Metric Learning VS Classification for Disentangled Music Representation Learning

Jongpil Lee¹, Nicholas J. Bryan², Justin Salamon², Zeyu Jin², Juhan Nam¹

¹KAIST, Daejeon, South Korea ²Adobe Research, San Francisco, United States

https://jongpillee.github.io/metric-vs-classification/

Representation Learning

KAIST

• **Deep representation learning** offers a powerful paradigm for mapping input data onto an organized embedding space and is useful for many music information retrieval tasks.

Content-based Music Retrieval

Tag-based Retrieval and Example-based Retrieval

Multidimensional Retrieval

Summary

- Two central methods for representation learning include **deep** metric learning and classification.
- The emerging concept of **disentangled representations** is also of great interest, where multiple semantic concepts (e.g., genre, mood, instrumentation) are learned jointly but remain separable in the learned representation space.
- In this paper, we present a unified representation learning framework that can perform example-based retrieval, tag-based retrieval, and multidimensional retrieval in a holistic manner.
- (1) we first outline past work on the relationship between metric learning and classification.
- (2) then, we extend this relationship to multi-label data by exploring three different learning approaches and their disentangled versions.
- (3) Finally, we **evaluate all models on four tasks** (training time, similarity retrieval, auto-tagging, and triplet prediction).
- As a result, we find that **classification-based models** are generally advantageous for training time, similarity retrieval, and auto-tagging, while deep metric learning exhibits better performance for triplet-prediction.
- At last, we show that our proposed approach yields state-of-the-art results for music auto-tagging and similarity-based retrieval.

Models

	Basic	Disentangled Version
Metric Learning	✓	X
Proxy-based Metric Learning		
Classification		

 We connect the relationship between classification and metric **learning** using **proxy-based metric learning**. Then, we develop their disentangled version of the models to perform all the three retrieval cases and then we compare the models.

Evaluations

Tasks	Evaluation Metrics			
Tag-based Retrieval	Tagging Performance	AUC		
Example-based Retrieval	Similarity Performance	R@K		
Multidimensional Retrieval	Triplet Prediction	Acc.		
Training Efficiency	Training Time	Ratio		

Results

Results for training time, similarity-based retrieval, and auto-tagging

Model	Models	Normalization	Disentanglement	Training time Similarity-based retrieval				Auto-tagging	
	Models	Normanzanon	Disentangiement	ratio	R@1	R@2	R@4	R@8	AUC
	Triplet	✓	×	1.87	31.8	45.2	59.9	73.0	0.815
	Triplet	Triplet 🗸		2.37	36.5	50.5	64.1	76.0	0.825
	Triplet + track reg.	✓	✓	3.05	33.9	47.5	61.9	74.3	0.813
	Proxy	✓	X	1.11	45.0	58.5	71.0	80.9	0.890
	Proxy	✓	✓	1.29	44.7	58.2	70.7	80.6	0.890
	Classification	X	X	1.00	6.1	11.5	21.1	35.9	0.887
	Classification	✓	X	1.00	43.8	57.8	70.3	80.3	0.887
	Classification	✓	✓	1.27	44.7	58.4	70.7	80.9	0.890

Results for triplet prediction

Embedding space	Models	Normalization	Disentanglement	Genre	Mood	Instruments	Era	Overal
	Triplet	✓	X	0.771	0.725	0.653	0.701	0.712
	Triplet	✓	✓	0.762	0.744	0.696	0.733	0.733
Complete space	Triplet + track reg.	✓	✓	0.757	0.733	0.673	0.715	0.720
	Proxy	✓	×	0.774	0.742	0.645	0.693	0.714
	Proxy	✓	✓	0.762	0.742	0.660	0.716	0.720
	Classification	X	×	0.783	0.745	0.659	0.723	0.728
	Classification	✓	×	0.776	0.747	0.647	0.704	0.719
	Classification	✓	✓	0.758	0.742	0.659	0.715	0.719
	Triplet	✓	✓	0.790	0.785	0.798	0.797	0.792
0.1	Triplet track reg.	✓	✓	0.775	0.748	0.743	0.742	0.752
Sub-space	Proxy	✓	✓	0.777	0.740	0.734	0.700	0.738
	Classification	✓	✓	0.775	0.739	0.732	0.701	0.737

Experiments

- Million Song Dataset (MSD) with Last.FM tag annotations
- 50 tags (28 genres, 12 moods, 5 instruments, 5 eras)
- 201680, 11774, 28435 tracks for train, validation, and test sets
- 3 second excerpts based deep inception backbone model

Dim-Sim Dataset

- A user-annotated music similarity triplet ratings
- linked to the Million Song Dataset (MSD)
- 4,000 3-second triplets
- 39,440 raw human annotations

 The highlighted samples are relatively scattered when considering all dimensions, but **well clustered** when considering only the instrument sub-space.

