Gehostete Architektur (Hosted Virtualisierung):

Bei der **gehosteten Architektur** wird eine Virtualisierungsschicht auf einem vorhandenen Betriebssystem installiert. Dies bedeutet, dass die **virtuellen Maschinen (VMs)** auf dem Host-Betriebssystem laufen, welches wiederum auf der zugrunde liegenden Hardware ausgeführt wird.

Merkmale:

- **Host-Betriebssystem**: Es gibt ein übergeordnetes Betriebssystem, auf dem die Virtualisierungslösung läuft.
- **Virtualisierungssoftware** (Hypervisor) ist eine Anwendung, die auf dem Host-Betriebssystem ausgeführt wird.
- VMs teilen sich die Ressourcen des Hosts über das Betriebssystem.

Vorteile:

- Einfach einzurichten und zu verwalten.
- Unterstützt eine Vielzahl von Betriebssystemen als Host.
- Geeignet für kleinere und weniger ressourcenintensive Workloads.

Nachteile:

- Leistungseinbußen, da das Host-Betriebssystem eine zusätzliche Abstraktionsschicht darstellt.
- Weniger effizient bei der Nutzung von Hardware-Ressourcen im Vergleich zu Bare-Metal-Lösungen.

Gängige Modelle:

- VMware Workstation
- Oracle VirtualBox
- Microsoft Hyper-V (Client)

Bare-Metal-Architektur (Bare-Metal Virtualisierung):

Bei der Bare-Metal-Architektur wird die Virtualisierungsschicht (der Hypervisor) direkt auf der Hardware installiert, ohne dass ein Host-Betriebssystem erforderlich ist. Der Hypervisor läuft direkt auf der Hardware und steuert die Zuweisung von Ressourcen (CPU, RAM, Speicher) an die virtuellen Maschinen.

Merkmale:

- **Kein Host-Betriebssystem**: Die Virtualisierungsschicht wird direkt auf der physischen Hardware installiert.
- **Effizientere Ressourcennutzung**, da keine zusätzliche Betriebssystemschicht die Leistung beeinträchtigt.
- VMs laufen direkt auf der Hardware durch den Hypervisor.

Vorteile:

- Bessere Performance und geringerer Overhead.
- Bessere Kontrolle über Hardware-Ressourcen.
- Geeignet für größere und ressourcenintensive Workloads wie Datenbanken oder Webserver.

Nachteile:

- Komplexer einzurichten und zu verwalten.
- Benötigt spezifische Hardwaretreiber und ist weniger flexibel bei der Auswahl der Betriebssysteme.

Gängige Modelle:

- VMware ESXi
- Microsoft Hyper-V (Server)
- XenServer
- Proxmox VE
- KVM (Kernel-based Virtual Machine)

Unterschiede zwischen gehosteter und Bare-Metal-Architektur:

Kriterium	Gehostete Architektur	Bare-Metal-Architektur
Host- Betriebssystem	Erforderlich (Virtualisierung läuft darauf)	Nicht erforderlich (Hypervisor direkt auf Hardware)
Performance	Weniger effizient, da zusätzliche Schicht	Höhere Performance, da keine zusätzliche Schicht
Verwaltung	Einfacher einzurichten, benötigt weniger Hardwarekenntnisse	Komplexer einzurichten, erfordert Hardwarekenntnisse
Typische Verwendung	Entwicklungsumgebungen, Desktop- Virtualisierung	Unternehmensumgebungen, Server- Virtualisierung
Gängige Beispiele	VMware Workstation, VirtualBox	VMware ESXi, Microsoft Hyper-V (Server), KVM

Fazit:

Die **gehostete Architektur** wird häufig für weniger kritische Anwendungen oder in Entwicklungsumgebungen eingesetzt, da sie einfacher einzurichten ist und flexiblere Betriebssystemoptionen bietet. Die **Bare-Metal-Architektur** wird für produktive Umgebungen mit hohen Leistungsanforderungen und besserer Kontrolle über Hardware-Ressourcen genutzt.