Vector Space Models & Word Embeddings

Naeemullah Khan

naeemullah.khan@kaust.edu.sa

July 2, 2025

Table of Contents

- 1. Motivation
- 2. Learning Outcomes
- 3. Introduction
- 4. Word-by-Word vs Word-by-Document Designs
- 5. Similarity Measures
 - 1. Euclidean Distance
 - 2. Cosine Similarity
 - 3. Manipulating word vectors
- 6. Word Embedding: One-Hot vs. Dense Vectors
 - 1. One-Hot Encoding
 - 2. Dense Embeddings
- 7. Embedding Method: Word2Vec

Table of Contents (cont.)

- 1. Word2Vec Continuous Bag-of-Words (CBOW)
- 2. Word2Vec Skip-Gram
- 8. GloVe Global Vectors
- 9. fastText Subword Embeddings
- 10. Limitations of Vector Space Models
- 11. Summary
- 12. References

Motivation

- ► Text is symbolic; machines require numerical representations to process it.
- Classical NLP struggled with sparse, high-dimensional vectors.
- Vector Space Models (VSMs) and Word Embeddings represent words in a continuous vector space.
- ▶ These models capture semantic meaning and relationships geometrically.
- ▶ Basis for modern NLP methods including Transformers.

Learning Outcomes

- ▶ Understand and implement basic Vector Space Models.
- ▶ Differentiate between word-by-word and word-by-document designs.
- ▶ Use similarity measures to compute semantic relatedness.
- Explain the rationale behind One-Hot vs. Dense word vectors.
- Understand and implement basic Word2Vec models (CBOW and Skip-gram).
- ▶ Appreciate the improvements of GloVe and fastText over earlier models.

Vector Space Model: Introduction

Why learn vector space models?

- ▶ Words and sentences can have different meanings depending on context.
- Vector space models help capture semantic similarity and differences.
- Useful for tasks like paraphrase detection, question answering, and information retrieval.

"You shall know a word by the company it keeps" Firth, 1957

(Firth, J. R. 1957:11)

Vector Space Models (VSM)

- ▶ VSM represents words or documents as vectors in an *n*-dimensional space.
- ▶ Based on the **distributional hypothesis**: Words that occur in similar contexts have similar meanings.
- ► Forms the foundation for information retrieval, document classification, and word embeddings.

Vector Space Models - Formal Definition

- ► A **term-document matrix**: Rows represent words (terms), columns represent documents (or vice versa).
- ► Each cell contains a value such as:
 - Term Frequency (TF)
 - TF-IDF (Term Frequency-Inverse Document Frequency)
 - Co-occurrence count
- ► The matrix is typically high-dimensional and sparse:
 - Size = $|Vocabulary| \times |Documents|$

Vector Space Model Applications

- ➤ You eat *cereal* from a *bowl* → Capturing semantic similarity (paraphrase understanding)
- You buy something and someone else sells it → Capturing relational meaning (analogies)

Information Extraction

Machine Translation

Chatbots

Word-by-Word vs Word-by-Document Designs

- ightharpoonup Co-occurrence ightharpoonup Vector representation
- ► Relationships between words/documents

Word by Word Design

Number of times they occur together within a certain distance k

I like simple data

I prefer s<u>imple</u> raw<u>data</u>

k=2

	simple	raw	like	I	_
data	2	1	1	0	
					_

Word by Document Design

Number of times a word occurs within a certain category

Corpus

	Entertainment	Economy	Learning
data	500	6620	9320
film	7000	4000	1000

Comparison: Word-by-Word vs Word-by-Document Comparison: Word-by-Word-by-Document Comparison: Word-by-Document Comparison:

► Word-by-Word:

- Matrix built from co-occurrence counts between words.
- Captures semantic similarity directly.
- Better for word similarity tasks.

▶ Word-by-Document:

- Matrix built from word frequencies in documents.
- Useful for document classification and search.
- Better for document-level tasks.

Tradeoffs: Choice depends on the task: word similarity vs. document analysis.

Similarity Measures

Vector Space

Entertainment Economy ML				
data	500	6620	9320	
film	7000	4000	1000	

Measures of "similarity:" Angle Distance

Euclidean Distance

- ► Measures the straight-line distance between two points in space.
- Formula: $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Sensitive to the scale (magnitude) of the vectors.

Euclidean Distance (cont.)

