Solving nonlinear equations

Marcin Kuta

Convergence rate

Absolute error ε_k :

$$\varepsilon_k = |x_k - x_*|,\tag{1}$$

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^r} = C \tag{2}$$

r – order of convergence (a.k.a. convergence rate) C – rate of convergence, C > 0

Convergence

$r = 1, \ 0 < C < 1$
r > 1
r = 2
r = 3

Digits gained per iteration
constant
increasing
doubled

Order of convergence

Method	Convergence	Order of convergence
bisection method	linear	1
Newton method	quadratic	2
secant method	superlinear	$\frac{1+\sqrt{5}}{2} pprox 1.618$
inverse quadratic interpolation	superlinear	1.839

Empirical convergence rate

$$\frac{\varepsilon_{k+1}}{\varepsilon_k^r} = \frac{\varepsilon_k}{\varepsilon_{k-1}^r} \tag{3}$$

$$\frac{\varepsilon_{k+1}}{\varepsilon_k} \left(\frac{\varepsilon_{k-1}}{\varepsilon_k} \right)^r = 1 \tag{4}$$

$$\ln\left(\frac{\varepsilon_{k-1}}{\varepsilon_k}\right)^r = \ln\frac{\varepsilon_k}{\varepsilon_{k+1}} \tag{5}$$

$$r = \frac{\ln \frac{\varepsilon_k}{\varepsilon_{k+1}}}{\ln \frac{\varepsilon_{k-1}}{\varepsilon_k}} \tag{6}$$

Iteration schemes

$$f(x) = 0 (7)$$

$$x = g(x) \tag{8}$$

$$x_{k+1} = g(x_k) \tag{9}$$

Fixed-point iteration

Figure 2.2.1: Finding the fixed point of cos(x).

Newton's method

$$f(x) = 0 \tag{10}$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{11}$$

Sufficient conditions for convergence

- (1) $f \in C^2[a, b]$
 - f, f', f'' continuous in [a, b]
- (2) $f(a) \cdot f(b) < 0$
- (3) f' and f'' do not change sign in [a, b]
- (4) x_0 satisfies $f(x_0) \cdot f''(x_0) > 0$, where $x_0 = f(a)$ or $x_0 = f(b)$

Stopping critera

(4) number of iterations

(1)
$$|x_{k} - x_{k-1}| < \epsilon$$
(2)
$$\frac{|x_{k} - x_{k-1}|}{|x_{k}|} < \epsilon$$
(3)
$$|f(x_{k}) < \epsilon|$$

Implementation details

Bisection method

$$x_m = \frac{a+b}{2}$$

Implementation details

Bisection method

$$x_m = \frac{a+b}{2}$$

$$x_m = a + \frac{b-a}{2}$$

Necessary condition

$$f(a)f(b)/|f(b)|<0$$

Housholder's method

$$f(x) = 0 (12)$$

$$x_{k+1} = x_k + d \frac{(1/f)^{(d-1)}(x_k)}{(1/f)^{(d)}(x_k)}$$
(13)

d=1 – Netwon's method

d = 2 – Halley's method

References

```
[1] http://heath.cs.illinois.edu/scicomp/notes/cs450_chapt05.pdf
```