

Time-Domain Full Waveform Inversion for High Resolution 3D Ultrasound Computed Tomography of the Breast

Felix Lucka

International Workshop on Medical Ultrasound Tomography
Detroit
15the October 2019

H2020 Project: Novel PAT+USCT Mammography Scanner

Diagnostic information from optical and acoustic properties

- 512 US transducers on rotatable half-sphere
- 40 optical fibers for photoacoustic excitation
- 40 inserts for laser-induced US (LIUS)

H2020 Project: Partners

USCT Reconstruction Approaches

$$(c(x)^{-2}\partial_t^2 - \Delta)p_i(x,t) = s_i(x,t), \qquad f_i = M_ip_i, \qquad i = 1,\ldots,n_{src}$$

Travel time tomography (TTT): geometrical optics approximation.

- √ robust & computationally efficient
 - ! valid for high frequencies (\rightarrow attenuation), low res, data size

Reverse time migration (RTM): forward wavefield correlated in time with backward wavefield (adjoint wave equation) via imaging condition.

- ✓ 2 wave simulations, better quality than TTT.
 - ! approximation, needs initial guess, quantitative errors

Full waveform inversion (FWI): fit full model to all data.

- √ high res from little data, include constraints, regularization
 - ! many wave simulations, non-convex PDE-constrained optimization.

time domain vs frequency domain methods

Time Domain Full Waveform Inversion

$$F(c)p_i := (c^{-2}\partial_t^2 - \Delta)p_i = s_i, \qquad f_i = M_i p_i, \quad i = 1, \dots, n_{src}$$

$$\min_{c \in \mathcal{C}} \sum_{i}^{n_{src}} \mathcal{D}\left(f_i(c), f_i^{\delta}\right) \quad s.t. \quad f_i(c) = M_i F^{-1}(c) s_i$$

gradient for first-order optimization via adjoint state method:

$$\nabla_{c} \mathcal{D}\left(f(c), f^{\delta}\right) = 2 \int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2} p(x, t)}{\partial t^{2}}\right) q^{*}(x, t) \quad ,$$

where $(c^{-2}\partial_t^2 - \Delta)q^* = s^*$, $s^*(x,t)$ is time-reversed data discrepancy

ightarrow two wave simulations for one gradient

Acoustic Wave Propagation: Numerical Solution

- **Direct methods**, such as finite-difference, pseudospectral, finite/spectral element, discontinuous Galerkin.
- Integral wave equation methods, e.g. boundary element
- Asymptotic methods, e.g., geometrical optics, Gaussian beams

Acoustic Wave Propagation: Numerical Solution

- Direct methods, such as finite-difference, **pseudospectral**, finite/spectral element, discontinous Galerkin.
- Integral wave equation methods, e.g. boundary element.
- Asymptotic methods, e.g., geometrical optics, Gaussian beams.

k-Wave: k-space pseudospectral method solving the underlying system of first order conservation laws.

- Compute spatial derivatives in Fourier space: 3D FFTs.
- Parallel/GPU computing leads to massive speed-ups.
- Modify finite temporal differences by k-space operator and use staggered grids for accuracy and robustness.
- Perfectly matched layer to simulate free-space propagation.

B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics.

Numerical Phantoms

color range 1470 - 1650 m/s, resolution 0.5mm

Yang Lou et al. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

Numerical Phantoms

color range 1470 - 1650 m/s, resolution 1mm

Yang Lou et al. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

FWI Illustration in 2D

SOS ground truth c^{true}

color range 1450 - 1670 m/s

- 1mm resolution
- 222² voxel
- 836 voxels on surface (pink)
- TTT would need 836² source-receiver combos for high res result

FWI Illustration in 2D: 64 Sensors, 64 Receivers

reconstruction error $c^{true} - c^{rec}$

color range 1450 - 1670 m/s

color range -50 - 50 m/s

FWI Illustration in 2D: 32 Sensors, 32 Receivers

color range 1450 - 1670 m/s

color range -50 - 50 m/s

FWI Illustration in 2D: 16 Sensors, 16 Receivers

color range 1450 - 1670 m/s

color range -50 - 50 m/s

Challenges of High-Resolution FWI in 3D

$$\min_{c \in \mathcal{C}} \sum_{i}^{n_{src}} \mathcal{D}\left(f_{i}(c), f_{i}^{\delta}\right) \quad s.t. \quad f_{i}(c) = M_{i}F^{-1}(c)s_{i}$$

$$\nabla_{c} \mathcal{D}\left(f(c), f^{\delta}\right) = 2 \int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2} p(x, t)}{\partial t^{2}}\right) q^{*}(x, t)$$

PAMMOTH scanner example:

- 0.5mm res: comp grid $560 \times 560 \times 300$ voxel = 94M, ROI = 7M
- 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

- 1 wave sim: \sim 30 min.
- **! 2 wave sim per source**, $n_{src} = 1024 \rightarrow 20$ days per gradient.
- ! storage of forward field in ROI: \sim 200GB.

