Efficient Relational Learning with Hidden Variable Detection

Ni Lao, Jun Zhu, Liu Liu, Yandong Liu, William W. Cohen

Statistical Relational Learning

Relational tasks are everywhere

collective classification (Tasker et al. 2002) information extraction (Poon & Domingos 2007; Bunescu 2004) social network modeling (Kemp et al. 2006)

Modeling Long Rang Dependency (LRD) is hard (*)

e.g. smokes(A)& friends (A,B))& friends (B,C) → smokes(C)

e.g. IsMotherOf(A,B) →¬ IsFatherOf(A,C)

The Markov blanket of a variable grows prohibitively fast as the model's order of Markov dependency grows.

© Discovering hidden roles help capture LRD

e.g. topic models, block models

Thus reduce the need of extensive structure learning

<u>Bayesian Networks vs. MRFs</u>

Relational Bayesian Networks

- © Easy to do inference and learning
- © Cannot learn structure automatically (acyclic constraint)

Relational Markov Networks (RMNs)

- © Flexibility in representing complex patterns
- Inference and learning are harder

Kok & Domingos 2005

For efficiency, we only consider pair wise features, and we use mean field contrastive divergence (Welling & Hinton, 2001) to do approximately optimize a regularized objective

$$L(\boldsymbol{\theta}) = \log \sum_{\mathbf{h}} p(\mathbf{y}, \mathbf{h} | \mathbf{o}; \boldsymbol{\theta}) - \lambda |\boldsymbol{\theta}|_1 - \beta |\boldsymbol{\theta}|_2^2$$

Tree RMN

The Markov blanket of an entity e can be concisely defined by a relation tree starting from its type node

Two-level relation trees for the <Person, Person> type

Variable Induction

Adding variables as needed

Algorithm 1 Contrastive Variable Induction initialize a treeRMN $\mathcal{M} = (G, \mathbf{f}, \theta)$ while true do estimate parameters θ by L-BFGS $(\mathbf{f}', \theta') = induceHiddenVariables(\mathcal{M})$ if no hidden variable is induced then break end if end while return \mathcal{M}

We How to efficiently evaluate a candidate H?

2nd order Taylor expansion estimates that each new feature *f*

bring maximum gain
$$\Delta_{I,f} = \frac{1}{2} \frac{\left[-e_I[f]\right]_{\lambda}^2}{\delta_I[f] + \beta}$$
 at $\theta_f = \frac{\left[-e_I[f]\right]_{\lambda}}{\delta_I[f] + \beta}$

where I is the set of entities with H=1. The overall gain is

We have to efficiently sift through all candidates?

We use a naïve bottom up clustering algorithm

```
Algorithm 2 Bottom Up Clustering of Entities
  initialize clustering \Gamma = \{I_i = \{i\}\}\
  while true do
     for any pair of clusters I_1, I_2 \in \Gamma do
        inc(I_1, I_2) = \Delta_{I_1 \cup I_2} - \Delta_{I_1} - \Delta_{I_2}
     end for
     if the largest increment \leq 0 then
        break
     end if
     merge the pair with the largest increment
  end while
  return \Gamma
```

Results

The datasets and a learning curve

	Ba	sic	Composite		
	$\#\mathbf{E}$	$\#\mathbf{A}$	$\#\mathbf{E}$	#A	
Animal	50	80	0	0	
Nation	14	111	196	56	
UML	135	0	18,225	49	
Kinship	104	0	10,816	1*	

Table 1: Number of entities (#E) and attributes (#A) for four datasets. *The kinship data has only one attribute which has 26 possible values.

Previous approaches

MLN structure learning (MLS) [10], Infinite Relational Models (IRM) [9] Multiple Relational Clustering (MRC) [11]

© Example hidden variables

Animal data

	Entities	Positive Features	Negative Features
$\mathbf{C0}$	KillerWhale Seal Dolphin BlueWhale	Flippers Ocean Water Swims	Quadrapedal Ground Furry
	Walrus HumpbackWhale	Fish Hairless Coastal Arctic	Strainteeth Walks
C 1	GrizzlyBear Tiger GermanShepherd	Stalker Fierce Meat Meatteeth	Timid Vegetation Weak
	Leopard Wolf Weasel Raccoon Fox	Claws Hunter Nocturnal Paws	Grazer Toughskin Hooves
	Bobcat Lion	Smart Pads	Domestic
C2	Hamster Skunk Mole Rabbit Rat Rac-	Hibernate Buckteeth Weak	Strong Muscle Big Tough-
	coon Mouse	Small Fields Nestspot Paws	skin
C3	SpiderMonkey Gorilla Chimpanzee	Tree Jungle Bipedal Hands	Plains Fields Patches
		Vegetation Forest	

