

47 CFR PART 15 C

TEST REPORT

of

RFID Reader

Brand Name: Convergence Systems Limited

Model Name: CS468-2

Report No.: SZ10080004E01

FCC ID.: UB4CS468C1GEN2

prepared for

Convergence Systems Limited

20/F chung Nam Building, 1 Lockhart Road, Wanchai, Hong Kong

prepared by

Shenzhen Morlab Communications Technology Co., Ltd.

Merlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China Tel: +86755-86130398

Fax: +86 755 86130218

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.

TABLE OF CONTENTS

1.	TEST CERTIFICATION4
2.	GENERAL INFORMATION5
2.1	EUT Description5
2.2	Test Standards and Results7
2.3	Facilities and Accreditations8
2.3.1	Facilities8
2.3.2	Test Environment Conditions8
3.	47 CFR PART 15C REQUIREMENTS9
3.1	Number of Hopping Frequency9
3.1.1	Requirement9
3.1.2	Test Description9
3.1.3	Test Result 9
3.2	Peak Output Power12
3.2.1	Requirement
3.2.2	Test Description
3.2.3	Test Result12
3.3	20dB Bandwidth
3.3.1	Definition18
3.3.2	Test Description
3.3.3	Test Result18
3.4	Carried Frequency Separation24
3.4.1	Definition
3.4.2	Test Description
3.4.3	Test Result 24
3.5	Time of Occupancy (Dwell time)
3.5.1	Requirement
3.5.2	Test Description
3.5.3	Test Result
3.6	Conducted Spurious Emissions
3.6.1	Requirement
3.6.2	Test Description

3.6	5.3 Test Resu	lt	•••••		28
3.7	Band Edge		•••••		32
3.7	7.1 Requirem	nent			32
3.7	7.2 Test Desc	ription			32
3.8	Conducted	Emission	•••••		34
3.8	3.1 Requirem	nent			34
3.8	3.2 Test Desc	ription			34
3.8	3.3 Test Resu	lt	•••••		35
3.9	Radiated E	Emission	•••••		39
3.9	0.1 Requirem	nent			39
3.9	0.2 Test Desc	ription			39
3.9	9.3 Test Resu	lt	•••••		40
			Ch	hange History	
	Iccua	Doto	1	Pageon for change	

1. TEST CERTIFICATION

Equipment under Test: RFID Reader

Brand Name: Convergence Systems Limited

Model Name: CS468-2

FCC ID: UB4CS468C1GEN2

Applicant: Convergence Systems Limited

20/F chung Nam Building, 1 Lockhart Road, Wanchai, Hong Kong

Manufacturer: Nam Tai Electronic(Shenzhen) Lo. Ltd

No.38 Luogang Road, Luogang Industrial Zone, Bu Ji, Shen Zhen,

China

Test Standards: 47 CFR Part 15 Subpart C

Test Date(s): August 06, 2010 - October 13, 2010

Test Result: PASS

* We Hereby Certify That:

The equipment under test was tested by Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. The test data, data evaluation, test procedures and equipment configurations shown in this report were made in accordance with the requirement of related FCC rules.

The test results of this report only apply for the tested sample equipment identified above. The test report shall be invalid without all the signatures of the test engineer, the reviewer and the approver.

Tested by: Ni Yong Dated: 70(0.10.2)

Reviewed by: Wei Yanguan Certification Dated: 7010.10.21

Approved by: System Ce Dated: 2010.10.2

COBAL SERVICE

Shu Luan

2. GENERAL INFORMATION

2.1 EUT Description

EUT Type: RFID Reader Model Name: CS468-2

Serial No.: (n.a, marked #1 by test site)

Hardware Version....: V1.0 Software Version...: V1.0

Modulation Type: Frequency Hopping Spread Spectrum (FHSS)

Data Type: DSB-ASK, PR-ASK

Frequency.....: The frequency range used is 902MHz - 928MHz (50 channels, at

intervals of 500KHz)

Option Power Supply A: AC Adapter

Model Name: YS04-120250U/J

Serial No.: (n.a. marked #1 by test site)

Rated Input: $\sim 100-240V$, 1.0A Max, 50/60Hz

Rated Output: = 12V, 2500mA

Option Power Supply B: POE EUT specification and Test Model:

Profile*	0	1	2	3	4	5
R-T Modulation	DSB-ASK	DSB-ASK	PR-ASK	PR-ASK	DSB-ASK	PR-ASK
Tari (μs)	25.00	12.50	25.00	25.00	6.25	25.00
R-T speed (kbps)	40	80	40	40	160	40
PIE	2:1	2:1	1.5:1	1.5:1	1.5:1	1.5:1
Pulse Width (uS)	12.50	6.25	12.50	12.50	3.13	12.50
T-R LF (kbps)	40	160	250	300	400	250
T-R Modulation	FM0	Miller-2	Miller-4	Miller-4	FM0	Miller-2
Divide Ratio	8	8	64/3	64/3	8	64/3
T-R Data Rate (kbps)	40	80	62.5	75	400	125

^{*:} We just tested Profile 1, profile 2 and profile 4 for the different data mode in this report.

Remark:

Note 1: The EUT is a RFID Fixed Reader, it contains Radio Module operating at 900MHz ISM band; the frequencies allocated for the Radio Module is F(MHz)=902.25+0.5*n (1<=n<=50). The lowest, middle, highest channel numbers of the Radio Module used and tested in this report are separately 1 (902.75MHz), 26 (915.25MHz) and 50 (927.25MHz).

Note 2:	The EUT can powered by AC adapter or POE separately, so we test two power mode for Radiated Emission in this report.
Note 3:	For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (900 MHz ISM Band Frequency Hopping Spread Spectrum Transmitter) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.247(a)	Number of Hopping Frequency	PASS
2	15.247(b)	Peak Output Power	PASS
3	15.247(a)	20dB Bandwidth	PASS
4	15.247(a)	Carrier Frequency Separation	PASS
5	15.247(a)	Time of Occupancy (Dwell time)	PASS
6	15.247(c)	Conducted Spurious Emission	PASS
7	15.247(c)	Band Edge	PASS
8	15.207	Conducted Emission	PASS
9	15.209	Radiated Emission	PASS
	15.247(c)		

2.3 Facilities and Accreditations

2.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

2.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature ($^{\circ}$):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

3. 47 CFR PART 15C REQUIREMENTS

3.1 Number of Hopping Frequency

3.1.1 Requirement

According to FCC section 15.247(a)(1)(i), frequency hopping systems operating in the 902MHz to 928MHz bands shall use at least 50 hopping frequencies if the 20dB bandwidth of the hopping channel is less than 250KHz; or at least 25 hopping frequencies if the 20dB bandwidth of the hopping channel is 250KHz or greater.

3.1.2 Test Description

A. Test Setup:

The RFID Reader Module of the EUT, which is powered by the AC adapter, is coupled to the Spectrum Analyzer (SA) with Attenuators the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the RFID Reader Module of the EUT is activated by the PC via Lan port, and is set to operate under hopping mode transmitting.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	Agilent	E7405A	US44210471	2009.09	2year
Attenuator	Resnet	3dB	(n.a.)	(n.a.)	(n.a.)

3.1.3 Test Result

The RFID Reader Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

A. Test Verdict:

Note: for the 20dB band width please refer to section 3.3 in this report.

D C.1.	Frequency Block	Measured	20dB	Min.	Refer to	Verdict
Profile	(MHz)	Channel Numbers	BandWidth	Limit	Plot	vertict
1	902 - 928	50	25.298MHz	50	Plot A	PASS
2	902 - 928	50	25.298MHz	50	Plot B	PASS
4	902 - 928	50	25.298MHz	25	Plot C	PASS

(Plot A: Profile 1 902MHz to 928MHz)

(Plot C: Profile 3 902MHz to 928MHz)

3.2 Peak Output Power

3.2.1 Requirement

According to FCC section 15.247(b)(2), for frequency hopping systems that operates in the 902MHz to 928MHz band employing at least 10 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. and 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels.

3.2.2 Test Description

See section 3.1.2 of this report.

3.2.3 Test Result

The RFID Reader Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

Profile	Channel	Frequency	Measur	ed Output I	Limit	Verdict	
Prome	Chamiei	(MHz)	dBm	W	Refer to Plot	(W)	verdict
	1	902.75	27.31	0.54	Plot A		PASS
1	26	915.25	27.33	0.54	Plot B	1	PASS
	50	927.25	27.47	0.56	Plot C		PASS
	1	902.75	27.69	0.59	Plot D		PASS
2	26	915.25	27.7	0.59	Plot E	1	PASS
	50	927.25	27.52	0.56	Plot F		PASS
	1	902.75	27.78	0.60	Plot G		PASS
4	26	915.25	27.47	0.56	Plot H	1	PASS
	50	927.25	27.5	0.56	Plot I		PASS

