CLAIMS

What is claimed is:

l	1.	A laser alignment target comprising:
2		a surface that is out of plane with and has substantially the same first
3		reflectivity as an adjacent surface of the semiconductor device; and
4		a sidewall having a second reflectivity different than the first reflectivity.
	2.	The laser alignment target of claim 1, wherein the surface is below the adjacent surface.
	3.	The laser alignment target of claim 1, wherein the surface is above the adjacent surface.
2 " " " " " " " " " " " " " " " " " " "	4.	The laser alignment target of claim 1, wherein the sidewall has a height greater than 500 Angstroms.
1 2	5.	The laser alignment target of claim 1, wherein the sidewall forms an angle with horizontal of greater than 60 degrees.
1	6.	The laser alignment target of claim 1, wherein the surface is a substantially
2		orthogonal shape.

- 7. The laser alignment target of claim 1, wherein the surface is made of a material comprising at least one of copper, aluminum, titanium, tungstun and tantalum.
- 8. The laser alignment target of claim 1, wherein the sidewall reflects light of a wavelength less than 0.4 micrometers.

1	9.	A semiconductor device comprising:
2		a plurality of fuses provided on a first level of interconnect; and
3		an alignment target including:
4		a surface that is out of plane with and has substantially the same first
5		reflectivity as an adjacent surface; and
6		a sidewall having a reflectivity different than the first reflectivity.
1 2	10.	The laser alignment target of claim 9, wherein the surface is below the adjacent surface.
	11.	The laser alignment target of claim 9, wherein the surface is above the adjacent surface.
1 7 2	12.	The laser alignment target of claim 9, wherein the sidewall has a height greater than 500 Angstroms.
1 2	13.	The laser alignment target of claim 9, wherein the sidewall forms an angle with horizontal of greater than 60 degrees.
1 2	14.	The laser alignment target of claim 1, wherein the surface is a substantially orthogonal shape.

15. The laser alignment target of claim 1, wherein the surface is made of a material comprising at least one of copper, aluminum, titanium, tungstun and tantalum.

1

2

1	16.	A method of creating a laser alignment target, the method comprising:
2		creating a surface having substantially the same first reflectivity as an
3		adjacent surface; and
4		forming sidewalls between the surface and the adjacent surface having a
5		second reflectivity different than the first reflectivity.
1	17.	The method of claim 16, wherein the step of creating includes creating a trench
2 =		and depositing a metal over the trench to create the surface below the adjacent
		surface.
<u>.</u>		
	18.	The method of claim 16, wherein the trench is created in a dielectric layer.
	19.	The method of claim 16, wherein the dielectric layer contains a wiring layer.
1	20.	The method of claim 16, wherein the step of creating includes covering a wiring
2		element with a metal to create the surface above the adjacent surface.