# **Project Documentation**

# I. Data description

The data includes the Personal Identifying Information (PII) from the applications. There are in total 10 PII fields. The records are collected from January 1st 2017 to December 31st 2017, with a total of 1,000,000 rows. The objective is to look for identity fraud and identify fraud algorithms from the PII fields.

#### **Summary Tables**

#### a. Numerical Table

| Field | %<br>Populated | Min        | in Max I   |     | Standard<br>Deviation | %Zero |
|-------|----------------|------------|------------|-----|-----------------------|-------|
| Date  | 100%           | 2017-01-01 | 2017-12-31 | n/a | n/a                   | 0%    |
| Dob   | 100%           | 1900-01-01 | 2016-10-31 | n/a | n/a                   | 0%    |

#### b. Categorical table

| Field       | % Populated | # Unique Values | Most Common Value |  |  |
|-------------|-------------|-----------------|-------------------|--|--|
| Record      | 100%        | 1,000,000       | 1                 |  |  |
| SSN         | 100%        | 835,819         | 99999999          |  |  |
| Firstname   | 100%        | 78,136          | EAMSTRMT          |  |  |
| Lastname    | 100%        | 177,001         | ERJSAXA           |  |  |
| Address     | 100%        | 828,774         | 123 MAIN ST       |  |  |
| Zip5        | 100%        | 26,370          | 68138             |  |  |
| Homephone   | 100%        | 28,244          | 999999999         |  |  |
| Fraud_Label | 100%        | 2               | 0                 |  |  |

## II. Data cleaning

In order to prepare the data for feature engineering, we first fix the frivolous fields. Since the fields are filled with default values from the business, we need to replace them with a unique value that will not cause it to link to a previous value, in this case the record number. Then, we encoded the categorical fields to be used for linking later to make new variables. We also conducted statistical smoothing for 'fraud\_label' to avoid any imbalance of class distribution, which could underestimate the likelihood of fraud.

#### III. Variable creation

There are two most common modes of identity fraud:

- 1. A single fraudster using core information of multiple identities (SSN, Name, DOB) and his own contact number and address.
- 2. A person's core information is compromised in a data breach and used by multiple fraudsters.

As a result, we essentially create variables to count by different linkages and for each combination, we also created variables that account for number of days since that combination is seen, number of records seen over the past number of days (velocity), and ratio of the short-term velocity to a longer-term averaged velocity (relative velocity). The table below shows the total of 4050 variables created. After deduplication, there were 2240 variables left. However, after creating the variables. We realized that the max variables were improperly formed, so we decided to remove them.

### **Variable Summary Table**

| Description of Variables                                                                                                       | # Variables Created |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Age When Apply Age of the applicant upon application submission                                                                | 1                   |
| Day of Week Target Encoding Average fraud percentage of that day                                                               | 1                   |
| Days Since Number of days since an application with that entity was last seen                                                  | 23                  |
| Velocity  Number of records with the same entity over the last 0,1,3,7,14,30 days                                              | 138                 |
| Relative Velocity Ratio of the short-term velocity (0,1 days) to a longer-term (3,7,14,30 day) averaged velocity               | 184                 |
| Count by Entities  Count of unique values for an entity comparing with another entity over the period of 0,1,3,7,14,30,60 days | 3542                |
| Maximum Indicator  Maximum count of each entity over the period of 1,3,7,30 days                                               | 92                  |
| Age Indicator Include the maximum value, minimum value and the average value of applicants' age by each entity                 | 69                  |
| Total Number of Variables                                                                                                      | 4050                |

## IV. Feature selection

In order for the model to run faster and allow more hyperparameter tuning, feature selection is needed. After making more than 4000 variables, we ran a filter to get down to 200 candidate variables. Then, we chose a simple, fast nonlinear model for the wrapper and ran it 20 times. In the end, we have a final list of 20 variables that are sorted in terms of their univariate KS's (the order of importance). Below is the final list of variables and the plot showing model performance versus number of variables.

