UNIVERSIDADE FEDERAL DE SANTA CATARINA – UFSC DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA

CIRCUITOS RLC SÉRIE DE SEGUNDA ORDEM

GUSTAVO SIMAS DA SILVA HENRIQUE PICKLER DA SILVA

"Uma experiência nunca é um fracasso, pois vem sempre a demonstrar algo".

Thomas Edison

ÍNDICE DE SÍMBOLOS, ABREVIATURAS E UNIDADES

i - Corrente elétrica

P - Potência elétrica ativa

A - ampère (intensidade de corrente elétrica)

V - volt (diferença de potencial elétrico)

W - Watt (potência elétrica ativa)

CC, DC - corrente contínua

AC, CA - corrente alternada

O - ohm (resistência elétrica)

Hz - hertz (frequência)

n - nano (10-9)

 μ - micro (10⁻⁶)

m - mili (10⁻³)

k - quilo (10³)

M - mega (10⁶)

ÍNDICE DE FIGURAS, TABELAS E EQUAÇÕES

Tabela 1 - Valores obtidos do experimento	
·	
Figura 1 - Circuito RLC série	7
Figura 2 - Curvas de amortecimento	9
Figura 3 - Onda de resposta	10

Sumário

1.	INT	RODUÇÃO E OBJETIVOS	6
2.	BA:	SE TEÓRICA	7
		Circuito RLC Série	
3.	RES	Sultados de laboratório	10
(3.1	Materiais e Métodos	10
(3.2	Circuito para Montagem	10
4.	CC	DNSIDERAÇÕES FINAIS	13
RF	FFRÊ	PACIAS	14

1. INTRODUÇÃO E OBJETIVOS

Este relatório visa demonstrar os conceitos vistos na Aula 6 de laboratório da disciplina EEL7045 - Circuitos Elétricos A dos cursos de Engenharia Elétrica e Eletrônica da Universidade Federal de Santa Catarina (UFSC). O foco desta aula foi Circuitos RLC série de Segunda Ordem, tão como análise teórica, demonstração e comprovação destes por meio de montagem de circuito em matriz de contatos.

O trabalho contempla estes assuntos e evidencia as demonstrações feitas em aula, apresenta a base teórica e os dados coletados pelas medições realizadas, com conclusões acerca dos resultados e discussão sobre possíveis aprimoramentos na realização das atividades mencionadas.

2. BASE TEÓRICA

Para entendimento dos conceitos abordados no referente relatório, é apresentada uma base teórica com a explanação da teoria de Circuitos RLC série de Segunda Ordem.

2.1 Circuito RLC Série

Segundo Peng[1]:

"O circuito RLC é chamado de circuito de segunda ordem porque qualquer tensão ou corrente nele é definida por uma equação diferencial de segunda ordem. A combinação de valores dos elementos que compõem o circuito (indutor, resistor e capacitor) define a forma como as tensões e correntes se estabelecerão em função do tempo, havendo três possibilidades: resposta subamortecida, resposta criticamente amortecida e resposta superamortecida".

A Figura 1 apresenta um esquemático de um Circuito RLC série.

Figura 1 - Circuito RLC série

Por questões práticas, de acordo com Sadiku[3], considera-se "v" como sendo a tensão no capacitor e "i" como a corrente no indutor. Aplicando-se a segunda lei de Kirchhoff (Lei das Tensões / Malhas) ao circuito, encontramos:

$$vs = vr + vl + vc$$

Sabemos que, independentemente dos valores do indutos, capacitor, resistor e fonte, teremos:

$$vl = L \frac{dil}{dt}$$
$$ic = C \frac{dvc}{dt}$$

Como é um caso de circuito em série, temos $i_c = i_L = i_R$, resulta:

$$V_{S}u(t) = Ri + L\frac{di}{dt} + vc$$

$$V_{S}u(t) = RC\frac{dv}{dt} + LC\frac{d^{2}v}{dt^{2}} + vc$$

Assim, ao se analisar a resposta do circuito para t > 0:

$$\frac{V_{\rm s}}{LC} = \frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{v}{LC}$$

Definimos, então, $2\alpha = R/L = \omega_0 = 1/\sqrt{(LC)}$, chegamos a:

$$\omega_0^2 V_S = \frac{d^2 v}{dt^2} + 2\alpha \frac{dv}{dt} + \omega_0^2 v$$

Com base nisso, definimos a equação característica da Equação Diferencial Ordinária (EDO):

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

Calculando-se as raízes, encontramos:

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

Deste modo, três casos são possíveis:

- 1. $\alpha > \omega_0$: Superamortecido
- 2. $\alpha = \omega_0$: Amortecimento Crítico
- 3. $\alpha < \omega_0$: Subamortecido

A Figura 2 apresenta o gráfico com as três diferentes curvas de amortecimento passíveis de serem identificadas em circuitos RLC série.

Figura 2 - Curvas de amortecimento (SADIKU [3])

3. RESULTADOS DE LABORATÓRIO

3.1 Materiais e Métodos

Para obter os resultados de laboratório, foram utilizados os seguintes instrumentos de medição: Multímetro Analógico (marca ICEL, modelo MA-100), Multímetro Digital (marca Minipa, modelo ET-2082C), além de demais materiais auxiliares como matriz de contato, jumpers (conectores), potenciômetro linear de $10k \Omega$, resistores de valores comerciais e precisão 5%, capacitor de tântalo 100nF, indutor de 100mH, gerador de sinais.

Avaliou-se o estado de conservações dos instrumentos e nenhum deles apresentou dano aparente ou qualquer falha mecânica/eletrônica de modo que comprometesse significativamente os procedimentos de laboratório.

3.2 Circuito para Montagem

Seguindo o roteiro de laboratório proposto em [1], propôs-se a montagem do circuito na Figura 1, com L = 100mH, C = 100nF e Rp uma resistência variável (potenciômetro).

Como entrada, selecionou-se uma onda quadrada no gerador de sinal, com auxílio do osciloscópio digital, amplitude de 5V (nível baixo = 0V). Ajustou-se o valor do potenciômetro e a frequência da onda quadrada, de modo que a oscilação terminasse antes de Ts/2, conforme ilustrado pela Figura 3.

Figura 3 - Onda de resposta

Assim, foi medida a frequência de amortecimento (f_d), tão como a diferença entre dois picos consecutivos para cálculo de outros parâmetros.

Já que a corrente no circuito é a mesma em todos os componentes, fica visível que a resistência aumentará a dissipação de energia. A resistência aparece na equação da corrente também, porém esta é de mais difícil análise. A resistência pode fazer o tipo da resposta mudar. Existem três casos possíveis:

1.
$$R < 2\sqrt{\frac{L}{c}}$$
 Subamortecido

2.
$$R = 2\sqrt{\frac{L}{c}}$$
 Amortecimento crítico

3.
$$R > 2\sqrt{\frac{L}{c}}$$
 Sobreamortecido

Nosso circuito se encaixa no caso subamortecido como será demonstrado logo, esse caso é caracterizado pela periodicidade. Os outros dois, são os casos onde não ocorre a periodicidade, o amortecimento crítico é o modo onde o sistema volta ao equilíbrio mais rapidamente sem haver nenhuma periodicidade. No modo subamortecido o mesmo ocorre porém mais lentamente.

Toda essa teoria é expressada de maneira matemática, onde todas estas grandezas se relacionam e descrevem o comportamento do circuito. Para demonstrar esta teoria, foi medido o valor da resistência, da indutância e da frequência de amortecimento, e com isso iremos calcular o valor da capacitância usando as equações abaixo:

$$T_d = 650 \mu s$$
 $R = 24,6\Omega$ $L = 100 mH$ $f_d = 58,89 Hz$

Calcula-se o valor da frequência natural não-amortecida como:

$$\omega_d = \sqrt{\omega_0^2 + \alpha^2}$$

$$\omega_d = \frac{2 * \pi}{T_d}$$

$$\alpha = \frac{R}{2L}$$

A capacitância é a seguinte:

$$C = \frac{1}{L * \omega_0^2} = \frac{1}{L * \left(\left(\frac{2 * \pi}{T_d}\right)^2 - \left(\frac{R}{2L}\right)^2\right)} = 107nF$$

O valor obtido nos cálculos é verificado pelo componente, que é de fato um capacitor de 100nF e está dentro do erro esperado. O cálculo a seguir demonstra que nosso circuito é de fato subamortecido:

$$2 * \sqrt{\frac{L}{C}} = 966.73 \,\Omega$$

Logo verificamos que:

$$R < 2 * \sqrt{\frac{L}{C}}$$

A Tabela 1, apresenta os valores medidos e calculados de acordo com o experimento.

Tabela 1 - Valores obtidos do experimento

	R	L1	f _d	С	α	f ₀ (calculado)
	(medido)	(medido)	(medido)	(calculado)	(calculado)	10 (Calcolado)
Valores	(24,6±0,3) Ω	100mH	(58,9±0,3)Hz	107nF	123	1538,55Hz
Escala	200Ω	200mH	400 Hz	-	-	-

Circuitos RLC Série de 2ª Ordem

¹ Houve dificuldade em realizar a medição da indutância, com isso, utilizou-se o valor padrão informado no componente.

4. CONSIDERAÇÕES FINAIS

No estudo de circuitos em geral, queremos saber como um circuito responde a certos tipos de excitações. Nesse caso, queremos saber a resposta do circuito a um degrau a ponto de estudarmos o período de transição após uma mudança súbita de tensão. Para simular o degrau, foi utilizado uma função quadrada com longo período de tal maneira que a oscilação do circuito terminasse antes de haver outra transição.

A oscilação se dá devido à reciprocidade da energia armazenada no capacitor e no indutor. O indutor procura manter a corrente no circuito, porém ao fazer isso sua energia é transmitida ao capacitor devido a essa corrente induzida; o capacitor, por sua vez, procura manter a tensão entre seus terminais constante, porém para fazer isso, este deve aplicar uma corrente no circuito, a qual faz a energia ser transmitida ao indutor.

Este ciclo se repetiria ao infinito, porém, como temos um circuito com uma resistência associada, a todo momento existe uma dissipação de energia na mesma, o que faz com que intensidade da oscilação seja diminuída até não haver mais energia no sistema. Quanto maior o valor da resistência, mais rápido a energia do sistema será dissipada no mesmo. Isso é evidenciado ao analisarmos a equação da potência dissipada no resistor: $P = Ri^2$.

Assim, após o experimento, ficou evidenciada a influência e o papel de cada componente no circuito RLC série. Este circuito pode ser usado em vários problemas práticos como filtros, sintonizar receptores de rádio e aplicações como um simples circuito oscilador.

REFERÊNCIAS

[1] PENG, Patrick Kuo. Aula 06 ANÁLISE DE CIRCUITOS DE SEGUNDA ORDEM:

CIRCUITO RLC SÉRIE. Disponível em:

https://github.com/GSimas/EEL7045/blob/master/Lab/Aula06%20
CIRCUITO%20RLC%20S%C3%89RIE%20DE%20SEGUNDA.pdf . Acesso em 08 out.
2017.

[2] PETRY, Clovis Antônio. **Teoria de Erros, Medidas e Instrumentos de Medidas.**Disponível

em:

http://professorpetry.com.br/Ensino/Repositorio/Docencia_CEFET/Metodos_T

ecnicas Laboratorio/2013 1/Apresentacao Aula 03.pdf. Acesso em 10 set. 2017.

[3] ALEXANDER, Charles K.; SADIKU, Matthew N. O. **Fundamentos de Circuitos Elétricos.** McGraw Hill. 2016.