

Circles Ex 16.5 Q7 **Answer**:

It is given that, AB and CD are diameter with center O and $\angle OBD = 50^{\circ}$

We have to find $\angle AOC$

Construction: Meet the point A and D to form line AD

Clearly arc AD substends $\angle ABD = 50^{\circ}$ at B and $\angle AOD$ at the center

Therefore $\angle AOD = 2\angle ABD = 180^{\circ}$ (1)

Since CD is a straight line then

$$\angle DOC + \angle AOC = 180^{\circ}$$

$$\angle AOC = 180^{\circ} - 100^{\circ}$$
 (From equation (1))

$$=80^{\circ}$$

Hence $\angle AOC = 80^{\circ}$

Circles Ex 16.5 Q8

Answer:

It is given that, AB as diameter, O is center and $\angle CAB = 30^{\circ}$

We have to find $m\angle ACB$ and $m\angle ABC$

Since angle in a semi-circle is a right angle therefore

$$\angle ACB = 90^{\circ}$$

In $\triangle ACD$ we have

$$\angle CAB = 30^{\circ} (Given)$$

 $\angle ACB = 90^{\circ}$ (Angle in semi-circle is right angle)

Now in $\triangle ACB$ we have

$$\angle CAB + \angle ACB + \angle ABC = 180^{\circ}$$
 $\angle ABC = 180^{\circ} - (\angle CAB + \angle CAB)$
 $= 180^{\circ} - (90^{\circ} + 30^{\circ})$
 $= 180^{\circ} - 120^{\circ}$
 $= 60^{\circ}$
Hence $\angle ABC = 60^{\circ}$ and $\angle ACB = 90^{\circ}$

Circles Ex 16.5 Q9

Answer:

It is given that, ABCD is a cyclic quadrilateral such that $AB \parallel CD$ and $\angle B = 70^{\circ}$

Now $\angle B + \angle D = 180^{\circ} \ (\angle B = 70^{\circ} \text{ given})$

So
$$\angle D = 110^{\circ}$$

Also AB \parallel CD and BC transversal

So

$$\angle B + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - 70^{\circ}$$

$$= \boxed{110^{\circ}}$$

Now

$$\angle A + \angle C = 180^{\circ}$$
 $\angle A = 180^{\circ} - \angle C$
 $= 180^{\circ} - 110^{\circ}$
 $= \boxed{70^{\circ}}$
 $\angle D = 180^{\circ} - 70^{\circ}$
 $\angle D = \boxed{110^{\circ}}$
(Since $\angle C = 110^{\circ}$)

******* END ******