On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging

Chris Junchi Li ** Yaodong Yu** Nicolas Loizou Gauthier Gidel

Yi Ma[⋄] Nicolas Le Roux^{‡,□} Michael I. Jordan[⋄]

♦ University of California, Berkeley [‡] Mila, Université de Montréal [□] McGill University

NeurIPS OPT2021 Workshop, December 13, 2021

▶ The general stochastic bilinear minimax optimization problem, also known as the bilinear saddle-point problem,

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \underbrace{\mathbf{x}^{\top} \mathbb{E}_{\boldsymbol{\xi}}[\mathbf{B}_{\boldsymbol{\xi}}] \mathbf{y}}_{\text{coupling term}} + \underbrace{\mathbf{x}^{\top} \mathbb{E}_{\boldsymbol{\xi}}[\mathbf{g}_{\boldsymbol{\xi}}^{\mathbf{x}}] + \mathbb{E}_{\boldsymbol{\xi}}[(\mathbf{g}_{\boldsymbol{\xi}}^{\mathbf{y}})^{\top}] \mathbf{y}}_{\text{intercept terms}}$$

▶ The general stochastic bilinear minimax optimization problem, also known as the bilinear saddle-point problem,

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \underbrace{\mathbf{x}^{\top} \mathbb{E}_{\boldsymbol{\xi}}[\mathbf{B}_{\boldsymbol{\xi}}] \mathbf{y}}_{\text{coupling term}} + \underbrace{\mathbf{x}^{\top} \mathbb{E}_{\boldsymbol{\xi}}[\mathbf{g}_{\boldsymbol{\xi}}^{\mathbf{x}}] + \mathbb{E}_{\boldsymbol{\xi}}[(\mathbf{g}_{\boldsymbol{\xi}}^{\mathbf{y}})^{\top}] \mathbf{y}}_{\text{intercept terms}}$$

▶ SEG method composed of an extrapolation step (half-iterates) and an update step (same-sample-and-same-stepsize):

$$\begin{aligned} \mathbf{x}_{t-1/2} &= \mathbf{x}_{t-1} - \eta_t \left[\mathbf{B}_{\xi,t} \mathbf{y}_{t-1} + \mathbf{g}_{\xi,t}^{\mathbf{x}} \right] \\ \mathbf{y}_{t-1/2} &= \mathbf{y}_{t-1} + \eta_t \left[\mathbf{B}_{\xi,t}^{\top} \mathbf{x}_{t-1} + \mathbf{g}_{\xi,t}^{\mathbf{y}} \right] \end{aligned} \quad \text{and} \quad \begin{aligned} \mathbf{x}_t &= \mathbf{x}_{t-1} - \eta_t \left[\mathbf{B}_{\xi,t} \mathbf{y}_{t-1/2} + \mathbf{g}_{\xi,t}^{\mathbf{x}} \right] \\ \mathbf{y}_t &= \mathbf{y}_{t-1} + \eta_t \left[\mathbf{B}_{\xi,t}^{\top} \mathbf{x}_{t-1/2} + \mathbf{g}_{\xi,t}^{\mathbf{y}} \right] \end{aligned}$$

▶ The general stochastic bilinear minimax optimization problem, also known as the bilinear saddle-point problem,

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \underbrace{\mathbf{x}^{\top} \mathbb{E}_{\boldsymbol{\xi}}[\mathbf{B}_{\boldsymbol{\xi}}] \mathbf{y}}_{\text{coupling term}} + \underbrace{\mathbf{x}^{\top} \mathbb{E}_{\boldsymbol{\xi}}[\mathbf{g}_{\boldsymbol{\xi}}^{\mathbf{x}}] + \mathbb{E}_{\boldsymbol{\xi}}[(\mathbf{g}_{\boldsymbol{\xi}}^{\mathbf{y}})^{\top}] \mathbf{y}}_{\text{intercept terms}}$$

