

changes during the formation of a hydrogen-hydrogen bond. (a) The separated hydrogen atoms do not affect each other. (b) Potential energy decreases as the atoms are drawn together by attractive forces. (c) Potential energy is at a minimum when attractive forces are balanced by repulsive forces. (d) Potential energy increases when repulsion between like charges outweighs attraction between opposite charges.

Formation of a Covalent Bond

As you read in Section 1, nature favors chemical bonding because most atoms have lower potential energy when they are bonded to other atoms than they have as they are independent particles. In the case of covalent bond formation, this idea is illustrated by a simple example, the formation of a hydrogen-hydrogen bond.

Picture two isolated hydrogen atoms separated by a distance large enough to prevent them from influencing each other. At this distance, the overall potential energy of the atoms is arbitrarily set at zero, as shown in part (a) of **Figure 5.**

Now consider what happens if the hydrogen atoms approach each other. Each atom has a nucleus containing a single positively charged proton. The nucleus of each atom is surrounded by a negatively charged electron in a spherical 1s orbital. As the atoms near each other, their charged particles begin to interact. As shown in **Figure 6**, the approaching nuclei and electrons are *attracted* to each other, which corresponds to a *decrease* in the total potential energy of the atoms. At the same time, the two nuclei *repel* each other and the two electrons *repel* each other, which results in an *increase* in potential energy.

The relative strength of attraction and repulsion between the charged particles depends on the distance separating the atoms. When the atoms first "sense" each other, the electron-proton attraction is stronger than the electron-electron and proton-proton repulsions. Thus, the atoms are drawn to each other and their potential energy is lowered, as shown in part (b) of **Figure 5.**

The attractive force continues to dominate and the total potential energy continues to decrease until, eventually, a distance is reached at which the repulsion between the like charges equals the attraction of the opposite charges. This is shown in part (c) of **Figure 5.** At this point, which is represented by the bottom of the valley in the curve, potential energy is at a minimum and a stable hydrogen molecule forms. A closer approach of the atoms, shown in part (d) of **Figure 5,** results in a sharp rise in potential energy as repulsion becomes increasingly greater than attraction.

 Both nuclei repel each other, as do both electron clouds.

The nucleus of one atom attracts the electron cloud of the other atom, and vice versa.

FIGURE 6 The arrows indicate the attractive and repulsive forces between the electrons (shown as electron clouds) and nuclei of two hydrogen atoms. Attraction between particles corresponds to a decrease in potential energy of the atoms, while repulsion corresponds to an increase.