Prediction after a Horizon of Predictability: Non-predictable Points and Partial Multistep Prediction for Chaotic Time Series

Authors: Vasilii A. Gromov & Philip S. Baranov

Presented by: Marwan Bouabidi

Introduction

- Chaotic Time Series: what are they?
 - Representing evolution of chaotic systems with respect to time.
 - Examples: stocks, temperature, heart beat, etc.
- Lyapunov instability: $\varepsilon(t) = \varepsilon(0)e^{\lambda t}$, $\lambda > 0$
- Horizon of predictability: $T \sim 1/\lambda \ln(\epsilon_{max}/\epsilon_0)$
- How to predict the evolution of these unstable TS? A prediction beyond T possible?

The research:

- Main characteristics:
 - Deals with a <u>chaotic time series</u>.
 - Multistep prediction: h steps into the future after the last known observation t. But Only based on the t first observations!
 - Partial prediction: not all points are predicted!
 - Non-predictable points: some predictions are rejected!
 - Assumption: the TS evolves around a strange attractor.

Data

- A chaotic TS divided into 2 parts:
 - \circ Y_1 : observations up until a moment **t** in time, the **training set**
 - Y₂: real data to predict, from t to t+h, the testing set
 - $\circ Y = Y_1 U Y_2$
- Y1 must be normalized before use.

Mathematical model: generating the training set

- Patterns:
 - o Int vector of steps, size L-1: $\alpha = (k_1, k_2, ..., k_{L-1})$
 - K_max: limit of the steps
 - Example for L=4: (2, 3, 4)
- Motifs:
 - Vectors of observations, size L: $C_{\alpha} = (m_{1}^{\alpha}, m_{2}^{\alpha}, ..., m_{L}^{\alpha})$
 - Many possible motifs from each pattern.
 - Examples ($\underline{L=4}$): $(y_0, y_2, y_5, y_9), ..., (y_{t-9}, y_{t-7}, y_{t-4}, y_t)$
 - Could be clustered before use (Wishart clustering, for every pattern)

Mathematical model: optimization problem

- Minimize:
 - Number of non-predictable points
 - Error for the predictable ones

$$I_1 = \sum_{t+h \in Y_2} \left(1 - \zeta \left(\widehat{S}_{t+h}^{(p)}\right)\right),\,$$

$$I_{2} = \frac{1}{|Y_{2}|} \sum_{t+h \in Y_{2}} \zeta(\widehat{S}_{t+h}^{(p)}) \|g(\widehat{S}_{t+h}^{(p)}) - y_{t+h}\|.$$

Mathematical model: prediction algorithm

- Set ε to 0.01 and normalize the observations Y_1 .
- Generate all patterns based on the values of L and K_{max} : $\alpha = (k_1, k_2, ..., k_{L-1})$
- For every pattern α , generate all possible motifs:
- For every point t<"t+i"<=t+h:
 - o Go through all patterns, and their respective motifs $C_{\alpha}^{\text{trunc}}$ (truncated from its last value), and try to find **similar enough sequences** of data to **C**.
 - \circ C=($y_{t+i-k1-k2-...-kl-1}$, ..., $y_{t+i-kl-1}$): to compare with all C_a
 - o If found, $d(C, C_{\alpha}^{trunc}) < \varepsilon$, its last element is a possible prediction value for t+i
- Calculate a prediction for t+i, if predictable, based on the collected values.

Mathematical model: prediction algorithm

- How to calculate a Unified Prediction value (UPV) for t+i based on possible values?
 - 1. Current position (cp): average, weighted average, clustering...
 - 2. **Prediction Trajectory (trj):** consider all possible predictions of points **t+1** up to **t+i. UPV** is the average of the last points of certain chosen trajectory.
- Ways to identify non-predictable points?
 - 1. Set of possible prediction values **empty**
 - 2. Prediction error > a certain threshold ε
 - 3. **Clustering** the set of possible predictions (equally sized, or none at all)

Cl/ Trj	UPV	NP	h = 1			h = 10			h = 50			h = 100		
			NP (%)	MAPE	RMSE	NP (%)	MAPE (%)	RMSE	NP (%)	MAPE	RMSE	NP (%)	MAPE	RMSE
3		cm	0	0.26	0.30	0	0.21	0.25	0	0.20	0.24	0	0.22	0.27
cl	avg	ар	30	0.25	0.30	58	0.21	0.24	98	0.25	0.26	100	_	_
		en	38	0.26	0.33	64	0.29	0.35	65	0.25	0.31	74	0.18	0.22
	wavgd	cm	0	0.26	0.31	0	0.22	0.26	0	0.21	0.26	0	0.24	0.29
	wavgl	cm	0	0.26	0.30	0	0.21	0.25	0	0.20	0.24	0	0.21	0.26
	wavgc	cm	0	0.16	0.22	0	0.19	0.25	0	0.22	0.27	0	0.23	0.29
	Ĩ.	lr	96	0.21	0.22	13	0.21	0.27	33	0.19	0.23	51	0.25	0.29
		svm	68	0.14	0.18	73	0.18	0.23	100	_	_	100	_	_
		dt	97	0.28	0.29	85	0.16	0.22	100	_	_	100	_	_
		knn	90	0.26	0.27	72	0.19	0.23	100	_	_	100	_	_
		mlp	33	0.21	0.26	31	0.20	0.25	57	0.25	0.31	70	0.27	0.31
		adblr	100	2	_	13	0.25	0.31	48	0.20	0.25	63	0.23	0.29
		adbsvm	54	0.32	0.37	45	0.26	0.32	96	0.15	0.16	100	-	_
		lrv	23	0.30	0.36	41	0.25	0.32	57	0.21	0.26	57	0.22	0.27
		lrs	79	0.28	0.33	74	0.26	0.32	100	_	_	100	_	_
		rg	0	0.25	0.31	26	0.23	0.27	32	0.20	0.25	44	0.26	0.31
		rgdbscan	0	0.25	0.31	26	0.23	0.29	28	0.21	0.26	20	0.24	0.29
		rgwshrt	0	0.25	0.31	5	0.24	0.30	14	0.19	0.24	10	0.23	0.27
trj	200	cm	0	0.18	0.01	0	0.37	0.04	0	0.44	0.08	0	0.46	0.09
	avg	ар	17	0.09	0.01	28	0.11	0.01	61	0.11	0.01	63	0.11	0.01
	trjp	rgdbscan	0	0.10	0.01	0	0.12	0.01	63	0.34	0.05	51	0.33	0.03

Results: Electric grid load of Germany (hourly) from 2014-12-31 to 2016-02-20

- Language: Python
- Dataset: BTC daily high in USD from 01.01.2021 to 12.11.2023 (investing.com)
 - Size 1046, t=1000, h=45
- Parameters:
 - \circ $\epsilon = 0.01 \text{ or } 0.001$
 - L=4, K_{max}=10, no clustering of the motifs.
 - \circ UPV for cp: average and weighted average (ε-ρ(C, $C_{\square}^{\text{trunc}}$))/ε)
 - Min-max normalization: (x-min)/(max-min)
 - Prediction error: $|y_{pred} y_{real}|/|y_{real}|$

- $\epsilon = 0.01$
- t=1000
- h=45
- NP method 1

- $\epsilon = 0.001$
- t=1000
- h=45
- NP method 1

- ε=0.01
- t=1000
- h=45
- NP method 2 (ap)
- $\varepsilon_{\text{max}} = 0.01$

- ε=0.01
- t=1000
- h=45
- NP method 2 + rounded error
- $\varepsilon_{\text{max}} = 0.01$

- $\epsilon = 0.001$
- t=1000
- h=45
- NP method 2 + rounded error
- $\varepsilon_{\text{max}} = 0.01$

Conclusion

- An interesting approach to chaotic TS.
- Concept of non-predictable points:
 - Adds more quality to the prediction, but takes away from the quantity.
 - Their choice heavily influences the quality of the prediction.
- Prediction based on possible trajectories more accurate than the one based on current position (goes even beyond T).

Thank you for your attention!