

2009 VCAA Mathematical Methods Exam 1 Solutions Free download and print from www.itute.com © Copyright 2009 itute.com

Q1a The product rule: $\frac{dy}{dx} = 1 + \log_e x$

Q1b The quotient rule:
$$f'(x) = \frac{-(2x+2)\sin x - 2\cos x}{(2x+2)^2}$$

$$= \frac{-(x+1)\sin x - \cos x}{2(x+1)^2}$$

$$f'(\pi) = \frac{-(\pi+1)\sin \pi - \cos \pi}{2(\pi+1)^2} = \frac{1}{2(\pi+1)^2}$$

Q2a
$$\int \frac{1}{1-2x} dx = -\frac{1}{2} \log_e |1-2x|$$

Q2b
$$\int_{1}^{4} (\sqrt{x} + 1) dx = \left[\frac{2x^{\frac{3}{2}}}{3} + x \right]_{1}^{4} = \frac{23}{3}$$

Q3 Equation of
$$f(x)$$
: $y = \frac{3}{x} - 4$

Equation of inverse:
$$x = \frac{3}{y} - 4$$
, i.e. $y = \frac{3}{x+4}$

$$f^{-1}: R \setminus \{-4\} \to R \text{ where } f^{-1}(x) = \frac{3}{x+4}$$

Q4
$$\tan(2x) = \sqrt{3}$$
, $x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$,

$$2x = \frac{\pi}{3}, \frac{4\pi}{3}$$

$$x = \frac{\pi}{6} \,, \, \frac{2\pi}{3}$$

Q5a
$$\frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$$

Q5b
$$Pr(1,4) + Pr(2,3) + Pr(3,2) + Pr(4,1) = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{3}$$

Q5c Conditional probability = $\frac{\frac{1}{12}}{\frac{1}{3}} = \frac{1}{4}$

Q6
$$\frac{dV}{dt} = 10$$
, $V = 2\pi r^2$, $\frac{dV}{dr} = 4\pi r$

$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{\frac{dV}{dt}}{\frac{dV}{dt}} = \frac{10}{4\pi r}$$

When r = 30, $\frac{dr}{dt} = \frac{1}{12\pi}$ mm per min

Q7a
$$Pr(X > 1 | X \le 3) = \frac{Pr(X > 1 \cap X \le 3)}{Pr(X \le 3)}$$

$$=\frac{0.4+0.2}{0.1+0.2+0.4+0.2}=\frac{2}{3}$$

Q7b
$$\overline{X} = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.4 + 3 \times 0.2 + 4 \times 0.1 = 2$$

 $Var(x) = 0^2 \times 0.1 + 1^2 \times 0.2 + 2^2 \times 0.4 + 3^2 \times 0.2 + 4^2 \times 0.1 - 2^2 = 1.2$

Q8
$$f(x) = e^x + k$$
, $k \in R$, $f'(x) = e^x$

Gradient of tangent at x = a is $f'(a) = e^a$

Equation of tangent: $y = e^a x$ since it passes through (0,0)

At
$$x = a$$
, $f(a) = e^a + k = e^a a$

$$\therefore k = e^a (a - 1)$$

Q9 For $2\log_e x - \log_e (x+3) = \log_e \frac{1}{2}$ to be defined, x > 0

$$\log_e \frac{x^2}{x+3} = \log_e \frac{1}{2}, \ \frac{x^2}{x+3} = \frac{1}{2}, \ (2x-3)(x+1) = 0$$

Since x > 0, $x + 1 \neq 0$

$$\therefore 2x - 3 = 0$$
, $x = \frac{3}{2}$

Q10a
$$f(x+h) \approx f(x) + hf'(x)$$

Let
$$f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$$
, $f'(x) = \frac{1}{3x^{\frac{2}{3}}}$

Let
$$x = 8$$
, $\sqrt[3]{8.06} \approx \sqrt[3]{8} + 0.06 \times \frac{1}{3 \times 8^{\frac{2}{3}}} = 2 + 0.005 = 2.005$

Q10b $f'(x) = \frac{1}{3x^{\frac{2}{3}}}$ is a decreasing function for x > 0. As x = x

increases from a point, say at x = a > 0, the tangent at x = a is always higher than f(x).

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors