

	Drehteile (1)	
Aufgabennummer: A_086		
Technologieeinsatz:	möglich ⊠	erforderlich

Auf einer Drehmaschine werden Stahlzylinder gefertigt. Die Durchmesser der Zylinder sind annähernd normalverteilt mit den Parametern μ = 60 mm (Erwartungswert) und σ = 0,3 mm (Standardabweichung).

- a) Bei einer Überprüfung wird ein Zylinder zufällig ausgewählt.
 - Ermitteln Sie die Wahrscheinlichkeit in Prozent, dass der Durchmesser dieses
 Zylinders innerhalb eines Bereichs von 60,1 mm ± 0,6 mm liegt.
- b) Berechnen Sie jenen um den Erwartungswert symmetrisch liegenden Bereich, in dem erwartungsgemäß 90 % aller Durchmesser der Werkstücke liegen.
- c) Die gegebene Grafik stellt die Wahrscheinlichkeitsdichte- und die Verteilungsfunktion einer normalverteilten Zufallsvariablen dar.
 - Vergleichen Sie die beiden Funktionen und erklären Sie ihre Beziehung zueinander.
 - Interpretieren Sie beide Graphen hinsichtlich ihrer Extremwerte und Wendepunkte (bezüglich μ und σ) sowie hinsichtlich ihres Verhaltens im Unendlichen.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Drehteile (1)

Möglicher Lösungsweg

a) Die Wahrscheinlichkeit $P(59,5 \le X \le 60,7)$ wird mittels Technologieeinsatz ermittelt. (Zufallsvariable $X \dots$ Durchmesser der Stahlzylinder in mm)

(Alternativ mit Normalverteilungstabelle:

Nach Überführung der gegebenen Verteilung in die standardisierte Normalverteilung wird die Wahrscheinlichkeit $P\left(-\frac{5}{3} \le Z \le \frac{7}{3}\right) = 1 - \mathcal{D}\left(\frac{5}{3}\right) - \mathcal{D}\left(\frac{7}{3}\right)$ ermittelt.)

Die Wahrscheinlichkeit, dass der Durchmesser eines zufällig ausgewählten Zylinders innerhalb eines Bereichs von $60,1 \text{ mm} \pm 0,6 \text{ mm}$ liegt, beträgt etwa 94 %.

b) Ansatz: $P(-z \le Z \le z) = 0.9$. Die Gleichung $2 \varphi(z) - 1 = 0.9$ wird nach $\varphi(z)$ aufgelöst. Mittels Technologieeinsatz oder aus der Tabelle erhält man z = 1,64.

Aus $x = z \cdot \sigma + \mu$ erhält man die gesuchten Grenzen.

(Oder man ermittelt die untere Intervallgrenze 59,51 mm mithilfe von Microsoft Excel: =NORMINV(5%;60;0,3).)

Das Intervall, innerhalb welchem 90 % der Durchmesser der gefertigten Werkstücke liegen, lautet [59,51 mm; 60,49 mm].

c) Die durchgezogene Kurve zeigt die Wahrscheinlichkeitsdichtefunktion f (Gauß'sche Glockenkurve) einer Normalverteilung mit dem Mittelwert μ und der Standardabweichung σ . Die strichlierte Kurve ist die zugehörige Verteilungsfunktion F. F beschreibt die Wahrscheinlichkeit, dass eine Zufallsvariable einen Wert annimmt, der kleiner oder gleich x ist. Das ist gleichzeitig die Fläche unter der Glockenkurve links von x.

Das Maximum der Glockenkurve liegt bei $x = \mu$, dort ist F(x) = 0.5, da die Glockenkurve symmetrisch zu ihrem Maximum ist.

Die Wendepunkte der Glockenkurve befinden sich bei $x_1 = \mu - \sigma$ und $x_2 = \mu + \sigma$.

f(x) strebt für $x \to \pm \infty$ gegen 0. Die Gesamtfläche unter der Glockenkurve beträgt 1. 1 ist der Grenzwert der Verteilungsfunktion F(x) für $x \to \infty$.

Drehteile (1)

Klassifikation

Nassiination			
⊠ Teil A □	Геіl В		
Wesentlicher Bereich	der Inhaltsdimens	sion:	
a) 5 Stochastikb) 5 Stochastikc) 5 Stochastik			
Nebeninhaltsdimension	n:		
a) — b) — c) 4 Analysis			
Wesentlicher Bereich	der Handlungsdim	mension:	
a) B Operieren und Tecb) B Operieren und Tecc) C Interpretieren und	chnologieeinsatz		
Nebenhandlungsdime	nsion:		
a) –b) A Modellieren und Tc) D Argumentieren un			
Schwierigkeitsgrad:		Punkteanzahl:	
a) leichtb) leichtc) schwer		a) 1 b) 2 c) 3	
Thema: Technik			
Quellen: –			