CATEGORICAL DATA ANALYSIS NOTE EDGARD MABOUDOU

Chapter 8: Models for Matched Pairs

Example

- For a poll of a random sample of 1600 voting age British citizens, 944 indicated approval of the Prime minister's performance in the office.
- Six months later, of these same 1600 people, 880 indicated approval.
- n individuals: response at occasion 1.
- n individuals: response at occasion 2.

Occasion two					Response two				
		1	2				1	2	
Occasion	1	n11	n12	n1+	Response	1	p11	p12	p1+
one	2	n21	n22	n2+	one	2	p21	p22	p2+
		n+1	n+2	n			p+1	p+2	1

Dependent Categorical Data

- To compare categorical responses for two samples when each sample has the same subjects or when a natural pairing exists between each subject in one sample and a subject from the other sample.
- The responses in the two samples are then statistically **dependent**.
- The pairs of observations are called **matched pairs**.
- A two-way table having the same categories for both classifications summarizes such data.
- Let n_{ij} = the number of subjects making response i at the first survey and response j at the second.
- In the example, the sample proportions approving are 944/1600 = 0.59 and 880/1600 = 0.55.
- These marginal proportions are correlated, and statistical analyses must recognize this.

- Let π_{ij} = probability that a subject makes response i at survey 1 and response j at survey 2.
- The probabilities of approval at the two surveys are π_{1+} and π_{+1} , the first row and first column totals.
- Are π_{1+} and π_{+1} the same?

- When these are identical, the probabilities of disapproval are also identical, and there is *marginal homogeneity*.
- Marginal homogeneity is equivalent to equality of off-main diagonal probabilities; that is $\pi_{12} = \pi_{21}$.
- The table shows *symmetry* across the main diagonal.
- $p_{1+} = \frac{n_{1+}}{n}$ and $p_{+1} = \frac{n_{+1}}{n}$ are not independent since we have dependent samples.
- Thus, we cannot use earlier methods.
- For example, CI

$$p_{1+} - p_{+1} \pm z_{\alpha/2} \sqrt{\frac{p_{1+}(1-p_{1+})}{n} + \frac{p_{+1}(1-p_{+1})}{n}}.$$

is not appropriate

Dependent Categorical Data

- Use $\delta = \pi_{1+} \pi_{+1}$
- Let $d = p_{1+} p_{+1}$
- From the results on multinomial distributions,

- Thus,
- \bullet For large samples, d has approximately a normal distribution.
- A confidence interval for δ is then $d \pm z_{\alpha/2} \hat{\sigma(d)}$
- Here

- The hypothesis of marginal homogeneity is H_0 : $\pi_{1+}=\pi_{+1}$ (i.e. $\delta=0$)
- Wald test statistic is:

McNemar's Test

For large n

- Formal test for H_0 : $\pi_{1+} = \pi_{+1}$ (test for marginal homogeneity).
- \bullet Under H_0 , an alternative estimated variance is

$$\hat{\sigma}^2 = \frac{p_{12} + p_{21}}{n} = \frac{n_{12} + n_{21}}{n^2}.$$

- $p_{1+} p_{+1}$ is approximately $N(0, \sigma^2)$ if H_0 is true, where σ^2 is estimated by $\hat{\sigma}^2$ above
- The score test statistic is

- The square of z_0 is a chi-squared distribution with df = 1
- The test used here is called McNemar's test.
- It depends only on cases classified in different categories for the two observations.
- Large sample if $n_* = n_{12} + n_{21} > 10$

Small Sample Test

- The null hypothesis of marginal homogeneity for binary matched pairs is H_0 : $\pi_{12} = \pi_{21}$ or $\frac{\pi_{12}}{\pi_{12} + \pi_{21}} = 0.5$.
- For small samples, an exact test conditions on $n_* = n_{12} + n_{21}$.
- Under H_0 , n_{21} has a binomial $(n_*, 0.5)$ distribution, i.e.
- Given n_* , $n_{12} \sim Bin\left(n_*, \frac{\pi_{12}}{\pi_{12} + \pi_{21}} = 0.5\right)$.
- So the exact test computes P-value of observed n_{12} from binomial distribution.

Example: Each of 50 individuals were asked if they approved of some political issue. One year later, the same survey is repeated again.

		Time 2				
		App	Dis			
Time	App	18	8	26		
1	Dis	4	20	24		
		22	28	50		

Has the proportion approving changed?

