Bachelor of Science in Computer Science University of Colombo School of Computing

SCS 1211 – Mathematical Methods I (Linear Algebra)

Topic -1: Introduction

By: Dr. T. Sritharan

Introduction

The fundamental problem of linear algebra is to solve m linear equations in n unknowns:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m;$

In this first lecture, we view this problem in three different ways.

Solving System of Linear equations: Example 2.1 (Gaussian Elimination)

Solve the following system of linear equations:

$$x_1 + 2x_2 + x_3 = 4 - - - - - (1)$$

 $2x_1 + 2x_2 + 3x_3 = 7 - - - - - - (2)$
 $x_1 + x_2 + 4x_3 = 6 - - - - - - (3)$

Solution:

Step 1: Choose to pivot x_1 in (1), and eliminate x_1 in (2) & (3).

$$x_1 + 2x_2 + x_3 = 4 - - - (1')$$

$$(1) \times -2 + (2) \Rightarrow \qquad -2x_2 + x_3 = -1 - - - (2')$$

$$(1) \times -1 + (3) \Rightarrow \qquad -x_2 + 3x_3 = 2 - - - - (3')$$

Example 2.1 Cont.

$$x_1 + 2x_2 + x_3 = 4 - - - - (1')$$

 $-2x_2 + x_3 = -1 - - - - (2')$
 $-x_2 + 3x_3 = 2 - - - - - (3')$

Step 2: Choose to pivot x_2 in (2'), and eliminate x_2 in (3').

$$x_1 + 2x_2 + x_3 = 4 - - - - (1'')$$

$$-2x_2 + x_3 = -1 - - - - - (2'')$$

$$(2') \times -\frac{1}{2} + (3') \Rightarrow \qquad \frac{5}{2} x_3 = \frac{5}{2} - - - - - (3'')$$

Triangular System

Example 2.1 (Back-substitution)

$$x_1 + 2x_2 + x_3 = 4 - - - - (1'')$$

$$-2x_2 + x_3 = -1 - - - - - (2'')$$

$$\frac{5}{2}x_3 = \frac{5}{2} - - - - - (3'')$$

Step 3: Back-substitution

$$(3'') \implies x_3 = 1$$

$$(2'') \implies x_2 = 1$$

$$(1'') \implies x_1 = 1.$$

Example 1.2 (Singular system)

$$x_1 + x_2 + x_3 = 4 - - - - (1)$$

 $2x_1 + 2x_2 + 5x_3 = 7 - - - - - (2)$
 $4x_1 + 4x_2 + 8x_3 = 6 - - - - - (3)$

$$x_1 + x_2 + x_3 = 4 - - - - (1')$$
 $(1) \times -2 + (2) \Rightarrow +3x_3 = -1 - - - - (2')$
 $(1) \times -4 + (3) \Rightarrow +4x_3 = 10 - - - - - (3')$

This system is unsolvable since $3x_3 = -1 \& 4x_3 = 10$ is not possible.

Representation in Matrix Form:

Solve the following system of linear equations:

$$x_1 + 2x_2 + x_3 = 4 - - - - (1)$$

 $2x_1 + 2x_2 + 3x_3 = 7 - - - - - (2)$
 $x_1 + x_2 + 4x_3 = 6 - - - - - (3)$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 6 \end{bmatrix}.$$

$$A x = b$$
.

The matrix
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix}$$
 is called the coefficient matrix. The vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is the vector of unknowns.

The Geometry of Linear Equations Raw Picture – Example 1.2

$$2x - y = 0$$
$$-x + 2y = 3$$

The lines 2x - y = 0 and -x + 2y = 3 intersect at the point (1, 2).

Hence x = 1, and y = 2 is the only solution to the above system of linear equations.

The Geometry of Linear Equations Raw Picture – Example 1.3

$$2u + v + w = 5$$

 $4u - 6v = -2$
 $-2u + 7v + 2w = 9$

- Each equation describes a plane in three dimensions.
- The second plane is 4u 6v = -2. It is drawn vertically, because w can take any value.
- The figure shows the intersection of the second plane with the first.
- Finally the third plane intersects this line in a point (1,1,2).

Column Vectors and Linear Combinations Column Picture – Example 1.2

$$2x - y = 0$$
$$-x + 2y = 3$$

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 2 \end{bmatrix} y = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

 $2\begin{bmatrix} -1\\ 2\end{bmatrix}$ **Ž**

Geometrically, we want to find numbers x and y so that

$$x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 equals $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$.

As we see from x = 1 and y = 2, agreeing with the column picture in Figure.

Multiplication of a Matrix and a Vector (Ax)

Usual way

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix}_{3\times 3} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3\times 1} = \begin{bmatrix} 1 \times 1 + 2 \times 2 + 1 \times 3 \\ 2 \times 1 + 2 \times 2 + 3 \times 3 \\ 1 \times 1 + 1 \times 2 + 4 \times 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 15 \\ 15 \end{bmatrix}$$

Other way: Considering the entries of x as the coefficients of a linear combination of the column vectors of the matrix A:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 9 \\ 12 \end{bmatrix} = \begin{bmatrix} 8 \\ 15 \\ 15 \end{bmatrix}.$$

This shows the entries of x as the coefficients of a linear combination of the column vectors of the matrix A:

Linear Independence

Given a matrix A, can we solve Ax = b for every possible vector b?

Does
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 solvable for every $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$?

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 2 \end{bmatrix} y = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

The linear combinations of the column vectors $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ fill the 2 dimensional xy-plane.

