Examen Predoctoral de Mecánica Clásica. Semestre 2016-I.

Favio Vázquez*

Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México.

Preguntas teóricas

1.1 Pregunta teórica 1

Sobre las formulaciones de la mecánica, discuta los siguientes puntos:

- a) Bajo qué condiciones las ecuaciones de Euler-Lagrange determinan todas las aceleraciones del sistema.
- b) En el caso Hamiltoniano, cuál es la condición equivalente.
- c) Dentro del formalismo de Hamilton-Jacobi qué garantiza el que la funcional generadora proporcione una solución de las ecuaciones de Hamilton.

Solución:

1.2 Pregunta Teórica 2

Considere un cuerpo rígido con momentos de inercia $I_1 > I_2 > I_3$. Si sobre el cuerpo no se ejercen torcas, ¿qué ejes del cuerpo son estables e inestables bajo pequeñas perturbaciones y por qué?

Solución:

Debemos ver en qué casos, con respecto a la dirección de la velocidad angular, el movimiento será estable y con respecto a qué eje principal. Partimos de las ecuaciones de Euler para un cuerpo rígido al cual no se le aplican torcas,

$$I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) = 0, \tag{1.1}$$

$$I_2\dot{\omega}_2 - \omega_3\omega_1(I_3 - I_1) = 0, (1.2)$$

$$I_3\dot{\omega}_3 - \omega_1\omega_2(I_1 - I_2) = 0. \tag{1.3}$$

Estas ecuaciones nos permitirán estudiar, cuando el cuerpo esté en movimiento, qué condiciones deben cumplirse para que el movimiento sea estable.

Si suponemos que la velocidad angular es en dirección al eje x, entonces se cumplirá que $\omega_1 \gg \omega_2, \omega_3$. Ahora debido a que ω_2 y ω_3 se mantendrán pequeños con respecto a ω_1 , el movimiento será estable y debido a que no hay torque $|\overrightarrow{\omega}| = \text{cte}$, y debido a que $\omega = 0$

^{*}Correo: favio.vazquezp@gmail.com

 $\sqrt{\omega_1^2 + \omega_2^2 + \omega_3^2}$, tendremos que $\omega_2^2 + \omega_3^2 \ll \omega_1^2$, y entonces $\omega = \sqrt{\omega_1^2} = \omega_1$, y entonces podemos tomar a ω_1 como constante, al menos a primer orden. Tomando la derivada temporal de (1.2)

$$\frac{d}{dt} \left[I_2 \dot{\omega}_2 - \omega_3 \omega_1 (I_3 - I_1) \right] = 0, \tag{1.4}$$

y debido a que ω_1 es constante,

$$I_2\ddot{\omega}_2 - \dot{\omega}_3\omega_1(I_3 - I_1) = 0, (1.5)$$

$$\therefore \ddot{\omega}_2 = \frac{\dot{\omega}_3 \omega_1 (I_3 - I_1)}{I_2}.\tag{1.6}$$

Sustituyendo $\dot{\omega}_3$ de (1.3),

$$\ddot{\omega_2} = \frac{\omega_2 \omega_1^2 (I_3 - I_1)(I_1 - I_2)}{I_2 I_3}.$$
(1.7)

Tomando la derivada temporal de (1.3)

$$\frac{d}{dt} \left[I_3 \dot{\omega}_3 - \omega_1 \omega_2 (I_1 - I_2) \right] = 0, \tag{1.8}$$

$$I_3\ddot{\omega}_3 - dot\omega_2\omega_1(I_1 - I_2) = 0, (1.9)$$

$$\therefore \ddot{\omega}_3 = \frac{\dot{\omega}_2 \omega_1 (I_1 - I_2)}{I_3}. \tag{1.10}$$

Sustituyendo $\dot{\omega}_2$ de (1.2), en (1.10)

$$\ddot{\omega_3} = \frac{\omega_3 \omega_1^2 (I_1 - I_2)(I_3 - I_1)}{I_3 I_2}.$$
(1.11)

Ahora como $I_1 > I_2$, I_3 , los lados derechos de (1.7) y (1.11) serán negativos y por lo tanto tendremos un equilibrio estable, con un movimiento tipo oscilador armónico, y ω_2 y ω_3 oscilarán al rededor del punto de equilibrio. Vemos entonces que un movimiento en dirección del eje x es estable, y por consiguiente el momento principal de inercia I_1 será estable.

