Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Методы оптимизации»

 $\begin{array}{cccc} & \text{Студент:} & \text{Л. Я. Вельтман} \\ & \text{Преподаватель:} & \text{Т. И. Короткова} \end{array}$

Группа: М8О-307Б

Дата: Оценка: Подпись:

1 Метод конфигураций

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных f(x1, x2) методом кофигурации.
- Что вычисляется в процессе решения: В процессе итерации находятся точки базиса, в которых происходит исследующий поиск и поиск по образцу.
- Алгоритм: Описание алгоритма:
 - 1. Задается начальная точка $x^0=(x_1^0,x_2^0,...,x_n^0)$ и начальные значения приращений $dx_1^0,dx_2^0,...,dx_n^0$, а также минимальная длина шага ξ для останова и необязательный параметр останова максимальное количество иттераций N_{max} . Для корректной работы алгоритма $dx_i^0>\xi$ для $\forall i\in\{1,...,n\}$. Точка x^0 называется точкой старого базиса.
 - 2. Проводится исследующий поиск, в результате которого каждого координата новой точки x^{k+1} вычисляется по алгоритму:
 - (a) Для $\forall i \in \{1, ..., n\}$:

$$x_i^{k+1} = \begin{cases} x_i^k + dx_i^k, if & f(x_1^k, ..., x_i^k + dx_i^k, ..., x_n^k) < f(x_1^k, ..., x_i^k, ..., x_n^j) \\ x_i^k - dx_i^k, if & f(x_1^k, ..., x_i^k - dx_i^k, ..., x_n^k) < \min(f(x_1^k, ..., x_i^k, ..., x_n^k), f(x_1^k, ..., x_i^k + dx_i^k, ..., x_n^k)) \\ x_i^k, otherwise \end{cases}$$

В результате исследующего поиска получается точка x^{k+1} .

Если при этом $x^{k+1} \neq x^k$, то x^{k+1} - точка нового базиса.

Если $x^{k+1}=x^k$, то исследующий поиск неудачен. В этом случае необходимо уменьшить значения приращений $dx_1^j, dx_2^j, ..., dx_n^j$ и повторить исследующий поиск.

- 3. Из точки нового базиса может быть:
 - (а) продолжен исследующий поиск со старыми или новыми значения приращений (шаг 2) алгоритма).
 - (b) проведен поиск по образцу по алгоритму: $x^{(obr)} = x^k + t_k(x^k x^{k-1})$, , где t_k параметр движения(зависит от реализаций, обычно $t_k = 2$).

В точке $x^{(obr)}$ значение функции не вычисляется, из этой точки проводится исследующий поиск, в результате которого получается точка $x^{(ip)}$.

Если $x^{(ip)} \neq x^{(obr)}$, то точка $x^{k+1} = x^{(ip)}$ становится точкой нового базиса, а x^k - точкой старого базиса. Если $x^{(ip)} = x^{(obr)}$, то поиск по образцу

считается неудачным, точки $x^{(ip)}, x^{(obr)}$ - аннулируются, при этом точка x^k остается точкой нового базиса, а x^{k-1} - точкой старого базиса.

4. Процедура 3) повторяется до выполнения критерия окончания счета.

Основной критерий окончания метода: $dx^k \leqslant \xi, dy^k \leqslant \xi$

Изменяемый параметр метода: величины приращений dx^k, dy^k .

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$N_{max} = 8$$

$$j = 0$$

$$x_1^0 = 11, x_2^0 = 7$$

$$dx_1^0 = 1, dx_2^0 = 1$$

Делаем исследующий поиск:

$$dx_1^0 = 1 > 0.01 = \xi$$

 $dx_2^0 = 1 > 0.01 = \xi$

$$dx_2^0 = 1 > 0.01 = \xi$$

 $j < N_{max}$, значит критерий останова не выполнен.

$$f(x_1^j, x_2^j) = 5 \cdot 121 + 3 \cdot 77 + 6 \cdot 49 + 22 + 7 + 9 = 1168$$

1. Для x_1 :

$$f(x_1^j+1,x_2^j)=5\cdot 144+3\cdot 84+6\cdot 49+24+7+9=1306>f(x_1^j,x_2^j)$$
 $f(x_1^j-1,x_2^j)=5\cdot 100+3\cdot 70+6\cdot 49+20+7+9=1040< f(x_1^j,x_2^j)$ Значит $x_1^{j+1}=x_1^j-1=11-1=10$

2. Для x_2 :

$$f(x_1^j, x_2^j + 1) = 5 \cdot 121 + 3 \cdot 88 + 6 \cdot 64 + 22 + 8 + 9 = 1292 > f(x_1^j, x_2^j)$$
 $f(x_1^j, x_2^j - 1) = 5 \cdot 121 + 3 \cdot 66 + 6 \cdot 36 + 22 + 6 + 9 = 1056 < f(x_1^j, x_2^j)$ Значит, $x_2^{j+1} = x_2^j - 1 = 7 - 1 = 6$

$$dx_1^{j+1} = dx_1^j = 1, dx_2^{j+1} = dx_2^j = 1$$

$$j = j + 1 = 1$$

$$x^1 = (10, 6)$$

Конец первой итерации.

• Результат компьютерных вычислений:

Протокол расчета

Выполнил: Вельтман, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод конфигураций

Точность метода: 0.01, $N_{max} = 8$, Количество итераций: 9

N _{HT}	x ₁	x2	f(x1,x2)	dx ₁	dx2	коэф-т k
0	11	7	1168	1	1	
1	10	6	931	1	1	0
2	9	5	722	1	1	0
3	8	4	541	1	1	0
4	7	3	388	1	1	0
5	6	2	263	1	1	0
6	5	1	166	1	1	0
7	4	0	97	1	1	0
8	3	-1	56	1	1	0
9	2	-1	32			

Критерий окончания не выполнен

$$||\mathbf{x} - \mathbf{x}^*|| = 2.39202$$

$$|f(x) - f(x^*)| = 23.20721$$

2 Метод Марквардта

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом Марквардта.
- Что вычисляется в процессе решения: В процессе иттерации для поиска точки x^{k+1} с меньшим значением функции f(x) вычислятся шаг-приращение dx^k для точки x^k при помощи градиента и матрицы Гёссе в этой точке.
- Алгоритм: Перед началом описания алгоритма следует ввести следующие обозначения:

Матрица Гёссе:

$$H_f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

Градиент:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Функции f(x), где $x = (x_1, x_2, ..., x_n)$.

Описание алгоритма:

- 1. Начальная инициализация: Задать точку для начала движения $x^0 = (x_1^0, x_2^0, ..., x_n^0)$, точность приближения ξ , необязательный парамметр максимальное количество иттераций N_{max} , а также выбрать значение параметра λ_0 , которое, впрочем, можно задать как $\lambda_0 = 50 \cdot max(h_{ij}^0)_{0 \le i,j \le n}$, где h_{ij}^k элемент матрицы $H_f(x^k)$ на i-ой строке и j-ом столбце. Начиннаем первую иттерацию при k=0.
- 2. Проверим критерий останова: Если выполнено основное условие $\|\nabla f(x^k)\| < \xi$ или дополнительное $k = N_{max}$, где k назовем номером иттерации, выходим из алгоритма с результатом x^k .

- 3. Вычисление новой точки: Вычислим приращение $dx^k = -[H_f(x^k) + \lambda_k E]^{-1} \nabla f(x^k)$ и новую точку $x^{k+1} = x^k + dx^k$.
 - Если $f(x^{k+1}) < f(x^k)$, значит мы успешно нашли новую точку и можем уменьшить значение параметра λ_{k+1} , например $\lambda_{k+1} = \frac{\lambda_k}{2}$. Положим k = k+1 и перейдем к шагу (2).
 - Если $f(x^{k+1}) \geqslant f(x^k)$, значит поиск неудачен и следует увеличить значение параметра λ_k , например $\lambda_k = \lambda_k \cdot 2$. Параметр k не меняется и повторим шаг (3) для поиска x^{k+1} с новым параметром λ_k .
- 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

