Loan Approval Prediction using Machine Learning

Presented by: Daena Wallace & Avery Javier

Project Overview

Objective: This project aims to enhance financial decision-making by predicting loan approvals based on key applicant features such as credit history, income, and employment status.

Dataset: Loan application dataset with over 50,000 records.

Tools & Technologies Used:

Python (pandas, sklearn, tensorflow, sqlite3)

Machine Learning Models: Logistic Regression, Random Forest, Neural Network

Data Storage: SQLite

Data Preprocessing & Storage

Data Cleaning Steps:

- Handled missing values
- Converted categorical variables using pd.get_dummies()
- Standardized numerical features using StandardScaler

Database Storage:

Stored and retrieved data from SQLite for structured access and queries.

Machine Learning Models Tested

- ✓ Logistic Regression Baseline model
- ✓ Random Forest Ensemble learning
- ✓ Neural Network (Deep Learning) Optimized model

Final Model Chosen: Neural Network (best accuracy)

Model Performance Comparison

Model	Training Accuracy	Testing Accuracy
Logistic Regression	78.2%	78.0%
Random Forest	85.6%	83.4%
Neural Network	92.3%	76.3%

Why Neural Networks?

- Captures complex relationships in data
- Performs better than traditional models on large datasets

Feature Importance Analysis

The top three most important features:

- Credit Score
- Loan Amount Requested
- Annual Income

Neural Network Model Summary:

- Input Features: 50
- Hidden Layers: 3 (128, 64, 32 neurons)
- **Activation Functions: ReLU & Tanh**
- Output Layer: Sigmoid for binary classification

Training Progress:

Accuracy improved consistently over 50 epochs

Future Improvements:

- Optimize Hyperparameters Adjust learning rate, activation functions, and layer sizes.
- **Expand Dataset** Incorporate more real-world loan data for better generalization.
- **Balance Data** Address class imbalance to improve high-risk loan detection.
- **Try Alternative Models** Experiment with XGBoost or ensemble learning for higher accuracy.

Key Takeaways:

- Credit Score & Loan Amount Requested are the most important factors in approval.
- The Neural Network model performed the best, achieving 76% accuracy.
- Feature engineering & data preprocessing significantly impacted model performance.

Questions?

- Why these models? Compare different ML approaches
- How did we process the data? Cleaning, encoding, and standardization
- What was the biggest factor in approval? Credit Score, Loan Amount Requested
- How accurate is the final model? 76.3% on test data
- How can we improve it? More data, tuning, and alternative models

