Искусственный интеллект: вычисление смысла текста.

Once a particular problem is considered solved, it often is not considered Al.

Jerry Kaplan

Введение

Как известно, люди многие годы пытались создать искусственный интеллект. Они разделили его на задачи — задачи искусственного интеллекта. Одной из задач искусственного интеллекта является понимание смысла текста.

Математика и смысл текста

Как можно вычислить смысл слова?

Дистрибутивная гипотеза в лингвистике говорит, что смысл слова в тексте определяется контекстом, то есть теми словами, которые употребляются вместе с ним. Во многих случаях можно считать, что контекст данного слова — это слова, которые находятся в непосредственной близости от него. Слова с похожим смыслом должны быть взаимозаменяемые, то есть вероятности встретить их в одном и том же контексте должны быть близки.

Пусть, для простоты, контекст состоит из одного слова. Представим для некоторого текста слова и контексты в виде векторов некоторого многомерного пространства размерности D, и рассмотрим множество векторов слов $\{w\}$ и множество векторов контекстов $\{c\}$. Из-за симметрии ситуации каждое слово является контекстом для какого-нибудь другого слова, поэтому $|\{w\}| = |\{c\}| = N$. Мы хотим, чтобы вероятность P(c|w) того, что данное слово w находится в контексте c, соотносилась с их скалярным произведением $c \cdot w$. Для этого можно использовать функцию softmax, которая делает вектор похожим на распределение вероятности — все его компоненты оказываются в диапазоне [0; 1], а их сумма равна 1. Применяя softmax для всех скалярных произведений слова w на контексты, получим:

$$P(c|w) = softmax_{\{c_i|i \in 1..N\}}(c \cdot w) = \frac{e^{c \cdot w}}{\sum\limits_{i=1}^{N} e^{c_i \cdot w}}$$

Можно составить матрицу контекстов C, **строки** которой будут векторами контекстов $C=(c_1,\ c_2,\ ...,\ c_N)^T$, тогда вектор вероятностей нахождения слова в каждом контексте $\delta_w=(P\ (c_1|w),\ ...,\ P\ (c_N|w))^T$ можно выразить через произведение матрицы на вектор $\delta_w=softmax(Cw)$. Введем *унитарный код* — вектор $e_i=(0_0,\ 0_1,\ ...,\ 1_i,\ ...,\ 0_{N-1},\ 0_N)^T$, в котором на i-м месте стоит единица, а все остальные нули. Тогда вектор слова w_i можно представить как произведение матрицы слов W, **столбцы** которой будут векторами слов $W=(w_1,\ w_2,\ ...,\ w_N)$, на унитарный код e_i : $w_i=We_i$, и значит, $\delta_i=softmax(CWe_i)$.

Матрицы C и W можно вычислить приближенно. Для этого будем рассматривать пары слово-контекст $\left(w_i; c_j\right)$, встречающиеся в тексте. Для хорошо подобранных матриц C и W ожидаемо, что вектор $\delta_i = softmax\left(CWe_i\right)$, будет иметь большее значение вероятности в j-м компоненте, так как слово w_i встретилось в контексте c_j , и меньшее значение в других компонентах. Можно вычислить какие компоненты C и W в первую очередь нужно изменить, чтобы приблизить δ_i к e_j , то есть к унитарному коду, соответствующему контексту c_j . Повторяя эту операцию много раз на случайно выбранных парах $\left(w_i; c_j\right)$, мы улучшаем коэффициенты матриц C и W, в результате чего вектор δ_i все лучше представляет распределение слова w_i по контекстам.

В различных работах было получено, что даже для текстов с количеством слов более миллиарда (порядка миллиона уникальных слов, то есть $N\sim 10^6$), для хорошего представления распределения слов достаточно пространства сравнительно небольшой размерности ($D\sim 300$). Более того, оказалось, что некоторые смысловые отношения между словами могут быть выражены как линейные комбинации соответствующих этим словам векторов. Один из самых известных примеров:

$$w_{king} - w_{man} + w_{woman} \approx w_{queen}$$

Если взять разность векторов, соответствующих словам woman и man, то получается вектор, как бы означающий смысловую разницу между словами женского и мужского рода. Если теперь добавить эту разницу к вектору, соответствующему слову king, то новое слово должно быть во всех смыслах таким же как и king, но женского рода. Действительно, полученный вектор оказывается ближе всего к вектору слова queen.

Реализация модели

Одной из популярных библиотек для решения задач искусственного интеллекта является tensorfow. В ней есть реализация описанной модели под названием word2vec с параметрами, влияющими на качество модели: размерность пространства с векторами, скорость обучения (величина шага обучения), количество циклов

тренировки(эпох тренировки). Также в модели в качестве контекста слова используется группа из пяти слов слева и пяти слов справа от него.

Для демонстрации модели предлагается использовать: для тренировки — около 100 мегабайт склеенных статей из английской википедии, а для проверки качества модели — файл с аналогиями. Текст википедии содержит более 17 миллионов слов, из них 235 тысяч уникальных. Запущенная с настройками по умолчанию модель после тренировки на английской википедии правильно угадывает около 35% ответов.

Что мы сделали сами?

Наша задача — попытаться построить векторы для русского языка и исследовать полученное пространство. В качестве текста на вход мы взяли большие по объему тексты русских писателей: Л.Н.Толстого, Н.А.Некрасова, И.С.Тургенева. Чтобы наш текст был похож на образец текста википедии, мы удалили всю пунктуацию и цифры, и получили список слов, разделенных пробелом. Из графиков видно, что распределение слов по встречаемости такое же, как и в тексте википедии. Итоговый объем нашего текста получился около 23 мегабайт, в нем более 2 миллионов слов, из них 134 тысячи уникальных.

Мы просмотрели несколько тысяч самых часто встречаемых слов, и сделали свой набор аналогий для русского языка:

мужской - женский род (глаголы прошедшего времени)				
посмотрел-посмотрела	спросил-спросила	слышал-слышала		
вышел-вышла	сказал-сказала	был-была		
понял-поняла	встал-встала	подошел-подошла		
продолжал-продолжала	хотел-хотела	видел-видела		
подумал-подумала	знал-знала	думал-думала		
стал-стала	отвечал-отвечала	говорил-говорила		
жил-жила	делал-делала	мог-могла		

мужской - женский род (остальные)			
он-она	его-ее	муж-жена	
девушка-мальчик	добрый-добрая	мужчина-женщина	
старик-старуха	один-одна	онъ-она	
должен-должна	мой-моя	твой-твоя	
другой-другая	князь-княгиня	князь-княжна	
который-которая	сам-сама	нему-ней	
ему-ей	него-нее		

единственное число - множественное число				
человек-люди	я-мы	голова-головы		
лицо-лица	окно-окна	грех-грехи		
закон-законы	глаз-глаза	желание-желания		
дорога-дороги	мужчина-мужчины	война-войны		
мужик-мужики	этот-эти	народ-народы		
офицер-офицеры	солдат-солдаты	женщина-женщины		

антонимы с не-				
известно-неизвестно	возможно-невозможно	охотно-неохотно		
счастье-несчастье	терпеливо-нетерпеливо	долго-недолго		
заметно-незаметно	справедливо-несправедливо	правда-неправда		
давно-недавно	всех-никого	всегда-никогда		
хорошо-нехорошо	далеко-недалеко	можно-нельзя		
приятно-неприятно				

При использовании параметров по умолчанию, достаточно хороший результат получился только для группы: **мужской - женский род(глаголы)**. Из графика видно, что количество правильных ответов колеблется вокруг нескольких установившихся значений. Предположительно это вызвано слишком большим шагом обучения, из-за которого мы "проскакиваем" оптимальные значения. Также, очевидно, можно уменьшить количество эпох до десяти без потери качества модели.

Постепенные уменьшения начального шага тренировки(до 20% от исходного) позволили получить более качественную модель, заметно увеличив процент правильных ответов:

Удивительно, но эксперименты показали, что сокращения размерности пространство векторов с 200 до 100 практически не влияет на качество модели. Также на качество модели не влияет увеличение размерности пространство до 300.

Выводы

Модель, разработанная для английского языка, оказалась также применима и для русского языка. При этом полное удаление пунктуации и склеивание предложений вместе не помешало построить модель, способную обнаруживать смысловые аналогии.

Размерность пространства слов в большом диапазоне не влияет на качество модели. Различные аналогии по-разному обнаруживаются в этой модели.

Авторы исходной статьи утверждают, что качество модели растет с количеством обработанного ей текста, и приводят свои результаты для массива из миллиарда слов Google News англоязычных выпусков новостей. К несчастью, у нас столько слов нет:)