

MST: árvore geradora mínima

- Problemas de otimização
 - maximização
 - Exs. lucro, fluxo
 - minimização
 - Exs. tempo, distância, custo
- Grafos ponderados

w(uv) = peso da aresta uv

MST: árvore geradora mínima

Tarefa

Grafos ponderados

- Exemplo de implementação em Java
- Página da disciplina:
 - https://sites.google.com/site/alexnoma/home/grafos

MST: árvore geradora mínima

Uma árvore é um grafo conexo e acíclico (sem ciclos).

- Dado um grafo conexo G,
 - uma árvore que conecta todos os vértices de G é chamada de uma árvore geradora.

MST: árvore geradora mínima

(MST: Minimum Spanning Tree)

- Problema:
 - Dado um grafo conexo G,
 - obter uma árvore geradora com peso mínimo.

Minimizar

$$w(T) = \sum_{uv \in T} w(uv)$$

Teoria dos Grafos

8

Teoria dos Grafos

MST: árvore geradora mínima

(MST: Minimum Spanning Tree)

MST-Prim(G,w,r)

- Entrada
 - G conexo e ponderado
 - w é uma função peso
 - r é um vértice inicial

- Saída
 - uma MST com raiz r

- Atributos de vértices
 - v.chave
 - v.pai
- Baseado em fila de prioridade
 - ExtraiMinimo(Q)

MST: árvore geradora mínima

Fila de prioridade: operações

- Insere(Q, x)
 - insere elemento x no conjunto Q
- Mínimo(Q)
 - devolve o elemento de Q com a menor chave
- ExtraiMínimo(Q)
 - remove e devolve o elemento de Q com a menor chave
- DiminuiChave(Q, x, k)
 - diminui o valor da chave de x para o novo valor k.

Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

Teoria dos Grafos

Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.Chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.Chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8          se v está em Q e w(uv) < v.chave
9          entao v.chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8     se v está em Q e w(uv) < v.chave
9     entao v.Chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.Chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8    se v está em Q e w(uv) < v.chave
9    entao v.chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.Chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.Chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.Chave = w(uv); v.pai = u</pre>
```



```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2     u.chave = INFINITO
3     u.pai = NIL
4 r.chave = 0; Q = G.V

5 enquanto Q != VAZIO faça
6     u = ExtraiMinimo(Q)
7     para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```


Teoria dos Grafos

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```


MST: árvore geradora mínima

Exercício: Para cada grafo, calcular uma árvore geradora mínima.

```
MST-Prim(G,w,r)
1 para cada vértice u em G.V faça
2    u.chave = INFINITO
3    u.pai = NIL
4 r.chave = 0; Q = G.V
5 enquanto Q != VAZIO faça
6    u = ExtraiMinimo(Q)
7    para cada v em G.Adj[u] faça
8         se v está em Q e w(uv) < v.chave
9         entao v.chave = w(uv); v.pai = u</pre>
```


MST: árvore geradora mínima

Tarefa

- Exercícios:
 - Lista 2

MST: árvore geradora mínima

Tarefa

EP 2

- Página da disciplina:
 - https://sites.google.com/site/alexnoma/home/grafos