Nombre y Apellido:......Padrón:Física II B

Problema 1:

La figura muestra una placa indefinida de espesor despreciable sobre la cual la carga libre se distribuye uniformemente. La placa está ubicada sobre el plano x=0. La región con x<0 corresponde a espacio vacío mientras que en la región z>0 hay medio isótropo y homogéneo de permeabilidad desconocida. Sabiendo que el trabajo para mover una carga puntual unitaria desde A (x=-d) hasta B (x=d) es V_o>0 y que el trabajo para llevar esa misma carga desde A hasta C (x=2d) es nulo:

* a) Halle la densidad de carga libre sobre la placa en función de los datos del problema y

Jémuestre que la permeabilidad relativa del semiespacio x>0 es ε=2.

b) Calcule y grafique el potencial electrostático en todo el espacio definiendo V(x=0)=0. Cuál es el valor de la densidad de carga de polarización superficial en x=0?

Problema 2: En la región del espacio comprendida entre -d < x < d hay un campo magnético espacialmente uniforme y variable en el tiempo de la forma $B=(0,0,B_0,sen(\omega t))$

(a) Determine el rotor del campo eléctrico inducido en todo punto del espacio en el instante t = 0. Sabiendo que el campo eléctrico inducido tiene la forma general E=(0,

 $E_{\nu}(x)$, 0) halle su valor en todo punto del espacio.

b) Determine la fem inducida a lo largo de un circuito rectangular de lados (0,0,0);

(0,d,0); (x,d,0); (x,0,0) para todo valor de x.

Problema 3: en el circuito de la figura, alimentado por una fuente de :ensión alterna de la forma V(t)=V₀.cos(ωt), se midieron las tensiones pico Vo= Vs= 5V y VL=8V.

a) Calcule los valores pico de V_C y V_R y determine el desfasaje ϕ entre la corriente y la tensión. y el valor de la corriente l, que circula por el circuito. Halle el valor de la frecuencia de resonancia del circuito sabiendo que la corriente que circula es de 1mA y que la frecuencia de oscilación de la uente es de 50 Hz..

 c) Realice un diagrama fasorial del circuito donde estén representadas a escala la corriente Io, y las tensiones VR, VL Vc y Vo

Problema 4: una cierta región del espacio está llena de un medio material de permeabilidad magnética uniforme $_{\perp}$ =4μ₀ y permitividad dieléctrica uniforme ε = 4ε₀.

a) A partir de las ecuaciones de Maxwell para ese medio obtenga la ecuación de las ondas electromagnéticas.

Justifique.

a) Demuestre que la velocidad de la luz en ese medio es c'= c/4, donde c es la velocidad de la luz en el vacío.

Problema 5: Un cable muy largo y delgado en forma de L, transporta una corriente constante, I.

a) Calcule el vector campo magnético en los puntos (d, 0, 0) y (0, d, 0) y demuestre

que tienen el mismo módulo.

b) Calcule la fuerza (módulo y sentido) que experimenta una partícula cargada con carga q, que pasa por el punto (0,0,d) con velocidad $v=(0,0,v_0)$.

TEMA 2 Nombre y Apellido:	Segunda Fecha de COLOQUIO FÍSICA II Padrón:	8-7-15 A/82.02
	Cuatrimestre y año:Turno:	

Problema 1: La figura muestra una placa indefinida de espesor despreciable sobre la cual la carga libre se distribuye uniformemente. La placa está ubicada sobre el plano x=0. La región con x<0 corresponde a espacio vacio mientras que en la región ½>0 hay medio isótropo y homogéneo de permeabilidad desconocida. Sabiendo que el trabajo para mover una carga puntual <u>unitaria</u> desde A (x=d) hasta B (x=d) es V_z>0 y que el trabajo para llevar esa misma carga desde A hasta C (x=2d) es nulo:

ε₀ ε²?

A B C X

a) Halle la densidad de carga libre sobre la placa en función de los datos del problema y demuestre que la permeabilidad relativa del semiespacio x>0 es ε_τ=2.

b) Calcule y grafique el potencial electrostático en todo el espacio definiendo V(x=0)=0. Cuál es el valor de la densidad de carga de polarización superficial en x=0?

<u>Problema 2</u>: En la región del espacio comprendida entre -d < x < d hay un campo magnético espacialmente uniforme y variable en el tiempo de la forma $B=(0,0,B_0,sen(et))$

a) Determine el rotor del campo eléctrico inducido en todo punto del espacio en el instante t = 0. Sabiendo que el campo eléctrico inducido tiene la forma general E=(0, E,(x), 0) halle su valor en todo punto del espacio.

b) Determine la fem inducida a lo largo de un circuito rectangular de lados (0,0,0); (0,d,0); (x,d,0); (x,0,0) para todo valor de x.

Problema 3: en el circuito de la figura,

alimentado por una fuente de tensión alterna de la forma $V(t)=V_0.cos(\omega t)$, se midieron las tensiones pico $V_0=V_0=5V$ y $V_0=8V$.

a) Calcule los valores pico de V_C y V_R y determine el desfasaje o entre la comiente y la tensión. y el valor de la comiente l_c que circula por el circuito. Halle el valor de la frecuencia de resonancia del circuito sabiendo que la comiente que circula es de 1mA y que la frecuencia de oscilación de la fuente es de 50 Hz..

 b) Realice un diagrama fasorial del circuito donde estén representadas a escala la corriente l_a, y las tensiones V_R, V_L V_C y V_e

Problema 4 una enorme masa de agua está contenida en un recipiente rectangular, una de cuyas paredes planas es de cobre, de espesor d=1 cm y área A = 2.7m². A través de esa pared (a temperatura T=370 K), recibe un flujo de calor $\frac{dQ}{dz}$ = 1000kW de forma tal que en el estado estacionario alcanza una temperatura θ₁. Una máquina térmica que trabaja entre dos temperaturas extrae del agua una pequeña cantidad de calor Q_c por cada ciclo convirtiendo parte de este calor en trabajo y expulsando Q=5/6Q_c a una fuente a temperatura menor T_c.

 a) Sabiendo que el coeficiente de convección del agua es h = 500 kW/m²K y la conductividad térmica del cobre λ_{Cu} = 400 W/m.K, determine el valor de la temperatura del agua.

b) Halle el máximo valor de la temperatura que puede tener la fuente fría, compatible con las condiciones impuestas.

Problema 5: a partir de los procesos reversibles representados en la figura y realizados por un mol de gas ideal monoatómico, se construyen dos ciclos reversibles: C1=ABCA y C2=ADEA cuyos desempeños se quieren comparar (CAE es una adiabática y BAD una isoterma).

a) Indique si C1 y C2 son ciclos motores o frigorificos. Demuestre que los calores intercambiados en los tramos isotérmicos son iguales en módulo. Compare los calores intercambiados en los tramos isocóricos de cada ciclo y diga si son absorbidos o liberados por el gas.

b) Calcule los rendimientos η_1 y η_2 , en función de los datos del problema y demuestre que $\eta_2 > \eta_1$

