(DON NOT WRITE YOUR ANSWER IN THIS AREA)

. Seal line.

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

Notice:

- 1. Make sure that you have filled the form on the left side of the seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts

Question No.	I	II	III	IV	V	VI	Sum
Score							

I. (20 points) Consider the matrix

Score

$$A = \begin{pmatrix} 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix}.$$

- 1. Find a basis for Col(A), Nul(A).
- 2. Calculate AA^T .
- 3. Calculate the determinant of the matrix AA^{T} .

II. (30 points) Let $\mathbb{P}_2(\mathbb{R})$ be the space of polynomials of degree at most two with real numbers as the coefficients.

1. Prove that $\mathcal{B} = \{4 + 5x + 2x^2, 3x + x^2, x^2\}$ is a basis of $\mathbb{P}_2(\mathbb{R})$.

Score

- 2. Let $\mathscr{E} = \{1, x, x^2\}$ be the standard basis of $\mathbb{P}_2(\mathbb{R})$. Find the change-of-coordinates matrix from \mathscr{E} to \mathscr{B} .
- 3. Let $T: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be a linear transformation such that

$$T(a+bx+cx^2) = (2a+3b) + (2a-3b)x + (2a+3b+3c)x^2.$$

Write down the matrix $A = [T]_{\mathscr{E}}$ of the linear transformation T corresponding to the basis \mathscr{E} .

- 4. Find the eigenvalues and eigenvectors of the matrix A.
- 5. Diagonalize the matrix A.

IV. (10 points) Consider the following vectors

Score

$$\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \\ 7 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ h \end{pmatrix}.$$

- 1. Find the value h such that these three vectors are linearly dependent.
- 2. Based on the value *h* you find in the first question, write the third vector as a linear combination of the first two vectors.

Score

IV. (15 points) Let U be an $n \times n$ matrix whose columns form an orthonormal set.

- 1. Prove that U is invertible.
- 2. Let n = 3. Prove that $U^T U = I$.
- 3. Let n = 3, and take two vectors x and y in \mathbb{R}^3 . Show that $(Ux) \cdot (Uy) = x \cdot y$.

Score

V. (15 points) Consider three vectors $y = \begin{pmatrix} 5 \\ -9 \\ 5 \end{pmatrix}$, $u_1 = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$, $u_2 = \begin{pmatrix} -3 \\ 14 \\ -7 \end{pmatrix}$.

- 1. Find the orthogonal projection of u_1 onto u_2 ;
- 2. Find the distance from y to the plane in \mathbb{R}^3 spanned by u_1 and u_2 .

Score

VI. (15 points) If a matrix M is symmetric (i.e. $M = M^T$) and all of its eigenvalues are positive, then we say that the matrix M is *positive definite*. Let A be a 3×3 positive definite matrix.

- 1. Prove that the determinant of *A* is positive.
- 2. Let λ be an eigenvalue of A. Prove that λ^{-1} is an eigenvalue of A^{-1} .
- 3. Prove that there exists a matrix M such that $M^2 = A$.