

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.	
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .	
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.	

EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy

DATA: **2 czerwca 2021 r.**GODZINA ROZPOCZĘCIA: **9:00**CZAS PRACY: **170 minut**

LICZBA PUNKTÓW DO UZYSKANIA: 45

WYPEŁNIA ZESPÓŁ NADZORUJĄCY				
Uprawnienia zdającego do:				
dostosowania zasad oceniania				
dostosowania w zw. z dyskalkulią				
nieprzenoszenia zaznaczeń na kartę.				

EMAP-P0-**100**-2106

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 27 stron (zadania 1–35). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w cześci przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–28) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Pamietaj, że zapisy w brudnopisie nie będa oceniane.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Wartość wyrażenia $\sqrt{2} \cdot \left(\sqrt{2} - \sqrt{3}\right) + \sqrt{3} \cdot \left(\sqrt{2} - \sqrt{3}\right)$ jest równa

- **A.** $5 2\sqrt{6}$
 - **B.** 5
- **C.** $5 + 2\sqrt{6}$
 - **D**. −1

Zadanie 2. (0-1)

Liczba $\left(7^{\frac{5}{4}} \cdot 7^{\frac{1}{4}}\right)^{\frac{2}{3}}$ jest równa

- **A.** $7^{\frac{5}{3}}$
- **B**. 7^1

Zadanie 3. (0-1)

Niech $\log_3 18 = c$. Wtedy $\log_3 54$ jest równy

- **A.** c 1
- **B**. *c*

- **C.** c + 1
- **D.** c + 2

Zadanie 4. (0-1)

Cenę drukarki obniżono o 20%, a następnie nową cenę obniżono o 10%. W wyniku obu tych zmian cena drukarki zmniejszyła się w stosunku do ceny sprzed obu obniżek o

- **A.** 18%
- **B.** 28%
- **C**. 30%
- **D.** 72%

Zadanie 5. (0-1)

Dla każdej liczby rzeczywistej x wyrażenie $(x-1)^2-(2-x)^2$ jest równe

- **A.** 2x 3
- **B.** $2x^2 6x 3$ **C.** $(2x 3)^2$
- **D.** 9

Zadanie 6. (0-1)

Wskaż rysunek, na którym przedstawiony jest zbiór wszystkich liczb rzeczywistych x, spełniających jednocześnie nierówności 0 < 7 - 3x oraz $7 - 3x \le 5x - 3$.

A.

Zadanie 7. (0-1)

Rozwiązaniem równania $x\sqrt{3} + 2 = 2x - 8$ jest liczba

A.
$$10(2+\sqrt{3})$$
 B. $\frac{10}{\sqrt{3}-2}$ **C.** $10(\sqrt{3}-2)$ **D.** $\frac{\sqrt{3}+10}{2}$

B.
$$\frac{10}{\sqrt{3}-2}$$

c.
$$10(\sqrt{3}-2)$$

D.
$$\frac{\sqrt{3}+10}{2}$$

Zadanie 8. (0-1)

Równanie $\frac{x^2-7x}{x^2-49}=0$ ma w zbiorze liczb rzeczywistych dokładnie

- A. jedno rozwiązanie.
- B. dwa rozwiązania.
- C. trzy rozwiązania.
- **D.** cztery rozwiązania.

Zadanie 9. (0-1)

Na rysunku przedstawiono wykres funkcji f określonej w zbiorze (-1,7).

Wskaż zdanie prawdziwe.

- **A.** Funkcja f ma trzy miejsca zerowe.
- **B.** Zbiorem wartości funkcji f jest (-1, 1).
- **C.** Funkcja f osiąga wartość największą równą 1.
- **D.** Funkcja f osiąga wartości ujemne dla argumentów ze zbioru (-1,0).

Zadanie 10. (0-1)

Wykresem funkcji kwadratowej f określonej wzorem f(x) = -3(x+4)(x-2) jest parabola o wierzchołku W = (p,q). Współrzędne wierzchołka W spełniają warunki

- **A.** p > 0 i q > 0
- $\mathbf{B.}\; p<0\;\; \mathrm{i}\;\; q>0$
- **C.** p < 0 i q < 0
- **D.** p > 0 i q < 0

Informacja do zadań 11. i 12.

