

Laboratorio 1

Profesor: Carlos Castro Integrantes: Giorgio Pellizzari y Gabriel Valenzuela

Octubre 2017

1 Pregunta 1:

Para este problema se decidió considerar que los viajes sólo se realizarán desde Ciudad de México a sus destinos y que estos regresarán directo a Ciudad de México ya que no se tiene claridad de que el modelamiento completo de esta problema resulte en un problema lineal.

1.1 Función objetivo:

La función asociada al costo que se busca optimizar es la que se describe a continuación:

$$f(x_i, y, z_i) = \sum_{i=Oaxaca}^{Tabasco} x \cdot P_{ci} + y \cdot P_a + \sum_{i=Oaxaca}^{Tabasco} P_t \cdot Z_i$$

Donde:

- x corresponde a la cantidad de camiones.
- y corresponde a la cantidad de aviones.
- z_i corresponde a toneladas de carga en camiones destinados a la ciudad i.
- P_{ci} corresponde al costo de rentar un camión para i ciudad.
- P_a corresponde al costo de rentar un avión, y equivale a 450000.
- P_t corresponde al costo por tonelada de carga en camión, y equivale a 8000.

Esto se plantea de tal forma que sólo participan aquellas variables que influyen en el costo total.

1.2 Restricciones:

La función anterior descrita queda sujeta a las siguientes condiciones:

$$0 \leq \sum_{i=Oaxaca}^{Tabasco} Z_i \leq \sum_{i=Oaxaca}^{Tabasco} C_c \cdot x_i$$

Donde C_c es la capacidad de carga de un camión, que equivale a 18[Ton]. Esta restricción muestra que el total de carga de los camiones no puede ser superior a su capacidad.

$$0 \le \sum_{i=Oaxaca}^{Tabasco} W_i \le C_a \cdot y$$

Donde W_i corresponde a toneladas de carga en aviones destinados a la ciudad i y C_a a la capacidad de carga de un avión, que equivale a 54[Ton]. Esta restricción muestra que el total de carga de los camiones no puede ser superior a su capacidad.

$$0 \ge \sum_{i=Oaxaca}^{Tabasco} W_i + Z_i \ge \sum_{i=Oaxaca}^{Tabasco} \left(\sum_{j=Material}^{Carne} \left(\sum_{k=Camion}^{Avion} (C_{ijk}) \right) \right)$$

Donde C_{ijk} corresponde a la cantidad de carga del recurso j para la ciudad i en el medio de transporte k. Esta restricción denota que la cantidad de carga entre aviones y camiones debe cumplir con los requisitos diarios de recursos para cada ciudad.

Posteriormente, y tras analizar los tiempos que demoran en llegar los camiones y aviones a cada ciudad, se comprobó la viabilidad de transportar ciertos productos a las ciudades, concluyendo así con el siguiente resultado:

Ciudades	Oaxaca	Chiapas	Tabasco
Ciudad de México	5.8/0.5	12.5/1	18.8/0.9

Luego de estos resultados se obtienen las siguientes restricciones para cumplir con los tiempos de los recursos:

$$C_{chiapas-lacteos-camion} = 0$$

$$\sum_{j=Lacteos}^{Carnes} C_{tabasco-j-camion} = 0$$

Finalmente se tiene la siguiente condición para la cantidad de horas que puede usarse un camión mientras este está arrendado:

$$P_{c-Oaxaca} = 150000$$

$$\sum_{i=Chiapas}^{Tabasco} P_{ci} = 300000$$

Esto producto de que sera necesario arrendar durante 48 horas para los viajes en camión hacia Chiapas y Tabasco.

2 Pregunta 2:

2.1 Parte A:

Se presenta el siguiente modelo para resolver el problema propuesto:

• R_i : Cantidad de anuncios en el medio i.

• Función a Maximizar:

$$Zmax(R_1, R_2) = R_1 \cdot 3400 + R_2 \cdot 7600$$

• Restricciones:

$$R_1, R_2 \ge 0$$

$$R_1 \cdot 210 + R_2 \cdot 566 \le 20048$$

$$R_1 \cdot 1, 1 \le R_2$$

$$R_1 \le 20$$

$$R_2 \le 37$$

2.1.1 Simplex:

		R_1	R_2	S_1	S_2	S_3	S_4		
Basis	c_{j}	3400	7600	0	0	0	0	b_i	$\frac{b_i}{a_{ij}}$
S_1	0	210	566	1	0	0	0	20048	35.42
S_2	0	1.1	-1	0	1	0	0	0	0
S_3	0	1	0	0	0	1	0	20	_
S_4	0	0	1	0	0	0	1	37	37
Z_j		0	0	0	0	0	0	0	
$C_j - Z_j$		3400	7600	0	0	0	0		

		R_1	R_2	S_1	S_2	S_3	S_4		
Basis	c_j	3400	7600	0	0	0	0	b_i	$\frac{b_i}{a_{ij}}$
R_2	7600	0.37	1	0	0	0	0	35.42	95.47
$\overline{S_2}$	0	1.47	0	0	1	0	0	35.42	24.08
$\overline{S_3}$	0	1	0	0	0	1	0	20	20
S_4	0	-0.37	0	0	0	0	1	1.58	_
Z_j		2819.79	7600	13.43	0	0	0	269195.76	
$C_j - Z_j$		580.21	0	-13.43	0	0	0		

		R_1	R_2	S_1	S_2	S_3	S_4		
Basis	c_{j}	3400	7600	0	0	0	0	b_i	$\frac{b_i}{a_{ij}}$
R_2	7600	0	1	0	0	-0.37	0	28	_
$\overline{S_2}$	0	0	0	0	1	-1.47	0	6	_
R_1	3400	1	0	0	0	1	0	20	_
S_4	0	0	0	0	0	0.37	1	9	_
Z_{j}		3400	7600	13.43	0	580.21	0	280800	
$C_j - Z_j$		0	0	-13.43	0	-580.21	0		

Finalmente se obtuvieron los valores de 20 para ${\cal R}_1$ y 28 para ${\cal R}_2$

2.1.2 Metodo gráfico

2.2 Parte B:

Se presenta el siguiente modelo para resolver el problema propuesto:

- R_i : Cantidad de anuncios en el medio i.
- Función a Maximizar:

$$Zmax(R_1,R_2,R_3,R_4) = R_1 \cdot 3400 + R_2 \cdot 7600R_3 \cdot 33000 + R_4 \cdot 20000$$

• Restricciones:

$$R_1, R_2, R_3, R_4 \ge 0$$

$$R_1 \cdot 210 + R_2 \cdot 566 + R_3 \cdot 1800 + R_4 \cdot 1480 \le 24692$$

$$R_1 \cdot 1, 1 \le R_2$$

$$R_1 \le 20$$

$$R_2 \le 37$$

$$R_3 \le 2$$

$$R_4 \le 5$$

2.2.1 Simplex:

		R_1	R_2	R_3	R_4	S_1	S_2	S_3	S_4	S_5	S_6		
Basis	c_j	3400	7600	33000	20000	0	0	0	0	0	0	b_i	$\frac{b_i}{a_{ij}}$
$\overline{S_1}$	0	210	566	1800	1480	1	0	0	0	0	0	24692	13.72
$\overline{S_2}$	0	1.1	-1	0	0	0	1	0	0	0	0	0	_
$\overline{S_3}$	0	1	0	0	0	0	0	1	0	0	0	20	_
S_4	0	0	1	0	0	0	0	0	1	0	0	37	_
S_5	0	0	0	1	0	0	0	0	0	1	0	2	2
S_6	0	0	0	0	1	0	0	0	0	0	1	5	_
$\overline{Z_j}$		0	0	0	0	0	0	0	0	0	0	0	
$C_j - Z_j$		3400	7600	33000	20000	0	0	0	0	0	0		

