EMPIRE DA

0.1

Generated by Doxygen 1.8.8

Tue Feb 17 2015 16:31:02

Contents

1	EMP	PIRE Data Assimilation Documentation	1
	1.1	EMPIRE Methods	1
	1.2	Downloading	1
	1.3	Compiling	1
		1.3.1 Compilation of the source code	1
		1.3.2 Compilation of the documentation	2
	1.4	Customising for specific models	2
	1.5	Testing	3
	1.6	Linking to your model using EMPIRE	3
	1.7	Running	3
	1.8	Examples	4
	1.9	Bug Reports and Functionality Requests	4
2	Assi	imilation Methods	5
	2.1	Filters	5
		2.1.1 Particle filters	5
		2.1.1.1 SIR Filter (Sequential Importance Resampling)	5
		2.1.1.2 Equivalent Weights Particle Filter	5
		2.1.2 Ensemble Kalman filters	6
		2.1.2.1 LETKF (The Localised Ensemble Transform Kalman Filter)	6
	2.2	Smoothers	6
	2.3	Variational Methods	6
3	Othe	er EMPIRE features	7
	3.1	Generating artificial observations	7
	3.2	Observations	7
	3.3	Running a deterministic ensemble	7
	3.4	Running a stochastic ensemble	8
4	Todo	o List	9
5	Data	a Type Index	11
	E 1	Data Types List	4.4

iv CONTENTS

6	File	Index		13		
	6.1	File Lis	st	13		
7	Data	Type D	ype Documentation 1			
	7.1	comms	s Module Reference	15		
		7.1.1	Detailed Description	15		
		7.1.2	Member Function/Subroutine Documentation	16		
			7.1.2.1 allocate_data	16		
			7.1.2.2 deallocate_data	16		
			7.1.2.3 initialise_mpi	16		
		7.1.3	Member Data Documentation	16		
			7.1.3.1 cpl_mpi_comm	16		
			7.1.3.2 gblcount	16		
			7.1.3.3 gbldisp	17		
			7.1.3.4 mype_id	17		
			7.1.3.5 myrank	17		
			7.1.3.6 npfs	17		
			7.1.3.7 nproc	17		
			7.1.3.8 pf_mpi_comm	17		
			7.1.3.9 pfrank	17		
	7.2	histogr	am_data Module Reference	17		
		7.2.1	Detailed Description	18		
		7.2.2	Member Function/Subroutine Documentation	18		
			7.2.2.1 kill_histogram_data	18		
			7.2.2.2 load_histogram_data	18		
		7.2.3	Member Data Documentation	18		
			7.2.3.1 rank_hist_list	18		
			7.2.3.2 rank_hist_nums	18		
			7.2.3.3 rhl_n	18		
			7.2.3.4 rhn_n	18		
	7.3	hqht_p	olus_r Module Reference	19		
		7.3.1	Detailed Description	19		
		7.3.2	Member Function/Subroutine Documentation	19		
			7.3.2.1 hqhtr_factor	19		
			7.3.2.2 kill_hqhtr	19		
			7.3.2.3 load_hqhtr	19		
	7.4	pf_con	trol Module Reference	20		
		7.4.1	Detailed Description	20		
		7.4.2	Member Function/Subroutine Documentation	21		
			7.4.2.1 allocate_pf	21		

CONTENTS

		7.4.2.2	deallocate_pf	21
		7.4.2.3	parse_pf_parameters	21
		7.4.2.4	set_pf_controls	22
	7.4.3	Member	Data Documentation	23
		7.4.3.1	pf	23
7.5	pf_con	itrol::pf_cor	ntrol_type Type Reference	23
	7.5.1	Detailed	Description	25
	7.5.2	Member	Data Documentation	25
		7.5.2.1	count	25
		7.5.2.2	couple_root	25
		7.5.2.3	efac	25
		7.5.2.4	gen_data	25
		7.5.2.5	gen_q	25
		7.5.2.6	human_readable	25
		7.5.2.7	init	26
		7.5.2.8	keep	26
		7.5.2.9	len	26
		7.5.2.10	mean	26
		7.5.2.11	nens	26
		7.5.2.12	nfac	26
		7.5.2.13	nudgefac	26
		7.5.2.14	particles	26
		7.5.2.15	psi	27
		7.5.2.16	qscale	27
		7.5.2.17	rho	27
		7.5.2.18	talagrand	27
		7.5.2.19	time	27
		7.5.2.20	time_bwn_obs	27
		7.5.2.21	time_obs	27
		7.5.2.22	timestep	27
		7.5.2.23	type	27
		7.5.2.24	ufac	28
		7.5.2.25	use_mean	28
		7.5.2.26	use_rmse	28
		7.5.2.27	use_talagrand	28
		7.5.2.28	use_traj	28
		7.5.2.29	use_var	28
		7.5.2.30	use_weak	28
		7.5.2.31	weight	28
7.6	qdata l	Module Re	ference	29

vi CONTENTS

	7.6.1	Detailed Description
	7.6.2	Member Function/Subroutine Documentation
		7.6.2.1 killq
		7.6.2.2 loadq
	7.6.3	Member Data Documentation
		7.6.3.1 qcol
		7.6.3.2 qdiag
		7.6.3.3 qn
		7.6.3.4 qne
		7.6.3.5 qrow
		7.6.3.6 qscale
		7.6.3.7 qval
7.7	random	Module Reference
	7.7.1	Detailed Description
	7.7.2	Member Function/Subroutine Documentation
		7.7.2.1 bin_prob
		7.7.2.2 Ingamma
		7.7.2.3 random_beta
		7.7.2.4 random_binomial1
		7.7.2.5 random_binomial2
		7.7.2.6 random_cauchy
		7.7.2.7 random_chisq
		7.7.2.8 random_exponential
		7.7.2.9 random_gamma
		7.7.2.10 random_gamma1
		7.7.2.11 random_gamma2
		7.7.2.12 random_inv_gauss
		7.7.2.13 random_mvnorm
		7.7.2.14 random_neg_binomial
		7.7.2.15 random_normal
		7.7.2.16 random_order
		7.7.2.17 random_poisson
		7.7.2.18 random_t
		7.7.2.19 random_von_mises
		7.7.2.20 random_weibull
		7.7.2.21 seed_random_number
	7.7.3	Member Data Documentation
		7.7.3.1 dp
7.8	rdata M	Module Reference
	7.8.1	Detailed Description

CONTENTS vii

		7.8.2	Member	Function/Subroutine Documentation	38
			7.8.2.1	killr	38
			7.8.2.2	loadr	38
		7.8.3	Member	Data Documentation	38
			7.8.3.1	rcol	38
			7.8.3.2	rdiag	38
			7.8.3.3	rn	38
			7.8.3.4	rne	38
			7.8.3.5	rrow	39
			7.8.3.6	rval	39
	7.9	sizes N	Module Ref	erence	39
		7.9.1	Detailed	Description	39
		7.9.2	Member	Data Documentation	39
			7.9.2.1	obs_dim	39
			7.9.2.2	state_dim	39
8	Eilo	Dogume	entation		41
0	8.1			0 File Reference	41
	0.1	8.1.1	•	Subroutine Documentation	41
		0.1.1	8.1.1.1	bhalf	41
			8.1.1.2	configure model	43
			8.1.1.3	dist st ob	44
			8.1.1.4	h	44
			8.1.1.5	ht	46
			8.1.1.6		47
				q	47
				qhalf	
			8.1.1.8	r	49
			8.1.1.9	reconfigure_model	49
			8.1.1.10	rhalf	49
			8.1.1.11	solve_hqht_plus_r	51
			8.1.1.12	-	52
	8.2	oro/oor	8.1.1.13	solve_rhalf	52 53
	-		• -		
	8.3			couple.f90 File Reference	53
		8.3.1		Subroutine Documentation	53
	0.4	040/05	8.3.1.1	empire	53
	8.4			parameters.dat File Reference	54
	8.5			es.f90 File Reference	54
	8.6			0 File Reference	55
	8.7	src/dat	a/Hdata.f9	0 File Reference	55

viii CONTENTS

8.8	src/DO	C_READM	ME.txt File Reference	55
8.9	src/filte	rs/determi	nistic_model.f90 File Reference	55
	8.9.1	Function/	Subroutine Documentation	55
		8.9.1.1	deterministic_model	55
8.10	src/filte	rs/eakf_an	nalysis.f90 File Reference	55
	8.10.1	Function/	Subroutine Documentation	56
		8.10.1.1	eakf_analysis	56
8.11	src/filte	rs/enkf_sp	pecific.f90 File Reference	56
	8.11.1	Function/	Subroutine Documentation	56
		8.11.1.1	get_local_observation_data	56
		8.11.1.2	h_local	57
		8.11.1.3	localise_enkf	57
		8.11.1.4	solve_rhalf_local	58
8.12	src/filte	rs/equivale	ent_weights_filter.f90 File Reference	58
	8.12.1	Function/	Subroutine Documentation	58
		8.12.1.1	equivalent_weights_filter	58
8.13	src/filte	rs/etkf_ana	alysis.f90 File Reference	59
	8.13.1	Function/	Subroutine Documentation	59
		8.13.1.1	etkf_analysis	60
8.14	src/filte	rs/letkf_an	alysis.f90 File Reference	60
	8.14.1	Function/	Subroutine Documentation	60
		8.14.1.1	letkf_analysis	60
8.15	src/filte	rs/proposa	al_filter.f90 File Reference	61
	8.15.1	Function/	Subroutine Documentation	61
		8.15.1.1	proposal_filter	61
8.16	src/filte	rs/sir_filter	r.f90 File Reference	62
	8.16.1	Function/	Subroutine Documentation	62
		8.16.1.1	sir_filter	62
8.17	src/filte	rs/stochas	tic_model.f90 File Reference	63
	8.17.1	Function/	Subroutine Documentation	63
		8.17.1.1	check_scaling	63
		8.17.1.2	stochastic_model	64
8.18	src/ope	erations/ge	n_rand.f90 File Reference	64
	8.18.1	Function/	Subroutine Documentation	64
		8.18.1.1	mixturerandomnumbers1d	65
		8.18.1.2	mixturerandomnumbers2d	66
		8.18.1.3	normalrandomnumbers1d	67
		8.18.1.4	normalrandomnumbers2d	68
		8.18.1.5	random_seed_mpi	68
		8.18.1.6	uniformrandomnumbers1d	69

CONTENTS

8.19	src/ope	rations/operator_wrappers.f90 File Reference	69
	8.19.1	Function/Subroutine Documentation	70
		8.19.1.1 bprime	70
		8.19.1.2 innerhqht_plus_r_1	70
		8.19.1.3 innerr_1	71
		8.19.1.4 k	72
8.20	src/ope	rations/perturb_particle.f90 File Reference	73
	8.20.1	Function/Subroutine Documentation	73
		8.20.1.1 perturb_particle	73
		8.20.1.2 update_state	74
8.21	src/ope	rations/resample.f90 File Reference	74
	8.21.1	Function/Subroutine Documentation	75
		8.21.1.1 resample	75
8.22	src/test	s/alltests.f90 File Reference	75
	8.22.1	Function/Subroutine Documentation	75
		8.22.1.1 alltests	75
8.23	src/test	s/test_h.f90 File Reference	76
8.24	src/test	s/test_hqhtr.f90 File Reference	76
	8.24.1	Function/Subroutine Documentation	76
		8.24.1.1 test_hqhtr	76
8.25	src/test	s/test_q.f90 File Reference	77
	8.25.1	Function/Subroutine Documentation	77
		8.25.1.1 test_q	77
8.26	src/test	s/test_r.f90 File Reference	78
	8.26.1	Function/Subroutine Documentation	78
		8.26.1.1 test_r	78
8.27	src/test	s/tests.f90 File Reference	79
	8.27.1	Function/Subroutine Documentation	79
		8.27.1.1 hqhtr_tests	79
		8.27.1.2 q_tests	80
		8.27.1.3 r_tests	81
8.28	src/utils	/comms.f90 File Reference	82
8.29	src/utils	/data_io.f90 File Reference	82
	8.29.1	Function/Subroutine Documentation	83
		8.29.1.1 get_observation_data	83
		8.29.1.2 get_state	83
		8.29.1.3 output_from_pf	84
		8.29.1.4 save_observation_data	84
		8.29.1.5 save_state	84
		8.29.1.6 save_truth	85

X CONTENTS

8.30	src/utils/diagnostics.f90 File Reference	85
	8.30.1 Function/Subroutine Documentation	85
	8.30.1.1 diagnostics	85
	8.30.1.2 trajectories	86
8.31	src/utils/genQ.f90 File Reference	86
	8.31.1 Function/Subroutine Documentation	86
	8.31.1.1 genq	86
8.32	src/utils/histogram.f90 File Reference	87
8.33	src/utils/quicksort.f90 File Reference	87
	8.33.1 Function/Subroutine Documentation	87
	8.33.1.1 insertionsort_d	87
	8.33.1.2 quicksort_d	88
8.34	src/utils/random_d.f90 File Reference	89
Index		91

EMPIRE Data Assimilation Documentation

Author

Philip A. Browne p.browne@reading.ac.uk

Date

Time-stamp: <2015-02-17 16:24:30 pbrowne>

1.1 EMPIRE Methods

For a list of methods implemented in EMPIRE, please click here: methods

1.2 Downloading

The current version is an academic version, and the user interface may be subject to change.

These codes are hosted on www.bitbucket.org and can be obtained with the following commands:

```
{\tt 1} \ {\tt git} \ {\tt clone} \ {\tt https://www.bitbucket.org/pbrowne/empire-data-assimilation.git}
```

To upgrade to the latest versions of the codes, use the following command:

```
1 git pull https://www.bitbucket.org/pbrowne/empire-data-assimilation.git
```

Copyright

These codes are distributed under the GNU GPL v3 License. See LICENSE.txt.

1.3 Compiling

1.3.1 Compilation of the source code

The Makefile must be editted for the specific compiler setup. In the main directory you will find the file Makefile. Edit the variables as follows:

• FC The fortran compiler

This has been tested with gfortran 4.8.2, crayftn 8.2.6 and ifort 14.0.1.106

- FCOPTS The options for the fortran compiler
- LIB_LIST The libraries to be called. Note this must include BLAS and LAPACK
- MODFLAG The flag to specify where module files should be placed by the fortran complier. Examples are

```
- gfortran: -J
- ifort: -module
- crayftn: -em -J
- pgfortran: -module
```

To compile the source code, simply then type the command

```
l make
```

If successful, the following executables are created in the bin/ folder:

- · empire
- · alltests
- · test_hqhtr
- test_q
- · test r

To remove the object and executable files if compilation fails for some reason, run the following:

```
1 make clean
```

1.3.2 Compilation of the documentation

Documentation of the code is automatically generated using Doxygen, dot and pdflatex.

All of these packages must be installed for the following to work.

```
1 make docs
```

This will make an html webpage for the code, the mainpage for which is located in doc/html/index.html.

A latex version of the documentation will be built to the file doc/latex/refman.pdf.

To simply make the html version of the documentation (if pdflatex is not available) then use the command

```
1 make doc_html
```

1.4 Customising for specific models

This is where the science and all the effort should happen!!

The file model_specific.f90 should be editted for the specific model which you wish to use. This contains a number of subroutines which need to be adapted for the model and the observation network. We list these subsequently.

• configure_model This is called early in the code and can be used to read in any data from files before subsequently using them in the below operations.

1.5 Testing 3

• reconfigure_model This is called after each observation timestep. If the observation dimension changes it should be updated here, along with the number of model timesteps until the next observation

- h This is the observation operator
- · ht This is the transpose of the observation operator
- r This is the observation error covariance matrix R
- rhalf This is the square root of the observation error covariance matrix $R^{\frac{1}{2}}$
- solve_r This is a linear solve with the observation error covariance matrix, i.e. given b, find x such that Rx = b or indeed, $x = R^{-1}b$
- solve_rhalf This is a linear solve with the square root of the observation error covariance matrix, i.e. given b, find x such that $R^{\frac{1}{2}}x = b$ or indeed, $x = R^{-\frac{1}{2}}b$
- q This is the model error covariance matrix Q
- qhalf This is the square root model error covariance matrix $Q^{\frac{1}{2}}$
- solve_hqht_plus_r This is a linear solve with the matrix $(HQH^T + R)$
- dist_st_ob This specifies the distance between a an element of the state vector and an element of the observation vector
- bhalf This is the square root of the background error covariance matrix $B^{\frac{1}{2}}$

Not all of these subroutines will be required for each filtering method you wish to use, so it may be advantageous to only implement the necessary ones.

1.5 Testing

You can test your user supplied routines by running the test codes found in the folder bin/.

These are by no means full-proof ways of ensuring that you have implemented things correctly, but should at least check what you have done for logical consistency.

For example, they will test if $R^{-1}Ry = y$, and if $Q^{\frac{1}{2}}Q^{\frac{1}{2}}x = Qx$ for various different vectors x, y.

1.6 Linking to your model using EMPIRE

Full instructions on how to put the EMPIRE MPI commands into a new model can be found at www.met.
reading.ac.uk/~darc/empire.

1.7 Running

For example, to run **N_MDL** copies of the model with **N_DA** copies of empire, then the following are possible:

```
1 mpirun -np N_MDL model_executable : -np N_DA empire
1 aprun -n N_MDL -N N_MDL model_executable : -n N_DA -N N_DA empire
```

The empire executable is controlled by the namelist data file pf_parameters.dat. As such, this file should be put in the directory where empire is executed.

1.8 Examples

In the directory <code>examples</code> there is currently one example of how to use EMPIRE, specifically with the Lorenz 1996 model. In the directory you will find an example <code>model_specific.f90</code> file setup for that model, along with a file <code>instructions.txt</code> which will lead you step by step through how to run a twin experiment.

1.9 Bug Reports and Functionality Requests

While the code is not too large, you may email me the issue or request here.

However there is a webpage set up for this:

https://bitbucket.org/pbrowne/empire-data-assimilation/issues

Assimilation Methods

2.1 Filters

The filters implemented in EMPIRE can be divided into two categories, particle filters and Ensemble Kalman filters

2.1.1 Particle filters

2.1.1.1 SIR Filter (Sequential Importance Resampling)

```
See file sir_filter
```

Gordon, Salmond and Smith (1993).

Model specific operations required:

- qhalf
- h
- solve_r

The SIR filter has no parameters to be chosen.

To select the SIR filter, in pf_parameters.dat set the following variables:

$$- type = 'SI'$$

2.1.1.2 Equivalent Weights Particle Filter

See files proposal_filter equivalent_weights_filter

```
Van Leeuwen (2010).
```

Model specific operations required:

- · qhalf
- q
- h
- ht
- solve_r
- solve_hqht_plus_r

6 Assimilation Methods

· rhalf

The Equivalent Weights particle filter has a number of free parameters to be chosen.

```
- nudgefac
```

- nfac
- ufac
- keep

To select the EWPF, in pf_parameters.dat set the following variables:

```
- type = 'EW'
```

2.1.2 Ensemble Kalman filters

2.1.2.1 LETKF (The Localised Ensemble Transform Kalman Filter)

```
See file letkf analysis
```

```
Hunt, Kostelich and Szunyogh (2007).
```

Model specific operations required:

- h
- · solve rhalf
- · dist_st_ob

The LETKF has a number of free parameters to be chosen.

- rho
- len

To select the LETKF, in pf_parameters.dat set the following variables:

```
- type = 'ET'
```

2.2 Smoothers

Coming at some point in the future: LETKS (Please contact us if you want us to develop this sooner rather than later)

2.3 Variational Methods

Coming at some point in the future: 4DEnVar (Please contact us if you want us to develop this sooner rather than later)

Other EMPIRE features

3.1 Generating artificial observations

EMPIRE can generate artificial observations easily and quickly.

Model specific operations required:

- h
- · rhalf
- · qhalf

In pf_parameters.dat set the following variables:

- gen_data = .true.
- type = 'EW'

The system then should be run with a single ensemble member and a single EMPIRE process, i.e.

```
1 mpirun -np 1 model : -np 1 empire
```

3.2 Observations

To use real observations (i.e. those not generated automatically in twin experiment mode) the user must change the subroutine get_observation_data in data_io.f90.

When called, get_observation_data must return the vector of observations *y* that corresponds to the observation on, subsequently to, the current timestep which is stored in the variable pf%timestep within the module pf_control.

3.3 Running a deterministic ensemble

EMPIRE can simply integrate forward in time an ensemble of models.

In pf_parameters.dat set the following variables:

```
• type = 'DE'
```

Todo ADD THIS

8 Other EMPIRE features

3.4 Running a stochastic ensemble

EMPIRE can integrate forward in time an ensemble of models whilst adding stochastic forcing.

Model specific operations required:

• qhalf

In pf_parameters.dat set the following variables:

• type = 'SE'

Todo List

Page Other EMPIRE features
ADD THIS

10 **Todo List**

Data Type Index

5.1 Data Types List

Here are the data types with brief descriptions:

15
17
19
20
23
29
31
37
39
1 1 2 2 3

12 **Data Type Index**

File Index

6.1 File List

Here is a list of all files with brief descriptions:

model_specific.f90
src/controlers/pf_control.f90
src/controlers/pf_couple.f90
src/controlers/pf_parameters.dat
src/controlers/sizes.f90
src/data/Qdata.f90
src/data/Rdata.f90
src/filters/deterministic_model.f90
src/filters/eakf_analysis.f90
src/filters/enkf_specific.f90
src/filters/equivalent_weights_filter.f90
src/filters/etkf_analysis.f90
src/filters/letkf_analysis.f90
src/filters/proposal_filter.f90
src/filters/sir_filter.f90
src/filters/stochastic_model.f90
src/operations/gen_rand.f90
src/operations/operator_wrappers.f90
src/operations/perturb_particle.f90
src/operations/resample.f90
src/tests/alltests.f90
src/tests/test_h.f90
src/tests/test_hqhtr.f90
src/tests/test_q.f90
src/tests/test_r.f90
src/tests/tests.f90
src/utils/comms.f90
src/utils/data_io.f90
src/utils/diagnostics.f90
src/utils/genQ.f90
src/utils/histogram.f90
src/utils/quicksort.f90
src/utils/random_d f90

14 File Index

Data Type Documentation

7.1 comms Module Reference

Module containing EMPIRE coupling data.

Public Member Functions

- · subroutine allocate data
- subroutine deallocate_data
- subroutine initialise_mpi

subroutine to make EMPIRE connections and saves details into pf_control module

Public Attributes

• integer cpl_mpi_comm

the communicator between the empire codes and the model master nodes

integer mype_id

the rank of this process on MPI_COMM_WORLD

· integer myrank

the rank of this process on CPL_MPI_COMM

integer nproc

the total number of processes

integer pf_mpi_comm

the communicator between DA processes

integer pfrank

the rank of this process on PF_MPI_COMM

integer npfs

the total number of DA processes

• integer, dimension(:), allocatable gblcount

the number of ensemble members associated with each DA process

• integer, dimension(:), allocatable gbldisp

the displacements of each each ensemble member relative to pfrank=0. VERY useful for mpi_gatherv and mpi_ \leftarrow scatterv on pf_mpi_comm

7.1.1 Detailed Description

Module containing EMPIRE coupling data.

Definition at line 30 of file comms.f90.

7.1.2 Member Function/Subroutine Documentation

7.1.2.1 subroutine comms::allocate_data()

Definition at line 47 of file comms.f90.

7.1.2.2 subroutine comms::deallocate_data ()

Definition at line 53 of file comms.f90.

Here is the caller graph for this function:

7.1.2.3 subroutine comms::initialise_mpi ()

subroutine to make EMPIRE connections and saves details into pf_control module Definition at line 60 of file comms.f90.

Here is the caller graph for this function:

7.1.3 Member Data Documentation

7.1.3.1 integer comms::cpl_mpi_comm

the communicator between the empire codes and the model master nodes Definition at line 31 of file comms.f90.

7.1.3.2 integer, dimension(:), allocatable comms::gblcount

the number of ensemble members associated with each DA process Definition at line 39 of file comms.f90.

7.1.3.3 integer, dimension(:), allocatable comms::gbldisp

the displacements of each each ensemble member relative to pfrank=0. VERY useful for mpi_gatherv and mpi_coatterv on pf_mpi_comm

Definition at line 41 of file comms.f90.

7.1.3.4 integer comms::mype_id

the rank of this process on MPI_COMM_WORLD

Definition at line 33 of file comms.f90.

7.1.3.5 integer comms::myrank

the rank of this process on CPL_MPI_COMM

Definition at line 34 of file comms.f90.

7.1.3.6 integer comms::npfs

the total number of DA processes

Definition at line 38 of file comms.f90.

7.1.3.7 integer comms::nproc

the total number of processes

Definition at line 35 of file comms.f90.

7.1.3.8 integer comms::pf_mpi_comm

the communicator between DA processes

Definition at line 36 of file comms.f90.

7.1.3.9 integer comms::pfrank

the rank of this process on PF MPI COMM

Definition at line 37 of file comms.f90.

The documentation for this module was generated from the following file:

• src/utils/comms.f90

7.2 histogram_data Module Reference

Module to control what variables are used to generate rank histograms.

Public Member Functions

subroutine load_histogram_data
 subroutine to read from variables_hist.dat which variables to be used to make the rank histograms

subroutine kill_histogram_data
 subroutine to clean up arrays used in rank histograms

Public Attributes

- integer, dimension(:), allocatable rank_hist_list
- integer, dimension(:), allocatable rank_hist_nums
- integer rhl n
- integer rhn n

7.2.1 Detailed Description

Module to control what variables are used to generate rank histograms.

Definition at line 29 of file histogram.f90.

7.2.2 Member Function/Subroutine Documentation

7.2.2.1 subroutine histogram_data::kill_histogram_data()

subroutine to clean up arrays used in rank histograms

Definition at line 57 of file histogram.f90.

7.2.2.2 subroutine histogram_data::load_histogram_data ()

subroutine to read from variables_hist.dat which variables to be used to make the rank histograms Definition at line 37 of file histogram.f90.

7.2.3 Member Data Documentation

7.2.3.1 integer, dimension(:), allocatable histogram_data::rank_hist_list

Definition at line 30 of file histogram.f90.

7.2.3.2 integer, dimension(:), allocatable histogram_data::rank_hist_nums

Definition at line 31 of file histogram.f90.

7.2.3.3 integer histogram_data::rhl_n

Definition at line 32 of file histogram.f90.

7.2.3.4 integer histogram_data::rhn_n

Definition at line 32 of file histogram.f90.

The documentation for this module was generated from the following file:

• src/utils/histogram.f90

7.3 hqht_plus_r Module Reference

Public Member Functions

- subroutine load_hqhtr
- subroutine hqhtr_factor
- subroutine kill_hqhtr

7.3.1 Detailed Description

Definition at line 59 of file Rdata.f90.

7.3.2 Member Function/Subroutine Documentation

7.3.2.1 subroutine hqht_plus_r::hqhtr_factor ()

Definition at line 69 of file Rdata.f90.

Here is the caller graph for this function:

7.3.2.2 subroutine hqht_plus_r::kill_hqhtr ()

Definition at line 74 of file Rdata.f90.

7.3.2.3 subroutine hqht_plus_r::load_hqhtr ()

Definition at line 65 of file Rdata.f90.

Here is the call graph for this function:

The documentation for this module was generated from the following file:

• src/data/Rdata.f90

7.4 pf_control Module Reference

module pf_control holds all the information to control the the main program Collaboration diagram for pf_control:

Data Types

type pf_control_type

Public Member Functions

- subroutine set_pf_controls
 subroutine to ensure pf_control data is ok
- subroutine parse_pf_parameters
 subroutine to read the namelist file and save it to pf datatype Here we read pf_parameters.dat
- subroutine allocate_pf
 subroutine to allocate space for the filtering code
- subroutine deallocate_pf
 subroutine to deallocate space for the filtering code

Public Attributes

type(pf_control_type), save pf
 the derived data type holding all controlling data

7.4.1 Detailed Description

module pf_control holds all the information to control the the main program Definition at line 29 of file pf_control.f90.

7.4.2 Member Function/Subroutine Documentation

7.4.2.1 subroutine pf_control::allocate_pf ()

subroutine to allocate space for the filtering code

Definition at line 350 of file pf_control.f90.

Here is the caller graph for this function:

7.4.2.2 subroutine pf_control::deallocate_pf ()

subroutine to deallocate space for the filtering code

Definition at line 372 of file pf_control.f90.

7.4.2.3 subroutine pf_control::parse_pf_parameters ()

subroutine to read the namelist file and save it to pf datatype Here we read pf_parameters.dat pf_parameters.dat is a fortran namelist file. As such, within it there must be a line beginning &pf_params

To make it (probably) work, ensure there is a forward slash on the penultimate line and a blank line to end the file This is just the fortran standard for namelists though.

On to the content...in any order, the pf_parameters.dat may contain the following things: Integers:

- time_obs
- · time bwn obs

Reals, double precision:

- · nudgefac
- nfac
- ufac
- Qscale
- keep
- rho
- len

- 2 Characters:
 - type
- 1 Character:
 - init

Logicals:

- gen_Q
- gen_data
- use_talagrand
- use_weak
- use_var
- use_traj
- use_rmse
- human_readable

Definition at line 170 of file pf_control.f90.

Here is the caller graph for this function:

7.4.2.4 subroutine pf_control::set_pf_controls ()

subroutine to ensure pf_control data is ok Definition at line 103 of file pf_control.f90. Here is the call graph for this function:

Here is the caller graph for this function:

7.4.3 Member Data Documentation

7.4.3.1 type(pf_control_type), save pf_control::pf

the derived data type holding all controlling data

Definition at line 98 of file pf_control.f90.

The documentation for this module was generated from the following file:

• src/controlers/pf_control.f90

7.5 pf_control::pf_control_type Type Reference

Public Attributes

• integer nens

the total number of ensemble members

```
    real(kind=kind(1.0d0)), dimension(:), allocatable weight

      the negative log of the weights of the particles
· integer time obs
      the number of observations we will assimilate
integer time_bwn_obs
      the number of model timesteps between observations
• real(kind=kind(1.0d0)) nudgefac
      the nudging factor
· logical gen_data
      true generates synthetic obs for a twin experiment
· logical gen q
      true attempts to build up Q from long model run

    logical human_readable

      unused
• integer timestep =0
      the current timestep as the model progresses

    real(kind=kind(1.0d0)), dimension(:,:), allocatable psi

      state vector of ensemble members on this mpi process
• real(kind=kind(1.0d0)), dimension(:), allocatable mean
      mean state vector
• real(kind=kind(1.0d0)) nfac
      standard deviation of normal distribution in mixture density
• real(kind=kind(1.0d0)) ufac
      half width of the uniform distribution in mixture density
• real(kind=kind(1.0d0)) efac
• real(kind=kind(1.0d0)) keep
      proportion of particles to keep in EWPF EW step
• real(kind=kind(1.0d0)) time
      dunno
• real(kind=kind(1.0d0)) qscale
      scalar to multiply Q by

    real(kind=kind(1.0d0)) rho

      enkf inflation factor so that P_f = (1 + \rho)P_f
real(kind=kind(1.0d0)) len
      R localisation length scale The entries in the observation error covariance matrix R are multiplied by the function
      \exp\left(\frac{\text{dist}^2}{2\text{len}^2}\right)
· integer couple root
      empire master processor

    logical use_talagrand

      switch if true outputs rank histograms
· logical use_weak
      switch unused
· logical use_mean
      switch if true outputs ensemble mean
· logical use var
      switch if true outputs ensemble variance
· logical use_traj
      switch if true outputs trajectories
· logical use rmse
      switch if true outputs Root Mean Square Errors
```

integer, dimension(:,:), allocatable talagrand

storage for rank histograms

integer count

number of ensemble members associated with this MPI process

• integer, dimension(:), allocatable particles

particles associates with this MPI process

• character(2) type

which filter to use currently this has a number of options:

• character(1) init

which method to initialise ensemble currently this has a number of options:

7.5.1 Detailed Description

Definition at line 31 of file pf control.f90.

7.5.2 Member Data Documentation

7.5.2.1 integer pf_control::pf_control_type::count

number of ensemble members associated with this MPI process

Definition at line 68 of file pf_control.f90.

7.5.2.2 integer pf_control::pf_control_type::couple_root

empire master processor

Definition at line 60 of file pf_control.f90.

7.5.2.3 real(kind=kind(1.0d0)) pf_control::pf_control_type::efac

Definition at line 46 of file pf_control.f90.

7.5.2.4 logical pf_control::pf_control_type::gen_data

true generates synthetic obs for a twin experiment

Definition at line 37 of file pf_control.f90.

7.5.2.5 logical pf_control::pf_control_type::gen_q

true attempts to build up ${\it Q}$ from long model run

Definition at line 38 of file pf_control.f90.

7.5.2.6 logical pf_control::pf_control_type::human_readable

unused

Definition at line 40 of file pf_control.f90.

7.5.2.7 character(1) pf_control::pf_control_type::init

which method to initialise ensemble currently this has a number of options:

- N perturb around the model initial conditions with random noise distributed $\mathcal{N}(0,I)$
- P perturb around the model initial conditions with random noise distributed $\mathcal{N}(0,Q)$
- B perturb around the model initial conditions with random noise distributed $\mathcal{N}(0,B)$
- R read model states from rstrt folder where each ensemble member is stored in the file rstrt/##.state
- · S read model states from start folder where each ensemble member is stored in the file start/##.state

Definition at line 78 of file pf_control.f90.

