- >> Eficiência de Algoritmos
 - Não basta saber se o algoritmo funciona, precisamos saber se ele é o melhor possível
 - Análises mais comuns:
 - * Tempo <<Vamos focar nessa
 - * Memória (Espaço) << Iremos pra essa num caso de empate de eficiencia
 - * Comunicação (Mensagens)

Vamos nos dedicar a analise de tempo.

Muitos fatores interferem no tempo de execução de um programa, de forma que e mais útil definirmos uma noção abstrata de tempo para analisar a eficiência de algoritmos quando o nosso objetivo e observar a proposta de resolução que eles oferecem. Vamos definir um passo em um algoritmo e usar essa noção como unidade de tempo para analise.

Um passo na nossa linguagem, são:

- Cada instrução de atribuição.
- Cada instrução condicional.
- Cada instrução de retorno.

Algoritmo: Extremos(V) Entrada: Vetor numérico V

Saída: Índices do maior e do menor elemento em V

```
se |V| = 0 entao:
| retorne 0,0
maior ←1
menor ←1
para i ←2,3,...,|V| faça:
| se V[menor] > V[i] entao:
| menor<-i
| se V[maior] < V[i] entao:
```

retorne maior, menor

A dimensão da entrada que interfere diretamente no numero de passos que um algoritmo executa damos o nome de tamanho de entrada.

Geralmente denotamos esse tamanho por "n", "m", ou outra letra, sendo "n" mais comum. Mesmo para duas entradas de mesmo tamanho, ainda e possível que um mesmo algoritmo execute quantidades diferentes de passos.

Vamos então nos preocupar apenas com o máximo e o mínimo que esse algoritmo pode gerar, para um dado tamanho de entrada.

Vamos definir as funções Fp(n) e Fm(n) para relacionar o tamanho da entrada com o máximo e o mínimo respectivamente e denominá-las funções de complexidade de pior caso e de melhor caso.

Funções de calculo de melhor caso e de pior caso pro algoritmo "Extremos":

Pior caso - Fp(n) = 4+3(n-1)+2n = 5n+1

Algoritmo	Passos
se V = 0 entao: retorne 0,0	+1
maior ←1 menor ←1	+1 +1
para i ←2,3,, V faça: se V[menor] > V[i] entao: menor ← i se V[maior] < V[i] entao: maior ← i	+2n +n +n < +n > ou, totalizando 3(n – 1) +n <
retorne maior, menor	+1

Melhor Caso - Fm(n) = 4+2(n-1)+2n = 4n+2

Algoritmo	Passos
se V = 0 entao: retorne 0,0	+1
maior ←1 menor ←1	+1 +1
para i ←2,3,, V faça: se V[menor] > V[i] entao: menor ← i se V[maior] < V[i] entao: maior ← i	+2n +n < +n > ou, totalizando 2(n – 1) +n < +n
retorne maior, menor	+1

Entradas de pior caso:

São todas as entradas que, passadas para o algoritmo, o forçam a executar o máximo de passos.

Entradas de melhor caso:

São todas as entradas que, passadas para o algoritmo, o forçam ao executar o mínimo de passos.

Supondo outras função de complexidade:

$$Gp(n) = 3.n^2+2n+1$$

 $Gp(5) = 3(25)+2(5)+1 = 86$
 $Fp(n) = n^2+1$
 $Fp(5) = 26$

Já sabemos qual algoritmo é mais eficiente, comparando as duas complexidades. Vamos comparar algoritmos com relação ao seu comportamento quanto a variação no tamanho da entrada.

Para isso, vamos nos ater as comparações que levem em conta as ordens de grandezas das complexidades dos algor timos.

Para as definições a seguir, consideraremos funções naturais de domínio natural.

