Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ЛАБОРАТОРНАЯ РАБОТА № 4

по курсу «Компьютерное управление мехатронными системами»

ПАРАМЕТРИЧЕСКИЙ СИНТЕЗ И ИССЛЕДОВАНИЕ ЦИФРОВОЙ СИСТЕМЫ УПРАВЛЕНИЯ С ПД-РЕГУЛЯТОРОМ И ОБЪЕКТОМ В ВИДЕ ПОСЛЕДОВАТЕЛЬНО ВКЛЮЧЕННЫХ АПЕРИОДИЧЕСКОГО И ИНТЕГРИРУЮЩЕГО ЗВЕНЬЕВ ИЗ УСЛОВИЯ ОБЕСПЕЧЕНИЯ ЗАДАННОГО ПО КАЧЕСТВУ ПЕРЕХОДНОГО ПРОЦЕССА

Автор работы: Кирбаба Д.Д.

Группа: R3438

Преподаватель: Ловлин С.Ю.

Санкт-Петербург

СОДЕРЖАНИЕ

1.	Цель работы
2.	Ход работы
1.	Исходные данные
2.	Моделирование цифрового Д-регулятора4
3.	Цифровой ПД-регулятор – апериодическое звено первого порядка 7
4. не	Непрерывная модель цифрового ПД-регулятора, учитывающая полную компенсацию цифровым регулятором постоянной объекта Т 9
ДЛ	Синтез системы с использованием эквивалентной непрерывной модели стемы, учитывающей динамические свойства цифрового ПД-регулятора я случая вычислительной задержки $\epsilon = 0$. Настройка на технический тимум
	Синтез регулятора
	Моделирование работы системы настроенной на технический оптимум
	Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация апериодическим звеном
	Синтез цифрового ПД-регулятора методом переоборудования
ДЛ	Синтез системы с использованием эквивалентной непрерывной модели стемы, учитывающей динамические свойства цифрового ПД-регулятора я случая вычислительной задержки $\epsilon = T0$. Настройка на технический тимум
	Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация апериодическим звеном
	Синтез цифрового ПД-регулятора методом переоборудования
ДЛ	Синтез системы с использованием эквивалентной непрерывной модели стемы, учитывающей динамические свойства цифрового ПД-регулятора я случая вычислительной задержки $\epsilon = 0$. Настройка на биномиальный тимум
	Синтез регулятора
	Моделирование работы системы настроенной на биномиальный оптимум

	Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация
	апериодическим звеном
	Синтез цифрового ПД-регулятора методом переоборудования
CI	Синтез системы с использованием эквивалентной непрерывной модели истемы, учитывающей динамические свойства цифрового ПД-регулятора из случая вычислительной задержки $\epsilon = T0$. Настройка на биномиальный
	тимум
	Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация
	апериодическим звеном
	Синтез цифрового ПД-регулятора методом переоборудования
3.	Выводы

1. Цель работы

Параметрический синтез и исследование цифровой системы управления с ПД-регулятором и объектом в виде последовательно включенных апериодического и интегрирующего звеньев из условия обеспечения заданного переходного процесса.

2. Ход работы

1. Исходные данные

Сопротивление обмоток двигателя R, Ом	10.8
Индуктивность обмоток двигателя L , Γ н	0.023
Момент инерции J , кг∙ м ²	91.95
Константа противо-ЭДС C_e	2
Константа момента C_m	2
Коэффициент передачи датчика скорости, $180/\pi$	57.3

Таблица 1. Исходные данные.

2. Моделирование цифрового Д-регулятора

Исследуем временные диаграммы работы аналогового и цифрового Дрегуляторов при постоянном и линейно нарастающем воздействиях на входе регулятора для случая вычислительной задержки $\epsilon=0$.

Зададим равные коэффициенты $an.K_d = dsc.K_d = 3.$

Схема модели:

Рисунок 1. Схема моделирования эквивалентных цифрового и аналогового Д-регуляторов.

Рисунок 2. Графики работы аналогового и дискретного Д-регуляторов при постоянном входном воздействии.

Синий график (аналоговый) идет до бесконечности в случае, если мы бы смогли реализовать идеальное дифференцирующее звено. В данном случае мы реализовывает его в виде передаточной функции:

$$W(s) = \frac{s}{0.0001s + 1}$$

При стремлении коэффициента в знаменателе у переменной s к 0, график будет иметь всё большее значение в начале переходного процесса.

Красный график (дискретный) имеет другую форму.

Разница между аналоговым и цифровым Д-регулятором в том, что цифровой регулятор имеет кусочно-постоянный сигнал управления, с шириной равной периоду дискретизации, а аналоговый в идеальном случае является функцией Хевисайда в момент $t \to +0$. А одинаковое у обоих сигналов - энергия ими переносимая (площадь по графиками), она равна коэффициенту регулятором an. Kd = dsc. Kd = 3.

Поэтому с точки зрения энергии воздействия оба регулятора аналогичны, с точки зрения формы сигнала - существенно различны.

Рисунок 3. Графики работы аналогового и дискретного Д-регуляторов при линейновозрастающем входном воздействии.

В случае линейно-возрастающего входа оба графика приходят к значению 3, но аналоговый приходит моментально (с учетом $0.0001 \rightarrow 0$), а аналоговый отстает на 1 такт дискретизации.

Для компенсации отставания дискретного регулятора нам опять же придется вводить в аналоговой системе эквивалентное запаздывание, чтобы учесть переход от аналоговой к цифровой системы.

3. Цифровой ПД-регулятор – апериодическое звено первого порядка

Проанализируем работу разомкнутой системы «Цифровой ПД-регулятор — апериодическое звено первого порядка с постоянной времени Т и единичным коэффициентом передачи» в режиме компенсации постоянной времени Т при значениях коэффициента

$$K_d = \frac{T}{T_0}, \qquad K_d = \frac{1}{e^{T_0/T} - 1}$$

Пусть T = 0.5 c.

Суть компенсации постоянной времени T, заключается в том, чтобы составляющие ПД-регулятора в числителе давали Ts+1, чтобы это сократилось со знаменателем апериодического звена и будет получаться безинерционное звено (в идеальном случае).

Рисунок 4. Схема моделирования системы "Цифровой и аналоговый ПД-регулятор - апериодическое звено первого порядка" в режиме компенсации постоянной времени Т.

Рисунок 5. Временные диаграммы работы системы "ПД-регулятор - апериодическое звено первого порядка" в режиме компенсации постоянной времени.

Синий график (аналоговый регулятор) в результате компенсации моментально выходит на единицу. Красный график (дискретный регулятор с 1 вариантом расчета $K_d = T/T_0$) выходит с некоторым перерегулированием, а желтый график (дискретный регулятор со 2 вариантом расчета $K_d = \frac{1}{e^{T_0/T}-1}$) точно выходит на единицу.

Второй вариант расчета дает решение задачи на переходный процесс в апериодическом звене с постоянной времени T. И найденные коэффициенты позволяют скомпенсировать данное звено.

Добавим коэффициент усиления сигнала K_g , тогда расчет коэффициентов ПД-регуляторов будет следующим:

$$K_d = K_g \cdot \frac{T}{T_0}, \qquad K_d = K_g \cdot \frac{1}{e^{T_0/T} - 1}$$

Рисунок 6. Временные диаграммы работы системы "ПД-регулятор - апериодическое звено первого порядка" в режиме компенсации постоянной времени с усилением $K_g=5$.

4. Непрерывная модель цифрового ПД-регулятора, учитывающая неполную компенсацию цифровым регулятором постоянной объекта T

Найдем такое апериодическое звено (которое будет добавлять необходимое запаздывание к аналоговому регулятору), которое максимально приблизит аналоговую систему к цифровой.

Определим величину малой некомпенсированной постоянной $T_{\mu_{reg}}$, учитывающей в непрерывной модели неполную компенсацию цифровым ПД-регулятором постоянной объекта Т. Искомая величина $T_{\mu_{reg}}$ определяется в режиме моделирования, когда процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу.

Максимальное приближение процессов имеет место при минимальном значении функционала:

$$F = \int abs \left(y - y_{et} \left(T_{\mu_{reg_i}} \right) \right) dt,$$

где y — процесс в цифровой системе, $y_{et}(T_{\mu_{reg}})$ — процесс в эквивалентной системе при некотором значении постоянной $T_{\mu_{reg}}$.

Случай
$$T=5\cdot T_0$$
, $T_0=0.05$

Рисунок 7. График функционала F при $T=5\cdot T_0.$

Наиболее близкие процессы имеем при $T_{\mu_{reg}} = 0.5 \cdot T_0$.

Промоделируем систему с данным значением

Рисунок 8. Схема моделирования аналогового ПД-регулятора с апериодическим звеном для добавления эквивалентной задержки.

Рисунок 9. Временные диаграммы систем с дискретным ПД-регулятором и эквивалентным аналоговым ПД-регулятором при $T=5\cdot T_0$, $T_{\mu_{reg}}=0.5\cdot T_0$.

Видим, что всё равно переходные процессы будут отличаться, так как в одном случае мы подаем дискретный сигнал управления, а в другом -

непрерывный. Однако, они наиболее близки друг к другу в смысле минимизации функционала F.

В итоге, можем сделать вывод, что можно аппроксимировать дискретность с помощью апериодического звена 1-го порядка с определенной из задачи минимизации функционала постоянной $T_{\mu_{reg}}$.

5. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\epsilon=0$. Настройка на технический оптимум

Синтез регулятора

Передаточная функция контура тока:

$$W_{crl} = \frac{1}{T_t s + 1}$$

Передаточная функция объекта:

$$W_{ob2} = \frac{C_e \cdot kdw}{Js}$$

Передаточная функция технического оптимума:

$$W_{tech} = \frac{1}{2T_{\mu}s(T_{\mu}s+1)}$$

Передаточная функция регулятора:

$$W_{reg} = \frac{W_{tech}}{W_{crl} \cdot W_{ob2}} = \frac{J(T_t s + 1)}{2C_e k dw T_u(T_u s + 1)}$$

Получается, что ПД-регулятор, который мы будем синтезировать должен компенсировать постоянную времени T_t , то есть T_t мы будем использовать для расчета Д-коэффициента через экспоненту (2 способ вычисления). А коэффициент T_μ будет равняться $0.5 \cdot T_o$, которое было вычислено ранее и данный параметр будет определять быстродействие нашей системы.

Моделирование работы системы настроенной на технический оптимум

Рисунок 10. Схема моделирования системы, настроенной на технический оптимум для случая отсутствия вычислительной задержки и без учета задержки дискретного ПДрегулятора.

Рисунок 11. Графики переходных процессов системы, настроенной на технический оптимум для случая отсутствия вычислительной задержки и без учета задержки дискретного ПД-регулятора.

Видим, что красный график (система, управляемая аналоговым регулятором) соответствует техническому оптимуму.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

 $t_{p1} = 3.0 \cdot T_{\mu}$ — время первого входа в 5% зону

 $t_{p2} = 16.8 \cdot T_{\mu}$ — время переходного процесса (5% зона)

 $\Delta y = 40.8\%$ — перерегулирование

Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация апериодическим звеном

Теперь добавим звено запаздывания в контур скорости аналогового регулятора.

Рисунок 12. Схема моделирования эквивалентной системы, учитывающей динамические свойства цифрового ПД-регулятора и настроенной на технический оптимум без учета вычислительной задержки.

Для поиска коэффициента T_z у звена запаздывания будем минимизировать функционал близости между переходными процессами с аналоговым и дискретным регуляторами.

Рисунок 13. График функционала близости.

Оптимальное значение $T_z = 0.5 \cdot T_0$

Синтез цифрового ПД-регулятора методом переоборудования

Случай $T_0 = 0.1 T_t$

Рисунок 14. Система, настроенная на технический оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая отсутствия вычислительной задержки при $T_0 = 0.1 T_t.$

Получили технический оптимум, как и требовалось.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

 $t_{p\,1} = 3.0 \cdot T_{\mu} -$ время первого входа в 5% зону

 $t_{p2} = 3.0 \cdot T_{\mu}$ — время переходного процесса (5% зона)

 $\Delta y = 4.7\%$ — перерегулирование

Рисунок 15. Система, настроенная на технический оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая отсутствия вычислительной задержки при $T_0 = 0.5 T_t.$

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

$$t_{p\,1} = 3.0 \cdot T_{\mu} -$$
 время первого входа в 5% зону

$$t_{p2} = 3.0 \cdot T_{\mu}$$
 — время переходного процесса (5% зона)

$$\Delta y = 3.8\%$$
 — перерегулирование

	t_{p1}	t_{p2}	Δy
$T_o = 0.1T_t$	$3.0 \cdot T_{\mu}$	$3.0 \cdot T_{\mu}$	4.7%
$T_o = 0.5T_t$	$3.0 \cdot T_{\mu}$	$3.0 \cdot T_{\mu}$	3.8%

Таблица 2. Параметры переходных процессов.

Быстродействие осталось то же самое, а перерегулирование уменьшилось при большем T_0 .

6. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\epsilon = T_0$. Настройка на технический оптимум

Вычисления в цифровой системе управления, вообще говоря, занимают время (определенное количество вычислительных тактов). Данную вычислительную задержку тоже необходимо учитывать при синтезе цифровой системы.

Для реализации вычислительной задержки используем блок *Unit Delay*, который задерживает сигнал на 1 такт дискретизации. На микроконтроллере регулятор рассчитывается не моментально, поэтому появляется вычислительная задержка.

Пусть вычислительная задержка равна периоду дискретизации: $\epsilon = To$.

Рисунок 16. Схема моделирования эквивалентной системы, учитывающей динамические свойства цифрового ПД-регулятора и настроенной на технический оптимум с наличием вычислительной задержки $\epsilon=T_0$.

Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация апериодическим звеном

Для поиска коэффициента T_z у звена запаздывания будем минимизировать функционал близости между переходными процессами с аналоговым и дискретным регуляторами.

Рисунок 17. График функционала близости.

Оптимальное значение $T_z = 1.5 \cdot T_0$

Синтез цифрового ПД-регулятора методом переоборудования

Случай $T_0 = 0.1 T_t$

Рисунок 18. Система, настроенная на технический оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая наличия вычислительной задержки $\epsilon=T_0$ при $T_0=0.1T_t$.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

 $t_{p\,1} = 3.2 \cdot T_{\mu} -$ время первого входа в 5% зону

 $t_{p2} = 3.1 \cdot T_{\mu}$ — время переходного процесса (5% зона)

 $\Delta y = 4.1\%$ — перерегулирование

Рисунок 19. Система, настроенная на технический оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая наличия вычислительной задержки $\epsilon=T_0$ при $T_0=0.5T_t.$

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

$$t_{p\,1} = 3.2 \cdot T_{\mu}$$
 — время первого входа в 5% зону

$$t_{p2} = 3.2 \cdot T_{\mu}$$
 — время переходного процесса (5% зона)

$$\Delta y = 3.7\%$$
 — перерегулирование

	t_{p1}	t_{p2}	Δy
$T_o = 0.1T_t$	$3.2 \cdot T_{\mu}$	$3.1 \cdot T_{\mu}$	4.1%
$T_o = 0.5T_t$	$3.2 \cdot T_{\mu}$	$3.2 \cdot T_{\mu}$	3.7%

Таблица 3. Параметры переходных процессов.

При наличии вычислительной задержки, переходный процесс системы с дискретным регулятором имеет задержку от эквивалентной аналоговой системы.

Также при увеличении T_0 у нас уменьшилось перерегулирование, а время переходных процессов осталось прежним.

Это является свойством ПД-регулятора, так как в отличии от интегрального регулятора ПД-регулятор сдвигает фазу в сторону +90° и система становится более устойчивой.

7. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\epsilon=0$. Настройка на биномиальный оптимум

Синтез регулятора

Передаточная функция контура тока:

$$W_{crl} = \frac{1}{T_t s + 1}$$

Передаточная функция объекта:

$$W_{ob2} = \frac{C_e \cdot kdw}{Js}$$

Передаточная функция биномиального оптимума:

$$W_{tech} = \frac{1}{3T_{\mu}s(T_{\mu}s + 1)}$$

Передаточная функция регулятора:

$$W_{reg} = \frac{W_{tech}}{W_{crl} \cdot W_{ob2}} = \frac{J(T_t s + 1)}{3C_e k dw T_\mu(T_\mu s + 1)}$$

Моделирование работы системы настроенной на биномиальный оптимум

Рисунок 20. Графики переходных процессов системы, настроенной на биномиальный оптимум для случая отсутствия вычислительной задержки и без учета задержки дискретного ПД-регулятора.

Видим, что красный график (система, управляемая аналоговым регулятором) соответствует биномиальному оптимуму.

Настройка на биномиальный оптимум прошла успешно, так как перерегулирование значительно меньше чем у аналогичной системы настроенной на технический оптимум.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

 $t_{p\,1} = 4.3 \cdot T_{\mu} -$ время первого входа в 5% зону

 $t_{p2} = 9.8 \cdot T_{\mu}$ — время переходного процесса (5% зона)

 $\Delta y = 16.0\%$ — перерегулирование

Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация апериодическим звеном

Теперь добавим звено запаздывания в контур скорости аналогового регулятора.

Рисунок 21. График функционала близости.

Оптимальное значение $T_z = 0.5 \cdot T_0$

Синтез цифрового ПД-регулятора методом переоборудования

Случай $T_0 = 0.1 T_t$

Рисунок 22. Система, настроенная на биномиальный оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая отсутствия вычислительной задержки при $T_0=0.1T_t$.

Получили биномиальный оптимум, как и требовалось.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

 $t_{p\,1} = 5.8 \cdot T_{\mu} -$ время первого входа в 5% зону

 $t_{p2} = 5.0 \cdot T_{\mu}$ — время переходного процесса (5% зона)

 $\Delta y = 0\%$ — перерегулирование

Рисунок 23. Система, настроенная на биномиальный оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая отсутствия вычислительной задержки при $T_0=0.5T_t$.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

$$t_{p\,1} = 6.0 \cdot T_{\mu} -$$
 время первого входа в 5% зону

$$t_{p2} = 6.0 \cdot T_{\mu}$$
 — время переходного процесса (5% зона)

$$\Delta y = 0\%$$
 — перерегулирование

	t_{p1}	t_{p2}	Δy
$T_o = 0.1T_t$	$5.8 \cdot T_{\mu}$	$5.8 \cdot T_{\mu}$	0%
$T_o = 0.5T_t$	$6.0 \cdot T_{\mu}$	$6.0 \cdot T_{\mu}$	0%

Таблица 4. Параметры переходных процессов.

8. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\epsilon = T_0$. Настройка на биномиальный оптимум

Моделирование полной эквивалентной модели системы, учитывающей динамические свойства цифрового ПД-регулятора. Аппроксимация апериодическим звеном

Рисунок 24. График функционала близости.

Оптимальное значение $T_z=1.4\cdot T_0$

Синтез цифрового ПД-регулятора методом переоборудования

Случай $T_0 = 0.1 T_t$

Рисунок 25. Система, настроенная на биномиальный оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая наличия вычислительной задержки $\epsilon=T_0$ при $T_0=0.1T_t$.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

 $t_{p\,1} = 5.9 \cdot T_{\mu} -$ время первого входа в 5% зону

 $t_{p2} = 5.9 \cdot T_{\mu}$ — время переходного процесса (5% зона)

 $\Delta y = 0\%$ — перерегулирование

Рисунок 26. Система, настроенная на биномиальный оптимум, учитывающая динамические свойства цифрового ПД-регулятора для случая наличия вычислительной задержки $\epsilon=T_0$ при $T_0=0.5T_t$.

