Unlocking the Secrets of Heart Transplant Success with Machine Learning

Trevor Leach

Overall Costs

Waiting List

Potential for Failure

Overall Costs

30 Days of Pre-Transplant Medical Care

\$49,800

Hospital Admission for Procedure

\$1,062,600

180 Days of Post-Transplant Medical Care

\$270,300

Grand Total

\$1,664,800

Organ Procurement

\$131,500

Physician Cost

\$111,100

Medications

\$39,500

Waiting List

New Candidates Added to Adult Wait List

4,086

Total Number of Candidates on Adult Wait List

7,562

12%

of Candidates Have Been on Adult Wait List for 2+ Years

59.7%

of Adult Candidates Diagnosed with Cardiomyopathy

Median Adult Wait Time

5.1 months

New Candidates Added to Pediatric Wait List

694

Total Number of Candidates on Pediatric Wait List

1,087

26%

of Candidates Have Been on Pediatric Wait List for > 90 Days

30%

of Pediatric Candidates are Younger than 1 Year Old

8.2%

of Pediatric Candidates Died

Potential for I

Potential for Failure

25.1%

of Adult Patients Experienced Acute Rejection in the First Year

of Adult Patients Died Within 1 Year Post-Transplant

21.2%

of Pediatric Patients **Experienced Acute** Rejection in the First Year

8.2%

of Pediatric Patients Died Within 1 Year Post-Transplant

Solution: Machine Learning

Manages the national transplant waiting list Maintains
database of
every
transplant in
the US

Federally contracted non-profit

Manages each organ match

Maintains
database of
every
transplant in
the US

500+ Features

40,000+ Objects

Available to Anyone

Maintains database of every transplant in the US

Determine Transplant Failure Time

Preprocessing the Data

```
conditions = [
    ((df['GTIME'] \le 365) \& (df['GTIME'] > 90) \& (df['GSTATUS'] == 0)),
    ((df['GTIME'] \iff 365) \& (df['GTIME'] > 90) \& (df['GSTATUS'] \implies 1)),
    ((df['GTIME'] > 365) | (df['GSTATUS'] == 0)),
choices = [
    np.nan,
df['365DayOutcome'] = np.select(conditions, choices, default = np.nan)
```

GTIME: Graft Lifespan (in days) GSTATUS: Graft Failed (1 = Yes)

Outcomes

nan: Last checkup between 90 and 365 days with successful graft

0: Graft failed between 90 and 365 days

1: Graft successful at 365 days

Feature Engineering

Preprocessing the Data

```
cleanedDataset365['GENDER'] = cleanedDataset365['GENDER'].map({'M':0, 'F':1})
cleanedDataset365['ABOMAT'] = cleanedDataset365['ABOMAT'].map({'ABO incompatible':0, 'ABO compatible':1, 'ABO identical':2})
cleanedDataset365['PROTEIN_URINE'] = cleanedDataset365['PROTEIN_URINE'].astype(bool)
```

GENDER: M/F 0/1

ABOMAT:

ABO incompatible/ABO compatible/ABO identical

0/1/2

PROTEIN_URINE: Y/N True/False

Filter Features

Preprocessing the Data

Round 1:

Round 2:

```
filtered_df = cleanedDataset365.select_dtypes(include=['int64','float64','bool'])
```


Remove Objects with Null Values

```
1 df_2 = df_1.dropna()
```

Synthetic Minority Oversampling Technique (SMOTE)

```
from imblearn.combine import SMOTEENN

X = df_smote.drop(['365DaySurvival'], axis = 1)
y = df_smote['365DaySurvival']

smt = SMOTEENN(random_state=42)
X, y = smt.fit_resample(X, y)
```

- Uses KNN to connect two minority datapoints
- Creates new datapoint along that line
- Continues until classes are balanced
- May result in ambiguous datapoints

Edited Nearest Neighbor (ENN)

```
from imblearn.combine import SMOTEENN

X = df_smote.drop(['365DaySurvival'], axis = 1)
y = df_smote['365DaySurvival']

smt = SMOTEENN(random_state=42)
X, y = smt.fit_resample(X, y)
```

- Undersampling technique
- Removes instances of majority class on boundary between classes
- Creates a more obvious distinction between classes

XGBoost vs. Random Forest

Random Forest

- Bagging algorithm
- Collection of decision trees
- Each tree is a weak learner
- Each tree learns from a subset of the original features
- Majority voting to determine class

XGBoost

- Boosting algorithm
- Based on Gradient Boosting
- Each classifier is a decision tree
- First learner makes predictions
- Error is calculated using loss function
- Residuals passed to next learner

Round 1
Physician-Specified Features with XGBoost

Metric	Score
Accuracy	0.922
Precision	0.935
Recall	0.98
Specificity	0.476
F1 Score	0.957
AUC ROC	0.728

Round 2
Physician-Specified Features with Random Forest

Metric	Score
Accuracy	0.921
Precision	0.933
Recall	0.98
Specificity	0.485
F1 Score	0.956
AUC ROC	0.733

Classification Rates for Successful Heart Transplants

Round 3
Physician-Specified Features with XGBoost and SMOTE

Metric	Score
Accuracy	0.944
Precision	0.93
Recall	0.958
Specificity	0.93
F1 Score	0.944
AUC ROC	0.944

Round 4

Physician-Specified Features with XGBoost, SMOTE, and ENN

Metric	Score
Accuracy	0.962
Precision	0.937
Recall	0.977
Specificity	0.95
F1 Score	0.957
AUC ROC	0.964

Round 5

Physician-Specified Features with XGBoost, SMOTE, and ENN without TX_YEAR

Metric	Score
Accuracy	0.91
Precision	0.851
Recall	0.938
Specificity	0.892
F1 Score	0.892
AUC ROC	0.915

Model Validation

```
from sklearn.model_selection import cross_validate
scores = cross_validate(model, X, y, cv=10, scoring=['accuracy','precision','recall','f1','roc_auc'])
```


Features

Key Features for XGBoost without SMOTE/ENN Including All Features

Key Features for XGBoost with SMOTE/ENN with Physician Filtered Columns, no TX_YEAR

Conclusions

Model 5

Physician-Specified Features with XGBoost, SMOTE, and ENN without TX_YEAR

Metric	Score
Accuracy	0.91
Precision	0.851
Recall	0.938
Specificity	0.892
F1 Score	0.892
AUC ROC	0.915

Assumptions

- TX_YEAR shouldn't be included in model
- Physician recommendations

Limitations

 Without SMOTE, failures cannot be predicted

Thank You