CHAPITRE 3

LES FONCTIONS NUMÉRIQUES

3.1 L'ensemble de définition d'une fonction :

3.1.1 **Activités:**

Activité 1:

Soient f et g deux fonctions définies par : $f(x) = x^2 - 1$ et $g(x) = \frac{1}{x-2}$

1) Déterminer :
$$f(0)$$
 ; $f(1)$; $f(2)$; $f(-1)$ et $f\left(\frac{1}{2}\right)$

2) Déterminer :
$$g(0)$$
 ; $g(1)$; $g(-1)$ et $f(-2)$

3) Déterminer D_f l'ensemble de définition de la fonction f.

4) Déterminer D_g l'ensemble de définition de la fonction g.

Activité 2:

Déterminer l'ensemble de définition de la fonction f dans les cas suivantes :

a)
$$f(x) = \frac{1}{x}$$
; b) $f(x) = 3x + 1$; c) $f(x) = \sqrt{x - 1}$;
d) $f(x) = \sqrt{x + 2}$; e) $f(x) = \frac{x - 1}{x + 1}$; f) $f(x) = \frac{x + 3}{x - 5}$

d)
$$f(x) = \sqrt{x+2}$$
; e) $f(x) = \frac{x-1}{x+1}$

Solution de l'activité 2 :

a)
$$f(x) = \frac{1}{x}$$
: On a la fonction f est définie si : $x \neq 0$ donc $D_f = \mathbb{R} - \{0\}$.

b)
$$f(x) = 3x + 1$$
: la fonction f est définie sur \mathbb{R} , donc $D_f = \mathbb{R}$.

c)
$$f(x) = \sqrt{x-1}$$
: la fonction est définie si : $x-1 \ge 0$ c-à-d : $x \ge 1$ donc : $D_f = [1; +\infty[$.

d)
$$f(x) = \sqrt{x+2}$$
: la fonction est définie si : $x+2 \ge 0$ c-à-d : $x \ge -2$ donc : $D_f = [-2; +\infty[$.

e)
$$f(x) = \frac{x-1}{x+1}$$
: la fonction f est définie si : $x+1 \neq 0$ c-à-d : $x \neq -1$ donc : $D_f = \mathbb{R} - \{-1\}$.

24

f)
$$f(x) = \frac{x+3}{x-5}$$
: la fonction f est définie si : $x-5 \neq 0$ c-à-d : $x \neq 5$ donc : $D_f = \mathbb{R} - \{5\}$.

3.1.2 **Définition**

Définition 3.1

Soit $f: x \mapsto f(x)$ une fonction numérique d'une variable réelle x.

 \triangleright On dit que f(x) est l'image de x par la fonction f.

 \triangleright L'ensemble constitué de tous les nombres x qui ont une image par la fonction f, est appelé l'en**semble de définition** de f et se note D_f .

3.2 Fonction paire - fonction impaire

3.2.1 Activité:

Soient f et g deux fonctions définies par : $f(x) = x^2 + 1$ et g(x) = 3x

- a) Déterminer D_f
 - b) Montrer que : f(-x) = f(x)
- a) Déterminer D_{ϱ} 2)
 - b) Montrer que : g(-x) = -g(x)

Solution de l'activité :

- 1) a) On a : $D_f = \mathbb{R}$,
 - b) On a: $(\forall x \in \mathbb{R}) : -x \in \mathbb{R}$, et $(\forall x \in \mathbb{R}) : f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x)$ On dit dans ce cas que la fonction f est paire.
- 2) a) On a : $D_g = \mathbb{R}$,
 - b) On a: $(\forall x \in \mathbb{R})$: $-x \in \mathbb{R}$: et $(\forall x \in \mathbb{R})$: $g(-x) = 3 \times (-x) = -3x = -g(x)$ On dit dans ce cas que la fonction g est impaire.

3.2.2 **Définition**

Définition 3.2

Soit f une fonction et D_f son ensemble de définition :

- \triangleright On dit que la fonction f est paire si :
 - $(\forall x \in D_f) : -x \in D_f$
 - $(\forall x \in D_f) : f(-x) = f(x)$
- \triangleright On dit que la fonction f est impaire si :
 - $(\forall x \in D_f) : -x \in D_f$
 - $(\forall x \in D_f): f(-x) = -f(x)$

Exercice 15

- 1) Montrer que la fonction f est paire dans chacune des cas suivantes :
 - a) $f(x) = x^2 + 3$; b) $f(x) = -x^2 + 5$; c) $f(x) = x^4 + 2x^2$

0

2

- 2) Montrer que la fonction f est impaire dans chacune des cas suivantes :

- a) f(x) = 2x; b) f(x) = 3x + 5; c) $f(x) = x^3 + 1$; d) f(x) = -4x + 2; e) $f(x) = \frac{1}{x}$

3.2.3 L'interprétation géométrique (La courbe d'une fonction) :

a) Activité:

- 1) Soit f la fonction définie par : $f(x) = x^2$
 - -2 a) Compléter le tableau suivant :

- b) Représenter dans un repère orthonormé $(0; \vec{i}; \vec{j}), (C_f)$ la courbe de la fonction f.
- 2) Soit g la fonction définie par : g(x) = 2x

 - b) Représenter dans un repère orthonormé $(O; \vec{i}; \vec{j}), (C_g)$ la courbe de la fonction g.

Solution de l'activité :

b) La courbe de *f* :

Remarque : Si f est une fonction paire alors (C_f) est symétrie par rapport à l'axe des ordonnées.

2) a)
$$g(x) = 2x$$
 $g(1) = 2 \times 1 = 2$ et $g(0) = 0$ et $g(-1) = -2$

b) La courbe de *g* :

Remarque: Si f est une fonction impaire alors (C_f) est symétrie par rapport à l'origine O(0;0).

3.3 La fonction majorée - la fonction minorée - la fonction bornée :

3.3.1 Activité:

- 1) Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2 + 1$
 - a) Comparer le nombre 1 avec les nombres : f(0); f(1); f(2); f(-1).
 - b) Montrer que $(\forall x \in \mathbb{R}) : f(x) \ge 1$
- 2) Soit *g* la fonction définie sur \mathbb{R} par : $g(x) = -x^2 + 2$
 - a) Comparer le nombre 2 avec les nombres : g(0); g(1); g(2).
 - b) Montrer que $(\forall x \in \mathbb{R}) : g(x) \leq 2$
- 3) Soit *h* la fonction définie sur \mathbb{R} par : $h(x) = \frac{1}{x^2 + 1}$ Montrer que : $0 \le h(x) \le 1$

3.3.2 Solution de l'activité :

- 1) a) On a: $f(0) = 0^2 + 1 = 1 \ge 1$ et $f(1) = 1^2 + 1 = 2 \ge 1$ et $f(2) = 2^2 + 1 = 5 \ge 1$ et $f(-1) = (-1)^2 + 1 = 2 \ge 1$.
 - b) On a : pour tout $x \in \mathbb{R}$: $x^2 \ge 0$ donc : $x^2 + 1 \ge 1$ et donc $f(x) \ge 1$ On dit dans ce cas que la fonction f est minorée par 1.
- 2) a) On a: $g(0) = -0^2 + 2 = 2 \le 2$ et $g(1) = -1^2 + 2 = 1 \le 2$ et $g(2) = -2^2 + 2 = -4 + 2 = -2 \le 1$.
 - b) On a : pour tout $x \in \mathbb{R}$: $x^2 \ge 0$ donc : $-x^2 \le 0$ donc $-x^2 + 2 \le 2$ c'est à dire : $g(x) \le 2$. On dit dans ce cas que la fonction g est majorée par 2.
- 3) On a pour tout $x \in \mathbb{R}$: $x^2 \ge 0$ donc : $x^2 + 1 \ge 0$ et donc $\frac{1}{x^2 + 1} \ge 0$ c'est à dire $h(x) \ge 0$. (1) On a aussi : $(\forall x \in \mathbb{R})$: $x^2 \ge 0$ donc $x^2 + 1 \ge 1$ et donc $\frac{1}{x^2 + 1} \le 1$ c'est à dire $h(x) \le 1$. (2)

de (1) et (2) on a pour tout $x \in \mathbb{R}$: $0 \le h(x) \le 1$: on dit que la fonction h est bornée. (majorée et minorée).

Définition 3.3

Soient f une fonction définie sur un intervalle I et $m; M \in \mathbb{R}$:

- On dit que f est majorée par M sur I si : $(\forall x \in I) : f(x) \le M$
- On dit que f est minorée par m sur I si : $(\forall x \in I) : f(x) \ge m$
- On dit que f est bornée sur I si f est majorée et minorée à la fois. c'est à dire : $(\forall x \in I) : m \le f(x) \le M$

Exercice 16

- 1) Soit f la fonction définie par : $f(x) = 2x^2 + 3$, montrer que f est minorée par 3.
- 2) Soit h la fonction définie par : $h(x) = -3x^2 + 5$, montrer que h est majorée par 5.
- 3) Soit g la fonction définie par : $g(x) = \frac{3}{x^2 + 6}$: montrer que : $(\forall x \in \mathbb{R}) : 0 \le g(x) \le \frac{1}{2}$

3.4 Comparaison de deux fonctions et l'interprétation géométrique :

3.4.1 Égalité de deux fonctions :

Définition 3.4

Soient f et g deux fonctions définies sur D_f et D_g .

On dit que
$$f$$
 et g sont égaux et on écrit : $f = g$ si :
$$\begin{cases} D_f = D_g \\ (\forall x \in D_f) : f(x) = g(x) \end{cases}$$

Exemple 3.1

- 1) Soient f et g deux fonctions définies par : $f(x) = \frac{2x^2}{x}$ et g(x) = 2x: On a : $D_f = \mathbb{R} - \{0\}$ et $D_g = \mathbb{R}$ donc $D_f \neq D_g$ et donc $f \neq g$.
- 2) Soient f et g deux fonctions définies par : $f(x) = \frac{1}{x} + 2x$ et $g(x) = \frac{1+2x^2}{x}$ On a : $D_f = \mathbb{R} \{0\}$ et $D_g = \mathbb{R} \{0\}$ donc : $D_f = D_g$ et $f(x) = \frac{1}{x} + 2x = \frac{1}{x} + \frac{2x^2}{x} = \frac{1+2x^2}{x} = f(x)$ donc : f = g.

3.4.2 La résolution graphique des équations et des inéquations :

Proprieté 3.1

Soit f et g deux fonctions définies sur D_f et D_g et I un intervalle inclus dans D_f et D_g .

- Pour résoudre graphiquement l'équation : f(x) = g(x) : il faut déterminer les abscisses des points d'intersections de (C_f) la courbe de f et (C_g) la courbe de g.

Exemple 3.2

Soit f et g deux fonctions définies par : $f(x) = x^2 - 2$ et g(x) = x

1) Compléter les tableaux suivants :		l		х					
1) Complete les tableaux survaits.	g(x)	•	•	f(x)	•	•	•	•	•

- 2) Représenter dans le même repère orthonormé $(O; \vec{i}; \vec{j})$ (C_f) (la courbe de f) et (C_g) (la courbe de g).
- 3) Résoudre graphiquement l'équation : f(x) = g(x).
- 4) Résoudre graphiquement l'inéquation : $f(x) \ge g(x)$
- 5) Résoudre graphiquement l'inéquation : $f(x) \le g(x)$

Solution:

1) On a: g(x) = x donc: g(0) = 0 et g(1) = 1 $x \mid 0 \mid 1$ $g(x) \mid 0 \mid 1$

On a: $f(x) = x^2 - 2$ donc: $f(0) = 0^2 - 2 = -2$ et $f(1) = 1^2 - 2 = -1$ et \cdots

	\boldsymbol{x}	0	1	2	-1	-2
•	f(x)	-2	-1	2	-1	2

2) Les courbes (C_f) et (C_g) :

3) Les solutions graphiques de l'équation f(x) = g(x) sont les abscisses des points d'intersections de (C_f) et (C_g) alors les solutions sont : -1 et 2.

4) Les solutions graphiques de l'inéquation $f(x) \ge g(x)$ sont les abscisses des points où (C_f) se trouve au dessus de (C_f)

dessus de (C_g) .

Alors les solutions sont : $S =]-\infty; -1] \cup [2; +\infty[$

5) Les solutions graphiques de l'inéquation $f(x) \le g(x)$ sont les abscisses des points où (C_f) se trouve au dessous de (C_g) .

