

Medical Image Classification

Brain image classification

Normal

Mild Cognitive Impairment

Alzheimer's Disease

Medical Image Classification

Age	Gender
40	M
50	F
60	M
70	M
70	F
90	F
80	F
50	M
	40 50 60 70 70 90 80

Medical Image Classification

Pathology image classification

Challenges in Medical Image Classification

- Limited data
- Large image size
- Small changes
- Demographic scores

	Conventional methods	Deep Learning methods
Classification	Logistic regression	Deep neural network
	Neural network	Convolutional neural network
	Support vector machine	
	Random forest	

Acknowledgement

Andrew Ng:

https://www.coursera.org/learn/machine-learning

https://www.coursera.org/specializations/deep-learning

• 김성훈:

https://www.youtube.com/playlist?list=PLIMkM4tgfjnLSOjrEJN31gZA Tbcj_MpUm

Linear Regression

$$h_{w,b}(x) = wx + b$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (h_{w,b}(x^{(i)}) - y^{(i)})^2$$

 $\underset{w,b}{\text{minimize}} J(w,b)$

Cost Function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (h_{w,b}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent

```
repeat {
b \coloneqq b - \alpha \frac{\partial}{\partial b} J(w, b)
w \coloneqq w - \alpha \frac{\partial}{\partial w} J(w, b)
}
```


Gradient Descent

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (h_{w,b}(x^{(i)}) - y^{(i)})^2$$

repeat { $w_{j} \coloneqq w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{w}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$ }

Logistic Regression

$$h_{w,b}(x) = \frac{1}{1 + e^{-(wx+b)}}$$

$$h_{w,b}(x) = g(wx + b)$$
 $h_{w,b}(x) = g(w^Tx + b)$

$$h_{w,b}(x) = g(w^T x + b)$$

Cost Function

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_w(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_w(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_w(x^{(i)})) \right]$$

Gradient Descent

repeat {
$$w_{j}\coloneqq w_{j}-\alpha\frac{\partial}{\partial w_{j}}J$$
 }

$$J(w) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_w(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_w(x^{(i)})) \right]$$

Gradient Descent

```
repeat { w_j \coloneqq w_j - \alpha \frac{\partial}{\partial w_j} J }
```

```
repeat {
w_j \coloneqq w_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) \cdot x^{(i)}
}
```


Neural Network

Neural Network

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Deep Neural Network

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$
$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$
$$a^{[2]} = \sigma(z^{[2]})$$

$$z^{[3]} = W^{[3]}a^{[2]} + b^{[3]}$$
$$a^{[3]} = \sigma(z^{[3]})$$

$$z^{[4]} = W^{[4]}a^{[3]} + b^{[4]}$$
$$a^{[4]} = \sigma(z^{[4]})$$

Activation Functions

Feature Extraction

FSL & Freesurfer

Feature Extraction

Demographic Scores

- Brain change is affected by multiple factors
- Linear regression using normal subjects

Subject	Age	Gender	Feature 1	Feature 2	Feature 3
Normal	40	M	3	10	5.1
Normal	50	F	5	9	5
Normal	60	M	6	8	4.9
Normal	70	M	6.5	7	5.2
Normal	80	F	8	6	5
Normal	90	F	8.5	5	5
AD	50	F	9.2	20	4.8
AD	40	M	7.9	20	4.9

Linear Regression

Overall Procedure

Training

Testing

Demographic Scores

Subject	Age	Gender	Feature 1	Feature 2	Feature 3
Normal	40	М	3	10	5.1
Normal	50	F	5	9	5
Normal	60	М	6	8	4.9
Normal	70	М	6.5	7	5.2
Normal	80	F	8	6	5
Normal	90	F	8.5	5	5
AD	50	F	9.2	20	4.8
AD	40	М	7.9	20	4.9