MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MIT 2.111/8.411/6.898/18.435 Quantum Information Science I September 23, 2010

Problem Set #3 (due in class, 30-Sep-10)

1. Measurements and uncertainty.

- (a) Suppose we prepare a quantum system in an eigenstate $|\psi\rangle$ of some observable M, with corresponding eigenvalue m. What is the average observed value of M, and the standard deviation?
- (b) Suppose we have qubit in the state $|0\rangle$, and we measure the observable X (i.e. σ_x). What is the average value of X? What is the standard deviation of X?
- 2. Entropy of quantum states. The entropy of a quantum state, expressed as a density matrix ρ , is $S(\rho) = -\operatorname{tr}(\rho \log_2 \rho)$; in terms of its eigenvalues λ_k , this is $S(\rho) = -\sum_k \lambda_k \log_2 \lambda_k$.
 - (a) Give the entropy $S(\rho_0)$ for $\rho_0 = |0\rangle\langle 0|$.
 - (b) Give the entropy of $\rho_1 = (|0\rangle\langle 0| + |1\rangle\langle 1|)/2$.
 - (c) A state ρ is a pure state if and only if $\operatorname{tr}(\rho^2) = 1$. Prove that this is equivalent to $S(\rho) = 0$. You may use the fact that ρ is a valid density matrix if and only if $tr(\rho) = 1$ and ρ is a positive operator (i.e. its eigenvalues are ≥ 0).
- 3. Product states and Schmidt numbers. Prove that a state $|\psi\rangle$ of a composite system AB is a product state if and only if it has Schmidt number 1. Prove that $|\psi\rangle$ is a product state if and only if ρ^A (and thus ρ^B) are pure states.
- 4. Schmidt decompositions. Consider a composite system consisting of two qubits. Find the Schmidt decompositions of the states

$$|\phi_{1}\rangle = \frac{|00\rangle + |11\rangle + |22\rangle}{\sqrt{3}}$$

$$|\phi_{2}\rangle = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

$$|\phi_{3}\rangle = \frac{|00\rangle + |01\rangle + |10\rangle - |11\rangle}{2}$$

$$|\phi_{4}\rangle = \frac{|00\rangle + |01\rangle + |11\rangle}{\sqrt{3}} .$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$|\phi_2\rangle = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2} \tag{2}$$

$$|\phi_3\rangle = \frac{|00\rangle + |01\rangle + |10\rangle - |11\rangle}{2} \tag{3}$$

$$|\phi_4\rangle = \frac{|00\rangle + |01\rangle + |11\rangle}{\sqrt{3}}. (4)$$

5. **Interferometers.** Consider this single qubit model of an interferometer, where the goal is to estimate an unknown phase ϕ :

Let the box with ϕ map $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow e^{i\phi}|1\rangle$

- (a) Give the states $|\psi_1\rangle$, $|\psi_2\rangle$, and $|\psi_3\rangle$.
- (b) What is the probability p of measuring the final qubit to be one?
- (c) If this is experiment is repeated n times, what is the standard deviation Δp of the value estimated for p from the measurement results? Also give the uncertainty in the resulting estimate for ϕ , $\Delta \phi = \Delta p / |dp/d\phi|.$