

第四单元 输入输出系统和设备

第三讲 接口电路和外部设备

刘 卫 东 计算机科学与技术系

主要教学内容

- ⇔接口电路的作用
- ●接口电路的一般组成
- ⇔串行接口
- ♥USB接口
- ⇔输入/输出设备

输入/输出系统

- ♥控制方式:处理器管理输入/输出的机制
- ♥总线:数据传输
- 母接口: 总线和外部设备的连接
 - 图 总线由多个设备共享
 - 设备之间存在差异
- ⇔设备:完成输入/输出任务
 - □ 完成数字信号到其它系统可识别信号的转换
 - ₩ 是多个学科的交叉和综合

接口的基本功能

- ⇒提供主机识别(指定、找到)使用的I/O设备的支持
 - ₩ 为每个设备规定几个地址码或编号
- *建立主机和设备之间的控制与通信机制
 - ₩ 接收处理器(主设备)的命令,并提交给外部设备,同时, 为主设备提供外部设备的状态
- 捉供主机和设备之间信息交换过程中的数据缓冲机构
- ◆提供主机和设备之间信息交换过程中的其他特别需求支持
 - ₩ 屏蔽外部设备的差异

通用可编程接口电路

- ♥通用
 - 能有多种用法与入/出功能
- ⇔可编程
 - # 能通过指令指定接口的功能和运行控制参数
- ⇔接口内部组成
 - ₩ 设备识别电路
 - ₩ 数据缓冲寄存器 (输入/输出)
 - ₩ 控制寄存器
 - ₩ 状态寄存器
 - 中断电路
 - ₩ 其他电路

串行接口芯片8251

串行接口,可用于同步或异步传送

- ♦ 同步传送
 - ₩ 5~8位/字
 - ₩ 支持内同步或外同步
 - ₩ 自动插入同步字符

♦ 异步传送

- ₩ 5~8位/字
- 🖫 时钟: 1、16或64倍波特率
- 🖫 停止位: 1、1.5或2位
- ₩ 可检测假启动
- 🖺 全双工
- 🛮 双缓冲发送器和接受器
- 🛮 可检测奇偶错、数据丢失错和帧错

串行通信

- ⇔同步传送
 - ₩ 采用同步信号
 - ◆内同步:同步字符
 - ◆外同步:硬件同步信号
- ◆ 异步传送
 - ■起始位、停止位
 - 波特率
- *全双工
 - ₩ 通信双方有各自的接收和发送部件,两条数据线

8251结构框图

串行传送中的有关概念

方式命令字的格式

工作命令字的格式

计算机科学与技术系 计算机组成原理

接口状态寄存器的内容格式

计算机科学与技术系 计算机组成原理

INTEL 8251 串行接口芯片

器件引脚图

D7~D0:I/O数据

CLK: 主时钟

/RxC,RxD:接收时钟、数据

/TxC,TxD: 发送时钟、数据

/CS: 片选信号

/WR、/RD:写、读命令

C/ D: 控制 / 数据信号

RESET: 总清信号

RxRDY: 接收准备就绪

TxRDY: 发送准备就绪

TxEMPTY: 发送寄存器空

/DTR、/DSR:

/RTS、/CTS:

TEC-2000 机串行口初始化的程序

MVRD R0, 4Eh

OUT 81h

MVRD R0, 37h

OUT 81h

方式设置: <u>0 1 0 0 1 1 1 0</u>
1个停止位 / 16*波特率
无奇偶校验 字符为 8 bits

命令设置: 0 0 1 1 0 1 1 1

对 OUT 指令而言, 81h、91h 为控制寄存器地址; 对 IN 指令而言, 81h、91h 为状态寄存器地址;

USB接口

- ◆ 用户不必再设置卡上、设备上的开关或跳线
- ⇔不必打开机箱来安装新的输入输出设备
- ◆ 应该只需要一根电缆线就可以将所有设备连接 起来
- ⇔输入/输出设备应可以从电缆上得到电源
- Ф单台计算机最多可以连接127个设备
- ◆系统应能支持实时设备 (声卡、电话)
- ⇔可在计算机运行时安装设备
- ◆不必重新启动计算机
- ⇔成本低

USB线缆

- ⇔由4根线组成,电源、地和双数据线。
- ♥同步传输方式

16

计算机科学与技术系 计算机组成原理

USB结构

计算机科学与技术系 计算机组成原理

USB接口工作原理

- ♥ USB 结构
 - ₩ 根HUB、层次结构
- ♦ 设备检测
 - № 根HUB定时查询接口状态,若检测到有设备接入到接口上,则 为该设备赋地址(7位)。设备初始地址为0,每个设备上应有 ROM,保存设备参数。
- ◆ 识别设备类型后,由设备驱动程序管理和使用设备。
 - ₩ 操作系统支持
- ⇔ 只有1个主设备,不需要仲裁,采用轮循方式,适合低速设备使用。
- ♥ 设备带宽为1.5MB/s。可适合一般的语音设备。
 - ₩ V2.0 60MB/s
 - ₩ V3.0 500MB/s

USB帧

- ⇔控制帧
 - ■配置设备,对设备发出命令,查询设备状态
- ⇔同步帧
 - ₩实时设备同步
- ♥块传送帧
 - # 非实时设备的大量数据传送
- ⇔中断帧
 - ■发出中断帧, 收集设备数据

USB协议

20

计算机科学与技术系 计算机组成原理

USB协议

- ◆ 每1ms, 定时发出一个SOF包, 进行时间同步(所有设备)。
- ♦ 协议包
 - □ 令牌包 (SOF、IN、OUT、SETUP)
 - ₩ 数据包(Data)
 - 握手包(ACK、NAK、STALL)
 - ₩ 特别包
- ◆ 第1帧:根发出读命令(IN),包含有地址;设备返回数据包 DATA(最多64位),其中,SYN同步字段(8位)、PID为包类型(8位)、载荷(Playload),和16位校验码;ACK为根接收到数据后返回给设备的确认包。
- ♦ 第3帧: 往设备写数据。

接口

- ⇔连接外部设备
 - ₩设备识别
 - ₩数据缓冲
 - ₩协议实现
 - ₩屏蔽差异
- ♥通过总线与主机进行通信

外部设备

- ⇔输入/输出设备
- ⇔外存储器
- ♥脱机输入/输出设备
- ⇔主要完成人机交互
- ◆ 是电子、机械、光学、化学等多学科的交叉
- Anyway, Anywhere, Anytime, Anyone

外部设备功能

- ♥ 完成数据的输入和/或输出
 - 信号转换
 - 数据采样
- ⇔与接口进行连接
 - ₩接口信号, 电平标准等
- *与主机进行通信
 - 通通过总线进行
 - 速速度
 - ₩ 控制方式

键盘

- ♥功能要求
 - 能完成字符的输入
- ♥设计要求
 - □完成功能
 - ₿稳定可靠

计算机科学与技术系

键盘的运行原理

计算机的键盘,用于向主机内敲入字符、功能键、汉字等符号,通过逐次敲击键盘上不同的键来完成。被敲击的键将以一个特定的编码被表示并被存入计算机主机。故键盘的运行原理,是把敲击的键在键盘上的位置对应为一个编码。

键盘的运行原理

把每个键在键盘上的位置对应为一个编码。

具体实现:是用行列扫描的方法,即把每个键分配在一个m列*n行矩阵的一个交叉点上,通过并行接口向n行依次送出仅有一行为零、其余各行均为一的值,再用并行接口读入m列上的取值。

当该值不为 FFH (全1码)时,表明有键按下,若该值仅含一位零,表明取值为 0 的行、列的交叉点的键被按下,用一个对照表即可得到相应键的编码。

尚需解决如下的一些问题:键的抖动、多键同时按下、由哪个部件完成这些操作过程。

键盘的运行原理

并行接口送来 10...1的 n 位数值到二极管的负极,并行接口接收 键盘线路 m 列送出的 m 位数据。当A键按下去后,5V电源送出经电阻、A键、二极管到 0 信号处的电流,从而在 第 2列产生 0 电平(红线所示),其他各列都给出高电平(黑线所示),故并行接口接收到的是 1 1 0...1 这样的 m 位数据

键盘接口

- ●采用串行口或者并行口
- ⇔中断方式
- ♥总线
 - **USB**
 - ₩慢速总线

计算机科学与技术系

鼠标

- ◆ 鼠标的产生
 - № 图形界面的出现,需要鼠标来进行拖动等操作
- ◆ 鼠标的功能
 - ₩ 根据鼠标的移动,在屏幕上移动位置
 - ₩ 选中某个对象,进而执行某些操作
- ◆ 鼠标的种类
 - ₩ 机械式鼠标
 - № 光电式鼠标
- ◆ 鼠标的接口
 - ₩ 串口、PS2接口、USB接口

机械式鼠标

31

计算机科学与技术系 计算机组成原理

机械式鼠标

- ♥ 鼠标内部有一个橡胶球、橡胶球紧贴着两个互相 垂直的轴(X、Y轴),每个轴上有一个光栅轮, 光栅轮两边对应着有发光二极管和光敏三极管。
- ♥ 鼠标在移动的时候,橡胶球便带动两个轴旋转, 同时光栅轮也就开始旋转、光敏三极管在接收发 光二极管发出的光时被光栅轮间断地阻挡, 从而 产生脉冲信号, 通过鼠标内部的芯片处理之后被 CPU接受。
- ♦ 脉冲信号的频率和数量,经过CPU计算后则表示 为屏幕上的距离和速度。

计算机科学与技术系 计算机组成原理

32

鼠标的发明

33

计算机科学与技术系 计算机组成原理

鼠标的发明

道格拉斯·恩格尔巴特 (Dr. Douglas C. Engelbart, 1925年1月30日-2013年7月2日)

早在20世纪60年代初,他就发表了一篇名为"放大人类智力"(Augmenting the Human Intellect)的论文,提出了计算机是人类智力的"放大器"的观点。为此,的人类对政善人机交互方的认为必须改善人机交互式计算技术。1997年Turing奖获得者。

智能输入设备

消華大学 Tsinghua University

- ⇔语音识别
- ◆ 手写体识别
- ⇔印刷体识别

输出设备概述

- ⇔点阵式输出设备 (视觉)
 - 以点阵的组合来表示不同的形状
 - ₩ 提供每个点的存储输出属性
 - 点阵输出设备将点按属性规定的颜色和灰度输出
- ⇔听觉
 - □ 音乐、语音合成
- ⇔触觉
 - □可穿戴计算机

点阵输出设备

- ♥显示器
 - **CRT**
 - **LCD**
 - PDP
- ⇔打印机
 - 針式打印机
 - 激激光打印机
 - ☆喷墨打印机

阴极射线管(CRT)显示器

- ⇔成像原理
 - □通过电子束撞击荧光板上的荧光粉,发光产 生亮点
- ♥组成
 - 电子枪、显示屏和偏转控制装置

阴极射线管(CRT)的构成

CRT的几个概念

- ◆ 光栅扫描和随机扫描
 - 电子束从左到右,从上到下扫描整个屏幕
 - ₩ 只扫描需要显示的点
- ♦ 刷新和帧存储器
 - ⇒ 为了得到稳定的图象,需要重复扫描整个屏幕
 - ₩ 为了重复扫描,需要存储图象信息。
- ♦ 分辨率和灰度级
 - □像素个数
 - ₩ 亮暗差别
- ♦ 图形和图像
 - ☆ 线条的有无表示
 - 自然景物、照片等

CRT图形显示器

- ♥ 容量大的VRAM
 - ₩ 存储点阵属性
 - ☆分辨率: 1024*768, 真彩色 1024*768*3Byte=2.3MB
- ⇔高速总线
 - 50场/秒,带宽为2.3*50MB/s=112.5MB/s
 - ■需要连接PCI总线
- ◆专用接口
 - ₩ 分辨率更高的图形设备将采用专用接口

液晶显示器

- ♥显示原理
 - 利用液晶的光学特性
 - ₩ 平板后面设置光源
 - ₩ 通过液晶改变透射光的偏振性 (从水平到垂直)
 - ■电场控制
- *特点
 - ₩ 平板显示,不需要高压电,移动方便
 - ₩ 无辐射
 - ₩ 价格较高

液晶显示器

43

计算机科学与技术系 计算机组成原理

等离子显示器

- ⇔成像原理
 - ₩ 利用惰性气体在一定电压作用下产生气体放电的 特性
 - ₩产生紫外线,紫外线激发荧光粉发光
 - 查在玻璃板之间隔开成象素,每个象素点内有惰性 气体和三色荧光粉,用电极控制

*特点

- ₩ 易于实现大画面显示
- ₩ 全色显示, 色纯度与CRT相当
- ₩视角达160度
- ₩ 寿命长
- □功耗大、成本高、对比度差。

激光打印机

- ⇔输出原理
 - 和用激光束照射硒鼓,使之放电,不再吸附墨粉来产生打印的形状
- ♥ 输出过程
 - ₩ 硒鼓带电后吸附墨粉
 - ₩ 激光束使硒鼓表面被照射的部分放电,释放墨粉
 - 常将墨粉压到纸上,并用高温烘烤,使之固化在打印纸上
 - ₩ 将硒鼓放电,清扫剩余墨粉

激光打印机组成

@2001 HowStuffWorks

打印机

- ⇔接口
 - ₩ 并行接口
- ♥总线
 - ₩ 慢速总线
- ♦协议

输入/输出设备

48

- ◆种类多样,功能繁杂,速度不一
- ●满足计算机和外界进行信息交换的需要
- ⇔人机交互的界面

计算机科学与技术系 计算机组成原理

关于课堂交流

- ♥12月22日进行大实验交流和评分
- ♦ 各组准备PPT进行汇报
- ◆ 将本组完成情况讲清楚, 尤其是特色部分
- ♥地点(以分组名单中的班号为准)

₩ 计31: 五教5101

₩ 计32: 9区222

₩ 计33: 9区223

₩ 计34:9区224

₩ 计35:9区225

■ MIPS32: 时间: 12月29日上午9:00 地点: 待定