

迈克耳孙白光干涉实验

引言 激光非定域干涉 白光定域干涉 实验方案设计 实验操作 总结

实验背景

- 1881年,迈克耳孙干涉实验(白光干涉)
- 1887-1930年间,迈克耳孙、莫雷、米勒等人多次重复 迈克耳孙干涉实验(**白光**干涉)

引言激光非定域干涉 白光定域干涉 实验方案设计 实验操作 总结

实验背景

白光干涉

- 1958年后, 激光干涉实验:
- 2016 —— LIGO激光干涉引力波天文台
- 2015 —— 天琴计划

大纲

原 理

- 激光非定域干涉
- 白光定域干涉

• 实验方案设计

实验

- 观察白光干涉图样
- 精密测量
- 实验操作

迈克耳孙干涉仪原理

实验仪器: 迈克耳孙干涉仪

迈克耳孙干涉仪原理

$$\Delta S(O) = 2(\underline{L_1} - \underline{L_2})$$

引言

非定域干涉条纹的成因

引言

非定域干涉条纹的成因

$$\Delta S(A) = r_1 - r_2 = \left\{egin{array}{ccc} k\,\lambda & A\,
ightarrow
i$$

$$\Delta S(A) = r_1 - r_2 = \left\{egin{array}{ccc} k\,\lambda & A\,
ight)$$
亮点 $\lambda S(A) = r_1 - r_2 = \left\{egin{array}{ccc} k\,\lambda + rac{1}{2}\lambda & A\,
ight)$ 暗点

干涉条纹的变化

|*d*| 增大 → 环心吐圆环

|d| 减小 → 环心吞圆环

干涉条纹的变化

|d| 增大 → 环心吐圆环

|d| 减小 → 环心吞圆环

总结

干涉条纹的变化

|*d*| 增大 → 环心吐圆环

|d| 减小 → 环心吞圆环

干涉条纹的形态

环心在左

直条纹

环心在右

规律总结

引言

条纹形态 与 虚光源位置 的关系

虚光源连线垂直于观察屏 → 圆环形条纹

虚光源连线平行于观察屏 → 直条纹

圆环条纹变化规律

虚光源间距减小→ 吞圆环

虚光源间距增大 → 吐圆环

定域性的成因

定域性的成因

定域性的成因

单色光非定域干涉场

丁非相干叠加

复色光定域干涉场

定域性为观测带来了困难

定域范围与光源相干性有关

光源相干性越好

清晰区的条纹级数越多

定域范围越大

定域范围与虚光源间距有关

虚光源距离越近

清晰区的条纹越宽

定域范围越大

实验启示

• 利用辅助光源

寻找零光程差面

• 缩小虚光源距离

测量透明塑料片的折射率

测量透明塑料片的折射率

总结

测量透明塑料片的折射率

白光清晰区

引言

测量透明塑料片的折射率

稀土灯清晰区

引言

测量透明塑料片的折射率

白光清晰区

测量透明塑料片的折射率

$$\Delta l = (n-1)t \leftrightarrow n = 1 + \frac{\Delta l}{t}$$

一、实验仪器介绍

实物演示

二、寻找白光条纹

1 激光条纹

引言

实物演示

总结

二、寻找白光条纹

2 条纹调粗

实物演示

总结

二、寻找白光条纹

3 条纹调直

目标现象

实物演示

实验操作

二、寻找白光条纹

4 白光条纹

目标现象

1 记录 l_1

目标现象

实物演示

2 插入薄片

目标现象

引言

总结

实验操作

3 辅助观察

目标现象

引言

4 补偿复位

目标现象

引言

5 记录 l₂

实物演示

6 数据处理

$$\bar{n} = 1 + \frac{\overline{\Delta l}}{\overline{t}}$$

分析A 类、B 类不确定度

测量反射镜 M_1 的补偿移动距离(单位:mm)

测量次数	1	2	3	4	5		
l_1	5.8662	X	X	X	X		
l_2	6.0017	X	X	X	X		
Δl	0.1354	X	X	X	X		
$\overline{\Delta l}$	XXX						

测量透明塑料片的厚度 (单位: mm)

测量次数	1	2	3	4	5
t	0.189	Х	X	X	X
\overline{t}			XXX		

要点总结

原理

- 激光的双曲面形非定域干涉场
- 白光干涉场的定域性

操作技巧

• 两种方法增大干涉条纹的清晰区

总结

思考

- 测量折射率的白光干干涉法和激光干涉法有什么区别?
- 实验中是否会遇到圆环形的彩色条纹? 如何解释?

总结

请开始动手做实验吧!