Sistemas Inteligentes

Escuela Técnica Superior de Informática Universitat Politècnica de València

Tema B2T5: Representación estructurada. Modelos de Markov.

DSIC - UPV: SIN

Índice

- 1 Representación estructurada: ejemplos de modelado sintáctico ⊳ 3
 - 2 Necesidad de introducir probabilidades: gramáticas estocásticas > 5
 - 3 Modelos de Markov y gramáticas regulares estocásticas ⊳ 11
 - 4 Apéndice: gramáticas, autómatas y lenguajes ⊳ 24

Objetos estructurados en reconocimiento de formas

- La representación de objetos en un espacio vectorial puede suponer una importante pérdida de información en algunos problemas:
 - Reconocimiento del habla
 - Reconocimiento de texto manuscrito
 - Identificación de la lengua
 - Reconocimiento de actitud o predilección en texto o habla
 - Identificación del tema de un documento
 - Reconocimiento de cromosomas
 - Reconocimiento de escenas en imágenes o vídeos
 - . . .
- Solución: una representación estructurada:
 - Secuencias de longitud variable de vectores o de símbolos
 - Árboles, grafos, etc.
- Modelización: Modelos estructurales, por ejemplo, gramáticas estocásticas o modelos ocultos de Markov

Secuencias de trazos y su modelado gramatical MO E A O SI T TI O E TRA A O E U

S	>	D1 H1	D2 H2 V1 H3 D3
D1	>	"1"	λ
H1	>	"0"	"0" H1
D2	>	"5"	"5" D2
H2	>	"0"	"0" H2
V1	>	"6"	"6" V1
H3	>	"4"	"4" H3
D3	>	"3"	λ

Trazados de treses generados por la gram tica tres.gr

Modelado sintáctico de pronunciaciones de palabras aisladas

Ejemplos de pronunciaciones de la palabra "ocho", representadas mediante cadenas de símbolos acústicos

Una gramática que modela estas pronunciaciones

Índice

- 1 Representación estructurada: ejemplos de modelado sintáctico > 3
- 2 Necesidad de introducir probabilidades: gramáticas estocásticas ▷ 5
 - 3 Modelos de Markov y gramáticas regulares estocásticas ⊳ 11
 - 4 Apéndice: gramáticas, autómatas y lenguajes ⊳ 24

Un clasificador sintáctico para trazados de dígitos

Volvamos al modelado sintáctico del trazado de un "3":

Supongamos que hay una gramática como ésta, G_c , para cada dígito c.

Si $x \in \{0, 1, ..., 7\}^+$ representa el trazado de un dígito, podemos decidir a qué dígito corresponde mediante un *clasificador sintáctico "puro"*:

$$c(x) = \begin{cases} c & \text{si } G_c \text{ es la única gramática que genera } x \\ \text{"rechazo"} & \text{si ninguna gramática genera } x \\ \text{"duda"} & \text{si hay más de una gramática que genera } x \end{cases}$$

Incovenientes de las gramáticas convencionales y la clasificación sintáctica "pura"

- La necesidad de incluir las clases "rechazo" y "duda" es un claro incoveniente.
- Otro incoveniente claro es que las gramáticas convencionales generan tanto cadenas naturales como cadenas "indeseable"; p.e.:

La solución generalmente adoptada consiste en introducir probabilidades, es decir, emplear *gramáticas estocásticas*.

Gramáticas estocásticas

■ Una *Gramática Estocástica G'* es una gramática *G* con probabilidades asociadas a sus reglas:

$$G' = (G, p), \quad G = (N, \Sigma, R, S), \quad p : R \to [0, 1]$$

Una gramática incontextual (o regular) es propia si:

$$\forall A \in N \quad \sum_{\forall \beta: A \to \beta \in R} p(A \to \beta) = 1$$

• **Probabilidad de una cadena** y generada por G':

$$\forall y \in \Sigma^* \quad p(y|G') = \sum_{d \in D_G(y)} p(d), \qquad p(d) = \prod_{(A \to \beta) \in d} p(A \to \beta)$$

■ Una gramática Estocástica G' es consistente si:

$$\sum_{y \in \Sigma^*} p(y|G') = 1$$

Aprendizaje de gramáticas estocásticas

- Determinación de las reglas o su estructura típica ("topología"):
 - Generalmente difícil de automatizar
 - Aproximación: topología pre-definida ⇒ Modelos de Markov
- Aprendizaje de las probabilidades: *estimación*
 - Gramáticas incontextuales (o Regulares) No-ambiguas G':
 Estimación por máxima verosimilitud a partir de las frecuencias de uso de las reglas en el análisis de una secuencia de cadenas de entrenamiento supuestamente generadas por G'.
 Estas estimaciones se aproximan a las verdaderas probabilidades cuando el número de cadenas de entrenamiento $\to \infty$.
 - Gramáticas Regulares ambiguas y/o modelos de Markov:
 Estimación localmente óptima mediante "reestimación por Viterbi"
 o, mejor, mediante el algoritmo "Backward-Forward"

Ejemplo de aprendizaje de las probabilidades

$$S \xrightarrow{6/6} D_1$$

$$D_1 \xrightarrow{3/6} 1 H_1 \qquad D_1 \xrightarrow{3/6} H_1$$

$$H_1 \xrightarrow{25/31} 0 H_1 \qquad H_1 \xrightarrow{6/31} 0 D_2$$

$$D_2 \xrightarrow{10/16} 5 D_2 \qquad D_2 \xrightarrow{6/16} 5 H_2$$

$$H_2 \xrightarrow{10/16} 0 H_2 \qquad H_2 \xrightarrow{6/16} 0 V_1$$

$$V_1 \xrightarrow{20/26} 6 V_1 \qquad V_1 \xrightarrow{6/26} 6 H_3$$

$$H_3 \xrightarrow{25/31} 4 H_3 \qquad H_3 \xrightarrow{6/31} 4 D_3$$

$$D_3 \xrightarrow{4/6} 3 \qquad D_3 \xrightarrow{2/6} \lambda$$

$$D_{1} \xrightarrow{3/6} H_{1}$$

$$H_{1} \xrightarrow{6/31} 0 D_{2}$$

$$D_{2} \xrightarrow{6/16} 5 H_{2}$$

$$H_{2} \xrightarrow{6/16} 0 V_{1}$$

$$V_{1} \xrightarrow{6/26} 6 H_{3}$$

$$H_{3} \xrightarrow{6/31} 4 D_{3}$$

$$D_{3} \xrightarrow{2/6} \lambda$$

Índice

- 1 Representación estructurada: ejemplos de modelado sintáctico > 3
- 2 Necesidad de introducir probabilidades: gramáticas estocásticas > 5
- 3 Modelos de Markov y gramáticas regulares estocásticas > 11
 - 4 Apéndice: gramáticas, autómatas y lenguajes ⊳ 24

Modelos de Markov

Un *modelo de Markov* es una quíntupla $M = (Q, \Sigma, \pi, A, B)$ donde:

- Q es un conjunto de estados
 - En cada instante $t=1,2,\ldots,\ M$ está en uno de sus estados, denotado q_t
 - *Q* incluye un *estado final F*
- $lacktriangleq \Sigma$ es un *conjunto de símbolos "observables"* En cada instante $t=1,2,\ldots,\ M$ emite un símbolo, que se denota con y_t
- $\pi \in \mathbb{R}^Q$ es un *vector de probabilidades iniciales*: M elige q_1 según π
- $A \in \mathbb{R}^{Q \times Q}$ es una *matriz de probabilidades de transición (entre estados)*: M elige q_{t+1} basándose en q_t y A: $A_{q,q'} = P(q_{t+1} = q' | q_t = q)$
- $B \in \mathbb{R}^{Q \times \Sigma}$ es una *matriz de probabilidades de emisión (de símbolos)*: M elige y_t basándose en q_t y B: $B_{q,\sigma} = P(y_t = \sigma \mid q_t = q)$

Modelos de Markov (cont.)

