

An Intro to PDEs over Manifolds

AI4PDE

Green Functions and PDEs on manifolds(i)

Yunfeng Liao

2 August,2024

Presentation Overview

An Intro to PDEs over Manifolds

BINet and Green-BINet

An Intro to PDEs over Manifolds

Section Overview

BINet and Green-BINet

Green-BINet

Sources

Literature

- BINet: Learning to Solve Partial Differential Equations with Boundary Integral Networks. Guochang Lin et al. CSIAM Trans. Appl. Math. 2023.
- Green-BINet: Learning Green's functions by boundary integral network. Communications in Mathematics and Statistics. 2023.

Tutorials

- Potential Theory.
 https://web.stanford.edu/class/math220b/handouts/potential.pdf
- Dependence of the layer heat potentials upon support perturbations. Matteo Dalla Riva.
- Some properties of layer potentials and boundary integral operators for the wave equation. V´ıctor Dom´ınguez.

Green-BINet

BI-Net

Motivation

Homogenous PDEs(Possion eq., Helmholtz eq., heat eq. and wave eq. etc.) are determined by its boundary and also can be estimated by **boundary integration**. Benefits are:

- The dimension of the boundary is lower and leads to easier computation.
- It replaces differential operators with integral representation, which improves the regularity and stability.
- In the unsupervised PINN frame, one needs to determine the ratio between PDE loss and boundary condition loss at advance. And now there is no such thing called boundary condition loss.

Remark

Not all PDEs have boundary integral representation.

Green-RINet

Preliminary: Potential Theory 1

For simplicity, we only cover the case of Possion equation(TUTORIAL[1]). See more in TUTORIAL[2,3].

For instance, to solve the electric potential, we care about the termed Interior/Exterior Dirichlet/Neumann Problem.

$$\Delta u = 0, x \in \Omega; u = g, x \in \partial \Omega \tag{1}$$

$$\Delta u = 0, x \in \Omega^C; u = g, x \in \partial \Omega^C$$
 (2)

$$\Delta u = 0, x \in \Omega; \partial_n u = g, x \in \partial \Omega$$
 (3)

$$\Delta u = 0, x \in \Omega^{C}; \partial_{n} u = g, x \in \partial \Omega^{C}$$
(4)

Remark

Single and double layer potential are applied to Dirichlet and Neumann problems, resp.

Preliminary: Potential Theory 2

Theorem

The fundamental solution of Laplace's equation $\Delta u = 0$ is:

$$\Phi(\mathbf{x}) = -\frac{1}{2\pi} \ln |\mathbf{x}|, n = 2; \Phi(\mathbf{x}) = -\frac{1}{n(n-2)\alpha_n} \frac{1}{|\mathbf{x}|^{n-2}}, n > 2$$
 (5)

Def.

The single potential S[h] and double potential D[h] w.r.t. **moment** h:

$$S[h] := -\int_{\partial \Omega} h(y)\Phi(x-y)dS(y) \tag{6}$$

$$D[h] := -\int_{\partial \Omega} h(y) \partial_{\nu} \Phi(x - y) dS(y)$$
 (7)

Author Name Research Title Here 7 / 28

An Intro to PDEs over Manifolds

Preliminary: Potential Theory 3

Theorem

S[h], D[h] are both well-defined, harmonic over \mathbb{R}^n and continuous in $\mathrm{int}\Omega$, $\mathrm{int}\Omega^C$, but on the boundary where v is the outwards normal vector:

$$\lim_{t \to 0^+} \nabla S[h](x_0 + t\nu) \cdot \nu = \frac{1}{2}h(x_0) + S[h]; \lim_{t \to 0^-} \nabla S[h](x_0 + t\nu) \cdot \nu = -\frac{1}{2}h(x_0) + S[h]$$
(8)

$$\lim_{x \in \Omega \to x_0} D[h] = \frac{1}{2} h(x_0) + D[h](x_0); \lim_{x \in \Omega^C \to x_0} D[h] = -\frac{1}{2} h(x_0) + D[h](x_0)$$
 (9)

