PROJECT REPORT

EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

SUBMITED BY

TEAM ID:PNT2022TMID01419

VISHNU PRASAD V	211419205184
VIGNESH RAJ T	211419205178
SIDHAARTH P.S	211419205157
SIDDHARTH K	211419205156

TABLE OF CONTENTS

1.INTRODUCTION

- **1.1** PROJECT OVERVIEW
- **1.2** PURPOSE

2.LITERATURE SURVEY

- **2.1** EXISTING PROBLEM
- **2.2** REFERENCES
- **2.3** PROBLEM STATEMENT DEFINITION

3.IDEATION PROPOSED SOLUTION

- **3.1** EMPATHY MAP CANVAS
- **3.2** IDEATION & BRAINSTORMING
- **3.3** PROPOSED SOLUTION
- **3.4** PROBLEM SOLUTION FIT

4.REQUIREMENT ANALYSIS

- **4.1** FUNCTIONAL REQUIREMENTS
- **4.2** NON FUNCTIONAL REQUIREMENTS

5.PROJECT DESIGN

- **5.1** DATA FLOW DIAGRAM
- **5.2** SOLUTION & TECHNICAL ARCHITECTURE
- **5.3** USER STORIES

6.PROJECT PLANNING AND SCHEDULING

- **6.1** SPRINT PLANNING AND ESTIMATION
- **6.2** SPRINT DELIVERY SCHEDULE

7.CODING & SOLUTIONING

8.TESTING

- **8.1** TEST CASES
- **8.2** USER ACCEPTANCE TESTING
 - **8.2.1** DEFECT ANALYSIS
 - **8.2.2** TEST CASE ANALYSIS

9.RESULTS

9.1 PERFORMANCE METRICS

10.ADVANTAGES & DISADVANTAGES

ADVANTAGES

DISADVANTAGES

11 CONCLUSION

12 FUTURE SCOPE

APPENDIX

SOURCE CODE

GITHUB

PROJECT DEMO

CHAPTER 1

INTRODUCTION

PROJECT OVERVIEW:

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Forest fire detection is the ability of computer systems to recognise Fire from various region of forest, such as fire, smoke, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in Detecting the forest fire.

PURPOSE:

The main aim of our project is detection and monitoring the forest fire to minimize the effect of fire breakout by controlling in its early stage also to protect Domestic by informing about the breakout to the respective forest department as early as possible . We have implemented the IOT technology to achieve our objective.

CHAPTER 2

LITERATURE SURVEY

EXISTING PROBLEM:

Some of the relevant literary works in this field are briefed below:

The one fourth area of Karnataka is covered by forest, the forest and bio-diversity of the India are at the considerable chance and beneath enormous pressure. General causes of forest fire are extreme hot and aired weather, lightning and human carelessness. In order to protect these huge stretches of forest land, there need to be taken early caution measures to control of spreading fire.

REFERENCES:

- 1. T.Chen et al. developed a set of rules to separate the fire pixels using R, G and B information.
- 2. B.U. Totryin et al. used a mixture of Gaussians in RGB colour space which is developed from a training set of fire pixels, instead of using a rule base colour model .
- 3. Wen- Homg et al. used HSI colour model to separate the fire pixels. They have developed the rules for brighter and darker environments. After segmenting the fire region based on HSI rules the lower intensity and lower saturation pixels are removed to avoid fire aliases (fire like region). They also formed a metric based on binary counter

- difference images to measure the burning degree of fire flames such as no fire, small, medium, and big fires.
- 4. Akshata & Bhosale. proposed another method where Local Binary Pattern acts as a base for fire detection and Wavelet Decomposition is used to detect fire. Pixel level analysis is required in this method. This method uses YCbCrcolor model to detect fire. Detection is based on three phases. The first phase involves segmentation of image using LBP. LBP is a texture operator whose value is computed using image's center and neighboring pixel values. Further accuracy is improved using Wavelet Transform and complicated data is classified using this approach. 2D Discrete Wavelet Transform is used for decomposition in this system. images should be used as input and the sub bands of every image are compared with the other, if sub bands are equal the images are same else different.
- 5. T. Celik et al. [5] formed number of rules using normalized (rgb) values in order to avoid the effects of changing illumination. In this method statistical analysis is carried out in rg, rb and gb planes. In each plane three lines are used to specify a triangular region representing the region of interest for fire pixels. A pixel is declared as fire pixel if it falls in to the triangular region of rg, rb and gb planes. Even though the normalized RGB colour space overcomes the effects of variation in illumination to some extent further improvement can be achieved by using YCbCr colour space which separates luminance from chrominance.
- 6. Turgay Celik et al. [9] proposed a generic colour model to segment the flame pixel from the background using YCbCr colour model. This method segments the flame region except the flame centre. But thismethod classifies fire pixels only based on colour information.
- 7. Dimitropoulos (2015) [1] proposed an algorithm where a computer vision approach for fire-flame detection is used to detect fire at an early stage. Initially, background subtraction and color analysis is used to define candidate fire regions in a frame and this approach is a non-parametric model. Following this, the fire behavior is modeled by employing various Spatio-temporal features such as color probability, flickering, spatial and spatiotemporal energy. After flame modeling the dynamic texture analysis is applied in each candidate region using Linear Dynamical Systems, Histogram and Mediods.

LDS is used to increase the robustness of the algorithm by analyzing temporal evolution of pixel intensities. Pre-processing is done after this to filter non-candidate regions. Spatio-temporal analysis is done to increase the reliability of the algorithm..

8. Dimitropoulos (2015) [1] proposed an algorithm where a computer vision approach for fire-flame detection is used to detect fire at an early stage. Initially, background subtraction and color analysis is used to define candidate fire regions in a frame and this approach is a non-parametric model. Following this, the fire behavior is modeled by employing various Spatio-temporal features such as color probability, flickering, spatial and spatiotemporal energy. After flame modeling the dynamic texture analysis is applied in each candidate region using Linear Dynamical Systems, Histogram and Mediods. LDS is used to increase the robustness of the algorithm by analyzing temporal evolution of pixel intensities. Pre-processing is done after this to filter non-candidate regions. Spatio-temporal analysis is done to increase the reliability of the algorithm.

PROBLEM STATEMENT:

Forest fires are a major environmental issue creating economic and ecological damage while endangering human lives. There are typically about 100,000 wildfires. It is difficult to predict and detect Forest fire in a sparsely populated forest area and it is more difficult if the prediction is done using ground - based methods like camera or video-based approach. Satellites can be an important source of data prior to and also during the Fire due to its reliability and efficiency. The various real-time forest fire detection and prediction approaches with, the goal of informing the local fire authorities

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

EMPATHYMAP CANVAS:

Brainstorm

Brainstorm

Write down any ideas that come to mind that address your problem statement.

Vishnu Prasad

Based on Gaussian mixture model Emerging methods like LoraWAN Sensor Networks

Image processing Fire Dection Using CNN Model

Siddharth

Collecting Data Using Satellite Image Monitoring the forest Using satellites

Implementing ground level sensor for data

Deep Learning can be used

Vignesh Raj

Detection using wireless sensor network

Using microwave sensor

Using cluster heads to determine the GPS Using optical sensor and digital camera

Sidhaarth

Prediction using machine learning Early detection using unmaned Aerial Vehicle

Utilising Neural Network Using radio Acoustic Sounding System

PROPOSED SOLUTION:

	I	
S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To findemerging methods forearly detection offorest fires using artificial intelligence.
2.	Idea / Solution description	In case of forest fire detection the burning substances are primarily identified as sceptical flame regions using a division strategy to expel the non-fire structures and results are verified by a deeplearning model.
3.	Novelty / Uniqueness	Accurate and reliable recognition of sceptical flame regions by means of using YOLO v3 algorithm.
4.	Social Impact / Customer Satisfaction	 By using this method we can save environmental damageand lives of living beings. It is fast and accurate methodto detect thefire easily and give an alert to the forest fire department simultaneously when the fire is detected.

5.	Business Model(Revenue Model)	The software platform to provide the fully autonomous processing of data received from the camera of UAV to obtain live feed in webApp.
6.	Scalability of the Solution	It is mainly developed for detecting the forest fire across the world and useful in surveillance the different sections of the forest.

PROBLEM SOLUTION FIT:

CHAPTER 4

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS:

FUNCTIONAL REQUIREMENTS:

FR	Functional	Sub Requirement (Story / Sub-
No.	Requirement (Epic)	Task)
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Login	Login using credentials
FR-4	User Search	Search for Info on forest fire
		occurrence
FR-5	User Profile	User shall be givena live feedof the
		forest
FR-6	User Application	User is alerted if there is an
		forestfire occurrence intheir
		surroundings

4.2 NON-FUNCTIONAL REQUIREMENTS:

_

NON-FUNCTIONAL REQUIREMENTS:

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Alerts according to theuser location
NFR-2	Security	Instant live feed with alert of the situation
NFR-3	Reliability	The prediction of the forest fire is 87% accurate
NFR-4	Performance	The feed and the alert message is an immediateaction without a lag
NFR-5	Availability	The application gives alerts and livefeeds 24/7
NFR-6	Scalability	Early detection and alerting users are done efficiently andin a faster means

CHAPTER 5 PROJECT DESIGN

SOLUTION ARCHITECTURE:

USER STORIES:

Use the below template to list all the user stories for the product.

USER TYPE	FUNCTION AL REQUIRE	USN	USER STORY TASK	ACCEPTANCE CRITERIA	PRIORI TY	RELEASE
ENVIRO MENT AL LIST	MENTS COLLECT THE DATA	US N-1	As an Environmentalist,it is necessary to collectthe data of the forestwhich include temperature, humidity,wind and rain of theforest	It is necessary to collectthe right data else the prediction may become wrong	HIGH	SPRINT-1
		US N-2	Identify algorithms that can be usedfor prediction	To collect the algorithm to identify the accuracy levelof each algorithms	MEDIUM	SPRINT-2
		US N-3	Identify the accuracy of each algorithms	Accuracy of each algorithm- calculated so that it is easy to obtainthe most accurate output	HIGH	SPRINT-3
		US N-4	Evaluate the Dataset	Datais evaluated beforeprocessi ng	MEDIUM	SPRINT-1

US N-5	Identify accuracy,precision,reca ll of eachalgorithms	These values are important for obtaining the right output	HIGH	SPRINT-3
US N-6	Outputs from each algorithm are obtained	It is highly used to predictthe effect.	HIGH	SPRINT-4

CHAPTER 6 PROJECT PLANNING AND SCHEDULLING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requireme nt(epic)	User Story Numb er	User Story / Task	Sto ry Point	Priority	Team Members
sprint-1	Image Processing	USN-1	Processing the image to find the fire is detected or not.	1	Medium	1.Vishnuprasad .V2.Vignesh raj.T 3.Siddharth. K 4.Sidhaarth P.S
sprint-2	Video Processing	USN-2	The drone videos will be split intoframes to detect the fire.	3	High	1.Vishnuprasad .V2.Vignesh raj.T 3.Siddharth. K 4.Sidhaarth P.S
sprint-3	Alerting	USN-3	After the fireis detected the alert message has to be sent.	2	High	1.Vishnuprasad .V2.Vignesh raj.T 3.Siddharth. K 4.Sidhaarth P.S
sprint-4	Location Tracking	USN-4	The exact location of the drone will be predicted and sent along with the alert	2	High	1.Vishnuprasad .V2.Vignesh raj.T 3.Siddharth. K 4.Sidhaarth P.S

		message		

6.2 PROJECT DELIVERY SCHEDULE

Sprint	Total StoryPoin ts	Durati on	Sprint Start Date	Sprint EndDate (Planned)	Story Points Complet ed(as on planned end date)	Sprint Release Date (actual)
Sprint-	20	3 Days	27 Oct	29 Oct 2022	20	29 Oct
1			2022			2022
Sprint-	20	3 Days	30 Oct	1 Nov 2022	20	1 Nov 2022
2			2022			
Sprint-	20	3 Days	3 Nov	5 Nov 2022	20	5 Nov 2022
3			2022			
Sprint-	20	3 Days	7 Nov	9 Nov 2022	20	9 Nov 2022
4			2022			

CHAPTER 7 CODING AND SOLUTIONING

```
import cv2
import numpy as np
from keras.utils import load_img, img_to_array
from keras.models import load_model
from twilio.rest import Client
from playsound import playsound
from decouple import config
message_sent = False
model = load_model("./model.h5")
video = cv2.VideoCapture('fire.mp4')
name = ["No fire", "Fire Detected"]
def send_message():
    account_sid = config("ACc0047c29cd24dafb68b7dda975cf6759")
    auth_token = config("ec286dd22874115f1add0b264317cb7b")
    client = Client(account_sid, auth_token)
    message = client.messages \
        from_=config("+15136439256"),
        to=config("+91 86101XXXXX")
    print(message.sid)
```

```
while True:
    success, frame = video.read()
    cv2.imwrite('Z:\\Fist\\image.jpg', frame)
    img = load_img('Z:\\Fist\\image.jpg', target_size=(128, 128))
    x = img_to_array(img)
    x = np.expand_dims(x, axis=0)
    pred = model.predict(x, verbose=0)
    p = int(pred[0][0])
    cv2.putText(frame, str(name[p]), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)

if p == 1:
    if not message_sent:
        send_message()
        message_sent = True
        print("Fire Detected, stay safe!!!")
        playsound("./beep.mp3")
    else:
        print("No Fire Detected")

    cv2.imshow("Image", frame)

if cv2.waitKey(1) & 0xFF == ord('x'):
        break

video.release()
    cv2.destroyAllWindows()
```

