UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

SEL0630 - Aplicações de Microprocessadores II R3V - Remote 3D Viewer

Autor(es): Davi Diório Mendes 7546989

Henrique Alberto Rusa 7593714

Professor: Evandro Luis Linhari Rodrigues

Resumo

Texto em um parágrafo apenas - deve conter "tudo"resumidamente (introdução, método(s), resultados e conclusões), de tal forma que seja possível compreender a proposta e o que foi alcançado.

Palavras-Chave: palavra1, palavra2, palavra3, palavra4, palavra5.

Sumário

1	Intr	rodução 7			
	1.1	Objetivos	7		
	1.2	Motivação (opcional)	8		
	1.3	Justificativas/relevância(opcional)	8		
	1.4	Organização do Trabalho(opcional)	8		
2	Emb	pasamento Teórico	9		
	2.1	Estereoscopia	9		
	2.2	Sistemas Embarcados	10		
	2.3	Sistemas Distribuídos	10		
	2.4	Dead Reckoning	10		
3	Mat	eriais e Métodos	11		
	3.1	Materiais	11		
		3.1.1 Intel Galileo	11		
		3.1.2 Smartphone Android	11		
		3.1.3 IPCam	11		
		3.1.4 Flask	11		
	3.2	Métodos	11		
		3.2.1 MJPEG	11		
		3.2.2 Dead Reckoning	11		
		3.2.3 Applicação Cliente	11		
4	Resu	ultados e Discussões	13		
	4.1	Streaming de Imagem	13		
	4.2	Dead Reckoning	13		
	4.3	Frontend	13		

5	Conclusão ou Conclusões	15
A	Complementos importantes do texto	19
В	Apresentação do Trabalho	21
Ι	Anexo 1	23
II	Anexo 2	25
	§	

Introdução

Realmente introduz o leitor indicando quais são as direções do trabalho? apresenta o tema e o objeto do trabalho e contém as Referências do Estado da arte (quem está fazendo e em que nível os trabalhos da área estão hoje) [1].

Outra referência para a bibliografia [2].

Segundo [3] há uma sequência lógica para a redação da monografia como apresenta em [4]. Referência para a figura 1.1.

Figura 1.1: Logo da EESC.

1.1 Objetivos

Objetivos do trabalho.

1.2 Motivação (opcional)

Descrever a motivação do trabalho.

1.3 Justificativas/relevância(opcional)

Justificativa do trabalho.

1.4 Organização do Trabalho(opcional)

Este trabalho está distribuído em XXX capítulos, incluindo esta introdução, dispostos conforme a descrição que segue:

Capítulo 2: Descreve
Capítulo 3: Discorre sobre
Capítulo 4: Apresenta

Embasamento Teórico

Na fase de projeto do sistema R3V proposto foram elencados conhecimentos e fundamentos necessários para o desenvolvimento do mesmo. Com isso em mente, pode-se discursar melhor sobre os tópicos mais relevantes do sistema, permitindo que o leitor aprofunde-se devidamente para que, ao final, os objetivos do projeto sejam melhor discutidos e compreendidos.

Neste capítulo pretende-se analisar os conceitos de estereoscopia, sistemas embarcados, sistemas distribuídos e *dead reckoning*.

2.1 Estereoscopia

A simulação de imagens em três dimensões (visão espacial) é associada ao conceito da estereoscopia. Para isso, o cérebro humano necessita adiquirir duas imagens, cada qual com um leve deslocamento lateral (angular), e com estas calcular a profundidade dos objetos.

Existem também técnicas de percepção do espaço tri-dimensional que avaliam sombras, sobreposição de objetos numa cena e vários outros parâmetros, possibilitando verificar a disposição dos elementos no espaço.

Entretanto, existe uma diferença fundamental entre percepção e simulação do espaço tri-dimensioanl para o usuário, apresentadas a seguir.

- Percepção Tri-dimensonal: O usuário consegue perceber a disposição dos elementos numa imagem (profundidade relativa, distância relativa entre objetos) somente a partir da análise de uma imagem que possui indicativos como sombra, iluminação e outros.
- Simulação Tri-dimensonal: O usuário tem a sensação de que os objetos possuem dimensões reais, com tamanho e profundidade bem definidos; a distância entre elementos é percebida,

entretanto não mais pela sombra, mas pela própria projeção da simulação em si.

Portanto, enquanto o usuário pode perceber a terceira dimensão em valores relativos (objetos mais próximos ou mais afastados, maiores ou menores), a simulação do espaço tri-dimensioanl é realizada pela sobreposição de imagens com mesmo ponto focal mas deslocadas levemente uma da outra, possibilitando a reconstrução, pelo cérebro, da profundidade dos elementos.

2.2 Sistemas Embarcados

2.3 Sistemas Distribuídos

2.4 Dead Reckoning

A tecnologia provê diversos sistemas de posicionamento por sensores, *beacons* (referências fixas no espaço), equivalência entre mapas e outros. Entretanto, pode-se distinguir duas metodologias utilizadas: posicionamento relativo e absoluto.

- Absoluto: Se vale de técnicas de sensoreamento com referências fixas, previamente implementadas, o que adiciona um custo muito alto para cosntrução e manutenção destes sistemas espalhados pelo terreno em questão.
- Relativo: Propõe uma formulação mais elegante, se valendo de sensores e parâmetros intrínsecos da implementação. Com isso, pode-se estimar a posição atual do elemento de acordo com movimentações perceptíveis ao sistema.

