Cold Test on Tubing

Date of Testing: 2/17 - 2/18 Tested by: William Butler

Items needed for testing:

- 2 x 4 ¾ inch of tubing
- Vise
- Vice extension grips
- Known mass for applying a force
- Multimeter w/ thermal probe
- Freezer
- Ruler

Procedure for testing:

- 1. Cut two 4 ¾ inch lengths of tubing
- 2. Measure length
- 3. Measure width
- 4. Use vise to hold tubing in place
 - a. Suspend tubing between two vise extensions
- 5. Measure initial height of tubing from base of vise grip
- 6. Place known mass on the tubing
- 7. Measure the displacement of the tubing with applied force
- 8. Take one of the tubes and wet
- 9. Place both tubes in the freezer
- 10. Measure temperature of the freezer via multimeter temperature probe
- 11. Repeat steps 2-7 with frozen and frozen/wetted tube

Tube #	Length	Width	Length (Frozen)	Width (Frozen)
Tube 1 (Control)	102.11 mm	17.55 mm	102.1mm	17.17 mm
Tube 2 (Wet)	102.39mm	17.71mm		

Table 1: Length and widths of the tubing prior to and after freezing

Object	Mass	Weight
Mass 1 (Cylinder)	1.523 Kg	14.951 N
Mass 2 (Rectangular Rod)	0.251 Kg	2.462 N
	TOTAL WEIGHT:	17.413 n

Table 2: Masses and force generated by each mass

Tube #	Height (i)	Height (f)	Deflection
Tube 1 (Room Temp.)	20.6375 mm	9.525 mm	11.1125 mm
Tube 2 (Room Temp.)	19.05 mm	11.1125 mm	7.9375 mm
Tube 1 (8°F = -13.33°C)	12 mm	3 mm	9 mm
Tube 2 (Wet) (8°F = -13.33°C)	14.5 mm	8.5 mm	6 mm

Table 3: Total deflection of each tube room temperature or frozen

Use deflection data to see how modulus of elasticity changes?