APPENDIX H: Nobori et al. (1996) Proc. Natl. Acad. Sci. USA 93:6203-6208.

BEST AVAILABLE COPY

Genomic cloning of methylthioadenosine phosphorylase: A purine metabolic enzyme deficient in multiple different cancers

(T-cell acute lymphoblastic leukemia/chromosome 9p/tumor suppressor gene)

TSUTOMU NOBORI*†, KENJI TAKABAYASHI‡, PHUOC TRAN*, LISA ORVIS*, AYSE BATOVA§, ALICE L. YUŞ, AND DENNIS A. CARSON*

*The Sam and Rose Stein Institute for Research on Aging, and Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0663; *Department of Pediatrics, University of California, San Diego Medical Center, San Diego, CA 92103-8447; and ‡CIBA-Geigy, Limited, Basel, Switzerland

Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, February 20, 1996 (received for review August 1, 1995)

5'-Deoxy-5'-methylthioadenosine phosphor-**ABSTRACT** ylase (methylthioadeno-sine: ortho-phosphate methylthioribosyltransferase, EC 24.2.28; MTAP) plays a role in purine and polyamine metabolism and in the regulation of transmethylation reactions. MTAP is abundant in normal cells but is deficient in many cancers. Recently, the genes for the cyclin-dependent kinase inhibitors p16 and p15 have been localized to the short arm of human chromosome 9 at band p21, where MTAP and interferon α genes (IFNA) also map. Homozygous deletions of p16 and p15 are frequent malignant cell lines. However, the order of the MTAP, p16, p15, and IFNA genes on chromosome 9p is uncertain, and the molecular basis for MTAP deficiency in cancer is unknown. We have cloned the MTAP gene, and have constructed a topologic map of the 9p21 region using yeast artificial chromosome clones, pulse-field gel electrophoresis, and sequence-tagged-site PCR. The MTAP gene consists of eight exons and seven introns. Of 23 malignant cell lines deficient in MTAP protein, all but one had complete or partial deletions. Partial or total deletions of the MTAP gene were found in primary T-cell acute lymphoblastic leukemias (T-ALL). A deletion breakpoint of partial deletions found in cell lines and primary T-ALL was in intron 4. Starting from the centromeric end, the gene order on chromosome 9p21 is p15, p16, MTAP, IFNA, and interferon β gene --(IFNB). These results indicate that MTAP deficiency in cancer is primarily due to codeletion of the MTAP and p16 genes.

5'-Deoxy-5'-methylthioadenosine phosphorylase (methylthioadeno-sine: ortho-phosphate methylthioribosyltransferase, EC 24.2.28; MTAP) is abundant in all normal tissues (1). The substrate for this enzyme, methylthioadenosine (MTA), inhibits the aminopropyltransferases that synthesize polyamines from putrescine and decarboxylated S-adenosylmethionine (2), and also impairs S-adenosylmethionine dependent transmethylation reactions (see ref. 3 for review). MTAP normally prevents the inhibition by cleaving MTA to adenine and 5'-methylthioribose L-phosphate, that are recycled to adenine nucleotides and methionine, respectively (4, 5).

MTAP deficiency is common in human and murine malignant cell lines (1, 6). The abnormality is not confined to tissue culture cells, but is also present in primary leukemias, gliomas, and nonsmall cell lung cancers (7–9). All enzyme negative cell lines lack immunoreactive MTAP (8). In contrast, MTAP-deficient cell lines generated by deliberate mutagenesis and selection contain antigenic enzyme protein (10). Collectively, these results suggested that naturally occurring MTAP deficiency was the result of structural aberrations in the MTAP gene.

Several years ago, the locus for MTAP gene was mapped to the short (p) arm of human chromosome 9 by using somatic cell hybrids (11). Deletions and translocations of chromosome 9p gliomas (12, 13), melanomas (14), nonsmall cell lung cancers (15, 16), and acute leukemias (17, 18). Recent studies have shown that chromosome 9p21 contains the p16 inhibitor (also designated MTS1) and the p15 inhibitor (also designated MTS2) of cyclin-dependent kinases 4 and 6 (19, 20). The p16 and p15 genes are homozygously deleted in many different malignant cell lines (19, 20) as well as in many primary gliomas (21, 22), acute leukemias (23-25), and pancreatic carcinomas (26).

Malignant cell lines established from malignant tumors with

are frequent in human tumors and are especially common in

Malignant cell lines established from malignant tumors with chromosome 9p21 deletions are frequently MTAP deficient (8, 9, 13). In this report, we described the structure and localization of the MTAP gene in relation to the p16 and p15 cyclin-dependent kinase inhibitors. The results indicate that MTAP deficiency in malignancy results from total or partial deletions of the MTAP gene, which is closely linked to the p16 and p15 genes.