(Plot A: Profile 1 Channel = 1)

(Plot B: Profile 1 Channel = 26)

(Plot C: Profile 1 Channel = 50)

(Plot D: Profile 2 Channel = 1)

(Plot E: Profile 2 Channel = 26)

(Plot F: Profile 2 Channel = 50)

(Plot G: Profile 4 Channel = 1)

(Plot H: Profile 4Channel = 26)

(Plot I: Profile 4 Channel = 50)

3.3 20dB Bandwidth

3.3.1 Definition

The 20dB bandwidth should be tested with the RBW>= 1% of the 20dB bandwidth, and the span should be 2 to 3 times the 20dB bandwidth, centered on the channel.

3.3.2 Test Description

See section 3.1.2 of this report.

3.3.3 Test Result

The RFID Reader Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

A. Test Verdict:

Profile	Channel	Frequency (MHz)	20dB Bandwidth (KHz)	Refer to Plot
	1	902.75	168.75	Plot A
1	26	915.25	167.50	Plot B
	50	927.25	168.75	Plot C
	1	902.75	87.00	Plot D
2	26	915.25	85.00	Plot E
	50	927.25	84.50	Plot F
	1	902.75	425.00	Plot G
4	26	915.25	430.00	Plot H
	50	927.25	377.50	Plot I

(Plot A: Profile 1 Channel = 1)

(Plot B: Profile 1 Channel = 26)

(Plot C: Profile 1 Channel = 50)

(Plot D: Profile 2 Channel = 1)

(Plot E: Profile 2 Channel = 26)

(Plot F: Profile 2 Channel = 50)

(Plot G: Profile 4 Channel = 1)

(Plot H: Profile 4Channel = 26)

(Plot I: Profile 4 Channel = 50)

3.4 Carried Frequency Separation

3.4.1 Definition

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

3.4.2 Test Description

See section 3.1.2 of this report.

3.4.3 Test Result

The RFID Reader Module operates at hopping-on test mode.

For any adjacent channels (e.g. the channel 25 and 26 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater. So, the verdicts is PASS.

(Plot A: Profile 1 Carried Frequency Separation)

(Plot B: Profile 2 Carried Frequency Separation)

(Plot C: Profile 4 Carried Frequency Separation)

3.5 Time of Occupancy (Dwell time)

3.5.1 Requirement

According to FCC section 15.247(a)(1)(i), frequency hopping systems in the 902 - 928MHz band shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period..

3.5.2 Test Description

See section 3.1.2 of this report.

3.5.3 Test Result

The highest channel is selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

A. Test Verdict:

Profile	Channal	Channel Pulse Time/Circle time		Limit (s) /	Verdict
Piolile	Chainei	S	Refer to Plot	Circle time(s)	verdict
1	50	0.4/20.1	Plot A	0.4/20	PASS
2	50	0.4/20.1	Plot B	0.4/20	PASS
4	50	0.4/20.1	Plot C	0.4/10	PASS

(Plot A: Profile 1 Channel = 50, circle time and single pulse)

(Plot B: Profile 2 Channel = 50, circle time and single pulse)

(Plot C: Profile 3 Channel = 50, circle time and single pulse)

3.6 Conducted Spurious Emissions

3.6.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.6.2 Test Description

See section 3.1.2 of this report.

3.6.3 Test Result

The RFID Reader Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

A. Test Verdict:

Profile	Channel	Frequency (MHz)	Measured Max.		Limit (dBm)		
			Out of Band	Plot	Carrier	Calculated	Verdict
			Emission (dBm)		Level	-20dBc Limit	
	1	902.75	-28.99	Plot A	27.67	7.7	PASS
1	26	915.25	-29.83	Plot B	27.51	7.5	PASS
	50	927.25	-29.58	Plot C	27.69	7.7	PASS
2	1	902.75	-30.31	Plot D	27.84	7.8	PASS
	26	915.25	-29.42	Plot E	27.79	7.8	PASS
	50	927.25	-30.36	Plot F	27.94	7.9	PASS
4	1	902.75	-30.13	Plot G	25.49	5.5	PASS
	26	915.25	-30.35	Plot H	25.35	5.3	PASS
	50	927.25	-30	Plot I	25.42	5.4	PASS

B. Test Plot:

Note: the power of the Module transmitting frequency should be ignored.

3.7 Band Edge

3.7.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.7.2 Test Description

See section 3.1.2 of this report Test Result

The RFID Reader Module operates at hopping-off test mode. The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:.

