Controllers in Reactive Synthesis: A Strategic Perspective

Mickael Randour

F.R.S.-FNRS & UMONS - Université de Mons, Belgium

November 21, 2024

Journées annuelles du GT Vérif 2024

Strategies = **formal blueprints** for real-world controllers.

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- ▶ easier to understand,
- > cheaper to produce and maintain.

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- > easier to understand.
- > cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- > easier to understand.
- > cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- > easier to understand.
- > cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

 \hookrightarrow That is our topic of the today.

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- game models,
- strategy models,
- objectives,
- □ decision problems. . .

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- game models,
- strategy models,
- objectives,
- □ decision problems...

There will be some hand-waving and approximations to keep the talk high level.

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- ▶ game models,
- > strategy models,

There will be some hand-waving and approximations to keep the talk high level.

 \hookrightarrow I will focus on recent work with marvelous co-authors.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

Controller synthesis: a game-theoretic approach

Controller synthesis: a game-theoretic approach

¹Randour, "Automated Synthesis of Reliable and Efficient Systems Through Game Theory: A Case Study", 2013; Clarke et al., Handbook of Model Checking, 2018; Fijalkow et al., Games on Graphs, 2023.

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

A two-player turn-based finite arena $A = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play:

Controller synthesis

00000000

A two-player turn-based finite arena $A = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: a

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: a

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: ab

A two-player turn-based finite arena $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: ab

A two-player turn-based finite arena $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abb

Controller synthesis

00000000

A two-player turn-based finite arena $A = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abb

A two-player turn-based finite arena $A = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

→ Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abbd

A two-player turn-based finite arena $A = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abbd

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: $abbd \dots \in C^{\omega}$

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Usual interpretation

 \mathcal{P}_{\bigcirc} (the system to control) tries to satisfy its **specification** while \mathcal{P}_{\square} (the environment) tries to prevent it from doing so.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

They are encoded as some kind of *objective* defined using colors. Three main flavors:

1 A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0c_1c_2... \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0 c_1 c_2 \dots \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.
- **2** A payoff function to optimize, assuming $C \subset \mathbb{Q}$. E.g., the discounted sum function, defined as $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$ for some discount factor $\gamma \in]0,1[$.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0c_1c_2... \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.
- **2** A payoff function to optimize, assuming $C \subset \mathbb{Q}$. E.g., the discounted sum function, defined as $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$ for some discount factor $\gamma \in]0,1[$.
- 3 A preference relation defines a total preorder over sequences of colors, thus generalizing both previous concepts.

Controller synthesis

000000000

Player \mathcal{P}_{∇} chooses outgoing edges following a **strategy**

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

Randomness

consistent with the underlying graph.

Strategies

Player \mathcal{P}_{∇} chooses outgoing edges following a **strategy**

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

Randomness

consistent with the underlying graph.

 \hookrightarrow We are interested in the complexity of optimal strategies.

Strategies

Controller synthesis

000000000

Player \mathcal{P}_{∇} chooses outgoing edges following a strategy

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

consistent with the underlying graph.

 \hookrightarrow We are interested in the complexity of optimal strategies.

Optimal strategies (using a preference relation \Box)

A strategy σ_{\bigcirc} of \mathcal{P}_{\bigcirc} is optimal if it guarantees (i.e., against an optimal adversary \mathcal{P}_{\square}) a play at least as good as any other strategy σ'_{\bigcirc} with respect to \sqsubseteq .

MDPs & stochastic games

Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

MDPs & stochastic games

Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

Two-player (deterministic) game.

$$V=V_{\bigcirc}\biguplus V_{\square}.$$

MDPs & stochastic games

Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

Markov decision process.

$$V = V_{\bigcirc} \biguplus V_{\triangle}.$$

Either \mathcal{P}_{\bigcirc} aims to maximize

- $\triangleright \mathbb{P}^{\sigma} \cap [W]$ for some winning condition W,
- \triangleright or $\mathbb{E}^{\sigma} \cap [f]$ for some payoff function f.

MDPs & stochastic games

Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

Stochastic game.

$$V = V_{\bigcirc} \biguplus V_{\triangle} \biguplus V_{\square}.$$

Either \mathcal{P}_{\cap} aims to maximize, against the adversary \mathcal{P}_{\cap} ,

- $\triangleright \mathbb{P}^{\sigma_{\bigcirc},\sigma_{\square}}[W]$ for some winning condition W,
- \triangleright or $\mathbb{E}^{\sigma_{\bigcirc},\sigma_{\square}}[f]$ for some payoff function f.

