Extra Example of Brute Force Technique: Solve for all the voltages, currents and power associated with each element.

Step 1: Label all the voltages and currents. (*Note: I have labeled a few that violate the passive sign convention for resistors*).

Step 2: Identify and denote nodes and loops.

Step 3: Write KCL and KCL equations and Ohm' Law and Step 4: Simplify and Solve. KCL (4 nodes)

 $\begin{aligned} &N1:\ I_1+I_4+I_5=0\\ &N2:\ I_4=I_6+I_7\\ &N3:\ I_2+I_7=5 \end{aligned}$

N4: $I_1 = I_2 + I_3$

KVL (4 loops)

L1: $V_x - V_3 - 10 = 0$ L2: $V_3 + V_6 - 8V_x - V_5 = 0$

L3: $V_1 + 10 - V_2 = 0$ L4: $V_2 + V_5 + V_4 = 0$

Ohm's Law

$$\begin{split} V_x &= 5I_1 \\ V_1 &= 20I_2 \\ V_3 &= 4I_5 \\ V_4 &= 3(\text{-}I_7) \\ V_5 &= 2I_6 \\ V_6 &= 10(\text{-}I_4) \end{split}$$

Simplify Equations and Solve
$$I_1 + I_4 + I_5 = 0$$

$$I_4 - I_6 - I_7 = 0$$

$$I_2 + I_7 = 5$$

$$I_1 - I_2 - I_3 = 0$$

$$V_x - 4I_5 = 10$$

$$4I_5 - 10I_4 - 8V_x - 2I_6 = 0$$

$$20I_2 - V_2 = -10$$

$$V_2 + 2I_6 - 3I_7 = 0$$

$$5I_1 - V_x = 0$$

Into a matrix:

Step 4: (continued)

Solutions:

$$\begin{array}{lll} I_1 = -3.68A \\ I_2 = -0.26A \\ I_3 = -3.42A & V_1 = 20I_2 = -5.20V \\ I_4 = 10.79A & V_3 = 4I_5 = -28.40V \\ I_5 = -7.10A & V_4 = 3(-I_7) = -15.78V \\ I_6 = -5.53A & V_5 = 2I_6 = -11.06V \\ V_7 = 5.26A & V_6 = 10(-I_4) = -107.90V \\ V_8 = -18.42V & V_8 = -18.42V \end{array}$$

Step 5: Check using Power:

Element	Voltage (V)	Current (A)	Power (W)	Del/Abs
5Ω	-18.42	-3.68	67.79	Abs
$4~\Omega$	-28.4	-7.1	201.64	Abs
10Ω	-107.9	10.79	1164.24	Abs
2Ω	-11.06	-5.53	61.16	Abs
20Ω	-5.2	-0.26	1.352	Abs
3Ω	-15.78	5.26	83.00	Abs
10 V	10	-3.42	-34.2	Del
		or	34.2	Abs
5A	4.74	5	23.7	Del
8Vx	-147.36	10.79	-1590.01	Abs
		or	1590.01	Del
sum of power delivered sum of power absorbed			1613.71	
			1613.38	
	_		Checks!!	