AR16

CODE: 16BS1002 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, Oct./Nov,2020

ENGINEERING MATHEMATICS – II (Common to all branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1. a Compute a real root of $x^3 - 2x - 5 = 0$ correct to 3 decimal places by **7M** Regula Falsi Method

b Compute a real root of the equation $x^4 - x - 10 = 0$ by Newton Raphson method

(OR)

2. a Compute y(17)using Newton's backward difference formula, from the following data

X	8	10	12	14	16	18
y	10	19	32.5	54	89.5	15.4

b Find the polynomial such that f(1) = 9, f(4) = 18, f(12) = 130 using Lagrange's interpolation formula.

UNIT-II

3. a Using Taylor's method, solve $\frac{dy}{dx} = 2y + 3e^x$ with y(0) = 0 at x = 0.2 **7M**

b Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$ 7M with y(1)=0 at x=1.2

(OR)

4. a Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal rule

b Determine f'(50) using Newton's forward difference formula, fro **7M** the following data

7M

х	50	55	60	65
f(x)	1.6990	1.7404	1.7782	1.8129

UNIT-III

- 5. a Find the Laplace transforms of the function $f(t) = e^{-t} \sin^2 t$ 7M
 - b Find $L^{-1}\left\{\frac{3s+2}{s^2-s-2}\right\}$ 7M

(OR)

6. a Find the Laplace transform of the full wave rectifier function **7M** defined by

$$f(t) = E \sin \omega t \, if \, 0 < t < \frac{\pi}{\omega}$$
 having period $\frac{\pi}{\omega}$

b Solve
$$\frac{d^4y}{dt^4} - k^4y = 0$$
, where $y(0) = 1$, $y'(0) = y''(0) = 7M$
 $y'''(0) = 0$ by using Laplace transform method.

UNIT-IV

- 7. a Obtain the Fourier series for $f(x) = 1 x^2$ in (-1,1)
 - b Obtain the half range cosine series $f(x) = (x-1)^2$ in (0,1)

(OR)

- 8. a Determine the Fourier series for $f(x) = x x^2$ in $(-\pi, \pi)$ 7M
 - b Obtain the half range sine series f(x) = x in (0,2) 7M

UNIT-V

- 9. a Solve the partial differential equation **7M** $x(y^2 z^2)p + y(z^2 x^2)q = z(x^2 y^2)$
 - b Solve $y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = 3u$ and $u(x, 0) = e^{x^2}$ by the method of separation of variables

(OR)

- 10. a Find a partial differential equation from z = f(x+at) + g(x-at) 7M
- b The ends A and B of a rod of 20 cm long, have the **7M** temperature at 30°C and 80°C until steady state prevails. The temperature of the ends are changed to 40°C and 60°C respectively. Find the temperature distribution in the rod at time t

CODE: 13BS1003 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS) I B.TECH II SEM SUPPLEMENTARY EXAMINATIONS, OCT./NOV,2020

ENGINEERING MATHEMATICS -III (Common to CE, ME, CSE, IT, ECE & EEE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) If $A = \begin{bmatrix} 1-i & i+2 & -i \\ 3 & 5 & i+6 \end{bmatrix}$, then $\overline{A} = --$ b) The eigen values of $A = \begin{bmatrix} i/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & i/2 \end{bmatrix}$
 - c) If $\lambda^2 5\lambda 2 = 0$ is the characteristic equation of A then $A^{-1} = \dots$
 - The matrix of the quadratic form $x^2 + y^2 + z^2$ is d)
 - What are the conditions required to express a function f(x) as a Fourier series
 - Write Fourier sine integral formulas for f(x)f)
 - g) Find the Z-Transform of *na*ⁿ
 - Write the initial value theorem of Z-Transform h)
 - i) Using Gamma function find the value of $\int e^{-x^2} dx$
 - j) Find the value of $\beta\left(\frac{1}{4}, \frac{3}{4}\right)$

PART-B

Answer one question from each unit

[5x12=60M]

6M

UNIT-I

- 2. a) Reduce the matrix $\begin{vmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{vmatrix}$ to Echelon form and find its rank
 - Find the values of a and b for which the equations x+y+z=3, **6M** x+2y+2z=6, x+ay+3z=b have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

6M Find what value of k the matrix $\begin{vmatrix} 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 0 & 0 & k & 2 \end{vmatrix}$ has rank 3. 3.

Solve completely the following system of equations **6M** x + y - 3z + 2w = 0, 2x - y + 2z - 3w = 0, 3x - 2y + z - 4w = 0, -4x + y - 3z + w = 0

UNIT-II

Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$ **8M** Write down the quadratic form corresponding to the matrix $\begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$ **4M** (OR) Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ **8M** 5. Represent the quadratic form $x^2 + 4y^2 + z^2 - 4xy + 2xz - 4yz$ in matrix b) **4M** notation. **6M** Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$. Hence evaluate b) **6M** $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$ **6M** 7. a) Expand $f(x) = \begin{cases} \frac{1}{4} - x, & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$ as the Fourier series of sine terms. **6M** b) Find the Fourier cosine transform of e^{-x^2} **6M** 8. a) If $u(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate u_2 and u_3 **6M** b) Find the inverse Z-Transform of (i) $\frac{2z^2 + 3z}{(z+2)(z-4)}$ (ii) $\frac{2z^3 - 20z}{(z-2)^3(z-4)}$ 9. a) Show that $Z[\frac{1}{n!}] = e^{\frac{1}{z}}$. Hence evaluate $Z[\frac{1}{(n+1)!}]$ and $Z[\frac{1}{(n+2)!}]$ **6M Solve the difference equation** $u_{n+2} - 2u_{n+1} + u_n = 3n + 5$ **6M 6M** a) **Prove that** $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ b) Prove that $\beta(n, n+1) = \frac{1}{2} \frac{\left[\Gamma(n)\right]^2}{\Gamma(2n)}$ hence find the value of $\beta\left(\frac{1}{4}, \frac{5}{4}\right)$ 6M Express the following integrals in terms of gamma functions **6M** (i) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$ (ii) $\int_{0}^{\pi/2} \sqrt{\tan\theta} d\theta$ b) Show that (i) $\Gamma(n) = \int_{0}^{1} \left\{ \log \left(\frac{1}{x} \right) \right\}^{n-1} dx$ (ii) $\beta(m, n+1) + \beta(m+1, n) = \beta(m, n)$ **6M**