

Linux For Embedded Systems

Cairo University Computer Eng. Dept. CMP445-Embedded Systems

Ahmed ElArabawy

Lecture 2: Introduction to Embedded Systems

What is an Embedded System?

- An embedded system is a computer system embedded in a device with a dedicated function
- This is different from the traditional, general purpose computer systems

EXAMPLES OF EMBEDDED SYSTEMS

- Communication Processor (s)
 - Wifi
 - GSM/3G/LTE
 - Bluetooth/NFC
- Graphics Processor (s)
 - Graphics and Video Processing
- Application Processor
 - Android / Windows / iOS

Robotics

AUTOMOTIVE

Cars Are Getting Smarter...

- Electronics represents 40% of total cost of a car
- 90% of new car features require software

Embedded Systems in the Powertrain

Automotive

Full-Graphical Instrument Panel

Rear-Camera

Video Stream

Navigation

DVD Viewing

Camera

Medical Devices

Neurostimulators Gastric **Stimulators**

Deep Brain

Foot Drop Implants

Cardiac Defibrillators/ **Pacemakers**

Insulin Pumps

So Why is it different from Desktop Development

- Embedded Systems normally come with constraints in hardware resources
 - Processing
 - Memory
 - Storage
 - Power
 - Display
 - Input/Output devices
- Also, embedded system applications often comes with real time system constraints
 - Latency
 - Throughput
- The system has a strong association between the HW and SW

OK So What ??

- The developer has to deal with all of these constraints
 - Development should take into consideration, code efficiency, and code foot print
 - Debugging tools are "closer to the metal"
 - Special attention to power consumption in some cases

Develop

Unit Test

Deploy

Debug

Improve

- Development Environment is different from target environment
- Need for cross platform development and debugging tools

Embedded Systems Classification

- There are two main families of embedded system platforms:
 - Microcontroller Family
 - Microprocessor Family

Embedded Systems Classification Microcontrollers

- Examples: PIC (MicroChip), AVR (Atmel), ...
- Used for example in Arduino Boards
- Originally 8/16 bit but recently there are 32 bit chips
- Simple instruction set
- No or simple OS Support
- Limited performance (clock speed up to 10s MHz)
- Programming in assembly, or C
- Useful in small systems with lower Cost
- Typical usage:
 - Interfacing to sensors
 - Control of motors in simple robotics systems
 - Simple home automation
 - etc...

Embedded Systems Classification Microprocessors

- Examples: ARM, Intel ATOM, MIPS
- Used for example in Raspberry Pi, BeagleBone Black, ...
- 32 bit (and sometimes 64 bits)
- Support Linux and other RTOSs
- Higher performance (clock speed in 100s MHz to few GHz)
- Programming in C/C++ (sometimes with little assembly), Java, Python, ...
- Strong library support (act as a small computer)
- Useful in more complicated systems but with higher cost
- Typical Usage:
 - All what the microcontroller can do
 - Sophisticated control systems
 - Audio Processing
 - Image Processing
 - Video Processing
 - Communication Systems
 - Advanced guidance and navigation systems

In this course

- We will address microprocessor based systems
- We will be working with the Raspberry Pi board which uses an ARM
- Why,
 - Because we will be able to do everything the microcontroller can do
 - On top of that, we will be able to do more advanced projects
 - We will be able to build projects beyond reading sensors and simple control
 - We will be able to run with Linux, and make use of all of its available tools and libraries
 - We will be prepared to understand sophisticated products in the industry

