

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Department of Electrical & Computer Engineering
ENEE2103-Circuit And Electronics Laboratory
PreLab#8: The Field-Effect Transistor

Prepared by:

Saja Asfour

1210737

Instructor:

Mr.Nasser Ismail

Assistance:

Eng. Hazem Awaysa

Section:

Sec1

Date:

12/4/2024

Table of Contents

Table of Figure:	2
I. CHARACTERESTICS OF AN N-CHANNEL JFET	
Questions:	
IL COMMON DRAIN AMPLIFIER	4

Table of Figure:

Figure 1: N-Channel JFET circuit	3
Figure 2:DC Sweep setting	3
Figure 3:potentiometer setting	3
Figure 4:Parametric setting	4
Figure 5:IDS as a function of VDS graph	4
Figure 6:Common drain circuit	5
Figure 7:Comman drain circuit voltage	5
Figure 8:Vsin setting	6
Figure 9:Vin and Vout plot	6
Figure 10:Io vs Iin plot	6

I. CHARACTERESTICS OF AN N-CHANNEL JFET.

Figure1:N-Channel JFET circuit

Figure 2:DC Sweep setting

Figure 3:potentiometer setting

Figure 4:Parametric setting

The taken step parameter values are: (1, 0.95, 0.9, 0.85, 0.8, 0.7, 0.5).

Figure 5:IDS as a function of VDS graph

Questions:

 \rightarrow From your graph, above which values of V_{DS} is I_D almost unaffected by V_{DS} when V_{GS}=0? As shown in the figure above IDS stops getting effected of the values of VDS around VDS = 2V, when VGS = 0V. When the step parameter equals 0.5, IDS settles at VDS = 1.6348, and its 3.6877mA.

 \rightarrow For a given value of V_{DS} , (say 10 V), do equal changes of V_{GS} cause equal changes of I_D ? No, The changes of VGS doesn't effects the changes IDs.

→ Can you measure IG or is it too small?

IG can't be measured, as it is too small.

 \rightarrow From your graph, estimate the change in ID for 0.5 change in VGS when VDS =10 V , and VGS -1.0 V ,then find the trans conductance of the transistor(gm).

transconductance = g_m =(change in I_D)/(change in V_{GS}).

 $gm = 2 \times (IDss / |VP|) \times (1 - (VGS/VP))$

 $= 2 \times (3.6877/2) \times (1 - (-1/2))$

=5.53155mho

Change Estimated in ID is ID=5.53155*0.5=2.765775mA

II. COMMON DRAIN AMPLIFIER.

Figure 6:Common drain circuit

Then I Set the sine wave generator to a frequency of 1 kHz and turn its output amplitude to zero, so there is no signal input to the circuit ,this to find DC voltage for Vs and VG.

Figure 7: Comman drain circuit voltage

VG=652.17mV, Vs=2.331v

Now apply an input of 0.4 volts peak-to-peak from the generator, 1 kHz and observe the output.

Figure 8:Vsin setting

I set VAMP to 0.2 because 0.4 Vp-p mean that Vp=0.2.

Figure 9:Vin and Vout plot

The voltage gain= Vo/Vi=150.942m/199.972m=0.7548

The phase shift = 0

Figure 10:Io vs Iin plot

The current gain=Io/Iin=6.8657u/20.566u=0.3338

 $Zin = Vin/Iin = 199.972m/20.566u = 9723.427\Omega$

Zout=Vout/Iout=150.942m/6.8657u=21.985k Ω