Chapter 9: Multilinear Algebra and Determinants

Linear Algebra Done Right (4th Edition), by Sheldon Axler Last updated: September 4, 2024

Contents

9A: Bilinear Forms and Quadratic Forms 9A Problem Sets	2 5
9B: Alternating Multilinear Forms 9B Problem Sets	7 9
9C: Determinants 9C Problem Sets	10 14
9D: Tensor Products 9D Problem Sets	17 20

9A: Bilinear Forms and Quadratic Forms

Definition 1 (bilinear form). A bilinear form on V is a function $\beta \colon V \times V \to \mathbb{F}$ such that

$$v \mapsto \beta(v, u)$$
 and $v \mapsto \beta(u, v)$

are both linear functionals on V for every $u \in V$.

Remark 2. A better but less popular terminology is "bilinear functional". If V is real, then the function $(u, v) \mapsto \langle u, v \rangle$ is a bilinear form. If V is complex, then it isn't.

Remark 3. If $\mathbb{F} = \mathbb{R}$, then a bilinear form differs from an inner product in that it does not require positive definiteness or symmetry.

Remark 4. A bilinear form β on V is a linear map on $V \times V$ only if $\beta = 0$.

Definition 5 $(V^{(2)})$. The set of bilinear forms on V is denoted by $V^{(2)}$.

Definition 6 (matrix of a bilinear form, $\mathcal{M}(\beta)$). Suppose β is a bilinear form on V and e_1, \ldots, e_n is a basis of V. The **matrix** of β with respect to this basis is the n-by-n matrix matrix $\mathcal{M}(\beta)$ whose entry $\mathcal{M}(\beta)_{j,k}$ in row j, column k is given by

$$\mathcal{M}(\beta)_{j,k} = \beta(e_j, e_k)$$

If the basis e_1, \ldots, e_n is not clear from the context, then the notation $\mathcal{M}(\beta, (e_1, \ldots, e_n))$ is used.

Corollary 7 (dim $V^{(2)} = (\dim V)^2$). Suppose e_1, \ldots, e_n is a basis of V. Then the map $\beta \mapsto \mathcal{M}(\beta)$ is an isomorphism of $V^{(2)}$ onto $\mathbb{F}^{n,n}$. Furthermore, dim $V^{(2)} = (\dim V)^2$.

Lemma 8 (composition of a bilinear form and an operator). Suppose β is a bilinear form on V and $T \in \mathcal{L}(V)$. Define bilinear forms α and ρ on V by

$$\alpha(u,v) = \beta(u,Tv)$$
 and $\rho(u,v) = \beta(Tu,v)$

Let e_1, \ldots, e_n be a basis of V. Then

$$\mathcal{M}(\alpha) = \mathcal{M}(\beta)\mathcal{M}(T) \text{ and } \mathcal{M}(\rho) = \mathcal{M}(T)^{\top}\mathcal{M}(\beta)$$

Theorem 9 (change-of-basis formula). Suppose $\beta \in V^{(2)}$. Suppose e_1, \ldots, e_n and f_1, \ldots, f_n are bases of V. Let

$$A = \mathcal{M}(\beta(e_1, \dots, e_n))$$
 and $B = \mathcal{M}(\beta, (f_1, \dots, f_n))$

and
$$C = \mathcal{M}(I, (e_1, ..., e_n), (f_1, ..., f_n))$$
. Then

$$A = C^{\top}BC$$

Definition 10 (symmetric bilinear form, $V_{sym}^{(2)}$). A bilinear form $\rho \in V^{(2)}$ is called **symmetric** if

$$\rho(u, w) = \rho(w, u)$$

for all $u, w \in V$. The set of symmetric bilinear forms on V is denoted by $V_{sym}^{(2)}$.

Remark 11. For real inner product space, define $\rho(u,w) = \langle u,w \rangle \in V_{sym}^{(2)}$ Additional example include

$$\rho(u, w) = \langle u, Tw \rangle$$

where T is self-adjoint and

$$\rho(S,T) = tr(ST)$$

where here $\rho \colon \mathcal{L}(V) \times \mathcal{L}(V) \to \mathbb{F}$.

Definition 12 (symmetric matrix). A square matrix A is called **symmetric** if it equals its transpose.

Theorem 13 (symmetric bilinear forms are diagonalizable). Suppose $\rho \in V^{(2)}$. Then the following are equivalent.

- (a) ρ is a symmetric bilinear form on V.
- (b) $\mathcal{M}(\rho, (e_1, \ldots, e_n))$ is a symmetric matrix for every basis e_1, \ldots, e_n of V.
- (c) $\mathcal{M}(\rho, (e_1, \ldots, e_n))$ is a symmetric matrix for some basis e_1, \ldots, e_n of V.
- (d) $\mathcal{M}(\rho, (e_1, \ldots, e_n))$ is a diagonal matrix for some basis e_1, \ldots, e_n of V.

Theorem 14. Suppose V is a real inner product space and ρ is a symmetric bilinear form on V. Then ρ has a diagonal matrix with respect to some orthonormal basis of V.

Definition 15 (alternating bilinear form, $V_{alt}^{(2)}$). A bilinear form $\alpha \in V^{(2)}$ is called **alternating** if

$$\alpha(v,v)=0$$

for all $v \in V$. The set of alternating bilinear forms on V is denoted by $V_{alt}^{(2)}$.

