

Técnicas de aprendizaje automático aplicadas a la estimación del estado de cultivos mediante series temporales

Trabajo Fin de Grado

Autor:

Anaida Fernández García Tutor/es:

Juan Manuel López Sánchez Tomás Martínez Marín

Técnicas de aprendizaje automático aplicadas a la estimación del estado de cultivos mediante series temporales

Autor

Anaida Fernández García

Tutor/es

Juan Manuel López Sánchez Dpto. de Física, Ing. Sistemas y Teoría de la Señal Tomás Martínez Marín Dpto. de Física, Ing. Sistemas y Teoría de la Señal

Grado en Ingeniería en Sonido e Imagen en Telecomunicación

Justificación y Objetivos

Poner aquí un texto breve que debe incluir entre otras:

"las razones que han llevado a la realización del estudio, el tema, la finalidad y el alcance y también los agradecimientos por las ayudas, por ejemplo apoyo económico (becas y subvenciones) y las consultas y discusiones con los tutores y colegas de trabajo. [?]"

Agradecimientos

Este trabajo no habría sido posible sin el apoyo y el estímulo de mi colega y amigo, Doctor Rudolf Fliesning, bajo cuya supervisión escogí este tema y comencé la tesis. Sr. Quentin Travers, mi consejero en las etapas finales del trabajo, también ha sido generosamente servicial, y me ha ayudado de numerosos modos, incluyendo el resumen del contenido de los documentos que no estaban disponibles para mi examen, y en particular por permitirme leer, en cuanto estuvieron disponibles, las copias de los recientes extractos de los diarios de campaña del Vigilante Rupert Giles y la actual Cazadora la señorita Buffy Summers, que se encontraron con William the Bloody en 1998, y por facilitarme el pleno acceso a los diarios de anteriores Vigilantes relevantes a la carrera de William the Bloody.

También me gustaría agradecerle al Consejo la concesión de Wyndham-Pryce como Compañero, el cual me ha apoyado durante mis dos años de investigación, y la concesión de dos subvenciones de viajes, una para estudiar documentos en los Archivos de Vigilantes sellados en Munich, y otra para la investigación en campaña en Praga. Me gustaría agradecer a Sr. Travers, otra vez, por facilitarme la acreditación de seguridad para el trabajo en los Archivos de Munich, y al Doctor Fliesning por su apoyo colegial y ayuda en ambos viajes de investigación.

No puedo terminar sin agradecer a mi familia, en cuyo estímulo constante y amor he confiado a lo largo de mis años en la Academia. Estoy agradecida también a los ejemplos de mis difuntos hermano, Desmond Chalmers, Vigilante en Entrenamiento, y padre, Albert Chalmers, Vigilante. Su coraje resuelto y convicción siempre me inspirarán, y espero seguir, a mi propio y pequeño modo, la noble misión por la que dieron sus vidas.

Es a ellos a quien dedico este trabajo.

¹Dedicatoria de Joseph J. Roman en "An Introduction to Algebraic Topology"

La distancia, que es el impedimento principal del progreso de la humanidad, será completamente superada, en palabra y acción. La humanidad estará unida, las guerras serán imposibles, y la paz reinará en todo el planeta.

Nikola Tesla.

Índice general

Lis	sta d	le Acrónimos y Abreviaturas	XX
1	Intr	oducción	1
	1.1	Contexto	1
		1.1.1 Tecnología	1
		1.1.2 Caso particular a tratar	2
	1.2	Objetivos	3
	1.3	Estructura de la memoria	3
2	Mai	rco Teórico (Con ejemplos de listas)	5
	2.1	Técnicas de regresión y machine learing	5
	2.2	Teledetección	6
	2.3	Estimación de parámetros físicos de cultivos mediante regresión	6
Bi	bliog	grafía	9

Índice de figuras

Índice de tablas

Índice de Códigos

Lista de Acrónimos y Abreviaturas

...
...
...
...
...
IEEE Institute of Electrical and Electronics Engineers.
...
...
...
...
...
...
...
TFG Trabajo Final de Grado.

1 Introducción

La telecomunicación se puede definir como toda transmisión y/o emisión y recepción de señales que representan signos, escritura, imágenes y sonidos o información de cualquier naturaleza por hilo, radioelectricidad, medios ópticos u otros sistemas electromagnéticos [1]. Esto permite compartir información útil a distancia y engloba un amplio conjunto de sistemas y tecnologías.

En este apartado nos vamos a centrar en situarnos dentro de los distintos sistemas de telecomunicación, y más detenidamente en los relevantes para este proyecto. A continuación, se expondrán los objetivos concretos que se quieren alcanzar. Y, por último, cómo se va a organizar la memoria del proyecto.

1.1 Contexto

Las telecomunicaciones forman parte de nuestro día a día y tienen cometidos de lo más variados: desde mandar un simple mensaje hasta comunicarse con una estación espacial, pero todos ellos engloban el manejo o el hecho de compartir información a distancia.

1.1.1 Tecnología

Dentro de los sistemas de telecomunicación encontramos la radio, la televisión, la telefonía fija y móvil, Internet por banda ancha o datos, la radionavegación o la teledetección. Todos ellos utilizan ondas electromagnéticas para sus comunicaciones, aunque estas se realicen mediante distintos medios de transmisión, que pueden ser guiados o no guiados, y con las modulaciones que se adapten a las necesidades de cada sistema.

Este proyecto se va a centrar en el sistema de la teledetección, definido como la adquisición de información un objeto, área o fenómeno, ya sea usando instrumentos de grabación o instrumentos de escaneo en tiempo real inalámbricos o que no están en contacto directo con el objeto, según la Real Academia de Ingeniería (RAI) [1]. Estos instrumentos van a medir la radiación electromagnética que emiten o reflejan los objetos observados. Algunos de estos instrumentos pueden ser cámaras fotográficas, láseres, sistemas de radar o sonar, y pueden ser pasivos, miden la radiación natural emitida o reflejada, o activos, emiten energía que posteriormente será reflejada y detectada.

Los instrumentos de medida, ya sean pasivos o activos, tienen la ventaja de poder estar situados a grandes distancias de la localización donde se quiera realizar la detección. Es por ello que se encuentran normalmente en satélites, aviones, barcos, etcétera, dependiendo de lo que se quiera medir. Las aplicaciones que engloba la teledetección son muy numerosas y suelen estar enfocadas a estudios científicos de ciertas áreas de la Tierra.

2 Introducción

1.1.2 Caso particular a tratar

Una vez introducida la tecnología existente para el área de este proyecto, concretamos cuál va a ser nuestra situación.

Ya que la aplicación en la que se mueve este proyecto es la agrícola, concretamente la observación y adquisición de información de cultivos para su posterior estudio fenológico, la tecnología que se va a utilizar para ello son sistemas radar (radio detection and ranging), sistema activo, situado en un satélite artificial denominado Sentinel-1, del Programa Copérnico de la Agencia Europea de Medio Ambiente (AEMA). Estas tecnologías serán explicadas más detalladamente en el marco teórico.

En este área ya hay estudios previos que, a partir de datos similares que comparten estos programas, se obtiene un estado de la fenología aproximado de los cultivos observados. Algunos estudios previos precedentes y que sirven de base para este Trabajo Final de Grado (TFG) son:

