

Réseaux - Mif05

Couche liaison de données L'exemple de la technologie Wi-Fi

Isabelle Guérin Lassous
Isabelle.Guerin-Lassous@univ-lyon1.fr
http://perso.ens-lyon.fr/isabelle.guerin-lassous

Introduction

- Vocabulaire
 - Nœud
 - Terminal, routeur, commutateur,
 - Lien de communication
 - Permet de relier des nœuds voisins
 - Canal/Médium de communication
- Couche liaison de données
 - Assure le transfert de données entre deux ou plusieurs nœuds voisins

C. Kurose & Ross

Introduction

- Protocoles liaison de données
 - Ethernet, PPP, Frame Relay, IEEE 802.11 (WiFi)
- Les protocoles liaison de données peuvent fournir des services différents

Services / Principes Théoriques

Adaptateur

- Protocole liaison de données souvent implémenté dans un adaptateur
 - Network Interface Card
 - Processeur, mémoire, bus, etc.
- Réalise les services de niveau 2
- Mode semi-autonome

Tramage

- Constitution d'un paquet de niveau liaison de données
- Encapsulation du datagramme dans une trame
 - Champs supplémentaires
 - En-tête de niveau 2
 - Informations sur la couche 2 comme ?
 - Assurer la communication entre 2 nœuds voisins
 - Réaliser les services de niveau 2
- Délimitation d'une trame
 - Fanion (bit), marqueur de début et fin (caractères)
 - Se fait au niveau physique pour certains protocoles
 - Wi-Fi

Détection d'erreurs

- Erreurs possibles sur le lien de communication
 - Atténuation
 - Bruit
 - Collisions / interférences
 - Echo
- Mécanisme réalisé
 - Au niveau hardware (en général)
 - Optionnel
 - Mais souvent réalisé au niveau 2

Principe de la détection d'erreurs

- Ajout de données de contrôle dans la trame par le nœud source
 - Champ détection d'erreurs
 - Checksum somme de contrôle
- Test de validité du paquet par le récepteur
 - Utilisation du champ détection d'erreurs par le récepteur
 - Réponse positive
 - Paquet considéré comme sans erreur
 - Réponse négative
 - Paquet considéré comme avec erreur
- Pas fiable à 100%
 - Compromis sur la taille du champ détection d'erreurs

CRC Cyclic Redundancy Code

- D
 - Données à protéger
- G
 - Générateur négocié entre la source et la destination
 - Contient (r+1) bits
 - Bit le plus à gauche à 1
- R
 - CRC = reste de la division de D.2^r par G
 - D.2^r = r bits à 0 ajoutés à D
 - DR est divisible par G
- Récepteur
 - Division des bits reçus par G
 - Si le reste est nul → succès
- Arithmétique binaire modulo-2 (sans retenue)

D*2^r XOR R

mathematical formula

CRC Cyclic Redundancy Code

- 1 seule erreur toujours détectée dès que deux 1 dans G
- 2 erreurs toujours détectées dès que trois 1 dans G
- Nombre impair d'erreurs détectées dès que G se termine par 11
- Erreurs d'au plus r bits consécutifs détectées
- Erreurs d'exactement (r+1) bits consécutifs détectées
 - avec probabilité 1-0,5^(r-1)
- Erreurs de plus de (r+1) bits consécutifs détectées
 - avec probabilité 1-0,5^r
- Très utilisé
- Taille du générateur
 - 2 à 65 bits
 - Ethernet, 802.11:33 bits
 - 100000100110000010001110110110111

Récupération d'erreur

- Si destinataire reçoit un paquet qu'il considère en erreur
 - Quelle action ?
- Rejeter le paquet et ne rien faire d'autre
 - Que suppose-t-on dans ce cas ?
- Prévenir la source qui peut retransmettre le paquet
 - Envoi d'un ACK négatif
 - Ou plutôt seuls les paquets correctement reçus sont acquittés
 - Plusieurs approches
 - Émission & attente d'un ACK
 - Utilisation d'une fenêtre d'émission
 - Si pas d'ACK reçu (timer a expiré)
 - · Retransmission du paquet
- Corriger soi-même les erreurs (correction d'erreurs)
 - Utilisation de codes correcteurs
 - Code de Hamming
 - Peu utilisé en pratique au niveau de la couche 2

Types de liens de communication

- Lien unidirectionnel
- Lien bidirectionnel
 - Half-duplex
 - Full-duplex

Accès aux liens de communication

Lien point-à-point

- Seulement deux stations connectées par ce médium
- Lien souvent full duplex

Lien partagé

- Plusieurs stations peuvent être connectées au lien
- Un paquet transmis se propage vers toutes les stations
- 2 transmissions simultanées peuvent provoquer des collisions

