MAKEMEAQUAL UNIVERSITY Department of Mathematics

January 5, 2021

1 Question 1 (UW 2017 #4)

Classify all groups of order 57.

2 Question 2 (UW 2010 #1)

Let p be a positive prime number, \mathbb{F}_p the field with p elements, and let $G = \mathrm{GL}_2(\mathbb{F}_p)$.

- Compute the order of G, |G|.
- Write down an explicit isomorphism from $\mathbb{Z}/p\mathbb{Z}$ to

$$U = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{F}_p \right\}.$$

• How many subgroups of order p does G have?

Hint: compute gug^{-1} for $g \in G$ and $u \in U$; use this to find the size of the normalizer of U in G.

3 Question 3 (UW 2016 #1)

Let G be a finite simple group. Assume that every proper subgroup of G is abelian. Prove that then G is cyclic of prime order.

4 Question 4 (Emory 0 #0)

Classify all groups of order 15 and of order 30.

5 Question 5 (Emory 0 # 2)

Determine the number of conjugacy classes of 16×16 matrices with entries in $\mathbb Q$ and minimal polynomial $(x^2+1)^2(x^3+2)^2$.

6 Question 6 (UW 2005 #5)

Let R and S be commutative rings, and $f:R\to S$ a ring homomorphism.

• Show that if I is a prime ideal of S, then

$$f^{-1}(I) = \{ r \in R : f(r) \in I \}$$

is a prime ideal of R.

• Let N be the set of nilpotent elements of R:

$$N=\{r\in R: r^m=0 \text{ for some } m\geq 1\}..$$

N is called the *nilradical* of R. Prove that it is an ideal which is contained in every prime ideal.

• Part (a) lets us define a function

$$f^*: \{\text{prime ideals of } S\} \to \{\text{prime ideals of } R\}.I \qquad \mapsto f^{-1}(I)..$$

Let N be the nilradical of R. Show that if S = R/N and $f: R \to R/N$ is the quotient map, then f^* is a bijection

7 Question 7 (Emory 0 #0)

Let G be a finite group of order $p^n m$ where p is a prime and m is not divisible by p. Prove that if H is a subgroup of G of order p^k for some k < n, then the normalizer of H in G properly contains H.

8 Question 8 (UGA 2017 #2)

(a) Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36.

You may assume that the only subgroup of order 12 in S_4 is A_4 and that A_4 has no subgroup of order 6.

- (b) Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such that G/N is isomorphic to A_4 .
- (c) Show that if G has a normal subgroup N such that G/N is isomorphic to A_4 and a subgroup H isomorphic to A_4 it must be the direct product of N and H.
- (d) Show that the dihedral group of order 36 is a non-abelian group of order 36 whose Sylow-2 subgroup is not normal.

9 Question 9 (UGA 2018 #6)

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- (a) Show that N is a \mathbb{Z} -submodule of M .
- (b) Find vectors $u_1,u_2,u_3,u_4\in\mathbb{Z}^4$ and integers d_1,d_2,d_3,d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

(c) Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

10 Question 10 (UGA 2017 #6)

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an integral domain R, $r \in R$ is called *irreducible* if r is not a unit in R, and the only divisors of r have the form ru with u a unit in R.

We call a non-zero, non-unit $r \in R$ prime in R if $r \mid ab \implies r \mid a$ or $r \mid b$. Consider the ring $R = \{a + b\sqrt{-5} \mid a, b \in Z\}$.

- (a) Prove R is an integral domain.
- (b) Show $U(R) = \{\pm 1\}.$
- (c) Show $3, 2 + \sqrt{-5}$, and $2 \sqrt{-5}$ are irreducible in R.
- (d) Show 3 is not prime in R.
- (e) Conclude R is not a PID.

11 Question 11 (UGA 2017 #5)

A ring R is called simple if its only two-sided ideals are 0 and R.

- (a) Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.
- (b) Let k be a field. Show the ring $M_n(k)$, $n \times n$ matrices with entries in k, is a simple ring.

12 Question 12 (UW 2005 #2)

Let \mathbb{F}_2 be the field with two elements.

- What is the order of $GL_3(\mathbb{F}_2)$?
- Use the fact that $GL_3(\mathbb{F}_2)$ is a simple group (which you should not prove) to find the number of elements of order 7 in $GL_3(\mathbb{F}_2)$.

13 Question 13 (UGA 2019 #6)

Let R be a commutative ring with 1.

Recall that $x \in R$ is nilpotent iff xn = 0 for some positive integer n.

- (a) Show that every proper ideal of R is contained within a maximal ideal.
- (b) Let J(R) denote the intersection of all maximal ideals of R. Show that $x \in J(R) \iff 1 + rx$ is a unit for all $r \in R$.
- (c) Suppose now that R is finite. Show that in this case J(R) consists precisely of the nilpotent elements in R.

14 Question 14 (UGA 2019 #3)

How many isomorphism classes are there of groups of order 45? Describe a representative from each class.

