

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по самому важному предмету

# «Задание 2 практикума по оптимальному управлению»

Студент 315 группы Д.М. Сотников

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

# Содержание

| I        | Теоретическая часть                            | 3  |
|----------|------------------------------------------------|----|
| 1        | Постановка задачи                              | 3  |
| 2        | Преобразование системы                         | 3  |
| 3        | Ограничения на входные параметры               | 3  |
| 4        | Вспомогательные утверждения                    | 4  |
| 5        | Решение задачи 1         5.1 Нормальный случай | 7  |
| 6        | Решение задачи 2         6.1 Нормальный случай |    |
| Π        | I Примеры работы программы                     | 13 |
| 1        | Задача 1                                       | 13 |
| <b>2</b> | Задача 2                                       | 15 |

#### Часть І

# Теоретическая часть

#### 1 Постановка задачи

Вертикальное движение ракеты описывается системой дифференциальных уравнений

$$\begin{cases}
\dot{m}v + m\dot{v} = -gm + lu \\
\dot{m} = -u
\end{cases}$$
(1)

Здесь  $v \in \mathbb{R}$  — скорость ракеты, m — масса ракеты, g>0 — гравитационная постоянная, l>0 — коэффициент, определяющий силу, действующую на ракету со стороны сгорающего топлива,  $u \in [0,u_{max}]$  — скорость подачи топлива,  $u_{max}>0$ . Масса ракеты без топлива равна M>0. Если топливо заканчивается (m=M), то двигатель ракеты отключается, то есть u=0.

Заданы начальный момент  $t_0 = 0$ , начальная скорость v(0) = 0, начальная масса ракеты с топливом  $m(0) = m_0 > M$ . Движение ракеты описывается системой (1) на всем отрезке времени, движение вниз в начальный момент времени невозможно, то есть v(t) > 0,  $t \in [0, \delta]$  для некоторого  $\delta > 0$ .

**Задача 1.** Найти измеримое управление  $u(\cdot)$ , переводящее ракету на максимальную высоту H в заданный момент времени T>0 так, чтобы  $v(T) \in [-\epsilon, \epsilon]$ .

**Задача 2.** Найти измеримое управление  $u(\cdot)$ , переводящее ракету на заданную высоту H>0 в момент времени T>0, минимизируя функционал

$$J = \int_{0}^{T} u^{4}(t)dt.$$

## 2 Преобразование системы

Сделаем замену переменных  $x_1(t) = v(t) + l$ ,  $x_2(t) = m(t)$ , а также подставим  $\dot{m} = -u$  в первое уравнение системы (1) и поделим его на m. В новых переменных система принимает вид

$$\begin{cases} \dot{x}_1 = -g + \frac{x_1 u}{x_2} \\ \dot{x}_2 = -u \end{cases} \tag{2}$$

Такое представление удобно, поскольку дает возможность решить систему аналитически при постоянных u.

## 3 Ограничения на входные параметры

Помимо явных ограничений на параметры  $(g>0,\ l>0,\ u_{max}>0)$  в системе так же присутствует неявное ограничение: как было указано в постановке задачи, для взлета ракеты ее скорость должна стать положительной, для этого её производная  $\dot{v}=\dot{x}_1$  должна быть положительна в начальный момент времени. Используя  $x_1(0)=l,\ x_2(0)=m_0,\$ получим следующее ограничение на управление:

$$u(0) \geqslant \frac{m_0 g}{I} \tag{3}$$

Отсюда же следует, что  $u_{max}\geqslant \frac{m_0g}{l}$ . Если это неравенство не выполнено, будем считать задачу некорректно поставленной.

Из интерпретации следует, что параметр  $\epsilon$  в задаче 1 мал, поскольку требуется практически остановить ракету на максимально возможной высоте. А именно, пусть

$$\epsilon < l.$$
 (4)

#### 4 Вспомогательные утверждения

Главным утверждением, использующимся для решения задачи, является принцип максимума Понтрягина, формулировка которого приведена в [1], а полное доказательство можно найти в [2] (5.1, теорема 1).

