Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

16 de diciembre de 2020

Transformaciones Lineales

Empezaremos el estudio con las formas bilineales y luego lo generalizaremos

Definición

Sea V,W espacios vectoriales, una **forma bilineal** $b:V\times W\longrightarrow \mathbb{R}$ es una aplicación que es lineal en cada una de sus componentes, es decir, para todo $v,v'\in V$, $w,w'\in W$, $\alpha\in\mathbb{R}$

- 1. $b(v + v', w) = b(v, w) + b(v', w); b(\alpha v, w) = \alpha b(v, w).$
- 2. $b(v, w + w') = b(v, w) + b(v, w'); b(v, \alpha w) = \alpha b(v, w).$

Definamos el conjunto

$$\mathcal{B}(V \times W) = \{b : V \times W \longrightarrow \mathbb{R}/b \text{ es bilineal}\}\$$

con las operaciones dadas antes este conjunto es un espacio vectorial

Consideremos $\mathcal{V} = \{v^1, v^2, \cdots, v^m\}$, $\mathcal{W} = \{w^1, w^2, \cdots, w^n\}$ bases de V y W respectivamente, entonces sea $b_{ij} = b(v^i, w^j)$ define una matriz $B = [b_{ij}] \in \mathbb{R}(m, n)$, la cual es llamada **matriz de la forma bilineal** b relativamente a las bases \mathcal{V} y \mathcal{W} .

Si tenemos las base de $\mathcal{V} = \{v^1, v^2, \cdots, v^m\}$, $\mathcal{W} = \{w^1, w^2, \cdots, w^n\}$ V y W respectivamente, entonces podemos definir la matriz $B = [b_{ij}]$ de la siguiente forma

$$b_{ij}=b(v^i,w^j),$$

entonces una forma bilineal $b: V \times W \longrightarrow \mathbb{R}$ queda determinada, esto es posible, dado que $v = \sum_{i=1}^m x_i v^i \in V$ y $w = \sum_{j=1}^n y_j w^j \in W$, entonces

$$b(v, w) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j b(v^i, w^j) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j b_{ij}.$$

Nota

Verifique que $\mathcal{B}(V \times W) = \{b : V \times W \longrightarrow \mathbb{R}/b \text{ es bilineal}\}\ y \mathbb{R}(m,n)$ es un isomorfismo.

Consideremos $V' = \{v'^1, v'^2, \cdots, v'^m\}, \ \mathcal{W}' = \{w'^1, w'^2, \cdots, w'^n\}$ otras bases de V y W respectivamente, entonces

$$v^{'j}=\sum_{i=1}^m p_{ij}v^i,\; j=1,\cdots m$$
 y $w^{'k}=\sum_{i=1}^n q_{ik}w^i,\; k=1,\cdots n$

$$\mathsf{y}\ b_{ii}' = b(v^{'i}, w^{'j})$$

Teorema

Las matrices $B = [b_{ij}]$ y $B' = [b'_{ij}]$ de la forma bilineal b en las bases \mathcal{V} , \mathcal{V}' y \mathcal{W} , \mathcal{W}' respectivamente, están relacionadas por la igualdad $B' = P^T BQ$, donde $P = [p_{ij}]$ y $Q = [q_{ij}]$.

Prueba:

Para todo $i = 1, \dots, m$ y todo $j = 1, \dots, n$ tenemos

$$b'_{ij} = b(v'^{i}, w'^{j}) = b\left(\sum_{r=1}^{m} p_{ri}v^{r}, \sum_{s=1}^{n} q_{sj}w^{s}\right) = \sum_{r=1}^{m} \sum_{s=1}^{n} p_{rj}q_{sj}b(v^{r}, w^{s})$$
$$= \sum_{r=1}^{m} \sum_{s=1}^{n} p_{rj}q_{sj}b_{rs} = \sum_{r=1}^{m} \sum_{s=1}^{n} p_{rj}b_{rs}q_{sj} = \left(P^{T}BQ\right)_{ij},$$

por tanto

$$B' = P^T B Q$$

Cuando W=V, entonces $b:V\times V\longrightarrow \mathbb{R}$ está idéntificada a la base $\mathcal{V}=\{v^1,v^2,\cdots,v^m\}\subset V$ y $B=[b_{ij}]\in \mathbb{R}(m,m)$, además, si $\mathcal{V}'=\{v^{'1},v^{'2},\cdots,v^{'n}\}$ es otra base de V, entonces se tiene

$$B' = P^T B P$$
,

también notamos que

$$b(v, w) = \sum_{i=1}^{m} \sum_{j=1}^{m} x_i y_j b_{ij}$$

es un polinomio homogéneo de segundo grado en relación a las coordenadas de v y w, donde $v=\sum_{i=1}^m x_iv^i$, $w=\sum_{i=1}^m y_iv^i$

