Projeto da Disciplina de Aprendizagem de Máquina IN1102 - 2024-1

Grupo 2:

Ana Claudia S L Santos Francisco de Assis Rodrigues Roberto de Medeiros Farias Filho Rondinelly Duarte de Oliveira Júnior

Dataset

Multiple features - conjunto de dados que consiste em características de numerais manuscritos (0-9) extraídos de uma coleção de mapas utilitários holandeses.

Parâmetro	Dataset						
1 arameno	mfeat-fou	mfeat-fac	mfeat-zer				
\overline{c}	10	10	10				
\overline{T}	100	100	100				
ϵ	10^{-6}	10^{-6}	10^{-6}				
\overline{m}	1.6	1.2	1.6				
n_runs	50	50	50				

https://archive.ics.uci.edu/dataset/72/multiple+features

RESULTADOS DATASET MFEAT-FOU

Métricas	Dataset MFEAT-FOU
Função Objetivo	540.311
Modified Partition Coefficient (MPC)	0.21435
Índice de Rand Corrigido (ARI)	0.83023

- → Centróides
- → Parâmetros de Largura

Conferir resultados

→ Matriz de Confusão MFEAT-FOU

Matriz de confusão: partição crisp vs a priori - mfeat-fou

190	0	0	5	0	5	0	0	2	1
0	6	1	0	245	1	8	1	0	1
0	3	15	0	0	0	0	0	0	1
0	0	12	1	0	52	0	20	0	11
0	1	0	0	0	0	243	0	0	0
0	3	2	0	0	0	0	0	0	0
0	0	0	240	0	9	0	0	0	0
212	0	0	1	0	3	0	0	0	0
0	440	1	0	0	12	1	0	0	5
0	0	0	0	0	35	0	0	211	0

RESULTADOS DATASET MFEAT-FAC

Métricas	Dataset MFEAT-FAC
Função Objetivo	0.00055
Modified Partition Coefficient (MPC)	0.67510
Índice de Rand Corrigido (ARI)	0.95944

- **→** Centróides
- → Parâmetros de Largura

Conferir resultados

→ Matriz de Confusão MFEAT-FAC

Matriz de confusão: partição crisp vs a priori - mfeat-fac

0	0	0	13	0	0	0	0	0	225
0	0	176	0	0	0	0	1	0	0
0	1	0	145	0	5	1	1	3	0
238	0	0	1	0	0	0	0	0	0
0	0	0	0	176	0	0	0	0	4
0	0	0	0	0	0	203	0	0	0
4	213	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	168	0	0
0	0	0	0	0	0	1	0	209	0
0	0	0	2	0	208	0	0	0	1

RESULTADOS DATASET MFEAT-ZER

Métricas	Dataset MFEAT-ZER
Função Objetivo	0.00930
Modified Partition Coefficient (MPC)	0.50493
Índice de Rand Corrigido (ARI)	0.63219

- → Centróides
- → Parâmetros de Largura

Conferir resultados

→ Matriz de Confusão MFEAT-ZER

Matriz de confusão: partição crisp vs a priori - mfeat-zer

0	0	0	0	50	0	0	0	0	0
0	176	11	0	0	0	0	0	19	0
0	0	1	0	0	0	46	0	5	0
0	0	0	43	0	0	0	0	0	399
0	0	0	111	0	0	0	186	0	7
1	0	119	0	0	0	0	0	5	0
0	43	0	0	0	181	0	22	0	0
0	0	0	222	0	76	0	4	0	5
93	0	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	57	116	0

Questão 2: Desempenho de Classificadores

Passo 1:

- Ensemble de 3 classificadores bayesiano Gaussiano
- Ensemble de 3 classificadores bayesiano baseado em K-NN
- Ensemble de 3 classificadores bayesiano baseado na Janela de Parzen
- Ensemble de 3 classificadores Regressão Logística

Passo 2:

