Importing Libraries

```
In [1]: import numpy as np # linear algebra
import pandas as pd # for data processing like in this project csv loading
import matplotlib.pyplot as plt # for data visualization
import seaborn as sns # for data visualization i.e pairplot
from sklearn import metrics # for calculating rootmean square
```

Data Loading and Insites

```
In [2]: # reading the data
        df = pd.read csv('insurance.csv')
        # checking the shape
        print(df.shape)
        (1338, 8)
In [3]: # checking data points
        print(df.size)
        10704
In [4]: # previewing 1st 5 dataset checking wether its loaded or not sucessfully
        df.head()
Out[4]:
                      bmi children smoker region
                                                    charges insuranceclaim
            age sex
         0
            19
                  0 27.900
                                0
                                              3 16884.92400
                                                                       1
            18
                  1 33.770
                                                 1725.55230
         2
            28
                  1 33.000
                                3
                                                 4449.46200
                 1 22.705
                                0
                                        0
                                              1 21984.47061
                                                                       0
            33
            32
                 1 28.880
                                                  3866.85520
```

```
In [ ]:
```

```
In [5]: #description about data set

df.describe()
```

Out[5]:

	age	sex	bmi	children	smoker	region	char
count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000
mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.515695	13270.422
std	14.049960	0.500160	6.098187	1.205493	0.403694	1.104885	12110.011
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1121.873
25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.000000	4740.287
50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.000000	9382.033
75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.000000	16639.912
max	64.000000	1.000000	53.130000	5.000000	1.000000	3.000000	63770.428
4							•

In [6]: #checing information about data

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	age	1338 non-null	int64
1	sex	1338 non-null	int64
2	bmi	1338 non-null	float64
3	children	1338 non-null	int64
4	smoker	1338 non-null	int64
5	region	1338 non-null	int64
6	charges	1338 non-null	float64
7	insuranceclaim	1338 non-null	int64

dtypes: float64(2), int64(6)

memory usage: 83.8 KB

In [7]: # checking number of null value in this data df.isnull().sum()

```
In [8]: # checking if any null value is present or not
         df.isnull().any()
Out[8]: age
                           False
                           False
         sex
         bmi
                           False
         children
                           False
         smoker
                           False
         region
                           False
         charges
                           False
         insuranceclaim
                          False
         dtype: bool
 In [9]: # from this data we can get insites that :
         # 1. data belongs to middle age people (mostly)
         # 2. maximum age of any person is 64 where as minimum age is 18 only
         # 3. maximum bmi is 53.13 which is a deep sign of obasity
         # 4. there is no null value in this data
         # 5. There are 676 male and 662 female
In [10]: # checking value count of male and female in data
         df['sex'].value_counts()
Out[10]: 1
              676
              662
         Name: sex, dtype: int64
```

In [11]: # ploting a bar graph showing about number of male and female
 df.sex.value_counts(normalize=False).plot.barh()
 plt.show()


```
In [12]: #pie chart: with Label and explode
    mylables=["Male","Female"] # here label is "Male - is 1 where as Female - is 0
    colors = ['orange', 'pink']
    myexplode=[0.10,0]
    size = [676, 662]
    plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = Tr
    plt.title('PIE chart representing share of men and women in insurance data ')
    plt.legend()
    plt.show()
```

PIE chart representing share of men and women in insurance data

0 324 Name: region, dtype: int64

1

325

```
In [14]: #ploting a Countplot showing region
sns.countplot("region",data = df)
plt.show()
```

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [15]: #ploting a Countplot showing age plt.figure(figsize = (10,5)) sns.countplot("age",data = df) plt.show()