- [2], artículo de 2014 que trata de estimar el estado fenológico de cultivos en tiempo real empleando espacio de estados y técnicas de sistemas dinámicos utilizando información del pasado y actualizaciones y, finalmente una extensión del filtro de Kalman. La información que utiliza proviene de un radar polarimétrico del satélite Radsat-2 y los cultivos son 3 tipos de cereales.
- [3], artículo de 2016 que trata, de estimar el Índice de Vegetación de Diferencia Normalizada (NDVI), el cual representa el estado de la fenología, en tiempo real empleando filtros de partículas para integrar las dos fuentes de información utilizadas: imágenes Synthetic Aperture Radar (SAR) y temperatura del aire registrada. El satélite del que se obtiene la información es el TerraSAR-X y los cultivos observados son arrozales, como va a ser nuestro caso. Este obtienen resultados algo mejores que en el anterior artículo y se utiliza la misma tecnología que encontramos en este proyecto: SAR.
- [4], artículo de 2019 todavía más similar al objetivo de este proyecto, en él se estima el estado fenológico de distintos tipos de cultivos utilizando imágenes SAR proporcionadas por el satélite RADARSAT-2 y el método Random Forest (RF) para series temporales, que es uno de los elegidos también para este proyecto.

En resumen, para este proyecto en particular, el cultivo observado son arrozales, los datos empleados son imágenes SAR de los satélites Sentinel-1A y Sentinel-1B con ciclos periódicos de 6 días teniendo en cuenta ambos a partir de 2016, y las técnicas de estimación se basarán en las regresiones de series temporales y técnicas de aprendizaje automático.

1.2. Objetivos

1.2 Objetivos

Contribuyendo a la línea de investigación de los artículos [2] y [3], cuyos autores Juan Manuel López Sanchéz y Tomás Martínez Marín son el tutor y co-tutor de este TFG, respectivamente, el objetivo general sería estimar el estado de cultivos de arroz mediante el análisis series temporales con técnicas de aprendizaje automático y su unión a la línea de procesamiento original.

Los objetivos concretos serían:

- Analizar las posibles técnicas de regresión de aprendizaje autónomo (por ejemplo, regresión con RF) para estimar directamente el estado de los cultivos a partir de series temporales de datos.
- Analizar las posibles técnicas de aprendizaje autónomo para ser combinados con algoritmos ya disponibles de dinámica de sistemas en la estimación del estado de cultivos.
- Incorporar dichas técnicas en la cadena de procesado disponible.

1.3 Estructura de la memoria

La estructura de la memoria se va a dividir en 3 secciones principales las cuales son: marco teórico, metodología y resultados. Además de unas conclusiones finales valorando los resultados obtenidos.

En el marco teórico se expondrá toda la teoría necesaria para la compresión de este proyecto en términos técnicos y dentro de un contexto y una investigación previa que este continúa. Veremos en él las técnicas de regresión y machine learning existentes y candidatas para ser utilizadas, teoría de la teledetección, incluyendo cómo funcionan los sistemas radar, en concreto los SAR, qué información obtenemos y cómo interpretarla, y, finalmente, la estimación de parámetros físicos de los cultivos a partir de la información obtenida mediante regresión, qué parámetros son clave y qué procesamiento necesita la información para llegar a obtener estimaciones fiables y útiles.

En cuanto a la metodología, se incluirán tanto las técnicas y métodos concretos que se van a utilizar, por qué motivos y qué esperamos obtener de ellos, como el software, el lenguaje de programación que vamos a emplear, las herramientas utilizadas y las bases de datos con las que vamos a trabajar, incluyendo su procedencia y procesamiento previo.

Por último, el apartado de resultados expondrá los resultados obtenidos con las diferentes técnicas de regresión y aprendizaje automático para los mismos datos. Estos resultados podrán ser fácilmente evaluados ya que se contrastarán, además, con los datos reales tomados en tierra de los mismos cultivos que se presentan en el dataset.

2 Marco Teórico (Con ejemplos de listas)

2.1 Técnicas de regresión y machine learing

Hacer una lista es simple en LATEX. Para ello has de crear un entorno (así se llama) itemize con

```
\begin{itemize}
...
\end{itemize}
```

Y dentro de esa estructura, añadir cada elemento de la lista precedido de

```
\item primer ítem de lista
\item segundo ítem de lista
...
\item ultimo ítem de lista
```

Es importante que revises este texto tal como aparece en la plantilla y relaciones el aspecto que tiene el PDF final con cómo está escrito el documento LATEX.

Aquí va una lista con subtérminos:

```
\begin{itemize}
\item Ingeniería Informática.
\item Ingeniería Sonido e Imagen en Telecomunicación.
\item Ingeniería Multimedia.
\subitem Mención: Creación y ocio digital.
\subitem Mención: Gestión de Contenidos.
\end{itemize}
```

El resultado es el siguiente:

- Ingeniería Informática.
- Ingeniería Sonido e Imagen en Telecomunicación.
- Ingeniería Multimedia.

```
Mención: Creación y ocio digital.
Mención: Gestión de Contenidos.
```

Aquí va una lista con subtérminos pero numerada:

```
\begin{enumerate}
\intermatica Informática.
\intermatica Informática Informática.
\intermatica Informática Informática.
```

```
\item Ingeniería Multimedia.
\begin{enumerate}
    \item Mención: Creación y ocio digital.
    \item Mención: Gestión de Contenidos.
\end{enumerate}
\end{enumerate}
```

El resultado es el siguiente:

- 1. Ingeniería Informática.
- 2. Ingeniería Sonido e Imagen en Telecomunicación.
- 3. Ingeniería Multimedia.
 - a) Mención: Creación y ocio digital.
 - b) Mención: Gestión de Contenidos.

2.2 Teledetección

2.3 Estimación de parámetros físicos de cultivos mediante regresión

Puedes realizar una lista de conceptos con su definición del siguiente modo:

```
\begin{description} % Inicio de la lista
    \item[MAPP XT:] Programa desarrollado por \textit{Meyer Sound} para el diseño y ajuste de sistemas ↔
          → formados por altavoces de su marca.
    \begin{description} % Realiza una lista dentro de la lista
        \item[Ventajas:]~
        El programa permite realizar múltiples ajustes tal como se podría realizar en la realidad con un \hookleftarrow
             → procesador real.
       Permite analizar la fase recibida en cualquier punto y compararla con otras mediciones.
        Dispone de varios tipos de filtros, inversiones de fase, etc.
        \item[Inconvenientes:]~
        No existe una lista global de los altavoces ubicados en el plano, por lo tanto solo se pueden editar \hookleftarrow
             → seleccionándolos sobre el plano.
       Sólo permite diseñar en 2 dimensiones, principalmente sobre la vista lateral ya que los array de \leftarrow

→ altavoces no permite voltearlos.

   \end{description}
\end{description}
```

Y LATEX genera lo siguiente:

MAPP XT: Programa desarrollado por *Meyer Sound* para el diseño y ajuste de sistemas formados por altavoces de su marca.

Ventajas: El programa permite realizar múltiples ajustes tal como se podría realizar en la realidad con un procesador real.

Permite analizar la fase recibida en cualquier punto y compararla con otras mediciones.

Dispone de varios tipos de filtros, inversiones de fase, etc.

Inconvenientes: No existe una lista global de los altavoces ubicados en el plano, por lo tanto solo se pueden editar seleccionándolos sobre el plano.

Sólo permite diseñar en 2 dimensiones, principalmente sobre la vista lateral ya que los array de altavoces no permite voltearlos.

Bibliografía

- [1] DE INGENIERÍA, R.A. Diccionario español de ingeniería, 2014. URL http://diccionario.raing.es/es.
- [2] VICENTE-GUIJALBA, F., MARTINEZ-MARIN, T., and LOPEZ-SANCHEZ, J.M. Dynamical approach for real-time monitoring of agricultural crops, 2014.
- [3] Bernardis, C.D., Vicente-Guijalba, F., Martinez-Marin, T., and Lopez-Sanchez, J.M. Contribution to real-time estimation of crop phenological states in a dynamical framework based on ndvi time series: Data fusion with sar and temperature, 2016.
- [4] WANGA, H., MAGAGIA, R., GOÏTAA, K., TRUDELA, M., MCNAIRNB, H., and POWERS, J. Crop phenology retrieval via polarimetric sar decomposition and random forest algorithm. Elsevier, 2019.