Введение в математический анализ.

Вебинар 1. Теория множеств. Математическая логика.

Любая научная дисциплина требует теории для её изучения. Для математического анализа и для любой другой математической дисциплины такой теорией является теория множеств.

Свойства любой научной теории

 Теорию невозможно доказать или опровергнуть: это набор аксиом, инструмент.

2) Любая теория, состоящая из аксиом, неполна и требует проверки теорией большего порядка (Гёдель Курт Фридрих).

То есть рано или поздно любая теория приводит к противоречиям внутри себя, что требует развития новой или переосмысления старой теории.

Теория множеств

Топливом для развития теории множеств послужила необходимость исследования бесконечности, главным образом, исследование простых чисел на бесконечности.

Понятие множества принадлежит к числу простейших математических понятий и не имеет точного определения.

Любое множество задается своими элементами.

Примеры множеств: книги в библиотеке; студенты, присутствующие на занятии; целые числа; комплексные числа; множества множеств,...

Описание множеств

- множество обозначают заглавными латинскими буквами (А);
- его элементы строчными латинскими буквами (a);
- то, что элемент принадлежит множеству, обозначают так: а ∈ A;
- если а не принадлежит A, то этот факт обозначают так: а∉A.

Примеры множеств

1. Множество натуральных чисел можно задать так:

$$\mathbb{N} = \{1, 2, 3, \dots, n, n+1, \dots\}$$

2. Множество целых чисел можно задать так:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots, n, -n, \dots\}$$

3. Множество рациональных чисел можно задать так:

$$\mathbb{Q=}\Big\{rac{p}{q}\;\left|\;p\in\mathbb{Z},q\in\mathbb{N}
ight\}$$

Примеры множеств

4. Множество вещественных чисел:

R – числовая ось.

(помимо рациональных чисел включает числа, которые нельзя представить в виде обыкновенной дроби, такие как π , е, $\sqrt{2}$, ...)

Примеры множеств

5. Комплексные числа:

$$\mathbb{C}=ig\{x+iy\mid x\in\mathbb{R}\$$
и $y\in\mathbb{R}ig\},$ где i – мнимая единица.

Два множества равны тогда и только тогда, когда состоят из одних и тех же элементов.

Если же все элементы множества A содержатся в множестве B, то говорят, что A является подмножеством множества B и обозначают A \subset B. Само же B называют надмножеством

Далее перейдём в методичку

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

 $\frac{m}{n}$, где n — натуральное, m — целое

$$2 = \frac{2}{1}$$

$$3.5 = \frac{35}{10} = \frac{7}{2}$$

$$-2.8 = \frac{-28}{10} = \frac{-14}{5}$$

$$0.33333333... = 0.(3) = ?$$

$$a = 0.(3)$$

$$10a = 3.(3)$$

$$10a = 3 + 0.(3)$$

$$10a = 3 + a$$

$$9a = 3$$

$$a = \frac{3}{9} = \frac{1}{3} \implies 0.(3) = \frac{1}{3}$$

$$a = 0.(18)$$

$$100a = 18.(18)$$

$$100a = 18 + 0.(18)$$

$$100a = 18 + a$$

$$99a = 18$$

$$a = \frac{18}{99} = \frac{2}{11} \implies 0.(18) = \frac{2}{11}$$

$$a = 1.32(18)$$

$$100a = 132.(18)$$

$$100a = 132 + 0.(18)$$

$$100a = 132 + \frac{2}{11}$$

$$a = \frac{1454}{1100} = \frac{727}{550} \Rightarrow 1.32(18) = \frac{727}{550}$$

$$a = 0.(9)$$

$$a = 0.(9)$$

$$10a = 9.(9)$$

$$10a = 9 + 0.(9)$$

$$10a = 9 + a$$

$$9a = 9$$

$$a = 1 \implies 0.(9) = ?1$$

Математическая логика

Логика высказываний рассматривает и решает вопрос об истинности или ложности высказываний на основе изучения способа построения высказываний из так называемых элементарных высказываний с помощью логических операций или связок. Основным понятием этого раздела логики является **высказывание**.

Высказыванием называется повествовательное предложение, про которое всегда определенно можно сказать, является оно истинным (1) или ложным (0).

Примеры высказываний: «2+2=4», «1+1=1», «Земля вращается вокруг Солнца», «3>5», «10 – нечетное число», «На улице идет дождь».