TESTING

8.1 TEST CASES:

Test case ID	Feature Type	Component	Te st Scenario	Steps To Execute	Test Data	Expected Result	Actual Result	Status	BUG ID	Executed By
OP_RT_001	Functional	Page	Check if user can upload their file	The sensor senses the fire	Sample 1.png	The input image should be uploaded to the application successfully	Working as expected	PASS		siddharth.k
OP_RT_002	Functional	Page	Check if user cannot upload unsupported files	The sensor senses the fire Sichecks with the pre-uploads images	installer.exe	The application should not allow user to select a non image file	User is able to upload any file	FAIL	BUG_HP_002	vigneshraj
OP_RT_003	Functional	Page	Checks whether the page redirects to the result page to the given output	The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	The page should redirect to the results page	Working as expected	PASS		sidhaarth.p.s
MB_RT_001	Functional	Backend	Checks if all the routes are working properly	1) The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	All the routes should properly work	Working as expected	PASS		vishnuprasad
N_DC_001	Functional	Model	Checks whether the model can handle various image sizes	1) Open the page in a specific device 2) Upload the input image 3) Repeat the above steps with different input	Sample 1.png Sample 1 XS.png Sample 1 XL.png	The model should rescale the image and predict the results	Working as expected	PASS		vigneshraj
N_DC_002	Functional	Model	Check if the model predicts the digit	Open the page Select the input images	Sample 1.png	The model should predict the number	Working as expected	PASS		sidhaarthp.s
N_DC_003	Functional	Model	Check if the model can handle complex input image	1) Open the page 2) Select the input images 3) Check the results	Complex Sample.png	The model should predict the number in the compex image	The model fails to identify the digit since the model is not built to handle such data	FAIL	BUG_M_001	visnuprasad
RL_DC_001	Functional	Result Page	Verify the elements	1) Open the page 2) Select the input image 3) Check if all the UI elements are displayed properly	Sample 1.png	The Result page must be displayed properly	Working as expected	PASS		siddharth.k
RL_DC_002	Functional	Result Page	Check if that image is displayed properly	Open the page Select the input image Check if the input image are displayed	Sample 1.png	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL	BUG_RP_001	vigneshraj
RL_DC_003	Functional	Result Page	Checks whether the displayed prediction is accurate	Open the page Select the input image Check if all the other predictions are displayed	Sample 1.png	The other predictions should be displayed properly	Working as expected	PASS		vigneshraj

8.2 USER ACCEPTANCE TESTING 8.2.1 DEFECT ANALYSIS

Resolution	Severity	Severity	Severity	Severity	Total
	1	2	3	4	
By design	1	1	1	0	3
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	3	1	0	1	5
Not	0	0	0	1	1
reproduc					
ed					
Skipped	1	0	1	0	2
Wont fix	1	0	0	0	0
Total	6	3	4	3	16

8.2.2 TEST CASE ANALYSIS

Section	Total test cases	Not tested	Fail	pass
Client application	10	0	2	8
Security	3	0	2	2
performance	2	0	1	1
Exception reporting	3	0	0	3

CHAPTER 9

RESULTS

9.1 PERFORMANCE METRICS:

Locus	t Test R	eport							
During: 13/12	2/2022, 7:05:40	AM - 13/12/2022	, 7:14:47 AM						
Target Host:	http://127.0.0.1:	5000/							
Script: locust	.ру								
Request	Statistics								
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes) RPS	Failures/s
GET		1044	0	14	4	292	1080	2.2	0.0
GET	//predict	1007	0	39649	387	59814	2670	1.8	0.0
	Aggregated	2050	0	19464	4	59814	1859	4.0	0.0
Respons	se Time St	atistics							
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (ms)	100%ile (ms)
GET		11	12	13	15	20	22	64	290
GET	//predict	44000	46000	47000	48000	50000	52000	55000	60000
	Aggregated	37	37000	43000	45000	49000	50000	56000	60000

CHAPTER 10

ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

The proposed system detects the forest fire at a faster rate compared to system. It has enhanced data collection feature. The major aspect is that it reduces false alarm and also has accuracy due to various sensors present. It minimizes the human effort as it works automatically. This is very affordable due to which can be easily accessed. The main objective of our project is to receive an alert message through an app to the respective user.

