

PRÁCTICAS DE QUÍMICA | 1.º BACH I. DISOLUCIONES SÓLIDO-LÍQUIDO Y DILUCIONES

ALBA LÓPEZ VALENZUELA ANTONIO GONZÁLEZ MORENO

	OBJETIVOS	
 Resolver problemas sobre la prepar Entender el concepto de dilución d 	l volumétrico y otro material de uso general e ación de disoluciones sólido-líquido. e una disolución y resolver problemas MATERIALES Y REACTIVOS	
 Calculadora Rotulador permanente Balanza Frasco lavador Cuchara o espátula Pipeta Pasteur o cuentagotas Pera de goma o aspirador 	 Vaso de precipitados de mínimo 250 mL 2 vasos de precipitados pequeños Matraz aforado de 100 mL 2 matraces aforados de 50 mL 1 pipeta graduada de 10 mL o 1 pipeta aforada de 10 mL y otra de 5 mL. 	 Agua Sal (NaCl) teñida con colorante alimentario (reactivo A) Opcional: Varilla de vidrio Embudo simple Guantes
	INTRODUCCIÓN	
Una disolución es una mezcla hom	nogénea compuesta por un disolvente y uno o	varios solutos.
La concentración es la relación qu	e hay entre la cantidad de soluto y la cantida	d de disolución (o a veces de disolvente).
Tiene varias expresiones, en esta práctic de moles del soluto y el volumen en lit	a usaremos la concentración molar o molario ros de la disolución.	$\operatorname{dad} olimits, M$, que es la relación entre el número
	$M(\mathbf{M}) = \frac{n_{\text{soluto}}(\text{mol})}{V_{\text{disolución}}(\mathbf{L})}$	(1)
Una vez preparada una disolución c	le una determinada concentración podemos a	umentar su concentración o disminuirla.
PREGUNTA 1. Indica dos form	nas de aumentar la concentración de una di	solución.

Si se añade más cantidad de disolvente a una disolución, disminuye la proporción entre la cantidad de soluto y de la disolución. A este proceso se le llama **dilución de una disolución**. La cantidad de soluto que hay en el volumen que se toma de la disolución concentrada (c) es la misma que en la disolución diluida (d) que se prepara, solo cambia la cantidad de disolvente.

$$n_{\rm c} = n_{\rm d} \tag{2}$$

$$M_{\rm c} \cdot V_{\rm c} = M_{\rm d} \cdot V_{\rm d} \tag{3}$$

PRÁCTICA 1: PREPARAR UNA DISOLUCIÓN SÓLIDO-LÍQUIDO

Vamos a preparar 100 mL de una disolución del soluto A (Mm = 58.5 g/mol) en agua de concentración 2 м.

PREGUNTA 2. Calcula la masa de soluto A que deberás pesar.
Nota: Consulta con tu profesor si la cantidad que has calculado es correcta
antes de avanzar.

PROCEDIMIENTO EXPERIMENTAL

En un vaso de precipitados pesa aproximadamente la cantidad que has calculado en una balanza.

TTA 3. Anota la es necesario.	cantidad que	has pesado y r	ecalcula la mo-

A continuación, añade al vaso suficiente cantidad de agua para disolver todo tu soluto pero, ¡no te pases! Agita con la ayuda de una cuchara/espátula/varilla de vidrio hasta disolver completamente el soluto.

Trasvasa todo el contenido del vaso a un matraz aforado de 100.00 mL. Puedes ayudarte de un embudo para no verter nada. Para no dejar nada de soluto en el vaso, añade una pequeña cantidad de agua en el vaso e intenta arrastrar los restos de las paredes. Vierte de nuevo el contenido del vaso en el matraz aforado.

Enrasa la disolución con agua (ver Figura 1). Si aún falta mucho volumen hasta llegar al enrase puedes añadir agua directamente desde el frasco lavador. Cuando te acerques al enrase, añade un poco de agua en el vaso de precipitados pequeño y ve añadiendo gota a gota con una pipeta Pasteur o cuentagotas hasta enrasar.

Tapa el matraz aforado y con el dedo en la tapa dale la vuelta 2 o 3 veces para homogeneizar la disolución. Rotula el matraz para identificar esta disolución madre.

Y listo. ¡Ya tienes una disolución 2 м de A en tus manos!

¹ Con unos 50 mL será suficiente, su solubilidad es $s = 35.9 \,\text{g}/100 \,\text{mL}$ agua.

Figura 1: Se enrasa correctamente si el menisco del líquido coincide con la línea del enrase.

PRÁCTICA 2: DILUCIÓN DE UNA DISOLUCIÓN

A partir de la disolución madre preparada en la práctica 1 de concentración 2 $\mbox{\scriptsize M}$ (o la concentración que hayas recalculado) vamos a preparar dos disoluciones:

• Disolución 1: 50 mL de concentración 0.4 m.

• Disolución 2: 50 mL tomando 2 mL de la disolución madre.	
PREGUNTA 4. Calcula cuántos mL tienes que tomar de la disolución madre para preparar la disolución 1.	
PREGUNTA 5. Calcula la molaridad que tendrá la disolución 2.	
PROCEDIMIENTO EXPERIMENTAL	
Para preparar las dos disoluciones se sigue el procedimiento que se describe a continuación. Se toman los mL necesarios usando una pipeta graduada/aforada y una pera de goma/aspirador. ² Esos mL necesarios se trasvasan al matraz aforado de 50 mL y se enrasa con agua de la misma manera que en la práctica 1. Se tapa el matraz y se agita y se rotula.	² Para usar la pipeta, es recomendable tomar más volumen del que mide la pipeta. Retira la pera de goma y tapa rápidamente el extremo su- perior de la pipeta con tu dedo índice. Ahora
PREGUNTA 6. ¿Qué observas? ¿Hay alguna relación entre la intensidad del color y la concentración de la sustancia A?	puedes dejar salir líquido de la pipeta dejando de hacer presión con el dedo. Enrasa la pipeta en el 0. Lleva la pipeta al matraz aforado y deja salir el volumen que necesites. El resto del volumen que queda en la pipeta puedes devolverlo a la disolución inicial.
PREGUNTA 7. ¿Podríamos haber preparado la disolución 2 a partir de la disolución 1? Realiza los cálculos necesarios.	

³ En la pregunta 1 vimos dos maneras de aumentar la concentración de una disolución:

añadir más cantidad de soluto o evaporar el di-

solvente. Una tercera vía sería añadir a la disolución cierta cantidad de otra disolución más

concentrada.

PRÁCTICA 3. MEZCLA DE DOS **DISOLUCIONES**

En esta práctica, vamos a mezclar dos disoluciones para formar una nueva disolución. Usaremos para ello las disoluciones 1 y 2 de la práctica 2.

PROCEDIMIENTO EXPERIMENTAL

Tomaremos 5 mL de la disolución 1 con una pipeta graduada y los llevaremos a un vaso de precipitados. Después tomaremos 5 mL de la disolución 2 y los llevaremos al mismo vaso.

La concentración de la disolución será distinta a la de las dos anteriores y debe tener un valor intermedio. ³ Esta concentración se puede calcular teniendo en cuenta que los moles presentes en la disolución final (3) será la suma de los moles presentes en los 5 mL de cada disolución (1) y (2).

$$n_1 + n_2 = n_3 \tag{4}$$

$$M_1 \cdot V_1 + M_2 \cdot V_2 = M_3 \cdot V_3 \tag{5}$$

PREGUNTA 8. Calcula la molaridad de la nueva d que los volúmenes son aditivos.	isolución. Supón

Imagina que la mezcla anterior la trasvamos a un matraz aforado de 50 mL y enrasamos con agua.

PREGUNTA 9. ¿Cuál sería la molaridad de la nueva disolución?

Nota: Antes de terminar limpia con cuidado el material y el puesto de trabajo.