220511 向量 题目选解

Eason S.

Contents

 1 填空题
 1

 2 解答题
 6

 3 附加题
 10

Section 1 填空题

Problem 1.1

设 \vec{a} 与单位向量 \vec{b} 的数量积为 -2, 则 \vec{a} 在 \vec{b} 方向上的数量投影为?.

Solution to Problem 1.1

-2. 利用 $\operatorname{Prj}_{\vec{b}}\vec{a} = \vec{a}\cos\left\langle \vec{a}, \vec{b} \right\rangle = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|}$ (向量的数量积与向量的数量投影之间的联系) [4].

Problem 1.2

平面直角坐标系中 O 为坐标原点, $M(3,4), B(3,1), \overrightarrow{AC} = (-1,1), 且 <math>\overrightarrow{OM}$ 为 \overrightarrow{AB} 的位置向量, 则点 C 的 坐标为?.

Solution to Problem 1.2

(-1,-2). 向量的坐标表示.

Problem 1.3

与非零向量 $\vec{a} = (m, n)$ 垂直且模长为 2 的向量可表示为? (用坐标表示).

Solution to Problem 1.3

$$\left(\pm \frac{2n}{\sqrt{m^2 + n^2}}, \mp \frac{2m}{\sqrt{m^2 + n^2}}\right) = \left(\pm \frac{2n\sqrt{m^2 + n^2}}{m^2 + n^2}, \mp \frac{2m\sqrt{m^2 + n^2}}{m^2 + n^2}\right)$$
. 向量的坐标表示下的内积; 向量的内积的取值范围与向量之间位置关系的联系.

Problem 1.4

 $\frac{x_1}{y_1} + \frac{y_2}{x_2} = 0$ 是 $\left(x_1\vec{i} + y_1\vec{j}\right) \perp \left(x_2\vec{i} + y_2\vec{j}\right)$ 的? 条件. 作者认为此处应该补充条件: \vec{i}, \vec{j} 为 \mathbb{R}^2 上的一个标准正交基更为合适. [3]

Solution to Problem 1.4

充分非必要. 向量的内积的取值范围与向量之间位置关系的联系; 向量的内积对向量的线性组合的分配律.

Problem 1.5

设 $|\vec{a}|=3, \left|\vec{a}-\vec{b}\right|=9,$ 则 $\left|\vec{b}\right|$ 的取值范围为?.

Solution to Problem 1.5

[5,11]. 向量的三角不等式 $\left| |\vec{a}| - \left| \vec{b} \right| \right| \le \left| \vec{a} \pm \vec{b} \right| \le \left| |\vec{a}| + \left| \vec{b} \right| \right|$.

Problem 1.6

 $\vec{a} = (3m-2,1), \vec{b} = (m^2+1,2),$ 若 $9\vec{a} + 3\vec{b}$ 与 $\vec{a} - \vec{b}$ 共线, 则实数 m 的值为?.

Solution to Problem 1.6

1 or 5. 向量的坐标表示下的共线.

Problem 1.7

已知 A, B, C 坐标依次为 (1,2), (2,3), (5,10), 则 $\triangle ABC$ 的面积为?.

Solution to Problem 1.7

2. 行列式视角下的三角形面积公式. [1]

Problem 1.8

如图, 正方形 ABCD 的边长为 1, E 为边 BC 的中点, F 为边 CD 上一点, 若 $\overrightarrow{AE} \cdot \overrightarrow{AF} = \overrightarrow{AE}^2$, 则 $\left|\overrightarrow{AF}\right|$ 为?.

Solution to Problem 1.8

5/4. 向量的内积对向量的线性组合的分配律; 向量的内积的取值范围与向量之间位置关系的联系; 一线三等角.

Problem 1.9

如图, A,B,C,D 四点共线, P,Q 为直线外两点, 已知 $AB:BC=2:3,\overrightarrow{PB}=\frac{3}{2}\overrightarrow{PC}-\frac{1}{2}\overrightarrow{PD}$, 若 $\overrightarrow{QB}=\lambda\overrightarrow{QA}+\mu\overrightarrow{QD}$, 则 $\lambda-\mu$ 的值为?.

Solution to Problem 1.9

 $\frac{7}{11}$. 向量的线性组合.

$$\overrightarrow{PB} = \frac{3}{2}\overrightarrow{PC} - \frac{1}{2}\overrightarrow{PD} = \overrightarrow{PC} + \overrightarrow{CB} \Rightarrow \frac{1}{2}\overrightarrow{PC} = \overrightarrow{CB} + \frac{1}{2}\overrightarrow{PD}$$

$$\Rightarrow \overrightarrow{PC} = \overrightarrow{PD} + 2\overrightarrow{CB}$$

$$\Rightarrow \overrightarrow{DC} = 2\overrightarrow{CB}$$

$$\Rightarrow AB : BC : CD = 2 : 3 : 6.$$

$$\begin{split} \overrightarrow{QB} &= \overrightarrow{QA} + \overrightarrow{AB} \\ &= \lambda \overrightarrow{QA} + \mu \overrightarrow{QD} \\ &= \lambda \overrightarrow{QA} + \mu \left(\overrightarrow{QA} + \frac{11}{2} \overrightarrow{AB} \right) \end{split}$$

于是有

$$\left\{ \begin{array}{ccc} \lambda + \mu & = & 1, \\ \frac{11}{2}\mu & = & 1, \end{array} \right. \Rightarrow \left\{ \begin{array}{ccc} \lambda & = & \frac{9}{11}, \\ \mu & = & \frac{2}{11}. \end{array} \right.$$

Problem 1.10

以下命题中, 所有真命题的序号为?.

- (1) 若 \vec{a} 与 \vec{b} 可作为平面向量的一组基, 则 $\vec{a}, \vec{b} \neq \vec{0}$.
- (2) 若 \vec{a} 和 \vec{b} 非共线,则平面上任意向量 \vec{c} 关于 $2\vec{a} + \vec{b}$ 和 $\vec{a} + \vec{b}$ 的分解均存在且唯一.
- (3) 若 $\vec{a} \parallel \vec{b}$, 则 $\vec{a} + \vec{b} = \lambda \vec{a} + \mu \vec{b}$ 的充要条件为 $\lambda = \mu = 1$.
- (4) 若 $\vec{a} \parallel \vec{b}$, 且 \vec{c} 与 \vec{a} , \vec{b} 均不共线, 则 \vec{c} 关于 \vec{a} 与 \vec{b} 的分解不存在.

Solution to Problem 1.10

- (1) (2) (4). 向量的线性组合.
- (1) 在同构于 \mathbb{R}^n 的向量空间 (即 n 维向量空间) 中的一组基 $A: a_1, a_2, \ldots, a_n$ 必然有 $a_1, a_2, \ldots, a_n \neq 0$ (因为 $\mathbf{r}(A) = n$). 本题中, \vec{a}, \vec{b} 为平面 \mathbb{R}^2 (即 2 维向量空间) 上的一组基, 则必然有 $\mathbf{r}(a, b) = 2$, 有 $a, b \neq 0$. [4]
- (2) 显然有 $(2a + b, a + b) \sim (a, a + b) \sim (a, b)$, 即向量组 a, b 与向量组 2a + b, a + b 等价. 同时有 $\mathbf{r}(a, b) = 2 = \mathbf{r}(2a + b, a + b)$ (非共线, 线性无关), 则向量组 2a + b, a + b 是线性空间 \mathbb{R}^2 上的一个基. [2]
- (3) 考虑 $\vec{a} = \vec{b} = \vec{0}$, 则 $\forall \lambda, \mu \in \mathbb{R} : \vec{a} + \vec{b} = \lambda \vec{a} + \mu \vec{b} = \vec{0}$.
- (4) 假设 $c = \lambda a + \mu b, \lambda, \mu \in \mathbb{R}$, 由已知有 a, b 线性相关, 则必然有 $c = \lambda a + \mu b$ 可由 a, b 线性表示, 继而有 a, b, c 线性相关, 与条件矛盾.

Section 2 解答题

Problem 2.1

设 $\vec{a} = (3, -4), \vec{b} = (2, -1),$

- (1) 求 \vec{a} 与 $2\vec{b}$ \vec{a} 的夹角.
- (2) 求 \vec{a} 在 $(2\vec{b} \vec{a})$ 方向上的投影向量 (用坐标表示).

Solution to Problem 2.1

 $\pi - \arccos\left(\frac{\sqrt{5}}{5}\right)$; (-1, -2). 向量的投影. [5]

Problem 2.2

同一平面上的 $\vec{a}, \vec{b}, \vec{c}$ 满足 $\left| \vec{a} + \vec{b} + \vec{c} \right| = 2\sqrt{7}$, 且有 $\left| \vec{a} \right| = \left| \vec{b} \right| = 2$, $\left| \vec{c} \right| = 6$, $\left\langle \vec{a}, \vec{b} \right\rangle = \frac{2\pi}{3}$, 选取适当的方式建立 直角坐标系,求 $\left\langle \vec{b}, \vec{c} \right\rangle$.

Solution to Problem 2.2

 $\frac{\pi}{3}$ or $\frac{2\pi}{3}$. 向量的坐标表示. [3]

$$\begin{split} \left| \vec{a} + \vec{b} + \vec{c} \right|^2 &= \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a} \cdot \vec{b} + 2\vec{a} \cdot \vec{c} + 2\vec{b} \cdot \vec{c} \\ &= 4 + 4 + 36 + 2 \times 2 \times 2 \times \cos \frac{2\pi}{3} + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c} \\ &= 40 + 2\vec{b} \cdot \vec{c} + 2\vec{a} \cdot \vec{c}, \end{split}$$

于是有

$$2\vec{b}\cdot\vec{c} + 2\vec{a}\cdot\vec{c} = -12.$$

设 $\vec{a} = (2,0), \vec{b} = (-1,\sqrt{3}), \vec{c} = (x,y),$ 建立如图的坐标系, 有

$$\left\{ \begin{array}{rcl} 2(-x+\sqrt{3}y)+2(2x) & = & -12 \\ x^2+y^2 & = & 36 \end{array} \right. \Rightarrow (x,y) = (-6,0) \text{ or } \left(3,-3\sqrt{3}\right) \Rightarrow \left\langle \vec{b},\vec{c}\right\rangle = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}.$$

Problem 2.3

记 $\triangle ABC$ 的重心为 G,D,E 分别为射线 AB,AC 上的动点 (不包括 A 点本身), 满足 $\overrightarrow{AD}=\lambda \overrightarrow{AB},\overrightarrow{AE}=\mu \overrightarrow{AC}$, 且 G 恒位于线段 DE 上,

- (1) 若 $\triangle ABC$ 位于平面直角坐标系中, $\mu = \frac{3}{4}, A(1,4), B(-1,-1), C(5,0)$, 求:
 - (1.1) 点 C 分 \overrightarrow{AE} 所成的比;
 - **(1.2)** 点 *E* 的坐标;
 - (1.3) $\triangle ABC$ 垂心 H 的坐标.
- (2) 将 μ 表示为 λ 的函数 $f(\lambda)$, 并写出其定义域.
- (3) 求 $2\lambda + \mu$ 的最小值.

Solution to Problem 2.3

$$-4, E(4,1), H\left(\frac{10}{7}, \frac{10}{7}\right); \ \mu = f(\lambda) = \frac{\lambda}{3\lambda - 1}, \lambda \in \left(\frac{1}{3}, +\infty\right); \ \min\left(2\lambda + \mu\right) = \frac{2\sqrt{2} + 3}{3}. \ \$$
 向量综合. [3]

(1) 显然有 $G = \left(\frac{5}{3}, 1\right)$,

$$\begin{tabular}{l} \nearrow $\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AC}, $\overrightarrow{AC} = (4,-4), $\not tt $\overrightarrow{AE} = (3,-3), $E(4,1).$ \end{tabular}$$

- (1.1) $\diamondsuit \overrightarrow{AC} = p\overrightarrow{CE} \not = p$ 有 p = 4.
- (1.2) E(4,1).
- (1.3) 设 H(x,y), 由 $\overrightarrow{AH} \perp \overrightarrow{BC}$ 有 $(x-1,y-4)\cdot(6,1)=0$; 由 $\overrightarrow{BH} \perp \overrightarrow{AC}$ 有 $(x+1,y+1)\cdot(4,-4)=0$. 解得 $H\left(\frac{10}{7},\frac{10}{7}\right)$.
- (2) 显然有

$$\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} = \frac{1}{3\lambda}\overrightarrow{AD} + \frac{1}{3\mu}\overrightarrow{AC},$$

又
$$\frac{1}{3\lambda} + \frac{1}{3\mu} = 1$$
,可知

$$\mu + \lambda = 3\lambda\mu,$$

解得

$$\mu(\lambda) = f(\lambda) = \frac{\lambda}{3\lambda - 1}, \lambda \in \left(\frac{1}{3}, +\infty\right).$$

(3)

$$\begin{split} \min\left(2\lambda + \mu\right) &= \min\left(2\lambda + \frac{\lambda}{3\lambda - 1}\right) \\ &\stackrel{t=3\lambda - 1}{=\!=} \min\left(\frac{2t}{3} + \frac{1}{3t} + 1\right) \\ &\geq \frac{2\sqrt{2} + 3}{3}, \end{split}$$

等号成立 iff. $\frac{2t}{3} = \frac{1}{3t}$ iff. $2t^2 = 1$ iff. $t = \frac{\sqrt{2}}{2}$.

Section 3 附加题

Problem 3.1

在 $\triangle ABC$ 中, AB=AC=5, BC=6, M 是边 AC 上距 A 较近的三等分点, 试研究在线段 BM 上是否存在点 P, 满足 $PC\perp BM$? 若存在, 求出 BP 的长度; 若不存在, 则说明理由.

Solution to Problem 3.1

不存在. 向量综合.[5] [3]

显然有
$$\overrightarrow{AC} = (3, -4)$$
,可知 $\overrightarrow{AM} = \left(1, -\frac{4}{3}\right)$,即 $M\left(1, \frac{8}{3}\right)$,于是有 $\overrightarrow{BM} = \left(4, \frac{8}{3}\right)$. 设 $P = \left(x, \frac{2}{3}x + 2\right)$, $x \in (-3, 1)$,可知 $\overrightarrow{PC} = \left(3 - x, -\frac{2}{3}x - 2\right)$. 注意到 $PC \perp BM$,有 $\overrightarrow{PC} \cdot \overrightarrow{BM} = 4(3 - x) + \frac{8}{3}\left(-\frac{2}{3}x - 2\right) = 0 \Rightarrow x = \frac{1}{5} \notin x \in (-3, 1)$

References

- [1] Cuemath. Area of triangle in determinant form, May 2022.
- [2] Steven J. Leon. *Linear Algebra with Applications*. Pearson, Pearson Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England, ninth edition, 2015.
- [3] OwenXu. 220511 测验作答. 未批改, May 2022.
- [4] 同济大学数学系. 工程数学线性代数. 高等教育出版社, 北京市西城区德外大街 4号, sixth edition, June 2014.
- [5] 鸭鸭. 220511 测验作答. 未批改, May 2022.