Common Mathematical Subjects

Trigonometry

Trigonometric Graphs

Sinus Graph

Cosinus Graph

Tangent Graph

Cotangent Graph

Secant Graph

Cosecant Graph

Trigonometric Values

Trigonometry I								
Angles (In Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
Angles (In Radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined	0	Not Defined	1
cot	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Not Defined	0	Not Defined
csc	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	Not Defined	-1	Not Defined
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined	-1	Not Defined	1

Identities

$$\cos^2(\theta) + sin^2(\theta) = 1$$

$$1+\tan^2(\theta)=\sec^2(\theta)$$

$$1+\cot^2(\theta)=\csc^2(\theta)$$

Addition Formulas

$$\cos(A+B)=\cos(A).\cos(B)-\sin(A).\sin(B)$$

$$\sin(A+B) = \sin(A).\cos(B) + \cos(A).\sin(B)$$

Double Angle Formulas

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

 $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$

Half-Angle Formulas

$$\cos^2(heta) = rac{1+\cos(2 heta)}{2} \ \sin^2(heta) = rac{1-\cos(2 heta)}{2}$$

Hyperbolic Function

$$\sinh(x) = rac{\mathrm{e}^x - \mathrm{e}^{-x}}{2}$$
 $\cosh(x) = rac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}$
 $\tanh(x) = rac{\sinh(x)}{\cosh(x)} = rac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}}$
 $\coth(x) = rac{\cosh(x)}{\sinh(x)} = rac{\mathrm{e}^x + \mathrm{e}^{-x}}{\mathrm{e}^x - \mathrm{e}^{-x}}$
 $\operatorname{sech}(x) rac{1}{\cosh(x)}$
 $\operatorname{cosech}(x) = rac{1}{\sinh(x)}$

The Law Of Cosines

$$c^2 = a^2 + b^2 - 2ab\cos(\theta)$$

Eular Formulas

$$\mathrm{e}^{ix}=\cos(x)+\mathrm{i}\sin(x)$$
 $\mathrm{e}^{-ix}=\cos(x)-\mathrm{i}\sin(x)$
 $\sin(x)=rac{\mathrm{e}^{ix}-\mathrm{e}^{-ix}}{2\mathrm{i}}$
 $\cos(x)=rac{\mathrm{e}^{ix}+\mathrm{e}^{-ix}}{2}$

$$an(x)=rac{1}{(i)}rac{\mathrm{e}^{ix}-\mathrm{e}^{-ix}}{\mathrm{e}^{ix}+\mathrm{e}^{-ix}}$$

Other Equalities

$$\sin(mx).\sin(nx)=rac{1}{2}[\cos((m-n)x)-\cos((m+n)x)]$$
 $\sin(mx).\cos(nx)=rac{1}{2}[\sin((m-n)x)+\sin((m+n)x)]$ $\cos(mx).\cos(nx)=rac{1}{2}[\cos((m-n)x)+\cos((m+n)x)]$

Limit

Existance

Limit exists \iff left-hand and right-hand limits exists and $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x).$

Properties

Let,

$$\lim_{x o c}f(x)=L$$

and

$$\lim_{x o c}g(x)=M$$

Then,

1. Summation Rule: $\lim_{x \to c} (f(x) + g(x)) = L + M$

2. Difference Rule: $\lim_{x \to c} (f(x) + g(x)) = L + M$

3. Product Rule: $\lim_{x \to c} (f(x).g(x)) = L.M$

4. Constant Multiplication Rule: $\lim_{x o c} k. \, f(x) = k. \, L$

5. Quotient Rule: $\lim_{x\to c} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}$

6. Power Rule: $\lim_{x o c} f(x)^{rac{r}{s}} = L^{rac{r}{s}}$

Limits of Common Functions

$$egin{aligned} &\lim_{ heta o 0} rac{\sin(heta)}{ heta} = 1 \ &\lim_{x o 0} rac{ln(1+c.\,x)}{x} = c \ &\lim_{x o 0} rac{\cos(x) - 1}{x} = 0 \ &\lim_{x o 0} rac{\sin(x)}{x} = 1 \end{aligned}$$

Logarithms

$$1. \log MN) = \log(M) + \log(N)$$

2.
$$\log(\frac{M}{N}) = \log(M) - \log(N)$$

3.
$$\log(M^k) = k \log(M)$$
 $((\log(M^k) \neq (\log(M))^k)$

4.
$$\log_b(M) = \frac{\log(M)}{\log(b)}$$

Differentiation

Differentiation Properties

Let u and v are functions, and c is constant.

$$(c)' = 0$$
 $(x)' = 1$
 $(u+v)' = u' + v'$
 $(cu)' = cu'$
 $(uv)' = u'v + uv'$
 $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$
 $(\frac{c}{u})' = \frac{-cu'}{v^2}$

Differentiation Table

$$(x^n)'=nx^{n-1}$$

$$(u^n)' = nu^{n-1}u'$$
 $(e^u) = e^u u'$
 $(a^u)' = a^u \ln(a)u'$
 $(u^v)' = vu^{v-1}u' + \ln(u)u^v v'$
 $(log_a u)' = \log_a(e)\frac{u'}{u} = \frac{u'}{u\ln(a)}$
 $(\ln(u))' = \frac{u'}{u}$

Derivative of Trigonometric Functions

$$(\sin(u))' = \cos(u)u'$$
 $(\cos(u))' = -\sin(u)u'$
 $(\tan(u))' = \sec^2(u)u' = \frac{1}{\cos^2(u)}u'$
 $(\cot(u))' = -\csc^2(u)u' = -\frac{1}{\sin^2(u)}u'$
 $(\sec(u))' = \sec(u)\tan(u)u'$
 $(\csc(u))' = -\csc(u)\cot(u)u'$

Derivative of Inverse Functions

$$(\arcsin(u))' = \frac{u'}{\sqrt{1 - u^2}}$$

$$(\arccos(u))' = \frac{-u'}{\sqrt{1 - u^2}}$$

$$(\arctan(u))' = \frac{u'}{1 + u^2}$$

$$(\operatorname{arccot}(u))' = -\frac{u'}{1 + u^2}$$

$$(\operatorname{arccec}(u))' = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

$$(\operatorname{arccsc}(u))' = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

Integral

Table of Integrals

$$\int (x^k)dx = rac{x^{k+1}}{k+1} + c$$
 $\int (\mathrm{e^x})dx = \mathrm{e^x} + c$
 $\int (\mathrm{a^x})dx = rac{\mathrm{a^x}}{\ln(a)} + c$
 $\int rac{1}{x}dx = \ln(|x|) + c$

Trigonometric Integrals

$$\int \cos^{n}(x)dx = \frac{1}{n}\sin^{n-1}(x) + c$$

$$\int \sin^{n}(x)dx = -\frac{1}{n}\cos^{n-1}(x) + c$$

$$\int \tan^{n}(x)dx = \ln|\sec(x)| + c = \frac{1}{n-1}\tan^{n-1}(x) - \int \tan^{n-2}(x)dx$$

$$\int \cot^{n}(x)dx = \ln|\sin(x)| + c = \frac{-1}{n-1}\cot^{n-1}(x) - \int \cot^{n-2}(x)dx$$

$$\int \sec^{n}(x)dx = \ln|\sec(x) + \tan(x)| + c = \frac{1}{n-1}\sec^{n-2}(x)\tan(x) + \frac{n-2}{n-1}\int \sec^{n-2}(x)dx$$

$$\int \csc^{n}(x)dx = \ln|\csc(x) - \tan(x)| + c = \frac{-1}{n-1}\csc^{n-2}(x)\cot(x) + \frac{n-2}{n-1}\int \csc^{n-2}(x)dx$$

$$\int \sec(x)\tan(x)dx = \sec(x) + c$$

$$\int \csc(x)\cot(x)dx = -\csc(x) + c$$

$$\int \csc^{2}(x)dx = \int \frac{1}{\cos^{2}(x)}dx = \tan(x) + c$$

$$\int \csc^{2}(x)dx = \int \frac{1}{\sin^{2}(x)}dx = -\cot(x) + c$$

$$\int \cosh(x)dx = \sinh(x) + c$$

$$\int \sinh(x) dx = \cosh(x) + c$$

Inverse Trigonometric Integrals

$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \arcsin(\frac{u}{a}) + c = -\arccos(\frac{u}{a}) + c$$

$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a}\arctan(\frac{u}{a}) + c = -\frac{1}{a}\operatorname{arccot}(\frac{u}{a}) + c$$

$$\int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a}\operatorname{arcsec}(\frac{|\mathbf{u}|}{a}) + c = -\frac{1}{a}\operatorname{arccsc}(\frac{|\mathbf{u}|}{a}) + c$$