Implementacion de un sensor de campo magentico usando LabVIEW y un arduino

Gómez Arias, Andrés Navarrete Cruz, Erick Sebastián Nellen Mondragón, Stefan Daniel

26 de febrero de 2018

Resumen

- 1. Introducción
- 2. Material
- 3. Metodología

4. Resultados

En las siguientes tablas se encuentran los datos de las mediciones descritas anteriormente.

4.1. Arroz

nrepresenta el número de granos en la muestra mn la masa de este muestreo en gramos y $m=\frac{mn}{n}engramos$.

	1		I
	n	mn	m
0	24	0.44	0.0183
1	24	0.46	0.0192
2	24	0.44	0.0183
3	24	0.42	0.0175
4	24	0.42	0.0175
5	24	0.45	0.0188
6	24	0.43	0.0179
7	24	0.45	0.0188
8	24	0.46	0.0192
9	24	0.47	0.0196
10	24	0.47	0.0196
11	24	0.44	0.0183
12	24	0.45	0.0188
13	24	0.47	0.0196
14	24	0.42	0.0175
15	24	0.47	0.0196
16	24	0.44	0.0183
17	24	0.45	0.0188
18	24	0.41	0.0171
19	24	0.47	0.0196
20	24	0.43	0.0179
21	24	0.44	0.0183
22	24	0.42	0.0175
23	24	0.42	0.0175
24	24	0.43	0.0179
$\frac{25}{26}$	24 24	0.42	0.0175
20 27	$\frac{24}{24}$	$0.44 \\ 0.46$	0.0183 0.0192
28	$\frac{24}{24}$	0.46	0.0192 0.0192
29	$\frac{24}{24}$	0.40	0.0192
30	$\frac{24}{24}$	0.44	0.0133
31	24	0.45	0.0173
32	24	0.45	0.0188
33	24	0.49	0.0204
34	26	0.50	0.0192
35	26	0.46	0.0177
36	$\frac{1}{24}$	0.44	0.0183
37	24	0.44	0.0183
38	24	0.42	0.0175
39	24	0.48	0.0200
40	24	0.47	0.0196
41	26	0.49	0.0188
42	26	0.48	0.0185
43	26	0.49	0.0188
44	24	0.40	0.0167
45	24	0.45	0.0188
46	24	0.45	0.0188
47	24	0.45	0.0188
48	24	0.45	0.0188
49	24	0.43	0.0179
50	24	0.46	0.0192
51	24	0.45	0.0188

A continuación se muestran histogramas con un diferente número de bins que muestran la distribución de la masa del grano de arroz. Se puede notar que hicieron falta más mediciones, pues por un lado la parte media de la distribución es bastante homogénea con 8 bins y por otro hay huecos con 12 bins.

El promedio de la muestra es 0.0185
g y su desviación estándar experimental σ es 0.0008
g. Como, por cómo se ve la distribución discreta representada en los histogramas, se ve que la distribución de valores sigue la de una Gaussiana. Por ende tomamos a la incertidumbre como la desviación estándar experimental media: $\delta m = \frac{\sigma}{\sqrt{N}}$. Así, se tiene:

$$m = 0.0185g \pm 0.0001g$$

4.2. Resistencia

R represanta la resistencia medida.

	$R[\Omega]$	
0	221.1	
1	221.0	
2	221.0	
3	220.6	
4	219.1	
5	220.8	
6	219.5	
7	220.8	
8	219.8	
9	220.3	
10	219.1	
11	218.4	
12	220.7	
13	220.0	
14	218.9	

De la misma manera, se tiene una distribución con promedio 220.07Ω y desviación estándar 0.89Ω . Tomamos a la incertidumbre como la desviación estándar experimental media y obtenemos:

$$R = 220,07\Omega \pm 0,23\Omega$$

5. Discusión

La muestra de arroz necesitaba más datos para poder tener completa confianza de que su distribución era gaussiana. 100 hubieran sido lo ideal. No solo eso, sino que el error hubiera disminuido aún más (como el inverso de la raíz del total). Aún así, se obtuvo un resultado con una presición muy buena (de 0.5%).

Para las resistencias la muestra fue aceptable. Aunque fueron muy pocas con respecto a las muestras de la masa del arroz, la variación entre mediciones fue de menos de 1 ohm, por lo que la distribución está bastante centrada en el promedio. La presición fue de igual manera muy buena (de 0.1%).

6. Conclusión

Referencias

[1] National Instruments Corporation www.nu.com/es-mx/shop/labview.html. 11500 Mopac Expwy, Austin TX

Figura 1: Histograma con 8 bins

Figura 2: Histograma con 10 bins

Figura 3: Histograma con 12 bins