(Example continued)

```
In R, we can use the command mcnemar.test as follow:
> table10.1<-matrix(c(18,8,4,20),byrow=T,ncol=2);table10.1</pre>
     [,1] [,2]
[1,]
     18
[2,]
        4
            20
> mcnemar.test(table10.1,correct=F)
        McNemar's Chi-squared test
data: table10.1
McNemar's chi-squared = 1.3333, df = 1, p-value = 0.2482
> mcnemar.test(table10.1,correct=T)
        McNemar's Chi-squared test with continuity correction
data: table10.1
McNemar's chi-squared = 0.75, df = 1, p-value = 0.3865
```

Also, we can use small sample test.

Example: 95% CI for $\pi_{1+} - \pi_{+1}$ from previous example. Sample Proportions

```
In R,
> t10.1_prop<-prop.table(table10.1)## to get the table of sample proportions
> margin.table(t10.1_prop,1) #marginal sum for rows
[1] 0.52 0.48
> margin.table(t10.1_prop,2) #marginal sum for columns
[1] 0.44 0.56
> prop.diff<-margin.table(t10.1_prop,2)[1]-margin.table(t10.1_prop,1)[1]
> off.diag<-diag(t10.1_prop[1:2,2:1]);off.diag
[1] 0.16 0.08
> ci<-prop.diff+c(-1,1)*qnorm(.975)*sqrt((sum(off.diag)-diff(off.diag)^2)/sum(ta > ci
[1] -0.21396752 0.05396752
```

Symmetry and Quasi-symmetry Models

- For a 2 × 2 table, marginal homogeneity means $\pi_{1+} = \pi_{+1}$, which is equivalent to $\pi_{12} = \pi_{21}$.
- That is symmetry from the table: $\pi_{ij} = \pi_{ji}$ for all i, j.
- Symmetry implies Marginal homogeneity, since $\pi_{i+} = \sum_{j=1}^{J} \pi_{ij}$ and $\pi_{+j} = \sum_{i=1}^{I} \pi_{ij}$.
- Yet, the converse is not true. Marginal homogeneity does not imply symmetry except when I=2.

Symmetry Model for Square Tables

• For an I category response with an $I \times I$ table for matched pairs, the cell probabilities π_{ij} satisfy marginal homogeneity

$$\pi_{i+} = \pi_{+i}, \quad i = 1, \dots, I$$

• The probabilities in the square table satisfy *symmetry*:

$$\pi_{ij} = \pi_{ji}$$
 for all i, j

- When I > 2, though, marginal homogeneity can occur without symmetry.
- The symmetry condition has the simple logit form $log(\pi_{ij}/\pi_{ji}) = 0$ for all i and j.
- The **symmetry model** also has a loglinear model representation:

$$\log \mu_{ij} = \lambda + \lambda_i + \lambda_j + \lambda_{ij}$$
, where $\lambda_{ij} = \lambda_{ji}$

- This is the special case of the saturated loglinear model with $\lambda_{ij}^{XY}=\lambda_{ji}^{XY}$ and $\lambda_i^X=\lambda_i^Y$
- The ML fit of the *symmetry* model is

$$\hat{\mu}_{ij} = \frac{n_{ij} + n_{ji}}{2}.$$

• the model has expected frequency

$$\hat{\mu}_{ij} = \frac{n_{ij} + n_{ji}}{2}.$$

- We have $\log \mu_{ij} = \log \mu_{ji}$ so that $\mu_{ij} = \mu_{ji}$
- The fit satisfies $\hat{\mu}_{ij} = \hat{\mu}_{ji}$
- It has $\hat{\mu}_i = n_{ii}$, a perfect fit in the main diagonal.
- The residual df for chi-squared goodness-of-fit tests equals I(I-1)/2.
- The adjusted residuals equal
- Only one residual for each pair of categories is non-redundant, since $r_{ij} = -r_{ji}$

Quasi-symmetry Model

- The symmetry model is so simple that it rarely fits well.
- One can accommodate marginal homogeneity by permitting the loglinear main-effects terms to differ.
- It is like the previous model but allows marginal heterogeneity by rewriting $\lambda_i^X \neq \lambda_j^Y$.
- The resulting model, called the quasi-symmetry model, is

$$\log \mu_{ij} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_{ij}, \text{ where } \lambda_{ij} = \lambda_{ji}$$

• Symmetry and quasi-symmetry models have symmetric association.

$$\log \theta_{ij} = \log \frac{\mu_{ij}\mu_{i+1,j+1}}{\mu_{i+1,j}\mu_{i,j+1}}$$

- The fitted marginal totals equal the observed totals $\hat{\mu}_{i+} = n_{i+}$ and $\hat{\mu}_{+i} = n_{+i}, i = 1, ..., I$
- The symmetry model is the special case.
- The independence model is the special case in which all $\lambda_{ij} = 0$
- This model is useful partly because it contains these two models as special cases.
- Fitting the *quasi-symmetry* model requires iterative procedures for loglinear models.

