Určování povrchových energií pevných látek

- Co je to povrchová energie (PE)
- Proč určovat PE
- Jak určujeme PE
- SEE Systém
- Některé modely výpočtu PE
- Chyby
- Vliv drsnosti povrchu
- Využití této diagnostické metody

Co je to povrchová energie?

• Práce W, kterou je třeba vykonat pro vznik jednotky plochy A

Proč určovat povrchovou energii pevných látek?

- Povrchová energie PL je jedno z důležitých kritérií pro adhesi (přilnavost) tiskařské barvy, lepidel, laků, nátěrů atd. na jakémkoli povrchu.
- Čím vyšší je povrchová energie materiálu, tím lepší je přilnavost či fixace na daný povrch.
- Je doporučováno kontrolovat povrchovou energii PL, která je důležitý parametr pro dobrou přilnavost.

Proč určovat povrchovou energii pevných látek?

Důvod proč má PL nízkou povrchovou energii:

- vlastnosti materiálu
- znečištění povrchu (tuk, otisky prstů.....)
- Obecný limit je často uváděna hodnota 38 mJ/m². Povrchová energie pod touto hodnotou -přilnavost bude pravděpodobně špatná, nad tuto hodnotu by měla být přilnavost uspokojivá.
- Je doporučováno kontrolovat povrchovou energii PL, která je důležitý parametr pro dobrou přilnavost.

Jak povrchovou energii určujeme?

- Fixy
- Inkousty
- Kapková metoda

Fixy

Nejjednodušší prostředek k testování kvality povrchů.

modré- toxickérůžové - netoxické

Pokud fix zanechá na povrchu malé kapičky, povrch má nižší PE než je uvedená hodnota na fixu

Fixy

<u>Výhody</u>

- rychlá manipulace a určení povrchové energie
- Lze aplikovat v jakékoli poloze na jakkoli tvarovaný výrobek
- Není potřeba počítač ani přívod elektřiny

Nevýhody

- Cena
- Životnost (kolem 1/2 roku pro fixy 20-28 mJ/m² pak 3 měsíce)

Testovací inkousty

- Roztoky o definovaném povrchovém napětí.
- Povrchová energie se zjišťuje pomocí aplikace testovacího inkoustu štětečkem na povrch.

Výhody i nevýhody stejné jako u fixů kromě:

- polohy aplikace
- •nebezpečí vylití test. inkoustu

Kapková metoda

Úsazená kapka známé kapaliny na povrch PL

Kapková metoda

Metoda založená na sledování tvaru kapky testovací kapaliny usazené na povrch vzorku

Nejčastěji používané kapaliny:

Voda
Dijodometan
Etylenglykol
Formamid
Glycerol
Alfa-bromnaftalen

Testovací kapaliny

- -Nesmí reagovat s testovaným materiálem
- -Musí mít známé a stálé parametry
- -Neměly by být toxické
- -Povrchové napětí kapalin musí být vyšší než povrchová energie pevných látek
- -Nesmí se rychle vypařovat

Používané kapaliny: voda, glycerol, etylenglykol, formamid, dijodmetan, bromonaftalen

Kapková metoda-povrchová

Kontaktní úhelna hladkém homogenním a izotropním povrchu pevné látky

Youngova rovnice

$$\gamma_{SV} - \gamma_{SL} = \gamma_{LV} \cos \theta$$

γ_{SV} - mezifázová energie -pevná látka-pára

γ_{SL} - mezifázová energie -pevná látka-kapalina,

γ_{LV} – mezifázová energie -kapalina-pára.

θ- kontaktní úhel

W_{SL} – vazebná energie rozhranní pevná látka-kap.

Youngova rovnice

$$\gamma_{\text{SV}} - \gamma_{\text{SL}} = \gamma_{\text{LV}} \cos \theta$$

Duprého rovnice

$$W_{\text{SL}} = \gamma_{\text{SV}} + \gamma_{\text{LV}} - \gamma_{\text{S}L}$$

$$W_{SL} = \gamma_{LV} (1 + \cos \theta)$$

Young-Duprého rovnice

Surface Energy Evaluation System

- ⇒system s kamerou
- jednoduchá manipulace
- ⇒možnost ukládání časového vývoje kapky
- ⇒software s výpočtem povrch. energií PL pomocí běžných modelů
- ⇒databáze parametrů testovacích kapalin
- ⇒chybová analýza
- ⇒ nízká cena (1/5 běžných zařízení)

Zismanova metoda

$$\cos\theta = f(\gamma_l)$$

Závislost lze fitovat následující rovnicí

$$\cos\theta = 1 + b(\gamma_c - \gamma_l)$$

Φ - faktor rozhraní

$$\gamma_s = \frac{\gamma_c}{\Phi^2}$$

Úpravou Zismanovy a Young Dupreho rovnice dostaneme:

$$W_{\rm sl} = 2\Phi \sqrt{\gamma_{\rm l} \gamma_{\rm sv}}$$

Dalšími úpravami vznikne:

$$\cos\theta \cong -1 + 2\Phi \left(\frac{\gamma_{sv}}{\gamma_{lv}}\right)^{1/2}$$

Modely založené na bázi stavové rovnice

$$W_{\rm sl} = f(\gamma_{\rm lv}, \gamma_{\rm sv})$$

Berthold předpokládal následující závislost:

$$W_{sl} = 2\sqrt{\gamma_{1v}\gamma_{sv}}$$

Kombinací s Youngovou rovnicí dostaneme:

$$\cos\theta = -1 + 2\frac{\gamma_{sv}}{\gamma_{lv}}$$

Ward a Neuman termodynamicky prokázali existenci stavové rovnice.

$$W_{sl} = \frac{\left(\sqrt{\gamma_{sv}} - \sqrt{\gamma_{lv}}\right)^2}{\left(1 - 0,015\sqrt{\gamma_{sv}\gamma_{lv}}\right)}$$

Kombinací s Young-Dupreho rovnicí dostaneme:

$$\cos \theta = \frac{(0.015\gamma_{sv} - 2.00)\sqrt{\gamma_{sv} + \gamma_{1v}} + \gamma_{1v}}{\gamma_{1}(0.015\sqrt{\gamma_{sv}\gamma_{1v}} - 1)}$$

Další odvození provedl Li a Neuman:

$$W_{sl} = 2\sqrt{\gamma_{lv}\gamma_{sv}}e^{-0.0001247(\gamma_{lv}-\gamma_{sv})^2}$$

Kombinací s Young-Dupreho rovnicí dostaneme:

$$\cos\theta = -1 + 2\left(\frac{\gamma_{sv}}{\gamma_{lv}}\right)^{1/2} e^{-0.0001247(\gamma_{sv} - \gamma_{sv})^2}$$

Kwok a Neuman navrhli následující stavovovou rovnici:

$$W_{sl} = 2\sqrt{\gamma_{lv}\gamma_{sv}} \left(1 - 0.0001057(\gamma_{lv} - \gamma_{sv})^2\right)$$

Kombinací s Young-Dupreho rovnicí dostaneme:

$$\cos \theta = -1 + 2 \left(\frac{\gamma_{sv}}{\gamma_{lv}} \right)^{1/2} \left(1 - 0.0001057 (\gamma_{lv} - \gamma_{sv})^2 \right)$$

Wu vyjádřil stavovou rovnici ve tvaru:

$$\gamma_{\rm c} = \frac{\gamma_1 (1 + \cos \theta)^2}{4}$$

Fowkesova teorie

Je základem pro všechny moderní modely, bere v úvahu všechny síly, které působí mezi kapalinou a pevnou látkou.

Pro disperzní síly

$$W_{sl} = 2\sqrt{\gamma_s^d \gamma_l^d}$$

$$\gamma = \gamma^d + \gamma^p + \gamma^h + \gamma^i + \gamma^{ab} + \dots$$

Základní typy vazeb:

- •kovalentní-vzniká překrytím orbitalů obou atomů, z nichž každý obsahuje jeden vazebný elektron, za vytvoření elektronového páru, oba atomy sdílejí společný el. pár
- •iontová- extrémně polární kovalentní vazba, velký rozdíl elektronegativity mezi atomy
- •kovová- atomy kovů jsou charakteristické tím, že obsahují silně vázané vnitřní elektrony a slabě vázané 1 2 valenční elektrony. Její podstatou je rovněž překrývání valenčních orbitalů jako u kovalentní vazby.

Slabší vazebné interakce Van der Waalsovy síly

- coulombovské síly–u takových atomových útvarů, které již mají permanentní dipól (Kesonův efekt) (H₂O, NH₃, SO₂)
- indukční síly-molekuly s permanentním dipólem vyvolávají deformaci el. obalu a vznik indukovaného dipólu (Debyeův efekt) (F2,Cl2, ethan, butadien apod.)
- disperzní síly-kladné náboje jader atomů nejsou úplně elektrostaticky odstíněny vlastními elektronypůsobí proto na elektrony všech molekul (Londonův efekt)

Owens and Wendtova teorie

Rozšíření Fowkesovy teorie, kde interakční energie sil je vyjádřena jako geometrický střed polárních a disperzních komponent kapaliny a pevné látky:

$$W_{sl} = 2\left(\sqrt{\gamma_s^d \gamma_l^d} + \sqrt{\gamma_s^p \gamma_l^p}\right)$$

Kombinací s Young-Dupreho rovnicí dostaneme:

$$(1 + \cos\theta)\gamma_l = 2\left(\sqrt{\gamma_s^d \gamma_l^d} + \sqrt{\gamma_s^p \gamma_l^p}\right)$$

