Segmentation and Clustering

EECS 442 Computer Vision, Fall 2012

Outline

- Image Segmentation with Clustering
 - K-means
 - Mean-shift
- Graph-based Segmentation
 - Normalized-cut
 - Felzenszwalb et al.

Outline

- Image Segmentation with Clustering
 - K-means
 - Mean-shift
- Graph-based Segmentation
 - Normalized-cut
 - Felzenszwalb et al.

Image Segmentation

- Partitioning
 - Divide into regions/sequences with coherent internal properties
- Grouping
 - Identify sets of coherent tokens in image

D. Comaniciu and P. Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis? *PAMI*, 2002.

Segmentation as Clustering

Feature space (ex: RGB values)

Source: K. Grauman

Segmentation as Clustering

 Cluster together tokens with high similarity (small distance in feature space)

Questions:

- 1. How many clusters?
- 2. Which data belongs to which group?

Segmentation as Clustering

 Cluster together tokens with high similarity (small distance in feature space)

Outline

- Image Segmentation with Clustering
 - K-means
 - Mean-shift
- Graph-based Segmentation
 - Normalized-cut
 - Felzenszwalb et al.

- Assign each of the N points, $\mathbf{x_i}$, to clusters by nearest $\mathbf{\mu_i}$
- Re-compute mean μ_i of each cluster from its member points
- If no mean has changed more than some ε, stop

Source: Wikipedia

Source:

http://www.heikohoffmann.de/ htmlthesis/node28.html

Solving the optimization problem

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^k \sum_{\mathbf{x}_j \in S_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2 \qquad \qquad e(\boldsymbol{\mu}_i)$$

Every iteration is a step of gradient descent

$$\frac{\partial e}{\partial \boldsymbol{\mu}_i} = 0 \longrightarrow \boldsymbol{\mu}_i^{t+1} = \frac{1}{|S_i^{(t)}|} \sum_{\mathbf{x}_j \in S_i^{(t)}} \mathbf{x}_j$$

Pros

- Simple and fast
- Converges to a local minimum of the error function
- K-means in matlab

Cons

- Need to pick K
- Sensitive to initialization
- Only finds "spherical" clusters
- Sensitive to outliers

- Demo
 - Image segmentation with K-means

Outline

- Image Segmentation with Clustering
 - K-means
 - Mean-shift
- Graph-based Segmentation
 - Normalized-cut
 - Felzenszwalb et al.

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

Segmentation by Mean-shift

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Segmentation by Mean-shift

Pros

- Does not assume spherical clusters
- Just a single parameter (window size)
- Finds variable number of modes
- Robust to outliers

Cons

- Output depends on window size
- Computationally expensive
- Does not scale well with dimension of feature space

- Demo
 - Image segmentation with mean-shift
 - Mean-shift tracking (camshift in OpenCV)

Outline

- Image Segmentation with Clustering
 - K-means
 - Mean-shift
- Graph-based Segmentation
 - Normalized-cut
 - Felzenszwalb et al.

Graph-based Segmentation

- Images as graphs
 - Node for every pixel
 - Edge between every pair of pixels
 - Each edge is weighted by the affinity or similarity of the two nodes

Source: S. Seitz

Graph-based Segmentation

- CUT: Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- Example: Cost of the blue cut?

Minimum Cut

- We can do segmentation by finding the minimum cut in a graph
 - Efficient algorithms exist for doing this
- Drawback: minimum cut tends to cut off very small, isolated components

^{*} Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Normalized Cut

- IDEA: normalizing the cut by component size
- The normalized cut cost is:

$$\frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

assoc(A, V) = sum of weights of all edges in V that touch A

Normalized Cut

- Demo
 - Image segmentation with normalized cut http://timotheecour.com/software/ncut/ncut.html

Outline

- Image Segmentation with Clustering
 - K-means
 - Mean-shift
- Graph-based Segmentation
 - Normalized-cut
 - Felzenszwalb et al.

Other State-of-the-art Algorithm

Efficient Graph-Based Image Segmentation.
Pedro F. Felzenszwalb and Daniel P. Huttenlocher
IJCV, 2004

- Demo
 - http://www.cs.brown.edu/~pff/segment/