MATERIALS AND METHODS

Tumor Cell Lines. Tumor cell lines were obtained from the American Type Culture Collection and from M. O. Diaz (University of Chicago). Hybrid cell line J640-51 was a gift of C. Jones (Eleanor Roosevelt Institute for Cancer Research, Denver) and contains human chromosome 9 on a Chinese hamster background.

Patient Samples. Mononuclear cells were prepared from peripheral blood of patients with T-cell acute lymphoblastic leukemia (T-ALL) enrolled in Pediatric Oncology Group protocol (POG #8862).

Preparation and Analysis of DNA from Cell Lines and T-ALL Patients. Genomic DNA was purified from cell lines and leukemic cells from T-ALL patients by standard methods. The PCR was usually carried out in a total volume of 20 μ l, containing 0.1 μ g of genomic DNA, 1× PCR buffer (10 mM Tris·HCl, pH 8.3/50 mM KCl/1.5 mM MgCl₂/0.01% gelatin), 200 μM of each dNTP, 20 ng each sense and antisense primers, and 0.5 units of Taq DNA polymerase (Boehringer Mannheim). Thirty cycles consisted of 94°C denaturation (1 min), 50 or 55°C annealing (1 min), and 72°C extension (1 min). For PCR amplification of p16 and p15, formamide was added at 5% to the reaction mixture described above, and reactions were cycled 35 times at 94°C for 1 min and 68°C for 3 min. The amplified products were resolved on 2% MetaPhor agarose gels (FMC). For Southern blot analysis, DNA was digested with EcoRI, separated by agarose gel electrophoresis, and

Data deposition: The sequences reported in this paper have been deposited in GenBank (accession nos. L40432 and L42627-L42635). †To whom reprint requests should be addressed.

Abbreviations: MTAP, methylthioadenosine phosphorylase; MTA, methylthioadenosine; IFNA, interferon α gene; IFNB, interferon β gene; STS, sequence tagged site; PFGE, pulse-field gel electrophoresis; YAC, yeast artificial chromosome; T-ALL, T-cell acute lymphoblastic leukemia.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Table 1. Oligonucleotides for PCR amplification of the chromosome 9p markers

Marker	Sense primer	Antisense primer						
p15×1	5'-GGAATTCTAGGCTGCGGAATGCGCGAGGAG-3'	5'-ATCATGACCTGGATCGCGCGCCTCCCGAAA-3'	179					
71F	5'-GCTTAGTTTTAGAGGGTGAT-3'	5'-AGCAGTTCTTATGAGTGATG-3'	327					
p16×1	5'-TGGCTGGTCACCAGAGGGTGGGG-3'	5'-TGCAAACTTCGTCCTCCAGAGTCGCC-3'	300					
2F	5'-TGAGAACTAGAGCCTGGAAG-3'	5'-AACCCTCCTTCAAATCTGTA-3'	248					
3.21	5'-AGGATGTTGAAGGGACATTG-3'	5'-TGTGTTGTGGACCTCTGTGC-3'	200					
MTAP×1	5'-GGGGAGGAAGAGGAGGAGTCAAG-3'	5'-AAGAAGAATCGGGCAGGGCGAACC-3'	237					
MTAP×2	5'-ATTGGAATAATTGGTGGAACAGGC-3'	5'-CCAGCAACAGAATGAGAAGTGAT-3'	338					
$MTAP \times 3$	5'-CAGTCTACCATCAGAGTTCCT-3'	5'-TGGCAAGGAGGACGCAATC-3'	341					
$MTAP \times 4$	5'-CTCTAGGAGAAAACAGTTGGTG-3'	5'-GACCAGCTACAATAGCCTAAAG-3'	271					
MTAP×5	5'-GACCTAGATAAAGTTGACTC-3'	5'-TACACCTTCCAGAAAGACTA-3'	220					
$MTAP \times 6$	5'-AGTTGTGCATGTGCTAGTAT-3'	5'-ACCCATGCTATATGTGCTTA-3'	328					
MTAP×7	5'-AGTTCTAGTAACCTCCAGTG-3'	5'-CTACAGACATGCCTGATTGT-3'	194					
MTAP×8	5'-GTGAATATCACTGCCTCCTT-3'	5'-GCTTTTCTTCTGTATTTTAG-3'	273					
3.3B	5'-GGGAAGACCACACATATA-3'	5'-ACTCATACAGCTTGCTGGTT-3'	238					
IFNA8	5'-ACCCTTCTAGATGAATTCTA-3'	5'-GGTCTCATTCCTTACTCTTC-3'	269					
IFNB	5'-GGCACAACAGGTAGTAGGCG-3'	5'-GTAACCTGTAAGTCTGTTAAT-3'	592					

transferred to Hybond-N⁺ nylon membranes (Amersham). Blots were probed with MTAP cDNA as described (20).

