WO 01/00843 PCT/IB00/00923

<210> 500

<211> 87 <212> PRT <213> Corynebacterium glutamicum <400> 500 Leu Lys Leu His Pro Glu Val Leu Glu Arg Ala Ile Ala Asp Ile Lys 1 5 10 15 Gly Val Thr Ala Ala Cys Val Val Gly Ile Pro Asp Pro Arg Leu Gly 20 25 30 Gln Ala Ile Val Ala Ala Tyr Ser Gly Ser Ile Ser Pro Ser Glu Val 35 Ile Glu Gly Leu Asp Asp Leu Pro Arg Trp Gln Leu Pro Lys Arg Leu 50 55 60 Lys His Leu Glu Ser Leu Pro Ser Ile Gly Pro Gly Lys Ala Asp Arg 70 65 75 Arg Ala Ile Ala Lys Leu Phe 85 on 127 <210> 501 <211> 775 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(775) <223> RXS03003 RXN03003 <400> 501 tcgatgatct gggctcccca ggtggtgcgg ctaagcttgg accacaagat tttgatcacc 60 caatgatege tgegetgeeg ceteaggeat aatetaaege atg ace tet ege ace Met Thr Ser Arg Thr 1 5 ecg ctt gtt tet gtt ett eet gat ttt eeg tgg gat teg ete get tee 163 Pro Leu Val Ser Val Leu Pro Asp Phe Pro Trp Asp Ser Leu Ala Ser 10 15 20 gca aaa gcc aaa gct gcg tct cac ccg gat ggg atc gtg aat ctt tct 211 Ala Lys Ala Lys Ala Ala Ser His Pro Asp Gly Ile Val Asn Leu Ser 25 35 gtt ggc act ccg gtt gat ccg gtc gcg ccc agc att cag atc gcg ttg 259 Val Gly Thr Pro Val Asp Pro Val Ala Pro Ser Ile Gln Ile Ala Leu 40 45 50 gca gaa gca gcg ggg ttt tcg ggt tac cct caa acc atc ggc acc ccg 307 Ala Glu Ala Ala Gly Phe Ser Gly Tyr Pro Gln Thr Ile Gly Thr Pro 55 60 65 gaa etc ege gea gee atc agg gge geg ett gag egg ege tac aac atg 355

WO 01/00843 PCT/IB00/00923

Glu 70	Leu	Arg	Ala	Ala	11e 75	Arg	Gly	Ala	Leu	Glu 80	Arg	Arg	Tyr	Asn	Met 85	
												ggt Gly		-		403
_												ggc Gly		-	_	451
										-		gtc Val 130	-	-	_	499
												ctc Leu				547
												ccc Pro				595
gtt Val	ctg Leu	ggc Gly	atc Ile	cca Pro 170	His	ttg Leu	Arg	aag Lys	gtt Val 175	Va1	aag Lys	tgg Trp	gcg Ala	cag Gln 180	gaa Glu	643
												ggt Gly				691
												cgt Arg 210	-	_	_	739
							-	att Ile		-	-					775

<210> 502

<211> 225

<212> PRT

<213> Corynebacterium glutamicum

<400> 502

Met Thr Ser Arg Thr Pro Leu Val Ser Val Leu Pro Asp Phe Pro Trp 1 5 10 15

Asp Ser Leu Ala Ser Ala Lys Ala Lys Ala Ala Ser His Pro Asp Gly 20 25 30

Ile Val Asn Leu Ser Val Gly Thr Pro Val Asp Pro Val Ala Pro Ser 35 40 45

Ile Gln Ile Ala Leu Ala Glu Ala Ala Gly Phe Ser Gly Tyr Pro Gln
50 55 60

Thr Ile Gly Thr Pro Glu Leu Arg Ala Ala Ile Arg Gly Ala Leu Glu 65 70 75 80

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

PCT

(10) International Publication Number WO 01/00843 A2

(51)	International Pate	ent Classification7: C13	2N 15/31,	, 199 33 004.2 14 July 1999 (14.07.1999) 1
	15/61, 1/21, 9/90, 0	C07K 14/34, C12P 13/08, C13	2Q 1/68	199 33 005.0 14 July 1999 (14.07.1999) 1
				199 33 006.9 14 July 1999 (14.07.1999) 1
21)	International App	lication Number: PCT/II	300/ <mark>00</mark> 923	3 60/148,613 12 August 1999 (12.08.1999)
				199 40 764.9 27 August 1999 (27.08.1999) 1
22)	International Filin	ng Date: 23 June 2000 (23	3.06.2000)) 199 40 765.7 27 August 1999 (27.08.1999) 1
				199 40 766.5 27 August 1999 (27.08.1999) 1
25)	Filing Language:		English	1 199 40 832.7 27 August 1999 (27.08.1999) 1
				199 41 378.9 31 August 1999 (31.08.1999) 1
26)	Publication Langu	ıag e:	English	1 199 41 379.7 31 August 1999 (31.08.1999) 1
				199 41 394.0 31 August 1999 (31.08.1999) I
30)	Priority Data:			199 41 396.7 31 August 1999 (31.08.1999) I
	60/141,031	25 June 1999 (25.06.19	999) US	5 199 41 380.0 31 August 1999 (31.08.1999) 1
	199 30 476.9	1 July 1999 (01.07.19	99) DE	E 199 42 077.7 3 September 1999 (03.09.1999) I
	60/142,101	2 July 1999 (02.07.19	999) US	5 199 42 129.3 3 September 1999 (03.09.1999) I
	199 31 415.2	8 July 1999 (08.07.19	99) DE	199 42 076.9 3 September 1999 (03.09.1999) I
	199 31 418.7	8 July 1999 (08.07.19	99) DE	3 September 1999 (03.09.1999) I
	199 31 419.5	8 July 1999 (08.07.19	99) DE	E 199 42 086.6 3 September 1999 (03.09.1999) I
	199 31 420.9	8 July 1999 (08.07.19	99) DE	199 42 087.4 3 September 1999 (03.09.1999) I
	199 31 424.1	8 July 1999 (08.07.19	99) DE	199 42 088.2 3 September 1999 (03.09.1999) 1
	199 31 428.4	8 July 1999 (08.07.19	99) DE	199 42 095.5 3 September 1999 (03.09.1999) I
	199 31 434.9	8 July 1999 (08.07.19	99) DE	E 199 42 124.2 3 September 1999 (03.09.1999) I
	199 31 435.7	8 July 1999 (08.07.19	99) DE	60/187,970 9 March 2000 (09.03.2000)
	199 31 443.8	8 July 1999 (08.07.19	99) DE	
	199 31 453.5	8 July 1999 (08.07.19	99) DE	E (71) Applicant: BASF AKTIENGESELLSCHAI
	199 31 457.8	8 July 1999 (08.07.19	99) DE	[DE/DE]; D-67056 Ludwigshafen (DE).
	199 31 465.9	8 July 1999 (08.07.19	99) DE	=
	199 31 478.0	8 July 1999 (08.07.19	99) DE	E (72) Inventors: POMPEJUS, Markus; Wenjenstr. 2
	199 31 510.8	8 July 1999 (08.07.19	99) DE	D-67251 Freinsheim (DE). KRÖGER, Burkhard;
	199 31 541.8	8 July 1999 (08.07.19	99) DE	Waldhof 1, D-67117 Limburgerhof (DE). SCHRÖDE
	199 31 573.6	8 July 1999 (08.07.19	999) DE	Hartwig; Goethestr. 5, D-69226 Nussloch (D)
	199 31 592.2	8 July 1999 (08.07.19	99) DE	ZELDER, Oskar; Rossmarktstr. 27, D-67346 Spey
	199 31 632.5	8 July 1999 (08.07.19	999) DE	E (DE). HABERHAUER, Gregor; Moselstr. 42, D-671
	199 31 634.1	8 July 1999 (08.07.19	99) DE	Limburgerhof (DE).
	199 31 636.8	8 July 1999 (08.07.19	999) DE	
	199 32 125.6	9 July 1999 (09.07.19	99) DE	E (81) Designated States (national): AE, AG, AL, AM, AT, A
	199 32 126.4	9 July 1999 (09.07.19	99) DE	E AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, C
	199 32 130.2	9 July 1999 (09.07.19	99) DE	DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, H
	199 32 186.8	9 July 1999 (09.07.19	99) DE	HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, L
	199 32 206.6	9 July 1999 (09.07.19	999) DE	E LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, M
	199 32 227.9	9 July 1999 (09.07.19	999) DE	NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, T
	199 32 228.7	9 July 1999 (09.07.19	999) DE	TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
	199 32 229.5	9 July 1999 (09.07.19	999) DE	
	199 32 230.9	9 July 1999 (09.07.19	999) DE	E (84) Designated States (regional): ARIPO patent (GH, G.
	199 32 922.2	14 July 1999 (14.07.19	999) DE	E KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasi
	199 32 926.5	14 July 1999 (14.07.19	999) DE	patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Europe
	199 32 928.1	14 July 1999 (14.07.19	999) D E	
				[Continued on next page
				•

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

(57) Abstract: Isolated nucleic acid molecules, designated MP nucleic acid molecules, which encode novel MP proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated MP proteins, mutated MP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of MP genes in this organism.

Mill and William

WO 01/00843 A2

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report. For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/00843 PCT/IB00/00923

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

-1-

Related Applications

The present application claims priority to prior filed U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/142101, filed July 2, 1999, U.S. Provisional Patent Application Serial No. 60/148613, filed August 12, 1999, and also to U.S. Provisional Patent Application Serial No. 60/187970, filed March 9, 2000. The present application also claims priority to prior filed German Patent Application No. 19930476.9, filed July 1, 1999, German Patent Application No. 19931415.2, filed July 8, 1999, German Patent 10 Application No. 19931418.7, filed July 8, 1999, German Patent Application No. 19931419.5, filed July 8, 1999, German Patent Application No. 19931420.9, filed July 8, 1999, German Patent Application No. 19931424.1, filed July 8, 1999, German Patent Application No. 19931428.4, filed July 8, 1999, German Patent Application No. 19931434.9, filed July 8, 1999, German Patent Application No. 19931435.7, filed July 15 8, 1999, German Patent Application No. 19931443.8, filed July 8, 1999, German Patent Application No. 19931453.5, filed July 8, 1999, German Patent Application No. 19931457.8, filed July 8, 1999, German Patent Application No. 19931465.9, filed July 8, 1999, German Patent Application No. 19931478.0, filed July 8, 1999, German Patent Application No. 19931510.8, filed July 8, 1999, German Patent Application No. 20 19931541.8, filed July 8, 1999, German Patent Application No. 19931573.6, filed July 8, 1999, German Patent Application No. 19931592.2, filed July 8, 1999, German Patent Application No. 19931632.5, filed July 8, 1999, German Patent Application No. 19931634.1, filed July 8, 1999, German Patent Application No. 19931636.8, filed July 8, 1999, German Patent Application No. 19932125.6, filed July 9, 1999, German Patent 25 Application No. 19932126.4, filed July 9, 1999, German Patent Application No. 19932130.2, filed July 9, 1999, German Patent Application No. 19932186.8, filed July 9, 1999, German Patent Application No. 19932206.6, filed July 9, 1999, German Patent Application No. 19932227.9, filed July 9, 1999, German Patent Application No. 19932228.7, filed July 9, 1999, German Patent Application No. 19932229.5, filed July 30 9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent Application No. 19932922.2, filed July 14, 1999, German Patent Application No.

WO 01/00843 PCT/IB00/00923

- 2 -

19932926.5, filed July 14, 1999, German Patent Application No. 19932928.1, filed July 14, 1999, German Patent Application No. 19933004.2, filed July 14, 1999, German Patent Application No. 19933005.0, filed July 14, 1999, German Patent Application No. 19933006.9, filed July 14, 1999, German Patent Application No. 19940764.9, filed August 27, 1999, German Patent Application No. 19940765.7, filed August 27, 1999, German Patent Application No. 19940766.5, filed August 27, 1999, German Patent Application No. 19940832.7, filed August 27, 1999, German Patent Application No. 19941378.9, filed August 31, 1999, German Patent Application No. 19941379.7, filed August 31, 1999, German Patent Application No. 19941380.0, filed August 31, 1999, German Patent Application No. 19941394.0, filed August 31, 1999, German Patent 10 Application No. 19941396.7, filed August 31, 1999, German Patent Application No. 19942076.9, filed September 3, 1999, German Patent Application No. 19942077.7, filed September 3, 1999, German Patent Application No. 19942079.3, filed September 3, 1999, German Patent Application No. 19942086.6, filed September 3, 1999, German Patent Application No. 19942087.4, filed September 3, 1999, German Patent 15 Application No. 19942088.2, filed September 3, 1999, German Patent Application No. 19942095.5, filed September 3, 1999, German Patent Application No. 19942124.2, filed September 3, 1999, and German Patent Application No. 19942129.3, filed September 3, 1999. The entire contents of all of the aforementioned applications are hereby expressly incorporated herein by this reference. 20

Background of the Invention

25

30

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through large-scale culture of bacteria developed to produce and secrete large quantities of a particular desired molecule. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have

PCT/IB00/00923

been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

5 Summary of the Invention

10

15

20

25

30

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in C. glutamicum or related bacteria, the typing or identification of C. glutamicum or related bacteria, as reference points for mapping the C. glutamicum genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as metabolic pathway (MP) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The MP nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the MP nucleic acids of the invention, or modification of the sequence of the MP nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The MP nucleic acids of the invention may also be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof, or to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is nonpathogenic, it is related to species pathogenic in humans, such as Corynebacterium

diphtheriae (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The MP nucleic acid molecules of the invention may also serve as reference points for mapping of the C. glutamicum genome, or of genomes of related organisms. Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered Corynebacterium or Brevibacterium species. The MP proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing an enzymatic step involved in the metabolism of certain fine chemicals, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Given the availability of cloning vectors for use 10 in Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al, J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules 15 of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals.

This improved production or efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation. Specifically, alterations in *C. glutamicum* metabolic pathways for amino acids, vitamins, cofactors, nucleotides, and trehalose may have a direct impact on the overall production of one or more of these desired compounds from this organism. For example, optimizing the activity of a lysine biosynthetic pathway protein or decreasing the activity of a lysine degradative pathway protein may result in an increase in the yield or efficiency of production of lysine from such an engineered organism. Alterations in the proteins involved in these metabolic pathways may also have an indirect impact on the production or efficiency of production of a desired fine chemical. For example, a reaction which is in competition for an intermediate necessary for the production of a desired molecule may be eliminated, or a pathway necessary for the production of a particular intermediate for a desired compound may be optimized. Further, modulations in the biosynthesis or degradation of, for example, an amino acid, a vitamin, or a nucleotide may increase the overall

20

25

30

ability of the microorganism to rapidly grow and divide, thus increasing the number and/or production capacities of the microorganism in culture and thereby increasing the possible yield of the desired fine chemical.

The nucleic acid and protein molecules of the invention may be utilized to directly improve the production or efficiency of production of one or more desired fine chemicals from *Corynebacterium glutamicum*. Using recombinant genetic techniques well known in the art, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of the desired fine chemical may be increased.

10

15

20

25

30

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose through indirect mechanisms. Metabolism of any one compound is necessarily intertwined with other biosynthetic and degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

PCT/IB00/00923 WO 01/00843

This invention provides novel nucleic acid molecules which encode proteins, referred to herein as metabolic pathway proteins (MP), which are capable of, for example, performing an enzymatic step involved in the metabolism of molecules important for the normal functioning of cells, such as amino acids, vitamins, cofactors, nucleotides and nucleosides, or trehalose. Nucleic acid molecules encoding an MP protein are referred to herein as MP nucleic acid molecules. In a preferred embodiment, the MP protein performs an enzymatic step related to the metabolism of one or more of the following: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Examples of such proteins include those encoded by the genes set forth in Table 1.

10

15

20

25

30

-6-

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an MP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of MPencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an evennumbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8...). The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a

WO 01/00843 PCT/IB00/00923

-7-

sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an MP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to perform an enzymatic reaction in a amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected from those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown in the corresponding odd-numbered SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7....).

10

15

20

25

30

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (*e.g.*, an MP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (*e.g.*, a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and is able to catalyze a reaction in a metabolic pathway for an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose, or one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing). Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum MP protein, or a biologically active portion thereof.

15

20

25

30

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an MP protein by culturing the host cell in a suitable medium. The MP protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an MP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated MP sequence as a transgene. In another embodiment, an endogenous MP gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered MP gene. In another embodiment, an endogenous or introduced MP gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

In another aspect, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 1156) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

Still another aspect of the invention pertains to an isolated MP protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated MP protein or portion thereof can catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a

nutraceutical, a nucleotide, a nucleoside, or trehalose. In another preferred embodiment, the isolated MP protein or portion thereof is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.

The invention also provides an isolated preparation of an MP protein. In preferred embodiments, the MP protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated MP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1.

15

20

25

30

Alternatively, the isolated MP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98,%, or 99% or more homologous to a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of MP proteins also have one or more of the MP bioactivities described herein.

The MP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-MP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the MP protein alone. In other preferred embodiments, this fusion protein, when introduced into a *C. glutamicum* pathway for the metabolism of an amino acid, vitamin, cofactor, nutraceutical, results in increased yields and/or efficiency of production of a desired fine chemical from *C. glutamicum*. In particularly preferred embodiments, integration of this fusion protein into an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway of a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention.

10

15

20

25

30

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an MP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an MP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates MP protein activity or MP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates MP protein activity can be an agent which stimulates MP protein activity or MP nucleic acid expression.

WO 01/00843 PCT/IB00/00923

- 11 -

Examples of agents which stimulate MP protein activity or MP nucleic acid expression include small molecules, active MP proteins, and nucleic acids encoding MP proteins that have been introduced into the cell. Examples of agents which inhibit MP activity or expression include small molecules, and antisense MP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant MP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

15

20

10

5

Detailed Description of the Invention

The present invention provides MP nucleic acid and protein molecules which are involved in the metabolism of certain fine chemicals in *Corynebacterium glutamicum*, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as *C. glutamicum*, either directly (e.g., where modulation of the activity of a lysine biosynthesis protein has a direct impact on the production or efficiency of production of lysine from that organism), or may have an indirect impact which nonetheless results in an increase of yield or efficiency of production of the desired compound (e.g., where modulation of the activity of a nucleotide biosynthesis protein has an impact on the production of an organic acid or a fatty acid from the bacterium, perhaps due to improved growth or an increased supply of necessary co-factors, energy compounds, or precursor molecules). Aspects of the invention are further explicated below.

30

25

I. Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates 10 (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and 15 Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane et al. (1998) Science 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine 20 chemicals are further explicated below.

A. Amino Acid Metabolism and Uses

25

30

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is art-recognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though L-amino acids are generally the only type found in naturally-occurring proteins. Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids

15

20

25

30

have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, Lmethionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/ Lmethionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids technical production and use, p. 466-502 in Rehm et al. (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as Nacetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) *Ann. Rev. Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α-ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a three-

15

20

25

step process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β-carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

30 B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although

15

20

25

30

they are readily synthesized by other organisms, such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B_1) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B_2) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B_6 ' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic

15

20

25

30

acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β-alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β-alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and

WO 01/00843

10

15

biotin. Only Vitamin B_{12} is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (i.e., AMP) or as coenzymes (i.e., FAD and NAD).

20 Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or 25 anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol. 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for 30 chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and

Related Compounds in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

The metabolism of these compounds in bacteria has been characterized (for 5 reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the subject of intensive research, and is 10 essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as 15 nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). 20 The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

25 D. Trehalose Metabolism and Uses

30

Trehalose consists of two glucose molecules, bound in α, α-1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto *et al.*, (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech*. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from

25

30

many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as MP nucleic acid and protein molecules, which play a role in or function in one or more cellular metabolic pathways. In one embodiment, the MP molecules catalyze an enzymatic reaction involving one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways. In a preferred embodiment, the activity of the MP molecules of the present invention in one or more *C. glutamicum* metabolic pathways for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides or trehalose has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the MP molecules of the invention are modulated in activity, such that the *C. glutamicum* metabolic pathways in which the MP proteins of the invention are involved are modulated in efficiency or output, which either directly or indirectly modulates the production or efficiency of production of a desired fine chemical by *C. glutamicum*.

The language, "MP protein" or "MP polypeptide" includes proteins which play a role in, e.g., catalyze an enzymatic reaction, in one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathways.

Examples of MP proteins include those encoded by the MP genes set forth in Table 1 and by the odd-numbered SEQ ID NOs. The terms "MP gene" or "MP nucleic acid sequence" include nucleic acid sequences encoding an MP protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions.

Examples of MP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes

20

25

30

the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

In another embodiment, the MP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as *C. glutamicum*. Using recombinant genetic techniques, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of one of these desired fine chemicals may be increased.

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Metabolism of any one compound is necessarily intertwined with other biosynthetic and

20

30

degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

The isolated nucleic acid sequences of the invention are contained within the genome of a *Corynebacterium glutamicum* strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated *C. glutamicum* MP DNAs and the predicted amino acid sequences of the *C. glutamicum* MP proteins are shown in the Sequence Listing as odd-numbered SEQ ID NOs and even-numbered SEQ ID NOs, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode metabolic pathway proteins.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of the invention (e.g., the sequence of an even-numbered SEQ ID NO of the Sequence Listing). As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The MP protein or a biologically active portion or fragment thereof of the invention can catalyze an enzymatic reaction in one or more amino acid, vitamin,

cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

5

10

20

30

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode MP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of MP-encoding nucleic acid (e.g., MP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated MP nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g, a C. glutamicum cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of an odd-numbered SEQ ID NO of the Sequence Listing, or a portion thereof, can be isolated using standard molecular biology techniques and the

sequence information provided herein. For example, a C. glutamicum MP DNA can be isolated from a C. glutamicum library using all or portion of one of the odd-numbered SEQ ID NO sequences of the Sequence Listing as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO:) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the 10 nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO of the Sequence Listing) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate 15 extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in the Sequence Listing. A nucleic acid of the invention 20 can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an MP nucleotide sequence can be prepared by standard synthetic techniques, e.g., 25 using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in the Sequence Listing. The nucleic acid sequences of the invention, as set forth in the Sequence Listing, correspond to the Corynebacterium glutamicum MP DNAs of the invention. This DNA comprises sequences encoding MP proteins (i.e., the "coding region", indicated in each odd-numbered SEQ ID NO: sequence in the Sequence Listing), as well as 5' untranslated

WO 01/00843 PCT/IB00/00923

- 24 -

sequences and 3' untranslated sequences, also indicated in each odd-numbered SEQ ID NO: in the Sequence Listing. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the nucleic acid sequences of the Sequence Listing.

For the purposes of this application, it will be understood that each of the nucleic acid and amino acid sequences set forth in the Sequence Listing has an identifying RXA, RXN, RXS, or RXC number having the designation "RXA", "RXN", "RXS", or "RXC" followed by 5 digits (i.e., RXA00007, RXN00023, RXS00116, or RXC00128). Each of the nucleic acid sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, RXS, or RXC designation to eliminate confusion. The recitation "one of 10 the odd-numbered sequences of the Sequence Listing", then, refers to any of the nucleic acid sequences in the Sequence Listing, which may also be distinguished by their differing RXA, RXN, RXS, or RXC designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is also set forth in the Sequence Listing, as an even-numbered SEQ ID NO: immediately following the 15 corresponding nucleic acid sequence. For example, the coding region for RXA02229 is set forth in SEQ ID NO:1, while the amino acid sequence which it encodes is set forth as SEQ ID NO:2. The sequences of the nucleic acid molecules of the invention are identified by the same RXA, RXN, RXS, or RXC designations as the amino acid molecules which they encode, such that they can be readily correlated. For example, the 20 amino acid sequences designated RXA02229, RX00351, RXS02970, and RXC02390 are translations of the coding regions of the nucleotide sequences of nucleic acid molecules RXA02229, RX00351, RXS02970, and RXC02390, respectively. The correspondence between the RXA, RXN, RXS, and RXC nucleotide and amino acid sequences of the invention and their assigned SEQ ID NOs is set forth in Table 1. 25

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, RXN, RXS, or RXC designation. For example, SEQ ID NO:5, designated, as indicated on Table 1, as "F RXA01009", is an F-designated gene, as are SEQ ID NOs: 73, 75, and 77 (designated on Table 1 as "F RXA00007", "F RXA00364", and "F RXA00367", respectively).

30

In one embodiment, the nucleic acid molecules of the present invention are not intended to include *C. glutamicum* those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al. (1998) *J. Bacteriol.* 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences of the invention is one which is sufficiently complementary to one of the nucleotide sequences shown in the Sequence Listing (e.g., the sequence of an odd-numbered SEQ ID NO:) such that it can hybridize to one of the nucleotide sequences of the invention, thereby forming a stable duplex.

10

15

20

25

30

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences of the invention, or a portion thereof.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of the sequence of one of the odd-numbered SEQ ID NOs

15

20

25

30

of the Sequence Listing, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an MP protein. The nucleotide sequences determined from the cloning of the MP genes from C. glutamicum allows for the generation of probes and primers designed for use in identifying and/or cloning MP homologues in other cell types and organisms, as well as MP homologues from other Corynebacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the nucleotide sequences of the invention (e.g., a sequence of one of the oddnumbered SEQ ID NOs of the Sequence Listing), an anti-sense sequence of one of these sequences, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of the invention can be used in PCR reactions to clone MP homologues. Probes based on the MP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an MP protein, such as by measuring a level of an MP-encoding nucleic acid in a sample of cells from a subject e.g., detecting MP mRNA levels or determining whether a genomic MP gene has been mutated or deleted.

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in a sequence of one of the even-numbered SEQ ID NOs of the Sequence Listing) amino acid residues to an amino acid sequence of the invention such that the

WO 01/00843 PCT/IB00/00923

-27 -

protein or portion thereof is able to catalyze an enzymatic reaction in a *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathway. Protein members of such metabolic pathways, as described herein, function to catalyze the biosynthesis or degradation of one or more of: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose. Examples of such activities are also described herein. Thus, "the function of an MP protein" contributes to the overall functioning of one or more such metabolic pathway and contributes, either directly or indirectly, to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of MP protein activities are set forth in Table 1.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing).

10

15

20

25

30

Portions of proteins encoded by the MP nucleic acid molecules of the invention are preferably biologically active portions of one of the MP proteins. As used herein, the term "biologically active portion of an MP protein" is intended to include a portion, e.g., a domain/motif, of an MP protein that catalyzes an enzymatic reaction in one or more C. glutamicum amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or has an activity as set forth in Table 1. To determine whether an MP protein or a biologically active portion thereof can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an MP protein can be prepared by isolating a portion of one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing), expressing the encoded portion of the MP protein or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the MP protein or peptide.

15

20

25

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing) (and portions thereof) due to degeneracy of the genetic code and thus encode the same MP protein as that encoded by the nucleotide sequences of the invention. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in the Sequence Listing (e.g., an even-numbered SEQ ID NO:). In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of the invention (encoded by an open reading frame shown in an odd-numbered SEQ ID NO: of the Sequence Listing).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 40% identical to the nucleotide sequence designated RXA00115 (SEQ ID NO:185), a nucleotide sequence which is greater than and/or at least % identical to the nucleotide sequence designated RXA00131 (SEQ ID NO:991), and a nucleotide sequence which is greater than and/or at least 39% identical to the nucleotide sequence designated RXA00219 (SEQ ID NO:345). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%,

10

15

20

30

74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

In addition to the *C. glutamicum* MP nucleotide sequences set forth in the Sequence Listing as odd-numbered SEQ ID NOs, it will be appreciated by one of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of MP proteins may exist within a population (*e.g.*, the *C. glutamicum* population). Such genetic polymorphism in the MP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an MP protein, preferably a *C. glutamicum* MP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the MP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in MP that are the result of natural variation and that do not alter the functional activity of MP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum MP DNA of the invention can be isolated based on their homology to the C. glutamicum MP nucleic acid disclosed herein using the C. glutamicum DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of an odd-numbered SEQ ID NO: of the Sequence Listing. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to one of ordinary skill in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.

A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a nucleotide sequence of the invention corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum MP protein.

10

15

20

25

30

In addition to naturally-occurring variants of the MP sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of the invention, thereby leading to changes in the amino acid sequence of the encoded MP protein, without altering the functional ability of the MP protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a nucleotide sequence of the invention. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the MP proteins (e.g., an even-numbered SEQ ID NO: of the Sequence Listing) without altering the activity of said MP protein, whereas an "essential" amino acid residue is required for MP protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having MP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering MP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding MP proteins that contain changes in amino acid residues that are not essential for MP activity. Such MP proteins differ in amino acid sequence from a sequence of an even-numbered SEQ ID NO: of the Sequence Listing yet retain at least one of the MP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of the invention and is capable of catalyzing an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic

20

25

acid molecule is at least about 50-60% homologous to the amino acid sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, more preferably at least about 60-70% homologous to one of these sequences, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of these sequences, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the amino acid sequences of the invention.

To determine the percent homology of two amino acid sequences (e.g., one of the amino acid sequences of the invention and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the amino acid sequences of the invention) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the amino acid sequence), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding an MP protein homologous to a protein sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the invention such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the nucleotide sequences of the invention by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic

20

30

acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine,
5 phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an MP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an MP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an MP activity described
10 herein to identify mutants that retain MP activity. Following mutagenesis of the nucleotide sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the Exemplification).

In addition to the nucleic acid molecules encoding MP proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire MP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an MP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID NO. 1 (RXA02229) comprises nucleotides 1 to 825). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding MP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding MP disclosed herein (e.g., the sequences set forth as odd-numbered SEQ ID NOs in the Sequence Listing), antisense

nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of MP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of MP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of MP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized 10 using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-20 methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid 25 methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

15

20

30

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an MCT protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids. Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.* (1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave MP mRNA transcripts to thereby inhibit translation of MP mRNA. A ribozyme having specificity for an MP-encoding nucleic acid can be designed based upon the nucleotide sequence of an MP DNA disclosed herein (i.e., SEQ ID NO: 1 (RXA02229). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an MP-encoding mRNA. See, e.g., Cech et al.

PCT/IB00/00923

U.S. Patent No. 4,987,071 and Cech *et al.* U.S. Patent No. 5,116,742. Alternatively, MP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, *e.g.*, Bartel, D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

Alternatively, MP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an MP nucleotide sequence (e.g., an MP promoter and/or enhancers) to form triple helical structures that prevent transcription of an MP gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

5

10

15

20

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an MP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant 5 expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, repressor binding sites, activator binding 10 sites, enhancers and other expression control elements (e.g., terminators, polyadenylation signals, or other elements of mRNA secondary structure). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide 15 sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacIq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ -P_R- or λ P_L, which are used preferably in bacteria. Additional regulatory sequences are, for example, promoters from yeasts and fungi, such 20 as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolinpromoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., MP proteins, mutant forms of MP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of MP proteins in prokaryotic or eukaryotic cells. For example, MP genes can be expressed in bacterial cells such as *C. glutamicum*, insect cells (using baculovirus

20

25

30

expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer 5 systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency Agrobacterium tumefaciens -mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells. 10 Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the MP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from

the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant MP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

Examples of suitable inducible non-fusion E. coli expression vectors include 5 pTrc (Amann et al., (1988) Gene 69:301-315) pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11, pBdCl, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation of Bacillus species. Several plasmids of use in the transfer of genetic information into 20 Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid

30 sequences of the invention can be carried out by standard DNA synthesis techniques.

30

In another embodiment, the MP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), , 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, *et al.*, eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the MP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In another embodiment, the MP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac+, pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both

prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

5 In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) 10 Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546). 20

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to MP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell

20

30

type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, *Reviews - Trends in Genetics*, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an MP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those of ordinary skill in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these

integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an MP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an MP gene into which a deletion, addition or substitution 10 has been introduced to thereby alter, e.g., functionally disrupt, the MP gene. Preferably, this MP gene is a Corynebacterium glutamicum MP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous MP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous MP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous MP protein). In the homologous recombination vector, the altered portion 20 of the MP gene is flanked at its 5' and 3' ends by additional nucleic acid of the MP gene to allow for homologous recombination to occur between the exogenous MP gene carried by the vector and an endogenous MP gene in a microorganism. The additional flanking MP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5° and 3° ends) are included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced MP gene has homologously recombined with the endogenous MP gene are selected, using art-known techniques. 30

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene.

