Programfejlesztés PIC mikrovezérlőkre II.

Írta: Molnár Zsolt

BMF KVK MAI 2007. március 28.

Tartalomjegyzék

1. Bevezetés	
2. Mintafeladatok megoldásának ismertetése	
2.1. példa	
2.2. példa	
2.3. példa	10
2.4. példa	14
3. Mérési feladatok	16
4. Házi feladat	17

1. Bevezetés

Ez az útmutató a **Programfejlesztés PIC mikrovezérlőkre I. c. mérés** útmutatóján alapul, annak **folyatatása**. Ebben a segédletben az MPLAB **szimulátorának további lehetőségeit** ismerheti meg, illetve **újabb perifériák** kezeléséről ejtünk szót. Az MPLAB IDE ismertetését, a programfejlesztés alapvető lépéseinek, és a szimulátor legfontosabb funkcióinak bemutatását a fenti útmutatóban találja.

A **mérés sikeres elvégzését** nagymértékben **segíti** a mérést előkészítő előadások anyagának elsajátítása, illetve a Programfejlesztés PIC mikrovezérlőkre I. c. mérés elvégzése.

A segédlet megírásakor az MPLAB legfrissebb elérhető verziója a 7.50-es.

A mérés során a **18F452** típussal dolgozunk, mivel a későbbiekben ezt a típust tartalmazó demonstrációs panelt fogjuk használni.

2. Mintafeladatok megoldásának ismertetése

A következőkben a mérés előző részéhez képest **magasabb szinten ismerheti meg** a rendelkezésre álló **szimulációs** lehetőségeket. A mintapéldák olyan perifériákat is használnak, amelyekkel eddig nem foglalkoztunk.

A mérésen megszerzett **ismeretek önálló munkával**, részben a laboratóriumi gyakorlatokon, részben azon kívüli tevékenységgel, a Microchip oldaláról és az Internet más részeiből letölthető mintapéldák és a súgó tanulmányozásával **bővíthetőek**.

2.1. példa

Írjunk programot, amely a BANK0 60h...7Fh területét indirekt címzés felhasználásával átmásolja a BANK1 180h...19Fh területére! A feladat megoldásához kövessük az **alábbi lépéseket**!

- a. Tervezzük meg a programot folyamatábra segítségével!
- b. Hozzunk létre projektet és a kódot, majd végezzük el a fordítást!
- c. Ellenőrizzük a program működőképességét szimulációval!

1.a. A program megtervezése

Indirekt címzésnél az FSR regiszter tartalma által megcímzett regiszter az operandus. A PIC18-as családnál különleges lehetőség indirekt címzés esetén a cím automatikus inkrementálása és dekrementálása. Ehhez külön regiszterek állnak rendelkezésre, amelyeket megcímezve, az FSR értéke a felhasználása előtt vagy után inkrementálódik illetve dekrementálódik (lásd katalógus 4.12 fejezet).

Jelen esetben a **forrás** címének tárolásához **FSR0**-át, a **cél** címének tárolásához pedig **FSR1**-et használjuk. Mivel az indirekt címzés regiszterei az adatmemória teljes egészét képesek megcímezni, ezért a két **memóriabank** közötti **váltásra nincs szükség**. A programban felhasználjuk az **automatikus cím-inkrementálás** lehetőségét, ehhez **POSTINC0**, illetve **POSTINC1** regisztereket kell megcímezni, amelyek az adatmozgató művelet végrehajtása

után növelik a hozzájuk tartozó FSR regiszter értékét. Az **áthelyezendő memóriaterület hosszát** az N = végcím – kezdőcím + 1 képlettel számíthatjuk, amelyet a Counter változóban helyezünk el. A program **folyamatábrája** az alábbiak szerint alakul:

1.b. Hozza létre a projektet és a forrásfájlt az előzőekben tanultak alapján! Végezze el a fordítást, és az esetleges szintaktikai hibák javítását!

A forrásfájl egy lehetséges változatát a következőkben közöljük.

