Seminario Trabajo Especial de Grado DISEÑO DE UN EQUIPO ELECTRÓNICO CONTROLADOR DE INTERRUPTORES Y ATENUADORES EMPLEADO EN LA MEDICIÓN DE LA FIGURA DE RUIDO EN DISPOSITIVOS DE RADIO FRECUENCIA

Jose Arias

Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control

Febrero 2018

Sistema para medición de figura de ruido (SMFR)

Analizador de figura de ruido N8975A

Controlador electrónico de interruptores y atenuadores 11713A

Analizador de figura de ruido (NFA) N8975A

Equipo para pruebas con fuente de ruido N2002A

Controlador electrónico de interruptores y atenuadores, serie 11713

Controlador electrónico de interruptores y atenuadores,

Panorama del SMFR

Red Lan Bus Gpib

Objetivos

Objetivo general

Diseñar un equipo electrónico que permita emular las características funcionales de un controlador electrónico de interruptores y atenuadores.

El título y el objetivo general permanecen sin cambios

Objetivos

Objetivos específicos

- Realizar una investigación documental sobre caracterización de dispositivos de radio frecuencia y la medición de figura de ruido en éstos.
- Recopilar la documentación y software asociado al sistema de medición de figura de ruido (SFMR).
- 3 Codificar una librería de software para intercambio de datos entre PC y el SMFR.
- O Diseñar y codificar el firmware para dispositivo.
- Oiseñar y construir las tarjetas electrónicas PCB para cada uno de los módulos del equipo: expansor de puertos, fuente de alimentación y tarjeta madre.
- Oesarrollar una aplicación de software para gestión de la medición de figura de ruido con el SMFR.
- Generar manuales de usuario para el equipo y para la aplicación.

Cambios en el alcance

Hardware

 Interfaz de comunicaciones a través de USB.

(Class Device Communication, full speed).
Inicialmente se habian propuesto las interfaces
GPIB, USB, LAN

 Señales para comandar la unidad de atenuadores y aisladores (N2002A)

formada por 2 grupos de 16 señales cada uno.

 El panel frontal consistirá de un teclado matricial

Con 16 teclas. Se elimina la pantalla LCD táctil

Cambios en el alcance

Software

- Instalador para la aplicación
- Soporte, a nivel de librerías de software, para establecer comunicación de datos con los dispositivos del sistema de medición de figura de ruido.
- Interfaz de usuario gráfica.
- Asistencia al usuario durante el ciclo de medición: configuración, ejecución y generación de reportes.
- Generación de reportes con resultados de una medición, en formato de documento portable (pdf).

Firmware

- Soporte a las comunicaciones por medio de las interfaz USB.
- Gestión de la interacción del usuario con el panel frontal.

1	Nuevo cronograma de trabajo															
	Semanas Tareas	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Expansor de puertos Viking															
	Firmware del dispositivo															
	Tarjeta madre															
	Tarjeta de alimentación DC															
	Desarrollo de la aplicación SGMFR															
	Libro de TEG															

Fecha de inicio: octubre de 2017.

Jornada de 8 horas diarias, lunes a viernes, de 8:00~AM a 12:00~M y de 1:30~PM a 4:30~PM.

Metodología de trabajo

Cronograma inicial

Fecha de inicio: 6 de Marzo de 2017.

Jornada de 8 horas diarias, lunes a viernes, de 8:00 AM a 12:00 M y de 1:30 PM a 4:30 PM.

- Fase 1: Preparación y documentación.
- Fase 2: Diseño de dispositivo.
- Fase 3: Implementación de dispositivo.
- Fase 4: Producción de manual de usuario.
- Fase 5: Documentación TEG.

Realizadas desde el último seminario

Hardware

Diseño y construcción de tarjetas PCB. Procura de componentes.

Software

Aplicación funcional hasta interfaz de usuario.

Documentación

- Investigación sobre caracterización de dispositivos en alta frecuencia: parámetros de dispersión.
- Investigación sobre medición de figura de ruido en RF y microondas.
- Documentación acerca de cada uno de los instrumentos que integran el SMFR.
- Documentación acerca del software asociado o que brinda soporte al SMFR.

Tareas pendientes

Software

Culminar el diseño de la aplicación CenditLab

- Librerías de soporte de comunicaciones IO para Windows
- Culminar módulo gestión GUI
- Culminar módulos de gestión de instrumentos
- Culminar módulos de gestión de medición

Tareas pendientes

Firmware

Iniciar el diseño y generación de firmware Cendit 11713

- Control de expansor de puertos Viking
- Comunicaciones por medio del bus USB
- Comunicaciones a través de redes LAN (TCP/IP)
- Gestión de la fuente de alimentación
- Gestión de la interfaz de usuario (teclado y pantalla)

Tareas pendientes

Hardware

Culminar diseños, construcción y depuración para los módulos

- Fuente de alimentación
- Teclado capacitivo
- Expansor de puertos Viking
- Módulo Ethernet
- Pantalla LCD
- Tarjeta madre