Exercício 1

(c)

Pela fórmula de mudança de base,

$$\lg n = \log_2 n = \frac{\log_{10} n}{\log_{10} 2}.$$

Defina a constante

$$C := \frac{1}{\log_{10} 2} \approx 3.3219\dots.$$

Portanto

$$\lg n = C \cdot \log_{10} n.$$

Escolhendo, por exemplo, c=4 e $n_0=2$, temos para todo $n\geq n_0$ que ambos os lados são não negativos e

$$0 \le \lg n = C \log_{10} n \le c \log_{10} n$$
,

pois $C \leq 4$. Assim existem constantes positivas $c \in n_0$ tais que $\lg n \leq c \log_{10} n$ para todo $n \geq n_0$, isto é,

$$\lg n = O(\log_{10} n).$$

Exercício 3

(e)

Contraexemplo. Tome f(n) = 2n e g(n) = n. Então f(n) = O(g(n)) (basta c = 2 e $n_0 = 1$). Por outro lado, temos o limite:

$$\frac{2^{f(n)}}{2^{g(n)}} = \frac{2^{2n}}{2^n} = 2^n \xrightarrow[n \to \infty]{} \infty,$$

logo não existe constante c>0 tal que $2^{f(n)}\leq c\,2^{g(n)}$ para n grande. Portanto, a implicação é falsa.

Exercício 4

(a)

Majorante (O). Para todo $n \ge 1$,

$$\sum_{k=1}^{n} k^{10} \le \underbrace{n}_{\text{número de termos}} \cdot \underbrace{n^{10}}_{\text{maior termo}} = n^{11}.$$

Lista 1

MAC0338

Página 1 de 2

Assim podemos tomar $c_2 = 1$ e $n_0 = 1$ para a desigualdade $\sum_{k=1}^n k^{10} \le c_2 n^{11}$ válida para todo $n \ge n_0$. Portanto $\sum_{k=1}^n k^{10} = O(n^{11})$.

Minorante (Ω). Para $n \geq 2$ existem pelo menos n/2 termos com $k \geq n/2$. Logo

$$\sum_{k=1}^{n} k^{10} \ge \sum_{k=\lceil n/2 \rceil}^{n} k^{10} \ge \frac{n}{2} \left(\frac{n}{2}\right)^{10} = \frac{1}{2^{11}} n^{11}.$$

Portanto, com $c_1 = \frac{1}{2^{11}}$ e $n_0 = 2$, temos $\sum_{k=1}^n k^{10} \ge c_1 n^{11}$ para todo $n \ge n_0$. Assim $\sum_{k=1}^n k^{10} = \Omega(n^{11})$.

Conclusão. Juntando as duas desigualdades obtemos

$$c_1 n^{11} \le \sum_{k=1}^{n} k^{10} \le c_2 n^{11}$$

para todos $n \ge n_0$ (por exemplo, escolhemos $c_1 = \frac{1}{2^{11}}$, $c_2 = 1$ e $n_0 = 2$). Logo $\sum_{k=1}^{n} k^{10} = \Theta(n^{11}).$

De (O) e (Ω) , segue que a soma é $\Theta(n^{11})$.