UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO III

Gabriel Bezerra de M. Armelin - 21550325 Mario Alves Pardo Junior - 21553964 Jonas Miranda Cascais Júnior - 21553844 Fabrício Yuri Costa da Silva - 21454545

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Parte Experimental	4
3	Análise de Dados	5
	Coleta das amostras	5
	Cálculo da aceleração da gravidade	5
	Cálculo do valor provável	7
	Estimativa do erro	7
4	Conclusão	8
R	oforôncias	q

1. Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática.

2. Parte Experimental

O experimento consiste em estimar o valor da aceleração da gravidade no local de realizazação do experimento. Para isto, as seguintes etapas foram realizadas por 4 alunos:

- 1. Coleta do tempo de queda de uma esfera em diversas alturas diferentes. Para a medição deste tempo, foi utilizado um aparelho apropriado para a tarefa. Este aparelho é capaz de medir o tempo de queda com precisão de 0.001 segundos.
- 2. Cálculo da aceleração da gravidade
- 3. Cálculo do valor provável
- 4. Estimativa do erro

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Coleta das amostras

A primeira atividade diz respeito à coleta das amostras de tempo de queda da espera em diversas distâncias e por 4 alunos diferentes. A próxima tabela apresenta os valores coletados:

Tabela 3.1: Amostras dos tempos de queda da esfera em segundos.

	0.10 m (s)	0.15 m (s)	0.20 m (s)	$0.25 \mathrm{\ m\ (s)}$	0.30 m (s)	0.35 m (s)
Aluno1	0.1371	0.1701	0.1963	0.2213	0.2443	0.2653
Aluno2	0.1381	0.1718	0.1997	0.2241	0.2460	0.2656
Aluno3	0.1362	0.1703	0.1980	0.2222	0.2448	0.2650
Aluno4	0.1357	0.1716	0.1972	0.2223	0.2434	0.2657

Cálculo da aceleração da gravidade

Esta seção descreve o processo utilizado para estimar a aceleração da gravidade. Primeiramente, vamos analisar graficamente a relação de tempo de queda médio da esfera (calculado na seção anterior) com o deslocamento. O próxmo gráfico apresenta o resultado obtido:

O gráfico se assemelha a uma reta ou uma leve curva. Esperava-se que a curva fosse mais acentuada já que o gráfico da relação distância-tempo em um movimento uniformemente variado

é uma meia parábola. Entendemos que este gráfico se apresentou desta maneira devido ao número pequeno de amostras coletadas.

Pode-se calcular a aceleração utilizando a seguinte fórmula:

$$s = s_0 + v_0 t + \frac{1}{2} a t^2 (3.1)$$

Onde:

 $\rm s=corresponde$ a posição final. Os valores 5cm, 10cm, 15cm, 20cm, 25cm, 30cm e 35cm foram utilizados como posição final.

 $s_0 = \text{corresponde a posição inicial.}$ Neste caso será considerado 0 a posição inicial.

 v_0 = corresponde a velocidade inicial. Como a esfera está em repouso em t=0, a velocidade inicial é 0.

t = corresponde ao tempo final de queda, neste caso serão utilizados os valores dos tempos médios para cada distância percorrida que foram apresentados na tabela 1.

A seguinte tabela apresenta a aceleração da gravidade para cada distância percorrida e para cada medição dos alunos:

Tabela 3.2: Acelerações da gravidade para cada deslocamento e medição de aluno.

	$0.10~\mathrm{m}~(\mathrm{m}/s^2)$	$0.15~\mathrm{m}~(\mathrm{m}/s^2)$	$0.20~\mathrm{m}~(\mathrm{m}/s^2)$	$0.25~\mathrm{m}~(\mathrm{m}/s^2)$	$0.30~\mathrm{m}~(\mathrm{m}/s^2)$	$0.35 \text{ m (m/}s^2)$
a1	10.64033	10.36842	10.38053	10.20956	10.05320	9.94543
a2	10.48679	10.16424	10.03007	9.95603	9.91473	9.92298
a3	10.78142	10.34408	10.20304	10.12703	10.01217	9.96796
a4	10.86101	10.18795	10.28599	10.11792	10.12768	9.91551

Onde a_1 corresponde a aceleração da gravidade para as medidas do Aluno1 apresentadas na seção anterior, a_2 para o Aluno2 e assim por diante.

Calculando a média das acelerações da gravidade de cada deslocamento por aluno obtém-se os seguintes valores:

Tabela 3.3: Aceleração da gravidade por aluno

$acel_1$	$acel_2$	$acel_3$	$acel_4$
10.26624507	10.07914006	10.23928304	10.24934293

Onde $acel_1$ significa a média da aceleração da gravidade para os deslocamentos coletados pelo aluno 1 e assim por diante para as demais colunas.

Cálculo do valor provável

O valor provável da aceleração será calculado de acordo com a seguinte formula :

$$V_p = \frac{acel_1 + acel_2 + acel_3 + acel_4}{4} \tag{3.2}$$

Esta fórmula utiliza os dados da tabela de aceleração da gravidade por aluno apresentada na seção anterior. O resultado obtido foi:

Tabela 3.4: Valor provável da aceleração da gravidade.

$$\overline{V_p \ (\text{m/}s^2)} \ 10.2085$$

Estimativa do erro

Esta seção apresenta as estimativas dos erros do valor provável da aceleração da gravidade. A fórmula seguinte será utilizará para realizar este cálculo:

$$e_n = |V_p - acel_n| \tag{3.3}$$

O que resultou nos dados da tabela seguinte:

Tabela 3.5: Erro em relação ao valor provável.

$e_1 (\mathrm{m}/s^2)$	$e_2 (\mathrm{m}/s^2)$	$e_3 \; ({\rm m}/s^2)$	$e_4 (\mathrm{m}/s^2)$
0.0577422951	0.1293627188	0.0307802708	0.0408401529

Agora que temos o valor do erro em relação ao valor provável para cada amostra, podemos calcular o erro médido utilizando a seguinte fórmula:

$$e_m = \frac{e_1 + e_2 + e_3 + e_4}{4} \tag{3.4}$$

O que resultou no seguinte valor:

Tabela 3.6: Erro médio.

	Erro médio (m/s^2)
e_m	0.0646813594

4. Conclusão

De acordo com os dados apresentados, pode-se concluir que a estimativa da aceleração da gravidade para este experimento está no seguinte intervalo:

 $10.208502774 \pm 0.0646813594 \; m/s^2$

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora.

Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda.

Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.