Dynamic Mechanism-Design

Michael Füg und Philip Zilke

28. April 2016

- Vom statischen zum dynamischen Mechanismus Design
- Dynamische private Information
 - Dynamischer direkter Mechanismus
 - Das Revelations-Prinzip
 - Anreiz-Kompatibilität und indiviuelle Rationalität
 - Optimaler Verkaufs-Mechanismus
- Ausblicke
 - Die Rolle der privaten Information
 - Sequentielles Mechanismus Design
 - Dynamische Allokationen

Aufbau des Vortrages

Die Hauptansätze:

- Dynamische private Information und statische Allokationen
- Dynamische Allokationen und statische private Information

Mathemtische Modellierung

Sei im Folgenden für das Signal au

- Kummulierte Verteilung $G(\tau)$
- Positive Dichte $g(\tau)$
- Trägermenge $[\underline{\tau}, \bar{\tau}]$

Sei im Folgenden für die Bewertung θ

- Kummulierte Verteilung $F(\theta \mid \tau)$
- Korrespondierende Dichte $f(\theta \mid \tau)$
- Trägermenge $[\underline{\theta}, \bar{\theta}]$ mit $0 \leq \underline{\theta} < \bar{\theta}$ für alle $au \in [\underline{ au}, \bar{ au}]$

Annahmen

Wir setzen im Folgenden voraus, dass

- Trägermenge von $F(\theta \mid \tau)$ ist $[\underline{\theta}, \overline{\theta}]$ für alle $\tau \in [\underline{\tau}, \overline{\tau}], 0 \leq \underline{\theta} < \overline{\theta}$
- Trägermenge von $F(\theta \mid \tau)$ unabhängig von τ
- $f(\theta \mid \tau) > 0$ für alle $\tau \in [\underline{\tau}, \overline{\tau}]$ und $\theta \in [\underline{\theta}, \overline{\theta}]$
- $F(\theta \mid \tau)$ und $f(\theta \mid \tau)$ sind stetig differenzierbar in τ
- Für die Familie $F(\cdot \mid \tau)$ mit $\tau \in [\underline{\tau}, \overline{\tau}]$ gilt

$$\delta F(\theta \mid \tau)/\delta \tau < 0 \text{ für alle } \theta \in (\underline{\theta}, \overline{\theta})$$
 (FOSD)

Dynamischer direkter Mechanismus

Definition

Ein (dynamischer) direkter Mechanismus besteht aus den beiden Funktionen

$$q: [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \to [0, 1]$$
 und $t: [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$.

Zwei wesentliche Hauptänderungen:

- Verwende nun das kartesische Produkt $[\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}]$
- **2** Zwei Report-Ebenen: τ und θ

Ein-Personen-Entscheidungsproblem

Optimale Entscheidungsregel ist das Paar $\sigma = (\sigma_1, \sigma_2)$ mit

- $\sigma_1: [\underline{\tau}, \overline{\tau}] \to [\underline{\tau}, \overline{\tau}]$ (Report ex ante Typ τ)
- $\sigma_2 : [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \times [\underline{\tau}, \overline{\tau}] \to [\underline{\theta}, \overline{\theta}]$ (Report ex post Typ θ)

Das Revelations-Prinzip

Proposition

Für jeden dynamischen Mechanismus Γ und jede optimale Käuferstrategie σ in Γ gibt es einen direkten Mechanismus Γ' und eine optimale Käuferstrategie $\sigma' = (\sigma'_1, \sigma'_2)$, so dass gilt:

i) Die Strategie σ' genügt

$$\sigma_1'(\tau) = \tau \ \forall \tau \in [\underline{\tau}, \overline{\tau}] \quad \text{und} \quad \sigma_2'(\tau, \theta, \tau) = \theta \ \forall \theta \in [\underline{\theta}, \overline{\theta}], \tau \in [\underline{\tau}, \overline{\tau}]$$

ii) Wenn der Käufer seine optimale Strategie spielt, dann ist für alle $(\tau,\theta)\in [\underline{\tau},\overline{\tau}]\times [\underline{\theta},\overline{\theta}]$ die Wahrscheinlichkeit $q(\tau,\theta)$ und die Auszahlung $t(\tau,\theta)$ unter Γ' identisch mit der Wahrscheinlichkeit eines Kaufes und der erwarteten Auszahlung unter Γ .

Folgerungen aus dem Revelations-Prinzip

Betrachte direkte Mechanismen:

- 1 Im Gleichgewicht: Die Wahrheit wird berichtet
- Wein Gleichgewicht: Keine Aussage möglich

$$egin{aligned} & heta^r: [ar{arrho},ar{ heta}]
ightarrow [ar{arrho},ar{ heta}] \ u(au, heta) = heta q(au, heta) - t(au, heta) \ & \hat{U}(au'| au) = \int_{ar{arrho}}^{ar{ heta}} u(au',\hat{ heta}) f(\hat{ heta} \mid au) \ d\hat{ heta} \ & U(\hat{ au}) = \hat{U}(\hat{ au}|\hat{ au}) \end{aligned}$$

Anreiz-kompatibel und individuell rational

Definition

Ein direkter Mechanismus ist Anreiz-kompatibel, wenn

i) er Anreiz-kompatibel im Bezug auf seinem Ex-Post Typen θ ist:

$$u(\tau,\theta) \geq \theta q(\tau,\theta') - t(\tau,\theta') \quad \forall \tau \in [\underline{\tau},\overline{\tau}] \text{ und } \theta,\theta' \in [\underline{\theta},\overline{\theta}]$$

ii) er Anreiz-kompatibel im Bezug auf seinem Ex-Ante Typen au ist:

$$U(\tau) \ge \int_{\underline{\theta}}^{\bar{\theta}} [\hat{\theta}q(\tau', \theta^r(\hat{\theta})) - t(\tau', \theta^r(\hat{\theta}))] f(\hat{\theta} \mid \tau) d\hat{\theta}$$
$$\forall \tau, \tau' \in [\underline{\tau}, \overline{\tau}] \text{ und } \theta^r : [\underline{\theta}, \overline{\theta}] \to [\underline{\theta}, \overline{\theta}].$$

Ein direkter Mechanismus ist individuel rational, wenn

$$U(\tau) \geq 0 \ \forall \tau \in [\underline{\tau}, \overline{\tau}]$$

Vereinfache Anreiz-Kompatibilität I

Proposition

Ein direkter Mechanismus ist Anreiz-kompatibel genau dann, wenn

i)
$$u(\tau,\theta) \geq \theta q(\tau,\theta') - t(\tau,\theta') \quad \forall \tau \in [\underline{\tau},\overline{\tau}] \text{ und } \theta,\theta' \in [\underline{\theta},\overline{\theta}],$$

ii)
$$U(\tau) \geq \hat{U}(\tau' \mid \tau) \quad \forall \tau, \tau' \in [\underline{\tau}, \overline{\tau}].$$

Betrachte jetzt Monotonie-Kriterien \rightarrow gelten im Allgemeinen nicht:

- $\textbf{0} \ \, \text{Anreiz-Kompatibilität des Ex-Ante Typen } \tau \text{ impliziert nicht Monotonie der Allokationsregel}.$
 - ⇒ Wesentlicher Unterschied zu statischem Screening Model.
- **2** Betrachte Anreiz-Kompatibilität gegeben des Ex-Post Typen θ .

Vereinfache Anreiz-Kompatibilität II

Proposition

Ein direkter Mechanismus ist Anreiz-kompatibel gegeben seinem Ex-Post Typen θ genau dann, wenn

- i) für alle Ex-Ante Typen τ die Funktion $q(\tau, \theta)$ steigend in θ ist,
- ii) für alle Ex-Ante Typen τ und Ex-Post Typen θ :

$$\frac{\delta u(\tau,\theta)}{\delta \theta} = q(\tau,\theta),$$

iii) für alle Ex-Ante Typen τ und Ex-Post Typen θ :

$$t(au, heta) = t(au, heta) + (heta q(au, heta) - heta q(au, heta)) - \int_{ heta}^{ heta} q(au, \hat{ heta}) \ d\hat{ heta}.$$

Beispiel für Anreiz-Kompatibilität

Wir definieren zunächst $[\underline{\theta}, \overline{\theta}] = [0, \overline{\theta}]$ und $[\underline{\tau}, \overline{\tau}] = [0, \overline{\tau}].$

Lemma

Der direkte Mechanismus charakterisiert durch

$$q(\tau,\theta):=1-e^{-(\tau+\theta)}$$
 und $t(\tau,\theta):=-e^{-(\tau+\theta)}\cdot(1+\theta)$

ist Anreiz-kompatibel.

