National Institute of Standards and Technology

- Each year bad programming costs the U.S. economy more than \$60 billion in revenue. In other words, what we Americans lose each year to faulty code is greater than the gross national product of most countries.
- One of the great ironies is that computer science should be the most mathematical of all the sciences,
- Computers are essentially mathematical engines that should behave in precisely predictable ways.
- yet software is some of the flakiest engineering there is, full of bugs and security issues.

Steve Omohundro, Stanford University Phi Beta Kappa, and Ph.D. in physics U.C. Berkeley.

Problems:	
FIUDICIIIS.	

Examples of an Alphabet

$$\Sigma = \{a, b, \dots, z\}$$
 - alphabetic

$$\sum = \{a, b, \dots, z\} \cup \{0, 1, \dots, 9\} - alphanumeric$$

$$\Sigma = \{0, 1\}$$
 – bit values

For \sum a nonempty set = $\{a\}$

 $\Sigma^* = \{\lambda, a, aa, aaa, \ldots\}$

 \sum^* is countably infinite

communicate information

Each element is unique

Problems:

Definition 2.11

Alphabet Σ is a set of symbols

Language is a set of strings over alphabet \sum

 Σ^* is a countable set of all strings over Σ

λ, an empty string ∈Σ*

recursive strings

Basis: $\lambda \in \Sigma^*$

Recursive Step:

if $w \in \Sigma^*$ and $\forall a \in \Sigma$ then $wa \in \Sigma^*$

Problems:

Closure:

 $w \in \Sigma^*$ iff w obtained from λ with finite number of recursive steps

For string
$$w \in \Sigma^*$$
, $w^0 = \lambda \in \Sigma^*$
 $w^k = w \dots w(k \text{ times}) = w^{k-1}w$, $w \in \Sigma^*$, $\forall k > 0$
For symbol $a \in \Sigma$, $a^0 = \lambda \in \Sigma^*$
 $a^k = a \dots a(k \text{ times}) = a^{k-1}a$, $a \in \Sigma^*$, $\forall k > 0$

Number strings of $length(k) = n^k$, $n = |\sum |$

 $\Sigma = \{a, b, c\}$, elements of Σ^* include:

Strings of Length 0: λ

Strings of length $1 = (3)^1 = 3$: a, b, c

Strings of length $2 = (3)^2 = 9$: aa, ab, ac, ba, bb, bc, ca, cb, cc

 $\Sigma^* = \{\lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, ...\}$

Definition 2.1.3: String Concatenation

 $u, v \in \Sigma^*$, concatenation of uv is a binary operation on Σ^*

Basis: if length(v) = 0 then $v = \lambda$ and uv = u

Recursive Step:

if
$$length(v) = n > 0$$
 then $v = wa$, $a \in \Sigma$, $w \in \Sigma^*$, $length(w) = n - 1$

and uv = u(wa) = uwa

Problems:

Associative but not

Concatenation example:

$$\sum = \{a, b, c\}$$

$$u = ab$$
, $v = ca$, $w = bb$

$$uv = abca$$
 $vw = cabb$

$$(uv)w = abcabb$$

$$u(vw) = abcabb$$

String Reversal

 $u \in \Sigma^*$, reversal of u, denoted u^R is defined as follows:

Basis:

if
$$length(u) = 0$$
 then $u = \lambda$, $\lambda^R = \lambda$

Problems:

Recursive Step:

If
$$length(u) = n > 0$$
 then $u = wa$, $Length(w) = n - 1$, $a \in \Sigma$, and $u^R = a w^R$

Example:

$$(\lambda sam)^R = m(\lambda sa)^R = ma(\lambda s)^R = mas(\lambda)^R = mas\lambda = mas$$

Language Definitions

$$\sum^* = \sum^0 \cup \sum^1 \cup \sum^2 \cup \sum^3 \cup \ldots = \sum^* = \lambda \cup \sum \cup \sum \sum \sum \cup \sum \sum \cup \ldots$$

Any language over alphabet $\Sigma \subseteq \Sigma^*$

Number of possible languages is number of subsets over $\Sigma^* = |P(\Sigma^*)|$

Strings over Σ of length 3

By definition, $\{a\}$ $a \in \Sigma$, $\Phi \subseteq \Sigma^*$, $\Sigma^* \subseteq \Sigma^*$ are languages

Language strings satisfy syntactical requirements.

