			Created with Sdag
Company Name	KLE Technological University	Project Title	Fin Plate - Column Flange to Beam Web
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	20160604_1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion	
Finplate	Pass
Finplate	
Connection Properties	
Connection	
Connection Title	Single Finplate
Connection Type	Shear Connection
Connection Category	
Connectivity	Column flange-Beam web
Beam Connection	Bolted
Column Connection	Welded
Loading (Factored Load)	
Shear Force (kN)	160
Components	
Column Section	ISSC 200
Material	Fe 410
Beam Section	ISMB 400
Material	Fe 410
Hole	STD
Plate Section	320X100X10
Thickness (mm)	10
Width (mm)	100
Depth (mm)	320
Hole	STD
Weld	
Туре	Double Fillet
Size (mm)	8
Bolts	
Туре	HSFG
Grade	8.8
Diameter (mm)	20
Bolt Numbers	3
Columns (Vertical Lines)	1
Bolts Per Column	3

Gauge (mm)	0	
Pitch (mm)	120	
End Distance (mm)	40	
Edge Distance (mm)	40	
Assembly		
Column-Beam Clearance (mm)	20	

			Created with OSdag
Company Name	KLE Technological University	Project Title	Fin Plate - Column Flange to Beam Web
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	20160604_1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check			
Check	Required	Provided	Remark
Bolt shear capacity (kN)		V_{dsb} = (800*0.6126*20*20)/($\sqrt{3}$ *1.25*1000) = 90.529 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V _{dpb} = (2.5*0.508*20*8.9*410)/(1.25*1000) = 74.148 [cl. 10.3.4]	
Bolt capacity (kN)		Min (90.529, 74.148) = 74.148	
No. of bolts	160/74.148 = 2.2	3	Pass
No.of column(s)	≤ 2	1	
No. of bolts per column		3	
Bolt pitch (mm)	\geq 2.5* 20 = 50, \leq Min(32*8.9, 300) = 285 [cl. 10.2.2]	120	Pass
Bolt gauge (mm)	$\geq 2.5*20 = 50, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]		
End distance (mm)	≥ 1.7*22 = 37.4, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	40	Pass
Edge distance (mm)	≥ 1.7*22 = 37.4, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	40	Pass
Block shear capacity (kN)	≥ 160	$V_{\rm db} = 453$	Pass
Plate thickness (mm)	(5*160*1000)/(320*250) = 10.0 [Owens and Cheal, 1989]	10	Pass
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14- 10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	320	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	(2*90.529*120 ²)/(120*1000) = 14.485	$M_{\rm d}$ = (1.2*250* Z)/(1000*1.1) = 46.55 [cl. 8.2.1.2]	Pass
Effective weld length (mm)		320-2*8 = 304	

Weld strength (kN/mm)	$\sqrt{[(14485*6)/(2*304^2)]^2}$ + $[160/(2*304)]^2$ = 0.539	$f_V = (0.7*8*410)/(\sqrt{3}*1.25)$ = 1.06 [cl. 10.5.7]	Pass
Weld thickness (mm)	Max($(0.539*1000*\sqrt{3}*1.25)/(0.7*410)$, $(0.539*10000*\sqrt{3}*1.25)/(0.7*410)$, $(0.539*100000*\sqrt{3}*1.25)/(0.7*4100000*\sqrt{3}*1.25)/(0.7*41000000*\sqrt{3}*1.25)/(0.7*41000000000000000000000000000000000000$	8	Pass

			Created with OSdag
Company Name	KLE Technological University	Project Title	Fin Plate - Column Flange to Beam Web
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	20160604_1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Views	

			Created with OSdag
Company Name	KLE Technological University	Project Title	Fin Plate - Column Flange to Beam Web
Group/Team Name	Civil Engineering Department	Subtitle	
Designer	Satish Annigeri	Job Number	20160604_1
Date	04 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments	