情報工学実験Cネットワークプログラミング

氏名: 山田 敬汰 (Yamada, Keita) 学生番号: 09430559

> 提出日: 2020 年 12 月 15 日 締切日: 2021 年 1 月 7 日

1 クライアント・サーバモデルでのデータ通信

今回の実験では、分散システムの基本的な形式であるクライアントサーバモデルを理解するために、TCP/IP、UDP/IPで通信を行うクライアントサーバモデルのプログラムを作成した.

ここでは、プログラムの基礎の部分にあたる、クライアントとサーバ間での通信がどのような手順で行われているかについて詳しく解説する.

まず初めに、クライアントサーバモデルにおける通信の概要について説明する. クライアントサーバモデルでは、クライアント側の計算機のプロセスが、サーバ側のプロセスに対してメッセージを送信し、サーバ側が受け取ったメッセージを解釈し、適切な応答を返すことで通信を成立させている. ここでいう「メッセージ」とはクライアントとサーバの間で予め決めておいた規約(プロトコル)に沿って構築されたテキストである. (例: http プロトコルでは [メソッド名] [エンドポイント] [改行コード] の順に入力する)

次に、クライアントとサーバが通信する際の具体的な手順について時系列順に説明する. クライアント側での通信手順は以下の通りである. (通信相手のドメイン名は既知とする)

- 1. DNS サーバに問い合わせを送り、通信相手のドメイン名に対応する IP アドレスの値を取得する.
- 2. 通信相手(サーバ)と情報をやり取りするためのソケット(ファイルディスクリプタ)を作成する.
- 3. 通信相手(サーバ)との接続を確立する.(クライアント側のソケットとサーバ側のソケットとの対応づけを行う)
- 4. プロトコルに沿ったメッセージを構築し、サーバにメッセージを送信する.
- 5. サーバからの応答を待機する.
- 6. サーバから送られてきたメッセージを受信する.
- 7. 通信に使用したソケットを削除する.

サーバ側での通信手順は以下の通りである.

- 1. 通信相手(クライアント)と情報をやり取りするためのソケットを作成する.
- 2. ソケットにメタデータを付与する. (どのポートで待ち受けるか, どの IP アドレスと接続するのか等)
- 3. ソケットの監視を OS に要求する. (作成したソケットに対する接続要求が行われることを OS に対して通知する)
- 4. クライアントからの接続要求を受け入れる.
- 5. クライアントから送られてきたメッセージを受信する.
- 6. 受信したメッセージに対して何らかの処理を行う.
- 7. プロトコルに沿ったメッセージを構築し、クライアントにメッセージを送信する.
- 2 名簿管理プログラムの作成方針
- 3 名簿管理プログラムの説明
- 4 名簿管理プログラムの使用法
- 5 名簿管理プログラムの作成過程における考察
- 6 得られた結果に関する考察
- 7 作成したプログラム