REPORT LAB1 29/11/2023

Ciobanu Florin, Santolupo Salvatore, Zerbini Daniele

For this experiment our aim is to investigate the output resistance of different transistors when it is biased with a different V_{DS} . Each of them has different W and L, as reported in the table.

Transistor	W [µm]	L [μm]
T2	10	10
T3	0.5	0.6
T4	10	0.6

In order to investigate the resistance, first of all we need to plot the device characteristic; the first step is to compute the value of the threshold voltage of the transistors, so we can apply an appropriate V_{GS} to work in the ON-state regime.

$$V_T = V_{FB} + 2|\Phi_B| + \frac{\sqrt{2\varepsilon_{Si}qN_a2|\Phi_B|}}{C_{ox}}$$

Knowing that $t_{ox}=10.5~nm$, $N_a=2*10^{17}cm^{-3}$, $\varepsilon_{ox}=3.9\varepsilon_0$ and that we can assume that the Fermi level of the metal is aligned to the conduction band of the silicon, we can easily calculate $V_{FB}=-\left(\frac{E_{GAP}}{2q}+\frac{kT}{q}\ln\left(\frac{N_a}{n_i}\right)\right)$, $C_{ox}=\frac{\varepsilon_{ox}}{t_{ox}}$ which lead to $V_T\cong 0.6$.

Our calculation is comparable to the V_T that we can extract from a measurement on the transcharacteristic, shown on the left for transistor 4 and a $V_{DS}=1V$.

In order to explore the ON-state regime we selected 4 different values of V_{GS} above V_T . Then we performed a sweep on the drain bias, as shown in the following pictures. We chose $V_{GS}=1.1\ V, 1.4V, 1.7V, 2V$.

As we expected, we can see a transition from linear to parabolic, and from parabolic to saturation regime, where the I_{DS} curve is slightly dependent on the V_{DS} , due to shift of the pinch off point.

This output resistance can be calculated as $\frac{1}{r_0} = \left(\frac{\partial I_{DS}}{\partial v_{DS}}\right)$.

From the theory discussed during the lessons we can say that $r_0 \cong \frac{LF_p}{I_{DS}^{sat}}$. Of course, the dependence on I_{DS}^{sat} can be seen since, focusing on the same transistor, if we increase the V_{GS} , we increase I_{DS}^{sat} and the curves show that for

higher V_{GS} the slope of the curve increases, meaning that r_0 is decreasing. Such dependence can be verified in the experimental trend, shown in the following figures (the trend of transistor 2 may be affected by error in the extraction procedure), where the lowest point is related to the highest V_{GS} . In particular, the plots show the trend of r_0 vs $\frac{1}{I_{GS}}$, highlighting linear the dependence.

Meanwhile the dependence on L can be seen comparing T2 and T4. The two transistors have the same W but T_2 has a higher value of L. Indeed, looking at the r_0 vs $\frac{1}{I_{Sat}}$ plots, we can see that a longer channel yields

a much larger slope, in qualitative agreement with the model.

Finally, the dependence on the W can be seen comparing T3 and T4. Indeed, for the same value of V_{GS} we see differences in orders of magnitude in I_{sat} , thus in r_0 .

High-voltage transistor2

