Perhitungan Setting Rele OCR dan GFR pada Sistem Interkoneksi Diesel Generator di Perusahaan "X "

TIRZA NOVA, SYAHRIAL

Institut Teknologi Nasional Bandung Email: tirza2709@gmail.com

ABSTRAK

Terdapat suatu permasalahan utama dari sistem daya yaitu adanya gangguan arus hubung singkat. Sehingga diperlukan alat pengaman yang dapat merespon dengan cepat, fleksibel dan handal. Jenis pengaman yang digunakan untuk mengatasi arus lebih diantaranya Over Current Relay (OCR) dan Ground Fault Relay (GFR). Rele tersebut bekerja dengan membaca masukan berupa besaran arus kemudian membandingkannya dengan nilai setting. Pada setting rele juga diterapkan waktu tunda agar terjadi koordinasi terhadap rele yang lainnya. Hasil yang didapat membuktikan bahwa dengan menggunakan sistem koordinasi OCR dan GFR yang diterapkan, mampu mengatasi arus hubung singkat pada sistem daya listrik. Hal tersebut juga dapat dilihat dari kurva karakteristik OCR dan GFR yang digunakan.

Kata kunci : hubung singkat, rele OCR, rele GFR

ABSTRACT

There is a major problem of the existence of the power system short-circuit current interruption. So that the necessary safety equipment must be able to respond quickly, flexibly and reliably. Type of security used to overcome such Over Current Relay (OCR) and Ground Fault Relay (GFR). Relay works by reading the input of the amount of current and compares the value of setting. On the relay setting a delay time is also applied to enable the coordination of the other relays. The results show the OCR and GFR coordinate system is able to protection of the short-circuit currents in electrical power systems. It can also be seen from the characteristic curve generated from both of relay.

Keywords: short circuit, OCR relay, GFR relay

1. PENDAHULUAN

Dalam menyalurkan energi listrik terdapat banyak gangguan seperti gangguan hubung singkat. Hubung singkat adalah terjadinya hubungan penghantar bertegangan atau penghantar tidak bertegangan secara langsung dan tidak langsung melalui media (resistor/beban) sehingga menyebabkan aliran arus yang tidak normal (sangat besar). Untuk itu perlu diproteksi dari semua gangguan agar peralatan listrik tidak sampai mengalami kerusakan. Akibat dari gangguan tersebut maka dapat menyebabkanhubung singkat satu fasa dengan tanah, fasa dengan fasa, hubung singkat 3 (Gambar 1), 2 fasa dengan tanah (Gambar 2), 3 fasa dengan tanah, fasa dan dapat bersifat temporer atau permanent (Stevenson, 1993).

Pada umumnya sumber energi listrik seperti diesel generator perlu dilindungi agar penyaluran energi listrik tetap stabil.Generator Diesel adalah sebuah mesin yang merubah energi mekanik menjadi energi listrik dimana diesel digunakan sebagai penggerak utama generator. Dalam memproteksi peralatan listrik tersebut, sebuah rele harus memiliki syarat antara lain keterandalan, selektivitas, sensitivitas, kecepatan kerja, ekonomis. Rele yang digunakan untuk mengatasi gangguan hubung singkat tersebut diantaranya OCR (*over current relay*) dan GFR (*ground fault relay*). Rele arus lebih adalah sebuah jenis rele proteksi yang bekerja berdasarkan prinsip besarnya arus input yang masuk ke dalam peralatan *sensing* rele. Apabila besaran arus yang masuk melebihi harga arus yang telah di*setting* sebagai standarkerja rele tersebut, maka rele arus ini akan bekerja dan memberikan perintah pada CB untuk memutuskan sistem.

Rele gangguan tanah adalah suatu rele yang bekerja berdasarkan adanya kenaikan arus yang melebihi suatu nilai *setting* pengaman tertentu dan dalam jangka waktu tertentu bekerja apabila terjadi gangguan hubung singkat fasa ke tanah. Dalam men-*setting* rele terlebih dahulu kita mengerti dan menganalisis tentang komponen simetris guna mendapatkan nilai impedansi hubung singkat dan arus hubung singkat. Kegunaan metoda komponen simetris adalah bahwa metoda ini mampu memecahkan persoalan-persoalan fasa banyak yang tidak seimbang dalam bentuk sistem yang seimbang. Dalam sistem tiga fasa seimbang, arus-arus dalam penghantar tiga fasa sama besarnya dan beda sudut fasa sebesar 120°. Demikian pula yang terjadi pada tegangan fasa ke netral dan fasa ke fasa. Selain itu untuk menjaga kontinuitas penyaluran energi listrik maka perlu adanya sistem interkoneksi (Alstom, 2011).

Gambar 1 Gangguan Hubung Singkat Tiga Fasa

Nilai arus hubung singkat tiga fasa adalah:

$$I_{f3\theta} = I_a = \frac{v_f}{z_1 + z_f}$$
 (1)

Dengan:

Z₁ adalah impedansi urutan positif total

Z_f adalah impedansi gangguan

Gambar 2 Gangguan Hubung Singkat Satu Fasa-Tanah

Nilai arus hubung singkat satu fasa-tanah adalah :

$$I_{f1\theta} = I_a = \frac{3V_f}{Z_1 + Z_2 + Z_0 + 3Z_f}$$
....(2)

Sistem interkoneksi kelistrikan merupakan sistem terintegrasinya seluruh pusat pembangkit menjadi satu sistem pengendalian. Jika suatu daerah memerlukan beban listrik yang lebih besar dari kapasitas bebannya maka daerah itu perlu beban tambahan yang harus disuplai dari 2 stasiun yang jaraknya cukup jauh. Agar diperoleh sistem penyaluran tenaga listrik yang baik, diperlukan sistem interkoneksi (IEEE PES, 1980).

Aturan dasar yang benar untuk koordinasi rele secara umum yaitu:

- a. Bila memungkinkan gunakan rele dengan karakteristik yang sama dengan satu dan lainnya.
- b. Memastikan bahwa rele yang terjauh dari sumber memiliki pengaturan sama dengan atau kurang dari waktu rele sebelumnya. Artinya bahwa arus utama yang diperluan untuk mengoperasikan rele didepan selalu sama dengan atau kurang dari arus utama yang diperlukan untuk mengoperasikannya

Penyetelan rele dimaksudkan untuk memberikan batas minimum dari besaran ukur agar rele bekerja. Gambar 3 menunjukkan karakteristik rele OCR standar IEC 60255. Berdasarkan karakteristik kerja arus – waktu, rele arus lebih dibagi atas beberapa jenis, yaitu :

- 1. *Definit* yaitu rele arus lebih dengan penundaan waktu tertentu.
- 2. *Invers* yaitu rele arus lebih dengan penundaaan waktu terbalik.
- 3. Very Invers yaitu rele arus lebih dengan penundaan waktu sangat terbalik.
- 4. Extremely Invers yaitu rele arus lebih dengan penundaan waktu amat sangat terbalik.
- 5. *Invers Definite Minimum* IDMT yaitu rele arus lebih dengan penundaan waktu tertentu dan terbalik.
- 6. *Instantaneous* yaitu rele arus lebih dengan penundaan waktu sesaat.

Gambar 3 Karakteristik Rele OCR standar IEC 60255

Tabel 1 di bawah ini merupakan IDMT yang memakai standar IEC 60255.

Tabel 1 IDMT standar inverse vang memakai standar IEC 60255

raber 2 25: 11 beartain inverse yang memakai beartain 220 00255					
Karakteristik Rele	Standar IEC 60255				
Standard Inverse (SI)	$T = TMS \times \frac{0.14}{I_r^{0.02} - 1}$				
Very Inverse (VI)	$T = TMS \times \frac{13.5}{I_r - 1}$				
Extremely Inverse (EI)	$T = TMS \times \frac{80}{I_{\Gamma}^2 - 1}$				
Long time standart earth fault	$T = TMS \times \frac{120}{I_r - 1}$				

2. METODE PERHITUNGAN

Metode yang digunakan untuk mencapai berbagai koordinasi rele yang benar diantaranya menggunakan kombinasi waktu dan arus. Gambar 4 merupakan algoritma penelitian untuk melakukan setting rele. Pada penelitian ini metode yang digunakan adalah kombinasi antara arus dan waktu dengan standar IDMT (*Inverse Definite Minimum Time*).

