Multiclass linear prediction

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 Multiclass logistic regression
- 2 Multiclass Perceptron
- 3 Multiclass support vector machines

Multiclass classification

Of the classification methods we have studied so far, which seem inherently binary?

- Nearest neighbor?
- Generative models?
- Linear classifiers?

The main idea

Remember Gaussian generative models...

From binary to multiclass logistic regression

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^d$, classifier given by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x + b}}{1 + e^{w \cdot x + b}}$$

Labels $\mathcal{Y}=\{1,2,\ldots,k\}$: specify a classifier by $w_1,\ldots,w_k\in\mathbb{R}^d$ and $b_1,\ldots,b_k\in\mathbb{R}$:

$$\Pr(y = j|x) \propto e^{w_j \cdot x + b_j}$$

- What is the fully normalized form of the probability?
- Given a point x, which label to predict?

Multiclass logistic regression

- Label space: $\mathcal{Y} = \{1, 2, ..., k\}$
- Parametrized classifier: $w_1, \ldots, w_k \in \mathbb{R}^d$, $b_1, \ldots, b_k \in \mathbb{R}$:

$$\Pr(y = j | x) = \frac{e^{w_j \cdot x + b_j}}{e^{w_1 \cdot x + b_1} + \dots + e^{w_k \cdot x + b_k}}$$

- **Prediction**: given a point x, predict label $arg max_j (w_j \cdot x + b_j)$.
- **Learning**: Given: $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$. Find: $w_1, \ldots, w_k \in \mathbb{R}^d$ and b_1, \ldots, b_k that maximize the likelihood

$$\prod_{i=1}^n \Pr(y^{(i)}|x^{(i)})$$

Taking negative log gives a convex minimization problem.

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_{i}(w_{i} \cdot x + b_{i})$

Learning. Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

- Initialize $w_1 = \cdots = w_k = 0$ and $b_1 = \cdots = b_k = 0$
- Repeat while some training point (x, y) is misclassified:

for correct label y: $w_y = w_y + x$

 $b_y = b_y + 1$

for predicted label \hat{y} : $w_{\hat{y}} = w_{\hat{y}} - x$

 $b_{\widehat{y}} = b_{\widehat{y}} - 1$

Multiclass Perceptron: example

Multiclass SVM

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_{j} (w_j \cdot x + b_j)$

Learning. Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

$$\min_{w_1, \dots, w_k \in \mathbb{R}^d, b_1, \dots, b_k \in \mathbb{R}, \xi \in \mathbb{R}^n} \sum_{j=1}^k \|w_j\|^2 + C \sum_{i=1}^n \xi_i$$

$$w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i \quad \text{for all } i \text{ and all } y \ne y^{(i)}$$

$$\xi \ge 0$$

Multiclass SVM example: iris

Multiclass SVM

Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

$$\min_{\substack{w_1, ..., w_k \in \mathbb{R}^d, b_1, ..., b_k \in \mathbb{R}, \xi \in \mathbb{R}^n \\ w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i \text{ for all } i \text{ and all } y \ne y^{(i)}}}$$

$$\xi \ge 0$$

Once again, a convex optimization problem.

Question: how many variables and constraints do we have?