

"Experimental Data Processing"

Topic 2 "Quasi-optimal approximation under uncertainty"

Tatiana Podladchikova
Term 1B, October 2017
t.podladchikova@skoltech.ru

The basis of statistical analysis

Least-square method and linear regression

The LSM method leads to divergence and loses its practical value when a model is inadequate or unknown.

Linear regression doesn't provide reliable long-term forecasting

Linear regression doesn't provide long-term forecasting

3-day 10.7 cm radio flux forecast based on a linear regression

Changes in dynamics of a process leads to great increase of forecasting errors

Linear regression doesn't provide long-term forecasting

3-day 10.7 cm radio flux forecast based on a linear regression

Changes in dynamics of a process leads to great increase of forecasting errors

To extract regularities that will allow long-term forecasting we need to smooth data

Estimate the location of an unmoving object

Smoothing is weighted averaging of noisy data. Fluctuation components are self compensated.

The most popular methods of quasi-optimal estimation

Advantages of quasi-optimal estimation methods

Doesn't require knowledge of a model

A model describing the change of mean arterial pressure is unknown

In this case quasi-optimal technique is used

Advantages of quasi-optimal estimation methods

2
Robustness

No risk of divergence

Optimal estimation in conditions of inadequate model **Divergence. Errors** monotonously increase

Advantages of quasi-optimal estimation methods

Disadvantages of quasi-optimal estimation methods

Quasi-optimal approximation under uncertainty

Learning goals

Analyze conditions for which methods provide effective solution and conditions under which they break down.

Chose the most effective method in conditions of uncertainty

$$z_i = X_i + \eta_i$$

 Z_j Measurements

 X_i True process to be estimated

 η_i Uncorrelated unbiased noise with variance σ_η^2

Our goal Z_j Using available measurements Z_j when the dynamical model is unknown

Running mean

Window size
$$M=9$$

$$z_{i-3}$$

$$z_{i-2}$$

$$z_{i-1}$$

$$z_{i+2}$$

$$z_{i+3}$$

$$z_{i+4}$$
Last 9 measurements z_i

Estimation
$$\widehat{X}_i$$
 \Rightarrow $\widehat{X}_i = \frac{1}{9} \sum_{k=i-4}^{i+4} z_i$ \Rightarrow $\widehat{X}_i = \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} z_i$

M - window size

Running mean with window M = 7

Running mean with window M = 7

Running mean with window M = 7

Running mean with window M = 7

Running mean with window M = 7

Running mean with window M = 7

Let's assume that values of process *X* are characterized by sudden change

Let's assume that values of process *X* are characterized by sudden change

$$\widehat{X}_i = \alpha z_i + (1 - \alpha) \widehat{X}_{i-1}$$

 \widehat{X}_i Smoothed estimate at time i

 $egin{aligned} & \alpha \ & \text{Smoothing} \ & \text{constant} \ & lpha \in (0;1) \end{aligned}$

 Z_i Measurements at time i

 \widehat{X}_{i-1} Smoothed estimate at time i-1

$$\widehat{X}_i = \alpha z_i + (1 - \alpha) \widehat{X}_{i-1}$$

 \widehat{X}_i Smoothed estimate at time i

lphaSmoothing constant $lpha \in (0;1)$

Z_i
Measurements
at time i

 \widehat{X}_{i-1} Smoothed estimate at time i-1

$$\widehat{X}_{i} = \alpha z_{i} + \alpha (1 - \alpha) z_{i-1} + \alpha (1 - \alpha)^{2} z_{i-2} + \dots + \alpha (1 - \alpha)^{i} z_{0}$$

The weight of measurements decreases according to geometric progression or exponential law

2 Exponential smoothing: Dilemma of setting goal

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

 \widehat{X}_{i-1} Previous estimate

$$(z_i - \widehat{X}_{i-1})$$

Residual – mismatch between measurement and previous estimate

2 Exponential smoothing: Dilemma of setting goal

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

 \widehat{X}_{i-1} Previous estimate

$$(z_i - \widehat{X}_{i-1})$$

Residual – mismatch between

Residual – mismatch between measurement and previous estimate

SMALLER α , GREATER confidence to the latest estimate, SLOWER reaction to changes

