

# Интеллектуальные информационные системы Вводная лекция

Шпигарь Андрей Николаевич

Материалы курса доступны по ссылке:

https://github.com/AndreyShpigar/ML-course

# Чего не будет в курсе?

- × Сложной математики
- × Написания кода
- × Exploratory data analysis
- × Домашних заданий



### Что будет в курсе?

- ✓ Не очень сложная математика
- ✓ Обзор основных методов ML и DL
- ✓ Примеры прикладных задач
- ✓ Реализация алгоритмов



#### Содержание курса

- L01 Введение в интеллектуальные информационные системы
- L02 Линейные модели классификации и регрессии
- L03 Логистическая регрессия. Байесовские методы классификации
- L04 Метод опорных векторов. Метод главных компонент
- L05 Оценка качества моделей, метрики классификации и регрессии
- L06 Логические методы классификации. Решающие деревья
- L07 Ансамблевые методы, случайный лес
- L08 Градиентный бустинг
- L09 Deep Learning intro: нейронные сети
- L10 Глубокие нейронные сети и основные архитектуры
- L11 Нейронные сети с обучением без учителя
- L12 Модели внимания и трансформеры
- L13 Рекомендательные системы
- L14 Обучение с подкреплением
- L15 Интерпретируемость и объяснимость в машинном обучении

# Определение интеллектуальных информационных систем. Основные понятия и определения.

- Интеллект мыслительная способность человека.
- **Мышление** способность человека с помощью размышлений и последовательных мыслительных действий получать желаемые результаты.
- *Искусственный интеллект* создание вычислительной системы, имитирующей человеческие навыки обработки информации.
- Данные совокупность объективных сведений.
- *Информация* сведения, неизвестные ранее получателю информации, пополняющие его знания, подтверждающие или опровергающие положения и соответствующие убеждения.
- *Знания* совокупность факторов, закономерностей и эвристических правил, с помощью которых решается поставленная задача.
- Интеллектуальная информационная система модель интеллектуальных возможностей человека в целенаправленном поиске, анализе и синтезе текущей информации об окружающей действительности для получения о ней новых знаний и решения на этой основе различных задач.

# Классификация интеллектуальных систем

Интеллектуальные информационные системы

Интеллектуальный интерфейс

→ Экспертные системы

• Самообучающиеся системы

Адаптивные системы

#### *Системы с интеллектуальным интерфейсом* включают в себя:

- 1. Естественно языковой интерфейс
- 2. Интеллектуальные базы данных
- 3. Гипертекстовые системы
- 4. Системы контекстной помощи
- 5. Когнитивная графика

**Экспертные системы** — решают задачи на основе накапливаемой базы знаний, отражающей опыт работы экспертов в некоторой проблемной области. Включают в себя:

- 1. Классифицирующие системы
- 2. Доопределяющие системы
- 3. Трансформирующие системы
- 4. Многоагентные системы

**Самообучающиеся системы** — основаны на методах автоматической классификации примеров ситуаций реальной практики (обучение на примерах)

**Адаптивные системы** — основаны на постоянно развиваемой модели проблемной области, поддерживаемой в базе знаний, на основе которой осуществляется генерация или конфигурация программного обеспечения

# Концепция машинного обучения











# Развитие машинного обучения



generating realistic images and videos,

contributing significantly to both creative

and analytical applications

modern NLP tasks, leading to models like

BERT, GPT series, and T5.

Источник: <a href="https://www.marketcalls.in/machine-learning/infographic-evolution-of-machine-learning.html">https://www.marketcalls.in/machine-learning/infographic-evolution-of-machine-learning.html</a>

recognition with advanced, layered neural

architectures.

Sepp Hochreiter, Jürgen Schmidhuber

(LSTM). Excelled in sequential data

processing, enhancing NLP and speech

recognition.

