Sequências

- Sequências: formato GenBank
- BioPython: objetos SeqIO, SeqRecord, SeqFeature

※ 〇

1

NCBI- format GenBank

Formato GenBank

- Começa com um header iniciado pela palavra chave LOCUS e que tem um conjunto de outros campos identificados por um título em maiúsculas
- No meio tem a tabela de "FEATURES" com a anotação, i.e. a informação biológica relevante
- No final tem a sequência iniciada pela palavra
 ORIGIN; no início de cada linha tem o nº da posição
- Cada registo termina com // (terminador)

LOCUS	NT 037436 64721 bp DNA linear	_					
DEFINITION	Drosophila melanogaster chromosome 3L.						
ACCESSION	NT 037436 REGION: complement (10363691101089)						
VERSION	NT 037436.4						
DBLINK	BioProject: PRJNA164						
	BioSample: SAMN02803731						
	Assembly: GCF 000001215.4						
KEYWORDS	RefSeq						
SOURCE	Drosophila melanogaster (fruit fly)						
ORGANISM	Drosophila melanogaster						
	Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda	;					

FEATURES	Location/Qualifiers
source	164721 /organism="Drosophila melanogaster" /mol type="genomic DNA"
	/db_xref="taxon:7227" /chromosome="3L"
	/genotype="y[1]; Gr22b[1] Gr22d[1] cn[1] CG33964[R4.2] bw[1] sp[1]; LysC[1] MstProx[1] GstD5[1] Rh6[1]"
gene	164721 /gene="bab1" /locus tag="Dme1 CG9097"
	/gene_symonyme"ano-W00118547.639; bab; BAB; BAB-1; bab-I Babl; BABl; bric-a-brac; CG13910; CG9097; Dmel\CG9097" /note="bric a brac 1"
	/gen_map="3-0.5 cM" /map="61B2-61F1" /db_xref="FLYBASS:FBan0004870"

ORIGIN						
1	ctcgtgctga	gaagactttt	ggccctgttt	gttggccaat	acagccatag	aacactga
61	ccgaaacaga	aacagaaacg	gaactgaaag	cacacactga	ataacactgg	acacgac
121	gagaaccgaa	tcgaactgaa	agaacgaggc	ggcgggctaa	ttgccaaatg	gccacqta
181	gcgcgtaacg	taacgaatac	gttaaacacc	catacacaca	cgcccagaca	cacacaca
241	cacacacaca	cacagagaga	cagaggcacg	cacacagata	cgcacatgta	catgccca
301	ctcagttgag	cgtcgtaatt	gtcgcggatt	cttttgaatg	cttattcctt	aaacgcta
361	tgaagagcga	atcqcqtaac	gaataacgat	cgcgtaacgt	ttacgatcgc	cggtgato
421	acgatcaacg	atcaacgatc	agctgcagac	aaaatggcgt	cggcgcaggc	ggagacga
481	gtcggcttgg	cgtccgaaca	gggaccagtg	gctcagaggc	agcgcaaagg	gacgggat
5.41	aacaccastt	cacccaaaaa	taacacaacc	teacceacte	addaddadda	assacat:

Laboratórios de Bioinformática

3

Formato GenBank

LOCUS:

LOCUS DMU54469 2881 bp DNA linear INV 22-FEB-1998

tipo divisão Data submissão

Tamanho da sequência Divisões do NCBI:
BCT – bactérias

INV – invertebrados MAM – outros mamíferos

PRI – primatas PLN – plantas

DEFINITION:

DEFINITION Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E) gene, alternative splice products, complete cds.

Na linha de definição temos um sumário do conteúdo biológico do registo

Laboratórios de Bioinformática

Formato GenBank

ACESSION:

ACCESSION U54469

Código do registo (chave primária)

VERSION:

U54469.1 GI:1322283

Acession.version

GI:geninfo identifier; cada versão de um

registo tem um GI diferente

KEYWORDS:

Este campo serve para colocar palavras chave sobre o registo. O seu uso é desencorajado por muitos.

KEYWORDS.

SOURCE: Organismo e informação taxonómica

SOURCE Drosophila melanogaster (fruit fly)

ORGANISM <u>Drosophila melanogaster</u>

Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea; Drosophilidae; Drosophila.

☆ ○

Laboratórios de Bioinformática

5

Formato GenBank

REFERENCE: Referências bibliográficas relacionadas com o registo

REFERENCE 1 (bases 1 to 2881)

AUTHORS Lavoie, C.A., Lachance, P.E., Sonenberg, N. and Lasko, P. TITLE Alternatively spliced transcripts from the Drosophila eIF4E gene produce two different Cap-binding proteins

JOURNAL J. Biol. Chem. 271 (27), 16393-16398 (1996)

PUBMED <u>8663200</u>

(...)

