

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki

PRACA DYPLOMOWA

Generacja muzyki przy pomocy dużych modeli językowych

Music generation with Lange Language Models

Autor: Filip Ręka

Kierunek: Informatyka — Data Science

Opiekun pracy: Doktor habilitowany Maciej Smołka

Kraków, 2024

 $Tutaj\ możesz\ umieścić\ treść\ podziękowań.\ Tutaj\ możesz\ umieścić\ treść$ podziękowań. Tutaj możesz umieścić treść podziękowań. Tutaj możesz umieścić treść podziękowań. Tutaj możesz umieścić treść podziękowań.

Streszczenie

Duże modele językowe (ang. Large Language Models LLM) charakteryzują się zdolnością do generacji języka oraz innych zadań w przetwarzania języka naturalnego, takich jak na przykład klasyfikacja. Zdolność tą nabierają podczas czasochłonnego oraz intensywnego obliczeniowego treningu metodami samo odraz pół-nadzorowanego, podczas którego uczą się one relacji z wielkiej ilości dokumentów tekstowych. LLMy mogą zostać wykorzystane do generacji tekstu, formy generatywnej sztucznej inteligencji, poprzez pobieranie tekstu wejściowego i wielokrotne przewidywanie kolejnego tokenu lub słowa w tekście. Strukturę muzyki można porównać struktury tekstu pisanego, gdzie każda nuta odpowiada literze lub słowu, akordy zdaniom a dłuższe i sekwencję paragrafom. Poniższa praca, zamierza zbadać możliwości generacyjne LLMów wytrenowanych na muzycznych zbiorach danych.

Abstract

Abstract in English $[1]\ \dots$

Spis treści

Lis	Lista kodów źródłowych													
1 Wstęp														
	1.1	••	akres pracy	1										
2	Czę	ść literaturowa												
	2.1	Cyfrow	va reprezentacja muzyki	3										
		2.1.1	WAV (ang. waveform audio format)	3										
		2.1.2	MIDI (ang. Musical Instrument Digital Interface)	3										
		2.1.3	Podobieństwa reprezentacji muzyki oraz tekstu	3										
		2.1.4	Tokenizacja	3										
	2.2	Zbiory	danych	3										
		2.2.1	Johann Sebastian Bach Chorales	3										
		2.2.2	The MAESTRO v3.0	3										
		2.2.3	Million Song Dataset	3										
	2.3	STOA		3										
	2.4	Archite	ekturze transformera	4										
		2.4.1	Algorytm uwagi (ang. attention)	4										
		2.4.2	Warianty mechanizmu uwagi	4										
			2.4.2.1 Self attention	4										
			2.4.2.2 Multi-headed attention	4										
			2.4.2.3 Flash attention	4										
		2.4.3	Budowa transformera	4										
		2.4.4	Modele tranformerowe	4										
			2.4.4.1 Classic transformer	4										
			2.4.4.2 SeqGAN	4										
			2.4.4.3 Mistral	4										
	2.5	Archite	ektura <i>state space</i>	4										
		2.5.1	Mamba	4										
		2.5.2	Tutaj się rozdrobnić trzeba	4										

3	Częś	ść badawcza	7
	3.1	Opis pipeline-u	7
	3.2	Porównanie architektur użytych modeli	7
	3.3	Prezentacja otrzymanych wyników	7
	3.4	Porwanie wyników	7
4	Zako	ończenie	9
Do	odate	k A. Typowe elementy składowe pracy dyplomowej z informatyki	11
	A.1	Tabele	11
	A.2	Rysunki	13
		A.2.1 Wewnętrzne	13
		A.2.2 Zewnętrzne	14
	A.3	Kody źródłowe	14
	A.4	Algorytmy	16
	A.5	Wzory	16
		A.5.1 Przykłady	17
	A.6	Twierdzenia i podobne struktury	17
Uv	vagi /	Autora	19
	bliogr 5	rafia	21

Zawartość spisu treści — tytuły rozdziałów oraz ich liczba zależą od tematyki pracy — należy ustalić z opiekunem pracy.

Spis rysunków

2.1	Schemat transformera	5
2.2	Schemat modelu Mamba	6
A.1	Prosty rysunek $TikZ$	13
A.2	Bardziej złożony rysunek $TikZ$	13
A.3	Logo Wydziału Informatyki	14

Spis tabel

A.1	Pomiary zużycia energii elektrycznej	11
A.2	Tabela, która zawiera dużą liczbę wierszy.	11
A.3	Tabela zawierająca długi tekst	12

Lista algorytmów

1	Disjoint decomposition.																	16

Lista kodów źródłowych

A.1	Przykładowy kod źródłowy sformatowany za pomocą pakietu 'listings'	15
A.1.	Przykładowy listing sformatowany za pomoca pakietu 'minted'	15

1. Wstęp

Uwaga 1.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

Wprowadzenie w tematykę pracy.

1.1. Cel i zakres pracy

Streszczenie specyfikacji wymagań Promotora.

2. Część literaturowa

2.1. Cyfrowa reprezentacja muzyki

- 2.1.1. WAV (ang. waveform audio format)
- 2.1.2. MIDI (ang. Musical Instrument Digital Interface)
- 2.1.3. Podobieństwa reprezentacji muzyki oraz tekstu
- 2.1.4. Tokenizacja

[2]

2.2. Zbiory danych

2.2.1. Johann Sebastian Bach Chorales

Datset [3]

2.2.2. The MAESTRO v3.0

Dataset [4]

2.2.3. Million Song Dataset

Dataset i takie cytowanko [5]

2.3. STOA

Tutaj nie wiem do końca w jakiej kolejności chciałbym o tym pisać, ponieważ z jednej strony przedstawienie STOA przed czymkolwiek jest ok, ale nie chciałbym pisać o czymś czego jeszcze w pracy nie wprowadziłem.

2.4. Architekturze transformera

- 2.4.1. Algorytm uwagi (ang. attention)
- 2.4.2. Warianty mechanizmu uwagi
- 2.4.2.1. Self attention
- 2.4.2.2. Multi-headed attention
- 2.4.2.3. Flash attention
- 2.4.3. Budowa transformera
- 2.4.4. Modele tranformerowe
- 2.4.4.1. Classic transformer
- 2.4.4.2. SegGAN
- 2.4.4.3. Mistral

2.5. Architektura state space

- 2.5.1. Mamba
- 2.5.2. Tutaj się rozdrobnić trzeba

Uwaga 2.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

Aktualny stan wiedzy, na dany temat, na podstawie dostępnej literatury naukowej oraz specjalistycznej.

Rysunek 2.1.: Schemat transformera.

Selective State Space Model with Hardware-aware State Expansion

Rysunek 2.2.: Schemat modelu Mamba.

3. Część badawcza

Uwaga 3.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

3.1. Opis pipeline-u

Tutaj zamierzam opisać w jaki sposób modele zostały stworzone, jakie bilbioteki zostały użyte, jaki sprzęto został użyty podczas treningu

- 3.2. Porównanie architektur użytych modeli
- 3.3. Prezentacja otrzymanych wyników
- 3.4. Porwanie wyników

...

4. Zakończenie

Uwaga 4.1. Tytuł oraz strukturę rozdziału należy ustalić z opiekunem pracy.

- 1. Podsumowanie.
- 2. Możliwości dalszego rozwoju.
- 3. Potencjalne obszary zastosowania pracy.

Dodatek A.

Typowe elementy składowe pracy dyplomowej z informatyki

A.1. Tabele

Uwaga A.1.

- Każda tabela powinna być opisana w treści pracy.
- Podpis ma być przed tabelą.

W tabeli A.1 przedstawiono wyniki pomiarów.

Tabela A.1.: Pomiary zużycia energii elektrycznej.

L.p.	Wartość
1	12345,6789
	45,89
2	45,678901

Jeżeli tabela zawiera dużą liczbę wierszy i może nie zmieścić się na stronie — patrz tabela A.2 — skorzystaj z pakietu longtable [6].

Tabela A.2.: Tabela, która zawiera dużą liczbę wierszy.

	1	2	3	4	5	6	7	8	
Student 1									

	1	2	3	4	5	6	7	8	
Student 2									
Student 3									
Student 4									
Student 5									
Student 6									
Student 7									
Student 8									
Student 9									

Tabele, w których występuje długi tekst, a co za tym idzie może się on nie zmieścić — musi zostać zawinięty, z pomocą przychodzi środowisko 'tabularx' [7] — patrz tabela A.3.

Tabela A.3.: Tabela zawierająca długi tekst.

Wpis wielokolumnowy!		TRZY	CZTERY
jeden	Szerokość tej	trzy	Kolumna czwarta
	kolumny zależy od		będzie
	szerokości tabeli.		zachowywać się w
			taki sam sposób
			jak druga
			kolumna o tej
			samej szerokości.

A.2. Rysunki

Uwaga A.2.

- Rysunki powinny być przerysowane samodzielnie albo używane tylko te, których twórcy zezwolili na ich rozpowszechnianie oraz kopiowanie, czyli np. rysunki objęte licencją Creative Commons.
- Każdy rysunek powinien być opisany w treści pracy.

A.2.1. Wewnętrzne

Klasa agh-wi, automatycznie, dołącza pakiet TikZ [8] — dostarcza on komend pozwalających na tworzenie grafik. Przykładowe grafiki pokazano na rysunku A.1 oraz A.2.

Rysunek A.1.: Prosty rysunek *TikZ*.

Rysunek A.2.: Bardziej złożony rysunek TikZ.

Oprócz rysunków eksponowanych możliwe jest tworzenie grafik będących 🐓 częścią 📈 zdania.

TikZ pozwala również na kreślenie po powierzchni strony, np. możemy narysować strzałki pomiędzy elementami strony.

A.2.2. Zewnętrzne

Oczywiście możliwe jest również dołączanie rysunków zewnętrznych — pakiet *graphicx* [9] pozwala na wstawianie grafik zapisanych w plikach: '.png', '.jpg' oraz '.pdf'. Rysunek A.3 wstawiono przy użyciu tego pakietu.

Rysunek A.3.: Logo Wydziału Informatyki.

A.3. Kody źródłowe

Najpopularniejszymi pakietami, które umożliwiają składanie kodów źródłowych programów, są:

listings [10] — kod źródłowy jest formatowany bezpośrednio przez Latera — nie jest używany żaden, zewnętrzny, formater kodu.

Kod źródłowy A.1: Przykładowy kod źródłowy sformatowany za pomocą pakietu 'listings'.

```
/* Pierwszy program w C++ */

#include <iostream>
int main() {
std::cout << "Hello World!";
return 0;
}</pre>
```

minted [11] — formatuje kod źródłowy przy użyciu biblioteki języka Python o nazwie *Pygments* [12].

Kod źródłowy A.1.: Przykładowy listing sformatowany za pomocą pakietu 'minted'.

```
/* Pierwszy program w C++ */

#include <iostream>

int main() {
   std::cout << "Hello World!";
   return 0;
}</pre>
```

Uwaga A.3.

- Podpis ma być przed kodem źródłowym.
- Proszę używać tylko jednego z tych pakietów; w przeciwnym razie otrzymasz taki efekt, jak w przykładowej pracy obydwa listingi mają ten sam numer.

Kod źródłowy w C++ sformatowany przy użyciu pakietu *listings*, pokazano na listingu A.1; sformatowany przy użyciu pakietu *minted*, pokazano na listingu A.1.

A.4. Algorytmy

Pakiet *algorithm2e* [13] to jeden z kilku, które pozwalają zapisywać algorytmy w formie pseudokodu — patrz algorytm 1.

Uwaga A.4. Podpis ma być przed algorytmem.

```
Algorytm 1: Disjoint decomposition.
   input: A bitmap Im of size w \times l
   output: A partition of the bitmap
1 special treatment of the first line;
2 for i \leftarrow 2 to l do
       special treatment of the first element of line i;
3
       for j \leftarrow 2 to w do
 4
          left \leftarrow FindCompress(Im[i, j-1]);
 5
          up \leftarrow FindCompress(Im[i-1,]);
 6
          this \leftarrow FindCompress(Im[i, j]);
 7
          if left compatible with this then // O(left, this) == 1
 8
              if left < this then Union(left,this);</pre>
 9
              else Union(this,left);
10
          end
11
          if up compatible with this then
                                                                           // O(up, this) == 1
12
              if up < this then Union(up,this);</pre>
13
              // this is put under up to keep tree as flat as possible
              else Union(this,up);
14
              // this linked to up
          end
15
       end
16
       foreach element e of the line i do FindCompress(p);
17
18 end
```

A.5. Wzory

IŁTEX bardzo dobrze sprawdza się w przypadku prac dyplomowych zawierających wzory matematyczne¹.

¹W przypadku złożonych wzorów warto zastosować pakiet amsmath [14].

A.5.1. Przykłady

Wzór $E = mc^2$ jest częścią zdania.

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \left(\sum_{i=1}^{n} a_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} b_i^2 \right)^{1/2} \tag{A.2}$$

Wartości zmiennej opisano wzorem A.3.

$$x = \begin{cases} y & \text{dla } y > 0\\ \frac{z}{y} & \text{dla } y \le 0 \end{cases}$$
 (A.3)

Wzór A.4 to wzór wielowierszowy.

$$2x^{2} + 3(x - 1)(x - 2) = 2x^{2} + 3(x^{2} - 3x + 2)$$

$$= 2x^{2} + 3x^{2} - 9x + 6$$

$$= 5x^{2} - 9x + 6$$
(A.4)

Uwaga A.5. Należy używać tylko dwóch rodzajów wzorów:

- 1. "W linii".
- 2. Eksponowane, numerowane.

A.6. Twierdzenia i podobne struktury

Twierdzenie nr 1 opublikował, w roku 1691, francuski matematyk Michel Rolle.

Twierdzenie 1 (Rolle'a) Jeśli dana funkcja $f: \mathbb{R} \to \mathbb{R}$ jest:

- 1. $ciagla\ w\ przedziale\ [a,b]$
- 2. jest różniczkowalna w przedziale (a, b)
- 3. na końcach przedziału [a,b] przyjmuje równe wartości: f(a) = f(b),

to w przedziale (a,b) istnieje co najmniej jeden punkt c taki, że f'(c) = 0.

Teraz coś z informatyki ...

Definicja 1 Bit to najmniejsza jednostka informacji w komputerze.

Definicja 2 Bajtem nazywamy ciąg ośmiu bitów.

Uwagi Autora

- Aktualna wersja klasy jest dostępna pod adresem https://github.com/polaksta/ LaTeX/tree/master/agh-wi¹.
- Skoro Twoja praca dyplomowa powstała w LATEXu, to zachęcam Cię również do przygotowania prezentacji (na obronę pracy magisterskiej) w tym języku. Najpopularniejszą klasą do tworzenia tego typu dokumentów jest beamer [15].
- Pod adresem https://github.com/polaksta/LaTeX/tree/master/beamerthemeAGH² możesz znaleźć, stworzony przeze mnie, nasz uczelniany szablon dla prezentacji LaTeX Beamer.
- Treść wszystkich rozdziałów tej, przykładowej, pracy dyplomowej znajduje się w jednym pliku **nie jest to polecane rozwiązanie**. W przypadku pisania własnej pracy warto umieścić zawartość każdego z rozdziałów w osobnych plikach, a następnie dołączać je do dokumentu głównego patrz opis na stronie https://www.dickimaw-books.com/latex/thesis/html/include.html.
- Jeżeli pewne elementy mają być wyróżniane w jednakowy sposób, to proponuję nie używać bezpośredniego stylowania, tzn.
- \colorbox{red!50}{jednakowy} \colorbox{red!50}{sposób}

ale zdefiniować własną komendę stylującą, np. \alert,

1 \newcommand{\alert}[1]{\colorbox{red!50}{#1}}

a następnie użyć jej w dokumencie.

\alert{jednakowy} \alert{sposób}

Dzięki temu, jeżeli będziesz chciał / chciała zmienić sposób stylowania tych elementów, np. niebieskie tło zamiast czerwonego, to wystarczy zmodyfikować, tylko, definicję komendy, zamiast zastępować, w tekście pracy dyplomowej, wybrane (niekoniecznie wszystkie!) wystąpienia tekstu red, tekstem blue.

 $^{^{1}}W\ przypadku\ Overleaf-a\ jest\ ona\ pod\ adresem\ \verb|https://www.overleaf.com/read/fnvcvqjyrbyw\#5ac622|$

²W przypadku Overleaf-a jest on pod adresem https://www.overleaf.com/read/fkjdthnbrfhj#9c6184

Uwa	σi	A_1	nt.	ora	7.

Stanisław Polak

Bibliografia

- [1] Ashish Vaswani i in. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].
- [2] Nathan Fradet i in. "MidiTok: A Python package for MIDI file tokenization". W: Extended Abstracts for the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference. 2021. URL: https://archives.ismir.net/ismir2021/latebreaking/000005.pdf.
- [3] Darrell Conklin. Bach Chorales. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5G
- [4] Curtis Hawthorne i in. "Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset". W: *International Conference on Learning Representations*. 2019. URL: https://openreview.net/forum?id=r11YRjC9F7.
- [5] Thierry Bertin-Mahieux i in. "The Million Song Dataset". W: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011). 2011.
- [6] The longtable package. URL: http://mirrors.ctan.org/macros/latex/required/tools/longtable.pdf.
- [7] The tabularx package. URL: http://mirrors.ctan.org/macros/latex/required/tools/tabularx.pdf.
- [8] The TikZ and PGF Packages. URL: http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf.
- [9] Packages in the 'graphics' bundle. URL: http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf.
- [10] The Listings Package. URL: http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf.
- [11] The minted package: Highlighted source code in LATEX. URL: http://mirrors.ctan.org/macros/latex/contrib/minted/minted.pdf.
- [12] Strona WWW biblioteki "Pygments". URL: https://pygments.org/.
- [13] algorithm2e.sty package for algorithms. URL: http://mirrors.ctan.org/macros/latex/contrib/algorithm2e/doc/algorithm2e.pdf.
- [14] User's Guide for the amsmath Package. URL: http://mirrors.ctan.org/macros/latex/required/amsmath/amsldoc.pdf.

[15] The beamer class. URL: http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf.