

Gestão/Management

Management of Local and Global Networks Concepts and Protocols

- Lower Cost Manual management is costly
- More efficient Automatic systems allow an efficient planning, and mechanisms to predict the utilization trends: lower errors and faster actuation
- Better service The manager is informed at the same time the (client) is, and can make an automatic check of the situation
- Greater knowledge more information exists about the network, allowing better decisions and planning
- Why not human intervention?
 - Difficult to describe responsabilities
 - Technology rapidly evolves
 - Mangement systems rapidly evolve
 - Lack of technical resources

Commercial perspective

- Problems need to be quickly solved
- Management systems simplify the work of multi-functional networks (e.g. VoIP in multiple networks)
- Persons better used they do not need to perform repetitive tasks
- Companies need to optimze their structures, and network management allow resources optimization

8

Aspects of Network Management

- What to manage?
 - Network, equipment, systems, users, services, applications
- How to manage?
 - Interfaces, actions, abstractions
- What protocol(s) format(s)?
 - Protocol abstraction, formats, messages
- What information format(s)?
 - Information type

Standards for all this – including global frameworks

- Systems management Covers all company aspects
- Networks management Covers mainly network aspects and communications systems and equipments
- Dedicated protocols dedicated for networks
- Web based systems resort to HTTP models, recently common
- Centralized models Agent-manager model
- Distributed models Share of the management responsabilities
- Hierarchical models Hierarchic structure with centralized information in the root

Current structures very complex, with several operational models

de aveiro Management protocols

- Methods to monitor and configure network equipments
- Do not describe how to achieve management objectives

<u>Simple protocols</u> ⇒ common data and parameters formats allowing easy information transfer

<u>Complex protocols</u> ⇒ add flexibility and security capacity

 $\underline{Advanced\ protocols}\ \Rightarrow remotely\ execute\ network$

management tasks, without depending on specific protocol layers

Network management

ISO defined five areas for network management

- Fault management - detection, isolation, and correction of anomaly behaviors

ault

Configuration management – control data for the network elements / colect data from network elements

Accounting management – measure network utilization and determine network costs and user accountings

Accounting

Performance management – evaluate/report network equipment behavior/efficiency erformance

 Security management– support communications network Security secure management

universidade de aveiro

Fault management

- Location of problems (or faults) in the communications network:
 - Fault detection
 - Fault isolation
 - Fault correction
- · Faults can be:
 - Transients
 - Persistents
- Fault management includes functions to:
 - Mantain and examine error logs
 - Create and act in error notifications
 - Search, identify and correct faults
 - Perform diagnosis test sequences

Accounting management

- Detect resource usage and its administration to assure its availability for the users
- · Access control per user
- Allow costs per resource usage and association to tariffs
- It includes functions to
 - Inform users about costs and used resources
 - Establish utilization limits
 - Combine costs from multiple resources used to create the communication system

18

Configuration management

- The configuration of critical elements controls the network behavior
 - The configuration management resides through these critical elements
- Configuration management identifies, acts, merges data and provides commands to systems to initialize, start, maintain in continuous operation, and terminate connections
- It includes functions to
 - Define parameters that control the system operation
 - Merge information about the actual system conditions
 - Modify the system configuration

Performance management

- Measure the network performance (HW, SW). E.g.
 - Usage percentage, error rates, answer time, throughput
- Performance management supports the evaluation of system actions
- It includes functions to
 - Obtain statistical information
 - Maintain and examine logs of system state
 - Determine the system performance in normal and artificial conditions
 - Change working modes to perform management and performance functions

Security management

- Access control mechanism to network information
- Monitors access points, periodically stores information and creates logs and alarms for security reasons
- Supports the appliance of security policies through functions to:
 - Create, remove and control of services and security mechanisms
 - Distribute information related to security
 - Report events associated to security

- Internet Engineering Task Force (IETF)
 - Simple Network Management Protocol
 - SNMP, disman
 - Operations and Management Area
- International Telecommunications Union (ITU-T)
 - Telecommunications Management Network
 - SG IV
- International Standard Organization (ISO)
 - OSI, CMIP-CSIS
 - ISO-IEC/JTC 1/WG 4
- Others
 - DMTF, TM FORUM, OMG, IEEE, ...

- Manager/agent: common in all NMS (especially in SNMP/CMIP)
- Idea of a client/server, but many clients and only some servers
 - (manager ⇔client; agent ⇔server)
- The agent operates with the equipment
 - Reports problems to the manager, to control all the equipment information
- The manager contains the intelligence to decide what the agents should do, and gives instructions to them
 - It controls the agents and manages their interworking

RMON

- Remote monitoring MIB measure network traffic
 - Agents management interface
 - Probes equipment for network analysis (promiscuous); usually configured to specific data types.
- Off-line operation (separated from the network)
- Preemptive monitoring, providing multiple information in the network.
- Support multiple managers and probes
- Detection and report of problems
- RMON has 9 groups:

Statistics, History, Alarm, Host, HostTopN, Matrix, Filter, **Packet Capture, and Event**

The presentation problem?

- Translate the local format to a host-independente
- 2. Transmit the data in a host independente format
- 3. Translate the host-independente format in a format adequate to the new machine adequado à nova máquina.

ASN.1

- ISO X.680 standard
 - Formal language to describe SMI
 - Frequent in Internet
 - "Heavy", but essential for heterogenous environments.
- Data types, object constructors
 - As in SMI
- BER: Basic Encoding Rules
 - Specified the format as ASN.1 data should be transmitted.
 - Each transmitted object has a coding Type, Length,
 Value (TLV) encoding

TLV Coding

Idea: Data must be auto-identified

- $\underline{\mathbf{T}}$: data type, (ASN.1-defined)
- L: data lenght in bytes
- <u>V</u>: data, coded according with ASN.1 syntax.

Valor Tag Tipo

- 1 Boolean
- 2 Integer
- 3 Bitstring
- 4 Octet string
- 5 Nul
- 6 Object Identifier
- 9 Real

Management based on Policies

- Objective: globally manage the network and not its elements.
- Mechanism:
 - Define policies (rules) to inform the network of what to do - e.g:
 - Operation center should have access to all routers
 - Charging department has priority in the last 3 months of each
 - In the maximum, only 10% of each link can transport video.
 - The policy rules are translated in equipment configuration changes

universitiements of systems based on policies

Conceptual parts:

- Management policy tools:
 - Used to create the policy rules
- Policies repository
 - Store the policy rules
- Policy consumers policy decision points, PDP
 - Make decisions and transfer the policy rules (eventually translated) to the policy targets.
- Policy targets, policy enforcement points, PEP
 - Functional elements affected by the policy rules.

Service • Question/answer protocol to PDP-PEP interaction • Based on TCP • Maintains state synchronization - Recovers from fault - State maintenance with keep-alive • PDP can send notifications to PEP • PDP can receive policies through LDAP and SNMP • Supports two types of clients - RSVP, outsourcing model - Diff-serv, configuration model

- Outsourcing (RSVP)
 - PEP contacts PDP when a decision is needed
 - Request contains relevant elements for the policy, and admission control information (e.g. flowspec)
- Configuration requests (Diffserv)
 - PDP configures PEP with specific equipment information
 - Considers a PIB (policy information base) that maintains provisioning information

management protocolos (LANbased)

OSI CMIP

- Common Management Information Protocol • Very simple in the
- Designed in 1980's: the unifying protocol ("advanced") to network management
- Implemented very slowly

SNMP: Simple Network Management Protocol

- Internet based (SGMP)
 - beginning
- · Rapidly spreaded
- It grew in largeness and complexity
- actual: SNMPv3
- Management protocol de facto

OSI Management architecture		
ITU-T	Acronym	Title
X.701		System Management Overview
X.710	CMIS	Common Management Information Service
X.711	CMIP	Common Management Information Protocol
X.712	CMIP-PICS	CMIP Protocol Implementation Conformance State Proforma
X.720	MIM	Management Information Model (defines fundamental concepts of the objects)
Κ.721	DMI	Definition of Management Information
X.722	GDMO	Guideline for Definition of Management Objects (techniques for specification of objects)

CMIS/CMIP

- Approach object-oriented objects
 - Have attributes
 - Generate events/notifications (reliably)
 - Execute operations
- Objects with same attributes, notifications and operations belong to the same class
- Objects inserted in multiples hierarchies, with different inherits and containers
- Intelligent agents
 - Can use rules or policies defined by the manager
 - Can be changed on-line
- Actions (verbs)
 - $\begin{array}{c} \textbf{GET}, \textbf{SET}, \textbf{CREATE}, \textbf{DELETE}, \textbf{ACTION}, \textbf{NOTIFICATION}, \\ \textbf{CANCEL_GET} \end{array}$
- Capacity of CMIP actions is related to scoping and filtering capacities through GDMOs

56

CMIP - GDMOs

- Guideline for the Definition of Managed Objects
 - The equipment through which the agent operates
- Model objects inside the equipment
 - Instantiation of GDMOs is called MIB
- Do not have well-defined behaviors, with large implementation freedom
 - Flexibility
 - Problem (complexity)
- CMIP is not polling oriented
 - Better scalability is achieved
- There are not so many defined GDMOs as MIBs

CMIP: pros and cons

CMIP advantages

- Object-oriented approach is flexible and extensible
- Support from telecommunications industry and international vendors
- Support of manager-manager interaction
- Support of automation environments
- Imposed in some industrial areas

CMIP disadvantages

- Complex and multi-layer
- Large management overhead
- Few management systems based on CMIP
- Few CMIP agents in use
- Generally rejected in the Internet.

rameworks: SNMP and CMIS **SNMP CMIS** Static MIBs **Dynamic MIBs** Concepts of limited models **Object-oriented models** Non-connection oriented Connection-oriented protocol protocol Polling model Event-oriented model Implementation-oriented Specification-oriented Heavy Limited functionalities Functionalities until the system management level Bulk capcacity only in new Bulk capacity with scope and versions filtering Completely dominating the · Some relevance in the telecommunications market Many SNMP-based products Some CMIP-based products in the market

64

What is TMN?

- Defined in CCITT recommendation M.3010 and elaborated in the M.3xxx recommendations.
 - builds above the OSI- SM standards.
- Objective
 - Support the management of the telecommunication networks and services
- Concept
 - Create an organized structure to allow the interconnection of several operating systems and telecommunications equipments, using a well-defined architecture, with normalized protocols and interfaces

66

- TMN is the telecommunications management network.
 - Relies on other management protocols and concepts.
 - Operations systems are where the main management functionality resides
 - Now also known as OSS operational support systems
 - The data communications network is where the management information flows
 - The TMN boundary intersects NEs (network elements) as they include some CM functionality.
 - Workstations provides user access to management functionality.
 - The workstation glass interface is outside the bounds of standardisation.

uriversidade TMN Information model

Similar to OSI Information Model:

- Re-using of classes and templates
- Classes definition of generic objects.

Generic Network Information Model (GNIM)

- Object classes defined by GNIM, relative to transport networks:
 - Network fragment
 - · Fragment of managed element
 - Fragment of termination point
 - Fragment of transmission
 - Fragment of Cross-Connection
 - Fragment of functional area
- There are also object classes for other technologies (RDIS, SDH, ATM and mobile networks)

universidade de aveiro

• TMN adds-on to OSI management

- Information model new network
- Organization model extension through the concept of functional block
- Communication model Correspondence between interface protocol
- Functional model new management functions (network)

• Interworking TMN with other OSI systems

- **Atenuate differences between protocols**
- Services functionalities and complementaring functions
- Increase the OSI management potentialities or restrict the TMN management potentialities

Cloud computing

"Cloud computing is a model for enabling ubiquitous, convenient, ondemand network access to a shared pool of configurable computing resources [...] that can be rapidly provisioned and released with minimal management effort or service provider interaction."

— NIST

universidade CC Essential characteristics

1. On-demand self-service

- Dynamic usage of services, on-demand.
- 2. Rapid elasticity
 - Add and remove computational capability easily
- 3. Ubiquitous network access
 - Services (usually) accessible from the Internet
- 4. Resource pooling
 - Multiple customers can access the same resources

5. Measured service

Service usage is measured and reported, with cost usually in as pay-as-you-go

