第六章 数字图像分割

- 图像分割介绍
- 基于灰度阈值的分割
- 基于图像边缘的分割
- 基于图像区域的分割
- 基于数学形态学分水岭的分割

3学时授课

2学时授课

5学时讲课 2学时作业 图像分割介绍

■ 图像分割定义

灰度、颜色、 纹理等 对应单个区 域和多个区 域

将图像分成各具特性的区域,并提取出感兴趣目标的技术和过程

- ■图像分割是由狭义DIP过渡到图像分析的关键步骤,基本的计算机视觉技术
- 借助集合概念进行正式的定义: 令R代表整个图像区域,对R的分割可看做将R分成若干个满足以下条件的非空子集(子区域) $R_1, R_2, ...R_n$
- $P(R_i) = TRUE, i = 1, 2, ..., n$
- $\triangleright P(R_i \bigcup_{i \neq j} R_j) = FALSE$
- ▶ R_i(i=1, 2, ..., n)是连通区域

分割包含所有像素,子区域互不相交

分割后的同一区域具有某种相似的属性

分割后不同区域像素应该具有一些不同的属性

基于灰度阈值的分割

- 分类误差最小的阈值
- 类间方差最大化的阈值
- 熵最大化的阈值(一维与二维熵)
- 基于最大模糊熵的阈值
- 基于过渡区域的阈值
- 基于训练的灰度阈值: 结合先验知识与传统灰度阈值的方法
- 局部灰度阈值

灰度阈值: 分类误差最小的灰度阈值

■设一幅图像只由目标物和背景组成

计算分类误差并使其最小化来计算阈值

■前景及背景灰度分布概率密度为 $P_1(Z)$ 和 $P_2(Z)$ 、目标物像素占全图像的像素数比例为 θ ,因此,该图像总的灰度概率密度分布P(Z)可用下式表示:

$$P(Z) = \theta P_1(Z) + (1 - \theta) P_2(Z) \qquad E(Z_t) = \theta \int_{Z_t}^{\infty} P_1(Z) dZ + (1 - \theta) \int_{-\infty}^{Z_t} P_2(Z) dZ$$

- ■设图像背景比前景亮,灰度阈值为Z_t时对应的分类误差为E(Z_t)
- ■求导并取0,得到关系式 $\theta P_1(Z_t) = (1 \theta)P_2(Z_t)$
- ■设 P_1 与 P_2 服从正态分布 $N(\mu_1,\sigma_1)$, $N(\mu_2,\sigma_2)$ 则最佳阈值满足

$$\ln \sigma_1 + \ln (1 - \theta) - \frac{(Z_t - \mu_2)^2}{2\sigma_2^2} = \ln \sigma_2 + \ln \theta - \frac{(Z_t - \mu_1)^2}{2\sigma_1^2}$$

$$Z_{t} = \frac{\mu_{1} + \mu_{2}}{2} + \frac{\sigma^{2}}{\mu_{1} - \mu_{2}} \ln(\frac{1 - \theta}{\theta})$$

- ▶附注:实际中如何估计分布、前景比例会成为问题,限制了该方法的应用
- ▶当已知前景与背景服从正态分布时,问题较容易解决,可用EM算法;能推广至多类

分类误差最小的灰度阈值二值化示例

对照明不均匀的左图 利用最小误差方法得 到的二值化结果

由灰度直方图通过EM 算法估计参数,得到 优化的阈值:因为两 类有灰度交叠,最小 分类误差不为0

内容摘自:

Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognition 1986; 19(1): 41-47

数字图像处理 硕士研究生课程

灰度阈值: 类间方差最大化的灰度阈值

本算法由Otsu在1979年提出。通过对灰度直方图进行分析得到优化的灰度阈值 归一化直方图p_i=n_i/N

根据灰度将图像分两类,即
$$C_0$$
=(0, 1, ..., t), C_1 =(t+1, t+2, ..., L-1)

类概率
$$w_0 = P(C_0) = \sum_{i=0}^t p_i = w(t)$$
 , $\mathbf{W}_1 = \mathbf{1} - \mathbf{W}_0$
类均值 $\mu_0 = \sum_{i=0}^t i p_i / w_0 = \mu(t) / w(t)$, $\mu_1 = \sum_{i=t+1}^{t-1} i p_i / w_1 = \frac{\mu_T - \mu(t)}{1 - w(t)}$ $\mu(t) = \sum_{i=0}^t i p_i$, $\mu_T = \mu(L-1)$
类间方差 $\sigma_B^2(t) = w_0 (\mu_0 - \mu_T)^2 + w_1 (\mu_1 - \mu_T)^2 = w_0 w_1 (\mu_1 - \mu_0)^2$

$$t^* = \arg\max_{0 \le t \le L-1} \sigma_B^2(t)$$

图像平均灰度

讨论:可推广至多类

课外作业:阅读Otsu文章,实现二类的Otsu算法并对图像Cameraman实施基于 类间方差最大化灰度阈值的二值化(1学时)

