4004/1 NOVEMBER 2018 SOLUTION GUIDE QUESTION SOLUTION ADDITIONAL GUIDANCE MARK 1 (a) Understanding that $2^3 = 2 \times 2 \times 2$ 1 $\overline{5^2}$ and $5^2 = 5 \times 5$ respectively is important. The division line is $= \frac{2 \times 2 \times 2}{5 \times 5}$ essential. $\frac{6}{25} = 0,24$ 1 (b) (i) Evidence of correct division by 25 1 is required. 1 (b) (ii) 0,125 in standard form 1 Knowledge of correct form of standard form is essential $=1,25 \times 10^{-1}$ $(A \times 10^n \text{ where } 1 \le A < 10 \text{ and } n$ is an integer). 2 (a) 121 1 This question tests knowledge of types of numbers. 2 (b) $\sqrt{\frac{3}{2}}$; π 2 This question tests knowledge of types of numbers. 3 (a) $4 \times 5^3 + 3 \times 5^2 + 2$ Knowledge of expanded format of numbers in different bases, operations in the bases and the place value system of base five. 5^{0} 1 4 3025 3 (b) (i) 1 01112 General rules of addition of numbers in base two. $+ 1010_2$ 10 00012 1

3 (b) (ii)	512 ₇		General rules of subtraction of
	4357		numbers in base seven.
	447	1	
4 (a)	12.45 a.m.	I	The correct way of expressing time in 12 hour notation with only one dot between hours and minutes and showing whether it is before noon (a.m.) or afternoon (p.m.).
4 (b)	21 23 - 3 45 - 17 38 17 38 or 5.38pm	1	Knowledge of time zones and meaning of time ahead. Subtract time ahead from time given. The correct way of writing 24 hour notation with no dots in between and nothing written after.
4 (c)	1 hectare = $10\ 000m^2$ 1 $km^2 = 1\ 000m \times 1\ 000m =$ 1 $000\ 000m^2$ $\therefore 5\ km^2 = \frac{5 \times 1\ 000\ 000}{10\ 000}$ = 500 hectares.	1	Conversion of square kilometres to hectares being tested in this question. Recall that; 1 hectare = $10\ 000m^2$ 1 $km^2 = 1\ 000m \times 1000m = 1\ 000\ 000m^2$
5 (a)	$6.07 \times 10^4 = 6.07 \times 10000$ $= 60700$	1	Conversion from standard form to ordinary by recognizing that $10^4 = 10000$. Recognise that the digits move to the right number of places equivalent to the index of 10.
(b)	$2,53 \times 10^{1} + 6,1 \times 10^{-1}$ $= 25,3 + 0,61$ $= 25,91$ $= 2,591 \times 10^{1}$	1	Convert both numbers to ordinary form, add and then convert the sum to standard form $(A \times 10^n)$, where $1 \le A < 10$ and n is an integer.)

6 (a)	$P\hat{R}Q = (180^{\circ} - 96) \div 2$		The question tests on understanding
	= 84÷2		of types of angles between two parallel lines and their special
	= 42°	1	relationships.
			The exterior angle in a triangle is equal to the sum of the two opposite interior angles and the fact that in an isosceles triangle two angles are equal.
6 (b)	$Q\hat{R}B = (180^{\circ} - 84^{\circ}) + 42^{\circ}$		Use of the theorem that allied or
	= 96° + 42°		co-interior angles are supplementary.
	= 138°	1	
6 (c)	$Q\hat{S}R = 90^{\circ} - 42^{\circ}$		Angles PQR and QRS are alternative hence equal.
	= 48°	1	The candidate to recall that the sum
			of interior angles of a triangle is 180°.
7	$2x + 3y = 11 (1) \times 5$		The method of elimination consist
	3x - 5y = -12 (2) × 3		of eliminating one of the variables with the same coefficient after
	10x + 15y = 55		multiplying and then substitute to get the other variable.
	9x - 15y = -36		Alternatively use the substitution,
	Add 19x = 19	1	matrix and graphical methods.
	x = 1	1	Matrix method
	Substitute 1 for x in (1)		$ \begin{pmatrix} x \\ y \end{pmatrix} = -\frac{1}{19} \begin{pmatrix} -5 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 11 \\ -12 \end{pmatrix} $
	$2 \times 1 + 3y = 11$		The second secon
	2 + 3y = 11		$\binom{x}{y} = -\frac{1}{19} \begin{pmatrix} -55 + 36 \\ -33 - 24 \end{pmatrix}$
	3y = 11 - 2		$\binom{x}{y} = -\frac{1}{19} \binom{-19}{-57}$
	3y = 9		$\binom{x}{y} = \binom{1}{3}$
	y = 3	1	3.
			x = 1 and $y = 3$.

