线性方程:

Q1:

课后习题 2.3 题

Q2:

课后习题 2.4 题

Q3:

课后习题 2.8 题

Q4:

$$\begin{bmatrix} 4 & -2 & -4 \\ -2 & 17 & 10 \\ -4 & 10 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ -7 \end{bmatrix}$$

分别用高斯—赛德尔迭代法(函数已提供)和超松弛 迭代法(函数自己编写)求解,并调节超松弛法的松 驰因子,比较两种方法的迭代效率。

插值:

Q1:

课后习题 3.3 题

Q2:

课后习题 3.4 题

Q3:

x = 1, -1, 2 时, f(x) = 0, -3, 4

分别通过(1)范特蒙德法,(2)拉格朗日插值法,(3)牛顿插值法确定二次插值多项式的系数。

Q4:

已知 $\sin 0.32$ = 0.314567, $\sin 0.34$ = 0.333487, $\sin 0.36$ = 0.352274,用二次牛顿插值法计算 $\sin 0.3367$ 的值。

最小二乘法:

1、旧车价格

某年美国旧车价格的调查资料如表 5.4,其中 x_i 表示轿车的使用年数, y_i 表示相应的平均价格.试分析用什么形式的曲线来拟合上述的数据,并预测使用 4.5 年后轿车的平均价格大致为多少.

表 5.4

z_i	1	2	3	4	5	6	7	8	9	10
y_i	2615	1943	1494	1087	765	538	484	290	226	204

2 经济增长模型

增加生产、发展经济所依靠的主要因素有增加投资、增加劳动力以及技术革新等,在研究国民经济产值与这些因素的数量关系时,由于技术水平不像资金、劳动力那样容易定量化,作为初步的模型,可认为技术水平不变,只讨论产值和资金、劳动力之间的关系.在科学技术发展不快时,如资本主义经济发展的前期,这种模型是有意义的.

用 Q, K, L 分别表示产值、资金、劳动力,要寻求的数量关系 Q(K, L). 经过简化假设与分析,在经济学中,推导出一个著名的 Cobb-Douglas 生产函数

$$Q(K,L) = aK^{\alpha}L^{\beta}, 0 < \alpha, \beta < 1 \qquad (*)$$

式中 α , β , α 要由经济统计数据确定.现有美国马萨诸塞州 1900—1926 年上述 三个经济指数的统计数据,如表 5.5,试用数据拟合的方法,求出(*)式中的 参数 α , β , α .

表 5.5

	0	K	L		Q	K	L
ı	Q		L		V		
1900	1.05	1.04	1.05	1914	2.01	3.24	1.65
1901	1.18	1.06	1.08	1915	2.00	3.24	1.62
1902	1.29	1.16	1.18	1916	2.09	3.61	1.86
1903	1.30	1.22	1.22	1917	1.96	4.10	1.93
1904	1.30	1.27	1.17	1918	2.20	4.36	1.96
1905	1.42	1.37	1.30	1919	2.12	4.77	1.95
1906	1.50	1.44	1.39	1920	2.16	4.75	1.90
1907	1.52	1.53	1.47	1921	2.08	4.54	1.58
1908	1.46	1.57	1.31	1922	2.24	4.54	1.67
1909	1.60	2.05	1.43	1923	2.56	4.58	1.82
1910	1.69	2.51	1.58	1924	2.34	4.58	1.60
1911	1.81	2.63	1.59	1925	2.45	4.58	1.61
1912	1.93	2.74	1.66	1926	2.58	4.54	1.64
1913	1.95	2.82	1.68		_,_,		3.0

方程求根:

Q1:

课后习题 4.3 题

Q2:

课后习题 4.8 题

Q3:

课后习题 4.9 题

04

分别用牛顿法、割线法 (取 $x_0=2$, $x_1=1.9$)、逆二次插值法 (取 $x_0=1$, $x_1=3$, $x_2=2$),列式计算方程 $x^3-3x_1=1=0$,在x=2附近的根。

数值积分:

Q1: 分布用复合梯形公式和复合辛普森公式计算

$$\int_{0}^{1} \frac{x}{4+x^{2}} dx, n=8$$

Q2: 若用复合梯形公式计算 $\int\limits_0^1 e^x dx$, 问区间 [0,1] 应该分为多少等份才能使阶段误差不超

$$\frac{1}{2} \times 10^{-5}$$
? 改用复合辛普森公式呢?