CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN: GREEDY TECHNIQUE

Minimum Spanning Trees

- Modeling and Definition

MINIMUM SPANNING TREES

- Given a computer network modeled as a graph:
 - A path is computed for routing end-to-end messages
 - oShortest paths minimize the cost of communication per source-destination pair.

NETWORKS AND PATHS

MINIMUM SPANNING TREES

- Given a computer network modeled as a graph:
 - What if the communication is a broadcast? i.e.
 - oa single message is to be sent from (any) source to all destinations and
 - o nodes can forward messages
 - The goal in this case would be to minimize the <u>total</u> <u>cost of broadcasting</u>
 - The (optimal) broadcast path would be
 a tree that spans all vertices such that the sum of
 weights of edges is minimal.

LAN DESIGN — BRIDGES AND CABLES

MINIMUM SPANNING TREES

Openitions:

- Give a weighted, connected, undirected graph G=(V,E,w):
 - o **a spanning tree T** is a tree (V,E') such that E' is a subset of E.
 - o *a minimum spanning tree* is a tree **T** with the smallest total weight
 - oi.e. $\sum_{e \text{ in T}} w(e)$ is minimum

• Question:

Minimizing the number of edges is meaningless –
Why?