

Part 6

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Mauro Dell'Amico

↑ || **↑** ||

Matrix notation

$$\max z = 80x_1 + 70x_2$$

$$= 80x_1 + 70x_2 3x_1 + 2x_2 + x_3 2x_1 + 3x_2 + x x_1, x_2, x_3, x$$

$$3x_1 + 2x_2 + x_3 = 2x_1 + 3x_2 + x_4 = x_1, x_2, x_3, x_4 \ge 2$$

Matrix notation

max
$$z = 80x_1 + 70x_2$$

s.t $3x_1 + 2x_2 + x_3 = 15$
 $2x_1 + 3x_2 + x_4 = 15$
 $x_1, x_2, x_3, x_4 \ge 0$
 $c^T = [80, 70, 0, 0], x = \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix}$

Mauro Dell'Amico

Matrix notation

UNIMORE

first row
$$\sum_{j=1}^4 a_{1j}x_j = b_1 \Leftrightarrow 3x_1 + 2x_2 + x_3(+0x_4) = 15$$
 second row $\sum_{j=1}^4 a_{2j}x_j = b_2 \Leftrightarrow 2x_1 + 3x_2 + (0x_3) + x_4 = 15$

max
$$z = 80_1x + 70x_2$$

s.t $3x_1 + 2x_2 + x_3 = 15$
 $2x_1 + 3x_2 + x_4 = 15$
 $x_1, x_2, x_3, x_4 \ge 0$
 $A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$

first row
$$\sum_{j=1}^4 a_{1j}x_j = b_1 \Leftrightarrow 3x_1 + 2x_2 + x_3(+0x_4) = 15$$
 second row $\sum_{j=1}^4 a_{2j}x_j = b_2 \Leftrightarrow 2x_1 + 3x_2 + (0x_3) + x_4 = 15$ $Ax = b$

Mauro Dell'Amico

A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx:Ax=b,x\geq 0\} \text{ (Let } m=\operatorname{rank}(A))$$

A generic PLC problem in standard form in matrix notation is:

$$\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\boldsymbol{x}\geq \boldsymbol{0}\} \; (\operatorname{Let}\; \boldsymbol{m}=\operatorname{rank}(\boldsymbol{A}))$$

ullet Basis of A: collection B of m linearly independent columns;

Mauro Dell'Amico UNIMORE

A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx:Ax=b,x\geq 0\}\;(\mathrm{Let}\;m=\mathrm{rank}(A))$$

<u>Basis</u> of A: collection B of m linearly independent columns; <u>basic variables</u>: variables x_j associated with the columns of B <u>non basic variables</u>: variables associated to $A \setminus B$ A generic PLC problem in standard form in matrix notation is:

$$\max\{c^\mathsf{T}x:Ax=b,x\geq 0\} \; (\mathsf{Let}\; m=\mathsf{rank}(A))$$

• Basis of A: collection B of m linearly independent columns; basic variables: variables x_j associated with the columns of B non basic variables: variables associated to $A \setminus B$

$$A = [A_1, \dots, A_n] \Rightarrow A = [B, F] \text{ con } B = [A_1, \dots, A_m]$$

$$x = \begin{bmatrix} x_B \\ x_F \end{bmatrix}$$

$$Ax = b \Rightarrow Bx_B + Fx_F = b \Rightarrow x_B = B^{-1}b - B^{-1}Fx_F$$

A generic PLC problem in standard form in matrix notation is:

$$\max\{c^Tx:Ax=b,x\geq 0\}\;(\mathrm{Let}\;m=\mathrm{rank}(A))$$

• Basis of A: collection B of m linearly independent columns; basic variables: variables x_j associated with the columns of B non basic variables: variables associated to $A \setminus B$

$$A = [A_1, ..., A_n] \Rightarrow A = [B, F] \text{ con } B = [A_1, ..., A_m]$$

$$\zeta = \begin{bmatrix} x_B \\ x_F \end{bmatrix}$$

$$Ax = b \Rightarrow Bx_B + Fx_F = b \Rightarrow x_B = B^{-1}b - B^{-1}Fx_F$$

• Basic solution: $x_F = 0$, $x_B = B^{-1}b$

feasible:
$$x_B = B^{-1}b \ge 0$$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x_F = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

