Generative machine learning for discrete-continuous choice data

Bilal Farooq

Laboratory of Innovations in Transportation, Ryerson University, Toronto, Canada

July 21, 2020

Wong, M., & Farooq, B. (2020). A bi-partite generative model framework for analyzing and simulating large scale multiple discrete-continuous travel behaviour data. Transportation Research Part C: Emerging Technologies, 110, 247-268.

https://arxiv.org/abs/1901.06415

Table of Contents

- Introduction
 - Generative Modelling
- 2 Methodology
 - Model Estimation
 - Learning Algorithm
- Case Study
- Concluding Remarks

Table of Contents

- Introduction
 - Generative Modelling
- 2 Methodology
 - Model Estimation
 - Learning Algorithm
- Case Study
- 4 Concluding Remarks

Introduction

Opportunities

- New large scale ubiquitous multidimensional travel data sources (a.k.a. Big Data)
 - Increased size and complexity
 - Representative of the population behaviour
 - Contain rich latent information

Introduction

Challenges

- Necessitates exploring new modelling techniques
 - Flexible in modelling the underlying heterogeneities in Fight datasets
 - Improved estimation methods
 - Useful inference and interpretation

Introduction

Generative Modelling

- Construction of model of underlying distribution of the data
 - Using unsuper ed learning
 - Generate new data

With similar stochastic variations as the population

Basic notion

- Interested in describing the generation of the data by some unknown stochastic process
- Describe in probabilistic terms, how a set of latent/hidden variables could have generated the data

Table of Contents

- Introduction
 - Generative Modelling
- 2 Methodology
 - Model Estimation
 - Learning Algorithm
- Case Study
- 4 Concluding Remarks

Observed dataset

•
$$\mathbf{x} = x_{1:K} \in \mathbb{R}^{\mathcal{D}}$$

• $\mathbf{x}_D = (\underbrace{x_1, ..., x_{D_{\text{cont}}}}_{\text{continuous}}, \underbrace{x_{D_{\text{cont}+1}}, ..., x_{D_{\text{cont}}+D_{\text{cat}}}}_{\text{discrete}})$

Observed dataset

•
$$\mathbf{x} = x_{1:K} \in \mathbb{R}^{\mathcal{D}}$$

• $\mathbf{x}_D = (x_1, ..., x_{D_{\text{cont}}}, x_{D_{\text{cont}+1}}, ..., x_{D_{\text{cont}}+D_{\text{cat}}})$
continuous discrete

Latent/hidden variables

- $\mathbf{s} = s_{1:J} \in \{0, 1\}$
- Set of binary hidden random variables
- Independent and identically distributed (i.i.d.)

July 21, 2020

Joint distribution

- $p(\mathbf{x}, \mathbf{s})$ over the set of observed $\mathbf{x} = x_{1:K} \in \mathbb{R}^{\mathcal{D}}$ and binary hidden random $\mathbf{s} = s_{1:J} \in \{0, 1\}$
- Restricted Boltzmann probability distribution

$$p(\mathbf{x}, \mathbf{s}) = \frac{e^{-E(\mathbf{x}, \mathbf{s})}}{\sum_{\mathbf{x}, \mathbf{s}} e^{-E(\mathbf{x}, \mathbf{s})}}$$
(1)

Boltzmann Energy Function

• p(x, s) as RBM with:

$$E(\mathbf{x}, \mathbf{s}) = -\mathbf{x}^{\top} \mathbf{W} \mathbf{s} - \mathbf{b}^{\top} \mathbf{x} - \mathbf{c}^{\top} \mathbf{s}$$
 (2)

- $\mathbf{W} \in \mathbb{R}^{K \times J}$ is the weight matrix, connecting $\mathbf{s} = (s_1, s_2, ..., s_J)$ and $\mathbf{x} = (x_1, x_2, ..., x_K)$
- **b** and **c** are the parameters for the visible and hidden layer

Observed variables (discrete)

• For $x_{D_{\text{cat}}} = (x_{D_{\text{cat}_1}}, ..., x_{D_{\text{cat}_k}})$, with $x_{D_{\text{cat}_k}} = 1$ i.e. k alternative for variable $x_{D_{\text{cat}}}$ is chosen:

$$p(x_{D_{\text{cat}_k}} = 1) = \frac{e^{f_k(\mathbf{s};\theta)}}{\sum_{k'} e^{f_{k'}(\mathbf{s};\theta)}}$$

Observed variables (continuous)

- $x_{D_{\text{conf.}}}$ is drawn from a Gaussian $\mathcal{N}(W, \Sigma^2)$
- To accommodate positive values only, stepped sigmoidal is used:

$$\sum_{i=1}^{\infty} \sigma(\mathbf{s}-i) \approx \ln(1+e^{s})$$

Latent/Hidden variables

- With prior p(s), we can quantify how x is related to s via likelihood function p(x|s)
- Posterier distribution:

$$p(\mathbf{s}|\mathbf{x}) = \frac{p(\mathbf{x},\mathbf{s})}{p(\mathbf{x})} \propto p(\mathbf{x}|\mathbf{s})p(\mathbf{s})$$

