LM 223 FORMES QUADRATIQUES ET GÉOMÉTRIE

Université Paris 6, 2005/06

(1) Lesquelles, parmi les matrices suivantes, sont diagonalisables sur R (resp., sur C):

$$\begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}, \qquad \begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}, \qquad \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}.$$

(2) Déterminer la dimension de l'espace des solutions du système linéaire suivant :

- (3) Déterminer l'inverse de la matrice $\begin{pmatrix} 1789 & 1790 \\ 1790 & 1791 \end{pmatrix}$ (sans calculatrice).
- (4) Les matrices suivantes sont-elles inversibles?

$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 3 & 0 & 4 \\ 5 & 0 & 6 & 0 \\ 0 & 7 & 0 & 8 \end{pmatrix}, \qquad \begin{pmatrix} 1000 & 2000 & 3000 \\ 4000 & 5000 & 6000 \\ 7000 & 8000 & 9000 \end{pmatrix}.$$

Déterminer leur rang.

(5) (i) Vérifier que

$$\mathcal{B}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \qquad \mathcal{B}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

sont des bases de \mathbb{R}^2 .

- (ii) Déterminer la matrice de passage de la base \mathcal{B}_1 à la base \mathcal{B}_2 et la matrice de passage de la base \mathcal{B}_2 à la base \mathcal{B}_1 .
- (6) Soit $E = \{ax^2 + bx + c \mid a, b, c \in \mathbf{R}\}$ l'espace de polynômes réels de degré ≤ 2 .
- (i) Montrer que les polynômes

$$x^{2} + 2x + 1$$
, $2x^{2} + 3x - 1$, $x^{2} + 3x + 3$

forment une base de E.

(ii) Déterminer la matrice qui représent l'application linéaire $\frac{d}{dx}: E \longrightarrow E$ ("la dérivée") dans cette base.

(7) Déterminer les valeurs propres et les vecteurs propres des matrices suivantes :

Ces matrices sont-elles diagonalisables sur ${\bf R}$?

(8) Pour quelles valeurs $t \in \mathbf{R}$ les vecteurs

$$\begin{pmatrix} 1 \\ t \\ -1 \end{pmatrix}, \begin{pmatrix} t \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

forment une base de \mathbb{R}^3 ?

(9) La matrice

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

est-elle diagonalisable sur \mathbf{R} (resp., sur \mathbf{C})?

(10) (i) Montrer que les vecteurs

$$\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$$

forment une base de \mathbb{R}^3 .

(ii) Déterminer la matrice de l'application linéaire

$$f: \mathbf{R}^3 \longrightarrow \mathbf{R}^3, \qquad f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+y-z \\ -2x-y+3z \\ 2x+y+z \end{pmatrix}.$$

dans la base de (i).

Les réponses doivent être justifiées.