武汉大学 2013-2014 学年第二学期期末考试

线性代数 C (A 卷答题卡)

						考	生	-	*	5				
						607	[0]	[0]	[0]	[0]	[0]	[0]	[0]	E
姓名	班级	[0]	[0]	[0]	1	[1] [2] [3]	103	[1]	[23	[1]	[1]	[13	[1]	1
		[1]	[1]		[1]		[3]	[2]		[2] [3]		[2] [3]	1	
	[1]	[2]	[2]	[2]	[2]									
	1. 答题前, 考生先将自己的姓名、学号填写清楚, 并填涂相应的	[3]	[3]	[3]	[3]			[4]		[4]	[4]	[4]	[4]	
	考号信息点。 注 2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠 ³	[4]	[4]		1			[5]		[5]	[5]	[5]	[5]	1
	在 2.解各應必须使用黑巴墨水的金子毛取马,不将加加巴亚 意 作解答應:字体工整、笔迹清楚。	[5]	[5]			[5]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	1
羊 错误填涂	事 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域	5 [6]	[6]		-	[6]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	1
例 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		[7]	[7]	[7]	[73				[8]	[8]	[8]	[8]	[8]	1
		[8]	100	[8]				1 77	0.10	[9]	[9]	[9]	[9]	10
	中, 体对下面信仰, 小菜和蛋、小菜开放。	[9]	[9]	[9]	[9]	[9]	[9]	193	273					1

一、(6分)下列命题是否正确?如正确,请证明,若不正确请举反例:向量组 $a_1,a_2,...,a_s$ ($s\geq 2$)线性无关的充分必要条件是存在一组不全为零的常数 $k_1,...,k_s$,使得 $k_1a_1+...+k_sa_s\neq 0$.

二、
$$(6 分)$$
 设 $A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 1 & 3 \\ 0 & 5 & 1 \end{pmatrix}$, 问 A 是否可逆?如可逆求 A^{-1} ,如不可逆,求 A 的伴随矩阵 A^* .

三、(6分)给正交矩阵A的某一行(或某一列)乘上-1后所得的矩阵B是否仍是正交矩阵?为什么?

四、(12分)设 α_1 =(1,0,2,1), α_2 =(1,2,0,1), α_3 =(2,1,3,0), α_4 =(2,5,-1,4), α_5 =(1,-1,3,-1),求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的一个最大无关组,并用最大无关组线性表示向量组中其它向量.

五、(12分)设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 5 & 4 & 2 \end{pmatrix}$$
,求 $|(4E - A)^T (4E - A)|$.

六、(12 分) 写出二次型 $f(x_1, x_2) = -3x_1^2 + 5x_2^2 + 2x_1x_2$ 在正交变换下所化成标准形,并指出是正定的还是负定的.

七、(16 分) 设有方程组 $\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 + 2x_5 = 2\\ 3x_1 - 5x_2 + 7x_3 + 2x_4 + 3x_5 = 5\\ 2x_1 - 3x_2 + 4x_3 + 3x_4 + x_5 = a\\ -x_1 + x_2 - x_3 - 4x_4 + x_5 = b \end{cases}$, 试讨论a, b 取何值时,方程组有解,并求解.

八、(10 分) 设
$$AX = B + X$$
, 其中 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -3 & 2 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \\ -3 & 1 & -1 \end{pmatrix}$, 求矩阵 X .

九、(10分) 若实向量 $\alpha = (b,c,d,e)^T$ 是单位列向量, 矩阵 $H = 2\alpha\alpha^T - E$. 证明: H 是正交矩阵.

十、(10 分) 设矩阵
$$A = \begin{pmatrix} 1 & 2 & -3 \\ -1 & 4 & -3 \\ 1 & a & 5 \end{pmatrix}$$
 的全部特征值之积为 24.(1) 求 a 的值; (2) 讨论 A 能否对角化,若

能,求一个可逆矩阵 $P \oplus P^{-1}AP = \Lambda$ 为对角阵.