Intersection Types: an Introduction

AAL'02, Canberra, December 2, 2002

Plan of the talk

- simple types
- intersection types
- ullet properties of λ -terms
- type preorder
- filter models
- Stone duality

$$(ax)$$
 Γ , $\sigma \vdash \sigma$

$$(ax)$$
 Γ , $\sigma \vdash \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash \quad \sigma \to \tau \quad \Gamma \vdash \quad \sigma}{\Gamma \vdash \quad \tau}$$

$$(ax)$$
 Γ , $\sigma \vdash \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash \quad \sigma \to \tau \quad \Gamma \vdash \quad \sigma}{\Gamma \vdash \quad \tau}$$

$$(o I)$$
 $\frac{\Gamma, \quad \sigma \vdash \quad au}{\Gamma \vdash \quad \sigma \to au}$

Functional Interpretation of Implication

 $\sigma{ o} au$ is the set of functions which applied to an argument belonging to σ give a result belonging to au

Functional Interpretation of Implication

 $\sigma{ o} au$ is the set of functions which applied to an argument belonging to σ give a result belonging to au

even: $number \rightarrow bool$

Lambda Notation

If M is an expression (possibly containing the variable x) then $\lambda x.M$ represents a function which applied to an argument N gives M[N/x]

Lambda Notation

If M is an expression (possibly containing the variable x) then $\lambda x.M$ represents a function which applied to an argument N gives M[N/x]

$$\lambda x.x^2$$
 is the square function $(\lambda x.x^2)2 \longrightarrow 4$

variables: x, y, \dots

variables: x, y, \dots

application: MN

variables: x, y, \dots

application: MN

variables: x, y, \dots

application: MN

abstraction: $\lambda x.M$

 $(\beta$ -rule) $(\lambda x.M)N \longrightarrow M[N/x]$

variables: x, y, \dots

application: MN

$$(\beta$$
-rule) $(\lambda x.M)N \longrightarrow M[N/x]$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy$$

variables: x, y, \dots

application: MN

$$(\beta$$
-rule) $(\lambda x.M)N \longrightarrow M[N/x]$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

variables: x, y, \dots

application: MN

(
$$\beta$$
-rule) $(\lambda x.M)N \longrightarrow M[N/x]$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy)$$

variables: x, y, \dots

application: MN

(
$$\beta$$
-rule) $(\lambda x.M)N \longrightarrow M[N/x]$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy) \longrightarrow \dots$$

$$(ax)$$
 Γ , $\sigma \vdash \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash \quad \sigma \to \tau \quad \Gamma \vdash \quad \sigma}{\Gamma \vdash \quad \tau}$$

$$(\rightarrow I)$$
 $\frac{\Gamma, \quad \sigma \vdash \quad \tau}{\Gamma \vdash \quad \sigma \rightarrow \tau}$

$$(ax)$$
 $\Gamma, x : \sigma \vdash x : \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash \quad \sigma \to \tau \quad \Gamma \vdash \quad \sigma}{\Gamma \vdash \quad \tau}$$

$$(\rightarrow I)$$
 $\frac{\Gamma, \quad \sigma \vdash \quad \tau}{\Gamma \vdash \quad \sigma \rightarrow \tau}$

$$(ax)$$
 $\Gamma, x : \sigma \vdash x : \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$(\rightarrow I)$$
 $\frac{\Gamma, \quad \sigma \vdash \quad \tau}{\Gamma \vdash \quad \sigma \rightarrow \tau}$

$$(ax)$$
 $\Gamma, x : \sigma \vdash x : \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$(\rightarrow I) \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \rightarrow \tau}$$

$$(ax)$$
 $\Gamma, x : \sigma \vdash x : \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$(\to I) \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x . M : \sigma \to \tau}$$

$$\frac{z : \sigma \vdash z : \sigma}{\vdash \lambda z.z : \sigma \rightarrow \sigma} (\rightarrow I)$$

$$\frac{z : \sigma \vdash z : \sigma}{\vdash \lambda z.z : \sigma \rightarrow \sigma} (\rightarrow I)$$

