Signed degree sets in signed graphs

S. Pirzada*, T. A. Naikoo** and F. A. Dar***

Department of Mathematics, University of Kashmir, Srinagar - 190006, India

* Email : sdpirzada@yahoo.co.in ** Email : tariqnaikoo@rediffmail.com *** Email: sfarooqdar@yahoo.co.in

Abstract

The set D of distinct signed degrees of the vertices in a signed graph G is called its signed degree set . In this paper, we prove that every non-empty set of positive (negative) integers is the signed degree set of some connected signed graph and determine the smallest possible order for such a signed graph . We also prove that every non-empty set of integers is the signed degree set of some connected signed graph .

1. Introduction

All graphs in this paper are finite, undirected, without loops and multiple edges. A signed graph G is a graph in which each edge is assigned a positive or a negative sign. These were first discovered by Harary [3]. The signed degree of a vertex v_i in a signed graph G is denoted by $\operatorname{sdeg}(v_i)$ (or simply by d_i) and is defined as the number of positive edges incident with v_i . Ess the number of negative edges incident with v_i . So, if v_i is incident with d_i^+ positive edges and d_i^- negative edges, then $\operatorname{sdeg}(v_i) = d_i^+ - d_i^-$. A signed degree sequence $\sigma = [d_1, d_2, ..., d_n]$ of a signed graph G is formed by listing the vertex signed degrees in non-increasing order. A sequence $\sigma = [d_1, d_2, ..., d_n]$ integers is graphical if σ is a signed degree sequence of some signed graph. Also, a non-zero sequence $\sigma = [d_1, d_2, ..., d_n]$ is a standard sequence if σ is non-increasing, $\sum_{i=1}^n d_i$ is even, $d_1 > 0$, each $|d_i| < n$, and $|d_1| \ge |d_n|$.

The following result, due to Chartrand et al. [1], gives a necessary and sufficient condition for a sequence of integers to be graphical, which is similar to Hakimi's result for degree sequences [2].

Theorem 1.1.Let $\sigma = [d_1, d_2, ..., d_n]$ be a standard sequence. Then, s is graphical if and only if there exist integers r and s with $d_1 = r - s$ and $0 \le s \le \frac{n-1-d_1}{2}$ such that

$$\sigma' = [d_2 - 1, d_3 - 1, ..., d_{r+1} - 1, d_{r+2}, d_{r+3}, ..., d_{n-s}, d_{n-s+1} + 1, ..., d_n + 1,]$$

is graphical.

The next characterization for signed degrees in signed graphs is given by Yan et al. [5].

Theorem 1.2. A standard integral sequence $\sigma = [d_1, d_2, ..., d_n]$ is graphical if and only if

$$\sigma_m' = [d_2-1,...,d_{d_1+m+1}-1,d_{d_1+m+2},...,d_{n-m},d_{n-m+1}+1,...,d_n+1,]$$

is graphical, where m is the maximum non-negative integer such that $d_{d_1+m+1} > d_{n-m+1}$

In [4], Kapoor et al. proved that every non-empty set of distinct positive integers is the degree set of a connected graph and determined the smallest order for such a graph .

2. Main Results

First we have the following definition.

Definition. The set D of distinct signed degrees of the vertices in a signed graph G is called its signed degree set .

Now, we obtain the following results.

Theorem 2.1. Every non-empty set D of positive integers is the signed degree set of some connected signed graph and the minimum order of such a signed graph is N + 1, where N is the maximum integer in the set D.

Proof. Let D be a signed degree set and $n_0(D)$ denotes the minimum order of a signed graph

G realizing D. Since N is the maximum integer in D, therefore there is a vertex in G which is adjacent to at least N other vertices with a positive sign. Then, $n_0(D) \ge N + 1$. Now, if there exists a signed graph of order N + 1 with D as signed degree set, then $n_0(D) = N + 1$. The existence of such a signed graph is obtained by using induction on the number of elements of D.

Let $D = \{d_1, d_2, \ldots, d_n\}$, where $d_1 < d_2 < \ldots < d_n$, be a set of positive integers. For n = 1, let G be a complete graph on $d_1 + 1$ vertices, that is K_{d_1+1} in which each edge is assigned a positive sign. Then,

$$sdeg(v) = (d_1 + 1 - 1) - 0 = d_1, for \ all \ v \in V(G)$$

Therefore, G is a signed graph with signed degree set $D = \{d_1\}$.

