Guia de Estudo Detalhado: Propriedades Métricas dos Triângulos

1 | Panorama da Semana

- Foco: compreender relações métricas fundamentais dos triângulos e dominar os quatro pontos notáveis clássicos.
 - 1. Aplicar Teorema de Pitágoras (TP) e suas extensões.
 - 2. Usar o Teorema das Medianas para análises de comprimento.
 - 3. Localizar e explorar **baricentro**, **incentro**, **circuncentro** e **ortocentro** em qualquer triângulo.
 - 4. Resolver problemas envolvendo alturas, medianas e bissetrizes.

2 | Teorema de Pitágoras

Item	Conteúdo-chave		
Enunciado	Em um triângulo retângulo com catetos a,b e hipotenusa c : $a^2+b^2=c^2$.		
Conversa	Se um triângulo possui lados que satisfazem $a^2+b^2=c^2$, então ele é retângulo.		
Números pitagóricos	Conjuntos inteiros (a,b,c) : (3,4,5), (5,12,13), (8,15,17) Dica: gerados por $m^2-n^2,\ 2mn,\ m^2+n^2$ (com $m>n$).		
Extensões	• Triângulo obtuso: $a^2+b^2< c^2.$ • Lei dos Cossenos: generaliza para qualquer triângulo.		
Exemplo-fixação	Determine a diagonal de um terreno retangular $30\mathrm{m} \times 40\mathrm{m}$.		

3 | Teorema das Medianas & Baricentro (Centroid)

3.1 Fatos fundamentais

• Mediana: segmento que liga um vértice ao ponto médio do lado oposto.

- Baricentro (G) ou Centróide: ponto de encontro das 3 medianas.
 - o Divide cada mediana na razão 2:1 (contada do vértice).
 - o Centro de gravidade do triângulo.

3.2 Teorema das Medianas

Para lados a, b, c opostos a A, B, C e medianas m_a , m_b , m_c :

$$m_a^2 = rac{2b^2 + 2c^2 - a^2}{4} \quad ext{(análogas para } m_b, m_c ext{)}.$$

3.3 Exemplo

Num Δ com lados 7 cm, 8 cm e 9 cm, calcule m_a (mediana relativa ao lado 7 cm).

$$m_a^2 = \frac{2(8^2+9^2)-7^2}{4} = \frac{2(64+81)-49}{4} = \frac{290-49}{4} = \frac{241}{4} \Rightarrow m_a \approx 7.76 \,\mathrm{cm}.$$

4 | Demais Pontos Notáveis

Ponto	Definição	Construção (passos-base)	Propriedades relevantes
Incentro (I)	Interseção das 3 bissetrizes internas	(1) Traçar duas bissetrizes; (2) Centro do incírculo é o encontro delas.	• Sempre dentro do Δ . • Distância r (raio do incírculo) = área / semiperímetro.
Circuncentro (O)	Interseção das 3 mediatrizes	(1) Mediatriz de dois lados; (2) Encontro = centro da circunferência circunscrita.	• Pode ficar dentro, sobre ou fora do Δ (agudo, reto, obtuso). • Distância R usa fórmula $R=\dfrac{a}{2\sin A}.$
Ortocentro (H)	Interseção das 3 alturas	(1) Por um vértice trace reta ⊥ ao lado oposto; repita.	- Dentro (agudo), sobre (reto) ou fora (obtuso). $ \cdot O, G, H \mbox{ colineares na } {\bf reta} \mbox{ de Euler}. $

5 | Construções Clássicas (Régua + Compasso)

1. Incírculo:

- a) Bissetrizes de A e B \rightarrow I.
- b) Perpendicular a um lado passando por I \rightarrow ponto de tangência \rightarrow raio.

Properties of the Incenter of a Triangle

- 1) Found inside the triangle
- ② Formed at the intersection point of 3 angle bisectors
- 3 It is the center of the triangle's incircle

2. Circunferência circunscrita:

- a) Mediatrizes de AB e AC \rightarrow O.
- b) Raio = OA; trace circunferência.

3. Reta de Euler: marque O, G, H; verifique colinearidade medindo ângulos.

6 | Problemas de Fixação (seleção)

#	Enunciado	Dica / Resultado
1	Num ΔABC , $AB=13$, $AC=15$, $BC=14$. Calcule o raio r do incírculo.	Área via Heron; depois $r=rac{2\Delta}{a+b+c} ightarrow r=4.$
2	Mostre que $OG^2=R^2-rac{a^2+b^2+c^2}{9}.$	Use vetores ou coordenadas baricêntricas.
3	Prove que $AH:HG=2:1$ na reta de Euler.	Divida mediana, use semelhança de triângulos.
4	Altura h_a de Δ ABC forma, com $a=10\mathrm{e}$ $\angle B=30^\circ$, qual valor de h_a ?	$h_a = b \sin C$; encontre b por Lei dos Senos.

7 | Checklist de Domínio

- Aplico TP para reconhecer triângulos retângulos e calcular distâncias.
- Uso o Teorema das Medianas para determinar comprimentos desconhecidos.
- Localizo G, I, O, H com régua e compasso (ou GeoGebra) sem consultar notas.
- Relaciono incírculo e circunferência circunscrita a r e R.
- Resolvo problemas que combinam alturas, medianas e bissetrizes com segurança.