closed subsets of $\vartheta\Omega$. On $E=L^{p}(\Omega)$ (1 \leq p < ϖ) we consider a differential operator $L_{p,O}$ which is defined as follows:

(2.23)
$$L_{p,o}f := \sum_{i,j=1}^{n} a_{ij} f_{ij}' + \sum_{i=1}^{n} b_{i} f_{i}' + cf, \text{ with domain } D(L_{p,o}) := \{f \in C^{2}(\overline{\Omega}) : f(x) = 0 \text{ for } x \in \Gamma_{0} \text{ and } \\ \partial f/\partial v(x) + \gamma(x) f(x) = 0 \text{ for } x \in \Gamma_{1} \}$$

Here $\mathbf{f_i'}$ stands for $\mathfrak{d}f/\mathfrak{d}\mathbf{x_i}$, thus $\mathbf{f_{ij}'} = \mathfrak{d}^2 f/\mathfrak{d}\mathbf{x_i}\mathfrak{d}\mathbf{x_j}$. We assume that $\mathbf{L_{p,o}}$ is elliptic and that all coefficients are real-valued satisfying $\mathbf{a_{ij}} \in \mathbf{C}^2(\bar{\Omega})$, $\mathbf{b_i} \in \mathbf{C}^1(\bar{\Omega})$, $\mathbf{\gamma} \in \mathbf{C}^1(\bar{\Omega})$, $\mathbf{c} \in \mathbf{C}^1(\bar{\Omega})$. Then $\mathbf{L_{p,o}}$ is closable and its closure $\mathbf{L_{p}}$ is the generator of a holomorphic semigroup of positive operators. Moreover, the resolvent is compact. Thus Cor.2.13 is applicable and one obtains that s(A) is strictly dominant provided that $\sigma(\mathbf{A}) \neq \emptyset$. Using the results of Section 3 one can show that $\sigma(\mathbf{A}) \neq \emptyset$ and that s(A) is an algebraically simple eigenvalue (see Thm.3.7 and Prop.3.5).

We conclude with some remarks.

<u>Remarks</u> 2.15.(a) In the proof of Thm.2.10 we did not use the assumption that R is the resolvent of a semigroup. In fact one can state this theorem for closed operators having positive resolvent. In this case one has to assume that $\{(\lambda-s(A))R(\lambda,A):s(A)<\lambda< s(A)+1\}$ is bounded in L(E).

One can go even further and consider positive pseudo-resolvents $\{R(\lambda)\}_{\lambda\in D}$. This is also possible with respect to Cor.2.12.

- (b) If s(A) is a pole, then the criteria stated in B-III, Rem.2.15(a) for s(A) to be a first order pole are valid in the setting of arbitrary Banach lattices as well. In particular, one has a first order pole provided that ker(s(A) A) contains a quasi-interior point or in case that ker(s(A) A') contains a strictly positive linear form.
- (c) It is not difficult to give examples of semigroups whose resolvent does not grow slowly or cannot be reduced by a finite chain of invariant ideals as described after Cor.2.12 . E.g., one can take a bounded positive operator A which is not nilpotent and satisfies $\sigma(A) = \{0\}$. However, the following question is still unanswered:
- (2.23) Does every positive semigroup have cyclic boundary spectrum?