Рассматривается задача оптимального управления автономной системой

$$\dot{x}(t) = f(x(t), u(t)), \quad t \in [t_0, t_1], \ x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m$$

с минимизацией функционала

$$J = \int_{t_0}^{t_1} f_0(x(t), u(t)) dt \to \inf_{u(\cdot)}$$

из множества  $\mathcal{X}_0$  в множество  $\mathcal{X}_1$ , то есть  $x(t_0) \in \mathcal{X}_0$ ,  $x(t_1) \in \mathcal{X}_1$ . В классе измеримых управлений требуется найти  $u(\cdot)$  такое, что  $u(t) \in \mathcal{P}(t)$  почти всюду на  $[t_0, t_1]$ , и  $u(\cdot)$  является решением поставленной выше задачи. Здесь  $\mathcal{P}(\cdot)$  — заданное измеримое многозначное отображение,  $\mathcal{P}(t)$  является выпуклым компактом при любом  $t \in [t_0, t_1]$ .

Функционал Гамильтона-Понтрягина имеет вид

$$\mathcal{H}(x, u, \tilde{\psi}) = \psi_0 f_0(x, u) + \langle \psi, f(x, u) \rangle,$$

где  $\psi = (\psi_1, \dots, \psi_n) \in \mathbb{R}^n, \ \psi_0 \in \mathbb{R}.$ 

**Теорема 1** (Принцип максимума Понтрягина). Пусть  $(x^*(\cdot), u^*(\cdot)) - peшение поставленной задачи оптимального управления. Тогда найдется <math>\tilde{\psi} = (\psi_0, \psi_1, \dots, \psi_n), \ \tilde{\psi} \not\equiv 0$  такой, что

$$\mathcal{H}(x^*(t), u^*(t), \tilde{\psi}(t)) \stackrel{\text{\tiny I.B.}}{=} \max_{u \in \mathcal{P}(t)} \mathcal{H}(x^*(t), u, \tilde{\psi}(t)).$$

 $\Pi pu$  этом  $\psi_0\leqslant 0$  и постоянна, а  $\psi(t)$  является решением сопряженной системы

$$\dot{\psi}(t) = -\frac{\partial \mathcal{H}}{\partial x}(x^*(t), u^*(t), \tilde{\psi}(t)),$$

и выполнены условия трансверсальности

$$\psi(t_0) \perp T_{x^*(t_0)} \mathcal{X}_0, \quad \psi(t_1) \perp T_{x^*(t_1)} \mathcal{X}_1.$$

Рассмотрим так же несколько вспомогательных утверждений, относящихся к дифференциальным уравнениям.

**Пемма 1.** Пусть функции  $a(\cdot), b(\cdot)$  непрерывны на  $[t_0, t_1]$ . Тогда задача Коши

$$\dot{x}(t) = a(t)x(t) + b(t), \quad x(t_0) = x^0$$

имеет решение

$$x(t) = x^0 e^{\int_{t_0}^t a(s)ds} + \int_{t_0}^t b(\tau) e^{\int_{\tau}^t a(s)ds} d\tau.$$

**Лемма 2.** Пусть функции  $a(\cdot), b(\cdot)$  непрерывны на  $[t_0, t_1], b(\cdot)$  знакопостоянна и не обращается в ноль на  $[t_0, t_1]$ . Тогда решение уравнения  $\dot{x}(t) = a(t)x(t) + b(t)$  обращается в ноль не более, чем в одной точке, возрастая в ее окрестности, если b > 0, и убывая, если b < 0.

**Доказательство.** Пусть, для определенности, b(t) > 0 при любых  $t \in [t_0, t_1]$ , и пусть решение уравнения обращается в ноль в точке  $\tau \in [t_0, t_1]$ . Тогда  $\dot{x}(\tau) = b(\tau) > 0$ , что также выполняется в маленькой окрестности точки  $\tau$ , поэтому функция  $x(\cdot)$  возрастает в этой окрестности. Это означает, что траектория может пересекать ноль только «снизу-вверх». Объединяя это с непрерывностью  $x(\cdot)$ , получаем требуемое утверждение.

Договоримся для краткости, что запись f > 0 (f < 0) означает положительность (отрицательность) функции почти всюду на рассматриваемом отрезке  $[t_0, t_1]$ .

#### 5 Решение задачи 1

В координатах  $(x_1, x_2)$  начальное и конечное множества имеют вид

$$\mathcal{X}_0 = \{l\} \times \{m_0\}, \quad \mathcal{X}_1 = [l - \epsilon, l + \epsilon] \times [M, m_0].$$



Рис. 1: Множество  $\mathcal{X}_1$ 

Обсудим условия трансверсальности для терминального множества. Из начальных условий на управление (u(t)>0) на некотором интервале  $[0,\delta]$  следует, что  $m(T)< m_0$ . Если m(T)>M, то  $\psi_2(T)=0$ , и этого условия будет достаточно для решения задачи. Если же m(T)=M и, кроме того,  $x_1(T)\in (l-\epsilon,l+\epsilon)$ , то  $\psi_1(T)=0$ . При этом  $\psi_2(T)\leqslant 0$ . Попадание в «углы» множества  $\mathcal{X}_1$  будет рассмотрено отдельно после решения общего случая.

