

GAN: Geometria Analítica

Prof.: Francielle Kuerten Boeing

Ângulo entre dois planos

Sendo os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, o ângulo θ entre os planos π_1 e π_2 é o menor ângulo entre vetores normais de π_1 e π_2 :

$$\cos\theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|},$$

$$com \overrightarrow{n_1} = (a_1, b_1, c_1),
\overrightarrow{n_2} = (a_2, b_2, c_2) e
0 \le \theta \le \frac{\pi}{2}.$$

Ângulo entre dois planos

Exemplo 8: Determine o ângulo entre os planos

$$\pi_1$$
: $2x - 3y + 5z - 8 = 0$

e

$$\pi_2$$
: $3x + 2y + 5z - 4 = 0$.

Condição de paralelismo

Sendo os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, com $\overrightarrow{n_1} = (a_1, b_1, c_1)$ e $\overrightarrow{n_2} = (a_2, b_2, c_2)$, temos

• π_1 e π_2 são paralelos se $\overrightarrow{n_1} \parallel \overrightarrow{n_2}$, ou seja, se

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}.$$

Se, além disso, tivermos

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$$

então π_1 e π_2 são coincidentes.

Condição de perpendicularismo

Sendo os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$, com $\overrightarrow{n_1} = (a_1, b_1, c_1)$ e $\overrightarrow{n_2} = (a_2, b_2, c_2)$, temos

• π_1 e π_2 são perpendiculares se $\overrightarrow{n_1} \perp \overrightarrow{n_2}$, ou seja, se

$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0.$$

Ângulo entre reta e plano

Seja r uma reta com vetor diretor \vec{v} e π um plano com vetor normal \vec{n} :

O ângulo ϕ entre a reta r e o plano π é o complemento do ângulo θ entre \vec{n} e \vec{v} . Logo,

$$\sin \phi = \frac{|\vec{n} \cdot \vec{v}|}{|\vec{n}||\vec{v}|},$$

$$com 0 \le \phi \le \frac{\pi}{2}.$$

Ângulo entre reta e plano

Exemplo 9: Determine o ângulo formado pela reta r: $\begin{cases} y = -2x \\ z = 2x + 1 \end{cases}$ e o plano π : x - y + 5 = 0.

Seja r uma reta com vetor diretor \vec{v} e π um plano com vetor normal \vec{n} . Então,

(1) Se
$$\vec{v} \perp \vec{n}$$
,

Seja r uma reta com vetor diretor \vec{v} e π um plano com vetor normal \vec{n} . Então,

(1) Se $\vec{v} \perp \vec{n}$, então r é paralela ao plano π .

(2) Se $\vec{v} \parallel \vec{n}$,

(2) Se $\vec{v} \parallel \vec{n}$, então r é perpendicular ao plano π .

- (3) Para r estar contida em π , devemos ter
- $\vec{v} \perp \vec{n}$;
- Um ponto A de r pertence a π .

Também podemos garantir que r está contida em π se dois pontos de r estão em π .

Ângulo entre reta e plano

Exemplo 10: Determine os valores de m e n para que a reta o ângulo formado pela reta

$$r: \begin{cases} x = 2 + t \\ y = 1 + t \end{cases}$$
 esteja contida no plano π : $mx + ny + 2z - 1 = 0$. $z = -3 - 2t$

Interseção de dois planos

Exemplo 11: Considere os planos π_1 : 2x + y - z + 5 = 0 e π_2 : x + y + 3z - 3 = 0, do exercício anterior. Encontre a reta de interseção entre π_1 e π_2 .

Interseção de dois planos

Exemplo 11: Considere os planos π_1 : 2x + y - z + 5 = 0 e π_2 : x + y + 3z - 3 = 0, do exercício anterior. Encontre a reta de interseção entre π_1 e π_2 .

Observação: Para encontrar a interseção entre uma reta e um plano, o processo é análogo ao do exemplo anterior. Primeiro verificamos se a reta é paralela ao plano. Se não, combinamos as equações da reta e do plano para encontrar o ponto único de interseção.