Definition 0.1. If X is an integrable random variable then the expectation of X is defined to be

$$\mathbb{E}(X) = \int_{\Omega} X d\mathbb{P} = \mathbb{E}(X^{+}) - \mathbb{E}(X^{-}).$$

Definition 0.2. Let X be an integrable random variable or a non-negative random variable and $A \in \mathcal{F}$. Then

$$\int_{A} X d\mathbb{P} = \int_{\Omega} X 1_{A} d\mathbb{P} \,.$$

Proposition 0.3. Suppose $X \geq 0$ and $\mathbb{E}(X) = 0$. Then $\mathbb{P}(X = 0) = 1$.

Proof: Let $E=\{\omega\in\Omega:X(\omega)>0\}$ and let $E_n=\{\omega\in\Omega:X(\omega)\geq 1/n\}$. Then by definition $0=\mathbb{E}(X)\geq\int\frac{1}{n}1_{E_n}d\mathbb{P}=\frac{1}{n}\mathbb{P}(E_n)$. Thus $\mathbb{P}(E_n)=0$. Hence

$$\mathbb{P}(E) = \mathbb{P}(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} \mathbb{P}(E_n) = 0.$$

Thus the conclusion.

Exercise: Suppose X>0 on A and $\int_A Xd\mathbb{P}=0$, then show that $\mathbb{P}(A)=0$.

Theorem 0.4. Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let g be a Borel-measurable function on \mathbb{R} . Then

$$\mathbb{E}[|g(X)|] = \int_{\mathbb{R}} |g(x)| d\mu_x(x)$$

and if this quantity is finite, then

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) d\mu_x(x).$$

Definition:- Let f(x) be a real-valued function defined on \mathbb{R} . The function f(x) is said to be Borel measurable if for every Borel subset B of \mathbb{R} , the set $\{x: f(x) \in B\}$ is also a Borel subset of \mathbb{R} .

Theorem 0.5. Let X be a random variable with density f. Then for any Borel-measurable function g on \mathbb{R} , we have,

$$\mathbb{E}[|g(X)|] = \int_{-\infty}^{\infty} |g(x)|f(x)dx.$$

If this quantity is finite, then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

Proof. Step 1:- If $g(x) = \mathbb{I}_B(x)$. Then L.H.S= $\mathbb{E}[\mathbb{I}_B(X)] = 1 \cdot \mathbb{P}(X \in B) = \mu_x(B)$. Since X has density so, $\mu_x(B) = \int_B f(x) dx = \int_{-\infty}^{+\infty} g(x) f(x) dx$ =R.H.S.

Step 2:-If $g(x) = \sum_{k=1}^{n} \alpha_k \mathbb{I}_{B_k}$, then

L.H.S.
$$= \mathbb{E}(g(x)) = \mathbb{E}(\sum_{k=1}^{n} \alpha_k \mathbb{I}_{B_k}) = \sum_{k=1}^{n} \alpha_k \mathbb{E}(\mathbb{I}_{B_k}(x))$$

$$= \sum_{k=1}^{n} \alpha_k \int_{-\infty}^{+\infty} \mathbb{I}_{B_k}(x) f(x) dx = \int_{-\infty}^{+\infty} \sum_{k=1}^{n} \alpha_k \mathbb{I}_{B_k}(x) f(x) dx$$

$$= \int_{-\infty}^{+\infty} g(x) f(x) dx.$$

Step 3:- Let g(x) be a given non-negative Borel-measurable function. Then \exists a sequence of simple functions $0 \le g_1 \le g_2 \le \cdots$ such that

$$\lim_{n \to \infty} g_n(x) = g(x).$$

Now by Monotone Convergence Theorem and previous step we have

$$\mathbb{E}(g(X)) = \lim_{n \to \infty} \mathbb{E}(g_n(X))$$

$$= \lim_{n \to \infty} \int_{-\infty}^{+\infty} g_n(x) f(x) dx = \int_{-\infty}^{+\infty} g(x) f(x) dx.$$

Step 4:- For any Borel measurable function g, we have $\mathbb{E}[g^+(X)] = \int_{-\infty}^{+\infty} g^+(x) f(x) dx$ and $\mathbb{E}[g^-(X)] = \int_{-\infty}^{+\infty} g^-(x) f(x) dx$. Thus $\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} |g(x)| f(x) dx$ and $\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} |g(x)| f(x) dx$ provided $\mathbb{E}[|g(X)|] < +\infty$.

