ray tracing

image formation

image formation

computational simulation of image formation

• given viewer

• given viewer, geometry

• given viewer, geometry, materials

• given viewer, geometry, materials and lights

- given viewer, geometry, materials and lights
- determine visibility

- given viewer, geometry, materials and lights
- determine visibility and simulate lighting

ray tracing

a particular rendering algorithm

ray tracing algorithm

```
for each pixel {
  determine viewing direction
  intersect ray with scene
  compute illumination
                                           light source
  store result in pixel
                       viewer
                         viewing direction
                              visible point
```

vector math review - points and vectors

- point
 - location in 3D space
 - $\mathbf{P} = (x,y,z)$

. P

- vector
 - direction and magnitude
 - **V** = (u,v,w)

vector math review - vector operations

- dot product
 - $-\mathbf{V}_1 \cdot \mathbf{V}_2 = |\mathbf{V}_1| |\mathbf{V}_2| \cos(\theta)$
- cross product
 - $|\mathbf{V}_1 \times \mathbf{V}_2| = |\mathbf{V}_1| |\mathbf{V}_2| \sin(\theta)$
 - $\mathbf{V}_1 \times \mathbf{V}_2$ is perpendicular to \mathbf{V}_1 and \mathbf{V}_2

vector math review - segments

- segment
 - set of points (line) between two points
 - $P(t) = P_0 + t (P_1 P_0)$ with $t \in [0, 1]$

vector math review - rays

- ray
 - infinite line from point in a given direction

$$-\mathbf{P}(t) = \mathbf{P_0} + t \mathbf{V} \text{ with } t \in [0,\infty]$$

vector math review - planes

plane

- $\mathbf{P} \in plane \leftrightarrow (\mathbf{P} \mathbf{P}_0) \cdot \mathbf{N} = 0 \leftrightarrow \mathbf{P} \cdot \mathbf{N} + d = 0$
- $\mathbf{P} = \mathbf{P}_0 + u\hat{\mathbf{x}} + v\hat{\mathbf{y}}$ with $(u, v) \in [-\infty, \infty]^2$
- $\mathbf{N} = \hat{\mathbf{x}} \times \hat{\mathbf{y}}$

vector math review - triangle

- triangle
 - points in three subspaces defined by triangle edges

baricentric coordinates

$$\mathbf{P} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

P
$$\in$$
 triangle $\leftrightarrow \alpha + \beta + \gamma = 1$

$$\mathbf{P} = \mathbf{C} + \alpha \left(\overrightarrow{\mathbf{C}} \overrightarrow{\mathbf{A}} \right) + \beta \left(\overrightarrow{\mathbf{C}} \overrightarrow{\mathbf{B}} \right) \text{ with } \alpha \ge 0, \beta \ge 0, \alpha + \beta \le 1$$

- geometric interpretation: relative area

$$\gamma = A_C / A_{triangle}$$

ray tracing algorithm

```
for each pixel {
  determine viewing direction
  intersect ray with scene
  compute illumination
                                        light source
  store result in pixel
                       viewer
                         viewing direction
                             visible point
```

viewer model – window analogy

[Marschner 2004 – original unkwon]

viewer model - photography

equiv. to pinhole photography

viewer model - representation

viewer model - view frustum

generate viewing rays

generate viewing rays

generate viewing rays

ray tracing algorithm

```
for each pixel {
  determine viewing direction
  intersect ray with scene
  compute illumination
                                           light source
  store result in pixel
                       viewer
                         viewing direction
                              visible point
```

geometry model

- simple shapes
 - spheres
 - triangles
 - etc.
- complex shapes
 - later in the course

ray-sphere intersection – algebraic

$$\begin{cases}
\mathbf{P}(t) = \mathbf{E} + t\mathbf{I} & \text{point on ray} \\
|\mathbf{P}(t) - \mathbf{O}|^2 = R^2 & \text{point on sphere}
\end{cases}$$

 $|\mathbf{E} + t\mathbf{I} - \mathbf{O}|^2 = R^2$ by substitution

ray-sphere intersection – algebraic

$$at^2 + bt + c = 0$$
 algebraic equation $a = |\mathbf{I}|^2$ $b = 2\mathbf{I} \cdot (\mathbf{E} - \mathbf{O})$ $c = |\mathbf{E} - \mathbf{O}|^2 - R^2$

ray-sphere intersection – algebraic

 $d = b^2 - 4ac$ determinant

if d < 0 no solutions

otherwise

ray-sphere intersection – geometric

$$W = O - E$$

$$t_p = \mathbf{W} \cdot \hat{\mathbf{I}}$$

if $t_p < 0$ no solution

ray-sphere intersection – geometric

$$d^2 = \mathbf{W} \cdot \mathbf{W} - t_p^2$$

if $d^2 > R^2$ no solution

ray-sphere intersection – geometric

$$t_r = \sqrt{R^2 - d^2}$$

$$\mathbf{P}(t) \Longleftrightarrow t_{-} = t_{p} - t_{r}$$

ray-sphere intersection - normal

surface normal need for lighting computation

$$\mathbf{N} = (\mathbf{P} - \mathbf{O}) / |\mathbf{P} - \mathbf{O}|$$

ray-triangle intersection I

- intersect with a plane
- check if the intersection point is in triangle

ray-plane intersection

$$\begin{cases} \mathbf{P}(t) = \mathbf{E} + t\mathbf{I} & \text{point on ray} \\ \mathbf{P} \cdot \mathbf{N} + d = 0 & \text{point on plane} \end{cases}$$

$$\mathbf{P} \cdot \mathbf{N} + d = 0$$
 point on plane

$$(\mathbf{E} + t\mathbf{I}) \cdot \mathbf{N} + d = 0$$
 by substitution

$$\mathbf{P}(t) \iff t = -\frac{\mathbf{E} \cdot \mathbf{N} + d}{\mathbf{I} \cdot \mathbf{N}}$$

ray-triangle intersection I

- triangle is intersection of 3 half-spaces
- check if P is on right side by comparing "normals"

ray-triangle intersection I

intersects if

$$(\mathbf{B} - \mathbf{A}) \times (\mathbf{P} - \mathbf{A}) \cdot \mathbf{N} > 0$$

$$(\mathbf{C} - \mathbf{B}) \times (\mathbf{P} - \mathbf{B}) \cdot \mathbf{N} > 0$$

$$(\mathbf{A} - \mathbf{C}) \times (\mathbf{P} - \mathbf{C}) \cdot \mathbf{N} > 0$$

ray-triangle intersection 2

- use baricentric coordinates (useful later)
- algebraic formulation

$$\begin{cases} \mathbf{P}(t) = \mathbf{E} + t\mathbf{I} \\ \mathbf{P}(\alpha, \beta) = \alpha \mathbf{A} + \beta \mathbf{B} + (1 - \alpha - \beta)\mathbf{C} \end{cases}$$
$$\mathbf{E} + t\mathbf{I} = \alpha \mathbf{A} + \beta \mathbf{B} + (1 - \alpha - \beta)\mathbf{C}$$

point on ray
point in the triangle
by substitution

ray-triangle intersection 2

$$\mathbf{E} + t\mathbf{I} = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C} \rightarrow$$

$$\alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) - t\mathbf{I} = \mathbf{E} - \mathbf{C} \rightarrow$$

$$\alpha \mathbf{a} + \beta \mathbf{b} - t\mathbf{I} = \mathbf{e} \rightarrow$$

$$\begin{bmatrix} -\mathbf{I} & \mathbf{a} & \mathbf{b} \end{bmatrix} \begin{bmatrix} t \\ \alpha \\ \beta \end{bmatrix} = \mathbf{e}$$

ray-triangle intersection 2

use Cramer's rule

$$t = \frac{|\mathbf{e} \quad \mathbf{a} \quad \mathbf{b}|}{|-\mathbf{I} \quad \mathbf{a} \quad \mathbf{b}|} = \frac{(\mathbf{e} \times \mathbf{a}) \cdot \mathbf{b}}{(\mathbf{I} \times \mathbf{b}) \cdot \mathbf{a}}$$

$$\alpha = \frac{|-\mathbf{I} \quad \mathbf{e} \quad \mathbf{b}|}{|-\mathbf{I} \quad \mathbf{a} \quad \mathbf{b}|} = \frac{(\mathbf{I} \times \mathbf{b}) \cdot \mathbf{e}}{(\mathbf{I} \times \mathbf{b}) \cdot \mathbf{a}}$$

$$\beta = \frac{|-\mathbf{I} \quad \mathbf{a} \quad \mathbf{e}|}{|-\mathbf{I} \quad \mathbf{a} \quad \mathbf{b}|} = \frac{(\mathbf{e} \times \mathbf{a}) \cdot \mathbf{I}}{(\mathbf{I} \times \mathbf{b}) \cdot \mathbf{a}}$$

test for
$$\alpha \ge 0$$
, $\beta \ge 0$, $\alpha + \beta \le 1$

images so far

intersecting many shapes

- intersect each primitive
- pick closest intersection

intersecting many shapes - pseudocode

```
minDistance = infinity
hit = false
foreach surface s {
  if(s.intersect(ray,intersection)) {
    if(intersection.distance < minDistance) {
      hit = true;
      minDistance = intersection.distance;
    }
  }
}</pre>
```

images so far

ray tracing algorithm

```
for each pixel {
  determine viewing direction
  intersect ray with scene
  compute illumination
                                           light source
  store result in pixel
                       viewer
                         viewing direction
                              visible point
```

shading

variation in observed color across a surface

lighting

patterns of illumination in the environment

shading

- compute reflected light
- depends on
 - viewer position
 - incoming light, i.e. lighting
 - surface geometry
 - surface material
- more on this later

materials

metals

dielectric

materials

metals

dielectric

[Marschner 2004]

shading models

- empirical shading models
 - produce believable images
 - simple and efficient
 - only for simple materials
- physically-based shading models
 - can reproduce accurate effects
 - more complex
- will concentrate empirical plastic-like model
 - more on this later in the course

Phong shading model

shading model = diffuse + specular reflection

- diffuse reflection
 - light is reflected in every direction equally
 - colored by surface color
- specular reflection
 - light is reflected only around the mirror direction
 - white for plastic-like surfaces (glossy paints)
 - colored for metals (brass, copper, gold)

diffuse reflection

- light reflects equally in all directions
 - i.e. surface looks the same from all view points
 - view-independent
- but incident light depends on angle
 - beam of light is more spread on an oblique surface

lambertian shading model

lambertian shading model

produces matte appearance

images so far

specular shading

- light reflects mostly around mirror direction
 - i.e. surface looks different from view points
 - view-dependent
- Phong specular model
 - empirical, but looks good enough
 - use cosine of mirror and view direction
- Blinn-Phong specular model
 - slightly better than Phong
 - use cosine of bisector and normal direction

Phong specular model

Phong specular model

• produces highlights, shiny appearance

Blinn-Phong variation

specular

exponent

shading model

putting the pieces together

$$C = C_d + C_s =$$

$$= C_l \left[k_d \max(0, \mathbf{N} \cdot \mathbf{L}) + k_s \max(0, \mathbf{V} \cdot \mathbf{R})^n \right]$$

images so far

lighting

- determines how much light reaches a point
- depends on
 - light geometry
 - light emission
 - scene geometry

light source models

describe how light is emitted from light sources

- empirical light source models
 - point, directional, spot
- physically-based light source models
 - area lights, sky model
 - will cover later in the course

point lights

- light emitted equally from point in all directions
 - simulates local lights
 - sometimes r² falloff for a bit more realism

$$\mathbf{L} = ||\mathbf{S} - \mathbf{P}||$$

$$C_{l} = C/r^{2}$$

directional lights

- light emitted from infinity in one direction
 - simulates distant lights, e.g. sun

$$L = D$$

$$C_I = C$$

spot lights

- same as point light, but only emit in a cone
 - simulate theatrical lights
 - cone falloff model arbitrary

$$\mathbf{L} = ||\mathbf{S} - \mathbf{P}||$$

$$C_1 = C \cdot att / r^2$$

multiple lights

add contribution for each light

$$C = \sum_{i} (C_d)_i + (C_s)_i =$$

$$= \sum_{i} (C_l)_i \left[k_d \max(0, \mathbf{N} \cdot (\mathbf{L})_i) + k_s \max(0, \mathbf{V} \cdot (\mathbf{R})_i)^n \right]$$

image so far

illumination models

describe how light spreads in the environments

- direct illumination
 - incoming lights comes directly from sources
 - shadows
- indirect illumination
 - incoming lights comes from other objects
 - specular reflections (mirrors), diffuse inter-reflections

illumination models

PCG

ray tracing lighting model

- captures
 - point/directional/spot light source models
 - sharp shadows
 - sharp reflections/refractions
 - hacked diffuse inter-reflections: ambient term
- more accurate lighting later in the course

ray traced shadows

light contributes only if visible at surface point

ray traced shadows

- cast a "shadow-ray" to check if light is visible
- visible if no-hits or if distance > light distance

ray traced shadows

scale light by a visibility term

$$\begin{split} C &= \sum_{i} (C_d)_i + (C_s)_i = \\ &= \sum_{i} (C_l)_i V_i(\mathbf{P}) \Big[k_d \max(0, \mathbf{N} \cdot (\mathbf{L})_i) + k_s \max(0, \mathbf{V} \cdot (\mathbf{R})_i)^n \Big] \\ &\qquad \qquad \uparrow \\ &\qquad \qquad \text{light source} \\ &\qquad \qquad \text{visibility } \{0, 1\} \end{split}$$

images so far

ambient term hack

- light bounces even in diffuse environment
 - ceiling are not black
 - shadows are not perfectly black
- very expensive to compute
- approximate (poorly) with a constant term

$$C = C_a + \sum_i \left[(C_d)_i + (C_s)_i \right] =$$

$$= k_a C_{amb} + \sum_i \left[(C_d)_i + (C_s)_i \right]$$
ambient ambient coefficient illumination

ray traced reflections

- perfectly shiny surfaces reflects objects
 - recursively trace a ray if material is reflective
 - along mirror direction, scaled by reflection coeff.
 - mirror direction calculated for Phong

ray traced reflections

- recursively ray trace, scale by reflection coeff.
- refraction is the same along the transmission dir.

$$C = C_a + \sum_{i} [(C_d)_i + (C_s)_i] + C_r + C_t =$$

$$= C_a + \sum_{i} [(C_d)_i + (C_s)_i] +$$

$$+ k_r \operatorname{raytrace}(\mathbf{P}, \mathbf{R}) + k_t \operatorname{raytrace}(\mathbf{P}, \mathbf{T})$$

$$\uparrow$$
reflection
coefficient
refraction
coefficient

images so far

1 sample/pixel

1 sample/pixel

1 sample/pixel

1 sample/pixel

1 sample/pixel

1 sample/pixel

1 sample/pixel

- for each pixel
 - take multiple samples
 - compute average
- poor-man antialiasing
 - more on this later in the course

ray tracing pseudocode

```
for(i = 0; i < imageWidth; i ++) {
  for(j = 0; j < imageHeight; j ++) {
    u = (i + 0.5)/imageWidth;
    v = (j + 0.5)/imageHeight;
    ray = camera.generateRay(u, v);
    c = computeColor(ray);
    image[i][j] = c;
}</pre>
```

antialiased ray tracing pseudocode

```
for(i = 0; i < imageWidth; i ++) {
  for(j = 0; j < imageHeight; j ++) {
    color c = 0:
    for(ii = 0; ii < numberOfSamples; ii ++) {</pre>
      for(jj = 0; jj < numberofSamples; jj ++) {</pre>
        x = (i + (i + 0.5) / number 0 f Samples) / i mageWidth;
        y = (j + (j j + 0.5) / number of Samples) / i mageHeight;
        ray = camera.generateRay(x,y);
        c += computeColor(ray);
    image[i][j] = c / (numberOfSamples^2);
```

images so far

ray tracing details

- numerical precision issues come up
 - shadow acne: ray hits the visible point
 - solution: only intersect if distance > epsilon
- make sure you do not recurse infinitely when computing reflections or refractions
 - solution: simply stop after a given number

ray tracing wrap-up

- simple and general algorithm
 - ray cast to evaluate visibility
 - simplified shading model
 - ray cast to evaluate shadows
 - recursive execution for reflections/refractions
- inefficient linear with number of primitives
 - sub-linear ray cast later in the course
- not photorealistic too clean
 - missing soft shadows, realistic materials, realistic camera model, diffuse inter-reflection
- base of most general algorithms