Class Imbalance Problem

A training dataset is called **imbalanced** if at least one of the classes are represented by significantly less number of instances than the others.

Why are some datasets imbalanced?

- •Natural reasons: Normal examples are generally abundant and form the majority (negative) class. On the other hand, examples of interest are generally rare and form the minority (positive) class.
- •Limitations: Cost, difficulty, privacy limits on collecting instances of some classes.
- Multiclass classification: One-against-rest schema

identifying fraudulent activity in transactions

text categorization

Medical diagnosis

Classification of surveillance events

Classification Boundary & Sensitivity

The class boundary learned by standard machine learning algorithms can be severely skewed toward the positive class.

Negative (majority) class (# of instances: 95)

Positive (minority) class (# of instances: 5)

No classification error on the negative class.

BUT is it good for sensitivity?

Machine learning algorithms try to maximize the classification accuracy. But accuracy on positive class (sensitivity) may decrease!

Methods to handle Imbalanced Data Classification

Oversampling

- Duplicating minority examples multiple times
- Introducing new synthetic examples for minority class

!!! Computational limitations

Undersampling

• Ignoring part of the majority class

!!! Possibility of discarding informative instances

Different misclassification penalty parameters

Active Learning