8 (a)	$w \propto \frac{1}{f}$		Recall the general form of inverse
	$w = \frac{k}{f}$		variation, in this question which is $w \propto \frac{1}{f}$ in order to find the equation
	$675 = \frac{k}{90}$		Use the given values of w and f to
	$k = 675 \times 90$	1	find the constant of variation or proportionality.
	$k = 60750$ $w = \frac{60750}{f}$		
8 (b)		1	
0 (0)	f when $w = 500$		Substitution of given value in the
	$w = \frac{60750}{f}$		equation found in (a) to the numerical value of f.
	$500 = \frac{60750}{f}$		Make f the subject of the equation.
	500f = 60 750		
	$f = \frac{60750}{500}$		
	$f = \frac{1215}{10}$		
	f = 121,5	1	
) (a)	45,3981 = 45,40.(correct to 4 s.g.f)	1	The zero at the end is very significant.
(b)	$7,5 \le t < 8,5$	2	Knowledge of limits of accuracy needed.
0 (a)	$3x^2 - 15x$	1	Need to find the H.C.F of the two
	3x(x-5).		terms. Brackets are essential.
0 (b)	$8kl^2m = 2\times 2\times 2\times k\times l\times l\times m$		There is need to express all terms
	$=2^3 kl^2m$		as products of factors or as sets of factors so as to find the H.C.F.
	$28k^2l^3m = 2\times2\times7\times k\times k\times l\times l\times l\times m$		and the H.C.P.
	$=2^2\times 7k^2l^3m$	1	
	$36l^2mn = 2 \times 2 \times 3 \times 3 \times l \times l \times m \times n$		
	$=2^2\times 3^2l^2mn$		

	H.C.F of $8kl^2m$, $28k^2l^3m$ and $36l^2mn$ is	1	
	$2\times2\times l\times l\times m = 4lm^2$		
11(a)	A (6;2) and B (8;5) Gradient of line AB = $\frac{5-2}{8-6}$ = $\frac{3}{2}$.	ı	Use of formula for gradient of a given two points on the line. $\left(Gradient = \frac{increase\ in\ y}{increase\ in\ x}\right)$
(b)	$\frac{y-b}{x-a} = m$ $\frac{y-2}{x-6} = \frac{3}{2}$ $2(y-2) = 3(x-6)$ $2y-4 = 3x-18$ $2y=3x-18+4$	1	Use of one of the points and the calculated gradient to find the equation. Make y the subject to find the equation in the required form. Alternatively use one of the points and the calculated gradient to find the value of c
	$2y = 3x - 14$ $y = \frac{3}{2}x - 7$	1	$\left(y = \frac{3}{2}x + c\right)$
12.	$\frac{2a+6}{a-3} \div \frac{a+3}{a-2a-3}$ $= \frac{2(a+3)}{a-3} \times \frac{(a+1)(a-3)}{a+3}$ $= 2(a+1) \text{ or } 2a+2$	1+1	Factorise the expression then inverts the divisor. Common factors can be divided to remain with the answer in that form where brackets are essential or expanded form with no brackets.
13 (a)	3,5kg: 800g 3 500: 800 35: 8	1	Express the two masses in the same unit (grammes) and reduced to its simplest form. A simplified form with no common factor in the two terms.
13 (b)	120% is to 4,5 <i>t</i> 100% is to? less $= \frac{100}{120} \times \frac{4.5}{1}$ $= \frac{7.5}{2}$	1	Recall that 4,5 tonnes represent 120% hence there was need to find 100% that would represent the harvest in 2015.
	= 3,75 tonnes.	1	