Implikationen aus Anreiz-Kompatibilität I

Proposition

Wenn ein direkter Mechanismus Anreiz-kompatibel ist, dann gilt für alle Ex-Ante Typen τ :

$$\begin{split} i) \ \ U'(\tau) &= -\int_{\underline{\theta}}^{\bar{\theta}} q(\tau, \hat{\theta}) \frac{\delta F(\hat{\theta} \mid \tau)}{\delta \tau} \ d\hat{\theta}, \\ ii) \ \ \int_{\underline{\theta}}^{\bar{\theta}} t(\tau, \hat{\theta}) f(\hat{\theta} \mid \tau) \ d\hat{\theta} &= \int_{\underline{\theta}}^{\bar{\theta}} \hat{\theta} q(\tau, \hat{\theta}) f(\hat{\theta} \mid \tau) \ d\hat{\theta} \\ &+ \int_{\underline{\theta}}^{\bar{\theta}} [t(\underline{\tau}, \hat{\theta}) - \hat{\theta} q(\underline{\tau}, \hat{\theta})] f(\hat{\theta} \mid \underline{\tau}) \ d\hat{\theta} \\ &+ \int_{\underline{\tau}}^{\tau} \int_{\underline{\theta}}^{\bar{\theta}} q(\hat{\tau}, \hat{\theta}) \frac{\delta F(\hat{\theta} \mid \hat{\tau})}{\delta \tau} \ d\hat{\theta} \ d\hat{\tau}. \end{split}$$

Dynamischer direkter Mechanismus Das Revelations-Prinzip Anreiz-Kompatibilität und indiviuelle Rationalität Optimaler Verkaufs-Mechanismus

Implikationen aus Anreiz-Kompatibilität II

Wir haben festgestellt:

- **1** Vorige Propositionen implizieren zwei Restriktionen an $t(\tau, \theta)$.
- ② Nächste Proposition impliziert: Gegeben $q(\tau, \theta)$, dann wird $t(\tau, \theta)$ festgelegt durch $t(\underline{\tau}, \underline{\theta})$.

Implikationen aus Anreiz-Kompatibilität III

Proposition

Wenn ein direkter Mechanismus Anreiz-kompatibel ist, dann gilt

$$t(\tau,\theta) = t_0(\tau) + \theta q(\tau,\theta) - \int_{\underline{\theta}}^{\theta} q(\tau,\hat{\theta}) d\hat{\theta},$$

mit

$$t_0(au) = t(\underline{ au}, \underline{ heta}) - \underline{ heta}q(\underline{ au}, \underline{ heta}) + \int_{\underline{ au}}^{ au} \int_{\underline{ heta}}^{ar{ heta}} q(\hat{ au}, \hat{ heta}) \frac{\delta F(\hat{ heta} \mid \hat{ au})}{\delta au} d\hat{ heta} d\hat{ au} + \int_{ heta}^{ar{ heta}} \int_{ heta}^{\hat{ heta}} [q(au, x)f(\hat{ heta} \mid au) - q(\underline{ au}, x)f(\hat{ heta} \mid \underline{ au})] dx d\hat{ heta}.$$

Existenz eines Transferplanes für Anreiz-Kompatibilität

Anfangsproblem: Monotonie-Kriterium versagt im dynamischen Kontext für Anreiz-Kompatibilität!

Proposition

Wenn $q(\tau, \theta)$ wachsend in τ und θ ist, dann existiert ein Transferplan $t(\tau, \theta)$, so dass der direkte Mechanismus Anreiz-kompatibel ist.

Individuel-rational

Proposition

Ein Anreiz-kompatibler direkter Mechanismus ist individuel-rational genau dann, wenn

$$U(\underline{\tau}) \geq 0$$
.

Beispiel: Individuel-rational

Lemma

Sei $[\underline{\theta}, \overline{\theta}] = [0, \overline{\theta}]$ und $[\underline{\tau}, \overline{\tau}] = [0, \overline{\tau}]$. Dann ist der Anreiz-kompatible direkte Mechanismus charakterisiert durch

$$q(\tau,\theta):=1-\mathrm{e}^{-(\tau+\theta)}$$
 und $t(\tau,\theta):=-\mathrm{e}^{-(\tau+\theta)}\cdot(1+\theta)$

individuel-rational.

Die erwartete Auszahlung

Lemma

Die erwartete Auszahlung für den Verkäufer ergibt sich als

$$\begin{split} &\int_{\underline{\tau}}^{\bar{\tau}} \int_{\underline{\theta}}^{\bar{\theta}} [\hat{\theta}q(\hat{\tau},\hat{\theta}) - u(\hat{\tau},\hat{\theta})] f(\hat{\theta} \mid \hat{\tau}) g(\hat{\tau}) \ d\hat{\theta} \ d\hat{\tau} \\ &= \int_{\tau}^{\bar{\tau}} \int_{\theta}^{\bar{\theta}} \psi(\hat{\tau},\hat{\theta}) q(\hat{\tau},\hat{\theta}) f(\hat{\theta} \mid \hat{\tau}) g(\hat{\tau}) \ d\hat{\theta} \ d\hat{\tau} - U(\underline{\tau}), \end{split}$$

mit

$$\psi(au, heta) := \hat{ heta} + rac{1 - G(\hat{ au})}{g(\hat{ au})} rac{\delta F(heta \mid au)/\delta au}{f(heta \mid au)}.$$

Optimierung der erwarteten Auszahlung

Annahme

 $\psi(\tau,\theta)$ ist wachsend in τ und θ .

Ferner gilt:

- Maximiere erwartete Auszahlung unter Berücksichtigung von individueler Rationalität $\Rightarrow U(\underline{\tau}) = 0$
- 2 Nach Modellannahme ist $\psi(\tau, \theta)$ stetig $\Rightarrow p(\tau) = \min\{\hat{\theta} \in [\theta, \bar{\theta}] \mid \psi(\tau, \hat{\theta}) \geq 0\}$ wohldefiniert
- **3** Erwartete Auszahlung linear in $q(\tau, \theta)$ $\Rightarrow q(\tau,\theta) = \left\{ \begin{array}{l} 1, & \text{falls } \psi(\tau,\theta) \geq 0 \\ 0, & \text{sonst} \end{array} \right. = \left\{ \begin{array}{l} 1, & \text{falls } \theta \geq p(\tau) \\ 0, & \text{sonst} \end{array} \right.$

Der optimale direkte Mechanismus

Satz

Unter der vorigen Annahme ist ein Anreiz-kompatibler und individuel rationaler direkter Mechanismus optimal genau dann, wenn

$$q(au, heta) = \left\{ egin{array}{ll} 1, & ext{falls } heta \geq p(au) \ 0, & ext{sonst} \end{array}
ight.$$

und

$$t(\tau, \theta) = \left\{ egin{array}{ll} t_0(\tau) p(au), & \textit{falls } \theta \geq p(au) \\ t_0, & \textit{sonst }, \end{array}
ight.$$

mit t₀ wie in Proposition vorher. Ferner gilt

$$t(\underline{\tau},\underline{\theta}) = \int_{p(\underline{\tau})}^{\theta} \hat{\theta} f(\hat{\theta} \mid \underline{\tau}) \ d\hat{\theta} - p(\underline{\tau}) [1 - F(p(\underline{\tau}) \mid \underline{\tau})] + \underline{\theta} q(\underline{\tau},\underline{\theta}).$$

Modeltransformation

Modellerweiterung durch unabhängiges Signal

$$\gamma := F(\theta \mid \tau) \Leftrightarrow \theta = F^{-1}(\gamma \mid \tau)$$

ullet γ unabhängig von au

Lemma

Sei
$$\tilde{\psi}(\tau,\gamma) := \psi(\tau, \mathit{F}^{-1}(\gamma \mid \tau))$$
. Dann gilt

$$\tilde{\psi}(\tau,\gamma) = F^{-1}(\gamma \mid \tau) - \frac{1 - G(\tau)}{g(\tau)} \frac{\delta F^{-1}(\gamma \mid \tau)}{\delta \tau}.$$

Anreiz-kompatibel im Bezug auf γ

Definition

Wir nennen einen direkten Mechanismus ($\tilde{q}(\tau, \gamma), \tilde{t}(\tau, \gamma)$) Anreiz-kompatibel im Bezug auf γ , wenn

$$U(au) \geq \int_0^1 F^{-1}(\gamma \mid au) ilde{q}(au', \gamma) - ilde{t}(au', \gamma) \; d\gamma \; ext{ für alle } au' \in [au, ar{ au}].$$

Proposition

Wenn der direkten Mechanismus ($\tilde{q}(\tau, \gamma), \tilde{t}(\tau, \gamma)$) Anreiz-kompatibel bezüglich γ ist, dann ist

$$U(\tau) = U(\underline{\tau}) + \int_{\tau}^{\tau} \int_{0}^{1} \frac{\delta F^{-1}(\gamma \mid \hat{\tau})}{\delta \tau} \tilde{q}(\hat{\tau}, \gamma) d\gamma d\hat{\tau}.$$

Optimalität im privaten und öffentlichen Fall

Proposition

Angenommen $\psi(\tau,\theta)$ ist wachsend in τ und θ . Wenn der direkten Mechanismus $(\tilde{q}(\tau,\gamma),\tilde{t}(\tau,\gamma))$ optimal ist bei privat bekanntem γ , so ist er auch optimal bei öffentlichem bekanntem γ .

- Verkäufer entzieht zusätzliche private Informationen die nach Signal τ erfahren werden zu Kosten 0
- Verkäufer will so viel ex post private Informationen wie möglich entziehen
- Verkäufer will so früh wie möglich Mechanismus vorschlagen

Modellerweiterung auf N Käufer I

Betrachte indiziertes Modell

- Spielermenge $I = \{1, ..., N\}$
- Signal τ_i und Bewertung θ_i mit $i \in I$
- $\tau := (\tau_1, ..., \tau_N), \theta := (\theta_1, ..., \theta_N), \mathcal{T} := [\underline{\tau}, \overline{\tau}], \Theta := [\underline{\theta}, \overline{\theta}]$
- $q(\tau, \theta) = (q_1(\tau, \theta), ..., q_N(\tau, \theta))$ und $\Delta := \{(q_1, ..., q_N) \mid 0 \le q_i \le 1 \ \forall i \in I, \sum_{i \in I} q_i \le 1\}$

Definition

Ein (dynamischer) direkter Mechanismus besteht aus den beiden Funktionen

$$q: \mathcal{T} \times \Theta \to \Delta$$
 und $t_i: \mathcal{T} \times \Theta \to \mathbb{R}$.

Modellerweiterung auf N Käufer II

Indizierung setzt sich durch alle vorigen Ergebnisse fort:

- Maximiere die erwartete Auszahlung des Verkäufers
- Charakterisierung optimaler direkter Mechanismen $\{q_i, t_i\}$
- Implementierung durch Benachteiligte Auktion
 - 1. Runde: Möglichkeit von Abgabe $t_0(\tau_i)$ und Zuteilung einer Prämie $p(\tau_i)$
 - 2. Runde: Zweitpreisauktion zuzüglich $p(\tau_i)$
 - Wie ist die Abgabe $t_0(\tau_i)$ und die Prämie $p(\tau_i)$ zu wählen?

Wiederholtes Spiel mit Diskontierung

- Zwei-Personen-Spiel, fixiere $\theta > 0$ und betrachte Perioden $\tau = 1,...,T$
- ullet Modelliere mit Diskontierungsfaktor $\delta \in [0,1)$
- ullet Betrachte periodenabhängige $q_ au$ und $t_ au$
- $u(\theta) := \sum_{\tau=1}^T \delta^{\tau-1}(\theta q_{\tau}(\theta) t_{\tau}(\theta))$

Definition

Ein (dynamischer) direkter Mechanismus besteht aus den beiden Funktionen

$$q: [\theta, \bar{\theta}] \to [0, 1]^T$$
 und $t: [\theta, \bar{\theta}] \to \mathbb{R}^T$.

Anreiz-kompatibel und individuel-rational

Definition

Ein direkter Mechanismus bestehend aus den beiden Funktionen $q=(q_1,...,q_T)$ und $t=(t_1,...,t_T)$ ist Anreiz-kompatibel, wenn für alle $\theta,\theta'\in[\underline{\theta},\overline{\theta}]$

$$u(heta) \geq \sum_{ au=1}^T \delta^{ au-1}(heta q_ au(heta') - t_ au(heta')).$$

Ein direkter Mechanismus ist individuel rational, wenn

$$u(\theta) \geq 0 \ \forall \theta \in [\underline{\theta}, \bar{\theta}].$$

Optimalitätskriterium

Die Optimalität lässt sich charakterisieren:

- Optimaler Mechanismus reduziert sich gemäß Kapitel 2: Eine Periode ohne Diskontierung
- Käufer- vs. Verkäuferstrategien
- Wie kann ich gegenseitige Beeinflussung verhindern?