Conceitos Básicos

Objetivos do Capítulo

- Explicar os conceitos de interação, interface e *affordance*.
- Descrever critérios de qualidade de uso utilizados em IHC: usabilidade, experiência do usuário, acessibilidade e comunicabilidade.

Para aumentarmos a qualidade de uso de sistemas interativos, devemos inicialmente identificar os elementos envolvidos na interação usuário-sistema. Este capítulo apresenta os conceitos de interação usuário-sistema, interface com usuário e *affordance*, e descreve critérios de qualidade comumente considerados em IHC: usabilidade, experiência do usuário, acessibilidade e comunicabilidade.

2.1 Interface, Interação e Affordance

A Figura 2.1 ilustra uma situação típica de uso: um usuário engajado num processo de interação com a interface de um sistema interativo, buscando alcançar um objetivo em determinado contexto de uso. O contexto de uso é caracterizado por toda situação do usuário relevante para a sua interação com o sistema (Dey, 2001), incluindo o momento de utilização do sistema (quando) e o ambiente físico, social e cultural em que ocorre a interação (onde).

Figura 2.1 Elementos envolvidos no processo de interação.

O exemplo a seguir examina esses elementos através de um cenário de uso de uma aplicação de produção e apresentação de slides.

Exemplo 2.1 - Elementos envolvidos no processo de interação

Vejamos algumas situações de uso em que o professor Lucas cria, edita e visualiza slides. No conforto da sua casa (contexto de uso), Lucas (usuário) costuma usar o Impress® do BrOffice¹ (sistema) no seu computador pessoal de mesa (desktop) para preparar os slides que vai utilizar nas aulas (objetivo). Em alguns casos, ele começa a preparar sua aula a partir de um documento em branco (Figura 2.2). Ele escreve o título da aula, cria uma sequência de slides de acordo com os tópicos a serem abordados e conclui o conteúdo detalhando cada tópico (processo de interação). Depois de definido o conteúdo, ele cuida do *layout* dos slides, tal como cores, fonte dos textos, figuras etc. Sempre que possível, ele prefere elaborar as aulas em casa por dispor de um ambiente mais tranquilo, com menos interrupção e distrações.

Durante o processo de interação, Lucas manipula a interface gráfica do Impress® usando o teclado e o mouse para alcançar seu objetivo. O tamanho do monitor permite visualizar vários slides

¹ http://www.broffice.org.

lado a lado, para analisar e organizar a estrutura da apresentação (Figura 2.3). O contexto de uso também é bastante propício para ele explorar ideias, seja pelo fato de haver menos interrupções, por ter livros e materiais didáticos à sua disposição ou simplesmente por ser um ambiente mais confortável para ele.

Figura 2.2 Tela inicial do Impress[®] do BrOffice.

Figura 2.3 Visão geral dos slides no Impress® do BrOffice.

O que mudaria na situação de uso se Lucas, no aeroporto, precisasse rever os slides da sua próxima aula usando seu *smartphone* enquanto espera o avião de volta para sua cidade? Primeiro, trata-se de um dispositivo bem diferente, que impõe restrições importantes na entrada e saída de dados. A digitação e a manipulação do cursor costumam ser menos eficientes se comparados com as permitidas pelo teclado e mouse de desktop. A tela limita a quantidade de informação disponível a cada instante. O objetivo do usuário também mudou. Antes ele tinha interesse maior em criar e editar slides, agora o interesse maior é em visualizá-los. Além disso, o contexto de uso mudou significativamente. Passou de um ambiente confortável e com poucas interrupções para um ambiente com várias interrupções e que dispersa facilmente a atenção do usuário.

Quando Lucas chegar à sala de aula, o contexto de uso mudará novamente, e a relação com os alunos e a forma de apresentar o conteúdo vai influenciar a apresentação de slides. Na sala de aula, Lucas continua com o objetivo de exibir os slides como no aeroporto. Entretanto, o modo de exibi-los é fortemente influenciado pelo novo contexto. Por exemplo, o tempo gasto em cada slide será diferente, ou pode ser necessário voltar a slides anteriores porque um aluno ficou com alguma dúvida. Nesse caso, os dispositivos de entrada e saída serão os oferecidos por um notebook e um projetor de tela. Esses dispositivos de entrada e de saída não são muito diferentes daqueles oferecidos por um desktop, a não ser o projetor de tela, que nem sempre reproduz as cores conforme o esperado e é mais influenciado pela luminosidade do ambiente.

Se considerarmos Lucas como um usuário alvo de um novo sistema de edição e apresentação de slides, as diferenças nas situações de uso por ele vivenciadas no exemplo deveriam ser consideradas no design e avaliação desse novo sistema. Se isso não ocorrer, Lucas e outros usuários que vivenciem situações semelhantes poderão ter dificuldades ao utilizar o sistema.

2.1.1 Interação

A definição de **interação** usuário-sistema evoluiu ao longo do tempo. A princípio, tratava essencialmente de uma sequência de estímulos e respostas, como na interação de corpos físicos. Com o surgimento das pesquisas de base cognitiva, passou-se a enfatizar a interação como a *comunicação com* máquinas, em vez de a *operação de* máquinas (Card, Moran e Newell, 1983). Investigou-se também a interação como um processo através do qual o usuário formula uma intenção, planeja suas ações, atua sobre a interface, percebe e interpreta a resposta do sistema e avalia se seu objetivo foi alcançado (Norman, 1986). Em geral, a interação usuário-sistema pode ser considerada como tudo o que acontece quando uma pessoa e um sistema computacional se unem para realizar tarefas, visando a um objetivo (Hix e Hartson, 1993). Mais recentemente, enfatiza-se a interação usuário-sistema como processo de comunicação entre pessoas, mediada por sistemas computacionais (de Souza, 2005a). Sendo assim, podemos considerar a interação usuário-sistema como sendo um processo de manipulação, comunicação, conversa, troca, influência, e assim por diante. As abor-

dagens teóricas de IHC privilegiam diferentes definições do fenômeno de interação usuário-sistema.

Kammersgaard (1988) identificou quatro perspectivas de interação usuário-sistema: perspectiva de sistema, de parceiro de discurso, de ferramenta e de mídia. Cada uma atribui ao usuário e ao sistema determinado papel e caracteriza a interação sob um ponto de vista diferente, como ilustrado na Figura 2.4.

Figura 2.4 Perspectivas de interação humano-computador.

Na perspectiva de sistema, o usuário é considerado como um sistema computacional, e a interação humano-computador aproxima-se da interação entre sistemas computacionais, ou seja, é vista como uma mera transmissão de dados entre pessoas e sistemas computacionais, análoga à transmissão de dados entre sistemas. Desse modo, o usuário precisa se comportar como uma verdadeira máquina, aprendendo a interagir de forma bem disciplinada e restrita por formatos de entrada padronizados e rígidos. É comum a utilização de linguagem de comando ou de programação (como linguagens de script) nessa transmissão de dados. Quando se trabalha na perspectiva de sistema, o principal objetivo é aumentar a eficiência e a transmissão correta de dados, reduzindo o tempo de interação e o número de erros cometidos pelos usuários.