#### **List of Final variables**

| Wrapper order | Variable                                       | Filter Score |
|---------------|------------------------------------------------|--------------|
| 1             | fulladdress_day_since                          | 0.3332690    |
| 2             | ssn_firstname_day_since                        | 0.2264275    |
| 3             | fulladdress_unique_count_for_ssn_name_30       | 0.2819330    |
| 4             | address_count_30                               | 0.3326480    |
| 5             | address_count_7                                | 0.3017353    |
| 6             | fulladdress_unique_count_for_ssn_dob_14        | 0.2762090    |
| 7             | address_count_14                               | 0.3224360    |
| 8             | fulladdress_unique_count_for_ssn_homephone_60  | 0.2899910    |
| 9             | ssn_count_30                                   | 0.2268940    |
| 10            | address_unique_count_for_name_homephone_30     | 0.2845160    |
| 11            | address_unique_count_for_ssn_zip5_7            | 0.2732480    |
| 12            | fulladdress_unique_count_for_ssn_lastname_30   | 0.2818810    |
| 13            | address_day_since                              | 0.3341400    |
| 14            | address_count_0_by_30                          | 0.2919220    |
| 15            | fulladdress_count_0_by_30                      | 0.2907220    |
| 16            | address_unique_count_for_ssn_zip5_60           | 0.2897236    |
| 17            | address_unique_count_for_homephone_name_dob_60 | 0.2914098    |
| 18            | address_unique_count_for_dob_homephone_60      | 0.2875560    |
| 19            | fulladdress_unique_count_for_ssn_homephone_60  | 0.2899906    |
| 20            | address_unique_count_for_ssn_name_60           | 0.2896792    |

## **Model Performance**



# V. Preliminary models exploration

After having our final list of variables, we choose the final 20 variables for model exploration. We first ran a linear logistic regression model as a baseline and explored with a few nonlinear models, which includes decision tree, random forest, LGBM, neural network, GBC, Catboost, XGBoost. The table below shows the results of multiple runs with different parameters and number of variables. We also attempted some overfitting and underfitting results.

