Linear Algebra (XXVIII)

What we will cover today

Singular Value Decompositions and Approximation

Again we will see many tools, in particular orthogonality, are of great use.

Actually SVD can be viewed as an extension of the spectral decompositions of symmetric matrices to arbitrary matrices, both for the statement and for the method of the proof.

Theorem (spectral decomposition)

Let S be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Then there are n orthonormal vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

$$S = \lambda_1 \boldsymbol{v}_1 \boldsymbol{v}_1^\mathsf{T} + \lambda_2 \boldsymbol{v}_2 \boldsymbol{v}_2^\mathsf{T} + \dots + \lambda_n \boldsymbol{v}_n \boldsymbol{v}_n^\mathsf{T}.$$

More precisely, if $\operatorname{rank}(S) = r$, then $\lambda_{r+1} = \cdots = \lambda_n = 0$ and hence

$$S = \lambda_1 \boldsymbol{v}_1 \boldsymbol{v}_1^\mathsf{T} + \lambda_2 \boldsymbol{v}_2 \boldsymbol{v}_2^\mathsf{T} + \dots + \lambda_r \boldsymbol{v}_r \boldsymbol{v}_r^\mathsf{T}.$$

Theorem (singular value decomposition)

Let A be an $m \times n$ matrix with singular values $\sigma_1, \ldots, \sigma_r \in \mathbb{R}$ with $r = \operatorname{rank}(A)$. Then there are orthonormal vectors $u_1, \ldots, u_r \in \mathbb{R}^m$ and orthonormal $v_1, \ldots, v_r \in \mathbb{R}^n$ such that

$$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T}.$$

Theorem (spectral decomposition)

Let S be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1, \dots, \lambda_n \in \mathbb{R}$. Then there is an orthogonal $n \times n$ matrix Q such that

$$S = Q \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} Q^{\mathsf{T}}.$$

Theorem (singular value decomposition)

Let A be a real $m \times n$ matrix with $r = \operatorname{rank}(A)$. Define an $m \times n$ matrix

$$\Sigma = \begin{bmatrix} D & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \quad \text{for } D = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix},$$

where $\sigma_1, \ldots, \sigma_r$ are the singular values of A. Then for some orthogonal $m \times m$ matrix U and orthogonal $n \times n$ matrix V

$$A = U\Sigma V^{\mathsf{T}}.$$

Rank of symmetric matrices

Lemma

Let S be a real symmetric matrix. Then S has exactly $\mathrm{rank}(S)$ nonzero eigenvalues (counting repetition).

Lemma

Let A be an $m \times n$ matrix. Then

$$\operatorname{rank}(A^{\mathsf{T}}A) = \operatorname{rank}(AA^{\mathsf{T}}) = \operatorname{rank}(A).$$

Eigenvalues of $A^{\mathsf{T}}A$ and AA^{T}

Lemma

All eigenvalues of $\boldsymbol{A}^\mathsf{T}\boldsymbol{A}$ and $\boldsymbol{A}\boldsymbol{A}^\mathsf{T}$ are nonnegative.

In otherwords, both $\boldsymbol{A}^\mathsf{T}\boldsymbol{A}$ and $\boldsymbol{A}\boldsymbol{A}^\mathsf{T}$ are positive semidefinite.

Let

$$r = \operatorname{rank}(A),$$

and by the previous lemmas:

- $\operatorname{rank}(A^{\mathsf{T}}A) = \operatorname{rank}(AA^{\mathsf{T}}) = r$, thus each of them has r nonzero eigenvalues.
- Every eigenvalue of $A^\mathsf{T} A$ is nonnegative, so is every eigenvalue of $AA^\mathsf{T}.$

Lemma

Both $A^{\mathsf{T}}A$ and AA^{T} have the same r positive eigenvalues (counting repetition). More precisely,

matrix	positive eigenvalues	eigenvectors
$A^{T}A$	$\lambda_1,\ldots,\lambda_r$	$oldsymbol{v}_1,\ldots,oldsymbol{v}_r$
AA^{T}	$\lambda_1,\dots,\lambda_r$	$rac{1}{\sqrt{\lambda_1}}Aoldsymbol{v}_1,\ldots,rac{1}{\sqrt{\lambda_r}}Aoldsymbol{v}_r$

Singular values

Definition

Let $\lambda_1, \dots, \lambda_r$ be the nonzero (hence positive) eigenvalues of $A^\mathsf{T} A$ (hence the nonzero eigenvalues of AA^T). For every $i \in [r]$, we define

$$\sigma_i = \sqrt{\lambda_i}$$
.

Then $\sigma_1, \ldots, \sigma_r$ are the singular values of A.

Singular value decompositions

Theorem

Let A be a real $m \times n$ matrix with $r = \operatorname{rank}(A)$. Define an $m \times n$ matrix

$$\Sigma = \begin{bmatrix} D & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \quad \text{for } D = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix},$$

where σ_1,\ldots,σ_r are the singular values of A. Then for some orthogonal $m\times m$ matrix U and orthogonal $n\times n$ matrix V

$$A = U\Sigma V^{\mathsf{T}}.$$

Let

$$\lambda_1, \ldots, \lambda_r, \lambda_{r+1}, \ldots, \lambda_n$$

be the eigenvalues of $A^{\mathsf{T}}A$ with

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0$$

and $\lambda_{r+1} = \cdots = \lambda_n = 0$. Moreover, let

$$v_1,\ldots,v_n\in\mathbb{R}^n$$

be the corresponding orthonormal eigenvectors. It follows that

$$V = [\boldsymbol{v}_1 \ldots \boldsymbol{v}_n].$$

is an orthogonal $n \times n$ matrix.

Next for every $i \in [r]$ let

$$u_i = \frac{1}{\sqrt{\lambda_i}} A v_i \in \mathbb{R}^m.$$

Thus

$$\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r$$

are orthonormal eigenvectors of AA^T with corresponding eigenvalues $\lambda_1,\ldots,\lambda_r.$ We extend $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r$ to a basis

$$u_1,\ldots,u_r, u_{r+1},\ldots, u_m$$

for \mathbb{R}^m . By Gram-Schmidt, we can further assume that they are orthonormal. Therefore,

$$U = \begin{bmatrix} \boldsymbol{u}_1 & \dots & \boldsymbol{u}_r & \boldsymbol{u}_{r+1} & \dots & \boldsymbol{u}_m \end{bmatrix}$$

is orthogonal.

Let $i \in [n]$. If $i \leq r$, then

$$A\mathbf{v}_i = \sqrt{\lambda_i}\mathbf{u}_i.$$

Otherwise, i > r, and then $\lambda_i = 0$. Since v_i is an eigenvector of $A^T A$ for λ_i ,

$$(A^{\mathsf{T}}A)\boldsymbol{v}_i=\lambda_i\boldsymbol{v}_i=\boldsymbol{0}.$$

It follows that

$$0 = \boldsymbol{v}_i^{\mathsf{T}}(A^{\mathsf{T}}A)\boldsymbol{v}_i = A\boldsymbol{v}_i \cdot A\boldsymbol{v}_i = ||A\boldsymbol{v}_i||,$$

thereby $Av_i = 0$. We can thus deduce

Proof (4)

Since V is orthogonal, i.e., $\boldsymbol{V}^{-1} = \boldsymbol{V}^{\mathsf{T}}$, we conclude

$$A = U\Sigma V^{\mathsf{T}}.$$

Г

Singular value decomposition of an arbitrary A

Theorem

Let A be an $m \times n$ matrix with r = rank(A). Define an $m \times n$ matrix

$$\Sigma = \begin{bmatrix} D & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \quad \text{for } D = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix},$$

where $\sigma_1, \ldots, \sigma_r$ are the singular values of A. Then for some orthogonal $m \times m$ matrix U and orthogonal $n \times n$ matrix V

$$A = U\Sigma V^{\mathsf{T}}.$$

In particular, there are $u_1,\ldots,u_r\in\mathbb{R}^m$ and $v_1,\ldots,v_r\in\mathbb{R}^n$ such that

$$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T}.$$

From

$$A = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_r & \boldsymbol{u}_{r+1} & \cdots & \boldsymbol{u}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{v}_r^\mathsf{T} \\ \boldsymbol{v}_{r+1}^\mathsf{T} \\ \vdots \\ \boldsymbol{v}_n^\mathsf{T} \end{bmatrix}$$
$$= \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \cdots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T}$$

we deduce:

Corollary

vectors	orthonormal basis for the vector space
$oldsymbol{u}_1,\ldots,oldsymbol{u}_r$	C(A)
$oldsymbol{u}_{r+1},\dots,oldsymbol{u}_m$	$N(A^{T})$
$oldsymbol{v}_1,\ldots,oldsymbol{v}_r$	$C(A^{T})$
$\boldsymbol{v}_{r+1},\dots,\boldsymbol{v}_n$	N(A)

Proof of u_1, \ldots, u_r as a basis for C(A)

As $\dim(\mathbf{C}(A)) = \operatorname{rank}(A)$, we only need to show

$$C(A) \subseteq \operatorname{span}(\{u_1,\ldots,u_r\}).$$

Recall

$$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T}.$$

So (can you see?) every column of A is a linear combination of $m{u}_1,\dots,m{u}_r.$

Proof of v_{r+1}, \ldots, v_n as a basis for N(A)

As $\dim(N(A)) = n - \operatorname{rank}(A) = n - r$, we only need to show

$$Av_i = 0$$

for every $r+1 \le i \le n$. Again by

$$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T},$$

together with the orthogonality of $oldsymbol{v}_1,\ldots,oldsymbol{v}_r,\ldots,oldsymbol{v}_i,\ldots,oldsymbol{v}_n$, we obtain

$$A \mathbf{v}_i = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\mathsf{T} \mathbf{v}_i + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^\mathsf{T} \mathbf{v}_i + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^\mathsf{T} \mathbf{v}_i$$

= $\sigma_1 \mathbf{u}_1 (\mathbf{v}_1 \cdot \mathbf{v}_i) + \sigma_2 \mathbf{u}_2 (\mathbf{v}_2 \cdot \mathbf{v}_i) + \dots + \sigma_r \mathbf{u}_r (\mathbf{v}_r \cdot \mathbf{v}_i)$
= $\mathbf{0}$.

Geometry and Applications of SVD

Assume that we have m points in \mathbb{R}^2

$$(x_1,y_1),\ldots,(x_m,y_m).$$

We want to find a line y=cx for some $c\in\mathbb{R}$ such that (x_i,y_i) s are close to it as much as possible. Equivalently, this line can be determined by a unit vector $w\in\mathbb{R}^2$

such that $d_1^2 + d_2^2 + \cdots + d_m^2$ is minimum.

Fitting a set of data by a line (cont'd)

For $a_1, \ldots, a_m \in \mathbb{R}^2$ we want to determine a unit vector $w \in \mathbb{R}$

to minimize

$$\sum_{i \in [m]} d_i^2 = \sum_{i \in [m]} (\|\boldsymbol{a}_i\|^2 - \|\boldsymbol{p}_i\|^2) = \sum_{i \in [m]} \|\boldsymbol{a}_i\|^2 - \sum_{i \in [m]} \|\boldsymbol{p}_i\|^2.$$

Equivalently, we maximize

$$\sum_{i \in [m]} \|\boldsymbol{p}_i\|^2 = \sum_{i \in [m]} (\|\boldsymbol{a}_i\| \cos \theta_i)^2 = \sum_{i \in [m]} \left(\|\boldsymbol{a}_i\| \frac{\boldsymbol{w} \cdot \boldsymbol{a}_i}{\|\boldsymbol{w}\| \|\boldsymbol{a}_i\|} \right)^2 = \sum_{i \in [m]} (\boldsymbol{w} \cdot \boldsymbol{a}_i)^2.$$

Each data now has n features. Given

$$\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m\in\mathbb{R}^n$$

we want to find a unit vector $oldsymbol{w} \in \mathbb{R}^n$ to minimize

$$\sum_{i \in [m]} ig($$
 the distance between $oldsymbol{a}_i$ and the line along $oldsymbol{w}ig)^2.$

It is equivalent to maximizing

$$\sum_{i\in[m]}(\boldsymbol{w}\cdot\boldsymbol{a}_i)^2,$$

whose precise proof is standard by now and will come later.

