Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.

Seoul National University

Jan. 6 – 17, 2020

Python for Data Analytics

SK-Learn

Outline

What is SK-Learn?

- Linear Regression Classifier
- K-Nearest Neighbor (KNN) Classifier
- Decision Tree Classifier

K-Means Clustering

What is SK-Learn?

Many SK-Learn Books

What is "Sklearn" Module?

- SciKit (SciPy Toolkit)-learn, or SK-Learn
- Open source machine learning library for Python
- Built on top of SciPy
 - Designed to interoperate with Python numerical and scientific library
- Dependency
 - NumPy, SciPy, Matplotlib
- Open source (https://scikit-learn.org)
 - Initially developed by David Cournapeau as a "Google Summer of Code" project in 2007
 - Still under active development (v0.22.1 as of January 2020)

Sklearn Modules

- Classification: identify to which category an object belongs to
 - Regression: predict continuous-valued attribute (linear, logistic, etc.)
 - SVM, Decision tree, Neural nets, Nearest neighbors, ...
- Clustering: grouping of similar objects
 - K-means, Hierarchical clustering, etc.
- Model selection: validate and choosing parameters and model
 - Cross validation, metrics, etc.
- Preprocessing: feature extraction & normalization
- Dimensionality reduction: reducing number of variables
 - PCA, Feature selection, etc.
- Datasets

Linear Regression Classifier

Regression

- Finding an equation which explains the data
 - Explain ←→ Predict
- Started from 1800s
 - Legendre 1805, Gauss 1809
- Various regression models
 - Linear regression
 - Non-linear regression
 - Logistic regression

Linear Regression Concept

 Modeling relationship between continuous dependent variable y and one or more independent variables X using linear predictor function

$$Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_n x_n$$

 \mathbf{x}_n : arbitrary input, independent variable

 \mathbf{Y} : output based on \mathbf{x}_n , dependent variable

β: coefficients for accurate predictor function

 β_0 : intercept

Linear Regression Classifier

Linear Regression Concept (cont'd)

- Find the linear line minimizing distance from all points
- For new data with x values, predict Y with the linear predictor function

X	Υ
0.5	2
0.7	2.5
1.2	3.4
	••••
3.6	7.5
3.8	8.2
4	9

New X	Predict Y
3.1	?

LinearRegression

- linear_model.LinearRegression([fit_intercept], [normalize], [copy_X], [n_jobs])
 - Ordinary least squares Linear Regression
 - fit_intercept: if False, no intercept will be used in calculations (e.g., data is expected to be already centered) (default:True)
 - normalize: if True, X will be normalized before regression (default: False)
 - copy_X: if True, X will be copied (default:True)
 - n_jobs: the number of jobs (CPUs) to use for the computation (default: 1)

Attributes:

- coef_, intercept_
- Methods:
 - fit(),predict(),score(), get_params(),set_params()

LinearRegression.fit()

- linear_model.LinearRegression.fit(X, y, [sample_weight])
 - Fit linear model
 - X: training data, 2D array of shape [n_samples, n_features]
 - y: target values, 2D array of shape [n_samples, n_targets] (can be a ID array)
 - sample_weight: individual weights for each sample

```
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt

x = [[ i ] for i in range(10) ]
y = [[ np.random.random()*10 ] for _ in range(10) ]
regr = linear_model.LinearRegression()
regr.fit(x, y)
```

LinearRegression.predict()

- linear_model.LinearRegression.predict(X)
 - Predict using the linear model
 - X: samples, 2D array of shape [n samples, n_features]
 - Return predicted values, ID array of shape [n_samples,]

```
plt.scatter(x, y, c='black')
plt.plot(x, regr.predict(x), 'b-')
```


LinearRegression.score()

- linear_model.LinearRegression.score(X, y, [sample_weight])
- Return the coefficient of determination R² of the prediction (variance score, 결정계수)

```
Score (0 ~ 1): 1 - u/v

u = ((y_true - y_pred) ** 2).sum()

v = ((y_true - y_true.mean()) ** 2).sum()
```

$$R^2 = 1 - rac{\sum_{i=0}^{n} (y_i - y_i')^2}{\sum_{i=0}^{n} (y_i - \overline{y}_i)^2}$$
 면치2

