Национальный Исследовательский Университет «МЭИ»

Институт Радиотехники и Электроники Кафедра Радиотехнических Систем

Курсовой проект

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Студент: Мялова К.А.

Группа: ЭР-15-16

Вариант: 8

Преподаватель: Корогодин И.В.

Москва

ВВЕДЕНИЕ

Спутниковые радионавигационные системы время являются неотъемлемой часть нашей жизни. Они используются в различных сфера начиная от телефона до ракет. Наиболее распространенными являются системы ГЛОНАСС (Россия), GPS (США), Galileo (Евросоюз), Beidou (Китай).

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
 - моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ЭТАП 1 ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1.1 Описание задания

Дан номер спутника BEIDOU, вариант — C14, значения эфемерид для спутников указаны в бинарном и текстовом файлах. Значения получены от антенны Harxon HX-CSX601A, установленной на крыше корпуса Е МЭИ. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных – наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

C14	38775	MEO-6	BDS-2	19.09.12	3089	Используется по ЦН

Рисунок 1 — Состояние 14-го спутника BEIDOU с «Информационно аналитического центра координатно-временного и навигационного обеспечения»

		18.09.2012 19:10	CZ-3B/E				
Компас М6	C14	10.03.2012 13.10	CZ-SD/L	2012-050B&	38775₺	<u>СОО</u> , ~21 500 км	действующий

Рисунок 2 – Состояние 14-го спутника BEIDOU с сайта Википедия По рисункам 1 и 2 видно номер спутника – 38775, название спутника – «Компас М6».

1.2 Определение орбиты и положения спутника на ней с помощью сервиса CelesTrak

Для выполнения данного пункта нужно перейти на сайт CelesTrak (https://celestrak.com), настроить параметры и выбрать нужный спутник, после чего будет определена орбита и его положение.

Рисунок 3 – Положение спутника на орбите

1.3 Расчёт графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Planning Введём параметры ДЛЯ моделирования **GNSS** Online, установим соответствии c расположением координаты В антенны соответственно значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online.

Рисунок 4 – Моделирование с помощью сервиса Trimble GNSS Planning

Рисунок 5 – График угла места собственного спутника от времени
Из графика видно, что спутник на указанном временном интервале с
18:00 до 06:00 был в области видимости с 00:40 до 06:00.

1.4 Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника в критических точках.

2 графика положения спутника:

• 16 февраля 2021 в 00:40:

Рисунок 7 – Диаграмма угла азимута спутника

• 17 февраля в 06:00:

Рисунок 8 – Диаграмма угла азимута спутника

1.5 Формирование списка и описание параметров, входящих в состав эфемерид

Таблица 1 – Значения эфемерид спутника С14

Параметр	Обозначение	Значение
	параметра	
SatNum	PRN	14
Тое (мс)	t _{oe}	219600000.000
Crs (рад)	-	-7.2312500000000000e+01
Dn (рад/мс)	Δn	4.05445468865117675e-12
М0 (рад)	M_0	2.55684508480358019e+00
Сис (рад)	-	-3.59397381544113159e-06
е	e	1.28501909784972668e-03
Cus (рад)	-	5.57675957679748535e-06
$sqrtA (M^{\frac{1}{2}})$	\sqrt{A}	5.28261658287048340e+03
Сіс (рад)	-	1.95577740669250488e-08
Omega0 (рад)	Ω_{O}	-2.81773662124041036e-01
Cis (рад)	-	5.91389834880828857e-08
і0 (рад)	i_0	9.62975188353317302e-01
Стс (рад)	-	2.47531250000000000e+02
Omega (рад)	ω	-6.40880762456192743e-01
OmegaDot (рад/мс)	Ω	-7.00850621812976967e-12
iDot (рад/сек)	i_{DOT}	-1.62149611325022453e-13
Tgd (мс)	$T_{ m gd}$	6.9000000000000000e+04
Тос (мс)	Toc	2.1960000000000000e+08
af2 (мс/мс^2)	-	8.13151611188773069e-22
afl (мс/мс)	-	8.97282248502051516e-11
af0 (мс)	-	1.49921745061874390e-01
URA	-	0
IODE	-	2570

IODC	-	9
codeL2	-	0
L2P	-	0
WN	-	789

ГЛАВА 2. МОДЕЛИРОВАНИЕ

На предыдущем этапе были получены эфемериды спутника. Эфемериды – параметры некоторой модели движения спутника. В разных ГНСС эти модели разные, а значит отличается и формат эфемерид, и алгоритмы расчета положения спутника.

