```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [2]: data = pd.read_csv('/content/HeartDisease.csv')
```

Data Cleaning

4/28/25, 12:22 PM

```
In [3]: data=data.drop_duplicates()
```

In [4]: data

Out[4]:

	age	sex	chest pain	trestbps	chol	fps	restecg	thalach	exang	oldpeak	slope	са	thal
0	63	1	1	145	233	1	2	150	0	2.3	3	0	6
1	67	1	4	160	286	0	2	108	1	1.5	2	3	3
2	67	1	4	120	229	0	2	129	1	2.6	2	2	7
3	37	1	3	130	250	0	0	187	0	3.5	3	0	3
4	41	0	2	130	204	0	2	172	0	1.4	1	0	3
298	45	1	1	110	264	0	0	132	0	1.2	2	0	7
299	68	1	4	144	193	1	0	141	0	3.4	2	2	7
300	57	1	4	130	131	0	0	115	1	1.2	2	1	7
301	57	0	2	130	236	0	2	174	0	0.0	2	1	3
302	38	1	3	138	175	0	0	173	0	0.0	1	2	3

303 rows × 14 columns

Removing Duplicates

In [5]: data.isna().sum()

Out[5]:

 age
 0

 sex
 0

 chest pain
 0

 trestbps
 0

 chol
 0

 fps
 0

 restecg
 0

 thalach
 0

 exang
 0

 oldpeak
 0

 ca
 0

 thal
 0

 num
 0

dtype: int64

Visualization Plot

1. Pie Graph

```
In [6]: sex_counts = data['sex'].value_counts()
    plt.figure(figsize=(6,6))
    plt.pie(sex_counts, labels=['Male','Female'], autopct='%1.1f%%')
    plt.title("Sex Distribution")
    plt.show()
```

Sex Distribution

1. Bar Plot

```
In [7]: avg_chol_by_cp = data.groupby('chest pain')['chol'].mean()
```

```
In [8]: plt.figure(figsize=(8,6))
    plt.bar(avg_chol_by_cp.index, avg_chol_by_cp.values)
    plt.xlabel('Chest Pain type')
    plt.ylabel('Average Cholesterol')
    plt.title('Average Cholesterol by Chest Pain type')
    plt.show()
```


1. Box plot

```
In [9]: plt.figure(figsize=(8,6))
    sns.boxplot(x='num', y='thal', data=data)
    plt.xlabel('Heard Disease (1=yes, 0=no)')
    plt.ylabel('Thal')
    plt.title('Distribution of Age by heart disease presence')
    plt.show()
```


1. Histogram

```
In [10]: plt.figure(figsize=(8,6))
    plt.hist(data['trestbps'], bins=10)
    plt.xlabel('Resting Blood Pressure')
    plt.ylabel('Frequency')
    plt.title('Distribution of Resting Blood Pressure')
    plt.show()
```


1. Scatter plot

```
In [11]: plt.figure(figsize=(8,6))
    plt.scatter(data['age'], data['thalach'])
    plt.title('Relationship between Age and MAximum heart rate')
    plt.show()
```



```
In [12]: data.replace('?',np.nan,inplace=True)
In [13]: data = data.apply(pd.to_numeric, errors='coerce')
```

1. Heat Plot

```
In [14]: plt.figure(figsize=(10,8))
    sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```


1. Line plot

```
In [15]: plt.figure(figsize=(8,6))
    sns.lineplot(data=data, x='age', y='chol', hue='sex')
    plt.title('Cholestrol Level vs. Age (Colored by Heart Disease)')
    plt.show()
```

Cholestrol Level vs. Age (Colored by Heart Disease)

1. Pair Plot

4/28/25, 12:22 PM Data Visualization

```
In [17]: |!pip install wordcloud
```


Requirement already satisfied: wordcloud in /usr/local/lib/python3.11/dist-packages (1.9.4)

Requirement already satisfied: numpy>=1.6.1 in /usr/local/lib/python3.11/d ist-packages (from wordcloud) (2.0.2)

Requirement already satisfied: pillow in /usr/local/lib/python3.11/dist-pa ckages (from wordcloud) (11.1.0)

Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (from wordcloud) (3.10.0)

Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3. 11/dist-packages (from matplotlib->wordcloud) (1.3.2)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/d ist-packages (from matplotlib->wordcloud) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python 3.11/dist-packages (from matplotlib->wordcloud) (4.57.0)

Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python 3.11/dist-packages (from matplotlib->wordcloud) (1.4.8)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.1 1/dist-packages (from matplotlib->wordcloud) (24.2)

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3. 11/dist-packages (from matplotlib->wordcloud) (3.2.3)

Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/pyth on3.11/dist-packages (from matplotlib->wordcloud) (2.8.2)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib->wordcloud) (1.17.0)

```
In [18]: from wordcloud import WordCloud
```

```
In [19]: with open('sample.txt','r') as f:
    text = f.read()
```

```
In [20]: wordcloud = WordCloud().generate(text)
```

```
In [21]: import matplotlib.pyplot as plt

plt.imshow(wordcloud, interpolation='bilinear')
   plt.axis("off")
   plt.show()
```