FEATURES:

Esta secção do registo contém as anotações biológicas sendo iniciada com a palavra chave FEATURES. Está organizada em pares chave/ localização:

Na 1ª coluna temos as chaves (tipo de anotação) que pode tomar valores como: source, gene, mRNA, CDS, etc.

Na 2ª colunas temos a informação respeitante a esta chave.

☆ 〇

Biopython

Abbritários de Bioinformática

Ջ

Objeto SeqIO

- SeqIO fornece um conjunto de interfaces para trabalhar com vários formatos de sequências biológicas
- As funções disponíveis permitem ler e escrever ficheiros com sequências em diversos formatos distintos
- As sequências são guardadas como objetos do tipo SeqRecord

Laboratórios de Bioinformática

9

Objeto SeqRecord

- Permite associar às sequências biológicas aspetos relacionados com a sua anotação, i.e. características das sequências e das entidades que estas representam
- Objeto SeqRecord é o tipo base para o input/output de sequências (a tratar mais adiante)

* ①

Campos do objeto SeqRecord

- Um objeto SeqRecord tem os seguintes campos:
 - o seq: a sequência propriamente dita
 - o id: identificador da sequências
 - o name: nome da sequência
 - o description: descrição
 - o letter_annotations: anotações por letra (posição) da sequência
 - o annotations: anotações globais da sequência (não estruturadas)
 - o features: anotações estruturadas da sequência (lista de objetos SeqFeature)
 - o dbxrefs: referências a bases de dados (externas)

Laboratórios de Bioinformática

Objeto SeqIO

- O objeto SeqIO permite realizar operações de leitura e escrita de ficheiros com sequências em diversos formatos
- Normalmente, ao ler as sequências o resultado será um objeto SeqRecord, ou um iterador que retorna estes objetos se o ficheiro tiver mais do que uma sequência

\$ wget https://nextcloud.bio.di.uminho.pt/s/AZtWXdtmL36jGwW/download -O data.zip

Laboratórios de Bioinformática

13

SeqIO: função read

- A função read permite ler ficheiros com um único registo
- Exemplo: ficheiro Fasta "NC_005816.fna":

```
>gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC
```

http://www.ncbi.nlm.nih.gov/nuccore/NC 005816

```
>>> from Bio import SeqIO
>>> record = SeqIO.read("NC_005816.fna", "fasta")
>>> record
SeqRecord(seq=Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGA...CTG'),
id='gi|45478711|ref|NC_005816.1|',
name='gi|45478711|ref|NC_005816.1|',
description='gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... sequence',
dbxrefs=[])
```

※ 〇

SeqIO: função read

```
>>> record.seq
Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG')
>>> record.id
'gi|45478711|ref|NC_005816.1|'
>>> record.name
'gi|45478711|ref|NC_005816.1|'
>>> record.description
'gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCP1, complete sequence'
>>> record.dbxrefs
[]
>>> record.annotations
{}
>>> record.letter_annotations
{}
>>> record.features
[]
```

15

SeqIO: leitura de um ficheiro NCBI GenBank

LOCUS NC 005816 9609 bp DNA circular BCT 2: **DEFINITION** Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete Formato GenBank. sequence. **ACCESSION** NC 005816 **VERSION** NC 005816.1 GI:45478711 **PROJECT** GenomeProject:10638 >>> from Bio import SeqIO >>> record = SeqIO.read("NC_005816.gb", "genbank") >>> record SeqRecord(seq=Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGA...CTG', IUPACAmbiguousDNA()), id='NC_005816.1', name='NC_005816', description='Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1, complete sequence.', dbxrefs=['Project:10638']) Laboratórios de Bioinformática ※ 〇

Objeto SeqFeature

- Permite guardar informação sobre features (anotações) das sequências de forma estruturada
- Estrutura baseada no formato GenBank / EMBL, na sua tabela de features
- Principais atributos de um objeto SeqFeature:
 - o location: localização da feature na sequência (pode ser uma posição, um intervalo, etc.)
 - o type: diz o tipo da feature (string)
 - o qualifiers: informação adicional (dicionário)

Laboratórios de Bioinformática

FeatureLocation >>> from Bio import SeqFeature >>> start_pos = SeqFeature.AfterPosition(5) >>> end_pos = SeqFeature.BetweenPosition(9, left=8, right=9) >>> my_location = SeqFeature.FeatureLocation(start_pos, end_pos) Cria um objeto SeqFeacture do tipo gene com a localização entre a posição 5 e 18. >>> print (my_location) [>5:(8^9)] Extrai da sequência original a sequência de nucleótidos referente ao gene. >>> int(my_location.start) >>> int(my_location.end) >>> example_parent = Seq("ACCGAGACGGCAAAGGCTAGCATAGGTATGAGACTT") >>> from Bio.SeqFeature import SeqFeature, FeatureLocation >>> example_feature = SeqFeature(FeatureLocation(5, 18, strand=-1), type="gene") >>> feature_seq = example_feature.extract(example_parent) >>> print (feature_seq) AGCCTTTGCCGTC Laboratórios de Bioinformática

SeqIO: parse

- função: *Bio.SeqIO.parse(),* com argumentos:
 - o Handle ou nome do ficheiro
 - Formato do ficheiro (uma string)
 - o Opcionalmente, o alfabeto para a sequência a ler
- Retorna iterador sobre objetos SegRecord

```
from Bio import SeqIO
for seq_record in SeqIO.parse("Is_orchid.fasta", "fasta"):
    print (seq_record.id )
    print (seq_record.seq)
    print (len(seq_record))
```

```
from Bio import SeqIO
for seq_record in SeqIO.parse("Is_orchid.gbk", "genbank"):
    print( seq_record.id )
    print (seq_record.seq)
    print (len(seq_record))
```

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta

Laboratórios de Bioinformática

21

SeqIO.read

- Semelhante à função parser
- Usada quando o ficheiro tem apenas uma única sequência, caso contrário uma excepção será lançada.
- Retorna um objeto do tipo SegRecord

```
>>> from Bio import SeqIO
>>> seq_record = SeqIO.read("Is_orchid.fasta", "fasta")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Users\sara\Anaconda3\lib\site-packages\Bio\SeqIO\_init__.py", line 712, in read raise ValueError("More than one record found in handle")
ValueError: More than one record found in handle
```

※ 〇

>>> from Bio import SeqIO >>> record_iterator = SeqIO.parse("Is_orchid.gbk", "genbank") >>> first_record = next(record_iterator) >>> print (first_record) ID: Z78533.1 Name: Z78533 Description: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA. Number of features: 5 /sequence_version=1 /source=Cypripedium irapeanum /taxonomy=['Eukaryota', 'Viridiplantae', 'Streptophyta', ..., 'Cypripedium'] /keywords=['5.8S ribosomal RNA', '5.8S rRNA gene', ..., 'ITS1', 'ITS2'] /references=[...] /accessions=['Z78533']

Laboratórios de Bioinformática

23

☆ ○

/data_file_division=PLN

Sequências retiradas da web

Genbank

```
from Bio import Entrez
from Bio import SeqIO
Entrez.email = "...@example.com"
handle = Entrez.efetch(db="nucleotide", rettype="gb", retmode="text",
id="6273291,6273290,6273289")
for seq_record in SeqIO.parse(handle, "gb"):
        print (seq_record.id, seq_record.description[:100], "...")
        print ("Sequence length: ", len(seq_record))
        print (len(seq_record.features), " features" )
        print ("from: ", seq_record.annotations["source"] )
handle.close()
```

※ ○

Laboratórios de Bioinformática

27

Escrita de sequências: write

- Função write: permite escrever sequências para ficheiros em diversos formatos
- Argumentos:
 - Lista de objetos SeqRecord (que representam as sequências e sua anotação que se pretende escrever)
 - o Handle ou nome do ficheiro
 - Formato (string)

Escrita de sequências: exemplo >>> from Bio.Alphabet import generic_protein >>> s1 = SeqRecord(Seq("MMYQQGCFAGGTV", generic_protein), id = "gi|14150838|gb|AAK54648.1|AF376133 1", 1 - Construção manual de dois description="chalcone synthase [Cucumis sativus]") objetos seqRecord. >>> s2 = SeqRecord(Seq("MVTVEEFRRAQ", generic_protein), 2- Criar lista com id="gi|13919613|gb|AAK33142.1|", duas sequências description="chalcone synthase [Fragaria vesca]") 3- Gravar no ficheiro >>> lr = [s1, s2] >>> from Bio import SeqIO >>> SeqIO.write(Ir, "ex.faa", "fasta") ☆ ○ Laboratórios de Bioinformática

Conversão de formatos

Ler as sequências e gravar em outro formato

```
from Bio import SeqIO records = SeqIO.parse("Is_orchid.gbk", "genbank") count = SeqIO.write(records, "my_example.fasta", "fasta") print ("Convertidos %i registos" % count )
```

Usar uma única função para converter os formatos

```
from Bio import SeqIO count = SeqIO.convert("Is_orchid.gbk", "genbank", "my_example.fasta", "fasta") print ("Convertidos %i registos" % count )
```

* 〇

Laboratórios de Bioinformática