Classificazione di immagini di 102 specie di fiori

Baldi - Olivadese - Vitali

Obiettivi del progetto

- Classificazione supervisionata di immagini rappresentanti 102 specie di fiori
- Confronto di 4 categorie di modelli basati su reti neurali
- Ottimizzazione degli iperparametri e della struttura dei modelli

Dataset

- 102 Flowers Dataset Università di Oxford
 - o 102 specie di fiori
 - o **1020** immagini di **training** (10 per classe)
 - o **1020** immagini di **validazione** (10 per classe)
 - o 6149 immagini di test

Distribuzione Dataset di Test

Dataset

Alta similarità tra specie diverse

English Marigold

Barbeton Daisy

Tree Poppy

Japanese Anemone

Hibiscus

Azalea

Alta variabilità nella stessa specie

Snapdragon

Dataset - Data Augmentation

- Solo 10 immagini per classe nel training set
- Data Augmentation per ogni epoca della fase di training, uno o più tra:
 - **Ribaltamento** verticale o orizzontale
 - o **Zoom-in** e **Zoom out** del 20%
 - Rotazione tra -30° e $+30^{\circ}$
 - Variazione della **luminosità** del 20%

Approccio Metodologico

- Confronto di 4 modelli
 - Convoluzionale "semplice"
 - o Basato su **Autoencoder**
 - o Basato su Feature Extraction VGG16
 - Basato su **Fine Tuning VGG16**
- Per tutti i modelli
 - Funzione di Loss: Categorical Cross Entropy
 - Funzione di attivazione dell'ultimo layer: **Softmax**
 - o 100 epoche massime di training, **Early Stop** con patience a 5 sulla validation loss
 - Aggiunti layer di dropout per regolarizzazione
 - o Ottimizzatore Adam
 - Learning rate deciso con AutoML

Ottimizzazione iperparametri e struttura

- Difficile individuare la struttura ottima dei modelli e i loro iperparametri
- Utilizzo di SMAC per SMBO
 - o Ottimizzazione Bayesiana
 - Modello surrogato **Random Forest**
 - Funzione di acquisizione Expected Improvement
- 30 campionamenti dello spazio di ricerca + 6 di inizializzazione
- Valutazione della bontà del modello: **loss** sul validation set

Classificatore Convoluzionale "Semplice"

- Layer di Input (244 x 244 x 3)
- 5 coppie di layer:
 - 64/128/256/512/512 Kernel Convoluzionali 3 x 3
 - Layer di **Max Pooling** 2 x 2
- Layer di Flatten (25088 valori)
- Da 1 a 4 coppie di layer:
 - Layer di Dropout con rate a 0.1
 - Layer Denso (dimensione tra 32 e 4096)
- Layer di Dropout con rate a 0.1
- Layer di Output con attivazione SoftMax

Decisi con AutoML

Classificatore basato su Autoencoder

- **Encoder Convoluzionale** (Output 7 x 7 x 512)
- **Layer di Flatten** (25,048 valori di output)
- Da 1 a 4 coppie di layer:
 - Layer di Dropout con rate a 0.1
 - **Layer Denso** (dimensione tra 32 e 4096)
- Layer di Dropout con rate a 0.1
- Layer di Output con attivazione SoftMax

Decisi con AutoML

Fattore di compressione **7.13**

Classificatore Convoluzionale basato su Feature Extractor

- Layer di Global Average Pooling
- Da 1 a 4 coppie di layer:
 - Layer di Dropout con rate a 0.1
 - Layer Denso (dimensione tra 32 e 4096)
- Layer di Dropout con rate a 0.1
- Layer di Output con attivazione SoftMax

Decisi con AutoML

Classificatore Convoluzionale basato su Fine Tuning

- Layer di Dropout con rate a 0.1
- Layer di Output con attivazione SoftMax

Risultati - Classificatore Convoluzionale Standard

- **Configurazione ottimale** individuata da SMAC3:
 - N. Layer Densi: 3
 - Dimensione layer: 395 / 74 / 414
 - Learning Rate Adam: **0.000306**
- **13,923,623** parametri addestrabili

	Accuracy	Top-5 Accuracy	Loss
Training	0.407	0.7772	2.024
Validation	0.280	0.578	3.048
Testing	0.221	0.502	3.337

Risultati - Classificatore Conv. basato su Autoencoder

- Configurazione ottimale individuata da SMAC3:
 - N. Layer Densi: 1
 - o Dimensione 1° layer: 1138
 - Learning Rate Adam: o.oo1o1
- **30,236,036** parametri (28, 667, 460 addestrabili)

Sample No

25

30

35

Migliore loss vista durante l'ottimizzazione

	Accuracy	Top-5 Accuracy	\mathbf{Loss}
Training	0.686	0.929	1.192
Validation	0.388	0.670	2.578
Testing	0.331	0.619	2.889

10

- Configurazione ottimale individuata da SMAC3:
 - Blocco convoluzionale VGG16: 5°
 - N. Layer Densi: 3
 - Dimensione layer: 1128 / 3224 / 1994
 - Learning Rate Adam: **0.0000406**
- **28,261,765** parametri (13, 547, 077 addestrabili)

Migliore loss vista durante l'ottimizzazione

	Accuracy	Top-5 Accuracy	\mathbf{Loss}
Training	0.871	0.985	0.512
Validation	0.777	0.934	0.877
Testing	0.727	0.903	1.088

- Configurazione ottimale individuata da SMAC3:
 - o N° Ultimi Layer Addestrabili VGG16: 2
 - N. Layer Densi: 4
 - o Dimensione layer: **520**, **1753**, **54**, **1344**
 - Learning Rate Adam: **o.oooo679**
- **28,980,107** parametri (16, 625, 227 addestrabili)

Migliore loss vista durante l'ottimizzazione

	Accuracy	Top-5 Accuracy	\mathbf{Loss}
Training	0.949	0.996	0.166
Validation	0.743	0.918	1.184
Testing	0.727	0.901	1.245

Risultati - Modello Migliore

Modello basato su **Feature Extraction da VGG16**

• Accuracy: **72.6**%

• **Top-5** Accuracy: **90.3**%

• Loss: 1.088

• Precision: **75.6**% (76.4% pesata)

• Recall: **73.4%** (72.6% pesata)

• F1-score: **72.7**% (72.4% pesata)

Confusione tra specie

Snapdragon Identified: 31 times (73.81%)

Mistanken as Petunia 5 times (11.90%)

Mistanken as Foxglove 3 times (7.14%)

Mistanken as Garden Phlox 2 times (4.76%)

Garden Phlox Identified: 18 times (18.56%)

Mistanken as Azalea

Lotus Identified: 65 times (79.27%)

Mistanken as Water Lily 7 times (8.54%)

Per concludere...

- Procedura di AutoML efficace per individuare punti ottimali
 - o In genere meno di 20 campionamenti necessari
- Risultati soddisfacenti
 - Modello migliore basato su Feature Extraction da VGG
 - **Accuracy** migliore del **72**%
 - Top-5 Accuracy migliore del 90%

• ...ma migliorabili

- Con più dati di training
- o Con classificatori migliori
- o In letteratura performance migliori

Fonte	Approccio	Accuracy	Top-5
Nilsback, 2008	SIFT/HOG/HSV	73% (*)	-
Sharif, 2014	Overfeat+SVM	87%	-
Gurnani. 2017	GoogleNet	47% (*)	69%
Nostro	VGG16 F.E.	72%	90%

• Principali **errori**

o Confusione di specie simili tra loro

Grazie per l'attenzione