Calculus and Analytical Geometry

Dr. Zahid Akhtar

Limit of a Function

For the function f whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.

(a)
$$\lim_{x\to 0} f(x)$$

(b)
$$\lim_{x \to 3^{-}} f(x)$$

(a)
$$\lim_{x \to 0} f(x)$$
 (b) $\lim_{x \to 3^{-}} f(x)$ (c) $\lim_{x \to 3^{+}} f(x)$

(d)
$$\lim_{x \to 3} f(x)$$
 (e) $f(3)$

(e)
$$f(3)$$

- **5.** Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x \to 1^{-}} f(x)$ (b) $\lim_{x \to 1^{+}} f(x)$ (c) $\lim_{x \to 1} f(x)$

- (d) $\lim_{x \to 5} f(x)$ (e) f(5)

- **6.** For the function h whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.

 - (a) $\lim_{x \to -3^-} h(x)$ (b) $\lim_{x \to -3^+} h(x)$ (c) $\lim_{x \to -3} h(x)$

- (d) h(-3) (e) $\lim_{x\to 0^-} h(x)$ (f) $\lim_{x\to 0^+} h(x)$
- (g) $\lim_{x \to 0} h(x)$ (h) h(0) (i) $\lim_{x \to 2} h(x)$

- (j) h(2) (k) $\lim_{x \to 5^+} h(x)$ (l) $\lim_{x \to 5^-} h(x)$

- **7.** For the function g whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.

- (a) $\lim_{t \to 0^{-}} g(t)$ (b) $\lim_{t \to 0^{+}} g(t)$ (c) $\lim_{t \to 0} g(t)$
- (d) $\lim_{t \to 2^{-}} g(t)$ (e) $\lim_{t \to 2^{+}} g(t)$ (f) $\lim_{t \to 2} g(t)$

- (g) g(2) (h) $\lim_{t \to 4} g(t)$

8. For the function R whose graph is shown, state the following.

(a)
$$\lim_{x\to 2} R(x)$$

(b)
$$\lim_{x\to 5} R(x)$$

(c)
$$\lim_{x \to -3^-} R(x)$$

(d)
$$\lim_{x \to -3^+} R(x)$$

(e) The equations of the vertical asymptotes.

- **9.** For the function f whose graph is shown, state the following.

 - (a) $\lim_{x \to -7} f(x)$ (b) $\lim_{x \to -3} f(x)$ (c) $\lim_{x \to 0} f(x)$
 - (d) $\lim_{x \to 6^{-}} f(x)$ (e) $\lim_{x \to 6^{+}} f(x)$
 - (f) The equations of the vertical asymptotes.

21–24 Use a table of values to estimate the value of the limit. If you have a graphing device, use it to confirm your result graphically.

21.
$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$$

$$22. \lim_{x \to 0} \frac{\tan 3x}{\tan 5x}$$

23.
$$\lim_{x \to 1} \frac{x^6 - 1}{x^{10} - 1}$$

24.
$$\lim_{x\to 0} \frac{9^x - 5^x}{x}$$