15 Question 15 (UGA 2018 #1)

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called $\langle p \rangle$ -primary if for every $m \in M$ there exists k > 0 such that $p^k m = 0$.

- (a) Suppose M is $\langle p \rangle$ -primary. Show that if $m \in M$ and $t \in R$, $t \notin \langle p \rangle$, then there exists $a \in R$ such that atm = m.
- (b) A submodule S of M is said to be *pure* if $S \cap rM = rS$ for all $r \in R$. Show that if M is $\langle p \rangle$ -primary, then S is pure if and only if $S \cap p^kM = p^kS$ for all $k \geq 0$.

16 Question 16 (UW 2014 #7)

Let C_p denote the cyclic group of order p.

- Show that C_p has two irreducible representations over \mathbb{Q} (up to isomorphism), one of dimension 1 and one of dimension p-1.
- Let G be a finite group, and let $\rho: G \to \mathrm{GL}_n(\mathbb{Q})$ be a representation of G over \mathbb{Q} . Let $\rho_{\mathbb{C}}: G \to \mathrm{GL}_n(\mathbb{C})$ denote ρ followed by the inclusion $\mathrm{GL}_n(\mathbb{Q}) \to \mathrm{GL}_n(\mathbb{C})$. Thus $\rho_{\mathbb{C}}$ is a representation of G over \mathbb{C} , called the *complexification* of ρ . We say that an irreducible representation ρ of G is absolutely irreducible if its complexification remains irreducible over \mathbb{C} .\ Now suppose G is abelian and that every representation of G over \mathbb{Q} is absolutely irreducible. Show that $G \cong (C_2)^k$ for some k (i.e., is a product of cyclic groups of order 2).

17 Question 17 (Emory 0 #0)

Classify the groups of order $182 = 2 \cdot 7 \cdot 13$.

18 Question 18 (Emory 0 #0)

Count the number of p-Sylow subgroups of S_p .

19 Question 19 (UW 2009 #1)

- Classify all groups of order $2009 = 7^2 \times 41$.
- Suppose that G is a group of order 2009. How many intermediate groups are there—that is, how many groups H are there with $1 \subsetneq H \subsetneq G$, where both inclusions are proper? (There may be several cases to consider.)

20 Question 20 (UW 2011 #3)

Describe the Galois group and the intermediate fields of the cyclotomic extension $\mathbb{Q}(\zeta_{12})/\mathbb{Q}$.

21 Question 21 (UW 2011 #1)

Let R be a commutative ring. Recall that an element r of R is *nilpotent* if $r^n = 0$ for some positive integer n and that the *nilradical* of R is the set N(R) of nilpotent elements.

• Prove that

$$N(R) = \bigcap_{P \text{ prime}} P...$$

Hint: given a non-nilpotent element r of R, you may wish to construct a prime ideal that does not contain r or its powers.

- Given a positive integer m, determine the nilradical of $\mathbb{Z}/(m)$.
- Determine the nilradical of $\mathbb{C}[x,y]/(y^2-x^3)$.
- Let p(x,y) be a polynomial in $\mathbb{C}[x,y]$ such that for any complex number $a, p(a,a^{3/2}) = 0$. Prove that p(x,y) is divisible by $y^2 x^3$.

22 Question 22 (UW 2010 #7)

Let F be a field of characteristic zero, and let K be an algebraic extension of F that possesses the following property: every polynomial $f \in F[x]$ has a root in K. Show that K is algebraically closed.

Hint: if $K(\theta)/K$ is algebraic, consider $F(\theta)/F$ and its normal closure; primitive elements might be of help.

23 Question 23 (Emory 0 #1)

Let K and L be finite fields. Show that K is contained in L if and only if $\#K = p^r$ and $\#L = p^s$ for the same prime p, and $r \leq s$.

24 Question 24 (UW 2015 #5)

- Let L be a Galois extension of a field K of degree 4. What is the minimum number of subfields there could be strictly between K and L? What is the maximum number of such subfields? Give examples where these bounds are attained.
- How do these numbers change if we assume only that L is separable (but not necessarily Galois) over K?

25 Question 25 (UW 2009 #2)

Let K be a field. A discrete valuation on K is a function $\nu: K \setminus \{0\} \to \mathbb{Z}$ such that

- $\nu(ab) = \nu(a) + \nu(b)$
- ν is surjective
- $\nu(a+b) \ge \min\{(\nu(a), \nu(b))\}$ for $a, b \in K \setminus \{0\}$ with $a+b \ne 0$.

Let $R := \{x \in K \setminus \{0\} : \nu(x) \ge 0\} \cup \{0\}$. Then R is called the valuation ring of ν . Prove the following:

- R is a subring of K containing the 1 in K.
- for all $x \in K \setminus \{0\}$, either x or x^{-1} is in R.
- x is a unit of R if and only if $\nu(x) = 0$.
- Let p be a prime number, $K = \mathbb{Q}$, and $\nu_p : \mathbb{Q} \setminus \{0\} \to \mathbb{Z}$ be the function defined by $\nu_p(\frac{a}{b}) = n$ where $\frac{a}{b} = p^n \frac{c}{d}$ and p does not divide c and d. Prove that the corresponding valuation ring R is the ring of all rational numbers whose denominators are relatively prime to p.

26 Question 26 (UW 2007 #3)

Show there are exactly two groups of order 21 up to isomorphism.

27 Question 27 (UW 2016 #6)

Let
$$A = \mathbb{C}[x, y]/(y^2 - (x - 1)^3 - (x - 1)^2)$$
.

- Show that A is an integral domain and sketch the \mathbb{R} -points of SpecA.
- Find the integral closure of A. Recall that for an integral domain A with fraction field K, the integral closure of A in K is the set of all elements of K integral over A.

28 Question 28 (UW 2018 #3)

Let α, β denote the unique positive real 5th root of 7 and 4th root of 5, respectively. Determine the degree of $\mathbb{Q}(\alpha, \beta)$ over \mathbb{Q} .

29 Question 29 (UGA 2018 #7)

Let R be a commutative ring.

(a) Let $r \in R$. Show that the map

$$r \bullet : R \longrightarrow R$$

 $x \mapsto rx$.

is an R-module endomorphism of R.

- (b) We say that r is a **zero-divisor** if $r \bullet$ is not injective. Show that if r is a zero-divisor and $r \neq 0$, then the kernel and image of R each consist of zero-divisors.
- (c) Let $n \geq 2$ be an integer. Show: if R has exactly n zero-divisors, then $\#R \leq n^2$.
- (d) Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors.

You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following:

$$\frac{\mathbb{Z}}{4\mathbb{Z}}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2+t+1)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2-t)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2)}.$$

30 Question 30 (UW 2006 #5)

Let G be the group of matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

with entries in the finite field \mathbb{F}_p of p element, where p is a prime.

- \bullet Prove that G is non-abelian.
- Suppose p is odd. Prove that $g^p = I_3$ for all $g \in G$.
- Suppose that p = 2. It is known that there are exactly two non-abelian groups of order 8, up to isomorphism: the dihedral group D_8 and the quaternionic group. Assuming this fact without proof, determine which of these groups G is isomorphic to.

31 Question 31 (UGA 2017 #7)

Let F be a field and let V and W be vector spaces over F .

Make V and W into F[x]-modules via linear operators T on V and S on W by defining $X \cdot v = T(v)$ for all $v \in V$ and $X \cdot w = S(w)$ for all $w \in W$.

Denote the resulting F[x]-modules by V_T and W_S respectively.

- (a) Show that an F[x]-module homomorphism from V_T to W_S consists of an F-linear transformation $R: V \longrightarrow W$ such that RT = SR.
- (b) Show that $VT \cong WS$ as F[x]-modules \iff there is an F-linear isomorphism $P: V \longrightarrow W$ such that $T = P^{-1}SP$.
- (c) Recall that a module M is *simple* if $M \neq 0$ and any proper submodule of M must be zero. Suppose that V has dimension 2. Give an example of F, T with V_T simple.
- (d) Assume F is algebraically closed. Prove that if V has dimension 2, then any V_T is not simple.

32 Question 32 (Emory 0 # 5)

Carefully state Zorn's lemma and use it to prove that every vector space has a basis.

33 Question 33 (UW 2015 #3)

- Let R be a commutative ring with no nonzero nilpotent elements. Show that the only units in the polynomial ring R[x] are the units of R, regarded as constant polynomials.
- Find all units in the polynomial ring $\mathbb{Z}_4[x]$.

34 Question 34 (UW 2015 #1)

- Find an irreducible polynomial of degree 5 over the field $\mathbb{Z}/2$ of two elements and use it to construct a field of order 32 as a quotient of the polynomial ring $\mathbb{Z}/2[x]$.
- Using the polynomial found in part (a), find a 5×5 matrix M over $\mathbb{Z}/2$ of order 31, so that $M^{31} = I$ but $M \neq I$.

35 Question 35 (UW 2010 #2)

- Give definitions of the following terms:
 - (i) a finite length (left) module, (ii) a composition series for a module, and (iii) the length of a module,
- ullet Let l(M) denote the length of a module M. Prove that if

$$0 \to M_1 \to M_2 \to \cdots \to M_n \to 0.$$

is an exact sequence of modules of finite length, then

$$\sum_{i=1}^{n} (-1)^{k} l(M_{i}) = 0..$$

36 Question 36 (UGA 2019 #1)

Let G be a finite group with n distinct conjugacy classes. Let $g_1 \cdots g_n$ be representatives of the conjugacy classes of G.

Prove that if $g_ig_j = g_jg_i$ for all i, j then G is abelian.

37 Question 37 (UW 2012 #2)

For any positive integer n, let G_n be the group generated by a and b subject to the following three relations:

$$a^2 = 1$$
, $b^2 = 1$, and $(ab)^n = 1$..

• Find the order of the group G_n

38 Question 38 (UGA 2018 #1)

- (a) Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial center.
- (b) Prove that any group of order p^2 (where p is prime) is abelian.
- (c) Prove that any group of order $5^2 \cdot 7^2$ is abelian.
- (d) Write down exactly one representative in each isomorphism class of groups of order $5^2 \cdot 7^2$.

39 Question 39 (Emory 0 #4)

- 1. Show that $\sqrt{2+\sqrt{2}}$ is a root of $p(x)=x^2-4x^2+2\in\mathbb{Q}[x]$.
- 2. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and find its Galois group. (Hint: note that $\sqrt{2-\sqrt{2}}$ is another root of p(x)).
- 3. Let $f(x) = x^3 5$. Determine the splitting field K of f(x) over $\mathbb Q$ and the Galois group of f(x). Give an example of a proper sub-extension $\mathbb Q \subset L \subset K$, such that $L/\mathbb Q$ is Galois.

40 Question 40 (UGA 2018 #4)

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed).

Let $\phi:V\longrightarrow V$ be a linear transformation. Prove that there exists a decomposition of V as $V=U\oplus W$, where U and W are ϕ -invariant subspaces of V, $\phi|_U$ is nilpotent, and $\phi|_W$ is nonsingular.

41 Question 41 (UW 2009 #6)

Fix a ring R, an R-module M, and an R-module homomorphism $f: M \to M$.

• If M satisfies the descending chain condition on submodules, show that if f is injective, then f is surjective.

Hint: note that if f is injective, so are $f \circ f$, $f \circ f \circ f$, etc.

- Give an example of a ring R, an R-module M, and an injective R-module homomorphism $f: M \to M$ which is not surjective.
- If M satisfies the ascending chain condition on submodules, show that if f is surjective, then f is injective.
- Give an exampe of a ring R, and R-module M, and a surjective R-module homomorphism $f: M \to M$ which is not injective.

42 Question 42 (UW 2005 #8)

For each prime number p and each positive integer n, how many elements α are there in \mathbb{F}_{p^n} such that $F_p(\alpha) = F_{p^6}$?

43 Question 43 (UGA 2019 #2)

Let $F = \mathbb{F}_p$, where p is a prime number.

- (a) Show that if $\pi(x) \in F[x]$ is irreducible of degree d, then $\pi(x)$ divides $x^{p^d} x$.
- (b) Show that if $\pi(x) \in F[x]$ is an irreducible polynomial that divides $x^{p^n} x$, then $\deg \pi(x)$ divides n.

44 Question 44 (UGA 2018 #6)

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- (a) Show that an R-submodule N of M is maximal $\iff M/N$ is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- (b) Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.
- (c) Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

45 Question 45 (UGA 2019 #2)

Let G be a group of order 105 and let P,Q,R be Sylow 3, 5, 7 subgroups respectively.

- (a) Prove that at least one of Q and R is normal in G.
- (b) Prove that G has a cyclic subgroup of order 35.
- (c) Prove that both Q and R are normal in G.
- (d) Prove that if P is normal in G then G is cyclic.

46 Question 46 (UW 2009 #7)

Let G be a finite group, k an algebraically closed field, and V an irreducible k-linear representation of G.

- Show that $hom_{kG}(V, V)$ is a division algebra with k in its center.
- Show that V is finite-dimensional over k, and conclude that $hom_{kG}(V, V)$ is also finite dimensional.
- Show the inclusion $k \hookrightarrow \hom_{kG}(V, V)$ found in (a) is an isomorphism. (For $f \in \hom_{kG}(V, V)$, view f as a linear transformation and consider $f \alpha I$, where α is an eigenvalue of f).

47 Question 47 (UGA 2019 #4)

For a finite group G, let c(G) denote the number of conjugacy classes of G.

(a) Prove that if two elements of G are chosen uniformly at random, then the probability they commute is precisely

$$\frac{c(G)}{|G|}.$$

- (b) State the class equation for a finite group.
- (c) Using the class equation (or otherwise) show that the probability in part (a) is at most

$$\frac{1}{2} + \frac{1}{2[G:Z(G)]}.$$

Here, as usual, Z(G) denotes the center of G.

48 Question 48 (UW 2005 #7)

Consider the polynomial $f(x) = x^{10} + x^5 + 1 \in \mathbb{Q}[x]$ with splitting field K over \mathbb{Q} .

- Determine whether f(x) is irreducible over $\mathbb Q$ and find $[K:\mathbb Q]$.
- Determine the structure of the Galois group $Gal(K/\mathbb{Q})$.

49 Question 49 (UW 2011 #2)

In this problem, as you apply Sylow's Theorem, state precisely which portions you are using.

- Prove that there is no simple group of order 30.
- Suppose that G is a simple group of order 60. Determine the number of p-Sylow subgroups of G for each prime p dividing 60, then prove that G is isomorphic to the alternating group A_5 .

Note: in the second part, you needn't show that A_5 is simple. You need only show that if there is a simple group of order 60, then it must be isomorphic to A_5 .

50 Question 50 (UW 2013 #4)

Suppose that G is a finite group of order 2013. Prove that G has a normal subgroup N of index 3 and that N is a cyclic group. Furthermore, prove that the center of G has order divisible by 11. (You will need the factorization $2013 = 3 \cdot 11 \cdot 61$.)

51 Question 51 (UGA 2019 #7)

Let p be a prime number. Let A be a $p \times p$ matrix over a field F with 1 in all entries except 0 on the main diagonal.

Determine the Jordan canonical form (JCF) of A

- (a) When $F = \mathbb{Q}$,
- (b) When $F = \mathbb{F}_p$.

Hint: In both cases, all eigenvalues lie in the ground field. In each case find a matrix P such that $P^{-1}AP$ is in JCF.

52 Question 52 (UW 2013 #6)

This question concerns an extension K of \mathbb{Q} such that $[K:\mathbb{Q}]=8$. Assume that K/\mathbb{Q} is Galois and let $G=\mathrm{Gal}(K/\mathbb{Q})$. Furthermore, assume that G is non-abelian.

- Prove that K has a unique subfield F such that F/\mathbb{Q} is Galois and $[F:\mathbb{Q}]=4$.
- Prove that F has the form $F = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ where d_1, d_2 are non-zero integers.
- Suppose that G is the quaternionic group. Prove that d_1 and d_2 are positive integers.

53 Question 53 (UGA 2018 #2)

Let
$$f(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$$
.

- (a) Find the splitting field K of f, and compute $[K:\mathbb{Q}]$.
- (b) Find the Galois group G of f, both as an explicit group of automorphisms, and as a familiar abstract group to which it is isomorphic.
- (c) Exhibit explicitly the correspondence between subgroups of G and intermediate fields between $\mathbb Q$ and k.

54 Question 54 (UW 2014 #6)

Let $\overline{\mathbb{F}_p}$ denote the algebraic closure of \mathbb{F}_p . Show that the Galois group $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$ has no non-trivial finite subgroups.

55 Question 55 (UGA 2018 #3)

Let $F \subset K \subset L$ be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.

- (a) If L/F is Galois, then so is K/F.
- (b) If L/F is Galois, then so is L/K.
- (c) If K/F and L/K are both Galois, then so is L/F.

56 Question 56 (UW 2009 #4)

Let F be a field and $p(x) \in F[x]$ an irreducible polynomial.

- Prove that there exists a field extension K of F in which p(x) has a root.
- ullet Determine the dimension of K as a vector space over F and exhibit a vector space basis for K.
- If $\theta \in K$ denotes a root of p(x), express θ^{-1} in terms of the basis found in part (b).
- Suppose $p(x) = x^3 + 9x + 6$. Show p(x) is irreducible over \mathbb{Q} . If θ is a root of p(x), compute the inverse of $(1 + \theta)$ in $\mathbb{Q}(\theta)$.

57 Question 57 (Emory 0 # 3)

Let V be a vector space over a field F. The evaluation map $e: V \longrightarrow (V^{\vee})^{\vee}$ is defined by e(v)(f) := f(v) for $v \in V$ and $f \in V^{\vee}$.

- 1. Prove that e is an injection.
- 2. Prove that e is an isomorphism if and only if V is finite dimensional.

58 Question 58 (UW 2012 #1)

Classify all groups of order 2012 up to isomorphism.

Hint: 503 is prime.

59 Question 59 (Emory 0 # 4)

Let R be a principal ideal domain that is not a field, and write F for its field of fractions. Prove that F is not a finitely generated R-module.

60 Question 60 (UGA 2017 #4)

- (a) Let f(x) be an irreducible polynomial of degree 4 in $\mathbb{Q}[x]$ whose splitting field K over \mathbb{Q} has Galois group $G = S_4$.
 - Let θ be a root of f(x). Prove that $\mathbb{Q}[\theta]$ is an extension of \mathbb{Q} of degree 4 and that there are no intermediate fields between \mathbb{Q} and $\mathbb{Q}[\theta]$.
- (b) Prove that if K is a Galois extension of \mathbb{Q} of degree 4, then there is an intermediate subfield between K and \mathbb{Q} .

61 Question 61 (UW 2010 #5)

Consider the ring

$$S = C[0, 1] = \{f : [0, 1] \to \mathbb{R} : f \text{ is continuous}\}.$$

with the usual operations of addition and multiplication of functions.

