

AGENTES E INTELIGÊNCIA ARTIFICIAL DISTRIBUÍDA

4º ano do Mestrado Integrado em Engenharia Informática e Computação

$Simulação\ de\ Evacuação\ com\ Agentes$

Relatório de Implementação

Estudantes:

Gil Domingues
- up201304646@fe.up.pt
Pedro Pontes
- up201305367@fe.up.pt

10 de Dezembro de 2016

Conteúdo

1	Introdução	3
2	Contexto 2.1 Cenário 2.2 Objetivos	3 3
3	Especificação	4
	3.1 Agentes	4
	3.2 Interações	6
4	Desenvolvimento	9
	4.1 Faseamento	9
	4.2 Ambiente de Desenvolvimento e Ferramentas	9
		9
		10
	8	10
	4.4.2 Ambiente	11
5	Experimentação	12
6	Conclusão	16
7	Melhorias	16
8		16
	8.1 Bibliografia	16
	8.2 Software	16

1 Introdução

Uma evacuação implica mover pessoas de um dado local devido à ocorrência de uma situação de (potencial) catástrofe. Exemplos incluem a evacuação de um edifício em chamas ou de uma localidade, antes, durante ou após um desastre natural, como uma cheia ou terramoto.

Evacuar grandes multidões é um desafio, independentemente das circunstâncias. Tipicamente, de uma evacuação de emergência resultam feridos - ou mesmo mortes -, devido ao caos e pânico que se geram.

Com o aumento da frequência de situações que implicam a evacuação de um elevado número de pessoas num curto espaço de tempo, existe uma consciência acrescida da importância do planeamento dessas situações.

Com efeito, a gestão e organização de multidões em situações de emergência tornou-se uma importante área de estudo ao longo dos últimos anos e desempenha, hoje, um papel importante no planeamento de um edifício ou área.

Dados os desafios - quer de ordem prática, quer de ordem financeira - que a realização de simulacros coloca, é cada vez mais comum o uso de técnicas de simulação para estudar estas situações. De facto, existem já diversos tipos de sistemas, como as simulações baseadas na dinâmica de fluídos, as simulações baseadas em autómatos e as simulações baseadas em agentes.

2 Contexto

2.1 Cenário

Ocorreu um incêndio, uma inundação, a libertação de um gás nocivo, um qualquer acidente que obriga à evacuação daqueles presentes num dado local. O local possui múltiplas saídas de emergência e também obstáculos. Os indivíduos encontram-se distribuídos pelo local, ocupados nas suas tarefas usuais. Aquando da deteção do acidente, todos os indivíduos procuram atingir uma das saídas de emergência, o mais rapidamente possível.

Alguns agentes poderão ser altruístas, no sentido de ajudarem acidentados a deslocarem-se até à saída, outros poderão simplesmente querer «salvar a pele», exibindo um comportamento mais egoísta. Alguns poderão conhecer bem o local e, como tal, chegar rapidamente à saída, outros demorarão mais ou mesmo perder-se, tendo que pedir ajuda.

2.2 Objetivos

Realizado no âmbito da unidade curricular de Agentes e Inteligência Artificial Distribuída, com este projeto pretende desenvolver-se um programa que permita simular a interação de agentes confinados a um espaço concreto e limitado perante a necessidade de evacuar esse espaço, podendo o utilizador definir diferentes cenários, especificando, por um lado, o tipo, número e localização dos agentes a evacuar e, por outro, o número e localização de saídas de emergência e obstáculos.

3 Especificação

3.1 Agentes

Podem distinguir-se dimensões distintas no comportamento exibido durante uma evacuação: por um lado, o espaço a evacuar e a sua configuração, e, por outro lado, as características psicológicas e sociais que afetam a resposta dos que participam na evacuação.

Assume-se que, em situações de emergência, os indivíduos entram em pânico e ficam, por isso, propensos a tomar decisões irracionais. Mais ainda, as pessoas tentam mover-se tão depressa quanto possível, devendo evitar obstáculos.

Deste modo, tem-se que os agentes implementados são autónomos, proativos e reativos e são caracterizados por diversos atributos, conforme definido na Tabela 1.

Tabela 1: Atributos dos agentes implementados, que condicionam os seus comportamentos.

Atributos	Tipo	Descrição
idade	int	[5, 65]
género	Enum	{Masculino, Feminino}
conhecimento da área	int	[0, 100] probabilidade de seguir o melhor caminho até uma saída
independência	int	[0, 100] probabilidade de seguir (ou não) outros
altruísmo	int	[0, 100] probabilidade para ajudar outros
mobilidade	int	[0, 100] condiciona a probabilidade de se mover num dado instante
estado de pânico	int	[0,100] afeta o discernimento da pessoa
paciência	int	[0,100] determina a probabilidade de reagir de intempestivamente

Em função dos atributos de independência e de conhecimento da área, considerouse a categorização dos agentes em quatro estereótipos, conforme descrito na Tabela 2.

Tabela 2: Diferentes tipos de agente, de acordo com os valore possíveis para os atributos considerados.

Tipo	Atributos		
	independence	areaKnowledge	
▼ IndependentKnowledgeable	[50, 100]	[50, 100]	
▼ IndependentUnknowledgeable	[50, 100]	[0, 50]	
 DependentKnowledgeable 	[0, 50]	[50, 100]	
 DependentUnknowledgeable 	[0, 50]	[0, 50]	

Esta classificação permitiu a definição, ao nível de interface, de diferentes representações para os vários tipos de agente, permitindo estabelecer visualmente a relação entre o tipo de agente e os seus comportamentos.

Tabela 3: Comportamentos dos agentes.

Comportamento	Descrição	
Processo de Evacuação	A cada momento um agente deve usar o seu conhecimento da área e mover-se em direção à saída.	
Mecanismo de Pânico	A cada momento um agente atualiza o seu estado de pânico de acordo com a sua condição e o ambiente envolvente.	
Sentido de Altruísmo	A cada momento um agente monitoriza o ambiente envolvente e decide responder ou ignorar pedidos de ajuda de outros agentes.	
Pedido de Direções	Um agente toma, por ser pouco independente ou ter pouco conhecimento da área, pede direções a agentes na sua proximidade.	
Pedido de Ajuda		

3.2 Interações

A comunicação entre agentes foi implementada recorrendo a mensagens JADE, obedecendo aos protocolos FIPA.

Dado que todos os agentes se encontram, a cada momento, numa dada posição de um espaço, cada agente pode tomar conhecimento daqueles que o rodeiam, sendo possível obter os seus AID's usando a noção de proximidade.

Excerto 1: Código Java ilustrando a possibilidade de uma pessoa poder descobrir outras.

```
// find people in the surrounding area
ArrayList<AID> peopleNear = environment.findNear(myAgent);
if(peopleNear.isEmpty()) {
   return;
}
```

Os vários agentes assumem uma atitude mais ou menos cooperativa, em função dos atributos altruísmo e independência, e partilham um objetivo comum: chegar a uma saída.

Com vista a simular de forma algo fidedigna as condições de uma evacuação de emergência, foram implementadas as seguintes interações entre agentes:

• Terror:

Um agente cujo nível de pânico sobe acima de um certo nível envia uma mensagem PROPAGATE para agentes na proximidade.

Aqueles que recebem esta mensagem, podem, ou não, propagar a mensagem e aumentam o seu estado de pânico - variação que depende de diversos fatores: assumiu-se que as pessoas mais independentes são menos influenciáveis pelos gritos dos outros enquanto os mais jovens ou mais idosos são mais impressionáveis.

Figura 1: Diagrama de sequência exemplificando uma interação do tipo Terror.

• Orientação.

Duas pessoas podem partilhar conhecimento sobre a área, mediante um pedido nesse sentido. Um agente que tenha pouco conhecimento da área pode enviar a um agente ao seu redor uma mensagem CFP, a que esse agente responde com uma dada probabilidade - dependente do valor do atributo altruísmo. A resposta consiste numa mensagem INFORM, com o valor do seu conhecimento da área, conhecimento1. Por forma a simular a aquisição de informação, o agente que fez o pedido atualizará o seu nível de conhecimento da área, conhecimento2, de acordo com:

conhecimento2 = max(conhecimento2, conhecimento1 * 0.80)

Figura 2: Diagrama de sequência exemplificando uma interação do tipo Orientação.

• Ajuda;

Um agente pode pedir ajuda, enviando uma mensagem *CFP* para agentes ao seu redor. Os agentes na disposição de ajudar podem oferecer a sua ajuda, enviando uma mensagem *PROPOSAL*, com o valor da sua mobilidade, *mobilidade1*.

O autor do pedido de ajuda aceita uma oferta, respondendo com uma mensagem $ACCEPT_PROPOSAL$, com o valor da sua mobilidade, mobilidade2. O agente que ofereceu ajuda passa a guiar o outro até à saída, sendo a mobilidade de cada um dada por:

$$mobilidade1 = mobilidade2 = \frac{mobilidade1 + mobilidade2}{2}$$

Figura 3: Diagrama de sequência exemplificando uma interação do tipo Ajuda.

Como pode constatar-se, estes protocolos são relativamente simples. De referir, ainda, que as interações Ajudar e Orientar são efetuadas de acordo com o modelo de Rede Contratual, sendo que, no caso, o papel de gestor cabe ao agente que faz o pedido inicial.

4 Desenvolvimento

4.1 Faseamento

A implementação do projeto executou-se em diferentes etapas:

- 1. Especificação e planeamento (23 de outubro a 1 de novembro);
- 2. Implementação de:
 - (a) Agente (25 de outubro a 5 de novembro);
 - (b) Espaço (5 de novembro a 25 de novembro); Teste e análise do comportamento de um agente num espaço.
 - (c) Interação entre agentes (5 de novembro a 5 de dezembro); Teste e análise do comportamento de vários agentes num espaço.
- 3. Exploração de diferentes cenários e recolha e avaliação de métricas (1 de dezembro a 10 de dezembro).

4.2 Ambiente de Desenvolvimento e Ferramentas

O desenvolvimento decorreu em ambiente Windows 10 e usando a versão Neon do IDE Eclipse, tendo-se feito uso das ferramentas JADE, Repast Simphony e SAJaS.

JADE: Definição de agentes.

Repast Simphony: Simulação multiagente.

SAJaS: Integração de agentes *JADE* com *Repast*.

O Repast é uma framework open-source que permite criar, analisar e experimentar com mundos artificiais populados por agentes que interagem de forma não trivial.

Concretamente, irá utilizar-se a sua mais recente versão - $Repast\ Simphony$, que permite programar em Java a estrutura espacial, a estrutura lógica e os comportamentos dos agentes.

Tendo sido amplamente utilizado em aplicações de simulação, considera-se de particular utilidade, por um lado, o foco em modelar o comportamento social e, por outro, a recolha de métricas associadas às simulações realizadas. Por último, tem-se a vantagem de poder acompanhar, de forma visual, o decorrer da simulação.

Adicionalmente, irá utilizar-se a API SAJaS, que possibilita a integração de agentes JADE com Repast, permitindo definir os comportamentos de agentes e fazer uso das capacidades de comunicação entre agentes, visando simular as interações expectáveis num cenário de evacuação.

4.3 Estrutura

Estrutura da aplicação, módulos, diagrama de classes... (incluir UML)

Figura 4: Diagrama de pacotes, ilustrativo da estrutura lógica do projeto.

Figura 5: Classes do pacote Communication.

4.4 Detalhes

4.4.1 Agentes

Detalhes de implementação sobre o agentes

Atributos

Conforme descrito na especificação, os agentes encontram-se definidos por um conjunto de atributos. Na definição da variação de alguns dos atributos usados, partiu-se de alguns pressupostos:

- Pânico

Assumiu-se que o pânico de uma pessoa pode aumentar - por exemplo, como resultado de um empurrão - ou diminuir - por exemplo, quando recebe ajuda por parte de outra pessoa.

Mais ainda, tem-se que o pânico aumenta mais depressa do que diminui e, no cálculo dessa variação considerou-se que as pessoas mais independentes têm uma reação mais moderada, i.e., veem o seu nível de pânico variar de forma mais comedida. Pelo contrário, jovens e pessoas de idade mais

avançada reagem de forma mais pronunciada, isto é, veem o seu nível de pânico variar de forma errática.

Numa tentativa de aproximar a simulação daquilo que seria observável numa situação real, considerou-se que o pânico condiciona a capacidade de uma pessoa usar o seu conhecimento da área e escolher um caminho até à saída. Por outro lado, fez-se igualmente depender do estado de pânico de uma pessoa a probabilidade de empurrar alguém que se encontre no caminho que pretende seguir.

- Mobilidade

No que diz respeito à mobilidade, consideram-se apenas variações negativas - por exemplo, provocadas por empurrões -, sendo que aquelas mais jovens ou de idade mais avançada verão a sua mobilidade diminuir de forma mais rapidamente.

Não obstante, a mobilidade de uma pessoa pode ser temporariamente aumentada, sempre que uma pessoa for ajudada por outra. Se, por motivo de empurrão ou morte, essa ajuda terminar, a mobilidade da pessoa é restaurada para o seu valor anterior.

Da mobilidade de uma pessoa depende a probabilidade de, a cada instante, uma pessoa se mover. A mobilidade constringe, ainda, o altruísmo de uma pessoa, limitando a resposta a pedidos de ajuda recebidos.

- Paciência

Considerou-se que a paciência de uma pessoa oscila, aumentando ou diminuindo com um valor predefinido e configurável.

- Movimento
- Direções
- Ajuda
- Outros

4.4.2 Ambiente

Detalhes de implementação sobre o ambiente/espaço.

5 Experimentação

Ao longo do processo de desenvolvimento foram levadas a cabo múltiplas experiências, com vista a testar a implementação dos Agentes.

• Evacuação simples

Objetivo: Testar se um agente é capaz de atingir a saída.

Esta experiência consistiu na colocação, numa dada posição de um espaço pré-definido, de um agente de um certo tipo, tendo-se analisado o seu comportamento e medido o tempo que decorreu até que chegassem à saída.

Tabela 4: Tempos de evacuação em função do tipo de agente usado.

Tipo de agente	Tempo de evacuação	
IndependentKnowledgeable	16.73s	
IndependentUnknowledgeable	34.79s	
DependentKnowledgeable	17.71s	
DependentUnknowledgeable	50.12s	

Como esperado, observou-se que os agentes com maior conhecimento da área demoraram menos tempo a chega à saída.

Dado que, nesta fase, se utilizou apenas um agente de cada tipo em cada simulação, o atributo independência não se reflete no desempenho do agente, tendo-se observado tempos de evacuação semelhantes para os agentes dos tipos IndependentKnowledgeable e DependentKnowledgeable.

O mesmo não foi observado no caso dos agentes de tipos *DependentKnowled-geable* e *DependentUnknowledgeable*, devido ao caráter estocástico das simulações.

• Mecanismo de pânico

Objetivo: Testar o mecanismo de pânico.

Esta experiência consistiu na colocação, em posições adjacentes de um espaço pré-definido, de dois agentes, sendo que um deles caracterizado por um elevado nível de pânico. No caso, ambos os agentes são do tipo *IndependentKnowledge-able*, embora tal não seja relevante para o objetivo desta experiência, podendo, de facto, ter-se usado agentes de qualquer um dos tipos definidos.

Procedeu-se à análise dos seus comportamentos e, no final, verificaram-se os seus níveis de pânico. Como esperado, observou-se que um agente em pânico «emite um grito», conforme a especificação deste tipo de interação. O outro agente «ouve o grito» e aumenta o seu nível de pânico - como se pode observar na Figura 6.

```
New environment created.
 (d)
 (d)
      Population of 2 created.
       IndependentKnowledgeable_0 pushed IndependentKnowledgeable_1
Log:
 (d)
      Panic variation: 12.0
     Mobility variation: -12.0
 (d)
       IndependentKnowledgeable 1 pushed IndependentKnowledgeable 0
Log:
 (d)
      Panic variation: 12.0
 (d)
     Mobility variation: -12.0
 (d)
      IndependentKnowledgeable 0 screamed.
```

(d) IndependentKnowledgeable_1 heard a scream!

(d) Panic variation: 12.0

Figura 6: Excerto do registo de execução de uma simulação do cenário descrito.

Em algumas das execuções, como nesta, observaram-se «empurrões», devido ao facto de se encontrarem em posições adjacentes e ao facto de os agentes estarem num estado de pânico.

No caso, um dos agentes «empurrou» o outro, o que produziu o primeiro aumento do nível de pânico, visível no gráfico da Figura 7.

Seguiu-se um novo «empurrão», desta vez, por parte do agente que tinha sido «empurrado» antes, causando um novo aumento do nível de pânico.

O terceiro aumento do pânico observado fica a dever-se ao «grito» que o agente em pânico lançou ao ser empurrado, e reflete a reação do agente que o empurrou a esse mesmo «grito».

Figura 7: Variação dos atributos dos agentes do cenário.

Salienta-se, ainda, a diminuição da mobilidade verificada a cada «empurrão», observável na Figura 7.

• Pedido de direções

Objetivo: Testar a partilha de conhecimento entre dois agentes.

Esta experiência consistiu na colocação, em posições adjacentes de um espaço pré-definido, de um agente do tipo *IndependentKnowledgeable*, com um elevado nível de altruísmo, e de um agente do tipo *DependentUnknowledgeable*, com um conhecimento da área reduzido.

- (d) New environment created.
- (d) Population of 2 created.
- (d) IndependentUnknowledgeable_1 is requesting directions.
- (d) IndependentUnknowledgeable_1 requested directions (attempt 1) to IndependentKnowledgeable_0
- (d) IndependentKnowledgeable_0 heard DirectionsRequest from IndependentUnknowledgeable_1
- (d) IndependentKnowledgeable_0 sent directions to IndependentUnknowledgeable_1
- (d) IndependentUnknowledgeable_1 received directions from IndependentKnowledgeable_0
- (d) IndependentUnknowledgeable_1 received good directions from IndependentKnowledgeable_0

Figura 8: Excerto do registo de execução de uma simulação do cenário descrito.

Como esperado, observou-se que o agente com menor conhecimento da área efetuou um pedido de direções, que despoleta uma resposta por parte do outro agente. Recebendo esta resposta, o agente que efetuou o pedido atualiza o seu conhecimento da área com base na informação que contém e num fator de aquisição de conhecimento, como detalhado. Na Figura 9 é possível verificar o aumento do conhecimento médio.

Figura 9: Variação dos atributos dos agentes do cenário.

Terminada a fase de desenvolvimento, foram avaliados diferentes cenários.

- diferentes configurações para o local do acidente, variando o número e localização de saídas de emergência e obstáculos;
- diferentes combinações de agentes a evacuar, variando o seu tipo, número e localização.

Deste modo, foi possível observar-se como estas variações se refletem em métricas como o tempo médio e máximo de evacuação ou o número de feridos.

6 Conclusão

Terminado o projeto, destaca-se a importância de ferramentas de simulação de evacuação, perante os desafios que a realização de simulacros coloca.

Consideram-se atingidos os objetivos definidos: desenvolver um programa que permita simular a interação de agentes confinados a um espaço concreto e limitado perante a necessidade de evacuar esse espaço.

Da análise dos resultados das experiências levadas a cabo Do desenvolvimento do trabalho e aplicabilidade de SMA ao cenário proposto

7 Melhorias

Primeiramente, considera-se que seria útil a possibilidade de poder definir o espaço usando um *GUI*. No que respeita a melhorias da simulação propriamente dita, uma possível melhoria, seria a introdução de um elemento fogo no espaço. Tal poderia ser implementado, por exemplo, usando um agente com a capacidade de se replicar ao longo do tempo para posições adjacentes, simulando a propagação de um incêndio. Agentes na proximidade poderiam queimar-se, vendo a sua mobilidade reduzida ou mesmo morrendo.

8 Recursos

8.1 Bibliografia

- [1] Almeida, João; Rosseti, Rosaldo; Coelho, António: Crowd Simulation Modeling Applied to Emergency and Evacuation Simulations using Multi-Agent Systems. 2011.
- [2] FIPA: FIPA Specification. Disponível online em http://www.fipa.org/specs/fipa00037/SC00037J.pdf. Consultado em novembro de 2016.
- [3] Respast: Repast Simphony Documentation. Disponível online em http://repast.sourceforge.net/docs/api/repast_simphony/index.html. Consultado em novembro de 2016.
- [4] SAJaS: SAJaS Documentation. Disponível online em https://web.fe.up.pt/~hlc/doku.php?id=sajas. Consultado em novembro de 2016.

8.2 Software

- [1] Repast Simphony;
- [2] JADE;
- [3] SAJaS.
- [4] Eclipse;