ANIMON (

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \quad x_{F} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix} \quad B^{-1} = \begin{bmatrix} \frac{3}{5} - \frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} \frac{3}{5} - \frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{3}{5} - \frac{2}{5} \\ 0 & 1 & -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}b = \begin{bmatrix} \frac{3}{5} - \frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $x_F = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$ $B^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{5}{5} \\ -\frac{5}{5} & \frac{3}{5} \end{bmatrix}$

$$x_B = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x_F = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{3}{5} & -\frac{2}{5} \\ 0 & 1 & -\frac{2}{5} & \frac{3}{5} \end{bmatrix}$$

$$B^{-1}b = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$Ax = b$$
 \Rightarrow $Bx_B + Fx_F = b$ \Rightarrow $B^{-1}Bx_B + B^{-1}Fx_F = B^{-1}b$
 $x_B = B^{-1}b - B^{-1}Fx_F$

$$x_B = B^{-1}b - B^{-1}Fx_F$$

$$x_B = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

$$x_B = B^{-1}b - B^{-1}Fx_F$$

$$x_B = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} \frac{3}{5} - \frac{2}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

$$\begin{cases} x_1 = 3 - \frac{3}{5}x_3 + \frac{2}{5}x_4 \\ x_2 = 3 + \frac{2}{5}x_3 - \frac{3}{5}x_4 \end{cases}$$

Mauro Dell'Amico

Part 7

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Standard and other forms of an LP

STANDARD

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$

CANONICAL

$$\min\{c^T x : Ax \ge b, x_j \ge 0, j = 1, \dots, n\}$$

GENERAL

$$\min\{c^T x : Ax = b, A'x \ge b', x_j \ge 0, j \in J \subset \{1, \dots, n\}\}$$

The three forms are equivalent!

UNIMORE

Mauro Dell'Amico

From General to Standard

$$\min\{c^T x : Ax = b, A'x \ge b', x_j \ge 0, j \in J \subset \{1, \dots, n\}\}$$

 \Rightarrow

 $\min\{c^Tx : Ax = b, x_j \ge 0, j = 1, \dots, n\}$

From General to Standard

$$\min\{c^Tx:Ax=b,A'x\geq b',x_j\geq 0,j\in J\subset\{1,\dots,n\}\}$$

$$\psi$$

$$\min\{c^Tx:Ax=b,x_j\geq 0,j=1,\dots,n\}$$

An inequality is transformed into and equation adding a slack variable

Mauro Dell'Amico

From General to Standard

$$\min\{c^Tx:Ax=b,A'x\geq b',x_j\geq 0,j\in J\subset\{1,\ldots,n\}\}$$

$$\Downarrow$$

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, ..., n\}$$

An inequality is transformed into and equation adding a slack variable

An unconstrained variable x_j is substituted by two nonnegative variables $x_j^+, x_j^- \geq 0$

$$x_j = x_j^+ - x_j^-$$

From Standard to Canonical

$$\min\{c^Tx: \widehat{A}x \ge \widehat{b}, x_j \ge 0, j = 1, \dots, n\}$$

Mauro Dell'Amico

♠ © ▼ **♠** □ ▼

From Standard to Canonical

$$\min\{c^T x : Ax = b, x_j \ge 0, j = 1, \dots, n\}$$

$$\min\{c^T x : \widehat{A}x \ge \widehat{b}, x_j \ge 0, j = 1, \dots, n\}$$

An equation is transformed into two inequalities

Part 8

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Mauro Dell'Amico

Geometry of the LP

Let $x \in \Re^n$

Hyperplane : $\alpha^\mathsf{T} x = \alpha_0$

Halfspace : $\alpha^T x \le \alpha_0$

Geometry of the LP

Let $x \in \Re^n$

Hyperplane : $\alpha^T x = \alpha_0$

Halfspace : $\alpha^T x \le \alpha_0$

- Hyperplanes and halfspaces are convex sets
- ► The intersection of a finite number of hyperplanes and halfspaces is a convex sets

The solution space of an LP is a convex set

Mauro Dell'Amico

4 □ × 4 □ × 4 □ ×

Polyhedron: intersection of a finite number of hyperplanes and halfspaces

 $P = \{x \in \Re^n : Ax = b, A'x \ge b'\}$

Polytope : a bounded polyhedron $(\exists M>0:\|x\|\leq M\ \forall x\in P)$

Vertex : a point x of a polyhedron P such that $\exists x^1, x^2 \in P$ with $x = \frac{1}{2}x^1 + \frac{1}{2}x^2$