Um exemplo clássico do emprego dessa perspectiva é o terminal de comando de sistemas operacionais, tais como DOS e Linux (Figura 2.5).

tela002.jpg

ubuntu@ubuntu:~/Desktop\$

tela003.jpg

tela004.jpg

Figura 2.5 Ilustração de um terminal do Linux, exemplificando a perspectiva de sistema.

Outro emprego comum da perspectiva de sistema é limitar aquilo que os usuários podem dizer, através de listas fechadas, controles de calendário e outros elementos de interface restritivos, como ocorre em sites de empresas aéreas (Figura 2.6).

Figura 2.6 Fragmento de formulário ilustrando a perspectiva de sistema.

Combinações de teclas de atalho, tal como "Ctrl+C" para copiar e "Ctrl+V" para colar, também são exemplos de emprego da perspectiva de sistema. Elas são muito úteis e eficientes para usuários que possuem habilidade com o teclado e tenham tempo, disposição e capacidade cognitiva para aprender a sequência de teclas e os comandos associados.

A perspectiva de sistema pode ser inadequada para a realização de algumas atividades por certas classes de usuários, pois ela pode requerer algum tipo de treinamento e seu uso pode ser difícil e tedioso no início. Exemplo disso são os sistemas de linguagem de comando utilizados intensamente por funcionários de companhias aéreas, nos balcões dos aeroportos. Esses funcionários recebem extenso treinamento,

para que consigam utilizar o sistema. A vantagem é que, após o treinamento, utilizam o sistema com muita eficiência. Tais sistemas seriam inadequados a passageiros interessados em efetuar suas reservas ou seu check-in, pois seu uso esporádico não justificaria o investimento necessário em treinamento.

Em oposição à perspectiva de sistema, surgiu na área de Inteligência Artificial uma proposta de transformar o sistema interativo em parceiro do discurso. Nessa perspectiva, o sistema interativo deve participar da interação assumindo papel à altura de um ser humano, sendo capaz de raciocinar, fazer inferências, tomar decisões, adquirir informação, enfim, o sistema deve ser capaz de se comportar de forma semelhante aos seus usuários. Essa perspectiva visa tornar a interação humano-computador mais próxima de uma interação entre seres humanos. Nesse caso, a interação costuma ser compreendida como uma conversa. O objetivo do designer nessa perspectiva é cuidar da quantidade, conteúdo e sequência das falas durante a conversa usuário-sistema que auxilia o usuário a atingir seu objetivo. Geralmente, a perspectiva de parceiro de discurso faz uso da linguagem natural como meio de comunicação usuário-sistema. Por exemplo, poderíamos encontrar o diálogo do Exemplo 2.2 em um sistema de busca por produtos e serviços.

Exemplo 2.2 - Interação na perspectiva de parceiro de discurso.

Sistema: Em que posso ajudar?

Usuário: Quero procurar um presente para a minha tia.

Sistema: Do que sua tia gosta?

Usuário: Flores e bombons de chocolate com licor de cereja.

Sistema: Que tal um bouquet de rosas por R\$60,00 e uma caixa de bombons por R\$80,00?

Usuário: Acho melhor orquídeas.

Sistema: Que tal uma orquídea da família Cattleya Trianae por R\$250,00?

Usuário: É esta que eu quero.

Sistema: O telefone da floricultura é 5555-5555. E da loja de bombons é 5555-1234.

Usuário: Obrigado. Sistema: De nada.

Construir um sistema parceiro de discurso não é algo trivial. Até hoje existem diversas pesquisas nessa linha, pois ainda temos grandes desafios no processamento em linguagem natural. Um bom exemplo desses desafios são os problemas que ocorrem em tradutores automáticos de texto.

Na perspectiva de ferramenta, o sistema interativo é considerado um instrumento que auxilia o usuário a realizar suas tarefas. Nessa perspectiva, a interação representa "um processo de aplicar uma ferramenta a algum material e avaliar o resultado" (Kammersgaard, 1988, p. 353) durante a realização de uma atividade. O processo de interação é descrito principalmente pelo encadeamento de ações e reações empregando tal ferramenta (um sistema interativo). O sucesso da interação depende do conhecimento do usuário sobre a ferramenta e de sua capacidade de manipulá-la com destreza. Durante a interação, o usuário deve se concentrar no seu trabalho e manipular a ferramenta de forma automática, sem precisar pensar sobre essa manipulação; assim como um carpinteiro manipula um martelo enquanto fabrica móveis, ou um cozinheiro manipula talheres enquanto cozinha. Essa perspectiva é predominante nos sistemas de propósito geral e famílias de aplicações de escritório, como no Microsoft Office® e no OpenOffice®. Os fatores de qualidade mais evidentes nessa perspectiva são a relevância das funcionalidades oferecidas e a facilidade de uso da ferramenta.

A perspectiva de **mídia** vem ganhando cada vez mais espaço em sistemas interativos atuais, em particular sistemas que conectam pessoas através da Internet. Nessa perspectiva, o sistema interativo é visto como uma mídia (semelhante à imprensa, televisão, rádio e telefone) através da qual as pessoas se comunicam umas com as outras. Assim, a interação significa comunicação por meio da mídia num contexto coletivo. Além da comunicação entre usuários mediada por sistemas interativos, como ocorre em sistemas de e-mail, fórum, chats e redes sociais, também existe a comunicação unilateral dos designers do sistema para os usuários, explícita na ajuda on-line, nas instruções na interface e na documentação do sistema, ou implícita através da seleção e disposição dos elementos de interface em si. Nessa perspectiva, busca-se principalmente zelar pela qualidade da comunicação entre pessoas mediada por um sistema interativo e o seu entendimento mútuo.

A perspectiva de mídia e a perspectiva de parceiro de discurso são distintas. Enquanto a primeira vê a interação como uma conversa *usuário-sistema*, a segunda a vê como uma comunicação *entre pessoas* mediada por tecnologia. Apesar de essas duas perspectivas considerarem a interação como um processo de comunicação, a diferença entre elas aparece nos interlocutores. Na perspectiva de discurso, o sistema é um dos interlocutores buscando conversar como um ser humano. Já na perspectiva de mídia, o sistema é apenas um meio através do qual outros interlocutores (usuários e designer) podem se comunicar.

A Tabela 2.1 apresenta um resumo comparativo das perspectivas de interação, destacando os diferentes significados de interação e os principais critérios de qualidade de cada uma delas. É importante observar que mais de uma perspectiva pode coexistir em um único sistema interativo. Em sistemas de empresas aéreas, por exemplo, encontramos a perspectiva de sistema empregada na escolha dos destinos e origens,

e a perspectiva de mídia empregada em seções do tipo "fale conosco". A escolha das perspectivas será feita de acordo com o perfil e as necessidades dos usuários, com o contexto de uso e com o apoio computacional que pretendemos lhes oferecer.

Tabela 2.1 Comparação das perspectivas de interação (Kammersgaard, 1988).

perspectiva	significado de interação	fatores de qualidade mais evidentes
sistema	transmissão de dados	eficiência (tal como indicado pelo tempo de uso e número de erros cometidos)
parceiro de discurso	conversa usuário–sistema	adequação da interpretação e geração de textos
ferramenta	manipulação de ferramenta	funcionalidades relevantes ao usuário, facilidade de uso
mídia	comunicação entre usuários e comunicação designer– usuário	qualidade da comunicação mediada e enten- dimento mútuo

2.1.2 Interface

Se a interação é um processo que ocorre durante o uso, o que é a interface de um sistema interativo? A **interface** de um sistema interativo compreende toda a porção do sistema com a qual o usuário mantém contato físico (motor ou perceptivo) ou conceitual durante a interação (Moran, 1981). Ela é o único meio de contato entre o usuário e o sistema. Por isso, a grande maioria dos usuários acredita que o sistema é a interface com a qual entram em contato (Hix e Hartson, 1993).

O contato físico na interface ocorre através do hardware e do software utilizados durante a interação. Dispositivos de entrada, como teclado, mouse, joystick, microfone, caneta (que escreve sobre a tela) e câmera (webcam), permitem ao usuário agir sobre a interface do sistema e participar ativamente da interação. Já os dispositivos de saída, como monitor, impressora e alto-falante, permitem ao usuário perceber as reações do sistema e participar passivamente da interação.

Os dispositivos mecânicos tinham uma relação física aparente com seu comportamento quando eram programados apenas via hardware. Por exemplo, as teclas numéricas de um telefone representavam apenas os números que o usuário poderia discar. Mais recentemente, as teclas numéricas ganharam novas funções, como a de servir de teclado alfanumérico e para qualquer comportamento possível de se programar em software. Com a incorporação, em diversos dispositivos, de teclas de propósito múltiplo ou configuráveis, bem como telas de apresentação de informação, o software também passou a ter grande importância na definição da interface com usuário. O software determina os efeitos no comportamento do sistema decorrentes

das ações do usuário sobre os dispositivos de entrada, bem como os efeitos nos dispositivos de saída decorrentes de um processamento realizado pelo sistema. Em interfaces gráficas, por exemplo, pode-se clicar com o mouse (hardware) em um botão com um [x] e obter como resultado o término da execução do programa (software).

O contato *conceitual* com a interface envolve a interpretação do usuário daquilo que ele percebe através do contato físico com os dispositivos de entrada e de saída durante o uso do sistema. Essa interpretação permite ao usuário compreender as respostas do sistema e planejar os próximos caminhos de interação.

A interface com usuário determina os processos de interação possíveis, à medida que determina o que ele pode falar ou fazer, de que maneira e em que ordem. Portanto, quando definimos como a interação deve ocorrer, estamos restringindo ou determinando algumas características da interface, e vice-versa. Por exemplo, se projetarmos um processo de interação para compra on-line em três passos — escolher produtos, informar endereço de entrega e comunicar forma de pagamento — a interface deve permitir que o usuário percorra esses passos mantendo-o informado sobre a evolução do processo de compra. Outro exemplo nesse domínio seria a disposição das informações sobre produtos (modelo, preço, fabricante, especificações técnicas etc.) na interface, que pode facilitar ou dificultar a interação do usuário com o sistema para comparação de produtos.

Todos os elementos envolvidos no processo de interação estão fortemente relacionados. O contexto de uso influencia a forma como os usuários percebem e interpretam a interface, e também seus objetivos. Por exemplo, uma resposta sonora é pouco útil em um ambiente de uso barulhento porque pode passar despercebida. Os objetivos de um professor usando um editor de slides em casa e na sala de aula costumam ser diferentes. Em casa, o foco costuma ser a criação e edição de slides, enquanto, em sala de aula, o foco costuma ser a sua apresentação. As características físicas e cognitivas dos usuários também influenciam a definição de uma interface apropriada. Por exemplo, pessoas daltônicas podem não diferenciar informações expressas por determinadas cores na interface. Muitas delas não diferenciam o verde do vermelho. A formação, o conhecimento e as experiências do usuário também não podem ser ignorados na definição da interface. Por exemplo, não podemos esperar que um analfabeto aprenda a usar a interface lendo instruções na tela.

2.1.3 Affordance

As características físicas de um artefato evidenciam o que é possível fazer com ele e as maneiras de utilizá-lo. O mesmo ocorre com a interface com usuário. O conjunto de características do hardware e do software perceptíveis pelo usuário aponta para

um conjunto de operações que podem ser realizadas com o sistema interativo, bem como para as formas de realizá-las manipulando os elementos da interface. Existe um termo técnico para esse conjunto de características: affordance.

Gibson (1977, 1979) definiu o termo affordance na Psicologia, que mais tarde foi adaptado para IHC por Norman. Em IHC, a affordance de um objeto corresponde ao conjunto das características de um objeto capazes de revelar aos seus usuários as operações e manipulações que eles podem fazer com ele (Norman, 1988). Em uma interface gráfica, por exemplo, a affordance de um botão de comando diz respeito à possibilidade de pressioná-lo usando o mouse ou o teclado e, assim, acionar uma operação do sistema.

As affordances da interface de um sistema interativo são importantes para guiar o usuário sobre o que o sistema é capaz de fazer e como ele pode manipular a interface para fazê-lo. Os designers devem tomar cuidado para não criarem falsas affordances, pois os efeitos colaterais são inconvenientes. As falsas affordances podem dar a impressão de que a interface funciona de determinada maneira, quando na verdade funciona de outra forma. Uma falsa affordance pode ser criada, por exemplo, quando um desenvolvedor utiliza uma caixa de texto ou um botão de comando apenas para apresentar uma mensagem ou conteúdo não editável (Figura 2.7).

> Resultado: 357 itens processados. Resultado: 357 itens processados. Resultado: 357 itens processados.

Figura 2.7 Exemplos de diferentes affordances de alguns elementos de interface (widgets).

Na caixa de texto, o usuário pode acreditar que é possível editar o texto da mensagem. No botão de comando, ele pode acreditar que existe um comando associado ao evento de pressionar o botão. Desses elementos, apenas o rótulo apresenta uma affordance adequada à apresentação de dados e mensagens ao usuário.

2.2 Qualidade em IHC

Usar um sistema interativo significa interagir com sua interface para alcançar objetivos em determinado contexto de uso. A interação e a interface devem ser adequadas para que os usuários possam aproveitar ao máximo o apoio computacional oferecido pelo sistema. Que características a interação e a interface devem ter para serem consideradas adequadas?

Os critérios de qualidade de uso enfatizam certas características da interação e da interface que as tornam adequadas aos efeitos esperados do uso do sistema. Os critérios de qualidade de uso descritos neste livro são: usabilidade, experiência do usuário, acessibilidade e comunicabilidade. A usabilidade é o critério de qualidade de uso mais conhecido e, por conseguinte, o mais frequentemente considerado. Para muitas pessoas, inclusive, qualidade de uso chega a ser sinônimo de usabilidade.

A usabilidade está relacionada com a facilidade de aprendizado e uso da interface, bem como a satisfação do usuário em decorrência desse uso (Nielsen, 1993). Tradicionalmente, a usabilidade enfoca a maneira como o uso de um sistema interativo no ambiente de trabalho é afetado por características do usuário (sua cognição, sua capacidade de agir sobre a interface e sua capacidade de perceber as respostas do sistema). Com a disseminação dos sistemas computacionais interativos em ambientes diferentes do trabalho, a usabilidade passou a englobar também as emoções e os sentimentos dos usuários. Por vezes essa qualidade relacionada com os sentimentos e emoções dos usuários é denominada de **experiência do usuário** (Sharp *et al.*, 2007).

Para um usuário tirar proveito do apoio computacional oferecido pelo sistema, não podem existir barreiras que o impeçam de interagir com sua interface. O critério de **acessibilidade** está relacionado à remoção das barreiras que impedem mais usuários de serem capazes de acessar a interface do sistema e interagirem com ele. Cuidar da acessibilidade significa permitir que mais pessoas possam interagir com o sistema, tenham elas alguma deficiência ou não. A intenção é incluir, não excluir.

O critério de **comunicabilidade** chama atenção para a responsabilidade de o designer comunicar ao usuário suas intenções de design e a lógica que rege o comportamento da interface. Esse critério se pauta no pressuposto de que, se o usuário tiver acesso à lógica de design, ele terá melhor condição de fazer um uso produtivo e criativo do apoio computacional oferecido pelo sistema.

A seguir, analisamos cada um desses critérios em mais detalhes.

2.2.1 Usabilidade e Experiência de Usuário

Ao definir os critérios de qualidade de software, a norma ISO/IEC 9126 (1991) define **usabilidade** como sendo:

Um conjunto de atributos relacionados com o esforço necessário para o uso de um sistema interativo, e relacionados com a avaliação individual de tal uso, por um conjunto específico de usuários.

E a norma sobre requisitos de ergonomia, ISO 9241-11 (1998), define usabilidade como sendo:

O grau em que um produto é usado por usuários específicos para atingir objetivos específicos com eficácia, eficiência e satisfação em um contexto de uso específico.

Segundo essa norma, eficácia está relacionada com a capacidade de os usuários interagirem com o sistema para alcançar seus objetivos corretamente, conforme o esperado. A eficiência está relacionada com os recursos necessários para os usuários interagirem com o sistema e alcançarem seus objetivos. Normalmente, os recursos necessários são tempo, mão de obra e materiais envolvidos. A norma também destaca a importância de considerarmos o grau de satisfação dos usuários com a experiência de usar o sistema interativo no contexto de uso para o qual foi projetado.

Nielsen (1993) define o critério de usabilidade como um conjunto de fatores que qualificam quão bem uma pessoa pode interagir com um sistema interativo. Esses critérios estão relacionados com a facilidade e o esforço necessários para os usuários aprenderem e utilizarem um sistema. Desse modo, a usabilidade endereça principalmente a capacidade cognitiva, perceptiva e motora dos usuários empregada durante a interação. Os fatores de usabilidade por ele considerados são:

- facilidade de aprendizado (learnability)
- facilidade de recordação (memorability)
- eficiência (efficiency)
- segurança no uso (safety)
- satisfação do usuário (satisfaction)

Cada sistema interativo possui características e peculiaridades que o tornam único e distinto dos demais. Logo, a interação com cada sistema é um processo particular que exige do usuário certo grau de aprendizado. Ele precisa dispor de tempo e interesse para se empenhar em aprender a utilizar um sistema interativo e ser capaz de usufruir de suas funcionalidades. É possível estabelecer níveis de aprendizado do uso do sistema. Por exemplo, podemos definir os conhecimentos e as habilidades necessárias para usufruir das funcionalidades do sistema num nível simples, intermediário e avançado. A facilidade de aprendizado se refere ao tempo e esforço necessários para que o usuário aprenda a utilizar o sistema com determinado nível de competência e desempenho.

As pessoas esperam que o apoio computacional oferecido por um sistema interativo seja tão simples, fácil e rápido de aprender quanto possível. Afinal, empregar tecnologias de informação e comunicação no nosso cotidiano se justifica para facilitar a realização das nossas atividades, e não torná-las mais difíceis e complexas. Isso vale tanto para um sistema de uso cotidiano, como correio eletrônico, quanto para um sistema utilizado raramente, como o sistema de declaração anual de imposto de renda. Em atividades mais complexas, temos uma tolerância maior em relação ao esforço e tempo necessários para aprendermos a utilizar um sistema interativo. Portanto, cuidar da facilidade de aprendizado significa equilibrar (1) a complexidade da atividade sendo apoiada e o conjunto de funcionalidades oferecido como apoio, e (2) o tempo e o esforço necessários para aprender a utilizar o sistema em cada nível de competência e desempenho estabelecidos como meta. É possível avaliar o tempo e o esforço necessários para a transição entre diferentes níveis de competência e desempenho de uso. Por exemplo, podemos avaliar quanto tempo um usuário leva para aprender a realizar as atividades principais e quanto tempo ele leva para aprender a realizar um conjunto mais amplo de atividades.

O ser humano é capaz de aprender, mas também esquece o que aprendeu. Diante de um esquecimento, pistas sobre o que foi esquecido são muito úteis para resgatarmos da memória o que aprendemos no passado. Se a interface com usuário possuir elementos obscuros, mal organizados, sem sentido para o usuário, com passos mal encadeados ou muito diferentes do que ele espera, muito provavelmente o usuário terá dificuldade para lembrar como utilizar o sistema (Sharp *et al.*, 2007). A **facilidade de recordação** diz respeito ao esforço cognitivo do usuário necessário para lembrar como interagir com a interface do sistema interativo, conforme aprendido anteriormente.

Um sistema de fácil recordação auxilia o usuário a se lembrar de como utilizálo, evitando que ele cometa erros ao utilizar partes do sistema que já tenha utilizado
anteriormente. Por exemplo, o usuário pode não se lembrar do nome de um item
de menu, mas pode lembrar que ele faz parte de uma determinada categoria. Desse
modo, a organização e descrição dos itens de menu ajudam o usuário a lembrar da
opção desejada. Em outro exemplo, a interface pode revelar pistas sobre a sequência
de operações durante a execução de uma tarefa através de ícones, nomes de comandos e opções de menus bem projetados. Sistemas de comércio eletrônico costumam
guiar o usuário pelos passos necessários até a conclusão da compra, sempre indicando qual o passo atual em relação à sequência de passos necessários. A facilidade de
recordação é especialmente importante quando existem operações ou sistemas com
baixa frequência de uso, como, por exemplo, efetuar a matrícula numa universidade,
a cada seis meses.

