

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

The uniform normal form of a linear mapping

Richard Cushman

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

ARTICLE INFO

Article history: Received 14 March 2016 Accepted 20 September 2016 Available online 22 September 2016 Submitted by R. Brualdi

MSC: 15A21

Keywords:
Jordan decomposition
Jordan normal form
Uniform subspace
Companion matrix

ABSTRACT

This paper gives a normal form for a linear mapping of a finite dimensional vector space over a field of characteristic 0 into itself, which yields a better description of its structure than the classical companion matrix. Finding this normal form does not use any factorization of the characteristic polynomial of the linear mapping and requires only a finite number of operations in the field to compute.

© 2016 Elsevier Inc. All rights reserved.

Let V be a finite dimensional vector space over a field k of characteristic 0. Let $A:V\to V$ be a linear mapping of V into itself with characteristic polynomial χ_A . The goal of this paper is to determine a normal form for A, which describes its structure better than the classical companion matrix. Finding this normal form does not require knowing a factorization of χ_A and uses only a finite number of operations in the field k to compute.

The main result of [2] gives an algorithm, involving no factorization of χ_A and only a finite number of operations in the field k, which yields the Jordan decomposition of A, namely, writes A as a sum of commuting semisimple and nilpotent S and N parts,

E-mail address: r.h.cushman@gmail.com.

respectively. For more details see [4]. In what follows we will assume that S and N are known.

1. Nilpotent normal form

In this section we describe the well known Jordan normal form for a nilpotent linear transformation N.

A linear transformation $N:V\to V$ is said to be nilpotent of index n if there is an integer $n\geq 1$ such that $N^{n-1}\neq 0$ but $N^n=0$. Suppose that for some positive integer ≥ 1 there is a nonzero vector v, which lies in $\ker N^\ell\setminus\ker N^{\ell-1}$. The set $\{v,Nv,\dots,N^{\ell-1}v\}$ is a Jordan chain of length ℓ with generating vector v. The space V^ℓ spanned by the vectors in a given Jordan chain of length ℓ is a N-cyclic subspace of V. Because $N^\ell v=0$, the subspace V^ℓ is N-invariant. Since $\ker N|V^\ell=\operatorname{span}\{N^{\ell-1}v\}$, the mapping $N|V^\ell$ has exactly one eigenvector corresponding to the eigenvalue 0.

Fact 1.1. Vectors in a Jordan chain of length ℓ are linearly independent.

With respect to the standard basis $\{v, Nv, \dots N^{\ell-2}v, N^{\ell-1}v\}$ of V^{ℓ} the matrix of $N|V^{\ell}$ is the $\ell \times \ell$ matrix

$$\begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

which is a Jordan block of size ℓ . The Jordan normal form theorem [1, pp. 270–274] states

Fact 1.2. V is a direct sum of N-cyclic subspaces.

A suitable reordering of the basis giving the Jordan normal form of N is a basis of V, realizes the Young diagram of N. The elements of the Young diagram are given by a dark dot \bullet or an open dot \circ in Fig. 1.1 and the arrows give the action of N on the basis vectors. The columns of the Young diagram of N are Jordan chains with generating vector given by an open dot. The black dots form a basis for the image im N of N. The open dots form a basis for a complementary subspace of im N in V. The dots on or above the jth row of the Young diagram form a basis for $\ker N^j$ and the black dots in the first row form a basis for $\ker N \cap \operatorname{im} N$. Let r_j be the number of dots in the jth row. Then $r_j = \dim \ker N^j - \dim \ker N^{j-1}$. Thus the Young diagram of N is unique.

We note that finding the generating vectors of the Young diagram of N or equivalently the Jordan normal form of N, involves solving linear equations with coefficients in the field k and thus requires only a finite number of operations in the field k to be determined.

Fig. 1.1. The Young diagram of N.

2. Some facts about S

We now study the semisimple part S of the linear map A.

Lemma 2.1. Let W be an S-invariant proper subspace of V. Then the characteristic polynomial $\chi_{S|W}$ of S|W is a factor of the characteristic polynomial χ_S on V.