 $\xi = 0.01$
 $N_{max} = 5 \ k = 0$
 $x_1^0 = 11, x_2^0 = 7$

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 3x_2 + 2\\ 12x_2 + 3x_1 + 1 \end{pmatrix}$$

$$H_f(x) = \left(\begin{array}{cc} 10 & 3\\ 3 & 12 \end{array}\right)$$

Матрица Гёссе положительно определена, поэтому для ускорения сходмости возьмем небольшой параметр $\lambda_0 = 1$, хотя в общем случае рекоменуется брать значение на порядок больше, чем элементы в матрице Гёссе.

Проверим критерий останова:

$$\|\nabla f(x^k)\| = \left\| \begin{pmatrix} 133\\118 \end{pmatrix} \right\| = \sqrt{133^2 + 119^2} = 177.8004 > 0.01 = \xi$$

 $k = 0 < 5 = N_{max}$, значит критерий останова не выполнен.

Вычислим следующую точку:

$$dx^k = -[H_f(x^k) + \lambda_k E]^{-1} \nabla f(x^k) = \left[\begin{pmatrix} 10 & 3 \\ 3 & 12 \end{pmatrix} + \begin{pmatrix} \lambda_k & 0 \\ 0 & \lambda_k \end{pmatrix} \right]^{-1} \begin{pmatrix} 133 \\ 118 \end{pmatrix} = (-10.261, -6.709)$$

$$x^{k+1} = x^k + dx^k = (11,7) + (-10.261, -6.709) = (0.739, 0.291)$$

$$f(x^{k+1}) = 12.2598 < 1168 = f(x^k) \text{ , значит новая точка найдена успешно.}$$

$$\lambda_{k+1} = \frac{\lambda_k}{2} = 0.5$$

$$k = k+1$$

Конец первой итерации.

• Результат компьютерных вычислений: Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Велыман, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод Марквардта

Точность метода: 0.01, $N_{max} = 5$, Количество итераций: 5

N _{HT}	шаг μ	x ₁	x ₂	$f(x_1,x_2)$	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0	11	7	1168	133	118	177.80045
1	0	0.90493	0.35494	16.97874	12.11409	7.97407	14.503
2	0	-0.0745	-0.02656	8.86236	1.17531	0.4578	1.26133
3	0	-0.17635	-0.03809	8.79356	0.12222	0.01384	0.123
4	0	-0.18767	-0.03657	8.7928	0.01358	-0.00183	0.01371
5	0	-0.189	-0.03613	8.79279	0.0016	-0.00053	0.00168

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00021$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

3 Метод Нелдера-Мида

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом Нелдера-Мида.
- Что вычисляется в процессе решения: В процессе итераций вычисляется центр тяжести набора точек, с целью заменить «худшую» точку из набора на более близкую к минимуму функции.
- **Алгоритм:** Минимизируем функцию f(x), где $x = (x_1, x_2, ..., x_n)$ Описание алгоритма:
 - 1. Hачальная инициализация: Задать начальную систему из n+1 точек (многогранник): $\{x^{0(1)}, x^{0(2)}, ..., x^{0(n+1)}\}$, точность ξ , максимальное количество иттераций N_{max} . Начинаем первую итерацию при k=0.
 - 2. Вычисляется значение функции во всех точках многогранника и выбирается:

лучшая точка $x^{(l)}:f(x^{(l)})=\min_i[f(x^{k(i)})]$ худшая точка $x^{(x)}:f(x^{(x)})=\max_i[f(x^{k(i)})]$

Далее заданная система точек перестраивается, для этого:

- 3. Найдем центр тяжести $x^{(c)} = \frac{(\sum\limits_{i=1}^{n+1} x^{k(i)} x^x)}{n}$ (для функции 2-х переменных точка $x^{(c)}$ середина отрезка, соединяющего точки за исключением худшей)
- 4. Отражение точки: Получим точку отражения $x^{(otr)} = (1+\alpha)x^{(c)} \alpha x^x$.

здесь $\alpha>0$ - параметр отражения (рекомендуемое значение $\alpha=1$)

- 5. Формируется новая система точек (многогранник). Для этого в точке $x^{(otr)}$ вычисляется значение функции, полученное значение сравнивается с $f(x^{(l)})$:
 - Если $f(x^{(otr)}) < f(x^{(l)})$, значит выполняется операция растяжение:

$$x^{(rst)} = x^{(c)} + \gamma (x^{(otr)} - x^{(c)})$$

здесь $\gamma>0$ ($\gamma\neq 0$) - параметр растяжения (рекомендованное значение $\gamma\in [2,3]$) При этом, если $f(x^{(rst)})< f(x^{(otr)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(rst)}$, если же $f(x^{(rst)})\geqslant f(x^{(otr)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(otr)}$.

— Если $f(x^{(l)}) \leq f(x^{(otr)}) < f(x^{(x)})$ выполняется операция сжатие:

$$x^{(szh)} = x^{(c)} + \beta(x^{(x)} - x^{(c)})$$

здесь $\beta > 0 \; (\beta \neq 0)$ - параметр сжатия (рекомендованное значение $\beta \in [0.4, 0.6]$).

При этом, если $f(x^{(szh)}) < f(x^{(otr)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(szh)}$, если $f(x^{(szh)}) \geqslant f(x^{(otr)})$, то в новой системе точек точка $x^{(x)}$ будет заменена на $x^{(otr)}$.

— Если $f(x^{(otr)}) \geqslant f(x^{(x)})$ выполняется операция редукции:

при этом формируется новый многогранник, содержащий точку $x^{(l)}$ с уменьшенными вдвое сторонами:

$$x^{k+1(i)} = x^{(l)} + 0.5(x^{k(i)} - x^{(l)}), i = 1, ..., n+1$$

Таким образом, в результате выполнения этого пункта алгоритма формируется новая система точек (многогранник), причем в случае возникновения операций растяжения и сжатия перестраивается только одна точка - $x^{(x)}$, в случае возникновения операции редукции - все точки, за исключением $x^{(l)}$.

6. Процедура 2) - 5) повторяется до выполнения критерия окончания счета

• Критерий останова: Обозначим
$$\overline{f} = \frac{\displaystyle\sum_{j=1}^{n+1} f(x^{k(j)})}{n+1}.$$

Если $\sqrt{\frac{\displaystyle\sum_{i=1}^{n+1} \left|f(x^{k(i)})-\overline{f}\right|^2}{n+1}} < \xi$ или $k=N_{max},$ то выходим из алгоритма с значе-

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$N_{max} = 5 \ k = 0$$

$$x_1^0 = 11, \ x_2^0 = 7$$

$$\alpha = 1, \ \gamma = 2.8, \ \beta = 0.5$$

$$x^{0(1)} = (-3, 3), \ x^{0(2)} = (-3, -2), \ x^{0(3)} = (11, 7)$$

$$x_l = (-3, 3), x_h = (11, 7), x_q = (-3, -2)$$

Найдем центр тяжести:

$$x_c = \frac{x_l + x_g}{2} = (\frac{-3 - 3}{2}, \frac{3 - 2}{2}) = (-3, 0.5)$$

Отражение точки:

$$x_r=(1+\alpha)x_c-\alpha x_h=(-6,1)-(11,7)=(-17,-6)$$
 $f(x_r)=1936$ $f(x_r)>1168=f(x_h)$, значит делаем сжатие.

