

Autonomous Drone Landing with Fiducial Markers and a Gimbal-Mounted Camera for Active Tracking

Joshua Springer 28 November 2022

Reykjavik University Department of Computer Science

Fiducial Markers

Orientation Ambiguity

- ► Marker *position* → accurate
- ightharpoonup Marker *orientation* ightharpoonup ambiguous

The Downward-facing Camera Axiom

Testing Platform: DJI Spark

- ► Small quadcopter
- ► Gimbal-mounted camera
- ► DJI Mobile SDK

Testing Platform: Software Side

- ► DJI Mobile SDK: App-style artchitecture
- ► Export video to Raspberry Pi 4 companion board
- ► Return control signals

Example Tracking Performance

Example Landing Trajectory

Example Control Outputs

Erroneous Control Outputs

Erroneous Landing Trajectory

Landing Radii

Future Work

- ► Use another drone platform
 - ► Phantom, Mavic
 - ► More gimbal tilt range
- Connect companion board directly to controller
- ► Test 3 separate methods for each fiducial system:
 - ► Raw/unfiltered marker pose
 - ► Filtered marker pose, e.g. KF
 - ► Marker *position* and gimbal *orientation* for pose transforms

Main Messages

- ightharpoonup Actuated, gimbal-mounted camera ightharpoonup easier to search for the landing pad.
- ightharpoonup Orientation ambiguity, discontinuities ightharpoonup pose estimation is harder.
- ► Autonomous precision landing still possible but can be improved.