

Europäisches Pat ntamt

European Patent Office

Offic urope n d s br v ts

(11) EP 0 910 181 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 21.04.1999 Bulletin 1999/16

(51) Int Cl.6: H04B 7/26

(21) Application number: 98308307.2

(22) Date of filing: 13.10.1998

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 17.10.1997 US 953592

(71) Applicant: LUCENT TECHNOLOGIES INC. Murray Hill, New Jersey 07974-0636 (US) (72) Inventor: Kuo, Wen-Yi
Parsippany, New Jersey 07054 (US)

(74) Representative: Johnston, Kenneth Graham et al Lucent Technologies (UK) Ltd, 5 Mornington Road Woodford Green Essex, IG8 OTU (GB)

(54) Dynamic and smart spreading for wideband CDMA

(57) A method for allocating utilization of multiple carriers in a wideband CDMA transmission system first determines the carrier utilization/interference levels for each of the multiple carriers. Based on the carrier utilization/interference level, carrier assignments are allocated on an unequal basis. The allocation of the carrier assignment biases the selection of the carriers away from higher utilized/interfered carriers. An apparatus for implementing the method is also described.

10

Des ription

FIELD OF THE INVENTION

[0001] This invention relates to wireless communications, and more particularly to code division multiple access (CDMA) wireless communications.

BACKGROUND OF THE INVENTION

[0002] Wireless communication provides tetherless access to mobile users and addresses the requirements of two specific and disjoint domains: voice telephony and indoor data LANs. Cellular telephone networks have extended the domain of telephone service over a wireless last hop, while mobile-IP LANs such as Wave-LAN and RangeLAN do the same for indoor users of TCP/IP data networks. Advances with wireless technology and high-speed integrated service wired networking promises to provide mobile users with comprehensive multimedia information access in the near future. For example, Personal Communication Services (PCS) are a broad range of individualized telecommunication services which enable individuals or devices to communicate irrespective of where they are at anytime. Personal Communication Networks (PCN) are a new type of wireless telephone system communicating via low-power antennas. PCNs offer a digital wireless alternative to the traditional wired line.

[0003] The following represent areas of concern in wireless technology, for example, in any wireless communication system, transmitter power has an important impact on system performance. In a noise limited wireless communication system, the transmitted power determines the allowable separation between the transmitter and receiver. The available transmitted power determines the signal-to-noise ratio, which must exceed some prescribed threshold at the receiver input for successful communication of information to occur.

[0004] When transmitting a message signal over a communication channel, both analog and digital transmission methods can be used. Digital methods are preferred due to advantages over analog methods, including: increased immunity to channel noise and interference; flexible operation of the system; common format for the transmission of different kinds of message signals; improved security of communications through the use of digital encryption; and increased capacity.

[0005] Efficient utilization of bandwidth is another concern. One means of accomplishing effective utilization of available bandwidth is through signal multiplexing, in which signals from several message sources are simultaneously transmitted over a common spectral resource. Frequency division multiplex, time division multiplex, and mixtures have been used for implementing signal multiplexed cellular radio systems.

[0006] Another multiple access system involves the use of wideband communications, as opposed to nar-

rowband approaches like frequency division multiple access (FDMA) and time division multiple access (TDMA). In cellular radiotelephone systems such wideband communications have been achieved using code division multiple access (CDMA) spread spectrum techniques. Such spread spectrum systems utilize a modulation technique for spreading the information being communicated over a wide frequency band. This frequency band is typically much wider than the minimum bandwidth required to transmit the information being sent. [0007] In a direct sequence CDMA system, communication between two communication units is accomplished by spreading each transmitted signal over a wide frequency band with a unique user spreading code. This results in a plurality of transmitted signals sharing the same frequency. The ability of such a system to work is based on the fact that each signal is specially time and/or frequency coded to permit its separation and reconstruction at the receiver. Particular transmitted signals are retrieved from the communication channel by despreading a signal from all of the signal by using a

plemented at the transmitter.