Побудительные предложения («Кругом!», «Идите к доске!»), вопросительные («Сколько времени?») и восклицательные («Ак Барс – чемпион!») высказываниями не являются.

Математическая логика

Пример 1. Предложение «Сдать зачет по математике можно, зная блестяще теорию или решив все примеры» можно представить так А∪В, где А: «Сдать зачет можно, зная блестяще теорию», В: «Сдать зачет можно, решив все примеры»

Способы работы с выражениями

- > С помощью таблицы истинности.
- > С помощью основных законов логики высказываний.

Диаграммы Венна:

http://libraryno.ru/1-2-operacii-nad-mnozhestvami-diagrammy-eylera-venna-di s matem nekr 2010/

 Таблица истинности для конъюнкции (логическое умножениА ∩ В

			_ И
Α	В	F	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

2) Таблица истинности для **дизъюнкц**И ∪ В

ИЛИ	F	В	Α
	1	1	1
	1	0	1
• •	1	1	0
	0	0	0

3) Логическое отрицание или инверсі А

К исходному логическому выражению добавляется частица «не» или слова «неверно, что».

4) Логическое следование или

ИМПЛИКАЦИЯ: В – следствие.

ЕСЛИ ... , TO

Α	В	F
1	1	1
1	0	0
0	1	1
0	0	1

5) Логическая равнозначность или

эквивалентность:

ТОГДА И ТОЛЬКО ТОГДА

Α	В	F
1	1	1
1	0	0
0	1	0
0	0	1

Математическая логика

Пример 2. Предложение «Если Сувар или Таиф проиграют, а Феникс выиграет тендер, то Альбатрос упрочит свое положение и мы понесем убытки» представляет собой импликацию $A \rightarrow B$, где посылка A составлена из трех элементарных высказываний: Р: «Сувар проиграет», Q: «Таиф проиграет», R: «Феникс выиграет», а заключение B есть конъюнкция высказываний: D: «Альбатрос упрочит свое положение» и С: «Мы понесем убытки». С помощью введенных символов первоначальное предложение записывается в виде формулы: $((P \cup Q) \cap R) \rightarrow (D \cap C)$.

Пример 2. Предложение «Если Сувар или Таиф проиграют, а Феникс выиграет тендер, то Альбатрос упрочит свое положение и мы понесем убытки» представляет собой импликацию $A \rightarrow B$, где посылка A составлена из трех элементарных высказываний: P: «Сувар проиграет», Q: «Таиф проиграет», R: «Феникс выиграет», а заключение B есть конъюнкция высказываний: D: «Альбатрос упрочит свое положение» и C: «Мы понесем убытки». С помощью введенных символов первоначальное предложение записывается в виде формулы: $((P \cup Q) \cap R) \rightarrow (D \cap C)$.

Пусть Сувар проиграл (Р=«И»); Таиф выиграл (Q= «Л»); Феникс проиграл (R=«Л»);

Альбатрос упрочил своё положение (D=«И»); мы не понесли убытки (C= «Л»).

Пусть Сувар проиграл (Р=«И»); Таиф выиграл (Q= «Л»); Феникс проиграл (R=«Л»);

Альбатрос упрочил своё положение (D=«И»); мы не понесли убытки (C= «Л»).

Если истинностные значения простых переменных Р, Q, R, D, C соответственно равны "И", "Л", "Л", "Л", "И", "Л", то истинностное значение сложного высказывания может быть определено механически, используя таблицы истинности логических операций, следующим образом

$$((P \cup Q) \cap R) \to (D \cap C)$$
 $(("И" \cup "Л") \cap "Л") \to ("И" \cap "Л")$
 $("И" \cap "Л") \to "Л"$
 $"Л" \to "Л"$
 $"И"$

Таблица истинности

Пример 3. Доказать, что при любых значениях P и Q справедлива формула: $(P \to Q) \leftrightarrow (\bar{P} \cup Q)$.

P	Q	$P \rightarrow Q$	$ar{P}$	$\bar{P} \cup Q$	$(P \to Q) \leftrightarrow (\bar{P} \cup Q)$
"N"	"N"	"N"	"Л"	"N"	" N "
"И"	"Л"	"Л"	"Л"	"Л"	" N "
"Л"	"N"	"N"	"И"	"N"	" N "
"Л"	"Л"	" N "	" N "	" N "	" N "

Высказывание, истинное при любых значениях входящих в нее простых высказываний, называется **тавтологией**.

Свойства и признаки

Когда учительница ругала Дениса за плохой почерк, он сказал: "У всех великих людей был плохой почерк, значит, я великий человек." Прав ли он?

Предпосылка Дениса: «У всех великих людей был плохой почерк»

Предпосылка Дениса: «У всех великих людей был плохой почерк»

(этому пока верим; разбираемся, логичны ли дальнейшие рассуждения)

Сначала разберёмся, прав ли Денис в тех рамках, которые установил сам.

(Логичны ли его рассуждения?)

Если человек великий (A)

Предпосылка Дениса

У него плохой почерк (B)

Согласно утверждению Дениса, плохой почерк – это свойство великого человека.

Но не признак!

Герой задачи не прав.

 $(A \square B)$ не означает $(B \square A)$

Из прямого утверждения не следует обратное!

Можно привести много верных математических утверждений, обратные к которым неверны. Например: если два числа чётны, то их сумма тоже чётна. Но совсем не обязательно, что если сумма двух чисел чётна, то оба они тоже чётны (3 + 5 = 8).

Больше подобных задач на логику здесь (сайт Малого Мехмата МГУ): http://mmmf.msu.ru/archive/20102011/z5/3.html

- 1. Коммутативность конъюнкции: $A \cap B = B \cap A$.
- 2. Коммутативность дизъюнкции: $A \cup B = B \cup A$.
- 3. Ассоциативность конъюнкции: $A \cap (B \cap C) = (A \cap B) \cap C$.
- 4. Ассоциативность дизъюнкции: $A \cup (B \cup C) = (A \cup B) \cup C$.
- 5. Дистрибутивность конъюнкции относительно дизъюнкции: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 6. Дистрибутивность дизъюнкции относительно конъюнкции: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

- 7. Закон де Моргана относительно конъюнкции: $\overline{(A \cap B)} = \bar{A} \cup \bar{B}$.
- 8. Закон де Моргана относительно дизъюнкции: $\overline{(A \cup B)} = \bar{A} \cup \bar{B}$.
- 9. Закон поглощения для дизъюнкции: $A \cup (A \cap B) = A$.
- 10. Закон поглощения для конъюнкции: $A \cap (A \cup B) = A$.
- 11. Закон идемпотентности для конъюнкции: $A \cap A = A$.
- 12. Закон идемпотентности для дизъюнкции: $A \cup A = A$.

- 13. Закон противоречия: $A \cap \bar{A} = "Л"$.
- 14. Закон исключения третьего: $A \cup \bar{A} = "И"$.
- 15. Закон двойного отрицания: $\overline{(\bar{A})} = A$.
- 16. $A \cap "\Pi" = "\Pi", A \cap "H" = A$.
- 17. $A \cup "Л" = A$, $A \cup "И" = "И"$.

Пример 4. Упростить высказывание:

$$\overline{(A \cup (A \cap B))} \cup (A \cup (C \cap \overline{A})).$$

$$\overline{(A \cup (A \cap B))} \cup (A \cup (C \cap \overline{A})) = \\
= (\overline{A} \cap \overline{(A \cap B)}) \cup ((A \cup C) \cap (A \cup \overline{A})) = \\
= (\overline{A} \cap (\overline{A} \cup \overline{B})) \cup ((A \cup C) \cap "N") = \\
= \overline{A} \cup (A \cup C) = \\
= (\overline{A} \cup A) \cup C = \\
= "N" \cup C = \\
= "N"$$

Кванторы

 всеобщности (∀) (читается «для любого»)

• существования (Э) (читается «существует»)

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

Е читается как «принадлежит»

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

$$\exists x \in (-\infty; 0] \operatorname{sgn}(x) \neq -1$$

- Квантор меняется на противоположный (∀ <-> ∃).
- Принадлежность множеству сохраняется.
- Перед логическим сказуемым ставится «не».

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

$$\exists x \in (-\infty; 0] \operatorname{sgn}(x) \neq -1$$

Пример.

$$y = \text{sgn } x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

$$\lim_{x\to 0+} \operatorname{sgn} x = 1$$

$$\lim_{x \to 0^{-}} \operatorname{sgn} x = -1$$

Пара интересных примеров на логику.

Пример 7. За книгу заплатили 100р. и еще половину своей стоимости. Сколько стоит книга?

Пример 8. За книгу заплатили 100р., и осталось заплатить еще столько, сколько осталось бы заплатить, если бы за нее заплатили столько, сколько осталось заплатить. Сколько стоит книга?

Спасибо за внимание!