	JPE:	395	P	robku	. Se	4	2						Marc	h l	6, 5	1023
P	robbu	١:														
	2)	To	sho	w f	hat	the	}	14004	hesis	73	tru	L, (UC 1	MUST	Cor	iside-
		who				'			s not							
		This							the							
									īS							ot
		hwi	2 1	+	takes	Fe	r	the	Crus	t w	eter	5/	fo	Subd	wf,	
		there	fre	1	Cond	net ?		c sink.								
	b)	To	deterv	uine	Tu	onduct	,	We	can	GXSm	ine	the	dine	1 Sapism		
		times	cales	of	4	he	hez:	F 6	equation	n						
				OT .	= %	$\nabla^2 T$										
		Now,	5	et o	1		51	Nd	V2-	T d	$\frac{T}{D^2}$	1				
						,			x. 1							
										Corduct.	1					
									notice t							
		From	10	ecture							+	deptr	1 13	. 20	proxit	uctely
									00,000	m,						
		with	14	= 1	0	M'/s	1	ther	105)2	w ²		1.1	6			
				(Con	duct	~	10	105)2	m2	2	10	٥,			

Then, for the Sink timescale, we can examine the Subducting velocity, given by the range. Vsubdut ~ 1-10 cm/yr = 3.17 ×10-10 - 31.7 ×10-10 m/s The distance which plates must subduct into the wante can We given by the distances in lecture 2, Dsink = 108'000 m + 2'900'000m oceanic dist. marth = 3'008'000 m. Therefore since V= d , Tsink Vsink 3'008'000 S - 3'008'000 S - 3.17 ×10-10 5 Tsink ~ 9.48 × 10145 - 9.48 × 1015 s. We find that 9.48 x 1015 s 4 106 s therefore Toodeet > Trink, which proves the theory.

This im	plics that	, ,			
	T[3) =	Ciy + C2,			
where	C2' may be		d by An	e Continuite	1 Condition
	T, (10) = T	2(10),			
	we obtain				
20 mln	10,000M +	$C_2' = -\frac{\rho}{2\eta}$	H. (10'000m)	+ (20 MW/mi	2 + PH (10'000)) (10'00 +273
	C ₂	PH1 (100	00)2.+273		7/2
	PH.	12 + (20 M	W/m2 + PU,	10'000) y +27	3 0 6 y = 10 Km
T(5):	= 20 m	W/h2 y +	PH (10'00	00)2 +273	10 : g : 35 Km.
T(4)==	5 × 10-7 K	2 42 + (0	0.013 K	+ 273 14	0 E y = 10'000 M
-5/	0.008 K	y + 32	3 K		10'000 m 5y 535'000
Plotting	this fun	etion,			
C		00 300 10	T(5)	(N)	
10,000		(10'	000, 323)		
10 000					
25 bou					
9 (1	n) \				

Problem 3:

Assume
$$q_b = 3 \times 10^{-2} \text{ W/m}^2$$
. We have the distribution

$$T_{3}=223 \text{ K}$$

$$T_{4}=2 \text{ W}$$

$$T_{5}=223 \text{ K}$$

$$T_{7}=223 \text{ K}$$

In D,
$$\frac{\partial T}{\partial y} = C_1$$
 (unknown), then $T(y) = \frac{c_1}{k} \cdot y + C_2$

$$A+$$
 $T_5 = 223$, $C_2 = 223$ K.

In region (2),
$$\frac{2T}{3y} = -\frac{PH}{R}y + C' = \frac{30}{8} \text{ mW/m}^2$$
 (flux cet base)

$$\Rightarrow C_1' = -3 \times 10^{-2} \frac{W}{M^2} \cdot \frac{1}{3.5} \frac{W \cdot K}{W} - \frac{2.5 \times 10^{-6}}{3.5} \frac{W}{W} \cdot \frac{(12600 \text{ m})}{W}$$

We must have
$$T(2 \text{ km})$$
 continuous and $\frac{2T}{2y}|_{2 \text{ km}}$ continuous:

	we	Must	Compere	heat	fluxes	95-90	= % .	
	Here	, %	is the	Nest	contribu	ion as if	PH=0, which	1
			determined	,				
÷		90 =	(95 =	37.1	(peo M	(heat flux	into icc)	
			(q _b	= 27	12000 m)	(KS) flux	entering)	
	with	pH=0	q _s	= C ₁ =	» 9s	= C,K1 = 00/57.		
	+	lence	90 = 1	5 -	3×10-3.	3,5 =	- 175	
	q _b	=-3×1	0-2 W m2	Cy nen)			
	ant	95 =	27 /200m	= 0	1015714	W , 2	(K=2)	
		% =	- 3	10	,			
	thas		95-90	x 100./	0.0	0,031428	×1007.	
					= 45.4	15-1.		

c)	To	Mult	wa	ter	24		the	1	sufer	(wc	rey	vire			
	T3=0	o°c 7	his,	using	_	T, (7)	= (17	4	223		(c,	1 0,0	06).	
	We	have														
			T ₁ (0)													
		Hen	le	01	0157	=	7	iv		met	53					
	Thick	ر ا	= }	J.	3'	181,	87	M								
																*

Q4) Let 4=7.4 x 10-12 W/Kg 2) With 2 Steady-State temporature, we have the ODE -PH = K d (12 dT) This equation way be solved with a series solution T(1) = \(\gamma \) 2n \(\gamma^n \) + C where C is a boundary condition. We have that T(r=8) =0 35 or boundary condition. Then, - PH = 12 d (12 d [= 2n m)) = 2 dr (z ann r n + 1) = 12 2 an n(n+1) rn = K \(\sum \) \(\sum \) \(\lambda - \sum \) Hence N=2 to match LHS = PLU. This implies 22 = - PH. We obtain T(1) = - PH 12 +C, by which T(2) =0

here
$$y_{2m} = 1.0$$

$$T_0 + 10 - T_0$$
 = $\frac{1}{50} = \text{erfc}\left(\frac{10}{2\sqrt{10^{-6} \cdot t}}\right)$

If
$$erfc(x) = \frac{1}{50}$$
, $x \approx 1.6$ by the erfc table (given in

Problem	VT 2	3 1	= 3	5° You					
Hea	n there	ne/ Co	anductivit) Y	= 1,7	Mak.			
We	have								
		95:	= K	27/2=	o l				
			= 1,7	w.x.	35°C/ku	10000	n		
			- 0.059	S W2			(93 = 5	59.5 MW)	
Accor	cliny to	fiez	2.16,	59	5 mW	is app	vorina tely	50 Mys	,
					Worty	V=	3 cm/yr	= 3×10-2	wy,
Incl	V= 6	=>	d = V	E					
	d=	3 x 10-	2 Wyr	. 5 XI	07 41				
	=	15×105	m						
	-	1500	Kur						
which	13 4	he of	oproxime te	dis	turce 8	way to	u the 1	ridge.	