 $\leftarrow \begin{array}{c} \textbf{Choice} \\ \textbf{of } \alpha \end{array}$

GREATER α , GREATER confidence to the latest measurement, FASTER reaction to changes

But EFFECTIVE filtration of measurement errors

But less EFFECTIVE filtration of measurement errors

1 Running mean

Last *M* measurements are used

2 Exponential mean

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

All previous measurements are used

Running mean

$$\widehat{X}_{i} = \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} z_{k}$$

Equal weights of measurements

2 Exponential mean

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

The weight of measurements decreases according to exponential law

1 Running mean

Delay of estimation on $\frac{M-1}{2}$ steps

2 Exponential mean

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

Estimation is obtained at last available time moment

4

Estimates of both smoothing methods are the same

Sources of estimation errors

Source 1: Measurement errors Errors of estimation are related with only measurements errors.

Model of motion is accurate

Sources of estimation errors

Source 2: Methodical errors

Errors of estimation are related with errors of methods. Model of motion is inaccurate.

Source 1: Measurement errors

Running mean

$\widehat{X}_{i} = \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} z_{k}$

$$\sigma_{\widehat{X}}^{2} = \frac{1}{M^{2}} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} \sigma_{\eta}^{2}$$

$$\sigma_{\widehat{X}}^2 = \frac{\sigma_{\eta}^2}{M}$$

2 Exponential mean

$$\widehat{X}_{i} = \alpha \sum_{k=0}^{i-1} (1 - \alpha)^{k} z_{i-k} + (1 - \alpha)^{i} z_{0}$$

$$\lim_{i\to\infty}\sigma_{\widehat{X}}^2=\lim_{i\to\infty}\left(\alpha^2\sigma_{\eta}^2\sum_{k=0}^{i-1}(1-\alpha)^{2k}\right)$$

$$\sigma_{\widehat{X}}^2 = \sigma_{\eta}^2 \frac{\alpha}{2 - \alpha}$$

Source 1: Measurement errors

1 Running mean

2 Exponential mean

$$\sigma_{\widehat{X}}^2 = \frac{\sigma_{\eta}^2}{M}$$

$$\sigma_{\widehat{X}}^2 = \sigma_{\eta}^2 \frac{\alpha}{2 - \alpha}$$

$$M = 1$$

No filtration of errors

$$\alpha = 1$$

 $M \to \infty$

Effective filtration of errors. But no reaction to changes in dynamics

$$\alpha \rightarrow 0$$

$$z_k = X_k + \eta_k$$

Estimation error
$$\widetilde{X_i}$$

$$X_{i} - \widehat{X}_{i} = X_{i} - \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} X_{k} - \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} \eta_{k}$$

Estimation error $\widetilde{X_i}$

$$\widetilde{X_i} = \Delta_i^X + \Delta_i^{\eta}$$

Source of Δ_i^X : methodical errors

Source of Δ_i^{η} : Measurement errors

$$\Delta_{i}^{X} = X_{i} - \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} X_{k}$$

$$9 = \sum_{k=i-4}^{i+4} 1$$

$$X_{i} = X_{i} \frac{1}{M} M = \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} X_{i}$$

$$\Delta_{i}^{X} = \frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i+\frac{M-1}{2}} X_{i}$$

$$X_{i} - \widehat{X}_{i} = -\frac{1}{M} \sum_{k=i-\frac{M-1}{2}}^{i-1} (X_{k} - X_{i}) + \frac{1}{M} \sum_{k=i+1}^{i+\frac{M-1}{2}} (X_{i} - X_{k})$$

k < i

k > i

to zero

Methodical error is doubled

Error of right part doubles that of left part

Analysis of running mean errors

Running mean may significantly distort the dynamics of the process

9-months variation

Inverse variations
with periods from
6 to 12 months.
Convex curve is
replaced by concave
curve and vice versa

Analysis of running mean errors

Running mean may significantly distort the dynamics of the process

9-months variation

13-months variation

Inverse variations
with periods from
6 to 12 months.
Convex curve is
replaced by concave
curve and vice versa

Total loss
of 6- and 12-month
variations decreasing
them to zero

Analysis of running mean errors

Running mean may significantly distort the dynamics of the process

9-months variation

13-months variation

32-months variation

Inverse variations
with periods from
6 to 12 months.
Convex curve is
replaced by concave
curve and vice versa

Total loss
of 6- and 12-month
variations decreasing
them to zero

Period greater than running window size (13 months).
The process in general is not distorted

Distortion of physics in sunspot cycle 12

Performed analysis allows us to anticipate the errors of smoothing and getting false conclusions

Alternatives in the following topics of course

Conclusions

Don't apply methods in blind to not fall into the trap leading to false conclusions

Even if implementation is simple, the method itself requires careful analysis

Exponential smoothing

$$\widehat{X}_i = \widehat{X}_{i-1} + \alpha(z_i - \widehat{X}_{i-1})$$

Errors of exponential smoothing due to measurement errors

$$\sigma_{\widehat{X}}^2 = \sigma_{\eta}^2 rac{lpha}{2-lpha}$$

Process *X* is characterized by sudden and unpredictable changes

Muth J.F. (1960), Optimal properties of exponentially weighted forecasts of time series with permanent and transitory components, J.Amer. Statist. Ass.01960.-Vol.55.-p.299.

$$\chi = \frac{1}{\sigma_{\eta}^2}$$
 σ_{η}^2 - variance of measurement

noise

Muth J.F. (1960), Optimal properties of exponentially weighted forecasts of time series with permanent and transitory components, J.Amer. Statist. Ass.01960.-Vol.55.-p.299.

$$\chi = rac{\sigma_w^2}{\sigma_\eta^2}$$

 σ_{η}^2 - variance of measurement noise

Variances $\sigma_w^2 \, \sigma_\eta^2$ should be identified

Identification of noise statistics σ_w^2 and σ_η^2

Process
$$X_i$$
 $X_i = X_{i-1} + w_i$ 1

Measurements $Z_i = X_i + \eta_i$ 2

Residual v_i $v_i = z_i - z_{i-1}$ 3

Residual ρ_i $\rho_i = z_i - z_{i-2}$ 4

Residual v_i $v_i = w_i + \eta_i - \eta_{i-1}$ 5

Residual ρ_i $\rho_i = w_i + w_{i-1} + \eta_i - \eta_{i-2}$ 6

Math. expectation $E[v_i^2] = \sigma_w^2 + 2\sigma_\eta^2$ 7

Math. expectation $E[\rho_i^2] = 2\sigma_w^2 + 2\sigma_\eta^2$ 8

Anderson, W. N., G. B. Kleindorfer, P. R. Kleindorfer, and M. B. Woodroofe (1969), Consistent estimates of the parameters of a linear system, Ann. Math. Stat., 40(3), 2064–2075.

Identification of noise statistics σ_w^2 and σ_η^2

Process
$$X_i$$
 $X_i = X_{i-1} + w_i$ 1

Measurements $Z_i = X_i + \eta_i$ 2

Residual v_i $v_i = z_i - z_{i-1}$ 3

Residual ρ_i $\rho_i = z_i - z_{i-2}$ 4

Residual v_i $v_i = w_i + \eta_i - \eta_{i-1}$ 5

Residual ρ_i $\rho_i = w_i + w_{i-1} + \eta_i - \eta_{i-2}$ 6

Math. expectation $E[v_i^2] = \sigma_w^2 + 2\sigma_\eta^2$ 7

Math. expectation $E[\rho_i^2] = 2\sigma_w^2 + 2\sigma_\eta^2$ 8

$$\left[E[v_i^2]pprox rac{1}{N-1}\sum_{k=2}^N v_k^2
ight] \left[E[
ho_i^2]pprox rac{1}{N-2}\sum_{k=3}^N
ho_k^2
ight]$$

Consistent estimates σ_w^2 and σ_η^2 are obtained by solving system of equations (7,8)