And whence, to solve the interior Dirichlet problem is to look for h s.t.

$$g = D[h] = \frac{1}{2}h(x_0) - \int_{\partial\Omega} h(y)\partial_v \Phi(x_0 - y)dS(y), x \in \Omega$$
 (10)

BINet and

Preliminary: Potential Theory 4

Fig. 1: Physical interpretations of single and double layer potential

See more in https://web.stanford.edu/class/math220b/handouts/potphys.pdf

BI-Net

However, notice that it is impossible to find a closed-form or a simple expansion of h in

$$g(x_0) = D[h] = \frac{1}{2}h(x_0) - \int_{\partial\Omega} h(y)\partial_v \Phi(x - y)dS(y), x \in \Omega$$
 (11)

we instead use a neural network h_{θ} parametrized θ to evaluate h. This reduces the PINN loss to:

$$\mathcal{L} := \sum_{x_0} \left\| \frac{1}{2} h(x_0) - \int_{\partial \Omega} h(y) \partial_v \Phi(x_0 - y) dS(y) - g \right\|_{\partial \Omega}^2$$
 (12)

Other three problems are simply likewise.

An Intro t PDEs over Manifolds

Fig. 2: BI-Net Framework

BI-Net Assess

PDEs over Manifolds

Green-RINet

Drawback

It can only solve homogenous PDEs, which is amended by Green BI-Net.

Generalization

It can be generalized to solve time-involved PDE like heat and wave eq. apart from Possion and Helmholtz eq.

BINet and

An Intro to PDEs over Manifolds

Preliminary: Green Function

Def

For example, the Green function G is defined to solve the PDE where L is a linear differential operator:

$$L[G(x,y)] = \delta(x-y), x, y \in \Omega; G(x,y) = 0, x \in \Omega, y \in \partial\Omega$$
(13)

With which one can solve any **non-homogenous** Dirichlet problem:

$$u(x) = \int_{\Omega} G(x, y) f(y) dy + \int_{\partial \Omega} G_{\nu}(x, y) g(y) dS(y)$$
 (14)

But how to learn such a G(x,y) efficiently?

An Intro t PDEs over Manifolds

Remove Singularities

Usually, G(x,y) doesn't behave well, i.e., it has lots of singularities. Fortunately, for an unbounded problem s.t. $L[G_0(x,y)] = 0, x, y \in \mathbb{R}^n$, we already know many **fundamental solutions** given by $G_0(x,y) = \Phi(y-x)$.

Define $H(x,y) := G(x,y) - G_0(x,y)$, H has less singularity since the pointwise charge $\delta(y-x)$ is removed.

$$L[H(x,y)] = 0, x, y \in \Omega; H(x,y) = -G_0(x,y), x \in \Omega, y \in \partial\Omega$$
(15)

Observe (15) and we find that it is just the **interior Dirichlet Problem** solved by BI-Net!

A More Complicated Task: Interface Problem

Fig. 3: Interface Problem

The corresponding PDE is:

$$\begin{cases}
Lu = f & x \in \Omega \\
[u] = g_1, \left[\frac{1}{\mu}u_v\right] = g_2, & x \in \Gamma_1 \\
u = g_3 & x \in \Gamma_2
\end{cases} \tag{16}$$

where $[\cdot] := u^+ - u^-$ is the **jump** or **discontinuity** across the boundary.

Green-BINet

BINet and

Green Function in Interface Problems

One can also solve it via:

$$u(x) = (G, f)_{\Omega} + (\frac{1}{\mu}G_{\nu}, g_1)_{\Gamma_1} - (G, g_2)_{\Gamma_1} - (\frac{1}{\mu}G_{\nu}, g_3)_{\Gamma_2}$$
(17)

where $(u, v)_{\Gamma} := \int_{\Gamma} uv dv$ Usually, the fundamental solution G_0 is not continuous on Γ_1 (in different dielectrics, for instance) and thus one can again define H(x,y) as:

$$H(x,y) := G(x,y) - G_0(x,y)$$
 (18)

and solve:

$$\begin{cases}
L[H] = 0 & x \in \Omega \\
[H] = -[G_0], \left[\frac{1}{\mu}H_{\nu}\right] = -\left[\frac{1}{\mu}\partial_{\nu}G_0\right], & x \in \Gamma_1 \\
H = -G_0 & x \in \Gamma_2
\end{cases} \tag{19}$$

