In [1]: import numpy as np
import pandas as pd

In [2]: df=pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/MPG.csv')

In [3]: df

Out[3]:

:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
_	0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrole chevelle malibu
	1	15.0	8	350.0	165.0	3693	11.5	70	usa	buicł skylarł 32(
	2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
	3	16.0	8	304.0	150.0	3433	12.0	70	usa	amo rebel ss
	4	17.0	8	302.0	140.0	3449	10.5	70	usa	forc torinc
	393	27.0	4	140.0	86.0	2790	15.6	82	usa	forc mustanç g
	394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickur
	395	32.0	4	135.0	84.0	2295	11.6	82	usa	dodge rampage
	396	28.0	4	120.0	79.0	2625	18.6	82	usa	forc range
	397	31.0	4	119.0	82.0	2720	19.4	82	usa	chevy s 1(

398 rows × 9 columns

4

In [4]: df.shape

Out[4]: (398, 9)

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 398 entries, 0 to 397
        Data columns (total 9 columns):
                           Non-Null Count Dtype
             Column
             -----
                           -----
                                           ----
         0
                           398 non-null
                                           float64
             mpg
                           398 non-null
                                           int64
         1
             cylinders
                                           float64
         2
             displacement 398 non-null
                                           float64
         3
             horsepower
                           392 non-null
         4
             weight
                           398 non-null
                                           int64
             acceleration 398 non-null
         5
                                           float64
         6
             model_year
                           398 non-null
                                           int64
         7
             origin
                           398 non-null
                                           object
         8
             name
                           398 non-null
                                           object
        dtypes: float64(4), int64(3), object(2)
        memory usage: 28.1+ KB
In [6]: df.columns
Out[6]: Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
               'acceleration', 'model_year', 'origin', 'name'],
              dtype='object')
In [7]: | df.nunique() #mpg is milage per gallon
        #we used it to find the nums of categorical cols, dont look for continuous ones
Out[7]: mpg
                        129
        cylinders
                          5
        displacement
                         82
        horsepower
                         93
        weight
                        351
        acceleration
                         95
        model_year
                         13
        origin
                          3
                        305
        name
        dtype: int64
```

Data preprocessing

generally to handle missing values

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	392 non-null	float64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	object
8	name	398 non-null	object

dtypes: float64(4), int64(3), object(2)

memory usage: 28.1+ KB

In [9]: #above, horsepower has missing values
 #since, only 6 values are missing, we shall go for dropping theminstead of replace
 #displacement is volume of cylinder

In [10]: df.describe() #gives summary stats

Out[10]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

In [11]: #here mean varies too much for respective attributes so, we need to perform stand

```
In [12]: df.corr() # correlation
```

Out[12]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	0.579267
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	-0.348746
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	-0.370164
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361
weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.417457	-0.306564
acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.000000	0.288137
model_year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.288137	1.000000

```
In [13]: #cyl and disp have high co relation(95%), so we use either of two highly corelate
In [14]: df=df.dropna()
In [15]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 392 entries, 0 to 397
```

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	mpg	392 non-null	float64			
1	cylinders	392 non-null	int64			
2	displacement	392 non-null	float64			
3	horsepower	392 non-null	float64			
4	weight	392 non-null	int64			
5	acceleration	392 non-null	float64			
6	model_year	392 non-null	int64			
7	origin	392 non-null	object			
8	name	392 non-null	object			
dtypes: float64(4), int64(3), object(2)						

dtypes: +loat64(4), int64(3), object(2) memory usage: 30.6+ KB

- In [16]: #disp(aka cc in automobile technical term)=no.of cyl * vol of cyl
- In [17]: import seaborn as sns

In [18]: sns.pairplot(df,x_vars=['displacement','horsepower','weight','acceleration'],y_vars=['displacement','horsepower','weight','horsepower','weight','horsepower','weight','horsepower','weight','horsepower','weight','horsepower','weight','horsepower','weight','horsepower','weight','horsepower','weight','wei

Out[18]: <seaborn.axisgrid.PairGrid at 0x7fd58477d9d0>

In [19]: # see above, all 3 have -ve correlation and acceleration has scattered correlation

In [20]: | sns.regplot(x='displacement',y='mpg',data=df);

In [21]: #the same can be observed from the above regression line plot

#there is a negative correlation, it is high, not linear but a curvature is obser

#let's first try to create a linear relation then go with polynomial and then con

#displacement aka size of engine or volume of engine or engine capacity or cc

Define target variables and features

