Cross-Domain J-17

with PPGN: Cross-Domain Recommendation via Preference Propagation GraphNet

2022. 02. 08 박지민(kpdpkp@gmail.com)

What is Cross Domain?

Why Cross Domain? (1)

As a Modeler

- Alleviate the sparsity issue
 - 비디오 스트리밍 사업을 하고 있다
 - 웹툰 영역으로 확장하고 싶다
 - 웹툰 데이터가 적다 == Sparsity가 높다
 - 비디오 데이터를 활용하자
 - Kind of Augmentation?

Why Cross Domain? (2)

As a 사장님 <= 💆 주관적인 생각

- 색다른 경험
 - <아이언맨> ==> <마블 코믹스 만화>
 - <인터스텔라> ==> <SF 소설>
 - 드라마 <지금 우리 학교는> ==> 만화 <지금 우리 학교는>

When? 어디까지가 다른 도메인인가?

- 영화 vs TV 드라마
- 클래식 vs Pop vs EDM
- 액션 vs 멜로 vs 전쟁 영화
- 웹툰 vs 쇼핑
- 알 수도 있는 친구 vs 추천 그룹

Why PPGN?

Cross-Domain Recommendation via Preference Propagation GraphNet

Table 11. Details of GNN models of cross-domain recommendation.

Model	Graph	Information Transferring
PPGN[204]	cross-domain graph	cross-domain propagation
BiTGCF[92]	domain-specific graphs	common user attributes
DAN[146]	domain-specific graphs	two-branched decoder
HeroGRAPH[30]	cross-domain graph	cross-domain propagation
DAGCN[49]	cross-domain graph	cross-domain propagation

Previous Work

Cross-domain Recommendation Without Sharing User-relevant Data

- Embedding Level Sharing
 - => Model Level
- No High-Order
 - => with graph
- Complex. Transfer Learning
 - => Joint-Obejctive

Figure 1: Illustration of our solution for cross-domain recommendation without sharing user-relevant data.

Previous Work

Cross-domain Recommendation Without Sharing User-relevant Data

- single-target CDR(Cross-Domain Reco)
 - from source domain to target domain
- Dual-target CDR
 - mutual utilization of information
- Multi-target CDR

Figure 1: Illustration of our solution for cross-domain recommendation without sharing user-relevant data.

Proposed Architecture

 $\mathbb{R}^{(p+n+q)\times(p+n+q)}$, so we get \hat{A} , $\hat{A} = D^{-1}(A+I)$.

$$\mathbf{E_0} = \begin{bmatrix} \underbrace{e_1^{i_a}, \cdots, e_p^{i_a}}_{\text{\mathcal{D}_a items embeddings}}, & \underbrace{e_1^{u}, \cdots, e_n^{u}}_{\text{\mathcal{D}_b items embeddings}}, & \underbrace{e_1^{i_b}, \cdots, e_q^{i_b}}_{\text{\mathcal{D}_b items embeddings}} \end{bmatrix}^T,$$
(2)

$$\mathbf{E_l} = \sigma(\mathbf{\hat{A}}\mathbf{E_{l-1}}W_l + b_l),$$

Recap - NGCF

$$\mathbf{E}^{(l)} = \text{LeakyReLU}\left((\mathcal{L} + \mathbf{I})\mathbf{E}^{(l-1)}\mathbf{W}_{1}^{(l)} + \mathcal{L}\mathbf{E}^{(l-1)}\odot\mathbf{E}^{(l-1)}\mathbf{W}_{2}^{(l)}\right), (7)$$

$$\mathcal{L} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \text{ and } \mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{R} \\ \mathbf{R}^{\top} & \mathbf{0} \end{bmatrix}, \tag{8}$$

자연스럽게 확장하기

Figure 1: An illustration of the preference propagation via the joint interaction graph. Items in different colors are from different domains. The graph is further reconstructed as the sparse Cross-Domain Preference Matrix (CDPM) on the right, which can be processed by the model immediately. Solid lines denote the known user behaviors, while dotted lines denote the potential recommendation. Through multihop propagation, our model can capture the transitions of the user preference and make better predictions.

```
plain_adj_mat = sp.dok_matrix(
           num_items_s + num_users + num_items_t,
            num_items_s + num_users + num_items_t,
       dtype=np.float32,
    ).tolil()
   plain_adj_mat[num_items_s : num_items_s + num_users, :num_items_s] = R_s
    plain_adj_mat[:num_items_s, num_items_s : num_items_s + num_users] = R_s.T
   plain_adj_mat[
       num_items_s : num_items_s + num_users, num_items_s + num_users :
    ] = R_t
   plain_adj_mat[
       num_items_s + num_users :, num_items_s : num_items_s + num_users
    ] = R_t.T
   plain_adj_mat = plain_adj_mat.todok()
    norm_adj_mat = normalized_adj_single(
        plain_adj_mat + sp.eye(plain_adj_mat.shape[0])
    sp.save_npz(norm_adj_path, norm_adj_mat)
print("Get adjacent mats successfully.")
return norm_adj_mat
```

https://github.com/WHUIR/PPGN/blob/master/runner/train.py#L208

Training - Loss

$$\mathcal{L} = \mathcal{L}_{ua} + \mathcal{L}_{ub} + \mathcal{L}_{reg}$$

$$= -\sum_{(i_a, u, i_b) \in T} r_{ua} \log \hat{r}_{ua} + (1 - r_{ua}) \log (1 - \hat{r}_{ua})$$

$$+ r_{ub} \log \hat{r}_{ub} + (1 - r_{ub}) \log (1 - \hat{r}_{ub}) + \lambda \sum |\Theta|$$
(5)

Training Strategy (1) - Split

Considering the size of \hat{A} is generally huge, always up to hundreds of thousands, it's hard to conduct matrix multiplication between \hat{A} and E_{l-1} in the graph convolution layer in one go. For the sake of scalability, we propose to split \hat{A} into rows to get multiple sub-matrices $\hat{A_i}$ and perform multiplication operation with E_{l-1} respectively, then concatenate the results back to one matrix:

$$\begin{split} \hat{A} &= \left[\hat{A}_0, \hat{A}_1, \cdots, \hat{A}_{sn}\right] \\ \hat{A}E_{l-1} &= \left[\hat{A}_0E_{l-1}, \cdots, \hat{A}_{sn}E_{l-1}\right] \end{split}$$

https://github.com/WHUIR/PPGN/blob/master/runner/model.py#L81

https://github.com/WHUIR/PPGN/blob/master/runner/model.py#L58

Training Strategy (2) - Imbalance

Our PPGN requires data inputs in forms of (i_a, u, i_b) , where i_a and i_b can be positive or negative samples, and the ratio between them is $1: \eta(\eta > 1)$. To solve this sample imbalance problem, we apply a weighting strategy to the loss function as follow,

$$\mathcal{L}' = -\sum_{(i_a, u, i_b) \in T} \alpha \left(r_{ua} \log \hat{r}_{ua} + (1 - r_{ua}) \log (1 - \hat{r}_{ua}) \right) + \beta \left(r_{ub} \log \hat{r}_{ub} + (1 - r_{ub}) \log (1 - \hat{r}_{ub}) \right) + \lambda \sum |\Theta|$$
(6)

$$\alpha = \begin{cases} \eta, & \text{if } r_{ua} = 1; \\ 1, & \text{if } r_{ua} = 0. \end{cases} \beta = \begin{cases} \eta, & \text{if } r_{ub} = 1; \\ 1, & \text{if } r_{ub} = 0. \end{cases}$$
(7)

