Semantiek van modale logica

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

Logica en de Linguistic Turn 2012

4/12/12

Plan voor vandaag

1. Modale logica: Kripke modellen en semantiek

Huiswerk:

- Syllabus, 4.3 inlc. opgaven.
- ► Tekst op blackboard lezen, zelf vragen bedenken
- Wiki: stemmen voor het beste lemma via email naar mij deadline 9-12 (graag "wiki" noemen mail header)

Definitie van de taal van modale logica

Zij P een verzameling propositieletters.

- 1. Een propositieletter $p \in P$ is een formule van ML;
- 2. als ϕ en ψ formules van ML zijn, dan zijn $\neg \phi$, $\neg \psi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ dat ook;
- 3. als ϕ een formule van ML is dan zijn $\Diamond \phi$ en $\Box \phi$ dat ook;
- 4. niets is een formule van *ML* als het niet gegenereerd is door de bovenstaande regels.

Kripke modellen voor modale logica

Een Kripke-model K is een viertal $\langle W, R, V, w \rangle$ waarbij:

- 1. W is een verzameling objecten [de mogelijke werelden]
- 2. R is een binaire relatie over W [de modale basis] geeft aan welke wereld v een mogelijkheid is in w
- 3. V is een valuatiefunctie zodanig dat voor elke wereld w, V_w de waarde bepaalt van alle propositieletters in w
 - $V_w(p) = 1$ lezen we dan als 'p is waar in w'
 - $V_w(p) = 0$ lezen we dan als 'p is onwaar in w'

[wereld afhankelijk valuatie]

4. w is een van de elementen van W [de actuele wereld]

Semantiek van de modale propositielogica

- 1. $\langle W, R, V, w \rangle \models p \text{ desda } V_w(p) = 1;$
- 2. $\langle W, R, V, w \rangle \models \neg \phi \text{ desda } \langle W, R, V, w \rangle \not\models \phi$;
- 3. . . .
- 4. $\langle W, R, V, w \rangle \models \Diamond \phi$ desda er is een $v \in W$ zodanig dat Rwv en $\langle W, R, V, v \rangle \models \phi$;
- 5. $\langle W, R, V, w \rangle \models \Box \phi$ desda voor elke $v \in W$ zodanig dat Rwv geldt $\langle W, R, V, v \rangle \models \phi$.

Opgave 1

Voor $P = \{p, q\}$, beschouw het Kripke model $K = \{W, R, V, w\}$

$$V = \{w, w_1, w_2, w_3\}$$

$$V_w(p) = 1, V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0, V_w(q) = 1, V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$$

Teken dit model, en ga nu na of de volgende formules waar zijn in K:

- (1) a. $\Diamond p \land \Diamond q$ b. $\Box (q \lor p)$ c. $\Box \Diamond p$ d. $\Diamond \Box q$
 - e. $\diamondsuit(\diamondsuit p \land \diamondsuit \neg p)$
 - f. $\Box(p \leftrightarrow \Diamond q)$
 - $\mathsf{g.} \qquad p \to \Diamond \Box \neg q$
 - h. $\Diamond(p \leftrightarrow \Box p)$

Opgave 2

Vertaal de volgenden zinnen in ML, en definieer K-modellen waarin ze waar zijn, en waarin ze onwaar zijn:

- (2) Als het mogelijk waar is dat a is b dan is het ook noodzakelijk waar.
 - a. Modale basis: alle logische mogelijkheden
 - b. Vertalingsleutel: p : a is b
 - c. Vertaling: $\Diamond p \rightarrow \Box p$
- (3) Als Peter niet binnen mag komen, dan moeten Jan en Bea ook weg.
 - Modale basis: alle deontische mogelijkheden (of alle mogelijkheden binnen de regels van de spreker)
 - b. Vertalingsleutel: p : P komt binnen, q : J gaat weg, r : B gaat weg.
 - c. Vertaling: $\neg \Diamond p \rightarrow \Box (q \land r)$
- (4) Sherlock acht het mogelijk dat Thelma niet vermoord is, en gelooft dat als zij wel vermoord is, dan heeft Louise het gedaan.
 - Modale basis: Alle mogelijkheden gegeven de beschikbare informatie van Sherlock.
 - b. Vertalingsleutel: p: T is vermoord, q: L heeft het gedaan
 - c. Vertaling: $\Diamond \neg p \land \Box (p \rightarrow q)$

Opgave 3

Voor ieder zin in (5) definieer een K-model waarin de zin waar is, en een waarin ze onwaar is:

- (5) a. $\Diamond \Diamond p \rightarrow \Diamond p$
 - b. $p \rightarrow \Box \Diamond p$
 - c. $\Diamond p \rightarrow \Box \Diamond p$
 - $\mathsf{d.} \quad \Diamond p \leftrightarrow \Diamond \Diamond p$
 - e. $p \leftrightarrow \Diamond \Box p$