Communicating with Data – Introduction to Interactive Visualization

Dr. Ab Mosca (they/them)

Congrats on an exceptional job on the Mid-semester Project! I'm super proud of the work you did, and I hope you all are, too!

Remember to fill out your reflection on Gradescope

Announcements

Announcements

- Smith Office for the Arts (SOFA) is accepting proposals for the McConnell Foyer Gallery
- I think a visualization installation would be a great fit for the space. If you'd like to brainstorm and submit a proposal with me, please reach out on Slack

Do Plants Know Math?: Unwinding the Story of Plant Spirals from Leonardo to Now

BUS: A Teacher in Transit

Announcements

- On 11/07 we will have a guest lecture from the <u>Spatial</u>
 Analysis Lab (SAL) on geospatial visualization
- Please bring a laptop to class if you're able to

Reminder

- HW 04 is (finally!) due this week
- Remember, it was delayed so that we could cover interaction; consider adding what we learn today to your story if you already made one
- Post your finished story on Tableau Public, and turn in a link to the story on Gradescope. Instructions for posting are under In-class on the course website (tableau-public-demo.pdf) and the hwo4.pdf has been updated.

Plan for Today

- Interaction: a definition
- Interaction with data and problem space
 - Relationship between interaction and understanding
- Interaction with visual interfaces
 - Basic interaction types
- Demo: coordinated multiple views

Rewind

Humans and machines have complimentary strengths

Image credit: Ali Ansari

Interaction (def.)

"Interaction for visualization is the interplay between a person and a data interface involving a data-related intent, at least one action from the person and an interface reaction that is perceived as such."

Mandatory Components

- Interplay
- Person
- Data Interface
- Action
- Action-Reaction
- Reaction Perceived as Such
- Data-Related Intent

Interaction

- Methods by which humans **create knowledge** through the manipulation of an interface
- Low level: between human and interface
 - the set of operations available
 - the relationship between the human and the visualization
- High level: between human and problem space
 - a cognitive act *enabled* by the tool
 - does not need to take place exclusively within them
 - might be distributed across multiple tools

Example: Rubik's Cube What **low-level** interactions can you have?

What **high-level** interactions can you have?

Part I: High Level Interaction with Data / Problem Space

Brehmer and Munzner (2013)

- High-level interactions with a visualization correspond to analysis tasks
- We can think about why users perform tasks (interactions) at different levels of specificity
 - High consume vs. produce
 - Mid search
 - Low query

Consume vs. Produce

- Consume
 - Learn
 - Read a data story; be guided through a series of cognitive operations
 - Discover
 - Generation and verification of hypotheses, associated with models of scientific inquiry
 - Enjoy
 - Casual encounters with visualization
 - User is not driven by a need to verify or generate a hypothesis; novelty stimulates curiosity and exploration
- Produce
 - Generate
 - Create new artifacts such as transformed or derived data, annotation, recorded interactions, screenshots

Search

- Process of the user finding elements of interest in the visualization
- Search is categorized based on:
 - If the target of the search is known a priori
 - If the location of the target is known a priori

	Target Known	Target Unknown
Location known	User is familiar with American geography and looking for CA on a choropleth map	User using a tree visualization is searching within a specific subtree for leaf nodes having few siblings
Location Unknown	User is unfamiliar with American geography and looking for CA on a choropleth map	User is searching for outliers in a scatterplot

Query

- Once a target or set of targets has been found a user may
 - Identify
 - Returns characteristics about the target
 - Ex. User of a choropleth map *identifies* the margin of victory for the winning election candidate in CA
 - Compare
 - Refers to multiple subsets of targets
 - Ex. User of a choropleth map identifies election results for CA and *compares* them to results for MA
 - Summarize
 - Refers to a whole set of targets
 - Ex. User of a choropleth map *summarizes* election results across all states

the targets

Part II: Low Level Interaction with a Visual Interface

Yi, Kang, Stasko and Jacko (2007)

- 1. Select: mark something as interesting
- 2. Explore: show me something else
- 3. Reconfigure: show me a different arrangement
- 4. Encode: show me a different representation
- 5. Abstract/Elaborate: show me more or less detail
- 6. Filter: show me something conditionally
- 7. Connect: show me related items

Mark something as interesting: direct

1. Select

1. Select

Mark something as interesting: indirect

2. Explore

Show me something else

- Scroll bars
- Panning
- Direct-Walk (e.g. hyperlink traversal)

3. Reconfigure

Show me a different arrangement: sorting

Show me a different arrangement: baseline adjustment

3. Reconfigure

3. Reconfigure

Show me a different arrangement: reduce occlusion (jitter)

4. Encode

Show me a different representation: visualization type, color, size, orientation, etc.

5. Abstract /Elaborate

Show me more or less detail: drill up/down

5. Abstract / Elaborate

Show me more or less detail: zooming

5. Abstract /Elaborate

Show me more or less detail: tooltips

6. Filter

Show me something conditionally

NameVoyager: Explore baby names and name trends letter by letter Looking for the perfect baby name? Sign up for free to receive access to our expert tools!

7. Connect

Show me related items: build-out

7. Connect

Show me related items: coordinated multiple views (CMV)

Multiple views

Systems that use **two or more distinct views** to support the exploration of a single concept or domain

Suggested questions to ask when designing

- 1. What is the goal of the analysis?
 - Decision-making
 - Better understand a domain or a problem
 - Identify the trends of a phenomenon
 - Forecast the future

...etc.

- 2. What kinds of operations do we need to enable?
- 3. How can the visualization support those operations?

Demo: coordinated multiple views

Tableau CMV walkthrough and exploration