

Sumário

- 1. Congruência LLL
- 2. O Teorema do Ângulo Externo
- 3. Congruência *LAA*_o
- 4. Caso Especial: Triângulos Retângulos
- 5. Problemas

Congruência LLL

3° caso: LLL

Teorema 1

Se dois triângulos têm três lados respectivamente congruentes, então os triângulos são congruentes.

Figura 1: $\triangle ABC \equiv \triangle DEF$

Hipótese:
$$\begin{cases} AB = DE \\ AC = DF \end{cases}$$
 Tese: $\triangle ABC = \triangle DEF$
$$BC = EF$$

Na semirreta \overrightarrow{BC} , e no semiplano que não contém o ponto A, tracemos um ângulo congruente a \hat{E} , com vértice em B.

No outro lado desse ângulo, marquemos um ponto P de modo que BP = DE.

Ligando P a C, obtemos o triângulo PBC congruente ao triângulo DEF (LAL: BC = EF, $P\hat{B}C = D\hat{E}F \in BP = ED$). Com isso, PC = DF.

- Traçando o segmento \overline{AP} , os triângulos *PAB* e *PCA* são isósceles.
- ightharpoonup Com isso, $B\hat{A}P = B\hat{P}A$ e $P\hat{A}C = A\hat{P}C$.
- $\hat{D} = \hat{P} = B\hat{P}A + P\hat{A}C = B\hat{A}P + P\hat{A}C = \hat{A}$

Assim, temos

- ightharpoonup AB = ED (hipótese);
- $ightharpoonup \hat{D} = \hat{A}$ (demonstrado acima);
- ightharpoonup AC = DE (hipótese).

Usando a congruência LAL, concluímos que $\triangle DEF = \triangle ABC$.

Mediatriz

Definição 1

Chama-se mediatriz de um segmento a reta perpendicular ao mesmo em seu ponto médio.

Teorema Mediatriz

Teorema 2

Todo ponto da mediatriz de um segmento é equidistante dos extremos desse segmento.

- ► Seja *M* o ponto médio de *AB*.
- ▶ Seja P um ponto qualquer da mediatriz de \overline{AB} diferente de M.
- ► Trace os segmentos *PA* e *PB*.

- ► Concluímos que $\triangle PMA = \triangle PMB$ (LAL: \overline{PM} lado comum, $P\hat{M}A = 90^{\circ} = P\hat{M}B$ e AM = MB).
- ▶ Portanto, *PA* = *PB* (lados opostos a ângulos congruentes).

Ângulos Não-Adjacentes

No triângulo abaixo, os ângulos internos \hat{A} e \hat{B} são ditos **não-adjacentes** ao ângulo externo \hat{ACF} .

O Teorema do Ângulo Externo

Teorema do Ângulo Externo

Teorema 3

Todo ângulo externo de um triângulo é maior que cada um dos ângulos internos que não lhes são adjacentes.

- ▶ **Hipótese:** $A\hat{C}H$ é um ângulo externo do $\triangle ABC$.
- ► Tese:
 - 1. $A\hat{C}H > A\hat{B}C$.
 - 2. $A\hat{C}H > B\hat{A}C$.

Seja M o ponto médio do lado \overline{AC} .

Na semirreta \overrightarrow{BM} , marquemos um ponto E tal que BM = ME.

▶ Desta forma, $\triangle AMB = \triangle CME$ (LAL: AM = MC, $A\hat{M}B = C\hat{M}E$ - ângulos opostos pelo vértice - e BM = ME).

► Consequentemente, $\hat{A} = M\hat{C}E$ (ângulos opostos a lados congruentes).

► Como $\hat{ACH} = \hat{ACE} + \hat{ECH} = \hat{A} + \hat{ECH}$, segue-se que $\hat{ACH} > \hat{A}$.

Exercício 1

Repita este argumento, em outra figura conveniente, para provar que $A\hat{C}H > A\hat{B}C$.

Congruência *LAA*_o

4° caso: LAA_{o}

Teorema 4

Se dois triângulos têm um lado congruente, o ângulo oposto e um ângulo adjacente a este lado respectivamente congruentes, então os triângulos são congruentes.

- ► Hipótese:
 - ightharpoonup BC = EF
 - $ightharpoonup \hat{A} = \hat{D}$
 - \triangleright $\hat{B} = \hat{E}$
- ▶ Tese: $\triangle ABC = \triangle DEF$.

Comparando-se as medidas dos segmentos \overline{AB} e \overline{DE} podemos afirmar que:

- i) ou AB < DE;
- ii) ou DE < AB;
- iii) ou AB = DE.

Suponha, por absurdo, que AB < DE. Seja P um ponto da semirreta \overrightarrow{BA} , tal que BP = ED:

4

O triângulo PBC construído será congruente ao triângulo DEF:

$$\triangle PBC = \triangle DEF (LAL)$$

Portanto,

- $\hat{P} = \hat{D}$ (ângulos opostos a lados congruentes)
- $ightharpoonup \hat{A} = \hat{D}$ (hipótese)

Portanto,

$$\hat{A} = \hat{P}$$
.

Por outro lado, o ângulo $\hat{A} = B\hat{A}C$ é um ângulo externo do ângulo $C\hat{A}P$. Pelo Teorema do Ângulo Externo (TAE), \hat{A} é maior que os ângulos internos de $\triangle APC$, não adjacentes a ele. Portanto, teríamos

$$\hat{A} > A\hat{P}C = \hat{P}$$
 e $\hat{A} = \hat{P}$,

um absurdo.

De maneira análoga, demonstra-se que *DE < AB* é falsa.

Do exposto, concluímos que AB = DE e, pelo Postulado (LAL), os triângulos ABC e DEF são congruentes.

Caso Especial: Triângulos Retângulos

Triângulo Retângulo

Definição 2

Um triângulo que possui um ângulo reto é denominado triângulo retângulo.

- O lado oposto ao ângulo reto é chamado hipotenusa.
- Os outros lados são denominados catetos do triângulo.

Caso Especial: Triângulos Retângulos

Teorema 5

Se dois triângulos retângulos possuem a hipotenusa e um cateto respectivamente congruentes então os triângulos são congruentes.

- Hipótese:
 - ightharpoonup AC = DF
 - ightharpoonup AB = DE
 - $\hat{B} = \hat{E} = 90^{\circ}$
- ▶ Tese: $\triangle ABC = \triangle DEF$.

Sobre a semirreta \overrightarrow{CB} , tomemos um ponto H de modo a termos BH = ED. Assim,

- ightharpoonup AB = DE (hipótese) L
- ► $A\hat{B}H = 90^{\circ} = \hat{E} (A\hat{B}H$ é externo ao ângulo reto \hat{B}) A
- ► BH = EF (construção) L

Portanto, pelo caso (LAL), os triângulos ABH e DEF são congruentes. Logo,

- ► AH = DF (hipotenusas congruentes).
- ightharpoonup $AC = DF \Rightarrow AC = AH$.
- ► △ACH é isósceles.

Como $\triangle ACH$ é isósceles, a altura \overline{AB} é também a mediana do segmento \overline{CH} , de onde concluímos que

$$CB = BH = EF$$
,

e, portanto, os triângulos ABC e DEF são congruentes (LLL).

Problemas

Exercício 2

Exercício 2

Na figura abaixo, sendo os segmentos \overline{BF} e \overline{CD} congruentes, os ângulos $A\widehat{BC}$ e $F\widehat{DE}$ congruentes e os ângulos $B\widehat{AC}$ e $D\widehat{EF}$ também congruentes, prove que os segmentos \overline{AC} e \overline{EF} são congruentes.

Exercício 3

Exercício 3

Mostre que a soma das medidas de dois ângulos quaisquer de um triângulo é menor do que 180° .

Exercício 4

Dado um segmento AB, construímos os ângulos $\hat{CAB} \equiv \hat{DBA}$, um em cada semiplano determinado pela reta que \overline{AB} , com AC = DB. Unindo os pontos C e D obtemos o ponto M no segmento AB. Mostre que M é o ponto médio de AB.