$$\frac{\Gamma \vdash x : \sigma \rightarrow \sigma \rightarrow \tau \quad \Gamma \vdash y : \sigma}{\Gamma \vdash xy : \sigma \rightarrow \tau} (\rightarrow E)$$

$$\Gamma = \{x : \sigma \rightarrow \sigma \rightarrow \tau, y : \sigma\}$$

$$\frac{z : \sigma \vdash z : \sigma}{\vdash \lambda z.z : \sigma \to \sigma} (\to I)$$

$$\vdash \lambda z.z : \sigma \to \sigma$$

$$\frac{\Gamma \vdash x : \sigma \to \sigma \to \tau \quad \Gamma \vdash y : \sigma}{\Gamma \vdash xy : \sigma \to \tau} (\to E)$$

$$\frac{\Gamma \vdash xy : \sigma \to \tau \quad \Gamma \vdash y : \sigma}{\Gamma \vdash xyy : \tau} (\to E)$$

$$\Gamma = \{x : \sigma \rightarrow \sigma \rightarrow \tau, y : \sigma\}$$

$$\frac{z : \sigma \vdash z : \sigma}{\vdash \lambda z.z : \sigma \to \sigma} (\to I)$$

$$\frac{\Gamma \vdash x : \sigma \to \sigma \to \tau \quad \Gamma \vdash y : \sigma}{\Gamma \vdash xy : \sigma \to \tau \quad (\to E)} \xrightarrow{\Gamma \vdash y : \sigma} (\to E)$$

$$\frac{\Gamma \vdash xyy : \tau}{x : \sigma \to \sigma \to \tau \vdash \lambda y.xyy : \sigma \to \tau} (\to I)$$

$$\Gamma = \{x : \sigma \to \sigma \to \tau, y : \sigma\}$$

$$\frac{z : \sigma \vdash z : \sigma}{\vdash \lambda z.z : \sigma \to \sigma} (\to I)$$

$$\vdash \lambda z.z : \sigma \to \sigma \to \tau \quad \Gamma \vdash y : \sigma$$

$$\frac{\Gamma \vdash xy : \sigma \to \tau \quad \Gamma \vdash y : \sigma}{\vdash xyy : \tau} (\to E)$$

$$\frac{\Gamma \vdash xyy : \tau}{x : \sigma \to \sigma \to \tau \vdash \lambda y.xyy : \sigma \to \tau} (\to I)$$

$$\frac{x : \sigma \to \sigma \to \tau \vdash \lambda y.xyy : \sigma \to \tau}{\vdash \lambda xy.xyy : (\sigma \to \sigma \to \tau) \to \sigma \to \tau} (\to I)$$

$$\vdash \Gamma = \{x : \sigma \to \sigma \to \tau, y : \sigma\}$$

$$\frac{z : \sigma \vdash z : \sigma}{\vdash \lambda z.z : \sigma \to \sigma} (\to I)$$

$$\frac{\Gamma \vdash x : \sigma \to \sigma \to \tau \quad \Gamma \vdash y : \sigma}{\Gamma \vdash xy : \sigma \to \tau} (\to E)$$

$$\frac{\Gamma \vdash xy : \sigma \to \tau \quad \Gamma \vdash y : \sigma}{\Gamma \vdash xyy : \tau} (\to E)$$

$$\frac{r \vdash xyy : \tau}{x : \sigma \to \sigma \to \tau \vdash \lambda y.xyy : \sigma \to \tau} (\to I)$$

$$\frac{x : \sigma \to \sigma \to \tau \vdash \lambda y.xyy : \sigma \to \tau}{\vdash \lambda xy.xyy : (\sigma \to \sigma \to \tau) \to \sigma \to \tau} (\to I)$$

$$\Gamma = \{x : \sigma \to \sigma \to \tau, y : \sigma\}$$

 $\lambda y.yy$ cannot be typed

$$\begin{array}{c|cccc}
[x:\sigma] & \cdots & [x:\sigma] \\
\hline
M^{\tau} & & & \\
\hline
\frac{M:\tau}{\lambda x.M:\sigma \to \tau} & (\to I) & \\
\hline
(\lambda x.M)N:\tau & & (\to E)
\end{array}$$