MDPs & stochastic games

Why?

Controller synthesis

000000000

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

Stochastic game.

$$V = V_{\bigcirc} \biguplus V_{\triangle} \biguplus V_{\square}.$$

Actions

We often use actions instead of stochastic vertices.

Multiple objectives

Controller synthesis

000000000

Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.

Seeing a and b infinitely often requires memory, but seeing only one does not (Büchi objective).

Multiple objectives

Controller synthesis

000000000

Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.

Seeing a **and** b infinitely often requires memory, but seeing only one does not (Büchi objective).

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

 $v_2:v_0$

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the *next-action function*,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,

Controller synthesis

000000000

- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the *next-action function*,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- → M is the set of memory states,
- \triangleright $m_{\rm init}$ is the *initial state*,

Controller synthesis

000000000

- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the *next-action function*,
- $\triangleright \alpha_{\sf up} \colon M \times V \to M$ is the *update function*.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,

Controller synthesis

000000000

- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the *next-action function*,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- → M is the set of memory states,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the *next-action function*,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,

Controller synthesis

000000000

- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

 $v_2:v_0$

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the *next-action function*,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of *memory states*,
- $\triangleright m_{\text{init}}$ is the *initial state*,
- $\triangleright \alpha_{\mathsf{nxt}} : M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times V \to M$ is the update function.

Randomness

The ice cream conundrum

This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

The ice cream conundrum

Controller synthesis

00000000

This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: **chromatic** memory, with or without ε -transitions, with different types of **randomness**, etc.

The ice cream conundrum

Controller synthesis

00000000

This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: **chromatic** memory, with or without ε-transitions, with different types of **randomness**, etc.

 \hookrightarrow We will discuss some of these.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

Some amazing co-authors

Section mostly based on joint work with Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, and Pierre Vandenhove.²

²Bouver, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022; Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023; Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Memoryless strategies

Functions $\sigma_{\nabla} \colon V_{\nabla} \to V$.

- > Arguably, the simplest kind of strategies.

Memoryless strategies

Functions $\sigma_{\nabla} \colon V_{\nabla} \to V$.

- > Arguably, the simplest kind of strategies.
- Sufficient to play optimally for most *single* objectives in (stochastic) games: reachability, parity, mean-payoff, discounted sum, etc.

Starting point of our journey: deterministic games

Gimbert and Zielonka's characterization³

Memoryless strategies suffice (for both players) for a preference relation \Box iff it is **monotone** and **selective**.

³Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Starting point of our journey: deterministic games

Gimbert and Zielonka's characterization³

Memoryless strategies suffice (for both players) for a preference relation \Box iff it is **monotone** and **selective**.

Corollary: one-to-two-player lift

If \sqsubseteq is such that

- ${\rm 1\!\!I}$ in all ${\cal P}_{\bigcirc}\text{-arenas},~{\cal P}_{\bigcirc}$ has optimal memoryless strategies,

⇒ Extremely useful as analyzing one-player games (i.e., graphs) is much easier.

 $^{^3}$ Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Why?

Why?

- - → One would hope for an equivalent of Gimbert and Zielonka's result for finite memory.

Why?

- - → One would hope for an equivalent of Gimbert and Zielonka's result for finite memory.

Unfortunately, it does not hold.

Controller synthesis

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} i \in \mathbb{N}, \sum_{i=0}^{n} c_i = 0$$

Randomness

Handling finite-memory strategies (2/3)

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} i \in \mathbb{N}, \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.

Controller synthesis

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} i \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.

But the two-player one is not! $\implies \mathcal{P}_{\bigcirc}$ needs infinite memory to win.

A new frontier

We focus on arena-independent chromatic memory structures.

A new frontier

We focus on arena-independent chromatic memory structures.

Example for $C = \{a, b, c\}$ and objective $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$.

A new frontier

We focus on arena-independent chromatic memory structures.

Example for $C = \{a, b, c\}$ and objective $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$.

This memory structure suffices in all arenas, i.e., it is always possible to find a suitable α_{nxt} to build an optimal Mealy machine.

A new frontier

We focus on arena-independent chromatic memory structures.

Our characterization⁴

We obtain an equivalent to Gimbert and Zielonka's for finite memory:

- a characterization through the concepts of M-monotony and M-selectivity,
- 2 a one-to-two-player lift.

⁴Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

Extension to stochastic games

We lift⁵ this result to pure arena-independent finite-memory strategies in stochastic games:

- characterization based on generalizations of M-monotony and M-selectivity,
- 2 one-to-two-player lift, from MDPs to stochastic games.

⁵Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023.

Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

Observation

Memory requirements can be higher in infinite arenas: e.g., mean-payoff objectives require infinite memory.

Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

Observation

Memory requirements can be **higher in infinite arenas**: e.g., mean-payoff objectives require infinite memory.

The case of ω -regular objectives⁶

If a victory condition W is ω -regular, then it admits finite-memory optimal strategies in all (infinite) arenas.

⁶Mostowski, "Regular expressions for infinite trees and a standard form of automata", 1985; W. Zielonka, "Infinite games on finitely coloured graphs with applications to automata on infinite trees". 1998.

Extension to infinite (deterministic) arenas (2/2)

The converse⁷

If a chromatic finite-memory structure \mathcal{M} suffices for W in all infinite arenas, then W is ω -regular.

 \hookrightarrow We build a parity automaton for W, based on \mathcal{M} and \mathcal{S}_W , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

⁷Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs". 2023.

Extension to infinite (deterministic) arenas (2/2)

The converse⁷

If a chromatic finite-memory structure $\mathcal M$ suffices for W in all infinite arenas, then W is ω -regular.

 \hookrightarrow We build a parity automaton for W, based on \mathcal{M} and \mathcal{S}_W , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

Corollaries

- **1** Game-theoretical characterization of ω -regularity.
- 2 One-to-two-player lift for infinite arenas.

⁷Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs". 2023.

Other criteria and characterizations

There is a plethora of results related to memory (models vary). Non-exhaustive list:

- characterizations through universal graphs,⁸
- ▷ criteria for half-positionality, ¹⁰
- → one-to-multi-objective lift, ¹¹

→ Find more about chromatic memory in our survey.¹³

⁸Casares and Ohlmann, "Characterising Memory in Infinite Games", 2023.

 $^{^9}$ Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2024; Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2023; Casares and Ohlmann, "Positional ω -regular languages", 2024.

¹⁰Aminof and Rubin, "First-cycle games", 2017.

¹¹Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

 $^{^{12}}$ Le Roux and Pauly, "Extending Finite Memory Determinacy to Multiplayer Games", 2016.

¹³Bouyer, Randour, and Vandenhove, "The True Colors of Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs (Invited Talk)", 2022.

- Randomness

The amazing Mr. Main

Section mostly based on (ongoing) joint work with James C. A. Main. 14

 $^{^{14}}$ Main and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

Randomness

Introducing randomness in strategies (1/2)

A pure strategy is a function $\sigma_{\nabla} \colon V^* V_{\nabla} \to V$.

Randomness

Introducing randomness in strategies (1/2)

A pure strategy is a function $\sigma_{\nabla} \colon V^* V_{\nabla} \to V$.

We may need randomness to deal with, e.g.,

- multiple objectives,

$$a \underbrace{v_1} \underbrace{c} \underbrace{v_0} \underbrace{c} \underbrace{v_2} \underbrace{b}$$

Objective: \mathbb{P}^{σ} [Reach(a)] $\geq \frac{1}{2} \wedge \mathbb{P}^{\sigma}$ [Reach(b)] $\geq \frac{1}{2}$

 \hookrightarrow Achievable by tossing a coin in v_0 .

Several ways of randomizing $\sigma_{\nabla} \colon V^*V_{\nabla} \to V$:

Several ways of randomizing $\sigma_{\nabla} : V^*V_{\nabla} \to V$:

Behavioral strategies

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$$

Randomness

0000000000

Several ways of randomizing $\sigma_{\nabla} : V^*V_{\nabla} \to V$:

Behavioral strategies

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$$

Mixed strategies

$$\mathcal{D}(\sigma_{\nabla}\colon V^*V_{\nabla}\to V)$$

Randomness

0000000000

Several ways of randomizing $\sigma_{\nabla} : V^*V_{\nabla} \to V$:

Behavioral strategies

Controller synthesis

 $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$

Mixed strategies

 $\mathcal{D}(\sigma_{\nabla}\colon V^*V_{\nabla}\to V)$

General strategies

$$\mathcal{D}(\sigma_{\nabla}\colon V^*V_{\nabla}\to \mathcal{D}(V))$$

Several ways of randomizing $\sigma_{\nabla} : V^*V_{\nabla} \to V$:

Behavioral strategies

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$$

Mixed strategies

$$\mathcal{D}(\sigma_{\nabla}\colon V^*V_{\nabla}\to V)$$

General strategies

Randomness 000000000

$$\mathcal{D}(\sigma_{\nabla}\colon V^*V_{\nabla}\to\mathcal{D}(V))$$

Kuhn's theorem 15

All three classes are equivalent in games of perfect recall.

→ Requires access to infinite memory and infinite support for distributions.

¹⁵Aumann, "Mixed and Behavior Strategies in Infinite Extensive Games", 1964.

What about finite-memory strategies?

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of memory states,
- \triangleright m_{init} is the initial state,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\sf up} \colon M \times V \to M$ is the update function.

What about finite-memory strategies?

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of memory states,
- $ightharpoonup m_{\text{init}}$ is the initial state,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to V$ is the next-action function,
- $\triangleright \alpha_{\sf up} \colon M \times V \to M$ is the update function.

Stochastic Mealy machine $\mathcal{M} = \{M, \mu_{\mathsf{init}}, \alpha_{\mathsf{nxt}}, \alpha_{\mathsf{up}}\}$:

- \triangleright *M* is the set of memory states,
- $\triangleright \mu_{\mathsf{init}} \in \mathcal{D}(M)$ is the initial distribution,
- $\triangleright \ \alpha_{\mathsf{nxt}} \colon M \times V \to \mathcal{D}(V)$ is the next-action function,
- $\triangleright \ \alpha_{\sf up} \colon M \times V \to \mathcal{D}(M)$ is the update function.
- ⇒ Three ways to add randomness: initialization, outputs, and updates.

Taxonomy 16 (1/2)

Classes XYZ where X, Y, Z \in {D, R} where D stands for deterministic and R for random, and

- X characterizes the initialization,
- Y characterizes the next-action function,
- Z characterizes the update function.

 $^{^{16}\}mbox{Main}$ and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

Taxonomy (2/2)

This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

Taxonomy (2/2)

This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

→ Collapses may arise for restricted classes of objectives (WiP).

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From *home*, take the *train* or *bike* to reach *work*.

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the **expectancy** of the time to reach work.

From home, take the train or bike to reach work.

Beyond Mealy machines

- reaching work under 40 minutes with high probability;
- minimizing the **expectancy** of the time to reach work.

From home, take the train or bike to reach work.

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From *home*, take the *train* or *bike* to reach *work*.

- reaching work under 40 minutes with high probability;
- minimizing the **expectancy** of the time to reach work.

From home, take the train or bike to reach work.

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From *home*, take the *train* or *bike* to reach *work*.

We are interested in the structure of this payoff set.

We are interested in the structure of this payoff set.

Our result (WiP)

For good payoff functions (\sim expectancy is well-defined),

- 1 the set of achievable payoffs coincide with the convex hull of *pure* payoffs;
- 2 we can approximate any strategy ε -closely by mixing a bounded number of pure strategies.

We are interested in the structure of this payoff set.

Our result (WiP)

For good payoff functions (\sim expectancy is well-defined),

- the set of achievable payoffs coincide with the convex hull of pure payoffs;
- **2** we can approximate *any* strategy ε -closely by **mixing** a bounded number of *pure* strategies.
- ⇒ RDD-randomization is sufficient in most multi-objective MDPs.

Trading memory for randomness

Recall this generalized Büchi game asking to see *a* and *b* infinitely often:

We need (a two-state) memory to win it with pure strategies.

Trading memory for randomness

Recall this generalized Büchi game asking to see *a* and *b* infinitely often:

We need (a two-state) memory to win it with *pure* strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing v_1 and v_2 with non-zero probability ensures it.

Trading memory for randomness

Recall this generalized Büchi game asking to see *a* and *b* infinitely often:

We need (a two-state) memory to win it with *pure* strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing v_1 and v_2 with non-zero probability ensures it.

→ Memory can be traded for randomness for some classes of games/objectives.¹⁷

¹⁷Chatterjee, de Alfaro, and Henzinger, "Trading Memory for Randomness", 2004; Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

Randomness

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

 \hookrightarrow Let us question that.

We want to reach v_3 .

Intuitively, the blue strategy seems simpler than the green one.

We want to reach v_3 .

Intuitively, the blue strategy seems simpler than the green one.

> Yet both are represented as a trivial Mealy machine with a single memory state.

We want to reach v_3 .

Intuitively, the blue strategy seems simpler than the green one.

- > Yet both are represented as a trivial Mealy machine with a single memory state.
- overlooked (basically a huge table).

We want to reach v_3 .

Controller synthesis

Intuitively, the blue strategy seems simpler than the green one.

- > Yet both are represented as a trivial Mealy machine with a single memory state.
- The representation of the next-action function is mostly overlooked (basically a huge table).
 - → Memoryless strategies can already be too large to represent in practice!

Controller synthesis

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

$$1 \underbrace{\begin{array}{c} -N \\ v_0 \\ -N \end{array}}$$

Controller synthesis

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

$$1 \underbrace{\begin{array}{c} -N \\ v_0 \\ -N \end{array}}$$

▶ We need a pseudo-polynomial Mealy machine because it lacks structure.

Controller synthesis

Multi-objectives games involving payoffs often require exponential **memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

$$1 \underbrace{\begin{array}{c} -N \\ v_0 \\ -N \end{array}}$$

- ▶ We need a pseudo-polynomial Mealy machine because it lacks structure.
- \hookrightarrow Polynomial representation if we allow the use of counters.

Multi-objectives games involving payoffs often require exponential **memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

$$1 \underbrace{\begin{array}{c} -N \\ -N \end{array}}_{-N}$$

- ▶ We need a pseudo-polynomial Mealy machine because it lacks structure.
- \hookrightarrow Polynomial representation if we allow the use of counters.

Hot take

Controller synthesis

We should explore novel notions of simplicity, and consider alternative representations of strategies/controllers.

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

$$1 \underbrace{\begin{array}{c} -N \\ v_0 \\ -N \end{array}}$$

- ▶ We need a pseudo-polynomial Mealy machine because it lacks structure.
- \hookrightarrow Polynomial representation if we allow the use of counters.

Hot take

Controller synthesis

We should explore novel notions of **simplicity**, and consider *alternative representations* of strategies/controllers.

 \hookrightarrow We quickly survey a few ones in the next slides.

Structurally-enriched Mealy machines

Idea:

- ▷ Avoid "flattening" structural information about the strategy: better understandability and closer to actual controllers.
- ▶ Link with James's talk about interval strategies in OC-MDPs.
 - ⇒ Changes our way of thinking which strategies are complex or not.

¹⁸Blahoudek et al., "Qualitative Controller Synthesis for Consumption Markov Decision Processes", 2020.

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

Toy example: trying to reach the center (0,0) of a 2D-grid.

instead of

X	y	action
0	1	+
0	2	+
		+
-1	0	\rightarrow
-1	1	\rightarrow

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- Learn a (possibly approximative) decision tree from a given memoryless strategy.
- More understandable and compact than huge action tables.
- More complex tests may reduce size but hinder readability.

Works well in practice... 19

... starting from a given memoryless strategy.

 $^{^{19}}$ Brazdil, Chatteriee, Chmelik, et al., "Counterexample Explanation by Learning Small Strategies in Markov Decision Processes", 2015; Brazdil, Chatterjee, Kretinsky, et al., "Strategy Representation by Decision Trees in Reactive Synthesis", 2018.

Other alternatives

Programmatic representations.

- Closer to realistic code, understandable.
- Strongly linked to the input format of the problem (e.g., PRISM code²⁰), hard to generalize.

Models inspired by Turing machines.

- Powerful but hard to work with.
- → Tentative notion of decision speed.²¹

Neural networks.

- Prevalent in RL.
- Can be coupled with finite-state-machine abstractions. ²²

²²Shabadi, Fijalkow, and Matricon, "Theoretical foundations for programmatic reinforcement learning", 2024.

²²Gelderie, "Strategy machines: representation and complexity of strategies in infinite games", 2014.

²²Carr, Jansen, and Topcu, "Verifiable RNN-Based Policies for POMDPs Under Temporal Logic Constraints", 2020

Focus

Complexity of strategies in controller synthesis.

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

▶ High-level picture w.r.t. memory and randomness.

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

▶ High-level picture w.r.t. memory and randomness.

→ Many questions are still open!

Strategy complexity \neq representation complexity.

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

→ High-level picture w.r.t. memory and randomness.

→ Many questions are still open!

Strategy complexity \neq representation complexity.

Take-home message

We need a proper theory of complexity, and a toolbox of different representations.

→ Ongoing project ControlleRS.

Thank you! Any question?