Национальный исследовательский у Факультет программной инженерии и ко	
Лабораторная работа	№6
Работа с системой компьютерн	юй вёрстки ТЕХ
	D
	Выполнила
	Егорова Варвара Александровн Р312
	Преподаватель Болдырева Елена Александровн
	,,,,
Санкт-Петербург	
2023r.	

Рис. 2.

ход*) воды, чем цилиндрические (при одинаковых площадях выходных сечений). Это оптимальный угол для получения наибольшего расхода воды. Конические сходящиеся насадки дают сплошную струю с большими скоростями и поэтому широко применяются на практике в брандспойтах, соплах гидромониторов.

Обратимся теперь к истечению воды через отверстие в стенке сосуда.

Возьмем заполненный водой цилиндрический сосуд, в боковой стенке которого имеется малое отверстие площадью s_1 (рис. 3). Через это отверстие вода вытекает под давлением столба жидкости высоты H. Отверстие считается малым, если его размеры по крайней мере в десят разменьше высоты столба H, создающего напор. При этом условии все точки малого отверстия находятся приблизительно на одной и той же глубине от поверхности жидкости, и скорости течения во всех точках можно считать одинаковыми.

Отверстием в тонкой стенке называется отверстие, края которого имеют достаточно острую кромку, чтобы толщина стенки не влияла на форму и условия истечения струи. Это условие выполняется в том случае, когда толщина кромки меньше трех диаметров отверстия.

Рис. 3.

От чего зависит скорость, с которой вытекает вода через малое отверстие в тонкой стенке сосуда? Чтобы ответить на этот вопрос, воспользуемся законом сокранения энергии. Пусть за малый промежуток времени Δt из сосуда вытекло небольшое количество воды Δm . Потенциальная энергия воды в сосуде при этом уменьшилась на величину ΔmqH (время достаточно мало, чтобы считать уровень H воды в сосуде не меняющимся). Это изменение потенциальной энергии равно кинетической энергии массы воды Δm , вытекающей из отверстия со скоростью v, TO ectb $\frac{\Delta mv^2}{2}$ ΔmgH . Отсюда

$$v = \sqrt{2gH}$$

Сколько времени будет вытекать вода из сосуда? Очевидно, это зависит от скорости истечения и от площади отверстия. Разберемся сначала со скоростью.

Как мы уже показали, $v = \sqrt{2gH}$. Но эту скорость можно считать постоянной лишь на протяжении малого промежутка времени (пока можно считать H = const). По мере истечения жидкости уровень понижается, и следовательно, скорость истечения уменьшается от $v_0 = \sqrt{2gH}$ (в начальный момент времени t = 0) до $v_T = 0$ (T - время вытекания). Каков характер изменения скорости со временем? Пусть в начальный момент времени ($t_1 = 0$), когда открывают от-

верстие, высота уровня воды ы сосуде над отверстием равна H. Начальная скорость истечения $v = \sqrt{2gH}$. За малый промежуток времени Δt из сосуда вытекает масса воды $\Delta m =$ $= \rho v_1 s \Delta t$ (ρ - плотность жидкости; Δt столь мало, что в тесение этого времени скорость v_1 постоянна). За это время уровень воды в сосуде уменьшится на величину $\Delta h = \frac{\Delta m}{S}$ (S - площадь дна сосуда). Поэтому в следующий момент временаи $(t_2 =$ Δt) скорость истечения меньше v_1 и равна $v_1 - \Delta v = \sqrt{2g(H - \Delta h)}$. Возведем последнее равенство в квадрат:

$$v_1^2 - 2v_1\Delta v + (\Delta v)^2 = 2gH - 2g\Delta h$$

. Пренебрегая величиной $(\Delta v)^2$ и учитывая, что $v_1^2=2gH,$ получаем

$$v_1 \Delta v = g\rho v_1 \frac{s}{S} \Delta t, \Delta v = g\rho \frac{s}{S} \Delta t$$

Следовательно,

$$\frac{\Delta v}{\Delta t} = g\rho \frac{s}{S} = const$$

(разумеется, для заданных s, S и ρ). А это означает, что скорость истечения линейно зависит от времени. Поэтому можно считать, что в течение всего времени T, пока вытекает жидкость, скорость истечения равна среднему значению (за промежуток времени T), то есть равна

$$v = \frac{v_1 + 0}{2} = \sqrt{\frac{gH}{2}}$$

. Теперь посмотрим, как влияет на время вытекания воды площадь отверстия. За единицу времени из сосуда должна вытекать масса жидкости $Q = \rho sc$ (ρ - плотность жидкости). При этом мы считает, что скорость в данный момент времени во всех точках отверстия направлена строго перпендикулярно к плоскости сечения отверстия. Однако, если внимательно приглядеться к струе, вытекающей из круглого малого отвер-

стия в тонкой стенке, то можно заметить, что диаметр ее поперечного сечения меньше диаметра отверстия. Струя как бы сжимается. Сжатие струи происходит из-за того, что жидкость подтекает к отверстию со всех сторон и ее частицы, движущиеся к отверстию вдоль стенок сосуда, пройдя отверстие, продолжают сближаться с осью струи. Только на некотором расстоянии от кромки отверстия, равном примерно радиус отверстия, траектории частиц становятся почти параллельными. струи продолжается и дальше, но уже несравненно медленнее, незаметно для глаза. Сечение, при котором заканчивается резкое видимое сжатие струи, называется сжатым. Отношение площади сжатого сечения s_2 к площади сечения отверстия s_1 называется коэффициентом сжатия ε :

$$\varepsilon = s_2/s_1$$

Поскольку расстояние между сечениями s_1 и s_2 мало (как мы уже говорили, оно равно примерно радиусу сечения s_1), то скорость воды во всех точках сечения s_2 практически равна $\sqrt{2gh}$ (h- высота уровня воды в сосуде в данный момент времени) и перпендикулярна к плоскости сечения. Следовательно, расход воды

$$Q = s_2 v = \varepsilon s_1 v = \varepsilon s_1 \cdot \frac{1}{2} \sqrt{2gH}$$

Теперь совсем просто подсчитать время, в течение которого вытекает вода из сосуда. Объем вытекающей воды V=SH, следовательно,

$$T = \frac{V}{Q} = \frac{SH}{\frac{1}{2}\varepsilon s_1\sqrt{2gH}} = \frac{S\sqrt{2gH}}{\varepsilon s_1\sqrt{g}}$$

Это соотношение можно проверить на опыте. Для эксперимента возьмите сосуд с отверстием диаметром 2 — 3. Можно воспользоваться металиической банкой с высокими стенками или цилиндрическим ведром. Отверстие должно находиться достаточно далеко от дна и от поверхности

Дополнительное задание №2

Таблица №1:

		Values			Total	
		Α	В	С	D	Total
Range	min	4	8	15	16	43
	max	23	42	25	34	124
Another total		27	50	40	50	167

Таблица №2:

n k	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1
5	1	5	10	10	5