Final Answers Only

Ryerson University

Department of Electrical and Computer Engineering

ELE404 (Electronic Circuits I)

Makeup Midterm Examination (W2014)

March 2014

Duration: 100 minutes Examiner: Prof. A. Yazdani

Name:			
	[Print Last Name]		[Print First Name]
Student No:		Section:	

NOTES

- 1. This is a closed-book examination. No aids other than basic calculators are permitted.
- 2. The examination paper is comprised of <u>FIVE QUESTIONS</u>, each question is worth as indicated in the following Table. The entire examination is worth 100 marks.

Question #	Maximum Mark	Mark Earned
1	30	
2	15	
3	20	
4	15	
5	20	
Total	100	

- 3. Answer all questions in the booklet, within the blank spaces provided under each question in this booklet. Use the reverse if needed.
- 4. <u>No Questions to be asked during the examination</u>. If in doubt about any question, clearly state your assumptions in answering the question.
- 5. Part marks for an answer will only be given if the *correct methodology* is clearly shown.
- 6. **DO NOT DETACH** any pages from this booklet.

- Q1: In the diode circuit of **Fig. 1**, D_1 is a regular diode whose forward voltage drop is assumed to be 0.7 V, whereas D_2 is an LED that starts to glow when its forward voltage drop reaches about 2.2 V. Further, $V_{CC} = 10 V$, $R_1 = 1.0 k\Omega$, $R_2 = 2.0 k\Omega$, and $I_x = 4.0 mA$. It is assumed that neither diode enters the breakdown region.
- 1a) If the voltage V_x is so negative that the LED is $d\tilde{v}n$, determine the conduction state ("on" or "off") of D_1 , and calculate the voltages V_3 and V_4 . Summarize your findings in **Table 1a**.

Fig. 1: Diode circuit of Q1.

Table 1a: Results of the diode circuit of O1.

State of D ₁	$V_3[V]$	$V_4[V]$
OFF	0	6

1b) V_x is then raised to 10.2 V and the LED glows. For this operating condition, calculate I_1 , V_2 , and V_3 . Complete **Table 1b**.

Table 1b: voltage values corresponding to $V_x = 10.2 \text{ V}$.

$I_1[mA]$	$V_2[V]$	$V_3[V]$
2.0	8.0	0

Q2: In the circuit of **Fig. 2**, $V_{CC} = 15 V$, I = 1.5 mA, and $R = 3.3 k\Omega$. If $V_O = 5.7 V$ at a temperature of 20 °C, what will V_O be the 40 Celsius? At 0 Celsius? At 80 Celsius? Explain why and/or show the calculations. Summarize your results in **Table 2**. [*Hint:* the voltage drop across the resistor is proportional to the current of the diode].

Fig. 2: Diode circuit of Q2.

Table 2: Results of the diode circuit of O2.

T [°C]	20	40	0	80
$V_{o}[V]$	5.7	5.66	5.74	5.58

Q3: **Fig. 3** shows a full-wave rectifier with smoothing capacitor. A gross manufacturing error has resulted in the connection of a grounded load to the anode (as opposed to the cathode) of D_1 . The source voltage v_I is a 5-Vrms sinusoid, $C = 680 \ \mu F$, and $R_L = 1.2 \ k\Omega$. The diodes may be assumed ideal.

Assuming that the circuit has reached a steady state, determine the reading of a dc voltmeter of the voltages v_0 and v_L . Show all the work. **Box your answers**.

Fig. 3: Full-wave rectifier of Q3.

$$\overline{U_0} = 7.0 \text{ V}$$
 $\overline{U_L} = 2.23 \text{ V}$

Q4: In the shunt voltage regulator of Fig. 4, $R=330~\Omega$, and the unregulated voltage v_{rec} is the output of a full-wave rectifier and, therefore, has an almost triangular waveform. According to the manufacturer, the Zener diode gives a voltage of $v_Z=V_{ZT}=5.6~V$ at a test current of $i_Z=I_{ZT}=25~mA$, and the diode can tolerate a maximum current of $I_{Zmax}=100~mA$. Further, $r_Z=15~\Omega$ and $I_{ZK}=1.5~mA$.

If the reading of a dc voltmeter of v_0 is 5.9 V, and if v_0 has a peak-to-peak ripple of 100 mV, determine the minimum and maximum values of v_{rec} .

Fig. 4: Shunt regulator of Q4.

Q5: In the transistor circuit of **Fig. 5**, determine the mode of operation of the transistor and the node voltages, if $V_{EE}=5~V$, $-V_{CC}=-V_{BB}=-10~V$, $R_1=R_4=1.0~k\Omega$, $R_2=3.3~k\Omega$, and $R_3=1.5~M\Omega$. Assume that $V_{EBon}=0.7~V$, $V_{ECsat}=0.3~V$, and $\beta=100$.

Show all the work, and complete Table 5.

Fig. 5: Transistor circuit of Q5.

Table 5: transistor's mode of operation and the node voltages in the circuit of Q5.

Mode of Q1	$v_B[V]$	$v_C[V]$	$v_E[V]$
Saturation	-3.85	-3.45	-3.15