Stark Matthias - 12004907 Philipp Maximilian - 11839611

SS22 11.11.2022 FLAB 1 Zählrohr

 ${\it cite}\\ {\it sorting} {\it name} {\it keytemplate} {\it name} {\it = apasortcite}$

Inhaltsverzeichnis

1 Aufgabenstellung

- Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken Abschirmungen
- Aufnahme der Zählrohrcharakteristik
- Aufnahme der Zählstatistik
- Bestätigung des Abstandsgesetzes
- Bestimmung der Endpunktsenergie über Absorbtion in Aluminium
- Aufnahme des Energiespektrums von β Strahlung mit Magnetspektrometer
- Aufnahme und Kalibrierung des γ Spektrums
- Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten

2 Grundlagen

3 Versuchsanordnung

Im Laufe des Versuchs wurden 3 verschiedene Aufbauten verwendet die im Verlauf modifiziert wurden.

3.1 Digitalzähler

Für den ersten Teil des Versuchs wird folgender Versuchsaufbau aus ?? realisiert. Dabei wird das Präparat in die dafür vorgesehene Halterung geschoben, hinter der sich das Zählrohr befindet, welches mit dem Digitalzähler verbunden ist, wodurch ein einfaches Ablesen der Counts ermöglicht wird. Auf der optischen Bank kann der Abstand zwischen Präparat und Zählrohr variiert und abgelesen werden. Dabei ist zu beachten, dass die abgelesene Distanz auf der optischen Bank nicht dem tatsächlichen Abstand zwischen Probe und Zählrohr entspricht, da sich diese nicht direkt über den Sockel befinden. Um im späteren Verlauf des Versuchs die Aluminiumbleche zu befestigen, wird die entsprechende Halterung auf die optische Bank gesteckt.

Abbildung 3.1: Aufbau des Digitalzähler

- 1 ... Halterung für radioaktive Quelle
- 2 . . . Zählrohr
- 3 ... Halterung um später das Aluminium zu Befestigen
- 4 ... Digitalzähler
- 5 ... optische Bank um den Abstand zu variieren

3.2 Magnetfeldspektrometer

Um β Strahlung messbar zu machen, wird folgender Aufbau aus ?? verwendet. Dabei wird das radioaktive Präparat in das dafür vorgesehene Loch gesteckt. Durch die Spule wird ein Magnetfelds erzeugt, wodurch die Betastrahlung aufgrund von Lorentzkraft abgelenkt wird, weshalb die Hallsonde auch schräg zur Quelle angeordnet ist. Dies stellt sicher, dass keine Gammastrahlung gemessen wird. Die Stärke des Magnetfelds wird durch das Netzgerät bestimmt.

Abbildung 3.2: Aufbau des Magnetfeldspektrometers

- $1 \dots$ Radioaktive Quelle
- 2... Hallsonde (nicht sichtbar im Foto)
- 3 . . . Epfänger des Geiger-Müller-Zählers
- 4 . . . Anzeige des Geiger-Müller-Zählers
- 5 ... Spule um das Magnetfeld zu erzeugen
- 6 ... Netzgerät für das Magnetfeld (Stecker um die Polung des Magnetfelds zu Ändern)
- 7... Teslameter um die Stärke des Magnetfelds zu bestimmen

3.3 Szintilationszähler

Der Aufbau des Szintilationszählers ist in folgender ?? sichtbar. Die radioaktive Quelle wird in die, dafür vorgesehene, Halterung ober den Szintilationszähler gesteckt. Um eine Auswertung am PC zu ermöglichen, wird ein Cassy-Lab als Schnittstelle verwendet.

Abbildung 3.3: Aufbau des Szintilationszählers

- 1... Radioaktive Quelle
- 2 . . . Szintilationszähler
- 3... Spannungsgenerator
- 4... Cassy-Lab um Auswertung am PC zu ermöglichen

4 Geräteliste

5 Versuchsdurchführung & Messergebnisse

5.1 Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken Abschirmungen

Um die Abschirmung Strahlungen zu Messen, wir der Versuchsbaufbau, wie in ?? beschrieben, vorgenommen. Die Torzeit am Digitalzähler wird dabei auf 10 s gestellt. Als radioaktive Quelle wird NA-22 verwendet, welche, wie bereits beim Aufbau erklärt, in die dafür vorgesehene Halterung gesteckt wird. Der Abstand zwischen der Quelle und dem Zählrohr wird dabei so gering gewählt, dass die dickste Abschirmungsprobe problemlos dazwischen gehalten werden kann, ohne gegen die Probe oder das Zählrohr zu stoßen. Diese Distanz zwischen der radioaktiven Quelle und

dem Zählrohr wird mit einem Lineal vermessen und beträgt 15,2 mm. Die unterschiedlichen Abschirmungen werden der Reihe nach in den Aufbau gehalten und die entsprechenden Zählraten notiert, was in folgender ?? sichtbar ist. Dabei ist zu Beachten, dass die jeweilige Abschirmung die gesammte Torzeit im Aufbau ist und man damit nicht gegen die Probe oder das Zählrohr stößt.