			R_1	R_2	. .	R_3		24	S_1	1 5	S_2	S_3	S_{2}	S	5	S_6		
Basis	c_j		3400	760	0 33	000	200	000	0) (0	0	0	0)	0	b_i	$\frac{b_i}{a_{ij}}$
S_1	0		210	560	3	0	14	80	1	. (0	0	0	-18	00	0	21092	14.25
S_2	0		1.1	-1		0	0		0) [1	0	0	C	0		0	_
$\overline{S_3}$	0		1	0		0	()	0) (0	1	0	0 0		0	20	_
S_4	0		0	1		0	()	0) (0	0	1	C)	0	37	_
R_3	3300	00	0	0		1	(0		0	0	0			0	2	_
S_6	0		0	0		0	1		0) (0	0	0			1	5	5
Z_j			0	0		000			0		0	0	0		- 1	0	66000	
$C_j - Z_j$:		3400	760	0	0	200	000	0) (0	0	0	-330	000	0		
												1		1				
			R_1	R_2	R	_	R_4	S_1		S_2	S_3	S_4	\perp	S_5	S_{0}			
Basis	c_{j}	-	3400	7600	330		20000			0	0	0		0	0		b_i	$\frac{b_i}{a_{ij}}$
S_1	0		210	566	(0	1		0	0	0	<u></u>	-1800	-14	.80	13692	24.19
S_2	0		1.1	-1	(0	0		1	0	0	\perp	0	0		0	
S_3	0		1	0	(0	0	1	0	1	0		0	0		20	
S_4	0		0	1	(0	0		0	0	1	+	-		37		37
R_3	3300		0	0	1		0	0		0	0	0		1)	2	
$\frac{R_4}{Z}$	2000	0	0	0	220		20000	0		0 0	0	0	٠,	0 33000	1 20000		5 166000	
Z_j			$\frac{0}{3400}$	7600	$\frac{330}{0}$		20000	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	- 1	33000	-20000		100000	
$C_j - Z_j$			3400	7000	' '	I	U	0	ı	U	U	0	-	33000	-200	000		
			R_1	R_2	R	9	R_4	$ S_1 $		$\mid S_2 \mid$	S_3	$ S_4 $	ı	S_5	S_{ϵ}	3		
Basis	c_i	_	400	7600	330	_	20000	0		0	0	0		0	0		b_i	$\frac{b_i}{a_{ij}}$
R_2	7600	0.	.37	1	(0	0		0	0	0		-3.18	-2.6	31	24.19	$\frac{a_{ij}}{65.2}$
S_2	0	1.	.47	0	(0	0		1	0	0		-3.18	-2.6		24.19	16.44
S_3	0		1	0	(0	0		0	1	0		0	0		20	
S_4	33000		0.37	0	(0	0		0	0	1 0		3.18	2.6		12.81	
$\frac{R_3}{R_4}$	20000		0	0	1		1	0	_	0	0	0		0	$\frac{0}{1}$		5	
$\frac{-Ic_4}{Z_j}$	20000		0	2819.7			20000	0		0	0	0	8	830.39	127.		349850.18	
$C_j - Z_j$		58	0.21	0	(0	-13.4	13	0	0	0		830.39	-127			
		R	_	R_2	R_3	R		S_1		S_2	_	$S_3 \mid S$	-	S_5		S_6		h.
Basis	c_j	340		7600	33000	200		0		0		0 (0		0	b_i	$\frac{b_i}{a_{ij}}$
$\frac{R_2}{R_2}$	7600	0		1	0	(0	_	-0.25		0 (-2.38 -2.16		1.96	18.09	
$\frac{R_1}{S_3}$	3400	1 0		0	0	(0		0.68	_	0 0 0	_	2.16	_	1.78	16.44 3.56	$\frac{}{}$
$\frac{S_3}{S_4}$	0	0		0	0	(_	0	_	$\frac{-0.05}{0.25}$		0 1	_	2.38		.96	18.91	9.67
R_3	33000	0		0	1	(0		0	1	0 ()	1		0	2	<u> </u>
R_4	20000	0		0	0	1		0		0		0 (0	1		5	5
$\overline{Z_j}$		340		819.79	33000	200		14.12		94.43		0 (7576.03		04.16	359391.69)
$C_j - Z_j$		0	'	0	0	() -	14.12	-3	394.43	5 (0 0)	-7576.03	90	4.16		

Dado que siguen habiendo valores negativos no se pudo determinar un valor optimo. (Ultima iteración en la siguiente hoja)

		R_1	R_2	R_3	R_4	S_1	S_2	S_3	S_4	S_5	S_6		
Basis	c_j	3400	7600	33000	20000	0	0	0	0	0	0	b_i	$\frac{b_i}{a_{ij}}$
R_2	7600	0	1	0	0	0	-1	1.1	0	0	0	22	_
R_1	3400	1	0	0	0	0	0	1	0	0	0	20	_
$\overline{S_6}$	0	0	0	0	0	0	-0.38	0.56	0	1.22	1	2	_
S_4	0	0	0	0	0	0	1	-1.1	1	0	0	15	_
R_3	33000	0	0	1	0	0	0	0	0	1	0	2	_
R_4	20000	0	0	0	1	0	0.38	-0.56	0	-1.22	0	3	_
Z_j		3400	2819.79	33000	20000	13.51	48.65	508.65	0	8675.68	0	361200	
$C_j - Z_j$		0	0	0	0	-13.51	-48.65	-508.65	0	-8675.68	0		