mmWave Lab

ECE 146 Lab 4

December 14, 2019

Student: Ivan Arevalo
Perm Number: 5613567
Email: ifa@ucsb.com

Department of Electrical and Computer Engineering, UCSB

0 Introduction

This lab is an introduction into the fundamentals of radar sensing with mm waves for various applications. We will start by deriving some basic equations and eventually test our design with MATLAB.

1 Section 1 - 3: Derving basic equations

. 1
mmWave Radar Jensing Lab
9 y(t) = 2 Sp(t-T) Sp(t)
Sp(t)= Cos(2TCt+TSt2) 0 \(\pm\) Td=20MS
$(12\cos\varphi\cos\theta = \cos(\varphi-\varphi) + \cos(\varphi+\varphi))$
y(t) = 2 los (271 fc(e-2) + 71 15(e-72) los (271 fct + 71 15 t)
y(+) = Cos(2716+2767+1116-271827+782-276+718)
+los(211fet -211feT+115t3-211,5tT+715t2+211fet+71,5t2)
y(1) = (0s(-21167-2111677 + 11111622) - fitered by LPF
+ (os (1Tf, t +271) 2 + TN 2 - 2Tf, 7-2TD(2)
y(4)= (05(-(27627+27567-11572)) (05 evenfunction)
y(e) = Cos (271 fer + 27 N + 7 - TN Z2)
y(t) = (os(271 fot + Co) fo=NZ Po=271fet-71522
tol - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
In practice, a single chirp doesn't give us evough
In practice, a single chirp toesn't give us evough information because since it is periodic, it will give us the same phase for different distance).
The state of the s
CS Scanned with
Commence of the second

12/0/12

,	a day pagasandas are an
	(2) T = 2K R distance to object from conceiver.
	C Speed of light
	C Speed of light. T delay of recieved signal
7.00	, , , , , , , , , , , , , , , , , , , ,
	@ Max range 30m. What is largest value of Ture need
	to accommodate? Compare to frame duration 10 MS?
	$T = \frac{2(30)^{2}}{3\times10^{3}} = 2\times10^{-3} $ 200 ns
	It is 50 times smaller than the frame duration.
	6). What is largest to to estimate?
	fo = Tx : 17 = 50 MHz/us
	fo = 0.2 MS x 50 MHz/48 = 10 MHz
 	L= 10 MH2 is 100 times smaller than the 16Hz
	to = 10 MHz is 100 times smaller than the 16Hz variation in instantaneous frequency over chirp duration
- e	(3) Generalization of mixed return and sent signals after
	(3) Generalization of mixed return and sent signals after LPF for K targets:
	y(t) = E A; Cos(271fxt + Qx) I [71, 71] + n(t)
2 8 6 1	
4 10 10 10 10 10 10 10 10 10 10 10 10 10	y(t) ≈ \(\sum_{k=1} A_i \(\cos \left(2n f_K t + \phi_K \right) + n(\(\text{\for} \), \(0 \left(\frac{t}{t} \) \)
1	K=1
,	where fx = NTK PK = 2Tfc TK - TSTK2
	II. No. 1. In the state of the
N. P.	We need to sample at twice the highest freq.
7 7 C	pretent in our signal. Since fx = 10 MHz is the highest frequency to accomodate requestions corresponding to
Car	savonge of up to zom, we need to a least sample at a rate
	Of 20 MH2

2 Section 4: Simulation model

```
%% Section 4 Generate received Signal
sampling_rate = 20*10^6; % Sampling rate 20 Mhz. Derived in part 3;
chirp_duration = 20*10^-6; % Chirp duration 20 us. Given
f_c = 80*10^9; \% 80 \text{ GHz Given}
N = chirp_duration * sampling_rate; % Number of samples.
n = 0:N; % Samples vector
k = 3; % Number of targets -> received signals
target_distaces = [3; 10; 30];
SNR_closest_target = 80; % 30dB
slew_rate = 5*10^13; % 50 MHz / us --> 5*10^13 Hz / s
c = 3*10^8; % Speed of light
% SNR = (N * A_k^2)/variance
% Given that the SNR of the closest target is 30dB, determine magnituds A_k
% set the others assuming the same radar cross section for each target, and
% 1/R^4 loss
% 10log(raw_SNR_30m_target) = 30dB
% Noise
mean = 0;
variance = 1;
noise_vector = normrnd(mean, sqrt(variance), [int16(N), k]); %k = 3 Number of targets
raw_SNR_3m_target = 10^(SNR_closest_target/10);
A_k_reference = sqrt(raw_SNR_3m_target/N);
A_k = zeros(k, 1);
A_k(1) = A_k_{reference};
for i=2:k
   A_k(i) = A_k_reference/((target_distaces(i)/target_distaces(1))^4);
   % Make noise proportional in weaker signals
   noise_vector(:,i) = noise_vector(:,i)./((target_distaces(i)/target_distaces(1))^4);
end
%%%%%
% Frequencies
time_delays = (2 * target_distaces)./c;
f_k = slew_rate * time_delays;
% Phases
phase = -2*pi*f_c*time_delays - pi*slew_rate.*(time_delays.^2);
% Generate Received Signals
y_k = A_k .* cos(2*pi*f_k.*(n/sampling_rate) + phase) + noise_vector';
figure('Name', 'Signals Received no noise');
plot(y_k(1,:)); hold on; plot(y_k(2,:)); plot(y_k(3,:));
y_1 = A_k(1) * cos(2*pi*f_k(1).*(n/sampling_rate) + phase(1)) + noise_vector(:,1);
```

```
y_2 = A_k(2) * cos(2*pi*f_k(2).*(n/sampling_rate) + phase(2)) + noise_vector(:,2);
y_3_n = A_k(3) * cos(2*pi*f_k(3).*(n/sampling_rate) + phase(3)) + noise_vector(:,3)';
% Received Signal y[n]
y_n = sum(y_k);
figure('Name', 'Added Signals Received no noise');
plot(y_n);
%% Estimate the dominant frequencies in y[n]
fft_size = 2^(nextpow2(length(y_n))+1); % Use next power of 2 for efficient fft
y_n_fft = fft(y_n, fft_size);
fs=1/(fft_size*(1/sampling_rate)); %actual frequency resolution attained
%set of frequencies for which Fourier transform has been computed using DFT
f = ((1:fft_size)-1-fft_size/2)*fs;
figure; plot(f, fftshift(abs(y_n_fft)));
% Try windowing first
hann_window = hann(length(y_n));
windowed_y_n = y_n .* hann_window';
fft_windowed_y_n = fft(windowed_y_n, fft_size);
figure; plot(f,fftshift(abs(fft_windowed_y_n)));
%% Estimate the dominant frequencies and map them to range estimates
peak_frequencies = 1*10^6*[.99 3.16 4.57 4.805 8.403 9.141];
% find peaks gave me too much data.
% [pks, loc] = findpeaks(abs(fft_windowed_y_n));
% [pk, loc_ind] = maxk(pks,10);
% peak_frequencies = f(loc(loc_ind));
corresponding_time_delays = peak_frequencies/slew_rate;
corresponding_ranges = corresponding_time_delays*c/2;
figure('Name','Histogram Part c');
histogram(corresponding_ranges,100);
title('Estimated ranges histogram');xlabel('Distance (m)');
range_error = corresponding_ranges - target_distaces;
figure('Name','Histogram Part d');
histogram(range_error(1,:), 40);
title('Estimated range error for 3m target histogram');xlabel('Error Distance (m)');
figure('Name','Histogram Part d');
histogram(range_error(2,:), 40);
title('Estimated range error for 10m target histogram');xlabel('Error Distance (m)');
figure('Name','Histogram Part d');
histogram(range_error(3,:), 40);
title('Estimated range error for 30m target histogram');xlabel('Error Distance (m)');
```


Figure 1: Individual received signals

Figure 2: Summed received signals

Figure 3: FFT of summed received signals with hann windowing

Figure 4: Histogram of estimated ranges

Figure 5: Histogram of estimated error for 3m target

Figure 6: Histogram of estimated error for 10m target

Figure 7: Histogram of estimated error for 10m target

At 30db reference SNR, i was able to get small range error by windowing with a hann window for each of the targets as seen in Figure 4. I tested other reference SNR's and observed that at 20dB I was not able to accurately find peaks that related to the correct ranges. Furthermore, at 60dB it got very easy to spot the correct peaks for the targets.

3 Section 5 - 6: Velocity sensing

	(3) 84) = 27/6+ + 00 Givenion & Fine
	(a) Cos(ETHOT+ Po) T Runction of E
	$\omega = 2\pi f \rightarrow 2\pi f(t) = \frac{\partial G(t)}{\partial t}$
	$f(r) = \frac{1}{2\pi} \frac{\partial (t)}{\partial t} = \frac{1}{2\pi} \frac{\partial}{\partial t} \left(2\pi \left(t + \rho_0 \right) \right)$
	$A(t) = \frac{1}{2} A(t) + \frac{1}{2} A(t)$
	f(t) = 1 of (21127(t)t-211 fc T(t)-TTAT T(t)2) chainrule
	$f(\ell) = \frac{1}{2\pi} \left(2\pi \sqrt[3]{7(\ell)} + 2\pi \sqrt[3]{2} \ell - 2\pi \int_{\mathcal{C}} \tilde{c} - 2\pi \sqrt[3]{7(\tilde{c})} \right)$
	f(1)= 1211 (N 7(4) + N7(4) + - fcr(+) - N 7(4) r(4))
	f(t)=5'TT+5'Tt:-f(t)-2'T(+)T(+)
	(b) f(t) = NT-fct = NT-fo = NT-ZVRfc
4 0.000	
3m)20us	Jp = 2 Vx fc = 2 (3 m/s) 80×10° Hz C=21
08/80x109	1 = 1.6 KHZ 00 = 472 TC 472 TC
- A 18	
	-AP STUTE from TI paper
	/10= 4TIVTC fc = 1T(3m)(2045)(8000° Hz) - 0.210)
CS Sc	an lied with amScanner

	(c) Tarialt moving at 3 m/s; low much	
	(a) Target moving at 3 m/s by much would the range change over that devention?	
	du vaithou?	(
	Q= 417 VrTcfc ~ 3(217) ~ 617	
100 mm		
	4TT (3ms) To (80×10°112) = 6TT	_6
	2	- Ć
-	TC = 671 (3 ×10° m/s) = 0.0025 s	Á
		Č
	0.00255 = 1725 Chivps	6
	(6) 0 = 4TI (0.2 m(s) Tc (80 × 109 Hz) = 6T	E
	(6) Ø= 4π (0.2 m/s) Tc (80×109 Hz) ≈ 6π 3×108 m/s	_ <u></u>
	TC = GT (3x108m/r) - 0.037	-
	9TI (0.2 m/5) (80+109 Hz)	
	0.0325 = 1825 chips	-
	20µs (1011)	P
CS Scan	ned with Scanner	

4 Conclusion

In conclusion, we began this lab going over the theory of radar sensing and deriving some of the necessary equations. We then simulated a 3 target design with objects at 3, 10, and 30 meters. We generated the appropriate received signals including noise, and proceeded to derive the range estimates by windowing our function and observing the peaks of the frequency domain. We later moved on to derives some equations for velocity sensing and got insight into how this task might be performed