DISADVANTAGES:

The electrical interference diminishes the effectiveness of radio receiver. The main drawback is that it has less coverage range areas.

CHAPTER 10

CONCLUSION

This type of system is the first of its kind to ensure no further damage is then to forests when there is fire breakout and immediately a message is sent to the user through the App. Immediate response or early warning to a fire breakout is mostly the only ways to avoid losses and environmental, cultural heritage damages to a great extent. Therefore the most important goals in fire surveillance are quick and reliable detection of fire. It is so much easier to suppressfire while it is in its early stages. Information about progress of fire is highly valuable for managing fire during all its stages. Based on this information the firefighting staff can be guidedon target to block fire before it reaches cultural heritage sites and to suppress it quickly by utilizing required firefighting equipment and vehicles. With further research and innovation, thisproject can be implemented in various forest areas so that we can save our forests and maintain great environment.

CHAPTER 12

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

Continuous monitoring of open space is of the utmost importance for the protection of forests against fire. Collected data in real time provide fast intervention of relevant services to extinguish the fire. Timely information about the appearance of fire reduce the number of areas affected by this fire and thereby minimizes the costs of fire extinguishing and the damage caused in the woods. The current way of detecting fire in an open area in Serbia is not in real time, and due to this, it is necessary to implement modern technology of collecting data related to early detection of fires. This paper presents an integral project of forest-fire protection on the territory of Serbia in order to provide the reference for the application of terrestrial automated system for early detection and prediction of forest fires. An automated system could be comprised of infrared and high-resolution TV camera surveillance, covering a large part of the forest area and forest land.

APPENDIX

SOURCE CODE:

```
D import keras
import tensorflow
from tensorflow keras preprocessing large import imageDataGenerator

Python

Python
```

```
model = Sequential()
model.add(Convolution2D(32, (3,3), input_shape=(128, 128, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(150,activation="relu"))
model.add(Dense(1, activation="sigmoid"))
```

```
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
import cv2

model = load_model("model.h5")

Reviewing the model

img = image.load_img("forest-fire.jpg")
x = image.img_to_array(img)
res = cv2.resize(x, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)
x = np.expand_dims(res, axis=0)
```

FIRE .PY(MAIN FILE):

```
import cv2
import numpy as np
from keras.utils import load_img, img_to_array
from keras.models import load_model
from twilio.rest import Client
from playsound import playsound
from decouple import config
message_sent = False
model = load_model("./model.h5")
video = cv2.VideoCapture('fire.mp4')
name = ["No fire", "Fire Detected"]
def send_message():
    account_sid = config("ACc0047c29cd24dafb68b7dda975cf6759")
    auth_token = config("ec286dd22874115f1add0b264317cb7b")
    client = Client(account_sid, auth_token)
    message = client.messages \
        .create(
        from_=config("+15136439256"),
        to=config("+91 86101XXXXX")
    print(message.sid)
    print("SMS Sent!")
```

```
while True:
    success, frame = video.read()
    cv2.imwrite('Z:\\Fist\\image.jpg', frame)
    img = load_img('Z:\\Fist\\image.jpg', target_size=(128, 128))
    x = img_to_array(img)
    x = np.expand_dims(x, axis=0)
    pred = model.predict(x, verbos=0)
    p = int(pred[0][0])
    cv2.putText(frame, str(name[p]), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)

if p == 1:
    if not message_sent:
        send_message()
            message_sent = True
        print("Fire Detected, stay safe!!!")
        playsound("./beep.mp3")
    else:
        print("No Fire Detected")

cv2.imshom("Image", frame)

if cv2.waitKey(1) & 0xFF == ord('x'):
        break

video.release()
    cv2.destroyAllWindows()
```

GITHUB:

https://github.com/IBM-EPBL/IBM-Project-5168-1658749920

PROJECT DEMO:

https://drive.google.com/file/d/1rFvRLeo_Hwbfg8UVAZMK1UL5G9pZ97rc/view?usp=sharing