[Llenar con letra mayúscula de imprenta GRANDE]

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Teoría de la Computación

Parcial 1, tema 1 [Lunes 18 de Abril de 2011]

Instrucciones: la evaluación dura 3 hs (tres horas). NO se asignan puntos a las respuestas aún correctas pero sin justificación o desarrollo. Respuestas incompletas reciben puntajes incompletos. Entregar en hojas SEPARADAS por ejercicio, numeradas, cada una con APELLIDO en el margen SUPERIOR DERECHO.

- 1) a) Defina proposición recíproca, contrarrecíproca e inversa, dé un ejemplo de cada una y justifique cuáles de ellas son lógicamente equivalentes entre sí.
 - b) Demuestre si $(p \to q) \to r$ y $p \to (q \to r)$ son lógicamente equivalentes (o no).
 - c) (i) Demuestre el valor de verdad de la siguiente afirmación: $\forall x \exists y \ (x \neq y \rightarrow x > y)$, donde $x, y \in D$, con $D = \{1, 2, 3\}$; (ii) Escriba un pseudocódigo que devuelve *True* cuando $\exists x \forall y \ P(x, y)$ lo es y *False* en caso contrario.
- 2) a) Describa y simbolice: (i) Demostración directa y demostración trivial; (ii) Principio de inducción matemática.
 - b) Dado un entero n probar que estas dos sentencias son equivalentes: (i) n^2 es impar, (ii) 1-n es par.
 - c) Demuestre que al menos 5 de cada 29 días deben corresponder al mismo día de la semana.
- 3) a) Sea P(x) una función proposicional con x perteneciente a un cierto dominio de discurso. Demuestre que $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$.
 - b) Hallar el valor de $\sum_{i=0}^{3}\prod_{j=1}^{2}\left(\lfloor i/2\rfloor+\lceil j/2\rceil\right).$
 - c) (i) Justifique si es verdad que $\emptyset \subseteq \{\emptyset\}$; (ii) Demuestre que $\emptyset \subseteq A$ para todo conjunto A; (iii) Encuentre el conjunto de partes de \emptyset y su cardinal.
- 4) a) Defina función, función inyectiva, dé las notaciones, un ejemplo y un contraejemplo en cada caso.
 - b) Dé un ejemplo de una función f(x) tal que sea inyectiva pero no sobreyectiva, cuyo dominio y codominio tengan un infinito número de elementos.
 - c) Suponga las funciones $g:A\to B$ y $f:B\to C$. Demuestre o refute: si f y g son invectivas, entonces la composición $f\circ g$ también es invectiva.
- 5) a) Defina cuando la función f(x) es O(q(x)).
 - b) Demuestre que $(x^2 + 2x + 3)/(x + 2)$ es O(x) para reales positivos x.
 - c) Sean a, b y c enteros. Demuestre que si a|b y a|c entonces a|(b+c).