Avaliação e Quantização de Superpixels em Segmentação de Lesões de Pele

Grupo:

- 12011BCC006 Davi Vilarinho
- 12011BCC013 João Pedro Ramires
- 11911BCC026 Mateus Carmo

Artigo Original

- O artigo original propõe estudar um método semiautomático de segmentação em lesões de pele.
- Não havia código 100% disponível
- Usava datasets Públicos
- Propunha os seguintes passos:
 - o Remoção de pelos
 - Particionamento em superpixels (~1400)
 - Profissional escolhe superpixels semente
 - Extração de descritores de textura
 - Filtro/concatenação dos descritores
 - Seeded Fuzzy C-means
 - Uso de Geodesic Active Contour
 - Separação do maior componente conexo
 - Operações de Convex Hull

Fig. 2. Flowchart of the proposed segmentation approach.

Introdução ao nosso artigo

Assim como o artigo base, queremos auxiliar sistemas de CAD (Computer-Aid Diagnostics)

- Reproduzir o pré-processamento
- Entender se há diferença na quantidade de superpixels
- Encontrar a quantidade ideal de partições em superpixel garantindo:
 - Máxima Performance
 - Bons Resultados com métodos simples

Particionamento em superpixel

Estado da Arte

Tabela I FREQUÊNCIA E ATRIBUTOS DE ARTIGOS COM AS PALAVRAS CHAVES COMUNS

Palavra chave	Frequência	Semi-automático	Performance
Inteligência Artificial	13	0	- 4
Limiarização	2	1	1
Contornos Deformáveis	2	0	1
Clusterização	4	2	2
TOTAL	21	3	8

- Uso de inteligência artificial
- Forte potencial, desempenho superior.
- Downside: lento e instável
 - Não seria bom avaliar utilizando-os
- Métodos tradicionais em segmentação de imagem
 - Automáticos ou não
- Otsu: método de limiarização
- Chan-Vese: método de modelos deformáveis e active contour

Método Proposto **Dull Razor**

- Implementação original não encontrada
- Remoção de traços finos e longos
- Escala de Cinza
- Black Hat Filter
- Desfoque Gaussiano
- Threshold Binário

Figura 2. Removendo cabelos difíceis.

Método Proposto Superpixel

Agrupamento em k-médias

Pixels similares

Análise menos complexa

Agrupação de imagens

Compactividade, formato do superpixel

Figura 3. Segmentando em 450 superpixels ISIC_0000227

Método Proposto

Otsu

Figura 4. Aplicação do Otsu em imagens já particionada em superpixel

Threshold automático

Método mais tradicional

Identifica área da lesão como fundo (escuro)

Inversão do preto e branco (?)

Melhor para imagens bimodais

Rápido

Resultados mais pronunciados

Porém menos certeiros

Método Proposto

Chan-Vese

Figura 4. Aplicação do Otsu em imagens já particionada em superpixel

Active Contour

Encontra **bordas** dos objetos

Escolhido dentre os de Bordas Deformáveis

Iterações para fundo e objeto

Resultados mais "suaves"

Figura 5. Como o Chan-Vese se comporta em imagens já particionada em superpixel

Datasets

Usados: ISIC 2016 Part 1

600 Imagens em formato JPEG

Testes com apenas 16 delas (tabelas incluídas estão descritas)

3 Canais de Cores

Fotos com bordas da câmera

Ground truths em PNG binárias (preto e branco)

Métricas

- Utilização do Jaccard Score
- Artigo base utiliza Jaccard Score Index
 - Porém ele é menos apropriado para o nosso objetivo
 - Cria um "mínimo" de eficiência
 - Trata mais da eficácia do método
 - Queremos compreender a dinâmica de eficiência, não dos modelos

Método de Experimentação

- Aplicar Dull Razor
- Em um intervalo de 200 a 1600, acrescido de 50
 - Particionar em superpixels
 - Aplicar Otsu
 - Aplicar Chan-Vese
 - Exportar para um CSV o Jaccard de Ambos e seu Produto

Resultados

- Tabelas
 - Com métricas
 - desvio padrão
 - média
 - Agrupadas por
 - Superpixel
 - Imagem
- Gráficos

Resultados por Imagem

Resultados por Superpixel

Discussão por **Imagem**

- Resultados naturalmente discrepantes
- Cada lesão tem suas características
- Chan-Vese apresentou resultados melhores
 - No entanto é mais inconsistente
- Otsu é muito mais consistente
 - Confiável
- Imagens com maior desvio padrão entre suas múltiplas partições obtém melhor resultado
 - Portanto vale a pena entender como o particionamento em superpixel afeta o resultado final

Tabela III MÉDIA POR IMAGEM DO DATASET

Imagem	Otsu JAC	Chan-vese JAC	Produto JAC
ISIC_0000003.jpg	0.856081	0.934985	0.800412
ISIC_0000012.jpg	0.436453	0.000022	0.000009
ISIC_0000013.jpg	0.836921	0.893421	0.747705
ISIC_0000014.jpg	0.721524	0.004348	0.003137
ISIC_0000015.jpg	0.597391	0.004689	0.002812
ISIC_0000020.jpg	0.570484	0.694306	0.396094
ISIC_0000022.jpg	0.435892	0.201833	0.087980
ISIC_0000023.jpg	0.727448	0.839452	0.610631
ISIC_0000027.jpg	0.555008	0.044106	0.024784
ISIC_0000036.jpg	0.206507	0.362307	0.074810
ISIC_0000037.jpg	0.701943	0.719436	0.504997
ISIC_0000040.jpg	0.893158	0.647265	0.577993
ISIC_0000043.jpg	0.797516	0.806847	0.643512
ISIC_0000052.jpg	0.654426	0.685645	0.448866
ISIC_0000053.jpg	0.336257	0.566430	0.190482
ISIC_0000056.jpg	0.581240	0.779141	0.452868

Tabela IV DESVIO PADRÃO POR IMAGEM

Imagem	Otsu JAC	Chan-vese JAC	Produto JAC
ISIC_0000003.jpg	0.009704	0.003647	0.008530
ISIC_0000012.jpg	0.014264	0.000041	0.000018
ISIC_0000013.jpg	0.009296	0.007157	0.008780
ISIC_0000014.jpg	0.010630	0.000616	0.000443
ISIC_0000015.jpg	0.015435	0.001686	0.001087
ISIC_0000020.jpg	0.008294	0.004608	0.006547
ISIC_0000022.jpg	0.008575	0.002977	0.002275
ISIC_0000023.jpg	0.009594	0.013140	0.011136
ISIC_0000027.jpg	0.017590	0.103576	0.059204
ISIC_0000036.jpg	0.003861	0.004173	0.001144
ISIC_0000037.jpg	0.008628	0.006711	0.007386
ISIC_0000040.jpg	0.019789	0.010799	0.010798
ISIC_0000043.jpg	0.008630	0.006583	0.011339
ISIC_0000052.jpg	0.017948	0.011645	0.019216
ISIC_0000053.jpg	0.013094	0.003629	0.008031
ISIC_0000056.jpg	0.024196	0.006653	0.019200

Resultados por Superpixel...

Quantidades menores de superpixel são melhores

E também não há ganhos *expressivos* ao aumentar quantidade de superpixel

- Não se esqueça: não é a análise *de uma imagem*

 É a média dos resultados de todos os particionamentos para as diferentes quantidades de superpixels

800 superpixels

Ponto onde mesmo entre **imagens distintas**, o método terá **mesmo comportamento** com os **diferentes métodos** propostos

Figura 9. Da esquerda para direita, aplicação do Otsu em imagens particionadas em 550, 850 e 1550 superpixels. À direita a ground truth

550 superpixels

O momento em que o aumento do particionamento é ou improdutivo, ou insignificante, em média.

Mudanças na ordem de 10⁻³

Figura 9. Da esquerda para direita, aplicação do Otsu em imagens particionadas em 550, 850 e 1550 superpixels. À direita a *ground truth*

200 superpixels

Melhor resultado em desvio padrão e média

Figura 10. ISIC_0000043 sob Otsu em particionamento de 200 superpixel respectivamente. A direita a ground truth.

Ruído Dull Razor

- Não foi possível utilizar o método hospedado publicamente
- Código não mantido, provavelmente de Ubuntu 8.04 pela análise do binário

A utilização de alternativa mostrou limites para parâmetros inferiores a 10 no *threshold* binário

Figura 2. Removendo cabelos difíceis.

Ruído Chan-Vese

Tabela III MÉDIA POR IMAGEM DO DATASET

Imagem	Otsu JAC	Chan-vese JAC	Produto JAC
ISIC_0000003.jpg	0.856081	0.934985	0.800412
ISIC_0000012.jpg	0.436453	0.000022	0.000009
ISIC_0000013.jpg	0.836921	0.893421	0.747705
ISIC_0000014.jpg	0.721524	0.004348	0.003137
ISIC_0000015.jpg	0.597391	0.004689	0.002812
ISIC_0000020.jpg	0.570484	0.694306	0.396094
ISIC_0000022.jpg	0.435892	0.201833	0.087980
ISIC_0000023.jpg	0.727448	0.839452	0.610631
ISIC_0000027.jpg	0.555008	0.044106	0.024784
ISIC_0000036.jpg	0.206507	0.362307	0.074810
ISIC_0000037.jpg	0.701943	0.719436	0.504997
ISIC_0000040.jpg	0.893158	0.647265	0.577993
ISIC_0000043.jpg	0.797516	0.806847	0.643512
ISIC_0000052.jpg	0.654426	0.685645	0.448866
ISIC_0000053.jpg	0.336257	0.566430	0.190482
ISIC_0000056.jpg	0.581240	0.779141	0.452868

- Método tem resultados muito bons
- Mas a inconsistência diminui o produto de Jaccard
- Em alguns casos tão ruim que zerou

Figura 13. Lesão de pele ISIC_0000012 em que o resultado do Chan-Vese (à direita) discrepou bastante do Otsu (ao centro) à 1050 superpixels e da ground truth.

Ruído Câmera

Figura 14. Na imagem ISIC_0000013 é visível o efeito da câmera quando submetida à particionamento de 1000 superpixeis e ao método de Otsu. À direita a ground truth.

A câmera de microscopia, na região de interesse:

- foca
- ilumina
- cria uma borda preta

Prejudica o *Otsu* porque é **escuro**

Prejudica o *Chan-Vese* porque é uma **área grande** e **com borda**

Conclusões...

Reiterando os resultados obtidos...

Não é necessário aumentar a quantidade de superpixels

O artigo base exagerou ao usar reiteradamente 1200 sp's

800 superpixels é uma quantidade boa para neutralizar imagens diferentes

O autor comenta que certos datasets possuíam muita variabilidade. Neste caso, poderia-se utilizar a quantidade sob a qual não se reduz mais o desvio padrão dos resultados.

550 superpixels já são suficientes, em média

Principalmente em casos de lesões ou datasets comuns, não haveria necessidade de mais particionamento

200 superpixels como melhor resultado e é uma surpresa

Não é localizado e indica que o método de segmentação em superpixel já apresenta um avanço por si só.

Reduzir o número de superpixels diminui bastante o custo computacional e de operações futuras

Para o futuro...

- Avaliar outros métodos de segmentação
- Substituir ou aperfeiçoar o Chan-Vese
- Encontrar alternativas ao Dull Razor
- Avaliar para intervalos inferiores a 400
 - Principalmente próximos aos 200

Muito obrigado

Referências

E. Santos, R. Veras, H. Miguel, K. Aires, M. L. Claro, and G. B. Junior, "A skin lesion semi-supervised segmentation method," in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2020, pp. 33–38.

N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

P. Getreuer, "Chan-Vese Segmentation," Image Processing On Line, vol. 2, pp. 214–224, 2012, https://doi.org/10.5201/ipol.2012.g-cv. J. Velasquez, "Dullrazor-algorithm," 2021. [Online]. Available: https://github.com/BlueDokk/Dullrazor-algorithm

S. Van der Walt, J. L. Sch önberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu, "scikit-image: image processing in python," PeerJ, vol. 2, p. e453, 2014.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S'usstrunk, "Slic superpixels compared to state-of-the-art superpixel methods," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.

D. Gutman, N. C. F. Codella, E. Celebi, B. Helba, M. Marchetti, N. Mishra, and A. Halpern, "Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic)," 2016. [Online]. Available: https://arxiv.org/abs/1605.01397

J. P. R. Davi Vilarinho, Matheus Carmo, "2023-01-22 output.zip," 2023.

[Online]. Available: https://s3.amazonaws.com/vilarinho-mounting-point/2023-01-22 output.zip

T. pandas development team, "pandas-dev/pandas: Pandas," Feb. 2020.

[Online]. Available: https://doi.org/10.5281/zenodo.3509134

J. P. R. Davi Vilarinho, Matheus Carmo, "multimidia-artigo-final,"

2023. [Online]. Available:

https://github.com/DaviVilarinho/multimidiaartigo-fina