Proof. Since S is a semisimple linear map and W is S-invariant, there is an S-invariant subspace U of V such that $V = W \oplus U$. Consequently, $\chi_S = \chi_{S|W} \chi_{S|U}$. \square

Lemma 2.2. $V = \ker S \oplus \operatorname{im} S$. Moreover the characteristic polynomial $\chi_S(\lambda)$ of S can be written as a product of λ^n , where $n = \dim \ker S$, and $\chi_{S|\operatorname{im} S}$, the characteristic polynomial of $S|\operatorname{im} S$. Note that $\chi_{S|\operatorname{im} S}(0) \neq 0$.

Proof. ker S is an S-invariant subspace of V. Since Sv = 0 for every $v \in \ker S$, the characteristic polynomial of $S | \ker S$ is λ^n .

Because S is semisimple, there is an S-invariant subspace Y of V such that $V = \ker S \oplus Y$. The linear mapping $S|Y:Y\to Y$ is invertible, for if Sy=0 for some $y\in Y$, then S(y+u)=0 for every $u\in \ker S$. Therefore $y+u\in \ker S$, which implies that $y\in \ker S\cap Y=\{0\}$, that is, y=0. So S|Y is invertible. Suppose that $y\in Y$, then $y=S\left((S|Y)^{-1}y\right)\in \operatorname{im} S$. Thus $Y\subseteq \operatorname{im} S$. But $\dim \operatorname{im} S=\dim V-\dim \ker S=\dim Y$. So $Y=\operatorname{im} S$.

Since $\ker S \cap \operatorname{im} S = \{0\}$, we see that λ does not divide the polynomial $\chi_{S|\operatorname{im} S}(\lambda)$. Consequently, $\chi_{S|\operatorname{im} S}(0) \neq 0$. From Lemma 2.1 we obtain

$$\chi_S(\lambda) = \chi_{S|\ker S}(\lambda) \chi_{S|\operatorname{im} S}(\lambda) = \lambda^n \chi_{S|\operatorname{im} S}(\lambda).$$

Lemma 2.3. The subspaces ker S and im S are N-invariant and hence A-invariant.

Proof. Suppose that $x \in \operatorname{im} S$. Then there is a vector $v \in V$ such that x = Sv. So $Nx = N(Sv) = S(Nv) \in \operatorname{im} S$. In other words, $\operatorname{im} S$ is an N-invariant subspace of V.

Because im S is also S-invariant and A = S + N, it follows that im S is an A-invariant subspace of V. Suppose that $x \in \ker S$, that is, Sx = 0. Then S(Nx) = N(Sx) = 0. So $Nx \in \ker S$. Therefore $\ker S$ is an N-invariant and hence A-invariant subspace of V. \square

3. Description of uniform normal form

We now describe the uniform normal form of the linear mapping $A:V\to V$, using its Jordan decomposition into commuting semisimple and nilpotent summands, S and N, respectively.

Determine the Jordan normal form for the nilpotent linear maps $N|\ker S$ and $N|\operatorname{im} S$. Since $\ker S$ and $\operatorname{im} S$ are N-invariant and $V=\ker S\oplus\operatorname{im} S$, this determines the Jordan normal form of N. For $1\leq \ell\leq p$ let F_{q_ℓ} be the q_ℓ -dimensional space spanned by the generating vectors of Jordan chains of N of length m_ℓ , where for $1\leq \ell\leq r$ the subspace F_{q_ℓ} lies in $\ker S$ and for $r+1\leq \ell\leq p$ it lies in $\operatorname{im} S$.

Now we prove

Claim 3.1. For each $1 \le \ell \le p$ the space $F_{q_{\ell}}$ is S-invariant.

Proof. Let $v^{\ell} \in F_{q_{\ell}}$. Then $\{v^{\ell}, Nv^{\ell}, \dots, N^{m_{\ell}-1}v^{\ell}\}$ is a Jordan chain of length m_{ℓ} with generating vector v^{ℓ} . For each $1 \leq \ell \leq r$ we have $F_{q_{\ell}} \subseteq \ker S$. So trivially $F_{q_{\ell}}$ is S-invariant, because S = 0 on $F_{q_{\ell}}$. Now suppose that $r + 1 \leq \ell \leq p$. Then $F_{q_{\ell}} \subseteq \operatorname{im} S$. Consider the Jordan chain $\{Sv^{\ell}, N(Sv^{\ell}), \dots, N^{m_{\ell}-1}(Sv^{\ell})\}$, which lies in im S, since $v^{\ell} \in \operatorname{im} S$ and im S is S and N invariant. We now show that this Jordan chain has length m_{ℓ} . Suppose that for some $\alpha_{j} \in k$ with $0 \leq j \leq m_{\ell} - 1$ we have $0 = \sum_{j=0}^{m_{\ell}-1} \alpha_{j} N^{j} (Sv^{\ell})$. Then $0 = S\left(\sum_{j=0}^{m_{\ell}-1} \alpha_{j} N^{j} v^{\ell}\right)$, because on im S the maps S and N commute. Since $S|\operatorname{im} S$ is invertible, the preceding equality implies $0 = \sum_{j=0}^{m_{\ell}-1} \alpha_{j} N^{j} v^{\ell}$. Applying Fact 1.1 to the Jordan chain $\{v^{\ell}, Nv^{\ell}, \dots, N^{m_{\ell}-1}v^{\ell}\}$ of length m_{ℓ} , it follows that $\alpha_{j} = 0$ for every $0 \leq j \leq m_{\ell} - 1$. So the Jordan chain $\{Sv^{\ell}, N(Sv^{\ell}), \dots, N^{m_{\ell}-1}(Sv^{\ell})\}$ with generating vector Sv^{ℓ} has length m_{ℓ} , that is, $Sv^{\ell} \in F_{q_{\ell}}$. Hence $F_{q_{\ell}}$ is an S-invariant subspace of im S and thus one of V. \square

Following [3] we say that an A-invariant subspace U of V is uniform of height m-1 if $N^{m-1}U \neq \{0\}$ but $N^mU = \{0\}$ and $\ker N^{m-1} \cap U = NU$. The concept of a uniform subspace is essential in the classification of indecomposable types (and hence of conjugacy classes) for the classical groups over the real numbers.

For each $1 \leq \ell \leq p$ let U^{q_ℓ} be the space spanned by the vectors in the Jordan chains of N of length m_ℓ with generating vectors in F_{q_ℓ} . Because ker S and im S are N-invariant, for $1 \leq \ell \leq r$ the subspaces U^{q_ℓ} lie in ker S, while for $r+1 \leq \ell \leq p$ they lie in im S. Since U^{q_ℓ} is S and S invariant, S is S and S invariant, S is S and S invariant, S is S and S invariant.

Claim 3.2. For $1 \le \ell \le p$ the subspace U^{q_ℓ} is uniform of height $m_\ell - 1$.

Proof. From the Young diagram of N and the definition of U^{q_ℓ} we see $U^{q_\ell} = F_{q_\ell} \oplus NF_{q_\ell} \oplus \cdots \oplus N^{m_\ell-1}F_{q_\ell}$. Since $N^{m_\ell}F_{q_\ell} = \{0\}$ but $N^{m_\ell-1}F_{q_\ell} \neq \{0\}$, the subspace U^{q_ℓ} is A-invariant and of height $m_\ell - 1$. To show that U^{q_ℓ} is uniform we need only show that $\ker N^{m_\ell-1} \cap U^{q_\ell} \subseteq NU^{q_\ell}$, since the inclusion of NU^{q_ℓ} in $\ker N^{m_\ell-1} \cap U^{q_\ell}$ follows from the fact that $N^{m_\ell}U^{q_\ell} = 0$. Suppose that $u \in \ker N^{m_\ell-1} \cap U^{q_\ell}$, then for every $0 \leq i \leq m_\ell - 1$ there are vectors $f_i \in F_{q_\ell}$ such that $u = f_0 + Nf_1 + \cdots + N^{m_\ell-1}f_{m_\ell-1}$. Since $u \in \ker N^{m_\ell-1}$ we get $0 = N^{m_\ell-1}u = N^{m_\ell-1}f_0$. If $f_0 \neq 0$, then the preceding equality contradicts the fact that f_0 is a generating vector of a Jordan chain of N of length m_ℓ . Therefore $f_0 = 0$, which means that $u = N(f_1 + \cdots + N^{m_\ell-2}f_{m_\ell-1}) \in NU^{q_\ell}$. Thus $\ker N^{m_\ell-1} \cap U^{q_\ell} \subseteq NU^{q_\ell}$. Hence $\ker N^{m_\ell-1} \cap U^{q_\ell} = NU^{q_\ell}$, that is, the subspace U^{q_ℓ} is uniform of height $m_\ell - 1$. \square