14 (a)	4 - 5x < 2x + 8		Caladia
		1	Solution of inequalities by grouping like terms and dividing
	4-8<2x+5x	1	both sides by 7.
		1	both sides by 7.
	-4 < 7x		
	$\frac{-4}{7} < x$		
14 (b)	The smallest integer that satisfies the	_	
	inequality		Understanding of real number line
			and position of numbers on the real number line. Recall that 0 is an
	4-5x < 2x + 8 is 0.	1	integer.
15 (a)	$\log a = 3$ and $\log b = 7$		The use of law of law of
	2 - 100 Acc 2004		The use of law of logarithms, $\log ab = \log a + \log b$.
	$\log ab = \log a + \log b$		10g u + 10g v.
	= 3 +7		
	= 10	1	
15 (b)	$\log \frac{1}{b} = \log 1 - \log b$	1	Use of law of logarithms,
	- B		$\log \frac{a}{b} = \log a - \log b.$
	= 0 - 7		Recall that $\log 1 = 0$
	- 0 - 7	1	Recall that log 1 = 0
16 (-)	$= -7.$ $\text{Log } \sqrt[3]{a} = \log a^{\frac{1}{3}}$	1	
15 (c)	$\text{Log }\sqrt[3]{a} = \log a^{\frac{1}{3}}$		There was need to express $\sqrt[3]{a}$ =
			$a^{\frac{1}{3}}$
	$=\frac{1}{3}\times\frac{3}{1}$		1799
	3 1		Hence $\log \sqrt[3]{a} = \log a^{\frac{1}{3}} = \frac{1}{3} \log a$.
040 - 200	= 1	1	
l6 (a)	f(x) = (x+4)(2x-1)		Understanding of function notation
	$f(3) = (3+4)(2\times 3-1)$		where $f(3)$ means that substitute 3 for x in the function.
	= 7× 5		
	= 35	1	
6 (b)	$\frac{3m}{m} - \frac{m}{m} - 2\frac{1}{m}$		Knowledge of method for solving
	$\frac{1}{4} - \frac{1}{3} = 2\frac{1}{2}$		linear equations involving fractions
	2		by first multiplying every term by
	$\frac{3m}{4} - \frac{m}{3} = \frac{5}{2}$		L.C.M. of the denominators to
	7 3 2		remove the denominators.
	$\frac{12(3m)}{2} = \frac{12(m)}{2} = \frac{2(5)}{2}$		The equation that remains is a
	$\frac{1}{4} - \frac{1}{3} = \frac{2(3)}{2}$	į.	linear equation in one variable.

	9m - 4m = 30 $5m = 30$	1	
	<i>m</i> = 6	1	
17 (a)	$\mathbf{p} - \mathbf{q} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} - \begin{pmatrix} x \\ 1 \end{pmatrix}$		Subtract corresponding elements. Vector brackets are essential and there is not supposed to be a division line.
	$= \begin{pmatrix} -x \\ -4 \end{pmatrix}$	1	
17 (b)	$(-x)^{2} + (-4)^{2} = 5^{2}$ $x^{2} + 16 = 25$	1	Understanding of the modulus or magnitude sign and how to find the magnitude of a vector.
	$x^2 = 25 - 16$ $x = \sqrt{9}$	1	Knowledge of formation of a quadratic equation and solving it is required.
	$x = \pm 3$	1	
18 (a)	Square	1	The clue is the word regular which means all sides are equal and all interior angles are also equal.
18 (b)	$115^{\circ} + 89^{\circ} + x + x + x + x =$ $(6 - 2) \times 180^{\circ}$ $4x + 204^{\circ} = 720^{\circ}$	1	The concept of sum of interior angles of a hexagon to be used to form an equation and solve it to find the value of x .
	$4x = 720 - 204$ $4x = 516^{\circ}$	1	
	x = 129°	1	
19 (a)	$\cos 45^{\circ} = \frac{BC}{12}$ $BC = \cos 45^{\circ} \times 12$		Knowledge of trigonometric ratios was required to answer this question.
	$= \frac{\sqrt{2}}{2} \times \frac{12}{1}$ $= 6\sqrt{2}$	Ĭ	Use of cosine 45° in surd form to calculate the length of BC.
	$=6\sqrt{2}$	1	

19 (b)	$\sin A\hat{C}D = \frac{6\sqrt{2}}{12}$	1	Knowledge of the fact that the sine of an obtuse angle is equal to sine of its supplement.
19 (c)	$=\frac{\sqrt{2}}{2}$		
0000000	Tan A \hat{C} D = -1	2	Knowledge of the fact that the tangent of an obtuse angle is equal to the negative of the tangent of its supplement.
20 (a) (i)	Modal height $6 < h \le$	1	Modal class is the class with the highest frequency.
(ii)	Median height $6 < h \le 8$	1	The median is the entry in the middle of data when arranged in order. In this case the total frequency is 50 hence the median is the mean of the 25th and 26th entries. Both are found in the same class
20 (b)	(2+6) (6+9)		$6 < h \le 8$
20 (8)	$12\frac{\left(\frac{2+6}{2}\right) + 16\left(\frac{6+8}{2}\right) + 12\left(\frac{8+10}{2}\right) + 10\left(\frac{10+12}{2}\right)}{50}$ $\frac{6(2+6) + 8(6+8) + 6(8+10) + 5(10+12)}{50}$	1	Calculate the class centres of each class by adding the lower and upper limits then divide by two.
	$\frac{48 + 112 + 108 + 110}{50}$ $\frac{378}{50}$	1	This class centre is then multiplied by the frequency and all the products of class centre and
	$7\frac{28}{50}$	1	frequency are added and the sum divided by total frequency.
l (a)	$\frac{1}{3} \times \frac{3}{4}$ $= \frac{2}{12}$	1	Application of the law of probability for both which is to multiplying the probabilities of
l (b)	2 1	1	both not scoring.
	$\frac{2}{3} \times \frac{1}{4}$ $= \frac{2}{12}$	1	Applying the same law as above but now multiplying the probabilities that they do not score.

