Тема 9. Инвариантная работа

Ефимова В.С. ИВТ3 17 декабря 2019 г.

Таблица дифференциалов

Функция	Дифференциал
f'(c)	0
$f'(x^a)$	$\alpha^x \ln a$
$f'(a^x)$	$a^x \ln a$
$f'(e^x)$	e^x
$f'(\log_a x)$	$\frac{1}{xlna}$
$f'(\ln x)$	$\frac{1}{x}$
$f'(\sin x)$	$\cos x$
$f'(\cos x)$	$-\sin x$
$f'(\operatorname{tg} x)$	$\frac{1}{\cos^2 x}$
$f'(\operatorname{ctg} x)$	$-\frac{1}{\sin^2 x}$
$f'(\arcsin x)$	$\frac{1}{\sqrt{1-x^2}}$
$f'(\arccos x)$	$-\frac{1}{\sqrt{1-x^2}}$
$f'(\operatorname{arctg} x)$	$\frac{1}{\sqrt{1+x^2}}$
$f'(\operatorname{arcctg} x)$	$-\frac{1}{\sqrt{1+x^2}}$

Таблица интегралов

$\int 0 \cdot dx$	C
$\int 1 \cdot dx$	x + C
$\int x^{\alpha} dx$	$\frac{x^{\alpha+1}}{\alpha+1} + C, (\alpha \neq -1)$
$\int \frac{1}{x} dx$	ln x + C
$\int a^x dx$	$\frac{a^x}{\ln a} + C$
$\int sinx dx$	-cosx + C
$\int cosxdx$	sinx + C
$\int tgxdx$	-ln cosx + C
$\int ctgxdx$	ln sinx + C
$\int \frac{1}{\cos^2 x} dx$	tgx + C
$\int \frac{\cos^2 x}{\sin^2 x} dx$	-ctgx + C