1	What is claimed is:
2 1	1. An apparatus for a tandem mass spectrometer, said apparatus comprising:
3	an ion source for generating ions from a sample;
4	first and second ion traps;
5	an analytical multipole positioned between and coaxial with said first and second
6	ion traps; and
7	a mass analyzer;
8	wherein said analytical multipole is connected to a switchable power source, said
9	switchable power source applying electric potentials to said analytical multipole and at
10	predetermined times to generate electric fields thereon for trapping, transmitting or analyzing
11 .	said ions; and
12	wherein said ions are introduced into said first ion trap from said ion source, said ions
13	being trapped in said first ion trap for a first predetermined time, after which time said ions are
14	transmitted into said analytical multipole to be mass selected for transmission into said second
15	ion trap, said ions being trapped in said second ion trap for a second predetermined time, after
16	which time said ions are transmitted into said mass analyzer.
17	
18	2. An apparatus according to claim 1, wherein said ion source is positioned coaxially with
19	said first ion trap.
20	
21	3. An apparatus according to claim 1, wherein said ion source is positioned orthogonally

1	with s	aid first ion trap.
2		
3	4.	An apparatus according to claim 1, wherein said apparatus further comprises at least one
4	ion tra	ansfer device positioned between said ion source and said first ion trap.
5		
6	5.	An apparatus according to claim 1, wherein said apparatus further comprises a pre-
7	multip	pole ion guide positioned between said ion source and said first ion trap.
8		
9	6.	An apparatus according to claim 1, wherein said apparatus further comprises at least one
10	ion op	ptic device positioned between said ion source and said first ion trap.
11		
12	7.	An apparatus according to claim 1, wherein said apparatus further comprises first,
13	secon	nd, third and fourth pressure regions.
14		
15	8.	An apparatus according to claim 7, wherein said first pressure region is at a pressure of
16	1-2 n	nbar.
17		
18	9.	An apparatus according to claim 7, wherein said second pressure region is at a pressure
19	of 1	$\times 10^{-2}$ mbar to 1 x 10^{-1} mbar.
20		
21	10.	An apparatus according to claim 7, wherein said third pressure region is at a pressure of 1
22	x 10	$^{-3}$ mbar to 1 x 10^{-2} mbar.
		-43-

1	11.	An apparatus according to claim 7, wherein said second pressure region contains an ion		
2	transfer device.			
3				
4	12.	An apparatus according to claim 7, wherein said third pressure region contains said first		
5	ion tra	ap.		
6				
7	13.	An apparatus according to claim 7, wherein said fourth pressure region contains said		
8	secon	d ion trap.		
9				
10	14.	An apparatus according to claim 1, wherein said mass analyzer is selected from the group		
11	consis	sting of: time-of-flight mass spectrometer, quadrupole mass analyzer, FTICR, ion trap,		
12	magn	etic, electrostatic, ion cyclotron resonance, quadrupole ion trap, and quadrupole time-of-		
13	flight	·		
14				
15	15.	A method for analyzing sample ions using a dual ion trap mass spectrometer, said		
16	meth	od comprising the steps of:		
17		generating ions from an ionization source;		
18		introducing said ions into a first ion trap;		
19		trapping said ions for a predetermined period of time within said first ion trap;		
20		releasing said ions from said first ion trap such that said ions are transferred into		
21		an analytical multipole;		
22		selecting ions of desired mass to charge ratio using said analytical multipole; -44-		

1	trapping said selected ions within a second ion trap;
2	fragmenting said selected ions in said second ion trap; and
3	releasing said fragmented ions from said second ion trap such that said
4	fragmented ions are transferred into a mass analyzer for analysis.
5	
6	16. A method according to claim 15, wherein said mass analyzer is selected from the group
7	consisting of: time-of-flight mass spectrometer, quadrupole mass analyzer, FTICR, ion trap,
8	magnetic, electrostatic, ion cyclotron resonance, quadrupole ion trap, and quadrupole time-of-
9	flight.
10	
11	17. A method according to claim 15, wherein said second ion trap comprises a collision cell
12	