Kinematik

- Definition Drehimpuls $\underline{L} = \underline{r} \times p$
- Definition Drehmoment $\underline{M} = \underline{r} \times \underline{F}$
- Aus dem Newtonschen Gesetz $\underline{F} = \frac{d\underline{p}}{d\overline{t}}$ folgt mit $\underline{p} = m\underline{v}$ für das Drehmoment $\underline{M} = \underline{r} \times \frac{d(m\underline{v})}{dt}$ und mit

Starre Körper

- Ein starrer Körper S_N im \mathbb{R}^3 wird durch N Punkte P_n $n=1,\cdots,N$ mit $N\geq 1$ und mit paarweise festen Abständen $\|P_i-P_i\|\neq 0$ für alle $\forall i\neq j$ definiert.
- Die Punktabstände sind vorgegeben und werden im folgenden Zwangsbedingungen genannt. Ihre Anzahl wird als Funktion der Punktanzahl N mit Z_N bezeichnet. Es ist anschaulich klar, dass $Z_1 = 0$, $Z_2 = 1$ und $Z_3 = 3$ gilt.
- Erweitert man den starren Körper S_N mit $N \geq 3$ um einen Punkt P_{N+1} zu einem starren Körper S_{N+1} , so muss man P_{N+1} mit mindestens 3 Punkten aus S_N verbinden. Verbindet man P_{N+1} mit weniger als 3 Punkten, ist das Ergebnis wegen der neuen Bewegungsfreiheitsgrade kein starrer Körper mehr.
- Für die Anzahl Z_{N+1} der Zwangsbedingungen des starren Körpers S_{N+1} mit $N \geq 3$ gilt also die Rekursionsbeziehung

$$Z_{N+1} - Z_N = 3. (1)$$

• Aus dem linearen Ansatz $Z_N = aN + b$ folgt wegen (1) a = 3. Wegen $Z_3 = 3$ folgt b = -6. Also gilt für $N \ge 3$

$$Z_N = 3N - 6.$$

• Man erhält für Anzahl der Zwangsbedingungen

$$Z_N = \begin{cases} N-1 & \text{für} & N < 3\\ 3N-6 & \text{für} & N \ge 3 \end{cases} . \tag{2}$$

Kinematik starrer Körper

- Wir betrachten zwei Koordinatensysteme: das Laborsystem U mit den Koordinaten $(u, v, w)^T$ und das körperfeste System X mit den Koordinaten $(x, y, z)^T$.
- \bullet Das Laborsystem U sei ein Intertialsystem.
- Der Ursprung des körperfesten Systems X sei im Laborsystem U durch die Koordinaten $\underline{u}_0(t) = (u_0(t), v_0(t), w_0(t))^T$ gegeben.
- Ein körperfester Punkt $\underline{x}(t) = (x(t), y(t), z(t))^T$ aus X hat im Laborsystem U die zeitliche Darstellung $\underline{u}(t) = \underline{u}_0(t) + \underline{x}(t)$ mit der Geschwindigkeit im Laborsystem

$$\frac{d\underline{u}(t)}{dt} = \frac{d\underline{u}_0(t)}{dt} + \frac{d\underline{x}(t)}{dt}.$$

• Translation im körperfesten System X mit Geschwindigkeit $\underline{v}(t)$ mit Startwert \underline{x}_0 : $\underline{x}(t) = \underline{v}t + \underline{x}_0$.

- Rotation um den Ursprung im körperfesten System X: $\underline{x}\left(t\right)=D\underline{x}_{0}$.
- Analogie Translation \iff Rotation:

Trägheitsmoment (Tensor 2. Stufe) $\Theta \iff \text{Masse (Skalar) } m$

Winkel $\varphi \iff \operatorname{Ort} x$

Winkelgeschwindigkeit $\underline{\omega} \iff$ Geschwindigkeit \underline{v}

Winkelbeschleunigung $\underline{\alpha} = \frac{d\underline{\omega}}{dt} \iff$ Beschleunigung $\underline{a} = \frac{d\underline{v}}{dt}$

Drehimpuls $\underline{L} = \Theta \underline{\omega} \Longleftrightarrow$ Impuls $\underline{p} = m\underline{v}$

Drehmoment $\underline{M} \Longleftrightarrow \text{Kraft } \underline{F}$

Drehimpulssatz $\underline{M} = \frac{d\underline{L}}{d\overline{t}} \iff$ Newtonsches Gesetz $\underline{F} = \frac{d\underline{p}}{d\overline{t}}^1$

References

[1] Peter Goldreich et. al.; Some Remarks about Polar Wandering; Journal of Geophysical Research; 1969

Mit dem Ortsvektor \underline{r} des Teilchens der Masse m und seinem Impuls \underline{p} ist sein Drehimpuls (Definition) $\underline{L} = \underline{r} \times p$. Für dessen zeitliche Ableitung gilt

$$\underline{\dot{L}} = \frac{d\underline{L}}{dt} = \frac{d}{dt} \left(\underline{r} \times \underline{p} \right) = \frac{d\underline{r}}{dt} \times \underline{p} + \underline{r} \times \frac{d\underline{p}}{dt}. \tag{3}$$

Für das Drehmoment einer am Teilchen angreifenden Kraft \underline{F} gilt (Definition) $\underline{M} = \underline{r} \times \underline{F}$. Mit dem Newtonschen Gesetz $\underline{F} = \frac{d\underline{p}}{d\overline{t}}$ ergibt sich daraus zusammen mit (3)

$$\underline{M} = \underline{r} \times \frac{d\underline{p}}{dt}
= \underline{\dot{L}} - \frac{d\underline{r}}{dt} \times \underline{p}
= \underline{\dot{L}} - \underline{v} \times p.$$

Wegen $\underline{v}\times p=m\left(\underline{v}\times\underline{v}\right)=\underline{0}$ folgt der Drehimpulssatz

$$\underline{M} = \underline{\dot{L}}.$$

¹Der Drehimpulssatz folgt direkt aus dem Newtonschen Gesetz: