

2019년 정보보호학회 담당 트랙 소개

- · <mark>주안점 다양성, 연속성</mark>
- 2019년 게임봇 탐지 트랙
 - 다양한 분야 제공을 위해 신규 주제의 트랙 오픈
 - 기 게재되어 검증된 논문과 dataset 활용, academic follow-up research 활성화
 - 해당 참고 논문 주저자가 직접 문제 출제 담당
- · 2017년의 차량 이상징후 탐지 트랙 → 2018 차량주행 데이터 기반 도난탐지 트랙 → 2019 자동차용 침입탐지 트랙
 - 차량 보안 분야 트랙의 연속성 유지
 - 차량용 IDS 개발 분야에 응용 가능
 - 기 게재되어 검증된 논문과 dataset 활용, academic follow-up research 활성화
 - 해당 참고 논문 주저자가 직접 문제 출제 담당

2 | 17

Challenge

자동차용 침입 탐지 알고리즘 개발

- ✔ 차량 내부 네트워크 데이터셋 기반의 침입 탐지를 할 수 있는 알고리즘 및 프로그램을 제시하기 바랍니다.
 - 정상적인 차량 네트워크에서 차량 공격에 대한 침입 탐지

사례

자동차를 타고 출근하는 K씨는 최근 자신의 차량이 조금씩 이상증세가 보이는것을 알게 되었습니다.

알고 보니, 차량에 대한 원격접속을 통해 차량의 내부 네트워크를 공격 당하고 있었습니다. 위 상황과 같이 **차량의 원거리 및 직접 접근을 통해 차량의 내부 네트워크 공격이 발생 가능하며, 이를** 효율적으로 탐지하는 방안이 필요합니다.

제출물

- 프로그램
 - GitHub 링크 제출 (Public 링크)
- 결과파일
- 알고리즘 설명 문서

배경

차량 내부 네트워크 침입을 통해, 차량의 제어권한을 획득 및 원격에서 차량 제어

- □ 차량 원격 제어 Charlie Miller and Chris Valasek ('15)
 - Jeep Cherokee 차량에 대한 CAN Bus로 악의적인 메시지 주입으로 차량 제어 시연
- □ 차량 원격 제어 및 취약점 탐지 Keen Security Lab ('16, '17)
 - BMW 및 Tesla S 차량에 대한 공격을 통해 차량으로부터 12mile (약19km) 떨어진 거리에서 차량 제어 시연
 - ECU 제어를 통해 Tesla X 에 대한 헤드라이트 제어 시연

데이터셋

차량 내부의 CAN Bus Message들을 수집

- 제공될 CAN Message는 Timestamp, CAN ID, DLC, Payload 로 구성됨
 - 학습용 데이터셋에는 라벨링이 이뤄져있으며, 제출용 데이터셋에는 라벨링이 삭제되어 있음

```
Timestamp: 1481192898.078149
                                    ID: 04b1 DLC: 8
Timestamp: 1481192898.078396
                                    ID: 0164 DLC: 8
                                                       00 08 00 00 00 00 05 0d
                                    ID: 0370 DLC: 8
                                                       ff 20 00 80 ff 00 00 ec
Timestamp: 1481192898.078637
Timestamp: 1481192898.078873
                                    ID: 043f DLC: 8
Timestamp: 1481192898.079115
                                    ID: 0440 DLC: 8
                                                       ff f0 00 00 ff 54 09 00
Timestamp: 1481192898.079357
                                    ID: 04f2 DLC: 8
                                                       00 00 90 38 00 00 00 a1
                                                       e0 3c 30 09 00 00 00 00
Timestamp: 1481192898.079597
                                    ID: 0110 DLC: 8
```

CAN Message 예시

- □ 차량 3종에서 정상 및 공격 데이터셋을 수집
 - YF Sonata, KIA Soul, Chevrolet SPARK 차량에 대한 정상 상태 및 공격 상태에 대한 CAN 데이터셋 수집
 - 공격에 대한 차량 돌발상황 대처를 위해, 정차상태에서 데이터셋 수집

YF Sonata

KIA Soul

Chevrolet SPARK

운영방식

온라인 예선(10.1~11월 중), 오프라인 본선(11~12월 중) 진행

온라인 예선 (2019.10.1~2019.11)

홈페이지 신청

- 개인, 팀(최대 5인) 신청
- 트랙 다중 신청 가능

데이터셋 배포

• 신청자에 한해 다운로드 링크 제공

결과물 제출

- 탐지결과파일(CSV)
- 알고리즘 설명 문서
- 프로그램

예선결과 심사 (2019.11)

제출물 심사

• 결격사유 만족 시 제외 (서류 누락, 허위 작성 등)

상위 팀 선정

• 탐지율 높은 순

본선진출자 발표

• 홈페이지 공지 및 개별 연락

오프라인 본선 (2019.11~2019.12)

데이터셋 배포

- 본선 진행 안내
- 데이터셋 배포 (예선 결과에 따라 난이도 조정)

탐지결과 제출

- 최대 3~5회 제출 가능
- 마지막 제출결과로 점수반영

프레젠테이션

- 알고리즘, 분석내용 발표
- 탐지율과 발표점수 합산하여 최종순위 산출

수상 정보보호학회 동계학술대회 (2019.12 中)

시상식

- 본선 최종순위에 따라 수상
- 학회 동계학술대회에서 진행

기술공유 세미나

- 챌린지 수상자, 업계 관계자 등 참석
- 상세 일정 협의 中

차량 내부 네트워크 데이터셋

데이터셋 구성

- □ KU-Survival Analysis Dataset
 - Mee Lan Han, Byung Il Kwak, and Huy Kang Kim. "Anomaly intrusion detection method for vehicular networks based on survival analysis." Vehicular Communications 14 (2018): 52-63.
- □ 예선: KIA Soul, HYUNDAI Sonata, CHEVORLET Spark 차량 3개에 대한 정상 (Attack free), 공격 (Flooding, Fuzzy, Malfunction) 데이터셋
 - 분석용 데이터셋의 경우 데이터 분석을 위해 정답지가 포함된 데이터셋을 제공
 - 결과 제출시 정답지가 없는 제출용 데이터셋의 사용 결과를 제출해야 함
- □ 본선: KIA Soul, HYUNDAI Sonata 차량 2개에 대한 정상 (Attack free), 공격 (Flooding, Fuzzy, Malfunction) 데이터셋
 - 예선과 동일하게, 분석용 및 결과 제출용으로 나누어 제공하며, 제출용 데이터셋에는 정답지를 제공하지 않음 (경우에 따라 차종 추가 가능)
 - 예선 결과에 따라, 본선의 공격 데이터셋이 새롭게 추가될 수 있음

* 데이터셋 규모 및 정답지 여부는 진행상황에 따라 조정될 수 있음

	구분	사용용도	정상 / 공격 (Flooding, Fuzzy, Malfunction)	클래스 정보 여부
	예선	분석용	3개 차종에 대해 정상/공격 데이터를 40,000 ~ 70,000개 선정	제공
		제출용	3개 차종에 대해 정상/공격 데이터를 20,000 ~ 40,000개 선정	-
CRL	본선	1차 분석/제출	TBD (본선 진행 시간 고려하여 규모 조정)	분석용 제공 / 제출용 미제공
		2차 분석/제출		분석용 제공 / 제출용 미제공

상세 진행방식

예선 (온라인)

- □ 진행기간
 - 2019. 10. 1 ~11월 중
- □ 신청방법
 - 데이터 챌린지 홈페이지를 통해 신청 양식 작성 및 제출 (datachallenge.kr)
 - 신청자에 한해 예선 데이터셋 다운로드 URL 및 파일 비밀번호 배포
- □ 결과물 제출
 - 탐지결과파일 (CSV), 알고리즘 설명 문서, 프로그램
 - 제출 방법은 사이트를 통해 추후 공지
- □ 평가
 - 공격 탐지 정확도 점수 100%로 예선 평가
 - 공격 탐지 정확도는 "평가방법 탐지 정확도"를 따름
 - 알고리즘 설명 문서와 프로그램은 치팅 여부 검증을 위한 목적으로만 활용

상세 진행방식

본선 (오프라인)

- □ 본선 진출자 발표
 - 예선 결과물을 채점하여 탐지정확도 순으로 상위 7팀 선정
 - 홈페이지 공지 및 개별 연락(이메일)
- □ 진행일자
 - 2019. 11~12월 중 (1일)
- □ 본선 진행
 - 1차/2차로 나누어 총 2차례 테스트 데이터셋 배포
 - 예선과 동일한 형식으로, 정상 및 비정상 데이터셋을 배포
 - 탐지 결과는 여러 번 제출 가능 (각 차수별 최대 3회까지 탐지 결과 제출 가능)
 - 본선 당일 알고리즘 및 분석내용 발표 진행 (약 10분 발표, 5분 질의)
- □ 평가
 - 탐지 정확도 80%, 발표 점수 20% 합산 조정될 수 있음 (예선 오픈 시 공지)
 - 탐지 정확도
 - 1차, 2차 탐지 정확도의 평균값으로 산정
 - 각 차수의 마지막 제출한 결과를 최종 점수로 반영
 - 발표
 - 문제 해결을 위한 방법론의 논리성, 창의성 위주로 채점

9 17

평가방법

탐지정확도(F1-score)

31 CII	731	실제결과	
카테	Tr El	공격	정상
시청겨기	공격	True Positive (TP)	False Positive (FP)
실험결과	정상	False Negative (FN)	True Negative (TN)

- Precision은 "정밀도"로써 공격으로 예측한 결과 (TP + FP) 중 실제로 공격인 (TP) 비율을 나타냄
- Recall은 "재현율"로써 실제 공격 (TP + FN) 중 유저 중 공격 (TP)으로 정확히 예측한 비율을 나타냄

Precision =
$$\frac{TP}{TP + FP}$$
, Recall = $\frac{TP}{TP + FN}$

• F1-Score는 Precision과 Recall의 조화평균으로, 공격과 정상 데이터의 비율이 일정하지 않은 상황에서 성능을 합리적으로 평가할 수 있음

$$F1$$
-Score = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

Thank You

