电机学实验——三相异步电动机 实验报告

专业: 电气及其自动化 班级: 电气1908班 日期: 2021年10月 31日 成绩:

实验组别: 1 第1次实验 指导老师:

学生姓名: 柯依娃 同组人姓名: 韩笑宇 肖婷筠 刘鸿娇 陈迎晓 高子涵

三相异步电动机

一、实验目的

学习异步电动机参数及运行特性的测定方法

二、实验内容

- 1. 负载实验求取工作特性 $P_1, I_1, s, \eta, T_2, \cos \varphi_1 = f(P_2)$
- 2. 空载实验测取空载特性 $I_0, P_0 = f(U_0)$
- 3. 短路实验测取短路特性 $I_k, P_k = f(U_k)$

三、实验线路与原理

异步电动机拖动他励直流发电机(直流电动机当发电机用)发电,供给电阻 负载。异步电动机为笼型转子结构,采取调压器降压起动。

四、实验任务与实验操作过程

1、测取工作特性

- (1)启动三相异步电动机,达到空载运行状态:启动异步电动机。三相调压器输出电压置零,合上三相调压器输出开关K1,通过调压器升高三相电源电压,启动异步电动机,注意直流电机的转向应与机壳上的箭头标示转向一致。将异步电动机电源电压逐步调到额定电压
- (2)加负载后接通直流发电机: 先将交直流负载箱直流负载R开关设置到适当的阻值,将10A和5A空开合上,直流负载电阻约14.67Ω,合上负载箱的电源开关和直流R开关。合上实验台的直流接触器K3,接通直流负载。先接通直流负载,是为了避免电流冲击
- (3)启动直流励磁,即控制三相异步电动机的负载:启动直流电机励磁电源(打开直流电机励磁电源开关,见图212左上)将电压调到0。打开直流电机励磁电源开关K2,接通直流电机励磁绕组,缓慢增加励磁电压,使直流电机输出电压上升,其输出功率增加,从而使异步电动机的定子电流上升。
- (4)调节直流励磁控制三相异步电动机的负载:保持异步电动机电源电压为额定电压不变,调节直流电机励磁电流,使异步电动机定子电流I从 $I=1.2I_N$ 下降到 $0.5I_N$,读取异步电动机参数 P_1,U_1,I_1,P_2,T_2,n ,记录于表中,并计算功率因数,效率和转差率.

$$cos\varphi_{1} = \frac{P_{1}}{\sqrt{3}U_{1}I_{1}}$$

$$\eta = \frac{P_{2}}{P_{1}} * 100\%$$

$$s = \frac{n_{1} - n}{n_{1}}$$
(1)

序号	P_1/kW	U_1/V	I_1/A	P_2/kW	T_2/Nm	n/(r/min)	$cos(arphi_1)$	η	s
1	2.470	379.6	4.451	2.0	13.8	1452	0.84	80.97%	0.032
2	2.283	379.9	4.204	1.9	12.9	1457	0.83	83.22%	0.029
3	2.138	379.0	3.984	1.8	12.2	1459	0.82	84.19%	0.027
4	2.013	380.3	3.805	1.7	11.4	1462	0.80	84.45%	0.025
5	1.855	380.8	3.570	1.6	10.5	1465	0.79	86.25%	0.023
6	1.742	381.3	3.410	1.5	9.8	1468	0.77	86.11%	0.021
7	1.562	381.6	3.182	1.3	8.8	1471	0.74	83.23%	0.019
8	1.420	381.5	3.005	1.2	7.9	1473	0.72	84.51%	0.018
9	1.248	381.8	2.795	1.0	6.8	1478	0.68	80.13%	0.015
10	1.077	381.9	2.615	0.8	5.8	1482	0.62	74.28%	0.012
11	0.735	382.2	2.289	0.5	3.7	1488	0.49	68.03%	0.008
12	0.228	382.6	1.997	0.0	0.6	1497	0.17	0.00%	0.002

图一: 三相异步电动机工作特性图

2、空载实验

试验前,断开K2、K3,使异步电动机轴上不带负载。然后起动异步电动机调节调压器,使从1.2逐步下降到,直至电动机转速发生明显变化、空载电流明显回升为止,中间测取8~10点,读取 I_0, U_0, P_0 记录于表中。

