# Εργασία 1η

## Αλγοριθμική Επιχειρησιακή Έρευνα 2017-2018

1. α) Το πρόβλημα μοντελοποιείται ως εξής:

|                        | Συμβατικές | Πολυτελείς | Συνολικές Ώρες |
|------------------------|------------|------------|----------------|
| Κοπή και Βαφή          | 7/10       | 1          | 630            |
| Ραφή                   | 1/2        | 5/6        | 600            |
| Φινίρισμα              | 1          | 2/3        | 708            |
| Έλεγχος και Συσκευασία | 1/10       | 1/4        | 135            |
| Κέρδος ανά τσάντα      | 10         | 9          |                |

Οι μεταβλητές του προβλήματος είναι οι  $x_1$ ,  $x_2$ , όπου  $x_1$  είναι το πλήθος των συμβατικών τσαντών και x2 το πλήθος των πολυτελών τσαντών.

και 
$$x_2$$
 το πλήθος των πολυτελ Οι περιορισμοί είναι οι εξής: 
$$\frac{7}{10}x_1+x_2 \leq 630$$
 
$$\frac{1}{2}x_1+\frac{5}{6}x_2 \leq 600$$
 
$$x_1+\frac{2}{3}x_2 \leq 708$$
 
$$\frac{1}{10}x_1+\frac{1}{4}x_2 \leq 135$$

Η αντικειμενική συνάρτηση είναι η εξής:  $z = max(10x_1 + 9x_2)$ 

β) Προκύπτει η εξής γραφική επίλυση του προβλήματος:



Με αυθαίρετο z = 10.000. Μετακινώ το z προς τα κάτω.



Παρατηρώ ότι το κέρδος μεγιστοποιείται για  $x_1 = 540$ ,  $x_2 = 252$ , με τιμή  $z_{max} = 7.380$ .

2.

a)

|             | A | В | Συνολικά |
|-------------|---|---|----------|
| Επεξεργασία | 2 | 1 | 600      |
| Κόστος      | 2 | 3 |          |

Οι μεταβλητές είναι οι  $x_1$ ,  $x_2$  όπου  $x_1$  τα λίτρα του A και  $x_2$  τα λίτρα του B. Οι περιορισμοί είναι οι εξής:

 $2x_1 + x_2 \le 600$ 

 $x_1 + x_2 \ge 350$ 

 $x_1 \geq 125$ 

Η αντικειμενική συνάρτηση είναι η εξής:  $z = min(2x_1 + 3x_2)$ 

β) Η γραφική αναπαράσταση του προβλήματος είναι η εξής:



Με αυθαίρετη τιμή z = 2.000. Μετατοπίζω προς τα κάτω την z.



Παρατηρώ ότι το κόστος ελαχιστοποιείται για  $x_1 = 250$ ,  $x_2 = 100$ , με  $2x_1 + 3x_2 = 800$ .

**3.** 



Πρέπει  $x, y \ge 0, x \ge 2, y \le 5$ . Εφ'όσον το x δεν έχει άνω φράγμα, οι λύσεις είναι άπειρες, και γραφικά αναπαριστώνται από όλα τα σημεία που αποτελούν το ορθογώνιο με  $y \le 5$  και  $x \ge 2$ .

#### 4.

a)

|            | 1ο σετ | 2ο σετ | Συνολικά |
|------------|--------|--------|----------|
| Βαμβακερές | 2      | 2      | 24       |
| Μάλλινες   | 2      | 8      | 84       |
| Κέρδος     | 6€     | 8€     |          |

Οι μεταβλητές είναι οι  $x_1$ ,  $x_2$  με  $x_1$  τα σετ του  $1^{\text{ou}}$  είδους και  $x_2$  τα σετ  $2^{\text{ou}}$  είδους.

Οι περιορισμοί είναι οι εξής:

$$2x_1 + 2x_2 \le 24 \Rightarrow x_1 + x_2 \le 12$$

$$2x_1 + 8x_2 \le 84 \Rightarrow x_1 + 4x_2 \le 42$$

Η αντικειμενική συνάρτηση είναι η εξής:  $z = max(6x_1 + 8x_2) \Rightarrow max(3x_1 + 4x_2)$ 

β)

Η γραφική αναπαράσταση του προβλήματος είναι η εξής:



Με αυθαίρετη τιμή z = 20. Μετατοπίζω προς τα πάνω την z.



