UGANDA MARTYRS UNIVERSITY FACULTY OF SCIENCE

University Examinations 2014/2015

Second Year Supplementary Examination for the Degree of Bachelor of Science (FM and GENERAL)

MTC 2103 Real Analysis

Monday, 3 August 2015

2:00 - 5:00 Pm

Instructions

- (i) Answer five questions
- (ii) Write on both sides of the paper but begin a new question on a fresh page.

- 1. Let $X = \mathbb{R}$ and let d be a real valued function defined on $X \times X$.
 - (a) (i) What does it mean to say that d is a metric on X? (4 Marks)
 - (ii) Show that the function $d: X \times X \longrightarrow \mathbb{R}$ defined by d(x,y) = |x-y| defines a metric on X. (5 Marks)
 - (b) Let x be in $E \subset X$. Define the following terms:
 - (i) a set U is a closed subset of E, (1 Mark)
 - (ii) x is an accumulation point of E, (1 Mark)
 - (iii) the set E is open, (1 Mark)
 - (iv) x is an isolated point of E. (1 Mark)
 - (c) (i) Define a neighborhood of a point $x \in E \subset X$. (2 Marks)
 - (ii) Let $x \in X$. Prove that every neighborhood of x contains infinitely many points of X. (5 Marks)
- 2. (a) (i) Define the following terms:
 - greatest lower bound of a set (g.l.b) (2 Marks)
 - least upper bound of a set (l.u.b) (2 Marks)
 - a bounded set (1 Mark)
 - (ii) Let $S = \{\frac{1}{n} : n \in \mathbb{Z}^+\}$. Find the g.l.b and l.u.b of S. (2 Marks)
 - (b) State the Bolzano-Weierstrass theorem. (2 Marks)
 - (c) (i) With an example, explain what you understand by a sequence. (2 Marks)
 - (ii) When is a sequence (a_n) of real numbers said to converge? (1 Mark)
 - (iii) Use the definition of a limit to prove that $\lim_{n\to\infty} \frac{3n+1}{n+2} = 3$ (4 Marks)
 - (d) Determine the limits in each of the following cases;
 - (i) $\lim_{n \to \infty} \frac{n^3 n^2 \cos n + 2}{4n^3 + n^2 4 \sin n}$
- (2 Marks)
- (ii) $\lim_{n \to \infty} \frac{n^5 + 7n^3 + 5n^2 + 8}{5n^5 + 3n^4 + 27}$
- (2 Marks)
- 3. Let (x_n) be a sequence of real numbers.
 - (a) (i) Explain what it means to say that (x_n) absolutely converges to $x \in \mathbb{R}$. (2 Marks)
 - (ii) Show that if (x_n) converges, then its limit is unique. (4 marks)
 - (b) Show that if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$, then $\lim_{n \to \infty} (a_n + b_n) = a + b$.

(4 Marks)

(c) (i) Explain what it means to say that (x_n) is a Cauchy sequence. Suppose that a sequence (x_n) converges to a point x, prove that (x_n) is Cauchy. (5 Marks)

- (d) If b>0 and B>0 and $\frac{a}{b}<\frac{A}{B}$, prove that aB< bA. Hence deduce that $\frac{a}{b}<\frac{a+A}{b+B}<\frac{A}{B}$. (5 Marks)
- 4. (a) Differentiate from first principles $f(x) = 2x^2 + 1$. (4 Marks)
 - (b) Let $a_n = \frac{1}{n(n+1)(n+2)}$; $n \in \mathbb{Z}^+$ and let $S_n = a_1 + a_2 + ... + a_n$. Express a_n in partial fractions and hence or otherwise show that $S_n = \frac{1}{4} \frac{1}{2(n+1)} + \frac{1}{2(n+2)}$. Deduce that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$ converges and find its sum. (6 Marks)
 - (c) Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. (7 Marks)
 - (d) Let $f(x) = x^2 x$ and $P = \{1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}, 4\}$. Find the upper and lower Riemann sums of f with respect to the partition P. Hence or otherwise, calculate the Riemann sum of f. (3 Marks)
- 5. (a) (i) Let E be a subset of \mathbb{R} and let (f_n) be a sequence of functions on E. What does it mean to say that
 - (f_n) converges uniformly,
 - (f_n) is pointwise convergent. (4 Marks)
 - (ii) State and prove Cauchy's criterion for uniform convergence. (7 Marks)
 - (b) State the Wierstrass-M test for uniform convergence. (2 Marks)
 - (c) (i) Use l'Hopital's rule to evaluate $\lim_{x \to 0} \frac{e^{x^2} 1}{\sin x^2}$ (5 Marks)
 - (ii) Explain why l'Hopital's rule fails in evaluation of $\lim_{x\to 0} \frac{\sin x}{\cosh x}$. (2 Marks)
- 6. Let $\sum_{n=1}^{\infty} a_n$ be an infinite series of real numbers
 - (a) (i) Define the following terms as applied to infinite series:
 - partial sum,
 - convergent sequence. (2 Marks)
 - (ii) Let $a_n = \frac{1}{n(n+1)}$; $n \in \mathbb{Z}^+$. Show that the series $\sum_{n=1}^{\infty} a_n$ converges and find its sum. (4 Marks)
 - (b) (i) Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$. (3 Marks)
 - (ii) Show that $\sum_{n=1}^{\infty} \frac{3n^2+2n+1}{7n^2-5n+3}$ diverges. (3 Marks)

MTC 2103 REAL ANALYSIS

- (i) $\sum_{n=1}^{\infty} (\frac{3n+1}{5n+1})^4$
- (2 Marks)
- (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$
- (3 Marks)
- (iii) $\sum_{n=1}^{\infty} (-1)^{n+1} (\frac{1}{n})$
- (3 Marks)

END