Gambar 4 Algoritma Penelitian Untuk Melakukan Setting Rele

Dalam menganalisis sistem daya listrik tersebut diperlukan beberapa parameter. Parameter tersebut digunakan untuk menganalisis arus *load flow*, analisa gangguan hubung tiga fasa dan gangguan fasa-tanah. Parameter-parameter tersebut antara lain.

- a. Sumber energi diesel generator sebanyak 8 unit 700 MVA 1200 MVA)
- b. Transfornator tiga fasa
- c. Rele arus lebih (OCR) dan Rele gangguan fasa-tanah (GFR) masing-masing 27 unit
- d. *Current Transformer* (CT)
- e. *Circuit breaker* (CB)
- f. Kabel tegangan menengah
- g. Frekuensi 50 Hz

Pada penelitian ini dilakukan perhitungan aliran daya, gangguan hubung singkat, koordinasi rele OCR dan GFR serta melihat kurva koordinasi antar rele tersebut. Rele yang digunakan pada perhitungan adalah menggunakan standar invers.

Gambar 5 Model Jaringan Sistem Daya

Gambar 5 memperlihatkan konfigurasi rele OCR dan GFR pada sistem interkoneksi diesel generator. Setelah mendapatkan nilai dari arus *load flow* dan arus gangguan hubung singkat maka selanjutnya menghitung parameter yang diperlukan agar terjadi koordinasi yang baik antar rele. *Setting* rele pada umumnya meliputi *setting* arus dan *setting* waktu. Dimana hal tersebut berfungsi agar apabila terjadi gangguan maka rele akan secara baik bekerja (terkoordinasi) dalam melokalisir daerah yang terkena gangguan.

3. HASIL SIMULASI DAN PEMBAHASAN

Pada bab ini akan dibahas mengenai cara perhitungan setting rele dan parameter apa saja yang perlu dicari (WECC, 1989).

A. Rele Arus Lebih (OCR)

a. Arus Nominal

Arus nominal adalah arus kerja dari suatu peralatan listrik.

$$In = I_{base} = \frac{s_{base}}{\sqrt{3}V_{base}}$$

Dengan:

 $I_n = I_{base} = \text{Arus nominal A}$

 S_{base} = Daya semu (VA)

 $V_{base} = \text{Tegangan (V)}$

b. Rasio CT

Rasio CT ditentukan dari arus nominal peralatan atau dari kabel pada umumnya.

Rasio CT =
$$\frac{Primer}{Sekunder}$$

c. Arus yang mengalir melalui rele $I_{rele} = I_{base} \ {\rm x} \ \frac{{\rm 1}}{{\it RasioCT}} \label{eq:rele}$

$$I_{rele} = I_{base} \times \frac{1}{RasioCT}$$

d. Arus kerja rele (Standar OCR 110%)

$$I_{setOCR} = 1.1 \times I_{base}$$

e. Waktu operasi (ts)

Time setting (ts) adalah waktu yang dibutuhkan oleh suatu pengaman (rele) untuk bekerja.

$$T_s = \frac{k}{(I_{set OCR})^{\alpha} - 1} \times TMS$$

Dengan:

TMS(*Time Multiple Setting*) = standar waktu setting rele

K = konstanta standar invers (0.14)

 α = konstanta standar invers (0.02)

Tabel 2 menunjukkan gangguan 3 fasa dan fasa tanah, Tabel 3 merupakan setting rele arus OCR dan sementara Tabel 4 Setting Rele GFR. Sedangkan Gambar 6 merupakan kurva koordinasi antar OCR hasil perhitungan dan Gambar 7 merupakan kurva koordinasi antar GFR.