| Model               |                |                           |                  | Paramet     | ter                  | Average FDR at 3% |                               |          |                  |                 |              |
|---------------------|----------------|---------------------------|------------------|-------------|----------------------|-------------------|-------------------------------|----------|------------------|-----------------|--------------|
| Logistic regression | # of variables | penalty                   | С                | s           | olver                | H_                | Train                         |          |                  |                 |              |
| 1                   | 10             | none                      | none             | none        |                      | none              |                               | 0.485405 | 0.487786         | 0.471081        |              |
| 2                   | 10             | И                         | none             | saga        |                      | none              |                               | 0.487824 | 0.488927         | 0.473931        |              |
| 3                   | 10             | 12                        | 1                |             | iaga                 | no                | ne                            | 0.488076 | 0.488086         | 0.473764        |              |
| 4                   | 10             | elastionet                | none             |             | iaga                 | 0                 | 4                             | 0.486106 | 0.480378         | 0.469153        |              |
| 5                   | 10             | none                      | none             |             | linear               | 0                 | 4                             | 0.489868 | 0.484578         | 0.474099        |              |
| 6                   | 5              | none                      | none             | lib.        | linear               | 0                 | 4                             | 0.477955 | 0.475607         | 0.463286        |              |
| Decision Tree       | # of variables | Max_de                    |                  |             | mple_split           | min_sam           |                               | Train    | Test             | OOT             |              |
| 1                   | 10             | 5                         |                  | _           | 50                   | 3                 | 0                             | 0.51256  | 0.511225         | 0.489187        |              |
| 2                   | 10             | 10                        |                  |             | 40                   | 2                 | 0                             | 0.531522 | 0.518441         | 0.506119        |              |
| 3                   | 10             | 15                        |                  |             | 30                   | -                 | 0                             | 0.532135 | 0.523659         | 0.503521        |              |
| 4                   | 10             | 20                        |                  |             | 20                   |                   | 5                             | 0.539516 | 0.516225         | 0.501341        |              |
| 5                   | 10             | 30                        |                  |             | 10                   |                   | 3                             | 0.539554 | 0.519933         | 0.49715         |              |
| 6                   | 5              | 30                        |                  |             | 10                   |                   | 3                             | 0.532687 | 0.520083         | 0.499749        |              |
| 7                   | 20             | 30                        |                  |             | 10                   |                   | 3                             | 0.545973 | 0.514263         | 0.499581        |              |
| Random Forest       | # of variables | n estimators              | max depth        | min sa      | mple_split           | min samples leaf  | max features                  | Train    | Test             | OOT             |              |
| 1                   | 10             | 10                        | 5                |             | 50                   | 30                | 3                             | 0.51525  | 0.519802         | 0.493965        |              |
| 2                   | 10             | 30                        | 15               |             | 40                   | 20                | 5                             | 0.531948 | 0.527312         | 0.504107        |              |
| 3                   | 10             | 50                        | 25               |             | 30                   | 10                | 8                             | 0.539951 | 0.521735         | 0.501509        |              |
| 4                   | 10             | 100                       | 30               |             | 20                   | 5                 | 10                            | 0.539889 | 0.522605         | 0.500671        |              |
| 5                   | 15             | 100                       | 30               |             | 20                   | 5                 | 10                            | 0.543988 | 0.516966         | 0.500671        | OVERFITTING  |
| LightGBM            | # of variables | n estimators              | max depth        | num leaves  | col_samplebytree     | learning_rate     | eval metric                   | Train    | Test             | OOT             | OVERFITTING  |
| 1                   | 10             | 20                        | 2                | 2           | 1                    | 0.1               | none                          | 0.511695 | 0.512854         | 0.488852        |              |
| 2                   | 10             | 100                       | 3                | 4           | 0.8                  | 0.03              | auc                           | 0.509624 | 0.50829          | 0.485163        |              |
| 3                   | 10             | 500                       | 5                |             |                      |                   |                               | 0.521047 | 0.528574         | 0.502012        |              |
| 4                   | 10             | 1000                      | 6                | 8           | 0.8                  | 0.01              | logioss                       | 0.529548 | 0.523249         | 0.506203        |              |
|                     |                |                           | -                |             |                      |                   |                               | 0.529546 |                  | 0.504694        |              |
| 5<br>Neural Network | 15             | 1000<br>hidden layer size | 6<br>activation  | 10<br>alpha | 0.8<br>learning rate | 0.01<br>solver    | logioss<br>learning rate init | Train    | Test             | 0.504694<br>0OT |              |
| 1                   | 10             | 5                         |                  | 0.1         |                      |                   | 0.01                          | 0.498557 | 0.497713         | 0.479212        |              |
| 2                   | 10             | 10                        | logistic<br>relu | 0.001       | constant             | adam<br>adam      | 0.001                         | 0.526276 | 0.523445         | 0.50285         |              |
|                     |                |                           |                  |             |                      |                   |                               | 0.529691 | 0.523445         | 0.50265         |              |
| 3                   | 10             | 20                        | relu             | 0.0001      | adaptive             | Ibfgs             | 0.0001                        |          |                  |                 |              |
| 4                   | 20             | 20                        | relu             | 0.0001      | adaptive             | lbfgs             | 0.0001                        | 0.525618 | 0.529903         | 0.507544        |              |
| 5                   | 15             | 20                        | relu             | 0.0001      | adaptive             | Ibfgs             | 0.0001                        |          |                  |                 |              |
| 6                   | 15             | (20,20,20)                | logistic         | 0.0001      | constant             | lbfgs .           | 0.0001                        | 0.467195 | 0.468398         | 0.45482         | UNDERFITTING |
| GBC                 | # of variables | n_estimators              | max_depth        | min_sa      | mples_leaf           | subs              |                               | Train    | Test             | 00T             |              |
| 1                   | 10             | 10                        | 5                |             | 3                    |                   |                               | 0.526357 | 0.517669         | 0.501509        |              |
| 2                   | 10             | 50<br>100                 | 10               |             | 5                    |                   | .8                            |          |                  |                 |              |
| 3                   |                |                           |                  |             |                      |                   |                               | 0.541146 | 0.519249         | 0.499162        |              |
| 4                   | 5              | 100                       | 15               |             | 5                    |                   | .5                            |          |                  |                 |              |
| 5                   | 15             | 100                       | 15               |             | 5                    |                   | .5                            | 0.543792 | 0.516226         | 0.499329        | OVERFITTING  |
| Catboost            | # of variables | bootstrap_type            | verbose          | max         | _depth               | iteration         | random_state                  | Train    | Test             | 00T             |              |
| 1                   | 10             | none                      | 0                |             | 2                    | 5                 | None                          | 0.540728 | 0.543309         | 0.513412        |              |
| 2                   | 10             | Bayesian                  | 0                | 5           |                      | 10                | 10                            |          |                  |                 |              |
| 3                   | 10             | Bayesian                  | 0                | 16          |                      | 15                | 10                            | 0.526529 | 0.523115         | 0.501928        |              |
| 4                   | 10             | MVS                       | 0                | 16          |                      | 20                | 5                             | 0.528429 | 0.523049         | 0.503521        |              |
| 5                   | 20             | MVS                       | 0                | 16          |                      | 20                | 5                             | 0.531203 | 0.524023<br>Test | 0.504946<br>OOT |              |
| XGBoost             | # of variables | max_depth                 | n_estimators     | tree_method |                      | subs              |                               | Train    | 0.543366         |                 |              |
| 1                   | 10             | 2                         | 5                |             | auto                 |                   | 1                             | 0.542421 |                  | 0.515507        |              |
| 2                   | 10             | 10                        | 50               |             | pprox                |                   | .8                            | 0.530224 | 0.524862         | 0.507376        |              |
| 3                   | 10             | 20                        | 100              |             | auto                 |                   | .5                            | 0.5378   | 0.524138         | 0.501425        |              |
| 4                   | 5              | 30                        | 100              |             | auto                 | 0.5               |                               | 0.529266 | 0.525789         | 0.5             |              |
| 5                   | 15             | 30                        | 1000             |             | hist                 |                   | 1                             | 0.545249 | 0.510646         | 0.498324        | OVERFITTING  |

# VI. Summary of results

# The final model we choose is LightGBM with the following parameters:

Number of variables = 10 n\_estimators= 1000 Max\_depth = 6 Num\_leaves = 10 Col\_samplebytree = 0.8 Learning\_rate = 0.01 Eval\_metric = logloss

## **RESULTS**

|         | trn    | tst    | oot    |
|---------|--------|--------|--------|
| 0.0000  | 0.5315 | 0.5195 | 0.5080 |
| 1.0000  | 0.5291 | 0.5241 | 0.5071 |
| 2.0000  | 0.5268 | 0.5294 | 0.5050 |
| 3.0000  | 0.5257 | 0.5323 | 0.5042 |
| 4.0000  | 0.5265 | 0.5301 | 0.5063 |
| Average | 0.5279 | 0.5271 | 0.5061 |

The reason we chose this model is because the average train and test of this model is close to 0.525, while training is a bit better than testing, and OOT is near to 0.5.

Below are the three tables of the final model results (the first and last 10 bins of train, test, and OOT).

#### **TRAIN**

Total of Goods = 574997 Total of Bads = 8457 Fraud Rate (%Cumulative Bad) = 0.014707

|     |          | Sta   | tistics by b | oin   |       |        | Cun                | nulative statis   | tics             |            |           |           |
|-----|----------|-------|--------------|-------|-------|--------|--------------------|-------------------|------------------|------------|-----------|-----------|
| bin | #records | #good | #bad         | %good | %bad  | total  | cumulative<br>good | cumulative<br>bad | %cumulative good | FDR        | KS        | FPR       |
| 0   | 0        | 0     | 0            | 0.00  | 0.00  | 0      | 0                  | 0                 | 0.00             | 0.000000   | 0.000000  | 0.000000  |
| 1   | 5835     | 1591  | 4244         | 27.27 | 72.73 | 5835   | 1591               | 4244              | 0.28             | 50.183280  | 49.906583 | 0.374882  |
| 2   | 5834     | 5686  | 148          | 97.46 | 2.54  | 11669  | 7277               | 4392              | 1.27             | 51.933310  | 50.667738 | 1.656876  |
| 3   | 5835     | 5774  | 61           | 98.95 | 1.05  | 17504  | 13051              | 4453              | 2.27             | 52.654606  | 50.384855 | 2.930833  |
| 4   | 5834     | 5779  | 55           | 99.06 | 0.94  | 23338  | 18830              | 4508              | 3.27             | 53.304954  | 50.030155 | 4.177019  |
| 5   | 5835     | 5781  | 54           | 99.07 | 0.93  | 29173  | 24611              | 4562              | 4.28             | 53.943479  | 49.663283 | 5.394783  |
| 6   | 5834     | 5802  | 32           | 99.45 | 0.55  | 35007  | 30413              | 4594              | 5.29             | 54.321864  | 49.032619 | 6.620157  |
| 7   | 5835     | 5797  | 38           | 99.35 | 0.65  | 40842  | 36210              | 4632              | 6.30             | 54.771195  | 48.473771 | 7.817358  |
| 8   | 5834     | 5790  | 44           | 99.25 | 0.75  | 46676  | 42000              | 4676              | 7.30             | 55.291475  | 47.987089 | 8.982036  |
| 9   | 5835     | 5794  | 41           | 99.30 | 0.70  | 52511  | 47794              | 4717              | 8.31             | 55.776280  | 47.464237 | 10.132287 |
| 10  | 5834     | 5792  | 42           | 99.28 | 0.72  | 58345  | 53586              | 4759              | 9.32             | 56.272910  | 46.953557 | 11.259929 |
|     |          |       |              |       |       |        |                    |                   |                  |            |           |           |
| 91  | 5834     | 5796  | 38           | 99.35 | 0.65  | 530943 | 522769             | 8174              | 90.92            | 96.653660  | 5.736838  | 63.955102 |
| 92  | 5835     | 5800  | 35           | 99.40 | 0.60  | 536778 | 528569             | 8209              | 91.93            | 97.067518  | 5.141995  | 64.388963 |
| 93  | 5834     | 5808  | 26           | 99.55 | 0.45  | 542612 | 534377             | 8235              | 92.94            | 97.374956  | 4.439340  | 64.890953 |
| 94  | 5835     | 5799  | 36           | 99.38 | 0.62  | 548447 | 540176             | 8271              | 93.94            | 97.800639  | 3.856496  | 65.309636 |
| 95  | 5834     | 5787  | 47           | 99.19 | 0.81  | 554281 | 545963             | 8318              | 94.95            | 98.356391  | 3.405809  | 65.636331 |
| 96  | 5835     | 5809  | 26           | 99.55 | 0.45  | 560116 | 551772             | 8344              | 95.96            | 98.663829  | 2.702980  | 66.127996 |
| 97  | 5834     | 5799  | 35           | 99.40 | 0.60  | 565950 | 557571             | 8379              | 96.97            | 99.077687  | 2.108312  | 66.543860 |
| 98  | 5835     | 5804  | 31           | 99.47 | 0.53  | 571785 | 563375             | 8410              | 97.98            | 99.444247  | 1.465475  | 66.988704 |
| 99  | 5834     | 5804  | 30           | 99.49 | 0.51  | 577619 | 569179             | 8440              | 98.99            | 99.798983  | 0.810814  | 67.438270 |
| 100 | 5835     | 5818  | 17           | 99.71 | 0.29  | 583454 | 574997             | 8457              | 100.00           | 100.000000 | 0.000000  | 67.990659 |

**TEST** 

Total of Goods = 246504 Total of Bads = 3550 Fraud Rate (%Cumulative Bad) = 0.014401