Сжатие точки:

$$x_s=\beta x_h+(1-\beta)x_c=(5.5,3.5)+(-1.5,0.25)=(4,3.75)$$
 $f(x_s)=230.125$ $f(x_s)<1168=f(x_h),$ значит заменяем точку $x^{k(3)}=x_h$ в наборе на точку $x_s=(4,3.75).$

Проверим критерий окончания:

$$f(x^{k(1)}) = 78, f(x^{k(2)}) = 88, f(x^{k(3)}) = 230.125$$

 $\overline{f} = \frac{78 + 88 + 230.125}{3} = 132.041667$

$$\sqrt{\frac{\sum_{i=1}^{3} \left| f(x^{k(i)}) - \overline{f} \right|^{2}}{n+1}} = 69.4754403 > 0.01 = \xi$$

$$k = 0 < 5 = N_{max}$$

$$k = k+1$$

Конец первой итерации.

• Результат компьютерных вычислений:

Протокол расчета

Выполнил: Велыман, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод Нелдера-Мида

Точность метода: 0.01, N_{max} = 5, Количество итераций: 6

N _{HT}	α	операция	коэффициент	xı	x ₂	$f(x_1,x_2)$
	П			-3	3	78
0	0 1	редукция		-3	-2	88
				11	7	1168
	П			-3	0.5	45.5
1	1	редукция		-3	3	78
	U			4	5	312
	П			-3	0.5	45.5
2	1	редукция		-3	1.75	52.375
				0.5	2.75	63.5
	П			-1.25	1.625	25.6875
3	1	растяжение	2.8	-3	0.5	45.5
	Ш			-3	1.125	46.59375
	П	редукция		0.325	0.8875	16.65688
4	1			-1.25	1.625	25.6875
	Ш			-3	0.5	45.5
	П	растяжение		-1.3375	0.69375	16.06734
5	1		2.8	0.325	0.8875	16.65688
	Ц			-0.4625	1.25625	18.12672
	П			-0.55	0.325	9.835
6	П			-1.3375	0.69375	16.06734
	П			0.325	0.8875	16.65688

Критерий окончания не выполнен

 $||x - x^{\star}|| = 0.51042$

 $|f(x) - f(x^*)| = 1.04221$

4 Метод сопряженных градиентов

(Для квадратичных функций метод сопряженных градиентов называется методом Флетчера-Ривса).

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом сопряженных градиентов.
- Что вычисляется в процессе решения: В процессе иттерации для поиска точки x^{k+1} с меньшим значением функции f(x) вычислятся длина шага t_k и его направление dx^k для точки x^k при помощи градиента, направления dx^{k-1} с предыдущей иттерации и метода дихотомии.
- Алгоритм: Перед началом описания алгоритма следует ввести следующие обозначения:

Градиент:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Функции f(x), где $x = (x_1, x_2, ..., x_n)$.

Описание алгоритма:

1. Начальная инициализация:

Задать точку для начала движения $x^0=(x_1^0,x_2^0,...,x_n^0)$, точность приближения ξ , необязательный парамметр - максимальное количество иттераций N_{max} , а также выбрать значение параметра точности поиска ϵ и отрезка [a,b] для расчета длин шагов. Начинаем первую иттерацию при k=0 и $dx^0=-\nabla f(x^0)$.

2. Длина шага:

Найдем длину шага $t_k = \underset{t \in [a,b]}{\operatorname{argmin}} |f(x^k + t \cdot dx^k)|$, поиск значения которой производится методом дихотомии на заданном отрезке [a,b] с точностью ϵ .

3. Вычисление следующей точки: Найдем новую точку $x^{k+1} = x^k + t_k \cdot dx^k$ и инкрементируем счетчик k = k+1.

4. Основной критерий окончания метода:

Если выполнено основное условие $\|\nabla f(x^k)\| < \xi$ или дополнительное $k = N_{max}$, где k - номер иттерации, выходим из алгоритма с результатом x^k .

5. Направление поиска:

Найдем новое направление движения

$$dx^k = -\nabla f(x^k) + \beta_{k-1} dx^{k-1}$$
, где коеффицент $\beta_{k-1} = \frac{\|\nabla f(x^k)\|^2}{\|\nabla f(x^{k-1})\|^2}$ и перейдем к шагу (2).

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$\epsilon = 0.001$$

$$[a, b] = [0.05, 0.5]$$

$$N_{max} = 5$$

$$k = 0$$

$$x_1^0 = 11, x_2^0 = 7$$

Градиент функции расчитывается по формуле:

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 3x_2 + 2\\ 12x_2 + 3x_1 + 1 \end{pmatrix}$$

Найдем направление движения:

Определим начальное направление движения $dx^0 = -\nabla f(x^k) = (-133, -118).$

Найдем длину шага:

Методом дихотомии с точностью ϵ на отрезке [a,b] определили оптимальное значение как $t_k=t_0=0.0722$.

Вычислим следующую точку:

Найдем новое значение точки:

$$x^{k+1}=x^k+t_k\cdot dx^k=(11,7)+0.0722\cdot (-133,-118)=(1.4021,-1.5155)$$
 И увеличим значение $k=k+1$

Проверим критерий останова:

$$\|\nabla f(x^k)\| = \left\| \begin{pmatrix} 11.4743 \\ -12.9793 \end{pmatrix} \right\| = \sqrt{(11.4743)^2 + (-12.9793)^2} = 17.3240 > 0.01 = \xi$$

 $k=1<5=N_{max},$ значит критерий останова не выполнен.

Конец первой итерации.

• Результат компьютерных вычислений:

Протокол расчета

Выполнил: Велыман, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод сопряженных градиентов

Точность метода: 0.01, N_{max} = 2, Количество итераций: 3

N _{HT}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f'_{x_1}	$\mathbf{f}'_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0.07216	11	7	1168	133	118	177.80045
1	0.12484	1.40207	-1.51546	27.52301	11.47428	-12.97932	17.32403
2	0.0709	-0.18807	-0.03492	8.79281	0.01456	0.01674	0.02218
3	0	-0.1891	-0.03611	8.79279	0.00066	-0.00059	0.00089

Критерий окончания не выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00011$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

5 Метод Ньютона-Рафсона

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом Ньютона-Рафсона.
- Что вычисляется в процессе решения: В процессе иттерации для поиска точки x^{k+1} с меньшим значением функции f(x) вычислятся длина t_k и направление dx^k шага для точки x^k при помощи градиента и матрицы Гёссе в этой точке.
- **Алгоритм:** Перед началом описания алгоритма следует ввести следующие обозначения:

Матрица Гёссе:

$$H_f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

Градиент:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Функции f(x), где $x = (x_1, x_2, ..., x_n)$.

Описание алгоритма:

- 1. Начальная инициализация:
 - Задать точку для начала движения $x^0=(x_1^0,x_2^0,...,x_n^0)$, точность приближения ξ , необязательный параметр максимальное количество иттераций N_{max} , а также выбрать значение параметра точности поиска ϵ и отрезка [a,b] для расчета длин шагов. Начинаем первую иттерацию при k=0.
- 2. Критерий останова:

Если выполнено основное условие $\|\nabla f(x^k)\| < \xi$ или дополнительное $k = N_{max}$, где k назовем номером иттерации, выходим из алгоритма с результатом x^k .

3. Направление поиска:

Найдем новое направление спуска $dx^k = -H_f^{-1}(x^k)\nabla f(x^k).$

4. Длина шага:

Найдем длину шага $t_k = \underset{t \in [a,b]}{\operatorname{argmin}} |f(x^k + t \cdot dx^k)|$, поиск значения которой производится методом дихотомии на заданном отрезке [a,b] с точностью ϵ .

5. Вычисление следующей точки: Найдем новую точку $x^{k+1} = x^k + t_k \cdot dx^k$, инкрементируем счетчик k = k+1 и перейдем к шагу (2).

