Problem 1.

Use the pumping lemma to prove that $L = \{ww : w \in \{0, 1\} *\}$ is not regular.

Solution

Proof. via contradiction

Assume that L is regular, that is, the pumping lemma holds on L. First, note that L is clearly infinite, thus the pumping lemma will not vacuously hold.

Let $p \in \mathbb{Z}^+$ such that the pumping lemma holds forr p.

Now define w such that |w| = 4p and

$$w_i = 0 \text{ for } 0 \le i < p,$$

$$w_i = 1 \text{ for } p \le i < 2p,$$

$$w_i = 0 \text{ for } 2p \le i < 3p,$$

$$w_i = 1 \text{ for } 3p \leq i < 4p$$

Note that $w \in L$.

Then, by the pumping lemma we must have that w = xyz where

(1)
$$|y| \ge 1 \land (2) |xy| \le p \land (3) xy^n z \in L \ \forall n \ge 0.$$

Note that by construction of w, xy will be a sequence of repeated 0's, as $|xy| \le p$ and $\forall 0 < p, w_i = 0$.

Now consider xy^nz where $n \geq 0$. By assumption, we have that $xy^0z \in L$, that is $xz \in L$, where $xy = 0^k 1^p 0^p 1^p$, for some $0 \leq k < p$ (as we have removed at least 1 zero by removing y). We know $w \in L$ by the pumping lemma, thus let w = vv, $v \in \{0, 1\}^*$ then $|v| = \frac{3p+k}{2}$. $|v| = \frac{3p+k}{2} = 1.5p + 0.5k$, then $p < k \Rightarrow 0.5p < 0.5k \Rightarrow p + k < 1.5p + 0.5k = |v|$ further |v| = 1.5p + 0.5k < 2p

Thus we have, p + k < |v| < 2p. That is to say, v splits our string somewhere in the first group of 1's. Then $v = 0^k 1^p 0^m = 0^n 1^p$, where $m, n \in \mathbb{Z}^+, m + n = p$.

However, $0^k 1^p 0^m$ clearly ends in 0 where $0^n 1^p$ clearly ends in $1 \Rightarrow v \neq v$. This is a contradiction, the pumping lemma fails, and this language must be nonregular.

Problem 2.

languase

Prove that $L = \{w \in \{a, b\}^* : |w|_a \neq |w|_b\}$ is nonregular.

Solution

Proof. via contradiction

Assume that L is regular. Then, by the closure properties of regular languages, we have that \overline{L} is regular. Where $\overline{L} = \{w \in \{a,b\}^* : |w|_a = |w|_b\}$ for $U = \{a,b\}^*$. As \overline{L} is regular, the pumping lemma must hold on \overline{L} . Let p justify this fact.

Now define $w = a^p b^p$. Note that $|w|_a = |w|_b = p$, thus $w \in \overline{L}$. Apply the pumping lemma on w, by selecting w = xyz. As $|xy| \le p$ we have that $xy = a^{|xy|}$ then $y = a^{|y|}$. Define k = |p| > 0, then $y = a^k$. Now, pump y for n = 0. Thus we create a new string w' = xz, $w' \in \overline{L}$ by the pumping lemma. In w we had $|w|_a = p$, but we have now removed k > 0 of them, thus $|w'|_a = (p - k) \ne p = |w|_b = |w'|_b$ (note we haven't removed any b's). As we now know $|w'|_a \ne |w'|_b$ we conclude $w \notin \overline{L}$. This contradicts the pumping lemma, thus via contradiction, \overline{L} is not regular, therefore L is not regular (again by the closure properties).