Integração

O Teorema Fundamental do Cálculo

Teorema 5.6 – Teorema Fundamental do Cálculo, Parte I :

Seja f uma função real de uma variável real. Se f é contínua em [a,b] e se F é a antiderivada de f em [a,b], então

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Relação entre a integral definida e a indefinida

Recordamos que: se, para todo x no intervalo [a,b],

$$\frac{d}{dx}[F(x)] = f(x)$$
, então antidiferenciando-se $f(x)$, obtém-se

integração de f(x) em relação a x

$$\int f(x)dx = F(x) + c, \text{ para todo } x \text{ em } [a,b]$$

integral indefinida

constante de integração

Neste caso,

$$\left[\int f(x) dx\right]_a^b := \left(F(b) + c\right) - \left(F(a) + c\right) = F(b) - F(a)$$

Portanto, se f é contínua em [a,b]:

$$\int_{a}^{b} f(x) dx = \left[\int f(x) dx \right]_{a}^{b}.$$

Exemplo 5.10

$$\int_0^1 (x^3 + 2x + 10) dx = ?$$

Em primeiro lugar, observamos que a função que queremos integrar, $f(x) := x^3 + 2x + 10$, é uma <u>função polinomial</u> e, portanto, pelo Teorema 2.11 é contínua em $(-\infty, +\infty)$. Logo, pelo Teorema Fundamental do Cálculo – Parte I,

$$\int_0^1 \left(x^3 + 2x + 10 \right) dx = \left[\int \left(x^3 + 2x + 10 \right) dx \right]_0^1$$

Agora, notamos que

7/5

Mas:

1)
$$\int x^3 dx = \frac{x^4}{4} + c_1 \leftarrow \text{regra da potência},$$

2)
$$\int 2x dx = 2 \int x dx \leftarrow \text{regra da homogeneidade},$$

$$=2\frac{x^2}{2}+c_2 \leftarrow \text{regra da potência},$$

3)
$$\int 10 dx = 10 \int dx \leftarrow \text{regra da homogeneidade},$$

= $10(x+c_3) \leftarrow \text{regra da potência}.$

Logo, obtém-se

$$\int (x^3 + 2x + 10) dx = \frac{x^4}{4} + x^2 + 10x + c$$

e portanto

$$\int_{0}^{1} (x^{3} + 2x + 10) dx = \left[\frac{x^{4}}{4} + x^{2} + 10x + c \right]_{0}^{1} = \left[\frac{(1)^{4}}{4} + (1)^{2} + 10.1 \right] - \left[\frac{(0)^{4}}{4} + (0)^{2} + 10.0 \right] = \frac{1}{4} + 1 = \frac{5}{4}$$
cederi

Exemplo 5.11
$$\int_{1}^{3} \sqrt{7x+2} \, dx = ?$$

Traçando o gráfico da função que queremos integrar concluímos que ela é contínua no intervalo [1,3].

Logo, pelo Teorema Fundamental do Cálculo – Parte I,

$$\int_{1}^{3} \sqrt{7x + 2} \, dx = \left[\int \sqrt{7x + 2} \, dx \right]_{1}^{3}$$

Neste caso $f(x) = \sqrt{7x + 2}$.

Vamos escolher $u = g(x) := 7x + 2 \implies g'(x) = 7$.

Vamos definir $\hat{f}(u) := \frac{\sqrt{u}}{7}$, porque com esta escolha

$$(\hat{f} \circ g)(x)g'(x) = \left[\frac{\sqrt{(7x+2)}}{7}\right]_{g'(x)}^{7} = f(x).$$

Por outro lado,

$$\int \frac{\sqrt{u}}{7} du = \frac{1}{7} \int \sqrt{u} du \leftarrow \text{regra da homogeneidade}$$

$$= \frac{1}{7} \int u^{\frac{1}{2}} du = \frac{1}{7} \frac{u^{\frac{1}{2}+1}}{\left(\frac{1}{2}+1\right)} + c_1 \leftarrow \text{regra da potência}$$

$$= \frac{2}{21} u^{\frac{3}{2}} + c_1 \implies \hat{F}(u) := \frac{2}{21} u^{\frac{3}{2}}$$

e portanto

$$\int \sqrt{7x+2} \, dx = \left(\hat{F} \circ g\right)(x) + c = \frac{2}{21} \left(7x+2\right)^{\frac{3}{2}} + c = \frac{2}{21} \sqrt{\left(7x+2\right)^{\frac{3}{2}}} + c.$$

Vamos refazer o Exemplo 5.6, para calcular

$$\int \sqrt{7x+2}\,dx.$$

Logo, obtém-se

$$\int_{1}^{3} \sqrt{7x+2} \, dx = \left[\frac{2}{21} \sqrt{(7x+2)^{3}} + c \right]_{1}^{3} = \frac{2}{21} \left\{ \sqrt{[7(3)+2]^{3}} - \sqrt{[7(1)+2]^{3}} \right\}$$

$$= \frac{2}{21} \left(23\sqrt{23} - 27 \right)$$

$$= 7.9337.$$

Como veremos a seguir, a resolução do exemplo anterior poderia ser um pouco simplificada. Para isto precisamos do próximo teorema.

Teorema 5.7 : Sejam $\hat{f} \in \mathcal{E}$ funções reais de uma variável real. Se

- 1) g é diferenciável no intervalo fechado [a,b],
- 2) g' é contínua em [a,b],
- 3) \hat{f} é contínua no intervalo fechado [g(a), g(b)],

então

$$\int_{a}^{b} (\hat{f} \circ g)(x) g'(x) dx = \int_{g(a)}^{g(b)} \hat{f}(u) du.$$

A utilização desse teorema no cálculo de integrais definidas é chamado, por alguns autores, de cálculo de integrais definidas por substituição.

Vamos revolver novamente o exemplo anterior mas sob a luz deste teorema.

Exemplo 5.12
$$\int_{1}^{3} \sqrt{7x + 2} \, dx = ?$$

No Exemplo 5.11 verificamos que

$$\int_{1}^{3} \sqrt{7x + 2} \, dx = \left[\int \sqrt{7x + 2} \, dx \right]_{1}^{3}.$$

Para calcularmos a integral indefinida $\int \sqrt{7x+2} \, dx$ utilizamos a técnica de substituição, para a qual escolhemos:

1)
$$u = g(x) := 7x + 2 \implies g'(x) = 7$$

$$\Rightarrow (\hat{f} \circ g)(x)g'(x) = \left[\frac{\sqrt{7x + 2}}{7} \right]_{g(x)}^{7}$$
2) $\hat{f}(u) := \frac{\sqrt{u}}{7}$

Observamos que g é diferenciável em [1,3], g' é contínua em [1,3] e

 \hat{f} é contínua no intervalo [g(1), g(3)] = [9,23] (verificar!). Logo

$$\int_{1}^{3} \sqrt{7x+2} \, dx = \int_{1}^{3} (\hat{f} \circ g)(x) g'(x) dx = \int_{9}^{23} \hat{f}(u) du = \int_{9}^{23} \frac{\sqrt{u}}{7} du.$$

por construção

Teorema 5.7

No exemplo anterior verificamos que $\int \frac{\sqrt{u}}{7} du = \frac{2}{21} u^{\frac{3}{2}} + c \quad e$

portanto, pelo Teorema Fundamental do Cálculo – Parte I,

$$\int_{9}^{23} \frac{\sqrt{u}}{7} du = \left[\int \frac{\sqrt{u}}{7} du \right]_{9}^{23} = \left[\frac{2}{21} u^{\frac{3}{2}} + c \right]_{9}^{23} = \frac{2}{21} \left[23^{\frac{3}{2}} - 9^{\frac{3}{2}} \right]$$
$$= \frac{2}{21} \left[23\sqrt{23} - 27 \right].$$

