

"bicyc-L uses a predictive Machine Learning model to rate the City of Toronto's bike racks as 'safe' or 'unsafe', to provide riders with guidance on secure parking locations"

Building bicyc-L

Datasets

The TPS' Bike Theft and Toronto's Outdoor High-Capacity Bike Parking datasets were combined.

Libraries

Numpy, Pandas, and Regex were used for data manipulation. Knime was used to create and train the model.

Model

bicyc-L uses a generalized linear regression model due to its simplicity and accuracy.

Impact of bicyc-L

Fewer Incidents

Less bicycle theft due to safer parking locations

More security

Cyclists can be confident that their belongings are secure

Fewer Police Resources

Resources go to problems other than bike theft

More savings

New bikes do not have to be purchased as often

Fewer Worries

Theft will be less of a concern to bike riders

What's next for bicyc-L Expanded Cities & Complete Location-based Front-End Towns Recommendations Areas outside the Users be given Front-end City of Toronto to application is to be recommend racks be included developed based on location Ш

Thank You!