MATO (Measurement and Analysis tools)

使用说明

1、	软件	介绍	. 2
2、	安装		.3
3 车	次件功	7能	. 3
	3.1	执行程序	. 3
	3.2	软件界面	. 4
	3.3	主要功能模块	.6
		3.3.1 菜单栏	6
		3.3.2 操作区功能	. 6
		3.3.3 数据区功能	. 8
4、	分机	斤实例	9
	4.1	核型测量和分析实例	9
		4.1.1 打开图像	.9
		4.1.2 新建和设定标尺	.9
		4.1.3 染色体测定	11
		4.1.4 染色体分组和模式图绘制	12
		4.1.4 数据保存和载入	14
		4.1.5 合并多次测量	15
	4.2	形态学测量实例	16
		4.2.1 长度测定	16
		4.2.2 面积测定	16
		4.2.3 角度测定	17
		4.2.4 计数	17
		4.2.4 获取颜色	17
	4.3	图像纠正实例	18
		4.3.1 白平衡纠正	18
		4.3.2 水平偏移纠正	18
		4.3.3 垂直偏移纠正	19
		4.3.4 几何变形纠正	19
5 \$	常见问		20

1、软件介绍

植物的形态特征作为基因的外在表现,既是研究植物物种演化的最重要凭据, 也是人类对植物进行改造的立足点。绝大部分的系统发育研究,都需要将形态特 征与分析系统发育框架相结合,以推演物种演化的模式和历程(补充文献)。在 细胞分类学中,染色体的表型被称为"核型",代表着核基因组宏观层面上的结 构和功能组织,它的稳定性确保了将相同的遗传物质传递给下一代,而变异则使 生态分化和适应成为可能,在物种进化模式的研究方面有着非常重要的地位。

MATO (Measurement and Analysis tools)的前身是广为使用的核型分析软件 KaryoType,与 KaryoType 相比,MATO 新增了通用分析模式,即能够进行核型测定和分析,又可以进行通用的形态学分析。MATO 的主要功能包括:

核型分析:染色体长度测定、染色体自动分组、染色体不对称系数计算、模 式图绘制。

通用形态学分析:长度、面积、计数、角度和颜色五个基本工具,可用于测量性状。

图像纠偏工具:水平偏移纠正、垂直偏移纠正、几何透视纠正、白平衡纠正。 MATO 支持 jpg, jpeg, tif, png 等多种图片格式,所有的测量过程都可保 存和复现,不仅可以用于系统分类学研究,在需要进行形态学测量的生态学、病 理学等多种研究学科中都可以发挥重要作用。

2、安装

下載地址: http://mnh.scu.edu.cn/soft/blog/KaryoType/index.html Windows 版及 macOS 皆可使用。

安装说明:

MATO 以压缩包的方式进行分发,只需要将压缩包解压到电脑上的任意位置即可,直接在文件夹中双击运行程序即可。

Windows: 请确保您的计算机上安装了 Microsoft® .NET 3.5 Framework。.NET framework是 Windows 的一部分,但不同系统中的版本可能不同。The .NET framework 3.5 包可在 Microsoft 的官方网站上免费获得,请在使用之前安装,以免 MATO 无法运行。

macOS: MATO 使用 Wineskin 进行打包以在 macOS 上运行,同时支持 Intel CPU 和 M1。请尽量使用最新版的 macOS, 由于条件所限,MATO 并未在 所有的 macOS 版本上进行测试。

Linux:由于 Linux 的发行版众多,MATO 并未提供直接的运行包。您可以使用 Wine 自行进行打包 Windows 版的 MATO,或者使用虚拟机运行。

注意: 在 windows 中, 不要直接在压缩包中运行程序, 也不要单独将 MATO.exe 从文件夹中取出, 会出现"找不到文件"的错误。

3、软件功能

3.1 执行程序

在 Windows 系统上,将下载的压缩包解压后,双击 MATO.exe 即可运行。

在 macOS 上,将下载的压缩包解压后,把 MATO.app 放到 Application 文件夹,双击 MATO.app 即可运行。

3.2 软件界面

启动后软件界面如下:

