Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет ПИиКТ

Дисциплина: Математический анализ

Лабораторная работа №1 Приближенное решение уравнения f(x) = 0 методом деления пополам (метод бисекций)

Вариант 1

Выполнил: Михайлов Петр Сергеевич Группа: Мат Ан Прод 11.4 Преподаватель: доцент, кандидат технических наук Холодова Светлана Евгеньевна

Содержание

Лабораторная работа №1	1
Задание	3
Порядок выполнения лабораторной работы	4
Нахождение отрезка $[a,b]$	5
Нахождение области определения и значения функции	5
Про четность, нечетность и периодичность	5
Нахождение первой производной и промежутков возрастания и убывания функции, а также экстремумов	
Нахождение второй производной и промежутков выпуклости функции, а также точек перегиба	
Нахождение асимптот графика функции	6
Построение графика	6
Определение искомого отрезка	6
Составление подпрограммы-функции вычисления fx	7
Составление подпрограммы BISECT	8
Составление головной программы	9
Результат выполнения программы	.10
Заключение	.11
Литература	.12
Приложение	.13

Задание

Используя программу BISECT, найти корень уравнения f(x) = 0 с точностью ε .

Порядок выполнения лабораторной работы

- 1. Графически или аналитически отделить корень уравнения f(x) = 0 (т. е. найти отрезок [a,b], на котором функция f(x) удовлетворяет условиям теоремы Больцано Коши).
- 2. Составить подпрограмму-функцию вычисления f(x) = 0.
- 3. Составить головную программу, содержащую обращение к подпрограмме BISECT и печать результатов.
- 4. Провести вычисления по программе.

Нахождение отрезка [a, b]

Исследуем данную функцию $f(x) = \arccos(x^2) - x$, чтобы сделать её график и определить отрезок [a,b], на котором функция f(x) удовлетворяет условиям теоремы Больцано – Коши).

Нахождение области определения и значения функции

Начнем с области определения. В область определения функции входят точки, которые удовлетворяют условию существования $\arccos(x^2)$, то есть одновременно удовлетворяют неравенствам

$$\begin{cases} x^2 \ge -1 \\ x^2 \le 1 \end{cases} \Leftrightarrow \begin{cases} x \in \mathbb{R} \\ x \ge -1 \\ x \le 1 \end{cases} \Leftrightarrow \begin{bmatrix} x \ge -1 \\ x \le 1 \end{cases} \Leftrightarrow -1 \le x \le 1.$$

Тогда, $D(f) = \{x \in \mathbb{R} : -1 \le x \le 1\}$. Заметим, что $f(0) = \frac{\pi}{2}$, f(-1) = 1, f(1) = -1.

Про четность, нечетность и периодичность

Функция не является ни четной, ни нечетной, ни периодичной.

Нахождение первой производной и промежутков возрастания и убывания функции, а также экстремумов

Вычислим первую производную рассматриваемой функции:

$$f'(x) = -\frac{2x}{\sqrt{1 - x^4}} - 1.$$

Решая уравнение f'(x) = 0, методом интервалов легко получить, что f возрастает при

$$x \in \left[-1, -\sqrt{-2 + \sqrt{5}}\right]$$

и убывает при

$$x \in \left[-\sqrt{-2+\sqrt{5}}, 1\right].$$

В точке $x=-\sqrt{-2+\sqrt{5}}$ функция имеет строгий локальный максимум, причем $f\left(-\sqrt{-2+\sqrt{5}}\right)\approx f(-0.48587)\approx 1.81835.$

5

Нахождение второй производной и промежутков выпуклости функции, а также точек перегиба

Вычислим вторую производную рассматриваемой функции:

$$f''(x) = -\frac{2x^4 + 2}{\sqrt{1 - x^4}(1 - x^4)}.$$

Решая уравнение f''(x) = 0, получим, что f''(x) < 0 при $\forall x \in \mathbb{R}$, а значит у функции нет точек перегиба, а сама она является выпуклой вверх на всей D(f).

Нахождение асимптот графика функции

Функция не имеет наклонных и вертикальных асимптот, так как при $x \to \infty$ предел f(x) не определен и ни при каких x функция не стремится к бесконечности.

Построение графика

Вся полученная информация теперь используется для построения графика функции, см. рисунок.

Определение искомого отрезка

Исходя из графика f(0.5) > 0, можно принять отрезок [a, b], как отрезок $\left[\frac{1}{2}, 1\right]$. Для того чтобы найти корень с 15-ю верными знаками после запятой, полагаем

Составление подпрограммы-функции вычисления f(x)

Составим подпрограмму-функцию вычисления f(x) на языке программирования Python. Исходный код программы function.py:

```
main.py function.py → X BISECT.py

func

func

from numpy import arccos # Используем библиотеку math для импорта функции arccos

def func(x):

y = arccos(x**2) - x # Исходная функция, для которой ищем корень

return y
```

Составление подпрограммы BISECT

Составим подпрограмму-функцию BISECT, которая на языке программирования Python с помощью метода бисекций, находит корень функции, по-другому, решает уравнение вида f(x) = 0. Исходный код программы BISECT.py:

```
main.py
                function.py
                                    BISECT.py
                                                   - [⊘]a
            from numpy import sign # используем библиотеку питру для импорта функции sign
          v def bisect(a, b, eps, f):
                ....
     4
                Программа BISECT предназначена для решения уравнения f(x) = 0 методом бисекции.
                а - левый конец интервала [a, b]
                b - правый конец интервала [a, b]
                eps - погрешность
                f - имя подпрограммы-функции, вычисляющей f(x)
                х0 - результат
                k – количество итераций
    11
    12
                k = 0 # счетчик числа итераций
    13
                an = a # текущее значения концов
                bn = b # отрезка, содержащего корень
    16
                r = f(a) # вычисление значения f(a)
    17
                while True: # бесконечный цикл
                    x0 = 0.5 * (an + bn) # длина отрезка пополам
    20
                    y = f(x0) # значение f(x) в середине
                    # В цикле достигнута точность, вычисления заканчиваются, возращаем результат
                    if abs(y) < eps or (bn - an) / 2.0 < eps:
                         return x0, k
    26
                    k += 1 # увеличиваем число итераций
    27
                    s = sign(y) * sign(r) # знак величины <math>f(a) * f(x0)
    28
    29
                    if s >= 0:
                        an = x0 \# ecnu f(an) * f(bn) >= 0, To an = x0
                                  # обновляем значение г
    32
                    else:
                        bn = x\theta # если f(an) * f(bn) < 0, то bn = x0
```

Составление головной программы

Составим программу, которая на языке программирования Python, содержит в себе обращение к исходной функции и подпрограмме BISEC и данные, полученные в ходе выполнения работы. Исходный код программы main.py:

```
main.py + X function.py
                                         - [Ø]f
 bisect
              from BISECT import bisect
      1
              from function import func
      2
      3
      4
      5
              # Задаем параметры для метода бисекций
              a = 0.5
      6
      7
              b = 1.0
              eps = 5 * 10**(-16)
      8
      9
              # Находим корень функции с помощью метода бисекций
     10
              root, k = bisect(a, b, eps, func)
     11
     12
              # Выводим результат
     13
              print("Корень функции:", root)
     14
              print("Произошло итераций:", k)
     15
```

Результат выполнения программы

Результатом всей программы будет вывод корня функции с 15-ю верными знаками после запятой, а также количество итераций, которое потребовалась программе для выполнения данной задачи. Вывод main.py:

© C:\Python312\python.exe × + ∨
Корень функции: 0.8241323123025226
Произошло итераций: 49
Press any key to continue . . .

Заключение

В результате выполнения лабораторной работы, я познакомился с методом бисекций, научился реализовывать этот метод с помощью языка программирования Python.

Литература

- 1) Математический анализ [Электронный ресурс]: Конспект лекций по математическому анализу на платформе Notion. Режим доступа: https://clck.ru/3FC9Hk (дата обращения: 12.12.2024).
- 2) Т.В. Родина, Е.С. Трифанова Курс лекций по математическому анализу I (для напр. «Прикладная математика и информатика»). Учебное пособие. СПб: СПбГУ ИТМО, 2010. —183с. Режим доступа: https://books.ifmo.ru/file/pdf/649.pdf (дата обращения: 12.12.2024).
- 3) Т.В. Родина, Е.С.Трифанова Задачи и упражнения по математическому анализу I (для спец. «Прикладная математика и информатика»). Учебное пособие. СПб: СПбГУ ИТМО, 2011. —208с. Режим доступа: https://books.ifmo.ru/file/pdf/835.pdf (дата обращения 12.12.2024).

Приложение

1) Ссылка на репозиторий GitHub, содержащий исходные коды всех составленных программ:

https://clck.ru/3FCJPP

2) Для сравнения прилагаю корень функции, найденный с помощью калькулятора:

 $x \approx 0.8241323123025224229609567857719911081427 \dots$

Синим выделены первые 15 цифр после запятой.