NBA, 포지션 별 은퇴 시기

1971422 권수지

주제 선정 이유

- 평소 농구에 관심이 많아 친구와 대화하던 중 포지션이 과연 경 력과 연관이 있을지에 대해 얘기를 하다가 주제를 선정
- 경력과 연관이 있을 것이라 생각한 이유는, 포지션에 따라 신체에 무리가 가는 정도가 다르며 퍼포먼스에 따라 달라질 것이라 예측해서
- 본인은 포지션 및 다른 것보다 개개인의 역량 및 관리에 초점이 있어 데이터 상으로 아무것도 나오지 않을 것이라는 의견

데이터 셋

player_data.csv

seasons_stats.csv

Seasons_stats에는 실제로 더 많은 데이터 셋(51가지)가 있음. 생략 된 year도 꽤 중요함.

# Year = △ Player = △ Pos =	# G = # FGA =	# FTA = # AST =	# PF = # PTS =
-----------------------------	---------------	-----------------	----------------

데이터 불러와서 저장하기

```
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
import pandas as pd
 import numpy as np
df=pd.read_csv('/content/drive/MyDrive/PPT/player_data.csv')
seasons_df=pd.read_csv('<u>/content/drive/MyDrive/PPT/seasons_stats.csv</u>', encoding='latin-1')
pd.set_option('display.max_columns', None) # 결과물로 보여주는 열 갯수 최대화
pd.set_option('display.max_rows', None) # 결과물로 보여주는 행 갯수 최대화
```

생년월일 데이터를 태어난 년도(int) 값으로 바꾸기

```
[4] df.info()
<- <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4979 entries, 0 to 4978
    Data columns (total 8 columns):
                 Non-Null Count Dtype
    # Column
       Player
                4979 non-null object
       From
                4979 non-null int64
            4979 non-null int64
    3 Pos 4979 non-null object
           4979 non-null object
                 4974 non-null float64
    6 Birth Date 4961 non-null object
    7 Colleges 4628 non-null object
                                                                          생년월일이 Object 값으로,
    dtypes: float64(1), int64(2), object(5)
    memory usage: 311.3+ KB
                                                                          DD MM(글자) YYYY
[5] df['Birth Date'] = df['Birth Date'].str.slice(-4)
                                                                          폼이었기에, 뒤에 YYYY만 추출하여 int 값
    df['Birth Date'] = pd.to_numeric(df['Birth Date'], errors='coerce')
    df = df.dropna(subset=['Birth Date'])
                                                                          으로 변경, 태어난 년도로 저장함.
    df['Birth Date'] = df['Birth Date'].astype(int)
A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row indexer.col indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
     df['Birth Date'] = df['Birth Date'].astype(int)
```

경력과 은퇴 나이 생성

[6] df['Period'] = df['To'] - df['From']
 df['retire'] = df['To'] - df['Birth Date']
 cols=['Player', 'Period', 'Pos', 'retire']
 player_df=df[cols]
 player_df.head()

Player DB에 경력 기간이 따로 있지 않기에, NBA에 입성한 년도와 은퇴한 년도를 통해 계산함.

은퇴 나이 또한 비슷한 방법을 이용하여 int 값으로 생성

6	_	-
	÷	7
160	_	_

	Player	Period	Pos	retire	
0	Alaa Abdelnaby	4	F-C	27	
1	Zaid Abdul-Aziz	9	C-F	32	
2	Kareem Abdul-Jabbar*	19	С	42	
3	Mahmoud Abdul-Rauf	10	G	32	
4	Tariq Abdul-Wahad	5	F	29	

int64

float64

float64

float64

float64

FGA

FG%

3P

3PA

15 2P

10 004

28057 non-null

27942 non-null

22360 non-null

22360 non-null

18632 non-null

28057 non-null int64

(캡처가 한번에 다 되지 않아 생략함) 필요한 것들은 모두 int나 float 값임.

