Correction

Partie I

1. Pour
$$p \le n$$
, $\binom{n}{p} = \frac{n!}{p!(n-p)!}$. Pour $p > n$, $\binom{n}{p} = 0$.

2. Pour
$$k = 0$$
: $\binom{p}{k} + \binom{p}{k-1} = 1 + 0 = 1 = \binom{p+1}{k}$. Pour $k > 0$:
$$\binom{p}{k} + \binom{p}{k-1} = \frac{p!}{k!(p-k)!} + \frac{p!}{(k-1)!(p-k+1)!} = \frac{p!(p-k+1) + p!k}{k!(p-k+1)!} = \frac{(p+1)!}{k!(p+1-k)!} = \binom{p+1}{k}$$
.

3. Pour
$$k = 0$$
: $\binom{p}{k-1} = 0 = \frac{k}{p+1} \binom{p+1}{k}$. Pour $k > 0$:
$$\binom{p}{k-1} = \frac{p!}{(k-1)!(p+1-k)} = \frac{k}{p+1} \frac{(p+1)!}{k!(p+1-k)} = \frac{k}{p+1} \binom{p+1}{k}$$
.

$$\sigma(n, p+1) = \sum_{k=0}^{p+1} (-1)^{k-p-1} {p+1 \choose k} k^n = \sum_{k=0}^{p+1} (-1)^{k-p-1} \left({p \choose k} + {p \choose k-1} \right) k^n$$

$$= \sum_{k=0}^{p+1} (-1)^{k-p-1} {p \choose k} k^n + \sum_{k=0}^{p+1} (-1)^{k-p-1} \frac{k}{p+1} {p+1 \choose k} k^n = -\sigma(n, p) + \frac{1}{p+1} \sigma(n+1, p+1)$$

Partie II

- Les applications surjectives entre deux ensembles à n éléments correspondent aux applications bijectives. Il y en a n! donc S(n,n) = n!.
 - Il n'existe pas d'applications surjectives au départ d'un ensemble à n éléments et à l'arrivée dans un ensemble à p>n éléments, donc S(n,p)=0 pour p>n.
- 2.a Pour former une application telle que proposée, on part d'une surjection de $E \setminus \{a\}$ vers F, il y en a S(n, p+1) puis on choisit de manière quelconque f(a) dans F, ce qui offre p+1 choix. Au total, il y a (p+1)S(n, p+1) surjections de la forme proposée.
- 2.b Pour former une application telle que proposée, on choisit un élément de F qui sera l'image de a, il y a p+1 choix, puis on prolonge l'application par une surjection de $E\setminus \{a\}$ vers $F\setminus \{f(a)\}$ ce qui offre S(n,p) choix.

Au total, il y a (p+1)S(n,p) surjections de la forme proposée.

- 2.c Une surjection de E vers F est ou bien de la première forme, ou bien de la seconde, donc S(n+1,p+1) = (p+1)(S(n,p+1) + S(n,p)).
- 3. Procédons par récurrence sur $n \in \mathbb{N}$:

Pour n = 0:

Pour p = 0: S(0,0) = 0! = 1 et $\sigma(0,0) = 1$.

Pour p > 0: S(0, p) = 0 et $\sigma(0, p) = 0$.

Supposons la propriété établie au rang $\ n \geq 0$.

 $S(n+1,p+1) = (p+1)\big(S(n,p+1) + S(n,p)\big) = (p+1)\big(\sigma(n,p+1) + \sigma(n,p)\big) = \sigma(n+1,p+1) .$

Récurrence établie.

Partie III

1.a Existence: $x \in E = \bigcup_{k=1}^{p} A_k$ donc $\exists k \in \{1,...,p\}$ tel que $x \in A_k$.

Unicité : Si $x \in A_k$ et $x \in A_\ell$ (avec $k, \ell \in \{1, ..., p\}$) alors $A_k \cap A_\ell \neq \emptyset$ donc $k = \ell$.

- 1.b $\forall k \in \{1,...,p\}$, $A_k \neq \emptyset$. Pour $x \in A_k$, on a f(x) = k. Ainsi f est surjective.
- 2. $\forall k \in \{1,...,p\}$, $A_k \neq \emptyset$ car puisque f est surjective, l'élément k possède au moins un antécédent.

$$\bigcup_{k=1}^p A_k \subset E \ \text{ et } \ \forall x \in E \text{ , } x \in A_k \text{ en prenant } k = f(x) \text{ . Par suite } E \subset \bigcup_{k=1}^p A_k \text{ puis } E = \bigcup_{k=1}^p A_k \text{ .}$$

Soit $k, \ell \in \{1, \dots, p\}$, si $A_k \cap A_\ell \neq \emptyset$ alors pour $x \in A_k \cap A_\ell$ on a f(x) = k et $f(x) = \ell$ donc $k = \ell$. Par contraposée $k \neq \ell \Rightarrow A_k \cap A_\ell = \emptyset$.

Finalement (A_1,\ldots,A_p) est une partition à p classes de E .

3. Par ce qui précède, il y a autant de partition à p classes que de fonction surjective de E vers $\{1,...,p\}$:

il y a donc $S(n,p) = \sum_{k=0}^{p} (-1)^{k-p} \binom{p}{k} k^n$ partitions à p classes de E .