CSE 4125: Distributed Database Systems Chapter – 4 (Part – D)

Distributed Database Design

The Design of Vertical Fragmentation

Vertical Fragmentation

- ✓ Partitioning the attributes of a relation into a set of smaller relations.
 - So that many of the applications will run on only one fragment.
- ✓ Vertical Fragmentation can be done in the following ways:
 - -- Clustering: sets can be overlapped
 - -- Partitioning: sets must be disjoint.

Approaches:

Grouping (clustering): Progressively assigning each attribute to constitute clusters.

Splitting (partitioning): Progressively splitting global relations into fragment.

A B C D A B

Bond Energy Algorithm (BEA)

Steps:

- 1. Attribute Usage Matrix
- 2. Attribute Affinity Matrix
- 3. Clustered Affinity Matrix
- 4. Partitioning

Bond Energy Algorithm (BEA) <u>Example</u>

PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumental	150,000	Montreal
P2	Database Dev	135,000	New York
Р3	CAM/CAD	250,000	New York
P4	Maintenance	310,000	Orlando

Consider the following 4 queries for relation PROJ, where PNO is the primary key column of the table.

q_1 :	SELECT	BUDGET	q_2 : SELECT	PNAME,BUDGET
	FROM	PROJ	FROM	PROJ
	WHERE	PNO=Value		
q_3 :	SELECT	PNAME	q_4 : SELECT	SUM (BUDGET)
	FROM	PROJ	FROM	PROJ
	WHERE	LOC=Value	WHERE	LOC=Value

Assume that, **PROJ** relation is located in three different sites. The access frequency of each query for each site is stated below – **S1 S2 S3**

q1	15	20	10	
q2	5	0	0	FM
q3	25	25	25	1 101
q4	3	0	0	

Using the Bond Energy Algorithm, group the columns of the table and after that split the columns vertically at required position with the help of goal function.

Note: You should show Attribute Affinity Matrix, Clustered Affinity Matrix, and the calculation for each of the ordering. Take the first two columns as the starting bonding state.

Step 1: Attribute Usage Matrix

Let, A1 = PNO, A2 = PNAME, A3 = BUDGET, A4 = LOC

	A1	A2	А3	A4
Q1	1	0	1	0
Q2	0	1	1	0
Q3	0	1	0	1
Q4	0	0	1	1

2

1

q_1 :	SELECT	BUDGET	q_2 : SELECT	PNAME,BUDGET
	FROM	PROJ	$\mathbf{F}\mathbf{R}\mathbf{O}\mathbf{M}$	PROJ
	WHERE	PNO=Value		
q_3 :	SELECT	PNAME	q_4 : SELECT	SUM (BUDGET)
	FROM	PROJ	FROM	PROJ
	WHERE	LOC=Value	WHERE	LOC=Value

Step 2: Attribute Affinity Matrix

	A1	A2	А3	A4
A1	45	0	45	0
A2	0	80	5	75
А3	45	5	53	3
A4	0	75	3	78

3

1

	S1	S2	S3	SUM
Q1	15	20	10	45
Q2	5	0	0	5
Q3	25	25	25	75
Q4	3	0	0	3

2

	A1	A2	А3	A4
Q1	1	0	1	0
Q2	0	1	1	0
Q3	0	1	0	1
Q4	0	0	1	1

Step 3: Clustered Affinity Matrix

Consider the following AA matrix and the corresponding CA matrix where A_1 and A_2 have been placed. **Place** A_3 :

A1 A2 A3 A4 A1 45 0 45 0 AA =**A2** 0 80 5 75 3 **A3** 45 5 53 **A4** 75 3 78 0

New attribute always will be in middle

Global Affinity Measure

$$cont(A_i, A_k, A_j) = 2bond(A_i, A_k) + 2bond(A_k, A_j) - 2bond(A_i, A_j)$$

Contribution Function

 $bond(A_x, A_y) = SUMMATION(For all rows (Ax * Ay))$

Example -

$$cont(A_1, A_4, A_2) = 2bond(A_1, A_4) + 2bond(A_4, A_2) - 2bond(A_1, A_2)$$

$$bond(A_1, A_4) = 45*0 + 0*75 + 45*3 + 0*78 = 135$$

 $bond(A_4, A_2) = 11865$
 $bond(A_1, A_2) = 225$

	A1	A2	А3	A4
A1	45	0	45	0
A2	0	80	5	75
А3	45	5	53	3
A4	0	75	3	78

$$cont(A_1, A_4, A_2) = 2*135 + 2*11865 - 2*225 = 23550$$

Step 3: Clustered Affinity Matrix

Consider the following AA matrix and the corresponding CA matrix where

 A_1 and A_2 have been placed. Place A_3 :

4	1	9	Starting Bonding		ng State
				,	,

		A1	A2	А3	Α4
AA =	A1	45	0	45	0
	A2	0	80	5	75
	А3	45	5	53	3
	A4	0	75	3	78

		•		
		A1	A2	
CA =	A1	45	0	
	A2	0	80	
	А3	45	5	
	A4	0	75	

Ordering (0-3-1):

$$cont(A_0,\!A_3,\!A_1) = 2bond(A_0\,,\,A_3) + 2bond(A_3\,,\,A_1) - 2bond(A_0\,,\,A_1) \\ = 2*\ 0 + 2*\ 4410 - 2*0 = 8820$$

Ordering (1-3-2):

$$cont(A_1,A_3,A_2) = 2bond(A_1\,,\,A_3) + 2bond(A_3\,,\,A_2) - 2bond(A_1,\,A_2) \\ = 2*\ 4410 + 2*\ 890 - 2*225 = 10150$$

Ordering (2-3-4):

$$cont(A_2, A_3, A_4) = 2bond(A_2, A_3) + 2bond(A_3, A_4) - 2bond(A_2, A_4)$$

= 2* 890 + 2*0 - 2*0 = 1780

Step 3: Continued

Therefore, the CA matrix has to form

	A1	А3	A2	
A1	45	45	0	
A2	0	5	80	
А3	45	53	5	
A4	0	3	75	

Similarly, Now for placing A4 do the calculations. You must have to show the calculation in the exam.

Place A4: All possible orderings will be (0-4-1), (1-4-3), (3-4-2), (2-4-5)

(2-4-5) ordering will be the highest value, means A4 is after A2.

Step 3: Continued

When A_4 is placed, the final form of the CA matrix (after column organization) is

	A1	А3	A2	A4
A1	45	45	0	0
A2	0	5	80	75
А3	45	53	5	3
A4	0	3	75	78

The final form of the *CA* matrix (**after row organization**) is

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
Α4	0	3	75	78

	A1	А3	A2	Α4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
A4	0	3	75	78

Clustered Affinity Matrix (CA)

Cluster 1: $A_1 \& A_3$

Cluster 2: A2 & A4

What if the clustered affinity matrix looks like this? ->

	A1	А3	A2	A4
A1	45	0	75	45
А3	0	53	5	0
A2	75	5	3	0
A4	45	0	0	78

	A1	А3	A2	A4
A1	45	0	75	45
А3	0	53	5	0
A2	75	5	3	0
A4	45	0	0	78

First Left Rotate:

A4

Column

A3 A2 A4 A1 75 45 45 **A1** 53 **A3** 5 0 0 5 3 75 **A2** 0

0

0

78

45

Row

	А3	A2	Α4	A1
А3	53	5	0	0
A2	5	3	0	75
A4	0	0	78	45
A1	0	75	45	45

7

Clustering Summary (Steps 1,2,3)

- We need AUM that reflects the queryattribute relationship
- AUM and FM are used to make AA
- Global Affinity Measure is used to establish the clusters of attributes
- Stronger affinities attributes and weaker ones are grouped in CA

We define -

TQ = set of applications that access only TA

BQ = set of applications that access only BA

OQ = set of applications that access both TA and BA

	A1	А3	A2	A4
A1	TA			
А3				
A2			D	Λ
A4			Б	Α

We define -

CTQ = number of accesses to attributes by applications that access only TA

CBQ = number of accesses to attributes by applications that access only BA

COQ = number of accesses to attributes by applications that access both TA and BA

Goal Function –

Find the point z along the diagonal that maximizes z = (CTQ * CBQ) - (COQ * COQ)

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
Α4	0	3	75	78

Goal Function -

Find the point z along the diagonal that maximizes

$$z = (CTQ * CBQ) - (COQ * COQ)$$

Setting 1

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
A4	0	3	75	78

Setting 2

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
A4	0	3	75	78

Setting 3

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
A4	0	3	75	78

Setting 1

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
A4	0	3	75	78

AUM

	A1	A2	А3	A4
Q1	1	0	1	0
Q2	0	1	1	0
Q3	0	1	0	1
Q4	0	0	1	1

FM

	S1	S2	S3
q1	15	20	10
q2	5	0	0
q3	25	25	25
q4	3	0	0

CTQ = 0
$$CBQ = 5+0+0+25+25+25+3+0+0 = 83$$

$$COQ = 15 + 20 + 10 = 45$$

$$Z1 = (CTQ * CBQ) - (COQ*COQ) = (0 * 83) - (45 * 45) = -2025$$

Setting 2

A2 A1 A3 A4 A1 45 45 00 **A3** 45 53 5 3 **A2** 0 5 80 75 0 3 75 78 **A4**

AUM

	A1	A2	А3	A4
Q1	1	0	1	0
Q2	0	1	1	0
Q3	0	1	0	1
Q4	0	0	1	1

FM

	S1	S2	53
q1	15	20	10
q2	5	0	0
q3	25	25	25
q4	3	0	0

$$TQ = \{q1\}$$

$$BQ = \{q3\}$$

$$OQ = \{q2, q4\}$$

$$CTQ = 15+20+10 = 45$$

$$CBQ = 25 + 25 + 25 = 75$$

$$COQ = 5+0+0+3+0+0 = 8$$

$$Z2 = (CTQ * CBQ) - (COQ*COQ) = (45 * 75) - (8 * 8) = 3311$$

FM

Setting 3

	A1	А3	A2	Α4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
Α4	0	3	75	78

AUM

	A1	A2	А3	A4
Q1	1	0	1	0
Q2	0	1	1	0
Q3	0	1	0	1
Q4	0	0	1	1

$$TQ = \{q1,q2\}$$

$$BQ = \{\}$$

$$OQ = \{q3, q4\}$$

$$CTQ = 15+20+10+5+0+0 = 50$$

$$CBQ = 0$$

$$COQ = 25+25+25+3+0+0 = 78$$

$$Z3 = (CTQ * CBQ) - (COQ*COQ) = (50 * 0) - (78 * 78) = -6084$$

Goal Function z2 is maximum with setting 2.

Setting 2

	A1	А3	A2	A4
A1	45	45	0	0
А3	45	53	5	3
A2	0	5	80	75
A4	0	3	75	78

Two Fragments:

PNO is the primary key

Vertical Fragmentation

Introduces *replication*.

-Tuple identifier.

Convenient for read-only application.

-Why?

Not convenient for update application.

-Why?

Answer to why:

Let us consider what happens when two fragments R_1 and R_2 are overlapping; i.e., there exists a set of attributes I which belong to both R_1 and R_2 . Assume that R_1 and R_2 are at sites 1 and 2.

Then **read applications** at site 1, using attributes of I together with other attributes of R_1 , are local to site 1; likewise, read applications at site 2, using attributes of I together with other attributes of I are local to site 2.

However, update applications which-change the value of attributes of *I* must reference them at both sites.

Exercise

Consider the applications "AP1", "AP2", "AP3" and "AP4" as shown below. These applications work on the **EMP** relation defined as **EMP(EmpID, Name, Loc, Dept)**, where **EmpID** is the primary key column of the table.

AP1: SELECT EmpID FROM EMP WHERE Dept = "Payroll"

AP2: SELECT **Dept** FROM **EMP**

AP3: UPDATE **EMP** SET **Loc** = "Chittagong" WHERE **Name** = "Kalam"

AP4: UPDATE **EMP** SET **Loc** = "Comilla" WHERE **EmpID** = **109288**

Assume that there is only **one site** and the access frequency of AP1, AP2, AP3 and AP4 is 3, 7, 4, 3 respectively.

Using the Bond Energy Algorithm, group the columns of the table and after that split the columns vertically at required position with the help of goal function.

Note: You should show Attribute Affinity Matrix, Clustered Affinity Matrix, and the calculation for each of the ordering, goal function. Take the first two columns as the starting bonding state.