Obter métricas de desempenho

Algoritmos	Métricas								
	ACURÁCIA	PRECISÃO	RECALL	F1-SCORE					
GAUSSIANO	0.8824 [0.8809; 0.8838]	0.8849 [0.8835; 0.8863]	0.8824 [0.8809; 0.8838]	0.8823 [0.8808; 0.8837]					
K-NN	0.9243 [0.9231; 0.9255]	0.9253 [0.9241; 0.9265]	0.9243 [0.9231; 0.9255]	0.9241 [0.9229; 0.9253]					
PARZEN	0.4524 [0.4509; 0.4538]	0.8566 [0.8549; 0.8584]	0.4524 [0.4509; 0.4538]	0.5259 [0.5246; 0.5274]					
REGRESSÃO LOGÍSTICA	0.9311 [0.9299; 0,9323]	0.9321 [0.9309; 0.9333]	0.9311 [0.9299; 0,9323]	0.9310 [0.9298; 0.9322]					

Testes Não-paramétrico

Passo 3: Aplicar o teste de Friedman

Métricas	Classificadores							
	GAUSSIANO	K-NN	PARZEN	REGRESSÃO LOGÍSTICA				
Acurácia	0.8824	0.9243	0.4524	0.9311				
Precisão	0.8849	0.9253	0.8566	0.9321				
Recall	0.8824	0.9243	0.4524	0.9311				
F1-score	0.8822	0.9240	0.5259	0.9310				
Média	0.8829	0.9244	0.5718	0.9313				

Ranqueamento

Métricas	Classificadores							
	GAUSSIANO	K-NN	PARZEN	REGRESSÃO LOGÍSTICA				
Acurácia	3	2	4	1				
Precisão	3	2	4	1				
Recall	3	2	4	1				
F1-score	3	2	4	1				
Rank Médio	3	2	4	1				

Testes de Friedman

Hipóteses

$$\begin{cases} H_0 = \text{não há diferença entre classificadores.} \\ H_1 = \text{há diferença entre classificadores.} \end{cases}$$

Cálculo da estatística do teste

$$\chi_{\text{calculado}}^{2} = \frac{12}{Nk(k+1)} \left[\sum_{j=1}^{k} (\sum R_{j})^{2} \right] - 3N(k+1) = \frac{12}{4 \times 4 \times (4+1)} \left[\sum_{j=1}^{4} (\sum R_{j})^{2} \right] - 3 \times 4 \times (4+1)$$

$$= \frac{12}{80} \left[(12)^{2} + (8)^{2} + (16)^{2} + (4)^{2} \right] - 60 = 12$$

cin.ufpe.br

Teste de Friedman

Comparar com o valor tabelado

$$\chi^{2}_{(0.05,3)} = 7.81$$

$$\chi^{2}_{(0.01,3)} = 11.34$$

$$\chi^{2}_{\text{calculado}} > \chi^{2}_{(0.01,3)} > \chi^{2}_{(0.05,3)}$$

Logo, rejeitamos a hipótese nula ao nível de 5% e 1% de significância. Ou seja, existem ao menos dois classificadores com diferenças significativas.

Passo 4: teste post-hoc

Teste de Nemenyi

Valores críticos

Número de Classificadores	2	3	4	5	6	7	8	9	10
$q_{0.05}$	1.960	2.343	2.569	2.728	2.850	2.949	3.031	3.102	3.164
$q_{0.10}$	1.645	2.052	2.291	2.459	2.589	2.693	2.780	2.855	2.920

Fonte: Tabela 5 de (DEMŠAR, 2006).

Teste de Nemenyi

Distâncias críticas a 5% e 10% de significância

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}} = q_{0.05} \sqrt{\frac{4(4+1)}{6\times 4}} = 2.569 \times \sqrt{\frac{20}{24}} \approx 2.345$$

$$\sqrt{\frac{k(k+1)}{6N}} = \sqrt{\frac{4(4+1)}{6\times 4}} = 2.569 \times \sqrt{\frac{20}{24}} \approx 2.345$$

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}} = q_{0.10} \sqrt{\frac{4(4+1)}{6\times 4}} = 2.291 \times \sqrt{\frac{20}{24}} \approx 2.091$$

Comparação:

A diferença entre os ranks médios da Janela de Parzen e Regressão Logística foi 3.

Como 3 > 2.345 > 2.091, concluímos que o desempenho do classificador baseado na Janela de Parzen é significativamente **pior** que o classificador da Regressão Logística.

cin.ufpe.br

cin.ufpe.br