For example, inclusion of an MP gene on a vector placing it under control of the lac operon permits expression of the MP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous MP gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced MP gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described MP gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) an MP protein. Accordingly, the invention further provides methods for producing MP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an MP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered MP protein) in a suitable medium until MP protein is produced. In another embodiment, the method further comprises isolating MP proteins from the medium or the host cell.

25

30

15

20

C. Isolated MP Proteins

Another aspect of the invention pertains to isolated MP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of MP protein in which the protein is separated from cellular components of the cells in which

it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of MP protein having less than about 30% (by dry weight) of non-MP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-MP protein, still more preferably less than about 10% of non-MP protein, and most preferably less than about 5% non-MP protein. When the MP protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes 10 preparations of MP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of MP protein having less than about 30% (by dry weight) of chemical precursors or non-MP chemicals, more preferably less than about 20% chemical precursors or non-MP chemicals, still more preferably less than about 10% chemical precursors or non-MP chemicals, and most preferably less than about 5% chemical precursors or non-MP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the MP protein is derived. Typically, such proteins are produced by 20 recombinant expression of, for example, a C. glutamicum MP protein in a microorganism such as C. glutamicum.

An isolated MP protein or a portion thereof of the invention can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (*e.g.*, a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an MP protein of

30

the invention has an amino acid sequence set forth as an even-numbered SEQ ID NO: of the Sequence Listing. In yet another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing). In still another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 10 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of the invention, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein. For example, a preferred MP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the 20 invention, and which can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or which has one or more of the activities set forth in Table 1.

In other embodiments, the MP protein is substantially homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and retains the functional activity of the protein of one of the amino acid sequences of the invention yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the MP protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%,

15

25

30

78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention and which has at least one of the MP activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of the invention.

Biologically active portions of an MP protein include peptides comprising amino acid sequences derived from the amino acid sequence of an MP protein, e.g., an amino acid sequence of an even-numbered SEQ ID NO: of the Sequence Listing or the amino acid sequence of a protein homologous to an MP protein, which include fewer amino acids than a full length MP protein or the full length protein which is homologous to an MP protein, and exhibit at least one activity of an MP protein. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an MP protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an MP protein include one or more selected domains/motifs or portions thereof having biological activity.

MP proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the MP protein is expressed in the host cell. The MP protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an MP protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native MP protein can be isolated from cells (e.g., endothelial

15

20

25

30

cells), for example using an anti-MP antibody, which can be produced by standard techniques utilizing an MP protein or fragment thereof of this invention.

The invention also provides MP chimeric or fusion proteins. As used herein, an MP "chimeric protein" or "fusion protein" comprises an MP polypeptide operatively linked to a non-MP polypeptide. An "MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to MP, whereas a "non-MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the MP protein, e.g., a protein which is different from the MP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the MP polypeptide and the non-MP polypeptide are fused in-frame to each other. The non-MP polypeptide can be fused to the N-terminus or C-terminus of the MP polypeptide. For example, in one embodiment the fusion protein is a GST-MP fusion protein in which the MP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant MP proteins. In another embodiment, the fusion protein is an MP protein containing a heterologous signal sequence at its Nterminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of an MP protein can be increased through use of a heterologous signal sequence.

Preferably, an MP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel *et al.* John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (*e.g.*, a GST polypeptide). An MP-

encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the MP protein.

Homologues of the MP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MP protein. As used herein, the term "homologue" refers to a variant form of the MP protein which acts as an agonist or antagonist of the activity of the MP protein. An agonist of the MP protein can retain substantially the same, or a subset, of the biological activities of the MP protein. An antagonist of the MP protein can inhibit one or more of the activities of the naturally occurring form of the MP protein, by, for example, competitively binding to a downstream or upstream member of the MP cascade which includes the MP protein. Thus, the C. glutamicum MP protein and homologues thereof of the present invention may modulate the activity of one or more metabolic pathways in which MP proteins play a role in this microorganism.

In an alternative embodiment, homologues of the MP protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MP 15 protein for MP protein agonist or antagonist activity. In one embodiment, a variegated library of MP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MP 20 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MP sequences therein. There are a variety of methods which can be used to produce libraries of potential MP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.

20

25

30

In addition, libraries of fragments of the MP protein coding can be used to generate a variegated population of MP fragments for screening and subsequent selection of homologues of an MP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an MP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the MP protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of MP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify MP homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated MP library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C.*

glutamicum sequences of interest; evolutionary studies; determination of MP protein regions required for function; modulation of an MP protein activity; modulation of the activity of an MP pathway; and modulation of cellular production of a desired compound, such as a fine chemical.

The MP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is not pathogenic to humans, it is related to species which are human pathogens, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the 20 inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990. 25

In one embodiment, the invention provides a method of identifying the presence or activity of Cornyebacterium diphtheriae in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOs, respectively, in the Sequence Listing) in a subject, thereby detecting the presence or activity of Corynebacterium diphtheriae in the subject. C. glutamicum and C. diphtheriae are related bacteria, and many of the nucleic acid and protein molecules in C. glutamicum

are homologous to *C. diphtheriae* nucleic acid and protein molecules, and can therefore be used to detect *C. diphtheriae* in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The MP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the MP nucleic acid molecules of the invention may result in the production of MP proteins having functional differences from the wild-type MP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

WO 01/00843 PCT/IB00/00923

- 52 -

The invention also provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more MP proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the MP protein is assessed.

When the desired fine chemical to be isolated from large-scale fermentative culture of C. glutamicum is an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose, modulation of the activity or efficiency of activity of one or more of the proteins of the invention by recombinant genetic mechanisms may directly impact the production of one of these fine chemicals. For example, in the case of an enzyme in a biosynthetic pathway for a desired amino acid, improvement in efficiency or activity of the enzyme (including the presence of multiple copies of the gene) should lead to an increased production or efficiency of production of that desired amino acid. In the case of an enzyme in a biosynthetic pathway for an amino acid whose synthesis is in competition with the synthesis of a desired amino acid, any decrease in the efficiency or activity of this enzyme (including deletion of the gene) should result in an increase in production or efficiency of production of the desired amino acid, due to decreased competition for intermediate compounds and/or energy. In the case of an enzyme in a degradation pathway for a desired amino acid, any decrease in efficiency or activity of the enzyme should result in a greater yield or efficiency of production of the desired product due to a decrease in its degradation. Lastly, mutagenesis of an enzyme involved in the biosynthesis of a desired amino acid such that this enzyme is no longer is capable of feedback inhibition should result in increased yields or efficiency of production of the desired amino acid. The same should apply to the biosynthetic and degradative enzymes of the invention involved in the metabolism of vitamins, cofactors, nutraceuticals, nucleotides, nucleosides and trehalose.

20

25

30

Similarly, when the desired fine chemical is not one of the aforementioned compounds, the modulation of activity of one of the proteins of the invention may still impact the yield and/or efficiency of production of the compound from large-scale culture of *C. glutamicum*. The metabolic pathways of any organism are closely

PCT/IB00/00923

interconnected; the intermediate used by one pathway is often supplied by a different pathway. Enzyme expression and function may be regulated based on the cellular levels of a compound from a different metabolic process, and the cellular levels of molecules necessary for basic growth, such as amino acids and nucleotides, may critically affect the viability of the microorganism in large-scale culture. Thus, modulation of an amino acid biosynthesis enzyme, for example, such that it is no longer responsive to feedback inhibition or such that it is improved in efficiency or turnover may result in increased cellular levels of one or more amino acids. In turn, this increased pool of amino acids provides not only an increased supply of molecules necessary for protein synthesis, but also of molecules which are utilized as intermediates and precursors in a number of other biosynthetic pathways. If a particular amino acid had been limiting in the cell, its increased production might increase the ability of the cell to perform numerous other metabolic reactions, as well as enabling the cell to more efficiently produce proteins of all kinds, possibly increasing the overall growth rate or survival ability of the cell in large scale culture. Increased viability improves the number of cells capable of producing the desired fine chemical in fermentative culture, thereby increasing the yieldof this compound. Similar processes are possible by the modulation of activity of a degradative enzyme of the invention such that the enzyme no longer catalyzes, or catalyzes less efficiently, the degradation of a cellular compound which is important for the biosynthesis of a desired compound, or which will enable the cell to grow and reproduce more efficiently in large-scale culture. It should be emphasized that optimizing the degradative activity or decreasing the biosynthetic activity of certain molecules of the invention may also have a beneficial effect on the production of certain fine chemicals from C. glutamicum. For example, by decreasing the efficiency of activity of a biosynthetic enzyme in a pathway which competes with the biosynthetic pathway of a desired compound for one or more intermediates, more of those intermediates should be available for conversion to the desired product. A similar situation may call for the improvement of degradative ability or efficiency of one or more proteins of the invention.

20

30

This aforementioned list of mutagenesis strategies for MP proteins to result in increased yields of a desired compound is not meant to be limiting; variations on these mutagenesis strategies will be readily apparent to one of ordinary skill in the art. By

these mechanisms, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated MP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

TABLE 1: Included Genes

Lysine biosynthesis

Function	DIAMINOPIMELATE EPIMERASE (EC 5.1.1.7) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11) MEMBOANE SOAMINING DOCTEM INVOLVED IN LYSINE METABOLISM	MEMBRANE ASSOCIATED PROTEIN INVOLVED IN LYSINE METABOLISM	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND THREONINE	TRANSCRIPTIONAL REGULATOR INVOLVED IN LYSINE METABOLISM	CYTOSOLIC PROTEIN INVOLVED IN LYSINE METABOLISM		Function	ALPHA,ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD SUBUNIT (EC 2 4.1.15)	ALPHA,ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD SUBUNIT (EC 2,4,1,15)	trehalose synthase (EC 2.4.1) trehalose synthase (EC 2.4.1)		Function	ASPARTOKINASE ALPHA AND BETA SUBUNITS (EC 2.7.2.4)	ASPARTATE-SEMIALDEHYDE DEHYDROGENASE (EC 1.2.1.11)	(EC 2.3.1.117)	SUCCINYL-DIAMINOPIMELATE DESUCCINYLASE (EC 3.5.1.18)	DINYDRODIPICOLINATE BYNICHARE (FC 4.4.1.52) DINYDRODIPICOLINATE BEDUCHARE (FC 4.4.1.56)	probable 2,3-dihydrodipicolinate N-C6-lyase (cyclizing) (EC 4.3.3) -	Corynebacterium glutamicum 2.3.4.5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE	(EC 2.3.1.117)	MESO-DIAMINOPIMELATE D-DEHYDROGENASE MESO-DIAMINOPIMELATE D-DEHYDROGENASE (EC 1.4.1.16)	
NT Stop	3617	5943						NT Stop	38532	2931	758 4		NT Stop	3496	2438	r	3169	1639	2443	4		30961 4	
NT Start	2793	4714						NT Start	37078	1486	3 1005		NT Start	4758	3469	2	2063	80 %	1694	543	?	31980 861	
Contig.	GR00653	GR00287						Contig.	VV0135	GR00066	GR00241 GR00243		Contig.	GR00137	GR00137	200010	GR00613	GR000078	GR00236	GR00842		VV0135 GR00068	
Identification Code	RXA02229 RXS02970	F RXA01009	RXC01796	RXC01207	RXC00657	RXC00552		Identification Code	RXN00351	F RXA00351	RXA00873 RXA00891	<u>.s</u>	Identification Code	RXA00534	RXA00533	2407040	RXA02022	KXA00044 RXA00863	RXA00864	RXA02843		RXN00355 F RXA00352	
Amino Acid	4	တ္	° 5	12	4	16	ø	Amino Acid	18	20	22 24	ysine biosynthesis	Amino Acid	26	28	3	32	34 24	8 8	40	?	4 4	
Nucleic Acid	2 - 6	ري 1	~ თ	Ξ	13	15	Trehalose	Nucleic Acid	17	19	23	Lysine b	Nucleic Acid	25	27	63	34	isi ko π		ō)	4 4 53	

Table Confine Acid SEQ DNO Config. Table Confine Confine Config. Table Confine Config. Table Confine Config. Table Confine Config. Table Config. C
--

Table 1 (continued) Alanine and Asparagine metabolism

Eunction ASPARAGINE SYNTHETASE (GLUTAMINE-HYDROLYZING) (EC 6.3.5.4) ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1) ASPARAGINASE (EC 3.5.1.1) L-ASPARAGINASE (EC 3.5.1.1) ALANINE RACEMASE (EC 5.1.1.1) ALANINE RACEMASE, BIOSYNTHETIC (EC 5.1.1.1)	Function BETA-UREIDOPROPIONASE (EC 3.5.1.6) METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE (ACYLATING) (EC 1.2.1.27) ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11)	Function L-SERINE DEHYDRATASE (EC 4.2.1.13) L-SERINE DEHYDRATASE (EC 4.2.1.13) L-SERINE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.1) SARCOSINE OXIDASE (EC 1.5.3.1) SARCOSINE OXIDASE (EC 1.5.3.1) SARCOSINE OXIDASE (EC 1.5.3.1) PHOSPHOSERINE AMINOTRANSFERASE (EC 2.6.1.52) PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3) SARCOSINE OXIDASE (EC 1.5.3.1) D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95) D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)
NT Stop 4901 25814 4 9182 746 1138 275 365 1695 6 5783 19944	NT Stop 7826	NT Stop 2042 1827 6042 9876 12160 33813 12581 4648 4648 5220 13977 15423
NT Start 6739 26974 510 10288 213 854 1585 1942 2669 680 4701 20972	NT Start 8581	NT Start 1113 481 7343 10253 11783 33454 11454 5082 5082 5330 15041
Contig. GR00639 VV0135 GR00163 GR00729 GR00729 GR00729 GR00738 VV0138 VV0138	Contig. GR00726	Contig. GR00435 GR00525 GR00515 VV0202 GR00641 GR00765 GR00766 GR00766 GR00766
RXA02139 RXN00116 RXN00116 RXN00618 F RXA00618 F RXA00627 RXA02550 RXA02193 RXA02432 RXA02432 RXA03003 RXN03003 RXN00636	metabolism Acid Identification Code ID NO RXA02536 RXS00870 RXS02299	rmetabolism RXA01561 RXA01850 RXA01850 RXA01821 RXA01821 RXA02263 F RXA02263 F RXA02758 F RXA02758 F RXA02759 F RXA02759 F RXA02759
Amino Acid SEQ ID NO 110 114 116 120 122 124 128 130	21	and serine Amino Acid SEQ ID NO 140 148 146 148 150 154 156 156 166 168
Nucleic Acid SEQ ID NO 109 111 115 115 121 127 129 131	beta-Alanine Nucleic Acid SEQ 133 133 135 135 136 137 138	Glycine a Nucleic Acid SEQ ID NO 139 141 143 145 147 149 151 151 153 153 163 167

Table 1 (continued)

Threonine metabolism

p Function	HOMOSERINE DEHYDROGENASE (EC 1.1.1.3) HOMOSERINE DEHYDROGENASE (EC 1.1.1.3) HOMOSERINE KINASE (EC 2.7.1.39) THREONINE SYNTHASE (EC 4.2.99.2) HOMOSERINE O-ACETYLTRANSFERASE HOMOSERINE O-ACETYLTRANSFERASE CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND	MEMBRANE ASSOCIATED PROTEIN INVOLVED IN THREONINE METABOLISM		Function	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.31)	HOMOSERINE O-ACETYLTRANSFERASE	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11)	CYSTATHONINE GAMMA-SYNTHASE (FC 4.2.88.8)	OVERTARIONINE CAMMAN CANTURON (EC. 4.2.33.3)	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthetase)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	(EC 2.1.1.13)	5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE	5-METHYLTETRAHYDROFOLATEHOMOCYSTEINE METHYLTRANSFERASE	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	MEINTLIKANSFERASE (EC 2.1) ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)
NT Stop	13387 3015 1087 14410 68911 1832		onine	NT Stop	4313	68911	1832	1811	2020	8602	2521	15297	70188	976	3801	3007	4043	11726	w	1741	645	5045	7624
NT Start	12053 2623 161 12968 70041 723		yl methi	NT Start	5359	70041	723	2404	2006	SOS	1919	16286	70787	-	3289	JEES	7004	9228	2483	2238	1142	3612	7728
Config.	VV0149 GR00274 GR00057 GR00067 VV0086 GR00088		S-adenosyl methionine	Contig	GR00017	VV0086	GR00088	GR00038	000000	GR007.20	GR00770	GR00032	VV0086	GR00088	GR00089	3780000	GN00043	VV0302	GR00646	W0042	GR10044	VV0124	GR00020
identification Code	EXN00969 F RXA00974 RXA00970 RXA00330 RXN00403 F RXA00403	RXC00152	methionine and S-	Identification Code	RXA00115	RXN00403	F RXA00403	F RXA00254	D > 0.00000	KXA02532 RXS03159	F RXA02768	RXA00216	RXN00402	F RXA00402	RXA00405	70100400	18 70 V	RXN02198	F RXA02198	RXN03074	F RXA02906	RXN00132	F RXA00132
Amino Acid	170 172 174 176 178 180	184	n of	Amino Acid	186	188	190	194	1 0	989	200	202	204	206	208	ç	710	212	214	216	218	220	222
Nucleic Acid	169 171 175 177 179	183	Metabolisr	Nucleic Acid SEO ID NO	185	187	189	193	2 4	193 197	199	201	203	205	207	000	807	211	213	215	217	219	221

Function	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTDANSEEDASE (EC 2.4.4.1)	IMETATLI MANSFERASE (EC. 2.1.1.14) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTBANSEEDASE (EC. 2.4.4.4)	METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE METHYLTBANSFEBASE (FC 2 1 1 14)	S-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYLTDANSEEDASE (EC. 2.1.1.1.1)	PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES	EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND ADENOSYLHOMOCYSTEINE		Function	S-ADENOSYLMETHIONINE SYNTHETASE (EC 2.5.1.6)		Function	SERINE ACETYLTRANSFERASE (EC 2.3.1.30)	CYSTEINE SYNTHASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE	METABOLISM METABOLISM
NT Stop Function	3634 ADI	5295 5-N	5731 5-N	1.0 1.0 1.0	4730 5-N	15447 5-N	4 C S	ŞωŞ		NT Stop Fur	8380 S-4		NT Stop Fur			70188 O-Y	576 O-4	300	AB AB	AB
NT Start	2339	3496	5252		5254	14764			Si S	NT Start	7160		NT Start	1589	550	70787	-			
Contig.	GR00398	GR00629	GR00629		GR00751	GR00752			osynthe	Contig.	GR00654		Contig.	GR00206	GR00206	00000	GR00088			
Identification Code	F RXA01371 RXN02085	F RXA02085	F RXA02086	RXN02648	F RXA02648	F RXA02658	RXC02238	RXC00128	S-adenosyl methionine (SAM) Biosynthesis	Identification Code	RXA02240	Шs	Identification Code	RXA00780	RXA00779	KXN00402	F RXA00402	RXS00405	RXC00164	RXC01191
Amino Acid	224 226	228	230	232	234	236	238	240	syl methio	Amino Acid	242	metabolism	Amino Acid	244	246	248	250	252	254	256
Nucleic Acid	223 225 225	227	229	231	233	235	237	539	S-adeno	Nucleic Acid	241	Cysteine	Nucleic Acid	243	245	247	249	251	253	255

ine
soleuc
and is
encine
Valine, I

Table 1 (continued)

Function		HREONINE DEHYDRALASE BIOSYNTHETIC (EC 4.2.1.16)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (FC 2 & 1.42)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC. 2.0.1.42)	BRANCHED CHAIN AMINO ACID AMINOTIDANICEED ACE (CO 2.0.1.42)	3-ISOPROPYI MAI ATE DEHYDDATARE (AD 2011-42)	3-ISOPROPYI MAI ATE DEHVORATASE LARGE SUBJINIT (EO 4.2.1.53)	3-ISOPROPYI MAI ATE DEHYDROGENASE (EC 4.2.1.53)	3-ISOPROPYI MAI ATE DEHYDROGENAGE (EC. 1-1-1-3)	2-ISOPROPYI MAI ATE SYNTHASE (FC 4 1 2 12)	2-ISOPROPYI MAI ATE SYNTHASE (EC 4.1.3.12)	3-ISOPROPYI MAI ATE DEHYDRATASE SMAI! SUBLIMIT (EC. 4.2.4.2.2.)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (FC 2 1 2 11)	/ DECARBOXYLASE (EC 4.1.1.44)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHY! TRANSFERASE /EC 2 1 2 11)	4"-MYCAROSYL ISOVALERYL-COA TRANSFERASE (EC. 2)	KETOL-ACID REDUCTOISOMERASE (FC 1 1 1 88)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	
NT Stop	0	2262	4249	196	196	7513	1602	3472	1651	7498	7360	7121	48402		1960	14643		1530	
NT Start	9200	2000	5091	1296	1248	9171		4491	1349	6128	6128	7711	47590		2766	15584		1075	
Contig	0.000764		GR00204	VV0246	GR00473	VV0143	GR00294	VV0157	GR00315	W0219	GR00137	VV0143	VV0127		GR00555	VV0122		GR00321	
Identification Code	DYANJAAG	0407040	RXA00766	RXN01690	F RXA01690	RXN01026	F RXA01026	RXN01127	F RXA01132	RXN00536	F RXA00536	RXN02965	RXN01929	!	F RXA01929	RXN01420	RXS01145	F RXA01145	
Amino Acid	258	200	260	262	264	266	268	270	272	274	276	278	280		282	284	286	288	
Nucleic Acid	257	7	259	261	263	265	267	269	271	273	275	277	279	į	281	283	285	287	

Arginine and proline metabolism

Enzymes of proline biosynthesis:

Function	GLUTAMATE 5-KINASE (EC 2.7.2.11) GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) PYRROLINE-5-CARBOXYLATE REDUCTASE (EC 1.5.1.) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.1 ORNITHINE CYCLODEAMINASE (EC 4.3.1.12)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.1 ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.1
NT Stop	223 3867 16 1894 12692	5943
NT Start	1449 5162 624 2493 11883	4714
Contig.	GR00689 VV0213 GR00690 GR00691 GR00720	GR00287
Identification Code	EXA02375 EXN02382 F EXA02378 F EXA02382 EXA02499 EXS02157 EXS02157	F RXA01009
Amino Acid SEQ ID NO	290 296 296 300 302	306
	289 293 295 297 301	

Table 1 (continued)

Enzymes of proline degradation:

NT Stop Function	64703 PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12) 454 PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12) PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12) PROTEIN INVOLVED IN PROLINE METABOLISM		NT Stop Function	4687 DNA FOR L-PROLINE 3-HYDROXYLASE, COMPLETE CDS	spermidine metabolism:	NT Stop Function	3076 GLUTAMATE N-ACETYLTRANSFERASE (EC 2.3.1.35) / AMINO-ACID			_	1536 N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE		ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)		6224 ORNITHINE CARBAMOYLTRANSFERASE (EC 2.1.3.3)		8962 ARGININOSUCCINATE LYASE (EC 4 3.2.1)				14190 SPERMIDINE SYNTHASE (EC 2.5.1.16)			13037 N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
Contig.	W0127 68158	GR00003 2	GR00660 3028			Contig. NT Start	GR00423 5337	d sperm	Contig. NT Start	GR00640 1913		Q	VV0122 14106	GRUUG4U /5/ GRUUG40 1536				GRUU640 5268		0						0	VV0122 13327			
Identification Code	RXN00023	F RXA00023	F RXA02284	RXC02498	esis of 3-Hydoxy-proline:	dentification Code	RXA01491	of ornithine, arginine and	Identification Code	RXA02155			E DV 602153				ቋ	RXAU2138			32							RXS00147	RXS00905	KXS00906
Amino Acid	308	310	312	314	s of 3-Hyd	Amino Acid	316		Amino Acid	318	4	320	322	326	328	330	332	554 524	338	340	342	344	346	348	350	352	354	356	358 360	360
Nucleic Acid SEQ ID NO	307	309	311	313	Synthesis	Nucleic Acid	315	Enzymes	Nucleic Acid	317	(319	321	325	327	329	331 333	335	337	339	341	343	345	4	545. 545.				357	

Punction Function	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5) CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5) N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14) N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)		Function	ATP PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.17)	PHOSPHORIBOSYL-AMP CYCLOHYDROLASE (EC 3.5.4.19) PHOSPHORIBOSYLFORMIMINO-5-AMINOIMIDAZOLE CARBOXAMIDE	RIBOTIDE ISOMERASE (EC 5.3.1.16) AMIDOTRANSFERASE HISH (EC 2.4.2)	AMIDOTRANSFERASE HISH (EC 2.4.2)	HISE PROTEIN IMIDAZOI EGI YCEROI -PHOSPHATE DEHVORATASE (EC. 4.3.4.40)	IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19) /	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9) HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL DEHYDROGENASE (EC 1.1.1.23) PROTEIN INVOLVED IN HISTIDINE METAROLISM	PROTEIN INVOLVED IN HISTIDINE METABOLISM	PROTEIN INVOLVED IN HISTIDINE METABOLISM MEMBRANE SPANNING PROTEIN INVOLVED IN HISTIDINE METABOLISM		Function	3-PHOSPHOSHIKIMATE 1-CARBOXYVINYLTRANSFERASE (EC 2.5.1.19) 4-AMINO-4-DEOXYCHORISMATE LYASE (FC 4)	ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18) ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18)	ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27) ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27)
Table 1 (contin	3198		NT Stop	2055	4373 6335	7094	2944	4726 6432	10322	23318	525 10947	12053				NT Stop	4345 6948	2577 590	2764 1130
NT Start			NT Start	2897	4726 7072	7726 39950	2444	5499 7037	10927	24181	4 12044	13378				NT Start	3056 5806	3197 3	1211 3
Contig.	GR00654		Contig.	GR00645 GR00645	GR00306 GR00306	GR00306	GR00460	GR00306 VV0059	GR00306	W0112	GR00306	GR00306			ids	Contig.	GR00712 GR00777	VV0247 GR00263	VV0208 GR00264
Identification Code	RXS00907 RXS02001 RXS02101 RXS02234 F RXA02234 RXS02565 RXS02937	am.	Identification Code	RXA02194 RXA02195	RXA0100 RXA01100	RXA01101 RXN01657	F RXA01657	RXA01098 RXN01104	F RXA01104	RXN00446	RXA01105	RXA01106 RXC00930	RXC01096	RXC01158	aromatic amino acids	Identification Code	RXA02458 RXA02790	RXN00954 F RXA00954	RXN00957 F RXA00957
Amino Acid SEO ID NO	362 364 366 372 372 374	metabolism	Amino Acid	376 378	380 382	384 386	388	390 392	394	396	400	402 404	406 408	0.4	ism of aron	Amino Acid	412	416 418	420 422
Nucleic Acid SEQ ID NO	361 363 365 367 371 373	Histidine	Nucleic Acid	375	379 381	383 385	387	389 391	393	395	388	404 403	405	604	Metabolis	Nucleic Acid SEQ ID NO		415 417	419 421

Table 1 (continued)	Function	CHORISMATE MUTASE (EC 5.4.99.5) / PREPHENATE DEHYDRATASE (EC	CHORISMATE SVNTHASE (EC. 4 & 4 4)	CHORISMATE SYNTHASE (EC.4.0.1.4)	INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (FC.4.1.1.48)	INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) / N-(5'-PHOSPHO.	RIBOSYL)ANTHRANILATE ISOMERASE (EC 5.3.1.24)	ISOCHORISMATE MUTASE	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)	SHIKIMATE KINASE (EC 2.7.1.71)	TRYPTOPHAN SYNTHASE ALPHA CHAIN (FC 4 2 1 20)	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4 2 1 20)	TYROSINE AMINOTRANSFERASE (EC 2.6.1.5)	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE (FC 4 1 2 15)	PARA-AMINOBENZOATE SYNTHASE COMPONENT I (EC 4.1.3)	PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE	COMPONENT II (EC 4.1.3) / ANTHRANILATE SYNTHASE COMPONENT II (EC 4.1.3.7)	ANTHRANILATE SYNTHASE COMPONENT II (FC 4 1 3 22)	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)	3-OXOADIPATE COA-TRANSFERASE SUBUNIT B (EC 2.8.3.6)	3-OXOADIPATE ENOL-LACTONE HYDROLASE (EC 3.1.1.24) / 4-	CARBOXYMUCONOLACTONE ASPABIATE AMINOTBANSEEBASE (FO 2 6 4 4)	ACDADIATE AMMOTERATE ACTION OF COLORS	COLOCIANI DENIZOTO ACIDI ACAMBRICA (EC. Z.O.T.3)	C-SOCCIATEDENZOIC ACID-COM LIGASE (EC 6.2.1.26) 1.4-DIHYDROXY-2-NAPHTHOATE OCTABBENIN TRANSFERASE (EC 5.5.)	1.4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYI TRANSFERASE (FC 2.3-1-)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	2-SUCCINYL-6-HYDROXY-2,4-CYCLOHEXADIENE-1-CARBOXYLATE	STRIFTASE / Z-OAUGLUTARATE DECARBOXYLASE (EC 4.1.1.71) ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	NAPHTHOATE SYNTHASE (EC 4.1.3.36)	O-SUCCINYLBENZOIC ACIDCOA LIGASE (FC 6 2 1 26)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	3-DEHYDROQUINATE DEHYDRATASE (EC 4.2.1.10)
able 1 (c	NT Stop	12250	12736	991	2821	2007		128	936	13247	7795				3157	3776	0		1099	10260		1753		3778	25887	9889	11099		7	r		4911		525	,	746	1138							
}	NT Start	11306	11507	7	3603	586		598	1715	12444	6968	984	26	1140	2027	2499	33959	က	854	11384	5946	1130		3410	25447	7497	10347		510	2		4030		4	ç	213	854							
	Contig.	GR00754	W0134	GR00477	GR00306	GR00263		GR00795	GR00033	GR00629	GR00777	GR00477	GR00262	VV0247	GR00263	GR00010	VV0112	GR00109	GR00110	GR00156	GR00156	GR00264		VV0208	7,0086	VV0182	W0182		GROOM			GR00086		GR00108	00000	GR00163	GK00164							
	Identification Code	RXA02687	RXN01698	F RXA01698	RXA01095	RXA00955		KXA02814	RXA00229	RXA02093	RXA02791	RXA01699	RXA00952	RXN00956	F RXA00956	RXA00064	RXN00448	F RXA00448	F RXA00452	RXA00584	RXA00579	RXA00958		RXN03007	RXN02918	RXN01116	RXN01115	RXS00116	F RXA00116	RXS00391	RXS00393	F RXA00393	RXS00446	F RXA00446	RXS00618	010000000000000000000000000000000000000	F FXAUU62/	RX501105	rA302313	RXS02550	RXS02319	RXS02908	RXS03003	RXS03026
	SEQ ID NO		426	428	430	432	•	454	436	438	440	442	444	446	448	450	452	454	456	458	460	462		464	466	468	470	472	474	476	478	480	482	484	486 98 98	000	0.00	707	† D	496	498	~	502	
	Nucleic Acid	423	425	427	429	431	ç	255	435	437	439	441	443	445	447	449	451	453	455	457	က္ေ	461		463	465	467	469	471	473	475	477	479	481	483	485 782 782	785	500 500 700	407) }	495	497	400	501	503

Table 1 (continued)	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1) MEMBRANE SPANNING OPOTEIN INVOLVED IN METABOLISM OF ABOMATIC	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC	AMINO ACIDS CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS		Function	4-aminobutyrate aminotransferase (EC 2.6.1.19) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ors), nutraceuticals		Function	THIAMIN BIOSYNTHESIS PROTEIN THIC	THIAMIN-MONOPHOSPHATE KINASE (EC 2.7.4.16)	THIAMIN-PHOSPHATE PYROPHOSPHORYLASE (EC 2.5.1.3) THIS PROTEIN	THIS PROTEIN	THIG PROTEIN	HYDROXYETHYLTHIAZOLE KINASE (EC 2.7.1.50) APBA PROTEIN	THIAMIN BIOSYNTHESIS PROTEIN X	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)	PHOSPHOME HYLPYRIMIDINE KINASE (EC 2.7.4.7) PYRIDOXINE KINASE (EC 2.7.1.35)	CYTOSOLIC KINASE INVOLVED IN METABOLISM OF SUGARS AND THIAMIN
able 1 (co						NT Stop	1697 5081 5943	(cofactors)		NT Stop	4819	982	7286	4	378	1032 633	2557	2446	27905	22858	9 <u>1</u> 0	
NT Start						NT Start	666 4714 4714			NT Start	2945	9	3206	162	983	229 1532	1988	1019	27306	22187	7	
Contig.						Contig.	VV0035 VV0021 GR00287	substances		Contig.	GR00431	GR00291	GR00393	GR00394	GR00394	GR00348 GR00227	GR00699	VV0270	VV0050	VV0050	GK00451	
Identification Code	RXS03074	RXC02080	RXC02789	RXC02295	metabolism	Identification Code	RXN03063 RXN02970 F RXA01009	ns, vitamin-like su	sm	Identification Code	RXA01551	RXA01019	RXA01352 RXA01381	RXA01360	RXA01361	RXA01208 RXA00838	RXA02400	RXN01209	F FXAU1203 FXN01413	RXN01617	F KXA01617 RXS01807	RXC01021
Amino Acid	506	510	512	514	rate	Amino Acid	516 518 520	ns, vitaı	e metabolism	Amino Acid	522	524	526 528	530	532	536 536	538	540	544 544	546	550 550	552
Nucleic Acid SEQ ID NO	505	509	511	513	Aminobuty	Nucleic Acid	515 517 519	Vitami	Thiamine	Nucleic Acid	521	523	525 527	529	531	535 535	537	539	543 543	545	549	551

Table 1 (continued)

Riboflavin metabolism

PYRIDOXINE KINASE (EC 2.7.1.35), pyridoxal/pyridoxine/pyridoxamine kinase

Function

NT Stop

Contig.

Identification Code

7077

GR00509

RXA01807

Nucleic Acid SEQ ID NO 595

NT Start 7868

Function	diaminohydroxyphosphoribosylaminopyrimidine deaminase (EC 3.5.4.26) / 5-amino-	5-(5-phosphoribosylamino)uracil reductase (EC 1.1.1.193) RIBG PROTFIN riboflavin-specific deaminase FEC 3.3	RIBOFLAVIN SYNTHASE AI PHA CHAIN (FC 2 5 1 9)	GTP CYCLOHYDROLASE II (EC 3.5.4.25) / 3.4-DIHYDROXY-2-RIITANONE 4.	PHOSPHATE SYNTHASE	RIBA PROTEIN - GTP cyclohydrolase II [FC:3 5.4.25]	6,7-DIMETHYL-8-RIBITYLLUMAZINE SYNTHASE (FC 2 5 1 9)	RIBH PROTEIN - 6,7-dimethyl-8-ribityllumazine synthase (dmrl synthase, lumazine	synthase, riboflavin synthase beta chain) IEC 2 5 1 91	RIBX PROTEIN	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC	2.7.7.2)	NICOTINATE-NUCLEOTIDEDIMETHYLBENZIMIDAZOLE	PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC	2.7.7.2)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	RIBOFLAVIN-SPECIFIC DEAMINASE (FC 3 5 4 -)	ALPHA-RIBAZOLE-5'-PHOSPHATE PHOSPHATASE (EC. 2-1-2-1)	RIBORI AVIN ADECIFIC DEAMINAGE (FO 5 L.S.)	DRAP DEAMINASE	MEMBRANE SPANNING DECTEIN INVOLVED IN BIBDE AVAILMENTABLE SON	DOCTER INVOLVED BY DIDOR AND AND AND TOTAL	PROTEIN INVOLVED IN RIBOTLAVIN METABORISM	Predicted nucleotidyltransferases	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF RIBOFLAVIN AND	Soldin	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC	AIVIING ACIDS AND RIBOP CAVIN		
NT Stop	5371	15282	15918	7286		17197	7777	17688		18356	2388		1736		2388		8538	2152	679	43R	350) :		0	p n						
NT Start	4388	14299	15286	6021		15932	7301	17212		17778	3410		2809		3410		8993	2652	1386	767	1363			200	2						
Contig.	VV0130	GR00654	GR00654	VV0130		GR00654	VV0130	GR00654		GR00654	GR00423		GR00639		GR00423		W0191	GR00484	VV0213	VV0319	VV0109			000000	1600010						
Identification Code	RXN02246	F RXA02246	RXA02247	RXN02248		F RXA02248	RXN02249	F RXA02249		RXA02250	RXA01489		RXA02135		RXA01489		RXN01712	F RXA01712	RXN02384	RXN01560	RXN00667	RXC01711	RXC02380	E DYACCORD		KAC02921	70770	KAC01434		<u> </u>	
Amino Acid SEQ ID NO	554	556	558	560		562	564	566		2 68	570	•	572	. !	574		576	578	580	582	584	586	588	590	200	280	207	480		S motobo	
Nucleic Acid SEQ ID NO	553	555	557	559		561	563	565		267	999	Ì	571		573		575	27.5	579	581	583	585	587	or or	601	200	503	280		Vitamin D	

Table 1 (continued)), nicotinamide, NAD and NADP
	(nicotinic acid), n
	Nicotinate

Function		NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING) (EC 2.4.2.19)	QUINOLINATE SYNTHETASE A
NT Stop		23901	4	488	6436	5593
NT Start		22564	774	က	2600	4310
Contig.		VV0084	GR00701	GR00766	GR00632	GR00632
Identification Code		RXN02754	F RXA02405	F RXA02754	RXA02112	RXA02111
Amino Acid	SEQ ID NO	598	900	602	604	909
Nucleic Acid	SEQ ID NO	597	599	601	603	605

NAD Biosynthesis

Function	NH(3)-DEPENDENT NAD(+) SYNTHETASE (EC 6.3.5.1) NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)
NT Stop	2104 23901
NT Start	1274 22564
Contig.	GR00300 VV0084
Identification Code	RXA01073 RXN02754
Amino Acid	608 610
Nucleic Acid	609

Pantothenate and Coenzyme A (CoA) biosynthesis

Function	ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11) DANTOATE BETA ALANINE LICAGE (EC 6.3.2.1)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	/ DECARBOXYLASE (EC 4.1.1.44) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	PANTOATEBETA-ALANINE LIGASE (EC 6.3.2.1)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	DNA/PANTOTHENATE METABOLISM FLAVOPROTEIN	PANTOTHENATE KINASE (EC 2.7.1.33)	2-DEHYDROPANTOATE 2-REDUCTASE (EC 1.1.1.169)	PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES AND PANTOTHENATE
NT Stop		48402				1530				
NT Start	10452	47590	2766	25167		1075	5784	7572		
Contig.	GR00662	VV0127	GR00555	GR00424		GR00321	GR00654	GR00156		
Identification Code	RXA02299	EXN01929	F RXA01929	RXA01521	RXS01145	F RXA01145	RXA02239	RXA00581	RXS00838	RXC02238
Amino Acid SEQ ID NO	612	616	618	620	622	624	929	628	630	632
Nucleic Acid SEO ID NO	611	615	617	619	621	623	625	627	629	631

Biotin metabolism

Function	BIOTIN SYNTHESIS PROTEIN BIOC
NT Stop	8754
NT Start	8272
Contig.	VV0028
Identification Code	RXN03058
Amino Acid	634
Nucleic Acid	633

Table 1 (con	Contig. NT Star	33 GR10040 11532 12014 GR00025 3650 4309	GR00166 3556 2288	GR00166 2281 1610	010000 C00000 C000000	VV0123 16681 15608 NIFS	52 GR00040 79 897	VV0112 10037 11209 NIFS	GR00100 3563 2949 NIFS	1 GR00782 438 4 NIFS	GR00723 1724 2986	GR00723 2989 3435 NIFU		ion Code Contig. NT Start NT Stop Function	0010 1010000	GR00495 2506 3549 GR00495 1614 2366	GR00632 472 1527	(3) DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT (E2) OF 2- OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)				tion Code Contig. NT Start NT Stop Function	GR00758 18281 17400 5.10-METHYLENETETRAHYDROFOLATE REDUCTASE (EC 1.7.99.5)	VV0296 503 1003	GR00616 500 6	VV0082 8868 9788	21 GR00384 23 GR00116 428		14 GR00424 20922 21509 GTP CYCLOHYDROLASE I (EC 3.5.4.16) 16 GR00424 22360 22749 DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)
	Identification Code Co	ಜ	RXA00633 GF	RXA00632 GF		KXA00263 5	33		స	-	RXA02516 GF			Identification Code Co		RXA0174/ GI		RXS01183	RXS01260	RXS01261	Ø	Identification Code Co	RXA02717 G		F RXA02027 G		21		RXA01514 G RXA01516 G
	SEO ID NO		640	642	44	648 048	650	652	654	656	658	099	Acid	Amino Acid	מו מו	6 62 664	999	999	670	672	biosynthesis	Amino Acid		676	678	682 682	684 686	0 0	888 000 000
	Nucleic Acic	635 637	639	641	040 740	645 647	676	651	653	655	657	629	Lipoic Acid	Nucleic Acid	מנים ביות	661 663	665	299	699	671	Folate t	Nucleic Acid	SEC 10 NO	675	677	6/3 681	600 600 800 800 800 800 800 800 800 800	0	687 689

ntinued) Function	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15) DIHYDROFOLATE REDUCTASE (EC 1.5.1.3)	FOLYLPOLYGLUTAMATE SYNTHASE (EC 6.3.2.17)	2-AMINO-4-HYDROXY-6-HYDROXYMEŤHYLDIHYDROPTERIDINE PYROPHOSPHOKINASE (EC 2.7.6.3)	PARA-AMINOBENZOATE SYNTHASE COMPONENT I (EC 4.1.3)	PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE COMPONENT II (EC 4 1.3 -1 / ANTHRANII ATE SYNTHASE COMPONENT II (EC 4 1.3 -1 / ANTHRANII ATE SYNTHASE COMPONENT II (EC	4.1.3.27)	4-AMINO-4-DEOXYCHORISMATE LYASE (EC 4)	5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	SHIRTH THE LIKENTUROPOLATE HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.13)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14) 6. METHYLTRANSPORTEDAY, TELEVITA MANAGEMENT AND CONCERNIA	D-METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTRANSFERASE (EC.2.1.1.14)	5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13) PROTEIN INVOLVED IN FOLATE METABOLISM	MEMBRANE SPANNING PROTEIN INVOLVED IN FOLATE METABOLISM	ATP-BINDING PROTEIN INVOLVED IN FOLATE METABOLISM		Function	MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN		MOLYBDOPTERIN (MPT) CONVERTING FACTOR, SUBUNIT 2	
Table 1 (continued	22364	4784 17924	1371	23228	4087	1753		6948	11726	Q	Þ	10717	5295	5734	200		4730	!	15447						NT Stop	16299	474	17369	362 18275	196 1087
NT Start	21513	4026 17469	2903	22752	5946	1130	1	5806	9228	6	2468	8483	3496	6262	2636		5254	701	14/64						NT Start	17369	7	17824	3 18742	2 830
Contig.	GR00424	GR00014	GR00280	GR00424	GR00156	GR00264		GR00777	W0302	2720000	0400040	VV0126	GR00629	GROORSO	20000		GR00751	01000	2670075						Contig.	VV0112	GR00783	W0112	GR00103	GR00104 GR00105
Identification Code	RXA01515	RXA00106	RXA00989	RXA01517	RXA00579	RXA00958		RXA02790 PXA00106	RXN02198	E DVA02108	06170001	RXN02085	F RXA02085	F RXA02086	20070000	RXN02648	F RXA02648	0 0 0 0 0	r KA402050	RXS02197	RXC00988	RXC01518	RXC01942	abolism	Identification Code	RXN02802	F RXA02802 F PXA00438	RXN00437	F RXA00437 RXN00439	F RXA00442 F RXA00442
Amino Acid	692 694	696 696	869	200	702	704	i I	706 708	710	713		714	716	718		720	722		4 7/	726	728	730	732	Molybdopterin Metabolism	Amino Acid	734	736 738	740	742 744	746 748
Nucleic Acid	691	695	269	669	701	703	i c	705	709	711	-	713	715	717		719	721	,	3	725	727	729	731	Molybdo	Nucleic Acid	733	735	739	741 743	745 747

ontinued)	Function	MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN CR	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE_HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	MOLYBDOPTERIN-GUANINE DINUCLEOTIDE BIOSYNTHESIS PROTEIN A	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS CNX1 PROTEIN	(D90909) pterin-4a-carbinolamine dehydratase [Synechocystis sp.1	2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE	PYROPHOSPHOKINASE (EC 2.7.6.3)	MOLYBDOPTERIN BIOSYNTHESIS MOG PROTEIN	FLAVOHEMOPROTEIN / DIHYDROPTERIDINE REDUCTASE (EC 1.6.99.7)	OXYGEN-INSENSITIVE NAD(P)H NITROREDUCTASE (EC 1) /	DIHYDROP FRIDING REDICTASE (EC.) 6 99 7)
iable 1 (continued)	NT Stop	654	18779	793			5295		5731				4730		15447		22749	22364	4784	704	1268		1207	069	3965	23228		4934			
<u> </u>	NT Start	196	19942	2			3496		5252				5254		14764		22360	21513	4026	1264	2476		7	1274	9684	22752		4449			
	Contig.	GR00104	VV0112	GR00105			GR00629		GR00629				GR00751		GR00752		GR00424	GR00424	GR00613	GR00488	GR00488		GR00568	GR00748	GR00665	GR00424		W0148			
	Identification Code	RXA00440	RXN00441	F RXA00441	RXN02085		F RXA02085		F RXA02086		RXN02648		F RXA02648		F RXA02658		RXA01516	RXA01515	RXA02024	RXA01719	RXA01720	RXS03223	F RXA01970	RXA02629	RXA02318	RXA01517		RXN01304	RXS02556	RXS02560	
	Amino Acid	750	752	754	756		758		760	9	762	. !	764		766	,	768	770	772	774	776	778	780	782	784	786		788	790	792	
	Nucleic Acid SEO ID NO	749	751	753	755	!	757	()	759		761		763		765	1	767	769	771	773	775	777	779	781	783	785		787	789	791	

Vitamin B₁₂, porphyrins and heme metabolism

Function	GLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE (EC 5,4,3,8)	FERROCHELATASE (EC 4.99.1.1)	FERROCHELATASE (EC 4.99.1.1)	HEMK PROTEIN	OXYGEN-INDEPENDENT COPROPORPHYRINGGEN III OXIDASE /F	PORPHOBILINOGEN DEAMINASE (EC 4 3 1.8)	PORPHOBILINGEN DEAMINASE (EC 4 3 1 8)	UROPORPHYRINOGEN DECARBOXYLASE (EC 4 1 1.37)	PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)	PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)
NT Stop	1451	9400	8596	1274	11276	22854	17340	306	23362	17816
NT Start	2752	10509	7910	2206	10137	22456	16906	1427	22805	17379
Contig.	GR00082	GR00023	GR00163	GR00051	GR00242	70007	GR00720	GR00081	70007	GR00720
Identification Code	RXA00382	RXA00156	RXA00624	RXA00306	RXA00884	RXN02503	F RXA02503	RXA00377	RXN02504	F RXA02504
Amino Acid SEQ ID NO	794	286	798	800	802	804	806	808	810	812
Nucleic Acid SEQ ID NO	793	795	797	799	801	803	805	807	809	811

rtinued)	PRECORRIN-6Y METHYLASE (EC 2.1.1) PRECORRIN-6Y METHYLASE (EC 2.1.1) UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) / UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) /	1 /1	UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) / UROPORPHYRINOGEN-III SYNTHASE (EC 4.2.1.75)	PROTOPORPHYRINOGEN OXIDASE (EC 1.3.3.4) PROTOPORPHYRINOGEN OXIDASE (EC 1.3.3.4)	PROTOPORPHYRINOGEN OXIDASE (EC 1.3.3.4)	COBALAMIN (5'-PHOSPHATE) SYNTHASE NICOTINATE-NUCLEOTIDEDIMETHYLBENZIMIDAZOLE	PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)	COBG PROTEIN (EC 1)		HEMK PROTEIN HEMK PROTEIN	CYTOSOLIC PROTEIN INVOLVED IN PORPHYRIN METABOLISM		Function	į	L-GULONOLACTONE OXIDASE (EC 1.1.3.8)	L-GULONOLACTONE OXIDASE (EC 1.1.3.8)	2.5-DIKETO-D-GLUCONIC ACID REDUCTASE (FC 1.1.1.)	2.5-DIKETO-D-GLUCONIC ACID REDUCTASE (FC 1.1.1.)	2.5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC 1.1.1)	oxoglutarate semialdehyde dehydrogenase (EC 1.2.1)	ACETOACETYL-COA REDUCTASE (EC 1.1.1.36)	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS	OXIDOREDUCTASE INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS		Function	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1)
Table 1 (continued)	524 4 749 5973	မှ	371	2863 6	2863	801 1736	1700	552	663				NT Stop	(1048	541	3872	1359	929						NT Stop	
NT Start	1849 1248 1498 4180	929	1102	4206 287	3876	1721 2809	2363	, -	1739				NT Start		1102	2 ,	4678	2030	1540						NT Start	
Contig.	VV0088 GR00330 GR00474 VV0226	GR00078	GR00079	VV0223 GR00081	GR00082	GR00639 GR00639 GR00639	000000	VV0088	W0082				Contig.		VV0112	GR00096	VV0005	GR00185	GR00688						Contig.	
Identification Code	EXN01162 F EXA01162 EXA01692 EXN00371	F RXA00371	F RXA00374	RXN00383 F RXA00376	F RXA00383	RXA02134 RXA02135 RXA02135	BVA02136			RXS03205 F RXA00306	RXC01715	ors	Identification Code		KX N00420	F RXA00420	F XXX00708	F RXAD0708	RXA02373	RXS00389	RXS00419	RXC00416	RXC02206		Identification Code	RXS03074
Amino Acid	816 818 820	822	824	826 828	830	834 836	000	840	842	844 846	848	precurso	Amino Acid	SEC ID NO	200	852	856	858	860	862	864	866	868	K 2	Amino Acid	870
Nucleic Acid	813 815 817 819	821	8 23	825 827	829	833 353	0	839	841	8 843 843 8 33	847	Vitamin C	Nucleic Acid	SEC ID NO	86 94 9	851	8 90 90 90 90 90 90 90 90 90 90 90 90 90	857	821.00 821.00 821.00	861	863	865	867	Vitamin K	Nucleic Acid	

Start NT Stop Function	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	6383	10933	4911 2750			Start NT Stop Function	1808	249	12547	(EC 2.1.1) COMA OPERON PROTEIN 2	cleotides	nesis pathways			Start NT Stop Function	213	9581 AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14)	501 10352	1713	780 PHOSPHORIBOSYLAMINE-GLYCINE LIGASE, GARS (EC 6.3.4.13)	
NT Start NT Stop Function	1142 645 S-ADEN	8011 6383	9977 10933	4030 4911 2031 2750				2389 1808	986 249 3073 2384	13299 12547	(EC 2.1.1) COMA OPERON PROTE	and other Nucleotides	biosynthesis pathways			Stop	1187 213	8235 9581	51 501 11624 10362	5 1450 1713	1 780 4875 4285	
Identification Code Contig.	F RXA02906 GR10044	RXA02315 GR00665	RXA02319 GR00665	FXX00393 GR00086 FXX00391 GR00086	RXS02908	sis.	Identification Code Contig.			32912 W0135	RXS00998		pyrimidine	-		Identification Code Contig.			F KANU0558 GKUU148 RXN00626 VVQ135	g:		
Amino Acid Identii		874 RXA0		880 F RXA0039 882 RXA00391		ne biosynthesis	•	886 RXA00997			894 RXS0	and Pyrimidines	n of purine and	metabolism	synthesis	no Acid	2				906 F RXA006; 908 RXA02623	
Nucleic Acid		873		879 881		Ubiquinone	Nucleic Acid		889		893	Purines	Regulation	Purine me	Purine Biosy	Acid	2				905	

ntinued)	Function	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3) PHOSPHORIBOSYI FORMYLGI YCINAMIDINE SYNTHASE (EC 6.3.5.3)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (FC 6.3.3.3)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (FC 6.3.5.3)	PHOSPHORIBOSYLAMIDOIMIDAZOLE-SUCCINOCARBOXAMIDE SYNTHASE	(EC 6.3.2.6)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHURIBUSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC 4.1.121)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.21) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.4.) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE (EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLECARBOXAMIDE FORMYLTRANSFERASE (EC 2.1.2.3) / IMP CYCLOHYDROLASE (EC 3.5.4.10)	nophosphate (IMP)	Function	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	INOSINE-5-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205) INOSINE-5-MONOPHOSPHATE DEHYDDOGENASE (EC 1.1.1.205)	GMP SYNTHASE IGLUTAMINE-HYDROLYZINGI (EC 6.3.5.2)	GMP SYNTHASE (EC 6.3.4.1)	GUANYLATE KINASE (EC 2.7.4.8)	ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.4) ADENYLOSUCCINATE LYASE (EC 4.3.2.2)	ADENYLATE KINASE (EC 2.7.4.3) NIICI EOSIDE DIDHOCDHATE KINASE (EC 2.7.4.8)	NOCELOGISE DISTRICT E NINGER (EC 2.7.4.9)
Table 1 (continued)	NT Stop	5636 638	269	280	2937	3939		10783	818	7495	920 4020	725	8863	ς.	911	1373	2715	from inosine-5'-monopho	NT Stop	20583	1644	534 497	25302	2097	5146	164/6 2220	10985	7000
Ë	NT Start	3351 54	23	7	2269	3049		9614	15	7809	00/4	1534	8369	127	1120	498 793	4274	n inosin	NT Start	19066	1171	1927	23734	712	4577	793	10443 3769	3
	Contig.	VV0103 GR00786	GR00138	GR00150	GR00139	GR00163		VV0103	GR00147	GR00204	0 /00 4	GR00676	VV0078	GR00677	GR00678	GR00304 GR00163	GR00746	sis, fror	Contig.	VV0086	GR00122	GR00715	7,0086	GR00120	GR00654	GR00163	GR00179	
	identification Code	RXN00537 F RXA02805	F RXA00537	F RXA00561	RXA00541	RXA00620		HXN00770	F KXA00557	F KXA00/70	CALCOURCE CHO	F RXA02345	RXN02350	F RXA02346	F RXA02350	RXA01087 RXA00619	RXA02622	and ADP synthesis,	Identification Code	RXN00488	F RXA00492	F KXA00488 RXA02469	RXN00487	F RXA00487	KXA0223/	RXA00619	EXA00688 EXA00268	
		9 9						428 428	978	878	2	932	934	936	938	940	944	GDP, AMP an	Amino Acid		948 8 0	950 952	954	920	80 C	962	964 966	
	Nucleic Acit SEQ ID NO	911 913	915	917	919	921	Ċ	923	829	927	670	931	933	935	937	939 941	943	GMP, G	Nucleic Acid	945	947	955 951	953	955	957	961	963 965	

$\boldsymbol{\sigma}$
Õ
\equiv
=
.=
-
_
0
ಪ
_
_
=
7
e 1 (
-
ble
-
ble
ble
ble

GMP/AMP degrading activities

Function	GMP REDUCTASE (EC 1.6.6.8) AMP NUCLEOSIDASE (EC 3.2.2.4) AMP NUCLEOSIDASE (EC 3.2.2.4)			Function	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)	DIHYDROOROTASE (EC 3.5.2.3)	DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1)	OROTATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.10)	OROTIDINE 5'-PHOSPHATE DECARBOXYLASE (EC 4.1.1.23)	OKIDYLATE KINASE (EC.Z./4-)	URIDYLATE KINASE (EC.2.7.4) THYMIDYLATE SYNTHASE (EC.2.1.1.45)	THYMIDYLATE KINASE (EC 2.7.4.9)	NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)	CYTIDYLATE KINASE (EC 2.7.4.14)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5) CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CREATININE DEAMINASE (EC 3.5.4.21)	DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE (EC 3.5.4.13)	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9) URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)
NT Stop	1775 3323 34			NT Stop	10900	9589	1003	1142	4040	3/48	17346	7013	3362	5283	28046	3198 34814	5	16810	7935	2341	9579	1080 1082
NT Start	654 1893 1101			NT Start	9722	8249	2	591	3207	3020	4, 16672	7621	3769	4576	24708	1 34491	322	15566	6691	1862	0896	568 570
Contig.	GR00121 VV0152 GR00659			Config.	GR00022	GR00022	GR00647	GR00462	GR00654	00100	GR00542 GR00014	GR00020	GR00040	GR00188	W0134	GR00654 VV0112	GR00110	VV0020	GR00655	VV0237	W0129	VV0328 GR10003
Identification Code	RXA00489 RXN02281 F RXA02281	lism	dine biosynthesis de novo:	Identification Code	RXA00147	RXA00146	RXA02208	RXA01660	EXA02235	KXN01892	F RXA01892 RXA00105	RXA00131	RXA00266	RXA00718	KXAU1599 RXN02234	F RXA02234 RXN00450	F RXA00450	RXN02272	F RXA02272	RXN03004	RXN03137	RXN03171 F RXA02857
Amino Acid	968 970 972	idine metabolism	e biosynthe	Amino Acid	974	978	086	982	984	986	886 000	992	994	986	1000	1002	1006	1008	1010	1012	1014	1016 1018
Nucleic Acid	- i	Pyrimidir	Pyrimidine	Nucleic Acid	973	677	626	981	983	985	987 989	991	993	995	\666 666	1001	1005	1007	1009	1011	1013	1015 1017

Table 1 (continued) ucleotide salvage, interconversion, reduction and degradation: Purine and pyrimidine base, nucleoside and n Purines:

	Function	ADENINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.7)	HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.8) XANTHINE-GIJANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.8)	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	GUANOSINE-3', 5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	S.1.7.2) GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	S.I.7.2) GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	DEOXYGUANOSINETRIPHOSPHATE TRIPHOSPHOHYDROLASE /FC 3 1 5 1)	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5, 5"-P1, P4-TETRAPHOSPHATE HYDROLASE (EC 3 6 1 17)	DIADENOSINE 5',5""-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5',5"'-P1, P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	PHOSPHOADENOSINE PHOSPHOSULFATE REDUCTASE (EC 1.8.99.4)	DIMETHYLADENOSINE TRANSFERASE (EC 2.1.1)	AIMP NUCLEOSIDASE (EC 3.2.2.4)	AMP NOCECOLDANE (EC. 3.2.2.4) OTO DVDODDORDUNINASE (FO. 3.2.2.4)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.(.2)		Function	SACTOR SACTOR SACTOR SALES OF THE SACTOR SAC	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)	EXOPOLYPHOSPHATASE (EC 3.6.1.11)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1) RIBONI ICI EOSIDE-DIPHOSPHATE PERILICTASE AL PHA CHAIN (EC 1.17.4.1)	RIBONIICI FOSIDE-DIPHOSPHATE REDIICTASE SETA CHAIN (FO 1.17.4.1)	RIBONUCLEOTIDE REDUCTASE SUBUNIT R2F	NRDI PROTEIN	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)
	NT Stop	1883	18232	4017	1011	2741	2902	3677	18240	6768	2	2347	5126	G	2117	3353	30,430	5 25			NT Stop	9333	581	6320	10985	35982	7067	31842	806	797	627	631	*1
	NT Start	1329	3820	3388	2045	1962	2741	3147	19511	5761	661	2580	5653	446	1239	1000	30443	1138			NT Start	10268	۳ ا	5418	10059	38084	3402	32843	1321	1240	4	2	999
	Contig.	GR00772	GR00424 GR00618	GR00276	VV0171	GR00772	GR00772	GR00517	GR00422	VV0143	GR00293	GR00294	GR00425	GR00012	GK00537	CPOCES	8000V)	W0171			Contig.	VV0120	GR00557	GR00731	GR00720	VV0084	GR00307	VV0084	GR00550	GR00301	GR00237	GR00413	GK00423
	Identification Code	RXA02771	RXA01512 RXA02031	RXA00981	RXN02772	F RXA02772	F RXA02773	RXA01835	RXA01483	RXN01027	F RXA01024	F RXA01027	RXA01528	RXA00072	EXAU1878	F DY Angost	RXN01240	RXN02008	and purine metabolism.	ie illetabolisiii.	Identification Code	RXN01940	F RXA01940	RXA02559	RXA02497	KXN01079	F RXA01084	RXN01920	F RXA01920	RXA01080	RXA00867	RXA01416	KXA01486
	Amino Acid	1020	1024	1026	1028	1030	1032	1034	1036	1038	1040	1042	1044	1046	1048	1050	1054	1056			Amino Acid	1058	1060	1062	1064	1006 1006	1070	1072	1074	1076	1078	1080	7087
TUILLES	Nucleic Acid	1019	1023	1025	1027	1029	1031	1033	1035	1037	1039	1041	1043	1045	1047	1051	1053	1055	Dyrimdine	r yımıdını	Nucleic Acid	1057	1059	1061	1063	1065	1069	1071	1073	1075	1077	1079	1081

Table 1 (continued)

Sugars Trehalose

Function TREHALOSE-PHOSPHATASE (EC 3.1.3.12) maltooligosyltrehalose synthase maltooligosyltrehalose trehalohydrolase maltooligosyltrehalose trehalohydrolase TREHALOSE/MALTOSE BINDING PROTEIN Hypothetical Trehalose-Binding Protein Hypothetical Trehalose Transport Protein TREHALOSE/MALTOSE BINDING PROTEIN TREHALOSE/MALTOSE BINDING PROTEIN TREHALOSE/MALTOSE BINDING PROTEIN
NT Stop 1013 30489 7579 2543 4 39017
NT Start 246 32921 5147 714 735 38532
Contig. GR00065 VV0090 GR00358 GR00751 VV0051 VV0135
Identification Code RXA00347 RXN01239 F RXA01239 RXA02645 RXN02355 RXN02355 RXN02355 RXN02355 RXN02355 RXN023645 RXN023645 RXN023645 RXN023645 RXN023645 RXN023645 RXN023645 RXN023645 RXN023645 RXN02364
Amino Acid SEQ ID NO 1140 1144 1146 1148 1150 1152 1154
Nucleic Acid 139 141 143 145 147 151 151

GenBank™ Accession No. A09073 A45579, A45581, A45585 A45587 A8015023 AB018531 AB018531 AB020624 AB023377 AB023377 AB025424 AB025424 AB0257714 AB027715	Gene Name ppg murC; ftsQ; ftsZ dtsR dtsR dtsR acn rep; aad	TABLE 2— I wate carboxylase ratase mase glutarate aminotrans ibunits in in in; aminoglycoside	Reference Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA ararying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90 Mocckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95 Kobayashi, M. et al. "Cloning, sequencing, and characterization of the fts.Z gene from coryneform bacteria," Biochem. Biophys. Res. Commun., 236(2):383-388 (1997) Wachi, M. et al. "A murc gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999) Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum," Bioxci. Biotechnol. Biochem., 60(10):1565-1570 (1996)
AF005242	argC	agenyitransierase N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635 AF030405	glnA hisF	Glutamine synthetase cyclase	
AF030520 AF031518 AF036932	argG argF aroD	Argininosuccinate synthetase Ornithine carbamolytransferase 3-dehydroquinate dehydratase	
AF038548	pyc	Pyruvate carboxylase	

		Table 2 (continued)	nued)
AF038651	dciAE; apt; rel	protein; a isferase; (Wehmeier, L. et al. "The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism," Microbiology, 144:1853-1862 (1998)
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB;	N-acetylglutamylphosphate reductase; ornithine acetyltransferase: N-	
	argG; argH	acetylglutamate kinase; acetylomithine	
)	transminase; ornithine	
		carbamoyltransferase; arginine repressor;	
p.,	and delivery and the second	argininosuccinate synthase;	
AF050109	inhA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-	
	•	phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum," <i>Mol. Cells</i> , 8(3):286-294 (1998)
AF053071	aroB	Dehydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP- pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530-1539 (1999)
AF124518	aroD; aroE	3-dehydroquinase; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB; pepQ	Chorismate synthase; shikimate kinase; 3-dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

		Table 2 (continued)	nued)
AJ001436	ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization
			of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)
AJ004934	dapD	Tetrahydrodipicolinate succinylase (incomplete)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	1
AJ010319	fts Y, glnB, glnD; srp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol aceteyl transferase	
AJ224946	obu	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem., 254(2):395-403 (1998)
AJ238250	ndh	NADH dehydrogenase	
AJ238703	porA	Porin	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element IS31831	
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," Microbiology, 142:3347-3354 (1996)
E01358	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375		Tryptophan operon	
E01376	trpL; trpE	Leader peptide; anthranilate synthase	Matsul, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87

