Polynômes et fractions rationnelles sur $\mathbb R$ et $\mathbb C$

M2 – Chapitre 3

I. Définitions

1. Polynôme de $\mathbb{K}[X]$

Un polynôme de $\mathbb{K}[X]$ (ensemble des polynômes de \mathbb{K}) est une suite d'éléments de \mathbb{K} nulle à partir d'un certain rang. Il se note $\sum_k a_k X^k$

2. Degré d'un polynôme

$$P \neq 0 \Leftrightarrow d^{\circ}P = \text{rang du coefficient dominant}$$

 $P = 0 \Leftrightarrow d^{\circ}P = -\infty \text{ (convention)}$

3. Polynôme unitaire

Un polynôme est unitaire si son coefficient dominant est 1.

II. Anneau des polynômes

1. Relation vis-à-vis du degré

$$d^{\circ}(P+Q) = \operatorname{Max}(d^{\circ}P; d^{\circ}Q)$$
$$d^{\circ}(P,Q) = d^{\circ}P + d^{\circ}Q$$

2. Régularité

$$PQ = PR \Leftrightarrow Q = R$$

3. Division euclidienne

Soient
$$A$$
 et B deux polynômes $(B \neq 0)$
 $\exists ! (Q, R) \in \mathbb{K}[X]^2$
 $A = BQ + R$ $d^{\circ}R < d^{\circ}B$

4. Polynôme dérivé

$$\left(\sum_{k} a_k X^k\right)' = \sum_{k \ge 1} k a_k X^{k-1}$$
$$(P+Q)' = P' + Q'$$
$$(PO)' = P'O + PO'$$

III. Racines d'un polynôme

1. Égalité de Taylor

$$P = \sum_{k} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

2. Racines d'ordre *m* d'un polynôme

Soient $m \in \mathbb{N}^*$ et P polynôme

P factorisable par
$$(X - a)^m \Leftrightarrow P(a) = P'(a) = \cdots = P^{(m-1)}(a) = 0$$

a est racine d'ordre m du polynôme quand $P(a)=P'(a)=\cdots=P^{(m-1)}(a)=0$ et $P^{(m)}\neq 0$

v2

Polynômes et fractions rationnelles sur $\mathbb R$ et $\mathbb C$

M2 - Chapitre 3

IV. Décomposition / factorisation des polynômes

1. Définition du PGCD (∧)

Soient *A* et *B* deux polynômes non simultanément nuls.

$$\exists ! P_0$$
 polynôme unitaire $t.q.$
$$\boxed{I = \{AU + BV\} = \{P_0W\} = P_0\mathbb{K}[X]}{(U,V) \in \mathbb{K}[X]^2 \quad W \in \mathbb{K}[X]}$$

Donc:

- $\exists (U,V) \in \mathbb{K}[X] \ t. \ q. \boxed{AU + BV = P_0}$
- P_0 est appelé PGCD de A et B
- $P_0|A \text{ et } P_0|B$
- $Q|A \text{ et } Q|B \Rightarrow Q|P_0$

2. Théorème de Bézout

A et B premiers entre eux \Leftrightarrow A \land B = 1 \Leftrightarrow AU + BV = 1

3. Théorème de Gauss

$$A|BC \text{ et } A \land B = 1 \Rightarrow A|C|$$

Polynômes irréductibles

Soit P polynôme non constant

P irréductible
$$\Leftrightarrow \forall (A, B) \in \mathbb{K}[X]^2, P = AB \Rightarrow d^{\circ}A = 0$$
 ou $d^{\circ}B = 0$ $\Leftrightarrow P$ factorisable uniquement par des polynômes constants

- $P \in \mathbb{R}[X]$ irréductible $\Leftrightarrow d^{\circ}P = 1$ ou $d^{\circ}P = 2$ et $\Delta < 0$
- $P \in \mathbb{C}[X]$ irréductible $\Leftrightarrow d^{\circ}P = 1$
- Tout polynôme est produit de facteurs irréductibles

V. Définition et propriétés de $\mathbb{K}(X)$

$$(P,Q)R(P',Q') \Leftrightarrow PQ' = P'Q$$
 $\overline{(P,Q)}$ se note $\frac{P}{Q}$ $d^{\circ}\frac{P}{Q} = d^{\circ}P - d^{\circ}Q$

$$\overline{(P,Q)}$$
 se note $\frac{P}{Q}$

$$d^{\circ} \frac{P}{Q} = d^{\circ}P - d^{\circ}Q$$

v2

Toute fraction admet une unique décomposition en E polynôme et F fraction de degré négatif :

$$\boxed{\frac{P}{Q} = \underbrace{E}_{\in \mathbb{K}[X]} + \underbrace{F}_{\in \mathbb{K}(X) \text{ et } d^{\circ}F < 0}}$$

VI. Décomposition polaire d'une fraction rationnelle

$$\frac{A}{\prod_{k=0}^{n} P_k} = \sum_{k=0}^{n} \frac{A_k}{P_k}$$

P_k premiers entre eux, A_k polynômes à déterminer

$$\frac{A}{P^n} = E + \sum_{k=0}^n \frac{A_k}{P^k}$$

 A_k polynômes à déterminer $d^{\circ}A_k < d^{\circ}P$