Principal Component Analysis

Dr. Kalidas Y., IIT Tirupati

119) key phrase... "Principal Component Analysis"

- Principal = Important
- Component = Eigen vector
- Typically used to reduce data dimensionality
- E.g. 1,000,000 dimensional data point will just become 2 dimensional!
- This dimensionality reduction is most applicable when data is already into almost clean clusters in high dimensions
- The idea is, you can project data onto vectors along which data appears to be neatly separated out
- The dimension of maximum spread of maximum variance
- However, it is not so much useful when data is convoluted
 - E.g. it is not applicable to concentric circles type of data in 2D (components = 1)
 - E.g. it is not applicable to moons type of data in 2D (components = 1)
 - E.g. it is not applicable to concentric sine curves in 2D (components = 1)

Solving a system of linear equations 120) key phrase... "Gauss-Siedel Elimination Process"

Solving a system of linear equations 121) key phrase... "LU Decomposition"

Solving a system of linear equations 122) key phrase... "Givens Rotation Matrix"

Solving a system of linear equations 123) key phrase... "QR Decomposition"

Solving a system of linear equations 124) key phrase... "Singular Value Decomposition - SVD"

ALGORITHM 16 SVD Algorithm—Simplified pseudocode.

- 1: Input : $A_{m \times n}$ matrix.
- 2: $\hat{U}_{m \times m}$, $Z_{m \times n} = QR(A)$ //QR factorization of A
- $3: \Longrightarrow A = \hat{U} \times Z$
- 4: Note that Z is an upper triangular matrix
- 5: Consider $Z_{n\times m}^T$ Some iterations to happen instead of 1 step
- 6: $V_{n \times n}$, $D_{n \times m} = QR(Z^T) //QR$ factorization of Z^T
- $7: \Longrightarrow Z^T = V \times D$
- 8: $A = \hat{U} \times (Z^T)^T = \hat{U} \times (V \times D)^T = U \times D^T \times V^T$
- 9: Note that D^T is still a diagonal matrix
- 10: Now, D^T needs to be cast as Σ with diagonal element ordering
- 11: Let $(\exists P): D^T = P \times \Sigma$
- 12: Let $U = \hat{U} \times P //$ to absorb the row permutations
- 13: Then, we have $A = U \times \Sigma \times V^T$ as required by the SVD factorization

Solving a system of linear equations 125) key phrase... "Principal Components"

- Let $X_{N \times k}$ be the given data matrix (each data point is k dimensional)
- $X = U \Sigma V^T$
- Determine these matrices by a function call, svd(), u, s, vh = svd(X)
- Now, vh is a matrix (of $k \times k$ shape) of eigen vectors
- These eigen vectors are used for projection of input to lower dimensional space
- The 0th eigen vectors corresponds to the one with highest eigen value, 1st element the next and so on in this vhmatrix
- Example of 2d transformation
 - Lets, say, we take vh[:,0] and vh[:,1]
 - Each xi is now projected into 2 dimensional space as,
 - $xi \vdash (xi \cdot vh[:,0],xi \cdot vh[:,1])$
- Example of 3d transformation
 - Lets, say, we take vh[:,0], vh[:,1], vh[:,2]
 - Each xi is now projected into 3 dimensional space as,
 - $xi \vdash (xi \cdot vh[:, 0], xi \cdot vh[:, 1], xi \cdot vh[:, 2])$
- Likewise...

Caveats!

- Centroid of the data matters!
- If you change the centroid, the principal components would change
- Imagine, vectors to Delhi from Tirupati
- vs, vectors from within Delhi to Delhi... the angle subtended at the origin matters
- PCA
 - First determines centroid of the training set (call it PCA-centroid say)
 - And then goes on to detect eigen vectors
- So, when a new data point comes..
 - 1) It will be translated to PCA-centroid
 - 2) After that, it will be projected on to the eigen vectors

126) key phrase... "PCA Transformation"

- PCA(n_components=2)
 - Specify the number of components to use
- Train PCA on Training set PCA.train(X_train)
 - Origin translation
 - PCA_center of X_train will be determined
 - All the points will be 'centered' about
 - X_train_shifted = X_train PCA_center
 - Determine top 2 eigen vectors
- Data transformation
 - Usage
 - X_train_pca = PCA.transform(X_train)
 - X_test_pca = PCA.transform(X_test)
 - What happens when a new data point xi comes?
 - STEP 1: Centering: (*internally*) xi_t = xi PCA_center
 - STEP 2: Dimensionality transformation: ((xi_t dot v1), (xi_t dot v2)) are the new dimensions