|     |          |       | Statistics by | / bin |       |        | Cur                | nulative statist  | ics              |            |           |           |
|-----|----------|-------|---------------|-------|-------|--------|--------------------|-------------------|------------------|------------|-----------|-----------|
| bin | #records | #good | #bad          | %good | %bad  | total  | cumulative<br>good | cumulative<br>bad | %cumulative good | FDR        | кs        | FPR       |
| 0   | 0        | 0     | 0             | 0.00  | 0.00  | 0      | 0                  | 0                 | 0.00             | 0.000000   | 0.000000  | 0.000000  |
| 1   | 2501     | 713   | 1788          | 28.51 | 71.49 | 2501   | 713                | 1788              | 0.29             | 50.366197  | 50.076951 | 0.398770  |
| 2   | 2500     | 2446  | 54            | 97.84 | 2.16  | 5001   | 3159               | 1842              | 1.28             | 51.887324  | 50.605798 | 1.714984  |
| 3   | 2501     | 2461  | 40            | 98.40 | 1.60  | 7502   | 5620               | 1882              | 2.28             | 53.014085  | 50.734193 | 2.986185  |
| 4   | 2500     | 2478  | 22            | 99.12 | 0.88  | 10002  | 8098               | 1904              | 3.29             | 53.633803  | 50.348650 | 4.253151  |
| 5   | 2501     | 2481  | 20            | 99.20 | 0.80  | 12503  | 10579              | 1924              | 4.29             | 54.197183  | 49.905552 | 5.498441  |
| 6   | 2500     | 2484  | 16            | 99.36 | 0.64  | 15003  | 13063              | 1940              | 5.30             | 54.647887  | 49.348560 | 6.733505  |
| 7   | 2501     | 2479  | 22            | 99.12 | 0.88  | 17504  | 15542              | 1962              | 6.30             | 55.267606  | 48.962611 | 7.921509  |
| 8   | 2500     | 2484  | 16            | 99.36 | 0.64  | 20004  | 18026              | 1978              | 7.31             | 55.718310  | 48.405620 | 9.113246  |
| 9   | 2501     | 2489  | 12            | 99.52 | 0.48  | 22505  | 20515              | 1990              | 8.32             | 56.056338  | 47.733924 | 10.309045 |
| 10  | 2500     | 2486  | 14            | 99.44 | 0.56  | 25005  | 23001              | 2004              | 9.33             | 56.450704  | 47.119783 | 11.477545 |
|     |          |       |               |       |       |        |                    |                   |                  |            |           |           |
| 91  | 2500     | 2494  | 6             | 99.76 | 0.24  | 227548 | 224115             | 3433              | 90.92            | 96.704225  | 5.786468  | 65.282552 |
| 92  | 2501     | 2487  | 14            | 99.44 | 0.56  | 230049 | 226602             | 3447              | 91.93            | 97.098592  | 5.171921  | 65.738903 |
| 93  | 2500     | 2481  | 19            | 99.24 | 0.76  | 232549 | 229083             | 3466              | 92.93            | 97.633803  | 4.700654  | 66.094345 |
| 94  | 2501     | 2480  | 21            | 99.16 | 0.84  | 235050 | 231563             | 3487              | 93.94            | 98.225352  | 4.286130  | 66.407514 |
| 95  | 2500     | 2493  | 7             | 99.72 | 0.28  | 237550 | 234056             | 3494              | 94.95            | 98.422535  | 3.471967  | 66.987979 |
| 96  | 2501     | 2491  | 10            | 99.60 | 0.40  | 240051 | 236547             | 3504              | 95.96            | 98.704225  | 2.743121  | 67.507705 |
| 97  | 2500     | 2489  | 11            | 99.56 | 0.44  | 242551 | 239036             | 3515              | 96.97            | 99.014085  | 2.043257  | 68.004552 |
| 98  | 2501     | 2493  | 8             | 99.68 | 0.32  | 245052 | 241529             | 3523              | 97.98            | 99.239437  | 1.257262  | 68.557763 |
| 99  | 2500     | 2487  | 13            | 99.48 | 0.52  | 247552 | 244016             | 3536              | 98.99            | 99.605634  | 0.614546  | 69.009050 |
| 100 | 2501     | 2487  | 14            | 99.44 | 0.56  | 250053 | 246503             | 3550              | 100.00           | 100.000000 | 0.000000  | 69.437465 |

## OOT

Total of Goods = 164107 Total of Bads = 2386 Fraud Rate (%Cumulative Bad) = 0.014539

| Statistics by bin |          |       |      |       |       |        |                    | nulative statist  | ics              |            |           |           |
|-------------------|----------|-------|------|-------|-------|--------|--------------------|-------------------|------------------|------------|-----------|-----------|
| bin               | #records | #good | #bad | %good | %bad  | total  | cumulative<br>good | cumulative<br>bad | %cumulative good | FDR        | кѕ        | FPR       |
| 0                 | 0        | 0     | 0    | 0.00  | 0.00  | 0      | 0                  | 0                 | 0.00             | 0.000000   | 0.000000  | 0.000000  |
| 1                 | 1665     | 511   | 1154 | 30.69 | 69.31 | 1665   | 511                | 1154              | 0.31             | 48.365465  | 48.054083 | 0.442808  |
| 2                 | 1665     | 1638  | 27   | 98.38 | 1.62  | 3330   | 2149               | 1181              | 1.31             | 49.497066  | 48.187555 | 1.819644  |
| 3                 | 1665     | 1638  | 27   | 98.38 | 1.62  | 4995   | 3787               | 1208              | 2.31             | 50.628667  | 48.321026 | 3.134934  |
| 4                 | 1665     | 1645  | 20   | 98.80 | 1.20  | 6660   | 5432               | 1228              | 3.31             | 51.466890  | 48.156855 | 4.423453  |
| 5                 | 1665     | 1658  | 7    | 99.58 | 0.42  | 8325   | 7090               | 1235              | 4.32             | 51.760268  | 47.439916 | 5.740891  |
| 6                 | 1665     | 1653  | 12   | 99.28 | 0.72  | 9990   | 8743               | 1247              | 5.33             | 52.263202  | 46.935580 | 7.011227  |
| 7                 | 1665     | 1655  | 10   | 99.40 | 0.60  | 11655  | 10398              | 1257              | 6.34             | 52.682313  | 46.346204 | 8.272076  |
| 8                 | 1664     | 1649  | 15   | 99.10 | 0.90  | 13319  | 12047              | 1272              | 7.34             | 53.310981  | 45.970039 | 9.470912  |
| 9                 | 1665     | 1653  | 12   | 99.28 | 0.72  | 14984  | 13700              | 1284              | 8.35             | 53.813915  | 45.465703 | 10.669782 |
| 10                | 1665     | 1655  | 10   | 99.40 | 0.60  | 16649  | 15355              | 1294              | 9.36             | 54.233026  | 44.876326 | 11.866306 |
|                   |          |       |      |       |       |        |                    |                   |                  |            |           |           |
| 91                | 1665     | 1658  | 7    | 99.58 | 0.42  | 151509 | 149210             | 2299              | 90.92            | 96.353730  | 5.431344  | 64.902131 |
| 92                | 1665     | 1651  | 14   | 99.16 | 0.84  | 153174 | 150861             | 2313              | 91.93            | 96.940486  | 5.012049  | 65.223087 |
| 93                | 1664     | 1651  | 13   | 99.22 | 0.78  | 154838 | 152512             | 2326              | 92.93            | 97.485331  | 4.550843  | 65.568358 |
| 94                | 1665     | 1657  | 8    | 99.52 | 0.48  | 156503 | 154169             | 2334              | 93.94            | 97.820620  | 3.876425  | 66.053556 |
| 95                | 1665     | 1662  | 3    | 99.82 | 0.18  | 158168 | 155831             | 2337              | 94.96            | 97.946354  | 2.989405  | 66.679932 |
| 96                | 1665     | 1656  | 9    | 99.46 | 0.54  | 159833 | 157487             | 2346              | 95.97            | 98.323554  | 2.357508  | 67.130009 |
| 97                | 1665     | 1654  | 11   | 99.34 | 0.66  | 161498 | 159141             | 2357              | 96.97            | 98.784577  | 1.810651  | 67.518456 |
| 98                | 1665     | 1655  | 10   | 99.40 | 0.60  | 163163 | 160796             | 2367              | 97.98            | 99.203688  | 1.221274  | 67.932404 |
| 99                | 1665     | 1655  | 10   | 99.40 | 0.60  | 164828 | 162451             | 2377              | 98.99            | 99.622800  | 0.631897  | 68.342869 |
| 100               | 1665     | 1656  | 9    | 99.46 | 0.54  | 166493 | 164107             | 2386              | 100.00           | 100.000000 | 0.000000  | 68.779128 |