The Causes of Revolutions

LSESU Data Science Society — Lent Term 2023 Project Presentation

Executive Summary

- Research question: What are the correlates of social unrest?
- Data: World Bank, Google Trends, and various conflict datasets
- Approach: Deployed multiple models to identify factors that predict revolutions
 - Used linear/logistic regression models and decision tree to understand the most important predictors
 - Developed a neural network model for prediction
- Results: most important factors GDP, school enrollment, FDI

Theory: three leading causes of revolution

- Demographic structural model: population changes → imbalance in dist. of resources, power, and opportunities, causing social conflict (Goldstone 1993)
- Political fractionalization: radical political/insurgent factions → civil unrest (Bates 2008; Fearon and Laitin 2003; Goldstone 1991)
- Geopolitical theory: imbalance in dynamics of power defined as as the control of strategic resources such as oil, water etc. (Collins 1980, 1995)
- Applicability in today's hyperinformation era?

Data from a wide range of datasets

- Dependent variable: 'unrest' (broadly conceived)
- Independent variable: 'causes of revolutions'
- Datasets:
 - The Armed Conflict Location & Event Data Project (ACLED)
 - Reported Social Unrest Index (RSUI)
 - Cross-National Time-Series Data (CNTSD)
 - World Bank Economic Data (WB)
 - Google Trend Keyword searches
 - keywords: protest, revolution, riots, strike, unrest, violence

We create an 'unrest index' from data...

- CNTSD (sum: 370)
 - Assassinations (25)
 - Strikes (20)
 - Guerrilla Terrorism/Guerrilla Warfare (100)
 - Government Crises (20)
 - Purges (20)
 - Riots (25)
 - Revolutions (150)
 - Anti-Government Demonstrations (10)
- ACLED (sum: 290)
 - Battles (150) match to "revolutions" from CNTSD
 - Explosions/remote violence (75) match to "guerrilla terrorism/guerrilla warfare", but discounting for only instances
 of remote violence from CNTSD
 - Violence against civilians (25) match to "assassinations" from CNTSD
 - Protests (20) match to "strikes/purges" from CNTSD
 - Riots (25) match to "riots" from CNTSD
- RSUI

...and scale accordingly

- Standardize ACLED, RSUI, CNTSD data to mean 0 and standard deviation 1
- Subtract each data point in the ACLED, RSUI, CNTSD by the minimum value of the dataset to make the minimum values of each dataset equal 0
- Take the average of ACLED, RSUI, CNTSD for final unrest_index dependent variable, separating across World (yearly) and Middle East/North Africa (MENA) (monthly)

Data cleaning methodology

- All data combined into final merged dataset
- Two merged datasets: MENA (monthly), World (yearly)
- N/A values: interpolation or removal
- Google Trends data used for testing whether online search activity predicted revolution
 - Range: 0–100 for search activity, indexed to maximum search activity across search space
 - Dataset many "<1" values, which were simplified to 0.5
 - Data is monthly
 - > for the yearly worldwide dataset, take a yearly average

Unrest index

Final dataset sample

Google Trends data

date	Country	country_cod	protest r	revolution	riots	strike	unrest	violence	BN.CAB.XOK	BX.KLT.DINV	EG.CFT.ACCS	EG.ELC.ACCS	EN.ATM.CO2	EN.POP.DNS	EN.POP.SLU	I EN.URB.LCT	N EN.URB.MC	រា <mark> unrest_inde</mark>
2016-06-01/	Algeria	DZA	0	5	0	(26	1 3	-16.289765	-0.3240121	99.5	99.1866608	0.33628389	16.6026256	24.98121	2592330	0 6.55569862	2 <mark>0.07034985</mark>
2016-07-01/	Algeria	DZA	0.5	4	0	r	20	0 5	-16.296788	-0.211703	99.5083333	99.2002932	0.33517861	16.6304825	24.65576	2595105.6	7 6.55179696	6 <mark>-</mark> 0.11645936
2016-08-01/	Algeria	DZA	0	4	0	1	20	0 4	-16.30381	-0.099394	99.5166667	99.2139257	0.33407334	16.6583394	24.33031	2597881.33	6.547895	0.06032861
2016-09-01/	Algeria	DZA	0	3	0	1	15	0 3	-16.310832	0.01291503	99.525	99.2275581	0.33296806	16.6861963	24.00486	260065	7 6.5439936	4 0.27585623
2016-10-01/	Algeria	DZA	0.5	4	0	1	13	0 5	-16.317854	0.12522407	99.5333333	99.2411906	0.33186279	16.7140532	23.67941	2603432.6	7 6.54009198	8 0.12500542
2016-11-01/	Algeria	DZA	0	6	1		14	0 11	-16.324877	0.23753311	99.5416667	99.254823	0.33075751	16.74191	23.35396	2606208.3	3 6.5361903	3 <mark>0.0708347</mark> 5
2016-12-01/	Algeria	DZA	0	5	1		17	0 7	-16.331899	0.34984215	99.55	99.2684555	0.32965224	16.7697669	23.02851	260898/	4 6.5322886	7 <mark>.</mark> 0.21912433
2017-01-01/	Algeria	DZA	0	6	0	1	14	0 8	-16.338921	0.46215119	99.5583333	99.282088	0.32854696	16.7976238	22.70306	2611759.6	7 6.5283870	0.24900066
2017-02-01/	Algeria	DZA	0.5	4	0		12	0 13	-16.345944	0.57446023	99.5666667	99.2957204	0.32744169	16.8254807	22.37761	2614535.3	3 6.5244853	5 0.088294
2017-03-01/	Algeria	DZA	0.5	5	0	1	17	0 7	-16.352966	0.68676927	99.575	99.3093529	0.32633641	16.8533376	22.05216	261731	1 6.52058369	9 0.0243829
2017-04-01/	Algeria	DZA	0	5	0	1	12	1 8	-16.359988	0.79907831	99.5833333	99.3229853	0.32523114	16.8811945	21.72671	2620086.6	7 6.51668203	3 <mark>0.07257049</mark>
2017-05-01/	Algeria	DZA	0	4	0		16	0 5	-16.36701	0.91138735	99.5916667	99.3366178	0.32412586	16.9090514	21.40126	2622862.3	3 6.5127803	8 0.0991274
2017-06-01/	Algeria	DZA	0	5	0		21 (0.5 4	-16.374033	1.02369639	99.6	99.3502502	0.32302059	16.9369083	21.07581	2625638	8 6.5088787	0.12980563
2017-07-01/	Algeria	DZA	0.5	4	1		16	0 4	-16.090654	0.99866001	99.6	99.3740203	0.32326351	16.9648017	21.07581	2628449.25	5 6.5052009	5 0.08285458
2017-08-01/	Algeria	DZA	0.5	4	0	,	16	1 3	-15.807275	0.97362363	99.6	99.3977903	0.32350644	16.992695	21.07581	2631260.	5 6.5015231	8 0.19034912
2017-09-01/	Algeria	DZA	0	4	0		12	0 4	-15.523897	0.94858726	99.6	99.4215603	0.32374936	17.0205884	21.07581	2634071.7	5 6.4978454	0.36875065
2017-10-01/	Algeria	DZA	0	6	0		11	0 6	-15.240518	0.92355088	99.6	99.4453303	0.32399229	17.0484818	21.07581	263688	3 6.4941676	4 0.20530514
2017-11-01/	Algeria	DZA	0	7	0		11	0 9	-14.95714	0.89851451	99.6	99.4691003	0.32423521	17.0763751	21.07581	2639694.2	5 6.4904898	7 0.08156994

Economic data with World Bank code for column names

We use two main approaches for analysis: linear and logistic regression

- Linear regression: continuous unrest_index variable
 - Strength: easy to apply
 - Weakness: ind. variables are not independent of each other → no possibility of causal inference
- Logistic regression: binary variable (0 or 1 yes or no conflict) prediction
 - Strength: could be a simpler approach than using linear *unrest_index*?
 - Weakness: simplification into binary variable required
- Run with regularization technique
 - avoids the "overfitting" problem
- Overall: too many problems to be useful

Aside: Logistic regression overview

- Logistic regression solves the binary classification problem
- Success or failure of logistic regression?
 - → use F1-score
- $F_1 = \frac{precision \times recall}{precision + recall}$

Results: MENA (linear regression model)

- $R_{train}^2 = 0.61$
- $R_{test}^2 = 0.48$
- Statistically significant variables:
 - School enrollment (+'ve)
 - CO2 emissions (-'ve)
 - Exchange rate (+'ve)

Results: MENA (logistic regression model)

- $F_1 = 0.42$ (out of 1)
- Statistically significant variables:
 - GDP (+'ve)
 - Exchange rates (+'ve)
 - "riots" Google search term (+'ve)

Results: World (linear regression model)

- $\bullet R_{train}^2 = 0.46$
- $R_{test}^2 = 0.16$
- Statistically significant variables:
 - School enrollment (–'ve)
 - Income share held by lowest 10% (-'ve)

Results: World (logistic regression model)

- $F_1 = 0.14$ (out of 1)
- Statistically significant variables:
 - GDP (+'ve)
 - Current account balance (+'ve)
 - CO2 emissions (-'ve)

We also use random forest models and optimise # of estimators (decision trees)

num estimators vs. model performance 1.25 1.00 0.75 performance 0.50 0.25 0.00 -0.25-0.5010 30 40 20 50 num_estimators

World Data

MENA Data

Results: World (single-run random forest)

- $R^2 = 0.56$ (out of 1)
- "Important" variables (sig. > 0.05)
 - Tax revenue (% of GDP)
 - Population of largest city
 - Prevalence of moderate or severe food insecurity

Results: MENA (single-run random forest)

- $R^2 = 0.60$ (out of 1)
- "Important" variables (sig. > 0.05)
 - GDP
 - Current health expenditure per capita
 - GDP per capita
 - "Revolution" Google search term
 - Population living in slums (% of urban population)

Results: World (long-run random forest)

- For each random state:
 - (1) find optimal number of estimators given by num_estimators
 - (2) run model, taking mean root mean-squared error rmse, R^2 , and important features
 - (3) repeat over 100 trials
 - (4) take mean rmse, R², important features
- $R^2 = 0.58$, rmse = 0.67
- "Important" variables (sig. > 0.05)
 - GDP

Results: MENA (long-run random forest)

- For each random state: (same as for world dataset)
 - (1) find optimal number of estimators given by num_estimators
 - (2) run model, taking mean root mean-squared error rmse, R^2 , and important features
 - (3) repeat over 100 trials
 - (4) take mean rmse, R², important features
- $R^2 = 0.64$, rmse = 0.52
- "Important" variables (sig. > 0.05)
 - GDP
 - GDP per capita
 - "revolution" Google search term
 - Population in urban agglomerations of more than 1 million

For **prediction**, we attempt to use neural network models

- We built a neural network in keras (Python) for predicting social unrest using our datasets
 - Used 3 hidden layers with a "dropout" after each hidden layer
 - Trained on training set of 80% of the dataframes (test set: 20%)
- Of course, no easy way of finding important determinants!
- Overall results
 - World $R_{train}^2 = 0.77$, $R_{test}^2 = 0.45$
 - MENA $R_{train}^2 = 0.74$, $R_{test}^2 = 0.23$

A brief comparison of model performance

Model	$R_{\mathrm test}^2$
Linear (MENA)	0.48
Linear (World)	0.16
Decision Tree (MENA)	0.64
Decision Tree (World)	0.58
Neural Network (MENA)	0.22
Neural Network (World)	0.45

Logistic model for binary classification uses F_1 statistic: $F_1 = 0.14$ (world), $F_1 = 0.42$ (MENA) *higher F_1 = more predictive power

Actionable insights

- Expected: GDP, price level (inflation) associated with an increase in social unrest; urban density associated with social unrest
- Unexpected: School enrollment association unclear as both positive and negative effects from regression models
 - one would expect more education = more social unrest?
- Interesting: increased CO2 emissions associated with a decrease in social unrest

Discussion

- The project was much more challenging than expected
- Many missing variables: we have approx. 60 independent variables, compared to approx. 340 independent variables used in IMF study (Redl & Hlatshwayo 2021)
- Usage of big data? → Google data did occasionally seem quite significant; some search terms have predictive power
- Use cases of this research? → More verification than prediction