Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\} $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{array}{c c} \left(\frac{A_{TL} & A_{TR}}{A_{BL} & A_{BR}} \right) = \left(\frac{L \setminus U_{TL} & \widehat{A}_{TR}}{L_{BL} & \widehat{A}_{BR}} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \\ \end{array} \right\} $
5a	Determine block size b $ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \rightarrow \cdots, \left(\begin{array}{c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \rightarrow \cdots$ where A_{11} is $b \times b$, L_{11} is $b \times b$, U_{11} is $b \times b$
6	{
	update line 1
8	
	update line n
7	{
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \setminus U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg (m(A_{TL}) < m(A)) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	{
4	where
2	
3	while do
2,3	
	Determine block size b
5a	
	where
6	{
8	
7	{
5b	
2	
	endwhile
2,3	$ \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right. \wedge \neg (\begin{array}{c} \\ \\ \end{array})$
1b	{

Step	Algorithm: $A := LU_BLK_VAR2(A)$	
1a	$\{A=\widehat{A}$	}
4	where	
2		
3	while do	_
2,3		
	Determine block size b	
5a		
	where	
6	{	}
8		
7	{	}
5b		
2		$\bigg\}$
	endwhile	
2,3		
1b	$\{A = L \setminus U \wedge LU = \widehat{A}$	}

Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\}$
3	while do
2,3	$ \left\{ \begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \right. $
	Determine block size b
5a	
	where
6	{
8	
7	{
5b	
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\} $
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg () $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	$\{A = \widehat{A}\}$
4	where
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\} $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array}\right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \end{array} \right\}$
	Determine block size b
5a	
	where
6	{
8	
7	{
5b	
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\} $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg (m(A_{TL}) < m(A)) \right\}$
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\} $
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \\ \end{array} \right\} $
	Determine block size b
5a	
	where
6	<u>{</u>
8	
_	
7	{
5b	
30	
2	$ \left\{ \begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right\} $
	endwhile
2,3	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg (m(A_{TL}) < m(A)) \right\}$
1b	$\left\{ A = L \backslash U \land LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR2(A)$	
1a	$\{A = \widehat{A}$	}
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0	
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right.$	$\bigg\}$
3	while $m(A_{TL}) < m(A)$ do	
2,3	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \right\} $	$\left. \begin{array}{c} \\ \end{array} \right\}$
5a		•
6	{	}
8		
7	{	}
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $	
2	$ \left\{ \begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} $	$igg\}$
	endwhile	
2,3	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg (m(A_{TL}) < m(A)) $	igg
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$	}

Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL} U_{TL} = \widehat{A}_{TL}}{L_{BL} U_{TL} = \widehat{A}_{BL}} \right.$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \\ \end{array} \right. $
5a	
6	{
8	
7	{
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right. $
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \setminus U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg (m(A_{TL}) < m(A)) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

Step	Algorithm: $A := LU_BLK_VAR2(A)$
1a	$\{A = \widehat{A}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
2	$\left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL} U_{TL} = \widehat{A}_{TL}}{L_{BL} U_{TL} = \widehat{A}_{BL}} \right.$
3	while $m(A_{TL}) < m(A)$ do
2,3	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \\ \end{array} \right. $
5a	
6	{
8	
7	{
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
2	$ \left\{ \begin{array}{c c} \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \backslash U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \right. $
	endwhile
2,3	$ \left\{ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) = \left(\begin{array}{c c} L \setminus U_{TL} & \widehat{A}_{TR} \\ \hline L_{BL} & \widehat{A}_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge \neg (m(A_{TL}) < m(A)) \right\} $
1b	$\left\{ A = L \backslash U \wedge LU = \widehat{A} \right\}$

