Banco de Dados

Prof. Fernando Rodrigues de Almeida Júnior

UFC – Universidade Federal do Ceará

Curso: Eng. da Computação

e-mail: fernandorodrigues@sobral.ufc.br

Sumário

- Introdução aos Sistemas de Banco de Dados
- Projeto de Bancos de Dados Relacionais
- Bancos de Dados Relacionais
 - → O Modelo Relacional

- → Projeto de Bancos de Dados
- <mark>⇒Álge</mark>bra Relacional
- Linguagem de Manipulação e Consulta
- Projeto Lógico de Bancos de Dados

- Mapeamento do MER para um Banco de Dados Relacional -
 - Ferramentas CASE
 - Modelagem ER gráfica
 - Geração automática de esquema (DDL)
 - Algoritmo de mapeamento
 - Sete passos

- Mapeamento do MER para um Banco de Dados Relacional-

- Diagrama relacional (DR)
 - Ferramenta gráfica utilizada para representar um esquema de banco de dados relacional
 - → Notação de tabela no DR

Nome da Tabela

- Mapeamento do MER para um Banco de Dados Relacional-
- A partir de um DER, pode-se construir um DR como descrito a seguir
 - ⇒Passo 1
 - Para cada conjunto de entidades E, deve ser criada uma tabela como todos os atributos de E
 - Escolher uma chave candidata para ser a chave primária da tabela
 - Apenas os componentes atômicos de atributos compostos devem ser incluídos
 - Atributos multivalorados serão tratados no Passo 7
 - Atributos derivados deverão ter seu atributo base de cálculo indicado

- Mapeamento do MER para um Banco de Dados Relacional -

- ⇒Passo 2
 - Para cada relacionamento binário 1:1 entre os conjuntos de entidades E1 e E2
 - Escolher uma das tabelas, por exemplo E2, e incluir como chave estrangeira em E2 a chave primária da outra tabela (E1)
 - Critério de escolha
 - >> Entidade com participação total no relacionamento
 - Atributos de relacionamentos devem ser incluídos na tabela com chave estrangeira
 - → Notação

- Mapeamento do MER para um Banco de Dados Relacional-

⇒Passo 3

- → Para cada relacionamento binário 1:N entre os conjuntos de entidades E1 e E2
 - □ Identificar o conjunto de entidades que participa do lado N
 (suponha que seja E2)
 - □ Incluir como chave estrangeira na tabela E2 a chave primária da outra tabela (E1)
 - Atributos de relacionamentos devem ser incluídos na tabela com chave estrangeira
- → Notação

⇒Passo 4

- Para cada relacionamento binário N:N entre os conjuntos de entidades E1 e E2
 - Criar uma nova tabela auxiliar tab-aux para representar o relacionamento
 - Incluir como chaves estrangeiras na tabela tab-aux as chaves primárias de E1 e E2
 - ▶ Estes dois atributos comporão a chave primária de tab-aux
 - Atributos de relacionamentos devem ser incluídos na tabela tab-aux

- Mapeamento do MER para um Banco de Dados Relacional -

- → Passo 5
 - Para relacionamento de grau maior que 2
 - Criar uma nova tabela auxiliar tab-aux para representar o relacionamento
 - ➡ Incluir como chaves estrangeiras na tabela tab-aux as chaves primárias das tabelas que participam do relacionamento
 - Estes atributos comporão a chave primária de tab-aux
- → Passo 6
 - Para cada conjunto de entidades fracas F
 - Cria uma tabela TF com todos os atributos de F
 - Incluir como chave estrangeira de TF a chave primária da tabela correspondente ao conjunto de entidades fortes R
 - A chave primária de TF será a chave parcial de F mais a chave primária de R

- ⇒Passo 7
 - Para cada atributo multivalorado A de um conjunto de entidades E1
 - Criar uma tabela T com o atributo A
 - Incluir como chave estrangeira em T a chave primária de E1
 - A chave primária de T será composta do atributo A mais a chave primária de E1

→ Propriedades Avançadas

Atributo Tipo Empregado

- Atributo único
 - → tipo empregado
 - →Assume valores diferentes, de acordo com o tipo do empregado
- Diversos atributos
 - ➡ tipo empPro, tipo empEsc, tipo empEng, ...
 - Cada um dos atributos assume valor 0 ou 1, de acordo com o tipo do empregado
 - Abordagem muito mais flexível, principalmente para hierarquias com restrição de sobreposição.

Generalização/Especialização

- → Modelo entidade relacionamento
 - E₁: superclasse
 - $-E_2$ E_n : subclasses de E_1
- → Modelo relacional
 - a tabela de E₁ possuirá:
 - ◆ os atributos de E₁
 - um atributo discriminador, caso necessário
 - as tabelas de E₂ a E_n possuirão:
 - os seus atributos específicos
 - 🔷 a chave primária de E₁
- → Chave primária das subclasses
 - chave primária de E₁

empregado(CPF_empregado, nome_empregado, tipo empregado) professor(<u>CPF_empregado</u>, regime_tr, titulação, uni_tit) escriturário(CPF_empregado, grau_ins, área_atua) engenheiro(CPF empregado, especialidade)

Outras Formas de Mapeamento

- → Modelo entidade relacionamento
 - E₁: superclasse
 - $-E_2$ E_n : subclasses de E_1
- → Modelo relacional
 - as tabelas de E₂ a E_n possuirão:
 - os seus atributos específicos
 - ◆ os atributos de E₁
 - a chave primária de E₁
- → Chave primária das subclasses
 - chave primária de E₁

professor(<u>CPF_empregado</u>, nome_empregado, regime_tr, titulação, uni_tit) escriturário(CPF_empregado, nome_empregado, grau_ins, área_atua) engenheiro(CPF_empregado, nome_empregado, especialidade)

- Mapeamento do MER para um Banco de Dados Relacional -

Outras Formas de Mapeamento

- → Modelo entidade relacionamento
 - E₁: superclasse
 - $-E_2$ E_n : subclasses de E_1
- → Modelo relacional
 - a tabela de E₁ possuirá:
 - ◆ os atributos de E₁
 - ⋄ os atributos de E₂, ..., E_n
 - o atributo discriminador, caso necessário

empregado(CPF_empregado, nome_empregado, tipo_empregado, regime tr, titulação, uni tit, grau ins, área atua, especialidade)

Outras Formas de Mapeamento

- → Modelo entidade relacionamento
 - E₁: superclasse
 - $-E_2$ E_n : subclasses de E_1
- → Modelo relacional
 - a tabela de E₁ possuirá:
 - ◆ os atributos de E₁
 - a tabela referente à junção das subclasses possuirá:
 - \bullet os atributos de $E_2, ..., E_n$
 - ◆ a chave primária de E₁
 - um atributo discriminador, caso necessário
- → Chave primária da tabela referente à junção
 - chave primária de E₁


```
pessoa (CPF_pessoa, nome_pessoa)
universidade (CGC_univ, nome_univ)
ingressa/aluno (CPF_pessoa, CGC_univ, data_ingresso)
professor (CPF_professor, nome_professor)
orienta (CPF_pessoa, CGC_univ, CPF_professor)
```


médico (CRM_médico, nome_médico)

paciente (CPF_paciente, nome_paciente)

atendimento (CRM_médico, CPF_paciente, data, hora)

médico (CRM_médico, nome_médico)

paciente (CPF_paciente, nome_paciente)

atendimento (CRM_médico, CPF_paciente, data, hora)

atende (CRM médico, CPF paciente, obs)

- Mapeamento do MER para um Banco de Dados Relacional -
- Exercício
 - Construa o DR para o seguinte DER

- Mapeamento do MER para um Banco de Dados Relacional -

- Mapeamento do MER para um Banco de Dados Relacional -
- Exercício
 - Construa um Esquema Relacional para o seguinte DER

Referências

- Notas de Aula Prof. Angelo Brayner
- Notas de Aula Profa. Cristina Dutra de Aguiar Ciferri

FIM