Mechanical Engineering Department

MEL 791 - Composite Materials and Processing

MAJOR EXAM, 21st Nov 2008, III-336, 10-30am-12.30pm

Max Marks 40

Note: Use suitable assumptions if needed and highlight;	
Q1. For a UD Graphite epoxy lamina having $E_1 = 181$ GPa, $E_2 = 10.3$ GPa,	$G_{12} = 7.17$
GPa , $v_{12} = 0.28$;	
a) find the compliance and stiffness matrix	(5)

- b) find the strains in the 1-2 coordinate system, if the applied stresses are $\sigma_1 = 2$ MPa, $\sigma_2 = 3$ MPa, $\tau_2 = 4$ MPa (5)
- Q2. a) Reduce the expression for $\overline{Q}_1 = Q_{11} \cos^4 \Theta + Q_{22} \sin^4 \Theta + 2(Q12 + 2Q66) \sin^2 \Theta \cos^2 \Theta \text{ to}$ $\overline{Q}_1 = U_1 + U_2 \cos^4 \Theta + U_3 \cos^4 \Theta, \text{ where } U_i = 1,2,3 \text{ are the invariants}$ (5)
- b) Can the value of modulus E_x of an angle lamina be less or greater than both the longitudinal and transverse Young's modulus of a unidirectional lamina? (5)
- Q3. The elastic properties of a UD- Carbon fiber epoxy lamina are E_1 =181 GPa, E_2 = 10.3 GPa, G_{12} = 7.17 GPa and v_{12} = 0.28. Estimate the engineering elastic constants of the $[0/90]_s$ laminates manufactured from this lamina. (7)
- Q4. a) A glass epoxy cuboid specimen with voids has dimensions of a x b x c and its Mass is M_c . After its put into a mixture of sulfuric acid and hydrogen per oxide, the remaining glass fibers have a mass of M_f . From independent tests the densities of glass and epoxy are ρ_f and ρ_m respectively. Find the volume fraction of voids in terms of a,b,c, M_f , M_c , ρ_f and ρ_m .
 - b) A [0/30/-45] graphite epoxy laminate is subjected to a load of $N_x=N_y=100N/m$, using the properties of lamina given in Q3 above and assuming that each lamina is 0.5 mm thick
 - i) find midplane strain and curvatures
 - ii) percentage of load N_x taken by each ply

(8)