O Axioma de Martin

Lucas N. F. Teles

Resumo

Fazemos uma breve introdução do Axioma de Martin, desenvolvemos aplicações dele com ZFC para conseguir resultados na teoria dos conjuntos e na topologia e comentamos sobre a sua relação e consistência com outros axiomas como CH.

1. Introdução

O Axioma de Martin (MA) surgiu com Martin e Solovay em 1970 como uma forma alternativa, e mais direta, de atingir um número de resultados que usavam a Hipótese do Contínuo (CH) [4] (como veremos adiante, ZFC+CH já garante a validade do Axioma de Martin). E, assim como CH, MA é um axioma independente de ZFC. Apesar dessa conexão, pode-se verificar também que MA+¬CH é consistente com ZFC (ou seja, assumindo a consistência de ZFC, ZFC+MA+¬CH é consistente), mas como esse e resultados similares de independência fogem do escopo desse trabalho, nos limitamos a breves comentários sobre suas interações na Seção 4.

Apesar de não abordamos o tópico de Forcing neste trabalho, as conexões dessa teoria com o Axioma de Martin não podem ser evitadas. O Axioma de Martin atua em parte como uma forma mais acessível (de "pronto uso") de técnicas de Forcing para matemáticos não familiarizados com Forcing. Naturalmente, a linguagem que usamos para discutir esse axioma herda muito do Forcing. O nosso primeiro exemplo disso vem com as ordens parciais que protagonizam esse trabalho.

Um exemplo clássico do tipo de ordem parcial que usamos, ao qual retornaremos adiante, é o seguinte:

EXEMPLO 1. Sejam A e B conjuntos com A infinito, denotamos por P o conjunto $\operatorname{Fn}(A,B)$ de funções f com domínio finito $\operatorname{dom}(f) \subseteq A$ e contradomínio B. Isto é,

$$P = \bigcup \{B^I : I \in (\mathcal{P}(A) \setminus \{\emptyset\}) \land |I| < \omega\}.$$

Onde denotamos por $\mathcal{P}(C)$ o conjunto de partes de um conjunto C. P pode ser munido de uma ordem parcial † definida por ‡ :

$$f \leq g \iff g \subseteq f, \qquad \forall f, g \in P.$$

Isto é, $f \leq g \iff \operatorname{dom}(g) \subseteq \operatorname{dom}(f)$ e $f(x) = g(x) \ \forall x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$.

[†]Deixamos a verificação desse fato para o leitor. De forma similar, omitiremos a demonstração desse fato nos exemplos adiante, por consistirem de verificações simples e usuais.

 $^{^{\}ddagger}$ Quando definindo a ordem parcial, alguns autores preferem a ordem da inclusão $(f \le g \iff g \subseteq f)$. Naturalmente essa distinção não é particularmente importante, mas necessitaria a mudança de alguns detalhes na teoria discutida adiante.

Nesse cenário (P, \leq) é um conjunto parcialmente ordenado que contém todas as "funções parciais" partindo de subconjuntos de A à B onde duas funções são comparáveis se alguma é extensão da outra.

Particularidades da construção do exemplo acima, como o porquê do uso da inclusão inversa, vão ficar mais claras adiante.

OBSERVAÇÃO 1. Nesse assunto a notação e definições iniciais são coisas que variam consideravelmente entre autores. No geral essas distinções são simples e claras, como por exemplo a ordenação por inclusão ($f \leq g \iff f \subseteq g$) no exemplo acima. Recomendamos que o leito interessado em explorar mais este tópico se atente a isso. Para este trabalho nos baseamos principalmente na notação de [3].

2. O Axioma

2.1. Notação e pre-requisitos

Para discutir o Axioma de Martin precisaremos introduzir uma boa quantidade de notação e definições. Para evitar confusão relembramos que (P, \leq) é dita uma ordem parcial se P é um conjunto e \leq é uma relação transitiva, reflexiva e antissimétrica em $P \times P$.

Adicionalmente, dizemos que dois elementos p,q de P são **compatíveis** se existe $r \in P$ tal que $r \leq p$ e $r \leq q$. Se não houver $r \in P$ dessa forma dizemos que p e q são **incompatíveis** e denotamos isso por $p \perp q$. Com essa linguagem, definimos como uma **cadeia** em (P, \leq) um conjunto $A \subseteq P$ onde para quaisquer $p, q \in A, p \leq q$ ou $q \leq p$. Quando $A \subseteq P$ é tal que p = q ou $p \perp q$ para quaisquer $p, q \in A$, dizemos que A é uma **anticadeia**. Finalmente, um subconjunto $D \subseteq P$ é dito **denso** se para qualquer $p \in P$ existe $q \in D$ tal que $q \leq p$.

Para a ordem parcial do Exemplo 1, podemos pensar em $f,g\in P$ como compatíveis quando não "discordam" em nenhum ponto, cadeias representam um conjunto linearmente ordenado de extensões "encaixantes" de funções e anticadeias podem ser vistas como conjuntos de funções parciais que representam partes de funções $A\mapsto B$ estritamente diferentes, incompatíveis. Nesse cenário um conjunto seria denso quando comportasse extensões para quaisquer funções parciais em P.

DEFINIÇÃO 1. Dizemos que um conjunto parcialmente ordenado (P, \leq) tem a condição de cadeia[†] contável (**c.c.c.**) se toda anticadeia em (P, \leq) é enumerável.

DEFINIÇÃO 2. Seja (P, \leq) uma conjunto parcialmente ordenado. Um subconjunto $F \subseteq P$ é chamado de **filtro em** P se satisfaz as seguinte condições:

- (i) $F \neq \emptyset$;
- (ii) se $p, q \in P$, $p \in F$ e $p \le q$, então $q \in F$;
- (iii) se $p, q \in P$ existe $r \in F$ tal que $r \le p$ e $r \le q$.

Quando $F \neq P$ dizemos que F é um filtro próprio em P.

[†]É amplamente reconhecida a ironia de usar-se "cadeia" ao invés de "anticadeia" no nome dessa condição. Porém essa é a nomenclatura mais usual, vinda do inglês "countable chain condition" [1], e é a que usaremos.

Note que o item (iii) da definição representa uma "compatibilidade de todos os elementos de F", é equivalente a dizer que quaisquer dois elementos de F p e q são compatíveis na ordem induzida em F.

Podemos pensar no filtro como uma forma de organizar elementos compatíveis de uma ordem parcial mantendo todos os seus "sucessores à direita". Uma vantagem da manutenção de uma compatibilidade interna aos filtros é que estes nos dão uma forma natural de consolidar essas informações parciais.

Lema 2.1. Seja (P, \leq) um conjunto parcialmente ordenado como definido no Exemplo 1, se F é um filtro em (P, \leq) , $f = \bigcup F$ é uma função em $A \times B$.

Demonstração. Uma vez que $F \subseteq \mathcal{P}(A \times B)$, $f = \bigcup F \subseteq A \times B$ então f é uma relação em $A \times B$. Tome agora $(a,b),(a',b') \in f$ quaisquer, da definição de f segue que existem $g,g' \in F$ com $(a,b) \in g$ e $(a',b') \in g'$. Por F ser um filtro, g e g' são compatíveis e então $a = a' \implies b = b'$. Ou seja, f é uma relação funcional.

Dado um conjunto parcialmente ordenado (P, \leq) e \mathcal{D} uma família de subconjuntos densos de P, chamamos um filtro F em P de filtro \mathcal{D} -genérico se $F \cap D \neq \emptyset$ para qualquer $D \in \mathcal{D}$.

Podemos pensar em um filtro \mathcal{D} -genérico como um filtro que respeita, ou mais precisamente, que contém extensões de elementos contemplados por uma coleção \mathcal{D} de funções densas em P satisfazendo alguma escolha de propriedades. Nesse sentido, a estrutura do filtro nos garantiria uma forma de condensar essas propriedades em uma estrutura só, como no Lema 2.1.

OBSERVAÇÃO 2. Adiante começamos a trabalhar no Axioma de Martin em si, que não muito surpreendentemente por sua conexão com CH, está relacionado a cardinais. Para isso mencionamos outra escolha de notação: Adiante fazemos várias manipulações no contexto da aritmética cardinal, e apesar disso adotamos a notação ω ao invés de \aleph_0 que talvez seja usual para alguns leitores. Além disso, aproveitamos para mencionar que usaremos livremente (raramente com menção) o axioma da escolha (e os demais axiomas de ZFC).

2.2. $MA(\kappa)$, $MA \ e \ CH$

Para enunciar o Axioma de Martin precisamos primeiro enunciar $MA(\kappa)$ (para κ um cardinal) que é a fórmula descrita a seguir:

 $\mathrm{MA}(\kappa)$. Se (P, \leq) é um conjunto não vazio parcialmente ordenado c.c.c. e \mathcal{D} um conjunto de subconjuntos densos de P com $|\mathcal{D}| \leq \kappa$, então existe um filtro \mathcal{D} -genérico em P.

AXIOMA DE MARTIN (MA). Para todo cardinal $\kappa < 2^{\omega}$, vale MA(κ).

$$\forall \kappa (\kappa < 2^{\omega} \to \mathrm{MA}(\kappa))$$

Da definição da fórmula $MA(\kappa)$ é imediato que

$$MA(\kappa) \to MA(\lambda)$$
, para todo $\lambda < \kappa$. (2.1)

 $^{^{\}dagger}$ Novamente, existem definições alternativas, mas similares, para um filtro \mathcal{D} -genérico. Por exemplo, em [1] substitui-se \mathcal{D} por um conjunto X qualquer e na definição são considerados apenas os elementos de X que são subconjuntos densos de P. Esta é uma distinção que para nós não é importante, mas que pode ser de interesse para quem pretende estudar Forcing.

Para entender melhor o efeito do Axioma de Martin, vamos analisar a validade de $MA(\kappa)$ em ZFC (sem assumir MA):

Lema 2.2 (Rasiowa–Sikorski). $MA(\kappa)$ vale para todo $\kappa \leq \omega$. Em particular, dado (P, \leq) um conjunto parcialmente ordenado com $|\mathcal{D}| \leq \kappa$ uma família de densos e $p \in P$ qualquer, podemos encontrar um filtro \mathcal{D} -genérico com $p \in P$

Demonstração. De (2.1) vemos que é suficiente provar $\mathrm{MA}(\omega)$. Para isso, sejam (P, \leq) uma ordem parcial, $\mathcal{D} = \{D_n : n \in \omega\}$ uma família enumerável de subconjuntos densos de P e tome $p \in P$ um elemento de P arbitrários. Definimos $p_0 = p$ e indutivamente tomamos $p_{n+1} \in D_{n+1}$ tal que $p_{n+1} \leq p$, possível pela densidade de D_{n+1} e pelo axioma da escolha. Teremos assim uma cadeia $C = \{p_n : n \in \omega\}$.

A partir de C podemos definir um filtro F da seguinte forma:

$$F = \{ p \in P : \exists q (q \in C \land q < p) \}$$

É imediato que F satisfaz as propriedades (i) e (ii) da definição 2, tomando quaisquer $p, q \in G$ existem $p', q' \in C$ tais que $p' \leq p$ e $q' \leq q$, como C é uma cadeia basta tomar $r = \min_{\leq} \{p', q'\}$ e confirmamos a propriedade (iii). Por fim, temos que F é \mathcal{D} -genérico uma vez que para qualquer $D_n \in \mathcal{D}, D \cap C \neq \emptyset \implies D \cap F \neq \emptyset$.

Lema 2.3. $MA(\kappa)$ é falso para todo $\kappa > 2^{\omega}$.

Demonstração. Basta provar $\neg MA(2^{\omega})$. Para isso trazemos um contraexemplo seguindo o formato do Exemplo 1:

Seja (P, \leq) como no exemplo 1 com $A = \omega$ e B = 2. Como $P = \operatorname{Fn}(\omega, 2)$ é a união enumerável de conjuntos enumeráveis é enumerável e trivialmente tem a c.c.c. Definimos então duas famílias de subconjuntos:

$$D_n = \{ p \in P : n \in \text{dom}(p) \}, \quad \forall n \in \omega,$$

e,

$$E_h = \{ p \in P : \exists a \in \omega \land h(a) \neq p(a) \}, \quad \forall h \in 2^{\omega}.$$

Claramente esses são subconjuntos de P. Para ver que os conjuntos D_n são densos, tome $p \in P$ qualquer, se $p \notin D_n$ então $n \notin \text{dom}(p)$ e $q = p \cup (n,0) \in D$ e é uma extensão de p então $q \leq p$, caso contrário temos $p \leq p$ trivialmente.

Similarmente, seja $p \in P$ e $f \in 2^{\omega}$ quaisquer. Se $p \in E_f$, $p \le p$ e temos o que queríamos. Caso contrário, como $|\operatorname{dom}(p)| < \omega$, existe $a \in \omega \setminus \operatorname{dom}(p)$ e definindo

$$q = \begin{cases} p \cup \{(a,1)\} & \text{se } f(a) = 0\\ q = p \cup \{(a,0)\} & \text{se } f(a) = 1, \end{cases}$$

temos que $q \in E_g$ e $q \leq p$. Ou seja,

$$\mathcal{D} = \{D_n : n \in \omega\} \cup \{E_g : g \in 2^\omega\}$$

é uma família de subconjuntos densos de P. Já que $|\{D_n: n \in \omega| = \omega \text{ e } |\{E_g: g \in 2^\omega\}| = 2^\omega, 2^\omega \leq |\mathcal{D}| \leq \omega + 2^\omega$ e assim temos que $|\mathcal{D}| = 2^\omega$.

Agora, suponha, por absurdo, que F seja um filtro \mathcal{D} -genérico. Então $f = \bigcup F$ define uma função em $\omega \times 2$ pelo Lema 2.1. Como F é \mathcal{D} -genérico verificamos duas propriedades:

- (i) $\operatorname{dom}(f) = \omega$. Tome $a \in \omega$ qualquer. Para qualquer $p \in D_a$ temos que $a \in \operatorname{dom}(p)$, como $F \in \mathcal{D}$ genérico existe $p \in D_a \cap F$ e $a \in \operatorname{dom}(p) \subseteq \operatorname{dom}(f)$. Ou seja, $a \in \operatorname{dom}(f) \subseteq \omega$ para
 qualquer $a \in \omega$.
- (ii) $f \neq h$ para qualquer $h \in 2^{\omega}$. Seja $h \in 2^{\omega}$ qualquer. Já que $E_h \cap F \neq \emptyset$, existe $p \in E_h \cap F$ e $a \in \omega$ tal que $g(a) \neq h(a)$, como $g \subseteq f$, $f(a) = g(a) \neq h(a)$. Ou seja, $f \neq h$.

Segue da propriedade (i) que f é uma função em 2^{ω} (é uma função em $\omega \times 2$ com domínio ω), então $f \in 2^{\omega}$ e do item (ii) temos que $f \neq f$, um absurdo.