Language specification requires unambiguous string description. Infinite languages with simple syntax are described recursively.

Example 2.2.1: Language L from $\sum = \{a, b\}$, strings begin with a and have **even** length.

recursive strings

Basis: aa, $ab \in L$

Recursive Step:

if $u \in L$ then uaa, uab, uba, and $ubb \in L$

Concatenate two elements to right of previous string

Closure:

String $u \in L$ iff obtained from basis element with finite number of applications of recursive step

$$L = \{aa\}\{\sum \sum\}^* \cup \{ab\}\{\sum \sum\}^* = \{aa\}\{\sum \sum^2\}^* \cup \{ab\}\{\sum \sum^2\}^*$$

Language *L from* $\Sigma = \{a, b\}$

number **b's** equal number **a's** and **b's** follow the **a's**

Basis: $\lambda \in L$

Recursive Step: $If x \in L then axb \in L$

Closure: *String* $x \in L$ iff obtained from basis element with finite number of applications of recursive step

$$L_0 = \{\lambda\}$$

$$L_1 = L_0 \cup \{ab\} = \{\lambda, ab\}$$

$$L_2 = L_1 \cup \{ab, aabb\} = \{\lambda, ab, aabb\}$$

$$L_3 = L_2 \cup \{ab, aabb, aaabbb\}$$

$$= \{\lambda, ab, aabb, aaabbb\}$$


```
Stable M/M/1 Model: Language L from \Sigma = \{a, d\}
   number d's equal number a's and
   n<sup>th</sup> d in the string is preceded by exactly n d's
Basis: \lambda \in L
Recursive Step: If x \in L then axd, adx, and xad \in L
Closure: String x \in L iff obtained from basis element with finite number
  of applications of recursive step
                                             omit duplicate
L_0 = \{\lambda\}
                                                 strings
L_1 = L_0 \cup \{ad\} = \{\lambda, ad\}
L_2 = L_1 \cup \{aadd, adad\} = \{\lambda, ad, aadd, adad\}
L_3 = L_2 \cup \{aaaddd, adaadd, aaddadd, aadadd, adadad\}
   =\{\lambda, ad, aadd, adad, aaaddd, adaadd, aaddad, aadadd, adadd\}
```

Problem 2.18: Language L from $\Sigma = \{a, b, c\}$ and length ≥ 4

Basis: $wxyz \in L$, $\forall w, x, y, z \in \Sigma$

$$u \in L, \forall u \in \Sigma^4, |\Sigma^4| = 81$$

Basis is set of all strings of length 4 from ∑ 81 strings

Recursive Step:

if $u \in L$ then $ua \in L$, $ub \in L$, and $uc \in L$ (if $u \in L$ then $uv \in L$, $\forall v \in \Sigma$)

Closure:

String $u \in L$ iff obtained from basis element with finite number of applications of recursive step

$$L = \{ u \in \Sigma^* \mid |u| \ge 4 \}$$

Problem 2.25: Language L from $\Sigma = \{a, b, c\}$

Every *b* is followed by at least one *c*

Basis: $\lambda \in L$

Recursive Step:

if $u \in L$ then $ua \in L$, $uc \in L$, and $ubc \in L$

Closure:

String $u \in L$ iff obtained from basis element with finite number

of applications of recursive step

Includes λ

$$L = \{\{a\} \cup \{c\} \cup \{bc\}\}^* = \{a, c, bc\}^*$$

Concatenating Alphabet Σ on Itself

Definition 2.2.2:

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i = \text{Kleene Star}$$
 strings of all lengths from alphabet Σ

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \ldots = \lambda \cup \Sigma \cup \Sigma \Sigma \cup \Sigma \Sigma \cup \ldots$$

$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i = \Sigma \Sigma^*$$

excludes λ

For set
$$X$$
, $X^0 = \{\lambda\}$,

Concatenation of X on itself n times, X^n , $X^0 = \{\lambda\}$

$$X^k = X^{k-1}X = XX^{k-1}, k > 0$$
 Set of $|X|^n$ distinct concatenations from X
$$X^n = \{x_1, \dots, x_i, \dots, x_n \mid x_i \in X\}$$

$$X^* = \bigcup_{i=0}^{\infty} X^i = X^0 \cup X^1 \cup X^2 \cup X^3 \cup \dots = \lambda \cup X \cup XX \cup XXX \cup \dots$$

$$X^+ = \bigcup_{i=1}^{\infty} X^i, X^+ = XX^*$$

Example:

$$X = \{a, b, c\}$$

 $X^{0} = \{\lambda\}$
 $X^{1} = \{a, b, c\}$
 $X^{2} = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
 $|X^{3}| = |X^{2}| * |X^{1}| = 3^{3} = 3^{2}3^{1} = 9*3 = 27 \text{ length(3) in } \Sigma^{*}$

Example:

$$X = \{abb, ba\}$$

$$X^{\theta} = \{\lambda\}$$

$$X^1 = \{abb, ba\}$$

 $X^2 = \{abb\underline{abb}, abbba, baabb, baba\}$

 $X^3 = \{abb\underline{abb}abb, abb\underline{abb}ba, abbba\underline{abb}, abbbaba,$

baabbabb, baabbba, babaabb, bababa}

Set of $|X|^n$ distinct strings concatenated from elements of X

$$|X^3| = |X^1| \cdot |X^2| = 2^3 = 2^1 2^2 = 2 \cdot 4 = 8$$

David Elizandro CSC 2710 Chapter 2 Languages 17

Concatenation of set $\{a, b\}$ on itself = $\{aa, ab, ba, bb\}$ For set $X = \{aa, ab, ba, bb\}$, $X^* = \bigcup_{i=0}^{\infty} X^i$ = set of even length strings based on set $\{aa, ab, ba, bb\}$

 $\{a,b\}^*$ = set of all odd and even length strings

 $\{a,b\}^* - X^* = \text{set of odd length strings based on set } \{a,b\}$

Concatenating Distinct Sets

For sets *X* and *Y*,

XY represents concatenation of *X* and *Y*

$$XY = \{xy \mid x \in X, y \in Y\}$$

Number of elements in XY = |XY| = |X| |Y|

$$X = \{a, b, c\}, Y = \{\lambda, abb, ba\}$$

 $XY = \{a, b, c, aabb, aba, babb, bba, cabb, cba\}$

$$X = \{a, b, c\}, Y = \{abb, ba\}$$

 $XY = \{aabb, aba, babb, bba, cabb, cba\}$

Regular Sets

Definition 2.3.1: *Regular sets* over alphabet \sum

Basis: Φ , $\{\lambda\}$, and $\{a \mid a \in \Sigma\}$ are *regular sets* over Σ , $|\Sigma| + 2$ sets

Recursive Step:

if X and Y are *regular sets* over \sum then

XUY, XY, and X* are *regular sets* over \sum

Closure:

X is a *regular set* on Σ , if it can be obtained from basis with finite number of applications of recursive step

Regular language is defined by a regular set

regular set derivable from **Basis** by **union, concatenation, Kleene star** operations

Regular set (language L) from $\Sigma = \{a, b, \dots, z\}$

```
L = \{ w \in \Sigma^* | w \text{ is a regular substring} \}
```

$$L = \{\{a\} \cup \{b\} \cup \dots \cup \{z\}\}^* \{r\} \{e\} \{g\} \{u\} \{l\} \{a\} \{r\} \{\{a\} \cup \{b\} \cup \dots \cup \{z\}\}^*\}$$

$$\{a\}, \{b\}, \dots, \{z\}$$
 are **regular sets** (Basis)

$$\{r\}\{e\}\{g\}\{u\}\{l\}\{a\}\{r\}$$
 is a **regular set** (Concatenation)

$$\{a\} \cup \{b\} \cup \ldots \cup \{z\} \text{ is a } regular set$$
 (Union)

$$\{\{a\}\cup\{b\}\cup\ldots\cup\{z\}\}^* \text{ is a } regular set \qquad (Kleene Star)$$

$$L = \sum^{*} \{r\} \{e\} \{g\} \{u\} \{l\} \{a\} \{r\} \sum^{*}$$

regular set language (Concatenation)