Estimation problem

- Obtaining the posterior belief $p(\mathbf{s}|\mathbf{x})$
 - ightharpoonup arg max_{θ} $p(\mathbf{x})$ (Max Likelihood of data)

Estimation algorithm

- MCMC algorithms could be a solution
- High computational cost
- Posterior approximation may be difficult with large datasets and complex distributions

Variational Bayesian Inference

- There exists a tractable distribution $q(\mathbf{s})$ that approximates the exact posterior $p(\mathbf{s}|\mathbf{x})$
- We search over the set of distributions that minimizes the Kullback-Leibler (KL) divergence objective function:

arg min
$$D_{KL}[q(\mathbf{s})||p(\mathbf{s}|\mathbf{x})]$$

 $s.t.$ $\frac{p(\mathbf{s}|\mathbf{x})}{q(\mathbf{s})} > 0,$ (3)
 $D_{KL}[q(\mathbf{s})||p(\mathbf{s}|\mathbf{x})] = 0 \iff q(\mathbf{s}) = p(\mathbf{s}|\mathbf{x})$

20 / 43

Variational Bayesian Inference

In our case:

$$(D_{KL}[q(\mathbf{s})||p(\mathbf{s}|\mathbf{x})] = -\int_{\mathbf{s}} q(\mathbf{s}) \ln rac{p(\mathbf{s}|\mathbf{x})}{q(\mathbf{s})} d\mathbf{s})$$

• Where:

$$q(\mathbf{s}) = \prod_{j=1}^J q(s_j) pprox \prod_{j=1}^J p(s_j|\mathbf{x}), \quad \mathbf{s} = \{s_1, s_2, ..., s_J\}$$

• Product of Expert Model (PoE), where each expert has tractable closed form solution $q(s_i) = (1 + e^{-Wx-c})^{-1}$.

Variational Bayesian Inference

• From Eq 3, using change-of-measure technique, $D_{KL}[q(\mathbf{s})||p(\mathbf{s}|\mathbf{x})]$: $= \int q(\mathbf{s}) \ln q(\mathbf{s}) d\mathbf{s} - \int q(\mathbf{s}) \ln p(\mathbf{x}, \mathbf{s}) d\mathbf{s} + \ln p(\mathbf{x}) \int q(\mathbf{s}) d\mathbf{s}$ $= -\mathcal{F} + \ln p(\mathbf{x})$

Variational Bayesian Inference

ullet ${\cal F}$ is the variational free energy and:

$$arg \min D_{KL}[q(\mathbf{s})||p(\mathbf{s}|\mathbf{x})] = arg \max F$$

• Variational free energy objective is the lower bound approximation to log-likelihood of data as $\ln p(\mathbf{x}) \geq \mathcal{F}$

Learning Algorithm

Learning q(s) using \mathcal{F}

$$\nabla_{q(\mathbf{s};\theta)} F = \nabla_{q(\mathbf{s};\theta)} \ln \sum_{\mathbf{s}} p(\mathbf{x},\mathbf{s};\theta)$$
 (4)

$$= \nabla_{q(\mathbf{s};\theta)} \ln \frac{\sum_{s} e^{-E(\mathbf{x},\mathbf{s};\theta)}}{\sum_{x,s} e^{-E(\mathbf{x},\mathbf{s};\theta)}}$$
 (5)

$$= \nabla_{q(\mathbf{s};\theta)} \left(\ln \sum_{\mathbf{s}} e^{-E(\mathbf{x},\mathbf{s};\theta)} - \ln \sum_{\mathbf{x},\mathbf{s}} e^{-E(\mathbf{x},\mathbf{s};\theta)} \right)$$
(6)

utility U entropy \mathcal{H}

Learning Algorithm

Learning q(s) using \mathcal{F}

Using stochastic gradient descent

$$heta_t \leftarrow heta_{t-1} - rac{1}{A_{ au}} \eta \sum_{A_{ au}}
abla_{q(\mathbf{s}; heta)} - \mathcal{F}_{A_{ au}} \qquad orall A_{ au} \in \mathcal{D}, au = 1, ... T$$

Learning Algorithm

```
Input: RBM data sample \mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}, batch sample A_i \subset \mathcal{D}, i = 1, ..., d, learning rate \eta,
                   iteration steps T
Output: gradient approximation \theta = (\mathbf{W}, \mathbf{c}, \mathbf{b}).
init: \theta = 0, \tau = 1;
forall A_{\tau} \in \mathcal{D}, \tau = 1, ..., T do
       forall (\mathbf{x}_n) \in A_{\tau} do
              for t = 1 to N do
                    CD_t: iterate over Gibbs chain
                    positive phase
                   \mathbf{x}^0 \leftarrow \mathbf{x}_n

\mathbf{s}^0 \sim \prod_{j=1}^H p(s_j|\mathbf{x}^0)
                    negative phase
                   \mathbf{x}^t \sim \prod_{i=1}^I p(x_i|\mathbf{s}^0)

\mathbf{s}^t \sim \prod_{j=1}^H p(s_j|\mathbf{x}^t)
             end
      end
      % Variational free energy term
       \nabla_{q(\mathbf{s};\theta)}(-\mathcal{F})_{A_{\tau}} \approx (\langle \mathbf{x}^t \mathbf{s}^t \rangle - \langle \mathbf{x}^0 \mathbf{s}^0 \rangle)
      % parameter update step
       for \theta \in \theta do
            \theta_{\tau+1} \leftarrow \theta_{\tau} - \eta \nabla_{q(s;\theta)} (-\mathcal{F})_{A_{\tau}};
       end
end
```


Simple Example

- Two observed variables [x, y] connected by a single hidden unit s_i
- Boltzmann Energy:

$$E(x, y, s) = -\sum_{s_j} xW_{1,j}s_j - \sum_{s_j} yW_{1,j}s_j - b_1x - \sum_{s_j} c_js_j - b_2y$$

Simple Example

• Then for
$$P(y|x) = \frac{e^{-F(x,y)}}{\sum_{y'} e^{-F(x,y')}}$$

$$F(x,y) = -\ln \sum_{s_j \in \{0,1\}} e^{-E(x,y,s_j)}$$
$$= -b_1 x - d_2 y - \ln(1 + e^{-xW_{1,j} - yW_{1,j} - c_j})$$

Simple Example

• Suppose $y = \{y^1, y^2, y^3\}$

$$\begin{split} F(x_1, y_1^1) &= -\Big(b_1 x_1 + d_2^1 \cdot (y_1^1 = 1) + d_2^2 \cdot (y_1^2 = 0) \\ &+ d_2^3 \cdot (y_1^3 = 0) + \ln(1 + e^{-x_1 W_{1,j} - y_1 W_{1,j} - c_j})\Big) \\ &= -\Big(b_1 x_1 + d_2^1 + \underbrace{\ln(1 + e^{-x_1 W_{1,j} - y_1 W_{1,j} - c_j})}_{\text{single correction term}}\Big) \end{split}$$

Ryerson University

Simple Example

 $\bullet \ \mathsf{Suppose} \ \mathsf{that} \ y = \{y^1, y^2, y^3\}$

$$F(x_1, y_1^1) = -\left(b_1x_1 + b_2^1 \cdot (y_1^1 = 1) + b_2^2 \cdot (y_1^2 = 0) + b_2^3 \cdot (y_1^3 = 0) + \ln(1 + e^{-x_1W_{1,j} - y_1W_{1,j} - c_j})\right)$$

$$= -\left(b_1x_1 + b_2^1 + \ln(1 + e^{-x_1W_{1,j} - y_1W_{1,j} - c_j})\right)$$
single correction term

Ryerson University

Simple Example

• Suppose that weights to hidden connections are zero,

$$W_1 = W_2 = c_i = 0$$
, then

$$F(x_1, y_1^1) = -\left(b_1x_1 + d_2^1 + \ln(1 + e^0)\right) = -\underbrace{\left(b_1x_1 + d_2^1\right)}_{\text{MNL utility}}$$

Table of Contents

- Introduction
 - Generative Modelling
- 2 Methodology
 - Model Estimation
 - Learning Algorithm
- Case Study
- Concluding Remarks

Montreal GPS Dataset

- 2016 MTL Trajet GPS data from the Greater Montréal Region
- Open datset with 293,330 trip observations
- Variables considered:
 - Mode choice
 - Trip purpose
 - Trip distance
 - Origin/destination point
 - Departure/arrival time

Montreal GPS Dataset

Benchmarkingwith Supervised NN

July 21, 2020

Benchmarkingwith Supervised NN

Benchmarkingwith Supervised NN

Elasticities

Forecasting

July 21, 2020

Forecasting

Table of Contents

- Introduction
 - Generative Modelling
- 2 Methodology
 - Model Estimation
 - Learning Algorithm
- Case Study
- 4 Concluding Remarks

Concluding Remarks

- RBM based generative model for discrete-continuous travel behaviour data
 - VBI based estimation process
 - Generation of conditional probabilities and economic analysis
- Performed better in forecasting, when compared to supervised feed-forward neural networks

Concluding Remarks

- Increase in latent variables, may cause overfitting
 - ▶ Regularization techniques can be used
- Explore the use in population synthesis
- Explore the use of other generative models
 - Variational Autoencorders (VAE)
 - Generative Adversarial Networks (GANs)

