

Serveur Linux

 $2^{\rm \`eme}$ Bachelier en Informatique

Installation et configuration

Projet Linux

Auteur:

Auteur:

Terencio Agozzino

Alexandre Ducobu

Enseignants:

Antoine Malaise

Julien DE BODT

Année académique 2016 - 2017

SERVEUR LINUX INSTALLATION ET CONFIGURATION

 $2^{\rm \`eme}$ Bachelier en Informatique

Projet Linux

Auteur:

Terencio Agozzino Alexandre Ducobu

Auteur:

Enseignants:

Antoine Malaise

Julien DE BODT

Année académique 2016 - 2017

Co document est mis à disposition selen les termes de la licence Creative Commons				
Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution - Pas d'utilisation commerciale 4.0 International".				
BY NC ND				

Table des matières

1	Pré	sentation générale du projet	3
	1.1	Introduction	3
	1.2	Déontologie	4
	1.3	Sécurité	4
2	Cho	oix	5
	2.1	Distribution	5
	2.2	Langue	7
	2.3	Noyau	7
	2.4	Partitionnement	7
	2.5	Sauvegardes	8
3	Ser	vices	9
	3.1	NTP	9
		3.1.1 Principe	9
		3.1.2 Configuration du serveur	9
		3.1.3 Configuration du client	10
	3.2	SSH	11
		3.2.1 Type d'authentification	11
		3.2.2 Implémentation	11
	3.3	NFS	13
		3.3.1 Constatation	13
		3.3.2 Configuration côté serveur	13
		3.3.3 Configuration côté client	13
	3.4	Samba	15
		3.4.1 Configuration	15
	3.5	Quotas	16
	3.6	Base de données	17
		3.6.1 Mise en place	17
	3.7	Serveur Web	18
	3.8	FTP	19
		3.8.1 Choix du serveur	19

Référe	nces		21
	3.9.2	Mise en place	20
	3.9.1	Sélection du DNS	20
3.9	DNS		20
	3.8.2	Configuration	19

1 Présentation générale du projet

1.1 Introduction

Dans le cadre de ce projet, il nous a été demandé d'administrer un serveur sous Linux.

Le choix de la distribution ainsi que la gestion des sauvegardes est libre et devra être justifié.

Le serveur devra contenir :

- un partage NFS qui permettra aux utilisateurs du réseaux local d'y stocker des fichiers;
- un partage *Samba* qui permettra aux utilisateurs de Windows d'accéder à ce même partage;
- un serveur Web, FTP, MySQL et DNS qui permettra un hébergement multi-utilisateurs;
 - le FTP permettra à chaque utilisateur d'accéder à son dossier Web;
 - il faudra créer une zone dans le DNS pour nos sites;
 - le DNS fera également office de DNS cache pour le réseau local;
- un serveur NTP pour que les machines du réseau local puissent se synchroniser;
- le support du module SSH.

1.2 Déontologie

En tant qu'administrateurs du serveur, nous serons tenus de suivre de nombreuses règles telles que :

- la documentation des actions entreprises sur le serveur;
- l'automatisation des installations et configurations au travers de scripts;
- la sécurité : mise en place de mots de passe forts, du SSH, etc.;
- la vigilance et la prévoyance, par exemple par la mise en place de sauvegardes avant et après chaque changements sur le serveur;
- le contrôle du bon fonctionnement de chaque élément.

1.3 Sécurité

Du côté de la sécurité, quelques contraintes seront prises en compte :

- mise en place d'une politique utilisateur;
- mise en place de quotas;
- partitionnement et gestion du disque (LVM et RAID);
- mise en place d'une stratégie de sauvegarde;
- désactivation des éléments inutiles et des mises à jours;
- mise en place d'un antivirus, d'un firewall, etc.

2 Choix

2.1 Distribution

Le choix de la distribution s'est naturellement porté sur Debian, pour ses nombreux avantages. En voici quelques exemples :

- Large communauté : grâce à cela, les erreurs et problèmes rencontrés ont souvent plusieurs solutions connues et éprouvées.
- Plusieurs architectures et noyaux : Debian supporte la majorité des architectures de processeurs comme AMD, Armel, i386, MIPS, etc. Elle supporte aussi de nombreux noyaux tels que FreeBSD et GNU Hurd.
- Sécurité : vu que la distribution est open-source, cela signifie que les backdoors sont presque inexistantes. De surcroît, lorsqu'une faille de sécurité est détectée, celle-ci est rapidement corrigée par la communauté.
 - En outre, Debian comprend de nombreux logiciels de sécurité tels que GPG (et PGP), SSH et autres.
- Stabilité: nous savons que les serveurs doivent avoir le plus grand temps d'accessibilité (≈ 99.999%). Sous Debian, il existe de nombreux exemples de machines qui tournent sans arrêt pendant des années, mis à part lors de pannes ou de mises à jour matérielles.
- Système de paquets : grâce au système de paquets, les distributions Linux ont la possibilité d'installer de nombreux logiciels par une seule ligne de commande. Le système de paquets de Debian est l'outil central de mise à jour, installation, suppression et recherche de paquets.

FIGURE 1 – Différences entre Debian et Ubuntu

De même, la distribution Debian est plus professionnel et celle-ci possède le leadership depuis des années.

Remarque : depuis mai 2016, Ubuntu a les mêmes parts de marché que Debian.

La distribution Ubuntu n'a pas été choisi pour les raisons suivantes :

- C'est un dérivé de Debian : de ce fait, un administrateur sachant configurer un serveur sous Debian pourra facilitement s'adapter aux serveur sous Ubuntu.
- Il vise le grand public. De ce fait, est beaucoup moins utilisé dans le milieu professionnel.
- Celui-ci est assez récent sur le marché du serveur.
- Moins performant que Debian.

Concernant les autres distributions, CentOS est en baisse, mais reste au-dessus de Red Hat et de Fedora qui, lui, est en chute libre.

Figure 2 – Parts de marché des distributions Linux

2.2 Langue

Pour le choix de la langue lors de l'installation, il a été préféré d'utiliser l'anglais vu que la majorité des documentations et forums sont disponibles dans cette langue. De plus, cela permet d'éviter une mauvaise traduction concernant les nouvelles mises à jour et de toucher un plus large public possible.

2.3 Noyau

Un noyau (monolithique) modulaire a été choisi afin de gérer les modules. En effet, celui-ci facilite l'ajout et la suppression de modules à chaud. Ces modules, pas toujours indispensables, peuvent être la source de failles et de bugs.

2.4 Partitionnement

Afin de posséder assez d'espace de stockage, deux disques de 20 Go en RAID 1 ont été utililisés. De surcroît, le partionnement du disque a été réalisé avec un partition racine, /boot, et un groupe de volume LVM nommé VolGroup.

Label	Type	Taille (Mo)	Format
/boot	primary	512	ext4
VolGroup logical		20958	lvm
LVsrv (/srv)	lvm	6144	ext4

LVsrv (/srv)	lvm	6144	ext4
LVswap (/swap)	lvm	4096	swap
LVhome (/home)	lvm	2048	ext4
LVroot (/root)	lvm	2048	ext4
LVusr (/usr)	lvm	2048	ext4
LVopt (/opt)	lvm	2048	ext4
LVvar (/var)	lvm	1024	ext4
LVtmp (/tmp)	lvm	1024	ext4

Table 1 – Tableau du partitionnement (avec LVM)

2.5 Sauvegardes

Dans le milieu de l'entreprise, deux types de sauvegarde sont principalement utilisées : incrémentielle ¹ et différentielle ².

Afin de trouver un compromis, ces deux types de sauvegardes ont été utilisés :

- 1. différentielle : afin de restaurer les données plus rapidement par rapport à la sauvegarde incrémentielle ;
- 2. incrémentielle : pour une rapidité de sauvegarde et un stockage en mémoire plus économe que la sauvegarde différentielle.

