BEYOND PHYSICAL CONNECTIONS: TREE MODELS IN HUMAN POSE ESTIMATION

Fang Wang^{1,2} and $Yi Li^{2,3}$

- 1. Nanjing University of Science and Technology, China
 - 2. NICTA, Australia
 - 3. Australian National University

yi.li@nicta.com.au

Models for human body

- Multiple granularity
- Tree structure
- Flexibility
- Interaction
- Latent structure

- Models for human body
 - Multiple granularity
 - Tree structure
 - Flexibility
 - Interaction
 - Latent structure

- Models for human body
 - Multiple granularity
 - Tree structure
 - Flexibility
 - Interaction
 - Latent structure

Felzenszwalb and Huttenlocher, IJCV 2005

- Models for human body
 - Multiple granularity
 - Tree structure
 - Flexibility
 - Interaction
 - Latent structure

Yang and Ramanan, CVPR 2011

- Models for human body
 - Multiple granularity
 - Tree structure
 - Flexibility
 - Interaction
 - Latent structure

Wang et al, JMLR 12

- Models for human body
 - Multiple granularity
 - Tree structure
 - Flexibility
 - Interaction
 - Latent structure

Tian et al. ECCV 12

Manually defined structure

Learn the structure?

- handles compositional parts
- explores latent structure
- is still a tree
- captures dynamics beyond physical connections

- handles compositional parts
- explores latent structure
- is still a tree
- captures dynamics beyond physical connections

- handles compositional parts
- explores latent structure
- is still a tree
- captures dynamics beyond physical connections

- handles compositional parts
- explores latent structure
- is still a tree
- captures dynamics beyond physical connections

- handles compositional parts
- explores latent structure
- is still a tree
- captures dynamics beyond physical connections

O NICTA

LATENT TREE

- Tree building algorithms:
 - [Chow and Liu, 1968]
 - [Choi et al, JMLR 2011]
- Motivations
 - Novel latent models for human, or
 - Discover intrinsic structures

LATENT TREE

- Tree building algorithms:
 - [Chow and Liu, 1968]
 - [Choi et al, JMLR 2011]
- Motivations
 - Novel latent models for human, or
 - Discover intrinsic structures

LATENT TREE

- Tree building algorithms:
 - [Chow and Liu, 1968]
 - [Choi et al, JMLR 2011]
- Motivations
 - Novel latent models for human, or
 - Discover intrinsic structures

LATENT TREE

- Tree building algorithms:
 - [Chow and Liu, 1968]
 - [Choi et al, JMLR 2011]
- Motivations
 - Novel latent models for human, or
 - Discover intrinsic structures

DEFINITION

Information distance:
$$d_{ij} = -\log(\frac{\text{Cov}(X_i, X_j)}{\sqrt{\text{Var}(X_i)\text{Var}(X_j)}})$$

- Parent-Child relationship Test
 - For each triplet $i, j, k \in V$.
 - Define $\Phi_{iik} \triangleq d_{ik} d_{ik}$, take one of the two actions:
 - If $\Phi_{iik} = d_{ii}$, j is set to be the parent of i.
 - If $-d_{ij} \leq \Phi_{ijk} = \Phi_{ijk'} \leq d_{ik}$ for all k and $k' \in V \setminus \{i, j\}$, add a hidden node as the parent of i and j.

Parent-child

Sibling-hidden node

RECURSIVE GROUPING (RG)

- Initialize
- Test parent-child for pairs
- Repeat

RECURSIVE GROUPING (RG)

- Initialize
- Test parent-child for pairs
- Repeat

RECURSIVE GROUPING (RG)

- Initialize
- Test parent-child for pairs
- Repeat

Chow-Liu Recursive Grouping (CLRG)

- Minimal spanning tree
- Select neighbor of an internal node
- Perform RG and update structure

Chow-Liu Recursive Grouping (CLRG)

- Minimal spanning tree
- Select neighbor of an internal node
- Perform RG and update structure