► SEG method composed of an extrapolation step (half-iterates) and an update step (same-sample-and-same-stepsize):

$$\begin{aligned} \mathbf{x}_{t-1/2} &= \mathbf{x}_{t-1} - \eta_t \left[\mathbf{B}_{\xi,t} \mathbf{y}_{t-1} + \mathbf{g}_{\xi,t}^{\mathbf{x}} \right] & \mathbf{x}_t &= \mathbf{x}_{t-1} - \eta_t \left[\mathbf{B}_{\xi,t} \mathbf{y}_{t-1/2} + \mathbf{g}_{\xi,t}^{\mathbf{x}} \right] \\ \mathbf{y}_{t-1/2} &= \mathbf{y}_{t-1} + \eta_t \left[\mathbf{B}_{\xi,t}^{\top} \mathbf{x}_{t-1} + \mathbf{g}_{\xi,t}^{\mathbf{y}} \right] & \mathbf{y}_t &= \mathbf{y}_{t-1} + \eta_t \left[\mathbf{B}_{\xi,t}^{\top} \mathbf{x}_{t-1/2} + \mathbf{g}_{\xi,t}^{\mathbf{y}} \right] \end{aligned}$$

Contributions

 $\bullet~1/\sqrt{K}$ convergence rate of SEG with iteration averaging and exponential forgetting by restarting

Contributions

- $\bullet~1/\sqrt{K}$ convergence rate of SEG with iteration averaging and exponential forgetting by restarting
- Achieved sharp convergence rate that generalizes the full-batch version Azizian et al. (2020b) with only access to stochastic estimates

Contributions

- $\bullet~1/\sqrt{K}$ convergence rate of SEG with iteration averaging and exponential forgetting by restarting
- Achieved sharp convergence rate that generalizes the full-batch version Azizian et al. (2020b) with only access to stochastic estimates
- First convergence result on SEG with unbounded noise

 \blacktriangleright We first introduce basic setups and assumptions needed for our statement of the dynamics of SEG

 \blacktriangleright We first introduce basic setups and assumptions needed for our statement of the dynamics of SEG

Assumptions

• (A1) Defining $\widehat{\mathbf{M}} \equiv \mathbb{E}_{\xi} \widehat{\mathbf{M}}_{\xi} \equiv \mathbb{E}_{\xi} [\mathbf{B}_{\xi}^{\top} \mathbf{B}_{\xi}]$ and $\mathbf{M} \equiv \mathbb{E}_{\xi} \mathbf{M}_{\xi} \equiv \mathbb{E}_{\xi} [\mathbf{B}_{\xi} \mathbf{B}_{\xi}^{\top}]$. There exists $\sigma_{\mathbf{B}}, \sigma_{\mathbf{B},2} \in [0,\infty)$ such that

$$\begin{aligned} \text{max} \left(\| \mathbb{E}_{\boldsymbol{\xi}} [(\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})^{\top} (\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})] \|_{op} \, ; \, \| \mathbb{E}_{\boldsymbol{\xi}} \left[(\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B}) (\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})^{\top} \right] \|_{op} \right) \leq \sigma_{\mathbf{B}}^{2} \\ \text{max} \left(\| \mathbb{E}_{\boldsymbol{\xi}} [\mathbf{B}_{\boldsymbol{\xi}}^{\top} \mathbf{B}_{\boldsymbol{\xi}} - \widehat{\mathbf{M}}]^{2} \|_{op} \, ; \, \| \mathbb{E}_{\boldsymbol{\xi}} [\mathbf{B}_{\boldsymbol{\xi}} \mathbf{B}_{\boldsymbol{\xi}}^{\top} - \mathbf{M}]^{2} \|_{op} \right) \leq \sigma_{\mathbf{B},2}^{2} \end{aligned}$$

► We first introduce basic setups and assumptions needed for our statement of the dynamics of SEG

Assumptions

• (A1) Defining $\widehat{\mathbf{M}} \equiv \mathbb{E}_{\xi} \widehat{\mathbf{M}}_{\xi} \equiv \mathbb{E}_{\xi} [\mathbf{B}_{\xi}^{\top} \mathbf{B}_{\xi}]$ and $\mathbf{M} \equiv \mathbb{E}_{\xi} \mathbf{M}_{\xi} \equiv \mathbb{E}_{\xi} [\mathbf{B}_{\xi} \mathbf{B}_{\xi}^{\top}]$. There exists $\sigma_{\mathbf{B}}, \sigma_{\mathbf{B},2} \in [0,\infty)$ such that

$$\begin{aligned} \text{max} \left(\| \mathbb{E}_{\boldsymbol{\xi}} [(\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})^{\top} (\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})] \|_{op} \, ; \, \| \mathbb{E}_{\boldsymbol{\xi}} \left[(\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B}) (\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})^{\top} \right] \|_{op} \right) \leq \sigma_{\mathbf{B}}^{2} \\ \text{max} \left(\| \mathbb{E}_{\boldsymbol{\xi}} [\mathbf{B}_{\boldsymbol{\xi}}^{\top} \mathbf{B}_{\boldsymbol{\xi}} - \widehat{\mathbf{M}}]^{2} \|_{op} \, ; \, \| \mathbb{E}_{\boldsymbol{\xi}} [\mathbf{B}_{\boldsymbol{\xi}} \mathbf{B}_{\boldsymbol{\xi}}^{\top} - \mathbf{M}]^{2} \|_{op} \right) \leq \sigma_{\mathbf{B},2}^{2} \end{aligned}$$

• (A2) There exists a $\sigma_{\mathbf{g}} \in [0, \infty)$ such that

$$\mathbb{E}_{\xi}\left[\|\mathbf{g}_{\xi}^{\mathsf{x}}\|^{2}+\|\mathbf{g}_{\xi}^{\mathsf{y}}\|^{2}\right] \leq \sigma_{\mathsf{g}}^{2} < \infty$$

 \blacktriangleright We first introduce basic setups and assumptions needed for our statement of the dynamics of SEG

Assumptions

• (A1) Defining $\widehat{\mathbf{M}} \equiv \mathbb{E}_{\xi} \widehat{\mathbf{M}}_{\xi} \equiv \mathbb{E}_{\xi} [\mathbf{B}_{\xi}^{\top} \mathbf{B}_{\xi}]$ and $\mathbf{M} \equiv \mathbb{E}_{\xi} \mathbf{M}_{\xi} \equiv \mathbb{E}_{\xi} [\mathbf{B}_{\xi} \mathbf{B}_{\xi}^{\top}]$. There exists $\sigma_{\mathbf{B}}, \sigma_{\mathbf{B},2} \in [0, \infty)$ such that

$$\begin{split} \text{max} \left(\| \mathbb{E}_{\boldsymbol{\xi}} [(\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})^\top (\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})] \|_{op} \, ; \, \| \mathbb{E}_{\boldsymbol{\xi}} \left[(\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B}) (\mathbf{B}_{\boldsymbol{\xi}} - \mathbf{B})^\top \right] \|_{op} \right) \leq \sigma_{\mathbf{B}}^2 \\ \text{max} \left(\| \mathbb{E}_{\boldsymbol{\xi}} [\mathbf{B}_{\boldsymbol{\xi}}^\top \mathbf{B}_{\boldsymbol{\xi}} - \widehat{\mathbf{M}}]^2 \|_{op} \, ; \, \| \mathbb{E}_{\boldsymbol{\xi}} [\mathbf{B}_{\boldsymbol{\xi}} \mathbf{B}_{\boldsymbol{\xi}}^\top - \mathbf{M}]^2 \|_{op} \right) \leq \sigma_{\mathbf{B},2}^2 \end{split}$$

• (A2) There exists a $\sigma_{\mathbf{g}} \in [0, \infty)$ such that

$$\mathbb{E}_{\xi} \left[\|\mathbf{g}_{\xi}^{\mathbf{x}}\|^{2} + \|\mathbf{g}_{\xi}^{\mathbf{y}}\|^{2} \right] \leq \sigma_{\mathbf{g}}^{2} < \infty$$

• (A3) $\mathbb{E}_{\xi}[\mathbf{g}_{\xi}^{\mathbf{x}}] = \mathbf{0}_n$, $\mathbb{E}_{\xi}[\mathbf{g}_{\xi}^{\mathbf{y}}] = \mathbf{0}_m$ and assume independence between the stochastic matrix \mathbf{B}_{ξ} and the vector $[\mathbf{g}_{\xi}^{\mathbf{x}}; \mathbf{g}_{\xi}^{\mathbf{y}}]$

Ensures $\mathbb{E}[\mathbf{B}_{\xi}\mathbf{g}_{\xi}^{\mathbf{y}}] = \mathbf{0}_n$ and $\mathbb{E}[\mathbf{B}_{\xi}^{\top}\mathbf{g}_{\xi}^{\mathbf{x}}] = \mathbf{0}_m$, so the Nash equilibrium is the equilibrium point that the last-iterate SEG oscillates around

Algorithm

Algorithm 1 Iteration Averaged SEG with Scheduled Restarting

Require: Initialization \mathbf{x}_0 , step sizes η_t , total number of iterates K, restarting timestamps $\{\mathcal{T}_i\}_{i\in[\mathsf{Epoch}-1]}\subseteq [K]$ with the total number of epoches $\mathsf{Epoch}\geq 1$

- 1: **for** t = 1, 2, ..., K **do**
- 2: $s \leftarrow s + 1$
- 3: Update \mathbf{x}_t , \mathbf{v}_t via Eq. (2)
- 4: Update $\hat{\mathbf{x}}_t$, $\hat{\mathbf{y}}_t$ via

$$\hat{\mathbf{x}}_t \leftarrow \frac{s-1}{s} \hat{\mathbf{x}}_{t-1} + \frac{1}{s} \mathbf{x}_t$$
 and $\hat{\mathbf{y}}_t \leftarrow \frac{s-1}{s} \hat{\mathbf{y}}_{t-1} + \frac{1}{s} \mathbf{y}_t$

- if $t \in \{\mathcal{T}_i\}_{i \in [\mathsf{Epoch}-1]}$ then
- Overload $\mathbf{x}_t \leftarrow \hat{\mathbf{x}}_t, \, \mathbf{y}_t \leftarrow \hat{\mathbf{y}}_t, \, \text{and set } s \leftarrow 0$ 6:
 - //restarting procedure is triggered end if
- 8: end for
- 9: Output: $\hat{\mathbf{x}}_K, \hat{\mathbf{y}}_K$

Iteration Averaging

$$\overline{\boldsymbol{x}}_{\mathcal{K}} \equiv \frac{1}{\mathcal{K}+1} \sum_{t=0}^{\mathcal{K}} \boldsymbol{x}_{t} \qquad \overline{\boldsymbol{y}}_{\mathcal{K}} \equiv \frac{1}{\mathcal{K}+1} \sum_{t=0}^{\mathcal{K}} \boldsymbol{y}_{t}$$

Theorem 1 (SEG Averaged Iterate)

Let Assumptions hold. When the step size η is chosen as $\widehat{\eta}_{\mathsf{M}}(\alpha)$ ($pprox \frac{1}{\sqrt{2\lambda_{\mathsf{max}}(\mathbf{B}^{\top}\mathbf{B})}}$ and $=\frac{1}{\sqrt{2\lambda_{\mathsf{max}}(\mathbf{B}^{\top}\mathbf{B})}}$ when \mathbf{B}_{ξ} is nonrandom), we have for all $K\geq 1$ the averaged iterate satisfies

$$\begin{split} &\mathbb{E}\left[\|\overline{\mathbf{x}}_K\|^2 + \|\overline{\mathbf{y}}_K\|^2\right] \\ &\leq \frac{16 + 8\kappa_\zeta}{(1-\alpha)\widehat{\eta}_{\mathsf{M}}(\alpha)^2\lambda_{\mathsf{min}}(\mathsf{BB}^\top)} \cdot \frac{\|\mathbf{x}_0\|^2 + \|\mathbf{y}_0\|^2}{(K+1)^2} + \frac{18 + 12\kappa_\zeta}{(1-\alpha)\lambda_{\mathsf{min}}(\mathsf{BB}^\top)} \cdot \frac{\sigma_{\mathsf{g}}^2}{K+1} \\ &\text{where } \kappa_\zeta \equiv \frac{\sigma_{\mathsf{B}}^2 + \widehat{\eta}_{\mathsf{M}}(\alpha)^2\sigma_{\mathsf{B},2}^2}{\lambda_{\mathsf{min}}(\mathsf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathsf{M}})} \text{ is "effective noise condition number"} \end{split}$$

Iteration Averaging

$$ar{\mathbf{x}}_{\mathcal{K}} \equiv rac{1}{\mathcal{K}+1} \sum_{t=0}^{\mathcal{K}} \mathbf{x}_{t} \qquad ar{\mathbf{y}}_{\mathcal{K}} \equiv rac{1}{\mathcal{K}+1} \sum_{t=0}^{\mathcal{K}} \mathbf{y}_{t}$$

