MAT 1011

MATLAB

Digital Assignment – 4

L31+L32
FALL SEMESTER 2019-20

by

SHARADINDU ADHIKARI 19BCE2105

Problem:

Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes.

Code & Input:

```
clear all clc syms x y z int(int(16-x^2-2*y^2,x,0,2), y, 0, 2) viewSolidone(z, 0+0*x+0*y, 16-x^2-2*y^2,x, 0+0*y, 2+0*y, 16-x^2-2*y^2,x, 16-x^2
```


Problem:

Evaluate $\iint_{R} \sin x \cos y \, dA \text{ where } R = [0, \pi/2] \times [0, \pi/2].$

Code & Input:

```
clc clear all syms x y z viewSolidone(z,0+0*x+0*y,sin(x)*cos(y),x,0+0*y,pi/2+0*y,y,0,pi/2) int(int(sin(x)*cos(y),x,0,pi/2),y,0,pi/2)
```


Output ans = 1 **Graph:** Figure 1 File Edit View Insert Tools Desktop Window Help 0.9 ~ 0.8 _ 0.6 — N 0.5 ~ 0.4 __ 0.3 __ 0.2 __

Problem:

Find the volume of the region bounded between the planes x + y + 2z = 2 and 2x + 2y + z = 4 in the first octant.

Code & Input:

```
clear all
clc
syms x y z
xa=-2;
xb=2;
ya=-sqrt(2-x^2/2);
yb=sqrt(2-x^2/2);
za=(2-x-y)/2;
zb=4-2*x+2*y;
I=int(int(int(1+0*z,za,zb),y,ya,yb),x,xa,xb)
viewSolid(z,za,zb,y,ya,yb,x,xa,xb)
```


Output:

Problem:

Find the volume of the region cut from the solid elliptical cylinder $x^2 + 4y^2 \le 4$ by the xy – plane and the plane z = x + 2.

Code & Input:

```
clear all
clc
syms x y z
ya=-1;
yb=1;
xa=-sqrt(4-4*y^2);
xb=sqrt(4-4*y^2);
za=0+0*x+0*y;
zb=x+2+0*y;
I=int(int(int(1+0*z,z,za,zb),x,xa,xb),y,ya,yb)
viewSolidone(z,za,zb,x,xa,xb,y,ya,yb)
```


Output: I = 4*pi **Graph:** Figure 1 File Edit View Insert Tools Desktop Window Help 3.5 ~ 2.5 ~ 1.5