Alors les solutions sont : S = [-1;2]

Proprieté 3.2

- Les solutions graphiques de l'inéquation : $f(x) \ge g(x)$ sont les abscisses des points où (C_f) se trouve au **dessus** de (C_g) .
- Les solutions graphiques de l'inéquation : $f(x) \le g(x)$ sont les abscisses des points où (C_f) se trouve au **dessous** de (C_g) .

Exercice 17

Soient f et g deux fonctions définies par : $f(x) = -x^2 + 2$ et $g(x) = x^2$

- 1) Résoudre graphiquement l'équation : f(x) = g(x)
- 2) Résoudre graphiquement l'inéquation : $f(x) \ge g(x)$

Exercice 18

Soient f et g deux fonctions définies par : $f(x) = x^2 - 2$ et g(x) = -x

- 1) Résoudre graphiquement l'équation : f(x) = g(x)
- 2) Résoudre graphiquement l'inéquation : $f(x) \le g(x)$

Solution de l'exercice 3 :

1) Pour résoudre graphiquement l'équation f(x) = g(x) il faut représenter graphiquement (C_f) et (C_g) les courbes de f et g: $(f(x) = -x^2 + 2$ et $g(x) = x^2$):

Les solutions graphiques de l'équation : f(x) = g(x) sont : -1 et 1.

2) Les solutions de l'inéquation : $f(x) \ge g(x)$ sont : S = [-1; 1]. (les abscisses des points où (C_f) se trouve au dessus de (C_g)).

Solution de l'exercice 4:

1) Pour résoudre graphiquement l'équation f(x) = g(x) il faut représenter graphiquement (C_f) et (C_g) les courbes de f et g: $(f(x) = x^2 - 2$ et g(x) = -x):

Les solutions graphiques de l'équation : f(x) = g(x) sont : -2 et 1.

2) Les solutions de l'inéquation : $f(x) \le g(x)$ sont : S = [-2; 1]. (les abscisses des points où (C_f) se trouve au dessous de (C_g)).

3.5 Les variations d'une fonction :

3.5.1 **Définitions**:

Définition 3.5

Soit f une fonction définie sur un intervalle I:

- (f est croissante sur I) \Leftrightarrow pour tous $x, y \in I$: si $x \ge y$ alors $f(x) \ge f(y)$
- $(f \text{ est d\'ecroissante sur } I) \Leftrightarrow \text{pour tous } x; y \in I : \text{si } x \ge y \text{ alors } f(x) \le f(y)$

Exemple 3.3

1) Soit f la fonction définie par : f(x) = 3x - 1; soient $x, y \in \mathbb{R}$ on a :

$$x < y \implies 3x < 3y$$

$$\Rightarrow 3x - 1 < 3y - 1$$

$$\Rightarrow f(x) < f(y)$$

alors f est croissante sur \mathbb{R} .

2) Soit f la fonction définie par : f(x) = -2x + 3; soient $x, y \in \mathbb{R}$ on a :

$$x < y \Rightarrow -2x > -2y \quad (car: -2 < 0)$$

$$\Rightarrow -2x + 3 > -2y + 3$$

$$\Rightarrow f(x) > f(y)$$

alors f est décroissante sur \mathbb{R} .

3) Soit f la fonction définie par : $f(x) = \frac{1}{x+3}$; soient $x, y \in \mathbb{R}_+$ on a :

$$x < y \implies x+3 < y+3$$

$$\Rightarrow \frac{1}{x+3} > \frac{1}{y+3}$$

$$\Rightarrow f(x) > f(y)$$

alors f est décroissante sur \mathbb{R}_+ .

4) Soit f la fonction définie par : $f(x) = \frac{-1}{x+2}$; soient $x; y \in \mathbb{R}_+$ on a :

$$x < y \implies x+2 < y+2$$

$$\Rightarrow \frac{1}{x+2} > \frac{1}{y+2} \qquad (L'inverse)$$

$$\Rightarrow \frac{-1}{x+2} < \frac{-1}{y+2} \qquad (La multiplication par -1 < 0)$$

$$\Rightarrow f(x) < f(y)$$

alors f est croissante sur \mathbb{R}_+ .