Na rysunku przedstawiono <u>fragment</u> wykresu funkcji kwadratowej f. Jednym z miejsc zerowych tej funkcji jest liczba 2. Do wykresu funkcji f należy punkt (0,3). Prosta o równaniu x = -2 jest osią symetrii paraboli, będącej wykresem funkcji f.

Zadanie 11. (0-1)

Drugim miejscem zerowym funkcji f jest liczba

- **A.** -2
- **B.** −3
- **C.** -4
- **D**. -6

Zadanie 12. (0-1)

Wartość funkcji f dla argumentu (-4) jest równa

- **A.** -2
- **B**. 0

C. 3

D. 4

Zadanie 13. (0-1)

Dane są ciągi (a_n) , (b_n) , (c_n) , (d_n) , określone dla każdej liczby naturalnej $n \ge 1$ wzorami: $a_n = 20n + 3$, $b_n = 2n^2 - 3$, $c_n = n^2 + 10n - 2$, $d_n = \frac{n + 187}{n}$. Liczba dziesiątym wyrazem ciągu

- $\mathbf{A}.(a_n)$
- **B.** (b_n) **C.** (c_n) **D.** (d_n)

Zadanie 14. (0-1)

Ciąg geometryczny (a_n) , określony dla każdej liczby naturalnej $n \ge 1$, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek $\,a_3=a_1\cdot a_2\,$. Niech $\,q\,$ oznacza iloraz ciągu (a_n) . Wtedy

A.
$$a_1 = \frac{1}{q}$$

B.
$$a_1 = q$$

C.
$$a_1 = q^2$$

B.
$$a_1 = q$$
 C. $a_1 = q^2$ **D.** $a_1 = q^3$

Zadanie 15. (0-1)

Kąt o mierze α jest ostry i $\operatorname{tg} \alpha = \sqrt{5}$. Wtedy

A.
$$\cos^2 \alpha = \frac{1}{6}$$

B.
$$\cos^2 \alpha = \frac{1}{5}$$

A.
$$\cos^2 \alpha = \frac{1}{6}$$
 B. $\cos^2 \alpha = \frac{1}{5}$ **C.** $\cos^2 \alpha = \frac{\sqrt{5}}{5}$ **D.** $\cos^2 \alpha = \frac{5}{6}$

D.
$$\cos^2 \alpha = \frac{5}{6}$$

Zadanie 16. (0-1)

Na okręgu o środku w punkcie O leżą punkty A, B oraz C. Odcinek AC jest średnicą tego okręgu, a kąt środkowy AOB ma miarę 82° (zobacz rysunek).

Miara kata OBC jest równa

- **A.** 41°
- **B.** 45°
- **C**. 49°
- **D**. 51°

Zadanie 17. (0-1)

Dane są okrąg i prosta styczna do tego okręgu w punkcie A. Punkty B i C są położone na okręgu tak, że BC jest jego średnicą. Cięciwa AB tworzy ze styczną kąt o mierze 40° (zobacz rysunek).

Miara kąta ABC jest równa

- **A.** 20°
- **B.** 40°
- **C**. 45°
- **D**. 50°

Zadanie 18. (0-1)

Dany jest trójkąt prostokątny ABC o bokach |AC|=24, |BC|=10, |AB|=26. Dwusieczne kątów tego trójkąta przecinają się w punkcie P (zobacz rysunek).

Odległość x punktu P od przeciwprostokątnej AB jest równa

A. 2

- **B.** 4
- **c**. $\frac{5}{2}$
- **D.** $\frac{13}{3}$

Zadanie 19. (0-1)

Jeden z boków równoległoboku ma długość równą 5. Przekątne tego równoległoboku mogą mieć długości

A. 4 i 6

B. 4 i 3

C. 10 i 10

D. 5 i 5

Zadanie 20. (0-1)

W pewnym trójkącie równoramiennym największy kąt ma miarę 120°, a najdłuższy bok ma długość 12 (zobacz rysunek).

Najkrótsza wysokość tego trójkąta ma długość równą

A. 6

B. $2\sqrt{3}$

C. $4\sqrt{3}$

D. $6\sqrt{3}$

Zadanie 21. (0-1)

Prosta przechodząca przez punkty (-4, -1) oraz (5, 5) ma równanie

A. y = x + 3 **B.** $y = \frac{2}{3}x + \frac{5}{3}$ **C.** y = x - 3 **D.** $y = \frac{2}{3}x + \frac{11}{3}$

Zadanie 22. (0-1)

Proste o równaniach $y=-\frac{1}{m-2}x-1$ i $y=\frac{1}{3}x+1$ są równoległe. Wynika stąd, że

A. $m = \frac{5}{2}$

B. m = -1 **C.** $m = \frac{7}{3}$ **D.** m = 5

Zadanie 23. (0-1)

W prostokącie ABCD dane są wierzchołki C=(-3,1) oraz D=(2,1). Bok AD ma długość 6. Pole tego prostokata jest równe

A. $6\sqrt{29}$

B. $12\sqrt{2}$

C. 24

D. 30

Zadanie 24. (0-1)

Obrazem prostej o równaniu x - 2y + 3 = 0 w symetrii osiowej względem osi 0y jest prosta o równaniu

A.
$$-x + 2y + 3 = 0$$

B.
$$-x + 2y - 3 = 0$$

C.
$$x + 2y - 3 = 0$$

D.
$$x + 2y + 3 = 0$$

Zadanie 25. (0-1)

Graniastosłup prawidłowy ma 36 krawędzi. Długość każdej z tych krawędzi jest równa 4. Pole powierzchni bocznej tego graniastosłupa jest równe

- **A.** 176
- **B.** 192
- **C.** 224
- **D.** 288

Zadanie 26. (0-1)

Wysokość ściany bocznej ostrosłupa prawidłowego sześciokatnego jest 2 razy dłuższa od krawędzi jego podstawy. Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy

A. $\frac{1}{2}$

- **B.** $\frac{4\sqrt{3}}{3}$
- **C**. 1
- **D.** $\frac{\sqrt{3}}{4}$

Zadanie 27. (0-1)

W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 25% więcej niż płytek z literami samogłoskowymi. Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe

- **A.** 0,75
- **B.** 0,25
- $\mathbf{C}.\frac{4}{9}$

D. $\frac{5}{9}$

Zadanie 28. (0-1)

Średnia arytmetyczna czterech liczb dodatnich: 2, 3x, 3x + 2, 3x + 4 jest równa $\frac{13}{2}$. Wynika stad, że

- **A.** x = 9
- **B.** $x = \frac{13}{2}$ **C.** $x = \frac{5}{9}$ **D.** x = 2

Zadanie 29. (0-2)

Rozwiąż nierówność:

$$2(x+1)(x-3) < x^2 - 9$$

Odpowiedź:

Zadanie 30. (0-2)

Wykaż, że dla wszystkich liczb rzeczywistych a, b i c takich, że $\frac{a+b}{2} > c$ i $\frac{b+c}{2} > a$, prawdziwa jest nierówność

$$\frac{a+c}{2} < b$$

Zadanie 31. (0-2)

Dany jest ciąg arytmetyczny (a_n) , określony dla wszystkich liczb naturalnych $n \ge 1$. Suma dwudziestu początkowych wyrazów tego ciągu jest równa $20a_{21}+62$. Oblicz różnicę ciągu (a_n) .

Odpowiedź:

Zadanie 32. (0-2)

Dany jest trapez o podstawach długości a oraz b i wysokości h. Każdą z podstaw tego trapezu wydłużono o 25%, a wysokość skrócono tak, że powstał nowy trapez o takim samym polu. Oblicz, o ile procent skrócono wysokość h trapezu.

Odpowiedź:	
()dnownodz:	
CODOWIEU	

Zadanie 33. (0-2)

W trójkącie ABC boki BC i AC są równej długości. Prosta k jest prostopadła do podstawy AB tego trójkąta i przecina boki AB oraz BC w punktach – odpowiednio – D i E. Pole czworokąta ADEC jest 17 razy większe od pola trójkąta BED. Oblicz $\frac{|CE|}{|EB|}$.

Odpowiedź:

Zadanie 34. (0-2)

Ze zbioru wszystkich liczb naturalnych dwucyfrowych, których cyfra dziesiątek należy do zbioru $\{3,4,5,6,7,8\}$, a cyfra jedności należy do zbioru $\{0,1,2,3,4\}$, losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy liczbę dwucyfrową, która jest podzielna przez 4.

Odpowiedź:

Zadanie 35. (0-5)

Podstawa AB trójkąta równoramiennego ABC jest zawarta w prostej o równaniu y=-2x+16. Wierzchołki B i C mają współrzędne B=(3,10) i C=(-2,3). Oblicz współrzędne wierzchołka A i pole trójkąta ABC.

Odpowied:	7.	 	