类间方差最大化的灰度阈值二值化示例

二值化效果可以

二值化效果差

用Otsu算法二值化,其结果依赖于图像复杂程度,可好可坏,难以控制

灰度阈值:一维熵最大化的灰度阈值

熵是平均信息量的表征

图像的一维熵为 $H = -\int p(x) \ln(p(x)) dx$: 灰度概率密度乘以其倒数的对数的积分 选择一个灰度阈值t,使对应的两类分割的信息量最大

灰度两类C₀=(0, 1, ..., t), C₁=(t+1, t+2, ..., L-1), 归一化灰度直方图p_i=n_i/N

前景区域的概率分布 $p_i/p(t)$ ($p(t)=p_0+...+p_t$),背景区域的概率分布 $p_i/(1-p(t))$

$$\begin{split} H_O(t) &= -\sum_i (p_i / p_t) \ln(p_i / p_t) & i = 1, 2 \cdots, t \\ H_B(t) &= -\sum_i [p_i / (1 - p_t)] \ln[p_i / (1 - p_t)], i = t + 1, t + 2, \cdots, L \end{split}$$

目标函数为一维熵

$$\varphi(t) = H_O + H_B = \ln p_t (1 - p_t) + \frac{H_t}{p_t} + \frac{H_L - H_t}{1 - p_t}, H_t = -\sum_{i=1}^t p_i \ln(p_i), H_L = -\sum_{i=1}^L p_i \ln(p_i)$$

最佳阈值t*满足
$$t^* = \arg \max_{1 \le t \le L-1} \{ \varphi(t) \}$$

讨论: 该算法能轻易地推广至多类问题。

一维熵最大化的灰度阈值二值化例子

测试图像是Cameraman

灰度阈值: 二维熵最大化的灰度阈值

- 基于一维熵的灰度阈值缺点: 只考虑了灰度分布, 没有利用空间信息; 在信噪比较低 的情况下效果不好 (为什么要引入二维熵呢?)
- 基于二维熵的灰度阈值:除了灰度分布,还考虑引入局部灰度特征;具体地,利用图 像像素的灰度i及4-邻域的像素的均值j构成二维灰度直方图,寻找使分类后的两部分的 熵最大化的阈值向量(s,t)
- 二维灰度直方图 $p_{i,i}=n_{i,i}/(M*N)$ (M列,N行的图像)
- 用A区和B区的后验概率P_A与P_B对这两个区域的概率p_{i,i}进行归一化处理,以使分区熵之 $P_A = \sum_{i=1}^{s} \sum_{j=1}^{t} p_{i,j}, P_B = \sum_{i=s+1}^{L} \sum_{j=t+1}^{L} p_{i,j}$ 间具有可加性。如果阈值为(s,t),则

A 区和B 区的二维熵为
$$H(A) = -\sum_{i} \sum_{j} (p_{i,j}/P_A) \ln(p_{i,j}/P_A) = \ln P_A + H_A/P_A$$

$$H(B) = -\sum_{i} \sum_{j} (p_{i,j}/P_B) \ln(p_{i,j}/P_B) = \ln P_B + H_B/P_B$$

- 目标函数为 $\phi(s,t) = H(A) + H(B)$
- 选取的最佳阈值向量(s*, t*)满足

$$\phi(s^*,t^*) = \max\{\phi(s,t)\}\$$

- > 可以方便地推广至多类问题。
- 第二维特征反映空间信息的相关性,可以有其它选择。

 $H_{\rm A} = -\sum_{i} \sum_{j} p_{ij} \ln(p_{ij})$

二维熵计算例

去掉了血肿的CT脑图像,对应的二维熵图像,目标是帮助找水肿

参阅

Chen MY, Hu QM, Liu ZC, Zhou SJ, Li XD. Segmentation of cerebral edema around spontaneous intracerebral hemorrhage. Applied Mathematics & Information Sciences 2013; 7(2): 563-570.

