S&DS 351: Stochastic Processes - Homework 3

Bryan SebaRaj

Professor Ilias Zadik

February 7, 2025

Problem 1

(10 points) Is it possible for a transient state to be periodic? If so, construct an example of such a Markov chain; otherwise, give a mathematical proof why not.

Note: I (fortunately) solved this after proving problem 3, so for a more thorough proof on how this example is transient, please see Problem 3.

Yes, it is possible for a transient state to be periodic. Consider a 1-dimensional asymmetric random walk on \mathbb{Z} :

$$X_n = X_{n-1} + Z_n$$
, where $\mathbb{P}(Z_n = +1) = p$ and $\mathbb{P}(Z_n = -1) = 1 - p$,

for some $p \in (0,1)$ with $p \neq \frac{1}{2}$. Starting at state 0, state 0 is transient (see Problem 3).

Define the period as $d_i = \gcd\{n : P^n(i,i) > 0\}$, where P is the transition matrix.

In the random walk, the walk must trivially take as many +1 steps as -1 steps to reach the initial state. Thus one can only return to state x starting from x in an even number of steps. Hence for each integer x,

$$(P^n)(x,x) > 0 \implies n \text{ is even.}$$

 $(P^n)(x,x) = 0 \implies n \text{ is odd.}$

Therefore, the greatest common divisor of all such n is 2, and every state $x \in \mathbb{Z}$ has period 2.

Problem 2

Let X_0, X_1, \ldots be a Markov chain with transition matrix P. Let $k \geq 1$ be an integer.

- 1. (5 points) Prove that $Y_n = X_{kn}$ is also a Markov chain. Find its transition matrix.
- 2. (10 points) Suppose that the original chain $\{X_n\}$ is irreducible. Is $\{Y_n\}$ irreducible? If so, prove it; if not, provide a counterexample.
- 3. (10 points) Suppose that the original chain $\{X_n\}$ is aperiodic. Is $\{Y_n\}$ aperiodic? If so, prove it; if not, provide a counterexample.
- 4. (10 points) Suppose that the original chain $\{X_n\}$ is transient. Is $\{Y_n\}$ transient? If so, prove it; if not, provide a counterexample.
- 5. (15 points) Suppose that the original chain $\{X_n\}$ is recurrent. Is $\{Y_n\}$ recurrent? If so, prove it; if not, provide a counterexample.

6. (5 points) Suppose that the original chain X_n is irreducible and that it has period d. What is the period of each state i in the new Markov chain Y_n for k = d?

Problem 3

(Asymmetric random walk, 15 points) Consider the asymmetric random walk on \mathbb{Z} , that is, $X_n = X_{n-1} + Z_n$, where Z_1, Z_2, \ldots are iid and $\mathbb{P}(Z_n = +1) = p$ and $\mathbb{P}(Z_n = -1) = 1 - p$, with $p \in [0, 1]$ and $p \neq \frac{1}{2}$. Show that the state 0 is a transient state.

In Lecture 7 we saw/will see that when $p = \frac{1}{2}$ this is not true anymore and the state 0 is recurrent. Can you explain intuitively why this is the case?

Hint: You may want to use Stirling's formula that $\lim_{n\to\infty} \frac{n!}{(n/e)^n\sqrt{2\pi n}} = 1$.

Starting from $X_0 = 0$, the random walk is at state 0 again at t = n only when it has taken an equal number of +1 steps as -1 steps. As such, n must be even.

Suppose n = 2k, and k is the number of Z_i that are +1,

$$\mathbb{P}(X_{2k} = 0 \mid X_0 = 0) = \binom{2k}{k} p^k (1-p)^k$$

Note that $\mathbb{P}(X_n = 0 \mid X_0 = 0) = 0$ if n is odd

Hence the series of return probabilities at 0 is

$$\sum_{n=0}^{\infty} \mathbb{P}(X_n = 0 \mid X_0 = 0) = 1 + \sum_{k=1}^{\infty} {2k \choose k} p^k (1-p)^k,$$

accounting for the initial state of 0. Using Stirling's approximation,

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$
 as $n \to \infty$,

applying to this case,

$$\binom{2k}{k} = \frac{(2k)!}{k! \, k!} \approx \frac{\sqrt{4\pi k} \left(\frac{2k}{e}\right)^{2k}}{2\pi k \left(\frac{k}{e}\right)^k \left(\frac{k}{e}\right)^k} = \frac{4^k}{\sqrt{\pi k}}$$

Therefore,

$$\binom{2k}{k} p^k (1-p)^k \approx \frac{4^k}{\sqrt{\pi k}} \left[p(1-p) \right]^k = \frac{\left[4 p(1-p) \right]^k}{\sqrt{\pi k}}.$$

If $p \neq \frac{1}{2}$, then 4p(1-p) < 1 (If f(x) = x(1-x), then f'(x) = -x + 1 - x = -2x + 1. Solving for the max when $f'(x) = 0, x = \frac{1}{2}$).

Note, that as $k \to \infty$, $\left[4 \, p (1-p)\right]^k$ decays exponentially. Therefore,

$$\binom{2k}{k} p^k (1-p)^k = O([4p(1-p)]^k)$$
 and $\sum_{k=1}^{\infty} \binom{2k}{k} p^k (1-p)^k < \infty$.

Thus,

$$\sum_{n=0}^{\infty} \mathbb{P}(X_n = 0 \mid X_0 = 0) = 1 + \sum_{k=1}^{\infty} {2k \choose k} p^k (1-p)^k < \infty.$$

which defines a transient state.

However, when $p = \frac{1}{2}$,

$${2k \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^k \approx \frac{\left[4 \cdot 0.5(1 - 0.5)\right]^k}{\sqrt{\pi k}} = \frac{1}{\sqrt{\pi k}},$$

so

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} = \infty.$$

which defines a recurrent state when $p = \frac{1}{2}$.

Exercise 1.8

Consider a Markov chain on the integers with

$$P(i, i + 1) = 0.4$$
 and $P(i, i - 1) = 0.6$ for $i > 0$,
$$P(i, i + 1) = 0.6$$
 and $P(i, i - 1) = 0.4$ for $i < 0$,
$$P(0, 1) = P(0, -1) = \frac{1}{2}.$$

This is a chain with infinitely many states, but it has a sort of probabilistic "restoring force" that always pushes back toward 0. Find the stationary distribution.

Exercise 1.10

On page 13 we argued that a limiting distribution must be stationary. This argument was clear in the case of a finite state space. For you fans of mathematical analysis, what happens in the case of a countably infinite state space? Can you still make the limiting argument work?