Parsificazione

(analisi top-down)

Analisi sintattica I

Data una grammatica G l'analizzatore sintattico o parsificatore legge la stringa sorgente e se appartiene al linguaggio L(G) ne produce una derivazione o un albero sintattico, altrimenti si ferma segnalando l'errore.

Due classi importanti di analizzatori

Discendenti o top-down

Ascendenti o bottom-up

Come per l'analisi lessicale, anche per l'analisi sintattica sono stati sviluppati strumenti per la generazione automatica di parsificatori, sia per l'analisi bottom-up (Yacc) sia per quella top-down (Antlr).

Analisi sintattica deterministica

Un analizzatore sintattico deterministico leggendo 1 (o più) caratteri in input può eliminare le ambiguità e scegliere sempre la strada giusta che porta al riconoscimento della stringa. Ovviamente il modello su cui i rifanno tutti gli analizzatori sintattici (più o meno fedelmente) è l'automa a pila.

Le grammatiche che permettono parsing predittivo discendente sono chiamate LL(k), quelle che permettono parsing predittivo ascendente sono chiamate LR(k), dove k è il numero di simboli necessari per individuare la produzione senza ambiguità.

La famiglia **LL(k)** contiene tutti e soli i linguaggi che possono essere definiti da una grammatica LL(k) per un valore finito di k >= 1. Non tutti i linguaggi che hanno riconoscitori deterministici sono generabili da grammatiche LL(k), cioè la famiglia dei linguaggi LL(k) è strettamente contenuta nella famiglia dei linguaggi che hanno riconoscitori deterministici.

Verso il parser top-down

II PDA costruito dalla grammatica: $\{S \rightarrow 0S1 \mid 1A0, A \rightarrow 2A \mid \epsilon\}$ riconosce 01201 con questa sequenza di mosse (tra le tante possibili):

Togliendo lo stato e lasciando solo l'input e la pila si ottiene la struttura base del parser top-down (iterativo)..

INPUT	PILA	
01201	S	
01201	0S1	
1201	S 1	
1201	1A01	
201	A01	
201,	2A01	
01	A 01	
01	01	
1	1	
accetta		

Scelte critiche: cosa fare quando abbiamo una variabile sulla pila?.

Per fare un'analisi efficiente bisogna avere un criterio per fare sempre la mossa giusta.

Parser LL(1)

Un parser LL(1) iterativo per una grammatica LL(1) (definita esattamente in seguito) funziona utilizzando:

- la stringa in input cui viene aggiunto un mark di fine stringa che denotiamo con \$. L'input viene letto sequenzialmente come negli automi.
- •una *pila* i cui elementi possono essere *terminali* o *non terminali* della grammatica
- un criterio per decidere la scelta quando c'è una variabile in cima alla pila

Durante l'analisi input e pila vengono modificati esattamente come l'input e la pila rappresentati nelle configurazioni istantanee di un automa a pila (non deterministico) che riconosce la grammatica G costruita nel modo standard.

Nell'algoritmo di parsificazione LL(1) la decisione su come espandere i nonterminali in cima alla pila viene presa in modo deterministico (quando possibile) guardando il primo simbolo dell'input (lookahead) della stringa ancora da analizzare..

Parsing LL(1) (top-down o discendente

Consideriamo per esempio la seguente grammatica (LL(1)). Notare l'uso di "\$" per definire la fine stringa:

FIRST

Data una grammatica $G = \langle V, \Sigma, P, S \rangle$, l'insieme FIRST di una stringa α di variabili e terminali, è definito formalmente come:

FIRST (
$$\alpha$$
) = { $a \mid \alpha \rightarrow *a\beta$ } \cup { $\epsilon \mid se \alpha \rightarrow *\epsilon$ }

E' l'insieme dei terminali con cui iniziano le stringhe derivabili da α nella grammatica G. **FIRST**(α) (abb. F(α)) soddisfa questa definizione (ricorsiva):

1.
$$F(\varepsilon) = \{\varepsilon\}$$
 $F(A) = \bigcup_{A \to \gamma_i \in P} F(\gamma_i)$
2. $F(a\beta) = \{a\}$ $F(A)$ se A non è annullabile
3. $F(A\beta) = \{F(A) = \{E(A) \in P\} \cup F(A) = \{E(A$

