Ćwiczenia z ANALIZY NUMERYCZNEJ

Lista nr 3

23 października 2024 r.

Zajęcia 29 października 2024 r. Zaliczenie listy od 6 pkt.

L3.1.	Włącz komput	ter! 2 r	ounkty	Dla	iakich	wartości :	x oblicza	nie war	tości w	vrażeń

- a) $(x^5 + \sqrt{x^{10} + 2024})^{-1}$, b) $10^8(e^x e^{2x})$, c) $6x^{-3}(\arcsin(x) x)$

d) $4\cos^2 x - 1$

może wiązać się z utratą cyfr znaczących wyniku? Zaproponuj sposoby obliczenia wyniku dokładniejszego. Pokaż, że sposoby te działają w praktyce.

- L3.2. Włącz komputer! 1 punkt Podaj (w miarę) bezpieczny numerycznie algorytm obliczania zer równania kwadratowego $ax^2 + bx + c = 0$ ($a \neq 0$). Przeprowadź testy dla odpowiednio dobranych wartości a,b i c pokazujące, że Twój algorytm jest lepszy od metody szkolnej bazującej jedynie na dobrze znanych wzorach $x_{1,2} =$ $(-b \pm \sqrt{b^2 - 4ac})/(2a)$.
- L3.3. I punkt Wyprowadź wzór na wskaźnik uwarunkowania zadania obliczania wartości $\overline{\text{funkcji } f}$ w punkcie x.
- **L3.4.** 2 punkty Sprawdź dla jakich wartości x zadanie obliczania wartości funkcji f jest źle uwarunkowane, jeśli:
- a) $f(x) = (x 2024)^5$, b) $f(x) = \sin(-8x)$, c) $f(x) = (2024 + x^8)^{-2}$.
- **L3.5.** 2 punkty Załóżmy, że dla każdego $x \in X_{fl}$ zachodzi $fl(\sin(x)) = \sin(x)(1 + \varepsilon_x)$, gdzie $\overline{|\varepsilon_x|} \leq 2^{-t}$, natomiast t oznacza liczbę bitów przeznaczoną na zapamiętanie mantysy. Niech dane będą liczby maszynowe y_1, y_2, y_3, y_4 oraz taka liczba maszynowa $x, \dot{z}e x \cdot 2^{-8}$ też jest liczbą maszynową. Sprawdź czy poniższy algorytm obiczania wartości wyrażenia $\sum y_i \sin(4^{-i}x)$ jest numerycznie poprawny:

Return(S)

L3.6. 2 punkty Sprawdź czy podany niżej algorytm obliczania wartości wyrażenia $\frac{b+c+bd}{a(d+1)}$ jest algorytmem numerycznie poprawnym:

```
S:=d+1;
S:=c/S;
S:=b+S;
S:=a/S;
S:=1/S;
Return(S)
```

L3.7. I punkt Zbadaj czy podany niżej algorytm wyznaczania iloczynu liczb maszynowych x_1, x_2, \ldots, x_{2n} (zakładamy zatem, że $\operatorname{rd}(x_k) = x_k, 1 \le k \le 2n$) jest algorytmem numerycznie poprawnym.

```
I1:=x[2*n];
I2:=x[2*n-1];

for k=n-1 downto 1
    do
        I1:=I1*x[2*k];
        I2:=I2*x[2*k-1]
    end;

Return(I1*I2)
```

L3.8. Dodatkowe zadanie programistyczne (do 17 listopada; do 5 punktów)

Udowodnij, że dla małego h

(1)
$$f'(t) = \frac{f(t+h) - f(t)}{h} + O(h), \qquad f'(t) = \frac{f(t+h) - f(t-h)}{2h} + O(h^2).$$

Przybliżenia pochodnej funkcji znajdują zastosowanie m.in. w numerycznym rozwiązywaniu rówań różniczkowych, w tym tzw. równań ruchu. Znając położenie i prędkość obiektu w chwili t (w wypadku drugiego wzoru, odpowiednio, t-h oraz t), jak również działające na niego siły, z użyciem powyższych wzorów można **przybliżyć** jego położenie oraz prędkość w chwili t+h.

Rozpatrujemy ruch układu ciał oddziałujących wzajemnie na siebie poprzez siłę grawitacji (przyda się znane ze szkoły prawo powszechnego ciążenia Newtona: $F = G \frac{m_1 m_2}{r^2}$). Celem jest określenie, na podstawie początkowego położenia ciał i ich prędkości w chwili t, jaki będzie stan układu w kolejnych ustalonych chwilach, np. $t + h, t + 2h, t + 3h, \ldots$

- (a) Wyprowadź układ równań ruchu dla dwóch ciał wzajemnie się przyciągających.
- (b) Sprawdź na przykładzie dwóch ciał, które z powyższych przybliżeń pochodnej lepiej sprawdza się w praktyce (dla tego samego h).

¹Patrz pkt. 13. regulaminu zaliczania ćwiczeń.

Wskazówka nr 1. Bardzo dobrze będzie to widać, jeżeli układ przypomina planetę krążącą wokół słońca.

Wskazówka nr 2. Metodę wykorzystującą pierwszy z wzorów (1) można znaleźć w literaturze pod nazwą *metody Eulera* przybliżonego rozwiązywania równań różniczkowych.

(c) Choć dla dwóch przyciągających się ciał znane jest jawne rozwiązanie analityczne, to w wypadku trzech (tzw. **problem trzech ciał**) lub więcej obiektów — wzorów takich nie ma. Zadanie można rozwiązywać wyłącznie w sposób przybliżony stosując metody numeryczne. Korzystając z podanych możliwości aproksymowania pochodnej, znajdź przybliżone rozwiązanie problemu trzech (lub więcej) ciał dla kilku istotnie różnych układów (np. układ Słońce-Ziemia-Księżyc, planeta krążąca wokół gwiazdy podwójnej, wykorzystanie zjawiska asysty grawitacyjnej, ...).

Autor zadania: Filip Chudy.

L3.9. Dodatkowe zadanie programistyczne (do 17 listopada; do 5 punktów) 2 Niech $\{s_n\}$ będzie ciągiem zbieżnym do granicy s. Ciąg Δ^2 Aitkena

$$t_n = \frac{s_n s_{n+2} - s_{n+1}^2}{s_{n+2} - 2s_{n+1} + s_n} \qquad (n = 0, 1, \ldots)$$

jest w wielu wypadkach — spróbuj dowiedzieć się, w których — zbieżny do s szybciej niż $\{s_n\}$, tzn. $\lim_{n\to\infty}\frac{t_n-s}{s_n-s}=0$.

(a) Oblicz 20 początkowych wyrazów ciągów $\{s_n\}$ i $\{t_n\}$ oraz $\{e_n:=s_n-s\}$ i $\{d_n:=t_n-s\}$ w wypadku

i.
$$s_n = \sum_{\substack{j=0\\n}}^{n} (-1)^j (2j+1)^{-1}, \ s = \pi/4 \approx 0.7853981634;$$

ii.
$$s_n = \sum_{k=1}^n k^{-3/2}$$
, $s \approx 2.612375348685488$.

Czy mamy do czynienia z istotnym przyspieszeniem zbieżności? Powtórz doświadczenie dla innych danych.

(b) Zauważ, że zbieżność ciągu $\{t_n\}$ można przyspieszyć w analogiczny sposób, definiując ciąg $\{u_n\}$ wzorem

$$u_n = \frac{t_n t_{n+2} - t_{n+1}^2}{t_{n+2} - 2t_{n+1} + t_n} \qquad (n = 0, 1, \ldots).$$

Korzystając z tej obserwacji wykonaj kilka doświadczenia obliczeniowe dla danych z punktu (a) oraz dla kilku innych przykładów.

(c) Uogólniając metodę, zaproponuj sposób **przyspieszenia ciągu** $\{u_n\}$. Sprawdź eksperymentalnie jego skuteczność.

(-) Paweł Woźny

²Patrz pkt. 13. regulaminu zaliczania ćwiczeń.