Protocole MAC

- Medium Access Control
- Algorithme qui permet une utilisation partagée du médium, i.e. indique quand un nœud peut transmettre

Protocole MAC idéal

- Hypothèse
 - Médium partagé avec une bande passante de D b/s
- Efficacité
 - Quand un nœud est seul à vouloir parler, il doit pouvoir utiliser tout le médium
 - À quel débit ?
- Equité
 - N nœuds veulent transmettre
 - Débit moyen de chacun ?
- Décentralisé
 - Pas de coordinateur
 - Pas d'horloge
- Simple

Classification (possible)

Basé sur la notion de canal

- Découpage « strict » du médium de communication en sousparties (sous-canaux)
- Allocation avant transmission

Basé sur la notion de paquets

- Envoi du paquet → prise de contrôle du médium
- Utilisation de tout le médium de communication alloué quand un paquet doit être envoyé

Techniques multicanaux

- Time Division Multiple Access
 - TDMA
 - Découpage en temps
 - Synchronisation nécessaire
- Frequency Division Multiple Access
 - FDMA
 - Découpage en fréquence
 - Débit éventuellement faible

Techniques multicanaux

- Code Division Multiple Access
 - CDMA
 - Utilisation de codes
 - Communications parallèles sur le lien partagé
 - Contrôle de puissance nécessaire

Techniques multicanaux

- Si nombre de sous-canaux > nombre d'utilisateurs
 - Allocation fixe simple
- En général
 - Nombre d'utilisateurs >> nombre de sous-canaux
- Sous-canal à trouver dynamiquement
 - On demande à une entité spécifique
 - e.g. station de base dans les réseaux cellulaires mobiles
 - Problème de l'œuf et de la poule
 - Il faut communiquer pour demander une allocation
 - Il faut un protocole MAC pour savoir quand on doit accéder au médium
 - Utilisation d'un protocole à accès aléatoire pour obtenir un sous-canal

Protocoles à accès aléatoire

- Quand un nœud veut envoyer un paquet
 - Utilisation complète du médium (nécessaire pour la communication)
 - Pas de coordination a priori entre les nœuds
- Collision possible
 - Comment détecter les collisions ?
 - Comment gérer les collisions ?
- Exemples
 - ALOHA
 - CSMA

ALOHA

Bonjour!

Protocole à accès aléatoire développé pour le 1er réseau sans fil par commutation de paquets

Acquittements envoyés par le récepteur + retransmissions de la source après un temps aléatoire

Efficacité limitée : débit total = 1/(2.e) (18%) de la bande passante

Slotted ALOHA

Slot = efficacité doublée

Nécessite une synchronisation

Carrier Sense Multiple Access CSMA

- Que fait-on avant de parler ?
- Collisions encore possibles?

CSMA/CD

Collision Detection

- La station qui transmet détecte une collision
 - Arrêt de la communication
 - Comparaison entre le signal émis et le signal reçu
 - Réalisée par les sources
 - Retransmission après un temps aléatoire

Copyright J. Kurose, K. Ross

CSMA/CA

- Collision Avoidance
- Sur un médium sans fil
 - Difficile de faire du 'collision detection' (pour le moment)
 - Pourquoi ?
 - Paquet acquitté par le destinataire
- Obligé d'attendre la fin d'une collision
 - Coûteux en temps
 - Essayer d'éviter au maximum les collisions a priori
 - Collision avoidance
- Temps d'attente aléatoire avant la transmission d'un paquet
 - Compromis temps d'attente réduction des collisions
- Approche utilisée dans le Wi-Fi
 - Détails dans la suite du cours

Un exemple : le Wi-Fi

Solutions de niveau 2

- Diversité des solutions
 - Assemblage de différents services
 - Tramage, Détection d'erreurs, Récupération d'erreurs, MAC
- A bien réfléchir en fonction de
 - Des applications du réseau
 - Du type de médium de communication utilisé
 - · Couche physique
 - Du coût
- Standards
 - Définition/choix des différents services
 - Très long travail
 - Beaucoup de participants
 - Toujours en évolution

IEEE 802.11

- Standard pour la couche physique et la couche liaison de données des points d'accès et des stations (mobiles) pour les réseaux locaux sans fil
- Alliance Wi-Fi
 - Certification Wireless Fidelity
 - Interopérabilité entre les différents constructeurs
- Communication par ondes radio
- Evolution du standard
 - 1997 / 1999 / 2007 / 2012 / 2016

Deux architectures d'utilisation

Mode ad hoc

Bandes de fréquences « classiques » du Wi-Fi

- Bande ISM
 - Fréquences libres
- 2,4 GHz
 - 14 canaux de 20 MHz

- 5 GHz
 - 22 canaux (en France) de 20 MHz indépendants
- Communication entre 2 nœuds se fait sur un seul canal
 - Canal de 20 MHz ou canal agrégé de 40, 80 ou 160 MHz
- Un nœud ne peut émettre que sur un canal à la fois

