Department of Mathematics

Indian Institute of Technology Bhilai

IC104: Linear Algebra-I

Hints of Tutorial Sheet 3: Linear Transformation

1. (a) It is easy to verify that $T(c\alpha + \beta) = cT(\alpha) + T(\beta)$ for every $c \in F$ and $\alpha, \beta \in V$. We know that null $(T) = \{x \in F^3 : T(x) = 0\}$. Now (x+y+z, x-y+z, x+z) = (0,0,0) implies that

$$x + y + z = 0$$
$$x - y + z = 0$$
$$x + z = 0.$$

which can be written as $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$ Then system equivalent to

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Then $x + z = 0$ and $y = 0$, z is arbitrary. Let $z = t$, $x = t$

-t. Then (x, y, z) = (-t, 0, t) = t(-1, 0, 1). Therefore null $(T) = \{t(-1, 0, 1) : t \in \mathbb{F}\}$. Then basis of null (T) is $\{(-1, 0, 1)\}$.

Now η be a arbitrary vector in range of T. Then

$$\eta = (x + y + z, x - y + z, x + z)$$

$$= x(1, 1, 1) + y(1, -1, 0) + z(1, 1, 1).$$

Thus η is a linear combination of the vectors (1,1,1),(1,-1,0). Hence range of T is the subspace spanned by $\{(1,1,1),(1,-1,0)\}$. As $\{(1,1,1),(1,-1,0)\}$ is linealry independent and hence is a basis of range of T.

- (b) It is easy to verify that $T(c\alpha+\beta)=cT(\alpha)+T(\beta)$ for every $c\in F$ and $\alpha,\beta\in V$. By following the similar process as in point (a) null $(T)=\{c(-2,4,3):c\in\mathbb{F}\}$ and basis of null $(T)=\{(-2,4,3)\}$. Again range T is spanned by $\{(-1,1,-2),(2,0,2)\}$. Then the basis of range of T is $\{(-1,1,-2),(2,0,2)\}$.
- 2. It is given that $T \neq 0$ but $T^2 = 0$. As $T \neq 0$, then there exists a non-zero vector $x^* \in \mathbb{R}^n$ such that $T(x^*) \neq 0$. Now consider a relation $c_1x^* + c_2T(x^*) = 0$. Then $T(c_1x^* + c_2T(x^*)) = T(0)$. As T is linear map, then $c_1T(x^*) + c_2T^2(x^*) = 0$. Again $T^2(x) = 0$, for all $x \in \mathbb{R}^n$, then we get that $c_1 = 0$. Then it is easy to observe that $c_2 = 0$. Therefore $\{x^*, T(x^*)\}$ is linearly independent. In general all $x \in \mathbb{R}^n \setminus N(T)$ will qualify for the solution.

3. Let $\beta = (x, y, z)$ such that $T(\beta) = (9, 3, \alpha)$. Then we have

$$2x + 3y + 4z = 9$$
$$x + y + z = 3$$
$$x + y + 3z = \alpha$$

Which can be written as $\begin{bmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \\ \alpha \end{bmatrix}.$ After row operation on the augmented matrix is $\begin{bmatrix} 2 & 3 & 4 & 9 \\ 0 & \frac{-1}{2} & -1 & \frac{-3}{2} \\ 0 & 0 & 2 & \alpha - 3 \end{bmatrix}.$ This implies that $x = \frac{\alpha - 3}{2}, \ y = 6 - \alpha,$ $z = \frac{\alpha - 3}{2}.$ Therefore $\beta = \left(\frac{\alpha - 3}{2}, 6 - \alpha, \frac{\alpha - 3}{2}\right).$

- 4. Yes, because $T(aA_1 + bA_2) = (aA_1 + bA_2)B B(aA_1 + bA_2) = aT(A_1) + bT(A_2)$. Now, nullity of $T = \{A \mid T(A) = 0\} = \{A \mid AB = BA\}$, i.e set of all matrices that commutes with B. As $M_{2\times 2}(\mathbb{R})$ can be written as the union of sets of commutative and non commutative matrices with B. The range of T contains all those matrices which are images of non commutative matrices with B together with 0 matrix.
- 5. Since (1,-1,1) and (-1,1,2) are linearly independent, hence extend to basis of \mathbb{R}^3 and define T(0,1,0)=(1,1), then a simple calculation gives us the linear transformation as $T(x,y,z) = (\frac{4x+3y+2z}{3}, \frac{7x+3y+2z}{3})$. No, it is not a unique linear transformation of this type.
- 6. The range and null spaces are identical, hence assume $\dim(\operatorname{range} T) = \dim(\operatorname{null} T) =$ m. Applying rank-nullity theorem we get n=2m which is even. Define T as T(1,0)=(0,0) and T(0,1)=(1,0), then the range space and null space are equal as it is generated by (1,0).
- 7. Let $B = \{a_1, a_2, \dots a_n\}$ be a basis for V. Let $x \in \text{range } T \cap \text{null } T \text{ then as } \{T(a_1), T(a_2), \dots T(a_n)\}$ spans range of T, we can write $x = c_1 T a_1 + ... + c_n T a_n$. Now as $x \in N(T)$, we have 0 = $T(x) = T(c_1Ta_1 + \dots + c_iTa_i) = c_1T^2a_1 + \dots + c_iT^2a_i$. Now if $C = \{T^2a_1, T^2a_2, \dots T^2a_n\}$ is linealry independent set, then $c_k = 0$ for all $k = 1, 2 \cdots n$ which results into x = 0. Thus it will be enough to show that nullity of T^2 is zero (then T^2 will be one to one and it will map a linearly independent set B to a linearly independent set C). Now, as $T^2\alpha = T(T\alpha)$ for all $\alpha \in V$, we can apply rank nullity theorem for T^2 on T(V) = R(T)to get nullity of T^2 as 0.
- 8. Here $A = \begin{bmatrix} 1 & 0 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & 0 \end{bmatrix}$. We know that the vectors $\{(1,3,2), (0,2,1), (4,-1,0)\}$ span

column space and it is easy to see that these vectors are linearly independent. Hence rank of A is 3.

- 9. In this problem it is given that m > n.
 - (a) On the contrary, there is a linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$, which is one-one (injective). Then nullity of T=0. Again by the rank-nullity theorem we know that

nullity of
$$T+$$
 rank of $T=\dim(\mathbb{R}^m)=m$.

Then we have rank of T = m, which is not possible as range of T is subset of \mathbb{R}^n , that is rank of T is less than equal to n.

- (b) On the contrary, suppose there is a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$, which is onto. That is range of $T = \mathbb{R}^m$. Therefore rank of T = m. Again by the rank-nullity theorem we got the contradiction.
- 10. The matrix of T corresponding to the standard basis is $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & 1 \\ i & 1 & 0 \end{bmatrix}$. Since $\det(T) = 0$, then T is not invertible.
- 11. It is easy to check that the matrix of T corresponding to the standard basis is $[T]_{\beta} = \begin{bmatrix} 3 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$. As $\det([T]_{\beta}) \neq 0$, hence T is invertible and the inverse is $\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$. Now putting the value of T and I we get that $(T^2 I)(T 3I) = 0$ (zero map).
- 12. Here

$$T(1,0,-1) = (1,-1) = 5(1,1) + (-2)(2,3)$$

 $T(1,1,1) = (2,1) = 4(1,1) + (-1)(2,3)$
 $T(1,0,0) = (1,-1) = 5(1,1) + (-2)(2,3).$

Thus the matrix of T relative to the basis $\beta, \ \beta'$ is $\begin{bmatrix} 5 & 4 & 5 \\ -2 & -1 & -2 \end{bmatrix}$

- 13. (a) It is easy to check that the matrix of T corresponding to the standard matrix is $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
 - (b) As $\beta = \{(1,2), (1,-1)\}$ and $T(1,2) = (-2,1) = \frac{-1}{3}(1,2) + \frac{-5}{3}(1,-1)$, $T(1,-1) = (1,1) = \frac{2}{3}(1,2) + \frac{1}{3}(1,-1)$. Therefore the matrix of T corresponding to the matrix is $\begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{-5}{3} & \frac{1}{3} \end{bmatrix}$.

(c) As (T-cI)(x,y) = (-y-cx,x-cy), then the matrix of T-cI corresponding to the standard basis is $\begin{bmatrix} -c & -1 \\ 1 & -c \end{bmatrix}$. Therefore $\det(T-cI) = c^2 + 1 \neq 0 \ \forall c \in \mathbb{R}$.

(d)

- 14. (a) Calculating we have T(1,0,0)=(3,-2-1), T(0,1,0)=(0,1,2), T(0,0,1)=(1,0,4). Then the matrix of T corresponding to the standard basis is $\begin{bmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 2 & 4 \end{bmatrix}$.

 (b) Again the matrix of T
 - (b) Again the matrix of T corresponding to the ordered basis $\{(1,0,1),(-1,2,1),(2,1,1)\}$ is $\begin{bmatrix} \frac{13}{4} & \frac{47}{4} & \frac{11}{2} \\ \frac{-3}{4} & \frac{11}{4} & \frac{-3}{2} \\ \frac{1}{2} & \frac{-11}{2} & 0 \end{bmatrix}$.
 - (c) As determinant of T corresponding to the standard basis is non-zero, then it is invertible. Now inverse of the matrix of T corresponding to the standard basis is

$$\begin{bmatrix} \frac{4}{9} & \frac{2}{9} & \frac{-1}{9} \\ \frac{8}{9} & \frac{13}{9} & \frac{-2}{9} \\ \frac{-1}{3} & \frac{-2}{3} & \frac{1}{3} \end{bmatrix}$$
. Then we have

$$T^{-1}(x,y,z) = \left(\frac{4}{9}x + \frac{2}{9}y + \frac{-1}{9}z, \frac{8}{9}x + \frac{13}{9}y + \frac{-2}{9}z, \frac{-1}{3}x + \frac{-2}{3}y + \frac{1}{3}z\right).$$