Exactly 1 occurrence of N

 N^{σ}

N: σ

 $M[N/x]^{\tau}$

M[N/x]: τ

Exactly 1 occurrence of N

$$N^{\sigma}$$
 $N: \sigma$
 $M[N/x]^{\tau} \xrightarrow{\beta\text{-exp}}$
 $M[N/x]: \tau$
 $(\lambda x.M)N$

Exactly 1 occurrence of N

$$[x:\sigma]$$

$$N^{\sigma}$$

$$N:\sigma$$

$$M:\tau$$

$$M[N/x]^{\tau}$$

$$\beta\text{-exp}$$

$$M[N/x]:\tau$$

$$(\lambda x.M)N$$

Exactly 1 occurrence of N

Exactly 1 occurrence of N

No occurrences of N

$$M[N/x]^{ au}$$
 $\xrightarrow{eta ext{-exp}}$ $\frac{M: au}{\lambda x.M:\sigma o au}$ $(o I)$ $N:?$ $M[N/x]: au$ $(\lambda x.M)N$

Two or more occurrences of N

$$N^{\sigma_1}$$
 N^{σ_2}
 $N: \sigma_1 \quad N: \sigma_2$
 $M[N/x]^{\tau}$ $\xrightarrow{\beta\text{-exp}}$ $[x:?] \quad N:?$
 $M[N/x]: \tau$ $(\lambda x.M)N$

Plan of the talk

- simple types
- intersection types
- ullet properties of λ -terms
- type preorder
- filter models
- Stone duality

No occurrences of N

$$M[N/x]^{ au}$$
 $\xrightarrow{eta ext{-exp}}$ $\xrightarrow{M: au}$ T $\longrightarrow M[N/x]: au$ $\longrightarrow M[N/x]: au$ $\longrightarrow M[N/x]: au$ $\longrightarrow M[N/x]: au$

No occurrences of N

Universal type Ω

$$[x:\Omega] \\ M^{\tau} \\ M[N/x]^{\tau} \xrightarrow{\beta\text{-exp}} \frac{M:\tau}{\frac{\lambda x.M:\Omega \to \tau}{(\lambda x.M)N:\tau}} (\to I) \\ (\to E)$$

Two or more occurrences of N

$$N^{\sigma_1}$$
 N^{σ_2}
 $N: \sigma_1 \quad N: \sigma_2$
 $M[N/x]^{\tau}$ $\xrightarrow{\beta\text{-exp}}$ $[x:?] \quad N:?$
 $M[N/x]: \tau$ $(\lambda x.M)N$

Two or more occurrences of N

Type intersection ∩

$$\frac{\left[x:\sigma_{1}\cap\sigma_{2}\right]}{x:\sigma_{1}}\left(\cap E\right) \quad \frac{\left[x:\sigma_{1}\cap\sigma_{2}\right]}{x:\sigma_{2}}\left(\cap E\right)$$

$$N^{\sigma_{1}} \quad N^{\sigma_{2}}$$

$$N:\sigma_{1} \quad N:\sigma_{2}$$

$$M[N/x]^{\tau} \qquad \xrightarrow{\beta\text{-exp}} \qquad \frac{M:\tau}{(\lambda x.M):\sigma_{1}\cap\sigma_{2}\to\tau}\left(\to I\right) \qquad \frac{N:\sigma_{1}}{N:\sigma_{1}} \quad N:\sigma_{2}}{N:\sigma_{1}\cap\sigma_{2}}\left(\cap I\right)$$

$$M[N/x]:\tau \qquad (\lambda x.M)N:\tau$$

$$(ax)$$
 $\Gamma, x : \sigma \vdash x : \sigma$

$$(\to E) \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$(\to I) \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x . M : \sigma \to \tau}$$

$$(\Omega)$$
 $\Gamma \vdash M : \Omega$

$$(\Omega)$$
 $\Gamma \vdash M : \Omega$

$$(\cap I) \quad \frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash M : \tau}{\Gamma \vdash M : \sigma \cap \tau}$$

$$(\Omega)$$
 $\Gamma \vdash M : \Omega$

$$(\cap I) \quad \frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash M : \tau}{\Gamma \vdash M : \sigma \cap \tau}$$

$$(\cap E) \qquad \frac{\Gamma \vdash M : \sigma \cap \tau}{\Gamma \vdash M : \sigma} \qquad (\cap E) \qquad \frac{\Gamma \vdash M : \sigma \cap \tau}{\Gamma \vdash M : \tau}$$

$$(\Omega)$$
 $\Gamma \vdash M : \Omega$

$$(\cap I) \quad \frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash M : \tau}{\Gamma \vdash M : \sigma \cap \tau}$$

$$(\cap E) \qquad \frac{\Gamma \vdash M : \sigma \cap \tau}{\Gamma \vdash M : \sigma} \qquad (\cap E) \qquad \frac{\Gamma \vdash M : \sigma \cap \tau}{\Gamma \vdash M : \tau}$$

$$\frac{x:(\sigma\to\tau)\cap\sigma\vdash x:(\sigma\to\tau)\cap\sigma}{x:(\sigma\to\tau)\cap\sigma\vdash x:\sigma\to\tau}(\cap E)\quad\frac{x:(\sigma\to\tau)\cap\sigma\vdash x:(\sigma\to\tau)\cap\sigma}{x:(\sigma\to\tau)\cap\sigma\vdash x:\sigma}(\cap E)$$

$$\frac{x:(\sigma \to \tau) \cap \sigma \vdash x:(\sigma \to \tau) \cap \sigma}{x:(\sigma \to \tau) \cap \sigma \vdash x:\sigma \to \tau} (\cap E) \quad \frac{x:(\sigma \to \tau) \cap \sigma \vdash x:(\sigma \to \tau) \cap \sigma}{x:(\sigma \to \tau) \cap \sigma \vdash x:\sigma} (\cap E)$$
$$x:(\sigma \to \tau) \cap \sigma \vdash x:\tau$$

$$\frac{x : (\sigma \to \tau) \cap \sigma \vdash x : (\sigma \to \tau) \cap \sigma}{x : (\sigma \to \tau) \cap \sigma \vdash x : \sigma \to \tau} (\cap E) \qquad \frac{x : (\sigma \to \tau) \cap \sigma \vdash x : (\sigma \to \tau) \cap \sigma}{x : (\sigma \to \tau) \cap \sigma \vdash x : \sigma} (\cap E)$$

$$\frac{x : (\sigma \to \tau) \cap \sigma \vdash x : \sigma}{x : (\sigma \to \tau) \cap \sigma \vdash x : \tau} (\to E)$$

$$\frac{x : (\sigma \to \tau) \cap \sigma \vdash x : \tau}{\vdash \lambda x . x x : (\sigma \to \tau) \cap \sigma \to \tau} (\to I)$$

Plan of the talk

- simple types
- intersection types
- properties of λ -terms
- type preorder
- filter models
- Stone duality

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy) \longrightarrow \dots$$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$
 $(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy) \longrightarrow \dots$
 $M \in \mathcal{N} \text{ iff } M \longrightarrow_{\beta} \text{a normal form}$
 $(\lambda xy.xyy)(\lambda z.z) \in \mathcal{N} \qquad \lambda x.x((\lambda y.yy)(\lambda y.yy)) \not\in \mathcal{N}$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy) \longrightarrow \dots$$

$$M \in \mathcal{N} \text{ iff } M \longrightarrow_{\beta} \text{ a normal form}$$

$$(\lambda xy.xyy)(\lambda z.z) \in \mathcal{N} \qquad \lambda x.x((\lambda y.yy)(\lambda y.yy)) \not\in \mathcal{N}$$

$$M \in \mathcal{H}\mathcal{N} \text{ iff } M \longrightarrow_{\beta} \lambda \overrightarrow{x}.y\overrightarrow{N}$$

$$\lambda x.x((\lambda y.yy)(\lambda y.yy)) \in \mathcal{H}\mathcal{N} \qquad \lambda x.(\lambda y.yy)(\lambda y.yy) \not\in \mathcal{H}\mathcal{N}$$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy) \longrightarrow \dots$$

$$M \in \mathcal{N} \text{ iff } M \twoheadrightarrow_{\beta} \text{ a normal form}$$