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [16]: # ploting a bar graph showing about region wise with labels grid and minor gri
         x = ['North-East(0)', 'North-West(1)', 'South-East(2)', 'South-West(3)']
         size = [324, 325, 364, 325]
         plt.figure(figsize = (15,7))
         x_pos = [i for i, _ in enumerate(x)]
         plt.bar(x_pos, size, color=['cyan', 'yellow', 'green', 'orange'])
         plt.xlabel("Region")
         plt.ylabel("Size")
         plt.title("Number of Insurance Holder from All Over the region")
         plt.xticks(x pos, x)
         # Turn on the grid
         plt.minorticks_on()
         plt.grid(which='major', linestyle='-', linewidth='0.5', color='black')
         # Customize the minor grid
         plt.grid(which='minor', linestyle=':', linewidth='0.5', color='grey')
         plt.show()
```



```
In [17]: # 6.people belonging residential area from northeast(0) are 324 person; nort
In [18]: # checking children count
df['children'].value_counts()

Out[18]: 0 574
1 324
```

2 240
3 157
4 25
5 18
Name: children, dtype: int64

```
In [19]: #ploting a Countplot showing number of children
plt.figure(figsize = (10,5))
sns.countplot("children",data = df)
plt.show()
```

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [20]: #pie chart: with Label and explode
   plt.figure(figsize = (10,5))
   mylables=["No Children","1 Child","2 Children","3 Children","4 Children","5 Ch
   colors = ['orange','pink','purple','cyan','yellow','blue']
   myexplode=[0.10,0,0,0,0,0]
   size = [574, 324,240,157,25,18]
   plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = Tr
   plt.title('PIE chart representing share of person per chidren as per given dat
   plt.legend()
   plt.show()
```

PIE chart representing share of person per chidren as per given data


```
In [23]: #ploting a bar grap showing number of smoker
plt.figure(figsize = (10,5))
mylables=['Non-Smoker','Smoker']
colors = ['pink','Red']
myexplode=[0.10,0.10]
size = [1064,274]
plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = Tr
plt.show()
```


In [24]: # 8. count of non smokers are represented as 0 which is 1064 where as 274 peop

In [25]: # pairplot
sns.pairplot(df)

Out[25]: <seaborn.axisgrid.PairGrid at 0x248ea07f640>


```
In [26]: # Corelation Between Diffrent Feature
df[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']].corr()
```

Out[26]:

	age	sex	bmi	children	smoker	region	charges
age	1.000000	-0.020856	0.109272	0.042469	-0.025019	0.002127	0.299008
sex	-0.020856	1.000000	0.046371	0.017163	0.076185	0.004588	0.057292
bmi	0.109272	0.046371	1.000000	0.012759	0.003750	0.157566	0.198341
children	0.042469	0.017163	0.012759	1.000000	0.007673	0.016569	0.067998
smoker	-0.025019	0.076185	0.003750	0.007673	1.000000	-0.002181	0.787251
region	0.002127	0.004588	0.157566	0.016569	-0.002181	1.000000	-0.006208
charges	0.299008	0.057292	0.198341	0.067998	0.787251	-0.006208	1.000000

In [27]: # Insite from this Corelation are : 1. Charges are Dependent Upon Age (Higher

In [28]: #plot the correlation matrix of salary, balance and age in data dataframe.
plt.figure(figsize = (10,5))
sns.heatmap(df[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'
plt.show()


```
In [29]: df.columns
```

```
In [30]: # Insites From this Heat Map :- 1. Smoker Tends to Pay More Insurance Charges;
In []:
In [31]: # Age vs Charges
# the more the age the more will be insurance charge (roughly estimated)

plt.figure(figsize = (10, 5))
sns.lineplot(x = 'age', y = 'charges', data = df)

plt.title("Age vs Charges")
plt.show()
```


In [32]: #bax plot for age vs charge plt.figure(figsize = (10, 5)) sns.barplot(x = 'age', y = 'charges', data = df) plt.title('age vs charges') plt.show()


```
In [33]: #plot the box plot of sex and charges
# as 1 belongs to men : it shows that men are paying more insurance charges th
#bar plot

plt.figure(figsize = (10, 5))
sns.barplot(x = 'sex', y = 'charges', data = df)

plt.title('sex vs charges')
plt.show()
```



```
In [34]: # children vs charges
# no. of childrens of a person has a weird dependency on insurance charge. i.e

plt.figure(figsize = (10, 5))
sns.barplot(x = 'children', y = 'charges', data = df)

plt.title('CHILDREN VS CHARGES')
plt.show()
```



```
In [35]: # region vs charges BAR GRAPh

plt.figure(figsize = (10, 5))
    sns.barplot(x = 'region', y = 'charges', data = df, palette = 'colorblind')

plt.title('Region vs Charges')
    plt.show()
```