Максимизация высоты  $H(T) = \int\limits_0^T v(t)dt$  эквивалентна максимизации функционала

$$J = \int_{0}^{T} x_1(t)dt$$

Для данной задачи функционал Гамильтона-Понтрягина имеет вид

$$\mathcal{H} = \psi_0 x_1 + \psi_1 \left( -g + \frac{x_1 u}{x_2} \right) - \psi_2 u = (\psi_0 x_1 - \psi_1 g) + \left( \frac{\psi_1 x_1}{x_2} - \psi_2 \right) u.$$

Введем вспомогательную функцию  $F(t) = \psi_1(t)x_1(t) - \psi_2(t)x_2(t)$ . Очевидно, что функционал Гамильтона-Понтрягина является возрастающей линейной функцией по u тогда и только тогда, когда F(t) > 0. Здесь мы воспользовались тем, что  $x_2 > 0$  всюду на [0, T].

Из условия максимума получаем, что

$$u(t) = \begin{cases} u_{max}, & F(t) > 0, \ x_2(t) > M, \\ [0, \ u_{max}], & F(t) = 0, \ x_2(t) > M, \\ 0, & \text{иначе.} \end{cases}$$
 (5)

Заметим также, что  $x_1(t) > 0$  всюду на [0, T]. Это следует из того, что  $x_1(T) > l - \epsilon \stackrel{(4)}{>} 0$  и леммы 2: если найдется  $\tau \in (0, T)$  такое, что  $x_1(\tau) = 0$ , то  $x_1(t) < 0$  для всех  $t > \tau$ .

Рассмотрим теперь возможные режимы движения системы, которые будут получены из принципа максимума Понтрягина.

#### 5.1 Нормальный случай

Пусть  $\psi_0 \neq 0$ . Тогда в силу положительной однородности принципа максимума по  $\tilde{\psi}$  можно считать, что  $\psi_0 = 1$ . Тогда сопряженная система имеет вид

$$\begin{cases} \dot{\psi}_1 = -\frac{\partial \mathcal{H}}{\partial x_1} = -1 + \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = -\frac{\partial \mathcal{H}}{\partial x_2} = \frac{\psi_1 x_1 u}{x_2^2} \end{cases}$$
(6)

Вычислим  $\dot{F}=\dot{\psi}_1x_1+\psi_1\dot{x}_1-\dot{\psi}_2x_2-\psi_2\dot{x}_2=-x_1+\frac{\psi_1x_1u}{x_2}-\psi_1g-\frac{\psi_1x_1u}{x_2}-\frac{\psi_1x_1u}{x_2}+\psi_2u=$   $=-x_1-\psi_1g-\frac{Fu}{x_2}.$  Таким образом получили, что F удовлетворяет дифференциальному уравнению

$$\dot{F} = (-x_1 - \psi_1 g) - \frac{Fu}{x_2}. (7)$$

Рассмотрим теперь, как будут меняться режимы движения в зависимости от того, закончилось ли топливо к концу полета или нет.

**Случай** m(T) > M Пусть к моменту времени T было израсходовано не все топливо. Тогда из условий трансверсальности следует, что  $\psi_2(T) = 0$ , а значит  $F(T) = \psi_1(T)x_1(T)$ .

Пусть  $F(T)\geqslant 0$  Если  $F(T)\geqslant 0$ , то  $\psi_1(T)\geqslant 0$ , и, по лемме 2,  $\psi_1>0$ . Но тогда  $-x_1-\psi_1g<0$ , и из уравнения (7) и леммы 2 следует, что F>0. Но это означает, что

$$u(t) = u_{max}, \quad t \in [0, T].$$

Пусть F(T)<0 В этом случае можно утверждать, что найдется точка  $\tau_s$ , в которой  $F(\tau_s)=0$ , и F(t)<0,  $t\in(\tau_s,T]$ . Если такой точки нет, то F<0, и двигатель всегда будет выключен, что невозможно в условиях поставленной задачи (ракета упадет на землю). Из вида управления (15) следует, что u(t)=0,  $t>\tau_s$ . Тогда, решая задачу Коши на  $[\tau_s,T]$ , получаем  $\psi_2(\tau_s)=0$ . Поскольку  $F(\tau_s)=\psi_1(\tau_s)x_1(\tau_s)=0$ , получаем  $\psi_1(\tau_s)=0$ . Далее рассуждениями, полностью аналогичными прошлому случаю, получаем  $u(t)=u_{max}$  на  $[0,\tau_s]$ .