Показатели качества переходного процесса ДПТ с дискретным регулятором контура тока:

$$t_{p\,1} = 5.9 \cdot T_{\mu} -$$
время первого входа в 5% зону

$$t_{p2} = 5.9 \cdot T_{\mu}$$
 — время переходного процесса (5% зона)

$$\Delta y = 0\%$$
 — перерегулирование

	t_{p1}	t_{p2}	Δy
$T_o = 0.1T_t$	$5.9 \cdot T_{\mu}$	$5.9 \cdot T_{\mu}$	0%
$T_o = 0.5T_t$	$5.9 \cdot T_{\mu}$	$5.9 \cdot T_{\mu}$	0%

Таблица 5. Параметры переходных процессов.

3. Выводы

В данной лабораторной работе проводился синтез и исследование цифровой системы управления с ПД-регулятором и объектом в виде последовательно включенных апериодического и интегрирующего звеньев из условия обеспечения заданных переходных процессов (технический и биномиальный оптимумы).

В пункте 1 исследовалась цифровая система с Д-регулятором. Была выявлена разница между аналоговым и цифровым Д-регулятором, которая состоит в том, что цифровой регулятор имеет кусочно-постоянный сигнал управления, с шириной равной периоду дискретизации, а аналоговый в идеальном случае является функцией Хевисайда в момент $t \to +0$. А одинаковое у обоих сигналов - энергия ими переносимая (площадь по графиками), она равна коэффициенту регулятором an.Kd = dsc.Kd = 3. Поэтому с точки зрения энергии воздействия оба регулятора аналогичны, с точки зрения формы сигнала - существенно различны.

Объектом управления является электрический привод с ДПТ независимого возбуждения. Управление состояло из 2-х контуром: контур управления током якоря и контур управления скорости вращения.

Цифровой ПД-регулятор может скомпенсировать апериодическое звено первого порядка с постоянной времени T. Суть компенсации постоянной времени T, заключается в том, чтобы составляющие ПД-регулятора в числителе давали Ts+1, чтобы это сократилось со знаменателем апериодического звена и будет получаться безинерционное звено (в идеальном случае).

Аппроксимировать дискретность с помощью апериодического звена 1-го порядка с определенной из задачи минимизации функционала постоянной $T_{\mu_{reg}}$.

Итак, после введения данного звена, мы в итоге синтезировали управление, которое учитывает динамические свойства ПД-регулятора. Также в последнем пункте мы учитывали вычислительную задержку, которая появляется из-за того, что на микроконтроллере регулятор рассчитывается не мгновенно. Учет данной вычислительной задержки состоит в добавлении слагаемого Tz в постоянную времени $T\mu = Tt + Tz$.

При наличии вычислительной задержки, переходный процесс системы с дискретным регулятором имеет задержку от эквивалентной аналоговой системы.

Также при увеличении T_0 у нас уменьшилось перерегулирование, а время переходных процессов осталось прежним. Это является свойством ПД-

регулятора, так как в отличии от интегрального регулятора ПД-регулятор сдвигает фазу в сторону $+90^{\circ}$ и система становится более устойчивой.

Вообще говоря, известно, что Д-составляющую вводят в систему для большей устойчивости переходных процессов, однако добавление Д-составляющих увеличивает шумы в системе, так как вычилять их можно только приближенно.

В результате выполнения работы мы имеем две системы, настроенные на биномиальный и технический оптимумы. По рассчитанным показателям качества, можем заключить, что биноминальный оптимум имеет перерегулирование меньше относительно технического, однако быстродействие у него меньше технического.