Одна из самых простых и удобных моделей – в системе GPS. Beidou наследует эту модель.

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущим этапе.

Построить трехмерные графики множества положений спутника Beidou.

Графики в двух вариантах: в СК ECEF WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Построить SkyView за указанный временной интервал и сравнить результат с Trimble GNSS Planning Online, полученный на предыдущем этапе.

Построим траектории движения спутника (рисунок 9).

Рисунок 9 – Траектории движения спутника

Расчет графиков SkyView изображен на рисунке 10.

Рисунок 10 – SkyView

Построим график угла места (рисунок 11).

Рисунок 11 — График угла места

Данные результатов моделирования совпадают с данными Trimble GNSS Planning Online с погрешностью из-за того, что использовались одни и те же эфемериды на весь интервал расчета.

ПРИЛОЖЕНИЕ

Приложение 1

```
clear all;
clc;
close all;
%% Эфемериды
SatNum = 14;
toe = 219600000.000 * 10^{-3};
Dn = 4.05445468865117675e-12;
M0 = 2.55684508480358019e+00;
Cuc = -3.59397381544113159e-06;
e = 1.28501909784972668e-03;
Cus = 5.57675957679748535e-06;
sqrtA = 5.28261658287048340e + 03;
Cic = 1.95577740669250488e-08;
Omega0 = -2.81773662124041036e-01;
Cis = 5.91389834880828857e-08;
i0 = 9.62975188353317302e-01;
Crc = 2.4753125000000000000e+02;
omega = -6.40880762456192743e-01;
OmegaDot = -7.00850621812976967e-12;
iDot = -1.62149611325022453e-13;
af2 = 8.13151611188773069e-22;
af1 = 8.97282248502051516e-11;
af0 = 1.49921745061874390e-01;
URA = 0;
IODE = 2570;
```

```
IODC = 9;
codeL2 = 0;
L2P = 0;
WN = 789;
%% Константы
mu = 3.986004418e14; % гравитационная постоянная
Omega_E = 7.2921151467e-5; % скорость вращения
%% Расчет
tstart = (24*2 + 18 - 3)*60*60; % время старта 18:00 МСК 16 февраля
tstop = (24*3 + 6 - 3)*60*60; % время окончания 6:00 МСК 17 февраля
% Массив времени
t_arr = tstart:1:tstop;
% Большая полуось
A = \operatorname{sqrt} A^2;
% Среднее движение
n0 = sqrt(mu/A^3);
n = n0 + Dn;
for k = 1:length(t_arr)
  % Время
  t(k) = t_arr(k) - toe;
  if t(k) > 302400
    t(k) = t(k) - 604800;
  end
  if t(k) < -302400
    t(k) = t(k) + 604800;
  end
```

```
M(k) = M0 + n*t(k);
        % Решение уравнения Кеплера
        E(k) = M(k);
        E_{old}(k) = M(k)+1;
        epsilon = 1e-6;
        while abs(E(k) - E_old(k)) > epsilon
           E_{old}(k) = E(k);
           E(k) = M(k) + e*\sin(E(k));
        end
        % Истинная аномалия
        nu(k) = atan2((sqrt(1 - e^2) * sin(E(k)))/(1 - e^*cos(E(k))), (cos(E(k))) - e^*cos(E(k)))
e)/(1 - e*cos(E(k)));
        % Коэффициенты коррекции
        Phi(k) = omega + nu(k);
        cor_{cos}(k) = cos(2*Phi(k));
        cor_sin(k) = sin(2*Phi(k));
        % Аргумент широты
        delta u(k) = Phi(k) + Cuc*cor cos(k) + Cus*cor sin(k);
        % Радиус
        delta_r(k) = A * (1 - e * cos(E(k))) + Crc*cor_cos(k) + Crs*cor_sin(k);
        % Наклон
        delta_i(k) = i0 + iDot * t(k) + Cic*cor_cos(k) + Cis*cor_sin(k);
```

