VGGnet

- 3*3 Convolutional filter
- Stride=2인 2*2 MaxPooling layer
- 마지막 3개의 FC layer로 classifier 구성
- Layer의 개수를 증가시킬수록 성능 증가
- 단일 7*7 Conv layer 대신 3개의 3*3 Conv layer
 -> 적은 parameter, non-linearity 증가

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		•
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
2/210	111111111	max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
		4	conv1-512	conv3-512	conv3-512
					conv3-512
250			pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)) smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test (Q)	g (945) (55)	5000
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
N/4	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

ResNet

- NN이 깊어질수록 성능은 좋아지는가? Degradation Problem
- Residual learning framework Vanishing gradient문제 해결
- Linear projection으로 dimension 조절
- Bottleneck Design으로 연산량 감소 (VGG16 > ResNet-152)

	plain	ResNet	
18 layers	27.94	27.88	
34 layers	28.54	25.03	

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. Here the ResNets have no extra parameter compared to their plain counterparts. Fig. 4 shows the training procedures.

Figure 2. Residual learning: a building block.

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

GAN

- 경쟁하는 과정을 통해 Generative model을 추정하는 새로운 framework
- 2개의 모델 학습(Generative model, Discriminative model)
- Generative model, G: training data의 분포를 묘사하여 D가 구별하지 못하도록 함
- Discriminative model, D: Sample data가 G에서 나온 데이터가 아니라 실제 training data에서 나왔을 확률을 계산
- G는 D가 실수할 확률을 최대화 하려고 한다 -> Minimax two-player game
- D는 V(D,G)를 최대화 시키려 하고 G는 V(D,G)를 최소화 시키려고 한다 -> 균형을 잘 이뤄야함

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Blue: D | Green: G | Black: Training data

DCGAN(Deep Convolutional GAN)

- 기존 GAN의 불안정성을 크게 개선
- 기존 GAN: FC layer -> DCGAN: Convolution layer
- D: strided convolutions, LeakyReLU
- G: fractional-strided convolutions, ReLU, Tanh(output layer)

U-Net

- Encoder(Contracting path)-Decoder(Expanding path) 구조
- Contracting path: Convolutional layer
- Expanding path: Up-sampling(Transposed Convolution), Skip connection
- 다양한 학습 방법 사용
- Patch 선택 시 Overlap 비율이 적어 속도 상승
- Patch size에 따른 context 추출과 Localization간의 trade-off 개선

U-Net

- Overlap-tile strategy: 이미지 크기가 큰 경우 이미지를 잘라야 하고 Input보다 Output이 이미지 크기가 더 작으므로 겹치는 부분이 존재하도록 이미지를 잘라야 함
- Mirroring Extrapolate: Padding을 이미지 경계에 대해 좌우 반전한 Mirror 이미지로 사용.
- Weighted Loss: 사전에 Ground-Truth에 대한 Weight map을 구해 학습에 반영함.
- Data Augmentation: Elastic deformation(Affine transform + probabilistic spin)

출처 : https://url.kr/76jl8x

