Predicting Prices of Used Cars for Potential Buyer in Singapore

Objective

 To help potential buyer in Singapore to predict the prices of used cars as accurate as possible to be used as a benchmark before buying a used car.

Methodology

- Linear Regression Model
- Ridge Regression Model
- Lasso Regression Model
- Polynomial Regression Model

Tools Used

Data Collection

 Webscrapping from SgCarMart website using Beautiful Soup.

Data Collection (cont...)

 Webscrapping from SgCarMart website using Beautiful Soup.

Data Cleaning

- 322 rows
- 6 columns:
 - Price (target)
 - Make (categorical feature)
 - Depreciation value per year (numerical feature)
 - Engine Cap cc (numerical feature)
 - Mileage km (numerical feature)
 - Vehicle Type (categorical feature)

Data Analysis

- To view the correlation between feature to feature and feature to target.
- No feature is removed as there is no high correlation between features.

 To view the distribution plot of features and target.

- Fit in statsmodels
- Based from the pvalue, all features are significant.
- Adj. R-squared = 0.859

OLS Regression Re	sults								
Dep. Variable	:	PRICE		R-squa	red:		0.861		
Model	:	OLS	Adj.	R-squa	red:		0.859		
Method	l: Leas	t Squares		F-statis	stic:		654.4		
Date	: Tue, 15	Sep 2020	Prob	(F-statis	tic):	1.14	e-135		
Time	:	16:48:58	Log	-Likeliho	ood:	-3	3723.9		
No. Observations	:	322		,	AIC:		7456.		
Df Residuals	:	318		I	BIC:		7471.		
Df Model	l:	3							
Covariance Type	: 1	nonrobust							
		C	oef	std err		t	P> t	[0.025	0.975]
	Intercept	-7642.94	109 49	923.592	-1.	552	0.122	-1.73e+04	2043.990
DEPRE_VALUE_F	PER_YEAR	7.46	92	0.396	18.8	354	0.000	6.690	8.249
ENGINE	E_CAP_CC	17.03	354	3.367	5.0	060	0.000	10.412	23.659
MIII						- 40	0.000	0.440	-0.281
IVIIL	.EAGE_KM	-0.34	156	0.033	-10.5	516	0.000	-0.410	-0.201
IVIIL	.EAGE_KM	-0.34	156	0.033	-10.5	516	0.000	-0.410	-0.201
Omnibus:	23.665	-0.34				016	0.000	-0.410	-0.201
	23.665		/atson:	2.0)65	516	0.000	-0.410	-0.201
Omnibus:	23.665	Durbin-W arque-Ber	/atson:	2.0 86.2)65 289	016	0.000	-0.410	-0.201

- Log transform the mileage
- Fit in statsmodels
- Based from the p-value, all features are significant.
- Adj. R-squared = 0.875

OLS Regression Results

_				
Dep. Variable:	PRICE		R-squared:	0.876
Model:	OLS	Ac	lj. R-squared:	0.875
Method:	Least Squares		F-statistic:	751.3
Date:	Tue, 15 Sep 2020	Prol	o (F-statistic):	6.09e-144
Time:	16:49:02	Lo	g-Likelihood:	-3704.6
No. Observations:	322		AIC:	7417.
Df Residuals:	318		BIC:	7432.
Df Model:	3			
Covariance Type:	nonrobust			
		hef	std err	f Polti

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.636e+05	1.59e+04	10.262	0.000	1.32e+05	1.95e+05
DEPRE_VALUE_PER_YEAR	7.3177	0.370	19.792	0.000	6.590	8.045
ENGINE_CAP_CC	18.9153	3.179	5.951	0.000	12.661	25.169
np.log(MILEAGE_KM)	-1.821e+04	1417.194	-12.852	0.000	-2.1e+04	-1.54e+04

Omnibus:	46.742	Durbin-Watson:	2.079
Prob(Omnibus):	0.000	Jarque-Bera (JB):	116.250
Skew:	-0.696	Prob(JB):	5.71e-26
Kurtosis:	5.593	Cond. No.	1.61e+05

• Create dummy variables into dataset.

- After fit in statsmodels again, based from the pvalue, only following features are significant:
 - Depreciation value
 - Engine cap
 - Log mileage
 - Make Ferrari
 - Make Mini
 - Make Rolls Royce
 - Vehicle type SUV
- Adj. R-squared = 0.882

OLS Regression Results

Dep. Variable:	PRICE	R-squared:	0.885
Model:	OLS	Adj. R-squared:	0.882
Method:	Least Squares	F-statistic:	345.3
Date:	Tue, 15 Sep 2020	Prob (F-statistic):	2.26e-143
Time:	16:50:49	Log-Likelihood:	-3692.8
No. Observations:	322	AIC:	7402.
Df Residuals:	314	BIC:	7432.
Df Model:	7		
Covariance Type:	nonrobust		
	_		4 0 14

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.676e+05	1.59e+04	10.523	0.000	1.36e+05	1.99e+05
DEPRE_VALUE_PER_YEAR	7.0185	0.372	18.864	0.000	6.286	7.751
ENGINE_CAP_CC	17.8814	3.157	5.664	0.000	11.670	24.093
LOG_MILEAGE_KM	-1.822e+04	1395.843	-13.054	0.000	-2.1e+04	-1.55e+04
MAKE_Ferrari	8.341e+04	2.48e+04	3.364	0.001	3.46e+04	1.32e+05
MAKE_MINI	-5.858e+04	2.36e+04	-2.484	0.014	-1.05e+05	-1.22e+04
MAKE_Rolls_Royce	5.241e+04	2.55e+04	2.055	0.041	2240.757	1.03e+05
VEHICLE_TYPE_SUV	6301.6449	3284.534	1.919	0.056	-160.833	1.28e+04

 Omnibus:
 49.299
 Durbin-Watson:
 2.055

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 157.598

 Skew:
 -0.647
 Prob(JB):
 6.00e-35

 Kurtosis:
 6.173
 Cond. No.
 2.77e+05

Cross Validation

```
Linear Regression Cross Val Score: [0.93333532 0.52448046 0.87522598 0.8712238 0.88953408]

Mean cv r^2: 0.819 +- 0.149

Ridge Cross Val Score: [0.92969153 0.54775207 0.86333013 0.86641585 0.89195441]

Mean cv r^2: 0.82 +- 0.138

Lasso Cross Val Score: [0.93296689 0.52822619 0.87501454 0.87075869 0.88946554]

Mean cv r^2: 0.819 +- 0.147

Degree 3 Poly Regression Cross Val Score: [-0.22285902 0.12113914 0.86517433 0.91012124 0.90049184]

Mean cv r^2: 0.515 +- 0.475
```

• It seems like Ridge Regression provides the highest R^2 as compared to others. Therefore, will choose to use Ridge regression.

Results Prediction

```
Ridge Regression RMSE - train: 24160.46597176425
Ridge Regression R2 Score - train: 0.8874145159737489
Ridge Regression RMSE - test: 18951.41407514264
Ridge Regression R2 Score - test: 0.8436070187572133
```

- From the train dataset, 89% of data variation explained by model and root mean squared error is \$24,160.
- From the test dataset, 84% of data variation explained by model and root mean squared error is \$18,951.

Results Coefficients

```
[('DEPRE_VALUE_PER_YEAR', 44577.66498575446),
  ('ENGINE_CAP_CC', 13419.433108206378),
  ('LOG_MILEAGE_KM', -19028.67403481724),
  ('MAKE_Ferrari', 5508.863705839609),
  ('MAKE_MINI', -3433.150015257121),
  ('MAKE_Rolls_Royce', 3655.35391418426),
  ('VEHICLE_TYPE_SUV', 3408.6844210868144)]
```

- Depreciation value, engine cap, make Ferrari, make Rolls-Royce and vehicle type SUV have positive impact on the price of used cars.
- Log mileage and make Mini have negative impact on the price of used cars.

Linear Regression Assumption

• Train Dataset

Linear Regression Assumption

Test Dataset

Conclusions

- This model still cannot do prediction accurate enough, with RMSE \$18,951 from test dataset.
- This model can only explain 84% of data variation from test dataset.
- Other features that could affect the price of used cars are not captured.
- Observation data collected are not big enough.
- Outliers in dataset was not investigated and removed from dataset.

