CRUDE OIL PRICE PREDICTION USING LSTM

A PROJECT REPORT

Submitted by

TEAM ID: PNT2022TMID21644

KARAN KUMAR R 142219104049 KARTHIKRAJA N 142219104051 KAVIMUKILAN M 142219104057 KARNA M 142219104050

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

SRM VALLIAMMAI ENGINEERING COLLEGE
(AN AUTONOMOUS INSTITUTION)
SRM NAGAR, KATTANKULATHUR

ANNA UNIVERSITY: CHENNAI 600 025
NOVEMBER 2022

TABLE OF CONTENTS

S.NO	TITLE	PAGE NO
	ABSTRACT	iv
	LIST OF FIGURES	V
	LIST OF TABLES	vi
1	INTRODUCTION	1
	1.1 PROJECT OVERVIEW	2
	1.2 PURPOSE	2
2	LITERATURE SURVEY	9
	2.1 EXISTING SYSTEM	10
	2.2 REFERENCES	12
	2.3 PROBLEM STATEMENT DEFINITON	13
3	IDEATION AND PROPOSED SOLUTION	15
	3.1 EMPATHY MAP CANVAS	16
	3.2 IDEATION AND BRAINSTORMING	17
	3.3 PROPOSED SOLUTION	19
	3.4 PROBLEM SOLUTION FIT	21
4	REQUIREMENT ANALYSIS	22
	4.1 FUNCTIONAL REQUIREMENT	23
	4.2 NON-FUNCTIONAL REQUIREMENT	26
5	PROJECT DESIGN	27
	5.1 DATA FLOW DIAGRAM	27
	5.2 SOLUTION & TECHNICAL ARCHITECTURE	28
	5.3 USER STORIES	31
6	PROJECT PLANNING & SCHEDULING	35
	6.1 SPRINT PLANNING & ESTIMATION	36
	6.2 SPRINT DELIVERY SCHEDULE	38
	6.3 REPORTS FROM JIRA	40

7	CODING & SOLUTIONING	42
	7.1 INTERACTIVE UI	43
	7.2 CLOUD INTEGRATION	43
8	TESTING	45
	8.1 TEST CASES	46
	8.2 USER ACCEPTANCE TESTING	47
9	RESULT	48
	9.1 PERFORMANCE METRICS	49
10	ADVANTAGES & DISADVANTAGES	51
11	CONCLUSION	55
12	FUTURE SCOPE	57
13	APPENDIX	59

ABSTRACT

Research on crude oil price forecasting has attracted tremendous attention from scholars and policymakers due to its significant effect on the global economy. Besides supply and demand, crude oil prices are largely influenced by various factors, such as economic development, financial markets, conflicts, wars, and political events. Most previous research treats crude oil price forecasting as a time series or econometric variable prediction problem. Numerous research has recently been conducted in an effort to analyze the difficulty of predicting oil prices and find the best solutions. Although recently there have been research considering the effects of real-time news events, most of these works mainly use raw news headlines or topic models to extract text features without profoundly exploring the event information. It will be beneficial for our government, businesses, and investors to anticipate its demands. As part of this research, artificial neural networks (ANNs) will be built to forecast crude oil prices. In this study, we suggest a cutting-edge method for predicting the price of crude oil using analytical. The future price of the crude oil will be predicted on basis of the inputs given by the user. The predicted price would be for the next day. Hence, it is concluded that the proposed model achieved higher forecasting accuracy and takes less computational time with the modes' reconstruction as opposed to using all the decompose modes. As a part of future scope, there is being an idea to improve the model by considering the latest news, disaster, tweet, and social media sensitive messages.

LIST OF FIGURES

FIGURE NO	TITLE	PAGE NO
FIGURE 1	NEURAL NETWORK	11
FIGURE 2	RNN-LSTM	12
FIGURE 3	EMPATHY MAP CANVAS	16
FIGURE 4	BRAINSTORM	17
FIGURE 5	GROUP IDEAS	18
FIGURE 6	PRIORITISATION	19
FIGURE 7	PROBLEM SOLUTION FIT	21
FIGURE 8	DATA FLOW DIAGRAM	27
FIGURE 9	ARCHITECTURE DIAGRAM	28
FIGURE 10	TECHNICAL ARCHITECTURE DIAGRAM	28
FIGURE 11	VELOCITY CHART	41
FIGURE 12	BURNDOWN CHART	41
FIGURE 13	TEST CASES	46
FIGURE 14	REVIEW OF PREDICTION	49
FIGURE 15	NEXT 10 DAYS PREDICTION	50

LIST OF TABLES

TABLE NO	TITLE	PAGE NO
TABLE 1	FUNCTIONAL REQUIREMENTS	23
TABLE 2	NON-FUNCTIONAL REQUIREMENTS	25
TABLE 3	COMPONENTS & TECHNOLOGY	30
TABLE 4	APPLICATION CHARACTERISTIC	31
TABLE 5	USER STORIES	34
TABLE 6	SPRINT PLAN	38
TABLE 7	SPRINT PLAN SCHEDULE	39
TABLE 8	SPRINT DELIVERY SCHEDULE	40
TABLE 9	DEFECT ANALYSIS	47
TABLE 10	TEST CASE ANALYSIS	47

CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 Project Overview

Owing to the fact that crude oil provides around one-third of the world's energy needs, crude oil is important to the global economy. Additionally, changes in oil prices have a big impact on both countries' economies that export and buy oil. Forecasting the oil price accurately would assist policymakers in enacting the right legislation and selecting the best energy sources. However, because there are numerous factors that affect oil prices, forecasting researchers have found it difficult to estimate the price of crude oil. Economic growth, conflicts, wars, and breaking news all have a significant impact on oil price fluctuations in addition to the basic market elements like supply, demand, and inventory. For instance, oil producers were paying buyers to take the commodity off their hands because they were concerned that storage space might be depleted in May 2020. On April 20, 2020, the price of WTI oil even became negative for the first time ever. Another recent example is the higher association between changes in crude oil prices and the severity of the COVID-19 epidemic. Since the majority of this information is found in unprocessed texts, characterizing and modelling these nonlinear and non quantitative factors is difficult.

1.2 Purpose

The three primary factors that impact the price of oil are:

• Supply and demand

The idea of supply and demand is rather simple. Price should rise as demand (or supply) rises or falls. Price should decrease when supply grows or as demand declines. Actually, the oil futures market is where the price of oil as we know it is set. A legally

binding agreement known as an oil futures contract offers one the right to buy oil by the barrel at a specified price on a specified date in the future. In a futures contract, each party is responsible for carrying out their portion of the deal before the deadline.

• Cost of production

Cost of production refers to the total cost incurred by a business to produce a specific quantity of a product or offer a service. Production costs may include things such as lab our, raw materials, or consumable supplies. In other words, the cost of production is defined as the expenditures incurred to obtain the factors of production such as lab our, land, and capital, that are needed in the production process of a product.

Market sentiment

Sentiment is the other important factor that impacts oil prices. The simple expectation that oils demand would rise sharply at some point in the future can cause speculators and hedgers to buy up oil futures contracts, driving up oil prices now.

