## **Q1**1

46 Points

For a Convolutional Neural Network:

Input volume:  $128 \times 128 \times 3 \setminus$ 

Convolution with 32 5 X 5 filters with stride 1, pad 3

## Q1.1

1 Point

## **Q1.2** 1

10 Points

What is the output volume size?

$$(128+2*3 -5)/1+1 = 130 -> 130 \times 130 \times 10$$

## **Q1.3** 2

10 Points

The number of parameters in this layer?

each filter has 
$$5*5*3 + 1 = 76 -> 76*32$$
  
=2432

## **Q1.4** 3

5 Points

| 0 | 0 | 0 | 0  | 0 |
|---|---|---|----|---|
| 0 | 1 | 3 | 1  | 0 |
| 0 | 0 | 1 | 1  | 0 |
| 0 | 2 | 2 | -1 | 0 |
| 0 | 0 | 0 | 0  | 0 |

|   | -2 | -2 | 1 | = |  |
|---|----|----|---|---|--|
| * | -2 | 0  | 1 |   |  |
|   | 1  | 1  | 1 |   |  |

Calculate the following convolution operation.



## Q1.5 4

10 Points

What is the role of pooling layers in a CNN?

reduces the amount of parameters. This reduces the amount of calculation. Exp:Max pooling

## **Q1.6** 5

10 Points

A convolutional neural network has 3 consecutive 4X4 convolutional layers with stride 2 and no pooling. How large is the support of a neuron in the  $\mathbf{3}^{rd}$  on-image layer of this network?

144x144

## **Q2** 2

5 Points

Write at least 5 **hyperparameters** for a convolutional networks.

filter size,padding,stride,pooling layer, number of channels

# **Q3** 3

10 Points

What if we use a learning rate that's too small or too large?

If the learning rate is too small, neural network will slowly converge towards the error minimum increasing the amount of time needed to train model. If learning rate is too high the gradient descent algorithm will make huge jumps missing the minimum. This will make the learning process unstable.

## **Q4** 4

40 Points

## **Q4.1**1

20 Points

Assume the artificial neural network on the right, with mean square error loss and gold output of 3. Compute the values of all weights  $w_i$  after performing an SGD update with learning rate 0.1.



No files uploaded

## **Q4.2** 2

20 Points

Assume the artificial neural network on the right, with negative log-likelihood (cross-entropy) loss and gold distribution (0,0,1), i.e., the last class is the gold one. Compute the values of all weights  $w_i$  after performing an SGD update with learning rate of 0.1



No files uploaded

Quiz-4

**STUDENT** 

MEHMET TAHA USTA

**TOTAL POINTS** 

43 / 101 pts

**QUESTION 1** 

| 1   |            | <b>28</b> / 46 pts |
|-----|------------|--------------------|
| 1.1 | (no title) | <b>0</b> / 1 pt    |
| 1.2 | 1          | <b>8</b> / 10 pts  |
| 1.3 | 2          | <b>10</b> / 10 pts |
| 1.4 | 3          | <b>0</b> / 5 pts   |
| 1.5 | 4          | <b>10</b> / 10 pts |
| 1.6 | 5          | <b>0</b> / 10 pts  |
|     |            |                    |

**QUESTION 2** 

2 **5** / 5 pts

## **QUESTION 3**

3 **10** / 10 pts

## **QUESTION 4**

**0** / 40 pts

**4.1** 1 **0** / 20 pts

**4.2** 2 **0** / 20 pts