### POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Matematica

#### Tesi di Laurea Magistrale

### Some recent results on the norm of localization operators



| Relatori           | Candidato           |
|--------------------|---------------------|
| Prof. Fabio Nicola | Federico Riccardi   |
| firma dei relatori | firma del candidato |
|                    |                     |

Anno Accademico 2022-2023

# Indice

| 1 | Introduction                            | 3 |
|---|-----------------------------------------|---|
| 2 | Basics of functional analysis           | 4 |
| 3 | Short-Time Fourier Transform            | 5 |
|   | 3.1 STFT                                | 5 |
|   | 3.1.1 Properties of STFT                | 5 |
|   | 3.2 Fock Space and Bargmann Transform   | 5 |
|   | 3.3 Faber-Krahn Inequality for the STFT |   |
| 4 | Localization Operators                  |   |
|   | 4.1 Definition and properties           | 6 |
|   | 4.2 Eigenvalues and eigenfunctions      |   |
| 5 | Recent results from Nicola-Tilli        | 7 |
|   | 5.1 Case $q = +\infty$                  | 7 |
|   | 5.2 Generic case                        | 7 |

# Sommario

## Introduction

# Basics of functional analysis

### **Short-Time Fourier Transform**

- 3.1 STFT
- 3.1.1 Properties of STFT
- 3.2 Fock Space and Bargmann Transform
- 3.3 Faber-Krahn Inequality for the STFT

Theorem from [nicolatilli\_fk]

**Theorem 3.1.** For every  $f \in L^2(\mathbb{R}^d)$  such that  $||f||_{L^2} = 1$  and every measurable subset  $\Omega \subset \mathbb{R}^{2d}$  with finite measure we have

$$\int_{\Omega} |\mathcal{V}f(x,\omega)|^2 dx d\omega \le G(|\Omega|)$$

where G(s) is given by

$$G(s) := \int_0^s e^{(-d!\tau)^{1/d}} d\tau$$
 (3.1)

# **Localization Operators**

- 4.1 Definition and properties
- 4.2 Eigenvalues and eigenfunctions

## Recent results from Nicola-Tilli

#### 5.1 Case $q = +\infty$

#### 5.2 Generic case

Let's now consider the case where both p and q are neither 1 or  $+\infty$ . The result presented in [nicolatili\_norm] include the case ...

$$||L_F||_{L_2 \to L_2} \le \min\{\kappa_p^{d\kappa_p} A, \, \kappa_q^{d\kappa_q} B\}$$

Suppose that the minimum is given by  $\kappa_p^{d\kappa_p}A$ , therefore

$$\kappa_p^{d\kappa_p} A \le \kappa_q^{d\kappa_q} B \iff \frac{B}{A} \ge \left(\frac{\kappa_p^{\kappa_p}}{\kappa_q^{\kappa_q}}\right)^d$$

We can check if the solution of the problem with just the  $L^p$  bound solves also the problem with both bounds, that is  $F|_{L^q} \leq B$ , where F is given by ...

$$||F||_{L^q}^q = \int_{\mathbb{R}^{2d}} |F(z)|^q dz = \dots = \lambda^q \left(\frac{p-1}{q}\right)^d$$

Since we want F to satisfy the  $L^q$  constraint we should have

$$\frac{B}{A} \ge \kappa_p^{d\left(\frac{1}{q} - \frac{1}{p}\right)} \left(\frac{p}{q}\right)^{\frac{d}{q}}$$

It would be nice if this bound was less restrictive than the first one. Unfortunately that's not the case, in fact it's always true that

$$\left(\frac{p'}{q'}\right)^{\frac{1}{q'}} \left(\frac{p}{q}\right)^{\frac{1}{q}} \ge 1$$

Following the path in [nicolatilli\_norm] we obtain ...

$$G'(u(t)) = \lambda_1 t^{p-1} + \lambda_2 t^{q-1} \implies u(t) = \frac{1}{d!} \left[ -\log\left(\lambda_1 t^{p-1} + \lambda_2 t^{q-1}\right) \right]^d, \ t \in (0, M)$$

Our main goal now is to show that multipliers  $\lambda_1, \lambda_2$  are unique and both positive.

The easiest fact to prove is that both multipliers are not 0. In fact if one, say  $\lambda_2$ , was 0, we would obtain that the solution of our problem is the same as the one with just the  $L^p$  bound. But we already know that this function does not satisfy the  $L^q$  constraint hence it is impossible that  $\lambda_2 = 0$ .

Suppose now that one of the multipliers, say always  $\lambda_2$ , is negative. Consider an interval  $[a,b] \subset (0,M)$  and a variation  $\eta \in L^{\infty}(0,M)$  supported in [a,b]. Thanks to the Gram-Schmidt process we can construct a variation orthogonal to  $t^{p-1}$ . Since  $\eta$  is arbitrary we can suppose that it is not orthogonal to  $t^{q-1}$ , in particular we can suppose that  $\int_a^b t^{q-1} \eta(t) dt < 0$ . Therefore the directional derivative of G along  $\eta$  is:

$$\int_{a}^{b} G'(u(t))\eta(t)dt = \int_{a}^{b} (\lambda_{1}t^{p-1} + \lambda_{2}t^{q-1})\eta(t)dt =$$

$$= \lambda_{2} \int_{a}^{b} t^{q-1}\eta(t)dt > 0$$

which contradicts the fact that u is a maximizer.

Now that we now that both multipliers are positive we can prove that u is continuous, which is equivalent to say that M = T, where T is the unique positive number such that  $\lambda_1 T^{p-1} + \lambda_2 T^{q-1} = 1$  (uniqueness of T follows from the positivity of multipliers). We start supposing that M < T which means that  $\lim_{t \to M^-} u(t) > 0$ . Consider the following variation

$$\eta(t) = \begin{cases} -1 + \alpha \frac{t}{M} + \beta, & t \in (M - M\delta, M) \\ 1, & t \in (M, M + M\delta) \\ 0, & \text{otherwise} \end{cases}$$

where  $\delta > 0$  is small enough so that  $M - M\delta > 0$  and  $M + M\delta < T$  while  $\alpha$  and  $\beta$  are constants, depending on  $\delta$ , to be found. Since we want this to be an admissible variation we need to impose that  $\eta$  is orthogonal to  $t^{p-1}$  and  $t^{q-1}$ . For example, the first condition is:

$$0 = \int_{M-M\delta}^{M+M\delta} t^{p-1} \eta(t) dt = -\int_{M-M\delta}^{M} t^{p-1} dt + \int_{M-M\delta}^{M} t^{p-1} \left(\alpha \frac{t}{M} + \beta\right) dt + \int_{M}^{M+M\delta} t^{p-1} dt \stackrel{\tau = t/M}{=}$$

$$= M^{p} \int_{1-\delta}^{1} \tau^{p-1} (\alpha \tau + \beta) d\tau - M^{p} \int_{1-\delta}^{1} \tau^{p-1} d\tau + M^{p} \int_{1}^{1+\delta} \tau^{p-1} d\tau \stackrel{1/\delta}{\Longrightarrow}$$

$$\implies \int_{1-\delta}^{1} \tau^{p-1} (\alpha \tau + \beta) d\tau = \alpha \int_{1-\delta}^{1} \tau^{p} d\tau + \beta \int_{1-\delta}^{1} \tau^{p-1} d\tau = \int_{1-\delta}^{1} \tau^{p-1} d\tau - \int_{1}^{1+\delta} \tau^{p-1} d\tau$$

The equation stemming from the orthogonality with  $t^{q-1}$  is analogous. Therefore we obtained a nonhomogeneous linear system for  $\alpha$  and  $\beta$  VA RESO MEGLIO

$$\begin{pmatrix} f_{1-\delta}^1 \tau^p d\tau & f_{1-\delta}^1 \tau^{p-1} d\tau \\ f_{1-\delta}^1 \tau^q d\tau & f_{1-\delta}^1 \tau^{q-1} d\tau \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} f_{1-\delta}^1 \tau^{p-1} d\tau - f_{1}^{1+\delta} \tau^{p-1} d\tau \\ f_{1-\delta}^1 \tau^{q-1} d\tau - f_{1}^{1+\delta} \tau^{q-1} d\tau \end{pmatrix}$$
(5.1)

This system has a unique solution if and only if the determinant of the matrix is not 0. If we see it as a function of  $\delta$  we can expand the terms in a Taylor series:

$$\begin{split} & \int_{1-\delta}^{1} \tau^{p} d\tau \int_{1-\delta}^{1} \tau^{q-1} d\tau - \int_{1-\delta}^{1} \tau^{q} d\tau \int_{1-\delta}^{1} \tau^{p-1} d\tau = \\ & = \left(1 - \frac{p}{2}\delta + \frac{p(p-1)}{6}\delta^{2} + o(\delta^{2})\right) \left(1 - \frac{q-1}{2}\delta + \frac{(q-1)(q-2)}{6}\delta^{2} + o(\delta^{2})\right) + \\ & - \left(1 - \frac{q}{2}\delta + \frac{q(q-1)}{6}\delta^{2} + o(\delta^{2})\right) \left(1 - \frac{p-1}{2}\delta + \frac{(p-1)(p-2)}{6}\delta^{2} + o(\delta^{2})\right) = \\ & = (1-1) + \delta \left(-\frac{q-1}{2} - \frac{p}{2} + \frac{p-1}{2} + \frac{q}{2}\right) \dots \\ & = \frac{p-q}{12}\delta^{2} + o(\delta^{2}) \end{split}$$

therefore the determinant is always non 0.

The derivative of G along  $\eta$  is nonpositive because u is supposed to be a maximizer, therefore

$$0 \ge \int_{M-M\delta}^{M+M\delta} G'(u(t))\eta(t)dt = -\int_{M-M\delta}^{M} \left(\lambda_{1}t^{p-1} + \lambda_{2}t^{q-1}\right)dt + \int_{M-M\delta}^{M} \left(\lambda_{1}t^{p-1} + \lambda_{2}t^{q-1}\right)\left(\alpha\frac{t}{M} + \beta\right)dt + \int_{M}^{M+M\delta} dt =$$

$$= -\int_{M-M\delta}^{M} \left(\lambda_{1}t^{p-1} + \lambda_{2}t^{q-1}\right)dt + \lambda_{1}M^{p} \int_{1-\delta}^{1} t^{p-1}(\alpha t + \beta)dt +$$

$$+ \lambda_{2}M^{q} \int_{1-\delta}^{1} t^{q-1}(\alpha t + \beta)dt + M\delta$$

Dividing by  $M\delta$  and rearranging we obtain:

$$\int_{M-M\delta}^{M} \left( \lambda_1 t^{p-1} + \lambda_2 t^{q-1} \right) dt \ge 1 + \lambda_1 M^{p-1} \int_{1-\delta}^{1} t^{p-1} (\alpha t + \beta) dt + \lambda_2 M^{q-1} \int_{1-\delta}^{1} t^{q-1} (\alpha t + \beta) dt$$
(5.2)

We notice that the last two terms are exactly the one that appear in the orthogonality condition, therefore to understand their behavior as  $\delta$  approaches 0 we need to study the right-hand side of the system (5.1). If we expand the first term in its Taylor series with respect to  $\delta$  we have:

$$\left(1 - \frac{p-1}{2}\delta + o(\delta)\right) - \left(1 + \frac{p-1}{2}\delta + o(\delta)\right) = -(p-1)\delta + o(\delta)$$

and the same is for the other term. Since they both are of order  $\delta$  if we let  $\delta \to 0^+$  in (5.2) we obtain

$$\lambda_1 M^{p-1} + \lambda_2 M^{q-1} > 1$$

Since the function  $\lambda_1 t^{p-1} + \lambda_2 t^{q-1}$  is strictly increasing (because  $\lambda_1$  and  $\lambda_2$  are both positive)  $M \geq T$  which is absurd because we supposed that M < T.