Profile	Channel	Test Frequency (MHz)	Minimum Measured Attenuation (dB)	Minimum Allowed Attenuation (dB)	Margin (dB)	Verdict
1	1	902	60.86	20	40.86	PASS
	50	928	59.54	20	39.54	PASS
2	1	902	60.94	20	40.94	PASS
	50	928	59.96	20	39.96	PASS
4	1	902	60.54	20	40.54	PASS
	50	928	59.08	20	39.08	PASS

3.8 Conducted Emission

3.8.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50 \mu H/50\Omega$ line impedance stabilization network (LISN).

Eraguanay ranga (MUz)	Conducted Limit (dB μV)			
Frequency range (MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
0.50 - 30	60	50		

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.8.2 Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2003

The RFID Reader Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading. During the measurement, the RFID Reader Module is activated and controlled by PC, and is set to operate under hopping-on test mode transmitting packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2009.09	2year
LISN	Schwarzbeck	NSLK 8127	812744	2009.09	2year
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)

3.8.3 Test Result

The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

(Plot A:Profile 1 L Phase)

(Plot F: Profile 4 N Phase)

3.9 Radiated Emission

3.9.1 Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)	Detector
30 - 88	30 - 88 100		QP
88 - 216	150	3	QP
216 - 960	200	3	QP
960 - 1000	960 - 1000 500		QP
Above 1000	500	3	AV

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

3.9.2 Test Description

A. Test Setup:

Report No.: SZ10080004E01

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2003). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The RFID Reader Module of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the RFID Reader Module is activated and controlled by PC, and is set to operate under hopping-on test mode transmitting packages at maximum power.

For the Test Antenna: In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength, the azimuth range of turntable was 0° to 360° , the receive antenna has two polarizations horizontal and vertical. When doing measurements above 1GHz, the EUT was placed within the 3dB beam width range of the horn antenna, and the EUT was tested in 3 orthogonal positions as recommended in ANSI C63.4 for Radiated Emissions and the worst-case data was presented.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2009.9	2year
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2009.9	2year
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2009.9	2year
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2009.9	2year
Test Antenna - circular	R&S	AC004R1	0749.3000.03	2009.9	2year

3.9.3 Test Result

A. Test Verdict for Harmonics:

The un-wanted Emissions for profile 1 with AC adapter:

Test result of channel: 1 (902.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	(dB μ	(dB µ	$(dB\mu V/m)$	(dB)	(deg)	(cm)	Polarization
33.165 M	30.7	26.3	40	-13.7	282	100	Horizontel
30.202M	36.4	32	40	-8	127	100	Vertical
32.446 M	37.9	33.2	40	-6.8	309	100	Vertical

Test result of channel: 26 (915.75MHz)

Report No.: SZ10080004E01

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB µ	(dB)	(deg)	(cm)	Polarization
33.197 M	31.4	26.4	40	-13.6	157	100	Horizontel
32.63 M	37.9	33.4	40	-6.6	37	100	Vertical
30.056M	37.4	33.4	40	-6.6	197	100	Vertical

Test result of channel: 50 (927.25MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
33.1M	28.5	25.3	40	-14.7	91	100	Horizontel
32.042 M	31.9	27.7	40	-12.3	124	100	Vertical

The un-wanted Emissions for profile 2 with AC adapter:

Test result of channel: 1 (902.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
33.182 M	31.4	27	40	-13	225	100	Horizontel
32.251 M	37.4	32.9	40	-7.1	69	100	Vertical

Test result of channel: 26 (915.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
32.751M	27.3	22.1	40	-17.9	221	100	Horizontel
190.418 M	32	31	43.5	-12.5	93	100	Vertical
32.467 M	37.7	33.4	40	-6.6	101	100	Horizontel
30.138MHz	37.3	32.8	40	-7.2	27	100	Horizontel

Test result of channel: 50 (927.25MHz)

ſ	Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
	(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB\mu V/m)$	(dB)	(deg)	(cm)	Polarization
	33.1M	27	26.1	40	-13.9	321	100	Horizontel
	32.436 M	31.6	27.2	40	-12.8	87	100	Vertical

The un-wanted Emissions for profile 4 with AC adapter:

Test result of channel: 1 (902.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
32.251M	37.4	32.9	40	-7.1	102	100	Horizontel
32.14M	36.6	32.4	40	-7.6	178	100	Vertical
31.316 M	35.5	31.5	40	-8.5	29	100	Vertical

Test result of channel: 26 (915.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
32.843 M	27.5	22.6	40	-17.4	129	100	Horizontel
190.276 M	31.9	30.9	43.5	-12.6	198	100	Horizontel
32.394M	37.4	33.1	40	-6.9	302	100	Vertical
32.251 M	37.1	33.2	40	-6.8	182	100	Vertical

Test result of channel: 50 (927.25MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
33.315M	28	27.14	40	-12.86	39	100	Horizontel
32.444 M	33.1	29.1	40	-10.9	215	100	Vertical

The un-wanted Emissions for profile 1 with POE:

Test result of channel: 1 (902.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(deg)	(cm)	Polarization
32.679 M	29.6	25.7	40	-14.3	207	100	Horizontel
130.856M	36.7	32.5	43.5	-11	116	100	Horizontel
146.514M	34.3	31.2	43.5	-12.3	67	100	Horizontel
29.212 M	33.4	30.6	40	-9.4	12	100	Vertical
131.247 M	36.9	34.9	43.5	-8.6	348	100	Vertical
146.908 M	34.9	32.2	43.5	-11.3	301	100	Vertical

Test result of channel: 26 (915.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
149.198 M	38.4	35.5	43.5	-8	29	100	Horizontel
30.126 M	31.3	29.7	40	-10.3	157	100	Vertical
130.757M	37.7	35.6	43.5	-7.9	314	100	Vertical

Test result of channel: 50 (927.25MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
102.1 M	32.5	30.4	43.5	-13.1	218	100	Horizontel
150.77 M	38.4	36.4	43.5	-7.1	129	100	Horizontel
148.1M	33.7	31.2	43.5	-12.3	202	100	Vertical

The un-wanted Emissions for profile 2 with POE:

Test result of channel: 1 (902.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB\mu V/m)$	(dB)	(deg)	(cm)	Polarization
32.615 M	30.6	27.1	40	-12.9	192	100	Horizontel
30.625M	31	29	40	-11	79	100	Horizontel
131.971 M	36.4	32.6	43.5	-10.9	177	100	Horizontel
147.299M	33.8	31.4	43.5	-12.1	314	100	Horizontel
30.271M	32.6	27.7	40	-12.3	303	100	Vertical
131.563M	36.8	32.7	43.5	-10.8	128	100	Vertical
146.298M	34.8	32.5	43.5	-11	103	100	Vertical

Test result of channel: 26 (915.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
149.307 M	39.2	36.9	43.5	-6.6	104	100	Horizontel
32.572 M	31.9	29.6	40	-10.4	125	100	Vertical
131.946M	36.9	34.1	43.5	-9.4	175	100	Vertical

Test result of channel: 50 (927.25MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
102.1 M	33.5	31.4	43.5	-12.1	219	100	Horizontel
150.593M	37	32.6	40	-7.4	89	100	Horizontel
150.6 M	35.3	32.6	43.5	-10.9	192	100	Vertical

The un-wanted Emissions for profile 4 with POE:

Test result of channel: 1 (902.75MHz)

Report No.: SZ10080004E01

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
30.711M	31	27.6	40	-12.4	123	100	Horizontel
109.167 M	29.2	26.9	43.5	-16.6	77	100	Horizontel
131.321 M	37.2	35.1	43.5	-8.4	165	100	Horizontel
154.262 M	32.6	0.4	43.5	-43.1	11	100	Horizontel
30.332 M	35.1	33.3	40	-6.7	258	100	Vertical
131.671 M	38.9	35.9	43.5	-7.6	88	100	Vertical

Test result of channel: 26 (915.75MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB \mu V/m)$	$(dB\mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
149.979 M	38.4	32.7	43.5	-10.8	142	100	Horizontel
30.099 M	33.6	31.8	40	-8.2	73	100	Vertical
110.038 M	28.5	24.3	43.5	-19.2	249	100	Vertical
131.951 M	37	34.1	43.5	-9.4	183	100	Vertical

Test result of channel: 50 (927.25MHz)

Frequency	PK Level	QP Level	Limits	Margin	Azimuth	Height	Antenna
(MHz)	$(dB\mu V/m)$	$(dB \mu V/m)$	$(dB \mu V/m)$	(dB)	(deg)	(cm)	Polarization
153.649 M	38.1	36.3	43.5	-7.2	167	100	Horizontel
102.1 M	33.6	31.1	43.5	-12.4	358	100	Horizontel
150.724 M	35.9	33.9	43.5	-9.6	99	100	Vertical