Tabel 2 Gangguan 3 Fasa dan Fasa Tanah

Nama Peralatan	Due De	to	D D.	TECANCINGIA	MACAM GANGGUAN (kA		
	Bus Bar		Bus Bar	TEGANGAN (kV)	3 PHASA		
Generator 1			LV SP-VI	0.4	6.11		
Generator 2		to	LV SP-VI	0.4	6.11	0.001	
Trafo SP-VI	LV SP-VI	to	1	6.6	0.805	37.58	
	1	to	SP-V	6.6	1.28	0.315	
	SP-V	to	1	6.6	0.691		
	SP-V	to	45	6.6	2.18	0.331	
	45	to	46	0.4	13.01		
	SP-V	to	ST 58	6.6	1.62	0.334	
	ST 58	to	SP-V	6.6	0.822		
	ST 58	to	47	0.4	4.93	5.45	
Trafo T3	ST 58	to	ST 80	6.6	0.7	0.165	
	ST 80	to	ST 58	6.6	1.43	0.17	
	ST 80	to	11	0.4	5.71	6.9	
Trafo T2	ST 80	to	ST 69	6.6	0.772	0.165	
	ST 69	to	ST 80	6.6	0.929	0.163	
trafo 9	ST 69	to	64	0.4	10.35	13.31	
	ST 69	to	ST 16	6.6	0.993	0.169	
	ST 16	to	ST 69	6.6	0.84	0.161	
	ST 16	to	65	0.4	12.3	16.84	
Trafo T10	ST 16	to	SP-II	6.6	1.06	0.174	
	SP-II	to	ST 16	6.6	0.801	0.159	
CEN 2	SP-II	to	GEN 3	6.6	0.552	0.09	
GEN 3	SP-II	to	68	0.4	13.61	19.62	
	SP-II	to	GEN 17	6.6	0.552	0.09	
	ST 58	to	Intercon Bus 2	6.6	1.2	0.178	
GEN 17	Intercon Bus 2	to	ST 58	6.6	1.42	0.164	
	Intercon Bus 2	to	62	6.6	0.099	0.342	
	62	to	Intercon Bus 2	6.6	1.46	0.304	
	62	to	SP III	6.6	0.102	0.304	
Trafo T15	Intercon Bus 2	to	SP-I	6.6	1.17	0.178	
	SP-1	to	Intercon Bus 2	6.6	1.18	0.162	
Trafo T4	SP-I	to	48	0.4	13.22	17.55	
GEN 6	SP-I	to	Gen 6	6.6	0.417	0.091	
	SP-I	to	Gen 7	6.6	0.586	0.091	
GEN 7	SP-I	to	52	6.6	0.235	0.342	
	52	to	SP-I	6.6	2.26	0.342	

