The maximum-flow problem flow network

Another application: file transfer (capacity = Kbit/s)

26-1x

26-2a

Flow Conservation: for all $u \in V - \{s, t\}$

Example:

G and f

New $f \leftarrow f + f_p$

26-5x

Net flow across a cut: f(S, T) = 12 + (-4) + 11

Capacity of a cut: c(S, T) = 12 + 0 + 14

Example: |f|=19, f(S, T)=19, and c(S, T)=26.

Net flow across a cut:

f(S, T) = 15 + (-7) + 11

Capacity of a cut:

c(S, T).= 20 + 0 + 14

26-6y

Lemma 26.5: f(S, T) = |f|

(flow conservation)

Corollary 26.6: $|f| \le c(S, T)$

(capacity constraint)

26-6z

The min cut problem

Constructing flow paths

26-9x

26-11a

- * matching ---> flow
- * flow ->--> matching? * integer flow ----> matching
 - * integer flow <----> matching
 - * max integer flow <----> max matching

Max flow on undirected G

