Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Informatyka

Mateusz Stolecki

Konwerter danych pochodzących terminali kas fiskalnych.

projekt inżynierski

kierujący pracą: dr Karolina Nurzyńska

Gliwice, 3 grudnia 2017

Spis treści

1	$\mathbf{W}\mathbf{s}$	tęp	1
2	Ana	aliza tematu	3
	2.1	Wprowadzenie	3
		2.1.1 Procesor danych z terminali kas fiskalnych Aloha	3
		2.1.2 Umiejscowienie w systemie 360iQ	4
		2.1.3 Dane wejściowe	5
		2.1.4 Typy zdarzeń generowanych przez kasę Aloha	5
		2.1.5 Etap wstępnego przetwarzania	8
		2.1.6 Etap właściwego przetwarzania	9
		2.1.7 Przypadki niestandardowe	10
	2.2	Opis technologii i wykorzystanych narzędzi	11
		2.2.1 Środowisko pracy i język programowania	11
		2.2.2 Baza danych	12
		2.2.3 Moduły wspierające	12
3	$\mathbf{W}\mathbf{y}$	rmagania	13
	3.1	Wymagania funkcjonalne	13
		3.1.1 Moduł wstępnego przetwarzania danych - PreParser	13
		3.1.2 Moduł właściwego przetwarzania danych - Parser	13
	3.2	Wymagania niefunkcjonalne	14
		3.2.1 Moduł wstępnego przetwarzania danych - PreParser	14
		3.2.2 Moduł właściwego przetwarzania danych - Parser	14
	3.3	Analiza przypadków użycia (diagramy UML)	14
4	Spe	ecyfikacja zewnętrzna	17
	4.1	Wymagania sprzętowe i programowe	17
	4.2	Instalacja	18
		4.2.1 Instalacja PreParser-a na kontrolerze u klienta	18
		4.2.2 Instalacja Parser-a po stronie administratora	21
	4.3	Obsługa systemu i administrowanie nim	23
		4.3.1 PreParser	23
		4.3.2 Parser	24
	4.4	Bezpieczeństwo	25
	4.5	Przykład działania	25

II SPIS TREŚCI

5	\mathbf{Spe}	cyfikacja wewnętrzna	33
	5.1	Architektura systemu	33
	5.2	Organizacja i struktura baz danych	33
	5.3	Wykorzystane biblioteki	33
	5.4	Model klas	33
	5.5	Szczegółowa analiza danych wejściowych	33
	5.6	Algorytmy	33
	5.7	Diagramy UML	33
6	Tes	towanie i uruchamianie	35
	6.1	PreParser	35
	6.2	Parser	35
7	$\mathbf{U}\mathbf{w}$	agi o przebiegu i wynikach prac	37
	7.1	Stopień realizacji zagadnienia	37
	7.2	Napotkane problemy	37
	7.3	Dalszy rozwój	37
8	Pod	lsumowanie	39

Wstęp

Celem pracy dyplomowej jest zaprojektowanie i implementacja systemu informatycznego, który umożliwiałby gromadzenie oraz przetwarzanie danych generowanych przez kasy sklepowe Aloha. System ten miałby na celu dostarczenie użytkownikowi informacji o funkcjonowaniu sklepu, w którym aplikacja została zainstalowana. Umożliwi to kompleksowy monitoring i analizę danych sprzedażowych. System będzie pobierał dane generowane przez kasę i poddawał je szczegółowej analizie, która pozwoli na tworzenie z nich struktur obrazujących rzeczywiste czynności wykonywane przy użyciu kas Aloha (szczególnie popularny model kasy w Stanach Zjednoczonych). Takie przetwarzanie przychodzących danych pozwoli użytkownikowi na wejrzenie w dane szczegółowe konkretnej transakcji, zobaczenie materiału wideo z jej przebiegu oraz generowanie raportów i paragonów. Dzięki takim funkcjonalnościom system powinien umożliwić optymalizację sprzedaży oraz wprowadzanie oszczędności wynikających z usunięcia nieprawidłowości zaistniałych podczas pracy sklepu. Aplikacja będzie składała się z dwóch warstw:

- modułu wstępnego przetwarzania danych (PreParser-a)
- modułu właściwego przetwarzania danych (Parser-a)

PreParser będzie działał jako serwis po stronie użytkownika i wprowadzi konieczność jego instalacji na tzw. kontrolerze w sklepie użytkownika, czyli komputerze gromadzącym dane przychodzące z kas w danym sklepie i poddającym je etapowi wstępnej obróbki (preprasing) oraz wysyłającym dane wynikowe do bazy danych dostarczanej przez twórce systemu, gdzie dalszym ich przetwarzaniem zaimie sie Parser. Zadaniem modułu właściwego przetwarzania danych, będzie obróbka wstępnie przetworzonych informacji przez PreParser i zamiana ich na format mogący być analizowany przez system i zaprezentowany użytkownikowi. Pomysł na stworzenie takiego oprogramowania zrodził się z faktu zajmowania się tą tematyką zawodowo przez autora niniejszej pracy. Autor postanowił wykorzystać wiedzę i doświadczenie zdobyte podczas pracy zawodowej oraz studiów, by stworzyć system mający być częścią oprogramowania 360iQ dostarczanego przez firmę EZUniverse Inc. Dzięki regularnej pracy nad zagadnieniem podczas wykonywaniu obowiązków zawodowych, możliwe było dokładne dostosowanie systemu pod wymagania użytkownika oraz jego solidne przetestowanie przy działu z wykorzystaniem realnych danych i przypadków użycia. Kolejny rozdział ni-

Rysunek 1.1: Logo produktu 360iQ stworzonego przez firmę EZUniverse

niejszej pracy zawiera zarys problemu oraz informacje opisujące wykorzystane technologie. Rozdział trzeci wprowadza w temat wymagań funkcjonalnych i niefunkcjonalnych oraz przypadków użycia. Następne rozdziały przybliżą tematykę specyfikacji zewnętrznej oraz wewnętrznej systemu. Poruszone zostaną zagadnienia związane z wykorzystanymi algorytmami oraz metodami radzenia sobie z problematycznymi danymi wejściowymi. Przedstawiony zostanie dodatkowo schemat bazy danych oraz nastąpi omówienie ważniejszych, ze względu na role i funkcjonalność klas. Dwa ostatnie rozdziały poruszą kwestię testowania aplikacji oraz omówiony zostanie przebieg prac i wyniki końcowe wraz z wizją dalszego rozwoju systemu.

Analiza tematu

Niniejszy rozdział omawia podstawowe zagadnienia związane z realizowanym projektem. Poruszona została kwestia umiejscowienia konwertera danych Aloha w całym systemie 360iQ oraz opisane zostały typy informacji przekazywane przez kasę.

2.1 Wprowadzenie

2.1.1 Procesor danych z terminali kas fiskalnych Aloha

Rysunek 2.1: Przykładowy model kasy Aloha.

Terminale kasowe Aloha (rys. 2.1) są niezwykle popularne w Stanach Zjednoczonych. Umożliwiają one kompleksową obsługę transakcji w sklepie, wpłat oraz wypłat do kasy. Jedną z dodatkowych możliwości terminala jest również

dostarczanie informacji o zalogowaniu się pracownika i jego wylogowaniu, co pozwala ustalić intensywność pracy danej osoby, bądź też faktyczne godziny w jakich pracuje. W systemie 360iQ kasy Aloha wykorzystywane są do sklepach sieci Burger King. Terminal kasy przy każdym tzw. zdarzeniu, wysyła informację do nasłuchującego go kontrolera. Zdarzenia te są prostymi akcjami wykonywanymi podczas użytkowania kasy np. dodanie nowego produktu, potwierdzenie przyjęcia płatności. Dzięki gromadzeniu tych akcji po stronie kontrolera istnieje możliwość połączenia ich w zbiory, które będą reprezentować transakcje, wpłaty, wypłaty oraz obecności pracowników. Łaczeniem tych zdarzeń w całość zajmuje się moduł aplikacji zainstalowany na kontrolerze zwany PreParserem, który jako część systemu 360iQ funkcjonuję pod nazwą AlohaPreParser. Przetwarza on zdarzenia uwzględniając zawarte w nich informacje dotyczące numeru kasy, rachunku etc. Po wstępnym przetworzeniu danych zostają one wysłane do bazy ulokowanej po stronie administratora, gdzie przechwytywane są one przez Parser i dokonywana jest właściwa analiza danych i ich przetwarzanie w celu dostarczenia klientowi potrzebnych informacji.

2.1.2 Umiejscowienie w systemie 360iQ

Rysunek 2.2: Logo firmy EZUniverse Inc.

AlohaPreParser oraz AlohaParser są bezpośrednimi składowymi systemu systemu 360iQ dostarczanemu przez firmę EZUniverse (rys. 2.2). System ten składa się z całej infrastruktury nakierowanej na dostarczenie klientowi maksymalnej liczby informacji mogących wesprzeć funkcjonowanie biznesu klienta. Wspierane są duże ilości modeli kas, które mogą być zainstalowane w klepie klienta, między innymi:

- Aloha
- Micros
- Sicom
- Radiant
- Subshop2000
- ProfiTrack
- Panasonic7900
- Comtrex
- Gilbarco
- Par

SubwayPOS

Dzięki wsparciu dla dużej ilości modeli kas oraz współpracy z największymi sieciami sklepów (np. Subway, Burger King) system 360iQ jest kompleksowa platformą do wspomagania biznesu klienta.

2.1.3 Dane wejściowe

Danymi wejściowymi dostarczanymi do kontrolera są pojedyncze zdarzenia zapisane w formacie XML. Format przychodzących danych omówiony zostanie na podstawie następującego zdarzenia (listing 2.3). Opisuje ono akcję dodania

```
<SpyMessage TerminalID="3" EventTime="18:00:38"
    EmployeeID="139" EmployeeName="JAMES BOND"
    ManagerID="0" ManagerName="" TableID="3132860"
    CheckID="3145860" TransactionTypeID="8"
    TransactionType="ADD_ITEM" Description="SM FRY"
    Amount="1.99" Quantity="1" Sender="192.168.0.101"
    ReceivedOn="2017/03/05 00:00:52.042" />
```

Rysunek 2.3: Przykładowe zdarzenie - dane wejściowe Aloha.

nowego przedmiotu do rachunku o numerze 3145860. Możemy nad podstawie przedstawionego listingu ustalić również, że dane zdarzenie miało miejsce o godzinie 18:00:38 oraz przedmiot SM FRY został dodany do rachunku przez pracownika JAMES BOND. Na podstawie tak przedstawionych danych wejściowych moduł przetwarzania wstępnego jest w stanie budować całe zestawy transakcji, które zawierają szereg zdarzeń podobnych temu wyżej przedstawionemu. Dzięki tak pogrupowanym danym, zamiana zwykłych zdarzeń z terminala na struktury mogące być poddane analizie jest znacznie uproszczona. Terminal generuje również dodatkowe dane przechwytywane przez kontroler zwane słownikami. Słowniki są zestawami danych zapisanych w formacie XML niosącymi informacje o specyficznych cecha danego sklepu, np. promocjach, identyfikatorach produktów, bądź podatkach. Przykładowe słowniki przedstawiono na listingach w skróconej formie, gdyż całe pliki potrafią zawierać znaczne ilości informacji (Kategorie produktów: 2.4, Lista promocji: 2.5)

¡/Item¿ Słowniki te gromadzone są przez moduł wstępnego przetwarzania danych i wykorzystywane w ich analizie i algorytmach mających na celu dokonanie odpowiednich poprawek w danych transakcyjnych (szczegółowo ten temat został poruszony w rozdziale traktującym o wykorzystanych algorytmach).

2.1.4 Typy zdarzeń generowanych przez kasę Aloha

Kasa Aloha jest zdolna do wygenerowania szeregu typów zdarzeń. Są to między innymi:

- Zalogowanie pracownika w kasie
- Wylogowanie pracownika z kasy
- Przerwa w pracy

```
<ItemCategoryMessage>
      <Item ItemId="112" ItemName="DELETE" Price="5.89">
2
      <Category CategoryId="96" CategoryName="WHOPPER LINE"</pre>
      <Category CategoryId="68" CategoryName="SANDWICHES" />
      <Category CategoryId="55" CategoryName="ALL ITEMS" />
      <Category CategoryId="57" CategoryName="DISCOUNTABLE</pre>
         ITEMS" />
      < Category Category Id="56" Category Name="ALL ITEMS"
         EXCEPT CMB" />
      < Category CategoryId="313" CategoryName="ANY SANDWICH"
      <Category CategoryId="1" CategoryName="FOOD" />
9
      </Item>
10
      <Item ItemId="2692" ItemName="LG FLOAT" Price="2.79">
11
      <Category CategoryId="71" CategoryName="DRINKS" />
12
      < Category CategoryId="55" CategoryName="ALL ITEMS"
13
      < Category CategoryId="57" CategoryName="DISCOUNTABLE
14
         ITEMS" />
      < Category CategoryId="56" CategoryName="ALL ITEMS
15
         EXCEPT CMB" />
      <Category CategoryId="1" CategoryName="FOOD" />
      </Item>
17
      <Item ItemId="392" ItemName="WRP HM CSP" Price="0">
18
      <Category CategoryId="68" CategoryName="SANDWICHES" />
19
      < Category CategoryId="310" CategoryName="Bearcat
         Sandwiches" />
      <Category CategoryId="55" CategoryName="ALL ITEMS" />
21
      < Category CategoryId="57" CategoryName="DISCOUNTABLE"
22
         ITEMS" />
      <Category CategoryId="56" CategoryName="ALL ITEMS</p>
23
         EXCEPT CMB" />
      <Category CategoryId="1" CategoryName="FOOD" />
      </Item>
25
      <Item ItemId="484" ItemName="WRP BLT CSP" Price="3.49"</pre>
26
      <Category CategoryId="55" CategoryName="ALL ITEMS" />
27
      < Category CategoryId="57" CategoryName="DISCOUNTABLE"
         ITEMS" />
      < Category CategoryId="56" CategoryName="ALL ITEMS
29
         EXCEPT CMB" />
      <Category CategoryId="25" CategoryName="ALL SALADS" />
30
      <Category CategoryId="1" CategoryName="FOOD" />
31
      </Item>
32
      <Item ItemId="5748" ItemName="AVOCADO RAN" Price="0">
      <Category CategoryId="55" CategoryName="ALL ITEMS" />
34
      <Category CategoryId="57" CategoryName="DISCOUNTABLE</pre>
35
         ITEMS" />
      < Category CategoryId="56" CategoryName="ALL ITEMS
         EXCEPT CMB" />
      <Category CategoryId="1" CategoryName="FOOD" />
37
      </Item>
38
      /ItemCategoryMessage>
```

Rysunek 2.4: Przykładowy słownik produktów w formacie XML - wersja skrócona.

```
<PromotionMessage>
      <Item ItemId="7592" ItemName="Items" Price="0">
2
      <Promotion PromotionId="6485" PromotionVersion="1941"</p>
          PromotionName="6485*$5C'wich Ml 2" />
      <Promotion PromotionId="118" PromotionVersion="999"</pre>
          PromotionName="Local Combos" />
      <Promotion PromotionId="139" PromotionVersion="2655"</pre>
          PromotionName="Bacon King" />
      <Promotion PromotionId="101" PromotionVersion="689"</pre>
6
          PromotionName="Whopper Combo" />
      <Promotion PromotionId="101" PromotionVersion="744"</pre>
          PromotionName="Whopper Combo" />
      <Promotion PromotionId="101" PromotionVersion="749"</pre>
          PromotionName="Whopper Combo" />
      <Promotion PromotionId="110" PromotionVersion="2444"</pre>
          PromotionName="FISH COMBO" />
      <Promotion PromotionId="282" PromotionVersion="169"</pre>
10
          PromotionName="Free Kids Combo" />
      <Promotion PromotionId="104" PromotionVersion="694"</p>
11
          PromotionName="Whopper Jr. Combo" />
      <Promotion PromotionId="104" PromotionVersion="746"</pre>
12
          PromotionName="Whopper Jr. Combo" />
      <Promotion PromotionId="108" PromotionVersion="693"</pre>
13
          PromotionName="Orig. Chicken Combo" />
      <Promotion PromotionId="108" PromotionVersion="789"</pre>
          PromotionName="Orig. Chicken Combo" />
      <Promotion PromotionId="160" PromotionVersion="900"</pre>
15
          PromotionName="Grilled Ckn Sw Combo" />
      <Promotion PromotionId="160" PromotionVersion="2447"</pre>
16
          PromotionName="Grilled Ckn Sw Combo" />
      <Promotion PromotionId="29142" PromotionVersion="160"</pre>
17
          PromotionName="$1.99 Kids Combo" />
      <Promotion PromotionId="10012" PromotionVersion="947"</pre>
          PromotionName="5 FOR $4" />
      <Promotion PromotionId="10012" PromotionVersion="1372"</p>
19
           PromotionName="5 FOR $4" />
      <Promotion PromotionId="10012" PromotionVersion="1866"</p>
20
           PromotionName="5 FOR $4" />
      <Promotion PromotionId="28802" PromotionVersion="1951"</p>
21
           \label{eq:nonconstraint} PromotionName="8802*\$4 \ 2 Cwich \ ML" \ />
      <Promotion PromotionId="147" PromotionVersion="747"</pre>
          PromotionName="Homestyle Cb" />
      <Promotion PromotionId="9579" PromotionVersion="985"</pre>
23
          PromotionName="9579*2/$10 Wpr ML" />
      <Promotion PromotionId="283" PromotionVersion="1351"</pre>
          PromotionName="Kids Breakfast Meal" />
      <Promotion PromotionId="234" PromotionVersion="94"</pre>
25
          PromotionName="Dbl Biscuit Combo" />
      <Promotion PromotionId="221" PromotionVersion="89"</pre>
          PromotionName="Crois' wich Combo" />
      <Promotion PromotionId="221" PromotionVersion="90"</p>
27
          PromotionName="Crois' wich Combo" />
      <Promotion PromotionId="221" PromotionVersion="93"</pre>
28
          PromotionName="Crois' wich Combo" />
      </Item>
29
      </PromotionMessage>
```

Rysunek 2.5: Przykładowy słownik listy promocji w formacie XML - wersja skrócona.

- Zakończenie przerwy w pracy
- Otwarcie kasy
- Dodanie nowego przedmiotu do transakcji
- Anulowanie dodanego przedmiotu
- Usunięcie przedmiotu z transakcji
- Otwarcie nowego zamówienia
- Drukowanie rachunku
- Zamknięcie zamówienia
- Ponowne otwarcie zamówienia
- Przyjęcie płatności
- Autoryzacja płatności
- Odrzucenie płatności
- Modyfikacja płatności
- Usunięcie płatności
- Dodaj promocje
- Usuń promocje
- Wartość podatku
- Wartość netto transakcji
- Wartość brutto transakcji
- Dodatek do potrawy

Jest to lista wszystkich obsługiwanych typów zdarzeń. Są one identyfikowane przez PreParser na podstawie przypisanych im unikalnych identyfikatorów. Istnieje jeden typ zdarzenia, który nie został uwzględniony w wyżej wymienionej liście, mianowicie zdarzanie nie będące elementem transakcji zakończonej sprzedażą. Takie przypadki to tzw. transakcje typu ŃOSALE" i są one analizowane z wykorzystaniem szczególnego podejścia. Jest ono szerzej opisane w następnych rozdziałach.

2.1.5 Etap wstępnego przetwarzania

Każdy sklep korzystający z oprogramowania będącego przedmiotem niniejszej pracy wymaga instalacji specjalnego modułu działającego jako serwis na komputerze zwanym kontrolerem. Urządzenie to gromadzi zdarzenia generowane przez kasy działające w obrębie omawianego sklepu. Odebrane informacje są przechwytywane przez działający w systemie moduł wstępnego przetwarzania, który poddaje je wstępnej analizie. Możemy wyodrębnić kluczowe etapy składające się na przeprowadzenie wspomnianego procesu:

- Sprawdzanie danych pod kątem duplikatów ich i odpowiednie odfiltrowanie
- Analiza możliwości wystąpienia niezamkniętych lub błędnych transakcji ich odpowiednia obsługa
- Grupowanie zdarzeń przychodzących z kasy w kolekcje związane z jedną transakcją
- Poszukiwanie transakcji, które zostały ponownie i sprawdzanie czy wymagana jest korekcja cen produktów lub płatności
- Przetwarzanie całych grup transakcji, rozbudowa zdarzeń z wykorzystaniem algorytmów analizy promocji oraz kategorii produktów
- Konwersja zgrupowanych zdarzeń na obiekty XML (Transakcje, Wpłaty-/Wypłaty z kasy, Obecności pracowników)
- Wysyłanie XML-i do bazy danych w celu ich przetworzenia przez moduł właściwego przetwarzania