A maneira como um sistema interativo apoia a realização das atividades do usuário influencia o tempo necessário para realizá-las e, portanto, influencia a produtividade do usuário. A **eficiência** de um sistema interativo diz respeito ao tempo necessário para conclusão de uma atividade com apoio computacional. Esse tempo

é determinado pela maneira como o usuário interage com a interface do sistema. A eficiência de um sistema interativo se torna importante quando desejamos manter alta a produtividade do usuário, depois de ele ter aprendido a utilizar o sistema.

Errar faz parte do processo de aprendizado. Se uma pessoa se sente segura para tentar fazer algo sem medo de errar, ela possui melhores condições para experimentar fazer coisas novas e explorar novos caminhos. Sendo assim, é muito interessante que os sistemas interativos ofereçam segurança ao usuário durante o uso para motivá-lo a aprender a usar o software explorando suas funcionalidades. A segurança no uso se refere ao grau de proteção de um sistema contra condições desfavoráveis ou até mesmo perigosas para os usuários. Existem duas formas para alcançarmos a segurança no uso: buscando evitar problemas e auxiliando o usuário a se recuperar de uma situação problemática. Uma forma de evitar problemas é reduzir a possibilidade de acionar por engano teclas, botões e comandos indesejados. Um exemplo disso seria não colocar botões "perigosos" como "remover tudo" muito próximos a botões de "gravar" (Sharp et al., 2007). Mecanismos para desfazer e refazer facilmente uma ação (undo e redo) e mecanismos para cancelar ou interromper operações demoradas são formas eficientes de recuperação de erros ou equívocos do usuário e, portanto, favorecem a exploração das funcionalidades do sistema (veja Seção 8.2).

A satisfação do usuário é o fator de usabilidade relacionado com uma avaliação subjetiva que expressa o efeito do uso do sistema sobre as emoções e os sentimentos do usuário. Até pouco tempo, sistemas interativos eram utilizados principalmente em atividades relacionadas ao trabalho. Por isso a satisfação do usuário costumava receber menor atenção do que outros critérios mais relevantes a essas atividades, como a eficiência, por exemplo.

Recentemente, os sistemas interativos deixaram de ser utilizados apenas no trabalho e passaram a estar presentes em muitas atividades humanas (entretenimento, educação, saúde, política etc.) e em diversos locais (no trabalho, em casa, na escola, em trânsito, no hospital, no museu, no shopping etc.). Essas novas atividades aumentaram a necessidade de considerarmos a forma como o uso de um sistema interativo afeta os sentimentos e as emoções do usuário. Alguns interpretam a preocupação com emoções e sentimentos dos usuários como uma atenção maior à satisfação do usuário como parte do critério de usabilidade (Bevan, 2009). Outros, no entanto, consideram essa preocupação como um critério de qualidade distinto, chamado de experiência do usuário (user experience — Sharp et al., 2007).

Além da satisfação do usuário, tornou-se importante investigar outros aspectos da sua subjetividade, caracterizando seus sentimentos, estado de espírito, emoções e sensações decorrentes da interação com um sistema interativo em determinado

contexto de uso. Podemos investigar vários aspectos positivos e negativos dessa subjetividade, como, por exemplo (Sharp *et al.*, 2007): satisfação, prazer, diversão, entretenimento, interesse, atração, motivação, estética, criatividade, provocação, surpresa, desafio, cansaço, frustração e ofensa.

É claro que não podemos prever completamente nem controlar a experiência de cada usuário durante a interação. A experiência de uso é algo subjetivo, pessoal. Entretanto, podemos projetar sistemas interativos visando promover uma boa experiência de uso, incorporando características que promovam boas emoções nos usuários e que evitem provocar sensações desagradáveis, sempre respeitando as limitações dos usuários.

Existem alguns aspectos importantes para experiência do usuário a serem considerados durante o (re)projeto de um sistema interativo, como, por exemplo, atenção, ritmo, divertimento, interatividade, controle consciente e inconsciente, envolvimento e estilo de narrativa (Sharp *et al.*, 2007). Um bom envolvimento emocional dos usuários durante a interação agrega valor ao sistema interativo. Cabe ao designer decidir quais aspectos subjetivos devem ser promovidos durante a interação e articular isso com os demais critérios de qualidade de uso.

Dificilmente um único sistema será muito bom em todos os critérios de usabilidade, porque não é fácil articular esses critérios sem que haja perdas em um ou mais deles. Por exemplo, um sistema pode ser eficiente com muitas teclas de atalho, mas elas podem ser mais difíceis de serem lembradas por usuários ocasionais. Já um sistema com muitas explicações e tutoriais pode ser de fácil aprendizado, mas pode não satisfazer um usuário experiente, que privilegie a eficiência. É importante conhecermos as necessidades dos usuários e estabelecermos quais critérios de usabilidade devem ser priorizados no sistema em questão.

2.2.2 Acessibilidade

Durante a interação, o usuário emprega (1) sua habilidade motora para agir sobre os dispositivos de entrada, (2) seus sentidos (visão, audição e tato) e capacidade de percepção para identificar as respostas do sistema emitidas pelos dispositivos de saída, e (3) sua capacidade cognitiva, de interpretação e de raciocínio para compreender as respostas do sistema e planejar os próximos passos da interação. Se a interface impuser alguma barreira ao usuário durante o processo de interação, ele não será capaz de aproveitar o apoio computacional oferecido pelo sistema.

O critério de **acessibilidade** está relacionado com a capacidade de o usuário acessar o sistema para interagir com ele, sem que a interface imponha obstáculos. Melo e Baranauskas (2005, p. 1505) definem acessibilidade como sendo "a flexibili-

dade proporcionada para o acesso à informação e à interação, de maneira que usuários com diferentes necessidades possam acessar e usar esses sistemas". Uma interface com usuário acessível não pode impor barreiras para interação e para o acesso à informação, nem no hardware e nem no software do sistema interativo.

A acessibilidade atribui igual importância a pessoas com e sem limitações na capacidade de movimento, de percepção, de cognição e de aprendizado. Cuidar da acessibilidade significa permitir que mais pessoas possam perceber, compreender e utilizar o sistema para usufruir do apoio computacional oferecido por ele (WAI, online). Isso não significa que o sistema deve ser desenvolvido para atender exclusivamente a uma classe especial de usuários. A intenção é incluir pessoas com limitações ou deficiências no grupo de usuários-alvo, e não excluir desse grupo as pessoas sem limitações ou deficiências.