#### Виды машинного обучения

- > Обучение с учителем (supervised learning)
- > Обучение без учителя (unsupervised learning)
- > Обучение с подкреплением (reinforcement learning)

#### Виды машинного обучения

#### • Обучение с учителем (supervised learning)

X — множество <u>объектов</u>, описанные в пространстве <u>признаков</u> (f — признак объекта, feature)

**У** – множество ответов (оценок, предсказаний, прогнозов)

 $oldsymbol{y}^*\colon oldsymbol{X} o oldsymbol{Y}$ — неизвестная <u>целевая функция</u> (target function), значения которой известны только на конечном подмножестве объектов

$$\{x_1,\ldots,x_l\}\subset X$$

Пары «объект – ответ»  $\{x_i, y_i\}$  называются прецедентами (обучающими примерами)

Совокупность обучающих примеров  $X^l = (x_i, y_i)_{i=1}^l$  называется обучающей выборкой (dataset)

Задача обучения с учителем: по выборке  $X^l$  восстановить зависимость  $y^*$ , то есть построить решающую функцию  $a: X \to Y$ , которая бы приближала целевую функцию  $y^*(x)$ , причем не только на объектах обучающей выборке, но и на всем множестве X

# Признаковое описание объектов

Признак f объекта x — результат измерения некоторой характеристики объекта. Признак это отображение  $f\colon X o D_f$ , где  $D_f$  - множество допустимых значений признака

Вектор  $(f_1(x), ..., f_n(x))$  – признаковое описание объекта

#### Типы признаков:

- Если  $m{D_f} = \{m{0}, m{1}\}$ , то f бинарный признак
- Если  $oldsymbol{D_f}$  конечное множество, то f категориальный признак
- Если  $m{D}_f$  конечное упорядоченное множество, то f порядковый признак
- Если  $oldsymbol{D}_f = \mathbb{R}$ , то f количественный признак

Матрица объектов-признаков (design matrix, матрица плана):

$$F = \|f_i(x_i)\|_{l \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_l) & \dots & f_n(x_l) \end{pmatrix}$$

#### Типы задач

#### Задача классификации (classification):

- $Y = \{-1, +1\}$  классификация на 2 класса (binary classification)
- $Y = \{1, ..., M\}$  на М непересекающихся классов (multiclass classification)
- $Y = \{0,1\}^M$  на М классов, которые могут пересекаться (multi-label classification)

#### Задача *perpeccuu (regression):*

•  $Y = \mathbb{R}$  или  $Y = \mathbb{R}^m$ 

#### Задача ранжирования (ranking, learning to rank):

• Ү – конечное упорядоченное множество

<u>Частичное обучение</u> (semi-supervised learning) — задача, в которой для одной части объектов обучающей выборки известны и признаки, и ответы, а для другой только признаки

# Пример обучающей выборки (датасета) — задача Titanic на Kaggle

| Passengerld | Pclass | Name                        | Sex    | Age | SibSp | Parch | Ticket    | Fare    | Cabin | Embarked | Survived |
|-------------|--------|-----------------------------|--------|-----|-------|-------|-----------|---------|-------|----------|----------|
| 1           | 3      | Braund, Mr. Owen Harris     | male   | 22  |       |       | A/5 21171 | 7.25    | nan   | S        | 0        |
| 2           |        | Cumings, Mrs. John Bradley  | female | 38  |       |       | PC 17599  | 71.2833 | C85   | С        |          |
| 3           | 3      | Heikkinen, Miss. Laina      | female | 26  |       |       | STON/O2   | 7.925   | nan   | S        | 1        |
| 4           |        | Futrelle, Mrs. Jacques Hea  | female | 35  |       |       | 113803    | 53.1    | C123  | s        | 1        |
| 5           | 3      | Allen, Mr. William Henry    | male   | 35  |       |       | 373450    | 8.05    | nan   | S        | 0        |
| 6           | 3      | Moran, Mr. James            | male   | nan |       |       | 330877    | 8.4583  | nan   | Q        | 0        |
| 7           |        | McCarthy, Mr. Timothy J     | male   | 54  |       |       | 17463     | 51.8625 | E46   | s        | 0        |
| 8           | 3      | Palsson, Master. Gosta Leo  | male   | 2   |       |       | 349909    | 21.075  | nan   | s        | 0        |
| 9           | 3      | Johnson, Mrs. Oscar W (Eli  | female | 27  |       |       | 347742    | 11.1333 | nan   | s        | 1        |
| 10          |        | Nasser, Mrs. Nicholas (Ade  | female | 14  |       |       | 237736    | 30.0708 | nan   | С        |          |
| 11          | 3      | Sandstrom, Miss. Marguerit  | female | 4   |       |       | PP 9549   | 16.7    | G6    | s        | 1        |
| 12          |        | Bonnell, Miss. Elizabeth    | female | 58  |       |       | 113783    | 26.55   | C103  | s        |          |
| 13          | 3      | Saundercock, Mr. William H  | male   | 20  |       |       | A/5. 2151 | 8.05    | nan   | S        | 0        |
| 14          | 3      | Andersson, Mr. Anders Johan | male   | 39  |       |       | 347082    | 31.275  | nan   | s        | 0        |
| 15          | 3      | Vestrom, Miss. Hulda Amand  | female | 14  |       |       | 350406    | 7.8542  | nan   | s        | 0        |
| 16          | 2      | Hewlett, Mrs. (Mary D King  | female | 55  |       |       | 248706    | 16      | nan   | s        | 1        |