2.1.6 Etap właściwego przetwarzania

Po wstępnym przetworzeniu danych, gdy moduł wstępnego procesowania informacji przekaże je do bazy danych udostępnianej przez administratora systemu, są one przechwytywane przez działający w środowisku dostarczyciela usługi moduł właściwego przetwarzania danych. Pobiera on z tabel dane w formacie XML, które dzięki wstępnej pracy wykonanej przez PreParser są już odpowiednio pogrupowane i oznaczone. Umożliwia to Parserowi zejście poziom niżej w analizie danych, podczas gdy PreParser analizował zdarzenia pod kątem grupowania ich w struktury, Parser może analizować same zdarzenia i wyciągać z nich informacje, które są konieczne do zbudowania wyczerpującego opisu transakcji, bądź innego zdarzenia, które miało miejsce na kasie. Moduł ten analizuje każde zdarzenie i krok po kroku tworzy obiekt, który na sam koniec procesowania danych zostanie umieszczony w wynikowej bazie. Udostępnia ona bezpośrednio dane mogące być analizowane przez klienta za pośrednictwem specjalnej aplikacji webowej będącej jest częścią systemu 360iQ. Schemat analizy danych przez moduł właściwego przetwarzania wygląda następująco:

- Sprawdzanie danych pod kątem duplikatów ich i odpowiednie odfiltrowanie
- Wykrywanie typu zdarzenia jakie zostało zgrupowane w wejściowy XML: (Transakcja, Wpłata/Wypłata, Obecność pracownika)
- Uruchamianie odpowiedniego schematu przetwarzania zależnie od wykrytego typu wiadomości
- Analiza danych w formacie XML krok po kroku i tworzenie cyfrowego modelu będącego odpowiednikiem realnej czynności wykonanej przez pracownika sklepu.

- Sprawdzanie poprawności stworzonych modeli i dokonywanie koniecznych
 poprawek, jak również oznaczenie tych, które zawierają wartości odbiegające od normy (ten fakt jest później odpowiednio prezentowany użytkownikowi w aplikacji webowej)
- Generowanie paragonów do wglądu przez klienta
- Wysyłanie przetworzony modeli do odpowiednich tabel wynikowej bazy danych w zależności od typu przetwarzanych wiadomości.

2.1.7 Przypadki niestandardowe

Terminale kasowe Aloha są dość bogate w przypadki, które można uznać za niestandardowe. Do najczęstszych takich sytuacji możemy zaliczyć:

- Wadliwe dane wejściowe
- Niezamkniete transakcje
- Dodawanie przedmiotów do rachunku z użyciem ich pełnej nazwy oraz późniejsze usuwanie wykorzystując ich skrócone nazwy
- Dodawanie promocji bez uwzględnienia odpowiednich przedmiotów, które dodana promocja powinna dodawać
- W regionach innych niż Stany Zjednoczone częstym problemem jest brak informacji o podatkach

Wadliwe dane wejściowe

Z racji faktu, że moduł wstępnego przetwarzania otrzymuje dane z terminali kasowych Aloha w formacie XML, często zdarza się sytuacja, że jest on wadliwy (np. ucięty), lub też występują jego duplikaty. W takich przypadkach PreParser ustawia odpowiednie statusy tych wiadomości (mogą być one potem zweryfikowane przez użytkownika) i pomija je w procedurze wstępnej analizy.

Niezamknięte transakcje

Jednym z najrzadziej występujących przypadków niestandardowych jest sytuacja, gdy mamy do czynienia z niezamkniętą transakcją. Dzieje się to wtedy, gdy otwierana jest transakcja, lecz nie przychodzi zdarzenie oznaczające jej zamknięcie (w Aloha jest to: ĆLOSECHECK"). W takiej sytuacji moduł wstępnego przetwarzania ustawiana taką transakcję w stan oczekiwania, który trwa 24 godziny. Jeśli do tego czasu przyjdzie zdarzenie zamykające daną transakcję, to zostanie ona zatwierdzona i przesłana do dalszej analizy, w przeciwnym razie nastąpi jej usunięcie z kolejki oczekujących i oznaczenie jako błędnej danej wejściowej, by użytkownik mógł samodzielnie się jej przyjrzeć.

Dodawanie przedmiotów do rachunku z użyciem ich pełnej nazwy oraz późniejsze usuwanie wykorzystując ich skrócone nazwy

Przedmioty dodawane przez kasę Aloha do rachunków niestety często charakteryzują się niejednolitym nazewnictwem. Ten sam przedmiot może być nazywany z wykorzystaniem:

- nazwy skróconej
- pełnej nazwy przedmiotu
- ID przedmiotu, bądź jego oznaczenia kodowego

Powoduje to problemy przy usuwaniu z rachunku już dodanych przedmiotów. Przedmiot dodany do transakcji pod nazwą X może być z niej usuwany pod nazwą Y. W celu uzyskania spójności i powiązania ze sobą przedmiotów wykorzystywany jest algorytm rozszerzania danych przekazywanych przez zdarzenie. Korzysta on ze słownika kategorii przedmiotów, który jest dostarczany raz dziennie przez właściciela sklepu jako specjalne zdarzenie terminala Aloha i przechowywany przez kontroler. Dzięki temu słownikowi możliwe jest powiązanie ze sobą tych samych przedmiotów występujących pod różną nazwą, wykorzystując fakt, że każdy przedmiot ma swoje unikalne ID, które jest udostępniane za pośrednictwem słownika kategorii produktów. Takie rozwiązanie gwarantuje, że w wynikowej transakcji przedmioty będą powiązane i usunięte w sposób prawidłowy niezależnie od zastosowania pełnej, bądź jego skróconej nazwy.

Dodawanie promocji bez uwzględnienia odpowiednich przedmiotów, które dodana promocja powinna dodawać

Niezbyt przyjazną cechą terminala Aloha jest obsługa dodawania promocji bez uwzględnienia przedmiotów wchodzących w jej skład. W takim wypadku konieczne jest dodanie przedmiotów do transakcji, których dotyczy dana promocja, dzięki czemu zachowana zostanie zgodność danych z realnie sprzedanymi przedmiotami po stronie sklepu. Dodawanie przedmiotów przez moduł wstępnego przetwarzania realizowane jest przy użyciu słownika promocji dostarczanego przez klienta dla każdego sklepu. Pozwala on zidentyfikować nazwę promocji i rozszerzyć XML z transakcją o potrzebne przedmioty.

W regionach innych niż Stany Zjednoczone częstym problemem jest brak informacji o podatkach

Problem ten objawia się sytuacją, gdy w zdarzeniu wystawianym przez terminal mającym typ "TAX" pojawia się zerowa wartość podatku. W tej sytuacji, by uzyskać prawidłową cenę końcową z wliczoną już wartością podatku, konieczne jest wczytanie dodatkowego słownika przechowującego wartości podatków dla każdego z przedmiotów. Takie rozwiązanie pojawia się w sytuacji, gdy oprogramowanie działa w krajach gdzie system podatkowy znacząco różni się od tego, który obowiązuje w Stanach Zjednoczonych.

2.2 Opis technologii i wykorzystanych narzędzi

2.2.1 Środowisko pracy i język programowania

Projekt został zrealizowany przy użyciu technologii .NET oraz języka C#. Wielokrotnie podczas przeglądania kodu źródłowego projektu można również napotkać skrypty pisane w języku T-SQL, w celu komunikacji z bazą danych. Całość projektu została napisana w środowisku Visual Studio 2017, przy czym korzystano również z Visual Studio Code w celu analizy danych XML oraz

szybkiego przeglądania plików tekstowych. Do administrowania i zarządzania bazą danych wykorzystano Microsoft SQL Server Management Studio 2016.

2.2.2 Baza danych

Serwerem bazy danych był Microsoft SQL Server 2016 w wersji Express zainstalowany na lokalnym komputerze. Dokonano połączenia tabel koniecznych do pracy modułu wstępnego przetwarzania i tych niezbędnych do funkcjonowania jednostki realizującej właściwe procesowanie danych. Dzięki takiemu rozwiązaniu można było testować działanie całego systemu na lokalnym komputerze bez konieczności korzystania z osobnego komputera, który miałby pełnić funkcję kontrolera. Dane wykorzystywane w niniejszym projekcie są backupami realnych danych źródłowych zaczerpniętych z codziennej pracy systemu u klienta. Pozwala to testować i przedstawić pracę niniejszego projektu w jego naturalnych warunkach i w starciu z prawdziwymi danymi generowanymi przez sklepy w Stanach Zjednoczonych,

2.2.3 Moduły wspierające

Opisywana w niniejszej pracy aplikacja jest wspierana przez następujące oprogramowanie, które jest częścią systemy 360iQ i zostało opracowane przez firmę EZUniverse:

- AlohaSpyRelay
- EZ360DataInterface

AlohaSpyRelay

AlohaSpyRelay jest aplikacją zapewniającą transmisje danych z kasy Aloha do kontrolera gdzie zainstalowany jest moduł wstępnego przetwarzania. Pobiera ona dane bezpośrednio z terminala, zamienia ja na zdarzenia zapisane w formacie XML i przekazuje do kontrolera.

EZ360DataInterface

EZ360DataInterface jest łącznikiem pomiędzy modułem wstępnego przetwarzania i częścią odpowiadająca za właściwe przetwarzanie. Po wstępnym przetworzeniu danych przez PreParser istnieje konieczność wysłania ich do bazy danych dostarczanej przez administratora systemu, tym właśnie zajmuje się opisywana aplikacja. Moduł wstępnego przetwarzania przygotowuje gotową paczkę danych do wysłania i powiadamia EZ360DataInterface, że są dane do wysyłki. Aplikacja przechwytuje dane od PreParsera i wysyła je zgodnie ze skonfigurowanymi w jej ustawieniach wytycznymi.

Wymagania

Rozdział ten opisuje wymagania konieczne do uruchomienia oprogramowania po stronie kontrolera jak i administratora aplikacji. Przedstawione zostały również przypadki użycie wraz ze stosownym komentarzem.

3.1 Wymagania funkcjonalne

3.1.1 Moduł wstępnego przetwarzania danych - PreParser

- Serwis powinien być wstanie odczytywać pobrać dane z lokalnej bazy danych kontrolera gdzie przechowywane są informację o zdarzeniach, które nadesłał terminal Aloha
- Powinna istnieć możliwość przetwarzania dany na etapie wstępnej analizy w celu eliminacji duplikatów i wadliwych wiadomości
- Kluczową kwestią jest zastosowanie algorytmów dodających potrzebne produkty z promocji oraz rozszerzające nazwy wspomnianych wcześniej produktów, by można było je łatwo ze sobą powiązać
- Serwis powinien informować użytkownika na bieżąco o stanie swojej aktywności za pośrednictwem komunikatów w pliku logów.
- Serwis powinien być zdolny grupować wiadomości w kolekcje i konwertować je na odpowiednio zdefiniowane XML-e, a następnie wysyłać je do bazy danych po stronie administratora, by mogły być one dalej analizowane

3.1.2 Moduł właściwego przetwarzania danych - Parser

- Aplikacja powinna móc odczytywać dane z odpowiednich tabel w bazie danych, gdzie w sposób ciągły pojawiają się nowe dane przysyłane z bliżej nie określonej liczby kontrolerów, gdzie zostały one wstępnie obrobione przez moduł wstępnego przetwarzania
- Oprogramowanie musi wspierać różne typy przychodzących wiadomości (transakcje, wpłaty/wypłaty, obecności pracowników) i stosować dla nich właściwe formy analizy i przetwarzania

- Wynikowe dane powinny zostać zapisane w bazie danych, z której może korzystać aplikacja webowa dostarczana jako element systemu 360iQ i opracowana przez firmę EZUniverse i prezentująca wyniki użytkownikowi w przyjaznej dla niego formie. Rezultat przetwarzania powinien być możliwie jak najdokładniejszym odwzorowaniem zdarzenia jakie zaszło w danej chwili czasu na kasie w sklepie użytkownika. Ważne jest zachowanie odpowiednich stref czasowych i synchronizacja czasu wideo.
- Oprogramowanie powinno udostępniać prosty i intuicyjny interfejs użytkownika
- W przypadku wystąpienia błędu podczas analizy danych, aplikacja powinna zamieści odpowiednią informację na ekranie interfejsu użytkownika

3.2 Wymagania niefunkcjonalne

3.2.1 Moduł wstępnego przetwarzania danych - PreParser

- Stabilnie działający serwis po stronie kontrolera
- Personalizacja za pomocą jednego pliku konfiguracyjnego
- Prosty sposób instalacji oraz właczania serwisu
- Szczegółowy system logów pomagający w diagnostyce usterek i monitoringu działania aplikacji
- Niskie wymagania sprzętowe, serwis powinien się uruchamiać i pracować bez widocznych strat na wydajności będąc zainstalowanym na stosunkowo taniej i mało wydajnej maszynie

3.2.2 Moduł właściwego przetwarzania danych - Parser

- Stabilnie działająca aplikacja desktopowa z intuicyjnym interfejsem użytkownika
- Pełne wsparcie dla przetwarzania danych z kas Aloha oraz integracja z pozostałymi parserami z innych kas działającymi w systemie
- Łatwość wystartowania i zastopowania aplikacji
- Dążenie do jak najniższego wykorzystania zasobów systemu, w którym aplikacja jest zainstalowana

3.3 Analiza przypadków użycia (diagramy UML)

W niniejszej sekcji zaprezentowano przypadki użycia dla modułu wstępnego przetwarzania (rys. 3.1) oraz dla części odpowiadającej za właściwe przetwarzanie (rys. 3.2).

Rysunek 3.1: Przypadki użycia - moduł wstępnego przetwarzania.

Rysunek 3.2: Przypadki użycia - moduł właściwego przetwarzania.

Specyfikacja zewnętrzna

Rozdział ten opisuje wymagania sprzętowe i programowe, które należy spełnić, by zapewnić poprawne funkcjonowanie aplikacji. Poruszone zostały kwestie instalacji i administracji poszczególnymi modułami oprogramowania oraz temat zabezpieczeń.

4.1 Wymagania sprzętowe i programowe

Opisywana aplikacja została przetestowana, na dwóch konfiguracjach sprzętowych:

• Komputer stacjonarny:

Procesor - i5 4690K @ 4.5 GHz, 4.0GHz Uncore Pamięć RAM - 8GB DDR3 @ 2400MHz CL11 T1 Dysk - SSD 128 GB TLC System operacyjny - Windows 10 PRO

• Laptop:

Procesor - i5 7200U @ 2.5 GHz Pamięć RAM - 16GB DDR4 @ 2133MHz CL15 Dysk - SSD 256 GB MLC System operacyjny - Windows 10 PRO

Obydwie konfiguracje gwarantowały satysfakcjonującą płynność i szybkość działania aplikacji. Na podstawie testów z użyciem wyżej wymienionych zestawów zdefiniowano przybliżone wymagania sprzetowe oraz programowe:

• Minimalne wymagania sprzętowe:

Procesor - i
3 2 generacji Intel Core lub odpowiednik AMD Pamięci RAM - 4GB pamięci operacyjnej
 Dysk - 100mb wolnej przestrzeni dyskowej
 Stały dostęp do internetu • Minimalne wymagania programowe:

System operacyjny - Windows w wersji 7 lub nowszej

Microsoft SQL Server Management Studio oraz MS SQL Server w wersji 2012 lub nowszej

.NET Framework w wersji 3.5 lub nowszej

4.2 Instalacja

4.2.1 Instalacja PreParser-a na kontrolerze u klienta

W celu zainstalowania modułu wstępnego przetwarzania danych należy uruchomić plik EZ360PreParserService.Setup.v.VERSION.exe, gdzie VERSION jest numerem wersji. Uruchomionony zostanie instalator serwisu (rys. 4.1). W momencie wciśnięcia przycisku Install, instalator rozpocznie wgrywanie PreParser na kontroler. Po zakończeniu proces powinien zostać wyświetlony ekran informujący o poprawnie zakończonej instalacji serwisu (rys. 4.2) Następnie należy

Rysunek 4.1: Instalacja modułu wstępnego przetwarzania - początek instalacji.

dokonać konfiguracji zainstalowanego serwisu. W tym celu otwieramy plik configuration.json. Powinien on mieć format przedstawiony na listingu 4.3. Skrócony opis poszczególnych parametrów:

- ProcessID id procesu działającego na danym kontrolerze
- ParserType typ parsera komunikującego się z kontrolerem

Rysunek 4.2: Instalacja modułu wstępnego przetwarzania - koniec instalacji.

- ObjectsConnectionString parametry połączenia do tabeli EZ360Objects w bazie danych
- CommunicationConnectionString parametry połączenia do tabeli EZ360Communication w bazie danych
- TransactionWebservice adres url do webservice-u obsługującego transakcje
- ActionWebservice adres url do webservice-u obsługującego akcje
- CashOperationWebservice adres url do webservice-u obsługującego wpłaty/wypłaty
- TimeClockWebservice adres url do webservice-u obsługującego obecności pracowników
- DataWebservice adres url do webservice-u obsługującego dane dodatkowe
- TimerInterval czas pomiędzy kolejnymi sprawdzeniami czy nie przyszły nowe zdarzenia (w milisekundach)
- DatabaseTimeout maksymalny czas w jakim może zostać wykonywane zapytanie do bazy danych (w sekundach)
- DatabaseTimeoutInterval przerwa pomiędzy kolejnymi zapytaniami do bazy danych (w sekundach)

```
"ProcessID": 636298774975,
2
      "ParserType": "ALOHA",
      "ObjectsConnectionString": "Data Source = server; User
          ID = sa; Password = sa_password; Initial Catalog =
          EZ360Objects;",
      "CommunicationConnectionString": "Data Source = server
          ; User ID = sa; Password = sa_password; Initial
         Catalog = EZ360Communication;",
      "TransactionWebservice": "http://localhost:65059/api/
6
         Transactions",
      "ActionWebservice": "http://localhost:65059/api/
          Actions",
      "CashOperationWebservice": "http://localhost:65059/api
         /CashOperations"
      "TimeClockWebservice": "http://localhost:65059/api/
         TimeClocks",
      "DataWebservice": "http://localhost:65059/api/Data",
10
      "TimerInterval": 500,
11
      "DatabaseTimeout": 30,
12
      "DatabaseTimeoutInterval": 10,
13
      "DelayAfterDatabaseError": 10,
      "DelayDeleteNotServedTransaction": 40,
15
      "Rows": 500,
16
      "SenderTimerInterval": 1000,
17
      "MaxRowsToSend": 25,
18
      "MaxSenderQueues": 250,
19
      "CompressWebRequest": true,
20
      "ControllerWebURL": "http://127.0.0.1:81/"
21
      }
```

Rysunek 4.3: Zawartość pliku konfiguracyjnego - PreParser.

- DelayAfterDatabaseError czas do ponownej próby połączenia z bazą danych po wystąpieniu błędu
- DelayDeleteNotServedTransaction czas po jakim nieobsługiwana transakcja jest usuwana
- Rows maksymalna liczba wierszy możliwa do procesowania
- SenderTimerInterval interwał z jakim wysyłane są dane do bazy
- MaxRowsToSend maksymalna liczba wierszy przesłana w jednym zapytaniu
- MaxSenderQueues limit liczby obiektów w kolejce do wysłania
- CompressWebRequest kompresowanie wysyłanych danych
- ControllerWebURL adres URL kontrolera

4.2. INSTALACJA 21

4.2.2 Instalacja Parser-a po stronie administratora

Poprawna instalacja modułu właściwego przetwarzania danych na komputerze administratora wymaga ręcznego rozpakowania archiwum AlohaParserVER-SION.zip, gdzie VERSION jest numerem wersji. Po rozpakowaniu archiwum w miejsce wybrane przez administratora, powinny być dostępne pliki (rys. 4.4) potrzebne do uruchomienia modułu właściwego przetwarzania danych. Aplikacje można uruchomić otwierając plik EZ360ParserUI.exe. Następnie należy doko-

Name	Туре	Compressed size	Password	Size	Ratio	Date modified
logs	File folder					31.05.2017 16:49
Parsers	File folder					21.09.2017 12:34
Resources	File folder					29.11.2017 11:39
configuration.json	JSON Source File	1 KB	No	10 KB	93%	27.11.2017 16:42
	Application extension	57 KB	No	142 KB	61%	22.07.2016 14:52
☑ Dapper.xml	XML Source File	10 KB	No	102 KB	91%	22.07.2016 14:52
EZ360ParserUI.exe	Application	42 KB	No	368 KB	89%	29.11.2017 11:39
EZ360ParserUl.exe.config	Configuration Source File	1 KB	No	1 KB	27%	24.11.2017 13:40
EZ360ParserUI.pdb	Program Debug Database	21 KB	No	82 KB	75%	29.11.2017 11:39
EZUniverse.DataCaptureNotificatio	Application extension	12 KB	No	30 KB	62%	29.11.2017 11:38
EZUniverse.DataCaptureNotificatio	Program Debug Database	12 KB	No	60 KB	82%	29.11.2017 11:38
EZUniverse.EZ360DataInterface.Obj	Application extension	4 KB	No	9 KB	64%	29.11.2017 11:38
EZUniverse.EZ360DataInterface.Obj	Program Debug Database	4 KB	No	22 KB	86%	29.11.2017 11:38
EZUniverse.EZ360Parser.Parser.dll	Application extension	253 KB	No	850 KB	71%	29.11.2017 11:39
EZUniverse.EZ360Parser.Parser.pdb	Program Debug Database	517 KB	No Snin	2 144 KB	76%	29.11.2017 11:39
EZUniverse.EZ360System.Configur	Application extension	6 KB	No	13 KB	55%	29.11.2017 11:38
EZUniverse.EZ360System.Configur	Program Debug Database	6 KB	No	26 KB	80%	29.11.2017 11:38
EZUniverse.EZ360System.Database	Application extension	84 KB	No	634 KB	87%	29.11.2017 11:39
EZUniverse.EZ360System.Database	Program Debug Database	72 KB	No	320 KB	78%	29.11.2017 11:39
EZUniverse.EZ360System.Objects.dll	Application extension	98 KB	No	331 KB	71%	29.11.2017 11:38
EZUniverse.EZ360System.Objects.p	Program Debug Database	195 KB	No	1 032 KB	82%	29.11.2017 11:38
Microsoft.Data.ConnectionUl.Dialo	Application extension	78 KB	No	393 KB	81%	11.05.2011 15:21
Microsoft.Data.ConnectionUI.dll	Application extension	14 KB	No	24 KB	44%	14.06.2017 10:00
Microsoft.Data.ConnectionUl.xml	XML Source File	2 KB	No	8 KB	82%	14.06.2017 10:00
Microsoft.SqlServer.Management.S	Application extension	1 239 KB	No	4 726 KB	74%	23.11.2017 11:59
Newtonsoft.Json.dll	Application extension	225 KB	No	639 KB	65%	18.06.2017 13:57
Newtonsoft.Json.xml	XML Source File	45 KB	No	659 KB	94%	18.06.2017 13:57
NLog.config	Configuration Source File	1 KB	No	3 KB	61%	24.11.2017 13:40
NLog.dll	Application extension	197 KB	No	599 KB	68%	17.06.2017 11:41
NLog.xml	XML Source File	111 KB	No	1 357 KB	92%	17.06.2017 11:41
System.ValueTuple.dll	Application extension	27 KB	No	76 KB	65%	19.04.2017 16:58

Rysunek 4.4: Zawartość archiwum AlohaParserVERSION.

nać konfiguracji zainstalowanej aplikacji. W tym celu otwieramy plik configuration.json. Powinien on mieć format przedstawiony na listingu 4.5. Skrócony opis poszczególnych parametrów:

- ProcessID id procesu działającego na komputerze administratora
- ParserType typ parsera, którego dotyczy konfiguracja
- AccessConnectionString parametry połączenia do tabeli EZ360Access w bazie danych
- CommunicationConnectionString parametry połączenia do tabeli EZ360Communication w bazie danych
- \bullet Labor ConnectionString - parametry połączenia do tabeli EZ360 Labor w bazie danych
- ObjectsConnectionString parametry połączenia do tabeli EZ360Objects w bazie danych
- $\bullet\,$ Sales Connection String - parametry połączenia do tabeli EZ360 Sales w bazie danych

- ReportsConnectionString parametry połączenia do tabeli EZ360Reports w bazie danych
- ApplicationsConnectionString parametry połączenia do tabeli EZ360Applications w bazie danych
- TimerInterval czas pomiędzy kolejnymi sprawdzeniami czy nie przyszły nowe dane (w milisekundach)
- DatabaseTimeout maksymalny czas w jakim może zostać wykonywane zapytanie do bazy danych (w sekundach)
- DatabaseTimeoutInterval przerwa pomiędzy kolejnymi zapytaniami do bazy danych (w sekundach)
- DelayAfterDatabaseError czas do ponownej próby połączenia z bazą danych po wystąpieniu błędu
- EnablePreserveSaveTransactions definiuje czy włączyć funkcjonalność zachowywania transakcji
- DeletePreserveTransactionsAfter definiuje po jakim czasie powinny być usuwane zachowane transakcje (podane w godzinach)
- Rows maksymalna liczba wierszy możliwa do procesowania
- VideoTimeOffset przesunięcie w minutach uwzględniane przy wyliczaniu czasu wideo
- IdentificationPrefix prefix pomagający zidentyfikować dane
- IdentificationNumer numer pomagający zidentyfikować dane
- Dalsze ustawienia definiują, które typy danych powinny być przetwarzane

4.3 Obsługa systemu i administrowanie nim

4.3.1 PreParser

Startowanie serwisu

Startowanie serwisu realizowane z wykorzystaniem systemu operacyjnego Windows. Poprawne wystartowanie modułu wstępnego przetwarzania (po jego odpowiedniej konfiguracji) sprowadza się do uruchomienia serwisu za pośrednictwem menadżera serwisów systemu Windows (proces został zaprezentowany na rys. 4.6)

Zatrzymywanie serwisu

Zatrzymywanie preparsera realizowane jest podobnie jak jego startowanie. Wykorzystuje się do tego również menadżer serwisów Windows.

Dezinstalacja serwisu

W celu usunięcia serwisu z systemu operacyjnego należy uruchomić wiersz poleceń systemu Windows, a następnie przejść do katalogu gdzie został zainstalowany serwis. Po dokonaniu wyżej opisach czynności należy dokonać dezinstalacji poleceniem:

EZ360PreParserService.exe -uninstall

Spowoduje one usunięcie serwisu z systemu.

Diagnostyka i logowanie

Serwis podczas pracy regularnie generuje szereg komunikatów o statusie swojego działania i aktywności. Są one zapisywane w plikach logów, które przechowywane są w folderze łogs". Przechowywanych jest do 30 plików logów, które następnie po pojawieniu się następnych logów są usuwane. Wyróżniamy następujące typy wiadomości składowanych w logach:

- INFO informuję użytkownika o statusie działa serwisu
- WARN komunikuje pojawienie się problemu podczas analizy danych, co w większości przypadków oznacza brak wsparcia dla konkretnego typu danych i nie powoduje błędnego działania systemu
- ERROR zawiadamia o wystąpieniu poważnego problemu, który powinien zostać zgłoszony do administratora w celu jego rozwiązania

4.3.2 Parser

Uruchamianie aplikacji

W celu uruchomienia aplikacji należy otworzyć plik EZ360ParserUI.exe, następnie dokonać inicjalizacji poprzez kliknięcie odpowiedniego przycisku (rys. 4.8). Po poprawnej inicjalizacji modułu, wystarczy wcisnąć przycisk start, by rozpocząć proces przetwarzania danych (rys. 4.9).

Zatrzymywanie aplikacji

Administrator może w każdej chwili zatrzymać moduł właściwego przetwarzania danych. W celu dokonania tego, należy kliknąć przycisk STOP (rys. 4.10). Aplikacja dokończy obecny proces przetwarzania i wyśle dane, następnie zatrzyma się (trwa to około kilka sekund, zależnie od ilości procesowanych danych).

Dezinstalacja aplikacji

Dezinstalacja aplikacji sprowadza się do usunięcia zawartości folderu, w którym został zainstalowany moduł. Należy przy tym pamiętać, by wcześniej zatrzymać Parser i zamknąć aplikację.