For n=2, let G_1 be a complete graph on d_1 vertices, that is K_{d_1} ,in which each edge is assigned a positive sign and let G_2 be a null graph on $d_2-d_1+1>0$ vertices, that is $K_{d_2-d_1+1}$ Join every vertex of G_1 to each vertex of G_2 with a positive edge, so that we obtain a signed graph G on $d_1+d_2-d_1+1=d_2+1$ vertices with

$$sdeg(u) = (d_1 - 1) + (d_2 - d_1 + 1) - 0 = d_2, for \ all \ u \in V(G_1),$$

and

$$sdeg(v) = (0) + (d_1) - 0 = d_1, for \ all \ v \in V(G_2)$$

Therefore, signed degree set of G is $D = d_1, d_2$.

For n = 3, let G_1 be a complete graph on d_1 vertices, that is K_{d_1} , in which each edge is assigned a positive sign, G_2 be a complete graph on $d_2 - d_1 + 1 > 0$ vertices, that is $K_{d_2 - d_1 + 1}$ in which each edge is assigned a positive sign, and G_3 be a null graph on $d_3 - d_2 > 0$ vertices, that is $\bar{K}_{d_3 - d_2}$ Join every vertex of G_1 to each vertex of G_2 with a positive edge and join every vertex of G_1 to each vertex of G_3 with a positive edge, so that we obtain a signed graph G on $d_1 + d_2 - d_1 + 1 + d_3 - d_2 = d_3 + 1$ vertices with

$$sdeg(u) = (d_1 - 1) + (d_2 - d_1 + 1) + (d_3 - d_2) - 0 = d_3, for \ all \ u \in V(G_1),$$

$$sdeg(v) = (d_2 - d_1 + 1 - 1) + (d_1) - 0 = d_2, for \ all \ v \in V(G_2),$$

and

$$sdeq(w) = (0) + (d_1) - 0 = d_1, for \ all \ \ w \in V(G_3).$$

Therefore, signed degree set of G is $D = \{d_1, d_2, d_3\}$.

Assume that the result holds for k. We show that the result is true for k+1.

Let D = $\{d_1, d_2, \ldots, d_k, d_{k+1}\}$ be a k + 1 set of positive integers with $d_1 < d_2 < \ldots < d_k < d_{k+1}$. Clearly, $0 < d_2 - d_1 < d_3 - d_1 < \ldots < d_k - d_1$. Therefore, by induction hypothesis,

there is a signed graph G_1 realizing the signed degree set $D_1 = \{d_2 - d_1, d_3 - d_1, \ldots, d_k - d_1\}$ on $d_k - d_1 + 1$ vertices as $|V(D_1)| < k$. Let G_2 be a complete graph on d_1 vertices, that is K_{d_1} , in which each edge is assigned a positive sign and G_3 be a null graph on $d_{k+1} - d_k > 0$ vertices, that is $\bar{K}_{d_{k+1}-d_k}$. Join every vertex of G_2 to each vertex of G_1 with a positive edge and join every vertex of G_2 to each vertex of G_3 with a positive edge, so that we obtain a signed graph G on $d_k - d_1 + 1 + d_1 + d_{k+1} - d_k = d_{k+1} + 1$ vertices with

$$sdeg(u) = (d_i - d_1) + (d_1) - 0 = d_i, for \ all \ u \in V(G_1) \ where \ 2 \le i \le k,$$

$$sdeg(v) = (d_1 - 1) + (d_k - d_1 + 1) + (d_{k+1} - d_k) - 0 = d_{k+1}, for \ all \ v \in V(G_2),$$

and

$$sdeg(w) = (0) + (d_1) - 0 = d_1, for \ all \ \ w \in V(G_3).$$

Therefore, signed degree set of G is $D = d_1, d_2, \ldots, d_k, d_{k+1}$. Clearly, by construction, all the signed graphs are connected. Hence, the result follows.

Theorem 2.2. Every non-empty set D of negative integers is the signed degree set of some connected signed graph and the minimum order of such a graph is |M| + 1, where M is the minimum integer in the set D.

Proof. Let D be a signed degree set and $m_0(D)$ denotes the minimum order of a signed graph G realizing D . Since |M| is the maximum integer in D , therefore there is a vertex in G which is adjacent to at least |M| other vertices with a negative sign . Then $m_0(D) \geq |M| + 1$. Now , if there exists a signed graph of order |M| + 1 with D as signed degree set , then $m_0(D) = |M| + 1$.

Let $D = \{-d_1, -d_2, \ldots, -d_n\}, -d_1 > -d_2 > \ldots > -d_n$, be a set of negative integers where d_1, d_2, d_n are positive integers. Now, $D_1 = \{d_1, d_2, \ldots, d_n\}$ is a set of positive integers with $d_1 < d_2 < \ldots < d_n$. By Theorem 2.1, there exists a connected signed graph G_1 on $d_n + 1 = |-d_n| + 1$ vertices with signed degree set $D_1 = \{d_1, d_2, \ldots, d_n\}$. Now, construct a signed graph G from G_1 by interchanging positive edges with negative edges. Then, G is a connected signed graph on $|-d_n| + 1$ vertices with degree set $D = \{-d_1, -d_2, \ldots, -d_n\}$. This proves the result.

Theorem 2.3. Every non-empty set D of integers is the signed degree set of some connected signed graph.

Proof. Let D be a set of n integers. We have the following cases.

Case I. D is a set of positive (negative) integers. Then , the result follows by Theorem 2.1 (Theorem 2.2).

Case II. $D = \{0\}$. Then, a null graph G on one vertex, that is K_1 , has signed degree set $D = \{0\}$.

Case III. D is a set of non-negative (non-positive) integers. Let $D = D_1 \cup \{0\}$, where D_1 is a set of positive (negative) integers. Then , by Theorem 2.1 (Theorem 2.2) , there is a signed graph G_1 with degree set D_1 . Let G_2 be a null graph on two vertices , that is \bar{K}_2 . Let e = uv be an edge in G_1 with positive (negative) sign and let $x, y \in V(G_2)$. Add the positive (negative) edges ux and vy , and the negative (positive) edges uy and vx , so that we obtain a connected signed graph G with signed degree set D . We note that addition of such edges do not effect the

signed degrees of the vertices of G_1 , and the vertices x and y have signed degrees zero each.

- Case IV. D is a set of non-zero integers. Let $D = D_1 \cup D_2$, where D_1 is a set of positive integers and D_2 is a set of negative integers. Then, by Theorem 2.1 and Theorem 2.2, there are connected signed graphs G_1 and G_2 with signed degree sets D_1 and D_2 . Let $e_1 = uv$ be an edge in G_1 with positive sign and $e_2 = xy$ be an edge in G_2 with negative sign. Add the positive edges ux and vy, and the negative edges uy and vx, so that we obtain a connected signed graph G with signed degree set D. We note that addition of such edges do not effect the signed degrees of the vertices of G_1 and G_2 .
- Case V. D is a set of integers. Let $D=D_1\cup D_2\cup\{0\}$, where D_1 and D_2 are the sets of positive and negative integers respectively. Then, by Theorem 2.1 and Theorem 2.2, there are connected signed graphs G_1 and G_2 with signed degree sets D_1 and D_2 . Let G_3 be a null graph on one vertex, that is K_1 . Let $e_1=uv$ be an edge in G_1 with positive sign, and let $x\in V(G_2)$ and $y\in V(G_3)$. Add the positive edges up and vx, and the negative edges ux and vy, so that we obtain a connected signed graph G with signed degree set D. We note that addition of such edges do not effect the signed degrees of the vertices of G_1 and G_2 , and the vertex y has signed degree zero. This completes the proof.
- **Theorem 2.4.** If G is a signed graph with vertex set V where |V| = r and signed degree set $\{d_1, d_2, \ldots, d_n\}$. Then, for each $k \geq 1$, there is a signed graph with kr vertices and signed degree set $\{d_1, d_2, \ldots, d_n\}$.
- **Proof.** For each i, $1 \leq i \leq k$, let G_i be a copy of G with vertex set V_i . Define a signed graph H with vertex set $W = \bigcup_{i=1}^k v_i$ where $V_i \cap V_j = \phi(i \neq j)$ and the edges of H are the edges of G_i for all i, where $1 \leq i \leq k$. Therefore, H is a signed graph on kr vertices with signed degree set $\{d_1, d_2, \ldots, d_n\}$.

REFERENCES

- [1] G. Chartrand , H. Gavlas , F. Harary and M. Schultz , On signed degrees in signed graphs , Czeck. Math. J. 44 (1994) 677-690.(Zbl 0837.05110)
- [2] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) 496-506.(Zbl 0109.16501)
- [3] F. Harary, On the notion of balance in a signed graph , Michigan Math. J. 2(1953) 143-146.(Zbl 0056.42103)
- [4] S. F. Kapoor, A. O. Polimeni and C. E. Wall, Degree sets for graphs, Fund. Math. 65 (1977) 189-194.(Zbl 0351.05129)
- [5] J. H. Yan , K. W. Lih , D. Kuo and G. J. Chang , Signed degree sequences of signed graphs , J. Graph Theory 26 (1997) 111-117.(Zbl 0890.05072)