Supongamos ahora que el movimiento es en dirección al eje z, utilizando los mismos argumentos, vemos que debido a que $\omega_3 \gg \omega_1, \omega_2, |\omega| = \text{cte}$, entonces $\omega = \omega_3$, y podemos considerar que ω_3 es estable, al menos a primer orden.

Tomando la derivada temporal de (1.1)

$$\frac{d}{dt} \left[I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) \right] = 0, \tag{1.12}$$

y debido a que ω_3 es constante,

$$I_1 \ddot{\omega}_1 - \dot{\omega}_2 \omega_3 (I_2 - I_3) = 0, \tag{1.13}$$

$$\therefore \ddot{\omega}_1 = \frac{\dot{\omega}_2 \omega_3 (I_2 - I_3)}{I_1}.\tag{1.14}$$

Sustituyendo $\dot{\omega}_2$ de (1.2),

$$\ddot{\omega_1} = \frac{\omega_1 \omega_3^2 (I_2 - I_3)(I_3 - I_1)}{I_2 I_1}.$$
(1.15)

Tomando la derivada temporal de (1.2)

$$\frac{d}{dt} \left[I_2 \dot{\omega}_2 - \omega_3 \omega_1 (I_3 - I_1) \right] = 0, \tag{1.16}$$

$$I_2\ddot{\omega}_2 - \dot{\omega}_1\omega_3(I_3 - I_1) = 0, (1.17)$$

$$\therefore \ddot{\omega}_3 = \frac{\dot{\omega}_1 \omega_3 (I_3 - I_1)}{I_2}.\tag{1.18}$$

Sustituyendo $\dot{\omega}_1$ de (1.1), en (1.18)

$$\ddot{\omega_2} = \frac{\omega_2 \omega_3^2 (I_3 - I_1)(I_2 - I_3)}{I_1 I_2}.$$
(1.19)

De nuevo como $I_1 > I_2$, I_3 , los lados derechos de (1.15) y (1.19) serán negativos y por lo tanto tendremos un equilibrio estable, con un movimiento tipo oscilador armónico, y ω_1 y ω_2 oscilarán al rededor del punto de equilibrio. Vemos entonces que un movimiento en dirección del eje z es estable, y por consiguiente el momento principal de inercia I_3 será estable.

Por último, supongamos que el movimiento es en dirección al eje y, y utilizando los mismos argumentos, vemos que debido a que $\omega_2 \gg \omega_1, \omega_3$, $|\omega| = \text{cte}$, entonces $\omega = \omega_2$, y podemos considerar que ω_2 es estable, al menos a primer orden.

Tomando la derivada temporal de (1.1)

$$\frac{d}{dt} \left[I_1 \dot{\omega}_1 - \omega_2 \omega_3 (I_2 - I_3) \right] = 0, \tag{1.20}$$

y debido a que ω_2 es constante,

$$I_1 \ddot{\omega}_1 - \dot{\omega}_3 \omega_2 (I_2 - I_3) = 0, \tag{1.21}$$

$$\therefore \ddot{\omega}_1 = \frac{\dot{\omega}_3 \omega_2 (I_2 - I_3)}{I_1}. (1.22)$$

Sustituyendo $\dot{\omega}_3$ de (1.3),

$$\ddot{\omega_1} = \frac{\omega_1 \omega_2^2 (I_1 - I_2)(I_2 - I_3)}{I_3 I_1}.$$
(1.23)

Tomando la derivada temporal de (1.3)

$$\frac{d}{dt} [I_3 \dot{\omega}_3 - \omega_1 \omega_2 (I_1 - I_2)] = 0, \tag{1.24}$$

$$I_3\ddot{\omega}_3 - \dot{\omega}_1\omega_2(I_1 - I_2) = 0, (1.25)$$

$$\therefore \ddot{\omega}_3 = \frac{\dot{\omega}_1 \omega_2 (I_1 - I_2)}{I_3}. \tag{1.26}$$