Theorem 1 (SEG Averaged Iterate)

Let Assumptions hold. When the step size η is chosen as $\widehat{\eta}_{\mathsf{M}}(\alpha)$ ($pprox \frac{1}{\sqrt{2\lambda_{\mathsf{max}}(\mathbf{B}^{\top}\mathbf{B})}}$ and $=\frac{1}{\sqrt{2\lambda_{\mathsf{max}}(\mathbf{B}^{\top}\mathbf{B})}}$ when \mathbf{B}_{ξ} is nonrandom), we have for all $K \geq 1$ the averaged iterate satisfies

$$\begin{split} &\mathbb{E}\left[\left\|\overline{\mathbf{x}}_{\mathcal{K}}\right\|^{2}+\left\|\overline{\mathbf{y}}_{\mathcal{K}}\right\|^{2}\right] \\ &\leq \frac{16+8\kappa_{\zeta}}{(1-\alpha)\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\lambda_{\mathsf{min}}(\mathsf{BB}^{\top})} \cdot \frac{\|\mathbf{x}_{\mathsf{0}}\|^{2}+\|\mathbf{y}_{\mathsf{0}}\|^{2}}{(K+1)^{2}} + \frac{18+12\kappa_{\zeta}}{(1-\alpha)\lambda_{\mathsf{min}}(\mathsf{BB}^{\top})} \cdot \frac{\sigma_{\mathsf{g}}^{2}}{K+1} \\ &\text{where } \kappa_{\zeta} \equiv \frac{\sigma_{\mathsf{B}}^{2}+\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2}}{\lambda_{\mathsf{min}}(\mathsf{M})\wedge\lambda_{\mathsf{min}}(\widehat{\mathsf{M}})} \text{ is "effective noise condition number"} \end{split}$$

ullet Achieve the optimal $O(1/\sqrt{K})$ convergence rate for the averaged iterate

Iteration Averaging

$$ar{\mathbf{x}}_{\mathcal{K}} \equiv rac{1}{\mathcal{K}+1} \sum_{t=0}^{\mathcal{K}} \mathbf{x}_{t} \qquad ar{\mathbf{y}}_{\mathcal{K}} \equiv rac{1}{\mathcal{K}+1} \sum_{t=0}^{\mathcal{K}} \mathbf{y}_{t}$$

Theorem 1 (SEG Averaged Iterate)

Let Assumptions hold. When the step size η is chosen as $\widehat{\eta}_{\mathsf{M}}(\alpha)$ ($pprox \frac{1}{\sqrt{2\lambda_{\mathsf{max}}(\mathsf{B}^{\top}\mathsf{B})}}$ and $=\frac{1}{\sqrt{2\lambda_{\mathsf{max}}(\mathsf{B}^{\top}\mathsf{B})}}$ when B_{ξ} is nonrandom), we have for all $K\geq 1$ the averaged iterate satisfies

$$\begin{split} &\mathbb{E}\left[\|\overline{\mathbf{x}}_K\|^2 + \|\overline{\mathbf{y}}_K\|^2\right] \\ &\leq \frac{16 + 8\kappa_\zeta}{(1-\alpha)\widehat{\eta}_{\mathsf{M}}(\alpha)^2\lambda_{\mathsf{min}}(\mathsf{BB}^\top)} \cdot \frac{\|\mathbf{x}_0\|^2 + \|\mathbf{y}_0\|^2}{(K+1)^2} + \frac{18 + 12\kappa_\zeta}{(1-\alpha)\lambda_{\mathsf{min}}(\mathsf{BB}^\top)} \cdot \frac{\sigma_{\mathsf{g}}^2}{K+1} \\ &\text{where } \kappa_\zeta \equiv \frac{\sigma_{\mathsf{B}}^2 + \widehat{\eta}_{\mathsf{M}}(\alpha)^2\sigma_{\mathsf{B},2}^2}{\lambda_{\mathsf{min}}(\mathsf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathsf{M}})} \text{ is "effective noise condition number"} \end{split}$$

- Achieve the optimal $O(1/\sqrt{K})$ convergence rate for the averaged iterate
- Forgets the initialization at a polynomial rate

Theorem 2 (Scheduled Restarting)

Following the same setup as in Theorem 1, the output $\widehat{\mathbf{x}}_K, \widehat{\mathbf{y}}_K$ satisfies:

$$\begin{split} & \mathbb{E}\left[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}\right] \\ & \leq \left[1 + \underbrace{\frac{\mathcal{O}(\sigma_{\mathsf{B}}^{2} + \widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2})}{\lambda_{\mathsf{min}}(\mathsf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathsf{M}})}}_{\mathsf{higher-order\ term\ } \mathcal{O}(\kappa_{\zeta})}\right] \cdot \frac{18\sigma_{\mathsf{g}}^{2}}{(1-\alpha)\lambda_{\mathsf{min}}(\mathsf{BB}^{\top})} \cdot \frac{1}{K - K_{\mathsf{complexity}} + 1} \end{split}$$

where $K_{complexity}$ is the fixed burn-in complexity defined as

$$\frac{1}{e}\sqrt{(1-\alpha)\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top})} - O\left(\widehat{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top}))^{1/4}\sqrt{\sigma_{\mathsf{B}}^{2}+\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2}}\right)$$

Theorem 2 (Scheduled Restarting)

Following the same setup as in Theorem 1, the output $\widehat{\mathbf{x}}_K, \widehat{\mathbf{y}}_K$ satisfies:

$$\begin{split} & \mathbb{E}\left[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}\right] \\ & \leq \left[1 + \underbrace{\frac{\mathcal{O}(\sigma_{\mathsf{B}}^{2} + \widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2})}{\lambda_{\mathsf{min}}(\mathsf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathsf{M}})}}_{\mathsf{higher-order\ term\ } \mathcal{O}(\kappa_{\zeta})}\right] \cdot \frac{18\sigma_{\mathsf{g}}^{2}}{(1-\alpha)\lambda_{\mathsf{min}}(\mathsf{BB}^{\top})} \cdot \frac{1}{K - K_{\mathsf{complexity}} + 1} \end{split}$$

where $K_{complexity}$ is the fixed burn-in complexity defined as

$$\frac{\text{logarithmic factor}}{\frac{1}{e}\sqrt{(1-\alpha)\widehat{\eta}_{\text{M}}(\alpha)^{2}\lambda_{\min}(\text{BB}^{\top})} - O\left(\widehat{\eta}_{\text{M}}(\alpha)^{3/2}(\lambda_{\min}(\text{BB}^{\top}))^{1/4}\sqrt{\sigma_{\text{B}}^{2}+\widehat{\eta}_{\text{M}}(\alpha)^{2}\sigma_{\text{B},2}^{2}}\right)}$$

 Key: halt the restarting procedure once the last iterate reaches stationarity in squared Euclidean metric

Theorem 2 (Scheduled Restarting)

Following the same setup as in Theorem 1, the output $\widehat{\mathbf{x}}_K, \widehat{\mathbf{y}}_K$ satisfies:

$$\begin{split} & \mathbb{E}\left[\|\widehat{\mathbf{x}}_{\mathcal{K}}\|^2 + \|\widehat{\mathbf{y}}_{\mathcal{K}}\|^2\right] \\ & \leq \left[1 + \underbrace{\frac{\mathcal{O}(\sigma_{\mathbf{B}}^2 + \widehat{\eta}_{\mathbf{M}}(\alpha)^2 \sigma_{\mathbf{B},2}^2)}{\lambda_{\mathsf{min}}(\mathbf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathbf{M}})}}_{\mathsf{higher-order term } \mathcal{O}(\kappa_{\zeta})}\right] \cdot \frac{18\sigma_{\mathbf{g}}^2}{(1-\alpha)\lambda_{\mathsf{min}}(\mathbf{B}\mathbf{B}^{\top})} \cdot \frac{1}{K - K_{\mathsf{complexity}} + 1} \end{split}$$

where $K_{complexity}$ is the fixed burn-in complexity defined as

$$\frac{\text{logarithmic factor}}{\frac{1}{e}\sqrt{(1-\alpha)\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top})}-O\left(\widehat{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top}))^{1/4}\sqrt{\sigma_{\mathsf{B}}^{2}+\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2}}\right)}$$

- Key: halt the restarting procedure once the last iterate reaches stationarity in squared Euclidean metric
- Achieve the optimal $O(1/\sqrt{K})$ convergence rate for the averaged iterate

Theorem 2 (Scheduled Restarting)

Following the same setup as in Theorem 1, the output $\hat{\mathbf{x}}_K, \hat{\mathbf{y}}_K$ satisfies:

$$\begin{split} & \mathbb{E}\left[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}\right] \\ & \leq \left[1 + \underbrace{\frac{\mathcal{O}(\sigma_{\mathsf{B}}^{2} + \widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2})}{\lambda_{\mathsf{min}}(\mathsf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathsf{M}})}}_{\mathsf{higher-order\ term\ } \mathcal{O}(\kappa_{\zeta})}\right] \cdot \frac{18\sigma_{\mathsf{g}}^{2}}{(1-\alpha)\lambda_{\mathsf{min}}(\mathsf{BB}^{\top})} \cdot \frac{1}{K - K_{\mathsf{complexity}} + 1} \end{split}$$

where $K_{complexity}$ is the fixed burn-in complexity defined as

$$\frac{\text{logarithmic factor}}{\frac{1}{e}\sqrt{(1-\alpha)\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top})}-O\left(\widehat{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top}))^{1/4}\sqrt{\sigma_{\mathsf{B}}^{2}+\widehat{\eta}_{\mathsf{M}}(\alpha)^{2}\sigma_{\mathsf{B},2}^{2}}\right)}$$

- Key: halt the restarting procedure once the last iterate reaches stationarity in squared Euclidean metric
- Achieve the optimal $O(1/\sqrt{K})$ convergence rate for the averaged iterate
- With the help of restarting, forgets the initialization at an exponential rate

Theorem 3 (Interpolation Setting)

Let Assumptions hold and $\sigma_{\bf g}=0$. For the same setup as above, the output $\widehat{\bf x}_K, \widehat{\bf y}_K$ satisfies

$$\mathbb{E}[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}] \leq e^{-\frac{K}{e}\sqrt{(1-\alpha)\overline{\eta}_{\mathsf{M}}(\alpha)^{2}\lambda_{\mathsf{min}}(\mathsf{BB}^{\top})} + C(\alpha)} \cdot [\|\mathbf{x}_{0}\|^{2} + \|\mathbf{y}_{0}\|^{2}]$$
here, $C(\alpha)$ is defined as

where $C(\alpha)$ is defined as

$$C(\alpha) = O\left(K\bar{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^\top))^{1/4}\sqrt{\sigma_{\mathsf{B}}^2 + \bar{\eta}_{\mathsf{M}}(\alpha)^2\sigma_{\mathsf{B},2}^2}\right)$$

Theorem 3 (Interpolation Setting)

Let Assumptions hold and $\sigma_{\bf g}=0$. For the same setup as above, the output $\widehat{\bf x}_K, \widehat{\bf y}_K$ satisfies

$$\mathbb{E}[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}] \leq e^{-\frac{K}{e}\sqrt{(1-\alpha)\overline{\eta}_{\mathsf{M}}(\alpha)^{2}\lambda_{\mathsf{min}}(\mathbf{B}\mathbf{B}^{\top})} + C(\alpha)} \cdot [\|\mathbf{x}_{0}\|^{2} + \|\mathbf{y}_{0}\|^{2}]$$
 where $C(\alpha)$ is defined as

$$C(\alpha) = O\left(K\bar{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top}))^{1/4}\sqrt{\sigma_{\mathsf{B}}^2 + \bar{\eta}_{\mathsf{M}}(\alpha)^2\sigma_{\mathsf{B},2}^2}\right)$$

• The contraction rate (in terms of the exponent) to the Nash equilibrium $-\frac{\eta_{\mathbf{M}}^2}{4}\cdot\left(\lambda_{\min}(\mathbf{M})\wedge\lambda_{\min}(\widehat{\mathbf{M}})\right) \text{ improves to } -\frac{1}{e}\sqrt{(1-\alpha)\bar{\eta}_{\mathbf{M}}(\alpha)^2\lambda_{\min}(\mathbf{B}\mathbf{B}^\top)}$ plus higher-order terms in variance parameters of \mathbf{B}_ξ

Theorem 3 (Interpolation Setting)

Let Assumptions hold and $\sigma_{\bf g}=0$. For the same setup as above, the output $\widehat{\bf x}_K,\widehat{\bf y}_K$ satisfies

$$\mathbb{E}[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}] \leq e^{-\frac{K}{e}\sqrt{(1-\alpha)\overline{\eta}_{\mathbf{M}}(\alpha)^{2}\lambda_{\min}(\mathbf{B}\mathbf{B}^{\top})} + C(\alpha)} \cdot \left[\|\mathbf{x}_{0}\|^{2} + \|\mathbf{y}_{0}\|^{2}\right]$$
 where $C(\alpha)$ is defined as

$$C(\alpha) = O\left(K\bar{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^{\top}))^{1/4}\sqrt{\sigma_{\mathsf{B}}^2 + \bar{\eta}_{\mathsf{M}}(\alpha)^2\sigma_{\mathsf{B},2}^2}\right)$$

- The contraction rate (in terms of the exponent) to the Nash equilibrium $-\frac{\eta_{\mathsf{M}}^2}{4}\cdot\left(\lambda_{\mathsf{min}}(\mathbf{M})\wedge\lambda_{\mathsf{min}}(\widehat{\mathbf{M}})\right) \text{ improves to } -\frac{1}{e}\sqrt{(1-\alpha)\bar{\eta}_{\mathsf{M}}(\alpha)^2\lambda_{\mathsf{min}}(\mathbf{B}\mathbf{B}^\top)}$ plus higher-order terms in variance parameters of \mathbf{B}_ξ
- Does *not* require an explicit Polyak- or Nesterov-type momentum update rule; in the case of nonrandom \mathbf{B}_{ξ} , this rate matches the lower bound (Ibrahim et al., 2020; Zhang et al., 2019)

Theorem 3 (Interpolation Setting)

Let Assumptions hold and $\sigma_{\bf g}=0$. For the same setup as above, the output $\widehat{\bf x}_K,\widehat{\bf y}_K$ satisfies

$$\mathbb{E}[\|\widehat{\mathbf{x}}_{K}\|^{2} + \|\widehat{\mathbf{y}}_{K}\|^{2}] \leq e^{-\frac{K}{e}\sqrt{(1-\alpha)\overline{\eta}_{\mathbf{M}}(\alpha)^{2}\lambda_{\min}(\mathbf{B}\mathbf{B}^{\top})} + C(\alpha)} \cdot \left[\|\mathbf{x}_{0}\|^{2} + \|\mathbf{y}_{0}\|^{2}\right]$$
 where $C(\alpha)$ is defined as

$$C(\alpha) = O\left(K\bar{\eta}_{\mathsf{M}}(\alpha)^{3/2}(\lambda_{\mathsf{min}}(\mathsf{B}\mathsf{B}^\top))^{1/4}\sqrt{\sigma_{\mathsf{B}}^2 + \bar{\eta}_{\mathsf{M}}(\alpha)^2\sigma_{\mathsf{B},2}^2}\right)$$

- The contraction rate (in terms of the exponent) to the Nash equilibrium $-\frac{\eta_{\mathsf{M}}^2}{4} \cdot \left(\lambda_{\mathsf{min}}(\mathbf{M}) \wedge \lambda_{\mathsf{min}}(\widehat{\mathbf{M}})\right) \text{ improves to } -\frac{1}{e} \sqrt{(1-\alpha)\bar{\eta}_{\mathsf{M}}(\alpha)^2 \lambda_{\mathsf{min}}(\mathbf{B}\mathbf{B}^\top)}$ plus higher-order terms in variance parameters of $\mathbf{B}_{\mathcal{E}}$
- Does *not* require an explicit Polyak- or Nesterov-type momentum update rule; in the case of nonrandom \mathbf{B}_{ξ} , this rate matches the lower bound (Ibrahim et al., 2020; Zhang et al., 2019)
- Previous algorithm achieving this optimal rate to our best knowledge is Azizian et al. (2020b) without an explicit 1/e-prefactor

Numerical Experiments

Comparing SEG, SEG-Avg, and SEG-Avg-Restart

Numerical Experiments

Comparing SEG, SEG-Avg, and SEG-Avg-Restart

SEG (w/o Averaging) with Different Step Sizes and Noise Magnitudes

Thanks!

Full version of this work: https://arxiv.org/abs/2107.00464