Now we give an explicit description of the uniform normal form of the linear mapping A. For each $1 \leq \ell \leq p$ let $\chi_{S|F_{q_\ell}}$ be the characteristic polynomial of S on F_{q_ℓ} . Note that when $1 \leq \ell \leq r$, then $\chi_{S|F_{q_\ell}} = 0$, since $S|F_{q^\ell} = 0$. Choose a basis $\{u_j^\ell\}_{j=1}^{q_\ell}$ of F_{q_ℓ} so that the matrix of $S|F_{q^\ell}$ is the $q_\ell \times q_\ell$ companion matrix C_{q_ℓ} , which is 0, when $1 \leq \ell \leq r$, or

$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ \vdots & 1 & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 0 & -a_{q_{\ell}-2} \\ 0 & \cdots & \cdots & 1 & -a_{q_{\ell}-1} \end{pmatrix},$$

which is associated to the characteristic polynomial

$$\chi_{S|F_{q_{\ell}}} = a_0 + a_1\lambda + \dots + a_{q_{\ell}-1}\lambda^{q_{\ell}-1} + \lambda^{q_{\ell}}$$

of $S|F_{q^{\ell}}$, when $r+1 \leq \ell \leq p$. Using the basis $\{u_j^{\ell}, Nu_j^{\ell}, \dots, N^{m_{\ell}-1}u_j^{\ell}\}_{j=1}^{q_{\ell}}$ for $U^{q_{\ell}}$, the matrix of $A|U^{q_{\ell}}$ is the $m_{\ell}q_{\ell} \times m_{\ell}q_{\ell}$ matrix

$$D_{m_{\ell}q_{\ell}} = \begin{pmatrix} C_{q_{\ell}} & 0 & 0 & \cdots & \cdots & 0 \\ I & C_{q_{\ell}} & 0 & \cdots & \vdots & 0 \\ 0 & I & \ddots & & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & I & C_{q_{\ell}} & 0 \\ 0 & \cdots & \cdots & 0 & I & C_{q_{\ell}} \end{pmatrix}.$$

Since $V = \sum_{\ell=1}^p \oplus U^{q_\ell}$, the matrix of A is $\operatorname{diag}(D_{m_1q_1}, \ldots, D_{m_pq_p})$ with respect to the basis $\{u_j^\ell, Nu_j^\ell, \ldots, N^{m_\ell-1}u_j^\ell\}_{(j,\ell)=(1,1)}^{(q_\ell,p)}$. We call preceding matrix the uniform normal form for the linear map A of V into itself. We note that this normal form can be computed using only a finite number of operations in the field k.

We obtain a factorization of the characteristic polynomial of A, whose factors are not necessarily irreducible.

Corollary 3.3. We have

$$\chi_A(\lambda) = \prod_{\ell=1}^p \chi_{S|F_{q_\ell}}^{m_\ell}(\lambda) = \lambda^n \prod_{\ell=r+1}^p \chi_{S|F_{q_\ell}}^{m_\ell}(\lambda),$$
(1)

where $n = \sum_{\ell=1}^r m_\ell = \dim \ker S$. The polynomials $\chi_{S|F_{q_\ell}}$, $r+1 \le \ell \le p$, are pairwise relatively prime and $\chi_{S|\operatorname{im} S} = \prod_{\ell=r+1}^p \chi_{S|F_{q_\ell}}$.

Proof. Equation (1) follows immediately from the uniform normal form of A. To prove the assertion about the factors of χ_A we argue as follows. Because for each $r+1 \leq \ell \leq p$ the subspace F_{q_ℓ} of im S is S-invariant, from Lemma 2.1 it follows that $\chi_{S|F_{q_\ell}}$ is a factor of $\chi_{S|\text{im }S}$ for $r+1 \leq \ell \leq p$. For some ℓ and ℓ' between r+1 and p suppose that the polynomials $\chi_{S|F_{q_\ell}}$ and $\chi_{S|F_{q_{\ell'}}}$ have a nonconstant factor u. Then u^2 is a factor of $\chi_{S|\text{im }S}$, which contradicts the fact that $\chi_{S|\text{im }S}$ is square free, since S|im S is semisimple. Hence, the factors $\chi_{S|F_{q_\ell}}$, $r+1 \leq \ell \leq p$ are pairwise relatively prime.

From equation (1) it follows that $\chi_{A|\operatorname{im} S}(\lambda) = \prod_{\ell=r+1}^p \chi_{S|F_{q_\ell}}^{m_\ell}(\lambda)$. Because the factors $\chi_{S|F_{q_\ell}}$ for $r+1 \leq \ell \leq p$ are pairwise relatively prime, the polynomial $\prod_{\ell=r+1}^p \chi_{S|F_{q_\ell}}$ is a square free factorization of $\chi_{A|\operatorname{im} S}$, that is, the quotient of $\chi_{A|\operatorname{im} S}$ and the greatest common divisor of $\chi_{A|\operatorname{im} S}$ and its derivative. Thus $\prod_{\ell=r+1}^p \chi_{S|F_{q_\ell}}$ is the characteristic polynomial $\chi_{S|\operatorname{im} S}$ of the semisimple part $S|\operatorname{im} S$ of $A|\operatorname{im} S$. \square

Remark. Using the notation of Claim 3.1 and the discussion after Claim 3.2, let $F = F_{q_\ell}$ for some $r+1 \le \ell \le p$ and let C be the $q_\ell \times q_\ell$ companion matrix of $S|F = S|F_{q_\ell}$. If we could write F as a direct sum of a finite number n of proper S-invariant subspaces F_i , then using a suitable basis, we could write $C = \operatorname{diag}(C_1, \ldots, C_n)$. This would give a factorization $\chi_{S|F} = \prod_{i=1}^n \chi_{S|F_i}$ of the characteristic polynomial of S|F into distinct relatively prime nonconstant factors. Conversely, knowing such a factorization of $\chi_{S|F}$ would give rise to a direct sum decomposition of F into S-invariant subspaces. (The summands in the S-invariant direct sum decomposition of F are of minimal positive dimension if and only if each of the distinct factors of $\chi_{S|F}$ is irreducible.) Thus without additional hypotheses on the factors $\chi_{S|F_{q_\ell}}$ of $\chi_{S|\operatorname{im} S}$, the dimension q_ℓ of F_{q_ℓ} for $r+1 \le \ell \le p$ is minimal. Hence the diagonal block sizes in the uniform normal form of A are minimal.

4. Note added in proof

The author would like to thank Dr. Vladimir Sergeichuk for pointing out [5] to him. Robinson's generalized Jordan canonical form is the same as our uniform normal form, although he used a factorization to obtain it.

Acknowledgements

The author wishes to thank the referee for insightful comments, which led to a better exposition of the results of this paper, especially to the formulation of Corollary 3.3 and the ensuing remark.

References

- R. Beauregard, J. Fraleigh, A First Course in Linear Algebra: With Optional Introduction to Groups, Rings, and Fields, Houghton-Mifflin Co., Boston, 1973.
- [2] N. Burgoyne, R. Cushman, The decomposition of a linear mapping, Linear Algebra Appl. 8 (1974) 515–519.
- [3] N. Burgoyne, R. Cushman, Conjugacy classes in linear groups, J. Algebra 44 (1977) 333-362.
- [4] R. Cushman, The uniform normal form of a linear mapping, arXiv:1405.7024 [math.SG].
- [5] D.W. Robinson, The generalized Jordan canonical form, Amer. Math. Monthly 77 (1970) 392–395.