[22CVPR]RePaint Inpainting Using Denoising Diffusion Probabilistic Models

Luo Zhenlin

October 10, 2024

1 Overview

Figure 1: RePaint

In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high quality and diverse output images for any inpainting form.

- The forward process is not changed, and this work only changes the reverse process.
- In each step, we sample the known region from the input and the inpainted part from the DDPM output. And combine the two parts to generate new sample.

2 Review DDPM

In DDPM. the **forward process** is defined beforehand.

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$
(1)

$$x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon \tag{2}$$

But in fact, we construct x_t from x_0 as a single step, since

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)\mathbf{I})$$
(3)

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \tag{4}$$

where $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$.

The DDPM is trained to reverse the process in (1). The reverse process is modeled by a neural network that predicts the parameters $\mu\theta(x_t,t)$ and $\Sigma_{\theta}(x_t,t)$ of a Gaussian distribution

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\tag{5}$$

Based on the forward process, we can deduce that reverse process mean

$$\tilde{\mu}_t(x_t, x_0) = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon)$$
(6)

Hence we train the model ϵ_{θ} to estimate $\tilde{\mu}_t(x_t, x_0)$, since only ϵ_{θ} is unknown.

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right)$$
 (7)

3 Method

3.1 Conditioning on the known Region

In our task, we predict missing pixels of an image using a mask region as a condition. Denote the ground truth image as x, the unknown part as $m \odot x$ and the known part as $(1-m) \odot x$.

- We can sample the intermediate image x_t at any point in time using (4)
- Using (5) for the unknown region and (4) for the known regions
- For one reverse step, we have

$$x_{t-1}^{\text{known}} \sim \mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, (1-\bar{\alpha}_t)\mathbf{I})$$
 (8)

$$x_{t-1}^{\text{unknown}} \sim \mathcal{N}(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
 (9)

$$x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1 - m) \odot x_{t-1}^{\text{unknown}}$$
 (10)

Where x_{t-1}^{known} is sampled from the known pixels and x_{t-1}^{umknown} is sampled from the reverse model. These are combined to the new sample x_{t-1} using the mask.

3.2 Resampling

Figure 2: The effect of applying n sampling steps.

The DDPM is leveraging on the context of the known region, yet it is not harmonizing it well with the rest of the image.

The reason is that

- Using (8), it doesn't consider the generated parts of the image.
- Due to the variance schedule of β_t , the maximum change to an image declines.

As a result, the model needs more time to harmonize the conditional information x_{t-1}^{known} with generated information x_{t-1}^{unknown} .

3.2.1 Algorithm

Algorithm 1 Inpainting using our RePaint approach.

```
1: x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
  2: for t = T, ..., 1 do
                 for u = 1, \ldots, U do
  3:
                        \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \epsilon = \mathbf{0}
x_{t-1}^{\text{known}} = \sqrt{\bar{\alpha}_t} x_0 + (1 - \bar{\alpha}_t) \epsilon
  4:
  5:
                         z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) if t > 1, else \mathbf{z} = \mathbf{0}
  6:
                         x_{t-1}^{\text{unknown}} = \frac{1}{\sqrt{\alpha_t}} \left( x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right) + \sigma_t z
  7:
                         x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1-m) \odot x_{t-1}^{\text{unknown}}
  8:
                         if u < U and t > 1 then
  9:
                                  x_t \sim \mathcal{N}(\sqrt{1-\beta_{t-1}}x_{t-1}, \beta_{t-1}\mathbf{I})
10:
                         end if
11:
                 end for
12:
13: end for
14: return x_0
```

It implies that in each reverse step, we use this DDPM property to harmonize the input of the model, that is, we diffuse the output x_{t-1} back to x_t by sampling from (1) as $\mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I})$.