	Table 2 (continued	inued)
E01377	Promoter and operator regions of tryptophan operon	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of
E03937	Biotin-synthase	tryptophan," Patent: JP 1987244382-A 1 10/24/87 Hatakeyama, K. et al. "DNA fragment containing gene capable of coding
E04040	Diamino pelargonic acid aminotransferase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and
		desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04041	Desthiobiotinsynthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 111/18/92
E04307	Flavum aspartase	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93
E04376	Isocitric acid lyase	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04377	Isocitric acid lyase N-terminal fragment	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04484	Prephenate dehydratase	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/30/93
E05108	Aspartokinase	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93
E05112	Dihydro-dipichorinate synthetase	Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93
E05776	Diaminopimelic acid dehydrogenase	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93
E05779	Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93
E06110	Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06111	Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06146	Acetohydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93
E06825	Aspartokinase	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E06826	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94

		Table 2 (continued)	nued)
E06827		Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E07701	secY		Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A 1 06/21/94
E08177		Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08178, E08179, E08180, E08181, E08182		Feedback inhibition-released Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08232		Acetohydroxy-acid isomeroreductase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A 1 10/04/94
E08234	secE		Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94
E08643		FT aminotransferase and desthiobiotin synthetase promoter region	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08646		Biotin synthetase	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08649		Aspartase	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95
E08900		Dihydrodipicolinate reductase	े, त्य
E08901		Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95
E12594		Serine hydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-trypophan," Patent: JP 1997028391-A 1 02/04/97
E12760, E12759, E12758		transposase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12764		Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12767		Dihydrodipicolinic acid synthetase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12770		aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12773		Dihydrodipicolinic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97

		Table 2 (continued)	nued)
E13655			Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97
L01508		Threonine dehydratase	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," J. Bacteriol., 174:8065-8072 (1992)
L07603	EC 4.2.1.15	3-deoxy-D-arabinoheptulosonate-7- phosphate synthase	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene," <i>FEMS Microbiol. Lett.</i> , 107:223-230 (1993)
L09232	IIvB; ilvN; ilvC	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomeroreductase	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon," J. Bacteriol., 175(17):5595-5603 (1993)
L18874	PtsM	Phosphoenolpyruvate sugar phosphotransferase	Fouet, A et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria," PNAS USA, 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence," FEMS Microbiol. Lett., 119(1-2):137-145 (1994)
L27123	aceB	Malate synthase	encoding malate
L27126		Pyruvate kinase	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," <i>Appl. Environ. Microbiol.</i> , 60(7):2501-2507 (1994)
L28760	aceA	Isocitrate lyase	
L35906	dtxr	Diphtheria toxin repressor	Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum," J. Bacteriol., 177(2):465-467 (1995)
M13774		Prephenate dehydratase	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene." J. Bacteriol., 167:695-702 (1986)
M16175	5S rRNA		Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 56 rRNA sequences," J. Bacteriol., 169:1801-1806 (1987)
M16663	trpE	Anthranilate synthase, 5' end	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)
M16664	trpA	Tryptophan synthase, 3'end	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)

		Table 2 (continued)	nued)
M25819		Phosphoenolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium alutamicum ATCC13032." Gene 77(2):237-251 (1989)
M85106		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M89931	aecD; brnQ; yhbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," <i>J. Bacieriol.</i> , 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," <i>Arch. Microbiol.</i> , 169(4):303-312 (1998)
S59299	trp	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophanhyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
U11545	trpD	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cgliM; cgliR; clgliR	Putative type II 5-cytosoine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," J. Bacteriol., 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cgllM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95-101 (1997)
U14965	recA		
U31224	xdd	-	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31225	proC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31230	obg; proB; unkdh	?;gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)

		Table 2 (continued	nued)
U31281	bioB	Biotin synthase	Serebriiskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum," <i>Gene</i> , 175:15-22 (1996)
U35023	thtR; accBC	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," <i>Arch. Microbiol.</i> , 166(2);76-82 (1996)
U43535	cmr	Multidrug resistance protein	Jager, W. et al. "A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli," J. Bacteriol., 179(7):2449-2451 (1997)
U43536	clpB	Heat shock ATP-binding protein	
U53587	aphA-3	3'5"-aminoglycoside phosphotransferase	
U89648		Corynebacterium glutamicum unidentified sequence involved in histidine biosynthesis, partial sequence	
X04960	trpA; trpB; trpC; trpD; trpE; trpG; trpL	Tryptophan operon	Matsui, K. et al. "Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113-10114 (1986)
X07563	lys A	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Yeh, P. et al. "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," Mol. Gen. Genet., 212(1):112-119 (1988)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant. Mol. Biol.</i> , 21 (3):487-502 (1993)
X17313	fda	Fructose-bisphosphate aldolase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine- structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-I, 6-biphosphate aldolase to class I and class II aldolases," Mol. Microbiol.
X53993	dapA	L-2, 3-dihydrodipicolinate synthetase (EC 4,2.1.52)	Bonnassie, S. et al. "Nucleic sequence of the dapA gene from Corynebacterium glutamicum," Nucleic Acids Res., 18(21):6421 (1990)
X54223		AttB-related site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X54740	argS; lysA	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene," Mol. Microbiol., 4(11):1819-1830 (1990)

		Table 2 (continued)	nued)
X55994	trpL; trpE	Putative leader peptide; anthranilate synthase component 1	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)
X56037	thrC	Threonine synthase	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X\$7226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspertate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum," <i>Mol. Gen. Genet.</i> , 224(3):317-324 (1990)
X59403	gap;pgk; tpi	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol., 174(19):6076-6086 (1992)
X59404	dpg	Glutamate dehydrogenase	Bormann, E.R. et al. "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase," Mol. Microbiol., 6(3):317-326 (1992)
X60312	lysl	L-lysine permease	eldha icum 1991)
X66078	copl	Ps1 protein	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)
X66112	glt	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994)
X67737	dapB	Dihydrodipicolinate reductase	
X69103	csp2	Surface layer protein PS2	
X69104		IS3 related insertion element	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," Mol. Microbiol., 14(3):571-581 (1994)

		Table 2 (continued	nued)
X70959	leuA	Isopropylmalate synthase	M. e
X71489	icd	Isocitrate dehydrogenase (NADP+)	Synthesis," <i>Appl. Environ. Microbiol.</i> , 60(1):133-140 (1994) Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," <i>J. Bacteriol.</i> , 177(2):774-782 (1905)
X72855	GDHA	Glutamate dehydrogenase (NADP+)	
X75083, X70584	mtrA	5-methyltryptophan resistance	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," <i>Biochem. Biophys. Res. Commun.</i> , 201(3):1255-1262 (1994)
X75085	recA		Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum," Appl. Microbiol. Biotechnol., 42(4):575-580 (1994)
X75504	aceA; thiX	Partial Isocitrate lyase; ?	
X76875		ATPase beta-subunit	
X77034	tuf	Elongation factor Tu	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)
X77384	recA		Billman-Jacobe, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," DNA Seq., 4(6):403-404 (1994)
X78491	aceB	Malate synthase	Reinscheid, D.J. et al. "Malate synthase from Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)
X80629	16S rDNA	16S ribosomal RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995)
X81191	gluA; gluB; gluC; gluD	Glutamate uptake system	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152-1158 (1995)
X81379	dapE	Succinyldiaminopimelate desuccinylase	Wehrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," <i>Microbiology</i> , 40:3349-56 (1994)

		Table 2 (continued	(nued)
X82061	16S rDNA	16S ribosomal RNA	Ruimy, R. et al. "Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):740-746 (1995)
X82928	asd; lysC	Aspartate-semialdehyde dehydrogenase; ?	Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)
X82929	proA	Gamma-glutamyl phosphate reductase	Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)
X84257	i6S rDNA	16S ribosomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences," Int. J. Syst. Bacteriol., 45(4):724-728 (1995)
X85965	aroP; dapE	Aromatic amino acid permease; ?	Wehrmann et al. "Functional analysis of sequences adjacent to dapE of C. glutamicum proline reveals the presence of aroP, which encodes the aromatic amino acid transporter," J. Bacteriol., 177(20):5991-5993 (1995)
X86157	argB; argC; argD; argF; argJ	Acetylglutamate kinase; N-acetyl-gamma- glutamyl-phosphate reductase; acetylornithine aminotransferase; ornithine carbamoyltransferase; glutamate N- acetyltransferase	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996)
X89084	pta; ackA	Phosphate acetyltransferase; acetate kinase	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)
X89850	attB	Attachment site	Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus C70," J. Bacteriol., 178(7):1996-2004 (1996)
X90356		Promoter fragment F1	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90357		Promoter fragment F2	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90358		Promoter fragment F10	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90359		Promoter fragment F13	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)

		Table 2 (continued	nued)
X90360		Promoter fragment F22	Patek M et al "Promoters from Corvnehacterium olutamicum: cloning
			molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
X90361		Promoter fragment F34	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology,
Y00367		Draw otos fromont D27	[47:129/-1309 (1996)
70006		Flointe Hagnell F3/	and search for a consensus motif." Microbiology 142:1209 (1998)
X90363		Promoter fragment F45	Patek, M. et al. "Promoters from Corynebacterium glutamicum; cloning,
			molecular analysis and search for a consensus motif," Microbiology,
770075			142:1297-1309 (1996)
X90364		Promoter fragment F64	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology, 142:1297-1309 (1996)
X90365		Promoter fragment F75	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
X90366		Promoter fragment PF101	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology,
1,000			142:1297-1309 (1996)
X90367		Promoter fragment PF104	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
		•	molecular analysis and search for a consensus motif," Microbiology,
0,000			147:1797-1309 (1996)
X90368		Promoter fragment PF109	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X93513	amt	Ammonium transport system	Siewe, R.M. et al. "Functional and genetic characterization of the (methyl)
			ammonium uptake carrier of Corynebacterium glutamicum," J. Biol. Chem., 271(10):5398-5403 (1996)
X93514	betP	Glycine betaine transport system	Peter, H. et al. "Isolation, characterization, and expression of the
•			Corynebacterium glutamicum betP gene, encoding the transport system for the
			compatible solute glycine betaine," J. Bacteriol., 178(17):5229-5234 (1996)
X95649	orf4		Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-
			dapA-OKr4 operon of Corynebacterium glutamicum, encoding two enzymes involved in L-lysine synthesis," <i>Biotechnol. Lett.</i> , 19:1113-1117 (1997)
X96471	lysE; lysG	Lysine exporter protein; Lysine export	Vrljic, M. et al. "A new type of transporter with a new type of cellular
		regulator protein	function: L-lysine export from Corynebacterium glutamicum," Mol.

		Table 2 (continued)	nued)
X96580	panB; panC; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate-beta- alanine ligase; xylulokinase	Sahm, H. et al. "D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," <i>Appl. Environ. Microbiol.</i> , 65(5):1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869)," Gene, 198:217-222 (1997)
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum," Nucleic Acids Res., 15(9):3922 (1987)
Y00151	ddh	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," Nucleic Acids Res., 15(9):3917 (1987)
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofermentum," Nucleic Acids Res., 15(24):10598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UPD-N-acetylmuramate-alanine ligase; division initiation protein or cell division protein; cell division protein	Honrubia, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium factofermentum," Mol. Gen. Genet., 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143-151 (1997)
Y09548	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," Appl. Microbiol. Biotechnol., 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)
Y12537	proP	Proline/ectoine uptake system protein	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)

ontinued)	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I," FEMS Microbiol. Lett., 154(1):81-88 (1997)		Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," Virology, 255(1):150-159 (1999)	Oguiza, J.A upstream re Regulation Bacteriol., 1	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743-2749 (1993)	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," <i>Appl. Environ. Microbiol.</i> , 60(7)2209-2219 (1994)		Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)	Oguiza, J.A. et al "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," <i>Gene</i> , 177:103-107 (1996)	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> , 170(1):91-94 (1996)	ene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than it is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.
Table 2 (continued)	Glutamine synthetase I	Dihydrolipoamide dehydrogenase	Attachment site Corynephage 304L	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Threonine synthase	Gene for 16S ribosomal RNA	SigA sigma factor	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory protein	?; SigB sigma factor	Transposase	published in the indicated reference. However, the sequeved that the published version relied on an incorrect states.
	glnA	pdl		argS; lysA	dapA; dapB	thrC	16S rDNA	Agis	galE; dtxR	orfl; sigB		his gene was published in ion. It is believed that th
	Y13221	Y16642	Y18059	Z21501	Z21502	Z29563	Z46753	Z49822	Z49823	Z49824	Z66534	A sequence for this gene was the published version. It is bel

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Genus':	species	ATCC	FERM	NRRE	CECT	NCIMB	CBS	NCTC	DSMZ
Brevibacterium	ammoniagenes	21054							
Brevibacterium	ammoniagenes	19350							· · · · · · · · · · · · · · · · · · ·
Brevibacterium	ammoniagenes	19351							
Brevibacterium	ammoniagenes	19352			·		-		
Brevibacterium	ammoniagenes	19353							
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355							
Brevibacterium	ammoniagenes	19356			:				
Brevibacterium	ammoniagenes	21055							
Brevibacterium	ammoniagenes	21077							
Brevibacterium	ammoniagenes	21553							
Brevibacterium	ammoniagenes	21580				*****			
Brevibacterium	ammoniagenes	39101							
Brevibacterium	butanicum	21196							
Brevibacterium	divaricatum	21792	P928						
Brevibacterium	flavum	21474							
Brevibacterium	flavum	21129							
Brevibacterium	flavum	21518							
Brevibacterium	flavum			B11474					
Brevibacterium	flavum			B11472					
Brevibacterium	flavum	21127							
Brevibacterium	flavum	21128							
Brevibacterium	flavum	21427							
Brevibacterium	flavum	21475							
Brevibacterium	flavum	21517							
Brevibacterium	flavum	21528							
Brevibacterium	flavum	21529							
Brevibacterium	flavum			B11477	<u> </u>				
Brevibacterium	flavum			B11478	<u></u>				
Brevibacterium	flavum	21127					ļ		
Brevibacterium	flavum			B11474					
Brevibacterium	healii	15527							
Brevibacterium	ketoglutamicum	21004							
Brevibacterium	ketoglutamicum	21089			<u></u>				
Brevibacterium	ketosoreductum	21914	<u> </u>						<u></u>
Brevibacterium	lactofermentum				70				
Brevibacterium	lactofermentum				74				<u> </u>
Brevibacterium	lactofermentum				77				
Brevibacterium	lactofermentum	21798							
Brevibacterium	lactofermentum	21799							
Brevibacterium	lactofermentum	21800							
Brevibacterium	lactofermentum	21801							,
Brevibacterium	lactofermentum			B11470					
Brevibacterium	lactofermentum			B11471		<u></u>	<u> </u>		

Genus	species	FATEC	FERM	NRRL	CECT	NEIMB	CBS	Nete	DSMZ
Brevibacterium	lactofermentum	21086		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7	Land of the land o	-
Brevibacterium	lactofermentum	21420	· · · · · · · · · · · · · · · · · · ·	 		· · · · · · · · · · · · · · · · · · ·			
Brevibacterium	lactofermentum	21086	 						
Brevibacterium	lactofermentum	31269			 				
Brevibacterium	linens	9174	 	<u> </u>	<u> </u>			···	······································
Brevibacterium	linens	19391			ļ		·		
Brevibacterium	linens	8377							
Brevibacterium	paraffinolyticum				 	11160			
Brevibacterium	spec.						717.73	<u> </u>	······································
Brevibacterium	spec.		<u> </u>		<u> </u>		717.73	_	
Brevibacterium	spec.	14604							
Brevibacterium	spec.	21860		<u> </u>	 				
Brevibacterium	spec.	21864			ļ <u>-</u>				
	spec.	21865							
Brevibacterium	spec.	21866			 				
Brevibacterium	spec.	19240							
Corynebacterium	acetoacidophilum	21476							
Corynebacterium	acetoacidophilum	13870				<u> </u>			
Corynebacterium	acetoglutamicum			B11473					
Corynebacterium	acetoglutamicum			B11475					······
Corynebacterium	acetoglutamicum	15806				<u> </u>		i	
Corynebacterium	acetoglutamicum	21491			ļ				
Corynebacterium	acetoglutamicum	31270							
Coryncbacterium	acetophilum			B3671					
Corynebacterium	ammoniagenes	6872						2399	
Corynebacterium	ammoniagenes	15511							
Corynebacterium	fujiokense	21496			········				
Corynebacterium	glutamicum	14067							
Corynebacterium	glutamicum	39137			<u> </u>				
Corynebacterium	glutamicum	21254							
Corynebacterium	glutamicum	21255							
Corynebacterium	glutamicum	31830							
Corynebacterium	glutamicum	13032		,					
Corynebacterium	glutamicum	14305			1				
Corynebacterium	glutamicum	15455			1				
Corynebacterium	glutamicum	13058			1				
Corynebacterium	glutamicum	13059							
Corynebacterium	glutamicum	13060							
Corynebacterium	glutamicum	21492			1				
Corynebacterium	glutamicum	21513							
Corynebacterium	glutamicum	21526							
Corynebacterium	glutamicum	21543	1						
Corynebacterium	glutamicum	13287							
Corynebacterium	glutamicum	21851							
Corynebacterium	glutamicum	21253					-		
Corynebacterium	glutamicum	21514			1	<u> </u>			
Corynebacterium	glutamicum	21516				<u> </u>			
Corynebacterium	glutamicum	21299					· · · · · · · · · · · · · · · · · · ·		

Genus (species	ATCC	FERM	NRRIA	CECT	NEIMB	CBS	Nete	DSMZ
Corynebacterium	glutamicum	21300		, 4 , 7	1 1 1 1 1 1	4752 1702	25 × 1. 100 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Man or 67	23.
Corynebacterium	glutamicum	39684			\ <u></u>				
Corynebacterium	glutamicum	21488							
Corynebacterium	glutamicum	21649	 			<u> </u>			
Corynebacterium	glutamicum	21650			<u> </u>				
Corynebacterium	glutamicum	19223							
Corynebacterium	glutamicum	13869							
Corynebacterium	glutamicum	21157	_ · <u>-</u>						
Corynebacterium	glutamicum	21158						<u> </u>	
Corynebacterium	glutamicum	21159		*		**************************************			
Corynebacterium	glutamicum	21355							
Corynebacterium	glutamicum	31808							
Corynebacterium	glutamicum	21674							·
Corynebacterium	glutamicum	21562							
Corynebacterium	glutamicum	21563							
Corynebacterium	glutamicum	21564							
Corynebacterium	glutamicum	21565							
Corynebacterium	glutamicum	21566	***************************************				**********		
Corynebacterium	glutamicum	21567					4-1		
Corynebacterium	glutamicum	21568		11. 170					
Corynebacterium	glutamicum	21569							
Corynebacterium	glutamicum	21570							
Corynebacterium	glutamicum	21571							
Corynebacterium	glutamicum	21572							
Corynebacterium	glutamicum	21573							
Corynebacterium	glutamicum	21579							
Corynebacterium	glutamicum	19049							
Corynebacterium	glutamicum	19050							
Corynebacterium	glutamicum	19051							
Corynebacterium	glutamicum	19052							
Corynebacterium	glutamicum	19053					:		
Corynebacterium	glutamicum	19054							
Corynebacterium	glutamicum	19055		· · · · · · · · · · · · · · · · · · ·					
Corynebacterium	glutamicum	19056							
Corynebacterium	glutamicum	19057							
Corynebacterium	glutamicum	19058							
Corynebacterium	glutamicum	19059	J						
Corynebacterium	glutamicum	19060							
Corynebacterium	glutamicum	19185				· · · · · · · · · · · · · · · · · · ·			
Corynebacterium	glutamicum	13286		-					
Corynebacterium	glutamicum	21515							
Corynebacterium	glutamicum	21527						·	
Corynebacterium	glutamicum	21544					-		
Corynebacterium	glutamicum	21492		Doing					
Corynebacterium	glutamicum			B8183					
Corynebacterium	glutamicum			B8182					
Corynebacterium	glutamicum			B12416					
Corynebacterium	glutamicum			B12417					<u> </u>

Genus	species 🚁 🎉 🚉	ATCC	FERM	NRRL	CECT	NCIMB	CBS:	NETE	DSMZ
Corynebacterium	glutamicum		and the second s	B12418		نىنىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى ئىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى بىلىنىدىنى			
Corynebacterium	glutamicum			B11476					
Corynebacterium	glutamicum	21608					<u></u>		
Corynebacterium	lilium		P973	178' years.	· · · · · · · · · · · · · · · · · · ·				
Corynebacterium	nitrilophilus	21419				11594			
Corynebacterium	spec.	<u> </u>	P4445						
Corynebacterium	spec.	•	P4446					"	
Corynebacterium	spec.	31088					· · · · · · · · · · · · · · · · · · ·		
Corynebacterium	spec.	31089							
Corynebacterium	spec.	31090					·		
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	15954							20145
Corynebacterium	spec.	21857		-					
Corynebacterium	spec.	21862							
Corynebacterium	spec.	21863		16/14/16/19					

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

	WC	01/00	843						95						PC	CT/J	B 0	0/009	23	
	% homology Date of	Deposit	29-Jun-99	29-Jun-99	08-OCT- 1997 (Rel.	07-OCT- 1996	17-DEC- 1993	28-Jul-99	2-Aug-99	2-Aug-99		17-Jun-98	14-Jan-97	12-Nov-98	20-Aug-97	6-Sep-99	20. Cap. 00	30-MAR- 1999	2-Sep-99	2-Sep-99
	% homolo	(GAP)	40,956	40,956	42,979	42,979	39,097	95,429	31,111	31,111		37,753	35,669	35,669	42,896	40,210	41 176	36,783	40,296	40,296
	Source of Genbank Hit		Lycopersicon esculentum	Lycopersicon esculentum	Corynebacterium glutamicum	Unknown.	Escherichia coli	Corynebacterium olutamicum		Drosophila melanogaster		Mycobacterium tuberculosis	Escherichia coli	Escherichia coli	Homo sapiens	Corynebacterium	diphtheriae	Homo sapiens	Homo sapiens	Homo sapiens
Table 4: Alignment Results	Accession Name of Genbank Hit		EST257217 tomato resistant, Cornell Lycopersicon esculentum cDNA clone cLER17D3, mRNA sequence.	EST257217 tomato resistant, Cornell Lycopersicon esculentum cDNA clone cLER17D3, mRNA sequence.	Base sequence of sucrase gene.	Sequence 4 from patent US 5556776.	E. coli chromosomal region from 89.2 to 92.8 minutes.	gDNA encoding aspartate transferase (AAT).	Drosophila melanogaster chromosome 3 clone BACR02003 (D797) RPCI-98 02.O.3 map 99B-99B strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 113 unordered pieces.	Drosophila melanogaster chromosome 3 clone BACR02003 (D797) RPCI-98 02.0.3 map 99B-99B strain y; cn bw sp, *** SEQUENCING IN PROGRESS*** 113 inpurdered pieces		Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Escherichia coli K-12 genome; approximately 63 to 64 minutes.	Escherichia coli K-12 MG1655 section 256 of 400 of the complete genome.	ngssru4.s1 NCI_CGAP_Fro Homo sapiens cDNA clone IMAGE:941407 similar to SW:DYR_LACCA P00381 DIHYDROFOLATE REDUCTASE ;; mRNA sequence.	Corynebacterium diphtheriae histidine kinase ChrS (chrS) and response	regulator CntA (cntA) genes, complete cos. Secuence 4 from patent US 5811286	Homo sapiens chromosome 17, done hRPK.472_J_18, complete sequence.	Homo sapiens chromosome 19 clone CIT-HSPC_490E21, *** SEQUENCING IN PROGRESS ***, 93 unordered pieces.	Homo sapiens chromosome 19 clone CIT-HSPC_490E21, *** SEQUENCING Homo sapiens IN PROGRESS ***, 93 unordered pieces
	Accession		AI776129	AI776129	E11760	126124	900000	E16763	AC007892	AC007892		AL008967	U29581	AE000366	AA494237	AF161327	AR041189	AC007110	AC008537	AC008537
	Length		483	. 483	6911	6911	176195	2517	134257	134257		56414	71128		795	2021	654	148336	170030	170030
	Genbank Hit		GB_EST33:AI776129	GB_EST33:AI776129	EM_PAT:E11760	GB_PAT:126124	GB_BA2:ECOUW89	GB_PAT:E16763	GB_HTG2:AC007892	GB_HTG2:AC007892		GB_BA1:MTV002	GB_BA1:ECU29581	GB_BA2:AE000366	GD_EO O:AA484257	GB_BA2:AF161327	GB PAT:AR041189	GB_PR4:AC007110	GB_HTG3:AC008537	GB_HTG3:AC008537
	ength		3579		1059			1401				798		7	8) C			1170		
	# 01		rxa00023		rxa00044			rxa00064			rxa00072	rxa00105			xaoo lob			rxa00115		

	WO 01/00843							96							PC I/I	LD\U\/	00923	
	1999 1999	07-OCT- 1996	8-Apr-99	17-Jun-98	15-Jun-99 17-Jun-98	17-Jun-98	31-OCT-	1996 22-Nov-99	18-Jun-98	26-Jul-93	29-Apr-97	18-Jun-98	17-Jun-98	03-DEC-	1996 18-Jun-98	15-Jun-96	23-DEC- 1996	10-Feb-99
	36,235	36,821	38,124	43,571	41,116 39,726	36,788	61,914	51,325	63,365	56,080	47,514	60,714	39,229	36,618	61,527	59,538	55,396	52,666
	Cautobacter crescentus	Unknown.	Oryza sativa	Mycobacterium tuberculosis	Streptomyces argillaceus Mycobacterium	tuberculosis Mycobacterium	Trichomonas vaginalis	Drosophila melanogaster	Mycobacterium tuberculosis	Pseudomonas aeruginosa	Lactobaciilus leichmannii	Mycobacterium tuberculosis	Mycobacterium	Mycobacterium	tuberculosis Mycobacterium	Mycobacterium leprae	Pseudomonas aeruginosa	Streptomyces coelicolor
Table 4 (continued)	Caulobacter crescentus Sst1 (sst1), S-layer protein subunit (rsaA), ABC transporter (rsaD), membrane forming unit (rsaE), putative GDP-mannose-4,6-dehydratase (lpsA), putative acetyltransferase (lpsB), putative perosamine synthetase (lpsC), putative mannosyltransferase (lpsD), putative mannosyltransferase (lpsE), outer membrane protein (rsaF), and putative perosamine transferase (lpsE) genes, complete cds.	Sequence 6 from patent US 5500353.	nbxb0062D16r CUGI Rice BAC Library Oryza sativa genomic clone nbxb0062D16r, genomic survey sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Streptomyces argillaceus mithramycin biosynthetic genes. Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Trichomonas vaginalis S-adenosyl-L-homocysteine hydrolase gene, complete	Drosophila melanogaster chromosome X clone BACR36D15 (D887) RPCI-98 36.D.15 map 13C-13E strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 74 unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Pseudomonas aeruginosa aspartate transcarbamoylase (pyrB) and dibydroorotase-like (pyrX) papas complete exets	Lieichmannii pyrB gene,	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162.	Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis H37Rv complete genome; segment 51/162.	Mycobacterium leprae cosmid B937 DNA sequence.	Pseudomonas aeruginosa dihydrodipicolinate reductase (dapB) gene, partial cds, carbamoylphosphate synthetase small subunit (carA) and carbamoylphosphate synthetase large subunit (carB) genes, complete cds,	and riss nomolog (πss) gene, partial cds. Streptomyces coelicolor cosmid 9B10.
	AF062345	118647	AQ446197	Z 95121	AJ007932 Z95121	295121	U40872	AC010706	Z81011	L19649	X84262	Z81011	298209	AD000002	Z81011	L78820	U81259	AL009204
	16458	3300	751	36330	15176 36330	36330	1882	169265	20431	2273	1468	20431	13935	40221	20431	38914	7285	33320
	GB_BA2:AF062345	GB_PAT: 18647	GB_GSS13:AQ44619 7	GB_BA1:MTY20B11	GB_BA1:SAR7932 GB_BA1:MTY20B11	GB_BA1:MTY20B11	GB_IN2:TVU40872	GB_HTG6:AC010706	GB_BA1:MTCY2B12	GB_BA1:PSEPYRBX	GB_BA1:LLPYRBDNA 1468	GB_BA1:MTCY2B12	GB_BA1:MTCY154	GB_BA1:MSGY154	GB_BA1:MTCY2B12	GB_BA1:MSGB937C	GB_BA1:PAU81259	GB_BA1:SC9B10
	1284			732		1557			1059			1464			1302			1233
	rxa00116			rxa00131		rxa00132			rxa00145			rxa00146			rxa00147			rxa00156

WO 01/0	0843								97										P	CT/I	B 0	0/0	0923	;	
26-MAR- 1998	6-Feb-99	21-Aug-99	21-Aug-99	16-OCT.	13-MAR-	1999 13-MAR-	1999	מיומטיוס מי	1999	ပ္ပုံ	1999	66-A0N-11		22-Nov-98	22-Nov-98	22-Nov-98		2-Aug-96	1999	16-OCT-	18-MAY-	1999	18-Apr-98 26-Feb-99		30-Jan-92
54,191	46,667	37,451	37,451	38,627	92,113	93.702	34 225	77'10	008.70	37,965	1	06,790		38,227	38,227	38,227		48,826	200	39,527	98.237	-	36,616 37,095		100,000
Mycobacterium avium	Propionibacterium freudenreichii	Homo sapiens	Homo sapiens	Drosophila melanogaster	Corynebacterium	glutamicum Corynebacterium	glutamicum Rattus so			Homo sapiens	Homo candida	0.000 page		Homo sapiens	Homo sapiens	Homo sapiens		Enterobacter agglomerans Rhodobacter cansulative		Drosophila melanogaster	Corynebacterium	glutamicum	Homo sapiens Caenorhabditis elegans		Corynebacterium glutamicum
Mycobacterium avium strain GIR10 transcriptional regulator (mav81) gene, partial cds, aconitase (acn), invasin 1 (inv1), invasin 2 (inv2), transcriptional regulator (moxR), ketoacyl-reductase (fabG), enoyl-reductase (inhA) and ferrochelatase (may272) genes, complete cds.	Propionibacterium freudenreichil hemY, hemH, hemB, hemX, hemR and hemL genes, complete cds.	Homo sapiens clone NH0172013, *** SEQUENCING IN PROGRESS ***, 7	unordered pieces. Homo sapiens clone NH0172O13, *** SEQUENCING IN PROGRESS ***, 7	Drosophila melanogaster chromosome 3L/62B1 clone RPCI98-10D15, *** SEQUENCING IN PROGRESS ***, 51 unordered pieces.	Corynebacterium glutamicum gitB and gitD genes for glutamine 2-	oxoglutarate aminotransterase large and small subunits, complete cds. Corynebacterium glutamicum gltB and gltD genes for glutamine 2-	oxoglutarate aminotransferase large and small subunits, complete cds. EST229390 Normalized rat kidney. Bento Soares Rattus so. cDNA clone	RKICF35 3' end, mRNA sequence. Homo sapiens chromosome 20 clone RP5-850F9 *** SEQUENCING IN		Homo sapiens chromosome 20 clone RP5-850E9, *** SEQUENCING IN	PROGRESS ***, in unordered pieces. Human chromosome 14 DNA sequence *** IN PROGRESS *** RAC R-412H8 Homo capions	of RPCI-11 library from chromosome 14 of Homo sapiens (Human), complete		Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS ***, 3	Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS ***, 3	unordered pieces.	Plasmid pEA3 nitrogen fixation genes. Rhodobacter capsulatus molybdenum cofactor biosynthetic nene cluster		Drosophila melanogaster chromosome 3L/70C1 clone RPCI98-9B18, *** SEQUENCING IN PROGRESS ***, 64 unordered pieces.	Corynebacterium glutamicum 3-dehydroquinase (aroD) and shikimate	dehydrogenase (aroE) genes, complete cds.	Homo sapiens PAC clone DJ0964C11 from 7p14-p15, complete sequence. Caenorhabditis elegans clone Y76B12, *** SEQUENCING IN PROGRESS ***	25 unordered pieces.	C.glutamicum lysi gene for L-lysine permease.
AF002133	D85417	AC008167	AC008167	AC010118	AB024708	AB024708	AI232702	AL121758		AL121758	AL121766			AC005079	AC005079	AC005079		X99694 AF128444		AC010111	AF124518		AC004593 AC006907		X60312
15437	7984	174223	174223	80605	8734	8734	528	117353		117353	159400			110000	110000	110000		19771 2477		138938	1758		150221 188972	!	4232
GB_BA2:AF002133	GB_BA1:D85417	GB_HTG3:AC008167	GB_HTG3:AC008167	GB_HTG4:AC010118	GB_BA1:AB024708	GB_BA1:AB024708	GB_EST24:AI232702	GB HTG2:HSDJ850E	l Os	GB_HTG2:HSDJ850E	g GB PR2:CNS01DSA	ı		GB_H1G2:AC005079 _0	GB_HTG2:AC005079	GB_HTG2:AC005079		GB_BA1;PPEA3NIF GB_BA2;AF128444		GB_HTG4:AC010111	GB_BA2:AF124518		GB_PR3:AC004593 GB_HTG2:AC006907		GB_BA1:CGLYSI
		783			672			1113						1065				1212			803			(1626
		rxa00166			rxa00198			rxa00216		-			4	rxa00219			1	rxa00223			rxa00229				rxa00241

WO	01/00	843										98								j	rcı	/1.1	DUU	/UL	J 7 4	3	
11-Aug-99	11-Aug-99	23-MAY- 1997	23-MAY- 1997	9-Feb-99	08-OCT-	1997 (Rel. 52, Created)	29-Sep-97	6-Jan-98	9-Apr-97	20-Aug-96	21-Nov-96	400 to 000		29-Sep-97	24- lun-90	20-10-1	15-Jun-96	24-Jun-99	15-Jun-96	24-Jun-99	27-Apr-93	17-Jun-97		02-DEC-	1994	\$6-des-02	28-Aug-97
34,947	34,947	36,496	37,544	41,856	34,741		34,741	36,943	36,658	38,190	99,111	007 80		98,207	35. 6 15)	60,917	44,606	52,516	38,079	39.351	808'66		99,617		98,77,98	100,000
Plasmodium falciparum	Plasmodium falciparum	Entamoeba histolytica	Entamoeba histolytica	Mus musculus	Bacillus sp.		Bacillus sp.	Caenorhabditis elegans	Corynebacterium	Rattus norvegicus	Corynebacterium	glutamicum	glutamicum	Corynebacterium	glutamicum Mycobacterium	tuberculosis	Mycobacterium leprae	Mycobacterium	tuberculosis Mycobacterium leprae	Mycobacterium	tuberculosis Bos taurus			Unknown.		Corynebacterium glutamicum	Corynebacterium glutamicum
Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN	PROGRESS ***, in unordered pieces. Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Mus musculus connexin-36 (Cx36) gene, complete cds.	DNA encoding precursor protein of alkaline cellulase.		gDNA encoding alkaline cellulase.		Corynebacterium glutamicum multidrug resistance protein (cmr) gene, complete cds.	Ratfus norvegicus clone N27 mRNA.	Corynebacterium glutamicum biotin synthase (bioB) gene, complete cds.	Brevihacterium flavum dene for biotin evuthetase, complete ode		DNA sequence encoding Brevibacterium flavum biotin-synthase.	Mycobacterium tuberculosis H37Ry complete genome: segment 99/162		Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Bovine elastín a mRNA, complete cds,	Corynebacterium glutamicum thrC gene for threonine synthase (EC 4.2.99.2).		Sequence 4 from Patent WO 8809819.		Dievidacieium iactoremientum; ATCC 13609;; UNA (genomic);.	Corynebacterium glutamicum glnA gene.
AL049180	AL049180	U89655	U89655	AF016190	E09719		E02133	AF040653	U43535	U30789	U31281	D14084		E03937	Z70692		L78818	Z70692	L78818	270692	302717	X56037		109078	6	500677	Y13221
192581	192581	3219	3219	2939	3505		3494	36912	2531	3510	1614	1647	: •	1005	38110		36404	38110	36404	38110	3242	3120		3146	6	760	3686
GB_HTG1:PFMAL13P	GB_HTG1:PFMAL13P 1	GB_IN2:EHU89655	GB_IN2:EHU89655	GB_RO:AF016190	EM_PAT:E09719		GB_PAT:E02133	GB_IN1:CELK05F6	GB_BA1:CGU43535	GB_RO:RNU30789	GB_BA2:CGU31281	GB BA1-RRI BIOBA		GB_PAT:E03937	GB BA1:MTCY427		GB_BA1:MSGB32CS	GB_BA1:MTCY427	GB_BA1:MSGB32CS	GB_BA1:MTCY427	GB OM:BOVELA	GB_BA1:CGTHRC	ı	GB_PAT:109078		GB_BAI.BLIMKEST N	GB_BA1:CGGLNA
		1197		531				1155			1125				1461				3258			1566					1554
		rxa00262		rxa00266				rxa00278			rxa00295				rxa00323				rxa00324			rxa00330					rxa00335

•	wo	01/00	0843						9	9									PC	СТУП	300/	00923	
	14-Jun-99	15-Jun-96	09-MAR- 1999	29-OCT- 1999	21-Apr-98	09-MAR- 1995	17-Jul-98	14-Jun-99	AR-	1999 17-Jun-98		16-Aug-99	13-MAR-	1999 17-Jun-98		16-Aug-99	13-MAR-	1999 17-Jun-98		16-Aug-99	12-Jun-93	24-Aug-99	22-Jan-98
	906'86	66,345	34,510	37,084	37,500	52,972	46,341	49,471	96,556	39,496		37,946	99,374	41,333	,	37,554	99,312	36,971		37,905	s 35,843	42,593	34,295
	Corynebacterium	grutarnicum Mycobacterium leprae	Drosophila melanogaster	Synechococcus PCC7942	Homo sapiens	Mycobacterium leprae	Drosophila melanogaster	Drosophila melanogaster	Corynebacterium	glutamicum Mycobacterium	tuberculosis	Streptomyces coelicolor A3(2)	Corynebacterium	glutamicum Mycobacterium	tuberculosis	Streptomyces coelicolor A3(2)	Corynebacterium	glutamicum Mycobacterium	tuberculosis	Streptomyces coelicolor A3(2)	Sugarcane baciliform virus	Lotus japonicus	Caenorhabditis elegans
Table 4 (continued)	Corynebacterium glutamicum glutamine synthetase (glnA) gene, complete	Mycobacterium feprae cosmid B27 DNA sequence.	LD21828.3prime LD Drosophila melanogaster embryo pOT2 Drosophila melanogaster cDNA clone LD21828 3prime, mRNA sequence.	Synechococcus PCC7942 nucleoside diphosphate kinase and ORF2 protein genes, complete cds, ORF1 protein gene, partial cds, and neutral site I for vector use.	oe75a02.s1 NCI_CGAP_Lu5 Homo sapiens cDNA clone IMAGE:1417418 3' similar to gb:A18757 UROKINASE PLASMINOGEN ACTIVATOR SURFACE RECEPTOR, GPI-ANCHORED (HUMAN);, mRNA sequence.	Mycobacterium leprae cosmid L296.	Drosophila melanogaster DNA sequence (P1 DS05273 (D80)), complete sequence.	Drosophila melanogaster clone GH08860 BcDNA.GH08860 (BcDNA.GH08860) mRNA, complete cds.	Corynebacterium glutamicum gitB and gitD genes for glutamine 2-	oxoglutarate aminotransferase large and small subunits, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.		Streptomyces coelicolor cosmid 3A3.	Corynebacterium glutamicum gltB and gltD genes for glutamine 2-	oxoglutarate aminotransferase large and small subunits, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.		Streptomyces coelicolor cosmid 3A3.	Corynebacterium glutamicum gltB and gltD genes for glutamine 2-	oxoglutarate aminotransferase large and small subunits, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.		Streptomyces coelicolor cosmid 3A3.	Sugarcane bacilliform virus ORF 1,2, and 3 DNA, complete cds.	Ljirnpest03-215-c10 Ljimp Lambda HybriZap two-hybrid library Lotus japonicus cDNA clone LP215-03-c10 5' similar to 60S ribosomal protein L39,	mRNA sequence. Caenorhabditis elegans cosmíd K09H9.
	AF005635	L78817	A1455217	U30252	AA911262	U15187	AC004373	AF145653	AB024708	Z83864		AL109849	AB024708	Z83864		AL109849	AB024708	Z83864		AL109849	M89923	AI967505	AF043700
	1690	38793	624	2891	581	36138	72722	3197	8734	37751	i i	15901	8734	37751		15901	8734	37751		15901	7568	380	37881
	GB_BA2:AF005635	GB_BA1:MSGB27CS	GB_EST27:AI455217	GB_BA2:SSU30252	GB_EST21:AA911262	GB_BA1:MLU15187	GB_IN2:AC004373	GB_IN2:AF145653	GB_BA1:AB024708	GB_BA1:MTCY1A6		GB_BA1:SC3A3	GB_BA1;AB024708	GB_BA1:MTCY1A6		GB_BA1:SC3A3	GB_BA1:AB024708	GB_BA1:MTCY1A6		GB_BA1:SC3A3	GB_VI:SBVORFS	GB_EST37:A1967505	GB_IN1:CELK09H9
			891			1578			727				480				4653				1917		٠
			rxa00347			rxa00351			гха00365				rxa00366				rxa00367				rxa00371		

	wo	01/(008	343												10	00											-	PC	LTA	IB(0/0	009	23
	24-MAR- 1995	17-0CT-	1996	15-Jul-99	18-DEC-	1995 17-Jun-98		03-DEC-	1996	27-Aug-99	10-Jun-99	22-MAY-	1999	10-Sep-99	-	29-Sep-99	2-Aug-99			17-Jun-98	3	03-DEC-	1996	24-Jun-97	19-MAR-	1998	8-Jun-99		06-DEC-	1998	19-1914-K-	23-Jun-99		31-Aug-98
	36,832	39,603	6	36,728	54,175	61,143		61,143		43,981	35,444	34.821		40,472		38,586	38,509			36.308	3	39,282		39,228	89,672		40,830		50,161	000	036,66	52.898		37,565
	Caulobacter crescentus	Emericella nidulans		nomo saprens	Pseudomonas aeruginosa	Mycobacterium	tuberculosis	Mycobacterium	tuberculosis	Mycobacterium leprae	Homo sapiens	Homo sapiens		Schistosoma mansoni		Unknown.		associated herpesvirus		Mycobacterium	tuberculosis	Mycobacterium	tuberculosis	Mycobacterium leprae	Corynebacterium	glutamicum	Corynebacterium	diphtheriae	Pseudomonas alcaligenes	Connabacterium	qlutamicum	Mycobacterium	tuberculosis	
Table 4 (continued)	Caulobacter crescentus uroporphyrinogen decarboxylase homolog (hemE) gene, partial cds.	A.nidulans sD gene.	HS 5505 B1 C04 T7A RPCI-11 Human Male BAC Library H		r.aeruginosa nemi. gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.		lyscobacterium tuberculosis sequence from clone y224.		Mycobacterium leprae cosmid B1222.		Homo sapiens chromosome 17 clone hRPK.515_O_17 map 17, ***					Raposi's sarcoma-associated herpesvirus ORF 68 gene, partial cds; and ORF 69 kencein well 10 months international control of the control of t	butative phosphoribosylformylglycinamidine synthase.	(LAMP) genes, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.		Mycobacterium tuberculosis sequence from clone y224.		Mycobacterium leprae cosmid B1306 UNA.	Constitution of the control of the c	Complete cus.	Corynepacienum diprimenae neme uptake locus, complete sequence.	Pseudomonas alcalidenes outer membrane You secretion outer membrane	condenses and algories ones mentionalle Achtsecterion system generalister	Corynebacterium glutamicum homoserine O-acetyltransferase (metA) gene	complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	SIND A COCK A CALL OF THE CALL	SYNOVAINCAGOZAGOSA Onchocerca volvulus adult male cDNA (SAW98MLW-Onchocerca volvulus OvAM) Onchocerca volvulus cDNA clone SWOVAMCAQ02A05 5', mRNA
142004	013564	Y 08866	AQ730303	07000A	7/070	295558	700000	¥000000	AL 040404	ACADAGAGA	6070000V	AC007638		AW017053	A (30 a a a a a a a a a a a a a a a a a a a	70000074	AF 1488U5			Z 95558	7000000	\$00000C	743002	4 10000 AFD52652	200700	AF100182	201001	AF092918		AF052652		AL021841	A111720	6071
4670		6671	483	7777	† †	40838	10051	1000	24714	157174	5	178053	6	510	20000	20220	80007			40838	1005	2	7752		2	4514	2	20758		5096		53662	750	
CA RATIONIA		GB_FL!.ANSDGENE	GB_GSS4:AQ730303	GR RATIDAHEMI		GB_BA1:MTY25D10	GR RA1-MSGY224	+37100W:100100	GR BA1:MI CR1222	GR HTG2-4C008289		GB_HTG2:AC007638	CD FOT00.63404708	GD_ES 36.AVVU / U3	GR DAT.ADAERSED	GE 77:77:00:002	CD0041 JC:14 TO			GB_BA1:MTY25D10	GR BA1-MSGV224	144100000000000000000000000000000000000	GR RA1-MI R1306	GB BA2:AF052652	100100	GB BA2:AF109162		GB_BA2:AF092918	l	GB_BA2:AF052652		GB_BA1:MTV016	GR EST23-A111128R	
1245	2			1425	2				1467	2			270	7					1	1017				623						1254				
72800377				rxa00382					rxa00383				10200 cx	0000						rxa00393				rxa00402						rxa00403				

Table 4 (continued)

											101													
23-Jun-99		08-DEC- 1998	23-Jun-99	17-Jun-98	10-DEC-	1996 15-Jun-96	27-Jul-94	12-OCT-	12-OCT-	1999 18-Nov-98	5-Aug-98 18-Nov-98	23-Jun-99	17-Aug-99	3-Aug-99	27-OCT- 1999	4-Jun-98	4-Jun-98	23-Nov-99	03-DEC- 1999	03-DEC-	26-Nov-98	16-OCT-	1959 16-OCT- 1999	
57.259		34,179	40,169	62,031	61,902	39,651	38,677	36,335	36,335	31,738	43,262 37,647	37,088	46,538	43,276	43,080	42,931	36,702	38,027	34,521	34,521	56,410	34,959	34,959	
Mycobacterium	•-	. Homo sapiens	Mycobacterium	tuberculosis Mycobacterium tuberculosis	Mycobacterium	tuberculosis Mycobacterium feprae	Ralstonia eutropha	Homo sapiens	Homo sapiens	Homo sapiens	Streptomyces coelicolor Homo sapiens	Mycobacterium tuberculosis	Rumex acetosa	Homo sapiens	Streptomyces fividans	Streptomyces coelicolor	Streptomyces coelicolor	Homo sapiens	Homo sapiens	Homo sapiens	Streptomyces coelicolor	Drosophila melanogaster	Drosophila melanogaster	
Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.		Homo sapiens Xp22-166-169 GSHB-523A23 (Genome Systems Human BAC library) complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 156/162.	Mycobacterium tuberculosis sequence from clone y126.	Mycobacterium leprae cosmid B971 DNA sequence.	Alcaligenes eutrophus chromsomal transketolase (cbbTc) and phosphoglycolate phosphatase (cbbZc) genes, complete cds.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 25 unordered pieces.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 25	unordered pieces. Homo sapiens chromosome 17, clone hRPK.372_K_20, complete sequence.	Streptomyces coelicolor cosmid 2A11. Homo sapiens chromosome 17, clone hRPK.372_K_20, complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Sgs.	PCI-11_484E3, ***	Streptomyces lividans rpsP, trmD, rplS, sipW, sipX, sipY, sipZ, mutT genes and 4 open reading frames.	Streptomyces coelicolor cosmid 2E1.	Streptomyces coelicolar cosmid 2E1.	Human DNA sequence from clone 173D1 on chromosome 1p36.21-36.33.Contains ESTs, STSs and GSSs, complete sequence.	Homo sapiens chromosome X clone RP4-719K3 map q21.1-21.31, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens chromosome X clone RP4-719K3 map q21.1-21.31, *** SEQUENCING IN PROGRESS *** in unordered pieces.	Streptomyces coelicolor cosmid D78.	Drosophila melanogaster chromosome 3L/76A2 clone RPC198-48B15, *** SEQUENCING IN DROGRESS *** 44 mordered pieces	Drosophila melanogaster chromosome 3L/76A2 clone RPC198-48B15, *** SEQUENCING IN PROGRESS ***, 44 unordered pieces.	
AL021841		AC005145	AL021841	280343	AD000012	L78821	M68904	AC009541	AC009541	AC005951	AL031184 AC005951	AL021841	AF167358	AC009120	286111	AL023797	-	AL031984	AL109931	AL109931	AL034355	AC009367	AC009367	
53662	,	1436/8	53662	37085	37164	37566	2760	169583	169583	155450	22789 155450	53662	1022	269445	7860	38962	38962	117338	267114	267114	36224	226055	226055	
GB_BA1:MTV016	0.000	GB_PK4:AC005145	GB_BA1:MTV016	GB_BA1:MTY13D12	GB_BA1:MSGY126	GB_BA1:MSGB971C	GB_BA1:AFACBBTZ	GB_HTG4:AC009541	GB_HTG4:AC009541	GB_PR4:AC005951	GB_BA1:SC2A11 GB_PR4:AC005951	GB_BA1:MTV016	GB_PL2:AF167358	GB_HTG3:AC009120	GB_BA2:SKZ86111	GB_BA1:SC2E1	GB_BA1:SC2E1	GB_PR2:HS173D1	GB_HTG2:HSDJ719K 3	GB_HTG2:HSDJ719K 3	GB_BA1:SCD78	GB_HTG4:AC009367	GB_HTG4:AC009367	
613				1587			1296			629		591			582	•		1287			286			
ra00405				rxa00420			rxa00435			rxa00437		rxa00439			rxa00440			rxa00441			rxa00446			

					Table 4 (continued)			
rxa00448	1143	GB_PR3:AC003670	88945	AC003670	Homo sapiens 12q13.1 PAC RPCI1-130F5 (Roswell Park Cancer Institute	Homo sapiens	35,682	9-Jun-98
		GB_HTG2:AF029367	148676	AF029367	Human PAC library) complete sequence. Homo sapiens chromosome 12 clone RPCI-1 130F5 map 12q13.1, ***	Homo sapiens	31,373	18-OCT-
		GB HTG2.AE029367	148676	AE030367	SEQUENCING IN PROGRESS ***, 156 unordered pieces.			1997
					SEQUENCING IN PROGRESS ***, 156 unordered pieces.	nomo sapiens	31,373	18-OCT- 1997
rxa00450	424	GB_HTG2:AC007824	133361	AC007824	Drosophila melanogaster chromosome 3 clone BACR02L16 (D715) RPCI-98 02.L.16 map 89E-90A strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** 91 unordered pieces.	Drosophila melanogaster	40,000	2-Aug-99
			133361	AC007824	Drosophila melanogaster chromosome 3 clone BACR02L16 (D715) RPCI-98 02.L.16 map 89E-90A strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 91 unordered pieces.	Drosophila melanogaster	40,000	2-Aug-99
		GB_EST35;A1818057	412	AI818057	wk14a08.x1 NCI_CGAP_Lym12 Homo sapiens cDNA done IMAGE:2412278 3' similar to gb:Y00764 UBIQUINOL-CYTOCHROME C REDUCTASE 11 KD PROTEIN (HUMAN);, mRNA sequence.	Homo sapiens	35,714	24-Aug-99
rxa00461	975	GB_BA1:MLCB1779	43254	Z98271	Mycobacterium leprae cosmid B1779.	Mycobacterium leprae	39,308	8-Aug-97
		0	29352 467	AL021086 A0640325	Drosophila melanogaster cosmid clone 86E4. 927D1_2H3 TD 927D1 Tamanasama harsei senamia alama 027D1_2H3	Drosophila melanogaster	37,487	27-Apr-99
rxa00465			<u> </u>		genomic survey sequence.	rypanosoma prucei	38,116	88-in r- 8
rxa00487	1692	GB_BA1:BAGUAA	3866	Y10499	B.ammoniagenes guaA gene.	Corynebacterium	74,259	8-Jan-98
		GB_BA2:U00015	42325	U00015	Mycobacterium leprae cosmid B1620.	ammoniagenes Mycobacterium leprae	37,248	01-MAR-
		GB_BA1:MTCY78	33818	277165	Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.	Mycobacterium	39,725	1994 17-Jun-98
rxa00488	1641	GB_BA1:MTCY78	33818	Z77165	Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.	tuberculosis Mycobacterium	39,451	17-Jun-98
		GB_BA2:U00015	42325	U00015	Mycobacterium leprae cosmid B1620.	tuberculosis Mycobacterium leprae	39,178	01-MAR-
		1601	4692	AJ010601	Streptomyces coelicolor A3(2) DNA for whiD and whiK loci.	Streptomyces coelicolor	60,835	1994 17-Sep-98
rxa00489	1245	GB_BA2:U00015	42325	U00015	Mycobacterium leprae cosmid B1620.	Mycobacterium leprae	38,041	01-MAR-
		GB_HTG2:HS225E12	126464	AL031772	Homo sapiens chromosome 6 clone RP1-225E12 map q24, ***	Homo sapiens	36,756	1394 03-DEC-
		CP UTCO:UCOTU GO	126464	41 034773	SEQUENCING IN PROGRESS ***, in unordered pieces.			1999
	!	7 15	+0+07-	ALUS 1772	ap qz4, ces.	Homo sapiens	36,756	03-DEC- 1999
rxa00533	1155	GB_BA1:CGLYS	2803	X57226	C. glutamicum lysC-alpha, tysC-beta and asd genes for aspartokinase-alpha and -beta subunits, and aspartate beta semialdehyde dehydrogenase, respectively (EC 2.7.2.4; EC 1.2.1.11).	Corynebacterium glutamicum	99,913	17-Feb-97

																		1	03																	
	17-Feb-97		30-Jul-93	17-Feb-97		11-, Jun-93) ;	28-Jul-99		10-Feb-99	00 000		26-Feb-97		21-Sep-99	17 Jun 00	06-1106-71	28-Jan-97		01-DEC	1998	24-Jun-97	17-Jun-98	5-Jun-97		09-MAR-	1995	06-100-71	05-DEC-	1998	08-OCT-	1997 (Rel.	24 Lings	24-Jun-96	24-Jun-98	
	99,221		99,391	99,856		98.701		98,773		100,000	58.003		68,185		63,187	62 AD1	101	62,205		98,359		62,468	60,814	66.095		64,315	C 20 V 2)))	98,810		98,810		0000	0.00	99,368	
	Corynebacterium	glutamicum	synthetic construct	Corynebacterium	glutamicum	Corynebacterium	flavescens	Corynebacterium	glutamicum	Corynebacterium	Wycobacterium	tuberculosis	Mycobacterium	tuberculosis	Streptomyces coelicolor	Mycobacterium	tuberculosis	Mycobacterium	tuberculosis	U лкпо w п.		Mycobacterium leprae	Mycobacterium tuberculosis	Corynebacterium	ammoniagenes	Mycobacterium leprae	Michaelacium	tuberculosis	Unknown.		Corynebacterium	glutamicum	Coprobactorium	olymeracienum akutamicum	Corynebacterium	קומנקווייים
	C.glutamicum aspartate-semialdehyde dehydrogenase gene.		Recombinant DNA tragment (Pstl-Xhoi).	C. glutamicum lysic-alpha, lysic-beta and asd genes for aspartokinase-alpha	and the audulius, and aspartate beta semialdenyde denydrogenase, respectively (EC 2.7.2.4; EC 1.2.1.11).	Corynebacterium flavum aspartokinase (ask), and aspartate-semialdehyde	dehydrogenase (asd) genes, complete cds.	DNA encoding Brevibacterium aspartokinase.		C.giutamicum gene leuA for isopropyimalate synthase.	Mycobacterium tuberculosis H37Ry complete genome: segment 155/162		Mycobacterium tuberculosis putative alpha-isopropyl malate synthase (leuA)	gene, complete cds.	streptornyces coelicolor cosmid UZ5.	Mycobacterium tuberculosis H37Ry complete genome: segment 39/162		Mycobacterium tuberculosis phosphoribosylformylglycinamidine synthase	(purt.) gene, complete cds.	Sequence 19 from patent US 5726299.		Mycopacienum leprae cosmid 85.	Mycobacterium tuberculosis H37 KV complete genome; segment 36/162.	B.ammoniagenes purF gene.		Mycobacterium leprae cosmid B2266.	Mycobacterium tuberculosis H37Rv complete denome: segment 39/162		Sequence 1 from patent US 5776740.		DNA encoding serine hydroxymethyl transferase.		DNA encoding sering hydroxymethyltransferase from Brayihacterium flavurm		DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.	
	X82928	0.70	AU/546	0771CV		L16848		E14514	210000	80807	> AL022121		U88526	A1 440544	AL : 10314	Z95618		U34956		192052	705151	780006	200220	X91252		015182	Z95618		AR016483		E112/3		E12594	•	E12594	
	1591	3	2112	5002		2957		1643	0.40	2482	121125		2412	44800	77014	10451		2462		2115	38100	20103	ocaoc Caoc	1885		40123	10451		2104	2	42		2104		2104	
	GB_BA1:CGCYSCAS	0 C	GB_PATAU/346	מושמיועם הם		GB_BA1:CORASKD		GB_PA1:E14514	אוויין יויין יויין אין מיטיין אין	אַרְיַבְּיבְּיבְּיִבְּאָ	GB_BA1:MTV025		GB_BA1:M1U88526	Se BAS-SCEDS	22008.360_00	GB_BA1:MTCY7H7A		GB_BA1:MTU34956	1	GB_FA1:192052	CR RATINGER	GB_BAT:MECB3		GB_BA1:BAPURF	200	GB_BA1:MLU19182	GB_BA1:MTCY7H7A	t	GB_PAT:AR016483	0 6 H - 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EW FALLETIZAS		GB PAT:E12594	ı	GB_PAT:E12594	
			1286	2					767	† † †				2400	6047				7	76/			į	1470					1983						1425	
			72300524	100000					2500536	000000				Na00537	2000				1100	X800041				rxa00558					rxa00579						rxa00580	

104

		ı	_	7			7			æ			_		10:	5						~=		_					
	3-Feb-99		29-Sep-97	29-Sep-97		3-Feb-99	29-Sep-97		08-701-4	17-Jun-98	1	3-1-60-49	27-Jan-99		6-Jnf-9	21-MAY-	1993	29-Sep-97	3-Apr-98	01-DEC-	1998	17-Jun-98	17-Jun-98	17-Jun-98	6	1990	6-Aug-99		6-Aug-99
	97,358		98,0/4	93,814	1	95,690	95,755	72	1 00'00	60,030	0	700'AA	60.030		39,116	47,419		47,419	37,814	37,814		50,647	55,228	40,300	004.00	007,00	40.634	•	40,634
	e Corynebacterium	glutamicum	-lufami min	giutamicum Corynebacterium	glutamicum		giutamicum Corynebacterium	glutamicum Frainia harbicala		Mycobacterium	tuberculosis	alutamicum	Mycobacterium bovis		Zymomonas mobilis	Unknown.		unidentified	Unknown.	Unknown.		Mycobacterium	tuberculosis Mycobacterium	tuberculosis Mycobacterium	tuberculosis Homo canions		Drosophila melanogaster		(D867) RPCI-98 Drosophila melanogaster IN
Table 4 (continued)	Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase Corynebacterium	and dethiobiotin synthetase, complete cds. DNA sequence coding for desthiobioting with etase		DNA sequence coding for diamino pelargonic acid aminotransferase.	Bravihactarium flavores for 7 9 dismissional americanisms	and dethiobiotin synthetase complete ode	DNA sequence coding for diamino pelargonic acid aminotransferase.	Erwinia herbicola adenosvimethionine-8-amino-7-oxononanoate transaminase	(bioA) gene, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 35/162.	Brevibacterium flavum gene for SecY protein (complete ods) and gene or	adenylate kinase (partial cds).	Mycobacterium bovis MBE50a gene, partial cds; and MBE50b, MBE50c,	preprotein translocase SecY subunit (secY), adenylate kinase (adk), methionine aminopeptidase (map), RNA polymerase ECF sigma factor (sigE50), MBE50d, and MBE50e genes, complete cds.	Zymomonas mobilis ZM4 fosmid clone 42D7, complete sequence.	Sequence 1 from Patent US 4758514.		UNA coding of 2,5-diketogluconic acid reductase.	Sequence 9 from patent US 5693781.	Sequence 9 from patent US 5726299.	Microba experience by the security of a 1927.	wycobacterium tuberculosis no / RV complete genome; segment /6/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 76/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 76/162.	RPCI-11-168G18 TJ RPCI-11 Homo saniens denomic clone RDCI-11.		Drosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98	48.D.10 map 34A-34A strain y; on bw sp, *** SEQUENCING IN PROGRESS ***, 78 unordered pieces.	chromosome 2 clone BACR48D10 rain y; cn bw sp, *** SEQUENCING
	D14083	E04041		E04040	D14083	3	E04040	U38519	01070	ALU21958	D14162		U77912		AF157493	100836	7	170757	1/8/53	192042	708268	£30200	298268	Z98268	AQ420755		AC008332		AC008332
	2272	675		1272	2272	<u> </u>	1272	1290	90000	7007	1516		7163		25454	1853	1000	1007	107	118/	37439	701.00	37432	37432	671		118545		118545
,	GB_BA1:BRLBIOAD	GB PAT:E04041	•	GB_PAT:E04040	GB BA1:BRI BIOAD		GB_PAT:E04040	GB_BA2:EHU38519		140 A 1 W 1 W 2 G 2 G 2	GB BA1:BRLSECY	ŀ	GB_BA2:MBU77912		GB_BA2:AF157493	GB_PA1:100836	CB DAT-EDOS44	GB_TAI.E00311	00 00 TAN 17 07 00	CD_FAI:192042	GR BA1-WTCH25		GB_BA1:MTCI125	GB_BA1:MTCI125	GB_GSS12:AQ42075	S	GB_HTG3:AC008332		GB_HTG3:AC008332
	795				1392				ä	000					930			למטז	200				831				1035		
	rxa00632				rxa00633					ואמרעטפס					rxa00708			71700cv	7008				rxa00718				rxa00727		

					Table 4 (continued)			
5	e e	66_H163: AC008332	118545		s 2 clone BACR48D10 (D867) RPCI-98 sp, *** SEQUENCING IN	Drosophila melanogaster	33,888	6-Aug-99
rxauu/66	996	GB_HTG2:AC006789	83823	AC006789	*** SEQUENCING IN PROGRESS ***,	Caenorhabditis elegans	36,737	25-Feb-99
		GB_HTG2:AC006789	83823	AC006789	ans clone Y49F6, *** SEQUENCING IN PROGRESS ***,	Caenorhabditis elegans	36,737	25-Feb-99
		GB_BA1:D90810	20476	D90810	, Kohara done #319(37.4-37.8 min.).	Escherichia coli	36,526	29-MAY-
rxa00770	1293	GB_BA1:MTV043	68848	AL022004	Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.	Mycobacterium	66, 193	1997 24-Jun-99
		GB_BA1:MLU15182	40123	U15182	Mycobacterium feprae cosmid B2266.	tuberculosis Mycobacterium leprae	61,443	09-MAR-
		GB_BA2:SCD25	41622	AL118514	Streptomyces coelicolor cosmid D25.	Streptomyces coelicolor	59,938	1995 21-Sep-99
rxa00779	1056	GB_HTG1:CER08A5	51920	Z82281	V clone R08A5, *** SEQUENCING IN	A3(2) Caenorhabditis elegans	64,896	14-0CT-
		GB_HTG1:CER08A5	51920	282281	Caenorhabditis elegans chromosome V clone R08A5, *** SEQUENCING IN C PROGRESS *** in unordered pieces.	Caenorhabditis elegans	64,896	1998 14-OCT-
		GB_PL2:AF078693	1492	AF078693		Chlamydomonas reinhardtii 57,970	57,970	1998 3-Nov-99
rxa00780	699	GB_BA1:MTCY98	31225	Z83860	ds.	Mycobacterium	54,410	17-Jun-98
		GB_BA1:AVINIFREG	2099	M60090	hroococcum nifU, nifS, nifV, nifP, nifW, nifZ and nifM genes,	tuberculosis Azotobacter chroococcum	51,729	26-Apr-93
		GB_BA2:AF001780	6701	AF001780	ı, FdxN (fdxN), NifS (nifS)	Syanothece PCC8801	36,309	08-MAR-
rxa00838	1023	GB_EST1:Z30506	329	230506	nifU) genes, complete cds, and NifH (nifH) g AC16H Arabidopsis thaliana cDNA clone T	Arabidopsis thaliana	44,308	1999 11-MAR-
		GB_PL2:AC006258	110469	AC006258	BAC F18G18 from chromosome V near 60.5 cM,	Arabidopsis thaliana	35,571	1994 28-DEC-
		GB_EST37:A1998439	455	A1998439	ol-0, rosette-2 Arabidopsis thaliana cDNA	Arabidopsis thaliana	36,044	1998 8-Sep-99
rxa00863	867	GB_BA1:BLDAPAB	3572	Z21502	Jence. apB genes for dihydrodipicolinate synthase and	Corynebacterium	99,539	16-Aug-93
		GB_PAT:E16749	2001	E16749	dihydrodipicolinate reductase. gDNA encoding dihydrodipicolinate synthase (DDPS).	glutamicum Corynebacterium	99,539	28-Jul-99
		GB_PAT:E14520	2001	E14520	g DNA encoding Brevibacterium dihydrodipicolinic acid synthase.		99,539	28-Jul-99
rxa00864	873	GB_BA1:BLDAPAB	3572	Z21502	lapB genes for dihydrodipicolinate synthase and	erium	99,885	16-Aug-93
		GB_BA1:CGDAPB	1902	X67737	Gilutamicum dapB gene for dihydrodipicolinate reductase. Gilutamicum dapB gene for dihydrodipicolinate reductase. gl	glutamicum Corynebacterium glutamicum	100,000	1-Apr-93

		7. A. C.			Table 4 (continued)			
		02C41:E142C0	2007	E14520	DNA encoding Brevibacterium dihydrodipicolinic acid synthase,	Corynebacterium	100,000	28-Jul-99
rxa00865	1026	GB_BA1:BLDAPAB	3572	Z21502	B.lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and	glutamicum Corynebacterium	100,000	16-Aug-93
		GB_PAT:E16752	1411	E16752	gDNA encoding dihydrodipicolinate reductase (DDPR).	glutamicum Corynebacterium	99,805	28-Jul-99
rxa00867	650	GB_PAT:AR038113 GB_BA1:MTV002	1411 56414	AR038113 AL008967	Sequence 18 from patent US 5804414. Mycobacterium tuberculosis H37Rv complete genome: segment 122/162	glutamicum Unknown. Moobactadim	99,805	29-Sep-99
		GB_BA1:MLCB22 GB_BA1:SAU19858	40281 2838	Z98741 U19858	Mycobacterium leprae cosmid B22.		39,482	22-Aug-97
rxa00873	677	GB_BA1:SCO001206		AJ001206	complete cds. Streptomyces coelicolor A3(2), glycogen metabolism cluster II.	Streptomyces antibioticus Streptomyces coelicolor	69,706 63,415	25-OCT- 1996 29-MAR-
		GB_BA1:SCO001205	9589	AJ001205	Streptomyces coelicolor A3(2) glycogen metabolism clusterl.	Streptomyces coelicolor	61,617	1999 29-MAR-
rxa00884	1263	GB_BA1:D78198 GB_BA1:MTCY253	2304 41230	D78198 Z81368	Pimelobacter sp. DNA for trehalose synthase, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Pimelobacter sp. Mycobacterium	60,594 37,785	1999 5-Feb-99 17-Jun-98
		GB_BA1:MSGY222	41156	AD000010	Mycobacterium tuberculosis sequence from clone y222.	tuberculosis Mycobacterium	38,006	03-DEC-
		GB_GSS15:AQ65460 0	468	AQ654600	Sheared DNA-1014.TF Sheared DNA Trypanosoma brucei genomic clone Sheared DNA-1014, genomic survey sequence	tuberculosis Trypanosoma brucei	33,974	1996 22-Jun-99
rxa00891	1102	GB_BA1:MTC!418B	11700	296071	Mycobacterium tuberculosis H37Rv complete genome; segment 7/162.	Mycobacterium	63,297	18-Jun-98
	3	GB_BA1:SC0001206	9184	AJ001206	Streptomyces coelicolor A3(2), glycogen metabolism cluster II.	inberculosis Streptomyces coelicolor	61,965	29-MAR-
		GB_BA1:SCO001205	9589	AJ001205	Streptomyces coelicolor A3(2) glycogen metabolism clusterl.	Streptomyces coelicolor	61,727	1999 29-MAR-
rxa00952	963	EM_PAT:E10963	3118	E10963	gDNA encoding tryptophan synthase.	Corynebacterium glutamicum	99,688	1999 08-OCT- 1997 (Rel.
		GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium	98,847	52, Created) 10-Feb-99
rxa00954	644	GB_PAT:E01688 GB_PAT:E01375	7725 7726	E01688 E01375	Genomic DNA of trp operon of prepibacterium latophelmentamn. DNA sequence of tryptophan operon.	glutamicum unidentified Corynebacterium	98,428 98,758	29-Sep-97 29-Sep-97
		GB_PAT:E01688 GB_BA1:BLTRP	7725 7725	E01688 X04960	Genomic DNA of trp operon of prepibacterium latophelmentamn. Brevibacterium lactofermentum tryptophan operon.	glutamicum unidentified Corynebacterium	98,758 98,758	29-Sep-97 10-Feb-99
rxa00955	1545	GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	glutamicum Corynebacterium glutamicum	98,372	29-Sep-97

Mycobacterium tuberculosis

	10-Feb-99	29-Sep-97 08-OCT-	1997 (Rel.	52, Created) 10-Feb-99	20 Con 07	10.Feb.00	29-Sep. 97	29-Sep-97	10-Feb-99	29-Sep-97		12-Sep-93 01		02-DEC-	1994 29-Sep-97	28-Jiil-99	50 20 50	28-Jul-99	28. Cep. 00	24-0CF-53	1999	8-Jun-82	17 115 00	06-106-7	03-MAR-	1998 17-Jun-98
	98,372	98,242 98,949		99.107					98,792	38,792				99,810	97,524	99.931				37.600		7 607'15	40 773		58,119 0	38,167
	Corynebacterium glutamicum	unidentified Corynebacterium	glutamicum	Corynebacterium	glutamicum Corynebacterium	glutamicum Corynebacterium	glutamicum Corynebacterium	glutamicum unidentified	Corynebacterium oli damiorim	Corynebacterium	glutamicum unidentified		glutamicum	Olikricwn.	Corynebacterium	glutarnicum Corynebacterium			glutamicum Gallus gallus	Arabidopsis thaliana	Arabidoneie thatians	n'aviochois trialiaita	Mycobacterium	tuberculosis	Streptomyces coelicolor	Mycobacterium
Table 4 (continued)	brevibacterium lactorermentum tryptophan operon.	Genomic DNA of trp operon of prepibacterium latophelmentamn. gDNA encoding tryptophan synthase.		Brevibacterium lactofermentum tryptophan operon.	DNA sequence of tryptophan operon.	Brevibacterium lactofermentum tryptophan operon.	DNA sequence of tryptophan operon.	Genomic DNA of trp operon of prepibacterium latophelmentamn.	Dievibacienum lactorementum tryptophan operon.	DNA sequence of tryptophan operon.	Genomic DNA of trp operon of prepibacterium latophelmentamn.	Cofynebacterium glutamicum hom-thrB genes for homoserine dehydrogenase	Sequence 1 from Patent WO 8809819.		DNA encoding for homoserine dehydrogenase(HDH)and homoserine	Rinase(HR). gDNA encoding diaminopimelate decarboxylase (DDC) and arginyl-tRNA	synthase. Sequence 15 from patent US 5804414,	DNA encoding Brevibacterium diaminopimelic acid decarboxylase and arginyl-	tRNA synthase. Gallus gallus partial mRNA for ATP-citrate lyase (ACL gene).	Genomic sequence for Arabidopsis thaliana BAC F1504 from chromosome I,	complete sequence. Arabidopsis thaliana genome survey sequence T7 and of BAC F14D7 of IGE	library from strain Columbia of Arabidopsis thaliana, genomic survey	sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 108/162.		S.coelicolor valS, fpgs, ndk genes.	Mycobacterium tuberculosis H37Rv complete genome; segment 108/162.
0907	704490	E10963		X04960	E01375	X04960	E01375	E01688		E01375	E01688	100340	720601		E01358	E16755	AR038110	E14508	AJ245664	AC007887	AL087338		AL021246	0.007	Y13070	AL021246
7775	7775	3118		7725	7726	7725	7726	7725	2	7726	7725		3685		2615	3579	3579	3579	512	159434	542		63033	4	50 G	63033
GB BAT'RITRD	DAT-FORM	EM_PAT:E10963		GB_BA1:BLTRP	GB_PAT:E01375	GB_BA1:BLTRP	GB_PAT:E01375	GB_PAT:E01688 GB_BA1:BLTRP		GB_PAT:E01375	GB_PAT:E01688		GB_PAT:109077		GB_PAT:E01358	GB_PAT:E16755	GB_PAT:AR038110	GB_PA1:E14508	GB_OV:GGA245664	GB_FLZ:AC00/88/	GB_GSS1:CNS00RN	M	GB_BA1:MTV008	000 10/10/01/01	GD_DAI.OUVALOFF	GB_BA1:MTV008
		1237				1677		747			1050	3				1458			753				1644			
		rxa00956				rxa00957		rxa00958			02900ex					xa00972			rxa00981				rxa00989			

rxa00997	705	GB_BA2:CGU31225	1817	U31225	Table 4 (continued) Coynebacterium glutamicum L-profine:NADP+ 5-oxidoreductase (proC) gene. Corynebacterium	Correbacterium	28.02	90 200
					complete cds.	glutamicum		Oc-Sac-y
		C12	282838	AL009026	Caenorhabditis elegans chromosome IV clone Y39C12, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	36,416	26-OCT- 1999
rxa01019	1110	GB_IN1:CEB0001 GB_HTG2:AC005052	39416 144734	Z69634 AC005052	Caenorhabditis elegans cosmid B0001, complete sequence. Homo sapiens clone RG038K21 *** SEQUENCING IN PROCEESS *** 3	Caenorhabditis elegans	36,416	2-Sep-99
	•		44	000000		supple saple is	7 - 'SC	12-3un-98
		25.AC005052	1447.54	AC000002	nomo sapiens clone KG038KZ1, "" SEQUENCING IN PROGRESS "", 3 unordered pieces.	Homo sapiens	39,172	12-Jun-98
		GB_GSS9:AQ171808	512	AQ171808	HS_3179_A1_G03_T7 CIT Approved Human Genomic Sperm Library D Homo capiene denomic close Diste=3179 Col=6 Desir=M Report Species	Homo sapiens	34,661	17-OCT-
					sequence.			1998
rxa01026	1782	GB_BA1:SC1C2 GB_BA1:AT1 FUCD 3	42210	AL031124 X84647	Streptomyces coelicolor cosmid 1C2. A teichomyceticus land and land genes	Streptomyces coelicofor	68,275	15-Jan-99
						Actinoplanes	65,435	04-OCI-
		GB_BA1:MTV012	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	Mycobacterium	40,454	1995 23-Jun-99
01000	4			00000		tuberculosis		
raology	5	GB_BAT:WILCB03/	44682	29263	Nycobacterium leprae cosmid B637.	Mycobacterium leprae	38,636	17-Sep-97
				7 02010	iviycobacterium tuberculosis H37KV complete genome; segment 131/162.	Mycobacterium	51,989	17-Jun-98
		B_BA1:SPUNGMUT	1172	Z21702	S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase	Streptococcus pneumoniae	38,088	15-Jun-94
	į				and 8-oxodGTP nucleoside triphosphatase.			
rxa01073	954			M15811	Bacilius subtilis outB gene encoding a sporulation protein, complete cds.	Bacillus subtilis	53,723	26-Apr-93
			· ~	AC007938	Homo sapiens clone UWGC:djs201 from 7q31, complete sequence.	Homo sapiens	34,322	1-Jul-99
		82	92577	AC006282	Arabidopsis thaliana chromosome II BAC F13K3 genomic sequence,	Arabidopsis thaliana	36,181	13-MAR-
4					complete sequence.			1999
ra01079	2226	GB_BA2:AF112535 4	4363	AF112535	Corynebacterium glutamicum putative glutaredoxin NrdH (nrdH), NrdI (nrdI),	Corynebacterium	99,820	5-Aug-99
					and ribonucleotide reductase alpha-chain (nrdE) genes, complete cds.	glutamicum		
		GB_BAT:CANKDFGE 6	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium	75,966	18-Apr-98
		B BA1:MTV012	70287	AL021287	Mycobacterium tuberculosis H37Ry complete genome: segment 132/162	Mycobacterium	300 95	200
						tuberculosis	200	C6-1105-07
rxa01080	267	GB_BA2:AF112535 4	4363	AF112535	(nrdl),	Corynebacterium	100,000	5-Aug-99
					ste cds.	glutamicum		
		שטיוטאואט.ואם ס	t 000	1080t	Corynebacterium ammoniagenes iirdH, nrdi, nrdE, nrdF genes.	Corynebacterium	65,511	18-Apr-98
						ammoniagenes		
		א שאוויס: אם בסט	1004	V/ 3550	S.typnimunium nraer operon.	Salmonella typhimurium	52,477	03-MAR-
rxa01087	666	GB_IN2:AF063412 1	1093	AF063412	Limnadia lenticularis elongation factor 1-alpha mRNA, partial cds.	Limnadia lenticularis	43,750	1997 29-MAR-
		CB DD3:HC2/M16 4	. 02784	704055				
					riunian DNA sequence nom PAC 24M is on chromosome 1. Contains tenascin-R (restrictin), EST.	ното sapiens	37,475	23-Nov-99
		GB_IN2:ARU85702 1	1240	U85702 ,	tor-1 alpha (EF-1a) gene, partial cds.	Anathix ralla	37,319	16-Jul-97

	86-un-71	19-Nov-99	19-Nov-99	10 13-Nov-97	13-Nov-97		13-Nov-97	10-DEC-	1996			1998	29-Apr-98		23-Nov-99		29-Apr-98	22, 44,00		26-Apr-93		26-Apr-93	23-Jul-99	24-Jun-99	24-Jun-99		10-DEC-	1996	~;	
6	45,245	36,471	36,836	100,000	41,206		97,933	40,972		61,366	97,154		95,455		30,523		94,462	38 278		60,053		58,333	39,045	60,364	60,931		36,851		60,902	37,233
	tuberculosis	Homo sapiens	Homo sapiens	Corynebacterium	glutamicum Corynebacterium	glutamicum	Corynebacterium	giutamicum Mycobacterium	tuberculosis	Mycobacterium leprae	Corynebacterium	glutamicum	Corynebacterium	glutamicum	Homo sapiens		Corynebacterium	Streptomyces coelicolor	A3(2)	Streptomyces coelicolor		Streptomyces coelicolor	Streptomyces coelicolor A3(2)	Mycobacterium	Mycobacterium	tuberculosis	Mycobacterium	tuberculosis	Mycobacterium feprae	Mycobacterium
Mycobacterium tuberculosis H378y complete geograps segment 72/162		Homo sapiens clone RP11-3N13, WORKING DRAFT SEQUENCE, 9 unordered pieces.	Homo sapiens clone RP11-3N13, WORKING DRAFT SEQUENCE, 9 unordered pieces.	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.		Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Mycobacterium tuberculosis sequence from clone y223.		Mycobacterium leprae cosmid B1610.	giutamic	priosprioribosyr-4- imidazorecarboxamide isomerase (nisA) gene, complete cds.	Corynebacterium glutamicum glutamine amidotransferase (hisH) gene,	complete cds.	Homo sapiens chromosome 1 clone RP1-140A9, *** SEQUENCING IN PROGRESS *** in unordered pieces.	Coprobation aliteration aliteration contactions from Aliteration and Aliterati	complete cds	Streptomyces coelicolar cosmid 4G6.		S.coelicolor histidine biosynthesis operon encoding hisD, partial cds., and		hisC, hisB, hisH, and hisA genes, complete cds.	Streptomyces coelicolor cosmid 4G6.	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.		Mycobacterium tuberculosis sequence from cione y223.		Mycobacterium leprae cosmid B1610.	Myccoacienum tuperculosis sequence from clone y223.
Z95554		AC011632	AC011632	AF030405	AF030405		AF030405	AD000019		AL049913	A7001840		AF060558		AL109917	AFORDER	000000	AL096884		M31628	M34670	0301018	AL096884	Z95586	Z95586		AD000019		AL049913	りころうつづて
35938		175917	175917	774	774		774	42061		40055	8		636		\ 221755	636	9	36917		3981	2004		36917	32437	32437		42061		40055	1000
GB BA1:MTCY01B2	i	GB_HTG5:AC011632	GB_HTG5:AC011632	GB_BA2:AF030405	GB_BA2:AF030405	,	GB_BA2:AF030405	GB_BA1:MSGY223		GB_BA1:MLCB1610	GD_DAZ:ArU3 040		GB_BA2:AF060558		GB_HTG1:HSDJ140A	GR RA2-AFORDSS		GB_BA1:SC4G6		GB_BA1:STMHISOPA 3981	CB BA1.CTIMHICODA 3081		GB_BA1:SC4G6	GB_BA1:MTCY336	GB_BA1:MTCY336		GB_BA1:MSGY223		GB_BA1:MLCB1610	クタオーからM:1 ピローログ
857				477			897			798	00					756	2				720	2			1221				077) †
rxa01095				rxa01097			rxa01098			001100	0011084					rxa01101	2011084				M01104				rxa01105				700140B))))

60,111 30-Jun-93 58,420 24-Jun-99	0	48,550 3-Feb-99	38,675 06-MAR-	1998 36,204 23-Nov-99	38,363 6-Jul-98 36,058 12-Jun-98			40,000 07-OCT- 11	40,000 07-OCT.	36,803 20-Nov-99	37,047 17-Jun-98	50,738 7-Jun-93	38,135 29-Nov-99	38,139 17-Jun-98	39,394 4-Aug-99 41,408 28-Aug-98	36,118 23-DEC-	1998 35,574 23-DEC-	38,560 30-Nov-95
um smegmatis um		Entra Silva	niger				Triticum aestivum 37			Arabidopsis thaliana 36		Leishmania donovani 50		æn	ខ្	Arabidopsis thaliana 36	Arabidopsis thaliana 35	Caenorhabditis elegans 38
iol-Mycobacterium Mycobacterium	Corynebacte	glutamicum	glutamicum Aspergillus	Homo sapiens	Homo sapiens		-	G Homo sapiens	G Homo sapiens	Arabido	Mycobacterium tuberculosis	Leishma	Homo sapiens	Mycobacterium tuberculosis	Homo sapiens Homo sapiens	Arabidop	Arabidop	Caenorh
Table 4 (continued) M.smegmatis genes hisD and hisC for histidinol dehydrogenase and histidin phosphate aminotransferase, respectively. Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Corynebacterium glutamicum acetohydroxy acid synthase (ilvB) and (ilvN) genes, and acetohydroxy acid isomeroreductase (ilvC) gene, complete cds.	complete cds. DNA encoding scetchydrovy, soid isomeroreductes.	Sequence 18 from Patent W09706261.	Human DNA sequence from Fosmid 24E5 on chromosome 22q11.2-qter contains parvalbumin, ESTs, STS.	Homo sapiens chromosome 19, cosmid F19750, complete sequence. Homo sapiens clone DJ1106H14, *** SEQUENCING IN PROGRESS ***, 42	unordered pieces. Homo sapiens clone DJ1106H14, *** SEQUENCING IN PROGRESS ***, 42	omple	Homo sapiens chromosome 19 clone CIT-HSPC_475D23, *** SEQUENCING IN PROGRESS ***, 31 unordered pieces.	Homo sapiens chromosome 19 clone CIT-HSPC_475D23, *** SEQUENCING IN PROGRESS ***, 31 unordered pieces.	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MYH19,	complete sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 47/162.	Leishmania donovaní phosphoribosylpyrophosphate synthetase gene,	Homo sapiens chromosome 1 clone RP4-799D16 map p34.3-36.1, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 69/162.	Homo sapiens mRNA for KIAA1109 protein, partial cds. HS_3098_A1_C03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3098 Col=5 Row≂E, genomic survey	sequence. Arabidopsis thaliana chromosome 1 BAC F508 sequence, complete	sequence. Arabidopsis thaliana chromosome 1 BAC F5O8 sequence, complete sequence.	Caenorhabditis elegans cosmid C06G1.
X65542 Z95586	L09232	F08737	A60299	282185	AC005265 AC004965	AC004965		ACD11469	AC011469	AB010077	292539	M76553	AL050344	Z74020	AB029032 AQ107201	AC005990	AC005990	U41014
2298 32437	4705	1047	2869	35506	43900	323792		113436	113436	77380	38970	1887	130149	35377	6377 355	99923	99923	31205
GB_BA1:MSHISCD	GB_BA1:CORAIA	GR PAT-F08939	GB_PAT:A60299	GB_PR3:HS24E5	GB_PR3:AC005265 GB_HTG2:AC004965	GB_HTG2:AC004965	GB_PL2:TAU55859	GB_HTG3;AC011469	GB_HTG3:AC011469	GB_PL1:AB010077	GB_BA1:MTCY10G2	GB_IN1:LEIPRPP	GB_HTG2:HSJ799D1 6	GB_BA1:MTCY48	GB_PR2:AB029032 GB_GSS9:AQ107201	GB_PL2:F508	GB_PL2:F508	GB_IN1:CELC06G1
	1137		1449		846			1528			1098			2556		873		
	rxa01145		rxa01162		rxa01208			rxa01209			rxa01215			гха01239		rxa01253		

PCT/IB00/00923

WO 01/00843

		are the second of the second o		
WO 01/00843				PCT/IB00/00923
		112		
05-MAY- 1999 2-Aug-99 26-OCT- 1999	15-OCT- 1998 12-Apr-99 01-OCT-	1999 11-Jun-99 23-Nov-99 6-Jul-99 28-Sep-99 9-Jul-98	23-Nov-97 20-Nov-99 28-Jul-99 24-Jun-99	24-Feb-97 27-Jul-98 9-Jul-98 24-Feb-97 28-Jul-99
41,121 40,634 38,290	34,311 34,311 37,722	38,492 39,738 46,237 45,574 44,097	41,316 36,606 37,916 37,419	34,831 35,138 37,277 100,000 38,400
Homo sapiens Drosophila metanogaster Drosophila metanogaster	Arabidopsis thaliana Arabidopsis thaliana Homo sapiens	Gossypium hirsutum Homo sapiens Mus musculus Mus musculus Mus musculus	Mus musculus Arabidopsis thaliana Homo sapiens Mycobacterium tubercufosis	Corynebacterium glutamicum Streptomyces coelicolor Homo sapiens Corynebacterium glutamicum Homo sapiens
	• - • • -	BNLGHi12371 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (U86081) root hair defective 3 [Arabidopsis thaliana], mRNA sequence. Human DNA sequence from PAC 227P17, between markers DXS6791 andDXS8038 on chromosome X contains CpG island, EST. AV171099 Mus musculus head C57BL/6J 14, 17 day embryo Mus musculus cDNA clone 3200002M11, mRNA sequence. Mus musculus mGpi1 gene, exon 1. uc83d10.y1 Sugano mouse kidney mkia Mus musculus cDNA clone imaka film to TR-035120 035120 MGP11P - mRNA		Streptomyces coelicolor cosmid 5A7. Streptomyces coelicolor cosmid 5A7. Homo sapiens chromosome 4 clone B220G8 map 4q21, complete sequence. C.glutamicum fysE and lysG genes. HS_3155_B2_G10_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3155 Col=20 Row=N, genomic survey sequence.
AQ518843 AC007473 AC011696	AC005167 AC005825 AC011150	AI725583 Z81007 AV171099 AB008915 AI050532	AB008895 AB005237 AQ766840 AL022004	AB031107 AC004054 X96471 AQ769223
194859	7 83260 5 97380 127222	728 82951 9 173 530 293	3062 87835 491 68848	
GB_GSS14:AQ51884 3 GB_HTG2:AC007473 GB_HTG4:AC011696	GB_PL2:ATAC005167 83260 GB_PL2:ATAC005825 97380 GB_HTG3:AC011150 12722	GB_EST32:AI725583 728 GB_PR2:HS227P17 829 GB_EST34:AV171099 173 GB_RO:AB008915S1 530 GB_EST22:Al050532 293	GB_RO:AB008895 GB_PL1:AB005237 GB_GSS5:AQ766840 GB_BA1:MTV043	GB_BA1:SC5A7 GB_PR3:AC004054 GB_BA1:CGLYSEG GB_GSS5:AQ769223

822

rxa01394

rxa01393

944

rxa01381

09/11/2002, EAST Version: 1.03.0007

1044

rxa01321

259

xa01360

629

rxa01361

706

rxa01352

,	wo	01/0	08	43												,	12]	PCT/	IB0	0/0(923	
	24-Feb-97	10-Aug-98	22-Aug-97	1/-Jun-98	21-MAR-	1997	21-MAR-	1997	04-MAY-	1999		27-Aug-99	17-Jun-98	15-Jun-96	4		13 86-un-71		22-Aug-97	10-Aug-98	8-Feb-99		22-Aug-97	66-unr-6	17-Jun-98	21-Apr-97	19-OCT-	1995 23.Nov.08	23-Nov-98		1999 05-MAR- 1997
	33,665	62,726	38,139	37,340	58,517		56,151		39,037	40 130		37,752	39,057	54,382	ie 52 041		40,941		38,451	61,194	58,021		38,414	36,930	37,062	37,647	38,289	27 084	38,469	39,021	57,521
	Corynebacterium alutamicum	Streptomyces coelicolor	Mycobacterium leptae	tuberculosis	Escherichia coli	:	Escherichia coli	Terberichia coli	Streptomyces coelicolor	Mycobacterium	tuberculosis	Mycobacterium leprae	Mycobacterium	Mycobacterium leprae	Mycobacterium emegmetis		Mycobacterium	tubercutosis	Mycobacterium leprae	Streptomyces coelicolor	Corynebacterium	ammoniagenes	Mycobacterium leprae	Streptomyces coelicolor	Mycobacterium	Homo sapiens	Tilapia mossambica	Caenorhahditis elegans	Caenorhabditis elegans	Streptomyces coelicolor	Mycobacterium avium
Table 4 (continued)	C.glutamicum lysE and lysG genes.	Streptomyces coelicolor cosmid 3C3. Mycobacterium lengae cosmid 822	Mycobacterium triberculosis H37Rv complete genome: segment 122/482		E.coli genomic DNA, Kohara clone #336(41.2-41.6 min.).		E.coii genomic DivA, Nonara cione #33ogap(41.6-41.9 min.).	Escherichia coli K-12 MG1655 section 169 of 400 of the complete genome	Streptomyces coelicolar cosmid H10.	Mycobacterium tuberculosis H37Rv complete genome; segment 18/162.		Mycobacterium leprae cosmid B4.	Mycobacterium tuberculosis H3/RV complete genome; segment 103/162.	Mycobacterium leprae cosmid B1229 DNA sequence.	Mycobacterium smeamatis dGTPase (dat), and primase (dnaG) genes	complete cds; tRNA-Asn gene, complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.		Mycobacterium leprae cosmid B22.	Sulphornyces coelicolor cosmid 3C3.	colynebacterium ammontagenes gene for FAD synthetase, complete cds.		Mycobacterium leprae cosmid B22.	Suleptonyces coelicator cosmid 10A7. Mycobacterium tuberaulosis U270: complete company.	Mycobacterium tubercurosis nozna comprete genome; segment 122/162.	EST65614 Jurkat T-cells III Homo sapiens cDNA 5' end, mRNA sequence.	O.mossambicus prolactin I gene.	Caenorhabditis elegans cosmid F28C12, complete sequence.	Caenorhabditis elegans cosmid F28C12, complete sequence.	Streptomyces coelicolor cosmid E9.	Mycobacterium avium hypoxanthine-guanine phosphoribosyl transferase gene, complete cds.
	X96471	AL031231 298741	AL008967		D90827	90000	D30050	AE000279	AL049754	295324		AL023514	000007	L78812	AF027507		AL008967	70074	41031231	ALUS 1231	202.20	77007	458741 A1778818	AL 008967		AA356956	X92380	Z93380	Z93380	AL049841	U88875
	2374	31382	56414		18886	14500	000	10855	39524	35019		36310	21263	30670	5168		56414	40004	40201		2	70007	30730	56414	1	255	7327	14653	14653	37730	840
	GB_BA1:CGLYSEG	GB_BA1:SC3C3 GB_BA1:MLCB22	GB BA1:MTV002		GB_BA1:D90827	GR 841-D00838	מקסקפת : עק בק	GB_BA2:AE000279	GB_BA1:SCH10	GB_BA1:MTY13E10		GB_BA1:MLCB4		GB_BA1:MSGB1229C 30670	GB_BA2:AF027507		GB_BA1:MTV002	כנסט אייו אמ מט	GB_BATIMECD22	GB RATIONEANS	מטליליטטיים ביים	במטי ואני זאמ מט	GB BA1:8C10A7	GB BATIMITYON2		GB_EST13:AA356956 2	GB_OV:OMDNAPROI 7	GB_IN1:CEF28C12	GB_IN1:CEF28C12	GB_BA1:SCE9	GB_BA1:MAU88875
		630		!	1347				1413			1305	2				757			1146	7			774				1662		723	
		rxa01416			rxa01442				rxa01446			72014R3					rxa01486			CA01489	200			rxa01491				rxa01508		rxa01512	

	17-Jun-98	18-Jun-98	27-Aug-99	1995	17-Apr-96	17-Apr-96	24-Jun-99	13-Aug-99	20-Aug-99	3-Jun-99	တ္	13-Apr-99		7-Jan-99	26-Apr-93	} -	20-Aug-97	20-Aug-97	29-Jun-98	01-OCT-	1998	01-0CT- 1998	17-Jun-98	17-DEC- 1993	8-Jul-99	2-Sep-99	07-DEC-	77-Anr-93	17-Jun-98	3 ;	29-Sep-94
	40,086	43,343	38,177	0,40	38,943	37,500	38,010	36,346	37,897	36,149	35,846	40,566		38,095	38,206		36,623	34,719	37,500	37,031	4	38,035	38,371	38,064	60,775	38,514	37,730	39 340	63,300		36,756
	Mycobacterium	tuberculosis Mycobacterium tuberculosis	Mycobacterium leprae	rugiena gracilis	Escherichia coli	Escherichia coli	Mycobacterium tuberculosis	Drosophila melanogaster	Drosophila melanogaster	Drosophila melanogaster	Arabidopsis thaliana	Sorosporium saponariae		Arabidopsis thaliana	Anabaena sp.		Homo sapiens	Homo sapiens	Mus musculus	Homo sapiens		Homo sapiens	Mycobacterium tuberculosis	Escherichía coli	Streptomyces coelicolor	Caenorhabditis elegans	Homo sapiens	Sue ecrofa	Mycobacterium	tubercutosis	Mycobacterium leprae
Table 4 (continued)	Mycobacterium tuberculosis H37Rv complete genome; segment 154/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 153/162.	Mycobacterium leprae cosmid B2548.	E.gracilis mknA for GTP cyclonydrolase (core region).	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Mycobacterium tuberculosis H37Rv complete genome; segment 93/162.	Drosophila melanogaster mRNA for drosophila dodeca-satellite protein 1 (DDP-1).	Drosophila melanogaster chromosome 2 clone BACR01106 (D1054) RPCI-98 01.I.6 map 55D-55D strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** 86 unordered pieces.	Drosophila melanogaster done LD21677 unknown mRNA.	Arabidopsis thaliana BAC F6H8.	Sorosporium saponariae internal transcribed spacer 1, 5.8S ribosomal RNA	gene; and internal transcribed spacer 2, complete sequence.	Arabidopsis thaliana chromosome II BAC T15J14 genomic sequence,	complete sequence. Anabaena sp. (clone AnH20.1) nitrogen fixation operon nif8, fdxN, nif8, nifU.	and nifH genes, complete cds.	Human BAC clone RG204116 from 7q31, complete sequence.	Human BAC clone RG204I16 from 7q31, complete sequence.	Mus musculus chromosome X, clone 437P9.	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete		Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 21/162.	E, coli chromosomal region from 89.2 to 92.8 minutes.	Streptomyces coelicolor cosmid Q11.	Caenorhabditis elegans cosmid Y62H9A, complete sequence.	Homo sapiens DLX-2 (DLX-2) gene, complete cds.	Dio Dioce prince of the Control of t	Fig D-armino acid oxidase (DAO) gorie, exon 1. Mycobacterium tuberculosis H37Ry complete genome; segment 76/162.		Mycobacterium leprae cosmid L247.
	295436	Z95557	AL023093	249/5/	U14003	U14003	Z73966	AJ238847	AC009210	AF132179	AF178045	AF038831		AC005957	105111	}	AC002461	AC002461	AL049866	AC005740		AC005740	284724	900000	AL096823	AL032630	U51003	7770774	798268		U00021
	33050	24244	38916	242	338534	338534	39430	5419	103814	4842	82596	647	•	7 108355	5936	}	197273	197273	165901	186780		186780	35420	176195	15441	47396	3202	u C	37437	5	39193
	GB_BA1:MTY15C10	GB_BA1:MTCY7H7B	GB_BA1:MLCB2548	GB_PL1:EGG1PCHI	GB_BA1:ECOUW93	GB_BA1:ECOUW93	GB_BA1:MTCY49	GB_IN1:DME238847	GB_HTG3:AC009210	GR IN2 AF132179	GB PL2:F6HB	GB PL2:AF038831		GB_PL2:ATAC005957	CR RA1.ANANIFBH		GB_PR2:AC002461	GB_PR2:AC002461	GB_RO:MM437P9	GB_PR3:AC005740		GB_PR3:AC005740	GB_BA1:MTCY22G10	GB_BA2:ECOUW89	GB BA1:SCQ11	GB_IN1:CEY62H9A	GB_PR4:HSU51003		GB_OM:PIGDAOI		GB_BA1:U00021
		711			975			513			900) :			100	76			651				1998			1053			1785	3	
		rxa01514			rxa01515			rxa01516			xa01517				104,000	7010BX			rxa01528				rxa01551			rxa01561			20011500	200	

