SEQUENCE LISTING

The Trustees of the University of Pennsylvania <110> Wilson, James M. Gao, Guangping Alvira, Mauricio R Vandenberghe, Luk H. <120> Adeno-Associated Virus (AAV) Clades, Sequences, Vectors Containing Same, and Uses Therefor <130> UPN-P3230PCT <150> US 60/508,226 <151> 2003-09-30 <150> US 60/566,546 <151> 2004-04-29 <160> 236 <170> PatentIn version 3.3 <210> 2211 <211> <213> adeno-associated virus, clone hu.31 <400> atggctgccg atggttatct tccagattgg ctcgaggaca accttagtga aggaattcgc 60 gagtggtggg Ctttgaaacc tggagcccct caacccaagg caaatcaaca acatcaagac 120 aacgctcgag gtcttgtgct tccgggttac aaataccttg gacccggcaa cggactcgac 180 aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aggccggaga caacccgtac ctcaagtaca accacgccga cgccgagttc 300 caggagcggc tcaaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa qacgqctcct 420 ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc gggtattggc 480 aaatcgggtg cacagcccgc taaaaagaga ctcaatttcg gtcagactgg cgacacagag 540 tragtricag accetraace aateggagaa ceteergeag ecceetragg tgtqqqatet 600 cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatgga 660 gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca atcacctcta caagcaaatc 780 tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt 960 1020 caggtcaaag aggttacgga caacaatgga gtcaagacca tcgccaataa ccttaccagc acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac 1080 gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg 1140 acgcttaatg atggaagcca ggccgtgggt cgttcgtcct tttactgcct ggaatatttc 1200 ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacgta 1260 cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc 1320 gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg 1380 ctaaaattca gtgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct 1440 ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa 1500 tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct 1560 ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct 1620 ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata 1680 accaacgaag aagaaattaa aactactaac ccggtagcaa cggagtccta tggacaagtg 1740 gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga 1800 atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc 1860

1920

aaaattcctc acacggacgg caactttcac ccttctccgc tgatgggagg gtttggaatg

```
aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg
                                                                     1980
gccttcaaca aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc
                                                                     2040
gtggagatcg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag
                                                                     2100
tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta
                                                                     2160
tatagtgaac cccgccccat tggcaccaga tacctgactc gtaatctgta a
                                                                     2211
<210>
<211>
       2
2211
       DNA
      new AAV serotype, clone hu.32
<213>
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                       60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                      120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccggcaa cggactcgac
                                                                      180
aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagctca aggccggaga caacccgtac ctcaagtaca accacgccga cgccgagttc
                                                                      300
caggagcggc tcaaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa gacggctcct
                                                                      420
ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc gggtattggc
                                                                      480
aaatcgggtt cacagcccgc taaaaagaaa ctcaatttcg gtcagactgg cgacacagag
                                                                      540
tcagtccccg accetcaacc aatcggagaa cetecegeag ecceetcagg tgtgggatet
                                                                      600
cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatgga
                                                                      660
gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc
                                                                      720
accaccagca cccgaacctg ggccctgccc acctacaaca atcacctcta caagcaaatc
                                                                      780
tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc
                                                                      840
tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga
                                                                      900
ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt
                                                                      960
caggicaaag aggitacgga caacaatgga gicaagacca tcgccaataa ccitaccagc
                                                                     1020
acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac
                                                                     1080
gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg
                                                                     1140
acgcttaatg atgggagcca ggccgtgggt cgttcgtcct tttactgcct ggaatatttc
                                                                     1200
ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacgta
                                                                     1260
cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc
                                                                     1320
gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg
                                                                     1380
ctaaaattca gcgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct
                                                                     1440
ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa
                                                                     1500
tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct
                                                                     1560
ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct
                                                                     1620
ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata
                                                                     1680
accaacgaag aagaaattaa aactactaac ccggtagcaa cggagtccta tggacaagtg
                                                                     1740
gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga
                                                                     1800
atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc
                                                                     1860
aaaattcctc acacggacgg caactttcac ccttctccgc taatgggagg gtttggaatg
                                                                     1920
aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg
                                                                     1980
gctttcaata aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc
                                                                     2040
gtggagattg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag
                                                                     2100
tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta
                                                                     2160
```

tatagtgaac cccgccccat tggcaccaga tacctgactc gtaatctgta a 2211 <210> 3 2211 <212> DNA <213> adeno-associated virus, human clone 9 atggctgccg atggttatct tccagattgg ctcgaggaca accttagtga aggaattcgc 60 gagtggtggg ctttgaaacc tggagcccct caacccaagg caaatcaaca acatcaagac 120 aacgctcgag gtcttgtgct tccgggttac aaataccttg gacccggcaa cggactcgac 180 aagggggagc cggtcaacgc agcagacgcg gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aggeeggaga caaccegtae etcaagtaca accaegeega egeegagtte 300 caggagcggc tcaaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaaaaaga ggcttcttga acctcttggt ctggttgagg aagcggctaa gacggctcct 420 ggaaagaaga ggcctgtaga gcagtctcct caggaaccgg actcctccgc gggtattggc 480 aaatcgggtg cacagcccgc taaaaagaga ctcaatttcg gtcagactgg cgacacagag 540 tragtrccag accetraace aateggagaa cetecegeag ecceteagg tgtgggatet 600 cttacaatgg cttcaggtgg tggcgcacca gtggcagaca ataacgaagg tgccgatgga 660 gtgggtagtt cctcgggaaa ttggcattgc gattcccaat ggctggggga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca atcacctcta caagcaaatc 780 tccaacagca catctggagg atcttcaaat gacaacgcct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgccacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggcct aagcgactca acttcaagct cttcaacatt 960 caggtcaaag aggttacgga caacaatgga gtcaagacca tcgccaataa ccttaccagc 1020 acggtccagg tcttcacgga ctcagactat cagctcccgt acgtgctcgg gtcggctcac 1080 gagggctgcc tcccgccgtt cccagcggac gttttcatga ttcctcagta cgggtatctg 1140 acgcttaatg atggaagcca ggccgtgggt cgttcgtcct tttactgcct ggaatatttc 1200 ccgtcgcaaa tgctaagaac gggtaacaac ttccagttca gctacgagtt tgagaacgta 1260 cctttccata gcagctacgc tcacagccaa agcctggacc gactaatgaa tccactcatc 1320 gaccaatact tgtactatct ctcaaagact attaacggtt ctggacagaa tcaacaaacg 1380 ctaaaattca gtgtggccgg acccagcaac atggctgtcc agggaagaaa ctacatacct 1440 ggacccagct accgacaaca acgtgtctca accactgtga ctcaaaacaa caacagcgaa 1500 tttgcttggc ctggagcttc ttcttgggct ctcaatggac gtaatagctt gatgaatcct 1560 ggacctgcta tggccagcca caaagaagga gaggaccgtt tctttccttt gtctggatct 1620 ttaatttttg gcaaacaagg aactggaaga gacaacgtgg atgcggacaa agtcatgata 1680 accaacgaag aagaaattaa aactactaac ccggtagcaa cggagtccta tggacaagtg 1740 gccacaaacc accagagtgc ccaagcacag gcgcagaccg gctgggttca aaaccaagga 1800 atacttccgg gtatggtttg gcaggacaga gatgtgtacc tgcaaggacc catttgggcc 1860 aaaattcctc acacggacgg caactttcac ccttctccgc tgatgggagg gtttggaatg 1920 aagcacccgc ctcctcagat cctcatcaaa aacacacctg tacctgcgga tcctccaacg 1980 gccttcaaca aggacaagct gaactctttc atcacccagt attctactgg ccaagtcagc 2040 gtggagatcg agtgggagct gcagaaggaa aacagcaagc gctggaaccc ggagatccag 2100 tacacttcca actattacaa gtctaataat gttgaatttg ctgttaatac tgaaggtgta 2160 tatagtgaac cccgccccat tggcaccaga tacctgactc gtaatctgta a 2211 4 2217 <213> new AAV serotype, clone hu.17 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60

gagtggtggg	acttgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctgc	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtcttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	cagactcctc	tacgggcatc	480
ggcaagacag	gccagcagcc	cgcgaaaaag	agactcaact	ttgggcagac	tggcgactca	540
gagtcagtgc	ccgaccctca	accaatcgga	gaaccccccg	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctc	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcaacttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
		ggactcggaa				1080
caccagggct	gcccgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacgggtac	1140
		tcaggccgtg				1200
		aacgggcaac				1260
gtgccttttc	acagcagcta	cgcgcatagc	caaagcctgg	accggctgat	gaaccccctc	1320
atcgaccagt	acctgtacta	cctgtctcgg	actcagtcca	cgggaggtac	cgcaggaact	1380
cagcagttgc	tattttctca	ggccgggcct	aataacatgt	cggctcaggc	caaaaactgg	1440
ctacccgggc	cctgctaccg	gcagcaacgc	gtctccacga	cactgtcgca	aaataacaac	1500
agcaactttg	cttggaccgg	tgccaccaag	tatcatctga	atggcagaga	ctctctggta	1560
aatcccggtg	tcgctatggc	aacgcacaag	gacgacgaag	agcgatttt	tccatccagc	1620
ggagtcttga	tgtttgggaa	acagggagct	ggaaaagaca	acgtggacta	tagcagcgtt	1680
atgctaacca	gtgaggaaga	aatcaaaacc	accaacccag	tggccacaga	acagtacggc	1740
gtggtggccg	ataacctgca	acagcaaaac	gccgctccta	ttgtaggggc	cgtcaacagt	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	tttcatcctt	cgccgctgat	gggaggcttt	1920
ggactgaaac	acccgcctcc	tcagatcctg	attaagaata	cacctgttcc	cgcggatcct	1980
ccaactacct	tcagtcaagc	caagctggcg	tcgttcatca	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaattgaatg	ggagctgcag	aaagagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	taacaaatct	gttaatgtgg	actttactgt	ggacactaat	2160
ggtgtgtatt	cagagcctcg	ccccattggc	accagatacc	tgactcgtaa	tctgtaa	2217
<210> 5 <211> 2217 <212> DNA <213> new		pe, clone h	u.6			
<400> 5 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
		tggagccccg				120
		tcctggctac				180
		ggcggacgca				240
		caatccgtac				300
		tacgtctttt				360

gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	cagactcctc	tacgggcatc	480
ggcaagacag	gccagcagcc	cgcgaaaaag	agactcaact	ttgggcagac	tggcgactca	540
gagtcagtgc	ccgaccctca	accaatcgga	gaaccccccg	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattccg	catggctggg	cgacagagtc	720
atcaccacca	gcacccgacc	ctgggccctc	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcaacttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtctttac	ggactcggaa	taccagctcc	cgtacgtcct	cggctctgcg	1080
caccagggct	gcccgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacgggtac	1140
ctgactctga	acaacggcag	tcaggccgtg	ggccgttcct	ccttctactg	cctggagtac	1200
tttccttctc	aaatgcggag	aacgggcaac	aactttgagt	tcagctacca	gtttgaggac	1260
gtgccttttc	acagcagcta	cgcgcatagc	caaagcctgg	accggctgat	gaaccccctc	1320
atcgaccagt	acctgtacta	cctgtctcgg	actcagtcca	cgggaggtac	cgcaggaact	1380
cagcagttgc	tattttctca	ggccgggcct	aataacatgt	cggctcaggc	caaaaactgg	1440
ctacccgggc	cctgctaccg	gcagcaacgc	gtctccacga	cactgtcgca	aaataacaac	1500
agcaactttg	cttggaccgg	tgccaccaag	tatcatctga	atggcagaga	ctctctggta	1560
aatcccggtg	tcgctatggc	aacgcacaag	gacgacgaag	agcgatttt	tccatccagc	1620
ggagtcttga	tgtttgggaa	acagggagct	ggaaaagaca	acgtggacta	tagcagcgtt	1680
atgctaacca	gtgaggaaga	aatcaaaacc	accaacccag	tggccacaga	acagtacggc	1740
gtggtggccg	ataacctgca	acagcaaaac	gccgctccta	ttgtaggggc	cgtcaacagt	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	tttcatcctt	cgccgctgat	gggaggcttt	1920
ggactgaaac	acccgcctcc	tcagatcctg	attaagaata	cacctgttcc	cgcggatcct	1980
ccaactacct	tcagtcaagc	caagctggcg	tcgttcatca	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaattgaatg	ggagctgcag	aaagagaaca	gcaagcgctg	gaacccagag	2100
		ctacaaatct				2160
ggtacttatt	cagagcctcg	ccccattggc	acccgttacc	tcacccgtaa	cctgtaa	2217
<210> 6 <211> 221 <212> DNA <213> new		pe, clone h	u.41			
<400> 6 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
					gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
					cgccgagttt	300
					agtcttccag	360
gccaagaago	gggttctcga	acctctcggt	ccggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgccacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtco	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660

720

ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc

atcaccacca gcacccgaac ctgggccctg cccacc	taca acaaccacct ctacaagcaa 780
3	
atatccaatg ggacatcggg aggaagcacc aacgac	aaca cctacttcgg ctacagcacc 840
ccctgggggt attttgactt caacagattc cactgc	cact tctcaccacg tgactggcag 900
cgactcatca acaacaactg gggattccgg ccaaaa	agac tcagcttcaa gctcttcaac 960
atccaggtca aggaggtcac gcagaatgaa ggcacc	aaga ccgtcgccaa taaccttacc 1020
agcacgattc aggtatttac ggactcggaa taccag	ctgc cgtacgtcct cggctccgcg 1080
caccagggct gcctgcctcc gttcccggcg gacgtc	ttca tgattcccca gtacggctac 1140
cttacactga acaatggaag tcaagccgta ggccgt	tcct ccttctactg cctggaatat 1200
tttccatctc aaatgctgcg aactggaaac aatttt	gaat tcagctacac cttcgaggac 1260
gtgcctttcc acagcagcta cgcacacagc cagagc	ttgg accgactgat gaatcctctc 1320
atcgaccagt acctgtacta cttatccaga actcag	tcca caggaggaac tcaaggtacc 1380
cagcaattgt tattttctca agctgggcct gcaaac	atgt cggctcaggc taagaactgg 1440
ctacctggac cttgctaccg gcagcagcga gtctct	acga cactgtcgca aaacaacaac 1500
agcaactttg cttggactgg tgccaccaaa tatcac	ctga acggaagaga ctctttggta 1560
aatcccggtg tcgccatggc aacccacaag gacgac	gagg aacgcttctt cccgtcgagt 1620
ggagtcctga tgtttggaaa acagggtgct ggaaga	gaca atgtggacta cagcagcgtt 1680
atgctaacca gcgaagaaga aattaaaacc actaac	cctg tagccacaga acaatacggt 1740
gtggtggctg acaacttgca gcaaaccaat acaggg	ccta ttgtgggaaa tgtcaacagc 1800
caaggagcct tacctggcat ggtctggcag aaccga	gacg tgtacctgca gggtcccatc 1860
tgggccaaga ttcctcacac ggacggcaac ttccac	cctt caccgctaat gggaggattt 1920
ggactgaagc acccacctcc tcagatcctg atcaag	aaca cgccggtacc tgcggatcct 1980
ccaacaacgt tcagccaggc gaaattggct tccttc	atta cgcagtacag caccggacag 2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggag	aaca gcaaacgttg gaacccagag 2100
attcagtaca cttcaaacta ctacaaatct acaaat	gtgg actttgctgt caatacagag 2160
ggaacttatt ctgagcctcg ccccattggt actcgt	tacc tcacccgtaa tctgtaa 2217
<210> 7	
<211> 2217	
<212> DNA <213> new AAV serotype, clone rh.38	
<400> 7 atggctgctg acggttatct tccagattgg ctcgag	gaca acctctctga gggcattcgc 60
gagtggtggg acctgaaacc tggagccccc aagccc	
gacggccggg gtctggtgct tcctggctac aagtac	
aagggggagc ccgtcaacgc ggcggacgca gcggcc	
cagcagetea aagegggtga caateegtae etgegg	
caggagcgtc tacaagaaga tacgtctttt gggggc	
gccaagaagc gggttctcga acctctcggt ctggtt	
ggaaagaaga gaccggtaga accgtcacct cagcgt	= -
ggcaagaaag gccagcggcc cgctaaaaag agactg	
gagtcagtcc ccgaccctca accaatcgga gaacca	
tctggtacaa tggctgcagg cggtggcgct ccaatg	
ggagtgggta gttcctcagg aaattggcat tgcgat	
attaccatca gcacccgaac ctgggccctg cccacc	
atatccaatg ggacatcggg aggaagcacc aacgac	
ccctgggggt attttgactt caacagattc cactg	
cgactcatca acaacaactg gggattccgg ccaaaa	lagac tcagcttcaa gcccttcaac 960 Page 6

55	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcagcta	cgcacacagc	cagagcttgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgcacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
		agctgggcct				1440
		gcagcagcga				1500
		tgccaccaaa				1560
		aacccacaag				1620
		acagggtgct				1680
		aattaaaacc			_	1740
		gcaaaccaat				1800
		ggtctggcag				1860
		ggacggcaac				1920
		tcagatcctg				1980
		gaaattggct				2040
		ggagctgcag				2100
		ctacaaatct				2160
		ccccattggt				2217
ggaaccacc	cryagecreg	cccaccygc	accegetace	ccacccytaa	tttytaa	2211
<210> 8 <211> 221 <212> DNA <213> new		pe, clone h	u.42			
<400> 8						
	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
atggctgctg		tccagattgg tggagccccc				60 120
atggctgctg gagtggtggg	acctgaaacc		aagcccaagg	ccaaccagca	gaagcaggac	
atggctgctg gagtggtggg gacggccggg	acctgaaacc gtctggtgct	tggagccccc tcctggctac	aagcccaagg aagtacctcg	ccaaccagca gacccttcaa	gaagcaggac cggactcgac	120
atggctgctg gagtggtggg gacggccggg aagggggagc	acctgaaacc gtctggtgct ccgtcaacgc	tggagccccc tcctggctac ggcggacgca	aagcccaagg aagtacctcg gcggccctcg	ccaaccagca gacccttcaa agcacgacaa	gaagcaggac cggactcgac ggcctacgac	120 180
atggctgctg gagtggtggg gacggccggg aagggggagc cagcagctca	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga	tggagccccc tcctggctac ggcggacgca caatccgtac	aagcccaagg aagtacctcg gcggccctcg ctgcggtata	ccaaccagca gacccttcaa agcacgacaa accacgccga	gaagcaggac cggactcgac ggcctacgac cgccgagttt	120 180 240
atggctgctg gagtggtggg gacggccggg aagggggagc cagcagctca caggagcgtc	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga	tggagcccc tcctggctac ggcggacgca caatccgtac tacgtcttt	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag	120 180 240 300
atggctgctg gagtggtggg gacggccggg aagggggagc cagcagctca caggagcgtc	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga	tggagcccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct	120 180 240 300 360
atggctgctg gagtggtggg gacggccggg aagggggagc cagcagctca caggagcgtc gccaagaagc	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga	tggagcccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc	120 180 240 300 360 420
atggctgctg gagtggtggg gacggccggg aagggggagc cagcagctca caggagcgtc gccaagaagc ggaaagaaga	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaaag	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc	120 180 240 300 360 420 480
atggctgctg gagtggtggg gacggccggg aagggggagc cagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca	tggagcccc tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt accgtcacct cgctaaaaag accaatcgga	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca	120 180 240 300 360 420 480 540
atggctgctg gagtggtggg gacggccggg aaggggggccagcccagc	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac	120 180 240 300 360 420 480 540 600 660
atggctgctg gagtggtggg gacggccggg aaggggggccagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag gagtcagtcc tctggtacaa	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc	120 180 240 300 360 420 480 540 600 660 720
atggctgctg gagtggtggg gacggccggg aagggggggc cagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca cccacctaca	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaccacct	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa	120 180 240 300 360 420 480 540 600 660 720 780
atggctgctg gagtggtggg gacggccggg aaggggggcc cagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gcacccgaac ggacatcggg	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca cccacctaca aacgacaaca	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaaccacct cctacttcgg	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcacc	120 180 240 300 360 420 480 540 600 660 720
atggctgctg gagtggtggg gacggccggg aagggggggc cagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca atatccaatg	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gcacccgaac ggacatcggg attttgactt	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc caacagattc	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact	ccaaccagca gacccttcaa agcacgacaa accacgcga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaaccacct cctacttcgg	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcac tgactggcag	120 180 240 300 360 420 480 540 600 660 720 780 840 900
atggctgctg gagtggtggg gacggccggg aagggggggc cagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca atatccaatg ccctgggggt	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gcacccgaac ggacatcggg attttgactt acaacaactg	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc caacagattc	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact ccaaaaagac	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaaccacct cctacttcgg tctcaccacg	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac	120 180 240 300 360 420 480 540 600 720 780 840 900 960
atggctgctg gagtggtggg gacggccggg aaggggggc cagcagctca caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca atatccaatg cctgggggt cgactcatca	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gcacccgaac ggacatcggg attttgactt acaacaactg aggaggtcac	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc caacagattc gggattccgg gcagaatgaa	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca cccactaca aacgacaaca cactgccact ccaaaaagac ggcaccaaga	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaaccacct cctacttcgg tctcaccacg tcagcttcaa ccatcgccaa	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
atggctgctg gagtggtggg gacggccggg aagggggggc cagcagctca caggagcgtc gccaagaagc ggaaagaaag ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca atatccaatg cgactcatca atccaggtca atcacggtca	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gtcctcagg atcctgaac ggacatcggg attttgactt acaacaactg aggaggtcac aggtatttac	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc caacagattc gggattccgg gcagaatgaa ggactcggaa	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact ccaaaaagac ggcaccaaga taccagctgc	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggccctc acaataacga catggctggg acaaccacct cctacttcgg tctcaccacg tcagcttcaa ccgtacgtcca	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac taaccttacc cggctccgcg	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080
atggctgctg gagtggtggg gacggccggg aaggggggccagcagcagctca caggagcgtc gccaagaaga ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccaca atatccaatg ccctgggggt cgactcatca atccaggtca accacggtca	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gcacccgaac ggacatcggg attttgactt acaacaactg aggaggtcac aggtatttac gcctgcctcc	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc caacagattc gggattccgg gcagaatgaa ggactcggaa gttcccggcg	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca accacctaca aacgacaaca cactgccact ccaaaaagac ggcaccaaga taccagctgc	ccaaccagca gacccttcaa agcacgacaa accacgccga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaaccacct cctacttcgg tctcaccacg tcagcttcaa ccatcgccaa cgtacgtcct tgattccca	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac taaccttacc cggctccgcg gtacggctac	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140
atggctgctg gagtggtggg gacggccggg aagggggggc cagcagctca caggagcgtc gccaagaagc ggaaagaaag ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca atatccaatg ccctgggggt cgactcatca atccaggtca accaggctc caccagggct cttacactga	acctgaaacc gtctggtgct ccgtcaacgc aagcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcagg gacccgaac ggacatcggg attttgactt acaacaactg aggaggtcac aggtatttac gcctgcctcc acaatggaag	tggagccccc tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt accgtcacct cgctaaaaag accaatcgga cggtggcgct aaattggcat ctgggccctg aggaagcacc caacagattc gggattccgg gcagaatgaa ggactcggaa	aagcccaagg aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactgaact gaaccaccag ccaatggcag tgcgattcca accacctaca aacgacaaca cactgccact ccaaaaagac ggcaccaaga taccagctgc gacgtcttca ggccgttccc	ccaaccagca gacccttcaa agcacgacaa accacgcga tcgggcgagc aagcggctaa ccgactcctc ttggtcagac caggcccctc acaataacga catggctggg acaaccacct cctacttcgg tctcaccacg tcagcttcaa ccgtacgtcct tgattcccca ccttctactg	gaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tggtctggga aggcgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac taaccttacc cggctccgcg gtacggctac cctggaatat	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080

gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aagcaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta	1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt	1620
ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt	1680
atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt	1740
gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc	1800
caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc	1860
tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggactt	1920
ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct	1980
ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag	2040
gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag	2100
attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag	2160
ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa	2217
210 0	
<210> 9 <211> 2217	
<212> DNA <213> new AAV serotype, clone rh.72	
<400> 9	
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct	420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca	540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga	600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac	660
ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc	840
ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac	960
atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc	1020
agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg	1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac	1140
cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat	1200
tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac	1260
gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc	1320
atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc	1380
cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg	1440
ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac	1500
agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta	1560

aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
gtggtggctg	acaacttgca	gcaaaccaat	acagggccta	ttgtgggaaa	tgtcaacagc	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
tgggccaaga	ttcctcacac	ggacggcaac	ttccaccctt	caccgctaat	gggaggattt	1920
ggactgaagc	acccacctcc	tcagatcctg	atcaagaaca	cgccggtacc	tgcggatcct	1980
ccaacaacgt	tcagccaggc	gaaattggct	tccttcatta	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaatcgagtg	ggagctgcag	aaggagaaca	gcaaacgctg	gaacccagag	2100
attcagtaca	cttcaaacta	ctacaaatct	acaaatgtgg	actttgctgt	caatacagag	2160
ggaacttatt	ctgagcctcg	ccccattggt	actcgttacc	tcacccgtaa	tctgtaa	2217
		pe, clone hi	J. 37			
<400> 10 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atatccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcagcta	cgcacacagc	cagagcttgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cagcaattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcaggc	taagaactgg	1440
ctacctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgttcggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccccg	tagccacaga	acaatacggt	1740
gtggtggctg	acaacttgca	gcaaaccaat	acagggccta	ttgtgggaaa	tgtcaacagc	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860

tgggccaaga	ttcctcacac	ggacggcaac	ttccaccctt	caccgctaat	gggaggattt	1920
ggactgaagc	acccacctcc	tcagatcctg	atcaagaaca	cgccggtacc	tgcggatcct	1980
ccaacaacgt	tcagccaggc	gaaattggct	tccttcatta	cgcagtacag	caccggacag	2040
gtcagcgtgg	aaatcgagtg	ggagctgcag	aaggagaaca	gcaaacgctg	gaacccagag	2100
attcagtaca	cttcaaacta	ctacaaatct	acaaatgtgg	actttgctgt	caatacagag	2160
ggaacttatt	ctgagcctcg	ccccattggt	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 11						
<211> 2217 <212> DNA	7					
	AAV seroty	oe, clone hu	.40			
<400> 11 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgagct	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
		cggtggcgct				660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atatccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttcaa	gctcttcaac	960
		gcagaatgaa				1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
		gttcccggcg				1140
		tcaagccgta				1200
		aactggaaac				1260
		cgcacacagc				1320
		cttatccaga				1380
		agctgggcct				1440
		gcagcagcga				1500
		tgccaccaaa				1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
		gcaaaccaat				1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
		ggacggcaac				1920
		tcagatcctg				1980
		gaaattggct				2040
		ggagctgcag				2100
		ctacaaatct				2160
_			5 93	Page 10	J5	

ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> 12 2217 <211> new AAV serotype, clone hu.38 <213> atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccacctg caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg agggagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200 tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcagcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttggta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacggt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860 tgggccaaga ttcctcacac ggacggcaac tgccaccctt caccgctaat gggaggattt 1920 ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980 ccaacaacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100 attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag 2160 ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217 <210> 13 2217 <211> DNA new AAV serotype, clone rh.39 <400> 13

WO 2005/0	33321					PC
atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccc	aagcccaagg	ccaaccagca	gaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atatccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttċaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcagcta	cgcacacagc	cagagcttgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cagcaattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcaggc	taagaactgg	1440
ctacctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatcccggtg	tcgccatggc	aacccacaag	gacgacgagg	aacgcttctt	cccgtcgagt	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	cagcagcgtt	1680
atgctaacca	gcgaagaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
gtggtggctg	ataacttgca	gcaaaccaat	acggggccta	ttgtgggaaa	tgtcaacagc	1800
				tgtacctgca		1860
				caccgctaat		1920
				cgccggtacc		1980
					caccggacag	2040
					gaacccagag	2100
					caatacagag	2160
ggaacttatt	ctgagcctcg	ccccattggt	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 14 <211> 221 <212> DNA <213> new		pe, clone r	h.40			
<400> 14	acoottatc+	tccanatton	ctcoannaca	acctctctca	gggcattcgc	60
					gaagcaggac	120
				gacccttcaa		180
					ggcctacgac	240
					cgccgagttt	300
-		-				

caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgctaaaaag	agactgaact	ttggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta	gttcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atatccaatg	ggacatcggg	aggaagcacc	aacgacaaca	cctacttcgg	ctacagcacc	840
ccctgggggt	attttgactt	caacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	ccaaaaagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aggaggtcac	gcaggatgaa	ggcaccaaga	ccatcgccaa	taaccttacc	1020
agcacgattc	aggtatttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctccgcg	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcccca	gtacggctac	1140
cttacactga	acaatggaag	tcaagccgta	ggccgttcct	ccttctactg	cctggaatat	1200
tttccatctc	aaatgctgcg	aactggaaac	aattttgaat	tcagctacac	cttcgaggac	1260
gtgcctttcc	acagcagcta	cgcacacagc	cagagcttgg	accgactgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cttatccaga	actcagtcca	caggaggaac	tcaaggtacc	1380
cagcaattgt	tattttctca	agctgggcct	gcaaacatgt	cggctcgggc	taagaactgg	1440
ctacctggac	cttgctaccg	gcagcagcga	gtctctacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggaagaga	ctctttggta	1560
aatcccggtg	ttgctatggc	aacgcataag	gacgacgagg	aacgtttctt	tccatcgagc	1620
ggagtcctga	tgtttggaaa	acagggtgct	ggaagagaca	atgtggacta	tagcagcgtt	1680
atgctaacca	gcgaggaaga	aattaaaacc	actaaccctg	tagccacaga	acaatacggt	1740
gtggtggctg	acaacttgca	gcaagccaat	acagggccta	ttgtgggaaa	tgtcaacagc	1800
caaggagcct	tacctggcat	ggtctggcag	aaccgagacg	tgtacctgca	gggtcccatc	1860
tgggccaaaa	ttcctcacac	ggacggcaat	tttcacccgt	ctcctctgat	gggcggcttt	1920
ggactgaagc	acccacctcc	ccagatcctg	atcaagaata	cgccggtacc	tgcggatcct	1980
ccaacgacgt	tcagccaggc	aaaattggct	tccttcatca	cgcagtacag	caccggccag	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgatg	gaacccagaa	2100
attcagtaca	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	caattctgag	2160
ggtacatatt	cagagcctcg	ccccattggt	actcgttatc	tgacacgtaa	tctgtaa	2217
		pe, clone r	h.64			
<400> 15 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtcttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600

660

tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac

55	-33 3 33	33 33 3			-55-5-5	
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
		aatcaagacc				1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
		agatggcaac				1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
		caagctgaat				2040
		ggagctgcag				2100
		ctacaaatct				2160
		ccccattggc				2217
<210> 16 <211> 221	7					
<212> DNA <213> new		pe, clone ri	h.68			
<400> 16						
		tccagattgg				60
		tggagccccg				120
		tcctggctac				180
					ggcctacgac '	240
		caatccgtac				300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaago	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540
gagtcagtco	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggcag	acaataacga	aggtgccgac	660
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900

```
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                    1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                    1080
caccaggget gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                    1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                    1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctqat qaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccacccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                     1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                     2040
gtcagcgtgg tgatcgagtg ggagctgcag aaggagaaca gcaagcgctq qaacccagag
                                                                     2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                     2160
ggtgtttact ctgagcttcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                     2217
<210>
      17
2217
       DNA
      new AAV serotype, clone rh.53
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                      660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                      840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                      900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                      960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                     1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctqcc
                                                                     1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                     1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                     1200
```

```
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgtgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcggggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aattcgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                     1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                     1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                     1800
cagggagect tacctggeat ggtetggeag aaccgggaeg tgtacctgea gggteetatt
                                                                     1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                     1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                     1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                     2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag
                                                                     2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                     2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc ccacccgtaa tctgtaa
                                                                     2217
<210>
       18
2217
       DNA
       new AAV serotype, clone rh.52
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacqacaa ggcctacqac
                                                                      240
cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                      660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                      840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                      900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                      960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa tagcctcacc
                                                                     1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                     1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                     1140
ctgactccca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                     1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                     1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                     1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                     1380
cagcagttgc tgtcttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                     1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                     1500
```

```
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacttgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                    2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                    2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                    2217
       2217
       DNA
       new AAV serotype, clone rh.46
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                      660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                      840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                      900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                      960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                     1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                     1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                     1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                     1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                     1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                     1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                     1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                     1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                     1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                     1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                     1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                     1680
atgctaacca gcgaggaaga aatcaaggcc accaaccccg tggccacaga acagtatggc
                                                                     1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                     1800
```

cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 20 <211> 2217 <212> DNA <213> new		pe, clone ri	1.70			
<400> 20 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
		tcctggctac				180
		ggcggacgca				240
		caatccgtac				300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
		acctctcggt				420
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540
gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggcag	acaataacga	aggtgccgac	660
ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggccctg	cccgcctaca	acaaccacct	ctacaagcaa	780
atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840
ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gatgtcttca	tgattcctca	gtacggctac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	gcggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
					gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tcttccatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100

'attcagrata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tttgtaa 2217 <210> 21 2217 DNA new AAV serotype, clone rh.61 <400> atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaagg ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata ateaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacqqqcatc 480 ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcqqtcaqac tqqcqactca 540 gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga 600 tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac 660 ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc 840 ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag 900 cgacccatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac 960 atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc 1020 agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacqtcct cqqctctqcc 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacqqctac 1140 ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac 1200 ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctaccc tttcgaggac 1260 gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat qaatcctctc 1320 atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc 1380 cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactqq 1440 ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac 1500 agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg 1560 aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc 1620 ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg 1680 atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc 1740 gtggtggctg ataacctaca gcagcaagac accgctccta ttgtgggggc cgtcaacagc 1800 cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt 1860 tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt 1920 ggacttaaac atccgcctcc tcaggtcctc atcaaaaaca ctcctgttcc tgcggatcct 1980 ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa 2040 gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg qaacccaqaq 2100 attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag 2160 ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa 2217 <210> 22 2217 DNA

new AAV serotype, clone rh.51

Page 19

¥	"-"<400> "-22" atggttgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
	gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcagggc	120
	gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
	aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
	cagcagctta	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagctt	300
					tcgggcgagc		360
					aaggcgctaa		420
					ccgactcctc		480
	ggcaagaaag	gccagcagcc	cgccagaaag	agactcaatt	tcggtcagac	tggcgactca	540
	gagtcagtcc	ccgaccctca	acctatcgga	gaacctccag	cagcgccctc	tagtgtggga	600
	tctggtacaa	tggctgcagg	cggtggcgcg	ccaatggcag	acaataacga	aggtgccgac	660
	ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
	atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	acaaccacct	ctacaagcaa	780
	atctccaacg	ggacctcggg	aggcagcacc	aacgacaaca	cctactttgg	ctacagcacc	840
	ccctgggggt	attttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
	cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
	atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
	agcaccatcc	aggtgtttac	ggactcggaa	taccagctgc	cgtacgtcct	cggctctgcc	1080
	caccagggct	gccagcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140
	ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
	ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
	gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
	atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380
	cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
	ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
	agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
	aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
	ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
	atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
					ttgtgggggc		1800
					tgtacctgca		1860
						gggcggcttt	1920
						tgcggatcct	1980
						caccggacaa	2040
						gaacccagag	2100
						taatactgag	2160
	ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
	<210> 23 <211> 221 <212> DNA <213> new	-	pe, clone r	h.50			
	<400> 23				acctctctoa	gggcattcgc	60
					ccaaccagca		120
						cggactcgac	180
						ggcctacgac	240
						cgccgagttt	300
		_		_	Bade 20		

caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgccggaaag agactcaatt tcggtcagac tggcgactca	540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga	600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc	720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc	840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag	900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac	960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc	1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc	1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac	1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac	1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac	1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc	1320
gtcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc	1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg	1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac	1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg	1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc	1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg	1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc	1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc	1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt	1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt	1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct	1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa	2040
gtcagcgtgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gagcccagag	2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag	2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa	2217
<210> 24 <211> 2217	
<212> DNA <213> new AAV serotype, clone hu.39	
<400> 24	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcggac tggcgactca	540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga	600

		cggtggcgca				660
		aaattggcat				720
		ctgggccctg				780
		aggcagcacc			_	840
ccctgggggt	atcttgactt	taacagattc	cactgccact	tctcaccacg	tgactggcag	900
cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcgcc	1020
agcaccatcc	aggtgtttac	ggactcggaa	taccagccgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggctac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttcccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380
cagcagttgc	tgttttctcg	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
		aatcaagacc				1740
		gcagcaaaac				1800
		ggtctggcag				1860
		agatggcaac				1920
		tcagatcctc				1980
		caagctgaat				2040
		ggagctgcag				2100
		ctacaaatct				2160
		ccccattggc				2217
35-3				concergen	cecycaa	2211
<210> 25 <211> 221	7					
<212> DNA		pe, clone r	h 40			
<400> 25	ANY SCIULY	pe, crone i	11.43			
	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acctgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgcac	ctgcggtata	atcacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
		acctctcggt				420
ggaaagaaga	gaccggtaga	gccgtcacca	cagcgttccc	ccgactcctc	cacgggcatc	480
					tggcgactca	540
					tagtgtggga	600
		cggtggcgca				660
		aaattggcat				720
					ctacaagcaa	780
		aggcagcacc				840
					tgactggcag	900
5355	J		3	Page 22	J - JJg	500

cgactcatca	acaacaactg	gggattccgg	cccaagagac	tcagcttcaa	gctcttcaac	960
atccaggtca	aagaggtcac	gcagaatgaa	ggcaccaaga	ccatcgccaa	taacctcacc	1020
agcaccatcc	aggtgtttac	ggactcggag	taccagctgc	cgtacgtcct	cggctctgcc	1080
caccagggct	gcctgcctcc	gttcccggcg	gacgtcttca	tgattcctca	gtacggcaac	1140
ctgactctca	acaacggtag	tcaggccgtg	ggacgttcct	ccttctactg	cctggagtac	1200
ttccctctc	agatgctgag	aacgggcaac	aacttttcct	tcagctacac	tttcgaggac	1260
gtgcctttcc	acagcagcta	cgcgcacagc	cagagtttgg	acaggctgat	gaatcctctc	1320
atcgaccagt	acctgtacta	cctgtcaaga	acccagtcta	cgggaggcac	agcgggaacc	1380
cagcagttgc	tgttttctca	ggccgggcct	agcaacatgt	cggctcaggc	cagaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acatgggcta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacgg	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
agtatttact		ccccattooc	actcottacc	tcacccgtaa	tetetaa	2217
ggegeeeuee	ctgagcctcg				cccycaa	
<210> 26 <211> 221 <212> DNA <213> new	7	pe, clone r			ccegena	
<210> 26 <211> 221 <212> DNA <213> new <400> 26	7 AAV seroty	_	h. \$7			60
<210> 26 <211> 221 <212> DNA <213> new <400> 26 atggctgccg	7 AAV seroty _i atggttatct	pe, clone ri	h.57 ctcgaggaca	acctctctga	gggcattcgc	
<210> 26 <211> 221 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg	7 AAV seroty atggttatct cgctgaaacc	pe, clone ri tccagattgg	h.S7 ctcgaggaca aagcccaaag	acctctctga ccaaccagca	gggcattcgc aaagcaggac	60
<210> 26 <211> 221 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg	AAV seroty atggttatct cgctgaaacc gtctggtgct	pe, clone ri tccagattgg tggagccccg	h.57 ctcgaggaca aagcccaaag aagtacctcg	acctctctga ccaaccagca gacccttcaa	gggcattcgc aaagcaggac cggactcgac	60 120
<210> 26 <211> 221 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg gacggccggg	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc	pe, clone ri tccagattgg tggagccccg tcctggctac	h.S7 ctcgaggaca aagcccaaag aagtacctcg gcggccctcg	acctctctga ccaaccagca gacccttcaa agcacgacaa	gggcattcgc aaagcaggac cggactcgac ggcctacgac	60 120 180
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg gacggccggg cagcagctgcc	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga	pe, clone ri tccagattgg tggagccccg tcctggctac ggcggacgca	n.57 ctcgaggaca aagcccaaag aagtacctcg gcggccctcg	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt	60 120 180 240
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg gacggccggg aagggggagc cagcagctgc	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag	60 120 180 240 300
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc caggagcgtc	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct	60 120 180 240 300 360
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg gacggccggg aagggggagc cagcagctgc caggagcgtc gccaagaagc ggaaagaaga	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct	60 120 180 240 300 360 420
<210> 26 <211> 221 <212> DNA <213> DNA <213> DNA <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc cagcagctgc gccaagaagc gccaagaagc ggaaagaaga ggcaagaaga	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc	60 120 180 240 300 360 420 480
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc cagcagctgc gccaagaagc gcaagaaga ggcaagaaga ggcaagaaag	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga	60 120 180 240 300 360 420 480 540
<210> 26 <211> 221 <212> DNA <213> DNA <213> DNA <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc cagcagctgc caggagcgtc gccaagaagc ggaaagaaga ggcaagaaag ggcaagaaag gagtcagtcc tctggtacaa	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac	60 120 180 240 300 360 420 480 540 600
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aaggggagc cagcagctgc cagcagctgc gccaagaagc gcaagaaga ggcaagaaga ggcaagaaag ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca cgccagaaag acctatcgga	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc	60 120 180 240 300 360 420 480 540 600 660
<210> 26 <211> 2212 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc cagcagctgc caggagcgtc gccaagaagc gcaagaaga ggcaagaaga ggcaagaaga ggcaagaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcggg	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccactaca	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa	60 120 180 240 300 360 420 480 540 600 660 720
<210> 26 <211> 221 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc ggaaagaagc ggaaagaaga ggcaagaaag ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccacca acctccaacg	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcggg gcacccgaac	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccactaca aacgacaaca	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcacc	60 120 180 240 300 360 420 480 540 600 660 720 780
<210> 26 <211> 221 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc cagcagctgc gccaagaagc ggaaagaaga ggcaagaaga ggcaagaaga ggcaagaag gagtcagtcc tctggtacaa ggagtggggta atcaccacca acctccaacg ccctgggggt	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcggg gtcctcgag gcacccgaac ggacctcgag	pe, clone ri tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccactaca aacgacaaca cactgccact	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct cctactttgg tctcaccacg	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcac tgactggcag	60 120 180 240 300 360 420 480 540 600 660 720 780 840
<210> 26 <211> 221 <212> DNA <213> DNA <213> DNA <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc caggagcgtc gccaagaagc gcaagaaga ggcaagaaga ggcaagaaga ggcaagaaga gagtcagtcc tctggtacaa ggagtgggta atcaccacca acctccaacg ccctgggggt cgactcatca	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcggg gtcctcggg gcacccgaac ggacctcggg attttgactt acaacaactg	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgcctc acaataacga catggctggg acaaccacct cctactttgg tctcaccacg	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcac tgactggcag gctcttcaac	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
<210> 26 <211> 2217 <212> DNA <213> new <400> 26 atggctgccg gagtggtggg gacggccggg aagggggagc cagcagctgc cagcagctgc gccaagaagc gcaagaaga ggcaagaaga ggcaagaaag ggcaagaaag gagtcagtcc tctggtacaa ggagtgggta atcaccaca acctccaacg ccctgggggt cgactcatca atccaggtca	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcggg gtcctcggg gcacccgaac ggacctcggg attttgactt acaacaactg aagaggtcac	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtcttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc tacagattc	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccactaca aacgacaaca cactgccact cccaagagac ggcaccaaga	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaccacct cctactttgg tctcaccacg tcagcttcaa ccatcgccaa	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcacc tgactggcag gctcttcaac	60 120 180 240 300 360 420 480 540 660 720 780 840 900
<210> 26 <211> 2212 <212> DNA <213> DNA <213 DNA <210 DNA	AAV seroty atggttatct cgctgaaacc gtctggtgct ccgtcaacgc aggcgggtga tgcaagaaga gggttctcga gaccggtaga gccagcagcc ccgaccctca tggctgcagg gttcctcggg gtcctcggg atcttgactt acaacaactg aagaggtcac aggtgtttac	tccagattgg tggagcccg tcctggctac ggcggacgca caatccgtac tacgtctttt acctctcggt gccgtcacca cgccagaaag acctatcgga cggtggcgcg aaattggcat ctgggccctg aggcagcacc taacagattc gggattccgg	ctcgaggaca aagcccaaag aagtacctcg gcggccctcg ctgcggtata gggggcaacc ctggttgagg cagcgttccc agactcaatt gaacctccag ccaatggcag tgcgattcca cccacctaca aacgacaaca cactgccact cccaagagac ggcaccaaga	acctctctga ccaaccagca gacccttcaa agcacgacaa atcacgccga tcgggcgagc aaggcgctaa ccgactcctc tcggtcagac cagcgccctc acaataacga catggctggg acaaccacct cctactttgg tctcaccacg tcagcttcaa ccatcgccaa ccgtacgtcct	gggcattcgc aaagcaggac cggactcgac ggcctacgac cgccgagttt agtcttccag gacggctcct cacgggcatc tggcgactca tagtgtggga aggtgccgac cgacagagtc ctacaagcaa ctacagcac tgactggcag gctcttcaac tagctgccc	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

```
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                    1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                    1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                    1380
cagcagttgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactgg
                                                                    1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                    1500
agcaactttg cctggactgg tgccaccaag tatcatctga acggcagaga ctctctggtg
                                                                    1560
aatccgggcg tcgccatggc aaccaacaag gacgacgagg accgcttctt cccatccagc
                                                                    1620
ggcatcctca tgtttggcaa gcagggagct ggaaaagaca acgtggacta tagcaacgtg
                                                                    1680
atgctaacca gcgaggaaga aatcaagacc accaaccccg tggccacaga acagtatggc
                                                                    1740
gtggtggctg ataacctaca gcagcaaaac accgctccta ttgtgggggc cgtcaacagc
                                                                    1800
cagggagcct tacctggcat ggtctggcag aaccgggacg tgtacctgca gggtcctatt
                                                                    1860
tgggccaaga ttcctcacac agatggcaac tttcacccgt ctcctttaat gggcggcttt
                                                                    1920
ggacttaaac atccgcctcc tcagatcctc atcaaaaaca ctcctgttcc tgcggatcct
                                                                    1980
ccaacagcgt tcaaccaggc caagctgaat tctttcatca cgcagtacag caccggacaa
                                                                    2040
gtcagcgcgg agatcgagtg ggagctgcag aaggagaaca gcaagcgctg gaacccagag
                                                                    2100
attcagtata cttccaacta ctacaaatct acaaatgtgg actttgctgt taatactgag
                                                                    2160
ggtgtttact ctgagcctcg ccccattggc actcgttacc tcacccgtaa tctgtaa
                                                                    2217
       2217
<212> DNA
<213> new AAV serotype, clone rh.58
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca qaagcaqqac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca accaatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggccgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                      840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                      900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa gctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taacctcacc
                                                                     1020
agcaccatcc aggtgtttac ggactcggaa taccagctgc cgtacgtcct cggctctgcc
                                                                     1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcctca gtacggctac
                                                                     1140
ctgactctca acaacggtag tcaggccgtg ggacgttcct ccttctactg cctggagtac
                                                                     1200
ttcccctctc agatgctgag aacgggcaac aacttttcct tcagctacac tttcgaggac
                                                                     1260
gtgcctttcc acagcagcta cgcgcacagc cagagtttgg acaggctgat gaatcctctc
                                                                     1320
atcgaccagt acctgtacta cctgtcaaga acccagtcta cgggaggcac agcgggaacc
                                                                     1380
cagcagctgc tgttttctca ggccgggcct agcaacatgt cggctcaggc cagaaactqq
                                                                     1440
ctgcctggac cctgctacag acagcagcgc gtctccacga cactgtcgca aaacaacaac
                                                                     1500
```

agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaagca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagtgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
<210> 28						
<210> 28 <211> 219 <212> DNA	6					•
	AAV seroty	pe, clone pi	i.1			
<400> 28 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gogcattcgc	60
		tggagccccg				120
		tcctggctac				180
		ggcggacgcc			_	240
		caatccgtac				300
		tacgtccttt				360
		gcctctgggt				420
		accggactcc				480
		ttttgggcag				540
		cgcaggtccc				600
		agacaataac				660
		cacatggctg				720
		caacaaccac				780
		cacctacttt				840
		cttttcacca				900
		gctcaacttc				960
		gaccatcgcc				1020
acggactcgg	agtaccagct	cccgtacgtg	ctcggctctg	cccaccaggg	ctgcctgcct	1080
ccgttcccgg	cggacgtgtt	catgattccg	cagtacgggt	acctgacgct	gaacaacggg	1140
agccaggccg	tggggcgatc	ctccttctac	tgcctggagt	actttccctc	gcagatgctg	1200
agaacgggca	acaactttac	cttcagctac	accttcgagg	acgtgccctt	ccacagcagc	1260
tacgcgcaca	gccagagcct	ggaccggctg	atgaacccgc	tgattgacca	gtacctgtac	1320
tacctgtctc	ggactcagac	caacgggacc	aatgccacgc	agactctgtt	gtttgctcag	1380
gccgggcctc	agaacatgtc	ggctcaggcc	aagaactggc	tgcctggtcc	ttgctatcgg	1440
cagcagcgcg	tctctacgac	agtgtcgcaa	aacaacaaca	gcaactttac	ctggaccggg	1500
gcgaccaagt	accacctgaa	cggccgagac	tccctggtga	gccccggtgt	cgccatggca	1560
acgcacaagg	acgacgagga	gcgcttcttc	ccgagcagcg	gggtcctgat	gtttggcaag	1620
cagggcgctg	gaaaggacaa	tgtcgagtac	accaacgtga	tgctcaccag	cgaggaggag	1680
atcaagacca	ccaaccctgt	ggccacggag	cagtacggcg	tggtggctga	caatctgcag	1740
cagaccaact	cagctcccat	tgtgggggca	gtcaacagcc	agggggcctt	acccggtatg	1800
				0000 35		

gtctggcaga	accgggacgt	gtacctgcag	ggtcccatct	gggccaagat	cccgcatacg	1860
gacggcaact	ttcacccgtc	tcctctcatg	ggcggctttg	gactgaaaca	cccgcctccc	1920
cagatcctga	tcaaaaacac	gccggtacct	gcggatcccc	cggtgaactt	tacggacgct	1980
aagctggcga	gtttcatcac	gcagtacagc	accgggcagg	tcagcgtgga	gattgagtgg	2040
gagctgcaga	aggagaacag	caagcgctgg	aatcccgaga	ttcagtacac	ttccaattat	2100
tataaatcag	ctaatgtgga	ctttgccgtc	aatgcagatg	gtgtatatag	tgaaccccgc	2160
cccattggca	ctcgttacct	cacccgtaat	ctgtaa			2196
<210> 29 <211> 219(<212> DNA <213> new	5 AAV serotyj	pe, clone pi	i . 3			
<400> 29 atggctgctg	acggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	cgctgaaacc	tggagccccg	caacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacga	ggcggacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	atcacgccga	cgccgagttt	300
caagagcgtc	tgcaagaaga	tacgtccttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaaaaaga	gggtactcga	gcctctgggt	ctggttgagg	aaggcgctaa	gacggctcct	420
ggaaagaagc	ggccagtaga	accggactcc	agctcgggca	tcggcaagtc	aggccagcag	480
cccgcgaaaa	agagactgaa	ttttgggccg	actggcgact	cagagtcagt	gcctgacccc	540
caacctctct	cagaaccacc	tgcaggtccc	tctggtctgg	gatctggtac	aatggctgca	600
	ctccaatggc					660
	attgcgattc					720
	tccccaccta					780
	gcaacgacaa				_	840
	tccactgcca					900
	ggcccaagaa					960
	aaggcaccaa					1020
	agtaccagct					1080
	cggacgtgtt					1140
	tggggcgatc					1200
	acaactttac					1260
	gccagagcct					1320
	ggactcagac					1380
	agaacatgtc					1440
	tctctacggc					1500
	accacctgaa					1560
	acgacgagga					1620
	gaaaggacaa			_		1680
	ccaaccctgt					1740
	cggctcccat					1800
	accgggacgt					1860
	ttcacccgtc					1920
	tcaaaaacac					1980
	gtttcatcac					2040
	aggagaacag					2100
gage egeaga	yyuyuacay	caagcycigy	aaccccyaga	Page 26	LLLLAALTAT	2100

tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag cgaacccgc	2160
cccattggca ctcgttacct cacccgtaat ctgtaa	2196
<210> 30	
<211> 2196	
<212> DNA <213> new AAV serotype, clone pi.2	
<400> 30	
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg cgctgaaacc tggagccccg caacccaaag ccaaccagca aaagcaggac	120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacga ggcggacgcc gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt	300
caagagcgtc tgcaagaaga tacgtccttt gggggcaacc tcgggcgagc agtcttccag	360
gccaaaaaga gggtactcga gcctctgggt ctggttgagg aaggcgctaa gacggctcct	420
ggaaagaagc ggccagtaga accggactcc agctcgggca tcggcaagtc aggccggcag	480
cccgcgaaaa agagactgaa ttttgggcag actggcgact cagagtcagt gcctgacccc	540
caacctctct cagaaccacc cgcaggtccc tctggtctgg	600
ggcggtggcg ctccaatggc agacaataac gaaggcgccg acggagtggg taatgcctca	660
ggaaattggc attgcgattc cacatggctg ggcgaccgag tcatcaccac cagcactcgg	720
acctgggccc tccccaccta caacaaccac ctctacaagc aaatctccaa cgggacctcg	780
ggaggcagca gcaacgacaa cacctacttt ggctacagca ccccctgggg gtattttgac	840
tttaacagat tccactgcca cttttcacca cgtgactggc agcgactcat caacaacaac	900
tggggattcc ggcccaagag gctcaacttc aagctcttca acatccaggt caaggaggtc	960
acccagaatg aaggcaccaa gaccatcgcc aataacctca ccagcacggt gcaggtcttt	1020
acggactcga agtaccagct cccgtacgtg ctcggctctg cccaccaggg ctgcctgcct	1080
ccgttcccgg cggacgtgtt catgattccg cagtacgggt acctgacgct gaacaacggg	1140
agccaggccg tggggcgatc ctccttctac tgcctggagt actttccctc gcagatgctg	1200
agaacgggca acaactttac cttcagctac accttcgagg acgtgccctt ccacagcagc	1260
tacgcgcaca gccagagcct ggaccggctg atgaacccgc tgattgacca gtacctgtac	1320
tacctgtctc ggactcagac caacgggacc aatgccacgc agactctgtt gtttgctcag	1380
gccgggcctc agaacatgtc ggctcaggcc aagaactggc tgcctggtcc ttgctatcgg	1440
cagcagcgcg tctctacgac agtgtcgcaa aacaacaaca gcaactttac ctggaccggg	1500
gcgaccaagt accacctgaa cggccgagac tccctggtga accccggtgt cgccatggca	1560
acgcacaagg acgacgagga gcgcttcttc ccgagcagcg gggtcctgat gtttggcaag	1620
cagggcgctg gaaaggacaa tgtcgagtac accaacgtga tgctcaccag cgaggaggag	1680
atcaagacca ccaaccctgt ggccacggag cagtacggtg tggtggctga caatctgcag	1740
cagaccaact cggctcccat tgtgggggca gtcaacagcc agggggcctt acccggtatg	1800
gtctggcaga accgggacgt gtacctgcag ggtcccatct gggccaagat cccgcatacg	1860
gacggcaact ttcacccgtc tcctctcatg ggcggctttg gactgaaaca cccgcctccc	1920
cagateetga teaaaaacae geeggtaeet geggateeee eggtgaaett taeggaeget	1980
aagctggcga gtttcatcac gcagtacagc accgggcagg tcagcgtgga gattgagtgg	2040
gagctgCaga aggagaacag caagcgctgg aatcccgaga ttcagtacac ttccaattat	2100
tataaatcag ctaatgtgga ctttgccgtc aatgcagatg gtgtatatag tgaaccccgc	2160
CCCattggca ctcgttacct cacccgtaat ctgtaa	2196
	-
<210> 31	

³¹ 2208 DNA new AAV serotype, clone rh.60

<400> 31	atggttatct	tccagattog	ctcgaggaca	acctetetoa	gggcattcac	60
	acccgaaacc			_		120
	gtctggtgct					180
•	ccgtcaacgc			_		240
	aagcgggtga		_			300
	tgcaagaaga		-			360
	gggttctcga					420
-	gaccggtaga					480
	gccagcagcc					540
	ccgaccctca			·	_	600
-	tggctgcagg					660
	gttcctcggg					720
	gcacccgaac					780
	ggacctcggg				-	840
	attttgactt				•	900
•	acaacaactg	•		_		960
_	aagaggtcac		•	_	- -	1020
	aggtgtttac					1080
_					gtacggctac	1140
					cctggagtac	1200
_				- (tttcgaggac	1260
	-			_	gaatcctctc	1320
-		_		•	agcgggaacc	1380
_		_			cagaaactgg	1440
			_		aaacaacaac	1500
					ctctctggtg	1560
•					cccttcgagc	1620
				-	aaatgtgtta	1680
			_		atacgggact	1740
					caacaaccag	1800
					tcccatctgg	1860
					cggctttgga	1920
_			_		cccggaggtg	1980
					ggtcagcgtg	2040
	-		_		gattcagtat	2100
• • • •			•		a gggtgtttat	2160
	c gccccattgg			_	333 3	2208
				_		
<210> 32 <211> 22 <212> ON <213> ne		/pe, clone	rh.48			
<400> 32 atggctgct	g acggttatc	t tccagattg	g ctcgaggaca	a acctctctg	a gggcattcgc	60
gagtggtgg	g acctgaaac	c tggagcccc	c aagcccaag	g ccaaccagc	a gaagcaggac	120
gacggccgg	g gtctggtgc	t tcctggcta	c aagtacctc	g gacccttca	a cggactcgac	180
aagggggag	c ccgtcaacg	c ggcggacgc	a gcggccctc	g agcacgaca	a ggcctacgac	240

300

360

420

്രൂട്ടെ ctgcggtata accacgccga cgccgagttt

caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag

gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct

```
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca accaatcgga gaaccaccaq caqqcccctc tqqtctqqqa
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggctg acaataacaa gggcgccgac
                                                                      660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atttccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                     840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                     900
ctcatcaaca gcaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
caggicaagg aggicacaac gaatgacggc gicacgacca tcgccaataa ccitaccaqc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattqqtt
                                                                     1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                     1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatccccg
                                                                     1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                     2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                     2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
<210>
       33
2214
       DNA
       new AAV serotype, clone rh.62
<400>
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttc
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggctgagg aagctgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
                                            Page 29
```

```
"gagtcagtccccccca accaatcgga gagccaccag caggcccctc tggtctggga
tctggtacaa tggctgcagg cggtggcgca ccaatggctg acaataacaa gggcgccgac
                                                                      660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc
                                                                     840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                     900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                     960
caggicaagg aggicacaac gggigacggc gicacgacca tcgccaataa ccitaccagc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctq
                                                                     1140
actictgaaca atgacagica atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                     1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                     1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                     2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                     2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
 <210>
<211>
       34
2214
       new AAV serotype, clone rh.44
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcagcgc ggcggacgca gcggccctcg agcacgacaa ggcctgcgac
                                                                      240
cagcggctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt ggggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
ggaaagaagg gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgca ccaatggctg acaataacga gggcgccgac
                                                                      660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaatcacct ctacaagcaa
                                                                      780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
```

900

```
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
caggicaagg aggicacaac gaatgacggc gicacgacca tcgccaataa ccttaccagc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
actetgaaca atggcageca ateggtgggt egtteetett tetaetgeet ggaatattte
                                                                     1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
ctgcctggac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                     1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                     1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                     1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                     1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                     1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                     2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                     2100
cagtatacct ccaattttga cgaacagact ggtgtggact ttgccgttga cagccaqqqt
                                                                     2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                     2214
       35
2214
 <210>
       DNA
       new AAV serotype, clone rh.65
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                      120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt
                                                                      300
 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcqccqac
                                                                      660
 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      900
 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
```

caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc

acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac

cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg

1020

1080

1140

```
actotgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                    1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                    1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                    1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                    1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                    1440
ctgcctagac cttgcttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac
                                                                    1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                    1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtqtta
                                                                    1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                    1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                    1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                    1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                    1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                    1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                     2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                    2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                    2160
gittaticig agccicgccc cartggiact cgitaccica cccgiaatci giaa
                                                                     2214
<210>
<211>
       36
2214
       DNA
       new AAV serotype, clone rh.67
<400>
atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                       60
gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                      240
cagcagetea aagegggtga caateegtae etgeggtata accatgeega egeegagttt
                                                                      300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcctccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac
                                                                      660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                      720
atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                      780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                      960
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
```

```
ctgcctggac cttgcttccg gcaacaaga gtctccaaga cgctggatca aaacaacaac
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                    1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                    1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                    1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                    1740
gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag
                                                                    1800
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                    1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                    1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctqc taatcccccq
                                                                    1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                    2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                    2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                    2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                    2214
<210>
<211>
       37
2214
       DNA
       new AAV serotype, clone rh.55
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgccga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                      360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                      420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                      480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                      540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                      600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtqccgac
                                                                      660
ggagtgggta gttcctcggg aaattggcat tgcgattcca cacggctggg cgacagagtc
                                                                     720
atcaccacca gcacccggac ctgggctttg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc
                                                                      840
tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg
                                                                      900
ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc
                                                                     960
caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc
                                                                     1020
acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcgg ctccgcacac
                                                                     1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg
                                                                     1140
actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc
                                                                     1200
ccttctcaaa tgctgagaac gggcaacaac ttcaccttca gctacacctt cgaggacgtt
                                                                     1260
cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc
                                                                     1320
gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat
                                                                     1380
cgggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg
                                                                     1440
ctgcctggac cttgcttccg gcaacgaaga gtctccaaga cgctggatca aaacaacaac
                                                                     1500
agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt
                                                                     1560
aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc
                                                                     1620
ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta
                                                                     1680
atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact
                                                                     1740
```

```
"pttagcagcag accaagttgt caacaaccag
ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg
                                                                    1860
gccaagattc ctcacacgga cggcaacttt cacccgtctc cgctgatggg cggctttgga
                                                                    1920
ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatcccccg
                                                                    1980
gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc
                                                                    2040
agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt
                                                                    2100
cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt
                                                                    2160
gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa
                                                                    2214
<210>
       38
2217
       DNA
       new AAV serotype, clone rh.47
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc
                                                                      60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac
                                                                     120
gacggccggg gtctggtgct tcctggctac aagcacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cagcagctca aagcgggtga caatccgtac ctgcggtata atcacgctga cgccgagttt
                                                                     300
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag
                                                                     360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct
                                                                     420
ggaaagaaga gaccggtaga gccgtcacca cagcgttccc ccgactcctc cacgggcatc
                                                                     480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca
                                                                     540
gagtcagtcc ccgaccctca acctatcgga gaacctccag cagcgccctc tagtgtggga
                                                                     600
tctggtacaa tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac
                                                                     660
ggagtgggta gttcctcggg aaattggcat tgcgattcca catggctggg cgacagagtc
                                                                     720
atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa
                                                                     780
atctccaacg ggacctcggg aggcagcacc aacgacaaca cctactttgg ctacagcacc
                                                                     840
ccctgggggt attttgactt taacagattc cactgccact tctcaccacg tgactggcag
                                                                     900
cgactcatca acaacaactg gggattccgg cccaagagac tcagcttcaa qctcttcaac
                                                                     960
atccaggtca aagaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc
                                                                    1020
agcacggttc aggtcttttc ggactcggaa taccagctgc cctacgtcct cggctccgca
                                                                    1080
caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac
                                                                    1140
ctgactctga acaatggcag ccaatcggtg ggtcgttcct ctttctactg cctggaatat
                                                                    1200
ttcccttctc aaatgctgag aacgggcaac aacttcacct tcagctacac cttcgaggac
                                                                    1260
gttcccttcc acagcagcta cgcacacagc cagagcctgg accggctgat gaatcctctt
                                                                    1320
atcgaccagt acctgtatta cctggccaga acacagagca acgcaggagg cacagctggc
                                                                    1380
aatcgggaac tgcagtttta tcagggcggg cctaccacca tggccgaaca agccaaaaac
                                                                    1440
tggctgcctg gaccttgctt ccggcaacaa agagtctcca agacgctgga tcaaaacaac
                                                                    1500
aacagcaact ttgcttggac tggtgccacc aaataccatc taaatggaag aaattcattg
                                                                    1560
gttaatcccg gtgtcgccat ggcaacccac aaggacgacg aggaacgctt cttcccttcg
                                                                    1620
agcggagtcc tgatttttgg aaaaactgga gcagctaata agactacact ggaaaatgtg
                                                                    1680
ttaatgacaa atgaagagga aattcgtcct accaacccgg tagccaccga ggaatacggg
                                                                    1740
actgttagca gcaacctgca ggcggctaac actgcagccc agacacaagt tgtcaacaac
                                                                    1800
cagggagcct tacctggtat ggtctggcag aaccgggacg tgtacctgca gggtcccatc
                                                                    1860
tgggccaaga ttcctcacac ggacggcaac tttcacccgt ctccgctgat gggcggcttt
                                                                    1920
ggactgaagc atccgcctcc tcagatcctg atcaaaaaca ctcctgttcc tgctaatccc
                                                                    1980
ccggaggtgt ttacgcctgc caagtttgct tctttcatca cacagtacag caccggccag
                                                                    2040
```

gtdagcdrggradgatcgagtgragagctgcag aaggagaaca gcaagcgctg gaacccagag 2100
attcagtata cctccaattt tgacaaacag actggtggg actttgccgt tgacagccag 2160
ggtgtttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa 2217

<210> 39
<211> 2214
<212> DNA
<213> new AAV serotype, clone rh.69

<400> 39 atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacqccqa cqccqaqttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgcc ccaatggcag acaataacga aggcgccgac 660 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaagcaa 780 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcacccc 840 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcgg 900 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct gttcaacatc 960 caggtcaagg aggtcacaac gaatgacggc gtcacgacca tcgccaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggaatac cagctgccct acgtcctcqq ctccqcacac 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttccccagta cggctacctg 1140 actctgaaca atggcagcca atcggtgggt cgttcctctt tctactgcct ggaatatttc 1200 ccttctcaaa tgctgagaac gggcaacaac ttcaccatca gctacacctt cgaggacqtt 1260 cccttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcctcttatc 1320 gaccagtacc tgtattacct ggccagaaca cagagcaacg caggaggcac agctggcaat 1380 caggaactgc agttttatca gggcgggcct accaccatgg ccgaacaagc caaaaactgg 1440 ctgcctggac CttgCttccg gcaacaaaga gtctccaaga cgctggatca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa taccatctaa atggaagaaa ttcattggtt 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccttcgagc 1620 ggagtcctga tttttggaaa aactggagca gctaataaga ctacactgga aaatgtgtta 1680 atgacaaatg aagaggaaat tcgtcctacc aacccggtag ccaccgagga atacgggact 1740 gttagcagca acctgcaggc ggctaacact gcagcccaga cacaagttgt caacaaccag 1800 ggagccttac ctggtatggt ctggcagaac cgggacgtgt acctgcagqq tcccatctgg 1860 gccaagattc ctcacacaga tggcaacttt cacccgtctc ctttaatggg cggctttgga 1920 cttaaacatc cgcctcctca gatcctcatc aaaaacactc ctgttcctgc ggatcctcca 1980 acagcgttca accaggccaa gctgaattct ttcatcacgc agtacagcac cggacaagtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatactt ccaactacta caaatctaca aatgtggact ttgctgttaa tactgagggt 2160 gtttactctg agcctcgccc cattggcact cgttacctca cccgtaatct gtaa 2214

<210> 40 <211> 2214 <212> DNA

√2134 rnew ÄÄV-Serotybe, "tlone" rh. 54

atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagetea aagegggtga caateegtae etgeggtata accaegeega egeegagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctagaaag agactgaact ttgggcagac tggcgactca 540 gagtcagtcc ccgaccctca acctctcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggctttg cccacctaca acaaccacct ctacaaqcaa 780 atctccagtc agtcagcagg tagcaccaac gacaacgtct acttcggcta cagcaccccc 840 tgggggtatt ttgacttcaa cagattccac tgtcacttct caccacgtga ctggcagcga 900 ctcatcaaca acaactgggg attccggccc aagaagctca acttcaagct cttcaacatc 960 caagtcaagg aggtcacgac gaatgacggc gtcacgacca tcgctaataa ccttaccagc 1020 acggttcagg tcttttcgga ctcggagtac cagctgccgt acgtcctcgg ctctqcccac 1080 cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctq 1140 actitgaaca atggcagcca atcggtggga cgttcatcct tctactgcct ggaatacttc 1200 ccttctcagg tgctgagaac gggtaacaac ttcaccttca gttacacctt cgaggacgtg 1260 cctttccaca gcagctacgc gcacagccag agcctagacc ggctgatgaa tcccctcatc 1320 gaccagtacc tgtattacct ggctagaaca cagagtaacc caggaggcac atctggcaat 1380 cgggaactgc agttttacca gggcgggcct tccaccatgg ccgaacaagc caagaactgg 1440 ttacctggac cttgcttccg gcaacaaaga gtttccaaaa cactggatca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggcaqaaa ctcattqqtq 1560 aatcctggtg tcgccatggc aactcacaag gacgacgagg accgcttttt cccatccagc 1620 ggagtcctga tttttggaaa aactggagca accaacaaga ctacattgga aaacgtgtta 1680 atgacaaatg aagaagaaat tcgtcctact aatcctgtgg ccacagaaga atacgggata 1740 gtcagcagca atttacaagc ggccaatact gcagcccaga cacaagttgt caacaaccag 1800 ggagccttac ctggcatggt ctggcagaac cgggacgtgt acctgcaggg tcccatctgg 1860 gccaaaattc ctcacacaga cggcaacttt cacccgtctc cgctgatggg cggctttgga 1920 ctgaagcatc cgcctcctca gatcctgatc aaaaacactc ctgttcctgc taatccccg 1980 gaggtgttta cgcctgccaa gtttgcttct ttcatcacac agtacagcac cggccaggtc 2040 agcgtggaga tcgagtggga gctgcagaag gagaacagca agcgctggaa cccagagatt 2100 cagtatacct ccaattttga caaacagact ggtgtggact ttgccgttga cagccagggt 2160 gtttattctg agcctcgccc cattggtact cgttacctca cccgtaatct gtaa 2214 <210> 41 2214 DNA new AAV serotype, clone rh.45 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60

gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac

120 gacggccggg gtctggtgct tcctggctac aagtacctcg qacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240

cagcagctca aagcgg	gtga caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc tgcaag	aaga tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc gggttc	tcga acctctcggt	ctggttgagg	aagctgctaa	gacggctcct	420
ggaaagaaga gaccgg	taga accgtcacct	cagcgttccc	ccgactcctc	cacgggcatc	480
ggcaagaaag gccagc	agcc cgctagaaag	agactgaact	ttgggcagac	tggcgactca	540
gagtcagtcc ccgacc	ctca accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa tggctg	cagg cggtggcgct	ccaatggcag	acaataacga	aggcgccgac	660
ggagtgggta atgcct	cagg aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca gcaccc	gaac ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc agtcag	cagg tagcaccaac	gacaacgtct	acttcggcta	cagcacccc	840
tgggggtatt ttgact	tcaa cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
ctcatcaaca acaact	gggg attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
caggtcaagg aggtca	caac gaatgacggc	gtcacgacca	tcgccaataa	ccttaccagc	1020
acggttcagg tctttt	cgga ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080
cagggctgcc tgcctc	cgtt cccggcggac	gtcttcatga	ttcctcagta	cggctacctg	1140
actctcaaca acggta	gtca ggccgtggga	cgttcctcct	tctactgcct	ggagtacttc	1200
ccctctcaga tgctga	igaac gggcaacaac	ttttccttca	gctacacttt	cgaggacgtg	1260
cctttccaca gcagct	acgc gcacagccag	agtttggaca	ggctgatgaa	tcctctcatc	1320
gaccagtacc tgtact	acct gtcaagaacc	cagtctacgg	gaggcacagc	gggaacccag	1380
cagttgctgt tttctc	aggc cgggcctagc	aacatgtcga	ctcaggccag	aaactggctg	1440
cctggaccct gctaca	igaca gcagcgcgtc	tccacgacac	tgtcgcaaaa	caacaacagc	1500
aactttgcct ggactg	gtgc caccaagtat	catctgaacg	gcagagactc	tctggtgaat	1560
ccgggcgtcg ccatgg	caac caacaaggac	gacgaggacc	gcttcttccc	atccagcggc	1620
atcctcatgt ttggca	agca gggagctgga	aaagacaacg	tggactatag	caacgtgatg	1680
ctaaccagcg aggaag	gaaat caagaccacc	aaccccgtgg	ccacagaaca	gtatggcgtg	1740
gtggctgata acctad	cagca gcaaaacacc	gctcctattg	tgggggccgt	caacagccag	1800
ggagccttac ctggca	atggt ctggcagaac	cgggacgtgt	acctgcaggg	tcctatttgg	1860
gccaagattc ctcaca	acaga tggcaacttt	cacccgtctc	ctttaatggg	cggctttgga	1920
cttaaacatc cgccto	cctca gatccttato	aaaaacactc	ctgttcctgc	ggatcctcca	1980
acagcgttca accag	gccaa gctgaattct	ttcatcacgc	agtacagcac	cggacaagtc	2040
agcgtggaga tcgagt	tggga gctgcagaag	gagaacagca	agcgctggaa	cccagagatt	2100
cagtatactt ccaact	tacta caaatctaca	aatgtggact	ttgctgttaa	tactgagggt	2160
gcttactctg agccto	cgccc cattggcact	cgttacctca	cccgtaatct	gtaa	2214
<210> 42 <211> 2217 <212> DNA <213> new AAV 56	erotype, clone r	·h . 59			
<400> 42					
atggctgctg acggt					60
gagtggtggg acctg					120
gacggccggg gtctg					180
aagggggagc ccgtc					240
cagcagctca aagcg					300
caggagcgtc tgcaa					360
gccaagaagc gggtt					420
ggaaagaaga gaccg					480
ggcaagaaag gccag	cagcc cgctagaaa	agactgaact		tggcgactca	540
			Page 37		

gagtcagtcc	ccgaccctca	accaatcgga	gaaccaccag	caggcccctc	tggtctggga	600
tctggtacaa	tggctgcagg	cggtggcgca	ccaatggctg	acaataacga	gggcgccgac	660
ggagtgggta	atgcctcagg	aaattggcat	tgcgattcca	catggctggg	cgacagagtc	720
atcaccacca	gcacccgaac	ctgggctttg	cccacctaca	acaaccacct	ctacaagcaa	780
atctccagtc	agtcagcagg	tagcaccaac	gacaacgtct	acttcggcta	cagcaccccc	840
tgggggtatt	ttgacttcaa	cagattccac	tgtcacttct	caccacgtga	ctggcagcgg	900
ctcatcaaca	acaactgggg	attccggccc	aagaagctca	acttcaagct	gttcaacatc	960
caggtcaagg	aggtcacaac	gaatgacggc	gtcacgacca	tcgccaataa	ccctaccagc	1020
acggttcagg	tcttttcgga	ctcggaatac	cagctgccct	acgtcctcgg	ctccgcacac	1080
cagggctgcc	tgcctccgtt	cccggcggac	gtcttcatga	ttccccagta	cggctacctg	1140
actctgaaca	atggcagcca	atcggtgggt	cgttcctctt	tctactgcct	ggaatatttc	1200
ccttctcaaa	tgctgagaac	gggcaacaac	ttcaccttca	gctacacctt	cgaggacgtt	1260
cccttccaca	gcagctacgc	acacagccag	agcctggacc	ggctgatgaa	tcctcttatc	1320
gaccagtacc	tgtattacct	ggccagaaca	cagagcaacg	caggaggcac	agctggcaat	1380
cgggaactgc	agttttatca	gggcgggcct	accaccatgg	ccgaacaagc	caaaaactgg	1440
ctgcctggac	cctgctacag	acagcagcgc	gtctccacga	cactgtcgca	aaacaacaac	1500
agcaactttg	cctggactgg	tgccaccaag	tatcatctga	acggcagaga	ctctctggtg	1560
aatccgggcg	tcgccatggc	aaccaacaag	gacgacgagg	accgcttctt	cccatccagc	1620
ggcatcctca	tgtttggcaa	gcagggagct	ggaaaagaca	acgtggacta	tagcaacgtg	1680
atgctaacca	gcgaggaaga	aatcaagacc	accaaccccg	tggccacaga	acagtatggc	1740
gtggtggctg	ataacctaca	gcagcaaaac	accgctccta	ttgtgggggc	cgtcaacagc	1800
cagggagcct	tacctggcat	ggtctggcag	aaccgggacg	tgtacctgca	gggtcctatt	1860
tgggccaaga	ttcctcacac	agatggcaac	tttcacccgt	ctcctttaat	gggcggcttt	1920
ggacttaaac	atccgcctcc	tcagatcctc	atcaaaaaca	ctcctgttcc	tgcggatcct	1980
ccaacagcgt	tcaaccaggc	caagctgaat	tctttcatca	cgcagtacag	caccggacaa	2040
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaagcgctg	gaacccagag	2100
attcagtata	cttccaacta	ctacaaatct	acaaatgtgg	actttgctgt	taatactgag	2160
ggtgtttact	ctgagcctcg	ccccattggc	actcgttacc	tcacccgtaa	tctgtaa	2217
		oe, clone ri	h.43			
<400> 43 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acttgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gcctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctcg	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	aaggcgctaa	gacggctcct	420
		gcagtcaccc				480
		cagaaaaaga				540
tcagttccag	accctcaacc	tctcggagaa	cctccagcag	cgccctctgg	tgtgggacct	600
					cgccgacgga	660
		ttggcattgc				720
		ggccctgccc				780
		agccaccaac			_	840
					-	

Page 38

tgggggtatt ttgactttaa cagattccac tgccactttt caccacgtga ctggcagcga	900
ctcatcaaca acaactgggg attccggccc aagagactca gcttcaagct cttcaacatc	960
caggtcaagg aggtcacgca gaatgaaggc accaagacca tcgccaataa cctcaccagc	1020
accatccagg tgtttacgga ctcggagtac cagctgccgt acgttctcgg ctctgcccac	1080
cagggctgcc tgcctccgtt cccggcggac gtgttcatga ttccccagta cggctaccta	1140
acactcaaca acggtagtca ggccgtggga cgctcctcct tctactgcct ggaatacttt	1200
ccttcgcaga tgctgagaac cggcaacaac ttccagttta cttacacctt cgaggacgtg	1260
cctttccaca gcagctacgc ccacagccag agcttggacc ggctgatgaa tcctctgatt	1320
gaccagtacc tgtactactt gtctcggact caaacaacag gaggcacggc aaatacgcag	1380
actctgggct tcagccaagg tgggcctaat acaatggcca atcaggcaaa gaactggctg	1440
ccaggaccct gttaccgcca acaacgcgtc tcaacgacaa ccgggcaaaa caacaatagc	1500
aactttgcct ggactgctgg gaccaaatac catctgaatg gaagaaattc attggctaat	1560
cctggcatcg ctatggcaac acacaaagac gacgaggagc gtttttccc agtaacggga	1620
tcctgttttt ggcaacaaaa tgctgccaga gacaatgcgg attacagcga tgtcatgctc	1680
accagcgagg aagaaatcaa aaccactaac cctgtggcta cagaggaata cggtatcgtg	1740
gcagataact tgcagcagca aaacacggct cctcaaattg gaactgtcaa cagccagggg	1800
gccttacccg gtatggtctg gcagaaccgg gacgtgtacc tgcagggtcc catctgggcc	1860
aagattcctc acacggacgg caacttccac ccgtctccgc tgatgggcgg ctttggcctg	1920
aaacatcctc cgcctcagat cctgatcaag aacacgcctg tacctgcgga tcctccgacc	1980
accttcaacc agtcaaagct gaactctttc atcacgcaat acagcaccgg acaggtcagc	2040
gtggaaattg aatgggagct acagaaggaa aacagcaagc gctggaaccc cgagatccag	2100
tacacctcca actactacaa atctacaagt gtggactttg ctgttaatac agaaggcgtg	2160
tactctgaac cccgccccat tggcacccgt tacctcaccc gtaatctgta a	2211
<210> 44 <211> 2211 <212> DNA	
<211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44	50
<211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60 120
<211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
<211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	120 180
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac</pre>	120 180 240
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt</pre>	120 180 240 300
<211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgac agtcttccag	120 180 240 300 360
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct</pre>	120 180 240 300 360 420
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc</pre>	120 180 240 300 360 420 480
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca</pre>	120 180 240 300 360 420 480 540
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccacca cagccccct tggtctggga</pre>	120 180 240 300 360 420 480 540
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccaccag cagcccctc tggtctggga tctactacaa tggctacagg cagtggcgca ccaatggcag acaataacga gggtgccgat</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccaccag cagccccctc tggtctggga tctactacaa tggctacagg cagtggcgca ccaatggcag acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattccc aatggctgga cgacagagtc</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccaccag cagccccctc tggtctggga tctactacaa tggctacagg cagtggcgca ccaatggcag acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattccc aatggctgga cgacagagtc atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa</pre>	120 180 240 300 360 420 480 540 600 660 720 780
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 </pre> <pre><400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgt tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccaccag cagccccctc tggtctggga tctactacaa tggctacagg cagtggcgca ccaatggcag acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattccc aatggctga cgacagagtc atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa acctccagcc aatcaggagc ctgcaacgac aaccactact ttggctacag caccccttgg</pre>	120 180 240 300 360 420 480 540 600 660 720 780 840
<211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaaa agaggccggt agagcactct cctgtggagc cagactcct ctcgggaacc ggaaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgaccccca gcctctcgga cagccaccag cagccccctc tggtctggga tctactacaa tggctacagg cagtggcgca ccaatggcag acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattcc aatggctga cgacagagtc atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa atctccagcc aatcaggagc ctgcaacgac aaccactact ttggctacag cacccctgg gggtattttg acttcaacag attccactgc cacttttcac cacgtgactg gcaaagactc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccaccag cagccccctc tggtctggga tctactacaa tggctacagg cagtggcga ccaatggcag acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattccc aatggctgga cgacagagtc atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa atctccagcc aatcaggagc ctgcaacgac aaccactact ttggctacag caccccttgg gggtattttg acttcaacag attccactgc cacttttcac cacgtgactg gcaaagactc atcaacagca actggggatt ccggcccaaa agactcaact tcaagctctt taatattcaa</pre>	120 180 240 300 360 420 480 540 600 660 720 780 840
<pre><211> 2211 <212> DNA</pre>	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
<pre><211> 2211 <212> DNA <213> new AAV serotype, clone hu.3 <400> 44 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcgaaaaaga gggttcttga acctctgcgg cctggtttga ggaaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgtggagc cagactcctc ctcgggaacc ggaaaaagcgg gccagcagcc tgcaagaaaa agattaaatt ttggtcagac tggagacgca gactccgtac ctgacccca gcctctcgga cagccaccag cagccccctc tggtctggga tctactacaa tggctacagg cagtggcga ccaatggcag acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattccc aatggctgga cgacagagtc atcgccacca gcacccgaac ctgggccctg cccacataca acaaccacct ctacaagcaa atctccagcc aatcaggagc ctgcaacgac aaccactact ttggctacag caccccttgg gggtattttg acttcaacag attccactgc cacttttcac cacgtgactg gcaaagactc atcaacagca actggggatt ccggcccaaa agactcaact tcaagctctt taatattcaa</pre>	120 180 240 300 360 420 480 540 660 720 780 840 900 960

```
ctgaacaacg ggagtCaggC ggtaggacgc tcttcctttt actgcctgga gtactttcct
                                                                    1200
tctcagatgc tgcgtactgg aaacaacttt cagttcagct acacttttga agacgtgcct
                                                                    1260
ttccacagca gctacgctca Ctgccagagt ctggatcggc tgatgaatcc tctgatcgac
                                                                    1320
cagtacctgt attatctgaa caagacacaa acaaatagtg gaactcttca gcagtctcgg
                                                                    1380
ctactgttta gccaagctgg accaaccaac atgtctcttc aagctaaaaa ctggctgcct
                                                                    1440
ggaccttgct acagacagca gcgtctgtca aaacaggcaa acgacaataa caactgcaac
                                                                    1500
tttccctgga ctgcagctac aaagtatcat ctaaatggcc gggactcgtt ggttaatcca
                                                                    1560
ggaccagcta tggccagtca caaggatgac gaagaaaagt ttttccccat gcatggaacc
                                                                    1620
ctgatatttg gtaaacaagg aacaaatgcc aacgacgcgg atttggaaaa tgtcatgatt
                                                                    1680
acagatgaag aagaaatcag gcccaccaat cccgtggcta cggagcagta cgggactgtg
                                                                    1740
tcaaataatt tgcaaaactc aaacactggt ccaactacag gaactgtcaa tcaccaagga
                                                                    1800
gcgttacctg gtatggtgtg gcaggatcga gacgtgtacc tgcagggacc catttgggcc
                                                                    1860
aagattcctc acaccgatgg acactttcat ccttctccac tgatgggagg ttttggactc
                                                                    1920
aaacacccgc ctcctcagat catgatcaaa agcactcccg ttccagccaa tcctcccaca
                                                                    1980
aacttcagtt ctgccaagtt tgcttcttcc atcacacagt attccacggg acaggtcagc
                                                                    2040
gtggagatcg agtgggagct gcagaaggag aacagcaaac gctggaatcc cgaaattcag
                                                                    2100
tacacttcca actacaacaa gtctgttaat gtggacttta ctgtggacac taatggtgtg
                                                                    2160
tattcagagc ctcgccccat tggcaccaga tacctgactc gtaatctgta a
                                                                    2211
<210>
<211>
      45
2208
       DNA
      new AAV serotype, clone hu.5
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                     120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt
                                                                     300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag
                                                                     360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                     420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga
                                                                     480
aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac
                                                                     540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct
                                                                     600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagea cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc
                                                                     780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc gcatcaagga
                                                                    1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta
                                                                    1380
ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga
```

1440

ccttgctaca gacagcag	gcg tctgtcaaaa	caggcaaacg	acaacaacaa	cagcaacttt	1500
ccctggactg cagctaca	aaa gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg ccagtcgc	aa ggatgacgaa	gaaaagtttt	tccccatgca	tggaaccctg	1620
atatttggta aacaagga	ac aaatgccaac	gacgcggatt	tggaaaatgt	catgattaca	1680
gatgaagaag aaatcagg	gc caccaatccc	gtggctacgg	agcagtacgg	gactgtgtca	1740
aataatttgc aaaactca	aaa cactggtcca	actactggaa	ctgtcaatca	ccaaggagcg	1800
ttacctggta tggtgtg	gca ggatcgagac	gtgtacctgc	agggacccat	ttgggccaag	1860
attcctcaca ccgatgga	aca ctttcatcct	tctccactga	tgggaggttt	tggactcaaa	1920
cacccgcctc ctcagato	cat gatcaaaaac	actcccgttc	cagccaatcc	tcccacaaac	1980
ttcagttctg ccaagtt	tgc ttctttcatc	acacagtatt	ccacgggaca	ggtcagcgtg	2040
gagatcgagt gggagctg	gca gaaggagaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact acaacaa	gtc tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc gccccat	tgg caccagatac	ctgactcgta	atctgtaa		2208
	otype, clone h	u.1			
<400> 46 atggctgccg atggtta	tct tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga agctcaa	acc tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg gtcttgt	gct tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc cggtcaa	cga ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg acagcgg	aga caacccgtac	ctcaagtaca	accacgccga	cgcagagttt	300
caggagcgcc ttaaaga	aga tacgtcttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga gggttct	tga acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga ggccggt	aga gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc agcagcc	tgc aagaaaaaga	ttaaattttg	gtcagactgg	agacgcagac	540
tccgtacctg accccca	gcc tctcggacag	ccaccagcag	cccctctgg	tctgggatct	600
actacaatgg ctacagg	cag tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt cctcagg	aaa ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca cccgaac	ctg ggccctgccc	acatacaaca	accacctcta	caagcaaatc	780
tccagccaat caggagc	cag caacgacaac	cactactttg	gctacagcac	cccctggggg	840
tattttgact tcaacag	att ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact ggggatt	ccg gcccaaaaga	ctcaacttca	agctctttaa	tattcaagtc	960
aaagaggtca cgcagaa	tgg cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta ctgactc	gga gtaccagcto	ccgtacgtcc	tgggctcggc	gcatcaagga	1080
tgcctcccgc cgtttcc	agc ggacgtcttc	atggtcccac	agtatggata	cctcaccctg	1140
aacaacggga gtcaggc	ggt aggacgctct	tccttttact	gcctggagta	ctttccttct	1200
cagatgctgc gtactgg	aaa caactttcag	ttcagctaca	cttttgaaga	cgtgcctttc	1260
cacagcagct acgctca	cag ccagagtctg	gatcggctga	tgaatcctct	gatcgaccag	1320
tacctgtatt atctgaa	caa gacacaaaca	aatagtggaa	ctcttcagca	gtctcggcta	1380
ctgtttagcc aagctgg	acc aaccaacatg	tctcttcaag	ctaaaaactg	gctgcctgga	1440
ccttgctaca gacagca	gcg tctgtcaaaa	caggcaaacg	gcaacaacaa	cagcaacttt	1500
ccctggactg cagctac	aaa gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg ccagtca	caa ggatgacgaa	gaaaagttt	tccccatgca	tggaaccctg	1620
atatttggta aacaagg	aac aaatgccaac	gacgcggatt	tggaaaatgt	catgattaca	1680
gatgaagaag aaatcag	ggc caccaatcco	gtggctacgg	agcagtacgg	gactgtgtca	1740

aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca	ccaaggagcg	1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat	ttgggccaag	1860
attecteaca ecgatggaca ettteateet tetecaetga egggaggttt	tggactcaaa	1920
cacccgcctc ctcagatcat gatcaaaaac actcccgttc cagccaatcc	tcccacaaac	1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca	ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga	aattcagtac	2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa		2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa		2208
200 47		
<210> 47 <211> 2208		
<212> DNA <213> new AAV serotype, clone hu.4		
<400> 47		
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga		60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg		120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa		180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa		240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga		300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc		360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa		420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc		480
aaagcgggcc agcagcctgc aagaaaaaga ttaaattttg gtcagactgg		540
tccgtacctg acccccagcc tctcggacag ccaccagcag cccctctgg	tctgggatct	600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg	tgccgatgga	660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga	cagagtcatc	720
accaccagca cccgaacctg ggccctgccc acatacaaca accacctcta	caagcaaatc	780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac	cccctggggg	840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca	aagactcgtc	900
aacaacaacc ggggattccg gcccaaaaga ctcaacttca agctctttaa	tattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac	cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tgggctcggc	gcatcaagga	1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata	cctcaccctg	1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta	ctttccttct	1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga	cgtgcctttc	1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct	gatcgaccag	1320
tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca	gtctcggcta	1380
ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg	gctgcctgga	1440
ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa	cagcaacttt	1500
ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt	taatccagga	1560
ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca	tggaaccctg	1620
atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt	catgattaca	1680
gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg	gactgtgtca	1740
aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca	ccaaggagcg	1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat	ttgggccaag	1860
attecteaca cegatggaca ettteateet tetecaetga tgggaggttt	tggactcaaa	1920
cacccgcctc ctcagatcat gatcaaaaac actcccgttc cagccaatcc	tcccacaaac	1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca	ggtcagcgtg	2040
Page 42		

gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 48 2209 <213> new AAV serotype, clone hu.2 atggctgccg atggttatcc tccagattgg ctcgaggaca ctctctctga agggataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt 300 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcggcctgc aagaaaaaga ttaaattttg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acatacaaca accacctcta caagcaaatc 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaaaaga ctcaacttca agctctttaa tattcaaqtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggigitta cigacicgga giaccagete ecgiacgice igggelegge geatcaagga 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcggcta 1380 ctgtttagcc aagctggacc aaccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaaa caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcagggc caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatcg ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tggactcaaa 1920 caccegeete etcagateat gateaaaaac acteeegtte cageeaatee teccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaat 2209

