Name:	
-------	--

Math 54, Spring 2009, Section 112 Quiz 3

[1 - (3 pts)] Let V be the vector space \mathbb{P}_2 of polynomials of degree at most 2, with bases $\mathcal{B} = \{x^2 - 2x + 2, x, x^2 + 2x - 1\}$ and $\mathcal{C} = \{x^2, x^2 + x, x - 1\}$. Find the change-of-basis matrices $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$. (Hint: try to write elements of \mathcal{B} in terms of the elements of \mathcal{C}).

[2 - (3 pts)] Suppose you solve a non-homogenous system of 8 linear equations in 10 unknowns, and find that in your solution you have exactly 2 free variables. Is it possible to change the right-hand side of the system of equations (i.e. "change \vec{b} ") and have the resulting system be inconsistent? (No points for correct answer with incorrect reasoning.)

[3 - (3 pts)] Let V be a vector space with basis $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$. Prove **exactly one** of the following two things (if you do both, I'll just grade the first):

- (a) If $\{\vec{v}_1, \dots, \vec{v}_k\}$ is linearly independent, then so is $\{[\vec{v}_1]_{\mathcal{B}}, \dots, [\vec{v}_k]_{\mathcal{B}}\}$.
- (b) If $\vec{v} \in \text{Span}\{\vec{v}_1, \dots, \vec{v}_k\}$, then $[\vec{v}]_{\mathcal{B}} \in \text{Span}\{[\vec{v}_1]_{\mathcal{B}}, \dots, [\vec{v}_k]_{\mathcal{B}}\}$.