Condiciones de normalización para π, A, B :

Probabilidad de estado inicial:

$$0 \le \pi_q \le 1$$
, $\sum_{q \in Q} \pi_q = 1$, $\pi_F = 0$

Probabilidades de Transición entre estados:

$$0 \le A_{q,q'} \le 1$$
, $\sum_{q' \in Q} A_{q,q'} = 1$, $A_{F,q} = 0$

■ Probabilidades de emisión de observables:

$$0 \le B_{q,\sigma} \le 1$$
, $\sum_{\sigma \in \Sigma} B_{q,\sigma} = 1$, $B_{F,\sigma} = 0$

Modelos de Markov: ejemplo

Representaci n Gr fica Equivalente:

Proceso Markoviano generador de cadenas

Sea $M=(Q,\Sigma,\pi,A,B)$ un modelo de Markov con estado final q_F

- 1. Elegir un estado inicial $q \in Q$ según $P(q) \equiv \pi_q$
- 2. Seleccionar una observación $\sigma \in \Sigma$ según $P(\sigma|q) \equiv B_{q,\sigma}$; emitir σ
- 3. Elegir un estado siguiente $q' \in Q$ según $P(q'|q) \equiv A_{q,q'}$
- 4. Si $q = q_F$ terminar; sino, ir a paso 2

Sean:

- $y = y_1, y_2, \dots, y_m \in \Sigma^+$: secuencia de observaciones producida por M
- $z = q_1, q_2, q_m, \dots, q_F \in Q^+$: secuencia de estados que genera a y

La probabilidad de que M produzca y mediante z es:

$$P(y,z) = P(z) \cdot P(y \mid z) = P(q_1) \prod_{t=2}^{m} P(q_t \mid q_{t-1}) P(q_F \mid q_m) \cdot \prod_{t=1}^{m} P(y_t \mid q_t)$$

Probabilidad de generar una cadena con un modelo de Markov

Probabilidad de que M genere la cadena $y = y_1 \dots y_m \in \Sigma^+$:

$$P(y \mid M) = \sum_{z \in Q^{+}} P(y, z)$$

$$= \sum_{q_{1}, \dots, q_{m} \in Q^{+}} P(q_{1}) \prod_{t=2}^{m} P(q_{t} \mid q_{t-1}) P(q_{F} \mid q_{m}) \cdot \prod_{t=1}^{m} P(y_{t} \mid q_{t})$$

$$= \sum_{q_{1}, \dots, q_{m} \in Q^{+}} \pi_{q_{1}} B_{q_{1}, y_{1}} \left(\prod_{t=2}^{m} A_{q_{t-1}, q_{t}} B_{q_{t}, y_{t}} \right) A_{q_{m}, q_{F}}$$

Se cumple:
$$0 \le P(y|M) \le 1$$
, $\sum_{y \in \Sigma^+} P(y|M) = 1$

Probabilidades calculadas con el modelo del ejemplo

Equivalencia entre modelos de Markov y gramáticas regulares estocásticas

Dado un modelo de Markov M, existe una gramática regular estocástica G tal que $P(y|M) = P(y|G) \ \forall y \in \Sigma^*$

Se demuestra fácilmente por construcción.

Dada una gramática regular estocástica G, existe un modelo de Markov M tal que $P(y|M) = P(y|G) \ \forall y \in \Sigma^*$ (salvo casos degenerados)

Se demuestra por construcción (algo más compleja que la anterior).

Equivalencia entre modelos de Markov y gramáticas estocásticas

Estructura o "topología" de un modelo de Markov

La Topología de un Modelo de Markov: es la forma del grafo subyacente. Viene determinada por la estructura (número y ubicación de ceros) de la matriz de transición entre estados A. Topologías más comunes:

- **Ergódica:** grafo completo, no hay ceros en A.
- *Izquierda-derecha:* el grafo es *dirigido y acíclico* (DAG), aunque pueden haber bucles individuales en los estados. *A* es triangular.
- *Lineal:* el grafo es un DAG (con posibles bucles en estados) restringido en el que las transiciones que salen del estado i—ésimo sólo pueden alcanzar a los estados $i+1,\ldots,i+k$. Los elemetos no nulos de A están en k+1 diagonales adyacentes. Estas transiciones se denominan "saltos" o "skips".
- *Estrictamente Lineal:* el grafo es una concatenación de estados, (con posibles bucles en estados). Los elemetos no nulos de *A* están en dos diagonales adyacentes.

Ejemplos de topologías de modelos de Markov

Ejercicio

Sea M un modelo de estados $Q=\{1,2,3,4,5,F\}$; alfabeto $\Sigma=\{a,b\}$; probabilidades iniciales $\pi_1=1,\,\pi_2=\pi_3=\pi_4=\pi_5=0$; y probabilidades de transición y de emisión:

$oxed{A}$	1	2	3	4	5	F
1		0.6	0.4			
2		0.01	0.59	0.4		
3				0.6	0.4	
4					1.0	
5					0.01	0.99

B	a	b	
1	0.2	0.8	
2	0.7	0.3	
3	0.9	0.1	
4	0.5	0.5	
5	0.4	0.6	

- 1. Representa gráficamente este modelo.
- 2. Calcula la probabilidad de que M genere una cadena de 3 símbolos.
- 3. ¿Puede decirse que las cadenas más probables tienden a ser las cadenes de longitudes comprendidas entre 3 y 5 símbolos?

Ejercicio (solución)

2) Hay 8 cadenas de longitud L=3: $\{a,b\}^3=\{aaa,aab,aba,abb,baa,bab,baa,bab\}$. Cada una de ellas se genera mediante una única secuencia de estados: 1,3,5,F.

$$P(L = 3 \mid M) = \sum_{y \in \{a,b\}^3} P(y \mid M) = \sum_{y \in \{a,b\}^3} \pi_1 B_{1,y_1} (A_{1,3} B_{3,y_3} A_{3,5} B_{5,y_5}) A_{5,F}$$

$$= \pi_1 A_{1,3} A_{3,5} A_{5,F} \sum_{y \in \{a,b\}^3} (B_{1,y_1} B_{3,y_3} B_{5,y_5})$$

$$= 0.1584 (B_{1,a} B_{3,a} B_{5,a} + B_{1,a} B_{3,a} B_{5,b} + \dots + B_{1,b} B_{3,b} B_{5,b})$$

$$= 0.1584 (B_{1,a} + B_{1,b}) (B_{3,a} + B_{3,b}) (B_{5,a} + B_{5,b})$$

$$= 0.1584 \cdot 1 \cdot 1 \cdot 1 = \mathbf{0.1584}$$

3) **S***i*. Los productos que incluyen $A_{2,2}$ o $A_{5,5}$ (ambas = 0.01) influyen de forma despreciable en las sumas. a) $P(L = l \mid M) = \mathbf{0} \ \forall l < 3$; b) $P(L = 4 \mid M) = 1 \cdot 0.6 \cdot 0.4 \cdot 1 \cdot 0.99 + 1 \cdot 0.4 \cdot 0.6 \cdot 1 \cdot 0.99 + 1 \cdot 0.6 \cdot 0.59 \cdot 0.4 \cdot 0.99 + \dots \approx \mathbf{0.62}$; c) $P(L = 5 \mid M) = 1 \cdot 0.6 \cdot 0.59 \cdot 0.6 \cdot 1 \cdot 0.99 + \dots \approx \mathbf{0.21}$;

d) $\forall l \geq 6$, $P(L = l \mid M) < 0.005$ y disminuye exponencialmente con l de forma muy acusada.