Definición

Una forma bilineal $b: V \times V \longrightarrow \mathbb{R}$ es llamada simétrica (anti-simétrica) si, y solo si b(v, w) = b(w, v) (b(v, w) = -b(w, v)) para cualquier $v, w \in V$.

Nota

Para que b sea siméetrica es suficiente que la matriz en relación a la base $\mathcal{V} \subset V$ sea simétrica y también es suficiente que su matriz a cualquier base de V sea simétrica.

En efecto:

$$b(v, w) = \sum_{i=1}^{m} \sum_{j=1}^{m} x_i y_j b_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{m} y_i x_j b_{ij}$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} x_i y_j b_{ji} = \sum_{j=1}^{m} \sum_{i=1}^{m} x_i y_j b_{ji}$$

Una forma bilineal $b: V \times V \longrightarrow \mathbb{R}$ se puede expresar de la forma

$$b(v, w) = \frac{1}{2} [b(v, w) + b(w, v)] + \frac{1}{2} [b(v, w) - b(w, v)]$$

para todo $v, w \in V$, es decir, que el espacio $\mathcal{B}(V \times V)$ es expresado como suma directa de los subespacios formados por formas bilineales simétricas y anti-simétricas respectivamente.

Ejemplo

- 1. Sean las aplicaciones lineales $f: V \longrightarrow \mathbb{R}$, $g: W \longrightarrow \mathbb{R}$, y la aplicación $b: V \times W \longrightarrow \mathbb{R}$, definida por b(v, w) = f(v)g(w), es una forma bilineal, la cual es llamada **producto tensorial** de f y g.
- 2. Si V y W están poseen producto interno, entonces para $v^0 \in V$ y $w^0 \in W$ fijos, la aplicación $b: V \times W \longrightarrow \mathbb{R}$ definida por $b(v,w) = \langle v, v^0 \rangle \langle w, w^0 \rangle$ es una forma bilineal.
- 3. Si W = V y dados las aplicaciones lineales $f, g : V \longrightarrow \mathbb{R}$, entonces

$$(f \bullet g)(v, w) = f(v)g(w) + f(w)g(v),$$

$$(f \wedge g)(v, w) = f(v)g(w) - f(w)g(v)$$

definen forma bilineales que son simétricas y anti-simétricas

Teorema

Sea V un espacio vectorial, con $dim(V) < \infty$, la cual posee un producto interno. Entonces para forma bilineal $b: V \times V \longrightarrow \mathbb{R}$ existe una única transformación lineal $T: V \longrightarrow V$ tal que

$$\langle v, T(w) \rangle = b(v, w)$$

para todo $v, w \in V$.

Prueba: Ejercicio.

Definición

Una función $\varphi:V\longrightarrow\mathbb{R}$ es llamada forma cuadrática si existe una forma bilineal $b:V\times V\longrightarrow\mathbb{R}$ tal que

$$\varphi(v)=b(v,v).$$

La matriz de la forma cuadrática φ en la base $\mathcal V$ es, por definición, la matriz B, es la misma de la forma bilineal b tal que $\varphi(v)=b(v,v)$. Si la matriz P de la base $\mathcal V$ a la base $\mathcal V'$ es la matriz B' de la forma cuadráatica φ en la base $\mathcal U'$, entonces $B'=P^TBP$.

En el caso de que \mathcal{V} y $\mathcal{V}^{'}$ posean producto interno entonces P es una matriz ortogonal, y por tanto $P^{T}=P^{-1}$ y así, tenemos $B^{'}=P^{-1}BP$.

Teorema

Sea V un espacio vectorial, con $dim(V) < \infty$, que posee un producto interno. Entonces para la forma bilineal simétrica $b: E \times E \longrightarrow \mathbb{R}$ existe una base ortonormal $\mathcal{V} = \{v^1, v^2, \cdots, v^m\} \subset V$ tal que

$$(para i \neq j)(b(v^i, v^j) = 0).$$

Prueba:

Por el teorema anterior, existe una transformación lineal

 $T: V \longrightarrow V$ tal que

$$b(v, w) = \langle v, T(w) \rangle.$$

Luego existe una base ortonormal $\mathcal{V} = \{v^1, v^2, \cdots, v^m\} \subset V$ tal que $(i = 1, 2, \cdots, m) (\exists \alpha_i \in \mathbb{R}) (T(v^i) = \alpha_i v^i).$

Entonces

$$i \neq j \Longrightarrow b(v^i, v^j) = \langle v^i, T(v^j) \rangle = \langle v^i, T(V^j) \rangle = \langle v^i, \alpha_j v^j \rangle$$

= $\alpha_i \langle v^i, v^j \rangle = 0$.

Los vectores $v = \sum_{i=1}^{m} x_i v^i$, $w = \sum_{i=1}^{m} x_i v^i$ en la base $\mathcal{V} = \{v^1, v^2, \cdots, v^m\}$ de V del teorema anterior la forma bilineal b se expresa como

$$b(v,w)=\sum_{i=1}^m\alpha_ix_iy_i.$$

En particular, la forma cuadrática $\varphi:V\longrightarrow \mathbb{R},\ \varphi(v)=b(v,v)$ para $w=\sum_{i=1}^m y_iv^i$ se tiene

$$\varphi(\mathbf{v}) = \alpha_1 \mathbf{y}_1^2 + \alpha_1 \mathbf{y}_2^2 + \dots + \alpha_m \mathbf{y}_m^2.$$

Donde, sin pérdida de generalidad se tiene, $\alpha_1 \leq \alpha_2 \cdots \leq \alpha_m$.

Definición

Una forma cuadrática $\varphi: V \longrightarrow \mathbb{R}$ es llamada **no negativa** (**positiva**), para todo $v \in V$ ($v \in V$ no nulo) se tiene $\varphi(v) \geq 0$ ($\varphi(v) > 0$).

En forma similar se define no positiva (negativa).

Diremos que φ es indefinida si existen $v, w \in V$ tales que $\varphi(v) < 0$ $y \varphi(w) > 0$.

Definición (Función Determinante)

Una aplicación $D: \mathbb{K}(n,n) \longrightarrow \mathbb{K}$ que satisface

1.
$$D([a^1 \cdots \alpha a^j + \beta a_*^j \cdots a^n]) =$$

 $\alpha D([a^1 \cdots a^j \cdots a^n]) + \beta D([a^1 \cdots a_*^j \cdots a^n]),$
 $j = 1, \dots, n, \alpha, \beta \in \mathbb{K}.$

2.
$$D([a^1 \cdots a^i \cdots a^j \cdots a^n]) = -D([a^1 \cdots a^j \cdots a^i \cdots a^n]), i < j.$$

es llamada función determinante o simplemente determinante.

Donde a^i con $i = 1, \dots, n$ son los vectores columnas de A.

La primera condición de la definición anterior es llamada D n—lineal, y la segunda es **alternada**.

Esta definición nos conduce a las siguientes proposiciones.

También denotamos por det(A) = |A| = D(A).

Si una matriz $A \in \mathbb{K}(n, n)$ posee al menos columna nula, entonces D(A) = 0.

Prueba:

Sin pérdida de generalidad supongamos que $a^1 = \mathbf{0}$, entonces

$$D(A) = D([\mathbf{0} \ a^2 \cdot \cdots \cdot a^n]) = D([\mathbf{0} + \mathbf{0} \ a^2 \cdot \cdots \cdot a^n])$$

= $D([\mathbf{0} \ a^2 \cdot \cdots \cdot a^n]) + D([\mathbf{0} \ a^2 \cdot \cdots \cdot a^n]) = D(A) + D(A),$

por tanto D(A) = 0.

Si A posee al menos dos columnas iguales, entonces D(A) = 0.