选择 Standard 后界面:

选择 Karyotype 后界面:

软件功能区:

软件操作区:

3.3 主要功能模块

3.3.1 菜单栏

File(F) Edit(E) Graphic(G) Mode(M) Tools(A) Option(O) Help(H)

- ❖ File: 下含 Load、Save、New 三个内容。Load 用于导入图片或之前保存的测量数据, Save 用于保存当前测量数据 (支持 csv、txt 格式) 或当前图片 (支持 jpg、png、bmp 格式), New 用于清空当前操作回到空白状态。
- ❖ Edit: 用于编辑您的测量数据,具有插入,删除,清空三个功能。
- ❖ Graphic: 用于处理导入的图片。Rotate 可将图片进行翻转(90°、中心对称及轴对称翻转),Gray Scale 可将图片转为灰白色调,Crop Image 可裁剪图片。剩余的四个纠正功能(Vertical Correction、Horizontal Correction、Perspective Correction、White Balance Correction)用于纠正照片不水平或图片歪斜、有透视、白平衡误差等影响测量的问题(详见 4.3)。
- ❖ Mode: 选择模块,有 Standard 和 Karyotype 两大模块可选择,分别用于基础测量和核型测量。
- ❖ Tools: 其下的 Scales 可用于设置标尺。另外两个功能仅在 Karyotype 模式下使用, Group 可用于给染色体自动分组, Combine Results 用于合并多次测量的结果。
- ◆ Option: 可在这里设置点位线条等的显示,大小尺寸和颜色;是否禁用双击和左键拖动。
- ❖ Help: 这里可显示创作者的联系方式和软件引用。

3.3.2 操作区功能

(New): 新建一个数据 ID, 新建后默认测量长度

」(Length):测量长度

3.3.3 数据区功能

左上图为标准测量的功能区。

Standard 页面:

- ▶ ID:展示您目前操作的测量步骤 ID 序号。
- ▶ Value: 显示您该步骤测量的值。在下方的数据框中显示的是实时测量的值, 点击 "Save"后才会显示在 Value 中,表示已保存为该 ID 记录的数值。
- ▶ Type: 显示您目前测量的类型, lines 表示长度单位, size 表示面积单位, count 表示计数, angle 表示角度, color 表示颜色。
- Nodes: 显示您目前的测量步骤总共点击的点数。
- ▶ 其他: Save 和 Edit 功能用于操作正在测量的数据; 下方的色值框展现您正在测量的点位的颜色。

右上图为核型分析的功能区。

Karyotype 页面:

- ▶ ID:展示您目前操作的测量步骤 ID 序号。
- ▶ LA: long arm 的缩写,保存显示长臂的数值。
- > SA: short arm 的缩写, 保存显示短臂的数值。

- ▶ SAT: 随体染色体 (satellite chromosome) 的缩写, 指具有随体和非染色性的次生缢缩的染色体。当您测量后选择 no long arm 时, 该值自动变为 1; 选择 no short arm 时, 该值自动变为 2; 选择 intercalary 时, 该值自动变为 3。
- ▶ B: B chromosome 的缩写(又称副染色体 (accessory chromosome)、超数染色体 (supernumerary chromosome) 或额外染色体 (extra chromosome))。 F表示不存在B染色体, T表示存在B染色体, 当测量时 B chromosome 一 栏被勾选, 该值自动变为 T。
- ▶ 其他: Length-展示您目前测量的数值 (注: 未校正标尺前测量数值单位非标尺单位。); Set arm 1/2-设置臂长值,即当前 Length 所显示的值; No satellite-若测量的染色体没有随体,则选中此项。此项默认选中; No long arm-测量的目标染色体没有染色体长臂则选中此项; No short arm-测量的目标染色体没有染色体长臂则选中此项; Intercalary-测量的目标染色体存在染色体中间缺失则选中此项; B chromosome-若测量的染色体为 B chromosome,则选中此项。

