

In the electrical network shown above, the equations for the currents $I_1 - I_6$ are:

$$(R_1+R_4+R_7)I_1 - R_4I_2 - R_7I_4 = V_1$$

 $(R_2+R_4+R_5+R_8)I_2 - R_4I_1 - R_5I_3 - R_8I_5 = 0$
 $(R_3+R_5+R_6+R_9)I_3 - R_5I_2 - R_9I_6 = 0$
 $(R_3+R_6+R_7)I_4 - R_7I_1 = -V_2$
 $(R_4+R_5+R_8)I_5 - R_4I_6 - R_8I_2 = V_2$
 $(R_4+R_8+R_9)I_6 - R_4I_5 - R_9I_3 = -V_3$

where R₁=8, R₂=2, R₃=4, R₄=9, R₅=6, R₆=1, R₇=7, R₈=3, R₉=5, V_1 =130, V_2 =120, and V_3 =170. Write a MATLAB program to calculate and print the currents I_1 - I_6 .

The output of this program should look like this:

I =

- 3.5027
- 1.0847
- -2.6315
- -7.9568
 - 1.9862
- -9.7224

In the triangular truss shown above, the forces in each strut act at the ends only and are parallel to the strut. External forces W and G act vertically at nodes 2 and 5, and external force H acts horizontally at node 4. The truss is supported by the vertical force F_{10} at node 1 and by the vertical force F_{8} and horizontal force F_{9} at node 3. The angles are $\alpha=65^{\circ}$, $\beta=76^{\circ}$, $\gamma=34^{\circ}$, $\delta=49^{\circ}$, and $\epsilon=24^{\circ}$, and the external forces are W=295, G=315, and H=365.

Write a MATLAB program to calculate and print the unknown forces $F_1 - F_{10}$.

The output of this program should look like this:

```
F =
```

208.5133 506.5563 -493.3844 437.6214 -231.8023 -215.7676 55.4067 162.8419 365.0000

447.1581