			2	221	MΑ	T1	1	СT	
USN									

RV COLLEGE OF ENGINEERING (Autonomous Institution Affiliated to VTU) DEPARTMENT OF MATHEMATICS I Semester MTech. June - 2023 Examinations MODEL QUESTION PAPER LINEAR ALGEBRA AND PROBABILITY THEORY Common to MDC, MIT, MSE (2022 SCHEME)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Each unit consists of two questions of 20 marks each.
- 2. Answer FIVE full questions selecting one from each unit (1 to 5).

		UNIT I					
1	a	Give the row and column analysis for the system of equations $x + y = 2$ and $2x - y = 1$. Draw neat diagrams. What is the solution?					
	b	Show that the set $V = \{ a + b\sqrt{2} + c\sqrt{3} / a, b, c \in \mathbb{Q} \}$, over the field \mathbb{Q} is a vector space under usual addition and scalar multiplication.	6				
	С	Find the bases for the four fundamental subspaces of $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$	10				
		OR					
2	а	Let V be the vector space of function $f: R \to R$. Show that W is a subspace of V where $W = \{f(x): f(1) = 0, \text{ all function whose value at 1 is 0}\}.$	4				
	b	Obtain the basis and dimension of the subspace spanned by the subset $S = \left\{ \begin{pmatrix} 2 & -6 \\ 1 & -3 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix} \right\}$ of the vector space of all 2×2 matrices over \mathbb{R} of real numbers.	6				
	С	Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $G(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Find a basis and dimension of i) Range of G ii) Kernel of G. Verify Rank and Nullity theorem.	10				

	UNIT - II						
3	а	Compute the orthogonal projection of $y = \begin{pmatrix} 5 \\ -9 \\ 5 \end{pmatrix}$ onto span of $\{u_1, u_2\}$ where $u_1 = \begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$. Also find the distance from y to the plane in \mathbb{R}^3 spanned by u_1 and u_2 .	4				

	b	Obtain the line of best fit for the equation $y = \beta_0 + \beta_1 x$ by least-squares for the given data points $(-2,3)$, $(-1,5)$, $(0,5)$, $(1,4)$, $(2,3)$.					
	С	Orthonormalize the vectors $a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ using Gram-Schmidt procedure and hence give the QR factorization of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.	10				
		OR					
4	а	The inner product on \mathbb{P}_n for p and q is given by $\langle p,q\rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + \dots + p(t_n)q(t_n)$. Compute $\langle p,q\rangle$, $ p $, $ q $ at -1, 0 and 1, given $p(t) = 4 + t$, $q(t) = 5 - 4t^2$.	4				
	Find the third-order Fourier approximation to the square wave function, $f(t) = \begin{cases} 1, & 0 \le t < \pi \\ -1, & \pi \le t < 2\pi \end{cases}$.	6					
	С	Compute the least square solution of the given inconsistent system of equations $Ax = b$ by i) Constructing the normal equations for \hat{x} . ii) Solving for \hat{x} Given $A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ 1 & 3 \end{bmatrix}$ and $b = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$.	10				

UNIT - III							
5	а	Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.	10				
	b	The matrix of observation of a certain process is given by	10				
		$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Obtain the Singular value decomposition.					
		OR					
6	а	Classify the quadratic forms $Q(x) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_1x_2 + 2x_1x_3 + 2x_1x_2 + 2x_1x_3 + 2$	10				
		$4x_2x_3$. Hence find the maximum value subject to the constraint					
		$x^{T}x = 1$, a unit vector u where this maximum is attained.					
	b	Convert the matrix of observations $\begin{bmatrix} 19 & 22 & 6 & 3 & 2 & 20 \\ 12 & 6 & 9 & 15 & 13 & 5 \end{bmatrix}$ to mean-	10				
		deviation form and construct the sample covariance matrix and hence					
		find the principal components of the data.					

				UNIT	` - IV					
7	а	The joint	distribution	n of two rand	lom variable	s X and Y is	given by the	10		
		following	following table where X denotes length and Y denotes width of CD							
		covers								
		Y 1 3 5								
		X								
			1	0.06	0.15	0.09				
			2	0.14	0.35	0.21				
		Determine								
		(i) E(X+Y)								
		(ii) $E(X^2)$,	$E(Y^2)$							
		(iii)Cov(X	(Y), What is	the relations	ship between	X and Y.				
		(iv) $P(X/X)$	Y = 5)							
		(v) $P(X > 1, Y > 1)$								
	b	Let $X \sim N(\mu, \Sigma)$, $\mu = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 16 & -2 & 1 \\ -2 & 4 & 3 \\ 1 & 3 & 9 \end{bmatrix}$. Compute the following								
		i)	i) $P[X_1 < 7]$							
		ii) $P[-3X_1 + 3X_3 > 80]$ iii) $P[3X_1 + 4X_2 - 5X_3 < 70]$								
		111)	$r_{13\lambda_{1}+4\lambda_{2}}$	$-3\lambda_3 < 70$	OR					
8	а	The joint is			continuous r		bles X and Y	10		
		D: 1	f(x,y)	$=\begin{cases}c x y,\\0,\end{cases}$	0 < x < 4, otherwise.	1 < <i>y</i> < 4				
		Find (i) Tl	he value of o	•						
		` '	(2X + 3Y)							
		` ,	(1 < x < 2, 2)	-						
	1	, ,	$P(x \ge 3, y \le 2)$		C .	1 . 1 . 1	37 1 37 '	10		
	b		-		oi two rand	iom variable	s X and Y is	10		
		given by the following table								
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
		1 0.1 0.2 0.2								
			3	0.1	0.2	0.2				
		i)					righle V and			
		i) Determine the marginal PMF's of the random variable X and Y.								
		ii) Compute the covariance matrix and correlation matrix for								

the above data.

		Unit - V							
9	а	Show that the mean and variance of a random process $\{X(t)\}$ given by							
		the probability law $\frac{e^{-\lambda t}(\lambda t)^n}{n!}$ is identical.							
	b	Compute the unique fixed probability vector of the stochastic matrix	10						
		$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$. Also show that A is regular.							
		OR							
10	а	A man either goes for a walk or does yoga each day. He never goes for	10						
		walking on 2 successive days, but if he does yoga, then the next day							
		he is just likely to do yoga again as to go for a walk.							
		(i) Write the transition matrix of the Markov chain							
		(ii) Verify whether it is irreducible?							
		(iii) If he goes for a walk on Tuesday what is the probability that							
		he does yoga on immediate Saturday							
		(iv) Find the stationary distribution of the Markov process.							
	b	Show that the random process $x(t) = A\cos(w_0t + \theta)$ is wide sense	10						
		stationary if it is assumed that A and w_0 are constants and θ is							
		uniformly distributed random variable in $(0, 2\pi)$.							

Signature of Scrutinizer:	Signature of Chairman
Name:	Name: