

Introduction

- Traffic accidents cause serious threat to the human life worldwide, the economy and reduces efficiency in transportation.
- Some factors that contribute to the risk of collisions are; vehicle design, speed of operation, road design, road environment, weather conditions, lighting conditions, driving skills, impairment due to alcohol or drugs, and behaviour, notably distracted driving, speeding, and street racing.

Stakeholders

- Stakeholder involved in this includes:
- Car owners
- Healthcare workers
- Government
- Commuters
- Logistics
- Professional Drivers

Data

- The data to be used for this project is raw data from the SDOT Traffic Management Division,
 containing all types of collisions that occurred Seattle city from 2004 to 2020
- The data contains 194,673 samples and have 37 features.
- Target(Dependent Variable), y: SEVERITYCODE.
- Feature(Independent Variables), X: COLLISIONTYPE, WEATHER, ROADCOND, LIGHTCOND,
 UNDERINFL, ADDRTYPE

Annual Traffic Incidents

Collision Type

	COLLISIONTYPE
Parked Car	47987
Angles	34674
Rear Ended	34090
Other	23703
Sideswipe	18609
Left Turn	13703
Pedestrian	6608
Cycles	5415
Right Turn	2956
Head On	2024

Weather Condition

	WEATHER
Clear	111135
Raining	33145
Overcast	27714
Unknown	15091
Snowing	907
Other	832
Fog/Smog/Smoke	569
Sleet/Hail/Freezing Rain	113
Blowing Sand/Dirt	56
Severe Crosswind	25
Partly Cloudy	5

Road Condition

	ROADCOND
Dry	124510
Wet	47474
Unknown	15078
Ice	1209
Snow/Slush	1004
Other	132
Standing Water	115
Sand/Mud/Dirt	75
Oil	64

Light Condition

	LIGHTCOND
Daylight	116137
Dark - Street Lights On	48507
Unknown	13473
Dusk	5902
Dawn	2502
Dark - No Street Lights	1537
Dark - Street Lights Off	1199
Other	235
Dark - Unknown Lighting	11

Alcohol Influence

	UNDERINFL
N	100274
0	80394
Y	5126
1	3995

Decision Tree

• 70.3% test score accuracy

Logistic Regression

• 70% test score accuracy

SVM

• 70.4% test score accuracy

Algorithm Accuracy Jaccard F1-score Precision 0 Decision Tree 0.7 0.0 0.6 0.6 1 Logistic Regression 0.7 0.0 0.58 0.5 2 SVM 0.704 0.006 0.585 0.652

Evaluation

 Among all three models, accuracy score's measures accuracy is above 70%. The highest accuracy model is the SVM Classifier. The same model also presents the best F1_score, jaccard and precision

Conclusion

- Built useful model for accident severity
- . It was able to achieve 70.4% accuracy however there were still significant variances that could not be predicted by the models in this study
- Code can be found on:
- https://github.com/JemimahAbah/Coursera Capstone/blob/main/Accident%20Severity.ipynb