Challenges of High-Resolution FWI in 3D

$$\min_{c \in \mathcal{C}} \sum_{i}^{n_{src}} \mathcal{D}\left(f_{i}(c), f_{i}^{\delta}\right) \quad s.t. \quad f_{i}(c) = M_{i}F^{-1}(c)s_{i}$$

$$\nabla_{c} \mathcal{D}\left(f(c), f^{\delta}\right) = 2 \int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2} p(x, t)}{\partial t^{2}}\right) q^{*}(x, t)$$

PAMMOTH scanner example:

- 0.5mm res: comp grid $560 \times 560 \times 300$ voxel = 94M, ROI = 7M
- 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

- 1 wave sim: \sim 30 min.
- ! 2 wave sim per source, $n_{src}=1024 \rightarrow 20$ days per gradient. stochastic gradient methods $\rightarrow 60$ min per gradient
- ! storage of forward field in ROI: \sim 200GB. time-reversal based gradient computation \rightarrow 5 25GB.

Stochastic Gradient Optimization

$$\mathcal{J} := n_{src}^{-1} \sum_{i}^{n_{src}} \mathcal{D}_i(c) := n_{src}^{-1} \sum_{i}^{n_{src}} \mathcal{D}\left(M_i F^{-1}(c) s_i, f_i^{\delta}\right)$$

approx $\nabla \mathcal{J}$ by $|\mathcal{S}|^{-1} \sum_{j \in \mathcal{S}} \nabla \mathcal{D}_j(c)$, $\mathcal{S} \subset \{1, \dots, n_{src}\}$ predetermined. \rightarrow incremental gradient, ordered sub-set methods

Stochastic Gradient Optimization

$$\mathcal{J} := n_{src}^{-1} \sum_{i}^{n_{src}} \mathcal{D}_i(c) := n_{src}^{-1} \sum_{i}^{n_{src}} \mathcal{D}\left(M_i F^{-1}(c) s_i, f_i^{\delta}\right)$$

approx $\nabla \mathcal{J}$ by $|\mathcal{S}|^{-1} \sum_{j \in \mathcal{S}} \nabla \mathcal{D}_j(c)$, $\mathcal{S} \subset \{1, \dots, n_{src}\}$ predetermined. \rightarrow incremental gradient, ordered sub-set methods

Instance of **finite sum minimization** similar to **training in machine learning**. Use **stochastic gradient descent (SGD)**:

- momentum, gradient/iterate averaging (SAV, SAGA), variance reduction (SVRG), choice of step size, mini-batch size
- include non-smooth regularizers (SPDHG, SADMM)
- quasi-Newton-type methods, e.g., stochastic L-BFGS
- **Bottou, Curtis, Nocedal.** Optimization Methods for Large-Scale Machine Learning, arXiv:1606.04838.
 - **Fabien-Ouellet, Gloaguen, Giroux, 2017.** A stochastic L-BFGS approach for full-waveform inversion, *SEG*.

Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Source Encoding for linear PDE constraints:

$$\begin{split} \text{Let} \quad \hat{s} := \sum_{i}^{n_{srt}} w_i s_i, \quad \hat{f}^\delta := \sum_{i}^{n_{srt}} w_i f_i^\delta, \quad \text{with} \quad \mathbb{E}\left[w\right] = 0, \ \mathbb{C}\text{ov}[w] = I, \\ \text{then} \quad \mathbb{E}\left[\nabla \left\| MF^{-1}(c)\hat{s} - \hat{f}^\delta \right\|_2^2\right] = \nabla \sum_{i}^{n_{src}} \left\| MF^{-1}(c)s_i - f_i^\delta \right\|_2^2 \end{aligned}$$

- related to covariance trace estimators
- Rademacher distribution ($w_i = \pm 1$ with equal prob)
- ullet add time-shifting for time-invariant PDEs o variance control
- can be turned into scanning strategy
- Haber, Chung, Herrmann, 2012. An effective method for parameter estimation with PDE constraints with multiple right-hand sides, *SIAM J. Optim.*

Stochastic Optimization Illustration

color range 1450 to 1670 m/s

reconstruction error $c^{true} - c^{rec}$

color range -10 to 10 m/s

Stochastic Optimization Illustration

SOS reconstruction c^{rec} SL-BFGS

color range 1450 to 1670 m/s

reconstruction error $c^{true} - c^{rec}$

color range -10 to 10 m/s

Time-Reversal Gradient Computations

Avoid storage of forward fields!

$$(c(x)^{-2}\partial_t^2 - \Delta)p(x,t) = s(x,t), \quad \text{in } \mathbb{R}^d \times [0,T]$$
$$\nabla_c \mathcal{D} = 2 \int_0^T \frac{1}{c(x)^3} \left(\frac{\partial^2 p(x,t)}{\partial t^2} \right) q^*(x,t)$$

Idea: ROI Ω , $\operatorname{supp}(s) \in \Omega^c \times [0, T]$. As $p(x, 0) = p(x, T) = \partial_t p(x, 0) = \partial_t p(x, T) = 0$ in Ω , p(x, t) can be reconstructed from p(x, t) on $\partial \Omega \times [0, T]$ by **time-reversal (TR)**.

- store fwd fields on ROI boundary during forward wave simulation
- interleave backward (adjoint) simulation with TR of boundary data
- 3 instead of 2 wave simulations (unless 2 GPUs used).
- code up efficiently
- multi-layer boundary increases accuarcy for pseudospectral method

- easy due to regular grids in space and time
- coarsening by 2: (in principle)
 speed up of 16
- most basic multi-grid usage for now: initialization

level 6: upsampled from 5.66mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle)
 speed up of 16
- most basic multi-grid usage for now: initialization

level 5: upsampled from 4mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 4: upsampled from 2.83mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 3: upsampled from 2mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 2: upsampled from 1.41mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 1: resolution 1mm

Utilizing Multiple GPUs

- average independent gradient estimates to reduce variance
- not be the best way to use multiple GPUs

Putting it all together

- 3D breast phantom at 0.5mm resolution, 1024 sources and receivers
- $442 \times 442 \times 232$ voxel, 3912 time steps
- multi-grid with 8 levels, coarsening factor $\sqrt{2}$.
- SL-BFGS (40 iter, 2d 4h on highest level), source encoding, 2 GPUs

color range 1450 to 1670 $\mathrm{m/s}$

color range -50 to 50 m/s

Summary & Outlook

Summary:

- proof-of-concept studies of TD-FWI for high resolution 3D USCT
- stochastic L-BFGS with source encoding
- time reversal based gradient computation
- multi-grid initialization

Outlook:

- multi-GPU CUDA code
- realistic source/receiver modeling
- extension to acoustic attenuation, density, etc.
- validation on experimental data!

L, Pérez-Liva, Treeby, Cox, 2019. Time-Domain Full Waveform Inversion for High Resolution 3D Ultrasound Computed Tomography of the Breast, *in preparation*.

Thank you for your attention!

L, Pérez-Liva, Treeby, Cox, 2019. Time-Domain Full Waveform Inversion for High Resolution 3D Ultrasound Computed Tomography of the Breast, *in preparation*.

no noise

SNR 30dB

SNR 20dB

SNR 10dB

Felix.Lucka@cwi.nl

TD-FWI for High-Res 3D USCT of the Breast

15the October 2019

Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)

radiative transfer equation (RTE) + acoustic wave equation

$$(v \cdot \nabla + \mu_{a}(x) + \mu_{s}(x)) \phi(x, v) = q(x, v) + \mu_{s}(x) \int \Theta(v, v') \phi(x, v') dv',$$

$$p^{PA}(x, t = 0) = p_{0} := \Gamma(x) \mu_{a}(x) \int \phi(x, v) dv, \qquad \partial_{t} p^{PA}(x, t = 0) = 0$$

$$(c(x)^{-2} \partial_{t}^{2} - \Delta) p^{PA}(x, t) = 0, \qquad f^{PA} = Mp^{PA}$$

Ultrasound Computed Tomography (USCT)

$$(c(x)^{-2}\partial_t^2 - \Delta)p^{US}(x,t) = s(x,t), \qquad f^{US} = Mp^{US}$$

Step-by-step inversion

- 1. $f^{US} \rightarrow c$: acoustic parameter identification from boundary data.
- 2. $f^{PA} \rightarrow p_0$: acoustic initial value problem with boundary data.
- 3. $p_0 \rightarrow \mu_a$: optical parameter identification from internal data.