- What are the invertible elements of S?
- For $a \in [0,1]$, define $I_a = \{f \in S : f(a) = 0\}$. Show that I_a is a maximal ideal of S.
- Show that the elements of any proper ideal of S have a common zero, i.e., if I is a proper ideal of S, then there exists $a \in [0, 1]$ such that f(a) = 0 for all $f \in I$. Conclude that every maximal ideal of S is of the form I_a for some $a \in [0, 1]$.

Hint: As [0,1] is compact, every open cover of [0,1] contains a finite subcover.

62 Question 62 (UW 2008 #1)

Let f(x) be an irreducible polynomial of degree 5 over the field $\mathbb Q$ of rational numbers with exactly 3 real roots.

- Show that f(x) is not solvable by radicals.
- Let E be the splitting field of f over \mathbb{Q} . Construct a Galois extension K of degree 2 over \mathbb{Q} lying in E such that no field F strictly between K and E is Galois over \mathbb{Q} .

63 Question 63 (UW 2007 #2)

Let K be a field of characteristic zero and $f \in K[x]$ an irreducible polynomial of degree n. Let L be a splitting field for f. Let G be the group of automorphisms of L which act trivially on K.

- Show that G embeds in the symmetric group S_n .
- For each n, give an example of a field K and polynomial f such that $G = S_n$.
- What are the possible groups G when n=3. Justify your answer.

64 Question 64 (UGA 2018 #4)

Let

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 1 & -3 \\ 1 & 2 & -4 \end{bmatrix} \in M_3(\mathbb{C})$$

- (a) Find the Jordan canonical form J of A.
- (b) Find an invertible matrix P such that $P^{-1}AP = J$.

You should not need to compute P^{-1} .

65 Question 65 (UW Extra #1)

Assume that K is a cyclic group, H is an arbitrary group, and φ_1 and φ_2 are homomorphisms from K into $\operatorname{Aut}(H)$ such that $\varphi_1(K)$ and $\varphi_2(K)$ are conjugate subgroups of $\operatorname{Aut}(H)$. Prove by constructing an explicit isomorphism that $H \rtimes_{\varphi_1} K \cong H \rtimes_{\varphi_2} K$.

Suppose $\sigma_{\varphi_1}(K)\sigma^{-1} = \varphi_2(K)$ so that for some $a \in \mathbb{Z}$ we have $\sigma\varphi_1(k)\sigma^{-1} = \varphi_2(k)^a$ for all $k \in K$. Show that the map $\psi : H \rtimes_{\varphi_1} K \to H \rtimes_{\varphi_2} K$ defined by $\psi((h,k)) = (\sigma(h),k^a)$ is a homomorphism. Show ψ is bijective by construcing a 2-sided inverse.

66 Question 66 (UW 2018 #2)

Classify all groups of order 18 up to isomorphism.

67 Question 67 (UGA 2018 #5)

Let A be an $n \times n$ matrix.

- (a) Suppose that v is a column vector such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.
- (b) Show that there exists a column vector v such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent \iff the characteristic polynomial of A equals the minimal polynomial of A.

68 Question 68 (UGA 2019 #3)

Let R be a ring with the property that for every $a \in R, a^2 = a$.

- (a) Prove that R has characteristic 2.
- (b) Prove that R is commutative.

69 Question 69 (UGA 2018 #1)

Let K be a Galois extension of \mathbb{Q} with Galois group G, and let E_1, E_2 be intermediate fields of K which are the splitting fields of irreducible $f_i(x) \in \mathbb{Q}[x]$.

Let
$$E = E_1 E_2 \subset K$$
.
Let $H_i = \operatorname{Gal}(K/E_i)$ and $H = \operatorname{Gal}(K/E)$.

- (a) Show that $H = H_1 \cap H_2$.
- (b) Show that H_1H_2 is a subgroup of G.
- (c) Show that

$$Gal(K/(E_1 \cap E_2)) = H_1H_2.$$

70 Question 70 (UW 2006 #3)

- Let p < q < r be prime integers. Show that a group of order pqr cannot be simple.
- Consider groups of orders $2^2 \cdot 3 \cdot p$ where p has the values 5, 7, and 11. For each of those values of p, either display a simple group of order $2^2 \cdot 3 \cdot p$, or show that there cannot be a simple group of that order.

71 Question 71 (Emory 0 # 0)

Let G be a finite group.

- 1. Prove that if H < G is a proper subgroup, then G is not the union of conjugates of H.
- 2. Suppose that G acts transitively on a set X with |X| > 1. Prove that there exists an element of G with no fixed points in X.

72 Question 72 (UGA 2019 #8)

Let $\zeta = e^{2\pi i/8}$.

- (a) What is the degree of $\mathbb{Q}(\zeta)/\mathbb{Q}$?
- (b) How many quadratic subfields of $\mathbb{Q}(\zeta)$ are there?
- (c) What is the degree of $\mathbb{Q}(\zeta, \sqrt[4]{2})$ over \mathbb{Q} ?

