Deep Generative Models

Lecture 14

Roman Isachenko

Moscow Institute of Physics and Technology

2023. Autumn

Recap of previous lecture

Theorem (implicit score matching)

$$\frac{1}{2}\mathbb{E}_{\pi}\big\|\mathbf{s}_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}}\log\pi(\mathbf{x})\big\|_{2}^{2} = \mathbb{E}_{\pi}\Big[\frac{1}{2}\|\mathbf{s}_{\theta}(\mathbf{x})\|_{2}^{2} + \mathrm{tr}\big(\nabla_{\mathbf{x}}\mathbf{s}_{\theta}(\mathbf{x})\big)\Big] + \mathrm{const}$$

- 1. The left hand side is intractable due to unknown $\pi(\mathbf{x})$ denoising score matching.
- 2. The right hand side is complex due to Hessian matrix sliced score matching (Hutchinson's trace estimation).

Song Y. Generative Modeling by Estimating Gradients of the Data Distribution, blog post, 2021

Recap of previous lecture

Let perturb original data by normal noise $p(\mathbf{x}'|\mathbf{x},\sigma) = \mathcal{N}(\mathbf{x}'|\mathbf{x},\sigma^2\mathbf{I})$

$$\pi(\mathbf{x}'|\sigma) = \int \pi(\mathbf{x}) p(\mathbf{x}'|\mathbf{x},\sigma) d\mathbf{x}.$$

Then the solution of

$$\frac{1}{2}\mathbb{E}_{\pi(\mathbf{x}'|\sigma)}\big\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}',\sigma) - \nabla_{\mathbf{x}'}\log\pi(\mathbf{x}'|\sigma)\big\|_2^2 \to \min_{\boldsymbol{\theta}}$$

satisfies $\mathbf{s}_{\theta}(\mathbf{x}', \sigma) \approx \mathbf{s}(\mathbf{x}', \theta, 0) = \mathbf{s}(\mathbf{x}', \theta)$ if σ is small enough.

Theorem (denoising score matching)

$$\begin{split} & \mathbb{E}_{\pi(\mathbf{x}'|\sigma)} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}', \sigma) - \nabla_{\mathbf{x}'} \log \pi(\mathbf{x}'|\sigma) \right\|_{2}^{2} = \\ & = \mathbb{E}_{\pi(\mathbf{x})} \mathbb{E}_{p(\mathbf{x}'|\mathbf{x}, \sigma)} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}', \sigma) - \nabla_{\mathbf{x}'} \log p(\mathbf{x}'|\mathbf{x}, \sigma) \right\|_{2}^{2} + \text{const}(\boldsymbol{\theta}) \end{split}$$

Here $\nabla_{\mathbf{x}'} \log p(\mathbf{x}'|\mathbf{x},\sigma) = -\frac{\mathbf{x}'-\mathbf{x}}{\sigma^2}$.

- ► The RHS does not need to compute $\nabla_{\mathbf{x}'} \log \pi(\mathbf{x}'|\sigma)$ and even more $\nabla_{\mathbf{x}'} \log \pi(\mathbf{x}')$.
- $ightharpoonup \mathbf{s}_{\theta}(\mathbf{x}', \sigma)$ tries to **denoise** a corrupted sample.
- ▶ Score function $\mathbf{s}_{\theta}(\mathbf{x}', \sigma)$ parametrized by σ .

Recap of previous lecture

Noise conditioned score network

- ▶ Define the sequence of noise levels: $\sigma_1 > \sigma_2 > \cdots > \sigma_L$.
- ▶ Train denoised score function $\mathbf{s}_{\theta}(\mathbf{x}', \sigma)$ for each noise level:

$$\sum_{l=1}^{L} \sigma_{l}^{2} \mathbb{E}_{\pi(\mathbf{x})} \mathbb{E}_{p(\mathbf{x}'|\mathbf{x},\sigma_{l})} \|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}',\sigma_{l}) - \nabla_{\mathbf{x}}' \log p(\mathbf{x}'|\mathbf{x},\sigma_{l}) \|_{2}^{2} \to \min_{\boldsymbol{\theta}}$$

▶ Sample from **annealed** Langevin dynamics (for l = 1, ..., L).

Song Y. et al. Generative Modeling by Estimating Gradients of the Data Distribution, 2019

Outline

1. The worst course overview

Outline

1. The worst course overview

The worst course overview:)

Weng L. What are Diffusion Models?, blog post, 2021

The worst course overview:)

Xiao Z., Kreis K., Vahdat A. Tackling the generative learning trilemma with denoising diffusion GANs, 2021

Summary

