

Curso 1: Teoría de inversión y programación en Python

H. Sánchez-Reyes

ISTerre, Université de Grenoble Alpes, France IRD - UGA-ISTerre BQR Project

¡Gracias por la bienvenida!

7-18 de Agosto de 2023 Lima. Perú

Recordando algebra lineal

Vectores:

$$v = [2, 4, 5]$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$

Vectores:

$$v = [2, 4, 5]$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$

¿Cuál es la dimensión de estos vectores?

Vectores:

$$v = [2, 4, 5]$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$

¿Cuál es la dimensión de estos vectores?

$$v = [2, 4, 5]_{1 \times 3}$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}_{3 \times 1}$

Vectores:

$$v = [2, 4, 5]$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$

¿Cuál es la dimensión de estos vectores?

$$v = [2, 4, 5]_{1 \times 3}$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}_{3 \times 1}$

También definimos los transpuestos:

Vectores:

$$v = [2, 4, 5]$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$

¿Cuál es la dimensión de estos vectores?

$$v = [2, 4, 5]_{1 \times 3}$$
 or, $n = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}_{3 \times 1}$

También definimos los transpuestos:

$$v^{T} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}_{3 \times 1}$$
 or, $n^{T} = [1, 5, 7]_{1 \times 3}$

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrices con definiciones importantes

Identidad:

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrices con definiciones importantes

Identidad:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrices con definiciones importantes

Identidad:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Simétricas:

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrices con definiciones importantes

Identidad:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Simétricas: $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$ si, $x_{ij} = x_{ji}$

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrices con definiciones importantes

Identidad:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Simétricas: $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$ si, $x_{ij} = x_{ji}$

Invertible:

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3\times 3}$$

Matrices con definiciones importantes

Identidad:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Simétricas: $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$ si, $x_{ij} = x_{ji}$

Invertible: si, det(M) > 0 entonces, M^{-1} existe, tal que

$$M^{-1}M = I = MM^{-1}$$

Matrix:

$$\begin{bmatrix} 4 & 1 & 0 \\ 2 & 7 & 2 \\ 5 & 3 & 8 \end{bmatrix}_{3 \times 3}$$

Matrices con definiciones importantes

Identidad:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Simétricas: $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$ si, $x_{ij} = x_{ji}$

Invertible: si, det(M) > 0 entonces, M^{-1} existe, tal que

$$M^{-1}M = I = MM^{-1}$$
 $M^{-1}M = I = M$
 M^{-1}
 M^{-1}
 $M = I = M$
 M^{-1}
 M

Sumas (y restas):

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ then }$$

$$\mathbf{S} = \mathbf{M} + \mathbf{N} = \begin{bmatrix} 1+1 & 0+0 & 2-1 \\ 0+0 & 1+2 & 0+0 \\ 2-1 & 0+0 & 1+3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

Sumas (y restas):

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ then }$$

$$\mathbf{S} = \mathbf{M} + \mathbf{N} = \begin{bmatrix} 1+1 & 0+0 & 2-1 \\ 0+0 & 1+2 & 0+0 \\ 2-1 & 0+0 & 1+3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

es decir,
$$S_{ij} = M_{ij} + N_{ij}$$
 y $D_{ij} = M_{ij} - N_{ij}$

Sumas (y restas):

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ then}$$

$$\mathbf{S} = \mathbf{M} + \mathbf{N} = \begin{bmatrix} 1+1 & 0+0 & 2-1 \\ 0+0 & 1+2 & 0+0 \\ 2-1 & 0+0 & 1+3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

es decir,
$$S_{ij} = M_{ij} + N_{ij}$$
 y $D_{ij} = M_{ij} - N_{ij}$

Multiplicaciones:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ then }$$

$$\mathbf{S} = \mathbf{M} + \mathbf{N} = \begin{bmatrix} 1+1 & 0+0 & 2-1 \\ 0+0 & 1+2 & 0+0 \\ 2-1 & 0+0 & 1+3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

es decir,
$$S_{ij} = M_{ij} + N_{ij}$$
 y $D_{ij} = M_{ij} - N_{ij}$

Multiplicaciones:

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 1 \times 2 + 2 \times 1 + 2 \times 2 & 1 \times 2 + 1 \times 1 + 2 \times 2 + 2 \times 1 \\ 2 \times 1 + 2 \times 2 + 3 \times 1 + 3 \times 2 & 2 \times 2 + 2 \times 1 + 3 \times 2 + 3 \times 1 \end{bmatrix} = \begin{bmatrix} 9 & 9 \\ 15 & 15 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{N} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ then }$$

$$\mathbf{S} = \mathbf{M} + \mathbf{N} = \begin{bmatrix} 1 + 1 & 0 + 0 & 2 - 1 \\ 0 + 0 & 1 + 2 & 0 + 0 \\ 2 - 1 & 0 + 0 & 1 + 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

es decir,
$$S_{ij} = M_{ij} + N_{ij}$$
 y $D_{ij} = M_{ij} - N_{ij}$

Multiplicaciones:

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 1 \times 2 + 2 \times 1 + 2 \times 2 & 1 \times 2 + 1 \times 1 + 2 \times 2 + 2 \times 1 \\ 2 \times 1 + 2 \times 2 + 3 \times 1 + 3 \times 2 & 2 \times 2 + 2 \times 1 + 3 \times 2 + 3 \times 1 \end{bmatrix} = \begin{bmatrix} 9 & 9 \\ 15 & 15 \end{bmatrix}$$

$$\text{es decir},$$

$$P_{ij} = \sum_{k=1}^{K} M_{ik} N_{kj}$$

Determinante:

Determinante:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \cdots \sum_{q=1}^{N} e^{ijk...q} M_{1i} M_{2j} M_{3k} \dots M_{Nq}$$

siendo $e^{ijk\dots q}+1$ cuando (i, j, k, ... , q) son permutations pares de (1, 2, 3, ... , N), y -1 cuando son permutaciones impares, y cero en otro caso.

Determinante:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \cdots \sum_{q=1}^{N} e^{ijk...q} M_{1i} M_{2j} M_{3k} \dots M_{Nq}$$

siendo $e^{ijk\dots q}+1$ cuando (i, j, k, ..., q) son permutations pares de (1, 2, 3, ..., N), y -1 cuando son permutaciones impares, y cero en otro caso.

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Más in Menke (2018)

I. Problema directo / Forward problem

II. Problema inverso / Inverse problem

III. Problema lineal / Linear problem

IV. Problema no-lineal / Non-linear problem

References

Menke, W. (2018). Geophysical data analysis: Discrete inverse theory. Academic press.