

Lab Análise Exploratória de Dados (EDA)

Caso: Onde comprar imóveis em Melbourne (Austrália)?

Empregue os dados da URL:

http://meusite.mackenzie.br/rogerio/TIC/Melbourne_housing_FULL.csv

A análise de dados tem uma grande aplicação no mercado de imóveis, seja para projetar oportunidades de negócios (como que tipo de imóvel e onde construir), seja para responder a questões mais simples (onde encontro melhores oportunidade de imóveis de 2 dormitórios). Ao final desse Lab você será capaz de responder algumas dessas perguntas explorando uma base com cerca de 35K registros sobre negócios de imóveis em Melbourne.

Exercício 0. Semântica dos Dados

Essa é uma parte importante da exploração dos dados mas as informações precisam por algum tipo de documentação dos dados. Analise algumas informações dos dados aqui...

Melbourne Housing Market

▼ Exercício 1. Imports e Aquisição dos Dados

Faça aqui os imports para a construção da sua EDA. Em seguida faça a dos dados. Lembre-se de verificar a origem dos dados para empregar as funções e parâmetros corretos de leitura dos dados (extensão do arquivo, headers, separador etc.).

→ imports

import warnings

```
warnings.filterwarnings("ignore") # Suppress all warnings?
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir
import pandas.util.testing as tm

Aquisição dos dados

```
# seu código
houses = pd.read_csv('http://meusite.mackenzie.br/rogerio/TIC/Melbourne_housing_FULL.csv')
houses.head()
```

▼ Exercício 2. Explore a Estrutura dos Dados

Quantos registros e atributos tem? Qual o aspecto dos dados? Quais os tipos dos dados (categóricos, numéricos)?

```
# seu código
houses.shape
len(houses)
houses.columns
houses.head()
houses.shape
houses.info
houses.dtypes
(34857, 21)
```

Exercício 3 Examine Estatísticas dos Dados Brutos

Verifique por exemplo:

- 1. Qual a média de preços
- 2. Qual o ano da construção mais antiga e a mais recente? O que você conclui?
- 3. Quantas regiões há e qual a região com mais casas à venda?

```
# seu código
pd.options.display.max_columns = 20
houses.describe(include='all')
```

	Suburb	Address	Rooms	Type	Price	Method	SellerG	Di
count	34857	34857	34857.000000	34857	2.724700e+04	34857	34857	348
unique	351	34009	NaN	3	NaN	9	388	
top	Reservoir	5 Charles St	NaN	h	NaN	S	Jellis	28/10/20
freq	844	6	NaN	23980	NaN	19744	3359	1
mean	NaN	NaN	3.031012	NaN	1.050173e+06	NaN	NaN	Ν
std	NaN	NaN	0.969933	NaN	6.414671e+05	NaN	NaN	Ν
min	NaN	NaN	1.000000	NaN	8.500000e+04	NaN	NaN	Ν
25%	NaN	NaN	2.000000	NaN	6.350000e+05	NaN	NaN	Ν
50%	NaN	NaN	3.000000	NaN	8.700000e+05	NaN	NaN	Ν
750/	K I = K I	K I = K I	4 000000	k I = k I	4 005000 - +00	K I = K I	K I = K I	k

Qual o ano da construção mais antiga e a mais recente? O que você conclui?

Aqui certamente há um erro nos dados. A EDA é uma etapa importante na verificação da qualidade dos dados.

▼ Exercício 4. Verifique Dados Faltantes

Existem dados faltantes? O que você pode afirmar sobre o número de linhas com valores nulos?

DICA: _ .isnull(). _

houses.isnull().sum()

houses.isnull().sum().sum()

Suburb	0
Address	0
Rooms	0
Туре	0
Price	7610
Method	0
SellerG	0
Date	0
Distance	1
Postcode	1
Bedroom2	8217
Bathroom	8226
Car	8728
Landsize	11810
BuildingArea	21115
YearBuilt	19306
CouncilArea	3
Lattitude	7976
Longtitude	7976
Regionname	3

Propertycount dtype: int64

Exercício 4b. Obtenha a Média de Valores de Price (**RESOLVIDO**)

Em paralelo obtenha o percentual de valores nulos. O que você conclui?

3

É um percentual de valores nulos muito alto e que certamente compromete o valor da média. Por isso, mesmo em uma questão simples, é sempre bom verificar a qualidade dos dados.

Exercício 5. Tratando Dados Nulos

Antes, discuta as estratégias de tratamento de nulos para Price. Em seguida, por simplicidade, aplique a estratégia de imputar os valores médios para Price e Landsize.

