МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

ОТЧЕТ ПО ПРАКТИКЕ

Найти ранг матрицы

1 курс, группа 1ИВТ АСОИУ

Выполнила:	
	_ А.Е. Кожевникова
«»	_ 2025 г.
Выполнила:	
	К. А. Ефименко
«»	_ 2025 г.
Выполнила:	
	С. Абдуль Карим
«»	_ 2025 г.
Руководитель:	
	_ С. В. Теплоухов
« »	— 2025 г.

1 Введение

1.1 Текстовая формулировка задачи (Вариант 6)

Найти ранг матрицы.

1.2 Теория метода

Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса). Под элементарными преобразованиями матрицы понимаются следующие операции: 1) умножение на число, отличное от нуля; 2) прибавление к элементам какой-либо строки или какого-либо столбца; 3) перемена местами двух строк или столбцов матрицы; 4) удаление «нулевых» строк, то есть таких, все элементы которых равны нулю; 5) удаление всех пропорциональных строк, кроме одной.

Для любой матрицы A всегда можно прийти к такой матрице B, вычисление ранга которой не представляет затруднений. Для этого следует добиться, чтобы матрица B была трапециевидной. Тогда ранг полученной матрицы будет равен числу строк в ней, за исключением строк, полностью состоящих из нулей.

Ступенчатую матрицу называют трапециевидной или трапецеидальной, если для ведущих элементов $a_{1k_1}, a_{2k_2}, \ldots, a_{rk_r}$ выполнены условия $k_1 = 1, k_2 = 2, \ldots, k_r = r$, т. е. ведущими являются диагональные элементы. В общем виде трапециевидную матрицу можно записать так:

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2r} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{rr} & \dots & a_{rn} \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

2 Ход работы

2.1 Код приложения

Листинг кода приведён ниже:

```
#include <iostream>
# #include < vector >
3 #include <iomanip>
4 #include <cmath>
5 #include <limits>
6 #include < string >
8 using namespace std;
10 // Функция для безопасного ввода целого числа > 0
int read_positive_int(const char* prompt) {
  int x;
12
     while (true) {
13
        cout << prompt;</pre>
14
     if (cin >> x && x > 0) {
```

```
return x;
           }
17
           cerr << "Ошибка: введите целое число больше 0.\n";
18
           cin.clear();
19
           cin.ignore(numeric_limits < streamsize >:: max(), '\n');
20
      }
21
22
23
  // Функция для безопасного ввода вещественного числа
  double read_double(const char* prompt) {
      double x;
26
      while (true) {
2.7
           cout << prompt;</pre>
           if (cin >> x) {
               return x;
30
           }
31
           cerr << "Ошибка: введите корректное число.\n";
           cin.clear();
           cin.ignore(numeric_limits < streamsize > :: max(), '\n');
34
      }
35
36
  }
37
  // Вычисление ранга матрицы методом Гаусса
38
  int matrix_rank(vector < vector < double >> & A, int m, int n) {
      const double EPS = 1e-9;
41
       int rank = 0;
      vector < bool > used_row(m, false);
42
43
      for (int col = 0; col < n; ++col) {</pre>
           // Находим ненулевую строку с максимальным по модулю элементом в тек
45
      ущем столбце
           int sel = -1;
           double max_abs = EPS;
47
           for (int row = 0; row < m; ++row) {</pre>
48
               if (!used_row[row] && fabs(A[row][col]) > max_abs) {
49
                    max_abs = fabs(A[row][col]);
50
                    sel = row;
51
               }
           }
53
           // Если подходящая строка не найдена, переходим к следующему столбцу
           if (sel == -1) continue;
56
           // Эта строка станет ведущей для текущего шага
57
           used_row[sel] = true;
           ++rank;
59
60
           // Нормируем ведущую строку (делим всю строку на ведущий элемент)
61
           double lead = A[sel][col];
           for (int j = col; j < n; ++j) {</pre>
63
               A[sel][j] /= lead;
64
65
           // Обнуляем все остальные элементы в этом столбце
67
           for (int row = 0; row < m; ++row) {</pre>
68
                if (row != sel) {
69
                    double factor = A[row][col];
                    for (int j = col; j < n; ++j) {</pre>
71
                        A[row][j] = factor * A[sel][j];
72
                    }
73
74
               }
```

```
76
77
       return rank;
78
79
  int main() {
81
       setlocale(LC_ALL, "RU");
82
       cout << "=== Программа для нахождения ранга матрицы методом Гаусса ===\n
83
84
       // Ввод размеров
85
       int m = read_positive_int("Введите число строк m: ");
       int n = read_positive_int("Введите число столбцов n: ");
87
88
       // Создаём и заполняем матрицу
89
       vector < vector < double >> A(m, vector < double > (n));
       cout << "Введите элементы матрицы A (" << m << "x" << n << "):\n";
91
       for (int i = 0; i < m; ++i) {</pre>
92
           for (int j = 0; j < n; ++j) {
93
               A[i][j] = read_double(("A[" + to_string(i + 1) + "][" +
      to_string(j + 1) + "] = ").c_str());
           }
95
       }
96
       int rank = matrix_rank(A, m, n);
       cout << "\nРанг матрицы равен: " << rank << endl;
99
100
       return 0;
102 }
```