Lemma 16 (characterization of alternating linear forms). A bilinear form α on V is alternating if and only if

$$\alpha(u, w) = -\alpha(w, u)$$

for all $u, w \in V$.

Theorem 17. The sets $V_{sym}^{(2)}$ and $V_{alt}^{(2)}$ are subspaces of $V^{(2)}$. Furthermore,

$$V^{(2)} = V_{sym}^{(2)} \oplus V_{alt}^{(2)}$$

Definition 18 (quadratic form associated with a bilinear form, q_{β}). For β a bilinear form on V, define a function $q_{\beta} \colon V \to \mathbb{F}$ by $q_{\beta}(v) = \beta(v, v)$. A function $q \colon V \to \mathbb{F}$ is called a **quadratic form** on V if there exists a bilinear form β on V such that $q = q_{\beta}$.

Corollary 19 (quadratic form on \mathbb{F}^n). Suppose n is a positive integer and q is a function from \mathbb{F}^n to \mathbb{F} . Then q is a quadratic form on \mathbb{F}^n if and only if there exist numbers $A_{j,k} \in \mathbb{F}$ for $j,k \in \{1,\ldots,n\}$ such that

$$q(x_1, \dots, x_n) = \sum_{k=1}^{n} \sum_{j=1}^{n} A_{j,k} x_j x_k$$

for all $(x_1, \ldots, x_n) \in \mathbb{F}^n$.

Theorem 20 (characterizations of quadratic forms). Suppose $q: V \to \mathbb{F}$ is a function. Then following are equivalent.

- (a) q is a quadratic form.
- (b) There exists a unique symmetric bilinear form ρ on V such that $q = q_{\rho}$.
- (c) $q(\lambda v) = \lambda^2 q(v)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$, and the function

$$(u, w) \mapsto q(u + w) - q(u) - q(w)$$

is a symmetric bilinear form on V.

(d) q(2v) = 4q(v) for all $v \in V$, and the function

$$(u, w) \mapsto q(u + w) - q(u) - q(w)$$

is a symmetric bilinear form on V.

Theorem 21 (diagonalization of quadratic form). Suppose q is a quadratic form on V.

(a) There exist a basis e_1, \ldots, e_n of V and $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ such that

$$q(x_1e_1 + \dots + x_ne_n) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$$

for all $x_1, \ldots, x_n \in \mathbb{F}$.

(b) If $\mathbb{F} = \mathbb{R}$ and V is an inner product space, then the basis in (a) can be chosen to be an orthonormal basis of V.

Remark 22. For each quadratic form we can choose a basis such that the quadratic form looks like a weighted sum of squares of the coordinates.

Prove that if β is a bilinear form on \mathbb{F} , then there exists $c \in \mathbb{F}$ such that

$$\beta(x,y) = cxy$$

for all $x, y \in \mathbb{F}$.

Proof. We note that since the input is taken from \mathbb{F} , the basis is naturally 1. So we have that

$$\beta(x,y) = x\beta(1,y) = xy\beta(1,1) = cxy$$

where we take $c = \beta(1, 1)$.

Problem 2

Let $n = \dim V$. Suppose β is a bilinear form on V. Prove that there exist $\phi_1, \ldots, \phi_n, \tau_1, \ldots, \tau_n \in V'$ such that

$$\beta(u,v) = \phi_1(u) \cdot \tau_1(v) + \dots + \phi_n(u) \cdot \tau_n(v)$$

for all $u, v \in V$.

Proof.

$$\beta(u, v) = \beta\left(\sum_{i=1}^{n} u_i e_i, \sum_{i=1}^{n} v_j e_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i v_j \beta(e_i, e_j)$$

We can now define the linear function $\phi_i(u) = u_i = e_i^*(u)$ and $\tau_j'(v) = v_j = e_i^*(v)$. Then we have that

$$\beta(u, v) = \sum_{i=1}^{n} \phi_i(u) \left(\sum_{j=1}^{n} \beta(e_i, e_j) \tau'_j(v) \right) = \sum_{i=1}^{n} \phi(u) \tau_i(v)$$

Problem 3

Suppose $\beta \colon V \times V \to \mathbb{F}$ a bilinear form on V and also is a linear functional on $V \times V$. Prove that $\beta = 0$.

Proof. First we show that $\beta \in V_{alt}^{(2)}$. Take any $u \in V$, then we have

$$\beta((u, u) + (u, u)) = 2\beta(u, u)$$
$$\beta(2u, 2u) = 4\beta(u, u)$$

this shows that $\beta(u,u)=0$ for all u. Next, we show the off-diagonal terms are 0: first,

$$\beta(u, w) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i w_j \beta(e_i, e_j)$$
 bilinearity

at the same time,

$$\beta(u, w) = \beta \left(\sum_{i=1}^{n} u_i e_i, \sum_{j=1}^{n} w_j e_j \right)$$

$$= \beta \left(\sum_{i=1}^{n} (u_i e_i, w_i e_i) \right)$$

$$= \sum_{i=1}^{n} \beta (u_i e_i, w_i e_i)$$
 linearity on $V \times V$

$$= \sum_{i=1}^{n} u_i w_i \beta(e_i, e_i)$$

This shows that all off-diagonal terms are 0, i.e., $\beta(e_i, e_j) = 0$ for all $i \neq 0$. Therefore, we have $\beta = 0$.