Sustituyendo $\dot{\omega}_1$ de (1.1), en (1.26)

$$\ddot{\omega}_3 = \frac{\omega_3 \omega_2^2 (I_1 - I_2)(I_2 - I_3)}{I_3 I_2}.$$
(1.27)

Como $I_2 > I_3$ y $I_1 > I_2$, los lados derechos de (1.23) y (1.27) serán positivos y por lo tanto tendremos un equilibrio inestable. Vemos entonces que un movimiento en dirección del eje y es inestable, y por consiguiente el momento principal de inercia I_2 será estable.

Entonces concluimos que los momentos de inercia estables son el mayor I_1 y el menor I_3 , siendo I_2 el intermedio, inestable. Esto puede verse fácilmente si intentamos lanzar una raqueta al aire al mismo tiempo que le imprimimos una rotación, ya sea en torno al eje definido por el mango, al eje perpendicular a la pala o al perpendicular al mango contenido en la pala; en los primeros casos es fácil hacerlo sin producir fuertes bamboleos, en el tercero es prácticamente imposible (que es el eje correspondiente al momento principal de inercia intermedio).

1.3 Pregunta 3

Sobre un piso sin fricción, una partícula puntual choca elásticamente con una mancuerna de dos modos diferentes mostrados en la figura (considere que las partículas de la mancuerna son también puntuales y que la barra tiene masa despreciable). ¿Qué cantidades se conservan en cada caso? ¿En qué caso la rapidez del centro de masa de la mancuerna, después dela colisión, es mayor?

AGREGAR FIGURA

Problemas

2.1 Problema 1

La interacción clásica entre dos átomos de un gas inerte, cada uno de masa m está dada por el potencial

$$V(r)=-\frac{2A}{r^6}+\frac{B}{r^12}$$

con A y B constantes positivas y r la separación entre los dos átomos, $r = |\overrightarrow{r_1} - \overrightarrow{r_2}|$.

- a) Obtenga la hamiltoniana para el sistema de los dos átomos.
- b) Describa completamente el (los) estado(s) clásico(s) de energía mínima del presente sistema.
- c) Si la energía es un poco mayor que la mínima, ¿Cuáles son las posibles frecuencias del movimiento del sistema?

Solución:

2.2 Problema 2

Considere el siguiente sistema

$$L = \frac{m}{2}\dot{q}^2 - af(t)q$$

con f(t) una función arbitraria del tiempo pero integrable.

- a) Considerando que una simetría del sistema es aquella que deja invariantes las ecuaciones de movimiento. ¿Existe alguna simetría asociada a este sistema? Si es así, calcule la cantidad conservada correspondiente usando el teorema de Noether.
- b) Muestre que, efectivamente su derivada total con respecto del tiempo es cero.

- c) Construya el Hamiltoniano del sistema y escriba la ecuación de Hamilton-Jacobi correspondiente.
- d) Resuelva la ecuación de hamilton-Jacobi y encuentre la funcional generadora de tipo 2.
- e) Considere que $f(t) = \exp(-bt)$ con b > 0 y las condiciones iniciales $q(0) = \beta$ y $\dot{q}(0) = \rho$. Usando la teoría de Hamilton-Jacobi, encuentre la trayectoria de la partícula.

Solución:

2.3 Problema 3

Una partícula de masa m está restringida a moverse en el interior de un riel circular de radio R. El riel circular está fijado al piso en posición vertical. Un pequeño motor hacer girar el riel en torno al eje de simetría vertical con rapidez angular constante ω (ver figura). Considere el cero de energía potencial en el piso y sea θ el ángulo que forma el radio vector de posición de la partícula con el eje de rotación.

- a) Determine el Lagrangiano del sistema con constricción y la ecuación de movimiento en θ para la partícula.
- b) Para que exista una órbita a $\theta_{eq}=$ cte y distinta de cero, ω tiene que ser mayor que cierta ω_0 . Determine ω_0 .

Solución: