수학으로부터 **인류**를 **자유**롭게 하라

Free Humankind from Mathematics

Basic Algebra

Chap.10 Multivariate Functions and Linearity

10.1 Bivariate Functions

Bivariate Functions

Univariate Functions: Review

Equations

Sets

Graphs

10.1 Bivariate Functions

Bivariate Functions

with Equations

$$z = f(x, y)$$

$$y = f(x_1, x_2)$$

ex.1)
$$z = f_1(x, y) = x + y$$

ex.2)
$$z = f_2(x, y) = e^x - ln(y)$$

ex.3)
$$z = f_3(x, y) = \frac{x^2 + 2x - 2}{y + 1}$$

Chap.10 Multivariate Functions and Linearity 10.1 Bivariate Functions

Bivariate Functionswith Sets

Chap.10 Multivariate Functions and Linearity 10.1 Bivariate Functions

Bivariate Functionswith Sets

10.1 Bivariate Functions

Bivariate Functions

with Sets

ex.1)
$$z = f(x, y) = x^2 + y^3$$

 $\longrightarrow D_x = \mathbb{R}, \quad D_y = \mathbb{R}$

ex.2)
$$z = f(x, y) = ln(x) + \frac{1}{y}$$

$$\longrightarrow D_x = (0, \infty), \quad D_y = (-\infty, 0) \cup (0, \infty)$$

Chap.10 Multivariate Functions and Linearity 10.1 Bivariate Functions

Graphs of Bivariate Functions

Axes

10.1 Bivariate Functions

Graphs of Bivariate Functions

Graphs

10.1 Bivariate Functions

Graphs of Bivariate Functions

$$z = f(x, y) = x^2 + y^3$$

$$z = f(x, y) = ln(x) + \frac{1}{y}$$

$$z = f(x, y) = \ln(x) + \frac{1}{y}$$
 $z = f(x, y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 + y^2}{2\sigma^2}}$

Chap.10 Multivariate Functions and Linearity
10.2 Equations of Planes and Axes

Three Axes in Coord. Space

10.2 Equations of Planes and Axes

Equations of Axes

x-axis

$$X = \left\{ \begin{array}{c|c} x \\ y \\ z \end{array} \middle| x \in \mathbb{R}, y = z = 0 \right\} \longleftrightarrow y = 0, z = 0$$

y-axis

$$Y = \left\{ \begin{array}{c|c} x \\ y \\ z \end{array} \middle| y \in \mathbb{R}, z = x = 0 \right\} \longleftrightarrow z = 0, x = 0$$

z-axis

$$Z = \left\{ \begin{array}{c|c} x \\ y \\ z \end{array} \middle| z \in \mathbb{R}, x = y = 0 \end{array} \right\} \longleftrightarrow x = 0, y = 0$$

10.2 Equations of Planes and Axes

Equations of Axes

Lines Parallel to Axes

 $L_X : y = b, z = c$

Chap.10 Multivariate Functions and Linearity 10.2 Equations of Planes and Axes

Three Planes in Coord. Space

10.2 Equations of Planes and Axes

Equations of xy, yz, zx Planes

$$P_{XY} = \left\{ \begin{array}{c|c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x, y \in \mathbb{R}, z = 0 \right\} \qquad P_{YZ} = \left\{ \begin{array}{c|c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| y, z \in \mathbb{R}, x = 0 \right\} \qquad P_{ZX} = \left\{ \begin{array}{c|c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z, x \in \mathbb{R}, y = 0 \right\} \\ P_{XY} : z = 0 \qquad P_{ZX} : y = 0 \end{array}$$

$$P_{ZX} = \left\{ \begin{array}{c|c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z, x \in \mathbb{R}, y = 0 \right\}$$
$$P_{ZX} : y = 0$$

zx-plane

10.2 Equations of Planes and Axes

Equations of Planes

Parallel to xy, yz, zx Planes

Parallel to xy-plane

$$P_{XY} = \left\{ \begin{array}{c|c} x \\ y \\ z \end{array} \middle| x, y \in \mathbb{R}, z = c \right\} \qquad P_{YZ} = \left\{ \begin{array}{c|c} x \\ y \\ z \end{array} \middle| y, z \in \mathbb{R}, x = a \right\} \qquad P_{ZX} = \left\{ \begin{array}{c|c} x \\ y \\ z \end{array} \middle| z, x \in \mathbb{R}, y = b \right\}$$

$$P_{XY} : z = c \qquad P_{YZ} : x = a \qquad P_{ZX} : y = b$$

Parallel to yz-plane

$$P_{YZ} = \left\{ \begin{array}{c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| y, z \in \mathbb{R}, x = a \\ P_{YZ} : x = a \end{array} \right.$$

Parallel to zx-plane

$$P_{ZX} = \left\{ \begin{array}{c|c} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z, x \in \mathbb{R}, y = b \right\}$$
$$P_{ZX} : y = b$$

10.2 Equations of Planes and Axes

Vertical Sections of Bivariate Functions

Example
$$z = x^2 + y^2$$

$$f(1,y) = 1 + y^2$$
 $f(x,1) = x^2 + 1$

$$f(2,y) = 4 + y^2$$
 $f(x,2) = x^2 + 4$

$$f(3,y) = 9 + y^2$$
 $f(x,3) = x^2 + 9$

10.2 Equations of Planes and Axes

Vertical Sections of Bivariate Functions

ex.1) 함수 $z = f(x, y) = x^2y$ 와 각 평면사이의 intersection을 구하세요.

$$(1) y = 0 \longrightarrow f(x, 0) = 0 \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$$

$$y = 1 \longrightarrow f(x, 1) = x^2 \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ 1 \\ x^2 \end{pmatrix}$$

$$x = 1 \longrightarrow f(1, y) = y \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ y \\ y \end{pmatrix}$$

$$y = -1 \longrightarrow f(x, -1) = -x^2 \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -1 \\ -x^2 \end{pmatrix}$$

$$x = -1 \longrightarrow f(-1, y) = y \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ y \\ y \end{pmatrix}$$

$$y = 2 \longrightarrow f(x, 2) = 2x^2 \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ 2 \\ 2x^2 \end{pmatrix}$$

$$x = -2 \longrightarrow f(-2, y) = 4y \longrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ y \\ 4y \end{pmatrix}$$

10.3 Multivariate Functions

Multivariate Functions

10.3 Multivariate Functions

Operations on Multivariate Functions

constant multiplications
$$\alpha \cdot f: (x_1, x_2, ..., x_n) \longmapsto \alpha \cdot f(x_1, x_2, ..., x_n)$$

function additions
$$f + g: (x_1, x_2, ..., x_n) \longmapsto f(x_1, x_2, ..., x_n) + g(x_1, x_2, ..., x_n)$$

Chap.10 Multivariate Functions and Linearity 10.3 Multivariate Functions

Examples of Multivariate Functions

Vector Norm

$$f(x_1, x_2, ..., x_n) = \sqrt{(x_1)^2 + (x_2)^2 + ... + (x_n)^2}$$

Weighted Sum

$$f(x_1, x_2, ..., x_n) = w_1 x_1 + w_2 x_2 + ... + w_n x_n$$

Chap.10 Multivariate Functions and Linearity 10.4 Linearity and Linear Functions

Linearity

Linearity = Homogeneity + Additivity

Chap.10 Multivariate Functions and Linearity 10.4 Linearity and Linear Functions

Linearity

Homogeneity

Additivity

Linearity

$$f(\alpha \cdot x) = \alpha f(x)$$

$$f(x + y) = f(x) + f(y)$$

$$f(\alpha \cdot x + \beta \cdot y) = \alpha f(x) + \beta f(y)$$

Chap.10 Multivariate Functions and Linearity 10.4 Linearity and Linear Functions

Multivariate Linear Functions

Homogeneity

$$f(\alpha \cdot x_1, \alpha \cdot x_2, \dots, \alpha \cdot x_n) = \alpha f(x_1, x_2, \dots, x_n)$$

Additivity

$$f(x_1 + y_1, x_2 + y_2, ..., x_n + y_n) = f(x_1, x_2, ..., x_n) + f(y_1, y_2, ..., y_n)$$

Linearity

$$f(\alpha \cdot x_1 + \beta \cdot y_1, \alpha \cdot x_2 + \beta \cdot y_2, \dots, \alpha \cdot x_n + \beta \cdot y_n) = \alpha f(x_1, x_2, \dots, x_n) + \beta f(y_1, y_2, \dots, y_n)$$

Chap.10 Multivariate Functions and Linearity 10.4 Linearity and Linear Functions

Examples

ex.1) 다음 함수가 linear한지 확인하세요.

$$(1) f(x) = ax$$

(2)
$$f(x) = ax + b$$

$$(3) f(x) = x^2$$

(4)
$$f(x_1, x_2, ..., x_n) = w_1 x_1 + w_2 x_2 + ... + w_n x_n$$

Systems

Function, Combinations of Functions Operation, Combinations of Operations

Linearity

Homogeneity

Linearity

Additivity

Linear Systems

$$Sys\{\alpha x(t) + \beta y(t)\} = \alpha Sys\{x(t)\} + \beta Sys\{y(t)\}$$

ex.1) Differentiation
$$\frac{d}{dx}[...]$$

Homogeneity
$$\frac{d}{dx}[\alpha f(x)] = \alpha \frac{d}{dx}[f(x)]$$

Additivity
$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$$

$$\implies \text{Linearity} \quad \frac{d}{dx} \left[\alpha f(x) + \beta g(x) \right] = \alpha \frac{d}{dx} \left[f(x) \right] + \beta \frac{d}{dx} \left[g(x) \right]$$

(1)
$$\frac{d}{dx}[3x^2 - 2x] = 3 \cdot \frac{d}{dx}[x^2] - 2 \cdot \frac{d}{dx}[x]$$

(2)
$$\frac{d}{dx} \left[2\sin(x) - 5\ln(x) \right] = 2 \cdot \frac{d}{dx} \left[\sin(x) \right] - 5 \cdot \frac{d}{dx} \left[\ln(x) \right]$$

ex.2) Integraion
$$\int [\dots] dx$$
Homogeneity
$$\int [\alpha f(x)] dx = \alpha \int f(x) dx$$
Additivity
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\Rightarrow \text{Linearity } \int [\alpha f(x) + \beta g(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx$$
(1)
$$\int [3x^2 - 2x] dx = 3 \int x^2 dx - 2 \int x dx$$
(2)
$$\int [2\sin(x) - 5\ln(x)] dx = 2 \int \sin(x) dx - 5 \int \ln(x) dx$$

10.5 Linear Systems

ex.3) Fourier Transform
$$\mathscr{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Homogeneity
$$\mathscr{F}\left\{\alpha f(t)\right\} = \alpha \mathscr{F}\left\{f(t)\right\}$$

$$\int_{-\infty}^{\infty} \left[\alpha f(t) \right] \cdot e^{-j\omega t} \, dt = \alpha \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} \, dt$$

Additivity
$$\mathscr{F}\left\{f(t)+g(t)\right\}=\mathscr{F}\left\{f(t)\right\}+\mathscr{F}\left\{g(t)\right\}$$

$$\int_{-\infty}^{\infty} \left[f(t) + g(t) \right] \cdot e^{-j\omega t} dt = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt + \int_{-\infty}^{\infty} g(t) \cdot e^{-j\omega t} dt$$

$$\Longrightarrow$$
 Linearity $\mathscr{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathscr{F}\left\{f(t)\right\} + \beta \mathscr{F}\left\{g(t)\right\}$

$$\int_{-\infty}^{\infty} \left[\alpha f(t) + \beta g(t) \right] \cdot e^{-j\omega t} dt = \alpha \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt + \beta \int_{-\infty}^{\infty} g(t) \cdot e^{-j\omega t} dt$$

(1)
$$\mathcal{F}\left\{3x^2 - 2x\right\} = 3\mathcal{F}\left\{x^2\right\} - 2\mathcal{F}\left\{x\right\}$$

$$= 3\int_{-\infty}^{\infty} x^2 \cdot e^{-j\omega t} dt - 2\int_{-\infty}^{\infty} x \cdot e^{-j\omega t} dt$$

(2)
$$\mathscr{F}\left\{2sin(x) - 5ln(x)\right\} = 2\mathscr{F}\left\{sin(x)\right\} - 5\mathscr{F}\left\{ln(x)\right\}$$

$$= 2\int_{-\infty}^{\infty} sin(x) \cdot e^{-j\omega t} dt - 5\int_{-\infty}^{\infty} ln(x) \cdot e^{-j\omega t} dt$$

C L O S I N G

Basic Algebra

Chap.10 Multivariate Functions and Linearity