Практическая работа №1

Регрессионный анализ.

Уравнение линейной парной регрессии.

Уравнение линейной парной регрессии выглядит следующим образом: Y=a₀+a₁X

При помощи этого уравнения переменная Y выражается через константу a_0 и угол наклона прямой (или угловой коэффициент) a_1 , умноженный на значение переменной X. Константу a_0 также называют свободным членом, а угловой коэффициент - коэффициентом регрессии. Параметры уравнения могут быть определены с помощью метода наименьших квадратов (МНК)

Метод наименьших квадратов

(в справочных системах англоязычных программ - Least Squares Method, LS) является одним из основных методов определения параметров регрессионных уравнений, дающий наилучшие линейные несмещенные оценки. Линейные – относится к характеру взаимосвязи переменных. Несмещенные значит, что ожидаемые значения коэффициентов регрессии должны быть истинными коэффициентами. То есть точки, построенные по исходным данным (x_i, y_i) , должны лежать как можно ближе к точкам линии регрессии. Сущность данного метода заключается в нахождении параметров модели, при которых сумма квадратов отклонений эмпирических (фактических) значений результирующего признака от теоретических, полученных по выбранному уравнению регрессии, то есть:

$$S = \sum_{i=1}^{n} (y_i^{\delta} - y_i)^2 = \sum_{i=1}^{n} (y_i^{p} - a_0 - a_1 x)^2 \rightarrow \min,$$

где y_i^p — значение, вычисленное по уравнению регрессии; $\left(y_i^p-y_i\right)$ — **отклонение** ϵ (ошибка, остаток) (рис. 1); n — количество пар исходных данных.

В регрессионном анализе предполагается, что математическое ожидание случайной величины є равно нулю и ее дисперсия одинакова для всех наблюдаемых значений Y. Отсюда следует, что рассеяние данных возле линии регрессии должно быть одинаково при всех значениях параметра X. В случае, показанном на рис. 2 данные распределяются вдоль линии регрессии неравномерно, поэтому метод наименьших квадратов в этом случае неприменим.

Рис.2. Неравномерное распределение исходных точек вдоль линии регрессии

Проведя необходимые преобразования, получим систему двух уравнений с двумя неизвестными a_0 и a_1 , которые найдем решив систему.

$$a_{1} = \frac{n(\sum y_{i}x_{i}) - \sum y_{i}\sum x_{i}}{n(\sum x_{i}^{2}) - (\sum x_{i})^{2}};$$
 (1)

$$a_0 = \frac{1}{n} \left(\sum y_i - a_1 \sum x_i \right) \tag{2}$$

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициента регрессии (коэффициента a₁).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

Для анализа общего качества уравнения уравнения регрессии используют обычно множественный коэффициент детерминации R^2 , называемый также квадратом коэффициента множественной корреляции R. R^2 (мера определенности) всегда находится в пределах интервала [0;1].

Если значение R^2 близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата, близкое к нулю, означает плохое качество построенной модели.

Коэффициент детерминации R^2 показывает, на сколько процентов ($R^2 \cdot 100\%$) найденная функция регрессии описывает связь между исходными значениями факторов X и Y

$$R^{2} = \frac{\sum_{i=1}^{n} (y_{i}^{\delta} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

где $\left(y_{i}^{p}-\overset{-}{y}\right)^{2}$ — объясненная вариация; $\left(y_{i}-\overset{-}{y}\right)^{2}$ — общая вариация (рис.3).

Рис. 3 Графическая интерпретация коэффициента детерминации для случая линейной регрессии Соответственно, величина $(1-R^2)\cdot 100\%$ показывает, сколько процентов вариации параметра Y обусловлены факторами, не включенными в регрессионную модель. При высоком $(R^2 \geq 75\%)$ значении коэффициента детерминации можно делать прогноз $y^* = f(x^*)$ для конкретного значения x^* .

Нелинейная регрессия

Рассмотрим наиболее простые случаи *нелинейной* регрессии: гиперболу, экспоненту и параболу. При нахождении коэффициентов гиперболы и экспоненты используют прием приведения нелинейной регрессионной зависимости к линейному виду. Это позволяет использовать для вычисления коэффициентов функций регрессии выше приведенные формулы.

Гипербола. Для приведения уравнения вида $y = a_0 + \frac{a_1}{x}$ к линейному виду вводят новую переменную $z = \frac{1}{x}$, тогда уравнение гиперболы принимает линейный вид $y = a_0 + a_1 z$. После этого используют формулы (1) и (2) для нахождений линейной функции, но вместо значений x_i используются значения $z_i = \frac{1}{x}$:

$$a_{1} = \frac{n(\sum y_{i}z_{i}) - \sum y_{i}\sum z_{i}}{n(\sum z_{i}^{2}) - (\sum z_{i})^{2}}; \qquad a_{0} = \frac{1}{n}(\sum y_{i} - a_{1}\sum z_{i}).$$
 (3)

Экспонента. Для приведения к линейному виду уравнения **экспоненты** $y = a_0 e^{a_1 x}$ проведем логарифмирование:

$$\begin{split} \ln y &= \ln\!\left(\!a_0 e^{a_1 x}\right)\!;\\ \ln y &= \ln a_0 + \ln\!\left(\!e^{a_1 x}\right)\!;\\ \ln y &= \ln a_0 + a_1 x\;. \end{split}$$

Введем переменные $b_0=\ln a_0$ и $b_1=a_1$, тогда $\ln y=b_0+b_1x$, откуда следует, что можно применять формулы (1) и (2), в которых вместо значений y_i надо использовать $\ln y_i$:

$$b_{1} = \frac{n\left(\sum \left[\ln y_{i}\right] x_{i}\right) - \sum \ln y_{i} \sum x_{i}}{n\left(\sum x_{i}^{2}\right) - \left(\sum x_{i}\right)^{2}}; \quad b_{0} = \frac{1}{n}\left(\sum \ln y_{i} - b_{1} \sum x_{i}\right)$$
(4)

При этом мы получим численные значения коэффициентов b_0 и b_1 , от которых надо перейти к a_0 и a_1 , используемых в модели экспоненты. Исходя из введенных обозначений и определения логарифма, получаем

$$a_0 = e^{b_0}, a_1 = b_1.$$

Парабола. Для нахождения коэффициентов уравнения параболы $y = a_0 + a_1 x + a_2 x^2$ необходимо решить линейную систему из трех уравнений:

$$\begin{cases} n \cdot a_0 + (\sum x_i) a_1 + (\sum x_i^2) a_2 = \sum y_i, \\ (\sum x_i) a_0 + (\sum x_i^2) a_1 + (\sum x_i^3) a_2 = \sum (y_i x_i), \\ (\sum x_i^2) a_0 + (\sum x_i^3) a_1 + (\sum x_i^4) a_2 = \sum (y_i x_i^2). \end{cases}$$

Сила регрессионной связи для гиперболы и параболы определяется непосредственно по той же формуле что и для линейной модели. При вычислении коэффициента детерминации для экспоненты все значения параметра Y (исходные, регрессионные, среднее) необходимо заменить на их логарифмы, например, y_i^p — на $ln \left(y_i^p \right)$ и т.д.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

Методические рекомендации

Для проведения регрессионного анализа и прогнозирования необходимо:

- 1) *построить график* исходных данных и попытаться зрительно, приближенно определить характер зависимости;
 - 2) выбрать вид функции регрессии, которая может описывать связь исходных данных;
- 3) *определить численные коэффициенты* функции регрессии методом наименьших квадратов;
- 4) *оценить силу* найденной регрессионной зависимости на основе коэффициента детерминации \mathbb{R}^2 ;

5) сделать прогноз (при $R^2 \ge 75\%$) или сделать вывод о невозможности прогнозирования с помощью найденной регрессионной зависимости. При этом не рекомендуется использовать модель регрессии для тех значений независимого параметра X, которые не принадлежат интервалу, заданному в исходных данных.