Seasons_df에 필요한 것만 빼기

```
seasons_clos=['Player', 'G', 'FGA', 'FTA','AST', 'PF','PTS']
seasons_df=seasons_df[seasons_clos]
seasons_df.head()
```

	Player	G	FGA	FTA	AST	PF	PTS
0	Curly Armstrong	63	516	241	176	217	458
1	Cliff Barker	49	274	106	109	99	279
2	Leo Barnhorst	67	499	129	140	192	438
3	Ed Bartels	15	86	34	20	29	63
4	Ed Bartels	13	82	31	20	27	59

 $\overline{\Xi}$

선수 신체에 무리가 갈 수 있는 것들인

Game에 참여한 횟수(G) 골(2P, 3P)을 넣으려고 시도한 횟수(FGA) 자유투를 넣으려고 시도한 횟수(FTA) 어시스트(AST) Personal Fouls(PF) 포인트(PTS)

으로 축약

Seasons_df에 필요한 것만 빼기

• G => 실질적으로 게임에 많이 참여할 수록 신체에 무리가 감

• FGA, FTA, AST, PTS => 퍼포먼스를 보였다는 실질적인 지표. 리바운드도 있지만, 일부만 측정하여 자료가 적어 오히려 방해가 될 것을 고려해 완전히 배제함.

• Personal Fouls(PF) => 파울은 당하는 것도 문제지만 본인이 할 때도 신체에 무리가 갈 수도 있기에 포함함.

년도별로 나누어져 있는 걸 합친 뒤 두 DB Merge 함

포지션 별로 나눔. 필요 없어진 Pos는 삭제

Pos는 Object 값으로 G, F, C 등으로 이루어져 있으며 실질적으로 C-F(*빅맨), F-G(*스윙맨)와 같은 값도 있기에 따로 C, F, G 열을 만들어 Pos에 각 문자가 존재하는 지 확인 후, 있으면 1, 없으면 0 값을 넣도록 함

> 실제로는 C, PF, SF, PG, SG, C-F, F-G 등등 다양한 값이 있었지만, 분류를 하기 위해 크게 C, F, G만으로 구별. 그 외에 존재하는 문자의 종류는 P, S만이 존재하기에 이렇게 분류했을 시 오류도 없 을 것이라 판단

```
NBA_df['G/P'] = NBA_df['G'] / NBA_df['Period']
NBA_df.head()
```

	Player	Period	retire	G	FGA	FTA	AST	PF	PTS	F
0	Alaa Abdelnaby	4	27	385	1940	472	125	777	2299	1
1	Zaid Abdul-Aziz	9	32	570	4588	1536	648	1264	4978	1
2	Kareem Abdul-Jabbar*	19	42	1560	28307	9304	5660	4657	38387	0
3	Mahmoud Abdul-Rauf	10	32	586	7943	1161	2079	1106	8553	0
4	Tariq Abdul-Wahad	5	29	321	2519	755	388	688	2662	1

```
게임을 많이 해서 경력이 긴 것이 아닌
경력이 길기에 게임 횟수가 많은 것으로 판단
원인과 결과가 반대가 되었기에
(게임 횟수)/(경력)을 통하여,
'평균적으로 한 해에 몇 번의 게임을 했는지'로
판단하기로 함.
```

Gu C

29 321 1 0 0 64,200000 7,847352 2,352025 1,208723 2,143302 8,292835

G/P

0 1 96.250000

```
NBA_df['FGA/G'] = NBA_df['FGA'] / NBA_df['G']
NBA_df['FTA/G'] = NBA_df['FTA'] / NBA_df['G']
NBA_df['AST/G'] = NBA_df['AST'] / NBA_df['G']
NBA_df['PF/G'] = NBA_df['PF'] / NBA_df['G']
NBA_df['PTS/G'] = NBA_df['PTS'] / NBA_df['G']
```

Now drop the original columns NBA_df.drop(['FGA', 'FTA', 'AST', 'PF', 'PTS'], axis=1, inplace=True)

NBA_df.head()

Tariq Abdul-Wahad

	Player	Period	retire	G	F	Gu	C	G/P	FGA/G	FT#	좋다고	파단		"
(O Alaa Abdelnaby													
	1 Zaid Abdul-Aziz	9	32	570	1	0	1	63.333333	8.049123	2.6947	각각 거	임횟=	수로 L	_}-
2	2 Kareem Abdul-Jabbar*													
	3 Mahmoud Abdul-Rauf										229 3.547782	•	14.5955	63

FGA, FTA, AST, PF, PTS 또한 게임을 많이 하면 많이 얻을 수 있는 것이기에 게임을 한 번 했을 때의 평균으로 하는 것이 ^{FT} 좋다고 판단

