

Design example

Adhesive anchoring system with variable embedment depth in non-cracked concrete

Anchoring conditions

concrete	oncrete Non-cracked concrete C50/6					
service temperature range of base material	temperature range					
number of anchors	Group of two a	anchors cl	ose to the edge			
base material thickness		h	100 mm			
anchor spacing	s	150 mm				
edge distance		С	100 mm			
shear load direction perp	pendicular to free edge	β	0 °			
TENSION design action	(fixing point)	N_{Sd}	15,0 kN			
SHEAR design action (fi	xing point)	V_{Sd}	15,0 kN			
TENSION design action per anchor			7,5 kN			
SHEAR design action per anchor			7,5 kN			
effective anchorage dep	h _{ef}	70 mm				

	\ \ I	V _{sd}	
CON		+ S /	
ح		B S	\searrow
1	V _{Sd}	\mathbb{Z}_{2}	

anchor	Hilti HIT-RE 500-SD with HIT-V 5.8, size M12					
external diameter		d	12 mm			
typical anchorage depth		h _{ef,typ}	110 mm			
minimum edge distance		S _{min}	60 mm			
minimum spacing		C _{min}	60 mm			

The parameters are given in the anchor-section in the tables "setting details" and "setting parameters" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Critical spacings and edge distances

critical spacing for concrete cone failure s _{cr,N} and critical spacing for combined							
pull-out and cor	pull-out and concrete cone failure s _{cr,Np}						
h _{ef} =	70 mm	$s_{cr,N} = s_{cr,Np} = 3 h_{ef} =$	210 mm				

critical edge distance for concrete cone failure $c_{cr,N}$ and critical edge distance for combined pull-out and concrete cone failure $c_{cr,Np}$ $h_{ef} = 70 \text{ mm} \qquad c_{cr,N} = c_{cr,Np} = 1,5 \text{ h}_{ef} = 105 \text{ mm}$

critical edge distance for splitting failure							
	for h ≤ 1,3	c _{cr,sp} =	2,26 h _{ef}				
	for 1,3 h _e	_f < h < 2 h _{ef}	c _{cr,sp} =	4,6 h _{ef} - 1,8 h			
	for h ≥ 2 l	n _{ef}	c _{cr,sp} =	1,0 h _{ef}			
h = 100 mm	h _{ef} = 70 mm	h/h _{ef} = 1,43	\rightarrow $C_{cr,sp} =$	142 mm			

critical spacing for splitting failure						
c _{cr,sp} =	142 mm	$s_{cr,sp} = 2 c_{cr,sp} =$	284 mm			

General remarks

According EOTA Technical Report TR 029, concrete cone, combined concrete cone and pull-out, splitting, pryout and concrete edge design resistance must be verified for the anchor group. Steel design resistance must be verified for the most unfavourable anchor of the anchor group.

According to the simplified design method given in this Fastening Technology Manual all anchors of a group are loaded equally, the design resistance values given in the tables are valid for one anchor.

44 09 / 2012

Tension loading

Design steel resistance

 $N_{Rd,s} = 28,0 \text{ kN}$

See "basic design tensile resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Design combined pull-out and concrete cone resistance

basic resistance $N^0_{Rd,p}$							29,9 kN	
concr	ete		Non-cr	acked concre	te C5	0/60	$f_{B,p}$	1,09
h _{ef} =	70 mm	h _{ef,typ} =	110 mm	$f_{h,p} = h_{ef}/h_{ef,typ} =$				0,64
c =	100 mm	c _{cr,N} =	105 mm	c/c =	0.05		f _{1,N}	0,99
C =	100 11111	C _{cr,N} = 103 IIII	103 11111	$c/c_{cr,N} = 0.95 \longrightarrow$	→	f _{2,N}	0,97	
s =	150 mm	s _{cr,N} =	210 mm	s/s _{cr,N} =	0,71	\rightarrow	f _{3,N}	0,86
h _{ef} =	70 mm					\rightarrow	f _{re,N}	1,00
	$N_{Rd,p} = N_{Rd,p}^0 f_{B,p} f_{1,N} f_{2,N} f_{3,N} f_{h,p} f_{re,N} =$							

See "basic design tensile resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Design concrete cone resistance

basic	basic resistance $N^0_{Rd,c}$						32,4 kN	
concrete Non-cracked concrete C50/60 f _B					f_B	1,55		
h _{ef} =	70 mm	h _{ef,typ} =	110 mm	10 mm $f_{h,N} = (h_{ef}/h_{ef,typ})^{1,5} =$				0,51
c =	100 mm	C =	105 mm	c/c _{cr,N} =	0.05		f _{1,N}	0,99
C =	100 111111	O _{cr,N} - 1031	103 11111	o/o _{cr,N} –	0,33	→	f _{2,N}	0,97
s =	150 mm	s _{cr,N} =	210 mm	s/s _{cr,N} =	0,71	\rightarrow	f _{3,N}	0,86
h _{ef} =	70 mm					\rightarrow	f _{re,N}	1,00
	$N_{Rd,c} = N_{Rd,c}^0 f_B f_{h,N} f_{1,N} f_{2,N} f_{3,N} f_{re,N} =$							21,1 kN

See "basic design tensile resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12) and "influencing factors" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Influencing factors may be interpolated.

Design splitting resistance

basic resistance $N^0_{ m Rd,c}$						32,4 kN		
concrete Non-cracked concrete C50/60 f _B					1,55			
h _{ef} =	70 mm	h _{ef,typ} =	110 mm	f _t	_{n,N} = (I	า _{ef} /h _e	_{ef,typ}) ^{1,5} =	0,51
c =	100 mm	c _{cr,sp} =	142 mm	c/c =	0.70		f _{1,sp}	0,91
C -	100 111111	Ocr,sp —	142 111111	142 mm $c/c_{cr,sp} = 0.70 \rightarrow$			f _{2,sp}	0,85
s =	150 mm	s _{cr,sp} =	284 mm	s/s _{cr,sp} =	0,53	\rightarrow	f _{3,sp}	0,76
h _{ef} =	70 mm	mm \rightarrow $f_{re,N}$					1,00	
	$N_{Rd,sp} = N_{Rd,c}^{0} f_{B} f_{h,N} f_{1,sp} f_{2,sp} f_{3,sp} f_{re,N} =$							

See "basic design tensile resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12) and "influencing factors" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Influencing factors may be interpolated.

Tension design resistance: lowest value $N_{Rd} = 15,0 \text{ kN}$

09 / 2012 45

Shear loading

Design steel resistance

V_{Rd,s} = 16,8 kN

See "basic design shear resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Concrete pryout design resistance

lower	value of N	$N_{Rd,p}$ and $N_{Rd,c}$ $V^0 =$	17,1 kN
h _{ef} =	70 mm	\rightarrow k	2
		$V_{Rd,cp} = k V^0 =$	34,3 kN

See "basic design shear resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12) and "influencing factors" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Concrete edge design resistance

0011	Control cage acaign resistance								
basic	basic resistance $V^0_{Rd,c}$								
concr	ete		Non-cr	acked concre	te C5	0/60	f_B	1,55	
	shear load direction perpendicular to free edge 0 ° →						f_{β}	1,00	
h =	100 mm	C =	100 mm	h/c =	1,00	\rightarrow	f _h	0,82	
c =	100 mm	h _{ef} =	70 mm	c/h _{ef} =	1,43		f_4	1,28	
s =	150 mm	h _{ef} =	70 mm	s/h _{ef} =	2,14	→	14	1,20	
h _{ef} =	70 mm	d =	12 mm	h _{ef} /d =	5,83	\rightarrow	f _{hef}	0,97	
c =	100 mm	d =	12 mm	c/d =	8,33	\rightarrow	f _c	0,67	
	$V_{Rd,c} = V_{Rd,c}^0 f_B f_B f_h f_4 f_{hef} f_c =$								

See "basic design shear resistance" (for HIT-RE 500-SD with HIT-V 5.8, size M12) and "influencing factors" (for HIT-RE 500-SD with HIT-V 5.8, size M12)

Influencing factors may be interpolated.

Shear design resistance: lowest value V_{Rd} = 12,3 kN

Combined tension and shear loading

The following equation must be satisfied for combined tension and shear loads:

(Eq. 1)
$$(\beta_N)^{1,5} + (\beta_V)^{1,5} \le 1$$

 $\beta_N\left(\beta_V\right)$ ratio between design action and design resistance for tension (shear) loading

According to ETAG 001, Annex C, the following simplified equation may be applied:

(Eq. 2)
$$\beta_N + \beta_V \le 1,2$$
 and $\beta_N \le 1, \beta_V \le 1$

Example (load values are valid for one anchor)