- The best possible score is 1.0 and it can be negative
- A constant model that always predicts the mean value would get $R^2 = 0$

Linear Regression using Numpy Array

```
N = 10
x = np.arange(N).reshape(N, 1)
y = (np.random.random(10)*10).reshape(N, 1)
regr = linear_model.LinearRegression()
regr.fit(x, y)
plt.scatter(x, y, c='black')
plt.plot(x, regr.predict(x), 'r-', linewidth=3)
plt.show()
```



```
х:
                [[3.98684452]
[[0]]
                 [1.9663881]
 [1]
                 [9.98518625]
 [2]
                 [2.63122155]
 [3]
                 [4.27284905]
 [4]
                 [1.73196867]
 [5]
                 [9.11531985]
 [6]
                 [0.85700765]
 [7]
                  [0.14199418]
 [8]
                 [5.84060473]]
 [9]]
```

Linear Regression using Pandas

```
N = 10
xy = [[i, round(np.random.random()*10,4)] for i in range(N)]
                                                                                0 0 7.7658
df = pd.DataFrame(data = xy, columns=('X', 'Y'))
x, y = df.X, df.Y
                                                                                   1 3.5812
regr = linear model.LinearRegression()
                                                                                2 2 1.1513
regr.fit(x, y)
plt.scatter(x, y, c='black')
                                                                                  3 1.1718
plt.plot(x, regr.predict(x), 'r-')
                                                                                4 4 4.8871
plt.show()
                                                                                  5 7.2234
ValueFrror
                                     Traceback (most recent call last) in
                                                                                6 6 4.1744
4 x, y = df.X, df.Y
     5 regr = linear model.LinearRegression()
                                                                                   7 2.0397
----> 6 regr.fit(x, y)
     7 plt.scatter(x, y, c='black')
                                           Why?
                                                                                  8 1.8870
     8 plt.plot(x, regr.predict(x), 'r-')
ValueError: Expected 2D array, got 1D array instead:
                                                                                   9 6.3205
array=[0 1 2 3 4 5 6 7 8 9].
```

442 instances

Diabetes Example

- Using sklearn diabetes dataset (442 instances)
 - 10 attributes: Age, Sex, Body mass index (BMI), Average blood pressure (ABP), Six blood serum (SI-S6)
 - Target: quantitative measure of disease progression one year after baseline
 - All the attributes are numeric, mean centered and scaled by standard deviation
 - Can be loaded by datasets.load_diabetes()

	age	sex	bmi	bp	s1	s2	s3	s4	s5	s6	tar
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019908	-0.017646	15
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068330	-0.092204	7
2	0.085299	0.050680	0.044451	-0.005671	-0.045599	-0.034194	-0.032356	-0.002592	0.002864	-0.025930	14
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022692	-0.009362	20
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031991	-0.046641	13

Python for Data Analytics | January 6 - 17, 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Diabetes: Loading Dataset

```
%matplotlib inline
import numpy as np
import matplotlib as plt
from sklearn import datasets, linear_model

# Load the diabetes dataset
diabetes = datasets.load_diabetes()
```

```
load_diabetes() returns
dictionary-like object.

Each field can be accessed as follows:
   diabetes.data,
   diabetes.target,
   diabetes.feature_names,...
```

Diabetes: Data Preprocessing

Use only 3rd column values (i.e., BMI)

```
# Use only one feature
diabetes_X = datasets.data[:, np.newaxis, 2]

Extract the 3rd column and add
a new axis to make Nx1 2D numpy
array
```

	age	sex	bmi	bp	s1	s2	s3	s4	s5	s6
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019908	-0.017646
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068330	-0.092204
2	0.085299	0.050680	0.044451	-0.005671	-0.045599	-0.034194	-0.032356	-0.002592	0.002864	-0.025930
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022692	-0.009362
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031991	-0.046641

