Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A compound of formula I or a pharmaceutically acceptable salt thereof:

$$\begin{array}{c|c}
R^{F_1} & \stackrel{Z}{\downarrow} \\
 & \downarrow \\
 & \downarrow \\
 & R^{F_2}
\end{array}$$

$$\begin{array}{c}
N \\
 & \downarrow \\
 & N \\
 & R^1
\end{array}$$

wherein

 R^{F1} and R^{F2} are independently $C_{1\text{-}6}$ alkyl substituted by one or more groups selected from -F, -Cl, -Br, -NO₂, -CN, -OH, -CHO, -C(=O)-R' and -OR', wherein R' is a $C_{1\text{-}3}$ alkyl;

Z is selected from O= and S=;

 R^1 is selected from C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, $R^3R^4N-C_{1-6}$ alkyl, R^3O-C_{1-6} alkyl, $R^3C(=O)N(-R^4)-C_{1-6}$ alkyl, $R^3R^4NS(=O)_2-C_{1-6}$ alkyl, $R^3CS(=O)_2N(-R^4)-C_{1-6}$ alkyl, $R^3R^4NC(=O)N(-R^5)-C_{1-6}$ alkyl, $R^3R^4NS(=O)_2N(R^5)-C_{1-6}$ alkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl- C_{1-6} alkyl, C_{3-6} heterocyclyl- $C(=O)-C_{1-6}$ alkyl, C_{3-6} heterocyclyl- $C(=O)-C_{1-6}$ alkyl, $R^3R^4N-C(=O)N(-R^5)-C_{1-6}$ alkyl, C_{3-6} heterocyclyl-C(=O)- C_{1-6} alkyl, C_{3-6} heterocyclyl-C(=O)- C_{1-6} alkyl, C_{3-6} heterocyclyl-C(=O)- C_{1-6} alkyl, C_{4-8} cycloalkenyl, C_{3-6} heterocyclyl and C_{3-6} heterocyclyl-C(=O)-; wherein said C_{1-10} alkyl, C_{2-10} alkenyl, C_{3-6} heterocyclyl- C_{1-6} alkyl, C_{3-6} heterocyclyl- C_{1-6} alkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl- C_{1-6} alkyl, C_{3-6} heterocyclyl- C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{4-8} cycloalkenyl, C_{3-6} heterocyclyl- C_{1-6} 0)- used in defining R^1 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and R^3R^4N- ;

 R^2 is selected from the group consisting of $C_{1\text{-}10}$ alkyl, $C_{2\text{-}10}$ alkenyl, $C_{2\text{-}10}$ alkynyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}6}$ alkyl, $C_{4\text{-}8}$ cycloalkenyl, $C_{4\text{-}8}$ cycloalkenyl, $C_{3\text{-}5}$ heteroaryl, $C_{6\text{-}10}$ aryl and $C_{3\text{-}6}$ heterocycloalkyl, wherein said $C_{1\text{-}10}$ alkyl, $C_{2\text{-}10}$ alkenyl, $C_{2\text{-}10}$ alkynyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}6}$ alkyl, $C_{4\text{-}8}$ cycloalkenyl- $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ heterocycloalkyl- $C_{1\text{-}6}$ alkyl, $C_{4\text{-}8}$ cycloalkenyl, $C_{3\text{-}5}$ heteroaryl, $C_{6\text{-}10}$ aryl or $C_{3\text{-}6}$ heterocycloalkyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R^3R^4N -; and

R³ and R⁴ and are independently selected from -H, C₁₋₆alkyl, C₂₋₆alkenyl, and C₂₋₆alkynyl, and a divalent C₁₋₆ group that together with another divalent C₁₋₆ group selected from R³ and R⁴ forms a portion of a ring.

2. (original) A compound as claimed in claim 1, wherein

R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCHF₂, -CHFCH₂F, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, -CF₃, -CH₂CCl₃, -CH₂CHCl₂, -CH₂CBr₃, -CH₂CHBr₂, -CH₂NO₂, -CH₂CH₂NO₂, -CH₂CN, -CH₂CH₂CN, and -CH₂CH₂OCH₃;

Z is O=;

 R^1 is selected from $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $R^3R^4N\text{-}C_{1\text{-}4}$ alkyl, $R^3O\text{-}C_{1\text{-}4}$ alkyl, $R^3C(=O)N(-R^4)\text{-}C_{1\text{-}4}$ alkyl, phenyl- $C_{1\text{-}4}$ alkyl, phenyl- $C(=O)\text{-}C_{1\text{-}4}$ alkyl, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}4}$ alkyl, $C_{4\text{-}6}$ cycloalkenyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocyclyl- $C_{1\text{-}4}$ alkyl, $R^3R^4N\text{-}$, $R^3O\text{-}$, $R^3R^4NS(=O)_2\text{-}$, $C_{6\text{-}10}$ aryl, $C_{6\text{-}10}$ aryl-C(=O)-, $C_{3\text{-}10}$ cycloalkyl, $C_{4\text{-}6}$ cycloalkenyl, $C_{3\text{-}6}$ heterocyclyl and $C_{3\text{-}6}$ heterocyclyl-C(=O)-; wherein said $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, phenyl- $C_{1\text{-}4}$ alkyl, phenyl- $C(=O)\text{-}C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocyclyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocyclyl- $C_{1\text{-}4}$ alkyl, $C_{3\text{-}6}$ heterocyclyl- $C_{1\text{-}4}$ alkyl, $C_{6\text{-}10}$ aryl-C(=O)-, $C_{3\text{-}10}$ cycloalkyl, $C_{4\text{-}6}$ cycloalkenyl, $C_{3\text{-}6}$ heterocyclyl or $C_{3\text{-}6}$ heterocyclyl-C(=O)-, $C_{3\text{-}10}$ cycloalkyl, $C_{4\text{-}6}$ cycloalkenyl, $C_{3\text{-}6}$ heterocyclyl or $C_{3\text{-}6}$ heterocyclyl-C(=O)- used in defining R^1 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and $R^3R^4N\text{-}$;

 R^2 is selected from the group consisting of C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl, C_{3-5} heteroaryl, R^3R^4N -, phenyl and

 $C_{3\text{--}6}$ heterocycloalkyl, wherein said $C_{1\text{--}6}$ alkyl, $C_{2\text{--}6}$ alkenyl, $C_{3\text{--}10}$ cycloalkyl, $C_{3\text{--}10}$ cycloalkyl- $C_{1\text{--}4}$ alkyl, $C_{4\text{--}6}$ cycloalkenyl- $C_{1\text{--}4}$ alkyl, $C_{3\text{--}6}$ heterocycloalkyl- $C_{1\text{--}4}$ alkyl, $C_{4\text{--}6}$ cycloalkenyl, $C_{3\text{--}5}$ heteroaryl, phenyl or $C_{3\text{--}6}$ heterocycloalkyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R^3R^4N -; and

R³ and R⁴ are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.

3. (original) A compound as claimed claim 1, wherein

 R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCHF₂, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, and -CF₃;

Z is O=;

 $R^1 \ is \ selected \ from \ C_{1-6} alkyl, \ C_{2-6} alkenyl, \ R^3 R^4 N-, \ R^3 R^4 N-C_{1-4} alkyl, \ R^3 O-C_{1-4} alkyl, \ R^3 C(=O)N(-R^4)-C_{1-4} alkyl, \ phenyl-C_{1-4} alkyl, \ phenyl-C(=O)-C_{1-4} alkyl, \ C_{3-10} cycloalkyl-C_{1-4} alkyl, \ C_{4-6} cycloalkenyl-C_{1-4} alkyl, \ C_{3-6} heterocyclyl-C_{1-4} alkyl, \ C_{3-6} heterocyclyl-C(=O)-C_{1-4} alkyl, \ phenyl, \ C_{3-10} cycloalkyl, \ R^3 R^4 N-C_{1-4} alkyl, \ R^3 O-C_{1-4} alkyl, \ R^3 C(=O)N(-R^4)-C_{1-4} alkyl, \ phenyl-C_{1-4} alkyl, \ phenyl-C(=O)-C_{1-4} alkyl, \ C_{3-6} heterocyclyl-C(=O)-C_{1-4} alkyl, \ C_{3-6} heterocyclyl-C(=O)-C_{1-4} alkyl, \ phenyl, \ C_{3-6} heterocyclyl-C_{1-4} alkyl, \ C_{3-6} heterocyclyl-C(=O)-C_{1-4} alkyl, \ phenyl, \ C_{3-6} heterocyclyl-C(=O)-c_{1-4} alkyl, \ phenyl, \ phenyl-C(=O)-C_{1-4} alkyl, \ phenyl, \ phenyl-C(=O)-C_{1-4} alkyl, \ phenyl, \ phenyl-C(=O)-C_{1-4} alkyl, \ phenyl, \ phenyl-C_{1-4} alkyl, \ phenyl-C(=O)-C_{1-4} alkyl, \ phenyl-C_{1-4} al$

R² is selected from the group consisting of C₁₋₆alkyl, C₃₋₁₀cycloalkyl, R³R⁴N-, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl, C₃₋₅heteroaryl, and phenyl wherein said C₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl, C₃₋₅heteroaryl, and phenyl used in defining R² is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R³R⁴N-; and

R³ and R⁴ are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.

