Programação com Estrutura de Dados

Grafos - Parte 1

Cezar Junior de Souza

Grafos

- Grafos são estruturas de dados poderosas usadas para modelar relacionamentos entre objetos
- Um grafo é uma coleção de nós (ou vértices) conectados por arestas (ou arcos).
- Os vértices podem representar entidades e as arestas representam as relações entre essas entidades.

Grafos

Introdução

 Grafos são usados em muitas áreas, como redes de computadores, algoritmos de roteamento, mídias sociais, planejamento de trajetórias, entre outros.

Introdução

 Nó (ou vértice): representa uma entidade ou objeto. Pode ter um rótulo ou um valor associado.

Introdução

 Aresta (ou arco): representa a relação entre dois nós. Pode ser direcionada ou não direcionada.

- Aresta não direcionada:
 - Em um grafo não direcionado, as arestas não têm direção associada.
 - Isso significa que a conexão entre dois nós é bidirecional, permitindo que a transição ocorra em ambas as direções.
 - As arestas em um grafo não direcionado são frequentemente representadas por linhas ou segmentos de linha sem setas.
 - Por exemplo, se houver uma aresta que conecta os vértices A e B, podemos percorrer essa aresta tanto de A para B quanto de B para A.

Introdução

Aresta não direcionada:

- Aresta direcionada:
 - Em um grafo direcionado, as arestas têm uma direção associada.
 - Isso significa que a conexão entre dois nós é unidirecional, permitindo a transição apenas em uma direção específica.
 - As arestas em um grafo direcionado são frequentemente representadas por setas que indicam a direção do fluxo.
 - Por exemplo, se houver uma aresta direcionada que sai do vértice A e chega ao vértice B, podemos percorrer essa aresta apenas de A para B.
 - Podem existir self-loops

Introdução

Aresta direcionada:

Introdução

• Grau de um nó: número de arestas conectadas a um nó.

Introdução

• Caminho: uma sequência de nós conectados por arestas.

Caminho entre 0 e 3: {0,1,2,3}, vk=3, k=3 Comprimento =k=3

A aresta 3 é alcançável a partir Da aresta 0 via aresta 2

Introdução

Ciclo: um caminho fechado, onde o primeiro e o último nó são iguais.

Matriz de Adjacência

- A matriz de adjacência é uma matriz bidimensional onde as linhas e colunas representam os nós.
- Cada célula (i, j) contém um valor que indica se existe uma aresta entre os nós i e j.
- Essa representação é adequada para grafos pequenos, mas pode ser ineficiente para grafos grandes.

Matriz de Adjacência

Exemplo em C

Lista de Adjacência

- A lista de adjacência usa uma lista encadeada para cada nó, armazenando os nós adjacentes a ele. Cada célula (i, j) contém um valor que indica se existe uma aresta entre os nós i e j.
- Essa representação é mais eficiente para grafos grandes e esparsos, pois economiza espaço de armazenamento.
- Cada nó na lista encadeada representa um nó adjacente.

Lista de Adjacência

• Implementar uma lista de adjacência