Варианты задач

Задача №1

Постройте регрессионную модель (линейную) для исходных данных приведенных в таблице. Для облегчения расчетов исходные данные содержат только четыре пары значений (x_i,y_i) .

Исходные данные задачи №1

№ варианта	Координаты		x*			
1	X	1	2	нки 3	4	1.6
	Y	30	7	8	1	?
2	X	1	2	3	4	2.3
	Y	25	7	7	2	
3	X	9	5	2	3	2.9
	Y	25	7	7	2	?
4	X	1	2	3	4	2.6
	Y	15	10	7	0.5	?
5	X	10	3	6	4	8
	Y	25	7	7	2	?
6	X	9	5	2	3	2.5
	Y	15	8.5	7.5	5	?
7	X	2	3	7	8	7.5
	Y	11	8.5	6.5	5	?
8	X	10	3	6	4	9
	Y	15	7	8	6	?
9	X	2	3	4	5	4.5
	Y	13	9	8	7	?
10	X	1	2	3	4	1.5
	Y	7.5	7	5	3.5	?
11	X	1	2	3	4	3.6
	Y	13	9	8	7	?
12	X	3	4	6	10	8
	Y	7.5	7	6.5	3.5	?
13	X	3	4	5	6	7.8
	Y	9	7	5	3	?
14	X	7	5.6	13	14.7	15
	Y	7.5	7	5	3.5	?
15	X	9	5	2	3	5.7
	Y	13	9	8	7	?
16	X	3	4	6	8	5
	Y	7.5	7	6.5	5	?
17	X	2	3	7	8	7.5
	Y	9	9	8	7	?
18	X	9	10	11	12	10.5
	Y	13	9	8	7	?

19	X	1	2	3	4	3.5
	Y	5	4.5	3	3	?
20	X	11	12	13	16	13.6
	Y	7.6	8	6.5	4.2	?
21	X	5	6	7	8	6.5
	Y	5	4.5	3	3	?
22	X	9	10	12	14	12.5
	Y	8	7	6.5	4.2	?
23	X	7	8	9	10	9.6
	Y	8	7	6	4.2	?
24	X	1.5	2.5	3.5	4.5	3.9
	Y	5	4.5	3	3	?
25	X	1	2	5	6	3.9
	Y	5	4	3	3	?
26	X	1.5	2.4	3.8	6.9	4.1
	Y	5.5	5.5	4.8	1.1	?
27	X	1	2	3	4	3.6
	Y	12	3	9	5	?
28	X	1	2	3	7	2.8
	Y	5	5.5	4.8	1.1	?
29	X	11	12	13	16	14.1
	Y	0.25	0.19	5.2	8	?
30	X	1	2	3	4	3.4
	Y	13	4	10	6	?

Задача № 2

Для исходных данных, представленных в таблице, были построены следующие регрессионные модели:

- y = 6,067 0,085x;
- $y = -2.017 + 3.957x 0.367x^2$;
- $y = 5.918e^{-0.043x}$.

Исходные данные задачи №2

X	3	8	5	10	7	6	4	9	1	2
Y	6	5	9	1	8	9	8	4	2	4

С помощью графика отклонений выберите удовлетворительную модель и проверьте свой выбор с помощью соответствующего расчета.

Задача №3

В таблице представлены данные о ценах на комплектующие для ПЭВМ. Комплектующие производятся различными компаниями-производителями и разбиты на группы по своим функциональным возможностям.

Исходные данные задачи №3

Группа	1	1	2	2	2	3	3	3	4	4
Цена, \$	50	60	70	80	95	100	115	120	105	120
Группа	4	5	5	5	6	6	6	7	7	7

TT 0	120	110	1.50	100	100	120	220	1.45	265	270
Цена, \$	130	110	150	190	120	130	220	145	265	270

Постройте график исходных данных и с его помощью проанализируйте применимость метода наименьших квадратов. Подтвердите свои выводы с помощью расчета (для линейной модели). Прокомментируйте экономические причины полученного результата.