DSC 640 – Week 9 & 10 Michael Ersevim

Power BI: Heat Map and Spatial Map

Left: A Heat map of top NBA players and their common game statistics relative to each column's high/low values regardless of value

Below: A spatial map of Costco locations across the United States

Power BI: Violin Plot

Violin plot of weight (in grams) of different groups of chicks being fed a certain feed type

Python: Heat Map and Spatial Map

Python: Violin Plot

Python: CODE for generating graphs

DSC 640 - Michael Ersevim - Weeks 9&10

```
In [1]: # Call in libraries
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

In [2]: #Read in data
df = pd.read_csv(r'C:\\Users\\Kate\\Documents\\Bellevue DS classes\\DSC640\\chick_weights.csv')
df.head()

Out[2]:
    id weight sex feed
```

	id	weight	sex	feed
0	1.0	179.0	male	Horsebean
1	2.0	160.0	male	Horsebean
2	3.0	136.0	female	Horsebean
3	4.0	227.0	male	Horsebean
4	5.0	217.0	female	Horsebean

```
In [3]: #Making violin plot of weights of chick based of feedstock
Ax = sns.violinplot(x="feed", y="weight", data=df, palette="coolwarm")
```

Python: CODE for generating graphs

```
In [30]: #Read in data
    df2 = pd.read_excel('C:\\Users\\Kate\\Documents\\Bellevue DS classes\\DSC640\\ppg2008.xlsx')
    df3=df2.iloc[:,1:]
    df3.head()

Out[30]:
```

	G	MIN	PTS	FGM	FGA	FGP	FTM	FTA	FTP	3PM	3PA	3PP	ORB	DRB	TRB	AST	STL	BLK	то	PF
0	79	38.6	30.2	10.8	22.0	0.491	7.5	9.8	0.765	1.1	3.5	0.317	1.1	3.9	5.0	7.5	2.2	1.3	3.4	2.3
1	81	37.7	28.4	9.7	19.9	0.489	7.3	9.4	0.780	1.6	4.7	0.344	1.3	6.3	7.6	7.2	1.7	1.1	3.0	1.7
2	82	36.2	26.8	9.8	20.9	0.467	5.9	6.9	0.856	1.4	4.1	0.351	1.1	4.1	5.2	4.9	1.5	0.5	2.6	2.3
3	81	37.7	25.9	9.6	20.0	0.479	6.0	6.7	0.890	8.0	2.1	0.359	1.1	7.3	8.4	2.4	8.0	8.0	1.9	2.2
4	67	36.2	25.8	8.5	19.1	0.447	6.0	6.9	0.878	2.7	6.7	0.404	0.7	4.4	5.1	2.7	1.0	1.4	2.5	3.1

```
In [6]: heatmap = sns.heatmap(data=df3, cmap="plasma", center = 0 , annot = False)
plt.show()
```

Python: CODE for generating graphs

```
dfgpd = pd.read_csv(r'C:\\Users\\Kate\\Documents\\Bellevue DS classes\\DSC640\\costcos-geocoded.csv')
          dfgpd.head()
 Out[7]:
                             Address
                                            City
                                                    State
                                                           Zip Code
                                                                      Latitude
                                                                                Longitude
               1205 N. Memorial Parkway
                                        Huntsville Alabama
                                                         35801-5930
                                                                    34.743095
                                                                                -86.600955
                     3650 Galleria Circle
                                                                                -86.812420
                                          Hoover
                                                 Alabama
                                                         35244-2346
                                                                     33.377649
                8251 Eastchase Parkway
                                     Montgomery
                                                 Alabama
                                                              36117
                                                                    32.363889
                                                                                -86.150884
           3 5225 Commercial Boulevard
                                                         99801-7210
                                                                    58.359200
                                                                              -134.483000
                                          Juneau
                                                   Alaska
                  330 West Dimond Blvd
                                       Anchorage
                                                   Alaska 99515-1950 61.143266 -149.884217
In [29]: import plotly.express as px
          fig = px.density mapbox(dfgpd, lat='Latitude', lon='Longitude', radius=1,
                                     center=dict(lat=38,lon=-96),zoom=2.4,
                                     mapbox style="stamen-terrain")
          fig.show()
```

R: Heat Map and Spatial Map

Heat map of NBA player's stats

Spatial map of CostCo locations across the United States

R: Violin Plot

Violin Plot of Chick weight in grams by feed type

Feed

R: CODE for generating graphs

```
setwd("C:/Users/Kate/Documents/Bellevue DS classes/DSC640")
   # Load the data for making a heat map
   bball <- read.csv('ppg2008.csv', sep=",", header=TRUE)
5 row.names(bball) <- bball$Name #Defines the players' names as a row
6 bball <- bball[,2:20] #Now just the data
   bball_matrix <- data.matrix(bball) #and is put in a matrix
   bball_heatmap <- heatmap(bball_matrix, Rowv=NA, Colv=NA, col=heat.colors(256),
                             scale='column', margins=c(5,10))
10
11
   #Now for a spatial map
12
   library(maps)
13
   costco <- read.csv('costcos-geocoded.csv', sep=",", header=TRUE)</pre>
   map(database="state", col="#cccccc")
   symbols(costco$Longitude, costco$Latitude, bg="#e2373f", fg="#ffffff", lwd=0.5,
16
17
            circles=rep(1, length(costco$Longitude)), inches=0.05, add=TRUE)
18
   #And lastly, a violin plot
   library(vioplot)
   data <- chickwts #this data is apparently already loaded in the library
21
22
23
   vioplot(data$weight ~ data$feed, col = 2:length(levels(data$feed)),
24
            xlab = "Feed", ylab = "Weight") #As directed by the Yau textbook
25
```