CSE 462 Offline on Splay Tree

You have to implement a height balanced splay tree (CPP/ Java object oriented code) with n elements. Implement the following functions.

Task	Function	Description	Expected Complexity	Marks
1	Print(T)	Print the tree T, get the code here. You can modify the code according to your Splay Tree code.	Doesn't matter	1 [but' it's a must]
2	Splay(x)	Do the splay operations and bring x to the root.	O(log n)	6
3	Search(x)	Do the Search operation using the splay operation.	O(log n)	2
4	Insert(x)	Do the Insert operation using the splay operation. Make sure you are using Split(x).	O(log n)	2
5	Delete(x)	Do the Delete operation using the splay operation. Make sure you are using Join(L,R).	O(log n)	2
6	Testing and Report			2

Testing and Report:

- Run N (=104, 1004, 10004) number of random operations (only Search, Insert and Delete operations) on your Splay Tree code. Each N number of operations must include at least one operation of each type.
- Note how much time is taken for each N. Calculate also the time taken per operation for each N. Verify that order of each operation is amortized O(log n).
- Generate test cases with small input set to test the compatibility of your implemented code. [It's a must]

Bonus: [5 marks]

Implement the height balanced **AVL Tree**, verify the height is $O(\log n)$, and compare the height and execution time <u>per each operation for each N</u> with those of **Splay Tree**.