EC4.404: Mechatronics System Design

Harikumar Kandath

Robotic Research Center, IIIT Hyderabad

harikumar.k@iiit.ac.in

Lecture 5, Jan 29, 2025.

General Information

Mechatronics: Study of the integration of mechanical hardware, electrical/electronic hardware with computer hardware and software. Named by Tetsuro Mori from Japan when working with Yaskawa Electric Coorporation. Applications: Robotics, Aerospace industry, automotive industry, process industry etc.

Course Objective: To introduce the design and development of a mechatronic system.

Instructors: Harikumar Kandath and Nagamanikandan Govindan.

Sensors in Ground Robot

- Wheel Encoder
- Magnetometer
- Inertial Measurement Unit (IMU): contains Accelerometer and Gyroscope.
- Global Positioning System (GPS)
- Range measuring sensor (LIDAR, ultrasonic, camera)

Sensors in UAV

- Inertial Measurement Unit (IMU) contains Accelerometer and Gyroscope.
- Altimeter
- Airspeed sensor
- Magnetometer
- Global Positioning System (GPS)
- Range measuring sensor (LIDAR, ultrasonic, RADAR, camera)

Sensors in Robotic Manipulator

- IMU
- Encoder
- Force-Torque sensor
- Camera

Range Measurement

Applications

- Obstacle Avoidance
- SLAM (Simultaneous Localization and Mapping)
- UAV Landing
- Accurate mapping of a region with elevation
- Distance to the target vehicle
- Atmospheric Physics
- Underwater survey

Major Classification

- Active (LIDAR, RADAR, ultrasonic)
- Passive (Camera)

Figure: Structure of a range measuring system

LIDAR

LIDAR: Light Detection and Ranging.

Working principle: Source emits thousands of laser pulses per second and the reflected pulses are detected by the receiver and the time of flight is measured (t_f) . Typical wavelengths used 905 nm, 1064 nm, 1550 nm. Lower wavelengths used for water bodies like 532 nm.

$$Range = 0.5 \times (Speed of light \times time of flight)$$
 (1)

Types

- Airborne
- Ground-based
- Spatial

LIDAR - Components

Figure: Components of a LIDAR

LIDAR Transmission

Figure: LIDAR pulse

LIDAR Equation

$$P_R = \frac{P_T A \eta_T \eta_R \Gamma}{2\pi D^2} \tag{2}$$

 P_T is transmitted power in watts

 P_R is received power in watts

A is the area of the optical sensing element in m^2

 η_T, η_R are the efficiency of the transmitter and receiver respectively

D is the distance to the target

 Γ is the reflectivity of the target

LIDAR Mapping

Figure: LIDAR based mapping

LIDAR Parameters

- Detection Range
- Field-of-View (FoV)
- Scan Pattern
- Cross Talk Immunity
- Detection Range
- Multiple Returns
- Range Precision and Accuracy

RADAR

RADAR: Radio Detection and Ranging (detection range higher than LIDAR).

- Transmitter
- Waveguide
- Antenna
- Receiver

RADAR Frequency Band

Radar Band	Frequency (GHz)	Wavelength (cm)
Millimeter	40–100	0.75-0.30
Ка	26.5–40	1.1-0.75
K	18–26.5	1.7–1.1
Ku	12.5–18	2.4–1.7
X	8–12.5	3.75–2.4
С	4–8	7.5–3.75
S	2–4	15–7.5
L	1–2	30–15
UHF	0.3–1	100–30

RADAR Equation

$$R^4 = \frac{P_t G_t G_r \lambda^2 \sigma F^4}{64\pi^3 P_r} \tag{3}$$

R is the range to the target (m).

 P_t , P_r is the transmitted signal power and the received signal power respectively (w).

 G_t , G_r is the gain of the transmitter antenna and the receiver antenna respectively.

 λ is the signal wavelength (m).

 σ is the scattering coefficient of the target (m^2) .

F is the pattern propagation factor (depends upon the medium).

Ultrasonic Range Measurement (SONAR)

- Utilizes sound waves with frequencies higher than human audible limit (typically above 18 KHz).
- Main component is piezoelectric material that undergoes deformation when a voltage is applied (transmitter) and also can convert a deformation into an electrical signal (receiver).
- Applying a sinusoidal voltage with a specified frequency vibrates the piezoelectric material with the same frequency, resulting in the generation of ultrasonic waves through the medium.

$$Range = 0.5 \times (V_s \times t) \tag{4}$$

 V_s = speed of sound (m/s), t = time elapsed between sending and receiving (s).

Frequency Response

Figure: Transmitter and Receiver Frequency Response

Camera

- Day/ Night
- RGB/ Monochrome
- Mono vision/Stereo vision
- FOV (field of view)- narrow/ wide angle
- FPS (frames per second)
- Image resolution (pixel size)

Camera FOV

Diagonal FOV (α_d) , horizontal FOV (α_h) and vertical FOV (α_v) .

$$D = 2h \times \tan\alpha_d, \ H = 2h \times \tan\alpha_h, \ L = 2h \times \tan\alpha_v \tag{5}$$

$$\tan^2 \alpha_d = \tan^2 \alpha_h + \tan^2 \alpha_v, \ \frac{\tan \alpha_h}{\tan \alpha_v} = \frac{1920}{1080}$$
 (6)

Pinhole camera model (PCM)

NB: Object is seen inverted in the image plane.

Coordinates in PCM

 (x_i, y_i) coordinates in the image plane of the point P whose real world coordinates is (x, y, z).

$$x_i = f\frac{x}{z}, \ y_i = f\frac{y}{z} \tag{7}$$

Stereo Vision

Pixel coordinates x_1 , x_2 and real world coordinates x_{r1} , x_{r2} Distance between 2 cameras

$$b = x_{r1} - x_{r2} = \frac{zx_1}{f} - \frac{zx_2}{f} = z\frac{d}{f} \implies z = \frac{fb}{d}$$
 (8)

From similar triangles,

$$\frac{d}{b} = \frac{f}{z}$$

Gimbal

Stabilizing camera from the oscillations of the robot.

Altimeter

Altitude measurement using pressure sensor (more accurate than using GPS)

$$\delta pressure = -\rho g \delta h \tag{9}$$

NB: Pressure reduces as altitude increases.

$$pressure(ground) - pressure(h) = -\rho g(0 - h)$$
 (10)

$$h = \frac{pressure(ground) - pressure(h)}{\rho g}$$
 (11)

Airspeed Sensor

Figure: Pitot Tube

$$P_t - P_s = \frac{\rho V_a^2}{2} \tag{12}$$

 P_t - total pressure (N/m^2) , P_s - static pressure (N/m^2) , ρ - density of air (Kg/m^3) , V_a - airspeed in m/s.

GPS Speed & Airspeed

(x, y, z) is the coordinate in NED frame.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -s\phi c\lambda & -s\lambda & -c\phi c\lambda \\ -s\phi s\lambda & c\lambda & -c\phi s\lambda \\ c\phi & 0 & -s\phi \end{pmatrix} \begin{bmatrix} \begin{pmatrix} (N+h)c\phi c\lambda \\ (N+h)c\phi s\lambda \\ (\frac{b^2}{a^2}N+h)s\phi \end{pmatrix} - \begin{pmatrix} (N+h_0)c\phi_0 c\lambda_0 \\ (N+h_0)c\phi_0 s\lambda_0 \\ (\frac{b^2}{a^2}N+h_0)s\phi_0 \end{pmatrix}$$
(13)

GPS Speed (ground speed) (V_g)

$$V_{g} = \sqrt{\dot{x}^{2} + \dot{y}^{2}} = V_{a} \tag{14}$$

NB: $V_g \neq V_a$ when wind speed is non-zero.

THANK YOU

28 / 28