Rst_	vect		; Reset vektor, tápbekapcsoláskor, resetkor innen indul
	org	0x0000	; a program végrehajtása
	goto	Start	
Start	org	0x0040	; A program kezdete
	movlw movwf	.32 Counter	; A Counter változó feltöltése: ; 32 bájtot kell átmásolni
	lfsr lfsr	FSR0, 0x60 FSR1, 0x180	; A másolandó terület kezdőcíme ; A feltöltendő terület kezdőcíme
Next	movf movwf decfsz goto	POSTINC0, 0 POSTINC1 Counter, 1 Next	; A soron következő másolandó adat betöltése W-be ; W-nek a soron következő helyre való kiírása ; A ciklusszámláló csökkentése ; Ismétlés, ha a ciklusszámláló nem nulla
Stop	goto	Stop	; Kész a másolás, egyhelyben járás
	end		

1.c. A program vizsgálata

A program működőképességének vizsgálatához futtatás előtt **a forrás memóriaterületet fel kell töltenünk** a cél memóriaterülettől eltérő adatokkal, hogy az átmásolás követhető legyen. Ezen kívül **érdemes figyelemmel kísérn**i a speciális funkciójú regiszterek közül az **FSR0** és **FSR1** regisztereket, hogy megfigyelhessük az automatikus inkrementálás működését. Ehhez nyissuk meg a nyomkövető ablakot (*View* \rightarrow *Watch*), és helyezzük el benne FSR0-át és FSR1-et.

A forrásterület feltöltését elvégezhetjük kézi úton is, egyszerűbb azonban a **feltöltést automatizálni**. Nyissuk meg a fájlregiszterek ablakát (*View* → *File Registers*). Kattintsunk jobb gombbal az ablak felett, és a megjelenő menüben válasszuk ki a regiszterek feltöltése (*Fill Registers*...) parancsot. A felugró ablakban a megadott kezdőcímtől megadott végcímig állandó értékkel, 00h-tól FFh-ig szekvenciálisan változó adatokkal, vagy véletlenszerű adatokkal tölthető fel a memória.

Töltsük fel a 60h...7Fh területet szekvenciálisan változó adatokkal. Ehhez a következőképpen kell kitölteni a mezőket:

Futtassa a programot lépésenkénti üzemmódban! **Figyelje meg** az indirekt címzésre használt regiszterek (FSR0 és FSR1) változását, valamint a másolási műveletet!

2.2. példa

Írjunk megszakításon alapuló időzítő rutint, amely a TIME regiszterben tárolt 8 bites előjel nélküli értéket felhasználva t = TIME·10 ms időközönként adott tevékenységeket futtat le. A feladat megoldásához használjuk TIMER1-et, az órajel legyen 4 MHz! A tevékenység az egyszerűség kedvéért legyen PORTB 0. bitjének invertálása. A feladat megoldásához kövessük az **alábbi lépéseket**!

- a. Tervezzük meg a programot!
- b. Hozzunk létre projektet és a kódot, majd végezzük el a fordítást!
- c. Ellenőrizzük a program működőképességét szimulációval!
- **2.a.** A katalógus segítségével **állítsa össze** a PORTB, a TIMER1, és a megszakításrendszer inicializálásához **szükséges beállítások listáját**!

2.b. Hozza létre a projektet és a kódot!

Végezze el a fordítást, és az esetleges szintaktikai hibák javítását!

A forrásfájl egy lehetséges változatát a következőkben közöljük.

```
;* feladat_4.asm
     ;* A program TIMER1 megszakításának használatával PORTB0 állapotát
* TIME*10ms-onként invertálja. A program TIME=0-ra nem működik!
;* A PicDem2 Plus panel órajele 4MHz, a programban ezt vettük alapul
     list p=18f452
     include "p18f452.inc"
                                 ; A processzorfüggő deklarációkat tartalmazó include fájl
TIME
             egu 0x60
                                 ; Változók elhelyezése az általános felhasználású
TIME WORK equ 0x70
                                 ; regiszterek területén
                                 ; Reset vektor, tápbekapcsoláskor, resetkor innen indul
Rst_vect
             0x0000
                                 ; a program végrehajtása
     org
             Start
     goto
Int vect
                                 ; Megszakítás vektor. Ha engedélyezett megszakítás van,
             0x0008
                                 ; innen folytatódik a program végrehajtása
     org
                                  Megszakítás-forrás azonosítása:
             PIE1, TMR1IE
                                  ha TMR1IE és TMR1IF is 1, akkor TIMER1-től jött
     btfss
     reset
                                  megszakítás, különben nem.
     btfss
             PIR1, TMR1IF
                                  Mivel csak TIMER1 megszakítása van engedélyezve,
     reset
                                 ; ezért ha nem tőle jött megszakítás, akkor resetelünk
     bra
             TMR1_ISR
                                 ; Ugrás TIMER1 megszakításának kiszolgáló rutinjára
Start
                                 ; A program kezdete
             0x0040
     org
                                 : PORTB beállítása
     bcf
             LATB. 0
     bcf
                                 ; Itt ez lenne az egyszerűbb megoldás, a portláb irányának
             TRISB, 0
                                 ; beállítására, az alábbi maszkolás
                                 ; több bit egyszerre történő beállítására hatékony
     movlw
             0xFE
     andwf
                                 ; PORTB0-t kimenetté konfiguráljuk
             TRISB, 1
                                 ; Timer1 beállítása
                                 ; TIMER1 engedélyezése
     bsf
             T1CON, TMR1ON
     movlw
             0xD8
                                 ; TIMER1 feltöltése úgy, hogy 10ms után csorduljon túl:
     movwf
             TMR1H
                                  (65536-TMR1Preload)*(1/1MHz)=10 ms, innen:
             0xF0
                                  TMR1Preload = 65536 - 10ms*1MHz = 55536 = 0xD8F0
     movlw
                                  TMR1L írásával TMR1H pufferbe írt érték is töltődik.
     movwf
             TMR1L
                                  A feltöltési sorrend fontos!
                                  Megszakítások beállítása
     bcf
             PIR1, TMR1IF
                                  TIMER1 megszakítás flagjének törlése
             PIE1, TMR1IE
                                  TIMER1 megszakítás engedélyezése
     bsf
     bsf
             INTCON, PEIE
                                  Periféria megszakítások engedélyezve
                                 ; Globális megszakítás-engedélyezés
     bsf
             INTCON, GIE
     movff
             TIME, TIME WORK
                                 ; TIME másolása TIME WORK-be, hogy TIME tartalma
                                 : ne sérüliön
                                 ; Örök helyben járás, itt lehetne a főprogram
Stop
     goto
             Stop
```

