8. Pochoda funkcji jednej zmiennej

- 1. Def. Punkt a jest punktem wewnętrznym zbioru $D \subset \mathbb{R} \iff \exists_{\delta>0}(a-\delta,a+\delta) \subset D$ Przez cały wykład będziemy zakładać, że (o ile nie będzie powiedziane inaczej) $D \subset \mathbb{R}, f: D \to \mathbb{R}$ i x_0 jest punktem wewnętrzym zbioru D
- 2. Def. Jeśli istnieje skończona granicalim $_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, (tzw. iloraz różnicowy) to nazywamy ją pochodną funkcji f w punkcie x_0 i oznaczamy $f'(x_0)$ lub $\frac{df}{dx}(x_0)$ Wtedy funkcję f nazywamy różniczkowalną w punkcie x_0

3. Interpretacja geometryczna pochodnej

Wartość pochodnej $f'(x_0)$ to nachylenie prostej stycznej do wykresu funkcji f w x_0 w postaci $f'(x_0) = \tan \alpha$ gdzie α to kąt nachylenia prostej do dodatniej półosi OX, gdzie styczna to graniczne położenie siecznej przechodzącej przez punkty $(x_0, f(x_0))$ i $(x_0 + h, f(x_0 + h))$ dla $h \to 0$, która istnieje jeśli iloraz różnicowy ma granicę. Jeśli granica istnieje i też jest skończona, to $f'(x_0) = \tan \alpha$

Wyznaczymy równanie prostej stycznej do wykresu funkcji y = f(x) w punkcie $(x_0, f(x_0))$ y = ax + b gdzie $a = \tan \alpha = f'(x_0)$ i $f(x_0) = ax_0 + b$, z czego $b = f(x_0) - f'(x_0)x_0$

 $y = f'(x_0) + f(x_0) - f'(x_0)x_0 \iff y - f(x_0) = f'(x_0)(x - x_0) \iff y - y_0 = f'(x_0)(x - x_0) \text{ gdzie } y_0 = f(x_0)$

4. Twierdzenie 8.1: Warunek konieczny różniczkowalności) Jeśli funkcja f jest różniczkowalna w punkcie x_0 , to jest też ciągła w x_0 . f jest różniczkowalna w $x_0 \Longrightarrow f$ jest ciągła w x_0

1