Problem 6

Prove or give a counterexample: If ρ is a symmetric bilinear form on V, then

$$\{v \in V \colon \rho(v, v) = 0\}$$

is a subspace of V.

Proof. Consider $V = \mathbb{R}^2$ and $\rho(x,y) = x_1y_1 - x_2y_2$. Let x = (1,1), y = (-1,1), then we have that $\rho(x,x) = 1 - 1 = 0, \rho(y,y) = 1 - 1 = 0,$ but $\rho(x+y,x+y) = 0 - 4 = -4 \neq 0$.

Problem 8

Find formulas for dim $V_{sym}^{(2)}$ and dim $V_{alt}^{(2)}$ in terms of dim V.

Proof. Let dim V = n. For $\beta \in V_{sym}^{(2)}$, consider $\mathcal{M}(\beta)$. Its diagonal entries can be chosen arbitrarily. For off-diagonal entries, only half of them can be chosen arbitrarily, therefore the dimension is

$$\frac{n(n-1)}{2} + n = \frac{n(n+1)}{2}$$

For $\beta \in V_{alt}^{(2)}$, consider $\mathcal{M}(\beta)$. The diagonal entires are all 0 and only half of the off-diagonal entries can be chosen arbitrarily. Therefore, the dimension is $\frac{n(n-1)}{2}$.

9B: Alternating Multilinear Forms

Definition 23 (V^m) . For m a positive integer, define V^m by

$$V^m = \underbrace{V \times \cdots \times V}_{m \ times}$$

Definition 24 (m-linear form, $V^{(m)}$, multilinear form). Below we introduce the definitions.

• For m a positive integer, an **m-linear form** on V is a function $\beta \colon V^m \to \mathbb{F}$ that is linear in each slot when the other slots are held fixed. This means that for each $k \in \{1, \ldots, m\}$ and all $u_1, \ldots, u_m \in V$, the function

$$v \mapsto \beta(u_1, \ldots, u_{k-1}, v, u_{k+1}, \ldots, u_m)$$

is a linear map from V to \mathbb{F} .

- The set of m-linear forms on V is denoted by $V^{(m)}$.
- A function β is called a **multilinear form** on V if it is an m-linear form on V for some positive integer m.

Remark 25. A 1-linear form on V is a linear functional on V. A 2-linear form on V is a bilinear form on V. $V^{(m)}$ is a vector space.

Example (m-linear forms). Suppose $\alpha, \beta \in V^{(2)}$. Define a function $\beta \colon V^4 \to \mathbb{F}$ by

$$\beta(v_1, v_2, v_3, v_4) = \alpha(v_1, v_2)\beta(v_3, v_4)$$

Then $\beta \in V^{(4)}$.

Example (m-linear forms). Define $\beta: (\mathcal{L}(V))^m \to \mathbb{F}$ by

$$\beta(T_1,\ldots,T_m) = \operatorname{tr} (T_1\cdots T_m)$$

Then β is an *m*-linear form on $\mathcal{L}(V)$.

Definition 26 (alternating forms, $V_{alt}^{(m)}$). Suppose m is a positive integer.

- An m-linear form α on V is called **alternating** if $\alpha(v_1, \ldots, v_m) = 0$ whenever v_1, \ldots, v_m is a list of vectors in V with $v_j = v_k$ for some two distinct values of j and k in $\{1, \ldots, m\}$.
- $V_{alt}^{(m)} = \{ \alpha \in V^{(m)} : \alpha \text{ is an alternating m-linear form on } V \}.$

Corollary 27. Suppose m is a positive integer and α is an alternating m-linear form on V. If v_1, \ldots, v_m is a linearly dependent list in V, then

$$\alpha(v_1,\ldots,v_m)=0$$

Corollary 28. Suppose $m > \dim V$. Then 0 is the only alternating m-linear form on V.

Theorem 29 (swapping input vectors in an alternating multilinear form). Suppose m is a positive integer, α is an alternating m-linear form on V, and v_1, \ldots, v_m is a list of vectors in V. Then swapping the vectors in any two slots of $\alpha(v_1, \ldots, v_m)$ changes the value of α by a factor of -1.

Remark 30. An odd numer of swaps cause the value of α to change by a factor of -1 and it won't change with an even number of swaps.

Definition 31 (permutation, perm m). Suppose m is a positive integer.

- A permutation of (1, ..., m) is a list $(j_1, ..., j_m)$ that contains each of the number 1, ..., m exactly once.
- The set of permutations of (1, ..., m) is denoted by perm m.

Definition 32 (sign of a permutation). The **sign** of a permutation (j_1, \ldots, j_m) is defined by

$$sign(j_1,\ldots,j_m)=(-1)^N$$

where N is the number of pairs of integers (k,l) with $1 \le k < l \le m$ such that k appears after l in the list (j_1, \ldots, j_m) .

Lemma 33. Swapping two entries in a permutation multiplies the sign of the permutation by -1.

Lemma 34 (permutation and alternating multilinear form). Suppose m is a positive integer and $\alpha \in V_{alt}^{(m)}$. Then

$$\alpha(v_{j_1},\ldots,v_{j_m}) = \left(sign(j_1,\ldots,j_m)\right)\alpha(v_1,\ldots,v_m)$$

for every list v_1, \ldots, v_m of vectors in V and all $(j_1, \ldots, j_m) \in perm m$.