Definição:

Dadas as funções f e g, dizemos que g e limite superior assintótico para f quando existem constantes c pertencentes aos reais iguais ou maiores a 0 e n0 pertence aos naturais, tais que: $f(n) \le c * g(n)$ para todo $n \ge n0$

Dadas as funções f e h, dizemos que h e o limite inferior assintótico para f se existem constantes c pertencentes aos reais maiores ou iguais a 0 e n0 pertencente aos naturais tais que: $0 \le c + h(n) \le f(n)$ para todo $n \ge n0$

Dadas duas funções f e k, dizemos que k e equivalente assintótico quando k é tanto limite superior como inferior assintótico para f.

Os conjuntos O(g), $\Omega(g)$ e $\Theta(g)$ são respectivamente os conjuntos de todas as funções para as quais a função g é limite superior, limite inferior e equivalente assintótico.

Limites Assintóticos:

- Quando f(n) pertence a O(g(n)), g é limite superior assintótico para f
- Quando f(n) pertence a $\Omega(g(n))$, g e limite inferior assintótico para f
- Quando f(n) pertence a $\Theta(g(n))$, g é equivalente assintótico para f

Caminho para provar O(g(n)):

```
Tendo: f(n) = 2n^2-3n+100 e g(n) = n^2
```

Vamos provar g(n) é um limite superior assintótico, demonstrando que existe uma constante que corresponderia a definição de limite superior assintótico.

$$2n^2 - 3n + 100 \le c * n$$
, para todo $n \ge n0$

Existem constantes 'c' que pertencem aos reais maiores ou iguais a 0 e n0 pertencente aos naturais, tais que:

```
2n^2 - 3n + 100 \le c * n, para todo n \ge n0

2n^2 - 3n + 100 \le 2n^2 - 3n + 100n^2

\le 2n^2 + 100n^2
```

 $<= 102n^2$ Isso prova, pois demonstra uma possível constante, que corresponde ao significado de O(g(n)) onde essa constante fica oculta na função.

Caminho para provar $\Omega(g(n))$

```
Vamos provar que: 0 \le c * n^2 \le 2n^2 - 3n + 100, para todo n \ge n0

2n^2-3n+100 \ge 2n^2-3n

>= (2n-3)n

>= (2n-3)n

>= n^2
```

Exemplo:

```
Tendo: f(n) = n^3 / 10 - 7n^2 + 5n - 200

- Provar que g(n) = n^3 \notin O(g(n))

n^3/10 - 7n^2 + 5n - 200 <= n^3 + 5n^3 para todo n >= 0

<= 6n^3

- Provar que g(n) = n^3 \notin \Omega(g(n))

n^3/10 - 7n^2 + 5n - 200 >= n^3/10 - 7n^2 - 200n^2

>= n^3/10 - 207n^2

>= (n/10 - 207)n^2

>= 4140n^2
```

Caminho para provar f(n) pertence a $\Theta(g(n))$

Usando a função dos últimos exemplos temos que provar que:

$$0 \le c * g(n) \le f(n) \le C2g(n)$$
, para todo $n \ge n0$
temos que: $0 \le 1/20 * g(n) \le f(n)$, para todo $n \ge 4140$
e que: $f(n) \le 6g(n)$, para todo $n \ge 0$

Tendo que g(n) satisfaz tanto O quanto Ω , ele é Θ

```
Provando que um f(n) não pertence a O(g(n))
tendo f(n) = n^2 e g(n) = 9n + 9
```

Suponha, por absurdo, que existem c e n0 tais que

```
n<sup>2</sup> <= c(9n+9), para todo n>=n0
n<sup>2</sup> <= 9cn + 9c
n<sup>2</sup> <= 9cn + 9cn
n<sup>2</sup> <= 18cn
```

n <= 18c --absurdo, pois n é variável, ficando maior que 18c em algum momento

Outros modos de provar

```
Prova indutiva
```

Base: n=4

$$f(4) = 3 * 4 = 12 \le 16 = 2^4 = g(4)$$

Passo:
$$f(n) \le g(n) \rightarrow f(n+1) \le g(n+1)$$

 $f(n+1) = 3(n+1) = 3n+3 \le 3n+3n \le 2^n+2^n$
 $\le 2^n(n+1)$
 $\le g(n+1)$ --provado

Limites Assintóticos, em suma:

-Se f(n) pertence a O(g(n)) então existe limite: $\lim(n \to +\infty)$ f(n)/g(n) -Se f(n) pertence a $\Omega(g(n))$ então existe limite: $\lim(n \to +\infty)$ g(n)/f(n)

Propriedades de Contagem de Passos de Algoritmo

Como vamos nos preocupar daqui pra frente com as ordens de grandeza e não com as funções em si, vamos utilizar a notação: f = O(g), $f = \Omega(g)$ ou $f = \Theta(g)$

- Notação O
 - 1) f=O(f) --reflexiva

3)
$$f1 = O(g1)$$
 e $f2 = O(g2)$ -> $f1*f2 = O(g1*g2)$ --multiplicação (obs.: max)
 $f1 <= c*g1$ -Para todo $n >= n0$
 $f2 <= c*g2$ - $n0 = max\{n1,n2\}$
 $-c = max\{c1,c2\}$

- 4) Para todo k pertencente aos , f = O(g) -> k*f = O(g) --multi menor Caso k < 0, k*f <= f <= c1*g -Para todo n >= n1
- 5) $f = O(n^k)$, com k>=0, -> $f=O(n^{(k+j)})$ *) $n^k <= n^k + j$ -k e j >= 0 - Para todo J >= 0 $f <= c^*n^k <= c^*n^{(k+j)}$ - Para todo n >= n0 *) Caso n=0. OK
 - *) Caso n=1. Ok *) Caso n > 1
 - Por absurdo, suponha que existe n tal que $n^k > n^{(k+j)}$. Seja x esse valor para n. Como $x^k > 0$, temos $x^k > x^{(k+j)} \rightarrow \log^{x^n x^n k} > \log^{x^n x^n k+j} \rightarrow k > k+j \rightarrow 0 > j$

Absurdo. Logo $n^k \le n^{(k+j)}$

6)
$$f = O(g)$$
 e $g = O(h)$ -> $f=O(h)$ --transitividade
7) $f1 = O(g)$ e $f2 = O(g)$ -> $f1+f2 = O(g)$ --dupla soma

```
8) \log_a^n = O(\log_b^n) para todo a,b /= 1 e > 0

\log_a^n = x -> a^x = n ___\ a^x = a^y

\log_b^n = y -> b^y = n /

\log_b^n = \log_a^n / \log_a^b \rightarrow \log_a^n <= \log_a^b * \log_b^n -Para todo n>=1

c = \log_a^b \log_a^n = O(\log_b^n), n0=1
```

9) k pertence aos Reais, k=O(1) k < =c -Para todo n>=0 c = k + 1 -n0 = 0

10)
$$f = O(g) <=> g = \Omega(f)$$

0 <= f <= c*g -Para todo n >= n1
0 <= f*1/c <= g -Para todo n >= n1

Propriedades de Notação Θ:

 $\begin{array}{lll} \Theta(1) & \rightarrow & constantes \\ \Theta(\lg n) & \rightarrow & logarítmicos \\ \Theta(n) & \rightarrow & lineares \\ \Theta(n \lg n) & \rightarrow & linearítmicos \\ \Theta(n^2) & \rightarrow & quadráticos \\ \Theta(n^e) & \rightarrow & polinomial \\ \Theta(c^n) & \rightarrow & exponencial \\ \end{array}$

Algoritmo: InsertionSort(V)

Entrada: Vetor V

Objetivo: V[1...|V|] ordenado não-decrescente.

para i
$$\leftarrow 2,3...|V|$$
 faça
| j \leftarrow i $-$ 1
| valor \leftarrow V[i]
| enquanto j >= 0 e V[j] > valor faça
| | V[j+1] \leftarrow V[j]
| | j \leftarrow j-1
| V[j+1] \leftarrow V[valor]