Characterizing a Spring Pendulum with Monte Carlo Methods

Dawn Sargent (Fairmont State University) MAA Allegheny Mountain Section Conference, Penn State Behrend
 6 April 2018

Special Thanks

The Problem

What makes a spring pendulum result in chaotic motion?

$$x'' + \frac{k}{m}x - (l+x)\theta'^2 - g\cos\theta = 0$$
$$\theta'' + \frac{g\sin\theta + 2x'\theta'}{l+x} = 0$$

Variable	Description	Distribution	Units
x(0)	initial stretch	N(0.1, 0.01)	\overline{m}
$\theta(0)$	initial angle from vertical	N(10, 0.6)	deg
m	pendulum mass	N(1, 0.1)	kg
k	spring constant	N(30, 0.25)	N/m
g	acceleration due to gravity	N(9.8, 0.1)	m/s^2
l	unstretched length	N(1, 0.1)	m

Performance Metric

In order to identify what parameters effect the success of a trial, we must first determine what will define a success versus a failure.

Motion	Gravity	Initial Angle	Initial Stretch	Length	Mass	Spring
Regular	9.57	10.85	0.099	0.8	1.4	29.895
Chaotic	9.73	10.16	0.088	1.065	1.058	29.79

Performance metric: If the max angle exceeds 21°, it is chaotic.

Kernel Density Estimate

What is a kernel density estimate?

 $https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm \\ https://web.stanford.edu/ hastie/Papers/ESLII.pdf$

KDE

K-Nearest Neighbors

What is the k-nearest neighbor method?

15-Nearest Neighbor Classifier

 $https://web.stanford.edu/\ hastie/Papers/ESLII.pdf$

Accuracy

Parameters	Accuracy
Mass vs Length	86.94%
Mass vs Initial Stretch	83.03%
Mass vs Initial Angle	78.70%
Mass vs Spring	78.32%
Mass vs Gravity	78.31%
Length vs Initial Stretch	70.97%
Initial Angle vs Length	65.95%
Length vs Spring	65.84%
Length vs Gravity	65.81%
Initial Angle vs Initial Stretch	65.50%
Initial Stretch vs Spring	65.18%
Initial Stretch vs Gravity	65.11%
Initial Angle vs Spring	58.56%
Initial Angle vs Gravity	58.53%
Spring vs Gravity	57.94%

Further Investigation

- Step sizes, computation time, and error
- Parallel processing