Calculus III

Homework on Lecture 10

1. Recall that the directional derivative $D_{\mathbf{u}}$ in the direction \mathbf{u} is defined as the covariant derivative $D_{\mathbf{u}} f = \nabla_{\frac{\mathbf{u}}{|\mathbf{u}|}} f$. Find the covariant derivative $\nabla_{\mathbf{u}} f$ and the directional derivative $D_{\mathbf{u}} f$ at the indicated point.

(a)
$$f(x,y) = x^2 + y^2$$
, $\mathbf{u} = (1,2)$, $(x,y) = P = (2,1)$.

answer:
$$\nabla_{\mathbf{u}}f(P)=8$$
, $D_{\mathbf{u}}f(P)=\frac{8}{5}\sqrt{5}$

(b)
$$f(x,y) = e^{x+y}$$
, $\mathbf{u} = (1,1)$, $(x,y) = P = (0,0)$.

answer:
$$\nabla_{\mathbf{u}} f(P) = 2$$
, $D_{\mathbf{u}} f(P) = \sqrt{2}$

(c)
$$f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$$
, $\mathbf{u} = (1, -1, 1)$, $(x, y, z) = P = (1, 1, 1)$.

answer:
$$\nabla_{\bf u} f({\bf p}) = \frac{1}{3} \cdot D_{\bf u} f({\bf p}) = \frac{9}{3}$$

(d)
$$f(x, y, z) = \ln \sqrt{x^2 - 2y^2 + z^2}$$
, $\mathbf{u} = (1, -1, 2)$, $(x, y, z) = (1, 1, 2)$

answer:
$$\nabla_{\mathbf{u}} f(\mathbf{r}) = \frac{7}{3} \cdot D_{\mathbf{u}} f(\mathbf{r}) = \frac{7}{8} \nabla_{\mathbf{u}} f(\mathbf{r})$$

(e)
$$f(x, y, z) = xyz$$
, $\mathbf{u} = (-1, -2, 3)$, $(x, y, z) = (1, 1, 1)$.

answer:
$$\nabla_{\mathbf{u}}f(P) = 0$$
, $D_{\mathbf{u}}f(P) = 0$

- (a) Let the variables b, c, x_1, x_2 be related via $b = -x_1 x_2$ and $c = x_1x_2$.

 - i. Express the differential operators $\frac{\partial}{\partial c}$ and $\frac{\partial}{\partial b}$ via $\frac{\partial}{\partial x_1}$ and $\frac{\partial}{\partial x_2}$. ii. Express the differential operators $\frac{\partial}{\partial x_1}$ and $\frac{\partial}{\partial x_2}$ via $\frac{\partial}{\partial c}$ and $\frac{\partial}{\partial b}$.
 - (b) Let x,y,z and ρ,ϕ,θ be related via the usual spherical coordinates equations i.e., x=
 - i. Express the differential operators $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$ via $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \phi}$, $\frac{\partial}{\partial \theta}$.

ii. Express the differential operators $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \phi}$, $\frac{\partial}{\partial \theta}$ via $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$.

$$\frac{e}{z\theta} \frac{\frac{\partial}{\partial z} \frac{\partial}{\partial z} \frac{\partial}{\partial z} + \frac{e}{z\theta} \frac{\partial}{\partial z$$

iii. Express the Laplace differential operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ via $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \theta}$, (in other words, write the 3 dimensional Laplace operator in spherical coordinates).

answer:
$$\frac{\frac{2}{\sqrt{2}\theta}}{\frac{2}{\sqrt{6}}} + \frac{\frac{2}{\sqrt{6}\theta}}{\frac{2}{\sqrt{6}\theta}} = \frac{\frac{2}{\sqrt{6}\theta}}{\frac{2}\sqrt{6}\theta}} = \frac{\frac{2}{\sqrt$$

Solution. 2(b)i To be written.