

Translation of Reference 2:

Japanese Association for Oral Biology 45th annual meeting on September 1, 2003
by Yukie SHIBATA, Hideki KAWADA, Yoshio NAKANO, Hirokata TSUDA, Yoshihisa
YAMASHITA (Kyushu University etc.)

Cloning of autolytic enzyme gene in carious bacteria

Object: Autolytic enzyme produced by bacteria is involved in metabolic turnover of cell wall and has important physiological function essential in bacterial growth, mitosis and separation. We recently isolated a gene coding an autolytic enzyme from chromosomal gene of *Streptococcus mutans* and report it.

Materials and Methods: We prepared a clone bank, wherein complete Sau3AI digested fragments of chromosomal DNA of *S. mutans* Xc strain were integrated in an integration vector. The transformed strain by the clone bank was seeded on agarose plates containing heat-killed *S. mutans* cells, and then mutants without autolytic activity were selected. Furthermore, molecular weight of autolytic enzyme was determined by Zymography.

Results and Discussion: Nucleotide sequence analysis of the integration vector-insert region of an autolytic activity-deficient mutant obtained by the above manipulation showed a mutation on a gene coding a protein with deduced molecular mass 107 kDa containing 979 amino acid residues. We prepared a mutant strain (Xc-AT) inactivated by the insertion of the present gene and compared Xc strain with Xc-AT strain by Zymography. According to the results, crude enzyme fraction of Xc strain showed clear bacteriolytic bands at 100kDa and 80 kDa, while Xc-AT strain showed no bacteriolytic bands. Furthermore, observation of both strains under a microscope after gram staining showed that Xc-AT strain formed much longer chain than Xc strain. Therefore, it was suggested that the present gene coded a main autolytic enzyme in *S. mutans*.

03 5200 6007

整理番号:PS03-1603 発送番号:720001 発送日:平成21年10月30日

2/E

本複製物は、特許庁が著作権法第42条第2項第1号の規定により複製したものです。
取扱にあたっては、著作権法等とならないよう十分にご注意ください。

著者連絡 45巻5号(抜粋), 2009

243

NP

バイオフィルム形成及び界面活性剤における
GTP-Bの活性化と毒性
○黒田 実久¹、横川 美英¹、岡田 雅道²、高橋 新子¹、小畠 伸一郎¹、今藤 伸哉¹、越後 亮司¹、氣
象 敏也¹、日大 森田 哲也¹、日大 岩戸 誠¹
監修者:「(社)第一化学工業」

【目的】*S. enterica*の最適生存因子はり鉄属性バイオフィルム形成においてGTP-B(Mg²⁺無効)と有効化している。先に我々は、サンドイッチELISAによるGTP-B活性測定法を開発した。それが現在中に存在する微生物のGTP-B活性を測定することを可能とした。今回日本酒用いて、バイオフィルム形成活性測定(酵素活性)及び界面活性剤(界面活性剤)におけるGTP-B(Mg²⁺)の活性化と毒性の解析を行った。方法ELISA測定法: MAB-P156コート板(マイクロプレートを用いる)中で実験液の方法にて、初期条件: 1mL�co² 20°C 100 rpm、1時間、37°C、24時間、酵母細胞を用いた。GTP-B活性測定法: GTP-B(Mg²⁺)を50 μMとし、酵母細胞を、静置下(バイオフィルム培養)及び振盪下(酵母細胞)で、37°C、24時間、酵母細胞を用いた。結果は、過剰にGTP-B活性と毒性に分け、酵母外GTP-B活性と上記より、酵母細胞内GTP-B活性を測定した。結果を示す。GTP-B活性と毒性は、いわゆる両面性であった。純GTP-B活性は、バイオフィルム活性で、0.47±0.04%、
酵母活性で、0.01±0.004%であり、両者間に有意な差はなかった。これらより、*S. enterica*の主要生存因子であるGTP-Bの活性は、バイオフィルム形成下において活性されることが確認された。

Reference 2

244

IP

う乳酸菌の自己防御酵素系分子のクローニング
○西田 寛江¹、川田 美穂¹、中野 駿矢¹、森田 達也¹、山下 審久¹、(一)九次院 食生活改善研究会、(社)第一化学工業

