Robert McMillan

Can we predict the safety of a neighbourhood by the type of venues it has?

- If we could, it would be useful for:
 - People moving to a new city
 - Tourists going to a city for the first time
 - City planners, to create safer neighbourhoods

Data Acquisition

- Crime data from 2014 2018 in a csv file downloaded from the <u>Toronto Police</u> <u>Service Public Safety Data Portal site</u> (containing <u>information licensed</u> under the Open Government Licence - Ontario), with occurrences of:
 - assault
 - auto theft
 - break and enter
 - robbery
 - theft over \$5,000
 - homicide by neighbourhood for the years 2014 to 2018.
- Venue types in each of the Toronto neighbourhoods obtained by API calls to Foursquare API

Crime Data Cleaning and Processing

- serious crime occurrences extracted for 2018
- row with missing value dropped
- number entries set to Python type int
- serious crime occurrences summed into one column
- data sorted in descending order of crime occurrences
- neighbourhood coordinates added with geopy geocoder
- latitude, longitude and crime ranking added to columns
- resulting data size:
 - ▶ 105 rows (neighbourhoods) and 10 columns

Venue Data Cleaning and Processing

- maximum 30 venues added to each neighbourhood
- venues one-hot encoded by neighbourhood
- mean frequency of occurrence of each venue category calculated
- resulting data size:
 - ▶ 105 rows (neighbourhoods) x 236 columns (venues)

Data Analysis I

- k-means clustering performed for cluster (k) sizes 11 20
- elbow point found at k=18
- k-means run for k=18
- the 18 cluster labels added to the crime dataframe for visual analysis

Data Analysis II

▶ 63.8% of neighbourhood fall into two cluster groups (1 and 11)

	Neighbourhood		
Cluster Labels			
0	1		
1	25		
2	1		
3	1		
4	1		
5	1		
6	1		
7	7		
8	6		
9	5		
10	2		
11	42		
12	3		
13	1		
14	4		
15	1		
16	1		
17	2		

Data Analysis III

neighbourhoods from cluster groups 1 and 11 dominate the 10 neighbourhoods with the highest crime occurrences

Crime_Rank	Cluster Labels
1	1
2	8
3	11
4	12
5	14
6	11
7	1
8	5
9	1
10	4

Data Analysis IV

 neighbourhoods from cluster groups 1 and 11 also dominate the 10 neighbourhoods with the lowest crime occurrences

Cluster Labels
1
1
11
1
1
1
11
11
1
1

Data Analysis V

- lacture lactur
- lusters 4 and 5 have only one neighbourhood each and can be ruled out

hbourhood	Assault_2018	Auto_Theft_2018	BreakandEnter_2018	Robbery_2018	Theft_Over_2018	Homicide_2018	Crime_Occurrence	Latitude	Longitude	Crime_Rank	Cluster Labels
Black Creek	1005	79	221	224	46	4	1579	43.734634	-79.505355	1	1
Cliffcrest	787	58	314	93	50	1	1303	43.721939	-79.236232	2	8
Ionview	284	495	154	69	50	0	1052	43.735990	-79.276515	3	11
Palmerston- Little Italy	547	40	145	159	37	0	928	43.655854	-79.410116	4	12
he Beaches	457	22	236	78	30	0	823	43.671024	-79.296712	5	14
hurst Manor	404	109	83	64	14	0	674	43.763893	-79.456367	6	11
Centennial Scarborough	385	60	98	72	13	0	628	43.787491	-79.150768	7	1
dale-Kipling	295	34	189	54	53	0	625	43.721362	-79.565513	8	5
Scarborough Village	340	77	96	85	22	0	620	43.743742	-79.211632	9	1
annedy Park	411	26	103	51	5	2	598	43 724878	-79 253969	10	4

Data Analysis VI

clusters 8, 12 and 14 are grouped by the similarity of their venues, but do not show similar crime rankings

Crime_Rank	Cluster Labels		
2	8		
39	8		
41	8		
44	8		
56	8		
91	8		

Crime_Rank	Cluster Labels
4	12
36	12
77	12

Labels	Crime_Rank		
14	5		
14	32		
14	33		
14	82		

Conclusion

- This study explored the relationship between crime and venue types in neighbourhoods in Toronto
- If a correlation exists, it would be useful to people moving or travelling to a new city, as well as city planners
- However, no correlation was found between crime occurrences and neighbourhood venues

Caveats

- Geopy's geocoder used for coordinates may not be so accurate
- Some neighbourhoods do not have enough venues to make accurate comparisons

Future Direction

- Explore crime occurrences and neighbourhood venues with more accurate latitude and longitude coordinates
- Explore an intra-city comparison of neighbourhoods with more venues to better cluster the neighbourhoods