MATH 302

CHAPTER 8

SECTION 8.1: LAPLACE TRANSFORMS

Contents

The Laplace Transform Discrete Process: Power series	
Some Comments on Existence	4
Linearity of Laplace Transform	5
First Shift Theorem	6
Powers and Derivatives	7

Created by: Pierre-Olivier Parisé

Fall 2022

From now on,

• the variable t stands for the independent variable (time).

Discrete Process: Power series

Last Chapter:
$$\sum_{n=0}^{\infty} a_n x^n = A(si)$$
.

 $a_n \longmapsto A(si)$ (transform sequence into a fet.)

Ex:: $1 \longmapsto \sum_{n=0}^{\infty} x^n = \frac{1}{1-si}$.

 $\lim_{n\to\infty} \frac{1}{n!} \longmapsto \lim_{n\to\infty} \frac{x^n}{n!} = e^x$

How we when this for continuous procuses?

Continuous Process

Natural Generalization:
$$n o t o e t o e)$$

$$\Rightarrow \sum_{n=0}^{\infty} a_n x^n = A(x) o \int_0^{\infty} a(t) \frac{x^t}{3} dt = A(x)$$

•
$$0 < x < 1$$

$$S = -\ln x$$

$$\Rightarrow \int_{0}^{\infty} f(t) \left(e^{\ln x}\right)^{t} dt = F(s)$$

$$= \int_{0}^{\infty} f(t) e^{-st} dt$$
TRANSFORM.

Remark:

- Recall that, with power series, we were able to solve a differential equation by solving a recurrence relation (so, basically, doing some algebra with a discrete number of data).
- With the Laplace transform, we will also be able to reduce an ODE problem into an algebra one.
- We use the symbol L(f(t)) to also denote the Laplace transform F(s).

EXAMPLE 1. Compute the Laplace transform of the function f(t) = t.

$$\Rightarrow F(s) = -\frac{te^{-st}}{s} \Big|_{0}^{\infty} - \frac{e^{-st}}{s^{2}} \Big|_{0}^{\infty}$$

So,
$$F(s) = -0 + \frac{0.1}{s} - 0 + \frac{1}{s^2} = \frac{1}{s^2}$$

Here is a sample table of Laplace Transforms.

Function	Transform	Function	Transform
1	$\frac{1}{s}$	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
t	$\frac{1}{s^2}$	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
t^n	$\frac{n!}{s^{n+1}}$	$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
e^{at}	$\frac{1}{s-a}$	$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$

Table 1: Laplace Transforms (sample)

It is important to check if a function possesses a Laplace transform.

Exponential Order Criterion.

If f(t) is a function satisfying

$$|f(t)| \le Me^{s_0t}, t \ge t_0$$

for some numbers s_0 , t_0 , and M, then F(s) exists for $s > s_0$.

Remarks:

- Later on, we will see that the Laplace transform exists for discontinuous functions.
- Even more than that, we will apply the Laplace transform on functions taking ∞ as values!

EXAMPLE 2. The function $f(t) = e^{t^2}$ doesn't have a Laplace transform.

Because, for any So
$$\frac{f(t)}{e^{sot}} = e^{t^2 - sot} = e^{t(t-so)}$$

Then, if
$$t > s_{0+1}$$

$$\Rightarrow e^{t(t-s_0)} \ge e^{t\cdot 1} = e^{t}$$

Say
$$M=2$$
, for t big enough, say $t \ge t_0 > Sott$
 $e^{t} > 2$.

Desmos illustration.

EXAMPLE 3. Justify that

Recall:
$$\sinh(\omega t) = \frac{\omega}{s^2 - \omega^2}$$
.

Therefore,

$$\int_0^\infty \sinh(\omega t) e^{-st} dt = \int_0^\infty \frac{\omega t}{s^2 - \omega^2} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$\Rightarrow \int_0^\infty \left(\sinh(\omega t) \right) = \frac{1}{a} \int_0^\infty e^{\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

$$= \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt - \frac{1}{a} \int_0^\infty e^{-\omega t} e^{-st} dt$$

Linearity of Laplace transform:

If f and g are two functions, and a, b are two real numbers, then

$$L(af(t) + bg(t)) = aL(f(t)) + bL(g(t)) = aF(s) + bG(s).$$

You can apply this repeatedly to more than two functions.

FIRST SHIFT THEOREM

Did you notice that

$$L(e^{at}) = \frac{1}{s-a}?$$

- This is L(1), but with a shift s a!!!
- Since $e^{at} = 1 \cdot e^{at}$, we have the following shifting result.

Shifting Theorem:

If f(t) is a function with a Laplace transform F(s), then

$$L(e^{at}f(t)) = F(s-a).$$

EXAMPLE 4. Find the Laplace transform of

(a)
$$f(t) = e^{at} \sin(\omega t)$$
.

(b)
$$f(t) = e^{at} \cos(\omega t)$$
.

(a)
$$\mathcal{J}(\sin \omega t) = \frac{\omega}{s^{z_{+}} \omega^{z_{-}}} \rightarrow \mathcal{J}(e^{s_{+}}\sin \omega t) = \frac{\omega}{(s_{-}\omega)^{z_{+}}\omega^{z_{-}}}$$

(b)
$$f(\cos l\omega t) = \frac{s}{s^2 + \omega^2} \rightarrow f(\frac{at}{e \cos(\omega t)}) = \frac{s - a}{(s - a)^2 + \omega^2}$$

POWERS AND DERIVATIVES

Did you notice that

$$L(t) = \frac{1}{s^2} = -\frac{d}{ds} \left(\frac{1}{s}\right)?$$

- This is the derivative of L(1), but with a different sign.
- Since $t = 1 \cdot t$, we have the following result.

Powers Transformed in Derivatives.

If f has a Laplace transform and n is a positive integer, then

$$L(t^n f(t)) = (-1)^n F^{(n)}(s).$$

EXAMPLE 5. Find the Laplace transform of

(a)
$$f(t) = t \cos(\omega t)$$
.

(c)
$$f(t) = te^{at}$$
.

(b)
$$f(t) = t \sinh(\omega t)$$
.

(d)
$$f(t) = t\sin(2t) + t^2\cos(t)\sin(t)$$
.

(a)
$$\mathcal{J}(\sinh(\omega t)) = \frac{\omega}{s^2 - \omega^2}$$

$$\Rightarrow f(t \sinh(\omega t)) = -\frac{d}{ds} \left(\frac{\omega}{s^z - \omega^z} \right) = \frac{2s\omega}{(s^z - \omega^z)^z}$$

(b)
$$F(s) = I(t sin zt) + I(t^2 cos t sin t)$$

•
$$J(t\sin 2t) = -\frac{d}{ds}(\frac{2}{5^{2}+4}) = \frac{4s}{(5^{2}+4)^{2}}$$

• cost sint =
$$\frac{1}{2}$$
 $\Rightarrow \int (t^2 pin 2t) = \frac{d^2}{ds^2} \left(\frac{2}{s^2+4}\right) = \frac{4(3s^2-4)}{(s^2+4)^3}$

$$\Rightarrow F(s) = \frac{4s}{(s^2+4)^2} + \frac{2(3s^2-4)}{(s^2+4)^3}$$

Did you notice that

$$L(\cos(t)) = \frac{s}{s^2 + 1} = S \cdot \frac{1}{S^{2+1}} = S \mathcal{J}(\sinh) + S \tilde{m}(\delta) . \qquad (2)$$

Derivatives Transformed in Powers:

If $f, f', \ldots, f^{(n)}$ have a Laplace transform for $n \geq 1$, then

$$L(f^{(n)}(t)) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

Most relevant formulas:

•
$$n = 1$$
: $L(f'(t)) = sF(s) - f(0)$.

•
$$n = 2$$
: $L(f''(t)) = s^2 F(s) - sf(0) - f'(0)$.

•
$$n = 3$$
: $L(f^{(3)}(t)) = s^3 F(s) - s^2 f(0) - sf'(0) - f''(0)$.

EXAMPLE 6. Find the Laplace transform of

(a)
$$f(t) = \cos^2(t)$$
.

(b)
$$g(t) = \sin^2(t)$$
.

(a) Notice that
$$f'(t) = 2 \cos(t) \sin(t) = -\sin(2t)$$

So, $J(f'(t)) = -\frac{2}{s^2t \cdot 4}$.

$$3ut_{1} \qquad J(f'(t)) = S J(f(t)) - f(0)$$

$$\Rightarrow \frac{2}{S^{2}+4} = S F(S) - 1$$

$$\Rightarrow \frac{1}{S} - \frac{2}{S(S^{2}+4)} = F(S) \Rightarrow F(S) = \frac{S^{2}+2}{S(S^{2}+4)}$$

Laplace
$$\Rightarrow \frac{s^2+2}{s(s^2+4)} + F(s) = \frac{1}{s} \Rightarrow F(s) = \frac{1}{s} - \frac{s^2+2}{s(s^2+4)}$$