Aguiar model

In Figures 1 and 2 the results of the Aguiar's model are shown. These figures aims to determine the timescales of each current activation/inactivation and to determine the nature of the feedback involved. Table 1 summarizes these properties for each ion current of this model. A positive feedback is called regenerative while a negative one is called restorative.

FIGURE 1 – Evolution of the Aguiar's model ion currents activation/ inactivation variables at rest according to membrane potential (left) or intracellular calcium concentration (right).

FIGURE 2 – Evolution of time constants of the Aguiar's model ion currents activation/inactivation variables according to membrane potential (left) or intracellular calcium concentration (right).

Current	Gate	Time constant order	ΔI	Δg	R	Feedback
I_{Na}	activation	10^{-1}ms	inward	+	-	Fast regenerative
	inactivation	$10^{0} \mathrm{ms}$		-	+	Slow restorative
I_{KDR}	activation	$10^0 \mathrm{ms}$	outward	+	+	Slow restorative
I_{CaL}	activation	$10^0 \mathrm{ms}$	inward	+	-	Slow regenerative
I_{Na_p}	activation	$10^{-1} {\rm ms}$	inward	+	-	Fast regenerative
	inactivation	$10^{0} \mathrm{ms}$	IIIwaiu	-	+	Slow restorative
I_{CAN}	activation	$10^2 \mathrm{ms}$	inward	+	-	Ultra-slow regenerative
$I_{K,Ca}$	activation	$10^1 \mathrm{ms}$	outward	+	+	Slow restorative

Table 1 – Summary of the timescales and the feedback type for each activation/inactivation variable of each of the Aguiar's model ion currents. Columns ΔI , Δg and R aims respectively to determine the sign of the ion current, the sign of channels conductance variation for a positive variation of the membrane potential and the sign of the resistance associated to the considered current and membrane potential variation, allowing to determine the feedback type.

LeFranc

In Figures 3 and 4 the results of the LeFranc's model are shown. These figures aims to determine the timescales of each current activation/inactivation and to determine the nature of the feedback involved. Table 2 summarizes these properties for each ion current of this model. A positive feedback is called regenerative while a negative one is called restorative.

FIGURE 3 – Evolution of the LeFranc's model ion currents activation/ inactivation variables at rest according to membrane potential (left) or intracellular calcium concentration (right).

FIGURE 4 – Evolution of time constants of the LeFranc's model ion currents activation/inactivation variables according to membrane potential (left) or intracellular calcium concentration (right).

Current	Gate	Time constant order	ΔI	Δg	R	Feedback
I_{Na}	activation	$10^{-1} {\rm ms}$	inward -	+	-	Fast regenerative
	inactivation	$10^0 \mathrm{ms}$		-	+	Slow restorative
I_{KDR}	activation	$10^0 \mathrm{ms}$	outward	+	+	Slow restorative
I_{Kir}	activation	$10^1 \mathrm{ms}$	inward	-	+	Slow restorative
I_{SK}	activation	$10^1 \mathrm{ms}$	outward	+	+	Slow restorative
I_{fCaL}	activation	10^{-1}ms	inward	+	-	Fast regenerative
	inactivation	$10^3 \mathrm{ms}$		-	+	Ultra-slow restorative
I_{CAN}	activation	$10^3 \mathrm{ms}$	inward	+	-	Ultra-slow regenerative
I_{sCaL}	activation	$10^1 \mathrm{ms}$	inward	+	-	Slow regenerative
	inactivation	$10^4 \mathrm{ms}$		-	+	Ultra-ultra-slow restorative

Table 2 – Summary of the timescales and the feedback type for each activation/inactivation variable of each of the Aguiar's model ion currents. Columns ΔI , Δg and R aims respectively to determine the sign of the ion current, the sign of channels conductance variation for a positive variation of the membrane potential and the sign of the resistance associated to the considered current and membrane potential variation, allowing to determine the feedback type.