

UC Berkeley EECS Adj. Assistant Prof. Dr. Gerald Friedland

Lecture #14: Performance and Distributed Computing

MIT Technology Review

Intelligent Machines

With this tool, Al could identify new malware as readily as it recognizes cats

https://www.technologyreview.com/s/610881/with-this-tool-ai-could-identify-malware-as-readily-as-it-recognizes-cats/

April 20, 2018

http://inst.eecs.berkeley.edu/~cs88

Administrivia

- This is the last "required" lecture. Next week: Information and bits, Summary.
- · The week after: Q&A for finals.
- Today: HKN review!
 Please do the survey and give us good grades! ©
- Thank you:
 - TAs!
 - Lab Assistants!
 - UC Berkeley Staff!

20/04/18 UCB CS88 Sp18 L14 2

Computational Concepts Toolbox

- Data type: values, literals, operations,
- Expressions, Call expression
- Variables
- · Assignment Statement
- · Sequences: tuple, list
- Dictionaries
- · Data structures
- · Tuple assignment
- Function Definition
 Statement

Conditional Statement Iteration: list comp, for, while

Lambda function expr.

- Higher Order Functions
 as Values, Args, Results
- Higher order function patterns
 - Map, Filter, Reduce
 - Function factories
- Recursion
 - Linear, Tail, Tree
- Abstract Data Types
- Mutation
- Iterators and Generators
- Object Oriented Programming, Classes
- Exceptions
- Declarative Programming
- Distributed Computing

Recap: Complexity

- How many Multiplies? Adds? Ops? How much time?
- As a function of n?

```
for i in 0 to n-1:
    for j in 0 to n-1:
        C[i][j] = 0
        for k in 0 to n-1:
        C[i][j] = C[i][j] + A[i][k]*B[k][j]
```

We say it is O(n3) "big-O of n3" as an asymptotic upper bound

time(n) < $c \cdot n^3$, for some suitably large constant c for any instance of the inputs of size n.

UCB CS88 Sp18 L14 3 20/04/18 UCB CS88 Sp18 L14

A more subtle complexity example

 What is the "complexity" of finding the average number of factors of numbers up to n?

```
from timeit import default_timer as timer

def timeit(fun):
    """ Rtn timer for fun(i) in secs. """

def timer_fun(i):
    start = timer()
    fun(i)
    end = timer()
    return (end-start)
    return timer_fun
20/04/18
UCB CS88 Sp18 L14
```

20/04/18

UCB CS88 Sp18 L14

How long does factors take?

```
In [9]: tbl = Table().with_column('n', np.arange(0,1000, 1))
    tbl['factors'] = tbl.apply(factors, 'n')
    tbl['n_factors'] = tbl.apply(len, 'factors')
    tbl['secs'] = tbl.apply(timeit(factors), 'n')
    tbl
```

n	factors	n_factors	secs
0	0	0	9.76503e-06
1	0	0	2.40898e-06
2	0	0	1.34797e-06
3	0	0	3.49898e-06
4	[2]	1	2.74903e-06
5	0	0	2.43704e-06
6	[2, 3]	2	3.019e-06
7	0	0	2.78e-06
8	[2, 4]	2	3.28396e-06
9	[3]	1	3.74601e-06
	0 1 2 3 4 5 6 7	0 [] 1 [] 2 [] 3 [] 4 [2] 5 [] 6 [2, 3] 7 [] 8 [2, 4]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

... (990 rows omitted)

Big Data, Big Problems

- Performance terminology
 - the FLOP: FLoating point OPeration
 - "flops" = # FLOP/second is the standard metric for computing power
- Example: Global Climate Modeling
 - Divide the world into a grid (e.g. 10 km spacing)
 - Solve fluid dynamics equations for each point & minute
 - » Requires about 100 Flops per grid point per minute
 - Weather Prediction (7 days in 24 hours):
 - » 56 Gflops
 - Climate Prediction (50 years in 30 days):
 » 4.8 Tflops
- Perspective
 - Intel Core i7 980 XE Desktop Processor
 - » ~100 Gflops
 - » Climate Prediction would take ~5 years

www.epm.ornl.gov/chammp/chammp.html

What Can We Do? Use Many CPUs!

- **Supercomputing** like those listed in top500.org
 - Multiple processors "all in one box / room" from one vendor that often communicate through shared memory
 - This is often where you find exotic architectures

Distributed computing

- Many separate computers (each with independent CPU, RAM, HD, NIC) that communicate through a network
 - » Grids (heterogenous computers across Internet)
 - » <u>Clusters</u> (mostly homogeneous computers all in one room)
 - Google uses commodity computers to exploit "knee in curve" price/ performance sweet spot
- It's about being able to solve "big" problems, not "small" problems faster
 - » These problems can be data (mostly) or CPU intensive

20/04/18 UCB CS88 Sp18 L14

- Functions as Data
- Higher-Order Functions
- Useful HOFs (you can build your own!)
 - map function over list
 - » Report a new list, every element e of list becoming function(e)
 - filter items such that <u>predicate</u> from <u>list</u>
 - » Create a new list, keeping only elements e of list if predicate(e)
 - reduce with function over list
 - » Combine all the elements of list with function(e)

Example:

filter → map → reduce

20/04/18 UCB CS88 Sp18 L14

MapReduce: Advantages/Disadvantages

- Now it's easy to program for many CPUs
 - Communication management effectively gone
 - Fault tolerance, monitoring
 - » machine failures, suddenly-slow machines, etc are handled
 - Can be much easier to design and program!
 - Can cascade several (many?) MapReduce tasks
- But... it might restrict solvable problems
 - Might be hard to express problem in MapReduce
 - Data parallelism is key
 - » Need to be able to break up a problem by data chunks

Google's MapReduce Simplified

- Filter: Chunk data and send to different CPUs.
- Map: Apply function to data chunks on different CPUs.
- Reduce: Combine results from different CPUs.
 - Reducer should be associative and commutative
- Imagine 10,000 machines ready to help you compute anything you could cast as a MapReduce problem!
 - This is the abstraction Google is famous for authoring
 - The system takes care of load balancing, dead machines, etc.

20/04/18 UCB CS88 Sp18 L14

Apache Spark (from Berkeley)

12

10

- Data processing system that provides a simple interface to analytics on large data
- A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
- · Support the operations you are familiar with
 - Data-Parallel: map, filter, reduce
 - Database: join, union, intersect
 - OS: sort, distinct, count
- All of can be performed on RDDs that are partitioned across machines

20/04/18 UCB CS88 Sp18 L14 11 20/04/18 UCB CS88 Sp18 L14

Spark Execution Model

Processing is defined centrally and executed remotely

- · A RDD is distributed over workers
- A driver program defines transformations and actions on RDDs
- A cluster manager assigns task to workers
- Workers perform computation, store data, & communicate with each other
- Final results communicate back to driver

Speedup Issues: Amdahl's Law

• Applications can almost <u>never</u> be completely parallelized; some serial code remains

Time
Parallel portion

Serial portion

1 2 3 4 5

Number of Cores

- s is serial fraction of program, P is # of cores (was processors)
- · Amdahl's law:

Speedup(P) = Time(1) / Time(P) $\leq 1 / (s + [(1-s) / P)], \text{ and as } P \rightarrow \infty$ $\leq 1 / s$

Distributed Computing Challenges

- Communication is fundamental difficulty
 - Distributing data, updating shared resource, communicating results, handling failures
 - Machines have separate memories, so need network
 - Introduces inefficiencies: overhead, waiting, etc.
- Need to parallelize algorithms, data structures
 - Must look at problems from parallel standpoint
 - Best for problems whose compute times >> overhead

20/04/18 UCB CS88 Sp18 L14

14

Amdahl's Law: Conclusion

- Computer Science View: Even if the parallel portion of your application speeds up perfectly, your performance will be limited by the sequential portion.
- **Data Science View:** Often, as the data gets large, the work that can be parallelized grows faster than the size of the data.

Fundamental Change in Perspective!

20/04/18 UCB CS88 Sp18 L14 15 20/04/18 UCB CS88 Sp18 L14 16

Summary: Data science

https://www.youtube.com/watch?v=TzxmjbL-i4Y

Summary: Distributed Computing

- · Parallelization can help speed up
- Bottleneck: dependencies in data, algorithm
- Requires rethinking the program
- Good luck with the project!
- See you next week for that final (fun) lecture!

20/04/18 UCB CS88 Sp18 L14 17 20/04/18 UCB CS88 Sp18 L14 1 UCB CS88 Sp18 L14