VECTOR SPACES

ARTHUR RYMAN

ABSTRACT. This article contains Z Notation type declarations for vector spaces and some related objects. It has been type checked by fUZZ.

Contents

1.	Real Vector Spaces	1
2.	Real n-tuples	3
3.	The Metric Topology on Real n -tuples	7
4.	Continuity	8
5.	Differentiability	10

1. Real Vector Spaces

Real vector spaces are multidimensional generalizations of real numbers. They are the objects studied in linear algebra and are foundational to differential geometry.

In the following let t denote a set of elements which we'll refer to as *vectors* and let A denote an Abelian group over the vectors in which the binary operation is denoted as addition. Let v and w denote vectors and and let x and y denote real numbers.

- 1.1. Notation for Vector Addition, Zero, and Negative: $+ \dv, 0 \zeroV$, and \every . Let v + w denote vector addition, let $\mathbf{0}$ denote the zero vector, and let -v denote the negative vector.
- 1.2. Real Scalar Multiplication: *\mulS, \times \timesS, and RealScalarMultiplication. A real scalar multiplication operation on the vectors is an operation smul that maps the pair (x, v) to another vector, typically denoted x * v or $x \times y$, such that multiplication by 0 maps all vectors to the group identity element, multiplication by 1 maps each vector to itself, multiplication preserves group addition, and multiplication distributes over both real and group addition.

Let RealScalarMultiplication denote this situation.

Date: January 18, 2025.

```
RealScalarMultiplication[t]

A: abgroup t

smul : \mathbb{R} \times \mathsf{t} \longrightarrow \mathsf{t}

let (-+-) == second \ A;

\mathbf{0} == identity\_element \ A;

(-*-) == smul \bullet

\forall x, y : \mathbb{R}; v, w : \mathsf{t} \bullet

0 * v = \mathbf{0} \land

1 * v = v \land

(x * y) * v = x * (y * v) \land

(x + y) * v = x * v + y * v \land

x * (v + w) = x * v + x * w
```

- Multiplying by 0 gives the zero vector.
- Multiplying by 1 gives the same vector.
- Scalar multiplication is associative.
- Scalar addition distributes over scalar multiplication.
- Vector addition distributes over scalar multiplication.
- 1.3. The Set of All Real Vector Spaces: $vec_{\mathbb{R}} \setminus vecR$. A real vector space is a pair (A, smul) where A is an Abelian group and smul is a real scalar multiplication on the elements of A. The elements of A are referred to as vectors.

Let $vec_{\mathbb{R}} t$ denote the set of all real vector spaces over t.

TODO: Do not assume that the set of vectors coincides with t. In general, it will be a subset of t.

```
\operatorname{vec}_{\mathbb{R}} \mathsf{t} == \{ \mathit{RealScalarMultiplication}[\mathsf{t}] \bullet (\mathit{A}, \mathit{smul}) \}
```

1.4. Real Linear Transformations: RealLinearTransformation. Let V_1 and V_2 be real vector spaces and let f be a homomorphism of the underlying Abelian groups. The map f is said to be a $linear\ transformation$ if f maps scalar multiples of vectors to the scalar multiple of the mapped vectors.

Let RealLinearTransformation denote this situation.

• The vector space V_1 has Abelian group A_1 and scalar multiplication (-*).

- The vector space V_2 has Abelian group A_2 and scalar multiplication ($_\times_$).
- The map f is a homomorphism of the underlying Abelian groups.
- ullet The map f maps scalar multiples of vectors in t to scalar multiples of the mapped vectors in ${\sf u}$.
- 1.5. The Set of All Real Linear Transformations: $L_{\mathbb{R}} \setminus \text{homVecR.}$ Let V_1 and V_2 be real vector spaces. Let $L_{\mathbb{R}}(V_1, V_2)$ denote the set of all linear transformations from V_1 to V_2 . A linear transformation is also referred to as a homomorphism of vector spaces.

```
\begin{split} \mathbf{L}_{\mathbb{R}}[\mathsf{t},\mathsf{u}] == \\ (\lambda \ V_1 : \mathrm{vec}_{\mathbb{R}} \, \mathsf{t}; \ V_2 : \mathrm{vec}_{\mathbb{R}} \, \mathsf{u} \bullet \\ \{f : \mathsf{t} \longrightarrow \mathsf{u} \mid \\ RealLinearTransformation[\mathsf{t},\mathsf{u}] \, \}) \end{split}
```

2. Real n-tuples

The preceding section described real vector spaces abstractly. In this section we define a family of finite-dimensional real vector spaces whose elements are finite sequences of real numbers, also referred to as *real tuples*.