Lastly we shall prove that multipliers  $\lambda_1, \lambda_2$ , and hence maximizer, are unique. For this proof it is convenient to express u in a slightly different way:

$$u(t) = \frac{1}{d!} \left[ \text{Log}_{-} \left( (c_1 t)^{p-1} + (c_2 t)^{q-1} \right) \right]^d$$

To emphasize that u is parametrized by  $c_1, c_2$  we may write  $u(t; c_1, c_2)$ . Now we define

$$f(c_1, c_2) = p \int_0^T t^{p-1} u(t; c_1, c_2) dt, \quad g(c_1, c_2) = q \int_0^T t^{q-1} u(t; c_1, c_2) dt$$

We want to highlight that, even if not explicit, also T depends on  $c_1$  and  $c_2$ . Nevertheless these functions are differentiable since both T and u are differentiable with respect to  $(c_1, c_2)$ , functions  $t^{p-1}u$  and  $t^{q-1}u$  and their derivatives are bounded in (0, T). Our maximizer u satisfies the constraints only if  $f(c_1, c_2) = A^p$ ,  $g(c_1, c_2) = B^q$ . Therefore to prove uniqueness of the maximizer we need to show that level sets  $\{f = A^p\}$  and  $\{g = B^q\}$  intersect in only a point.

First of all we are studying endpoints. For example, if  $c_2 = 0$ :

$$f(c_1,0) = p \int_0^{1/c_1} t^{p-1} \frac{1}{d!} \left[ -\log(c_1 t)^{p-1} \right]^d dt \stackrel{\tau = c_1 t}{=}$$

$$= \frac{p(p-1)^d}{c_1^p d!} \int_0^1 \tau^{p-1} \left[ -\log(\tau) \right]^d d\tau = \frac{\kappa_p^d}{c_1^p} = A^p \implies c_{1,f} = \frac{\kappa_p^{d/p}}{A}$$

The same can be done for g and setting  $c_1 = 0$  thus we obtain four points

$$c_{1,f} = \frac{\kappa_p^{d/p}}{A}, \ c_{1,g} = \left(\frac{p-1}{q}\right)^{d/q} \frac{1}{B}, \ c_{2,f} = \left(\frac{q-1}{p}\right)^{d/p} \frac{1}{A}, \ c_{2,g} = \frac{\kappa_q^{d/q}}{B}$$

In the regime we are considering one has that  $c_{1,f} < c_{1,g}$  and  $c_{2,f} > c_{2,g}$ , indeed

$$\begin{aligned} c_{1,f} &< c_{1,g} \iff \frac{\kappa_p^{d/p}}{A} < \left(\frac{p-1}{q}\right)^{d/q} \frac{1}{B} \iff \frac{B}{A} < \kappa_p^{d\left(\frac{1}{q} - \frac{1}{p}\right)} \left(\frac{p}{q}\right)^{d/q} \\ c_{2,f} &> c_{2,g} \iff \left(\frac{q-1}{p}\right)^{d/p} \frac{1}{A} > \frac{\kappa_q^{d/q}}{B} \iff \frac{B}{A} > \kappa_q^{d\left(\frac{1}{p} - \frac{1}{q}\right)} \left(\frac{q}{p}\right)^{d/p} \end{aligned}$$