cDNA and Genomic Cloning of the MTAP Gene. Briefly, the MTAP protein was purified from rat liver and was microsequenced to obtain the partial sequences of three tryptic peptides. Oligonucleotide primers were synthesized based upon the peptide sequences and were used to PCR amplify a fragment from a human placenta cDNA library (Clontech). The resulting products were subcloned and sequenced. The 5' end of cDNA was obtained by rapid amplification of cDNA end. The cDNA sequence was found to be identical to that recently reported by other investigators (27).

For genomic cloning, human placenta λ FIX II (Stratagene) and human chromosome 9-specific (American Type Culture Collection) phage libraries and a cosmid library (Stratagene) were screened with the PstI-EcoRI fragment of MTAP cDNA as described (20). After three cycles of screening, DNA was purified from phage and cosmid clones, digested with either EcoRI or HindIII (in conjunction with NotI in the case of the λ FIX II and cosmid clones), and then was subcloned into pBluescript. If necessary, smaller fragments hybridizing to the MTAP cDNA probe were gel-purified and subcloned.

Yeast Artificial Chromosome (YAC) and P1 Clones. YACs were obtained by PCR screening of human YAC library pools (Research Genetics, Huntsville, AL) with sequence tagged sites (STS) from chromosome 9p [interferon α-8 gene (IFNA8), 3.3B, 71F, TC3, and 1.1]. Positive YAC clones were grown at 30°C for 2 days with shaking at 2000 rpm in YPD medium [yeast extract (10 g/liter)/bactopeptone (20 g/liter)/2% (wt/vol) dextrose]. Yeast DNA was prepared as described (28).

P1 clones were obtained from Genome Systems (St. Louis) after PCR screening with sets of primers that we provided. The DNA inserts were isolated by alkaline lysis, rescued in plasmids, and subcloned according to the supplier's protocols.

Pulse-Field Gel Electrophoresis (PFGE) Analysis. Agarose plugs containing DNA from cultured cells were prepared by mixing 1% InCert agarose (FMC) in 0.01 M phosphate, 0.15 M NaCl (pH 7.4) (PBS) prewarmed at 42°C with an equal volume of fresh cells suspended in PBS at a density of 2 × 10⁷/ml. The agarose-cell mixture was dispensed immediately into a plug mold in 100 μl aliquots. Plugs were subsequently treated with proteinase buffer [0.5 M EDTA, pH 8.0/1% (wt/vol) sodium lauroyl sarcosinate (Sigma)/2 mg of proteinase K per ml (BRL)] for 48 h at 50°C. Then the plugs were washed three times at room temperature, with sterile TE buffer (10 mM Tris·HCl/1 mM EDTA, pH 8.0) and then twice with TE buffer containing 40 mg of phenylmethylsulfonyl

fluoride per ml at 50°C. After washing with sterile TE buffer, the plug was digested overnight in a 200-µl reaction mixture containing 40 units of restriction enzyme at an appropriate temperature. PFGE was carried out on CHEF-DR II megabase DNA pulsed field electrophoresis system (Bio-Rad) in 0.5 × TBE buffer (90 mM Tris/64.6 mM boric acid/2.5 mM EDTA, pH 8.0). The ethidium bromide stained DNA was irradiated (300 nm for 1 min) treated with acid (0.25 N HCl for 20 min) and transferred to Hybond-N⁺ nylon membranes for visualization.

Southern blotting was carried out in a hybridization buffer containing 6% polyethylene glycol (PEG 6000; Sigma) as described (29). Following high-stringency washing at 65°C in 0.1× standard saline citrate (SSC) plus 0.1% SDS, membranes were analyzed by autoradiography.

Generation of STSs. STSs were generated by sequencing subcloned plasmids with universal primers (Table 1). Pilot experiments showed that each primer pair produced an amplicon from J640-51 hybrid cells, but not from CHO cells.

RESULTS

Cloning of MTAP and an MTAP Pseudogene. By screening λ FIX II phage and cosmid libraries with PstI-EcoRI fragment of MTAP cDNA, two phage clones and one cosmid clone containing exons 5-8 were isolated, and the nucleotide sequences of these four exons and their flanking regions were determined. The PstI-HincII fragment of cDNA was subsequently used to rescreen the human chromosome 9-specific library, and one clone, λ 17-2, was found to contain exons 1-4 (Fig. 1). A separate phage clone (subclone X4 from λ MTAP25) contained sequences 91% homologous to exons 2-7, but with stop codons (data not shown, but deposited in GenBank). This clone contained 23 bases matched to the coding sequence of exon 8.

