第三章布置习题参考解

3-7

ABCD	GNS	YNS	RNS	GEW	YEW	REW	\overline{B}
0000	1	0	0	0	0	1	
0001	1	0	0	0	0	1	A GNS
0011	1	0	0	0	0	1	c])
0010	1	0	0	0	0	1	$GNS = \overline{A}C + \overline{A}\overline{B}$
0110	1	0	0	0	0	1	GNS = AC + AB
0111	1	0	0	0	0	1	-
0101	0	1	0	0	0	1	Ā D
0100	0	0	1	0	0	1	B YNS
1100	0	0	1	1	0	0	D^{\perp} $YNS = \overline{A}B\overline{C}D$
1101	0	0	1	1	0	0	INS = ABCD
1111	0	0	1	1	0	0	
1110	0	0	1	1	0	0	<u>B</u> ¬ _
1010	0	0	1	1	0	0	
1011	0	0	1	1	0	0)— RNS
1001	0	0	1	0	1	0	A
1000	0	0	1	0	0	1	$RNS = A + BC\overline{D}$

4: 3-11

(a)

PS	LS	RS	RR	PL	LL	RL
0	О	0	0	0	0	0
0	O	0	1	0	0	O
0	O	1	O	0	O	1
0	O	1	1	0	0	1
0	1	0	O	0	1	O
0	1	0	1	0	1	O
0	1	1	0	0	0	1
0	1	1	1	0	1	O
1	O	0	0	1	0	O
1	O	0	1	1	0	O
1	0	1	O	1	0	0
1	O	1	1	1	0	O
1	1	0	O	1	O	0
1	1	0	1	1	0	O
1	1	1	0	1	0	O
1	1	1	1	1	0	0

(b)

3-13 一个电路实现下面一对布尔方程:

3-14 使用对应于下列函数的层次化组件,

 $H=\overline{X}Y+XZ$

和一些非门来实现下面的等式:

 $G=\overline{A}\overline{B}C+\overline{A}BD+\overline{A}\overline{B}\overline{C}+\overline{A}B\overline{D}$

利用 Shannon 扩展定理可以得到整个电路

 $F=XF_0(X)+XF_1(X)$

在函数 H 中令 Y=F0, Z=F1 就可以得到扩展后的 F。在每一个 F0 和 F1 中使都用一个变量,就可以将扩展定理应用于每一个 F0 和 F1。如果一个变量既以原变量又以反变量的形式出现,则优先取该变量。重复此过程,直到所有的 Fi 都只是单因子项或常量项为止。对于函数 G。令 X=A,求出 G0 和 G1,然后对 G0 和 G1,令 X=B。画出 G 的项层逻辑图,其中,把 H 作为它的一个层次化组件使用。

3-27

$$\begin{split} A &= (S_0 \cdot S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot S_5) + M \\ L &= A \\ V &= \overline{A} = \overline{(S_0 \cdot S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot S_5) + M} \\ C &= V \end{split}$$

3-28

3-29

3-47

