Técnicas de Desenvolvimento de Algoritmos (parte 2)

Prof. Jefferson T. Oliva

Algoritmos e Estrutura de Dados 2 (AE43CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Divisão e Conquista
 - Exemplo 1: encontrar o maior valor
 - Exemplo 2: potenciação
 - Exemplo 3: problema da mochila

- Ideia básica
 - Divisão: dividir o problema a ser resolvido em subproblemas menores e independentes
 - Conquista: encontrar soluções para as partes recursivamente
 - Combinação: combinar as soluções obtidas em uma solução global

3

```
Divisao_e_Conquista(x)
```

```
1: if x é pequeno ou simples then
      return resolver(x)
 2:
 3: else
    decompor x em conjuntos menores x_0, x_1, \dots x_n
 4:
 5: for (i \leftarrow 0 \text{ até } n) do
 6: y_i \leftarrow Divisao \ e \ Conquista(x_i)
 7: end for
 8: combinar y;'s
 9: end if
10: return y
```

4

Exemplo 1: encontrar o maior valor

• O problema consiste em encontrar o maior elemento de um array A[1..n]

Solução Ingênua

```
1: max \leftarrow A[1]
2: for i \leftarrow 2 até n do
```

3: if
$$A[i] > max$$
 then

4:
$$max \leftarrow A[i]$$

- 5: end if
- 6: end for
- 7: return max
 - Complexidade de tempo: $\Theta(n)$
 - Complexidade de espaço (extra): $\Theta(1)$

Exemplo 1: encontrar o maior valor

Solução por divisão e conquista

Maxim(A, x, y)

- 1: **if** $y x \le 1$ **then**
- 2: return max(A[x], A[y])
- 3: **else**
- 4: $m \leftarrow (x+y)/2$
- 5: $v1 \leftarrow Maxim(A[x..m])$
- 6: $v2 \leftarrow Maxim(A[m+1..y])$
- 7: end if
- 8: return max(v1, v2)

Exemplo 1: encontrar o maior valor

- A complexidade de tempo T(n) do algoritmo é uma fórmula de recorrência
 - T(n) = c, para $n \le 2$, onde c é uma constante
 - T(n) = 2T(n/2) + c para n > 2
- A complexidade de espaço T(n) do algoritmo também é uma fórmula de recorrência
 - T(n) = n + c, para $n \le 2$ (já que o vetor possui tamanho n)
 - T(n) = 2T(n/2) + c para n > 2
- Logo, por meio do método mestre (caso 1), para a função foi definida a complexidade de tempo e de espaço na ordem $\Theta(n)$

7

Exemplo 2: potenciação

Solução Ingênua

potencia(a, n)

- 1: $p \leftarrow a$
- 2: **for** $i \leftarrow 2$ até n **do**
- 3: $p \leftarrow p \times a$
- 4: end for
- 5: return p
 - Complexidade de tempo: O(n)
 - Complexidade de espaço: $\Theta(1)$

Exemplo 2: potenciação

Solução divisão e conquista

```
potencia(a, n)
 1: if n = 0 then
 2: return 1
 3: else if n=1 then
 4: return a
 5: else
6: if n \in par then
7: x \leftarrow potencia(a, n/2)
8:
         return x * x
    else
9:
10:
        x \leftarrow potencia(a, (n-1)/2)
11:
         return x * x * a
12:
    end if
13: end if
```

Exemplo 2: potenciação

- A complexidade T(n) do algoritmo é uma fórmula de recorrência, tanto para a análise de tempo quanto de espaço
 - T(0) = T(1) = c
 - T(n) = T(n/2) + c para n > 1
- Logo, por meio do método mestre (caso 2), para a função foi definida a complexidade de $\Theta(\log n)$
- Pior caso: $O(\log n)$

Exemplo 3: problema da mochila

- Se o vetor tiver o tamanho igual a 1, a função verifica se o peso do item não irá extrapolar a capacidade da mochila
 - Se a capacidade não for extrapolada, subtraia-a com o peso do item, já que o mesmo será adicionado na mochila e, em seguida, retorne o custo do item
 - Caso contrário, apenas retorne 0