注意:实验过程中电压应单方向调节;必须测取额定电压下的数据。

$$P_{Cu1} = 3R_1 I_0^2$$

$$P' = P_0 - P_{Cu1}$$
(2)

表3.3-2 三相异步电动机的空载试验

序号	U_0/V	I_0/A	P_0/W	P_{cu1}/W	P'/W
1	454.8	2.578	229.9	47.85	182.05
2	419.7	2.262	200.8	36.84	163.96
3	391.2	2.031	183.7	29.70	154.00
4	362.2	1.830	169.4	24.11	145.29
5	330.7	1.654	155.7	19.70	136.00
6	299.1	1.475	144.7	15.66	129.04
7	271.0	1.314	133.7	12.43	121.27
8	241.3	1.144	131.1	9.42	121.68
9	208.6	0.980	117.3	6.91	110.39
10	181.0	0.863	108.3	5.36	102.94
11	148.8	0.740	102.9	3.94	98.96
12	116.8	0.687	98.0	3.40	94.60

图二: 三相异步电动机空载损耗图

3、短路实验(堵转实验)

将异步电动机的转子通过机械装置堵住,将调压器输出电压调到零。合上开关K1,逐步升高电压U1,使 $I_1\approx 2I_N(<10A)$ 。然后逐步降低电压,使电流 I_1 逐步减小,中间测取8~10点,读取 U_k,I_k,P_k 记录于表3.3-3中

注意: 用机械装置堵住异步电动机转子要经过实验辅导老师检查。实验过程中电压应单方向调节。必须測取额定电流下的数据。

表3.3-2 三相异步电动机的短路试验

序号	U_k/V	I_k/A	P_k/W
1	127.6	8.847	1024.0
2	117.6	7.996	807.4
3	108.0	7.245	696.5
4	98.4	6.509	565.4
5	87.8	5.730	440.2
6	76.3	4.942	327.0
7	64.8	4.153	230.4
8	54.6	3.487	162.4
9	40.5	2.578	87.8
10	27.3	1.728	39.8
11	15.7	0.978	13.1
12	0.0	0.516	0.0

$$Z_k = \frac{U_k}{\sqrt{3}I_k} = 8.86\Omega$$
 (3)
 $R = \frac{P_k}{3I_k^2} = 4.43\Omega$
 $X_k = \sqrt{Z_k^2 - R_k^2} = 7.67\Omega$

图三: 三相异步电动机短路特性图

四、异步电动机等效电路

图四: 三相异步电动机一相等效图

$$|R_1 + X_{1\sigma}j + R_m + X_m j| = \frac{U_o \phi}{I_o \phi}$$
 $R_1 + R_m = \frac{P_0}{3I_{0\phi}^2}$
 $R_k \approx R_1 + R_2' + \frac{1-s}{s}R_2'$
 $X_k \approx X_{1\sigma} + X_{2\sigma}'$
 $X_{1\sigma} \approx X_{2\sigma}$
 (4)

Solve them and we get

$$R_1 = 2.4\Omega, R'_2 = 4.49\Omega, R_m = 5.37\Omega$$
 (5)
 $X_{1\sigma} = X'_{2\sigma} = 3.82\Omega$
 $X_m = 108.12\Omega$

五、思考题

1. 什么是异步电动机的空载运行状态? 在空载实验时转子绕组应该开路还是短路? 什么是异步电动机的短路状态? 短路实验时为什么要将转子堵住?

空载运行状态: 电动机的空载即无机械负载的运行状态, 转矩为0, 转子正常旋转, 定子绕组正常接入对称三相电的状态

开路, 使得 $s\approx 0$

短路状态: 电动机的短路即无机械功率的运行状态, 转速为0, 定子绕组接入 对称三相电的状态

转子堵转时,转子回路的机械功率等效电阻 $\frac{1-s}{s}R'=0$

2. 为什么空载实验中,当电压降得太低而使转速发生明显下降时测得的数据没有 意义? 事实上,空载损耗基本不变,考虑到要给持电机空转,必须供给一定的功率,故随着电压降低,无法供给,所以转速发生明显下降,此时 $\frac{1-s}{s}R'!=0$,不再满足开路条件,没有意义