N.B. A è annullabile se A \rightarrow * ϵ

N.B. $(A \rightarrow \gamma_1 | \gamma_2 | ... | \gamma_k \hat{e})$ l'insieme delle produzioni di A in G)

Esempio

$$G = \langle \{X, Y, Z\}, \{a, c, d\}, P, Z \rangle$$

$$P: \quad Z \rightarrow d \mid XYZ$$

$$Y \rightarrow c \mid \epsilon$$

$$X \rightarrow Y \mid a$$

$$FIRST(d) = \{d\}$$

$$FIRST(XYZ) = \{a, c, d\}$$

$$Infatti \quad XYZ \rightarrow aYZ$$

$$XYZ \rightarrow YYZ \rightarrow YZ \rightarrow cZ$$

$$XYZ \rightarrow YYZ \rightarrow YZ \rightarrow Z \rightarrow d$$

$$FIRST\{X\} = \{a, c, \epsilon\}$$

$$Infatti \quad X \rightarrow a$$

$$X \rightarrow Y \rightarrow c$$

$$X \rightarrow Y \rightarrow \epsilon$$

$$\begin{split} \text{FIRST(Z)} &= \{ \text{a, c, d} \} \\ &\quad \text{Infatti } Z \rightarrow \text{XYZ} \rightarrow \text{aYZ} \\ &\quad Z \rightarrow \text{XYZ} \rightarrow \text{YZ} \rightarrow \text{cZ} \\ &\quad Z \rightarrow \text{d} \end{split}$$

FOLLOW

Data una grammatica $G = \langle V, \Sigma, P, S \rangle$, l'insieme **FOLLOW** (insieme dei <u>seguiti</u>) di una variabile A è l'insieme dei terminali con cui iniziano le stringhe che seguono A nelle derivazioni della grammatica G (assumendo \$ in fine stringa). Formalmente:

FOLLOW(A) = {a | S
$$\rightarrow$$
* α Aa β } \cup {\$ |se S \rightarrow * α A}

Notare che \$ appartiene <u>sempre</u> al FOLLOW dell'assioma.

FOLLOW(A) (abb. Fw(A)) soddisfa la seguente equazione:

$$Fw(A) = \left[\bigcup_{B \to \alpha A\beta \in P} (F(\beta) - \{\epsilon\}) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right] \cup \left[\bigcup_{B \to \alpha A\beta \in P \text{ tali che} \atop \beta \text{ annullabile e B} \neq A} Fw(B) \right]$$

 \cup {\$} se A è lo start symbol di G

Esempio

$$Z \rightarrow d \mid XYZ$$

 $Y \rightarrow c \mid \varepsilon$
 $X \rightarrow Y \mid a$

FOLLOW(Y) = {a, d, c}
Infatti:
$$Z \rightarrow XYZ \rightarrow XYXYZ \rightarrow XYAYZ$$

 $Z \rightarrow XYZ \rightarrow XYd$
 $Z \rightarrow XYZ \rightarrow YYZ \rightarrow YcZ$
FOLLOW(X) = {c, d, a}
Infatti: $Z \rightarrow XYZ \rightarrow XcZ$
 $Z \rightarrow XYZ \rightarrow XZ \rightarrow Xd$
 $Z \rightarrow XYZ \rightarrow XYZ \rightarrow XZ \rightarrow Xd$

 $FOLLOW(Z) = \{\$\}$ perchè Z è l'assioma.

Insiemi guida

Data una grammatica G, **l'insieme guida** di una produzione della grammatica A $\rightarrow \alpha$ - **Gui** (A $\rightarrow \alpha$) - è l'insieme dei terminali (o \$ se ci si trova a fine parola) con cui *iniziano* le stringhe generabili parteendo dalla produzione stessa :

Gui (A
$$\rightarrow \alpha$$
) = {a | S $\rightarrow_{\underline{lm}}^*$ wA $\beta \rightarrow$ w $\alpha \beta \rightarrow_{\underline{lm}}^*$ wa γ } \cup
 \cup {\$ | S $\rightarrow_{\underline{lm}}^*$ wA \rightarrow w $\alpha \rightarrow_{\underline{lm}}^*$ w

nel secondo case tipicamente quando $\ \alpha$ = ϵ , cioè la produzione è A \rightarrow ϵ

