Pin Diagram of 8086 Microprocessor

Introduction

The Intel 8086 is a 16-bit microprocessor built using HMOS technology, containing approximately 29,000 transistors. It is housed in a 40-pin Dual In-line Package (DIP). Its pins are multiplexed to support efficient use of limited pin count, and the processor can operate in either:

- Minimum Mode (single processor system).
- Maximum Mode (multiprocessor or coprocessor system).

Key Facts

- Technology: **HMOS**.
- Transistor Count: 29,000.
- Package: 40-pin DIP.
- Total Pins: 40.
- Address Bus: **20-bit** (A0–A19).
- Data Bus: **16-bit** (D0–D15).
- Control Signals: Read/Write, Interrupt, Clock, DMA, etc.
- Modes of Operation: **Minimum** and **Maximum**.

Pin Configuration and Modes

The 8086 has two different pin diagrams depending on the operating mode:

- Minimum Mode (Uniprocessor System): Pin 33 (MN/MX#) is held high. In this mode, the CPU itself issues all the control signals.
- Maximum Mode (Multiprocessor System): Pin 33 (MN/MX#) is held low. In this mode, an external bus controller IC (8288) generates the control signals.

The main difference between the pin diagrams lies in **pin 24 to pin 31**, which are configured differently for Minimum and Maximum mode.

Pin Diagram

Figure 1: *
Figure: Pin Diagram of Intel 8086 Microprocessor (40 pins)

Pin Description

The 40 pins of 8086 are divided into the following functional groups.

1. Address/Data Bus (Multiplexed)

AD0-AD15 (Pins 2-16, 39-40)

- Multiplexed as the lower 16-bit address bus (A0-A15) and the 16-bit data bus (D0-D15).
- T1 state: Carries address A0–A15.
- T2-T4 states: Carries data D0-D15.
- Used to address memory $(2^{20} = 1 \text{ MB})$ and I/O $(2^{16} = 64 \text{ kB})$.

A16-A19 / S3-S6 (Pins 35-38)

- Multiplexed as upper 4-bit address bus (A16-A19) and status lines (S3-S6).
- S3, S4: Indicate segment register in use.
- **S5**: Reflects interrupt flag (IF).
- **S6**: Always 0 (reserved).

BHE/S7 (Pin 34)

- Functions as Bus High Enable (BHE) signal during T1, remains low.
- Acts as a **chip select** signal for the higher byte on **AD15–AD8**.
- Functions as status signal S7 during T2-T4, remains high.
- Together with **A0**, it determines references to memory (byte or word access).

Memory Bank Selection using BHE and A0:

BHE	A0	Access Type
0	0	Both banks active, 16-bit word transfer on AD15–AD0
0	1	Only high bank active, upper byte from/to odd address on AD15–AD8
1	0	Only low bank active, lower byte from/to even address on AD7–AD0
1	1	No bank active

2. Control and Status Signals

ALE (Pin 25)

- Address Latch Enable (ALE) output signal.
- Active in Minimum Mode (MIN Mode).
- Generates a **positive-going pulse** to indicate that a **valid address** is present on the **AD0–AD15 lines** (**Address/Data lines**).
- Used to latch the lower 16-bit address into external latches when multiplexed address/data lines are used.
- Ensures proper separation of address and data during memory or I/O operations.

RD (Pin 32)

- Read (RD) output signal.
- Indicates a **CPU read operation** from memory or an input device.
- Active low: logic 0 indicates the CPU is reading data.
- Enables memory or I/O device to place valid data on the bus.
- Works together with $M/\bar{I}O$ and DEN signals to ensure correct data timing.
- Active in both **Minimum Mode** and **Maximum Mode**.

WR (Pin 29)

- Write (WR) output signal.
- Active in Minimum Mode (MIN Mode).
- Indicates a **CPU** write operation to memory or an I/O device.
- Active low: logic 0 indicates the CPU is writing data.
- Data is placed on the bus by the CPU and transferred to the addressed memory or output device.
- Works in coordination with $M/\bar{I}O$ and DEN signals to ensure proper timing.

$M/\bar{I}O$ (Pin 28)

- Memory / I/O (M/ \bar{I} O) status output signal.
- Active only in Minimum Mode (MIN Mode).
- Distinguishes whether the current bus cycle is accessing memory or an I/O device.
- **High** (1) = Memory access cycle.
- Low (0) = I/O access cycle.
- Provides control information to external hardware (like memory chips or I/O devices) so they can respond correctly.

$\mathrm{DT}/\mathrm{ar{R}}$ (Pin 27)

- Data Transmit / Receive (DT/\bar{R}) output signal.
- Active in Minimum Mode (MIN Mode).
- Controls the **direction of data flow** through the bus transceivers.
- **High** (1) = CPU transmits data to the bus (sending data out).
- Low (0) = CPU receives data from the bus (accepting data in).
- Ensures proper data transfer between the microprocessor and memory or I/O devices.

DEN (Pin 26)

- Data Enable (DEN) output signal.
- Active in Minimum Mode (MIN Mode).
- Indicates the availability of valid data on the multiplexed address/data lines (AD0-AD15).
- Active from middle of T2 until middle of T4 during a bus cycle.
- Enables external transceivers to drive or latch data at the correct time.
- Ensures data is transferred only when valid, avoiding bus contention.

3. Power, Clock, and Reset

VCC (Pin 40)

- Provides +5V DC supply to the microprocessor.
- Powers all internal circuits of the 8086 CPU.

GND (Pins 1, 20)

- Ground reference for the microprocessor.
- Provides a common reference for all voltages and signals.

CLK (Pin 19)

- External clock input for the microprocessor.
- Typical frequency range: 5–10 MHz.
- Synchronizes all internal operations and timings of the 8086.

RESET (Pin 21)

- RESET signal initializes the microprocessor.
- Must be applied after 50 μ s of power-on and remain active for at least 4 clock cycles.
- When RESET is active:
 - Processor immediately terminates its present activity.
 - All three buses are **tristated**.
 - ALE and HLDA signals go low.
 - All internal registers are cleared to **0000H**.
 - CS = F000H, IP = FFF0H.
- When RESET returns to low, execution begins from the physical address **FFFF0H**.
- Typically, an **EPROM** is mapped at addresses **FFFF0H FFFFFH** to store the start-up program.

READY (Pin 22)

- Used to **insert wait states** into the microprocessor's bus cycle.
- When $\mathbf{HIGH} \to 8086$ proceeds with the current bus cycle.
- When $LOW \rightarrow 8086$ enters a wait state until READY becomes high.
- Synchronizes the CPU with slower memory or I/O devices.

4. Interrupts and DMA

INTR (Pin 18)

- Interrupt Request (Maskable) input signal.
- Triggered by external hardware devices requesting CPU attention.
- The request is recognized only if the Interrupt Flag (IF) = 1.
- On acknowledgment, the 8086 issues an **Interrupt Acknowledge (INTA)** signal.
- The CPU then reads the interrupt type number from the external device and executes the corresponding **Interrupt Service Routine (ISR)**.
- Priority: Lowest priority among hardware interrupts (below NMI).
- Can be disabled by clearing the IF flag (using CLI instruction).
- Supports vectored interrupts (through external hardware like 8259 PIC).

NMI (Pin 17)

- Non-Maskable Interrupt (NMI) input signal.
- **High-priority** hardware interrupt that **cannot be disabled** by software (independent of the Interrupt Flag IF).
- Triggered on the **rising edge** of the NMI input.
- Typically used for critical events such as:
 - Power failure or emergency shutdown signals.
 - Memory parity errors.
 - Hardware malfunctions.
- When activated, CPU immediately suspends current execution and jumps to a predefined interrupt vector.
- ISR Location: Vector stored at 00008H (CS:IP fetched from memory at addresses 00008H (0000BH).
- Cannot be masked or ignored \rightarrow guarantees CPU response to urgent events.

INTA (Pin 24)

- Interrupt Acknowledge (INTA) output signal.
- Active in Minimum Mode (MIN Mode).
- Microprocessor receives interrupt request through INTR or NMI.
- CPU acknowledges the interrupt request by issuing the **INTA** signal.
- Used by external hardware to provide the interrupt type number to the CPU.

Feature	Maskable Interrupt (INTR)	Non-Maskable Interrupt (NMI)
Can be disabled?	Yes, can be masked/disabled using the Interrupt Flag (IF).	No, always recognized by CPU regardless of IF.
Priority	Lower priority.	Higher priority (urgent).
8086 Example Pin	INTR (Pin 18).	NMI (Pin 17).
Use cases	General-purpose interrupts such as I/O devices, keyboard, timers, etc.	Critical events like power failure, memory parity error, hardware malfunction.
ISR Location	Vectored externally during INTA cycle (type number supplied by device/PIC).	Fixed at interrupt vector 00008H (CS:IP fetched from 00008H-0000BH).

TEST (Pin 23)

- The **TEST** input pin is used in conjunction with the **WAIT** instruction for external synchronization.
- When the CPU executes a WAIT instruction, it continuously monitors the logic level of the TEST pin.

• Operation:

- If $TEST = 1 \Rightarrow CPU$ continues normal execution (no wait).
- If TEST = $0 \Rightarrow$ CPU enters a wait state until TEST returns to 1.

• Connection with 8087 NDP (Numeric Data Processor):

- The BUSY output pin of the 8087 is connected to the TEST input pin of the 8086.
- When the 8087 is busy, it pulls the TEST signal high, causing the 8086 to WAIT.
- Once the 8087 completes execution, the BUSY signal goes low, which sets TEST low.
- The 8086 then resumes execution of its program.
- This mechanism ensures proper coordination between the 8086 CPU and its coprocessor (8087).

HOLD (Pin 31) / HLDA (Pin 30)

- HOLD (Hold Request, Pin 31):
 - Active-high input signal used by **Direct Memory Access (DMA)** controllers or other bus masters to request control of the system buses.
 - When asserted, the 8086 completes the current bus cycle and then releases the Address, Data, and Control buses.
 - During this time, **ALE**, **DEN**, and **DT**/ $\bar{\mathbf{R}}$ go low, and the buses are tristated.
- HLDA (Hold Acknowledge, Pin 30):
 - Output signal from 8086 acknowledging that the buses have been released.
 - Activated one clock cycle after **HOLD** is recognized.
 - When HOLD goes low, HLDA also goes low, and the CPU regains bus control.
- Use Case: Ensures DMA controllers or coprocessors (like 8087) can access memory or I/O directly without CPU intervention.
- Active in Minimum Mode (MIN Mode) only.

5. Mode Control

$MN/\bar{M}X$ (Pin 33)

- **High = Minimum Mode:** 8086 works as the only processor, directly generating all control signals.
- Low = Maximum Mode: 8086 works in multiprocessor or coprocessor systems, and an external bus controller (8288) generates control signals.

Minimum Mode

Minimum Mode Characteristics

- Designed for a **single-processor environment**.
- The CPU internally generates all necessary control signals: RD, WR, INTA, ALE, DT/R, DEN.
- Provides simpler and cheaper system design.
- Ideal for small systems with no coprocessor or DMA controller.

Maximum Mode

Maximum Mode Characteristics

- Designed for multiprocessor or coprocessor systems (e.g., 8086 + 8087 NDP).
- Requires an external 8288 bus controller to generate control signals.
- Provides advanced features such as:
 - Bus arbitration (multiple bus masters).
 - LOCK prefix for atomic operations.
 - Special signals for coprocessor coordination.
- Supports higher performance and multitasking environments.

Special Maximum Mode Pins

RQ/GT0, RQ/GT1 (Pins 30, 31)

- Request/Grant pins used for **bus arbitration** in a multiprocessor system.
- Function as bidirectional signals:
 - A processor can use RQ/GT to request the bus.
 - The CPU responds with a grant after completing the current cycle.
- RQ/GT0 has higher priority than RQ/GT1.

LOCK (Pin 29)

- LOCK output signal.
- Active in Maximum Mode (MAX Mode) only.
- Activated by the **LOCK prefix instruction** to ensure exclusive use of shared memory in multiprocessor systems.
- Remains active until the completion of the **next instruction**.
- When LOCK = low:
 - All interrupts are masked.
 - HOLD requests from external devices are not granted.
- Ensures atomic read-modify-write operations on memory.

QS1 / QS0 (Pins 24, 25)

- Queue Status Signals (QS1 / QS0) output signals.
- Active in Maximum Mode (MAX Mode) only.
- Provide the status of the instruction queue.
- Status Table:

QS1	QS0	Status	
0	0	No operation	
0	1	First byte of opcode from the queue	
1	0	Queue is being emptied	
1	1	Subsequent byte from the queue	

• Used by external hardware (like coprocessors or prefetch logic) to track instruction fetch and execution.

S2 / S1 / S0 (Pins 26–28)

- Status Signals (S2 / S1 / S0) output signals.
- Active in Maximum Mode (MAX Mode) only.
- Indicate the **type of operation** being carried out by the processor.
- Active during **T4** of the previous cycle and **T1** and **T2** of the current cycle.
- Passive during **T3** of the current bus cycle.
- Status Table:

$\mathbf{S2}$	S1	S0	CPU Cycle
0	0	0	Interrupt acknowledge
0	0	1	Read I/O Port
0	1	0	Write I/O Port
0	1	1	HALT
1	0	0	Code access
1	0	1	Read memory
1	1	0	Write memory
1	1	1	Passive

• Used by external hardware to identify the current CPU operation for proper bus control.