```
In [22]: | df.columns
Out[22]: Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
                   'acceleration', 'model_year', 'origin', 'name'],
                 dtype='object')
In [23]: y=df['mpg']
In [24]: | y.shape
Out[24]: (392,)
In [25]: | X=df[['displacement', 'horsepower', 'weight',
                   'acceleration']]
In [26]:
           X.shape
Out[26]: (392, 4)
In [27]: X
Out[27]:
                displacement horsepower weight acceleration
             0
                       307.0
                                   130.0
                                           3504
                                                        12.0
             1
                                   165.0
                       350.0
                                           3693
                                                        11.5
             2
                       318.0
                                   150.0
                                           3436
                                                        11.0
             3
                       304.0
                                   150.0
                                           3433
                                                        12.0
                       302.0
                                   140.0
                                           3449
                                                        10.5
            393
                       140.0
                                    86.0
                                           2790
                                                        15.6
            394
                        97.0
                                    52.0
                                           2130
                                                        24.6
            395
                       135.0
                                    84.0
                                           2295
                                                        11.6
            396
                       120.0
                                    79.0
                                           2625
                                                        18.6
                                    82.0
            397
                       119.0
                                           2720
                                                        19.4
```

392 rows × 4 columns

Scaling the Data

In [28]: from sklearn.preprocessing import StandardScaler

```
ss=StandardScaler()
In [29]:
          X=ss.fit_transform(X)
In [30]:
          after scaling-
                                          #mean=0, standard deviation=1 can also be observed-
In [31]:
          pd.DataFrame(X).describe()
Out[31]:
                                           1
                                                         2
                   3.920000e+02
                                3.920000e+02
                                              3.920000e+02
                                                            3.920000e+02
           count
                  -2.537653e-16
                                -4.392745e-16
                                               5.607759e-17
                                                             6.117555e-16
           mean
                   1.001278e+00
                                1.001278e+00
                                              1.001278e+00
                                                            1.001278e+00
                  -1.209563e+00
                                -1.520975e+00
                                              -1.608575e+00
                                                           -2.736983e+00
             min
             25%
                  -8.555316e-01
                                -7.665929e-01
                                              -8.868535e-01
                                                            -6.410551e-01
             50%
                  -4.153842e-01
                                -2.853488e-01
                                              -2.052109e-01
                                                            -1 499869e-02
             75%
                   7.782764e-01
                                 5.600800e-01
                                               7.510927e-01
                                                             5.384714e-01
                  2.493416e+00
                                3.265452e+00
                                              2.549061e+00
                                                            3.360262e+00
          features after scaling(mean=0,standard_deviation=1) -
In [32]: X
Out[32]: array([[ 1.07728956,
                                   0.66413273, 0.62054034, -1.285258 ],
                                   1.57459447, 0.84333403, -1.46672362],
                   [ 1.48873169,
                  [ 1.1825422 ,
                                   1.18439658, 0.54038176, -1.64818924],
```

Train test split data

```
In [34]: from sklearn.model_selection import train_test_split
In [35]: X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=25)
```

Thus, regression equation: 23.4(intercept) -1.05(displacement) -1.68(horsepower) -4.10(weight) -0.115(acceleration) +error

i.e. keeping all vars constant, a unit change in displacement leads to decrement of mileage by 1.05

Predict Test Data

```
In [43]: y_pred=lr.predict(X_test)
```

```
In [44]: |y_pred
Out[44]: array([18.51865637, 15.09305675, 14.30128789, 23.6753321, 29.7546115,
                23.68796629, 26.61066644, 24.56692437, 15.06260986, 11.94312046,
                24.08050053, 27.96518468, 31.66130278, 31.01309132, 18.32428976,
                19.32795009, 28.08847536, 32.1506879 , 31.15859692, 27.15792144,
                18.82433097, 22.54580176, 26.15598115, 32.36393869, 20.74377679,
                 8.78027518, 22.19699435, 18.20614294, 25.00052718, 15.26421552,
                23.13441082, 17.10542257, 9.87180062, 30.00790415, 20.41204655,
                29.11860245, 24.4305187 , 21.72601835, 10.51174626, 13.12426391,
                21.41938406, 19.96113872, 6.19146626, 17.79025345, 22.5493033 ,
                29.34765021, 13.4861847 , 25.88852083, 29.40406946, 22.41841964,
                22.07684766, 16.46575802, 24.06290693, 30.12890046, 10.11318121,
                 9.85011438, 28.07543852, 23.41426617, 20.08501128, 30.68234133,
                20.92026393, 26.78370281, 22.9078744 , 14.15936872, 24.6439883 ,
                26.95515832, 15.25709393, 24.11272087, 30.80980589, 14.9770217,
                27.67836372, 24.2372919 , 10.92177228, 30.22858779, 30.88687365,
                27.33992044, 31.18447082, 10.8873597, 27.63510608, 16.49231363,
                25.63229888, 29.49776285, 14.90393439, 32.78670687, 30.37325244,
                30.9262743 , 14.71702373, 27.09633246, 26.69933806, 29.06424799,
                32.45810182, 29.44846898, 31.61239999, 31.57891837, 21.46542321,
                31.76739191, 26.28605476, 28.96419915, 31.09628395, 24.80549594,
                18.76490961, 23.28043777, 23.04466919, 22.14143162, 15.95854367,
                28.62870918, 25.58809869, 11.4040908, 25.73334842, 30.83500051,
                21.94176255, 15.34532941, 30.37399213, 28.7620624 , 29.3639931 ,
                29.10476703, 20.44662365, 28.11466839])
```

Model Accuracy

```
In [45]: from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error,
In [46]: mean_absolute_error(y_test,y_pred)
Out[46]: 3.3286968643244106
In [47]: mean_absolute_percentage_error(y_test,y_pred)
Out[47]: 0.14713035779536746
In [48]: r2_score(y_test,y_pred)
Out[48]: 0.7031250746717692
In [49]: #our model able to explain 70% of variance in model or R-square. Yayyy!!
In [49]:
```

Polynomial Regression

```
In [50]: from sklearn.preprocessing import PolynomialFeatures
In [51]: poly=PolynomialFeatures(degree=2,interaction only=True,include bias=False)
In [52]: X_train2=poly.fit_transform(X_train)
In [53]: X_test2=poly.fit_transform(X_test)
In [54]: lr.fit(X_train2,y_train)
Out[54]: LinearRegression()
In [55]: |lr.intercept_
Out[55]: 21.27336450063766
In [56]: lr.coef
Out[56]: array([-2.76070596, -5.00559628, -1.36884133, -0.81225214, 1.24596571,
                -0.12475017, -0.90542822, 1.35064048, -0.17337823, 1.41680398])
In [57]: y pred poly=lr.predict(X test2)
         Model Accuracy:
In [58]: from sklearn.metrics import mean absolute error, mean absolute percentage error, r2
In [59]: | mean_absolute_error(y_test,y_pred_poly)
Out[59]: 2.7887147720295977
In [60]: | mean_absolute_percentage_error(y_test,y_pred_poly)
Out[60]: 0.1207401834293869
In [61]: | r2_score(y_test,y_pred_poly)
Out[61]: 0.7461731314563803
In [62]: #MAE was 3.2 but now, 2.7
         #MAPE was 14% but now, 12%
         #r2- increased by around 5%
```

5/1	122	12:21	PM

In []: