Ecuaciones Diferenciales – 1° cuatrimestre 2017

Práctica 3: Ecuación de Laplace y de Poisson

Ejercicio 1. Probar que la ecuación de Laplace $\Delta u = 0$ es invariante por rotaciones.

Esto es, si $O \in \mathbb{R}^{n \times n}$ es una matriz ortogonal (i.e. $O \cdot O^{\top} = I_n$) y definimos v(x) = u(Ox), entonces $\Delta v = 0$.

Ejercicio 2. Verificar las siguientes afirmaciones indicando en cada caso las hipótesis de regularidad sobre u necesarias para su validez.

- 1. Combinaciones lineales: Si u_1 y u_2 son funciones armónicas, entonces $\alpha u_1 + \beta u_2$ es armónica.
- 2. Homotecias: Si u es armónica, entonces $u_{\lambda}(x) = u(\lambda x)$ es armónica.
- 3. Traslaciones: Si u es armónica, entonces $u(x-\xi)$ es armónica.
- 4. Diferenciación respecto a parámetros: Si $u(x,\gamma)$ es armónica para cada γ , entonces $\frac{\partial u}{\partial \gamma}(x,\gamma)$ es armónica para cada γ .
- 5. Integración respecto a parámetros: Si $u(x,\gamma)$ es armónica para cada γ , entonces $\int_a^b u(x,\gamma)d\gamma$ es armónica.
- 6. Diferenciación respecto a x: Si u es armónica, entonces $D^{\alpha}u$ es armónica para todo multiíndice $\alpha \in \mathbb{N}^n$.
- 7. Convoluciones: Si u es armónica, entonces $\int u(x-\xi)\varphi(\xi)d\xi$ es armónica.

Ejercicio 3. Sea u armónica en $U \subseteq \mathbb{R}^2$, abierto simplemente conexo. Probar que entonces existe v armónica en U tal que u+iv es holomorfa.

Ejercicio 4. Decimos que $v \in C^2(U)$ es subarmónica si $\Delta v \geq 0$ en U.

- 1. Probar que si $v \in C(\bar{U})$ y U es acotado, entonces $\max_{\bar{U}} v = \max_{\partial U} v$. Sugerencia: Probarlo primero suponiendo que v satisface que $\Delta v > 0$ y luego probarlo para $v_{\varepsilon}(x) := v(x) + \varepsilon |x|^2$ y hacer $\varepsilon \to 0$.
- 2. Probar que si $x_0 \in U$ y $r < d(x_0, \partial U)$, entonces

$$v(x_0) \le \int_{B(x_0,r)} v(\xi) d\xi$$

- 3. Probar que v verifica el principio fuerte del máximo.
- 4. Sea $\phi : \mathbb{R} \to \mathbb{R}$ una función convexa y regular. Si u es armónica y $v = \phi(u)$, entonces v es subarmónica.
- 5. Probar que $v = |\nabla u|^2$ es subarmónica, si u es armónica.

Ejercicio 5. Sea $u \in C^2(B_1(0)) \cap C(\overline{B_1(0)})$ una solución regular de

$$\begin{cases} \Delta u = f & \text{en } B_1(0) \\ u = g & \text{en } \partial B_1(0). \end{cases}$$

Probar que existe una constante C, que depende sólo de la dimensión del espacio, tal que

$$\frac{\max}{B_1(0)} |u| \leq C \left(\max_{\partial B_1(0)} |g| + \max_{\overline{B_1(0)}} |f| \right).$$

¿Es cierta la conclusión del ejercicio si cambiamos $B_1(0)$ por U un dominio acotado cualquiera?

Ejercicio 6. Notemos por B_1^+ a la semi bola $\{x \in \mathbb{R}^n / |x| < 1, x_n > 0\}$. Sea $u \in C(\overline{B_1^+})$, armónica en B_1^+ con u = 0 en $\partial B_1^+ \cap \{x_n = 0\}$ y notamos $x = (x', x_n)$ con $x' \in \mathbb{R}^{n-1}$.

Definimos

$$U(x) = \begin{cases} u(x) & \text{si } x_n \ge 0, \\ -u(x', -x_n) & \text{si } x_n < 0, \end{cases}$$

para $x \in B_1(0)$. Probar que U es armónica en $B_1(0)$. Concluir que u es C^{∞} hasta $\{x_n = 0\}$.

Ejercicio 7. 1. Sea u una función armónica en $B_1(0)$. Probar que

$$\sup_{B_{1/2}(0)} |\nabla u(x)| \le C \sup_{B_{1}(0)} |u(x)|,$$

donde C depende sólo de la dimensión del espacio.

2. Sea u armónica en U y sea $V \subset\subset U$. Probar que entonces se tiene

$$\sup_{V} |\nabla u| \le C \sup_{U} |u|,$$

donde C es una constante positiva que sólo depende de la dimensión del espacio y de $\operatorname{dist}(V, \partial U)$.

3. Deducir del item 1 que si u es armónica en $B_R(0)$, entonces

$$\sup_{B_{R/2}(0)} |\nabla u(x)| \leq \frac{C}{R} \sup_{B_R(0)} |u(x)|,$$

donde C es la constante del item 1.

4. Concluir que si u es armónica en \mathbb{R}^n y acotada, entonces u es constante.

Ejercicio 8. Probar que existe a lo sumo una solución acotada del problema

$$\begin{cases} \Delta u = f & \text{en } \mathbb{R}^n_+, \\ u = g & \text{en } \partial \mathbb{R}^n_+. \end{cases}$$

¿Sigue valiendo la unicidad si eliminamos la hipótesis de que u sea acotada?

