# Trigonomometrische Funktionen

## Trigonometrische Zusammenhänge

$$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$$

$$cos(\alpha) = \frac{Ankathete}{Hypotenuse}$$

$$tan(\alpha) = \frac{Gegenkathete}{Ankathete}$$

### Ableitungen



|                   |                          |                                    | 15                   |                                    |                          |
|-------------------|--------------------------|------------------------------------|----------------------|------------------------------------|--------------------------|
| Winkel (Grad)     | 0°                       | 30"                                | 45°                  | 60°                                | 90"                      |
| Winkel (Bogenmaß) | 0                        | $\frac{\pi}{6}$                    | $\frac{\pi}{4}$      | $\frac{\pi}{3}$                    | $\frac{\pi}{2}$          |
| sin               | $0 = \frac{\sqrt{0}}{2}$ | $\frac{1}{2} = \frac{\sqrt{1}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$               | $1 = \frac{\sqrt{4}}{2}$ |
| cos               | $1=\frac{\sqrt{4}}{2}$   | $\frac{\sqrt{3}}{2}$               | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2} = \frac{\sqrt{1}}{2}$ | $0 = \frac{\sqrt{0}}{2}$ |
| tan               | 0                        | $\frac{\sqrt{3}}{3}$               | 1                    | √3                                 | - 1                      |

#### Trigonometrische Beziehungen

| $\sin^2 \alpha + \cos^2 \alpha$ | α=1                                                             | $tan \alpha$       | $=\sin \alpha/\cos \alpha$   |  |  |
|---------------------------------|-----------------------------------------------------------------|--------------------|------------------------------|--|--|
| sec lpha                        | $=1/\cos\alpha$                                                 | cosecα             | $=1/\sin\alpha$              |  |  |
| $\cot lpha$                     | $= 1/\tan \alpha = \cos \alpha/\sin \alpha$                     |                    |                              |  |  |
| ${\sf sec}^2 \pmb{\alpha}$      | $=1 + \tan^2 \alpha$                                            | cosec <sup>2</sup> | $\alpha=1+\cot^2\alpha$      |  |  |
| $sin(\alpha + \beta)$           | $= \sin \alpha \cos \beta + \cos \alpha \sin \beta$             |                    |                              |  |  |
| $cos(\alpha + \beta)$           | $=\cos\alpha\cos\beta-\sin\alpha\sin\beta$                      |                    |                              |  |  |
| $\sin(\alpha-\beta)$            | $= \sin \alpha \cos \beta - \cos \alpha \sin \beta$             |                    |                              |  |  |
| $\cos(\alpha-\beta)$            | $=\cos\alpha\cos\beta+\sin\alpha\sin\beta$                      |                    |                              |  |  |
| $\sin 2\alpha$                  | $=2\sin\alpha\cos\alpha$                                        | cos 2α             | $=\cos^2\alpha-\sin^2\alpha$ |  |  |
| $\sin \alpha + \sin \beta$      | $= 2\sin\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta)$ |                    |                              |  |  |
| $\cos \alpha + \cos \beta$      | $=2\cos\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta)$  |                    |                              |  |  |