Листинг 1: Программа для вычисления ранга матрицы методом Гаусса

3 Скриншоты программы

3.1 Пример формулы

Вычисление ранга опирается на приведение матрицы к ступенчатому виду:

$$A \sim \begin{pmatrix} 23 & 5 & 4 & 7 & 8 \\ 54 & 1 & 9 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 8 \\ 5 & 8 & 6 & 4 & 3 \end{pmatrix}, \quad \text{Pahr} = 4$$

3.2 Пример вставки изображения

На рисунке 1 показан пример работы программы.

```
=== Программа для нахождения ранга матрицы методом Гаусса ===
Введите число строк m: 5
Введите число столбцов n: 5
Введите число столбцов n: 5
Введите элементы матрицы A (5x5):
A[1][1] = 23
A[1][2] = 5
A[1][3] = 4
A[1][4] = 7
A[1][5] = 8
A[2][1] = 54
A[2][2] = 1
A[2][3] = 9
A[2][4] = 0
A[2][5] = 8
A[3][1] = 0
A[3][2] = 0
A[3][3] = 0
A[3][4] = 0
A[4][1] = 0
A[4][2] = 0
A[4][1] = 0
A[4][2] = 0
A[4][3] = 0
A[4][4] = 6
A[4][5] = 8
A[5][1] = 5
A[5][1] = 5
A[5][1] = 5
A[5][2] = 8
A[5][1] = 6
A[5][4] = 4
A[5][5] = 3

Ранг матрицы равен: 4
```

Рис. 1: Пример работы программы

4 Описание программы

Алгоритм:

- 1. Читаем размеры матрицы m и n (контроль ввода целые положительные числа).
- 2. Читаем $m \times n$ элементов матрицы (вещественные числа с проверкой ввода).
- 3. Приводим матрицу к ступенчатому виду методом Гаусса с выбором по максимальному модулю:
 - В каждом столбце ищем строку с наибольшим по модулю ненулевым элементом среди ещё не занятых.
 - Если найдена нормируем её и обнуляем этот столбец во всех остальных строках.
 - Увеличиваем счётчик ранга.
- 4. Выводим результат.

Заключение

В ходе работы изучен метод Гаусса для определения ранга матрицы и реализован на C++. Алгоритм устойчив к нулевым и близким к нулю элементам. В будущем возможна оптимизация по памяти и производительности.

Список литературы

- [1] Иванов И.И. Линейная алгебра и её приложения. М.: Наука, 2015.
- [2] Петров П.П. Методы вычислений в линейной алгебре. СПб.: Питер, 2017.
- [3] Сидоров С.С. Программирование на С++. М.: ДМК Пресс, 2019.
- [4] Кузнецов В.В. Алгоритмы матричных преобразований. Екатеринбург: Ур Φ У, 2018.
- [5] Шевкин В.В. и др. Метод Гаусса и его приложения. М.: Физматлит, 2018.