In [36]: # from the graph we can clearly state that region dont play any role in charge

```
In [37]: # smoker vs charges
plt.figure(figsize = (10, 5))
sns.barplot(x = 'smoker', y = 'charges', data = df)

plt.title('SMOKERS VS CHARGES')
plt.show()
```


In [38]: # from the graph where 0 represents non smoker and 1 represent smoker it is cl

```
In [39]: # BMI vs charges
plt.figure(figsize = (20,8))
sns.barplot(x = 'bmi', y = 'charges', data = df)

plt.title('BMI VS CHARGES')
plt.show()
```



```
In [40]: # From Graph we can canclude that higher the BMI more will be Insurance Premiu
```

Data Cleaning

Finding an Outlier

```
In [76]: #bmi outlier

# For BMI feature
print("BMI: ")
print("Skewness : ",round(df['bmi'].skew(),3))
plt.figure(figsize=(13,5))
plt.subplot(1,2,1)
sns.histplot(data=df['bmi'],kde=True)
plt.subplot(1,2,2)
plt.boxplot(x=df['bmi'],vert=False)
plt.show()
```

BMI:

Skewness: 0.284


```
In [77]: # Finding Position of Outlier
#position plot of outlier
print(np.where(df["bmi"]>45))
```

(array([116, 286, 292, 401, 438, 454, 543, 547, 549, 582, 660, 847, 860, 930, 941, 1024, 1047, 1088, 1131, 1317], dtype=int64),)

In [78]: # bmi can be more or less as per medical condition of person so no need to tre

```
In [79]: #Charges outlier
print("charges: ")
print("Skewness : ",round(df['charges'].skew(),3))
plt.figure(figsize=(13,5))
plt.subplot(1,2,1)
sns.histplot(data=df['charges'],kde=True)
plt.subplot(1,2,2)
plt.boxplot(x=df['charges'],vert=False)
plt.show()

charges:
Skewness : 1.516
```


In [80]: # Charges can be More or less as per required by insurance company

Spliting Data (Training and Testing Data) and Importing Sklearn Modules

```
In [81]: #spliting data into training and testing data set
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3, random_s
```

Scaling by Standardization

```
In [82]: from sklearn.preprocessing import StandardScaler
In [83]: sd = StandardScaler()
X=sd.fit_transform(X)
```

```
In [84]: print("X_train shape : " , X_train.shape)
print("X_test shape : " , X_test.shape)
print("y_train shape : " , y_train.shape)
print("y_test shape : " , y_test.shape)

X_train shape : (936, 6)
X_test shape : (402, 6)
y_train shape : (936,)
y_test shape : (402,)
```

Importing and Using Decision Tree (Supervised Learning) Algorithm

```
In [85]: from sklearn.tree import DecisionTreeClassifier
In [86]: # model
         dtc = DecisionTreeClassifier(max_depth=4)
         #fitting
         dtc.fit(X train,y train)
Out[86]: DecisionTreeClassifier(max_depth=4)
In [87]: | #predicting via Decision Tree Algorithm
         y_pred=dtc.predict(X_test)
         y_pred
Out[87]: array([1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1,
                1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
                1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
                1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
                0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
                0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
                0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
                0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1,
                1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1,
                1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
                0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1,
                1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1,
                1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0,
                0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,
                1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
                1, 0, 0, 1, 1, 0], dtype=int64)
```

```
In [88]: #Calculating RMSE Root MEan Square Error

rmse= np.sqrt(metrics.mean_squared_error(y_test,y_pred))
print("Root Mean Square Error = ",rmse)
```

Root Mean Square Error = 0.34554737023254406

Checking Out Training and Testing Data Accuracy (Actual vs Predicted)

```
In [89]: # compute accuracy on training set

dtc_train= dtc.score(X_train,y_train)

print("Training Data Accuracy by Decision Tree Algorithm is : " , dtc_train)

# compute accuracy on testing set

dtc_test= dtc.score(X_test,y_test)

print("Testing Data Accuracy by Decision Tree Algorithm is : " , dtc_test)
```

Training Data Accuracy by Decision Tree Algorithm is: 0.8707264957264957
Testing Data Accuracy by Decision Tree Algorithm is: 0.8805970149253731

```
In [90]: # calculating the mean squared error
    mse = np.mean((y_test - y_pred)**2, axis = None)
    print("MSE :", mse)

# Calculating the root mean squared error
    rmse = np.sqrt(mse)
    print("RMSE :", rmse)
```

MSE: 0.11940298507462686 RMSE: 0.34554737023254406

```
In [91]: # lets evaluate the model performance
    from sklearn.metrics import confusion_matrix
    #Lets print the confusion metrix first
    plt.rcParams['figure.figsize']=(5,5)
    cm=confusion_matrix(y_test,y_pred)
    sns.heatmap(cm,annot=True,cmap='Wistia',linewidths=1,linecolor='black')
    plt.title("Confusion matrix for Decision Tree",fontsize=20)
    plt.show()

from sklearn.metrics import confusion_matrix
    # calculate the confusion matrix
    tn,fp,fn,tp=confusion_matrix(y_test,y_pred).ravel()
    # print the confusion matrix
    print("Confusion Matrix:")
    print("True Negative:",tn,"False Positive:",fp)
    print("False Negative:",fn,"True Positive:",tp)
```

Confusion matrix for Decision Tree

Confusion Matrix:

True Negative: 148 False Positive: 32 False Negative: 16 True Positive: 206

```
In [92]: df.head()
Out[92]:
             age sex
                       bmi children smoker
                                              charges insuranceclaim
                                        1 16884.92400
                   0 27.900
             19
                                 0
                                                                1
             18
                   1 33.770
                                 1
                                            1725.55230
                                                                1
                   1 33.000
             28
                                 3
                                           4449.46200
                                                                0
             33
                   1 22.705
                                        0 21984.47061
                                                                0
             32
                   1 28.880
                                            3866.85520
                                                                1
In [95]: # Lets view how model predicts the result
         new_check = dtc.predict((np.array([[32,0,44,0,1,3500]])))
         print("Provide Wether insurance claim for given condition (should claim be given
         Provide Wether insurance claim for given condition (should claim be given or
         not): [1]
 In [ ]: # here 1 means insurance can be given where as 0 mean not to give
In [97]: # Lets view how model predicts the result
         new_check = dtc.predict((np.array([[25,1,66,3,0,1000]])))
         print("Provide Wether insurance claim for given condition (should claim be given
         Provide Wether insurance claim for given condition (should claim be given or
         not): [0]
         Deciding a Model
In [66]: # Usually We Select Only Those Model Whisch Has Highest Accuracy Among All tho
In [67]: # Note
         # We applied many models to the data, but decision tree gave the best accuracy
         # Decision Tree Classifier - It gives 88% on testing and 91% on training data
         # Logistic Regression - It gives 88% accuracy on testing and 88% on training d
         # SVC - It gives 87% accuracy
```

Naive Bayes - It gives 75-76% Accuracy

In [68]: # Lets print the classifiction report also
 from sklearn.metrics import classification_report
 cr =classification_report(y_test,y_pred)
 print(cr)

	precision	recall	f1-score	support
0	0.90	0.82	0.86	180
1	0.87	0.93	0.90	222
accuracy			0.88	402
macro avg	0.88	0.88	0.88	402
weighted avg	0.88	0.88	0.88	402

In [69]: # High precision indicates that the model is making less but some false positi # As all the values of precision recall and f1-score is near 1 # While high recall indicates that the model is making fewer false negative pr # We can say our model gives good precision, recall and f1-score

In []: |## Created by Bharat Bhushan Kulmani