

Jay Alammar

Visualizing machine learning one concept at a time. @JayAlammar on Twitter. YouTube Channel

Artificial Intelligence

Creating the Future

Dong-A University

Division of Computer Engineering & Artificial Intelligence

References

Main

• https://jalammar.github.io/illustrated-transformer/

Transformer

- A model that uses **attention** to boost the speed with which these models can be trained.
- The Transformers outperforms the Google Neural Machine Translation model in specific tasks.
- The biggest benefit, however, comes from how The Transformer lends itself to parallelization. It is in fact Google Cloud's recommendation to use The Transformer as a reference model to use their <u>Cloud TPU</u> offering.

- A TensorFlow implementation of it is available as a part of the <u>Tensor2Tensor</u> package.
- Harvard's NLP group created <u>a guide annotating the paper with PyTorch implementation</u>.

A High-Level Look

A High-Level Look

A High-Level Look

Bringing The Tensors Into The Picture

X1 étudiant Je suis ENCODER A Feed Forward Self-Attention étudiant Je suis

Bringing The Tensors Into The Picture

Self-Attention at a High Level

Self-Attention in Detail

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	Wa
Keys	k ₁	k ₂	Wĸ
Values	V1	V2	W

Self-Attention in Detail

Input Thinking Machines Embedding x_1 x_2 x_2 x_3 x_4 x_5 x_4 x_5 x_5 x_6 x_7 x_8 x_9 x_9

Self-Attention in Detail

Self-Attention in Detail

Matrix Calculation of Self-Attention

)

The Beast With Many Heads

The Beast With Many Heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

v

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

The Beast With Many Heads

Representing The Order of The Sequence Using Positional Encoding

Representing The Order of The Sequence Using Positional Encoding

The Residuals

The Residuals

The Decoder Side

The Final Linear and Softmax Layer

Recap Of Training

Output Vocabulary

WORD	a	am	I	thanks	student	<eos></eos>
INDEX	0	1.	2	3	4	5

Output Vocabulary

WORD	a	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

0.0	1.0	0.0	0.0	0.0	0.0
-----	-----	-----	-----	-----	-----

The Loss Function

Untrained Model Output

Correct and desired output

Target Model Outputs

