Default with Policy – Randomness Overestimation (PRO)

Pivoted Pricing, Deleveraging, and a Stability Illusion

Chen Gao

October 15

National School of Development, Peking University

Roadmap

Motivation

Model

Pivot Intuition

Quantitative Results

Microfoundation (RI)

Policy & Information

Computation

Conclusion

Literature Review

Deeper Math

A Persistent Puzzle

- Some sovereigns face persistently high spreads despite moderate debt and improving fundamentals.
- Event evidence (e.g., Argentina's inflation misreporting) shows spread decoupling beyond direct balance-sheet effects.
- Standard models struggle to match elevated average premia with lower volatility.
- This paper: a single pricing operator with a second-moment belief wedge (PRO) that *pivots* price/spread schedules.

Argentina: Data Misreporting and Spread Decoupling

Official CPI vs. alternative measures

EMBI+ spreads: Argentina vs. LA peers

• Interpretation: reputational channel (type) + PRO (policy dispersion) both active.

Environment

- Endowment: $\ln y' = (1-\rho_y)\mu_y + \rho_y \ln y + \sigma_y \varepsilon'$, $\varepsilon' \sim \mathcal{N}(0,1)$.
- **Debt**: long-term bond with coupon κ , decay δ , risk-free rate r.
- **Default**: exclusion prob. 1γ ; cost $h(y) = y \max\{0, \lambda_0 y + \lambda_1 y^2\}$.
- Preferences: $u(c) = (c^{1-\sigma} 1)/(1-\sigma)$, discount β .

Discrete Choice: Default and Borrowing

Taste shocks (Gumbel) yield smooth aggregator and logit rules.

Ex-ante value:
$$V(y,B) = \eta \, \ln \left(e^{V^D(y)/\eta} + e^{V^R(y,B)/\eta} \right),$$
 Default prob.:
$$\mathbb{P}\{d = 1 \mid y,B\} = \mathbb{L}\left(-\frac{\Delta V(y,B)}{\eta} \right) = \frac{e^{V^D/\eta}}{e^{V^D/\eta} + e^{V^R/\eta}},$$
 Borrowing aggregator:
$$V^R(y,B) = \rho \, \ln \sum_{B' \in \mathcal{B}} e^{W(y,B,B')/\rho},$$
 Borrowing policy:
$$\mathbb{P}\{B' \mid y,B\} = \frac{e^{W(y,B,B')/\rho}}{\sum_{\tilde{B}'} e^{W(y,B,\tilde{B}')/\rho}},$$

where
$$\Delta V \equiv V^R - V^D$$
 ,
$$W(y,B,B') = u \big(y - \kappa B + [B' - (1-\delta)B] q(y,B') \big) + \beta \mathbb{E} V(y',B').$$

Lenders and Pricing Operator

PRO scales the *default logit* via tail weight $\theta \geq 1$:

$$P_{\theta}(y,B') = \mathsf{L}\Big(-rac{\Delta V(y,B')}{\theta\,\eta}\Big), \qquad \mathsf{L}(z) = rac{1}{1+e^{-z}}$$

Pricing operator (unique fixed point):

$$(\mathcal{T}_{\theta}q)(B',y) = \tfrac{1}{1+r}\,\mathbb{E}_{y'|y}\Big[(1-P_{\theta}(y',B'))\big(\kappa + (1-\delta)\,\mathbb{E}_{B''|y',B'}q(y',B'')\big)\Big]$$

Slope (joint contraction) condition:

$$L_{Jq}L_{TV} < (1-\beta)\Big(1-\frac{1-\delta}{1+r}\Big) \quad \Rightarrow \quad \text{unique fixed point.}$$

One-Line Schematic of Pivot

Compact schematic anchoring the single-crossing:

$$\begin{split} P_{\theta}(y,B') &= \mathsf{L}\Big(-\frac{\Delta V(y,B')}{\theta\eta}\Big), \quad \Delta V \equiv V^R - V^D, \\ &\Rightarrow \quad \mathsf{sign}(P_1 - P_{\theta}) = -\,\mathsf{sign}(\Delta V), \\ &\Rightarrow \quad \mathsf{sign}(q_{\theta} - q_1) = \mathsf{sign}\,\mathbb{E}[(P_1 - P_{\theta})\Pi] \, = \, -\,\mathsf{sign}(\Delta V), \, \Pi > 0. \end{split}$$

Define the threshold $B^*(y): \Delta V(y, B^*(y)) = 0$. Then:

- · $B' < B^*(y)$ (safe region, $\Delta V > 0$): $q_{\theta} < q_1$ (PRO premium).
- $B'>B^*(y)$ (near default, $\Delta V<0$): $q_{\theta}>q_1$ (softened doom).

Pivot: Proof Sketch and Comparative Statics

Operator order: If $P_{\theta} \ge P_1$ pointwise, positivity of payoff kernel implies $(\mathcal{T}_{\theta}q) \le (\mathcal{T}_1q)$.

- Sign: $sign(P_1 P_\theta) = -sign(\Delta V) \Rightarrow single crossing at \Delta V = 0$.
- Threshold monotonicity: $B^*(y)$ increases in y (rational schedule shifts out more than PRO).
- · Policies: higher default threshold, deleveraging, higher mean spreads.

Calibration (Quarterly, EM stylized)

- · Preferences and endowment: $\sigma=2$, $\beta=0.9775$, $\rho_{y}=0.95$, $\sigma_{y}=0.005$.
- · Debt: $\delta = 0.04$ (5y duration), $\kappa = \delta + r$, $r = 1\%/{\rm qtr}$, $\gamma = 0.125$.
- Default cost: $h(y)=y-\max\{0,\lambda_0y+\lambda_1y^2\}$ with $(\lambda_0,\lambda_1)=(-0.48,0.525).$
- Taste shocks small: $\eta=5\times 10^{-4}$, $\rho=10^{-5}$; grids: N_y =201, N_B =600.
- Scenarios: $\theta \in \{1, 10, 100\}$.

Business Cycle Moments

Table	1:	Simulation		Moments		Comp	Comparison	
	_		4					

Moment	Baseline $(\theta = 1)$	Med θ ($\theta = 10$)	High θ ($\theta = 100$)
Mean Debt/GDP	7.646	5.520	2.695
Std Debt/GDP	1.301	0.864	0.754
Mean Spread (ann.)	2.028	2.762	4.153
Std Spread (ann.)	0.804	0.496	0.592
Std log C	3.580	3.586	3.464
Std log GDP	3.164	3.236	3.236
Corr(Sp,GDP)	-0.336	-0.802	-0.894
Corr(TB/GDP,GDP)	-0.003	-0.284	-0.259
Mean TB/GDP	0.268	0.320	0.177
Std TB/GDP	0.835	0.437	0.326
Corr(Debt/GDP,GDP)	0.697	0.858	0.839
Default Rate	3.947	0.000	0.000

- Higher avg spreads with deleveraging (pivot wedge dominates composition).
- Spreads more countercyclical; volatility of spreads/debt falls (stability illusion).
- Consumption volatility nearly unchanged; risk insurance impaired.

Price, Spread, and Default Risk

Bond prices Spreads Default probabilities

Single-crossing pivot around $B^*(y)$; PRO discounts safe region and softens near-doom.

Impulse Responses: Transitory Shock

Debt

Impulse Responses: Persistent Shock

Output

Debt

Microfoundation (RI)

Rational Inattention: Tail Weight from Attention

- · Lenders choose **precisions** (a_{μ}, a_{σ}) at convex cost $\Phi(a_{\mu}, a_{\sigma})$.
- FOC: $\varphi \mathcal{S} = \kappa_{\sigma} a_{\sigma} \Rightarrow a_{\sigma} = \frac{\varphi}{\kappa_{\sigma}} \mathcal{S}$.
- $\cdot \ \, \text{Tail weight:} \ \, \theta_{\mathrm{RI}}(y,B') = \min \Big\{ \, 1 + \frac{\varphi^2}{\kappa_\sigma} \, \mathcal{S}(y,B') \, , \, \, \bar{\theta} \, \Big\}.$
- Pricing remains the same operator at $\theta_{RI}(\cdot)$; comparative statics inherit.

$$q(B',y) = \mathcal{T}_{\theta_{\mathrm{RI}}(y,B')}[q](B',y), \qquad \mathcal{S} = \mathbb{E}\Big[\partial U/\partial \theta\Big] \geq 0.$$

Empirical Hook: Misreporting ⇒ Higher Dispersion Attention

- Degraded mean-information (a_{μ}) raises marginal value of dispersion info \mathcal{S} .
- $\cdot\uparrow\mathcal{S}\Rightarrow\uparrow a_{\sigma}\Rightarrow\uparrow\theta_{\mathrm{RI}}$: higher average spreads, steeper pivot, decoupling.

Policy & Information

Ramsey with PRO: Transfers Cannot Undo Price Wedge

$$\begin{split} c_t + \kappa B_t + \tau_t &= y_t + \left(B_{t+1} - (1 - \delta)B_t\right)q_\theta(y_t, B_{t+1}), \\ \mathbb{E}_0 \sum_t \beta^t \tau_t &= 0, \quad u'(\cdot) > 0, \ u''(\cdot) < 0. \end{split}$$

- Intertemporal trade price distorted by PRO persists in implementability; deadweight loss.
- Result: $W_{\theta}^{R} < W_{1}^{R}$ even with optimal transfers.

Endogenous Beliefs and Transparency

Belief dynamics with negativity bias:

$$\theta_{t+1} = \lambda \, \theta_t + (1-\lambda) \, \hat{\theta}(\{d_s\}), \quad \xi(y,B) = \max \Big\{0, \frac{P_1 - P_{\theta_t}}{P_1} \Big\}, \quad \text{defaults move beliefs more}.$$

Effective transparency:

$$\theta_{\rm eff}(\alpha,\theta) = \alpha \cdot 1 + (1-\alpha) \cdot \theta, \qquad \alpha^*: \ \frac{\rm d}{{\rm d}\alpha} W(\alpha) = \gamma \alpha.$$

 Persistent PRO in invariant beliefs; optimal transparency rises with PRO severity.

Computation and Stability

- · Value and price iteration on $(N_y=201,N_B=600)$ grid; OpenMP parallel.
- Stabilized log-sum-exp for borrowing/default logits; infeasible-consumption guard.
- Convergence tolerances 10^{-6} ; long simulation for moments and IRFs.

Takeaways

- Single operator + PRO ⇒ pivot in price/spread schedules.
- Deleveraging yet higher average spreads; volatility falls (stability illusion).
- RI microfoundation endogenizes tail tilt; policy/info extensions clarify limits and levers.
- Event hooks (Argentina) align with **pivot**, **threshold**, and **decoupling** predictions.

Sovereign Default: Canonical and Extensions

- Canonical strategic default: Eaton Gersovitz (1981); Aguiar Gopinath (2007); Arellano (2008); long-term debt: Hatchondo Martinez (2009); Chatterjee Eyigungor (2012); Mendoza Yue (2012).
- **Empirics**: Tomz Wright (2013); Meyer Reinhart Trebesch (2022); event studies (Argentina misreporting).
- **Reputation**: Cole Dow English (1995); Phelan (2006); Amador Phelan (2021, 2023); learning via policy signals (Fourakis, 2024).

Beliefs, Ambiguity, and Information

- Ambiguity/robust control: Hansen Sargent (2001, 2008); smooth/variational prefs (Klibanoff et al., 2005; Maccheroni et al., 2006); applications to default (Pouzo Presno, 2016; Roch Roldan, 2023).
- Behavioral beliefs: Diagnostic expectations (Gennaioli Shleifer, 2018; Bordalo et al., 2023); sentiment, noise trading, limits to arbitrage.
- Information choice: Rational inattention (Sims, 2003;
 Mačkowiak Wiederholt, 2009; Matejka McKay, 2015); macro finance (Veldkamp, 2011).

This paper: second-moment belief wedge (PRO) pivot, deleveraging, stability illusion; RI microfoundation embeds in the same operator.

Bellman Aggregator and Sensitivities

$$\begin{split} J_{\rho}[V](y,B) &= \rho \ln \sum_{B'} \exp \frac{W(y,B,B')}{\rho}, \quad V(y,B) = \eta \ln \left(e^{V^D/\eta} + e^{V^R/\eta} \right). \\ \frac{\partial V}{\partial q} &= \ u'(c) \left[B' - (1-\delta)B \right] \cdot \operatorname{softmax}(W/\rho). \quad \text{(Envelope over B')} \end{split}$$

- $\cdot \text{ Lipschitz: } \|J(V_1) J(V_2)\| \leq \beta \|V_1 V_2\|, \, \|J(\cdot,q_1) J(\cdot,q_2)\| \leq L_{Jq} \|q_1 q_2\|.$
- $\cdot \ \, \text{Pricing:} \, \left\| T(V_1, \cdot) T(V_2, \cdot) \right\| \leq L_{TV} \|V_1 V_2\| \text{, } \left\| T(\cdot, q_1) T(\cdot, q_2) \right\| \leq m_q \|q_1 q_2\|.$
- Slope condition: $L_{Jq}L_{TV} < (1-\beta)(1-m_q)$ with $m_q = (1-\delta)/(1+r)$.

From $\partial_{\theta}P$ to $\partial_{\theta}q$

$$\begin{split} P_\theta &= \mathsf{L}\Big(-\frac{\Delta V}{\theta\eta}\Big), \quad \partial_\theta P_\theta \ = \ L'(\cdot)\,\frac{\Delta V}{\theta^2\eta}. \\ &(I-\mathcal{T}_\theta)'\,\partial_\theta q_\theta \ = \ \partial_\theta \mathcal{T}_\theta[q_\theta], \quad (I-\mathcal{T}_\theta)^{-1} \geq 0. \\ &\Rightarrow \ \mathsf{sign}(\partial_\theta q_\theta) \ \mathsf{follows} \ \mathsf{from} \ \mathsf{sign}(\partial_\theta P_\theta) \ \mathsf{and} \ \mathsf{positivity} \ \mathsf{of} \ (I-\mathcal{T}_\theta)^{-1}. \end{split}$$

Implication: pivot persists under smooth perturbations and state-dependent $\theta_{RI}(y, B')$.

Operator View (Sketch)

- \mathcal{T}_{θ} is positive and order-preserving; fixed point unique under slope condition.
- · Fixed-point differentiation signs $\partial_{\theta}q_{\theta}$; monotone propagation yields pivot.