⁸⁹⁴ 각각 게임 횟수로 나누어 평소 퍼포먼스의 ⁹⁶⁴ 평균을 구함

```
[16] NBA_df['Period'] = pd.to_numeric(NBA_df['Period'], errors='coerce')
     NBA_df = NBA_df.dropna(subset=['Period'])
     NBA_df['Period'] = NBA_df['Period'].astype(int)
[17] NBA_df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4194 entries, 0 to 4193
     Data columns (total 13 columns):
         Column Non-Null Count Dtype
         Player 4194 non-null object
         Period 4194 non-null int64
         retire 4194 non-null
                                 int64
                                int64
                 4194 non-null
                                int64
                 4194 non-null
                 4194 non-null
                                int64
                 4194 non-null
                                int64
         G/P
                 4194 non-null
                                float64
         FGA/G
                 4194 non-null
                                float64
         FTA/G
                 4194 non-null
                               float64
         AST/G
                 4194 non-null float64
         PF/G
                 4194 non-null float64
      12 PTS/G
                 4194 non-null float64
     dtypes: float64(6), int64(6), object(1)
     memory usage: 426.1+ KB
```

혹시 모를 오류를 대비하여 넣음

이상값 확인

```
skew = NBA_df['Period'].skew()
kurt =NBA_df['Period'].kurtosis()
print('Period - Skewness: {0}, Kurtosis: {1}'.format(skew, kurt))
Period - Skewness: 0.8448547166448356, Kurtosis: -0.2453413500542747
import seaborn as sns
sns.boxplot(x = 'Period', data = NBA_df)
<Axes: xlabel='Period'>
                                                          0000
                                10
                                              15
                                                            20
                  5
                                 Period
```

조금 어려울 것으로 예상 이곳엔 나오지 않았지만, 한 번 Period 값을 훑어봄

이상값 제거(1)

Period 이상값을 제거, 3은 숫자가 너무 크기에 1.5로 정함. (이상값 제거 전, Period의 평균값은 3이었음)

퍼포먼스가 경력에 미치는 영향이기에 1년 미만의 값들 또한 이상값으로 판단하여 모두 없애기로 함.

```
→ 18.5 -9.5
```

```
[30] c1 = NBA_df['Period'] <= Upper
    c2 = NBA_df['Period'] > 0
    NBA_df = NBA_df[c1&c2]
    NBA_df.shape
```

이상값 제거(2)

```
Q1 = NBA_df['G'].quantile(0.25)
Q3 = NBA_df['G'].quantile(0.75)
IQR = Q3-Q1
Upper = Q3 + 1.5 * IQR
Lower = Q1 - 1.5 * IQR
print(Upper)
print(Lower)
1214.625
-666,375
c1 = NBA_df['G'] <= Upper
c2 = NBA_df['G'] > 1
NBA_df = NBA_df[c1&c2]
NBA_df.shape
```

게임 횟수의 이상값 제거, 이 또한 Period와 같은 연유로 최소 1번보다 많이 플레이하는 플레이어만을 꼽음.

더 큰 값으로 잡을 수도 있지만 이 이상은 원하는 결과를 위해 데이터를 조작하는 것처럼 느껴져 2번 이상도 포함을 시킴

이상값 제거(3)

```
[24] Q1 = NBA_df['retire'].quantile(0.25)
     Q3 = NBA_df['retire'].quantile(0.75)
     IQR = Q3-Q1
     Upper = Q3 + 1.5 * IQR
     Lower = Q1 - 1.5*IQR
     print(Upper)
     print(Lower)
→ 43.5
     15.5
[25] c1 = NBA_df['retire'] <= Upper
     c2 = NBA_df['retire'] >= Lower
     NBA_df = NBA_df[c1&c2]
     NBA_df.shape
5 (3229, 13)
```

은퇴 나이 이상값 제거. 모두 균일하게 1.5로 이상값을 제거함

```
sns.set_style('whitegrid')
fig, axes = plt.subplots(1,3,figsize=(15,4))

sns.boxplot(ax=axes[0],x = 'Gu', data = NBA_df)
sns.boxplot(ax=axes[1],x = 'F', data = NBA_df)
sns.boxplot(ax=axes[2],x = 'C', data = NBA_df)
```

시각화를 해보았음. (혹시 몰라 다시 작성하면서 해보니 그래프가 다르게 나옴) 하지만 크게 의미가 있어 보이지는 않음.

상관계수

상관계수를 확인하니 Pos는 Period와 거의 상관이 없었음 의외인 점은 점수를 내려 시도하는 것은 물론이며 점수 또한 포지션에 따라 크게 다르지 않다는 점을 알게 됨 그나마 의미를 둘 수 있는 건 AST지만, 이 또한 값이 크지 않음

실직적으로 Pos에 영향을 미치는 것은 Pos밖에 없는 것처럼 보임

T-검정

```
[30] data_1=NBA_df[NBA_df['F']==1]['Period']
     data_0=NBA_df[NBA_df['F']==0]['Period']
     stats.ttest_ind(data_1,data_0)
    TtestResult(statistic=3.342042392015646, pvalue=0.0008411164295426446, df=3227.0)
[31] data_1=NBA_df[(NBA_df['C']==1)]['Period']
     data_0=NBA_df[(NBA_df['C']==0)]['Period']
     stats.ttest_ind(data_1,data_0)
    TtestResult(statistic=7.044631852184421, pvalue=2.2631315223632014e-12, df=3227.0)
[32] data_1=NBA_df[NBA_df['Gu']==1]['Period']
     data_0=NBA_df[NBA_df['Gu']==0]['Period']
     stats.ttest_ind(data_1,data_0)
    TtestResult(statistic=-0.7635852888721695, pvalue=0.44517023993101246, df=3227.0)
```

대부분 매우 작은 숫자가 나옴. 가드 값이 크기는 하지만, 이는 단순히 가드가 많은 걸로 추정 (실제로 가드는 1561명으로 40% 이상임)

```
data_1=NBA_df[NBA_df['Gu']==1]
data_1.count())

Player 1561
Period 1561
retire 1561
G 1561
```

시각화

이 또한 썩 의미가 있어 보이지는 않음

```
[33] fig, axes = plt.subplots(1,3,figsize=(15,4))
sns.histplot(ax=axes[0],x="Period", hue="Gu", data = NBA_df)
sns.histplot(ax=axes[1],x="Period", hue="F", data = NBA_df)
sns.histplot(ax=axes[2],x="Period", hue="C", data = NBA_df)
#sns.histplot(data=NBA_df, x="Period", hue="Gu", bins=20)
```


시각화

```
[34] sns.set_style('whitegrid')
  fig, axes = plt.subplots(1,3,figsize=(15,4))

sns.boxplot(ax=axes[0],x = 'Gu', y='Period',data = NBA_df)
  sns.boxplot(ax=axes[1],x = 'F',y='Period', data = NBA_df)
  sns.boxplot(ax=axes[2],x = 'C', y='Period',data = NBA_df)

#sns.boxplot(x='Gu',y='Period',data=NBA_df)

$\int \text{Axes: xlabel='C', ylabel='Period'}$
```

수정을 거쳐가며 지금은 보이지 않지만, 연도 또한 확인했음에도 유의미한 결과값을 내는 것은 크게 없었음.

결국 획일적이거나 보이는 이유보다는 개인의 관리나 역량이 선수 기간에 큰 영향을 미치는 것으로 보임

결론

• 포지션은 실질적으로 경력은 물론이며 득점에도 실질적인 의미 가 크게 없음

• 결국 포지션이 중요한 것이 아닌 개인 역량으로 보임

• (+)득점이 높고 시도를 많이 하거나 게임의 횟수가 많은 것은 신체가 무리가 되는 마이너스 요소가 아니라 경력을 이어 나갈 수 있는 실력의 증거로 보임

결론(TMI)

NBA_df['Period'].median()

5.0

• NBA의 선수 경력은 평균 5년으로 그다지 길지 않음

NBA_df['retire'].median()

29.0

• 은퇴 나이 또한 29살이 평균으로 젊음

• 퍼포먼스(혹은 포지션)에 따르는 유의미한 결과값을 받기엔 실제 선수들의 선수 생활이 애초에 그다지 길지 않다는 결론이 날수도 있음.

그렇기에 이는 개인의 관리로 충분히 커버가 가능한 것으로 보임

감사합니다