Constraining New Physics in $b \rightarrow s$ with WilsonFitter

Danny van Dyk

2nd Meeting SUSY/BSM Fit WG, DESY Hamburg November 22nd, 2010

Constraining New Physics in $b \rightarrow s$ with EOS

Danny van Dyk on behalf of the EOS WG

2nd Meeting SUSY/BSM Fit WG, DESY Hamburg November 22nd, 2010

http://project.het.physik.tu-dortmund.de/eos/

New Physics Contributions to FCNCs

- ▶ $b \rightarrow s$ transitions mediated by Flavor Changing Neutral Currents
- ► New Physics contributions can enter via extended particle content
- probe for new physics indirectly by studying loop dominated processes

Model Independent Analysis

 $b \rightarrow s$ Hamiltonian

$$\mathcal{H}^{\mathrm{eff}} = -\frac{4G_{\mathrm{F}}}{\sqrt{2}}V_{tb}V_{ts}^{*}\sum_{i}\frac{C_{i}(\mu)\mathcal{O}_{i}(\mu)}{2}$$

SM basis (dominant operators for $b \to s\ell^+\ell^-$):

$$\mathcal{O}_7 \propto [\bar{s}\sigma_{\mu\nu}P_Rb]F^{\mu\nu}$$
 $\mathcal{O}_{9(10)} \propto [\bar{s}\gamma_{\mu}P_Lb][\bar{\ell}\gamma^{\mu}(\gamma_5)\ell]$

- ▶ calculate long distance physics via $\langle \dots | \mathcal{O}_i(\mu = m_b) | \dots \rangle$
- treat $C_i(\mu = m_b)$ as free parameters, i = (7), 9, 10
- ightharpoonup search for best-fit solutions in the C_i parameter space
- lacksquare $|\mathcal{C}_7|$ constrained by existing $\mathcal{B}(b o s\gamma)$ data: $|\mathcal{C}_7|\simeq |\mathcal{C}_7^{ ext{SM}}|$
- ▶ fit $C_{9.10}$ from existing $B \to K^* \ell^+ \ell^-$ and $B \to X_s \ell^+ \ell^-$ data

Long Distance Physics – Observables

each $\Delta B = 1$ observable is $P \equiv P(C_i)$

Exclusive

- $m B
 ightarrow m K^* \ell^+ \ell^-\colon \mathcal B, A_{
 m FB}, F_{
 m L}, A_{
 m T}^{(i)}$ at NLO $lpha_{
 m s}$ $1~{
 m GeV}^2 \le q^2 \le 6~{
 m GeV}^2$ M. Beneke et al '01 and '04
- ▶ $B \to K^*\ell^+\ell^-$: $\mathcal{B}, A_{\mathrm{FB}}, F_{\mathrm{L}}, \mathcal{H}_{\mathrm{T}}^{(i)}$ at NLO in α_{s} 14 $\mathrm{GeV}^2 \leq q^2 \leq q_{\mathrm{max}}^2$ B. Grinstein, D. Pirjol '04

C. Bobeth, G. Hiller, DvD '10

Inclusive

- ▶ $B o X_s \ell^+ \ell^-$: \mathcal{B} at NNLO, $1/m_b$ and log-enh. EM corr. $1 \, \mathrm{GeV}^2 \le q^2 \le 6 \, \mathrm{GeV}^2$
- ▶ $B \to X_s \gamma$: \mathcal{B} NNLO in the SM NP contr. only at LO $E_{\gamma} \ge 1.6 \, \mathrm{GeV}$ M. Misiak et al '06

CP asymm. $(B \to K^* \ell^+ \ell^-)$ in preparation

Short Distance Physics – Wilson Coefficients

 $b \rightarrow s$ Wilson coefficients in the SM as implemented

- ightharpoonup matching to SM at NNLO in α_s
- ightharpoonup running at NNLO in α_s
- ▶ NNLO in α_s & α_e planned for matching and running.
- based on C. Bobeth, P. Gambino, M. Gorbahn, U. Haisch '03

Evaluation in SUSY models:

- e.g. additional chargino/charged higgs loops
- work in progress S. Schacht

Scan Implementations

Method # 1: implemented + fully tested

- goodness-of-fit scans for all observables
- uses numeric code directly
- expensive: numeric integrations (QCDF, integrated observables)
- needs much computing resources
- ► example (CPV): 10⁷ points take 16 nodes × 8 cores × 1 week

Method # 2: implemented + caveat emptor

- specialised scans for observable subset
- exploit polynomial structure of observ. in C_i
- determine polynomial of integrated observables
- works even on a laptop (fast!)
- ► example (CPV): 10⁷ points take 1 laptop × 1 core × 40 min

Global Constraints

- use available input on all implemented processes
- lacktriangle calculate goodness-of-fit of measurement $X\pm\sigma$ to prediction $T\pm\Delta^\pm$

$$\sigma \cdot \chi = \begin{cases} \min \left\{ \mathbf{T} \pm \Delta^{\pm} - X \right\} & X \notin [\mathbf{T} - \Delta^{-}, \ \mathbf{T} + \Delta^{+}] \\ 0 & \text{otherwise} \end{cases}$$

• sum up χ^2 for all inputs and calculate likelihood:

$$-2\ln\mathcal{L} = \sum_{i} \chi_{i}^{2}$$

quite conservative approach

Global Constraints

- ▶ scan over components of Wilson coefficients: $c_a = |C_i|$, $\arg C_i$
- ▶ marginalise scan with more than two components $\langle c_a, c_b \rangle$:

$$\mathcal{L}(c_a, c_b, c_c, \dots, c_z) \mapsto \mathcal{L}(c_a, c_b) \equiv \max_{c_c, \dots, c_z} \mathcal{L}$$

alternatively:

$$\mathcal{L}(c_a, c_b, c_c, \dots, c_z) \mapsto \mathcal{L}(c_a, c_b) \equiv \frac{1}{V} \int_V \mathrm{d}c_c \dots \mathrm{d}c_z \, \mathcal{L}$$

Global Constraints – Inputs

Included:

- ▶ $B \to K^* \ell^+ \ell^-$: \mathcal{B} (3 q^2 bins), $A_{\rm FB}$ (3 q^2 bins), $F_{\rm L}$ (1 q^2 bins) Source: Belle '09, CDF '10 (preliminary)
- ► $B \rightarrow X_s \ell^+ \ell^-$: \mathcal{B} (1 q^2 bin) Source: BaBar '04, Belle '05

▶ $B \rightarrow X_s \gamma$: \mathcal{B} for $E_{\gamma} > 1.6 \ GeV$ Source: HFAG (March '10)

total of 17 inputs included

Global Constraints – Inputs

Available:

ho $B o K \ell^+ \ell^-$: $\mathcal B$ and A_{FB} (3 q^2 bins each) Source: Belle '09, CDF '10 (preliminary)

total of 12 inputs not yet included

Excluded:

ho $B o K^* \ell^+ \ell^-$: \mathcal{B} , A_{FB} and F_{L} (2 q^2 bins each) BaBar '06/'08 data have unsuitable q^2 binning

total of 6 inputs unusable

Global Constraints – Input Example ($B \to K^* \ell^+ \ell^-$)

SM Result for AFR

Exp. Data: BaBar'08, Belle'09, CDF'09

Large Recoil $q^2 \ll m_h^2$

 $q^2 \simeq m_h^2$ Low Recoil

C.Bobeth, G.Hiller, DvD '10

Global Constraints – SM Basis

- ▶ fix $|\mathcal{C}_7|$ to best-fit solution from $\mathcal{B}(B \to X_s \gamma)$ ($\simeq |\mathcal{C}_7^{\mathrm{SM}}|$)
- ▶ scan 30 points in both C_9 and C_{10} with 0.5 increment
- scan for both signs $\mathcal{C}_7 = \pm \mathcal{C}_7^{\mathrm{SM}}$
- use SM values of $C_{1...6}$, C_8 (less sensitive to NP)

Global Constraints – SM Basis

 \mathcal{C}_9 vs \mathcal{C}_{10} : green square marks the SM

C.Bobeth, G.Hiller, DvD '10

Data Sources: Belle + CDF data of $B \to K^* \ell^+ \ell^-$, BaBar + Belle data of $B \to X_s \ell^+ \ell^-$