Dead reckoning é uma implementação de posicionamento relativo que permite o programador avaliar os diversos sensores para se estimar a localização entre os períodos de tempos avaliados. Note que as duas implementações de posicionamento possuem suas vantagens e desvantagens, sendo que uma estimativa de localização (posição relativa) adiciona erros às medidas, enquanto que a outra possui as referências extremamente precisas (posição absoluta).

Materiais e Métodos

Descrição clara dos procedimentos e dos materiais adotados para o desenvolvimento do trabalho (sem resultados) - incluindo sua adequação ao trabalho.

Tem que responder às perguntas: -está com um tamanho adequado (proporcional) à monografia? -há informação suficiente e clara sobre os materiais e sobre os métodos adotados?

Não há necessidade de reproduzir (copiar) as obras que embasam o trabalho e sim colocar o suficiente para o entendimento do trabalho e citar as referências.

3.1 Materiais

Materiais utilizados no projeto.

- 3.1.1 Intel Galileo
- 3.1.2 Smartphone Android
- 3.1.3 **IPCam**
- **3.1.4** Flask

3.2 Métodos

Métodos utilizados no projeto.

- **3.2.1 MJPEG**
- 3.2.2 Dead Reckoning
- 3.2.3 Applicação Cliente

Resultados e Discussões

Aqui se mostra o que o trabalho permitiu produzir, e às vezes o que pode ser comparado com outros trabalhos - aqui ficam claras se as propostas do trabalho são relevantes ou não, pois devem permitir a discussão do trabalho.

Deve responder: Os resultados estão claros em bom número (nem muito nem pouco) que permitam avaliar realmente a proposta e o que foi produzido.

- 4.1 Streaming de Imagem
- 4.2 Dead Reckoning
- 4.3 Frontend

Conclusão ou Conclusões

"Fecha"com os objetivos? (respondem aos objetivos?)

Valorizam (ou não) o trabalho realizado. Normalmente é uma parte do trabalho "um pouco desprezada", pois o autor já está "cansado....".

Mas é aqui o lugar que se pode medir se o trabalho tem ou não valor.

Trabalhos futuros

É uma orientação sobre as possibilidades de continuação do desenvolvimento do trabalho.

Referências Bibliográficas

- [1] Autor da referência 1. Título da referência 1, 2007.
- [2] Google. http://www.google.com.br/, Acesso em: 04 de dezembro de 2014.
- [3] E.L.L. Rodrigues. Dicas, cuidados e orientações para a elaboração de texto para tcc, 2015.
- [4] Enzo Bertini Vieira e Lara Bertini Vieira. Sistema autônomo de vigilância baseado em dados biológicos com registro de dados na nuvem via smartphone, 2014.

Apêndice A

Complementos importantes do texto

Observe as diretrizes de redação no site do Depto.

http://www.sel.eesc.usp.br/informatica/graduacao/tcc/tcc_-_diretrizes_EESC_v_2010.pdf).

Aqui são colocadas as informações de autoria própria, porém entendidas como complemento da informação contida no corpo do trabalho. São colocadas aqui para não "carregar"demais o texto.

Atenção para as **Referências Bibliográficas**: todas as referências citadas no texto. Observar as Diretrizes, pois lá estão os formatos corretos de citação.

Outras observações IMPORTANTES (leia isso com atenção)

NUNCA copie texto de outro autor sem a devida forma de citação (ver em diretrizes); a cópia configura plágio! Com a Internet e/ou outras ferramentas dedicadas, é muito fácil identificar se houve cópia de texto.

- ⇒ figura que não é de sua autoria deve conter a fonte;
- ⇒ no texto, toda primeira vez que aparecer algum protocolo, procedimento, nome técnico, sigla, abreviatura, etc, além de explicar o que é, é necessário citar a referência. Exemplo: ...um giroscópio (referência) é um tipo de sensor...
- ⇒ capriche nas figuras (uma figura bem composta quase não precisa de texto para explicá-la);
- ⇒ procure manter uma "uniformidade de notação"para o texto todo;
- ⇒ não tenha medo de citar os trabalhos de outros autores (isso é imprescindível);
- ⇒ evite muitas referências de sites, pois são voláteis;

- ⇒ NÃO USE O WIKIPEDIA COMO REFERÊNCIA;
- \Rightarrow todas as palavras escritas em inglês (ou em outras línguas) devem estar em itálico;
- ⇒ todas as figuras e tabelas devem ser referenciadas no texto;
- ⇒ todas as obras citadas nas referências bibliográficas devem estar citadas no texto;
- ⇒ códigos de programas devem estar em Apêndices, pois servem para comprovar o desenvolvimento e facilitar a reprodução do trabalho;

Apêndice B

Apresentação do Trabalho

Como tem-se até 30 minutos para fazer a apresentação deve-se dimensionar a quantidade de slides para isso. Cada um tem seu "timming"com relação à quantidade de informação versus tempo disponível para apresentação.

Os slides devem ser sempre muito mais visuais que textuais, ou seja, não se deve colocar frases e "ficar lendo"as mesmas. Os slides devem apresentar uma forma "clean"para que sirva apenas de guia para a apresentação do trabalho.

Não carregue de texto os slides...

Anexo I

Anexo 1

Material que não é de sua autoria, mas que são importantes e devem fazer parte da monografia para auxiliar e esclarecer o leitor;

Anexo II

Anexo 2

Texto do Anexo 2.