2.1. The Set of All Finite Sequences of Real Numbers: \mathbb{R}^{∞} \Rinf. Let n be a natural number. A finite sequence of n real numbers is called a *real n-tuple*. Let \mathbb{R}^{∞} denote the set of all real n-tuples for any n.

```
\mathbb{R}^{\infty} == \operatorname{seq} \mathbb{R}
```

2.2. The Component Projection Function: π \piRinf. The real numbers that comprise an n-tuple are called its components. Let v be a real n-tuple and let i be an integer where $1 \le i \le n$. The real number v(i) is the i-th component of v. Let $\pi(i)$ be the projection function that maps an n-tuple v to its i-th component v(i).

```
 \begin{array}{c|c} \pi: \mathbb{N}_1 \longrightarrow \mathbb{R}^{\infty} \longrightarrow \mathbb{R} \\ \hline \forall i: \mathbb{N}_1 \bullet \\ \pi(i) = (\lambda \, v: \mathbb{R}^{\infty} \mid i \in \mathrm{dom} \, v \bullet v(i)) \end{array}
```

2.3. The Set of All Well-Dimensioned Subsets of \mathbb{R}^{∞} : $\Delta_{\mathbb{R}}$ \DeltaRinf. A non-empty subset of \mathbb{R}^{∞} is said to be *well-dimensioned* if each of its elements has the same number of components. Let $\Delta_{\mathbb{R}}$ denote the family of all well-dimensioned subsets of \mathbb{R}^{∞} .

$$\begin{array}{|c|c|c|c|c|}\hline \Delta_{\mathbb{R}}:\mathcal{F}\,\mathbb{R}^{\infty}\\ \hline \Delta_{\mathbb{R}}=\{\,S:\mathbb{P}_{1}\,\mathbb{R}^{\infty}\mid\forall\,v,w:S\bullet\#v=\#w\,\}\end{array}$$

2.4. The Dimension of a Well-Dimensioned Set of Tuples: dim \dimRinf. Let $S \in \Delta_{\mathbb{R}}$ be a well-dimensioned set of tuples. The number of components of each tuple in S is called its dimension. Let dim(S) denote the dimension of S.

$$\dim : \Delta_{\mathbb{R}} \longrightarrow \mathbb{N}$$

$$\forall S : \Delta_{\mathbb{R}} \bullet$$

$$\dim S = (\mu \, v : S \bullet \# v)$$

2.5. The Set of All Compatible Pairs of Tuples: \mathbb{R}^{Δ} \RinfDelta. The pair of real tuples (v, w) is said to be *compatible* if each member has the same number of components. Let \mathbb{R}^{Δ} denote the set of all compatible pairs of real tuples. If the pair (v, w) is compatible then v and w are said to be compatible with each other.

$$\mathbb{R}^{\Delta} : \mathbb{R}^{\infty} \longleftrightarrow \mathbb{R}^{\infty}$$

$$\mathbb{R}^{\Delta} = \{ v, w : \mathbb{R}^{\infty} \mid \#v = \#w \}$$

2.6. Addition of Compatible Tuples: $+ \$ Let v and w be n-tuples. Vector addition of v and w is the n-tuple v + w defined by component-wise addition.

2.7. **Subtraction of Compatible Tuples:** — \subRinf. Vector subtraction is defined similarly.

2.8. The Negative of a Tuple: - \negRinf. Let - v denote the negative of v.

$$\begin{array}{c|c} -: \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty} \\ \hline -\langle \rangle = \langle \rangle \\ \hline \forall \, n: \mathbb{N}_1; \, v: \mathbb{R}^{\infty} \mid n = \#v \bullet \\ -v = (\lambda \, i: 1 \dots n \bullet -(v \, i)) \end{array}$$

2.9. Scalar Multiplication of a Tuple: *\smulRinf. Let v be an n-tuple and let c be a real number. Scalar multiplication of v by c is the n-tuple c*v defined by component-wise multiplication.

