Problem Set #6

MACS 30150, Dr. Evans

Submitted by- Nipun Thakurele

```
In [168]:
```

```
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import statsmodels.api as sm
import sklearn
from sklearn import preprocessing
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import classification report
from sklearn.metrics import confusion_matrix
from pylab import rcParams
from sklearn import datasets, neighbors, linear model
import matplotlib.pyplot as plt
import seaborn as sb
%matplotlib inline
rcParams['figure.figsize'] = 10, 8
sb.set style('whitegrid')
```

Question 1

1(a)

```
In [169]:
```

(392, 9)

Out[169]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	1	ford torino

1(b)

```
In [170]:
```

```
from pandas.plotting import scatter_matrix
df_quant=df[['mpg','cylinders','displacement','horsepower',
```

```
'weight','acceleration','year','origin']]
scatter_matrix(df_quant, alpha=0.3, figsize=(6, 6),diagonal='kde')
plt.show()
```


1(c)

In [171]:

```
df_quant.corr()
```

Out[171]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580541	0.565209
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.345647	-0.568932
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369855	-0.614535
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361	-0.455171
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309120	-0.585005
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290316	0.212746
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.000000	0.181528
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.181528	1.000000

1(d)

In [172]:

```
constants
               -17.218435
                -0.493376
cylinders
displacement
                0.019896
horsepower
                -0.016951
                -0.006474
weight
acceleration
                0.080576
year
                 0.750773
                 1.426140
origin
dt.vpe: float.64
```

~~₁ p~. ___~~.

OLS Regression Results

=========		=========	=======	=========		:======
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	L Wed, ons:	OLS east Squares 20 Feb 2019 10:56:48 392 384		squared: stic: -statistic):		0.821 0.818 252.4 2.04e-139 -1023.5 2063. 2095.
	coef	std err	t	P> t	[0.025	0.975]
constants cylinders displacement horsepower weight acceleration year origin	-0.4934 0.0199 -0.0170 -0.0065 0.0806 0.7508 1.4261	0.323 0.008 0.014 0.001 0.099 0.051 0.278	-1.526 2.647 -1.230 -9.929 0.815 14.729 5.127	0.128 0.008 0.220 0.000 0.415 0.000	-1.129 0.005 -0.044 -0.008 -0.114 0.651 0.879	0.142 0.035 0.010 -0.005 0.275 0.851 1.973
Omnibus: Prob(Omnibus): Skew: Kurtosis:		31.906 0.000	Durbin-V	Bera (JB):		1.309 53.100 2.95e-12 8.59e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.59e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- i. The coefficients of displacement, weight, year and origin are statistically significant at 1% level.
- ii. The coefficients of cylinders, horsepower and acceleration aren't statistically significant at 10% level
- **iii.** The coefficient of year(i) is 0.7508 which means that everything else being equal, an increase in year by one results in 0.7508 units increase in mpg.

1(e)

i.

In [191]:

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.870
Model:	OLS	Adj. R-squared:	0.866
Method:	Least Squares	F-statistic:	230.2
Date:	Wed, 20 Feb 2019	Prob (F-statistic):	1.75e-160
Time:	10:57:27	Log-Likelihood:	-962.02
No. Observations:	392	AIC:	1948.
Df Residuals:	380	BIC:	1996.
D.E. M. J. 1.	1 1		

ni woder:		11
Covariance	Type:	nonrobust

==========						
	coef	std err	t	P> t	[0.025	0.975]
	00 1004					22.074
constants	20.1084	6.696	3.003	0.003	6.943	33.274
cylinders	0.2519	0.326	0.773	0.440	-0.389	0.893
displacement	-0.0169	0.020	-0.828	0.408	-0.057	0.023
displacement_2	2.257e-05	3.61e-05	0.626	0.532	-4.83e-05	9.35e-05
horsepower	-0.1635	0.041	-3.971	0.000	-0.244	-0.083
horsepower 2	0.0004	0.000	2.943	0.003	0.000	0.001
weight	-0.0136	0.003	-5.069	0.000	-0.019	-0.008
weight_2	1.514e-06	3.69e-07	4.105	0.000	7.89e-07	2.24e-06
acceleration	-2.0884	0.557	-3.752	0.000	-3.183	-0.994
acceleration 2	0.0576	0.016	3.496	0.001	0.025	0.090
year	0.7810	0.045	17.512	0.000	0.693	0.869
origin	0.6104	0.263	2.320	0.021	0.093	1.128
Omnibus:		33.614	======= Durbin-Wat	:====== :son:		1.576
Prob(Omnibus):		0.000	Jarque-Bei			77.985
Skew:		0.438	Prob(JB):	· (OD) •	1	.16e-17
			, ,			
Kurtosis:		5.002	Cond. No.		5.	.13e+08

