Tutorium 10

Funktionentheorie

14. und 15. Juli 2025

Definition

Sei $(a_n) \subset \mathbb{C}$. Wir sagen, dass das Produkt

$$\prod_{n=1}^{\infty} (1+a_n)$$

gegen L konvergiert, falls $L := \lim_{N \to \infty} \prod_{n=1}^{N} (1 + a_n)$ existiert.

Definition

Sei $(a_n) \subset \mathbb{C}$. Wir sagen, dass das Produkt

$$\prod_{n=1}^{\infty} (1+a_n)$$

gegen L konvergiert, falls $L := \lim_{N \to \infty} \prod_{n=1}^{N} (1 + a_n)$ existiert.

Lemma

Falls $\sum_{n=1}^{\infty} |a_n| < \infty$ gilt, so konvergiert $\prod_{n=1}^{\infty} (1+a_n)$ und der Grenzwert des Produkts ist genau dann 0, wenn einer der Faktoren 0 ist.

Proposition

Sei $\Omega \subset \mathbb{C}$ offen und $F_n \colon \Omega \to \mathbb{C}$, $n \in \mathbb{N}$, eine Folge holomorpher Funktionen. Falls $(c_n)_{n \in \mathbb{N}} \subset (0, \infty)$ existiert, sodass

$$\forall z \in \Omega : |F_n(z) - 1| \le c_n$$
 und $\sum_{n=1}^{\infty} c_n < \infty$,

so gilt:

Proposition

Sei $\Omega \subset \mathbb{C}$ offen und $F_n \colon \Omega \to \mathbb{C}$, $n \in \mathbb{N}$, eine Folge holomorpher Funktionen. Falls $(c_n)_{n \in \mathbb{N}} \subset (0, \infty)$ existiert, sodass

$$\forall z \in \Omega : |F_n(z) - 1| \le c_n$$
 und $\sum_{n=1}^{\infty} c_n < \infty$,

so gilt:

1 $\prod_{n=1}^{\infty} F_n(z)$ konvergiert gleichmäßig in Ω gegen eine holomorphe Funktion $G: \Omega \to \mathbb{C}$.

Proposition

Sei $\Omega \subset \mathbb{C}$ offen und $F_n \colon \Omega \to \mathbb{C}$, $n \in \mathbb{N}$, eine Folge holomorpher Funktionen. Falls $(c_n)_{n \in \mathbb{N}} \subset (0, \infty)$ existiert, sodass

$$\forall z \in \Omega : |F_n(z) - 1| \le c_n \quad und \quad \sum_{n=1}^{\infty} c_n < \infty,$$

so gilt:

- **1** $\prod_{n=1}^{\infty} F_n(z)$ konvergiert gleichmäßig in Ω gegen eine holomorphe Funktion $G: \Omega \to \mathbb{C}$.
- ② Für jedes $z \in \Omega$ gilt G(z) = 0 genau dann, wenn $F_n(z) = 0$ für ein $n \in \mathbb{N}$.

Proposition

Sei $\Omega \subset \mathbb{C}$ offen und $F_n \colon \Omega \to \mathbb{C}$, $n \in \mathbb{N}$, eine Folge holomorpher Funktionen. Falls $(c_n)_{n \in \mathbb{N}} \subset (0, \infty)$ existiert, sodass

$$\forall z \in \Omega : |F_n(z) - 1| \le c_n \quad und \quad \sum_{n=1}^{\infty} c_n < \infty,$$

so gilt:

- **1** $\prod_{n=1}^{\infty} F_n(z)$ konvergiert gleichmäßig in Ω gegen eine holomorphe Funktion $G: \Omega \to \mathbb{C}$.
- **3** Für jedes $z \in \Omega$ gilt G(z) = 0 genau dann, wenn $F_n(z) = 0$ für ein $n \in \mathbb{N}$.
- **3** Falls $G(z) \neq 0$ für ein $z \in \Omega$ ist, so gilt

$$\frac{G'(z)}{G(z)} = \sum_{n=1}^{\infty} \frac{F'_n(z)}{F_n(z)}.$$

Das Eulerprodukt für sin

Theorem (Euler)

Es gilt

$$\frac{\sin \pi z}{\pi} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

Das Eulerprodukt für sin

Theorem (Euler)

Es gilt

$$\frac{\sin \pi z}{\pi} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

Frage: Können wir auch andere holomorphe Funktionen "faktorisieren"?

Definition (Weierstraß'sche Elementarfaktoren)

Für $k \in \mathbb{N}_0$ definieren wir die folgenden holomorphen Funktionen:

$$E_0(z) = 1 - z,$$
 $E_k(z) := (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^k}{k}}.$

Definition (Weierstraß'sche Elementarfaktoren)

Für $k \in \mathbb{N}_0$ definieren wir die folgenden holomorphen Funktionen:

$$E_0(z) = 1 - z,$$
 $E_k(z) := (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^k}{k}}.$

Motivation: Hat f Nullstellen $(a_n)_{n\in\mathbb{N}}$, so konvergiert "naive" Faktorisierung $\prod_{k=1}^{\infty}(a_n-z)$ nicht notwendigerweise!

Definition (Weierstraß'sche Elementarfaktoren)

Für $k \in \mathbb{N}_0$ definieren wir die folgenden holomorphen Funktionen:

$$E_0(z) = 1 - z,$$
 $E_k(z) := (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^k}{k}}.$

Motivation: Hat f Nullstellen $(a_n)_{n\in\mathbb{N}}$, so konvergiert "naive" Faktorisierung $\prod_{k=1}^{\infty}(a_n-z)$ nicht notwendigerweise! Gibt es bessere Faktoren, sagen wir mit Nullstelle 1, also als 1-z?

Definition (Weierstraß'sche Elementarfaktoren)

Für $k \in \mathbb{N}_0$ definieren wir die folgenden holomorphen Funktionen:

$$E_0(z) = 1 - z,$$
 $E_k(z) := (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^k}{k}}.$

Motivation: Hat f Nullstellen $(a_n)_{n\in\mathbb{N}}$, so konvergiert "naive" Faktorisierung $\prod_{k=1}^{\infty}(a_n-z)$ nicht notwendigerweise! Gibt es bessere Faktoren, sagen wir mit Nullstelle 1, also als 1-z?

Offensichtlich hat jedes E_k eine einfache Nullstelle bei 1.

Definition (Weierstraß'sche Elementarfaktoren)

Für $k \in \mathbb{N}_0$ definieren wir die folgenden holomorphen Funktionen:

$$E_0(z) = 1 - z,$$
 $E_k(z) := (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^k}{k}}.$

Motivation: Hat f Nullstellen $(a_n)_{n\in\mathbb{N}}$, so konvergiert "naive" Faktorisierung $\prod_{k=1}^{\infty}(a_n-z)$ nicht notwendigerweise! Gibt es bessere Faktoren, sagen wir mit Nullstelle 1, also als 1-z?

Offensichtlich hat jedes E_k eine einfache Nullstelle bei 1. Zudem gilt für $z\in\mathbb{C}$ mit |z|<1, dass

$$1-z=\exp(\operatorname{Log}(1-z))=\exp\left(-\sum_{k=1}^{\infty}\frac{z^k}{k}\right).$$

Definition (Weierstraß'sche Elementarfaktoren)

Für $k \in \mathbb{N}_0$ definieren wir die folgenden holomorphen Funktionen:

$$E_0(z) = 1 - z,$$
 $E_k(z) := (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^k}{k}}.$

Motivation: Hat f Nullstellen $(a_n)_{n\in\mathbb{N}}$, so konvergiert "naive" Faktorisierung $\prod_{k=1}^{\infty}(a_n-z)$ nicht notwendigerweise! Gibt es bessere Faktoren, sagen wir mit Nullstelle 1, also als 1-z?

Offensichtlich hat jedes E_k eine einfache Nullstelle bei 1. Zudem gilt für $z\in\mathbb{C}$ mit |z|<1, dass

$$1-z=\exp(\operatorname{Log}(1-z))=\exp\left(-\sum_{k=1}^{\infty}\frac{z^k}{k}\right).$$

Daher kann $E_k(z)=(1-z)\exp\left(\sum_{k=1}^n\frac{z^k}{k}\right)$ für $|z|\leq 1$ beliebig nahe bei 1 gewählt werden, vgl. Lemma 4.7, wodurch stets Konvergenz erreicht werden kann.

Theorem (Weierstraß)

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ mit $|a_n|\to\infty$. Dann existiert eine ganze Funktion f mit Nullstellen genau bei den a_n (mit Vielfachheit). Jede andere solche ganze Funktion ist von der Form fe^g mit g ganz.

Theorem (Weierstraß)

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ mit $|a_n|\to\infty$. Dann existiert eine ganze Funktion f mit Nullstellen genau bei den a_n (mit Vielfachheit). Jede andere solche ganze Funktion ist von der Form fe^g mit g ganz.

Der Beweis aus dem Skript liefert mit $m:=\#\{n:a_n=0\}$ und $(b_n)_{n\in\mathbb{N}}$ als der Folge $(a_n)_{n\in\mathbb{N}}$ ohne den Wert 0, dass

$$f(z) = z^m \prod_{n=1}^{\infty} E_n \left(\frac{z}{b_n} \right).$$

Definition

Eine ganze Funktion f hat Wachstumsordnung $\leq \rho$, falls Konstanten A,B>0 existieren, sodass

$$|f(z)| \le A e^{B|z|^{\rho}} \tag{1}$$

für alle $z\in\mathbb{C}$ gilt.

Definition

Eine ganze Funktion f hat Wachstumsordnung $\leq \rho$, falls Konstanten A,B>0 existieren, sodass

$$|f(z)| \le A e^{B|z|^{\rho}} \tag{1}$$

für alle $z \in \mathbb{C}$ gilt. Die Wachstumsordnung ρ_0 von f ist das Infimum über alle ρ , für welche (1) erfüllt ist.

Definition

Eine ganze Funktion f hat Wachstumsordnung $\leq \rho$, falls Konstanten A, B > 0 existieren, sodass

$$|f(z)| \le A e^{B|z|^{\rho}} \tag{1}$$

für alle $z \in \mathbb{C}$ gilt. Die Wachstumsordnung ρ_0 von f ist das Infimum über alle ρ , für welche (1) erfüllt ist.

Theorem (Hadamard)

Seien f, m und $(b_n)_{n \in \mathbb{N}}$ wie auf der vorherigen Folie. f habe zudem Wachstumsordnung ρ_0 und $k \in \mathbb{Z}$ sei so gewählt, dass $k \leq \rho_0 < k+1$ (d.h. $k = \lfloor \rho_0 \rfloor$). Dann gilt

$$f(z) = e^{P(z)} z^m \prod_{n=1}^{\infty} E_k \left(\frac{z}{b_n}\right),$$

wobei P ein Polynom von Grad $\leq k$ ist.

Definition

Eine ganze Funktion f hat Wachstumsordnung $\leq \rho$, falls Konstanten A, B > 0 existieren, sodass

$$|f(z)| \le A e^{B|z|^{\rho}} \tag{1}$$

für alle $z \in \mathbb{C}$ gilt. Die Wachstumsordnung ρ_0 von f ist das Infimum über alle ρ , für welche (1) erfüllt ist.

Theorem (Hadamard)

Seien f, m und $(b_n)_{n \in \mathbb{N}}$ wie auf der vorherigen Folie. f habe zudem Wachstumsordnung ρ_0 und $k \in \mathbb{Z}$ sei so gewählt, dass $k \leq \rho_0 < k+1$ (d.h. $k = \lfloor \rho_0 \rfloor$). Dann gilt

$$f(z) = e^{P(z)} z^m \prod_{n=1}^{\infty} E_k \left(\frac{z}{b_n}\right),\,$$

wobei P ein Polynom von Grad $\leq k$ ist.

Definition

Eine ganze Funktion f hat Wachstumsordnung $\leq \rho$, falls Konstanten A, B > 0 existieren, sodass

$$|f(z)| \le A e^{B|z|^{\rho}} \tag{1}$$

für alle $z \in \mathbb{C}$ gilt. Die Wachstumsordnung ρ_0 von f ist das Infimum über alle ρ , für welche (1) erfüllt ist.

Theorem (Hadamard)

Seien f, m und $(b_n)_{n \in \mathbb{N}}$ wie auf der vorherigen Folie. f habe zudem Wachstumsordnung ρ_0 und $k \in \mathbb{Z}$ sei so gewählt, dass $k \leq \rho_0 < k+1$ (d.h. $k = \lfloor \rho_0 \rfloor$). Dann gilt

$$f(z) = e^{P(z)} z^m \prod_{n=1}^{\infty} E_k \left(\frac{z}{b_n}\right),\,$$

wobei P ein Polynom von Grad $\leq k$ ist.