Your Title Your Subtitle

Your name

Email: XXX@xxx.cuhk.edu.hk Office: Pavilion of Harmony, CUHK

The Chinese University of Hong Kong

March 26, 2024

2/20

- Cite and Footnote
- 2 Text, Lists, Tables and Figures
- 3 Columns, Code, Links and Footnote
- 4 Equations and Blocks
- 6 References

- Cite and Footnote
- 2 Text, Lists, Tables and Figures
- Columns, Code, Links and Footnote
- Equations and Blocks
- 5 References

Cite and Footnote

Attention Is All You Need^[1]

^[1] Vaswani et al., "Attention is All you Need", 2017.

- Cite and Footnote
- 2 Text, Lists, Tables and Figures
- 3 Columns, Code, Links and Footnote
- Equations and Blocks
- 5 References

6/20

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Short title March 26, 2024

6/20

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

• Time-dependent Schrödinger's equation:

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$$

6/20

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Time-dependent Schrödinger's equation:

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$$

• Mathematically, a function f(x) is linear iff f(u+v)=f(u)+f(v) and f(cu)=cf(u).

6/20

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Time-dependent Schrödinger's equation:

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$$

• Mathematically, a function f(x) is linear iff f(u+v)=f(u)+f(v) and f(cu)=cf(u).

6/20

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

• Time-dependent Schrödinger's equation:

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$$

• Mathematically, a function f(x) is linear iff f(u+v)=f(u)+f(v) and f(cu)=cf(u).

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

6/20

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

• Time-dependent Schrödinger's equation:

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$$

• Mathematically, a function f(x) is linear iff f(u+v)=f(u)+f(v) and f(cu)=cf(u).

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Figure

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Figure 1: Convex Surface

Table

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Index	Areas (m^2)	Rent (HKD)
1	40	134072
2	92	182241
3	37	134731
4	124	204325
5	88	187375

Short name (CUHK) Short title March 26, 2024 8 / 20

- 3 Columns, Code, Links and Footnote

Columns

10 / 20

- Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium.
- Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit.
- Totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.

Columns

10 / 20

- Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium.
- Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit.
- Totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.

Figure 2: Lenna

Code

Algorithm 1 An algorithm with caption

```
Require: n > 0
Ensure: y = x^n
  y \leftarrow 1
   X \leftarrow x
   N \leftarrow n
  while N \neq 0 do
        if N is even then
            X \leftarrow X \times X
            N \leftarrow \frac{N}{2}
        else if N is odd then
            y \leftarrow y \times X
            N \leftarrow N-1
        end if
   end while
```

Links

12 / 20

- Beamer (LaTex) Wikipedia
- Please refer to page 2.
- https://en.wikipedia.org/wiki/Beamer_(LaTeX)

Footnote

13 / 20

• Beamer is a LaTeX document class for creating presentation slides, with a wide range of templates and a set of features for making slideshow effects. It supports pdfLaTeX, LaTeX + dvips, LuaLaTeX and XeLaTeX. The name is taken from the German word "Beamer" as a pseudo-anglicism for "video projector".

¹https://en.wikipedia.org/wiki/Beamer_(LaTeX)

- Cite and Footnote
- 2 Text, Lists, Tables and Figures
- Columns, Code, Links and Footnote
- Equations and Blocks
- 5 References

Example

15/20

Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Short tide March 26, 2024

Theorem

16 / 20

Theorem

 $\mathbf{X}^T\mathbf{X}$ is invertible \iff \mathbf{X} has linearly independent columns.

Theorem

16/20

Theorem

 $\mathbf{X}^T\mathbf{X}$ is invertible \iff \mathbf{X} has linearly independent columns.

Proof.