where α and β are the weight values determined by the labels of input set, which speeds up the training process.

```
loss_list_s = tf.nn.sigmoid_cross_entropy_with_logits(...
229 >
                  loss_list_t = tf.nn.sigmoid_cross_entropy_with_logits(...
232 >
235
                  loss_w_s = tf.map_fn(
                      lambda x: tf.cond(tf.equal(x, 1.0), lambda: 5.0, lambda: 1.0),
236
                      self.label_s,
237
238
                  loss w t = tf.map fn(
239
                      lambda x: tf.cond(tf.equal(x, 1.0), lambda: 5.0, lambda: 1.0),
240
241
                      self.label_t,
242
243
                  self.loss_s = tf.reduce_mean(tf.multiply(loss_list_s, loss_w_s))
244
                  self.loss_t = tf.reduce_mean(tf.multiply(loss_list_t, loss_w_t))
245
246
                  self.loss = self.loss_s + self.loss_t
247
```

https://github.com/WHUIR/PPGN/blob/master/runner/model.py#L139

Experiment - Dataset

- Domain A, Domain B, User
- A -> B?
- B -> A?
- U -> A
- U -> B

Table 1: Statistics of the two pairs of datasets

Datasets	# users	# items	# ratings	density
Books Movies and TV	-	_	1, 254, 288 792, 319	0.012% 0.043%
CDs and Vinyl Digital Music	5, 331 5, 331	55, 848 3, 563	376, 347 63, 303	0.126% 0.333%

Metrics	Dataset	BPRMF	NeuMF	NeuMF+	CoNet	SCoNet	PPGN-IP	PPGN
	Books	.3654	.4300	.4291	.5223	.5141	.4594	.5770
LID (210	Movies and TV	.4538	.5665	.5605	.6460	.6465	.5689	.690
HR@10	CDs and Vinyl	.5532	.6421	.6655	.7539	.7547	<u>.7668</u>	.783
	Digital Music	.4742	.5322	.5991	.7179	.7205	<u>.7492</u>	.787
	Books	.1543	.2241	.2249	.3273	.3261	.1835	.328
MRR@10	Movies and TV	.2034	.2775	.2742	.3651	.3829	.2498	.386
	CDs and Vinyl	.2742	.3092	.3593	.4735	.4875	.4192	.501
	Digital Music	.1431	.1549	.2472	.3855	.3878	<u>.4112</u>	.438
	Books	.2365	.2725	.2724	.3396	.3370	.2470	.357
NDCG@10	Movies and TV	.2654	.3445	.3416	.4060	.4210	.3164	.424
	CDs and Vinyl	.3532	.3933	.4303	.5227	.5291	.5020	.569
	Digital Music	.2045	.2432	.3297	.4436	.4603	<u>.4911</u>	.514

What's Next?

Fig. 16. Illustration of GNN models for cross-domain recommendation.

Table 11. Details of GNN models of cross-domain recommendation.

Model	Graph	Information Transferring
PPGN[204]	cross-domain graph	cross-domain propagation
BiTGCF[92]	domain-specific graphs	common user attributes
DAN[146]	domain-specific graphs	two-branched decoder
HeroGRAPH[30]	cross-domain graph	cross-domain propagation
DAGCN[49]	cross-domain graph	cross-domain propagation

Cross-Domain Recommendation: Challenges, Progress, and Prospects

Feng Zhu¹, Yan Wang², Chaochao Chen^{1*}, Jun Zhou¹, Longfei Li¹, Guanfeng Liu²

¹ Ant Group, Hangzhou 310012, China

² Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

lin

recommendation_dataset_for_pre-training & transfer learning & lifelong learning & cross-domain recommendation & cold-start recommendation

DataSets links for recommender systems research, in particular for transfer learning, user representation, pretraining, lifelong learning, cold start recommendation

https://drive.google.com/file/d/1imhHUsivh6oMEtEW-RwVc4OsDqn-xOaP/view?usp=sharin

A large-scale recommendation datasets used in

https://github.com/fajieyuan/recommendation_dataset_pretraining