Corrigé exercice 21:

1. f est la composée des fonctions u et v définies par $u(x) = x + \frac{1}{x}$ et $v(x) = \sqrt{x}$. La fonction u est définie et dérivable sur $]0; +\infty[$ et la fonction v est définie et dérivable sur $]0; +\infty[$. Or, pour tout $x \in]0; +\infty[, u(x) > 0 \text{ donc } \mathcal{D}_{f'} =]0; +\infty[.$

f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$ et $v'(x) = \frac{1}{2\sqrt{x}}$.

D'où, pour tout
$$x \in \mathcal{D}_{f'}$$
, $f'(x) = \frac{\frac{x^2 - 1}{x^2}}{2\sqrt{x + \frac{1}{x}}} = \frac{x^2 - 1}{2x^2\sqrt{x + \frac{1}{x}}}$.

2. f est la composée des fonctions u et v définies par $u(x) = x^2 - 3x + 5$ et $v(x) = \sqrt{x}$. La fonction fest définie et dérivable sur \mathbb{R} et la fonction v est définie et dérivable sur $]0;+\infty[$. Donc la fonction f est définie et dérivable lorsque u(x) > 0. On étudie donc le signe de ce trinôme. Le discriminant de $x^2 - 3x + 5$ vaut $\Delta = (-3)^2 - 4 \times 5 = -11 < 0$ donc la fonction u ne s'annule jamais sur \mathbb{R} . Donc, pour tout $x \in \mathbb{R}$, u(x) > 0. Et donc $\mathcal{D}_{f'} = \mathbb{R}$.

f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec u'(x) = 2x - 3 et $v'(x) = \frac{1}{2\sqrt{x}}$. D'où, pour

tout
$$x \in \mathcal{D}_{f'}$$
, $f'(x) = \frac{2x - 3}{2\sqrt{x^2 - 3x + 5}}$.

Corrigé exercice 23:

1. f est la composée des fonctions u et v définies par $u(x) = x^2 - 5x + 4$ et $v(x) = e^x$. Les fonctions u et v sont dérivables sur \mathbb{R} donc $\mathcal{D}_{f'} = \mathbb{R}$.

f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec u'(x) = 2x - 5 et $v'(x) = e^x$. D'où, pour tout $x \in \mathcal{D}_{f'}$, $f'(x) = (2x - 5)e^{x^2 - 5x + 4}$.

2. f est la composée des fonctions u et v définies par $u(x) = x + \frac{1}{x}$ et $v(x) = e^x$. La fonction u(x) est définie et dérivable sur \mathbb{R}^* . La fonction v est définie et dérivable sur \mathbb{R} . Donc $\mathcal{D}_{f'} = \mathbb{R}^*$.

f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{r^2}$ et $v'(x) = e^x$. D'où,

pour tout
$$x \in \mathcal{D}_{f'}$$
, $f'(x) = \frac{x^2 - 1}{x^2} e^{x + \frac{1}{x}}$.

Corrigé exercice 24:

1. f est la composée des fonctions u et v définies par $u(x) = \frac{x+2}{x-7}$ et $v(x) = e^x$.

La fonction u est définie et dérivable sur $\mathbb{R} \setminus \{7\}$.

La fonction v est définie et dérivable sur \mathbb{R} . D'où $\mathcal{D}_{f'} = \mathbb{R} \setminus \{7\}$.

$$f \text{ est de la forme } f = v \circ u \text{ donc } f' = u' \times v' \circ u \text{ avec :}$$

$$u'(x) = \frac{1 \times (x-7) - 1 \times (x+2)}{(x-7)^2} = \frac{-9}{(x-7)^2} \text{ et } v'(x) = e^x.$$

D'où, pour tout $x \in \mathcal{D}_{f'}$, $f'(x) = \frac{-9}{(x-7)^2} e^{\frac{x+2}{x-7}}$.

2. f est la composée des fonctions u et v définies par $u(x) = \sqrt{x}$ et $v(x) = e^x$. La fonction u est définie et dérivable sur $[0; +\infty[$. La fonction v est définie et dérivable sur \mathbb{R} . D'où $\mathcal{D}_{f'} = [0; +\infty[$.

1

f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = \frac{1}{2\sqrt{x}}$ et $v'(x) = e^x$. D'où, pour tout $x \in \mathcal{D}_{f'}$, $f'(x) = \frac{1}{2\sqrt{x}}e^{\sqrt{x}}$.

Corrigé exercice 25:

- 1. f est la composée des fonctions u et v par $u(x) = x^3 + 2x^2 + 3x + 4$ et $v(x) = x^5$. Les fonctions u et v sont définies et dérivables sur \mathbb{R} donc f aussi. f est de la forme $f = v \circ u$ donc $f' = u' \times v' \circ u$ avec $u'(x) = 3x^2 + 4x + 3$ et $v'(x) = 5x^4$. D'où, pour tout $x \in \mathcal{D}_{f'}$, $f'(x) = 5(3x^2 + 4x + 3)(x^3 + 2x^2 + 3x + 4)^4$.
- 2. f est la composée des fonctions u et v définies par $u(x) = x^3 + \frac{1}{x} + \sqrt{x}$ et $v(x) = x^6$. La fonction u est définie et dérivable sur $]0; +\infty[$. La fonction v est définie et dérivable sur $]0; +\infty[$. Donc $\mathcal{D}_{f'}=]0; +\infty[$. f est de la forme $f=v\circ u$ donc $f'=u'\times v'\circ u$ avec $u'(x)=3x^2-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}$ et $v'(x)=6x^5$.

D'où, pour tout
$$x \in \mathcal{D}_{f'}$$
, $f'(x) = 6\left(3x^2 - \frac{1}{x^2} + \frac{1}{2\sqrt{x}}\right)\left(x^3 + \frac{1}{x} + \sqrt{x}\right)^5$.

Corrigé exercice 26:

1. f est la composée des fonctions u et v définies par $u(x) = \frac{x-4}{x+3}$ et $v(x) = x^4$.

La fonction u est définie et dérivable sur $\mathbb{R} \setminus \{-3\}$.

La fonction v est définie et dérivable sur \mathbb{R} . Donc $\mathcal{D}_{f'} = \mathbb{R} \setminus \{-3\}$.

f est de la forme $f=v\circ u$ donc $f'=u'\times v'\circ u$ avec :

$$u'(x) = \frac{1 \times (x+3) - 1 \times (x-4)}{(x+3)^2} = \frac{7}{(x+3)^2} \text{ et } v'(x) = 4x^3.$$

D'où, pour tout
$$x \in \mathcal{D}_{f'}$$
, $f'(x) = \frac{28}{(x+3)^2} \left(\frac{x-4}{x+3}\right)^3$.

2. f est la composée des fonctions u et v définies par $u(x) = \sqrt{3x+5}$ et $v(x) = x^3$. La fonction u est définie et dérivable sur $\left]-\frac{5}{3};+\infty\right[$. La fonction v est définie et dérivable sur \mathbb{R} . Donc $\mathcal{D}_{f'}=\left[-\frac{5}{3};+\infty\right[$. $f=v\circ u$ donc $f'=u'\times v'\circ u$ avec $u'(x)=\frac{3}{2\sqrt{3x+5}}$ et $v'(x)=3x^2$. D'où, pour tout

$$x \in \mathcal{D}_{f'}, f'(x) = \frac{9}{2\sqrt{3x+5}} \left(\sqrt{3x+5}\right)^2 = \frac{9\sqrt{3x+5}}{2}.$$