Regresní metoda:

$$\frac{1+\cos\theta}{2} \frac{\gamma_1}{\sqrt{\gamma_1^d}} = \sqrt{\gamma_s^d} + \sqrt{\gamma_s^p} \sqrt{\frac{\gamma_1^p}{\gamma_1^d}}$$

Owens and Wendtova teorie

Rozšíření Fowkesovy teorie, kde interakční energie sil je vyjádřena jako geometrický střed polárních a disperzních komponent kapaliny a pevné látky:

$$W_{sl} = 2\left(\sqrt{\gamma_s^d \gamma_l^d} + \sqrt{\gamma_s^p \gamma_l^p}\right)$$

Kombinací s Young-Dupreho rovnicí dostaneme:

$$(1 + \cos\theta)\gamma_l = 2\left(\sqrt{\gamma_s^d \gamma_l^d} + \sqrt{\gamma_s^p \gamma_l^p}\right)$$

Regresní metoda:

$$\frac{1+\cos\theta}{2} \frac{\gamma_1}{\sqrt{\gamma_1^d}} = \sqrt{\gamma_s^d} + \sqrt{\gamma_s^p} \sqrt{\frac{\gamma_1^p}{\gamma_1^d}} \qquad Y = A + B$$

Wuova teorie

Wu odvodil metodu kombinující harmoniký a geometrický průměr:

$$W_{sl} = 4 \left(\frac{\gamma_s^d \gamma_l^d}{\gamma_s^d + \gamma_l^d} + \frac{\gamma_s^p \gamma_l^p}{\gamma_s^p + \gamma_l^p} \right)$$

Kombinací s Young-Dupre rovnicí dostaneme:

$$\left(1 + \cos\theta\right)\gamma_l = 4\left(\frac{\gamma_s^d \gamma_l^d}{\gamma_s^d + \gamma_l^d} + \frac{\gamma_s^p \gamma_l^p}{\gamma_s^p + \gamma_l^p}\right)$$

Tato teorie je použitelná pro vysoce energetické povrchy (oxidy, kovy, grafit apod.)

Acid-base teorie

Předpokládá, že celková PE γ je složena z LifshitzVan der Waalsovy- LW a acid-base AB komponenty.

$$\gamma = \gamma^{LW} + \gamma^{AB}$$

Lewisova teorie kyselin a zásad –zásada každá částice, která má alespoň jeden elektronový pár schopný zprostředkovat vznik donor-akceprorové vazby s další částicí (kovalentní, iontová,kovová)

Van der Wallsovy síly- (coulomboyské, indukční, disperzní)

$$\gamma = \gamma^d + \gamma^p + \gamma^h + \gamma^i + \gamma^{ab} + \dots$$

Povrchovou energii lze počítat

$$(1 + \cos \theta_l)\gamma_l = 2\left(\sqrt{\gamma_l^{LW}\gamma_s^{LW}} + \sqrt{\gamma_l^+\gamma_s^-} + \sqrt{\gamma_l^-\gamma_s^+}\right)$$

Mezi AB a kyselou γ⁺ (elektron/akceptorovou) a zásaditou γ⁻ (elektron/donorovou) komponentou:

$$\gamma^{AB} = 2\sqrt{\gamma^+ \gamma^-}$$

Regresní acid -base

$$\frac{1 + \cos \theta_{1}}{2} \frac{\gamma_{1}}{\sqrt{\gamma_{1}^{LW}}} = \sqrt{\gamma_{s}^{LW}} + \sqrt{\gamma_{s}^{+}} \sqrt{\frac{\gamma_{1}^{-}}{\gamma_{1}^{LW}}} + \sqrt{\gamma_{s}^{-}} \sqrt{\frac{\gamma_{1}^{+}}{\gamma_{1}^{LW}}}$$

Chyby měření

Náhodné chyby:

- -Špatně usazená kapka
- -Špatný fit profilu kapky
- -Nehomogenita vzorku

Chyby měření

Systematické chyby:

- -Sejmutí profilu před dosažením termodynamické rovnováhy
- -Špatně volená velikost kapky
- -Nehomogenity v materiálu
- -Kontaminace měřících kapalin
- -Reakce kapalin se substrátem
- -Drsnost povrchu

Drsnost vzorku

Wenzel:

$$\cos\theta^* = \rho\cos\theta$$

$$\theta^* < \theta \implies \theta < \pi/2$$
 $\theta^* > \theta \implies \theta > \pi/2$

$$\rho = \left(\frac{L}{l}\right)^{D-2}$$

p-parametr drsnosti

D-fraktální
parametr mezi
horním -L a ldolním limitem

Použití metody

- -Charakterizace povrchů
 - -před lepením nebo potiskem PL
 - -po plazmové úpravě
 - -pájení (kontaktní úhly pájky a pájené součásti)
 - -apod.

