Nome: Igor Domingos da Silva Mozetic SP3027422 - 213

1) Nos endereços abaixo diga qual deles é um endereço IP válido (x) ou inválido e explique pq.

<u> </u>	
Válido	Se Inválido, pq?
X	
	Número IP contém
	apenas 4 octetos, e
	como podem ver
	nesse exemplo o
	numero está com 5,
	ou seja, inv á lido.
	Número IP contém
	4 octetos, e como
	podem ver nesse
	exemplo o numero
	está com 3, ou seja,
	inv á lido.
	Último octeto está
	com o número 300,
	o que o invalida
	porque s ó pode ir
	até 255.
X	
X	
	X

2) Dado os IP's abaixo, indique a qual classes eles pertencem, bem como se é público ou privado.

IP	CLASSE	Público/Privado
10.9.0.44	A	Privado
200.217.235.80	С	Público
127.255.0.128	localhost	Privado
172.30.115.254	В	Privado
205.208.33.1	С	Público
8.15.32.1	A	Público
192.168.0.20	С	Privado
192.169.0.33	С	Público

3) Quantos hosts de um endereço classe B são permitidos por sub-rede se a máscara usada for 255.255.255.192? E para a máscara 255.255.255.252?

Resposta: 64 endereços serão permitidos em cada uma das 4 sub rede cuja máscara é 255.255.255.192, porém como temos 2 endereços reservados, temos 62 hosts e na sub rede com a

máscara 255.255.255.252 a quantidade de endereços existentes são 4 em cada uma das 64 sub redes, porém como 2 desses são reservados, temos apenas 2 hosts.

4) Qual a máscara em contagem de bits adequada para se alocar 5000 hosts? E 2000? Justifique sua resposta.

Resposta: Para a realização desse exercício utilizei a fórmula: $2^n \ge x$, que calcula a quantidade máscara de sub rede adequada, onde n = a quantidade de bits para suprir a quantidade de hosts e x = o número de hosts.

$$2^n \ge 5000 \rightarrow 2^{13} \ge 5000 \rightarrow n = 13$$

O mesmo se aplica no 2000, porém com números diferentes para cada variável:

$$2^n \ge 5000 \rightarrow 2^{13} \ge 5000 \rightarrow n = 11$$

5) Uma determinada instituição possui o IP 200.200.10.0.

Essa instituição possui um conjunto de labs, cada um contendo 20 micros.

Apresente uma tabela contendo o plano de numeração IP para rede da referida instituição contendo as faixas de redes (endereços de

rede, broadcast, 1° e último IP válido, máscara de sub-rede em notação decimal e contagem de bits para todas as sub-redes).

Nº sub rede	Endereço rede	1º host	Último host
TCUC	•		
1	200.10.10.0	200.10.10.1	200.10.10.30
2	200.10.10.32	200.10.10.33	200.10.10.62
3	200.10.10.64	200.200.10.65	200.200.10.94
4	200.10.10.96	200.200.10.97	200.200.10.126
5	200.10.10.128	200.200.10.129	200.200.10.158
6	200.10.10.160	200.200.10.161	200.200.10.190
7	200.10.10.192	200.200.10.193	200.200.10.222
8	200.10.10.224	200.200.10.225	200.200.10.254

BROADCAST	Máscara de sub rede	Contagem de bits
200.10.10.31	255.255.255.224	27
200.10.10.63	255.255.255.224	27
200.10.10.95	255.255.255.224	27
200.10.10.127	255.255.255.224	27
200.10.10.159	255.255.255.224	27
200.10.10.191	255.255.255.224	27
200.10.10.223	255.255.255.224	27
200.10.10.255	255.255.255.224	27

6) O endereço 200.15.13.64, máscara 255.255.255.224 é endereço de rede ou de máquina? Mostre os cálculos - Justifique.

Resposta: O endereço 200.15.13.64 é o endereço de rede da 3º sub rede. Pois sua máscara, 255.255.255.224, finaliza em 224, apresentando que os 3 primeiros bits do último octeto tornassem parte de rede, fazendo com que 2³= 8 sub redes.

Com 8 sub redes, temos 32 endereços para cada, porém como um desse é o endereço da rede e o outro o endereço de broadcast, tem 30 hosts disponiveis para sempre utilizados. Para descobrirmos se o endereço é de rede ou de máquina, nós precisamos utilizar o método de operação AND, que consiste em calcular o endereço de rede por meio de endereços binários.

Em sua primeira linha, vai o IP 200.15.13.64 em forma binária. Na

segunda linha vai a máscara de rede, 255.255.255.224, em forma binária também. E na terceira linha, após calcular os binários, o resultado é a combinação ou não com o IP incial, se o IP inicial for igual ao resultado, é um endereço de rede agora se o resultado divergir do IP incial, é um endereço da própria máquina. Neste caso temos:

11001000.00001111.00001101.01000000 11111111.111111111.11111111.11100000 11001000.00001111.00001101.01000000

Como podemos observar, o mesmo número do IP é o número do resultado, ou seja, o endereço é um endereço de rede.

7) Qual é o endereço de rede e de broadcast do IP válido 200.67.67.43/27 ?

Resposta: O endereço de rede e de broadcast do ip válido 200.67.67.43/27, são respectivamente: 200.67.67.32/27 e 200.67.67.63/27

8) Dado o IP 192.168.10.5 e a Máscara de subrede 255.255.255.192 determine quantas subredes podem ser criadas e as faixas de cada sub-rede criada.

Resposta: Como a máscara de rede finaliza com o número 192, temos o consciência de que, se convertemos para binário, apenas os dois primeiros bits estaram com 1 e os outro com 0. Isso nos informa que os dois primeiros bits irão indicar a quantidade de sub redes existentes e os outros seis bits irão indicar a quantidade de faixas de cada uma delas.

Com dois bits para indicar a quantidade de sub redes existentes, basta apenas elevar o número de bits por ele mesmo, ou seja, $2^2 = 4$ sub redes. E para determinar a quantidade de faixas, basta apenas elevar o número de sub redes em bits pelos outros bits que não indicam sub rede, ou seja, $2^6 = 64$ endereços para cada

sub rede, porém como o primeiro e o último endereços são utilizados para outros meios, tem 62 hosts.

192.168.10.0 a 192.168.10.61

192.168.10.62 a 192.168.10.127

192.168.10.128 a 192.168.10.191

192.168.10.192 a 192.168.10.255

9) Quantas sub-redes podem ser criadas se pegarmos emprestados 04 bits para uma rede IP Classe C.

Resposta: Podem ser criadas 16 sub redes para redes de IP Classe C, ou seja, 16/24.

10) Qual será a máscara, em decimal e em contagem de bits, de sub-rede do item anterior.

Resposta: A máscara, em decimal terá o valor de 255.255.255.240. A contgem de bits será /28.

Envie as respostas para pof.luk.2000@gmail.com até 23/12/2020

Assunto: nome real completo, turma, A ou B, RDI exercícios endereçamento IP.

Atenção: resolução desta lista será na aula síncrona de 14/01/2021.

A prova bimestral 3 será em 21/01/2021. B: 8:00 A:9:30