UNIVERSITE HASSAN II DE CASABLANCA FACULTE DES SCIENCES BEN M'SIK DEPARTEMENT DE MATHEMATIQUES INFORMATIQUE

Module Algorithmes d'optimisation

Dans les exercices suivants les résolutions se feront en utilisant python et non manuellement.

Exercice 1:

On note $f : \mathbb{R}^2 \to \mathbb{R}$ définie par f(x; y) = (x - 1)(y - 2)(x + y - 6):

- 1) Montrer que (4; 2) et (2; 3) sont des points critiques de f.
- 2) quel est la nature de ces max, min ou point de selle ?

Exercice 2:

Soit $f \mathbb{R}^2 \to \mathbb{R}$ définie par : $f(x; y) = 9x^2 + 8xy + 3y^2 + x - 2y$.

- 1) Montrer que f admet un seul extremum sur \mathbb{R}^2 .
- 2)Quelle est sa nature?
- 3) Cet extremum est-il global?

Exercice 3:

Calculer la solution de $f(x)=x^5-3x+1=0$.

- 1) Recherche des racines de f en utilisant une résolution analytique.
- 2) Résoudre en utilisant la méthode de dichotomie f(x)=0 dans l'intervalle [1, 2], le nombre d'itération =100, la tolérance $\epsilon = 1e-8$.
- 3) Tracer la courbe de f.
- 4) Afficher la valeur approchée sur la figure ainsi que le nombre d'itérations
- 5) Comparer les deux valeurs.

Exercice 4:

Calculer la solution de $f(x) = -2 x^3 + 3x^2 + 36x - 5 = 0$.

- 1) Vérifier que f a une racine en 3 en utilisant une résolution analytique.
- 2) Résoudre en utilisant la méthode de dichotomie f(x)=0 dans l'intervalle [2, 4], le nombre d'itération =100, la tolérance $\epsilon = 1e-6$.
- 3) Tracer la courbe de f.
- 4) Afficher la valeur approchée sur la figure ainsi que le nombre d'itérations
- 5) Comparer les deux valeurs.

Exercice 5:

Calculer la solution de $f(x) = x^3 + 6x^2 - 15x + 1 = 0$.

1) Vérifier que f a une racine en 1 en utilisant une résolution analytique.

- 2) Résoudre en utilisant la méthode de la section dorée f(x)=0 dans l'intervalle [2, 4], le nombre d'itération =100, la tolérance ϵ =1e-6.
- 3) Tracer la courbe de f.
- 4) Afficher la valeur approchée sur la figure ainsi que le nombre d'itérations
- 5) Comparer les deux valeurs.

Exercice 6:

Calculer la solution de $f(x) = -\exp(\arctan(x) - \cos(5x))$.

- 1) Montrer qu'il existe $x \in (0, 1)$ tel que f est strictement décroissante sur $[a, x^*]$ et strictement croissante sur $[x^*, b]$.
- 2) Trouver les points critique de f.
- 3) Résoudre en utilisant la méthode de la section dorée f'(x)=0 dans l'intervalle [0, 1], le nombre d'itération =100, la tolérance ϵ =1e-6.
- 4) Tracer la courbe de f et f'.
- 5) Afficher la valeur approchée sur la figure ainsi que le nombre d'itérations
- 6) Comparer la valeur approchée avec les points critiques.

Exercice 7:

La surface de la section transversale A d'une gouttière dont la base et la longueur du bord sont égales à 2 est donnée par est donnée par $f(\theta) = 4\sin(\theta)(1+\cos(\theta))$. On veut maximiser la fonction f.

- 1) En utilisant un intervalle initial $[0, \pi/2]$, trouver la solution avec la méthode de section dorée après n itérations et $\varepsilon = 0.05$, puis $\varepsilon = 1e-6$.
- 2) Afficher les valeurs de : an et bn à chaque itération
- 3) Tracer la courbe de f
- 4) Afficher la valeur approchée sur la figure ainsi que le nombre d'itérations
- 5) Comparer la valeur approchée avec celle obtenu avec la méthode de dichotomie.