Short selling

- Short seller borrows shares and sells them
- Proceeds plus additional cash remain with lender as collateral
 - Marked to market daily
 - Earn interest: "rebate" rate
 - * often modestly below market interest rate
 - * sometimes far below ("specials"), even going negative
- Short-sale cost:
 - market interest rate minus rebate rate
 - like other fees/costs, we will often omit for simplicity
- Short seller pays lender any dividend amounts
- To close short position, buy shares and return them to lender

A Hedge Fund's Balance Sheet

ASSETS	LIABILITIES	
Cash posted as collateral for short securities positions	Short security positions	_
Additional margin requirement for shorts	Equity supporting shorts] _
Cash in money market account	Equity, additional	- Crai equity
	Equity supporting longs	
Long security positions	Margin loan for long positions	

Short-Sale Profit/Loss

Define

 X_S : minus the current market value of stocks held short (i.e., $X_S < 0$) $r_{S,t+1}$: return over the next period on the portfolio of stocks held short $r_{f,t+1}$: riskless interest rate (= rebate rate, for simplicity) $R_{S,t+1}$: excess return on the portfolio of shorted stocks (= $r_{S,t+1} - r_{f,t+1}$)

• The profit on the short position over the next period:

short profit =
$$X_S r_{S,t+1} - X_S r_{f,t+1}$$

= $X_S R_{S,t+1}$

- The short position is a loan of stock—it does not change total invested wealth
- Invested wealth consists of long positions plus the (positive or negative) cash position.

Short-Sales and Portfolio Return

Define

 X_L : the current market value of stocks held long

 X_C : value of cash position, positive (lending) or negative (borrowing)

 $r_{L,t+1}$: return over the next period on the portfolio of stocks held long

 $R_{L,t+1}$: excess return on the portfolio of stocks held long

• Invested wealth:

$$W = X_L + X_C$$

Profit on the overall portfolio:

total profit = (profit on long) + (profit on cash) + (profit on short) $= X_L r_{L,t+1} + X_C r_{f,t+1} + X_S R_{S,t+1}$

$$= X_L r_{L,t+1} + (W - X_L) r_{f,t+1} + X_S R_{S,t+1}$$

Short-Sales and Portfolio Return (continued)

• Dividing by W and subtracting $r_{f,t+1}$ gives the long-short portfolio's excess return:

$$R_{p,t+1} = \frac{X_L r_{L,t+1} + (W - X_L) r_{f,t+1} + X_S R_{S,t+1}}{W} - r_{f,t+1}$$

$$= \frac{X_L}{W} (r_{L,t+1} - r_{f,t+1}) + \frac{X_S}{W} R_{S,t+1}$$

$$= \frac{X_L}{W} R_{L,t+1} + \frac{X_S}{W} R_{S,t+1}$$

$$= w_L R_{L,t+1} + w_S R_{S,t+1},$$

defining $w_L = X_L/W$ and $w_S = X_S/W$. (Recall $w_S \leq 0$.)

- Note, in general, $w_L + w_S \neq 1$
- Standard (Reg-T) 50% margin requirement: $w_L + |w_S| \le 2$

Short-Sales and the Characteristic Line

The long-short portfolio's excess return given by

$$R_{P,t+1} = w_L R_{L,t+1} + w_S R_{S,t+1},$$

• Substituting characteristic-line regressions for $R_{L,t+1}$ and $R_{S,t+1}$:

$$R_{p,t+1} = w_L \left(\alpha_L + \beta_L R_{M,t+1} + \epsilon_{L,t+1} \right) + w_S \left(\alpha_S + \beta_S R_{M,t+1} + \epsilon_{S,t+1} \right)$$
$$= \alpha_P + \beta_P R_{M,t+1} + \epsilon_{P,t+1}$$

where

$$\alpha_P = w_L \alpha_L + w_S \alpha_S$$

$$\beta_P = w_L \beta_L + w_S \beta_S$$

$$\epsilon_{P,t+1} = w_L \epsilon_{L,t+1} + w_S \epsilon_{S,t+1}$$

Simple Case: Symmetric Risks

Suppose the long and short legs have equal betas and volatilities:

$$\beta_L = \beta_S$$
 $\sigma(\epsilon_L) = \sigma(\epsilon_S) = \sigma_{\epsilon}$

- Take equal long and short position sizes: $w_L = -w_S = w$
- Then

$$\alpha_p = w (\alpha_L - \alpha_S)$$

$$\beta_p = 0$$

$$\epsilon_{P,t+1} = w (\epsilon_{L,t+1} - \epsilon_{S,t+1})$$

Variance:

$$\sigma^{2}(\epsilon_{P}) = w^{2} \left[\sigma_{\epsilon}^{2} + \sigma_{\epsilon}^{2} - 2 \text{cov}(\epsilon_{L}, \epsilon_{S}) \right]$$
$$= 2w^{2} \sigma_{\epsilon}^{2} (1 - \rho),$$

where $\rho = \operatorname{corr}(\epsilon_L, \epsilon_S)$.

Volatility:

$$\sigma\left(\epsilon_{P}\right) = \sqrt{2}w\sigma_{\epsilon}\sqrt{1-\rho}$$

Alpha Transport

Two market segments, e.g.,

A: domestic U.S. stocks

B: international stocks

Manager P trades in segment B

$$R_{P,t} = \alpha_P + \beta_{P,B} R_{B,t} + \epsilon_{P,t}$$

- Also, the manager's portfolio has
 - $-\beta_{P,B} = 0$, via long-short or futures/swaps

$$-\operatorname{cov}(\epsilon_{P,t},R_{A,t})=0 \ (=\operatorname{cov}(R_{P,t},R_{A,t}), \operatorname{because} \beta_{P,B}=0)$$

- "Transport" the manager's alpha to market segment A:
 - Invest W dollars in portfolio P
 - Take long position of size W in futures on A
- Resulting return: exposure to A but with the alpha produced in B

$$R_{C,t} = \alpha_P + R_{A,t} + \epsilon_{P,t}$$