Green Function in Interface Problems

From the potential theory, one can show that in consistence with the topology shown in Fig. 3, one have:

$$H(x,y) = \begin{cases} -S[h_1] & , y \in \Omega_1 \\ -S[h_2] - D[h_3] & , y \in \Omega_2 \end{cases}$$
 (20)

where h_i , i = 1, 2, 3 is implemented by networks.

Thus in light of PINN loss, we can add two terms of jump loss L_1, L_2 on Γ_1 , i.e., the total loss is:

$$\mathscr{L} := k_1 L_1 + k_2 L_2 + L \tag{21}$$

$$L_1 = \sum_{x_i} |(-S[h_1] + S[h_2] + D[h_3]) + (G_0^+ - G_0^-)|^2$$
(22)

Author Name Research Title Here 17 / 28

An Intro to PDEs over Manifolds

Section Overview

A 1 . . DDE

An Intro to PDEs over Manifolds

An Intro to PDEs over Manifolds

Literature

- Diffusion maps. Ronald R. Coifman et al. Applied and Computational Harmonic Analysis. 2006.
- SOLVING PDES ON UNKNOWN MANIFOLDS WITH MACHINE LEARNING. Senwei Liang. Applied and Computational Harmonic Analysis. 2024.

An Intro to PDEs over

Manifolds

Tutorials about Solving PDEs on manifolds

Tutorials: Differential Geometry

- An Introduction to Manifolds. Loring W. Tu.
- Differential Geometry. Loring W. Tu.

Tutorials: Geometric Analysis

- Riemannian geomeotry and geometric analysis. Jurgen Jost.
- Notes for Analysis on Manifolds via the Laplacian. Yaiza Canzani.

Tutorials:Variation

• Introductory Variational Calculus on Manifolds. Ivo Terek.

Numerical Methods

• (ODE)Solving Differential Equations on Manifolds. Ernst Hairer.

An Intro to

PDEs over

Notations about Differential Geometry

Manifold

The tangent space on a n-dimension manifold M at x is T_xM and the tangent bundle $TM: M \times \mathbb{R}^n$ with a natural projection $\pi: TM \to M$.

The cotangent space and the bundle are T_x^*M and T^*M .

The smooth vector fields and dual vector fields (1-form) on M are $\mathfrak{X}(M)$, $\Omega(M)$. The n-forms are $\Omega^n(M)$.

Riemannian Metric

 $g:T_{\times}M\times T_{\times}M\to\mathbb{R}$ is the Riemannian metric over M, which is a 2-form. The volume form onwards is $dw:=\det gdx$

The unique affine associated connection, i.e., **Levi-Civita connection**, ∇_g . The divergencediv $_g$ and Laplacian operator $\Delta_g := \operatorname{div}_g \circ \nabla_g$ is:

$$\operatorname{div}_{g}(X) := d\iota_{X} w, \iota_{X} w(X_{0}, X_{1}, ... X_{n-1}) = w(X, X_{1}, ... X_{n-1}), w \in \Omega^{n}(M)$$
 (23)

Author Name Research Title Here 21/28

An Intro to PDEs over

Manifolds

What is an ODE on a manifold

Einstein Summation Convention

$$a_i b^i := \sum_i a_i b^i \tag{24}$$

Usually, the solution of an ODE on a manifold is a **curve**(also **flow** in some literature) $\gamma(t)$.

Example

Geodesic. $\gamma(t)$ where $\dot{\gamma} := \frac{d\gamma^i}{dt} \frac{\partial}{\partial x^i}$ is a geodesic iff

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) = 0 \Leftrightarrow \frac{d^2}{dt^2}\gamma^{i} + \Gamma^{i}_{jk}\frac{d\gamma^{j}}{dt}\frac{d\gamma^{k}}{dt} = 0$$
 (25)

where the second Christoffel symbol $\nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^j} =: \Gamma^k_{ij} \frac{\partial}{\partial x^k}$

An Intro to PDEs over

Manifolds

More Examples

Example

A more generalized version is:

$$\dot{y} = f(y), y(0) = y_0$$
 (26)

where $y \in M, f : M \to T_{\times}M$

Usually, the manifold can be viewed as a parameter manifold of a system. The solution of such an ODE/PDE depicts how the system evolves.

Example

(EL-equation in Lagragian Mechanics) $(q, v) \in TM$

$$\frac{\partial L}{\partial a^k} - \frac{d}{dt} \frac{\partial L}{\partial v^k} = 0 \tag{27}$$

Author Name Research Title Here 23/28

An Intro to PDEs over

Manifolds

More Examples

Example

(Hamilton Mechanics) A Lagragian system is depicted by a manifold with its tangent space, i.e., the tangent bundle TM. A Hamilton system instead use a fiber map $F: TM \to T^*M$ given by:

$$F[L(x,v)](w) := \frac{d}{dt}|_{t=0}L(x,v+tw)$$
 (28)

where L is the Lagragian, $(x, v) \in TM$. Via Riesz Representation Theorem in Hilbert space, we have a one-to-one mapping F, and write as $F: (x, v) \mapsto (x, v_b), v \in TM, v_b \in T^*M$. The inverse mapping is $F^{-1}: (x, p) \mapsto (x, p^{\sharp})$. Given a Hamiltonian $H: M \times T^*M \to \mathbb{R}$ depicted by $(q, p) \in M \times T^*M$, the system follows:

$$\frac{d}{dt}q^k = \frac{\partial H}{\partial p_k}(x(t), p(t)); \frac{d}{dt}p^k = -\frac{\partial H}{\partial q_k}(x(t), p(t))$$
(29)

Author Name Research Title Here 24/28

An Intro to PDEs over Manifolds

Naive FDM

If the manifold is embedded in \mathbb{R}^n , then one can take the tangent space on M as a subspace in \mathbb{R}^n and use FDM directly.

However, since it always happens that the obtained $y^{n+1} \notin M$ even if $y^n \in M$, a projection step is required.

Fig. 4: Naive FDM

An Intro to

PDEs over Manifolds

PDE on Manifold

Example

A heat eq. can occur on a manifold. Suppose the temperature $u: M \to \mathbb{R}$ on M:

$$u_t - \Delta_g(u) = 0 \tag{30}$$

which is given by:

$$\nabla u := g^{ij} \frac{\partial u}{\partial x^i} \frac{\partial}{\partial x^j} \tag{31}$$

$$\operatorname{div}_{g} X := \frac{1}{\sqrt{|\det g|}} \frac{\partial}{\partial x^{i}} (b^{i} \sqrt{|\det g|}), X = b^{i} \frac{\partial}{\partial x^{i}}$$
(32)

$$\Delta_g u := \operatorname{div}_g \nabla u = \frac{1}{\sqrt{|\det g|}} \frac{\partial}{\partial x^i} \left(g^{ij} \frac{\partial u}{\partial x^i} \sqrt{|\det g|} \right) \tag{33}$$

Author Name Research Title Here 26 / 28

An Intro to PDEs over Manifolds

Elliptic Equations

 Δ_g has many good properties and therefore the harmonic analysis rises. Many powerful tools within can be applied to solving PDE with Δ_g , as [1,2].

Example

Elliptic Equation

$$a(x) + \operatorname{div}_{g}(\kappa(x)\nabla_{g}u(x)) = 0$$
(34)

An Intro to PDEs over Manifolds

Problems to Solve

Suppose we have a point cloud dataset, (x,y) where $x \in M \subset \mathbb{R}^m$, y = u(x), we are going to solve $u: M \to \mathbb{R}$.

- How to reconstruct the manifold by the point cloud?
- How to solve the PDE given a manifold?
- Another way: can we solve u on an unknown manifold? [1,2] THE END.

Author Name Research Title Here 28 / 28