[0008] There is a significant investment in spectrum resources and equipment currently supporting narrow-band CDMA. When a wideband CDMA (W-CDMA) system which utilizes several carriers is overlaid on IS-95 carrier(s) there is a capacity loss. In general, any unbalanced interference and unbalanced loading across carriers will degrade the aggregate capacity.

known user spreading code related to the spreading im-

SUMMARY OF THE INVENTION

[0009] The present invention is a method for allocating utilization of multiple carriers in a wideband CDMA transmission system. The method first determines the carrier utilization/interference levels for each of the multiple carriers. Based on the carrier utilization/interference level, carrier assignments are allocated on an unequal basis. The allocation of the carrier assignment biases the selection of the carriers away from higher utilized/interfered carriers. An apparatus for implementing the method is also described.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] A more complete understanding of the present invention may be obtained from consideration of the following description in conjunction with the drawings in which:

FIG. 1A is a representative spectrum for a direct spread forward link;

FIG. 1B is a representative three carrier forward link method for W-CDMA:

FIG. 2 is a typical cell layout which mixes W-CDMA

10

20

cells with IS-95 cells;

FIG. 3 is block diagram of a three carrier forward link;

FIG. 4 is a diagrammatic representation of the spreading of the de-multiplexer for uniform spreading;

FIG. 5 is a diagrammatic representation of an example of the unequal spreading of the de-multiplexer;

FIG. 6 is a graphical representation of the loading utilization across three carrier frequencies with smart spreading in the forward link; and

FIG. 7 is a graphical representation of the loading utilization across three carrier frequencies with smart spreading in the reverse link.

DETAILED DESCRIPTION OF VARIOUS ILLUSTRATIVE EMBODIMENTS

[0011] Although the present invention is particularly well suited for a multi-carrier W-CDMA system, such as a three carrier W-CDMA system and shall be so described, the present invention is equally well suited for use with other multiple band carrier systems.

[0012] CDMA modulation techniques have been employed in communication systems to permit a large number of users to communicate with one another. In a CDMA communication system, all communication channels are multiplexed into one or several common broadband frequencies. Each channel is differentiated by a unique spreading code. Prior to transmission, each information signal is modulated with a spreading code to convert the information signal into a broadband signal. A receiver demodulates the received broadband signal by combining the broadband signal with the corresponding spreading code to recover the information signal. The spreading code is typically a binary code. Since the same wideband is available to all users, information signals in other channels may appear as cochannel interference or noise when the received signal is demodulated by the spreading code.

[0013] Several alternative Wideband CDMA (W-CD-MA) systems which are compatible with IS-95 are currently being proposed for widespread implementation. One proposal uses in the forward link 3 parallel 1.25 MHz carriers and spreads the encoded bits uniformly over the 3 carriers for frequency diversity. However, spreading uniformly over 3 carriers with overlaid IS-95 carrier(s) will cause some capacity loss. In general, any known unbalanced interference and unbalanced loading across carriers will degrade the aggregate capacity. The present invention uses dynamic and smart (non-uniform) spreading to achiev maximum capacity in the

co-existence systems or systems with unbalanced interference across carriers. By using dynamic and smart spreading, the present invention provides improved capacity over uniform spreading, in particular for the following conditions: W-CDMA overlaid with IS-95 carrier (s); avoidance for some frequencies due to microwave usage or any known jammer(s); and any deterministic or statistical difference of interference across different carriers.

[0014] Referring to FIG. 1A, there is shown a representative spectrum for a direct spread forward link which is contrasted with a single wideband forward link. FIG. 1B shows a representative multi-carrier forward link method for W-CDMA systems which is compatible with IS-95 (CDMA One) which employs 3 parallel 1.25 MHz carriers (f₁, f₂ and f₃) and spreads the encoded bits equally over the 3 carriers for frequency diversity.

[0015] Referring to FIG. 2, there is shows a cell layout which mixes W-CDMA cells with IS-95 cells to provide high rate data coverage. An advantage to multi-carrier forward link for W-CDMA is that the capacity is less impacted in overlaid systems with IS-95. This is because the orthogonality in the forward link can be maintained for the overlaid systems. Otherwise, as with direct spreading, the W-CDMA and the IS-95 will be interfering each other and has significant loss in capacity. However, even though the orthogonality is maintained in the multicarrier forward link for the overlaid carrier, the forward link capacity is not utilized efficiently.

[0016] For example, assume W-CDMA is deployed in f₁+f₂+f₃ and is overlaid with IS-95 in f₁. For the uniform spread method, bits are uniformly spread into the carriers and therefore the power usage at each carrier for one specific user must be the same, due to the fact that power control is based on frame errors and each frame's bits are uniformly spread into the carriers. The net effect is that the uniform spread method will have larger aggregate power usage in f1 than in f2 and f3 because of the narrow-band (IS-95) usage in f1. The associated interference in f, will then be larger and effectively cost more power per user to maintain the required signal to interference ratio. On the other hand, the smart spread method assigns more bits per user into the carriers with less interference and less loading so that the associated interference in each carrier is roughly equalized in order to save the power per user and maximize the potential capacity.

er control while the W-CDMA system described above has fast forward power control. This means the forward power consumption in IS-95 is much less efficient than in W-CDMA. Only a few users in IS-95 can easily use up a large portion of the forward loading capacity due to power control deficiency as well as other deployment issues (like multiple pilots area). Therefore blocking in the overlaid system can occur prematurely if W-CDMA does not utilize the remaining power efficiently. While it can be argued that if all three carriers are quipped with

IS-95, then the loading balance can be solved, by the time W-CDMA is introduced, it would not be practical to have operators install additional IS-95 systems for this purpose.

[0018] Furthermore, if there are known forward link jammers in some cell area, such as microwave users that the system operator can not afford to mitigate, or more generally, if there exists a deterministic or statistical difference of interference across W-CDMA frequencies due to difficulty in spectrum clearance, similar inefficient loading/capacity usage will occur. Blocking will occur in the system before the designed traffic load.

[0019] In order to address this kind of unbalanced issue, the present invention utilizes dynamic and smart spreading over the W-CDMA frequencies. Smart spreading means that unequal spreading should be based on the knowledge of the wireless channels to achieve the goal of maximum utilization of potential capacity by equalizing the loading and interference across the carriers. The fundamental idea is to spread a different amount of encoded bits (i.e., non-uniformly) to different carriers such that power usage on different carriers can be different for the same user. The per bit energy is still regulated by the power control within each carrier such that error performance can be maintained roughly the same. In this way, the loading can be easily utilized to its full capacity in spite of any unbalance across the operating carriers.

[0020] Referring to FIG. 3, there is shown a block diagram of the multi-carrier forward link. Input data is coupled to a convolutional encoder and puncturing system 102. The output of the convolutional encoder and puncturing system 102 is coupled to a symbol repetition system 104. The output of the symbol repetition system 104 is coupled to a block interleaver (20 ms) 106. A user n long code mask is coupled to a long code generator 110. The output of the long code generator 110 is coupled to a decimator 112. The output of the block interleaver 106 and the output of the decimator 112 are coupled to a multiplier 108. The output of the multiplier 108 is coupled to a de-multiplexer 114. In the case of a three carrier W-CDMA system, the de-multiplexer 114 has three outputs A, B and C, where each output A, B and C is coupled to a corresponding binary to 4 level circuit 116. The output of the binary to 4 level circuit 116, the Walsh Code # and the Walsh Length are coupled to a corresponding Walsh Coding circuit 118. The output of the Walsh Coding circuit 118 is coupled to a corresponding QPSK spread circuit 120. The output of the QPSK spread circuit 120 is coupled to a corresponding RF amplifier 122 which produces a corresponding carrier f1, f2 or f3.

[0021] FIG. 4 shows a diagrammatic representation of the spreading of the de-multiplexer 114 where all encoded bits are uniformly spread into 3 carriers. In other words, the spreading is allocated equally across the three frequencies, such as f_1 , f_2 , f_3 , f_1 , f_2 , f_3 , f_1 , f_2 , f_3 ... or f_3 , f_2 , f_1 , f_3 , f_2 , f_1 , f_3 , f_2 , f_1 ... etc.

[0022] FIG. 5 shows a diagrammatic representation

of an example of the unequal spreading of the de-multiplexer 114 of the present invention. This example shows an implementation of a spreading ratio of 1:2:2 for f_1 : f_2 : f_3 . In other words the spreading is allocated unequally across the three frequencies, such as f_1 , f_2 , f_3 , f_2 , f_3 , f_1 , f_2 , f_3 , f_3 , f_4 , f_4 , f_5 , f_5 , f_7 , f_8

[0023] Referring to FIG. 6 there is shown a graphical representation of the loading utilization across three carrier frequencies with smart spreading in the forward link. In this particular representative embodiment carrier f_1 is loaded by IS-95 users while f_2 and f_3 do not have IS-95 users. Two W-CDMA users are shown in the loading. User I was assigned a spreading ratio of 1:2:2 for f1:f2: f3. In other words the spreading for User 1 is allocated unequally across the three frequencies, such as f1, f2, 13, 12, 13, 11, 12, 13, 12, 13... When an additional user, User 2, comes on, carrier f₁ still has a higher utilization and interference than carrier f2 or carrier f3. Therefore, the allocation is continued to be biased towards carrier 12 and carrier f3 over carrier f1. User 2 was assigned a spreading ratio of 1:2:2 for f1:f2:f3. In other words th spreading for User 2 is allocated unequally across the three frequencies, such as f_1 , f_2 , f_3 , f_2 , f_3 , f_1 , f_2 , f_3 , f_2 , f_3 ... An unequal allocation continues for additional users with the selection being biased away from the carrier frequency that has a higher utilization and interference. The allocation can also shift to an equal allocation as the utilization balances out amongst the carrier frequencies. Further, the allocation is biased to compensate for the loading caused by known jammers as well as any deterministic or statistical difference of interference across the different carriers.

[0024] In practice, the air interface should provide the flexibility to change the spreading ratio by sending a message from base stations to mobile stations (terminals). The channel assignment message and the like are the candidates to accomplish sending this message. The message should be able to specify in details which Walsh channels are going to be used in each carrier and the spreading ratios across the carriers. Dynamic spreading refers to changing spreading ratios of a particular user over time due to environmental variations such as moving in or out of the jammer zone, etc. The proposed method will require the terminal (mobile unit) for W-CDMA to do more buffering due to the unequal spreading across carriers.

[0025] The method described above works for forward link. However, there are significant reasons for improving the forward link first. In high speed data transmission for which W-CDMA is aimed for, downloading data from Internet has been recognized as the dominant

10

traffic demand. Forward link usage is expected to be higher than reverse link. In 13K IS-95 practice, it has been well known that the forward link is the bottleneck in terms of capacity. Again, slow power control and less coding gain are major factors. Even if EVRC (8K) is deployed later, it is still possible (depending on locations) that the forward link will be the limiting link for capacity due to deployment constraints where multiple dominant pilots are prevalent.

[0026] Nevertheless, after improving the forward link capacity, the capacity bottleneck in the reverse link will come into effect. For similar reasons previously described, the terminal (mobile unit) can also adopt the smart spreading method such that efficient loading utilization in the reverse link can be achieved. A simple way for different spreading in reverse link is to have the terminal (mobile unit) have the ability to transmit a signal in one of two forms, either a 3*1.25 MHz (3.75 MHz) carrier or in any of a single 1.25 MHz carrier. In other words, a terminal should be able to spread with a higher chip rate (3.75 MHz) and also with the lower rate option (1.25 MHz).

[0027] Referring to FIG. 7 there is shown a graphical representation of the loading utilization across three carrier frequencies with smart spreading in the reverse link. In this particular representative embodiment carrier f₁ is loaded by IS-95 users while f2 and f3 do not have IS-95 users. Four W-CDMA users are shown in the loading. User 1 was assigned to transmit on a single 3*f (3*1.25mhz) signal which results in equal loading of carriers f₁, f₂ and f₃. User 2 was assigned to transmit on a single 3*f (3* 1.25mhz) signal which results in equal loading of carriers f₁, f₂ and f₃. User 3 was assigned to transmit at the lower rate option on only carrier f3. User 4 was assigned to transmit at the lower rate option on only carrier f4. An unequal allocation can continue for additional users with the selection being biased away from the carrier frequency that has a higher utilization and interference. The allocation can also shift to an equal allocation as the utilization balances out amongst the carrier frequencies. Further, the allocation is biased to compensate for the loading caused by known jammers as well as any deterministic or statistical difference of interference across the different carriers.

[0028] Numerous modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of the structure may be varied substantially without departing from the spirit of the invention and the exclusive use of all modifications which come within the scope of the appended claim is reserved.

