Probability-3 Lecture-7

13 August 2024 14:22
$$(\Omega, A, P)$$
 - probability space. (Ω, A, P) - seq. of real r.v.s on (Ω, A, P) .

Def":
$$X_n \xrightarrow{P} X$$
 if $\forall \, \epsilon > 0$, $P(|X_n - X| > \epsilon) \longrightarrow 0$ as $n \longrightarrow \infty$.

ie, $\forall \, \epsilon > 0$, $\forall \, \delta > 0$,

 $\exists \, n_0 \, s \in \forall \, n > n_0$,

$$\exists n_0 \text{ st } \forall n > n_0,$$

$$P(|X_n - \times| > E) < \delta$$
(Enough to this for $E = \delta$)

$$(*) \times_{n} \longrightarrow X$$

$$Y_{n} \longrightarrow Y$$

$$(*) \times_{n} + Y_{n} \longrightarrow X + Y.$$

$$(*) \times_{n} + Y$$

$$(*) \times_{n} \xrightarrow{P} \times$$

$$\Rightarrow f(x_{n}) \xrightarrow{P} f(x) \text{ for any continuous function } f.$$

$$\Rightarrow f(x_{n}) \xrightarrow{P} f(x) \text{ for any continuous } function f.$$

then,
$$X_n Y_n = \frac{1}{4} \left((X_n + Y_n)^2 - (X_n - Y_n)^2 \right)$$

then, $X_n \xrightarrow{P} X_n^2 X_n Y_n \xrightarrow{P} X_n^2 Y_n^2 Y_n^2 Y_n \xrightarrow{P} X_n^2 Y_n^2 Y_n^2$

becomes obvious by simple algebra.

quick review of the proof:

"Tightness":

Suppose,
$$Y$$
 is a real $r.v.$
 $P(|Y|>M) \rightarrow 0$ as $M \rightarrow \infty$.

 $V \in Y_0$, $J \in S+P(|Y|>M_E) < E$.

 V_1, V_2, \dots, V_K are real $v.v.$
 $V := 1, \dots, K$,

 $\begin{aligned} \forall i=1,...,k, \\ \exists M_i = M_i(\epsilon) \text{ s.t.} \quad P(|Y_i|>M_i)<\epsilon. \\ \therefore M = Max \left\{M_1,...,M_k\right\}. \\ \Rightarrow P(|Y_i|>M)<\epsilon. \quad \forall i=1,...,k \\ \text{We did thus for a finite no. of r.vs.} \end{aligned}$

S: Given a sequence of $\{Y_n\}$ of real random r.v.s, (exercise Can we get, $y \in Y_0$), an M_{ϵ} s.t. $P(|Y_i|) M_{\epsilon} < \epsilon$?

Lec-6) In general, NO!!!

 $\rightarrow \xi g$: $Y_n = \begin{cases} n & \text{with prob.} = \frac{1}{2} \\ -n & \text{with prob.} = \frac{1}{2} \end{cases}$

Here, for every M,

P(|Yn|>M)=1 &n>M. So, here's a counter example.

But, what if, {Yn} is such a sequence s.t.

Yn Py, then? (this is what

we did in last dass

Definition: (Tightness)

A sequence of {Xn} - real r.v is said to be tight if \$ £70, } M=Me, such that:

Independent $P(|X_n|>M) < \varepsilon + n$.

ie, the tail probability goes to o uniformly.

. What we proved last time (lec-6) is: $X_n \xrightarrow{P} X \Rightarrow \{X_n\}$ is tightness.

Proof:

Let E>0. be given.

X is a real r.v., get Mo . st P(|X|7Mo) < E.

look at: $P(|X_n| > M_0 \pm 1) \leq P(|X| > M_0) + P(|X_n - X| > 1)$

So,
$$P(1\times n) > M_0+1) \leq P(1\times 1 > M_0) + P(1\times n - \times 1 > 1)$$

$$< \xi.$$
We need this small large enough, ξ , ξ , ξ .

· P(|X|>M0+1)<ε & P(|Xn|>M0+1)<ε 4 n>, no.

X X1, -- , Xn, -1 are finitely many. So, we can take care of that.

Result: $\times_n \xrightarrow{a.s} \times \Leftrightarrow \sup_{k>n} |\times_k - \times| \xrightarrow{p} \circ$ $\Rightarrow |\times_k - \times| \xrightarrow{p} \circ \Leftrightarrow \times_n \xrightarrow{p} \times$ So, almost sure converges $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

The converse is <u>NOT</u> true!!! (Refer L-6 for counter example).

(*) one special case, where $X_n \xrightarrow{\alpha, s} X \iff X_n \xrightarrow{\alpha, s} X$

(*) One special case, where $X_n \xrightarrow{\alpha,s} X \iff X_n \xrightarrow{\alpha,s} X$ is when we have a Discrete Probability Space. (Proof: Exercise)

Theorem:

Proof:
$$X_n \xrightarrow{P} X$$

: By definition, $\forall k \geqslant 1$, $\exists n_k \geqslant 1$ s.t.
 $P(|x_m-x|>2^{-k}) < 2^{-k} \forall m \geqslant n_k$

We may, & do assume 1 < n, < n, < . - . < nk < nk+1 < ...

