Performance Measure: PI

Author: Sven Kohler

23.5.2021

Implement performance measure

convex combination of average excess return and variance (annualized)

$$\Pi_p = \lambda * (R_p - R_f) - (1 - \lambda) * \sigma_p^2$$

Cross sectional standard deviation of average geometric returns and SDs

$$avg_ret_{i} = \left[1 + \left[\prod_{t=1}^{T_{i}} (1 + (return_{t} - rf_{t}))\right]^{\frac{1}{|T|}}\right]^{252} - 1$$

$$SD_ret_{i} = \sqrt{Var(ret_{i}) * 252}$$

$$CS_SD_{ret} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (avg_ret_{i} - mean_avg_ret)^{2}}$$

$$CS_SD_{SD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (SD_ret_{i} - mean_SD_ret)^{2}}$$

Calculation of lambda

$$\lambda = \frac{CS_SD_{ret}}{CS_SD_{ret} + CS_SD_{SD}}$$

Correlations for lambda: CS Correlation of PI and SR: 0.344

Autocorrelation of PI: 0.212

Autocorrelation of Sharpe Ratios: 0.203

Correlations for lambda: 0 Correlation of PI and SR: 0.106

Autocorrelation of PI: 0.144

Autocorrelation of Sharpe Ratios: 0.203

Correlations for lambda: 1 Correlation of PI and SR: 0.62

Autocorrelation of PI: 0.298

Autocorrelation of Sharpe Ratios: 0.203