7.5.2.8 real(kind=kind(1.0d0)) pf_control::pf_control_type::keep

proportion of particles to keep in EWPF EW step

Definition at line 47 of file pf control.f90.

7.5.2.9 real(kind=kind(1.0d0)) pf_control::pf_control_type::len

R localisation length scale The entries in the observation error covariance matrix R are multiplied by the function $\exp\left(\frac{\operatorname{dist}^2}{2\operatorname{len}^2}\right)$.

Definition at line 54 of file pf_control.f90.

7.5.2.10 real(kind=kind(1.0d0)), dimension(:), allocatable pf_control::pf_control_type::mean

mean state vector

Definition at line 43 of file pf_control.f90.

7.5.2.11 integer pf_control::pf_control_type::nens

the total number of ensemble members

Definition at line 32 of file pf control.f90.

7.5.2.12 real(kind=kind(1.0d0)) pf_control::pf_control_type::nfac

standard deviation of normal distribution in mixture density

Definition at line 44 of file pf_control.f90.

7.5.2.13 real(kind=kind(1.0d0)) pf_control::pf_control_type::nudgefac

the nudging factor

Definition at line 36 of file pf_control.f90.

7.5.2.14 integer, dimension(:), allocatable pf_control::pf_control_type::particles

particles associates with this MPI process

Definition at line 69 of file pf_control.f90.

7.5.2.15 real(kind=kind(1.0d0)), dimension(:,:), allocatable pf_control::pf_control_type::psi

state vector of ensemble members on this mpi process

Definition at line 42 of file pf_control.f90.

7.5.2.16 real(kind=kind(1.0d0)) pf_control::pf_control_type::qscale

scalar to multiply Q by

Definition at line 49 of file pf_control.f90.

7.5.2.17 real(kind=kind(1.0d0)) pf_control::pf_control_type::rho

enkf inflation factor so that $P_f = (1 + \rho)P_f$

Definition at line 51 of file pf control.f90.

7.5.2.18 integer, dimension(:,:), allocatable pf_control::pf_control_type::talagrand

storage for rank histograms

Definition at line 67 of file pf_control.f90.

7.5.2.19 real(kind=kind(1.0d0)) pf_control::pf_control_type::time

dunno

Definition at line 48 of file pf_control.f90.

7.5.2.20 integer pf_control::pf_control_type::time_bwn_obs

the number of model timesteps between observations

Definition at line 35 of file pf_control.f90.

7.5.2.21 integer pf_control::pf_control_type::time_obs

the number of observations we will assimilate

Definition at line 34 of file pf_control.f90.

7.5.2.22 integer pf_control::pf_control_type::timestep =0

the current timestep as the model progresses

Definition at line 41 of file pf control.f90.

7.5.2.23 character(2) pf_control::pf_control_type::type

which filter to use currently this has a number of options:

- SE a stochastic ensemble
- SI the SIR filter
- ET the L-ETKF

• EW - the Equivalent Weights particle filter

Definition at line 70 of file pf control.f90.

7.5.2.24 real(kind=kind(1.0d0)) pf_control::pf_control_type::ufac

half width of the uniform distribution in mixture density

Definition at line 45 of file pf_control.f90.

7.5.2.25 logical pf_control::pf_control_type::use_mean

switch if true outputs ensemble mean

Definition at line 63 of file pf control.f90.

7.5.2.26 logical pf_control::pf_control_type::use_rmse

switch if true outputs Root Mean Square Errors

Definition at line 66 of file pf_control.f90.

7.5.2.27 logical pf_control::pf_control_type::use_talagrand

switch if true outputs rank histograms

Definition at line 61 of file pf_control.f90.

7.5.2.28 logical pf_control::pf_control_type::use_traj

switch if true outputs trajectories

Definition at line 65 of file pf_control.f90.

7.5.2.29 logical pf_control::pf_control_type::use_var

switch if true outputs ensemble variance

Definition at line 64 of file pf_control.f90.

7.5.2.30 logical pf_control::pf_control_type::use_weak

switch unused

Definition at line 62 of file pf_control.f90.

7.5.2.31 real(kind=kind(1.0d0)), dimension(:), allocatable pf_control::pf_control_type::weight

the negative log of the weights of the particles

Definition at line 33 of file pf_control.f90.

The documentation for this type was generated from the following file:

• src/controlers/pf_control.f90

7.6 qdata Module Reference

Module as a place to store user specified data for Q.

Public Member Functions

subroutine loadq

Subroutine to load in user data for Q.

subroutine killq

Public Attributes

- integer qn
- integer qne
- integer, dimension(:), allocatable grow
- integer, dimension(:), allocatable qcol
- real(kind=kind(1.0d0)), dimension(:), allocatable qval
- real(kind=kind(1.0d0)), dimension(:), allocatable qdiag
- real(kind=kind(1.0d0)) qscale

7.6.1 Detailed Description

Module as a place to store user specified data for Q.

· the model error covariance matrix

Definition at line 30 of file Qdata.f90.

7.6.2 Member Function/Subroutine Documentation

7.6.2.1 subroutine qdata::killq ()

SUbroutine to deallocate user data for Q

Definition at line 44 of file Qdata.f90.

7.6.2.2 subroutine qdata::loadq ()

Subroutine to load in user data for Q.

Definition at line 38 of file Qdata.f90.

Here is the caller graph for this function:

7.6.3 Member Data Documentation

7.6.3.1 integer, dimension(:), allocatable qdata::qcol

Definition at line 33 of file Qdata.f90.

7.6.3.2 real(kind=kind(1.0d0)), dimension(:), allocatable qdata::qdiag

Definition at line 34 of file Qdata.f90.

7.6.3.3 integer qdata::qn

Definition at line 32 of file Qdata.f90.

7.6.3.4 integer qdata::qne

Definition at line 32 of file Qdata.f90.

7.6.3.5 integer, dimension(:), allocatable qdata::qrow

Definition at line 33 of file Qdata.f90.

7.6.3.6 real(kind=kind(1.0d0)) qdata::qscale

Definition at line 35 of file Qdata.f90.

7.6.3.7 real(kind=kind(1.0d0)), dimension(:), allocatable qdata::qval

Definition at line 34 of file Qdata.f90.

The documentation for this module was generated from the following file:

src/data/Qdata.f90

7.7 random Module Reference

A module for random number generation from the following distributions:

Public Member Functions

- real(kind=kind(1.0d+0)) function random_normal ()
 - function to get random normal with zero mean and stdev 1
- real(kind=kind(1.0d+0)) function random_gamma (s, first)
- real(kind=kind(1.0d+0)) function random_gamma1 (s, first)
- real(kind=kind(1.0d+0)) function random gamma2 (s, first)
- real(kind=kind(1.0d+0)) function random chisq (ndf, first)
- real(kind=kind(1.0d+0)) function random_exponential ()
- real(kind=kind(1.0d+0)) function random_weibull (a)
- real(kind=kind(1.0d+0)) function random beta (aa, bb, first)
- real(kind=kind(1.0d+0)) function random_t (m)
- subroutine random mvnorm (n, h, d, f, first, x, ier)
- real(kind=kind(1.0d+0)) function random_inv_gauss (h, b, first)
- integer function random_poisson (mu, first)
- integer function random_binomial1 (n, p, first)
- real(kind=kind(1.0d+0)) function bin prob (n, p, r)
- real(dp) function Ingamma (x)
- integer function random binomial2 (n, pp, first)
- integer function random_neg_binomial (sk, p)
- real(kind=kind(1.0d+0)) function random_von_mises (k, first)
- real(kind=kind(1.0d+0)) function random_cauchy ()
- subroutine random order (order, n)
- subroutine seed_random_number (iounit)

Public Attributes

• integer, parameter dp = SELECTED_REAL_KIND(12, 60)

7.7.1 Detailed Description

A module for random number generation from the following distributions:

Distribution Function/subroutine name

Normal (Gaussian) random_normal Gamma random_gamma Chi-squared random_chisq Exponential random_chisq exponential Weibull random_Weibull Beta random_beta t random_t Multivariate normal random_mvnorm Generalized inverse Gaussian random_inv_gauss Poisson random_Poisson Binomial random_binomial1 * random_chinomial2 * Negative binomial random_neg_binomial von Mises random_von_Mises Cauchy random_Cauchy

Definition at line 22 of file random d.f90.

7.7.2 Member Function/Subroutine Documentation

7.7.2.1 real(kind=kind(1.0d+0)) function random::bin_prob (integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *p*, integer, intent(in) *r*)

Definition at line 1000 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

7.7.2.2 real (dp) function random::Ingamma (real (dp), intent(in) x)

Definition at line 1018 of file random_d.f90.

Here is the caller graph for this function:

7.7.2.3 real(kind=kind(1.0d+0)) function random::random_beta (real(kind=kind(1.0d+0)), intent(in) aa, real(kind=kind(1.0d+0)), intent(in) bb, logical, intent(in) first)

Definition at line 371 of file random_d.f90.

7.7.2.4 integer function random::random_binomial1 (integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *p*, logical, intent(in) *first*)

Definition at line 923 of file random_d.f90.

Here is the call graph for this function:

7.7.2.5 integer function random::random_binomial2 (integer, intent(in) *n*, real(kind=kind(1.0d+0)), intent(in) *pp*, logical, intent(in) *first*)

Definition at line 1082 of file random_d.f90.

7.7.2.6 real(kind=kind(1.0d+0)) function random::random_cauchy ()

Definition at line 1517 of file random_d.f90.

7.7.2.7 real(kind=kind(1.0d+0)) function random::random_chisq (integer, intent(in) ndf, logical, intent(in) first)

Definition at line 308 of file random_d.f90.

Here is the call graph for this function:

7.7.2.8 real(kind=kind(1.0d+0)) function random::random_exponential ()

Definition at line 324 of file random_d.f90.

Here is the caller graph for this function:

7.7.2.9 real(kind=kind(1.0d+0)) function random::random_gamma (real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first)

Definition at line 154 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

7.7.2.10 real(kind=kind(1.0d+0)) function random::random_gamma1 (real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first

Definition at line 189 of file random_d.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

7.7.2.11 real(kind=kind(1.0d+0)) function random::random_gamma2 (real(kind=kind(1.0d+0)), intent(in) s, logical, intent(in) first

Definition at line 238 of file random_d.f90.

Here is the caller graph for this function:

7.7.2.12 real(kind=kind(1.0d+0)) function random::random_inv_gauss (real(kind=kind(1.0d+0)), intent(in) h, real(kind=kind(1.0d+0)), intent(in) b, logical, intent(in) first)

Definition at line 610 of file random d.f90.

7.7.2.13 subroutine random::random_mvnorm (integer, intent(in) *n*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *h*, real(kind=kind(1.0d+0)), dimension(:), intent(in) *d*, real(kind=kind(1.0d+0)), dimension(:), intent(inout) *f*, logical, intent(in) *first*, real(kind=kind(1.0d+0)), dimension(:), intent(out) *x*, integer, intent(out) *ier*)

Definition at line 509 of file random_d.f90.

Here is the call graph for this function:

7.7.2.14 integer function random::random_neg_binomial (real(kind=kind(1.0d+0)), intent(in) sk, real(kind=kind(1.0d+0)), intent(in) p)

Definition at line 1314 of file random d.f90.

