Computer Organiation Laboratory

CS39001

Verilog Assignment 1

Group 15

Gaurav Malakar 20CS10029

Prakhar Singh 20CS10045

Half-Adder

Inputs		Outputs		
a	b	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	1	1	

The boolean expressions for the above table are:

$$s = a \oplus b$$

$$c = a \& b$$

Full-Adder

Inputs			Outputs	
a	b	C ₀	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
1	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The boolean expressions for the above table are:

$$s = a \oplus b \oplus c_0$$

$$c = a \cdot b + b \cdot c_0 + c_0 \cdot a$$

Synthesis Summary

Circuit	Delay (in ns)	
8-bit RCA	3.471	
16-bit RCA	6.167	
32-bit RCA	11.559	
64-bit RCA	22.343	

Question: How can you use the above circuit, to compute the difference between two n-bit numbers?

Solution: Given two n-bit numbers, x and y, we want to calculate x - y using a Ripple Carry Adder. For this, we can use an n-bit Ripple Carry Adder.

We know,

$$x - y = x + (-y)$$

Here, (-y) is the 2's complement of y
2's complement of $y = ^{\sim}y + 1$

So, we can calculate x - y by giving the following inputs to our n-bit RCA:

input1 = x, input2 = $\sim y$, carry-in = 1

To provide ~y as an input, we can put NOT gates in all the input ports of y and a NOT gate in the input port of carry-in (as carry-in is provided as 0 generally). A more elegant way to do this will be to connect all these NOT gates via a switch such that if the switch is on, the inputs are received through NOT gates. Otherwise, we get the inputs normally. This will allow us to calculate both x-y and x+y in the same circuit, depending on whether the switch is on or off.

NOTE: Here we are using signed numbers for input and output.