org	0x0200	; TIMER1 megszakításának kiszolgáló rutinja
TMR1_ISR		; Timer1 megszakításának kiszolgálása
movlw	0xD8	; Timer1 feltöltése az előbbiekben kiszámított értékkel
movwf	TMR1H	
movlw	0xF0	
movwf	TMR1L	
decfsz	TIME_WORK, 1	
goto	No_activity	T (1 (1 (1 DD2) ((1)
btg	PORTB, 0	; Tevékenységek (most csak RB0 invertálása) ; Ide jöhetnének egyéb tevékenységek
movff	TIME, TIME_WORK	; TIME_WORK feltöltése TIME értékével
No_activity		
bcf	PIR1, TMR1IF	; Timer1 megszakítása kiszolgálva, megszakítás bitet
töröljük		
retfie		; Visszatérés megszakításból (mindig "retfie" paranccsal!)
end		

2.c. Végezzük el a program működőképességének vizsgálatát!

A nyomkövető ablakban (View → Watch) jelenítsük meg PORTB, TIME és TIME_WORK regisztereket! Mivel PORTB egy speciális funkciójú regiszter, így a szokásos módon hozzáadatjuk a listához. TIME és TIME_WORK általános felhasználású területen vannak. Mivel definiált szimbólumok, így az Add Symbol gombbal adhatjuk őket hozzá a listához. Ha a memóriacella szimbólumként nem definiált, akkor a listához adásához a nyomkövető ablak feletti jobb kattintás után megjelenő menüből a hozzáadás (Add...) funkciót kiválasztva egy ablak ugrik elő. Ennek alsó részén (Absolute Address) adhatunk a listához általános célú regisztert. Példaként a következő ábra a TIME, 0x60 című regiszter hozzáadásához szükséges kitöltést mutatja (a hozzáadást a cím hozzáadása (Add Address) gombra kattintva végezhetjük

el):

Nyissa meg a stopper ablakot (*Debugger→StopWatch*)! Helyezzen el töréspontot a "btg PORTB, 0" programsorra! Töltse fel TIME regiszter (0x60) értékét a kívánt értékkel! Futtassuk a programot, szimulációval ellenőrizzük számításaink helyességét! Az alábbi ábrán a stopper ablaka látható, Time mezőjében a TIME = 10 esetén előálló (10·10ms = 100*ms*) ütemidővel.

2.3. példa

Hozzunk létre a szimulátorban előállított külső gerjesztést, amely az alábbi feltételek szerint működteti PORTB-t!

Bekapcsolás után álljon elő a következő szekvencia (minden portláb 0 szintről induljon):

- **RB0 10 gépi ciklusonként váltson szintet** (20 gépi ciklus periódusidejű szimmetrikus négyszögjel)!
- 50 gépi ciklus késleltetés után 100 ciklus ideig RB1-en jelenjen meg 40 gépi ciklus periódusidejű szimmetrikus négyszögjel!
- RB2 váltson magas szintre RB1 magas szintre váltása után 15 gépi ciklussal!
- RB3-on álljon elő egy 1 gépi ciklus idejű pozitív impulzus, RB2 magas szintre váltása után 10 gépi ciklussal!

Hozzon létre egy új projektet, de ne adjon hozzá forrást! **Nyissa meg** a logikai analizátor ablakot, adja a jellistához RB0, RB1, RB2 és RB3 lábakat!

Nyissunk új gerjesztés-vezérlő ablakot (*Debugger → Stimulus → New Workbook*)! A kezdeti feltétel (RB0...RB3 kezdeti jelszintje alacsony) biztosításához a *Pin/Register Actions* fülön

állítsuk be, hogy 0 időpillanatban PORTB összes bitje álljon alacsony szintre! Az idő (*Time*) oszlopban adjuk meg az időpontot (0). A jelek hozzáadása mezőn (*Click here to Add Signals*) való kattintással a felugró listából válasszuk ki PORTB-t, majd értékét állítsuk 0-ra. A táblázat kitöltése az alábbi ábra szerint történhet.

Állítsuk elő RB0-on a 20 ciklus periódusidejű szimmetrikus négyszögjelet! Ehhez váltsunk a *Clock Stimulus* fülre. A láb (*Pin*) oszlop első sorára kattintva válasszuk ki RB0-át!

Kezdeti szintje (*Initial*) alacsony (*Low*). Az alacsony szint (*Low Cyc*) ideje 10 ciklus, magas szinté (*High Cyc*) is ugyanannyi.

A gerjesztés kezdete (*Begin*) a bekapcsolás vagy az alaphelyzetbe állítás (*At Start*), és amíg a szimuláció tart, ne fejeződjön be (*End: Never*).

RB1 gerjesztésének beállításánál is hasonlóképpen járunk el. Egyetlen különbséget a kezdeti és a befejező időpont megadása jelenti.

A feladat szerint a gerjesztés kezdete (*Begin*) 50 ciklusnál (50 cyc) van, amelyet a lista alatt a *Begin* mezőben a ciklusszám (*Cycle*) kiválasztása, majd az 50-es érték megadásával lehetséges beállítani.

Befejezése a kezdetéhez képest 100 ciklussal később van, amelyet a befejezés (*End*) mezőben a ciklusszám (*Cycle*) kiválasztása, majd az 100-as érték megadásával, és a kezdetnek, mint viszonyítási alapnak (*from clock start*) kiválasztásával lehetséges beállítani.

A táblázat kitöltése az alábbi ábra szerint történhet.

Végül a **feltételes gerjesztéseket** kell beállítani, az *Advanced Pin/Register* fülön. Először hozzuk létre a feltételeket!

Kattintsunk az alsó táblázatban (*Define Conditions*) a *COND1* melletti mezőre. Mivel lábat szeretnénk gerjeszteni, válasszuk a *Pin* beállítást. A következő mezőben állítsuk be RB1-et, mivel a magas szintbe (1) váltása után 15 ciklussal (*Wait: 15 cyc*) kell tevékenységeket végezni.

COND2 és COND3 feltételeket hozza létre a feladatkiírás és az alábbi ábra szerint! A feltételek megadása után ki lehet tölteni a felső táblázatot (Define Triggers). A típus (Type) oszlopban megadható, hogy egyszeri (Ix) vagy folyamatosan figyelendő (Cont) triggerről van-e szó. Az újraélesedési idő (Re-Arm Delay) oszlopban megadható, hogy ha a trigger bekövetkezett, utána mennyi idővel kezdődjön el ismét a feltétel keresése.

A táblázat jobb felében a *Click here to Add Signals* mezőre kattintva, megadhatjuk a gerjesztendő lábakat vagy regisztereket.

A feladatban definiált feltételek szerint kitöltött táblázat az alábbiakban látható.

Végezze el a szimulációt egyszerű léptetéssel (*Step*)! A gerjesztés időfüggvénye az alábbi ábrán látható. **Ellenőrizze**, hogy az időfüggvény megfelel-e a feladatkiírásnak!

