Lecture 5.1: Gram-Schmidt algorithm

Optimization and Computational Linear Algebra for Data Science

Purpose of the algorithm

The Gram-Schmidt process takes as

- Input: a linearly independent family (x_1, \ldots, x_k) of \mathbb{R}^n .
- Output: an orthonormal basis $(v_1, \ldots v_k)$ of $\mathrm{Span}(x_1, \ldots, x_k)$.

Consequence

Every subspace of \mathbb{R}^n admits an orthonormal basis.

Gram-Schmidt algorithm

The Gram-Schmidt process constructs v_1, v_2, \ldots, v_k in this order, such that for all $i \in \{1, \ldots, k\}$:

$$\mathcal{H}_i: egin{cases} (v_1,\dots,v_i) ext{ is an orthonormal family} \ \operatorname{Span}(v_1,\dots,v_i) = \operatorname{Span}(x_1,\dots,x_i). \end{cases}$$

Iterative construction of the v_i 's

Iterative construction of the v_i 's

Iterative construction of the v_i 's