UML data

	Entities	Positive Features
C0	AcquiredAbnormality AnatomicalAb-	$c \xrightarrow{CC2^{-1}} cc.Causes c \xrightarrow{CC1^{-1}} cc.PartOf$ $c \xrightarrow{CC2^{-1}} cc.Complicates c \xrightarrow{CC2^{-1}} cc.CooccursWith$
	normality CongenitalAbnormality	$c \xrightarrow{CC2^{-1}} cc.Complicates c \xrightarrow{CC2^{-1}} cc.CooccursWith$
C1	Alga Plant	$c \xrightarrow{CC1^{-1}} cc.InteractsWith c \xrightarrow{CC1^{-1}} cc.LocationOf$
C2	Amphibian Animal Bird Invertebrate	$c \xrightarrow{CC1^{-1}} cc.InteractsWith c \xrightarrow{CC2^{-1}} cc.PropertyOf$
	Fish Mammal Reptile Vertebrate	$c \xrightarrow{CC2^{-1}} cc.InteractsWith c \xrightarrow{CC2^{-1}} cc.PartOf$

Main result

Animal, λ =0.01, β =1				Nation, $\lambda = 0.01$, $\beta = 1$					
	CLL	AUC	$\mathbf{dim}_{ heta}$	Time		CLL	AUC	$\mathbf{dim}_{ heta}$	Time
RMN_0	-0.34 ± 0.03	0.88 ± 0.02	3,655	5s	RMN_0	-0.40 ± 0.01	0.63 ± 0.04	7,812	15s
					RMN_1	-0.33 ± 0.02	0.72 ± 0.04	21,840	70s
					RMN_2	-0.38 ± 0.03	0.71 ± 0.04	40,489	446s
$ \mathbf{RMN}_0^{CVI\star} $	-0.33 ± 0.02	0.89 ± 0.02	4,349	9s	\mathbf{RMN}_1^{CVI}	-0.31 ± 0.02	0.83 ± 0.04	22,191	104s
MSL	-0.54 ± 0.04	0.68 ± 0.04		[†] 24h	MSL	-0.33 ± 0.04	0.77 ± 0.04		†24h
MRC	-0.43 ± 0.04	0.80 ± 0.04		[†] 10h	MRC	-0.31 ± 0.02	0.75 ± 0.03		†10h
IRM	-0.43 ± 0.06	0.79 ± 0.08		[†] 10h	IRM	-0.32 ± 0.02	0.75 ± 0.03		†10h
	UML, λ =0.	$.01, \beta = 10$				Kinship, λ :	$=0.01, \beta=10$		
	CLL	AUC	\dim_{θ}	Time		CLL	AUC	$\dim_{ heta}$	Time
RMN_0	-0.056 ± 0.005	0.70 ± 0.02	1,081	0.3h	RMN_0	$\S-2.95\pm0.01$	0.08 ± 0.00	25	6s
RMN_1	-0.044 ± 0.002	0.68 ± 0.04	2,162	1.0h	\mathbf{RMN}_1	§-1.36±0.05	0.66 ± 0.03	350	107s
	-0.028 ± 0.003	0.71 ± 0.02	6,440	14.5h	RMN_2	§ -2.34 \pm 0.01	0.33 ± 0.00	1,625	2.1h
$ \mathbf{RMN}_1^{CVI\star} $	-0.005 ± 0.001	0.94 ± 0.01	6,946	453s	\mathbf{RMN}_1^{CVI}	§ -1.04 \pm 0.03	0.81 ± 0.01	900	402s
MSL	-0.025 ± 0.002	0.47 ± 0.06		[†] 24h	MSL	-0.066 ± 0.006	0.59 ± 0.08		[†] 24h
MRC	$\textbf{-0.004} \!\pm\! 0.000$	0.97 ± 0.00		[†] 10h	MRC	-0.048 ± 0.002	0.84 ± 0.01		†10h
IRM	-0.011 ± 0.001	0.79 ± 0.01		†10h	IRM	-0.063 ± 0.002	0.68 ± 0.01		[†] 10h