5.2 Aufnahme der Zählrohrcharakteristik

Um die Zählrohrcharakteristik zu bestimmen wird der Aufbau aus ?? realisiert. Als radioaktive Quelle wird erneut NA-22 in die dafür vorgesehene Halterung gesteckt. Nun wird die Betriebsspannung des Netzgerätes so lange gesenkt, bis durch den Digitalzähler kein Geräusch hörbar ist, was anzeigt, dass keine Strahlung auf das Zählrohr gelangt, was bei 316 V der Fall war. Nun wird die Spannung in kontinuierlich erhöht, bis ein Wert von 600 V erreicht ist und die entsprechenden Counts notiert, was in folgender ?? sichtbar ist.

5.3 Aufnahme der Zählstatistik

Um die Zählstatistik durchzuführen wird erneut der Versuchsaufbau aus ?? verwirklicht. Auch wird erneut NA-22 als radioaktiveQuelle verwendet. Die Torzeit beträgt für diesen Teil des Versuchs 1s. Wegen der großen Datenmenge werden die erhaltenen Counts über den Memory Speicher des Digitalzählers direkt auf den Computer übertragen. Die erhaltenen Ergebnisse sind in folgender ?? aufgelistet.

5.4 Bestätigung des Abstandsgesetzes

Um das Abstandsgesetz zu Bestätigen wird erneut der Versuchsaufbau aus ?? verwendet. Um die verschiedenen Abstände zu ermöglichen, wird die radioaktive Quelle, erneut NA-22, vom Zählrohr entfernt und die entsprechenden Counts bei einer Torzeit von 10 s in ?? vermerkt. Bei der Abstandsbestimmung ist zu beachten, dass der tatsächliche Abstand zwischen Quelle und Zählrohr vermerkt wird und nicht jener auf der optischen Bank. Um allerding den Abstand zu erhöhen kann auf die Skala der optischen Bank geachtet werden, da es sich um eine Differenzmessung handelt und so ausgeschlossen werden kann, dass sich die entstehenden Unsicherheiten durch die Messung mittels Lineal gegenläufig auswirken.

FLAB 1 Zählrohr

5.5 Bestimmung der Endpunktsenergie über Absorbtion in Aluminium

Um die Endpunktsenergie zu Bestimmen, wird erneut der Versuchsaufbau aus ?? verwendet. Um die unterschiedlichen Aluminiumdicken zu realisieren, werden verschieden Dias mit unterschiedlicher Anzahl an Aluminiumfolien in die dafür vorgesehene Halterung geschoben. Als radioaktive Quelle wird erneut NA-22, sowie eine Torzeit von 10s verwendet. Die abgelesenen Werte sind in folgender ?? festgehalten.

5.6 Aufnahme des Energiespektrums von β Strahlung mit Magnetspektrometer

Um das Energiespektrum der β Strahlung zu bestimmen wird der Aufbau aus ?? realisiert. Als radioaktive Quelle wird erneut NA-22 in die dafür vorgesehene Halterung gesteckt. Nun wird die Betriebsspannung des Netzgerätes so lange gesenkt, bis das erzeugte Magnetfeld in etwa 5 mT entspricht. Bei den Anschlüssen der Spule ist dabei zu beachten, dass das Magnetfeld richtig gepolt ist, um die Strahlung in die richtige Richtung abzulenken. Nun wird die Spannung durch betätigen des entsprechenden Rades kontinuierlich erhöht und die jeweiligen Zerfälle bei einer Torzeit von 100 s gemeinsam mit dem jeweiligen Wert des Magnetfelds in folgender ?? aufgelistet. Dabei ist auch wichtig, dass die Hintergrundstrahlung im entsprechenden Gebäude gemessen wird, indem die selbe Messung auch einmal ohne eingelegte radioaktive Quelle durchgeführt wird.

- 5.7 Aufnahme und Kalibrierung des γ Spektrums
- 5.8 Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten
- 6 Auswertung
- 6.1 Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken Abschirmungen
- 6.2 Aufnahme der Zählrohrcharakteristik
- 6.3 Aufnahme der Zählstatistik
- 6.4 Bestätigung des Abstandsgesetzes
- 6.5 Bestimmung der Endpunktsenergie über Absorbtion in Aluminium
- 6.6 Aufnahme des Energiespektrums von β Strahlung mit Magnetspektrometer
- 6.7 Aufnahme und Kalibrierung des γ Spektrums
- 6.8 Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten

Abbildungsverzeichnis

Tabellenverzeichnis