Question 1

A commitment scheme Π has the hiding property if for all PPT adversary A, there exists a negl, s.t. $Pr[Hiding_{A\Pi}(n) = 1] \leq negl(n) + \frac{1}{2}$

Question 2

 h_2 is not collision resistant. 2 messages m_0 , m_1 where $m_0 = \{0,1\}^n \mid\mid 0$ and $m_1 = \{0,1\}^n \mid\mid 0$ where $m_0 \neq m_1$. This would result in the same hash under h_2 . When the least significant bit b is 0, then the hashes will just be $\{0\}^{n+1}$. Thus both messages m_0 , m_1 will collide with the same hash.

Ouestion 3

Assume that $H_1(x)$ is not collision resistant. This means that $y = H_1(x)$ is not collision resistant. Then $z = H_1(y)$, which is also equivalent to $H_1(H_1(x))$, is also not collision resistant. However, this contradicts with H(x) being collision resistant, thus this proves that H_1 is collision resistant.

Ouestion 4

 $H_1^s(x)$ is collision resistant. Considering 2 inputs x, x' and $x \neq x'$, their resultant hashes will be $H_1^s(x) = Z_B \mid\mid L$ and $H_1^s(x') = Z_B'\mid\mid L'$. To find a collision, both $Z_B = Z_B'\mid\mid L'$ has to be the same. For L = L', both x and x' must be of the same length. For $Z_B = Z_B'\mid\mid L'$, this would mean that the hashes of x and x' are equal meaning that x = x'. However this would contradict that $x \neq x'$ proving that $H_1^s(x)$ is collision resistant.

Question 5

a) Fingerprinting Game

- 1) Adversary has an oracle access. The Adversary will create a file x_0 and Put() the file into the Oracle. The Oracle will output (i, δ) which of the file x_0 .
- 2) This will be stored in Q as (i, x, δ)
- 3) The Oracle can also answer Get() queries when the adversary inputs the index i, the Oracle will then return the (x, δ) corresponding file and fingerprint.
- 4) The Adversary now has to create a new file x' and the corresponding fingerprint δ' and Verify().
- 5) The Adversary wins (Verify() = 1) if it is able to find a new (i, x', δ') for a fingerprint that can match a file in the server.
- b) The Π is unforgeable iff for any PPT Adversary A, there is a negl, s.t.

$$Pr[Fileforge_{A,\Pi}(n) = 1] \le negl(n)$$

c) Definition of a Fingerprint Server:

Define Q as a storage which stores (i, x, δ) as a tuple.

Define H(x) as a hash function which hashes the file x

Put(x): With the input file $x, \delta := H(x)$, i will be the index of file x in Q

Get(i): With the input index i, output $\langle x_i, \delta_i \rangle$ from Q

 $Vrfy(i, x_b, \delta_b)$: With the input (i, x_b, δ_b) . First, verify $H(x_b) = \delta_b$. Next, compare $\delta_b = \delta_i$. Thus Vrfy = 1 or output 'ok', $\delta_i = \delta_b = H(x_b)$. Else Vrfy = 0.