Семинар 7. AR MA-процессы: свойства и идентификация

План занятия

- 1. Идентификация и анализ свойств ARMA-процессов (Gretl).
- 2. Решение задач: стационарность/обратимость, основные свойства ARMA-процессов.
- **1.** Идентификация **ARMA**-процессов и анализ их характеристик. Пример **ARMA(1,1)** (N=200).

$$y_t = 0.7 y_{t-1} + \varepsilon_t + 0.7 \varepsilon_{t-1}$$

Файл: ARMA2.dta откройте в Gretl.

Были сгенерированы белый шум и MA и AR, ARMA -процессы 1, 2-го порядков (N=200): y1, y2, y3, y4, y5.

Процесс	Уравнение	Переменная
белый шум	$y_t = \mathcal{E}_t$	
MA(2)	$y_t = 10 + \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2}, E(y_t) =$	
AR(1)	$y_t = -3 - 0.8 y_{t-1} + \varepsilon_t, E(y_t) =$	
ARMA(1,1)	$y_t = 1 + 0.8y_{t-1} + 0.8\varepsilon_{t-1} + \varepsilon_t, E(y_t) =$	
Процесс с		
параболическим		
детерминированным		
трендом		

- 1. Какими свойствами обладают данные процессы, в частности ARMA-процессы и их характеристики, автокорреляционные (ACF) и частные автокорреляционные функции (PACF)? Сравните с поведением ACF/PACF MA(1), AR(1).
- 2. Как константа влияет на характеристики процесса?

	AR (1)	MA (1)	ARMA (1,1)
ACF			
PACF			

2. По виду графика, АСF и PACF определите, к какому процессу относятся сгенерированные процессы? Обоснуйте почему.

Проанализируйте поведение временного ряда

- постройте график временного ряда;
- постройте графики автокорреляционной и частной автокорреляционной функции;

По мере выполнения заданий заполните таблицу:

ере выполнения задании заполните таблицу.								
Сгенерированный процесс	Предполагаемый	Обоснование						
(Переменная)	процесс							
y1								
y2								
у3								
y4								
y5								

Самостоятельно. Для процесса ARMA $y_t = 0.7y_{t-1} + \varepsilon_t + 0.7\varepsilon_{t-1}$ выпишите значения среднего, станд.отклонения, выборочных ACF, PACF 1,2,3-го порядков.

лаг	1	2	3
ACF			
PACF			

2. ARMA -процессы. Решение задач: стационарность и основные свойства

2.1. Показать стационарность/ обратимость процессов:

$$(1) \ \ y_{t} = 2 - 0.5 \, y_{t-1} + 0.5 \, y_{t-2} + \boldsymbol{\varepsilon}_{t} - 1.3 \boldsymbol{\varepsilon}_{t-1} + 0.4 \boldsymbol{\varepsilon}_{t-2 \, \text{(Отв: нестационарный/обратимый)}}$$

(2) Случай комплексных корней: $y_t = 3 + 0.2 y_{t-1} - 0.5 y_{t-2} + \varepsilon_t + 0.1 \varepsilon_{t-1}$ (Отв: стационарный/необратимый)

Для процесса: (3) $y_t = 0.7 y_{t-1} + \varepsilon_t + 0.7 \varepsilon_{t-1}$

- 2.1. Рассчитайте $E(y_t)$, $V(y_t)$, $\gamma(k)$, $\rho(k)$, $\rho_{\textit{vacm}}(k)$ (по формулам Юла-Уолкера), k=1,2,3. Постройте схематично графики АСF и PACF, сравните с результатами моделирования, вычисленными на компьютере (T=200).
- 2.2. Проверьте значимость $\rho(1), \rho(2),$ используя тест Льюинга-Бокса.
- 2. 3. Постройте прогноз на 1, 2 шага вперед: точечную и интервальную оценку (95% доверительный интервал).

