

WHAT IS CLAIMED IS:

- 1 1. A transceiver, comprising:
 - 2 a first interface configured to receive data from a first channel using a first
 - 3 clock signal and to transmit data to the first channel using a second clock signal;
 - 4 a second interface configured to receive data from a second channel using a
 - 5 third clock signal and to transmit data to the second channel using a fourth clock
 - 6 signal; and
- 7 a re-timer configured to re-time data received from the first channel using the
- 8 first clock signal and to retransmit the data to the second channel using the fourth
- 9 clock signal.
- 1 2. The transceiver of claim 1, wherein
 - 2 the first channel includes a first clock line for transmission of the first clock
 - 3 signal and a second clock line for transmission of the second clock signal and the
 - 4 second channel includes a third clock line for transmission of the third clock signal
 - 5 and a fourth clock line for transmission of the fourth clocks signal;
 - 6 the transceiver further comprises:
 - 7 a first receiver configured to receive data and the first clock signal from the
 - 8 first channel;
 - 9 a first transmitter configured to transmit data and the second clock signal to
 - 10 the first channel;
 - 11 a second receiver configured to receive data and the third clock signal from the
 - 12 second channel;
 - 13 a second transmitter configured to transmit data and the fourth clock signal to
 - 14 the second channel; and
 - 15 the re-timer is located between the first receiver and the second transmitter and
 - 16 is configured to re-time data received from the second channel using the third clock
 - 17 signal for retransmission, using the second clock signal, onto the first channel.
 - 1 3. The transceiver of claim 1, wherein data received by the first interface from
 - 2 the first channel using the first clock signal is first data; and the transceiver further
 - 3 comprises isolation logic to prevent the transceiver from transmitting the first data
 - 4 from the first interface to the first channel using the second clock signal.

- 1 4. The transceiver of claim 1, further comprising isolation logic to prevent
2 retransmission of data, received from the first channel, to the second channel.
- 1 5. The transceiver of claim 1, further comprising latch-up prevention logic to
2 prevent feedback of data between the first and second channels.
- 1 6. The transceiver of claim 1, further comprising a first synchronizing unit that
2 synchronizes data transmitted from the first channel to the second channel.
- 1 7. The transceiver of claim 6, further comprising a second synchronizing unit that
2 synchronizes data transmitted from the second channel to the first channel.
- 1 8. The transceiver of claim 1, wherein the third and fourth clock signals are
2 synchronized to the second clock signal.
- 1 9. The transceiver of claim 1, further comprising command interpretation and
2 command performance circuitry.
- 1 10. The transceiver of claim 1, wherein the second and forth clock signals are
2 synchronized.
- 1 11. A system comprising:
2 a first channel;
3 a second channel;
4 a first device coupled to the first channel;
5 a second device coupled to the second channel; and
6 a transceiver having latency aligning circuitry coupled to the first channel and
7 to the second channel.
- 1 12. The system of claim 11, wherein at least one of the first and second channels
2 comprises a serial link.
- 1 13. The system of claim 12, wherein data transmissions from the first device to the
2 first channel are clocked by a first clock signal and wherein the latency aligning
3 circuitry aligns the round-trip latency between the first device and the second channel
4 to an integer number of cycles of the first clock signal.
- 1 14. The system of claim 12, wherein the system has a round trip latency from the
2 first device to the second device that is independent of a flight time from the first
3 device to the second device.

- 1 15. The system of claim 14, wherein the latency aligning circuitry is configured to
2 compensate for the flight time from the first device to the second device.
- 1 16. The system of claim 12, wherein a first latency, measured by a time required
2 for the transceiver to receive a signal from the first channel and transmit the signal to
3 the second channel, is dependent upon the flight time from the first device to the
4 transceiver.
- 1 17. The system of claim 12, wherein the transceiver further comprises isolation
2 logic to prevent retransmission of data, received from the first channel, to the second
3 channel.
- 1 18. The system of claim 12, wherein the transceiver further comprises latch-up
2 prevention logic to prevent feedback of data between the first and second channels.
- 1 19. The system of claim 12, wherein the transceiver further comprises a first
2 synchronizing unit that synchronizes data transmitted from the first channel to the
3 second channel.
- 1 20. The system of claim 19, wherein the transceiver further comprises a second
2 synchronizing unit that synchronizes data transmitted from the second channel to the
3 first channel.
- 1 21. The system of claim 12, wherein the transceiver further comprises power logic
2 that turns off the transceiver when the transceiver does not need to transmit.
- 1 22. The system of claim 12, wherein data transmissions from the first device to the
2 first channel are clocked by a first clock signal, data transmissions from the
3 transceiver to the first channel are clocked by a second clock signal, data
4 transmissions from the second device to the second channel are clocked by a third
5 clock signal and data transmissions from the transceiver to the second device are
6 clocked by a fourth clock signal.
- 1 23. The system of claim 22, wherein the second and fourth clock signals are
2 synchronized.
- 1 24. The system of claim 12, wherein the transceiver further comprises at least one
2 phase locked loop that performs clock recovery.
- 1 25. A memory system comprising
2 a memory controller coupled to a primary channel;

3 a first transceiver, having latency aligning circuitry, coupled to the primary
4 channel and to a first stick channel.

5 a first memory device having a programmable delay coupled to the first stick
6 channel; and

7 a second memory device having a programmable delay coupled to the primary
8 channel or the first stick channel.

1 26. The memory system of claim 25, further comprising a second transceiver
2 having latency aligning circuitry coupled to the stick channel and a second stick
3 channel.

1 27. The memory system of claim 26, wherein the latency aligning circuitry of the
2 first and second transceivers aligns a respective round-trip latency between the
3 memory controller and each of the transceivers to a respective integer number of clock
4 cycles.

1 28. The memory system of claim 27, wherein the round-trip latency between the
2 memory controller and the first transceiver is a first integer number of clock cycles
3 and the round-trip latency between the memory controller and the second transceiver
4 is a second integer number of clock cycles and the first and second integer numbers
5 are different.

1 29. The memory system of claim 26, further comprising a third memory device
2 having programmable delay coupled to the second stick channel.

1 30. The memory system of claim 29, wherein the first memory device has a first
2 programmed delay, the second memory device has a second programmed delay, the
3 third memory device has a third programmed delay and wherein the first, second and
4 third programmed delays are selected such that response latencies of the first, second
5 and third memory devices are substantially equal.

1 31. The memory system of claim 25, wherein the first memory device has a first
2 programmed delay and the second memory device has a second programmed delay
3 and wherein the first and second programmed delays are selected such that response
4 latencies of the first and second memory devices are substantially equal.

1 32. The memory system of claim 25, wherein the transceiver further comprises
2 power logic to power off one or more of the transceivers when such transceivers do
3 not need to transmit.