Theorem 35. Let $n = \dim V$. Suppose e_1, \ldots, e_n is a basis of V and $v_1, \ldots, v_n \in V$. For each $k \in \{1, \ldots, n\}$, let $b_{1,k}, \ldots, b_{n,k} \in \mathbb{F}$ be such that

$$v_k = \sum_{j=1}^n b_{j,k} e_j$$

Then

$$\alpha(v_1,\ldots,v_n) = \alpha(e_1,\ldots,e_n) \sum_{(j_1,\ldots,j_n)\in perm\ n} \left(sign(j_1,\ldots,j_n)\right) b_{j_1,1}\cdots b_{j_n,n}$$

for every alternating n-linear form α on V.

Theorem 36. The vector space $V_{alt}^{(dimV)}$ has dimension one.

Corollary 37. Let $n = \dim V$,. Suppose α is a nonzero alternating n-linear form on V and e_1, \ldots, e_n is a list of vectors in V. Then

$$\alpha(e_1,\ldots,e_n)\neq 0$$

if and only if e_1, \ldots, e_n is linearly independent.

Suppose m is a positive integer. Show that $\dim V^{(m)} = (\dim V)^m$.

Proof. Let dim V = n with basis e_1, \ldots, e_n . The basis vector for $V^{(m)}$ can be formed via taking all possible m-tuples b_{j_1}, \ldots, b_{j_m} where b_{j_i} is a component of the basis. There are n choices over m positions, so we have that dim $V^{(m)} = (\dim V)^m$.

Problem 3

Suppose m is a positive integer and α is an m-linear form on V such that $\alpha(v_1,\ldots,v_m)=0$ whenver v_1,\ldots,v_m is a list of vectors in V with $v_j=v_{j+1}$ for some $j\in\{1,\ldots,m-1\}$ Prove that α is an alternating m-linear form on V.

Proof. Note that if the list v_1, \ldots, v_n comes with consecutive identical numbers, then by definition the output becomes 0. To prove α to be an alternating m-linear form, considers $v_i = v_k$ for i+1 < k. Note that then we can now just swap and gets the same result:

$$\alpha(v_1,\ldots,v_i,v_{i+1},\ldots,v_k,\ldots,v_n) = -\alpha(v_1,\ldots,v_i,v_k,\ldots,v_{i+1},\ldots,v_n) = 0$$

Problem 5

Suppose m is a positive integer and β is an m-linear form on V. Define an m-linear form α by

$$\alpha(v_1, \dots, v_m) = \sum_{(j_1, \dots, j_m) \in \text{perm } m} \left(\text{sign} \left(j_1, \dots, j_m \right) \beta(v_{j_1}, \dots, v_{j_m}) \right)$$

for $v_1, \ldots, v_m \in V$. Explain why $\alpha \in V_{alt}^{(m)}$.

Proof. If there are two repeating vectors, let's say $v_p = v_q$, then we know that

$$\beta(v_1,\ldots,v_p,\ldots,v_q,\ldots,v_m) = \beta(v_1,\ldots,v_q,\ldots,v_p,\ldots,v_m)$$

However, through swapping, the coefficient differs by (-1), so we have

$$sign(1, \dots, p, \dots, q, \dots, m)\beta(v_1, \dots, v_p, \dots, v_q, \dots, v_m)$$

$$= -sign(1, \dots, q, \dots, p, \dots, m)\beta(v_1, \dots, v_q, \dots, v_p, \dots, v_m)$$

This basically shows the main idea of the proof. To make this more rigorous, we claim that for each permutation $\sigma \in \text{perm } m$, there is a corresponding permutation $\sigma_{pq} \in \text{perm } m$ such that keeps everything unchanged while only swapping the position of p and q. This means that for each permutation, there is a corresponding "cancelling" pair permutation. Since we are summing all permutations, the result is finally 0, finishing the proof.

9C: Determinants

Definition 38 (α_T) . Suppose that m is a positive integer and $T \in \mathcal{L}(V)$. For $\alpha \in V_{alt}^{(m)}$, define $\alpha_T \in V_{alt}^{(m)}$ by

$$\alpha_T(v_1,\ldots,v_m)=\alpha(Tv_1,\ldots,Tv_m)$$

for each list v_1, \ldots, v_m of vectors in V.

Remark 39. The function $\alpha \mapsto \alpha_T$ is a linear map of $V_{alt}^{(m)}$ to itself. We know that $\dim V_{alt}^{(\dim V)} = 1$, so the linear map is simply a multiplication by some unique scalar. For the linear map $\alpha \mapsto \alpha_T$, we now define $\det T$ to be that scalar.

Definition 40 (determinant of an operator, det T). Suppose $T \in \mathcal{L}(V)$. The determinant of T, denoted by det T, is defined to be the unique number in \mathbb{F} such that

$$\alpha_T = (\det T)\alpha$$

for all $\alpha \in V_{alt}^{(\dim V)}$.

Remark 41. Let $n = \dim V$.

- If I is the identity operator on V, then $\alpha_I = \alpha$ for all $\alpha \in V_{alt}^{(n)}$. This gives that $\det I = 1$.
- More generally, if $\lambda \in \mathbb{F}$, then $\alpha_{\lambda I} = \lambda^n \alpha$ for all $\alpha \in V_{alt}^{(n)}$. Thus $\det(\lambda I) = \lambda^n$.
- Since $\alpha_{\lambda T} = \lambda^n \alpha_T = \lambda^n (\det T) \alpha$ for all $\alpha \in V_{alt}^{(n)}$, $\det(\lambda T) = \lambda^n \det T$.
- Suppose $T \in \mathcal{L}(V)$ and there is a basis e_1, \ldots, e_n of V consisting of eigenvectors of T, with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. If $\alpha \in V_{alt}^{(n)}$, then

$$\alpha_T(e_1,\ldots,e_n) = \alpha(\lambda_1e_1,\ldots,\lambda_ne_n) = (\lambda_1\cdots\lambda_n)\alpha(e_1,\ldots,e_n)$$

If $\alpha \neq 0$, then $\alpha(e_1, \ldots, e_n) \neq 0$. Thus this means that

$$\det T = \lambda_1 \cdots \lambda_n$$

Definition 42 (determinant of a matrix, det A). Suppose that n is a positive integer and A is an n-by-n matrix square matrix with entries in \mathbb{F} . Let $T \in \mathcal{L}(\mathbb{F}^n)$ be the operator whose matrix with respect to the standard basis of \mathbb{F}^n equals A. The **determinant** of A, denoted by det A, is defined by det $A = \det T$.

Theorem 43 (determinant is an alternating multilinear form). Suppose that n is a positive integer. The map that takes a list v_1, \ldots, v_n of vectors in \mathbb{F}^n to $\det(v_1 \cdots v_n)$ is an alternating n-linear form on \mathbb{F}^n .

Corollary 44 (formula for determinants of a matrix). Suppose that n is a positive integer and A is an n-by-n matrix square matrix. Then

$$\det A = \sum_{(j_1,\dots,j_n)\in perm\ n} \left(sign(j_1,\dots,j_n) \right) A_{j_1,1} \cdots A_{j_n,n}$$

Remark 45. The sum in the formula above contains n! terms.

Corollary 46 (determinant of upper-triangular matrix). Suppose that A is an upper-triangular matrix with $\lambda_1, \ldots, \lambda_n$ on the diagonal. Then $\det A = \lambda_1 \cdots \lambda_n$.

Theorem 47 (determinant is multiplicative). We have the following result:

- (a) Suppose $S, T \in \mathcal{L}(V)$. Then $\det(ST) = \det(S) \det(T)$.
- (b) Suppose A and B are square matrices of the same size. Then

$$\det(AB) = \det(A)\det(B)$$

Corollary 48. An operator $T \in \mathcal{L}(V)$ is invertible if and only if $\det T \neq 0$. Furthermore, if T is invertible, then $\det(T^{-1}) = \frac{1}{\det T}$.

Corollary 49. Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of T if and only if $\det(\lambda I - T) = 0$.

Corollary 50. Suppose $T \in \mathcal{L}(V)$ and $S \colon W \to V$ is an invertible linear map. Then

$$\det(S^{-1}TS) = \det T$$

Corollary 51. Suppose $T \in \mathcal{L}(V)$ and e_1, \ldots, e_n is a basis of V. Then

$$\det T = \det \mathcal{M} (T, (e_1, \dots, e_n))$$

Corollary 52. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then $\det T$ equals the product of the eigenvalues of T, with each eigenvalue included as many times as its multiplicity.

Corollary 53 (determinant of transpose, dual, or adjoint). We have the following result:

- (a) Suppose A is a square matrix. Then $\det A^{\top} = \det A$.
- (b) Suppose $T \in \mathcal{L}(V)$. Then $\det T' = \det T$.
- (c) Suppose V is an inner product space and $T \in \mathcal{L}(V)$. Then

$$\det(T^*) = \overline{\det T}$$

Corollary 54. Helpful results in evaluating the determinants:

(a) If either two columns or two rows of a square matrix are equal, then the determinant of the matrix equals 0.

- (b) Suppose A is a square matrix and B is the matrix obtained from A by swapping either two columns or two rows. Then $\det A = -\det B$.
- (c) If one column or one row of a square matrix is multiplied by a scalar, then the value of the determinant is multiplied by the same scalar.
- (d) If a scalar multiple of one column of a square matrix to added to another column, then the value of the determinant is unchanged.
- (e) If a scalar multiple of one row of a square matrix to added to another row, then the value of the determinant is unchanged.

Corollary 55. Suppose V is an inner product space and $S \in \mathcal{L}(V)$ an unitary operator. Then $|\det S| = 1$.

Corollary 56. Suppose V is an inner product space and $T \in \mathcal{L}(V)$ is a positive operator. Then $\det T \geq 0$.

Corollary 57. Suppose V is an inner product space and $T \in \mathcal{L}(V)$. Then

$$|\det T| = \sqrt{\det(T^*T)} = product \ of \ singular \ values \ of \ T$$

Lemma 58. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of T, and let d_1, \ldots, d_m denote their multiplicities. Then

$$\det(zI - T) = (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$$

Definition 59 (characteristic polynomial). Suppose $T \in \mathcal{L}(V)$. The polynomial defined by

$$z \mapsto \det(zI - T)$$

is called the **characteristic polynomial** of T.

Theorem 60 (Cayley-Hamilton theorem). Suppose $T \in \mathcal{L}(V)$ and q is the characteristic polynomial of T. Then q(T) = 0.

