Written Assignment 1 — Solutions

CS 440 September 12, 2025

Name: Yat Long Szeto BU ID: 90479281

Collaborators (required): None

Question 1: Shortest Path Composition

Proof. When considering the path from a to c, suppose p_1 is not shortest from a to c. Then there exists an a to c path \tilde{p}_1 with $cost(\tilde{p}_1) < cost(p_1)$. Concatenate to get an a to b walk $\tilde{p}_1 \cdot p_2$ of cost

$$cost(\tilde{p}_1) + cost(p_2) < cost(p_1) + cost(p_2) = cost(p^*),$$

contradicting optimality of p^* as the cost of $\tilde{p}_1 \cdot p_2$ is less than p^* . Hence p_1 is shortest $a \to c$ and there is no such \tilde{p}_1 exists. The same argument with (c,b) shows p_2 is shortest $c \to b$.

Question 2: Iterative Deepening returns shortest paths

Theorem 1. On an unweighted (unit-edge) graph, Iterative Deepening DFS with limits $1, 2, 3, \ldots$ from a source s returns, for any discovered vertex v, a path with the minimum number of edges.

Proof. Let $\ell(v)$ be the shortest-path distance (in edges) from s to v. For $d < \ell(v)$, depth-limited DFS cannot expose any s-v path. When $d = \ell(v)$, a shortest s-v path of length $\ell(v)$ is eligible and will be found during that pass; the procedure completes the whole $d = \ell(v)$ pass before running $d = \ell(v)+1$. Therefore the first time v is returned is at depth limit $\ell(v)$, with a shortest path.

Question 3: Diameter bound

Theorem 2. For any finite, undirected, unweighted graph G = (V, E), the diameter satisfies $diam(G) \leq |V| - 1$.

Proof. Fix $u \neq v$. Any *simple* u–v path visits vertices at most once, hence uses at most |V|-1 edges. A shortest u–v path is simple (otherwise remove a cycle to shorten it). So $\operatorname{dist}(u,v) \leq |V|-1$ for all pairs, and the maximum over pairs is at most |V|-1.

Question 4: Correctness of Dijkstra's algorithm (positive weights)

Theorem 3. Let G = (V, E, w) be directed with w(e) > 0. Dijkstra's algorithm from source s settles each vertex v with key $d[v] = \delta(s, v)$, the true shortest-path distance.

Loop invariant proof. Invariant. (i) For every settled u, $d[u] = \delta(s, u)$. (ii) For every fringe x, d[x] equals the minimum length of an s-x path whose last edge enters from a settled predecessor.

Initially only s may be settled with $d[s] = 0 = \delta(s,s)$; relaxations preserve (ii). Suppose before an iteration the invariant holds and the algorithm extracts v with minimal d[v] among unsettled vertices. If $d[v] > \delta(s,v)$, take a shortest s-v path and let y be the first unsettled vertex on it with settled predecessor x. Then $d[x] = \delta(s,x)$ by (i), and relaxing (x,y) gave $d[y] \le \delta(s,y) \le \delta(s,v)$. Minimality of d[v] implies $d[v] \le d[y] \le \delta(s,v)$, a contradiction. Hence $d[v] = \delta(s,v)$ when settled; relaxations maintain (ii). By induction, the claim holds for all settled vertices.

Extra Credit (outline): Column-constrained top-to-bottom shortest path on a vertex-weighted lattice

Model. $n \times n$ directed lattice; edges have weight 0; each vertex u has weight w(u) > 0; path length is the sum of vertex weights (including the start).

Goal. For each column i, let P_i be a shortest path from the top vertex $v_{1,i}$ to bottom vertex $v_{n,i}$. Output $P^* = \arg\min_i \operatorname{len}(P_i)$.

Reduction using the given oracle. Augment G with super-source s and super-sink t of zero weight. Connect $s \to v_{1,i}$ for all i. To enforce that the path ends in the same column, build, for each fixed i, a graph $G^{(i)}$ that includes only the edge $v_{n,i} \to t$ (delete $v_{n,j} \to t$ for $j \neq i$). One call to the oracle on $(G^{(i)}, s, t)$ returns P_i . Take the best over i. This takes O(n) oracle calls on $\Theta(n^2)$ -size lattices (overall $O(n^3)$). If lateral moves cannot change the column at the bottom, a single call on the graph with all $v_{n,i} \to t$ suffices in $O(n^2)$.

Correctness. In $G^{(i)}$, any s-t path must start at some $v_{1,i}$ and end at $v_{n,i}$; its cost equals the vertex-sum along the $v_{1,i} \leadsto v_{n,i}$ segment, i.e., the length of P_i . Minimizing over i yields P^* .