3.5: Issues in Curve Sketching

Mathematics 3 Lecture 20 Dartmouth College

February 17, 2010

Which of the following are the graphs of a function, its derivative and its second derivative?

Which of the following are the graphs of a function, its derivative and its second derivative?

Answer:
$$y = \frac{1}{2}x^3 - 2x - 1 \Rightarrow y' = \frac{3}{2}x^2 - 2 \Rightarrow y'' = 3x$$

Recall: Monotonicity of Functions on Intervals

Suppose that the function f is defined on an interval I, and let x_1 and x_2 denote points in I:

- 1. f is increasing on I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- 2. f is decreasing on I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.
- 3. f is **constant** on I if $f(x_1) = f(x_2)$ for any $x_1, x_2 \in I$.

Review: Testing Monotonicity via Derivatives

Recall: The derivative function f'(x) tells us the the **slope** of the tangent line to the graph of the function f at the point (x, f(x)).

Theorem. (Increasing/Decreasing Test) Let I = (a, b) be an open interval. Suppose that f is differentiable on all of I. Then

- 1. If f'(x) > 0 for every $x \in I$, then f is increasing on I.
- 2. If f'(x) < 0 for every $x \in I$, then f is decreasing on I.
- 3. If f'(x) = 0 for every $x \in I$, then f is **constant** on I

Review: Testing Monotonicity via Derivatives

Here is how to remember the three cases geometrically:

Recall: The Extreme Value Theorem

Theorem. If f is continuous on a closed interval [a,b], then there is a point c_1 in the interval where f assumes its maximum value, i.e. $f(x) \leq f(c_1)$ for every x in [a,b], and a point c_2 where f assumes its minimum value, i.e. $f(x) \geq f(c_2)$ for every x in [a,b].

Zen: A continuous function on a closed and bounded interval [a, b] always has **extreme values** (i.e., max and min) somewhere in the interval. This is an "existence theorem" and is very hard to prove, in generality (Math 35/54/63).

Important Question: How do we FIND these extreme values?

Finding Extreme Values with Derivatives

Theorem. If f is defined in an open interval (a,b) and achieves a maximum (or minimum) value at a point $c \in (a,b)$ where f'(c) exists, then f'(c) = 0.

Zen: An **extreme value** (\max/\min) of a differentiable function in an open interval (a,b) must occur where the graph has a horizontal tangent line. But, just because f'(c) = 0 does NOT mean you have an extreme value at x = c.

Def: A point x = c in the domain of f where f'(c) = 0, or does not exist, is called a **critical point** of the function f.

Note: Our textbook calls a point x in the domain of f where f'(x) does not exist a singular point of f, but most calculus textbooks do not use this!

Absolute and Local (Relative) Extrema

Extrema come in 2 flavors: Absolute and Local (Relative)

Absolute and Local (Relative) Extrema

We have to check endpoints and critical/singular Points.

Absolute and Local (Relative) Extrema

But just because f'(x) = 0 (or DNE) does NOT mean you have a local/abs extremum!

How to find Absolute Extrema on Closed Intervals

To find the (absolute) max and min values of a continuous function y = f(x) on a closed and bounded interval [a, b]:

- a.) Find the critical/singular numbers of f inside (a,b).
- b.) Evaluate f at each critical/singular number in (a, b).
- c.) Evaluate f at the endpoints, i.e., find f(a) and f(b).
- d.) The least of these numbers is the **absolute** minimum and the greatest is the **absolute** maximum.

Find the extrema of

$$f(x) = 2x - 3x^{2/3}$$

on the interval [-1,3].

The First Derivative Test (p. 272)

Question: How do we find local (relative) extrema?

The First Derivative Test (p. 272)

Question: How do we find local (relative) extrema?

Let c be a critical/singular point of a function y=f(x) that is continuous on an open interval I=(a,b) containing c. If f is differentiable on the interval (except possibly at the singular point x=c) then the value f(c) can be classified as follows:

- 1. If f'(x) changes sign from negative to positive at x=c, then f(c) is a **local (relative) minimum**.
- 2. If f'(x) changes sign from positive to negative at x = c, then f(c) is a **local (relative) maximum**.
- 3. If f'(x) does not have opposite signs on either side of x=c, then f(c) is **neither** a local max or min.

The First Derivative Test

Here is a picture that helps to remember the First Derivative Test:

Find and classify the local (relative) extrema of the function

$$f(x) = (x - 4)x^{\frac{1}{3}}$$

on the whole real line $(-\infty, \infty)$.

Find and classify the local (relative) extrema of the function

$$f(x) = \frac{x^4 + 1}{x^2}$$

on its natural domain.

Question: How does the sign of the second derivative f''(x) affect the shape of the graph of f?

Question: How does the sign of the second derivative f''(x) affect the shape of the graph of f?

Def: Let f be a differentiable function on an open interval I. The graph of f is concave upward on I if f'(x) is increasing on I and concave downward on I if f'(x) is decreasing on I.

Question: How does the sign of the second derivative f''(x) affect the shape of the graph of f?

Def: Let f be a differentiable function on an open interval I. The graph of f is concave upward on I if f'(x) is increasing on I and concave downward on I if f'(x) is decreasing on I.

(b) The graph of f lies below its tangent lines.

(a) The graph of f lies above its tangent lines.

Def: The function f has an **inflection point** at the point x = c if it has a tangent line at x = c (e.g., f'(c) exists) and the concavity *changes* at x = c from up to down or vice versa.

Def: The function f has an **inflection point** at the point x = c if it has a tangent line at x = c (e.g., f'(c) exists) and the concavity *changes* at x = c from up to down or vice versa.

The concavity of f changes at a point of inflection.

The Second Derivative Test for Concavity

Since the second derivative f''(x) is the first derivative of f'(x):

The Second Derivative Test for Concavity

Since the second derivative f''(x) is the first derivative of f'(x):

Theorem 2 (p. 274) Let f be a function whose second derivative f'' exists on an open interval I.

- 1. If f''(x) > 0 on I, then f is concave upward on I.
- 2. If f''(x) < 0 on I, then f is concave downward on I.
- 3. If f has an inflection point at x_0 in I and $f''(x_0)$ exists then $f''(x_0) = 0$.

Determine the the open intervals on which the function

$$f(x) = 6(x^2 + 3)^{-1}$$

is concave upward or downward and find the inflection points.

Determine the the open intervals on which the function

$$f(x) = 6(x^2 + 3)^{-1}$$

is concave upward or downward and find the inflection points.

The Second Derivative Test for Local Extrema

Theorem 3 (p. 274) Let f be a function such that the second derivative f'' exists on an open interval I containing x_0 .

- 1. If $f'(x_0) = 0$ and $f''(x_0) > 0$, then $f(x_0)$ is a local minimum.
- 2. If $f'(x_0) = 0$ and $f''(x_0) < 0$, then $f(x_0)$ is local maximum.
- 3. If $f'(x_0) = 0$ and $f''(x_0) = 0$ the test **fails**. Use the First Derivative Test to decide...

Find and classify the local extrema of the following functions

a.)
$$f(x) = x^3 - 12x - 5$$
.

b.)
$$h(x) = -3x^5 + 5x^3$$