Optimization of the Heating Process for Offshore Wind Turbine Foundations

T.M.J. Bouts

June 23, 2018 Eindhoven University of Technology

Contents

Introduction

Theory

Movies

- 80m monopole
 - Piles welded together

- 80m monopole
 - Piles welded together
- Minimum 100 °C

- 80m monopole
 - Piles welded together
- Minimum 100 °C
- Propane & Natural gas

1234567890 math 1234567890 no math

- Cost reduction by changing burner configuration
- Burner to pile
 - Burner types
 - Different fuels
 - Heat flux as a function of position
- Heat transfer in the pile

Adiabatic flame temperature

Tikz Figure

PDF picture

Tikz Figure

Laminar flow: single jet burner

Laminar flow: single jet burner

Stagnation point

sdfsdfsdcxvxcv Ca We Re Pe

$$q(r) = q_s \exp\left(-0.45 \frac{r}{R_2} - 1\right)$$

$$h = 0.763 \sqrt{\beta^{1.5} \rho_u \mu} \mathcal{R}e^{0.6} c_p \mathcal{C}a_i x \mathcal{W}e^{5.2} \delta_{ij}$$

Movie time

The Marangoni Effect

https://www.youtube.com/watch?v=0h16Tyn2138

TO DO

structuur Matlab script

Conclusions/Summary

- Cost reduction by changing burner configuration
- Burner to pile

Twan Bouts

Eindhoven University of Technology Department of Mechanical Engineering Microsystems

t.m.j.bouts@student.tue.nl

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

will automatically turn off slide numbering and progress bars for slides in the appendix.

Blockies

Just some random text to prove that these blocks can be incorporated within a slide

Formulae

$$F = m \cdot \alpha = m \frac{\partial^2 x}{\partial t^2}$$

If you are keen on writing some more, you could do it here.

Definition

Newton says, force is mass times acceleration

It's even possible to write under the blocks

Tables

Tab. 1 Properties of different fuels for current situation (Factory specs) and at the highest T_{flame} (Optimal)

Fuel	Setting	$S_L[\frac{cm}{s}]$	$T_{flame}[K]$	$\rho_u[\frac{kg}{m^3}]$	$\rho_b[\frac{kg}{m^3}]$
CH ₄ – O ₂	Optimal	306	3055.43	1.0961	0.0830
	Factory	306	3051.62	1.1091	0.0859
$C_3H_8 - O_2$	Optimal	353	3100.85	1.4238	0.0858
	Factory	353	3064.47	1.4427	0.0796

References i