# Message Passing



#### 6 Basic Functions

```
MPI_Init ()
MPI_Comm_rank (Comm)
MPI_Comm_size (Comm)
MPI_Send (Data, Num, Type, Dest, Tag, Comm)
MPI_Recv (Data, Num, Type, Src, Tag, Comm, Stat)
MPI_Finalize ()
```

## Communication type

Point-to-Point communication

Collective communication

Blocking communication

Non-blocking communication

#### Non-blocking communication

```
MPI_Isend (Data, Num, Type, Dest, Tag, Comm, &Req)
MPI_Irecv (Data, Num, Type, Src, Tag, Comm, &Req)
MPI_Wait (&Req, &Status)
MPI_Waitall (Num, Req[], Stat[])
```

#### Collective Communication

```
MPI_Bcast MPI_Ibcast
```

MPI\_Scatter MPI\_Gather

MPI\_Allscatter MPI\_Alltoall

#### **Collective Communication**

| rank | send buf |               | recv buf          |
|------|----------|---------------|-------------------|
|      |          |               |                   |
| 0    | a,b,c    | MPI_Allgather | a,b,c,A,B,C,#,@,% |
| 1    | A,B,C    | >             | a,b,c,A,B,C,#,@,% |
| 2    | #,@,%    |               | a,b,c,A,B,C,#,@,% |

|         | and but                                            |              |  |  |  |  |  |
|---------|----------------------------------------------------|--------------|--|--|--|--|--|
| rank    | send buf                                           | recv buf     |  |  |  |  |  |
|         |                                                    |              |  |  |  |  |  |
| 0       | a,b,c MPI_Alltoall                                 | a,A,#        |  |  |  |  |  |
| 1       | A,B,C>                                             | b,B,@        |  |  |  |  |  |
| 2       | #,@,%                                              | c, C, %      |  |  |  |  |  |
| _       | ,                                                  | 3, 3, 3      |  |  |  |  |  |
| (a more | more elaborate case with two elements per process) |              |  |  |  |  |  |
| rank    | send buf                                           | recv buf     |  |  |  |  |  |
|         |                                                    |              |  |  |  |  |  |
| 0       | a,b,c,d,e,f MPI_Alltoall                           | a,b,A,B,#,@  |  |  |  |  |  |
| 1       | A,B,C,D,E,F>                                       | c,d,C,D,%,\$ |  |  |  |  |  |
| 2       | #,@,%,\$,&,*                                       | e,f,E,F,&,*  |  |  |  |  |  |
| _       | 161-171-1                                          | 01.1-1.1-1.  |  |  |  |  |  |

Rank i wants to send message i to all other ranks

Implementation 1 : Blocking one-to-one:

```
for (int irank = 0; irank < size; ++irank) {
   if (irank == rank) continue;
   int stag = irank + size * rank;
   MPI_Send (&sendbuff, 1, MPI_INT, irank, stag, MPI_COMM_WORLD);
   std::cout << "rank " << rank << " sending message " << sendbuff << " to rank " << irank << std::endl;
   int rtag = rank + size * irank;
   MPI_Recv (&(recvbuff[irank]), 1, MPI_INT, irank, rtag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}</pre>
```

Notice encoding of sender and receiver in tag!

**DANGER: Deadlock!** 

Rank i wants to send message i to all other ranks

Implementation 2 : Non-Blocking one-to-one:

```
for (int irank = 0; irank < size; ++irank) {
   if (irank == rank) continue;
   int stag = irank + size * rank;
   MPI_Isend (&sendbuff, 1, MPI_INT, irank, stag, MPI_COMM_WORLD, &(reqs[numreq++]));
   std::cout << "rank " << rank << " sending message " << sendbuff << " to rank " << irank << std::endl;
   int rtag = rank + size * irank;
   MPI_Irecv (&(recvbuff[irank]), 1, MPI_INT, irank, rtag, MPI_COMM_WORLD, &(reqs[numreq++]));
}
MPI_Waitall (numreq, &(reqs[0]), MPI_STATUSES_IGNORE);</pre>
```

Notice encoding of sender and receiver in tag!

Notice Use of Waitall!

Rank i wants to send message i to all other ranks

Implementation 3 : Blocking Collective (All-to-all)

```
recvbuff.assign (recvbuff.size (), rank);
MPI_Alltoall (MPI_IN_PLACE, 1, MPI_INT, &(recvbuff[0]), 1, MPI_INT, MPI_COMM_WORLD);
```

Notice MPI\_IN\_PLACE

Very convenient when messages of same known size are to be sent / received!

Rank i wants to send message i to all other ranks

Implementation 4 : Blocking Collective (All-gather)

```
recvbuff.assign (recvbuff.size (), rank);
MPI_Allgather (&sendbuff, 1, MPI_INT, &(recvbuff[0]), 1, MPI_INT, MPI_COMM_WORLD);
```

Very convenient when messages of same known size are to be sent / received!

#### Advanced Example

#### Distributed assembly of sparse\_matrix:

- Each rank owns a contiguous range of rows
- Each rank can assign elements within its ownership range or outside its ownership range
- If multiple ranks assign one matrix element, after assembly the actual value must be the sum of local contributions

This is the most ommon situation encountered in **Finite Element** problems

- Each rank owns a range of mesh elements and a range of DOFs
- For low order continuous formulations **DOFs** correspond to mesh **vertices**
- The same vertex touches multiple **elements**
- The matrix entries related to a given DOF are the sum of contributions from all elements touching the corresponding vertex

## Exercise: assemble FEM Laplacian



|    | 10 | J1 | J2 | J3 |
|----|----|----|----|----|
| 10 | 2  | -1 | -1 |    |
| I1 | -1 | 2  |    | -1 |
| 12 | -1 |    | 2  | -1 |
| 13 |    | -1 | -1 | 2  |

## Exercise: assemble FEM Laplacian