灰度阈值: 模糊熵最大化的灰度阈值

- 思路: 将一幅图像看作一个模糊阵列,然后通过计算图像的模糊概率或模糊熵来确定灰度阈值
- 可以将一幅M列、N行、有L个灰度级的数字图像X看作为一个模糊点阵, μ是定义在该L 个灰度级上的隶属度函数,像素(m,n)灰度值为x_{m,n}。可计算图像X的模糊率V(x)和模糊 熵E(x)(下一页PPT将介绍实现模糊化的常用变换函数)

$$V(p,q) = \frac{2}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} \min[\mu(x_{m,n}, p, q), 1 - \mu(x_{m,n}, p, q)], \qquad E(x) = \frac{2}{MN \ln 2} \sum_{m} \sum_{n} S \left[\mu(x_{m,n}, p, q)\right]$$

$$S \left[\mu(x_{m,n}, p, q)\right] = -\mu(x_{m,n}, p, q) \ln \mu(x_{m,n}, p, q) - (1 - \mu(x_{m,n}, p, q)) \ln(1 - \mu(x_{m,n}, p, q)) \quad m = 1, 2, \dots, M, n = 1, 2, \dots, N$$

- 一般情况下,图像的灰度直方图较为复杂,峰谷不明显,相应的V(p,q)图可能有多个 谷底,这时可选取V(p,q)所有极小值中的最小值或最大E(x)所对应的(p+q)/2作为阈值。
- ▶ p, q是模糊化的参数,决定了模糊化的性质,间接地确定了分类或分割的阈值
- ▶ 可以推广至多类,但较复杂。

像素(m,n)的模糊度 = $\min[\mu(x_{m,n},p,q),1-\mu(x_{m,n},p,q)]$ = 像素(m,n)的隶属度到0与1的最小距离

图像X的模糊率V(X, p, q) = 图像X所有像素的模糊度的均值

图像X的模糊熵E(X, p, q) = 图像X中所有像素模糊度的信息熵

灰度阈值: 常见的模糊化函数

■ Zadeh标准S函数,如图所示阈值= (p+q)/2

横轴对应于图像X的灰度

纵轴对应于该灰度对应的模糊集隶属度

■ 具有升半柯西分布形式的模糊化函数,K>0,阈值=(p+q)/2

$$\mu(x_{m,n}, p, q) = \begin{cases} 0 & x_{m,n} \le p \\ \frac{K(x_{m,n} - p)^2}{1 + K(x_{m,n} - p)^2} & p < x_{m,n} \le q \\ 1 & x_{m,n} > q \end{cases}$$

■ 线性模糊化函数,阈值=(p+q)/2

$$\mu(x_{m,n}, p, q) = \begin{cases} 0 & x_{m,n} \le p \\ \frac{1}{q - p} (x_{m,n} - p) & p < x_{m,n} \le q \\ 1 & x_{m,n} > q \end{cases}$$

模糊熵最大化的灰度阈值二值化示例

原图 模糊化函数

Otsu方法二值化 基于模糊熵的二值化 后者的二值化结果好一些 (箭头)

灰度阈值: 基于过渡区域的灰度阈值

- 数字图像中的介于前景与背景的区域是有宽度的,该区域叫**过渡区域,**也可看做广义 边缘!
- 该方法通过估计过渡区域并计算该区域的灰度统计量得到阈值
- 基于局部熵图像估计过渡区域

$$ITR(x, y) = \begin{cases} f(x, y) & LE(x, y) \ge E_T \\ 0 & LE(x, y) < E_T \end{cases}$$

- \triangleright E_T是所有像素的M_k*N_k邻域内的局部熵图像LE(x,y)的最大值的0.7倍(可选15*15窗口)
- ✔ 过渡区域还可以通过下述剪切函数的极值获取

$$f_{high}(x, y, q) = \begin{cases} q & f(x, y) \ge q \\ f(x, y) & f(x, y) < q \end{cases} \qquad f_{low}(x, y, q) = \begin{cases} f(x, y) & f(x, y) > q \\ q & f(x, y) \le q \end{cases}$$

- ✓ 利用任意梯度算子计算如上两个剪切函数的梯度幅值g_{high}(x,y,q),g_{low}(x,y,q)
- ✓ 计算有效平均梯度 $EAG_{low}(q)$ 、 $EAG_{high}(q)$ (排除梯度非零的像素的梯度均值)
- ✓ 求极值q_{high}=arg{max[EAG_{high}(q)]},q_{low}=arg{max[EAG_{low}(q)]}
- 求取过渡区域 $ITR(x,y) = \begin{cases} f(x,y) & q_{low} \leq f(x,y) \leq q_{high} \\ 0 & \text{其它} \end{cases}$ 灰度阈值**t***可取为所估计的过渡区域的平均灰度 ✔ 求取过渡区域

基于过渡区域的灰度阈值二值化示例

基于过渡区域的 灰度阈值二值化 效果取决于图像 复杂程度

上图,结果尚可 下图,结果不好 无法控制

到现在为止的灰度阈值方法 的分割结果都无法控制

下面研究能够控制结果的方 法!--- 即监督学习的方法

灰度阈值:基于训练的灰度阈值(1)

- 1. Importance 灰度阈值方法是计算机视觉及图像处理的最基本及热点问题 basic and hot topic in computer vision and medical image analysis one of the most effective and important segmentation methods
- 2. Problem 传统方法没有引入先验知识的机制而难于处理复杂退化的图像 lack an mechanism to incorporate prior knowledge hard to segment well complex images or images with serious artifacts
- 3. Our solution 提出的新方法:先验知识+传统的灰度阈值方法
 new framework: prior knowledge + existing thresholding methods
 explored prior knowledge in the form of background proportion
 先验知识通过学习得到,一种表述方式为:感兴趣区内背景所占比例的范围
- 4. Performance 分割结果比传统灰度阈值结果更可靠、更鲁棒 more consistent, more reliable more robust than conventional counterparts

Hu QM, Hou ZJ, Nowinski WL. Supervised range-constrained thresholding. IEEE Transactions on Image Processing 2006; 15(1): 228-240.

灰度阈值:基于训练的灰度阈值(2)

Algorithm steps: three steps 算法步骤

- 1. confine image space 确定感兴趣区并将分割限定在感兴趣区内 determine the region of interest (ROI) to exclude irrelevant regions
- 2. incorporate prior knowledge through supervision 通过训练 derive the lower background proportion 确定感兴趣区内背景比例范围 the upper background proportion
- 3. combine prior with conventional thresholding methods range-constrained maximized between-class variance RCOtsu range-constrained maximized fuzzy c-partition entropy RCFCP range-constrained least valley detection RCLVD

在限定的比例范围内使用传统的灰度阈值方法(最大类间方差0tsu、模糊熵分割FCP、直方图谷点等)

The key is to do supervision illustrated in subsequent slides.

从算法步骤步来看,关键步骤是如何通过训练得到<u>背景所占的比例范围</u>

灰度阈值:基于训练的灰度阈值(3)

Supervision case 1: sample images with ground truth available

find the minimum and maximum background proportions minP and maxP set min, max background proportions as (minP-vP) and (maxP+vP)respectively vP is a constant in [1%, 5%] depending on how typical the sample images are 第一种训练方式: 有多幅类似的图像及对应的分割金标准,从金标准统计+裕量

Example: [16%, 23%] → 14% (16%-2%), 25% (23%+2%) 一个例子: 磁共振脑图像

the lower threshold bound

the upper threshold bound

the found threshold

感兴趣区是颅骨包含的区域对应的灰度直方图

脑体模轴向切片,具有较大的 噪声与灰度不均匀性,RCOtsu

深圳先进技术研究院 数字图像处理 硕士研究生课程

灰度阈值:基于训练的灰度阈值(4)

Supervision 2: no ground truth but some kinds of prior knowledge available convert prior knowledge to the minimum and maximum proportions

第二种训练方式:无分割金标准但有其它先验,将其转换为背景比例范围

Example: 例子 基于观察的先验: 胸腔边界附近有1-3个骨头像素

a CT chest image to segment ribs and vertebrae (胸腔CT图像 分割 肋骨与椎骨)

Observation: within the ROI, 1 to 3 foreground pixels along the inner boundary

which is/converted to the two proportions 80% and 94%

灰度阈值:基于训练的灰度阈值(5)

Supervision case 3: no prior knowledge available

use visual assessment by overlaying grids on the image in the ROI

第三种训练情况: 无先验知识, 在图像上画方格估计背景比例范围

Example: Cameraman with the man as the object Cameraman中人的比例约25% ROI being the whole picture 要考虑可能的背景与前景灰度重叠,10%误差 divide the image into 4 equal squares, object size is around 25% allow for a 10% deviation (intensity overlap, rough proportion)—the lower and upper bounds being 15% and 35% changing the tolerance to 5% or 15% yields similar results

Original FCP thresholding RCFCP thresholding

灰度阈值:基于训练的灰度阈值(6)

- a versatile tool for both medical and non-medical images 通用的分割框架
- better results for complex or degenerated images 能够处理更复杂或蜕化的图像
- other prior knowledge could be explored such as transition regions and contrast 一般地,基于背景先验知识能够处理复杂及质量蜕化的图像
 - 其它先验知识如广义边界(过渡区域)、对比度也可以起作用

灰度阈值:局部灰度阈值

- 图像的局部灰度阈值由Niblack在1986年提出(Niblack W. An introduction to image processing. Prentice-Hall, 1986, p115~116)。
- 》 像素(x, y)处的局部灰度阈值T(x, y)是该像素的局部灰度均值m(x, y)与灰度标准差sd(x, y)的函数 T(x, y) = m(x, y) + k sd(x, y)
- ▶ 局部窗口以(x,y)为中心, 宽度w(x,y)与高度h(x,y)固定,k为常数Sx与Sy为图像的宽度与高度
- ▶ 计算复杂度高 0(w*h*Sx*Sy)
- ▶ 引入积分图像(integral image)则复杂度降低到0(Sx*Sy)
- Sauvola与Pietikainen (Adaptive document image binarization. Pattern Recognition 2000; 33:225-236)提出了增强的局部灰度阈值算法,目的是能处理图像中可能存在的纹理,为目前最好的局部灰度阈值方法,但窗口大小固定,参数固定,局限性仍然存在 T(x, y)=m(x, y)[1+k(sd(x, y)/R-1)]

固定窗口大小的局部灰度阈值不能处理前景大小变化的图像

固定参数难以处理对比度变化较大的前景

需要研究机制, 自适应地改变窗口大小和参数

局部灰度阈值二值化结果示例

固定窗口大小,适合于物体大小尺寸变化基本不变的场景,如文本处理

参阅 Sauvola J, Pietikainen M. Adaptive document image binarization. Pattern Recognition 2000; 33: 225-236.

对大小基本相同的圆的分割效果不错,但对线段的分割效果差!

局部灰度阈值二值化结果示例

新的局部灰度阈值方法:窗口大小自适应改变,允许物体尺寸变化大;基于局部对比度,是异常(最高或最低的灰度)检测的强有力的通用工具

复杂血肿

手工画的金标准

自适应局部阈值分割 新方法与金标准的差异

三块血肿大小尺寸差异大,对比度也差异大,有一处对比度很低

参阅 Zhang YX, Chen MY, Hu QM, Huang WH. Detection and quantification of intracerebral and intraventricular hemorrhage from computed tomography images with adaptive thresholding and case-based reasoning. International Journal of Computer Assisted Radiology and Surgery 2013; 8: 917-927.

深圳先进技术研究院 数字图像处理 硕士研究生课程

基于图像边缘的分割

- 边缘检测的基本原理
- ■常见的梯度算子
- 马尔(Marr)边缘检测
- 坎尼(Canny)边缘检测
- 霍夫变换

边缘检测的基本原理

- 什么是边缘检测
- 边缘是指图像中灰度发生急剧变化的区域,可以用图像的灰度梯度去表征。
- 边缘检测: 求数字图像f(x, y)梯度的局部最大值和方向。
- ▶ 图像f(x, y)沿方向r的灰度梯度为

$$\frac{\partial f(x,y)}{\partial r} = \frac{\partial f(x,y)}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f(x,y)}{\partial y} \frac{\partial y}{\partial r} = f_x(x,y) \cos \theta + f_y(x,y) \sin \theta$$

- 灰度梯度幅值为 $\sqrt{f_x^2(x,y)+f_y^2(x,y)}$,方向为 $\tan^{-1}(\frac{f_y}{f})$
- 边缘检测通常通过以下四步实现
- 滤波:边缘检测主要基于导数计算,易受噪声影响。滤波器在降低噪声的同时也导致边 缘强度的损失。
- 增强:增强算法将邻域中灰度有显著变化的点突出显示。一般通过计算梯度幅值实现
- 检测:最简单的边缘检测是梯度幅值的阈值判定。但在有些图像中梯度幅值较大的并不 是边缘点。
- ▶ 定位:精确确定边缘的位置。

常见的梯度算子

- 这部分内容已经在前面的空域增强中提及
- 这里主要来进行总结与比较
- 常见的梯度算子: Roberts算子、Sobel算子、Prewitt算子, X与Y方向模板为

$$r_{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} r_{y} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \quad s_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} s_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \quad p_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} p_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