Do Lema 2.2 temos uma garantia da propriedade $MA(\kappa)$ para cardinalidades menores ou iguais a ω . Já o Lema 2.3 nos diz que qualquer busca pela propriedade $MA(\kappa)$ para cardinais maiores ou iguais ao contínuo (2^{ω}) é fútil. Nesse cenário o Axioma de Martin é uma afirmação que dá a $MA(\kappa)$ o maior domínio permissível em ZFC. Como o estudo de onde vale essa fórmula é análogo buscar o menor cardinal \mathfrak{m} em que $MA(\mathfrak{m})$ para de valer, e este é tal que

$$\omega_1 < \mathfrak{m} < 2^{\omega}$$

fica clara a conexão entre CH e MA. De fato,

$$ZFC + CH \rightarrow \omega_1 = 2^{\omega} \rightarrow \mathfrak{m} = 2^{\omega} \rightarrow MA.$$

3. Aplicações

3.1. Topologia: Martin e Baire

O Axioma de Martin é um resultado de grande interesse topológico,... Uma forma usual de definir em um espaço topológico uma ordem parcial é da seguinte maneira:

EXEMPLO 2. Seja (X,τ) um espaço topológico e seja $P=\tau\setminus\{\emptyset\}$. Definimos \leq em $P\times P$ como a seguir

$$U < V \iff U \subset V, \quad \forall U, V \in P.$$

Através de uma verificação simples vemos que \leq é uma ordem parcial. Além disso, temos a seguinte equivalência

$$U \perp V \leftrightarrow ((E \subseteq U \land E \subseteq V) \to E = \emptyset) \leftrightarrow U \cap V = \emptyset. \tag{3.1}$$

Uma forma de pensar nessa ordem parcial é que estamos analisando quando abertos "refinam" uns aos outros. Note que ao invés da ordem de inclusão inversa do Exemplo 1 ordenamos $\tau \setminus \{\emptyset\}$ pela inclusão, refletindo que buscamos por abertos mais "refinados" ao invés de "abertos mais extensos" (que conseguiríamos seguindo a inclusão inversa).

Inspirado nesse exemplo introduzimos a seguinte definição:

DEFINIÇÃO 3. Seja (X, τ) um espaço topológico. Dizemos que (X, τ) é c.c.c. se toda família de abertos 2-a-2 disjuntos é enumerável.

Relembramos ainda a definição a seguir:

DEFINIÇÃO 4. Seja (X, τ) um espaço topológico. Dizemos que $E \subseteq X$ é um **conjunto raro** se \overline{E} tiver interior vazio.

TEOREMA DE BAIRE. Se (X,τ) é um espaço topológico compacto, Hausdorff e c.c.c., não pode ser representado pela união de uma família de cardinalidade menor ou igual a ω de conjuntos raros.

OBSERVAÇÃO 3. Existem múltiplas versões, similares, do Teorema de Baire. Uma versão usual dele enfraquece o teorema acima substituindo a hipótese de X ser compacto com ser localmente compacto. Escolhemos essa versão mais fraca do teorema por contrastar melhor com o teorema que provaremos.

Indicamos como a seguir quando qualquer axioma além de ZFC for assumido. Em particular, quando escrevemos ZFC+MA(κ) queremos representar alguma escolha arbitrária de $\omega < \kappa < 2^{\omega}$. Quando assumimos apenas ZFC, omitimos essa notação.

TEOREMA 3.1 (ZFC + MA(κ)). Se (X,τ) é um espaço topológico compacto e Hausdorff, X não pode ser atingido pela união de uma família de cardinalidade menor ou igual a κ de conjuntos raros.

Demonstração. Seja (X,τ) um espaço topológico compacto e Hausdorff. Definimos um conjunto parcialmente (P,\leq) a partir de (X,τ) como no Exemplo 2. Da equivalência (3.1) e do fato que (X,τ) é c.c.c. então (P,\leq) tem a c.c.c.

Agora, sejam $\{E_{\alpha}: \alpha \leq \kappa\}$ uma família de conjuntos raros, então definimos por $\mathcal{U} = \{U_{\alpha}: \alpha \leq \kappa\}$ uma família de abertos densos onde $U_{\alpha} = X \setminus \overline{E_{\alpha}}$. Definimos $D_{\alpha} = \{U \in P: \overline{U} \subseteq U_{\alpha}\}$, vejamos que D_{α} é denso em (P, \leq) para todo $\alpha \leq \kappa$: Seja $U \in P$ qualquer, como U e D_{α} são abertos, $V = U \cap U_{\alpha}$ também é aberto e uma vez que U_{α} é denso temos que é um aberto não vazio. Como (X, τ) é T_3 , existe um aberto não vazio $V \in P$ tal que $\overline{V} \subseteq U \cap U_{\alpha}$. Assim, $V \in D_{\alpha}$ e $V \leq U$ e como a escolha de $U \in P$ foi arbitrária D_{α} é denso.

Tome $\mathcal{D} = \{D_{\alpha} : \alpha \leq \kappa\}$, pela validade de MA(κ) temos que existe F um filtro \mathcal{D} -genérico em (P, \leq) .

