Medida de la resistividad eléctrica de una muestra

Cedric Prieels

3 de mayo de 2016

1. Desarrollo experimental

La medida de la resistividad eléctrica de la muestra se hacía con corriente continua y con el método de los 4 puntos, para evitar que la resistencia de los cables nos de un valor muy diferente del valor real de resistencia de la muestra.

Los etapas seguidos fueron los siguientes:

- Cortar y extrañar cables de metal de más o menos 15mm ;
- Lijar la muestra en el lugar de los contactos eléctricos;
- Medir el area A de la muestra ;
- Colocar los 4 contactos en la muestra usando pintura conductora de plata ;
- \blacksquare Medir la distancia L entre los electrodos que miden el potencial eléctrico V;
- Colocar la muestra en el portamuestra con estaño (con 2 precauciones : comprobando que las soldaduras de estaño no se tocan para evitar cortocircuitos, y y comprobando las conexiones con un multimetro).
- Medir la resistividad ρ con dos diferentes intensidades de corriente y en dos medios diferentes (a temperatura ambiente del laboratorio y dentro de nitrógeno líquido);
- Calcular la resistividad de la muestra en $\mu\Omega \cdot cm$.

2. Resultados obtenidos

La ecuación que se usa para determinar el valor de la resistividad eléctrica es la siguiente (1), siendo V el potencial eléctrico, A el área de la muestra considerada, L la distancia entre los electrodos de medida del potencial, y I la intensidad de la corriente.

$$\rho = \frac{V \cdot A}{L \cdot I} \tag{1}$$

La muestra que tenía para estudiar era una muestra de cobre, de tamaño 1,43mm por 1,86mm (este tamaño corresponde a la media de los valores obtenidos en los dos lados de la muestra, porque no era perfectamente uniforme). Esta muestra tiene entonces un valor de sección de $A = 2,66mm^2$.

Figura 1: El equipo después de haber hecho las soldaduras con el estaño.

La distancia L entre los electrodos centrales ha sido medida también, después de hacer las 4 conexiones necesarias, y vale L=7,62mm (medido con un equipo de precisión, a mano, había sido medido como 7,41mm).

El siguiente paso en la determinación de la resistividad de la muestra era la medida de los potenciales V_+ y V_- (para evitar efectos termoelectricos) para dos valores de intensidades I diferentes en temperatura ambiante. Los resultados obtenidos se presentan en los cuadros 1, 2 y 3.

Medida	$V_+ (\mu V)$	V_{-} (μV)	$\rho \ (\mu \Omega \cdot cm)$
1	6,3	-3,8	1,763
2	6,1	-3,9	1,745
3	5,9	-4,1	1,745
4	5,8	-4,2	1,745
5	5,7	-4,4	1,763
6	5,6	-4,5	1,763
7	$5,\!5$	-4,6	1,763
8	$5,\!5$	-4,6	1,763
9	$5,\!5$	-4,6	1,763
10	5,6	-4,5	1,763

Cuadro 1: Resultados obtenidos para el potencial para una intensidad de $100\mathrm{nA}$ a temperatura ambiante

Medida	$V_+ (\mu V)$	V_{-} (μV)	$\rho \ (\mu \Omega \cdot cm)$
1	1,2	-0,9	1,833
2	1,2	-0,8	1,745
3	1,0	-1,0	1,745
4	1,1	-0,9	1,745
5	1,0	-0,9	1,658
6	0,9	-1,0	1,658
7	1,1	-0,8	1,658
8	1,0	-1,1	1,833
9	1,1	-0,9	1,745
10	0,8	-1,2	1,745

Cuadro 2: Resultados obtenidos para el potencial para una intensidad de 20nA a temperatura ambiante.

Medida	$V_+ (\mu V)$	V_{-} (μV)	$\rho \ (\mu \Omega \cdot cm)$
1	-0,05	-1,5	0,271
2	-0,1	-1,4	0,262
3	0,03	-1,6	0,284
4	-0,08	-1,4	0,258
5	-0,1	-1,6	0,297
6	-0,05	-1,5	0,271
7	-0,2	-1,7	0,332
8	-0,2	-1,6	0,314
9	-0,2	-1,7	0,332
10	-0,2	-1,7	0,332

Cuadro 3: Resultados obtenidos para el potencial para una intensidad de 100nA a 77K.

Usando todos los valores precedentes y la ecuación (1), se puede obtener el valor de resistividad de la muestra de cobre. Se obtiene como valor media que a temperatura ambiante, la resistividad vale entre $\rho=1,758\mu\Omega\cdot cm$ (medido a 100nA) y $\rho=1,737\mu\Omega\cdot cm$ (medido a 20nA). A la temperatura del nitrógeno líquido, el valor de resistividad baja hasta llegar a $\rho=0,295\mu\Omega\cdot cm$ (medido a 100nA). Estos valores se comparan muy bien a los valores teóricos aceptados¹ de $1,676\mu\Omega\cdot cm$ a $293\mathrm{K}$ y de $0,213\mu\Omega\cdot cm$ a $80\mathrm{K}$. El valor obtenido en los dos casos es un poco diferente, pero se puede explicar si la temperatura en el laboratorio no era exactamente $293\mathrm{K}$ o si no hemos dejado bastante tiempo el equipo en el nitrógeno líquido, y que entonces su temperatura no era $77\mathrm{K}$ pero tenía un valor un poco más alto.

¹urlhttp://www.nist.gov/data/PDFfiles/jpcrd155.pdf