The protein-coding sequence of the MTAP gene was interrupted by seven introns (Fig. 2). Exon 1 encodes 11 amino acids and the 5' noncoding region. The sizes of exons 2–7 range from 79 to 240 bp. The last (8th) exon encodes the C-terminal 12 amino acids and the 3' noncoding region. Intron 4 has the SfiI restriction site that was identified in phage clone λ MTAP8 (Fig. 1).

Separate DNA fragments containing MTAP cDNA, each exon, and the pseudogene were used for Southern blot analysis of EcoRI-digested DNA from human placenta and from YAC clones (data not shown). The size(s) of the EcoRI fragments containing each exon and X4 were as follows: 12 kb (exon 1), 2 kb (exon 2), 1.3 kb (exon 3), 4.4 kb (exon 4), 8 kb (exon 5), 0.9 kb (exon 6), 2.7 kb (exon 7), 0.7 kb (exon 8), and 3.5 kb (X4).

Fig. 1. The exon-intron organization of the human MTAP gene. The protein-coding regions of the MTAP cDNA are indicated by open boxes. The exons in the MTAP gene are numbered in Arabic and shown by solid blocks. The exact size of the seven introns are indeterminate. More detailed maps of $\lambda 17-2$ and $\lambda MTAP8$ were shown at the bottom. $\lambda MTAP1$, cMII5, and P1-267 are phage, cosmid, and P1 clones, respectively. E, EcoRI; H, HindIII; Hc, HincII; P, PstI; S, SmaI.

The probe X4 detected the 3.5-kb *Eco*RI fragment in human placenta, but no fragment in J640-51 cells. Moreover, PCR was employed to amplify a 247-bp fragment from the *MTAP* pseudogene in human placenta, λ MTAP25, and J640-51 cells

by using primers corresponding to exon 2 and exon 4. The 247-bp fragment was amplified from human placenta and λ MTA P25, but not from J640-51 cells (Fig. 3). Taken together, these results indicate that X4 does not map to human chromosome 9 and is a pseudogene.

Analysis of Malignant Cell Lines and Primary T-ALL Samples. Twenty-three MTAP-negative malignant cell lines were analyzed by exon-specific PCR and by Southern blot analysis of *EcoRI*-digested DNA (Table 2). Eighteen cell lines lack all exons, whereas four cell lines have a deletion breakpoint between exons 4 and 5. We also found partial or total deletions of the MTAP gene in one-third of primary T-ALL samples (A.B., unpublished data). As observed in cell lines, a deletion breakpoint in partial deletion in primary T-ALL samples occurred in intron 4 (Fig. 4C). These results indicate that the main mechanism for MTAP deficiency in malignancy is total or partial deletions of the MTAP gene. Recently, the nucleotide sequences at the breakpoint junctions in two glioma cell lines having deletions of band 9p21 were reported (30). In the A172 cell line, that was found to lack all exons of the MTAP gene and the centromeric members of the IFNA gene cluster, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The nucleotide sequence from the proximal side of the breakpoint revealed high homology to long interspersed nuclear elements. Although the possible role of sequence overlaps and repetitive sequences in the rearrangement has been well known, it remains to be determined whether or not the same mechanisms reported are involved in the deletions of the MTAP gene in the enzyme-negative cells.

The 7-2 probe, which contains exon 8 of MTAP, detected a 180-kb Sfil band in DNA prepared from enzyme-positive normal lymphocytes (designated BJL) and J640-51 hybrids by PFGE. Except for DHL9, all enzyme deficient cells tested had no band hybridizing to probe 7-2. In T98G, however, a

Fig. 2. The DNA sequences of the protein-coding exons and their flanking regions in the human MTAP gene. The nucleotide sequences of eight exons are shown in uppercase letters, while those of flanking sequences are shown in lowercase letters. The sizes of exons 2-7 are 87, 79, 158, 103, 240, and 123 nucleotides, respectively. The deduced peptide sequence is shown below the coding exons and is numbered from the first methionine residue. The translation termination codon TAA is denoted by an *.

FIG. 3. PCR analysis with primers from exons 2 and 4. PCR amplification was performed as described by using a sense primer (5'-ATATGTGGATACTCCATTTGGCAA-3') from exon 2 and an antisense primer (5'-CTGATCAATAATGACAATATCGCC-3') from exon 4. Lanes: 1, DNA size marker (HaeIII digests of ϕ X174 DNA); 2, human placenta; 3, J640-51; 4, λ MTAP25; 5, Chinese hamster ovary cells; 6, no template.

rearrangement caused a shift in size of the normal 180-kb fragment to 110 kb (Fig. 4A).

