

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 20

Transformações Lineares:

Operações e Matriz Associada

Professora: Isamara C. Alves

Data: 20/05/2021

Matriz Associada

Exercícios - Solução:

1. Seja $\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}),\mathbb{R}^3)$ tal que;

Matriz Associada

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$

Matriz Associada

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\};$

Matriz Associada

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$

Matriz Associada

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Matriz Associada

Exercícios - Solução:

1. Seja $\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathcal{M}_2(\mathbb{R})}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$;

Matriz Associada

Exercícios - Solução:

1. Seja $\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n,3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n,3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) =$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3)=(0,1,0)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) +$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{m_3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) +$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n,3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + a_{31}(-e_3) = -1(e_1 - e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{-3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{-3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_3) +$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n,3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n,3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

 $\mathcal{F}(e_2) =$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

 $\mathcal{F}(e_2) = (0, 0, 1)$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{21}(e_1 - e_3) + a_{2$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n,3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) =$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + 0(e_1 - e_3) + 0(e_1 - e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(e_1 + e_2) + a_{34}(e_1 + e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + a_{23}(e_1 - e_3) + a_{23}(e_1$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + a_{33}(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = a_{12}(e_1 - e_3) + a_{23}(e_1 - e_3) + a_{23}(e_1 - e_3) + a_{23}(e_1 - e_3) + 0(e_1 - e_3) + 0(e_1 - e_3) + 0(e_1 - e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0, 1, 0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1, 0, 0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1, 0, 0) = a_{14}(e_1 - e_3) + a_{14}(e_1 - e_3) + a_{14}(e_1 - e_3) + a_{14}(e_1 - e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + a_{34}(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\geqslant 3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

Matriz Associada

Exercícios - Solução:

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$A \text{ matrix associada:}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{=3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$[\mathcal{F}]_{eta_{\mathbb{R}^3}}^{eta_{\mathcal{M}_2(\mathbb{R})}} = egin{bmatrix} -1 & 0 & 1 & 1 \ & & & \end{bmatrix}$$

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{=3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$[\mathcal{F}]_{eta_{\mathbb{R}^3}}^{eta_{\mathcal{M}_2(\mathbb{R})}} = egin{bmatrix} -1 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 \end{bmatrix}$$

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n-3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$[\mathcal{F}]_{eta_{\mathbb{R}^3}}^{eta_{\mathcal{M}_2(\mathbb{R})}} = egin{bmatrix} -1 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 \ 1 & -1 & -1 & -1 \end{bmatrix}$$

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n-3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}_{\substack{\mathbf{dim}(\mathbb{R}^3) \\ \dim(\mathcal{M}_2(\mathbb{R}))}} \underbrace{\mathbf{dim}(\mathcal{M}_2(\mathbb{R}))}_{\substack{\mathbf{dim}(\mathcal{M}_2(\mathbb{R}))}}$$

1. Seja
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y)$ e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{n-3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_3) = (0,1,0) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = -1(e_1 - e_3) + 1(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_2) = (0,0,1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_4) = (1,0,0) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$\mathcal{F}(e_1) = (1,0,0) = a_{14}(e_1 - e_3) + a_{24}(e_1 + e_2) + a_{34}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -1(-e_3)$$

$$[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}_{\substack{\mathbf{dim}(\mathbb{R}^3) \\ \dim(\mathcal{M}_2(\mathbb{R}))}} \underbrace{\mathbf{dim}(\mathcal{M}_2(\mathbb{R}))}_{\substack{\mathbf{dim}(\mathcal{M}_2(\mathbb{R}))}}$$

Matriz Associada

Exercícios - Solução:

1. $\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ tal que;

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

$$[\mathcal{F}] =$$

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

$$[\mathcal{F}] = \begin{bmatrix} & [\mathcal{F}(e_1)] \end{bmatrix}$$

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] \end{bmatrix}$$

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

Matriz Associada

Exercícios - Solução:

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

onde;

$$[\mathcal{F}(e_1)] = [e_1];$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3];$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$[\mathcal{F}(e_{\boldsymbol{1}})] = [e_1]; \quad [\mathcal{F}(e_{\boldsymbol{2}})] = [e_3]; \quad [\mathcal{F}(e_{\boldsymbol{3}})] = [e_2];$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} & [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] & \end{bmatrix}$$

$$[\mathcal{F}(e_{\!\boldsymbol{1}})] = [e_1]; \quad [\mathcal{F}(e_{\!\boldsymbol{2}})] = [e_3]; \quad [\mathcal{F}(e_{\!\boldsymbol{3}})] = [e_2]; \quad [\mathcal{F}(e_{\!\boldsymbol{4}})] = [e_1].$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_2]; \quad [\mathcal{F}(e_4)] = [e_1].$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ & & & & \\ & & & & \\ \end{bmatrix}$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$\begin{split} [\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_2]; \quad [\mathcal{F}(e_4)] = [e_1]. \\ [\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} \end{split}$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_2]; \quad [\mathcal{F}(e_4)] = [e_1].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_2]; \quad [\mathcal{F}(e_4)] = [e_1].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} \underbrace{ 3 imes 4 \atop \textit{dim}(\mathcal{M}_2(\mathbb{R}))}_{\textit{dim}(\mathcal{M}_2(\mathbb{R}))}$$

1.
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 tal que; $\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y)$.

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] & [\mathcal{F}(e_4)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_2]; \quad [\mathcal{F}(e_4)] = [e_1].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} \underbrace{ 3 imes 4 \atop \textit{dim}(\mathcal{M}_2(\mathbb{R}))}_{\textit{dim}(\mathcal{M}_2(\mathbb{R}))}$$

Transformações Lineares Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que;

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}^{'}=\{e_1-e_3,e_1+e_2,-e_3\}$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}^{'} = \{e_1-e_3,e_1+e_2,-e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1,e_2,e_3\}$;

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}^{'}=\{e_1-e_3,e_1+e_2,-e_3\}$ e $\beta_{\mathbb{R}^3}=\{e_1,e_2,e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}_3}'}^{\beta_{\mathfrak{p}_3}'}$;

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}'}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=(0,0,-1)$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=(0,0,-1)=a_{1\textcolor{red}{1}}(e_1-e_3)+$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}_3}^{\prime}}^{\beta_{\mathfrak{p}_3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=(0,0,-1)=a_{1\mathbf{1}}(e_1-e_3)+a_{2\mathbf{1}}(e_1+e_2)$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}_3}^{\prime}}^{\beta_{\mathfrak{p}_3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=(0,0,-1)=a_{1\mathbf{1}}(e_1-e_3)+a_{2\mathbf{1}}(e_1+e_2)+$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}^3}}^{\beta_{\mathfrak{p}^3}'}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z)=(x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}^{'}=\{e_1-e_3,e_1+e_2,-e_3\}$ e $\beta_{\mathbb{R}^3}=\{e_1,e_2,e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}_3}^{\prime}}^{\beta_{\mathfrak{p}_3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=(0,0,-1)=a_{1\mathbf{1}}(e_1-e_3)+a_{2\mathbf{1}}(e_1+e_2)+a_{3\mathbf{1}}(-e_3)=0(e_1-e_3)+$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}^3}}^{\beta_{\mathfrak{p}^3}'}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3)=(0,0,-1)=a_{1\mathbf{1}}(e_1-e_3)+a_{2\mathbf{1}}(e_1+e_2)+a_{3\mathbf{1}}(-e_3)=0(e_1-e_3)+0(e_1+e_2)$$

Matriz Associada

Exercícios - Solução:

2. Seja
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$$
 tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{eta_{\mathfrak{p}_3}^{\prime}}^{eta_{\mathfrak{p}_3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3) = (0,0,-1) = a_{11}(e_1-e_3) + a_{21}(e_1+e_2) + a_{31}(-e_3) = 0(e_1-e_3) + 0(e_1+e_2) + a_{31}(-e_3) = 0(e_1-e_3) + 0(e_1+e_3) + 0$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1-e_3,e_1+e_2,-e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1,e_2,e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}^3}}^{\beta_{\mathfrak{p}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

 $\mathcal{F}(e_1 + e_2) =$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1-e_3) = (0,0,-1) = a_{11}(e_1-e_3) + a_{21}(e_1+e_2) + a_{31}(-e_3) = 0(e_1-e_3) + 0(e_1+e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1+e_2) = (1,0,1)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{21}(e_1 - e_3) + a_{21}(e$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{31}(-e_3) = 0$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(e_1 - e_3) + a_{22}(e_1 - e_3) + a_{22}(e$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}^3}}^{\beta_{\mathfrak{p}^3}'}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = 0$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}^3}}^{\beta_{\mathfrak{p}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) +$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + a_{33}(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + a_{33}(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{P}^3}}^{\beta_{\mathbb{R}^3}^2}$; $[\mathcal{F}]$.

