

## **COMSATS University Islamabad, Lahore Campus**

Block-B, Department of Electrical and Computer Engineering
COMSATS University Islamabad, Lahore Campus 1.5KM Defence Road, Off Raiwind Road, Lahore

## Assignment no. 1

(17/10/2022)

**Q1.** In Figure, particle 1 of charge  $+1.0 \,\mu\text{C}$  and particle 2 of charge  $-3.0 \,\mu\text{C}$  are held at separation  $L=10.0 \,\text{cm}$  on an x axis. If particle 3 of unknown charge  $q_3$  is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a) x and (b) y coordinates of particle 3?



**Q2.** How many electrons would have to be removed from a coin to leave it with a charge of  $+1.0 \times 10^{-7}$  C?

**Q3.** At each point on the surface of the cube shown in Fig., the electric field is parallel to the z axis. The length of each edge of the cube is 3.0 m. On the top face of the cube the field is  $E = -34 \hat{k} \, N/C$  and on the bottom face it is  $\bar{E} = +20 \, \hat{k} \, N/C$  Determine the net charge contained within the cube.



**Q4.** A long, straight wire has fixed negative charge with a linear charge density of magnitude 3.6 nC/m. The wire is to be enclosed by a coaxial, thin-walled nonconducting cylindrical shell of radius 1.5 cm. The shell is to have positive charge on its outside surface with a surface charge density s that makes the net external electric field zero. Calculate s.

**Q5.** Two charged concentric spherical shells have radii 10.0 cm and 15.0 cm. The charge on the inner shell is  $4.00 \times 10^{-8}$  C, and that on the outer shell is  $2.00 \times 10^{-8}$  C. Find the electric field (a) at r = 12.0 cm and (b) at r = 20.0 cm.

(To be submitted: 25-10-2022)