4 - Convolutional Neural Networks

Recognition

- In this section, we'll define image recognition as category level recognition of the whole image
- Category level = group level
 - Groups may be more or less specific ("bird," "duck," "Australian wood duck")
 - o Different from instance-level recognition, recognising a specific individual
- Whole image = one label per image
 - Different from detection = locate object in image
 - Different from segmentation = label individual pixels
- Difficulties
 - Inter-category similarity 不同类别相似
 - Intra-category variability 同类别内多样
 - Instances
 - Illumination
 - Scale
 - Viewpoint/pose
 - Background/occlusion
- Goal: Build a representation of the image that
 - o distinguishes different categories
 - but is invariant (or tolerant) to variation within a category
- Supervised learning problem map image to class label
- Pre-2010: small number of classes (order of 10-100), hand crafted features
- 2010-now: "large scale" image recognition (order of 1000 10,000 classes), millions of images, deep learned features

ImageNet

- Based on WordNet, a database of English words organised by concepts
- Class images collected online, manually cleaned by human annotators (2.5 years of annotation work)
- Over 5,000 classes, but commonly used dataset includes just 1000 of the classes with most exemplars

Neural network review L4.1 P19

Neural networks

- Multiple layers of neurons working in parallel on the same input
- MLP = multilayer perceptron
- Each neuron on layer L receives input from all neurons on layer L-1 (fully connected layer) and produces one output
- Neuron's output is a weighted sum of the input, followed by a non linear activation function

$$y = f\left(\left[\sum_{j} \mathbf{w}_{j} x_{j}\right] + \mathbf{b}\right) = f(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$
Weights and bias learned from data

- Train through backpropagation (a form of gradient descent)
- Compute gradient of the loss function with respect to network parameters, starting with output layer and propagating to earlier layers, and adjust weights to reduce loss
- Learning rate is a free parameter
- Loss function usually based on difference between ground truth and prediction (supervised learning)
- Advantages:
 - Universal approximator able to approximate any continuous function on Rⁿ
 - Feature embedding learns complex features
 - o Parallelisable within each layer, neurons are independent
- Disadvantages:
 - Very large number of parameters high memory/time/data requirements, prone to overfitting

Non-linear activation function

(logistic) sigmoid (σ):

$$f(x) = \frac{1}{1 + e^{-x}} \ \ \widehat{\ge} \ \ \int_{0.5}^{1}$$

hyperbolic tan (tanh):

$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \quad \text{for } x = 0$$

rectified linear unit (ReLU):

Convolutional layers

"AlexNet": Krizhevsky, Sutskever, & Hinton (2012)

Regular neural networks can be used for image recognition, but convolutional neural networks are more common for large images.

- More efficient learning of local, repeated patterns
- However, limits what the network can learn

Definition of Convolutions

- A **kernel**, which is a matrix overlaid on the image and computes an element wise product with the image pixels.
- A **stride** which defines how many positions in the image to advance the kernel on each iteration.
 - Stride = 1 means the kernel will operate on every pixel of the image.

Demo of convolutional layer L4.1 P33-42

Fully-connected vs. Convolutional

Fully-connected layer

- Each neuron is connected to every neuron in the input
- The neuron learns some combination of the input
- The output to the next layer is the neuron's response
 - Number of learned parameters
 - Fully-connected: Size of input + 1 bias
 - o Convolutional: Size of kernel + 1 bias

Convolutional layer

- Each neuron is connected to a small patch of the input
- The neuron learns a convolutional kernel on the input
- The output to the next layer is the input convolved with the neuron's kernel

Convolution output size

- Valid convolution (with kernel larger than 1x1) results in output smaller than input
- If same size output is needed, pad the input (zero padding is most common)

Kernels L4.1 P48-51

- In layer 1, kernels mostly learn edges.
- Things learned in higher layers are very abstract.

Summary

- Advantages
 - Efficient: Learns to recognize the same features anywhere in the image, with fewer parameters compared to fully connected layer
 - Preserves spatial relations output is an image with values indicating where features are present
- Disadvantages
 - Limited kernel size means model is limited to learning local features
- Convolutional neural networks variation on standard (fully connected) neural networks
- Each convolutional layer learns a set of kernels and outputs activation maps (= input convolved with learned kernel)

Downsampling

- It's common to downsample convolution layer output
- Reduces output size and number of computations needed in later layers
- Can also improve tolerance to translation small changes in input won't change downsampled output
- Downsampling is common in CNNs to make computation more efficient in later layers and increase translation invariance.
- Methods include strided convolution, max pooling, and average pooling.

Strided convolution

- Convolutional stride = distance between successive convolution windows
- In CNNs, stride can be > 1
- Assuming no padding:
 - output_size = ceil((input_size kernel_size + 1) / stride)
- With padding:

- output_size = ceil(input_size / stride)
- Advantage: Efficient higher stride means fewer convolution operations
- Disadvantage: Kernel window skips over parts of the image, so important image features could be missed

Pooling

- After convolution, each activation map is separately downsampled
- Pool stride determines the amount of downsampling (output_size = input_size / stride)
- Max pooling:
 - Within a given window in the activation map, take the highest value and discard the rest
- Average pooling:
 - Within a given window in the activation map, average the values
- Advantage
 - Max pooling is most likely to preserve the most important features, compared to strided convolution or average pooling
- Disadvantage
 - Average pooling "blurs" over features; important features may be lost
 - Pooling is slower than strided convolution

Regularisation in CNNs

- Due to the very high number of parameters, CNNs are prone to overfitting, even on large datasets
- Regularisation is usually needed to reduce overfitting
- Common options:
 - L1 or L2 regularisation
 - Free parameters when adding regularisation:
 - How much weight to give regularisation term vs. other terms in the loss function
 - Which layers to include in regularisation all layers or just later layers?
 - Which parameters to include sometimes only weights are included, not biases
 - Adding regularisation tends to slow down training
 - Too much regularisation can result in underfitting
 - Dropout
 - Randomly discard some neurons (set output = 0)
 - Forces neurons to find useful features independently of each other
 - Effectively, trains multiple architectures in parallel
 - What percentage of neurons to drop is a free parameter (e.g., drop 50% or drop 20%)
 - Can be applied to all layers, or just later layers

- Different dropout percentages can be applied to different layers typically later layers would have more dropout
- Adding dropout tends to slow down training
- Dropout is only used in training when evaluating the network on new data (validation/test), all neurons are active
- Early stopping
 - Stop training the network when it shows signs of overfitting
 - Monitor performance on a validation set
 - Subset of data not seen in training and not included in test set
 - During training, periodically check model's performance on the validation set a decrease suggests overfitting
 - Encourages smaller values for network parameters by keeping them close to their initial values (which are typically near 0)
- Frequently unclear which method (or combination) will work best for a given optimisation problem, so it's common to experiment and combine them

Training an Image Recognition CNN

Overview

- Typical architecture for image recognition:
 - Some number of convolutional layers, with downsampling
 - One or more fully connected layers
 - Softmax output with cross entropy loss
- Basic idea:
 - Do feature embedding in convolutional layers
 - Transform images from pixels to useful high level features
 - Fully connected layers are effectively a linear classifier (or MLP) to predict class from high level features

Loss function

Softmax:
$$\sigma(y_i) = \frac{e^{y_i}}{\sum_{j=1}^{N} e^{y_j}}$$

- Apply softmax function to last layer's output
- Produces a vector that has the properties of a probability distribution:
 - All values in range 0 1
 - Values sum to 1

Cross-entropy loss

• Measure of the difference between the model and ground truth probability distributions

 Cross-entropy loss between predicted class and ground-truth class:

Model probability from s

Model probability from softmax
$$E = -\frac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}_i)$$
N classes

Ground truth probability (1 or 0)

Training process

- Split data into train/validation/test sets
- Split training data into batches
- Initialise network weights and bias
 - Typically, weights initialised to small values from a Gaussian distribution around zero
 - o Bias initialised to zero or small positive values
- Set training parameters
 - Batch size
 - o Optimiser
 - Learning rate + decay
- For N = 1 ?
 - o Preprocess a batch of image data
 - Classify batch, compute loss
 - Update model parameters with back propagation
- Monitor training and validation loss
 - Periodically check trained model's performance on the validation set (for early stopping)
 - Stop training when validation loss no longer decreases
- Generally, train until model's performance on a validation set stops improving

Data preprocessing

- Image whitening scale each image to 0-255 range, then normalise so each pixel has mean=0 and (optionally) std=1
- A per-channel mean also works (one value per RGB)

Data augmentation

- Manipulate training data to generate more samples
- Without data augmentation, even smaller networks (e.g., AlexNet) overfit to ImageNet
- Common options:
 - Random crops (e.g., 224 x 224 from 256 x 256 images)
 - Horizontal reflection
 - Small colour/contrast adjustments (to simulate different camera settings or times of day)

- · Less common:
 - Random rotation (e.g., +/ 15 degrees) -> slow
 - o Random scale -> slow
 - o Random occluders (限光器)
- Variations such as vertical reflection and large colour changes are not suitable since they are likely to change the original features.

Batch size

- Batch size (or mini batch size) = portion of the training data used to compute gradient for parameter update
- It's not computationally feasible to use the whole dataset to compute each update
- Dataset is randomly split into N batches of size b
- N updates = 1 epoch (every image has been seen once)
- Smaller batch size
 - More updates (but these are faster to compute)
 - Noisier updates (high variance in gradient)
- Larger batch size
 - Fewer updates (but each update takes longer to compute)
 - More stable updates
- In practice, batch size tends to be limited by memory constraints

Optimiser

- Stochastic Gradient Descent (SGD)
- Root Mean Square Propagation (Rmsprop)
- Adaptive moment estimation (Adam)
 - Keep a moving average of the squared gradient / gradient to divide the learning rate
 - Different from SGD that maintains a single learning rate for different gradients with different magnitudes

Learning rate + decay

- Learning rate = how much to change network parameters on each update
 - Too high rate unstable training
 - Too low rate very slow learning

Summary

- Training CNNs can be difficult parameter space is extremely large
- Data augmentation is usually required to avoid overfitting
- Hyperparameters (batch size, optimizer, learning rate) can affect how well the network learns

CNN results L4.2 P43

- CNNs are the state of the art for image classification, exceeding human performance on ImageNet
- CNN classification errors are often understandable (odd views, small objects), which suggests they learn reasonable features for this task

 But they do show some odd failures, like poor generalisation to ImageNetV2 	