Diabetes: Split Dataset for Training

Split dataset into train dataset and test dataset

```
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
```

• Use the last 20 data for test dataset

diabetes_X: Numpy 2D array (442 x 1)

diabetes.target: Numpy 1D array (442,)

Diabetes: Learning from Data

Create & train linear regression model with training data set

```
# Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
```

- After training the data, we can do the followings:
 - print(regr.coef_)

$$\mathbf{Y} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}_1$$

- print(regr.intercept_)
- regr.predict(xi)
- # xi in test_X
- regr.score(test_X, test_Y) → variance score
- np.mean((regr.predict(test_X) test_Y)**2) → mean squared error

Diabetes: Validation

Print the results of trained regression

```
Coefficients:
[938.23786125]

Intercept:
152.91886182616167

Mean squared error: 2548.07

Variance score: 0.47

Regression Equation

y = 152.92 + 938.24 * BMI

intercept coefficient
```

Diabetes: Result Plotting

Plot the regression model with test data

```
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, c='black')
plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), 'b-')
```


K-Nearest Neighbor (KNN) Classifier

KNN Classifier

Х	Υ	Shape
1	3	Rectangle
1	4	Rectangle
1	7	Rectangle
3	7.1	Triangle
5	7.2	Triangle
7	7.0	Triangle

 $(4,3) \rightarrow Shape?$

 $(0.5, 1.2, 2.6) \rightarrow Color?$

k-Nearest Neighbors (KNN)

- Assume that similar data will be located closely
- Determine the class of new data based on k closest data
- No model (no formula) is used, only data is used for KNN
- Various distance metrics
 - Euclidean distance, Manhattan distance, Mahalanobis distance, etc.

Want to classify new data

Distance vs. Count?

For k = 3, 2 triangles & 1 rectangle
Result → classify new data as red triangle

For k = 5, 2 triangles & 3 rectangles
Result → classify new data as blue rectangle

KNeighborsClassifier

- neighbors.KNeighborsClassifier([n_neighbors], [weights], [algorithm], [leaf_size],
 [p], [metric], [n_jobs], ...)
 - Classifier implementing the k-nearest neighbors vote
 - *n_neighbors*: number of neighbors to use (default: 5)
 - weights: weight function: 'uniform', 'distance', or user-defined (default: 'uniform')
 - algorithm: 'ball_tree', 'kd_tree', 'brute', or 'auto' (default: 'auto')
 - leaf_size: leaf size for BallTree or KDTree
 - p: power parameter for minkowski metric (1: Manhattan, 2: Euclidean)
 - metric: the distance metric to use for the tree (default: minkowski)
 - n_jobs: number of jobs for computation (default: I)

fit() and predict()

- neighbors.KNeighborsClassifier.fit(X, y)
 - Fit the model using X as training data and y as target values
 - X: training data, 2D array of shape [n_samples, n_features]
 - y: target values, array of shape [n_samples] or [n_samples, n_outputs]
- neighbors.KNeighborsClassifier.predict(X)
 - Predict the class labels for the provided data
 - X: test samples, 2D array of shape [n_queries, n_features]
 - y: class labels for each data sample, array of shape [n_samples] or [n_samples, n_outputs]

kneighbors()

- neighbors.KNeighborsClassifier.kneighbors(X, [n_neighbors], [return_distance])
 - Finds the K-neighbors of a point
 - X: query point(s), array of shape [n_queries, n_features]
 - *n_neighbors*: number of neighbors to get
 - return_distance: if False, distances will not be returned
 - Return distance and indices of the nearest points

Iris Example

- Using sklearn iris dataset (150 instances)
 - 3 classes, 50 instances for each class
 - 4 column data: sepal(꽃받침) length, sepal width, petal(꽃잎) length, petal width
 - Can be loaded by datasets.load_iris()

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
nces	1	4.9	3.0	1.4	0.2	0
instal	2	4.7	3.2	1.3	0.2	0
150 i	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

Iris: Loading Dataset

```
%matplotlib inline
import numpy as np
import matplotlib as plt
from sklearn import datasets, neighbors

# Load the iris dataset
iris = datasets.load_iris()
```

```
load_iris() returns
dictionary-like object.

Each field can be accessed as follows:
   iris.data,
   iris.target,
   iris.feature_names,...
```

Iris: Data Preprocessing

Use only Ist and 2nd column values (i.e., sepal length and sepal width)

```
# We only take the first two features
iris_X = iris.data[:, :2]
iris_y = iris.target
```

	sepal length (cm	ı) sepal width (cm) petal length (cm)	petal width (cm)
0	5.	1 3.5	5 1.4	0.2
1	4.	9 3.0	1.4	0.2
2	4.	7 3.:	2 1.3	0.2
3	4.	6 3.	11.5	0.2
4	5.	0 3.0	3 1.4	0.2

Iris: Train and Predict KNN Classifier

Create & train KNN model with training set

```
n_neighbors = 15

# Create KNeighborsClassifier object
neigh = neighbors.KNeighborsClassifier(n_neighbors, weights='uniform')

# Train the model using the training sets
neigh.fit(iris_X, iris_y)
```

Predict the class of a new sample

```
new_sample = [[3.7, 4.5]]
iris_class = neigh.predict(new_sample)
print('The iris class for new sample:', iris.target_names[iris_class[0]])
```

The iris class for new sample: setosa

Iris: Plotting the Dataset

Iris: Plotting the Dataset (with Pandas)

```
cols = ['SepalLength', 'SepalWidth',
        'PetalLength', 'PetalWidth']
df = pd.DataFrame(iris.data, columns=cols)
df2 = pd.DataFrame(iris.target, columns=['Class'])
df = pd.concat([df, df2], axis=1)
groups = df.groupby('Class')
for cls, group in groups:
    plt.scatter(group.SepalLength, group.SepalWidth,
                label=iris.target names[cls])
plt.xlabel('Sepal length (cm)')
plt.ylabel('Sepal width (cm)')
plt.legend()
```

	SepalLength	SepalWidth	PetalLength	PetalWidth	Class
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Iris: Plotting Prediction Results

```
# Find the min, max of each axis
x \min = iris X[:, 0].min() - 1
x max = iris X[:, 0].max() + 1
y min = iris X[:, 1].min() - 1
y \max = iris X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y min, y max, 0.02))
# Get coordinates
xr, yr = xx.flatten(), yy.flatten()
xy = np.c [xr, yr]
# Get prediction results
z = neigh.predict(xy)
zz = z.reshape(xx.shape)
# Plot using pcolormesh()
cmap light = matcol.ListedColormap(['#FFAAAA',
             '#AAFFAA', '#AAAAFF'])
plt.pcolormesh(xx, yy, zz, cmap=cmap_light)
plt.scatter(iris X[:, 0], iris X[:, 1], c=iris y,
            cmap=cmap iris)
```


Decision Tree Classifier

Decision Tree

Classifier using Tree

- Early Decision Trees
 - CHAID (1980), CHART (1984)
- Current Decision Trees
 - ID3 (1986) \rightarrow C4.5 (1993) \rightarrow C5.0
 - C5.0: commercial

What is Decision Tree?

- Supervised learning model
- Flowchart-like structure to classify an outcome based on a set of predictors
 - Ellipse node: split condition
 - Rectangle node: classified class (= leaf node)

Name	Degree	Income	Credit Status
H.Kim	Master	\$50000	Good
P. Lee	Bachelor	\$35000	Good
J. Hong	Master	\$18000	Bad
W. Sawn	Master	\$39000	Good
J. Doe	Bachelor	\$55000	Good
W. Son	Bachelor	\$25000	Bad
Q. Li	Bachelor	\$15000	Bad

What is Decision Tree? (cont'd)

- Split dataset based on an attribute with highest purity
 - Purity (p_k) : proportion of data in a split that belong to class k
 - Maximum purity: each split has data of same class
 - Impurity measure: Gini Index, Entropy

Gini Index: 0 (pure) $\sim (m-1)/m$

$$I(A) = 1 - \sum_{k=1}^{m} p_k 2$$

Entropy: 0 (pure) $\sim \log_2(m)$

$$entropy(A) = -\sum_{k=1}^{m} p_k log_2(p_k)$$

m: total number of classes

Ownership of Riding Lawn Mower

(\$1000) (1000 ft²)

Income Lot_Size		Ownership		
60.0	18.4	owner		
85.5	16.8	owner		
64.8	21.6	owner		
61.5	20.8	owner		
87.0	23.6	owner		
110.1	19.2	owner		
108.0	17.6	owner		
82.8	22.4	owner		
69.0	20.0	owner		
93.0	20.8	owner		
51.0	22.0	owner		
81.0	20.0	owner		
75.0	19.6	non-owner		
52.8	20.8	non-owner		
64.8	17.2	non-owner		
43.2	20.4	non-owner		
84.0	17.6	non-owner		
49.2	17.6	non-owner		
59.4	16.0	non-owner		
66.0	18.4	non-owner		
47.4	16.4	non-owner		
33.0	18.8	non-owner		
51.0	14.0	non-owner		
63.0	14.8	non-owner		

Recursive Partitioning in Decision Tree

- Pick one of the predictor variables, x_i
- Pick a value of x_i , say s_i , that divides the training data into two (not necessarily equal) portions
- Measure how "pure" or homogeneous each of the resulting portions are
 - "Pure" = containing records of mostly one class
- Algorithm tries different values of x_i , and s_i to maximize purity in initial split
- After you get a "maximum purity" split, repeat the process for a second split, and so on

Example:

- Goal: Classify 24 households as owning or not owning riding lawn mowers
 - Predictors = Income, Lot size
- How to split the values of continuous variable?
 - Sort records according to one variable (say, lotsize)
 - Find the split point of lotsize (halfway between 14.0 and 23.6
 → 19) using Gini Index calculation
 - Divide records into those with lotsize > 19 and those with lotsize < 19
 - For each splitted area, try the next variable (say, income), which is \$84,000 and \$57,000

_	income	Lot_Size	Ownersnip
	60.0	18.4	owner
	85.5	16.8	owner
	64.8	21.6	owner
	61.5	20.8	owner
	87.0	23.6	owner
	110.1	19.2	owner
	108.0	17.6	owner
	82.8	22.4	owner
	69.0	20.0	owner
	93.0	20.8	owner
	51.0	22.0	owner
	81.0	20.0	owner
	75.0	19.6	non-owner
	52.8	20.8	non-owner
	64.8	17.2	non-owner
	43.2	20.4	non-owner
	84.0	17.6	non-owner
	49.2	17.6	non-owner
	59.4	16.0	non-owner
	66.0	18.4	non-owner
	47.4	16.4	non-owner
	33.0	18.8	non-owner
	51.0	14.0	non-owner
	63.0	14.8	non-owner

Lot Sizo

Ownorchin

Incomo

Example: The First Split

■ Lot size \rightarrow 19,000 sqft

Example: The Second Split

■ Income → \$84000 & \$57,000

Tree structure

Example: The Third & Fourth Split

Example: After All Splits

- Result of full-grown tree: each rectangle is completely pure
- Danger of overfitting problem

Stopping Tree Growth

Natural end of process is 100% purity in each leaf

This overfits the data, which end up fitting noise in the data

Overfitting leads to low predictive accuracy of new data

 Past a certain point, the error rate for the validation data starts to increase

DecisionTreeClassifier

- tree. Decision Tree Classifier ([criterion], [splitter], [max_depth], [min_samples_split], [min_samples_leaf], [max_features], [min_impurity_split], ...)
 - A decision tree classifier
 - criterion: function to measure the quality of a split 'gini' (default) or 'entropy'
 - splitter: strategy used to choose the split at each node 'best' (default) or 'random'
 - max_depth: maximum depth of the tree
 - min_samples_split: min.# of samples required to split an internal node (default: 2)
 - min_samples_leaf: min.# of samples required to be at a leaf node (default: I)
 - max_features: number of features to consider when looking for the split
 - min_impurity_split: A node will be split if this split induces a decrease of the impurity greater than or equal to this value (default: 0.)