1 Change of Measure:-

Theorem 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let Z be an almost surely non-negative random variable with $\mathbb{E}[Z] = 1$, for $A \in \mathcal{F}$, define

$$\tilde{\mathbb{P}}(A) = \int_A Z(\omega) d\mathbb{P}(\omega).$$

Then $\tilde{\mathbb{P}}$ is a probability measure. Furthermore, if X is non-negative random variable, then Then

$$\tilde{\mathbb{E}}[X] = \int_{\Omega} X(\omega) d\tilde{\mathbb{P}} = \mathbb{E}[XZ]. \tag{1}$$

If Z is almost surely strictly positive, we have

$$\mathbb{E}[Y] = \tilde{\mathbb{E}}\left[\frac{Y}{Z}\right],\tag{2}$$

for every non-negative random variable Y.

Proof. $\tilde{\mathbb{P}}(\Omega) = \int_{\Omega} Z(\omega) d\mathbb{P}(\omega) = \mathbb{E}[Z] = 1$. Let A_1, A_2, \cdots be a sequence of disjoint sets in \mathcal{F} , define $B_n = \bigcup_{k=1}^n A_k$ and $B_{\infty} = \bigcup_{k=1}^{\infty} A_k$, then $\mathbb{I}_{B_n}(w) = \sum_{k=1}^n \mathbb{I}_{A_k}(w)$ and $\mathbb{I}_{B_{\infty}}(w) = \sum_{k=1}^{\infty} \mathbb{I}_{A_k}(w)$ and $\mathbb{I}_{B_n}(w) \uparrow \mathbb{I}_{B_{\infty}}(w)$. By MCT

$$\begin{split} \tilde{\mathbb{P}}(B_{\infty}) &= \int_{\Omega} \mathbb{I}_{B_{\infty}}(\omega) Z(\omega) d\mathbb{P} \\ &= \lim_{n \to \infty} \int_{\Omega} \mathbb{I}_{B_{n}}(\omega) Z(\omega) d\mathbb{P} \\ &= \lim_{n \to \infty} \int_{\Omega} \sum_{k=1}^{n} \mathbb{I}_{A_{k}}(\omega) Z(\omega) d\mathbb{P}(\omega) \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} \tilde{\mathbb{P}}(A_{k}) = \sum_{k=1}^{\infty} \mathbb{P}(A_{k}). \end{split}$$

Therefore $\tilde{\mathbb{P}}$ is a probability measure. Now suppose X is a non-negative random variable. If $X = \mathbb{I}_A$, then $\tilde{\mathbb{E}}[X] = \tilde{\mathbb{P}}(A) = \int_{\Omega} \mathbb{I}_A(\omega) Z(\omega) d\mathbb{P}(\omega) = \mathbb{E}[\mathbb{I}_A Z] = \mathbb{E}[XZ]$. Now one can complete the proof using standard machine developed in previous theorem. When Z > 0 a.s., $\frac{Y}{Z}$ is defined and we may replace X in (1) by $\frac{Y}{Z}$ to obtain (2). \square

Definition:- Let Ω be a non-empty set and \mathcal{F} a σ -algebra of subsets of Ω . Two probability measures \mathbb{P} and $\tilde{\mathbb{P}}$ on (Ω, \mathcal{F}) are said to be equivalent if they agree on which sets in \mathcal{F} have probability zero.

Under the assumptions of the above theorem and Z>0 a.s., $\mathbb P$ and $\tilde{\mathbb P}$ are equivalent. Let $A\in \mathcal F$ and $\mathbb P(A)=0$. Then the random variable 1_AZ is $\mathbb P$ a.s. zero $\Rightarrow \tilde{\mathbb P}(A)=\int_\Omega 1_A(\omega)Z(\omega)d\mathbb P(\omega)=0$. On the other hand, suppose $B\in \mathcal F$ satisfies $\tilde{\mathbb P}(B)=0$. Then $\frac{1}{Z}1_B=0$ almost surely under $\tilde{\mathbb P}$, so $\tilde{\mathbb E}\left[\frac{1}{Z}1_B\right]=0=\mathbb P(B)$. Hence $\mathbb P$ and $\tilde{\mathbb P}$ are equivalent. **Example:-** Let $\Omega=[0,1], \mathcal F=\mathcal B[0,1]$ $\mathbb P=\mathcal L$, Lebesgue measure, and let $0\leq a\leq b\leq 1$

$$\begin{split} \tilde{\mathbb{P}}[a,b] &= \int_a^b 2\omega d\omega = b^2 - a^2 \\ &= \int_a^b 2\omega d\mathbb{P}(\omega) \text{ [using the fact that } d\mathbb{P}(\omega) = d\omega]. \end{split}$$

