

SEQUENCE LISTING

<110> MACHIDA, Masayuki
MASAKI, Haruhiko
KUNIHIRO, Sumiko
HAGIWARA, Hiroko

<120> MARKER FOR SELECTING TRANSFORMANT WITH THE USE OF LETHAL GENE

<130> 040894-7170-US

<140> US 10/522,366
<141> 2005-01-25

<150> PCT/JP03/09543
<151> 2003-07-28

<150> JP 2002-218735
<151> 2002-07-26

<160> 24

<170> PatentIn version 3.4

<210> 1
<211> 28
<212> DNA
<213> Artificial sequence

<220>

<223> Primer

<400> 1

gctgatgctg cattgagttc tgcttatgg

28

<210> 2
<211> 57
<212> DNA
<213> Artificial sequence

<220>

<223> Primer

<400> 2

gttaaatcca atttaagtcc cataacttgg ccgcctatggc ctcaaagata tttcttg

57

<210> 3
<211> 57
<212> DNA
<213> Artificial sequence

<220>

<223> Primer

<400> 3

caagaaaat atttgaggcc atagcggcca agttatggga cttaaattgg atttaac	57
<210> 4	
<211> 28	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 4	
tcatccctga taatatttga tcaccaat	28
<210> 5	
<211> 43	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 5	
gcatggccgc ctcggccgaa aggttttaaa gattacgggc atg	43
<210> 6	
<211> 34	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 6	
cgtatggattc tcaccaatca ccatcacgat aatc	34
<210> 7	
<211> 598	
<212> DNA	
<213> Escherichia coli	
<400> 7	
gcatggccgc ctcggccgaa aggttttaaa gattacgggc atgattatca tccagctccg	60
aaaactgaga atattaaagg gcttggtgat cttaagcctg ggataccaaa aacaccaaag	120
cagaatggtg gtggaaaacg caagcgctgg actggagata aagggcgtaa gatttatgag	180
tgggattctc agcatggtga gcttgagggg tatcgtgcc a gtgatggtca gcatcttggc	240
tcatttgacc ctaaaaacagg caatcagttg aaaggtccag atccgaaacg aaatatcaag	300
aaatatctt gaggccatag cggccaagtt atgggactta aattggattt aacttggttt	360

gataaaaagta cagaagattt taagggttag gagtattcaa aagattttgg agatgacggt 420
tcagttatgg aaagtctagg tgtgccttt aaggataatg ttaataacgg ttgccttgat 480
gttatacgctg aatgggtacc ttgctacaa ccatacttta atcatcaaat tgatattcc 540
gataatgagt attttgttgc gttgattat cgtgatggtg attggtgaga attcatcg 598

<210> 8
<211> 40
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 8
tagtagtagt agtagaaagg ttttaaagat tacggcattg 40

<210> 9
<211> 46
<212> DNA
<213> Escherichia coli

<400> 9
gcatggccgc ctcggccgta gaaagggttt aaagattacg ggcattg 46

<210> 10
<211> 49
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 10
gcatggccgc ctcggccgta gtagaaaggt tttaaagatt acgggcattg 49

<210> 11
<211> 52
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 11
gcatggccgc ctcggccgta gtagtagaaa ggtttaaag attacggca tg 52

