Assignment 1

Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta

- (1) Prove Theorem 1.1 in Lecture 1.
- (2) Let A, B, C be sets, $f: A \to B$ and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$.

State (give reasons/counterexamples) whether the following statements are true or false:

- a) If h is not injective, then at least one of the functions f and g is not injective.
- b) If h is not injective then both the function f and g is not injective.
- (3) Let $f: A \to B$ be a function. Let $W \subseteq B$.
 - a) Prove that $f(f^{-1}(W)) \subseteq W$.
 - b) Prove that if f is surjective then $f(f^{-1}(W)) = W$.
- (4) Consider the formula $f(x) = 2 \sqrt{x+4}$.
 - a) What is the largest subset of $A \subseteq \mathbb{R}$ so that $f: A \to \mathbb{R}$ defined by $f(x) = 2 \sqrt{x+4}$ is a function?
 - b) Compute the image of $f: A \to \mathbb{R}$.
 - c) Compute f([5, 12]).
 - d) Compute $f^{-1}([0,2])$.
- (5) Theorem 3.16 in Lecture 1.
- (6) Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.
 - a) $\{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}$
 - b) $(\frac{1}{4}, \frac{3}{4})$
- (7) Let \mathbb{N} be the set of natural numbers. Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

1

(8) Prove that supremum and infimum of a set is unique.

- (9) Prove that for any two number $x, y \in \mathbb{R}$ such that 0 < x < y, there are positive integers m, n such that $x < \frac{m^2}{n^2} < y$.
- (10) Suppose that A, B are nonempty sets of real numbers such that $x \leq y$ for all $x \in A$ and $y \in B$. Then $\sup A \leq \inf B$.
- (11) For each of the following sets S find $\sup\{S\}$ and $\inf\{S\}$ if they exist. You need to justify your answer.
 - a) $S = \{x \in \mathbb{R} : x^2 < 5\}.$
 - b) Let $A = \{1/n : n \in \mathbb{N} \text{ and } n \text{ is prime}\}.$
- (12) Let $\{a_n\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\{a_n\}$ converges and $\lim_{n\to\infty} a_n = a$.
- (13) Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers satisfying

$$|a_{n+1} - a_n| \le \frac{1}{2}|a_n - a_{n-1}|.$$

Show that the sequence converges.

- (14) If a sequence converges, then its limit is unique.
- (15) Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions
 - a) $|x_{n+1} x_n| \le \alpha^n$, n = 1, 2, 3, ...
 - b) $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|, n = 1, 2, 3, \dots$

Then prove that (x_n) satisfies the Cauchy criterion.

Note: Whenever you use this result, you have to show that the number α that you get, satisfies $0 < \alpha < 1$. The condition $|x_{n+2} - x_{n+1}| \le |x_{n+1} - x_n|$ does not guarantee the convergence of (x_n) . Give examples.

- (16) For two sets S_1 and S_2 in \mathbb{R}^n , prove or disprove
 - a) $S_1 + S_2$ is open if both S_1 and S_2 are open;
 - b) $S_1 + S_2$ is closed if both S_1 and S_1 are closed;
 - c) $S_1 + S_2$ is bounded if both S_1 and S_2 are bounded.

Are the converses of these statements true? Prove or disprove their converses.

(17) Show that the following sets are open in \mathbb{R} .

$$A = \{x \in \mathbb{R} : x^3 > x\}, \ B = \{x \in \mathbb{R} : 0 < x < 1, \frac{1}{x} \notin \mathbb{Z}\}.$$

(18) Decide whether the following statements are true or false. If they're true, prove them. If they are false, provide counter examples.

- a) An open set that contains every rational number must necessarily contain all of \mathbb{R} .
- b) Every nonempty open set contains a rational number.
- (19) If $A \subseteq R$ is a closed set bounded from above (below), show that A has a maximum(minimum).
- (20) Decide whether the following sets are open or closed. Determine the interior
 - a) $\mathbb{Z} \in \mathbb{R}$
 - b) $\{(-1)^n + 1/n : n \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{R}$