4. (original) A compound as claimed in claim 1, wherein R^{F1} and R^{F2} are -CH₂CF₃;

Z is O=;

R¹ is selected from cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl, ethyl, propyl, adamantyl, adamantylmethyl, allyl, isopentyl, benzyl, methoxyethyl, tetrahydropyranylmethyl, tetrahydrofuranylmethyl, cyclohexyloxy, cyclohexylamino, dimethylaminoethyl, 4-pyridylmethyl, 2-pyridylmethyl, 1-pyrrolylethyl, 1-morpholinoethyl, 4,4-difluorocyclohexylmethyl, cyclohexylmethyl, 2-pyrrolidylmethyl, N-methyl-2-pyrrolidylmethyl, 2-piperidylmethyl, N-methyl-2-piperidylmethyl, (2-nitrothiophene-5-yl)-methyl, (1-methyl-1H-imidazole-2-yl)methyl, (5-(acetoxymethyl)-2-furyl)methyl), (2,3-dihydro-1H-isoindole-1-yl)methyl, and 5-(2-methylthiazolyl); and

R² is selected from t-butyl, n-butyl, 2-methyl-2-butyl, cyclohexyl, cyclohexylmethyl, n-pentyl, isopentyl, trifluoromethyl, 1,1-difluoroethyl, N-piperidyl, dimethylamino, phenyl, pyridyl, tetrahydrofuranyl, tetrahydropyranyl, 2-methoxy-2-propyl, and N-morpholinyl.

- 5. (original) A compound selected from 2-*tert*-Butyl-1-(cyclohexylmethyl)-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide and pharmaceutically acceptable salts thereof.
- 6. (canceled)
- 7. (canceled)
- 8. (canceled)
- 9. (canceled)
- 10. (previously presented) A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
- 11. (currently amended) A method for the therapy of treating pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to claim 1.

12. (original) A method for preparing a compound of formula I,

$$\begin{array}{c|c}
R^{F1} & \stackrel{Z}{\downarrow} \\
N & \stackrel{N}{\downarrow} \\
R^{F2} & \stackrel{N}{\downarrow} \\
R^{1}
\end{array}$$

comprising the step of reacting a compound of formula II,

$$R^{F1} \underset{R}{\overset{Z}{\bigvee}} NH_2$$

$$NHR_1$$

$$II$$

with a compound of R²C(=O)-X to form the compound of formula I, wherein

 R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCHF₂, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, and -CF₃;

Z is selected from O= and S=;

X is selected from -Cl, -Br, -I, -OH, -OCH₃, and -OCH₂CH₃;

 R^1 is selected from C_{1-6} alkyl, C_{2-6} alkenyl, R^3R^4N - C_{1-4} alkyl, R^3O - C_{1-4} alkyl, $R^3C(=O)N(-R^4)$ - C_{1-4} alkyl, phenyl- C_{1-4} alkyl, phenyl-C(=O)- C_{1-4} alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl and C_{3-6} heterocyclyl-C(=O)-; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, R^3R^4N - C_{1-4} alkyl, R^3O - C_{1-4} alkyl, $R^3C(=O)N(-R^4)$ - C_{1-4} alkyl, phenyl- C_{1-4} alkyl, phenyl-C(=O)- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl-C(=O)- C_{1-4} alkyl, phenyl, C_{3-10} cycloalkyl, C_{3-6} heterocyclyl or C_{3-6} heterocyclyl-C(=O)-used in defining R^1 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and R^3R^4N -;

R² is selected from the group consisting of C₁₋₆alkyl, C₃₋₆cycloalkyl, R³R⁴N-, C₃₋₆cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl,

C₃₋₅heteroaryl, and phenyl wherein said C₁₋₆alkyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl, C₃₋₅heteroaryl, and phenyl used in defining R² is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and amino; and R³ and R⁴ are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.

- 13. (new) A pharmaceutical composition comprising a compound according to claim 2 and a pharmaceutically acceptable carrier.
- 14. (new) A pharmaceutical composition comprising a compound according to claim 4 and a pharmaceutically acceptable carrier.
- 15. (new) A pharmaceutical composition comprising a compound according to claim 5 and a pharmaceutically acceptable carrier.
- 16. (new) A method for treating pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to claim 2.
- 17. (new) A method for treating pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to claim 4.
- 18. (new) A method for treating pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to claim 5.