Como F é um filtro na ordem \subseteq , tem a PIF e como X é compacto, $\bigcap \{\overline{U}: U \in F\}$ é não vazio

Por fim, verificamos que $\bigcap \{\overline{U}: U \in P\}$ está contido em U_{α} para qualquer $\alpha \leq \kappa$: Dado U_{α} , $F \cap D_{\alpha} \neq \emptyset$ então existe $q \in F$ com $\overline{q} \subseteq U_{\alpha}$. Para qualquer $p \in F$, como F é um filtro, existe $r \in P$ tal que $r \subseteq p \cap q$. Então

$$\bigcap \{\overline{U}: U \in P\} \subseteq p \cap q \subseteq U_{\alpha}.$$

Com isso,

$$X \setminus \left(\bigcap_{\alpha \le \kappa} E_{\alpha}\right) \supseteq X \setminus \left(\bigcap_{\alpha \le \kappa} \overline{E_{\alpha}}\right) = \bigcup_{\alpha \le \kappa} (X \setminus \overline{E_{\alpha}}) = \bigcup_{\alpha \le \kappa} U_{\alpha} \neq \emptyset.$$

As conexões entre o Teorema de Baire e o Axioma de Martin não se limitam ao resultado deste teorema. Além do enunciado do Teorema 3.1 com κ ser uma consequência de ZFC+MA(κ), pode-se provar[3] que é na realidade um enunciado equivalente. Isto é, que este enunciado com

 κ prova a validade de MA(κ). Infelizmente, este é mais um resultado que foge do escopo deste trabalho, então nos contentaremos com essa menção.

3.2. Conjuntos quase disjuntos e a exponenciação ordinal

Agora investigaremos uma consequência interessante do Axioma de Martin sobre a exponenciação ordinal. Para atingir tal resultado, usaremos de alguns conceitos novos de teoria dos conjuntos. O primeiro deste é o de conjuntos quase disjuntos.

DEFINIÇÃO 5. Seja κ um cardinal infinito e x,y subconjuntos de κ . Dizemos que x e y são quase disjuntos se $|x \cap y| < \kappa$. Dizemos que $A \subseteq \mathcal{P}(\kappa)$ é uma família de conjuntos quase disjuntos se todo $x \in A$ tiver cardinalidade κ e os elementos de A forem 2-a-2 quase disjuntos.

Na matemática em geral é comum discutir a existência "infinitos de tamanhos diferentes", talvez igualmente comum a isso seja a ênfase feita na grande diferença entre as cardinalidades de \mathbb{N} e \mathbb{R} . E de forma geral, é natural imaginarmos o sucessor de um cardinal como substancialmente maior que ele†. Refletindo essa perspectiva, temos a noção de conjuntos quase disjuntos que estabelece como padrão um cardinal infinito κ , e a partir dele a diferença entre quaisquer conjuntos (subconjuntos de κ) que coincidam em um conjunto $x \cap y$ cuja cardinalidade não chega a κ , é considerada insubstancial.

Uma família de conjuntos quase disjuntos A, como o nome sugere consiste em um conjunto de conjuntos entre si quase disjuntos, adicionando-se apenas a hipótese de que estes conjuntos são significativamente grandes $(x \in A \implies |x| \le \kappa)$. Como pode-se esperar trabalharemos com famílias de conjuntos quase disjuntos de cardinalidades infinitas e enquanto é fácil construir exemplos de famílias de cardinalidade finita, não é tão claro o que garante a existência de uma família de cardinalidade entre ω e 2^{ω} . Para isso trazemos o seguinte resultado:

Lema 3.2. Existe uma família de conjuntos quase disjuntos $A \subseteq P(\omega)$ de cardinalidade 2^{ω} , e consequentemente de qualquer cardinalidade menor.

Demonstração. Para qualquer $X \in \mathcal{P}(\omega)$ tome $A_X = \{X \cap \alpha : \alpha < \omega\}$. Claramente, $X \neq Y \implies A_X \neq A_Y$ para $X, Y \in \mathcal{P}(\omega)$. Além disso, se $X \neq Y$ então

$$X\Delta Y := (X \setminus Y) \cup (Y \setminus X) \neq \emptyset$$

e como ω é bem ordenado, existe $n=\min X\Delta Y$. Como $n\notin X\cap\alpha,\ X\cap\alpha\neq Y\cap\alpha$ para qualquer $\alpha>n$. Ou seja,

$$A_X \cap A_Y \subseteq \{X \cap \alpha : \alpha < n\}$$

e portanto $|A_X \cap A_Y| \le n < \omega$. Assim, $\{A_X : X \in P(\omega)\} \subseteq P(\omega)$ é uma família de conjuntos quase disjuntos de cardinalidade 2^{ω} .

Após essa breve introdução, podemos definir o ambiente em que trabalharemos nessa seção.

[†]Dizemos isso independentemente da afirmação anterior, não estamos assumindo CH e portanto não queremos dizer que a cardinalidade de $\mathbb R$ seria a sucessora de $\mathbb N$

EXEMPLO 3. Seja $A \subseteq \mathcal{P}(\omega)$. Chamaremos (P_A, \leq) de ordem parcial dos conjuntos quase disjuntos se for como a seguir:

$$P_A = \{(s, F) : s \subseteq \omega \land |s| < \omega \land F \subseteq A \land |F| < \omega\}$$

onde definimos $(s', F') \leq (s, F) \iff s \subseteq s' \land F \subseteq F' \land \forall x \in F(x \cap s' \subseteq s).$

Isto é, A é uma família de subconjuntos de ω e (P_A, \leq) é um conjunto de pares ordenados (s,F) onde s é um subconjunto finito de ω e F é uma família de finitos subconjuntos de ω , selecionada dentre os conjuntos que estão em A. A ordem parcial definida nesse conjunto afirma que $(s',F')\leq (s,F)$ quando ambos s' e F' estendem os conjuntos s e F, respectivamente, de forma que só sejam adicionados a s' elementos de ω que não estão em nenhum dos conjuntos em F. A seguir desenvolvemos uma noção conveniente para compatibilidade

Lema 3.3. Seja (P_A, \leq) como no Exemplo 3. Então (s, F) e (s', F') são compatíveis se, e somente se,

$$\forall x \in F(x \cap s' \subseteq s) \land \forall x \in F'(x \cap s \subseteq s'). \tag{3.2}$$

E em caso positivo $(s \cup s', F_1 \cup F_2)$ é uma extensão de ambos (s, F) e (s', F').

Demonstração. (\Rightarrow) Supondo que (s,F) e (s',F') são compatíveis, temos que existe $(s_0,F_0) \in P_A$ tal que $(s_0,F_0) \leq (s,F)$ e $(s_0,F_0) \leq (s',F')$. Da onde segue que

- (i) $\forall x \in F(x \cap s_0 \subseteq s)$ e como $s' \subseteq s_0, \forall x \in F(x \cap s' \subseteq s)$;
- (ii) $\forall x \in F'(x \cap s_0 \subseteq s')$ e como $s \subseteq s_0, \forall x \in F(x \cap s \subseteq s')$.

Combinando os itens (i) e (ii) temos a equação (3.2).

 (\Leftarrow) Tomando (s, F) e (s', F') satisfazendo a equação (3.2), provaremos diretamente que $(s \cup s', F_1 \cup F_2)$ é uma extensão de ambos (s, F) e (s', F').

Claramente $s \subseteq s \cup s', s' \subseteq s \cup s', F \subseteq F \cup F'$ e $F' \subseteq F \cup F'$. É igualmente trivial ver que:

$$(\forall x \in F(x \cap s' \subseteq s)) \to \underbrace{(\forall x \in F(x \cap (s \cup s') \subseteq s \cup s'))}_{\varphi(s,s',F)},$$

e,

$$(\forall x \in F'(x \cap s \subseteq s')) \to \underbrace{(\forall x \in F'(x \cap (s \cup s') \subseteq s \cup s'))}_{\varphi(s,s',F')}.$$

Por hipótese, temos que valem $\varphi(s, s', F)$ e $\varphi(s, s', F')$. Juntando essas duas fórmulas temos $\varphi(s, s', F \cup F')$, isto é,

$$\forall x \in F \cup F'(x \cap (s \cup s') \subset s \cup s')).$$

Com isso concluímos que $(s \cup s', F_1 \cup F_2)$ é uma extensão de ambos (s, F) e (s', F') e portanto que eles são compatíveis.

Assim, filtros em (P_A, \leq) representam uma estrutura que comporta conjuntos finitos s e suas extensões evitando os conjuntos em A selecionados por conjuntos F. Em paralelo com o Exemplo 1, consolidaremos a informação dessa estrutura com a definição a seguir:

$$d_G := \bigcup \{ s \in \mathcal{P}(\omega) : \exists F(F \subseteq A \land (s, F) \in G) \}.$$

Lema 3.4. Seja (P_A, \leq) como no Exemplo 3. Se G é um filtro em (P_A, \leq) , então para qualquer $(s, F) \in G$

$$\forall x (x \in F \to (x \cap d_G \subseteq s)).$$

Demonstração. Para G um filtro em (P_A, \leq) e $(s, F) \in G$ segue trivialmente que $\forall x (x \in F \to (x \cap s \subseteq s))$ e, como qualquer outro $(s', F') \in G$ é compatível com (s, F), pelo Lema 3.3 temos que $\forall x (x \in F \to (x \cap s' \subseteq s))$.

Combinando isso conseguimos $\forall x \in F(x \cap s \bigcup s' \subseteq s)$ e pela arbitrariedade de s' temos o enunciado.

Como usualmente, verificamos que estamos de fato apresentando uma ordem parcial onde pode ser usado o Axioma de Martin, isto é, que tem a c.c.c.

LEMA 3.5. O conjunto parcialmente ordenado (P_A, \leq) do Exemplo 3 tem a c.c.c.

Demonstração. Seja A uma anticadeia em (P_A, \leq) . É trivial que para qualquer $(s, F) \in P_A$,

$$\forall x (x \in F \to (x \cap s \subseteq s))$$

Disso e do Lema 3.3 segue que se (s, F) e (s', F') são elementos de A, $s \neq s'$ (caso contrário, a equação (3.2) seria satisfeita). Por fim, como o conjunto de partes finitas de ω é enumerável, A também é.

Com o ambiente do Exemplo 3 bem desenvolvidos, provamos o seguinte teorema:

TEOREMA 3.6 (ZFC+MA(κ)). Sejam (P_A , \leq) como definido no Exemplo 3 com $|A| \leq \kappa$ e $C \subseteq \mathcal{P}(\omega)$ com $|C| \leq \kappa$ onde para todo $y \in C$ e $F \subseteq A$ finito, $|y \setminus \bigcup F| = \omega$. Então existe $d \subseteq \omega$ tal que para qualquer $x \in A$, $|d \cap x| < \omega$ e para todo $y \in C$, $|d \cap c| = \omega$.

Demonstração. Definimos para todo $x \in A$ os conjuntos

$$D_x = \{(s, F) \in P_A : x \in F\}$$

Dado qualquer $(s, F) \in P_A$, $(s, F \cup \{x\})$ define uma extensão de (s, F) que está em D_x . Assim, D_x é um conjunto denso em (P_A, \leq) para qualquer escolha de $x \in A$.

Agora, defina, para todo $y \in C$ e $n \in \omega$,

$$E_n^y = \{(s, F) \in P_A : s \cap y \not\subseteq n\}.$$

Já que para cada $(s,F) \in P_A$, $|y \setminus \bigcup F| = \omega$, se tomarmos $m \in y \setminus \bigcup F$ com m > n, então $(s \cup \{m\}, F)$ define uma extensão de (s,F) que está em E_n^y . Assim, E_y^n é denso em (P_A, \leq) para qualquer escolha de $n \in \omega$ e $y \in C$.

Com isso, temos uma família de conjuntos de cardinalidade menor ou igual a κ dada por

$$\mathcal{D} = \{ D_x : x \in A \} \cup \{ E_n^y : y \in C \land n \in \omega \}.$$

Por, $MA(\kappa)$ sabemos que existe G um filtro \mathcal{D} -genérico. Com este definimos

$$d = d_G = \bigcup \{ s \in \mathcal{P}(\omega) : \exists F(F \subseteq A \land (s, F) \in G) \}.$$

Por fim, verificaremos que este d de fato satisfaz as condições do enunciado: Para qualquer $x \in A$, tome $(s, F) \in G \cap D_x$. Já que $(s, F) \in D_x$, $x \in F$ e pelo Lema 3.4, $d \cap x \subseteq s$. Como s é finito, $d \cap x_0$ também será.

Com $y \in C$ fixo, e tomando $n \in \omega$, existem $(s_n, F_n) \in G \cap E_n^y$ tais que $s_n \cap y \not\subseteq n$. Como $d = d_G$,

$$\forall n (n \in \omega \to (d_q \cap y \not\subseteq n)).$$

Ou seja, $d_G \cap y$ não está contido em nenhum segmento inicial de ω e portanto é um subconjunto infinito.

COROLÁRIO 3.7 (ZFC+MA(κ)). $2^{\kappa} = 2^{\omega}$.

Demonstração. Como $\kappa \geq \omega,$ claramente $2^\omega \leq 2^\kappa.$ Mostraremos a seguir a desigualdade contrária.

Seja B uma família de conjuntos quase disjuntos de cardinalidade κ (existe pois, pelo Lema 3.2, existe de cardinalidade 2^{ω}). Podemos então definir uma função $\phi: \mathcal{P}(\omega) \to \mathcal{P}(B)$ por $\phi(d) = \{x \in B : |x \cap d| < \omega\}$. Pelo Teorema 3.6 com $C = B \setminus A$ temos que, para qualquer $A \in \mathcal{P}(B)$ existe $d \subseteq \omega$ tal que

$$\forall x (x \in A \to |d \cap x| < \omega) \land \forall x ((x \in (B \setminus A)) \to |d \cap x| = \omega).$$

Isto é, para qualquer $A \in \mathcal{P}(B)$ existe $d \in \mathcal{P}(\omega)$ tal que f(d) = A. Assim, ϕ é sobrejetora e $2^{\kappa} < 2^{\omega}$.

Naturalmente, podemos reformular o resultado anterior para dizer que sob ZFC+MA todo cardinal infinito κ é tal que $2^{\kappa} = 2^{\omega}$.

Para finalizar, mencionamos um resultado imediato que segue desse corolário e do Teorema de Konig [3]:

COROLÁRIO 3.8 (ZFC+MA). 2^{ω} é um cardinal regular.

3.3. Famílias de conjuntos quase disjuntos maximais

Uma consequência adicional do Teorema 3.6 é que, sob $MA(\kappa)$, famílias de conjuntos quase disjuntos maximais de $\mathcal{P}(\kappa)$ devem necessariamente ter cardinalidade maior que κ . Antes de discutirmos esse resultado vamos primeiro introduzir formalmente a noção de maximalidade.

DEFINIÇÃO 6. Seja κ um cardinal infinito e $A \subseteq \mathcal{P}(\kappa)$ uma família de conjuntos quase disjuntos. Dizemos que A é **maximal** se para qualquer outra família de conjuntos quase disjuntos $B \subseteq \mathcal{P}(\kappa)$ com $A \subseteq B$, temos que A = B.

Com isso conseguimos o corolário a seguir do Teorema 3.6:

COROLÁRIO 3.9 (ZFC+MA(κ)). Toda família de conjuntos quase disjuntos maximal $A \subseteq \mathcal{P}(\omega)$ tem cardinalidade estritamente maior que κ .