#### Классификация:

 Медицина – определить, болен пациент или нет. Признаками могут быть результаты обследований, симптомы заболевания и прочие (анамнез)



• Информационная безопасность — классификация спама, обнаружение мошеннических транзакций



#### Классификация:

Экономика и финансы — задача оценивания заемщика банками.
 «Хороший-плохой» заемщик, подсчет количества кредитных баллов — credit scoring. Задача минимизации риска невозврата кредита



• Задача предсказания оттока клиентов (churn prediction) — выделение сегмента клиентов, склонных к уходу в ближайшее время

#### Классификация:

• Классификация изображений















#### Классификация:

Классификация изображений







Classification

Classification + Localization

**Object Detection** 

Instance Segmentation









Cat

Cat

Cat, Dog

Cat, Dog

#### Регрессия:

- Экономика и финансы прогнозирование потребительского спроса. Необходимо оценить объемы продаж для каждого товара на заданный интервал времени. На основе этих прогнозов осуществляется планирование закупок и формирование ценовой политики
- Рекомендательные системы задача предсказания рейтинга, товара или услуги. Приобретая товар или услугу, клиент может оценить ее, например, от 1 до 5. Система использует информацию о всех выставленных рейтингах для персонализации предложений. Основная задача прогнозировать рейтинг товаров, которые клиент еще не приобрел

Задача ранжирования — ранжирование документов при поиске по запросу пользователя

#### • Обучение без учителя (unsupervised learning)

Класс задач, где ответы неизвестны или вообще не существуют, требуется найти некоторые закономерности на основе признаковых описаний



1. <u>Кластеризация</u> — задача разделения выборки на подмножества (кластеры) так, чтобы каждый кластер состоял из похожих объектов, а объекты разных кластеров существенно отличались













- 2. Оценивание плотности задача приближения распределения объектов. Пример обнаружение аномалий, в которой на этапе обучения известны лишь примеры корректной работы оборудования, в дальнейшем требуется обнаруживать случаи некорректной работы
- 3. Понижение размерности задача генерации новых признаковых описаний меньшей размерности без потери качества модели (либо с незначительными потерями)



#### • Обучение с подкреплением (reinforcement learning)

Алгоритм на каждом шаге наблюдает какую-то ситуацию, выбирает одно из доступных ему действий, получает некоторую награду и корректирует свою стратегию. Задачей алгоритма является максимизация некоторой функции награды

Области применения – робототехника, игры, управление транспортом и другие





# Визуализация двух основных задач обучения с учителем – классификации и регрессии



# Модель алгоритмов и метод обучения

Модель алгоритмов — параметрическое семейство отображений  $A = \{g(x, \theta) \mid \theta \in \Theta\}$ , где  $g: X \times \Theta \to Y$  некоторая фиксированная функция,  $\Theta$  — множество допустимых значений параметра  $\theta$ , называемое пространством параметров или пространством поиска (search space)

Memod обучения (learning algorithm) — отображение  $\mu$ :  $(X \times Y)^l \to A$ , которое произвольной конечной выборке  $X^l = (x_i, y_i)_{i=1}^l$  ставит в соответствие некоторый алгоритм  $\alpha \in A$ . Метод  $\mu$  строит алгоритм  $\alpha$  по выборке  $X^l$ 

# Два основных этапа машинного обучения

- Этап обучения (train) на этапе обучения метод  $\mu$  по выборке  $X^l$  строит алгоритм  $\alpha = \mu(X^l)$ . Этап обучения сводится к поиску параметров модели, обеспечивающих <u>оптимальное</u> значение заданному функционалу качества. На этапе обучения метод выдает элемент параметрического семейства функций. Необходимо оптимизировать вектор параметров модели
- Этап применения (test) алгоритм  $\alpha$  для новых объектов x выдает ответы  $y = \alpha(x)$

#### Функционал качества

 $\underline{\Phi y H K U U U H A M K A H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H A M H$ 

$$Q(\alpha, X^l) = \frac{1}{l} \sum_{i=1}^{l} L(\alpha, x_i)$$

Функционал Q так же называют функционалом средних потерь или <u>эмпирическим риском</u>, так как он вычисляется по эмпирическим данным  $(x_i, y_i)_{i=1}^l$ 

Классический метод обучения, называемый <u>минимизацией</u> <u>эмпирического риска</u> (empirical risk minimization, ERM), заключается в том, чтобы найти в заданной модели А алгоритм а, обеспечивающий минимальное значение функционалу качества Q на заданной обучающей выборке  $X^l$ :

$$\mu(X^l) = \arg\min Q(a, X^l)$$

• Функции потерь для задач классификации:

$$L(a,x) = [a(x) 
eq y(x)]$$
 – индикатор ошибки

• Функции потерь для задач регрессии:

$$L(a,x) = |a(x) - y(x)|$$
 - абсолютное значение ошибки

$$L(a,x) = (a(x) - y(x))^2$$
 - квадратичная ошибка

#### Примечание:

Функция потерь (loss) оценивает, как часто модель ошибается. Функция потерь оказывает существенное влияние на метод машинного обучения. Важно, чтобы ее было легко оптимизировать, например, гладкая функция потерь — это хорошо, а кусочно-постоянная — плохо. Существует большое количество функций потерь, выбор конкретной функции зависит от многих факторов: тип задачи, тип модели, специфика данных и другие. Различные функции потерь и их особенности будут рассмотрены в следующих лекциях

# Вероятностная постановка задачи обучения

Неизвестное вероятностное распределение на множестве  $X \times Y$  с плотностью p(x,y) из которого случайно и независимо выбираются  $\boldsymbol{l}$  наблюдений

$$X^l = (x_i, y_i)_{i=1}^l$$

Свойство i.i.d. (independent and identically-distributed) - независимые одинаково распределенные

<u>Функция правдоподобия (likelihood)</u>:

$$L(\theta, X^l) = \prod_{i=1}^l \varphi(x_i, y_i, \theta)$$

Минимизация *погарифма* функции правдоподобия:

$$-lnL(\theta,X^{l}) = -\sum_{i=1}^{l} ln\varphi(x_{i},y_{i},\theta) \rightarrow min$$

# Overfitting vs Underfitting

Минимизация эмпирического риска функционала  $Q(\alpha, X^l)$ не гарантирует, что  $\alpha$  будет хорошо приближать целевую зависимость на произвольном наборе объектов  $X^k = (x_i', y_i')_{i=1}^k$  - <u>контрольной</u> (тестовой) выборке

Предположение: выборки  $X^l$  и  $X^k$  - простые, полученные из одного и того же неизвестного вероятностного распределения на множестве X

Объекты <u>независимые одинаково распределенные</u> (свойство i.i.d – independent and identically-distributed)

• Переобучение модели (overfitting) — эффект, когда оценка качества работы алгоритма на тестовой выборке  $X^k$  существенно хуже, чем на обучающей выборке  $X^l$ 

Classification Regression

#### Из-за чего возникает переобучение?

- Избыточная параметризация модели, модель слишком «сложная»
- Малая обучающая выборка, низкое качество данных в обучающей выборке (большое количество пропусков, шумов, выбросов и т.д.)

#### Как понять, что модель переобучилась?

Эмпирически – разбивать выборку на train и test, оценивать качество работы алгоритма них





# Как минимизировать переобучение?

• Увеличить размер и улучшить качество обучающей выборки

• Наложить ограничение на значения параметра  $\theta$  - регуляризация

• Выбор модели <u>(model selection)</u> по оценкам обобщающей способности <u>(generalization performance)</u>

# Эмпирические оценки обобщающей способности

- Метод *hold-out*: простое разделение на train и test
  - эмпирический риск на тестовых данных

$$HO(\mu, X^l, X^k) = Q(\mu(X^l), X^K) \rightarrow min$$

• Метод *leave-one-out*: каждый объект выборки выбирается как тестовый (скользящий контроль)

$$LOO(\mu, X^{L}) = \frac{1}{L} \sum_{i=1}^{L} L(\mu(X^{L} \setminus \{x_{i}\}), x_{i}) \rightarrow min$$

# Эмпирические оценки обобщающей способности

Кросс-проверка (cross-validation): разбиение обучающей выборки на k одинаковых частей (фолдов), каждая из которых по очереди выступает в роли тестовой выборки

$$CV(\mu, X^L) = \frac{1}{|P|} \sum_{p \in P} Q(\mu(X_p^l), X_p^k) \to min$$

P – множество разбиений  $X^L = X_p^l \sqcup X_p^k$ 

- Фиксируется некоторое целое число k (обычно от 5 до 10), меньшее числа объектов в обучающей выборки
- 2. Выборка разбивается на k одинаковых частей (фолдов) отсюда название k-Fold cross-validation
- 3. Выполнение k итераций, во время каждой из которых один фолд выступает в роли тестовой выборки, а остальные в роли обучающей



# Особенности данных и постановок прикладных задач

#### Данные могут быть:

- Разнородные (признаки измерены в разных шкалах)
- Неполные (измерены не все, имеются пропуски)
- Неточные (погрешности измерений, шум)
- Противоречивые (объекты одинаковые, ответы разные)
- Избыточные (огромное количество данных, не понятно, необходимо ли использовать все, тяжело обрабатывать)
- Недостаточные (объектов меньше, чем признаков)
- Неструктурированные (нет признаковых описаний, признаковые описания сильно различаются)

# Межотраслевой стандарт интеллектуального анализа данных

**CRISP-DM: CRoss Industry Standard** 

Process for Data Mining (1999)



- Понимание бизнеса
- Понимание данных
- Предобработка данных и инженерия признаков
- Разработка моделей и настройка параметров
- Оценивание качества
- Внедрение

# Метрические методы Метод k-ближайших соседей (KNN)

Задача – какого цвета объект?







# Выбор метрики расстояния









• Евклидово расстояние:

$$\rho(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

• Манхэттенская метрика:

$$\rho(x,y) = \sum_{i} |x_i - y_i|$$

• Метрика Минковского:

$$\rho(x,y) = \left(\sum_{i} |x_i - y_i|^p\right)^{1/p}$$

• Косинусное расстояние:

$$\rho(x,y) = 1 - \cos \theta = 1 - \frac{x \times y}{|x||y|}$$

# Взвешенный KNN (weighted KNN)

Метрический алгоритм классификации:

$$a(x;X^{l}) = argmax \left| \sum_{i=1}^{l} [y^{(i)} = y]w(i,x) \right|$$

Оценка близости объекта х к классу у

w(i,x) — вес, степень близости к объекту x его i-го соседа

#### Итоги лекции

- Основные понятия машинного обучения: объект (sample), ответ (target), обучающая выборка (dataset), признак (feature), алгоритм, модель алгоритмов, метод обучения, эмпирический риск, функция потерь (loss), переобучение (overfitting)
- Виды машинного обучения и типы решаемых задач
- Этапы решения задач машинного обучения
- Понимание задачи и данных
- Предобработка данных и feature engineering
- Построение модели
- Сведение к задаче оптимизации
- Решение проблемы переобучения
- Оценивание качества
- Внедрение модели
- Рассмотрены некоторые прикладные задачи машинного обучения