114

Mycobacterium tuberculosis

					Table 4 (continued)			
		GB_BA1:MLCB1351	38936	Z95117	Mycobacterium leprae cosmid B1351.	Mycobacterium leprae	36,756	24-Jun-97
rxa01617	795	GB_PR2:HSMTM0	217657	AL034384	Human chromosome Xq28, cosmid clones 7H3, 14D7, C1230, 11E7, F1096, A12197, 12G8, A09100; complete sequence bases 1, 217657	Homo sapiens	40,811	5-Jul-99
		GB_PR2:HS13D10	153147	AL021407	Homo sapiens DNA sequence from PAC 13D10 on chromosome 6p22.3-23. Contains CpG island.	Homo sapiens	38,768	23-Nov-99
	i	GB_PR2:HSMTM0	217657	AL034384	Human chromosome Xq28, cosmid clones 7H3, 14D7, C1230, 11E7, F1096, A12197, 12G8, A09100; complete sequence bases 1217657.	Homo sapiens	39,018	6-Jul-99
rxa01657	723	GB_BA1:MTCY1A10	25949	295387	Mycobacterium tuberculosis H37Rv complete genome; segment 117/162.	Mycobacterium tuberculosis	40,656	17-Jun-98
		GB_EST6:D79278	392	D79278	HUM213D06B Human aorta polyA+ (TFujiwara) Homo sapiens cDNA clone GEN-213D06 5', mRNA sequence.	Homo sapiens	44,262	9-Feb-96
		GB_BA2:AF129925	10243	AF129925	Thiobacillus ferrooxidans carboxysome operon, complete cds.	Thiobacillus ferrooxidans	40,709	17-MAY-
rxa01660	675	GB_BA1:MTV013	11364	AL021309	Mycobacterium tuberculosis H37Rv complete genome; segment 134/162.	Mycobacterium	40,986	17-Jun-98
		GB_RO:MMFV1 GB_PAT:A67508	64 80 64 80	X97719 A67508	M.musculus retrovirus restriction gene Fv1. Sequence 1 from Patent WO9743410.	Mus musculus Mus musculus	35,364	29-Aug-96 05-MAY-
rxa01678	651	GB_VI:TVU95309	009	095309	Tula virus 064 nucleocapsid protein gene, partial cds.	Tula virus	41,894	1999 28-OCT-
		GB_VI:TVU95303	909	U95303	Tula virus O52 nucleocapsid protein gene, partial cds.	Tula virus	41,712	1997 28-OCT-
		GB_VI:TVU95302	600	U95302	Tula virus O24 nucleocapsid protein gene, partial cds.	Tula virus	39,576	1997 28-OCT-
rxa01679	1359	GB_EST5:H91843	362	H91843	ys81e01.s1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:221208 3' similar to gb:X63749_rna1 GUANINE NUCLEOTIDE-	Homo sapiens	39,157	1997 29-Nov-95
		GB_STS:G26925 GB_PL2:AF139451	362	G26925 AF139451	BINDING PROTEIN G(T), ALPHA-1 (HUMAN);, mRNA sequence, human STS SHGC-30023, sequence tagged site.	Homo sapiens	39,157	14-Jun-96
rxa01690	1224	GB_BA1:SC1C2	42210	AL031124	Streptomyces coelicolor cosmid 1C2.	Streptomyces coelicolor	38,910 60,644	1-Jun-99 15-Jan-99
		GB_ES122:AIU64232	493 3	A1064232	GH04563.5prime GH Drosophila melanogaster head pOT2 Drosophila melanogaster cDNA clone GH04563 5prime, mRNA sequence.	Drosophila melanogaster	38,037	24-Nov-98
rxa01692	873	GB_IN2:AF117896 GB_BA2:AF067123	1020 103 4	AF117896 AF067123	Drosophila melanogaster neuropeptide F (npf) gene, complete cds. Lactobacillus reuteri cobatamin biosynthesis protein J (cbiJ) gene, partial cds; and uropornhyrin-III C-methyltransferase (sum D gene, complete, cds.)	Drosophila melanogaster Lactobacillus reuteri	36,122 48,079	2-Jul-99 3-Jun-98
		GB_RO:RATNFHPEP	3085	M37227	Rat heavy neurofilament (NF-H) polypeptide, partial cds.	Rattus norvegicus	37,093	27-Apr-93
rxa01698	1353	GB_RO:RSNFH GB_BA2:AF124600	3085 4115	X13804 AF124600	Rat mRNA for heavy neurofilament polypeptide NF-H C-terminus. Corynebacterium glutamicum chorismate synthase (aroC), shikimate kinase (aroK), and 3-dehydroquinate synthase (aroR) genes, complete cds: and	Rattus sp. Corynebacterium	37,093 100,000	14-Jul-95 04-MAY-
		GB_BA1:MTCY159	33818	Z83863	ds. e; segment 111/162.	gratamount Mycobacterium	36,323	1599 17-Jun-98

Mycobacterium leprae cosmid B937 DNA sequence Corynebacterium glutamicum chorismate synthase (aroK), and 3-dehydroquinate synthase (aroB) generoutative cytoplasmic peptidase (pepQ) gene, partial Streptomyces caelestis cytochrome P-450 hydroxyia		AF124600 AF016585	
inate synthase (aroB) genes, catidase (pepQ) gene, partial cds sytochrome P-450 hydroxylase nthase modules 1 through 7 (nirase homolog gene, partial cds		AF016585	AF016585
ipening stage Oryza sativa c			
astigote normalized cDNA NA sequence. astigote normalized cDNA VA sequence.	 DNA clone 1404 5', mRNA sequence. TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi Trypanosoma cruzi TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi Trypanosoma cruzi CDNA clone 1404 5', mRNA sequence. 	AA952466 IENS1404 I. cruzi epimastigote normalized cDNA cDNA clone 1404 5', mRNA sequence. AA952466 TENS1404 T. cruzi epimastigote normalized cDNA cDNA clone 1404 5', mRNA sequence.	AA952466
me 1 clone RP4-534K7, *** lered pieces.		AL109925	AL109925
me 1 clone RP4-534K7, *** SEQUENCING IN lered pieces.	Homo sapiens chromosome 1 clone RP4-534K7, PROGRESS ***, in unordered pieces.	AL109925 Homo sapiens chromosome 1 clone RP4-534K7, PROGRESS ***, in unordered pieces.	154416 AL109925 Homo sapiens chromosome 1 clone RP4-534K7, PROGRESS ***, in unordered pieces.
mouse heart (#937316) M sequence.		AI447108	AI447108
s UJ1060B11 from 7q11.		AC000522	ACOUBAZZ
: TM018A10. • DJ1060B11 from 7q11		AF013294 AC006322	•
t brain 1NIB Homo sapie	sequence. yg52a03.s1 Soares infant brain 1NIB Homo sapiens cD IMAGE:36000.3' mRNA sequence	sequence. R46227 yg52a03.s1 Soares infant brain 1NIB Homo sapie IMAGE:36000 3' mRNA sequence	
t brain 1NIB Homo sapiens cD sequence.	<u>, </u> <u> </u>		yg52a03.s1 Soares infant brain 1NIB IMAGE:36000 3', mRNA sequence.
sis H37Rv complete genor	Mycobacterium tuberculosis H37Rv complete genome;	Z70283 Mycobacterium tuberculosis H37Rv complete genor	
smid B22. cosmid 5F7.	Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 5F7.	Z98741 Mycobacterium leprae cosmid B22. AL096872 Streptomyces coelicolor cosmid 5F7.	22
_T_GBC_S1 Homo sapien r to WP:F28F8.3 CE09757 F - mRNA segmence	om38c02.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:1543298 3' similar to WP:F28F8.3 CE09757 SMALL NUCLEAR RIBONUCL FOPROTEIN F · mRNA segience	AA918454 om38c02.s1 Soares_NFL_T_GBC_S1 Homo sapien. IMAGE:1543298 3' similar to WP:F28F8.3 CE09757 RIBONUCI FOPROTFIN E · mRNA segience	
ells, NGF-treated (9 days) is	EST110563 Rat PC-12 cells, NGF-treated (9 days) Ratt	H34042 EST110563 Rat PC-12 cells, NGF-treated (9 days) I	
sequence. surospora crassa cDNA ci	•	70	NCP6G8T7 sequence.

					Table 4 (continued)			
rxa01807	9 15	GB_BA1:AP000063			Aeropyrum pernix genomic DNA, section 6/7.	Aeropyrum pernix	40.067	22-Jun-99
		GB_HTG4:AC010694	115857	AC010694	Drosophila melanogaster clone RPCI98-6H2, *** SEQUENCING IN	Drosophila melanogaster	35,450	16-OCT-
		GB HTG4:AC010694	115857	AC010604	PROURESS, /5 unordered pieces.	:		1999
						Drosophila melanogaster	35,450	16-OCT-
rxa01821	401	GB_BA1:CGL007732	4460	AJ007732	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5' soxA gene.	Corynebacterium	100,000	7-Jan-99
		GB RO:RATALGL	7601	M24108	Rattus norveoleus (clone A21142) afriba2# dlobutin nana lavore 1.7	giutarrinculli Dotting populations	0	1
					The second second of the second secon	ratius norvegicus	38,692	15-DEC- 1994
100	7 40	GB_OV:APIGY2	1381	X78272		Anas platyrhynchos	36,962	15-Feb-99
ranioss	6 4 7	GB_ES 30;A 529479	22	A1629479	486101D10.x1 486 - leaf primordia cDNA library from Hake lab Zea mays	Zea mays	38,109	26-Apr-99
		GB_STS:G48245	515	G48245	SHGC-62915 Human Homo sapiens STS genomic, sequence tagged site.	Homo sapiens	37,021	26-MAR-
		GB_GSS3:B49052	515	B49052	RPCI11-4I12.TV RPCI-11 Homo sapiens genomic clone RPCI-11-4I12.	Homo sapiens	37.021	1999 8-Apr.00
04 KG	1470	79/84 COOR 84/84	0000	140001	genomic survey sequence.		1 20, 10	66-1 d V-0
200	<u>2</u>	0	0000	/86910	Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.	Escherichia coli	37,195	U18997
٠		GB_BA2:AE000392	10345	AE000392	Escherichia coli K-12 MG1655 section 282 of 400 of the complete genome.	Escherichia coli	38,021	12-Nov-98
		GB_BA2:U32715	13136	U32715	Haemophilus influenzae Rd section 30 of 163 of the complete genome.	Haemophilus influenzae	39,860	29-MAY-
rxa01878	1002	GB_HTG1:CEY64F11	177748	299776	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN		27 FEA	1998 14 004
							too' to	1998
		GB_HTG1:CEY64F11	177748	299776	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN	Caenorhabditis elegans	37,564	14-OCT-
		GR HTG1-CEVSAE11	27777	27007	;			1998
			0	733/10	Caenorhabuilis elegans chromosome IV clone 164F11, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	37,576	14-0CT-
rxa01892	852	GB_BA1:MTCY274	39991	Z74024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium	35,910	19-110-08
			0			tuberculosis		
		GB_BA1:MICGE1520C	40503	79677	cosmid	Mycobacterium leprae	64,260	27-Aug-99
		S S		L/ 00%4	iviycobacierium ieprae cosmiq 51529 UNA sequence.	Mycobacterium leprae	64,260	15-Jun-96
rxa01894	978	GB_BA1:MTCY274	39991	274024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium	37,229	19-Jun-98
		GB_IN1:CELF46H5	38886	U41543	Caenorhabditis elegans cosmid F46H5.	Caenorhabditis elegans	38,525	29-Nov-96
		GB_HTG3:AC009204	115633	AC009204	Drosophila melanogaster chromosome 2 clone BACR03E19 (D1033) RPCI-98 03.E.19 map 36E-37C strain y; cn bw sp, *** SEQUENCING IN PROGRESS		31,579	18-Aug-99
02010xx	1125	GR BAD AE112536	1708	AE110526	Construction of the contraction			
	-			000311	conglicuation glutarilicum riponuciacine reductase peta-chain (hrdF) gene, complete cds.	Corynebacterium glutamicum	99,733	5-Aug-99
		GB_BA1:CANRDFGE N	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium ammoniagenes	70,321	18-Apr-98

			•		Table 4 (continued)			
		GBBAZ:AFU5U168	1228	AF050168	Corynebacterium ammoniagenes ribonucleoside diphosphate reductase small Corynebacterium	l Corynebacterium	72,082	23-Apr-98
rxa01928	980	GB_BA1:CGPAN	2164	X96580	C.glutamicum panB, panC & xylB genes.	ammoniagenes Corvnehacterium	100 000	11.646
						glutamicum	9	1999
		GB_FLT:AP000423	1544/8	AP000423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence, strain Columbia	Chloroplast Arabidopsis	35,917	15-Sep-99
		GB_PL1:AP000423	154478	AP000423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence,	maliana Chloroplast Arabidopsis	33,925	15-Sep-99
000000000000000000000000000000000000000	960	00000	Č	000	strain:Columbia.	thaliana	. (L.
Ka01929	020	GB_BATICGPAN	2164	X96580	C.glutamicum panB, panC & xylB genes.	Corynebacterium	100,000	11-MAY.
		GB_BA1:XCU33548	8429	U33548	Xanthomonas campestris hrpB pathogenicity locus proteins HrpB1, HrpB2, HrpB3, HrpB4, HrpB5, HrpB6, HrpB7, HrpB8, HrpA1, and ORF62 genes complete cds	glutamicum Xanthomonas campestris pv. vesicatoria	38,749	1999 19-Sep-96
		GB_BA1:XANHRPB6 A	1329	M99174	Xanthomonas campestris hrpB6 gene, complete cds.	Xanthomonas campestris	39,305	14-Sep-93
rxa01940	1059	GB_IN2:CFU43371	1060	U43371 ·	Crithidia fasciculata inosine-uridine preferring nucleoside hydrolase (IUNH)	Crithidia fasciculata	61,417	18-Jun-96
		GR BA2.AF001467	11601	AE001467	gene, complete cds. Heliopharter pylori, strain 100 conding 20 of 423 of the complete of and	:		
		GB_RO:AF175967	3492	AF175967	Homo sapiens Leman coiled-coil protein (LCCP) mRNA, complete genome,	Helicobacter pylori J99	38,560	20-Jan-99
rxa02022	1230	GB_BA1:CGDAPE	1966	X81379	C.glutamicum dapE gene and orf2.	Corynebacterium	100,000	8-Aug-95
			300			glutamicum		•
		GB_BATCGUNAARO	707	X85965	C.glutamicum ORF3 and aroP gene.	Corynebacterium	38,889	30-Nov-97
		GB_BA1:APU47055	6469	U47055	Anabaena PCC7120 nitrogen fixation proteins (nifE, nifN, nifX, nifW) genes,	glutamicum Anabaena PCC7120	36.647	17-Feh-96
	i d				complete cds, and nitrogenase (nifK) and hesA genes, partial cds.		<u>.</u>	3
rxa02024	828	GB_BA1:MTCI364	29540	293777	Mycobacterium tuberculosis H37Rv complete genome; segment 52/162.	Mycobacterium	59,415	17-Jun-98
		GB_BA1:MSGB1912C	38503	L01536	M. leprae genomic dna sequence, cosmid b1912.	tuberculosis Mycobacterium leprae	57,093	14-Jun-96
		GB_BA1:MLU15180	38675	U15180	Mycobacterium leprae cosmid B1756.	Mycobacterium leprae	57.210	09-MAR-
rxa02027								1995
rxa02031								
rxa02072	1464	GB_BA1:CGGDHA	2037	X72855	C.glutamicum GDHA gene.	Corynebacterium	99,317	24-MAY-
		GB_BA1:CGGDH	2037	X59404	Corynebacterium glutamicum, gdh gen for glutamate dehydrogenase.	glutamicum Corynebacterium	94,387	1993 30-Jul-99
		GB_BA1:PAE18494	1628	Y18494	Pseudomonas aeruginosa gdhA gene, strain PAC1.	glutamicum Pseudomonas aeruginosa	62,247	6-Feb-99

Table 4 (continued)

33,874

Arabidopsis thaliana

Arabidopsis thaliana BAC T7123, complete sequence.

4	•	•
F		•
1	_	-

								1	19	:							
17-Jun-98	24-Jun-97 29-MAY-	1995 4-Jun-97	27-OCT-	1997 6-Nov-97 13-Jan-99	31-DEC-	1998 18-MAY- 1995	24-MAR-	1999 01-MAR-	1994 24-Jun-99	24-Sep-99	14-MAY-	1997 24-Sep-99	02-MAR-	1998 11-Jun-99	02-MAR-	1998 23-Nov-99	9-Jun-98
38,442	56,486 52,127	34,163	35,586	31,917 35,818	34,274	41,162	50,791	37,563	39,504	37,909	37,843	37,909	36,533	33,451	36,756	34,365	34,325
Mycobacterium	tuperculosis Mycobacterium leprae Escherichia coli	Homo sapiens	Homo sapiens	Homo sapiens Streptomyces coelicolor	Homo sapiens	Homo sapiens	Streptomyces coelicolor	Mycobacterium leprae	Mycobacterium	tuberculosis D08 (D1101) RPCI-98 Drosophila melanogaster IG IN PROGRESS	Arabidopsis thaliana	8 Drosophila melanogaster	Streptomyces coelicolor	Gossypium hirsutum	Streptomyces coeficolor	Homo sapiens	Arabidopsis thalia⊓a
Mycobacterium tuberculosis H37Rv complete genome; segment 49/162.	Mycobacterium leprae cosmid B33. E. coli genomic sequence of the region from 84.5 to 86.5 minutes.	zw82h01.r1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:782737 51 mRNA sequence			Homo sapiens chromosome 17, clone hRPK.112_J_9, complete sequence.	yg71g10.r1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:38768 5' similar to gb:V00567 BETA-2-MICROGLOBULIN PRECURSOR (HUMAN);, mRNA sequence.	Streptomyces coelicolor cosmid 6G10.	Mycobacterium leprae cosmid B1170.	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	chromosome 3 clone BACR09	***, 121 unordered pieces. T12A12-Sp6 TAMU Arabidopsis thaliana genomic clone T12A12, genomic survey sequence.	Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster 09.D.8 map 96F-96F strain y; cn bw sp, *** SEQUENCING IN PROGRESS	S.coelicolor secY locus DNA.	BNLGHi10185 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AC004005) putative ribosomal protein L7 [Arabidopsis thaliana], mRNA sequence.	S.coelicolor secY locus DNA.	Human DNA sequence from clone RP3-525L6 on chromosome 6p22.3-23 Contains CA repeat. STSs. GSSs and a CnG Island, complete sequence	Arabidopsis thaliana DNA chromosome 4, BAC clone F21P8 (ESSA project).
Z 95585	Z94723 M87049	AA448146	AA641937		ACUUDDOS	R49746	AL049497	000010	295586	AC010579	B09839	AC010579	X83011	AI731596	X83011	AL023807	AL022347
22550	42224 91414	452	444	143029 37620	COR / 1	397	36734	41171	32437	157658	1191	157658	5154	568	6154	168111	85785
GB_BA1:MTCY22G8	GB_BA1:MLCB33 GB_BA1:ECOUW85	GB_EST14:AA448146	GB_EST17:AA641937	GB_PR3:AC003074 GB_BA1:SC1A6	2 T T T T T T T T T T T T T T T T T T T	GB_EST3:R49746	GB_BA1:SC6G10	GB_BA1:U00010	GB_BA1:MTCY336	GB_HTG3:AC010579	GB_GSS3:B09839	GB_HTG3:AC010579	GB_BA1:SCSECYDN A	GB_EST32:AI731596	GB_BA1:SCSECYDN A	GB_PR3:HS525L6	GB_PL2:ATF21P8
2358		927		1179			140/			096			1044			1197	
rxa02085		rxa02093		rxa02106			L L L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			xa02112			rxa02134			xa02135	

								120						,
3-Ncv-98	7-Nov-98	26-Jun-98 17-Jun-98	15-Jun-96	15-Jun-96	1-Jul-98	2-Jul-97	25-Jul-96	1-Jul-98	2-Jul-97	25-Jul-96	25-Jul-96	1-Jul-98	15-Jun-96	1-Jul-98
34,123	31,260	34,281 62,904	36,648	36,648	99,104	99,224	100,000	98,551	98,477	100,000	792,66	99,378	55,504	100,000
equence, complete Arabidopsis thaliana	Arabidopsis thaliana	Arabidopsis thaliana Mycobacterium	tuberculosis Mycobacterium leprae	Mycobacterium leprae	Corynebacterium glutamicum	Corynebacterium	Corynebacterium	Sorynebacterium glutamicum	Corynebacterium olutamicum	Corynebacterium	Corynebacterium	Gorynebacterium glutamicum	Mycobacterium leprae	Corynebacterium glutamicum
is thaliana chromosome II BAC T3A4 genomic s	sequence. Arabidopsis thaliana chromosome 1 BAC F15K9 sequence, complete sequence.	Arabidopsis thaliana BAC T7l23, complete sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium leprae cosmid B1554 DNA sequence.	Mycobacterium leprae cosmid B1551 DNA sequence.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and armininosuccinate brase (argR), argininosuccinate synthase (argG), and	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes complete cds	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Mycobacterium leprae cosmid B1133 DNA sequence.	Corynebacterium glutamicum N-acetylgiutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate tyase (argH) genes, complete cds.
AC005819	AC005278	U89959 Z70283	L78814	L78813	AF049897	AF005242	X86157	AF049897	AF005242	X86157	X86157	AF049897	L78811	AF049897
57752	71097	106973 34150	36548	36548	9196	1044	4355	9196	1044	4355	4355	9196	42106	9196
GB_PL2:ATAC005819 57752	GB_PL2:F15K9	GB_PL2:U89959 GB_BA1:MTCY190	GB_BA1:MSGB1554C S	GB_BA1:MSGB1551C S	GB_BA2:AF049897	GB_BA1:AF005242	GB_BA1:CGARGCJB D	GB_BA2:AF049897		GB_BA1:CGARGCJB D	<u>a</u>		GB_BA1:MSGB1133C	GB_BA2:AF049897
645		1962			903			414			1287			1074
rxa02136		rxa02139			rxa02153			rxa02154			rxa02155			rxa02156

	WO 01/00843							PCT/IB00/00923
				;	121			
25-Jul-96	2-Jun-99 1-Jul-98	25-Jul-96	1-Jul-98	5-Jan-99 25-Jul-96	1-Jul-98	5-Jan-99 5-Jan-99	1-Jul-98	19-Nov-97 22-Apr-96 1-Jul-98
100,000	50,238 99,612	99,612	100,000	99,898	99,843	88,679	99,774	99,834 65,913 88,524
Corynebacterium	glutamicum Thermotoga maritima Corynebacterium glutamicum	Corynebacterium glutamicum Mycobacterium	tuberculosis Corynebacterium glutamicum	Çorynebacterium glutamicum Corynebacterium	glutamicum Corynebacterium glutamicum	Corynebacterium glutamicum Corynebacterium	glutamicum Corynebacterium glutamicum	Corynebacterium glutamicum Streptomyces clavuligerus Corynebacterium glutamicum
C.glutamicum argC, argJ, argB, argD, and argF genes.	Thermotoga maritima section 128 of 136 of the complete genome. Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF),	argining repressor (argin), argininosuccinate synthase (argic), and argininosuccinate lyase (argH) genes, complete cds. Corynebacterium glutamicum ornithine carbamolytransferase (argF) gene, complete cds. C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylgłutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoytransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase. [argH] genes.	Corynebacterium glutamicum ornithine carbamolytransferase (argF) gene, complete cds. Corynebacterium glutamicum arginine repressor (argR) gene, complete cds.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum argininosuccinate synthetase (argG) gene, complete cds. S.clavuligerus argG gene and argH gene (partial). Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.
X86157	AE001816 AF049897	X86157 Z85982	AF049897	AF031518 X86157	AF049897	AF031518 AF041436	AF049897	AF030520 Z49111 AF049897
4355		4355	9196	2045 4355	9196	2045 516	9196	1206 1909 9196
GB_BA1:CGARGCJB	GB_BA2:AE001816 GB_BA2:AF049897	GB_BA1:CGARGCJB D GB_BA1:MTCY06H11	GB_BA2:AF049897	GB_BA2:AF031518 GB_BA1:CGARGCJB	GB_BA2:AF049897	GB_BA2:AF031518 GB_BA2:AF041436	GB_BA2:AF049897	GB_BA2:AF030520 GB_BA1:SCARGGH GB_BA2:AF049897
	1296		1080		989		1326	1554
	157		8		89		09	

•	wo	01 /0	0843	•							4.	22											PC	T/I	B 0()/0(092	23		
	1-Jul-98	17-Jun-98	17-Jun-98	17-Feb-95	19-Jul-97	16-Sep-98	15-Jun-96	16-Sep-98		29-Sep-97	17-Apr-96	22 66-uar-9	6-Feb-99		29-Sep-97	8.40H	86-09-1-0	5-Aug-98		28-Feb-95 17-Im-98		27-Aug-99	01-MAR-	1994	1994	27-Aug-99	17-Jun-98		1994	22-Jun-99
	87,561	64,732	36,998	39,910	38,474	35,941	40,286	33,689		88,367	37,651	98,214	93,805		100,000	100 000	200	39,075		35,542 33,938		65,517	36,770	38 B74		65,465	37,577	000	53,623	39,442
	Corynebacterium	Mycobacterium	Mycobacterium	tuberculosis Corynebacterium	glutamicum basidiomycete CECT	20197 Homo sapiens	Mycobacterium leprae	Homo sapiens Corynebacterium	glutamicum	glutamicum	Escherichia coli	Corynebacterium	glutamicum Corynebacterium	glutamicum	Corynebacterium	Corynebacterium	glutamicum	Eubacterium	acidaminophilum	Urosophila melanogaster Mycobacterium	tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium tenrae		Mycobacterium leprae	Mycobacterium	tuberculosis Mycobarterium tenna	יין כססמכיכויטונו זפטומפ	Aeropyrum pernix
	 Corynebacterium glutamicum argininosuccinate lyase (argH) gene, complete cds. 	Mycobacterium tuberculosis H37Rv complete genome; segment 73/162,	Mycobacterium tuberculosis H37Rv complete genome; segment 41/162.	C.glutamicum glt gene for citrate synthase and ORF.	Basidiomycete CECT 20197 phenoloxidase (pox1) gene, complete cds.		Nycobacterium leprae cosmid B1970 DNA sequence.	Human Chromosome 15q26.1 PAC clone pDJ417d7, complete sequence. Brevibacterium flavum aspA gene for aspartase, complete cds.	DNA encoding Brevibactedium flavum separtase		Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Complete ods	Brevibacterium flavum aspA gene for aspartase, complete cds.		orax encouning part of aspartase from corynerorm bacteria.	Corynebacterium glutamicum phosphoribosyl-ATP-pyrophosphohydrolase	(hisE) gene, complete cds.	Eubacterum acidaminophilum grdR, grdI, grdH genes and partial Idc, grdT genes.	fruit fly STS Dm1930 close DS08949 T7	Mycobacterium tuberculosis H37Rv complete genome; segment 95/162.		Mycobacterum leprae cosmid B2533.	Mycobacterium leprae cosmid B2126.	Mycobacterium leprae cosmid B2126.		Mycobacterium leprae cosmid B2533.	Mycobacterium tuberculosis H3/RV complete genome; segment 95/162.	Mycobacterium leprae cosmid B2126.		Aeropyrum pernix genomic DNA, section 6/7.
010101	A1046/04	285982	Z73101	X66112	U65399	AC002468	L/ 00 13	AC002468 D25316	E04307		U14003		D25316	0,400,00	500	AF086704	7.44	11/145	G01195	Z97559		AL035310	, L0000	U00017		AL035310	600/67	U00017		AP000063
1231	42/	38000	37630	3013	2700	115888	66060	115888 1987	1581		338534 840	2	1987	200	3	264	6	200	332	27322		40245	42137	42157		40245	776/7	42157	6	185300
20 B 20 A CO 40 78 4	40/040/VI	GB_BA1:MTCY06H11	GB_BA1:MTCY31	GB_BA1:CGGLTG	GB_PL2:PGU65399	GB_PR3.AC002468	S S	GB_PR3:AC002468 GB_BA1:BRLASPA	GB_PAT:E04307		GB_BA1:ECOUW93		GB_BA1:BRLASPA	GR DAT-ENREAD		GB_BA2:AF086704	CD DA4:CAV4744E	GD_DA1,EA11/143	GB STS:G01195	GB_BA1:MTCY261		CD_DATHOODS	JIDDOD:ING_GD	GB_BA1:U00017		GB_BA1:MLCB2533		GB_BA1:U00017	4.144	GB_BA1:AP000063
			1251			861		1701			996					393				551	•			2599				1025		
			rxa02176			rxa02189		rxa02193			rxa02194					rxa02195				rxa02197				rxa02198				xa02208		

WO	01/	0084:	3						12	2					P	СТ/І	B00/ (00923	
29-DEC-	1998 03-DEC-	1996 17-Jun-98	01-MAR-	1994 15-Jun-96	18-Jun-98	22-DEC-	1993 22-MAR- 1997	1. Sep. 00	12	23-lun-98	5-Nov-98	1998 1998 23 Fin 08	00-100-02 00-100-100	21-Sep-99	07-0CT-	1997 (Rel. 52, Created)	1997	31-1989 1989 03-OCT.	1997 (Rel. 52, Created)
37,191	53,541	40,407	40,541	66,027	71,723	67,101	s 60,870	37 994	37 007	55,844	41,185	56.080	36.772	36,772	99,515	9	80c,co	52.909	
Homo sapiens	Mycobacterium	tuberculosis Mycobacterium	tuberculosis Mycobacterium leprae	Mycobacterium leprae	Mycobacterium		Mycobacterium smegmatis	Homo sapiens	Homo saniene	Mycobacterium	tuberculosis Rhodococcus equi Mus musculus	Mycobacterium	tuberculosis Homo sapiens	Homo sapiens	Corynebacterium	Strentomores	pristinaespiralis Strentomyres spectabilis	Corynebacterium	ammoniagenes
Table 4 (continued) Homo sapiens chromosome 17, clone hCiT.162_E_12, complete sequence.	2 Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162,	Mycobacterium leprae cosmid B2235.	Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium bovis BCG orotidine-5'-monophosphate decarboxylase (uraA)	Mycobacterium smegmatis carbamoyl phosphate synthetase (pyrAB) gene, partial cds and orotidine 5'-monophosphate decarboxylase (pyrF) gene,		unordered pieces. Homo sapiens chromosome 7,	unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Rhodococcus equi strain 103 plasmid RE-VP1 fragment f. AU017763 Mouse two-cell stage embryo cDNA Mus musculus cDNA clone	J0744A04 3', mRNA sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Homo sapiens clone NH0549D18, *** SEQUENCING IN PROGRESS ***, 30	unordered pieces. Homo sapiens clone NH0549D18, *** SEQUENCING IN PROGRESS ***, 30	gDNA encoding S-adenosylmethionine synthetase.	Sequence 1 from Patent W09408014,	Streptomyces spectabilis flavoprotein homolog Dfp (dfp) gene, partial cds; and Streptomyces spectabilis	S-adenosylmethionine synthetase (metK) gene, complete cds. Corynebacterium ammoniagenes DNA for rib operon, complete cds.	
3 AC006236	AD000002	298209	U00019	L78820	281011	U01072	U91572	AC009364	AC009364	280108	AF077324 AU017763	Z80108	AC010745	AC010745	E09855	A37831	AF117274	AB003693	
127593	40221	13935	36033	38914	20431	4393	096	192791	192791	39150	5228 586	39150	193862	193862	1239	5392	2303	5589	
GB_PR4:AC006236	GB_BA1:MSGY154	GB_BA1:MTCY154	GB_BA1:U00019	GB_BA1:MSGB937C S	GB_BA1:MTCY2B12	GB_BA2:U01072	GB_BA1:MSU91572	GB_HTG3:AC009364	GB_HTG3:AC009364	GB_BA1:MTCY21B4	GB_BA2:AF077324 5228 GB_EST22:AU017763 586	GB_BA1:MTCY21B4	GB_HTG3:AC010745	GB_HTG3:AC010745	EM_PAT:E09855	GB_PAT:A37831	GB_BA2:AF117274	EM_BA1:AB003693	
	948			3462			727			693		1389			1344			1107	
	rxa02229			rxa02234			rxa02235			rxa02237		rxa02239			rxa02240			rxa02246	