Since there is this dispositions of these points we expect there is an intersection between the level sets. Firstly we notice that, for every  $c_1 \in (0, c_{1,f})$  there exist a unique value of  $c_2$  for which  $f(c_1, c_2) = A^p$ . Indeed, from previous computations we notice that  $f(c_1, 0)$  is

a decreasing function hence  $f(c_1,0) > A^p$ , while  $\lim_{c_2 \to +\infty} f(c_1,c_2) = 0$ . The uniqueness of this value follows from strict monotonicity of  $f(c_1,\cdot)$ , in fact:

$$\frac{\partial f}{\partial c_1}(c_1, c_2) = -\frac{p(p-1)}{(d-1)!}c_1^{p-2} \int_0^T \frac{t^{2(p-1)}}{(c_1 t)^{p-1} + (c_2 t)^{q-1}} \left[ -\log\left((c_1 t)^{p-1} + (c_2 t)^{q-1}\right) \right]^{d-1} dt$$
(5.3)

is always strictly negative. We point out that the term  $\frac{\partial T}{\partial c_1}(c_1, c_2)u(T; c_1, c_2)$  is zero because u is 0 in T. The same is true for g, therefore on the interval  $(0, c_{1,f})$  the level sets of f and g can be seen as the graph of two functions  $\varphi, \gamma$ . Since  $\frac{\partial f}{\partial c_2}, \frac{\partial g}{\partial c_2} < 0$  for every  $(c_1, c_2)$  from the implicit function theorem we have that  $\varphi$  and  $\gamma$  are differentiable with respect to  $c_1$ .

#### Possibile disegno??

After defining  $\varphi$  and  $\gamma$  we want to prove that  $(\varphi - \gamma)' < 0$ . Still from the implicit function theorem we have

$$\frac{\mathrm{d}}{\mathrm{d}c_{1}}(\varphi - \gamma)(c_{1}) = -\frac{\frac{\partial f}{\partial c_{1}}(c_{1}, \varphi(c_{1}))}{\frac{\partial f}{\partial c_{2}}(c_{1}, \varphi(c_{1}))} + \frac{\frac{\partial g}{\partial c_{1}}(c_{1}, \gamma(c_{1}))}{\frac{\partial g}{\partial c_{2}}(c_{1}, \gamma(c_{1}))} < 0 \iff \frac{\partial f}{\partial c_{1}}(c_{1}, \varphi(c_{1})) \frac{\partial g}{\partial c_{2}}(c_{1}, \gamma(c_{1})) - \frac{\partial f}{\partial c_{2}}(c_{1}, \varphi(c_{1})) \frac{\partial g}{\partial c_{1}}(c_{1}, \gamma(c_{1})) > 0$$

As for (5.3) the other derivatives are computed. To simplify the notation we define  $h(t; c_1, c_2) = \frac{1}{(d-1)!} \frac{1}{(c_1 t)^{p-1} + (c_2 t)^{q-1}} \left[ -\log \left( (c_1 t)^{p-1} + (c_2 t)^{q-1} \right) \right]^{d-1}$ . From Fubini's theorem we can write the product of the integrals as a double integral

$$p(p-1)q(q-1)c_1^{p-2}\gamma(c_1)^{q-2} \iint_{[0,T]^2} h(t;c_1,\varphi(c_2))h(s;c_1,\gamma(c_2))t^{2(p-1)}s^{2(q-1)}dtds - p(q-1)q(p-1)c_1^{p-2}\varphi(c_1)^{q-2} \iint_{[0,T]^2} h(t;c_1,\varphi(c_2))h(s;c_1,\gamma(c_2))t^{p+q-2}s^{p+q-2}dtds$$

At the intersection point  $\varphi(c_1) = \gamma(c_1)$  hence the sign of the previous expression depends only on the sign of

$$\begin{split} & \iint_{[0,T]^2} h(t;c_1,\varphi(c_1)) h(s;c_1,\gamma(c_1)) \left( t^{2(p-1)} s^{2(q-1)} - t^{p+q-2} s^{p+q-2} \right) dt ds = \\ & = \iint_{[0,T]^2} h(t;c_1,\varphi(c_1)) h(s;c_1,\gamma(c_1)) t^{p-2} s^{q-2} \left( t^p s^q - t^q s^p \right) dt ds \end{split}$$

In order to simplify the notation once again we set  $H(t, s; c_1) = h(t; c_1, \varphi(c_1))h(s; c_1, \gamma(c_1))$ . Let  $T_1 = [0, T]^2 \cap \{t > s\}$  and  $T_2 = [0, T]^2 \cap \{t < s\}$ . We can split the above integral in two parts

$$\iint_{T_1} H(t,s;c_1) t^{p-2} s^{q-2} \left( t^p s^q - t^q s^p \right) dt ds + \iint_{T_2} H(t,s;c_1) t^{p-2} s^{q-2} \left( t^p s^q - t^q s^p \right) dt ds$$

We can exchange t with s in the second integral. With this change of variables the domain of integration becomes  $T_1$  and since H is symmetric in t and s we have that the previous quantity is equal to

$$\iint_{T_1} H(t, s; c_1) \left( t^{p-2} s^{q-2} - t^{q-2} s^{p-2} \right) \left( t^p s^q - t^q s^p \right) dt ds =$$

$$\iint_{T_1} H(t, s; c_1) \frac{1}{t^2 s^2} \left( t^p s^q - t^q s^p \right)^2 dt ds$$

which is strictly positive.

Now we are able to prove the uniqueness of multipliers.

First of all, since  $(\varphi - \gamma)' < 0$  whenever  $\varphi(c_1) = \gamma(c_1)$ , for every point of intersection there exist  $\delta > 0$  such that  $\varphi(t) > \gamma(t)$  for  $t \in (c_1 - \delta, c_1)$  while  $\varphi(t) < \gamma(t)$  for  $t \in (c_1, c_1 + \delta)$ . Define  $c_1^* := \sup\{c_1 \in [0, c_{1,f}] : \forall t \in [0, c_1] \ \varphi(t) \ge \gamma(t)\}$ . This is an intersection point between  $\varphi$  and  $\gamma$  (if  $\varphi(c_1^*) > \gamma(c_1^*)$  due to continuity there would be  $\varepsilon > 0$  such that  $\varphi(c_1^* + \varepsilon) > \gamma(c_1^* + \varepsilon)$  which contradicts the definition of  $c_1^*$ ) and it is the first one, because we saw that after every intersection point there is an interval where  $\varphi < \gamma$ . Lastly, since  $\varphi(0) > \gamma(0)$  and  $\varphi(c_{1,f}) = 0 < \gamma(c_1, f)$  we have that  $0 < c_1^* < c_{1,f}$ .

Suppose now that there is a second point of intersection  $\tilde{c}_1$  after the first one. Since immediately after  $c_1^*$  we have that  $\varphi$  becomes smaller than  $\gamma$  this second point of intersection is given by  $\tilde{c}_1 = \sup\{c_1 \in [c_1^*, c_{1,f}] : \forall t \in [c_1^*, c_1] \ \varphi(t) \leq \gamma(t)\}$ . Considering that this is an intersection point, there exist an interval before  $\tilde{c}_1$  where  $\varphi$  is strictly grater than  $\gamma$  which is absurd, hence  $c_1^*$  is the only intersection point between  $\varphi$  and  $\gamma$ .

Therefore  $(c_1^*, \varphi(c_1^*) = c_2^*)$  is the unique pair of multipliers for which  $p \int_0^T t^{p-1} u(t; c_1^*, c_2^*) dt = A^p$ ,  $q \int_0^T t^{q-1} u(t; c_1^*, c_2^*) dt = B^q$  and in the end  $u(t; c_1^*, c_2^*)$  is the unique maximizer for **CITARE PROBLEMA VARIAZIONALE**