4 Experiments

4.1 Comparison with State-of-the-Art

Figure 3: Comparison with State-of-the-Art

CelebA-HQ	Wide		Narrow		Super-Resolve 2×		Altern. Lines		Half		Expand	
Methods	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	$LPIPS \downarrow$	Votes [%]	$LPIPS \downarrow$	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]
AOT [50]	0.104	11.6 ± 2.0	0.047	12.8 ± 2.1	0.714	1.1 ± 0.6	0.667	2.4 ± 1.0	0.287	9.0 ± 1.8	0.604	8.3 ± 1.7
DSI [32]	0.067	16.0 ± 2.3	0.038	22.3 ± 2.6	0.128	5.5 ± 1.4	0.049	5.1 ± 1.4	0.211	4.5 ± 1.3	0.487	4.7 ± 1.3
ICT [41]	0.063	27.6 ± 2.8	0.036	30.9 ± 2.9	0.483	4.2 ± 1.2	0.353	0.7 ± 0.5	0.166	12.7 ± 2.1	0.432	8.8 ± 1.8
DeepFillv2 [46]	0.066	23.9 ± 2.6	0.049	21.0 ± 2.5	0.119	9.8 ± 1.8	0.049	10.6 ± 1.9	0.209	4.1 ± 1.2	0.467	13.1 ± 2.1
LaMa [39]	0.045	41.8 ± 3.1	0.028	33.8 ± 3.0	0.177	5.5 ± 1.4	0.083	20.6 ± 2.5	0.138	35.6 ± 3.0	0.342	24.7 ± 2.7
RePaint	0.059	Reference	0.028	Reference	0.029	Reference	0.009	Reference	0.165	Reference	0.435	Reference

ImageNet	Wide		Narrow		Super-Resolve 2×		Altern. Lines		Half		Expand	
Methods	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]
DSI [32]	0.117	31.7 ± 2.9	0.072	28.6 ± 2.8	0.153	26.9 ± 2.8	0.069	23.6 ± 2.6	0.283	31.4 ± 2.9	0.583	9.2 ± 1.8
ICT [41]	0.107	42.9 ± 3.1	0.073	33.0 ± 2.9	0.708	1.1 ± 0.6	0.620	6.6 ± 1.5	0.255	51.5 ± 3.1	0.544	25.6 ± 2.7
LaMa [39]	0.105	42.4 ± 3.1	0.061	33.6 ± 2.9	0.272	13.0 ± 2.1	0.121	9.6 ± 1.8	0.254	41.1 ± 3.1	0.534	20.3 ± 2.5
RePaint	0.134	Reference	0.064	Reference	0.183	Reference	0.089	Reference	0.304	Reference	0.629	Reference

Table 1. **CelebA-HQ** (*top*) and **ImageNet** (*bottom*) **Quantitative Results.** Comparison against the state-of-the-art methods. We compute the LPIPS (lower is better) and *Votes* for six different mask settings. *Votes* refers to the ratio of votes with respect to ours.

4.2 Ablation Study

4.2.1 Comparison Slowing down and Resampling

	T	r	LPIPS	T	r	LPIPS	T	r	LPIPS	Т	r	LPIPS
Slowing down	250	1	0.168	500	1	0.167	750	1	0.179	1000	1	0.161
Slowing down Resampling	250	1	0.168	250	2	0.148	250	3	0.142	250	4	0.134

Figure 4: Comparison Slowing down and Resampling

4.2.2 Comparison to alternative sampling strategy

Dataset	Method	Wide	Narrow	Super-Res.	Alt. Lin.	Half	Expand
ImageNet	SDEdit [24]	0.1532	0.0952	0.3902	0.1852	0.3272	0.6281
	RePaint (Ours)	0.1341	0.0641	0.1831	0.0891	0.3041	0.6292
Places2	SDEdit [24]	0.1302	0.0622	0.2712	0.1302	0.3042	0.6202
	RePaint (Ours)	0.1051	0.0441	0.0991	0.0511	0.2861	0.6151
CelebA-HQ	SDEdit [24]	0.0762	0.0462	0.1132	0.0302	0.1892	0.4492
	RePaint (Ours)	0.0591	0.0281	0.0291	0.0091	0.1651	0.4351

Table 4. Comparison with the resampling schedule proposed in [24] in terms of LPIPS. The resampling method proposed in our RePaint (Sec. 4.2) achieves substantially better results, in particular for the Super-Resolution masks.