**Случай** m(t) = M Из условия трансверсальности  $\psi_1(T) = 0$ , откуда, по лемме 2,  $\psi_1 > 0$ . Так как топливо закончилось, был промежуток времени, в который двигатель был включен. Пусть  $\tau_F$  — момент, когда топливо закончилось, при этом  $F(\tau_F) \geqslant 0$ . Заметим вновь, что  $(-x_1 - \psi_1 g) < 0$ , и поэтому F > 0,  $u = u_{max}$  на  $[0, \tau_s]$ .

В случае попадания траектории на угол  $x(T) = (l + \epsilon, M) \in \mathcal{X}_1$  из условий трансверсальности  $\psi_1(T) \geqslant 0, \ \psi_2(T) \leqslant 0, \ \text{откуда} \ F(T) \geqslant 0.$  Следовательно,  $\psi_1 > 0$  и F > 0, поэтому  $u(t) = u_{max}$ .

Пусть  $x(T) = (l - \epsilon, M) \in \mathcal{X}_1$ . Покажем, что любое управление, кроме  $u(t) = u_{max}, \ t < \tau_F$  не может быть оптимальным. Действительно, из условия максимума u(t) принимает либо значение 0, либо  $u_{max}$ . Предположим, что  $u^*(\cdot)$  имеет более одного переклюения. Тогда, из физических соображений следует, что немного уменьшая момент второго включения двигателя, можно добиться увеличения H(T), чтобы при этом  $x_1(T) < l + \epsilon$ . Тем самым рассмотренное управление не является оптимальным.

**Вывод** Подведем итог нормального случая. Все допустимые режимы имеют следующий вид:  $u(t)=u_{max}$  до некоторого момента выключения двигателя либо до тех пор, пока не кончится топливо, то есть до момента  $\tau_F=\frac{m_0-M}{u_{max}}$ .

#### 5.2 Анормальный случай

Пусть  $\psi_0 = 0$ . Тогда сопряженная система имеет вид

$$\begin{cases} \dot{\psi}_1 = -\frac{\partial \mathcal{H}}{\partial x_1} = \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = -\frac{\partial \mathcal{H}}{\partial x_2} = \frac{\psi_1 x_1 u}{x_2^2} \end{cases}$$
(8)

Функция F удовлетворяет дифференциальному уравнению

$$\dot{F} = -\psi_1 g - \frac{Fu}{x_2}.$$

Случай m(T) > M  $F(T) = \psi_1(T)x_1(T)$ .

Пусть F(T) < 0  $\psi_1(T) < 0$ , поэтому из сопряженной системы  $\psi_1 < 0$ ,  $-\psi_1 g > 0$ , и, по лемме 2, F < 0, что невозможно, так как в момент взлета управление должно быть ненулевым.

**Пусть** F(T)=0 так же невозможен, поскольку противоречит нетривиальности вектора сопряженных переменных  $\tilde{\psi}$ .

**Пусть** F(T) > 0 Аналогично нормальному случаю показывается, что F > 0,  $u = u_{max}$ .

**Случай** m(T) = M  $\psi_1 \equiv 0$ , и функция F не проходит через нуль, поскольку нуль явялется неподвижной точкой для F.  $F \not\equiv 0$ , поскольку иначе  $\psi_2(T) = 0$ , что противоречит принципу максимума. Так как при взлете управление ненулевое, получаем F > 0,  $u(t) = u_{max}$ ,  $t < \tau_F$ .

Пусть  $x(T) = (l + \epsilon, M) \in \mathcal{X}_1$ . В этом случае  $\psi_1(T) \geqslant 0$ ,  $\psi_2(T) \leqslant 0$ . Тогда либо  $\psi_1(T) \equiv 0$  (этот случай был рассмотрен в предыдущем абзаце), либо  $\psi_1(T) > 0$ , и тогда  $\psi_1 > 0$ , F(T) > 0, поэтому F > 0,  $u(t) = u_{max}$ ,  $t < \tau_F$ .

