

FS302 系列晶片說明書 (V1.3)

鋰離子電池保護IC

1. Description

FS302電池保護晶片,是為了保護鋰離子電池避免因過度充電、過度放電或電流過大時,將電池破壞或縮短壽命而設計。它有高精準的電壓偵測與時間延遲電路,適用於保護單一鋰離子電池組。

2. 1-Cell Protection ICs

Model	Package	Overcharge detection voltage [VOCU] (V)	Overcharge release voltage [VOCR] (V)	Overdischarge detection	Overdischarge release	Overcurrent 1 detection voltage [VOI1] (mV)	
	SOT-23-6			voltage [VODL] (V)	voltage [VODR] (V)		
	AR	4.250±0.025	4.050±0.1	2.4±0.1	3.0±0.1	200±30	
FS302	BR	4.350±0.030	4.150±0.1	2.4±0.1	3.0±0.1	150±30	
	CR	4.350±0.050	4.150±0.1	2.4±0.1	3.0±0.1	150±30	
	DR	4.250±0.030	4.050±0.1	2.35±0.1	2.9±0.1	150±30	

Overcharge and overdischarge voltages and overcurrent 1 detection voltage can be changed at the customer's request.

3. Features

1)	Low supply current	Operation: 3.0uA typ. @VDD=3.9V Power-down mode: 0.3uA typ. @VDD=2.0V
2)	Overcharge detection voltage (VOCU)	4.0V~4.4V, Accuracy of $\pm 25/\pm 30$ mV
3)	Overcharge release voltage (VOCR)	VOCR, Accuracy of ±100mV
4)	Overdischarge detection voltage $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2.3V~2.5V, Accuracy of ±100mV
5)	Overdischarge release voltage (VODR)	VODR, Accuracy of ±100mV
6)	Over current 1 detection voltage (VOI1)	VOI1
7)	Over current 2(Short Current) detection vo	oltage(VOI2) 1.35V
8)	Overcharge detection delay time	C_{TD} =0.01uF,100ms
9)	Charger detection voltage	-0.6V
10)	Reset resistance for Over current protection	on >500KΩ
11)	Wide supply voltage range	1.8 ~ 8.0V
12)	Small package	SOT-23-6

3/13

Applications

1) Protection IC for One-Cell Lithium-Ion Battery Pack

4. Block Diagram

5. Pin Configuration

Pin No.	Symbol	Description
1	OD	FET gate connection pin for discharge control
2	CSI	Input pin for current sense, charger detect
3	ОС	FET gate connection pin for charge control
4	TD	Pin for external capacitor setting output delay of VOCU
5	VDD	Positive power input pin
6	VSS	Negative power input pin

6. Typical Application Circuit

7. Absolute Maximum Ratings

ltem	Symbol	Rating	Unit
Supply voltage between VDD and VSS	VDD	VSS-0.3 to VSS+12	V
OC output pin voltage	VOC	VDD-15 to VDD+0.3	V
OD output pin voltage	VOD	VSS-0.3 to VDD+0.3	V
CSI input pin voltage	VCSI	VDD-15 to VDD+0.3	V
Operating Temperature Range	TOP	-10 to +70	$^{\circ}\! \mathbb{C}$
Storage Temperature Range	TST	-40 to +125	$^{\circ}\! C$

8. Electrical Characteristic

(Unless otherwise specified Ta=25°C, model name FS302BR)

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
CURRENT CONSUMPTION						
Supply Current	VDD=3.9V	IDD		3.0	6.0	uA

FS302 系列晶片說明書

	T			1		1 1	
Power-Down Current	VDD=2.0V	IPD		0.3	0.6	uA	
OPERATING VOLTAGE							
Operating voltage between VDD and VSS			1.8		8.0	V	
DETECTION VOLTAGE							
Overcharge detection voltage		VOCU	4.32	4.35	4.38	V	
Overcharge release voltage		VOCR	4.05	4.15	4.25	V	
Overdischarge detection voltage		VODL	2.30	2.40	2.50	V	
Overdischarge release voltage		VODR	2.90	3.00	3.10	V	
Over current 1 detection voltage		VOI1	0.12	0.15	0.18	V	
Over current 2 (Short Current) detection voltage	VDD=3.6V	VOI2	1.25	1.35	1.45	V	
Reset resistance for Over current protection	VDD=3.6V	Rshort	400	500	600	ΚΩ	
Charger detection voltage		VCH	-0.8	-0.6	-0.4	V	
DELAY TIME							
Overcharge detection delay time	C _{TD} =0.01uF	TOC	50	100	150	ms	
Overdischarge detection delay time	VDD=3.6V to 2.0V	TOD	5	10	15	ms	
Over current 1 detection delay time	VDD=3.6V	TOI1	5	10	15	ms	
Over current 2 (Short Current) detection delay time	VDD=3.6V	TOI2		5	50	us	
OTHER			•	•			
OC pin output "H" voltage		Voh1	VDD-0.	VDD-0. 02		V	
OC pin output "L" voltage		Vol1		0.01	0.1	V	
OD pin output "H" voltage		Voh2	VDD-0.	VDD-0. 02		V	
OD pin output "L" voltage		Vol2		0.01	0.1	V	

9. State Diagram of Operation

10. Description of Operation

10.1 正常情況

若VODL<VDD<VOCU且VCH<VCSI<VOI1,則M1與M2均Turn ON,此時充電與放電均可正常進行。

10.2 過度充電情況

當由正常情況進入充電情況時,可由VDD偵測到電池電壓。當電池電壓進入過度充電情況時,VDD電壓會大於VOCU,且若時間大於TOC,則會將M2 Turn OFF。

10.3 解除過度充電情況

進入過度充電情況後,要解除過度充電情況,進入正常情況,有兩種機制。

- 1) 透過自我放電,若VDD<VOCR,則M2 Turn ON,進入正常情況。
- 2) 移去充電器,接上負載後,此時若VOCR<VDD<VOCU而且VCSI>VOI1,則M2 Tum ON,進入正常情況。

10.4 過度放電情況

當由正常情況進入放電情況時,可由VDD偵測到電池電壓。當電池電壓進入過度放電情況時,VDD電壓會小於VODL,且若時間大於TOD,則會將M1 Tum OFF,此時CSI接腳會透過晶片一個內部電阻RCSID,拉到VDD電壓。此時,若VCSI>VOI2,則晶片將進入Power-down mode (耗電流小於0.3uA)。

10.5 解除Power-down mode

進入Power-down mode後,若接上充電器,此時若VCH<VCSI<VOI2,且VDD<VODR,則會解除Power-down mode〔但M1仍然OFF〕。此時若VDD>VODR,則M1 Turn ON,進入正常情況。

10.6 偵測充電器情況

進入Power-down mode後,若接上充電器後,若VCSI<VCH,且VDD>VODL,則將M1 Turn ON,進入正常情況。

10.7 不正常充電情況

進入正常情況後,當接上充電器充電時,若VCSI<VCH且時間大於TOC,則會將M2 Tum OFF。

10.8 過電流(短路)情况

進入放電情況時,若放電電流過大,由CSI接腳偵測到電壓大於VOIX (VIO1 or VIO2),且時間大於TOIX (TIO1 or TIO2)時,則代表過電流(短路)情況,此時會將M1 Tum OFF,且CSI接腳會透過晶片內部一個電阻RCSIS,拉到VSS電壓。

10.9 解除過電流(短路)情況

當進入過電流(短路)情況後,若移去負載或介於VBAT+與VBAT-間之阻抗大於 $500K\Omega$,且VCSI< VOI1,則會將M1 Tum ON,進入正常情況。

註:當電池第一次接上保護板時,保護IC可能不會進入正常情況(Normal condition),此時無法放電。若此現象發生,令CSI電壓等於VSS電壓(將CSI與VSS短路或連接充電器)即可解開此現象,使保護IC進入正常情況。

11. Timing Diagram

11.1 過度充電情況→自我放電→正常情況

11.2 過度充電情況→負載放電→正常情況

11.3 過度放電情況→充電器充電→正常情況

11.4 過度放電情況→不正常充電→正常情況

11.5 過電流(短路)情况→正常情况