Multiplication of a Row Vector and a Matrix

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix}_{3\times3}$$

$$= 1\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix}_{3\times3}$$

$$= [3 \quad 4 \quad -1].$$

 $Matrix \times Column = Column (Combination of columns of matrix)$

 $Row \times Matrix = Row (Combination of Rows of matrix).$

Solving System of Linear equations – Elimination & Back – Substitution:

$$x_1 + 2x_2 + x_3 = 4$$

 $2x_1 + 2x_2 + 3x_3 = 7$
 $x_1 + x_2 + 4x_3 = 6$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 6 \end{bmatrix}.$$

$$A x = b$$
.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix} \xrightarrow{-2 \times Row \ 1 + Row \ 2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & 4 \end{bmatrix} \xrightarrow{-1 \times Row \ 1 + Row \ 3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & -1 & 3 \end{bmatrix}$$

Elimination & Back – Substitution Cont.

$$E_{31}(E_{21}A) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & -1 & 3 \end{bmatrix}$$

$$E_{31}(E_{21}A) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & -1 & 3 \end{bmatrix} \quad \xrightarrow{-\begin{pmatrix} 1 \\ 2 \end{pmatrix} \times Row \ 2 + Row \ 3} \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 5/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\binom{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{5}{2} \end{bmatrix} = U$$

Hence,

$$E_{32}(E_{31}(E_{21}A)) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{5}{2} \end{bmatrix}.$$

Elimination & Back – Substitution Cont.

$$\begin{bmatrix} 1 & 2 & 1 & 4 \\ 2 & 2 & 3 & 7 \\ 1 & 1 & 4 & 6 \end{bmatrix} \xrightarrow{E_{21}} \begin{bmatrix} 1 & 2 & 1 & 4 \\ 0 & -2 & 1 & -1 \\ 1 & 1 & 4 & 6 \end{bmatrix} \xrightarrow{E_{32}} \begin{bmatrix} 1 & 2 & 1 & 4 \\ 0 & -2 & 1 & -1 \\ 0 & -1 & 3 & 2 \end{bmatrix} \xrightarrow{E_{32}} \begin{bmatrix} 1 & 2 & 1 & 4 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & 5/2 & 5/2 \end{bmatrix}$$

Augmented Matrix

$$x_1 + 2x_2 + x_3 = 4$$
 $\implies x_1 = 1$
 $-2 x_2 + x_3 = -1$ $\implies x_2 = 1$
 $\frac{5}{2} x_3 = \frac{5}{2}$ $\implies x_3 = 1$

Inverse of an Elementary Matrix

What is the inverse matrix of
$$E_{21}$$
, where $E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$?

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

$$\therefore \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

A = LU

$$E_{32}(E_{31}(E_{21}A)) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & \frac{5}{2} \end{bmatrix} = U.$$

$$\implies E_{31}(E_{21}A) = E_{32}^{-1}U$$

$$\implies E_{21}A = E_{31}^{-1} E_{32}^{-1} U$$

$$A = E_{32}^{-1} E_{31}^{-1} E_{32}^{-1} U$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} U$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1/2 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 5/2 \end{bmatrix} = LU.$$

$$E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -(1/2) & 1 \end{bmatrix}$$

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Relationship among A, E, L, U, and b

$$E_{32}E_{31}E_{21} A = U$$

$$\implies$$
 $EA = U$, where $E = E_{32}E_{31}E_{21}$

$$\implies$$
 $A = LU$, where $L = E^{-1} = E_{32}^{-1}E_{31}^{-1}E_{32}^{-1}$.

$$Ax = b$$

$$\implies EAx = Eb = c$$
, where $c = Eb$

$$\implies Ux = c.$$

Singular Case (With no solution): Example 1.4

$$x + y + z = 3$$

 $2x + 2y + 5z = 8$
 $4x + 4y + 8z = 15$

$$x + y + z = 3$$

 $3z = 2$
 $4z = 3$

This system is singular and has no solution!

Singular Case (With infinitely many solutions): Example 1.5

$$x + y + z = 3$$

 $2x + 2y + 5z = 9$
 $4x + 4y + 10z = 18$

$$x + y + z = 3$$

 $3z = 3$
 $6z = 6$

This system is singular but has infinitely many solution!

Any point in the line x + y = 2 is a solution to the system.

Permutation Matrix

Consider the matrix
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$
.

Since the entry at the (2,2) position is 0, we have to interchange rows 2 and 3 of A.

What is the matrix P such that
$$PA = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
?

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 4 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

Permutation Matrices of Order 3

How many permutation matrices of order 3 are there? List them all.

$$P_{123} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P_{213} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad P_{132} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad P_{321} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{132} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$P_{321} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{231} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$P_{312} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The Cost of Gaussian Elimination

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n;$
 $Ax = b$

The first stage of elimination needs $n(n-1) = n^2 - n$ operations.

The k^{th} stage of elimination needs $k(k-1) = k^2 - k$ operations.

Hence, the total operation for the left side is

$$= n^{2} + (n-1)^{2} + \dots + 1^{2} - (n+n-1+\dots+1)$$

$$= {n \choose 6} (2n+1)(n+1) - {n \choose 2} (n+1) = {1 \choose 3} (n^3 - n).$$

The total for back-substitution is $1 + 2 + \cdots + n = \frac{n}{2}(n+1)$.

If n is at all large, a good estimate for the number of operations is $\frac{1}{3}$ n^3 .