Global Constraints – SM Basis + CPV

- ▶ fix $|\mathcal{C}_7|$ to best-fit solution from $\mathcal{B}(B \to X_s \gamma)$ ($\simeq |\mathcal{C}_7^{\mathrm{SM}}|$)
- ▶ scan 60 points in both $|C_9|$ and $|C_{10}|$ with 0.25 increment
- scan 16 points in arg C_7
- ▶ scan 32 points in both $\arg C_9$ and $\arg C_{10}$
- use SM values of $C_{1...6}$, C_8 (less sensitive to NP)
- marginalize to $\mathcal{L}(|\mathcal{C}_9|, |\mathcal{C}_{10}|)$

Global Constraints – SM Basis + CPV

PRELIMINARY, $|\mathcal{C}_9|$ vs $|\mathcal{C}_{10}|$. Green square marks the SM.

C.Bobeth, G.Hiller, DvD (in preparation)

Data sources: Belle + CDF data of $B o K^* \ell^+ \ell^-$, BaBar + Belle data of $B o X_{\rm S} \ell^+ \ell^-$

Global Constraints – Comparison MSSM+MFV

VERY PRELIMINARY, C_9 vs C_{10} , MSSM (charged higgs + charginos) in green

C.Gross, G.Hiller, S.Schacht (in preparation)

Summary and Outlook

EOS is ...

- ▶ a generator/evaluator for several B flavor observables
- capable of constraining New Physics with existing data

We plan to ...

- fully implement $B \to X_s \gamma$ at NNLO (not started yet)
- ▶ implement $B \to K\ell^+\ell^-$ (work in progress)
- broaden the operator basis to helicity-flipped, scalar and/or tensor operators (not started yet)

Proper release planned for 2011 (However, sources are already available on the web)

http://project.het.physik.tu-dortmund.de/eos/

Literature

- ▶ $B \rightarrow K^*\ell^+\ell^-$ NLO calculation at Large Recoil (M.Beneke, T.Feldmann, D.Seidel '01 and '04): arxiv:hep-ph/0106067 and arxiv:hep-ph/0412400
- ▶ $B \to K^* \ell^+ \ell^-$ Low Recoil observables and model independent analysis (C.Bobeth, G.Hiller, DvD '10): arxiv:1006.5013 [hep-ph]
- ▶ $B \to X_s \ell^+ \ell^-$ NNLO branching ratio (C.Bobeth, P.Gambino, M.Gorbahn, U.Haisch '03): arxiv:hep-ph/0312090
- ▶ $B \to X_s \ell^+ \ell^-$ NNLO branching ratio (T.Huber, E.Lunghi, M.Misiak, D.Wyler '05): arxiv:hep-ph/0512066
- ▶ $B \rightarrow X_s \gamma$ NNLO branching ratio (M.Misiak et al '06): arxiv:hep-ph/0609232

Outline

EOS Implementation

- written in C++-0x (GCC version \geq 4.4)
- mostly self-contained, only one external dependency (GNU Scientific Library)
- multi-threaded calculations
- memoisation of expensive calculations
- extensive testing framework (Unit Tests), covering physics and utilities alike

Operators beyond the SM

(pseudo)scalar operators:

$$\mathcal{O}_{S(P)} \propto [\bar{s}P_Rb][\bar{\ell}\ell]$$

(pseudo)tensor operators:

$$\mathcal{O}_{T(T5)} \propto [\bar{s}\sigma_{\mu\nu}b][\bar{\ell}\sigma^{\mu\nu}(\gamma_5)\ell]$$

helicity-flipped basis (dominant operators for $b \to s\ell^+\ell^-$):

$$\mathcal{O}_7' \propto [\bar{s}\sigma_{\mu\nu}P_{L}b]F^{\mu\nu}$$
 $\mathcal{O}_{9(10)}' \propto [\bar{s}\gamma_{\mu}P_{R}b][\bar{\ell}\gamma^{\mu}(\gamma_5)\ell]$