Biostatistics Week III

Ege Ülgen, M.D.

21 October 2021

Normal Distribution

• The distributions of many variables follow a "normal distribution"

 The bell-shape indicates that values closer to the mean are more likely, and it becomes increasingly unlikely to take values far from the mean in either direction

Normal Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma^2 > 0$$

- Mean = Median = Mode= μ
- Variance = σ^2

Standard Normal Distribution

- Normal distribution for which $\mu = 0$ and $\sigma^2 = 1$
- Usually denoted with Z

-3 -2 -1 0 13 2 3

STANDARD NORMAL TABLE (Z)

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean (0) and z is 0.3944.

		0.00	0.01	0.00	0.00	0.04	0.05	0.00	0.07	0.00	0.00
	Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
	0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0190	0.0239	0.0279	0.0319	0.0359
	0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
	0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
	0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
	0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
	0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
	0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
	0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
	0.8	0.2881	0.2910	0.2939	0.2969	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
	0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
	1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3513	0.3554	0.3577	0.3529	0.3621
ř	1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
L	1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
	1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
	1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
	2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
	2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
	2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
	2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
	2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
	2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
	2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
	2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
	2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
	2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
	3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
	3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
	3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
	3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
	3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4 997 1	os://ac

Standardization

$$X \sim N(\mu, \sigma^2) \implies \mathbf{Z} = \frac{\mathbf{X} - \boldsymbol{\mu}}{\boldsymbol{\sigma}} \sim N(0, 1)$$

Normal Distribution - Example

- In a hospital, the systolic blood pressure of patients follow a normal distribution with mean = 15, variance = 9 $X \sim N(15,9)$
- For a randomly selected patient, what is the probability that their SBP is:
 - a) Smaller than 11?
 - b) Larger than 12?
 - c) Between 9 and 16?

a) < 11

$$P(X \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{11 - 15}{3}\right) = P(Z \le -1.33) = P(Z \ge 1.33) = 0.0918$$

b) > 12

$$P(X > x) = P\left(Z > \frac{x - \mu}{\sigma}\right) = P\left(Z > \frac{12 - 15}{3}\right) = P(Z > -1) = 0.8413$$

c) Between 9 and 16

$$P(9 < X < 16) = P\left(\frac{9 - 15}{3} < Z < \frac{16 - 15}{3}\right) = P(-2 < Z < 0.33) = P(Z < 0.33) - P(Z \le -2) = 0.6065$$

(Student's) t Distribution

Hypothesis Testing

- **Hypothesis**: an assumption that can be tested based on the evidence available
 - A novel drug is efficient in treating a certain disease
 - Regular smoking leads to lung cancer
 - Overweight individuals who (1) consume greasy food and (2) consume a low amount vegetables (1) have high levels of cholesterol and (2) have a higher risk of cardiovascular diseases
- Hypothesis test: investigation of the hypothesis using the sample
 - Assessing evidence provided by the data against the null claim (the claim which is to be assumed true unless enough evidence exists to reject it)

Null and Alternative Hypotheses

- H₀ Null hypothesis
 - The mean of a variable is not different than c
 - There is no difference between the two groups' means
 - There is no difference compared to baseline
 - ...
- H_a or H₁ Alternative hypothesis
 - There is a difference between the two groups' means
 - The mean in group A is higher than group B
 - ...

One- vs. Two-tailed Tests

The coin is biased

Two-tailed

$$H_0$$
: p = 0.5

$$H_a$$
: p \neq 0.5

• The probability of heads is larger (or smaller) than 0.5

One-tailed

$$H_0$$
: $p \le 0.5$ (or $p \ge 0.5$)

$$H_a$$
: p > 0.5 (or p < 0.5)

	Decision			
H _o	Fail to reject	Reject		
True	Correct decision	Type I Error α		
False	Type II Error B	Correct decision		

Hypothesis Testing

- P(Type 1 error) = α = P(reject H₀| H₀ is true)
- P(Type 2 error) = β = P(fail to reject H₀| H₀ is false)
- As α gets larger β gets smaller, vice versa
- As n gets large, both α and β get smaller

