Question 2 – Parametric Curves

Section A

The parametric equation of a straight line in 3D is a(t) = (x(t), y(t), z(t)). The parametric equation of a straight line in 2D is $a_{2d}(t) = (x(t), y(t))$.

Without loss of generality, we assume that the center of projection is at the origin. Upon projection onto the plane z = f, the image of the point (x_0, y_0, z_0) is:

$$x_i = \frac{f}{z(t)} * x(t)$$

$$y_i = \frac{f}{z(t)} * y(t)$$

Dividing $\frac{x_i}{y_i}$ we get:

$$\frac{f * x(t)}{z(t)} * \frac{z(t)}{f * y(t)} = \frac{x(t)}{y(t)}$$

And we know that a(t) is a straight line in 3D, so for every t, $\frac{x(t)}{y(t)} = m$ for some constant m which is the slope of a(t). So, the projection also has a constant slope, hence it is a straight line.

Section B

- 1. The projection of the star is marked on the image plane as a pink star.
- 2. First, we have that:

$$a(0) = (0,0,5),$$

 $a(-8\pi) = \left(0, -\frac{8\pi}{5}, 5\right)$
 $Z_{min} = 2, Z_{max} = 5$

We can see that this trace is created by a circle which is continuously moved along the y axis, so the x and z coordinates will be some variation of cos and sin of some expression. We have

$$a(-8\pi) = \left(0, -\frac{8\pi}{5}, 5\right)$$

And so we know that when $s = -8\pi$, then x = 0.

We also know that when s = 0, then, x = 0. In order to get 8 full circles in the span of 16 π , we have to have the expression $\cos(s)$ and in order to adjust for the starting and 0 points, we add $\frac{\pi}{2}$ to the angle, leaving us with $\cos(s + \frac{\pi}{2})$. The final adjustment is for the radius which is 1.5 (we have $Z_{min} = 2$, $Z_{max} = 5$), and so we get: $\mathbf{x} = \mathbf{1.5}\cos(\mathbf{s} + \frac{\pi}{2})$.

Y changes constantly and ranges from
$$-\frac{8\pi}{5}$$
 to $\frac{8\pi}{5}$, so we get: $y = \frac{s}{5}$.

The definition of z comes similarly to x; the only difference is that the circle radius is at a distance of 3.5 from the XY plane, because $Z_{min} = 2$, $Z_{max} = 5$, and so we get: $z = 3.5 + 1.5\sin(s + \frac{\pi}{2})$.

3. $\delta(s)$ is the perspective projection of $\alpha(s)$, so for every point p we will define its projected point $p_i = \left(\frac{p_x * f}{p_z}, \frac{p_y * f}{p_z}\right)$, so we substitute the terms and get:

$$p_i = \left(\frac{6\cos\left(s + \frac{\pi}{2}\right)}{3.5 + 1.5\sin\left(s + \frac{\pi}{2}\right)}, \frac{3s}{3.5 + 1.5\sin\left(s + \frac{\pi}{2}\right)}\right)$$