

In the Claims:

1. (currently amended) Photoinitiators of the formula I

wherein

n is 1 or 2;

L is a linker;

X is -O-, -S- or -NR₃₂-;

Z is a direct bond, -CH₂-, -O-, -S- or -NR₁₀-;

R₁ is

- (a) linear or branched C₁-C₁₂-alkyl, which is unsubstituted or substituted by one or more of the groups C₁-C₄-alkyoxy, phenoxy, halogen or phenyl;
- (b) a radical of the formula

- (c) a radical of the formula

where q is 0, 1, 2 or 3; or

- (d) a radical of the formula

where Ar is phenyl, which is unsubstituted or substituted by one or more of the groups halogen, OH, NO₂, -N(R₁₀)₂, C₁-C₁₂-alkyl, C₁-C₄-alkyl that is additionally substituted by OH, halogen, N(R₁₀)₂, C₁-C₁₂-alkoxy, -COO(C₁-C₁₈-alkyl), -CO(OCH₂CH₂)_nOCH₃ or -OCO(C₁-C₄-alkyl); C₁-C₁₂-alkyoxy, C₁-C₄-alkyoxy that is additionally substituted by -COO(C₁-C₁₈-alkyl) or -CO(OCH₂CH₂)_nOCH₃; -OCO(C₁-C₄-alkyl), C₁-C₈-alkylthio, phenoxy, -COO(C₁-C₁₈-alkyl), -CO(OCH₂CH₂)_nOCH₃, phenyl or benzoyl; where n is 1-20;

R₂ if n is 1, independently of R₁ has one of the meanings of R₁; or

R₁ together with R₂ forms a ring of the formula

or

where m is 1 or 2;

- R₂ if n is 2, is a direct bond, C₂-C₁₆-alkylene, cyclohexylene, xylylene, dihydroxyxylylene, C₄-C₈-alkenediyl, C₆-C₁₀-alkadienediyl or dipentenediyl;
- R₃ is hydrogen, C₁-C₁₂-alkyl, C₂-C₄-alkyl substituted by one or more of the groups hydroxy, C₁-C₄-alkoxy, -CN, -COO(C₁-C₄-alkyl); C₃-C₅-alkenyl, C₅-C₁₂-cycloalkyl or C₇-C₉-phenylalkyl;
- R₄ is C₁-C₁₂-alkyl, C₂-C₄-alkyl substituted by one or more of the groups hydroxy, C₁-C₄-alkoxy, -CN, -COO(C₁-C₄-alkyl); C₃-C₅-alkenyl, C₅-C₁₂-cycloalkyl, C₇-C₉-phenylalkyl, phenyl; or R₄ and R₂ together is C₁-C₇-alkylene, C₇-C₁₀-phenylalkylene, o-xylene, 2-butylene or C₂-C₃-oxa- or azaalkylene; or R₄ and R₃ together is C₃-C₇-alkylene that may be interrupted by -O-, -S-, -CO- or -N(R₁₃)- and substituted by hydroxy, C₁-C₄-alkoxy or -COO(C₁-C₄-alkyl);
- R₅ is hydrogen or C₁-C₄-alkyl; or R₅ together with R₃₀ is C₁-C₂-alkylene;
- R₆ is hydrogen, C₁-C₈-alkyl or phenyl;
- R₇, R₈ and R₉ independently of each other are hydrogen or C₁-C₄-alkyl, or R₇ and R₈ together are C₃-C₇-alkylene;
- R₁₀ is hydrogen, C₁-C₈-alkyl, C₃-C₅-alkenyl, C₇-C₉-phenylalkyl, C₁-C₄-hydroxyalkyl or phenyl;
- R₁₁ and R₁₂ independently of each other are hydrogen or C₁-C₄-alkyl, or R₁₁ and R₁₂ together are C₃-C₇-alkylene;
- R₁₃ is hydrogen, C₁-C₁₂-alkyl, which may be interrupted by one or more -O- or C₃-C₅-alkenyl, C₇-C₉-phenylalkyl, C₁-C₄-hydroxyalkyl, -CH₂CH₂CN, -CH₂CH₂COO(C₁-C₄-alkyl), C₂-C₈-alkanoyl, or benzoyl;
- R₃₀ is hydrogen.
- ~~R₃₀ and R₃₁ independently of one another are~~ is hydrogen, C₁-C₁₈-alkyl or C₁-C₁₈-alkyl substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), -CN and/or -COO(C₁-C₄-alkyl); C₃-C₁₈-alkenyl, C₅-C₁₂-cycloalkyl, C₇-C₉-phenylalkyl, C₂-C₁₈-alkanoyl, benzoyl or norbornenoyl; or C₂-C₁₈-alkanoyl, benzoyl or norbornenoyl substituted by C₁-C₄-alkoxy, -NR₃₃R₃₄, -SR₃₅, -COOH or -COO(C₁-C₄-alkyl); or benzoyl or norbornenoyl substituted by hydroxy, or C₃-C₅-alkenoyl, -SO₂-(C₁-C₁₂-alkyl) or -SO₂-(C₁-C₁₂-alkylphenyl); or -CO-NH-C₁-C₁₂-alkyl or -CO-NH-(C₀-C₁₂-Alkylen)-N=C=O optionally interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyil, methylcyclohexanediyil, trimethylcyclohexanediyil, norbornanediyil,

[1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinan-2,4,6-trion-1,3-diyl; or

~~R₃₀ and R₃₄ together with the group -N-L-X form cyclic structures selected from~~

R₃₂ is hydrogen, C₁-C₁₈-alkyl or C₁-C₁₈-alkyl substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), -CN and/or -COO(C₁-C₄-alkyl); C₃-C₁₈-alkenyl, C₅-C₁₂-cycloalkyl, C₇-C₉-phenylalkyl, C₂-C₁₈-alkanoyl, benzoyl or norbornenoyl; or C₂-C₁₈-alkanoyl benzoyl or norbornenoyl substituted by hydroxy, C₁-C₄-alkoxy, -NR₃₃R₃₄, -SR₃₅, -COOH or -COO(C₁-C₄-alkyl); or C₃-C₅-alkenoyl, -SO₂-(C₁-C₁₂-alkyl) or -SO₂-(C₁-C₁₂-alkylphenyl); or -CO-NH-C₁-C₁₂-alkyl or -CO-NH-(C₀-C₁₂-Alkylen)-N=C=O optionally interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyil, methylcyclohexanediyil, trimethylcyclohexanediyil, norbornanediyil, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinan-2,4,6-trion-1,3-diyl;

R₃₃ and R₃₄ independently of one another are hydrogen, C₁-C₁₂-alkyl, C₂-C₄-hydroxy-alkyl, C₃-C₁₀-alkoxyalkyl, C₃-C₅-alkenyl, C₅-C₁₂-cycloalkyl, C₇-C₉-phenylalkyl, phenyl, C₂-C₁₈-alkanoyl or benzoyl; or R₃₃ and R₃₄ together are C₂-C₈-alkylene optionally interrupted by -O-, -S- or -NR₃₆-; or are C₂-C₈-alkylene optionally substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), or -COO(C₁-C₄-alkyl);

R₃₅ is C₁-C₁₈-alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, C₁-C₁₂-alkylphenyl, -CH₂-COO(C₁-C₁₈-alkyl), -CH₂CH₂-COO(C₁-C₁₈-alkyl) or -CH(CH₃)-COO(C₁-C₁₈-alkyl);

R_{36} is hydrogen, C₁-C₁₂-alkyl optionally interrupted by one or more no adjacent -O-atoms, C₃-C₅-alkenyl, C₇-C₉-phenylalkyl, C₁-C₄-hydroxyalkyl, -CH₂CH₂CN, -CH₂CH₂COO(C₁-C₄-alkyl), C₂-C₁₂-alkanoyl or benzoyl;

with the proviso that the following compounds are excluded:

2. (currently amended) Photoinitiators according to claim 1, wherein

n is 1 or 2;

L is a linker;

X is -O-, -S- or -NR₃₂-;

Z is a direct bond;

R₁ is

(a) linear or branched unsubstituted C₁-C₁₂-alkyl;

(b) a radical of the formula;

(d) a radical of the formula

wherein Ar is phenyl, which is unsubstituted or substituted by one or more of the groups NO₂, -N(R₁₀)₂, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, phenoxy;

R₂ if n is 1, independently of R₁ has one of the meanings of R₁;

R₂ if n is 2, is C₂-C₈alkylene;

R₃ is C₁-C₄-alkyl, C₂-C₄-alkyl substituted by hydroxy, C₁-C₄-alkoxy; C₃-C₅-alkenyl;

