

QWorld Global QBronze Workshop Homework Day 4
Email address * m.saber87@hotmail.com
Name * Mohamed Saber Ahmad
Questions
 ✓ Mark the true one(s). 2/2 Faster than light communication is possible with entanglement. There is only a single entangled state, namely 1/sqrt(2) (I00) + I11)). ✓ In superdense coding we send 2 bits of information using 1 qubit. ✓ Using quantum teleportation, we can create multiples copies of the same qubit. In superdense coding, the operations applied by the receiver depends on the message to be sent.
 ✓ Which one(s) are entangled states? 1/√2 (0⟩- 1⟩) 1/√2 (10⟩- 01⟩) 1/√2 (00⟩- 11⟩) 1/√2 (00⟩+ 01⟩+ 10⟩+ 11⟩)
 ✓ Which ones are true about the following state: 1/sqrt(3) (000⟩+ 001⟩+ 111⟩) (Order: first,second,third⟩) By measuring the value of the second qubit, we can not decide the value of the first qubit. If we measure the first two qubits, then the third qubit will be always measured as 1 When the first qubit is measured and the outcome is 1, then the third qubit will be also measured as 1 with probability 1 When the first qubit is measured and the outcome is 0, then the second qubit will be also measured as 0 with probability 1 When the first qubit is measured and the outcome is 0, then the third qubit will be also measured as 1 with probability 1
 ✓ How do you obtain state 1/√2 (10⟩- 01⟩) if to start with you have state 1/√2 2/2 (00⟩+ 11⟩) (Order: first,second⟩) ✓ Apply H to both qubits ✓ Apply Z to second qubit

Annly first 7 then X to first aubit

(-)	. ippij mer = mem mer gener	
	Apply Z to first qubit	
0	Apply CNOT where second qubit is the control first qubit is the target	
Prot	ocol	
Supp	ose that Asia want to send the message '1302' to Balvis using superdense coding. Asia	will
enco	the digits one by one: first 1, then 3 , then 0 and finally 2 and she makes the following ding: 0:00 1:01 2:10 3:11 .Hence, To send 1302, she will send 8 bits of information. As	
know times	, in superdense coding we can send 2 bits at once ,therefore she will use the protocol 4 3.	!
,	How many antangled pair of guitte do Asia and Palvia need in total?	0./0
~	How many entangled pair of qubits do Asia and Balvis need in total?	2/2
\bigcirc	1 pair (2 qubits) is enough, we can use the same pair each time	
•	4 pairs (8 qubits), we need a different pair each time	
		•
0	8 pairs (16 qubits), we need 2 pairs each time	
\circ	We don't need entangled pair of qubits	
✓	To start with, Asia sends '01'. Which operations should she apply to her	2/2
	qubit?	
(1)	Apply X	/
	Apply Z	
0	Apply X and Z	
0	Apply nothing	
✓	Balvis has received the first qubit from Asia but he has lost his own qub	it 2/2
	which was initially entangled with Asia's qubit. Is it possible for him to recover the message?	
0	He should apply H to the qubit he has received and then measure to recover the message.	
\circ	He should apply \boldsymbol{X} to the qubit he has received and then measure to recover the message.	
0	He should create the copy of the qubit sent by Asia and then measure both.	
()	It is not possible to recover the message.	1
0	N. o. not possible to record the mostager	•
Qua	ntum Teleportation	
	st-processing done by Balvis	
qc.a(q[0])	
_	In the above code, you see the post processing performed by Balvis at	2/2
*	the end of the quantum teleportation protocol. If Asia tells him that she	
	has measured '10', which gate is a?	
Z		/
1	Suppose that Asia makes the measurement and we use statevector	2/2
*	simulator to get the current vector. All entries of the vector are 0 excep	
	the first 2. What can you conclude about the measurement result of	
	Asia? (Assuming that qubits are in the same order as described in the notebook)	
•	00	✓
	01	
0	01 10 11	

At the end of quantum teleportation protocol, how many qubits does Balvis have?	2/2
① 1	✓
O 2	
○ 3	
O 0	

Google Forms