Ex. Migration data from the US census compares region of residence in 1985 with that of 1980 for 55,981 people. (Match pairs)

		1985				
		NE	NW	S	W	
	NE	11607	100	366	124	
1980	NW	87	13677	515	302	
	S	172	225	17819	270	
	W	63	176	286	10192	

For the symmetry model, the R output is

- > residence80<-c("NE","NW","S","W")</pre>
- > residence80<-factor(residence80,levels=residence80)</pre>
- > residence85<-residence80
- > table<-expand.grid(res80=residence80,res85=residence85)
- > table\$count<-c(11607,100,366,124,87,13677,515,302,172,225,17819,270,63,176,286
- > table\$sym<-paste(pmin(as.numeric(table\$res80),as.numeric(table\$res85)),
- + pmax(as.numeric(table\$res80),as.numeric(table\$res85)),sep=",")
- > table\$sym<-factor(table\$sym,levels=rev(table\$sym))</pre>
- > (fit.sym<-glm(count~sym,family=poisson(log),data=table))</pre>

Call: glm(formula = count ~ sym, family = poisson(log), data = table)

Coefficients:

(Intercept)	sym3,4	sym2,4	sym1,4	sym3,3	sym2,3
9.2294	-3.6017	-3.7529	-4.6914	0.5587	-3.3159
sym2,2	sym1,2	sym1,1			
0.2941	-4.6914	0.1300			

Degrees of Freedom: 15 Total (i.e. Null); 6 Residual

Null Deviance: 131000

Residual Deviance: 243.6 AIC: 393.7

For the quasi-symmetry model, the R output is

- > options(contrast=c("contr.treatment","contr.poly"))
- > table\$res80a<-factor(table\$res80,levels=rev(residence80))</pre>
- > table\$res85a<-factor(table\$res85,levels=rev(residence80))</pre>
- > (fit.qsym<-glm(count~sym+res80,family=poisson(log),data=table))</pre>

Call: glm(formula = count ~ sym + res80, family = poisson(log), data = table)

Coefficients:

(Intercept)	sym3,4	sym2,4	sym1,4	sym3,3	sym2,3
8.55762	-3.66438	-3.48922	-4.41090	0.43707	-3.13298
sym2,2	sym1,2	sym1,1	res80NW	res80S	res80W
0.91689	-4.04444	0.80174	0.04896	0.79333	0.67174

Degrees of Freedom: 15 Total (i.e. Null); 3 Residual

Null Deviance: 131000

Residual Deviance: 2.986 AIC: 159.2

> 1-pchisq(fit.qsym\$deviance,df=fit.qsym\$df.residual)

[1] 0.3937946

 $\hat{\theta}_{13}$: the odds of living S as opposed to W in 1985 are higher by a factor of 1.86 for those in 1980 in NE compared to those in NW.

 $\hat{\theta}_{31}$: the odds of living in the NE as opposed to NW in 1985 is higher by a factor of 1.86 for those in the S in 1980 compared to those in the W.

```
> exp<-fit.qsym$fitted.values
> obs<-table$count
> cbind(obs,exp)
     obs
                  exp
1
   11607 11607.00000
2
     100
             95.78862
3
     366
            370.43747
4
     124
            123.77391
5
      87
             91.21138
6
   13677 13677.00000
7
     515
            501.68254
8
     302
            311.10608
9
     172
            167.56253
     225
10
            238.31746
11 17819 17819.00000
12
     270
            261.12001
13
             63.22609
      63
14
     176
            166.89392
15
     286
            294.87999
16 10192 10192.00000
```

In the final:

- bring your own tables, calculator, two cheat sheets front-and-back.
- 80% of the exam will be on the last materials.
- 4 parts:
- I. Fit-model with logit from a loglinear.
- II. Model with ordinal associations.
- III. McNemar Test.
- part 1: do the test
- part 2: confidence interval.
- IV. Symmetry and Quasi-symmetry Models MAY BE there.