In Southern blots, the 7-2 probe hybridized to the 2-kb HindIII band in enzyme-positive malignant cell lines as well as in human placenta. No band was detected in enzyme-negative malignant cell lines except for DHL9 (Fig. 4B). However, when EcoRI-digested DNAs from MTAP deficient cells were probed with total MTAP cDNA, at least one band was observed due to hybridization to the MTAP pseudogene (Fig. 4C). Since exon 8 is always deleted in MTAP-deficient cells, MTAP deficiency can be diagnosed by Southern blotting with

Table 2. Deletions of the MTAP exon in MTA phosphorylase-deficient cell lines

	MTAP exon												
Cell line	1	2	3	4	5	6	7	8					
Glioma	·· ····												
A-172	_	_		-	-	_	_	-					
H4	-	-	-	_	_	_	_	_					
Hs 683	_	-	-		-		-						
U-138MG	_				_	_	-	_					
U-87MG	_	-	-	_	_	-	_	-					
Breast cancer													
MCF-7	+	+	+	+	_	_	- .	_					
MDA-MB-231	_	-	-	-	-	_	-	_					
Leukemia													
BLIN-1	-	_	_	_	_	_	_	_					
CEM	+	+	+	+	_	_	_	_					
DHL-9	+	+	+	+	+	+	+	+					
HSB-2	+	+	+	+	_	_		_					
Jurkat	_	_	_	_	_	_	_	_					
K-562			-	_	_	_	_	_					
K-T1	_		_	_	_	_	_	_					
NALL-1	_	_	_	_	_	_	_						
Lung cancer					-								
A549	+	+	+	+	-								
SK-LU-1	-	_	_	_	_	_	_	_					
SW-900		_	_		_	_		_					
H292	_	-	_	_	_	_	_	_					
Melanoma													
Hs294T	_	_			- ·	_	_	_					
Malme-3M	_	_		_	_	_	-	_					
Bladder													
carcinoma													
RT4	_	_	_	_	_	_	_	_					
UM-UC-3	_	_	_	_	_	_	_	_					

Homozygous deletions of each MTAP exon were determined by PCR analysis and were confirmed by Southern blotting of *Eco*RI-digested DNA with the MTAP cDNA probe. +, Presence of DNA; -, homozygous loss.

probe 7-2. However, DNA may not be isolated from primary tumor tissues in a sufficient amount to perform Southern blot analysis. PCR assays for each exon, especially for exon 8, will be an alternative method for detection of MTAP deficiency.

Previous results suggested that p16-deficient T98G glioma cells have a deletion in the region between the MTAP and IFNA gene loci (13, 20). Based upon these previous findings, we have identified and localized the p16 gene between these two loci (20). This issue was reexamined by PFGE of Sfildigested DNA from YACs.

Characterization of YAC Clones. To construct a more detailed physical map of the 9p21 region encompassing the MTAP gene, the p16 and p15 genes, and the IFNA gene cluster, a human YAC library was screened. Eight YAC clones ranging from 200 to 1400 kb were obtained with STSs IFNA8, 3.3B, 71F, TC3, and 1.1, followed by further analysis with other STSs (Table 3). YAC 802B11 was the most informative isolate. It contained STSs 1.1 (MTAP exon 4), 3.3B, IFNA8, and IFNB, but was negative with STSs TC3 (MTAP exon 5) through p15x1 (p15 exon 1). Pulsed field gel analysis of YAC 802B11 showed a 120-kb SfiI fragment with the MTAP cDNA probe, 320 and 160-kb Sfil fragments with the 3.3B probe, and three Sfil fragments (320, 120, and 80 kb) with the IFNA probe. The Sfil fragments detected with the 3.3B and IFNA probes were identical to those observed in YACs 760C6, 760C7, and 761A5. In these three YACs, which contain all exons of the MTAP gene, the MTAP cDNA probe hybridized to both the 150- and 120-kb Sfil fragments. However, only the 120-kb fragment was detected in YAC 802B11 that contains exons 1-4 of the MTAP gene (Fig. 5). The first four exons in the 120-kb fragment are separated from the last four exons by a SfiI site in intron 4 (Fig. 2). This hybridization pattern is different from that observed in normal lymphocytes, in which the MTAP cDNA probe mainly hybridized to 180- and 250-kb Sfil fragments. The 250-kb Sfil fragment was detectable even in enzyme-negative cell lines, but was absent in the YACs containing MTAP exons. The Sfil blot shown in Fig. 4A was also reprobed with the X4 probe. All enzyme positive and negative cells, except for J640-51, had the 250-kb SfiI fragment (data not shown). Thus, in common with the signal detected by MTAP cDNA in Southern blots of enzyme-negative cells (Fig. 4C), this 250-kb fragment was attributable to cross-hybridization of the probe to the MTAP pseudogene. The observed difference in the size of SfiI fragment containing exons 5–8 between genomic and YAC DNA (Figs. 4A and 5) was found to be artifactual, since the same 150-kb SfiI fragment was detected in normal lymphocytes and YAC 760C6 separated on the same pulsed-field gel following Sfil digestion. These results confirm that the first four exons of the MTAP gene reside in the 120-kb fragment and the last four exons in the 150-kb fragment.

