

Introdução a Redes Neurais

Arquiteturas MLP e CNN

Joris GUERIN

Concurso para Professor Adjunto em Aprendizado de Máquina Departamento de Informática e Matemática Aplicada (DIMAP) Universidade Federal do Rio Grande do Norte (UFRN)

Pré-requisitos

Problemas de aprendizagem: Classificação / Regressão

- Funções de perda
 - Classificação: Cross-Entropy

$$L_{CE}(F,X,y) = -rac{1}{N}\sum_{i=1}^{N}y_i\log(F(x_i))$$

Regression: Mean Squared Error

$$\left|L_{MSE}(F,X,y) = -rac{1}{N}\sum_{i=1}^{N}\left|\left|y_i - F(x_i)
ight|
ight|^2$$

Pré-requisitos

Modelos lineares

$$F(x) = \omega^T x + b$$

- Treinamento / otimização
 - Resolução exata
 - Métodos iterativos: Gradiente Descendente

- Pré-processamento de dados: padronização
- Avaliação de classificadores: acurácia

Multi-Layer Perceptron Uma primeira arquitetura de rede neural artificial

Motivações

Modelização de funções não-lineares

- Porquê MLP entre outros modelos não-lineares
 - o **Teoria:** Teorema da aproximação universal
 - **Prática:** Permite resolver problemas muito complexos
 - o **Implementação:** Combinação de funções simples
 - → Fácil de usar o gradiente descendente
 - → Fácil de otimizar o treinamento rápido com GPU

Modelo de neurônio simples

Funções de ativação comuns

Sigmoid

$$arphi(x)=rac{e^x}{1+e^x}=rac{1}{1+e^{-x}}$$

Sigmoid 1.0 0.8 0.2 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Tanh

$$arphi(x) = 1 - rac{2}{1 + e^{2x}}$$

ReLU

$$\varphi(x) = \max(0, x)$$

Modelo de camada de neurônios (layer)

$$egin{aligned} orall i \in \{1,2\}, \ y_i = arphi(W_i^Tx + b_i) \end{aligned}$$

Modelo de Multi-Layer Perceptron (MLP)

Restrições sobre a arquitetura

- O tamanho da camada de entrada é a dimensão dos dados
- O tamanho da camada de saída depende dos rótulos
 - Classificação: número de neurônios de saída = número de categorias
 - Regressão: número de neurônios de saída = número de valores a estimar (geralmente 1)
- A função de ativação da camada de saída depende da faixa de valores
 - Exemplo: regressão de variáveis resposta num intervalo fixo: Sigmoid
- O número de parâmetros não deve ser muito maior do que o número de amostras → Regra empírica

Calcular número de parâmetros

Regra empírica para construção de arquitetura MLP

- Começar com 2 hidden layers
- Em cada camada: usar potências de 2 para números de neurônios
 (2, 4, 8, 16, 32, etc.)
 - Primeira camada ~ a metade do número de features
 - o Camadas seguintes: metade da camada anterior
- Este esquema dá uma boa arquitetura para começar o processo de treinamento, mas geralmente o desenvolvimento de uma rede neural é um processo iterativo onde se precisa testar muitas configurações.

Exemplo

Treinamento de um MLP para o dataset Wine

13 FEATURES

Propriedades químicas do vinho

Alcohol

Malic acid

Ash

Alkalinity of ash

Magnesium

Total phenols

Etc.

178 AMOSTRAS

Diferentes produtores da mesma região na Itália

3 CATEGORIAS

Diferentes espécies de uva usadas

Exemplo

178 Amostras13 Features3 Categorias

Número de parâadatsœsconditas1) + 2 x (8+1)
Número de neurônios 1a camada= 148
Número de neurônios 2a camada:

Input layer

Tamanho

13
Ativação

SoftMax

- Começar com 2 hidden layers
- Em cada camada: usar potências de 2 para números de neurônios (2, 4, 8, 16, 32, etc.)
- Primeira camada ~ a metade do número de features
- Camadas seguintes: metade da camada anterior

Exemplo de implementação

Accuracy MLP: 1.0

```
from sklearn.datasets import load wine
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.neural network import MLPClassifier
from sklearn.metrics import accuracy score
# Load data
data = load wine()
X = data.data
y = data.target
# Split into train and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3)
# Preprocess data
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Build MLP
mlp = MLPClassifier(hidden layer sizes=[8, 4], max iter=10000)
# Train MLP
mlp.fit(X train, y train)
# Predict on test set
y pred = mlp.predict(X test)
# Compute accuracy score
print("Accuracy MLP: ", accuracy score(y pred, y test))
```


Descrição básica do processo de treinamento

Conclusão intermediária

- Apresentamos a arquitetura MLP e mostramos como pode ser desenvolvida
- Muitos elementos importantes sobre treinamento de redes neurais não foram discutidos ainda (próximas aulas)

Inicialização Otimização Regularização Avaliação
Implementação eficiente Implantação industrial

Convolutional Neural Network

Rede neural artificial para processamento de imagens

Motivações: aprendizado para análise de imagens

Classificação de imagens

Detecção de objetos

Motivações: aprendizado para análise de imagens

Super resolution / Image denoising

Pose recognition

Motivações: aprendizado para análise de imagens

Geração de imagens / Geração de arte

Classificar imagens usando MLP

Uma imagem pode ser representada por um tensor (Matrice 3D) de dimensão WxHx3

Explosão do número de parâmetros necessários

- Número de parâmetros necessários
- Invariância à translação

- Número de parâmetros
- Invariância à translação
- Invariância à escala
- Invariância à rotação

Convolutional Neural Networks (CNN)

Filtro de convolução e produto escalar de matrizes

Exemplo: filtros de convolução para detectar orelha de gato

Imagem em escala de cinza

representação numérica

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Etapa 1: detecção de bordas inclinadas

Etapa 1: detecção de bordas inclinadas

Padrão procurado

Filtro de convolução

$$\varphi(x) = \max(0, x)$$

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Filtro de convolução

-1	-1	1
-1	1	-1
1	-1	-1

Resultado da convolução

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Zero-padding

Filtro de convolução

Resultado da convolução

3		
	10	

Aplicar o filtro à imagem toda

Imagem em escala de cinza

Representação numérica

0	0	0	0	0	0	0
0	3	0	0	3	0	0
0	0	0	10	0	3	0
0	0	10	3	10	0	0
0	10	3	3	3	10	0
0	3	3	3	3	3	0
0	0	0	0	0	0	0

Filtro de convolução

-1	-1	1
-1	1	-1
1	-1	-1

Resultado da convolução

3	-13	-13	10	-6
-13	-26	10	-23	10
-23	21	-30	-10	-20
11	-20	-9	-26	-3
-7	-13	-6	1	-13

Aplicar a não-linearidade

Operação de Max-pooling

Operação de Max-pooling

Saída da camada de convolução

Porquê Max pooling?

Número de parâmetros

(Tamanho da imagem divido por 4)

Invariância à translação

(Ativação independente da posição exata)

- Invariância à escala
- Invariância à rotação

Detecção de orelha de gato

Filtro 2					
1	-1	-1			
-1	1	-1			
-1	-1	1			

Representação numérica

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Nova imagem

Canal 1

3	10	10
21	0	0
0	1	0

Canal 2

7	10	0
0	18	11
1	0	0

Filtro de convolução da segunda camada

Filtro de convolução 3D

Canal 1				Canal	2
-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	1
-1	-1	-1	-1	-1	-1

Resultado da convolução

-43	-70	-39
7	-70	-60
-41	-50	-30

Filtro de convolução da segunda camada

		3
-43	-70	-39
7	-70	-60
-41	-50	-30

Resultado da convolução

Camada de classificação

Conclusão: Tem uma orelha de gato na imagem

Outro mecanismo de redução de tamanho: Stride

Stride = 1

Stride = 2

3	0	0	3	0
0	0	10	0	3
0	10	3	10	0
10	3	3	3	10
3	3	3	3	3

Stride = 3

CNN na prática

Filtros de convolução parametrizados e aprendidos

Aplicado à profundidade inteira da imagem de entrada

Definir uma arquitetura CNN

Número de parâmetros: MLP vs CNN

Competição ImageNet (ILSVRC 2012)

Classificar imagens entre 1000 categorias 1.2M imagens de treinamento | 150K imagens de teste

Arquitetura VGG 16

Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)
Xception	88	0.790	0.945	22,910,480	126	109.42	8.06
VGG16	528	0.713	0.901	138,357,544	23	69.50	4.16
VGG19	549	0.713	0.900	143,667,240	26	84.75	4.38

Reflexões: Adaptação da arquitetura CNN para vídeos

Conclusão

- Apresentamos a arquitetura MLP e mostramos como pode ser desenvolvida → Dados tabulares
- Apresentamos a arquitetura CNN e mostramos como pode ser desenvolvida → Imagens
- Muitos elementos importantes sobre treinamento de redes neurais não foram discutidos ainda (próximas aulas)

Inicialização Otimização Regularização Avaliação
Implementação eficiente Implantação industrial

Antes da próxima aula

- Apresentamos a arquitetura MLP e mostramos como pode ser desenvolvida → Dados tabulares
- Apresentamos a arquitetura CNN e mostramos como pode ser desenvolvida → Imagens
- Muitos elementos importantes sobre treinamento de redes neurais não foram discutidos ainda (próximas aulas)

Inicialização Otimização Regularização Avaliação
Implementação eficiente Implantação industrial

Título principal

Título secundário