0.0.1 定积分

0.0.2 建立积分递推

例题 **0.1** 计算 $\int_0^{\frac{\pi}{2}} \cos^n x \sin(nx) dx, n \in \mathbb{N}$.

证明 利用分部积分和和差化积公式可得

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx = \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot \cos x \sin(nx) dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cdot [\sin((n+1)x) + \sin((n-1)x)] dx$$

$$= \frac{I_{n-1}}{2} + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x [\sin(nx) \cos x + \cos(nx) \sin x] dx$$

$$= \frac{I_{n-1}}{2} + \frac{I_{n}}{2} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x \cos(nx) d\cos x$$

$$= \frac{I_{n-1} + I_{n}}{2} - \frac{1}{2n} \int_{0}^{\frac{\pi}{2}} \cos(nx) d\cos^{n} x$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos^{n} x \sin(nx) dx$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} - \frac{I_{n}}{2}$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} \cdot \frac{I_{n}}{2}$$

$$= \frac{I_{n-1} + I_{n}}{2} + \frac{1}{2n} \cdot \frac{I_{n}}{2}$$

故 $I_n = \frac{I_{n-1}}{2} + \frac{1}{2n}$, 则两边同乘 2^n (强行裂项)

$$2^{n}I_{n} = 2^{n-1}I_{n-1} + \frac{2^{n-1}}{n}, n = 1, 2, \cdots$$

又注意到 $I_0 = 0$, 从而

$$2^{n}I_{n} = 0 + \sum_{k=1}^{n} \frac{2^{k-1}}{k} \Longrightarrow I_{n} = \frac{1}{2^{n}} \sum_{k=1}^{n} \frac{2^{k-1}}{k}.$$

例题 0.2

1. $\int_0^{\pi} \frac{\sin(nx)}{\sin x} dx = \begin{cases} 0, & n \text{ 为偶数} \\ \pi, & n \text{ 为奇数} \end{cases}$

2

证明

1. 记 $I_n = \int_0^\pi \frac{\sin(nx)}{\sin x} dx$,则

$$I_{n+2} - I_n = \int_0^{\pi} \frac{\sin((n+2)x) - \sin(nx)}{\sin x} dx = \int_0^{\pi} \frac{2\cos((n+1)x)\sin x}{\sin x} dx = 2\int_0^{\pi} \cos((n+1)x) dx = 0.$$

于是

$$\int_0^\pi \frac{\sin(nx)}{\sin x} dx = I_n = I_{n-2} = \dots = \begin{cases} I_0, & n \text{ 为偶数} \\ I_1, & n \text{ 为奇数} \end{cases} = \begin{cases} 0, & n \text{ 为偶数} \\ \pi, & n \text{ 为奇数} \end{cases}.$$

2.

0.0.3 区间再现

定理 0.1 (区间再现恒等式)

当下述积分有意义时, 我们有

1.

$$\int_{a}^{b} f(x) \mathrm{d}x = \int_{a}^{b} f(a+b-x) \mathrm{d}x = \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)] \mathrm{d}x = \int_{a}^{\frac{a+b}{2}} [f(x) + f(a+b-x)] \mathrm{d}x.$$

2

$$\int_0^\infty f(x) \mathrm{d} x = \int_0^1 f(x) \mathrm{d} x + \int_1^\infty f(x) \mathrm{d} x = \int_0^1 \left[f(x) + \frac{f(\frac{1}{x})}{x^2} \right] \mathrm{d} x.$$

证明 证明是显然.

例题 0.3 证明

1. $\int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{2} \ln 2.$

2. $\int_0^{\frac{\pi}{2}} \ln \cos x dx - \frac{\pi}{2} \ln 2.$

3. $\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{\pi}{8} \ln 2.$

证明

1.

$$I = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[\ln \cos x + \ln \left(\frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

2.

$$I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = \int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{4}} \left[\ln \cos x + \ln \left(\frac{\pi}{2} - x \right) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \ln (\cos x \sin x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{1}{2} dx + \int_0^{\frac{\pi}{4}} \ln (\sin 2x) dx$$

$$= -\frac{\pi}{4} \ln 2 + \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{4} \ln 2 + \frac{1}{2} I$$

$$\implies I = \int_0^{\frac{\pi}{2}} \ln \cos x dx = -\frac{\pi}{2} \ln 2.$$

3.

$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \frac{x=\tan\theta}{\int_0^{\frac{\pi}{4}}} \int_0^{\frac{\pi}{4}} \frac{\ln(1+\tan\theta)}{1+\tan\theta^2} d\tan\theta = \int_0^{\frac{\pi}{4}} \frac{\sec^2\theta \cdot \ln(1+\tan\theta)}{\sec^2\theta} d\theta$$

$$= \int_0^{\frac{\pi}{4}} \ln(1+\tan\theta) d\theta = \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\tan\left(\frac{\pi}{4}-\theta\right)\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\frac{1-\tan\theta}{1+\tan\theta}\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \left[\ln(1+\tan\theta) + \ln\left(1+\frac{2}{1+\tan\theta}\right) \right] d\theta$$

$$= \int_0^{\frac{\pi}{8}} \ln 2\mathrm{d}\theta = \frac{\pi}{8} \ln 2.$$

例题 **0.4** 计算
1.
$$\int_0^\infty \frac{\ln x}{x^2 + a^2} dx, a > 0.$$

2.
$$\int_0^{\infty} \frac{\ln x}{x^2 + x + 1} dx$$
.

3.
$$\int_0^1 \frac{\ln x}{\sqrt{x-x^2}} dx$$
.

$$\int_{0}^{+\infty} \frac{\ln x}{x^{2} + a^{2}} dx \xrightarrow{\frac{x = at}{a}} \frac{1}{a} \int_{0}^{+\infty} \frac{\ln(at)}{1 + t^{2}} dt = \frac{1}{a} \int_{0}^{+\infty} \frac{\ln a}{1 + t^{2}} dt + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt = \frac{\pi \ln a}{2a} + \frac{1}{a} \int_{0}^{+\infty} \frac{\ln t}{1 + t^{2}} dt. \tag{1}$$

$$\text{Z} \stackrel{?}{\approx} \stackrel{?}$$

$$\int_0^{+\infty} \frac{\ln t}{1+t^2} dt \xrightarrow{\frac{t=\frac{1}{x}}{2}} \int_0^{+\infty} \frac{\ln \frac{1}{x}}{1+\frac{1}{x^2}} \frac{1}{x^2} dx = \int_0^{+\infty} \frac{-\ln x}{1+x^2} dx \Longrightarrow \int_0^{+\infty} \frac{\ln t}{1+t^2} dt = 0.$$

于是再结合(1)式可得

$$\int_0^{+\infty} \frac{\ln x}{x^2 + a^2} \mathrm{d}x = \frac{\pi \ln a}{2a}.$$

2.

$$\int_0^\infty \frac{\ln x}{x^2+x+1} \mathrm{d}x \xrightarrow{x=\frac{1}{t}} \int_0^\infty \frac{-\ln t}{1+\frac{1}{t}+\frac{1}{t^2}} \mathrm{d}\frac{1}{t} = \int_0^{+\infty} \frac{-\ln t}{1+t+t^2} \mathrm{d}t \Longrightarrow \int_0^\infty \frac{\ln x}{x^2+x+1} \mathrm{d}x = 0.$$

$$\int_{0}^{1} \frac{\ln x}{\sqrt{x - x^{2}}} dx = \frac{x - \sin^{2} y}{\int_{0}^{\frac{\pi}{2}} \frac{\ln \sin^{2} y}{\sqrt{\sin^{2} y (1 - \sin^{2} y)}} d\sin^{2} y$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \ln \sin y dy = \frac{1 + \sin^{2} y}{\int_{0}^{\frac{\pi}{2}} \frac{\ln \sin^{2} y}{\int_{0}^{\frac{\pi}{2}} \frac{1}{\ln \sin^{2} y} d\sin^{2} y} d\sin^{2} y$$

1. 对 $n \in \mathbb{N}$, 计算 $\int_{-\pi}^{\pi} \frac{\sin(nx)}{(1+2^x)\sin x} dx$. 2. $\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1+\cos^2 x} dx$. 3. 对 $n \in \mathbb{N}$, 计算 $\int_{0}^{2\pi} \sin(\sin x + nx) dx$.

2.
$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} dx$$

$$\begin{split} & \int_{-\pi}^{\pi} \frac{\sin{(nx)}}{(1+2^x)\sin{x}} \mathrm{d}x = \int_{-\pi}^{0} \left[\frac{\sin{(nx)}}{(1+2^x)\sin{x}} + \frac{\sin{(nx)}}{(1+2^{-x})\sin{x}} \right] \mathrm{d}x = \int_{-\pi}^{0} \frac{\sin{(nx)}}{\sin{x}} \left(\frac{1}{1+2^x} + \frac{1}{1+2^{-x}} \right) \mathrm{d}x \\ & = \int_{-\pi}^{0} \frac{\sin{(nx)}}{\sin{x}} \cdot \frac{2+2^x+2^{-x}}{2+2^x+2^{-x}} \mathrm{d}x = \int_{-\pi}^{0} \frac{\sin{(nx)}}{\sin{x}} \mathrm{d}x = \int_{0}^{\pi} \frac{\sin{(nx)}}{\sin{x}} \mathrm{d}x \xrightarrow{\text{Med } 0.2} \begin{cases} 0, n \not\ni \text{ (as } 0.2) \\ \pi, n \not\ni \text{ (bs } 0.2) \end{cases} \end{split}$$

$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} dx = \int_{-\pi}^{0} \left(\frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} + \frac{x \sin x \arctan e^{-x}}{1 + \cos^{2} x} \right) dx = \int_{-\pi}^{0} \frac{x \sin x}{1 + \cos^{2} x} (\arctan e^{x} + \arctan e^{-x}) dx$$

$$= \frac{\exp(2\pi)(1)}{\pi} \int_{-\pi}^{0} \frac{x \sin x}{1 + \cos^{2} x} \cdot \frac{\pi}{2} dx = \frac{\pi}{2} \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$

$$= \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \left(\frac{x \sin x}{1 + \cos^{2} x} + \frac{(\pi - x) \sin x}{1 + \cos^{2} x} \right) dx = \frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^{2} x} dx$$

$$= \frac{\pi^2}{2} \arctan \cos x \Big|_{\frac{\pi}{2}}^0 = \frac{\pi^2}{2} \cdot \frac{\pi}{4} = \frac{\pi^3}{8}.$$

3.

$$\int_0^{2\pi} \sin(\sin x + nx) \, dx = \int_0^{2\pi} \sin[\sin(2\pi - x) + n(2\pi - x)] \, dx$$

$$= \int_0^{2\pi} \sin(-\sin x - nx) \, dx = -\int_0^{2\pi} \sin(\sin x + nx) \, dx$$

$$\implies \int_0^{2\pi} \sin(\sin x + nx) \, dx = 0.$$

0.0.4 化成含参积分/多元累次积分(换序)

命题 0.1

证明:

1.
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

$$2. \int_0^\infty \frac{\sin x}{x} dx = \frac{\sqrt{\pi}}{2}.$$

3.
$$\int_0^\infty \sin x^2 dx, \int_0^\infty \cos x^2 dx = \sqrt{\frac{\pi}{8}}.$$

拿 笔记 本结果可以直接使用.

证明 1. 注意到

2. 注意到

$$\int_0^{+\infty} \sin x e^{-yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{ix - yx} \, dx = \operatorname{Im} \int_0^{+\infty} e^{-(y - i)x} \, dx = \operatorname{Im} \frac{1}{y - i} = \operatorname{Im} \frac{y + i}{y^2 + 1} = \frac{1}{y^2 + 1}.$$

因此就有

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \int_0^{+\infty} \sin x \left(\int_0^{+\infty} e^{-yx} \, dy \right) \, dx = \int_0^{+\infty} dy \int_0^{+\infty} \sin x e^{-yx} \, dx$$
$$= \int_0^{+\infty} dy \left(\text{Im} \int_0^{+\infty} e^{ix - yx} \right) \, dx = \int_0^{+\infty} \frac{1}{y^2 + 1} \, dy = \frac{\pi}{2}.$$

当然本题也可以直接利用分部积分计算 $\int_0^{+\infty} \sin x e^{-yx} dx = \frac{1}{y^2 + 1}$.

3. 注意到

$$\int_0^{+\infty} e^{-ax^2} dx = \frac{x = \frac{t}{\sqrt{a}}}{\sqrt{a}} \frac{1}{\sqrt{a}} \int_0^{+\infty} e^{-t^2} dt = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a > 0.$$

并且 $-i = e^{-\frac{\pi}{2}i}$, 从而 $\sqrt{-i} = e^{-\frac{\pi}{4}i} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$. 于是

$$\int_0^{+\infty} (\cos x^2 - i \sin x^2) dx = \int_0^{+\infty} e^{-ix^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{i}} = \frac{1}{2} \sqrt{-i\pi}$$
$$= \frac{\sqrt{\pi}}{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = \frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i.$$

故

$$\int_0^{+\infty} \cos x^2 \, dx = \text{Re} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Re} \left(\frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}},$$

$$\int_0^{+\infty} \sin x^2 \, dx = \text{Im} \int_0^{+\infty} (\cos x^2 - i \sin x^2) \, dx = \text{Im} \left(\frac{\sqrt{2\pi}}{4} - \frac{\sqrt{2\pi}}{4} i \right) = \frac{\sqrt{2\pi}}{4} = \sqrt{\frac{\pi}{8}}.$$

例题 **0.6** 计算 $\int_0^1 \sin \ln \frac{1}{x} \cdot \frac{x^b - x^a}{\ln x} dx \ (b > a > 0).$

证明