$$(\lambda xy.xyy)(\lambda z.z) \in \mathcal{N} \qquad \lambda x.x((\lambda y.yy)(\lambda y.yy)) \not\in \mathcal{N}$$

$$M \in \mathcal{H}\mathcal{N} \text{ iff } M \twoheadrightarrow_{\beta} \lambda \overrightarrow{x}.y\overrightarrow{N}$$

$$\lambda x.x((\lambda y.yy)(\lambda y.yy)) \in \mathcal{H}\mathcal{N} \qquad \lambda x.(\lambda y.yy)(\lambda y.yy) \not\in \mathcal{H}\mathcal{N}$$

$$M \in \mathcal{W}\mathcal{N} \text{ iff } M \twoheadrightarrow_{\beta} \lambda x.N \text{ or } M \twoheadrightarrow_{\beta} x\overrightarrow{N}$$

$$\lambda x.(\lambda y.yy)(\lambda y.yy) \in \mathcal{W}\mathcal{N} \qquad (\lambda y.yy)(\lambda y.yy) \not\in \mathcal{W}\mathcal{N}$$

$$(\lambda xy.xyy)(\lambda z.z) \longrightarrow \lambda y.(\lambda z.z)yy \longrightarrow \lambda y.yy$$

$$(\lambda y.yy)(\lambda y.yy) \longrightarrow (\lambda y.yy)(\lambda y.yy) \longrightarrow \dots$$

$$M \in \mathcal{N} ext{ iff } M woheadrightarrow_{eta} ext{ a normal form}$$
 $(\lambda xy.xyy)(\lambda z.z) \in \mathcal{N} ext{ } \lambda x.x((\lambda y.yy)(\lambda y.yy))
ot\in \mathcal{N}$

$$M \in \mathcal{HN} \text{ iff } M \longrightarrow_{\beta} \lambda \overrightarrow{x}.y\overrightarrow{N}$$
$$\lambda x.x((\lambda y.yy)(\lambda y.yy)) \in \mathcal{HN} \qquad \lambda x.(\lambda y.yy)(\lambda y.yy) \not\in \mathcal{HN}$$

$$M \in \mathcal{WN} \text{ iff } M \twoheadrightarrow_{\beta} \lambda x. N \text{ or } M \twoheadrightarrow_{\beta} x \overrightarrow{N}$$

$$\lambda x. (\lambda y. yy)(\lambda y. yy) \in \mathcal{WN} \qquad (\lambda y. yy)(\lambda y. yy) \not\in \mathcal{WN}$$

Characterization of $\mathcal N$ by types

 $M \in \mathcal{N}$ iff $\Gamma \vdash M : \sigma$ for some Γ, σ not containing Ω

$$\frac{x \colon (\sigma \to \tau) \cap \sigma \vdash x \colon (\sigma \to \tau) \cap \sigma}{x \colon (\sigma \to \tau) \cap \sigma \vdash x \colon \sigma \to \tau} (\cap E) \quad \frac{x \colon (\sigma \to \tau) \cap \sigma \vdash x \colon (\sigma \to \tau) \cap \sigma}{x \colon (\sigma \to \tau) \cap \sigma \vdash x \colon \sigma} (\cap E)$$

$$\frac{x \colon (\sigma \to \tau) \cap \sigma \vdash x \colon \tau}{\vdash \lambda x . x x \colon (\sigma \to \tau) \cap \sigma \to \tau} (\to I)$$

Characterization of $\mathcal{H}\mathcal{N}$ by types

 $M \in \mathcal{HN}$ iff $\Gamma \vdash M : \sigma$ for some Γ, σ not containing Ω at top level

$$\frac{x:\Omega \to \tau \vdash x:\Omega \to \tau \quad x:\Omega \to \tau \vdash (\lambda y.yy)(\lambda y.yy):\Omega}{x:\Omega \to \tau \vdash x((\lambda y.yy)(\lambda y.yy)):\tau} (\to E)$$

$$\frac{x:\Omega \to \tau \vdash x((\lambda y.yy)(\lambda y.yy)):\tau}{\vdash \lambda x.x((\lambda y.yy)(\lambda y.yy)):(\Omega \to \tau) \to \tau} (\to I)$$

Characterization of $\mathcal{W}\mathcal{N}$ by types

$$M \in \mathcal{WN} \text{ iff } \Gamma \vdash M : \Omega \to \Omega$$

$$\frac{x: \Omega \vdash (\lambda y.yy)(\lambda y.yy): \Omega}{\vdash \lambda x.(\lambda y.yy)(\lambda y.yy): \Omega \to \Omega} (\to I)$$

strongly normalizable terms

strongly normalizable terms

closable terms

strongly normalizable terms

closable terms

terms of the I-calculus

strongly normalizable terms

closable terms

terms of the I-calculus

persistently normalizable terms

strongly normalizable terms

closable terms

terms of the I-calculus

persistently normalizable terms

• • •

strongly normalizable terms

closable terms

terms of the I-calculus

persistently normalizable terms

. . .

Plan of the talk

- simple types
- intersection types
- ullet properties of λ -terms
- type preorder
- filter models
- Stone duality

Preorder on intersection types

$$\sigma \leq \sigma \cap \sigma$$

Preorder on intersection types

$$\sigma \leq \sigma \cap \sigma$$

$$\sigma \cap \tau \leq \sigma, \ \sigma \cap \tau \leq \tau$$

Preorder on intersection types

$$\sigma \le \sigma \cap \sigma$$

$$\sigma \cap \tau \le \sigma, \ \sigma \cap \tau \le \tau$$

$$\sigma \le \sigma', \ \tau \le \tau' \Rightarrow \sigma \cap \tau \le \sigma' \cap \tau'$$

$$\sigma \le \sigma', \ \tau \le \tau' \Rightarrow \sigma' \rightarrow \tau \le \sigma \rightarrow \tau'$$

$$(\sigma \rightarrow \tau) \cap (\sigma \rightarrow \zeta) \leq \sigma \rightarrow \tau \cap \zeta$$

$$\sigma \leq \Omega$$

$$\sigma \rightarrow \Omega \leq \Omega \rightarrow \Omega$$

$$\sigma \leq \sigma \cap \sigma \qquad \sigma \cap \tau \leq \sigma, \ \sigma \cap \tau \leq \tau$$

$$\sigma \leq \sigma', \ \tau \leq \tau' \Rightarrow \sigma \cap \tau \leq \sigma' \cap \tau' \quad \sigma \leq \sigma', \ \tau \leq \tau' \Rightarrow \sigma' \rightarrow \tau \leq \sigma \rightarrow \tau'$$

$$(\sigma \rightarrow \tau) \cap (\sigma \rightarrow \zeta) \leq \sigma \rightarrow \tau \cap \zeta \qquad \sigma \leq \Omega \quad \sigma \rightarrow \Omega \leq \Omega \rightarrow \Omega$$

$$\sigma \leq \sigma \qquad \sigma \leq \tau, \ \tau \leq \zeta \Rightarrow \sigma \leq \zeta$$

deleting Ω and replacing \rightarrow to \leq

$$\sigma \leq \sigma \cap \sigma \qquad \sigma \cap \tau \leq \sigma, \ \sigma \cap \tau \leq \tau$$

$$\sigma \leq \sigma', \ \tau \leq \tau' \Rightarrow \sigma \cap \tau \leq \sigma' \cap \tau' \quad \sigma \leq \sigma', \ \tau \leq \tau' \Rightarrow \sigma' \rightarrow \tau \leq \sigma \rightarrow \tau'$$

$$(\sigma \rightarrow \tau) \cap (\sigma \rightarrow \zeta) \leq \sigma \rightarrow \tau \cap \zeta \qquad \sigma \leq \Omega \quad \sigma \rightarrow \Omega \leq \Omega \rightarrow \Omega$$

$$\sigma \leq \sigma \qquad \sigma \leq \tau, \ \tau \leq \zeta \Rightarrow \sigma \leq \zeta$$

