import numpy as np
import pandas as pd
import math

Read the Dataset

data = pd.read_csv("/content/Churn_Modelling.csv")

data

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
	0	1	15634602	Hargrave	619	France	Female	42.0	2
	1	2	15647311	Hill	608	Spain	Female	41.0	1
	2	3	15619304	Onio	502	France	Female	42.0	8
	3	4	15701354	Boni	699	France	Female	39.0	1
	4	5	15737888	Mitchell	850	Spain	Female	43.0	2
9	995	9996	15606229	Obijiaku	771	France	Male	39.0	5
9	996	9997	15569892	Johnstone	516	France	Male	35.0	10
9	997	9998	15584532	Liu	709	France	Female	36.0	7
9	998	9999	15682355	Sabbatini	772	Germany	Male	42.0	3
9	999	10000	15628319	Walker	792	France	Female	28.0	4
Saved s	succe	ssfully!	X						

data.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	float64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
TsActiveMember	int64

EstimatedSalary float64 Exited int64

dtype: object

import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

Univariate Analysis

plt.scatter(data.index,data['Surname'])
plt.show()

sns.stripplot(y=data['EstimatedSalary'])

Saved successfully!

<matplotlib.axes._subplots.AxesSubplot at 0x7f5a2af88250>

sns.stripplot(x=data['Tenure'],y=data['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5a2ae810d0>

Double-click (or enter) to edit

Bivariate Analysis

sns.violinplot(x='RowNumber',y='CustomerId',data=data,size=4)
plt.show()

Multivariate Analysis

sns.pairplot(data, hue="Geography", size=3)
plt.show()

Saved successfully!

data["Balance"].median()

97198.54000000001

data["EstimatedSalary"].value_counts().plot(kind="bar")

<matplotlib.axes._subplots.AxesSubplot at 0x7f5a19115350>

Handling Missing Values

new_data = data.fillna(0)
new_data

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42.0	2
1	2	15647311	Hill	608	Spain	Female	41.0	1
2	3	15619304	Onio	502	France	Female	42.0	8
3	4	15701354	Boni	699	France	Female	39.0	1
4	5	15737888	Mitchell	850	Spain	Female	43.0	2
9995	9996	15606229	Obijiaku	771	France	Male	39.0	5
9996	9997	15569892	Johnstone	516	France	Male	35.0	10
9997	9998	15584532	Liu	709	France	Female	36.0	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42.0	3
9999	10000	15628319	Walker	792	France	Female	28.0	4

10000 rows × 14 columns

new_data = data.fillna(method="ffill")
new_data

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	Female	42.0	2
1	2	15647311	Hill	608	Spain	Female	41.0	1
2	3	15619304	Onio	502	France	Female	42.0	8
Saved suc	cessfully!	×	Boni	699	France	Female	39.0	1
4	5	15737888	Mitchell	850	Spain	Female	43.0	2
999	9996	15606229	Obijiaku	771	France	Male	39.0	5
9996	9997	15569892	Johnstone	516	France	Male	35.0	10
9997	9998	15584532	Liu	709	France	Female	36.0	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42.0	3
9999	10000	15628319	Walker	792	France	Female	28.0	4

10000 rows × 14 columns

Find outlier and replace outlier

sns.boxplot(data['Age'],data=data)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f5a1ee954d0>

Replace Outlier

sns.boxplot(data['Age'],data=data)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f5a19f60390>

def drop_outliers_IQR(df):

q1=df.quantile(0.25)

q3=df.quantile(0.75)

```
IQR=q3-q1

not_outliers = df[~((df<(q1-1.5*IQR)) | (df>(q3+1.5*IQR)))]

outliers_dropped = outliers.dropna().reset_Age()

return outliers_dropped

def remove_outlier_IQR(data):
    Q1=data.quantile(0.25)
    Q3=data.quantile(0.75)
    IQR=Q3-Q1
    data_final=df[~((data<(Q1-1.5*IQR)) | (data>(Q3+1.5*IQR)))]
    return data final
```

Check categorical column perform encoding

```
print(data['Age'].value_counts())
     37.0
             478
     38.0
             477
     35.0
             473
     36.0
             456
     34.0
            447
     92.0
              2
     82.0
               1
     88.0
               1
     85.0
               1
     83.0
     Name: Age, Length: 70, dtype: int64
data sklearn = data.conv()
 Saved successfully!
                                    abelEncoder
lb make = LabelEncoder()
data_sklearn['Tenure_code'] = lb_make.fit_transform(data['Tenure'])
data_sklearn.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
0	1	15634602	Hargrave	619	France	Female	42.0	2	
1	2	15647311	Hill	608	Spain	Female	41.0	1	83

Split the data into dependent and independent variables.

T 1010100T DOIN 000 FIGURE 1 CHICLE 00.0

x=data.iloc[:,1:4]
y=data.iloc[:,4]

Independent Variable

Χ

	CustomerId	Surname	CreditScore
0	15634602	Hargrave	619
1	15647311	Hill	608
2	15619304	Onio	502
3	15701354	Boni	699
4	15737888	Mitchell	850
9995	15606229	Obijiaku	771
9996	15569892	Johnstone	516
9997	15584532	Liu	709
Saved succe	essfully!	×	772
ס ססס	13020319	vvaikei	792

Dependent Variable

10000 rows × 3 columns

У France 1 Spain 2 France 3 France 4 Spain 9995 France 9996 France 9997 France

```
9998 Germany
9999 France
```

Name: Geography, Length: 10000, dtype: object

scale the independent variables

```
data = data.filter(["CustomerId", "Surname", "Creditscore"], axis = 1)
data.head()
```

	CustomerId	Surname
331	15601274	Hsieh
3222	15575247	Cartwright
4302	15791867	Hicks
3404	15576928	Walsh
9400	15584897	Kuo

split the data into testing and training

```
data = data.sample(frac = 1)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
 Saved successfully!
   X, y, test_size=0.05, random_state=0)
y = np.array(data["Surname"])
print("Shape of y:",y.shape)
print(y)
     Shape of y: (10000,)
     ['Hsieh' 'Cartwright' 'Hicks' ... 'Ugorji' 'Grubb' 'Y?an']
print("Enter the splitting factor (i.e) ratio between train and test")
s_f = float(input())
     Enter the splitting factor (i.e) ratio between train and test
     8
n_train = math.floor(s_f * X.shape[0])
```

```
n_test = math.ceil((1-s_f) * X.shape[0])
X_train = X[:n_train]
y_train = y[:n_train]
X_test = X[n_train:]
y_test = y[n_train:]
print("Total Number of rows in train:",X_train.shape[0])
print("Total Number of rows in test:",X_test.shape[0])
     Total Number of rows in train: 10000
     Total Number of rows in test: 0
print("X:")
print(X)
print("y:")
print(y)
     х:
           CustomerId
     331
             15601274
     3222
             15575247
     4302
             15791867
     3404
             15576928
     9400
             15584897
     . . .
     8283
             15754569
     7766
             15647259
     6801
             15776947
     659
             15603065
     8388
             15806570
     [10000 rows x 1 columns]
     ['Hsieh' 'Cartwright' 'Hicks' ... 'Ugorji' 'Grubb' 'Y?an']
print("X_train:")
 Saved successfully!
PL THE ( )_ CL aTH /
print("\nX test")
print(X_test)
print("\ny_test")
print(y_test)
```

Colab paid products - Cancel contracts here

✓ 0s completed at 2:42 PM

Saved successfully!