

Apprentissage automatique

Laboratoire d'InfoRmatique en Image et Systèmes d'information

Contexte: Apprentissage automatique

Consiste à inférer des connaissances sur les données

- Sur la seule base des échantillons d'apprentissage
- Présence d'une cible (Apprentissage supervisé), Absence d'une cible (Apprentissage non supervisé)

Apprentissage supervisé

Apprentissage supervisé

Généralement, une méthode d'apprentissage Supervisé est utilisée pour construire un classiffieur (ou modèle ou hypothèse), à partir d'une base d'exemples étiquetés, pour prédire le label d'un nouvel individu qui arrive.

Apprentissage supervisé

- Apprentissage supervisé : Produire automatiquement des règles à partir d'une base de données d'apprentissage étiquetées
- But: prédire la classe de nouvelles données observées
- Algorithmes: Arbres de décision, réseaux bayésiens, réseaux de neurones, k-plus proches voisins, etc...

Arbre de décision

Classement par les Arbres de Décision

- Processus récursif de division de l'espace des données en sousrégions de plus en plus pures en terme de classes.
- Décomposition d'un problème de classification en une suite de tests (imbriqués) portant sur une variable (parallèle aux axes) ou une combinaison linéaire de plusieurs variables (oblique).
- Les tuples sont placés dans la classe associée à la sous-région qu'ils vérifient
- Différentes approches en fonction de la façon dont l'arbre est construit

Arbre de décision : Exemple

 On souhaite construire un arbre de décision qui soit capable de déterminer si un client consultera son compte par Internet en fonction des 4 attributs: M Moyenne du solde de comptes, A Age, R Résidence et E Niveau d'études.

	M	Α	R	Е	1
1	moyen	moyen	village	oui	oui
2	élevé	moyen	bourg	non	non
3	faible	âgé	bourg	non	non
4	faible	moyen	bourg	oui	oui
5	moyen	jeune	ville	oui	oui
6	élevé	âgé	ville	oui	non
7	moyen	âgé	ville	oui	non
8	faible	moyen	village	non	non

Arbre de décision : Exemple

Racine de l'arbre (pas de test)

Etiquette (3,5) correspondant à : 3 oui et 5 non

Quel est premier test à réaliser ?

Intuitivement :

- Le test sur R n'est pas discriminatoire
- Le test sur A est interessant sur les branches jeune et âgé

- Quelles fonctions permettraient de réprésenter ces intuitions ?
- Fonctions qui seraient :
 - Minimum lorsque le nœud est pur (tous les exemples sont dans une même classe
 - et Maximum lorsque les exemples sont équirépartis.
- Exemples de fonctions possédant ces propriétés :
 - Entropie: Entropie(p) = $-\sum_{k=1}^{c} P(k/p) \times log(P(k/p))$

Mesure le désordre en thermodynamique

• Fonction de Gini : $Gini(p) = 1 - \sum_{k=1}^{c} P(k/p)^2$

Exemple traité avec l'entropie :

(3,5)
$$Entropie(\in) = -\frac{3}{8}\log\left(\frac{3}{8}\right) - \frac{5}{8}\log\left(\frac{5}{8}\right) \approx 0,954$$

Entropie
$$(1) = -\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right) \approx 0.918$$

Entropie
$$(2) = -\frac{2}{3}\log\left(\frac{2}{3}\right) - \frac{1}{3}\log\left(\frac{1}{3}\right) \approx 0.918$$

$$Entropie(3) = -\frac{0}{2}\log\left(\frac{0}{2}\right) - \frac{2}{2}\log\left(\frac{2}{2}\right) = 0$$

Quelle fonction permettrait choisir un test ?

Fonction de gain : $Gain(p, test) = i(p) - \sum_{j=1}^{n} P_j \times i(p_j)$

p: position

P_i: proportion d'éléments de S à la position p qui vont en position p_i

i(p):Entropie(p) ou Gini(p)

Le test choisi est celui qui possède le gain le plus grand

Exemple traité avec l'entropie :

(3,5)
$$Entropie(\in) = -\frac{3}{8}\log\left(\frac{3}{8}\right) - \frac{5}{8}\log\left(\frac{5}{8}\right) \approx 0,954$$

Entropie (1) =
$$-\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right) \approx 0.918$$

Entropie
$$(2) = -\frac{2}{3}\log\left(\frac{2}{3}\right) - \frac{1}{3}\log\left(\frac{1}{3}\right) \approx 0.918$$

$$Gain(\in, M) = Entropie(\in) - \left(\frac{3}{8}Entropie(1) + \frac{3}{8}Entropie(2) + \frac{2}{8}Entropie(3)\right)$$

$$Entropie(3) = -\frac{0}{2}\log\left(\frac{0}{2}\right) - \frac{2}{2}\log\left(\frac{2}{2}\right) = 0$$

Exemple traité avec l'entropie :

(3,5)
$$Entropie(\in) = -\frac{3}{8}\log\left(\frac{3}{8}\right) - \frac{5}{8}\log\left(\frac{5}{8}\right) \approx 0,954$$

$$Entropie(1) = -\frac{1}{1}\log\left(\frac{1}{1}\right) - \frac{0}{1}\log\left(\frac{0}{1}\right) = 0$$

Entropie
$$(2) = -\frac{2}{4}\log\left(\frac{2}{4}\right) - \frac{2}{4}\log\left(\frac{2}{4}\right) = 1$$

$$Entropie(3) = -\frac{0}{3}\log\left(\frac{0}{3}\right) - \frac{3}{3}\log\left(\frac{3}{3}\right) = 0$$

$$Gain(\in, A) = Entropie() - \left(\frac{1}{8}Entropie() + \frac{4}{8}Entropie() + \frac{3}{8}Entropie()\right)$$

Exemple traité avec l'entropie :

(3,5)
$$Entropie(\in) = -\frac{3}{8}\log\left(\frac{3}{8}\right) - \frac{5}{8}\log\left(\frac{5}{8}\right) \approx 0,954$$

Entropie
$$(1) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right) = 1$$

Entropie
$$(2) = -\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right) \approx 0,918$$

$$Gain(\in, R) = Entropie(\in) - \left(\frac{2}{8}Entropie(1) + \frac{3}{8}Entropie(2) + \frac{3}{8}Entropie(3)\right) = -\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right) \approx 0,918$$

= $Entropie(\in) -0.938$

Exemple traité avec l'entropie :

(3,5)
$$Entropie(\in) = -\frac{3}{8}\log\left(\frac{3}{8}\right) - \frac{5}{8}\log\left(\frac{5}{8}\right) \approx 0,954$$

Entropie
$$(1) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) \approx 0.970$$

Entropie
$$(2) = -\frac{0}{3}\log\left(\frac{0}{3}\right) - \frac{3}{3}\log\left(\frac{3}{3}\right) = 0$$

$$Gain(\in, E) = Entropie(\in) - \left(\frac{5}{8}Entropie(1) + \frac{3}{8}Entropie(2)\right) = Entropie(\in) - 0,606$$

Algorithme générique de construction d'un arbre

```
entrée : échantillon S
début
  Initialiser à l'arbre vide; la racine est le nœud courant
  répéter
    Décider si le nœud courant est terminal
    si le nœud est terminal alors
       Affecter une classe
    sinon
       Sélectionner un test et créer le sous-arbre
    finsi
       Passer au nœud suivant non exploré si il en existe
  jusqu'à obtenir un arbre de décision (plus de nœud sans classe)
  fin
```


Entropie
$$(1) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right) = 1$$

Entropie
$$(2) = -\frac{1}{1}\log\left(\frac{1}{1}\right) - \frac{0}{1}\log\left(\frac{0}{1}\right) = 0$$

Entropie (3) =
$$-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right) = 0$$

$$Gain(\subseteq, M) = Entropie(\subseteq) - \left(\frac{2}{4}Entropie(1) + \frac{1}{1}Entropie(2) + \frac{1}{1}Entropie(3)\right)$$

= $Entropie(\in) -0.5$

Évaluation d'un Arbre de Décision

	M	А	R	Е	Re	Pr
1	moyen	moyen	village	oui	oui	oui
2	élevé	moyen	bourg	non	non	non
3	faible	âgé	bourg	non	non	non
4	faible	moyen	bourg	oui	oui	oui
5	moyen	jeune	ville	oui	oui	oui
6	élevé	âgé	ville	oui	non	non
7	moyen	âgé	ville	oui	non	non
8	faible	moyen	village	non	non	non
9	moyen	âgé	village	oui	oui	non
10	élevé	jeune	ville	non	oui	oui
11	faible	âgé	village	non	non	non
12	moyen	moyen	bourg	oui	oui	oui

- **♦ Accuracy =** 0.75
- **◆ Erreur=** 0.25
- ightharpoonup Rappel (oui) = VP/(VP+FN) 66%
- Précision (oui) = VP/(VP+FP) 100%
- ◆ F-mesure (oui) = 79.5%

