Practica 05: Diseño y simulación de autómatas finitos en JFLAP Computabilidad y Algoritmia

Cheuk Kelly Ng Pante (alu
0101364544@ull.edu.es) $\,$ $\,$ 15 de octubre de 2024

Índice general

1.	Dise	eño de DFAs	1
	1.1.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's"	
		par	1
		Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con longitud impar	2
	1.3.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's"	
		par o longitud impar	3
	1.4.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's"	
		par y longitud impar.	4
		Diseñar un DFA que reconozca cadenas w sobre el alfabeto $\Sigma = \{0,1\}$ tales que $2 \le w \le 5$.	5
	1.6.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma=\{0,1\}$ que tengan como	_
		minimo dos ceros consecutivos.	6
	1.7.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ que tengan como	_
	1.0	máximo dos ceros.	7
	1.8.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ con longitud múltiplo	0
	1.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8
	1.9.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ con longitud que no	0
	1 10	sea múltiplo de 3	9
	1.10.	Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{x, y, z\}$ que no contengan des gímboles irrueles consequitives	10
		dos símbolos iguales consecutivos	10
2.	Dise	eño de NFAs	11
	2.1.	Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a, b\}$ que empiecen por "a".	
		A partir del NFA diseñado, obtenga un DFA mínimo equivalente	11
	2.2.	Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a, b\}$ que terminen en "bb".	
		A partir del NFA diseñado, obtenga un DFA mínimo equivalente	12
	2.3.	Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ que empiecen por "a"	
		o terminen en "bb". A partir del NFA diseñado, obtenga un DFA mínimo equivalente.	14
	2.4.	Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ que empiecen por "a"	
		y terminen en "bb". A partir del NFA diseñado, obtenga un DFA mínimo equivalente	15
	2.5.	Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's"	
		par o longitud impar. A partir del NFA diseñado, obtenga un DFA mínimo equivalente. .	17
	2.6.	Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{x,y,z\}$ que contenga al	
		menos dos símbolos iguales consecutivos. A partir del NFA diseñado, obtenga un DFA	
		mínimo equivalente.	18
	2.7.	Diseñar un NFA que reconozca cadenas w sobre el alfabeto $\Sigma = \{x, y, z\}$ con $ w \ge 2$, tales	
		que w empieza y termina por el mismo símbolo. A partir del NFA diseñado, obtenga un	
		DFA mínimo equivalente	21
3.	Mod	Modificación.	
٠.		DFA mínimo sobre el alfabeto $\Sigma = \{0, 1\}$ que reconozca cadenas que no empiezan y termi-	
		· · ·	24

1. Diseño de DFAs

1.1. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's" par.

Figura 1.1: DFA que reconoce cadenas con número de "a's" par

Figura 1.2: Cadenas de prueba para el DFA

1.2. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con longitud impar.

Figura 1.3: DFA que reconoce cadenas con longitud impar

Figura 1.4: Cadenas de prueba para el DFA

1.3. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's" par o longitud impar.

Figura 1.5: DFA que reconoce cadenas con número de "a's" par o longitud impar

Figura 1.6: Cadenas de prueba para el DFA

1.4. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ con número de "a's" par y longitud impar.

Figura 1.7: DFA que reconoce cadenas con número de "a's" par y longitud impar

Figura 1.8: Cadenas de prueba para el DFA

1.5. Diseñar un DFA que reconozca cadenas w sobre el alfabeto $\Sigma = \{0,1\}$ tales que $2 \leq |w| \leq 5$.

Figura 1.9: DFA que reconoce cadenas con longitud entre 2 y 5

Figura 1.10: Cadenas de prueba para el DFA

1.6. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ que tengan como minimo dos ceros consecutivos.

Figura 1.11: DFA que reconoce cadenas con al menos dos ceros consecutivos

Figura 1.12: Cadenas de prueba para el DFA

1.7. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ que tengan como máximo dos ceros.

Figura 1.13: DFA que reconoce cadenas con como máximo dos ceros

Figura 1.14: Cadenas de prueba para el DFA

1.8. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ con longitud múltiplo de 3.

Figura 1.15: DFA que reconoce cadenas con longitud múltiplo de 3

Figura 1.16: Cadenas de prueba para el DFA

1.9. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{0,1\}$ con longitud que no sea múltiplo de 3.

Figura 1.17: DFA que reconoce cadenas con longitud que no sea múltiplo de 3

Figura 1.18: Cadenas de prueba para el DFA

1.10. Diseñar un DFA que reconozca cadenas sobre el alfabeto $\Sigma = \{x,y,z\}$ que no contengan dos símbolos iguales consecutivos.