21 (c)	$\frac{1}{3} \times \frac{1}{4} + \frac{3}{4} \times \frac{2}{3}$ $= \frac{1}{12} + \frac{6}{12}$ $= \frac{1+6}{12}$	1.	This is the probability that one scores and the other does not score. There are two scenarios hence addition of two products.
	$=\frac{7}{12}.$	1	
22 (a)	$\frac{12}{1000} \div \frac{1}{60 \times 60}$ $= \frac{12}{1000} \times \frac{3600}{1}$ $= \frac{432}{10}$	1	Conversion involves changing 12m to km by diving by a 1 000 and converting the seconds to hours by diving by 3 600.
	=43.2 km/h	1	
22 (b) (i)	$12 \times 5 + \frac{1}{2} \times 3 \times 12$ $= 60 + 80$ $= 78 \text{ metres}$	1	The area of the trapezium is the distance covered. The candidate can divide the shape into a triangle and a rectangle. Alternatively use the formula for calculating area of a trapezium. $\frac{1}{2} (8+5) \times 12$ = $\frac{1}{2} \times 13 \times 12$ = 78 metres.
(b) (ii)		1	The acceleration is equal to the gradient of the graph from $t = 5$ to $t = 8$.
23 (a)	$A\hat{C}B = \frac{1}{2} \times 60^{\circ}$ $= 30^{\circ}$	1	Use of the theorem "angle at the centre is twice angle at the circumference".

23 (b)	$O\hat{A}B = \frac{1}{2}(180^{\circ} - 60^{\circ})$ $= 60^{\circ}$	1	Angles in an isosceles triangle because sides OA and OB are equabeing radii of the same circle. Since angle is 60° then the triangle is equilateral.
23 (c)	Length of minor arc AB $\frac{60^{\circ}}{360^{\circ}} \times \frac{2}{1} \times \frac{22}{7} \times \frac{7}{1}$ $= \frac{22}{3}$	I	Knowledge of the formula for calculating length of an arc $\left(\frac{\theta}{360} \times 2\pi r\right)$
32 (4)	$=7\frac{1}{3}\mathrm{cm}.$	1	Substitute the values π and r simplified correctly.
23 (d)	Area of the minor sector AOB $\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times \frac{7}{1} \times \frac{7}{1}$	1	The candidate should know the for calculating area of a sector $\left(\frac{\theta}{360^{\circ}} \times \pi r\right)$
	$=\frac{77}{3}$ $=25\frac{2}{3} \text{ cm}^2$	1	Substitute the values and h simply correctly.
24 (a)	2;3;5;7	2	Clear understanding of prime numbers. Prime numbers are numbers with only two factors 1 and that number. 1 is not a prime number.
24 (b)	P = $\{2;3;5;7\}$ S = $\{1;4;9;\}$ M = $\{3;6;9\}$ P \(S \cap M \) is an empty set $n(P \cap S \cap M) = 0$	1	The three sets have no common elements hence their intersection is empty.
24 (c)	P M S 2 5 7 3 6 9 4	3	The Venn diagram should be completed with all elements as shown. No elements should be repeated. The format of the diagram shows that there is no intersection between the sets <i>P</i> and <i>S</i> .

25 (a)	Translation Translation vector = $\binom{-4}{8} - \binom{2}{5}$ = $\binom{-4-2}{8-5}$ = $\binom{-6}{3}$	2	The translation vector can be found by using corresponding vertices and calculating the movements in the x and y direction. Join the vertices on X to a corresponding vertices on Y. Observe parallel lines of same length and that helps to find the transformation.
25 (b) (i)	$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	2	The matrix for an enlargement is the factor multiplying the identity matrix of a 2×2 matrix.
25 (b) (ii)	$\binom{2}{0} \binom{0}{2} \binom{2}{5} = \binom{4}{10}$ $\binom{2}{0} \binom{0}{2} \binom{4}{1} = \binom{8}{2}$ $\binom{2}{0} \binom{0}{2} \binom{6}{5} = \binom{12}{10}$ Vertices of triangle z are $(4,10), (8;2) \text{ and } (12;10).$	3	To get vertices of triangle Z multiply the enlargement matrix by the vertices of triangle X