R₄ independently of R₃ has one of the meanings of R₃; or R₄ together with R₃ is C₄-C₅-alkylene that may be interrupted by -O-, -N(R₁₃)-;

R₅ is hydrogen;

R₆, R₇, R₈ and R₉ independently of each other are hydrogen or methyl;

R₁₀ is hydrogen, C₁-C₄-alkyl or C₃-C₅-alkenyl;

R₁₃ is hydrogen or C₁-C₄-alkyl;

R₃₀ is hydrogen

~~R₃₀ and R₃₁ independently of one another are~~ is hydrogen, C₁-C₁₂-alkyl; or C₂-C₆-alkyl substituted by hydroxy, C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), or -COO(C₁-C₄-alkyl); allyl, cyclohexyl or C₇-C₉-phenylalkyl; or C₂-C₁₂-alkanoyl, benzoyl or norbornenoyl; or C₂-C₁₂-alkanoyl, benzoyl or norbornenoyl substituted by C₁-C₄-alkoxy, -COOH or -COO(C₁-C₄-alkyl); or C₃-C₅-alkenoyl; or -CO-NH-C₁-C₁₂-alkyl or -CO-NH-(C₀-C₁₂-alkylen)-N=C=O, optionally interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyI, methylcyclohexanediyI, trimethylcyclohexanediyI, norbornanediyI, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl;

R₃₂ is hydrogen or C₁-C₁₂-alkyl.

3. (currently amended) Photoinitiators according to claim 2, wherein

n is 1 or 2;

L is linear or branched C₂-C₁₈-alkanediyI;

X is -O-;

Z is a direct bond;

R₁ is

(a) linear or branched unsubstituted C₁-C₃-alkyl;

(b) a radical of the formula;

(d) a radical of the formula

where Ar is phenyl, which is unsubstituted or substituted by CH₃-

NO₂ or -N(R₁₀)₂;

R₂ if n is 1, independently of R₁ has one of the meanings of R₁;

R₂ if n is 2, is C₂-C₈alkylene;

R₃ is methyl,

R₄ is methyl or R₄ together with R₃ is C₅-alkylene that is interrupted by -O-;

R₅ is hydrogen;

R₆, R₇, R₈ and R₉ are hydrogen;

R₁₀ is hydrogen;

R₃₀ is hydrogen;

~~R₃₀ and R₃₁ independently of one another are~~ is hydrogen, C₁-C₁₂-alkyl; or C₂-C₆-alkyl substituted by hydroxy; C₁-C₄-alkoxy, -O-CO-(C₁-C₄-alkyl), or C₃-C₅-alkenoyl.

4.(previously presented) Photoinitiators according to claim 1, wherein n is 1 or 2, R₁ is benzyl, 4-aminobenzyl, propyl or allyl and R₂ is ethyl or is C₂-C₈alkylene.

5. (original) A composition comprising

(A) at least one ethylenically unsaturated compound;

(B) a photoinitiator of formula I as defined in claim 1.

6-7. (cancelled)

8. (previously presented) Photoinitiators according to claim 2, wherein n is 1 or 2, R₁ is benzyl, 4-aminobenzyl, propyl or allyl and R₂ is ethyl or is C₂-C₈alkylene.
9. (previously presented) Photoinitiators according to claim 3, wherein n is 1 or 2, R₁ is benzyl, 4-aminobenzyl, propyl or allyl and R₂ is ethyl or is C₂-C₈alkylene.
10. (previously presented) A method for photopolymerization of ethylenically unsaturated compounds or mixtures containing ethylenically unsaturated compounds which method comprises preparation of a composition comprising ethylenically unsaturated compounds and compounds of the formula I according to claim 1 and exposure of the composition to electromagnetic radiation.
11. (previously presented) A method for the preparation of multifunctional photoinitiators by reaction of compounds of the formula I as defined in claim 1 with appropriate reagents.
12. (previously presented) A method for the preparation of multifunctional photoinitiators according to claim 11 by reaction of compounds of the formula I as defined in claim 1 with acids, acid halides, acid anhydrides, lactones, aldehydes, ketones, isocyanates, sulfonic acid chlorides, alkyl halides, alkyl sulphonates, epoxides, acrylates, methacrylates, amines, alcohols and thioalcohols.