DISCUSSION

The structural gene for MTAP on chromosome 9p is $\approx 100 \text{ kb}$ telomeric to the p16/MTSI gene (20) and contains eight exons and seven introns. Depending on cell type, p16-deficient cancers have deleted all or part of MTAP at various frequencies (40% in melanomas, 57% in nonsmall cell lung cancers, 71% in gliomas, and 78% in leukemias) (unpublished data). No cancers have been found with MTAP deficiency without homozygous deletions of p16. These results suggest that the loss of MTAP in malignant cells is due to linkage between the MTAP and p16 genes.

MTAP deletions are difficult to detect by Southern blotting and PCR without information on the sequence and intronexon structure of the genomic MTAP gene, because the MTAP pseudogene can produce a positive result. Although preliminary Southern blotting experiments lead us to believe that MTAP was centromeric to p16 (20), detailed analysis of YAC clones, and of DNA separated in pulse-field gels, refuted this

Fig. 4. DNA analysis of the cell lines and primary T-ALL. (A) Pulse-field gel analysis. SfiI digests of DNAs from cell lines including normal lymphocytes and MTAP positive and negative malignant cell lines were fractionated by PFGE and then hybridized with the 7-2 probe containing exon 8 of the MTAP gene. Lanes: 1, normal lymphocytes; 2, J640-51; 3, U-87MG; 4, U-138MG; 5, U-373MG; 6, T98G; 7, H4; 8, Hs683; 9, CALU-1; 10, CALU-6; 11, A-549; 12, SK-LU-1; 13, SK-Mes-1; 14, T24; 15, UM-UC-3; 16, RT4; 17, RPMI-7951; 18, Malme-3M. Lanes 1, 2, 5, 6, 9, 10, 13, 14, and 17 were MTAP-positive cells, whereas lanes 3, 4, 7, 8, 11, 12, 15, 16, and 18 were MTAP-negative cells. (B) Southern blot analysis. HindIII digests of DNAs were separated and hybridized with the 7-2 probe. Lanes: 1, human placenta; 2, NALL-1; 3, HSB2; 4, K-T1; 5, CEM; 6, DHL9; 7, BLIN1; 8, K562; 9, U-87MG; 10, U-138MG; 11, A172; 12, H4; 13, Hs 683; 14, A549; 15, SK-LU-1; 16, UM-UC-3; 17, RT4; 18, MCF-7; 19, Malme-3M; 20, T98G. All lanes but lanes 1 and 20 were MTAP-negative cells. (C) Representative Southern blot analysis of primary T-ALL. DNAs were digested with EcoR1 and probed with MTAP cDNA. Although exon 1 was not detected in these samples by Southern blotting, three samples (lanes 1-3) were tested positive with PCR assay for exon 1. Lanes: 1 and 4, T-ALL samples with all intact exons; 2, T-ALL with deletions of exons 4-5; 3, T-ALL with total deletions. E2-8, MTAP exons 2-8; P, a pseudogene.

supposition. Furthermore, some malignant cell lines have homozygous deletions of both p16 and MTAP, but retain an intact p15 gene. Thus, the correct gene order on human chromosome 9p is p15-p16-MTAP-IFNA from centromeric to telomeric. Accordingly, the deleted region in T98G is the region containing p16, centromeric to MTAP, but not the previously proposed region between MTAP and IFNA gene loci.

If the loss of MTAP is due solely to linkage to p16, the abnormality should have the same frequency in p16-deficient cancers arising from different cell types. More than 70% of homozygous p16 deletions in gliomas, and 50% of the deletions in T cell leukemias, include MTAP (20). In contrast, MTAP

deficiency is uncommon in melanomas with p16 deletions (20). A possible explanation for the difference is that a second gene on chromosome 9p confers a survival advantage to p16-deficient gliomas and leukemias, but not to melanomas. The second gene is unlikely to be *IFNA*, since many p16 deficient cell lines have an intact *IFNA* gene cluster.

