# Supervised Learning Linear Composite Dispatch Rules for Scheduling

Case study for JSP and PFSP

Helga Ingimundardóttir Thomas Philip Runarsson

University of Iceland

April 22<sup>nd</sup>, 2013



## Outline

Introduction

**Job Shop Scheduling** 

Preference models

**Evolutionary search with CMA-ES** 

**Experiments** 



Job Shop Scheduling

Preference models

**Evolutionary search with CMA-ES** 

**Experiments** 



## Motivation

#### **General Goal**

- General goal is how to search for good solutions for an arbitrary problem domain.
- Automate the design of optimization algorithms.
- Use of randomly sampled problem instances and their corresponding optimal vs. suboptimal solutions.



## Case Study: JSP and PFSP

#### **Abstract**

- Framework for creating dispatching rules for JSP and PFSP.
- Supervised learning based on optimal and sub-optimal solutions.
- Training data is randomly generated problem instances and their optimal solutions. Method is purely data-driven.
- Linear classification to identify good dispatches from worse ones.
- Robust for higher dimensions.

Keywords: Scheduling • Composite dispatching rules • JSP • PFSP

Generating training data
 Sampling
 Ranking
 Scalability

Ordinial Regression • Evolutionary Search



## **Job Shop Scheduling**

Preference models

**Evolutionary search with CMA-ES** 

**Experiments** 



# Job Shop Scheduling (1)

#### **JSP**

Simple job shop scheduling problem is where n jobs are scheduled on a set of m machines, subject to constraints:

- each job must follow a predefined machine order,
- that a machine can handle at most one job at a time.

**Objective:** schedule the jobs so as to minimize the maximum completion time, i.e. makespan,  $C_{\text{max}}$ .

#### **PFSP**

Permutation flow shop scheduling is the same as JSP except the predefined machine order is homogeneous for all jobs.



# Job Shop Scheduling (2)

## Problem space distributions used in experimental studies

| type | name                                        | size $(n \times m)$ | $N_{train}$ | N <sub>test</sub> | note           |
|------|---------------------------------------------|---------------------|-------------|-------------------|----------------|
| JSP  | $\mathcal{P}_{irnd}^{6 \times 5}$           | 6 × 5               | 500         | 500               | random         |
|      | $\mathcal{P}_{irndn}^{6\times5}$            | 6 × 5               | 500         | 500               | random-narrow  |
|      | $\mathcal{P}_{irnd}^{10\times10}$           | $10 \times 10$      | _           | 500               | random         |
|      | $\mathcal{P}_{jrndn}^{10 	imes 10}$         | 10 × 10             | -           | 500               | random-narrow  |
| PFSP | $\mathcal{P}_{frnd}^{6 \times 5}$           | 6 × 5               | 500         | 500               | random         |
|      | $\mathcal{P}_{f_{r_{n}d_{p}}}^{6 \times 5}$ | 6 × 5               | 500         | 500               | random-narrow  |
|      | $\mathcal{P}_{fic}^{\mathbf{o} \times 5}$   | 6 × 5               | 500         | 500               | job-correlated |
|      | $\mathcal{P}_{frnd}^{10 \times 10}$         | 10 	imes 10         | _           | 500               | random         |
|      | $\mathcal{P}_{frndn}^{frnd}$ 10             | $10 \times 10$      | _           | 500               | random-narrow  |
|      | $\mathcal{P}_{\mathit{fjc}}^{10\times10}$   | 10 × 10             | -           | 500               | job-correlated |



# Job Shop Scheduling (3)

## Simple Priority Dispathcing Rules





# Job Shop Scheduling (4)

## Dispatching rules (DR) for constructing JSSP

- Starts with an empty schedule and adds on one job at a time.
- When a machine is free the DR inspects the waiting/available jobs and selects the job with the highest priority.
- Complete schedule consists of  $\ell = n \times m$  sequential dispatches.
- At each dispatch k features  $\phi(k)$  for the temporal schedule are calculated.
- Performance of DR is compared with its optimal makespan, as percentage relative deviation from optimality:  $\rho = \frac{C_{\max}^{DR} C_{\max}^{opt}}{C_{\max}^{opt}} \cdot 100\%$

#### Features for JSSP



# Job Shop Scheduling (5)

| $\phi$      | Feature description                                              |
|-------------|------------------------------------------------------------------|
| $\phi_1$    | processing time for job on machine                               |
| $\phi_2$    | start-time start-time                                            |
| $\phi_3$    | end-time                                                         |
| $\phi_4$    | when machine is next free                                        |
| $\phi_{5}$  | current makespan                                                 |
| $\phi_{6}$  | work remaining                                                   |
| $\phi_7$    | most work remaining                                              |
| φ8          | slack time for this particular machine                           |
| $\phi_{9}$  | slack time for all machines                                      |
| $\phi_{10}$ | slack time weighted w.r.t. number of operations already assigned |
| $\phi_{11}$ | time job had to wait                                             |
| $\phi_{12}$ | size of slot created by assignment                               |
| $\phi_{13}$ | total processing time for job                                    |



# Job Shop Scheduling

## Example



A schedule being built at step k = 16. The dashed boxes represent five different possible jobs that could be scheduled next using a DR.



Job Shop Scheduling

#### Preference models

**Evolutionary search with CMA-ES** 

**Experiments** 

# Ordinal Regression (1)

## Preference learning problem

Specified by a set of preference pairs:

$$S = \left\{ \left\{ \mathbf{z}_o, +1 \right\} \right\}_{k=1}^{\ell}, \left\{ \mathbf{z}_s, -1 \right\} \right\}_{k=1}^{\ell} \mid \forall o \in \mathcal{O}^{(k)}, s \in \mathcal{S}^{(k)} \right\} \subset \Phi \times Y$$

where the set of point/rank pairs are:

- Optimal decision:  $\mathbf{z_o} = \phi^{(o)} \phi^{(s)}$ , ranked +1
- lacksquare Sub-optimal decision:  $oldsymbol{\mathsf{z}}_{\mathsf{s}} = \phi^{(s)} \phi^{(o)}$ , ranked -1

# Ordinal Regression (2)

■ Mapping of points to ranks:  $\{h(\cdot): \Phi \mapsto Y\}$  where

$$\phi_o \succ \phi_s \quad \Leftrightarrow \quad h(\phi_o) > h(\phi_s)$$

■ The preference is defined by a linear function, i.e. PREF model:

$$h(\phi) = \sum_{i=1}^d w_i \phi = \langle w \cdot \phi \rangle.$$

Logistic regression learns the optimal parameters w by solving:

$$\min_{\mathbf{w}} \quad \frac{1}{2} \langle w \cdot w \rangle + C \sum_{j=1}^{|S|} \log \left( 1 + e^{-y_j \langle w \cdot z_j \rangle} \right)$$



# Generating prefernce set S (1)

## A seperate DR for each dispatch iteration

- At each dispatch k a number of data pairs are created
  - $\Box$  for each of the  $N_{\text{train}}$  problem instance created.
- Deliberately create a separate data set for each dispatch
  - $\square$  Resulting in  $\ell$  linear scheduling rules for solving a  $n \times m$  JSSP.

Defining the size of the training set as  $I = |\Phi|$ , gives the size of the preference set as |S| = 2I.

■ If / is too large, than sampling needs to be done.



# Generating prefernce set S (2)

## Previous sampling approach

The strategy was to follow some single optimal job  $j \in \mathcal{O}^{(k)}$ , thus creating  $|\mathcal{O}^{(k)}| \cdot |\mathcal{S}^{(k)}|$  feature pairs at each dispatch k, resulting in a training size of:

$$I = \sum_{q=1}^{N_{\mathsf{train}}} \left( \sum_{k=1}^{\ell} |\mathcal{O}^{(k)}| \cdot |\mathcal{S}^{(k)}| 
ight)$$

For the data distribution considered there, this simple sampling was sufficient for a favourable outcome. However for a considerably harder data distribution this strategy did not work well.

## Trajectory sampling strategies explored for S,



# Generating prefernce set S (3)

- S<sup>opt</sup> follow some (random) optimal task
- $S^{cma}$  follow the task corresponding to highest priority, computed with fixed weights  $\mathbf{w}$ , which were obtained by optimising with CMA-ES.
- $S^{mwr}$  follow the SDR most work remaining (MWR).
- $S^{lwr}$  similar to  $S^{mwr}$  except for least work remaining (LWR).
  - Sall union of all of the above.



Job Shop Scheduling

Preference models

## **Evolutionary search with CMA-ES**

**Experiments** 



## **Evolutionary search**

Instead of using logistic regression for to find the weights  ${\bf w}$  for linear preference function:

$$h(\phi) = \sum_{i=1}^d w_i \phi = \langle w \cdot \phi \rangle.$$

a widely-used evolutionary algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), is applied to directly minimise the expected relative error, i.e.  $\mathbb{E}\left[\rho\right]$  (note, could also minimise  $\mathbb{E}\left[C_{\text{max}}\right]$ )

Benefit No need to collect preference set SDrawback Computationally expensive to evaluate  $\mathbb{E}\left[\rho\right]$ 



Job Shop Scheduling

Preference models

**Evolutionary search with CMA-ES** 

## **Experiments**



# Experiments (1)

## Size of preference set S





# Experiments (2)

## Linear PREF models and CMA-ES obtained weights





Job Shop Scheduling

Preference models

**Evolutionary search with CMA-ES** 

**Experiments** 



- Introduced a framework for learning linear composite dispatch rules for scheduling.
- The approaches find linear weights by either direct optimisation with CMA-ES or via preference learning by collecting preference pairs whilst sampling the state space of the schedule strategically.



# Summary and conclusions (2)

## **CMA-ES** optimisation

#### Benefits:

- Does not rely on optimal solutions
- Scalable

#### Drawbacks:

- Computationally expensive .
- Limited to linear preference function  $h(\cdot)$

#### Future Work:

 Mediate evolutionary search by use of surrogate models which indirectly estimate mean expected error w.r.t. current population without a loss in performance



# Summary and conclusions (3)

### **PREF** models

#### Benefits:

- Scalable
- Robust to different data distributions

#### Drawbacks:

 Must know the optimal solution of the problem a priori to correctly classify optimal decisions from suboptimal ones

#### Future work:

■ Easily adaptable to non-linear preferences function, i.e. project the feature space onto a higher dimension thereby updating  $h(\cdot)$  to a kernel based function which should yield lower expected  $C_{\text{max}}$ 



# Thank you for your attention

# Questions?

Helga Ingimundardóttir, hei2@hi.is