4212 DNA <213> new AAV serotype, clone hu.25 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 ggcagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctca acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcaaaaaaga gggttcttga acctctgggc ctggttgagq agcctqttaa aacqqctccq 420 ggaaaaaaga gaccggtaga gcactctcct gcggagccag actcctcctc qqqaaccqqa 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accacaagca ctcgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc aaacgacaac cactattttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct cccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttcag ttcagctaca cttttgaaga cgtgcctttc 1260 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag 1320 tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca gtctcqqcta 1380 ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt catgattaca 1680 gatgaagaag aaatcaggac caccaatccc gtggctacgg agcagtacgg gactgtgtca 1740 aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca ccaaggagcg 1800 ttacctggta tggtgtggca ggatcgagat gtgtaccttc agggacccat ttgggccaag 1860 attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tggactcaaa 1920 caccegette etcagattat gateaaaaac acteeegtte cagecaatee teetacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacaataa tggcgtgtac 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 50 2208 <210> new AAV serotype, clone hu.15 50 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactctac 180

aágggagagagger cgarcgar	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgcc ttaaagaaga	tacgtcttt	gggggcaacc	tcggacgagc	agtcttccag	360
gccaaaaaga gggttcttga	acctctgggc	ttggttgggg	agcctgttaa	aacggctccg	420
ggaaaaaaga ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaagcgggca accagcctgc	aagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg acccccagco	tctcggacag	ccaccagcag	cccctctgg	tctgggatct	600
actacaatgg ctacaggcag	tggcgcacca	gtggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt cctcaggaaa	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca cccgaacctg	ggctctgccc	acctacaata	accacctcta	caagcaaatc	780
tccagccaat caggagccto	aaacgacaac	cactactttg	gctacagcac	cccctggggg	840
tattttgact tcaacagatt	ccactgccac	ttttcaccac	gtgaccggca	aagactcatc	900
aacaacaact ggggattccg	accaaaaaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta ctgactcggg	gtaccagctc	ccgtacgtcc	tcggcttggc	gcatcaagga	1080
tgcctcccgc cgttcccag	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga gtcaggcgg	aggacgctct	tccttttact	gcctggagta	ctttccttct	1200
cagatgctgc gtactggaaa	caactttcag	ttcagctaca	cctttgaaga	cgttcctttc	1260
cacagcagct acgctcacag	g ccagagtctg	gatcggctga	tgaatcctct	gatcgaccag	1320
tacctgtatt atctgaaca	gacacaatca	aatagtggaa	ctcttcagca	gtctcggcta	1380
ctgtttagcc aagctggac	caccagcatg	tctcttcaag	ctaaaaactg	gctgcctgga	1440
ccttgctaca gacagcagc	tctgtcaaag	caggcaaacg	acaacaacaa	cagcaacttt	1500
ccctggactg cggctacaa	a gtatcatcta	aatggccggg	actcgttggt	taatccagga	1560
ccagctatgg ccagccaca	a agacgatgaa	gaaaagtttt	tccccatgca	tggaaccctg	1620
atatttggta aacaaggaa	aaatgctaac	gacgcggatt	tggacaatgt	catgattaca	1680
gatgaagaag aaatccgca	caccaatccc	gtggctacgg	agcagtacgg	atatgtgtca	1740
aataatttgc aaaactcaa	a tactggtcca	actactggaa	ctgtcaatca	ccaaggagcg	1800
ttacctggta tggtgtggc	a ggatcgagac	gtgtacctgc	agggacccat	ttgggccaag	1860
attcctcaca ccgatggac					1920
cacccacctc ctcagatca					1980
ttcagttctg ccaagtttg					2040
gagatcgagt gggagctgc					2100
acttccaact ataacaaac				tggtgtgtat	2160
tcagagcctc gccccattg	g caccagatac	ctgactcgta	atctgtaa		2208
<210> 51 <211> 2208 <212> DNA <213> new AAV serot	ype, clone h	u.16			
<400> 51 atggctgccg atggttatc	t tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga agctcaaac	c tggcccacca	ccgccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg gtcttgtgc	t tcctgggtac	aagtacctcg	gacccttcaa	cggactctac	180
aagggagagc cggtcaacg	a ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg acagcggag	a caacccgtac	ctcaagtaca	accacgccgg	cgcggagttt	300
caggagcgcc ttaaagaag	a tacgtcttt	gggggcaacc	tcggacgagc	agtcttccag	360
gccaaaaaga gggttcttg	a acctctgggc	ttggttgagg	agcctgttaa	aacggctccg	420
ggaaaaaaga ggccggtag	a gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480

540

600

adagcgggca accagccitgc aagaaaaga ttgaattttg gtcagactgg agacgcagac

tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct

```
actacaatgg ctacaggcag tggcgcacca gtggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggctctgccc acctacaaca accacctcta caagcaaatc
                                                                     780
tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccctggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg accaaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
caggigitata cigacicoga giaccageie ecgiacgice icggeiegge geateagga
                                                                    1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa gacacaatca aatagtggaa cccttcagca gtctcggcta
                                                                    1380
ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatqt catqattaca
                                                                    1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                    1740
aataatttgc aagactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                    1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attcctcaca ccgatggaca ctttcatcct tctccactta tgggaggttt tggactcaaa
                                                                    1920
cacccacctc ctcagatcat gattaaaaac actcccgttc cagccaatcc tcccacaaac
                                                                    1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggaca agtcagcgta
                                                                    2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtac
                                                                    2100
acttccaact ataacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat
                                                                    2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
<211>
       52
2208
       DNA
       new AAV serotype, clone hu.18
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                     120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cggcagctcg aaagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                     300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                     360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccg
                                                                     420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga
                                                                     480
aaagcgggcc agcagcctgc gagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                     540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggatct
                                                                     600
actacaatgg cttcaggcag tggcgcacca gtggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                     780
```

```
tccaoccadt cadgagcctt aaacgacac cactactttg gctacagcac cccctggggg
                                                                    840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
aacaacagct ggggattccg acccaaaaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
1080
tgcctcccgc cgttcccagc agacgtcttt atggtcccac agtatggata cctcaccctg
                                                                   1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                   1200
cagatgctgc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttccttc
                                                                   1260
cacagcagct acgctcacag ccagagtctg gatcggctgc tgaatcctct gatcgaccag
                                                                   1320
tacctatatt atctgaacaa gacacaatca aatagtggaa ctcttcaqca qtctcqqcta
                                                                   1380
ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga
                                                                   1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                   1500
ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga
                                                                   1560
ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                   1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                   1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                   1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                   1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                   1860
attcctcaca cggacgggca ctttcatcct tctccactaa tgggaggttt tgggctcaaa
                                                                   1920
cacccgcctc ctcagatcat gatcaaaaac actcccgttc cagccaatcc tcctacaaac
                                                                   1980
ttcagttctt ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtat
                                                                   2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat
                                                                   2160
 tcagagcctc gccccattgg caccagatac ccgactcgta atctgtaa
                                                                   2208
       53
2208
 <210>
       DNA
       new AAV serotype, clone hu.8
 <400>
 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaacaaga
                                                                     60
 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                    420
 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
 aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                    540
 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                     600
 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                    660
 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                    720
 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                    780
 tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
 caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga
                                                                   1080
```

```
#tgccttkecgct cgrttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg
                                                                     1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                     1200
cagatgcttc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                     1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                     1320
tacctgtatt atctgaacaa aacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                     1380
ctgtttagtc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                     1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                     1500
ccctggactg cggctacaaa gtaccaccta aatggccggg actcgttggt taatccagga
                                                                     1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                     1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tqqacaatqt catqattaca
                                                                     1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                     1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                     1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaaq
                                                                     1860
attecteaca ecgatggaca ettteateet tetecaetga tgggaggttt tgggeteaaa
                                                                     1920
cacccgcctc ctcagatcat gatcaaaaac actcccgttc cagccaatcc tcccacaaac
                                                                     1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                     2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac
                                                                     2100
 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                     2160
 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                     2208
 <210>
       54
2208
        DNA
       new AAV serotype, clone rh.56
 <400>
 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                       60
 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                      120
 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                      180
 aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                      240
 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                      300
 caggagegte ttaaagaaga taegtetttt gggggeaace teggaegage agtetteeag
                                                                      360
 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                      420
 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                      480
 aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                       540
 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                      600
 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                      660
 gtgggtaatt cttcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                      720
 accaccagca cccgaacctg ggcccagccc acctacaaca accacctcta caagcaaatc
                                                                       780
 tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                       840
 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                       900
 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                       960
 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                      1020
 caggigitta Cigacicgga giaccagcic ccgtacgic tcgggicggc gcatcaagga
                                                                      1080
 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg
                                                                      1140
 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                      1200
 cagatgcttc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                      1260
 cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                      1320
 tacctgtatt atctgaacaa aacacaatca aatagtggag ctcttcagca gtctcggcta
                                                                      1380
```

```
ctgtttagtt aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtaccaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                    1680
gatgaagaag aaatccgcac caccaatccc gtggctacgg agcagtacgg atatgtgtca
                                                                    1740
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccgaggagcg
                                                                    1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt tgggctcaaa
                                                                    1920
caccegete etcagateat gateaaaaac actecegtte cagecaatee teccacaaac
                                                                    1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccga aattcagtac
                                                                    2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
<211>
      55
2208
      new AAV serotype, clone hu.7
<400>
      55
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                     120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                     300
caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag
                                                                     360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg gacctgttaa gacggctccg
                                                                     420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                     480
aaagcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                     540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tttgggatct
                                                                     600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                     780
tcaagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcgggtcggc gcatcaagga
                                                                    1080
tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgcttc gtactggaaa caactttcag ttcagctaca cctttgaaga cgttcctttc
                                                                    1260
cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct gatcgaccag
                                                                    1320
tacctgtatt atctgaacaa aacacaatca aatagtggaa ctcttcagca gtctcggcta
                                                                    1380
ctgtttagtc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctacctgga
                                                                    1440
ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtatcaccta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagtcacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggacaatgt catgattaca
                                                                    1680
```

```
gátģaagāag aaattccgcactccaccaatccc gtggctacgg agcagtacgg atatgtgtca
aataatttgc aaaactcaaa tactggtcca actactggaa ctgtcaatca ccaaggagcg
                                                                    1800
ttacctggca tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attecteaca ecgatggaca ettteateet tetecaetga tgggaggttt tgggeteaaa
                                                                    1920
caccegette etcagateat gateaaaaac acteeegtte cageeaatee teccacaaac
                                                                    1980
ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaagagaac agcaaacgct ggaatcccqa aattcagtac
                                                                    2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
      56
2208
      DNA
      new AAV serotype, clone hu.10
<400> 56
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc tcgcagagcg qcatcaggac
                                                                     120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
aaaggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccqa cgcqqagttt
                                                                     300
caggagegte ttaaagaaga taegtetttt gggggeaace teggaegage agtetteeag
                                                                     360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                     420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga
                                                                     480
aaggcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac
                                                                     540
tccgtacctg acccccagcc tctcggacag ccaccagcag cccccacaag tctgggatct
                                                                     600
actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga
                                                                     660
gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc
                                                                     780
tccagccaat caggagcctc gaacgacaac cactactttg gctacagcac cccctggggg
                                                                     840
tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcgqc gcatcaaqqa
                                                                    1080
tgcctcccgc cgtttccagc ggacgtcttc acggtcccac agtatggata cctcaccctg
                                                                    1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                    1200
cagatgctgc gtactggaaa caaccttacc ttcagctaca cctttgagga cgttcctttc
                                                                    1260
cacagcaget acgeteacag ecagagettg gaceggetga tgaateetet gategaceag
                                                                    1320
tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta
                                                                    1380
ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga
                                                                    1440
ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt
                                                                    1500
ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga
                                                                    1560
ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg
                                                                    1620
atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca
                                                                    1680
gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca
                                                                    1740
aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg
                                                                    1800
ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag
                                                                    1860
attcctcaca ccgacggaca ctttcaccct tctccactga tgggaggttt tggactcaaa
                                                                    1920
caccegette etcaaateat gateaaaaac acteeegtte cageeaatee teccacaaac
                                                                    1980
```

tacagititg ccaagitige tietticate acacagitati ccaegggeea ggicagegig 2040 gagattgagt gggagctgcg gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> <211> 57 2208 new AAV serotype, clone hu.11 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aaaggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcgqagttt 300 caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag cccccacaag tttgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctg 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtactggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccggctga tgaatcctct gatcgaccag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctqcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcgtcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttggqccaag 1860 attcctcaca ccgacggaca ctttcaccct tctccactga tgggaggttt tggactcaaa 1920 cacccgcctc ctcaaatcat gatcaaaaac actcccgttc cagccaatcc tcccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggcca ggtcagcgtg 2040 gagattgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208

<211>""2208" DNA new AAV serotype, clone hu.9 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 aacagcaggg gtcttgtgct tcctgggtac aagtacctcg gaccctccaa cggactcgac 180 aaaggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagegte ttaaagaaga taegtetttt gggggeaace teggaegage agtetteeag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggcc atcagcctgc gagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tccgtacctg acccccagcc tctcggacag ccaccagcag cccccacaag tttgggatct 600 actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg tgccgatgga 660 gtgggtaatt cctcaggaaa ttggcattgc gattcccaat ggctgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caagcaaatc 780 tccagccaat caggagcctc gaacgacaac cactactttg gctgcagcac cccctggggg 840 tattttgact tcaacagatt ccactgtcac ttctccccac gtgattggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata cctcaccctq 1140 aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccggctga tgaatcctct gatcgaccag 1320 tatctatatt atctgaacag gacacaatca aatagtggaa ctcttcagca gtctaggcta 1380 ctgtttagcc aagctggacc caccagcatg tctcttcaag ctaaaaactg gctgcctgga 1440 ccttgctaca gacagcagcg tctttcaaag caggcaaacg acaacaacaa cagcaacttt 1500 ccctggactg cggctacaaa gtatcatcta aatggccggg actcgttggt taatccagga 1560 ccagctatgg ccagccacaa agacgatgaa gaaaagtttt tccccatgca tggaaccctg 1620 atatttggta aacaaggaac aaatgctaac gacgcggatt tggagcatgt tatgattaca 1680 gatgaagaag aaatcaggac caccaatcct gtggctacag agcagtacgg aaacgtgtca 1740 aataatttgc aaaactcaaa tactggtcca actacagaaa atgtcaatca ccagggagcg 1800 ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat ttgggccaag 1860 attecteaca ecgaeggaea ettteaceet tetecaetga tgggaggttt tggaeteaaa 1920 caccegeete etcaaateat gateaaaaac acteeegtte cagecaatee teccacaaac 1980 ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacgggcca ggtcagcgtg 2040 gagattgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga gatccagtat 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctt gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 59 2208 <211> DNA <213> new AAV serotype, clone hu.12 <400> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatcaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180

aaaggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgtc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
		gagaaagaga				540
		tctcggacag				600
		tggcgcacca				660
		ttggcattgc				720
		ggccctgccc				780
		gaacgacaac				840
		ccactgtcac				900
		acccaagaga				960
		cggtacgacg			•	1020
		gtaccagctc				1080
		ggacgtcttc				1140
		aggacgccct				1200
		caactttacc				1260
		ccagagtttg				1320
		gacacaatca				1380
		caccagcatg				
						1440
		tctttcaaag				1500
		gtatcatcta				1560
		agacgatgaa				1620
					tatgattaca	1680
					aaacgtgtca	1740
		tactggtcca				1800
		ggatcgagac				1860
					tggactcaaa	1920
		gatcaaaaac				1980
ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacgggcca	ggtcagcgtg	2040
gagattgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaaccccga	gatccagtat	2100
acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 60 <211> 220 <212> DNA <213> new		pe, clone h	u.23			
<400> 60 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
					gcataaggac	120
					cggactcgac	180
					ggcctacgac	240
					cgcggagttt	300
					agtcttccag	360
					gacggctccg	420
					gggaaccgga	480
	20399-	J	J-55wgcca9	Back 53	agguercyya	400

aaagcgggcc agcagcc	tgc aagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg accccca	gcc tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg cttcagg	cag tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt cctcggg	aaa ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca cccgcac	ctg ggccctgccc	acctgcaaca	accatctgta	caagcaaatc	780
tccagccagt ctggagc	cag caacgacaac	cactactttg	gctacagcac	ccctggggg	840
tattttgact tcaacag	att ccactgccac	ttctccccac	gtgactggca	aagactcatc	900
aacaacaact ggggatt	ccg gcccaagaga	ctcagcttca	agctctttaa	cattcaagtc	960
aaagaggtca cgcagaa	tga cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta ctgactc	gga gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc cgttccc	agc agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggca gtcaggc	ggt aggacgctct	tccttttact	gcctggagta	ttttccttct	1200
cagatgcttc gtaccgg	aaa caactttacc	ttcagctaca	cctttgaaga	cgttcctttc	1260
catagcagct acgctca	cag ccaaagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt acttgag	cag aacaaacact	ccaagcggaa	ccaccacgat	gtccaggctt	1380
cagttttctc aggccgg	agc aagtgacatt	cgggaccagt	ctagaaactg	gcttcctgga	1440
ccctgttacc gccagca	gcg agtatcaaag	acagctgcgg	acaacaacaa	cagtgattac	1500
tcgtggactg gagctac	caa gtaccacctc	aatggaagag	actctctggt	gaatccgggc	1560
ccagctatgg ccagcca	caa ggacgatgaa	gaaaaatatt	ttcctcagag	cggggttctc	1620
atctttggaa aacaaga	ctc gggaaaaact	aatgtggaca	ttgaaaaggt	tatgattaca	1680
gacgaagagg aaatcag	gac caccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
acctacctcc agagcgg	caa cacacaagca	gctacctcag	atgtcaacac	acaaggcgtt	1800
cttccaggca tggtctg	gca ggacagagac	gtgtacctgc	gggggcccat	ctgggcaaag	1860
attccacaca cggacgg	aca ttttcacccc	tctccctca	tgggcggatt	tggacttaaa	1920
caccctcctc cacaaat	tct catcaagaac	accccggtac	ctgcgaatcc	ttcgaccact	1980
ttcagtgcgg caaagtt	tgc ttccttcatc	acacagtact	ccacggggca	ggtcagcgtg	2040
gagatcgagt gggagct	gca gaaggagaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact acaacaa	atc tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc gccccat	tgg caccagatac	ctgactcgta	atctgtaa		2208
<210> 61 <211> 2208 <212> DNA <213> new AAV ser	otype, clone hu	J. 26			
<400> 61					
atggctgccg atggtta					60
cagtggtgga agctcaa					120
gacagcaggg gtcttgt					180
aagggagagc cggtcaa					240
cggcagctcg acagcgg					300
caggagcgtc ttaaaga					360
gccaaaaaga ggattct					420
ggaaaaaaga ggccggt					480
aaagcgggcc agcagcc					540
tcagtacctg accccca					600
aatacgatgg cttcagg					660
gtgggtaatt cctcggg					720
accaccagca cccgcac	ctg ggccctgccc	acctacaaca	accatctgta Page 54	caagcaaatc	780

tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgette gtaceggaaa caactttace tteagetaca cetttgaaga egtteette	1260
catagcaget acgeteacag ccaaagtetg gaccgtetea tgaateetet categaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa	1920
caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 62 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.19	
<400> 62 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
	60 120
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	120 180
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	120 180 240
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aaggggagac cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	120 180 240 300
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggaggcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag	120 180 240 300 360
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctcg	120 180 240 300 360 420
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctctc gggaaccgga	120 180 240 300 360 420 480
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggcc agcagctgc aagaaagaaga ttgaattttg gccagactgg agacgcagac	120 180 240 300 360 420 480 540
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagac cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gcaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctctc gggaaccgga aaagcgggcc agcagcctgc aagaaagaaga ttgaattttg gccagactgg agacgcagac tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	120 180 240 300 360 420 480 540 600
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagac cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt ggggggcaacc tcggacgagc agcttccag ggagaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga aaagcgggcc agcagcctgc aagaaagaag ttgaattttg gccagactgg agacgcagac tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	120 180 240 300 360 420 480 540 600 660
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagag cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcct gggaaccgga aaagcgggc agcagcaga cacctctcct gcggagcaac tcagtacct agcagccga cccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact tcagtacctg acccccagcc tctcggacaa ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcaa ttggtattgc gattccacat ggatggcga cagagtcatc	120 180 240 300 360 420 480 540 600 660 720
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagac cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcgggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt ggggggcaacc tcggacgagc agcttccag gcaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggaggcag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaaga ttgaattttg gccagactgg agacgcagac tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc	120 180 240 300 360 420 480 540 600 660 720 780
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgct ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctctc gggaaccgga aaagcgggcc agcagctgc aagaaagaa ttggaatttt gcaggagcaa accccttctc gggaaccgga aaagcgggcc agcagctgc aagaaagaa ttgaattttg gccagactgg agacgcagac tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	120 180 240 300 360 420 480 540 600 660 720 780 840
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggaagac cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcgggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtcttt ggggggcaacc tcggacgagc agcttccag ggaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggaggcag actcctcct gggaaccgga aaagcgggcc agcagcctgc aagaaagaaga ttgaattttg gccagactgg agacggaact tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg tattttgact tcaacagatt ccactgccac ttctccccc gtgactggca aagactcatc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag gccaaaaaga ggcctgga acctctct gcggagcaag aacctgttaa gacggctccg ggagaaaaga ggccggtaga gcactctcct gcggaggcaag acctctctc gggaaccgga aaagcgggcc agcagcctgc aagaaagaga ttgaatttg gccagactgg agacgcagac tcagtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga gtgggtaatt cctcgggaaa ttggtattgc gattccacat ggatgggcga cagagtcatc accaccagca cccgcacct ggccctgccc acctacaaca accatctgta caagcaaatc tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc aacaacaaca gggggattccg gcccaagaga ctcaccaca agctctttaa cattcaagtc	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

```
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                  1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                  1200
cagatgette gtaceggaaa caaetttace tteagetaca eetttgaaga egtteettte
                                                                  1260
catagcaget acgeteacag ecaaagtetg gacegtetea tqaateete cateqaecag
                                                                  1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt
                                                                  1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga
                                                                  1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac
                                                                  1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc
                                                                  1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc
                                                                  1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca
                                                                  1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                  1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt
                                                                  1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag
                                                                  1860
attccacaca cggacggaca ttttcacccc tctcccctcg tgggcggatt cggacttaaa
                                                                  1920
caccetecte cacaaattet catcaagaac acceeggtac etgeqaatee ttegaceaet
                                                                  1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg
                                                                  2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac
                                                                  2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat
                                                                  2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                  2208
<210>
      63
2208
       DNA
      new AAV serotype, clone hu.20
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                     60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aggtacctcg gacccttcaa cgqactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgtcga cgcggagttt
                                                                    300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa ggcggctccg
                                                                    420
ggagaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac
                                                                    540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                    600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                    660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                    720
accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc
                                                                    780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg
                                                                    840
cattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc
                                                                    900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                   1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct
                                                                   1200
cagatgette gtaceggaaa caactttace tteagetaca cetttgaaga egtteette
                                                                   1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag
                                                                   1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt
```

1380

cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctccccca tgggcggatt cggacttaaa	1920
caccctcctc cacaaattct catcaagaac accccggtac ctgcgaatcc ttcgaccact	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg cgccagatac ctgactcgta atctgtaa	2208
310. 64	
<210> 64 <211> 2208	
<212> DNA <213> new AAV serotype, clone hu.27	
<400> 64	
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgtc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gccaaaaaga ggattcttga acctctgggc ctggttgagg aacctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga	480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc	780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tatttcgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcggg gtaccagctc ccgtacgtcc tcggctcggc	1080
tgccttccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgcttc gtaccggaaa caactttacc ttcagctaca cctttgaaga cgttcctttc	1260
catagcagct acgctcacgg ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacgtt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
gtctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
Page 57	

gacgaagagg	aaatcaggac	caccaatccc	gcggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagcggcaa	cacacaagca	gctacctcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagac	gtgtacctgc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggcggatt	cggacttaaa	1920
caccctcctc	cacaaattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccact	1980
ttcagtgcgg	caaagtttgt	ttccttcatc	acacagtact	ccacggggca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 65 <211> 2208 <212> DNA <213> new		oe, clone h	J.21			
<400> 65 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ccctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	ggcctacgac	240
cggcagctcg	acagcggaga	taacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgcc	ttaaagagga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gccaaaaaga	ggattcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gcggagccag	actcctcctc	gggaaccgga	480
aaagcgggcc	agcagcctgc	aagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg	accccggcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg	cttcaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt	cctcgggaaa	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca	cccgcacctg	ggccctgccc	acctacaaca	accatctgta	caagcaaatc	780
tccagccagt	ctggagccag	caacgacaac	cactactttg	gctacagcac	cccctggggg	840
tattttgact	tcaacagatt	ccactgccac	ttctccccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	gcccaagaga	ctcagcttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140 ত
aacaacggca	gtcaggcggt	aggacgctct	tccttttact	gcctggagta	ctttccttct	1200
cagatgcttc	gtaccggaaa	caactttacc	ttcagctaca	cctttgaaga	cgttcctttc	1260
catagcagct	acgctcacag	ccaaagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagcggaa	ccaccacgat	gtccaggctt	1380
cagttttctc	aggccggagc	aagtgacatt	cgggaccagt	ctagaaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acagctgcgg	acaacaacaa	cagtgattac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggaagag	actctctggt	gaatccgggc	1560
ccagctatgg	ccagccacaa	ggacgatgaa	gaaaaatatt	ttcctcagag	cggggttctc	1620
atctttggaa	aacaagactc	gggaaaaact	aatgtggaca	ttgaaaaggt	tatgattaca	1680
gacgaagagg	aaatcaggac	caccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagcggcaa	cacacaagca	gctacctcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagac	gtgtacctgc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctcccctca	tgggcggatt	cggacttaaa	1920
caccctcctc	cacaaattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccact	1980

ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 66 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.24	
<400> 66 atggctgccg atggttatct tccagattgg ctcgaggaca ccctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga taacccgtac ctcaagtaca accacgccga cgcggagttt	
caggagcgcc ttaaagagga tacgtctttt gggggcaacc tcggacgagc agtcttccag	300
	360
gccaaaaaga ggattettga acctetggge etggttgagg aacctgttaa gaeggeteeg	420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga	480
aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg accccggcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc	780
tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg	840
tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc	900
aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggigitta cigacicgga giaccagcic ccgiacgicc icggcicggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgette gtaceggaaa caaetttace tteagetaca eetttgaaga egtteettte	1260
catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac	1500
tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc	1560
ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa	1920
caccetecte cacaaattet cateaagaac acceeggtae etgegaatee ttegaceact	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
- Julius Juli	2200

67 2208 DNA new AAV serotype, clone hu.22 <213> atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaaggaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gccaaaaaga ggattettga acctetggge etggttgagg aacetgttaa gacqqetecq 420 ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga 480 aaagcgggcc agcagcctgc aagaaagaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcgg cagagtcatc 720 accaccagca cccgcacctg ggccctgccc acctacaaca accatctgta caagcaaatc 780 tccagccagt ctggagccag caacgacaac cactactttg gctacagcac cccctggggg 840 tattttgact tcaacagatt ccactgccac ttctccccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcagcttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg 1140 aacaacggca gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct 1200 cagacgette gtaceggaaa caaetttace tteagetaca eetttgaaga egtteette 1260 catagcagct acgctcacag ccaaagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgat gtccaggctt 1380 cagttttctc aggccggagc aagtgacatt cgggaccagt ctagaaactg gcttcctqqa 1440 ccctgttacc gccagcagcg agtatcaaag acagctgcgg acaacaacaa cagtgattac 1500 tcgtggactg gagctaccaa gtaccacctc aatggaagag actctctggt gaatccgggc 1560 ccagctatgg ccagccacaa ggacgatgaa gaaaaatatt ttcctcagag cggggttctc 1620 atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt tatgattaca 1680 gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacaaattet cateaagaac acceeggtac etgegaatee ttegaceact 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggggca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 68 2208 <210> DNA <213> new AAV serotype, clone hu.28 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga aactcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120

```
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gcaaaaaaga gggttctgga acctctgagc ctggttgagg agcctgttaa gacggctccg
                                                                    420
ggaaaaaaga ggccggtaga gcactctccc gcagagccag attcctcctc cggaactgga
                                                                    480
aagtcgggca accagcctgc aagaaagaga ttgaatttcg qtcaqactqq agactcaqac
                                                                    540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                    600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                    660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                    720
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata
                                                                    780
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg
                                                                    840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                   1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagagta ctttccttct
                                                                    1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc
                                                                    1260
cacagcaget acgeteacag ceagagiting gacegitetea igaateetet categaceag
                                                                   1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
                                                                    1380
cagttttctc aggccggagc gagtgacatt caggaccagt ctaggaactg gcttcctgga
                                                                    1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                    1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                    1560
ccggccatgg ccagccacaa agacgatgaa gaaaagtttt ttcctcagag cggggttctt
                                                                    1620
atctttggga agcaaggctc agagaaaaca aatgtggata ttgaaaaggt catgattaca
                                                                    1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                    1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                    1800
cttccaggca tggtcgggca agacagagac gtgtacctgc aggggcctac ttgggcaaag
                                                                    1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa
                                                                    1920
caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceace
                                                                    1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                    2100
 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
 tcagagcctc gccccattgg caccagatac ctgactcgta atctqtaa
                                                                    2208
 <210>
       69
2208
 <213>
       new AAV serotype, clone hu.29
 <400>
 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                     120
 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                     180
 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcagagttt
                                                                     300
 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag
                                                                     360
 gcaaaaaaga gggttctgga acctctgggc ctggttgagg agcctgttaa gacggctccg
                                                                     420
```

```
ggaaaaaaga ggccggtaga gcactctcct gcagagccag attcctcctc cggaactgga
                                                                     480
aagtcgggca accagcctgc aagaaagaga ttgaatttcg gtcagactgg agactcagac
                                                                     540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                     600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                     660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                     720
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata
                                                                     780
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg
                                                                     840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                     900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                     1020
caggigita cigacicoga giaccagete ecgiacgie teggetegge geateaagga
                                                                     1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcacctg
                                                                     1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagggta ctttccttct
                                                                     1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc
                                                                     1260
cacagcaget acgeteacag ceagagtttg gacegtetea tgaateetet categaceag
                                                                     1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
                                                                     1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                     1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                     1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                     1560
ccggccatgg ccagccacaa agacgatgaa gaaaagtttt ttcctcagag cggggttctt
                                                                     1620
atctttggga agcaaggccc agagaaaaca aatgtggata ttgaaaaggt catgattaca
                                                                     1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                     1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                     1800
cttccaggca tggtctggca agacagagac gtgtacctgc aggggcctat ttgggcaaag
                                                                     1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa
                                                                     1920
caccetecte cacagattet cateaagaac acceeggtac etgegaatee ttegaceace
                                                                     1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg
                                                                     2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                     2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                     2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                     2208
<210>
       70
       2208
       DNA
      new AAV serotype, clone hu.30
<400>
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                       60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                      120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                     240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                      300
caggagcgcc ttaaagagga tacgtctttt ggggggcaacc tcggacgagc agtcttccag
                                                                      360
gcaaaaaaga gggttctgga acctctgggc ctggttgagg agcctgttaa gacggctccg
                                                                      420
ggaaaaaaga ggccggtaga gcactctcct gcagagccag attcctcctc cggaactgga
                                                                     480
aagtcgggca accagcctgc aagaaagaga ttgaatttcg gtcagactgg agactcagac
                                                                      540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                      600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                     660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                     720
```

```
accaccagca cccgaacctg ggccctgccc acctacaaca accatctgta caagcaaata
                                                                   780
tccagccagt ctggagccag caacgacaat cactactttg gctacagcac cccctggggg
                                                                   840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                   900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                   960
aaagaggtca CgCagaatga CggtaCgaCg acgattgCCa ataaCCttaC cagCaCggtt
                                                                  1020
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctq
                                                                  1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctagagta ctttccttct
                                                                  1200
cagatgctgc gtaccggaaa cagctttacc ttcagctaca cctttgagga cgttcctttc
                                                                  1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag
                                                                  1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
                                                                  1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                  1440
ccctgttacc gtcagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                  1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                  1560
ccggccatgg ccagccacaa agacgatgaa gaaaagttct ttcctcagag cggggttctt
                                                                  1620
atctttggga agcaaggctc agagaaaaca aatgtggata ttgaaaaggt catgattaca
                                                                   1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                  1740
accaacctcc agagcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                  1800
cttccaggca tggtctggca agacagagac gtgtacctgc aggggcctat ttgggcaaag
                                                                   1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa
                                                                  1920
caccetecte cacagattet cateaagaae acceeggtae etgegaatee ttegaceaee
                                                                   1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                   2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                   2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                   2208
       2208
       DNA
      new AAV serotype, clone hu.13
<213>
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                     60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag
                                                                    360
gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa aacggctccq
                                                                    420
ggaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg agacgcagac
                                                                    540
tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                    600
aatacgatgg cttcaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                    660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                    720
accaccagca cccgaacttg ggccctgccc acctacaaca accatctcta caagcaaatc
                                                                    780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg
                                                                    840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
```

960

1020

aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc

aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt

```
1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                  1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                  1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc
                                                                  1260
cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag
                                                                  1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt
                                                                  1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctaqqaactq qcttcctqqa
                                                                  1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                  1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                  1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                  1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                   1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                  1740
accaacctgc agggcggcaa cacacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                  1800
cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag
                                                                  1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa
                                                                  1920
caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceace
                                                                   1980
ttcagtgcgg caaagtttgc ttctttcatc acacagtatt ccacggggca ggtcagcgtg
                                                                   2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gatccagtac
                                                                   2100
acttccaact acaacaaatc tgttaatgtg gactttactg ttgacactaa tggcgtgtat
                                                                   2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                   2208
      72
2208
      DNA
      new AAV serotype, clone hu.34
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                    60
cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaggac
                                                                   120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac
                                                                   240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                    300
caggagcgcc ttaaagaaga tacgtccttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                    420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccqqa
                                                                    480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                    540
tragtacity accercages teteggacay craccageay eccepting tetgggaact
                                                                    600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                    660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                    720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt
                                                                    780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg
                                                                    840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                    900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                    960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                   1020
caggigita cigacicgga giaccagcic ccgiacgic tcggcicggc gcatcaagga
                                                                   1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                   1140
aacaacgaga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                   1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc
                                                                   1260
cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag
                                                                   1320
```

```
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                    1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                    1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                    1560
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                    1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca
                                                                    1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct
                                                                    1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt
                                                                    1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag
                                                                    1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa
                                                                    1920
caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceaec
                                                                    1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg
                                                                    2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac
                                                                    2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat
                                                                    2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa
                                                                    2208
<210>
      73
2208
<211><212>
      DNA
<213>
      new AAV serotype, clone hu.35
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                      60
cagcggtgga agctcaaacc tggcccacca ccaccagagc ccgcagagcg gcataaqqac
                                                                      120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac
                                                                      180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac
                                                                      240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt
                                                                      300
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                      360
gcgaaaaaga gggtacttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                      420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga
                                                                      480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac
                                                                      540
tragtacttg accccagcc teteggacag ccaccagcag cecettetgg tetgggaact
                                                                      600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                      660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                      720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt
                                                                      780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg
                                                                      840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc
                                                                      900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc
                                                                      960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                     1020
caggigitta cigacicoga giaccagete cegiaegiee teggetegge geateaagga
                                                                     1080
tgcctcccgc cgttcccagc agacgtcttc atggtaccac agtatggata cctcaccctg
                                                                     1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                     1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc
                                                                     1260
cacagcagct acgctcacag ccagagtctg ggccgtctca tgaatcctct catcgaccag
                                                                    1320
tacctgtatt acttgagcag aacaaacact ccaagtggaa ccaccacgca gtcaaggctt
                                                                     1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga
                                                                     1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac
                                                                     1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc
                                                                     1560
ccggccatgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc
                                                                     1620
```

atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcaggac	aaccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
			gctaccgcag			1800
cttccaggca	tggtctggca	ggacagagat	gtgtaccttc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggtggatt	cggacttaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtact	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
-210- 74						
<210> 74 <211> 2200 <212> DNA	8					
	AAV seroty	oe, clone hi	J. 36			
<400> 74	atoottatct	tccagattgg	ctcgaggaca	ctctctctaa	angaataaga	60
			ccaccagagc			120
			aagtacctcg		-	180
			gcggccctcg			240
			ctcaagtaca			300
			gggggcaacc			360
			ctggttgagg			420
			gtggagccag			480
			ttgaattttg			540
			ccaccagcag			600
			atggcagaca			660
			gattccacat			720
			acctacaaca			780
			cactactttg			840
			ttttcaccac			900
			ctcaacttca			960
			acgattgcca		-	1020
			ccgtacgtcc			1080
			atggtgccac			1140
			tcattttact		_	1200
			ttcagctaca			1260
	·		ggccgtctca		_	1320
			ccaagtggaa		_	1380
					gcttcctgga	1440
			acatctgcgg			1500
			aatggcagag			1560
			gaaaagtttt			1620
					catgattaca	1680
			gtggctacgg			1740
					acaaggcgtt	1800
			gtgtaccttc			1860
			tctcccctca			1920
	- 9595			-yyy cyya c t	cygaciladd	1360

						10
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtact	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	cgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 75 <211> 2208 <212> DNA <213> new		oe, clone hu	1.33			
<400> 75 atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagcggtgga						120
gacagcaggg						180
				agcacgacaa		240
				accacgccga		300
				tcggacgagc		360
gcgaaaaaga						420
				actcctcctc		480
				gtcagactgg		540
				cccctctgg		600
				ataacgaggg		660
				ggatgggcga		720
				accacctcta		780
				gctacagcac		840
				gtgactggca		900
				agctctttaa		960
				ataaccttac	_	1020
				tcggctcggc		1080
				agtatggata	_	1140
				gcctggagta	_	1200
				cttttgagga		
						1260
				tgaatcctct		1320
				ccaccacgca		1380
				ctaggaactg		1440
				ataacaacaa		1500
				actctctggt		1560
				ttcctcagag		1620
				ttgaaaaggt		1680
				agcagtatgg		1740
				atgtcaacac		1800
				aggggcccat		1860
				tgggtggatt		1920
				ctgcgaatcc		1980
				ccacgggaca		2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208

2208 DNA new AAV serotype, clone hu.45 atggctgccg atggctatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatagggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac 180 aagggagage eggteaaega ggeagaegee geggeeeteg ageaegaeaa ageetacgae 240 cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt 300 caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag 360 gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac 540 tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt 780 tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc 960 aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt 1020 caggigitta cigacicggg giaccagcic ccgtacgic icggcicggc gcatcaagga 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata ccccacctq 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc 1260 cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccacgca gtcaaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac 1500 tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggccgtgg caagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtatgg ttctgtatct 1740 accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcccat ctgggcaaag 1860 attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa 1920 caccctcctc cacagattct catcaagaac accccggtac ctgcgaatcc ttcgaccacc 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg 2040 gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac 2100 acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 2208 <213> new AAV serotype, clone hu.47 atggctgccg atggctatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcatagggac 120 Page 68

gacagcaggg gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagagc cggtcaacga					240
cggcagctcg acagcggaga					300
caggagcgcc ttaaagaaga					360
gcgaaaaaga gggttcttga					420
ggaaaaaaga ggccggtaga					480
aaggcgggcc agcagcctgc					540
tcagtacctg acccccagcc					600
aatacgatgg ctacaggcag					660
gtgggtaatt cctcgggaaa					720
accaccagca cccgaacctg					780
tccagccaat caggagcctc					840
tattttgact tcaacagatt				_	900
aacaacaact ggggattccg					960
aaagaggtca cgcagaatga					1020
caggtgttta ctgactcgga					1080
tgcctcccgc cgttcccagc					1140
aacaacggga gtcaggcagt					_
cagatgctgc gtaccggaaa					1200
cacagcagct acgctcacag					1260
tacctgtatt acttgagcac					1320
cagttttctc aggccggagc					1380
ccctgttacc gccagcagcg					1440
					1500
tcgtggactg gagctaccaa					1560
ccggccatgg caagccacaa					1620
atctttggga agcaaggctc					1680
gacgaagagg aaatcaggac					1740
accaacctcc agagaggcaa					1800
cttccaggca tggtctggca					1860
attccacaca cggacggaca					1920
caccctcctc cacagattct					1980
ttcagtgcgg caaagtttgc					2040
gagatcgagt gggagctgca					2100
acttccaact acaacaagtc				tggcgtgtat	2160
tcagagcctc gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 78 <211> 2211 <212> DNA					
<213> new AAV serotyp	e, clone hu	1.48			
<400> 78 atggctgccg atggttatct				_	60
gagtggtggg acttgaaacc					120
gacggccggg gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc ccgtcaacgc	ggcggacgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgtc tgcaagaaga	tacgtCtttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaagc gggttctcga	acctctcggt		aaggcgctaa	gacggctcct	420

ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	480
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gccagactgg cgactcagag	540
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc	720
accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc	780
tccagtactt caacgggggc cagcaacgac aaccactact tcggctacgg cacccctgg	840
gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc	900
atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa	960
gtcgaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg	1020
gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag	1080
ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg	1140
ctcaacaatg gcagccaagc cgtgggacgt tcatccttt actgcctgga atatttcct	
tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct	1200
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac	1260
caatacctgt attacctgaa cagaacacaa aatcagtccg gaagtgccca aaacaaggac	1320
	1380
ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct	1440
ggaccetgtt ateggeagea gegegtteet aaaacaaaaa cagacaacaa caacagcaat	1500
tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct	1560
ggcaccgctg tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc	1620
atgatttttg gaaaagagag cgccggagct tcaagcactg cattggacaa tgtcatgatt	1680
acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg	1740
gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga	1800
gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc	1860
aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc	1920
aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg	1980
gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt	2040
gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag	2100
tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt	2160
tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a	2211
<210> 79	
<211> 2211 <212> DNA	
<213> new AAV serotype, clone rh.71	
<400> 79 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac	60
gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	120
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	180
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	240
caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag	300
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	360
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc	420
aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag	480
tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct	540
actacaatgg CttCaggCgg tggcgcacca atggcagaca	600
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga	660
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc Page 70	720
ruge 70	

accaccagca	cccgcacctg	ggccttgccc	acctacaata	accacctcta	caagcaaatc	780
tccagtgctt	caacgggggc	cagcaacgac	aaccactact	tcggctacag	caccccctgg	840
gggtattttg	atttcaacag	attccactgc	cacttttcac	cacgtgactg	gcagcgactc	900
atcaacaaca	attggggatt	ccggcccaag	agactcaact	tcaaactctt	caacatccaa	960
gtcaaggagg	tcacgacgaa	tgatggcgtc	acaaccatcg	ctaataacct	taccagcacg	1020
gttcaagtct	tctcggactc	ggagtaccag	cttccgtacg	tcctcggctc	tgcgcaccag	1080
ggctgcctcc	ctccgttccc	ggcggacgtg	ttcatgattc	cgcaatacgg	ctacctgacg	1140
ctcaacaatg	gcagccaagc	cgtgggacgt	tcatcctttt	actgcctgga	atatttccct	1200
tctcagatgc	tgagaacggg	caacaacttt	accttcagct	acacctttga	ggaagtgcct	1260
ttccacagca	gctacgcgca	cagccagagc	ctggaccggc	tgatgaatcc	tctcatcgac	1320
caatacctgt	attacctgaa	cagaactcaa	aatcagtccg	gaagtgccca	aaacaaggac	1380
ttgctgttta	gccgtgggtc	tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt	atcggcagca	gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga	ctggtgcttc	aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta	tggcctcaca	caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620
atgatttttg	gaaaagagag	cgccggagct	tcaaacactg	cattggacaa	tgtcatgatt	1680
acagacgaag	aggaaattaa	agccactaac	cctgtggcca	ccgaaagatt	tgggaccgtg	1740
		cagcacagac				1800
		gcaagataga				1860
		acactttcac				1920
		cctcatcaaa				1980
		tgcttcattc				2040
		gcagaaagaa				2100
		atctgccaac				2160
tatactgagc	ctcgccccat	tggcacccgt	taccttaccc	gtcccctgta	a	2211
<210> 80						
<211> 221	4					
	AAV seroty	pe, clone hu	u.43			
<400> 80	3500****	********	********			
		tccagattgg				60
		tggagccccc				120
		tcctggctac				180
		ggcggacgca			_	240
		caatccgtac				300
		tacgcctttt				360
		acctctcggt				420
		accgtcacct				480
		cgctaaaaag				540
		accaatcgga			_	600
		cggtggcgct				660
		aaattggcat				720
		ctgggccttg				780
		ggccagcaac				840
		cagattccac				900
		attccggccc				960
caagtcaagg	aggtcacgac	gaatgatggc	gtcacaacca	tcgctaataa	ccttaccagc	1020

acggttcaag	tcttctcgga	ctcggagtac	cagcttccgt	acgtcctcgg	ctctgcgcac	1080
cagggctgcc	tccctccgtt	cccggcggac	gtgttcatga	ttccgcaata	cggctacctg	1140
acgctcaaca	atggcagcca	agccgtggga	cgttcatcct	tttactgcct	ggaatatttc	1200
ccttctcaga	tgctgagaac	gggcaacaac	tttaccttca	gctacacctt	tgaggaagtg	1260
cctctccaca	gcagctacgc	gcacagccag	agcctggacc	ggctgatgaa	tcctctcatc	1320
gtccaatacc	tgtattacct	gaacagaact	caaaatcagt	ccggaagtgc	ccaaaacaag	1380
gacttgctgt	tcagccgtgg	gtctccagct	ggcatgtctg	ttcagcccaa	aaactggcta	1440
cctggaccct	gttatcggca	gcagcgcgtt	tctaaaacaa	aaacagacaa	caacaacagc	1500
aattttacct	ggactggtgc	ttcaaaatat	aacctcaatg	ggcgtgaatc	catcatcaac	1560
cctggcactg	ctatggcctc	acacaaagac	gacgaagaca	agttctttcc	catgagcggt	1620
	ttggaaaaga					1680
	aagaggaaat					1740
	atttccagag					1800
	ctggcatggt				_	1860
	ctcacacaga					1920
	cgcctcctca					1980
	cagctacaaa					2040
	ttgaatggga					2100
	ccaattatgc					2160
	agcctcgccc					2214
ccccacacty	agectegeee	carryycacc	cyctactica	cccgccccc	gtaa	2214
<210> 81 <211> 221	1					
<212> DNA <213> new	AAV seroty	ne, clone b	1.44			
		,	.			
<400> 81 atggctgccg	atggttatct			ctctctctga	aggaataaga	60
atggctgccg		tccagattgg	ctcgaggaca			60 120
atggctgccg cagtggtgga	atggttatct	tccagattgg tggcccacca	ctcgaggaca ccaccaaagc	ccgcagagcg	gcataaggac	
atggctgccg cagtggtgga gacagcaggg	atggttatct agctcagacc	tccagattgg tggcccacca tcctgggtac	ctcgaggaca ccaccaaagc aagtacctcg	ccgcagagcg gacccttcaa	gcataaggac cggactcgac	120
atggctgccg cagtggtgga gacagcaggg aagggagagc	atggttatct agctcagacc gtcttgtgct	tccagattgg tggcccacca tcctgggtac ggcagacgcc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg	ccgcagagcg gacccttcaa agcacgacaa	gcataaggac cggactcgac agcctacgac	120 180
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga	gcataaggac cggactcgac agcctacgac cgcggagttt	120 180 240
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc	atggttatct agctcagacc gtcttgtgct cggtcaacga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag	120 180 240 300
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct	120 180 240 300 360
cagtggtgcag gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc	120 180 240 300 360 420
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac aagacaggcc	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcetcctc	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag	120 180 240 300 360 420 480
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac aagacaggcc	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaaa	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcetcctc gtcagactgg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct	120 180 240 300 360 420 480 540
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac aagacaggcc tcagtccccg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga	120 180 240 300 360 420 480 540 600
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaaa tggcgcacca	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540 600 660
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata	ccgcagagcg gaccettcaa agcacgacaa accacgcga tcgggcgagc aaggcgctga actcetcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc	120 180 240 300 360 420 480 540 600 660 720 780
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgcc ggccttgccc cagcaacgac	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg	120 180 240 300 360 420 480 540 600 660 720 780 840
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacggggc atttcaacag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaaa tggcgcacca ttggcattgc ggccttgccc cagcaacgac attccactgc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact	ccgcagagcg gacccttcaa agcacgacaa accacgcga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
atggctgccg cagtggtgga gacagcaggg aagggagagcc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacgggggc atttcaacag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgccc cagcaacgac attccactgc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc ccaacatccaa	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacggggc atttcaacag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtcttt acctctcggt gcagtcgcca taaaaagaga tctcggagaaa tggcgcacca ttggcattgcc cagcaacgac attccactgc ccggcccaag	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg cccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct	gcataaggac cggactcgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caacaccctgg gcagcgactc caacatccaa taccagcacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
atggctgccg cagtggtgga gacagcaggg aagggagagcc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca gtcaaggagg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacgggggc atttcaacag attggggatt tcacgacgaa tcacgacgaa	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tctcggagaa tggcgcacca ttggcattgccc cagcaacgac attccactgc ccggcccaag tgatggcgtc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact accacacc	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct tcctcggctc	gcataaggac cggactcgac agcctacgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gccaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtattttg atcaacaaca gtcaaggagg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacggggcc atttcaacag attggggatt tcacgacgaa tcacgacgaa tctcggactc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaaa tggcgcacca ttggcattgcc cagcaacgac attccactgc ccggcccaag tgatggcgtc	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacata aaccactact cacttttcac agactcaact gcttccgtacg ttcctgtacg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct tcctcggctc	gcataaggac cggactcgac agcctacgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag ctacctgacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
atggctgccg cagtggtgga gacagcaggg aagggagagcc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtatttg atcaacaaca gtcaaggagg gttcaagtct ggctgcctcc ctcaacaatg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacgggggc atttcaacag attggggatt tcacgacgaa tctcggactc gcagccaagc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgccc cagcaacgac attccactgc ccggcccaag tgatggcgtc ggagtaccag ggcggacgtg cgtgggacgtg	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact ctcgttgagg ctcatgttcact ctcatcact	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct tcctcggctc cgcaatacgg actgcctgga	gcataaggac cggactcgac agcctacgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag ctacctgacg atatttccct	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgcc gcaagaagc ggaaagaaac aagacaggcc tcagtccccg actacaatgg gtgggtaatg accaccagca tccagtgctt gggtatttg atcaacaaca gtcaaggagg gttcaagtct ggctgcctcc ctcaacaatg	atggttatct agctcagacc gtcttgtgct cggtcaacga acagcggaga ttaaagaaga gggttctcga gtccggtaga agcagcccgc atccacaacc cttcaggcgg cctcaggaaa cccgcacctg caacggggcc atttcaacag attggggatt tcacgacgaa tctcggactc ctccgttccc gcagccaagc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctcggt gcagtcgcca taaaaagaga tctcggagaa tggcgcacca ttggcattgccc cagcaacgac attccactgc ggagtaccag ggagtaccag ggcggacgtc cgtgggacgtc caacaacttt	ctcgaggaca ccaccaaagc aagtacctcg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg caagggccag ctcaattttg cctccagcaa atggcagaca gattccacat acctacaata aaccactact cacttttcac agactcaact actacgttcatgatg ttcatgattc tcatcctttt accttccgtacg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcgggcgagc aaggcgctga actcctcctc gtcagactgg ccccgctgc ataacgaagg ggctgggcga accacctcta tcggctacag cacgtgactg tcaaactctt ctaataacct tcctcggctc cgcaatacgg actgcctgga acacctttga	gcataaggac cggactcgac agcctacgac agcctacgac cgcggagttt agtcttccag gacggctcct gggcatcggc cgactcagag tgtgggacct cgccgacgga cagagtcatc caagcaaatc cacccctgg gcagcgactc caacatccaa taccagcacg tgcgcaccag ctacctgacg	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140

caatacctgt	attacccgaa	cagaactcaa	aatcagtccg	gaagtgccca	aaacaaggac	1380
ttgctgttta	gccgtgggtc	tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt	atcggcagca	gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga	ctggtgcttc	aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta	tggcctcaca	caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620
atgatttttg	gaaaagagag	cgccggagct	tcaaacactg	cattggacaa	tgtcatgatt	1680
acagacgaag	aggaaattaa	agccactaac	cctgtggcca	ccgaaagatt	tgggaccgtg	1740
gcagtcaatt	tccagagcag	cagcacagac	cctgcgaccg	gagatgtgca	tgctatggga	1800
gcattacctg	gcatggtgtg	gcaaggtaga	gacgtgtacc	tgcagggtcc	catttgggcc	1860
aaaattcctc	acacagatgg	acactttcac	ccgtctcctc	ttatgggcgg	ctttggactc	1920
aagaacccgc	ctcctcagat	cctcatcaaa	aacacgcctg	ttcctgcgaa	tcctccggcg	1980
gagttttcag	ctacaaagtt	tgcttcattc	atcacccaat	actccacagg	acaagtgagt	2040
gtggaaattg	aatgggagct	gcagaaagaa	aacagcaagc	gctggaatcc	cgaagtgcag	2100
tacacatcca	attatgcaaa	atctgccaac	gttgatttta	ctgtggacaa	caatggactt	2160
tatactgagc	ctcgccccat	tggcacccgt	taccttaccc	gtcccctgta	a	2211
.210 92						
<210> 82 <211> 2211 <212> DNA	•					
	AAV seroty	oe, clone hu	J.46			
<400> 82			4			
				ctctctctga		60
				ccgcagagcg		120
				gacccttcaa	_	180
				agcacgacaa	_	240
				accacgccga		300
				tcgggcgggc	-	360
				aaggcgctaa		420
				actcccctc		480
				gtcagactgg		540
				ccccgctgc		600
actacaatgg	cttcaggcgg	tggcgcacca	atggcagaca	ataacgaagg	cgccgacgga	660
				ggctgggcga		720
				accacctcta	_	780
				tcggctacag		840
				cacgtgactg		900
				tcaaactctt		960
				ctaataacct	_	1020
				tcctcggctc		1080
			•	cgcaatacgg		1140
				actgcctgga		1200
				acacctttga		1260
				tgatgaatcc	_	1320
				gaagtgccca		1380
ttgctgttca	gccgtgggtc	tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt	atcggcagca	gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga	ctggtgcttc	aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta	tggcctcaca	caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620
				Page 73		

atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1740 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 1860 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1920 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1980 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg gagttttcag ctacaaagtt tgcttcattc atcacccaat actccgcagg acaagtgagt 2040 2100 gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2160 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2211 tatactgage ctegececat tggcaccegt tacettacce gtecectgta a

83 738 PRT Vpl, clone hu.17

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Cys Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Arg Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 415Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile

615

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

84 738 PRT vp1, clone hu.6

<400> 84

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln .165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195

200

205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Ala Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Pro Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 265 270Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Pro Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 400 Phe Pro Ser Gln Met Arg Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Gln Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 560

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala 580 585 590 Pro Ile val Gly Ala val Asn. Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 735 Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg

<210> 85 <211> 738 <212> PRT <213> vpl, clone hu.42

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Ser Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505

PCT/US2004/028817 WO 2005/033321

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Leu 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90

<210> 86 <211> 738 <212> PRT <213> vp1, clone rh.38

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Arg Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Pro Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu His Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460

PCT/US2004/028817 WO 2005/033321

Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe
660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45

<210> 87 <211> 738 <212> PRT <213> vpl, clone hu.40

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Ser Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Ser Glu Phe Ser Tyr Page 83

410

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 lle Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 88 <211> 738 <212> PRT <213> vp1, clone hu.37

<400> 88 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1.5cm} 270 \hspace{1.5cm}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340

Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu
450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val S45 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725

Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

PRT vp1, clone rh.39

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 lle Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr lle Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 90 <211> 738 <212> PRT <213> vp1, clone AAV4407

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile

PCT/US2004/028817 WO 2005/033321

610

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<400> 91

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Pro Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Pro Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly

<210> 91 <211> 738 <212> PRT <213> vp1, clone hu.41

195

200

205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Val Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 415Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560

Met Leu Thr ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Ser Glu Glu Glu Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly S80 Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly S95 Glu Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Tyr Glin Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe G40 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Ash Asp Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe G65 Glo Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr G90 Thr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr G10 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg T

<210> 92 <211> 738 <212> PRT <213> vp1, clone rh.40

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser IS

Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65

Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg

ْتُاكِّةُ الْكَاتُّةُ Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asp Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu
450
460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Arg Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510

PCT/US2004/028817 WO 2005/033321

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Ala Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Ser Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730

Asn Leu

<210> 93 <211> 731 <212> PRT <213> vp1, clone pi.1

<400> 93

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro 20 25Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Ser Gly Ile Gly Lys Ser Gly Gln Gln 145 150 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 195 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Val Ser Gly Asn Trp His 210 215 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 265 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 395 400 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro 405 415Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln 450 460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg
465 470 475 480 Gln Gln Arg Val Ser Thr Thr Val Ser Gln Asn Asn Asn Ser Asn Phe
485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Ser Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 535 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 590 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro 625 630 635 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 695 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 715 720 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro 25 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

<210> 94 <211> 731 <212> PRT <213> vp1, clone pi.3

Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Gly Ile Gly Lys Ser Gly Gln Gln 145 150 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Pro Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 195 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Val Ser Gly Asn Trp His 210 215 220 Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 265 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 315 320 Thr Gln Asn Glu Gly Thr Lys Thr Thr Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly 340 345 350 Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val 370 380 Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 395 400 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn

425

430

Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn
440
445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln 450 455 460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg 465 470 475 Gln Gln Arg Val Ser Thr Ala Val Ser Gln Asn Asn Ser Asn Phe 485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly 530 540 Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 550 560 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 590 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro 625 630 635 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly
660 665 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys 675 680 685 Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala $690 \hspace{1.5cm} 695 \hspace{1.5cm} 700$ Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Page 99

⁹⁵ 731 PRT vp1, clone pi.2

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro

٦50

25

30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
40
45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Asp Ser Ser Ser Gly Ile Gly Lys Ser Gly Arg Gln 145 150 160 Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser 165 170 175 Val Pro Asp Pro Gln Pro Leu Ser Glu Pro Pro Ala Gly Pro Ser Gly 180 185 190 Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp 195 200 205 Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg 225 230 240 Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser 245 250 255 Asn Gly Thr Ser Gly Gly Ser Ser Asn Asp Asn Thr Tyr Phe Gly Tyr 260 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr 325 330 335 Val Gln Val Phe Thr Asp Ser Lys Tyr Gln Leu Pro Tyr Val Leu Gly 340 345 350Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met lle Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val "GTY Arg" Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 395 Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro 405 410 415Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 425 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Asn 445 Gly Thr Asn Ala Thr Gln Thr Leu Leu Phe Ala Gln Ala Gly Pro Gln
450
460 Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg 465 470 475 480 Gln Gln Arg Val Ser Thr Thr Val Ser Gln Asn Asn Ser Asn Phe
485 490 495 Thr Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu 500 510 Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg 515 520 525 Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Glu Tyr Thr Asn Val Met Leu Thr Ser Glu Glu Glu 545 Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala 565 570 575 Asp Asn Leu Gln Gln Thr Asn Ser Ala Pro Ile Val Gly Ala Val Asn 580 585 Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr 595 600 605 Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe 610 615 620 His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro 625 630 635 640 Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Val Asn 645 650 655 Phe Thr Asp Ala Lys Leu Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly 660 665 670 Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Ala 690 695 700 Asn Val Asp Phe Ala Val Asn Ala Asp Gly Val Tyr Ser Glu Pro Arg 705 710 725 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 96 <211> 738 <212> PRT

--<213> "-vpi", "clone rh. 52 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Ser Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln

Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Pro Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu
450 455 460 Ser Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720

PCT/US2004/028817 WO 2005/033321

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735 Asn Leu

<210> 97 <211> 738 <212> PRT <213> vpl, clone rh.53

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly $100 ext{ } 105 ext{ } 110$ Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Page 104

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Val His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu
445
440
445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Ser Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Pro Thr Arg Asn Leu

PRT vp1, clone rh.70

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Ala Tyr Asn Asn His Page 106

255

Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asm Pro Leu Île Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Ser Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val

Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Ser 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 'Asn Leu

<210> 99 <211> 738 <212> PRT <213> vpl, clone rh.64

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 180 190

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 lle Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr lle Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560

PCT/US2004/028817 WO 2005/033321

Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Val Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Arg Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730

Asn Leu

<210> 100 <211> 738 <212> PRT <213> vpl, clone rh.68

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 40Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $355 \hspace{1cm} 360 \hspace{1cm} 365$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

PCT/US2004/028817 WO 2005/033321

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Pro Ser Gly Ile Leu Met 530 535 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Val Ile Glu Trp Glu
675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Leu Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

<210> 101 <211> 738 <212> PRT <213> vp1, clone rh.46

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 440 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450

455

Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 102 <211> 738 <212> PRT <213> vp1, clone hu.39

45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Arg Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Leu Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Ala Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Pro Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 05 410

415

Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Arg Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Thr Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Ala Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Ala Asp Phe Ala Val Asn Thr Glu 705 710 715 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735

Asn Leu

<210> 103 <211> 738 <212> PRT

""<213> ""vp1, "clone rh.49 <400> 103 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro His Leu Arg Tyr Asn His Ala 85 90 95Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Leu Ile Gly Glu Pro 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 250 \hspace{1cm} 255$ Leu Tyr Lys Gl π Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300$ Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Asn Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Met Gly Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Gly Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu

PCT/US2004/028817 WO 2005/033321

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

<210> 104 <211> 738 <212> PRT <213> vp1, clone rh.51

<400> 104 Met Val Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Gly Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Leu Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 125 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Page 119

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn lle Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr lle Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Gln Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$ Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 585 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe

PCT/US2004/028817 WO 2005/033321

> 665 670

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
680
685 Pro Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg ASN Leu

<210> 105 <211> 738 <212> PRT <213> vp1, clone rh.57

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His

Leu Tyr Lys Gln Thr Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val

Trip 610 Ash Arg Asp Val Tyr Leu Gln Gly Pro 11e Trp Ala Lys 11e

Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625

Gly Leu Lys His Pro Pro Pro Gln 11e Leu I1e Lys Asn Thr Pro Val 655

Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 666 Thr Gln Tyr Ser Thr Gly Gln Val Ser Ala Glu 11e Gln Tyr Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu I1e Gln Tyr Thr 690 Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705

Gly Val Tyr Ser Glu Pro Arg Pro I1e Gly Thr Arg Tyr Leu Thr Arg Asn Leu Asn Leu

<210> 106 <211> 738 <212> PRT <213> vpl, clone rh.58

<400> 106

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
61 Asn Ala Ala Asp Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro

WO 2005/033321

" Pro Ald Ald Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 705 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1cm} 250 \hspace{1cm} 255$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 \$390\$Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560

Met Leu Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685 Leu Gln Lys Glu Asn Ser Lys Cys Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 107 <211> 738 <212> PRT <213> vp1, clone rh.61

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $\frac{260}{270}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Pro Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Pro Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asp Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 640 Gly Leu Lys His Pro Pro Pro Gln Val Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95

¹⁰⁸ 738 PRT vpl, clone rh.50

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Gly Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 315 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Page 128

450-4

460

Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 640 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Ser Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 15 Scr Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Cys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 109 <211> 737 <212> PRT <213> vp1, clone rh.45 <400> 109

)

45

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395

Pro ser cin Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 445Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Thr Gln Ala Arg Asn Trp Leu 465 470 475 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln 485 490 495 Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu 500 510 Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn 520 525 Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe 530 535 540 Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val Met 545 550 560 Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu 565 575 Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro 580 585 590 Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 655 Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly 705 710 720 Ala Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn

Leu

<210> 110 <211> 738 <212> PRT WO 2005/033321 '<213> ™vp1,""clone rh. 59"

<400> 110

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Pro Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350

Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met 530 535 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu
675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720

Gly val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 735 730 Asn Leu

111 737 PRT vp1, clone rh.44 <400> 111 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro-Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Ser Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Cys Asp 65 70 75 80 Gln Arg Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 265 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300

Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 455 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485
495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 550 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile

Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Glu Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735 Leu

<210> 112 <211> 737 <212> PRT <213> vp1, clone rh.65

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His

Page 136

Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 ASN Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn $325 \cdot 330$ Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln
450
460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Arg Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu S45 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605

Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

<210> 113 <211> 737 <212> PRT <213> vpl, clone rh.67

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gin Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Leu Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 lle Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 250 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 335Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 \$50 560

Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 575 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

Leu

<210> 114 <211> 737 <212> PRT <213> vp1, clone rh.62

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Ala Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn 210 215 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Gly Asp Gly Val Thr Thr Ile Ala Asn 325 330Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Asp Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500

PCT/US2004/028817 WO 2005/033321

Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

<210> 115 <211> 737 <212> PRT <213> vp1, clone rh.48

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Lys Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln

455

Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp
465 470 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485
495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gin Thr Gin Val Val Asn Asn Gin Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 695 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Page 144

<210> 116 <211> 737 <212> PRT <213> vpl, clone rh.54

<400>

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe

Pro Ser Gln Val Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 410 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ser Gly Asn Arg Glu Leu Gln 450 455 460 Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp 485 490 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 575 Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 650 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 735

<210> 113

<211> 737 <212> PRT <213> "vp1, clone rh.55" Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Arg Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn $260 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$ Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu

Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro $\frac{365}{365}$ Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 435 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Arg Arg Val Ser Lys Thr Leu Asp
485
495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 555 560 Met Thr Asn Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 695 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720

PCT/US2004/028817 WO 2005/033321

Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 735

118 738 PRT vp1, clone rh.47

<400> 118 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys His Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1.5cm} 255 \hspace{1.5cm}$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Page 149

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 425 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu 450 455 460 Gln Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn 465 470 480 Trp Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu
485
490
495 Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr 500 510 His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala 515 520 525 Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu 530 535 540 Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val 545 550 560 Leu Met Thr Asn Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala 580 590 Ala Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Page 150

Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 119 <211> 737 <212> PRT <213> vp1, clone rh.69

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His

Page 151

Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro $360 ext{ } 365$ Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} . \hspace{1cm} 380$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Ile Ser Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 445 Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Gln Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His
505
510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605

Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro
His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly
625 Thr Asp Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro
Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile
Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Gly Trp Glu Leu
Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser
Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly
705 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn
735 Asn

<210> 120 <211> 735 <212> PRT <213> vp1, clone rh.60

Leu

 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr His Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Arg Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 445 Ser Arg Thr Gln Ser Thr Glu Gly Thr Ala Gly Thr Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560

Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe 690 700 Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 150 155

<210> 121 <211> 736 <212> PRT <213> vp1, clone hu.31

Lys Ser Gly Ser Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 380 Gly Gly Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu 405 415 Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser 450 460 Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro 465 470 475 480 Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn 485 495 Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 510 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 535 540 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 555 Thr Asn Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln 580 585 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 605 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 655 655 Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Ser Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 1010 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro

<210> 122 <211> 736 <212> PRT <213> vp1, clone hu.32

Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly Lys Ser Gly Ser Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro . 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 265 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu 405 415 Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 445 Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn Page 158

Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 500 510 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 540 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile 545 550 555 Thr Asn Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 565 570 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln 580 590 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Gln Pro Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

<210> 123 <211> 736 <212> PRT <213> capsid of hu.14\AAV9

PCT/US2004/028817

0.5

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Ala Gly Ile Gly 145 150 155 160 Lys Ser Gly Ala Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Ser Leu Thr Met Ala Ser Gly Gly Gly 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Asn Ser Thr Ser Gly Gly Ser Ser Asn Asp Asn 260 270 Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Asp Asn Asn Gly Val Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Asp Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Glu Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asp 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Glu 405 415 Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser 445

Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro
465 470 475 480 Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn 485 490 495 Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn 505 Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly 530 535 540 Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile Thr Asn Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser 565 570 575 Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln 580 590 Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met 625 630 635 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 655 Asp Pro Pro Thr Ala Phe Asn Lys Asp Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700Tyr Tyr Lys Ser Asn Asn Val Glu Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro

<210> 124 <211> 735 <212> PRT <213> vp1, clone hu.33

<400>

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Gly Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 125 <211> 735 <212> PRT <213> vp1, clone hu.34

<400> 125

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser

Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Glu Ser 370 375 380

Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg
420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asp Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<211> 735 <212> PRT <213> vp1, clone hu.36 <400> 126 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Ala Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700

Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725
730

<210> 127 <211> 735 <212> PRT <213> vpl, clone hu.45

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 val Phe Met Val Pro Gln Tyr Gly Tyr Pro Thr Leu Asn Asn Gly Ser $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450
460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Val Ala Ser His Lys Asp 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Ser His Tyr 260 270

<210> 128 <211> 735 <212> PRT <213> vpl, clone hu.47

Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640

His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 129 <211> 735 <212> PRT <213> vp1, clone hu.13

<400> 129

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 485 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Ser Val Ser Thr Asn Leu Gln Gly Gly Asn Thr Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp Page 173

595 600

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Ser Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly

¹³⁰ 735 PRT vp1, clone hu.28

<400> 130

200

205

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Gln Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr

Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Gly Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Thr Trp Ala Lys Ile Pro His Thr 610 620 ASP Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155

<210> 131 <211> 735 <212> PRT <213> vp1, clone hu.30

<400> 131

´ 175 ····

Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Ser Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
480
470
480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp

Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro

<210> 132 <211> 735 <212> PRT <213> vp1, clone hu.29

Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Gly Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490

Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95

<210> 133 <211> 735 <212> PRT <213> vp1, clone hu.19

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Glu Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp Tyr Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln

455

Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Val Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

<210> 134 <211> 735 <212> PRT <213> vp1, clone hu.20

<400> 134

50 55 6

Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Val Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Ala Ala Pro Gly Glu Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly His Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 415

Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Pro Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Ala Arg Tyr Leu Thr Arg Asn Leu 725 730 735 <210> 135 <211> 735 <212> PRT <213> vpl, clone hu.21

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser

Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Arg Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Île Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<212> PRT <213> vp1, clone hu.24 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Arg Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{0.25cm} 440 \hspace{0.25cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Page 188

705 710 720 715

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

<210> 137 <211> 735 <212> PRT <213> vp1, clone hu.23-2 <400> 137 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Cys Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 445 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Tyr Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Arg Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
680
685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
735 730 735

<210> 138 <211> 735 <212> PRT <213> vp1, clone hu.22

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Gly Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Gly Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 310 320Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Thr Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635

His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

<210> 139 <211> 735 <212> PRT <213> vp1, clone hu.26

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240

Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600

Page 194

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala , Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Ser Gly Ser Gly 200 205

<210> 140 <211> 735 <212> PRT <213> Vp1, clone hu.27

<400> 140

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Gly Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Met Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Val Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 495 Asn Ser Asp Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Gln Ser Gly Val Leu Val Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Ala Ala Thr Glu Gln Tyr Page 196

Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Val Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

Page 197

<210> 141 <211> 735 <212> PRT <213> vpl, clone hu.4

165

170

175

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Val Asn Asn Asn Arg 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525

Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

<400> 142

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro

<210> 142 <211> 735 <212> PRT <213> vp1, clone hu.5

Teu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495

Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser Arg Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr
575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725
730

Met Ala Ala Asp Gly Tyr Pro Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

<210> 143 <211> 735 <212> PRT <213> vp1, clone hu.2

Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Arg Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Page 202

Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$ Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn Arg Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met lle Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro

<210> 144 <211> 735 <212> PRT <213> vpl, clone hu.1

Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Gly Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 440 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Gly Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Ala Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Thr Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 665 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asp Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro

<210> 145 <211> 736 <212> PRT <213> vpl, clone hu.3

r •

25

Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Arg Pro Gly Leu Arg Lys Pro Val Lys Thr Ala Pro Gly Lys Lys 130 140 Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr 145 150 155 160 Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro 180 190 Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser 195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Asp Asp Arg val 225 230 235 Ile Ala Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Cys Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Ser Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn 325 330 Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380

Ser Gla Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe 405 415 Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Cys Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys 435 440 445 Thr Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser 450 460 Gln Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro 465 470 475 Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn 490 Asn Asn Cys Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn 500 510Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly 530 540 Lys Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr Asp Glu Glu Ile Arg Pro Thr Asp Pro Val Ala Thr Glu Gln
565 570 575 Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr 580 585 590 Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 Lys His Pro Pro Gln Ile Met Ile Lys Ser Thr Pro Val Pro Ala Asn Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Ser Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 146 <211> 735 <212> PRT

2213 Vpl. clone hu.25 <400> 146 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Gly Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asn Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Pro Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 650 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Asn Asn Gly Val Tyr 705 710 720

PCT/US2004/028817 WO 2005/033321

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 147 <211> 735 <212> PRT <213> vpl, clone hu.15

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
40
45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Tyr Lys Gly Glu Pro S0 60 Val Asp Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Arg Gln Arg Leu Ile Asn Asn Asn Trp 290 295 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320

Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Gly Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Leu Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 510Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys

PCT/US2004/028817 WO 2005/033321

685 680

Glu Asp Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Pro Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
735
730

<210> 148 <211> 735 <212> PRT <213> vpl, clone hu.16 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Tyr Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Gly Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His

775

280

285

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Tyr Val Ser Asn Asn Leu Gln Asp Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys

His Pro Pro Pro Gln Tile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 149 <211> 735 <212> PRT <213> vpl, clone hu.18

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Glu Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Ser Gly Ser Gly 195 200 205 Ala Pro Val Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile

"The The See The Arg The Trp Ala Leu Pro The Tyr Asn Asn His Leu 245 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Ser Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Leu Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 595 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp $595 \hspace{0.5cm} 600 \hspace{0.5cm} 605$

PCT/US2004/028817 WO 2005/033321

Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ser Lys Phe Ala Ser Phe Ile Thr Gln
660 665 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Pro Thr Arg Asn Leu
725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Gly Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205

<210> 150 <211> 735 <212> PRT <213> vpl, clone hu.7

Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys
530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 570

Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 635 630 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Thr Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 151 <211> 735 <212> PRT <213> vp1, clone hu.8

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys

535 540

Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 152 <211> 735 <212> PRT <213> vp1, clone rh.56

<400> 152

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 13

140

Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Gln Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Glm Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Ser Asn Ser Gly Ala Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490

ASN Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Arg Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

<210> 153 <211> 735 <212> PRT <213> vpl, clone hu.11

<400> 153

ASP Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 250 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460

PCT/US2004/028817 WO 2005/033321

Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr Arg Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 645 650 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

<210> 154 <211> 735 <212> PRT <213> vpl, clone hu.12

<400> 154

val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Pro Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 445Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450
450
450 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn
645 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

<210> 155 <211> 735 <212> PRT <213> vp1, clone hu.9

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro

Lys Pro Ala Glu Arg His Gln Asp Asn Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Ser Asn Gly Leu Asp Lys Gly Glu Pro val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Cys Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Pro Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 1385 Hai

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 446 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met lle Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Cys Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 156 <211> 735 <212> PRT <213> vp1, clone hu.10

<400> 156 met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Leu Ala Glu Arg His Gln Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ala Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr

Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Thr Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Leu Thr Phe Ser Tyr Thr Phe Glu 405 415 ASP Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu ASP Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly $470 \hspace{1cm} 475 \hspace{1cm} 480$ Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu His Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 575 Gly Asn Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Glu Asn Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Tyr Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Arg Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 157 <211> 736 <212> PRT <213> vp1, clone hu.48

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Thr Ser Thr Gly Ala Ser Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Gly Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320

Val Glu Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 330 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 440 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Val Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Ser Thr Ala Leu Asp Asn Val Met Ile Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln
675
680
685

PCT/US2004/028817 WO 2005/033321

Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Arg Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Glu Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Gly Pro Asp Ser Ser Gly Ile Gly 145 150 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280

<210> 158 <211> 736 <212> PRT <213> vp1, clone hu.44

His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Pro Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 455 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 505 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605 Gly Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 640 Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala

650

655

Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<400>

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 40Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Pro Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu

¹⁵⁹ 736 PRT Vp1, clone hu.46

Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 320Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Arg Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Ser Tyr Cys Leu Glu Tyr Phe Pro 385 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Leu His Ser Ser Cys Ala His Ser Gln Ser Leu Asp 420 425 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Arg Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 505 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 655 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Ala Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 715 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Pro Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Pro Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly 195 205

<210> 160 <211> 737 <212> PRT <213> vp1, clone hu.43

<400> 160

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 The Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn 260 270 His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Glu val Pro Leu His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Val Gln Tyr Leu Tyr Tyr Leu Asn 445 Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe 450 460 Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu 465 470 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp 485 490 Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu 500 510 Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His 515 520 525 Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe 530 540 Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu 565 570

Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro S85 Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly G40

Leu Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile G75 Asn Tyr Ser Thr Gly Gln Val Ser Val Glu Ile G85 Trp Glu Leu G10 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Ala Ser Val Asp Phe Thr Val Asp Asn Asn G1y 720

Leu Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735 Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735 Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro 735 Pro

<210> 161 <211> 738 <212> PRT <213> vpl, clone hu.38

<400> 161

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser
Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala
Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg
Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile
160

Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro
180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe $355 \hspace{1.5cm} 360 \hspace{1.5cm} 365$ Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 Asn Leu

<210> 162 <211> 736 <212> PRT <213> vp1, clone rh.71

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Is Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Gly Gly Gly Gly Glu Pro Glo Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro 340 350 Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 400 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475

Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 490 ASN ASN Ser ASN Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 ASP ASP Glu ASP Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 555 Thr Asp Glu Glu Glu lle Lys Ala Thr Asp Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 585 590 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln
595 600 605 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 615 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp

<210> 163 <211> 736 <212> PRT <213> vp1, clone rh.43

75

Gln Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90ASP Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 160 Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp Asn 265 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn 325 330 335 Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr Thr 405 415 Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly Phe 450 460 ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp Leu 465 470 475 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly Gln 485 495 ASN ASN ASN Ser ASN Phe Ala Trp Thr Ala Gly Thr Lys Tyr His Leu 500 510 Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr His 515 520 525 Lys Asp Asp Glu Glu Arg Phe Phe Pro Val Thr Gly Ser Cys Phe Trp 530 535 540 Gln Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val Met Leu 545 550 560 Thr Ser Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Glu 565 575 Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Gln 580 585 590 Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 605 Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala $645 \hspace{1.5cm} 655 \hspace{1.5cm}$ Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 700 Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Arg Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30

<210> 164 <211> 735 <212> PRT <213> vpl, clone hu.35

Glu Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 390 395

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Gly Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 165

<210> 165 <211> 3161

<212> UNA <213> new AAV serotype, clone hu 136.1

	0 2000.						
g	attgaattt	agcggccgcg	aattcgccct	tgctgcgtca	actggaccaa	tgagaacttt	60
C	cattcaatg	attgcgtcga	caagatggtg	atctggtggg	aggagggaaa	gatgaccgcc	120
a	aggtcatgg	agtcggccaa	agccattctc	ggaggaagca	aggtgcgcgt	ggaccagaaa	180
t	gtaagtcct	cggcccagat	agacccgact	cccgtgattg	tcacctccaa	caccaacatg	240
t	gcgccgtga	ttgacgggaa	ctcaacgacc	ttcgagcacc	agcagccgtt	gcaagaccgg	300
a	tgttcaaat	ttgaactcac	ccgccgtctg	gatcatgact	ttgggaaggt	caccaagcag	360
g	aagtcaaag	actttttccg	gtgggcaaag	gatcacgtgg	ttgaggtgga	gcatgaattc	420
t	acgtcaaaa	agggtggagc	caagaaaaga	cccgccccca	gtgacgcaga	tataagtgag	480
c	ccaaacggg	cgcgcgggtc	agttgcgcag	ccatcgacgt	cagacgcgga	agcttcgatc	540
a	actacgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	tgggcatgaa	tctgatgctg	600
t	ttccctgca	gacaatgcga	gagaatgaat	caaaattcaa	atatctgctt	cactcacgga	660
c	agaaggact	gtttagagtg	ctttcccgtg	tcagaatctc	aacccgtttc	tgtcgtcaaa	720
а	aggcgtatc	agaaactttg	ctacattcat	catatcatgg	gaaaggtgcc	agacgcttgc	780
а	ctgcctgcg	atctggtcaa	tgtggatttg	gatgactgca	tctctgaaca	ataaatgatt	840
t	aaatcaggt	atggctgccg	atggttatct	tccagattgg	ctcaaggaca	ctctctctga	900
a	ıggaataaga	cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	960
					aagtacctcg		1020
•	ggactcgac	aagggagagc	cggtcaacga	ggcagacgcc	gcggccctcg	agtacgacaa	1080
9	gcctacgac	cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	1140
•	gcggagttt	caggagcgcc	ttaaagaaga	tacgtcttt	gggggcaacc	tcggacgagc	1200
ā	agtcttccag	gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	1260
				_	gtggagccag		1320
					ttgaattttg		1380
					ccaccagcag		1440
					a atggcagaca		1500
					gattccacat		1560
				_	acctacaaca	-	1620
					cactactttg		1680
					ttttcaccac		1740
					a ctcaacttca	-	1800
						ataaccttac	1860 1920
					ccgtacgtcc		1920
						agtatggata gcctggagta	2040
						cctttgagga	2100
						tgaatcctct	2160
						ccaccacgca	2220
						: ctaggaactg	2280
	-					acaacaacaa	2340
						actctctggt	2400
						ttcctcaaag	2460
						ttgaaaaggt	2520
						agcagtatgg	2580
						atgtcaacac	2640
						aggggcctat	2700
						tgggcggatt	2760
	333		33= 33.XC		Page 248	-333-33-44	

tggacttaaa caccctcctc cacagattct catcaagaac accccggtac ctgcaaatcc 2820 ttcgaccacc ttcagtgcgg caaagtttgc ttccttcatc acacagtatt ccacagggca 2880 ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaaccccga 2940 gatccagtac acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa 3000 tggtqtqtat tcagagcctc gccccattgg caccagatac ctgactcgta atctqtaatt 3060 gcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc tgcgaagggc 3120 gaattcgttt aaaccctgca ggactagtcc ctttagtgag g 3161 <210> <211> 166 3162 DNA new AAV serotype, clone hu 140.1 <400> 166 gaattgaatt tagcggccgc gaattcgccc ttcgcagaga ccaaagttca actgaaacga 60 attaaacggt ttattgatta acaagcaatt acagattacg agtcaggtat ctggtgccaa 120 tggggcgagg ctctgaatac acgccattag tgtccacagt aaagtccaca ttaacagact 180 tgttgtagtt ggaagtgtac tgaatttcgg gattccagcg tttgctgttt tccttctgca 240 gctcccactc gatctccacg ctgacctgtc ccgtggagta ctgtgtgatg aaggaagcaa 300 actttgccgc actgaaggtg gtcgaaggat tcgcaggtac cggggtgttc ttgatgagaa 360 tctgtggagg agggtgttta agtccgaatc cacccatgag gggagagggg tgaaaatgtc 420 cgtccgtgtg tggaatcttt gcccagatgg gcccctgaag gtacacatct ctgtcctgcc 480 agaccatgcc tggaagaacg ccttgtgtgt tgacatctgc ggtagctgct tgtctgttgc 540 ctctctggag gttggtagat acagaaccgt actgctccgt agccacggga ttggttqtcc 600 tgatttcctc ttcgtctgta atcatgacct tttcaatgtc cacatttgtt ttctctgagc 660 cttgcttccc aaagatgaga accccgctct gaggaaaaaa cttttcttca ttgtccttgt 720 ggcttgccat ggccgggccc ggattcacca gagagtctct gccattgagg tggtacttgg 780 tagctccagt ccacgagtat tcactgttgt tgttatccgc agatgtcttt gatactcgct 840 gctggcggta acagggtcca ggaagccagt tcctagactg gtcccgaatg tcactcgctc 900 cggcctgaga aaactgaagc cttgactgcg tggtggttcc acttggagtg tttgttgtgc 960 tcaagtaata caggtactgg tcgatgagag gattcatgag acggtccaga ctctggctgt 1020 gagcgtagcc gctgtggaaa ggaacgtcct caaaagtgta gctgaaggta aagttgtttc 1080 cggtacgcag catctgagaa ggaaagtact ccaggcagta aaatgaagag cgtcctactg 1140 cctgactccc gttgttcagg gtgaggtatc catactgtgg caccatgaag acgtctgctq 1200 ggaacggcgg gaggcatcct tgatgcgccg agccgaggac gtacgggagc tggtactccg 1260 agtcagtaaa cacctgaacc gtgctggtaa ggttattggc aatcgtcgtc gtaccgtcat 1320 tctgcgtgac ctctttgact tgaatgttaa agagcttgaa gttgagtctc ttgggtcgga 1380 atccccagtt gttgttgatg agtctttgcc agtcacgtgg tgaaaagtgg cagtggaatc 1440 tgttgaagtc aaaatacccc caaggggtgc tgtagccaaa gtagtgattg tcgttcgagg 1500 ctcctgattg gctggaaatt tgtttgtaga ggtggttgtt gtaggtgggc agggcccagg 1560 ttcgggtgct ggtggtgatg actctgtcgc ccatccatgt ggaatcgcaa tgccaatttc 1620 ccgaggaatt acccactccg tcggcgccct cgttattgtc tgccattggt gcgccactgc 1680 ctgtagccat cgtattagtt cccagaccag agggggctgc tggtggctgt ccgagaggct 1740 gggggtcagg tactgagtct gcgtctccag tctgaccaaa attcaatctt tttcttgcag 1800 gctgctggcc cgcctttccg gttcccgagg aggagtctgg ctccacagga gagtgctcta 1860 ccggcctctt ttttcctgga gccgtcttga caggttcccc aaccaggccc agaggttcaa 1920 gaaccctctt tttcgcctgg aagactgctc gtccgaggtt gcccccaaaa gacgtatctt 1980 ctttaaggcg CtCCtgaaac tccgcgtcgg cgtggttgta cttgaggtac gggttgtctc 2040 cgctgtcgag ctgccggtcg taggctttgt cgtgctcgag ggccgcggcg tctgcctcgt 2100