There used to be a recognisable seasonal swing in oil prices. As oil dealers anticipated a large demand for driving over the summer vacation, they increased in the spring. Prices fell in the fall and winter once the demand peaked.

Geopolitical instability and civil upheaval also have a significant impact on global supply and prices.

There are several reasons why oil prices are more unpredictable now, but five are the most significant.

The Russian Invasion of Ukraine

Russia is the third-largest producer of liquid fuels and petroleum, so when the country invaded Ukraine in late February 2022, it had immediate impact on Brent

crude oil futures prices.10 As the conflict continued, the prices of crude oil settled in out on an upward trajectory, reaching nearly \$130/b in early March, and staying well above \$100/b into April.

• US Oil Supply

The coronavirus pandemic and natural events are still affecting oil demand and supply. The U.S. experienced a drop in production following Hurricane Ida in September as the storm shut at least nine refineries.

The EIA estimates that U.S. crude oil production will average 12.01 million b/d in 2022 and 12.95 million b/d in 2023.11

o Diminished OPEC Output

Oil price increases also reflect supply limitations by the Organization of the Petroleum Exporting Countries (OPEC) and OPEC partner countries. In 2020, OPEC cut oil production due to decreased demand during the pandemic. It gradually increased oil output through 2021 and into 2022. Supply chain disruptions in late 2021 affected global trade as well.

At its most recent meeting in December 2021, OPEC stated it would continue to gradually adjust oil production upward by 0.4 million barrels per day (mb/d) in January 2022.

Natural Gas

Countries in Asia have relied on coal to generate power, but recent shortages have turned them to natural gas. Higher temperatures in parts of Asia and Europe have led to high demand for natural gas to generate power.

COVID-19 has hampered Europe's natural gas production, and a colder-thanexpected heating season in early 2021 reduced supplies further.

As a result, natural gas prices soared in 2021 and are expected to remain high in 2022 and affected countries have turned to gas-to-oil switching to reduce power

generation costs.

o Global Inventory Draw

As a reduction in oil production continues globally, countries are forced to draw from their stored reserves (not including the strategic petroleum reserves). This steady draw of oil is contributing to the increase in prices because inventories are decreasing.

Models incorporating economic parameters such as supply, and demand and their determinants are known as structural models. Even though structural models are found to be the most logical ways of modelling the prices of industrial products, the price of crude oil is affected by many other factors. One of these factors is that the price of crude oil is determined in the futures market which enables the purchase of a predefined amount of oil at a particular price in the future. Additionally, only 1% of the crude oil traded in futures contracts results in the actual purchase of a physical commodity; its chief purpose is to make money out of price fluctuations in crude oil. Hence the price of crude oil behaves more like a financial asset and therefore is more representative of the expectations of traders rather than just predictions based on economic theories of supply and demand.

There are other categories of models which are non-structural and consider time variation of crude oil prices, known as time series models. It is difficult to obtain reliable data to formulate a structural model, while time series data for crude oil prices is easily available and hence it is easier to build a time series model. We focus on time series modelling of crude oil prices in this article.

In time series models, it is assumed that the current price of crude oil reflects the effects of all influencing factors, and that price forecasting can be done based on the behaviour of past crude oil prices. The main assumption in such models is that the past behaviour of oil prices can explain future prices. Although time series models can capture trends or any cyclical patterns in the data, there are limitations to the forecasting capability of these models when trend reversals are observed in the data, or the repeating pattern captured in the model is not followed in future prices. Different trends in a time series can be classified as increasing, decreasing and periodic patterns. Time series models are quite useful and forecast reasonably well when the data follows any of these types of trends.

We can easily observe the downtrends, uptrends and repeating patterns in crude oil prices within specific years. Crude oil monthly price data is obtained from the US Energy Information Administration (EIA) website.1 Different subsets of crude oil price data are formed to demonstrate the utility of time series modelling and its limitations in some scenarios.

Time Series Modelling Techniques

Several methods are proposed in the literature to build time series models. They include autoregressive integrated moving average (ARIMA), generalised auto regressive conditional heteroscedastic (GARCH), Holt-Winters, autoregressive neural networks, and support vector regression. Various hybrid models are also suggested such as combination of ARIMA and neural networks with support vector regression, genetic algorithms and wavelets. 3-7 Discussion of various methodologies applied for crude oil price modelling can be found in review articles available in the literature. 8,7 We have used ARIMA and auto regressive neural networks for modelling oil prices, as these techniques cover both linear and non-linear types of modelling. A short description of these methods is given below.

ARIMA

ARIMA is the most widely used and well-known technique for time series analysis, developed by Box and Jenkins. In an ARIMA model, future values are predicted as a linear combination of previous oil prices and the associated errors. This model consists of three parts: the AR (auto regressive) component is a linear combination of past observations; MA (moving average) is a linear combination of

lagged error terms; and I (integrated) replace the original series with differenced series.

Auto regressive Neural Network

An autoregressive neural network (ANN) is a non-linear model in which future prices are expressed as a non-linear function of lagged prices in the series, in contrast to linear modelling in ARIMA. Additionally, neural network-based models have the ability to learn and capture patterns in data sets without the need to specify the exact model form. Multilayer perceptron (MLP) is the most widely used ANN in forecasting problems. Typically, the model is composed of input layer, hidden layer and output layer. The connecting nodes in these layers are called neurons. Input to the neurons is mapped using transfer functions and the weighted average of output from all the nodes is sent to next layer. There are various parameters that need to be specified for an ANN model: number of hidden layers, number of neurons in each layer, type of transfer function, and number of lags. The selection of appropriate network parameters is crucial to the fitting and forecast accuracy of an ANN model. We have used the nnetar function in R to build a neural network model.

Benefits of predicting crude oil prices:

- Some Sectors Thrive It probably counts as obvious that there are sectors that thrive when oil prices march upward. High prices for oil fuel the same sort of process as in any other sector; suppliers look for ways to provide more of the product and take advantage of those higher prices. For energy, then, that means opportunities for companies involved in exploration (seismic survey, for instance), drilling, production and servicing.
- New Technologies Become Viable Cheap oil is problematic for companies and industries looking to supplant oil. While most people can agree that there are vague and nebulous costs associated with accessing and utilizing oil (pollution, for starters), the United States has been reticent to translate those costs into

higher energy taxes. What's more, it is not clear that higher taxes on fossil fuels in Europe and much of Asia really do anything to mitigate environmental damage beyond reducing consumption. All in all, then, when oil prices are low it is very hard for cleaner energy technologies to compete effectively on price.

- Changes in Behaviour For those who believe that burning oil (and other hydrocarbons) is generally a bad thing, higher prices that lead to lower use has to be counted as a benefit. When people are faced with higher prices and no obvious substitutes, they will consume less assuming that their demand is relatively elastic.
- Alternatives Come to the Fore If increased exploration and production is a normal by-product of higher oil prices, so too is substitution. When Nazi Germany faced oil shortages in World War II, methods of producing oil, diesel and gasoline substitutes from vegetable oils, animal fats and coal were thoroughly explored. Likewise, the oil crisis of the 1970s gave the development of ethanol in Brazil a major boost.

CHAPTER 2 LITERATURE SURVEY

CHAPTER 2

LITERATURE SURVEY

2.1 Existing problem:

The existing problem can be broadly classified into the following

- Predictive Analytics
- Determining the Crude Oil Price
- Neural Network for Predictive Analytics
- RNN LSTM Network

A. Predictive Analytics

Predictive analytics is a cutting-edge field of study that employs statistical models and other scientific methods to assess hazy future opportunities with a view to producing actual forecasts and verifying the accuracy of these forecasts in the real world [2]. The predictive analytics model can provide meaningful insights by extracting knowledge from data and use statistical or machine learning methods to assist with the analytical task.

B. Determining the Crude Oil Price

Various significant elements, including a supply and demand curve, the present financial market, the commodities market, speculative factor, and geopolitical factor, may have an impact on fluctuations in crude oil prices, according to Miao et al. [3]. Each of these variables has a number of determining factors (sub-variables) that impact the price of the commodity.

According to an article published on the Caltex website [4], the fuel (such as petrol) prices change is closely related to the cost of crude oil—and it has a long-term effect on the fluctuation of the commodity price. Additionally, the cost of crude oil

alone has contributed to nearly 50 percent of the retail petroleum price [4].

C. Neural Network for Predictive Analytics

The neural network contains a set of neurons (or perceptron's) which acts as processing units [5], interlinked, and may reside within an extensive network.

The most basic form of the neural network consists of an input layer, one hidden layer, and an output layer [6], as visualized in Figure 1. The number of hidden layers may vary based on the complexity of computation.

Figure 1 - A neural network

D. RNN-LSTM Network

Traditional neural network techniques function well for applications requiring prediction, but they cannot store memories. On the other hand, the Recurrent Neural Network (RNN) is a section of a neural network that has been converted into a loop, providing it the ability to retain knowledge from its previous state.

Hochreiter & Schmidhuber [7] have introduced the concept of Long-Short Term Memory (LSTM), which has proven its accuracy across various domains [7]. LSTM is a type of Recurrent Neural Network (RNN) that can learn long-term dependencies and is useful for a sequence-to-sequence prediction—such as prediction of upcoming crude oil prices using time-series data.

Figure 2 - The RNN-LSTM architecture

In our project "Crude Oil Price Prediction", we proposed a solution which uses the RNN LSTM method to solve the existing problem. Time series analysis algorithm is used to combine all the advantages of the above methods and to remove some of the disadvantages discussed in the above methods. Time series analysis is a specific way of analysing a sequence of data points collected over an interval of time. In time series analysis, analysts record data points at consistent intervals over a set period of time rather than just recording the data points intermittently or randomly. This model is also trained using the Long Short Term Memory method in the Recurrent Neural Network algorithm which would have a greater efficiency.

2.2 References

- N. Aziz, M. H. A. Abdullah and A. N. Zaidi, "Predictive Analytics for Crude Oil Price Using RNN-LSTM Neural Network," 2020 International Conference on Computational Intelligence (ICCI), 2020, pp. 173-178, doi: 10.1109/ICCI51257.2020.9247665.
- 2. G. Shmueli and O. R. Koppius, "Predictive analytics in information systems research", *MIS Q*, pp. 553-572, 2011.
- 3. H. Miao, S. Ramchander, T. Wang and D. Yang, "Influential factors in crude oil price forecasting", *Energy Econ*, vol. 68, pp. 77-88, 2017.

- 4. "Determining Fuel Prices", Mar 2020, [online] Available: https://www.caltex.com/my/motorists/tips-resources/determining-fuel-prices.html.
- 5. M. H. A. Abdullah, "Comparative Analysis of Spatio/Spectro-Temporal Data Modelling Techniques", *Data Engineering And Information Security*, 2017.
- 6. M. H. A. Abdullah, M. Othman, S. Kasim and S. A. Mohamed, "Evolving Spiking Neural Networks Methods for Classification Problem: A Case Study in Flood Events Risk Assessment Evolving spiking neural networks methods for classification problem: a case study in flood events risk assessment", *Indones. J. Electr. Eng. Comput. Sci*, vol. 16, no. 1, pp. 222-229, 2019.
- 7. S. Hochreiter and J. Schmidhuber, "Long short-term memory", *Neural Comput*, vol. 9, no. 8, pp.

2.3 Problem Statement Definition

The price of crude oil has a significant impact on the environment globally, and its forecasts are particularly helpful to governments and industry. Crude oil is the most widely used fuel in the world. The ongoing application of statistics and econometric methods for crude oil, including AI Price forecasting could show reductions in the accuracy of the prediction.

In order to predict future crude oil using historical data on crude oil, RNN (Recurrent Neural Network) is utilised with long short-term memory. The effectiveness of the cost is calculated using the mean squared error. Using the pricing information in the crude oil materials, the proposed model's performance is assessed.

Since changes in the price of crude oil have a significant impact on national economies around the world, price forecasting can help reduce the risks brought on by

oil price volatility.

Governments, public and private businesses, legislators, and investors all place a high value on price estimates.

The project "Crude Oil Price Prediction", has the following uniqueness and novelty:

- This model is used to forecast future pricing and to manage oil use.
- This price directly influences many different items and goods, and its variations have an impact on the capital markets.
- Important events also have an impact on oil prices, in addition to economic factors.

The project "Crude Oil Price Prediction", has the following business model:

- It can assist those who are making decisions about whether to buy or sell crude oil, whether they are businesses, private investors, or individuals.
- The benchmark model for predicting crude oil prices uses RNN and LSTM models.

The scalability of the solution of this project are:

- The dimensions of the data are reduced using the PCA, MDS, and LLE methods.
- Enhance the RNN and LSTM models' accuracy.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

CHAPTER 3

IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map canvas is a more in-depth version of the original empathy map, which helps identify and describe the user's needs and pain points. And this is valuable information for improving the user experience.

Teams rely on user insights to map out what is important to their target audience, what influences them, and how they present themselves. This information is then used to create personas that help teams visualize users and empathize with them as individuals, rather than just as a vague marketing demographic or account number.

Figure 3 – Empathy Map Canvas

3.2 Ideation & Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich number of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Figure 4 - Brainstorm

Figure 5 – Group Ideas

Figure 6 – Prioritisation

3.3 Proposed Solution

The price of crude oil has a significant impact on the environment globally, and its forecasts are particularly helpful to governments and industry. Crude oil is the most widely used fuel in the world. The ongoing application of statistics and econometric methods for crude oil, including AI Price forecasting could show reductions in the accuracy of the prediction.

In order to predict future crude oil using historical data on crude oil, RNN (Recurrent Neural Network) is utilised with long short-term memory. The effectiveness of the cost is calculated using the mean squared error. Using the pricing information in the crude oil materials, the proposed model's performance is assessed.

Since changes in the price of crude oil have a significant impact on national economies around the world, price forecasting can help reduce the risks brought on by oil price volatility.