Diagnostyka i logowanie

Podobnie jak w przypadku modułu wstępnego przetwarzania, tutaj również zaimplementowano system logowania komunikatów. Komunikaty informujące o stanie działania aplikacji przechowywane są w folderze łogsóraz wyświetlane w interfejsie użytkownika, który udostępnia oprogramowanie. W tym wypadku typy komunikatów wyświetlane użytkownikowi są określane przez odpowiedni kolor czcionki:

- INFO Czarny
- WARN Zielony
- ERROR Czerwony

4.4 Bezpieczeństwo

Ważną kwestią uwzględnianą podczas procesu tworzenia oprogramowania będącego przedmiotem niniejszej pracy jest bezpieczeństwo. W celu zapewnienia uwarunkowań sprzyjających bezpieczeństwu przetwarzanych danych moduł właściwego przetwarzania oraz wszystkie bazy przechowujące informacje przychodzące od strony użytkownika składowane są po stronie administratora systemu. Zapewnia on szereg zabezpieczeń i ciągłe wsparcie techniczne. Po stronie użytkownika zainstalowany jest tylko serwis modułu wstępnego przetwarzania na kontrolerze, który tylko przetwarzana lokalne dane i wysyła je do głównego centrum danych, więc nie ma możliwości dostępu do informacji zgromadzonych przez innych użytkowników.

4.5 Przykład działania

- Startowanie preparsera 4.6
- Zatrzymywanie preparser 4.7
- Startowanie aplikacji 4.9
- Zatrzymywanie aplikacji 4.10
- Logi modułu wstępnego przetwarzania 4.11
- Logi modułu właściwego przetwarzania 4.12

```
"ProcessID": 444,
      "ParserType": "ALOHA",
2
      "Enabled": false,
3
      "DBConnections": {
      "AccessConnectionString": "Data Source = M-STOLECKI\\
          EZUniverse; User ID = sa; Password = prestigo123!;
          Initial Catalog = EZ360Access",
      "CommunicationConnectionString": "Data Source = M-
6
          STOLECKI\\EZUniverse; User ID = sa; Password =
          prestigo123!; Initial Catalog = EZ360Communication"
      "LaborConnectionString": "Data Source = M-STOLECKI\\
7
          EZUniverse; User ID = sa; Password = prestigo123!;
          Initial Catalog = EZ360Labor",
      "ObjectsConnectionString": "Data Source = M-STOLECKI\\
          EZUniverse; User ID = sa; Password = prestigo123!;
          Initial Catalog = EZ360Objects",
      "SalesConnectionString": "Data Source = M-STOLECKI\\
          EZUniverse; User ID = sa; Password = prestigo123!;
          Initial Catalog = EZ360Sales",
      "ReportsConnectionString": "Data Source = M\!\!-\!\!STOLECKI \backslash \backslash
10
          EZUniverse; User ID = sa; Password = prestigo123!;
          Initial Catalog = EZ360Reports",
      "ApplicationsConnectionString": "Data Source = M-
11
         STOLECKI\\EZUniverse; User ID = sa; Password =
          prestigo123!; Initial Catalog = EZ360Applications"
      },
"TimerInterval": 1000,
"Timeout": 10,
12
13
      "DatabaseTimeout": 10,
14
      "DatabaseTimeoutInterval": 10,
15
      "DelayAfterDatabaseError": 5000,
16
      "EnablePreserveSavedTransactions": false,
17
      "DeletePreservedTransactionsAfter": 24,
18
      "VideoTimeOffset": -10,
19
      "IdentificationPrefix": ""
20
      "IdentificationNumber": "",
21
      "Actions": {
22
      "Enabled": false,
23
      "Rows": 100
24
      },
"CashOperations": {
25
26
      "Enabled": true,
27
      "Rows": 100
28
29
      "Transactions": {
      "Enabled": true,
31
      "Rows": 100
32
33
      "TimeClocks": {
      "Enabled": true,
35
      "Rows": 100
36
37
      "Data": {
38
      "Enabled": true,
39
      "Rows": 100
40
      }
41
```

Rysunek 4.5: Zawartość pliku konfiguracyjnego - Parser - wycinek dotyczący kasy Aloha.

Rysunek 4.6: Przykład startowania serwisu.

Rysunek 4.7: Przykład zatrzymywania serwisu.

Rysunek 4.8: Inicjalizacja aplikacji.

Rysunek 4.9: Startowanie aplikacji.

Rysunek 4.10: Zatrzymywanie aplikacji.

```
| Institute | Inst
```

Rysunek 4.11: Logi preparsera.

Rysunek 4.12: Logi parsera.

Specyfikacja wewnętrzna

W niniejszym rozdziale podjęta została kwestia architektury oprogramowania. Przedstawione zostały schematy baz danych oraz zakres wykorzystywanych bibliotek. Rozpisano również model ważniejszych klas oraz szczegółowo omówione zostały dane wejściowe wraz algorytmami koniecznymi do ich odpowiedniej analizy.

- 5.1 Architektura systemu
- 5.2 Organizacja i struktura baz danych
- 5.3 Wykorzystane biblioteki
- 5.4 Model klas
- 5.5 Szczegółowa analiza danych wejściowych
- 5.6 Algorytmy
- 5.7 Diagramy UML

```
function map = CreateBinaryMap(image, P)
threshold = FindThreshold(image, P);
map = Binarize(image, threshold);
map = MorphologicalClosing(map);
end
```

Rysunek 5.1: Przykładowy listing.

Testowanie i uruchamianie

6.1 PreParser

6.2 Parser

Sposób testowania w ramach pracy (organizacja eksperymentów, przypadki testowe, wyniki, zakres testowania – pełny/niepełny)

Poniżej przykład tworzenia tabeli. Podobnie jak w przypadku rysunków, każdą tabelę należy opisać w treśći pracy i odpowiednio się do niej odwołać.

Tablica 6.1: Nagłówek tabeli.

Pierwsza kolumna	Druga kolumna	Trzecia kolumna
3	4	5

Uwagi o przebiegu i wynikach prac

- 7.1 Stopień realizacji zagadnienia
- 7.2 Napotkane problemy
- 7.3 Dalszy rozwój

Podsumowanie

Przeczytaj poniższy tekst przed oddaniem pracy do sprawdzenia:

[Nie powinno być odstępów między akapitami. Jeżeli tak się dzieje, oznacza to złe ułożenie obrazków. Wtedy wystarczy określić, gdzie powinien taki obraz się znajdować (np. na górze/dole strony). Innym rozwiązaniem jest dodanie komendy 'newpage' na końcu strony.]

[Proszę nie używać słownictwa w języku obcym - większość słów ma swój polski odpowiednik.]

[Proszę nie używać apostrofów w roli cudzysłowia.]

[W przypadku stosowania różnych czcionek (kursywy czy pogrubień) proszę trzymać się jednej konwencji w całej pracy.]

[Wprowadzająć pojęcie należy podać najpierw jego polską nazwę, następnie w nawiasie angielską i ewentualny skrót. Od takiej definicji skrótu można z niego korzystać w dalszej części pracy. Np. Jako algorytm uczacy wybrałem metodę wektorów wspierających (ang. Support Vector Machine, SVM). SVM jest często stosowany do ...]

Bibliografia