JUITIGI INCRU LINUITING UZ

Tabel 3 Tabel Setting Rele Arus OCR

	SETTING RELE ARUS OCR								
ST 6	Daya (Sbase) kVA	V base (kV)	In (A)	Rasio CT	I rele (A)	Iset OCR (A)	TMS (S)	Time Setting(S)	
Gen 1	806	0.4	1163.361	1200	0.969	1279.697	0.100	0.09100906	
Gen 2	806	0.4	1163.361	1200	0.969	1279.697	0.300	0.27302718	
Trafo SP-VI	2000	6.6	174.955	200	0.875	192.450	0.100	0.126206683	
		6.6	99.100	100	0.991	109.010	0.100	0.142317382	
		6.6	99.100	100	0.991	109.010	0.500	0.71158691	
		6.6	33.000	100	0.330	36.300	0.100	0.187971196	
		0.4	33.000	100	0.330	36.300	0.100	0.187971196	
		6.6	13.000	100	0.130	14.300	0.100	0.256194291	
		6.6	13.000	100	0.130	14.300	0.200	0.512388581	
Trafo T3	100	0.4	144.338	200	0.722	158.771	0.100	0.131254351	
		6.6	30.000	100	0.300	33.000	0.100	0.193281346	
		6.6	30.000	100	0.300	33.000	0.400	0.773125383	
Trafo T2	250	0.4	360.844	400	0.902	396.928	0.100	0.110122973	
		6.6	5.000	100	0.050	5.500	0.300	1.210972886	
		6.6	5.000	100	0.050	5.500	0.300	1.210972886	
trafo 9	500	0.4	721.688	800	0.902	793.857	0.100	0.097994775	
		6.6	16.000	100	0.160	17.600	0.100	0.237148042	
		6.6	16.000	100	0.160	17.600	0.100	0.237148042	
Trafo T10	800	0.4	1154.701	1200	0.962	1270.171	0.100	0.091111179	
		6.6	50.000	100	0.500	55.000	0.100	0.167773255	
		6.6	50.000	100	0.500	55.000	0.300	0.503319764	
GEN 3	1200	6.6	104.973	200	0.525	115.470	0.400	0.562039591	
Trafo T13	1000	0.4	1443.376	1500	0.962	1587.713	0.100	0.088150908	
GEN 17	1200	6.6	104.973	200	0.525	115.470	0.400	0.562039591	
		6.6	60.000	100	0.600	66.000	0.100	0.160175954	
		6.6	60.000	100	0.600	66.000	0.100	0.160175954	
		6.6	15.000	100	0.150	16.500	0.100	0.242765734	
		6.6	15.000	100	0.150	16.500	0.100	0.242765734	
Trafo T15	500	6.6	43.739	100	0.437	48.113	0.100	0.173803507	
		6.6	50.000	100	0.500	55.000	0.100	0.167773255	
		6.6	50.000	100	0.500	55.000	0.300	0.503319764	
Trafo T4	800	0.4	1154.701	1200	0.962	1270.171	0.100	0.091111179	
GEN 6	906	6.6	79.254	100	0.793	87.180	0.400	0.599099249	
GEN 7	1275	6.6	111.534	200	0.558	122.687	0.400	0.554613487	
		6.6	60.000	100	0.600	66.000	0.100	0.160175954	
		6.6	60.000	100	0.600	66.000	0.300	0.480527861	

Gambar 6 Kurva koordinasi antar OCR

B. Rele Gangguan Tanah (GFR)

Dibawah ini akan diuraikan bagaimana men-setting GFR pada sistem daya.

Jurnal Reka Elkomika - 83

a. Arus setting primer
$$I_{set} Primer = 10\% \times I_{nCT}$$

b. arus setting GFR
$$I_{\text{set}}\text{GFR} = I_{\text{set}}\text{Primer x} \, \frac{1}{\text{RasioCT}}$$

c. Menghitung waktu setting relay GFR
$$T_s = \frac{k}{(I_{\text{Set GFR}})^{\sigma-1}} \times \text{TMS}$$

$$T_s = \frac{k}{(I_{set GFR})^{0}-1} \times TMS$$

Tabel 4 Setting Rele GFR

	SETTING RELE ARUS GFR									
ST 6	Daya (Sbase) kVA	V base (kV)	In (A)	Rasio CT	Iset Primer (A)	Iset GFR (A)	TMS (S)	Time Setting(S)		
Gen 1	806	0.4	1163.361	1200	0.969	116.336	0.100	0.140278521		
Gen 2	806	0.4	1163.361	1200	0.969	116.336	0.300	0.420835563		
Trafo SP-VI	2000	6.6	174.955	200	0.875	17.495	0.100	0.237655975		
		6.6	99.100	100	0.991	9.910	0.100	0.29825799		
		6.6	99.100	100	0.991	9.910	0.500	1.491289949		
		6.6	33.000	100	0.330	3.300	0.100	0.579330586		
		0.4	33.000	100	0.330	3.300	0.100	0.579330586		
		6.6	13.000	100	0.130	1.300	0.100	2.661052403		
		6.6	13.000	100	0.130	1.300	0.200	5.322104805		
Trafo T3	100	0.4	144.338	200	0.722	14.434	0.100	0.255276832		
		6.6	30.000	100	0.300	3.000	0.100	0.630193093		
		6.6	30.000	100	0.300	3.000	0.400	2.520772371		
Trafo T2	250	0.4	360.844	400	0.902	36.084	0.100	0.188294831		
		6.6	5.000	100	0.050	0.500	0.300	3.050708106		
		6.6	5.000	100	0.050	0.500	0.300	3.050708106		
trafo 9	500	0.4	721.688	800	0.902	72.169	0.100	0.156689165		
		6.6	16.000	100	0.160	1.600	0.100	1.482361168		
		6.6	16.000	100	0.160	1.600	0.100	1.482361168		
Trafo T10	800	0.4	1154.701	1200	0.962	115.470	0.100	0.140509898		
		6.6	50.000	100	0.500	5.000	0.100	0.427972007		
		6.6	50.000	100	0.500	5.000	0.300	1.283916021		
GEN 3	1200	6.6	104.973	200	0.525	10.497	0.400	1.163143255		
Trafo T13	1000	0.4	1443.376	1500	0.962	144.338	0.100	0.13390003		
GEN 17	1200	6.6	104.973	200	0.525	10.497	0.400	1.163143255		
		6.6	60.000	100	0.600	6.000	0.100	0.383719245		
		6.6	60.000	100	0.600	6.000	0.100	0.383719245		
		6.6	15.000	100	0.150	1.500	0.100	1.719421885		
		6.6	15.000	100	0.150	1.500	0.100	1.719421885		
Trafo T15	500	6.6	43.739	100	0.437	4.374	0.100	0.467402555		
		6.6	50.000	100	0.500	5.000	0.100	0.427972007		
		6.6	50.000	100	0.500	5.000	0.300	1.283916021		
Trafo T4	800	0.4	1154.701	1200	0.962	115.470	0.100	0.140509898		
GEN 6	906	6.6	79.254	100	0.793	7.925	0.400	1.324798965		
GEN 7	1275	6.6	111.534	200	0.558	11.153	0.400	1.133212315		
		6.6	60.000	100	0.600	6.000	0.100	0.383719245		
		6.6	60.000	100	0.600	6.000	0.300	1.151157736		

Gambar 7 Kurva koordinasi antar GFR

4. ANALISIS

Melalui pengujian yang dilakukan diperoleh nilai TMS antara rele utama dan rele bantu adalah ± 350 ms. Hal tersebut dimaksudkan agar kerja rele lebih terkoordinasi dimana artinya apabila terjadi gangguan hubung singkat maka rele utama akan lebih dahulu bekerja dan apabila rele utama gagal bekerja maka rele bantu akan bekerja (sebagai back-up). Dari hasil simulasi didapat waktu operasi rele rata-rata adalah 300 ms. Ketika simulasi dijalankan dapat dibuktikan bahwa dengan mengggunakan rele standar invers, maka untuk arus gangguan yang besar 13 kA waktu pemutusannya akan semakin singkat 100 ms dan untuk arus gangguan yang kecil 0.001 kA waktu pemutusan akan lama 300 ms . Selain itu untuk memproteksi generator rele tersebut bekerja sesuai dengan gangguan yang terjadi. Sehingga daerah yang tidak terkena gangguan dapat beroperasi secara normal dalam menyalurkan energi listrik.

5. SIMPULAN

Dari hasil perhitungan dan analisa setting rele arus lebih (OCR) dan rele gangguan tanah (GFR) dengan menggunakan karakteristik normal inverse maka dapat disimpulkan bahwa rele-rele yang mempunyai waktu operasi (*top*) yang kecil akan beroperasi lebih cepat dalam melokalisir gangguan. Hal tersebut dapat dilihat dari besarnya arus gangguan hubung singkat tiga fasa dan fasa-tanah pada masing-masing feeder. Dimana terlihat untuk arus gangguan hubung singkat yang besar (13 kA) waktu pemutusannya lebih kecil 100 ms dan arus gangguan hubung singkat yang kecil (0.001 kA) waktu pemutusan 300 ms. Sehingga dapat dikatakan sistem yang telah dibuat mengindikasikan koordinasi rele OCR dan GFR bekerja secara baik.

DAFTAR RUJUKAN

Alstom (2011), Grid Network Protection & Automation Guide. Alstom Grid.

IEEE Power Engineering Society (1980), *Aplication and coordination of recloser, sectionalizer* and fuse, New York.

Stevenson J, William D. (1993), *Analisa Sistem Tenaga Listrik*, Edisi keempat. Erlangga. Jakarta.

WECC (1989), Relaying Current Transformer Application Guide.