- ➤ Roberts算子因直接进行梯度估计,边缘定位准确,但对噪声敏感
- ➤ Prewitt算子先做平均,再做微分,对噪声有一定抑制作用
- ➤ Sobel算子与Prewitt算子相似,但在平均时有采用不同的加权
- ➤ 实际中,Sobel算子最常用,效果通常好于其它两种

常见的梯度算子结果比较

原始 Lenna图像

Sobel 算子

Prewitt. 算子

Roberts 算子 细节最少

马尔(Marr)边缘检测(LoG)

- 这部分内容已经在前面的空域增强中提及
- 这里主要来进行性能分析
- Marr算子(Marr-Hildreth)是在拉普拉斯算子(二阶微分)的基础上实现的,得 益于对人的视觉机理的研究,具有一定的生物学和生理学意义 ***

拉普拉斯算子及模板实现
$$\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$
 $\begin{vmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \end{vmatrix}$

- ▶ 过程: 先高斯平滑、再求二阶微分、最后求零交叉(负与正之间必过0)。
- ▶ 卷积模板的形状类似于墨西哥草帽,依赖于高斯平滑的参数σ。卷积窗口取3σ

时检测效果较好。

▶ 有可能过度平滑,漏检角点。

$$\frac{(r^2 - 2\sigma^2)}{\sigma^4} \exp(-\frac{r^2}{2\sigma^2})$$

深圳先进技术研究

坎尼(Canny)边缘检测

- 这是最优的阶梯型边缘检测算法
- 基本原理
- ▶ 图像边缘检测须满足两个条件:有效地抑制噪声、尽量精确确定边缘的位置。
- ▶ 目标函数是信噪比与定位的乘积。
- ▶ 类似于马尔(Marr)边缘检测方法,也属于先平滑后求导数的方法。
- ▶ 弱边缘也应该有强响应、保证良好的定位、一个边缘只有一次检测。
- 算法的四步骤
- ▶ 用高斯滤波器平滑图像
- ▶ 用一阶偏导的有限差分来计算梯度的幅值和方向(如Sobel算子,方向45°倍)
- ▶ 对梯度幅值进行非极大值抑制(沿着边缘的法线方向比较,保留最大值)
- ▶ 用双阈值算法检测和连接边缘(双阈值T₂=2T₁,超过T₂保留、超过T₁者看是否与已经标记的边缘像素相邻,如指定为3、6)

间断检测: 点检测

原理: 用空域的高通滤波器来检测孤立点, 两步

$$R = \sum_{i=1}^{i=9} w_i z_i$$

$$|R| \ge T$$

$$-1 -1 -1$$

$$-1 8 -1$$

-1	-2	-1		
-2	12	-2		
-1	-2	-1		

亮点检测 模板	
模板权值 和为0	

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

间断检测:线检测

原理:用一定方向的直线检测模板检测。

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
Horizontal			+45°		Vertical		-45°				

间断检测:线检测示例

边缘检测小结

评价边缘检测器性能的性能

- (1) 假边缘概率;
- (2) 丢失边缘概率;
- (3) 边缘方向角估计误差;
- (4) 边缘估计值到真边缘的距离平方均值;
- (5) 畸变边缘和其他诸如角点的误差范围。
- 可以看出,边缘基本不能闭合,而边界连接是困难的问题。
- 因此, 图像分割中一般不直接基于边缘来分割物体。
- 通常将边缘作为一种特征协助图像分割。

霍夫变换(Hough Transform)示例

问题的提出: 在找出边界点集之后,需要连接,形成完整的边界图形描述

- 找出这些点过原点的直线?(第一象限)
 - 1. 若直线过原点,则:y=m*x,m为斜率.
 - 2. 取 $tg\theta_i = m_i = y_i / x_i$ 作为判据, 计算图像中所有点的 θ_i ,
 - 3. θ_i 每度计算一次. 在内存中开辟一个存储区, 共有91个地址相应于0°-90°.
 - 4. 统计每个 θ_i 地址中有多少个像点, 其中 θ_i 点数最多的地址中的点就是可连成一条支线的点.
 - 5. 以上可扩展到通过某点的直线检测.