	• •					
tgaccggctc 1	tcccttgtcg	agtccgttga	agggtccgag	gtacttgtac	ccaggaagca	2160
caagacccct (jctgtcgtcc	ttatgccgct	ctgcgggctt	tggtggtggt	gggccaggtt	2220
tgagcttcca (cactgtctt	attccttcag	agagagtgtc	ctcgagccaa	tctggaagat	2280
aaccatcggc a	agccatacct	gatttaaatc	atttattgtt	caaagatgca	gtcatccaaa	2340
tccacattga (ccagatcgca	ggcagtgcaa	gcgtctggca	cctttcccat	gatatgatga	2400
atgtagcaca 🤉	ytttctgata	cgcctttttg	acgacagaaa	cgggttgaga	ttctgacacg	2460
ggaaagcact	ctaaacagtc	tttctgtccg	tgagtgaagc	agatatttga	attctgattc	2520
attctctcgc a	attgtctgca	gggaaacagc	atcagattca	tgcccacgtg	acgagaacat	2580
ttgttttggt a	acctgtctgc	gtagttgatc	gaagcttccg	cgtctgacgt	cgatggctgc	2640
gcaactgact	cgcgcacccg	tttgggctca	cttatatctg	cgtcactggg	ggcgggtctt	2700
ttcttggctc	cacccttttt	gacgtagaat	tcatgctcca	cctcaaccac	gtgatccttt	2760
gcccaccgga	aaaagtcttt	gacttcctgc	ttggtgacct	tcccaaagtc	atgatccaga	2820
cggcgggtga	gttcaaattt	gaacatccgg	tcttgcaacg	gctgctggtg	ttcgaaggtc	2880
gttgagttcc	cgtcaatcac	ggcgcacatg	ttggtgttgg	aggtgacgat	cacgggagtc	2940
gggtctatct	gggccgagga	cttgcatttc	tggtccacgc	gcaccttgct	tcctccgaga	3000
atggctttgg	ccgactccac	gaccttggcg	gtcatcttcc	cctcctccca	ccagatcacc	3060
atcttgtcga	cacagtcgtt	gaagggaaag	ttctcattgg	tccagttgac	gcagcaaggg	3120
cgaattcgtt	taaacctgca	ggactagtcc	ctttagtgag	gg		3162
.210. 167						
<210> 167 <211> 3164						
<212> DNA <213> new	AAV serotyp	oe, clone hu	140.2			
<400> 167 gcgaattgaa	tttagcggcc	gcgaattcgc	ccttcqcaqa	gaccaaagtt	caactgaaac	60
gaattaaacg						120
aatggggcga						180
cttgttgtag						240
cagctcccac						300
aaactttgcc						360
aatctgtgga						420
tccgtccgtg						480
		cgccttgtgt				540
gcctctctgg						600
cctgatttcc	tcttcgtctg	taatcatgac	cttttcaatg	tccacatttg	ttttctctga	660
gccttgcttc	ccaaagatga	gaaccccgct	ctgaggaaaa	aacttttctt	cattgtcctt	720
gtggcttgcc	atggccgggc	ccggattcac	cagagagtct	ctgccattga	ggtggtactt	780
ggtagctcca	gtccacgagt	attcactgtt	gttgttatcc	gcagatgtct	ttgatactcg	840
ctgctggcgg	taacagggtc	caggaagcca	gttcctagac	tggtcccgaa	tgtcactcgc	900
tccggcctga	gaaaactgaa	gccttgactg	cgtggtggtt	ccacttggag	tgtttgttgt	960
gctcaagtaa	tacaggtact	ggtcgatgag	aggattcatg	agacggtcca	gactctggct	1020
gtgagcgtag	ctgctgtgga	aaggaacgtc	ctcaaaagtg	tagctgaagg	taaagttgtt	1080
tccggtacgc	agcatctgag	aaggaaagta	ctccgggcag	taaaatgaag	agcgtcctac	1140
tgcctgactc	ccgttgctca	gggtgaggta	tccatactgt	ggcaccatga	agacgtctgc	1200
		cttgatgcgc				1260
		ccgtgctggt				1320
		cttgaatgtt				1380
					ggcagtggaa	1440
_	_	-		Page 250	32 30	

tctgttgaag	tcaaaatacc	cccaaggggt	gctgtagcca	aagtagtgat	tgtcgttcga	1500
ggctcctgat	tggctggaaa	tttgtctgta	gaggtggttg	ttgtaggtgg	gcagggccca	1560
ggttcgggtg	ctggtggtga	tgactctgtc	gcccatccat	gtggaatcgc	aatgccgatt	1620
tcccgaggaa	ttacccactc	cgtcggcgcc	ctcgttattg	tctgccattg	gtgcgccact	1680
gcctgtagcc	atcgtattag	ttcccagacc	agagggggct	gctggtggct	gtccgagagg	1740
ctgggggtca	ggtactgagt	ctgcgtctcc	agtctgacca	aaattcaatc	tttttcttgc	1800
aggctgctgg	cccgcctttc	cggttcccga	ggaggagtct	ggctccacag	gagagtgctc	1860
taccggcctc	tttttcccg	gagccgtctt	aacaggttcc	ccaaccaggc	ccagaggttc	1920
aagaaccctc	tttttcgcct	ggaagactgc	tcgtccgagg	ttgcccccaa	aagacgtatc	1980
ttctttaagg	cgctcctgaa	actccgcgtc	ggcgtggttg	tacttgaggt	acgggttgtc	2040
tccgctgtcg	agctgccggt	cgtaggcttt	gtcgtgctcg	agggccgcgg	cgtctgcctc	2100
gttgaccggc	tctcccttgt	cgagtccgtt	gaagggtccg	aggtacttgt	acccaggaag	2160
cacaagaccc	ctgctgtcgt	ccttatgccg	ctctgcgggc	tttggtggtg	gtgggccagg	2220
tttgagcttc	caccactgtc	ttattccttc	agagagagtg	tcctcgagcc	aatctggaag	2280
ataaccatcg	gcagccatac	ctgatttaaa	tcatttattg	ttcaaagatg	cagtcatcca	2340
aatccacatt	gaccagatcg	caggcagtgc	aagcgtctgg	cacctttccc	atgatatgat	2400
gaatgtagca	cagtttctga	tacgcctttt	tgacgacaga	aacgggttga	gattctgaca	2460
cgggaaagca	ctctaaacag	tctttctgtc	cgtgagtgaa	gcagatattt	gaattctgat	2520
tcattctctc	gcattgtctg	cagggaaaca	gcatcagatt	catgcccacg	tgacgagaac	2580
atttgttttg	gtacctgtct	gcgtagttga	tcgaagcttc	cgcgtctgac	gtcgatggct	2640
gcgcaactga	ctcgcgcacc	cgtttgggcc	cacttatatc	tgcgtcactg	ggggcgggtc	2700
ttttcttggc	tccacccttt	ttgacgtaga	attcatgctc	cacctcaacc	acgtgatcct	2760
ttgcccaccg	gaaaaagtct	ttgacttcct	gcttggtgac	cttcccaaag	tcatgatcca	2820
gacggcgggt	gagttcaaat	ttgaacatcc	ggtcttgcaa	cggctgctgg	tgttcgaagg	2880
tcgttgagtt	cccgtcaatc	acggcgcaca	tgttggtgtt	ggaggtgacg	atcacgggag	2940
tcgggtctat	ctgggccgag	gacttgcatt	tctggtccac	gcgcaccttg	cttcctccga	3000
gaatggcttt	ggccgactcc	acgaccttgg	cggtcatctt	cccctcctcc	caccagatca	3060
ccatcttgtc	gacacagtcg	ttgaagggaa	agttctcatt	ggtccagttg	acgcagcaag	3120
ggcgaattcg	tttaaacctg	caggactagt	ccctttagtg	aggg		3164
<210> 168	1					
<211> 315 <212> DNA	9					
	AAV seroty	pe, clone h	u 147.2			
<400> 168		attcoccctt	: gctgcgtcaa	ctooaccaat	gagaactttc	60
					atgaccgcca	120
			gaggaagcaa			180
			ccgtgatcgt		_	240
					caagaccgga	300
					accaagcagg	360
					catgagttct	420
			ccgcccccag			480
					gcttcgatca	540
					ctgatgctgt	600
					actcacggac	660
					gtcgtcaaaa	720
					gacgcttgca	780

ctgcttgcga c	:ctggtcaat	gtggatttgg	atgactgcat	ctctgaacaa	taaatgattt	840
aaatcaggta t	ggctgccga	tggttatctt	ccagattggc	tcgaggacac	tctctctgaa	900
ggaataagac a	igtggtggaa	gctcaaacct	ggcccaccac	caccaaagcc	cgcagagcgg	960
cataaggacg a	acagcagggg	tcttgtgctt	cctggataca	agtacctcgg	acccttcaac	1020
ggactcgaca a	agggagagcc	ggtcaacgag	gcagacgccg	cggccctcga	gcacgacaag	1080
gcctacgacc g	gcagctcga	cagcggagac	aacccgtacc	tcaagtacaa	ccacgccgac	1140
gcggagtttc a	aggagcgcct	taaagaagat	acgtcttttg	ggggcaacct	cggacgagca	1200
gtcttccagg (cgaaaaagag	ggttcttgaa	cctctgggcc	tggttgagga	acctgttaag	1260
acggctccgg g	gaaaaaagag	gccggtagag	cactctcctg	tggagccaga	ctcctcctcg	1320
ggaaccggaa a	aagcgggcaa	ccagcctgca	agaaaaagat	tgaatttcgg	tcagactgga	1380
gacgcag act (ccgtacctga	ccccagcct	ctcggacagc	caccagcatc	cccctctggt	1440
ctgggaacta a	atacgatggc	tacaggcagt	ggcgcaccaa	tggcagacaa	taacgagggc	1500
gccgacggag 1	tgggtaattc	ctcgggaaat	tggcattgcg	attccacatg	gatgggcgac	1560
agagtcgtca (ccaccagcac	ccgcacctgg	gccctgccca	cctacaacaa	ccacctctac	1620
aagcagattt (ccagccaatc	aggagccagc	aacgacaacc	actactttgg	ctacagcacc	1680
ccttgggggt	attttgactt	caacagattc	cactgccact	tttcgccacg	cgactggcag	1740
agactcatca a	acaacaactg	gggattccgg	cccaaaagac	tcaacttcaa	gctgtttaac	1800
attcaagtca	aggaggtcac	gcagaatgac	ggtacgacga	cgattgccaa	taaccttacc	1860
agcacggttc	aggtgtttac	tgacttggag	taccagctcc	cgtacgtcct	cggctcggcg	1920
catcaaggat	gcctcccgcc	gttcccagca	gacgtcttca	tggtgccaca	gtatggatac	1980
ctcaccctga	acaacgggag	tcaggcggta	ggacgctctt	ccttttactg	cctggagtac	2040
tttccttctc	agatgcttcg	caccggaaac	aactttacct	tcagctacac	ttttgaagac	2100
gttcctttcc	acagcagcta	cgctcacagt	caaagtctgg	accgtctcat	gaatcctctc	2160
atcgaccagt	acctgtatta	cttgagcaga	acaaacactc	caagcggaac	cactacgcag	2220
tccaggcttc	agttttctca	ggccggagcg	agtgacattc	gggaccagtc	taggaactgg	2280
cttcctggac	cctgttaccg	ccagcagcga	gtatcaaaga	cagctgcgga	taacaacaac	2340
agtgaatact	cgtggactgg	agctaccaag	taccacctca	atggcagaga	ctctctggtg	2400
aatccgggcc	cggccatggc	cagccacaag	gacgatgaag	aaaagtttt	tcctcaaagc	2460
ggggttctca	tctttgggaa	gcaaggctca	gagaaaacaa	atgtggacat	tgaaaaggtc	2520
atgattacag	acgaagagga	aatcaggacc	accaatcccg	tggctacgga	gcagtatggt	2580
tctgtatcta	ccaacctcca	gagcggcaac	acacaagcag	ctacctcaga	tgtcaacaca	2640
caaggcgttc	ttccaggcat	ggtctggcag	gacagagacg	tgtacctgca	ggggcccatc	2700
tgggcaaaaa	ttccacacac	ggacggacat	tttcacccct	ctccctcat	gggcggattt	2760
ggacttaaac	accctcctcc	acagattctc	attaagaata	ccccggtacc	tgcgaatcct	2820
tcgaccacct	tcagcgcggc	aaagtttgct	tccttcatca	cacagtattc	cacggggcag	2880
gtcagcgtgg	agatcgagtg	ggagctgcag	aaggagaaca	gcaaacgctg	gaatcccgaa	2940
attcagtaca	cttccaacta	caacaaatct	gttaatgtgg	actttactgt	ggacactaat	3000
ggggtgtatt	cagagcctcg	ccctattggc	accagataco	tgactcgtaa	tctgtaattg	3060
cttgttaatc	aataaaccgt	ttaattcgtt	tcagttgaac	tttggtctct	gcgaagggcg	3120
aattcgttta	aacctgcagg	actagtccct	ttagtgagg			3159
		pe, clone h	u 147.3			
~400× 169						

<400> 169
cgattgaatt tagcggccgc gaattcgccc ttgctgcgtc aacggaccaa tgagaacttt 60 cccttcaacg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120

aaggtcgtgg	agtcggccaa	agccattctc	ggaggaagca	aggtgcgtgt	ggaccaaaag	180
tgcaagtctt	cggcccagat	cgacccgact	cccgtgatcg	tcacctccaa	caccaacatg	240
tgcgccgtga	ttgatggaaa	ctcaacgacc	ttcgagcacc	agcagccgtt	gcaagaccgg	300
atgttcaaat	ttgaacttac	ccgccgtctg	gatcatgact	ttggaaaggt	caccaagcag	360
gaagtgaaag	actttttccg	gtgggcaaag	gatcacgtgg	ttgaggtgga	gcatgagttc	420
tacgtcaaaa	agggtggagc	caaaaaaaga	cccgcccca	gtgacgcaga	tataagtgag	480
cccaaacggg	cgcgcgagtc	agttgcgcag	ccatcgacgt	cagacgcgga	agcttcgatc	540
aactacgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	tgggcatgaa	tctgatgctg	600
tttccctgca	gacaatgcga	gcgaatgaat	cagaattcaa	atatctgctt	cactcacgga	660
cagaaagact	gtttagagtg	ctttcccgtg	tcagaatctc	aacccgtttc	tgtcgtcaaa	720
aaggcgtatc	agaaactgtg	ctacattcat	cacatcatgg	gaaaggtgcc	agacgcttgc	780
actgcttgcg	acctggtcaa	tgtggatttg	gatgactgca	tctctgaaca	ataaatgatt	840
taaatcaggt	atggctgccg	atggttatct	tccagattgg	ctcgaggaca	ctctctctga	900
aggaataaga	cagtggtgga	agctcaaacc	tggcccacca	ccaaagcccg	cagagcggca	960
taaggacgac	agcaggggtc	ttgtgcttcc	tggatacaag	tacctcggac	ccttcaacgg	1020
actcgacaag	ggagagccgg	tcaacgaggc	agacgccgcg	gccctcgagc	acgacaaggc	1080
ctacgaccgg	cagctcgaca	gcggagacaa	cccgtacctc	aagtacaacc	acgccgacgc	1140
ggagtttcag	gagcgcctta	aagaagatac	gtcttttggg	ggcaacctcg	gacgagcagt	1200
cttccaggcg	aaaaagaggg	ttcttgaacc	tctgggcctg	gttgaggaac	ctgttaagac	1260
ggctccggga	aaaaagaggc	ccgtagagca	ctctcctgtg	gagccagact	cctcctcggg	1320
aaccggaaaa	gcgggcaacc	agcctgcaag	aaaaagattg	aatttcggtc	agactggaga	1380
cgcagactcc	gtacctgacc	cccagcctct	cggacagcca	ccagcagccc	cctctggtct	1440
gggaactaat	acgatggcta	caggcagtgg	cgcaccaatg	gcagacaata	acgagggcgc	1500
cgacggagtg	ggtaattcct	cgggagattg	gcattgcgat	tccacatgga	tgggcgacag	1560
agtcatcacc	accagcaccc	gcacctgggc	cctgcccacc	tacaacaacc	acctctacaa	1620
gcagatttcc	agccaatcag	gagccagcaa	tgacaaccac	tactttggct	acagcacccc	1680
ttgggggtat	tttgacttca	acagattcca	ctgccacttt	tcgccacgcg	actggcagag	1740
actcatcaac	aacaactggg	gattccggcc	caaaagacto	aacctcaagc	tgtttaacat	1800
tcaagtcaag	gaggtcacgc	agaatgacgg	tacgacgacg	attgccaata	accttaccag	1860
cacggttcag	gtgtttactg	acttggagta	ccagctcccg	tacgtcctcg	gctcggcgca	1920
tcaaggatgc	ctcccgccgt	tcccagcaga	cgtcttcatg	gtgccacagt	atggatacct	1980
caccctgaac	aacgggagtc	aggcggtagg	acgctcttcc	ttttactgcc	tggagtactt	2040
tccttctcag	atgcttcgta	ccggaaacaa	ctttaccttc	agctacactt	ttgaagacgt	2100
tcctttccac	agcagctacg	ctcacagtca	aagtctggad	cgtctcatga	atcctctcat	2160
cgaccagtac	ctgtattact	: tgagcagaac	aaacactcca	agcggaacca	ctacgcagtc	2220
caggcttcag	ttttctcagg	ccggagcgag	tgacattcgg	gaccagtcta	ggaactggct	2280
tcctggaccc	tgttaccgcc	agcagcgagt	atcaaagaca	gctgcggata	acaacaacgg	2340
tgaatactcg	tggactggag	, ctaccaagta	ccacctcaat	ggcagagact	ctctggtgaa	2400
tccgggcccg	gccatggcca	ı gccacaagga	cgatgaagaa	a aagtttttc	ctcaaagcgg	2460
ggttctcatc	tttgggaago	aaggctcaga	ı gaaaacaaat	gtggacattg	aaaaggtcat	2520
gattacagac	gaagaggaaa	tcaggaccac	caatcccgt	gctacggagc	agtatggttc	2580
tgtatctacc	aacctccaga	a gcggcaacac	acgagcagct	acctcagatg	tcaacacaca	2640
aggcgttctt	ccaggcatgg	tctggcagga	cagagacgt	tacctgcagg	ggcccatctg	2700
ggcaaaaatt	ccacacacg	g acggacattt	tcacccctct	cccctcatgg	gcggatttgg	2760
acttaaacac	cctcctcca	agattctcat	taagaatac	ccggtacctg	cgaatccttc	2820

daccactite agegeggeagge aggette cttcatcaca cagtattcca cggggcaggt cagcgtggag atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat 2940 tcagtacact tccaactaca acaaatctgt taatgtggac tttactgtgg acactaatgg 3000 ggtgtattca gagcctcgcc ctattggcac cagatacctg actcgtaatc tgtaattgct 3060 tgttaatcaa taaaccgttt aattcgtttc agttgaactt tggtctctgc gaagggcgaa 3120 3156 ttcgtttaaa cctgcaggac tagtcccttt agtgag <210> 170 3158 DNA <213> new AAV serotype, clone hu 161.10 <400> 170 gattgaattt agcggccgcg aattcgccct tgctgcgtca actggaccaa tgagaacttt 60 cctttcaatg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc 120 aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgc ggaccagaaa 180 tgcaagtcct cggcccagat agacccgact cccgtgattg tcacctccaa caccaacatg 240 tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt gcaagaccgg 300 atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttgggaaggt caccaagcag 360 gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga gcatgaattc 420 tacgtcaaaa agggtggagc taagaaaaga cccgcccca gtgacgcaga tataagtgag 480 cccaaacggg cgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga agcttcgatc 540 aactacgcgg gcaggtacca aaacaaatgt tctcgtcacg tgggcatgaa tctgatgctg 600 tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt cactcacgga 660 cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc tgtcqtcaaa 720 aaggcgtatc agaaactttg ctacattcat catatcatgg gaaaggtgcc agacgcttgc 780 actgcctgcg atctggtcaa tgtggatttg gatgactgca tctctgaaca ataaatgatt 840 taaatcaggt atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga 900 aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg 960 gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa 1020 cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa 1080 ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaaqtaca accacgccqa 1140 cgcggagttt caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc 1200 agtcttccag gcaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa 1260 aacggctccg ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc 1320 gggaaccgga aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg 1380 agacgcagac teegtacetg acceecagee teteggacag ceaecageag ececetetgg 1440 tctgggatct actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg 1500 tgccgatgga gtgggtaatt cctcgggaaa ttggcattgc gattcccaat ggctgggcga 1560 cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accacctcta 1620 caagcaaatc tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac 1680 cccctggggg tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca 1740 aagactcatc aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa 1800 cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac 1860 cagcacggtt caggtgttta ctgactcgga gtaccagctc ccqtacqtcc tcqqctcqqc 1920 gcatcaagga tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata 1980 cctcaccctg aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta 2040 ctttccttct cagatgctgc gtaccggaaa caactttcaa ttcaqctaca cttttgaaga 2100 cgtgcctttc cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct 2160

```
∞ggtcgaccage aatagtggaa ctcttcagca gacacaaaca aatagtggaa ctcttcagca
                                                                      2220
 gtctcggcta ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaactg
                                                                      2280
 qctqcctqqa ccttgctaca gacagcagcg tctgtcaaag caggcaaacg acaacaacaa
                                                                      2340
 cagcaacttt ccctggactg cagctacaaa gtatcatcta aatggccggg actcgttggt
                                                                      2400
 taatccagga ccagctatgg ccagtcacaa ggatgacgaa gaaaagtttt tccccatgca
                                                                      2460
 tggaaccctt atatttggta aacaaggaac aaatgccaac gacgcggatt tggaaaatgt
                                                                      2520
 catgattaca gatgaagaag aaatcaggac caccaatccc gtggctacgg agcagtacgg
                                                                      2580
 aactgtatca aataatttgc aaaactcaaa cactggtcca actactggaa ctgtcaatca
                                                                      2640
 ccaaggagcg ttacctggta tggtgtggca ggatcgagac gtgtacctgc agggacccat
                                                                      2700
                                                                      2760
 ttgggccaag attcctcaca ccgatggaca ctttcatcct tctccactga tgggaggttt
                                                                      2820
 tggactcaaa cacccactc ctcaaatcat gatcaaaaac actcccgttc cagccaatcc
 tcccacaaac ttcagttctg ccaagtttgc ttctttcatc acacagtatt ccacggggca
                                                                      2880
                                                                      2940
 ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga
                                                                      3000
 aattcagtac acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa
  tggtgtgtat tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaatt
                                                                      3060
                                                                      3120
  qcttgttaat caataaaccg tttaattcgt ttcagttgaa ctttggtctc tgcgaagggc
  gaattcgttt aaacctgcag gactagtccc tttagtga
                                                                      3158
  <210>
        171
         3167
         DNA
        new AAV serotype, clone hu 172.1
  <400> 171
  attgaattta gcggccgcga attcgccctt cgcagagacc aaagttcaac tgaaacgaat
                                                                        60
  taaacggttt attgattaac aagcaattac agattacgag tcaggtacct ggtgccaatg
                                                                        120
  gggcgaggct ctgaatacac accattagtg tccacagtaa agtccacatt aacagatttg
                                                                        180
  ttgtagttgg aagtgtaCtg aatctcggga ttccagcgtt tgctgttctc cttctgcagc
                                                                        240
  tcccactcga tctccacgct gacctgcccc gtggagtact gtgtaatgaa ggaagcaaac
                                                                        300
                                                                        360
  tttgccgcac tgaaggtagt cgaaggattc gcaggtaccg gggtgttctt gatgagaatc
  tgcgggggag ggtgtttaag tccgaatccg cccatgaggg gagaggggtg aaaatgtccg
                                                                        420
                                                                        480
  tccgtgtgtg gaatctttgc ccagatgggc ccctgcaggt acacgtctct gtcctgccac
  accatgcctg gaagaacgcc ttgtgtgttg acatctgagg tagctgcttg tgtgttgccg
                                                                        540
  ctctggaggt tggtagatac agaaccatac tgctccgtag ccacgggatt ggtggtcctg
                                                                        600
  atttcctctt cgtctgtaat catgaccttt tcaatgtcca cattagtttt tcccgagtct
                                                                        660
  tgttttccaa agatgagaac cccgctctga ggaaaaaact tttcttcatc gtccttgtgg
                                                                        720
  ctggccatgg ccgggcccgg attcaccaga gagtctcttc cattaaggtg gtacttggta
                                                                        780
                                                                        840
  gctccagtcc acgagtattc actgttgttg ttatccgcag atgtctttga tactcgctgc
  tggcggtaac agggtccagg aagccagttc ctagactggt cccgaatgtc acttgctccg
                                                                        900
  gcctgagaaa actgaagcct tgactgcgtg gtggttccgc ttggagtgtt tgttctgctc
                                                                        960
  aagtaataca ggtactggtc gatgagagga ttcatgagac ggtccaaact ctggctgtgg
                                                                       1020
  gcgtagctgc tgtggaaagg aacgtcctca aaggtgtagc tgaaggtaaa gttgtttccg
                                                                       1080
  gtacgcagca tctgagaagg aaagtactcc aggcagtaaa atgaagagcg tcctactgcc
                                                                       1140
  tgactcccgt tgttcagggt gaggtatcca tactgtggca ccatgaagac gtctgctggg
                                                                       1200
  aacggcggga ggcatccttg atgcgccgag ccgaggacgt acgggagctg gtactccgag
                                                                       1260
  tcagtaaaca cctgaaccgt gctggtaagg ttattggcaa tcgtcgtcgt accgtcattc
                                                                       1320
  tgcgtgacct ccttgacttg aatgttaaag agcttgaagt tgagtctttt gggccggaat
                                                                       1380
                                                                       1440
  ccccaattgt tgttgatgag tctttgccag tcacgtggcg aaaagtggca gtggaatctg
                                                                       1500
  ttgaagtcaa aataccccca aggggtgctg tagccaaagt agtggttgtc gtttgaggCt
```

1560

1620

٣cdtgattggc "tggaaatctg cttgtagagg tggttgttgt aggtgggcag agcccaggtg

cgggtgctgg tggtgatgac tctgtcgccc atccatgtgg aatcgcaatg ccaatttccc

agging and an analysis and an analysis and an	
gaggaattac ccactccgtc ggcgccctcg ttattgtctg ccattggtgc gccactgcct	1680
gtagccatcg tattagttcc cagaccagag ggggctgctg gtggctgtcc gagaggctgg	1740
gggtcaggta cggagtctgc gtctccagtc tgaccgaaat tcaatctctt tcttgcaggc	1800
tgctggcccg cttttccggt tcccgaggag gagtctggct ccgcaggaga gtgctctacc	1860
ggcctctttt ttcccggagc cgtcttaaca ggttcctcaa ccaggcccag aggttcaaga	1920
accctctttt tcgcctggaa gactgctcgt ccgaggttgc ccccaaaaga cgtatcttct	1980
ttaagacgct cctggaactc cgcgtcggcg tggttgtact tgggggtacgg gttgtctccg	2040
ctgtcgagct gccggtcgta ggccttgtcg tgctcgaggg ccgcggcgtc tgcctcgttg	2100
accggctctc ccttgtcgag tccgttgaag ggtccaaggt acttgtaccc aggaagcaca	2160
agacccctgc tgtcgtcctt atgccgctct gcgggctttg gtggtggtgg gccaggtttg	2220
agcttccacc actgtcttat tccttcagag agagtgtcct cgagccaatc tggaagataa	2280
ccatcggcag ccatacctga tttaaatcat ttattgttca gagatgcagt catccaaatc	2340
cacattgacc agatcgcaag cagtgcaagc gtctggcacc tttcccatga tatgatgaat	2400
gtagcacagt ttctgatacg cctttttgac gacagaaacg ggttgagatt ctgacacggg	2460
aaagcactct aaacagtctt tctgtccgtg agtgaagcag atatttgaat tctgattcat	2520
tctctcgcat tgtctgcagg gaaacagcat cagattcatg cccacgtgac gagaacattt	2580
gttttggtac ctgtccgcgt agttgattga agcttccgcg tctgacgtcg atggctgcgc	2640
aactgactcg cgcgcccgtt tgggctcact tatatctgcg tcactggggg cgggtcttt	2700
tttggctcca ccctttttga cgtagaattc atgctctacc tcaaccacgt gatcctttgc	2760
ccaccggaaa aagtctttga cttcctgctt ggtgaccttc ccaaagtcat gatccagacg	2820
gcgggtgagt tcaaatttga acatccggtc ttgcaacggc tgctggtgtt cgaaggtcg	2880
tgagttcccg tcaatcactg cgcacatgtt ggtgttggag gtgacaatca cgggagtcg	2940
gtctatctgg gccgaggact tgcatttctg gtccacgcgc accttgcttc ctccgagaa	3000
ggctttggcc gactccacga ccttggcggt catcttcccc tcctcccacc agatcacca	3060
cttgtcgacg caatcattga aaggaaagtt ctcattggtc cagttgacgc agccgtagaa	a 3120
agggcgaatt cgtttaaacc tgcaggacta gtccctttag tgagggt	3167
240 472	
<210> 172 <211> 3161	
<212> DNA <213> new AAV serotype, clone hu 172.2	
<400> 172	- 60
aattgaattt ageggeegeg aattegeest tegeagagae caaagtteaa etgaaaega	
ttaaacggtt tattgattaa caagcaatta cagattacga gtcaggtatc tggtgccaa	
ggggcgaggc tctgaataca caccattagt gtccacagta aagtccacat taacagatt	
gttgtagttg gaagtgtact gaatctcggg attccagcgt ttgctgttct ccttctgca	
ctcccactcg atctccacgc tgacctgccc cgtggagtac tgtgtaatga aggaagcaa	
ctttgccgca Ctgaaggtag tcgaaggatt cgcaggtacc ggggtgttct tgatgagaa	
ctgcggggga gggtgtttaa gtccgaatcc gcccatgagg ggagaggggt gaaaatgtc	
gtccgtgtgt ggaatctttg cccagatggg cccctgcagg tacacgtctc tgtcctgcc	
caccatgcct ggaagaacgc cttgtgtgtt gacatctgag gtagctgctt gtgtgttgc	
gctctggagg ttggtagata cagaaccata ctgctccgta gccacgggat tggtggtcc	
gatttcctct tcgtctgtaa tcatgacctt ttcaatgtcc acattagttt ttcccgagt	
ttgttttcca aagatgagaa ccccgctctg aggaaaaaac ttttcttcat cgtccttgt	
gctggccatg gccgggcccg gattcaccag agagtctctt ccattaaggt ggtacttgg	
agctccagtc cacgagtatt cactgttgtt gttatccgca gatgtctttg atactcgct	g 840
256	

	11 0 2005	,000021					
j	ctggćggtäa"	cägggtccag	gaagccagtt	cctagactgg	tcccgaatgt	cacttgctcc	900
	ggcctgagaa	aactgaagcc	ttgactgcgt	ggtggttccg	cttggagtgt	ttgttctgct	960
	caagtaatac	aggtactggt	cgacgagagg	attcatgaga	cggtccaaac	tctggctgtg	1020
	ggcgtagctg	ctgtggaaag	gaacgtcctc	aaaggtgtag	ctgaaggtaa	agttgtttcc	1080
	ggtacgcagc	atctgagaag	gaaagtactc	caggcagtaa	aatgaagagc	gtcctactgc	1140
	ctgactcccg	ttgttcaggg	tgaggtatcc	atactgtggc	accatgaaga	cgtctgctgg	1200
	gaacggcggg	aggcatcctt	gatgcgccga	gccgaggacg	tacgggagct	ggtactccga	1260
	gtcagtaaac	acctgaaccg	tgctggtaag	gttattggca	atcgtcgtcg	taccgtcatt	1320
	ctgcgtgacc	tccttgactt	gaatgttaaa	gagcttgaag	ttgagtcttt	tgggccggga	1380
	tccccaattg	ttgttgatga	gtctttgcca	gtcacgtggc	gaaaagtggc	agtggaatct	1440
	gttgaagtca	aaataccccc	aaggggtgct	gtagccaaag	tagtggttgt	cgtttgaggc	1500
	tcctgattgg	ctggaaatct	gcctgtagag	gtggttgttg	taggtgggca	gagcccaggt	1560
	gcgggtgctg	gtggtgatga	ctctgtcgcc	catccatgtg	gaatcgcaat	gccaatttcc	1620
	cgaggaatta	cccactccgt	cggcgccctc	gttattgtct	gccattggtg	cgccactgcc	1680
	tgtagccatc	gtattagttc	ccagaccaga	gggggctgct	ggtggctgtc	cgagaggctg	1740
	ggggtcaggt	acggagtctg	cgtctccagt	ctgaccgaaa	ttcaatctcc	ttcttgcagg	1800
	ctgctggccc	gcttttccgg	ttcccgagga	ggagtctggc	tccgcaagag	agtgctctac	1860
	cggcctcttt	tttcccggag	ccgtcttaac	aggttcctca	accaggccca	gaggttcaag	1920
	aaccctcttt	ttcgcctgga	agactgctcg	tccgaggttg	ccccaaaag	acgtatcttc	1980
	tttaagacgc	tcctggaact	ccgcgtcggc	gtggttgtac	ttgaggtacg	ggttgtctcc	2040
	gccgtcgagc	tgccggtcgt	aggccttgtc	gtgctcgagg	gccgcggcgt	ctgcctcgtt	2100
	gaccggctct	cccttgtcga	gtccgttgaa	gggtccaagg	tacttgtacc	caggaagcac	2160
	aagacccctg	ctgtcgtcct	tatgccgctc	tgcgggcttt	ggtggtggtg	ggccaggttt	2220
	gagcttccac	cactgtctta	ttccttcaga	gagagtgtcc	tcgagccaat	ctggaagata	2280
	accatcggca	gccatacctg	atttaaatca	tttattgttc	agagatgcag	tcatccaaat	2340
	ccacattgac	cagatcgcaa	gcagtgcaag	cgtctggcac	ctttcccatg	atatgatgaa	2400
	tgtagcacag	tttctgatac	gcctttttga	cgacagaaac	gggttgagat	tctgacacgg	2460
	gaaagcactc	taaacagtct	ttctgtccgt	gagtgaagca	gatatttgaa	ttctgattca	2520
	ttctctcgca	ttgtctgcag	ggaaacagca	tcagattcat	gcccacgtga	cgagaacatt	2580
					gtctgacgtc		2640
	caactgactc	gcgcgcccgt	ttgggctcac	ttatatctgc	gtcactgggg	gcgggtcttt	2700
	ttttggctcc	acccttttg	acgtagaatt	catgctctac	ctcaaccacg	tgatcctttg	2760
					_	tgatccagac	2820
	ggcgggtgag	ttcaaatttg	aacatccggt	cttgcaacgg	ctgctggtgt	tcgaaggtcg	2880
						acgggagtcg	2940
						cctccgagaa	3000
	tggctttggc	cgactccacg	accttggcgg	tcatcttccc	ctcctcccac	cagatcacca	3060
						cagcaagggc	3120
	gaattcgttt	aaacctgcag	gactagtcco	tttagtgagg	g		3161
	<210> 173 <211> 317 <212> DNA <213> new	'2	pe, clone h	nu 173.4			
	<400> 173		aattcoccct	: tqctacatca	actggaccaa	tgagaacttt	60
			-			gatgaccgcc	120
						ggaccaaaag	180
	22 25		JJ			JJ:	

•	'tgcäaÿtcät	cggcccagat	cgaccccacg	cccgtgatcg	tcacctccaa	caccaacatg	240
	tgcgccgtga	tcgacgggaa	cagcaccacc	ttcgagcacc	agcagcccct	gcaggaccgc	300
	atgttcaagt	tcgagctcac	ccgccgtctg	gagcacgact	ttggcaaggt	gaccaagcag	360
	gaagtcaaag	agttcttccg	ctgggctcag	gatcacgtga	ctgaggtggc	gcatgagttc	420
	tacgtcagaa	agggcggagc	caccaaaaga	cccgccccca	gtgacgcgga	tataagcgag	480
	cccaagcggg	cctgcccctc	agttgcggag	ccatcgacgt	cagacgcgga	agcaccggtg	540
	gactttgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	600
	tttccctgca	agacatgcga	gagaatgaat	cagaatttca	acgtctgctt	cacgcacggg	660
	gtcagagact	gctcagagtg	cttccccggc	gcgtcggaat	ctcaacccgt	cgtcagaaaa	720
	aagacgtatc	agaaactgtg	cgcgattcat	catctgctgg	ggcgggcacc	cgagattgcg	780
	tgttcggcct	gcgatctcgt	caacgtggac	ttggatgact	gtgtttctga	gcaataaatg	840
	acttaaacca	ggtatggctg	ctgacggtta	tcttccagat	tggctcgagg	acaacctctc	900
	tgagggcatt	cgcgagtggt	gggacctgaa	acctggagcc	cccaagccca	aggccaacca	960
	gcagaagcag	gacgacggcc	ggggtctggt	gcttcctggc	tacaagtacc	tcggaccctt	1020
	caacggactc	gacaaggggg	agcccgtcaa	cgcggcggac	gcagcggccc	tcgagcacga	1080
	caaggcctac	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	1140
	cgacgccgag	tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	1200
	agcagtcttc	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaagctgc	1260
	taagacggct	cctggaaaga	agagaccggt	agaaccgtca	cctcagcgtt	ccccgactc	1320
	ctccgcgggc	atcggcaaga	aaggccagca	gcccgctaaa	aagagactga	actttggtca	1380
	gactggcgac	tcagagtcag	tccccgaccc	tcaaccaatc	ggagaaccac	cagcaggccc	1440
	ctctggtctg	ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	1500
	cgaaggcgcc	gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	1560
	gggcgacaga	gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	1620
	cctctacaag	caaatatcca	atgggacatc	gggaggaagc	accaacgaca	acacctactt	1680
	cggctacagc	acccctggg	ggtattttga	cttcaacaga	ttccactgcc	acttctcacc	1740
	acgtgactgg	cagcgactca	tcaacaacaa	ctggggattc	cggccaaaaa	gactcagctt	1800
	caagctcttc	aacatccagg	tcaaggaggt	cacgcagaat	gaaggcaccg	agaccatcgc	1860
	caataacctt	accagcacga	ttcaggtatt	tacggactcg	gaataccagc	tgccgtacgt	1920
	cctcggctcc	gcgcaccagg	gctgcctgcc	tccgttcccg	gcggacgtct	tcatgattcc	1980
	ccagtacggc	taccttacac	: tgaacaatgg	aagtcaagco	gtaggccgtt	cctccttcta	2040
	ctgcctggaa	tattttccat	ctcaaatgct	gcgaactgga	aacaattttg	aattcagcta	2100
	caccttcgag	gacgtgccti	tccacagcag	ctgcgcacac	agccagagct	cggaccgact	2160
	gatgaatcct	ctcatcgac	agtacctgta	ctacttatco	agaactcggt	ccacaggagg	2220
	aactcaaggt	acccagcaat	tgttatttt	tcaagctggg	cctgcaaaca	tgtcggctca	2280
	ggctaagaac	tggctacct	gaccttgcta	ccggcagcag	gcgagtctcta	cgacactgtc	2340
	gcaaaacaac	: aacagcaacı	ttgcttggad	tggtgccac	aaatatcacc	tgaacggaag	2400
	agactcttt	gtaaatccc	gtgtcgccat	ggcaaccca	aaggacgacg	aggaacgctt	2460
	cttcccgtcg	agtggagtc	tgatgtttgg	aaaacaggg1	t gctggaagag	acaatgtgga	2520
	ctacagcago	gttatgcta	a ccagcgaaga	a agaaattaa	accactaaco	ctgtagccac	2580
	agaacaata	ggtgtggtg	ctgacaacti	c gcagcaaac	aatacagggo	: ctattgtggg	2640
	aaatgtcaad	agccaagga	g ccttacctg	catggtctg	g cagaaccgag	acgtgtacct	2700
	gcagggtcc	atctgggcc	a agattcctca	a cacggacgg	aacttccacc	cttcaccgct	2760
	aatgggagga	a tttggactg	a agcacccac	tcctcagate	ctgatcaaga	acacgccggt	2820
						ttacgcagta	2880
						acagcaaacg	2940
					Page 258		

ctggaaccca gagattcagt acacttcaaa ctactacaaa tctacaaatg tggactttgc	3000
tgtcaataca gagggaactt attctgagcc tcgccccatt ggtactcgtt acctcacccg	3060
taatctgtaa ttgctggtta atcaataaac cgtttgattc gtttcagttg aactttggtc	3120
tctgcgaagg gcgaattcgt ttaaacctgc aggactagtc cctttagtga gg	3172
<210> 174 <211> 3159	
<212> DNA <213> new AAV serotype, clone hu 161.8	
<400> 174	
gattgaattt agcggccgcg aattcgccct tgctgcgtca actggaccaa tgagaacttt	60
cctttcaatg attgcgtcga caagatggtg atctggtggg aggagggaaa gatgaccgcc	120
aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgt ggaccagaaa	180
tgcaagtcct cggcccagat agacccgact cccgtgattg tcacctccaa caccgacatg	240
tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt gcaagaccgg	300
atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttgggaaggt caccaagcag	360
gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga gcatgaattc	420
tacgtcaaaa agggtggagc taagaaaaga cccgcccca gtgacgcaga tataagtgag	480
cccaaacggg cgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga agcttcgatc	540
aactacgcgg acaggtacca aaacaaatgt tctcgtcacg tgggcatgaa tctgatgctg	600
tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt cactcacgga	660
cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc tgtcgtcaaa	720
aaggcgtatc agaaactttg ctacattcat catatcatgg gaaaggtgcc agacgcttgc	780
actgcctgcg atctggtcaa tgtggatttg gatgactgca tctctgaaca ataaatgatt	840
taaatcaggt atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga	900
aggaataaga cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg	960
gcataaggac gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa	1020
cggactcgac aagggggagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa	1080
ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga	1140
cgcggagttt caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc	1200
agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa	1260
aacggctccg ggaaaaaaga ggccggtaga gcaccctcct gtggagccag actcctcctc	1320
gggaaccgga aaagcgggcc agcagcctgc aagaaaaaga ttgaatttcg gtcagactgg	1380
agacgcagac tccgtacctg acccccagcc tctcggacag ccaccagcag cccctctgg	1440
tctgggatct actacaatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg	1500
tgccgatgga gtgggtaatt cctcgggaaa ttggcattgc gattcccaat ggctgggcga	1560
cagagtcatc accaccagca cccgcacctg ggccctgccc acctacaaca accacctcta	1620
caagcaaatc tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac	1680
cccctggggg tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca	1740
aagactcatc aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa	1800
cattcaagtc aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac	1860
cagcacggtt caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1920
gcatcaagga tgcctcccgc cgtttccagc ggacgtcttc atggtcccac agtatggata	1980
cctcaccctg aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta	2040
ctttccttct cagatgctgc gtaccggaaa caactttcag ttcagctaca cttttgaaga	2100
cgtgcctttc cacagcagct acgctcacag ccagagtctg gatcggctga tgaatcctct	2160
gatcgaccag tacctgtatt atctgaacaa gacacaaaca aatagtggaa ctcttcagca	2220
gtctcggcta ctgtttagcc aagctggacc caccaacatg tctcttcaag ctaaaaaccg	2280
Page 259	

					-	
gctgcctgga	ccttgctaca	gacagcagcg	tctgtcaaag	caggcaaacg	acaacaacaa	2340
cagcaacttt	ccctggaccg	cagctacaaa	gtatcatcta	aatggccggg	actcgttggt	2400
taatccagga	ccagctatgg	ccagtcacaa	ggatgacgaa	gaaaagtttt	tccccatgca	2460
tggaaccctt	atatttggta	aacaaggaac	aaatgccaac	gacgcggatt	tggaaaatgt	2520
catgattaca	gatgaagaag	aaatcaggac	caccaatccc	gtggctacgg	agcagtacgg	2580
aactgtatca	aataatttgc	aaaactcaaa	cactggtcca	actactggaa	ctgtcaatca	2640
ccaaggagcg	ttacctggta	tggtgtggca	ggatcgagac	gtgtacctgc	agggacccat	2700
ttgggccaag	attcctcaca	ccgatggaca	ctttcatcct	tctccactgg	tgggaggttt	2760
tggactcaaa	cacccacctc	ctcaaatcat	gatcaaaaac	actcccgttc	cagccaatcc	2820
tcccacaaac	ttcagttctg	ccaagtttgc	ttctttcatc	acacagtatt	ccacggggca	2880
ggtcagcgtg	gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaatcccga	2940
aattcagtac	acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	3000
tggtgtgtat	tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaatt	3060
gcttgttaat	caataaaccg	tttaattcgt	ttcagttgaa	ctttggtctc	tgcgaagggc	3120
gaattcgttt	aaacctgcag	gactagtccc	tttagtgag			3159
<210> 175 <211> 317						
<212> DNA <213> new	AAV seroty	pe, clone hi	173.8			
<400> 175						
	agcggccgcg					60
	attgcgtcga					120
	agtccgccaa					180
	cggcccagat					240
	tcggcgggaa					300
	tcgagctcac				_	360
	agttcttccg					420
	agggcggagc					480
	cctgccctc					540
gactttgcgg	acaggtacca	aaacaaatgt	tctcgtcacg	cgggcatgct	tcagatgctg	600
tttccctgca	agacatgcga	gagaatgaat	cagaatttca	acgtctgctt	cacgcacggg	660
gtcagagact	gctcagagtg	cctcccggc	gcgtcagaat	ctcaacccgt	cgtcagaaaa	720
aagacgtato	agaaactgtg	cgcgattcat	catctgctgg	ggcgggcacc	cgagattgcg	780
tgttcggcct	gcgatctcgt	caacgtggac	ttggatgact	gtgtttctga	gcaataaatg	840
	ggtatggctg					900
	cgcgagtggt					960
gcagaagcag	gacgacggcc	ggggtctggt	gcttcttggc	tacaagtacc	tcggaccctt	1020
caacggacto	gacaaggggg	agcccgtcaa	tgcggcggac	gcagcggccc	tcgagcacga	1080
caaggcctad	gaccagcagc	tcaaagcggg	tgacaatccg	tacctgcggt	ataaccacgc	1140
cgacgccgag	tttcaggagc	gtctgcaaga	agatacgtct	tttgggggca	acctcgggcg	1200
agcagtctt	caggccaaga	agcgggttct	cgaacctctc	ggtctggttg	aggaagctgc	1260
taagacggct	cctggaaaga	agagaccggt	agaaccgtca	cctcagcgtt	ccccgactc	1320
ctccacggg	: atcggcaaga	aaggccagca	gcccgctaaa	aagagactga	actttggtca	1380
gactggcgad	: tcagagtcag	tccccgaccc	tcaaccaatc	ggagaaccac	cagcaggccc	1440
ctctggtctg	ggatctggta	caatggctgc	aggcggtggc	gctccaatgg	cagacaataa	1500
cgaaggcgc	gacggagtgg	gtagttcctc	aggaaattgg	cattgcgatt	ccacatggct	1560
9ggcgacaga	gtcatcacca	ccagcacccg	aacctgggcc	ctgcccacct	acaacaacca	1620

cctctacaag caaatatcca atgggacatc gggaggaagc accaacgaca acacctactt	
	1680
cggctacagc accccctggg ggtattttga cttcaacaga ttccactgcc acttctcacc	1740
acgtgactgg cagcgactca tcaacaacaa ctggggattc cggccaaaaa gactcagctt	1800
caagctcttc aacatccagg tcaaggaggt cacgcagaat gaaggcacca agaccatcgc	1860
caataacctt accagcacga ttcaggtatt tacggactcg gaataccagc tgccgtacgt	1920
cctcggctcc gcgcaccagg gctgcctgcc tccgttcccg gcggacgtct tcatgattcc	1980
ccagtacggc taccttacac tgaacaatgg aagtcaagcc gtaggccgtt cctccttcta	2040
ctgcctggaa tattttccat ctcaaatgct gcgaactgga aacaattttg aattcagcta	2100
caccttcgag gacgtgcctt tccacagcgg ctacgcacac agccagagct tggaccgact	2160
gatgaatcct ctcatcgacc agtacctgta ctacttatcc agaactcagt ccacaggagg	2220
aactcaaggt acccagcaat tgttattttc tcaagctggg cctgcaaaca tgtcggctca	2280
ggctaagaac tggctacctg gaccttgcta ccggcagcag cgagtctcta cgacactgtc	2340
gcaaaacaac aacagcaact ttgcttggac tggtgccacc aaatatcacc tgaacggaag	2400
agactctttg gtaaatcccg gtgtcgccat ggcaacccac aaggacgacg aggaacgctt	2460
cttcccgtcg agtggagtcc tgatgtttgg aaaacagggt gctggaagag acaatgtgga	2520
ctacagcagc gttatgctaa ccagcgaaga agaaattaaa accactaacc ctgtagccac	2580
agaacaatac ggtgtggtgg ctgacaactt gcagcaaacc aatacagggc ctattgtggg	2640
aaatgtcaac agccaaggag ccttacctgg catggtctgg cagaaccgag acgtgtacct	2700
gcagggtccc atctgggcca agattcctca cacggacggc aacttccacc cttcaccgct	2760
aatgggagga tttggactga agcacccacc tcctcagatc ctgatcaaga acacgccggt	2820
acctgcggat cctccaacga cgttcagcca ggcgaaattg gcttccttca ttacgcagta	2880
cagcaccgga caggtcagcg tggaaatcga gtgggagctg cagaaggaga acagcaaacg	2940
ctggaaccca gagattcagt acacttcaaa ctactacaaa tctacaaatg tggactttgc	3000
tgtcaataca gagggaactt attctgagcc tcgccccatt ggtactcgtt acctcacccg	3060
taatctgtaa ttgctggtta atcaataaac cgtttgattc gtttcagttg aactttggtc	3120
tctgcgaagg gcgaattcgt ttaaacctgc aggactagtc cctttagtga gg	3172
740 4-4	
2/10x 1/6	
<210> 176 <211> 3160	
<211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176	
<211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 accettcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac	60
<211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag	120
<211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 accetteact aaagggacta gteetgeagg tttaaacgaa ttegecettg etgegteaac tggaccaatg agaactttee etteaacgae tgtgtegaea agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtegtggag teggecaaag ceattetegg aggaageaag	120 180
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc</pre>	120 180 240
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag</pre>	120 180 240 300
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt</pre>	120 180 240 300 360
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt</pre>	120 180 240 300 360 420
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcacc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgcccttagt</pre>	120 180 240 300 360 420 480
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca</pre>	120 180 240 300 360 420 480 540
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcacc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg</pre>	120 180 240 300 360 420 480 540
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat</pre>	120 180 240 300 360 420 480 540 600
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcacc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc accgacgtca gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat atctgcttca ctcacggaca gaaagactgt ttagagtgct ttcccgtgtc agaatctcaa</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcacc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaatcta cgtcaaaaag ggtggagcca agaaaagacc cgccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat atctgcttca ctcacggaca gaaagactgt ttagagtgct ttcccgtgtc agaatctcaa cctgtttctg tcgtcaaaaa ggcgtatcag aaactgtgct acattcatca tatcatggga</pre>	120 180 240 300 360 420 480 540 600 660 720 780
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 </pre> <pre><400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcaccc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaattcta cgtcaaaaag ggtggagcca agaaaagacc cgcccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat atctgcttca ctcacggaca gaaagactgt ttagagtgct ttcccgtgtc agaatctcaa cctgtttctg tcgtcaaaaa ggcgtatcag aaactgtgct acattcatca tatcatggga aaggtgccag acgcttgcac tgcctgcgat ctggtcaatg tggatttgga tgactgcatc</pre>	120 180 240 300 360 420 480 540 600 660 720 780 840
<pre><211> 3160 <212> DNA <213> new AAV serotype, clone hu 145.1 <400> 176 acccttcact aaagggacta gtcctgcagg tttaaacgaa ttcgcccttg ctgcgtcaac tggaccaatg agaactttcc cttcaacgac tgtgtcgaca agatggtgat ttggtgggag gaggggaaga tgaccgccaa ggtcgtggag tcggccaaag ccattctcgg aggaagcaag gtgcgcgtgg accagaaatg caagtcctcg gcccagatag atccgactcc cgtgatcgtc acctccaaca ccaacatgtg cgccgtgatt gacgggaact caacgacctt cgaacaccag cagccgttgc aagaccggat gttcaaattt gaactcacc gccgtctgga tcatgacttt gggaaggtca ccaagcggga agtcaaagac tttttccggt gggcaaagga tcacgtggtt gaggtggagc atgaatcta cgtcaaaaag ggtggagcca agaaaagacc cgccctagt gacgcagata taagtgagcc caaacgggtg cgcgagtcag ttgcgcagcc atcgacgtca gacgcggaag cttcgatcaa ctacgcggac aggtaccaaa acaaatgttc tcgtcacgtg ggcatgaatc tgatgctgtt tccctgcaga caatgcgaga gaatgaatca aaattcaaat atctgcttca ctcacggaca gaaagactgt ttagagtgct ttcccgtgtc agaatctcaa cctgtttctg tcgtcaaaaa ggcgtatcag aaactgtgct acattcatca tatcatggga</pre>	120 180 240 300 360 420 480 540 600 660 720 780

accaaagccc	gcagagcggc	ataaggacga	cagcaggggt	cttgtgcttc	ctgggtacaa	1020
gtacctcgga	cccttcaacg	gactcgacaa	gggagagccg	gtcaacgagg	cagacgccgc	1080
ggccctcgag	cacgacaagg	cctacgaccg	gcagctcgac	agcggagaca	acccgtacct	1140
caagtacaac	cacgccgacg	cggagtttca	ggagcgtctt	aaagaagata	cgtcttttgg	1200
gggcaacctc	ggacgagcag	tcttccaggc	gaaaaagagg	gttcttgaac	ctctgggcct	1260
ggttgaggaa	cctgttaaga	cggctccggg	aaaaaagagg	ccggtagagc	actctcctgc	1320
ggagccagac	tcctcctcgg	gaaccggaaa	agcgggccag	cagcctgcaa	gaaaaagact	1380
gaatttcggt	cagactggag	acgcagactc	cgtacctgac	ccccagcctc	tcagacagcc	1440
accagcagcc	cccacaagtt	tgggatctac	tacaatggct	acaggcagtg	gcgcaccaat	1500
ggcagacaat	aacgagggtg	ccgatggagt	gggtaattcc	tcaggaaatt	ggcattgcga	1560
ttcccaatgg	ctgggcgaca	gagtcatcac	caccagcacc	cgaacctggg	ccctgcccac	1620
ctacaacaac	cacctttaca	agcaaatctc	cagccaatca	ggagcctcaa	acgacaacca	1680
ctactttggc	tacagcaccc	cctgggggta	ttttgacttc	aacagattcc	actgccactt	1740
ttcaccacgt	gactggcaaa	gactcatcaa	caacaactgg	ggattccgac	ccaagagact	1800
caacttcaag	ctctttaaca	ttcaagtcaa	agaggtcacg	cagaatgacg	gtacgacgac	1860
gattgccaat	aaccttacca	gcacggttca	ggtgtttact	gactcggagt	accagctccc	1920
gtacgtcctc	ggctcggcgc	atcaaggatg	cctcccgccg	tttccagcgg	acgtcttcat	1980
ggtcccacag	tatggatacc	tcaccctgaa	caacgggagt	caggcggtag	gacgctcttc	2040
cttttactg	: ctggagtact	ttccttctca	gatgctgcgt	actggaaaca	actttcagtt	2100
cagctacact	tttgaagacg	tgcctttcca	cagcagctac	gctcacagcc	agagtttgga	2160
tcggctgatg	aatcctctga	tcgaccagta	cctgtattat	ctaaacagaa	cacaaacagc	2220
tagtggaact	: cagcagtctc	ggctactgtt	tagccaagct	ggacccacaa	gcatgtctct	2280
tcaagctaaa	a aactggctgo	ctggaccgtg	ttatcgccag	cagcgtttgt	caaagcaggc	2340
aaacgacaa	aacaacagca	actttccctg	gactggagct	accaagtact	acctcaatgg	2400
cagagactc	ttggtgaaco	cgggcccgg	catggccagc	cacaaggacg	atgaagaaaa	2460
gtttttccc	atgcatggaa	ccctaatatt	: tggtaaagaa	ggaacaaatg	ctaccaacgc	2520
ggaattgga	a aatgtcatga	ttacagatga	agaggaaatc	aggaccacca	atcccgtggc	2580
tacagagca	g tacggatate	tgtcaaataa	tttgcaaaac	tcaaatactg	ctgcaagtac	2640
tgaaactgt	g aatcaccaa	gagcattaco	tggtatggtg	tggcaggato	gagacgtgta	2700
cctgcaggg	a cccatttgg	, ccaagattc	tcacaccgat	ggacacttt	atccttctcc	2760
actgatggg	a ggttttgga	tcaaacacc	gcctcctcag	attatgatca	a aaaacactcc	2820
cgttccagc	c aatcctccc	a caaacttca	g ttctgccaag	tttgcttcc	tcatcacaca	2880
gtattccac	g ggacaggtc	a gcgtggaga	t cgagtgggag	ctgcagaag	g agaacagcaa	2940
acgctggaa	t cccgaaatt	agtacactt	caactacaac	: aaatctgtta	a atgtggactt	3000
tactgtgga	c actaatggt	g tgtattcag	a gcctcgccc	attggcacca	a gatacctgac	3060
tcgtaatct	g taattgctt	g ttaatcaat	a aaccgtttaa	ttcgtttca	g ttgaactttg	3120
gtctctgcg	a agggcgaat	t cgcggccgc	t aaatcaatc)		3160
<212> DN	57 A	ype, clone	hu 145.5			
<400> 17		t gcaggttta	a acgaattcg	ccttgctgc	g tcaactggac	60
					t gggaggaggg	120
		_			a gcaaggtgcg	180
					a tcgtcacctc	240
						300

caacaccaac atgtgcgccg tgattgacgg gaactcaacg accttcgaac accagcagcc 300

gttgcaagac cgaatgttca aatttgaact cacccgccgt ctggatcatg acttcgggaa 360 ggtcaccaag caggaagtca aagacttttt ccggtgggca aaggatcacg tggttgaggt 420 ggagcatgaa ttctacgtca aaaagggtgg agccaagaaa agacccgccc ctagtgacgc 480 agatataagt gagcccaaac gggtgcgcga gtcagttgcg cagccatcga cgtcagacgc 540 ggaagetteg ateaactaeg eggacaggta eeaaaacaaa tgttetegte aegtgggeat 600 gaatctgatg ctgtttccct gcagacaatg cgagagaatg aatcaaaatt caaatatctg 660 720 cttcactcac ggacagaaag actgtttaga gtgctttccc gtgtcagaat ctcaacctgt ttctgtcgtc aaaaaggcgt atcagaaact gtgctacatt catcatatca tgggaaaggt 780 gccagacgct tgcactgcct gcgatctggt caatgtggat ttggatgact gcatctctga 840 acaataaatg atttaaatca ggtatggctg ccgatggtta tcttccagat tggctcgagg 900 acactetete tgaaggaata agacagtggt ggaageteaa acetggeeca ceaceaceaa 960 agcccgcaga gcggcataag gacgacagca ggggtcttgt gcttcctggg tacaagtacc 1020 tcggaccctt caacggactc gacaagggag agccggtcaa cgaggcagac gccgcggctc 1080 tcgagcacga caaggcctac gaccggcagc tcgacagcgg agacaacccg tacctcaagt 1140 acaaccacgc cgacgcggag tttcaggagc gtcttaaaga agatacgtct tttgggggca 1200 acctcggacg agcagtcttc caggcgaaaa agagggttct tgaacctctg ggcctggttg 1260 aggaacctgt taagacggct ccgggaaaaa agaggccggt agagcactct cctgcggagc 1320 cagactcctc ctcgggaacc ggaaaagcgg gccagcagcc tgcaagaaaa agactgaatt 1380 teggteagae tggagaegea gaeteegtae etgaeeeca geetetegga eageeaceag 1440 cagcccccac aagtttggga tctactacaa tggctacagg cagtggcgca ccaatggcag 1500 acaataacga gggtgccgat ggagtgggta attcctcagg aaattggcat tgcgattccc 1560 aatggctggg cgacagagtc atcaccacca gcacccgaac ctgggccctg cccacctaca 1620 acaaccacct ttacaagcaa atctccagcc aatcaggagc ctcaaacgac aaccactact 1680 ttggctacag cacccctgg gggtattttg acttcaacag attccactgc cgcttttcac 1740 cacgtgactg gcaaagactc atcaacaaca actggggatt ccgacccaag agactcaact 1800 tcaagctctt taacattcaa gtcaaagagg tcacgcagaa tgacggtacg acgacgattg 1860 ccaataacct taccagcacg gttcaggtgt ttactgactc ggagtaccag ctcccgtacg 1920 tcctcggctc ggcgcatcaa ggatgcctcc cgccgtttcc agcggacgtc ttcatggtcc 1980 cacagtatgg atacctcacc ctgaacaacg ggagtcaggc ggtaggacgc tcttcctttt 2040 actgcctgga gtactttcct tctcagatgc tgcgtactgg aaacaacttt cagttcagct 2100 acacttttga agacgtgcct ttccacagca gctacgctca cagccagggt ttggatcggc 2160 tgatgaatcc tctgatcgac cagtacctgt attatctaaa cagaacacaa acagctagtg 2220 gaactcagca gtctcggcta ctgtttagcc aagctggacc cacaagcatg tctcttcaag 2280 ctaaaaactg gctgcctgga ccgtgttatc gccagcagcg tttgtcaaag caggcaaacg 2340 acaacaacaa Cagcaacttt ccctggactg gagctaccaa gtaccacctc aatggcggag 2400 actctttggt gaacccgggc ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt 2460 tccccatgca tggaacccta atatttggta aagaaggaac aaatgctacc aacgcggaat 2520 tggaaaatgt catgattaca gatgaagagg aaatcaggac caccaatccc gtggctacag 2580 agcagtacgg atatgtgtca aataatttgc aaaactcaaa tactgctgca agtactgaaa 2640 ctgtgaatca ccaaggagca ttacctggta tggtgtggca ggatcgagac gtgtacctgc 2700 ggggacccat ttgggccaag attcctcacg ccgatggaca ctttcatcct tctccactga 2760 tgggaggttt tggactcaaa cacccgcctc ctcagattat gatcaaaaac actcccgttc 2820 cagccaatcc tcccacaaac ttcagttctg ccaagtttgc ttccttcatc acacagtatt 2880 ccacgggaca ggtcagcgtg gagatcgagt gggagctgca gaaggagaac agcaaacgct 2940 ggaatcccga aattcagtac acttccaact acaacaaatc tgttaatgtg gactttactg 3000

* II	an Namp, U.P., Home	denn, .m., manes of				
"tggacactaa"						3060
				ttcagttgaa	ctttggtctc	3120
tgcgaagggc	gaattcgcgg	ccgctaaatt	caattcg			3157
<210> 178 <211> 3163 <212> DNA <213> new	AAV serotyp	e, clone hu	ı 145.6			
<400> 178						
accctcacta	aagggactag	tcctgcaggt	ttaaacgaat	tcgcccttgc	tgcgtcaact	60
				gatggtgatt		120
				cattctcgga		180
tgcgcgtgga	ccagaaatgc	aagtcctcgg	cccagataga	tccgactccc	gtgatcgtca	240
cctccaacac	caacatgtgc	gccgtgattg	acgggaactc	aacgaccttc	gaacaccagc	300
agccgttgca	agaccggatg	ttcaaatttg	aactcacccg	ccgtctggat	catgactttg	360
ggaaggtcac	caagcaggaa	gtcaaagact	ttttccggtg	ggcaaaggat	cacgtggttg	420
aggtggagca	tggattctac	gtcaaaaagg	gtggagccaa	gaaaagaccc	gcccctagtg	480
acgcagatat	aagtgagccc	aaacgggtgc	gcgagtcagt	tgcgcagcca	tcgacgtcgg	540
acgcggaagc	ttcgatcaac	tacgcggaca	ggtaccaaaa	caaatgttct	cgtcacgtgg	600
gcatgaatct	gatgctgttt	ccctgcagac	aatgcgagag	aatgaatcaa	aattcaaata	660
tctgcttcac	tcacggacag	aaagactgtt	tagagtgctt	tcccgtgtca	gaatctcaac	720
ctgtttctgt	cgtcaaaaag	gcgtatcaga	aactgcgcta	cattcatcat	atcatgggaa	780
aggtgccaga	cgcttgcact	gcctgcgatc	tggtcaatgt	ggatttggat	gactgcatct	840
ctgaacaata	aatgatttaa	atcaggtatg	gctgccgatg	gttatcttcc	agattggctc	900
gaggacactc	tctctgaagg	aataagacag	tggtggaagc	tcaaacctgg	cccaccacca	960
ccaaagcccg	cagagcggca	taaggacgac	agcaggggtc	ttgtgcttcc	tgggtacaag	1020
tacctcggac	ccttcaacgg	actcgacaag	ggagagccgg	tcaacgaggc	agacgccgcg	1080
gccctcgagc	acgacaaggc	ctacgaccgg	cagctcgaca	gcggagacaa	cccgtacctc	1140
aagtacaacc	acgccgacgc	ggagtttcag	gagcgtctta	aagaagatac	gtcttttggg	1200
				ttcttgaacc		1260
				cggtagagca		1320
				agcctgcaag		1380
				cccagcctct		1440
				caggcagtgg		1500
				caggaaattg		1560
				gaacctgggc		1620
				gagcctcaaa		1680
					ctgccacttt	1740
				gattccgacc		1800
					tacgacgacg	1860
					ccagctcccg	1920
					cgtcttcatg	1980
					acgctcttcc	2040
					ctttcagttc	2100
					gagtttggat	2160
					acaaacagct	2220
					catgtctctt	2280
					aaagcaggca	2340
9 3 3 3 3 4 4 4 4 4 4		-554669696	yecayt		aaaytayyta	-540
				- 564		

```
aacgacaaca acaacagcaa Ctttccctgg actggagcta ccaagtacca cctcaatggc
                                                                    2400
 agagactett tggtgaaccc gggcccggcc atggccagcc acaaggacga tgaagaaaag
                                                                    2460
 tttttcccca tgcatggaac cctaatattt ggtaaagaag gaacaaatgc taccaacgcg
                                                                    2520
 gaattggaaa atgtcatgat tacagatgaa gaggaaatca ggaccaccaa tcccgtggct
                                                                    2580
                                                                    2640
 acagagcagt acggatatgt gtcaaataat ttgcaaaact caaatactgc tgcaagtact
 gaaactgtga atcaccaagg agcattacct ggtatggtgt ggcaggatcg agacgtgtac
                                                                    2700
 ctgcagggac ccatttgggc Caagattcct cacaccgatg gacactttca tccttctcca
                                                                    2760
 ctgatgggag gttttggact Caaacacccg cctcctcaga ttatgatcaa aaacactccc
                                                                    2820
 gttccagcca atcctcccac aaacttcagt tctgccaagt ttgcttcctt catcacacag
                                                                    2880
 tattccacgg gacaggtcag cgtggagatc gagtgggagc tgcagaagga gaacagcaaa
                                                                    2940
 cgctggaatc ccgaaattca gtacacttcc aactacaaca aatctgttaa tgtggacttt
                                                                    3000
 actgtggaca ctaatggtgt gtattcagag cctcgcccca ttggcaccag atacctgact
                                                                    3060
 cgtaatctgt aattgcttgt taatcaataa accgtttaat tcgtttcagt tgaactttgg
                                                                    3120
 3163
 <210>
        179
        3161
        DNA
        new AAV serotype, clone hu 156.1
 <400> 179
 cgaattgatt tagcggccgc gaattcgccc ttcgcagaga ccaaagttca actgaaacga
                                                                      60
 attaaacggt ttattgatta acaagcaatt acagattacg agtcaggtat ctggtgccaa
                                                                      120
 tggggcgagg ctctgaatac acaccattag tgtccacagt aaagtccaca ttaacagatt
                                                                      180
 tgttgtagtt ggaagtgtac tggatctcgg gattccagcg tttgctgttc tccttctgta
                                                                      240
 gctcccactc gatctccacg ctgacccgcc ccgtggaata ctgtgtgatg aaggaagcaa
                                                                      300
 actttgccgc actgaaggtg gtcgaaggat tcgcaggtac cggggtgttt ttgatgagaa
                                                                      360
 tctgtggagg agggtgttta agtccgaatc cgcccatgag gggagagggg tgaaaatgtc
                                                                      420
 cgtccgtgtg cggaatcttt gcccagatag gcccctgcag gtacacgtct ctgtcctgcc
                                                                      480
 agaccatgcc tggaagaacg ccttgtgtgt tgacatctgc agtagatgct tgtgtgttgc
                                                                      540
 cgctctggag gttggtagat acagaaccat actgctccgt ggccacggga ttggtggttc
                                                                      600
 tgatttcctc ttcgtctgta atcatgacct tttcaatgtc cacatttgtt ttctctgatc
                                                                      660
 cttgttttcc aaagatgaga accccgctct gaggaaaaaa cttttcttca tcgtccttgt
                                                                      720
  ggctggccat tgccgggccc ggattcacca gagagtctct gccattgagg tggtacttgg
                                                                      780
  tagctccaat ccacgagtat tcactgttgt tgttgtccgc agatgtcttt gatactcgct
                                                                      840
  gctggcggta acagggtcca ggaagccagt tcctagactg atcccgaatg tcactcgctc
                                                                      900
  cggcctgaga aaactgaagc ctggactgcg tggtggttcc gcttggagtg tttgttctgc
                                                                      960
  tcaagtaata caggtactgg tcgatgagag gattcatgag acggtccaaa ctctggctgt
                                                                     1020
  gagcgtagct gctgtggaaa ggaacatcct caaaggtgta gctgaaggta aagttgtttc
                                                                     1080
  cggtacgcag catctgagaa gggaagtact ccaggcagta aaatgaagag cgtcctactg
                                                                     1140
  cctgactccc gttgttcagg gtgaggtatc catactgtgg caccatgaag acgtctgctg
                                                                     1200
  ggaacggcgg gaggcatcct tgatgcgccg agccgaggac gtacgggagc tggtactccg
                                                                     1260
  agtcagtaaa cacctgaacc gtgctggtaa ggttattggc aatcgtcgtc gtaccatcat
                                                                     1320
  tctgcgtgac ctctctgact tgaatgttaa agagcttgaa gttgagtctc ttgggccgga
                                                                     1380
  atccccagtt gttgttgatg agtctttgcc agtcacgtgg tgaaaagtgg cagtggaatc
                                                                     1440
  tgttgaagtc aaaatacccc caaggggtgc tgtagccaaa gtagtggttg tcgttgctgg
                                                                     1500
  ctcctgattg gctggaaatc tgcttgtaca gatggttgtt gtaggtgggc agagcccagg
                                                                     1560
  ttcgggtgct ggtggtgatg actctgtcgc ccatccatgt ggaatcgcaa tgccaatttc
                                                                     1620
  ccgaggaatt acccactccg tcggcgccat cgttattgtc tgccattggt gcgccactgc
                                                                     1680
```

čtgtagccat cgtattagtt cccagaccag agggggctgc tggtggctgt ccgagaggct	1740
gggggtcagg tacggagtct gcgtctccag tctgaccgaa attcaatctc tttcttgcag	1800
gctggttgcc cgcttttccg gttcccgagg aggagtctgg ctccacagga gagtgctcta	1860
ccggcctctt ttttcccgga gccgtcttaa caggctcctc aaccaggccc agaggttcaa	1920
gaaccctctt ttttgcctgg aagactgctc gtccgaggtt gcccccaaaa gacgtatctt	1980
ctttaaggcg ctcctgaaac tccgcgtcgg cgtggtcgta cttgaggtac gggttgtctc	2040
cgctgtcgag ctgccggtcg taggccttgt cgtgctcgag ggccgcggcg tctgcctcgt	2100
tgaccggctc tcccttgtcg agtccgttga agggtccgag gtacttgtac ccaggaagca	2160
caagacccct gctgtcgtcc ttatgccgct ctgcgggctt tggtggtggt gggccaggtt	2220
tgagcttcca ccactgtctt attccttcag agagagtgtc ctcgagccaa tctggaagat	2280
aaccatcggc agccatacct gatttaaatc atttattgtt cagagatgca gtcatccaaa	2340
tccacattga ccagatcgca ggcagtgcaa gcgtctggca cctttcccat gatatgatga	2400
atgtagcaaa gtttctgata cgcctttttg acgacagaaa cgggttgaga ttctgacacg	2460
ggaaagcact ctaaacagtc tttctgtccg tgagtgaagc agatatttga attctgattc	2520
attctctcgc attgtctgca gggaaacagc atcagattca tgcccacgtg acgagaacat	2580
ttgttttggt acctgtccgc gtagttgatc gaagcttccg cgtctgacgt cgatggctgc	2640
gcaactgact cgcgcgcccg tttgggctca cttatatctg cgtcactggg ggcgggtctt	2700
ttcttggctc cacccttttt gacgtagaat tcatgctcca cctcaaccac gtgatccttt	2760
gcccaccgga aaaagtcttt cacttcctgc ttggtgacct tcccaaagtc atgatccaga	2820
cggcgggtta gttcaaattt gaacatccgg tcttgcaacg gctgctggtg ttcgaaggtc	2880
gttgagttcc cgtcaatcac ggcgcacatg ttggtgttgg aggtggcgat cacgggagtc	2940
gggtctatct gggccgagga cttgcacttt tggtccacgc gcaccttgct tcctccgaga	3000
atggcttcgg ccgattccac gaccttggcg gtcatctttc cctcctcca ccagatcacc	3060
atcttgtcga cacagtcgtt gaagggaaag ttctcattgg tccagttgac gcagcaaggg	3120
cgaattcgtt taaacctgca ggaactagtc ccttagtgag g	3161
<210> 180	
<211> 4721 <212> DNA	
<213> adeno-associated virus serotype 7	
<400> 180 ttggccactc cctctatgcg cgctcgctcg ctcggtgggg cctgcggacc aaaggtccgc	60
agacggcaga gctctgctct gccggcccca ccgagcgagc gagcgcgcat agagggagtg	120
gccaactcca tcactagggg taccgcgaag cgcctcccac gctgccgcgt cagcgctgac	180
gtaaatcacg tcatagggga gtggtcctgt attagctgtc acgtgagtgc ttttgcgaca	240
ttttgcgaca ccacgtggcc atttgaggta tatatggccg agtgagcgag caggatctcc	300
attitgaccg cgaaattiga acgagcagca gccatgccgg gittctacga gatcgigatc	360
aaggtgccga gcgacctgga cgagcacctg ccgggcattt ctgactcgtt tgtgaactgg	420
gtggccgaga aggaatggga gctgcccccg gattctgaca tggatctgaa tctgatcgag	480
caggcacccc tgaccgtggc cgagaagctg cagcgcgact tcctggtcca atggcgccgc	540
gtgagtaagg ccccggaggc cctgttcttt gttcagttcg agaagggcga gagctacttc	600
caccttcacg ttctggtgga gaccacgggg gtcaagtcca tggtgctagg ccgcttcctg	660
agtcagattc gggagaagct ggtccagacc atctaccgcg gggtcgagcc cacgctgccc	720
aactggttcg cggtgaccaa gacgcgtaat ggcgccggcg ggggggaacaa ggtggtggac	780
gagtgctaca tccccaacta cctcctgccc aagacccagc ccgagctgca gtgggcgtgg	840
actaacatgg aggagtatat aagcgcgtgt ttgaacctgg ccgaacgcaa acggctcgtg	900
gcgcagcacc tgacccacgt cagccagacg caggagcaga acaaggagaa tctgaacccc	960
aattctgacg cgcccgtgat caggtcaaaa acctccgcgc gctacatgga gctggtcggg	1020

WO 2005/033321	PCT/US2004/028817
tggctggtgg accggggcat cacctccgag aagcagtgga tccaggagga ccaggcctcg	1080
tacatctcct tcaacgccgc ctccaactcg cggtcccaga tcaaggccgc gctggacaat	1140
gccggcaaga tcatggcgct gaccaaatcc gcgcccgact acctggtggg gccctcgctg	1200
cccgcggaca ttaaaaccaa ccgcatctac cgcatcctgg agctgaacgg gtacgatcct	1260
gcctacgccg gctccgtctt tctcggctgg gcccagaaaa agttcgggaa gcgcaacacc	1320
atctggctgt ttgggcccgc caccaccggc aagaccaaca ttgcggaagc catcgcccac	1380
gccgtgccct tctacggctg cgtcaactgg accaatgaga actttccctt caacgattgc	1440
gtcgacaaga tggtgatctg gtgggaggag ggcaagatga cggccaaggt cgtggagtcc	1500
gccaaggcca ttctcggcgg cagcaaggtg cgcgtggacc aaaagtgcaa gtcgtccgcc	1560
cagatcgacc ccaccccgt gatcgtcacc tccaacacca acatgtgcgc cgtgattgac	1620
gggaacagca ccaccttcga gcaccagcag ccgttgcagg accggatgtt caaatttgaa	1680
ctcacccgcc gtctggagca cgactttggc aaggtgacga agcaggaagt caaagagttc	1740
ttccgctggg ccagtgatca cgtgaccgag gtggcgcatg agttctacgt cagaaagggc	1800
ggagccagca aaagacccgc ccccgatgac gcggatataa gcgagcccaa gcgggcctgc	1860
ccctcagtcg cggatccatc gacgtcagac gcggaaggag ctccggtgga ctttgccgac	1920
aggtaccaaa acaaatgttc tcgtcacgcg ggcatgattc agatgctgtt tccctgcaaa	1980
acgtgcgaga gaatgaatca gaatttcaac atttgcttca cacacggggt cagagactgt	- 2040
ttagagtgtt tccccggcgt gtcagaatct caaccggtcg tcagaaaaaa gacgtatcgg	2100
aaactctgcg cgattcatca tctgctgggg cgggcgcccg agattgcttg ctcggcctgc	2160
gacctggtca acgtggacct ggacgactgc gtttctgagc aataaatgac ttaaaccagg	2220
tatggctgcc gatggttatc ttccagattg gctcgaggac aacctctctg agggcattcg	2280
cgagtggtgg gacctgaaac ctggagcccc gaaacccaaa gccaaccagc aaaagcagga	2340
caacggccgg ggtctggtgc ttcctggcta caagtacctc ggacccttca acggactcga	2400
caagggggag cccgtcaacg cggcggacgc agcggccctc gagcacgaca aggcctacga	2460
ccagcagctc aaagcgggtg acaatccgta cctgcggtat aaccacgccg acgccgagtt	2520
tcaggagcgt ctgcaagaag atacgtcatt tggggggcaac ctcgggcgag cagtcttcca	2580
ggccaagaag cgggttctcg aacctctcgg tctggttgag gaaggcgcta agacggctcc	2640
tgcaaagaag agaccggtag agccgtcacc tcagcgttcc cccgactcct ccacgggcat	2700
cggcaagaaa ggccagcagc ccgccagaaa gagactcaat ttcggtcaga ctggcgactc	2760
agagtcagtc cccgaccctc aacctctcgg agaacctcca gcagcgccct ctagtgtggg	2820
atctggtaca gtggctgcag gcggtggcgc accaatggca gacaataacg aaggtgccga	2880
cggagtgggt aatgcctcag gaaattggca ttgcgattcc acatggctgg gcgacagagt	2940
cattaccacc agcacccgaa cctgggccct gcccacctac aacaaccacc tctacaagca	3000
aatctccagt gaaactgcag gtagtaccaa cgacaacacc tacttcggct acagcacccc	3060
ctgggggtat tttgacttta acagattcca ctgccacttc tcaccacgtg actggcagcg	3120
actcatcaac aacaactggg gattccggcc caagaagctg cggttcaagc tcttcaacat	3180
ccaggtcaag gaggtcacga cgaatgacgg cgttacgacc atcgctaata accttaccag	3240
cacgattcag gtattctcgg actcgggaata ccagctgccg tacgtcctcg gctctgcgca	3300
ccagggctgc ctgcctccgt tcccggcgga cgtcttcatg attcctcagt acggctacct	3360
gacteteaac aatggeagte agtetgtggg acgtteetee tectactgee tggagtaett	3420
cccctctcag atgctgagaa cgggcaacaa ctttgagttc agctacagct tcgaggacgt	3480
gcctttccac agcagctacg cacacagcca gagcctggac cggctgatga atcccctcat	3540
cgaccagtac ttgtactacc tggccagaac acagagtaac ccaggaggca cagctggcaa tcgggaactg cagttttacc agggcgggcc ttcaactatg gccgaacaag ccaagaattg	3600 3660
gttacctgga ccttgcttcc ggcaacaaag agtctccaaa acgctggatc aaaacaacaa	3720
cagcaacttt gCttggactg gtgccaccaa atatcacctg aacggcagaa actcgttggt	
Page 267	3780

3840 taatcccggc gtcgccatgg caactcacaa ggacgacgag gaccgctttt tcccatccag 3900 cggagtcctg atttttggaa aaactggagc aactaacaaa actacattgg aaaatgtgtt 3960 aatgacaaat gaagaagaaa ttcgtcctac taatcctgta gccacggaag aatacgggat 4020 agtcagcagc aacttacaag cggctaatac tgcagcccag acacaagttg tcaacaacca gggagcctta cctggcatgg tctggcagaa ccgggacgtg tacctgcagg gtcccatctg 4080 4140 ggccaagatt cctcacacgg atggcaactt tcacccgtct cctttgatgg gcggctttgg 4200 acttaaacat ccgcctcctc agatcctgat caagaacact cccgttcccg ctaatcctcc 4260 ggaggtgttt actcctgcca agtttgcttc gttcatcaca cagtacagca ccggacaagt 4320 cagcgtggaa atcgagtggg agctgcagaa ggaaaacagc aagcgctgga acccggagat 4380 tcagtacacc tccaactttg aaaagcagac tggtgtggac tttgccgttg acagccaggg 4440 tgtttactct gagcctcgcc ctattggcac tcgttacctc acccgtaatc tgtaattgca 4500 tgttaatcaa taaaccggtt gattcgtttc agttgaactt tggtctcctg tgcttcttat 4560 cttatcggtt tccatagcaa ctggttacac attaactgct tgggtgcgct tcacgataag 4620 aacactgacg tcaccgcggt acccctagtg atggagttgg ccactccctc tatgcgcgct 4680 cgctcgctcg gtggggcctg cggaccaaag gtccgcagac ggcagagctc tgctctgccg 4721 gccccaccga gcgagcgagc gcgcatagag ggagtggcca a

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro

Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn 265 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 355 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 540 Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu

Page 269

' **5'65**' 570 575

Leu

cagagaggga gtggccaact ccatcactag gggtagcgcg aagcgcctcc cacgctgccg 60 cgtcagcgct gacgtaaatt acgtcatagg ggagtggtcc tgtattagct gtcacgtgag 120 tgcttttgcg gcattttgcg acaccacgtg gccatttgag gtatatatgg ccgagtgagc 180 gagcaggatc tccattttga ccgcgaaatt tgaacgagca gcagccatgc cgggcttcta 240 300 cgagatcgtg atcaaggtgc cgagcgacct ggacgagcac ctgccgggca tttctgactc gtttgtgaac tgggtggccg agaaggaatg ggagctgccc ccggattctg acatggatcg 360 gaatctgatc gagcaggcac ccctgaccgt ggccgagaag ctgcagcgcg acttcctggt 420 CCaatggcgc cgcgtgagta aggccccgga ggccctcttc tttgttcagt tcgaqaaggq 480 cgagagctac tttcacctgc acgttctggt cgagaccacg ggggtcaagt ccatggtgct 540 aggccgcttc ctgagtcaga ttcgggaaaa gcttggtcca gaccatctac ccgcggggtc 600 gagececace ttgcccaact ggttcgcggt gaccaaagac geggtaatgg egecqqegqq 660 ggggaacaag gtggtggacg agtgctacat ccccaactac ctcctgccca agactcagcc 720 cgagctgcag tgggcgtgga ctaacatgga ggagtatata agcgcgtgct tgaacctggc 780 cgagcgcaaa cggctcgtgg cgcagcacct gacccacgtc agccagacgc aggagcagaa 840 caaggagaat ctgaacccca attctgacgc gcccgtgatc aggtcaaaaa cctccgcgcg 900 ctatatggag ctggtcgggt ggctggtgga ccgggggcatc acctccgaga agcagtggat 960 1020 ccaggaggac caggcctcgt acatctcctt caacgccgcc tccaactcgc ggtcccagat caaggccgcg ctggacaatg ccggcaagat catggcgctg accaaatccg cgcccgacta 1080 cctggtgggg ccctcgctgc ccgcggacat tacccagaac cgcatctacc gcatcctcgc 1140

<210> 182 <211> 4393

<212> UNA
<213> adeno-associated virus serotype 8

*ctcaacggc	tacgaccctg"	cctacgccgg	ctccgtcttt	ctcggctggg	ctcagaaaaa	1200
gttcgggaaa	cgcaacacca	tctggctgtt	tggacccgcc	accaccggca	agaccaacat	1260
tgcggaagcc	atcgcccacg	ccgtgccctt	ctacggctgc	gtcaactgga	ccaatgagaa	1320
ctttcccttc	aatgattgcg	tcgacaagat	ggtgatctgg	tgggaggagg	gcaagatgac	1380
ggccaaggtc	gtggagtccg	ccaaggccat	tctcggcggc	agcaaggtgc	gcgtggacca	1440
aaagtgcaag	tcgtccgccc	agatcgaccc	caccccgtg	atcgtcacct	ccaacaccaa	1500
catgtgcgcc	gtgattgacg	ggaacagcac	caccttcgag	caccagcagc	ctctccagga	1560
ccggatgttt	aagttcgaac	tcacccgccg	tctggagcac	gactttggca	aggtgacaaa	1620
gcaggaagtc	aaagagttct	tccgctgggc	cagtgatcac	gtgaccgagg	tggcgcatga	1680
gttttacgtc	agaaagggcg	gagccagcaa	aagacccgcc	cccgatgacg	cggataaaag	1740
cgagcccaag	cgggcctgcc	cctcagtcgc	ggatccatcg	acgtcagacg	cggaaggagc	1800
tccggtggac	tttgccgaca	ggtaccaaaa	caaatgttct	cgtcacgcgg	gcatgcttca	1860
gatgctgttt	ccctgcaaaa	cgtgcgagag	aatgaatcag	aatttcaaca	tttgcttcac	1920
	agagactgct					1980
cagaaagagg	acgtatcgga	aactctgtgc	gattcatcat	ctgctggggc	gggctcccga	2040
gattgcttgc	tcggcctgcg	atctggtcaa	cgtggacctg	gatgactgtg	tttctgagca	2100
ataaatgact	taaaccaggt	atggctgccg	atggttatct	tccagattgg	ctcgaggaca	2160
acctctctga	gggcattcgc	gagtggtggg	cgctgaaacc	tggagccccg	aagcccaaag	2220
ccaaccagca	aaagcaggac	gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	2280
gacccttcaa	cggactcgac	aagggggagc	ccgtcaacgc	ggcggacgca	gcggccctcg	2340
agcacgacaa	ggcctacgac	cagcagctgc	aggcgggtga	caatccgtac	ctgcggtata	2400
accacgccga	cgccgagttt	caggagcgtc	tgcaagaaga	tacgtctttt	gggggcaacc	2460
tcgggcgagc	agtcttccag	gccaagaagc	gggttctcga	acctctcggt	ctggttgagg	2520
aaggcgctaa	gacggctcct	ggaaagaaga	gaccggtaga	gccatcaccc	cagcgttctc	2580
cagactcctc	tacgggcatc	ggcaagaaag	gccaacagcc	cgccagaaaa	agactcaatt	2640
ttggtcagac	tggcgactca	gagtcagttc	cagaccctca	acctctcgga	gaacctccag	2700
cagcgccctc	tggtgtggga	cctaatacaa	tggctgcagg	cggtggcgca	ccaatggcag	2760
acaataacga	aggcgccgac	ggagtgggta	gttcctcggg	aaattggcat	tgcgattcca	2820
catggctggg	cgacagagtc	atcaccacca	gcacccgaac	ctgggccctg	cccacctaca	2880
	ctacaagcaa					2940
					cactgccact	3000
					cccaagagac	3060
					ggcaccaaga	3120
					taccagctgc	3180
					gacgtgttca	3240
					ggacgctcct	3300
					aacttccagt	3360
					cagagettgg	3420
					actcaaacaa	3480
					aatacaatgg	3540
					gtctcaacga	3600
					taccatctga	3660
					gacgacgagg	3720
					gccagagaca	3780
					actaaccctg	3840
tggctacaga	ggaatacggt	atcgtggcag	ataacttgca		acggctcctc	3900
				Page 271		

3960 aaartrogaac tgtcaacagc cagggggcct tacccggtat ggtctggcag aaccgggacg tgtacctgca gggtcccatc tgggccaaga ttcctcacac ggacggcaac ttccacccgt 4020 4080 ctccgctgat gggcggcttt ggcctgaaac atcctccgcc tcagatcctg atcaagaaca 4140 cgcctgtacc tgcggatcct ccgaccacct tcaaccagtc aaagctgaac tctttcatca cgcaatacag caccggacag gtcagcgtgg aaattgaatg ggagctgcag aaggaaaaca 4200 4260 gcaagcgctg gaaccccgag atccagtaca cctccaacta ctacaaatct acaagtgtgg 4320 acttigctgt taatacagaa ggcgtgtact ctgaaccccg ccccattggc acccgttacc tcacccgtaa tctgtaattg cctgttaatc aataaaccgg ttgattcgtt tcagttgaac 4380 4393 tttggtctct gcg

<210> 183 <211> 738 <212> PRT

<212> PRT
<213> capsid protein of adeno-associated virus serotype 8

<400> 183

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15

Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30

Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75

Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125

Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160

Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln

Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro 180 190

Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly 195 200 205

Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220

Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235

Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255

្រុមប្រាស្ត្រ ្សែង ថ្នាំក្រុម ទីមី៧ Aśn Gly Thr Ser Gly Gly Ala Thr Asn Asp 260 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr
405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly 450 460 Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly
485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile 530 540 Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe 660 665 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 184 <211> 735 <212> PRT <213> vp1, clone hu.60

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 490 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 505 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln lle Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Pro Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

<210> 185 <211> 735 <212> PRT <213> vp1, clone hu.61

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Glm Val Phe Thr Asp Ser Glu Tyr Glm Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 435 440 445 Gln Thr Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln
450 455 460 Ala Gly Pro Thr Asn Met Ser Leu Gln Ala Lys Asn Arg Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 485 490 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 6.86D L

" 5"35"···

Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Glu Asn Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575Gly Thr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 590 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Val Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn
645 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser . Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

<210> 186 <211> 734 <212> PRT <213> vp1, clone hu.53

1...130 ' · · · · 1.35

140

Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Arg Gln Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asm Asm Glu Gly Ala Asp Gly Val Gly Asm Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 435 440 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 490 495 ቴer ልሬተ--- ኮተể ምro ተኮኮ ተከኮ Gly Ala Thr Lys Tyr Tyr Leu Asn Gly Arg 500 505 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 515 520 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly
565 570 575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 585 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 655 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 715 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 187

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala

<210> 187 <211> 734 <212> PRT <213> vpl, clone hu.55

็Asp ็ผ่าลาเราชักษ์ Phe ธำทำเริงข้าให้ ไลย Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Cys Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 495 Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly 565 575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 655 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser 705 710 720 Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60

<210> 188 <211> 734 <212> PRT <213> vpl, clone hu.54

val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Thr Ser Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys Arg Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Gly Leu Asp Arg 420 425 430

PCT/US2004/028817 WO 2005/033321

Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 440 445 Gln Thr Ala Ser Gly Thr Gln Gln Ser Arg Leu Leu Phe Ser Gln Ala 450 455 460 Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly Pro 465 470 475 480 Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn Asn 485 490 495 Ser Asn Phe Pro Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Gly $500 \hspace{1.5cm} 510$ Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 520 525 Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys Glu 530 535 540 Gly Thr Asn Ala Thr Asn Ala Glu Leu Glu Asn Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly
575
575 Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Ala Ala Ser Thr Glu 580 590 Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg 595 600 605 Asp Val Tyr Leu Arg Gly Pro Ile Trp Ala Lys Ile Pro His Ala Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Lys Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro

<210> 189 <211> 735 <212> PRT <213> vp1, clone hu.49

Lys Pro Ala Glu Arg His Lys Asp Asp Ser Gly Gly Leu Val Leu Pro 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Leu Glu Tyr Asp Lys Ala Tyr Asp 65 70 75 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Ser Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser

Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 485 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val His Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 615 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

¹⁹⁰ 735 PRT vpl, clone hu.51

<400> 190 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr lval ម៉ែក្រើថ្នាំប្រើទី៤៧ ឯጎជាម៉ាន់ ប៉ាត់ Gly Cys Leu Pro Pro Phe Pro Ala Asp 355 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Gly Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Île Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 540Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr

PCT/US2004/028817 WO 2005/033321

Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

<210> 191 <211> 735 <212> PRT <213> vp1, clone hu.52 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Gly Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Arg His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Arg Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 315 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Ser Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Pro Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Thr Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 475 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asm Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asn Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 535 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 . Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Pro Lys 625 630 635 His Pro Pro Pro Gln lle Leu lle Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
675
680
685

Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 725 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 192 <211> 735 <212> PRT <213> vpl, clone hu.56 <400> 192 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 40Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 190 Ala Ser Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Val 225 230 235 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val 305 310 320 Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Leu Glu Tyr Gln Leu Pro Tyr 340 345 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Page 292

650

Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 193 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly
40
45 Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp 90 95 Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn 100 105 Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu 115 120 125 Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Pro 130 135 140 Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly Lys 145 155 160 Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly
165 170 175 Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro Ala 180 185 190 Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly Ala 195 200 205 Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asp Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr

<210> 193 <211> 734 <212> PRT <213> vp1, clone hu.57

255

Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe 260 270 Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly 290 295 300 Phe Arg Pro Lys Arg Leu Asn Leu Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr 325 330 335 Ser Thr Val Gln Val Phe Thr Asp Leu Glu Tyr Gln Leu Pro Tyr Val 340 345 350 Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln 370 380 Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln 385 400 Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Asp 405 410 415 val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu 420 425 430 Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn 435 440 445 Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln Ala 450 455 460 Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ala Ala Asp Asn Asn Asn 485 490 495 Gly Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg 500 510 Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp 525 525 Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln 530 535 540 Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp 545 550 560 Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly
575 Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Arg Ala Ala Thr Ser 580 590 Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp Arg

Äsp Väl Tyr Leu Gin Gly Pro lle Trp Ala Lys lle Pro His Thr Asp 610 620 Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 645 650 655 Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr 660 665 670 Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu 675 680 685 Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Asn 690 695 700 Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<400> 194

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asp His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly 145 150 160 Lys Ala Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205

<210> 194 <211> 735 <212> PRT <213> vp1, clone hu.58

Ala Pro Met Ala Asp Asm Asm Asp Gly Ala Asp Gly Val Gly Asm Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Arg Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr
445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Ile Gly Ala Thr Lys Tyr His Leu Asn Gly 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575

PCT/US2004/028817 WO 2005/033321

Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ser Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$ Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Arg Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Pro Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr

<210> 195 <211> 735 <212> PRT <213> vp1, clone hu.63

Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 185 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly 465. 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly $500 \ \ \, 510$ Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Page 298

PCT/US2004/028817 WO 2005/033321

Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565
570 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Arg Gln Leu Asp Gly Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg

<210> 196 <211> 735 <212> PRT <213> vp1, clone hu.64

Pro Val Glu His Ser Leu Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ala Gly Gln Gln Pro Ala Arg Arg Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Arg Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Ser Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Val Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn ASN Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu ASN Gly

505

Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Asp Ser Gly Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 590 Ser Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln lle Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly

<210> 197 <211> 738 <212> PRT <213> vp1, clone hu.66

100 105 110

Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Ala Gly Ile 145 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 The Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn $275 \hspace{1cm} 280 \hspace{1cm} 285$ Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Glu Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Cys Ala His Ser Gln Ser 420 430 Ser Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 435 440 Ser Arg Thr Arg Ser Thr Gly Gly Thr Gln Gln Gln Leu Leu 450 460

"Phe "Ser" Gin Ala Giy Pro Ala Asn Met Ser Ala Gin Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Leu
40
45

¹⁹⁸ 738 PRT

vp1, clone hu.67

<400>

Glý Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr
405 415

PCT/US2004/028817 WO 2005/033321

Thr Phe Glu Asp Val Pro Phe His Ser Gly Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu 450 455 460 Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 485 490 495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 505 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val 545 550 555 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Thr Gly 580 585 590 Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 199 <211> 2175 <212> DNA <213> adeno-associated virus serotype S

<400> 199

VI V 2003/033321	1,
atgtcttttg ttgatcaccc tccagattgg ttggaagaag ttggtgaagg tcttcgcgag	60
tttttgggcc ttgaagcggg cccaccgaaa ccaaaaccca atcagcagca tcaagatcaa	120
gcccgtggtc ttgtgctgcc tggttataac tatctcggac ccggaaacgg tctcgatcga	180
ggagagcctg tcaacagggc agacgaggtc gcgcgagagc acgacatctc gtacaacgag	240
cagcttgagg cgggagacaa cccctacctc aagtacaacc acgcggacgc cgagtttcag	300
gagaagctcg ccgacgacac atccttcggg ggaaacctcg gaaaggcagt ctttcaggcc	360
aagaaaaggg ttctcgaacc ttttggcctg gttgaagagg gtgctaagac ggcccctacc	420
ggaaagcgga tagacgacca ctttccaaaa agaaagaagg ctcggaccga agaggactcc	480
aagccttcca cctcgtcaga cgccgaagct ggacccagcg gatcccagca gctgcaaatc	540
ccagcccaac cagcctcaag tttgggagct gatacaatgt ctgcgggagg tggcggccca	600
ttgggcgaca ataaccaagg tgccgatgga gtgggcaatg cctcgggaga ttggcattgc	660
gattccacgt ggatggggga cagagtcgtc accaagtcca cccgaacctg ggtgctgccc	720
agctacaaca accaccagta ccgagagatc aaaagcggct ccgtcgacgg aagcaacgcc	780
aacgcctact ttggatacag caccccctgg gggtactttg actttaaccg cttccacagc	840
cactggagcc cccgagactg gcaaagactc atcaacaact actggggctt cagaccccgg	900
tccctcagag tcaaaatctt caacattcaa gtcaaagagg tcacggtgca ggactccacc	960
accaccatcg ccaacaacct cacctccacc gtccaagtgt ttacggacga cgactaccag	1020
ctgccctacg tcgtcggcaa cgggaccgag ggatgcctgc cggccttccc tccgcaggtc	1080
tttacgctgc cgcagtacgg ttacgcgacg ctgaaccgcg acaacacaga aaatcccacc	1140
gagaggagca gcttcttctg cctagagtac tttcccagca agatgctgag aacgggcaac	1200
aactttgagt ttacctacaa ctttgaggag gtgcccttcc actccagctt cgctcccagt	1260
cagaacctgt tcaagctggc caacccgctg gtggaccagt acttgtaccg cttcgtgagc	1320
acaaataaca ctggcggagt ccagttcaac aagaacctgg ccgggagata cgccaacacc	1380
tacaaaaact ggttcccggg gcccatgggc cgaacccagg gctggaacct gggctccggg	1440
gtcaaccgcg ccagtgtcag cgccttcgcc acgaccaata ggatggagct cgagggcgcg	1500
agttaccagg tgcccccgca gccgaacggc atgaccaaca acctccaggg cagcaacacc	1560
tatgccctgg agaacactat gatcttcaac agccagccgg cgaacccggg caccaccgcc	1620
acgtacctcg agggcaacat gctcatcacc agcgagagcg agacgcagcc ggtgaaccgc	1680
gtggcgtaca acgtcggcgg gcagatggcc accaacaacc agagctccac cactgccccc	1740
gcgaccggca cgtacaacct ccaggaaatc gtgcccggca gcgtgtggat ggagagggac	1800
gtgtacctcc aaggacccat ctgggccaag atcccagaga cgggggggca ctttcacccc	1860
tctccggcca tgggcggatt cggactcaaa cacccaccgc ccatgatgct catcaagaac	1920
acgcctgtgc ccggaaatat caccagcttc tcggacgtgc ccgtcagcag cttcatcacc	1980
cagtacagca ccgggcaggt caccgtggag atggagtggg agctcaagaa ggaaaactcc	2040
aagaggtgga acccagagat ccagtacaca aacaactaca acgaccccca gtttgtggac	2100
tttgccccgg acagcaccgg ggaatacaga accaccagac ctatcggaac ccgatacctt	2160
acccgacccc.tttaa	2175
<210> 200 <211> 2211 <212> DNA <213> adeno-associated virus, serotype 3-3	
<400> 200 atggctgctg acggttatct tccagattgg ctcgaggaca acctttctga aggcattcgt	60
gagtggtggg Ctctgaaacc tggagtccct caacccaaag cgaaccaaca acaccaggac	120
aaccgtcggg gtcttgtgct tccgggttac aaatacctcg gacccggtaa cggactcgac	180
aaaggagagc Cggtcaacga ggcggacgcg gcagccctcg aacacgacaa agcttacgac	240
cagcagetea aggeeggtga caaccegtae etcaagtaca accaegeega egeegagttt	300
	300

360 420

480

caggagcgtc ttcaagaaga tacgtctttt gggggcaacc ttggcagagc agtcttccag

gccaaaaaga ggatccttga gcctcttggt ctggttgagg aagcagctaa aacggctcct ggaaagaagg gggctgtaga tcagtctcct caggaaccgg actcatcatc tggtgttggc

aannaanaa a	ggergeage .	congreter	caggaaccyg .	acceaceace	cggcgccggc	
aaatcgggca a	acagcctgc o	cagaaaaaga	ctaaatttcg	gtcagactgg	agactcagag	540
tcagtcccag a	ccctcaacc 1	tctcggagaa	ccaccagcag	ccccacaag	tttgggatct	600
aatacaatgg c	ttcaggcgg 1	tggcgcacca	atggcagaca	ataacgaggg	tgccgatgga	660
gtgggtaatt c	ctcaggaaa 1	ttggcattgc	gattcccaat	ggctgggcga	cagagtcatc	720
accaccagca c	cagaacctg (ggccctgccc	acttacaaca	accatctcta	caagcaaatc	780
tccagccaat c	aggagcttc	aaacgacaac	cactactttg	gctacagcac	cccttggggg	840
tattttgact t	taacagatt (ccactgccac	ttctcaccac	gtgactggca	gcgactcatt	900
aacaacaact g	gggattccg	gcccaagaaa	ctcagcttca	agctcttcaa	catccaagtt	960
agaggggtca d	gcagaacga	tggcacgacg	actattgcca	ataaccttac	cagcacggtt	1020
caagtgttta (ggactcgga	gtatcagctc	ccgtacgtgc	tcgggtcggc	gcaccaaggc	1080
tgtctcccgc (gtttccagc	ggacgtcttc	atggtccctc	agtatggata	cctcaccctg	1140
aacaacggaa 🤉	gtcaagcggt	gggacgctca	tccttttact	gcctggagta	cttcccttcg	1200
cagatgctaa 🤅	ggactggaaa	taacttccaa	ttcagctata	ccttcgagga	tgtacctttt	1260
cacagcagct a	acgctcacag	ccagagtttg	gatcgcttga	tgaatcctct	tattgatcag	1320
tatctgtact a	acctgaacag	aacgcaagga	acaacctctg	gaacaaccaa	ccaatcacgg	1380
ctgcttttta (gccaggctgg	gcctcagtct	atgtctttgc	aggccagaaa	ttggctacct	1440
gggccctgct	accggcaaca	gagactttca	aagactgcta	acgacaacaa	caacagtaac	1500
tttccttgga	cagcggccag	caaatatcat	ctcaatggcc	gcgactcgct	ggtgaatcca	1560
ggaccagcta	tggccagtca	caaggacgat	gaagaaaaat	ttttccctat	gcacggcaat	1620
ctaatatttg	gcaaagaagg	gacaacggca	agtaacgcag	aattagataa	tgtaatgatt	1680
acggatgaag	aagagattcg	taccaccaat	cctgtggcaa	cagagcagta	tggaactgtg	1740
gcaaataact	tgcagagctc	aaatacagct	cccacgactg	gaactgtcaa	tcatcagggg	1800
gccttacctg	gcatggtgtg	gcaagatcgt	gacgtgtacc	ttcaaggacc	tatctgggca	1860
aagattcctc	acacggatgg	acactttcat	ccttctcctc	tgatgggagg	ctttggactg	1920
aaacatccgc	ctcctcaaat	catgatcaaa	aatactccgg	taccggcaaa	tcctccgacg	1980
actttcagcc	cggccaagtt	tgcttcattt	atcactcagt	actccactgg	acaggtcagc	2040
gtggaaattg	agtgggagct	acagaaagaa	aacagcaaac	gttggaatcc	agagattcag	2100
tacacttcca	actacaacaa	gtctgttaat	gtggacttta	ctgtagacac	taatggtgtt	2160
tatagtgaac	ctcgccctat	tggaacccgg	tatctcacac	gaaacttgta	a	2211
		ed virus, s	erotype 4-4			
<400> 201 atgactgacg	gttaccttcc	agattggcta	gaggacaacc	tctctgaagg	cgttcgagag	60
tggtgggcgc	tgcaacctgg	agcccctaaa	cccaaggcaa	atcaacaaca	tcaggacaac	120
gctcggggtc	ttgtgcttcc	gggttacaaa	tacctcggac	ccggcaacgg	actcgacaag	180
ggggaacccg	tcaacgcagc	ggacgcggca	gccctcgagc	acgacaaggo	ctacgaccag	240
cagctcaagg	ccggtgacaa	cccctacctc	aagtacaacc	acgccgacgc	ggagttccag	300
cagcggcttc	agggcgacac	atcgtttggg	ggcaacctcg	gcagagcagt	cttccaggcc	360
aaaaagaggg	ttcttgaacc	tcttggtctg	gttgagcaag	cgggtgagac	ggctcctgga	420
aagaagagac	cgttgattga	atcccccag	cagcccgact	cctccacggg	tatcggcaaa	480
aaaggcaagc	agccggctaa	aaagaagctc	gttttcgaag	acgaaactgg	agcaggcgac	540
ggaccccctg	agggatcaac	ttccggagcc	atgtctgatg	acagtgagat	gcgtgcagca	600
				Page 307		

"gctggcggacaa ggtgccgatg gagtgggt	aa tgcctcgggt 660
gattggcatt gcgattccac ctggtctgag ggccacgtca cgaccacc	ag caccagaacc 720
tgggtcttgc ccacctacaa caaccacctc tacaagcgac tcggagag	ag cctgcagtcc 780
aacacctaca acggattctc cacccctgg ggatactttg acttcaac	cg cttccactgc 840
cacttctcac cacgtgactg gcagcgactc atcaacaaca actggggc	at gcgacccaaa 900
gccatgcggg tcaaaatctt caacatccag gtcaaggagg tcacgacg	tc gaacggcgag 960
acaacggtgg ctaataacct taccagcacg gttcagatct ttgcggac	tc gtcgtacgaa 1020
ctgccgtacg tgatggatgc gggtcaagag ggcagcctgc ctccttt	cc caacgacgtc 1080
tttatggtgc cccagtacgg ctactgtgga ctggtgaccg gcaacact	tc gcagcaacag 1140
actgacagaa atgccttcta ctgcctggag tactttcctt cgcagatg	ct gcggactggc 1200
aacaactttg aaattacgta cagttttgag aaggtgcctt tccactcg	at gtacgcgcac 1260
agccagagcc tggaccggct gatgaaccct ctcatcgacc agtacctg	tg gggactgcaa 1320
tcgaccacca ccggaaccac cctgaatgcc gggactgcca ccaccaac	tt taccaagctg 1380
cggcctacca acttttccaa ctttaaaaag aactggctgc ccgggcct	tc aatcaagcag 1440
cagggcttct caaagactgc caatcaaaac tacaagatcc ctgccac	gg gtcagacagt 1500
ctcatcaaat acgagacgca cagcactctg gacggaagat ggagtgc	cct gacccccgga 1560
cctccaatgg ccacggctgg acctgcggac agcaagttca gcaacag	ca gctcatcttt 1620
gcggggccta aacagaacgg caacacggcc accgtacccg ggactctg	gat cttcacctct 1680
gaggaggagc tggcagccac caacgccacc gatacggaca tgtggggg	aa cctacctggc 1740
ggtgaccaga gcaacagcaa cctgccgacc gtggacagac tgacagc	tt gggagccgtg 1800
cctggaatgg tctggcaaaa cagagacatt tactaccagg gtcccat	ttg ggccaagatt 1860
cctcataccg atggacactt tcacccctca ccgctgattg gtgggtt	tgg gctgaaacac 1920
ccgcctcctc aaatttttat caagaacacc ccggtacctg cgaatcc	tgc aacgaccttc 1980
agetetaete eggtaaacte etteattaet eagtaeagea etggeeag	ggt gtcggtgcag 2040
attgactggg agatccagaa ggagcggtcc aaacgctgga accccga	ggt ccagtttacc 2100
tccaactacg gacagcaaaa ctctctgttg tgggctcccg atgcggc	tgg gaaatacact 2160
gagcctaggg ctatcggtac ccgctacctc acccaccacc tgtaa	2205
<210> 202	
<211> 2211	
<212> DNA <213> adeno-associated virus, serotype 1	
<400> 202	ton
atggctgccg atggttatct tccagattgg ctcgaggaca acctctc	
gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaacca	
gacggccggg gtctggtgct tcctggctac aagtacctcg gaccctt aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacga	
cagcagetea aagegggtga caateegtae etgeggtata accaege	
caggagegte tgcaagaaga tacgtetttt gggggcaace tegggeg	
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgc	3
ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctc	
tcagtccccg atccacaacc tctcggagaa cctcagcaa cccccgc	• • •
actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacga	
gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctggg	
accaccagca cccgcacctg ggccttgccc acctacaata accacct	
tccagtgctt caacgggggc cagcaacgac aaccactact tcggcta	_
gggtattitg atticaacag atticactgc cactiticac cacgiga	
yyyiaittiy atticaasay atticactyc cactilicac cacgiga	ctg gcagcgactc 900

 ātčaačaāca	attggggatt	ccggcccaag	agactcaact	tcaaactctt	caacatccaa	960
gtcaaggagg	tcacgacgaa	tgatggcgtc	acaaccatcg	ctaataacct	taccagcacg	1020
gttcaagtct	tctcggactc	ggagtaccag	cttccgtacg	tcctcggctc	tgcgcaccag	1080
ggctgcctcc	ctccgttccc	ggcggacgtg	ttcatgattc	cgcaatacgg	ctacctgacg	1140
ctcaacaatg	gcagccaagc	cgtgggacgt	tcatcctttt	actgcctgga	atatttccct	1200
tctcagatgc	tgagaacggg	caacaacttt	accttcagct	acacctttga	ggaagtgcct	1260
ttccacagca	gctacgcgca	cagccagagc	ctggaccggc	tgatgaatcc	tctcatcgac	1320
caatacctgt	attacctgaa	cagaactcaa	aatcagtccg	gaagtgccca	aaacaaggac	1380
ttgctgttta	gccgtgggtc	tccagctggc	atgtctgttc	agcccaaaaa	ctggctacct	1440
ggaccctgtt	atcggcagca	gcgcgtttct	aaaacaaaaa	cagacaacaa	caacagcaat	1500
tttacctgga	ctggtgcttc	aaaatataac	ctcaatgggc	gtgaatccat	catcaaccct	1560
ggcactgcta	tggcctcaca	caaagacgac	gaagacaagt	tctttcccat	gagcggtgtc	1620
atgattttg	gaaaagagag	cgccggagct	tcaaacactg	cattggacaa	tgtcatgatt	1680
acagacgaag	aggaaattaa	agccactaac	cctgtggcca	ccgaaagatt	tgggaccgtg	1740
gcagtcaatt	tccagagcag	cagcacagac	cctgcgaccg	gagatgtgca	tgctatggga	1800
gcattacctg	gcatggtgtg	gcaagataga	gacgtgtacc	tgcagggtcc	catttgggcc	1860
aaaattcctc	acacagatgg	acactttcac	ccgtctcctc	ttatgggcgg	ctttggactc	1920
aagaacccgc	ctcctcagat	cctcatcaaa	aacacgcctg	ttcctgcgaa	tcctccggcg	1980
gagttttcag	ctacaaagtt	tgcttcattc	atcacccaat	actccacagg	acaagtgagt	2040
gtggaaattg	aatgggagct	gcagaaagaa	aacagcaagc	gctggaatcc	cgaagtgcag	2100
tacacatcca	attatgcaaa	atctgccaac	gttgatttta	ctgtggacaa	caatggactt	2160
tatactgagc	ctcgccccat	tggcacccgt	taccttaccc	gtcccctgta	a	2211
<210> 203 <211> 221 <212> DNA <213> ade <400> 203	1 no-associat	ed virus, s	erotype 6			
		tccagattgg	ctcgaggaca	acctctctga	gggcattcgc	60
gagtggtggg	acttgaaacc	tggagccccg	aaacccaaag	ccaaccagca	aaagcaggac	120
gacggccggg	gtctggtgct	tcctggctac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggggagc	ccgtcaacgo	ggcggatgca	gcggccctcg	agcacgacaa	ggcctacgac	240
cagcagctca	aagcgggtga	caatccgtac	ctgcggtata	accacgccga	cgccgagttt	300
caggagcgto	tgcaagaaga	tacgtcttt	gggggcaacc	tcgggcgagc	agtcttccag	360
gccaagaaga	gggttctcga	accttttggt	ctggttgagg	aaggtgctaa	gacggctcct	420
ggaaagaaac	gtccggtaga	gcagtcgcca	caagagccag	actcctcctc	gggcattggc	480
aagacaggco	agcagcccg	taaaaagaga	ctcaattttg	gtcagactgg	cgactcagag	540
tcagtccccg	acccacaaco	: tctcggagaa	cctccagcaa	ccccgctgc	tgtgggacct	600
actacaatg	cttcaggcgg	g tggcgcacca	atggcagaca	ataacgaagg	cgccgacgga	660
gtgggtaatg	cctcaggaaa	a ttggcattgc	gattccacat	ggctgggcga	cagagtcatc	720
accaccagca	a cccgaacato	ggccttgcco	acctataaca	accacctcta	caagcaaatc	780
tccagtgcti	t caacggggg	cagcaacgac	aaccactact	tcggctacag	cacccctgg	840
gggtatttt	g atttcaaca	g attccactgo	catttctcac	cacgtgactg	gcagcgactc	900
atcaacaaca	a attggggati	t ccggcccaag	agactcaact	tcaagctctt	caacatccaa	960
gtcaaggag	g tcacgacga	a tgatggcgtd	acgaccatc	ctaataacct	taccagcacg	1020
gttcaagtc	t tctcggacto	c ggagtaccag	ttgccgtacg	tcctcggctc	tgcgcaccag	1080
ggctgcctc	ctccgttcc	ggcggacgtg	ttcatgattc	cgcagtacgg	ctacctaacg	1140
ctcaacaat	g gcagccagge	c agtgggacgg	tcatcctttt	actgcctgga	atatttccca	1200

```
1260
tcgcagatgc tgagaacggg caataacttt accttcagct acaccttcga ggacgtgcct
ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac
                                                                   1320
cagtacctgt attacctgaa cagaactcag aatcagtccg gaagtgccca aaacaaggac
                                                                   1380
ttgctgttta gccgggggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct
                                                                   1440
ggaccctgtt accggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaac
                                                                   1500
tttacctgga ctggtgcttc aaaatataac cttaatgggc gtgaatctat aatcaaccct
                                                                   1560
ggcactgcta tggcctcaca caaagacgac aaagacaagt tctttcccat gagcggtgtc
                                                                   1620
atgatttttg gaaaggagag cgccggagct tcaaacactg cattggacaa tgtcatgatc
                                                                   1680
acagacgaag aggaaatcaa agccactaac cccgtggcca ccgaaagatt tgggactgtg
                                                                   1740
gcagtcaatc tccagagcag cagcacagac cctgcgaccg gagatgtgca tgttatggga
                                                                   1800
gccttacctg gaatggtgtg gcaagacaga gacgtatacc tgcagggtcc tatttgggcc
                                                                   1860
                                                                   1920
aaaattcctc acacggatgg acactttcac ccgtctcctc tcatgggcgg ctttggactt
aagcacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggca
                                                                   1980
gagttttcgg ctacaaagtt tgcttcattc atcacccagt attccacagg acaagtgagc
                                                                   2040
                                                                   2100
gtggagattg aatgggagct gcagaaagaa aacagcaaac gctggaatcc cgaagtgcag
tatacatcta actatgcaaa atctgccaac gttgatttca ctgtggacaa caatggactt
                                                                   2160
tatactgagc ctcgccccat tggcacccgt tacctcaccc gtcccctgta a
                                                                   2211
<210>
       204
       2208
       DNA
       new AAV serotype, clone hu.63
<213>
<400> 204
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga
                                                                     60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac
                                                                    120
gacagcaggg gtcttgtgct tcctgggtac aagtaccttg gacccttcaa cggactcgac
                                                                    180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac
                                                                    240
cggcagctcg acagcggaga caacccgtac cccaagtaca accacgccga cgcggagttc
                                                                    300
caggagcgtc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag
                                                                    360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg
                                                                    420
ggaaaaaaaga ggccggtaga gcactctcct gcggagccag actcctcctc gggaaccgga
                                                                    480
 aaagcgggcc agcagcctgc aagaaagaga ttgaatttcg gtcagactgg agacgcagac
                                                                     540
 tccgtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact
                                                                     600
 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga
                                                                     660
 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc
                                                                     720
 accaccagca cccgcacctg ggctctgccc acctacaaca accacctcta caagcagatt
                                                                     780
 tccagccaat caggagcctc aaacgacaac cactactttg gctacagcac cccttggggg
                                                                     840
                                                                     900
 tattttgact tcaacagatt ccactgccac ttttcgccac gtgactggca aagactcatc
 aacaacaatt ggggattccg gcccaaaaga ctcaacttca agctctttaa cattcaagtc
                                                                     960
 aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt
                                                                    1020
 1080
 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg
                                                                    1140
 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct
                                                                    1200
```

cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc

cacagcagct acgcccacag ccagagtttg gaccgtctca tgaatcctct catcgaccag

tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtcaaggctt

cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg qcttcctgga

ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac

1260

1320

1380

1440

1500

tcgtggactg gagctaccaa gtaccacctt aatggaagag actctctggt gaatccgggc	1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtgtggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa	1920
caccetecce egeagattet cateaagaac acceeggtac etgegaatee ttegactace	1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccaggtac ctgactcgta atctgtaa	2208
<210> 205 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.56 <400> 205	
atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctggatac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgttaa gacggctccg	420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga	480
aaagcgggca accagcctgc aagaaaaaga ttgaatttcg gtcagactgg agacgcagac	540
tccgtacctg acccccagcc tctcggacag ccaccagcat ccccctctgg tctgggaact	600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcgtc	720
accaccagca cccgcacctg ggccctgccc acctacaaca accacctcta caagcagatt	780
tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttggggg	840
tattttgact tcaacagatt ccactgccac ttttcgccac gcgactggca gagactcatc	900
aacaacaact ggggattccg gcccaaaaga ctcaacttca agctgtttaa cattcaagtc	960
aaggaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggigitta cigacitgga giaccagcic ccgiacgic icggcicggc gcatcaagga	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggga gtcaggcggt aggacgctct tccttttact gcctggagta ctttccttct	1200
cagatgcttc gcaccggaaa caactttacc ttcagctaca cttttgaaga cgttcctttc	1260
cacagcagct acgctcacag tcaaagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccactacgca gtccaggctt	1380
cagttitctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acagctgcgg ataacaacaa cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc	1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcaaag cggggttctc	1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800

cttccaggca tggtctggca ggacagagac gtgtacctgc aggggcccat ctgggcaaaa	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggcggatt tggacttaaa	1920
caccctcctc cacagattct cattaagaat accccggtac ctgcgaatcc ttcgaccacc	1980
ttcagcgcgg caaagtttgc ttccttcatc acacagtatt ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggggtgtat	2160
tcagagcctc gccctattgg caccagatac ctgactcgta atctgtaa	2208
<210> 206	
<211> 2205	
<212> DNA <213> new AAV serotype, clone hu.57	
<400> 206 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaaagcccg cagagcggca taaggacgac	120
agcaggggtc ttgtgcttcc tggatacaag tacctcggac ccttcaacgg actcgacaag	180
ggagagccgg tcaacgaggc agacgccgcg gccctcgagc acgacaaggc ctacgaccgg	240
cagetegaca geggagacaa ecegtacete aagtacaace aegeegacge ggagttteag	300
gagcgcctta aagaagatac gtcttttggg ggcaacctcg gacgagcagt cttccaqqcg	360
aaaaagaggg ttcttgaacc tctgggcctg gttgaggaac ctgttaagac ggctccggga	420
aaaaagaggc ccgtagagca ctctcctgtg gagccagact cctcctcggg aaccggaaaa	480
gcgggcaacc agcctgcaag aaaaagattg aatttcggtc agactggaga cgcagactcc	540
gtacctgacc cccagcctct cggacagcca ccagcagccc cctctggtct gggaactaat	600
acgatggcta caggcagtgg cgcaccaatg gcagacaata acgagggcgc cgacggagtg	660
ggtaattcct cgggagattg gcattgcgat tccacatgga tgggcgacag agtcatcacc	720
accagcaccc gcacctgggc cctgcccacc tacaaccaacc acctctacaa gcagatttcc	780
agccaatcag gagccagcaa tgacaaccac tactttggct acagcacccc ttgggggtat	840
tttgacttca acagattcca ctgccacttt tcgccacgcg actggcagag actcatcaac	900
aacaactggg gattccggcc caaaagactc aacctcaagc tgtttaacat tcaagtcaag	960
gaggtcacgc agaatgacgg tacgacgacg attgccaata accttaccag cacggttcag	1020
gtgtttactg acttggagta ccagctcccg tacgtcctcg gctcggcgca tcaaggatgc	1080
ctcccgccgt tcccagcaga cgtcttcatg gtgccacagt atggatacct caccctgaac	1140
aacgggagtc aggcggtagg acgctcttcc ttttactgcc tggagtactt tccttctcag	1200
atgcttcgta ccggaaacaa ctttaccttc agctacactt ttgaagacgt tcctttccac	1260
agcagctacg ctcacagtca aagtctggac cgtctcatga atcctctcat cgaccagtac	1320
ctgtattact tgagcagaac aaacactcca agcggaacca ctacgcagtc caggcttcag	1380
ttttctcagg ccggagcgag tgacattcgg gaccagtcta ggaactggct tcctggaccc	1440
tgttaccgcc agcagcgagt atcaaagaca gctgcggata acaacaacgg tgaatactcg	1500
tggactggag ctaccaagta ccacctcaat ggcagagact ctctggtgaa tccgggcccg	1560
gccatggcca gccacaagga cgatgaagaa aagttttttc ctcaaagcgg ggttctcatc	1620
tttgggaagc aaggctcaga gaaaacaaat gtggacattg aaaaggtcat gattacagac	1680
gaagaggaaa tcaggaccac caatcccgtg gctacggagc agtatggttc tgtatctacc	1740
aacctccaga gcggcaacac acgagcagct acctcagatg tcaacacaca aggcgttctt	1800
ccaggcatgg tctggcagga cagagacgtg tacctgcagg ggcccatctg ggcaaaaatt	1860
ccacacacgg acggacattt tcacccctct cccctcatgg gcggatttgg acttaaacac	1920
cctcctccac agattctcat taagaatacc ccggtacctg cgaatccttc gaccaccttc	1980
agcgcggcaa agtttgcttc cttcatcaca cagtattcca cggggcaggt cagcgtggag	2040
atcgagtggg agctgcagaa ggagaacagc aaacgctgga atcccgaaat tcagtacact	2100

tccaactaca acaaatctgt taatgtggac tttactgtgg acactaatgg ggtgtattca 2160 gagcctcgcc ctattggcac cagatacctg actcgtaatc tgtaa 2205 <210> <211> 207 2208 DNA new AAV serotype, clone hu.58 <400> 207 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctctga aggaataaga 60 cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac 120 gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cqqactcgac 180 240 aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa ggcctacgac cggcagctcg acagcggaga caacccgtac ctcaagtacg accacgccga cgcggagttt 300 360 caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacgagc agtcttccag gcaaaaaaga gggttcttga acctctgggc ctggttgagg agcctgttaa gacggctccg 420 ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga 480 aaagcgggca accagcctgc aagaaagaga ttgaatttcg gtcagactgg agacgcagac 540 tccgtacctg accccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact 600 aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgatgg cgccgacgga 660 gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc 720 accaccagca cccgaacctg ggctctgccc acctacaaca accatctgta caaqcaqatt 780 tccagccaat caggagccag caacgacaac cactactttg gctacagcac cccttqqqqq 840 tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900 aacaacaact ggggattccg gcccaagaga ctcaacttca agctctttaa cattcaagtc 960 agagaggtca cgcagaatga tggtacgacg acgattgcca ataaccttac cagcacggtt 1020 1080 tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctq 1140 aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta cttcccttct 1200 cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga tgttcctttc 1260 cacagcagct acgctcacag ccagagtttg gaccgtctca tgaatcctct catcgaccag 1320 tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtccaggctt 1380 cagttttctc aggccggagc gagtgacatt cgggatcagt ctaggaactg gcttcctgga 1440 ccctgttacc gccagcagcg agtatcaaag acatctgcgg acaacaacaa cagtgaatac 1500 tcgtggattg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc 1560 ccggcaatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc 1620 atctttggaa aacaaggatc agagaaaaca aatgtggaca ttgaaaaggt catgattaca 1680 gacgaagagg aaatcagaac caccaatccc gtggccacgg agcagtatgg ttctgtatct 1740 accaacctcc agagcggcaa cacacaagca tctactgcag atgtcaacac acaaggcgtt 1800 cttccaggca tggtctggca ggacagagac gtgtacctgc agggggcctat ctgggcaaag 1860 attccgcaca cggacggaca ttttcacccc tctcccctca tgggcggatt cggacttaaa 1920 caccetecte cacagattet cateaaaaac acceeggtac etgegaatec ttegaceace 1980 ttcagtgcgg caaagtttgc ttccttcatc acacagtatt ccacggggcg ggtcagcgtg 2040 gagatcgagt gggagctaca gaaggagaac agcaaacgct ggaatcccga gatccagtac 2100 acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat 2160 tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa 2208 <210> 208 2208 DNA

<213> new AAV serotype, clone hu.51

U pri Tunti tunni stani	
<pre><400></pre>	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacgacaa agcctacgac	240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt	300
caggagcgcc ttaaagaaga tacgtctttt ggggggcaacc tcggacgagc agtcttccag	360
gcgaaaaaga gggttcttga acctctgggc ctggttgggg aacctgtcaa gacggctcca	420
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctcctc gggaaccgga	480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagactgg agacgcagac	540
tcagtacctg acccccagcc tctcggacag ccaccagcag ccccctctgg tctgggaact	600
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgaggg cgccgacgga	660
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatgggcga cagagtcatc	720
accaccagca cccgaacctg ggccctgccc acctacaaca accacctcta caaacaaatt	780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagcac cccttggggg	840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc	900
aacaacaact ggggattccg acccaagaga ctcaacttca agctctttaa cattcaagtc	960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataaccttac cagcacggtt	1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcggc	1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatggata cctcaccctg	1140
aacaacggga gtcaggcagt aggacgctct tcattttact gcctggagta ctttccttct	1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgagga cgttcctttc	1260
cacagcggct acgctcacag ccagagtctg gaccgtctca tgaatcctct catcgaccag	1320
tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccacgca gtcaaggctt	1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctggt gaatccgggc	1560
ccggccatgg caagccacaa ggacaatgaa gaaaagtttt ttcctcagag cggggttctc	1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagtacgg ttctgtatct	1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtctggca ggacagagat gtgtaccttc agggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggtggatt cggacttaaa	1920
caccetecte cacagattet cateaagaac acceeggtae etgegaatee ttegaceace	1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacgggaca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcccga aattcagtac	2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacactaa tggcgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 209 <211> 2208 <212> DNA <213> new AAV serotype, clone hu.49	
<400> 209 atggctgccg atggttatct tccagattgg ctcaaggaca ctctctctga aggaataaga	60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcagagcg gcataaggac	120
gacagcgggg gtcttgtgct tcctgggtac aagtacctcg gacccttcaa cggactcgac	180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agtacgacaa ggcctacgac	240

cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgccga cgcggagttt

300

caggagcgcc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgagg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaacagga	480
aaagcgggcc	agcagcctgc	gagaaagaga	ttgaattttg	gtcagactgg	agacgcagac	540
tccgtacctg	acccccagcc	tctcggacag	ccaccagcag	cccctctgg	tctgggaact	600
aatacgatgg	ctacaggcag	tggcgcacca	atggcagaca	ataacgaggg	cgccgacgga	660
gtgggtaatt	cctcgggaag	ttggcattgc	gattccacat	ggatgggcga	cagagtcatc	720
accaccagca	cccgaacctg	ggctctgccc	acctacaaca	accatctgta	caagcagatc	780
tccagccaat	caggagccag	caacgacaac	cactactttg	gctacagcac	cccttggggg	840
tattttgact	tcaacagatt	ccactgccac	ttttcaccac	gtgactggca	aagactcatc	900
aacaacaact	ggggattccg	gcccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaggaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	ccggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
cagatgcttc	gtaccggaaa	caactttacc	ttcagctaca	cctttgagga	tgttcctttc	1260
cacagcagct	acgctcacag	ccagagtttg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagcggaa	ccaccacgca	gtccaggctt	1380
cagttttctc	aggccggagc	aagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acagctgcgg	acaacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	ccagccacaa	ggacgatgaa	gaaaagtttt	ttcctcaaag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcagaac	caccaatccc	gtggccacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagcggcaa	cacacaagca	gctactgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagac	gtgcacctgc	aggggcctat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggcggatt	tggacttaaa	1920
caccetecte	cacagattct	catcaagaac	accccggtac	ctgcaaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtatt	ccacagggca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggagaac	agcaaacgct	ggaaccccga	gatccagtac	2100
acttccaact	acaacaaatc	tgttaatgtg	gactttactg	tggacactaa	tggtgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
<210> 210						
<211> 220 <212> DNA			_			
	AAV seroty	pe, clone h	u.52			
<400> 210 atggctgccg	ı atggttatct	tccagattgg	ctcgaggaca	ctctctctga	aggaataaga	60
cagtggtgga	agctcaaacc	tggcccacca	ccaccaaagc	ccgcagagcg	gcataaggac	120
gacagcaggg	gtcttgtgct	tcctgggtac	aagtacctcg	gacccttcaa	cggactcgac	180
aagggagag	cggtcaacga	ggcagacgcc	gcggccctcg	agcacgacaa	agcctacgac	240
cggcagctcg	acagcggaga	caacccgtac	ctcaagtaca	accacgccga	cgcggagttt	300
caggagcgc	ttaaagaaga	tacgtctttt	gggggcaacc	tcggacgagc	agtcttccag	360
gcgaaaaaga	gggttcttga	acctctgggc	ctggttgggg	aacctgttaa	gacggctccg	420
ggaaaaaaga	ggccggtaga	gcactctcct	gtggagccag	actcctcctc	gggaaccgga	480
aaggcgggco	agcagcctgc	aagaaaaaga	ttgaattttg	gtcagactgg	agacgcagac	540
tcagtacctg	acccccagcc	tctcggacag			tctgggaact	600
				Page 315		

aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacgag	gg cgccgacgga 660
gtgggtaatt cctcgggaaa tcggcattgc gattccacat ggatgggc	ga cagagtcatc 720
accaccagca cccgaacctg ggccctgccc acctacaaca accaccto	ta cagacaaatt 780
tccagccaat caggagcctc gaacgacaat cactactttg gctacagc	ac cccttggggg 840
tattttgact tcaacagatt ccactgccac ttttcaccac gtgactgg	ca aagactcatc 900
aacaacaact ggggattccg acccaagaga ctcaacttca agctcttt	caa cattcaagtc 960
aaagaggtca cgcagaatga cggtacgacg acgattgcca ataacctt	cac cagcacggtt 1020
caggtgttta ctgactcgga gtaccagctc ccgtacgtcc tcggctcg	ggc gcatcaagga 1080
tgcctcccgc cgttcccagc agacgtcttc atggtgccac agtatgga	ata cctcaccctg 1140
agcaacggga gtcaggcagt aggacgctct tcattttact gcccggag	gta ctttccttct 1200
cagatgctgc gtaccggaaa caactttacc ttcagctaca cttttgag	gga cgttcctttc 1260
cacagcagct acgctcacag ccagagtctg gaccgtctca tgaatcc	tct catcgaccag 1320
tacctgtatt acttgagcac aacaaacact ccaagtggaa ccaccac	gca gtcaaggctt 1380
cagttttctc aggccggagc gagtgacatt cgggaccagt ctaggaad	ctg gcttcctgga 1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaa	caa cagtgaatac 1500
tcgtggactg gagctaccaa gtaccacctc aatggcagag actctctg	ggt gaatccgggc 1560
ccggccatgg caagccacaa ggacaatgaa gaaaagtttt ttcctca	gag cggggttctc 1620
atctttggga agcaaggctc agagaaaaca aatgtggaca ttgaaaa	ggt catgattaca 1680
gacgaagagg aaatcaggac aaccaatccc gtggctacgg agcagta	tgg ttctgtatct 1740
accaacctcc agagaggcaa cagacaagca gctaccgcag atgtcaa	cac acaaggcgtt 1800
cttccaggca tggtctggca ggacagagat gtgtaccttc aggggcc	cat ctgggcaaag 1860
attccacaca cggacggaca ttttcacccc tctcccctca tgggtgg	att cggacctaaa 1920
caccetecte cacagattet cateaagaac acceeggtac etgegaa	tcc ttcgaccacc 1980
ttcagtgcgg caaagtttgc ttccttcatc acacagtact ccacggg	aca ggtcagcgtg 2040
gagatcgagt gggagctgca gaaggaaaac agcaaacgct ggaatcc	cga aattcagtac 2100
acttccaact acaacaagtc tgttaatgtg gactttactg tggacac	taa tggcgtgtat 2160
tcagagcctc gccccattgg caccagatac ctgactcgta atttgta	a 2208
<210> 211 <211> 2208 <212> DNA <213> adeno-associated virus, serotype 2	
<pre><400> 211 atggctgccg atggttatct tccagattgg ctcgaggaca ctctctc</pre>	tga aggaataaga 60
cagtggtgga agctcaaacc tggcccacca ccaccaaagc ccgcaga	
gacagcaggg gtcttgtgct tcctgggtac aagtacctcg gaccctt	caa cggactcgac 180
aagggagagc cggtcaacga ggcagacgcc gcggccctcg agcacga	icaa agcctacgac 240
cggcagctcg acagcggaga caacccgtac ctcaagtaca accacgc	
caggagcgcc ttaaagaaga tacgtctttt gggggcaacc tcggacg	gage agtettecag 360
gcgaaaaaga gggttcttga acctctgggc ctggttgagg aacctgt	
ggaaaaaaga ggccggtaga gcactctcct gtggagccag actcctc	ctc gggaaccgga 480
aaggcgggcc agcagcctgc aagaaaaaga ttgaattttg gtcagac	
tcagtacctg accccagcc tctcggacag ccaccagcag cccccto	
aatacgatgg ctacaggcag tggcgcacca atggcagaca ataacga	
gtgggtaatt cctcgggaaa ttggcattgc gattccacat ggatggg	
accaccagca cccgaacctg ggccctgccc acctacaaca accacct	
tccagccaat caggagcctc gaacgacaat cactactttg gctacag	

tattttgact tcaacagatt ccactgccac ttttcaccac gtgactggca aagactcatc 900

aacaacaact	ggggattccg	acccaagaga	ctcaacttca	agctctttaa	cattcaagtc	960
aaagaggtca	cgcagaatga	cggtacgacg	acgattgcca	ataaccttac	cagcacggtt	1020
caggtgttta	ctgactcgga	gtaccagctc	ccgtacgtcc	tcggctcggc	gcatcaagga	1080
tgcctcccgc	cgttcccagc	agacgtcttc	atggtgccac	agtatggata	cctcaccctg	1140
aacaacggga	gtcaggcagt	aggacgctct	tcattttact	gcctggagta	ctttccttct	1200
cagatgctgc	gtaccggaaa	caactttacc	ttcagctaca	cttttgagga	cgttcctttc	1260
cacagcagct	acgctcacag	ccagagtctg	gaccgtctca	tgaatcctct	catcgaccag	1320
tacctgtatt	acttgagcag	aacaaacact	ccaagtggaa	ccaccacgca	gtcaaggctt	1380
cagttttctc	aggccggagc	gagtgacatt	cgggaccagt	ctaggaactg	gcttcctgga	1440
ccctgttacc	gccagcagcg	agtatcaaag	acatctgcgg	ataacaacaa	cagtgaatac	1500
tcgtggactg	gagctaccaa	gtaccacctc	aatggcagag	actctctggt	gaatccgggc	1560
ccggccatgg	caagccacaa	ggacgatgaa	gaaaagtttt	ttcctcagag	cggggttctc	1620
atctttggga	agcaaggctc	agagaaaaca	aatgtggaca	ttgaaaaggt	catgattaca	1680
gacgaagagg	aaatcaggac	aaccaatccc	gtggctacgg	agcagtatgg	ttctgtatct	1740
accaacctcc	agagaggcaa	cagacaagca	gctaccgcag	atgtcaacac	acaaggcgtt	1800
cttccaggca	tggtctggca	ggacagagat	gtgtaccttc	aggggcccat	ctgggcaaag	1860
attccacaca	cggacggaca	ttttcacccc	tctccctca	tgggtggatt	cggacttaaa	1920
caccctcctc	cacagattct	catcaagaac	accccggtac	ctgcgaatcc	ttcgaccacc	1980
ttcagtgcgg	caaagtttgc	ttccttcatc	acacagtact	ccacgggaca	ggtcagcgtg	2040
gagatcgagt	gggagctgca	gaaggaaaac	agcaaacgct	ggaatcccga	aattcagtac	2100
acttccaact	acaacaagtc	tgttaatgtg	gactttactg	tggacactaa	tggcgtgtat	2160
tcagagcctc	gccccattgg	caccagatac	ctgactcgta	atctgtaa		2208
		pe, clone h	u.64			
<211> 220 <212> DNA <213> new <400> 212	AAV seroty			ctctctctga	aggaataaga	60
<211> 220 <212> DNA <213> new <400> 212 atggctgccg	AAV seroty atggttatct	tccagattgg	ctcgaggaca	ctctctctga ccgcagagcg		60 120
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga</pre>	AAV seroty . atggttatct	tccagattgg tggcccacca	ctcgaggaca ccaccaaagc		gcataaggac	
<211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg	AAV seroty . atggttatct agctcaaacc gtcttgtgct	tccagattgg tggcccacca tcctgggtac	ctcgaggaca ccaccaaagc aagtaccttg	ccgcagagcg	gcataaggac cggactcgac	120
<211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga	tccagattgg tggcccacca tcctgggtac ggcagacgcc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg	ccgcagagcg gacccttcaa	gcataaggac cggactcgac ggcctacgac	120 180
<211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga	gcataaggac cggactcgac ggcctacgac	120 180 240
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcggacgagc aacctgttaa	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg	120 180 240 300
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcagggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga</pre>	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga	120 180 240 300 360
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaaga ggaaaaaaga aaagcgggcc</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac	120 180 240 300 360 420
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagctcg caggagcgcc gcgaaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag	ccgcagagcg gaccettcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact	120 180 240 300 360 420 480
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagcgtc gcgaaaaaga ggaaaaaga ggaaaaaga tccgtacctg aatacgatgg</pre>	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga	120 180 240 300 360 420 480 540
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc	120 180 240 300 360 420 480 540
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca</pre>	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa ccccggcacctg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt	120 180 240 300 360 420 480 540 600 660 720 780
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgcc aaacgacaac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg cccctctgg ataacgaggg ggatgggcga accacctcta	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg	120 180 240 300 360 420 480 540 600 660 720
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact</pre>	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccggaacctg	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tattttgact aacaacaatt</pre>	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa cccgcacctg caggagcctc	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg ttttcgccac	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg cccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc ccattcaagtc	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgct gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tatttgact aacaacaatt aaggaggtca</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa . cccgcacctg caggagcctc tcaacagatt	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgc ggctctgccc aaacgacaac ccactgccaca	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg ttttcgccac ctcaacttca acgattgcca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc ccattcaagtc cagcacggtt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagcgtc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tatttgact aacaacaatt aaggaggtca caggtgttta</pre>	AAV seroty atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcggaaaa cccgcacctg caggagcctc tcaacagatt	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgccc aaacgacaac ggctctgcccc aaacgacaac	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg ttttcgccac ctcaacttca acgattgcca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg cccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc cattcaagtc cagcacggtt gcatcaagga	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
<pre><211> 220 <212> DNA <213> new <400> 212 atggctgccg cagtggtgga gacagcaggg aagggagagc cggcagctcg caggagctcg caggagctcg caggagcgcc gcgaaaaaga ggaaaaaaga aaagcgggcc tccgtacctg aatacgatgg gtgggtaatt accaccagca tccagccaat tatttgact aaggaggtca caggtgtta tgcctcccgc</pre>	AAV seroty . atggttatct agctcaaacc gtcttgtgct cggtcaacga acggcggaga ttaaagaaga gggttcttga ggccggtaga agcagcctgc acccccagcc ctacaggcag cctcgggaaa ccegcacctg tgagagcctc tcaacagatt ggggatcccg cgcagaatga ctgactcgga	tccagattgg tggcccacca tcctgggtac ggcagacgcc caacccgtac tacgtctttt acctctgggc gcactctctt aagaaggaga tctcggacag tggcgcacca ttggcattgcc aaacgacaac ccactgccac gcccaaaaga cggtaccagctc	ctcgaggaca ccaccaaagc aagtaccttg gcggccctcg ctcaagtaca gggggcaacc ctggttgagg gcggagccag ttgaatttcg ccaccagcag atggcagaca gattccacat acctacaaca cactactttg ttttcgccac ctcaacttca acgattgcca	ccgcagagcg gacccttcaa agcacgacaa accacgccga tcggacgagc aacctgttaa actcctcctc gtcagactgg ccccctctgg ataacgaggg ggatgggcga accacctcta gctacagcac gtgactggca agctctttaa ataaccttac tcggctcggc	gcataaggac cggactcgac ggcctacgac cgcggagttc agtcttccag gacggctccg gggaaccgga agacgcagac tctgggaact cgccgacgga cagagtcatc caggcagatt cccttggggg aagactcatc ccattcaagtc cagcacggtt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

cagatgctgc gtaccggaaa caactttacc ttcagctaca cctttgagga cgttcctttc	1260
cacagcagct acgcccacag ccagagtttg gaccgtctca tgaatcctct cgtcgaccag	1320
tacctgtatt acttgagcag aacaaacact ccaagcggaa ccaccacgca gtcaaggctt	1380
cagttttctc aggccggagc aagtgacatt cgggaccagt ctaggaactg gcttcctgga	1440
ccctgttacc gccagcagcg agtatcaaag acatctgcgg ataacaacaa cagtgaatac	1500
tcgtggactg gagctaccaa gtaccacctt aatggaagag actctctggt gaatccgggc	1560
ccggccatgg ccagccacaa ggacgatgaa gaaaagtttt ttcctcagag cggggttctc	1620
atctttggaa aacaagactc gggaaaaact aatgtggaca ttgaaaaggt catgattaca	1680
gacgaagagg aaatcaggac caccaatccc gtggctacgg agcagtatgg ttctgtatct	1740
accaacctcc agagcggcaa cacacaagca gctacctcag atgtcaacac acaaggcgtt	1800
cttccaggca tggtgtggca ggacagagac gtgtacctgc aggggcccat ctgggcaaag	1860
attccacaca cggacggaca ttttcacccc tctccctca tgggcggatt cggacttaaa	1920
caccctcccc cgcagattct catcaagaac accccggtac ctgcgaatcc ttcgactacc	1980
ttcagtgcgg caaagtttgc ttccttcatt acacagtact ccacggggca ggtcagcgtg	2040
gagatcgagt gggagctgca gaaggagaac agcaaacgct ggaatcccga gattcagtac	2100
acttccaact acaacaaatc tgttaatgtg gactttactg tggacactaa tggtgtgtat	2160
tcagagcctc gccccattgg caccagatac ctgactcgta atctgtaa	2208
<210> 213 <211> 2214 <212> DNA <213> adeno-associated virus, serotype 7 <400> 213	
atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc	60
gagtggtggg acctgaaacc tggagccccg aaacccaaag ccaaccagca aaagcaggac	120
aacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac	180
aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac	240
cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt	300
caggagcgtc tgcaagaaga tacgtcattt gggggcaacc tcgggcgagc agtcttccag	360
gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct	420
gcaaagaaga gaccggtaga gccgtcacct cagcgttccc ccgactcctc cacgggcatc	480
ggcaagaaag gccagcagcc cgccagaaag agactcaatt tcggtcagac tggcgactca	540
gagtcagtcc ccgaccctca acctctcgga gaacctccag cagcgccctc tagtgtggga	600
tctggtacag tggctgcagg cggtggcgca ccaatggcag acaataacga aggtgccgac	660
ggagtgggta atgcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc	720
attaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa	780
atctccagtg aaactgcagg tagtaccaac gacaacacct acttcggcta cagcaccccc	840
tgggggtatt ttgactttaa cagattccac tgccacttct caccacgtga ctggcagcga	900
ctcatcaaca acaactgggg attccggccc aagaagctgc ggttcaagct cttcaacatc	960
caggtcaagg aggtcacgac gaatgacggc gttacgacca tcgctaataa ccttaccagc	1020
acgattcagg tattctcgga ctcggaatac cagctgccgt acgtcctcgg ctctgcgcac	1080
cagggctgcc tgcctccgtt cccggcggac gtcttcatga ttcctcagta cggctacctg	1140

actctcaaca atggcagtca gtctgtggga cgttcctcct tctactgcct ggagtacttc ccctctcaga tgctgagaac gggcaacaac tttgagttca gctacagctt cgaggacgtg

cctttccaca gcagctacgc acacagccag agcctggacc ggctgatgaa tcccctcatc

gaccagtact tgtactacct ggccagaaca cagagtaacc caggaggcac agctggcaat

cgggaactgc agttttacca gggcgggcct tcaactatgg ccgaacaagc caagaattgg

ttacctggac cttgcttccg gcaacaaaga gtctccaaaa cgctggatca aaacaacaac

1200

1260

1320

1380

1440

1500

agcaactttg	cttggactgg	tgccaccaaa	tatcacctga	acggcagaaa	ctcgttggtt	1560
aatcccggcg	tcgccatggc	aactcacaag	gacgacgagg	accgctttt	cccatccagc	1620
ggagtcctga	tttttggaaa	aactggagca	actaacaaaa	ctacattgga	aaatgtgtta	1680
atgacaaatg	aagaagaaat	tcgtcctact	aatcctgtag	ccacggaaga	atacgggata	1740
gtcagcagca	acttacaagc	ggctaatact	gcagcccaga	cacaagttgt	caacaaccag	1800
ggagccttac	ctggcatggt	ctggcagaac	cgggacgtgt	acctgcaggg	tcccatctgg	1860
gccaagattc	ctcacacgga	tggcaacttt	cacccgtctc	ctttgatggg	cggctttgga	1920
cttaaacatc	cgcctcctca	gatcctgatc	aagaacactc	ccgttcccgc	taatcctccg	1980
gaggtgttta	ctcctgccaa	gtttgcttcg	ttcatcacac	agtacagcac	cggacaagtc	2040
agcgtggaaa	tcgagtggga	gctgcagaag	gaaaacagca	agcgctggaa	cccggagatt	2100
cagtacacct	ccaactttga	aaagcagact	ggtgtggact	ttgccgttga	cagccagggt	2160
gtttactctg	agcctcgccc	tattggcact	cgttacctca	cccgtaatct	gtaa	2214
<210> 214						
<211> 221	.7					
<212> DNA <213> ade	no-associat	ed virus, se	erotype 8			
<400> 214		tcc202tt00	c*ca2002c2	20000000000		60
	atggttatct			•		120
	cgctgaaacc		•	_		180
	gtctggtgct					240
	ccgtcaacgc					300
	: aggcgggtga : tgcaagaaa	_				360
	tgcaagaaga					420
_	gggttctcga					480
	l gaccggtaga		= =	_	• • • • • • • • • • • • • • • • • • • •	540
	gccaacagcc					600
	: cagaccctca : tooctocago					660
	ı tggctgcagg ı gttcctcggg					720
	gcacccgaac					780
	ggacatcggg				-	840
	attttgactt					900
	a acaacaactg					960
	a aggaggtcac			_	_	1020
	aggtgtttac					1080
	t gcctgcctcd					1140
	a acaacggtag					1200
	c agatgctgag					1260
	c acagcagcta					1320
	t acctgtacta					1380
	g gcttcagcca					1440
					aaacaacaat	1500
					ttcattggct	1560
					tcccagtaac	1620
					cagcgatgtc	1680
					ggaatacggt	1740
					tgtcaacagc	1800
4 33			55.3500	240	-55-	

cagggggcct tacccggtat ggtctggcag aaccgggacg tgtacctgca gggtcccatc tgqqccaaga ttcctcacac ggacggcaac ttccacccqt ctccqctqat gggcggcttt 1920 ggcctgaaac atcctccgcc tcagatcctg atcaagaaca cgcctgtacc tgcggatcct 1980 ccgaccacct tcaaccagtc aaagctgaac tctttcatca cgcaatacag caccggaCag 2040 gtcagcgtgg aaattgaatg ggagCtgcag aaggaaaaca gcaagcgctg gaaccccgag 2100 atccagtaca cctccaacta ctacaaatct acaagtgtgg actttgctgt taatacagaa 2160 ggcgtgtact ctgaaccccg ccccattggc acccgttacc tcacccgtaa tctgtaa 2217 215 2217 DNA new AAV serotype, clone hu.67 <400> atggctgctg acggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acctgaaacc tggagccccc aagcccaagg ccaaccagca gaagcaggac 120 gacggccggg gtctggtgct tcttggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaatgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aagctgctaa gacggctcct 420 ggaaagaaga gaccggtaga accgtcacct cagcgttccc ccgactcctc cacgggcatc 480 ggcaagaaag gccagcagcc cgctaaaaag agactgaact ttggtcagac tggcgactca 540 gagtcagtcc ccgaccctca accaatcgga gaaccaccag caggcccctc tggtctggga 600 tctggtacaa tggctgcagg cggtggcgct ccaatggcag acaataacga aggcgccgac 660 ggagtgggta gttcctcagg aaattggcat tgcgattcca catggctggg cgacagagtc 720 atcaccacca gcacccgaac ctgggccctg cccacctaca acaaccacct ctacaagcaa 780 atatccaatg ggacatcggg aggaagcacc aacgacaaca cctacttcgg ctacagcacc 840 ccctgggggt attttgactt caacagattc cactgccact tctcaccacg tgactggcag 900 cgactcatca acaacaactg gggattccgg ccaaaaagac tcagcttcaa gctcttcaac 960 atccaggtca aggaggtcac gcagaatgaa ggcaccaaga ccatcgccaa taaccttacc 1020 agcacgattc aggtatttac ggactcggaa taccagctgc cgtacgtcct cggctccgcg 1080 caccagggct gcctgcctcc gttcccggcg gacgtcttca tgattcccca gtacggctac 1140 cttacactga acaatggaag tcaagccgta ggccgttcct ccttctactg cctggaatat 1200 tttccatctc aaatgctgcg aactggaaac aattttgaat tcagctacac cttcgaggac 1260 gtgcctttcc acagcggcta cgcacacagc cagagcttgg accgactgat gaatcctctc 1320 atcgaccagt acctgtacta cttatccaga actcagtcca caggaggaac tcaaggtacc 1380 cagcaattgt tattttctca agctgggcct gcaaacatgt cggctcaggc taagaactgg 1440 ctacctggac cttgctaccg gcagcagcga gtctctacga cactgtcgca aaacaacaac 1500 agcaactttg cttggactgg tgccaccaaa tatcacctga acggaagaga ctctttgqta 1560 aatcccggtg tcgccatggc aacccacaag gacgacgagg aacgcttctt cccgtcgagt 1620 ggagtcctga tgtttggaaa acagggtgct ggaagagaca atgtggacta cagcagcgtt 1680 atgctaacca gcgaagaaga aattaaaacc actaaccctg tagccacaga acaatacqqt 1740 gtggtggctg acaacttgca gcaaaccaat acagggccta ttgtgggaaa tgtcaacagc 1800 caaggagcct tacctggcat ggtctggcag aaccgagacg tgtacctgca gggtcccatc 1860 tgggccaaga ttcctcacac ggacggcaac ttccaccctt caccgctaat gggaggattt 1920 ggactgaagc acccacctcc tcagatcctg atcaagaaca cgccggtacc tgcggatcct 1980 ccaacgacgt tcagccaggc gaaattggct tccttcatta cgcagtacag caccggacag 2040 gtcagcgtgg aaatcgagtg ggagctgcag aaggagaaca gcaaacgctg gaacccagag 2100

Page 320

attcagtaca cttcaaacta ctacaaatct acaaatgtgg actttgctgt caatacagag ggaacttatt ctgagcctcg ccccattggt actcgttacc tcacccgtaa tctgtaa

2160 2217

<210> PRT vpl, serotype 5 <400> 216 Met Ser Phe Val Asp His Pro Pro Asp Trp Leu Glu Glu Val Gly Glu 1 15 Gly Leu Arg Glu Phe Leu Gly Leu Glu Ala Gly Pro Pro Lys Pro Lys Pro Asn Gln Gln His Gln Asp Gln Ala Arg Gly Leu Val Leu Pro Gly 35 40 Tyr Asn Tyr Leu Gly Pro Gly Asn Gly Leu Asp Arg Gly Glu Pro Val Asn Arg Ala Asp Glu Val Ala Arg Glu His Asp Ile Ser Tyr Asn Glu 65 70 80 Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp 85 90 Ala Glu Phe Gln Glu Lys Leu Ala Asp Asp Thr Ser Phe Gly Gly Asn 100 105 Leu Gly Lys Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Phe 115 120 125 Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Thr Gly Lys Arg Ile 130 135 140 Asp Asp His Phe Pro Lys Arg Lys Lys Ala Arg Thr Glu Glu Asp Ser Lys Pro Ser Thr Ser Ser Asp Ala Glu Ala Gly Pro Ser Gly Ser Gln
165 170 175 Gln Leu Gln Ile Pro Ala Gln Pro Ala Ser Ser Leu Gly Ala Asp Thr 180 185 Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala 195 200 205 Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp 210 220 Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro 225 230 240 Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser Val Asp 245 255 Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln 285 Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val 290 295 300 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Val Gln Asp Ser Thr 305 \$310\$

Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp 325 330 335 Asp Asp Tyr Gln Leu Pro Tyr Val Val Gly Asn Gly Thr Glu Gly Cys 340 350 Leu Pro Ala Phe Pro Pro Gln Val Phe Thr Leu Pro Gln Tyr Gly Tyr Ala Thr Leu Asn Arg Asp Asn Thr Glu Asn Pro Thr Glu Arg Ser Ser Phe Phe Cys Leu Glu Tyr Phe Pro Ser Lys Met Leu Arg Thr Gly Asn 385 400 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser 415 Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp
420 425 430 Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln 445 445 Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp 450 455 460 Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly 465 470 475 480 Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu 485 490 495 Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr 500 510 Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu 530 535 540 Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg 545 550 560 Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Ser 575 Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro
580 585 Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met 610 615 620 Gly Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn 625 630 635 640 Thr Pro Val Pro Gly Asn Ile Thr Ser Phe Ser Asp Val Pro Val Ser 645 650 655 Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Thr Val Glu Met Glu 660 670 Trp Glu Leu Lys Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln 675

680

685

Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp 690 700 Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu 705 710 720 Thr Arg Pro Leu

<210> 217 <211> 736 <212> PRT <213> vpl, serotype 3-3 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Val Pro Gln Pro 25 Lys Ala Asn Gln Gln His Gln Asp Asn Arg Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Ile Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Gly
130 135 140 Ala Val Asp Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Val Gly 145 150 160 Lys Ser Gly Lys Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Ala Pro Thr Ser Leu Gly Ser Asn Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His

Page 323

285

280

Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Leu Ser Phe Lys Leu Phe Asn Ile Gln Val Arg Gly Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 410 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 445 445 Gln Gly Thr Thr Ser Gly Thr Thr Asn Gln Ser Arg Leu Leu Phe Ser 450 455 460 Gln Ala Gly Pro Gln Ser Met Ser Leu Gln Ala Arg Asn Trp Leu Pro
465 470 480 Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Thr Ala Asn Asp Asn 495 Asn Asn Ser Asn Phe Pro Trp Thr Ala Ala Ser Lys Tyr His Leu Asn $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510$ Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys
520
525 Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Asn Leu Ile Phe Gly 530 540 Lys Glu Gly Thr Thr Ala Ser Asn Ala Glu Leu Asp Asn Val Met Ile 545 550 555 560 Thr Asp Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln
565 570 575 Tyr Gly Thr Val Ala Asn Asn Leu Gln Ser Ser Asn Thr Ala Pro Thr 580 585 590 Thr Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635

Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala 645 650 655 Asn Pro Pro Thr Thr Phe Ser Pro Ala Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 690 695 700 Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 218 <211> 734 <212> PRT <213> vpl, serotype 4-4

<400> 218

Met Thr Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu 1 15 Gly Val Arg Glu Trp Trp Ala Leu Gln Pro Gly Ala Pro Lys Pro Lys 25 30 Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro Gly 45 Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln 65 70 80Gin Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Gln Arg Leu Gln Gly Asp Thr Ser Phe Gly Gly Asn $100 \hspace{1cm} 105$ Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Gln Ala Gly Glu Thr Ala Pro Gly Lys Lys Arg Pro Leu Ile Glu Ser Pro Gln Gln Pro Asp Ser Ser Thr Gly Ile Gly Lys 145 150 160 Lys Gly Lys Gln Pro Ala Lys Lys Lys Leu Val Phe Glu Asp Glu Thr 165 170 Gly Ala Gly Asp Gly Pro Pro Glu Gly Ser Thr Ser Gly Ala Met Ser Asp Asp Ser Glu Met Arg Ala Ala Ala Gly Gly Ala Ala Val Glu Gly 195 200 205 Gly Gln Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys 210 215 220 Asp Ser. Thr Trp Ser Glu Gly His Val Thr Thr Thr Ser Thr Arg Thr 225 230 235 240 Trp Val Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Arg Leu Gly Glu Ser Leu Gln Ser Asn Thr Tyr Asn Gly Phe Ser Thr Pro Trp Gly Tyr 260 270 Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln 285 Arg Leu Ile Asn Asn Asn Trp Gly Met Arg Pro Lys Ala Met Arg Val Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Thr Ser Asn Gly Glu 305 310 315 320 Thr Thr Val Ala Asn Asn Leu Thr Ser Thr Val Gln Ile Phe Ala Asp 325 330 335 Ser Ser Tyr Glu Leu Pro Tyr Val Met Asp Ala Gly Gln Glu Gly Ser 340 350 Leu Pro Pro Phe Pro Asn Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Cys Gly Leu Val Thr Gly Asn Thr Ser Gln Gln Gln Thr Asp Arg Asn 370 380 Ala Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly 385 390 400 Asn Asn Phe Glu Ile Thr Tyr Ser Phe Glu Lys Val Pro Phe His Ser 415 Met Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile 420 430 Asp Gln Tyr Leu Trp Gly Leu Gln Ser Thr Thr Thr Gly Thr Thr Leu 435 440 445 Asn Ala Gly Thr Ala Thr Thr Asn Phe Thr Lys Leu Arg Pro Thr Asn 450 460 Phe Ser Asn Phe Lys Lys Asn Trp Leu Pro Gly Pro Ser Ile Lys Gln
465 470 475 480 Gln Gly Phe Ser Lys Thr Ala Asn Gln Asn Tyr Lys Ile Pro Ala Thr 485 490 495 Gly Ser Asp Ser Leu Ile Lys Tyr Glu Thr His Ser Thr Leu Asp Gly 500 510 Arg Trp Ser Ala Leu Thr Pro Gly Pro Pro Met Ala Thr Ala Gly Pro 525 Ala Asp Ser Lys Phe Ser Asn Ser Gln Leu Ile Phe Ala Gly Pro Lys Gln Asn Gly Asn Thr Ala Thr Val Pro Gly Thr Leu Ile Phe Thr Ser 545 550 560 Glu Glu Glu Leu Ala Ala Thr Asn Ala Thr Asp Thr Asp Met Trp Gly 570 Asn Leu Pro Gly Gly Asp Gln Ser Asn Ser Asn Leu Pro Thr Val Asp 580 590 Arg Leu Thr Ala Leu Gly Ala Val Pro Gly Met Val Trp Gln Asn Arg

PCT/US2004/028817 WO 2005/033321

ASP Ile Tyr Tyr Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr ASP 610 620 Gly His Phe His Pro Ser Pro Leu Ile Gly Gly Phe Gly Leu Lys His 625 630 635 640 Pro Pro Pro Gln Ile Phe Ile Lys Asn Thr Pro Val Pro Ala Asn Pro 655 Ala Thr Thr Phe Ser Ser Thr Pro Val Asn Ser Phe Ile Thr Gln Tyr $660 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$ Ser Thr Gly Gln Val Ser Val Gln Ile Asp Trp Glu Ile Gln Lys Glu 675 680 685 Arg Ser Lys Arg Trp Asn Pro Glu Val Gln Phe Thr Ser Asn Tyr Gly 690 700 Gln Gln Asn Ser Leu Leu Trp Ala Pro Asp Ala Ala Gly Lys Tyr Thr 705 710 720 Glu Pro Arg Ala Ile Gly Thr Arg Tyr Leu Thr His His Leu
725
730

<210> 219 <211> 736 <212> PRT <213> vpl, serotype 1

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 415 Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 440 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 490 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg

Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala Thr Gly Asp val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala $645 \hspace{1.5cm} 655 \hspace{1.5cm}$ Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 665 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Phe Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175

<210> 220 <211> 736 <212> PRT <213> vpl, serotype 6

Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 325 330 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala 355 360 365 Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe 405 410 415 Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg 445 445 Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 485 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 500 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Lys Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly Page 330

Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 555 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Leu Gln Ser Ser Thr Asp Pro Ala Thr Gly Asp Val His Val Met Gly Ala Leu Pro Gly Met Val Trp Gln 595 600 Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 695 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg Page 331

<210> 221 <211> 735 <212> PRT <213> vpl, serotype 2

130

135

140

Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 365 365 Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 435 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 490 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
500 505 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 515 520 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr 580 585 590 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 635 630 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
660 665 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala

<210> 222 <211> 737 <212> PRT <213> vpl, serotype 7

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Ala Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Val Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Glu Thr Ala Gly Ser Thr Asn Asp Asn 260 270 Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Leu Arg Phe Lys Leu Phe Asn Ile 305 310 315 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 375 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu
420
430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala 445 Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 WO 2005/033321 PCT/US2004/028817

Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 575 Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 585 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 640 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 645 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 665 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Phe Glu Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 715 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 15 Glu Gly Ile Arg Glu Trp Trp Ala Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asp Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro

<210> 223 <211> 738 <212> PRT

<213> vpl, serotype 8

<400> 223

WO 2005/033321 PCT/US2004/028817

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln
165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ala Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Thr Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala Asn Thr Gln Thr Leu Gly
450 455 460 Phe Ser Gln Gly Gly Pro Asn Thr Met Ala Asn Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Gly
485 495 Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Gly Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asn Ser Leu Ala Asn Pro Gly Ile Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile 530 540 Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 575 Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala 580 590 Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635 Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ser Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Ser Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

²²⁴ 736 PRT Vpl, modified hu.46

<400> 224 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 30 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 185 190 Ala Thr Pro Ala Ala Val Gly Pro Thr Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn His 260 265 270 Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe 275 280 285 His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn 290 295 300 Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln 305 310 315 Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn 335 Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly 370 375 380 Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro 385 390 395 Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu Glu Val Pro Leu His Ser Ser Cys Ala His Ser Gln Ser Leu Asp 420 430 Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Arg Asp Leu Leu Phe Ser 450 460 Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro
465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn 490 495 Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn 505 510 Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly 530 535 540 Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile 545 550 560 Thr Asp Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg 565 570 575 Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Thr Asp Pro Ala 580 590 Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 610 620 Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 640 Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile Thr 660 670 Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser Asn 690 700 Tyr Ala Lys Ser Ala Asn Val Asp Phe Thr Val Asp Asn Asn Gly Leu 705 710 720 Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu

<210> 225 <211> 735 <212> PRT <213> vpl, modified hu.29

<400> 225 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro 25 Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 160 Lys Ser Gly Asn Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 290 295 300 Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 345 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
420 425 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr 440 445 Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
465 470 475 480 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn 495 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys 530 540 Gln Gly Pro Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr 545 550 555 560 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
565 570 575 Gly Ser Val Ser Thr Asn Leu Gln Ser Gly Asn Thr Gln Ala Ala Thr 580 585 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 640 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn 645 655 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys

PCT/US2004/028817 WO 2005/033321

Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 226 <211> 735 <212> PRT <213> vpl, modified hu.7

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 25 30 30Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Pro Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu His Ser Pro Ala Glu Pro Asp Ser Ser Gly Thr Gly
145 150 155 160 Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Ser Thr Thr Met Ala Thr Gly Ser Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 225 230 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 260 265 270Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 360 365 val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 370 375 380 Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 405 415 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Lys Thr 445 445 Gln Ser Asn Ser Gly Thr Leu Gln Gln Ser Arg Leu Leu Phe Ser Gln 450 455 460 Ala Gly Pro Thr Ser Met Ser Leu Gln Ala Lys Asn Trp Leu Pro Gly
465 470 480 Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Gln Ala Asn Asp Asn Asn 495 Asn Ser Asn Phe Pro Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly 500 510 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Phe Phe Pro Met His Gly Thr Leu Ile Phe Gly Lys 530 535 540 Gln Gly Thr Asn Ala Asn Asp Ala Asp Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Tyr Val Ser Asn Asn Leu Gln Asn Ser Asn Thr Gly Pro Thr Thr 580 585 Gly Thr Val Asn His Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asp 595 600 605 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr 610 620 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 635 630 640 His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala Asn 655 655 Pro Pro Thr Asn Phe Ser Ser Ala Lys Phe Ala Ser Phe Ile Thr Gln 660 670 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr 705 710 715 720 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
725 730 735

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Arg Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Asn Gly Gln Pro Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala 195 200 205 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp 210 215 220 His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250

<210> 227 <211> 728 <212> PRT <213> vpl, modified cy.5

Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser 260 270 Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Trp Gly Phe Arg Pro 290 295 300 Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile 325 330 335 Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser 340 350 Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile 355 360 365 Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly 370 380 Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg 385 400 Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe 405 410 415 His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro 420 430 Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr 435 440 445Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met 450 460 Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln 465 470 475 480 Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Asn Ser Asn Phe Ala Trp
485 490 495 Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn 500 510 Pro Gly Val Ala Met Ala Thr Asn Lys Asp Glu Asp Gln Phe Phe 515 520 525 Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys 530 540 Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr 545 550 560 Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly 580 585 Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly 595 600 Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser 610

Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu 625 630 635 Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro 645 655 Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn 680 685 Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly 705 710 715 720 Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 228 <211> 728 <212> PRT <213> vpl, modified rh.13

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Solu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Lys Gln Leu Glu Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser 180 185 190 Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp Page 346

His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Thr Asn Asp Asn His Phe Phe Gly Tyr Ser 260 270 Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser 275 280 285 Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Trp Gly Phe Arg Pro Arg Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Thr Asn Asp Gly val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Ile 325 330 335 Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile 355 360 365 Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg 385 400 Thr Gly Asn Asn Phe Glu Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe 405 415 His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr Thr 445 Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr Met 450 460 Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln
465 470 480 Arg Leu Ser Lys Asn Ile Asp Ser Asn Asn Asn Ser Asn Phe Ala Trp
485 490 495 Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn 500 510 Pro Gly Val Ala Met Ala Thr Asn Lys Asp Glu Asp Gln Phe Phe 515 520 525 Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn Lys 530 535 540 Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys Thr 545 550 560 Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu Gln Ser Ser Thr Ala Gly Pro Gln Thr Gln Thr Val Asn Ser Gln Gly 585 590 Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly 595 600 605 Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser 610 615 620 Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu 625 630 635 640 Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Pro 645 650 655 Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn 675 680 685 Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Glu 690 695 700 Phe Ala Val Asn Asn Glu Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly 705 710 720 Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 229 <211> 729 <212> PRT <213> vp1, modified rh.37

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro
25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg Pro Ile Asp Ser Pro Asp Ser Ser Thr Gly Ile Gly Lys Lys Gly Gln
145 150 155 160 Gln Pro Ala Lys Lys Leu Asn Phe Gly Gln Thr Gly Asp Ser Glu 165 170 175 Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Thr Ala 195 200 205 Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr 225 230 240 Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu Tyr Lys Gln Ile 245 250 255 Ser Ser Ser Ser Gly Ala Thr Asn Asp Asn His Tyr Phe Gly Tyr 260 265 270 Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg 290 295 300 Pro Lys Lys Leu Arg Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val 305 310 320 Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu Pro Tyr Val Leu Gly 340 350 Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met 355 360 365 The Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu 385 390 400 Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro 405 410 Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn 420 430 Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Thr 445 Thr Gly Ser Thr Arg Glu Leu Gln Phe His Gln Ala Gly Pro Asn Thr 450 460Met Ala Glu Gln Ser Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln 465 470 475 480 Gln Arg Leu Ser Lys Asn Leu Asp Phe Asn Asn Asn Ser Asn Phe Ala Trp Thr Ala Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Thr Asn Pro Gly Ile Pro Met Ala Thr Asn Lys Asp Asp Glu Asp Gln Phe 515 520 525 Phe Pro Ile Asn Gly Val Leu Val Phe Gly Lys Thr Gly Ala Ala Asn 530 540 WO 2005/033321 PCT/US2004/028817

Lys Thr Thr Leu Glu Asn Val Leu Met Thr Ser Glu Glu Glu Ile Lys 560

Thr Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Val Val Ser Ser Asn Leu Gln Ser Ser Thr Ala Gly Pro Gln Ser Gln Thr Ile Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Gly Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Gly Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Pro Glu Val Phe Thr Asp Gly Asn Phe His Pro Ala Lys Phe Ala Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Gly Ile Glu Trp Glu Leu Gln G65 Glo Tyr Leu Gln G70

Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Ala Lys Ser Asn Asn Val Gly Phe Ala Val Asn Pro Asp Gly Val Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 230 <211> 737 <212> PRT <213> vpl, modified rh.67

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Asn Leu Gly Arg Ala Clys Lys Arg Val Leu Glu Pro Leu Gly Leu Gly Leu Gly Leu Gly Leu Gly Leu Glu Pro Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg Leu Gly Lys Lys Arg

Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220 Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Gln Ser Ala Gly Ser Thr Asn Asp Asn 260 270 val Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Lys Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ser Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 410 . 415Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Ala Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln 450 460 Phe Tyr Gln Gly Gly Pro Thr Thr Met Ala Glu Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg Val Ser Lys Thr Leu Asp
485
495 Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His

Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Ile 530 535 540 Phe Gly Lys Thr Gly Ala Ala Asn Lys Thr Thr Leu Glu Asn Val Leu 545 550 555 560 Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu 565 570 575 Glu Tyr Gly Thr Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala 580 590 Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp 595 600 605 Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 610 615 620 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly 625 630 635 Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro 655 Ala Asn Pro Pro Glu Val Phe Thr Pro Ala Lys Phe Ala Ser Phe Ile 660 670 Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu 675 680 685 Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser 690 700 Asn Phe Asp Lys Gln Thr Gly Val Asp Phe Ala Val Asp Ser Gln Gly 705 710 720 Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn 725 735

Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90

<210> 231 <211> 738 <212> PRT <213> vpl, modified rh.2

WO 2005/033321 PCT/US2004/028817

Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly
100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly His Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 185 190 Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 265 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 305 310 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345 350Leu Pro Tyr Val Pro Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 405 410 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 440 ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu Page 353

Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp 465 470 475 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 530 540 Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Thr Asn Gly Ala 580 590 Pro Ile Val Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 595 600 605 Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 615 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 625 630 635Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 650 655 Pro Ala Asp Pro Pro Thr Thr Phe Ser Gln Ala Lys Leu Ala Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 675 680 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 720 Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 725 730 735

Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro Page 354

<210> 232 <211> 738 <212> PRT <213> vpl, modified rh.58

<400>

4 9

Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 165 170 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 235 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp $260 \hspace{1.5cm} 270 \hspace{1.5cm}$ Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 275 280 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300 Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 315 320 Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala
325 330 335 Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 345Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 385 390 395 400

WO 2005/033321 PCT/US2004/028817

Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 420 430 Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 610 620 Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Ser Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 665 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg

Asn Leu

<210> 233 <211> 738 <212> PRT

<213> vpl, modified rh.64 Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 20 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 160 Gly Lys Lys Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 180 190 Pro Ala Ala Pro Ser Ser Val Gly Ser Gly Thr Met Ala Ala Gly Gly 195 200 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 210 215 220 Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 225 230 240 Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 260 270 Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 285 Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 290 295 300

Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Ser Phe Lys Leu Phe Asn 305 310 320

Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 325 330 335

Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 340 350

Leu Pro Tyr val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 355 360 365 Pro Ala Asp val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 370 380 Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Ser Phe Ser Tyr 405 410 415 Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 445 Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ser Asn Met Ser Ala Gln Ala Arg Asn Trp
465 470 480 Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 500 510 Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 515 520 525 Asn Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Ile Leu Met Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Asn Val 545 550 560 Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 565 570 575 Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Thr Ala Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 645 655 Pro Ala Asp Pro Pro Thr Ala Phe Asn Gln Ala Lys Leu Asn Ser Phe 660 670 Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 685 Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 690 695 700 Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 705 710 725

PCT/US2004/028817 WO 2005/033321

Gly Val Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

<210> 234 <211> 735 <212> PRT <213> vp1, modified ch.5

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser 1 10 15 Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro 20 25 30 Lys Pro Asn Gln Gln His Arg Asp Asp Ser Arg Gly Leu Val Leu Pro Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp His Gln Leu Lys Gln Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 85 90 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Val Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Ile Glu Gln Ser Pro Ala Glu Pro Asp Ser Ser Gly Ile Gly 145 150 160 Lys Ser Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr Gly Asp Thr Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro 180 190 Ala Ala Pro Ser Gly Val Gly Ser Asn Thr Met Ala Ser Gly Gly Gly 195 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 215 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255 Tyr Lys Gln Ile Ser Ser Glu Ser Gly Ala Thr Asn Asp Asn His Tyr 260 265 Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 275 280 285 Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp Gly Phe Arg Pro Lys Leu Asn Phe Lys Leu Phe Asn Ile Gln Val Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 325 330 335 Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 340 350 Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 385 390 395 400 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu 405 410 415Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 420 430 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr $435 \hspace{1.5cm} 440 \hspace{1.5cm} 445$ Gln Gly Thr Ser Gly Thr Thr Gln Gln Ser Arg Leu Gln Phe Ser Gln 450 455 460 Ala Gly Pro Ser Ser Met Ala Gln Gln Ala Lys Asn Trp Leu Pro Gly
465 470 480 Pro Ser Tyr Arg Gln Gln Arg Met Ser Lys Thr Ala Asn Asp Asn Asn 495 Asn Ser Glu Phe Ala Trp Thr Ala Ala Thr Lys Tyr Tyr Leu Asn Gly 500 510 Arg Asn Ser Leu Val Asn Pro Gly Pro Pro Met Ala Ser His Lys Asp 525 Asp Glu Glu Lys Tyr Phe Pro Met His Gly Asn Leu Ile Phe Gly Lys 530 540 Gln Gly Thr Gly Thr Thr Asn Val Asp Ile Glu Ser Val Leu Ile Thr 545 550 555 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr 565 570 Gly Gln Val Ala Thr Asn His Gln Ser Gln Asn Thr Thr Ala Ser Tyr 580 585 Gly Ser Val Asp Ser Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp 595 600 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys 625 630 635 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn Pro Ala Thr Thr Phe Thr Pro Gly Lys Phe Ala Ser Phe Ile Thr Gln

Page 360

Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys 675 680 685 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr 690 695 700 Asn Lys Ser Val Asn Val Glu Phe Thr Val Asp Ala Asn Gly Val Tyr 705 710 725 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu 735 735

<210> 235 <211> 736 <212> PRT <213> vp1, modified rh.8

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 25 30 Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro 35 40 45 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 100 105 110 Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Gln Ser Pro Gln Glu Pro Asp Ser Ser Gly Ile Gly 145 150 155 160 Lys Thr Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln Thr 165 170 175 Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 180 190 Ala Ala Pro Ser Gly Leu Gly Pro Asn Thr Met Ala Ser Gly Gly Gly 195 200 205 Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 210 220 Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile 225 230 235 240 Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 245 250 255

Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp Asn

Page 361

260

265

270

Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 320 Gln Val Lys Glu Val Thr Thr Asn Glu Gly Thr Lys Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu 340 345 350 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 360 365 Ala Asp Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn $370 \hspace{1cm} 375 \hspace{1cm} 380$ Gly Ser Gln Ala Leu Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr 405 415Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Val 445 Arg Thr Gln Thr Thr Gly Thr Gly Gly Thr Gln Thr Leu Ala Phe Ser 450 460 Gln Ala Gly Pro Ser Ser Met Ala Asn Gln Ala Arg Asn Trp Val Pro 465 470 475 480 Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Asn Gln Asn 485 490 495 Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Ala Lys Phe Lys Leu Asn 500 510 Gly Arg Asp Ser Leu Met Asn Pro Gly Val Ala Met Ala Ser His Lys 515 520 525 Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly 530 540 Lys Gln Gly Ala Gly Asn Asp Gly Val Asp Tyr Ser Gln Val Leu Ile 545 550 560 Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Glu 565 570 575 Tyr Gly Ala Val Ala Ile Asn Asn Gln Ala Ala Asn Thr Gln Ala Gln 580 590 Thr Gly Leu Val His Asn Gln Gly Val Ile Pro Gly Met Val Trp Gln 595 600 Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His

PCT/US2004/028817 WO 2005/033321

Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 625 630 635 640 Lys His Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala 645 650 655 Asp Pro Pro Leu Thr Phe Asn Gln Ala Lys Leu Asn Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 675 680 685 Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu Gly Val 705 710 715 720 Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu

Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 1 10 15 Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro Lys Ala Asn Gln Gln Lys Gln Asp Asp Gly Arg Gly Leu Val Leu Pro
35 40 Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 50 60 Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 65 70 75 80 Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Pro Arg Tyr Asn His Ala 85 90 95 Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 115 120 125 Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 130 135 140 Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 145 150 155 160 Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 165 170 175 Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro Pro Ala Gly Pro Ser Gly Leu Gly Ser Gly Thr Met Ala Ala Gly Gly
195 200 205 Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn 210 220

<210> 236 <211> 737 <212> PRT <213> vpl, modified hu.43

Ala Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 245 250 255 Leu Tyr Lys Gln Ile Ser Ser Ala Ser Thr Gly Ala Ser Asn Asp Asn 265 270 His Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg 275 280 285 Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn 290 295 300 Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile 305 310 315 Gln Val Lys Glu Val Thr Thr Asn Asp Gly Val Thr Thr Ile Ala Asn 325 330 Asn Leu Thr Ser Thr Val Gln Val Phe Ser Asp Ser Glu Tyr Gln Leu 340 345 Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro 365 360 365 Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn 370 380 Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe 385 390 395 400 Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr 405 415 Phe Glu Glu Val Pro Leu His Ser Ser Tyr Ala His Ser Gln Ser Leu 420 425 430 Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn 445 Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu 465 470 480 Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp
485
490
495 Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu 500 505 510 Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His 515 520 525 Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe 530 540 Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met 545 550 560 Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu 575 575 Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro Leu

Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp

Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro

His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly

Leu Lys Asn Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro

Ala Asn Pro Pro Ala Glu Phe Ser Ala Thr Lys Phe Ala Ser Phe Ile

Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Gly Trp Glu Leu

Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Val Gln Tyr Thr Ser

Asn Tyr Ala Lys Ser Ala Ser Val Asp Phe Thr Val Asp Asn Asn Gly

705

Leu Tyr Thr Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro

735