NUMÉRATION BINAIRE

Découpez une feuille de manière à créer 5 cartes portant des points au recto et vides au verso, disposezles de la manière suivante :

Figure 1: Une suite de cartes

On retourne certaines cartes et on compte les points apparents. On associe 0 à une carte face cachée, et 1 à une carte face recto. Ainsi, pour obtenir le chiffre 9, on doit retourner les cartes suivantes :

Figure 2: Représentation d'un nombre avec les cartes

L'écriture en binaire du chiffre 9 est donc 01001, car on a retourné la première et la quatrième carte en partant de la droite.

Exercice 1
1. Comment obtenir 3 à l'aide des cartes ? Notez l'écriture binaire ainsi obtenue.
2. Comment obtenir 12 à l'aide des cartes ? Notez l' écriture binaire ainsi obtenue.
3. Comment obtenir 19 à l'aide des cartes ? Notez l'écriture binaire ainsi obtenue.
4. Existe-t-il plusieurs moyens d'obtenir un nombre ?

xercice 1 (suite)		
	1. Comment évolue le nombre de points d'une carte à une autre ? Si l'on rajoutait une carte tout à gauche, combien y aurait-il de points ?	
	2. Le plus grand nombre que l'on peut obtenir avec ces cinq cartes est :	
	3. Le plus petit est :	
	4. Y a-t-il un nombre compris entre le plus grand et le plus petit que l'on ne puisse pas	

Le système binaire

Chacune des **cartes** que nous avons utilisées jusqu'à maintenant représentent un « **bit** » sur l'ordinateur (« **bit** » est la contraction de « **binary digit** », qui signifie **chiffre binaire**). Un bit peut prendre soit la valeur **0**, soit la valeur **1**. Tout ce qu'on entend ou voit sur l'ordinateur – les mots, les images, les nombres, les films et même les sons – est stocké à l'aide de ces deux valeurs **uniquement**.

Ainsi, les nombres jusqu'à 31 peuvent être représentés grâce à seulement cinq cartes, soit 5 bits. En général, l'ordinateur ne travaille pas avec 5 bits, mais avec 8 : on appelle octet un ensemble de 8 bits; les tailles de fichiers sont exprimées en kilo-octets (milliers d'octets), méga-octets (millions d'octets), giga-octets (milliards d'octets), ...

Exercice 2
Écrire les nombres suivants en binaire :
16 ↔
12 ↔
124 ↔
$68 \leftrightarrow \dots$
130 ↔
255 ↔

Exercice 3	
Écrire les nombres suivants dans le système décimal :	
· · · · · · · · · · · · · · · · · · ·	
$00001001 \leftrightarrow \dots$	
10110101 ↔	
$10001100 \leftrightarrow \dots$	
10110001 ↔	
00011111 ↔	
00110110 ↔	
00110110 \ /	