- Definite Integral and sold

* Riemann sum (1) onles +

$$\sum_{i=1}^{n} K = \frac{n(n+1)}{2}$$

$$\mathfrak{G} = \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n \leftarrow 2^{n}$$

$$\mathfrak{G} = \alpha_1 \times \alpha_2 \times \alpha_3 \times \dots \times \alpha_n \times$$

$$\sum_{k=1}^{n} a^{k} = \underbrace{\alpha \left(1 - \alpha^{n}\right)}_{1 - \alpha}$$

$$3 \quad \text{Some series}$$

$$4 \quad \frac{n}{1} \quad \kappa^3 \quad = \quad \frac{n^2(n+1)^2}{4}$$

$$\frac{1}{2} K^2 = \frac{n(n-1)(2n+1)}{6}$$

Richann Sums

مع الله بالمستمالة من المشمل في الأراث و موقول ما المستمال المستمال المستمال المستمال المستمال المستمال المستم الما المستمال المستم

$$A = \sum_{k=1}^{n} P(\hat{\beta}_{k}) \cdot (x_{k} - x_{k+1}) \longrightarrow \mathbb{D}$$

If
$$\begin{cases} x_{\kappa} - x_{\kappa-1} = \frac{b-a}{n} \\ \int_{\kappa} = x_{\kappa} \end{cases}$$

Inserting @ into O

& Then
$$A \simeq \sum_{k=1}^{n} f(x_k) \cdot \frac{b-a}{n} \rightarrow \Im$$

where
$$x_i - x_0 = \frac{b-a}{n}$$

$$x_{K} = \alpha + K\left(\frac{b-a}{n}\right) \rightarrow \Theta$$

Inserting 1 into 3 To get:

(
$$\frac{1}{2}$$
 Lim $\frac{1}{n}$ $\frac{b-a}{n}$. $\frac{1}{2}$ $\frac{b-a}{n}$. $\frac{1}{2}$ $\frac{b-a}{n}$. $\frac{1}{2}$

Ex. () Find the area bounded by $P(x) = x^3$. x = 0, y = 0 and x = 1 using Riemann. sums

Solution

b=1 , a = 0

80 b-a=1

Their certain Will with a Riemann amount - was a

(and the last of t

→ & Durlin

ex. @ Find the upper and lower Riemann #### of F(x) = X2 on [0,1] which correspond to the Partition

1 To get upper sums A,

 $\int_{1}^{2} = \frac{1}{4}$ $\int_{$

A = 15

To get the lower sums Az

المال المالي من المالية المالية المن المال المال من المالي من المراد ا

To lace a server so the

الله موالفة م الله المعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة المتعالمة ال

$$A_2 \leqslant A \leqslant A_1$$

Ex. 3 To you

Evaluate the area bounded by the P(x) = 3x2, x=1, x=3 and x dxis

using Riemann sums

solution = 26