Denote
$$A_k = \{|x_{n_k} - x| > 2^{-k}\},$$

when, $P(A_k) < 2^{-k}$ [: $n_k > k$]

$$\therefore \sum_{k} P(A_{k}) < \infty$$

(Recall)

* Borel-Cantelli Lemma:

If A_k , k > 1 - events on the same Probability space. 5.4, $\sum_{k} P(A_k) < \infty$.

Then,
$$P(\limsup_{k \to 1} A_k) = 0$$
.
ie, $P(\bigcap_{k \to 1} \bigcup_{j \to k} A_j) = 0$. (just a consequence of continuity of Probability

:. By Borel-Cantelli lemma-

:. By Borel-Cantelli lemma.

$$P\left(\bigcup_{k \text{ k'}>k} \left\{ \left| X_{n_{k'}} - X \right| > 2^{-k'} \right\} \right) = 0.$$

$$\Rightarrow P\left(\bigcup_{k \text{ N}} \bigcup_{k' > k} \left\{ \left| X_{n_{k'}} - X \right| \leq 2^{-k'} \right\} \right) = 1.$$

$$A\left(say\right).$$

then, $\psi \in A$, $X_{n_{k'}}(\omega) \rightarrow X\left(\omega\right)$

$$\exists k_{0} = k_{0}(\omega)$$

$$comes from S.t. \left| X_{n_{k'}}(\omega) - X(\omega) \right| \leq 2^{-k'} \forall k' \geq k_{0}(\omega)$$

$$\vdots \text{ this has reduced to the definition of a.s. convergence.}$$

Theorem:

Theorem:

\[
\text{Xn} \rightarrow \text{X} \Limin \text{ For every subsequence } \{\text{Xn_k}\} \leq \{\text{Xn_k}\} \leq \{\text{Xn_k}\} \} \\

\text{J a further subsequence } \{\text{Xn_k}\} \\$ s.t.

\[
\text{Xn_k''} \frac{\alpha \cdots}{\text{X}}.

\]

\[
\text{Xn_k''} \frac{\alpha \cdots}{\text{X}}.

\[
\text{Vn_k''} \frac{\alpha \cdots}{\text{X}}.

\]

\[
\text{Vn_k''} \frac{\alpha \cdots}{\text{X}}.

\]

\[
\text{N prev. theorem,} \\

\text{Vn_k''} \frac{\alpha \cdots}{\text{X}}.

\]

\[
\text{N prev.} \text{Vn_k''

(\Leftarrow) Fix $\epsilon > 0$. Have to show: $\alpha_n = P(|X_n - X| > \epsilon) \longrightarrow 0$ Now, let $\{a_{n_k}\}$ a subsequence of $\{a_n\}$. $\vdots a_{n_k} = P(|X_{n_k} - X| > \epsilon)$ $\vdots \exists n_k$? st. X_{n_k} ? $\xrightarrow{a : s.} X. <math>\Rightarrow x_n$.

$$\therefore \exists n_{k}^{\prime\prime} \text{ s.t. } X_{n_{k}^{\prime\prime}} \xrightarrow{a.s.} X. \Rightarrow X_{n_{k}^{\prime\prime}} \xrightarrow{p} X$$

$$\Rightarrow a_{n_{k}^{\prime\prime}} \rightarrow 0$$

Corollary: $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X) + continuous f_i^n g$. (Exercise)

<u>Definition</u>: (Convergence in the pth moment).

{Xn} is said to converge to X in Lp(or, in pth moment)

 $\begin{cases} X_n \xrightarrow{L_p} X \\ X_n \xrightarrow{L_p} Y \end{cases}$

=> X=Y a.s.

11 X-Y11p <

=> || X-Y||_p → 0 => X=Y as.

why? By Minkowski's inequality,

 $|| \times^{\nu} - \times ||^b + || \times^{\nu} - \lambda ||^b$

if
$$\|X_n - X\| \longrightarrow 0$$
.
 $\left(E |X_n - X|^p \longrightarrow 0 \right)$.

We write, X, LP X

$$(*)$$
 \times \xrightarrow{Lp} \times \Rightarrow $e\times$ \longrightarrow $e\times$

$$(*) \quad \times_{n} \xrightarrow{L_{P}} \times_{1} \times_{n} \xrightarrow{L_{P}} \times_{1} \times_{1} \xrightarrow{L_{P}} \times_{1} \times$$

(*) \times $\stackrel{\mathsf{Lp}}{\longrightarrow}$ \times

$$P(|X_n-X|>\xi) \leq \frac{||X_n-X||_p^p}{\xi^p} \longrightarrow 0.$$

$$P(|X_n-x|^p>\epsilon^p)$$
 [By Chebysher's inequality]

However, converge is not true!!

$$X_{n} = \alpha_{n} \cdot 1_{\left(0, \frac{1}{2}\right)}, \quad \alpha_{n} > 0$$

$$X_n = \alpha_n \cdot I(0, \frac{1}{n})$$
, $\alpha_n > 0$

$$\times \times_{n} \xrightarrow{p} o$$

$$E(|X_n|^p) = \alpha_n^p \cdot \frac{1}{n}$$

clearly, we can choose on such that this does not converge. infact, we can choose on s.t. $E(|X_n|^p)$ diverges to ∞ .

So, convergence in P A convergence in

.'. Convergence in probability is the "weakest" in a sense.