<210> 12
<211> 55
<212> DNA

<213> Artificial sequence

<220>

<223> Primer

<400> 12

gcatggccgc ctcggccgta gtagtagtag aaaggttta aagattacgg gcatg 55

<210> 13

<211> 58

<212> DNA

<213> Artificial sequence

<220>

<223> Primer

<400> 13

gcatggccgc ctcggccgta gtagtagtag tagaaagggtt ttaaagatta cgggcatg 58

<210> 14

<211> 607

<212> DNA

<213> Escherichia coli

<400> 14

gcatggccgc ctcggccgta gtagtagaaa ggttttaaag attacggca tgattatcat 60

ccagctccga aaactgagaa tattaaagggtt cttgggtgatc ttaagcctgg gataccaaaa 120

acaccaaaggc agaatgggtgg tggaaaacgc aagcgctgga ctggagataa agggcgtaag 180

atttatgagt gggattctca gcatggtgag cttgagggtt atcgtgccag tcatggtcag 240

catcttggtt catttgcacc taaaacaggc aatcagttga aaggtccaga tccgaaacga 300

aatatcaaga aatatcttg aggccatagc ggccaagttt tgggacttaa attggattta 360

acttggttt gataaaagtac agaagattt aagggtgagg agtattcaaa agattttgg 420

gatgacgggtt cagttatgga aagtcttaggt gtgcctttta aggataatgt taataacgg 480

tgccttgcgtt ttatagctga atgggtacct ttgctacaac catactttaa tcataaaatt 540

gatatttccg ataatgagta ttttgggttcg tttgattttc gtgatggtga ttgggtgagaa 600

ttcatcg 607

<210> 15

<211> 258

<212> DNA

<213> Escherichia coli

<400> 15

atgggactta aattggattt aacttgggtt gataaaagta cagaagattt taagggtgag 60

gagtattcaa aagattttgg agatgacggt tcagttatgg aaagtctagg tgcgtttt	120
aaggataatg ttaataacgg ttgcgttgc gttatagctg aatgggtacc tttgctacaa	180
ccataacttta atcatcaaat tgatatttcc gataatgagt atttgttcc gtttgattat	240
cgtgatggtg attggtga	258
<210> 16	
<211> 3066	
<212> DNA	
<213> Escherichia coli	
<400> 16	
aactcggtt taatcagacc tggcatgagt ggaagcggga cgaacacgac aggcaacaac	60
aacgcccggcc cgggcacttc cggggcatga gtatgtata tccggggctg cacccggac	120
cccgccaaca catcacgggc cacaaaattt tttgtggccc gctctgcgtt ttctaagtgt	180
tatccctcct gatttctaaa aaattttcca cctgaacttg acagaaaaaa cgatgacgag	240
tacttttga tctgtacata aacctcgtgg ttttatgtac agtattaatc gtgtatcaa	300
ttgttttaac gcttaaaaga gggaaattttt atgagcggtg gcgtatggacg cggccataac	360
acggggcgccgc atagcacaag tggtaacatt aatggtggcc cgaccggct tggtaggt	420
ggtaggtgctt ctgatggctc cggatggagt tcggaaaata acccgtgggg tggtaggtcc	480
ggtagcggca ttcactgggg tggtaggtcc ggtcatggta atggcggggg gaatggtaat	540
tccgggtggg gttcgggaaac aggccgtaat ctgtcagcag tagctgcgcc agtggcattt	600
ggttttccgg cacttccac tccaggagct ggccgtctgg cggcgtat ttcagcggga	660
gcattatcgg cagctattgc tgatattatg gctccctga aaggaccgtt taaatttgg	720
ctttgggggg tggcttata tggtaggttcc ccatcacaaa tagcgaaga tgacccaaat	780
atgatgtcaa agattgtgac gtcattaccc gcagatgata ttactgaatc acctgtcagt	840
tcattacctc tcgataaggc aacagtaaac gttaatgttc gtgtgttga tgatgtaaaa	900
gacgagcgcac agaatatttc gttgtttca ggtgtccga tgagtgttcc ggtgggttgc	960
gcaaaaccta ccgaacgtcc ggggtttttt acggcatcaa ttccaggtgc acctgttctg	1020
aatatttcag ttaataacag tacgccagca gtacagacat taagcccagg tggtaggttca	1080
aatactgata aggtgttcg cccggcagga tttactcagg gtggtaatac cagggatgca	1140
gttattcgat tccccaaagga cagcggtcat aatgccgtat atgtttcagt gagtgatgtt	1200
cttagccctg accaggtaaa acaacgtcaa gatgaagaaa atcgccgtca gcaggaatgg	1260