$$\begin{array}{c} \text{Step} \quad \text{Algorithm: } A := \text{LU_BLK_VAR2}(A) \\ 1a \quad \left\{A = \widehat{A} \right. \\ 4 \quad A \rightarrow \left(\begin{array}{c} A_{TL} \\ A_{BL} \\ A_{BL} \\ A_{BR} \end{array} \right), L \rightarrow \left(\begin{array}{c} L_{TL} \\ L_{BL} \\ L_{BR} \end{array} \right), U \rightarrow \left(\begin{array}{c} U_{TL} \\ U_{BL} \\ U_{BR} \end{array} \right) \\ \text{where } A_{TL, \text{is } 0} \times 0, L_{TL, \text{is } 0} \times 0, U_{TL, \text{is } 0} \times 0 \times 0 \\ 2 \quad \left\{ \left(\begin{array}{c} A_{TL} \\ A_{BL} \\ A_{BL} \\ A_{BR} \end{array} \right) = \left(\begin{array}{c} L \setminus U_{TL} \\ L_{BL} \\ A_{BR} \\ A_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \\ 3 \quad \text{while } m(A_{TL}) < m(A) \text{ do} \\ 2.3 \quad \left\{ \left(\begin{array}{c} A_{TL} \\ A_{BL} \\ A_{BL} \\ A_{BR} \\ A_{BL} \end{array} \right) = \left(\begin{array}{c} L \setminus U_{TL} \\ L_{BL} \\ A_{BR} \\ A_{BL} \\ A_{BR} \end{array} \right) \wedge \frac{L_{TL}U_{TL} = \widehat{A}_{TL}}{L_{BL}U_{TL} = \widehat{A}_{BL}} \wedge m(A_{TL}) < m(A) \\ \end{array} \right\} \\ 5a \quad \left(\begin{array}{c} A_{TL} \\ A_{BL} \\ A_{BL} \\ A_{BR} \end{array} \right) \rightarrow \left(\begin{array}{c} A_{00} \\ A_{01} \\ A_{10} \\ A_{20} \\ A_{21} \\ A_{22} \\ A_{23} \\ A_{24} \\ A_{24} \\ A_{24} \\ A_{24} \\ A_{25} \\ A_{25$$

Algorithm: $A := LU_BLK_VAR2(A)$
$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, L \to \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix}, U \to \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix}$ where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0
while $m(A_{TL}) < m(A)$ do
Determine block size b
$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & L_{TR} \\ L_{BL} & L_{BR} \end{pmatrix} \rightarrow \cdots, \begin{pmatrix} U_{TL} & U_{TR} \\ U_{BL} & U_{BR} \end{pmatrix} \rightarrow \cdots$ $\text{where } A_{11} \text{ is } b \times b, L_{11} \text{ is } b \times b, U_{11} \text{ is } b \times b$
update line 1
update line n
$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c c c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \cdots, \left(\begin{array}{c c c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array}\right) \leftarrow \cdots $
endwhile

Algorithm: $A := LU_BLK_VAR2(A)$

$$A o \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \,,\, L o \left(\begin{array}{c|c} L_{TL} & L_{TR} \\ \hline L_{BL} & L_{BR} \end{array} \right) \,,\, U o \left(\begin{array}{c|c} U_{TL} & U_{TR} \\ \hline U_{BL} & U_{BR} \end{array} \right)$$

where A_{TL} is 0×0 , L_{TL} is 0×0 , U_{TL} is 0×0

while $m(A_{TL}) < m(A)$ do

Determine block size b

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c}
A_{00} & A_{01} & A_{02} \\
\hline
A_{10} & A_{11} & A_{12} \\
A_{20} & A_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|c}
L_{TL} & L_{TR} \\
\hline
L_{BL} & L_{BR}
\end{array}\right) \to \cdots, \left(\begin{array}{c|c}
U_{TL} & U_{TR} \\
\hline
U_{BL} & U_{BR}
\end{array}\right) \to \cdots$$

where A_{11} is $b \times b$, L_{11} is $b \times b$, U_{11} is $b \times b$

update line 1

:

update line n

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
A_{00} & A_{01} & A_{02} \\
A_{10} & A_{11} & A_{12} \\
\hline
A_{20} & A_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|c}
L_{TL} & L_{TR} \\
\hline
L_{BL} & L_{BR}
\end{array}\right) \leftarrow \cdots, \left(\begin{array}{c|c}
U_{TL} & U_{TR} \\
\hline
U_{BL} & U_{BR}
\end{array}\right) \leftarrow \cdots$$

endwhile