Examen Vendredi 29 mai 2015 durée 3h

Il sera tenu compte de la rigueur et de la clarté de la rédaction. Sans documents.

Exercice I.

Soit f une application continue de \mathbb{R} dans \mathbb{R} . On suppose que $n \in \mathbb{N}$, et que $x_0 < x_1 < \cdots < x_n$. On note $f[x_0, x_1, \dots, x_k]$ la différence divisée de f d'ordre k aux points x_0, \dots, x_k , pour $k \leq n$.

- 1. Donner la relation entre les différences divisées d'ordre k et d'ordre k+1.
- 2. On suppose que n=3, et que $x_0=-1$, $x_1=0$, $x_2=1$, $x_3=2$. Le tableau des différences divisées est supposé de la forme suivante :

- (a) Déterminer les valeurs de a et b.
- (b) Donner le polynôme d'interpolation de f aux points -1,0,1,2 (on ne demande pas de le développer).
- (c) En supposant que f est un polynôme de degré 3, déterminer f.

Exercice II.

On considère la méthode de quadrature suivante sur l'intervalle [0, 1] :

$$\int_0^1 f(x)dx \simeq \frac{7}{12}f(\frac{2}{7}) + \frac{7}{36}f(\frac{4}{7}) + \frac{2}{9}f(1).$$

- 1. Montrer que cette méthode est d'ordre exactement 2.
- 2. Montrer que le noyau de Peano K_2 est de signe constant sur [0,1] <u>Indication</u>: Pour $t \in [0,\frac{2}{7}]$, on pourra utiliser la forme explicite de K_2 , et pour $t \in [\frac{2}{7},\frac{4}{7}]$, on pourra calculer K_2' et étudier le sens de variation de K_2 .
- 3. En déduire l'expression de l'erreur de cette méthode pour une fonction f de classe C^3 .

Tournez la page SVP...

Exercice III.

On considère l'intégrale $I = \int_1^2 \frac{1}{x} dx$.

- 1. Déterminer la valeur exacte de I.
- 2. Evaluer numériquement cette intégrale par la méthode des trapèzes avec n=3 sous intervalles (c'est-à-dire avec un pas h=1/3, aux points $1,\frac{4}{3},\frac{5}{3},2$).
- 3. Sachant que $\ln(2) \approx 0.693147$, la valeur calculée à la question précédente est-elle plus grande ou plus petite que I?
- 4. Pourquoi la valeur numérique obtenue à la question précédente est-elle supérieure à ln(2)? Est-ce vrai quelque soit n? Justifier la réponse. (On pourra s'aider par un dessin).
- 5. Quel nombre de sous-intervalles n faut-il choisir pour avoir une erreur inférieure à 10^{-4} ? On rappelle que l'erreur de quadrature associée s'écrit, si $f \in C^2([a,b])$,

$$|E_n| \le \frac{(b-a)^4}{12n^2} \sup_{\xi \in [a,b]} |f''(\xi)|.$$

Exercice IV.

Soit a > 0 un nombre réel positif et considérons le problème de Cauchy

$$\begin{cases} y'(t) = -ay(t), \text{ pour } t > 0\\ y(0) = y_0 \end{cases}$$
 (1)

où y_0 est une valeur donnée. Soit h > 0 un pas de temps donné, $t_i = ih$ pour $i \in \mathbb{N}$ et u_i une approximation de $y(t_i)$.

a) Ecrire le schéma de Cranck-Nicholson permettant de calculer u_{i+1} à partir de u_i . Sous quelle condition sur h le schéma est-il absolument stable? Autrement dit, pour quelles valeurs de h la relation

$$\lim_{i \to \infty} u_i = 0$$

a-t-elle lieu?

b) Ecrire le schéma de Heun. Sous quelle condition sur h le schéma de Heun est-il absolument stable ?

Exercice V.(Scilab)

On considère le problème (1)

1. Programmer la méthode d'Euler explicite. On considère l'intervalle [0,T] avec T=10, a=1 et $y_0=1$.

```
clear
a=...; // a completer
y0=...; // a completer
T=...; // a completer
n=100; // nombre des points dans le maillage
h=...; // a completer
```

```
t=[0:n]*h; // t est le vecteur 0, h, 2h, ..., nh
  yex=y0*exp(a*t); // valeurs ponctuelles de la solution exacte
  yEu=y0*ones(1,n+1); // definition du vecteur de la solution approchee
  // initialisation par la condition initiale
  for i=1:n
  ... // a completer
  end
  clf // pour effacer le contenu de la figure
  plot2d(t,yex,1) // solution exacte
  plot2d(t,yEu,-2) // solution approchee
  xtitle('Schema d'Euler explicite')
  legends(['sol. exacte','Euler explicite'],[1,-2],1)
2. Quelle méthode numérique pour la résolution du problème (1) est-elle programée dans le
  code suivant? On considère l'intervalle [0,T] avec T=10, a=-10 et y_0=1. Il y a-t-il
  des erreurs?
  clear // pour effacer tout de la memoire
  a=-10;
  y0=1;
  T=10;
  n=10;
  h=T/h:
  t=[0:n]*h;
  function y=f(t,x)
  y=a*x; //notez que f ne depend en fait pas de t
  endfunction
  yRK=y0*ones(1,n+1);
  for i=1:n
  k1=f(t(i),yRK(i));
  k2=f(t(i)+h/2,yRK(i)+k1/2);
  k3=f(t(i)+h/2,yRK(i)+h*k2/2);
  k4=f(t(i)+h,yRK(i)+h*k3);
  yRK(i+1)=yRK(i)+h*(k1+2*k2+1*k3+k4)/6;
  end
  clf // pour effacer le contenu de la figure
  plot2d(t,yRK,-2)
```