Seja f uma função real de uma variável real. Se f é contínua em um intervalo I, então f tem uma antiderivada em I. Em particular, se a é um ponto qualquer de I, então a função F definida por

$$F(x) := \int_{a}^{x} f(t) dt$$

é uma antiderivada de f em I, ou seja, para todo x em I

$$\left| \frac{d}{dx} \left[\int_{a}^{x} f(t) \, dt \right] = f(x).$$

Exemplo 5.13
$$\frac{d}{dx} \left[\int_0^x (2t^2 - t + 1) dt \right] = ?$$

O integrando, a função f definida por $f(t) = 2t^2 - t + 1$, é uma função polinomial e, portanto, é contínua (Teorema 2.11) em todo o seu domínio natural que é $(-\infty, +\infty)$. Logo, Teorema Fundamental do Cálculo – Parte II

$$\frac{d}{dx}\left[\int_0^x \left(2t^2-t+1\right)dt\right] = f(x) = 2x^2-x+1.$$

OBS: Neste exemplo a := 0.

Exemplo
$$\frac{d}{dx} \left[\int_3^{x^2} (5t + 7)^{25} dt \right] = ?$$

O integrando, a função f definida por $f(t)=(5t+7)^{25}$, é uma função polinomial e, portanto, é contínua (Teorema 2.11) em todo o seu domínio natural que é $(-\infty, +\infty)$. Entretanto, não podemos aplicar direto o Teorema Fundamental do Cálculo – Parte II porque no limite superior da integral aparece a variável x elevada à uma potência diferente de 1.

Vamos definir 3 funções auxiliares:

1)
$$F(x) := \int_{3}^{x^{2}} (5t + 7)^{25} dt$$

2) $u = g(x) := x^{2}$
3) $\hat{F}(u) := \int_{3}^{u} (5t + 7)^{25} dt$ $\Rightarrow F(x) = (\hat{F} \circ g)(x) \quad \forall x \in \mathbb{R}.$

Logo,

$$F'(x) = \frac{d}{dx} \left[\int_{3}^{x^{2}} (5t + 7)^{25} dt \right]$$
$$= \left(\hat{F} \circ g \right)'(x) = \hat{F}'(g(x))g'(x) \leftarrow \text{ regra da cadeia}$$

Além disso:

1)
$$\hat{F}'(u) = \frac{d}{du} \left[\int_3^u (5t+7)^{25} dt \right] = (5u+7)^{25} \leftarrow \text{teorema F.C. - Parte II,}$$

2) $g'(x) = 2x \leftarrow \text{regra da potência.}$

Portanto

$$\frac{d}{dx} \left[\int_{3}^{x^{2}} (5t+7)^{25} dt \right] = (5x^{2}+7)^{25} (2x).$$

Aplicações da Integral Definida

Áreas de Regiões Planas

Para o primeiro método que estudaremos – área por fatiamento - vamos considerar regiões do plano com as seguintes característica:

- a fronteira dessas regiões deve ser formada por um número finito de segmentos de linhas reta ou arcos suaves que devem se encontrar em um número finito de cantos ou vértices;
- as regiões devem ser limitadas no sentido de que deve existir um limite superior para as distâncias entre pontos das regiões.

Exemplo de uma região que verifica as duas condições citadas.

Teorema 6.1 - Área por Fatiamento: Seja Ω uma região do plano, com as característica descritas anteriormente, e seja \underline{S} um eixo de referência. Se a região Ω esta totalmente contida entre as linhas perpendiculares a S que passam pelos pontos a e b e que tangenciam a fronteira de Ω , então

$$Área(\Omega) = \int_a^b l(s) ds,$$

na qual l(s) é o comprimento total do segmento da linha perpendicular a S no ponto s.

Exemplo 6.1

Calcular a área da região do plano xy limitada pela: $y = \sqrt{x}$ e $y = x^3$.

$$Área(\Omega) = \int_0^1 \left(\underbrace{\sqrt{s} - s^3}_{l(s)} \right) ds = \int_0^1 s^{\frac{1}{2}} ds - \int_0^1 s^3 ds = \left[\frac{2}{3} s^{\frac{3}{2}} - \frac{s^4}{4} \right]_0^1 = \frac{5}{12}.$$

Exemplo 6.2

Calcular a área da região do plano xy limitada pela : $y = x^2$ e y = 4.

$$Área(\Omega) = \int_0^4 2\sqrt{s} \, ds = 2 \int_0^4 s^{\frac{1}{2}} \, ds = 2 \left[\frac{2}{3} s^{\frac{3}{2}} \right]_0^4 = \frac{32}{3}.$$

Teorema 6.2 - Área entre Duas Curvas: Sejam $f \in g$ duas funções reais de uma variável real. Se $f \in g$ são contínuas no intervalo fechado [a,b] e se $f(x) \ge g(x)$ para todo x em [a,b], então a área, A, da região limitada acima pela curva y = f(x), abaixo pela curva y = g(x) à esquerda pela reta x = a e à direita pela reta x = b é:

$$A = \int_a^b [f(x) - g(x)] dx.$$

Exemplo 6.3 Calcular a área da região do plano xy limitada pelas curvas:

Solução.

$$y = -\frac{x^2}{4}$$
 e $y = -2\sqrt{-x}$.

Seja:

$$f(x) := -\frac{x^2}{4}$$
 e $g(x) := -2\sqrt{-x}$.

Observamos que:

1)
$$f(x) = g(x) \Leftrightarrow \begin{cases} x = -4 \\ \text{ou} \\ x = 0, \end{cases}$$

2) para todo $y \in [-4,0]$, $f(x) \ge g(x)$.

Verificar !!

Mas:

1)
$$\int_{-4}^{0} x^2 dx = \left[\frac{x^3}{3} \right]_{-4}^{0} = -\frac{64}{3}$$
.

2) Definido-se, $\hat{f}(u) := -u^{\frac{1}{2}}$ e u = g(x) := -x, obtém-se

$$\int_{-4}^{0} \sqrt{-x} \, dx = \int_{-4}^{0} (\hat{f} \circ g)(x) g'(x) \, dx = \int_{4}^{0} \hat{f}(u) \, du = -\int_{4}^{0} u^{\frac{1}{2}} \, du$$
$$= -\left[\frac{2}{3}u^{\frac{3}{2}}\right]_{4}^{0} = \frac{2}{3}(4\sqrt{4}) = \frac{16}{3}.$$

Logo,

$$\hat{\mathsf{Area}}(\Omega) = 2 \int_{-4}^{0} \sqrt{-x} \, dx - \frac{1}{4} \int_{-4}^{0} x^2 \, dx = 2 \bigg(\frac{16}{3} \bigg) - \frac{1}{4} \bigg(-\frac{64}{3} \bigg) = \frac{16}{3}.$$

Calcular a área da região do plano xy limitada pelas curvas: Exemplo 6.4

$$x = y^2 - 2y$$

 $x = y^2 - 2y$ e x = 2y - 3.

Solução.

Seja:

$$f(x) := 2y - 3$$
 e $g(y) := y^2 - 2y$.

Observamos que:

1)
$$f(y) = g(y) \Leftrightarrow \begin{cases} y = 1 \\ \text{ou} \\ y = 3, \end{cases}$$

2) para todo $y \in [1,3], f(y) \ge g(y)$.

Verificar !!

$$Área(Ω) = \int_{1}^{3} [(2y-3)-(y^{2}-2y)] dy = \int_{1}^{3} (-y^{2}+4y-3) dx.$$
cederi

Mas

$$\int_{1}^{3} \left(-y^{2} + 4y - 3\right) dx = -\int_{1}^{3} y^{2} dx + 4 \int_{1}^{3} y dx - 3 \int_{1}^{3} dx e$$

1)
$$\int_{1}^{3} y^{2} dx = \left[\frac{y^{3}}{3} \right]_{1}^{3} = \frac{26}{3}$$
,

2)
$$4\int_{1}^{3} y \, dx = 4\left[\frac{y^{2}}{2}\right]_{1}^{3} = 4\left(\frac{8}{2}\right) = 16,$$

3)
$$3\int_{1}^{3} dx = 3[y]_{1}^{3} = 3(2) = 6.$$

Logo:

Área(Ω) =
$$\int_{1}^{3} (-y^{2} + 4y - 3) dx = -\frac{26}{3} + 16 - 6 = \frac{4}{3}$$
. ■

Teorema 6.3 - Volume por Fatiamento: Seja Ω um sólido, e seja S um eixo de referência. Se Ω está totalmente contida entre os planos perpendiculares a S que passam pelos pontos α e β e que tangenciam a fronteira de Ω , então

Volume(
$$\Omega$$
) = $\int_a^b A(s)ds$,

na qual A(s) é a área da seção transversal de Ω perpendicular ao eixo S no ponto s.

Calcule o volume de um cone circular reto de altura 30 cm e raio da base igual a 10 cm.

Solução.

Notamos que

$$A(s) = \pi \left(\overline{QR}\right)^2.$$

Por semelhança de triângulos obtemos:

$$\frac{\overline{QR}}{\overline{PQ}} = \frac{\overline{AB}}{\overline{PA}} \Rightarrow \frac{\overline{QR}}{S} = \frac{10}{30} \text{ ou sej a } \overline{QR} = \frac{1}{3}S.$$

Logo,

$$A(s) = \pi \left(\frac{1}{3}s\right)^2 = \frac{1}{9}\pi s^2$$

e portanto

Volume(
$$\Omega$$
) = $\int_{0}^{30} \frac{1}{9} \pi s^{2} ds = \frac{1}{9} \pi \int_{0}^{30} s^{2} ds$
= $\frac{1}{9} \pi \left[\frac{1}{3} s^{3} \right]_{0}^{30} = \frac{\pi}{27} (30)^{3} = 1000 \pi.$

Água é armazenada em um tanque esférico de raio igual a 10 m. Quantos metros cúbicos de água estão no tanque se a superfície da água está 3 metros abaixo do centro do tanque..

Solução.

Notamos que

$$A(s)=\pi\Big(\overline{QP}\Big)^2.$$

Pelo Teorema de Pitágoras obtemos:

$$(\overline{QP})^{2} + (\overline{QC})^{2} = (\overline{CP})^{2} \Rightarrow$$

$$(\overline{QP})^{2} = (\overline{CP})^{2} - (\overline{QC})^{2}$$

$$= \mathbf{10}^{2} - s^{2}.$$

Logo,

$$A(s) = \pi \left(\mathbf{10}^2 - s^2 \right)$$

e portanto

Volume(
$$\Omega$$
) = $\int_{-10}^{-3} \pi \left(100 - s^2\right) ds$
= $\pi \left[100s - \frac{s^3}{3}\right]_{-10}^{-3} = \frac{1127\pi}{3}$.

Um sólido de revolução é um sólido gerado pela rotação de uma região plana em torno de uma reta, que está no mesmo plano da região; a reta é chamada de eixo de revolução.

Exemplo 6.8

Seja R a região limitada acima pela reta y = 4 e dos lados pelo eixo γ e pela curva $\gamma = x^2$. Calcular o volume do sólido de revolução gerado pela rotação da região R em torno do eixo y.

Solução.

Notamos que:

$$y = x^2 \Rightarrow |x| = \sqrt{y}$$
.

Logo:

Volume(
$$\Omega$$
) = $\int_{a}^{b} \pi [f(y)]^{2} dy$
= $\int_{0}^{4} \pi [\sqrt{y}]^{2} dy$
= $\pi \int_{0}^{4} y dy$
= $\pi \left[\frac{y^{2}}{2}\right]_{0}^{4} = 8\pi$.

Resumo

- · Teorema Fundamental do Cálculo Parte I;
- Integrais por substituição;
- Teorema Fundamental do Cálculo Parte II;
- Aplicações da Integral Definida;

```
Cálculo de áreas;
```

Área por fatiamento;

Área entre curvas;

Cálculo de volumes;

Volume por fatiamento;

Volume por discos (sólidos de revolução);

Volume por anéis.