【目的】既報が述べる自己防御酵素系の代謝通路に關
する種の検定、分離、分離などにおいて多くのものない重要な
生物学的機能を有する。そこで、*S. enterica*の白色米糀細
胞から自己防御酵素をコードする遺伝子を同定したので報告す
る。材料および方法: *S. enterica* 銀の致死性外DNAの SacI(Alu
位点)断片をインサルゲーションベクターに組み込んだクローニン
グを作成した。木クローンベクターを用いて得られた酵母細胞を
△*enterica* の加熱死菌株を含有的アフロースプレート上に播種
し、自己防御活性をもつての要員を選別した。さらに、自己防御酵
素の分子量の検討にZymogramを用いた。「選別と考察」上記
の操作で得られた自己防御性外DNAのインサルゲーションベ
クター導入細胞の致死性を決定したところ、97%のアミノ酸構成
ならぬ分子量 107 kDa の胚子をコードする遺伝子に変異を生
じていることがわかった。本遺伝子を剪出失活した要員をXc-ATF
を作成し、Xc-ATFと△*enterica* 銀についてZymogramを行った結果、
Xc-ATFの致死率は100%と△*enterica* の位置に明確な抑制ペ
ンドが検出された。一方、Xc-ATF 銀に比べて高い致死率のXc-ATF
が認められなかった。また、両者をグラム染色し、顕微鏡下で観察
したところ、Xc-ATF 銀は Xc-ATFと△*enterica* 銀の主成分自己防御酵
素をコードしていることが示唆された。

245

IP

不溶性グルカン合成酵素デキストラン結合の活性
的解析
○氣井 一郎¹、井上 伸也¹、岸田 未来¹
○岡山大 学 生命科学・口腔微生物、九州工大
情報工 学部(化学生システム工学)

【目的】*S. enterica* rodentium GTP15の不溶性グルカン合成功能のC端デ
キストラン結合ドメイン①(KD 55-62)は、熱可逆性凝集性もつりビート
酵素タブリックである。我々は、デキストラン結合部ドリビート活性
の測定をめざすために、4つの DNA 大鼠成長素(DXB)反応
(50, 45, 35, 30)、DXB 活性化(45)、DNA 活性化(45)を用意し、酵光
を測めていた。今回、酵母細胞熱活性化により、デキストラン結合によ
るエンタルピー変化ΔH_mを測定し、GDP とデキストラン結合の
結合するグルコースユニット数を算出した。DXB とデキストラン
の結合は、ΔG<0 (-134~ -271) KJ/mol⁻¹であるが、ΔΔG<0
(-0.344~ -0.768) KJ/mol⁻¹となり、エンタルピー減少量が DXB と
デキストランの結合と相應していことが明らかである。また、ΔC
(=ΔH/T) よりガス定数、T 絶対温度の値が 318K<300 = 6K<10
となり。DXB が長いほど結合が強くなる傾向があった。さらに、リ
(17.9~22.6) とよりは DXB 活性度に比例した。即ち、長い
DXB ほど長いデキストラン結合と結合することが可能である。以上の結果
は、DXB のリビート部位はデキストラン結合ユニットであり、酵母細
胞の多いDXB はその二ニットを多く持つためにデキストランとより
強く結合することを示す。研究担当者: 岡山大 生命科学・口腔
微生物(化学生システム工学)、九州工大 生命科学・口腔微生物
大城・貞生生物学研究会、山下 審久(九州工大 生命
工・化生)、小林英美(九州大 生命科学)、森田はるみ(九州工大
生命工・化生)

246

IP

ミータンプレンサーキュレーティング装置による水溶性酵素の活性測
定に対する感度の影響
○河原 隆子¹、河原 一郎¹、高畠 信博¹
○東北大 計算・口腔生物学研究会、「東北新社
感生研究会」生化学研究会

【目的】ミータンプレンサーキュレーターは、液体条件下において、酵性環
境下でも実験用酵素液(LDH)の酵素活性と酵素液を再生し続ける
ことができる。一方、液体条件下では、酵性環境になるとLDHの活性
を発揮するためブレットース1A(リン酸(Pi)の酵素液濃度)を測
定することが報告されている。そこで、PiP_iと LDH 実験化作用を
持つミータンプレンサーキュレーターの酵素液濃度を測定し、LDH活性測定における
酵素液濃度の影響を評価した。【方法】酵素液濃度下で、ミータンプレ
ンサーキュレーターの代謝液から *S. enterica* serovar NCTC 1044の体
止菌に以て7.0±0.4%と4.0±10分間グローブを代謝させ、PiP_i
やPiの酵素液濃度と代謝液濃度を測定した。【結果】△*enterica* に
Pi 2.0 mMでミータンプレンサーキュレーターのPiP_i濃度は7.8 nM、Pi濃
度は28.5 nMであった。一方、Pi 4.0 mMでのPiP_i濃度は4.4 mM、
Pi濃度は25.6 nMであり、酵素液でも PiP_iの酵素液濃度が高く
測れられた。PiP_i濃度はほとんど変化しなかった。また、酵素液濃度
は、Pi 1.0 ± 0.4 で測定され、1.46 および 0.82 μmol/mg of
cells であり、酵素液でも酵素が多量に固定されることを確認した。
【考察】以上のことから、ミータンプレンサーキュレーターは、酵素液条件下で
酵素液濃度下でも酵素液の PiP_i濃度を高めさせたため LDH
が常に高い活性になり、このことが酵性環境下でも酵素液を再生し得
ける原因の一つであると考えられた。