MA 4070 - Elements of Groups and Rings

A binary operation (.) on a set S is a function $\cdot : S \times S \longrightarrow S$

Example

Denote it by (S, .) to mean . is a binary operation on set S

Also, matrix multiplication is a binary operation

(iv)
$$M_n(R) = M_{n \times n}(R)$$

 $(M_n(R), +)$, $(M_n(R), *)$

(1)
$$7 = Maps(S \neq S) \longrightarrow \{4: S \longrightarrow S\}$$

$$T \leftarrow T \times T$$

$$f \cdot e \leftarrow (e \cdot t)$$

Let S be a set and $\bullet: S \times S \rightarrow S$ be a binary operation on S

(i) It is associative if
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \forall$$
 $a,b,c \in S$

An element $a \in S$ is said to be invertible if $\exists b \in S$ such that ab = ba = e

Proposition

If · is an associative binary operation on S, and a, b ∈ S then

(i)
$$(ab)^{-1} = b^{-1}a^{-1}$$

(ii)
$$(a^{-1})^{-1} = a$$

Proof

(i) Consider $(ab)(b^{-1}a^{-1})$, because $(ab)(ab)^{-1} = e by$ definition

By associative property,

$$(ab)(b^{-1}a^{-1}) = a(b(b^{-1}a^{-1}))$$

Apply the property again

$$= a(a^{-1}) = e$$

(ab) (ab)
$$(b^{-1}a^{-1}) = (ab)^{-1}e$$

$$= (b^{-1}a^{-1}) = (ab)^{-1}$$

(ii) By definition of e

· If the binary operation is written as (+) then for any positive integer n, we write

$$a^n = a \dots a$$
 $n = a + \dots + a$
 $n = a + \dots + a$
 $n = a + \dots + a$
 $n = a + \dots + a$

Groups

<u>Definition</u>: A non-empty set G with a binary operation . is said to be a group if

(i) . is associative

(11) . is with identity

(iii) every element of G1 is invertible

Examples:

(iii)
$$(R, +)$$
 \vee (iv) $(R, +)$ \times (vi) $(R, +)$ \vee (vi) $(R, +)$ \vee (vi) $(R, +)$ \vee (vi) $(R, +)$ \vee

(vi)
$$(M_{mxn}(R), +) \vee (vlii) (M_{n}(R), \cdot) \times$$

Proposition

If G is a group, then the equations ax = band ya = b have unique solutions

Proof:

$$ax = b$$
 $a^{-1}(ax) = a^{-1}b$
 $(a^{-1}a) \times = a^{-1}b$
 $ex = a^{-1}b$
 $y(aa^{-1}) = ba^{-1}$
 $ex = a^{-1}b$
 $y = ba^{-1}$
 $y = ba^{-1}$

a b is the solution for ax = b ba-1 is the solution for ya = b

Cancellation Law

$$ab = ac \Rightarrow b = c$$

Proof:
$$a^{-1}(ab) = a^{-1}(ac)$$
 (ba) $a^{-1} = (ca) a^{-1}$
 $(a^{-1}a)b = (a^{-1}a)c$ $b(aa^{-1}) = c(aa^{-1})$
 $b = c$