Chow-Liu Recursive Grouping (CLRG)

- Minimal spanning tree
- Select neighbor of an internal node
- Perform RG and update structure

BUILDING LATENT TREE FOR PRIMITIVE PARTS

Leeds Sport Pose from [Johnson and Everingham, BMVC 2010]

BUILDING TREES FOR COMPOSITIONAL PARTS

- Primitive parts
 - Joints, non-oriented ⇒ geometric clustering
 - [Yang and Ramanan, CVPR 2011]
- Combined parts
 - Distinctive ⇒ Visual Categorization
 - SVM+HOG [Dalal and Triggs, CVPR 05]
- Tree structured models
 - Learned directly from data
 - Textbook example of exact inference and parameter learning

- Primitive parts
 - Joints, non-oriented ⇒ geometric clustering
 - [Yang and Ramanan, CVPR 2011]
- Combined parts
 - Distinctive ⇒ Visual Categorization
 - SVM+HOG [Dalal and Triggs, CVPR 05]
- Tree structured models
 - Learned directly from data
 - Textbook example of exact inference and parameter learning

- Primitive parts
 - Joints, non-oriented ⇒ geometric clustering
 - [Yang and Ramanan, CVPR 2011]
- Combined parts
 - Distinctive ⇒ Visual Categorization
 - SVM+HOG [Dalal and Triggs, CVPR 05]
- Tree structured models
 - Learned directly from data
 - Textbook example of exact inference and parameter learning

- Primitive parts
 - Joints, non-oriented ⇒ geometric clustering
 - [Yang and Ramanan, CVPR 2011]
- Combined parts
 - Distinctive ⇒ Visual Categorization
 - SVM+HOG [Dalal and Triggs, CVPR 05]
- Tree structured models
 - Learned directly from data
 - Textbook example of exact inference and parameter learning

- Learn visual categories for combined parts
 - k-means algorithm on geometric config to find mean patch sizes
 - Latent SVM [Divvala et al, 2012] model for each combined part
 - Further info: [Wang and Li, IJCAI 2013]

$$\arg\min_{w} \frac{1}{2} \sum_{k=1}^{K} ||w_k||^2 + C \sum_{i=1}^{N} \epsilon_i,$$
$$y_i w_{t_i} \phi(x_i) \ge 1 - \epsilon_i, \epsilon_i \ge 0,$$
$$t_i = \arg\max_{k} w_k \phi(x_i)$$

- Learn visual categories for combined parts
 - k-means algorithm on geometric config to find mean patch sizes
 - Latent SVM [Divvala et al, 2012] model for each combined part
 - Further info: [Wang and Li, IJCAI 2013]

$$\arg\min_{w} \frac{1}{2} \sum_{k=1}^{K} \| w_k \|^2 + C \sum_{i=1}^{N} \epsilon_i,$$
$$y_i w_{t_i} \phi(x_i) \ge 1 - \epsilon_i, \epsilon_i \ge 0,$$
$$t_i = \arg\max_{k} \frac{w_k \phi(x_i)}{w_k \phi(x_i)}$$

- Learn visual categories for combined parts
 - k-means algorithm on geometric config to find mean patch sizes
 - Latent SVM [Divvala et al, 2012] model for each combined part
 - Further info: [Wang and Li, IJCAI 2013]

$$\arg\min_{w} \frac{1}{2} \sum_{k=1}^{K} \| w_k \|^2 + C \sum_{i=1}^{N} \epsilon_i,$$
$$y_i w_{t_i} \phi(x_i) \ge 1 - \epsilon_i, \epsilon_i \ge 0,$$
$$\frac{t_i}{t_i} = \arg\max_{k} w_k \phi(x_i)$$

- Learn visual categories for combined parts
 - k-means algorithm on geometric config to find mean patch sizes
 - Latent SVM [Divvala et al, 2012] model for each combined part
 - Further info: [Wang and Li, IJCAI 2013]

$$\arg\min_{w} \frac{1}{2} \sum_{k=1}^{K} \| w_k \|^2 + C \sum_{i=1}^{N} \epsilon_i,$$
$$y_i w_{t_i} \phi(x_i) \ge 1 - \epsilon_i, \epsilon_i \ge 0,$$
$$t_i = \arg\max_{k} w_k \phi(x_i)$$

RESULTS FOR CATEGORIZATION

Left arm

OBJECTIVE FUNCTION FOR INFERENCE

OBJECTIVE FUNCTION

$$p = \arg\max_{p} S(t) + \sum_{i} S(I, p_i) + \sum_{i,j} S(I, p_i, p_j)$$

- Unary term
- Pairwise term
- Compatibility term

DEFINED AS

$$S(I, p_i) = \omega_i^{t_i} \phi(I, loc_i)$$

OBJECTIVE FUNCTION FOR INFERENCE

OBJECTIVE FUNCTION

$$p = \arg\max_{p} S(t) + \sum_{i} S(I, p_i) + \sum_{i,j} S(I, p_i, p_j)$$

- Unary term
- Pairwise term
- Compatibility term

DEFINED AS

$$S(I, p_i, p_j) = \omega_{ij}^{t_i t_j} \psi(p_i, p_j)$$

OBJECTIVE FUNCTION FOR INFERENCE

OBJECTIVE FUNCTION

$$p = \arg\max_{p} S(t) + \sum_{i} S(I, p_i) + \sum_{i,j} S(I, p_i, p_j)$$

- Unary term
- Pairwise term
- Compatibility term

DEFINED AS

$$S(t) = \sum b_i^{t_i} + \sum b_{ij}^{t_i t_j}$$

EXPERIMENTS

PARSE dataset, from [Ramanan, NIPS 2006]

Strict evaluation: $d_1 < D/2$, $d_2 < D/2$ Loose evaluation: $(d_1 + d_2)/2 < D/2$

Percentage of Correct Parts (PCP)

[Ferrari et al, CVPR 08]

EXPERIMENTS (1)

Exp.		Method	Torso	Head	U.Leg	L.Leg	U.Arm	L.Arm	Total
LSP	L	Yang & Ramanan	92.6	87.4	66.4	57.7	50.0	30.4	58.9
	L	Tian et al. (First 200)	93.7	86.5	68.0	57.8	49.0	29.2	58.8
	L	Tian et al. (5 models)	95.8	87.8	69.9	60.0	51.9	32.8	61.3
	L	Ours (First 200)	88.4	80.8	69.1	60.0	50.5	29.2	59.0
	L	Ours	91.9	86.0	74.0	69.8	48.9	32.2	62.8
	S	Johnson & Everingham	78.1	62.9	65.8	58.8	47.4	32.9	55.1
	S	Yang & Ramanan	82.0	75.8	54.4	51.6	41.0	28.4	50.9
	S	Ours (strict eval)	88.3	81.4	55.3	55.3	43.1	30.5	53.8
PARSE	L	Yang & Ramanan	78.8	70.0	66.0	61.1	61.0	37.4	60.0
	L	Ours	88.3	78.7	75.2	71.8	60.0	35.9	65.3

TABLE: Performance on the LSP dataset.

EXPERIMENTS (2)

Method	Head	L.F.Leg	R.F.Leg	Legs	Total
Yang & Ramanan, CVPR 2011	56.1	52.8	58.3	55.6	55.7
Ours	52.8	60.6	63.3	62.0	58.9

Conclusion

- Tree models for human pose estimation are efficient
- Latent tree is an effective tool for recovering intrinsic structure
- Learning visual category of combined part

Thank you!

http://users.cecs.anu.edu.au/~yili/ yi.li@nicta.com.au

Funding support:

Bionic Eye (YL) and China Scholarship Council (FW)

Acknowledgement:

Prof. Yiannis Aloimonos and Dr. Cornelia Fermuller (Maryland), and Prof. Luciano Fadiga (IIT Italy) Dr. Mathieu Salzmann and other NICTA folks.