Corollary 61 (characteristic polynomial, trace, and determinant). Suppose $T \in \mathcal{L}(V)$. Let $n = \dim V$. Then the characteristic polynomial of T can be written as

$$z^{n} - (tr T)z^{n-1} + \dots + (-1)^{n}(\det T)$$

Theorem 62 (Hadamard's inequality). Suppose A is an n-by-n matrix matrix. Let v_1, \ldots, v_n denote the columns of A. Then

$$|\det A| \le \prod_{k=1}^n ||v_k||$$

Theorem 63 (determinant of Vandermonde matrix). Suppose n > 1 and $\beta_1, \ldots, \beta_n \in \mathbb{F}$. Then

$$det \begin{pmatrix} 1 & \beta_1 & \beta_1^2 & \cdots & \beta_1^{n-1} \\ 1 & \beta_2 & \beta_2^2 & \cdots & \beta_2^{n-1} \\ 1 & \beta_3 & \beta_3^2 & \cdots & \beta_3^{n-1} \\ & & \ddots & \\ 1 & \beta_n & \beta_n^2 & \cdots & \beta_n^{n-1} \end{pmatrix} = \prod_{1 \le j < k \le n} (\beta_k - \beta_j).$$

Prove or give a counterexample: $S, T \in \mathcal{L}(V) \Rightarrow \det(S + T) = \det S + \det T$.

Proof. Consider \mathbb{R}^2 , and that

$$\mathcal{M}(S) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \mathcal{M}(T) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Then clearly $\det S = 1$ and $\det T = 2$. However, we have that

$$\mathcal{M}(S) + \mathcal{M}(T) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

which has $det(S+T) = 6 \neq det S + det T$.

Problem 3

Suppose $T \in \mathcal{L}(V)$ is nilpotent. Prove that $\det(I + T) = 1$.

Proof. We know that 0 is the only eigenvalue of T and thus the only eigenvalue of I+T is 1. Hence $\det(I+T)=1$.

Problem 5

Suppose A is a block triangular matrix

$$A = \begin{pmatrix} A_1 & & * \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

where each A_k along the diagonal is a square matrix. Prove that

$$\det A = (\det A_1) \cdots (\det A_m)$$

Proof. One can show that $\det A = (\det A_1)(\det A_2)$ through direct proof. We use induction on m for solving this problem. The base case is trivial. We assume the statement holds for $m \le k-1$. Then for m=k, we can partition the matrix into two blocks:

$$\begin{bmatrix} A' & * \\ 0 & A_k \end{bmatrix}$$

where

$$A' = \begin{bmatrix} A_1 & & * \\ & \ddots & \\ 0 & & A_{k-1} \end{bmatrix}$$

Then we have that $\det A = (\det A')(\det A_k) = (\det A_1) \cdots (\det A_k)$, finishing the proof.

Suppose that V is a real vector space of even dimension, $T \in \mathcal{L}(V)$, and $\det T < 0$. Prove that T has at least two distinct eigenvalues.

Proof. Since $det(T) \neq 0$, T is invertible and thus have n distinct eigenvalues with $n \geq 2$. Another argument could be that for real cases, there have to be at least one negative and one positive eigenvalue to make the determinant negative; for complex cases, there must be two conjugate pairs.

Problem 11

Prove or give a counter example: If $\mathbb{F} = \mathbb{R}, T \in \mathcal{L}(V)$, and det T > 0, then T has a square root.

Proof. Not necessarily. Consider an operator in \mathbb{R}^2 with two negative eigenvalues which is clearly non-positive and therefore does not have a square root.

Problem 16

Suppose $T \in \mathcal{L}(V)$. Define $g \colon \mathbb{F} \to \mathbb{F}$ by $g(x) = \det(I + xT)$. Show that $g'(0) = \operatorname{tr} T$.

Proof.

$$g'(x) = \frac{d}{dx} \det(I + xT)$$
$$= \frac{d}{dx} \prod_{i=1}^{n} (1 + x\lambda_i)$$
$$= \sum_{i=1}^{n} \left(\lambda_i \prod_{j \neq i} (1 + x\lambda_i) \right)$$

Substitute x = 0 yields that

$$g'(0) = \sum_{i=1}^{n} \lambda_i = \operatorname{tr} T$$

Suppose V is an inner product space, e_1, \ldots, e_n is an orthonormal basis of V, and $T \in \mathcal{L}(V)$ is a positive operator.

- (a) Prove that $\det T \leq \prod_{k=1}^n \langle Te_k, e_k \rangle$.
- (b) Prove that if T is invertible, then the inequality in (a) is an equality if and only if e_k is an eigenvector of T for each k = 1, ..., n.
- *Proof.* (a) The matrix representation of T wrt. e_1, \ldots, e_n is that $A_{ij} = \langle Te_i, e_j \rangle$. Hence the r.h.s of this inequality is simply the product of all the diagonal terms on the matrix of T. We prove this inequality through Cholesky factorization. Note that

$$A = LL^*$$

for lower-triangular matrix L, and thus we have

$$\det T = \det A = (\det L)^2 = \left(\prod_{k=1}^n l_{kk}\right)^2 = \prod_{k=1}^n L_{kk}^2$$

We note that

$$A_{kk} = L_{kk}^2 + \sum_{j=1}^{k-1} L_{kj}^2$$

and thus we have

$$\det A \le \prod_{k=1}^{n} A_{kk} = \prod_{k=1}^{n} \langle Te_k, e_k \rangle$$

(b) If e_k is an eigenvector of T, then $\langle Te_k, e_k \rangle = \lambda_k$, the k-th eigenvalue of T. Then we know that $\det T$ is the product of all eigenvalues.

