Data Communication

Lecture 14

Motivation

Objectives

- Markdown in Jupyter notebook
- Visual communication

Jupyter Notebook

- other platforms: R Markdown, Shiny
- provide a unified authoring framework for data analysis, combining code, results, comments, and interpretation of data
- necessary for reproducible research and support dozens of output formats (PDF, text, slides, Markdown, LaTeX, HTML)

Jupyter Notebook

- for communicating to your boss, who want to focus on the conclusions, not necessarily the code behind the analysis.
- for collaborating with your peers (including future you!), who are interested in both your conclusions, and how you reached them (i.e. the code).
- as an environment in which to do data science, as a modern day lab notebook where you can capture not only what you did, but also what you were thinking.

Markdown in Jupyter Notebook

Туре	Or	to Get
Italic	_Italic_	Italic
Bold	Bold	Bold
# Heading 1	Heading 1 =======	Heading 1
## Heading 2	Heading 2	Heading 2
[Link](http://a.com)	[Link][1] : [1]: http://b.org	Link
![Image](http://url/a.png)	![Image][1] : [1]: http://url/b.jpg	M↓

Markdown in Jupyter Notebook

> Blockquote		Blockquote
* List * List * List	- List - List - List	ListListList
1. One 2. Two 3. Three	1) One 2) Two 3) Three	1. One 2. Two 3. Three
Horizontal rule:	Horizontal rule:	Horizontal rule:

Markdown in Jupyter Notebook

```
**Inline code` with backticks

# code block
print '3 backticks or'
print 'indent 4 spaces'

**Inline code with backticks

# code block
print '3 backticks or'
print 'indent 4 spaces'

**Inline code with backticks

# code block
print '3 backticks or'
print 'indent 4 spaces'
```

Visual Communication

- in EDA, you prepare quick plots for personal use.
- after understanding your data, you need to communicate your understanding to others.
- you will need to invest considerable effort in making your plots as self-explanatory as possible.

Visual Communication

Here is an extreme example. A newspaper reported that the U.S. Congress and the Department of Transportation had set a series of fuel economy standards to be met by automobile manufacturers, beginning with 18 miles per gallon in 1978 and moving in steps up to 27.5 by 1985, an increase of 53 percent:

$$\frac{27.5 - 18.0}{18.0} \times 100 = 53\%$$

These standards and the dates for their attainment were shown:

This line, representing 18 miles per gallon in 1978, is 0.6 inches long.

This line, representing 27.5 miles per gallon in 1985, is 5.3 inches long.

Labels

```
vaccine %>%
     ggplot(aes(date, people_vaccinated_per_hundred, color = location)) +
     geom_line() +
     labs(title = "COVID-19 vaccine doses administered per 100 people")
```


Labels

```
vaccine %>%
    ggplot(aes(date, people_vaccinated_per_hundred, color = location)) +
    geom_line() +
    labs(title = "COVID-19 vaccine doses administered per 100 people",
        subtitle = "Number of vaccination doses per 100 people, which is counted as a single dose,
        and may not equal the total number of vaccinated, depending on the specified dosage.",
    caption = "Source: Official data collected by Our World in Data")
```

COVID-19 vaccine doses administered per 100 people

Number of vaccination doses per 100 people, which is counted as a single dose, and may not equal the total number of vaccinated, depending on the specified dosage.

Source: Official data collected by Our World in Data

Labels

```
vaccine %>%
    ggplot(aes(date, people_vaccinated_per_hundred, color = location)) +
    geom_line() +
    labs(...
        x = "2021",
        y = "Number of people vaccinated per 100 people",
        color = "Country")
```

COVID-19 vaccine doses administered per 100 people

Number of vaccination doses per 100 people, which is counted as a single dose, and may not equal the total number of vaccinated, depending on the specified dosage.

Source: Official data collected by Our World in Data

Theme functions change the appearance of your plot.

Themes

theme_gray() Grey background (default theme)

Dark background for contrast

theme_light()
Light axes and grid

theme_linedraw()
Only black lines

theme_minimal()
Minimal theme, no background

theme_void()
Empty theme, only geoms are visible

COVID-19 vaccine doses administered per 100 people

Number of vaccination doses per 100 people, which is counted as a single dose, and may not equal the total number of vaccinated, depending on the specified dosage.

Source: Official data collected by Our World in Data

Color

https://colorbrewer2.org/

RColorBrewer package

COVID-19 vaccine doses administered per 100 people

Number of vaccination doses per 100 people, which is counted as a single dose, and may not equal the total number of vaccinated, depending on the specified dosage.

Source: Official data collected by Our World in Data

Figure size

Golden ratio:

fig.width = 6fig.asp = 0.618

Specified:

fig.width = 6fig.height = 3.7

https://en.99designs.jp/blog/tips/the-golden-ratio/

Saving figures

```
ggsave(
 filename.
 plot = last plot(),
 device = NULL.
 path = NULL,
 scale = 1
 width = NA.
 height = NA,
 units = c("in", "cm", "mm"),
 dpi = 300,
 limitsize = TRUE.
device Device to use. Can either be a device function (e.g. png()), or one of "eps", "ps", "tex" (pictex), "pdf", "jpeg",
"tiff", "png", "bmp", "svg"
```

COVID-19 vaccine doses administered per 100 people

Number of vaccination doses per 100 people, which is counted as a single dose, and may not equal the total number of vaccinated, depending on the specified dosage.

Source: Official data collected by Our World in Data

https://exts.ggplot2.tidyverse.org/gallery/

82 registered extensions available to explore

Showing 66 of 82

Take-away message

- It does not matter how great your analysis is, unless you can communicate it to others.
- Plots should stand alone, properly labeled and annotated.