# Semana 12: Derivação Numérica

Nesse capítulo vamos estudar como usar o computador para encontrar uma aproximação para o coeficiente angular da reta tangente à f no ponto  $x_0$ , denominada  $f'(x_0)$ . Para isso vamos supor que sabemos avaliar f em uma vizinhança de  $x_0$ , ou pelo menos uma aproximação para isso.

## 12.1 Métodos Numéricos

#### 12.1.1 Primeiro Método

Já estudamos em cálculo que a derivada de uma função f em  $x_0$  é a inclinação da reta tangente à f em  $x_0$ . E para encontrar o valor de  $f'(x_0)$  temos que calcular o seguinte limite:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$



Figura 12.1: Ilustração para a derivada em  $x_0$ .

Esse limite já sugere uma aproximação para a derivada de f em  $x_0$ . Se escolhemos h bem pequeno podemos afirmar que:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
.

O que estamos fazendo nesse caso é aproximando a inclinação da reta tangente à f no ponto  $x_0$  (reta em azul na Figura 12.1) pela inclinação da reta secante a f que passa pelos pontos  $(x_0, f(x_0))$  e  $(x_1, f(x_1))$ , com  $x_1 = x_0 + h$  (reta em preto na Figura 12.1). Veja que quanto menor o valor de h mais próxima está uma reta da outra, logo mais próxima está uma inclinação de uma reta da inclinação da outra.

Podemos usar h positivo ou negativo. Caso h > 0 a reta secante em questão passa por  $(x_0, f(x_0))$  e  $(x_1, f(x_1))$ , com  $x_1 = x_0 + h$  sendo um ponto à direita de  $x_0$ , como mostra a Figura 12.1. Já se h < 0 a reta considerada na aproximação passa em  $(x_0, f(x_0))$  e  $(x_2, f(x_2))$ , com  $x_2 = x_0 - h$  sendo um ponto à esquerda de  $x_0$ .

#### 12.1.2 Segundo Método

Uma outra alternativa para calcular uma aproximação para  $f'(x_0)$  é usar a reta secante que passa pelos pontos  $(x_0-h, f(x_0-h))$  e  $(x_0+h, f(x_0+h))$ , nesse caso vamos considerar o seguinte limite:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

Se escolhemos h bem pequeno podemos afirmar que:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$



Figura 12.2: Ilustração para a derivada em  $x_0$ .

Esse novo método está ilustrado na Figura 12.2. Nesse caso a reta secante usada na aproximação não leva em consideração  $(x_0, f(x_0))$  e sim  $(x_1, f(x_1))$  e  $(x_2, f(x_2))$ , com  $x_1 = x_0 + h$  e  $x_2 = x_0 - h$ , pontos à direita e à esquerda de  $x_0$ , respectivamente.

# 12.2 Algoritmo

Vamos ao algoritmo. Para aproximar  $f'(x_0)$  vamos começar com um h qualquer, que pode ou não ser informado pelo usuário. A partir desse valor de h calculamos uma

primeira aproximação. Depois diminuímos o valor de h, por exemplo dividindo por 2, e calculamos uma nova aproximação. Realizamos esse procedimento diversas vezes até que aproximações consecutivas tenham um erro menor do que o erro  $\varepsilon$  determinado pelo usuário.

```
Entrada: x_0, f \in \varepsilon.

Saída: uma aproximação para f'(x_0).

Nome: DerivadaNumérica

Defina h = 1;

Defina x_1 = x_0 + h e x_2 = x_0 - h;

Se x_1 \notin D(f) ou x_2 \notin D(f), pare e retorne erro.

Calcule d = \frac{f(x_1) - f(x_2)}{2h};

Atualize o valor de h: h = \frac{h}{2};

Atualize x_1 e x_2: x_1 = x_0 + h e x_2 = x_0 - h;

Calcule \tilde{d} = \frac{f(x_1) - f(x_2)}{2h};

Se |d - \tilde{d}| < \varepsilon, retorne \tilde{d};

Faça d = \tilde{d} e volte para a linha 5.
```

Dica: Talvez fique mais simples se o algoritmo for implementado usando o repeat. Veja agora uma possibilidade de realizar o algoritmo de forma recursiva. Nesse caso vai ser bem mais simples de h também for passado como entrada.

```
Entrada: x_0, f, \varepsilon \in h.

Saída: uma aproximação para f'(x_0).

Nome: DerivadaNuméricaRec

Defina x_1 = x_0 + h \in x_2 = x_0 - h;
Se x_1 \notin D(f) ou x_2 \notin D(f), pare e retorne erro.
Calcule d = \frac{f(x_1) - f(x_2)}{2h};
Atualize o valor de h: h = \frac{h}{2};
Atualize x_1 \in x_2: x_1 = x_0 + h \in x_2 = x_0 - h;
Calcule \tilde{d} = \frac{f(x_1) - f(x_2)}{2h};
Se |d - \tilde{d}| < \varepsilon, retorne \tilde{d};
Retorne DerivadaNuméricaRec(x_0, \varepsilon, h).
```

99

### Exercícios - 12<sup>a</sup> Semana

Para os exercícios a seguir considere  $f'(x_0)$  = coeficiente angular da reta tangente à f no ponto  $x_0$ .

