1.2 Cost-Performance Analysis

The document reveals a clear correlation between performance and cost, especially for reasoning-intensive tasks:

Model	ARC-AGI-1 Score	Avg Tokens	Approx. Cost per Query
GPT-4o	5%	1,000	\$0.03
DeepSeek-R1	15.8%	6,000	\$0.06
o1-mini	15.6%	7,000	\$0.11
o1 (low)	20.5%	7,000	\$0.43
o1 (med)	31%	13,000	\$0.79
o1 (high)	35%	22,000	\$1.31
o3 (low)	75.7%	335,000	\$20.00
o3 (high)	87.5%	57M	\$3,400.00

1.3 Current Pricing Analysis

Looking at the OpenAI pricing table, we observe:

Model	Input (per 1M tokens)	Output (per 1M tokens)
gpt-4o	\$2.50	\$10.00
gpt-4o-mini	\$0.15	\$0.60
o1	\$15.00	\$60.00
o1-mini	\$1.10	\$4.40
o3-mini	\$1.10	\$4.40

3. Strategic Recommendations for Turing Labs

3.1 Tiered Model Selection Strategy

Based on our analysis, we recommend implementing a tiered model selection approach:

- Base tier (80% of queries): Use gpt-4o-mini for simple, well-defined tasks like information extraction, summarization, and basic content generation. Cost: ~\$0.15-0.60/1M tokens.
- 2. **Mid tier (15% of queries)**: Deploy o1-mini or o3-mini for tasks requiring moderate reasoning such as complex data analysis, code generation, and problem-solving in familiar domains. Cost: ~\$1.10-4.40/1M tokens.
- 3. **Premium tier (5% of queries)**: Reserve o1 for mission-critical tasks requiring high reliability such as financial analysis, complex business logic implementation, and novel problem-solving. Cost: ~\$15.00-60.00/1M tokens.

3.2 Dynamic Model Routing System

We recommend implementing an intelligent router that:

- 1. Analyzes incoming queries to predict reasoning complexity
- 2. Routes gueries to the appropriate model tier based on:
 - Task complexity
 - Required reliability
 - Customer SLA requirements
 - Cost sensitivity

This would maximize cost-efficiency while maintaining performance standards.

3.3 Strategic Considerations for DeepSeek-R1 Integration

The open-source nature of DeepSeek-R1 presents an opportunity for Turing Labs to:

- 1. Self-host the model for certain workloads to potentially reduce costs
- 2. Fine-tune the model on company-specific domains to enhance performance
- 3. Create specialized versions for specific customer industries

However, this requires weighing infrastructure and operational costs against API costs.

3.4 Performance Monitoring and Optimization

We recommend implementing:

- A continuous evaluation framework to track model performance across different task types
- 2. A feedback loop to identify when tasks are unnecessarily routed to higher-tier models
- 3. Cost optimization algorithms that balance performance and expense

3.5 Pricing Strategy for Turing Labs' Product

Based on the reliability-cost relationship, we recommend:

- 1. Tiered pricing plans:
 - o Standard: Primarily using base tier models
 - Professional: Access to mid-tier models for complex tasks
 - Enterprise: Full access to premium models for mission-critical applications
- 2. Usage-based surcharges for premium model access beyond plan allocations
- 3. **Performance guarantees** tied to pricing tier (higher tiers receive stronger reliability commitments)