Les capacités d'émission du Wi-Fi Quelques exemples

Nombre

'anter	nnes u	tilisées					Large	ur du ca	anal		Interv	alle de garde
Modulation and coding schemes												
	\ _ \		2 !!	Data rate (in Mbit/s)				n Mbit/s) <mark>[16][</mark>	16][b]			
MCS index ^[a]	MCS Spatial index ^[a] Streams		Coding rate	20 MHz channels		40 MHz channels 80 MI		80 MHz	Hz channels 160 M		channels	
IIIdox	Otreams			800 ns <u>Gl</u>	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI	800 ns GI	400 ns GI	
0	1	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5	58.5	65	
1	1	QPSK	1/2	13	14.4	27	30	58.5	65	117	130	
2	1	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195	
3	1	16-QAM	1/2	26	28.9	54	60	117	130	234	260	
4	1	16-QAM	3/4	39	43.3	81	90	175.5	195	351	390	Une capacité – d'émission
5	1	64-QAM	2/3	52	57.8	108	120	234	260	468	520	
6	1	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585	
7	1	64-QAM	5/6	65	72.2	135	150	292.5	325	585	650	
8	1	256-QAM	3/4	78	86.7	162	180	351	390	702	780	possible
9	1	256-QAM	5/6	N/A	N/A	180	200	390	433.3	780	866.7	•
0	2	BPSK	1/2	13	14.4	27	30	58.5	65	117	130	
1	2	QPSK	1/2	26	28.9	54	60	117	130	234	260	
2	2	QPSK	3/4	39	43.3	81	90	175.5	195	351	390	
3	2	16-QAM	1/2	52	57.8	108	120	234	260	468	520	
4	2	16-QAM	3/4	78	86.7	162	180	351	390	702	780	
5	2	64-QAM	2/3	104	115.6	216	240	468	520	936	1040	
6	2	64-QAM	3/4	117	130.3	243	270	526.5	585	1053	1170	
7	2	64-QAM	5/6	130	144.4	270	300	585	650	1170	1300	
8	2	256-QAM	3/4	156	173.3	324	360	702	780	1404	1560	
^	_	252 2414	E /O	N1/A	B1/A	222	400	700	222 7	1500	47000	

. . .

Les capacités d'émission du Wi-Fi

- De très nombreuses capacités d'émission
- Laquelle choisir?
- Règle (simpliste)
 - Plus la capacité d'émission est élevée, moins la transmission est robuste
- Choix de la capacité d'émission doit se faire en fonction de la qualité du canal radio
 - émetteur et récepteur très proches => canal de bonne qualité
 => utiliser une capacité d'émission élevée
 - émetteur et récepteur éloignés et obstacles => canal de mauvaise qualité => utiliser une capacité d'émission réduite
- Choix dynamique
 - Algorithme d'adaptation de débit
 - Appliqué par l'émetteur
 - Propriétaire ou open source

Accès au médium radio

- Deux fonctions possibles dans le standard
- Distributed Coordination Function DCF
 - Infrastructure / ad hoc
 - CSMA/CA
- Point Coordination Function PCF
 - Infrastructure
- DCF dans la plupart des cartes et points d'accès

Accès au médium DCF – mode point-à-point (simple)

DCF - Contention Source 1 Destination 1 Trames à transmettre Backoff restant Destination 2 Source 2 Nouveau Backoff Paquet de Données Source 1 **DIFS** DIFS Canal occupé Canal occupé Source 2 **DIFS DIFS** Paquet ACK Backoff Destination 1 Ecoute du médium SIFS Destination 2 Arrêt du Backoff 56

DCF - Collisions

- Si 2 stations émettent un signal en même temps
 - Il peut y avoir collision au niveau du récepteur
 - Pas d'ACK envoyé/reçu
 - Retransmission du paquet
- Processus d'accès au médium relancé avec une augmentation de la fenêtre de contention
 - Algorithme BEB (Binary Exponential Backoff)
 - Taille CW = 2*Taille CW(précédente)
 - Fenêtre de contention maximale CWmax
- Paquet rejeté si émission échoue plusieurs fois
- Utilisation de CWmin pour le paquet suivant dans la file

Réseaux avancés & Recherche

M2 RSFM : Wi-Fi avancé

- Beaucoup de recherches autour du Wi-Fi
 - Wi-Fi 6 à venir ; Wi-Fi 7 pour le futur
 - Paramétrage extrêmement complexe
- De très nombreuses technologies radio innovantes
 - reposant sur des couches 2 très différentes

Fin du cours