Example 2.3.1 based on Example 2.2.5

$$L = \{a, b\}^* \{bb\} \{a, b\}^* \text{ from } \Sigma = \{a, b\}$$

$$\{a\}$$
, $a \in \{a, b\}$ and $\{b\}$, $b \in \{a, b\}$ regular set (Basis)

$${b}{b} = {bb}$$
 regular set

(Concatenation)

$$\{a\} \cup \{b\} = \{a.\ b\}$$
 regular set

(Union)

(Kleene Star)

$$L = \{a, b\}^* \{bb\} \{a, b\}^*$$
 regular set language(Concatenation)

Example 2.3.2

$$L = \{a\}\{a, b\}^*\{b\}\{a, b\}^*\{a\} \text{ from } \sum = \{a, b\}$$

 $\{a\}$, $a \in \{a. b\}$ and $\{b\}$, $b \in \{a. b\}$ are **regular sets(Basis)**

$$\{a\} \cup \{b\} = \{a.\ b\}$$
 is a **regular set**

(Union)

$$\{a. b\}^*$$
 is a **regular set**

(Kleene Star)

$$L = \{a\}\{a, b\}^*\{b\}\{a, b\}^*\{a\}$$

regular set language (Concatenation)

Example 2.2.5 Language L from $\Sigma = \{a, b\}$ bb embedded within any number of a's and b's

$$L = \{a, b\}^* \{bb\} \{a, b\}^* = \bigcup_{i=0}^{\infty} \{a, b\}^i \{bb\} \bigcup_{i=0}^{\infty} \{a, b\}^i$$

$$L = \sum^* \{ bb \} \sum^*$$

Union Regular Set Languages

Example 2.2.6 Language L from $\Sigma = \{a, b\}$ any number of a's and b's preceded by aa or followed bb

$$L_1 = \{aa\}\{a, b\}^*$$

preceded by *aa*

$$L_2 = \{a, b\}^* \{bb\}$$

followed by **bb**

$$L_3 = L_1 \cup L_2$$

union of two languages

$$L_3 = \{aa\} \sum^* \cup \sum^* \{bb\}$$

Kleene Star Regular Set Languages

Example 2.2.7 *Language L from* $\Sigma = \{a, b\}$

$$L_1 = \{bb\}$$
 $L_1^* = \{bb\}^*$

$$L_2 = {\lambda, bb, bbbb}$$
 $L_2^* = {\lambda, bb, bbbb}$ *

 $L_1^* = L_2^*$ strings with even number of *b*'s

Definition 2.3.2: *Regular expressions* over alphabet \sum

Basis: Φ , λ , and $a \in \Sigma$ are *regular expressions* over Σ

Recursive Step:

if u and v are regular expressions over \sum then

 $(u \cup v)$, uv and u^* are **regular expressions** over \sum

Closure:

u is a *regular expression* over \sum if obtained from basis elements with finite number of applications of recursive step

regular expressions omit squiglies of set notation

Rules for Regular expressions

Union and Concatenation are associative

Operator precedence Kleene Star Concatenation and Union $u^+ = uu^*$ and $u^2 = uu$

Set $\{bawab \mid w \in \{a, b\}^* \text{ is a regular expression over } \{a, b\}$

	Regular Set	Expression	Justification
1	{a}	a	Basis
2	{ <i>b</i> }	b	Basis
3	$\{b\}\{a\} = \{ba\}$	ba	concatenate 2,1
4	$\{a\}\{b\} = \{ab\}$	ab	concatenate 1,2
5	$\{a\} \cup \{b\} = \{a, b\}$	<i>a</i> ∪ <i>b</i>	union 1,2
6	{a, b}*	(<i>a</i> ∪ <i>b</i>)*	Kleene star
7	{ba} {a, b}*	<i>ba</i> (<i>a</i> ∪ <i>b</i>)*	concatenate 3,6
8	{ba} {a, b}*{ba}	$ba(a \cup b)*ab$	concatenate 7,4

regular expressions omit squiglies of set notation

Example 2.3.4

For strings over {*a, b*} joined by string *aa* or *bb*

Regular Set

$$\{\{a\}\cup\{b\}\}^*aa\{\{a\}\cup\{b\}\}^*\cup\{\{a\}\cup\{b\}\}^*bb\{\{a\}\cup\{b\}\}^*$$

 $\{a,b\}^*aa\{a,b\}^*\cup\{a,b\}^*bb\{a,b\}^*$

Regular Expression

 $(a \cup b)^*aa (a \cup b)^* \cup (a \cup b)^*bb (a \cup b)^*$

Example 2.3.5

Regular Expression for *all* strings over $\{a, b\}$ with any number of a's before, between, and after b

*a***ba***ba**

Example 2.3.6

Regular Expression for at least 2 b's in each string

$$a^*ba^*b(a \cup b)^*$$

$$(a \cup b)^*ba^*ba^*$$

$$(a \cup b)^*b(a \cup b)^*b(a \cup b)^*$$

$$others?$$

Example 2.3.9

Regular Expression for *all* strings over {*a, b*} that does not end in *aaa*

 $(a \cup b)^*(b\lambda \cup ba \cup baa) \cup \lambda \cup a \cup aa$

Example 2.3.8

Regular Expression for *all* strings over {*a, b*} that begin with *ba*, end with *ab*, and contains substring *aa*

Regular Expression for Language L from $\Sigma = \{0, 1\}$ that contains substrings 00 or 11

$$L = (0 U1) * 00 (0 U1) * U(0 U1) * 11(0 U1) *$$

$$L = (0 U1) * (00 U 11) (0 U1) *$$

Regular Expression for Language L from $\Sigma = \{0, 1\}$ contains substrings 00 and 11

Example 2.3.10

Regular Expression $c^*(b \cup ac^*)^*$ over $\{a, b, c\}$ **does not** contain substring **bc**

b concatenated with anything results in **ba...** (precludes **bc**)

```
c^*(b \cup ac^*)^* = c^*(b \cup ac^0 \cup ac^1 \cup ac^2...)^*= c^*(b \cup a \cup ac \cup acc...)^*
```

 $(b \cup ac^x)^y$ x = number of c's y = number ofconcatenated substrings

```
string acabacc = c^0((ac^1)(ac^0)(b)(ac^2)) 

string bbaaacc \equiv c^0((b)(b)(ac^0)(ac^0)(ac^2))

string bbaaacc \equiv c^0((b)^2(ac^0)^2(ac^2))
```

Regular Expression Identities

$1. \Phi u = u\Phi = \Phi$	$9. \ u \ (v \cup w) = u \ v \cup u w$	
$2. \lambda u = u\lambda = u$	$10. (u \cup v)w = uw \cup vw$	
$3. \Phi^* = \Phi^0 = \lambda$	11. $(uv)^*u = u(vu)^*$	
$4. \lambda^* = \lambda$	12. $(u \cup v)^* = (u^* \cup v)^* =$	
$5. \ u \cup v = v \cup u$	$= u^*(u \cup v)^* = (u \cup vu^*)^* =$	
$6. \ u \cup \Phi = u$	$=(u^*v^*)^*=u^*(vu^*)^*=$	
7. $u \cup u = u$	$= (u^*v)^*u^*$	
8. $u^* = (u^*)^*$		

Regular Expressions

Example 2.3.11

For **Regular Expression** over {*a, b*}, *aa* is not a substring and any *a* must be followed by at least one *b* or terminate the string (any number of prefix *b*'s satisfy the requirements)

$$b^{*}(ab^{+})^{*} \cup b^{*}(ab^{+})^{*}a = b^{*}(ab^{+})^{*}\lambda \cup b^{*}(ab^{+})^{*}a =$$

$$b^{*}(ab^{+})^{*}(\lambda \cup a) \equiv b^{*}(abb^{*})^{*}(\lambda \cup a) \equiv$$

$$(b^{*}ab)^{*}b^{*}(\lambda \cup a) \equiv (b \cup ab)^{*}b^{*}(\lambda \cup a) \equiv ab^{+} = abb^{*}$$

$$u^{*}(vu^{*})^{*} = (u^{*}v)^{*}u^{*}$$

$$(b \cup ab)^{*}(\lambda \cup a)$$

$$(u^{*}v)^{*}u^{*} = (u \cup v)^{*}u^{*}$$

Regular Expression → **Language**

Basis: regular expressions Φ , λ , and a correspond to

languages
$$\Phi$$
, $\{\lambda\}$. and $\{a \mid a \in \Sigma\}$ respectively

$$L(\Phi) = \Phi$$
, $L(\lambda) = \{\lambda\}$. $L(a) = \{a \mid a \in \Sigma\}$

Recursive Step:

if u and v are regular expressions over \sum then

$$L(uv) = L(u)L(v)$$
, Union $L(u \cup v) = L(u) \cup L(v)$, and set $L(u)$ with set $L(v)$ $L(u^*) = L(u)^*$ are **regular languages** over \sum

Closure:

L(u) and L(v) are a **regular languages** over \sum if obtained from basis with finite number of recursive step applications

Regular Expression - Language

For each of the following, $\Sigma = \{a, b\}$

Example 2.3.1

$$(a \cup b)^*bb(a \cup b)^*$$

$$L = \{a, b\}^* \{bb\} \{a, b\}^*$$

Example 2.3.2

$$a(a \cup b)^*b(a \cup b)^*a$$

$$L = \{a\}\{a, b\}^*\{b\}\{a, b\}^*\{a\}$$

Example 2.3.3

ba(a ∪ *b)*ab*

Set $\{bawab \mid w \in \{a, b\}^*\}$.

Regular Expression

Regular Set - Language

Regular Expression

Regular Set - Language

Regular Expression

Regular Set

 $(a \cup b)^* regular expression \rightarrow w \in \{a, b\}^* regular set$

Language - Regular Expression

$$n_a(w) = \text{number } a$$
's in w

Regular Expression for Language *L from* $\Sigma = \{0, 1\}$

$$L_{1} = \{n_{0}(w) = 0\}$$

$$RE: 1^{*}$$

$$L_{2} = \{n_{0}(w) = 1\}$$

$$RE: 1^{*}01^{*}$$

$$L_{3} = \{n_{0}(w) = 2\}$$

$$RE: 1^{*}01^{*}$$

$$L_{4} = \{n_{0}(w) \text{ even}\}$$

$$RE: (1^{*}01^{*}01^{*})^{*}$$

$$L_{5} = \{n_{0}(w) = \text{odd}\} = L_{2}L_{4}$$

$$RE: 1^{*}01^{*}(1^{*}01^{*}01)^{*}$$

$$L_{6} = \{n_{0}(w) \geq 2\}$$

$$RE: 1^{*}01^{*}0(0 \cup 1)^{*}$$

$$L_{7} = \{0'\text{s} \text{ followed by at least one } 1\}$$

$$RE: (1 \cup 01^{+})^{*}$$

$$L_{8} = \{0'\text{s} \text{ followed by at least one } 1\}$$

$$RE: (1 \cup 01^{+})^{+} \text{ does not include } \lambda$$

$$RE: (1^{*}01^{*}01^{*})^{*}$$

Recursive Language Specification

Language L from $\Sigma = \{a, b\}$

number **b's** equal number **a's** and **b's** follow **a's**

Basis: $\lambda \in L$

Recursive Step: $If x \in L then axb \in L$

Closure: $String x \in L$ iff obtained from basis element with finite number of applications of recursive step

$$L_0 = \{\lambda\}$$

$$L_1 = L_0 \cup \{ab\} = \{\lambda, ab\}$$

$$L_2 = L_1 \cup \{ab, aabb\} = \{\lambda, ab, aabb\}$$

$$L_3 = L_2 \cup \{ab, aabb, aaabbb\}$$

$$= \{\lambda, ab, aabb, aaabbb\}$$

Regular Sets/Expressions

 a^*b^* is a **Regular Expression** for **Regular Set** $\{a\}^*\{b\}^*$

From **Definition 2..1.2,** Language over alphabet Σ is subset of Σ^*

 $L = \{\lambda, ab, aabb, aaabbb, \ldots\} \subseteq \{a\}^*\{b\}^*$

L is a language over {a, b} but not a Regular Expression

Regular Expressions

Definition 2.3.2: *Regular expressions* over alphabet \sum

Basis: Φ , λ , and $a \in \Sigma$ are *regular expressions* over Σ

Recursive Step:

if u and v are regular expressions over \sum then

Closure:

u is a *regular expression* over \sum if obtained from basis elements with finite number of applications of recursive step

Search Strings

Operation	Symbol	Extended RE	Regular Expression
Concatenate		ab	ab
		{ <i>a-c</i> } { <i>AB</i> }	aAUaBUbAUbBUcAUcB
Kleene Star	*	{ <i>ab</i> }*	(aUb)*
Disjunction	I	{ <i>ab</i> }*∣A	(aUb)*UA
One or more	+	{ <i>ab</i> }+	(aUb)+
Zero or one	?	a?	(aUλ)
One character	,	a.a	$\{a\}\Sigma\{a\} \rightarrow a(a\cup b)a \text{ for } \Sigma = \{a, b\}$
n times	{ <i>n</i> }	a{4}	$aaaa \equiv a^4$
n or more times	{n,}	a{4,}	aaaaa*
n to m times	{ <i>n, m</i> }	a{4,6}	aaaaU aaaaaU aaaaaaa

Search Strings

Extended RE	Regular Expression		
computer	computer		
{ <i>a-z</i> } { <i>0-9</i> }	a0Ua1UU z8Uz9		
{ <i>a-z</i> }*	(aUb U Uz)*		
$\{a \mid b \mid c\}^* \equiv \{a - c\}^*$	(aUbUc)*		
a* b* c*	a*Ub*Uc*		
{ <i>a-z</i> }+	$(aUbUUz)^+ \equiv (aUbUUz) (aUbUUz)^*$		
ab(c?)	$ab(c \cup \lambda) \equiv abc \cup ab$		
(abc)?	abc∪λ		
a.c	$\{a\} \Sigma \{c\} \rightarrow a(a \cup b \cup c) c for \Sigma = \{a, b, c\}$		
a{8}	$aaaaaaaa \equiv a^8$		
a{8,}	a^8a^*		
a{4, 6}	aaaa <i>U</i> aaaaaa		

GREP Search Strings

3 or 4 characters concatenated with 3 or 4 digits

[A-Z]
$$\{3,4\}[0-9] \{3,4\} - (26^3 + 26^4)(10^3 + 10^4)$$

or

3 or 4 digits concatenated with 3 or 4 characters

[0-9] {3,4} [A-Z] {3,4} –
$$(10^3 + 10^4)(26^3 + 26^4)$$

GREP Search Strings

32 bit IP Address e.g. 255.255.255.255

RE: $(\theta \cup 1)^{32}$

GREP: [01]{*32*}

([0-9] | [1-9] [0-9] | 1 [0-9] [0-9] | 2 [0-4] [0-9] | 25 [0-5])

Numeric Literals

```
53 9.37 -992 -49.06 4.0 4.

+49E-7 -49e7 -3.92E-3

[+-]?([0-9] | [1-9] [0-9]+) single digit or two or more digits with no leading zeroes
```

([Ee][+-]?([0-9] | ([1-9] [0-9]+)))? — optional scientific notation

(.[0-9]*)?

optional floating point

number