Ejercicio 9. Sea $\{u_k\}_{k=1}^{\infty}$ una sucesión de funciones armónicas en U que converge uniformemente sobre los compactos de U a una función u. Probar que u es armónica.

Ejercicio 10. Sea $\{u_k\}_{k\in\mathbb{N}}\in C^2(U)\cap C(\bar{U})\ (U \text{ acotado})$, las soluciones de los siguientes problemas,

$$\begin{cases} \Delta u_k = 0 & \text{en } U \\ u_k = g_k & \text{en } \partial U. \end{cases}$$

Probar que si $g_k \rightrightarrows g$ uniformemente en ∂U , entonces existe $u \in C^2(U) \cap C(\bar{U})$ tal que $u_k \rightrightarrows u$ uniformemente en $U \vee \Delta u = 0$ en U.

Ejercicio 11 (Teorema de Harnack de convergencia monótona). Sea $\{u_k\}_{k=1}^{\infty}$ una sucesión monótona de funciones armónicas en un dominio U, entonces la sucesión converge en todo punto o diverge en todo punto. En el primer caso, la convergencia es uniforme sobre compactos y el límite es una función armónica.

Ejercicio 12. Probar que si u es armónica en \mathbb{R}^n y $|u(x)| \leq C(1+|x|^k)$, entonces u es un polinomio de grado a lo sumo k.

Ejercicio 13. Probar que si el problema de Neumann

$$\begin{cases} \Delta u = f & \text{en } U, \\ \partial_{\mathbf{n}} u = g & \text{en } \partial U, \end{cases}$$

tiene una solución en Uacotado $(u\in C^2(U)\cap C^1(\bar U))$ entonces

$$\int_{U} f(x)dx = \int_{\partial U} g(x) dS.$$

Relacionar con el Ejercicio 10 de la práctica 1.

Ejercicio 14. Sea U un dominio con borde regular. Probar que si $u \in C^2(U) \cap C^1(\bar{U})$ es solución de

$$\begin{cases} \Delta u = 0 & \text{en } U, \\ \partial_{\mathbf{n}} u = 0 & \text{en } \partial U, \end{cases}$$

entonces u es constante.

Ejercicio 15. Una función $u \in C(U)$ se dice subarmónica (superarmónica) en U si para cada bola $B \subset\subset U$ y para cada función h armónica en B que satisface $u \leq h$ ($u \geq h$) en ∂B , se tiene que $u \leq h$ ($u \geq h$) en B.

- 1. Mostrar que si $u \in C^2(U)$, u es subarmónica (según esta definición) si y sólo si $\Delta u \geq 0$.
- 2. Si u es subarmónica en un dominio conexo U, entonces satisface el principio fuerte del máximo; y si v es superarmónica en U acotado, con $v \geq u$ en ∂U con $u, v \in C(\bar{U})$, entonces v > u en U o $v \equiv u$.
- 3. Sea u subarmónica en U y $B \subset\subset U$. Notamos con \tilde{u} la función armónica en B (dada por la integral de Poisson) que satisface $\tilde{u} = u$ en ∂B . Definimos el levantamiento armónico de u en B por

$$v(x) = \begin{cases} \tilde{u}(x), & x \in B, \\ u(x), & x \in U \setminus B. \end{cases}$$

Entonces v es subarmónica en U.

4. Si u_1, \ldots, u_N son subarmónicas en U, entonces

$$u(x) = \max\{u_1(x), \dots, u_N(x)\}\$$

es subarmónica en U.

5. Enunciar y demostrar los correspondientes resultados para funciones superarmónicas.

Ejercicio 16 (Principio débil del máximo). Sea U acotado y

$$\mathcal{L}u = -\sum_{i,j=1}^{n} a_{ij}(x)\partial_{ij}u + \sum_{i=1}^{n} b_{i}(x)\partial_{i}u + c(x)u,$$

donde a_{ij}, b_i y c son funciones continuas en \bar{U} y $u \in C^2(U) \cap C(\bar{U})$. La matriz $(a_{ij})_{1 \leq i,j \leq n}$ es simétrica y definida positiva para cada $x \in \bar{U}$ (un operador \mathcal{L} con estas propiedades se dice *elíptico*). Probar que si $\mathcal{L}u \leq 0$ en U y $c \equiv 0$ entonces el máximo de u se alcanza en ∂U .

Sugerencia: Usar que si A, B son matrices simétricas y semidefinidas positivas de $n \times n$, entonces $tr(A \cdot B) \ge 0$. ¡Demostrar este hecho!

Ejercicio 17 (Lema de Hopf). Sea U un dominio con la propiedad que para todo $x_0 \in \partial U$, existe una bola $B_r(y) \subset U$ tal que $x_0 \in \partial B_r(y)$ (esto se conoce como la propiedad de bola tangente interior). Sea $u \in C^2(U) \cap C^1(\bar{U})$ tal que $\Delta u \geq 0$ en U, $x_0 \in \partial U$ y $u(x_0) > u(x)$ para todo $x \in U$. Entonces

$$\partial_{\mathbf{n}}u(x_0)>0$$

donde \mathbf{n} es la normal exterior.

Ejercicio 18. Usar el lema de Hopf para dar otra demostración del principio fuerte del máximo.

Ejercicio 19. Demostrar que si $U \subset \mathbb{R}^n$ es un abierto con frontera de clase C^2 entonces posee la propiedad de la bola tangente exterior.