$\iff EB_t = 0$, $Cov(B_s, B_t) = s \land t$, Gauss-Prozess mit F-f.s. stetigen Pfaden.

 $P: \mathbb{R} \times \mathfrak{B} \to [0,1]$ Stochasticher Kern

 $A\mapsto P(x,A)$ Wahrscheinlichkeitsmaß und $x\mapsto P(x,A)$ messbar

 \mathcal{G} Generator $\lim_{t\to 0} \frac{1}{t} (P_t - P_0)$

Bei BB: $\mathcal{G}f = \frac{1}{2}f''$

Markov-Eigenschaft $P(X_t \in A \mid \mathcal{F}_s) = P_{t-s}(X_s, A)$

 \mathcal{F}_{τ} $\{A \in \mathcal{F} \mid \forall t \geq 0 : A \cap \{\tau \leq t\} \in \mathcal{F}_t\}$

Progressiv messbar $\forall t \geq 0 : (s, \omega) \mapsto X_s(\omega) \text{ ist } \mathfrak{B}([0, t]) \otimes \mathcal{F}_t\text{-messbar}.$

2 Formeln

Methode des ersten Besuchs:

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(n)} p_{jj}^{(n-k)}$$

Übergangswahrscheinlichsgrenzwert bei Periode d_i :

$$\lim_{n \to \infty} p_{ij}^{n \cdot d_j + r} = \frac{d_j}{m_j} \sum_{k=0}^{\infty} f_{ij}^{k \cdot d_j + r}$$

insbesondere ist $p_{ij}^{(n)} \to 0$ für $m_j = \infty,$ d.h. i transient oder null-rekurrent.

Chapman-Kolmogorov-Gleichungen

• diskret

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}$$

• stetig

$$p_{ij}(t+s) = \sum_{k \in S} p_{ik}(t) p_{kj}(s)$$

• allgemein (eigentlich die Definition von stochastischem Kern)

$$P_{t+s}(x,A) = \int P_s(y,A)P_t(x,dy)$$

Kolmogorovsche Rückwärts-DGL:

$$P'(t) = QP(t) \text{ d.h. } p'_{ij}(t) = -q_i p_{ij}(t) + \sum_{k \neq i} q_{ik} p_{kj}(t)$$

Kolmogorovsch Vorwärts-DGL: Wann genau gilt die?

$$P'(t) = P(t)Q$$

Ist S endlich, kann man $P(t) = e^{tQ}$ schreiben.

Erfüllt Q die Bedingungen

$$\sum_{i \in S} q_{ij} = 0 \text{ und } 0 < \sup_{i \in S} |q_i i| =: \lambda < \infty$$
 ((*))

so gilt: