Northwestern

Children's use of phonological & semantic information during spoken word recognition

Katherine M. Simeon¹ & Tina M. Grieco-Calub^{1,2}

Linguistic Society of America Annual Meeting – New Orleans, LA January 5, 2020

¹Roxelyn & Richard Pepper Dept. of Communication Sciences & Disorders ²Northwestern Knowles Hearing Center

Speech processing is active & incremental

/٤/

Elephant

Elevator

Egg

Empty

Echolocation

Embers

/le/

Elephant

Elevator

Egg

Empty

Echolocation

Embers

/fə/

Elephant

Elevator

Egg

Empty

Echolocation

Embers

/ɛlɛfənt/

This process requires...

/ <u>s</u> /	<u>/lε/</u>	/ fa /	/εlεfənt/
Elephant	Elephant	Elephant	4
Elevator	Elevator	Elevator	N.A.
Egg	Egg	Egg	
Empty	Empty	Empty	/ 1 4 1
Echolocation	Echolocation	Echolocation	
Embers	Embers	Embers	

This process requires...

This process requires...

Using prior knowledge

The boy eats

semantic knowledge

Kamide, 2008; Mani & Huettig, 2012

Using prior knowledge

The boy eats the /k/...

lexical knowledge

Kamide, 2008; Mani & Huettig, 2012

Phonological representations can:

- Activate potential candidates
- Result in competition amongst candidates

Semantic information can further constrain candidate set.

Allopenna, Magnuson, & Tanenhaus, 1998; Marslen-Wilson, 1987

Skills develop with experience

18 months

Children can recognize a word from just the beginning phonetic segments

Fernald, Swingley, & Pinto (2001)

20 months Children can use coarticulation cues to anticipate words 18 months

Fallon, Trehub, & Schneider (2002)

Atkinson, Wagers, Liz, Phillips, & Omaki (2018)

Vocabulary

Experience that contributes to prior knowledge

Borovsky, Elman, & Fernald (2012); Borovsky, Ellis, Evans, & Elman (2016); Graf Estes, Gluck, & Grimm (2016)

Research Questions

How does **phonological** and **semantic information** impact children's spoken word recognition?

- How do children respond to phonological competition?
- How do children use surrounding semantic information?
- How are these cues taken together?

Participants

Children 6-10 years of age

- N = 36 (M = 7.92)
- Normal Hearing
- Monolingual English speakers

Visual World Paradigm

Competitor Conditions

Unrelated Distractor

Competitor Conditions

Phonological Onset

Semantically-Related Prime

Semantic Norming

Participants:

Children 5-10 years of age

- N = 26
- Normal Hearing
- Monolingual English Speakers

Image Relatedness Task:

Required 90% agreement with the target image

Brysbaert & Biemiller (2017); Kuperman, Stadthagen-Gonzalez, & Brysbaert (2012)

Experimental Conditions

Find the pencil

Prime Conditions

- No Prime
- Prime (Semantically-related)

Competitor Conditions:

- Phonological Onset Overlap
- Unrelated Distractor

Outcome Variables

Two-Alternative Forced Choice Task

Selection Accuracy

Eye Tracking Task

- Proportion of looks to the target image over time
- Speed of looking to the target

Selection Accuracy

Looks to the target image **over time**

Time is relative to the onset of the target word

Looks before the onset of the target word

When looks to the listener commits to a target image

Speed of looking to the target

The midpoint between the baseline and peak

Phonological onset overlap result in later looks to the target

Phonological onset overlap result in later looks to the target

Semantic primes increase initial looks to the target

Semantic primes increase initial looks to the target

Children are sensitive to **phonological competition**

Semantic priming can facilitate spoken word recognition.

However, image primes do not get rid of phonological competition completely.

What is the semantic prime doing?

Facilitates a bias to the semantically-related image

However, semantic relations are not sufficient to commit to the target image.

Sheldon & Martin (1992)

Future Directions

How does **age** impact phonological competition and semantic relations?

How does acoustic degradation impact this process?

Acknowledgments

Northwestern University

- Angela Roberts
- Masaya Yoshida

Statistical Analysis

- Bob McMurray
- Tristan Mahr

Hearing & Language Lab

- Sophia Liu
- Josh Pang
- Noah Holubow

Funding

NIH NIDCD 1F31DC017878