deleting Ω and replacing \rightarrow to \leq

$$\sigma \to \sigma \cap \sigma \qquad \sigma \cap \tau \to \sigma, \ \sigma \cap \tau \to \tau \\
\sigma \to \sigma', \ \tau \to \tau' \Rightarrow \sigma \cap \sigma' \to \tau \cap \tau' \qquad \sigma \to \sigma', \ \tau \to \tau' \Rightarrow (\sigma' \to \tau) \to \sigma \to \tau' \\
(\sigma \to \tau) \cap (\sigma \to \zeta) \to \sigma \to \tau \cap \zeta \\
\sigma \to \sigma \qquad \sigma \to \tau \qquad \sigma \to \tau \Rightarrow \sigma \to \zeta$$

the minimal relevant logic B_+

Subsumption rule

$$(\leq) \quad \frac{\Gamma \vdash M : \sigma \quad \sigma \leq \tau}{\Gamma \vdash M : \tau}$$

$$\frac{x: \sigma \to \zeta \vdash x: \sigma \to \zeta}{x: \sigma \to \zeta \vdash x: \sigma \cap \tau \to \zeta} (\leq)$$

$$\frac{x: \sigma \to \zeta \vdash x: \sigma \cap \tau \to \zeta}{\vdash \lambda x.x: (\sigma \to \zeta) \to \sigma \cap \tau \to \zeta} (\to I)$$

Plan of the talk

- simple types
- intersection types
- properties of λ -terms
- type preorder
- filter models
- Stone duality

The set \mathcal{F} of filters

A filter is a set *X* of intersection types such that:

- $\Omega \in X$
- if $\sigma \leq \tau$ and $\sigma \in X$, then $\tau \in X$
- if $\sigma, \tau \in X$, then $\sigma \cap \tau \in X$

 \mathcal{F} is the set of filters

 $\uparrow X$ is the filter generated by X

$$\uparrow \sigma \text{ is } \uparrow \{\sigma\}$$

$\langle \mathcal{F}, \subseteq \rangle$ is an ω -algebraic complete lattice

 $\langle \mathcal{F}, \subseteq \rangle$ is a λ -model (filter model)

For any lambda term M and environment ho: $\operatorname{var} o \mathcal{F}$

$$\llbracket M \rrbracket_{\rho}^{\mathcal{F}} = \{ \tau \in \mathcal{T} \mid \exists \Gamma \models \rho. \ \Gamma \vdash M : \tau \}$$

where $\Gamma \models \rho$ if and only if $(x : \sigma) \in \Gamma$ implies $\sigma \in \rho(x)$.

If
$$\Gamma \vdash M : \tau$$
 and $M =_{\beta} N$, then $\Gamma \vdash N : \tau$

Scott inverse limit models;

Scott inverse limit models;

Scott P_{ω} model;

Scott inverse limit models;

Scott P_{ω} model;

Plotkin-Engeler models;

Scott inverse limit models;

Scott P_{ω} model;

Plotkin-Engeler models;

Abramsky-Ong model;

Scott inverse limit models;

Scott P_{ω} model;

Plotkin-Engeler models;

Abramsky-Ong model;

Girard qualitative models;

Scott inverse limit models;

Scott P_{ω} model;

Plotkin-Engeler models;

Abramsky-Ong model;

Girard qualitative models;

Girard quantitative models;

Scott inverse limit models;

Scott P_{ω} model;

Plotkin-Engeler models;

Abramsky-Ong model;

Girard qualitative models;

Girard quantitative models;

. . .

Scott inverse limit models;

Scott P_{ω} model;

Plotkin-Engeler models;

Abramsky-Ong model;

Girard qualitative models;

Girard quantitative models;

. . .

Plan of the talk

- simple types
- intersection types
- properties of λ -terms
- type preorder
- filter models
- Stone duality

we stared from types and arrived to models: what is the framework?

Stone dualities

topological spaces as partial orders

Stone spaces as Boolean algebras (Stone, 36)

Scott domains as information systems (Scott, 82)

 ω -algebraic complete lattices as intersection type theories (Coppo et al., 84)

SFP domains as pre-locales (Abramsky, 91)

semantics of types

to sum up

to sum up

intersection types are a bridge between logic and λ -models

to sum up

intersection types are a bridge between logic and λ -models

thank you for your attention