Non life pricing: empirical comparison of classical GLM with tree based Gradient Boosted Models Innovative approach to pure premium estimation

Leonardo Petrini

Paris, 8th June 2017

Outline

- Methodologies and Tools
 - GAM: A better GLM
 - Tree Based Gradient Boosted Models

- 2 Empirical Results
 - Adopted Datasets
 - Performance Results

Motivation: Why should we bother?

- A correct and accurate pricing.
- A better understanding of the risk components.
- Number of Claims (NB) and Claim Severity (CS).

Key Quantity

BurningCost = NB * CS

Beyond GLM: Generalised Additive Models

$$g(E[y|x]) = \beta_0 + f_1(x_1) + \ldots + f_p(x_p)$$

- Advantages
 - Effective in treating non-linearity.
 - Can adapt to a large variety of scenarios.
- Disadvantages
 - Can easily lead to overfitting.
 - Computationally intensive.
- The 'mgcv' package:
 - Define a formula
 - Create a parallel cluster
 - Run the 'mgcv::bam(...)' function

Beyond GLM: Sample R code

Gradient Boosted Models: Understanding the Hype

- Decision Tree based models.
- Proven to work in Insurance.
- XGBoost: The Kaggle "to-go" model.
- Actively used by companies as ...

eXtreme Gradient Boosting: The State of Art

- Ensemble of Decision Trees
- Boosting Algorithm.
- Active community
- Computationally attractive.
- 10x Faster than GBM.

XGBoost: Sample R code

```
library(xgboost)
train <- xgb.DMatrix(data = ..., label = ...)</pre>
test <- xgb.DMatrix(data = ..., label = ...)
watchlist <- list(train = ..., test = ...)</pre>
model <- xgb.train(params = list(...) ,</pre>
                    data = ..., nround = rounds_eta,
                    objective = ..., eval_metric = ...)
```

Adopted Datasets

- CAS Dataset: 'freMTPL'.
- Private Dataset: 'Actuarial Pricing Game'.
- Pre-Processing.
- Cross-Validation
- Metrics Used:
 - Number of Claims: Poisson Log-Loss
 - Claim Severity: Root Mean Square Error
 - Burning Cost: Normalised Gini Index

CAS Dataset: GAM vs XGBoost

	LogLoss	RMSE	Gini
GAM	0.16	3852	0.24
XGB	0.17	1980	0.30
XGB Tweedie	-	-	0.25
Gain			25%
	-	-	0.20

Private Dataset: GAM vs XGBoost

	LogLoss	RMSE	Gini
GAM	0.38	2530	0.35
XGB	0.39	990	0.44
XGB Tweedie	-	-	0.38
Gain			26%

Thank You!

leopetrini@mail.com | GitHub: XGBoost-in-Insurance-2017

