Analysis of Equations of State in Neutron Star Modeling and Simulation

Joseph Nyhan

College of the Holy Cross

6 May 2022

Outline

- What is a neutron star?
- What is an equation of state (EoS)? How does it fit into our model of a neutron star?
- How can we use an EoS to make macroscopic predictions about neutron stars?
- Temporal simulations of neutron stars and equations of state
- A derivation of an EoS and its predictions:
 - Quantum Hadrodynamics and the QHD-I parameter set

Neutron Stars

- Dense core left behind after a supernovae explosion
- Made mostly of neutrons, protons, and electrons; overall, is neutral
- Radius: ~ 10 km; Mass: $\sim 1 \odot$.
- ullet Approximately the density of atomic nuclei ($\sim 10^{17}\,\mathrm{kg/m^3}$)
- Core held together by intense gravitational attraction
 - Gravitational acceleration on Earth's Surface: $\approx 10 \, \text{m/s}^2$
 - Neutron star: $\approx 10^{12} \, \text{m/s}^2$ (escape velocity $\sim 100\,000 \, \text{km/s} = c/3$)
- Why are they interesting?
 - Smallest, densest observed stellar objects
 - Exotic physics

Equation of State (EoS)

What is an equation of state?

- A relationship between *energy density* (denoted ϵ) and pressure (denoted P)
 - $\bullet \ \epsilon = \epsilon(P) \ \Leftrightarrow \ P = P(\epsilon)$
- Encodes the fundamental interparticle interactions within a neutron star
- True EoS within a neutron star is unknown; multitude of candidates, each based on a slightly different model and fit of empirical data
 - Models can be very complicated; often simplifications must be made to be solved practically
- ullet Often a tabulated list of P and ϵ values; however, in simulation work, analytical fits may be required

Using an EoS to Make Predictions

We want a way to understand the effects of an EoS on the observable properties of a star

• e.g. total mass, total radius

We create static solutions; "images" of neutron star

- solve the Tolman-Oppenheimer-Volkoff (TOV) equations
- extract information about maximum max and radius allowed by the EoS

The Tolman-Oppenheimer-Volkoff (TOV) Equations

Used to describe a static (time independent) spherically symmetric star. Given by

$$\frac{dm}{dr} = 4\pi r^2 \epsilon, \quad \frac{dP}{dr} = -\frac{(4\pi r^3 P + m)(\epsilon + P)}{r^2(1 - 2m/r)}.$$

where ϵ is energy density, P is pressure, and m is "mass." Use EoS to determine $\epsilon = \epsilon(P)$.

Initial conditions:

$$m(r = 0) = 0$$
, $P(r = 0) \equiv P_0 = \text{const.}$

Each solution is uniquely defined by P_0 , the *central pressure*.

• Outer conditions: Let *R*, *M* to be the total radius and total mass of the star, respectively. Defined by:

$$P(R) = 0, \quad M = m(R).$$

TOV Equations: Computing a Solution

$$\frac{dm}{dr}=4\pi r^2\epsilon, \quad \frac{dP}{dr}=-\frac{(4\pi r^3P+m)(\epsilon+P)}{r^2(1-2m/r)}.$$

- Specify a central pressure $P(r = 0) = P_0$
- Begin at very small $r \approx 0$; (10^{-8})
- Use a numerical integration technique
 - ► The Runge-Kutta 4 Algorithm
 - ▶ In practice, use Scipy solve_ivp; faster due to optimized step size
- Integrate outwards until P = 0; use to define R, calculate M
- Store curves for m(r), P(r), use to calculate $\epsilon(r)$

Static Solution: Example

Use an EoS called "SLy" from [3]. A realistic equation of state from an analytical fit of empirical neutron star data.

Figure: Example static solution for $P_0 = 10^{-4}$ for an EoS called "SLy."

Static Solutions: M(R) and $M(P_0)$ diagrams

Single solutions don't tell much about star as a whole; instead, look at trends over lots of solutions

- Create static solutions for a range of P_0 values: $P_0 \in [10^{-6}, 10^{-1}]$.
- ② Calculate the total mass M and total radius R for each value of P_0
- \odot Plot M(R) and $M(P_0)$

Figure: Example curves for EoS "SLy." $1 \odot = 1.989 \times 10^{30} \, \text{kg}$ (solar mass)

Critical Values of P, R, and M

Three important values: critical pressure, critical mass, and critical radius.

- Determined by "peaks" of graph; calculated using an optimization routine
- Maximum mass and radius predicted by EoS
- Largest "stable" pressure
- For SLy, $M_{\rm max} = 2.05 \odot$, $R_{\rm max} = 9.93 \, {\rm km}$, and $P_{\rm crit} = 6.59 \times 10^{-3}$.

Temporal Simulations of Neutron Stars: Background

- Neutron star as a spherically symmetric hydrodynamical system
- ullet Three *primitive* variables: pressure P, energy density ϵ , and velocity v
- ullet ϵ and P related by an EoS
- Define *conservative* variables Π, Φ in terms of primitive variables

$$\Pi = \frac{\epsilon + P}{1 - \nu} - P, \quad \Phi = \frac{\epsilon + P}{1 + \nu} - P.$$

 \bullet Π , Φ obey a conservation equation

$$\partial_t \vec{u} = -\frac{1}{r^2} \partial_r \left(r^2 \frac{\alpha}{a} \vec{f}^{(1)} \right) - \partial_r \left(\frac{\alpha}{a} \vec{f}^{(2)} \right) + \vec{s}, \quad \vec{u} = \begin{bmatrix} \Pi \\ \Phi \end{bmatrix},$$

where a, α are the gravity variables.

- $\vec{f}^{(1)} = \vec{f}^{(1)}(\vec{u}, v), \quad \vec{f}^{(2)} = \vec{f}^{(2)}(P), \quad \vec{s} = \vec{s} \ (\vec{u}, P, \epsilon, v, a, \alpha).$
- Separate evolution equations for a, α

Temporal Simulations of Neutron Stars: Background

- \bullet Evolve a set of discrete spatial gridpoints \to advanced numerical techniques
 - Finite differencing (for spatial derivatives) and the method of lines
 - ▶ High-resolution shock-capturing methods
 - Evolve through time using numerical integration (Runge-Kutta 3, Modified Euler's Method)
- Use EoSs that are analytical fits for numerical stability and root-finding abilities
 - ▶ Determine P, ϵ , ν numerically from Π , Φ ; need to be able to differentiate (e.g. Newton-Raphson Method)
 - ▶ Extensive studies of realistic, analytical EoSs from [3, 5]; SLy family

Temporal Simulations of Neutron Stars

- Use static solutions as initial data for temporal simulation
 - ▶ Above *critical pressure*: unstable; below: stable
- Stable solutions exhibit radial oscillations
 - Evolve out to large t and perform a Fourier transform

Figure: Plots of P(r=0) for EoS "SLy" and initial $P_0=7\times 10^{-4}\,\text{GeV}^4$. Colored lines on FFT plot represent predicted frequencies.

Radial oscillations differ by EoS; they could soon be measurable!

Nearing Publication:

Only if necessary for time!

Computing an EoS: Quantum Hadrodynamics

A theory of the quantum mechanical, interparticle interactions within a neutron star.

- Formulation of nuclear interactions between baryons by the exchange of mesons
 - baryons are particles containing three quarks (e.g. protons, neutrons)
 - mesons are quark/anti-quark pairs
- Requires experimental input for constraint; implemented using coupling constants
 - Models the strength of the interactions between particles
 - Multiple parameter sets have been developed by fitting observed nuclear properties of nuclear matter
- Considered quite complicated to solve; we introduce some simplifications in the QHD-I model

Quantum Hadrodynamics I (QHD-I)

We form the Lagrange Density for QHD-I:

$$\begin{split} \mathcal{L} &= \bar{\psi} [\gamma_{\mu} (i\partial^{\mu} - g_{\nu} V^{\mu}) - (M - g_{\phi} \phi)] \psi \\ &+ \frac{1}{2} \big(\partial_{\mu} \phi \partial^{\mu} \phi - m_{\phi}^2 \phi^2 \big) - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_{\nu}^2 V_{\mu} V^{\mu}, \end{split}$$

where $V_{\mu\nu} \equiv \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}$, $\partial_{\mu} \equiv \partial/\partial x^{\mu}$. The fields:

- Baryon field (protons and neutrons) $\psi(x^{\mu})$, with mass M
- Scalar meson field: $\phi(x^{\mu})$, with mass m_{ϕ}
- Vector meson field: $V^{\mu}(x^{\mu})$, with mass m_{ν}
- ullet Experimental coupling constants: $g_{
 u}$ and g_{ϕ}

From \mathcal{L} , we can determine ϵ and P, the EoS we desire.

QHD-I: Derivation of Equations of Motion

$$\begin{split} \mathcal{L} &= \bar{\psi} [\gamma_{\mu} (i\partial^{\mu} - g_{\nu} V^{\mu}) - (M - g_{\phi} \phi)] \psi \\ &+ \frac{1}{2} \big(\partial_{\mu} \phi \partial^{\mu} \phi - m_{\phi}^2 \phi^2 \big) - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_{\nu}^2 V_{\mu} V^{\mu}, \end{split}$$

Applying the Euler-Lagrange equations for $\mathcal L$ over a classical field

$$\partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \varphi_{\alpha})} \right) - \frac{\partial \mathcal{L}}{\partial \varphi_{\alpha}} = 0,$$

 $\varphi_{\alpha} \in \{\phi, V^{\mu}, \psi\}$, we obtain the equations of motion:

$$\begin{split} \partial_{\nu}\partial^{\nu}\phi + m_{s}^{2}\phi &= g_{s}\bar{\psi}\psi, \\ \partial_{\mu}V^{\mu\nu} + m_{\omega}^{2}V^{\nu} &= g_{\nu}\bar{\psi}\gamma^{\nu}\psi, \\ [\gamma_{\mu}(i\partial^{\mu} - g_{\nu}V^{\mu}) - (M - g_{s}\phi)]\psi &= 0, \end{split}$$

QHD-I: RMF Simplifications

We introduce the *Relativistic Mean Field* (RMF) simplifications. We treat the interactions (exchange of mesons) as their average values:

$$\phi \rightarrow \langle \phi \rangle = \phi_0, \quad V_\mu \rightarrow \langle V_\mu \rangle = V_0, \quad \bar{\psi}\psi \rightarrow \left\langle \bar{\psi}\psi \right\rangle, \quad \bar{\psi}\gamma^\mu \psi \rightarrow \left\langle \bar{\psi}\gamma^0 \psi \right\rangle,$$

where ϕ_0 and V_0 are constants. This allows us to simplify ${\mathscr L}$ considerably:

$$\mathcal{L}_{\mathsf{RMF}} = \bar{\psi}[i\gamma_{\mu}\partial^{\mu} - g_{\nu}\gamma_{0}V_{0} - (M - g_{s}\phi_{0})]\psi - \frac{1}{2}m_{s}^{2}\phi_{0}^{2} + \frac{1}{2}m_{\omega}^{2}V_{0}^{2},$$

Applying the same simplifications to the equations of motions gives:

$$\begin{split} &m_s^2\phi_0^2=g_s\left\langle\bar{\psi}\psi\right\rangle\\ &m_\omega^2V_0=g_v\left\langle\bar{\psi}\gamma^0\psi\right\rangle\\ &[i\gamma_\mu\partial^\mu-g_v\gamma_0V_0-(M-g_s\phi_0)]\psi=0 \end{split}$$

QHD-I: Closed forms for ϵ and P

We can now find closed forms of ϵ and P. From [1], we have

$$\epsilon = \langle T^{00} \rangle, \quad P = \frac{1}{3} \langle T^{ii} \rangle,$$

where $T^{\mu\nu}$ is the energy momentum tensor, given by

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\varphi_{\alpha})} \partial^{\nu}\varphi_{\alpha} - \mathcal{L}\eta^{\mu\nu}.$$

Using $\mathcal{L}_{\mathsf{RMF}}$

$$T^{\mu\nu}_{\mathsf{RMF}} = i \bar{\psi} \gamma^{\mu} \partial^{\nu} \psi - \eta^{\mu\nu} \left(-\frac{1}{2} m_{\mathsf{s}}^2 \phi_0^2 + \frac{1}{2} m_{\omega}^2 V_0^2 \right).$$

This gives

$$\begin{split} \epsilon &= \left\langle i \bar{\psi} \gamma^0 \partial^0 \psi \right\rangle + \frac{1}{2} m_s^2 \phi_0^2 - \frac{1}{2} m_\omega^2 V_0^2, \\ P &= \left\langle i \bar{\psi} \gamma^i \partial^i \psi \right\rangle - \frac{1}{2} m_s^2 \phi_0^2 + \frac{1}{2} m_\omega^2 V_0^2. \end{split}$$

The above expectation values are non-trivial and are derived in [1].

QHD-I: Resulting Equations

From above, we obtain the following equations:

$$\begin{split} \phi_0 &= \frac{g_\phi}{m_\phi^2} \frac{1}{\pi^2} \int_0^{k_f} dk \, \frac{(M - g_\phi \phi_0) k^2}{\sqrt{k^2 + (M - g_\phi \phi_0)}}, \\ V_0 &= \frac{g_v}{m_v^2} \frac{k_f^3}{3\pi^2}, \\ \epsilon &= \frac{1}{2} m_\phi^2 \phi_0^2 + \frac{1}{2} m_v^2 V_0^2 + \frac{1}{\pi^2} \int_0^{k_f} dk \, k^2 \sqrt{k^2 + m^{*2}}, \\ P &= -\frac{1}{2} m_\phi^2 \phi_0^2 + \frac{1}{2} m_v^2 V_0^2 + \frac{1}{3} \left(\frac{1}{\pi^2} \int_0^{k_f} dk \, \frac{k^4}{\sqrt{k^2 + m^{*2}}} \right). \end{split}$$

where $m^* = (M - g_{\phi}\phi)$, the reduced mass. k_f , the Fermi wavenumber, is a free parameter.

Resulting Equations

Goal: create a list of values that show us $\epsilon(P)$; each value of k_f gives us a different ϵ and P.

To produce the EoS: (repeat the following)

- Choose a k_f value
- calculate ϕ_0 and V_0 ; use rootfinding for ϕ_0
- ullet Using those values, calculate P and ϵ and store in a table

We loop through k_f values until we have a large range of P values

$$P \in [10^{-20} \, \text{GeV}^4, 10^{-1} \, \text{GeV}^4].$$

M(R) and $M(P_0)$ Curves for QHD-I

We use the tabulated values of P and ϵ to solve the TOV equations:

Figure: M(R) and $M(P_0)$ curves for QHD-I EoS.

These curves give

$$M_{\text{max}} = 6.1 \odot$$
, $R_{\text{max}} = 42.1 \, \text{km}$, $P_{\text{crit}} = 1.98 \times 10^{-4}$.

Conclusion

- An equation of state is a relationship between energy density and pressure within a neutron star
- We use the TOV equations to predict the maximum mass and radius that a given EoS will produce
- Within a temporal simulation of a neutron star, the static solutions from the TOV equations are used as initial data
 - ► Can predict radial oscillation frequencies of neutron stars, which could soon be measurable
- We use the QHD-I parameter set and RMF simplifications to solve a system of equations and generate an equation of state

References I

- Jacobus Petrus William Diener. "Relativistic mean-field theory applied to the study of neutron star properties". PhD thesis. Stellenbosch University, 2008.
- Norman K. Glendenning. Compact Stars. Springer, 1997.
- P. Haensel and A. Y. Potekhin. "Analytical representations of unified equations of state of neutron-star matter". In: Astronomy & Astrophysics 428.1 (Nov. 2004), pp. 191–197. ISSN: 1432-0746. DOI: 10.1051/0004-6361:20041722. URL: http://dx.doi.org/10.1051/0004-6361:20041722.
- "Neutron Stars". In: COSMOS The SAO Encyclopedia of
 Astronomy. URL: https:
 //astronomy.swin.edu.au/cosmos/n/neutron+star#:
 ~:text=Neutrons%20stars%20are%20extreme%
 20objects, weigh%20around%20a%20billion%20tonnes...

References II

A. Y. Potekhin et al. "Analytical representations of unified equations of state for neutron-star matter". In: Astronomy & Astrophysics 560 (Dec. 2013), A48. ISSN: 1432-0746. DOI: 10.1051/0004-6361/201321697. URL: http://dx.doi.org/10.1051/0004-6361/201321697.