VIT-AP AMARAVATI

Assignment, Winter 2020

MAT2005 - Linear Algebra

Due:06.06.2020

Dr. V. Marka

Assistant Professor

Date: June 3, 2020

Points: 20

Answer all the questions

1. Convert the following differential equation into a system, solve the system and use this solution to get the solution to the original differential equation.

$$2y'' + 5y' - 3y = 0$$
, $y(0) = -4$ $y'(0) = 9$

2. A car rental agency has three rental locations, denoted by 1, 2, and 3. A customer may rent a car from any of the three locations and return the car to any of the three locations after, say, t days. The manager finds that customers return the cars to the various locations according to the probabilities given in the transition matrix:

$$P = \begin{bmatrix} 0.8 & 0.3 & 0.2 \\ 0.1 & 0.2 & 0.6 \\ 0.1 & 0.5 & 0.2 \end{bmatrix}$$

- (a) If the car was at rental location 1 initially, what is the probability that it will be at rental location 3 after 3 days? What is the probability that it will be at rental location 2 after 3 days?
- (b) What is the state vector for the system after 4 years?
- (c) Discuss the behaviour of $\mathbf{x}(n) = P^n \mathbf{x}(0)$ as $n \to \infty$.
- 3. Find the canonical form of the quadratic form $3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$ and discuss its definiteness.

4.

(a) Find an orthogonal basis for the column space of the matrix

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix}$$

- (b) Find QR-decomposition of A such that A = QR.
- (c) For u = (0, 2, 1, 0), find $u = w_1 + w_2$ such that $w_1 \in W = C(A)$ and $w_2 \in W^{\perp}$.
- (d) Find the Jordan form of A.
- 5. Given $A = \begin{bmatrix} 2 & -1 & 3 \\ 3 & 1 & 0 \end{bmatrix}$
 - (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation whose representation is A with respect to the ordered bases $B = \{(1,0,-1),(0,2,0),(1,2,3)\}$ and $B' = \{(1-1),(2,0)\}$. Find the representation of T with respect to the natural bases for \mathbb{R}^3 and \mathbb{R}^2 . Also, find bases for kernel and Range of T.
 - (b) Find the Psuedoinverse of the A through SVD.