gatgctacgc atccgggttga agcggctgag cgaaattatg aacgcgcgcg tgcagagctg 1320
aatcaggcaa atgaagatgt tgccagaaaat caggagcgac aggctaaagc tgttcagggtt 1380
tataattcgc gtaaaaagcga acttgatgca gcgaataaaaa ctcttgctga tgcaatagct 1440
gaaataaaaac aatttaatcg atttgcccat gaccaatgg ctggcggtca cagaatgtgg 1500
caaatggccg ggcttaaagc ccagcgggcg cagacggatg taaataataa gcaggctgca 1560
tttgatgctg ctgcaaaaga gaagtcagat gctgatgctg cattgagttc tgctatggaa 1620
agcaggaaga agaaagaaga taagaaaagg agtgctgaaa ataatttaaa cgatgaaaag 1680
aataagcccc aaaaagggttt taaagattac gggcatgatt atcatccagc tccgaaaact 1740
gagaatatta aagggcttgg ttagttaag cctggatac caaaaacacc aaagcagaat 1800
ggtgtggaa aacgcaagcg ctggactgga gataaagggc gtaagattt tgagtggat 1860
tctcagcatg gtgagcttga ggggtatcgt gccagtgatg gtcagcatct tggctcattt 1920
gaccctaaaa caggcaatca gttgaaaggt ccagatccga aacgaaatat caagaaatat 1980
cttgagagg aagttatggg acttaaatgg gatttaactt gtttgataa aagtacagaa 2040
gatttaagg gtgaggagta ttcaaaagat tttggagatg acggttcaatg tatggaaagt 2100
ctaggtgtgc ctttaagga taatgttaat aacggttgct ttgatgttat agctgaatgg 2160
gtaccttgc tacaaccata cttaatcat caaattgata tttccgataa tgagtatttt 2220
gtttcgtttgc attatcgta tggatggg tgatcaaata ttatcaggga tgagttgata 2280
tacgggcttc tagtggatcat ggtgaacgc tggagcctcc aaatgttagaa atgttatatt 2340
ttttatttagg ttcttggtta taattgctcc gcaatgattt aaataagcat tattttaaac 2400
attctcagga gaggtgaagg tggagctaaa aaaaagtatt ggtgattaca ctgaaaccga 2460
attcaaaaaaa ttatcgtaag acatcatcaa ttgtgaaggt gatgaaaaaa aacaggatga 2520
taacctcgag tattttataa atgttactga gcatccttagt ggttctgatc tgatttatta 2580
cccagaaggt aataatgatg gtagccctga aggtgttatt aaagagatta aagaatggcg 2640
agccgctaac ggtaaatcgat gattaaaca gggctgaaat atgaatgccg gttgtttatg 2700
gatgaatggc tggcattctt tcacaacaag gagtcgttat gaaaaaaaaata acagggatta 2760
ttttattgct tcttgcagtc attattctgt ctgcattgtca ggcaaaactat atccggatg 2820
ttcaggcgg gaccgtatct ccgtcatcaa cagctgaagt gaccggatta gcaacgcagt 2880
aacccgaaat cctctttgac aaaaacaag cgtgtcaggc tgattctgat gcgcttttt 2940

tttggaaatgt cacaaaaatt ccatgtggga gatggatct aaaatcctcg tgcagaactt 3000
tccatccagg gggagaaaac ttgtcgttt gagccgttcg gtgttcagaa cgcacgaaac 3060
cgatcg 3066

<210> 17
<211> 551
<212> PRT
<213> Escherichia coli

<400> 17

Met Ser Gly Gly Asp Gly Arg Gly His Asn Thr Gly Ala His Ser Thr
1 5 10 15

Ser Gly Asn Ile Asn Gly Gly Pro Thr Gly Leu Gly Val Gly Gly Gly
20 25 30

Ala Ser Asp Gly Ser Gly Trp Ser Ser Glu Asn Asn Pro Trp Gly Gly
35 40 45

Gly Ser Gly Ser Gly Ile His Trp Gly Gly Ser Gly His Gly Asn
50 55 60

Gly Gly Gly Asn Gly Asn Ser Gly Gly Ser Gly Thr Gly Gly Asn
65 70 75 80

Leu Ser Ala Val Ala Ala Pro Val Ala Phe Gly Phe Pro Ala Leu Ser
85 90 95

Thr Pro Gly Ala Gly Gly Leu Ala Val Ser Ile Ser Ala Gly Ala Leu
100 105 110

Ser Ala Ala Ile Ala Asp Ile Met Ala Ala Leu Lys Gly Pro Phe Lys
115 120 125

Phe Gly Leu Trp Gly Val Ala Leu Tyr Gly Val Leu Pro Ser Gln Ile
130 135 140

Ala Lys Asp Asp Pro Asn Met Met Ser Lys Ile Val Thr Ser Leu Pro
145 150 155 160

Ala Asp Asp Ile Thr Glu Ser Pro Val Ser Ser Leu Pro Leu Asp Lys
165 170 175

Ala Thr Val Asn Val Asn Val Arg Val Val Asp Asp Val Lys Asp Glu
180 185 190

Arg Gln Asn Ile Ser Val Val Ser Gly Val Pro Met Ser Val Pro Val
195 200 205

Val Asp Ala Lys Pro Thr Glu Arg Pro Gly Val Phe Thr Ala Ser Ile
210 215 220

Pro Gly Ala Pro Val Leu Asn Ile Ser Val Asn Asn Ser Thr Pro Ala
225 230 235 240

Val Gln Thr Leu Ser Pro Gly Val Thr Asn Asn Thr Asp Lys Asp Val
245 250 255

Arg Pro Ala Gly Phe Thr Gln Gly Gly Asn Thr Arg Asp Ala Val Ile
260 265 270

Arg Phe Pro Lys Asp Ser Gly His Asn Ala Val Tyr Val Ser Val Ser
275 280 285

Asp Val Leu Ser Pro Asp Gln Val Lys Gln Arg Gln Asp Glu Glu Asn
290 295 300

Arg Arg Gln Gln Glu Trp Asp Ala Thr His Pro Val Glu Ala Ala Glu
305 310 315 320

Arg Asn Tyr Glu Arg Ala Arg Ala Glu Leu Asn Gln Ala Asn Glu Asp
325 330 335

Val Ala Arg Asn Gln Glu Arg Gln Ala Lys Ala Val Gln Val Tyr Asn
340 345 350

Ser Arg Lys Ser Glu Leu Asp Ala Ala Asn Lys Thr Leu Ala Asp Ala
355 360 365

Ile Ala Glu Ile Lys Gln Phe Asn Arg Phe Ala His Asp Pro Met Ala
370 375 380

Gly Gly His Arg Met Trp Gln Met Ala Gly Leu Lys Ala Gln Arg Ala
385 390 395 400

Gln Thr Asp Val Asn Asn Lys Gln Ala Ala Phe Asp Ala Ala Ala Lys
405 410 415

Glu Lys Ser Asp Ala Asp Ala Ala Leu Ser Ser Ala Met Glu Ser Arg
420 425 430

Lys Lys Lys Glu Asp Lys Lys Arg Ser Ala Glu Asn Asn Leu Asn Asp
435 440 445

Glu Lys Asn Lys Pro Arg Lys Gly Phe Lys Asp Tyr Gly His Asp Tyr
450 455 460

His Pro Ala Pro Lys Thr Glu Asn Ile Lys Gly Leu Gly Asp Leu Lys
465 470 475 480

Pro Gly Ile Pro Lys Thr Pro Lys Gln Asn Gly Gly Lys Arg Lys
485 490 495

Arg Trp Thr Gly Asp Lys Gly Arg Lys Ile Tyr Glu Trp Asp Ser Gln
500 505 510

His Gly Glu Leu Glu Gly Tyr Arg Ala Ser Asp Gly Gln His Leu Gly
515 520 525

Ser Phe Asp Pro Lys Thr Gly Asn Gln Leu Lys Gly Pro Asp Pro Lys
530 535 540

Arg Asn Ile Lys Lys Tyr Leu
545 550

<210> 18
<211> 110
<212> PRT
<213> Escherichia coli

<400> 18

Ala Glu Asn Asn Leu Asn Asp Glu Lys Asn Lys Pro Arg Lys Gly Phe
1 5 10 15

Lys Asp Tyr Gly His Asp Tyr His Pro Ala Pro Lys Thr Glu Asn Ile
20 25 30

Lys Gly Leu Gly Asp Leu Lys Pro Gly Ile Pro Lys Thr Pro Lys Gln
35 40 45

Asn Gly Gly Gly Lys Arg Lys Arg Trp Thr Gly Asp Lys Gly Arg Lys
50 55 60

Ile Tyr Glu Trp Asp Ser Gln His Gly Glu Leu Glu Gly Tyr Arg Ala
65 70 75 80

Ser Asp Gly Gln His Leu Gly Ser Phe Asp Pro Lys Thr Gly Asn Gln
85 90 95

Leu Lys Gly Pro Asp Pro Lys Arg Asn Ile Lys Lys Tyr Leu
100 105 110

<210> 19

<211> 97

<212> PRT

<213> Escherichia coli

<400> 19

Lys Gly Phe Lys Asp Tyr Gly His Asp Tyr His Pro Ala Pro Lys Thr
1 5 10 15

Glu Asn Ile Lys Gly Leu Gly Asp Leu Lys Pro Gly Ile Pro Lys Thr
20 25 30

Pro Lys Gln Asn Gly Gly Lys Arg Lys Arg Trp Thr Gly Asp Lys
35 40 45

Gly Arg Lys Ile Tyr Glu Trp Asp Ser Gln His Gly Glu Leu Glu Gly
50 55 60

Tyr Arg Ala Ser Asp Gly Gln His Leu Gly Ser Phe Asp Pro Lys Thr
65 70 75 80

Gly Asn Gln Leu Lys Gly Pro Asp Pro Lys Arg Asn Ile Lys Lys Tyr
85 90 95

Leu

<210> 20

<211> 330

<212> DNA

<213> Escherichia coli

<400> 20
ggccgcctcg gccgttagtag tagaaagggtt ttaaagatta cgggcatgat tatcatccag 60
ctccgaaaac tgagaatatt aaagggttg gtgatcttaa gcctggata ccaaaaacac 120
caaaggcagaa tggtggtgga aaacgcaagc gctggactgg agataaaggg cgtaagattt 180
atgagtggga ttctcagcat ggtgagctg aggggtatcg tgccagtatgat ggtcagcatc 240
ttggctcatt tgaccctaaa acaggcaatc agttgaaagg tccagatccg aaacgaaata 300
tcaagaaata tcttgaggc catagcggcc 330

<210> 21
<211> 60
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic single-stranded oligonucleotide

<400> 21
gatccccggg taccgaggcc gcctcggccg agctcgaatt cggccggcca tagcggccgc 60

<210> 22
<211> 60
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic single-stranded oligonucleotide

<400> 22
aattgcggcc gctatggccg gccgaattcg agctcggccg aggccgcctc ggtacccggg 60

<210> 23
<211> 650
<212> DNA
<213> *Saccharomyces cerevisiae*

<400> 23
ggccgcctcg gccaggatct ggtggcgaac aagcatgcga tatttgccga cttaaaaagc 60
tcaagtgctc caaagaaaaa ccgaagtgcg ccaagtgtct gaagaacaac tggagtgtc 120
gctactctcc caaaacccaa aggtctccgc tgacttagggc acatctgaca gaagtggaat 180
caaggctaga aagactggaa cagctatttc tactgatttt tcctcgagaa gaccttgaca 240
tgattttgaa aatggattct ttacaggata taaaagcatt gttaacagga ttatttgac 300
aagataatgt gaataaagat gccgtcacag atagattggc ttcagtggag actgatatgc 360

ctctaacatt gagacagcat agaataagtg cgacatcatc atcggaaagag agtagtaaca	420
aaggtaaaag acagttgact gtatcgattt actcgccagc tcatacatgtat aactccacaa	480
ttccgttggaa ttttatgccccc agggatgctc ttcatggatt tgattggctc gaagaggatg	540
acatgtcgga tggcttgcccc ttccctgaaaaa cggaccccaa caataatggg ttctttggcg	600
acggttctct cttatgtatt ctgcgtgac tgactgaggc catagcggcc	650

<210> 24
<211> 535
<212> DNA
<213> Aspergillus oryzae

<400> 24 ggccgcctcg gccattacta gtctactagt aactctgtct tatcgtcata tcccataggt	60
gagtttgggtt gttttgtttc cactgagatc atgacctcct cctaccccac catccacta	120
ttttgttac ggttagccatg acccctccat ggcaaagaga gaggaggacg aggacgatca	180
ggaaactgtg tctcgccgtc ataccacaat cgtttatcc tgattgacat cttcttaat	240
atcggtgtaa ctgttccctga ctctcggtca actgaaattt gatctccca ccactgcctc	300
taccttgcgtac tccgtgactg aaccatccga tcattcttt tgggtcgctcg gtgaacacaa	360
cccccgctgc tagtctccctt ccaacaccga tccagaattt ttttgcattt ccattccctt	420
cgtttatatc tgtcgtctct cctcccttcc cgtctttt cttccgtcctt ccaagtttgt	480
cgactgacca attccgcagc tcgtcaaaat gcctatcacc aaggccatag cggcc	535