Índice

- 1 Representación estructurada: ejemplos de modelado sintáctico > 3
- 2 Necesidad de introducir probabilidades: gramáticas estocásticas > 5
- 3 Modelos de Markov y gramáticas regulares estocásticas ⊳ 11
- 4 Apéndice: gramáticas, autómatas y lenguajes > 24

Gramáticas

- *Monoide Libre* Σ^* : Dado un conjunto finito Σ , Σ^+ es el conjunto de todas las cadenas de longitud finita formadas por elementos de Σ . Además, $\Sigma^* = \Sigma^+ \cup \{\lambda\}$ (la *cadena vacia*).
- Gramática: $G = (N, \Sigma, R, S)$
 - N: Conjunto finito de No-Terminales
 - Σ : Conjunto finito de *Terminales o Primitivas*
 - $S \in N$: Símbolo No-Terminal inicial o ""Axioma"
 - $R \subset (N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$: conjunto de *Reglas*.

A regla se escribe como:

$$\alpha \to \beta$$
, $\alpha \in (N \cup \Sigma)^* N(N \cup \Sigma)^*$, $\beta \in (N \cup \Sigma)^*$

Si varias reglas comparten su parte izquierda, pueden abreviarse como:

$$\alpha \rightarrow \beta_1 \mid \beta_2 \mid \cdots$$

Gramáticas y lenguajes

lacktriangle Derivación Elemental : \Longrightarrow :

$$\mu \, \alpha \, \delta \implies \mu \, \beta \, \delta \qquad \mathrm{sii} \ \exists (\alpha \to \beta) \in R, \ \mu, \delta \in (N \cup \Sigma)^*$$

■ Derivación $\stackrel{*}{\Longrightarrow}$:

Es una secuencia finita de derivaciones elementales. Una derivación d puede escribirse como la secuencia correspondiente de reglas de G.

El *conjunto de derivaciones* de $y \in \Sigma^*$ (tales que $S \stackrel{*}{\Longrightarrow} y$) se denota como $D_G(y)$.

Una gramática G es *ambigua* si $\exists y \in \Sigma^*$ tal que $|D_G(y)| > 1$

Lenguaje generado por una gramática G, $\mathcal{L}(G)$:

$$\mathcal{L}(G) = \{ y \in \Sigma^* \mid S \xrightarrow{*}_{G} y \}$$

Tipos de gramáticas y lenguajes

JERARQUÍA DE CHOMSKY PARA LENGUAJES RECURSIVOS

- 0: No-restringidos
- 1: Contextuales

$$\alpha \to \beta$$
,

$$|\alpha| \leq |\beta|$$

2: Incontextuales

$$B \to \beta$$
,

$$B \in N$$

3: Regulares o de "Estados-Finitos"

$$A \to aB$$
 o $A \to a$, $A, B \in \mathcal{N}, a \in \Sigma \cup \{\lambda\}$

Gramáticas regulares y autómatas finitos

- *Gramáticas Regulares:* $G = (N, \Sigma, R, S),$ Reglas de R de la forma: $A \to aB \lor A \to a, \ A, B \in N, \ a \in \Sigma$
- Autómatas Finitos: $\mathcal{A} = (Q, \Sigma, \delta, q_0, F), \quad q_0 \in Q, \quad F \subseteq Q, \quad \delta: Q \times \Sigma \to 2^Q$
- Equivalencia: Para cada Gramática Regular existe un Autómatas Finito que reconoce el mismo lenguaje. (¡Ojo: la inversa no es siempre cierta en el caso de lenguajes estocásticos!).

Ejemplo:

$$G = (N, \Sigma, R, S);$$

$$\Sigma = \{a, b\}; N = \{S, A_1, A_2\};$$

$$R = \{S \rightarrow aA_1 \mid bA_2 \mid b,$$

$$A_1 \rightarrow aA_1 \mid bA_2 \mid b,$$

$$A_2 \rightarrow bA_2 \mid b\}$$

$$\mathcal{L}(G) = \{b, ab, bb, aab, abb, bbb, \dots, aaabbbb, \dots\} = \mathcal{L}(\mathcal{A})$$