Virtual Realityを用いた外科的矯正治療の手術計画立案と

三次元手術シミュレーションの遠隔活用

Utilization of 3DCG data in virtual surgery of orthognathic surgery

〇茶谷竜仁1、古谷忠典1、西方聡2、工藤章裕3、大和志郎4、堀向弘眞2、布留川創5、茶谷仁史1

¹ユニ矯正歯科クリニック, ²札幌東徳洲会病院 歯科口腔外科, ³帯広第一病院 歯科口腔外科, ⁴フォレスト矯正歯科クリニック, ⁵イデア矯正歯科 Tatsuhito CHAYA¹, Tadanori FURUYA¹, Satoshi NISHIKATA², Akihiro Kudou³, Shirou Yamato⁴

Hiromasa HORIMUKAI², Hajime FURUKAWA⁵, Hitoshi CHAYA¹

¹Uni orthodontic clinic, ²Sapporo Higashi Tokushukai Hospital Dept. of Dentistry and Oral Surgery, ³Obihiro Dai-ichi Hospital Dept. of Dentistry and Oral Surgery, ⁴Forest Correction odontology Department, ⁵IDEA Orthodontic Office

【目的】

外科的矯正治療は矯正歯科医と口腔外科医の連携が重要であるが、 治療計画の立案やその修正の伝達が円滑にできず、治療計画の実現 に差異が生じることがある。当院ではコミュニケーションツールの 一つとして、コンピュータグラフィック(以下CG)をVirtual Reality (以下VR) で活用することで、三次元的画像の各種の分析、治療計 画の立案および修正に役立てているので報告する。

【方法-1.VR、モニター、模型上における計測の精度検証】

I)STOの作成

コーンビームCT(以下CBCT)を用いて患者および患者の石膏模 型を咬合器にマウントしたものを撮影し、DICOMデータを得た。頭 蓋顎顔面手術用仮想術前計画ソフトウェア (ProPlan CMF, Materialise、以下ソフトウェア:写真1)を用いて上下顎骨の移動量 および移動方向を設定し、STOを作成した。

それらからSTLデータを作成し、医療用VRシステム (HoloeyesXR,HoloEyes社)に入力し、3Dプリンタ (ZENITH, ヨシダ Form2, Fomlabs:写真2) にて組み換え可能な実体模型(写真4)と 干渉部の小骨片模型を作製した。さらに、 VRゴーグル (Occulus Quest:写真3)にて立体視と操作を行った。

写真1: ソフトウェア上の頭蓋骨

写真2: 実体模型

写真3: VRゴーグル 左:スタンドアローン型 右:PC接続型

Ⅱ)各装置による計測

1:Minorセグメントの干渉量の測定

2jaw surgeryにてSTOを作製した3症例(症例A~C)を対象とした。 下顎右側のSet Back量とMinorセグメントの干渉量を測定するために、 Minorセグメントと下顎体の重なり合う部分の抽出を行った(以下干 渉部)。STO作成時の三次元基準平面を参考にして、干渉部の幅径 (計測①)と頬側面の長径(計測②)を測定した(写真4)。

2:上顎骨のアドバンス量の測定

上顎骨の前方移動量についてディスカッションをする際に、二次元 画面上でのコミュニケーションが難しかった2症例(症例D,E)を対 象とした。上顎の右側ついて、固定用プレート走行部相当部位のアド バンス量(計測③)を測定した(写真5)。

①~③を計測するために、おおよそ同一と考えられる箇所をそれぞ れポインティングし、距離を計測した。各計測は同一の計測者が行い、 10回ずつ計測し、平均と分散を求め、比較を行った。

写真4: ソフトウェア上の右側骨片(緑)、干渉部(赤)と干渉部の実体模型,

写真5:ソフト上の頭蓋骨と実体模型上でのアドバンス量の測定(③:オレンジ)

【結果-1】各装置における平均と分散の差

すべての計測において、各装置の計測値の平均値の差は0.2mm以下で あった。また、すべての計測において、VR上での計測がソフト上で の計測と実体模型上での計測と比較して、有意に分散が小さかった。 1.計測①結果

A-1	平均	分散	B-①	平均	分散	c -①	平均	分散
ソフト	3.04	1.56×10E-2	ソフト	2.15	1.64×10E-2	ソフト	1.54	1.95 × 10E-2
実体模型	3.00	1.82 × 10E-2	実体模型	2.11	1.96 × 10E-27	実体模型	1.58	1.93 × 10E-2
VR	2.96	9.05×10E-4	VR	2.08	9.34×10E-4	VR	1.49	9.78×10E-4
		表1: 名	ト装置における	計測①の	平均と分散 *p	< 0.05		

2.計測②結果

	000,0000	23 BA			22 BA		-	22 HA
		4.56 × 10E-3						
		6.92 × 10E-37						
VR	8.16	1.43 × 10E-3	VR	4.38	9.88×10E-4	VR	53.3	1.39×10E-3

3.計測③結果

D-(3)	平均	分散	E-(3)	平均	分散	
ソフト		6.78×10E-3			8.55×10E-3	
実体模型	3.34	1.23×10E-2	実体模型	4.40	1.88×10E-2	*
VR	3.42	8.74×10E-4	VR	4.41	8.89 × 10E-4	
表3:	各装置に	おける計測③の	平均と分散 *	p < 0.05		

【方法-2.カンファレンスにおけるVRの活用方法】

矯正歯科医 にて指し示す

写真7:カンファレンスにおけるVRの活用例

CG用いた仮想手術の結果から作成した実体モデルを使って手術計 画および治療目標のディスカッションを行った(写真7)。また、こ の形状データを利用して、VRによる多様な画像によって、多方向か ら任意の拡大率で立体的な検討が可能となった。また、資料を浮かべ た仮想空間に、数人でVRゴーグルとハンドセット、マイク、スピー カを用いて入室してディスカッションを行った(写真8、図1)。

写真8:カンファレンスにおけるVRの活用例

図1:VRを利用した遠隔ディスカッション例 【結果-2】各装置における平均と分散の差

資料を浮かべた仮想空間に、VRゴーグルとハンドセット、マイク、 スピーカを用いて入室することにより、身振り手振りも交えて遠隔で のディスカッションも可能であった。また、VR技術による立体視に より、多方向から立体的な検討が可能であった。

【考察】

VR上での計測における分散が小さかった理由としては、VR上では 計測部位を拡大しながら計測することで、計測時のポインティングが 安定したためと考えられる。VR技術や実体模型を用いることで、ロ 腔外科医と矯正歯科医のディスカッションが、双方にとって、より分 かりやすいものになったと考える。口腔外科医と矯正歯科医の認識の 差を埋めることは、精密な顎変形症の手術を行う際に必須である。認 識の差を埋めるためには、ディスカッションが必要であり、適切なデ バイスを用いたディスカッションは有用であると考えられる。

VRでは第三者の視界が表示できるため、他者の視界が理解しやす くなる。また、現実世界では不可能である、他者と全くの同一の視点 から物体を見るということが可能となる。その視点やハンドセットで 示したログは記録され、ディスカッションの追体験を行うこともでき るようになった。3DCGの活用を二次元画面上でとどめるだけではな く、立体視や実体模型を作製するといった、三次元的な応用に広げる ことが必要であると考えられる。

【結論】

CGによる仮想手術により、従来の資料では難しかった骨片の干渉の 位置や大きさを定量化しVR上で立体化する事は有用だと考えられる