

Márcio C. F. Macedo (UFBA – Brazil) Antônio L. Apolinário Jr. (UFBA – Brazil)

PGCOMP (UFBA - Brazil)

AGENDA

- Introduction;
- Euclidean Distance Transform Shadow Mapping;
- Results and Discussion;
- Conclusion and Future Work;

CONTEXT

CURRENT SCENARIO

[Reeves1987] – W. T. Reeves, D. H. Salesin, and R. L. Cook. "Rendering Antialiased Shadows with Depth Maps". Proceedings of the SIGGRAPH, 1987.

[Donnelly2006] – W. Donnelly and A. Lauritzen. "Variance Shadow Maps". Proceedings of the I3D, 2006.

EUCLIDEAN DISTANCE TRANSFORM SHADOW MAPPING

• Step 1 - Shadow Map Rendering:

• Step 2 - Shadow Mapping [Williams1978]:

8

• Step 3 - Shadow Revectorization [Macedo2016]:

[Macedo2016] – M. Macedo, A. Apolinário. "Revectorization-Based Shadow Mapping". Proceedings of Graphics Interface, 2016.

○ Step 4 – EDT Shadowing:

◦ Step 5 − EDT Filtering:

◦ Step 5 − EDT Filtering:

RESULTS AND DISCUSSION

EXPERIMENTAL SETUP

- o For all tests, we used an Intel® Core™ i7-3770K CPU @3.50Ghz, 8GB RAM, NVIDIA GeForce GTX Titan X;
- EDTSM (our approach) was implemented using OpenGL and GLSL languages;
- To compute the EDT, we have used the PBA algorithm [Cao2010] implemented in CUDA;
- A kernel size of 15 x 15 was used to suppress skeleton and banding artifacts for our technique and related work;

• Temporal Coherence:

• Non-Planar Receiver:

• Complex Scenario:

• Related Work:

[Reeves1987] — W. T. Reeves, D. H. Salesin, and R. L. Cook. "Rendering Antialiased Shadows with Depth Maps".

[Notand 1995] [Not

RENDERING TIME

• Shadow Map Resolution:

		Shadow Map Resolution			
Scene	Method	512^2	1024^2	2048^2	4096^2
1	PF	4.1 ms	4.3 ms	4.5 ms	5.5 ms
	PCF	$5.0~\mathrm{ms}$	5.1 ms	$5.2 \mathrm{ms}$	5.6 ms
	EDTSM	6.3 ms	6.4 ms	6.5 ms	7.4 ms
	RPCF	22.2 ms	22.7 ms	23.2 ms	27.7 ms
2	PF	4.7 ms	4.8 ms	5.1 ms	6.3 ms
	PCF	$5.3~\mathrm{ms}$	5.4 ms	5.6 ms	6.4 ms
	EDTSM	6.4 ms	6.5 ms	6.7 ms	7.5 ms
	RPCF	12.9 ms	13.6 ms	15.2 ms	17.8 ms
3	PF	10.5 ms	10.6 ms	10.8 ms	12.0 ms
	PCF	$11.3 \mathrm{\ ms}$	$11.4 \mathrm{\ ms}$	$11.4 \mathrm{\ ms}$	11.7 ms
	EDTSM	$12.8~\mathrm{ms}$	12.9 ms	13.0 ms	13.7 ms
	RPCF	26.2 ms	27.3 ms	27.8 ms	30.0 ms

RENDERING TIME

• Viewport/Output Resolution:

		Output Resolution			
Scene	Method	SD	HD	Full-HD	
	PF	3.2 ms	4.3 ms	4.8 ms	
1	PCF	$3.2 \mathrm{\ ms}$	$5.1~\mathrm{ms}$	5.3 ms	
1	EDTSM	$4.1 \mathrm{\ ms}$	6.4 ms	$8.0~\mathrm{ms}$	
	RPCF	10.6 ms	22.7 ms	25.0 ms	
	PF	3.2 ms	4.7 ms	5.7 ms	
2	PCF	$3.2 \mathrm{ms}$	5.4 ms	5.8 ms	
	EDTSM	$4.3~\mathrm{ms}$	6.4 ms	8.1 ms	
	RPCF	7.1 ms	12.9 ms	16.6 ms	
	PF	9.9 ms	10.6 ms	11.3 ms	
3	PCF	$9.8~\mathrm{ms}$	$11.4 \mathrm{\ ms}$	11.9 ms	
	EDTSM	10.7 ms	12.9 ms	$14.7~\mathrm{ms}$	
	RPCF	16.4 ms	27.3 ms	30.3 ms	

RENDERING TIME

• Kernel Size:

		Kernel Size			
Scene	Method	7×7	15×15	23×23	31×31
1	PF	3.9 ms	4.3 ms	4.5 ms	4.7 ms
	PCF	3.4 ms	5.1 ms	7.4 ms	10.2 ms
	EDTSM	5.9 ms	6.4 ms	6.8 ms	7.2 ms
	RPCF	22.2 ms	76.9 ms	142.8 ms	200.0 ms
2	PF	4.5 ms	4.7 ms	5.1 ms	5.3 ms
	PCF	$3.5~\mathrm{ms}$	$5.4~\mathrm{ms}$	7.5 ms	10.5 ms
	EDTSM	6.2 ms	6.4 ms	6.7 ms	$7.0~\mathrm{ms}$
	RPCF	12.9 ms	39.6 ms	89.2 ms	142.8 ms
3	PF	9.8 ms	10.6 ms	10.7 ms	11.1 ms
	PCF	$9.8~\mathrm{ms}$	$11.4 \mathrm{\ ms}$	13.5 ms	17.0 ms
	EDTSM	12.3 ms	$12.9 \mathrm{\ ms}$	13.5 ms	14.2 ms
	RPCF	26.2 ms	77.5 ms	166.6 ms	285.7 ms

CONCLUSION AND FUTURE WORK

FINAL CONSIDERATIONS

• Conclusion:

- Our technique outperforms related work in terms of visual quality, mainly for low-resolution shadow maps;
- Our technique is more scalable than PCF for high order filter sizes;
- We believe that our approach is useful for games and other interactive applications;

• Future Work:

- Minimize shadow overestimation;
- Speed up the EDT computation;
- Extend the approach for soft shadows;

ACKNOWLEDGMENTS

- We are grateful to:
 - The authors of [Cao2010] for sharing the source code for GPU-Based Euclidean Distance Transform computation;
 - NVIDIA Corporation for providing the NVIDIA GeForce GTX Titan X through the GPU Education Center program;
 - CAPES for financial support;

Thank You!

Márcio C. F. Macedo (<u>marciocfmacedo@gmail.com</u>)

Antônio L. Apolinário Jr. (apolinario@dcc.ufba.br)