ on the left plot, $\{\alpha_k\}=1$ in the centre plot, and $\{\alpha_k\}=10$ in the right plot.

Log-Normal Distribution

Gaussian mixtures

Gaussian mixtures

 $\pi \sim \text{Dirichlet}(1_1 \dots 1_K)$

 $\mu_k \sim \mathcal{N}(0,1)$

 $\sigma_k \sim \text{LogNormal}(0,1)$

Gaussian mixtures

02-gaussian_mixtures_pyro.ipynb

Clustering as gaussian mixtures

Clustering as gaussian mixtures

03-clustering-pyro.ipynb

Topic Modeling

Topics

gene 0.04 dna 0.02 genetic 0.01

```
life 0.02
evolve 0.01
organism 0.01
```

```
brain 0.04
neuron 0.02
nerve 0.01
```

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions & assignments

Latent Semantic Analysis

Topic modeling using LSA example:

$$doc = 2.3*soccer + 1.8*sport + 0.9*Europe + 0.8*news$$

Latent Semantic Analysis

 \mathbf{Doc}_1 : Machine learning helps people to understand data.

 Doc_2 : Data can be understood using machine learning.

 \mathbf{Doc}_3 : People can use machine learning for data understanding.

	Doc ₁	Doc_2	Doc_3	
be	О	1	0	
can	О	1	1	
data	1	1	1	
for	О	O	1	
helps	1	O	O	
learning	1	1	1	
machine	1	1	1	=
people	1	O	1	
to	1	O	O	
understand	1	O	0	
understanding	О	O	1	
understood	О	1	O	
use	О	O	1	
using	О	1	O	

6x4	TOPICS							4x4	DOCUMENTS
Т			ТОР	0	0	0	X P	DOCOMENTS	
E R			0	IC	0	0		T	
M		⊣X	0	0	IMPO	0			
S		-	0	0	0	RTAN CE]	CS	

Probabilistic Latent Semantic Analysis

DOCUMENT 1: money¹ bank¹ bank¹ loan¹ river² stream² bank¹ money¹ river² bank¹ money¹ bank¹ loan¹ money¹ stream2 bank1 money1 bank1 bank1 loan1 river2 stream2 bank1 money¹ river² bank¹ money¹ bank¹ loan¹ bank¹ money¹ stream²

DOCUMENT 2: river² stream² bank² stream² bank² money¹ loan¹ river² stream² loan¹ bank² river² bank² bank¹ stream² river² loan¹ bank² stream² bank² money¹ loan¹ river² stream² bank² stream² bank² money¹ river² stream² loan¹ bank² river² bank² money¹ bank¹ stream² river² bank² stream² bank² money1

TOPIC 2

Model of Probabilistic Latent Semantic Analysis


```
for i ∈ {1,2,...,N} do
for j ∈ {1,2,...,M} do
Choose a latent topic z<sub>ij</sub> with probability P(z<sub>ij</sub>|d<sub>i</sub>)
Choose a word w<sub>ij</sub> with probability P(w<sub>ij</sub>|z<sub>ij</sub>)
end for
end for
```

Probabilities are computed from frequency analysis of words

Not a generative model (works for training data only)

Latent Dirichlet Allocation

For each document $i \in 1 ... M$ choose $\theta_i \sim Dir(\alpha)$

For each word position $j \in ... N_i$ choose topic $z_{i,j} \in 1...K$,

 $z_{i,j} \sim \mathsf{Mult}(\theta_i)$

For each word position j choose word $w_{i,j} \sim \text{Mult}(\varphi_{z_{i,j}})$

Latent Dirichlet Allocation

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions & assignments

Topic modeling

04_Topic_modeling.ipynb

Thank you for your attention

e-mail: jiri@mlcollege.com

Web: www.mlcollege.com

Twitter: @JiriMaterna

Facebook: https://www.facebook.com/maternajiri

LinkedIn: https://www.linkedin.com/in/jirimaterna/