7.7.2.15 real(kind=kind(1.0d+0)) function random::random_normal ()

function to get random normal with zero mean and stdev 1

Returns

fn_val

Definition at line 108 of file random_d.f90.

Here is the caller graph for this function:

7.7.2.16 subroutine random::random_order (integer, dimension(n), intent(out) order, integer, intent(in) n)

Definition at line 1539 of file random_d.f90.

7.7.2.17 integer function random::random_poisson (real(kind=kind(1.0d+0)), intent(in) mu, logical, intent(in) first)

Definition at line 681 of file random_d.f90.

Here is the call graph for this function:

7.7.2.18 real(kind=kind(1.0d+0)) function random::random_t (integer, intent(in) m)

Definition at line 448 of file random_d.f90.

7.7.2.19 real(kind=kind(1.0d+0)) function random::random_von_mises (real(kind=kind(1.0d+0)), intent(in) k, logical, intent(in) first)

Definition at line 1389 of file random_d.f90.

7.8 rdata Module Reference 37

7.7.2.20 real(kind=kind(1.0d+0)) function random::random_weibull (real(kind=kind(1.0d+0)), intent(in) a)

Definition at line 351 of file random_d.f90.

Here is the call graph for this function:

7.7.2.21 subroutine random::seed_random_number (integer, intent(in) iounit)

Definition at line 1573 of file random_d.f90.

7.7.3 Member Data Documentation

7.7.3.1 integer, parameter random::dp = SELECTED_REAL_KIND(12, 60)

Definition at line 101 of file random_d.f90.

The documentation for this module was generated from the following file:

• src/utils/random_d.f90

7.8 rdata Module Reference

Module to hold user supplied data for *R* observation error covariance matrix.

Public Member Functions

- subroutine loadr
 - Subroutine to load data for R.
- subroutine killr

Public Attributes

- integer rn
- integer rne
- integer, dimension(:), allocatable rrow
- integer, dimension(:), allocatable rcol
- real(kind=kind(1.0d0)), dimension(:), allocatable rval
- real(kind=kind(1.0d0)), dimension(:), allocatable rdiag

7.8.1 Detailed Description

Module to hold user supplied data for *R* observation error covariance matrix.

Definition at line 29 of file Rdata.f90.

7.8.2 Member Function/Subroutine Documentation

7.8.2.1 subroutine rdata::killr ()

SUbroutine to deallocate R data

Definition at line 49 of file Rdata.f90.

7.8.2.2 subroutine rdata::loadr ()

Subroutine to load data for R.

Definition at line 36 of file Rdata.f90.

Here is the caller graph for this function:

7.8.3 Member Data Documentation

7.8.3.1 integer, dimension(:), allocatable rdata::rcol

Definition at line 32 of file Rdata.f90.

7.8.3.2 real(kind=kind(1.0d0)), dimension(:), allocatable rdata::rdiag

Definition at line 33 of file Rdata.f90.

7.8.3.3 integer rdata::rn

Definition at line 31 of file Rdata.f90.

7.8.3.4 integer rdata::rne

Definition at line 31 of file Rdata.f90.

7.9 sizes Module Reference 39

7.8.3.5 integer, dimension(:), allocatable rdata::rrow

Definition at line 32 of file Rdata.f90.

7.8.3.6 real(kind=kind(1.0d0)), dimension(:), allocatable rdata::rval

Definition at line 33 of file Rdata.f90.

The documentation for this module was generated from the following file:

• src/data/Rdata.f90

7.9 sizes Module Reference

Module that stores the dimension of observation and state spaces.

Public Attributes

integer obs_dim

size of the observation space

• integer state_dim

dimension of the model

7.9.1 Detailed Description

Module that stores the dimension of observation and state spaces.

Definition at line 29 of file sizes.f90.

7.9.2 Member Data Documentation

7.9.2.1 integer sizes::obs_dim

size of the observation space

Definition at line 31 of file sizes.f90.

7.9.2.2 integer sizes::state_dim

dimension of the model

Definition at line 32 of file sizes.f90.

The documentation for this module was generated from the following file:

• src/controlers/sizes.f90

Chapter 8

File Documentation

8.1 model_specific.f90 File Reference

Functions/Subroutines

- subroutine configure model
 - subroutine called initially to set up details and data for model specific functions
- · subroutine reconfigure_model
 - subroutine to reset variables that may change when the observation network changes
- subroutine solve_r (obsDim, nrhs, y, v, t)
 - subroutine to take an observation vector y and return v in observation space.
- subroutine solve_rhalf (obsdim, nrhs, y, v, t)
 - subroutine to take an observation vector y and return v in observation space.
- subroutine solve_hqht_plus_r (obsdim, y, v, t)
 - subroutine to take an observation vector y and return v in observation space.
- subroutine q (nrhs, x, Qx)
 - subroutine to take a full state vector x and return Qx in state space.
- subroutine qhalf (nrhs, x, Qx)
 - subroutine to take a full state vector x and return $Q^{1/2}x$ in state space.
- subroutine r (obsDim, nrhs, y, Ry, t)
 - subroutine to take an observation vector x and return Rx in observation space.
- subroutine rhalf (obsDim, nrhs, y, Ry, t)
 - subroutine to take an observation vector x and return Rx in observation space.
- subroutine h (obsDim, nrhs, x, hx, t)
 - subroutine to take a full state vector x and return H(x) in observation space.
- subroutine ht (obsDim, nrhs, y, x, t)
 - subroutine to take an observation vector y and return $x = H^T(y)$ in full state space.
- subroutine dist_st_ob (xp, yp, dis, t)
 - subroutine to compute the distance between the variable in the state vector and the variable in the observations
- subroutine bhalf (nrhs, x, bx)
 - subroutine to take a full state vector x and return $B^{1/2}x$ in state space.

8.1.1 Function/Subroutine Documentation

8.1.1.1 subroutine bhalf (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *bx*)

subroutine to take a full state vector \mathbf{x} and return $\mathbf{B}^{1/2}\mathbf{x}$ in state space.

Given x compute $B^{\frac{1}{2}}x$

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	bx	the resulting vector where bx $= B^{\frac{1}{2}}x$

Definition at line 308 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.2 subroutine configure_model ()

subroutine called initially to set up details and data for model specific functions Definition at line 30 of file model_specific.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.1.1.3 subroutine dist_st_ob (integer, intent(in) *xp*, integer, intent(in) *yp*, real(kind=kind(1.0d0)), intent(out) *dis*, integer, intent(in) *t*)

subroutine to compute the distance between the variable in the state vector and the variable in the observations $\text{Compute } \operatorname{dist}(x(xp),y(yp))$

Parameters

in	хр	the index in the state vector
in	ур	the index in the observation vector
out	dis	the distance between x(xp) and y(yp)
in	t	the current time index for observations

Definition at line 292 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.4 subroutine h (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *hx*, integer, intent(in) *t*)

subroutine to take a full state vector x and return H(x) in observation space.

Given x compute Hx

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	X	the input vectors in state space
out	hx	the resulting vector in observation space where $hx = Hx$
in	t	the timestep

Definition at line 246 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.5 subroutine ht (integer, intent(in) *obsDim,* integer, intent(in) *nrhs,* real(kind=rk), dimension(obsdim,nrhs), intent(in) *y,* real(kind=rk), dimension(state_dim,nrhs), intent(out) *x,* integer, intent(in) *t*)

subroutine to take an observation vector y and return $\mathbf{x} = H^T(y)$ in full state space.

Given y compute $x = H^T(y)$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	the input vectors in observation space
out	X	the resulting vector in state space where $\mathbf{x} = \mathbf{H}^T \mathbf{y}$
in	t	the timestep

Definition at line 269 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.6 subroutine q (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *Qx*)

subroutine to take a full state vector ${\bf x}$ and return ${\bf Q}{\bf x}$ in state space.

Given x compute Qx

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	qx	the resulting vector where $Qx = Qx$

Definition at line 156 of file model_specific.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.1.1.7 subroutine qhalf (integer, intent(in) *nrhs*, real(kind=rk), dimension(state_dim,nrhs), intent(in) *x*, real(kind=rk), dimension(state_dim,nrhs), intent(out) *Qx*)

subroutine to take a full state vector x and return $Q^{1/2}x$ in state space.

Given x compute $Q^{\frac{1}{2}}x$

Parameters

in	nrhs	the number of right hand sides
in	X	the input vector
out	qx	the resulting vector where $Qx = Q^{rac{1}{2}} x$

Definition at line 181 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.8 subroutine r (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t*)

subroutine to take an observation vector x and return Rx in observation space.

Given y compute Ry

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	the input vector
out	ry	the resulting vectors where $Ry = Ry$
in	t	the timestep

Definition at line 201 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.9 subroutine reconfigure_model ()

subroutine to reset variables that may change when the observation network changes Definition at line 70 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.10 subroutine rhalf (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *Ry*, integer, intent(in) *t*)

subroutine to take an observation vector x and return Rx in observation space.

Given y compute $R^{\frac{1}{2}}y$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	the input vector
out	ry	the resulting vector where $Ry = R^{\frac{1}{2}}y$
in	t	the timestep

Definition at line 223 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.11 subroutine solve_hqht_plus_r (integer, intent(in) *obsdim*, real(kind=rk), dimension(obsdim), intent(in) *y*, real(kind=rk), dimension(obsdim), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that $(HQH^T + R)v = y$

Parameters

in	obsdim	the dimension of the observations
in	у	the input vector
out	V	the result where $v = (HQH^T + R)^{-1}y$
in	t	the timestep

Definition at line 136 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.12 subroutine solve_r (integer, intent(in) *obsDim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that Rv = y

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	input vector
out	V	result vector where $v = R^{-1}y$
in	t	the timestep

Definition at line 94 of file model_specific.f90.

Here is the caller graph for this function:

8.1.1.13 subroutine solve_rhalf (integer, intent(in) *obsdim*, integer, intent(in) *nrhs*, real(kind=rk), dimension(obsdim,nrhs), intent(in) *y*, real(kind=rk), dimension(obsdim,nrhs), intent(out) *v*, integer, intent(in) *t*)

subroutine to take an observation vector y and return v in observation space.

Given y find v such that $R^{\frac{1}{2}}v = y$

Parameters

in	obsdim	the dimension of the observations
in	nrhs	the number of right hand sides
in	у	input vector
out	V	result vector where $v = R^{-\frac{1}{2}}y$
in	t	the timestep

Definition at line 114 of file model_specific.f90.

Here is the caller graph for this function:

8.2 src/controlers/pf_control.f90 File Reference

Data Types

• module pf_control

module pf_control holds all the information to control the the main program

• type pf_control::pf_control_type

8.3 src/controlers/pf_couple.f90 File Reference

Functions/Subroutines

• program empire

the main program

8.3.1 Function/Subroutine Documentation

8.3.1.1 program empire ()

the main program

Definition at line 37 of file pf_couple.f90.

Here is the call graph for this function:

8.4 src/controlers/pf_parameters.dat File Reference

8.5 src/controlers/sizes.f90 File Reference

Data Types

• module sizes

Module that stores the dimension of observation and state spaces.

8.6 src/data/Qdata.f90 File Reference

Data Types

· module qdata

Module as a place to store user specified data for Q.

8.7 src/data/Rdata.f90 File Reference

Data Types

· module rdata

Module to hold user supplied data for R observation error covariance matrix.

• module hqht_plus_r

8.8 src/DOC_README.txt File Reference

8.9 src/filters/deterministic_model.f90 File Reference

Functions/Subroutines

subroutine deterministic_model
 subroutine to simply move the model forward in time one timestep

8.9.1 Function/Subroutine Documentation

8.9.1.1 subroutine deterministic_model ()

subroutine to simply move the model forward in time one timestep

PAB 21-05-2013

Definition at line 33 of file deterministic_model.f90.

Here is the caller graph for this function:

8.10 src/filters/eakf_analysis.f90 File Reference

Functions/Subroutines

• subroutine eakf_analysis (num_hor, num_ver, this_hor, this_ver, boundary, x, N, stateDim, obsDim, rho)

8.10.1 Function/Subroutine Documentation

8.10.1.1 subroutine eakf_analysis (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, real(kind=rk), dimension(statedim,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDim, integer, intent(in) obsDim, real(kind=rk), intent(in) rho)

Definition at line 27 of file eakf analysis.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.11 src/filters/enkf specific.f90 File Reference

Functions/Subroutines

- subroutine h_local (num_hor, num_ver, this_hor, this_ver, boundary, nrhs, stateDim, x, obsDim, y)
- subroutine solve_rhalf_local (num_hor, num_ver, this_hor, this_ver, boundary, nrhs, obsDim, y, v)
- subroutine get_local_observation_data (num_hor, num_ver, this_hor, this_ver, boundary, obsDim, y)
- subroutine localise_enkf (enkf_analysis)

8.11.1 Function/Subroutine Documentation

8.11.1.1 subroutine get_local_observation_data (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim), intent(out) y)

Definition at line 83 of file enkf_specific.f90.

Here is the caller graph for this function:

8.11.1.2 subroutine h_local (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, integer, intent(in) nrhs, integer, intent(in) stateDim, real(kind=rk), dimension(statedim,nrhs), intent(in) x, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim,nrhs), intent(out) y)

Definition at line 27 of file enkf_specific.f90.

Here is the caller graph for this function:

8.11.1.3 subroutine localise_enkf (integer, intent(in) enkf_analysis)

Definition at line 142 of file enkf_specific.f90.

Here is the call graph for this function:

8.11.1.4 subroutine solve_rhalf_local (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, integer, intent(in) nrhs, integer, intent(in) obsDim, real(kind=rk), dimension(obsdim,nrhs), intent(in) y, real(kind=rk), dimension(obsdim,nrhs), intent(out) v)

Definition at line 69 of file enkf_specific.f90.

Here is the caller graph for this function:

8.12 src/filters/equivalent_weights_filter.f90 File Reference

Functions/Subroutines

· subroutine equivalent_weights_filter

subroutine to do the equivalent weights step

8.12.1 Function/Subroutine Documentation

8.12.1.1 subroutine equivalent_weights_filter ()

subroutine to do the equivalent weights step

Definition at line 29 of file equivalent_weights_filter.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.13 src/filters/etkf_analysis.f90 File Reference

Functions/Subroutines

• subroutine etkf_analysis (num_hor, num_ver, this_hor, this_ver, boundary, x, N, stateDim, obsDim, rho) subroutine to perform the ensemble transform Kalman filter

8.13.1 Function/Subroutine Documentation

8.13.1.1 subroutine etkf_analysis (integer, intent(in) num_hor, integer, intent(in) num_ver, integer, intent(in) this_hor, integer, intent(in) this_ver, integer, intent(in) boundary, real(kind=rk), dimension(statedim,n), intent(inout) x, integer, intent(in) N, integer, intent(in) stateDim, integer, intent(in) obsDim, real(kind=rk), intent(in) rho)

subroutine to perform the ensemble transform Kalman filter

Definition at line 34 of file etkf_analysis.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.14 src/filters/letkf_analysis.f90 File Reference

Functions/Subroutines

subroutine letkf_analysis

subroutine to perform the ensemble transform Kalman filter as part of L-ETKF

8.14.1 Function/Subroutine Documentation

8.14.1.1 subroutine letkf_analysis ()

subroutine to perform the ensemble transform Kalman filter as part of L-ETKF

The observation

Definition at line 35 of file letkf_analysis.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.15 src/filters/proposal_filter.f90 File Reference

Functions/Subroutines

• subroutine proposal_filter

Subroutine to perform nudging in the proposal step of EWPF.

8.15.1 Function/Subroutine Documentation

8.15.1.1 subroutine proposal_filter ()

Subroutine to perform nudging in the proposal step of EWPF.

Definition at line 33 of file proposal_filter.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.16 src/filters/sir_filter.f90 File Reference

Functions/Subroutines

• subroutine sir_filter

Subroutine to perform SIR filter (Sequential Importance Resampling)

8.16.1 Function/Subroutine Documentation

8.16.1.1 subroutine sir_filter ()

Subroutine to perform SIR filter (Sequential Importance Resampling)

Definition at line 28 of file sir_filter.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.17 src/filters/stochastic_model.f90 File Reference

Functions/Subroutines

- subroutine stochastic_model subroutine to simply move the model forward in time one timestep PAB 21-05-2013
- subroutine check_scaling (x, fx, b, scales)

8.17.1 Function/Subroutine Documentation

8.17.1.1 subroutine check_scaling (real(kind=rk), dimension(state_dim), intent(in) x, real(kind=rk), dimension(state_dim), intent(in) fx, real(kind=rk), dimension(state_dim), intent(in) b, real(kind=rk), dimension(9), intent(inout) scales)

Definition at line 83 of file stochastic_model.f90.

8.17.1.2 subroutine stochastic_model ()

subroutine to simply move the model forward in time one timestep PAB 21-05-2013 Definition at line 32 of file stochastic_model.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.18 src/operations/gen_rand.f90 File Reference

Functions/Subroutines

- subroutine uniformrandomnumbers1d (minv, maxv, n, phi)

 generate one dimension of uniform random numbers
- subroutine normalrandomnumbers1d (mean, stdev, n, phi) generate one dimension of Normal random numbers
- subroutine normalrandomnumbers2d (mean, stdev, n, k, phi) generate two dimensional Normal random numbers
- subroutine mixturerandomnumbers1d (mean, stdev, ufac, epsi, n, phi, uniform) generate one dimensional vector drawn from mixture density
- subroutine mixturerandomnumbers2d (mean, stdev, ufac, epsi, n, k, phi, uniform) generate two dimensional vector, each drawn from mixture density
- subroutine random_seed_mpi (pfid)

Subroutine to set the random seed across MPI threads.

8.18.1 Function/Subroutine Documentation

8.18.1.1 subroutine mixturerandomnumbers1d (real(kind=kind(1.0d0)), intent(in) *mean*, real(kind=kind(1.0d0)), intent(in) *stdev*, real(kind=kind(1.0d0)), intent(in) *ufac*, real(kind=kind(1.0d0)), intent(in) *epsi*, integer, intent(in) *n*, real(kind=kind(1.0d0)), dimension(n), intent(out) *phi*, logical, intent(out) *uniform*)

generate one dimensional vector drawn from mixture density

Parameters

in	mean	Mean of normal distribution
in	stdev	Standard deviation of normal distribution
in	ufac	half-width of uniform distribution that is centered on the mean
in	epsi	Proportion controlling mixture draw. if random_number > epsi then draw from
		uniform, else normal
in	n	size of output vector
out	phi	n dimensional mixture random numbers
out	uniform	True if mixture drawn from uniform. False if drawn from normal

Definition at line 90 of file gen_rand.f90.

Here is the call graph for this function:

8.18.1.2 subroutine mixturerandomnumbers2d (real(kind=kind(1.0d0)), intent(in) *mean*, real(kind=kind(1.0d0)), intent(in) *stdev*, real(kind=kind(1.0d0)), intent(in) *ufac*, real(kind=kind(1.0d0)), intent(in) *epsi*, integer, intent(in) *n*, integer, intent(in) *k*, real(kind=kind(1.0d0)), dimension(n,k), intent(out) *phi*, logical, dimension(k), intent(out) *uniform*)

generate two dimensional vector, each drawn from mixture density

Parameters

in	mean	Mean of normal distribution
in	stdev	Standard deviation of normal distribution
in	ufac	half-width of uniform distribution that is centered on the mean
in	epsi	Proportion controlling mixture draw. if random_number > epsi then draw from
		uniform, else normal
in	n	first dimension of output vector
in	k	second dimension of output vector
out	phi	n,k dimensional mixture random numbers
out	uniform	k dimensional logical with uniform(i) True if phi(:,i) drawn from uniform. False if
		drawn from normal

Definition at line 125 of file gen_rand.f90.

Here is the caller graph for this function:

8.18.1.3 subroutine normalrandomnumbers1d (real(kind=rk), intent(in) *mean,* real(kind=rk), intent(in) *stdev,* integer, intent(in) *n,* real(kind=rk), dimension(n), intent(out) *phi*)

generate one dimension of Normal random numbers

Parameters

in	n	n size of output vector
in	mean	mean mean of normal distribution
in	stdev	stdev Standard Deviation of normal distribution
out	phi	phi n dimensional normal random numbers

Definition at line 43 of file gen_rand.f90.

Here is the call graph for this function:

8.18.1.4 subroutine normalrandomnumbers2d (real(kind=rk), intent(in) *mean*, real(kind=rk), intent(in) *stdev*, integer, intent(in) *n*, integer, intent(in) *k*, real(kind=rk), dimension(n,k), intent(out) *phi*)

generate two dimensional Normal random numbers

Parameters

in	n	n first dimension of output vector
in	k	k second dimension of output vector
in	mean	mean mean of normal distribution
in	stdev	stdev Standard Deviation of normal distribution
out	phi	phi n,k dimensional normal random numbers

Definition at line 60 of file gen_rand.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.18.1.5 subroutine random_seed_mpi (integer, intent(in) pfid)

Subroutine to set the random seed across MPI threads.

Parameters

×			
	in	pfid	The process identifier of the MPI process

Definition at line 151 of file gen_rand.f90.

Here is the caller graph for this function:

8.18.1.6 subroutine uniformrandomnumbers1d (real(kind=rk), intent(in) *minv*, real(kind=rk), intent(in) *maxv*, integer, intent(in) *n*, real(kind=rk), dimension(n), intent(out) *phi*)

generate one dimension of uniform random numbers

Parameters

in	n	n size of output vector
in	minv	minv minimum value of uniform distribution
in	maxv	maxv maximum value of uniform distribution
out	phi	phi n dimensional uniform random numbers

Definition at line 28 of file gen_rand.f90.

Here is the caller graph for this function:

8.19 src/operations/operator_wrappers.f90 File Reference

Functions/Subroutines

• subroutine k (y, x)

Subroutine to apply K to a vector y in observation space where $K := QH^T(HQH^T + R)^{-1}$.

• subroutine innerr_1 (y, w)

subroutine to compute the inner product with R^{-1}

• subroutine innerhqht_plus_r_1 (y, w)

subroutine to compute the inner product with $(HQH^T + R)^{-1}$

• subroutine bprime (y, x, QHtR_1y, normaln, betan)

subroutine to calculate nudging term and correlated random errors efficiently

8.19.1 Function/Subroutine Documentation

8.19.1.1 subroutine bprime (real(kind=rk), dimension(obs_dim,pf%count), intent(in) y, real(kind=rk), dimension(state_dim,pf%count), intent(out) x, real(kind=rk), dimension(state_dim,pf%count), intent(out) QHtR_1y, real(kind=rk), dimension(state_dim,pf%count), intent(in) normaln, real(kind=rk), dimension(state_dim,pf%count), intent(out) betan)

subroutine to calculate nudging term and correlated random errors efficiently

Parameters

in	У	(obs_dim,pf%count) vectors of innovations $y - H(x^{n-1})$
out	X	(state_dim,pf%count) vectors of $\rho H^T R^{-1}[y-H(x^{n-1})]$
out	QHtR_1y	(state_dim,pf%count) vectors of $\rho QH^TR^{-1}[y-H(x^{n-1})]$
in	normaln	(state_dim,pf%count) uncorrelated random vectors such that normaln(:,i) \sim
		$\mathscr{N}(0,I)$
out	betan	(state_dim,pf%count) correlated random vectors such that betan(:,i) ~
		$\mathscr{N}(0,Q)$

Definition at line 155 of file operator_wrappers.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.19.1.2 subroutine innerhqht_plus_r_1 (real(kind=rk), dimension(obs_dim), intent(in) y, real(kind=rk), intent(out) w) subroutine to compute the inner product with $(HQH^T+R)^{-1}$

Parameters

in	у	vector in observation space
out	W	scalar with value $y^T R^{-1} y$

Definition at line 91 of file operator_wrappers.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.19.1.3 subroutine innerr_1 (real(kind=rk), dimension(obs_dim,pf%count), intent(in) y, real(kind=rk), dimension(pf%count), intent(out) w)

subroutine to compute the inner product with R^{-1}

Parameters

in	У	multiple vectors in observation space (pf%count of them)
out	W	multiple scalars (pf%count) where w(i) has the value $y(:,i)^T R^{-1} y(:,i)$

Definition at line 65 of file operator_wrappers.f90.

Here is the caller graph for this function:

8.19.1.4 subroutine k (real(kind=rk), dimension(obs_dim,pf%count), intent(in) y, real(kind=rk), dimension(state_dim,pf%count), intent(out) x)

Subroutine to apply K to a vector y in observation space where $K := QH^T(HQH^T + R)^{-1}$.

Parameters

in	У	vector in observation space
out	X	vector in state space

Definition at line 32 of file operator_wrappers.f90.

Here is the caller graph for this function:

8.20 src/operations/perturb_particle.f90 File Reference

Functions/Subroutines

• subroutine perturb_particle (x)

Subroutine to perturb state vector governed by the init option.

• subroutine update_state (state, fpsi, kgain, betan)

Subroutine to update the state.

8.20.1 Function/Subroutine Documentation

8.20.1.1 subroutine perturb_particle (real(kind=rk), dimension(state_dim), intent(inout) x)

Subroutine to perturb state vector governed by the init option.

Definition at line 30 of file perturb_particle.f90.

Here is the caller graph for this function:

8.20.1.2 subroutine update_state (real(kind=rk), dimension(state_dim), intent(out) *state*, real(kind=rk), dimension(state_dim), intent(in) *fpsi*, real(kind=rk), dimension(state_dim), intent(in) *kgain*, real(kind=rk), dimension(state_dim), intent(inout) *betan*)

Subroutine to update the state.

This can be changed for the specific model if it needs to be

Parameters

in	fpsi	deterministic model update $f(x^{n-1})$
in	kgain	nudging term
in,out	betan	Stochastic term
out	state	The updated state vector

Definition at line 102 of file perturb_particle.f90.

Here is the caller graph for this function:

8.21 src/operations/resample.f90 File Reference

Functions/Subroutines

• subroutine resample

Subroutine to perform Universal Importance Resampling.

8.21.1 Function/Subroutine Documentation

8.21.1.1 subroutine resample ()

Subroutine to perform Universal Importance Resampling.

Definition at line 28 of file resample.f90.

Here is the caller graph for this function:

8.22 src/tests/alltests.f90 File Reference

Functions/Subroutines

· program alltests

program to run all tests of user specific functions

8.22.1 Function/Subroutine Documentation

8.22.1.1 program alltests ()

program to run all tests of user specific functions Definition at line 31 of file alltests.f90.

Here is the call graph for this function:

8.23 src/tests/test_h.f90 File Reference

8.24 src/tests/test_hqhtr.f90 File Reference

Functions/Subroutines

• program test_hqhtr

program to run tests of user supplied linear solve

8.24.1 Function/Subroutine Documentation

8.24.1.1 program test_hqhtr ()

program to run tests of user supplied linear solve

$$(HQH^T + R)^{-1}$$

Definition at line 33 of file test_hqhtr.f90.

Here is the call graph for this function:

8.25 src/tests/test_q.f90 File Reference

Functions/Subroutines

program test_q

program to run tests of user supplied model error covariance matrix

8.25.1 Function/Subroutine Documentation

8.25.1.1 program test_q ()

program to run tests of user supplied model error covariance matrix Definition at line 31 of file test_q.f90.

Here is the call graph for this function:

8.26 src/tests/test_r.f90 File Reference

Functions/Subroutines

program test_r

program to run all tests of user supplied observation error covariance matrix/

8.26.1 Function/Subroutine Documentation

8.26.1.1 program test_r ()

program to run all tests of user supplied observation error covariance matrix/ Definition at line 31 of file test_r.f90. Here is the call graph for this function:

8.27 src/tests/tests.f90 File Reference

Functions/Subroutines

- subroutine r_tests ()
- subroutine q_tests ()
- subroutine hqhtr_tests ()

8.27.1 Function/Subroutine Documentation

8.27.1.1 subroutine hqhtr_tests ()

These are some tests to check that the linear solve operator is implemented correctly

This should check the operation $(HQH^T + R)^{-1}$ is working

Definition at line 879 of file tests.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.27.1.2 subroutine q_tests ()

These are some tests to check that the model error covariance matrix is implemented correctly Definition at line 675 of file tests.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.27.1.3 subroutine r_{tests} ()

These are some tests to check that the observation error covariance matrix is implemented correctly Definition at line 257 of file tests.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.28 src/utils/comms.f90 File Reference

Data Types

• module comms

Module containing EMPIRE coupling data.

8.29 src/utils/data_io.f90 File Reference

Functions/Subroutines

- subroutine get_observation_data (y)
 Subroutine to read observation from a file
 Uses pftimestep to determine which observation to read.
- subroutine save_observation_data (y)

Subroutine to save observation to a file Uses pftimestep to determine which observation to save.

• subroutine save_truth (x)

Subroutine to save truth to a file

.

subroutine output_from_pf

subroutine to ouput data from the filter

• subroutine save_state (state, filename)

subroutine to save the state vector to a named file as an unformatted fortran file

• subroutine get_state (state, filename)

subroutine to write the state vector to a named file as an unformatted fortran file

8.29.1 Function/Subroutine Documentation

8.29.1.1 subroutine get_observation_data (real(kind=rk), dimension(obs_dim), intent(out) y)

Subroutine to read observation from a file Uses pftimestep to determine which observation to read.

Parameters

out	у	The observation

Definition at line 32 of file data_io.f90.

Here is the caller graph for this function:

8.29.1.2 subroutine get_state (real(kind=rk), dimension(state_dim), intent(out) state, character(14), intent(in) filename)

subroutine to write the state vector to a named file as an unformatted fortran file

Parameters

out	state	the state vector
in	filename	the name of the file to write the state vector in

Definition at line 283 of file data_io.f90.

Here is the caller graph for this function:

8.29.1.3 subroutine output_from_pf ()

subroutine to ouput data from the filter

Definition at line 124 of file data_io.f90.

Here is the caller graph for this function:

8.29.1.4 subroutine save_observation_data (real(kind=rk), dimension(obs_dim), intent(in) y)

Subroutine to save observation to a file Uses pftimestep to determine which observation to save.

Parameters

ſ	in	У	The observation

Definition at line 60 of file data_io.f90.

Here is the caller graph for this function:

8.29.1.5 subroutine save_state (real(kind=rk), dimension(state_dim), intent(in) state, character(14), intent(in) filename)

subroutine to save the state vector to a named file as an unformatted fortran file

Parameters

in	state	the state vector
in	filename	the name of the file to save the state vector in

Definition at line 257 of file data io.f90.

8.29.1.6 subroutine save_truth (real(kind=rk), dimension(state_dim), intent(in) x)

Subroutine to save truth to a file

Parameters

in	X	The state vector

Definition at line 98 of file data_io.f90.

Here is the caller graph for this function:

8.30 src/utils/diagnostics.f90 File Reference

Functions/Subroutines

- subroutine diagnostics
 - Subroutine to give output diagnositics such as rank histograms and trajectories.
- · subroutine trajectories

subroutine to output trajectories

8.30.1 Function/Subroutine Documentation

8.30.1.1 subroutine diagnostics ()

Subroutine to give output diagnositics such as rank histograms and trajectories.

Definition at line 31 of file diagnostics.f90.

Here is the caller graph for this function:

8.30.1.2 subroutine trajectories ()

subroutine to output trajectories

Definition at line 203 of file diagnostics.f90.

Here is the caller graph for this function:

8.31 src/utils/genQ.f90 File Reference

Functions/Subroutines

• subroutine genq

Subroutine to estimate Q from a long model run.

8.31.1 Function/Subroutine Documentation

8.31.1.1 subroutine genq ()

Subroutine to estimate Q from a long model run.

Definition at line 28 of file genQ.f90.

Here is the caller graph for this function:

8.32 src/utils/histogram.f90 File Reference

Data Types

· module histogram data

Module to control what variables are used to generate rank histograms.

8.33 src/utils/quicksort.f90 File Reference

Functions/Subroutines

- recursive subroutine quicksort_d (a, na)
 subroutine to sort using the quicksort algorithm
- subroutine insertionsort_d (A, nA)

subroutine to sort using the insertionsort algorithm

8.33.1 Function/Subroutine Documentation

8.33.1.1 subroutine insertionsort_d (real(kind=kind(1.0d0)), dimension(na), intent(inout) A, integer, intent(in) nA)

subroutine to sort using the insertionsort algorithm

Parameters

in,out	а	array of doubles to be sorted
in	na	dimension of array a

Definition at line 86 of file quicksort.f90.

Parameters

in,out	а	array of doubles to be sorted
in	na	dimension of array a

Definition at line 9 of file quicksort.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

8.34 src/utils/random_d.f90 File Reference

Data Types

module random

A module for random number generation from the following distributions:

Index

allocate_data	pf_control, 21
comms, 16	deterministic_model
allocate_pf	deterministic_model.f90, 55
pf_control, 21	deterministic_model.f90
alltests	deterministic_model, 55
alltests.f90, 75	diagnostics
alltests.f90	diagnostics.f90, 85
alltests, 75	diagnostics.f90
	diagnostics, 85
bhalf	trajectories, 86
model_specific.f90, 41	dist_st_ob
bin_prob	model_specific.f90, 44
random, 32	dp
bprime	random, 37
operator_wrappers.f90, 70	
	eakf_analysis
check_scaling	eakf_analysis.f90, 56
stochastic_model.f90, 63	eakf_analysis.f90
comms, 15	eakf_analysis, 56
allocate_data, 16	efac
cpl_mpi_comm, 16	pf_control::pf_control_type, 25
deallocate_data, 16	empire
gblcount, 16	pf_couple.f90, 53
gbldisp, 16	enkf_specific.f90
initialise_mpi, 16	get_local_observation_data, 56
mype_id, 17	h_local, 57
myrank, 17	localise_enkf, 57
npfs, 17	solve_rhalf_local, 57
nproc, 17	equivalent_weights_filter
pf_mpi_comm, 17	equivalent_weights_filter.f90, 58
pfrank, 17	equivalent_weights_filter.f90
configure_model	equivalent_weights_filter, 58
model_specific.f90, 43	etkf_analysis
count	etkf_analysis.f90, 59
pf_control::pf_control_type, 25	etkf_analysis.f90
couple_root	etkf_analysis, 59
pf_control::pf_control_type, 25	
cpl_mpi_comm	gblcount
comms, 16	comms, 16
	gbldisp
data_io.f90	comms, 16
get_observation_data, 83	gen_data
get_state, 83	pf_control::pf_control_type, 25
output_from_pf, 84	gen_q
save_observation_data, 84	pf_control::pf_control_type, 25
save_state, 84	gen_rand.f90
save_truth, 85	mixturerandomnumbers1d, 64
deallocate_data	mixturerandomnumbers2d, 66
comms, 16	normalrandomnumbers1d, 67
deallocate of	normalrandomnumbers2d, 67

random_seed_mpi, 68	rdata, 38
uniformrandomnumbers1d, 69	
genQ.f90	len
genq, 86	pf_control::pf_control_type, 26
genq	letkf_analysis
genQ.f90, 86	letkf_analysis.f90, 60
get_local_observation_data	letkf_analysis.f90
enkf_specific.f90, 56	letkf_analysis, 60
get_observation_data	Ingamma
data_io.f90, 83	random, 32
get_state	load_histogram_data
data_io.f90, 83	histogram_data, 18
	load_hqhtr
h	hqht_plus_r, 19
model_specific.f90, 44	loadq
h_local	qdata, 29
enkf_specific.f90, 57	loadr
histogram_data, 17	rdata, 38
kill_histogram_data, 18	localise_enkf
load_histogram_data, 18	enkf_specific.f90, 57
rank_hist_list, 18	maan
rank_hist_nums, 18	mean
rhl_n, 18	pf_control::pf_control_type, 26
rhn_n, 18	mixturerandomnumbers1d gen_rand.f90, 64
hqht_plus_r, 19	
hqhtr_factor, 19	mixturerandomnumbers2d
kill_hqhtr, 19	gen_rand.f90, 66
load_hqhtr, 19	model_specific.f90, 41
hqhtr_factor	bhalf, 41
hqht_plus_r, 19	configure_model, 43
hqhtr_tests	dist_st_ob, 44
tests.f90, 79	h, 44
ht	ht, 46
model_specific.f90, 46	q, 47
human_readable	qhalf, 48
pf_control::pf_control_type, 25	r, 48
init	reconfigure_model, 49
init	rhalf, 49
pf_control::pf_control_type, 25	solve_hqht_plus_r, 51
initialise_mpi	solve_r, 52
comms, 16	solve_rhalf, 52
innerhqht_plus_r_1	mype_id
operator_wrappers.f90, 70	comms, 17
innerr_1	myrank
operator_wrappers.f90, 71	comms, 17
insertionsort_d	nens
quicksort.f90, 87	pf_control::pf_control_type, 26
k	nfac
operator_wrappers.f90, 72	pf_control::pf_control_type, 26
keep	normalrandomnumbers1d
pf_control::pf_control_type, 26	gen_rand.f90, 67
kill_histogram_data	normalrandomnumbers2d
histogram_data, 18	gen_rand.f90, 67
kill_hqhtr	npfs
hqht_plus_r, 19	comms, 17
killq	nproc
qdata, 29	comms, 17
killr	nudgefac
• • • • • • • • • • • • • • • • • • • •	

pf_control::pf_control_type, 26	use_weak, 28 weight, 28
obs_dim	pf_couple.f90
sizes, 39	empire, 53
operator_wrappers.f90	pf_mpi_comm
bprime, 70	comms, 17
innerhqht_plus_r_1, 70	pfrank
innerr_1, 71	•
k, 72	comms, 17
output_from_pf	proposal_filter
data_io.f90, 84	proposal_filter.f90, 61
uala_10.190, 84	proposal_filter.f90
parse_pf_parameters	proposal_filter, 61
pf_control, 21	psi
•	pf_control::pf_control_type, 26
particles	
pf_control::pf_control_type, 26	q
perturb_particle	model_specific.f90, 47
perturb_particle.f90, 73	q_tests
perturb_particle.f90	tests.f90, 80
perturb_particle, 73	qcol
update_state, 74	qdata, 30
pf	qdata, 29
pf_control, 23	killq, 29
pf_control, 20	loadq, 29
allocate_pf, 21	qcol, 30
deallocate_pf, 21	qdiag, 30
parse_pf_parameters, 21	qn, <mark>30</mark>
pf, 23	qne, 30
set_pf_controls, 22	grow, 30
pf_control::pf_control_type, 23	qscale, 30
count, 25	qval, 30
couple_root, 25	qdiag
efac, 25	qdata, 30
gen_data, 25	
gen_q, 25	qhalf
human_readable, 25	model_specific.f90, 48
init, 25	qn
	qdata, 30
keep, 26	qne
len, 26	qdata, 30
mean, 26	qrow
nens, 26	qdata, 30
nfac, 26	qscale
nudgefac, 26	pf_control::pf_control_type, 27
particles, 26	qdata, 30
psi, 26	quicksort.f90
qscale, 27	insertionsort_d, 87
rho, 27	quicksort_d, 87
talagrand, 27	quicksort_d
time, 27	quicksort.f90, 87
time_bwn_obs, 27	qval
time_obs, 27	qdata, 30
timestep, 27	
type, 27	r
ufac, 28	model_specific.f90, 48
use_mean, 28	r_tests
use_rmse, 28	tests.f90, 81
use_talagrand, 28	random, 31
use_traj, 28	bin_prob, 32
use_var, 28	dp, 37
= ;	• •

Ingamma, 32	rank_hist_list
random_beta, 32	histogram_data, 18
random_binomial1, 32	rank_hist_nums
random_binomial2, 33	histogram_data, 18
random_cauchy, 33	rcol
random_chisq, 33	rdata, 38
random_exponential, 33	rdata, 37
random_gamma, 33	killr, 38
random_gamma1, 34	loadr, 38
random gamma2, 34	rcol, 38
random_inv_gauss, 35	rdiag, 38
random_mvnorm, 35	rn, 38
random_neg_binomial, 35	rne, 38
random normal, 35	rrow, 38
random_order, 36	rval, <mark>39</mark>
random poisson, 36	rdiag
random_t, 36	rdata, 38
random von mises, 36	reconfigure_model
random weibull, 36	model_specific.f90, 49
seed_random_number, 37	resample
random beta	resample.f90, 75
random, 32	resample.f90
random_binomial1	resample, 75
	rhalf
random, 32	model_specific.f90, 49
random_binomial2	rhl n
random, 33	histogram_data, 18
random_cauchy	rhn n
random, 33	histogram_data, 18
random_chisq	rho
random, 33	pf_control::pf_control_type, 27
random_exponential	rn
random, 33	rdata, 38
random_gamma	rne
random, 33	rdata, 38
random_gamma1	rrow
random, 34	rdata, 38
random_gamma2	rval
random, 34	rdata, 39
random_inv_gauss	radia, 00
random, 35	save_observation_data
random_mvnorm	data io.f90, 84
random, 35	save state
random_neg_binomial	data_io.f90, <mark>84</mark>
random, 35	save_truth
random_normal	 data_io.f90, <mark>85</mark>
random, 35	seed random number
random_order	random, 37
random, 36	set_pf_controls
random_poisson	pf_control, 22
random, 36	sir filter
random_seed_mpi	sir_filter.f90, 62
gen_rand.f90, 68	sir filter.f90
random t	sir_filter, 62
random, 36	sizes, 39
random_von_mises	obs_dim, 39
random, 36	state_dim, 39
random weibull	solve_hqht_plus_r
random, 36	model_specific.f90, 51
	<u>-</u> 5p-0, 01

solve_r	test_r.f90
model_specific.f90, 52	test_r, 78
solve_rhalf	tests.f90
model_specific.f90, 52	hqhtr_tests, 79
solve_rhalf_local	q_tests, 80
enkf_specific.f90, 57	r_tests, 81
src/DOC_README.txt, 55	time
src/controlers/pf_control.f90, 53	pf_control::pf_control_type, 27
src/controlers/pf_couple.f90, 53	time_bwn_obs
src/controlers/pf_parameters.dat, 54	pf_control::pf_control_type, 27
src/controlers/sizes.f90, 54	time_obs
src/data/Qdata.f90, 55	pf_control::pf_control_type, 27
src/data/Rdata.f90, 55	timestep
src/filters/deterministic_model.f90, 55	pf_control::pf_control_type, 27
src/filters/eakf_analysis.f90, 55	trajectories
src/filters/enkf_specific.f90, 56	diagnostics.f90, 86
src/filters/equivalent_weights_filter.f90, 58	type
src/filters/etkf_analysis.f90, 59	pf_control::pf_control_type, 27
src/filters/letkf_analysis.f90, 60	
src/filters/proposal_filter.f90, 61	ufac
src/filters/sir_filter.f90, 62	pf_control::pf_control_type, 28
src/filters/stochastic_model.f90, 63	uniformrandomnumbers1d
src/operations/gen_rand.f90, 64	gen_rand.f90, 69
src/operations/operator_wrappers.f90, 69	update_state
src/operations/perturb_particle.f90, 73	perturb_particle.f90, 74
src/operations/resample.f90, 74	use_mean
src/tests/alltests.f90, 75	pf_control::pf_control_type, 28
src/tests/test_h.f90, 76	use_rmse
src/tests/test_hqhtr.f90, 76	pf_control::pf_control_type, 28
src/tests/test_q.f90, 77	use_talagrand
src/tests/test_r.f90, 78	pf_control::pf_control_type, 28
src/tests/tests.f90, 79	use_traj
src/utils/comms.f90, 82	pf_control::pf_control_type, 28
src/utils/data_io.f90, 82	use_var
src/utils/diagnostics.f90, 85	pf_control::pf_control_type, 28 use_weak
src/utils/genQ.f90, 86	
src/utils/histogram.f90, 87	pf_control::pf_control_type, 28
src/utils/quicksort.f90, 87	weight
src/utils/random_d.f90, 89	pf_control::pf_control_type, 28
state_dim	h ====
sizes, 39 stochastic model	
stochastic_model.f90, 63	
stochastic_model.f90	
check_scaling, 63	
stochastic_model, 63	
stochastic_model, oo	
talagrand	
pf_control::pf_control_type, 27	
test_hqhtr	
test_hqhtr.f90, 76	
test_hqhtr.f90	
test_hqhtr, 76	
test_q	
test_q.f90, 77	
test_q.f90	
test_q, 77	
test_r	
test r.f90, 78	