

Spring project summary

Mark Blyth

Discussion about single-cell and multi-cell approaches

Single-cell:

Strong literature precedent for what to expect

Discussion about single-cell and multi-cell approaches

- Strong literature precedent for what to expect
- Lots of accepted models to test in-silico

Discussion about single-cell and multi-cell approaches

- Strong literature precedent for what to expect
- Lots of accepted models to test in-silico
- Easy-to-spot bifurcations

Discussion about single-cell and multi-cell approaches

- Strong literature precedent for what to expect
- Lots of accepted models to test in-silico
- Easy-to-spot bifurcations
 - Hopf, fold both easily detectable with CBC

Discussion about single-cell and multi-cell approaches

- Strong literature precedent for what to expect
- Lots of accepted models to test in-silico
- Easy-to-spot bifurcations
 - Hopf, fold both easily detectable with CBC
- Reuse Bath single-cell microfluidics device

Discussion about single-cell and multi-cell approaches

Multi-cell:

Assume there's an arbitrarily large number of cells

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)
 - Spatially extended cubic Lienard system

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)
 - Spatially extended cubic Lienard system
- Search experimentally and numerically for PDE bifurcations

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)
 - Spatially extended cubic Lienard system
- Search experimentally and numerically for PDE bifurcations
 - Not an area I know much about (yet...)

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)
 - Spatially extended cubic Lienard system
- ★ Search experimentally and numerically for PDE bifurcations
 - Not an area I know much about (yet...)

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)
 - Spatially extended cubic Lienard system
- Search experimentally and numerically for PDE bifurcations
 - Not an area I know much about (yet...)
- Or could reuse Bath microfluidic device

Discussion about single-cell and multi-cell approaches

- Assume there's an arbitrarily large number of cells
 - Neural continuum fields (limited descriptive ability)
 - Spatially extended cubic Lienard system
- Search experimentally and numerically for PDE bifurcations
 - Not an area I know much about (yet...)
- Or could reuse Bath microfluidic device
 - Would require minor alterations to increase spatial resolution

Single- vs multi-cell

Deciding factors:

- ₭ No lab access for the forseeable future
 - Work can be guided less by experiments
- Single-cell easier than multi-cell
 - I know enough about single-cell CBC to start working on it

Conclusion: work on single-cell case

Current goals

- ₭ Single-cell in-silico CBC
- Tutorial-review paper for numerical continuation

Challenges of in-silico CBC

Data aren't ideal to work with:

- Real signals are noise-corrupted
 - ▶ Difficult to filter off, since spikes contain lots of high-frequency components
 - Hard to run continuation on stochastic and noisy signals
 - Current work
- Neurons are fast-spiking
 - Fourier discretisation won't work
 - Discretisations need to be very high-dimensional, making Jacobian very slow to find
 - Next work

Issue 1: noise corruption

Instead of running continuation on noisy signal measurements, let's run it on a surrogate data source

Surrogate models

Surrogate models don't always work well!

Surrogate models

Surrogate models don't always work well!

Machine learning for dynamical systems

- Current approach: Gaussian process regression
 - Predict new points as an intelligently weighted sum of example points
- Bayesian kernel method
 - Kernel specifies a distribution over basis functions
 - ► Good kernel choice = good data fit
- Most kernels are stationary, and can't handle the spiking behaviours of neurons

Current goal: find an ML approach to fitting a surrogate model

Next questions

Predictor-corrector design

Stochastic models

Continuation issues

- Discretisation is required to make predictor-corrector methods work
- It has issues for fast-spiking data
 - Slow to find a Jacobian
 - High noise-sensitivity
- Discretisation-free predictor-correctors might overcome these

Alternative continuation approach

Predictor-corrector design:

- We could try discretisation-free predictor steps, using a surrogate model
 - lacktriangle Let $f_i(t)$ be the surrogate model for system behaviours at parameter λ_i
 - lacktriangle Given periodic orbits $f_{i-1},\ f_i$, predict $f_{i+1}=f_i+higl[f_i-f_{i-1}igr]$
- Corrector step would be harder

Main goal of CBC: find $x^*(t)$ such that $\forall t, u(x, x^*) = 0$.

Alternative formulation:

$$\mbox{\em k} \mbox{\em Let} \ S[x^*] = \int_0^T u^2(x,x^*) \mathrm{d}t$$
 measure control invasiveness

Main goal of CBC: find $x^*(t)$ such that $\forall t, u(x, x^*) = 0$.

Alternative formulation:

Let $S[x^*] = \int_0^T u^2(x, x^*) dt$ measure control invasiveness

 $K : \mathcal{H} \to \mathbb{R}$ is a functional on control actions x^*

Main goal of CBC: find $x^*(t)$ such that $\forall t, u(x, x^*) = 0$.

Alternative formulation:

- $\mbox{\em k} \ \, \mbox{Let} \, S[x^*] = \int_0^T u^2(x,x^*) \mathrm{d}t \,\, \mbox{measure control invasiveness}$
- $\not k S: \mathcal{H} \to \mathbb{R}$ is a functional on control actions x^*
- $\ensuremath{\mathbb{K}}$ CBC becomes a calculus of variations problem; find $x^*(t)$ that minimises S

Main goal of CBC: find $x^*(t)$ such that $\forall t, u(x, x^*) = 0$.

Alternative formulation:

- $\mbox{\em k} \mbox{\em Let} \ S[x^*] = \int_0^T u^2(x,x^*) \mathrm{d}t$ measure control invasiveness
- $K : \mathcal{H} \to \mathbb{R}$ is a functional on control actions x^*
- $\slash\hspace{-0.6em}$ CBC becomes a calculus of variations problem; find $x^*(t)$ that minimises S
- ${\it \& } S=0$ if and only if $x^*(t)$ is an invariant set of the open-loop system

Calculus of variations

Alternative formulation: find $x^*(t)$ that minimises $S[x^*]$

- Might be possible to define an iteration scheme on functions, rather than discretisations

Calculus of variations

- Well-studied in control theory; lots of precedent to build on
- ★ Shifts the noninvasiveness requirement away from the continuation scheme, and onto the controller

Variational noninvasiveness

Ideally, corrector would find some iteration sequence $f_1,\ f_2,\ \dots$, such that $S[f_i]>S[f_{i-1}]$

- Then we've found a function-space iteration scheme to reach noninvasive control
- Works on functions at every step, so we avoid the issues of discretisation

Might be a dead-end.

Variational noninvasiveness

Overall idea:

- Set up CBC as a calculus of variations problem
- kineset Reach noninvasiveness by minimising functional S
- $\ensuremath{\mathbf{k}}$ Find a numerical method to do this though iterations on control target $x^*(t)$
- Use the variational equations to reformulate Newton iterations onto functions, rather than vectors
 - Main question: is this even possible?

Stochastic models

Real neurons are stochastic

- Stochasticity introduces new challenges
 - Coherence and stochastic resonance
 - Random attractors
 - Stochastic calculus
- Current work: CBC on noise-corrupted simulations
- Next work: CBC on true stochastic models

Goals

Actions:

- Find a surrogate modelling method for neural data
- Attempt a discretisation-free corrector?
- ₭ Run CBC on deterministic models, then stochastic

Results:

- Write up surrogate modelling into a conference abstract [July]
 - ► Maybe a conference paper [September]