The sample size needed is in the center of the chart.

POWER									
0.99	395	176	99	64	44	33	25	20	16
0.98	342	152	86	55	38	28	22	17	14
0.97	311	139	78	50	35	26	20	16	13
0.96	289	129	73	47	33	24	19	15	12
0.95	271	121	68	44	31	23	17	14	11
0.94	256	114	64	41	29	21	16	13	11
0.92	233	104	59	38	26	19	15	12	10
0.90	215	96	54	35	24	18	14	11	9
0.85	180	80	45	29	20	15	12	9	8
0.80	155	69	39	25	18	13	10	8	7
0.75	135	60	34	22	15	11	9	7	6
0.70	118	53	30	19	14	10	8	6	5
0.65	104	46	26	17	12	9	7	6	5
0.60	91	41	23	15	11	8	6	5	4
0.55	79	35	20	13	9	7	5	4	4
0.50	68	31	17	11	8	6	5	4	3
	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

$$D = \frac{\mu_{ALT} - \mu_0}{\sigma}$$

Analysis of Variance (ANOVA)

Source (var.)	df	SS	MS = SS/df	F-Ratio
Factor A	$df_A = k-1$	SS_A	SS_A/df_A	MS _A /MS _E
Error	N-1 - df _A	$SSE = SS_T - SS_A$	SS_{E}/df_{E}	
Total (var)	N-1	SS_T		

Where N is the total data collected and k is the number of populations or Factor levels

Var-variation

 $SS-Sum\ of\ Squares \\ MS-Mean\ Square$