$$\begin{array}{c|c} -*-: \mathbb{R} \times \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty} \\ \hline \forall c : \mathbb{R} \bullet \\ c * \langle \rangle = \langle \rangle \\ \hline \forall c : \mathbb{R}; n : \mathbb{N}_{1}; v : \mathbb{R}^{\infty} \mid n = \#v \bullet \\ c * v = (\lambda i : 1 ... n \bullet c * (v i)) \end{array}$$

Remark. Scalar multiplication is associative in the sense that (a*b)*v = a*(b*v)

$$\forall a, b : \mathbb{R}; \ v : \mathbb{R}^{\infty} \bullet$$
$$(a * b) * v = a * (b * v)$$

2.10. The Set of All Real *n*-tuples: $\mathbb{R} \setminus \mathbb{R}$ the Let $\mathbb{R}(n)$ denote \mathbb{R}^n , the set of all *n*-tuples for some given *n*.

$$\begin{array}{|c|c|} \hline \mathbb{R}:\mathbb{N} \longrightarrow \mathbb{P} \, \mathbb{R}^{\infty} \\ \hline \hline \forall \, n:\mathbb{N} \bullet \\ \mathbb{R}(n) = \{ \, v:\mathbb{R}^{\infty} \mid \#v = n \, \} \end{array}$$

Remark.

$$\mathbb{R}^{\infty} = \bigcup \{ n : \mathbb{N} \bullet \mathbb{R}(n) \}$$

Remark. The subset $\mathbb{R}(n)$ is well-dimensioned.

$$\forall n : \mathbb{N} \bullet \\ \mathbb{R}(n) \in \Delta_{\mathbb{R}}$$

Remark. The dimension of $\mathbb{R}(n)$ is n.

$$\forall n : \mathbb{N} \bullet \dim(\mathbb{R}(n)) = n$$

2.11. Addition of *n*-tuples: addRtup. Let addRtup(n) denote the restriction of addition to $\mathbb{R}(n)$.

```
\begin{aligned} addRtup &== \\ (\lambda \: n : \mathbb{N} \bullet \\ (\lambda \: v, w : \mathbb{R}(n) \bullet v + w)) \end{aligned}
```

Example. The binary operation addRtup(n) defines an Abelian group over $\mathbb{R}(n)$.

```
\forall n : \mathbb{N} \bullet
(\mathbb{R}(n), addRtup(n)) \in \operatorname{abgroup}(\mathbb{R}(n))
```

2.12. **Subtraction of** *n***-tuples:** subRtup. Let subRtup(n) denote the restriction of subtraction to $\mathbb{R}(n)$.

```
subRtup == (\lambda \ n : \mathbb{N} \bullet (\lambda \ v, w : \mathbb{R}(n) \bullet v - w))
```

2.13. The Negative of an *n*-tuple: negRtup. Let negRtup(n) denote the restriction of the negative operation to $\mathbb{R}(n)$.

```
negRtup == (\lambda n : \mathbb{N} \bullet (\lambda v : \mathbb{R}(n) \bullet - v))
```

Remark. The operation negRtup(n) is the inverse operation of the Abelian group $(\mathbb{R}(n), addRtup(n))$.

```
\forall n : \mathbb{N} \bullet negRtup(n) = inverse\_operation(\mathbb{R}(n), addRtup(n))
```

2.14. The Zero Real *n*-tuple: 0 \zeroRtup. Let $\mathbf{0}(n)$ denote the *n*-tuple consisting of all zeroes.

$$\begin{array}{c|c} \mathbf{0} : \mathbb{N} \longrightarrow \mathbb{R}^{\infty} \\ \hline \mathbf{0}(0) = \langle \rangle \\ \forall \, n : \mathbb{N}_1 \bullet \\ \mathbf{0}(n) = (\lambda \, i : 1 \dots n \bullet 0) \end{array}$$

Remark. Every component of $\mathbf{0}(n)$ is 0.

$$\forall n : \mathbb{N} \bullet$$
 $\forall i : 1 \dots n \bullet$
 $(\pi i)(\mathbf{0} n) = 0$

Remark. The tuple $\mathbf{0}(n)$ is in $\mathbb{R}(n)$.

$$\forall n : \mathbb{N} \bullet \mathbf{0}(n) \in \mathbb{R}(n)$$

Remark. The tuple $\mathbf{0}(n)$ is the identity element of the Abelian group $(\mathbb{R}(n), addRtup(n))$.

```
\forall n : \mathbb{N} \bullet

\mathbf{0}(n) = identity\_element(\mathbb{R}(n), addRtup(n))
```

2.15. Scalar Multiplication of an *n*-tuple: smulRtup. Let smulRtup(n) denote scalar multiplication restricted to $\mathbb{R}(n)$.

```
\begin{aligned} smulRtup &== \\ (\lambda \ n : \mathbb{N} \bullet \\ (\lambda \ c : \mathbb{R}; \ v : \mathbb{R}(n) \bullet c * v)) \end{aligned}
```

2.16. The Real Vector Space of n-tuples: vecRtup. Let vecRtup(n) denote the real vector space of n-tuples.

```
\begin{aligned} vecRtup &== \\ & (\lambda \: n : \mathbb{N} \bullet ((\mathbb{R}(n), addRtup(n)), smulRtup(n))) \end{aligned}
```

Remark. The pair vecRtup(n) defines a vector space over $\mathbb{R}(n)$.

$$\forall n : \mathbb{N} \bullet vecRtup(n) \in vec_{\mathbb{R}}(\mathbb{R}(n))$$

2.17. Linear Transformations of *n*-tuples: $L_{\mathbb{R}} \setminus \text{linRtup.}$ Define $L_{\mathbb{R}}(n, m)$ to be the set of all linear transformations from \mathbb{R}^n to \mathbb{R}^m .

$$\begin{array}{c} \mathbb{L}_{\mathbb{R}} : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{P}(\mathbb{R}^{\infty} \to \mathbb{R}^{\infty}) \\ \hline \forall \, n, m : \mathbb{N} \bullet \\ \mathbb{L}_{\mathbb{R}}(n, m) = \mathbb{L}_{\mathbb{R}}(vecRtup(n), vecRtup(m)) \end{array}$$

2.18. The Identity Transformation of *n*-tuples: I \idRtup. Let I(n) denote the identity function on $\mathbb{R}(n)$.

$$\begin{array}{|c|c|} \hline I: \mathbb{N} \longrightarrow \mathbb{R}^{\infty} & \longrightarrow \mathbb{R}^{\infty} \\ \hline \forall \, n: \mathbb{N} \bullet \\ \hline I(n) = \mathrm{id}(\mathbb{R}(n)) \end{array}$$

Remark. The function I(n) is a linear transformation.

$$\forall n : \mathbb{N} \bullet$$
 $I(n) \in L_{\mathbb{R}}(n, n)$

- 3. The Metric Topology on Real n-Tuples
- 3.1. The Dot Product of Tuples: $\cdot \setminus \text{dotRinf.}$ The *inner* or *dot* product of *n*-tuples v and w is the real number $v \cdot w$ defined by the sum of the component-wise products.

$$\begin{vmatrix} -\cdot_{-} : \mathbb{R}^{\Delta} \longrightarrow \mathbb{R} \\ \hline \langle \rangle \cdot \langle \rangle = 0 \\ \hline \forall x, y : \mathbb{R}; v, w : \mathbb{R}^{\infty} \mid \#v = \#w \bullet \\ (\langle x \rangle^{\widehat{}} v) \cdot (\langle y \rangle^{\widehat{}} w) = x * y + v \cdot w$$

Each $\mathbb{R}(n)$ is a real inner product space under the operation of dot product defined above.

3.2. The Norm of a Tuple: norm \normRinf. The norm ||v|| of the *n*-tuple v is the positive square root of its dot product with itself.

$$||v|| = \sqrt{v \cdot v}$$

Define norm(v) to be ||v||.

$$\begin{array}{c|c} \operatorname{norm}: \mathbb{R}^{\infty} \longrightarrow \mathbb{R} \\ \hline \forall \, v : \mathbb{R}^{\infty} \bullet \\ \operatorname{norm}(v) = \operatorname{sqrt}(v \cdot v) \end{array}$$

The concepts of continuity, limits, and differentiability extend to functions between normed vector spaces such as \mathbb{R}^n .

3.3. The Open Ball at a Tuple: ball \ballRinf. Let ball(v, r) denote the *open ball* in $\mathbb{R}(n)$ of radius $r \in \mathbb{R}_+$ centred at $v \in \mathbb{R}(n)$.

$$\begin{array}{c|c}
\operatorname{ball} : \mathbb{R}^{\infty} \times \mathbb{R}_{+} \to \mathbb{P} \mathbb{R}^{\infty} \\
\hline
\forall v : \mathbb{R}^{\infty}; \, r : \mathbb{R}_{+} \bullet \\
\operatorname{let} \, n == \# v \bullet \\
\operatorname{ball}(v, r) = \{ \, w : \mathbb{R}(n) \mid \operatorname{norm}(v - w) < r \, \}
\end{array}$$

3.4. The Set of All Open Balls at an n-tuple: balls \ballsRtup. Let balls(n) denote the family of all open balls in $\mathbb{R}(n)$.

```
\begin{array}{|c|c|} \hline \text{balls} : \mathbb{N} \longrightarrow \mathcal{F} \mathbb{R}^{\infty} \\ \hline \forall n : \mathbb{N} \bullet \\ \hline \text{balls}(n) = \{ v : \mathbb{R}(n); \, r : \mathbb{R}_{+} \bullet \text{ball}(v, r) \} \end{array}
```

Remark. The set of all open balls in $\mathbb{R}(n)$ is a family of sets in $\mathbb{R}(n)$.

$$\forall n : \mathbb{N} \bullet$$
 balls $(n) \in \mathcal{F}(\mathbb{R}(n))$

3.5. The Usual Topology on n-tuples: $\tau_{\mathbb{R}}$ \tauRtup. The usual topology on $\mathbb{R}(n)$ is the topology generated by the open balls in $\mathbb{R}(n)$. Let $\tau_{\mathbb{R}}(n)$ denote the usual topology on $\mathbb{R}(n)$.

$$\begin{array}{|c|c|} \hline \tau_{\mathbb{R}} : \mathbb{N} \longrightarrow \mathcal{F} \, \mathbb{R}^{\infty} \\ \hline \forall \, n : \mathbb{N} \bullet \\ \hline \tau_{\mathbb{R}}(n) = top Gen[\mathbb{R}(n)](\mathrm{balls}(n)) \end{array}$$

Remark. If $n \in \mathbb{N}$ then $\tau_{\mathbb{R}}(n)$ is a topology on $\mathbb{R}(n)$.

$$\forall n : \mathbb{N} \bullet \tau_{\mathbb{R}}(n) \in top[\mathbb{R}(n)]$$

3.6. The Set of All Neighbourhoods of a Tuple: neigh \neighRinf. Let $v \in \mathbb{R}(n)$. An open set U in the usual topology $\tau_{\mathbb{R}}(n)$ that contains v is called a neighbourhood of v. Let neigh(v) denote the set of all neighbourhoods of x.

$$\begin{array}{c|c} \text{neigh}: \mathbb{R}^{\infty} \longrightarrow \mathcal{F} \, \mathbb{R}^{\infty} \\ \hline \forall \, n: \mathbb{N}; \, v: \mathbb{R}^{\infty} \mid n = \# v \bullet \\ \text{neigh}(v) = \{ \, U: \tau_{\mathbb{R}}(n) \mid v \in U \, \} \end{array}$$

Remark. The set of all neighbourhoods of $v \in \mathbb{R}(n)$ is a family of sets in $\mathbb{R}(n)$.

$$\forall n : \mathbb{N}; v : \mathbb{R}^{\infty} \mid n = \#v \bullet$$

 $\operatorname{neigh}(v) \in \mathcal{F}(\mathbb{R}(n))$

3.7. The Topological Space of *n*-tuples: \mathbb{R}_{τ} \tsRtup. Let $\mathbb{R}_{\tau}(n)$ denote the topological space defined by the usual topology on $\mathbb{R}(n)$.

