TESTARE

Rock 'n' Volt Technologies

Data 25.04.2024

Tabel performante

Parametru	Descriere	Conditii	Min.	Nom.	Max.	Unitat e
V_{DD}	Gama de alimentare	Temp. = 27 °C	1.92	2	5	V
lα	Curentul total consumat	Temp. = 27 °C V _{DD} = Nom.	n/a	7.36	n/a	μΑ
I _{оит}	Gama de variație a I _{OUT} cu V _{DD}	Temp. = 27 °C V_{DD} = Min. $\leftarrow \rightarrow$ Max.	1.26	1.34	1.34	μΑ
SUDUT	Sensibilitatea I_{OUT} în funcție de V_{DD}	Temp. = 27 °C	n/a	0.04	n/a	
Гоит	Gama de variație a I _{OUT} cu temperatura	Temp. = -40 °C \longleftrightarrow 125 °C \lor_{DD} = 5V	1.03		1.53	μΑ
тс	Coeficient de variație cu temperatura	V _{DD} = 5V	n/a	-0.003	n/a	μΑ/°C
m	Media din simularea Monte Carlo	Temp. = 27 °C V _{DD} = Nom.	n/a	1.36	n/a	μΑ
σ	Deviația standard din simularea Monte Carlo	Temp. = 27 °C V _{DD} = Nom.	n/a	0.30	n/a	μΑ
I _{OUT}	Gama de variație a Ι _{ΟυΤ} cu procesul	Temp. = 27 °C V _{DD} = Nom.	0.46	1.36	2.26	μΑ
V _{OUT}	Tensiunea maximă de ieșire	Temp. = -40 °C \longleftrightarrow 125 °C \lor_{DD} = 5 \lor	4.75	4.80	4.82	V
Arie	Nr. total de dispozitive din schemă		n/a	22	n/a	N/A

1. Setup de simulare a variatiei curentului de iesire in raport cu VDD.

- 2. Simulare DC Sweep printscreen cu formele de unda pentru IOUT si pentru curentul sursei de alimentare (IQ) in functie de VDD masurare parametrii 1, 2, 3, 4, 5, 6 din tabel. Calcul sensibilitate cu VDD a curentului de iesire parametrul 7 din tabel.
 - Forma de unda IOUT =f(VDD) si masuratorile.

• Forma de unda IQ=f(VDD) si masuratorile.

• Calculul sensibilitatii cu VDD conform formulei din platforma:

$$S_{\mathrm{VDD}}^{\mathrm{IOUT}} = \frac{V_{\mathrm{DD-NOM}}}{I_{\mathrm{OUT-NOM}}} \cdot \frac{I_{\mathrm{OUT-MAX(VDD)}} - I_{\mathrm{OUT-MIN(VDD)}}}{V_{\mathrm{DD-MAX}} - V_{\mathrm{DD-MIN}}}$$

$$5\frac{1007}{Van} = \frac{2}{1.34 \cdot 10^{-6}} \cdot \frac{\left(1,34 - 1,26\right) \cdot 10^{-6}}{5 - 1.92} = 0.0387$$

3.

Setup de simulare a variatiei curentului de iesire in raport cu temperatura (gama -40 °C → 125 °C) la VDD = 5V(la VDD=VDD nominal variatia nu este monotona)

- 4. Simulare DC Sweep printscreen cu forma de unda a curentului de iesire in functie de temperatura la VDD = VDD-Nominal masurare parametrii 8, 9 din tabel. Calcul coeficient de variatie cu temperature a curentului de iesire (TC) parametrul 9 din tabel.
 - Forma de unda IOUT=f(TEMP) si masuratorile.

• Calculul coeficientului de variatie cu temperature a curentului de iesire IOUT

$$TC = \frac{\Delta I_{OUT(Temp)}}{\Delta Temp} = \frac{I_{OUT(125^{\circ}C)} - I_{OUT(-40^{\circ}C)}}{165}$$

5. Setup de simulare Monte Carlo a variatiei curentului de iesire.

- 6. Simulare Monte Carlo printscreen cu histograma curentului de iesire pentru VDD = VDD-Nominal masurare parametrii 11, 12 din tabel. Calcul variatie cu procesul a curentului de iesire parametrul 13 din tabel.
 - Histograma curentului de iesire pentru VDD nominal si masuratori.

• Calculul variatiei cu procesul a curentului de iesire IOUT:

Mean=1.36733e-006 Sigma=0.30057e-006

1.36733e-006 + 3 x 0.30057e-006 = 2.26804 uA

1.36733e-006 - 3 x 0.30057e-006 = 0.46562 uA

7. Setup de simulare a variatiei curentului de iesire in raport cu sarcina (gama $0 \rightarrow 5$ V) in conditiile VDD = 5 V pentru cele 3 temperaturi: -40 °C, 25 °C, 125 °C.

- 8. Simulare DC Sweep printscreen cu formele de unda ale curentului de iesire in functie de sarcina la VDD = 5 V pentru cele trei temperaturi masurare parametrii 14, 15, 16 din tabel.
 - Masurarea tensiunii VOUT pentru INOM la -40°
 Curentul are valoarea 1.383uA, la limita de valoarea nominala.

Masurarea tensiunii VOUT pentru INOM la 25°
 Curentul are valoarea de 1.217 uA, sub valoarea nominala.

• Masurarea tensiunii VOUT pentru INOM la 125°

Curentul atinge valoarea de 0.928uA, sub valoarea nominala.

