Link layer, medium access control

Ing. Yelena Trofimova

Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague ©Yelena Trofimova, 2021

Computer networks, BIE-PSI SS 2020/21, Lecture 2

https://courses.fit.cvut.cz/BIE-PSI/

N/w access to Application e.g. Web Browser **Application Layer** (IE, Mozilla Firefox, Google Chrome) Type of Data; HTTPS – Encryption Sevices 0 **Presentation Laver** Starts and Ends session and also keeps them Session Layer isolated. Defines Ports and Reliability **Transport Layer** N Logical or IP addressing; Determines Best **Network Laver** path for the destination. Switches Data Link Layer MAC Addressing Cable Physical Layer • Network Interface Cards - Electric Signals

Contents

- Link layer
 - types of services
 - errors detection and correction
- MAC and LLC sublayers
 - medium access control
 - ► logical link control
- Implementation
 - wired: Ethernet
 - wireless: Wi-Fi, Bluetooth

Reliability of services

Reliability: reaction of layer to lost/corrupted block of data.

Types of services:

- unacknowledged connectionless service
- acknowledged connectionless service
- acknowledged connection-oriented service

Link layer protocols

Link layer protocols ensure communication between neighboring devices:

- framing
- link access

Other possible services:

- insurance of reliable transfer
 - guaranteed frame delivery
 - elimination of frame duplication
 - correct frame ordering
- flow and error control
- addressing in the scope of network segment
 - end-stations have assigned address
 - mapping of the network address to the link layer address

Error Detection and Correction

Type of data encoding depends on the medium at the physical layer.

- Bit error rate (BER) number of bit errors per unit time
 - could vary significantly: cca $10^{-3} 10^{-12}$
 - exceptional and accidental errors in optical link
 - frequent errors in wireless link
- The basic principle is the redundancy of transmitted information ⇒ channel capacity is reduced.

Error Detection

- Parity bit (even or odd): added for the total number of 1-bits to be even or odd
- Checksum: sum of all bytes (words) values in the message
- CRC (Cyclic Redundancy Check)
 - ► key G(x)
 - ▶ the CRC is the remainder after division of the message M(x) by the key G(x)

Error Correcting Codes

- All of these codes add redundancy to the information that is sent.
- Examples:
 - Hamming code (7,4) encodes 4 bites into 7 bites, which allows to correct one error and detect two
 - Binary Convolution Code and Reed – Solomon Code are used in satellite communication

Source: Wolfram Demonstrations Project, Hamming (7,4)

Data in link channel

Problem of " $bandwidth \times delay$ "

- product of bandwidth and delay gives the amount of data "on the way"
- influences the selection of frame acknowledgment and resend methods

Examples:

- Ethernet (10BaseT) in local network
 - ► 10 Mb/s * 0.5 ms = 625 Byte
 - less than 1 frame
- long international optical link 10 Gb/s
 - ► 10 Gb/s * 5 ms = 6.25 MByte
 - thousands of frames in the communication channel

Link Layer Sublayers

Link layer is too general.

2 sublayers:

- MAC (Medium Access Control) controls the access to shared medium, defines frame address (MAC address)
- LLC (Logical Link Control) supports the coexistence of different network layer protocols in the same link, flow control and error control

Medium Access Control Methods

are implemented on MAC sublayer, have sense only in case of shared medium

- deterministic access
 - static allocation
 - centralized allocation management. For example: based on permission from management station to transmit
 - distributed allocation
- random access

Random Access Methods

- ALOHA
- Slotted ALOHA
- CSMA
- CSMA/CD
- CSMA/CA

ALOHA, slotted Aloha

- developed in the 1970s for a packet radio network by Hawaii University
- whenever a sender has data, it transmits
- transmission can be successful or not (collisions or channel errors)
- in case of error (higher layer), sender retransmits his message after some random time
- slotted Aloha improvement: time is slotted and a packet can only be transmitted at the beginning of one slot (it can reduce the collision duration)

CSMA

Carrier Sense Multiple Access

- based on the Aloha system
- collisions are not detected
- before the station starts transmission, it listens to the link, if no transmission is ongoing
- if channel is idle, station transmits
- if channel is not idle, three variants:
 - ▶ 1-persistent: wait for finish and send right away with probability 1
 - non-persistent: wait for random time
 - p-persistent: wait until the next slot and send with probability p
- problem: non-zero signal propagation time between stations

CSMA with Collision Detection

- during the transmission station listens to the channel
 - could be implemented on the wire
- in case of collision detection (receives something different than transmits), stops transmitting
- better medium utilization in compare with CSMA does not continue with sending of corrupted frame

CSMA with Collision Avoidance

- CSMA/CD could not be used for radio networks
 - could not listen during transmitting
 - so called "hidden terminal" effect

- RTS/CTS algorithm
 - station sends RTS Request To Send packet
 - central station respond with CTS Clear To Send
 - thus other stations know about planning transmission
 - used in Wi-Fi

Frames

Stream of bits is divided into frames

Problem is to determine the frame boundaries

- frame length is defined explicitly
 - frames are of equal length
 - at the beginning of the frame there is an information about length
- gap at the end of the frame
- byte stuffing: start and stop flags
- bit stuffing: analogous to byte stuffing for protocols that do framing on bit level

PPP

Point to Point Protocol RFC 1661, 1662

- most commonly used for WAN connection
- byte oriented protocol
- supports different authentication protocols (EAP, PAP, CHAP)
- is used over serial cable, phone line, cellular telephone, fiber optics, ethernet
- 0x7E is a flag (frame delimiter)
 - \triangleright 0x7E \Rightarrow 0x7D 0x5E
 - \triangleright 0x7D \Rightarrow 0x7D 0x5D

Ethernet

- 2 standards:
 - Ethernet II (DIX: consortium Digital, Intel, Xerox)
 - ▶ IEEE 802.3 (ISO 8802-3), more general version by IEEE
- in Internet, Ethernet II is obligatory
- frames can be distinguished
- both standards can co-exist on the same segment

Ethernet II

- Preamble: 1010101010....1011
- Address: 3 bytes prefix (manufacturer) + 3 bytes suffix
- XXXXXXFB
 - ► F: 0 global, 1 local
 - ▶ B: 0 unicast, 1 multicast
- FF:FF:FF:FF:FF is broadcast.

- Type = ID of network protocol
 - \triangleright 0x0800 = IPv4
 - \triangleright 0x0806 = ARP
 - ► 0x86DD = IPv6

Preamble	Destination address	Source address	Туре	Data	CRC
8 bytes	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes

Ethernet 802.3

- Length 0 1500 bytes (0-0x5DC)
- Data:
 - ► IEEE 802.3 Novell IPX
 - ► IEEE 802.2 LLC
 - ► IEEE 802.2 SNAP

Preamble	Destination address	Source address	Length	Data	CRC
8 bytes	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes

Ethernet Standards

OSI Layers

LAN Specification learncisco

WiFi (802.11)

- types of nodes: clients and Access Points (AP)
- communication modes: infrastructure, ad-hoc
- support for data encryption
- authentication protocols:
 - free access (no authentication)
 - WEP
 - ► WPA, WPA2
- variants:
 - ► 802.11a (5GHz, 54 Mbps)
 - 802.11b (2.4GHz, 11 Mbps)
 - ► 802.11g (2.4GHz, 54 Mbps)
 - ▶ 802.11n (5GHz or 2.4GHz, 100 Mbps)
 - ► 802.11ac (5GHz, 500 Mbps)
 - ▶ 802.11ax (2.4GHz or 5GHz, up to 11Gbps)

Bluetooth (802.15.1)

- PAN (Personal Area Networks)
- Topology:
 - piconet: 7 active clients, max 255 (active and non-active) clients
 - scatternet: piconets connected through the common client
 - star-bus

	Bluetooth Classic	Bluetooth v4.x	Bluetooth v5.0	Bluetooth v5.2
Data rates	Data rates 1 Mbps		2 Mbps	2 Mbps
Maximum Range	10 m	30 m	200 m	200 m
Power Consumption	Very High	High	Low	Very Low
Throughput	700 kbps	300 kbps	1400 kbps	1400 kbps
Message Capacity	31 bytes	31 bytes	255 bytes	255 bytes