Insiemi guida

Data una grammatica G, **l'insieme guida** di una produzione della grammatica $A \to \alpha$ - **Gui** $(A \to \alpha)$ - è l'insieme dei terminali (o ϵ se ci si trova a fine parola) con cui *iniziano* le stringhe generabili a partire dalla produzione stessa :

Gui (A
$$\rightarrow \alpha$$
) = {a | S $\rightarrow_{\underline{lm}}^*$ wA $\beta \rightarrow$ w $\alpha \beta \rightarrow_{\underline{lm}}^*$ wa γ } \cup
 \cup {\$ | S $\rightarrow_{\underline{lm}}^*$ wA \rightarrow w $\alpha \rightarrow_{\underline{lm}}^*$ w}

L'insieme Gui (A $\rightarrow \alpha$) si può esprimere usando F() e FW():

$$Gui(A \rightarrow \alpha) = \begin{cases} F(\alpha) & \text{se } \alpha \text{ non è annullabile} \\ \\ (F(\alpha) - \{\epsilon\}) \cup FW(A) & \text{se } \alpha \text{ è annullabile} \end{cases}$$

Esempio:

$$\begin{aligned} &\text{Gui } (Z \rightarrow \text{d}) = \{\text{d}\} \\ &\text{Gui } (Z \rightarrow \text{XYZ}) = \{\text{a, c, d}\} \\ &\text{Gui } (X \rightarrow \text{C}) = \{\text{c}\} \end{aligned} \qquad \begin{aligned} &\text{Gui } (Y \rightarrow \epsilon) = \{\text{a, c, d}\} \\ &\text{Gui } (X \rightarrow \text{C}) = \{\text{a, c, d}\} \\ &\text{Gui } (X \rightarrow \text{C}) = \{\text{a, c, d}\} \end{aligned}$$

Grammatiche LL(1)

Una **grammatica** è **LL(1)** se *per ogni non terminale* A e *per ogni coppia* di produzioni $A \rightarrow \alpha$ e $A \rightarrow \beta$, gli insiemi guida sono disgiunti:

$$Gui(A \rightarrow \alpha) \cap Gui(A \rightarrow \beta) = \Phi$$

Esempio:

La grammatica $\{S\}$, $\{(, [, <,),], >\}$, $P = \{S \rightarrow (S) \mid [S] \mid <S> \mid \epsilon\}$, S> è LL(1).

$$F(S) = \{(, [, <\} \\ Gui(S \rightarrow (S)) = \{(\} \\ Gui(S \rightarrow [S]) = \{[\} \\ FW(S) = \{\$,),], >\}$$

$$Gui(S \rightarrow (S)) = \{\{\} \\ Gui(S \rightarrow (S)) = \{\$, \}, \}, >\}$$

$$Gui(S \rightarrow (S)) = \{\$, \}, \}, >\}$$

Insiemi GUIDA: esempio di calcolo

$$Z \to d \mid XYZ$$

 $Y \to c \mid \varepsilon$
 $X \to Y \mid a$

$$F(Z) = \{a, c, d\} \quad F(X) = \{a, c, \varepsilon\} \quad F(Y) = \{c, \varepsilon\}$$

$$Fw(Z) = \{\$\}, \quad Fw(X) = \{a, c, d\}, \quad Fw(Y) = \{a, c, d\}$$

$$Gui (Z \to d) = F(d) = \{d\}$$

$$Gui (Z \to XYZ) = F(XYZ) = (F(X) - \{\varepsilon\}) \cup F(YZ) =$$

$$= (F(X) - \{\varepsilon\}) \cup (F(Y) - \{\varepsilon\}) \cup F(Z) = \{a, c, d\}$$

$$Gui (Y \to c) = \{c\}$$

$$Gui (Y \to c) = \{c\}$$

$$Gui (X \to Y) = \{a, c, d\}$$

$$Gui (X \to A) = \{a\}$$

Parsificazione top-down: esercizio

Data la seguente Grammatica:

Produzione

1	$S \rightarrow PQ$	

2.
$$Q \rightarrow \&PQ$$

3.
$$Q \rightarrow \epsilon$$

4.
$$P \rightarrow aPb$$

5.
$$P \rightarrow bPa$$

6.
$$P \rightarrow c$$

Insieme guida

{a, b, c}

{&}

{\$}

{a}

{b}

{c}

Verificare gli insiemi guida calcolando I FIRST e i FOLLOW usando direttamente le definizioni.