Если  $x(T) = (l - \epsilon, M) \in \mathcal{X}_1$ , то либо  $\psi_1(T) = 0$  (уже рассмотрен), либо  $\psi_1(T) < 0$ , но тогда  $\psi_1 < 0$ , и F, в силу леммы 2, имеет не более одного корня, проходя через него сверху-вниз. Но в момент  $\tau_F$  верно  $F(\tau_F) \geqslant 0$ , а значит F > 0 на  $[0, \tau_F], u(t) = u_{max}, t \in [0, \tau_F]$ .

Вывод Анормальный случай приводит к тем же режимам, что и нормальный.

#### 5.3 Разрешимость задачи и алгоритм решения

Задача разрешима, если  $x_1(T) \in [l-\epsilon, l+\epsilon]$ . Это условие может не выполняться при больших значениях T, когда ракета будет терять скорость после того, как закончится топливо, и  $x_1(T) < l - \epsilon$ . Кроме того, систему можно явно проинтегрировать с помощью леммы 1, поэтому справедлива формула

$$x_1^T(\tau_s) = \frac{gm_0}{2u_{max}} - \frac{g\tau_s}{2} + \frac{m_0(gm_0 - 2lu_{max})}{2u_{max}(-m_0 + \tau_s u_{max})} - g(T - \tau_s).$$

Эта формула позволяет найти значение  $x_1$  в конечный момент времени в зависимости от  $\tau_s$  — момента выключения двигателя.

Таким образом, задача неразрешима, если  $\tau_F = \frac{m_0 - M}{u_{max}} < T$ , и  $x_1^T(\tau_F) < l - \epsilon$ . В противном случае можно найти такое значение параметра  $\tau_s$ , при котором  $x_1(T) \in [l - \epsilon, l + \epsilon]$ . Очевидно, что оптимальным является наибольший из таких параметров, то есть

$$\tau_s^* = \max\{\tau_s \in [0, \tau_F] : \ x_1^T(\tau_s) \leqslant l + \epsilon\}. \tag{9}$$

При численном решении рассматривается равномерная сетка для  $\tau_s \in [0, \min(T, \tau_F)]$ , и решение  $\tau_s^*$  находится в соответствии с (9).

#### 6 Решение задачи 2

Введем еще одну переменную  $x_3=\int\limits_0^t v(t)dt$  — высоту, на которой находится ракета. Тогда движение описывается системой

$$\begin{cases} \dot{x}_1 = -g + \frac{x_1 u}{x_2} \\ \dot{x}_2 = -u \\ \dot{x}_3 = x_1 - l \end{cases}$$
 (10)

Начальное и конечное множества имеют вид

$$\mathcal{X}_0 = \{l\} \times \{m_0\} \times \{0\}, \quad \mathcal{X}_1 = \mathbb{R} \times [M, m_0] \times \{H\}.$$

Функционал Гамильтона-Понтрягина равен

$$\mathcal{H} = \psi_0 u^4 + \psi_1 \left( -g + \frac{x_1 u}{x_2} \right) - \psi_2 u + \psi_3 (x_1 - l),$$

а сопряженная система

$$\begin{cases} \dot{\psi}_1 = -\psi_3 - \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = \frac{\psi_1 x_1 u}{x_2^2} \\ \dot{\psi}_3 = 0 \end{cases}$$

Отсюда получаем  $\psi_3 \equiv \psi_3^0$ , и система примет вид

$$\begin{cases} \dot{\psi}_1 = -\psi_3^0 - \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = \frac{\psi_1 x_1 u}{x_2^2} \end{cases}$$
 (11)



Рис. 2: Множество  $\mathcal{X}_1$ 

Аналогично первой задаче вычисляется

$$\dot{F} = (-\psi_1 g - \psi_3^0 x_1) - \frac{Fu}{x_2}. (12)$$

Из условий трансверсальности получаем, что если x(T) принадлежит относительной внутренности  $\mathcal{X}_1$ , то нормаль вертикальна, и тогда  $\psi_1(T)=\psi_2(T)=0$ . Так же, как и в задаче 1,  $m(T)< m_0$ , поэтому случай  $x_2(T)=m_0$  невозможен. Если же m(T)=M, то из рисунка видно, что  $\psi_1(T)=0$ .

