Fundamentals of Networks

Michael Brodskiy

Professor: E. Bernal Mor

September 7, 2023

• What is a Network?

- A collection of devices (aka nodes) interconnected by different types of links, which allow devices to communicate at a distance in order to support diverse applications
- Devices:
 - * End systems or terminal nodes: computer (desktop, laptop), cell-phone, tablet, car, sensor, and virtually almost anything
 - * Intermediate nodes: modem, repeater, hub, switch, router, base station, etc.

- Links:

- * Wired links: fiber, copper, etc.
- * Wireless links: electromagnetic waves (radio, microwave, terahertz band, infra-red, etc.), acoustic waves (ultra-sounds), etc.
- Applications:
 - * E-mail, instant messaging, web browsing, multimedia streaming, etc.

• A wireless sensor network

- Many applications:
 - * Military applications: battlefield surveillance, nuclear, biological, and chemical attack prevention, etc.
 - * Environmental applications: tracking birds, smart irrigation, earth monitoring, etc.
 - * Health applications: health telemonitoring, drug administration tracking, etc.
- Network Types (classified by size):
 - PAN (Personal Area Networks) Bluetooth, USB, etc.

- * Range of a person
- LAN (Local Area Networks) WiFi, Ethernet, etc.
 - * Range of a single building: a home, office, or factory
- MAN (Metropolitan Area Networks) WiMax, cable, etc.
 - * Range of a city
- WAN (Wide Area Networks) Cellular, landline telephone, etc.
 - * Range of an entire country or continent
- Satellite
- Thus, the internet is a "network of networks"
 - Billions of connected computing devices:
 - * Hosts = end systems
 - * Running network applications at Internet's "edge"
 - Packet switches: forward packets (chunks of data)
 - * Routers, switches, etc.
 - Communication links
 - * Fiber, copper, radio, satellite
 - * Transmission rate: link capacity (bps)
 - Networks
 - * Managed by organization
 - Interconnected ISPs (Internet Service Providers)
- Protocols are everywhere
 - Control sending, receiving of messages
 - Examples: HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, 5G, Ethernet
- Internet Standardization
 - IETF: Internet Engineering Task Force
 - * RFC: Request for Comments
 - IEEE: Institute of Electrical and Electronics Engineers
 - * IEEE 802.3, IEEE 802.11
- Infrastructure that provides services to applications:

- Web, streaming video, multimedia teleconferencing, e-mail, games, e-commerce, social media, interconnected appliances
- Provides programming interface to distributed applications:
 - "Hooks" allowing sending/receiving applications "connect" to, use Internet transport service
 - Provides service options, analogous to postal service

• Protocols

- For humans, an example is language (we have phonetics, grammar, etc.)
- All communication activity in Internet governed by protocols
- Sample definition: Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission and receipt.
- A closer look at internet structure:
 - Edge of the network:
 - * Hosts: clients and servers
 - * Servers often in data centers
 - Access networks:
 - * Wired, wireless communication links
 - Network core:
 - * Interconnected routers
 - * Network of networks

• Physical Media

- Bit: unit of information that is carried by the signal that propagates between transmitter and receiver
- Physical link: what lies between transmitter and receiver
- Types of media:
 - * Guided media: signals propagate solid media (e.g. copper, fiber, coaxial)
 - · Twisted pair (TP) Two insulated copper wires twisted together in a helical form (The signals are usually carried as the difference in voltage between the two wires in the pair to increase robustness against noise).
 - · Coaxial cable Two concentric cooper conductors, with bidirectional capabilities. Longer distances at higher data transmission rates than twisted pairs. A broadband system; that is, multiple frequency channels on cable.

- · Fiber optic cable Glass fiber carrying light pulses, each pulse a bit. High-speed operation, with point-to-point transmissions ranging from 10's-100's Gbps. Very low error rate because it is immune to electromagnetic noise, with repeaters spaced far apart. Downside: expensive and fragile
- * Unguided media: signals propagate freely (no physical wire, like a radio)
 - · Signal can be carried in different ways electromagnetic waves (most commonly used), acoustic waves (typically underwater), magnetic-induction (e.g. Near Field Communications)
 - · Propagation environment effects reflection, obstruction by objects, interference