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + 2(-e_3)$$

Matriz Associada

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}'}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + 2(-e_3)$$

A matriz associada:

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{g}_3}^{\prime}}^{\beta_{\mathfrak{R}^3}^{\prime}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1-e_3) = (0,0,-1) = a_{11}(e_1-e_3) + a_{21}(e_1+e_2) + a_{31}(-e_3) = 0(e_1-e_3) + 0(e_1+e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1+e_2) = (1,0,1) = a_{12}(e_1-e_3) + a_{22}(e_1+e_2) + a_{32}(-e_3) = 1(e_1-e_3) + 0(e_1+e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1,0,-1) = a_{13}(e_1-e_3) + a_{23}(e_1+e_2) + a_{33}(-e_3) = -1(e_1-e_3) + 0(e_1+e_2) + 2(-e_3)$$

A matriz associada:

$$[\mathcal{F}]_{eta_{\mathbb{R}^3}^{'}}^{eta_{\mathbb{R}^3}^{'}} = egin{bmatrix} 0 & 1 & -1 \ & & \end{bmatrix}$$

Exercícios - Solução:

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1-e_3) = (0,0,-1) = a_{11}(e_1-e_3) + a_{21}(e_1+e_2) + a_{31}(-e_3) = 0 \\ (e_1-e_3) + 0 \\ (e_1+e_2) = (1,0,1) = a_{12}(e_1-e_3) + a_{22}(e_1+e_2) + a_{32}(-e_3) = 1 \\ (e_1-e_3) + 0 \\ (e_1+e_2) + 2 \\ (e_1+e_2) +$$

A matriz associada:

$$[\mathcal{F}]_{eta_{\mathbb{R}^3}^{'}}^{eta_{\mathbb{R}^3}^{'}} = egin{bmatrix} 0 & 1 & -1 \ 0 & 0 & 0 \end{bmatrix}$$

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathbb{R}^3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1-e_3) = (0,0,-1) = a_{11}(e_1-e_3) + a_{21}(e_1+e_2) + a_{31}(-e_3) = 0(e_1-e_3) + 0(e_1+e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1+e_2) = (1,0,1) = a_{12}(e_1-e_3) + a_{22}(e_1+e_2) + a_{32}(-e_3) = 1(e_1-e_3) + 0(e_1+e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1,0,-1) = a_{13}(e_1-e_3) + a_{23}(e_1+e_2) + a_{33}(-e_3) = -1(e_1-e_3) + 0(e_1+e_2) + 2(-e_3)$$

A matriz associada:

$$[\mathcal{F}]_{eta_{\mathbb{R}^3}^{\prime}}^{eta_{\mathbb{R}^3}^{\prime}} = egin{bmatrix} 0 & 1 & -1 \ 0 & 0 & 0 \ 1 & -2 & 2 \end{bmatrix}$$

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}_3}^{\prime}}^{\beta_{\mathbb{R}^3}^{\prime}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + 2(-e_3)$$

A matriz associada:

$$[\mathcal{F}]_{eta_{\mathbb{R}^{3}}^{'}}^{eta_{\mathbb{R}^{3}}^{'}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}_{\underbrace{3}_{dim(\mathbb{R}^{2})}}$$

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta_{\mathbb{R}^3}' = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{p}_3}^{\prime}}^{\beta_{\mathfrak{p}_3}^{\prime}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + 2(-e_3)$$

A matriz associada:

$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}^{'}}^{\beta_{\mathbb{R}^{3}}^{'}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}_{\underbrace{3}_{\dim(\mathbb{R}^{3})}}^{\times}$$

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

2. Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (x+z,0,y+z)$ e sejam $\beta'_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ e $\beta_{\mathbb{R}^3} = \{e_1, e_2, e_3\}$; base ordenadas.

Encontre as matrizes associadas : $[\mathcal{F}]_{\beta_{\mathfrak{g}_3}^{\prime}}^{\beta_{\mathfrak{R}^3}^{\prime}}$; $[\mathcal{F}]$.

Assim,

$$\mathcal{F}(e_1 - e_3) = (0, 0, -1) = a_{11}(e_1 - e_3) + a_{21}(e_1 + e_2) + a_{31}(-e_3) = 0(e_1 - e_3) + 0(e_1 + e_2) + 1(-e_3)$$

$$\mathcal{F}(e_1 + e_2) = (1, 0, 1) = a_{12}(e_1 - e_3) + a_{22}(e_1 + e_2) + a_{32}(-e_3) = 1(e_1 - e_3) + 0(e_1 + e_2) + -2(-e_3)$$

$$\mathcal{F}(-e_3) = (-1, 0, -1) = a_{13}(e_1 - e_3) + a_{23}(e_1 + e_2) + a_{33}(-e_3) = -1(e_1 - e_3) + 0(e_1 + e_2) + 2(-e_3)$$

A matriz associada:

$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}^{'}}^{\beta_{\mathbb{R}^{3}}^{'}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}_{\underbrace{\mathbf{3}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{3}}_{\dim(\mathbb{R}^{3})}$$

Matriz Associada

Exercícios - Solução:

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

Matriz Associada

Exercícios - Solução:

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

Matriz Associada

Exercícios - Solução:

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

$$[\mathcal{F}] =$$

Matriz Associada

Exercícios - Solução:

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

$$[\mathcal{F}] = \begin{bmatrix} & [\mathcal{F}(e_1)] \end{bmatrix}$$

Matriz Associada

Exercícios - Solução:

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] \end{bmatrix}$$

Matriz Associada

Exercícios - Solução:

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

Matriz Associada

Exercícios - Solução:

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1];$$

Matriz Associada

Exercícios - Solução:

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3];$$

Matriz Associada

Exercícios - Solução:

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_1 + e_3].$$

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_1 + e_3].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 1 \ & & \end{bmatrix}$$

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_1 + e_3].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_1 + e_3].$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

2.
$$F(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(\textbf{e_1})] = [\textbf{e}_1]; \quad [\mathcal{F}(\textbf{e_2})] = [\textbf{e}_3]; \quad [\mathcal{F}(\textbf{e_3})] = [\textbf{e}_1 + \textbf{e}_3].$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}_{\text{dist}(\mathbb{P}^3)}$$

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_1 + e_3].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 1 & 1 \end{bmatrix}_{\underbrace{\mathfrak{Z}}_{\text{tor}(\mathbb{F}^3)}} imes$$

2.
$$\mathcal{F}(x, y, z) = (x + z, 0, y + z)$$

Então; por definição de matrizes associadas:

$$[\mathcal{F}] = \begin{bmatrix} [\mathcal{F}(e_1)] & [\mathcal{F}(e_2)] & [\mathcal{F}(e_3)] \end{bmatrix}$$

$$[\mathcal{F}(e_1)] = [e_1]; \quad [\mathcal{F}(e_2)] = [e_3]; \quad [\mathcal{F}(e_3)] = [e_1 + e_3].$$

$$[\mathcal{F}] = egin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 1 & 1 \end{bmatrix}_{\substack{3 \ dim(\mathbb{R}^3)}} imes_{\substack{dim(\mathbb{R}^3)}}$$

Operador Identidade

 $\begin{array}{c} \textbf{DEFINIÇÃO:} \\ \textbf{Indicamos por } \mathcal{I}_{\mathcal{V}} \end{array}$

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos <code>Operador Linear Identidade</code>

Operador Identidade

DEFINIÇÃO:

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos $\operatorname{OPERADOR}$ LINEAR IDENTIDADE a transformação linear dada por:

$$\mathcal{I}_{\mathcal{V}}:\mathcal{V}
ightarrow\mathcal{V}$$

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos $\operatorname{OPERADOR}$ LINEAR IDENTIDADE a transformação linear dada por:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} o \mathcal{V}$$
 $\mathcal{I}_{\mathcal{V}}(v)$

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos OPERADOR LINEAR IDENTIDADE a transformação linear dada por:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos $\operatorname{OPERADOR}$ LINEAR IDENTIDADE a transformação linear dada por:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam
$$eta_{\mathcal{V}}=\{\emph{v}_1,\emph{v}_2,\ldots,\emph{v}_n\}$$
 e $eta_{\mathcal{V}}^{'}=\{\emph{v}_1^{'},\emph{v}_2^{'},\ldots,\emph{v}_n^{'}\}$

Operador Identidade

DEFINIÇÃO:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 e $\beta_{\mathcal{V}}^{'} = \{v_1^{'}, v_2^{'}, \dots, v_n^{'}\}$ bases ordenadas de \mathcal{V} .

Operador Identidade

DEFINIÇÃO:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam
$$\beta_{\mathcal{V}}=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$$
 e $\beta_{\mathcal{V}}^{'}=\{\mathbf{v}_1^{'},\mathbf{v}_2^{'},\ldots,\mathbf{v}_n^{'}\}$ bases ordenadas de \mathcal{V} . Então,

Operador Identidade

DEFINIÇÃO:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam
$$\beta_{\mathcal{V}}=\{v_1,v_2,\ldots,v_n\}$$
 e $\beta_{\mathcal{V}}^{'}=\{v_1^{'},v_2^{'},\ldots,v_n^{'}\}$ bases ordenadas de \mathcal{V} . Então,
$$[\mathcal{I}_{\mathcal{V}}]_{\beta_{\mathcal{V}}^{'}}^{\beta_{\mathcal{V}}}$$

Operador Identidade

DEFINIÇÃO:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam
$$\beta_{\mathcal{V}}=\{\emph{v}_1,\emph{v}_2,\ldots,\emph{v}_n\}$$
 e $\beta_{\mathcal{V}}^{'}=\{\emph{v}_1^{'},\emph{v}_2^{'},\ldots,\emph{v}_n^{'}\}$ bases ordenadas de \mathcal{V} . Então,

$$\left[\mathcal{I}_{\mathcal{V}}\right]_{\beta_{\mathcal{V}}^{'}}^{\beta_{\mathcal{V}}} =$$

Operador Identidade

DEFINIÇÃO:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam
$$eta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 e $eta_{\mathcal{V}}^{'} = \{v_1^{'}, v_2^{'}, \dots, v_n^{'}\}$ bases ordenadas de \mathcal{V} . Então,

$$[\mathcal{I}_{\mathcal{V}}]_{\beta_{\mathcal{V}}^{'}}^{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{'}}^{\beta_{\mathcal{V}}}$$

Operador Identidade

DEFINIÇÃO:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V} \ \mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$$

Sejam
$$eta_{\mathcal{V}} = \{ \emph{v}_1, \emph{v}_2, \dots, \emph{v}_n \}$$
 e $eta_{\mathcal{V}}^{'} = \{ \emph{v}_1^{'}, \emph{v}_2^{'}, \dots, \emph{v}_n^{'} \}$ bases ordenadas de \mathcal{V} . Então,

$$[\mathcal{I}_{\mathcal{V}}]_{eta_{\mathcal{V}}^{'}}^{eta_{\mathcal{V}}} = [\mathcal{I}]_{eta_{\mathcal{V}}^{'}}^{eta_{\mathcal{V}}}$$

onde,
$$[\mathcal{I}]_{\beta'_{\lambda}}^{\beta_{\mathcal{V}}}$$

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos $\operatorname{Operador\ Linear\ Identidade}$ a transformação linear dada por:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$$

 $\mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$

Sejam $\beta_{\mathcal{V}}=\{\textit{v}_1,\textit{v}_2,\ldots,\textit{v}_n\}$ e $\beta_{\mathcal{V}}^{'}=\{\textit{v}_1^{'},\textit{v}_2^{'},\ldots,\textit{v}_n^{'}\}$ bases ordenadas de \mathcal{V} . Então,

$$[\mathcal{I}_{\mathcal{V}}]_{eta_{\mathcal{V}}^{\prime}}^{eta_{\mathcal{V}}}=[\mathcal{I}]_{eta_{\mathcal{V}}^{\prime}}^{eta_{\mathcal{V}}}$$

onde, $[\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}}$ é a MATRIZ MUDANÇA DA BASE $\beta_{\mathcal{V}}$ para $\beta_{\mathcal{V}}'$.

Operador Identidade

DEFINIÇÃO:

Indicamos por $\mathcal{I}_{\mathcal{V}}$ e denominamos $\operatorname{Operador\ Linear\ Identidade}$ a transformação linear dada por:

$$\mathcal{I}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V} \ \mathcal{I}_{\mathcal{V}}(v) = v; \forall v \in \mathcal{V}$$

Sejam $\beta_{\mathcal{V}}=\{\textit{v}_1,\textit{v}_2,\ldots,\textit{v}_n\}$ e $\beta_{\mathcal{V}}^{'}=\{\textit{v}_1^{'},\textit{v}_2^{'},\ldots,\textit{v}_n^{'}\}$ bases ordenadas de \mathcal{V} . Então,

$$[\mathcal{I}_{\mathcal{V}}]_{eta_{\mathcal{V}}^{\prime}}^{eta_{\mathcal{V}}}=[\mathcal{I}]_{eta_{\mathcal{V}}^{\prime}}^{eta_{\mathcal{V}}}$$

onde, $[\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}}$ é a MATRIZ MUDANÇA DA BASE $\beta_{\mathcal{V}}$ para $\beta_{\mathcal{V}}'$.

Transformação Linear

Operação: Adição

DEFINIÇÃO:

Sejam ${\mathcal V}$ e ${\mathcal U}$ espaços vetoriais de dimensão finita sobre o mesmo corpo ${\mathbb K}$ e

Transformação Linear

Operação: Adição

DEFINIÇÃO:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e sejam $\mathcal F,\mathcal G\in\mathcal L(\mathcal V,\mathcal U).$

Operação: Adição

Definição:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e sejam $\mathcal F,\mathcal G\in\mathcal L(\mathcal V,\mathcal U)$. Denotamos por $\mathcal F+\mathcal G$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Denotamos por $\mathcal{F} + \mathcal{G}$ e denominamos $\mathrm{Adiç}\tilde{\mathrm{A}}\mathrm{O}$ das $\mathrm{Transformaç}\tilde{\mathrm{O}}\mathrm{ES}$ $\mathrm{Lineares}\ \mathcal{F}$ e \mathcal{G}

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO DAS TRANSFORMAÇÕES LINEARES \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos $\mathrm{Adiç}\tilde{\mathrm{A}}\mathrm{O}$ das $\mathrm{Transforma}\tilde{\mathrm{c}}\tilde{\mathrm{o}}\mathrm{E}\mathrm{S}$ $\mathrm{Lineares}$ \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\mathcal{F}+\mathcal{G}:\mathcal{V}\rightarrow\mathcal{U}$$

Operação: Adição

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos $\mathrm{Adiç}$ ÃO DAS TRANSFORMAÇÕES LINEARES \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\mathcal{F} + \mathcal{G}: \mathcal{V} o \mathcal{U} \ (\mathcal{F} + \mathcal{G})(v) =$$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO DAS TRANSFORMAÇÕES LINEARES \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\mathcal{F} + \mathcal{G}: \mathcal{V} \to \mathcal{U}$$

 $(\mathcal{F} + \mathcal{G})(v) = \mathcal{F}(v) + \mathcal{G}(v);$

Operação: Adição

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO DAS TRANSFORMAÇÕES LINEARES \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U}$$

 $(\mathcal{F} + \mathcal{G})(v) = \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V}$

Operação: Adição

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos $\mathrm{Adiç}\tilde{\mathrm{A}}\mathrm{O}$ das $\mathrm{Transforma}\tilde{\mathrm{c}}\tilde{\mathrm{o}}\mathrm{E}\mathrm{S}$ $\mathrm{Lineares}$ \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{aligned} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{aligned}$$

E ainda, $\mathcal{F} + \mathcal{G}$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos $\mathrm{Adiç}$ ÃO DAS TRANSFORMAÇÕES LINEARES \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear:

Operação: Adição

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO das $\mathrm{Transformag}$ ÕES $\mathrm{Lineares}~\mathcal{F}$ e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \rightarrow \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) = \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear: $\mathcal{F}+\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U}).$

Operação: Adição

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos $\mathrm{Adiç}\tilde{\mathrm{A}}\mathrm{O}$ das $\mathrm{Transforma}\tilde{\mathrm{C}}\mathrm{O}\mathrm{E}\mathrm{S}$ $\mathrm{Lineares}$ \mathcal{F} e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear: $\mathcal{F}+\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U}).$

Sejam
$$eta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
, $eta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$

Operação: Adição

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO das $\mathrm{Transformag}$ ÕES $\mathrm{Lineares}~\mathcal{F}$ e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear: $\mathcal{F}+\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U}).$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO das $\mathrm{Transformag}$ ÕES $\mathrm{Lineares}~\mathcal{F}$ e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear: $\mathcal{F}+\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U}).$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO das $\mathrm{Transformag}$ ÕES $\mathrm{Lineares}~\mathcal{F}$ e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F} + \mathcal{G}$ é também uma transformação linear: $\mathcal{F} + \mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

$$[\mathcal{F}+\mathcal{G}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}}$$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO das $\mathrm{Transformag}$ ÕES $\mathrm{Lineares}~\mathcal{F}$ e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear: $\mathcal{F}+\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U}).$

$$[\mathcal{F} + \mathcal{G}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} = [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}}$$

Operação: Adição

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F},\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U})$. Denotamos por $\mathcal{F}+\mathcal{G}$ e denominamos Adig ÃO das $\mathrm{Transformag}$ ÕES $\mathrm{Lineares}~\mathcal{F}$ e \mathcal{G} a aplicação definida da seguinte forma:

$$\begin{split} \mathcal{F} + \mathcal{G} : \mathcal{V} \to \mathcal{U} \\ (\mathcal{F} + \mathcal{G})(v) &= \mathcal{F}(v) + \mathcal{G}(v); \quad \forall v \in \mathcal{V} \end{split}$$

E ainda, $\mathcal{F}+\mathcal{G}$ é também uma transformação linear: $\mathcal{F}+\mathcal{G}\in\mathcal{L}(\mathcal{V},\mathcal{U}).$

$$[\mathcal{F} + \mathcal{G}]_{\beta \mu}^{\beta \nu} = [\mathcal{F}]_{\beta \mu}^{\beta \nu} + [\mathcal{G}]_{\beta \mu}^{\beta \nu}.$$

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Sejam ${\mathcal V}$ e ${\mathcal U}$ espaços vetoriais de dimensão finita sobre o mesmo corpo ${\mathbb K};$

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$.

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Operação: Multiplicação por Escalar

Definição:

Operação: Multiplicação por Escalar

DEFINIÇÃO:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$

Operação: Multiplicação por Escalar

DEFINIÇÃO:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$

 $(\lambda \mathcal{F})(v) =$

Operação: Multiplicação por Escalar

Definição:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$

 $(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v);$

Operação: Multiplicação por Escalar

DEFINIÇÃO:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear:

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

Sejam
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \ \beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$$

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

Operação: Multiplicação por Escalar

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

$$[\lambda \mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$$

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

$$[\lambda \mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = \lambda$$

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

$$[\lambda \mathcal{F}]_{\beta \mu}^{\beta \nu} = \lambda [\mathcal{F}]_{\beta \mu}^{\beta \nu}.$$

Operação: Multiplicação por Escalar

Definição:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} ; seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e seja o escalar $\lambda \in \mathbb{K}$. Denotamos por $\lambda \mathcal{F}$ e denominamos Multiplicação da Transformação Linear \mathcal{F} por um escalar a **aplicação** definida da seguinte forma:

$$\lambda \mathcal{F}: \mathcal{V} \to \mathcal{U}$$
$$(\lambda \mathcal{F})(v) = \lambda \mathcal{F}(v); \quad \forall v \in \mathcal{V}$$

E ainda, $\lambda \mathcal{F}$ é também uma transformação linear: $\lambda \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

$$[\lambda \mathcal{F}]_{\beta \mu}^{\beta \nu} = \lambda [\mathcal{F}]_{\beta \mu}^{\beta \nu}.$$

Operação: Composição

Definição:

Sejam $\mathcal V$, $\mathcal U$ e $\mathcal W$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e

Operação: Composição

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$.

Operação: Composição

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G} \circ \mathcal{F}$

Operação: Composição

DEFINIÇÃO:

Operação: Composição

DEFINIÇÃO:

Operação: Composição

Definição:

$$\mathcal{G}o\mathcal{F}:\mathcal{V}\to\mathcal{W}$$

Operação: Composição

DEFINIÇÃO:

$$(\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W}$$

Operação: Composição

DEFINIÇÃO:

$$\mathcal{G}$$
o $\mathcal{F}: \mathcal{V} o \mathcal{W}$ $(\mathcal{G}$ o $\mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v))$

Operação: Composição

DEFINIÇÃO:

$$\mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W}$$

 $(\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u)$

Operação: Composição

DEFINIÇÃO:

$$\mathcal{G}\circ\mathcal{F}:\mathcal{V}\to\mathcal{W} \\
(\mathcal{G}\circ\mathcal{F})(v)=\mathcal{G}(\mathcal{F}(v))=\mathcal{G}(u)=w;$$

Operação: Composição

DEFINIÇÃO:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

Operação: Composição

DEFINIÇÃO:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF

Operação: Composição

DEFINIÇÃO:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF é também uma transformação linear:

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF é também uma transformação linear: $GoF \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, $\mathcal{G}o\mathcal{F}$ é também uma transformação linear: $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{W})$.

Sejam
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\},$$

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, $\mathcal{G}o\mathcal{F}$ é também uma transformação linear: $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{W})$.

Sejam
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
, $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$,

Operação: Composição

DEFINIÇÃO:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, $\mathcal{G}o\mathcal{F}$ é também uma transformação linear: $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{W})$.

Sejam
$$\beta_{\mathcal{V}}=\{v_1,v_2,\ldots,v_n\}$$
, $\beta_{\mathcal{U}}=\{u_1,u_2,\ldots,u_m\}$, $\beta_{\mathcal{W}}=\{w_1,w_2,\ldots,w_r\}$

Operação: Composição

DEFINIÇÃO:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, $\mathcal{G}o\mathcal{F}$ é também uma transformação linear: $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{W})$.

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF é também uma transformação linear: $GoF \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF é também uma transformação linear: $GoF \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$[\mathcal{G}o\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{W}}}$$

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF é também uma transformação linear: $GoF \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$[\mathcal{G} \circ \mathcal{F}]_{\beta_{\mathcal{W}}}^{\beta_{\mathcal{V}}} = [\mathcal{G}]_{\beta_{\mathcal{W}}}^{\beta_{\mathcal{U}}}$$

Operação: Composição

Definição:

Sejam \mathcal{V} , \mathcal{U} e \mathcal{W} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Denotamos por $\mathcal{G}o\mathcal{F}$ e denominamos Composição das Transformações Lineares \mathcal{G} e \mathcal{F} a **aplicação** definida da seguinte forma:

$$\begin{array}{c} \mathcal{G} \circ \mathcal{F} : \mathcal{V} \to \mathcal{W} \\ (\mathcal{G} \circ \mathcal{F})(v) = \mathcal{G}(\mathcal{F}(v)) = \mathcal{G}(u) = w; \quad \forall v \in \mathcal{V} \end{array}$$

E ainda, GoF é também uma transformação linear: $GoF \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$[\mathcal{G} \circ \mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{W}}} = [\mathcal{G}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{W}}} [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}.$$

Sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$.

Sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G} \circ \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Sejam $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G} \circ \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo,

$$\mathsf{Sejam}\ \mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})\ \mathsf{e}\ \mathcal{G} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \textcolor{black}{\mathcal{W}}).\ \mathsf{Ent\~ao},\ \mathcal{G} \mathit{o} \mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{black}{\mathcal{W}}).$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G} \circ \mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) =$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})({\color{red} u}) = \mathcal{F}(\mathcal{G}({\color{red} u}))$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w})$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!};$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 e $\mathcal{G} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \mathbf{w} \notin \mathcal{V}.$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 e $\mathcal{G} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo, não podemos definir a FUNÇÃO COMPOSTA

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \mathbf{w} \notin \mathcal{V}.$$

$$\mathcal{W} \subseteq \mathcal{V}$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 e $\mathcal{G} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo, não podemos definir a FUNCÃO COMPOSTA

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \mathbf{w} \notin \mathcal{V}.$$

$$\mathcal{W} \subseteq \mathcal{V} \Rightarrow w \in \mathcal{V}$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 e $\mathcal{G} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo, não podemos definir a FUNCÃO COMPOSTA

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \mathbf{w} \notin \mathcal{V}.$$

$$\mathcal{W} \subseteq \mathcal{V} \Rightarrow w \in \mathcal{V} \Rightarrow \mathcal{F}(w)$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo, não podemos definir a FUNCÃO COMPOSTA

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \mathbf{w} \notin \mathcal{V}.$$

$$\mathcal{W} \subseteq \mathcal{V} \Rightarrow w \in \mathcal{V} \Rightarrow \mathcal{F}(w) = u \in \mathcal{U}$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo, não podemos definir a FUNCÃO COMPOSTA

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\underline{u}) = \mathcal{F}(\mathcal{G}(\underline{u})) = \mathcal{F}(\underline{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \underline{w} \notin \mathcal{V}.$$

$$\mathcal{W} \subseteq \mathcal{V} \Rightarrow w \in \mathcal{V} \Rightarrow \mathcal{F}(w) = u \in \mathcal{U} \Rightarrow$$

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 e $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{W})$. Então, $\mathcal{G}o\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

Contudo, não podemos definir a FUNCÃO COMPOSTA

$$(\mathcal{F} \circ \mathcal{G}) : \mathcal{U} \to \mathcal{U}$$

$$(\mathcal{F} \circ \mathcal{G})(\mathbf{u}) = \mathcal{F}(\mathcal{G}(\mathbf{u})) = \mathcal{F}(\mathbf{w}) \Rightarrow \text{ absurdo!}; \text{ pois, } \mathbf{w} \notin \mathcal{V}.$$

Exceto se.

$$\mathcal{W} \subseteq \mathcal{V} \Rightarrow w \in \mathcal{V} \Rightarrow \mathcal{F}(w) = u \in \mathcal{U} \Rightarrow \mathcal{F} \circ \mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{U}).$$

Operação: Inversa

DEFINIÇÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e

Operação: Inversa

DEFINIÇÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$.

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F}

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se,

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) =$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G}o\mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G}o\mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F}o\mathcal{G}) =$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$;

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G}o\mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F}o\mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G}

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F} .

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

Notação:

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} . \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

$$\mathcal{F}^{-1}:\mathcal{U} o\mathcal{V}$$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é Invertível se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v;$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é Invertível se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 e

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam
$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$,

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

NOTAÇÃO: \mathcal{F}^{-1}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$, bases ordenadas de \mathcal{V} e \mathcal{U} . respectivamente.

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

NOTAÇÃO: \mathcal{F}^{-1}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$, bases ordenadas de \mathcal{V} e \mathcal{U} , respectivamente, com m = n.

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

NOTAÇÃO: \mathcal{F}^{-1}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$, bases ordenadas de \mathcal{V} e \mathcal{U} . respectivamente, com m = n. Então.

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

NOTAÇÃO: \mathcal{F}^{-1}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$, bases ordenadas de \mathcal{V} e \mathcal{U} , respectivamente, com m = n. Então.

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}$$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

NOTAÇÃO: \mathcal{F}^{-1}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$, bases ordenadas de \mathcal{V} e \mathcal{U} . respectivamente, com m = n. Então.

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = ([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}})^{-1}.$$

Operação: Inversa

DEFINICÃO:

Sejam \mathcal{V} , \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que a transformação linear \mathcal{F} é INVERTÍVEL se, e somente se, existe **uma** transformação linear $\mathcal{G} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ tal que $(\mathcal{G} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$ e $(\mathcal{F} \circ \mathcal{G}) = \mathcal{I}_{\mathcal{U}}$; onde \mathcal{G} é a INVERSA da \mathcal{F}

NOTAÇÃO: \mathcal{F}^{-1}

$$\mathcal{F}^{-1}: \mathcal{U} \to \mathcal{V}$$

 $\mathcal{F}^{-1}(u) = v; \quad \forall u \in \mathcal{U}$

Sejam $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ e $\beta_{\mathcal{U}} = \{u_1, u_2, \dots, u_m\}$, bases ordenadas de \mathcal{V} e \mathcal{U} . respectivamente, com m = n. Então.

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = ([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}})^{-1}.$$

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**,

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

Se
$$\mathcal{F}\in\mathcal{L}(\mathcal{V}, \begin{subarray}{c} \mathcal{U} \end{subarray}$$
 possui inversa, $\mathcal{F}^{-1}\in\mathcal{L}(\begin{subarray}{c} \mathcal{U} \end{subarray}, \mathcal{V})$:
$$(\mathcal{F}o\mathcal{F}^{-1})$$

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) =$$

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}}$$

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}}$$
 e

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} \circ \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} \circ \mathcal{F}) =$$

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ e \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

Transformações Lineares

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

Observação

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

$$\left[\mathcal{F} o \mathcal{F}^{-1}
ight]_{eta_{\mathcal{U}}}^{eta_{\mathcal{U}}}$$

OBSERVAÇÃO

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

$$[\mathcal{F} o \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ e \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta u}^{\beta u} = [\mathcal{F}]_{\beta u}^{\beta v} [\mathcal{F}^{-1}]_{\beta v}^{\beta u}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}}$$

OBSERVAÇÃO

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \,\, e \,\, (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

$$[\mathcal{F} \circ \mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}} = [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}} = \mathcal{I}_n;$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ e \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ e \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

$$\left[\mathcal{F}^{-1} o \mathcal{F}
ight]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

$$[\mathcal{F}^{-1} o \mathcal{F}]_{eta \mathcal{V}}^{eta \mathcal{V}} = [\mathcal{F}^{-1}]_{eta \mathcal{V}}^{eta \mathcal{U}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

$$\left[\mathcal{F}^{-1} o \mathcal{F}\right]_{\beta \nu}^{\beta \nu} = \left[\mathcal{F}^{-1}\right]_{\beta \nu}^{\beta u} \left[\mathcal{F}\right]_{\beta u}^{\beta \nu}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

$$[\mathcal{F}^{-1} \circ \mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

$$[\mathcal{F}^{-1} o \mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{V}}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1}o\mathcal{F}]^{\beta\nu}_{\beta\nu} = [\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu}[\mathcal{F}]^{\beta\nu}_{\beta\mu} = [\mathcal{I}_{\mathcal{V}}]^{\beta\nu}_{\beta\nu} = \mathcal{I}_{n}.$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ e \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1}o\mathcal{F}]^{\beta\nu}_{\beta\nu} = [\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu}[\mathcal{F}]^{\beta\nu}_{\beta\mu} = [\mathcal{I}_{\mathcal{V}}]^{\beta\nu}_{\beta\nu} = \mathcal{I}_n.$$

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1} \circ \mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{U}}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1}o\mathcal{F}]^{\beta\nu}_{\beta\nu} = [\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu}[\mathcal{F}]^{\beta\nu}_{\beta\mu} = [\mathcal{I}_{\mathcal{V}}]^{\beta\nu}_{\beta\nu} = \mathcal{I}_n.$$

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}} = [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \textbf{\textit{m}} = \textbf{\textit{n}}.$$

е

$$[\mathcal{F}^{-1} \circ \mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} \circ \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta \mathcal{U}}^{\beta \mathcal{U}} = [\mathcal{F}]_{\beta \mathcal{U}}^{\beta \mathcal{V}} [\mathcal{F}^{-1}]_{\beta \mathcal{V}}^{\beta \mathcal{U}} = [\mathcal{I}_{\mathcal{U}}]_{\beta \mathcal{U}}^{\beta \mathcal{U}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1} \circ \mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta u}^{\beta u} = [\mathcal{F}]_{\beta u}^{\beta v} [\mathcal{F}^{-1}]_{\beta v}^{\beta u} = [\mathcal{I}_{\mathcal{U}}]_{\beta u}^{\beta u} = \mathcal{I}_{n}; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1} o \mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} [\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{V}}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

então:

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

logo,

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}} = [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1}o\mathcal{F}]^{\beta\nu}_{\beta\nu} = [\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu}[\mathcal{F}]^{\beta\nu}_{\beta\mu} = [\mathcal{I}_{\mathcal{V}}]^{\beta\nu}_{\beta\nu} = \mathcal{I}_n.$$

então:

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = \mathcal{I}_n.$$

logo,

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}$$

OBSERVAÇÃO

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} o \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} o \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]_{\beta u}^{\beta u} = [\mathcal{F}]_{\beta u}^{\beta v} [\mathcal{F}^{-1}]_{\beta v}^{\beta u} = [\mathcal{I}_{\mathcal{U}}]_{\beta u}^{\beta u} = \mathcal{I}_n; \quad \mathbf{m} = \mathbf{n}.$$

е

$$[\mathcal{F}^{-1}o\mathcal{F}]^{\beta\nu}_{\beta\nu} = [\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu}[\mathcal{F}]^{\beta\nu}_{\beta\mu} = [\mathcal{I}_{\mathcal{V}}]^{\beta\nu}_{\beta\nu} = \mathcal{I}_n.$$

então:

$$[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = [\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}}[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} = \mathcal{I}_n.$$

logo,

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{U}}} = ([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}})^{-1}.$$

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} \circ \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde:

$$[\mathcal{F} \circ \mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = \mathcal{I}_n; \quad \pmb{m} = \pmb{n}.$$

е

$$[\mathcal{F}^{-1} o \mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}} = \mathcal{I}_n.$$

$$[\mathcal{F}]^{\beta\nu}_{\beta\mu}[\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu} = [\mathcal{F}^{-1}]^{\beta\mu}_{\beta\nu}[\mathcal{F}]^{\beta\nu}_{\beta\mu} = \mathcal{I}_n.$$

logo,

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = ([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}})^{-1}.$$

Assim, podemos afirmar que

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} \circ \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde;

$$[\mathcal{F} o \mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = \mathcal{I}_{n}; \quad \pmb{m} = \pmb{n}.$$

e

$$[\mathcal{F}^{-1} o \mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}} = \mathcal{I}_n.$$

então;

$$[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}[\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}}[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} = \mathcal{I}_n.$$

logo,

$$[\mathcal{F}^{-1}]_{\beta_{i,j}}^{\beta_{i,j}} = ([\mathcal{F}]_{\beta_{i,j}}^{\beta_{i,j}})^{-1}.$$

Assim, podemos afirmar que "se a matriz $[\mathcal{F}]^{eta
u}_{eta
u}$

Se $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$ possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\mathcal{U}, \mathcal{V})$:

$$(\mathcal{F} \circ \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \; \mathsf{e} \; (\mathcal{F}^{-1} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde;

$$[\mathcal{F} \circ \mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = \mathcal{I}_n; \quad \pmb{m} = \pmb{n}.$$

е

$$[\mathcal{F}^{-1} \circ \mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}} [\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = \mathcal{I}_{n}.$$

então;
$$[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}[\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{V}}}=[\mathcal{F}^{-1}]^{\beta_{\mathcal{U}}}_{\beta_{\mathcal{U}}}[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}=\mathcal{I}_{n}.$$

logo,

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = ([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}})^{-1}.$$

Assim, podemos afirmar que "se a matriz $[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$ for invertível

Se
$$\mathcal{F} \in \mathcal{L}(\mathcal{V}, \textcolor{red}{\mathcal{U}})$$
 possui **inversa**, $\mathcal{F}^{-1} \in \mathcal{L}(\textcolor{red}{\mathcal{U}}, \mathcal{V})$:

$$(\mathcal{F} \circ \mathcal{F}^{-1}) = \mathcal{I}_{\mathcal{U}} \ \mathrm{e} \ (\mathcal{F}^{-1} \circ \mathcal{F}) = \mathcal{I}_{\mathcal{V}}$$

onde;

$$[\mathcal{F} \circ \mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} = [\mathcal{I}_{\mathcal{U}}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{U}}} = \mathcal{I}_n; \quad \pmb{m} = \pmb{n}.$$

е

$$[\mathcal{F}^{-1} \circ \mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}} = [\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}} [\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}} = [\mathcal{I}_{\mathcal{V}}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}} = \mathcal{I}_n.$$

$$[\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}}[\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}}=[\mathcal{F}^{-1}]^{eta_{\mathcal{U}}}_{eta_{\mathcal{V}}}[\mathcal{F}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{U}}}=\mathcal{I}_n.$$

logo,

então:

$$[\mathcal{F}^{-1}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{U}}} = ([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}})^{-1}.$$

Assim, podemos afirmar que "se a matriz $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ for invertível então \mathcal{F} possui inversa!

Operações - Propriedades

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e

Operações - Propriedades

Operações - Propriedades

1.
$$(\mathcal{F} + 0)(v)$$

Operações - Propriedades

1.
$$(\mathcal{F} + 0)(v) = \mathcal{F}(v)$$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F}+\mathcal{G})(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$:

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) =$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) =$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $\mathcal{V} = \mathcal{U} \Rightarrow$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $\mathcal{V} = \mathcal{U} \Rightarrow \mathcal{F}^k(\mathbf{v}) =$

Operações - Propriedades

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ k-composições

Operações - Propriedades

Sejam \mathcal{V} e \mathcal{U} espacos vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U}).$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ *k*–composições

por definição:

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ k-composições

por definição: $\mathcal{F}^0(v) = \mathcal{I}_{v}$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ *k*–composições

por definição:
$$\mathcal{F}^0(v)=\mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v)=\mathcal{F}(v)$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ *k*–composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$
Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(v) =$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ *k*–composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$
Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(v) = \mathcal{I}_{\mathcal{V}}(v)$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ *k*–composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$

Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(\mathbf{v}) = \mathcal{I}_{\mathcal{V}}(\mathbf{v})$ dizemos que

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v); \forall \lambda \in \mathbb{K}.$
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ k-composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$

Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(v) = \mathcal{I}_{\mathcal{V}}(v)$ dizemos que \mathcal{F} é um OPERADOR AUTO-REFLEXIVO

Operações - Propriedades

Sejam \mathcal{V} e \mathcal{U} espacos vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{U}).$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ k-composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$

Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(v) = \mathcal{I}_{\mathcal{V}}(v)$ dizemos que \mathcal{F} é um OPERADOR AUTO-REFLEXIVO Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(\mathbf{v}) = \mathcal{F}(\mathbf{v})$

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ k-composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$

Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(v) = \mathcal{I}_{\mathcal{V}}(v)$ dizemos que \mathcal{F} é um OPERADOR AUTO-REFLEXIVO Se V = U e $\mathcal{F}^2(v) = \mathcal{F}(v)$ dizemos que \mathcal{F} é um OPERADOR IDEMPOTENTE.