Polyhedron: intersection of a finite number of hyperplanes and

halfspaces

 $P = \{x \in \Re^n : Ax = b, A'x \ge b'\}$

Polytope : a bounded polyhedron

 $(\exists M > 0 : ||x|| \leq M \ \forall x \in P)$

Vertex : a point x of a polyhedron P such that $\not\exists x^1, x^2 \in P$ with $x = \frac{1}{2}x^1 + \frac{1}{2}x^2$

A polyhedron has a finite number of vertices.

UNIMORE

Mauro Dell'Amico

Theorem

Any point of a polytope can be obtained as a convex combination of its vertices (Minkowski-Weyl)

Theorem

Given a PLC problem $\min\{c^Tx:x\in P\}$, where P is a (finite) polytope, then there is at least a vertex of P giving and optimal solution.

Proof.

Theorem

Any point of a polytope can be obtained as a convex combination of its vertices (Minkowski-Weyl)

Theorem

Given a PLC problem $\min\{c^Tx:x\in P\}$, where P is a (finite) polytope, then there is at least a vertex of P giving and optimal solution.

Proof. Let x^1,\ldots,x^k be the vertices of P, let $y\in P$ be any point of P and set $z^*:=\min\{c^Tx^i:i=1,\ldots,k\}$

$$y \in P \Rightarrow \exists \lambda_1, \dots, \lambda_k \geq 0, \sum_{i=1}^k \lambda_i = 1 : y = \sum_{i=1}^k \lambda_i x^i (\mathsf{Minkowski-Weyl})$$

Mauro Dell'Amico

Theorem

Any point of a polytope can be obtained as a convex combination of its vertices (Minkowski-Weyl)

Theorem

Given a PLC problem $\min\{c^Tx:x\in P\}$, where P is a (finite) polytope, then there is at least a vertex of P giving and optimal solution.

Proof. Let x^1, \ldots, x^k be the vertices of P, let $y \in P$ be any point of P and set $z^* := \min\{c^T x^i : i = 1, \ldots, k\}$

$$y \in P \Rightarrow \exists \lambda_1, \dots, \lambda_k \geq 0, \sum_{i=1}^k \lambda_i = 1 : y = \sum_{i=1}^k \lambda_i x^i (\mathsf{Minkowski-Weyl})$$

$$c^{T}y = c^{T} \sum_{j=1}^{k} \lambda_{j} x^{j} = \sum_{j=1}^{k} \lambda_{j} (c^{T} x^{j}) \ge \sum_{j=1}^{k} \lambda_{j} z^{*} = z^{*} \quad \Box$$

Theorem Given a PLC problem $\max\{c^Tx:Ax=b,x\geq 0\}$ and a basis B, if the basic solution $x_B=B^{-1}b$, $x_F=0$ is feasible, then it defines a vertex of $P:=\{x:Ax=b,x\geq 0\}$

UNIMORE

Mauro Dell'Amico

 $+ x_4 = 15$ =15 $x_i \geq 0$ $i = 1, \ldots, 4$ s.t $3x_1 + 2x_2 + x_3$ $\max\,80x_1+70x_2$ $2x_1 + 3x_2$ Ш

Vertex **0**:
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$

UNIMORE

Mauro Dell'Amico

jiiji

Vertex **O**:
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$

Vertex **A**:
$$B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$$
 $x_B = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$

 $+ x_4 = 15$ =15 $x_i \geq 0$ $i = 1, \ldots, 4$ s.t $3x_1 + 2x_2 + x_3$ $\text{max }80x_1+70x_2$ $2x_1 + 3x_2$

Mauro Dell'Amico

gliji 6

Part 9

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Simplex algorithm

transform the current basis B into a new basis **Simplex algorithm**: (first version - maximization) Find a basis ${\cal B}$ giving a basic feasible solution ${\it x}$ while ("x is not optimal and not unlimited") begin

by changing one column, and so that the objective function increases

end

• The algorithm terminates in a finite number of iterations:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

UNIMORE

Mauro Dell'Amico

4 □ × 4 □ × 4 □ ×

Optimality condition

Maximization problem

$$\max\{c^Tx:Ax=b,x\geq 0\}$$

$$x_B = B^{-1}b - B^{-1}Fx_F, \ B^{-1}b \ge 0$$

Optimality condition

Maximization problem

$$\max\{c^{T} x : Ax = b, x \ge 0\}$$

$$x_{B} = B^{-1}b - B^{-1}F_{XF}, \quad B^{-1}b \ge 0$$

$$z = c^{T}x = \left[c_{B}^{T}, c_{F}^{T}\right] \begin{bmatrix} x_{B} \\ x_{F} \end{bmatrix} = c_{B}^{T}(B^{-1}b - B^{-1}F_{XF}) + c_{F}^{T}x_{F}$$

$$= c_{B}^{T}B^{-1}b + (c_{F}^{T} - c_{B}^{T}B^{-1}F)x_{F} = c_{B}^{T}B^{-1}b + \overline{c}_{F}^{T}x_{F}$$

Mauro Dell'Amico

Optimality condition

Maximization problem

$$\max\{c^{T}x : Ax = b, x \ge 0\}$$

$$x_{B} = B^{-1}b - B^{-1}F_{XF}, \quad B^{-1}b \ge 0$$

$$z = c^{T}x = \left[c_{B}^{T}, c_{F}^{T}\right] \begin{bmatrix} x_{B} \\ x_{F} \end{bmatrix} = c_{B}^{T}(B^{-1}b - B^{-1}F_{XF}) + c_{F}^{T}x_{F}$$

$$= c_{B}^{T}B^{-1}b + (c_{F}^{T} - c_{B}^{T}B^{-1}F)x_{F} = c_{B}^{T}B^{-1}b + \overline{c}_{F}^{T}x_{F}$$

$$\overline{c}^T = c^T - c_B^T B^{-1} A$$
 : reduced costs with respect to basis B

ho The cost of the current basic solution is $c_B^T B^{-1} b \quad (x_F = 0)$

Selection of the column entering the basis

Theorem

A basic feasible solution of a PLC problem in maximization form is optimal if the reduced costs are non-positive ($\overline{c}^T \le 0$).

(In a minimization problem the solution is optimal if $\overline{c}^T \geq 0$)

ullet To increase the current solution value select a variable of x_{F} with positive reduced cost.

Selection of the column leaving the basis

Let $\overline{A}=B^{-1}A, \quad \overline{F}=B^{-1}F \text{ and } \overline{b}=B^{-1}b.$

A basic solution is $x_B=B^{-1}b-B^{-1}Fx_F=\overline{b}-\overline{F}x_F$

Let $x_B = [x_{[1]}, \dots, x_{[m]}]^T$. If x_h (column h) enters the basis:

Selection of the column leaving the basis

Let
$$\overline{A}=B^{-1}A$$
, $\overline{F}=B^{-1}F$ and $\overline{b}=B^{-1}b$.

A basic solution is
$$x_{\rm B}=B^{-1}b-B^{-1}F_{\rm XF}=\overline{b}-\overline{F}_{\rm XF}$$

Let $x_B = [x_{[1]}, \dots, x_{[m]}]^T$. If x_h (column h) enters the basis:

$$\begin{cases} x_{[1]} &= \overline{b}_1 - \overline{a}_{1h}x_h \ge 0 \\ x_{[i]} &= \overline{b}_i - \overline{a}_{ih}x_h \ge 0 \\ x_{[m]} &= \overline{b}_m - \overline{a}_{mh}x_h \ge 0 \end{cases} \Rightarrow \begin{cases} \overline{a}_{1h}x_h \le \overline{b}_1 \\ \overline{a}_{ih}x_h \le \overline{b}_i \\ \overline{a}_{mh}x_h \le \overline{b}_m \end{cases}$$

$$\triangleright \overline{a}_{ih} \le 0 \quad \Rightarrow \quad \text{no constraint for } x_h$$

$$\triangleright \overline{a}_{ih} > 0 \quad \Rightarrow \quad x_h \le \overline{b}_i/\overline{a}_{ih}$$

$$x_h \le \min \left\{ \frac{\overline{b}_i}{\overline{a}_{ih}} : \overline{a}_{ih} > 0, i = 1, \dots, m \right\} \tag{1}$$

Mauro Dell'Amico

Let t be the row giving min $\left\{rac{ar{b}_i}{ar{a}_{ih}}:ar{a}_{ih}>0,i=1,\ldots,m
ight\}$ Since $x_{[t]} = \overline{b}_t - \overline{a}_{th} x_h$

$$x_h = \overline{rac{b}{a_{th}}} \Rightarrow x_{[t]} = 0$$
 leaves the basis

Let t be the row giving min $\left\{rac{ar{b}_l}{ar{a}_{lh}}:ar{a}_{lh}>0, i=1,\ldots,m
ight\}$ Since $x_{[t]}=\overline{b}_t-\overline{a}_{th}x_h$

$$x_h = rac{\overline{b}_t}{\overline{a}_{th}} \Rightarrow x_{[t]} = 0$$
 leaves the basis

..if instead...

$$\overline{a}_{ih} \leq 0, \ \forall i = 1, \dots, m$$

 x_h can increase indefinitely while $Ax=b, x\geq 0$ remains satisfied

 \Rightarrow

The problem is unlimited

UNIMORE

Mauro Dell'Amico

max
$$80x_1 + 70x_2$$

s.t $3x_1 + 2x_2 + x_3$ = 15
 $2x_1 + 3x_2$ + x_4 = 15
 $x_i \ge 0$ $i = 1, \dots, 4$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

 $\max\,80x_1+70x_2$

s.t
$$3x_1 + 2x_2 + x_3 = 15$$

$$2x_1 + 3x_2 + x_4 = 15$$

$$x_i \geq 0$$
 $i = 1, \ldots$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 1 & 2/3 & 1/3 & 0 \\ 0 & 5/3 & -2/3 & 1 \end{bmatrix} \ \overline{b} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \overline{c}^T = [0, 50/3, -80/3, 0]$$

UNIMORE

Mauro Dell'Amico

max
$$80x_1 + 70x_2$$

s.t $3x_1 + 2x_2 + x_3 = 15$
 $2x_1 + 3x_2 + x_4 = 15$
 $x_i \ge 0 \ i = 1, \dots, 4$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

$$\overline{A} = \left[egin{array}{ccc} 1 & 2/3 & 1/3 & 0 \\ 0 & 5/3 & -2/3 & 1 \end{array}
ight] \ \overline{b} = \left[egin{array}{ccc} 5 \\ 5 \end{array}
ight] \overline{c}^T = [0, 50/3, -80/3, 0]$$

$$h = 2, x_h \le \min\{\frac{5}{2/3}, \frac{5}{5/3}\} = 3 \Rightarrow t = 2$$

 $\max\,80x_1+70x_2$

s.t
$$3x_1 + 2x_2 + x_3 = 15$$

$$2x_1 + 3x_2 + x_4 = 15$$

$$x_i \geq 0$$
 $i = 1, \ldots, ^2$

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} B^{-1} = \begin{bmatrix} 1/3 & 0 \\ -2/3 & 1 \end{bmatrix}$$

$$\overline{A} = \left[\begin{array}{ccc} 1 & 2/3 & 1/3 & 0 \\ 0 & 5/3 & -2/3 & 1 \end{array} \right] \ \overline{b} = \left[\begin{array}{ccc} 5 \\ 5 \end{array} \right] \overline{c}^T = [0, 50/3, -80/3, 0]$$

$$h = 2, x_h \le \min\{\frac{5}{2/3}, \frac{5}{5/3}\} = 3 \Rightarrow t = 2$$

The second basic variable $(x_{[2]})=x_4$ leaves the basis

Mauro Dell'Amico

Part 10

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Simplex algorithm summary

```
pivot row t = \operatorname{argmin}\{\overline{b}_i/\overline{a}_{lh}: \overline{a}_{lh}>0\} (basic variable x_{[t]} exit
optimality non-positive reduced costs (maximization)
                                                              entering variable a non-basic variable x_h with \overline{c}_h > 0
                                                                                                                                                                                                                                                                                  unlimited problem \bar{a}_{ih} \leq 0 \; \forall i
                                                                                                                                                                                                         the basis)
```


Mauro Dell'Amico

Symplex algorithm (second version - maximization)

```
Find a feasible basis B = [A_{[1]}, \ldots, A_{[m]}] unlimited := FALSE; optimal := FALSE;

while (optimal = FALSE and unlimited = FALSE) do

Compute B^{-1} and set u^T := c_B^T B^{-1};

Compute reduced costs \overline{c}_h = c_h - u^T A_h, \forall x_h : h \in A \setminus B

if (\overline{c}_h \le 0 \ \forall x_h) then optimal := TRUE

else

Choose a non basic variable x_h such that \overline{c}_h > 0;

Compute \overline{b} := B^{-1}b and \overline{A}_h := B^{-1}A_h;

if (\overline{a}_{ih} \le 0, i = 1, \ldots, m) then unlimited:= TRUE

else

Find t := \operatorname{argmin}\{\overline{b}_i/\overline{a}_{ih}, i = 1, \ldots, m : \overline{a}_{ih} > 0\};
Update the basis setting [t] := h;

endif
```

Mauro Dell'Amico

endif endwhile

Part 11

Mauro Dell'Amico

DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it www.or.unimore.it

Mauro Dell'Amico

4 □ × 4 □ × 4 □ ×

Finding a initial solution

max
$$80x_1 + 70x_2$$
 max s.t $3x_1 + 2x_2 \le 15$ s.t $2x_1 + 3x_2 \le 15$ x_1 , $x_2 \ge 0$

$$x_1 + 2x_2 \le 15$$

 $x_1 + 3x_2 \le 15$

max
$$80x_1 + 70x_2$$

s.t $3x_1 + 2x_2 + x_3$
 $2x_1 + 3x_2$ -

$$2x_1 + 3x_2$$

15 15 0

|| || \ + *

$$x_1$$
, x_2 , x_3

$$\max z = x_1 - 4x_2$$
 s.t. $x_1 + x_2 \ge 4$ $-x_1 + 2x_2 \ge 2$ $x_1 + x_2 \ge 2$

4 0 0

 $\| \cdot \| \wedge \|$

 $\max z = s.t.$

<u>4</u> 4

, X3,

No basis is immediately available

Mauro Dell'Amico

jiiji

Add a dummy basis giving a small value to the obj. function artificial variables

		0	4	7
	a_2	ω	0	Н
1	a_1	ω		0
	$_{4}^{X}$	0	0	冖
	<i>x</i> ³	0	7	0
	<i>x</i> ²	4-		7
	χ^1	Н	П	<u>-</u>

Add a dummy basis giving a small value to the obj. function

artificial variables

	0	4	7
a ₂	3	0	Н
a_1	ω	T	0
× ₄	0	0	-1
<i>x</i> ³	0	-1	0
<i>x</i> ²	-4	1	7
χ^1	1	1	-

Numerical problems!

Mauro Dell'Amico

Define a new *minimization* problem where the obj. functions. ask to have the artificial variable not in the optimal basis

	0	4	7
a_2	T	0	Н
a_1	1	1	0
χ_4	0	0	7
<i>x</i> ³	0	-1	0
<i>X</i> ²	0	Н	7
<i>x</i> ¹	0	П	ᄀ

Define a new *minimization* problem where the obj. functions. ask to have the artificial variable not in the optimal basis

	0	4	7			9-	4	2
2			_	orm	2			_
a ₂				sis f	a_2			
a_1	П	Н	0	in ba	a_1	0	Н	0
χ_{4}	0	0	-1	tableau	× ₄	1	0	-1
<i>x</i> ³	0	-	0	orm the	×°	1	-1	0
<i>X</i> 2	0	Н	7	Transfo	× ²	٣-	П	2
χ_1	0	П	-		χ^{1}	0	1	-
]				

jiiji

Mauro Dell'Amico

UNIMORE

Define a new *minimization* problem where the obj. functions. ask to have the artificial variable not in the optimal basis

	0	4	7			9-	4	2		ကု	m	1
2				form	2		0		2	,5	~	2
a_2				asis f	a_2				a_2	3/	-1/	1/
a_1	Н	-	0	in b	a_1	0	\vdash	0	a_1	0	Н	0
-			_	tableau	-				=	<u></u>		7
χ_{4}			` i'	١.	× ₄			` ı'	× ₄	-1/2	1/2	-1/2
×°	0	7	0	n the	×°	П	<u>-</u>	0	×°	Н	7	0
	_			sforr						_	_	
<i>x</i> ²	0		(A	Transf	%	6-	Н	2	×2	0		1
χ^1	0	-	-1		1	0	-	-1	$^{1}_{\lambda}$	-3/2	/2	/2
										6-	ς.	-1

