In [60]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")

In [61]: data=pd.read_csv("/home/placenent/Downloads/fiat500.csv")

In [62]: data.describe()

Out[62]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [63]: data.head()

Out[63]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700

Out[64]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	рор	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	рор	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [65]: data2=pd.get_dummies(data1)
 data2

Out[65]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [66]: data2.shape
Out[66]: (1538, 8)
In [67]: #pridected value we removed from data frame
    y=data2['price']
    x=data2.drop('price',axis=1)
```

```
In [68]: y
Out[68]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
                   . . .
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [69]: #divide the data into testing & training
          from sklearn.model selection import train test split
          x train,x test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
In [70]: #to show starting rows
          x test.head(5)
Out[70]:
                engine_power age_in_days
                                          km previous_owners model_lounge model_pop model_sport
                                  3197 120000
                                                          2
                                                                      0
                                                                               1
            481
                        51
                                                                                          0
                                  2101 103000
            76
                        62
                                                         1
                                                                      0
                                                                                          0
                                                                               1
           1502
                        51
                                  670
                                        32473
                                                         1
                                                                     1
                                                                               0
                                                                                          0
            669
                        51
                                  913
                                        29000
                                                         1
                                                                      1
                                                                               0
                                                                                          0
                                                                                          0
           1409
                        51
                                  762
                                       18800
                                                         1
                                                                     1
                                                                               0
```

In [71]: x_train.head(5)

\sim			-	7 7	
11		-		/	
w	w	II.			
_	_	_		_	

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
527	51	425	13111	1	1	0	0
129	51	1127	21400	1	1	0	0
602	51	2039	57039	1	0	1	0
331	51	1155	40700	1	1	0	0
323	51	425	16783	1	1	0	0

```
In [72]: y_test.head(5)
```

Out[72]: 481

481 7900 76 7900

1502 9400

669 8500

1409 9700

Name: price, dtype: int64

In [73]: y_train.head(5)

Out[73]: 527

527 9990

129 9500

602 7590

331 8750

323 9100

Name: price, dtype: int64

```
In [74]: #linear regrssion
         from sklearn.linear model import LinearRegression
         reg=LinearRegression()#creating object of LinearRegression
         reg.fit(x train,y train)#training and fitting LR object using training data and the model is created by trai
Out[74]: LinearRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [75]: #prediction price
         y pred=reg.predict(x test)
          v pred
Out[75]: array([ 5867.6503378 ,
                                  7133.70142341,
                                                   9866.35776216,
                                                                    9723.28874535,
                 10039.59101162,
                                  9654.07582608,
                                                   9673.14563045, 10118.70728123,
                  9903.85952664,
                                  9351.55828437, 10434.34963575,
                                                                   7732.26255693,
                                                   9662.90103518, 10373.20344286.
                                  6565.95240435.
                  7698.67240131,
                  9599.94844451,
                                                   4941.33017994, 10455.2719478 ,
                                  7699.34400418,
                 10370.51555682, 10391.60424404,
                                                   7529.06622456,
                                                                    9952.37340054,
                  7006.13845729,
                                                   4798.36770637,
                                  9000.1780961 ,
                                                                    6953.10376491,
                  7810.39767825,
                                  9623.80497535,
                                                   7333.52158317,
                                                                    5229.18705519,
                  5398.21541073,
                                  5157.65652129,
                                                   8948.63632836,
                                                                    5666.62365159,
                  9822.1231461 ,
                                  8258.46551788,
                                                   6279.2040404 ,
                                                                    8457.38443276,
                  9773.86444066,
                                  6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                                    8866.7826029 ,
                                                   9069.05761443,
                  7058.39787506,
                                  9073.33877162,
                                                   9412.68162121, 10293.69451263,
                                  6748.5794244 .
                                                                    9354.09969973.
                 10072.49011135,
                                                   9785.95841801,
                  9507.9444386 , 10443.01608254,
                                                   9795.31884316,
                                                                    7197.84932877,
                 10108.31707235,
                                  7009.6597206 ,
                                                   9853.90699412,
                                                                    7146.87414965,
                                                                    8515.83255277,
                  6417.69133992,
                                  9996.97382441,
                                                   9781.18795953,
                  8456.30006203,
                                  6499.76668237,
                                                   7768.57829985,
                                                                    6832.86406122,
                  8347.96113362, 10439.02404036,
                                                   7356.43463051.
                                                                    8562.56562053,
                                                    7270 77100022
                                                                    0411 45004006
In [76]: from sklearn.metrics import r2 score
         r2 score(y test,y pred)#y test=actual price,y pred=predicted price
Out[76]: 0.8415526986865394
```

```
In [77]: from sklearn.metrics import mean_squared_error#calculating MSE
mean_squared_error(y_pred,y_test)

Out[77]: 581887.727391353

In [78]: #Results=pd.DataFrame(columns=['Actual','predicted'])
    #Result['Actual']=y_test
    Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[78]:

	index	price	predicted	ID
0	481	7900	5867.650338	0
1	76	7900	7133.701423	1
2	1502	9400	9866.357762	2
3	669	8500	9723.288745	3
4	1409	9700	10039.591012	4
5	1414	9900	9654.075826	5
6	1089	9900	9673.145630	6
7	1507	9950	10118.707281	7
8	970	10700	9903.859527	8
9	1198	8999	9351.558284	9

```
In [80]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[80]: []

linear regession ends

In [81]: # Ridge Regression

```
from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha=[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
         ridge=Ridge()
         parameters={'alpha':alpha}
         ridge regressor=GridSearchCV(ridge,parameters)
          ridge regressor.fit(x train,y train)
Out[81]: GridSearchCV(estimator=Ridge(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 20, 301})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [82]: ridge regressor.best params
Out[82]: {'alpha': 30}
In [83]: ridge=Ridge(alpha=30)
          ridge.fit(x train,y train)
         y pred ridge=ridge.predict(x test)
In [84]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[84]: 579521.7970897449
```

```
In [85]: from sklearn.metrics import r2 score
         r2 score(y test,y pred ridge)
Out[85]: 0.8421969385523054
In [86]: Results=pd.DataFrame(columns=['Actual','predicted'])
         Results['Actual']=y_test
         #Results=pd.DataFrame(columns=['price', 'predicted'])
         #Results['price']=y test
         Results['predicted']=y pred ridge
         #Results['km']=x_test['km']
         Results=Results.reset index()
         Results['ID']=Results.index
         Results.head(10)
Out[86]:
```

	index	Actual	predicted	ID
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
5	1414	9900	9650.311090	5
6	1089	9900	9669.183317	6
7	1507	9950	10115.128380	7
8	970	10700	9900.241944	8
9	1198	8999	9347.080772	9

```
In [87]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[87]: []

Ridge regression ends

from sklearn.model selection import GridSearchCV

from sklearn.linear model import ElasticNet

In [88]: #for elastic net

```
elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train, y train)
Out[88]: GridSearchCV(estimator=ElasticNet(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 201})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [89]: elastic regressor.best params
Out[89]: {'alpha': 0.01}
In [90]: elastic=ElasticNet(alpha=0.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [91]: from sklearn.metrics import mean squared error
         Elastic Error=mean squared error(y pred elastic,y test)
         Elastic Error
Out[91]: 581390.7642825295
In [92]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[92]: 0.841688021120299
```

```
In [93]: Results=pd.DataFrame(columns=['Actual','predicted'])
    Results['Actual']=y_test
    #Results=pd.DataFrame(columns=['price','predicted'])
    #Results['price']=y_test
    Results['predicted']=y_pred_elastic
    #Results['km']=x_test['km']
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[93]:

	index	Actual	predicted	ID
0	481	7900	5867.742075	0
1	76	7900	7136.527402	1
2	1502	9400	9865.726723	2
3	669	8500	9722.573593	3
4	1409	9700	10038.936496	4
5	1414	9900	9653.407122	5
6	1089	9900	9672.438692	6
7	1507	9950	10118.075470	7
8	970	10700	9903.219809	8
9	1198	8999	9350.750929	9

```
In [94]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[94]: []

ElasticNet Regression ends

In []: