4/14/2019 Calc Team

question 2 yiews

Daily Challenge 20.3

Let's get some practice with u-substitution. The following integrals can all be done with simple substitutions, although you can probably do some of them in your head.

- (a) $\int e^x \sin(e^x) dx$
- (b) $\int xe^{-x^2} dx$
- (c) $\int e^{e^x} e^x dx$
- (d) $\int x\sqrt{1-x^2}\,dx$

daily_challenge

Updated 4 months ago by Christian Ferko

the students' answer, where students collectively construct a single answer

(a) The formatting of this problem leads me to believe that we can let $u=e^x$ and thus $\frac{du}{dx}=e^x \implies du=e^x dx$. We then see by u-substitution that we can similarly compute the integral as $\int \sin(u) du$ which we see to be equal to $-\cos(u) + C = -\cos(e^x) + C$. :wow:

(b) Let $u=-x^2$ and thus $du=-2x\ dx$. We see that we get the original integral is equal to $\int \frac{-1}{2}\cdot e^u du=\frac{-(e^{-u^2})}{2}=\frac{-(e^{-u^2})^2}{2}$.

(c) Once again we let $u=e^x$; we then see that $\frac{du}{dx}=e^x \implies du=e^x dx$, and in turn we have to work with $\int e^u du=e^u+C=e^{e^x}+C$.

(d) We let $u=x^2$ and thus du=2x; we then see that the original integral is equal to $\int \frac{\sqrt{1-u}}{2} du$. Let's think about this. Start with $(1-u)^{\frac{3}{2}}$, which then differs from our ideal result by a sign and a 3 out front, so we place in front of our ongoing idea a $\frac{-1}{3}$ to get that $\int \frac{\sqrt{1-u}}{2} du = \frac{-1}{3} \cdot (1-x^2)^{\frac{3}{2}}$.

Updated 4 months ago by Logan Pachulski

the instructors' answer, where instructors collectively construct a single answer

(a) Let $u=e^x$ and $du=e^x dx$ so $\int e^x \sin(e^x) dx = \int \sin(u) du = -\cos(u) + C = -\cos(e^x) + C$

(b) Let $u=x^2$ and $du=2x\,dx$ so $\int xe^{-x^2}\,dx=\frac{1}{2}\int e^{-u}\,du=-\frac{1}{2}e^{-x^2}+C$.

(c) Let $u=e^x$ and $du=e^x~dx$ so $\int e^{e^x}e^x~dx=\int e^u~du=e^u+C=e^{e^x}+C$.

(d) Let $u=1-x^2$ and $du=-2x\,dx$. Then $\int x\sqrt{1-x^2}\,dx=-\frac{1}{2}\int \sqrt{u}\,du=-\frac{1}{2}\cdot\frac{2}{3}u^{3/2}=-\frac{1}{3}(1-x^2)^{3/2}+C$

Updated 4 months ago by Christian Ferko

followup discussions for lingering questions and comments