Exemplo 3: problema da mochila

- Caso o tamanho do vetor seja maior que 1
 - Divisão: divida o vetor ao meio
 - Conquista 1: tente incluir, na mochila, um objeto da primeira metade recursivamente
 - Conquista 2: tente incluir, na mochila, um objeto da segunda metade recursivamente
 - Combinação: some o resultado das duas metades

Solução divisão e conquista

```
mochila DQ(P, C, b, i, f)
 1: if i = f and b - P[i] > 0 then
 2: b \leftarrow b - P[i]
 3: return C[i]
 4: else if i = f and b - P[i] < 0 then
      return 0
 5:
 6: else
 7: m \leftarrow (i+f)/2
 8:
      return
      mochilaDQ(P, C, b, i, m) + mochilaDQ(P, C, b, m + 1, f)
 9: end if
```

Exemplo 3: problema da mochila

- A complexidade de tempo do algoritmo é uma fórmula de recorrência
 - T(1) = c
 - T(n) = 2T(n/2) + c para n > 1
- A complexidade de espaço
 - T(1) = n + c
 - T(n) = 2T(n/2) + c para n > 1
- Logo, por meio do método mestre (caso 1), para a função foi definida a complexidade de $\Theta(n)$
- Aviso: a solução do problema da mochila utilizando divisão e conquista apresentada em aula pode não gerar solução ótima!

- Outros exemplos de aplicação:
 - Ordenação por intercalação (mergesort)
 - Distância Euclidiana
 - Busca binária
 - Mediana
 - Quicksort

- Vantagens:
 - Altamente paralelizáveis
 - Fácil implementação
 - Simplificação de problemas complexos
- Desvantagens:
 - Necessidade de memória auxiliar
 - Repetição de subproblemas

Referências I

- Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Clifford, S. *Algoritmos: teoria e prática*. Elsevier, 2012.
- Horowitz, E., Sahni, S. Rajasekaran, S. Computer Algorithms.
 Computer Science Press, 1998.
- Szwarcfiter, J.; Markenzon, L. Estruturas de Dados e Seus Algoritmos. LTC, 2010.
 - Ziviani, N.

 Projeto de Algoritmos com implementações em Java e C++.

 Thomson, 2007.

- Se o vetor tiver o tamanho igual a 1, a função apenas retorna o elemento
- Caso o tamanho do vetor seja maior que 1
 - 1 Divisão: divida o vetor ao meio
 - 2 Conquista 1: ordene a primeira metade recursivamente
 - Conquista 2: ordene a segunda metade recursivamente
 - Combinação: intercale as duas metades

mergesort(A, p, r) 1: if p < r then 2: q = (p + r)/23: mergesort(A, p, q) 4: mergesort(A, q + 1, r) 5: merge(A, p, q, r) 6: end if

merge(A, p, q, r)

```
1: for i = p to q do
 2: B[i] = A[i]
 3: end for
 4: for j = q + 1 to r do
 5:
       C[j-q] = A[j] / * \{ \text{Se for uma linguagem em que o primeiro elemento de } \}
       vetores é acessado na posição 0, então C[i-q-1] = A[i]
 6: end for
 7: i = p
 8: i = q
 9: for k = p to r do
10:
       if B[i] \leq C[j] then
11: A[k] = B[i]
12: i = i + 1
13: else
14: A[k] = B[j]
15:
    j = j - 1
    end if
16:
17: end for
```

mergesor $\overline{t(A, p, r)}$

```
1: if p < r then
2: q = (p + r)/2
3: mergesort(A, p, q)
4: mergesort(A, q + 1, r)
5: merge(A, p, q, r)
6: end if
```

- A complexidade T(n) do algoritmo é uma fórmula de recorrência
 - T(1) = c
 - $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + cn$ para n > 1
- Logo, a complexidade do mergesort é $\Theta(n \log n)$
- Pior caso: $O(n \log n)$

• Construção da árvore de recursão da recorrência do Mergesort T(n) = 2T(n/2) + cn

• Custo total: $cn \log n + cn = \Theta(n \log n)$

Entrada

Saída

	р		q						r
Α	66	33	55	44	99	11	77	22	88

$$\mathbf{A} \quad \boxed{66} \quad \boxed{}$$

	р		q						r
Α	33	44	55	66	99	11	77	22	88

			р	q		р	
Α			11	77	22	88	

P q P

A 11 22 77 88

. . .

	р		q						r
Α	11	22	33	44	55	66	77	88	99