Afin d'éviter de perturber l'accès au serveur, chaque jour à 2h du matin, une sauvegarde incrémentielle est lancée à l'aide d'un $cron^3$ dans le but d'enregistrer les données modifiées et créées en cette journée.

```
crontab -e 0 2 * * * /usr/bin/backup-make.sh -i
```

Quant à la sauvegarde différentielle, celle-ci s'opère uniquement le dimanche à 2h du matin.

```
crontab -e 0 2 * * 0 /usr/bin/backup-make.sh -d
```

<u>Remarque</u>: à défault d'utiliser *fcron* n'étant plus disponible sur Debian, le serveur doit être alimenté à l'heure de l'exécution du *cron*. Néanmoins, cela ne pose pas de difficultés, vu que le rôle du serveur est de fournir une disponibilité permanente.

^{1.} Sauvegarde exclusivement les données modifiées ou ajoutées depuis la précédente sauvegarde.

^{2.} Sauvegarde les données modifiées ou ajoutées en référence à la dernière sauvegarde complète.

^{3.} Gestionnaire des tâches sous Linux devant être exécutées à un moment précis.

3 Services

3.1 NTP

Le NTP (Network Time Protocol), est le protocole utilisé afin de synchroniser les machines du reseau local en fonction de l'horloge du serveur.

3.1.1 Principe

Bien que tout équipement informatique dispose d'une horloge, celle-ci dérive comme toute montre ordinaire, ce qui peut amener a des erreurs de synchronisation.

La nécessité de synchroniser des équipements en réseau paraît alors évidente.

Chaque machine peut être à la fois serveur et client. Elle sélectionnera un serveur de temps dans sa configuration, et récupérera l'heure, ainsi qu'un numéro de strate, n, et se déclarera de strate n + 1.

L'architecture du réseau est en arborescence, et divisée en trois couches :

- 1. les plus précises sources (horloges atomiques, récepteurs GPS, ...) sont de strate 0;
- 2. les serveurs diffusant l'heure des sources sont de strate 1;
- 3. les serveurs de *strate 2* sont généralement accessibles au public.

3.1.2 Configuration du serveur

Voici les différentes étapes et options que nous avons effectuées :

- activation des statistiques NTP;
- ajout de trois serveurs (un belge et deux européens);
- activation de l'échange de l'heure avec tout le monde (aucune modification n'est acceptée);
- activation de la synchronisation avec les machines du réseau local.

3.1.3 Configuration du client

Sur le client, la configuration est beaucoup plus simple :

- activation des statistiques NTP;
- ajout du serveur local.

3.2 SSH

Le SSH (Secure Shell), est un protocole de communication sécurisé. Il impose un échange de clés de chiffrement en début de connexion.

3.2.1 Type d'authentification

Il existe plusieurs façons de s'authentifier sur le serveur via SSH.

Les deux plus utilisées sont :

- 1. L'authentification par mot de passe;
- 2. L'authentification par clés publique et privée du client.

L'identification automatique par clés a été mise en place pour ce serveur. De ce fait, il est nul nécessaire d'entrer le mot de passe à chaque connexion à distance.

Cette méthode est plus complexe à mettre en place, mais elle surtout plus pratique.

On remarque rapidement son utilité si on se connecte fréquemment au serveur, car plus aucun mot de passe n'est demandé.

3.2.2 Implémentation

Tout d'abord, le serveur a été configuré respectant ces critères :

- installation de openssh;
- changement de port et passage à la version 2 de SSH pour plus de sécurité;
- ajout d'une bannière;
- de la connexion en tant que **root**;
- déconnexion après 120 secondes d'inactivité;
- désactivation de la connexion par mot de passe, vu que l'authentification passe par les clés RSA.

Ensuite, une génération de un chifrement d'une paire de clés publique / privée sur la machine client a été nécessaire.

Une fois cela	fait, la d	clé publique	a été enre	gistrée sur	le serveur	afin de	l'accepter	dans le
futur.								

3.3 NFS

Le NFS (Network File System, est un protocole qui permet à un ordinateur d'accéder à des fichiers distants via un réseau.

Ce système de fichiers en réseau permet de partager des données principalement entre systèmes UNIX.