		GB_EST23.AI128623 363	3 A1128623		Homo sapiens	37.047	TOC 30
		TO THE THE PROPERTY OF THE PRO				2	1998
		GB_FLE.A!AC00/019 IC	2335 ACUU/U19	-	lete Arabidopsis thaliana	33,988	16-MAR-
rxa02299	531	GB_BA2:AF116184 540	0 AF116184	sequence. i4 Corynebacterium distamicum I "asnartata, ainha daeachasideac ana mina."			1999
					Corynebacterium	100,000	02-MAY-
		GB_GSS9:AQ164310 507	7 AQ164310		grutamicum Homo sapiens	27 278	1999 6 0 0 T
				Homo sapiens genomic clone Plate=2171 Col=2 Row=I, genomic survey		017,10	100°C
				seguence.			
A 100000	6				murine heroesvirus 68	40 288	3-500.06
IXaucoli	20	GB_H1G4:AC006091 17	176878 AC006091			36,454	27-OCT.
				PROCEESS *** 4 increased at a second lines.			1999
		GB HTG4:AC005091 17	176878 ACCORDS				
				48.G.5 man 91F1-91F13 strain v. on hur en *** CEOLENICIA (N. 1886) RPCI-98 Drosophila melanogaster	-98 Drosophila melanogaster	36,454	27-OCT.
) 			1999
		GB_BA2:RRU65510 16:	16259 U65510	Rhodospirillum rubrum CO-induced hydrogenase operon (cooff, coof	Rhodosnirillim marinim	27 030	
				cooX, cooU, cooH) genes, iron sulfur protein (cooF) gene, carbon monoxide	•	31,020	A-Apr-8/
				dehydrogenase (cooS) gene, carbon monoxide dehydrogenase			
				4	rator		
				(cooA) gene, nicotinate-nucleotide pyrophosphorylase (nadC) gene, complete	ete		
				cds, L-aspartate oxidase (nadB) gene, and alkyl hydroperoxide			
	,						
rxa02315	1752	GB_BA1:MSGY224 400	40051 AD000004	4 Mycobacterium tubercutosis sequence from clone y224.	Mycobacterium	49.418	03-0=0
					tuberculosis	2	1996
		400 400 MILEST 10 400	40030 295558	Mycobactenum tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium	49,360	17-Jun-98
		GB BA1:MSGY224 40051	351 AD000004	Morohacterium furborulosis sessiones sessiones de la constanta	tuberculosis		
			-	injectation tabel tologis sequence from clone y224.	Mycobacterium	38,150	03-DEC-
rxa02318	402	GB HTG3:AC011348 117	111083 AC011348				1996
		<u>.</u>		IN PROGRESS *** 3 ordered pieces	G Homo sapiens	35,821	06-OCT-
		GB_HTG3:AC011348 111	111083 AC011348				1999
				IN PROGRESS ***, 3 ordered pieces.	o nomo saplens	35,821	06-OCT-
		GB_HTG3:AC011412 89234	34 AC011412		H.		1999
	600					20, 101	1888
1xa02219	080	GB_BA1:MSGY224 40051	51 AD000004		Mycobacterium	37,792	03-DEC-
		SB BA1-BITVSENIO			tuberculosis	} •	1996
		40000	30 73 0000	Nycobacterium tuberculosis H37Rv complete genome; segment 28/162.	E _n	37,792	17-Jun-98
		GB_EST23;AI117213 476	Al117213	ub83h02 r1 Soares 2NhMT Mile misculine cland cland (1440-E-1400E400			•
			-	ET DATA TO THE STANDARD WIND THE SOUND COLVE HIGH HIGH TO TO TO THE PROPERTY OF THE PROPERTY O	Mus musculus	35,084	2-Sep-98

										126									
	14-Jan-97	10-Feb-99	10-Feb-99	14-Jan-97	15-Jul-97	1-Nov-95	29-Sep-97 02-DEC-	1994 21-MAY-	1993 2-Aug-96	8-Sep-99	8-Sep-99	17-Jun-98	16-OCT-	1999 16-OCT-	1999 23-190-97	17-Jun-98	2-Aug-96	9-Sep-94	10-Jun-98 26-Sep-95 10-Jun-99
	61,731	39,624	39,847	64,286	9 36,617	e 36,617	56,123 56,220	56,220	99,332	36,115	36,115	38,088	35,817	35,817	98.802	38,054	98,529	100,000	100,000 100,000 39,716
	Corynebacterium	ammoniagenes Mycobacterium	tuberculosis Mycobacterium	tuberculosis Corynebacterium	ammoniagenes Saccharomyces cerevisiae	Saccharomyces cerevisiae	unidentified Unknown.	Unknown.	Corynebacterium glutamicum	Homo sapiens	Homo sapiens	Mycobacterium	tuberculosis Drosophila melanogaster	Drosophila melanogaster	Corynebacterium	glutamicum Mycobacterium	tuberculosis Corynebacterium glutamicum	Corynebacterium	glutamicum Unknown. Unknown. Homo sapiens
Table 4 (continued)	B.ammoniagenes purK and purE genes.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	B.ammoniagenes purK and purE genes.	S.cerevisiae 130kb DNA fragment from chromosome XV.	S.cerevisiae DNA of 51 Kb from chromosome XV right arm.	DNA coding of 2,5-diketogluconic acid reductase. Sequence 4 from Patent EP 0305508.	Sequence 1 from Patent US 4758514.	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS ***, 1	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS ***, 1 unordered pieces	Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Drosophila melanogaster chromosome 3L/75C1 clone RPCI98-3B20, *** SEOUFNCING IN PROGRESS *** 78 upordered places.	Drosophila melanogaster chromosome 3L/75C1 clone RPC198-3B20, *** SEQUENCING IN PROGRESS ***, 78 unordered pieces.	C.glutamicum proA gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 107/162.	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	C.glutamicum aceA gene and thiX genes (partial).	Sequence 3 from patent US 5700661. Sequence 3 from patent US 5439822. HS_5404_B2_E07_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=980 Col=14 Row=J, genomic survey sequence.
	X91189	Z92771	292771	X91189	X94335	X90518	E00311 106030	100836	U31230	AC009946	AC009946	Z81368	AC010658	AC010658	X82929	281451	U31230	X75504	186191 113693 AQ606842
	2582	42729	42729	2582	/ 129528	50984	1853 1853	1853	3005	169072	169072	41230	120754	120754	1783	26914	3005	2427	2135 2135 574
	GB_BA1:BAPURKE	GB_BA1:MTCY71	GB_BA1:MTCY71	GB_BA1:BAPURKE	GB_PL1:SC130KBXV	GB_PL1:SCXVORFS	GB_PAT:E00311 GB_PAT:106030	GB_PAT:100836	GB_BA2:CGU31230	GB_HTG3:AC009946	GB_HTG3:AC009946	GB_BA1:MTCY253	GB_HTG4:AC010658	GB_HTG4:AC010658	GB_BA1:CGPROAGE	N GB_BA1:MTCY428	GB_BA2:CGU31230	GB_BA1:CGACEA	GB_PAT:186191 GB_PAT:113693 GB_GSS15:AQ60684 2
	1320			618			1038		1350			777			1419			693	1098
1	rxa02345			xa02350			xa02373		rxa02375			rxa02380			rxa02382			rxa02400	rxa02432

		ACCEPTATION OF	90		Table 4 (continued)			
			00	100001	ESTUSBES Fetal brain, Stratagene (cat#936205) Homo saplens cDNA clone HFBDG63 similar to EST containing All repost, month company	Homo sapiens	37,915	30-Jun-93
		GB_PL1;AB006699	77363	AB006699	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MDJ22,	Arabidopsis thaliana	35.526	20-Nov-99
4					complete sequence.			
rxa02458	1413	GB_BA2:AF114233	1852	AF114233	Conynebacterium glutamicum 5-enolpyruvylshikimate 3-phosphate synthase	Corynebacterium	100,000	7-Feb-99
		GB EST37:AW01306	578	AW013061	(aroA) gene, complete cds. ODT-0033 Minter flounder overy Discrepance emorinaries onthe class ont	glutamicum		
•		1			0033 5' similar to FRUCTOSE-BISPHOSPHATE ALDOLASE B (LIVER).	Pleuronectes americanus	39,175	10-Sep-99
					mRNA sequence.			
		GB_GSS15:AQ65002	728	AQ650027	Sheared DNA-5L2.TF Sheared DNA Trypanosoma brucei genomic clone	Trypanosoma brucei	39.281	22. lun.99
		7			Sheared DNA-5L2, genomic survey sequence.		· }	
rxa02469	1554	GB_BA1:MTCY359	36021	Z83859	Mycobacterium tuberculosis H37Rv complete genome; segment 84/162.	Mycobacterium	39,634	17-Jun-98
			0			tuberculosis		
		GB_BA1:MLCB1/88	39228	AL008609		Mycobacterium leprae	59,343	27-Aug-99
70800000	4040	G	4097	AJUTUBUT	Streptomyces coelicolor A3(2) DNA for whiD and whiK loci.	Streptomyces coelicolor	48,899	17-Sep-98
18477	200	GB_BA2.0GU31224	775	031224	corynebacterium glutamicum (ppx) gene, partial cds.	Corynebacterium	96,445	2-Aug-96
		GB BA1:MTCY20G9	37218	Z77162	Mycobacterium tuberculosis H37Ry complete genome: segment 267462	glutamicum		:
		•				Mycobacterum tuberculosis	59,429	17-Jun-98
		GB_BA1:SCE7	16911	AL049819	Streptomyces coelicolor cosmid E7.	Streptomyces coelicolor	39.510	10-MAY-
00100							1	1999
rauz499	955	GB_BA2:CGU31225	1817	U31225	Corynebacterium glutamicum L-proline.NADP+ 5-oxidoreductase (proC) gene, Corynebacterium	Corynebacterium	97,749	96-1
		4 1000	000		corriplete cds.	glutamicum		•
		GB_BAT:NG17PILA	1920		Neisseria gonormoeae pilA gene.	Neisseria gonorrhoeae	43,249	30-Sep-93
		GB_M1GZ:AC00/984	C1/671	AC007984	Drosophila melanogaster chromosome 3 clone BACR05C10 (D781) RPCI-98 05 C.10 map 97D-97E strain yr co hw sp. *** SEOTENCING IN DEOCRESS	Drosophila melanogaster	33,406	2-Aug-99
					***, 87 unordered pieces.			
rxa02501	1188	GB_BA1:MTCY20G9	37218	Z77162	Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium	39,357	17-Jun-98
						tuberculosis		
		GB_BAT:U00018	42991	U00018	Mycobacterium leprae cosmid B2168.	Mycobacterium leprae	51,768	01-MAR-
		GR WHEADS	157261	V11110				1994
200050	500		102201	A14112	nerpes simplex virus (nov) type 1 complete genome.	human herpesvirus 1	39,378	17-Apr-97
14402303	776	GB_FR3:AC003520	404-4	AC005528	Homo sapiens chromosome 19, cosmid R26660, complete sequence.	Homo sapiens	39,922	28-Jul-98
		CT-1200000110	1001	ACC00040	norno sapiens chromosome 19, cosmid K26634, complete sequence.	Homo sapiens	39,922	3-Sep-98
A030000	400	GO CANTONOONO	2775	AC005528		Homo sapiens	34,911	28-Jul-98
18402004	00	20 20 1 1 1 1 2 1 2 0 2 2 2 2 2 2 2 2 2	2/7/8	791//7	Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium	54,940	17-Jun-98
		CD 003.4000030	75.44			tuberculosis		
		CB DD3.AC005545	204 14 206 24	ACCUU3220		Homo sapiens	41,265	28-Jul-98
CV202518	1286	GB_TA3.AC003343	45014	AC005545	Homo sapiens chromosome 19, cosmid R26634, complete sequence.	Homo sapiens	41,265	3-Sep-98
17875010	200	מפרקטיואוין אם בס	30224	799170	Infocusacienum leprae cosmid Lodo.	Mycobacterium leprae	37,723	04-DEC-
		GB BA1-1100013	35881	3100013	Missophasterium Jonesa scemid 21108			1998
) } }	2	2		Mycobacterium leprae	37,723	01-MAR-

	17-Jun-98	04-DEC-	1998 01-MAR-	1994	7-Sep-99	29-Apr-99	17-Feb-98	21-MAR-	1999 21-MAR-	1999 24-Feb-99	17-Jun-98	15-Jun-96	19-OCT-	1999	18-Jun-98	6-Feb-97 26-Sep-95	2-Jun-99	17-Aug-99	17-Aug-99	26-Aug-99	19-Nov-99	27-Aug-99
	61,335	37,018	37,018	37 074	36,853	41,860	42,353	40,754	40,754	35,063	37,773	39,024	37,906		865,78	39,138 39,138	44,914	39,732	36,703	38,801	35,714	39,146
	Mycobacterium	tuberculosis Mycobacterium leprae	Mycobacterium leprae	Strentomyres prelicular	Amia calva	Mus musculus	Mus musculus	Homo sapiens	Homo sapiens	. Arabidopsis thaliana	Mycobacterium	tuberculosis Mycobacterium leprae	Streptomyces coelicolor	A3(2)	Nycopacienum tuberculosis	Unknown. Mycobacterium	ruperculosis Thermotoga maritima	Fugu rubripes	Fugu rubripes	Homo sapiens	Homo sapiens	Homo sapiens
	 Mycobacierium tubercuiosis H3/RV complete genome; segment 64/162. 	Mycobacterium leprae cosmid L536.	Mycobacterium leprae cosmid B1496.	3 Streptomyces coelicolor cosmid C22.			INFOCE: 1149662 5, mRNA sequence. VS52a10.r1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE:1149882 5', mRNA sequence.			SEQUENCING IN PROGRESS ***, in unordered pieces. Arabidopsis thaliana DNA chromosome 4, BAC clone T12J5 (ESSAII project). Arabidopsis thaliana	Mycobacterium tuberculosis H37Rv complete genome; segment 17/162.	Mycobacterium leprae cosmid B1970 DNA sequence.	Streptomyces coelicolor cosmid 2H4.	Mycobacterium tuberculosis H37Ry complete genome: segment 1447462		Sequence 1 from patent US 5573915. Mycobacterium tuberculosis cyclopropane mycolic acid synthase (cma1)	-	(AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete			Homo sapiens chromosome 9 clone RP11-111M7 map 9, WORKING DRAFT SEQUENCE 51 unordered pieces	_
A1 024 184	ALUZ 104	299125	U00013	AL096839	AF137219	AI645057	AA822595	AF130866	AF130866	AL035522	Z97991	L78815	AL031514	AL009198		128684 U27357	AE001780		AF064564	AQ818728	AC011083	AQ826948
32806	25000	36224	35881	22115		301	5 429	118874	118874	84499	9150	39399	25970	69350		5100 5100	11997		49254	444	198586	544
GR RA1:WITW07		GB_BA1:MLCL536	GB_BA1:U00013	GB_BA1:SCC22	GB_OV:AF137219	GB_ES130:AI645057	GB_EST20:AA822595	GB_HTG2:AF130866	GB_HTG2:AF130866	GB_PL1:ATT12J5	GB_BA1:MTCY279	GB_BA1:MSGB1970C S	GB_BA2:SC2H4	GB BA1:MTV004	t	GB_PAT:128684 GB_BA1:MTU27357	GB_BA2:AE001780		GB_OV:AF064564	GB_GSS5:AQ818728	GB_HTG5:AC011083	GB_GSS6:AQ826948
		570			1170			879			1434			1026			1683			714		
		rxa02517			rxa02532			rxa02536			rxa02550			rxa02559			rxa02622			rxa02623		

128

					Table 4 (continued)			
rxa02629	708	GB_VI:BRSMGP	462	M86552	Bovine respiratory syncytial virus membrane glycoprotein mRNA, complete	Bovine respiratory syncytial 37,013	137,013	28-Apr-93
		GB_VI:BRSMGP	462	M86652	cds. Bovine respiratory syncytial virus membrane glycoprotein mRNA, complete cds.	virus Bovine respiratory syncytial 37,013 virus	137,013	28-Apr-93
rxa02645	1953	GB_PAT:A45577	1925	A45577	Sequence 1 from Patent W09519442.	Corynebacterium	39,130	07-MAR-
		GB_PAT:A45581	1925	A45581	Sequence 5 from Patent WO9519442,	grutannicum Corynebacterium	39,130	1997 07-MAR-
		GB_BA1:CORILVA	1925	L01508	Corynebacterium glutamicum threonine dehydratase (ilvA) gene, comptete	glutamicum Corynebacterium	39,130	1997 26-Apr-93
rxa02646	1392	GB_BA1:CORILVA	1925	L01508	nebacterium glutamicum threonine dehydratase	glutamicum Corynebacterium	99,138	26-Apr-93
		GB_PAT:A45585	1925	A45585	cds. Sequence 9 from Patent WO9519442.		99,066	07-MAR-
		GB_PAT.A45583	1925	A45583	Sequence 7 from Patent WO9519442.		99.066	1997 07-MAR-
rxa02648	1326	GB_OV:ICTCNC	2049	M83111	Ictalurus punctatus cyclic nucleotide-gated channel RNA sequence.	glutamicum Ictalurus pünctatus	38,402	1997 24-MAY-
		GB_EST11:AA265464 345	345	AA265464	mx91c06.r1 Soares mouse NML Mus musculus cDNA clone IMAGE:693706	Mus musculus	38,655	1993 20-MAR-
		GB_G\$\$8:AQ006950	480	AQ006950	5', mRNA sequence. CIT-HSP-2294E14.TR CIT-HSP Homo sapiens genomic clone 2294E14,	Homo sapiens	36,074	1997 27-Jun-98
rxa02653					general survey sequence.			
rxa02687	1068	GB_BA1:CORPHEA	1088	M13774	C.glutamicum pheA gene encoding prephenate dehydratase, complete cds.	Corynebacterium	99,715	26-Apr-93
		GB_PAT:E04483	948	E04483	DNA encoding prephenate dehydratase.		98,523	29-Sep-97
		GB_PAT:E06110	948	E06110	DNA encoding prephenate dehydratase.	glutamicum Corynebacterium	98,523	29-Sep-97
гха02717	1005	GB_PL1:HVCH4H	59748	Y14573	Hordeum vulgare DNA for chromosome 4H.	glutamicum Hordeum vulgare	36,593	25-MAR-
		GB_PR2:HS310H5	29718	269705	A sequence from cosmid 310H5 from a contig from the tip of the formosome 16, spanning 2Mb of 16p13.3. Contains EST and	Homo sapiens	36,089	1999 22-Nov-99
		GB_PR3:AC004754	39188	AC004754	CpG island. Homo sapiens chromosome 16, cosmid clone RT286 (LANL), complete sequence.	Homo sapiens	36,089	28-MAY-
rxa02754	1461	GB_HTG2:AC008223	130212	AC008223	a melanogaster chromosome 3 clone BACR16I18 (D815) RPCI-98 ap 95A-95A strain y; on bw sp, *** SEQUENCING IN	Drosophila melanogaster	32,757	1336 2-Aug-99

	2-Aug-99	10 -Fe b-99	5-Nov-99	5-Nov-99	20-Jan-99		14-Sep-98	04-DEC-	1996	22-Jul-99	14-Sep-98	17-Jun-98	01-MAR-	1994 17-Jun-98	3-Jun-99		nn-137-15	17-Jun-98	28-Apr-93	9-Aug-94	27-0CT-
	32,757	37,838	35,331	33,807	36,929		99,852	43,836		48,588	99,914	38,339	38,996	37,640	37,906	36 380	0,000	39,765	38,937	38,495	40,828
	Drosophila melanogaster	Mycobacterium	Homo sapiens	Homo sapiens	Burkholderia pseudomallei		Conynebacterium glutamicum	Caenorhabditis elegans		Caenorhabditis elegans	Corynebacterium glutamicum	Mycobacterium	Mycobacterium leprae	Mycobacterium	tuper curosis Homo sapiens	Homo caoinea		Mycobacterium tuberculosis	Gallus gallus	Mycobacterium smegmatis	Homo sapiens
Table 4 (continued)	Drosophila melanogaster chromosome 3 clone BACR16118 (D815) RPCI-98 16.1.18 map 95A-95A strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 101 unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS ***, 20	Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS ***, 20	Burkholderia pseudomailei putative dihydroorotase (pyrC) gene, partial cds; putative 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC), putative diadenosine tetraphosphatase (apaH), complete cds; type II O-antigen	biosynthesis gene cluster, complete sequence; putative undecaprenyl phosphate N-acetylglucosaminyltransferase, and putative UDP-glucose 4-epimerase genes, complete cds; and putative galactosyl transferase gene, partial cds.	Corynebacterium glutamicum dipeptide-binding protein (dciAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase	(ret) genes, complete cds; and unknown gene. Caenorhabditis elegans cosmid T19B4.	AVA 02573 V. II. V	Av1935/2 Yuji Konara unpublished cDNA:Strain N2 hermaphrodite embryo Caenorhabditis elegans cDNA clone yk618h8 5', mRNA sequence.	Corynebacterium glutamicum dipeptide-binding protein (dciAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) genes, complete cds; and unknown gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 114/162.	Mycobacterium leprae cosmid B1177.	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Homo sapiens 12p21 BAC RPC111-259O18 (Roswell Park Cancer Institute	Human BAC Library) complete sequence. Homo sapiens 12o21 BAC RPC11-259O18 (Roswell Park Cancer Institute		Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Chicken tyrosine kinase (cek2) mRNA, complete cds.	M.smegmatis asd, ask-alpha, and ask-beta genes.	qg48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 3' similar to WP:C25D7.8 CE08394;, mRNA sequence.
		292771	AC011678	AC011678	AF064070		AF038651	U80438	A11409E70	7/008174	AF038651	Z77724	U00011	Z83863	AC006581	AC006581		Z83863	M35195	7/8/17	AI223401
		42729	171967	171967	23183		4077	37121	280		4077	35946	40429	33818	172931	172931		33818		203/	169
	GB_HTG2:AC008223	GB_BA1:MTCY71	GB_HTG5:AC011678	GB_HTG5:AC011678	GB_BA2:AF064070		GB_BA2:AF038651	GB_IN1:CELT19B4	CB EST28:61/103872	GE ES 100.AV 18537.	GB_BAZ:AF038651	GB_BA1:MTCY227	GB_BA1:U00011	GB_BA1:MTCY159	GB_PR4:AC006581	GB_PR4:AC006581		GB_BA1:MTCY159	GB_OV:CHKCEK2	G6_6A1:W6A5UA5A	GB_EST24:AI223401
			1422				678				80			1266				951			1194
			ra02758				ха02771				Z//Znexi			rxa02790				rxa02791			rxa02802

GB_EST24:A1223401	3	1 169	AI223401	Table 4 (continued) qg48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 Homo sapiens	Homo sapiens	40,828	27-0CT-
3' sim	3' sim	3'sim	3. sim	3' similar to WP:C25D7.8 CE08394;, mRNA sequence.			1998
22070 Z95120	22070 Z95120		Myco	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Mycobacterium tuberculosis	58,418	17-Jun-98
22070	22070		₩ ,	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Mycobacterium tuberculosis	40,496	17-Jun-98
AJ002962	778 AJ002962		문 문 대	Homo sapiens mRNA for hB-FABP.	Homo sapiens	39,826	8-Jan-98
1160 AJ004934	1160 AJ004934	45	چ ک	Corynebacterium glutamicum dapD gene, complete CDS.	Corynebacterium glutamicum	100,000	17-Jun-98
29540 Z93777	29540 Z93777		Myc	Mycobacterium tuberculosis H37Rv complete genome; segment 52/162.	Mycobacterium tuberculosis	37,710	17-Jun-98
38675 U15180	38675 U15180		Myc	Mycobacterium leprae cosmid B1756.	Mycobacterium leprae	39,626	09-MAR- 1995
2906 Z49824	2906 Z49824		B.1ac	B.lactofermentum orf1 gene and sigB gene.	Corynebacterium glutamicur88,854	cur88,854	25-Apr-96
GB_EST21:AA980237 377 AA980237 ua328 IMAG PROT	377 AA980237		ua32; IMAG	ua32a12.r1 Soares_mammary_gland_NbMMG Mus musculus cDNA clone IMAGE:1348414 5' similar to TR:Q61025 Q61025 HYPOTHETICAL 15.2 KD PROTEIN :: mRNA segience	Mus musculus	41,489	27-MAY- 1998
GB_EST23:AI158316 371 AI158316 ud27	371 AI158316		ud27 IMA(NDMT Mus musculus cDNA clone quence.	Mus musculus	38,005	30-Sep-98
38368 AL031910	38368 AL031910		Leish	Leishmania major Friedlin chromosome 4 cosmid L2743.	Leishmania major	39,869	15-DEC- 1999
GB_PR3:HSDJ61B2 119666 AL096710 Hum Cont (230/ STS:	119666 AL096710	AL096710	Hum Cont (230/ STS	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullous pemphigoid antigen 1 (230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein, STSs and GSSs, complete sequence.	Homo sapiens	34,930	17-DEC- 1999
GB_PR3:HSDJ61B2 119666 AL096710 Huma Conta (2307) STSs	119666 AL096710	AL096710	Huma Conta (230/7 STSs	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullous pemphigoid antigen 1 (230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein, STSs and GSSs, complete sequence.	Homo sapiens	34,634	17-DEC- 1999

Exemplification

Example 1: Preparation of total genomic DNA of Corynebacterium glutamicum ATCC 13032

5 A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, .2.46 g/l MgSO₄ x 7H₂O₅, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O₅ 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃ 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 15 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml 20 buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, I mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 μg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol, phenol-chloroform-isoamylalcohol and chloroform-25 isoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 μg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. 30 During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium* glutamicum ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

25

15

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see *e.g.*, Fleischman, R.D. *et al.* (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., *Science*, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia col*i and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Example 5: DNA Transfer Between Escherichia coli and Corynebacterium glutamicum

Several Corynebacterium and Brevibacterium species contain endogenous plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) to which a origin or replication for and a 15 suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 20 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by protoplast transformation (Kastsumata, R. *et al.* (1984) *J. Bacteriol.* 159306-311), electroporation (Liebl, E. *et al.* (1989) *FEMS Microbiol. Letters*, 53:399-303) and in cases where special vectors are used, also by conjugation (as described *e.g.* in Schäfer, A *et al.*

(1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods well-known in the art) and transforming it into E. coli. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient E. coli strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in C. glutamicum or other Corynebacterium or Brevibacterium species may be accomplished by well-known methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, e.g., DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (e.g., a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon 20 mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones -- Introduction to Gene Technology. VCH: Weinheim. 25

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*

15

30

(1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. *et al.* (1992) *Mol. Microbiol.* 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

20 Example 7: Growth of Genetically Modified Corynebacterium glutamicum — Media and Culture Conditions

Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb *et al.* (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der Osten *et al.* (1998) Biotechnology Letters, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: The Procaryotes, Volume II, Balows, A. *et al.*, eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

10

15

20

25

30

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes.

For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

25

30

20

Example 8 – In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

found, for example, in the following references: Dixon, M., and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ.

Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) <u>EMBO J.</u> 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores,

Channels and Transporters", in Biomembranes, Molecular Structure and Function,

Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

20

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum*

- 141 -

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

15

20

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek *et al.* (1994) *Appl. Environ. Microbiol.* 60: 133-140; Malakhova *et al.* (1996) *Biotekhnologiya* 11: 27-32; and Schmidt *et al.* (1998) *Bioprocess Engineer.* 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. *et al.* (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci.* USA 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA

90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to MP nucleic acid
5 molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to MP protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped
10 BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (e.g., XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) Comput. Appl. Biosci. 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) Comput. Appl. Biosci. 10:3-5; and FASTA, described in Pearson and Lipman (1988) P.N.A.S. 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention

10

20

30

were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40.345%".

Example 12: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al. (1995) Science 270: 467-470; Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367; DeSaizieu, A. et al. (1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al. (1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label

15

20

30

may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) *BioEssays* 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. *et al.* (1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide synthesis as described by Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) supra; Wodicka, L. et al. (1997), supra; and DeSaizieu A. et al. (1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as

- 145 -

described in Schena, M. et al. (1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al. (1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

5

10

15

20

25

30

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C. glutamicum* (*e.g.*, in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (*e.g.*, during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann et al. (1998) Electrophoresis 19: 3217-3221; Fountoulakis et al. (1998) Electrophoresis 19: 1193-1202; Langen et al. (1997) Electrophoresis 18: 1184-1192; Antelmann et al. (1997) Electrophoresis 18:

25

30

1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al. (1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

- 147 -

Equivalents

5

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

09/11/2002, EAST Version: 1.03.0007

What is claimed:

- An isolated nucleic acid molecule from Corynebacterium glutamicum encoding a
 metabolic pathway protein, or a portion thereof, provided that the nucleic acid
 molecule does not consist of any of the F-designated genes set forth in Table 1.
- The isolated nucleic acid molecule of claim 1, wherein said metabolic pathway protein is selected from the group consisting of proteins involved in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
 - 3. An isolated *Corynebacterium glutamicum* nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID
 NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or

- a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 10 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
 - 9. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
 - 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
 - 11. The vector of claim 10, which is an expression vector.

15

- 12. A host cell transfected with the expression vector of claim 11.
- 13. The host cell of claim 12, wherein said cell is a microorganism.
- 25 14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
 - 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.

30

16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine

bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 17. A method of producing a polypeptide comprising culturing the host cell of claim 12in an appropriate culture medium to, thereby, produce the polypeptide.
 - 18. An isolated metabolic pathway polypeptide from *Corynebacterium glutamicum*, or a portion thereof.
- 19. The protein of claim 18, wherein said polypeptide is selected from the group of metabolic pathway proteins which participate in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
 - 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.

- 24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated
- 5 genes set forth in Table 1.
 - 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.

- 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.
- 27. The method of claim 25, wherein said method further comprises the step of 15 transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
 - 28. The method of claim 25, wherein said cell belongs to the genus Corynebacterium or Brevibacterium.

20

29. The method of claim 25, wherein said cell is selected from the group consisting of: Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium, lilium, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium acetophilum, Corynebacterium ammoniagenes, Corynebacterium 25 fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes, Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum, Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens, Brevibacterium paraffinolyticum, and those strains set forth in Table 3.

30

30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.

- 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.
- 32. The method of claim 25, wherein said fine chemical is an amino acid.
- 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 34. A method for producing a fine chemical, comprising culturing a cell whose genomic
 DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.
- 35. A method for diagnosing the presence or activity of Corynebacterium diphtheriae in a subject, comprising detecting the presence of one or more of SEQ ID NOs 1
 20 through 1156 of the Sequence Listing in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of Corynebacterium diphtheriae in the subject.
- 25 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the nucleic acid molecule is disrupted.
- 37. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs in the Sequence Listing, wherein the nucleic acid molecule comprises one or more nucleic acid

- 153 -

modifications from the sequence set forth as odd-numbered SEQ ID NOs of the Sequence Listing s.

38. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the regulatory region of the nucleic acid molecule is modified relative to the wild-type regulatory region of the molecule.

10