Figura 1.19: DFA que reconoce cadenas que no contengan dos símbolos iguales consecutivos

Figura 1.20: Cadenas de prueba para el DFA

2. Diseño de NFAs

2.1. Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a, b\}$ que empiecen por "a". A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

Figura 2.1: NFA que reconoce cadenas que empiecen por "a"

Algoritmo de construcción de subconjuntos:

- ϵ -clausura($\{q_0\}$) = $\{q_0\}$ = A
- $\delta(A, a) = \{q_1\} = B$
- $\bullet \ \delta(A,b) = \emptyset$
- $\delta(B, a) = \{q_1\} = B$
- $\delta(B, b) = \{q_1\} = B$

2.2. Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a,b\}$ que terminen en "bb". A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

Figura 2.2: NFA que reconoce cadenas que terminen en "bb"

Figura 2.3: Cadenas de prueba para el NFA

Algoritmo de construcción de subconjuntos:

•
$$\epsilon$$
-clausura($\{q_0\}$) = $\{q_0\}$ = A

•
$$\delta(A, a) = \{q_0\} = A$$

•
$$\delta(A,b) = \{q_0, q_1\} = B$$

•
$$\delta(B, a) = \{q_0\} = A$$

•
$$\delta(B,b) = \{q_0, q_1, q_2\} = C$$

$$\bullet \ \delta(C,a) = \{q_0\} = A$$

•
$$\delta(C,b) = \{q_0, q_1, q_2\} = C$$

Figura 2.4: DFA equivalente al NFA

Algoritmo de minimización de DFA:

- $\bullet \ \{C\}\{A,B\}$
- $\ \ \{C\}\{A\}\{B\}$

El DFA ya está minimizado.

Figura 2.5: DFA mínimo equivalente al NFA

2.3. Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma=\{a,b\}$ que empiecen por "a" o terminen en "bb". A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

2.4. Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{a, b\}$ que empiecen por "a" y terminen en "bb". A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

Figura 2.6: NFA que reconoce cadenas que empiecen por "a" y terminen en "bb"

Figura 2.7: Cadenas de prueba para el NFA

Algoritmo de construcción de subconjuntos:

•
$$\epsilon$$
-clausura($\{q_0\}$) = $\{q_0\}$ = A

$$\bullet \ \delta(A,a) = \{q_1\} = B$$

$$\bullet \ \delta(A,b) = \emptyset$$

•
$$\delta(B, a) = \{q_1\} = B$$

•
$$\delta(B,b) = \{q_1, q_2\} = C$$

$$\delta(C,a) = \{q_1\} = B$$

•
$$\delta(C,b) = \{q_1, q_2, q_3\} = D$$

•
$$\delta(D, a) = \{q_1\} = B$$

•
$$\delta(D,b) = \{q_1, q_2, q_3\} = D$$

Figura 2.8: DFA equivalente al NFA

Algoritmo de minimización de DFA:

- $\bullet \ \{D\}\{A,B,C\}$
- $\{D\}\{A\}\{B,C\}$
- $\{D\}\{A\}\{B\}\{C\}$

El DFA ya está minimizado.

Figura 2.9: DFA mínimo equivalente al NFA

2.5. Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma=\{a,b\}$ con número de "a's" par o longitud impar. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

2.6. Diseñar un NFA que reconozca cadenas sobre el alfabeto $\Sigma = \{x,y,z\}$ que contenga al menos dos símbolos iguales consecutivos. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

Figura 2.10: NFA que reconoce cadenas con al menos dos símbolos iguales consecutivos

Figura 2.11: Cadenas de prueba para el NFA

Algoritmo de construcción de subconjuntos:

•
$$\epsilon$$
-clausura($\{q_0\}$) = $\{q_0\}$ = A

•
$$\delta(A, x) = \{q_0, q_1\} = B$$

•
$$\delta(A, y) = \{q_0, q_2\} = C$$

•
$$\delta(A, z) = \{q_0, q_3\} = D$$

•
$$\delta(B, x) = \{q_0, q_1, q_4\} = E$$

•
$$\delta(B, y) = \{q_0, q_2\} = C$$

•
$$\delta(B, z) = \{q_0, q_3\} = D$$

•
$$\delta(C, x) = \{q_0, q_1\} = B$$

•
$$\delta(C, y) = \{q_0, q_2, q_4\} = F$$

•
$$\delta(C, z) = \{q_0, q_3\} = D$$

•
$$\delta(D, x) = \{q_0, q_1\} = B$$

•
$$\delta(D, y) = \{q_0, q_2\} = C$$

•
$$\delta(D,z) = \{q_0, q_3, q_4\} = G$$

•
$$\delta(E, x) = \{q_0, q_1, q_4\} = E$$

•
$$\delta(E, y) = \{q_0, q_2, q_4\} = F$$

•
$$\delta(E,z) = \{q_0, q_3, q_4\} = G$$

•
$$\delta(F, x) = \{q_0, q_1, q_4\} = E$$

•
$$\delta(F, y) = \{q_0, q_2, q_4\} = F$$

•
$$\delta(F,z) = \{q_0, q_3, q_4\} = G$$

•
$$\delta(G, x) = \{q_0, q_1, q_4\} = E$$

•
$$\delta(G, y) = \{q_0, q_2, q_4\} = F$$

•
$$\delta(G, z) = \{q_0, q_3, q_4\} = G$$

Figura 2.12: DFA equivalente al NFA

Algoritmo de minimización de DFA:

- $\{E, F, G\}\{A, B, C, D\}$
- $\{E, F, G\}\{B\}\{A, C, D\}$
- $\bullet \ \{E,F,G\}\{B\}\{C\}\{A,D\}$
- $\{E, F, G\}\{B\}\{C\}\{D\}\{A\}$

El DFA minimizado es el siguiente:

Figura 2.13: DFA mínimo equivalente al NFA

2.7. Diseñar un NFA que reconozca cadenas w sobre el alfabeto $\Sigma = \{x,y,z\}$ con $|w| \geq 2$, tales que w empieza y termina por el mismo símbolo. A partir del NFA diseñado, obtenga un DFA mínimo equivalente.

Figura 2.14: NFA que reconoce cadenas que empiezan y terminan por el mismo símbolo

Figura 2.15: Cadenas de prueba para el NFA

Algoritmo de construcción de subconjuntos:

•
$$\epsilon$$
-clausura($\{q_0\}$) = $\{q_0\}$ = A

•
$$\delta(A, x) = \{q_1\} = B$$

•
$$\delta(A, y) = \{q_2\} = C$$

•
$$\delta(A, z) = \{q_3\} = D$$

•
$$\delta(B, x) = \{q_1, q_4\} = E$$

•
$$\delta(B, y) = \{q_1\} = B$$

•
$$\delta(B, z) = \{q_1\} = B$$

•
$$\delta(C, x) = \{q_2\} = C$$

•
$$\delta(C, y) = \{q_2, q_4\} = F$$

•
$$\delta(C, z) = \{q_2\} = C$$

•
$$\delta(D, x) = \{q_3\} = D$$

•
$$\delta(D, y) = \{q_3\} = D$$

•
$$\delta(D, z) = \{q_3, q_4\} = G$$

•
$$\delta(E, x) = \{q_1, q_4\} = E$$

•
$$\delta(E, y) = \{q_1\} = B$$

•
$$\delta(E, z) = \{q_1\} = B$$

•
$$\delta(F, x) = \{q_2\} = C$$

•
$$\delta(F, y) = \{q_2, q_4\} = F$$

•
$$\delta(F, z) = \{q_2\} = C$$

•
$$\delta(G, x) = \{q_3\} = D$$

•
$$\delta(G, y) = \{q_3\} = D$$

•
$$\delta(G, z) = \{q_3, q_4\} = G$$

Figura 2.16: DFA equivalente al NFA

Algoritmo de minimización de DFA:

- $\{E, F, G\}\{A, B, C, D\}$
- $\{E, F, G\}\{B\}\{A, C, D\}$
- $\{E, F, G\}\{B\}\{C\}\{A, D\}$
- $\bullet \ \{E,F,G\}\{B\}\{C\}\{D\}\{A\}$
- $\bullet \ \{E,G\}\{F\}\{B\}\{C\}\{D\}\{A\}$
- $\bullet \ \{E\}\{G\}\{F\}\{B\}\{C\}\{D\}\{A\}$

El DFA ya está minimizado.

Figura 2.17: DFA mínimo equivalente al NFA

3. Modificación.

3.1. DFA mínimo sobre el alfabeto $\Sigma = \{0,1\}$ que reconozca cadenas que no empiezan y terminan por el mismo símbolo o tienen longitud impar.

Figura 3.1: NFA Modificación

Figura 3.2: Cadenas de prueba para el NFA

Captura de la conversión de NFA a DFA

Figura 3.3: NFA a DFA

Algoritmo de minimización de DFA

Resultado de DFA mínimo:

Figura 3.4: DFA mínimo