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.13e+08. This might indicate that there are strong multicollinearity or other numerical problems.
- **ii.** The adj. R^2 value of new model is 0.866. The adj. R^2 value of previous model was 0.818 which means that the adjusted R^2 value of the new model has improved from the previous model.
- iii. The displacement variable is no longer statistically significant. The displacement_2 (square of the displacement variable) is also not statistically significant.
- ${\it iv.}$ The cylinders variable is also not statistically significant under the new model.

1(f)

```
In [174]:
```

```
l_reg_1.predict([1, 6, 200, 200**2, 100, 100**2, 3100, 3100**2, 15.1, 15.1**2, 99, 1])
Out[174]:
array([38.7321111])
```

The predicted miles per gallon mpg of the given car would be 38.732 mpg.

Question 2

2(a)

```
In [175]:
```

```
def distance_KNN(x, y):
    x1, x2, x3 = x
    y1, y2, y3 = y
    return np.sqrt((x1 - y1)**2 + (x2 - y2)**2 + (x3 - y3)**2)
```

```
In [176]:
```

```
x = (0,0,0)

print("Euclidean distance between observation 1 and the test point is", distance_KNN(x, (0, 3, 0)))
```

```
print("Euclidean distance between observation 2 and the test point is", distance_KNN(x, (2, 0, 0)))
print("Euclidean distance between observation 3 and the test point is", distance_KNN(x, (0, 1, 3)))
print("Euclidean distance between observation 4 and the test point is", distance_KNN(x, (0, 1, 2)))
print("Euclidean distance between observation 5 and the test point is", distance_KNN(x, (-1, 0, 1)))
print("Euclidean distance between observation 6 and the test point is", distance_KNN(x, (1, 1, 1)))
```

```
Euclidean distance between observation 1 and the test point is 3.0 Euclidean distance between observation 2 and the test point is 2.0 Euclidean distance between observation 3 and the test point is 3.1622776601683795 Euclidean distance between observation 4 and the test point is 2.23606797749979 Euclidean distance between observation 5 and the test point is 1.4142135623730951 Euclidean distance between observation 6 and the test point is 1.7320508075688772
```

2(b)

KNN prediction for K = 1 is green as the observation 5 (green color) is the closest neighbor to the test point x.

2(c)

KNN prediction for K = 3 is red as out of the three closest neighbors (5, 6 and 2), observation 5 is green while observations 6 and 2 are red. Hence, the probability of red (2/3) is greater than the probability of green (1/3).

2(d)

If the Bayes (optimal) Decision Boundary is highly nonlinear, then the best value for K is expected to be small. This is because as K gets small, the boundary line gets rough while it is smoother for larger value of K (which is good for linear boundary).

2(e)

```
In [177]:
```

```
Out[177]:
```

```
array(['Green'], dtype=object)
```

In [178]:

```
print('The estimated KNN classifier of the test point (1, 1, 1) with K = 2 is ', prediction)
```

The estimated KNN classifier of the test point (1, 1, 1) with K = 2 is ['Green']

Problem 3

```
df_quant.head()
```

Out[179]:

_	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	constants	weight_2	displacement_2	horsepower_2
	0 18.0	8	307.0	130.0	3504	12.0	70	1	1	12278016	94249.0	16900.0
	1 15.0	8	350.0	165.0	3693	11.5	70	1	1	13638249	122500.0	27225.0
	2 18.0	8	318.0	150.0	3436	11.0	70	1	1	11806096	101124.0	22500.0
	3 16.0	8	304.0	150.0	3433	12.0	70	1	1	11785489	92416.0	22500.0
	4 17.0	8	302.0	140.0	3449	10.5	70	1	1	11895601	91204.0	19600.0
4	rij.											Þ

```
In [180]:
```

```
print(df_quant['mpg'].median())
```

22.75

In [181]:

```
df_quant['mpg_high'] = (df_quant['mpg'] >= df_quant['mpg'].median()).astype(int)
```

In [182]:

```
df_quant.dropna()
df_quant.head()
```

Out[182]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	constants	weight_2	displacement_2	horsepower_2
0	18.0	8	307.0	130.0	3504	12.0	70	1	1	12278016	94249.0	16900.0
1	15.0	8	350.0	165.0	3693	11.5	70	1	1	13638249	122500.0	27225.0
2	18.0	8	318.0	150.0	3436	11.0	70	1	1	11806096	101124.0	22500.0
3	16.0	8	304.0	150.0	3433	12.0	70	1	1	11785489	92416.0	22500.0
4	17.0	8	302.0	140.0	3449	10.5	70	1	1	11895601	91204.0	19600.0
4												Þ

3(a)

In [183]:

```
import warnings
warnings.filterwarnings("ignore")

cols = ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin']
x = df_quant[cols]
x['constant'] = 1
y = df_quant['mpg_high']

LogitModel = sm.Logit(y, x, missing='drop')
LogitReg_sm = LogitModel.fit()
LogitReg_sm.summary()
```

Optimization terminated successfully.

Current function value: 0.200944

Iterations 9

Out[183]:

Logit Regression Results

Dep. Variable: mpg_high No. Observations: 392

Method:		MLE		7			
Date:	Wed	d, 20 Feb 2019	Pse	Pseudo R-squ.:			
Time:		10:56:51	Log	-Likelih	ood:	-78.770	
converged:		True		LL-	Null:	-271.71	
			L	LLR p-value: 2.531			
	coef	std err	z	P> z	[0.025	0.975]	
cylinders	-0.1626	0.423	-0.384	0.701	-0.992	0.667	
displacement	0.0021	0.012	0.174	0.862	-0.021	0.026	
horsepower	-0.0410	0.024	-1.718	0.086	-0.088	0.006	
weight	-0.0043	0.001	-3.784	0.000	-0.007	-0.002	
acceleration	0.0161	0.141	0.114	0.910	-0.261	0.293	
year	0.4295	0.075	5.709	0.000	0.282	0.577	
origin	0.4773	0.362	1.319	0.187	-0.232	1.187	
constant	-17.1549	5.764	-2.976	0.003	-28.452	-5.858	

Logit

Df Residuals:

Model:

Possibly complete quasi-separation: A fraction 0.14 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

The regressors weight and year are statistically significant at the 5% level.

3(b)

```
In [184]:

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=10)
```

3(c)

LogReg.intercept

```
Out[187]:
array([-0.032587])
```

The coefficients are:

cylinders: -0.33709 displacement: 0.00046 horsepower: -0.05200 weight: -0.00490 acceleration: -0.18191 year: 0.30925 origin: -0.09542 constant: -0.03258

3(d)

In [188]:

```
y_pred = LogReg.predict(X_test)
```

In [189]:

```
from sklearn.metrics import confusion_matrix
c_m = confusion_matrix(y_test, y_pred)
c_m
Out[189]:
```

040[100].

```
array([[86, 13], [12, 85]])
```

In [190]:

```
print(classification_report(y_test, y_pred))
```

		precision	recall	f1-score	support
	0	0.88 0.87	0.87 0.88	0.87 0.87	99 97
micro macro weighted	avg	0.87 0.87 0.87	0.87 0.87 0.87	0.87 0.87 0.87	196 196 196

The precision values for both low mpg and high mpg are almost similar but precision value for low mpg (0.88) is slightly higher than that of high mpg value (0.87). Hence, the model predicts low mpg slightly better than high mpg.

```
In [ ]:
```