- 1. $(\mathcal{F} + 0)(v) = \mathcal{F}(v)$
- 2. $(\mathcal{F} + (-\mathcal{F}))(v) = 0(v)$
- 3. $(\mathcal{F} + \mathcal{G})(v) = (\mathcal{G} + \mathcal{F})(v)$
- 4. $\lambda(\mathcal{F} + \mathcal{G})(v) = (\lambda \mathcal{F})(v) + (\lambda \mathcal{G})(v)$: $\forall \lambda \in \mathbb{K}$.
- 5. $(\mathcal{F} \circ \mathcal{I}_{\mathcal{V}})(v) = (\mathcal{F})(v)$ e $(\mathcal{I}_{\mathcal{U}} \circ \mathcal{F})(v) = (\mathcal{F})(v)$.
- 6. Se $V = U \Rightarrow \mathcal{F}^k(v) = (\mathcal{F}o \dots o\mathcal{F})(v); \quad k \in \mathbb{N}.$ k-composições

por definição:
$$\mathcal{F}^0(v) = \mathcal{I}_{\mathcal{V}}$$
 e $\mathcal{F}^1(v) = \mathcal{F}(v)$

Se $\mathcal{V} = \mathcal{U}$ e $\mathcal{F}^2(v) = \mathcal{I}_{\mathcal{V}}(v)$ dizemos que \mathcal{F} é um OPERADOR AUTO-REFLEXIVO Se V = U e $\mathcal{F}^2(v) = \mathcal{F}(v)$ dizemos que \mathcal{F} é um OPERADOR IDEMPOTENTE.

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e

Matriz Associada - Operações

Matriz Associada - Operações

Matriz Associada - Operações

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y);$$

Matriz Associada - Operações

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y); \ \mathcal{H}(x,y,z) = (x+z,0,y+z);$$

Matriz Associada - Operações

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

Matriz Associada - Operações

EXEMPLOS: Sejam
$$\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\};$

Matriz Associada - Operações

EXEMPLOS: Sejam
$$\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$$
 e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y); \ \mathcal{H}(x,y,z) = (x+z,0,y+z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam
$$eta_{\mathcal{M}_2(\mathbb{R})}=\{e_3,e_2,e_4,e_1\};\ eta_{\mathbb{R}^3}=\{e_1-e_3,e_1+e_2,-e_3\}$$

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
,

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$,

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas. Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}o\mathcal{H})$,

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}o\mathcal{H})$, \mathcal{G}^{-1} e \mathcal{H}^{-1} .

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}\circ\mathcal{F})$, $(\mathcal{G}\circ\mathcal{H})$, \mathcal{G}^{-1} e \mathcal{H}^{-1} .

Assim,

Matriz Associada - Operações

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}o\mathcal{H})$, \mathcal{G}^{-1} e \mathcal{H}^{-1} .

Assim, temos que determinar as matrizes associadas às tranformações lineares

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}o\mathcal{H})$, \mathcal{G}^{-1} e \mathcal{H}^{-1} .

Assim, temos que determinar as matrizes associadas às tranformações lineares e efetuar as possíveis operações entre estas matrizes.

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}o\mathcal{H})$, \mathcal{G}^{-1} e \mathcal{H}^{-1} .

Assim, temos que determinar as matrizes associadas às tranformações lineares e efetuar as possíveis operações entre estas matrizes.

(Vamos utilizar as matrizes associadas calculadas nos exercícios anteriores.)

EXEMPLOS: Sejam $\mathcal{F}, \mathcal{G} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3)$ e $\mathcal{H} \in \mathcal{L}(\mathbb{R}^3)$ tais que;

$$\mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y); \ \mathcal{H}(x, y, z) = (x + z, 0, y + z); \ \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

e sejam $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_3, e_2, e_4, e_1\}; \ \beta_{\mathbb{R}^3} = \{e_1 - e_3, e_1 + e_2, -e_3\}$ bases ordenadas.

Encontre, se possível, as matrizes associadas as seguintes funções:

$$(3\mathcal{F}+\mathcal{G})$$
, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}o\mathcal{H})$, \mathcal{G}^{-1} e \mathcal{H}^{-1} .

Assim, temos que determinar as matrizes associadas às tranformações lineares e efetuar as possíveis operações entre estas matrizes.

(Vamos utilizar as matrizes associadas calculadas nos exercícios anteriores.)

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}_{\substack{\mathbf{dim}(\mathbb{R}^3) \\ \text{dim}(\mathbb{R}^3)}} \times \underbrace{\mathbf{dim}(\mathcal{M}_2(\mathbb{R}))}_{\substack{\mathbf{dim}(\mathbb{R}^3)}} \times \underbrace{\mathbf{dim}(\mathcal{M}_$$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}_{\substack{\mathbf{dim}(\mathbb{R}^3) \\ \text{dim}(\mathbb{R}^3)}} \times \underbrace{\mathbf{dim}(\mathcal{M}_2(\mathbb{R}))}_{\substack{\mathbf{dim}(\mathbb{R}^3)}} \times \underbrace{\mathbf{dim}(\mathcal{M}_$$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix}_{\underbrace{\mathfrak{J}}_{dim(\mathbb{R}^3)}} \times \underbrace{\mathfrak{J}}_{dim(\mathcal{M}_2(\mathbb{R}))}$$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{e}}_{\substack{dim(\mathbb{R}^{3}) \\ dim(\mathbb{M}_{2}(\mathbb{R}))}} \mathbf{e}_{\substack{dim(\mathbb{M}_{2}(\mathbb{R}))}} \mathbf{e}_{\substack{dim(\mathbb{R}^{3}) \\ \beta_{\mathbb{R}^{3}}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{3}}_{\substack{dim(\mathbb{R}^{3}) \\ dim(\mathbb{R}^{3})}} \times \underbrace{\mathbf{3}}_{\substack{dim(\mathbb{R}^{3}) \\ dim(\mathbb{R}^{3})}}$$

$$\begin{split} & [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})} \times \mathbf{g}_{\dim(\mathbb{M}_{2}(\mathbb{R}))}^{\beta_{\mathbb{R}^{3}}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})} \times \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})} \times \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\mathbb{R}^{3}}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\mathbb{R$$

$$\begin{split} & [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})} \times \mathbf{g}_{\dim(\mathbb{M}_{2}(\mathbb{R}))}^{\beta_{\mathbb{R}^{3}}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})} \times \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})} \times \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} \times \underbrace{\mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}}} = \mathbf{g}_{\dim(\mathbb{R}^{3})}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\mathbb{R}^{3}}^{\beta_{\mathbb{R}^{3}}} = \mathbf{g}_{\mathbb{R$$

Matriz Associada - Operações

$$\begin{split} & \text{EXEMPLOS:} \\ & [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{ \begin{array}{c} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf$$

Matriz Associada - Operações

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{3}} e \ [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

Calculando;

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$$

Matriz Associada - Operações

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{M}_{2}(\mathbb{R}))} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} = \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^$$

 $[3\mathcal{F} + \mathcal{G}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{-2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{M}_{2}(\mathbb{R}))} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} = \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^$$

$$\begin{split} &[3\mathcal{F}+\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} \\ &[(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \end{split}$$

Matriz Associada - Operações

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{3}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{4}}_{\dim(\mathcal{M}_{2}(\mathbb{R}))} \mathbf{e} \ [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}}(\mathbb{R})} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix} \underbrace{\mathbf{3}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{4}}_{\dim(\mathcal{M}_{2}(\mathbb{R}))} \mathbf{e}$$
 Calculando;

 $[(\mathcal{H}o\mathcal{F})]_{\beta}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = [\mathcal{H}]_{\beta}^{\beta_{\mathbb{R}^{3}}}$

 $[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^2}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{M}_{2}(\mathbb{R}))} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} = \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^{3})} \times \underbrace{\mathbf{g}}_{\dim(\mathbb{R}^$$

$$\begin{split} [3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} &= 3[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} \\ [(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} &= [\mathcal{H}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} \end{split}$$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\underset{dim(\mathbb{R}^{3})}{3} \times \underset{dim(\mathbb{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{dim(\mathbb{R}^{3})}{3} \times \underset{dim(\mathbb{R}^{3})}{3}} \times \underbrace{\underset{dim(\mathbb{R}^{3})}{3} \times \underset{dim(\mathbb{R}^{3})}{4}} e$$

$$[\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix} \underbrace{\underset{dim(\mathbb{R}^{3})}{3} \times \underset{dim(\mathbb{M}_{2}(\mathbb{R}))}{4}} \times \underbrace{\underset{dim(\mathbb{R}^{3})}{4} \times \underset{dim(\mathbb{M}_{2}(\mathbb{R}))}{4}} e$$

$$\text{Calculando};$$

$$\begin{split} [3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\dot{\beta}\dot{\mathcal{M}}_{2}(\mathbb{R})} &= 3[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}}(\mathbb{R})} + [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}}(\mathbb{R})} \\ [(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}}(\mathbb{R})} &= [\mathcal{H}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}}(\mathbb{R})} \\ [\mathcal{H}^{-1}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} &= \end{split}$$

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{3 \times 4}_{\dim(\mathbb{R}^{3})} \underbrace{4}_{\dim(\mathbb{M}_{2}(\mathbb{R}))} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{3 \times 3}_{\dim(\mathbb{R}^{3})} \underbrace{3}_{\dim(\mathbb{R}^{3})} \underbrace{3}_{\dim(\mathbb{R}^$$

$$\begin{split} &[3\mathcal{F}+\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} \\ &[(\mathcal{H}o\mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}_3}}[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} \\ &[\mathcal{H}^{-1}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} = ([\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}})^{-1} \end{split}$$

Matriz Associada - Operações

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{3}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{3}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{3}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & 2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & -1$$

Calculando:

Calculando;
$$[3\mathcal{F}+\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}=3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}+[\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}\\ [(\mathcal{H}\circ\mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}=[\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}}[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}\\ [\mathcal{H}^{-1}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}}=([\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}})^{-1}\Rightarrow \text{ A matriz, apesar de ser quadrada,}$$

Matriz Associada - Operações

EXEMPLOS:
$$[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathcal{M}_{2}(\mathbb{R}))}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{3}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{3}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{3}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{3} \times \underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{4} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{4}} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{4} e \ [\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})} \underbrace{\underset{\text{dim}(\mathbb{R}^{3})}{4} e \ [\mathfrak{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}} = \underbrace{\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix}}_{\text{dim}(\mathbb{R}^{3})$$

Calculando:

Calculando;
$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$$

$$[(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}}[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$$

$$[\mathcal{H}^{-1}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} = ([\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}})^{-1} \Rightarrow \text{ A matriz, apesar de ser quadrada, } \mathbf{não \'e invertível!}$$

Matriz Associada - Operações

$$\begin{split} & \text{EXEMPLOS:} \\ & [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{ \begin{array}{c} \\ 3 \\ \text{dim}(\mathbb{R}^3) \end{array}}_{\text{dim}(\mathbb{R}^3)} \mathbf{e} & [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{ \begin{array}{c} 3 \\ \text{dim}(\mathbb{R}^3) \end{array}}_{\text{dim}(\mathbb{R}^3)} \mathbf{e} \\ & [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix} \underbrace{ \begin{array}{c} 3 \\ \text{dim}(\mathbb{R}^3) \end{array}}_{\text{dim}(\mathbb{R}^3)} \times \underbrace{ \begin{array}{c} 4 \\ \text{dim}(\mathbb{M}_2(\mathbb{R})) \end{array}}_{\text{dim}(\mathbb{M}_2(\mathbb{R}))} \end{split}$$

Calculando:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}}$$
$$[(\mathcal{H}o\mathcal{F})]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}}[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}}$$
$$[2(-1)^{\beta_{\mathbb{R}^{3}}} - (12(-1)^{\beta_{\mathbb{R}^{3}}})^{-1} \rightarrow A \text{ matrix on } A$$

 $[\mathcal{H}^{-1}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} = ([\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}})^{-1} \Rightarrow \text{ A matriz, apesar de ser quadrada, } \mathbf{não} \text{ \'e invertível!}$ (observe que a matriz possui uma linha nula.)

Matriz Associada - Operações

$$\begin{split} & \text{EXEMPLOS:} \\ & [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & -1 \end{bmatrix} \underbrace{ \begin{array}{c} \\ 3 \\ \text{dim}(\mathbb{R}^3) \end{array}}_{\text{dim}(\mathbb{R}^3)} \mathbf{e} & [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 2 \end{bmatrix} \underbrace{ \begin{array}{c} 3 \\ \text{dim}(\mathbb{R}^3) \end{array}}_{\text{dim}(\mathbb{R}^3)} \mathbf{e} \\ & [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix} \underbrace{ \begin{array}{c} 3 \\ \text{dim}(\mathbb{R}^3) \end{array}}_{\text{dim}(\mathbb{R}^3)} \times \underbrace{ \begin{array}{c} 4 \\ \text{dim}(\mathbb{M}_2(\mathbb{R})) \end{array}}_{\text{dim}(\mathbb{M}_2(\mathbb{R}))} \end{split}$$

Calculando:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}}$$
$$[(\mathcal{H}o\mathcal{F})]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathbb{R}^{3}}}[\mathcal{F}]_{\beta_{\mathbb{R}^{3}}}^{\beta_{\mathcal{M}_{2}(\mathbb{R})}}$$
$$[2(-1)^{\beta_{\mathbb{R}^{3}}} - (12(-1)^{\beta_{\mathbb{R}^{3}}})^{-1} \rightarrow A \text{ matrix on } A$$

 $[\mathcal{H}^{-1}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} = ([\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}})^{-1} \Rightarrow \text{ A matriz, apesar de ser quadrada, } \mathbf{não} \text{ \'e invertível!}$ (observe que a matriz possui uma linha nula.)

Matriz Associada - Operações

EXEMPLOS:

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{eta_{\mathbb{R}^3}}^{eta_{\mathcal{M}_2(\mathbb{R})}} =$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F}+\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}=3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F}+\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

$$\left[\left(\mathcal{H} o \mathcal{F}
ight)
ight]_{eta_{\mathbb{D}^3}}^{eta_{\mathcal{M}_2(\mathbb{R})}} =$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

$$[(\mathcal{H} \circ \mathcal{F})]_{eta_{\mathbb{R}^3}}^{eta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{eta_{\mathbb{R}^3}}^{eta_{\mathbb{R}^3}}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

$$[(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

$$[(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & -1 & -1 \end{bmatrix}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

$$[(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & -1 & -1 \end{bmatrix}$$

Matriz Associada - Operações

EXEMPLOS:

$$[3\mathcal{F} + \mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = 3[\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} + [\mathcal{G}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} -2 & 0 & 3 & 4 \\ 3 & 1 & 0 & 0 \\ 4 & -4 & -4 & -3 \end{bmatrix}$$

$$[(\mathcal{H} \circ \mathcal{F})]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = [\mathcal{H}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathbb{R}^3}} [\mathcal{F}]_{\beta_{\mathbb{R}^3}}^{\beta_{\mathcal{M}_2(\mathbb{R})}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -2 & -1 & -1 \end{bmatrix}$$

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$,

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) =$

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x$

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt$

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, v, z, w) = x - vt + wt^2$

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, v, z, w) = x - vt + wt^2 - zt^3$:

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e}$$

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, v, z, w) = x - vt + wt^2 - zt^3$:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Encontre, se possível, as matrizes associadas às seguintes funções:

EXERCÍCIOS:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Encontre, se possível, as matrizes associadas às seguintes funções: $(5\mathcal{F})$,

Matriz Associada - Operações

EXERCÍCIOS:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Encontre, se possível, as matrizes associadas às seguintes funções: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{F})$,

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. tais que $\mathcal{F}(x, v, z, w) = x - vt + wt^2 - zt^3$:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Encontre, se possível, as matrizes associadas às seguintes funções: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G} + (\mathcal{H}o\mathcal{F}))$.

EXERCÍCIOS:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Encontre, se possível, as matrizes associadas às seguintes funções: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}+(\mathcal{H}o\mathcal{F}))$, \mathcal{G}^{-1} , \mathcal{H}^{-1} , $(\mathcal{H}o\mathcal{F})^{-1}$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, e \mathcal{G}^2 .

EXERCÍCIOS:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \mathbf{e} \ [\mathcal{H}] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Encontre, se possível, as matrizes associadas às seguintes funções: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{F})$, $(\mathcal{G}+(\mathcal{H}o\mathcal{F}))$, \mathcal{G}^{-1} , \mathcal{H}^{-1} , $(\mathcal{H}o\mathcal{F})^{-1}$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, e \mathcal{G}^2 .