Conversely, if (a) is an equality, then we know that L is a diagonal matrix and thus A is also a diagonal matrix. Then the orthonormal basis e_1, \ldots, e_n actually diagonaizes T and hence each of them is an eigenvector of T.

9D: Tensor Products

Definition 64 (bilinear functional on $V \times W$, the vector space $\mathcal{B}(V,W)$). A bilinear functional on $V \times W$ is a function $\beta \colon V \times W \to \mathbb{F}$ such that $v \mapsto \beta(v,w)$ is a linear functional on V for each $w \in W$ and $w \mapsto \beta(v,w)$ is a linear functional on W for each $v \in V$.

The vector space of bilinear functionals on $V \times W$ is denoted by $\mathcal{B}(V, W)$.

Remark 65. If V = W, then a bilinear functional on $V \times W$ is a bilinear form.

Corollary 66. $\dim \mathcal{B}(V, W) = (\dim V)(\dim W)$

Remark 67. We want a basis-free definition of the tensor product.

Definition 68 (tensor product, $V \otimes W, v \otimes w$). The **tensor product** $V \otimes W$ is defined to be $\mathcal{B}(V', W')$.

For $v \in V$ and $w \in W$, the **tensor product** $v \otimes w$ is the element of $V \otimes W$ defined by

$$(v \otimes w)(\varphi, \tau) = \varphi(v)\tau(w)$$

for all $(\varphi, \tau) \in V' \times W'$.

Corollary 69. $\dim(V \otimes W) = (\dim V)(\dim W)$.

Proposition 70 (bilinearity of tensor product). Suppose $v, v_1, v_2 \in V$ and $w, w_1, w_2 \in W$ and $\lambda \in \mathbb{F}$. Then

$$(v_1+v_2)\otimes w=v_1\otimes w+v_2\otimes w$$
 and $v\otimes (w_1+w_2)=v\otimes w_1+v\otimes w_2$

and

$$\lambda (v \otimes w) = (\lambda v) \otimes w = v \otimes (\lambda w)$$

Theorem 71 (basis of $V \otimes W$). Suppose e_1, \ldots, e_m is a list of vectors in V and f_1, \ldots, f_n is a list of vectors in W.

(a) If e_1, \ldots, e_m and f_1, \ldots, f_n are both linearly independent list, then

$$\{e_j \otimes f_k\}_{j=1,\ldots,m;k=1,\ldots,n}$$

is a linearly independent list in $V \otimes W$.

(b) If e_1, \ldots, e_m is a basis of V and f_1, \ldots, f_n is a basis of W, then the list $\{e_j \otimes f_k\}_{j=1,\ldots,m;k=1,\ldots,n}$ is a basis of $V \otimes W$.

Definition 72 (bilinear map). A bilinear map from $V \times W$ to a vector space U is a function $\Gamma \colon V \times W \to U$ such that $v \mapsto \Gamma(v, w)$ is a linear map from V to U for each $w \in W$ and $w \mapsto \Gamma(v, w)$ is a linear map from W to U for each $v \in V$.

Lemma 73 (converting bilinear maps to linear maps). Suppose U is a vector space.

(a) Suppose $\Gamma: V \times W \to U$ is a bilinear map. Then there exists a unique linear map $\tilde{\Gamma}: V \otimes W \to U$ such that

$$\tilde{\Gamma}(v \otimes w) = \Gamma(v, w)$$

for all $(v, w) \in V \times W$.

(b) Conversely, suppose $T: V \otimes W \to U$ is a linear map. Then there exists a unique bilinear map $T^{\#}: V \times W \to U$ such that

$$T^{\#}(v,w) = T(v \otimes w)$$

for all $(v, w) \in V \times W$.

Theorem 74 (inner product on tensor product of two inner product spaces). Suppose V and W are inner product spaces. Then there is a unique inner product on $V \otimes W$ such that

$$\langle v \otimes w, u \otimes x \rangle = \langle v, u \rangle \langle w, x \rangle$$

for all $u, v \in V$ and $w, x \in W$.

Remark 75. We have that $||v \otimes w|| = ||v|| ||w||$.

Corollary 76. Suppose V and W are inner product spaces, and e_1, \ldots, e_m is an orthonormal basis of V and f_1, \ldots, f_n is an orthonormal basis of W. Then

$$\{e_j \otimes f_k\}_{j=1,\ldots,m;k=1,\ldots,n}$$

is an orthonormal basis of $V \otimes W$.

Definition 77. An **m-linear** functional on $V_1 \times \cdots \times V_m$ is a function $\beta \colon V_1 \times \cdots \times V_m \to \mathbb{F}$ that is a linear functional in each slot when the other slots are held fixed.

The vector space of m-linear functionals on $V_1 \times \cdots \times V_m$ is denoted by $\mathcal{B}(V_1, \ldots, V_m)$.

Corollary 78. $\dim \mathcal{B}(V_1,\ldots,V_m)=(\dim V_1)\times\cdots\times(\dim V_m)$

Definition 79 (tensor product). The tensor product $V_1 \otimes \cdots \otimes V_m$ is defined to be $\mathcal{B}(V'_1, \dots, V'_m)$.

For $v_1 \in V_1, \ldots, v_m \in V_m$, the **tensor product** $v_1 \otimes \cdots \otimes v_m$ is the element of $V_1 \otimes \cdots \otimes V_m$ defined by

$$(v_1 \otimes \cdots \otimes v_m)(\varphi_1, \ldots, \varphi_m) = \varphi_1(v_1) \cdots \varphi_m(v_m)$$

for all $(\varphi_1, \ldots, \varphi_m) \in V'_1 \times \cdots \times V'_m$.

Corollary 80. Suppose dim $V_k = n_k$ and $e_1^k, \ldots, e_{n_k}^k$ is a basis of V_k for $k = 1, \ldots, m$. Then

$$\{e_{j_1}^1 \otimes \cdots \otimes e_{j_m}^m\}_{j_1=1,\ldots,n_1;\ldots;j_m=1,\ldots,n_m}$$

is a basis of $V_1 \otimes \cdots \otimes V_m$.

Definition 81 (m-linear map). An m-linear map from $V_1 \times \cdots \times V_m$ to a vector space U is a function $\Gamma \colon V_1 \times \cdots \times V_m \to U$ that is a linear map in each slot when the other slots are held fixed.

Theorem 82 (converting m-linear map to linear maps). Suppose U is a vector space.

(a) Suppose that $\Gamma \colon V_1 \times \cdots \times V_m \to U$ is an m-linear map. Then there exists a unique linear map $\tilde{\Gamma} \colon V_1 \otimes \cdots \otimes V_m \to U$ such that

$$\tilde{\Gamma}(v_1 \otimes \cdots \otimes v_m) = \Gamma(v_1, \dots, v_m)$$

for all
$$(v_1, \ldots, v_m) \in V_1 \times \cdots \times V_m$$
.

(b) Conversely, suppose $T \colon V_1 \otimes \cdots \otimes V_m \to U$ is a linear map. Then there exists a unique m-linear map $T^\# \colon V_1 \times \cdots \times V_m \to U$ such that

$$T^{\#}(v_1,\ldots,v_m)=T(v_1\otimes\cdots\otimes v_m)$$

for all
$$(v_1, \ldots, v_m) \in V_1 \times \cdots \times V_m$$
.

Suppose $v \in V$ and $w \in W$. Prove that $v \otimes w = 0$ if and only if v = 0 or w = 0.

Proof. By definition, we have for any $(\varphi, \tau) \in V' \times W'$,

$$(v \otimes w)(\varphi, \tau) = \varphi(v)\tau(w)$$

Then this means that $\varphi(v)\tau(w)=0$ for arbitrary choice of $\varphi,\tau,$ meaning that either v=0 or w=0.

Problem 3

Suppose that v_1, \ldots, v_m is a linearly independent list in V. Suppose also that w_1, \ldots, w_m is a list in W such that

$$v_1 \otimes w_1 + \dots + v_m \otimes w_m = 0$$

Prove that $w_1 = \cdots = w_m = 0$.

Proof. By the linear map lemma and the linear independence of v_1, \ldots, v_m , there exists $\varphi_1, \ldots, \varphi_m \in V'$ such that

$$\varphi_j(v_k) = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

where $j, k \in \{1, ..., m\}$. Applying such $\{\varphi_i\}_{i=1}^m$ to the list

$$\sum_{i=1}^{n} v_i \otimes w_i$$

and take $\tau \in W'$ to be the identity map yields that

$$w_1 = \dots = w_m = 0$$

Problem 5

Suppose m and n are positive integers. For $v \in \mathbb{F}^m$ and $w \in \mathbb{F}^n$, identify $v \otimes w$ with an m-by-n matrix as in Example 9.76. With that identification, show that the set

$$\{v \otimes w \colon v \in \mathbb{F}^m \text{ and } w \in \mathbb{F}^n\}$$

is the set of m-by-n matrix matrices (with entries in \mathbb{F}) that have rank at most one.

Proof. If one examine the matrices with entries shown on the matrix, it's easy to tell that for row j and row k with $j \neq k$, one can get row k from row j through multiplying v_k/v_j . The same applies to arbitrary pairs of columns. Thus the matrix has at most rank one.

Problem 8

Suppose $v_1, \ldots, v_m \in V$ and $w_1, \ldots, w_m \in W$ are such that

$$v_1 \otimes w_1 + \dots + v_m \otimes w_m = 0$$

Suppose that U is a vector space and $\Gamma \colon V \times W \to U$ is a bilinear map. Show that

$$\Gamma(v_1, w_1) + \dots + \Gamma(v_m, w_m) = 0$$

Proof. We know there exists a unique "converting" linear map $\tilde{\Gamma}$ such that

$$\Gamma(v \otimes w) = \Gamma(v, w)$$

Hence, applying this gives that

$$\sum_{i=1}^{m} \Gamma(v_i, w_i) = \sum_{i=1}^{m} \tilde{\Gamma}(v_i \otimes w_i)$$
$$= \tilde{\Gamma}\left(\sum_{i=1}^{m} v_i \otimes w_i\right)$$
$$= 0$$