Claims

 A method for allocating utilization of multiple carriers in a wideband CDMA transmission system comprising the steps of:

determining carrier utilization/interference for each of the multiple carriers; and

allocating carrier assignment on an unequal basis;

wherein the allocation of said carrier assignment biases selection of carriers away from higher utilized/interfered carriers.

- The method as recited in claim 1 wherein the step of determining carrier utilization/interference further comprises either determining non wideband CDMA carrier utilization of the multiple carriers, or determining loading caused by known jammers, or determining any deterministic or statistical difference of interference across the multiple carriers, or determining wideband CDMA carrier utilization of the multiple carriers.
- 25 3. The method as recited in claim 1, wherein the step of determining carrier utilization/interference is dynamic.
- 4. The method as recited in claim 1, wherein the step of allocating carrier assignment comprises either selecting a particular carrier of the multiple carriers less often for a user, or selecting said higher utilized/ interfered carrier less often.
- 35 5. Apparatus for allocating utilization of multiple carriers in a wideband CDMA transmission system comprising:

a means for determining carrier utilization/interference for each of the multiple carriers; and a de-multiplexer for allocating carrier assignment on an unequal basis;

wherein said de-multiplexer biases selection of carriers away from higher utilized/interfered carriers.

- 6. Apparatus as recited in claim 5 wherein the means for determining carrier utilization/interference further comprises either means for determining non wideband CDMA carrier utilization of the multiple carriers, or means for determining loading caused by known jammers, or means for determining any deterministic or statistical difference of interference across the multipl carriers, or means for determining wideband CDMA carrier utilization of the multiple carriers.
 - 7. Apparatus as recited in claim 5, wherein the means

50

for determining carrier utilization/interference functions dynamically.

- Apparatus as recited in claim 5 wherein said demultiplexer selects a particular carrier of the multiplexer selects as particular carrie
- Apparatus as recited in claim 5 wherein said demultiplexer selects said higher utilized/interfered carrier less often.

Europäisch s Patentamt

European Pat nt Offic

Offi européen d s br vets

(11) **EP 0 910 181 A3**

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 09.07.2003 Bulletin 2003/28

(51) Int CI.7: H04B 7/26, H04Q 7/38

(43) Date of publication A2: 21.04.1999 Bulletin 1999/16

(21) Application number: 98308307.2

(22) Date of filing: 13.10.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 17.10.1997 US 953592

(71) Applicant: LUCENT TECHNOLOGIES INC. Murray Hill, New Jersey 07974-0636 (US) (72) Inventor: Kuo, Wen-Yi
Parsippany, New Jersey 07054 (US)

(74) Representative: Johnston, Kenneth Graham et al Lucent Technologies (UK) Ltd, 5 Mornington Road Woodford Green Essex, IG8 OTU (GB)

(54) Dynamic and smart spreading for wideband CDMA

(57) A method for allocating utilization of multiple carriers in a wideband CDMA transmission system first determines the carrier utilization/interference levels for each of the multiple carriers. Based on the carrier utilization/interference level, carrier assignments are allo-

cated on an unequal basis. The allocation of the carrier assignment biases the selection of the carriers away from higher utilized/interfered carriers. An apparatus for implementing the method is also described.

