IEEE 802.11

CSMA/CA MAC LAYER

Media Access Control

802.11 - MAC Layer Principles

- Access methods (called DFWMAC: Distributed Foundation Wireless MAC)
 - DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - DCF with RTS/CTS (optional)
 - avoids hidden terminal problem
 - PCF (optional and rarely used in practice)
 - access point polls terminals according to a list
- DCF: Distributed Coordination Function
- PCF: Point Coordination Function

802.11 - MAC Layer Principles

Priorities

- Defined through different inter frame spaces
- No guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- **PIFS** (PCF IFS)
 - medium priority, for time-bounded service using PCF
- **DIFS** (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

Note: IFS durations are specific to each PHY

CSMA/CA Control Logic

802.11 - CSMA/CA Principles

- Station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- If the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- If the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slottime)
- If another station occupies the medium during the back-off time of the station, the back-off timer stops (to increase fairness)

802.11 - CSMA/CA Unicast

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receiver acknowledges at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors

The ACK is sent right at the end of SIFS (no contention)

NAV: Net Allocation Vector

Hidden Terminals

Hidden terminals

- $-S_1$ sends to R, S_2 cannot receive S_1
- $-S_2$ wants to send to R, S_2 senses a "free" medium (CS fails)

Collision at R, S₁ cannot receive the collision (CD fails)

 $-S_1$ is "hidden" for S_2

802.11 - DCF with RTS/CTS

- Sending unicast packets
 - station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
 - acknowledgement via CTS after SIFS by receiver (if ready to receive)
 - sender can now send data at once, acknowledgement via ACK
 - other stations store medium reservations distributed via RTS and CTS

Exposed terminals

- Exposed terminals
 - $-S_1$ sends to R_1 , S_2 wants to send to another terminal (not S_1 or R_1)
 - $-S_2$ has to wait, CS signals a medium in use
 - But R_1 is outside the radio range of R_2 , therefore waiting is not necessary
 - $-S_2$ is "exposed" to S_1

Backoff Time and CW

- A backoff time (measured in slot times) is chosen randomly in the interval [0,CW), where CW stands for the contention window
- CW is an integer whose range is determined by the PHY layer characteristics: CW_{min} and CW_{max}
- CW is doubled after each unsuccessful transmission, up to the maximum value equal to CW_{max} + I

Inter Frame Space and CW Times

Parameters	802.11a	802.11b	802.11b	802.11b	802.11b
		(FH)	(DS)	(IR)	$(High\ Rate)$
Slot Time (μs)	9	50	20	8	20
$SIFS~(\mu s)$	16	28	10	10	10
$DIFS~(\mu s)$	34	128	50	26	50
$EIFS~(\mu s)$	92.6	396	364	$205 \ \mathrm{or} \ 193$	268 or 364
$CW_{min}(SlotTime)$	15	15	31	63	31
$CW_{max}(SlotTime)$	1023	1023	1023	1023	1023
Physical Data Rate (Mbps)	6 to 54	1 and 2	1 and 2	1 and 2	1, 2, 5.5, and 11

More on Frame Formats

Preamble	PLCP Header	Payload Header	LLC Protocol Data Unit	Payload Trailer
----------	-------------	----------------	------------------------	-----------------

Preamble:

Sync Bytes	Start of
	Frame
7 or 16	2
bvtes	bvtes

802.11b Packet Layout

PLCP Header:

Signal	Service	Length	Header
Rate			Error Check
1	1	2	2
byte	byte	bytes	bytes

Payload Header:

Frame	Duration	Destination	Source	Address	Sequence	Address
Control	ID	Address	Address	3	Control	4
2	2	6	6	6	2	6
bytes	bytes	bytes	bytes	bytes	bytes	bytes

LLC PDU:

Payload Trailer:

Preamble of 802.11b Packets

- >Used to mark the start of the packet
- ➤ Always transmitted at I Mbps
- ➤ Sub fields of Preamble
 - Long preamble version
 - 16 sync bytes of alternating I's and 0's
 - I byte of start of frame delimiter (1010101)
 - Short preamble version
 - 7 sync bytes
 - I byte of start of frame

Data Transmission in PL

- ➤ Via radio waves
 - Analog medium
 - Digital computer data transmitted using analog transmission (Translations done by NIC and AP)
- > Frequency and bandwidth (range of frequencies)
 - 2.4000 2.4835 GHz => 83.5 MHz bandwidth in USA

Bit Transmission in DSSS

> Each bit converted into a special code

- 8-bit or II-bit code (designed to reduce interference)
- Called spreading a bit into many bits across spectrum

> I-Mbps DSS

- Uses an II-bit Barker sequence code
 - Transmitted using binary phase shift keying (BPSK) (1 bit per symbol)
 - II Mbps signaling rate ==> I Mbps data rate

>2-Mbps DSS

- Uses the same II-bit code
 - Transmits using Quadrature phase shift keying (QPSK) (2 bits per symbol)

IMbps DSSS with Barker code

IEEE 802.11a

- ➤ Operates in a 5 GHz frequency range
- ➤ Total bandwidth is 300 MHz
 - Faster data rates possible: Up to 54 Mbps
 - 6, 9, 12, 18, 24, 36, 48, and 54 Mbps
- ➤ Uses the same topology as . I I b
- Reduced range because of higher speed
 - 50 meters (150 feet)
 - Highest speed achievable within 15 meter

802.IIa

IEEE 802. I la Coverage

- > Provides 4-12 channels (depending on configuration)
 - Important for coverage; takes more .I Ia AP to cover the same area (small range)
 - Make it possible to locate many APs in the same area to increase capacity

reamble PLCP Header Payload Header	LLC Protocol Data Unit	Payload Trailer
------------------------------------	------------------------	-----------------

Preamble:

Sync Bytes	Start of Frame
8	2
bytes	bytes

802.11a Packet Layout

PLCP Header:

Rate	Reserved	Length	Parity	Tail
4	1	12	1	6
bits	bit	bits	bit	bits

Payload Header:

Service	Frame	Duration	Destination	Source	Address	Sequence	Address
	Control	ID	Address	Address	3	Control	4
2	2	2	6	6	6	2	6
bytes	bytes	bytes	bytes	bytes	bytes	bytes	bytes

LLC PDU:

DSAP	SSAP	Control	Data
1	1	1-2	43-1497
byte	byte	bytes	bytes

Payload Trailer:

Frame Check Sequence	Tail
4	6
bytes	bits

802. I la Data Transmission

- Similar to 802.11b; spreads its transmission over a wider spectrum
- ➤ Each of 12 channel's bandwidth = 20 MHz
 - Broken into 52 separate channels: 312.5 KHz each, plus guard bands
 - 48 channels for data (sent across all channels in parallel using Orthogonal Frequency Division Multiplexing (OFDM)
 - 4 channels for control

OFDM Versions

>6-Mbps version of .1 la

- Groups data into sets of 24 data bits
- Converts each group into an OFDM symbol of 48 bits
 - Pattern chosen enables some error correction
- Transmit each symbol in one of 48 sub channels using BPSK sent at 250 KHz
 - 24 data bits x 250 KHz => 6 Mbps

>9-Mbps version

- Groups data into sets of 36 bits
- Transmits each symbol using BPSK
 - 36 data bits x 250 KHz => 9 Mbps

OFDM Versions (Cont.)

> 12-Mbps version

- Groups data into sets of 48 bits
- Transmit OFDM symbol using QPSK (2 bits per symbol)

> 18-Mbps version

- Groups data into sets of 72 bits; uses QPSK

>24-Mbps version

- Groups data into sets of 96 bits
- Transmit OFDM symbol using 16-QAM (4 bits per symbol)

OFDM Versions (Cont.)

>36-Mbps version

- Groups data into sets of 128 bits; uses 16-QAM
- Transmit OFDM symbol using QPSK (4 bits per symbol)

>48-Mbps version

- Groups data into sets of 192 bits
- Transmit OFDM symbol using 64-QAM (6 bits per symbol)

>54-Mbps version

- Groups data into sets of 216 bits; uses 64-QAM

802. I Ia: Use of OFDM and BPSK

