常用链接	
我的随笔	_
我的评论	
我的参与	
最新评论	
我的标签	
积分与排名	
积分 - 82403	
排名 - 18654	
随笔分类	
C++(8)	
C++PRIMER(4)	
LINUX/UNIX(2)	
LOVE/HOPE(16)	
SHELL/脚本语言(2)	
UNIX环境高级编程第二版(23)	
UNIX环境高级编程第三版(10)	
UNIX网络编程/网络/网络安全(51)	
编程思想/异常处理(2)	
编译编译器(4)	
并发并行(2)	
动态库/OS/正则/IO(2)	
工作(1)	

算法导论4.3主方法

4.3 主方法

主方法(master method)给出求解如下形式的递归式的"食谱"方法:

$$T(n) = aT(n/b) + f(n)$$

(4.5)

其中 $a \ge 1$ 和 $b \ge 1$ 是常数,f(n) 是一个渐近正的函数。主方法要求记忆三种情况,但这样可很容易确定许多递归式的解,且不需用笔和纸。

递归式(4.5)描述了将规模为 n 的问题划分为 a 个子问题的算法的运行时间,每个子问题规模为 n/b, a 和 b 是正常数。a 个子问题被分别递归地解决,时间各为 T(n/b)。划分原问题和合并答案的代价由函数 f(n) 描述。(即使用 2.3.2 节中的记号,f(n) = D(n) + C(n)。)如,MERGESORT 过程的递归式中有 a = 2,b = 2, $f(n) = \Theta(n)$ 。

从技术正确性角度看, 递归式实际上没有得到很好的定义, 因为 n/b 可能不是个整数。但用

24/3/8 13:39
货币金融学(2)
深入理解计算机系统(1)
数据结构与算法(2)
算法导论(30)
学习工作方法/规则习惯/工具(45)
证券投资基金(5)
转贴(6)
随笔档案
2016年9月(2)
2016年6月(1)
2016年2月(8)
2016年1月(6)
2015年11月(1)
2015年10月(1)
2015年9月(7)
2015年7月(3)
2015年6月(3)
2015年4月(6)
2015年3月(59)
2015年2月(63)
2015年1月(26)
2011年3月(3)
2011年2月(1)
2011年1月(9)

T([n/b])或 T([n/b])来代替 a 项 T(n/b)并不影响递归式的渐近行为(我们将在下节对此证明)。因而,我们在写分治算法时略去下取整和上取整函数会带来很大的方便。

主定理

主方法依赖于下面的定理:

定理 4.1(主定理) 设 $a \ge 1$ 和 b > 1 为常数,设 f(n) 为一函数, T(n) 由递归式

$$T(n) = aT(n/b) + f(n)$$

对非负整数定义,其中 n/b 指 $\lfloor n/b \rfloor$ 或 $\lceil n/b \rceil$ 。那么 T(n) 可能有如下的渐近界:

- 1) 若对于某常数 $\varepsilon > 0$,有 $f(n) = O(n^{\log_b a \varepsilon})$,则 $T(n) = \Theta(n^{\log_b a})$;
- 2)若 $f(n) = \Theta(n^{\log_b a})$, 则 $T(n) = \Theta(n^{\log_b a} \lg n)$;
- 3) 若对某常数 $\varepsilon > 0$,有 $f(n) = \Omega(n^{\log_b a + \varepsilon})$,且对常数 c < 1 与所有足够大的 n,有 $af(n/b) \le cf(n)$,则 $T(n) = \Theta(f(n))$ 。

在运用该定理之前,先来看看它包含哪些内容。在以上三种情况的每一种中,都把函数 f(n)与函数 $n^{\log_b a}$ 进行比较。我们的直觉是解由两个函数中较大的一个决定。例如在第一种情况中,函数 $n^{\log_b a}$ 更大,则解为 $T(n) = \Theta(n^{\log_b a})$ 。在第三种情况下,f(n)是较大的函数,则解为 $T(n) = \Theta(f(n))$ 。在第二种情况中,两种函数同样大,乘以对数因子,则解为 $T(n) = \Theta(n^{\log_b a} \log_b n)$ 。

这只是我们的直觉,另外还有一些技术问题要加以理解。在第一种情况中,不仅要有 f(n) 小于 $n^{\log_8 a}$,还必须是多项式地小于,即对某个常量 $\epsilon > 0$,f(n) 必须渐近地小于 $n^{\log_8 a}$,两者差一个因子 n^{ϵ} 。在第三种情况中,f(n) 不仅要大于 $n^{\log_8 a}$,且要多项式地大于,还要满足"规则性"条件 $af(n/b) \leq cf(n)$ 。后面将碰到的大部分多项式有界的函数都满足这个条件。

要注意三种情况并没有覆盖所有可能的 f(n)。当 f(n)只是小于 $n^{\log_b a}$ 但不是多项式地小于时,在第一种情况和第二种情况之间就存在一条"沟"。类似情况下,当 f(n)大于 $n^{\log_b a}$,但不是多项式地大,第二种情况和第三种情况之间就会存在一条"沟"。如果 f(n) 落在任一条"沟"中,或是第三种情况中规则性条件不成立,则主方法就不能用于解递归式。

24/3/8 13:39	
2010年12月(2)	
收藏夹	
google	
GMail	
飞鱼秀	
苏铅坤	
stackoverflow	
ROSI	
ChinaUnix Man	
snort	
tcpip详解笔记	
平凡的幸福	
动态规划	
Leetcode	
一亩三分地	
北大在线	
百度	
科学网	
结构之法算法之道	
刘未鹏	
青铜器	
孙永杰	
园子	
新随笔	

主方法的应用

在应用此方法时,先决定要选取定理中的哪一种情况(如果有情况可满足的话),然后即可简单地写下答案。

先看第一个例子:

$$T(n) = 9T(n/3) + n$$

在这个递归式中, a=9, b=3, f(n)=n, 则 $n^{\log_b a}=n^{\log_3 9}=\Theta(n^2)$ 。因为 $f(n)=O(n^{\log_3 9-\epsilon})$,其中 $\epsilon=1$,这对应于主定理中的第一种情况,答案为 $T(n)=\Theta(n^2)$ 。

再看一个例子: T(n) = T(2n/3) + 1

其中 a=1, b=3/2, f(n)=1, $n^{\log_b a}=n^{\log_{3/2}1}=n^0=1$ 。第二种情况成立,因为 $f(n)=\Theta(n^{\log_a a})=\Theta(1)$,故递归式的解为 $T(n)=\Theta(\lg n)$ 。

对递归式 $T(n)=3T(n/4)+n\lg n$,有 a=3,b=4, $f(n)=n\lg n$, $n^{\log_b a}=n^{\log_b 3}=O(n^{0.793})$ 。因为 $f(n)=\Omega(n^{\log_b 3+\epsilon})$,其中 $\epsilon\approx 0.2$,如果能证明对 f(n)第三种情况中的规则性条件成立,则选用定理中的第三种情况。对足够大的 n, $af(n/b)=3(n/4)\lg(n/4)\leqslant (3/4)n\lg n=cf(n)$,c=3/4,则递归式的解为 $T(n)=\Theta(n\lg n)$ 。

对下面的递归式主方法不适用:

$$T(n) = 2T(n/2) + n \lg n$$

这个递归式在形式上是合适的: a=2, b=2, $f(n)=n\lg n$, $n^{\log_b a}=n$ 。 看上去可选择第三种情

况,因为 $f(n) = n \lg n$ 新近大于 $n^{\log_b a} = n$,但并不是多项式大于。对任意正常数 ϵ ,比值 $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$ 新近小于 n^{ϵ} 。因此,该递归式落在情况二与情况三之间。(练习 4.4-2 给出了解答)