[DBI] 유아동 그림 분석 AI 알고리즘 개발

5.6팀

주제 소개

아이디어명: 객체 인식 기반 유아동 그림 분석

주제 소개

주제

집, 나무, 사람 그림 1,000개 세트를 학습하여 총 18개 요소를 분류하는 유·아동 그림 분석 AI 알고리즘을 개발

목적

AI 알고리즘을 개발해 인간의 노동을 줄여주고, 쉽고 간편하게 자동으로 18개 요소 분류를 목적으로 Object Detection을 이용해 유·아동 이미지 전처리 알고리즘 개발을 하고자 합니다.

최종 목표

최종적으로 모델을 평가하고 일반화 성능을 확인하여 18개 요소를 분류하는 어린이 그림 분석 AI 알고리즘을 개발합니다. 최대한 모델의 처리 속도를 빠르게 하고자 하며, 정확도가 높고 효율적으로 유지될 수 있는 알고리즘을 만들고자 합니다.

분석 기법

분석기법 - Object Detection

Classification :이미지에 한 개의 Object가 있을 때 그 물체가 무엇인지 맞추는 문제

Classification+Localization : 이미지에 한 개의 Object가 있을 때 그 위치를 찾고 무엇인지 맞추는 문제

Object Detection : 이미지에 한 개 이상의 Object가 있을 때 각각 Object에 대해 무엇인지 까지 맞추는 문제

Instance Segmentaion : 한 개 이상의 Object가 있을 때 각각의 Object에 픽셀단위 위치와 무엇인지 맞추는 문제

분석기법 - Object Detection 용어

Bounding Box : 하나의 Object 가 포함된 최소 크기의 박스

Class Classification : Bounding Box에 대한 클래스 분류

분석기법 - 모델의 평가 지표

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

정밀도 (Precision): 모델이 Object라 예측한 것 중 실제 Object의 비율(검출한 결과가 얼마나 정확한지) 재현율 (Recall): 실제 Object 중 모델이 예측하여 맞춘 Object의 비율 (대상 물체들을 빠뜨리지 않고 얼마나 잘 잡아내는지)

AP(Average Precisions): 정밀도와 재현율을 계산해서 얻은 점들로 곡선을 그리고 곡선 아래의 면적 mAP(Mean Average Precision): 각각의 클래스에 대한 AP의 평균값 (모델의 전체 성능을 종합적으로 나타냄)

분석 기법

Object Detection (객체 감지)

이미지 및 비디오 내에서 유의미한 특징 객체를 감지하는 작업

Transfer Learning (전이 학습)

미리 학습된 가중치를 활용하여 모델을 초기화하고, 새로운 데이터로 추가 학습을 시키며 하이퍼파라미터를 조정하여 최적의 성능을 얻음

YOLO (You Only Look Once)

객체 감지와 분류를 위한 딥러닝 모델로, 이미지나 비디오에서 객체의 위치와 클래스를 실시간 으로 탐지하는 데 사용

데이터 전처리

Data Annotation - House

Label	Feature
house	size(크기)
– house	loc(위치)
roof	roof_yn(지붕)
window	window_cnt(창문 수)
door	door_yn(문)

Data Annotation - Tree

Label	Feature
tree	size(크기)
	loc(위치)
gnarl	gnarl_yn(옹이나 상처)
crown	crown_yn(수관)
branch	branch_yn(가지)
root	root_yn(뿌리)
fruit	fruit_yn(열매)

Data Annotation - Person

Label	Feature
	size(크기)
person	loc(위치)
eye	eye_yn(눈)
mouth	mouth_yn(입)
arm	arm_yn(팔)
leg	leg_yn(다리)

* 사람을 한 명 그려주세요.

이상치 제거

• csv파일 값과 그림이 다른 경우

이상치 제거

● Object가 두개 이상인 경우 ● Object가 없는 경우

이상치 제거

• 알아볼 수 없는 경우

이미지 사이즈 변환

7015 x 4960 pixels

640 x 453 pixels

1280 x 905 pixels

3020 x 2135 pixels

모델링 및 학습

House - 예측한 이미지

Confidence Score:

object가 Bounding Box 안에 있을 확률

Tree - 예측한 이미지

Person - 예측한 이미지

mAP50

- 모델이 예측한 상위 50%의 정확도에 대한 평균 정밀도
- 각 그림에 대한 정밀도 재현율 곡선

[**House** Precision-Recall 그래프]

[**Tree** Precision-Recall 그래프]

[**Person** Precision-Recall 그래프]

결론

House - 요소 분류 결과

• 요소별 분류 정확도

door_yn : 0.96

loc : 0.94

roof_yn : 0.94

window_cnt : 0.82

size : 0.9

Tree - 요소 분류 결과

• 요소별 분류 정확도

branch_yn : 0.9 root_yn : 0.95

crown_yn : 0.925

fruit_yn : 0.9

gnarl_yn : 0.95

loc : 0.9

size : 0.75

Person - 요소 분류 결과

• 요소별 분류 정확도

eye_yn : 0.95

leg_yn : 0.975

loc : 0.9

mouth_yn : 0.9

size : 0.825

arm_yn : 0.95