Παρατηρώ ότι το κέρδος μεγιστοποιείται για  $x_1 = 2$ ,  $x_2 = 10$ , με  $2x_1 + 3x_2 = 46$ .

$$\begin{bmatrix}
 1 \\
 1
 \end{bmatrix} x_1 + \begin{bmatrix}
 1 \\
 4
 \end{bmatrix} x_2 + \begin{bmatrix}
 1 \\
 0
 \end{bmatrix} x_3 + \begin{bmatrix}
 0 \\
 1
 \end{bmatrix} x_4 = \begin{bmatrix}
 12 \\
 42
 \end{bmatrix}$$

Βασικές μεταβλητές οι  $x_3$ ,  $x_4$  και μη βασικές οι  $x_1$ ,  $x_2$ .

Επανάληψη 1η

$$x_1 + x_2 + x_3 = 12$$
  $\Rightarrow x_3 = 12 - x_1 - x_2$ 

$$x_1 + 4x_2 + x_4 = 42$$
  $\Rightarrow x_4 = 42 - x_1 - 4x_2$ 

Βασική εφικτή λύση 1 η  $(x_1,x_2,x_3,x_4) = (0,0,12,42)$ 

$$\Gamma_1 \alpha \ x_2 = 0 \Rightarrow x_3 \ge 0 \Rightarrow 12 - x_1 \ge 0 \Rightarrow x_1 \le 12$$

$$\Rightarrow \quad x_4 \ge 0 \Rightarrow \qquad \quad 42 - x_1 \ge 0 \Rightarrow x_1 \le 42.$$

H τομή τους είναι το  $x_1$  ≤ 12.

Για  $x_1 = 12$ ,  $x_3 = 0$  άρα αλλάζει η βάση:  $B = \{x_2, x_3\}$ ,  $EB = \{x_1, x_4\}$ 

Στον τύπο του x<sub>3</sub> λύνω ως προς το x<sub>1</sub>:

$$x_3 = 12 - x_1 - x_2 \Rightarrow x_1 = 12 - x_2 - x_3$$
.

Αντικαθιστώ:

$$x_4 = 30 - 3x_2 - x_3$$

$$z = 36 + x_2 - 3x_3$$

Μηδενίζοντας τις μεταβλητές της βάσης παίρνω την επόμενη εφικτή λύση:

 $(x_1, x_2, x_3, x_4) = (0, 10.5, 1.5, 0)$ 

Παρατηρώ ότι για το z, όσο αυξάνω το x<sub>3</sub>, αυτό μειώνεται. Οπότε αυξάνω το x<sub>2</sub>.

$$\Gamma_{1}\alpha x_{3} = 0$$
  $\Rightarrow x_{1} \ge 0 \Rightarrow 12 - x_{2} \ge 0 \Rightarrow x_{2} \le 12$   
 $\Rightarrow x_{4} \ge 0 \Rightarrow 30 - 3x_{2} \ge 0 \Rightarrow x_{2} \le 10$ 

Η τομή τους είναι το  $x_2 ≤ 10$ .

Για  $x_2 = 12$ ,  $x_4 = 0$ , οπότε αλλάζει η βάση:  $B = \{x_1, x_2\}$ ,  $EB = \{x_3, x_4\}$ 

Στον τύπο του x4 λύνω ως προς x2:

$$x_4 = 30 - 3x_2 - x_3 \Rightarrow x_2 = 10 - \frac{1}{3}x_3 - \frac{1}{3}x_4$$

Αντικαθιστώ:

$$x_1 = 2 - \frac{2}{3}x_3 + \frac{1}{4}x_4$$

$$z = 46 - \frac{10}{3}x_3 - \frac{1}{4}x_4$$

Παρατηρώ ότι αυξάνοντας το  $x_3$  ή το  $x_4$ , το z μειώνεται.

Οπότε η βέλτιστη εφικτή λύση είναι η  $(x_1, x_2, x_3, x_4) = (2, 10, 0, 0)$ , με z = 46 όπως και παραπάνω.

#### **5.**

Το πρόβλημα μοντελοποιείται ως εξής:

|               | Ραδιοφωνικός Σταθμός 1 | Ραδιοφωνικός Σταθμός 2 | Ραδιοφωνικός Σταθμός 3 |
|---------------|------------------------|------------------------|------------------------|
| Απόδοση (/10) | 9                      | 7                      | 4                      |
| Τιμή (€)      | 3000                   | 2500                   | 1500                   |
| Max περάσματα | 5                      | 10                     | 20                     |

Μεταβλητές:  $x_1$ ,  $x_2$ ,  $x_3$  περάσματα από τους ραδιοφωνικούς σταθμούς 1, 2, 3 αντίστοιχα.

Περιορισμοί:  $3000x_1 + 2500x_2 + 1500x_3 \le 65000 \Rightarrow 3x_1 + 2.5x_2 + 1.5x_3 \le 65$ 

 $x_1 \leq 5$ 

 $x_2 \le 10$ 

 $x_3 \le 20$ 

Αντικειμενική Συνάρτηση:  $z = max(9x_1 + 7x_2 + 4x_3)$ 

β) Βάσει των τριών περιορισμών, ο (3D) χώρος στον οποίον κινούμαστε για να βρούμε λύση είναι ο εξής:



### Με την αντικειμενική συνάρτηση:





(ξανά το ίδιο σχήμα από άλλη οπτική γωνία – φαίνεται η τομή του επιπέδου που ορίζουν τα σημεία τομής της  $3x_1 + 2,5x_2 + 1,5x_3 = 65$  με τον χώρο όπου εργαζόμαστε)

Παρατηρούμε ότι η  $z = max(9x_1 + 7x_2 + 4x_3)$ , για  $x_1 = 5$ ,  $x_2 = 10$ ,  $x_3 = 20$ , παίρνει την τιμή  $z_{max(1)} = 195$ . Βέβαια δεν γίνεται  $x_1 = 5$ ,  $x_2 = 10$ ,  $x_3 = 20$ , γιατί τότε θα είχαμε  $15+25+30 = 70 \le 65$  άτοπο. Οπότε, ένα άνω φράγμα της δυνατής απόδοσης είναι το ανωτέρω, αλλά δεν αποτελεί και τη βέλτιστη λύση (άνω φράγμα και εφικτή λύση).

### **6.** α)

|                   | E1 | E2 |
|-------------------|----|----|
| Vitamins (V)      | 1  | 5  |
| Calories (C)      | 1  | 2  |
| Proteins (P)      | 3  | 2  |
| Χρόνος (σε λεπτά) | 20 | 25 |

Έστω  $x_i$  ο αριθμός των εδεσμάτων  $E_i$  του μενού,  $x_1, x_2 \ge 0$  Οι περιορισμοί είναι οι εξής:

 $x_1 + 5x_2 \ge 5$ 

 $x_1 + 2x_2 \ge 4$ 

 $3x_1 + 2x_2 \ge 6$ 

Η αντικειμενική συνάρτηση είναι η εξής:  $z = min (20x_1 + 25x_2)$ 

β) Η γραφική αναπαράσταση του προβλήματος είναι η εξής:



Με z = 100 αυθαίρετα. Μετατοπίζω το z προς τα κάτω.



Παρατηρώ ότι το κόστος ελαχιστοποιείται για  $x_1 = 1$ ,  $x_2 = 1.5$ , με  $20x_1 + 25x_2 = 57.5$ , αν μπορούν να φτιαχτούν μισά εδέσματα (ειδάλλως, στρογγυλοποιούμε).

#### 7.

$$z = max (20x_1 + 15x_2 + 18x_3)$$

$$5x_1 + 10x_2 + 4x_3 + x_4 + x_5 + x_6 = 80$$

$$15 \quad 12 \quad 5 \quad 1 \quad 0 \quad 1 = 120$$

$$7 \quad 21 \quad 3 \quad 0 \quad 1 \quad 0 = 84$$

$$A = \begin{bmatrix} 5 & 10 & 4 & 1 & 0 & 0 \\ 15 & 12 & 5 & 0 & 1 & 0 \\ 7 & 21 & 3 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 80 \\ 120 \\ 84 \end{bmatrix}$$

$$c = [20, 15, 18, 0, 0, 0]$$

$$X_{B} = \begin{bmatrix} 80 \\ 120 \\ 84 \end{bmatrix}$$

$$N = \{1,2,3\}$$

$$C_B = [0, 0, 0]$$

$$z = C_B X_B = 0$$

#### Επανάληψη 1η

$$y = C_B B^{-1} = 0$$

#### <u>Βήμα 2</u>

$$ya_i = 0$$
,  $j = 1,2,3$ . Επιλέγω αυθαίρετα  $j = 1$ .

#### Βήμα 3

$$d = \begin{bmatrix} d_3 \\ d_4 \\ d_5 \end{bmatrix} = B^{-1}a_1 = \begin{bmatrix} 5 \\ 15 \\ 7 \end{bmatrix}$$

#### Βήμα 4

$$\frac{x_4}{d_4} = 16$$
,  $\frac{x_5}{d_5} = 8$ ,  $\frac{x_6}{d_6} = 12$ , το  $x_5$  δίνει το ελάχιστο κλάσμα οπότε  $i^* = 5$ .

#### Βήμα 5

$$X_{B} = X_{B} - \frac{x_{5}}{d_{5}} d = \begin{bmatrix} 80\\120\\84 \end{bmatrix} - 8 \begin{bmatrix} 5\\15\\7 \end{bmatrix} = \begin{bmatrix} 40\\0\\28 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 1 & 0 \\ 15 & 0 & 0 \\ 7 & 0 & 1 \end{bmatrix}$$

$$N = \{2,3,5\}$$

$$B = \{1,4,6\}$$

$$X_{B} = \begin{bmatrix} 40 \\ 8 \\ 28 \end{bmatrix} = \begin{bmatrix} x_{4} \\ x_{1} \\ x_{6} \end{bmatrix} C_{B} = [20,0,0]$$

$$z = C_B X_B = 160$$

#### Επανάληψη 2η

#### Βήμα 1

$$y = C_B B^{-1} = (0, \frac{4}{3}, 0)$$

#### Βήμα 2

$$j = 2 \Rightarrow ya_2 = 16 > 15 = c_2$$
  
 $j = 3 \Rightarrow ya_3 \approx 6.6 < 18 = c_3$   
Επιλέγω το  $j = 3$ .

#### Βήμα 3

$$d = \begin{bmatrix} d1 \\ d4 \\ d6 \end{bmatrix} = B^{-1}a_3 = \begin{bmatrix} \frac{1}{3} \\ \frac{7}{3} \\ \frac{5}{3} \end{bmatrix}$$

#### Βήμα 4

$$\frac{x_1}{d_1}$$
 = 24,  $\frac{x_4}{d_4}$  \(\times 17,  $\frac{x_6}{d_6}$  \(\times 16.8\) , \(\delta\rho\alpha\) i\* = 6.

#### Βήμα 5

$$X_{B} = \begin{bmatrix} 8 \\ 40 \\ 28 \end{bmatrix} - \frac{84}{5} \begin{bmatrix} \frac{1}{3} \\ \frac{7}{3} \\ \frac{5}{3} \end{bmatrix} = \begin{bmatrix} \frac{36}{15} \\ \frac{12}{15} \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 4 & 1 \\ 15 & 5 & 0 \\ 7 & 3 & 0 \end{bmatrix}$$

$$N = \{2,5,6\}$$
  
 $B = \{1,3,4\}$ 

$$X_{B} = \begin{bmatrix} x_{1} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} \frac{36}{15} \\ \frac{84}{15} \\ \frac{12}{15} \end{bmatrix}$$

$$C_{B} = \begin{bmatrix} 20, 18, 0 \end{bmatrix}$$

$$z = C_{B}X_{B} = 48 + \frac{1512}{5} = 350,4$$

#### Επανάληψη 3η

#### <u>Βήμα 1</u>

$$y = C_B B^{-1} = (0, -\frac{33}{5}, 17)$$

#### Βήμα 2

$$j = 2$$
,  $ya_2 = 277.8 > 15 = c_2$   
 $j = 5$ ,  $ya_5 = -6.6 < 0 = c_5$   
Επιλέγω  $j = 5$ .

#### Βήμα 3

$$d = \begin{bmatrix} d_1 \\ d_3 \\ d_4 \end{bmatrix} = B^{-1}a_5 = \begin{bmatrix} \frac{3}{10} \\ \frac{-7}{10} \\ \frac{13}{10} \end{bmatrix}$$

Βήμα 4

$$\frac{x_1}{d_1} = 8, \frac{x_3}{d_3} = -24, \frac{x_4}{d_4} = \frac{8}{13}$$

Επιλέγουμε i\* = 4.

<u>Βήμα 5</u>

$$X_{B} = \begin{bmatrix} \frac{36}{10} \\ \frac{84}{15} \\ \frac{12}{15} \end{bmatrix} - \begin{bmatrix} \frac{8}{10} \\ \frac{7}{10} \\ \frac{13}{10} \end{bmatrix} = \begin{bmatrix} \frac{144}{65} \\ \frac{224}{13} \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 4 & 0 \\ 15 & 5 & 1 \\ 7 & 3 & 10 \end{bmatrix}$$

$$N = \{2,4,6\}$$

$$B = \{1,3,5\}$$

$$X_{B} = \begin{bmatrix} x_{1} \\ x_{3} \\ x_{5} \end{bmatrix} = \begin{bmatrix} \frac{144}{65} \\ \frac{224}{13} \\ \frac{8}{13} \end{bmatrix}$$

$$C_B = [20, 18, 0]$$

$$z = C_B X_B = 350,4$$

Τελικά καταλήγουμε ότι  $(x_1, x_2, x_3) = (0, 0, 20)$ , z = 360.

Το πολύεδρο των λύσεων:

A (8,0,0), B (2.4, 0, 17), C (0, 0, 20)