#### 6.1 Нормальный случай

Будем считать, что  $\left\| \tilde{\psi}(0) \right\| = 0$  Тогда

$$\mathcal{H} \to \max_{u \in [0, u_{max}]} \Leftrightarrow -\psi_0 u^4 + \frac{Fu}{x_2} \to \max_{u \in [0, u_{max}]}$$

Для удобства рассматриваем  $\psi_0 > 0$ , записывая в функционале Гамильтона-Понтрягина  $-\psi_0$ . Функция  $-\psi_0 u^4 + \frac{Fu}{x_2}$  является вогнутой и достигает максимум в единственной точке

$$u = \sqrt[3]{\frac{F}{4\psi_0 x_2}}.$$

Если  $\sqrt[3]{\frac{F}{4\psi_0x_2}} > u_{max} \Leftrightarrow F - 4\psi_0x_2u_{max}^3 > 0$ , то  $u = u_{max}$ . Введем функцию

$$K(t) = F(t) - 4\psi_0 x_2(t) u_{max}^3$$

и запишем управление, полученное из условия максимума:

$$u(t) = \begin{cases} u_{max}, & K(t) > 0, \ x_2(t) > M, \\ \sqrt[3]{\frac{F}{4\psi_0 x_2}}, & K(t) < 0, \ F(t) > 0, \ x_2(t) > M, \\ 0, & \text{иначе.} \end{cases}$$
 (13)

Назовем для удобства эти режимы I, II и III соответсвенно. Заметим также, что

$$\dot{K} = (-\psi_1 g - \psi_3^0 x_1) - \frac{Ku}{x_2},$$

то есть K удовлетворяет тому же дифференциальному уравнению, что и F.

Случай m(T) > M Из условий трансверсальности F(T) = 0.  $\psi_3^0 \neq 0$ , иначе  $F \equiv 0$ , и  $u \equiv 0$ , что противоречит постановке задачи. Также невозможен случай  $\psi_3^0 < 0$ : если  $x_1(T) > 0$ , то F < 0, если же  $x_1(T) < 0$ , то F(t) > 0, u(t) > 0 в правой полуокрестности T, однако при отрицательных  $x_1$  управление увеличивает скорость движения вниз, и нетривиальное управление на участке, где  $x_1(t) < 0$ , заведомо не может быть оптимальным. Значит,

$$\psi_3^0 > 0, \ \psi_1 > 0.$$

Так как скорость в начальный момент положительна,  $u(0)>\frac{m_0g}{l}>0$ , то F(0)>0. Если F(t)>0 (K(t)>0) на некотором множестве, то на нем  $x_1>0$ , и  $-\psi_1g-\psi_3^0x_1<0$ , поэтому, в силу (12), F(K) монотонно убывает на этом множестве. Если где-то F(t)>0 и K(t)<0, то  $x_1>0$  и  $-\psi_1g-\psi_3^0x_1<0$  поэтому, по лемме 2, функция K не обращается в нуль на этом множестве.

Таким образом было показано, что возможны только следующие переходы между режимами:

- Из режима I в II
- Из режима II в III

То есть движение может реализовываться только по сценарию (I)-II-(III), где режимы в скобках могут быть пропущены.

Однако в случае m(T) > M движение в режиме I невозможно, поскольку функционал J «чувствителен» к большим значениям, сильно увеличиваясь на них, поэтому для любого управления, соответствующего сценарию I-II, можно рассмотреть его «сглаженную» версию, немного уменьшенную на участке, соответсвующем I, и немного увеличенную на участке, соответсвтующем II, так, чтобы  $x_3(T)$  осталось равным H. Однако на полученном управлении функционал примет меньшее значение, поскольку в среднем оно будет меньше. А значит, движение реализуется по сценарию II-(III).

Заметим также, что  $\dot{\psi}_1 < -\psi_3^0$ . Интегрируя это неравенство от 0 до T, получим

$$\psi_3^0 < \frac{\psi_1^0}{T}.$$

**Случай** m(T)=M Поскольку  $\psi_1(T)=0,\,\psi_3^0$  и  $\psi_1$  одного знака, случай  $\psi_3^0>0$  рассматривается абсолютно аналогично предыдущему.

Если  $\psi_3^0 = 0$ , то  $\psi_1 \equiv 0$ . Тогда функции K и F убывают на области положительной определенности, не проходя через 0, поэтому движение будет осуществляться либо в режиме I, либо в режиме II до тех пор, пока не кончится топливо.

Если же  $\psi_3^0 < 0$ , то  $\psi_1 < 0$ , поэтому функции K и F так же не попадают в 0, если положительны. То есть до тех пор, пока не кончится топливо, реализуется один из двух сценариев I и II-(I). Однако сценарий II-I невозможен, поскольку рассмотрев любое управление при таком сценарии и поменяв в нем местами отрезки с режимами I и II, получим управление, на котором J принимает то же значение, однако выводящее ракету на большую высоту. Но тогда можно уменьшить управление на участке с I, приводя ракету на нужную высоту и уменьшая значение функционала. Таким образом рассмотренное управление является неоптимальным. Режим I до окончания топлива реализуется только когда H — максимально возможная высота, на которую можно поднять ракету, и в общем случае его можно не рассматривать.

Отметим также, что  $\dot{\psi}_1 > -\psi_3^0$ , поэтому

$$\psi_3^0 > \frac{\psi_1^0}{T}$$

Вывод Получили, что в случае, когда заканчивается топливо и H строго меньше минимально возможной высоты ракета будет двигаться в режиме II до тех пор, пока не закончится топливо. В случае, когда топливо остаётся, движение происходит по сценарию II-(III). При этом были получены следующие ограничения на начальные значения сопряженных переменных

$$\psi_1^0 \in [-1, 1], \quad \psi_3^0 \in [-1, 1], \quad \psi_1^0 \psi_3^0 \geqslant 0, \quad |\psi_3^0| \leqslant \frac{|\psi_1^0|}{T},$$

$$\psi_2^0 \in [-1, 0], \quad \psi_0 \in [0, 1], \quad (\psi_0)^2 + (\psi_1^0)^2 + (\psi_2^0)^2 + (\psi_2^0)^2 = 1.$$

$$(14)$$

 $\psi_2^0$  отрицательна, поскольку при  $\psi_1>0$  функция  $\psi_2$  возрастает, и  $\psi_2(T)=0$ , а при  $\psi_1<0$  случай  $\psi_2^0>0$  невозможен, так как  $F(0)=\psi_1^0l-\psi_2^0m_0>0$ .

Добавим также условие взлета

$$u(0) > \frac{m_0 g}{l} \Leftrightarrow F(0) > \frac{4\psi_0 m_0^4 g^3}{l^3}.$$

#### 6.2 Анормальный случай

Если  $\psi_0 = 0$ , то

$$\mathcal{H} = \psi_1 \left( -g + \frac{ux_1}{x_2} \right) - \psi_2 u + \psi_3 (x_1 - l).$$

Поэтому управление будет иметь тот же вид, что и в задаче 1:

$$u(t) = \begin{cases} u_{max}, & F(t) > 0, \ x_2(t) > M, \\ [0, \ u_{max}], & F(t) = 0, \ x_2(t) > M, \\ [0, \ u_{\text{Haye.}} \end{cases}$$

$$(15)$$

Сопряженная система останется такой же, как в нормальном случае:

$$\begin{cases} \dot{\psi}_1 = -\psi_3^0 - \frac{\psi_1 u}{x_2} \\ \dot{\psi}_2 = \frac{\psi_1 x_1 u}{x_2^2} \end{cases}$$
 (16)

**Случай** m(T) > M Из условий трансверсальности F(T) = 0. Как и в нормальном случае показывается, что  $\psi_3^0 > 0$ , откуда следует F > 0,  $u \equiv u_{max}$ .

**Случай** m(T)=M Если  $\psi_3^0>0$ , то  $\psi_1>0$ , поэтому функция F убывает и имеет не более одного корня. Однако, так как  $m(T)=M,\ F(\tau_F)\geqslant 0$ , то есть F положительна до тех пор, пока не кончится топливо. Если  $\psi_3^0<0$ , то  $\psi_1<0$ , поэтому, по лемме 2, функция F не имеет корней (F(0)>0). Случай  $\psi_3^0=0$  означает, что  $\psi_1\equiv 0$ , и  $\dot F=-\frac{Fu}{x_2}$ . Но так F(0)>0, снова приходим к тому, что F>0.

**Вывод** Таким образом, единственный возможный режим, полученный из анормального случая, — положить  $u(t) = u_{max}$  до тех пор, пока это возможно.