3.3.1 Constatation

Avant de commencer, il est à remarquer que, quelle que soit sa version, NFS est a déployer dans un réseau local et n'a pas de vocation à être ouvert sur Internet.

En effet, les données qui circulent sur le réseau ne sont pas chiffrées et les droits d'accès sont accordés en fonction de l'adresse IP du client (qui peut être usurpée).

3.3.2 Configuration côté serveur

Voici les différentes étapes et options que nous avons effectuées :

- installation des différents services indispensables au NFS;
- création du dossier de partage, et ajout de droits spécifiques;
- activation du partage sur le réseau local et configuration dudit partage (autorise la lecture et l'écriture, retire les droit **root** à distance et et désactivation de la vérification de sous-répertoires);
- mises à jour de la tables des systèmes de fichiers partagés.

3.3.3 Configuration côté client

Sur le client, la configuration est similaire :

- installation des différents services indispensables au NFS;
- création du dossier de partage, et ajout de droits spécifiques;
- installation d'AutoFS;

— configuration d'AutoFS (création d'un point de montage lors de l'accès au répertoire, durée d'activité après le dernier accès au dossier partagé ⇒ au moins 30 secondes pour un partage samba, etc.).

3.4 Samba

Samba est un outil permettant de partager des dossiers et des imprimantes à travers un réseau local. Son utilisation est conseillée pour partager de manière simple des ressources entre plusieurs ordinateurs

Il est compatible avec les systèmes d'exploitation suivants : Windows, macOS, ainsi que des systèmes GNU/Linux, *BSD et Solaris dans lesquels une implémentation de Samba est installée.

3.4.1 Configuration

La configuration du serveur Samba se déroule en trois parties, mais tout d'abord, il est nécessaire de créer le dossier de partage et de lui donner les droits appropriés.

- 1. configuration de Samba (désignation du workgroup, choix du nom de netbios, etc.);
- 2. configuration du partage pour le groupe « users » (désignation du chemin, des droits, etc.);
- 3. configuration du partage du dossier « home » des utilisateurs (désignation des droits, vérification de l'identité, etc.).

3.5 Quotas

Dans le but de mieux gérer l'espace personnel de chaque utilisateur, des quotas ont été mis en place sur les partitions /home et /share.

À la création de chaque utilisateur, un quota avec une limite dur 4 de 500 Mo et une limite douce 5 de 400 Mo, lui sera attribué.

Remarque : lors du dépassement de la limite douce, l'utilisateur sera averti.

^{4.} Limite que nul ne peut dépasser.

 $^{5.\ \,}$ Limite que l'utilisateur (ou groupe) peut dépasser pendant un certain laps de temps.

3.6 Base de données

MariaDB est un fork communautaire de MySQL édité sous licence GPL.

MySQL est un système de gestion de bases de données relationnelles. Il fait partie des logiciels de gestion de base de données les plus utilisés au monde, autant par le grand public que par des professionnels.

3.6.1 Mise en place

La base de données a été installée et configurée sur le serveur en différentes étapes :

- installation de MariaDB par APT (Advanced Package Tool);
- configuration sécurisée de l'installation de MariaDB;
- création de la base de données, nommée deepblue;
- création de la table « users » contenant les différents utilisateurs.

Remarque : le mot de passe de la base de données est formé de 10 caractères et est composé de lettres (majuscules et minuscules) et de chiffres, dans le but d'éviter les attaques par force brute et/ou par dictionnaire.

3.7 Serveur Web

3.8 FTP

Un serveur FTP (File Transfer Protocol, permet de transférer des fichiers par Internet ou par le biais d'un réseau informatique local (intranet).

Dans notre cas, il sera disponible au travers du réseau local.

3.8.1 Choix du serveur

Pour un maximum de sécurité, vsFTPd (Very Secure FTP Daemon) a été utilisé.

Ce serveur FTP est fortement axé sécurité : c'est l'un des premiers logiciels serveurs à mettre en uvre la séparation des privilèges, minimisant ainsi les risques de piratage.

Dans sa configuration par défaut, VsFTPd est très restrictif :

- Seul le compte anonyme est autorisé à se connecter au serveur, et en lecture seule;
- Les utilisateurs ne peuvent accéder qu'à leur compte.

3.8.2 Configuration

À terminer...

3.9 DNS

Le *DNS* (Domain Name System), est un service permettant de résoudre un nom de domaine.

De fait, les serveurs étant identifiés par leur adresse IP, il a fallu créer un processus afin d'associer leur adresse à un nom plus simple à retenir, le « nom de domaine ».

3.9.1 Sélection du DNS

Nous avons choisi d'utiliser BIND, pour Berkeley Internet Name Daemon.

C'est le serveur DNS le plus utilisé sur Internet, spécialement sur les systèmes de type UNIX et est devenu de facto un standard.

3.9.2 Mise en place

Le DNS a été installé et configuré sur le serveur en différentes étapes :

- installation de BIND9;
- création des ACL (Access Control List) définissant le réseau local;
- création et configuration du serveur DNS en lui-même :
 - acceptation des requêtes uniquement pour le réseau interne;
 - configuration des forwarders;
 - activation de **DNSSEC** qui sécurise les données envoyées par le DNS;
 - activation de l'écoute des requêtes IPv6;
 - implémentation de la RFC1035 ⁶ ⁷.

^{6.} http://abcdrfc.free.fr/rfc-vf/rfc1035.html

^{7.} http://www.bortzmeyer.org/1035.html

Références

- [1] ASTUCES-INFO.COM. Debian : Ajouter des quotas sur le disque dur, Site, [en ligne]. https://www.astuces-info.com, (consulté le 23 mai 2017).
- [2] COUTAREL, J. Installation du serveur Web Apache sur un serveur dédié Kimsufi sous Ubuntu Server 14.04 LTS, Site, [en ligne]. https://justincoutarel.fr, (consulté le 17 mai 2017).
- [3] DUCEA, M. Apache Tips & Tricks: Hide Apache Software Version, Site, [en ligne]. http://www.ducea.com, (consulté le 17 mai 2017).
- [4] Gelbmann, M. Ubuntu became the most popular Linux distribution for web servers, Site, [en ligne]. http://www.w3techs.com, (consulté le 15 février 2017).
- [5] KROUT, E. Apache Web Server on Debian 8 (Jessie), Site, [en ligne]. https://www.linode.com, (consulté le 17 mai 2017).
- [6] LA COMMUNAUTÉ DE WIKIPÉDIA. MariaDB, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [7] LA COMMUNAUTÉ DE WIKIPÉDIA. Network File System, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [8] LA COMMUNAUTÉ DE WIKIPÉDIA. Samba (informatique), Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [9] LA COMMUNAUTÉ DE WIKIPÉDIA. Secure Shell, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [10] LA COMMUNAUTÉ DE WIKIPÉDIA. BIND, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [11] LA COMMUNAUTÉ DE WIKIPÉDIA. Domain Name System, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [12] LA COMMUNAUTÉ DE WIKIPÉDIA. Serveur FTP, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [13] LA COMMUNAUTÉ DE WIKIPÉDIA. VsFTPd, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [14] LaTeX. A document preparation system. (consulté le 15 février 2017).

- [15] MEUH. NTP Clock is not syncing to low stratum server, Site, [en ligne]. http://s-tackoverflow.com, (consulté le 28 mars 2017).
- [16] RUCHI. NTP Server and Client Configuration in debian, Site, [en ligne]. http://www.debianadmin.com, (consulté le 23 mars 2017).
- [17] SVERDLOV, E. How To Create a New User and Grant Permissions in MySQL, Site, [en ligne]. https://www.digitalocean.com, (consulté le 23 mai 2017).
- [18] THE DEBIAN COMMUNITY. NTP, Site, [en ligne]. https://wiki.debian.org/NTP, (consulté le 23 mars 2017).
- [19] The Debian Support. Configuration serveur NTP, Site, [en ligne]. https://www.debian-fr.org, (consulté le 23 mars 2017).