Hypothesis Testing

	Decision			
H ₀	Fail to reject	Reject		
True	Correct decision	Type I Error α		
False	Type II Error	Correct decision		

- Confidence level = 1α
 - P(fail to reject H₀ | H₀ is true)
- Statistical power = 1β
 - P(reject H₀| H₀ is false)

Hypothesis Testing - Steps

Hypothesis Testing - Steps

1. Check assumptions, determine H_0 and H_a , choose α

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

2. Calculate the appropriate test statistic

• z, t, χ^2 , ...

3. Calculate critical values/p value

With the aid of precalculated tables/software

4. Decide whether to reject/fail to reject H₀

• Reject if the statistic is within the critical region/p $\leq \alpha$

Test Statistic

$$test\ statistic = \frac{estimator - null\ value}{standard\ error\ of\ estimator}$$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

Critical Value/Rejection Region

- We select α (significance level) prior to performing a hypothesis test
 - Some common values for α are 0.01, **0.05** an 0.10
- Based on the selected α , the critical values are calculated, and the rejection region is determined
 - the region where the null hypothesis is rejected

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu < \mu_0$$

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

$$H_0$$
: $\mu = \mu_0$

$$H_1$$
: $\mu \neq \mu_0$

One-Sample t-Test

 a statistical hypothesis test used to determine whether an unknown population mean is different from a specific value

One-Sample t-Test

One-Sample t-Test – Example I

id	$week_1$	cd4_1	week_2	$cd4_2$	perc_benefit
361	0	26	7.43	3	-11.905994
1017	0	13	7.00	10	-3.296703
519	0	3	8.14	5	8.190008
1147	0	65	33.00	97	1.491841
1216	0	36	8.00	31	-1.736111
52	0	16	9.43	31	9.941676
660	0	34	8.43	32	-0.697788
1145	0	41	8.00	71	9.146341
697	0	33	8.00	45	4.545455
560	0	21	8.00	27	3.571429

- Mean percentage benefit is 1.925015
- Is it due to chance? Or does it indicate positive impact of the novel treatment?
 - What would be the value of mean percentage benefit what if you selected another set of 10 patients?

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked (Quantile-quantile plot)
 - H_0 : $\mu = 0$ H_a : $\mu \neq 0$
 - $\alpha = 0.05$

- 2. Calculate the appropriate test statistic
 - Mean percentage benefit is 1.925015
 - Standard deviation is 6.702202
 - Sample size is 10

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{1.925015 - 0}{6.702202/\sqrt{10}} = 0.9082736 \quad (\sim t_{n-1} = t_9)$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

One-Sample t-Test — Example II

- It is claimed that the post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³
- The mean tumor volume of 41 randomly-selected patients is 5.9 cm³
- Sample standard deviation is 1.74

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked
 - H_0 : $\mu = 5$ H_a : $\mu \neq 5$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{5.9 - 5}{1.74/\sqrt{41}} = 3.312 \quad (\sim t_{n-1} = t_{40})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

5. State a conclusion:

With 95% confidence, we can conclude that there is enough evidence to say that post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³.

One-Sample t-Test – Example III

- It is claimed that:
- A novel drug reduces the recovery time of patients to less than 10 days
- Recovery time for 7 randomly-selected patients:

2, 4, 11, 3, 4, 6, 8 (
$$\bar{X}$$
 = 5.43, s = 3.15)

• Test the hypothesis using $\alpha = 0.01$

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked
 - H_0 : $\mu \ge 10$ H_a : $\mu < 10$
 - $\alpha = 0.01$
- 2. Calculate the appropriate test statistic

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{5.43 - 10}{3.15/\sqrt{7}} = -3.84 \quad (\sim t_{n-1} = t_6)$$

- 3. Calculate **critical values**/p value
- 4. Decide whether to reject/fail to reject H₀

Brief Summary