12.1 Em cada item a seguir considere que as únicas informações disponíveis sobre a função f estejam na tabela apresentada. Complete a terceira coluna de cada tabela com aproximações para a derivada no ponto em questão. Faça as contas na mão. Para cada linha use o método mais apropriador de acordo com as informações disponíveis.

|    | $x_0$ | $f(x_0)$ | $f'(x_0)$ |
|----|-------|----------|-----------|
|    | 1.1   | 9.025013 |           |
| a) | 1.2   | 11.02318 |           |
|    | 1.3   | 13.46374 |           |
|    | 1.4   | 16.44465 |           |

|    | $x_0$ | $f(x_0)$  | $f'(x_0)$ |
|----|-------|-----------|-----------|
|    | 7.4   | -68.31929 |           |
| b) | 7.6   | -71.69824 |           |
|    | 7.8   | -75.15762 |           |
|    | 8.0   | -78.69741 |           |

12.2 Compare o valor aproximado encontrado no exercício acima com os valores reais, dado pelas funções a seguir.

a) 
$$f'(x_0) = 2e^{2x_0}$$

b) 
$$f'(x_0) = \frac{1}{x_0+2} - 2(x_0+1)$$

- 12.3 Vamos agora implementar o método visto em sala de aula. Para isso considere a função  $f(x) = \frac{1}{x^2+1}$ .
  - a) Qual o domínio da função f?
  - b) Implemente uma função que recebe como entrada  $x_0 \in Dom(f)$  e um erro  $\varepsilon$  e retorna uma aproximação para  $f'(x_0)$  a partir do segundo método visto em sala de aula.
  - c) A partir da função implementada encontre aproximações para  $f'(0), f'(-\frac{1}{5})$  e  $f'(\frac{1}{3}).$
  - d) Vamos implementar agora o algoritmo de forma recursiva. Para facilitar considere h um argumento de entrada da sua função. Dessa forma, implemente uma função recursiva que recebe como entrada  $x_0 \in Dom(f)$ , um erro  $\varepsilon$  e h retorna uma aproximação para  $f'(x_0)$  a partir do segundo método visto em sala de aula.
  - e) A partir da função recursiva encontre aproximações para  $f'(0), f'(-\frac{1}{5})$  e  $f'(\frac{1}{3})$ . Quando for chamar a função para encontrar as aproximações use h=1.
- 12.4 Considere agora a função  $f(x) = ln(x^2 + x 2)$ .
  - a) Qual o domínio da função f?
  - b) Implemente uma função que recebe como entrada  $x_0 \in Dom(f)$  e um erro  $\varepsilon$  e retorna uma aproximação para  $f'(x_0)$  a partir do segundo método visto em sala de sula

Dica: Nesse caso será necessário ter cuidado com: (i) o  $x_0$  informado pelo usuário, se ele não estiver no domínio interrompa o processo e envie uma mensagem de erro; (ii) a escolha de h inicial, atenção para não acontecer de  $x_0 - h$  ou  $x_0 + h$  não pertencer ao domínio.

- c) A partir da função implementada encontre aproximações para f'(3),  $f'(-\frac{5}{2})$  e  $f'(\frac{4}{3})$ .
- d) Vamos implementar agora o algoritmo de forma recursiva. Para facilitar considere novamente h um argumento de entrada da sua função. Dessa forma, implemente uma função <u>recursiva</u> que recebe como entrada  $x_0 \in Dom(f)$ , um erro  $\varepsilon$  e h retorna uma aproximação para  $f'(x_0)$  a partir do segundo método visto em sala de aula.
- e) A partir da função recursiva encontre aproximações para f'(3),  $f'(-\frac{5}{2})$  e  $f'(\frac{4}{3})$ .
- 12.5 Considere agora  $f(x) = e^{-x/3} \left(1 + \frac{x}{x^2+1}\right) 1$ .
  - a) Qual o domínio da função f?
  - b) Primeiro implemente uma função que recebe como entrada x e retorna f(x). Vamos chamar essa função de f.
  - c) Implemente agora uma função que recebe como entrada x e retorna uma aproximação para f'(x) considerando um erro de  $10^{-3}$ . Vamos chamar esse função de df.
  - d) Nosso objetivo agora é usar o método da bisseção para encontrar os pontos de máximo e mínimo locais de f. Veja que esses pontos são os pontos  $x_0$  tais que  $f'(x_0) = 0$ . Para isso siga os itens a seguir.
    - i) Digite plot(f,xlim=c(-3,5)) e plot(df,xlim=c(-3,5)); abline(h=0) e, comparando os dois gráficos, veja onde estão os pontos  $x_0$  tais que  $f'(x_0) = 0$ . Para encontrais aproximações para tais pontos vamos buscar as raízes da função df.
    - ii) Use o método da bisseção para encontrar uma aproximação para o mínimo local de f. A partir dos gráficos escolha valores para a e b de forma a garantir que o método converge para o mínimo local. Faça a sua função de forma que ela chame  $\mathtt{df}$ .
    - iii) Use o método da bisseção para encontrar uma aproximação para o máximo local de f. A partir dos gráficos escolha valores para a e b de forma a garantir que o método converge para o máximo local. Faça a sua função de forma que ela chame  $\mathtt{df}$ .
    - iv) Vamos testar se deu certo. Guarde no objeto xmin a aproximação para o mínimo local e no objeto xmax a aproximação para o máximo local de f. Agora digite a seguinte sequência de comandos e discuta o gráfico gerado.
      - > plot(df,xlim=c(-3,5))
      - > abline(h=0)
      - > segments(x0=xmin,y0=2,x1=xmin,y1=-2,lty=2)
      - > points(xmin,0,pch=19,cex=1.2)
      - > segments(x0=xmax,y0=1,x1=xmax,y1=-1,lty=2)
      - > points(xmax,0,pch=19,cex=1.2)