

The University of Manchester

Roberto Cahuantzi<sup>1</sup>

# Genetic space exploration: Overview of low dimension projections of alignment-free characterisation methods applied to SARS-CoV-2

Ian Hall<sup>1</sup> Katrina Lythgoe<sup>2, 3</sup>

Lorenzo Pellis<sup>1</sup>

ty of Oxford 3Big Data Institute







<sup>1</sup>Department of Mathematics, University of Manchester

<sup>2</sup>Department of Biology, University of Oxford

<sup>3</sup>Big Data Institute, University of Oxford

### Introduction

The ongoing epidemic has showed us the necessity to understand better the dynamics of viral evolution to identify variants of concern and variants of interest (VoC/VoI). The common methods of phylogenetical analysis are computationally expensive and struggle to incorporate new data, rely on multi-aligned sequences, performing a pair-wise comparison among all the sampled genomes. Alignment-free methods offer an alternative, and among them those based on word-statistics methods offer an individual representation as a single point in a  $\mathbb{R}^n$  space for each genetic code, which allows for easier incorporation of new information. This project analyses approximately 250k SARS-CoV-2 sequences extracted from the GISAID database, characterising them with the aforementioned featuring methods to apply the dimensionality reduction (DR) algorithm PaCMAP[8], to visualise the structures formed within the different genetic spaces. This gives multiple perspectives to understand better the virus ecology. Furthermore, the use of clustering methods, like HDBSCAN[3] and CLASSIX[1], shows to be a valuable tool to confirm the appearance of clusters formed by new VoC/VoI.

Thomas House<sup>1</sup>

## Methods

- Download of around 250k genetic sequences from the GISAID database procuring an appropriate representation of VoC/VoI and even distribution through time;
- Classification of sequences using Pangolin, labelling them through the Scorpio reported lineages;
- Extraction of natural vectors features (NVf). They differ in the details, but can be interpreted as an array of summary statistics of an element  $\epsilon \in E$  in a sequence S of length n, generalised as:

$$NVf(S) = (n_{\epsilon_1}, \mu_{\epsilon_1}, D_2^{\epsilon_1}, \dots n_{\epsilon_n}, \mu_{\epsilon_n}, D_2^{\epsilon_n})$$

The count of  $(n_{\epsilon})$ , mean distance of to the origin  $(\mu_{\epsilon})$  and variance of said distance  $(D_2^{\epsilon})$ , characterise its distribution within S, these three magnitudes can be defined as:

$$n_{\epsilon} = \sum_{i=0}^{n} w_{\epsilon}(S_i), \mu_{\epsilon} = \sum_{i=0}^{n} \frac{i}{n_{\epsilon}} w_{\epsilon}(S_i), D_2^{\epsilon} = \sum_{i=0}^{n} \frac{(i - \mu_{\epsilon})^2}{n_{\epsilon}n} w_{\epsilon}(S_i)$$

Where  $s_i \in S$ , and  $w_{\epsilon}$  is a weight of 1 if  $\epsilon = s_i$ . Among the explored NVf we can mention: natural vector (NV)[5], which is a 12-D array, since  $\epsilon \in \{A,C,G,T\}$ ; Accumulated NV (ANV)[4] adds the covariance of the accumulation of nucleotides through S; degenerate bases NV (WMRV)[7] maps S by pairs of degenerate bases, namely  $\epsilon \in \{W,S,M,K,R,Y\}$ ; k-mers NV (KMNV)[2] describes k-mer distribution; and extended NV (ENV)[6] characterise the intensities of the pixels in a 2-d frequency chaos representation of S, in which  $\epsilon \in \{0, ..., 255\}$ . Additionally, the method of k-mer counts (KMC) was also included among the NVf. The value k was set to 3 for all k-dependant algorithms;

- DR projection for the different *NVf* were produced to observe structures in these genetic spaces. From these the PaCMAP[8] method proved to be robust for replication, while reliable on representing global and local structures.
- Two clustering algorithms were applied and evaluated, HDBSCAN[3] and CLASSIX[1], both yielded similar and consistent results according feature projected.



# Results (cont.)

- The figure (left) shows the formation of structures and clusters on the genetic spaces that in most of them correspond to VoC/VoI,
- The unsupervised algorithms, HDBSCAN and CLASSIX, are able to detect the formation of these clusters,
- The best *NVf*, by ARI and AMI metrics, appear to be *KMC* and *ENV*, while the worst *WMRV*, results are summarised on right table.

| Feature | HDBSCAN |        | CLASSIX |        |
|---------|---------|--------|---------|--------|
|         | ARI     | AMI    | ARI     | AMI    |
| KMC     | 0.1369  | 0.4431 | 0.3198  | 0.5393 |
| ENV     | 0.3906  | 0.4574 | 0.3837  | 0.4670 |
| KMNV    | 0.0892  | 0.4032 | 0.2418  | 0.5010 |
| NV      | 0.1234  | 0.2835 | 0.2242  | 0.3130 |
| ANV     | 0.0590  | 0.2528 | 0.1608  | 0.2525 |
| WMRV    | -0.0106 | 0.1802 | -0.0063 | 0.1972 |

## **Conclusions and Future work**

- The low dimension projection of most of *NVf* seem to rescue important information to identify new variants through clustering methods,
- Monitoring of emergence of clusters could make possible to police the emergence of variants of concern,
- Simple *KMC* was the one of the bests *NVf* for clustering formation followed by *ENV*, modification on this methods could improve their accuracy and sensibility
- The application of different featuring methods, such as: protein NV[9], graphical representation[10], of Fourier power spectrum should be investigated[11],
- It would be also of interest to assess different metrics of distance like: Kull-Leiber, Yaus-Hausdorff[10], among others; to explore possibilities.

#### References

- [1] X. Chen and S. Guettel, 'Fast and explainable clustering based on sorting', 2022, doi: 10.48550/ARXIV.2202.01456.
- [2] J. Wen, et al., 'K-mer natural vector and its application to the phylogenetic analysis of genetic sequences', Gene, vol. 546, 2014.
- [3] L. McInnes and J. Healy, 'Accelerated hierarchical density based clustering', Nov. 2017.
- [4] R. Dong et al., 'A novel approach to clustering genome sequences using inter-nucleotide covariance', Frontiers in Genetics, vol. 10, 2019.
- [5] M. Deng, et al., 'A novel method of characterizing genetic sequences: Genome space with biological distance and applications', PLoS ONE, vol. 6, 2011.
- [6] S. Pei, et al., 'Fast and accurate genome comparison using genome images: The Extended Natural Vector Method', Molecular Phylogenetics and Evolution, vol. 141, 2019.
- [7] Y. Li, et al., 'A novel fast vector method for genetic sequence comparison', Scientific Reports, vol. 7, 2017.
- [8] Y. Wang, et al., 'Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization', Journal of Machine Learning
- Research, vol. 22, 2021.

  [9] C. Yu, et al., 'Protein space: A natural method for realizing the nature of protein universe', Journal of Theoretical Biology, vol. 318, 2013
- [10] K Tian, et al., 'Two Dimensional Yau-Hausdorff Distance with Applications on Comparison of 417 DNA and Protein Sequences', PLoS ONE, vol. 10, 2015.
- [11] C. Yin, et al., 'A measure of DNA sequence similarity by Fourier Transform with applications on hierarchical clustering', Journal of Theoretical Biology, vol. 359, 2014.