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$\epsilon = 0.001$$

$$[a, b] = [0.05, 0.5]$$

$$N_{max} = 5$$

$$k = 0$$

$$x_1^0 = 11, x_2^0 = 7$$

Градиент:

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 3x_2 + 2\\ 12x_2 + 3x_1 + 1 \end{pmatrix}$$

Матрица Гёссе:

$$H_f(x) = \left(\begin{array}{cc} 10 & 3\\ 3 & 12 \end{array}\right)$$

Проверим критерий останова:

$$\|\nabla f(x^k)\| = \left\| \begin{pmatrix} 133\\118 \end{pmatrix} \right\| = \sqrt{133^2 + 119^2} = 177.8004 > 0.01 = \xi$$

 $k = 0 < 5 = N_{max}$, значит критерий останова не выполнен.

Найдем направление движения:

$$dx^{k} = -H_{f}^{-1}(x^{k})\nabla f(x^{k}) = \begin{pmatrix} 10 & 3\\ 3 & 12 \end{pmatrix}^{-1} \begin{pmatrix} 133\\ 118 \end{pmatrix} = (-11.1913, -7.0408)$$

Найдем длину шага:

Методом дихотомии определили оптимальное значение как $t_k = t_0 = 0.5$.

Вычислим следующую точку:

$$x^{k+1}=x^k+t_k\cdot dx^k=(11,7)+0.5\cdot (-11.1913,-7.0408)=(5.4054,3.4820)$$
 $f(x^{k+1})=298.5946<1168=f(x^k),$ значит новая точка найдена успешно. $k=k+1$

Конец первой итерации.

• Результат компьютерных вычислений:

Протокол расчета

Выполнил: Вельтман, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод Ньютона-Рафсона

Точность метода: 0.01, N_{max} = 5, Количество итераций: 6

N _{HT}	шаг t	xı	x ₂	$f(x_1,x_2)$	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1, x_2) $
0	0.5	11	7	1168	133	118	177.80045
1	0.5	5.40541	3.48198	298.59459	66.5	59	88.90022
2	0.5	2.60811	1.72297	81.24324	33.25	29.5	44.45011
3	0.5	1.20946	0.84347	26.90541	16.625	14.75	22.22506
4	0.5	0.51014	0.40372	13.32095	8.3125	7.375	11.11253
5	0.5	0.16047	0.18384	9.92483	4.15625	3.6875	5.55626
6	0	-0.01436	0.0739	9.0758	2.07813	1.84375	2.77813

Критерий окончания не выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.20652$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0.28301$$

6 Выводы

Подводя итог, я узнала новые алгоритмы безусловной оптимизации, выполнив лабораторную работу по курсу «Методы оптимизации». Эти методы позволяют находить минимумы функций в процессе иттерационных приближений. Также я выявила для себя их преимущества и недостатки.

Все изученные алгоритмы показались мне довольно интересными. Выделился алгоритм Нелдера-Мида, так как он не требовал вычисления градиента и матрицы Гёссе. Вследствие этого, появляется возможность работать с негладкими функциями и к тому же исчезают ограничения на положительную определенность матрицы.

Это было интересным опытом, надеюсь, что мне предоставится возможность в будущем применить свои знания, полученные при выполнении данной лабораторной.

Список литературы

- [1] Методы дихотомии URL: http://www.machinelearning.ru/wiki/index.php?title=Методы_дихотомии (дата обращения: 06.03.2020).
- [2] Memod Heлдера-Muда Википедия URL: https://ru.wikipedia.org/wiki/Метод_Нелдера_-_Мида (дата обращения: 06.03.2020).
- [3] Лекция 10: Многометрическая оптимизация НОУ ИНТУИТ URL: https://www.intuit.ru/studies/courses/1020/188/lecture/4931 (дата обращения: 07.03.2020).
- [4] Алгоритм Левенберга-Марквардта Википедия URL: https://ru.wikipedia.org/wiki/Алгоритм_Левенберга_-_Марквардта (дата обращения: 09.03.2020).
- [5] Метод Ньютона Википедия URL: https://ru.wikipedia.org/wiki/Метод_Ньютона (дата обращения: 09.03.2020).
- [6] Метод сопряженных градиентов Википедия URL: https://ru.wikipedia.org/wiki/Метод_сопряжённых_градиентов (дата обращения: 09.03.2020).