

Classification Error Metrics

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct

Choosing the Right Error Measurement

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct
- Build a simple model that always predicts "healthy"
- Accuracy will be 99%...

Confusion Matrix

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Confusion Matrix

Accuracy: Predicting Correctly

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

Recall: Identifying All Positive Instances

Recall or
$$= \frac{TP}{Sensitivity}$$
 TP + FN

Precision: Identifying Only Positive Instances

Specificity: Avoiding False Alarms

Specificity =
$$\frac{TN}{FP + TN}$$

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
Precision =
$$\frac{TP}{TP + FP}$$

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Error Measurements

	Predicted Positive	Predicted Negative	
Actual	True Positive	False Negative	
Positive	(TP)	(FN)	
Actual	False Positive	True Negative	
Negative	(FP)	(TN)	

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Accuracy =
$$\frac{TP1 + TP2 + TP3}{Total}$$

Multiple Class Error Metrics

	Predicted Class 1	Predicted Class 2	Predicted Class 3	
Actual Class 1	TP1			A
Actual Class 2		TP2		
Actual Class 3			TP3	

Most multi-class error
metrics are similar to
binary versions—
just expand elements as
a sum

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

accuracy_value = accuracy_score(y_test, y_pred)

Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

```
accuracy_value = accuracy_score(y_test, y_pred)
```

Lots of other error metrics and diagnostic tools:

```
from sklearn.metrics import precision_score, recall_score,
f1_score, roc_auc_score,
confusion_matrix, roc_curve,
precision_recall_curve
```