Governments, public and private businesses, legislators, and investors all place a high value on price estimates.

The project "Crude Oil Price Prediction", has the following uniqueness and novelty:

- This model is used to forecast future pricing and to manage oil use.
- This price directly influences many different items and goods, and its variations have an impact on the capital markets.
- Important events also have an impact on oil prices, in addition to economic factors.

The project "Crude Oil Price Prediction", has the following business model:

- It can assist those who are making decisions about whether to buy or sell crude oil, whether they are businesses, private investors, or individuals.
- The benchmark model for predicting crude oil prices uses RNN and LSTM models.

The scalability of the solution of this project are:

• The dimensions of the data are reduced using the PCA, MDS, and LLE

methods.

• Enhance the RNN and LSTM models' accuracy.

3.4 Problem Solution fit

Problem-Solution fit canvas is not just a mapping tool, but an actionable translation template, where you turn problems into solution and communication strategy, taking into account customer behaviour to increase your chances of solution adoption. It gives you insights into how your idea could fit the reality.

Figure 7 – Problem Solution Fit

CHAPTER 4 REQUIREMENT ALANLYSIS

CHAPTER 4

REQUIREMENT ALANLYSIS

4.1 Functional Requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)	
	(Epic)		
FR-1	User Registration	Registration through Form	
		Registration through Gmail	
		Registration through LinkedIn	
FR-2	User Confirmation	Confirmation via Email	
		Confirmation via OTP	
FR-3	User Login	Login through username and password	
		Login through Gmail	
		Login through LinkedIn	
FR-4	Primary specifics	Sync oil price every second	
		Show Up and Down graph in real time	
		in accordance with the oil price	
FR-5	Additional Requirement	Read latest news	
		View price charts	
		Review futures on selected quotation	
		Analyse historical price trends	
		• Check exchange rates and	
		commodities futures	
FR-6	System Responsibility	Allowing the user to select a date	
		Track the precious results	
		The pricing news should be updated	

Table 1 – Functional Requirements

4.2 Non-Functional Requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description	
	Requirement		
NFR-1	Usability	 To utilise a system easily and accelerate routine operations, it must have a logical user interface. Anyone who registers on the portal 	
		can utilise the system.	
NFR-2	Security	The following is a list of some of the	
		factors that have been found to prevent	
		malicious or unintentional access, usage,	
		modification, destruction, or disclosure of	
		the software:	
		Maintain particular log or historical	
		data sets.	
		• Apply specific cryptography	
		methods.	
		• Limit the number of devices that	
		can access the website for	
		predicting the price.	
		 Verify the integrity of the data. 	
NFR-3	Reliability	• At the time of entry, all user	
		variable data will be committed to	
		the database.	
		By using the available backup	
		procedures and techniques, data	
		corruption is avoided.	

NFR-4	Performance	• The system must allow for the	
		simultaneous use of many users at	
		all times.	
		The accuracy of the price should be	
		at the maximum.	
NFR-5	Availability	• The system should always be	
		accessible, allowing for simple user	
		access.	
		• A replacement page will be	
		displayed in the event that hardware	
		or data base failure increases, and	
		data should be obtained to restore	
		the system.	
NFR-6	Scalability	Identifies the maximum workloads	
		at which the system will still	
		operate well.	
		Focus on the measurement of the	
		system's response time under	
		various load levels.	

Table 2 – Non-Functional Requirements

CHAPTER 5 PROJECT DESIGN

CHAPTER 5

PROJECT DESIGN

5.1 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Figure 8 – Data Flow Diagram

5.2 Solution & Technical Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.

 Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram:

Figure 9 - Architecture Diagram

Figure 10 – Technical Architecture Diagram

Components & Technologies

S.No	Component	Description	Technology
1.	User Interface	Through a web UI, the	HTML, CSS,
		user can engage with the	JavaScript / Angular
		application.	Js / React Js etc.
2.	Application Logic-1	It has many in built	Python
		libraries which helps in	
		machine learning	
3.	Application Logic-2	It helps to build machine	IBM Watson Jupyter
		learning model	Notebook service
4.	Application Logic-3	It is fast and accurate	IBM Watson
			Assistant
5.	Database	MySQL is used to store	MySQL
		the user information and	
		warehouse the crude oil	
		price	
6.	Cloud Database	IBM Db2 is reliable and	IBM DB2
		scalable	
7.	File Storage	Maintain files easily	Local Filesystem
8.	External API-2	Aadhar and customer	Aadhar API, etc.
		KYC verification takes a	
		little amount of time	
9.	Machine Learning	To recognise the patterns	Sequential, Dense &
	Model	and trends	LSTM Model

10.	Infrastructure (Server	Application Deployment	Local System and
	/ Cloud)	on Local System / Cloud	IBM Watson
		Local Server	
		Configuration:	
		Cloud Server	
		Configuration	

Table 3 – Components & Technologies

Application Characteristics

S.No	Characteristics	Description	Technology
1.	Open-Source	Tensor flow –	Tensor flow, Flask,
	Frameworks	Implements model	Scikit learn.
		building and training.	
		Flask – Can handle	
		multiple user request	
		simultaneously.	
		Scikit learn – Contains	
		model for classification,	
		regression, clustering.	
2.	Security	SHA-256 doesn't have	SHA-256.
	Implementations	any known vulnerabilities	
3.	Scalable Architecture	MySQL can store huge	MySQL
		amount of data and it is	
		easily scalable.	
4.	Availability	This application can be	IBM Watson Cloud.
		accessed from anywhere	
		easily and it is easily	
		scalable.	

5.	Performance	Flask can handle multiple	Flask
		user request	
		simultaneously.	

Table 4 – Application Characteristics

5.3 User Stories

User Type	Functional	User	User Story	Acceptance	Priori	Relea
	Requireme	Story	/ Task	criteria	ty	se
	nt (Epic)	Numb				
		er				
Customer	Registration	USN-1	As a user, I	I can access	High	Sprint-
(Mobile user)			can register	my account		1
			for the	/ dashboard		
			application			
			by entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password.			
		USN-2	As a user, I	I can	High	Sprint-
			will receive	receive		1
			confirmati	confirmati		
			on email	on email &		
			once I have	click		
			registered	confirm		
			for the			

		application			
	USN-3	As a user, I	I can	Low	Sprint-
		can register	register &		2
		for the	access the		
		application	dashboard		
		through	with		
		Facebook	Facebook		
			Login		
	USN-4	As a user, I	I can	Medi	Sprint-
		can register	register	um	1
		for the	through		
		application	already		
		through	existing		
		Gmail	mail		
			account.		
Login	USN-5	As a user, I	After	High	Sprint-
		can log into	registration,		1
		the	I can log in		
		application	via only		
		by entering	email &		
		email &	password.		
		password			

	Dashboard	USN-6	Display the	I can expect	Low	Sprint-
			oil price,	the		3
			line graph /	prediction in		
			bar graph	various		
			real time.	formats.		
Customer	Login	USN-7	As the user,	Existing	High	Sprint-
(Web user)			I can login	users can		2
			by using	easily login.		
			Gmail or			
			Facebook			
			account or			
			LinkedIn or			
			by			
			registering.			
Customer	Support	USN-8	The	I can solve	High	Sprint-
Care			Customer	the		3
Executive			care service	problems		
			will provide	raised.		
			solutions for			
			any FAQ			
			and also			
			provide			
			Chat-Bot.			
Administrat	Access	USN-9	Admin can	Access	High	Sprint-
or	Control		control the	permission		4
			access of	for Users.		
			users.			

Database	USN-10	Admin can	Stores User	Medi	Sprint-
		store the	details.	um	4
		details of			
		users.			
News	USN-11	Admin will	Provide the	Medi	Sprint-
		give the	recent oil	um	4
		recent news	prices.		
		of Oil			
		Prices.			
Notification	USN-12	Admin will	Notification	High	Sprint-
		notify when	by Gmail.		4
		the oil			
		prices			
		changes.			

Table 5 – User Stories

CHAPTER 6 PROJECT PLANNING & SCHEDULING

PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation:

Sprint	Functional	User	User Story /	Story	Priority	Team
	Requirement	Story	Task	Points		Members
	(Epic)	Number				
Sprint-	Data	USN-1	Download	2	Medium	Karna M
1	Collection		Crude Oil			
			Price Dataset			
Sprint-	Data	USN-2	Importing	1	Low	Kavimukilan
1	Preprocessing		The Dataset			M
			into			
			Workspace			
Sprint-		USN-3	Handling	3	Medium	Karthikraja
1			Missing Data			N
Sprint-		USN-4	Feature	3	Low	Karan
1			Scaling			Kumar R
Sprint-		USN-5	Data	3	Medium	Karna M
1			Visualization			
Sprint-		USN-6	Splitting	4	High	Kavimukilan
1			Data into			M
			Train and			
			Test			
Sprint-		USN-7	Creating A	4	High	Karthikraja
1			Dataset with			N
			Sliding			
			Windows			

Sprint-	Model	USN-8	Importing	1	Medium	Karna M
2	Building		The Model			
			Building			
			Libraries			
Sprint-		USN-9	Initializing	1	Medium	Karthikraja
2			The Model			N
Sprint-		USN-10	Adding	2	High	Kavimukilan
2			LSTM			M
			Layers			
Sprint-		USN-11	Adding	3	Medoum	Karan
2			Output			Kumar R
			Layers			
Sprint-		USN-12	Configure	4	High	Karna M
2			The Learning			
			Process			
Sprint-		USN-13	Train The	2	Medium	Karan
2			Model			Kumar R
Sprint-		USN-14	Model	1	Medium	Karan
2			Evaluation			Kumar R
Sprint-		USN-15	Save The	2	Medium	Karthikraja
2			Model			N
Sprint-		USN-16	Test The	3	High	Karna M
2			Model			
Sprint-	Application	USN-17	Create An	4	Medium	Kavimukilan
3	Building		HTML File			M
Sprint-		USN-18	Build Python	4	High	Karan
3			Code			Kumar R
Sprint-		USN-19	Run The	4	Medium	Karna M
3			App in Local			

			Browser			
Sprint-		USN-20	Showcasing	4	High	Karan
3			Prediction			Kumar R
			On UI			
Sprint-	Train The	USN-21	Register For	4	Medium	Kavimukilan
4	Model On		IBM Cloud			M
	IBM					
Sprint-		USN-22	Train The	8	High	Karthikraja
4			ML Model			N
			On IBM			
Sprint-		USN-23	Integrate	8	High	Karan
4			Flask with			Kumar R
			Scoring End			
			Point			

Table 6 – Sprint Plan

6.2 Sprint Delivery Schedule

Title	Description	Date
Literature Survey &	Literature survey on the selected	19 September 2022
Information Gathering	project & gathering information by	
	referring the, technical papers, research	
	publications etc.	
Prepare Empathy Map	Prepare Empathy Map Canvas to	23 September 2022
	capture the user Pains & Gains, Prepare	
	list of problem statements	
Ideation	List the by organizing the	25 September 2022
	brainstorming session and prioritize the	
	top 3 ideas based on the feasibility &	

	importance.	
Proposed Solution	Prepare the proposed solution	27 September 2022
	document, which includes the novelty,	
	feasibility of idea, business model,	
	social impact, scalability of solution,	
	etc.	
Problem Solution Fit	Prepare problem - solution fit	29 September 2022
	document.	
Solution Architecture	Prepare solution architecture document.	01 October 2022
Customer Journey	Prepare the customer journey maps to	04 October 2022
	understand the user interactions &	
	experiences with the application (entry	
E	to exit).	00.0 . 1 . 0000
Functional	Prepare the functional requirement	06 October 2022
Requirement	document.	
Data Flow Diagrams	Draw the data flow diagrams and	08 October 2022
	submit for review.	
Technology	Prepare the technology architecture	11 October 2022
Architecture	diagram.	
Prepare Milestone &	Prepare the milestones & activity list of	23 October 2022
Activity List	the project.	
Sprint Schedule	Prepare spring plan	23 October 2022
Delivery of Sprint-1	Develop & submit the developed code.	29 October 2022
Delivery of Sprint-2	Develop & submit the developed code.	05 November 2022
Delivery of Sprint-3	Develop & submit the developed code.	12 November 2022
Delivery of Sprint-4	Develop & submit the developed code.	17 November 2022

Table 7 – Sprint Plan Schedule

Sprint	Total	Duration	Sprint	Sprint End	Story Points	Sprint Release
	Story		Start	Date	Completed	Date (Actual)
	Points		Date	(Planned)	(as on	
					Planned	
					End Date)	
Sprint-	20	6 Days	24 Oct	29 Oct	20	29 Oct 2022
1			2022	2022		
Sprint-	20	6 Days	31 Oct	05 Nov	20	03 Nov 2022
2			2022	2022		
Sprint-	20	6 Days	07 Nov	12 Nov	20	10 Nov 2022
3			2022	2022		
Sprint-	20	6 Days	14 Nov	19 Nov	20	17 Nov 2022
4			2022	2022		

Table 8 – Sprint Delivery Schedule

6.3 Reports From JIRA:

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Figure 11 – Velocity Chart

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Figure 12 – Burndown Chart

CHAPTER 7 CODING & SOLUTIONING

CODING & SOLUTIONING

7.1 Interactive UI

The area where interactions between people and machines take place is known as a user interface (UI) in the subject of industrial design known as human-computer interaction. This interaction's purpose is to enable efficient machine operation and control from the human end, while the machine also feeds information back to the operators to support their decision-making. The general objective of user interface design is to provide an interface that makes it simple, effective, and pleasurable (user-friendly) to operate a machine in a way that yields the desired outcome (i.e., maximum usability). This typically means that the machine reduces undesirable outputs to the user while simultaneously requiring the operator to input as little as possible to produce the desired output.

We have included a user interface in our project to make it easier for users to forecast the price of crude oil in the future. Users simply need to visit the website to access the interface and can click a button to forecast the price. Once the button has been clicked, the user will be taken to another website where they can enter the price of crude oil for 10 days. In that case, the user should click Predict. The user can then view the price of crude oil after ten days.

7.2 Cloud Integration

The on-demand availability of computer system resources, in particular data storage (cloud storage) and processing power, without direct active supervision by the user, is known as cloud computing. Functions in large clouds are frequently dispersed over several sites, each of which is a data centre. Cloud computing often uses a "pay as you go" model, which can help reduce capital expenses but may also result in unanticipated running expenses for users. Cloud computing depends on resource

sharing to accomplish coherence.

Our project is cloud-integrated, allowing it to run anywhere and be accessible at any time. Anytime the user desires, they will be able to forecast the price of crude oil. Through the IBM Cloud, this is accomplished. On the IBM Watson Studio, which makes use of the Watson Machine Learning Platform, we developed and trained the model. We generated a deployment space and ran the code using the API key to deploy the model. The Flask app, which is used to link to the backend and frontend, was then finally integrated.

CHAPTER 8 TESTING

TESTING

8.1 Test Cases

The following test scenarios were tested successfully.

Test Scenarios

- 1 Verify the UI elements in the home page
- 2 Verify whether the user can navigate to the prediction page
- 3 Verify the UI elements in the prediction page
- 4 Verify user is able to enter value in the text box.
- 5 Verify user is able to enter numbers in the text box
- 6 Verify model can handle with no inputs
- 7 Verify model can handle multiple input
- 8 Verify model can handle unsupported input
- 9 Verify model can predict the output
- 10 Verify the predicted results are displayed
- 11 Verify user can enter the value after prediction

				Dave	15-Nov-22	F: 90				
				Team D	PNT2022TMID21644	1				
				Project Name	Project - Crude Oil Price Predictio				1.5	
				Marimum Marks	4 must s	10 0				
_environment	12000002000	Compon			200000000000000000000000000000000000000	In an artist of the second	72 / 70 Carron (A	barrers.	I BU	200000000000000000000000000000000000000
Test case IO	Feature Type	col	Test Scenario	Steps To Execute	Test Data	Expected Flexuit	Actual Flesult	Status	G ID	Executed By
COPP_TC_001	u	IndexAtmi	Verify the UI elements in the home page	LErver UFIL 2. Check if all elements are displayed	Mp.W127.0.0.150004	The UI elements should be displayed properly	Working as especied	Pass		Karan Kumar Fl
COPP_TC_602	Functional	Indeshtmi		2. Check whether the user	MID/N27.0.0.1500M	The user should be able to navigate to the prediction page after clicking the predict button.	Vorking as espected	Pass		Karbik Plaja N
COPP_TC_001	u	Veblori	Verify the UI elements in the prediction page	L Enter UFL 2. Click the predict button 3. Check if all elements are displayed.	http:///27.0.0.150004	The Ut elements should be displayed properly	Working as espected	Pass		Kavikukitan M
COPP_TC_003	Functional	Vebhini	Yerifguser is able to enter value in the test box.	1.EmerURL	Mtp.//127.0.0.150000	User should be able to enter the values in the text box	Vorking as espected	Pass		Karna M
COPP_TC_004	Functional	Vebhoni	Verify uset is able to enter numbers in the test box	1 Enter UFIL 2 Click the predict button 3 Checok whether the user can enter values in the feet	Mrp.//127.0.0.150002	User should be able to enter numbers in the test box	Working as espected	Pass		Karan Kumar R
COPP_TC_605	Functional	Model	Verily model can handle with no inputs	Enter UFL Click the predict button Check whether the uper can enter values in the test box.	http://127.0.0.150004	The predicted output should be displayed	Exception is thrown	Fal	COP P_B _001	Karouk Plaja N
COPP_TC_006	Functional	Model	Verifymodel can handle multiple input	Enter UFL Click the predict button Check whether the user can enter values in the test box.	http:///27.00.150004	The model should predict the output for the input data	Vorking as expected	Pass		Kavikukilan M
COPP_TC_007	Functional	Model	Verifymodel can handle unsupported input	1. Enter UFIL 2. Click the predict button 3. Checok whether the user can enter values in the test box.	http://127.000.150004	The predicted output should be displayed	Exception is theown	Fal	COP P_B _002	Kama M
COPP_TC_608	Functional	Model	lerify model can predict the outp	L Enter UFIL 2. Click the predict button	http://27.00.150004	The model should predict the output for the input data	Vorking as espected	Patt		Karan Kumar B
COPP_TC_009	Functional	VebNml	Yerligthe predicted results are displayed	Enter UPL Click the predict button Check whether the user can enter values in the test box.	Mts/M27.0.0.15000/	The predicted output should be displayed	Vorking as espected	Pass		Karbik Raja N
COPP_TC_003	Functional	Veblord	after prediction	1. Enter UFIL 2. Click the predict button 3. Checck whether the user can enter values in the feet	http://127.000150004	User should be able to enter the values in the test box	Vorking as expected	Pass		Kavikukilan M

Figure 13 – Test Cases

8.2 User Acceptance Testing:

Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	0	1	0
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	0	0
Skipped	1	0	0	0	1
Won't Fix	1	0	1	1	3
Totals	7	1	3	3	12

Table 9 – Defect Analysis

Test Case Analysis

Section	Total Cases	Not Tested	Fa il	Pass
Print Engine	10	0	2	8
Client Application	5	0	0	5
Security	1	0	0	1
Outsource Shipping	3	0	0	3
Exception Reporting	2	0	2	0
Final Report Output	4	0	0	4

Table 10 – Test Case Analysis

CHAPTER 9 RESULTS

RESULTS

9.1 Performance Metrics:

We attempted to forecast the output of the crude oil by entering various input variables in order to assess the accuracy and performance of this project. These are the input values.

[0.44172960165852215,	0.48111950244335855,	0.49726047682511476,
0.4679401747371539,	0.4729749740855915,	0.47119798608026064,
0.47341922108692425,	0.4649785280616022,	0.4703835332444839,
0.47149415074781587]		

The anticipated outcome after providing the input values is 0.46976325.

Figure 14 – Review of Prediction

Figure 13 gives a review of prediction how the system has predicted the future price

based on the given input values.

Figure 15 – Next 10 Days Prediction

It can be seen that the graph was drawn using the provided data and a projection for the next 10 days. There was a little discrepancy between the output and the real pricing.

The developed system shows a clear prediction of the future prices which has very less deviations from the true prices by using LSTM in tensorflow and keras in python. There is always a thin line between the overfitting of the model and its best performance. This project helps a lot to learn about the developed model and the algorithm and using this model as a base, a much more complicated model can be easily developed. The facet of more prediction algorithms for crude oil can concoct with the help of this system.

This system concludes that the machine learning model LSTM (Long Short-Term Method) predicts the future price of crude oil by bordering the actual price of the crude oil price.

CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES & DISADVANTAGES

Advantages

- High Accuracy
- Removes the investment bias
- Develop the habit of complete analysis
- Minimise our losses
- Allows smart way of making money

High Accuracy:

The model which we predicted had a high accuracy of above 90 per cent in all aspects. The other advantages of predicting the price of crude oil are discussed below.

Removes the investment bias:

The Indian stock market offers a variety of chances for traders and investors, but it is also helpful to be aware of the market environment before taking a position in a particular stock. Take the weather prediction as an example to help you comprehend this; being aware of the weather forecast for the coming week enables you to make appropriate plans. The situation with stock market investments is comparable. Let's look at a few of the major benefits connected with stock market prediction now to help you grasp.

Develop the habit of complete analysis:

Investors don't always conduct a thorough research of the stock before learning how to anticipate the stock market and putting what they have learned into practise. They only start to establish the habit of comprehensive analysis before making any investing decisions after they learn how to apply formulae and procedures to forecast

stock market movements. Once or initially, making a successful stock market prediction gives investors the confidence to form the habit of conducting a thorough analysis each time. Here, "complete analysis" refers to both the fundamental and the technical analysis of the stocks because the combination of these two forecasting methods results in predictions that are more precise.

Minimise our losses:

Another benefit of stock market prediction is that it significantly reduces your losses or restricts them. Investors sometimes make the error of not doing their studies thoroughly before learning how to anticipate, which results in them frequently employing the incorrect prediction strategies. As a result, many put their money into the stocks based solely on intuition or merely wild estimates in the hopes that the prices will rise, and they will profit. They lose most of the time because it doesn't happen. They can reduce their losses by correctly implementing and using the appropriate forecast strategies. The converse of this is also true, and given the information provided, you can make wise selections.

Allows smart way of making money:

Making steadily increasing profits through the use of your trading expertise and knowledge is the smart method to make money. The most desired and ideal approach to make money in the stock market is to become a day trader and make money every day, unless of course a person has long-term aspirations. But in order to do that, you must be aware of the various difficulties and difficulties that come with intraday trading, as well as how to deal with them. That can only occur when you understand how to forecast the stock market using a variety of tools and tactics and how to maximise intraday trading, enabling yourself to consistently make money.

Disadvantages

- Forecasts are never 100% accurate
- It can be time-consuming and resource-intensive

Forecasts are never 100% accurate:

Let's face it: it's hard to predict the future. Even if you have a great process in place and forecasting experts on your payroll, your forecasts will never be spot on. Some products and markets simply have a high level of volatility. And in general, there is just an endless number of factors that influence demand.

It can be time-consuming and resource-intensive:

Forecasting involves a lot of data gathering, data organizing, and coordination. Companies typically employ a team of demand planners who are responsible for coming up with the forecast. But in order to do this well, demand planners need substantial input from the sales and marketing teams. In addition, it's not uncommon for processes to be manual and labour-intensive, thus taking up a lot of time. Fortunately, if you have the right technology in place, this is much less of an issue.

CHAPTER 11 CONCLUSION

CONCLUSION

In today's world and in such a dynamic atmosphere where everyone wants to know what will happen in the future, artificial intelligence and deep learning are the foundation for upgrading technology. The path to future prediction has been established by several facilities. It previously hard to predict the prices of cryptocurrencies since they change randomly, but machine learning has made it feasible.

By integrating LSTM in TensorFlow and keras in Python, the constructed model demonstrates a clear prediction of the future prices with very little variance from the genuine prices. Between the model being overfitted and performing at its optimum, there is always a fine line. With a few minor adjustments, the model may be applied to different time series data. With the knowledge gained from this research, a far more complex model may be created with relative ease utilising the generated model and algorithm as a foundation. With the aid of this model, more prediction algorithms for bitcoin may be developed.

This project comes to the conclusion that the LSTM (Long Short-Term Method) machine learning algorithm predicts the future price of crude oil by edging the current price of the oil with high accuracy.

CHAPTER 12 FUTURE SCOPE

FUTURE SCOPE

The Long Short-Term Method (LSTM) machine learning algorithm is shown to have a high degree of accuracy in predicting the future price of crude oil by edging the current price of the oil.

In the future, it will be possible to estimate crude oil prices by taking into account additional variables that influence the price, such as tweets, national news, natural disasters, the cost of forecasting, conflict, demand, and floods. By doing this, the model's precision and accuracy would both be enhanced.

The dataset will be obtained from Kaggle, a sizable platform that is frequently used for data mining and doing analysis. The model would similarly be created using these elements. If this is carried out, the accuracy of forecasting the price of crude oil will exceed 98 percent.

CHAPTER 13 APPENDIX

APPENDIX

Source Code

```
Building the model:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_excel("Crude Oil Prices Daily.xlsx")
data.head()
data.isnull().any()
data.isnull().sum()
data.dropna(axis=0,inplace=True)
data.isnull().sum()
data_oil = data.reset_index()["Closing Value"]
data_oil
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler ( feature_range = (0,1) )
data_oil = scaler.fit_transform(np.array(data_oil).reshape(-1,1))
plt.title('Crude OIl Price')
plt.plot(data_oil)
```

```
training_size = int(len(data_oil)*0.65)
test_size = len(data_oil)-training_size
train_data, test_data = data_oil[0:training_size,:],
data_oil[training_size:len(data_oil),:1]
training_size, test_size
train_data.shape
import numpy
def create_dataset(dataset, time_step=1):
  dataX, dataY = [], []
  for i in range(len(dataset)-time_step-1):
     a = dataset[i:(i+time_step), 0]
     dataX.append(a)
     dataY.append(dataset[i+time_step, 0])
  return np.array(dataX), np.array(dataY)
time\_step = 10
X_train, y_train = create_dataset(train_data, time_step)
X_test, ytest = create_dataset(test_data, time_step)
print(X_train.shape), print(y_train.shape)
print(X_test.shape), print(ytest.shape)
X_train
X_{train} = X_{train.reshape}(X_{train.shape}[0], X_{train.shape}[1], 1)
```

```
X_{\text{test}} = X_{\text{test.reshape}}(X_{\text{test.shape}}[0], X_{\text{test.shape}}[1], 1)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
model = Sequential()
model.add(LSTM(50,return_sequences = True, input_shape = (10,1)))
model.add(LSTM(50,return_sequences = True))
model.add(LSTM(50))
model.add(Dense(1))
model.summary()
model.compile(loss='mean_squared_error', optimizer = 'adam')
model.fit(X_train, y_train, validation_data = (X_test, ytest), epochs = 10, batch_size =
64, verbose = 1)
train_predict=model.predict(X_train)
test_predict=model.predict(X_test)
train_predict = scaler.inverse_transform(train_predict)
test_predict = scaler.inverse_transform(test_predict)
import math
from sklearn.metrics import mean_squared_error
math.sqrt(mean_squared_error(y_train,train_predict))
```

```
from tensorflow.keras.models import load_model
model.save("Crude_oil.h5")
look_back = 0
trainPredictPlot = np.empty_like(data_oil)
trainPredictPlot[:, :] = np.nan
trainPredictPlot[look_back:len(train_predict) + look_back, :] = train_predict
testPredictPlot = np.empty_like(data_oil)
testPredictPlot[:,:] = np.nan
testPredictPlot[len(train_predict)+(look_back*2)+1: len(data_oil)-1, :] = test_predict
plt.plot(scaler.inverse_transform(data_oil))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.title("Testing The Model")
plt.show()
len(test_data)
x_{input} = test_{data}[2866:].reshape(1,-1)
x_input.shape
temp_input = list(x_input)
temp_input = temp_input[0].tolist()
temp_input
lst_output = []
n_{steps} = 10
i=0
```

```
while(i < 10):
  if(len(temp_input)>10):
     x_input = np.array(temp_input[1:])
     print("{} day input {}".format(i,x_input))
     x_{input} = x_{input.reshape(1,-1)}
     x_{input} = x_{input.reshape}((1, n_{steps}, 1))
     yhat = model.predict(x_input, verbose = 0)
     print("{} day output {}".format(i,yhat))
     temp_input.extend(yhat[0].tolist())
     temp_input = temp_input[1:]
     lst_output.extend(yhat.tolist())
     i=i+1
  else:
     x_{input} = x_{input.reshape}((1, n_{steps,1}))
     yhat = model.predict(x_input, verbose = 0)
     print(yhat[0])
     temp_input.extend(yhat[0].tolist())
     print(len(temp_input))
     lst_output.extend(yhat.tolist())
     i=i+1
day_new = np.arange(1,11)
day_pred = np.arange(11,21)
len(data_oil)
plt.plot(day_new,scaler.inverse_transform(data_oil[8206:]))
plt.title("Review Of Prediction")
```

```
plt.plot(day_pred,scaler.inverse_transform(lst_output))
plt.show()
df3 = data_oil.tolist()
df3.extend(lst_output)
plt.title("Past Data & Next 10 Days Output Prediction")
plt.plot(df3[8100:])
df3 = scaler.inverse_transform(df3).tolist()
plt.title("Past Data & Next 10 Days Output Prediction After Reversing The Scaled
Values")
plt.plot(df3)
Deploying on IBM Cloud:
get_ipython().system('pip install ibm_watson_machine_learning')
from ibm_watson_machine_learning import APIClient
wml_credentials = {
  "url": "https://us-south.ml.cloud.ibm.com",
  "apikey": "uVEty-CB4dYcccQ_Jq9V-atVXmL1dByE_wiDm95lcyTQ"
}
client = APIClient(wml_credentials)
def guid_from_space_name(client, NewSpace):
  space = client.spaces.get_details()
  return(next(item for item in space['resources'] if item['entity']["name"] ==
NewSpace)['metadata']['id'])
space_uid = guid_from_space_name(client, 'NewSpace')
print("Space UID = " + space_uid)
client.set.default_space(space_uid)
```

```
client.software_specifications.list()
software_spec_id =
client.software_specifications.get_id_by_name('tensorflow_rt22.1-py3.9')
print(software_spec_id)
model.save('crude.h5')
get_ipython().system('tar -zcvf crude-oil.tgz Crude.h5')
software_space_uid =
client.software_specifications.get_uid_by_name('tensorflow_rt22.1-py3.9')
software_space_uid
model_details = client.repository.store_model(model='crude.tgz',meta_props={
client.repository.ModelMetaNames.NAME:"crude_oil_model",
client.repository.ModelMetaNames.TYPE:"tensorflow_2.7",
client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_spec_id }
                         )
model_id = client.repository.get_model_uid(model_details)
model_id
client.repository.download(model_id,'crude_oil_model.tar.gb')
```

INTEGRATE FLASK WITH SCORING END POINT

App.py

from flask import Flask,render_template,request,redirect import pandas as pd import numpy as np from flask import Flask, render_template, Response, request import pickle from sklearn.preprocessing import LabelEncoder import requests

```
# NOTE: you must manually set API_KEY below using information retrieved from
your IBM Cloud account.
API KEY = "uVEty-CB4dYcccQ Jq9V-atVXmL1dByE wiDm95lcyTQ"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey":API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask(__name__)
@app.route('/',methods=["GET"])
def index():
  return render template('index.html')
@app.route('/predict',methods=["POST","GET"])
def predict():
  if request.method == "POST":
    string = request.form['val']
    string = string.split(',')
    temp_input = [eval(i) for i in string]
    x_{input} = np.zeros(shape=(1, 10))
    x_input.shape
    lst_output = []
    n_{steps} = 10
    i=0
    while(i<10):
       if(len(temp_input)>10):
         x_input = np.array(temp_input[1:])
         x_{input} = x_{input.reshape(1,-1)}
         x_{input} = x_{input.reshape}((1, n_{steps}, 1))
         yhat = model.predict(x_input, verbose = 0)
         temp_input.extend(yhat[0].tolist())
         temp_input = temp_input[1:]
```

```
lst_output.extend(yhat.tolist())
         i=i+1
       else:
         x_{input} = x_{input.reshape}((1, n_{steps,1}))
         yhat = model.predict(x_input, verbose = 0)
         temp_input.extend(yhat[0].tolist())
         lst_output.extend(yhat.tolist())
         i=i+1
     # NOTE: manually define and pass the array(s) of values to be scored in the
next line
     payload_scoring = {"input_data": [{ "values": [[x_input]] }]}
     response_scoring = requests.post('https://us-
south.ml.cloud.ibm.com/ml/v4/deployments/7f67cbed-6222-413b-9901-
b2a72807ac82/predictions?version=2022-10-30', json=payload_scoring,
headers={'Authorization': 'Bearer ' + mltoken})
     predictions = response_scoring.json()
     print(response_scoring.json())
     val = lst_output[9]
     return render_template('web.html', prediction = val)
  if request.method=="GET":
    return render_template('web.html')
if __name__=="__main__":
  model = load_model('C:/Users/rkara/IBM/Sprint - 4/Crude_oil.tar.gz')
  app.run(debug=True)
```

INDEX.HTML

```
<!DOCTYPE html>
<head>
  <title>Crude Oil Price Prediction </title>
  k rel="stylesheet" href="{{ url_for('static', filename='css/index.css') }}">
</head>
<body>
  <h1> Crude Oil Price Prediction</h1>
   Demand for oil is inelastic, therefore the rise in price is good news
  for producers because they will see an increase in their revenue. Oil
  importers, however, will experience increased costs of purchasing oil.
  Because oil is the largest traded commodity, the effects are quite
  significant. A rising oil price can even shift economic/political
  power from oil importers to oil exporters. The crude oil price movements
  are subject to diverse influencing factors.
  <br><br>>
  <a href="{{url_for('predict')}}}">
  Predict Future Price</a>
</body>
```

WEB.HTML

```
<!DOCTYPE html>
<head>
    <title>Crude Oil Price Prediction </title>
    link rel="stylesheet" href="{{ url_for('static', filename='css/web.css') }}">
</head>
<body>
    <h1>
```

GitHub Link:

The "Crude Oil Price Prediction" project has been posted on GitHub.

Link: https://github.com/IBM-EPBL/IBM-Project-12033-1659367379

Project Demonstration:

The following link will take you to a demonstration of the "Crude Oil Price Prediction" project.

Link: Demo Link