Mathematical Logic (M345P65) Problem Class, week

[1] Suppose \mathcal{L} is a first-order language with relation, function and constant symbols:

$$(R_i : i \in I); (f_j : j \in J); (c_k : k \in K),$$

where R_i is of arity m_i and f_j is of arity n_j .

- (a) Based on what you know to be the definition of 'isomorphism' in the case of groups, or rings (or graphs or orderings), write down a definition of what it should mean for two \mathcal{L} -structure \mathcal{A} and \mathcal{B} to be isomorphic.
- (b) Suppose α is an isomorphism from the \mathcal{L} -structure \mathcal{A} to the \mathcal{L} -structure \mathcal{B} . Suppose v is a valuation in \mathcal{A} . Let w be the vaulation in \mathcal{B} with $w(x_i) = \alpha(v(x_i))$ for all variables x_i . Prove that for every \mathcal{L} -formula ϕ ,

v satisfies ϕ in $\mathcal{A} \Leftrightarrow w$ satisfies ϕ in \mathcal{B} .

(Use induction on the length of ϕ ...)

(c) With A, B as in (b), show that for every L-formula ϕ :

$$\mathcal{A} \models \phi \Leftrightarrow \mathcal{B} \models \phi$$
.

[2] It's difficult to do any reasoning in mathematics without using the equality symbol. In 1st-order logic, we use the following terminology to handle equality. We will say more about this in week 6 or 7.

A first-order language with equality $\mathcal{L}^{=}$ is a 1st-order language with a distinguished 2-ary relation symbol = . An $\mathcal{L}^{=}$ -structure \mathcal{A} is normal if the symbol = is interpreted as equality in \mathcal{A} .

We write the more usual ' $x_1 = x_2$ ' instead of ' $= (x_1, x_2)$ ' in $\mathcal{L}^=$ -formulas.

Suppose $\mathcal{L}^{=}$ is a language with equality which also has a 2-ary relation symbol R.

- (a) Suppose $n \in \mathbb{N}$. Write down a closed $\mathcal{L}^=$ -formula σ_n with the property that, for every normal $\mathcal{L}^=$ -structure \mathcal{A} we have $\mathcal{A} \models \sigma_n$ iff the domain of \mathcal{A} has at least n elements.
- (b) Suppose $n \in \mathbb{N}$. Write down a closed \mathcal{L}^- -formula τ_n with the property that, for every normal \mathcal{L}^- -structure \mathcal{A} we have $\mathcal{A} \models \tau_n$ iff the domain of \mathcal{A} has exactly n elements.
- (c) Find a closed $\mathcal{L}^{=}$ formula θ with the property that for every positive $n \in \mathbb{N}$:

there is a normal $\mathcal{L}^{=}$ structure \mathcal{A} with n elements in its domain and $\mathcal{A} \models \theta$ if and only if n is even.

(d) Suppose = and R are the only relation symbols in the language and $J = K = \emptyset$. Can you construct your formula θ in (c) so that any two countably infinite normal models of θ are isomorphic? Can you find two non-isomorphic, infinite normal models of such a θ ?

1(a) L-structures $A = \langle A; (\bar{R}_i^A : i \in \mathbb{T}), (\bar{I}_j^A : j \in J), (\bar{z}_k^A : k \in K) \rangle$ and $g = (B; (\bar{R}_i^B : i \in I), (\bar{f}_j^B : j \in J), (\bar{c}_k^B : k \in K))$ are isomorphic if there is a bijection x: A -> B with: - For each $i \in I$ and $a_1, \dots, a_m \in A$ $= \frac{1}{R} \left(\alpha_1, \dots, \alpha_m \right) = \frac{1}{R} \left(\alpha(\alpha_i), \dots, \alpha(\alpha_m) \right)$ $= \frac{1}{R} \left(\alpha_1, \dots, \alpha_m \right) = \frac{1}{R} \left(\alpha(\alpha_i), \dots, \alpha(\alpha_m) \right)$ - For each je T and annanje A, ce A For each let K $\alpha(\bar{z}_{k}^{A}) = \bar{z}_{k}^{R}$ Note: 1) & is called an isomorphism from A to B.

(2) & 's an isomorphism from B to A

(16) v a valuation in A (Stetch) Suppose & as an iso. A > R Let whee the val. in B with w(x;) = x(v(x;)) A (N(XI)) B By conditions on fine , + constants $w(t) = \alpha(v(t))$ for each kernt. Eg. $t = f(x_1, x_2)$ $w(t) = f^{\mathbb{K}}(w(x_i), w(x_i))$ = fB(x(v(x1)), x(v(x21))) $= \int_{A} \left(v(x_{i}), v(x_{i}) \right).$ By conditions on relations, for of œu atomic foula R(t,,-,tm): RA(v(t),...,v(tml) holds in A If RE(a(v(t)))--x(v(tm))) in B if RB(w(t,),..., w(tm)) in B. Induction ---.

(3) [2] 2 denotes the conjunction of all these formules. (a) on $(\exists x_i) \cdots (\exists x_n) / (\forall (x_i = x_j))$ on 1 (- our,) (d) "R is an eq. rel. ist classes Or "R gives a graph where every vertex is in exactly one edge." For the first of these: R(x1,x2) -> R(x2,x1)) $(\forall x_1)(\forall x_2)(\forall x_3)$ $\Lambda\left(R(x_1)x_2)\Lambda R(x_2)x_3\right) \rightarrow R(x_1)x_3\right)$ $\Lambda \left(\forall x_1 \right) \left(\exists x_2 \right) R \left(x_1, x_2 \right) \Lambda \left(7 \left(x_1 = x_2 \right) \right)$ $\Lambda \rightarrow (\exists \times 1)(\exists \times 2)(\exists \times 3)(...)(\exists \times 2)(\exists \times$