Статистические таблицы: http://www.e-biblio.ru/book/bib/10_statistika/tv_i_ms/book/docs/piece054.htm

Домашнее задание (ТДЗ) 7. ARMA-процессы (самоконтроль)

Файл: ARMA1.dta

Для сгенерированных процессов у1-у6

- 1. Постройте графики процессов и их АСГ/РАСГ. Опишите поведение полученных графиков. В отчет включите рисунки графиков и описание их поведения.
- 2. Для каждого процесса сделайте предположение, какой это может быть процесс. Почему? Для каждого процесса приведите подробные рассуждения и обоснования.
- 3. Заполните таблицу:

Сгенерированный процесс	Предполагаемый процесс
(Переменная)	
y1	

y2	
у3	
y4	
y5	
уб	

Для зачета по п.3 необходимо правильно «идентифицировать» хотя бы 4 процесса.

Функция Лапласа $\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^t e^{-x^2/2} dx$

Функция Лапласа										
Сотые доли										
Целые и										
десятичные доли	0	1	2	3	4	5	6	7	8	9
0	0	0,008	0,016	0,0239	0,0319	0,0399	0,0478	0,0558	0,0638	0,0717
0,1	797	876	955	1034	1113	1192	1271	1350	1428	1507
0,2	1585	1663	1741	1819	1897	1974	2051	2128	2205	2282
0,3	2358	2434	2510	2586	2661	2737	2812	2886	2960	3035
0,4	3108	3182	3255	3328	3401	3473	3545	3616	3688	3759
0,5	3829	3899	3969	4039	4108	4177	4245	4313	4381	4448
0,6	4515	4581	4647	4713	4778	4843	4907	4971	5035	5098
0,7	5161	5223	5285	5346	5407	5467	5527	5587	5646	5705
0,8	5763	5821	5878	5935	5991	6047	6102	6157	6211	6265
0,9	6319	6372	6424	6476	6528	6579	6629	6679	6729	6778
1	0,6827	0,6875	0,6923	0,697	0,7017	0,7063	0,7109	0,7154	0,7199	0,7243
1,1	7287	7330	7373	7415	7457	7499	7540	7580	7620	7660
1,2	7699	7737	7775	7813	7850	7887	7923	7959	7994	8029
1,3	8064	8098	8132	8165	8198	8230	8262	8293	8324	8355
1,4	8385	8415	8444	8473	8501	8529	8557	8584	8611	8638
1,5	8664	8690	8715	8740	8764	8789	8812	8836	8859	8882
1,6	8904	8926	8948	8969	8990	9011	9031	9051	9070	9090
1,7	9109	9127	9146	9164	9181	9199	9216	9233	9249	9265
1,8	9281	9297	9312	9327	9342	9357	9371	9385	9399	9412
1,9	9426	9439	9451	9464	9476	9488	9500	9512	9523	9534
	l .									
2	0,9545	0,9556	0,9566	0,9576	0,9586	0,9596	0,9606	0,9616	0,9625	0,9634
2,1	9643	9651	9660	9668	9676	9684	9692	9700	9707	9715
2,2	9722	9729	9736	9743	9749	9756	9762	9768	9774	9780
2,3	9786	9791	9797	9802	9807	9812	9817	9822	9827	9832
2,4	9836	9841	9845	9849	9853	9857	9861	9865	9869	9872
2,5	9876	9879	9883	9886	9889	9892	9895	9898	9901	9904
2,6	9907	9910	9912	9915	9917	9920	9922	9924	9926	9928
2,7	9931	9933	9935	9937	9939	9940	9942	9944	9946	9947
2,8	9949	9951	9952	9953	9955	9956	9958	9959	9960	9961
2,9	9963	9964	9965	9966	9967	9968	9969	9970	9971	9972
3	0,9973	0,9974	0,9975	0,9976	0,9976	0,9976	0,9977	0,9978	0,9979	0,998
3,1	9981	9981	9982	9983	9983	9984	9984	9985	9985	9986
3,5	9995	9996	9996	9996	9996	9996	9996	9996	9997	9997
3,6	9997	9997	9997	9997	9997	9997	9997	9998	9998	9998
3,7	9998	9998	9998	9998	9998	9998	9998	9998	9998	9998
3,8	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
3,9	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
4	1	9999	9999	9999	9999	9999	9999	9999	9999	9999
4,5	1									
5	1									

Свойства $\Phi(x)$: 1. $\Phi(x)$ —нечетная. $\Phi(-x) = -\Phi(x)$. 2. $\Phi(x) \to \infty$ при $x \to \infty$.