	_						
	-3	3	1		0	2	2
a_2	3/2	-1/2	1/2	a_2	П	-1/3	1/3
a_1	0	1	0	a_1	Н	2/3	1/3
× ₄	-1/2	1/2	-1/2	× ₄	0	1/3	-1/3
××	1	-1	0	×°	0	-2/3	-1/3
\$	0	0	1	× ²	0	0	Н
×	-3/2	3/2	-1/2	× ¹	0	1	0

 x_1 and x_2 in the solution a_1 and a_2 outside

Mauro Dell'Amico

	_						
	-3	3	П		0	2	2
a ₂	3/2	-1/2	1/2	a_2	Н	-1/3	1/3
q_1	0	1	0	a_1	П	2/3	1/3
× ₄	-1/2	1/2	-1/2	χ_{4}	0	1/3	-1/3
×°	1	-1	0	χ_3	0	-2/3	-1/3
\$	0	0	1	<i>x</i> ₂	0	0	1
×1×	-3/2	3/2	-1/2	<i>X</i> ¹	0	Н	0

 x_1 and x_2 in the solution a_1 and a_2 outside

remove last two columns and restore the original obj. function

				function	
	0	2	7	al obj.	form
a_2	1	-1/3	1/3	emove last two columns and restore the original obj	original problem in <i>maximization</i> form
a_1	1	2/3	1/3	ore the	maxim
× ₄	0	1/3	-1/3	nd rest	lem in
×°	0	-2/3	-1/3	umns a	al prob
×2	0	0	\vdash	WO CO	origin
×¹	0	П	0	e last t	NB 0
		<u> </u>	,	emov	

Mauro Dell'Amico

	0	2	7
<i>x</i> ₄	0	1/3	-1/3
<i>X</i> ³	0	-2/3	-1/3
<i>x</i> ²	-4	0	Н
χ_1	1	1	0

0 2 2 $\frac{a_2}{a_2}$ a_1 X₄0 0 X 8 0 N 1

	0	2	2		9	2	2
× ₄	0	1/3	-1/3	× ₄	-5/3	1/3	-1/3
×3	0	-2/3	-1/3	×°	-2/3	-2/3	-1/3
x ²	-4	0	1	x ₂	0	0	Н
χ^1	1	1	0	χ_1	0	П	0

Mauro Dell'Amico

X ₄	-5/3	1/3	-1/3
x ³	-2/3	-2/3	-1/3
×2	0	0	П
1×	0	1	0
	α	2	

2 2

N.B. Not in all cases we arrive immediately at the optimal solution

$$\max z = -2x_1 + x_2 + x_2$$

$$x_1 -2x_2 \ge 5$$

$$2x_1 +5x_2 = 6$$

$$x_1, x_2 \ge 0$$

Phase I

Mauro Dell'Amico

	-11	5	9
a 2	0	0	П
a_1	0	1	0
S_1	1	-1	0
×2 ×2	-3	-2	2
Ϋ́	-3	П	2

_			
c	7-	2	3
0	3/5	-1/2	1/2
c	>	1	0
۲	-	-1	0
Q Q	7/6	-9/2	5/2
c	>	0	

w=+2 Impossible! (a_1 is in the optimal base)

	-11	5	9
a 2	0	0	П
a_1	0	1	0
s_1	1	-1	0
x ²	-3	-2	2
×1	-3	1	2

-2	2	8
3/2	-1/2	1/2
0	1	0
-	-1	0
9/5	-9/5	5/2
0	0	

0

Mauro Dell'Amico

UNIMORE

Two phases method: summary

- Let (x^*, a^*) be the optimal solution of an artificial problem (Phase I), and let w^* be its value
 - $>0\,$. No solution exists in which all the artificial variables are *
- outside the basis: UNFEASIBLE
- $w^st=0$: and all artificial variables outside the basis: x^st defines an optimal basis for the original problem
 - $\mathbf{0}$: and an artificial variable a_h is in the basis II *>
- a) if the row of the tableau having coefficient 1 in column h is zero elsewere : delete the row (linearly dependent in the original problem)
- if the row of the tableau having coefficient 1 in column h has another nonzero value : pivot on this element (also if it is negative) **p**