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(-8820)^2 + (6000)^2}$$

Euclidean Distance for n-dimensional vectors

			\vec{w}	\vec{v}	
		data	boba	ice-cream	
_	AI	6	0	1	$= \sqrt{(1-0)^2 + (6-4)^2 + (8-6)^2}$
	drinks	0	4	6	$= \sqrt{1+4+4} = \sqrt{9} = 3$
	food	0	6	8	$= \sqrt{1+4+4} = \sqrt{9} = 3$
		•			
		()	n		

$$d\left(\vec{v}, \vec{w}\right) = \sqrt{\sum_{i=1}^{\infty} \left(v_i - w_i\right)^2} \longrightarrow \text{Norm of } \vec{v} \cdot \vec{w}$$

Euclidean Distance in Python


```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])
# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

Cosine Similarity

$$\hat{v} \cdot \hat{w} = \|\hat{v}\| \|\hat{w}\| \cos(\beta)$$

$$\cos(\beta) = \frac{\hat{v} \cdot \hat{w}}{\|\hat{v}\| \|\hat{w}\|}$$
History corpus (30,20)
$$= \frac{(20 \times 30) + (40 \times 20)}{\sqrt{20^2 + 40^2} \times \sqrt{30^2 + 20^2}}$$

$$= 0.87$$

- ► Measures the cosine of the angle between two vectors.
- Formula: $cosine(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$
- ▶ Ranges from -1 (opposite) to 1 (same direction).

Cosine Similarity (cont.)

Less sensitive to magnitude, focuses on orientation.

Cosine Similarity (cont.)

Euclidean distance vs Cosine similarity

Cosine similarity when corpora are different sizes

Euclidean distance: $d_2 < d_1$

Angles comparison: $\beta >$

The cosine of the angle between the vectors

Manipulating word vectors

Manipulating word vectors (cont.)

[Mikolov et al, 2013, Distributed Representations of Words and Phrases and their Compositionality]

Visualization of word vectors

		d>2	
oil	0.20		0.10
gas	2.10		3.40
city	9.30		52.1
town	6.20		34.3

How can you visualize if your representation captures these relationships?

oil & gas

town & city

Visualization of word vectors (cont.)

	d:	> 2		
oil	0.20		0.10	-
gas	2.10		3.40	PCA
city	9.30		52.1	
town	6.20		<u>34.3</u>	

	d =	= 2
oil	2.30	21.2
gas	1.56	19.3
city	13.4	34.1
town	15.6	29.8

Visualization of word vectors (cont.)

Word Embedding: One-Hot vs. Dense Vectors

Integer Representation of Words

Word	<u>Number</u>
a	1
able	2
about	3
 hand	 615
 happy	 621
 zebra	 1000

Integer Representation of Words (cont.)

- + Simple
- Ordering: little semantic sense

One-hot vectors

One-hot vectors (cont.)

Word	Number	"happy"		
а	1	1	0	a
able	2		0	able
about	3	3	0	about
			:	
hand	615	615	0	hand
	/		÷	
happy	621 ←	→ 621	1	happy
			:	
zebra	1000	1000	0	zebra

One-hot vectors (cont.)

- + Simple
- + No implied ordering
- Huge vectors
- No embedded meaning

One-Hot Encoding

- ► Each word is represented as a unique vector.
- ▶ Vector has 1 at one position, 0 elsewhere.
- **▶** Problems:
 - High-dimensional and sparse.
 - No semantic meaning or similarity captured.

Dense Embeddings

- ► Vectors are learned from data.
- ► Low-dimensional (e.g., 100–300).
- Capture semantic relationships.
- ightharpoonup Example: "king" "man" + "woman" pprox "queen"

Meaning as vectors

Meaning as vectors (cont.)

Word embedding vectors

- + Low dimension
- + Embed meaning
 - o e.g. semantic distance

e.g. analogies

Paris:France :: Rome:?

Terminology

word vectors

integers

one-hot vectors

word embedding vectors

"word vectors" word embeddings

Word embedding process

Embedding Method: Word2Vec

Word Embeddings - Intuition

- ▶ Dense vector representations of words learned from context.
- Encode syntactic and semantic meaning.
- Vectors reflect relationships like synonymy, analogy, etc.

Basic Word Embedding Methods

- ▶ word2vec (Google, 2013)
 - Continuous bag-of-words (CBOW)
 - Continuous skip-gram / Skip-gram with negative sampling (SGNS)
- ► Global Vectors (GloVe) (Stanford, 2014)
- ► fastText (Facebook, 2016)
 - Supports out-of-vocabulary (OOV) words

Advanced Word Embedding Methods

- ▶ Deep learning-based, contextual embeddings:
 - **BERT** (Google, 2018)
 - ELMo (Allen Institute for AI, 2018)
 - **GPT-2** (OpenAI, 2018)
- Tunable pre-trained models available

Word2Vec Overview

- ▶ Word2Vec learns word embeddings from large text corpora.
- ► Two main architectures:
 - Continuous Bag-of-Words (CBOW)
 - Skip-gram
- ▶ Both models use neural networks to predict words based on context.

Word2Vec - CBOW

- ► **Goal:** Predict target word from context.
- ► Architecture:
 - Input: Surrounding words (context)
 - Output: Target word
- Fast and accurate for frequent words.
- Example:
 - ullet Context: "the ___ sat on the mat" o Predict "cat"

Figure 2: CBOW Architecture

Center word prediction: rationale

The little _____ is barking

dog puppy hound terrier

•••

Creating a training example

From corpus to training

Word2Vec - Skip-Gram

- ▶ **Goal:** Predict context words from a target word.
- ► Architecture:
 - Input: Target word
 - Output: Surrounding words (context)
- Better for rare words.
- Example:
 - $\bullet \ \, \mathsf{Input:} \ \, \mathsf{``cat''} \, \to \, \mathsf{Output:} \ \, \mathsf{``the''} \, , \, \, \mathsf{``sat''} \, , \, \, \mathsf{``on''} \, , \, \, \mathsf{``the''} \, , \, \, \mathsf{``mat''} \, \,$

Word2Vec - Skip-Gram (cont.)

Figure 3: Skip-Gram Architecture

Word2Vec - Skip-Gram (cont.)

CBOW vs Skip-Gram

Limitations of Word2Vec

- ▶ Does not consider sub-word information.
- ▶ Same vector for all senses of a word (polysemy issue).
- ▶ Ignores word order within the context window.

GloVe - Global Vectors

GloVe - Global Vectors

Proposed by: Pennington et al., 2014

- ► Combines global matrix factorization with local context windows.
- ► Captures co-occurrence statistics of words across entire corpus.
- Embeddings reflect ratios of co-occurrence probabilities.

GloVe – Global Vectors (cont.)

Loss function:

$$J = \sum_{i,j=1}^{V} f(P_{ij}) \left(w_i^{ op} \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

where:

- $ightharpoonup X_{ij}$: number of times word j occurs in the context of word i
- $ightharpoonup P_{ij}$: probability of word j in the context of i
- $ightharpoonup w_i, \widetilde{w}_j$: word and context word vectors
- $ightharpoonup b_i, \tilde{b}_j$: bias terms
- ► *f*: weighting function

GloVe – Global Vectors (cont.)

GloVe – Global Vectors (cont.)

fastText - Subword Embeddings

fastText - Key Ideas

- ► Developed by Facebook AI (2016)
- Builds on Word2Vec by incorporating character n-grams
- Useful for morphologically rich languages and rare words
- ► Better handling of OOV (out-of-vocabulary) words

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

fastText – Key Ideas (cont.)

FastText-Based Intent Detection for Inflected Languages

fastText - Example

- ► Word: playing
- ► Character n-grams (n=3): ["pla", "lay", "ayi", "yin", "ing"]
- ► Word vector = sum of n-gram vectors

Comparison: Word2Vec vs. GloVe vs. fastText

Feature	Word2Vec	GloVe	fastText
Local Context	\checkmark	_	\checkmark
Global Info	-	\checkmark	√(partial)
Subword Info	-	_	\checkmark
Handles OOV	_	_	\checkmark

Limitations of Vector Space Models

► High Dimensionality:

- Vectors can become very high-dimensional, leading to computational inefficiency.
- Curse of dimensionality: distance metrics become less meaningful.

Sparsity:

- One-hot vectors are sparse, leading to inefficiencies in storage and computation.
- Dense vectors mitigate this but still require large datasets for effective training.

► Lack of Context:

- Traditional VSMs do not capture word context effectively.
- Same word can have different meanings in different contexts (polysemy).

Limitations of Vector Space Models (cont.)

► Semantic Limitations:

- Cannot capture complex relationships like negation or antonymy.
- Similar words may not always be semantically related (e.g., "bank" vs. "river bank").

Scalability:

- As vocabulary size increases, the term-document matrix becomes larger and more sparse.
- Requires significant computational resources for training and inference.

Summary

Future Directions

- ► Contextual embeddings (ELMo, BERT, GPT): Word vectors depend on sentence context.
- Multilingual embeddings and cross-lingual models.
- Graph-based embeddings (e.g., knowledge graph completion).
- ► **Hybrid embeddings**: Combining structured and unstructured data.

Key Takeaways

- ▶ Vector Space Models (VSMs) are foundational for modern NLP.
- ▶ Word embeddings capture semantic relationships in a continuous space.
- Word2Vec, GloVe, and fastText are key methods for generating word vectors.
- ▶ Dense embeddings outperform one-hot vectors in capturing meaning and relationships.
- ► Future work focuses on contextual, multilingual, and hybrid embeddings.

References

References

- [1] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781.
- [2] Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. EMNLP.
- [3] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. TACL.
- [4] Jurafsky, D., & Martin, J. H. (2023). Speech and Language Processing (3rd Ed Draft).

References (cont.)

- [5] Stanford NLP Slides. https://web.stanford.edu/class/cs224n
- [6] Facebook AI Research (FAIR) fastText. https://fasttext.cc
- [7] Goldberg, Y. (2016).
 A Primer on Neural Network Models for NLP.
 JMLR.
- [8] Chrupała, G. (2019).Symbolic and Subsymbolic Representations in NLP Deep Learning Lectures.

Credits

Dr. Prashant Aparajeya

Computer Vision Scientist — Director(AlSimply Ltd)

p.aparajeya@aisimply.uk

This project benefited from external collaboration, and we acknowledge their contribution with gratitude.