8.3.1 The General Framework of Interval Estimation

Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a distribution with a parameter θ that is to be estimated. Our goal is to find two estimators for θ :

- 1. the low estimator, $\hat{\Theta}_l = \hat{\Theta}_l(X_1, X_2, \cdots, X_n)$, and
- 2. the high estimator, $\hat{\Theta}_h = \hat{\Theta}_h(X_1, X_2, \cdots, X_n)$.

The interval estimator is given by the interval $[\hat{\Theta}_l,\hat{\Theta}_h]$. The estimators $\hat{\Theta}_l$ and $\hat{\Theta}_h$ are chosen such that the probability that the interval $[\hat{\Theta}_l,\hat{\Theta}_h]$ includes θ is larger than $1-\alpha$. Here, $1-\alpha$ is said to be **confidence level**. We would like α to be small. Common values for α are 0.1, .05, and .01 which correspond to confidence levels 90%, 95%, and 99% respectively. Thus, when we are asked to find a 95% confidence interval for a parameter θ , we need to find $\hat{\Theta}_l$ and $\hat{\Theta}_h$ such that

$$Pigg(\hat{\Theta}_l < heta ext{ and } \hat{\Theta}_h > hetaigg) \geq 0.95$$

The above discussion will become clearer as we go through examples. Before doing that let's formally define interval estimation.

Interval Estimation

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ that is to be estimated. An **interval estimator** with **confidence level** $1-\alpha$ consists of two estimators $\hat{\Theta}_l(X_1, X_2, \cdots, X_n)$ and $\hat{\Theta}_h(X_1, X_2, \cdots, X_n)$ such that

$$Pig(\hat{\Theta}_l \leq heta ext{ and } \hat{\Theta}_h \geq hetaig) \geq 1-lpha,$$

for every possible value of θ . Equivalently, we say that $[\hat{\Theta}_l, \hat{\Theta}_h]$ is a $(1-\alpha)100\%$ **confidence interval** for θ .

$$Pig(\hat{\Theta}_l \leq heta ext{ and } \hat{\Theta}_h \geq hetaig) \geq 1-lpha$$

can be equivalently written as

$$Pigg(\hat{\Theta}_l \leq heta \leq \hat{\Theta}_higg) \geq 1-lpha, \quad ext{or} \quad Pigg(heta \in ig[\hat{\Theta}_l, \hat{\Theta}_hig]igg) \geq 1-lpha.$$

The randomness in these terms is due to $\hat{\Theta}_l$ and $\hat{\Theta}_h$, not θ . Here, θ is the unknown quantity which is assumed to be non-random (frequentist inference). On the other hand, $\hat{\Theta}_l$ and $\hat{\Theta}_h$ are random variables because they are functions of the observed random variables $X_1, X_2, X_3, \ldots, X_n$.