Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization

Kanghan Oh, et al. (2019). Schizophrenia research, 212, p186-195.

Introduction

Schizophrenia

Symptoms:

Delusions, hallucinations, disorganized speech, grossly disorganized or catatonic behavior, negative symptoms

Diagnosis:

Presence of each one of symptoms for a significant portion of time during a 1-month period

Treatment:

Antipsychotic medication and psychotherapy

Primary aim

- 1. Investigating whether self-proposed model proposed higher accuracy compared to SVM
- 2. Using visualization to make model explainable

Methods

Overview

Participants

Patient group:

Number = 103

Age = $18 \sim 59$

DSM-IV-TR criteria for schizophrenia spectrum disorders checked

Healthy control group:

Number = 41

Age- and sex-matched to the patient group

Participants

Variable	Schizophrenia spectrum disorder (N = 103)	Normal control (N = 41)	P
Age (years)	32.46 ± 9.21	33.98 ± 8.53	0.470
Education (years)	13.59 ± 2.76	16.22 ± 2.57	0.727
Sex (male/female)	57/46	24/17	0.727
Age of onset (years)	27.20 ± 9.00	_	-
Duration of illness (months)	56.28 ± 50.96	_	-
PANSS-total	49.93 ± 18.98	_	-
PANSS-positive	13.09 ± 6.70	_	-
PANSS-negative	12.09 ± 5.48	_	-
PANSS-general	24.76 ± 9.10	_	-

Values are presented as mean ± standard deviation or number.

PANSS, Positive and Negative Syndrome Scale.

Image acquisition

fMRI data:

Scanner: 3T Siemens Verio scanner with 45mT/m gradients and a 12-channel standard quadrature head coil

Images: Axial 1.0-mm-thick T1-weighted images

Parameters:

TR = 1.9s, TE = 2.5ms,

field of view=240mm, acquisition matrix=256x246,

Flip angle=9degree

Preprocessing

Software: SPM8

- 1. T1-weighted images were normalized to the standard T1 template
- 2. Normalized images were smoothed with an 8-mm full-width-at-half maximum Gaussian filter
- 3. 3D activation map was constructed based on the contrast images with General Linear Model(GLM)

Input data for DL and SMV model

For the SVM applications, we conducted experiments in three ways:

- a) directly fed the whole-brain betas to SVM without any preprocessing;
- b) used 40 features extracted by applying principal component analysis (PCA) to the whole-brain voxels;
- c) used the β -values of five AAL regions chosen based on the significant differences of contrast between patients and controls (uncorrected p < 0.01, cluster size >50)

DL model selection

This model was selected by comparing classification performances of 3D-CAE based CNN with or without regularization techniques to those of 3D CNN with or without regularization techniques.

Evaluation

Pretraining 3D-CAE: 62 patients

Evaluation: 41 patients + 41 controls

10-fold cross-validation was performed.

Validation process was repeated 100 times independently. (3D-CNN)

Bayesian optimization with 500 iterations on kernel size and box constraint was applied. (SVM)

ROC curves were plotted to compare.

Visualization

- 1. Visualizing the feature maps in each layer of the learned neural network
- 2. Visualizing for explanation on why the neural network reached the decisions—class saliency visualization (CSV) method

CSV method:

class saliency map
$$M_{i,j,k} = |\omega_{h(i,j,k)}| = |\frac{\partial f_c}{\partial I_{i,j,k}}|$$

Results

Model selection

Number of epochs	Accuracy	Sensitivity	Specificity	PPV	NPV
100	82.99%	86.21%	78.87%	80.65%	85.61%
500	83.51%	86.83%	80.41%	80.54%	86.73%
1000	84.43%	88.42%	80.06%	81.14%	88.10%
1500	84.01%	87.59%	80.67%	80.86%	87.45%

CAE, convolutional auto-encoder; NPV, negative predictive values; PPV, positive predictive values.

Number of neurons	FC1: 32 FC2: 16	FC1: 64 FC2: 32	FC1:128 FC2:64	FC1:256 FC2:128
#prams	202 K	390 K	770 K	1542 K
Accuracy	83.80%	83.94%	84.43%	84.17%

FC, fully connected; #prams, number of parameters.

Model selection

Network model	Accuracy	Sensitivity	Specificity	PPV	NPV
3D-CNN (training from scratch)	60.56%	60.55%	60.57%	60.78%	60.34%
3D-CNN (training from scratch with BN)	68.92%	70.94%	66.98%	67.18%	70.77%
3D-CNN (training from scratch with DO)	66.40%	64.34%	68.44%	66.92%	65.90%
3D-CNN (training from scratch with BN + DO)	67.94%	76.15%	61.28%	61.48%	75.99%
3D-CAE + CNN	76.16%	77.40%	74.92%	75.43%	76.91%
3D-CAE + CNN with BN	81.22%	83.36%	79.17%	79.32%	83.23%
3D-CAE + CNN with DO	78.15%	81.55%	75.00%	75.16%	81.41%
3D-CAE + CNN with BN & DO	84.43%	88.42%	80.06%	81.14%	88.10%

BN, batch normalization; CAE, convolutional auto-encoder; CNN, convolutional neural network; DO, dropout; NPV, negative predictive values; PPV, positive predictive values.

Classification

Network model	Accuracy	Sensitivity	Specificity	PPV	NPV
Korolev et al., 2017	74.85%	77.61%	72.35%	71.79%	78.08%
Rieke et al., 2018	68.30%	71.09%	65.59%	66.06%	70.74%
Hosseini-Asl et al., 2018	78.04%	81.34%	74.92%	75.43%	80.91%
Proposed model	84.43%	88.42%	80.06%	81.14%	88.10%

NPV, negative predictive values; PPV, positive predictive values.

Classification

Network model	Accuracy	Sensitivity	Specificity	PPV	NPV
SVM-raw	57.32%	68.29%	46.34%	56.00%	59.30%
SVM-beta	67.07%	73.17%	60.98%	65.22%	69.44%
SVM-PCA	70.73%	78.05%	63.41%	68.09%	74.28%
Proposed model	84.15%	87.80%	80.49%	81.82%	86.84%

NPV, negative predictive values; PPV, positive predictive values.

Visualization(feature map)

Visualization(t-SNE)

Visualization(CSV)

Discussion