4、分析实例

4.1 核型测量和分析实例

4.1.1 打开图像

打开 MATO, 选择 Karyotype 模式,点击 File-Load-Photo,在文件夹中找到目标图片,选择打开。

4.1.2 新建和设定标尺

导入图片后,使用左上角的"Length"测量该图片中标尺的像素值,如图为 268.0019。

随后复制测量所得值, 打开菜单栏中"Tools"下的"Scales"工具。

随后点击左上角的 Operation-new Scale 新建一个标尺,并在"Title"一栏为其命名。随后,我们将测量值"268.0019"粘贴到"Width in pixel"一栏,并修改其余参数。在这个例子中,标尺的实际长度为 10 微米,所以我们设置"Actual

length"为 10,将"Unit"修改为 um。设置完毕,单击 Save 保存,并 Apply,标尺便纠正完毕了。

Title	Pixel	Length	Unit	Size	Radio
new	266.25	10	um	10	0.03
new	60.16	1	cm	1	0.01
new	83.1513	1	cm	10	0.01
Т	324.2	1	mm	10	0.00
T-spe	224.1	1	cm	10	0.00
T-friut	424.2	0.5	mm	1	0.00
new	97.68	10	mm	10	0.10
new	1000	1000	mm	10	1 .
<					>
Title 1	Ra	dio 1		Save	
Width in pixel 268.0019 Actual length 10			te 10		Cancel
			it um	-	Apply

标尺设置完成后,我们可以看到左上角出现了正确的标尺,若不需要显示该标尺,则可以在上方菜单栏中点击 Option-Show-Scale Axis,将其关闭。我们可以通过再次使用"Length"测量该图自带标尺的长度来验证标尺纠正结果,见下图,测量结果为"9.999999",标尺设置成功。

4.1.3 染色体测定

点击左上角的"New"新建一个测量 ID, 随后点击"Length"进行测量。

单击鼠标左键可以增加一个测量点,单击右键可以中止该测量线段。如果测量的部分较长,点击 "Set arm 1"将其保存在 LA,如果较短,点击 "Set arm 1"将其保存在 SA,下方特殊选项见 3.3.3 的说明。

4.1.4 染色体分组和模式图绘制

在测量到所有染色体后,我们可以使用 Group 功能直接对测量数据自动分组和绘制模式图,并进行核型分析。点击左下角的"Group"(点击菜单栏中的Tools-Group 也可以),在弹出来的提示框中设置该物种倍性,并点击确定。

随后便会自动弹出核型图和分析结果,如果你认为该分组结果存在误差,可以通过"Manual adjustment"进行手动调整,例如"4"和"5"可以交换一下,将4和5分别填入空白处,点击"Swap",它们便完成了交换。

调整后的结果如下。

4.1.4 数据保存和载入

点击分析结果页面的左上角 File-Save, 会出现两个选项。"Save Graphic"是保存左上角的核型图;"Save Result"是保存右下角的分析结果。核型图可以保存为 png 或 emf 格式;分析结果可保存为 xls 或 txt 格式。

关闭分析结果页面,点击菜单栏中 File-Save,可以看见三个选项。 "Save Results"保存的结果也是 xls 或 txt 格式的分析结果文件,和上面出现的"Save Result"结果相同; "Save Current View"是保存当前的操作图像,可选择的格式有 jpg, png 和 bmp; "Save Karyotype File"是将当前所有的操作信息保存为 karyo 格式的文件。

一般而言,karyo 文件是最重要的,其余结果都可以通过打开它继而导出。 保存的结果文件如下。

其中 1.karyo 可以通过菜单栏中的 File-Lord- Karyotype File 重新导入, 导入

后的页面包含退出前的所有操作,可检查和继续测量(注:此时 Scale 仍是上一次测量使用的标尺,导入后记得选择该测量时设置的标尺,再继续测量。)

4.1.5 合并多次测量

我们在测量染色体核型时,往往会测量多个不同的细胞。MATO 可以一键合并所有的结果,将其总结为一个结果。

单击菜单栏中的 Tools-Combine Results, 唤出操作框。

单击左下角的 Add, 依次添加测量结果 (xls 或 txt 文件), 然后单击 Combine

and export, 便得到了合并结果, 合并结果可保存为 karyotype 文件, 再通过 MATO 打开导出核型图以及其余所需数据; 点击 Save Results, 还可以将合并结果直接保存为 xls 或 txt 文本文件。

4.2 形态学测量实例

4.2.1 长度测定

选择左边第二个"Length"工具,测量长度数据。左键点击选择点位,右键单击结束。(注:测量前要进行标尺校正,见4.1.2)

4.2.2 面积测定

点击左边第三个"Size"工具可进行面积测量,左键点击选择点位,右键单击结束。(注:测量前要进行标尺校正,见4.1.2)

4.2.3 角度测定

点击左边第五个"Angle"工具可进行面积测量。该工具通过鼠标左键点 4 个点作两条相交线来测量角度。图中粗略测定了主干和一支小分支之间的角度为 40°。

4.2.4 计数

点击左边第四个"Count"工具可进行计数。鼠标左键单击进行计数,左键点击选择点位,右键单击结束。计数过程会以ID号-打点序号的形式显示在图中。例如图中这份标本有21枚叶片。

4.2.4 获取颜色

点击左边第六个"Color"工具可进行颜色的获取。测量内容有六个选项,我们可以测量灰度值,RGB值,分开测量 R/G/B 或者测量十六进制颜色码。这些可以在菜单栏 Option-Color Channel 下进行选择。

鼠标左键单击两次框选出一个矩形, 显示的色值即为该范围内的均值。

4.3 图像纠正实例

4.3.1 白平衡纠正

导入图片后,单击一下该图片本来应该为白色的地方(可以在右下角取色框看见点击处颜色),然后点击 Graphic-White Balance Correction 一键进行白平衡纠正。

白平衡纠正前后对比

4.3.2 水平偏移纠正

导入图片后,使用"Length"拉一条您确认水平的线段,然后点击Graphic-Horizontal Correction 一键进行水平偏移纠正。图中我们假设比色卡尺是水平的。

水平偏移纠正前后对比

4.3.3 垂直偏移纠正

导入图片后,使用"Length"拉一条您确认垂直的线段,然后点击Graphic-Vertical Correction一键进行垂直偏移纠正。图中我们同样假设色卡边缘是垂直的。

垂直偏移纠正前后对比

4.3.4 几何变形纠正

导入图片后,使用"Size"工具找到标本原来的四个点连成面,然后使用Graphic-Perspective Correction 进行几何纠偏。在弹出的提示框中输入相近的正确长宽比。例如该例子中台纸为30cm*40cm,故而将宽度2533改为3000,长度3330改为4000,纠偏完成。

几何变形纠正前后对比

5、常见问题

Q1: 进行测定的图像有什么拍摄要求

A1: 图像应该清晰, 无遮挡, 并尽量拍摄完整, 拍摄角度最好处于同一平面上。 另外, 图像应该自带标尺或参照物, 以便图像预处理, 例如, 一个端正摆放的标本色卡。

Q2: 什么时候需要纠正图像

A2: 当需要测量的图像有明显的光线过暗, 色彩偏移, 歪斜, 不水平时, 可以通过纠正图像来减少误差。

Q3: 什么时候需要对自动分组进行调整

A3: 当您觉得核型图的自动分组存在明显的不妥之处时, 您可以手动调整使结果更加合理。另外值得注意的是, 测量染色体时最好由小到大或由大到小依次进行测量, 以便后续的结果合并。