73 Question 73 (UW 2017 #1)

Let R be a Noetherian ring. Prove that R[x] and R[[x]] are both Noetherian. (The first part of the question is asking you to prove the Hilbert Basis Theorem, not to use it!)

74 Question 74 (UGA 2019 #8)

Let $\{e_1, \dots, e_n\}$ be a basis of a real vector space V and let

$$\Lambda := \left\{ \sum r_i e_i \mid ri \in \mathbb{Z} \right\}$$

Let \cdot be a non-degenerate $(v \cdot w = 0 \text{ for all } w \in V \iff v = 0)$ symmetric bilinear form on V such that the Gram matrix $M = (e_i \cdot e_j)$ has integer entries.

Define the dual of Λ to be

$$\Lambda^{\vee} \coloneqq \{ v \in V \mid v \cdot x \in \mathbb{Z} \text{ for all } x \in \Lambda \}.$$

- (a) Show that $\Lambda \subset \Lambda^{\vee}$.
- (b) Prove that $\det M \neq 0$ and that the rows of M^{-1} span Λ^{\vee} .
- (c) Prove that $\det M = |\Lambda^{\vee}/\Lambda|$.

75 Question 75 (Emory 0 #1)

An integral domain R is said to be an $Euclidean\ domain$ if there is a function $N:R\longrightarrow \{n\in\mathbb{Z}\ |\ n\geq 0\}$ such that N(0)=0 and for each $a,b\in R$ with $b\neq 0$, there exist elements $q,r\in R$ with

$$a = qb + r$$
, and $r = 0$ or $N(r) < N(b)$.

Prove:

- 1. The ring F[[x]] of power series over a field F is an Euclidean domain.
- 2. Every Euclidean domain is a PID.

76 Question 76 (UW 2013 #3)

- ullet Suppose that G is a finitely generated group. Let n be a positive integer. Prove that G has only finitely many subgroups of index n
- Let p be a prime number. If G is any finitely-generated abelian group, let $t_p(G)$ denote the number of subgroups of G of index p. Determine the possible values of $t_p(G)$ as G varies over all finitely-generated abelian groups.

77 Question 77 (UW 2005 #3)

Let G be a finite abelian group. Let $f: \mathbb{Z}^m \to G$ be a surjection of abelian groups. We may think of f as a homomorphism of \mathbb{Z} -modules. Let K be the kernel of f.

- Prove that K is isomorphic to \mathbb{Z}^m .
- We can therefore write the inclusion map $K \to \mathbb{Z}^m$ as $\mathbb{Z}^m \to \mathbb{Z}^m$ and represent it by an $m \times m$ integer matrix A. Prove that $|\det A| = |G|$.

78 Question 78 (UW 2018 #4)

Show that the field extension $\mathbb{Q} \subseteq \mathbb{Q}\left(\sqrt{2+\sqrt{2}}\right)$ is Galois and determine its Galois group.

79 Question 79 (UW 2016 #2)

Let $a\in\mathbb{N},\ a>0.$ Compute the Galois group of the splitting field of the polynomial x^5-5a^4x+a over $\mathbb{Q}.$

80 Question 80 (Emory 0 #2)

Let K and L be finite fields with $K \subseteq L$. Prove that L is Galois over K and that $\operatorname{Gal}(L/K)$ is cyclic.

81 Question 81 (UW 2010 #8)

Let G be the unique non-abelian group of order 21.

- \bullet Describe all 1-dimensional complex representations of G.
- ullet How many (non-isomorphic) irreducible complex representations does G have and what are their dimensions?
- Determine the character table of G.

82 Question 82 (Emory 0 #2)

Let F be a field, and let R be the subring of F[X] of polynomials with X coefficient equal to 0. Prove that R is not a UFD.

Question 83 (UW 2011 #4) 83

Let

$$R = \mathbb{Z}[x]/(x^2 + x + 1).$$

- Answer the following questions with suitable justification.
 - Is R a Noetherian ring? Is R an Artinian ring?
- \bullet Prove that R is an integrally closed domain.

84 Question 84 (UW 2014 #4)

Let R be a ring with the property that $a^2 = a$ for all $a \in R$.

- Compute the Jacobson radical of R.
- What is the characteristic of R?
- \bullet Prove that R is commutative.
- Prove that if R is finite, then R is isomorphic (as a ring) to $(\mathbb{Z}/2\mathbb{Z})^d$ for some d.

85 Question 85 (UW 2006 #2)

Let K be the field $\mathbb{Q}(z)$ of rational functions in a variable z with coefficients in the rational field \mathbb{Q} . Let n be a positive integer. Consider the polynomial $x^n - z \in K[x]$.

- Show that the polynomial $x^n z$ is irreducible over K.
- Describe the splitting field of $x^n z$ over K.
- Determine the Galois group of the splitting field of $x^5 z$ over the field K.

86 Question 86 (Emory 0 #1)

Prove that any square matrix is conjugate to its transpose matrix. (You may prove it over \mathbb{C}).

87 Question 87 (UW 2014 #2)

Let p be a prime, let \mathbb{F}_p be the p-element field, and let $K = \mathbb{F}_p(t)$ be the field of rational functions in t with coefficients in \mathbb{F}_p . Consider the polynomial $f(x) = x^p - t \in K[x]$.

- Show that f does not have a root in K.
- Let E be the splitting field of f over K. Find the factorization of f over E.
- Conclude that f is irreducible over K.

88 Question 88 (Emory 0 # 0)

- Prove that a group of order $351 = 3^3 \cdot 13$ cannot be simple.
- Prove that a group of order 33 must be cyclic.

89 Question 89 (UGA 2019 #7)

Let ζ_n denote a primitive nth root of $1 \in \mathbb{Q}$. You may assume the roots of the minimal polynomial $p_n(x)$ of ζ_n are exactly the primitive nth roots of 1.

Show that the field extension $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is Galois and prove its Galois group is $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

How many subfields are there of $\mathbb{Q}(\zeta_{20})$?

90 Question 90 (UW 2015 #6)

Let R be a commutative algebra over \mathbb{C} . A derivation of R is a \mathbb{C} -linear map $D: R \to R$ such that (i) D(1) = 0 and (ii) D(ab) = D(a)b + aD(b) for all $a, b \in R$.

- Describe all derivations of the polynomial ring $\mathbb{C}[x]$.
- Let A be the subring (or \mathbb{C} -subalgebra) of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ generated by all derivations of $\mathbb{C}[x]$ and the left multiplications by x. Prove that $\mathbb{C}[x]$ is a simple left A-module. > Note that the inclusion $A \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ defines a natural left A-module structure on $\mathbb{C}[x]$.

91 Question 91 (UW 2012 #3)

Let R be a (commutative) principal ideal domain, let M and N be finitely generated free R-modules, and let $\varphi: M \to N$ be an R-module homomorphism.

- Let K be the kernel of φ . Prove that K is a direct summand of M.
- Let C be the image of φ . Show by example (specifying R, M, N, and φ) that C need not be a direct summand of N.

92 Question 92 (UW 2010 #4)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ (where $a_n \neq 0$) and let $R = \mathbb{Z}[x]/(f)$. Prove that R is a finitely generated module over \mathbb{Z} if and only if $a_n = \pm 1$.

93 Question 93 (UW 2008 #8)

Use the rational canonical form to show that any square matrix M over a field k is similar to its transpose M^t , recalling that p(M) = 0 for some $p \in k[t]$ if and only if $p(M^t) = 0$.

94 Question 94 (UW 2017 #3)

Suppose A is a commutative ring and M is a finitely presented module. Given any surjection $\phi:A^n\to M$ from a finite free A-module, show that $\ker\phi$ is finitely generated.

95 Question 95 (UW 2015 #4)

Let p, q be two distinct primes. Prove that there is at most one non-abelian group of order pq and describe the pairs (p,q) such that there is no non-abelian group of order pq.

96 Question 96 (UW 2016 #7)

Let R = k[x, y] where k is a field, and let I = (x, y)R.

• Show that

$$0 \longrightarrow R \xrightarrow{\phi} R \oplus R \xrightarrow{\psi} R \longrightarrow k \longrightarrow 0$$

where $\phi(a) = (-ya, xa)$, $\psi((a, b)) = xa + yb$ for $a, b \in R$, is a projective resolution of the R-module $k \simeq R/I$.

 \bullet Show that I is not a flat R-module by computing $\operatorname{Tor}_i^R(I,k)$

97 Question 97 (UW 2014 #1)

- Let G be a group (not necessarily finite) that contains a subgroup of index n. Show that G contains a normal subgroup N such that $n \leq [G:N] \leq n!$
- Use part (a) to show that there is no simple group of order 36.

98 Question 98 (UGA 2017 #1)

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that the kernel of the homomorphism from G to $\operatorname{Sym}(A)$ which gives the action is trivial) and transitive (for all a, b in A, there exists g in G such that $g \cdot a = b$.)

(a) For $a \in A$, let G_a denote the stabilizer of a in G. Prove that for any $a \in A$,

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \{1\} .$$

(b) Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive subgroup of S_n has order n.

99 Question 99 (UW 2005 #1)

For any group G we define $\Omega(G)$ to be the image of the group homomorphism $\rho: G \to \operatorname{Aut}(G)$ where ρ maps $g \in G$ to the conjugation automorphism $x \mapsto gxg^{-1}$. Starting with a group G_0 , we define $G_1 = \Omega(G_0)$ and $G_{i+1} = \Omega(G_i)$ for all $i \geq 0$. If G_0 is of order p^e for a prime p and integer $e \geq 2$, prove that G_{e-1} is the trivial group.

100 Question 100 (UW 2018 #5)

Let M be a square matrix over a field K. Use a suitable canonical form to show that M is similar to its transpose M^T .