4. Continuity

4.1. Real-Valued Functions That Are Continuous on the Set of All n-tuples: C^0 \CzeroRtup. A function $f \in \mathbb{R}^n \to \mathbb{R}$ is said to be *continuous* if it is continuous with respect to the usual topologies on \mathbb{R}^n and \mathbb{R} . Let $C^0(n)$ denote the set of these continuous functions.

$$\begin{array}{c|c} C^0: \mathbb{N} \longrightarrow \mathbb{P}(\mathbb{R}^\infty \longrightarrow \mathbb{R}) \\ \hline \forall \, n: \mathbb{N} \bullet \\ C^0(n) = C^0(\mathbb{R}_\tau(n), \mathbb{R}_\tau) \end{array}$$

4.2. Real-Valued Functions That Are Continuous on a Subset of *n*-tuples: C^0 \CzeroSubsetRtup. Let U be a subset of \mathbb{R}^n . A function $f \in U \to \mathbb{R}$ is said to be *continuous on* U if it is continuous with respect to the topology induced on U. Let $C^0(U)$ denote the set of these continuous functions.

$$C^{0}: \Delta_{\mathbb{R}} \longrightarrow \mathbb{P}(\mathbb{R}^{\infty} \to \mathbb{R})$$

$$\forall U: \Delta_{\mathbb{R}} \bullet$$

$$\mathbf{let} \ n == \dim U \bullet$$

$$C^{0}(U) = C^{0}(\mathbb{R}_{\tau}(n) \mid_{\mathsf{top}} U, \mathbb{R}_{\tau})$$

4.3. Real-Valued Functions That Are Continuous at an n-tuple: $C^0 \setminus CzeroPointRtup$. A partial function f from \mathbb{R}^n to \mathbb{R} is said to be *continuous* at $x \in \mathbb{R}^n$ if its domain contains a neighbourhood U of x such that its restriction to U is continuous on U. Let $C^0(x)$ denote the set of such functions.

$$C^{0}: \mathbb{R}^{\infty} \longrightarrow \mathbb{P}(\mathbb{R}^{\infty} \to \mathbb{R})$$

$$\forall x : \mathbb{R}^{\infty} \bullet$$

$$\mathbf{let} \ n == \#x \bullet$$

$$C^{0}(x) = \{ f : \mathbb{R}(n) \to \mathbb{R} \mid \exists \ U : \mathbf{neigh}(x) \mid U \subseteq \mathbf{dom} \ f \bullet \ U \triangleleft f \in \mathbf{C}^{0}(U) \}$$

4.4. m-tuple-Valued Functions That Are Continuous on the Set of All n-tuples: $C^0 \setminus CzeroRtupRtup$. A mapping f from $\mathbb{R}(n)$ to $\mathbb{R}(m)$ is said to be continuous if it is continuous with respect to the usual topologies. Let $C^0(n, m)$ denote the set of these continuous mappings.

$$\begin{array}{c}
C^{0}: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{P}(\mathbb{R}^{\infty} \to \mathbb{R}^{\infty}) \\
\hline
\forall n, m : \mathbb{N} \bullet \\
C^{0}(n, m) = C^{0}(\mathbb{R}_{\tau}(n), \mathbb{R}_{\tau}(m))
\end{array}$$

Example. The function I(n) is continuous.

$$\forall n : \mathbb{N} \bullet$$
$$I(n) \in \mathcal{C}^0(n, n)$$

Theorem 1. Linear functions are continuous.

$$\forall n, m : \mathbb{N} \bullet$$

 $L_{\mathbb{R}}(n, m) \subseteq C^{0}(n, m)$

4.5. m-tuple-Valued Functions That Are Continuous on a Subset of n-tuples: $C^0 \setminus CzeroSubsetRtupRtup$. Let U be any subset of $\mathbb{R}(n)$. Let $C^0(U,m)$ denote the set of continuous mappings from the topology induced by $\mathbb{R}_{\tau}(n)$ on U to $\mathbb{R}_{\tau}(m)$.

```
 \begin{array}{|c|c|} \hline C^0: \Delta_{\mathbb{R}} \times \mathbb{N} \longrightarrow \mathbb{P}(\mathbb{R}^\infty \longrightarrow \mathbb{R}^\infty) \\ \hline \forall \, n, \, m : \mathbb{N} \bullet \\ \forall \, U: \Delta_{\mathbb{R}} \mid \dim(U) = n \bullet \\ \hline C^0(U, m) = C^0(\mathbb{R}_\tau(n) \mid_{\mathsf{top}} U, \mathbb{R}_\tau(m)) \end{array}
```

Remark.

```
\forall n, m : \mathbb{N} \bullet
C^{0}(\mathbb{R}(n), m) = C^{0}(n, m)
```

```
VectorContinuous
n, m : \mathbb{N}
f : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}
x : \mathbb{R}^{\infty}
f \in \mathbb{R}(n) \to \mathbb{R}(m)
\exists U : \operatorname{neigh}(x) \mid
U \subseteq \operatorname{dom} f \bullet
U \lhd f \in C^{0}(U, m)
```

Let $C^0(x, m)$ denote the set of all partial functions f from $\mathbb{R}(n)$ to $\mathbb{R}(m)$ that are continuous at x.

```
\begin{array}{|c|c|}\hline C^0:\mathbb{R}^\infty\times\mathbb{N}\longrightarrow\mathbb{P}(\mathbb{R}^\infty\to\mathbb{R}^\infty)\\\hline \forall\,n,m:\mathbb{N}\bullet\forall\,x:\mathbb{R}(n)\bullet\\ C^0(x,m)=\\ &\{f:\mathbb{R}(n)\to\mathbb{R}(m)\mid \textit{VectorContinuous}\,\}\end{array}
```

Example. The function I(n) is continuous at every point $x \in \mathbb{R}(n)$.

$$\forall n : \mathbb{N} \bullet \forall x : \mathbb{R}(n) \bullet \\ I(n) \in C^{0}(x, n)$$

Theorem 2. Linear functions are continuous everywhere.

```
\forall n, m : \mathbb{N} \bullet

\forall x : \mathbb{R}(n); L : \mathcal{L}_{\mathbb{R}}(n, m) \bullet

L \in \mathcal{C}^{0}(x, m)
```

5. Differentiability

Let $x \in \mathbb{R}^n$ and let $f : \mathbb{R}^n \to \mathbb{R}^m$ be continuous at x. Then f is said to be differentiable at x if there exists a linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ such that f(x+h) - f(x) is approximately linear in h for very small h.

$$f(x+h) - f(x) \approx L(h) + O(h^2)$$
 when $||h|| \approx 0$

This condition can be written as a limit.

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - L(h)\|}{\|h\|} = 0$$

5.1. The Difference Quotient: Difference Quotient and diffQuot. The limit exists when the following difference quotient function $q: \mathbb{R}^n \to \mathbb{R}$ is continuous at 0

$$q(h) = \begin{cases} \frac{\|f(x+h) - f(x) - L(h)\|}{\|h\|} & \text{if } h \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Given a function f that is continuous at x, and a linear transformation L, we can define the difference quotient q. Clearly q is uniquely determined by f, x, and L. Let Difference Quotient denote this situation.

 $-Difference Quotient \\ Vector Continuous \\ L: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty} \\ q: \mathbb{R}^{\infty} \to \mathbb{R}$ $L \in L_{\mathbb{R}}(n, m)$ $dom \ q = \{ \ h: \mathbb{R}(n) \mid x + h \in \text{dom} \ f \}$ $\forall \ h: \text{dom} \ q \mid h \neq \mathbf{0}(n) \bullet \\ q(h) = \text{norm}(f(x + h) - f(x) - L(h)) \ / \ \text{norm}(h)$ $q(\mathbf{0}(n)) = 0$

- L is a linear transformation from $\mathbb{R}(n)$ to $\mathbb{R}(m)$.
- The difference quotient q is defined on a subset of $\mathbb{R}(n)$ that contains $\mathbf{0}(n)$.
- q(h) is defined as the quotient when h is non-zero.
- q(0) is defined as zero.

Let diffQuot(f, x, L) denote the difference quotient q.

$$diffQuot == \{ DifferenceQuotient \bullet (f, x, L) \mapsto q \}$$

5.2. The Derivative of a Continuous m-tuple-Valued Function: Vector Differentiable. The continuous function f is differentiable at x when there exists a linear transformation L such that the difference quotient q is continuous at 0. In this case L is unique and is referred to as the derivative at x.

• The continuous function f is differentiable at x with derivative L if the resulting difference quotient q is continuous at $\mathbf{0}(n)$.

Remark. If L exists then it is unique.

Let $C^{\infty}(x, m)$ denote the set of all functions $f \in \mathbb{R}(n) \to \mathbb{R}(m)$ that are smooth at $x \in \mathbb{R}(n)$.

 $Email\ address, \ Arthur\ Ryman: \ {\tt arthur.ryman@gmail.com}$