% Средняя аномалия

```
% Положение на орбите
       x = delta_r(k) * cos(delta_u(k));
       y = delta_r(k) * sin(delta_u(k));
       % Долгота восходящего угла
       Omega(k) = Omega0 + (OmegaDot - Omega_E) * t(k) - Omega_E*toe;
       % Координаты
       coordx(k) = x * cos(Omega(k)) - y * cos(delta_i(k)) * sin(Omega(k));
       coordy(k) = x * sin(Omega(k)) + y * cos(delta_i(k)) * cos(Omega(k));
       coordz(k) = y * sin(delta_i(k));
     %%
     coordx1(k) = coordx(k)*cos(Omega(k)) + coordy(k)*sin(Omega(k));
     coordy1(k) = -coordx(k)*sin(Omega(k)) + coordy(k)*cos(Omega(k));
     coordz1(k) = coordz(k);
     end
     %% Пересчет координат центра масс НКА в систему координат WGS-84
     ppb = 1e-9;
     mas = 1e-3/206264.8; % [рад]
     MATRIX_WGS_84 = [-3*ppb -353*mas -4*mas;
       353*mas - 3*ppb 19*mas;
       4*mas -19*mas -3*ppb];
     crd WGS 84 = [coordx; coordy; coordz];
     for i = 1:length(crd_WGS_84(1,:))
       crd_WGS_84(:,i) = crd_WGS_84(:,i) + MATRIX_WGS_84 *
crd_WGS_84(:,i) + [0.07; -0; -0.77];
     end
```

```
crd WGS 84 = crd WGS 84.'; % Переход к вектору-строки
%% построение графиков
R_Earth = 6371e3;
[XE,YE,ZE] = sphere(30);
figure
surf(XE*R_Earth,YE*R_Earth,ZE*R_Earth)
hold on
grid on
plot3(crd_WGS_84(:,1), crd_WGS_84(:,2), crd_WGS_84(:,3))
plot3(coordx1, coordy1, coordz1)
title('Траектория движения спутника', 'FontName', 'Arial')
xlabel('X, M', 'FontName', 'Arial')
ylabel('Y, M', 'FontName', 'Arial')
zlabel('Z, M', 'FontName', 'Arial')
hold off
lgd = legend('Земля', 'СК ECEF WGS84', 'Инерциальная СК');
lgd.FontName = 'Arial';
%% Координаты корпуса Е и их перевод в систему WGS-84
Earth_radius = 6378136;
H = 500;% высота [м]
a = Earth_radius;
B = deg2rad(55.45241346);% широта
N = a/sqrt((1-e^2*(sin(B))^2));
L = deg2rad(37.42114473); % долгота
llh = [N E H];
crd_PRM = llh2xyz(llh)';
```

%% Постороение SkyPlot

```
for i = 1:length(crd_WGS_84(:,1))
                                                         Z(i)
        [X(i)]
                                 Y(i)
ecef2enu(crd_WGS_84(i,1),crd_WGS_84(i,2),crd_WGS_84(i,3),B,L,H,wgs84Elli
psoid, 'radians');
        if Z(i) > 0
           r(i) = sqrt(X(i)^2 + Y(i)^2 + Z(i)^2);
           teta(i) = acos(Z(i)/r(i));
           if X(i) > 0
             phi(i) = -atan(Y(i)/X(i)) + pi/2;
           elseif (X(i)<0)&&(Y(i)>0)
             phi(i) = -atan(Y(i)/X(i)) + 3*pi/2;
           elseif (X(i)<0)&&(Y(i)<0)
             phi(i) = -atan(Y(i)/X(i))-pi/2;
           end
        else teta(i) = NaN;
           r(i) = NaN;
           phi(i) = NaN;
        end
      end
      % Скайплот
      figure
      ax = polaraxes;
      polarplot(ax,phi,teta*180/pi)
      ax.ThetaDir = 'clockwise';
      ax.ThetaZeroLocation = 'top';
      title('SkyView')
      % Угол места
```

```
th = hours(t_arr/60/60 - 2*24); % Перевод временной оси в формат hh:mm:ss
figure
grid on
hold on
plot(th,(-teta)*180/pi+90,'DurationTickFormat','hh:mm:ss')
xlim([th(1) th(end)])
title('Угол места', 'FontName', 'Arial')
xlabel('Время в UTC', 'FontName', 'Arial')
ylabel('Угол места, град', 'FontName', 'Arial')
```