Билет 14. Вычисление площадей плоских фигур в декартовых координатах

а) Если функция y = f(x) неотрицательна на отрезке [a;b] и непрерывна на нем, то соответствующая ей криволинейная трапеция имеет площадь S и выражается формулой

$$S = \int_{a}^{b} f(x) \, dx$$

б) Аналогично п. а) если y = f(x) отрицательна, то площадь криволинейной трапеции S равна

$$S = \int_a^b -f(x) dx = -\int_a^b f(x)$$

Теорема: Пусть фигура ограничена снизу графиком функции $y=f_1(x)$, сверху графиком функции $y=f_2(x)$, а слева и справа прямыми $x=a,\,x=b$, тогда площадь этой фигуры S выражается формулой

$$S = \int_a^b \left(f_2(x) - f_1(x) \right) dx$$

То есть из верхней границы (функции) вычитаем нижнюю границу (функцию).

Доказательство:

а) Пусть имеется две неотрицательные функции f(x) и g(x) (f(x) расположена выше g(x)), $x \in [a;b]$. Площадь S фигуры, заключенной между функциями и прямыми, тогда равна

$$S = S_f - S_g = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx = \int_a^b \left(f(x) - g(x) \right) dx$$

б) Пусть f(x) и g(x) отрицательны и f(x) расположена выше $g(x); x \in [a;b]$. Тогда площадь S фигуры равна

$$S = -(S_f - S_g) = S_g - S_f = -\int_a^b g(x) \, dx - \left(-\int_a^b f(x) \, dx\right) = \int_a^b \left(f(x) - g(x)\right) dx$$

в) Пусть $f(x) \ge 0$, а $g(x) \le 0$; $x \in [a; b]$. Тогда площадь S фигуры равна

$$S = \int_a^b f(x) dx - \left(-\int_a^b g(x)\right) dx = \int_a^b \left(f(x) + g(x)\right) dx$$

Общие ситуации: -Разбиваем отрезок [a;b] по точкам пересечения границ функций с осью Ох, тогда площадь разбивается в сумму нескольких площадей, каждая из которых будет в ситуации a), b0 и b0 и, объединяя все интегралы в один по свойству аддитивности получаем искомую формулу.

Теорема: Пусть площадь ограничена справа графиком функции $x=\varphi_2(y),\ x=\varphi_1(y),$ снизу y=c, сверху y=d. Тогда

$$S = \int_{c}^{d} \left(\varphi_{2}(y) - \varphi_{1}(y) \right) dy$$

