CS-C3100 Computer Graphics Bézier Curves and Splines

3.1 Introduction to Splines

Majority of slides from Frédo Durand

In This Video

- Representing 2D curves (3D: simple extension)
- Splines: piecewise polynomial curves
 - Defined by a sequence of *control points* and a
 mathematical rule that turns them into a smooth curve
- In particular: cubic Bézier curves

Why Curves?

- Curves in 2D
 - Useful in their own right
 - Provides basis for surface modeling

Modeling Curves in 2D

• How?

Modeling Curves in 2D

Polylines

- Sequence of vertices connected by straight line segments
- Useful, but not for smooth curves
- This is the representation
 that usually gets drawn in the end
 (smooth curves converted into these)

Smooth curves

- How do we specify them?
- A little harder (but not too much)

Splines

- A type of smooth curve in the plane or in 3D
- Many uses
 - 2D Illustration (e.g. Adobe Illustrator)
 - Fonts
 - 3D Modeling
 - Animation: Trajectories
- In general: Interpolation and approximation

How Many Dimensions?

How Many Dimensions?

= you need one number to identify any point on the curve

How Many Dimensions?

Two Definitions of a Curve

- 1. A continuous 1D point set on the plane or space
- 2. A mapping from an interval S onto the plane
 - That is, P(t) is the point of the curve at parameter t

$$P: \mathbb{R} \ni S \mapsto \mathbb{R}^2, \quad P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

- Big differences
 - It's easy to generate points on the curve from the 2nd
 - The second definition can describe trajectories, the speed at which we move on the curve

Example of the First Definition?

- A continuous 1D point set on the plane or space
- A mapping from an interval S onto the plane
 - That is, P(t) is the point of the curve at parameter t

$$P: \mathbb{R} \ni S \mapsto \mathbb{R}^2, \quad P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

• An "algebraic curve", e.g. intersection of

$$x^2 + y^2 + z^2 = 1$$
 and $z = 0$

Example of the First Definition?

- A continuous 1D point set on the plane or space
- A mapping from an interval S onto the plane
 - That is, P(t) is the point of the curve at parameter t

$$P: \mathbb{R} \ni S \mapsto \mathbb{R}^2, \quad P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

• An "algebraic curve", e.g. intersection of

$$x^2 + y^2 + z^2 = 1$$
 and $z = 0$ It's a circle on the xy plane :)

General Principle for Modeling

- User specifies "control points"
- We'll interpolate the control points by a smooth curve
 - The curve is completely determined by the control points.
 - I.e., we need an unambiguous rule that gives us the curve points given the control points.

Physical Splines

www.abm.org

Splines in graphics = mathematical rule for turning sequence of points into smooth curve

Splines

- Specified by a few control points
 - Good for UI
 - Good for storage

- Results in a smooth parametric curve P(t)
 - Just means that we specify x(t) and y(t)
 - In practice low-order polynomials chained together
 - Convenient for animation, where t is time
 - Convenient for tessellation because we can discretize
 t and approximate the curve with a polyline

Tessellation

Tessellation

Tessellation

Interpolation vs. Approximation

- Interpolation
 - Goes through all specified points
 - Sounds more logical

- Approximation
 - Does not go through all points

Approximation

Interpolation vs. Approximation

- Interpolation
 - Goes through all specified points
 - Sounds more logical
 - But can be more unstable, "ringing"
 Interpolation
- Approximation
 - Does not go through all points
 - Turns out to be convenient

• In practice, we'll do something in between.

Approximation

Next up: The Cubic Bézier Curve