#### 6.3 Разрешимость задачи и алгоритм решения

Задача является неразрешимой, если при управлении  $u=u_{max},\ t\in [0,\ \tau_F]$  получим  $x_3(T)< H$ . Это следует из задачи 1, в которой было показано, что именно это управление максимизирует  $x_3(T)$ . Если  $x_3(T)\geqslant H$ , то задача разрешима, причем при  $x_3(T)=H$  единственным возможным, и потому оптимальным, будет являться описанное выше управление  $u=u_{max},\ t\in [0,\ \tau_F]$ , то есть реализуется анормальный случай. При  $x_3(T)>H$  возможно движение по одному из следующих сценариев (F обозначает выключение двигателя в момент, когда кончилось топливо):

- II F
- II
- II-III

Будем перебирать параметры  $\psi_0, \psi_1^0, \psi_3^0$  в соответсвии с ограничениями (14), выбирая те траектории, у которых

$$\psi_1(T) = 0, \quad \psi_2 < 0, \quad x_3(T) = H,$$

переключаясь между режимами в корнях F, которые описываются уравнением

$$\dot{F} = -\psi_3^0 x_1 - \psi_1 g - \frac{Fu}{x_2}.$$

При численном решении рассматривается сетка  $[0, 1] \times [-1, 1] \times [-1, 1]$  для трехмерного параметра  $(\psi_0, \psi_1^0, \psi_3^0)$ . Для значений, удовлетворяющих (14), с помощью функции ode45 Matlab решается задача Коши

$$\begin{cases} \dot{x}_{1} = -g + \frac{x_{1}u}{x_{2}} \\ \dot{x}_{2} = -u \\ \dot{F} = -\psi_{3}^{0}x_{1} - \psi_{1}g - \frac{Fu}{x_{2}} \\ \dot{\psi}_{1} = -\psi_{3}^{0} - \frac{\psi_{1}u}{x_{2}} \\ x_{1}(0) = l \\ x_{2}(0) = m_{0} \\ F(0) = \psi_{1}^{0}l - \psi_{2}^{0}m_{0} \\ \psi_{1}(0) = \psi_{1}^{0} \end{cases}$$

$$(17)$$

Движение начинается в режиме II, переключения между режимами происходят в одном из следующих случаев:

- F(t) = 0 переключение в режим III
- $x_2(t) = M$  переключение в режим III

Случай  $u(t) = u_{max}$  при m(t) > M рассчитывается отдельно.

Для вычисленной траектории проверяется  $|x_3(T) - H| < \epsilon_H$ , где  $\epsilon_H$  — задаваемая допустимая погрешность для высоты в момент T.

# Часть II

# Примеры работы программы

Во всех задачах будем рассматривать входные данные с  $l=1,\ g=0.2.$ 

### 1 Задача 1

Входные параметры

$$M = 1$$
,  $m_0 = 2$ ,  $u_{max} = 1$ ,  $\epsilon = 0.01$ .

При T=4.5 получаем следующее решение



В этом случае движение продолжается до момента  $\tau_F$ . Набранная высота при этом  $H_{max}~=~1.48$ .



Режим с переключением реализуется, если при тех же входных данных взять T=3. Переключение происходит в момент  $\tau=0.8$ , а максимальная высота равна  $H_{max}=0.65$ .

# 2 Задача 2

Рассмотрим сначала случай m(T)=M.

Пусть

$$T=4, \quad M=1, \quad m_0=2, \quad u_{max}=1, \quad H=0.4.$$



Здесь значение функционала  $J(u^*)=0.08,$  а момент выключения двигателя  $\tau_F=2.36.$  Отметим, что в этом примере управление возрастает, а значит  $\psi_3^0<0.$ 

Пусть

$$T=5, \quad M=1, \quad m_0=2, \quad u_{max}=2, \quad H=0.4.$$



Здесь значение функционала  $J(u^*)=0.09,$  а момент выключения двигателя  $\tau_F=2.26.$  В этом случае управление убывает, что означает  $\psi_3^0>0.$ 

Теперь перейдем к случаю m(T) > M

$$T = 2$$
,  $M = 1$ ,  $m_0 = 2$ ,  $u_{max} = 1$ ,  $H = 0.3$ .



В этом примере движение происходит по сценарию II. Значение функционала  $J(u^*) \, = \, 0.12.$ 

Пусть

$$T = 6$$
,  $M = 1$ ,  $m_0 = 3$ ,  $u_{max} = 3$ ,  $H = 0.5$ .



В этом примере движение происходит по сценарию II-III. Значение функционала  $J(u^*)=0.26,$  время переключения  $\tau=3.83.$ 

В заключение рассмотрим предельный случай, когда H является максимально возможной высотой:

$$T = 6$$
,  $M = 1$ ,  $m_0 = 3$ ,  $u_{max} = 3$ ,  $H = 6.7$ .



Значение функционала  $J(u^*)=54,$  время выключения двигателя  $\tau=0.67.$ 

# Список литературы

- [1] Комаров Ю.А. Лекции по оптимальному управлению. ВМК МГУ, 2020.
- [2] Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972.