Firstly, note that $\mathbf{X}^T\mathbf{X} \in \mathbf{R}^{n \times n}$. We denote $N(\mathbf{X})$ as the kernel (nullspace) of \mathbf{X} , and $R(\mathbf{X})$ as the range (column space) of \mathbf{X} . We prove $\mathbf{X}^T\mathbf{X}$ and \mathbf{X} share the same kernel such that once $N(\mathbf{X}) = 0$, $N(\mathbf{X}^T\mathbf{X}) = 0$ and vice versa.

Proof

Proof.

1) Prove $N(\mathbf{X}) \subset N(\mathbf{X}^T\mathbf{X})$

$$\forall v \in N(\mathbf{X}), \ \mathbf{X}^T \mathbf{X} v = \mathbf{X}^T 0 = 0$$

$$\implies v \in N(\mathbf{X}^T\mathbf{X}) \implies N(\mathbf{X}) \subset N(\mathbf{X}^T\mathbf{X}).$$

Proof

Proof.

1) Prove
$$N(\mathbf{X}) \subset N(\mathbf{X}^T\mathbf{X})$$

$$\forall v \in N(\mathbf{X}), \ \mathbf{X}^T \mathbf{X} v = \mathbf{X}^T 0 = 0$$

$$\implies v \in N(\mathbf{X}^T\mathbf{X}) \implies N(\mathbf{X}) \subset N(\mathbf{X}^T\mathbf{X}).$$

2) Prove
$$N(\mathbf{X}^T\mathbf{X}) \subset N(\mathbf{X})$$

$$\forall v \neq 0 \in N(\mathbf{X}^T \mathbf{X}), \ \mathbf{X}^T \mathbf{X} v = 0 \implies v \in N(\mathbf{X}^T) \text{ or } \mathbf{X} v \in N(\mathbf{X}^T).$$

However, we have $R(\mathbf{X}) \perp N(\mathbf{X}^T)$ and $\mathbf{X}v \in R(\mathbf{X})$,

$$\implies \mathbf{X}v \perp N(\mathbf{X}^T) \implies \mathbf{X}v \notin N(\mathbf{X}^T) \implies v \in N(\mathbf{X}^T)$$

$$\implies N(\mathbf{X}^T\mathbf{X}) \subset N(\mathbf{X})$$

Proof

Proof.

- 1) Prove $N(\mathbf{X}) \subset N(\mathbf{X}^T\mathbf{X})$
- $\forall v \in N(\mathbf{X}), \mathbf{X}^T \mathbf{X} v = \mathbf{X}^T \mathbf{0} = 0$
- $\implies v \in N(\mathbf{X}^T\mathbf{X}) \implies N(\mathbf{X}) \subset N(\mathbf{X}^T\mathbf{X}).$
- 2) Prove $N(\mathbf{X}^T\mathbf{X}) \subset N(\mathbf{X})$
- $\forall v \neq 0 \in N(\mathbf{X}^T\mathbf{X}), \ \mathbf{X}^T\mathbf{X}v = 0 \implies v \in N(\mathbf{X}^T) \text{ or } \mathbf{X}v \in N(\mathbf{X}^T).$

However, we have $R(\mathbf{X}) \perp N(\mathbf{X}^T)$ and $\mathbf{X}v \in R(\mathbf{X})$,

- $\implies \mathbf{X}v \perp N(\mathbf{X}^T) \implies \mathbf{X}v \notin N(\mathbf{X}^T) \implies v \in N(\mathbf{X}^T)$
- $\implies N(\mathbf{X}^T\mathbf{X}) \subset N(\mathbf{X})$
- 1), 2) \Longrightarrow $N(X^TX) = N(X)$

- Cite and Footnote
- 2 Text, Lists, Tables and Figures
- Columns, Code, Links and Footnote
- 4 Equations and Blocks
- 5 References

References I

19 / 20

[1] Ashish Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Reference Links

20 / 20

- Overleaf Documentation
- Learn LaTeX in 30 Minutes
- LaTeX Beamer Overleaf
- Beamer Presentations: A Tutorial for Beginners