Parcial Energia Tecnologia industrial 1a avaluació 2n Batxillerat

1. (2.5 pts)

Un local disposa d'una finestra de superfície $S = 1.5 \text{ m}^2$ amb vidre de conductivitat tèrmica $\lambda = 1.7 \text{ W/(m K)}$ i gruix e = 10 mm. Si la temperatura exterior és $\Delta T = 12 ^{\circ}\text{C}$ més baixa que la interior, determineu: (És útil recordar que la potència transmesa és $P = \lambda$ (S/e) ΔT).

a) La potència tèrmica que el local perd per la finestra.

[1 punt]

b) L'energia, en kW·h, perduda per la finestra en t = 8 h.

[0,5 punts]

Si la temperatura del local es manté mitjançant una estufa que utilitza combustible de poder calorífic $p_{\rm c}$ = 35 MJ/kg i que té un rendiment η = 0,85, determineu:

c) El combustible necessari per restituir al local l'energia perduda per la finestra en t = 8 h. [1 punt]

2. (2 pts)

En un habitatge es vol obtenir l'aigua calenta sanitària amb una instal·lació de col·lectors solars. El consum d'aigua és c = 200 l/dia i cal incrementar-ne la temperatura en Δt = 30 °C. La calor específica de l'aigua és $c_{\rm e}$ = 4,18 J/(g °C).

a) Quanta energia diària cal per escalfar l'aigua?

[1 punt]

Si el flux d'energia radiant diària que arriba als col·lectors és φ_{Γ} = 15 MJ/m², el rendiment de la instal·lació és η = 0,5 i cada col·lector té una superfície S = 1 m²,

b) Quants col·lectors s'han d'instal·lar?

[1 punt]

3. (2.5 pts)

La resistència aerodinàmica (força que s'oposa al moviment a causa de l'aire) d'un vehicle que es mou amb velocitat v ve donada per l'expressió F_a = (1/2) $c_x \rho S_{\rm ef} v^2$, on

 $c_{\rm X}$ (constant que depèn de la forma) = 0,33 ho (densitat de l'aire) = 1,225 kg/m³ $S_{\rm ef}$ (superfície frontal efectiva) = 1,92 m²

- a) Dibuixeu, indicant les escales, la resistència aerodinàmica en funció de la velocitat del vehicle per a 0 ≤ v ≤ 40 m/s.
- b) Determineu la potència dissipada per aquesta resistència quan el vehicle circula a v = 90 km/h. [0,5 punts]

L'energia mecànica que genera el motor per kg de combustible és $p_{\rm c}$ = 12MJ/kg.

 c) Determineu el combustible gastat per vèncer les resistències aerodinàmiques durant 100 km circulant a 90 km/h.

4. (2.5 pts)

En una planta de tractament de residus s'utilitza la combustió de biomassa (residus vegetals i animals) per produir aigua calenta. La planta rep diàriament $m_{\rm b}$ = 30 t de biomassa de poder calorífic $p_{\rm b}$ = 9 MJ/kg, que crema al llarg de tot el dia. El rendiment de la instal·lació és η = 0,60. La calor específica de l'aigua és $c_{\rm e}$ = 4,18 J/(g °C) i cal incrementar la seva temperatura en Δt = 50 °C. Determineu:

- a) L'energia diària E_{dia}, en kW·h, i la potència mitjana, en kW, produïdes per la combustió de la biomassa.
 [1 punt]
- b) La quantitat m d'aigua diària escalfada.

[1 punt]

c) El cabal mitjà q, en l/s, d'aigua calenta que es produeix.

[0,5 punts]