

Advanced UPI Fraud Detection System Report

DAIICT

Gopinath Panda

Mihir Bhavsar(202411079) Ayush Chaudhari(202201517)

Kishan Pansuriya(202201504)

1. Introduction

The purpose of this report is to analyze transaction data for potential fraudulent activities using various classification algorithms. We aim to build a reliable predictive model to detect fraud in transactions effectively.

2. Data Overview

The dataset consists of transactions with various features, including:

- 1. Transaction Amount
- 2. Account Balances
- 3. Transaction Type (e.g., payment, transfer)
- 4. Customer Information (origin and destination)

The target variable is **isFraud**, which indicates whether a transaction is fraudulent (1) or not (0).

3. Data Preprocessing

3.1. Handling Missing Values

To ensure the integrity of our analysis, we handled missing values in the dataset as follows:

- **new_orig_bal and new_dest_bal**: Filled missing values with the mean of the respective columns.
- **isFraud**: Filled missing values with the mode, ensuring that the dataset maintains a representative distribution.
- **isFlaggedFraud**: Similarly filled with the mode.

3.2. Encoding Categorical Variables

Categorical variables (trans_type, cust_orig, and cust_dest) were transformed into numerical representations using Label Encoding. This transformation allows machine learning models to interpret categorical data correctly.

3.3. Train-Test Split

The dataset was divided into training (80%) and testing (20%) subsets to evaluate model performance.

4. Model Training and Evaluation

Three classification algorithms were employed to predict fraudulent transactions:

4.1. Support Vector Classifier (SVC)

- Model Training: The Support Vector Classifier was trained on the training dataset.
- Performance Metrics
 - Accuracy: [Insert accuracy score]
 - Classification Report:
 - Precision, Recall, and F1-Score for each class.
 - Confusion Matrix:
 - A matrix summarizing the performance of the classification algorithm.

4.2. Logistic Regression

- **Model Training**: Logistic Regression was fit to the training dataset with increased iterations for convergence.
- Performance Metrics:
- **Accuracy**: [Insert accuracy score]
- Classification Report:
 - Precision, Recall, and F1-Score for each class.
 - Confusion Matrix:
 - A matrix summarizing the performance of the classification algorithm.

4.3. Random Forest Classifier

- **Model Training**: A Random Forest Classifier was utilized to capture non-linear relationships in the data.
- Performance Metrics:
 - Accuracy: [Insert accuracy score]
 - Classification Report:
 - Precision, Recall, and F1-Score for each class.
 - Confusion Matrix:

 A matrix summarizing the performance of the classification algorithm

5. Insights and Conclusions

- **Model Comparison**: Evaluate and compare the performance of the three models based on accuracy, precision, recall, and F1-score. Discuss which model performs best for this specific dataset.
- Model Limitations: Discuss potential limitations of the models, such as overfitting
 or underfitting, and the implications of these limitations in a real-world fraud
 detection scenario.
- **Future Work**: Suggest possible enhancements, such as hyperparameter tuning, feature engineering, or incorporating additional data sources.

6. Recommendations

Based on the findings, recommend implementing the most effective model for real-time fraud detection in transaction processing. Additionally, emphasize the importance of ongoing model evaluation and retraining as new transaction data becomes available.

0