Matrix formulation

Define an $m \times n$ matrix by

$$A = \begin{bmatrix} oldsymbol{a}_1^\mathsf{T} \ dots \ oldsymbol{a}_{--}^\mathsf{T} \end{bmatrix}.$$

We look for a unit vector $oldsymbol{w} \in \mathbb{R}^n$ such that

$$\sum_{i \in [m]} (\boldsymbol{w} \cdot \boldsymbol{a}_i)^2 = \sum_{i \in [m]} (\boldsymbol{a}_i \cdot \boldsymbol{w})^2 = \sum_{i \in [m]} (\boldsymbol{a}_i^\mathsf{T} \boldsymbol{w})^2 = ||A\boldsymbol{w}||^2$$

is maximized.

First singular vector maximizes $\|Av\|$

Theorem

Let A be an $m \times n$ matrix and σ_1 be its largest singular value. Then

$$\max_{\substack{\boldsymbol{w} \in \mathbb{R}^n \text{ with} \\ \|\boldsymbol{w}\| = 1}} \|A\boldsymbol{w}\|^2 = \sigma_1^2.$$

Moreover, the maximum is attained when $oldsymbol{w} = oldsymbol{v}_1$ where $oldsymbol{v}_1$ appears in the SVD of A

$$A = U\Sigma V = U\Sigma \begin{vmatrix} \mathbf{v}_1 \\ \mathbf{v}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{v}_n^{\mathsf{T}} \end{vmatrix}.$$

Orthonormal basis and coordinate vectors

Consider an orthonormal basis $v_1, \ldots, v_n \in \mathbb{R}^n$. Then every $w \in \mathbb{R}^n$ can be expressed as a linear combination

$$\boldsymbol{w} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n,$$

i.e., the coordinate vector of w with respect to v_1, \ldots, v_n is $(c_1, \ldots, c_n) \in \mathbb{R}^n$.

Using the orthonormality of v_i s, each $c_i = v_i \cdot w$ and hence

$$c_i \boldsymbol{v}_i = (\boldsymbol{v}_i \cdot \boldsymbol{w}) \boldsymbol{v}_i = \boldsymbol{v}_i^\mathsf{T} \boldsymbol{w} \boldsymbol{v}_i = \boldsymbol{v}_i \boldsymbol{v}_i^\mathsf{T} \boldsymbol{w},$$

i.e.,

$$egin{aligned} oldsymbol{w} &= (oldsymbol{v}_1 \cdot oldsymbol{w}) oldsymbol{v}_1 + \cdots + (oldsymbol{v}_n \cdot oldsymbol{w}) oldsymbol{v}_n &= oldsymbol{v}_1 oldsymbol{v}_1^{\mathsf{T}} oldsymbol{w} \\ &= egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_1 oldsymbol{v}_1^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1^{\mathsf{T}} oldsymbol{w} &+ \cdots + oldsymbol{v}_n oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1^{\mathsf{T}} oldsymbol{w} &+ \cdots + oldsymbol{v}_n oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n^{\mathsf{T}} oldsymbol{v} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{w} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n^{\mathsf{T}} oldsymbol{v} \\ &\vdots \\ oldsymbol{v}_n^{\mathsf{T}} oldsymbol{v} \end{bmatrix} egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_1 & \cdots & oldsymbol{v}_1 & \cdots & oldsymbol{v}_1 \\ &\vdots \\ oldsymbol{v}_1 & \cdots & oldsymbol{v}_1 & \cdots & oldsymbol{v}_2 \\ &\vdots \\ oldsymbol{v}_1 & \cdots & oldsymbol{v}_2 & \cdots & oldsymbol{v}_2 \\ &\vdots \\ oldsymbol{v}_1 & \cdots & oldsymbol{v}_2 & \cdots & oldsymbol{v}_2 \\ &\vdots \\ oldsymbol{v}_1 & \cdots & oldsymbol{v}_2 & \cdots & oldsymbol{v}_2 \\ &\vdots \\ oldsymbol{v}$$

This is precisely that

the least squares solution of Qx = b is $\hat{x} = Q^{\mathsf{T}}b$.

Recall: projections using orthogonal Q

Let $q_1, \ldots, q_n \in \mathbb{R}^n$ be orthonormal and

$$Q = [\boldsymbol{q}_1 \ldots \boldsymbol{q}_n].$$

This is equivalent to that Q is an orthogonal matrix.

So the least squares solution of Qx=b is $\hat{x}=Q^{\mathsf{T}}b$. The projection matrix is $QQ^{\mathsf{T}}=I$, hence

$$oldsymbol{b} = QQ^{\mathsf{T}}oldsymbol{b} = egin{bmatrix} oldsymbol{q}_1 & \dots & oldsymbol{q}_n\end{bmatrix} egin{bmatrix} oldsymbol{q}_1^{\mathsf{T}}oldsymbol{b} \ dots \ oldsymbol{q}_n^{\mathsf{T}}oldsymbol{b} \end{bmatrix} = oldsymbol{q}_1oldsymbol{q}_1^{\mathsf{T}}oldsymbol{b} + \dots + oldsymbol{q}_noldsymbol{q}_n^{\mathsf{T}}oldsymbol{b}.$$

 \boldsymbol{b} is the sum of projections of \boldsymbol{b} onto every line $\mathrm{span}(\{\boldsymbol{q}_i\})$.

Second look through change of basis

We consider the vector space $oldsymbol{V}=\mathbb{R}^n$ and two of its bases

$$e_1,\ldots,e_n$$
 and v_1,\ldots,v_n .

So the change of basis matrix M from $oldsymbol{e}_1,\ldots,oldsymbol{e}_n$ to $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ satisfies

$$[\boldsymbol{v}_1 \ldots \boldsymbol{v}_n] = [\boldsymbol{e}_1 \ldots \boldsymbol{e}_n] M.$$

It is easy to see (why?)

$$M = [\boldsymbol{v}_1 \ldots \boldsymbol{v}_n].$$

Second look through change of basis (cont'd)

Consider an arbitrary $w = (w_1, \dots, w_n) \in V$. So the coordinate vector of w with respect to e_1, \dots, e_n is $(w_1, \dots, w_n) \in \mathbb{R}^n$, precisely w itself. Recall:

Theorem

Let \overline{v} and \overline{v}' be two bases for V . Then for every $v \in \mathbb{R}^n$

$$T_{\overline{\boldsymbol{v}}}(\boldsymbol{v}) = MT_{\overline{\boldsymbol{v}}'}(\boldsymbol{v}).$$

Hence the coordinate vector of w with respect to v_1, \ldots, v_n is

$$M^{-1}\boldsymbol{w}$$
.

If v_1, \ldots, v_n are orthonormal, i.e.,

$$M=Q=\begin{bmatrix} \boldsymbol{v}_1 & \dots & \boldsymbol{v}_n \end{bmatrix}$$

is orthogonal, then

$$M^{-1}\boldsymbol{w} = Q^{\mathsf{T}}\boldsymbol{w} \quad \text{ and } \quad \boldsymbol{w} = QQ^{\mathsf{T}}\boldsymbol{w} = \boldsymbol{v}_1\boldsymbol{v}_1^T\boldsymbol{w} + \dots + \boldsymbol{v}_n\boldsymbol{v}_n^{\mathsf{T}}\boldsymbol{w}.$$

The benefits of Q

Recall

Theorem

Let Q be an $n \times n$ orthogonal matrix and $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.

- (i) ||Qx|| = ||x||, hence $||Q^{\mathsf{T}}x|| = ||x||$.
- (ii) $Qx \cdot Qy = x \cdot y$, hence $Q^{\mathsf{T}}x \cdot Q^{\mathsf{T}}y = x \cdot y$.

Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be an orthonormal basis, or equivalently

$$Q = [\boldsymbol{v}_1 \dots \boldsymbol{v}_n]$$

is orthogonal. Consider an arbitrary vector $oldsymbol{w} \in \mathbb{R}^n.$

(i) The coordinate vector of ${m w}$ with respect to ${m v}_1,\dots,{m v}_n\in\mathbb{R}^n$ is $Q^{\sf T}{m w}$, i.e.,

$$\left(oldsymbol{v}_1^\mathsf{T} oldsymbol{w}, \dots, oldsymbol{v}_n^\mathsf{T} oldsymbol{w} \right)$$
 .

(ii) The length of the coordinate vector of w with respect to $v_1, \ldots, v_n \in \mathbb{R}^n$ equals to the length of w, i.e.,

$$\|\boldsymbol{w}\| = \|Q^{\mathsf{T}}\boldsymbol{w}\| = \sqrt{(\boldsymbol{v}_1^{\mathsf{T}}\boldsymbol{w})^2 + \dots + (\boldsymbol{v}_n^{\mathsf{T}}\boldsymbol{w})^2}.$$

Theorem

Let A be an $m \times n$ matrix and σ_1 be its largest singular value. Then

$$\max_{\substack{\boldsymbol{w} \in \mathbb{R}^n \text{ with} \\ \|\boldsymbol{w}\| = 1}} \|A\boldsymbol{w}\| = \sigma_1.$$

Moreover, the maximum is attained when $oldsymbol{w} = oldsymbol{v}_1$, where $oldsymbol{v}_1$ appears in the SVD of A

$$A = U\Sigma V = U\Sigma \begin{bmatrix} \boldsymbol{v}_1^{} \\ \boldsymbol{v}_2^{} \\ \vdots \\ \boldsymbol{v}_n^{} \end{bmatrix}.$$

Let $\lambda_1 > \ldots > \lambda_r$ be the positive eigenvalues of A^TA . For every $i \in [r]$, we define $\sigma_i = \sqrt{\lambda_i}$. Then $\sigma_1 > \ldots > \sigma_r$ are the singular values of A. Moreover, for some orthonormal $u_1, \ldots, u_m \in \mathbb{R}^m$ and $v_1, \ldots, v_n \in \mathbb{R}^n$

$$A = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_r & \boldsymbol{u}_{r+1} & \cdots & \boldsymbol{u}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{v}_r^\mathsf{T} \\ \boldsymbol{v}_{r+1}^\mathsf{T} \\ \vdots \\ \boldsymbol{v}_n^\mathsf{T} \end{bmatrix}$$

$$= \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \cdots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T}$$

Let $w \in \mathbb{R}^n$ be a unit vector. So $w = c_1 v_1 + \cdots + c_n v_n$ for some $c_1, \ldots, c_n \in \mathbb{R}$ with $\sum_{i \in [n]} c_i^2 = 1$. Hence

$$Aw = (\sigma_1 u_1 v_1^{\mathsf{T}} + \sigma_2 u_2 v_2^{\mathsf{T}} + \dots + \sigma_r u_r v_r^{\mathsf{T}}) (c_1 v_1 + \dots + c_n v_n)$$

$$= \sum_{i \in [r], j \in [n]} \sigma_i c_j u_i v_i^{\mathsf{T}} v_j = \sum_{i \in [r]} \sigma_i c_i u_i.$$

Then the coordinate vector of Aw with respect to the orthonormal basis $u_1, \ldots, u_r, u_{r+1}, \ldots, u_m$ is $(\sigma_1 c_1, \ldots, \sigma_r c_r, 0, \ldots, 0)$. We deduce

$$||Aw||^2 = ||(\sigma_1 c_1, \dots, \sigma_r c_r, 0, \dots, 0)||^2 = \sum_{i \in [r]} \sigma_i^2 c_i^2$$

$$\leq \sigma_1^2 \sum_{i \in [r]} c_i^2 \leq \sigma_1^2 \sum_{i \in [n]} c_i^2 = \sigma_1^2.$$

And the equality can be attained by choosing $w=v_1$.

Fitting a set of data by a k-dimension subspace

Fix a constant $k \geq 1$. Given

$$\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m\in\mathbb{R}^n$$

we want to find a subspace $oldsymbol{W} \subseteq \mathbb{R}^n$ with $\dim(oldsymbol{W}) = k$ to minimize

$$\sum_{i \in [m]} ig(\mathsf{the} \ \mathsf{distance} \ \mathsf{between} \ oldsymbol{a}_i \ \mathsf{and} \ oldsymbol{W} ig)^2.$$

Observe that $oldsymbol{W}$ can be determined by any linearly independent

$$w_1,\ldots,w_k\in W$$
.

And by Gram-Schmidt, w_1, \ldots, w_k can be chosen as orthonormal.

1. We want to compute the projection p of b onto a subspace

$$V = \operatorname{span}(\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\})$$

with linearly independent $oldsymbol{a}_1,\ldots,oldsymbol{a}_n.$ In particular $oldsymbol{p}\in oldsymbol{V}.$

- 2. We define ${m p}$ as a vector whose error vector ${m e}={m b}-{m p}$ is perpendicular to ${m V}.$
- 3. We prove that the projection matrix is $P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$, i.e.,

$$\boldsymbol{p} = P\boldsymbol{b} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\boldsymbol{b}.$$

Here, we have verified that $(A^TA)^{-1}$ really exists provided $\operatorname{rank}(A) = n$. This also implies that \boldsymbol{p} is the unique vector whose error vector $\boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p}$ is perpendicular to \boldsymbol{V} .

4. As an exercise, we can show that for every $v \in V$

$$\|\boldsymbol{b} - \boldsymbol{v}\| = \min_{\boldsymbol{u} \in \boldsymbol{V}} \|\boldsymbol{b} - \boldsymbol{u}\| \iff \boldsymbol{v} = \boldsymbol{p}.$$

We want to determine $oldsymbol{W}$ by choosing orthonormal

$$w_1,\ldots,w_k\in\mathbb{R}^n$$
.

To that end, let

$$Q = [\boldsymbol{w}_1 \ldots \boldsymbol{w}_k].$$

So

$$Q^{\mathsf{T}}Q = \begin{bmatrix} \boldsymbol{w}_1^{\mathsf{T}} \\ \vdots \\ \boldsymbol{w}_k^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{w}_1 & \dots & \boldsymbol{w}_k \end{bmatrix} = \begin{bmatrix} \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{w}_1 & \cdots & \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{w}_k \\ \vdots & \ddots & \vdots \\ \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{w}_1 & \cdots & \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{w}_k \end{bmatrix} = I_{k \times k},$$

and

$$QQ^{\mathsf{T}} = egin{bmatrix} oldsymbol{w}_1 & \dots & oldsymbol{w}_k \end{bmatrix} egin{bmatrix} oldsymbol{w}_1^{\mathsf{T}} \ \vdots \ oldsymbol{w}_1^{\mathsf{T}} \end{bmatrix} = oldsymbol{w}_1 oldsymbol{w}_1^{\mathsf{T}} + \dots + oldsymbol{w}_k oldsymbol{w}_k^{\mathsf{T}}.$$

Projection of a_i onto W (cont'd)

Then the projection of ${m a}_i$ onto ${m W} = {
m span}(\{{m w}_1,\ldots,{m w}_k\}) = {m C}(Q)$ is

$$p_i = Q(Q^{\mathsf{T}}Q)^{-1}Q^{\mathsf{T}}a_i = QQ^{\mathsf{T}}a_i = w_1w_1^{\mathsf{T}}a_i + \dots + w_kw_k^{\mathsf{T}}a_i$$
$$= (w_1 \cdot a_i)w_1 + \dots + (w_k \cdot a_i)w_k = \sum_{j \in [k]} (w_j \cdot a_i)w_j.$$

This is exactly

the sum of projections of a_i onto the lines $\mathrm{span}(\{m{w}_1\}),\ldots,\mathrm{span}(\{m{w}_k\}).$

So the distance between a_i and W is $d_i = ||a_i - p_i||$, where $a_i - p_i$ is the previous error vector e. Then (basically a previous exercise)

$$\begin{aligned} &\|\boldsymbol{a}_{i}-\boldsymbol{p}_{i}\|^{2} \\ &= (\boldsymbol{a}_{i}-\boldsymbol{p}_{i})\cdot(\boldsymbol{a}_{i}-\boldsymbol{p}_{i}) = (\boldsymbol{a}_{i}-\boldsymbol{p}_{i})^{\mathsf{T}}(\boldsymbol{a}_{i}-\boldsymbol{p}_{i}) \\ &= \left(\boldsymbol{a}_{i}^{\mathsf{T}}-\boldsymbol{p}_{i}^{\mathsf{T}}\right)(\boldsymbol{a}_{i}-\boldsymbol{p}_{i}) = \boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}+\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i} \\ &= \boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}-\boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}+\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i} = \boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}-2(\boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}-\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}) \\ &= \boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}-2(\boldsymbol{a}_{i}-\boldsymbol{p}_{i})^{\mathsf{T}}\boldsymbol{p}_{i} = \boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i}-2(\boldsymbol{a}_{i}-\boldsymbol{p}_{i})\cdot\boldsymbol{p}_{i} \\ &= \boldsymbol{a}_{i}^{\mathsf{T}}\boldsymbol{a}_{i}-\boldsymbol{p}_{i}^{\mathsf{T}}\boldsymbol{p}_{i} \end{aligned} \qquad (\text{by } (\boldsymbol{a}_{i}-\boldsymbol{p}_{i})\perp\boldsymbol{p}_{i}) \\ &= \|\boldsymbol{a}_{i}\|^{2} - \|\boldsymbol{p}_{i}\|^{2}. \end{aligned}$$

By

$$d_i^2 = \|oldsymbol{a}_i - oldsymbol{p}_i\|^2 = \|oldsymbol{a}_i\|^2 - \|oldsymbol{p}_i\|^2 \quad ext{and} \quad oldsymbol{p}_i = \sum_{j \in [k]} (oldsymbol{w}_j \cdot oldsymbol{a}_i) oldsymbol{w}_j,$$

it is equivalent to maximizing

$$\sum_{i \in [m]} \left\| \boldsymbol{p}_i \right\|^2 = \sum_{i \in [m]} \left\| \sum_{j \in [k]} (\boldsymbol{w}_j \cdot \boldsymbol{a}_i) \boldsymbol{w}_j \right\|^2 = \sum_{i \in [m]} \sum_{j \in [k]} (\boldsymbol{w}_j \cdot \boldsymbol{a}_i)^2.$$

When k=1 and $w_1=w$, this is what we claimed: minimizing

$$\sum_{i \in [m]} ig($$
 the distance between a_i and the line along a unit vector $oldsymbol{w}ig)^2.$

is equivalent to maximizing

$$\sum_{i\in[m]}(\boldsymbol{w}\cdot\boldsymbol{a}_i)^2,$$

Matrix formulation

Recall we combine m points $a_1, \ldots, a_m \in \mathbb{R}^n$ into an $m \times n$ matrix

$$A = \begin{bmatrix} \boldsymbol{a}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{a}_m^\mathsf{T} \end{bmatrix}.$$

We look for orthonormal vectors $oldsymbol{w}_1,\ldots,oldsymbol{w}_k\in\mathbb{R}^n$ such that

$$\sum_{i \in [m]} \sum_{j \in [k]} (\boldsymbol{w}_j \cdot \boldsymbol{a}_i)^2 = \sum_{j \in [k]} \sum_{i \in [m]} (\boldsymbol{w}_j \cdot \boldsymbol{a}_i)^2 = \sum_{j \in [k]} ||A\boldsymbol{w}_j||^2$$

is maximized.

Recall:

$$A = \begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_r & \boldsymbol{u}_{r+1} & \cdots & \boldsymbol{u}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1^\mathsf{T} \\ \vdots \\ \boldsymbol{v}_r^\mathsf{T} \\ \boldsymbol{v}_{r+1}^\mathsf{T} \\ \vdots \\ \boldsymbol{v}_n^\mathsf{T} \end{bmatrix}$$
$$= \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\mathsf{T} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^\mathsf{T} + \cdots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\mathsf{T}$$

Theorem

Assume $k \leq r$. Then

$$\sum_{j \in [k]} \|A\boldsymbol{w}_j\|^2 \le \sum_{j \in [k]} \sigma_j^2.$$

And the equality holds for $w_1 = v_1, \ldots$, and $w_k = v_k$.