Internet of Things Security and Privacy

Lecture 5

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Smart Objects

- smart object: an electronic device that enhances the interaction with other electronic devices as well as with people also
 - come from different technology areas and scientific disciplines
- computing and telephony: two disparate strands of development
 - play a large part in the formulation of smart objects
- the root of computing

- computer scientists, e.g., John von Neumann; UNIX family of OS
- the root of telephony
 - the first patent on telephony was filed by Alexander Graham Bell in 1876

- smart objects represent the middle ground between computing and telephony, borrowing from both
 - from computing heritage: the culture of engineering evolvable systems
 - from telephony heritage: the principles of connecting disparate systems
 - smart objects are not manufactured by a single org., but by different people and parties
- smart objects must be both evolvable and standardized

IoT Overview

- encompass all the embedded devices and networks
 - IP-enabled small objects
 - sensors, machines, positioning tags
 - radio-frequency identification (RFID)
 - automatic metering infrastructure (AMI)
 - IP Smart Objects (IPSO) Alliance (2008)
 - Internet-connected
 - wireless embedded networks
 - low-power wireless area networks (LoWPANs)
- along with the Internet services monitoring and controlling those devices

IoT Overview: Smart Objects

- smart objects
- Internet of Things
- web of objects
- web of things
- cooperating objects
- use interchangeably
- smart object networks
- smart objects?
 - an item equipped with a form of
 - sensor or actuator interact with the physical world
 - a tiny microprocessor enable to transform/compute the captured data,
 limited computational capability
 - a communication device communicate its sensor readings to the outside world, or receive input from other smart objects
 - a power source provide the electrical energy to do its work

- what do smart objects actually do?
 - don't know exact behavior... 😕
 - depend on where and how it is used
 - e.g., monitor temperature, moisture, vibration, etc.
- two behavioral properties common to any smart object
 - interaction with the physical world
 - sense physical properties, e.g., air pollution, the presence of a car, etc.
 - affect the physical world using different forms of actuators,
 e.g., switching a LED, switching the heat in the building, etc.
 - communication
 - smart object networks

IoT Overview

- where do smart objects come from?
 - intersection of ...

IoT Overview: An Embedded System

- computing systems are everywhere
- most of us think of "desktop" computers,
 - PC's, laptops, mainframes, servers
- but there's another type of computing system
 - far more common...
- an embedded system is an application that contains,
 - at least one programmable computer (i.e., micro-processor or micro-controller), which is used by individuals who are unaware that the system is computer-based
- embedded systems are computers with constraints
 - i.e., applications and form factors, power, systems resource, user assumptions, etc.

- single-functioned:
 - execute a specific program, repeatedly
- tightly-coupled:
 - have constraints on design metrics
 - low cost, low power, small, fast, etc.
- reactive and real-time:
 - continually react to changes in the system's environment
 - must compute certain results in real-time without delay

- concept:
 - what happens when computers are mobile and become immersed in the surrounding environment?
- wearable computing, an emerging field out of the ubiquitous computing community
 - e.g., Google Glass, Fitbit, even under the skin, etc.

IoT Overview: Ubiquitous and Pervasive Computing (cont.)

- for example,
 - active badge, AT&T laboratory in Cambridge, UK

active 433MHz RFID badge tag

IoT Overview: Mobile Telephony

- often called cellular telephony
 - long-range wireless networking technology
 - Global System for Mobile communications (GSM)
 - General Packet Radio Service (GPRS)
 - Universal Mobile Telecommunications Systems (UMTS)
 - short-range wireless communication
 - Bluetooth (IEEE 802.15.1)
 - M2M communication

IoT Overview: Wireless Sensor and Ubiquitous Sensor Networks

- small wireless sensors
- collect information from the physical environment
 - wild fire tracking, animal observation, agricultural management, industrial monitoring, etc.

IoT Overview: Wireless Sensor and Ubiquitous Sensor Networks

- wireless sensor networks.
 - deployed in an unattended environment
 - required to operate for a long period time
 - hard to replace (or replenish) battery
- environmental energy harvesting (or scavenging),
 - extracting an electric energy from various environmental sources for easy of battery energy replenishment
 - vibrations, magnetic fields, thermal gradients, lights, kinetic motions, and shock waves
- Vibration-Sensitive Energy Harvesting WSNs

"the **U.S. Army** has invested about \$4.2 million in the development of **military Apps** and the study of **smart phone** technology"

LIMITED BATTERY ENERGY!!!

"the **U.S. Army** will eliminate all the military batteries. Each soldier will equip **self-powered** (or batteryless) communication devices"

IoT Overview: Challenges for Smart Objects

- node-level
 - power consumption
 - battery-powered or energy harvesting
 - physical node size and cost
- network-level
 - large-scale of the smart object networks
 - network and data size
 - design of the routing protocols
 - lossy nature of smart object networks
 - etc.
- standardization
 - a critical success factor for smart objects
- interoperability
 - from different vendors to operate together

IoT Security Threats

- three broad categories of threats:
 - capture
 - capturing the system or information
 - disrupt
 - denying, destroying, and disrupting the system
 - manipulate
 - manipulating data, identity, time-series data, etc.
- simplest type of passive threat: eavesdropping or monitoring
- capture attack: gain control of physical or logical systems;
 gain access to information or data
- active threats: masquerading; replay attacks; DoS attacks

IoT Security Requirements

- basic security properties:
 - confidentiality:
 - transmitted data can be read only by the communication endpoints;
 - availability:
 - the comm. endpoints can always be reached and cannot be made inaccessible;
 - integrity:
 - received data are not tampered with during transmission, and assured of the accuracy and completeness over its entire lifecycle;
 - authenticity:
 - data sender can be verified and receiver cannot be spoofed

Encryption

- used for centuries: ensure the confidentiality of secret communication
 - core idea: transformation of information from readable to unreadable
 - cipher: certain (shared) algorithm

Ciphers

- cipher: algorithm performing encryption or decryption operations
 - input: plaintext
 - output: ciphertext
 - key
- cipher classification based on key
 - symmetric
 - asymmetric
- cipher classification based on input
 - block
 - stream

Authentication

- authentication: identity verification
 - complimentary to encryption
- symmetric authentication
 - message authentication code (MAC) authenticating a message
 - hash functions
- asymmetric authentication
 - digital signature (different from MAC)
 - using the private key of a public/private key pair

Threats to IoT Systems

- IoT will be susceptible to a plethora of threats:
 - Denial of Service attacks
 - sybil attacks
 - privacy attacks
 - "hole" attacks
 - physical attacks

Denial of Service Attacks

- the most common and easiest to implement attacks
 - many forms
 - core idea: undermine the network or systems' capacity to perform expected functions
- e.g., wireless network
 - jamming channel with interrupting signal
- DoS attack on five layers
 - jamming physical layer
 - collision ⇒ link layer
 - flooding ⇒ transport layer
 - path-based DoS attack \improx application layer

- sybil attack: adversary taking on multiple identities
- sybil attack on three layers
 - compromising or fabricating physical layer
 - negative reinforcement ⇒ link layer
 - compromising routing path network layer

Other Attacks

- privacy attacks: monitoring and eavesdropping
 - listening on a wired or wireless channel (difficult to detect)
- hole attacks: advertise routes through malicious nodes
- physical attacks: compromising physical integrity
 - devices destroyed
 - loss of devices