fit() and predict()

- tree. DecisionTreeClassifier.fit(X, y, ...)
 - Build a decision tree classifier from the training set (X, y)
 - X: training input samples, array of shape [n_samples, n_features]
 - y: target values, array of shape [n_samples] or [n_samples, n_outputs]
- tree. DecisionTreeClassifier.predict(X)
 - Predict the class or regression value for X
 - X: input samples, array of shape [n_samples, n_features]

Lawn Mower using Python Lists (I)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets, tree
income = [60.0, 85.5, 64.8, 61.5, 87.0, 110.1, 108.0, 82.8, 69.0, 93.0, 51.0, 81.0,
           75.0, 52.8, 64.8, 43.2, 84.0, 49.2, 59.4, 66.0, 47.4, 33.0, 51.0, 63.0]
lotsize = [18.4, 16.8, 21.6, 20.8, 23.6, 19.2, 17.6, 22.4, 20.0, 20.8, 22.0, 20.0,
           19.6, 20.8, 17.2, 20.4, 17.6, 17.6, 16.0, 18.4, 16.4, 18.8, 14.0, 14.8]
ownership = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
xy = [ [income[i], lotsize[i]] for i in range(len(income)) ]
z = [i] for i in ownership ]
dt = tree.DecisionTreeClassifier()
dt.fit(xy, z)
```

Lawn Mower using Python Lists (2)

Lawn Mower using Python Lists (3)

```
print('min_samples_leaf = 1')
for i in range(len(xy))
    print(dt.predict([xy[i]]), z[i])
dt = tree.DecisionTreeClassifier
     (min samples leaf=2)
dt.fit(xy, z)
print('min_samples_leaf = 2')
for i in range(len(xy))
    print(dt.predict([xy[i]]), z[i])
```

```
min_samples_leaf = 1
                          min samples leaf = 2
                           [0] [1]
[1] [1]
    [0]
    [0]
                               [0]
                               [0]
    [0]
```

Decision Tree using NumPy

```
N = 10
x = np.array(range(N)).reshape(N, 1)
y = (np.random.random(N)*10).reshape(N, 1)
xy = np.concatenate((x, y), axis=1)
z = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2])
dt = tree.DecisionTreeClassifier()
dt.fit(xy, z)
print(dt.predict([[3, 3.01]]))
print(dt.predict(np.array([[7, 8.01]])))
```

```
[1]
[2]
```

```
X: [[0]
                   V: [[9.52890254]
       [1]
                         [2.15185172]
       [2]
                         [0.81483473]
       [3]
                         [8.63402819]
       [4]
                         [7.1018699 ]
       [5]
                         [9.11495804]
       [6]
                         [6.92878962]
       [7]
                         [6.92305586]
       [8]
                         [7.32459969]
       [9]]
                         [9.80431005]]
                    9.528902541
XY:
                    2.15185172]
                    0.81483473]
        [3.
                    8.634028191
        [4.
                    7.1018699
        [5.
                    9.114958041
        [6.
                    6.928789621
       [7.
                    6.92305586]
       [8.
                    7.324599691
```

9.8043100511

Decision Tree using Pandas

```
N = 10
x = np.array(range(N)).reshape(N, 1)
y = (np.random.random(N)*10).reshape(N, 1)
xy = np.concatenate((x, y), axis=1)
p_xy = pd.DataFrame(xy, columns=['x', 'y'])
p_z = pd.DataFrame([1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
                   columns=['z'])
dt = tree.DecisionTreeClassifier()
dt.fit(p xy, p z)
print(dt.predict([[3, 3.01]]))
print(dt.predict(np.array([[7, 8.01]])))
```

[1] [2]

	x	у		Z
0	0.0	1.523718	0	1
1	1.0	8.331948	1	1
2	2.0	9.847882	2	1
3	3.0	4.707726	3	1
4	4.0	6.254159	4	1
5	5.0	5.520755	5	2
6	6.0	2.372673	6	2
7	7.0	9.910699	7	2
8	8.0	6.541729	8	2
9	9.0	8.952439	9	2

Iris: Loading and Training

Use all the data columns

