Transcription in

Prokaryotes & Eukaryotes

Gene Expression

- There are 4 major events that occur during the process of gene expression
 - Transcription
 - RNA processing
 - Translation
 - Protein processing

A Gene is a Transcription Unit

Prokaryotic Gene Structure

Regulatory and Coding Sequence Unit = Operon

Polycistronic structure

Prokaryotic Gene Structure

Eukaryotic Gene Structure

Monocistronic structure

Transcription Proceeds Through 3 Steps

Initiation

- Transcription factors & RNA polymerase recognize & bind the promoter
- DNA adjacent to the promoter is denatured forming the open promoter complex

Elongation

RNA polymerase moves along the DNA in synthesizing a RNA transcript. Synthesis is 5' →3' - Only 1 strand of DNA is read as a template.

Termination

 A termination signal is reached causing RNA polymerase to dissociated from the DNA

Initiation

- RNA polymerase ααββ'σ
- a a b

- Transcription factors
- Promoter DNA
 - RNAP binding sites
 - Operator repressor binding
 - Other TF binding sites

Start site of transcription is +1

Initiation

- RNA polymerase
 - 4 core subunits
 - Sigma factor (σ) determines promoter
 specificity

- Core + σ = holoenzyme
- Binds promoter sequence
- Catalyzes "open complex" and transcription of DNA to RNA

RNAP binds specific promoter sequences

- Sigma factors recognize consensus
- -10 and -35 sequences

A Prokaryotic Promoter

Reaching A Consensus

-35 region −10 region +1 Transcribed lac operon TTTACA N₁₇ TATGTT N₆ A

GCGCAAN₁₇ CATGAT N₇ A

trp operon TTGACA N₁₇ TTAACT N₇ A

rrnX TTGTCT N₁₆ TAATAT N₇ A

recA TTGATA N₁₆ TATAAT N₇ A

IEXA TTCCAA N₁₇ TATACT N₆ A

tRNAtyr TTTACA N₁₆ TATGAT N₇ A

Consensus TTGACA TATAAT

RNA Polymerases

Structure of a eukaryotic RNA polymerase II

RNA Polymerases

- Differences between eukaryotes & prokaryotes
- Prokaryotes
 - 1 enzyme with 4 subunits
 - 2 α's, 1 β, & 1 β'
 - actual polymerase function
 - Sigma factors (σ)
 - recognize & bind promoter DNA sequence

Eukaryotes

- 3 separate holoenzymes each has ~12 subunits
 - RNA Pol I 28S, 18S, 5.8S rRNA
 - RNA Pol II mRNA, snRNA
 - RNA Pol III tRNA, 5S rRNA
- 3 sets of basal transcription factors
 - recognize promoter DNA sequences

The Process of Transcription

Initiation

- Where/when most regulation of gene expression occurs
- Different between prok:s & euk:s

Elongation

- Essentially same between prok:s & euk:s
- Some regulation, more in prok:s than euk:s

Termination

- Different between prok:s & euk:s
- Some regulation

Prok:s-prokaryote Euk:s-eukaryotes

Elongation

- Once the RNA polymerase has synthesized a short stretch of RNA (~ 10 nt), transcription shifts into the elongation phase.
- This transition requires further conformational change in polymerase that leads it to grip the template more firmly.
- Functions: synthesis RNA, unwinds the DNA in front, re-anneals it behind, dissociates the growing RNA chain

Termination

- After the polymerase transcribes the length of the gene (or genes), it will stop and release the RNA transcript.
- In some cells, termination occurs at the specific and well-defined DNA sequences called terminators. Some cells lack such termination sequences.

Rho Dependent Termination in Prokaryotes

Rho Dependent Termination in Prokaryotes

ρ-dependent termination

Rho Independent Termination in Prokaryotes

- ρ-independent termination requires two sequences in the RNA
 - A stem-loop structure upstream of 7-9 U residues

Eukaryotic Promoters

- RNA Pol I
 - rRNAprecursor

- RNA Pol II
 - mRNAs,U6 snRNA

- RNA Pol III
 - tRNA, 5S
 rRNA, U1-U5
 snRNAs

Chromatin Structure Affects Promoter

(b) Chromatin remodeling

RNA processing: addition of the 5' cap and poly-A tail

RNA processing: RNA splicing

The roles of snRNPs and spliceosomes in pre-mRNA splicing

Regulation of Translation