Um usuário que possui limitações físicas (e.g., deficiência visual, auditiva e motora), mentais ou de aprendizado (e.g., analfabetos plenos e analfabetos funcionais) tem mais chances de encontrar barreiras que o dificultam ou impedem de interagir com o sistema. Essas limitações podem ser temporárias, como aquelas causadas por acidentes e superadas algum tempo depois, ou limitações persistentes por toda a vida, como cegueira e paralisia causadas por deficiência congênita ou por alguma doença grave. A idade dos usuários também influencia suas capacidades físicas, mentais e de aprendizado, seja quando criança, porque seu corpo ainda não amadureceu, ou na terceira idade, quando algumas de suas capacidades são afetadas pelo envelhecimento. Vejamos alguns casos em que usuários com limitações podem encontrar dificuldades para interagir com sistemas computacionais (Exemplo 2.3).

Exemplo 2.3 - Cenários evidenciando a importância da acessibilidade

Deficiência auditiva

Paulo é um deficiente auditivo que acessa a Internet frequentemente sem grandes dificuldades. A sua conexão com a Internet parou de funcionar em casa e ele precisa entrar em contato com seu provedor de acesso. Como ele se sentiria ao descobrir que é obrigado a utilizar um sistema interativo por telefone para ter acesso ao suporte do seu provedor de Internet? Todo o seu esforço para aprender o Português, além da Língua Brasileira de Sinais (Libras), não seria útil nesse caso.

Deficiência motora

João maneja bem o teclado e o mouse. Entretanto, no último mês ele descobriu uma tendinite crônica nas mãos e sente muitas dores ao manipular esses dois dispositivos de entrada. Certamente ele ficaria feliz se pelo menos alguns comandos pudessem ser ativados via voz até que sua dor diminuísse.

Deficiência visual

Joana é uma jovem brasileira deficiente visual interessada em continuar estudando. Ela ouviu no noticiário da TV que o vestibular de várias universidades públicas levará em conta a nota no Enem (Exame Nacional do Ensino Médio). Utilizando um leitor de telas, ela conseguiu acessar o site de inscrição do Enem (Figura 2.8) para obter informações a respeito do exame. No Web site ela descobriu que precisava do número de identidade e CPF, mas não conseguiu encontrar um link para iniciar a inscrição, nem percebeu que o período de inscrição terminou. Por que ela não percebeu essas informações? Se analisarmos a figura, vamos perceber que o link para iniciar a inscrição era uma figura, e a informação de que o período de inscrição terminou se encontrava dentro dessa figura. Nenhuma dessas informações pôde ser lida pelo leitor de tela, e ela não teve acesso a informações sobre um serviço que o Estado deveria oferecer para toda a população brasileira.

Figura 2.8 Site de inscrição no Enem em julho de 2009.²

Nesses exemplos, as limitações físicas dos usuários dificultaram ou impossibilitaram o acesso aos sistemas interativos. A interação tornou-se pouco produtiva ou impossível devido a dificuldades para agir sobre o sistema através dos dispositivos de entrada, e para perceber e interpretar os resultados emitidos pelos dispositivos de saída.

Um bom exemplo de adequação às limitações físicas e cognitivas do usuário são os dispositivos GPS (Sistema de Posicionamento Global) para guiar o motorista em trânsito utilizando mapas digitais. Enquanto dirige, o motorista não pode utilizar as mãos para agir sobre o dispositivo, nem ler instruções na tela. Desse modo, enquanto está parado, o motorista informa ao navegador GPS onde ele pretende ir. Durante o trajeto, o sistema vai lhe orientando sobre o caminho que deve seguir, via respostas sonoras. Repare que, nesse caso, o sistema precisou ser adequado a limitações temporárias impostas pelo contexto de uso. Podemos observar que nem sempre a acessibilidade está relacionada com deficiências persistentes ou com características de um grupo específico de usuários.

² http://sistemasenem2.inep.gov.br/Enem2009, último acesso em julho de 2009.

O governo brasileiro fornece vários serviços aos cidadãos por meio de sistemas computacionais, principalmente via Internet. Por exemplo, existem vários serviços do INSS e da Receita Federal disponíveis on-line; em alguns estados as matrículas em escolas públicas são realizadas on-line; e em alguns municípios é possível obter segunda via do IPTU no site da prefeitura. O governo deve servir igualmente a todos os cidadãos do país, sem discriminação e respeitando as limitações e diferenças de cada um. Por isso devemos permitir que pessoas com limitações físicas, mentais e de aprendizado tenham acesso aos serviços oferecidos via tecnologias de informação e comunicação. Essa preocupação se manifesta no decreto presidencial número 5.296, de 2 de dezembro de 2004, que regulamenta as leis nº 10.048, de 8 de novembro de 2000, e nº 10.098, de 19 de dezembro de 2000.3 Esse decreto torna obrigatória a acessibilidade em sites do governo. No texto do decreto, podemos destacar:

Art. 8º Para os fins de acessibilidade, considera-se:

I - acessibilidade: condição para utilização, com segurança e autonomia, total ou assistida, dos espaços, mobiliários e equipamentos urbanos, das edificações, dos serviços de transporte e dos dispositivos, sistemas e meios de comunicação e informação, por pessoa portadora de deficiência ou com mobilidade reduzida;

II - barreiras: qualquer entrave ou obstáculo que limite ou impeça o acesso, a liberdade de movimento, a circulação com segurança e a possibilidade de as pessoas se comunicarem ou terem acesso à informação, classificadas em:

 (\dots)

d) barreiras nas comunicações e informações: qualquer entrave ou obstáculo que dificulte ou impossibilite a expressão ou o recebimento de mensagens por intermédio dos dispositivos, meios ou sistemas de comunicação, sejam ou não de massa, bem como aqueles que dificultem ou impossibilitem o acesso à informação;

 (\dots)

Art. 47. No prazo de até doze meses a contar da data de publicação deste Decreto, será obrigatória a acessibilidade nos portais e sítios eletrônicos da administração pública na rede mundial de computadores (Internet), para o uso das pessoas portadoras de deficiência visual, garantindo-lhes o pleno acesso às informações disponíveis.

As limitações físicas, mentais e de aprendizado dos usuários não podem ser desprezadas, sejam elas limitações permanentes, temporárias ou circunstanciais. É desejável que um sistema interativo seja acessível a qualquer pessoa, mas a acessibilidade depende das características dos usuários que pretendemos atender e dos contextos de

³ http://www.planalto.gov.br/CCIVIL/_Ato2004-2006/2004/Decreto/D5296.htm.

uso pretendidos. Cada tipo de limitação ou deficiência requer um cuidado específico para criarmos interfaces acessíveis. Por exemplo, uma deficiência visual requer cuidados bem diferentes de uma deficiência auditiva. Portanto, o zelo com a acessibilidade também requer conhecimento sobre as capacidades e limitações dos usuários e sobre os diferentes contextos de uso (Stephanidis, 2001; Melo e Baranauskas, 2006; Lazar, 2007).

