MAT 137

Tutorial #2– The definition of limit October 3–4, 2016

Let f be a function. Let $a, L \in \mathbb{R}$. Assume that f is defined on some open interval around a, except maybe at a. As you know, the definition of the statement $\lim_{x \to a} f(x) = L$ is

For every $\varepsilon > 0$, there exists $\delta > 0$ such that $0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

Below is a list of eight other statements.

a. For every
$$\varepsilon > 0$$
, there exists $\delta > 0$ such that $|x - a| < \delta \implies |f(x) - L| < \varepsilon$.

b. For every
$$\varepsilon > 0$$
, there exists $\delta > 0$ such that $0 < |x - a| < \delta \implies 0 < |f(x) - L| < \varepsilon$.

c. For every
$$\varepsilon \geq 0$$
, there exists $\delta > 0$ such that $0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

d. For every
$$\varepsilon > 0$$
, there exists $\delta \geq 0$ such that $0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

e. For every
$$\varepsilon > 0$$
, there exists $\delta > 0$ such that $0 < |x - a| < \delta \implies |f(x) - L| \le \varepsilon$.

f. For every
$$\delta > 0$$
, there exists $\varepsilon > 0$ such that $0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

g. For every
$$\delta > 0$$
, there exists $\varepsilon > 0$ such that $0 < |x - a| < \varepsilon \implies |f(x) - L| < \delta$.

h. There exists
$$\delta > 0$$
 such that for every $\varepsilon > 0$, $0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

Match each of the eight statements above to one of the following (there may be repeats):

- $1. \ \, \text{Every function satisfies this statement}.$
- 2. There isn't any function which satisfies this statement.
- $3. \,$ This statement is equivalent to the definition of limit.
- 4. This statement means that $\lim_{x\to a} f(x) = L$ and that, in addition, f(a) = L.
- 5. This statement means that $\lim_{x\to a} f(x) = L$ and that, in addition, f does not take the value L anywhere on some interval centered at a, except maybe at a.
- 6. This statement is equivalent to saying that f must be constantly equal to L on an interval centered at a, except maybe at a.
- 7. This statement means that f is bounded on every interval centered at a.