Similarity of Triangles

Srihari S

Question

Construction

Codesandfigures

Construction methods

Construction

Constructio methods

Constructio

Solution

a L

olutic

Similarity of Triangles

Srihari S

College of Engineering - Guindy

May 26, 2020

Question

Similarity of Triangles

Srihari

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Construction

Solution

a h

Exercise 8.1(Q no.51)

O is a point in the interior of $\triangle ABC$. D is a point on OA. If DE \parallel OB and DF \parallel OC. Show that EF \parallel BC.

Codes and Figures

Similarity of Triangles

Srihari S

Questio

Construction Codesandfigures

Construction methods

Construction methods

Construction

Solution

a

The python code for the figure is

./codes/similar triangle.py

The latex- tikz code is

 $./\mathsf{figs}/\mathsf{constructionpic}.\mathsf{tex}$

The above latex code can be compiled as standalone document

 $./ figs/construction pic_standalone.tex$

Similarity of Triangles

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Construction

Solution

ь

(a) By Python

Similarity of Triangles

Srihari S

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Constructio

Solution

a

Figure: By Latex-tikz

Similarity of Triangles

Srihari

Questior

Construction
Codesandfigures

Construction methods

Construction methods

methods

Construction

Solutio

The values used for constructing the triangles in both Python and LaTEX-Tikz is given below:

Initial Input Values	
Parameter	Value
а	5
b	6
С	4

Table: To construct $\triangle ABC$

Finding the coordinates of various points of $\triangle ABC$:

From the information provided, let

$$B = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad A = \begin{pmatrix} p \\ q \end{pmatrix}$$

Given a point O, we need to determine whether it lies inside $\triangle ABC$. Consider 3 vectors v_1 , v_2 and v_3 which are orthogonal to vectors AB,BC and CA which are ordered counterclock-wise.

Let
$$A = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
 $B = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ C

$$\begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$
 $C = \begin{pmatrix} x \\ y \end{pmatrix}$

$$AB = B - A = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$

$$BC = C - B = \begin{pmatrix} x_3 - x_2 \\ y_3 - y_2 \end{pmatrix}$$

$$CA = A - C = \begin{pmatrix} x_1 - x_3 \\ y_1 - y_3 \end{pmatrix}$$

Similarity of Triangles

Construction methods

$$(y_2 - y_1)x + (-x_2 + x_1)y = x_1(y_2 - y_1) -y_1(x_2 - x_1)$$

As v_1 is orthogonal to AB, equation of v₁ is

$$(-x_2+x_1)x-(y_2-y_1)y=d$$
 (1) $\begin{pmatrix} x-x_2\\y-y_2 \end{pmatrix}$

where d is some constant. Hence v_1 is represented as $\begin{pmatrix} y_2 - y_1 \\ -x_2 + x_1 \end{pmatrix}$

Similarly
$$v_2$$
 is represented as $\begin{pmatrix} y_3 - y_2 \end{pmatrix}$

$$\begin{pmatrix} y_3 - y_2 \\ -x_3 + x_2 \end{pmatrix}$$

$$v_3$$
 is represented as $\begin{pmatrix} y_1 - y_3 \\ -x_1 + x_3 \end{pmatrix}$

Position vector of O w.r.t A is $v_1' =$

Position vector of O w.r.t B is
$$v_2' = (x - x_2)$$

Position vector of O w.r.t C is
$$v_3' = \begin{pmatrix} x - x_3 \\ y - y_3 \end{pmatrix}$$

Now we compute the dot products: O lies inside $\triangle ABC$ only if dot_1 , dot_2 and dot_3 are all $\geqslant 0$, where $dot_1 = v_1 \cdot v_1'$ $dot_2 = v_2 \cdot v_2'$ $dot_3 = v_3 \cdot v_3'$.

Similarity of Triangles

Srihari

Question

Construction Codesandfigures

Construction methods

Construction methods

Construction

Solution

Let the arbitrary interior point O be represented as $\begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$.

D is a point on line AO such that DE || OB and DF || OC.

Determination of points D,E and F:

As DE \parallel OB, by basic proportionality theorem the points E and D, divide the lines AB and AO respectively in the same ratio.

Hence we choose points E and D such that

$$\frac{AE}{EB} = \frac{AD}{DO} \tag{2}$$

Similarly point F is chosen such that the points F and D, divide the lines AC and AO respectively in the same ratio such that

$$\frac{AF}{FC} = \frac{AD}{DO} \tag{3}$$

Derived Values	
Parameter	Value
р	0.5
q	3.96

Table: To construct $\triangle ABC$

Similarity of Triangles

Srihari

Questio

Construction

Codesandfigures

Construction methods

Constructio

Construction methods

Construction methods

Solution
a

If the point D divides the line AO in the ratio x:y, the coordinates of D is given by section formula as:

$$D = \frac{yA + xO}{x + y} \tag{4}$$

Similarly the coordinates of points E and F is given by

$$\mathsf{E} = \frac{y\mathsf{A} + x\mathsf{B}}{x + y} \tag{5}$$

$$F = \frac{yA + xC}{x + y} \tag{6}$$

Let us assume the points divide the respective lines in the ratio 1:1. Then the coordinates of points D, E and F is

$$D = \begin{pmatrix} 1.25 \\ 2.73 \end{pmatrix} \qquad E = \begin{pmatrix} 0.25 \\ 1.98 \end{pmatrix}$$
(4)
$$F = \begin{pmatrix} 2.75 \\ 1.98 \end{pmatrix}$$

To check whether D lies on line AO, substituting the values of the x and y co-ordinate of D must satisfy the equation of line AO. Equation of line joining two points (x_1, y_1) and (x_2, y_2) is given by

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \tag{7}$$

Solution

Similarity of Triangles

Srinari

Questior

Construction Codesandfigures

Construction methods

Construction methods

Construction methods

Construction methods

Solution

b

 $\triangle EAD \sim \triangle BAO$ by AAA Similarity: Since DE \parallel OB,

1
$$\angle DEA = \angle OBA$$
 {Alternate Interior Angles}

$$\bigcirc$$
 \angle ADE = \angle AOB {Alternate Interior Angles}

3
$$\angle EAD = \angle BAO$$
 {Common angle}

Therefore

$$\frac{AE}{AB} = \frac{AD}{AO} \tag{8}$$

Solution

Similarity of Triangles

Srihari

Questio

Construction Codesandfigures

Construction methods

Construction methods

methods Constructio

methods

Solution

a b Similarly $\triangle FDA \sim \triangle COA$ by AAA Similarity: Since DF \parallel OC,

1
$$\angle DFA = \angle OCA$$
 {Alternate Interior Angles}

2
$$\angle ADF = \angle AOC$$
 {Alternate Interior Angles}

3
$$\angle FAD = \angle CAO$$
 {Common angle}

Therefore

$$\frac{AF}{AC} = \frac{AD}{AO} \tag{9}$$

Construction methods

methods

Construction

Solution

Jointio

Hence from the above we conclude,

$$\frac{AF}{AC} = \frac{AE}{AB} = \frac{AD}{AO}$$
 (10)

As the ratio of the sides is the same, \triangle ABC \sim \triangle AEF, which means \angle AFE = \angle ACB and \angle AEF = \angle ABC as similar triangles have same angles. i.e.

$$\mathsf{EF} \parallel \mathsf{QR} \tag{11}$$

Hence Proved.