Prueba:

Supongamos que $A = \left[a^1 \cdots a^i \cdots a^j \cdots a^n\right]$ con $a^i = a^j$, i < j., entonces

$$D(A) = -D[a^1 \cdots a^j \cdots a^i \cdots a^n]) = -D(A),$$

por tanto D(A)=0.

Si en una matriz $A \in \mathbb{K}(n, n)$ se le suma el múltiplo de otra columna, entonces el determinante no cambia.

Prueba:

Supongamos que

$$D[a^{1} \cdots a^{i} + \alpha a^{j} \cdots a^{j} \cdots a^{n}]) =$$

$$= D[a^{1} \cdots a^{i} \cdots a^{j} \cdots a^{n}]) + \alpha D[a^{1} \cdots a^{j} \cdots a^{j} \cdots a^{n}])$$

$$= D(A) + \alpha 0 = D(A).$$

Corolario

$$D\Big[\underbrace{a^1\cdots a^i+\sum_{j\neq i}\alpha_ja^j\cdots a^n}_{i}\Big]=D(A).$$

Una función determinante aplicada a matrices elementales satisface:

- 1. $D[E_j(\alpha)] = \alpha D[I], \ \alpha \neq 0, \ j = 1, \dots, n.$
- 2. $D[E_{ij}(\alpha)] = D[I], \ \alpha \in \mathbb{K}, \ i \neq j.$
- 3. $D[E_[ij]] = -D[I]$.

Prueba Ejercicio.

Nota

El conjunto $\mathcal{D}(n,\mathbb{K})=\{D:\mathbb{K}(n,n)\longrightarrow\mathbb{K}/D \text{ es una determinante}\}$ es un espacio vectorial, con $\dim(\mathcal{D}(n,\mathbb{K}))<\infty$. Ejercicio Solo enunciaremos la siguiente

Proposición (Existencia)

Para cada $n \in \mathbb{N}$ existe una función determinante

$$D: \mathbb{K}(n,n) \longrightarrow \mathbb{K}$$

tal que
$$D[I] = 1$$
.

Dada una matriz elemental $E \in \mathbb{K}(n, n)$ y $D \in \mathcal{D}(n, \mathbb{K})$, entonces para todo $A \in \mathbb{K}(n, n)$ se tiene

$$D(AE) = D(A)D_k(E),$$

donde $D_k : \mathbb{K}(n,n) \longrightarrow \mathbb{K}$ es definida por

$$D_k(A) = \sum_{j=1}^n (-1)^{k+j} a_{kj} D'(A_{kj}),$$

 $D': \mathbb{K}(n-1, n-1) \longrightarrow \mathbb{K}$ tal que D'(I) = 1 y A_{kj} es la matriz obtenida de A suprimiendo la k-ésima fila y la j-ésima columna

Prueba:

La matriz AE puede tomar tres casos, debido a la matriz elemental

$$AE_{i}(\alpha) = \begin{bmatrix} a^{1} \cdots \alpha a^{i} \cdots a^{n} \end{bmatrix}$$

$$AE_{ij}(\alpha) = \begin{bmatrix} \underbrace{a^{1} \cdots a^{j} + \alpha a^{i}}_{j} \cdots a^{n} \end{bmatrix}, \text{ para todo } i \neq j$$

$$AE_{ij} = \begin{bmatrix} \underbrace{a^{1} \cdots a^{j} \cdots a^{i}}_{i} \cdots a^{n} \end{bmatrix}.$$

entonces

$$D[AE_{i}(\alpha)] = \alpha D(A) = D(A)D_{k}(E_{i}(\alpha))$$

$$D[AE_{ij}(\alpha)] = D(A) = D(A)D_{k}(E_{ij}(\alpha))$$

$$D[AE_{ij}] = D(A) = D(A)D_{k}(E_{ij})$$

Sea
$$D \in \mathcal{D}(n, \mathbb{K})$$
, entonces $\Big(\forall A, B \in \mathbb{K}(n, n) \Big) \Big(D(AB) = D(A)D_k(B) \Big)$

Prueba:

1. Si B es no singular, entonces B es el producto de matrices elementales, es decir,

$$B=E_1E_2\cdots E_r,$$

entonces por la proposición anterior se tiene

$$D(AB) = D(A)D_k(E_1)D_k(E_2)\cdots D_k(E_r) = D(A)D_k(B).$$

2. Si *B* es singular, entonces *AB* no es inversible, entonces los vectores columnas de *AB* son linealmente dependientes, de donde

$$D(AB)=0.$$

Por tanto

$$D(AB) = 0 = D(A)0 = D(A)D_k(B),$$

dado que $D_k(B) = 0$.

Proposición (Teorema de Unicidad)

 D_k es la única función determinante definida sobre $\mathbb{K}(n, n)$ tal que $D_k(I) = 1$.

Prueba:

Sea D una función determinante tal que D(I) = 1, entonces

$$D(A) = D(IA) = D(I)D_k(A) = D_k(A)$$
, para todo $A \in \mathbb{K}(n, n)$,

por tanto $D = D_k$.

Nota

Por el teorema de unicidad, tenemos que $D_1 = D_2 = \cdots = D_n = det$. Luego por proposición de existencia, se tiene

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij}),$$
 para cada i fijo.

El espacio vectorial $\mathcal{D}(n, \mathbb{K})$ tiene dimensión uno.

Prueba:

Sea $D \in \mathcal{D}(n, \mathbb{K})$, entonces

$$D(A) = D(IA) = D(I)D_k(A) = \alpha det(A),$$

para todo $A \in \mathbb{K}(n, n)$.

Por tanto, $D = \alpha det$, $\alpha = D(I)$. Luego $\mathcal{D}(n, \mathbb{K})$ es generado por $\{det\}$.

De donde $dim(\mathcal{D}(n, \mathbb{K})) = 1$.

Proposición (Propiedad Multiplicativa)

Para todo $A, B \in \mathbb{K}(n, n)$ se tiene det(AB) = det(A)det(B).

Prueba:

Consideremos D = det, entonces

$$det(AB) = det(A)D_k(B) = det(A)det(B).$$

usaremos
$$| | = det$$

Ejemplo

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^3 & b^3 - a^3 & c^3 - a^3 \end{vmatrix}$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & 1 \\ a^2 + ab + b^2 & a^2 + ac + c^2 \end{vmatrix}$$

$$= (b - a)(c - a)(ac + c^2 - ab - b^2)$$

$$= (b - a)(c - a)(c - b)(a + b + c).$$

Recordar que las matrices $E_i(\alpha)$ y E_{ij} son simétricas,

Proposición

Para todo $A \in \mathbb{K}(n,n)$ tenemos $det(A^t) = det(A)$

Prueba:

Supongamos que A sea no singular, entonces existen matrices elementales E_j tales que

$$A = E_1 \cdots E_r, \Longrightarrow A^t = E_r^t \cdots E_1^t,$$

entonces

$$det(A^t) = det(E_r^t \cdots E_1^t) = det(E_r^t) \cdots det(E_1^t)$$

= $det(E_r) \cdots det(E_1) = det(E_1 \cdots E_r) = det(A)$.

Nota

$$det(A) = det(A^t) = \sum_{i=1}^n (-1)^{i+j} a_{ij} det(A_{ij}).$$

Proposición

Sea $A \in \mathbb{K}(n, n)$ una matriz, entonces los siguientes enunciados son equivalentes:

- 1. A es no singular.
- 2. $det(A) \neq 0$.
- 3. Los vectores columnas de A son linealmente independientes.

Prueba:

- 1. Como $AA^{-1}=I$, entonces $det(AA^{-1})=det(A)det(A^{-1})=det(I)=1$, entonces $det(A)\neq 0$.
 - Los otros item quedan como ejercicio.

Sean las matrices $A \in \mathbb{K}(n, n)$, $B \in \mathbb{K}(m, m)$ y $C \in \mathbb{K}(m, n)$, entonces

$$\left| egin{array}{cc} A & 0 \\ C & B \end{array} \right| = det(A)det(B)$$

Prueba Ejercicio.

Proposición

Sea $T: \mathbb{K}(n,1) \longrightarrow \mathbb{K}(n,1)$ una transformación lineal y $v^1, \cdots, v^n \in \mathbb{K}(n,1)$, entonces

$$det([T(v^1)\cdots T(v^n)]) = det(T)det([v^1\cdots v^n])$$

Prueba Ejercicio.