So, $\tilde{\mathbb{P}}(B)=\int_B 2\omega d\mathbb{P}(\omega)$ for every Borel set $B\in\mathcal{B}[0,1]$. Set $Z(\omega)=2\omega>0$ a.s. in \mathbb{P} and $\mathbb{E}[Z]=\int_0^1 2\omega d\omega=1$. By (1), for every non-negative random variable X, we have

$$\int_0^1 X(\omega) d\tilde{\mathbb{P}}(\omega) = \int_0^1 X(\omega) 2\omega d\mathbb{P}(\omega).$$

This suggests the notation

$$d\tilde{\mathbb{P}}(\omega) = 2\omega d\omega = 2\omega d\mathbb{P}(\omega).$$

Let X be a standard normal random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. Define $Y = X + \theta, \theta > 0$. Then $\mathbb{E}[Y] = \theta$ and var(Y) = 1. We want to change to a new probability measure $\tilde{\mathbb{P}}$ on Ω under which Y is a standard normal random variable i.e., $\tilde{\mathbb{E}}[Y] = 0$ and $\tilde{Var}(Y) = \tilde{\mathbb{E}}(Y - \tilde{\mathbb{E}}(Y))^2 = 1$. Define the random variable

$$Z(\omega) = \exp\{-\theta X(\omega) - \frac{1}{2}\theta^2\} \ \forall \omega \in \Omega.$$

We see

$$Z(\omega) > 0$$
 and $\mathbb{E}[Z] = 1$.

$$\begin{split} \mathbb{E}[Z] &= \int_{-\infty}^{\infty} \exp\{-\theta x - \frac{1}{2}\theta^2\}\phi(x)dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{-\theta x - \frac{1}{2}\theta^2 - \frac{1}{2}x^2\}dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{\frac{1}{2}(\theta + x)^2\}dx \ \ (\text{put } \theta + x = y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{\frac{-y^2}{2}\}dy = 1. \end{split}$$

Define $\tilde{\mathbb{P}}(A) = \int_A Z(\omega) d\mathbb{P}(\omega) \ \forall A \in \mathfrak{F}$

$$\begin{split} \tilde{\mathbb{P}}(Y \leq b) &= \int_{\Omega} \mathbf{1}_{\{Y(\omega) \leq b\}} Z(\omega) d\mathbb{P}(\omega) = \int_{\Omega} \mathbf{1}_{\{X(\omega) \leq b - \theta\}} \exp\{-\theta X(\omega) - \frac{1}{2}\theta^2\} d\mathbb{P}(\omega) \\ &= \int_{-\infty}^{\infty} \mathbf{1}_{\{x \leq b - \theta\}} \exp\{-\theta x - \frac{1}{2}\theta^2\} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b - \theta} \exp\{-\theta x - \frac{1}{2}\theta^2 - \frac{1}{2}x^2\} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} e^{-\frac{y^2}{2}} dy \text{ (put } y = \theta + x). \end{split}$$

So, $\tilde{\mathbb{P}}(Y \leq b) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} e^{-\frac{y^2}{2}} dy$ which shows that Y is a standard normal random variable under the probability measure $\tilde{\mathbb{P}}$.

Theorem 1.2. (Radon-Nikodym Theorem):- Let \mathbb{P} and $\tilde{\mathbb{P}}$ be equivalent probability measures defined on (Ω, \mathfrak{F}) . Then there exists an almost surely positive random variable Z such that $\mathbb{E}[Z] = 1$ and

$$\widetilde{\mathbb{P}}(A) = \int_A Z(\omega) d\mathbb{P}(\omega),$$

for every $A \in \mathcal{F}$.