Demonstração. Tome A uma família de conjuntos quase disjuntos com cardinalidade κ , provaremos que A não pode ser maximal. Definindo $C = \{\omega\}$ temos que, para qualquer subconjunto finito $F \subseteq A$, $|\omega \setminus \bigcup F| = \omega$. Caso contrário, como A tem carinalidade infinita, existe $x \in A \setminus F$ com

$$|x\cap \bigcup F|\leq \sum_{y\in F}|x\cap y|<|F|\cdot \omega=\omega,$$

já que x e y são quase disjuntos para qualquer $y \in F$. E $|x \cap (\omega \setminus \bigcup F)| \le |\omega \setminus \bigcup F| < \omega$. Com isso,

$$|x| = |x \cap \omega| = |x \cap \bigcup F| + |x \cap (\omega \setminus \bigcup F)| < \omega + \omega = \omega,$$

um absurdo pois $x \in A$.

Podemos então usar o Teorema 3.6 e com ele conseguimos a existência de $d \subseteq \omega$ que é quase disjunto de todo $x \in A$ (para qualquer $x \in A$, $|d \cap x| < \omega$) e $|d| = |d \cap \omega| = \omega$. Ou seja, $A \cup \{d\}$ é uma família de conjuntos quase disjuntos que propriamente contém A e assim A não pode ser maximal.

4. Apêndice: c.c.c. ou não ser, eis a questão

Do enunciado do Axioma de Martin, a hipótese ao qual demos menos atenção até agora foi a de considerarmos apenas ordens parciais c.c.c. Para melhor apreciarmos essa exigência, partimos de uma exploração de uma desvantagem de abandoná-la. Considere o seguinte enunciado

"Para todo conjunto parcialmente ordenado (P, \leq) e \mathcal{D} uma família de conjuntos densos com cardinalidade estritamente menor que 2^{ω} , então existe um filtro \mathcal{D} -genérico em (P, \leq) ."

Este serve como uma alternativa a MA que abandona a hipótese de (P, \leq) ser c.c.c., o denotaremos por MB. Apesar de não abordamos a demonstração da já mencionada consistência de MA+ \neg CH com ZFC, por se tratar de Forcing, podemos mostrar que o enunciado acima é falso em ZFC+ \neg CH.

TEOREMA 4.1 (ZFC+¬CH). A afirmação MB é falsa.

Demonstração. Seja (P, \leq) uma ordem parcial como no Exemplo 1 com $A = \omega$ e $B = \omega_1$. Definindo a família $\mathcal{D} = \{R_\alpha : \alpha < \omega_1\}$ de subconjuntos

$$R_{\alpha} = \{ p \in P : \alpha \in \operatorname{Img}(p) \}$$

de P, temos que estes são densos pois para qualquer $p \in P$, existe $a \in \omega \setminus \text{dom}(p)$ e $q = p \cup (a, \alpha) \in R_{\alpha}$ tal que $q \leq p$. Pela negação da hipótese do contínuo, $|\mathcal{D}| \leq \omega_1 < 2^{\omega}$ e por MB, temos que existe um filtro \mathcal{D} -genérico F em (P, \leq) . Porém, pelo Lema 2.1, $\bigcup F$ é uma função em $\omega \times \omega_1$ e como é \mathcal{D} -genérica, para qualquer $b \in \omega_1$, existe $a \in \omega$ tal que $(a, b) \in f \in F \cap R_b$. Ou seja,

$$\forall b(b \in \omega_1 \to (b \in \operatorname{Img}\left(\bigcup F\right))) \to \operatorname{Img}\left(\bigcup F\right) = \omega_1.$$

Portanto, $\bigcup F$ é uma função sobrejetora de dom $(\bigcup F) \subseteq \omega$ em ω_1 , um absurdo.

A compatibilidade de MA com \neg CH é um fato particularmente útil e que nos dá resultados relevantes. Para motivar essa interação incluímos a seguir alguns breves comentários sobre 2 consequências interessantes de MA+ \neg CH.

O primeiro destes desenvolve as ferramentas da Subseção 3.1 e o leitor interessado pode encontrar uma demonstração em [3].

Teorema 4.2 (ZFC+MA+¬CH). Todo produto $\prod_{i \in I} X_i$ de uma família de espaços topológicos c.c.c $\{X_i : i \in I\}$ é um espaço topológico c.c.c.

O próximo resultado, também é topológico e tem a vantagem de ser imediatamente acessível à topólogos não familiarizados com noções diretamente relacionadas à MA como a de espaços c.c.c.

TEOREMA 4.3 (ZFC+MA+ \neg CH). Todo espaço de Hausdorff compacto de cardinalidade menor ou igual a 2^{ω} é sequencialmente compacto.

Um fato interessante aos que se encontrarem trabalhando com este resultado é que ele não pode ser provado em ZFC [4].

Referências

- $\textbf{1.} \ \ \text{R. A. S. Fajardo}, \ \textit{A Teoria dos Conjuntos e os Fundamentos da Matemática}, \ (\text{Edusp}, \ 2024) \ 105.$
- 2. L. J. Halbeisen, Combinatorial Set Theory With a Gentle Introduction to Forcing (Springer-Verlag, 2012).
- 3. K. Kunen, Set Theory: An Introduction to Independence proofs (Elsevier, 1980).
- 4. M. E. Rudin, 'Martin's Axiom', Handbook of Mathematical Logic (Elsevier, 1980) p.491-501.