Ejercicio 8

Un sistema de comunicaciones tiene 100 dB de atenuación en el enlace, una densidad espectral de ruido a la entrada de 2,54.10⁻¹⁸ W/Hz, un ancho de banda equivalente de ruido 10% por encima del estricto necesario. Complete la siguiente tabla con las ecuaciones de las probabilidades de error y los valores de ancho de banda y potencia de señal transmitida para obtener una relación señal a ruido a la salida del detector de 40 dB, usando filtro óptimo acoplado, cuantificación de 128 niveles y mensajes con valores uniformemente distribuidos en el rango de entrada (factor de cresta de $\sqrt{3}$) con anchos de banda de 5 kHz y 10 kHz.

Modulación	Relación Señal a Ruido de Salida	Probabilidad de Error	B _T [KHz]	P _{Sr} [dBm]
Unipolar NRZ	$SNR = \frac{3 M^2 \left(\left(\frac{m(t)}{V_p} \right)^2 \right)}{1 + 4(M^2 - 1)P_e}$	$P_e = Q \left(\sqrt{\frac{P_{s_R}}{R_b \eta_R}} \right)$		
Polar NRZ				
OOK			-	
BPSK			1	
BFSK $(\Delta f = R_b)$			1	

NOTA: El factor de cresta de una señal es la relación de tensión entre valor máximo (pico) y valor eficaz (RMS).

$$\begin{split} &Att = 100dB \\ &\eta = 2,54x10^{18} \frac{W}{Hz} \\ &B_{eq} = 1,1B \\ &SNR_d = 40dB = 10000 \\ &M = 128 \rightarrow l = 7 \\ &FC = \sqrt{3} \\ &B_{m_1} = 3KHz \rightarrow F_{s_1} = 6KHz \rightarrow R = 42KHz \rightarrow T_b = \frac{1}{R} = 23,809\mu s \\ &B_{m_2} = 5KHz \rightarrow F_{s_2} = 10KHz \rightarrow R = 70KHz \rightarrow T_b = \frac{1}{R} = 14,286\mu s \\ &10000 = \frac{3.128^2 \cdot \left(\frac{1}{\sqrt{3}}\right)^2}{1 + 4.P_e \cdot (128^2 - 1)} = \frac{16384}{1 + 65532.P_e} \rightarrow P_e = 9,7416x10^{-6} \rightarrow k \approx 4,3 \\ &\text{\clip{Action} \clip{Action} $\clip{Action}$$

$$\langle (S_{s_{(t)}})^2 \rangle = \frac{A^2}{2}$$

Para Polar:

$$\langle (S_{s_{(t)}})^2 \rangle = \frac{(2.A)^2}{2} = 2.A^2$$

$$K_{unipolar\;NRZ} = \sqrt{\frac{A^2}{R.N_0}} \rightarrow A = \sqrt{K^2.R.N_0} = \left\{ \begin{array}{c} \sqrt{1,972x10^{-12}} = 1,4044\mu V \\ \sqrt{3,287x10^{-12}} = 1,8131\mu V \end{array} \right\}$$

$$K_{polar\ NRZ} = \frac{2}{3}.\sqrt{\frac{2.A^2}{R.N_0}} \rightarrow A = \sqrt{\frac{9}{8}.K^2.R.N_0} = \left\{ \begin{array}{c} \sqrt{2,2191x10^{-12}} = 1,4896\mu V \\ \sqrt{3,6984x10^{-12}} = 1,9231\mu V \end{array} \right\}$$

$$K_{OOK} = \sqrt{\frac{A^2}{4.R.N_0}} \rightarrow A = \sqrt{4.K^2.R.N_0} = \left\{ \begin{array}{c} \sqrt{7,89x10^{-12}} = 2,8089\mu V \\ \sqrt{1,315x10^{-11}} = 3,6263\mu V \end{array} \right\}$$

$$K_{BPSK} = \sqrt{\frac{A^2}{R.N_0}} \rightarrow A = \sqrt{K^2.R.N_0} = \left\{ \begin{array}{c} \sqrt{1,972x10^{-12}} = 1,4044\mu V \\ \sqrt{3,287x10^{-12}} = 1,8131\mu V \end{array} \right\}$$

$$K_{BFSK} = \sqrt{\frac{A^2}{2.R.N_0}} \rightarrow A = \sqrt{2.K^2.R.N_0} = \left\{ \begin{array}{c} \sqrt{3,945x10^{-12}} = 1,9862\mu V \\ \sqrt{6,575x10^{-12}} = 2,5642\mu V \end{array} \right\}$$

$$S_{s_{(t)}unipolar\;NRZ} = \frac{A^2}{2} = \left\{ \begin{array}{c} \sqrt{0,986x10^{-12}W} = -120,06dB \\ \sqrt{1,6435x10^{-12}W} = -117,84dB \end{array} \right\}$$

$$S_{s_{(t)\,polar\,NRZ}} = 2.A^2 = \left\{ \begin{array}{l} \sqrt{4,4382x10^{-12}W} = -113,53dB \\ \sqrt{7,3968x10^{-12}W} = -111,31dB \end{array} \right\}$$

$$S_{s_{(t)}\,OOK} = \frac{A^2}{2} = \left\{ \begin{array}{l} \sqrt{3,945x10^{-12}W} = -114,04dB \\ \sqrt{6,575x10^{-12}W} = -111,82dB \end{array} \right\}$$

$$S_{s_{(t)}}{}_{BPSK} = \frac{A^2}{2} = \left\{ \begin{array}{c} \sqrt{0,98625x10^{-12}W} = -120,06dB \\ \sqrt{1,6475x10^{-12}W} = -117,84dB \end{array} \right\}$$

$$S_{s_{(t)}BFSK} = \frac{A^2}{2} = \left\{ \begin{array}{c} \sqrt{1,9725x10^{-12}W} = -117,05dB \\ \sqrt{3,2875x10^{-12}W} = 114,83dB \end{array} \right\}$$

Resultados

Modulsción Relacon & Solida	Probabilidad de error	Br [VHZ]	Ps-[dhu]
Unipoly NZZ	Pa = Q () = A = Tb A = Tb	2 84	10,06
Poly NEP	$P_{e} = Q \left(\sqrt{\frac{P_{s2}}{E_{6} Z_{2}}} \right) = \sqrt{\frac{\Delta^{2} Z}{2EU_{3}}}$ $= \sqrt{\frac{\Delta^{2}}{E_{6} Z_{2}}}$	² / ₁₆ 84	12,16
	Pe== 2Q (\(\frac{\xi}{2N} \)		16,47
		7 140	18,69
$SNR = \frac{3H^2 \left\langle \left(\frac{M(\omega)}{VP}\right)^2 \right\rangle}{1 + 4Pe\left(H^2 - 1\right)}$	Po = Q (TELL)	2 Tb 84	15,96
1 + 4Pe (M2-3)		2 140	18,18
BPSU	Pe = Q (\(\sqrt{2 \frac{Eb}{No}} \)	2R 84	9,94
		2R 140	12,16
BFS4	2 00 100 0	25f12fly 90	12,05
AF = 24		25f12fm 150	15,17