```
%matplotlib inline
import numpy as np
import matplotlib as plt
from sklearn import datasets, tree
# Load the iris dataset
iris = datasets.load iris()
# Train with DecisionTreeClassifier
dt = tree.DecisionTreeClassifier()
dt.fit(iris.data, iris.target)
a = dt.predict([[4.8, 3.1, 1.5, 0.2]])
print(a)
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

[0]

Iris: Drawing Decision Tree

Requires the installation of pydotplus and GraphViz packages

```
import io
import pydotplus
# Convert the decision tree in dot language code
dot data = io.StringIO()
tree.export_graphviz(dt, out_file=dot_data, feature_names=iris.feature_names,
                    class_names=iris.target_names, filled=True, rounded=True,
                    special characters=True)
# Transform dot language code to graph by calling GraphViz
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write pdf('iris.pdf')
```

Iris: Decision Tree

K-Means Clustering

K-Means Clustering

Unsupervised learning model

 Similar to K Nearest-Neighbor algorithm, assume that similar data will be located closely

 Based on such assumption, k-means algorithm aims to partition n data into k clusters

Each observation belongs to the cluster with nearest centroid (mean)

K-Means Clustering Procedure

Step I

 Among given data, pick k centroids randomly

Step 2

Calculate distance
between all data and
centroids; Assign
each data point to
the closest centroid's
cluster

Step 3

 Relocate each clusters centroids to the mean points

Step 4

• Repeat Step 2 & 3 until convergence

K-Means Clustering Example

Two Different Results

Importance of Choosing Initial Centroids

KMeans

- cluster.KMeans([n_clusters], [init], [n_init], [max_iter], [tol], [precompute_distances], [random_state], [algorithm], ...)
 - K-Means clustering
 - n_clusters: number of clusters to form
 - init: 'k-means++', 'random', or user-provided. 'k-means++' for smart init. (default)
 - *n_init*: number of runs with different centroid seeds (default: 10)
 - max_iter: max number of iterations for a single run (default: 300)
 - tol: relative tolerance with regards to inertia to declare convergence (default: Ie-4)
 - precompute_distances: 'auto', True, or False (default: 'auto')
 - random_state: random number seed or generator
 - algorithm: 'auto', 'full', or 'elkan' (default: 'auto')

fit() and predict()

- cluster.KMeans.fit(X)
 - Compute Kmeans clustering
 - X: training instances to cluster
- cluster.KMeans.predict(X)
 - Predict the closest cluster each sample in X belongs to
 - X: new data to predict

Iris: Loading and Data Preprocessing

Use only 3rd and 4th column values (i.e., petal length and petal width)

```
%matplotlib inline
import numpy as np
import matplotlib as plt
from sklearn import datasets, cluster
# Load the iris dataset
iris = datasets.load iris()
# We only take the 3rd & 4th features
iris_X = iris.data[:, 2:4]
```

	sepal length (cm)	sepal width (cm)	petal length	ı (cm)	petal width (cm)
0	5.1	3.5		1.4	0.2
1	4.9	3.0		1.4	0.2
2	4.7	3.2		1.3	0.2
3	4.6	3.1	_	1.5	0.2
4	5.0	3.6		1.4	0.2

Iris: Clustering

Learning k-means clustering model with Iris dataset

```
# Create KMeans object
km = cluster.KMeans(n_clusters=3)

# Train the model using the training sets
km.fit(iris_X)

# Get the clustering result
labels = km.labels_
print(km.labels_)
```

Iris: Plotting the Clustering Result

plt.scatter(iris_X[:, 0], iris_X[:, 1], c=labels)

