

Relative alignment of tracker and muon system and track-based study of hardware results

Jim Pivarski

Texas A&M University

8 December, 2009

- Comparison of hardware geometry with track-based geometry
- ▶ Studies of tracker shape using muon residuals

Barrel hardware — track-based

Jim Pivarski

- Differences in chamber positions between hardware and track-based geometries
- ➤ Top-left: reconstruction was following some LED reflections
- ► Bottom-left: corrected

Barrel hardware — track-based

Jim Pivarski

φ (rad)

- Differences in chamber positions between hardware and track-based geometries
- Sine curve: global position with respect to tracker
 - x → 1.2 mm
 - y → 4.5 mm
 - $\phi_z \rightarrow 0.58 \text{ mrad}$

After global translation/rotation Jim Pivarski

5/17

- RMS of x' deviations (top-left) is only 1.8 mm after removing global offset in transverse plane
- Similar to photogrammetry, which had an RMS of 1.6 mm

Other translational d.o.f.

- ► Top: y' differences (direction parallel to beamline)
- Bottom: z' differences (radial)
- These are more consistent within sector groups
- y' has a clear trend with respect to wheel

- ► Map plots show that the remaining differences are not due to tracker distortions
- ► For example, the statement "relative misalignment of sectors 4 and 5 is 6 mm" is tracker-independent and propagation-independent
- ▶ When the hardware geometry correctly describes the muon system as a rigid body, the differences with respect to track-based will be a *smooth* function in these plots (e.g. between sectors 11 and 12)

- ▶ We can identify tracker global distortions using muon chamber data
- Without introducing circularity when we later align the muon system with tracker tracks

- Independence from muon alignment: plot residuals in only one muon layer (wh 0, st 1, sec 10, lay 2) and disregard global position of that layer
- Look at muon residuals as a function of p_T
- We only assume that the muon layer is in one location that can't be a function of the p_T of the tracks used to measure it

p_T -dependent muon residuals

Jim Pivarski 9/17

- Three ways of looking at it:
 - as a muon residual (Δx)
 - tracker curvature error $\left(\Delta\kappa = \Delta x \frac{d\kappa}{dx}, \ \kappa = q/p_T\right)$
 - tracker momentum error $(\Delta p_T = \Delta x \frac{dp_T}{dx})$

where $\frac{d\kappa}{dx}$ and $\frac{dp_T}{dx}$ come from track propagator, numerically

- $\frac{d\kappa}{dx}$ is nearly constant for a single DT layer (depends on distance from tracker)
- From muon hits, we learn something which is purely about the tracker's shape
- ▶ If errors were from $\vec{B}(\vec{x})$ or dE/dx, top plot would be antisymmetric, not symmetric

Ambiguity from muon alignment Jim Pivarski

50

p_/q (GeV)

 $\Delta p_{\uparrow}/p_{\uparrow}$ (%)

-100

➤ To avoid a circular argument, we should keep the position of the muon chamber as a free parameter in this study

10/17

- Knowledge of tracker shape will later be used to determine positions of muon chambers (track-based alignment)
- Freedom to make low-p_T region "correct" and high-p_T region "wrong"
- Still, difference in curvature between low- and high-p_T regions is the same: this should constrain models of the tracker's shape

- \triangleright Freedom in DT layer position yields different fractional p_T error profiles
- One thing which is not consistent with the data is: zero momentum bias across the whole p_T range
- Minbias alignment, with primary vertex constraint, information from resonance masses, etc. can further correct or constrain this

Does this analysis make sense?

p_/q (GeV)

-100

100

Jim Pivarski 12/17

- When applied to ideal MC, everything is perfect
- ► That's good (not a software problem or anything)

Straw-man global distortions (1) Jim Pivarski 13/17

- $ightharpoonup r\phi$ rotation of tracker layers as a function of r
- ▶ Tracker track χ^2 is highly sensitive to this, so it has been ruled out
- Nevertheless, it would produce a similar effect

Straw-man global distortions (2) Jim Pivarski 14/17

- $ightharpoonup r\phi$ rotation of tracker layers as a function of ϕ
- Cosmic ray tracker tracks are not very sensitive to this
- ▶ It also produces a similar effect
- ► That doesn't mean that it's the only explanation

- ▶ Plot tracker curvature error $\Delta(q/p_T)$ on the color scale (GeV⁻¹)
- Horizontal axes as indicated

- lacktriangle Real distortion is more a function of q/p_T than ϕ
- \blacktriangleright Sagitta error is more a function of ϕ than q/p_T

- ► Following an idea by Markus, trying $f(x,y) = (x + 5 \times 10^{-6}y^2, y)$
- ▶ Quick toy MC: causes 5×10^{-6} cm⁻¹ = 0.0005 GeV⁻¹ distortions
 - without large residuals
 - without affecting cosmic ray splitting
 - unfortunately, also no dependence on p_T (this isn't the one)
 - collisions and resonances may be sensitive to it
- ▶ Should try this and variants on it with the real tracker alignment tools

- Barrel hardware alignment produced, actively being compared with track-based data
- ▶ Muon residuals provide some constraints on the global tracker shape
 - including estimates of momentum bias
 - should be part of a larger program of integrating knowledge from cosmics, minbias, resonances, etc.
 - large project: looking for people interested in working on it
 - tentative interest: Markus Stove, Roberto Castello