2.4. példa

A közölt forráslista és a katalógus alapján **elemezze a következő program működését**, majd **végezze el** szimulációval a **vizsgálatát**!

```
* feladat_6.asm
  ;* A program soros porton megszakítással vesz, ha beérkezett egy bájt,
* visszaküldi eggyel megnövelve. Beállítások: 9600, 8, N, 1
     list p=18f452
     include "p18f452.inc"
                                ; A processzorfüggő deklarációkat tartalmazó include fájl
Rst vect
                                ; Reset vektor, tápbekapcsoláskor, resetkor innen indul
                                ; a program végrehajtása
             0x0000
     org
     goto
             Start
Int_vect
                                ; Megszakítás vektor. Ha engedélyezett megszakítás van,
             8000x0
                                ; innen folytatódik a program végrehajtása
     org
             PIE1, RCIE
                                ; USART-tól jött a megszakítás?
     btfss
                                ; Nem, máshonnan, hibakezelés.
             Other Int
     goto
                                ; USART-tól jött a megszakítás?
     btfss
             PIR1, RCIF
                                ; Nem, máshonnan, hibakezelés.
     qoto
             Other_Int
     movlw
             06h
                                ; Vételi hiba ellenőrzése
     andwf
             RCSTA, W
     btfss
             STATUS, Z
                                ; Vételi hiba (túlfutási vagy kerethiba)
     goto
             Rcv_Error
     movf
             RCREG, W
                                ; Vett adat beolvasása
     incf
             WREG
                                ; Megnövelése
             TXREG
                                ; Adási regiszterbe töltése
     movwf
             ISR_End
                                ; Vége a megszakítás kiszolgálásának
     goto
Rcv_Error
             RCSTA, CREN
     bcf
                                ; A hibák törlése az USART ki/be kapcsolásával
     bsf
             RCSTA, CREN
             ISR_End
                                ; Vége a megszakítás kiszolgálásának
     goto
Other_Int
             Other_Int
                                ; Mivel csak USART vételi megszakítása engedélyezett, és
     goto
                                 ; nem onnan jött megszakítás, ezért megszakítjuk a
                                ; programvégrehajtás szekvenciáját
ISR_End
     retfie
                                ; Visszatérés a megszakításból.
Start
                                ; A program kezdete
             0x0050
     org
     bcf
             TRISC, 6
                                ; RC6/TX kimenet
```

	bsf movlw movwf	TXSTA, BRGH .25 SPBRG	; Magas bitsebesség kiválasztása ; SPBRG feltöltése (9600bps 4MHz órajel esetén) ; Katalógus képlete alapján: ; 9600bps=4MHz/(16(SPBRG+1)), innen SPBRG=25
	bsf bsf bsf	RCSTA, SPEN RCSTA, CREN TXSTA, TXEN	; Soros port engedélyezése ; Folyamatos vétel engedélyezése ; Adás engedélyezése
	bcf bsf bsf bsf	PIR1, RCIF PIE1, RCIE INTCON, PEIE INTCON, GIE	; Vételi megszakítás törlése ; Vételi megszakítás engedélyezése ; Periféria megszakítások engedélyezése ; Globális megszakítás engedélyezés
Stop	goto	Stop	; Egyhelyben járás, várakozás megszakításra
	end		

A szimulációhoz használja az alább közölt **gerjesztési fájlt** (*Register Injection*), a TXREG értékét **naplózza** (*Register Trace*)! **Értelmezze a gerjesztési fájl tartalmát** a súgó segítségével!

"usart.txt":

wait 20 ms 30 31 32

wait 10 ms
"BMF KVK "

rand 10 50 ms "MAI"

3. Mérési feladatok

- 1. Végezze el a házi feladat 2. pontja szerinti program szimulációját, és az esetleges hibakeresését és javítását!
- 2. Végezze el a házi feladat 3. pontja szerinti program szimulációját, és az esetleges hibakeresését és javítását!
- 3. Oldja meg a mérésvezető által kiadott feladatot, és végezze el a vizsgálatát szimulációval!

4. Házi feladat

- 1. Korábbi tanulmányai, a mérést előkészítő előadásokon elhangzottak, és a katalógus alapján készüljön fel a következő témákból:
 - PIC18F452
 - Indirekt címzés
 - Időzítők
 - Megszakítások
 - USART és A/D
 - MPLAB szimulátor
 - Stopperóra
 - Gerjesztések (órajelhez kötött, feltételes)
- 2. Tervezzen és írjon programot PIC18F452-re, amely az USART-ra érkező 0...7 közötti ASCII karaktereknek megfelelően bekapcsolja PORTB 0...7. bitjét, a többit pedig kioltja. (Ha nem a tartományba eső karakter érkezik, ne történjen a porton változás.)
- 3. Tervezzen és írjon programot PIC18F452-re, amely az AN0 analóg bemenet értékétől függően a következő táblázat szerint működik (referencia a tápfeszültség).

Bemeneti feszültség AN0-on	RB0, RB1 értéke
$U_{be} < 0.25 \cdot U_{ref}$	0, 0
$0.25 \cdot U_{ref} \le U_{be} < 0.5 \cdot U_{ref}$	1, 0
$0.5 \cdot U_{ref} \le U_{be} < 0.75 \cdot U_{ref}$	0, 1
$0.75 \cdot U_{\mathit{ref}} \leq U_{\mathit{be}}$	1, 1