dataset: Somerville Happiness Survey Data Set

model: K-Nearest Neighbours

D = decision attribute (D) with values 0 (unhappy) and 1 (happy)

Attributes X1 to X6 have values 1 to 5.

X1 = the availability of information about the city services

X2 =the cost of housing

X3 =the overall quality of public schools

X4 = your trust in the local police

X5 = the maintenance of streets and sidewalks

X6 = the availability of social community events

Sample Data: Training: 0 to 19, Testing: 20 to 24

0.0	D	X1	X2	X3	X4	X5	X6	
0	0	3	3	3	4	2	4	
1	0	3	2	3	5	4	3	
2	1	5	3	3	3	3	5	
3	0	5	4	3	3	3	5	
4	0	5	4	3	3	3	5	
5	1	5	5	3	5	5	5	
6	0	3	1	2	2	1	3	
7	1	5	4	4	4	4	5	
8	0	4	1	4	4	4	4	
9	0	4	4	4	2	5	5	
10	0	3	2	3	3	2	3	
11	0	4	4	3	4	4	4	

12	1	5	2	4	5	5	5
13	0	4	2	4	5	4	3
14	0	4	1	3	3	4	3
15	1	3	2	4	3	4	4
16	0	5	3	4	5	4	5
17	1	5	1	4	3	4	5
18	0	5	1	2	4	4	5
19	0	4	2	4	4	4	4
20	1	4	2	3	3	4	4
21	1	4	2	3	3	4	4
22	0	4	3	5	5	5	4
23	0	4	3	5	5	5	4
24	1	5	1	2	5	2	4

3	767	195	020066	2000	Pige	=0
		140			1 . (- 5
	1.6514	Testing points		Heigh	abours (K	= 5)
		(D) (D) (D)	0B	(3)	66	
	0.	85	5	7	<u>(3)</u> 7	(29)
	1.	84	4	6	6	© (9)
	2.	4	4	8	8	6
	3.	5	5	9	9	8
	4.	5	5	9	9	8
	9.	8	8	6	6	9
	6-	8	8	14	,4	7
	7.	6	6	6	6	q
4	8.	3	(3)	3	0	6
- Training Points	9.	6	6	6	6	13
7	10,	4	4	(0)	lo	7
00	11.	(3)	3	S	5	8
00	12.	6	6	0	©	
= - =	13	4	4	(9)	0	7 7 7
Ta	14.	©	8	8	3	7
5-	15.	2	8	6	6	9
V	16.	6	6	(a)	(4)	7
	17.	4	4	8	8	7
	18.	5	- 5	9	9	(4)
	19	(3)		(9)	6	4
		Circled values a	re the 5(k)	heigh	te neares	.+
		neighbours.		0		
		For Somala 20"				
		For Sample 20%	ve gee out	of thes	e 5, 4 vo	I ves
		and the costs of	and I mor	n class	1 7/1000	20
		20 must lie in	class o. Bu	+ it act	-vally lies	in cays
					J	
-						

		10000					
		190026	0066				
	similarly sample of much in the						
	sample 22 in class 0, sample						
			O, sample				
	Similarly:						
	Sample	Tour output	Actual ostpot (d)				
	21	0	0 1				
	22	0	0 0				
	23	0	0 0				
	29	0	0 1				
	Thus we b	btain an acce	erory of 40%.				
	upon comporting to the Withub codes, we						
	The 9thub (CK Learn) classifier gives us						
	an aturacy of 40% for k=S.						
2	For distance, we have used						
	1X1 = 5 xil (n = no of features)						
-	Train dataset: 0 to 2019 (20 total)						
1	Test dataset: 20 to 24. (5 total)						
1	it havon't - scaled the values because						
	all the habita features lie in 0 to 5.						