Deletions of the p16 gene in some primary cancers are apparently much more frequent than intragenic mutations (21-26). It is conceivable that structural features of the p15/p16/MTAP loci facilitate recombination, perhaps due to repetitive sequences. Deletions would also be favored if the loss of two genes produced a greater survival advantage than a deficiency of p16 alone (21).

Table 3. Analysis of YAC clones by PCR and Southern blot hybridization

YAC	Size, kb	Markers															
		p15×i	71F	p16×1	2F	3.21	ex8	ex7	ех6	ex5	ex4	ex3	ex2	ex1	3.3B	IFNA8	IFNB
759B7	900	_	+	+	+	+	+	+	_	_	_		_		_	_	
760C6	1200	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
760C7	1200	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
802B11	1400	_	_	_	_	_	-	-	~	_	+	+	+	+	+	+	+
761A5	1100	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
735B2	200	_	_	_	_	_	-	_		_	+	+	+	+	_	_	-
735H8	500	+	+	+	+	+	_	_	_	_	_	_	_	-	_	_	_
660H9	840	+	+	+	+	+	+	+	+	+	+	+	+	-		_	

Homozygous deletions of each marker in YAC clones were detected by PCR and Southern blot analyses. IFNB is telomeric and p15×1 is centromeric. Markers p15×1, p16×1, and ex1-8 are exon 1 of the p15 gene, exon 1 of the p16 gene, and exons 1-8 of the MTAP gene. Other markers were described in ref. 20. +, Presence of DNA; -, homozygous loss.

Fig. 5. Pulse-field gel analysis of YAC clones with probes *IFNA*, 3.3B, and MTAP cDNA. SfiI digests of YAC DNA were fractionated by PFGE and then hybridized with the indicated probe. The probe IFNA is cDNA and the probe 3.3B is the 1.4-kb *EcoRI* fragment containing an internal SfiI site derived from the *IFNA*-positive YAC clone. Lanes: 1, 761A5; 2, 760C6; 3, 760C7; 4, 660H9; 5, 802B11; 6, 735H8; 7, 759B7; 8, 735B2.

MTAP deficiency is a simple marker for a chromosome 9p deletion because normal cells contain abundant enzyme protein. Normal cells reconvert MTA to adenine nucleotides and methionine, whereas MTAP-deficient tumor cells have lost these salvage pathways. As such, cancers with deletions of MTAP gene may be especially susceptible to chemotherapeutic regimens that interfere with purine or methionine utilization (1, 9). In addition, MTA, the substrate for MTAP, is a natural inhibitor of S-adenosylmethionine-dependent transmethylation reactions (3). It is conceivable that even a transient disturbance in DNA methylation could promote the progress of a malignant tumor.

The assessment of MTAP deficiency in gliomas, lung cancers, leukemias, and other cancers could have diagnostic and prognostic value. MTAP deficiency is mainly caused by partial or total deletions of the MTAP gene not only in cell lines but also in primary tumors. Our work presented herein will facilitate the development of molecular diagnosis of MTAP deficiency and understanding of molecular mechanisms of this deficiency.

We thank David Wu for excellent technical assistance. We are also grateful to Nancy Noon for secretarial help. This work was supported in part by research grants from the American Cancer Society (DHP 84), from the University of California Tobacco-Related Disease Program (3RT-0075), and from the National Institutes of Health (U01 CA64976).

- 1. Kamatani, N., Nelson-Rees, W. A. & Carson, D. A. (1981) *Proc. Natl. Acad. Sci. USA* 78, 1219-1223.
- 2. Pajula, R.-L. & Raina, A. (1979) FEBS Lett. 99, 343-345.
- 3. Williams-Ashman, H. G., Seidenfeld, J. & Galletti, P. (1982) Biochem. Pharmacol. 31, 277-288.
- 4. Kamatani, N. & Carson, D. A. (1981) *Biochim. Biophys. Acta* 675, 344-350.
- Backlund, P. S., Jr., & Smith, R. A. (1981) J. Biol. Chem. 244, 1533-1535.
- 6. Toohey, J. I. (1977) Biochem. Biophys. Res. Commun. 78, 1273-
- 7. Fitchen, J. H., Riscoe, M. K., Dana, B. W., Lawrence, H. J. & Ferro, A. J. (1986) Cancer Res. 46, 5409-5412.

- 8. Nobori, T., Karras, J. G., Della Ragione, F., Waltz, T. A., Chen, P. P. & Carson, D. A. (1991) Cancer Res. 51, 3193-3197.
- Nobori, T., Szinai, I., Amox, D., Parker, B., Olopade, O. I., Buchhagen, D. L. & Carson, D. A. (1993) Cancer Res. 53, 1098– 1101.
- 10. Kubota, M., Kamatani, N. & Carson, D. A. (1983) J. Biol. Chem. 258, 7288-7291.
- 11. Carrera, C. J., Eddy, R. L., Shows, T. B. & Carson, D. A. (1984) Proc. Natl. Acad. Sci. USA 81, 2665-2668.
- Miyakoshi, J., Dobler, K. D., Allalunis-Turner, J., McKean, J. D. S., Petruk, K., Allen, P. B. R., Aronyk, K. N., Weir, B., Huyser-Wierenga, D., Fulton, D., Urtasum, R. C. & Day, R. S., III (1990) Cancer Res. 50, 278-283.
- Olopade, I. O., Jenkins, R. B., Ransom, D. T., Malik, K., Pomykala, H., Nobori, T., Cowan, J. M., Rowley, J. D. & Diaz, M. O. (1992) Cancer Res. 52, 2523-2529.
- Fountain, J. W., Karayiorgou, M., Ernstoff, M. S., Kirkwood, J. M., Vlock, D. R., Titus-Ernstoff, L., Bouchard, B., Vijayasaradhi, S., Houghton, A. N., Lahti, J., Kidd, V. J., Housman, D. & Dracopoli, N. C. (1992) Proc. Natl. Acad. Sci. USA 89, 10557-10561.
- Wang-Peng, J., Knutsen, T., Gazdar, A., Steinberg, S. M., Oie, H., Linnila, J., Mulshine, J., Nau, M. & Minna, I. D. (1991) Genes Chromosom. Cancer 3, 168-188.
- 16. Lukeis, R., Irving, L., Garson, M. & Hasthorpe, S. (1990) Genes Chromosom. Cancer 2, 116-124.
- Diaz, M. O., Ziemin, S., LeBeau, M. M., Pitha, P., Smith, S. D., Chilcote, R. R. & Rowley, J. D. (1988) *Proc. Natl. Acad. Sci. USA* 85, 5259-5263.
- Diaz, M. O., Rubin, C. M., Harden, A., Ziemin, S., Larson, R. A., LeBeau, M. M. & Rowley, J. D. (1990) N. Engl. J. Med. 322, 77-82.
- Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V., Stockert, E., Day, R. S., III, Johnson, B. E. & Skolnick, M. H. (1994) Science 264, 436-440.
- 20. Nobori, T., Miura, K., Wu, D. J., Lois, A., Takabayashi, K. & Carson, D. A. (1994) *Nature (London)* 368, 753-756.
- 21. Jen, J., Harper, J. W., Bigner, S. H., Bigner, D. D., Papadopoulos, N., Markowitz, S., Willson, J. K., Kinzler, K. W. & Vogelstein, B. (1994) *Cancer Res.* 54, 6353-6358.
- Dreyling, M. H., Bohlander, S. K., Adeyanju, M. O. & Olopade,
 O. I. (1995) Cancer Res. 55, 984-988.
- 23. Ogawa, S., Hirano, N., Sato, N., Takahashi, T., Hangaishi, A., Tanaka, K., Kurokawa, M., Tanaka, T., Mitani, K., Yazaki, Y. & Hirai, H. (1994) *Blood* 84, 2431–2435.
- 24. Quesnel, B., Preudhomme, C., Philippe, N., Vanrumbeke, M., Dervite, I., Lai, J. L., Bauters, F., Wattel, E. & Fenaux, P. (1995) Blood 85, 657-663.
- Hatta, Y., Hirama, T., Miller, C. W., Yamada, Y., Tomonaga, M. & Koeffler, H. P. (1995) Blood 85, 2699-2704.
- Caldas, C., Hahn, S. A., da Costa, L. T., Redston, M. S., Schutte, M., Seymour, A. B., Weinstein, C. L., Hruban, R. H., Yeo, C. J. & Kern, S. E. (1994) Nat. Genet. 8, 27-32.
- Olopade, O. I., Pomykala H. M., Hagos F., Sveen L. W., Espinosa, R., III, Dreyling M. H., Gursky, S., Stadler, W. M., Le Beau, M. M. & Bohlander, S. K. (1995) Proc. Natl. Acad. Sci. USA 92, 6489-6493.
- 28. Smith, C. L., Klco, S. R. & Cantor, C. R. (1988) in Genome Analysis: A Practical Approach, ed. Davies, K. (IRL, Oxford), pp. 41-47.
- Elvin, P., Slynn, G., Black, D., Graham, A., Butler, R., Riley, J., Anand, R. & Markham, A. F. (1990) Nucleic Acids Res. 18, 3913-3917.
- Pomykala, H. M., Bohlander, S. K., Broeker, P. L., Olopade,
 O. I. & Diaz, M. O. (1994) Mol. Cell. Biol. 14, 7604-7610.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.