Лабораторная работа № 5

Скрытые марковские модели (СММ) с дискретным пространством наблюдений

Цель работы

Научиться моделировать наблюдаемые и скрытые последовательности, порождаемы СММ.

Указания к работе

Случайный процесс X_t , $t\in T$ называется марковским случайным процессом, если для всех $t_1< t_2<...< t_n\in T$, n>1 его условное распределение вероятностей в момент t_n не зависит от значений, которые процесс принимает в моменты $t_1,t_2,...,t_{n-2}$, а определяется только значением процесса в момент t_{n-1} , т. е.:

$$f(x_n, t_n | x_{n-1}, t_{n-1}) = f(x_n, t_n | x_1, t_1, x_2, t_2, ..., x_{n-1}, t_{n-1}).$$

Данное свойство называется свойством марковости (или марковским свойством). Функции $f(x_n, t_n | x_{n-1}, t_{n-1})$ называют вероятностями перехода из состояния x_{n-1} в состояние x_n . Вероятности перехода удовлетворяют двум основным соотношениям:

1) условию нормировки

$$\int f(x,t|x',t')dx = 1;$$

2) уравнению Чепмена-Колмогорова

$$f(x_3, t_3 | x_1, t_1) = \int f(x_3, t_3 | x_2, t_2) f(x_2, t_2 | x_1, t_1) dx_2$$

для любых x_1 , x_2 , x_3 , соответствующих моментам $t_1 < t_2 < t_3$.

Произвольный случайный процесс при соответствующем выборе фазового пространства может превращаться в марковский процесс, т. е. такой, для которого дальнейшая эволюция зависит от прошлого только через состояние в настоящий момент. Фазовое пространство (или пространство состояний) — это пространство, которому принадлежат все возможные значения, принимаемые случайным процессом.

Дискретная марковская цепь $\{x_n\}$ представляет собой марковский случайный процесс, пространство состояний которого счетно или конечно, и, кроме того, этот случайный процесс дискретен по $T=\{0,1,2,...\}$. Часто пространство состояний процесса отождествляют с множеством неотрицательных целых чисел и говорят, что случайный процесс находится в состоянии i, если $x_n=i$. Вероятность того, что случайный процесс $\{x_n\}$ в момент t_{n+1} находится в состоянии j, если известно, что в момент t_n он находился в состоянии i, обозначается как:

$$P_{ij}^{n,n+1} = P\{x_{n+1} = j \mid x_n = i\}.$$

В этой формуле, таким образом, подчеркивается, что в общем случае переходные вероятности зависят не только от начального и конечного состояний, но и от момента осуществления перехода. Когда одношаговые переходные вероятности не зависят от переменной t, то такой марковский процесс обладает стационарными переходными вероятностями. В лабораторной работе будем рассматривать именно такой случай, т. е. когда вероятность $P_{ij} = P_{ij}^{n,n+1}$ не зависит от n и является вероятностью перехода из состояния i в состояние j за одно испытание. Обычно эти вероятности объединяют в матрицу, которая называется марковской матрицей, матрицей условных вероятностей переходов или матрицей переходных вероятностей марковской цепи.

Если число состояний конечно, то марковская матрица является конечной квадратной матрицей, порядок которой равен числу состояний. В общем случае, вероятности P_{ij} удовлетворяют следующим двум условиям:

1) условию неотрицательности $P_{ij} \ge 0$, $\forall i, j$;

2) условию нормировки
$$\sum_{j=0}^{\infty}P_{ij}=1,\ \forall i$$
 .

Второе условие отражает тот факт, что каждое испытание вызывает некоторый переход из состояния в состояние. Для удобства говорят о переходе и в том случае, когда состояние остается неизменным.

Марковский процесс полностью определен, если заданы переходные вероятности и распределение вероятностей начальных состояний:

$$\pi_i = P\{x_0 = i\}.$$

Большое число физических, биологических и экономических явлений описываются марковскими цепями.

Скрытый марковский процесс представляет собой математическую модель, являющуюся двухкомпонентным случайным процессом (X,Y) со скрытой компонентой X и наблюдаемой компонентой Y . Случайный процесс X является марковским случайным процессом. СММ является частным случаем скрытого марковского процесса в случае, когда процесс X — это марковская цепь с конечным множеством состояний, определяемая матрицей переходных вероятностей. Текущее состояние марковской цепи $x_t \in N^* = \{1, 2, ..., N\}$ интерпретируется как скрытое состояние источника данных (исследуемого явления), а моменты измерения состояния — как дискретные события в ходе развития исследуемого явления. Последовательность скрытых состояний, моделируемая такой цепью (т. е. реализация скрытого процесса), обозначается как $Q = \{q_1, q_2, ..., q_T\}$, где T — длина наблюдаемой последовательности. Случайный процесс Y является вещественнозначным ($y_t \in \mathbb{R}^L$, где $L \ge 1$ — размерность пространства, $t = \overline{1,T}$) марковским случайным векторным процессом конечного порядка (т. е. плотность вероятностей перехода в очередное его состояние зависит не от одного, а от нескольких

предшествующих состояний) со скачкообразно изменяющимися вероятностными свойствами. Последовательность $O = \{o_1, o_2, ..., o_T\}$ является последовательностью наблюдений (т. е. это реализация наблюдаемого процесса). Случайный процесс Y связан со скрытым процессом X условной вероятностью: $P\{o_t | q_t = i\}$. Порождающий характер СММ определяет то обстоятельство, что вероятностные свойства модели задаются сначала маргинальными вероятностными свойствами первичного процесса X и только затем условными вероятностными свойствами второго процесса (Y | X). Именно это обстоятельство позволяет исследователю выразить свое априорное представление о скрытом механизме исследуемого явления и его внешних проявлениях.

СММ полностью задают следующие параметры:

- 1) вектор вероятностей начальных состояний $\Pi = \{\pi_i\}$, $i = \overline{1,N}$, где $\pi_i = P\{q_1 = s_i\}$, множество скрытых состояний $S = \{s_1, s_2, ..., s_N\}$, N количество скрытых состояний в модели;
- 2) матрица вероятностей переходов $A = \left\{a_{ij}\right\}$, $i,j=\overline{1,N}$, где $a_{ij} = P\left\{q_t = s_j \left| q_{t-1} = s_i \right.\right\};$
- 3) функции условной плотности распределений наблюдений $B = \{b_i(t)\}$, где $b_i(t)$ это условные плотности вероятностей $P\{o_t | q_t = s_i\}$, o_t наблюдение из последовательности O , фиксируемое в момент $t = \overline{1,T}$. В работе рассматривается случай, когда условные плотности распределений наблюдений являются смесями вероятностных распределений:

$$b_i(t) = \sum_{m=1}^{M_i} \tau_{im} f(o_t; \Theta_{im}),$$

где au_{im} — это вес m-ой компоненты смеси в описании i-ого скрытого состояния, M_i — количество компонент смеси, $M_i < \infty$, $i=\overline{1,N}$, f — функции плотности вероятности некоторого закона распределения. Следовательно, распределение наблюдений в каждом скрытом состоянии описывается смесью своих M_i распределений с параметрами Θ_{im} Чаще всего полагают, что $M_i = M$, $i=\overline{1,N}$. СММ с такими характеристиками называются скрытыми марковскими моделями с непрерывным пространством наблюдений. Если функции плотности распределения наблюдений описываются смесью нормальных распределений, а сами наблюдения являются одномерными, то, функция плотности распределения имеет вид:

$$f(o_t;\Theta_{ij}) = \left(\sqrt{2\pi}\sigma_{ij}\right)^{-1} e^{-\left(o_t - \mu_{ij}\right)^2 / 2\sigma_{ij}^2}$$

где параметры μ_{ij} и σ^2_{ij} являются, соответственно, математическим ожиданием и дисперсией j -ой компоненты смеси в описании i -ого скрытого состояния $i=\overline{1,N}$, $j=\overline{1,M}$.

В данной лабораторной работе мы будем полагать, что $B = \left\{b_{ij}\right\}$ является матрицей дискретных вероятностей, то есть: $b_{ij} = P\left\{o_t = v_j \left| q_t = s_i\right.\right\}$, где множество наблюдаемых состояний (наблюдений) $V = \left\{v_1, v_2, ..., v_M\right.\right\}$, M — количество наблюдаемых состояний в модели (алфавит). Такие СММ называются скрытыми марковскими моделями с дискретным пространством наблюдений.

Таким образом, СММ задается ненаблюдаемой (скрытой) марковской цепью, функциями плотности распределениями наблюдений и вероятностями начальных состояний: $\lambda = (A, B, \pi)$.

Для проведения вычислительных экспериментов необходимо смоделировать множество обучающих и тестовых последовательностей. Ниже приведена схема моделирования для случая, когда функция плотности условного распределения наблюдений описывается одним распределением, т. е. имеет смесь, состоящую из одной компоненты.

Моделируется случайное число $\xi_1 \succ RAV[0,1]$, далее выясняется, к какому из интервалов, на которые условно можно разбить вероятности из вектора π :

$$[0;\pi_1] \cup (\pi_1;\pi_1+\pi_2] \cup \ldots \left[\sum_{k=1}^{N-1} \pi_k;1\right]$$
 , принадлежит значение ξ_1 . Начальное

состояние q_1 выбирается равным номеру интервала, в который попало значение ξ_1 . Для остальных моментов t значения $\xi_t \succ RAV[0,1]$ сопоставляется с границами интервалов, на которые условно можно разбить вероятности из i -ой строки матрицы:

$$igl[0;a_{i1}igr] \cup igl(a_{i1};a_{i1}+a_{i2}igr] \cup \ldots \cup igl(\sum_{k=1}^{N-1}a_{ik};1igr], \ i=\overline{1,N}$$
 при условии, что в предыдущий

момент t-1 система находилась в i -ом состоянии $t=\overline{2,T}$.

После того, как таким образом была сформирована последовательность скрытых состояний $Q = \{q_1, q_2, ..., q_T\}$, моделируется последовательность наблюдений по матрице B таким же образом, как описано выше для матрицы A.

Задание

- 1. Смоделировать последовательность скрытых состояний длиной T=100
- 2. Смоделировать последовательность наблюдаемых состояний длиной T=100~no последовательности скрытых состояний
- 3. Представить полученную наблюдаемую последовательность в графическом виде.
- 4. Привести графики достигнутой точности по параметрам (ρ_A , ρ_B) в зависимости от T при K=100 и от K при T=100.

5. Подготовить по 2 набора (каждый набор включает по К=100) наблюдаемых последовательностей

Варианты заданий

Вектор начальных состояний выглядит следующим образом: $\pi=(\pi_1 \quad \pi_2 \dots \quad \pi_N),$ $\pi_1=1, \pi_i=0, i=\overline{2,N}.$

Вариант	Алфавит: V	Матрица переходных	Матрица эмиссей
1	{ <i>a</i> , <i>b</i> }	вероятностей А /0,5 0,5 0 \	B / 0 1 \
-	(&) &)	(0 0,5 0,5)	$\begin{pmatrix} 1 & 0 \end{pmatrix}$
		\0,5 0 0,5/	\0,5 0,5/
2	{0,1}	(0,3 0,3 0,4)	$\begin{pmatrix} 0.2 & 0.8 \\ 0.0 & 0.2 \end{pmatrix}$
		$ \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \end{pmatrix} $	$\begin{pmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix}$
3	{-1,1}	(0,7 0,3 0 \	(0,2 0,8)
3	{-1,1}	$\begin{pmatrix} 0,7 & 0,3 & 0 \\ 0 & 0,7 & 0,3 \end{pmatrix}$	$\begin{pmatrix} 0.2 & 0.0 \\ 0.9 & 0.1 \end{pmatrix}$
		\0,9 0 0,1	0 1
4	$\{a,b,c\}$	(0,5 0,5 0 \	(0,5 0,4 0,1)
		$ \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \end{pmatrix} $	$\begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.4 & 0.1 & 0.5 \end{pmatrix}$
	(404)		
5	{-1,0,1}	$\begin{pmatrix} 0.3 & 0.3 & 0.4 \\ 0 & 0.5 & 0.5 \end{pmatrix}$	$\begin{pmatrix} 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \end{pmatrix}$
		0,5 0 0,5	$\begin{pmatrix} 0.5 & 0 & 0.5 \end{pmatrix}$
6	$\{a,b,c\}$	(0,5 0,4 0,1)	(0,5 0,5 0 \
		$\begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.4 & 0.1 & 0.5 \end{pmatrix}$	(0 0,5 0,5)
		\0,4 0,1 0,5/	(0,5 0 0,5/
7	{-1,0,1}	$\begin{pmatrix} 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \end{pmatrix}$	$\begin{pmatrix} 0.3 & 0.3 & 0.4 \\ 0 & 0.5 & 0.5 \end{pmatrix}$
		0,5 0 0,5	0,5 0 0,5
8	{a, b, c}	(0,1 0,9)	(0,1 0,1 0,8)
		(0,9 0,1)	(0,8 0,1 0,1)
9	{-1,0,1}	(0,5 0,5)	(0,8 0,1 0,1)
		(0,9 0,1)	(0,1 0,8 0,1)
10	$\{a,b,c,d\}$	$\begin{pmatrix} 0.5 & 0.5 \\ 0.9 & 0.1 \end{pmatrix}$	$\begin{pmatrix} 0.5 & 0.4 & 0.1 & 0 \\ 0.5 & 0.5 & 0.4 & 0.1 \end{pmatrix}$
		•	(0 0,5 0,4 0,1)
11	{-1,0,1,2}	$\begin{pmatrix} 0.5 & 0.5 \\ 0.9 & 0.1 \end{pmatrix}$	$ \begin{vmatrix} 0.1 & 0.4 & 0.1 & 0.5 \\ 0.1 & 0.4 & 0.4 & 0.1 \end{vmatrix} $
		(0,7 0,17	(0,1 0,7 0,7 0,1/

Контрольные вопросы

- 1. Дайте определение СММ.
- 2. Что такое СММ с непрерывным пространством наблюдений? Приведите пример.
- 3. Что такое СММ с дискретным пространством наблюдений? Приведите пример.
- 4. Как происходит процесс формирования последовательности скрытых состояний?
- 5. Как происходит процесс формирования последовательности наблюдаемых состояний?