5) Soit f la fonction définie par : $f(x) = \frac{1}{-x+5}$; soient $x, y \in \mathbb{R}_-$ on a :

$$\begin{array}{rcl} x < y & \Rightarrow & -x > -y & (La \ multiplication \ par \ -1 < 0) \\ & \Rightarrow & -x + 5 > -y + 5 \\ & \Rightarrow & \frac{1}{-x + 5} < \frac{1}{-y + 5} \\ & \Rightarrow & f(x) < f(y) \end{array}$$

alors f est croissante sur \mathbb{R}_{-} .

Exercice 19

Étudier les variations de la fonction f sur l'intervalle I dans les suivants (f est il croissante ou décroissante ?) :

1)
$$f(x) = 5x - 4$$
; $I = \mathbb{R}$

2)
$$f(x) = -3x - 1$$
; $I = \mathbb{R}$

3)
$$f(x) = \frac{2}{-2x+1}$$
; $I = \mathbb{R}_-$

4)
$$f(x) = \frac{x}{x+1}$$
; $I = \mathbb{R}_+$

5)
$$f(x) = x^2 + 2$$
; $I = \mathbb{R}_+$

3.5.2 Taux de variations :

Définition 3.6

Soient *I* un intervalle et $x; y \in I$ tels que : $x \neq y$:

Le nombre $T = \frac{f(x) - f(y)}{x - y}$ est appelé **Le taux de variations** de f entre x et y.

Proprieté 3.3
• Si :
$$T = \frac{f(x) - f(y)}{x - y} \ge 0$$
 pour tous $x; y \in I$ alors : f est croissante I .

• Si :
$$T = \frac{f(x) - f(y)}{x - y} \le 0$$
 pour tous $x; y \in I$ alors : f est décroissante I .

Exemple 3.4

1) Soit f la fonction définie par : f(x) = 4x + 2, calculons le taux de variation entre x et y sur \mathbb{R} : on a :

$$T = \frac{f(x) - f(y)}{x - y} = \frac{4x + 2 - (4y + 2)}{x - y} = \frac{4x - 4y}{x - y} = \frac{4(x - y)}{x - y} = 4 > 0 \text{ donc } f \text{ est croissante sur } \mathbb{R}.$$

2) Soit f la fonction définie par : f(x) = -5x + 7, calculons le taux de variation entre x et y sur \mathbb{R} : on a :

$$T = \frac{f(x) - f(y)}{x - y} = \frac{-5x + 7 - (-5y + 7)}{x - y} = \frac{-5x + 7 + 5y - 7}{x - y} = \frac{-5x + 5y}{x - y} = \frac{-5(x - y)}{x - y} = -5 < 0$$
 donc f est décroissante sur \mathbb{R} .

3) Soit f la fonction définie par : $f(x) = x^2$, calculons le taux de variation entre x et y sur \mathbb{R} : on a :

$$T = \frac{x^2 - y^2}{x - y} = \frac{(x - y)(x + y)}{x - y} = x + y$$

- si $x, y \in \mathbb{R}_+$ alors $x + y \ge 0$ donc : f est croissante sur \mathbb{R}_+
- si $x; y \in \mathbb{R}_-$ alors x + y < 0 donc : f est décroissante sur \mathbb{R}_-

Exercice 20

En utilisant le taux de variations entre x et y étudie les variations de la fonction f sur l'intervalle I dans les cas suivants:

1)
$$f(x) = 2x + 3$$
; $I = \mathbb{R}$

2)
$$f(x) = -3x + 4$$
; $I = \mathbb{R}$

3)
$$f(x) = x^2 + 3$$
; si $I = \mathbb{R}_+$ puis si $I = \mathbb{R}_-$

4)
$$f(x) = -x^2 + 1$$
; si $I = \mathbb{R}_+$ puis si $I = \mathbb{R}_-$

3.6 Extremums d'une fonction : (Valeur minimale - Valeur maximale) :

3.6.1 Activité:

Soit f une fonction définie sur [-3;4] dont la représentation graphique est le suivant :

- 1) Déterminer la valeur minimale de f sur [-3;4]
- 2) Déterminer la valeur maximale de f sur [-3;4]
- 3) Donner le tableau de variations de f sur [-3;4]

Solution de l'activité :

- 1) La valeur minimale de f sur [-3;4] est le plus petit valeur de f sur [-3;4] d'après la courbe de f la valeur minimale est : -3.
- 2) La valeur maximale de f sur [-3;4] est le plus grand valeur de f sur [-3;4] d'après la courbe de f la valeur maximale est : 2.
- 3) Le tableau de variation de f est :

	х	-2		-1		2		4
				2				1
•	f		7		\searrow		7	
		-1				-3		
,	•	•		Г.	41 4	, ,		

f est croissante sur [-2;-1] et croissante aussi sur [2;4] et décroissante sur [-1;2]

Exercice 21

Soit f une fonction dont le tableau de variations est le suivants :

	х	0		2		3		5
:	f	1	×		7	3	\searrow	
				-1				0

- 1) Déterminer : f(0); f(2); f(3) et f(5).
- 2) Déterminer la valeur maximale de f sur [0;5].
- 3) Déterminer la valeur minimale de f sur [0;5]

Solution:

- 1) D'après le tableau des variations de f on a : f(0) = 1; f(2) = -1; f(3) = 3 et f(5) = 0
- 2) La valeur maximale de f sur [0;5] est : f(3) = 3.
- 3) La valeur minimale de f sur [0,5] est : f(2) = -1.

Définition 3.7

Soit f une fonction définie sur un intervalle I:

- On a dit que f admet une valeur minimale sur I s'il existe $a \in I$ tel que : $(\forall x \in I) : f(x) \ge f(a)$, f(a) est appelée la valeur minimale de f sur I
- On a dit que f admet une valeur maximale sur I s'il existe $b \in I$ tel que : $(\forall x \in I) : f(x) \le f(b)$, f(b) est appelée la valeur maximale de f sur I

Exercice 22

Soit f une fonction définie sur \mathbb{R} par : $f(x) = x^2 - 1$

- 2) Construire la courbe (C_f) de la fonction f.
- 3) Déduire la valeur minimale de la fonction f sur \mathbb{R} .

Solution:

1) On a:
$$f(x) = x^2 - 1$$
 donc: $f(-2) = (-2)^2 - 1 = 4 - 1 = 3$ et $f(-1) = (-1)^2 - 1 = 1 - 1 = 0$ et $f(0) = 0^2 - 1 = -1$ et \cdots $x \begin{vmatrix} -2 & -1 & 0 & 1 & 2 \\ f(x) & 3 & 0 & -1 & 0 & 3 \end{vmatrix}$

2) La courbe (C_f) :

3) D'après la courbe la valeur minimale de la fonction f sur \mathbb{R} est : -1.

Exercice 23

Soit f une fonction définie sur \mathbb{R} par : $f(x) = -x^2 + 3$

- 2) Construire la courbe (C_f) de la fonction f.
- 3) Déduire la valeur maximale de la fonction f sur \mathbb{R} .

Solution:

1) On a:
$$f(x) = -x^2 + 3$$
 donc: $f(-2) = -(-2)^2 + 3 = -4 + 3 = -1$ et $f(-1) = -(-1)^2 + 3 = -1 + 3 = 2$ et $f(0) = -0^2 + 3 = 3$ et $\frac{x}{f(x)} = -1 + 3 = 2$

2) La courbe (C_f) :

3) D'après la courbe la valeur maximale de la fonction f sur \mathbb{R} est : 3.

Exercice 24

Soit f une fonction définie sur \mathbb{R} par : $f(x) = x^2 - 2x$

- 2) Construire la courbe (C_f) de la fonction f.
- 3) Déduire la valeur minimale de la fonction f sur [-1;3].
- 4) Donner le tableau de variation de f sur [-1;3].

Solution:

1) On a:
$$f(x) = x^2 - 2x$$
 donc: $f(-1) = (-1)^2 - 2 \times -1 = 1 + 2 = 3$ et $f(0) = 0^2 - 2 \times 0 = 0$ et $f(1) = 1^2 - 2 \times 1 = 1 - 2 = -1$ et $f(2) = 2^2 - 2 \times 2 = 4 - 4 = 0$ et $f(3) = 3^2 - 2 \times 3 = 9 - 6 = 3$ $x - 1 = 0$ $x - 1 = 0$

- 2) La courbe (C_f) :
- 3) D'après la courbe la valeur minimale de la fonction f sur \mathbb{R} est : -1.
- 4) Le tableau des variations de f sur [-1;3] est : $\begin{vmatrix} x & -1 & 0 & 3 \\ 3 & 3 & 3 \\ f & & \end{vmatrix}$