2.2.3 Comunicabilidade

Um sistema interativo é resultado de um processo de design no qual um designer estabelece uma visão (interpretação) sobre os usuários, seus objetivos, o domínio e o contexto de uso e toma decisões sobre como apoiá-los. Para o usuário usufruir melhor do apoio computacional, é desejável que o designer remova as barreiras da interface que impedem o usuário de interagir (acessibilidade), torne o uso fácil (usabilidade) e comunique ao usuário as suas concepções e intenções ao conceber o sistema interativo. Mas por que o usuário precisaria saber disso? Vamos analisar duas situações bem simples e comuns no uso de TICs (Exemplo 2.4).

Exemplo 2.4 - Importância da comunicabilidade

Cópia de arquivos

Maria gosta de música e está interessada em utilizar o computador para organizar e ouvir seus arquivos de música. Ela comprou seu primeiro computador recentemente e ainda não sabe utilizar os sistemas interativos disponíveis.

Maria decide colocar alguns arquivos de música no seu *pen drive* para poder ouvir em outro lugar. Depois de algum tempo copiando os arquivos, mas antes de concluir a cópia, ela decide parar a operação em andamento porque está atrasada para sair de casa. O que acontece se ela cancelar a operação não concluída? Os arquivos já copiados permanecem no *pen drive* ou serão removidos? Como Maria pode aprender o significado de cancelar a operação de cópia em andamento? A Figura 2.9 apresenta a interface do Windows® XP, que permite a Maria acompanhar a operação de cópia de arquivos.

Não há nessa interface uma explicação do que significa para o sistema (conforme concebido pelo designer) cancelar a cópia em andamento. Existe mais de uma interpretação aceitável para o comando cancelar: (1) apenas a operação de cópia é interrompida; e (2) a operação de cópia é interrompida e seus resultados parciais são desfeitos (isto é, os arquivos já copiados são apagados do *pen drive*). Por não conhecer qual o significado do comando cancelar nessa interface, Maria se sente insegura sobre o comportamento do sistema. Para compreender o funcionamento do sistema nesse caso, ela precisa arriscar cancelar a cópia e verificar se alguns arquivos copiados ainda permanecem no seu *pen drive*. Infelizmente, nem sempre é simples verificar o funcionamento do sistema. Seria muito mais fácil e adequado o próprio designer comunicar ao usuário (por exemplo, através de dicas, instruções ou mensagens associadas ao botão cancelar) qual foi o significado que ele atribuiu a esse comando, ou ainda oferecer diferentes comandos para os possíveis comportamentos identificados, cada qual indicando o significado correspondente.

Figura 2.9 Copiando arquivos para outro diretório no Windows XP®.

Reprodução de música

Usando a interface do reprodutor de música Songbird, Maria também fica insegura sobre seu comportamento. Ela quer ouvir as músicas de um CD, exceto uma que lembra seu namorado porque brigou com ele há poucos dias. Ela então decide remover a música da lista presente na interface do Songbird. Conforme apresentado na Figura 2.10, ela ativa o menu pop-up, e decide clicar em Remover. Qual será o efeito de clicar nesse item de menu? A música será removida da lista de reprodução, será removida da biblioteca do Songbird ou o arquivo da música será removido do computador? Novamente, a interface do sistema não comunica ao usuário o significado atribuído pelo designer a um comando, e Maria volta a ficar insegura. Nesse caso, não compreender corretamente o significado do comando remover pode trazer consequências indesejadas e difíceis ou impossíveis de serem revertidas, pois Maria pode perder o arquivo da música que lembra seu namorado. O objetivo dela no momento não é apagar o arquivo, mas ouvir apenas as outras músicas do CD agora. Essa dúvida e insegurança não aconteceriam se o designer deixasse claro o significado do item Remover.

Figura 2.10 Removendo arquivo de música no Songbird.

Problemas na comunicação das concepções e intenções do designer para o usuário se tornam mais significativos quando tratamos de estratégias de uso da interface para alcançar diferentes objetivos. É mais difícil o usuário aprender estratégias de uso concebidas pelo designer sem que elas lhe sejam bem comunicadas. Por exemplo, é difícil os usuários perceberem e aproveitarem as formas mais eficientes de organizar e-mails em sistemas como Outlook® e Thunderbird® sem que exista uma comunicação do designer explícita e eficiente nesse sentido. Para evitar que o sistema seja subutilizado, de Souza (2005b) propõe que o designer, além de produzir sistemas interativos, também deve apresentá-los adequadamente ao usuário durante a interação. Nesse ponto de vista, a interação humano-computador envolve a comunicação dos passos necessários para alcançar um objetivo, e também do valor de estratégias inovadoras para realizar atividades e solucionar problemas com apoio computacional.

O conceito de comunicabilidade foi proposto pela engenharia semiótica (de Souza, 2005a), teoria de IHC discutida na Seção 3.8. A **comunicabilidade** diz respeito à capacidade da interface de comunicar ao usuário a *lógica do design*: as intenções do designer e os princípios de interação resultantes das decisões tomadas durante todo o processo de design (Prates *et al.*, 2000a; de Souza, 2005a; de Souza e Leitão, 2009). Acreditamos que, se um usuário for capaz de compreender a lógica utilizada na concepção do sistema interativo, terá maiores chances de fazer um uso criativo, eficiente e produtivo dele (Prates e Barbosa, 2007; 2003).

É importante observar que compreender a *lógica de design* não implica adquirir conhecimentos técnicos de design de um sistema interativo, mas sim obter uma compreensão pragmática e utilitária das relações de causa e efeito que determinam seu comportamento (de Souza, comunicação pessoal). O entendimento dessa lógica de design permite que os usuários tirem melhor proveito da tecnologia e sigam estratégias adequadas a cada situação de uso. Por exemplo, não precisamos conhecer a mecânica de um automóvel em profundidade para dirigi-lo. Mas fazemos melhor uso do automóvel se entendemos os riscos e as consequências de utilizá-lo com pouca gasolina, com nível de óleo inadequado, de dirigir em alta velocidade em pistas escorregadias, de dirigir muito próximos do carro à nossa frente etc. De modo análogo, não precisamos saber como funcionam os recursos de estilos de formatação ou numeração automática de um editor de texto para utilizá-lo, mas de posse desse conhecimento podemos fazer uso mais eficiente dele e menos propenso a erros.

A lógica do design comunicada ao usuário deve refletir as decisões tomadas sobre: a quem se destina o sistema, para que ele serve, qual a vantagem de utilizá-lo, como ele funciona e quais são os princípios gerais de interação com o sistema (Prates et al., 2000a; de Souza, 2005a; de Souza e Leitão, 2009). Essas questões normalmente fazem parte da atividade de design de um sistema interativo, porém nem sempre o designer se preocupa em comunicá-las adequadamente através da interface com usuário. Como vimos nos exemplos de cópia de arquivos no Windows® XP e de remoção de uma música no Songbird, se os usuários não compreenderem a lógica de design, a interação frequentemente se torna um processo de tentativa e erro, tedioso, ineficiente ou até mesmo arriscado.

A analogia é um recurso de comunicação utilizado para facilitar e aumentar a comunicabilidade. Esse recurso permite ao usuário formular hipóteses sobre a interação com sistemas interativos tendo como base suas experiências de interação anteriores com artefatos semelhantes. O uso de analogias deve contribuir para que as hipóteses do usuário sobre como interagir sejam compatíveis com aquelas pretendidas

pelo designer. Contudo, é importante deixar claros os limites das analogias para não induzir o usuário a criar hipóteses erradas (Exemplo 2.5).

Exemplo 2.5 - Uso de analogias

Analise rapidamente a interface dos dois sistemas na Figura 2.11, sem se preocupar em ler o conteúdo de seus elementos textuais. O que esses sistemas fazem? Eles são reprodutores de música? Como você chegou à sua conclusão?

Esses dois sistemas possuem botões, imagens e características semelhantes a um CD Player físico, no qual o usuário deve apertar botões para controlar a reprodução (play, pause, stop, next e previous), girar um botão para controlar o volume, pressionar o botão de eject para abrir o compartimento de CDs, e assim por diante. Sem dúvida, o uso dessa analogia com CD Players favorece a comunicabilidade de sistemas reprodutores de áudio e vídeo. Entretanto, o que podemos dizer sobre a comunicabilidade quando essa mesma analogia é utilizada em um programa antivírus? O Avast (o programa na parte inferior da Figura 2.11) é um programa antivírus, não um reprodutor de música, como facilmente poderíamos interpretar analisando a interface. O designer da versão 4.7 do Avast não foi muito feliz na escolha da analogia da interface com um CD Player, pois cria expectativas que não pode atender e induz os usuários a criarem várias hipóteses falsas sobre como interagir com o sistema e o que ele é capaz de fazer. Felizmente essa analogia com o CD Player já foi abandonada em versões posteriores do Avast.

Figura 2.11 Interfaces do Songbird (em cima) e do Avast (embaixo, cujo texto foi propositalmente desfocado).

Outro recurso de comunicação que favorece a comunicabilidade é oferecer mais informações sobre a lógica de design conforme a demanda dos usuários. Um exemplo interessante de melhoria na comunicabilidade é percebido quando comparamos as dicas de botões da barra de ferramentas no Microsoft Office[®], versões XP e 2007. A Figura 2.12 apresenta a dica sobre o botão Pincel nas duas versões.

.

(a)

Figura 2.12 Dica da ferramenta de pincel no Microsoft Office® (a) XP e no (b) 2007.

Enquanto a versão XP apresenta apenas o nome do comando associado ao botão, a versão 2007 apresenta também o significado do comando, as teclas de atalho a ele associadas, uma estratégia de uso para aplicá-lo em múltiplos locais do documento e informações sobre como obter mais ajuda. Observamos uma grande melhoria na qualidade da informação sobre a lógica de design e, consequentemente, da comunicabilidade do sistema. Essa melhoria contribui também para a usabilidade do sistema, pois ela facilita o aprendizado sobre a cópia de formato e revela as teclas de atalho e os efeitos do duplo clique que tornam seu uso mais eficiente. Sendo assim, um sistema com alta comunicabilidade é com frequência um sistema com alta usabilidade.

Apesar de distintos, os diversos critérios de qualidade de uso estão fortemente interligados, influenciando uns aos outros. Por exemplo, quando uma pessoa com deficiência visual consegue navegar sem grandes barreiras (acessibilidade) por sites na Web e obter as informações desejadas, sua motivação e satisfação (experiência do usuário ou usabilidade) tendem a aumentar, porque ela se torna capaz de realizar atividades sozinha e adquire certa independência. Em contrapartida, mesmo que uma interface seja acessível, se há ambiguidade ou falta de clareza no significado dos elementos de interface (baixa comunicabilidade), como ocorre no comando Cancelar da cópia de arquivos no XP e no comando Remover no Songbird, a eficiência do usuário e a facilidade de aprendizado do sistema tendem a diminuir. Além disso, a incerteza sobre o efeito de uma ação pode causar angústia e insatisfação aos usuários.

Em geral, quando um usuário consegue compreender como o sistema funciona porque o designer se expressou adequadamente através da interface (comunicabilidade), torna-se mais fácil aprender a utilizá-lo (usabilidade).

Ao projetarmos um sistema interativo, nem sempre é possível satisfazer igualmente todos os critérios e aspectos envolvidos na qualidade de uso, seja por questões de tempo, orçamento ou mesmo incompatibilidade entre critérios. Sendo assim, é importante definir quais são os critérios prioritários no sistema em questão para poder privilegiá-los no projeto de interação. A prioridade dos critérios de qualidade de uso

deve ser definida com base no conhecimento sobre os usuários (limitações, necessidades, motivações etc.), suas atividades e objetivos, e contextos de uso.

Atividades

- 1. Fatores de Usabilidade. Identifique quais fatores de usabilidade deveriam ser privilegiados nos seguintes casos:
 - um sistema para gestão dos documentos produzidos e consumidos por uma organização;
 - um quiosque de informações em uma livraria;
 - um caixa eletrônico;
 - um sistema Web para fornecer os resultados de exames de saúde a pacientes e seus médicos;
 - um jogo educacional de simulação de fenômenos físicos (e.g., deslocamento, aceleração e atrito).
- 2. Acessibilidade. Cite exemplos de sistemas interativos para os quais a acessibilidade beneficiaria seus usuários em certas situações. Discuta os benefícios da acessibilidade nesses sistemas para os usuários e para a organização responsável pelo sistema.
- 3. Comunicabilidade. Na interface do Microsoft Powerpoint[®] 2007 ou posterior, analise os signos correspondentes ao uso da caneta (ink). Tente identificar a visão do designer sobre para que serve esse recurso e como ele deve ser utilizado. Compare a edição de ilustrações utilizando a caneta e utilizando formas geométricas predefinidas (e.g., criação, modificação, seleção, agrupamento e deslocamento das ilustrações).
- 4. Critérios de qualidade de uso. Escolha alguns sistemas interativos a que você tenha acesso e que possa utilizar. Inspecione sua interface para analisar usabilidade, experiência do usuário, acessibilidade e comunicabilidade, considerando diferentes perfis de usuário:
 - um usuário que está utilizando o sistema pela primeira vez;
 - um usuário que utiliza o sistema diariamente;
 - um usuário que enxerga com dificuldade;
 - um usuário com baixo grau de instrução ou analfabeto funcional;
 - um usuário que tem baixo poder de concentração;
 - um usuário que realiza diversas atividades ao mesmo tempo e é interrompido com frequência;
 - um usuário que realiza uma tarefa longa, que precisa ser suspendida no final do dia e retomada no dia seguinte.