- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统

6.3 数据依赖的公理系统

定义6.11 对于满足一组函数依赖F的关系模式 R <U,F>, 其任何一个关系r,若函数依赖X \rightarrow Y都成立(即r中任意两元 组t、s,若t[X]=s[X],则 t[Y]=s[Y]),则称F逻辑蕴涵X \rightarrow Y。

- Armstrong公理系统
 - 一套推理规则,是模式分解的理论基础
 - 用于求给定关系的码
 - 用于从一组函数依赖求得蕴涵的函数依赖

Armstrong公理系统设U为属性集总体,F是U上的一组函数依赖,于是有关系模式R <U,F >。对R <U,F> 来说有以下的推理规则:

A1 自反律:若Y \subseteq X \subseteq U,则X \rightarrow Y 为F所蕴涵。

A2 增广律:若X→Y为F所蕴涵,且Z ⊆ U,则XZ→YZ 为F所蕴涵。

A3 传递律:若 $X \rightarrow Y$ 及 $Y \rightarrow Z$ 为F 所蕴涵,则 $X \rightarrow Z$ 为F 所蕴涵。

• 定理6.1 Armstrong推理规则是正确的。 证明

■A1 自反律 设 $Y \subset X \subset U$ 。 对R <U,F> 的任一关系r中的任意两个元组t、s: 若t[X]=s[X],由于 $Y \subseteq X$,有t[Y]=s[Y], 所以 $X \rightarrow Y$ 成立, 自反律得证。

■A2 增广律

设X→Y为F所蕴涵,且Z⊂U。 对R<U,F>的任一关系r中任意的两个元组t、s: 若t[XZ]=s[XZ],则有t[X]=s[X]和t[Z]=s[Z]; 由X→Y, 于是有t[Y]=s[Y], 所以t[YZ]=s[YZ], XZ→YZ为F所蕴涵, 增广律得证。

■A3 传递律

设 $X \rightarrow Y$ 及 $Y \rightarrow Z$ 为F所蕴涵。

对R<U,F>的任一关系r中的任意两个元组t、s:

若t[X]=s[X], 由于X→Y, 有t[Y]=s[Y];

再由Y→Z, 有t[Z]=s[Z],

所以X→Z为F所蕴涵,

传递律得证。

根据A1, A2, A3三条推理规则可以得到三条推理规则:

■ 合并规则:

 $由 X \rightarrow Y$, $X \rightarrow Z$, $有 X \rightarrow YZ$ 。

■ 伪传递规则:

由X→Y, WY→Z, 有XW→Z。

■ 分解规则:

由X→Y及Z⊆Y,有X→Z。

根据合并规则和分解规则,可得引理6.1

引理6.1 $X \rightarrow A_1 A_2 ... A_k$ 成立的充分必要条件是 $X \rightarrow A_i$ 成

 $\overrightarrow{\mathbf{x}}$ (i=1, 2, ..., k) $_{\circ}$

• 定义6.12 在关系模式R < U, F > 中为F所逻辑蕴涵的函数 依赖的全体叫作F的闭包,记为F + 。

• 定义6.13 设F为属性集U上的一组函数依赖,X、Y $\subseteq U$, X_F ={ $A|X \rightarrow A$ 能由F根据Armstrong公理导出}, X_F 称为属性集X关于函数依赖集F的闭包。

引理6.2 设F为属性集U上的一组函数依赖,X、 $Y \subseteq U$, $X \rightarrow Y$ 能由F根据Armstrong公理导出的充分必要条件是 $Y \subseteq X_F^+$ 。

•引理6.2的用途

判定 $X \rightarrow Y$ 是否能由F根据Armstrong公理导出的问题,就转化为求出 X_F^+ ,判定Y是否为 X_F^+ 的子集的问题。

求闭包的算法

算法6.1 求属性集X ($X \subseteq U$) 关于U上的函数依赖集F的闭包 X_F ⁺

•输入: X, F

•输出:*X_F*+

•步骤:

- 1 $\Rightarrow X^{(0)} = X$, i=0
- ②RB, $B = \{ A \mid (\exists V)(\exists W)(V \rightarrow W \in F \land V \subseteq X^{(i)} \land A \in W) \}$
- $\mathfrak{S} X^{(i+1)} = B \cup X^{(i)}$
- 4 判断 $X^{(i+1)} = X^{(i)}$
- ⑤ 若 $X^{(i+1)}$ 与 $X^{(i)}$ 相等或 $X^{(i)}=U$,则 $X^{(i)}$ 就是 X_F +,算法终止
- ⑥若否,则*i=i*+1,返回第②步

[例6.11] 已知关系模式R < U, F >,其中

$$U=\{A, B, C, D, E\} ;$$

$$F={AB \rightarrow C, B \rightarrow D, C \rightarrow E, EC \rightarrow B, AC \rightarrow B}_{\circ}$$

求
$$(AB)_{F}^{+}$$
。

解:由算法6.1,设 $X^{(0)}=AB$ 。

计算 $X^{(1)}$:逐一的扫描F集合中各个函数依赖,找左部为

A、B或AB的函数依赖。得到两个: $AB \rightarrow C$, $B \rightarrow D$ 。于

是 $X^{(1)}=AB\cup CD=ABCD$ 。

因为 $X^{(0)} \neq X^{(1)}$,所以再找出左部为ABCD子集的那些函数依赖,又得到 $C \rightarrow E$, $AC \rightarrow B$,于是 $X^{(2)} = X^{(1)} \cup BE = ABCDE$ 。因为 $X^{(2)}$ 已等于全部属性集合,所以 $(AB)_F^+ = ABCDE$ 。

有效性与完备性

- •有效性:由F 出发根据Armstrong公理推导出来的每一个函数依赖一定在F +中
- 完备性:F +中的每一个函数依赖,必定可以由F出发根据 Armstrong公理推导出来

定理6.2 Armstrong公理系统是有效的、完备的。

证明:

- 1. 有效性
 - ●有效性实际上是"正确性"
 - ●可由定理6.1得证

2. 完备性

- ullet 只需证明逆否命题:若函数依赖 $X \rightarrow Y$ 不能由F从Armstrong 公理导出,那么它必然不为F 所蕴涵
- 分三步证明:
 - (1) 若 $V \rightarrow W$ 成立,且 $V \subseteq X_F^+$,则 $W \subseteq X_F^+$ 证:因为 $V \subseteq X_F^+$,所以有 $X \rightarrow V$ 成立; 因为 $X \rightarrow V$, $V \rightarrow W$,于是 $X \rightarrow W$ 成立; 所以 $W \subseteq X_F^+$ 。

(2) 构造一张二维表r,它由下列两个元组构成,可以证明r 必是R < U, F >的一个关系,即F中的全部函数依赖在r上成立。

因此必有Y的子集Y'满足 $Y'\subseteq U-X_F^+$,

则 $X \rightarrow Y$ 在r 中不成立,

即 $X \rightarrow Y$ 必不为R < U, F > 蕴涵。

Armstrong公理的完备性及有效性说明:

- "导出"与"蕴涵"是两个完全等价的概念
- • F^+ :为F所逻辑蕴涵的函数依赖的全体(定义6.12)

• F⁺ :可以说成由F出发借助Armstrong公理导出的函数依赖的集合

• 定义6.14 如果 $G^{+}=F^{+}$,就说函数依赖集F覆盖G(F是G的覆盖,或G是F的覆盖),或F与G等价。

两个函数依赖集等价是指它们的闭包等价

函数依赖集等价的充要条件

引理6.3 $F^+ = G^+$ 的充分必要条件是 $F \subseteq G^+$ 和 $G \subseteq F^+$ 。

证:必要性显然,只证充分性。

- (1) 若 $F \subseteq G^+$,则 $X_F^+ \subseteq X_{G^+}^+$ 。
- (2) 任取 $X \rightarrow Y \in F^+$ 则有 $Y \subseteq X_F^+ \subseteq X_{G^+}^+$ 。 所以 $X \rightarrow Y \in (G^+)^+ = G^+$ 。即 $F^+ \subseteq G^+$ 。
- (3) 同理可证G +⊆F+, 所以F +=G+。

引理6.3给出了判断两个函数依赖集等价的可行算法

如何判定 $F \subseteq G^{\dagger}$?

只需逐一对F中的函数依赖 $X \rightarrow Y$ 考察 Y是否属于 X_{G+} 定义6.15 如果函数依赖集F满足下列条件,则称F为一个极小函数依赖集,亦称为最小依赖集或最小覆盖。

- (1) F中任一函数依赖的右部仅含有一个属性。
- (2) F中不存在这样的函数依赖 $X \rightarrow A$,使得 $F \supset F \{X \rightarrow A\}$ 等价。
- (3) F中不存在这样的函数依赖 $X \rightarrow A$, X有真子集Z使得F-{ $X \rightarrow A$ } \cup { $Z \rightarrow A$ } 与F等价。

即 F中的函数依赖均不能由 F中其他函数 依赖导出 *F*中各函数依赖左部均为最 小属性集(不存在冗余属性)

```
[例6.12] 考察6.1节中的关系模式S < U, F >. 其中:
                                             U=\{Sno, Sdept, Mname, Cno, Grade\}
                                          F = \{Sno \rightarrow Sdept, Sdept \rightarrow Mname, (Sno,Cno) \rightarrow Grade\}
                                                                    F是最小覆盖
                                          F' = \{Sno \rightarrow Sdept, Sno \rightarrow Mname, Sdept \rightarrow Mname, Sd
                                                                            (Sno,Cno) \rightarrow Grade, (Sno,Sdept) \rightarrow Sdept
                                                              F'不是最小覆盖
                                              因为:F'-{Sno\rightarrowMname}与F'等价
                                          F'-{(Sno,Sdept)→Sdept}也与F'等价
```

定理6.3 每一个函数依赖集F均等价于一个极小函数依赖集 F_m 。此 F_m 称为F的最小依赖集。

证:构造性证明,分三步对F进行"极小化处理",找出F的一个最小依赖集。

(1) 逐一检查F中各函数依赖 $FD_i: X \to Y$, 若 $Y = A_1 A_2 ... A_k$, $k \ge 2$, 则用 $\{X \to A_j \mid j = 1, 2, ..., k\}$ 来取代 $X \to Y$ 。 引理6.1保证了F变换前后的等价性。

(2) 逐一检查F中各函数依赖 $FD_i: X \rightarrow A$,

$$\diamondsuit G = F - \{X \rightarrow A\},$$

由于F与G 等价的充要条件是 $A \in X_G^+$

因此F变换前后是等价的。

(3) 逐一取出F中各函数依赖 $FD_i: X \to A$, $设X=B_1B_2...B_m$, $m \ge 2$,逐一考查 B_i (i=1, 2, ..., m), 若 $A \in (X-B_i)_F^+$,则以 $X-B_i$ 取代X。

由于F与F-{ $X \rightarrow A$ } \cup { $Z \rightarrow A$ }等价的充要条件是 $A \in Z_F^+$,其中 $Z = X - B_i$,因此F变换前后是等价的。

最后剩下的F就一定是极小依赖集。

因为对F的每一次"改造"都保证了改造前后的两个函数依赖集等价,因此剩下的F与原来的F等价。

证毕

定理6.3的证明过程是求F极小依赖集的过程,也是检验F是否为极小依赖集的一个算法

若改造后的F与原来的F相同,说明F就是一个最小依赖集

[例6.13] $F = \{A \rightarrow B, B \rightarrow A, B \rightarrow C, A \rightarrow C, C \rightarrow A\}$

F的最小依赖集:

$$F_{ml} = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

F的最小依赖集 F_m 不一定是唯一的,它与对各函数依赖 FD_i 及 $X \rightarrow A$ 中X各属性的处置顺序有关。

[例6.13] (续) $F = \{A \rightarrow B, B \rightarrow A, B \rightarrow C, A \rightarrow C, C \rightarrow A\}$

$$F_{m1}$$
、 F_{m2} 都是 F 的最小依赖集:
$$F_{m1} = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$
$$F_{m2} = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A\}$$

在R < U, F > 中可以用与F等价的依赖集G来取代F

原因:两个关系模式 $R_1 < U, F>$, $R_2 < U, G>$,如果F = G等价,那么 R_1 的关系一定是 R_2 的关系。反过来, R_2 的关系也一定是 R_1 的关系。

小结

- •规范化理论为数据库设计提供理论的指南和工具
 - 仅仅是指南和工具
- 并不是规范化程度越高,模式就越好
 - 必须结合应用环境和现实世界的具体情况合理地选择数据 库模式