- **Section 2** For 2.9 2.11, determine whether the binary operation * defined is commutative and associative.
 - **2.9** * defined on \mathbb{Q} by letting a * b = ab/2.
 - **2.10** * defined on \mathbb{Z}^+ by letting $a * b = 2^{ab}$

Communative: Let $a, b \in \mathbb{Z}^+$. Then,

$$a * b = 2^{ab} = 2^{ba} = b * a$$

Therefore, * is commutative.

Associative: Let $a, b, c \in \mathbb{Z}^+$ Then,

$$(a*b)*c = 2^{ab}*c = 2^{abc}$$

$$a * (b * c) = a * 2^{bc} = 2^{abc}$$

Therefore, * is associative.

- **2.11** * defined on \mathbb{Z}^+ by letting $a * b = a^b$
- For 2.14 2.16, correct the definition of the italicized term without reference to the text, if correction is needed, so that it is in a form for publication.
- **2.14** A binary operation * is *commutative* if and only if a*b=b*a.
- **2.15** A binary operation * on a set S is associative if and only if, for all $a, b, c \in S$, we have (b*c)*a=b*(c*a).
- **2.16** A subset H of a set S is *closed* under a binary operation * on S if $(a*b) \in H$ for all $a,b \in S$.
- For 2.18, 2.20, and 2.22, determine whether the definition of * does five a binary operation on the set. In the event that * is not a binary operation, state whether Condition 1, Condition 2, or both of these conditions on page 24 are violated.
- Condition 1: Exactly one element is assigned to each possible ordered pair of elements of S. Condition 2: For each ordered pair of elements of S, the element assigned to it is again in S.
- **2.18** On \mathbb{Z}^+ , define * by letting $a * b = a^b$
- **2.20** On \mathbb{Z}^+ , define * by letting a * b = c where c is the smallest integer greater than a and b.
- **2.22** On \mathbb{Z}^+ , define * by letting a * b = c where c is the largest integer less than the product of a and b.
- **2.26** Prove that if * is an associative and commutative binary operation on a set S, then

$$(a*b)*(c*d) = [(d*c)*a)]*b$$

for all $a, b, c, d \in S$. Assume the associative law only for triples as in the definition, that is, assume only

$$(x*y)*z = x*(y*z)$$

for all $x, y, z \in S$.

2.36 Suppose that * us an associative binary operation on a set S. Show that $H = \{a \in \S | a * x = x * a \text{ for all } x \in S\}$. Show that H is closed under *.

- **2.37** Suppose that * is an associative and commutative binary operation on a set S. Show that $H = \{a \in \S | a * a = a\}$ is closed under *. (check sheet for hint).
- **Section 3** For 3.6-3.10, determine whether the given map ϕ is an isomorphism of the first binary structure with the second. If not an isomorphism, why not?
 - **3.6** $<\mathbb{Q},\cdot>$ with $<\mathbb{Q},\cdot>$ where $\phi(x)=x^2$ for $x\in\mathbb{Q}$. Not bijective thus, not isomorphic. (not onto) proof this more.
 - **3.7** $\langle \mathbb{R}, \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(x) = x^3$ for $x \in \mathbb{R}$.

Injective: Let $a, b \in \mathbb{R}$. Notice, $\phi(a) = \phi(b)$ which implies $a^3 = b^3 \to a = b$.

Surjective: Let $b \in \mathbb{R}$. Then, there must exist an arbitrary a such that $\phi(a) = b$. Let $a = \sqrt[3]{b}$. Then,

Let $a, b \in \mathbb{R}$. $\phi(a * b) = (ab)^3$ and conversely $\phi(a) * \phi(b) = a^3 * b^3 = (ab)^3$

Therefore, ϕ is a homomorphism. As ϕ is a bijective homomorphism, ϕ must be isomorphic.

- **3.8** $\langle M_2(\mathbb{R}), \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(A)$ is is the determinate of matrix A.
- **3.9** $< M_1(\mathbb{R}), \cdot > \text{with } < \mathbb{R}, \cdot > \text{where } \phi(A) \text{ is is the determinate of matrix } A.$
- **3.10** $\langle \mathbb{R}, + \rangle$ with $\langle \mathbb{R}^+, \cdot \rangle$ where $\phi(r) = .5^r$ for $r \in \mathbb{R}$.

For 3.11 - 3.13 let F be the set of all functions f mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. Determine if they are isomorphism. Why or why not?

- **3.11** $\langle F, + \rangle$ with $\langle F, + \rangle$ where $\phi(f) = f'$, the derivative of f.
- **3.12** $\langle F, + \rangle$ with $\langle \mathbb{R}, + \rangle$ where $\phi(f) = f'(0)$
- **3.13** $\langle F, + \rangle$ with $\langle F, + \rangle$ where $\phi(f)(x) = \int_0^x f(t) dt$
- **3.16** The map $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ is one to one and onto \mathbb{Z} . Give the definition of a binary operation * on \mathbb{Z} such that ϕ is an isomorphic mapping.
- **3.16(a)** $< \mathbb{Z}, +> \text{ onto } < \mathbb{Z}, *>$

Define * have the operation m * n = m + n - 1. Let $a, b \in \mathbb{Z}$. Observe.

$$\phi(a+b) = (a+b) + 1 = (a+1) + (b+1) - 1 = \phi(a) + \phi(b) - 1 = \phi(a) * \phi(b)$$

Thus, there exists a homomorphism

- **3.16(b)** $< \mathbb{Z}, *> \text{onto} < \mathbb{Z}, +>$
- **3.17** The map $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ is one to one and onto \mathbb{Z} . Give the definition of a binary operation * on \mathbb{Z} such that ϕ is an isomorphic mapping.
- 3.17(a) $\langle \mathbb{Z}, \cdot \rangle$ onto $\langle \mathbb{Z}, * \rangle$
- 3.17(b) $\langle \mathbb{Z}, * \rangle$ onto $\langle \mathbb{Z}, \cdot \rangle$
- **3.18** The map $\phi : \mathbb{Q} \to \mathbb{Q}$ defined by $\phi(x) = 3x 1$ for $x \in \mathbb{Q}$ is one to one and onto \mathbb{Q} . Give the definition of a binary operation * on \mathbb{Q} such that ϕ is an isomorphic mapping. Give the identity element.
- $3.18(a) < \mathbb{Q}, +> \text{onto} < \mathbb{Q}, *>$
- **3.18(b)** $< \mathbb{Q}, * > \text{onto} < \mathbb{Q}, + >$

For 2.21,2.22 correct the definition of the italicized term without reference to the text, if correction is needed, so that it is in a form acceptable for publication.

- **3.21** A function $\phi: S \to S'$ is an *isomorphism* if and only if $\phi(a * b) = \phi(a) * \phi(b)$
- **3.22** Let * be a binary operation on a set S. An element e of S with the property s*e = s = e*s is an *identity element for* * for all $s \in S$.
- **3.31** Give a careful proof for a skeptic that the indicated property of a binary structure $\langle S, * \rangle$ is indeed a structural property. (In Theorem 3.14 we did this for the property, "There is an identity element for *."). For each $c \in S$, the equation x * x = c has a solution x in S.
- **3.33** Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form for $a, b \in \mathbb{R}$. Exercise 23 of Section 2 shows that H is closed under both matrix addition and multiplication.
- **3.33(a)** Show that $\langle \mathbb{C}, + \rangle$ is isomorphic to $\langle H, + \rangle$
- **3.33(b)** Show that $\langle \mathbb{C}, \cdot \rangle$ is isomorphic to $\langle H, \cdot \rangle$