EUROPEAN SEARCH REPORT

Application Number EP 98 30 8307

Y E N *** * * * * * * * * * * * * * * * *	Citation of document with of relevant pass JS 5 210 771 A (Kill May 1993 (1993) Column 1, line of column 2, line of column 4, line of column 6, line of column 6, line of column 1, line of column 1, line of column 3, line of column 4, line of column 4, line of column 9, line of column 11, line of	OTZIN MICHAEL -05-11) 6-9 * 21 - column 3 57 - column 5 36 - column 7 RICSSON BUSIN 96 (1996-06-1 38 - line 55 1 - line 31 * 17 - line 42 18 - line 40 9 - column 1 DNY CORP) 7-07-30)	, line 27 %, line 28 % , line 6 * ESS MOBILE 2) *	1,5 2-4,6-9	CLASSIFICATION OF THE APPLICATION (Int.Cl.6) H04B7/26 H04Q7/38
A	column 1, line (column 2, line (column 4, line (column 6, line (column 6, line (column 6, line (column 1, line (column 1, line (column 3, line (column 4, line (column 9, line (column 11, line (column 11, line (column 11, line (column 8) (column 11, line (column 8) (column 8) (column 11, line (c	-05-11) 6-9 * 21 - column 3 57 - column 5 36 - column 7 RICSSON BUSIN 96 (1996-06-1 38 - line 55 1 - line 31 * 17 - line 42 18 - line 40 9 - column 1 DNY CORP)	, line 27 , line 28 , line 6 * ESS MOBILE 2) *	2-4,6-9 1,5 2-4,6-9	H04Q7/38
Y E N * * * * * * * * * * * * * * * * * *	column 2, line 3 column 1, line 3 column 1, line 3 column 3, line 3 column 4, line 3 column 1, line 5 column 1, line 6 figure 8 * P 0 786 890 A (SOO July 1997 (1997	21 - column 3 57 - column 5 36 - column 7 RICSSON BUSIN 96 (1996-06-1 38 - line 55 1 - line 31 * 17 - line 42 18 - line 40 9 - column 1 DNY CORP) 7-07-30)	, line 28 ' , line 6 * ESS MOBILE 2) * *	1,5 2-4,6-9	TECHNICAL FIFL DS
A	column 1, line 3 column 3, line 3 column 4, line 3 column 9, line 3 column 11, line 5 figure 8 * P 0 786 890 A (SO 0 July 1997 (1997	96 (1996-06-1 38 - line 55 1 - line 31 * 17 - line 42 18 - line 40 9 - column 1 DNY CORP) 7-07-30)	2) * *	2-4,6-9	TECHNICAL FIFL DS
A EI	column 3, line 1 column 4, line 1 column 9, line 1 column 11, line figure 8 * P 0 786 890 A (SC 0 July 1997 (1997	1 - line 31 * 17 - line 42 18 - line 40 9 - column 1 DNY CORP) 7-07-30)	* *	*	TECHNICAL FIFL DS
A EI	P 0 786 890 A (SC 0 July 1997 (1997	7-07-30)		1-9	TECHNICAL FIELDS
					SEARCHED (Int.Cl.6)
i					H04Q H04B
					,
. A repaire	٠ - س	+ 3 *		N 480	
Th	e present search report has	been drawn up for all	claims	-	
	ce of search		pletion of the search		Examiner
MU	NICH	12 Ma	/ 2003 Rosenauer, H		
X : particular Y : particular document	ORY OF CITED DOCUMENTS ty relevant if taken alone ty relevant if combined with anot t of the same category goal background	<u> </u>	T: theory or principl E: earlier patent do after the filing dat D: document cited i L: document cited h	s underlying the invited in the invi	ention ed on, or

EPO FORM 1503 03.52 (P04C01)

EP 0 910 181 A3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 30 8307

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-05-2003

Patent docume cited in search rep		Publication date		Patent family member(s)	, Publication date
US 5210771	A	11-05-1993	BR CN DE FR GB HK IT JP KRX SG	9205359 A 2092292 A1 1069610 A ,B 4292564 C2 4292564 T0 2680064 A1 2264027 A ,B 2290928 A ,B 1007225 A1 102076 A 1258453 B 2697306 B2 6501145 T 9611867 B1 9204488 A1 45273 A1	31-05-1994 02-02-1993 03-03-1993 29-01-1998 31-07-1997 05-02-1993 11-08-1993 10-01-1996 01-04-1999 29-12-1994 26-02-1996 14-01-1998 27-01-1994 03-09-1996 01-02-1993 16-01-1998
EP 0716514	A	12-06-1996	WO EP AU CA DE FI JP US	9303558 A1 0716514 A1 717786 B2 4025195 A 2164528 A1 69432306 D1 955852 A 8237726 A 5907812 A	18-02-1993 12-06-1996 30-03-2000 13-06-1996 08-06-1996 24-04-2003 08-06-1996 13-09-1996 25-05-1999
EP 0786890	A	30-07-1997	JP AU AU CN EP SG US	9205411 A 710869 B2 1234997 A 1169070 A ,B 0786890 A2 64963 A1 6400679 B1	05-08-1997 30-09-1999 07-08-1997 31-12-1997 30-07-1997 25-05-1999 04-06-2002
		e ge ya e e			·

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82