```
DICA: _ replace(np.NaN, _) Ou .fillna()
houses.Price = houses.Price.replace(np.NaN,houses.Price.mean())
houses.Landsize = houses.Landsize.fillna(houses.Landsize.mean())
1050173.344955408
```

- Exercício 6

Por quantas Regiões estão distribuídas as casas de Melbourne? Qual o percentual da Região com mais casas vendidas?

Northern Victoria 0.582379 Western Victoria 0.329919

Name: Regionname, dtype: float64

houses.groupby('Regionname').Regionname.count().sort_values(ascending=False) / houses.Regi

Regionname	
Southern Metropolitan	33.958800
Northern Metropolitan	27.420095
Western Metropolitan	19.507087
Eastern Metropolitan	12.558100
South-Eastern Metropolitan	4.989384
Eastern Victoria	0.654157
Northern Victoria	0.582430
Western Victoria	0.329948
Namo: Pogionnamo dtyno: floa:	+61

Name: Regionname, dtype: float64

Exercício 7

Examine a questão anterior graficamente.

DICA: sns.countplot() OU sns.barplot

```
plt.figure(figsize=(12,4))
sns.countplot(houses.Regionname)
plt.title('House Regions')
plt.xticks(rotation=45)
plt.show()
```



```
# Se você quiser ir mais fundo...
plt.figure(figsize=(12,4))
sns.barplot(houses.Regionname.value_counts().index,houses.Regionname.value_counts())
```

```
plt.title('House Regions')
plt.xticks(rotation=45)
plt.show()
```


House Regions

Exercício 8 (RESOLVIDO)

Quais os 5 preços maiores e menores preços dos imóveis?

- Exercício 9

Qual o maior e menor preço dos imóveis? De que região é cada um desses imóveis?

```
houses.nlargest(1,'Price').Regionname
houses.nsmallest(1,'Price').Regionname

4378    Western Metropolitan
    Name: Regionname, dtype: object

houses.Price.min()
houses.Price.max()

houses[ houses.Price == houses.Price.min() ].Regionname
houses[ houses.Price == houses.Price.max() ].Regionname

25635    Southern Metropolitan
    Name: Regionname, dtype: object
```

- Exercício 10

Como estão distribuídos os preços dos imóveis? (Faça um gráfico)

```
plt.figure(figsize=(12,4))
sns.histplot(houses.Price,kde=True)
plt.title('Price of houses')
plt.xlim([0, 0.5*houses.Price.max()])
plt.show()
```


▼ Exercício 11 Discussão

Você nota algo estranho nessa distribuição? Como você corrigiria isso?

Veja que existe um valor que se sobressai. É o valor médio que foi imputado para os valores nulos. Esse é o risco de se imputar os valores.

Uma estratégia seria a de imputar valores aleatórios com a mesma distribuição e média dos valores existentes. Algo não complexo, mas que requer alguma programação adicional. A solução está abaixo, mas não tem necessidade de você compreender o código, mas entenda ao menos o raciocínio empregado.

```
houses2 = pd.read_csv('http://meusite.mackenzie.br/rogerio/TIC/Melbourne_housing_FULL.csv'
houses2.Price.isnull().sum()
     7610
for i in range(len(houses2)):
 if np.isnan(houses2.loc[i].Price):
    new_price = houses2.loc[np.random.randint(0,len(houses2))].Price
    while np.isnan(new_price):
      new_price = houses2.loc[np.random.randint(0,len(houses2))].Price
    houses2.at[i,'Price'] = new_price
houses2.Price.isnull().sum()
     0
plt.figure(figsize=(12,4))
sns.histplot(houses2.Price,kde=True)
plt.title('Price of houses')
plt.xlim([0, 0.5*houses2.Price.max()])
plt.show()
```


Mesmo assim, note que esse tipo de atribuição fará com que imóveis com mais metros quadrados e melhor região ainda possam receber um valor aleatório de um imóvel menor e de uma região menos valorizada! Neste caso uma interpolação de valores poderia fazer mais sentido. Mas não vamos seguir aqui com essa solução. Aqui o que importa é a discussão e a reflexão sobre os dados (*Data Thinking*).

Exercício 12. (RESOLVIDO)

Compare as distribuições de preços das regiões de 'Western Metropolitan' e 'Southern Metropolitan'. O que você pode afirmar?

Há mais venda de imóveis 'Southern Metropolitan' mas a distribuição de preços é bastante semelhante a da 'Western Metropolitan'.

Exercício 13. (RESOLVIDO)

Imóveis com mais dormitórios são mais caros? Exiba em um gráfico

```
DICA: df.groupby() e sns.barplot()
```

```
housesRooms = houses.groupby('Rooms').Price.mean()
plt.figure(figsize=(12,4))
sns.barplot(housesRooms.index, housesRooms)
plt.title('Prices by Rooms')
plt.show()
```


- Exercício 14.

Imóveis com maior área, são mais caros? Exiba em um gráfico

DICA: Aqui você não pode empregar o barplot() (por que?). Empregue um gráfico de *dispersão* do sns (qual é?)

```
plt.figure(figsize=(12,4))
sns.scatterplot(houses.Landsize, houses.Price)
plt.title('Prices by Landsize')
plt.xlim([0,20000])
```


Exercício 15. (RESOLVIDO)

Um Cliente quer comprar um apartamento de 1 dormitório. Ele deseja comprar em uma região em que o valor do imóvel seja mais próximo dos valores de imóveis com com 2 dormitórios, pois pretende casar no próximo ano e isso seria portanto mais cômodo para uma troca. Qual região você recomendaria o cliente comprar?

DICA: Empregue um boxplot()

- 1. Crie um data frame somente com os registro de imóveis com 1 e 2 dormitórios
- 2. Faça um então um boxplot() do preço por região
- 3. Inclua o parâmetro hue para Rooms (ver Teoria Trilha 4)

```
houses2 = houses[houses.Rooms<=2]
plt.figure(figsize=(12,4))
sns.boxplot('Regionname','Price',data=houses2,hue='Rooms',showfliers=False)
plt.title('Prices by Region')
plt.xticks(rotation=45)
plt.show()</pre>
```


Na região 'Western Metropolitan' os preços de imóveis de 1 e 2 dormitórios têm mais coincidências.

Exercício 16.

Um cliente quer fazer um investimento e deseja comprar um imóvel com o maior número de cômodos. Sendo imóvel para investimento ele procura algo com a maior variabilidade possível de preço (pois pretende comprar pelo preço menor e vender daqui um ano pelo preço maior). Que tipo de imóvel você sugere ao cliente (Type = h(ouse),u(nit, ou apartamento), t(ower, sobrado)).

DICA: Empregue como modelo a solução do exercício anterior.

```
plt.figure(figsize=(12,4))
sns.boxplot('Type','Price',data=houses,hue='Rooms',showfliers=False)
plt.title('Prices by Rooms')
plt.show()
```


Casas com mais dormitórios apresentam variabilidade maior de preço.

Conclusão

Em geral um EDA apresenta algum tipo de conclusão. Sendo aqui apenas um exercício poderíamos concluir nossa análise:

Os imóveis da Região Sul são os mais caros havendo também a maior oferta de imóveis. O preços tem forte influência da região e as casas apresentam um espectro maior de preços (variação). A ausência de preço para um grande número de imóveis é um fator a ser revisado na análise.