Álgebra 1 - Turma D $-2^{\circ}/2016$

4^a Lista de Exercícios – Grupos

Prof. José Antônio O. Freitas

Exercício 1: Verifique se os seguintes conjuntos com a operação dada é ou não um grupo. Em caso afirmativo, o grupo é comutativo?

- (a) (\mathbb{Z}, \star) , onde $x \star y = x + xy$, para $x, y \in \mathbb{Z}$;
- (b) (\mathbb{Z}, \star) , onde $x \star y = x + y + xy$, para $x, y \in \mathbb{Z}$;
- (c) (\mathbb{Z}, \star) , onde $x \star y = xy + 2x$, para $x, y \in \mathbb{Z}$;
- (d) (\mathbb{Q}, \star) , onde $x \star y = x + xy$, para $x, y \in \mathbb{Q}$;
- (e) (\mathbb{R}^*, \star) , onde $x \star y = \frac{x}{y}$, para $x, y \in \mathbb{R}$;
- (f) (\mathbb{R}_+, \star) , onde $x \star y = \sqrt{x^2 + y^2}$, para $x, y \in \mathbb{R}_+$;
- (g) (\mathbb{R}, \star) , onde $x \star y = \sqrt[3]{x^3 + y^3}$, para $x, y \in \mathbb{R}$.
- (h) (G,\cdot) , onde $G=\{x\in\mathbb{Q}\mid x>0\}$ e · é a multiplicação de números racionais.
- (i) (G,\cdot) , onde $G=\left\{\frac{1+2m}{1+2n}\mid m,n\in\mathbb{Z}\right\}$ e · é a multiplicação de números racionais.
- (j) (G,+), onde $G=\{0,\pm 2,\pm 4,\pm 6,\dots\}$ e + é a soma de números inteiros.
- (k) (G, \star) , onde $G = \{0, \pm 2, \pm 4, \pm 6, \dots\}$ e \star é definida como $x \star y = x + y xy$.
- (l) (G,+), onde $G=\{a+b\sqrt{2}\mid a,b\in\mathbb{Q}\}$ e + é a soma de números reais.
- (m) (G,\cdot) , onde $G=\{a+b\sqrt{2}\in\mathbb{R}^*\mid a,b\in\mathbb{Q}\}$ e · é a multiplição de números reais.
- (n) (G,+), onde $G=\{a+b\sqrt[3]{2}\mid a,b\in\mathbb{Q}\}$ e + é a soma de números reais.
- (o) (G,\cdot) , onde $G=\{a+b\sqrt[3]{2}\in\mathbb{R}^*\mid a,b\in\mathbb{Q}\}$ e · é a multiplição de números reais..

Exercício 2: Seja

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

e $i^2 = -1$. Mostre que:

(a) $(\mathbb{C}, +)$ é um grupo abeliano, onde

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

para a + bi, $c + di \in \mathbb{C}$.

(b) Para $\mathbb{C}^* = \mathbb{C} - \{0\}$, (\mathbb{C}^*, \cdot) é um grupo abeliano, onde

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i$$

para a + bi, $c + di \in \mathbb{C}$.

Exercício 3: Verifique se o conjunto $\mathbb{Q}_{>0}$ dos números racionais estritamente positivos com a operação dada é ou não um grupo. Justifique sua resposta.

(a)
$$(\mathbb{Q}_{>0},\cdot)$$
 (b) $(\mathbb{Q}_{>0},+)$

Exercício 4: Seja $z=a+bi\in\mathbb{C},$ onde $a,b\in\mathbb{R}.$ Definimos $|z|=\sqrt{a^2+b^2}.$ Prove que $G=\{z\in\mathbb{C}\mid |z|=1\}$ é um grupo abeliano com a operação de multiplicação de números complexos.

Exercício 5: Mostre que o conjunto $\mathbb{Q}[\sqrt{2}]^* = \{a + b\sqrt{2} \in \mathbb{R}^* \mid a, b \in \mathbb{Q}\}$ é um grupo multiplicativo abeliano.

Exercício 6: No conjunto $\mathbb{Z} \times \mathbb{Z}$ considere a operação de soma definida por

$$(x,y) + (z,t) = (x+z,y+t)$$

para $(x, y), (z, t) \in \mathbb{Z} \times \mathbb{Z}$. Mostre que $(\mathbb{Z} \times \mathbb{Z}, +)$ é um grupo abeliano.