ELEMENTS OF POWER SYSTEM

Experiment 2

Name: Priyanshu Shivhare

Adm No.: U20EE039

Aim: To develop and study Simulink model of the power system networks for the given

one- line diagram. Circuit Diagram:

The reactance data of the elements are given below

Generator No. 1	90 MVA	22 kV	
Transformer T1	50 MVA	(3 phase) 22/220 kV	X=0.1 p.u.
Transformer T2	40 MVA	(3 phase) 220/11 kV	X = 0.06 p.u.
Transformer T3	40 MVA	(3 phase) 22/110 kV	X = 0.064 p.u.
Transformer T4	40 MVA	(3 phase) 110/11 kV	X = 0.08 p.u.

The three-phase load at bus 4 absorbs 57 MVA, 0.6 power factor lagging at 10.45 kV. Line 1 and line 2 have impedances of 48.4 and 65.43 Ω , respectively

Theory:

A one-line diagram of a power system shows the main connections and arrangements of components. Any particular component may or may not be shown depending on the information required in a system. A simplified diagram of an electric system is called a single-line or one-line diagram in which per phase equivalent of the three phase lines is shown omitting the neutral.

Procedure:

Develop a Simulink model of the given one-line diagram of the power network.

Simulink Model:

Observation:

Output waveform of the Simulink model

Conclusion:

In this experiment we successfully developed the Simulink model and got the graph.

Question:

Q1. Draw the pu impedance diagram for the power system shown in Fig., Neglect resistance, Q1. Draw the pu map of 100 MVA, 220 kV in 50 W line. The ratings of the generator, motor and transformers are

Generator	40 MVA,	25 kV,	X'' = 20%
Motor	50 MVA,	11 kV,	X'' = 30%
Y-Y transformer,	40 MVA,	33 <i>Y</i> ~220 Y kV,	X = 15% $X = 15%$
$Y-\Delta$ transformer,	30 MVA,	11 ∆~220 Y kV,	
E-A@		/50 Ω CI- 🖁 🖺	D-1-D-(M) Y-3

- Q2. Define infinite bus in the power system.
- Q3. What is the purpose of VI measurement block in Simulink?

Ans (1)	Base M.VA.
	Base MVAbrew = 100 MVA., Base KVanew = 220KV Transmission Line json
	Zpu = Zactual - Zactual x MVAbner Zbase KVbner
*	$Z_{pu} = \int 50 \times 100 = \int 0.1033 pu$ $(220)^{2}$
	Transformer T:
	KVb(new) = KVb(old) XLT side voltage rating It Hiv side voltage rating I.
	$KV_{b(new)} = 220(33) = 33KV$
	Zpu (now) = Tpulmer) (KValaneth) (MVAs (new)) (KValaneth) (MVAs (014))
	= (j(0.15) (33) × (100) - j 0.575 pu
	benerator G:-
	Zpu (new) = Zpu(ald) x (KVb (old)) x (MVAb(now))
	(KV.(new)) X (MVAa(old))

Ans 2	The bys whose voltage to frequency remain constant even after the variation in the local is known as the infinite bys. The alternators operating in parallel in a power system are the example of the infinite bus.
Ans (3)	The three-of vs measurement block is used to measure instantions three phase valtage and cyment in a circuit when it is connected in somics with 3-op elements it returns the
	three phase to ground or phase to phase to chase peaks voltages and currents the block output the voltages and currents in per unit (pu) or in volts & ampères.

