Mathematical methods for quantum engineering Exercise on dynamical systems and control pierre.rouchon@minesparis.psl.eu, October 11, 2023

Figure 1: A nonlinear electrical circuit with a capacitor C > 0, a resistance R > 0, a linear inductance L > 0 and a Josephson junction with parameter $L_* > 0$ and $\phi_* \ge 0$.

The dynamical model of the above electrical circuit is

$$C\frac{d^2}{dt^2}\phi(t) = -\frac{\phi(t)}{L} - \frac{\phi_*}{L_*}\sin\left(\frac{\phi(t)}{\phi_*}\right) - \frac{1}{R}\frac{d}{dt}\phi(t)$$

where ϕ is the flux depending on the time t.

- 1. Assume $R = +\infty$ and $\phi_* = 0$.
 - (a) Express the above second-order scalar differential equation as a set of two first-order scalar differential equations with state $x = (\phi, \dot{\phi})^T$.
 - (b) Show that the solution $\phi(t)$ reads

$$\phi(t) = \phi(0)\cos(\omega t) + \frac{\dot{\phi}(0)}{\omega}\sin(\omega t)$$

and define ω versus L and C.

- (c) Set $z = \phi + i\dot{\phi}/\omega$, a complex number $i = \sqrt{-1}$. Show that $\frac{d}{dt}z = -i\omega z$. Prove that $z(t) = e^{-i\omega t}z(0)$.
- 2. Assume R > 0 finite and $\phi_* = 0$
 - (a) Show that $\frac{d^2}{dt^2}\phi = -\omega^2\phi 2\xi\omega\frac{d}{dt}\phi$ where ξ and ω have to be defined.
 - (b) Express the above second-order scalar differential equation as a set of two first-order scalar differential equations.

- (c) Prove that this system is exponentially stable and that $\lim_{t\to+\infty} \phi(t) = 0$.
- (d) Discuss versus ξ the position of its eigenvalues in the complex plane.
- 3. Assume $R = +\infty$ and $\phi_* > 0$
 - (a) Express the above second-order scalar differential equation as a set of two first-order scalar differential equations with state $x = (\phi, \dot{\phi})^T$.
 - (b) Show that then $L_* \geq L$, exists a unique equilibrium to be define. Compute the first variation around this equilibrium and its eigenvalues. Discuss its stability.
 - (c) Assume $L_*/L = 2/(3\pi)$. Show that exist several equilibria to be defined and discuss their stabilities.
- 4. Assume R > 0 finite and $\phi_* > 0$
 - (a) Set $E(\phi, \dot{\phi}) = \frac{\phi^2}{2L} \frac{\phi_*^2}{L_*} \cos\left(\frac{\phi(t)}{\phi_*}\right) + \frac{C}{2}\dot{\phi}^2$. Show that $\frac{d}{dt}E \leq 0$. Conclude that any solution $\phi(t)$ converges to an equilibrium denoted by $\bar{\phi}$ and discuss its stability versus $\bar{\phi}$.
 - (b) Denote by $\bar{\theta}$, the unique solution in $]\pi/2, 3\pi/2[$ of $\tan \bar{\theta} = \bar{\theta}$. Assume that $L_*/L = -\cos \bar{\theta}$. Show that $\bar{\phi} = \bar{\theta}\phi_*$ is an equilibrium. Compute its eigenvalues and discuss its stability.
- 5. Assume R > 0 finite, $\phi_* > 0$ and consider the controlled dynamics

$$C\frac{d^2}{dt^2}\phi = -\frac{\phi}{L} - \frac{\phi_*}{L_*}\sin\left(\frac{\phi}{\phi_*}\right) - \frac{1}{R}\frac{d}{dt}\phi + u$$

with the scalar control input u.

- (a) Propose a feedback law of the form $u = f(\phi)$ that stabilizes the equilibrium $(\phi = 0, u = 0)$.
- (b) Assume R>0 and very large. Derive an approximate control model of state dimension one. Propose a feedback law stabilizing the system around any setpoint value of the flux ϕ_{sp} .