

Grundlagen der Algorithmen Analyse

Inhalt

- Wie beschreibt man einen Algorithmus?
- Rechenmodell
- Laufzeitanalyse (Zeitkomplexität)
- Speicherplatzanalyse (Raumkomplexität)
- Wie beweist man die Korrektheit eines Algorithmus?

Insertion Sort

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length(A) do
```

```
2. key \leftarrow A[j]
```

3.
$$i \leftarrow j-1$$

4. while i>0 and A[i]>key do

```
5. A[i+1] \leftarrow A[i]
```

6.
$$i \leftarrow i-1$$

7. $A[i+1] \leftarrow key$

Idee InsertionSort

- Die ersten j-1 Elemente sind sortiert (zu Beginn j=2)
- Innerhalb eines Schleifendurchlaufs wird das j-te Element in die sortierte Folge eingefügt
- Am Ende ist die gesamte Folge sortiert

Insertion Sort – Laufzeit?

InsertionSort(Array A)

1. for
$$j \leftarrow 2$$
 to length(A) do

2.
$$key \leftarrow A[j]$$

$$3.$$
 $i \leftarrow j-1$

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

7.
$$A[i+1] \leftarrow key$$

- ➤ Eingabegröße n
- \triangleright length(A) = n
- > verschiebe alle Elemente aus
- ➤ A[1...j-1], die größer als key
- > sind eine Stelle nach rechts
- ➤ Speichere key in Lücke

Kernfrage:

Wie kann man die Laufzeit eines Algorithmus vorhersagen?

Insertion Sort – Laufzeit?

Laufzeit hängt ab von

- Größe der Eingabe (Parameter n)
- Art der Eingabe
- Beobachtung:
 - Insertionsort ist schneller auf aufsteigend sortierten Eingaben
 - Insertionsort ist langsam auf absteigend sortierten Eingaben

Laufzeitanalyse – Beobachtungen

Analyse

- Laufzeit als Funktion der Eingabegröße
- Wie?
 - Parametrisiert, d.h. in Abhängigkeit von der Eingabegröße
 - Eingabegröße: n
 - Laufzeit: T(n)

Ziel

- Finde Schranken (Garantien) an die Laufzeit
 - Obere Schranken "f mit f(n) => T(n)"
 - Untere Schranken "f mit f(n) <= T(n)"</p>
 - **>** ...

LineareMethode (int n)

- 1. sum = 0
- 2. for $i \leftarrow 1$ to n do
- 3. $sum \leftarrow sum + 1$

Nach der Ausführung hat sum den Wert n

QuadratischeMethode (int n)

- $1. \quad sum = 0$
- 2. for $i \leftarrow 1$ to n do
- 3. for $j \leftarrow 1$ to n do
- 4. $sum \leftarrow sum + 1$

Nach der Ausführung hat sum den Wert n²


```
KubischeMethode (int n)
```

```
1. \quad sum = 0
```

- 2. for $i \leftarrow 1$ to n do
- 3. for $j \leftarrow 1$ to n do
- 4. for $k \leftarrow 1$ to n do
- 5. $sum \leftarrow sum + 1$

Nach der Ausführung hat sum den Wert n³

Laufzeitanalyse – Beobachtungen

Tatsächliche Laufzeit hängt ab von vielen Faktoren

- Hardware (Prozessor, Cache, Pipelining)
- Software (Betriebssystem, Programmiersprache, Compiler)

Ziel

- Laufzeitanalyse soll unabhängig von Hard- und Software gelten
- D.h. wird in der Regel auf der Basis von Pseudocode gemacht
- D.h. C-, Java-, oder Programmiersprachen Implementierungsdetails sollen abstrahiert werden

Laufzeitanalyse – Beobachtungen

Tatsächliche Laufzeit hängt ab von vielen Faktoren

- Rechnerarchitektur
- Übersetzer
- Implementierung

Laufzeitanalyse

- Größenordnung der Laufzeit, also das asymptotische Verhalten der Laufzeit als Funktion der Eingabegröße n.
- D.h. wir ignorieren Details, z.B: Konstante Faktoren
- Dadurch erhält man Laufzeit- / Wachstumsklassen (logarithmisch, linear, quadratisch, exponentiell, etc), in die man Algorithmen einordnet.

Maschinenmodell Formal: Random Access Machine (RAM)

Maschinenmodell - uniform

- Eine Pseudocode-Instruktion braucht einen Zeitschritt
- Wird eine Instruktion r-mal aufgerufen, werden r Zeitschritte benötigt
- Die Zahlengröße spielt keine Rolle

Maschinenmodell Formal: Random Access Machine (RAM)

Maschinenmodell - logarithmisch

- Rechen- und Speicheroperationen werden per Bit berechnet d.h. die Größe der Zahlen ist wichtig und geht logarithmisch ein
- Sonstige Pseudocode-Instruktionen brauchen einen Zeitschritt
- Wird eine Instruktion r-mal auf k-Bit Zahlen (d.h. Zahlen bis zu 2^k) aufgerufen, werden r * k Zeitschritte benötigt

Hinweis

- Oft sind die Ergebnisse gleich, da der Zahlenbereich beschränkt ist auf int, long, long long etc.... Damit handelt es sich nur um Konstanten.
- Das logarithmische Modell ist das übliche Modell für die Analyse

LineareMethode (int n) Zeit:

1. sum = 0

2. for $i \leftarrow 1$ to n do n+1

3. $sum \leftarrow sum + 1$

Nach der Ausführung hat sum den Wert n


```
QuadratischeMethode (int n) Zeit:

1. sum = 0

1. for i \leftarrow 1 to n do

1. n+1

3. for j \leftarrow 1 to n do

4. sum \leftarrow sum + 1

2eit:

n+1

n^* (n+1)
```

Nach der Ausführung hat sum den Wert n²


```
KubischeMethode ( int n ) Zeit:

1. sum = 0

1. for i \leftarrow 1 to n do

1. n+1

1. n*(n+1)

2. for j \leftarrow 1 to n do

3. for j \leftarrow 1 to n do

4. for k \leftarrow 1 to n do

5. sum \leftarrow sum + 1
```

Nach der Ausführung hat sum den Wert n³

Laufzeitanalyse – Größenordnungen

n	linear	quadratisch	kubisch	exponentiell
1	1 μs	1 μs	1 μs	2 μs
10	10 μs	100 μs	$1~\mathrm{ms}$	1 ms
20	20 μs	400 μs	8 ms	1 sec
30	30 μs	900 μs	$27~\mathrm{ms}$	18 min
40	40 μs	2 ms	64 ms	13 Tage
50	50 μs	$3~\mathrm{ms}$	$125~\mathrm{ms}$	36 Jahre
60	60 μs	4 ms	216 ms	$36560\mathrm{Jahre}$
100	100 μs	10 ms	1 sec	$4 \cdot 10^{16} \text{ Jahre}$
1000	1 ms	1 sec	17 min	

InsertionSort(Array A)

```
    for j ← 2 to length(A) do
    key ← A[j]
    i ← j-1
    while i>0 and A[i]>key do
    A[i+1] ← A[i]
    i ← i-1
    A[i+1] ← key
```

Was ist die Eingabegröße?

InsertionSort(Array A)

```
1. for j \leftarrow 2 to length(A) do
```

```
2. key \leftarrow A[j]
```

3.
$$i \leftarrow j-1$$

5.
$$A[i+1] \leftarrow A[i]$$

6.
$$i \leftarrow i-1$$

7.
$$A[i+1] \leftarrow key$$

Was ist die Eingabegröße? Die Länge des Feldes A

InsertionSort(Array A)

- 1. for $j \leftarrow 2$ to length(A) do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$

Zeit:

n

InsertionSort(Array A)

1. for
$$j \leftarrow 2$$
 to length(A) do

2. $key \leftarrow A[j]$

3. $i \leftarrow j-1$

4. while i>0 and A[i]>key do

5. $A[i+1] \leftarrow A[i]$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

InsertionSort(Array A)

1. for
$$j \leftarrow 2$$
 to length(A) do

2.
$$key \leftarrow A[j]$$

3.
$$i \leftarrow j-1$$

4. while i>0 and A[i]>key do

5.
$$A[i+1] \leftarrow A[i]$$

6. $i \leftarrow i-1$

7. $A[i+1] \leftarrow key$

Zeit:

n

n-1

n-1

InsertionSort(Array A) Zeit:

1. for
$$j \leftarrow 2$$
 to length(A) do

2. key \leftarrow A[j]

3. $i \leftarrow j-1$

4. while $i > 0$ and A[i]>key do

5. A[i+1] \leftarrow A[i]

6. $i \leftarrow i-1$

7. A[i+1] \leftarrow key

Laufzeitanalyse

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length(A) do	n
2.	$key \leftarrow A[j]$	n-1
	i ← j-1	n-1
4.	while i>0 and A[i]>key do	n-1 + Σ t _j
5.	$A[i+1] \leftarrow A[i]$	Σ t $_{i}$
6.	i ← i-1	•
7.	A[i+1] ← key	

6.

InsertionSort(Array A)

i ← i-1

7. $A[i+1] \leftarrow \text{key}$

Insertion Sort – Laufzeitanalyse

Zeit:

 $\sum t_i$

1.	for $j \leftarrow 2$ to length(A) do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_j$
5.	$A[i+1] \leftarrow A[i]$	Σ t $_{ m j}$

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length(A) do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	n-1 + \sum t _j
5.	$A[i+1] \leftarrow A[i]$	$\sum t_j$
6.	i ← i-1	$\sum t_{i}$
7.	A[i+1] ← kev	n-1 [']

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length(A) do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_j$
5.	$A[i+1] \leftarrow A[i]$	$\sum t_j$
6.	i ← i-1	Σ t $_{i}$
7.	A[i+1] ← key	n-1
		${5\text{n-4+3}\Sigma}$ t;

Laufzeitanalyse

Worst-Case Analyse

- Für jedes n definiere Laufzeit
 T(n) = Maximum über alle Eingaben der Größe n
- Garantie für jede Eingabe / "schlechtester Fall"
- Üblich für Laufzeitanalyse

Average-Case Analyse

- Für jedes n definiere Laufzeit
 T(n) = Durchschnitt über alle Eingaben der Größe n
- Hängt von Definition des Durchschnitts ab (wie sind die Eingaben verteilt)

Best-Case Analyse

- Für jedes n definiere Laufzeit
 T(n) = Minimum über alle Eingaben der Größe n
- "Nicht" garantiert für jede Eingabe / "bester Fall"

InsertionSort(Array A)		Zeit:
1.	for $j \leftarrow 2$ to length(A) do	n
2.	$key \leftarrow A[j]$	n-1
3.	i ← j-1	n-1
4.	while i>0 and A[i]>key do	$n-1 + \sum t_j$
5.	$A[i+1] \leftarrow A[i]$	$\sum t_{j}$
6.	i ← i-1	Σ t $_{i}$
7.	A[i+1] ← key	n-1
		${5\text{n-4+3}\Sigma}$ t;

Worst-Case Analyse

t_i = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{j=2}^{n} (j-1) = 2n - 4 + 3 \cdot \sum_{j=1}^{n} j$$

Worst-Case Analyse

t_i = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{j=2}^{n} (j-1) = 2n - 4 + 3 \cdot \sum_{j=1}^{n} j$$
$$= 2n - 4 + 3 \cdot \frac{n(n+1)}{2} = \frac{3n^2 + 7n - 8}{2}$$

Worst-Case Analyse

t_i = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{j=2}^{n} (j-1) = 2n - 4 + 3 \cdot \sum_{j=1}^{n} j$$
$$= 2n - 4 + 3 \cdot \frac{n(n+1)}{2} = \frac{3n^2 + 7n - 8}{2}$$

Abstraktion von multiplikativen Konstanten

→ O-Notation (Groß-Oh-Notation)

Laufzeitanalyse – Beobachtungen

Diskussion

- Die konstanten Faktoren sind wenig aussagekräftig, da wir bereits bei den einzelnen Befehlen konstante Faktoren ignorieren
- Je nach Rechnerarchitektur oder/und genutzten Befehlen könnte also z.B. 3n+4 langsamer sein als 5n+7
 - Fall 1: b = a; b += a; b += a; Fall 2: b = 3 * a;
- Betrachte nun Algorithmus A mit Laufzeit 100n und Algorithmus B mit Laufzeit 5n²
 - Ist n klein, so ist Algorithmus B schneller
 - Ist n groß, so wird das Verhältnis Laufzeit B / Laufzeit A beliebig groß
 - Algorithmus B braucht also einen beliebigen Faktor mehr Laufzeit als A (wenn die Eingabe groß genug ist)

Asymptotische Laufzeitanalyse

Idee – asymptotische Laufzeitanalyse

- Ignoriere konstante Faktoren
- Betrachte das Verhältnis von Laufzeiten für n→∞
- Klassifiziere Laufzeiten durch Angabe von "einfachen Vergleichsfunktionen"

O-Notation – Obere Schranke

O-Notation

- $f(n) \in O(g(n)) = \{f(n) : \exists c > 0, n > 0, so dass für alle n ≥ n gilt <math>f(n) \le c \cdot g(n)\}$
- $\bullet \quad \text{(wobei } f(n), g(n) > 0)$

Interpretation

- f(n)∈O(g(n)) bedeutet, dass f(n) für n→∞ höchstens genauso stark wächst wie g(n)
- Beim Wachstum ignorieren wir Konstanten
- Man sagt, f wird von g dominiert oder f wächst nicht stärker als g (Abschätzung nach oben)

O-Notation – Obere Schranke: Beispiele

Beispiele

- $10 \text{ n} \in O(n)$
- $10 \text{ n} \in O(n^2)$
- n² \notin O(1000 n)
- O(1000 n) = O(n)

Hierarchie

• $O(\log n) \subseteq O(n) \subseteq O(n^2) \subseteq O(n^c) \subseteq O(2^n)$ (für c >= 2)

Ω -Notation – Untere Schranke

Ω -Notation

- $\Omega(f(n)) = \{g(n) : \exists c > 0, n_0 > 0, \text{ so dass für alle } n \ge n_0 \text{ gilt } g(n) \ge c \cdot f(n)\}$
- (wobei f(n), g(n)>0)

Interpretation

- **g**(n)∈ Ω (f(n)) bedeutet, dass g(n) für n→∞ mindestens so stark wächst wie f(n)
- Beim Wachstum ignorieren wir Konstanten

Ω -Notation – Untere Schranke: Beispiele

Beispiele

- $10 \text{ n} \in \Omega(\text{n})$
- 1000 n $\notin \Omega(n^2)$
- $^{\bullet} \quad n^2 \in \Omega(n)$
- $\Omega(1000 \text{ n}) = \Omega(\text{n})$
- $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$

⊕-Notation – Obere und Untere Schranke

Θ-Notation

• $g(n) \in \Theta(f(n)) \Leftrightarrow g(n) = O(f(n)) \text{ und } g(n) = \Omega(f(n))$

Beispiele

- $1000 \text{ n} \in \Theta(n)$
- $10 \text{ n}^2 + 1000 \text{ n} \in \Theta(\text{n}^2)$
- n^{1-sin n} $\notin \Theta(n)$

Echte obere und untere Schranken

o-Notation

- o(f(n)) ∈ {g(n): $\forall c > 0 \exists n_0 > 0$, so dass für alle $n \ge n_0$ gilt $c \cdot g(n) < f(n)$ }
- (f(n), g(n) > 0)

ω-Notation

• $f(n) \in \omega(g(n)) \Leftrightarrow g(n) \in o(f(n))$

Laufzeitanalyse

Beispiele

 $n \in o(n^2)$

n ∉ o(n)

f ∈ <i>o</i> (g)	Wachstum von f	< Wachstum von g
$f \in O(g)$	Wachstum von f	≤ Wachstum von g
$f \in \Theta(g)$	Wachstum von f	= Wachstum von g
$f \in \Omega(g)$	Wachstum von f	≥ Wachstum von g
$f \in \omega(g)$	Wachstum von f	> Wachstum von g

Eine weitere Interpretation

• Grob gesprochen sind O, Ω , Θ , o, ω die "asymptotischen Versionen" von \leq , \geq , =, <, > (in dieser Reihenfolge)

Schreibweise

Wir schreiben häufig f(n) = O(g(n)) anstelle von f(n) ∈ O(g(n))

Insertion Sort – Worst Case Laufzeitanalyse

Worst-Case Analyse (Insertion Sort)

t_i = j-1 für absteigend sortierte Eingabe (schlechtester Fall)

$$T(n) = 5n - 4 + 3 \cdot \sum_{j=2}^{n} (j-1) = 2n - 4 + 3 \cdot \sum_{j=1}^{n} j$$
$$= 2n - 4 + 3 \cdot \frac{n(n+1)}{2} = \frac{3n^2 + 7n - 8}{2} = \Theta(n^2)$$

- D.h. Korrekt:
 - \triangleright O(n²), Ω (n²)
 - \triangleright O(n³), Ω (n)

Falsch:

 $o(n^2)$, $\Omega(n^3)$

O(n)

Insertion Sort – Best Case Laufzeitanalyse

InsertionSort(Array A)		Zeit:	
1.	for $j \leftarrow 2$ to length(A) do	n	
2.	$key \leftarrow A[j]$	n-1	
3.	i ← j-1	n-1	
4.	while i>0 and A[i]>key do	n-1	
5.	$A[i+1] \leftarrow A[i]$		
6.	i ← i-1		
7.	A[i+1] ← key	n-1	
			O(10)
		5n-4 = 0	$\mathcal{J}(n)$

Selection Sort – mit swap

```
    SelectionSort(Array A)
    for j ←1 to length(A) - 1 do
    min ← j
    for i ← j + 1 to length(A) do
    if A[i] < A[min] then min ← i</li>
    swap(A, min, j)
```

Idee SelectionSort

- Die ersten j-1 Elemente sind sortiert (zu Beginn j=1)
- Innerhalb eines Schleifendurchlaufs wird das j-kleineste Element (entspricht dem kleinste aus dem Rest) an die sortierte Folge "angehängt"
- Am Ende ist die gesamte Folge sortiert

Selection Sort – Worst Case Laufzeit

- Suchen des kleinsten verbleibenden Elementes:
 - Im ersten Durchlauf c"*n Operationen, dann c"*(n-1), dann c"*(n-2), usw.
 - Dann eine swap Operation
- Worst Case Laufzeit Insgesamt:

$$T(n) = c'n + c'' \sum_{i=1}^{n} i = c'n + c'' \frac{n(n+1)}{2} = O(n^2)$$

BubbleSort(Array A)

- 1. for $j \leftarrow length(A) -1 downto 1 do$
- 2. for $i \leftarrow 1$ to j do
- 3. **if** A[i] > A[i+1] **then** swap(A, i, i+1)

Idee BubbleSort

- Die letzten Elemente von j bis n sind sortiert (zu Beginn j= n-1)
- Die größten Elemente steigen auf (bubblen), wie Luftblasen, die zu ihrer richtigen Position aufsteigen
- Am Ende ist die gesamte Folge sortiert

Komplexität:

$$T(n) = O(n^2)$$

Count Sort

CountSort(Array A)

- 1. C ist Hilfsarray mit 0 initialisiert
- 2. for $j \leftarrow 1$ to length(A) do
- 3. $C[A[j]] \leftarrow C[A[j]] + 1$
- $4. k \leftarrow 1$
- 5. for $j \leftarrow 1$ to length(C) do
- 6. for $i \leftarrow 1$ to C[j] do
- 7. $A[k] \leftarrow j$
- 8. $k \leftarrow k+1$

- > Annahmen:
- > Eingabegröße n
- \triangleright length(A) = n
- Wertebereich von A: 1 m
- length(C) = m
- Zähle, wie häufig jedes Element vorkommt

Füge jedes Element der Reihe nach entsprechend seiner Häufigkeit in das Array hinein.

Count Sort - Laufzeit

CountSort(Array A)

- 1. C ist Hilfsarray mit 0 initialisiert
- **2.** for $j \leftarrow 1$ to length(A) do
- 3. $C[A[j]] \leftarrow C[A[j]] + 1$
- $4. k \leftarrow 1$
- 5. for $j \leftarrow 1$ to length(C) do
- 6. for $i \leftarrow 1$ to C[j] do
- 7. $A[k] \leftarrow j$
- 8. $k \leftarrow k+1$

- > Annahmen:
- ➤ Eingabegröße n
- \rightarrow length(A) = n
- Wertebereich von A: 1 m
- length(C) = m
- **>** O(n)
- > O(n)
- > C
- > O(m)
- > O(n)
- > O(n)
- > O(n)

O(n + m)

Count Sort – Worst Case Laufzeit

- Die Laufzeit hängt auch vom Wertebereich der Zahlen, d.h. von m, ab: T(n, m)
- Worst Case Laufzeit Insgesamt:

$$T(n,m) = O(n+m)$$

Ist m = O(n), dann hat Count Sort eine lineare Laufzeit

Laufzeiten – Diskussion

- Wir haben 4 Algorithmen mit den folgenden Laufzeiten, welchen wählen Sie?
- Es kann sein, das für gewisse n (in diesem Fall n < 20) die Laufzeit des effizientesten Algorithmus (O(n)) nicht am besten ist!

Laufzeit – Zusammenfassung

Rechenmodell

- Abstrahiert von maschinennahen Einflüssen wie Cache, Pipelining, Prozessor, etc.
- Jede Pseudocodeoperation braucht einen Zeitschritt

Laufzeitanalyse

- Normalerweise Worst-Case, manchmal Average-Case (sehr selten auch Best-Case)
- Asymptotische Analyse f
 ür n → ∞
- Ignorieren von Konstanten → O-Notation

Raumkomplexität

Speicherplatz

- Speicherbedarf ist wichtig und ein interessantes Maß
- Häufig jedoch kein sehr selektives Kriterium zur Unterscheidung von Algorithmen
- Der Speicherbedarf unterschiedlicher Algorithmen für dasselbe Problem unterscheidet sich meist nur um einen (geringen) konstanten Faktor.
- Allerdings kann zeitlicher Aufwand durch räumlichen Aufwand ersetzt werden und umgekehrt, z.B.:
 - Bei wiederholt auszuführenden identischen Berechnungen kann man das Ergebnis speichern und wiederverwenden
- Der Speicherbedarf wächst häufig mit der Menge der Daten, mehr als quadratisches Wachstum ist selten.