霍夫变换(Hough Transform)

- 基本思想: 把图象空间中的检测问题转换到参数空间,通过在参数空间里进行 简单的累加统计完成检测任务
- 先看直线检测的具体例子: $x\cos\theta + y\sin\theta = \rho, (x, y) \leftrightarrow (\rho, \theta)$
- \triangleright 在 ρ , θ 的最小到最大取值范围内对其分别进行m,n等分,设一个二维数组的下标与 ρ _i,θ _i的取值对应;
- ▶ 对图像上的特征点(比如边缘点或灰度相近的点)作Hough变换,求每个点在 θ_j (j=0,1,...,n)变换后的 ρ_i ,判断(ρ_i , θ_j)与哪个数组元素对应,则让该 数组元素值加1;
- ightharpoonup 比较数组元素值的大小,最大值所对应的(ho_i , θ_j)就是这些共线点对应的直线方程的参数。
- ▶ 共线方程为: ρ_i=x cos θ_j+y sin θ_j
- ■讨论
- 对ρ,θ的量化间隔大,直线参数就不精确;过小则计算量增加。因此,对ρ,θ的量化间隔要兼顾参数量化精度和计算量。
- ➤ Hough变换的抗噪性能强,能将断开的边缘连接起来。

深圳先进技术研究院

基本哈夫变换原理

具体方法

在参数空间PQ里建立一个2-D的累加数组

$$A(p,q)$$
,其中p为p, q为 θ

$$p \in [p_{\min}, p_{\max}]$$

$$q \in [q_{\min}, q_{\max}]$$

$$A(p,q) = A(p,q) + 1$$

A(p,q)值: 共线点数

(p, q)值: 直线方程参数

霍夫变换求直线的例子

a b

FIGURE 10.21

- (a) Infrared image.
- (b) Thresholded gradient image.
- (c) Hough transform.
- (d) Linked pixels. (Courtesy of Mr.
- D. R. Cate, Texas Instruments, Inc.)

A(p, q)的阈值 取小一些的话, 会有更多的直 线段被检出

c d

a b

- a红外图像
- b对梯度二值化
- c霍夫变换
- d 检测到的直线段 (箭头)

霍夫变换: 非直线的解析检测

霍夫变换

检测满足解析式 F(x, c) = 0的各类曲线并把曲线上的点连接起来, 具体地

检测圆周或圆弧

$$(x-a)^2 + (y-b)^2 = r^2$$

三个参数a, b, r 代表一个圆,所以需要在参数空间里建立一个三维累加数组A, 三维数组的元素可写为A(a, b, r)

霍夫变换: 隐式曲线的检测

在所需检测的曲线或目标轮廓没有或不易用解析式表达时,可以利用表格来建立曲线或轮廓点与参考点间的关系,从而可继续利用霍夫变换进行检测

建立参考点与轮廓点的联系

r, θ , ϕ 与轮廓点 (x,y)的对应关系表

$$p = x + r(\theta)\cos[\phi(\theta)]$$

$$q = y + r(\theta)\sin[\phi(\theta)]$$

建立参考点和轮廓点的对应关系

(x, y)为轮廓点的坐标, (p, q)为参考点的坐标, θ为轮廓点(x, y)处轮廓法线与X轴的夹角, Φ为由轮廓点(x, y)到参考点(p, q)的矢量与X轴的夹角

基于图像区域的分割

- 一种利用区域特征相似性的分割方法
- ■前面研究过的灰度阈值分割方法也属于该类方法
- 基于模式识别的特征聚类算法也属于该类:K-均值算法、模糊C-均值算法等
- 狭义的区域分割方法是指区域增长、区域分裂-合并方法
- 区域增长方法需要解决三个问题
- ▶ 选择或确定一组能正确代表所需区域的种子像素
- ▶ 确定在生长过程中能将相邻相似像素包括进来的准则(区域灰度差、灰度分布统计特性)
- ▶ 确定让增长过程停止的条件或规则
- ■分裂和合并
- ▶ 根据灰度统计特性将得到众多小区域
- ▶ 根据区域的边界信息或相邻区域的相似特性进行合并
- ▶ 根据区域内特征差异的大小可考虑区域的分裂。

简单的区域增长实现

- 根据图像的不同应用<u>选择一个或一组种子点</u>,对应 于最亮或最暗的点,或者是位于点簇中心的点。
- 选择一个相似性准则(灰度级、彩色、纹理、 灰度梯度等特性相似)。
- 从种子点开始向外扩张,不断将与集合中各个像素 连通、且满足相似性准则的像素加入集合。
- 上一过程进行到不再有满足条件的新的像素加入集 合为止(终止准则)。

简单的区域增长示例

a b c d

FIGURE 10.40

(a) Image showing defective welds. (b) Seed points. (c) Result of region growing. (d) Boundaries of segmented defective welds (in black). (Original image courtesy of X-TEK Systems, Ltd.).

a b

c d

a 原始图,有焊接缺陷

b 高亮的种子点

c 区域增长的结果

d 分割的区域的边界

分水岭分割算法

- 分水岭(watershed,也称分水线/水线)
- 该方法把图像看成三维地形的表示,即二维的地基(对应图像空间)加上第三维的高度(对应图像灰度或其他特征如灰度梯度等),得到的是目标的边界(即分水岭)
- 分水岭计算原理(以灰度梯度幅值为例)
- \rightarrow 待分割图像f(x,y), 其梯度图象为g(x, y)
- ▶ HM_1 , M_2 , ..., M_R 表示 $\mathsf{g}(\mathsf{x},\mathsf{y})$ 中各局部极小值的像素位置, $\mathsf{C}(\mathsf{M}_i)$ 为与 M_i 对应的区域像素集合(Catchment basin 集水盆)。
- \rightarrow 用n表示当前阈值,T[n]代表所有满足条件g(u,v)< n 的像素(u,v)的集合
- ▶ 对 M_i 所在的区域,其中满足条件的坐标集合 $C_n(M_i)$ 可看作一幅二值图 $C_n(M_i) = C(M_i) \cap T[n]$
- ▶ 增加阈值n时,同时属于多个C(M_i)的像素即为分水点(箭头)

深圳先进技术研究院

4个极小值,通过分水岭分割,得到4个分割区域,每个区域又称为集水盆区域.

分水岭分割算法步骤

用C[n]代表在灰度阈值为n时图象中所有满足条件的像素 $C[n] = \binom{n}{2} \binom{n}{2}$

 $C[\max + 1]$ 将是所有区域的并集 $C[\max + 1] = \bigcup_{C_{\max + 1}} (M_i)$

C[n-1]是C[n]的子集,C[n]是T[n]的子集,所以C[n-1]又是T[n]的子集 令 S 代表T[n]中的连通组元集合,对每个连通组元 $S \in S[n]$,有3种可能性:

- (1) $s \cap C[n-1]$ 是1个空集
- (2) $s \cap C[n-1]$ 里包含C[n-1]中的一个连通组元

增加阈值时,同时 $s \cap C[n-1]$ 里包含C[n-1]中一个以上的连通组元 \rightarrow 属于多个区域的像 分别处理: 素即为分水岭像素

- (1) C[n] 可由把连通组元 s 加到C[n-1] 中得到
- (2)C[n]可由把连通组元 s 加到C[n-1]中得到
- (3)需要在 s 中建分水岭

(a)

(b)

原始图

阈值分割

分水岭

叠加轮廓

(d)

分水岭分割算法

- 构造分水岭的过程依赖于局部最小及局部最大值,因此一个集水盆对应的梯度范围是变化的,取决于与局部最小值对应的局部最大值梯度
- **过分割是这种方法的主要问题** 过分割的原因在于图像中噪声和其它不规则结构
- 利用标记(marker)控制过分割标记为图像中的一个连通区域
- ▶ 内部标记: 位于目标内 (比如灰度值相似且连通的一组连通像素)
- ▶ 外部标记:位于背景内

两个距离变换局部最大值作为标记; 基于距离函数的分割

利用距离变换检测分水线—最小、最大函数可以不 是梯度!实际可 以很灵活!

深圳先进技术研究院 数字图像处理 硕士研究生课程

基于标记的分水岭分割算法示例

基于梯度阈值的标记: 梯度极小值D 与E大于阈 值,不再拥有集水盆

分割的区域只有:

C(a), C(b), C(c), C(f), C(g)

背景不均的X光手 指图像 最佳整体阈值分割 基于标记的分水岭 分割+区域合并

参阅Zhang XD, Jia FC, Luo SH, Liu GY, Hu QM. A marker-based watershed method for X-ray image segmentation. Computer Methods and Programs in Biomedicine 2014, 113; 894-903.

分水岭分割算法示例

左:原图

右:基于梯度的分水线

内部标记:平滑处理后的局部最小值区域,比如腐蚀重建、求极小值

左: 灰色区域为内部标记、 曲线段为从仅有内标记计 算出的分水线即外部标记

右:基于梯度及内外标记得到的分水线,分割效果好

分水岭算法适合于解决两 个物体靠得很近,但又不 能用全局阈值分割的图像

作业(2学时)

■ 阅读文献

- 1. Hu QM, Hou ZJ, Nowinski WL. Supervised range-constrained thresholding. IEEE Transactions on Image Processing 2006; 15(1): 228-240.
- 2. Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 1979; 9(1): 62-66.

实现Otsu、RCOtsu算法,利用Cameraman图像做实验,给出实验结果(尝试不同的训练参数)并讨论。