Computer Organization RTL Design

Hunjun Lee, Suheon Bae
High Performance Computer System (HPCS) Lab
March 27, 2018

Objective

• To review register transfer level (RTL) designs

Previous Labs

- Lab 01: Introduction to Verilog (1)
 - Modeling combinational circuits in Verilog
 - Implementing a 16-bit ALU
- Lab 02: Sequential Logic & RTL
 - Modeling a simple FSM (010 detector)
 - Simple register file with read/write
- Now we are ready to implement a more complicated FSM (vending machine)

RTL design (review)

- Design logic to implement synchronous circuit
 - Dataflow between registers (Sequential Logic)
 - Logical operation with register values (Combinational Logic)

RTL design (review)

- Understand what should be stored in each clock signal
 - Ex) Current state of FSMs
- How stored data should be transferred
 - Ex) Current state -> Next state
- Find out and understand combinational logic for stored data and output
 - Ex) Next state and Output of FSMs

RTL design (review)

Assignment #3: Vending Machine

Assign #3: Vending Machine

- There is a vending machine with 4 items in it
 - Price: 400, 500, 1000, 2000
- It receives **3 types of coins** (100, 500, 1000)
- There is a return button
 - When triggered, the machine returns change

Assign #3: Vending Machine Functionality

- When a user inserts a coin
 - Available item is shown
- When a user selects an item
 - If the selected item is available -> item is sold
 - If the selected item is not available -> nothing happens
 - Assume infinite amount of items
- When a user presses return button
 - The total number of coins for the change is returned (with the least amount)
 - Ex) When the change is 1700 -> it is returned with 1000*1, 500*1 and 100*2
 - Assume infinite amount of coins

Assign #3: Vending Machine Ports

- Implement a simple vending machine with 4 items and 3 types of coins (do not modify port name of the skeleton code!! Otherwise, you will get 0 point for this lab)
 - Input
 - i_input_coin: 3bit input (if xth bit is set to 1, xth coin is inserted)
 - i_select_item: 4bit input (if xth bit is set to 1, xth item is selected)
 - i_trigger_return: trigger return button of the vending machine
 - Output
 - o_available_item: 4bit output (shows availability of each item, 1 if xth item is not out of stock && current change >= price of the item)
 - o_output_item: 4bit output (if xth item is sold, xth bit is set to 1)
 - o_return_coin: the number of coin returned (only if the machine has enough change)
 when received i_trigger_return
 - o_current_total: the sum of money a user has inserted and used up (total amount of change)

Assign #3: Vending Machine (Extra Credit)

- Two extra credit designs
- 1) Assume **finite amount** of items
 - Assume an item is not available if is out of stock
- 2) Assume **finite amount** of coins
 - Make your own functionality for returning coin if the amount of change is finite
- Make your own test bench to prove your functionality is error free to receive the full extra credit