

UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Seminario De Problemas De Programación De Sistemas Reconfigurables.

Restador 3-3 Bits

Alumno: Meneses López Arisai Ricardo. Docente: María Patricia Ventura Núñez.

5 de septiembre de 2019

${\bf \acute{I}ndice}$

1.	Objetivo Del Proyecto	1
2.	Marco Teórico	2
3.	Desarrollo	3
	3.1. Planteamiento Del Problema	3
	3.2. Métodos De Diseño	3
	3.3. Obtención De Ecuaciones	5
	3.3.1. Medio Restador	5
	3.3.2. Restador Completo	5
	3.4. Simulación	6
	3.5. Protoboard	7
4.	Resultados	8
5 .	Conclusiones	9
6.	Bibliografía	9
$\mathbf{A}_{\mathbf{I}}$	péndices	10

Materiales

Componentes.

- · Protoboard.
- · Cable Para Proto.
- \cdot Pinzas De Corte/Agarre.
- \cdot Diodos LED
- · Fuente De Voltaje $(5\mathbf{V})$.
- · Resistencias 1k Ω y 220 Ω .

${\bf Circuitos\ Integrados.}$

- · TTL 7408 (AND).
- · TTL 7432 (OR).
- \cdot TTL 7404 (NOT).
- · TTL 7486 (XOR).

Software.

- · Boole-Deusto.
- \cdot Proteus Design Suite.

1. Objetivo Del Proyecto

 \cdot El uso y aplicación de la Compuerta OR exclusiva.

2. Marco Teórico

Resta Binaria			
0 - 0 = 0			
0 - 1 = 1 y acarreo 1			
1 - 0 = 1			
1 - 1 = 0			

Tabla 1: Resta Binaria - Propiedades.

Tabla 2: Compuerta NOT - Tabla De Verdad

Α	В	\mathbf{S}
0	0	0
0	1	0
1	0	0
1	1	1

Tabla 3: Compuerta AND - Tabla De Verdad

Α	В	\mathbf{S}
0	0	0
0	1	1
1	0	1
1	1	1

Tabla 4: Compuerta OR - Tabla De Verdad

Α	В	\mathbf{S}
0	0	0
0	1	1
1	0	1
1	1	0

Tabla 5: Compuerta XOR - Tabla De Verdad

3. Desarrollo

3.1. Planteamiento Del Problema

El diagrama se descompone en dos segmentos: **Restador Medio** y **Restador Completo**. Se comienza realizando el **Restador Medio** y enseguida el **Restador Completo**. Se tienen 6 bits de entrada A_x (A_2 , A_1 , A_0) y B_x (B_2 , B_1 , B_0) y 4 bits salida: el cuarto bit de salida señala el número negativo (bit de signo), por lo tanto, nuestro sistema va desde el número 7 al -7 en binario.

3.2. Métodos De Diseño

· P_x se considera como el prestamo (acarreo) que resulta de la resta binaria de cada segmento (P_2, P_1, P_0) y R_x como el resultado del mismo. (R_2, R_1, R_0) .

Se considera a A_0 y B_0 como entradas, teniendo así una resta entre dos variables.

$$\begin{array}{c|cccc}
 & A_0 & - \\
 & B_0 & - \\
\hline
 & P_0 & R_0 & - \\
\end{array}$$

Tabla 6: Medio Restador - Resta Binaria.

De acuerdo a los valores que toman nuestras entradas se consigue valores para el acarreo (P_0) y la salida o primer bit (R_0) .

A_0	B_0	P_0	R_0
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Tabla 7: Medio Restador - Tabla De Verdad.

Bien ahora se toma P_0 , A_1 y B_1 como entradas y se consigue una resta de 3 variables.

$$P_1$$
 P_0 A_1 - B_1 P_1 R_1

Tabla 8: Restador Completo - Resta Binaria.

Se hace lo mismo que anteriormente y se obtiene el segundo acarreo (P_1) y nuestro segundo bit (R_1)

P_0	A_1	B_1	P_1	R_1
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Tabla 9: Restador Completo - Tabla De Verdad.

Finalmente se reutiliza el **Restador Completo** para obtener el tercer bit $(P_2 \ y \ R_2)$. Ya que existe una similitud entre ambos casos y es que se presenta otra resta de tres variables, por lo tanto, se pasa a reutilizar el segmento.

Tabla 10: Restador 3 - 3 Bits.

3.3. Obtención De Ecuaciones

· Basándose en las tablas de verdad del **Medio Restador** y **Restador Completo** se obtuvieron las ecuaciones correspondientes a cada segmento.

3.3.1. Medio Restador

$$P_0 = \overline{A_0}B_0 \tag{1}$$

$$R_0 = \overline{A_0}B_0 + A_0\overline{B_0} = A_0 \oplus B_0 \tag{2}$$

3.3.2. Restador Completo

$$P_1 = P_0 B_1 + P_0 \overline{A_1} + \overline{A_1} B_1 \tag{3}$$

$$P_1 = P_0 B_1 + \overline{P_0 A_1} B_1 + P_0 \overline{A_1 B_1} \tag{4}$$

$$P_1 = \underline{P_0 B_1 + \overline{A_1} \left(P_0 \oplus B_1 \right)} \tag{5}$$

$$R_1 = \overline{P_0 A_1} B_1 + \overline{P_0} A_1 \overline{B_1} + P_0 \overline{A_1 B_1} + P_0 A_1 B_1 \tag{6}$$

$$R_1 = \overline{P_0} \left(\overline{A_1} B_1 + A_1 \overline{B_1} \right) + P_0 \left(\overline{A_1} \overline{B_1} + A_1 B_1 \right) \tag{7}$$

$$R_1 = \overline{P_0} \left(A_1 \oplus B_1 \right) + P_0 \overline{\left(A_1 \oplus B_1 \right)} \tag{8}$$

$$R_1 = (P_0 \oplus A_1) \oplus B_1 \tag{9}$$

$$R_1 = (P_0 \oplus B_1) \oplus A_1 \tag{10}$$

Reutilizando P_1 y R_1 se determinan P_2 y R_2 .

$$P_2 = \underline{P_1 B_2 + \overline{A_2} \left(P_1 \oplus B_2 \right)} \tag{11}$$

$$R_2 = \underline{(P_1 \oplus B_2) \oplus A_2} \tag{12}$$

3.4. Simulación

Figura 1: Simulacion Restador 3 - 3 Bits.

3.5. Protoboard

El Dip-switch tiene 8 entradas de las cuales sólo 6 se usan; dos de ellas, locadizadas en la parte central, siempre están en high (hacia abajo) y no afectan en la función del circuito. Ahora bien, los A_x se localizan del lado izquierdo del Dip-switch y los B_x del lado opuesto del mismo (A - B).

Figura 2: Protoboard Del Restador 3 - 3 Bits

4. Resultados

Figura 3: Protoboard - Resta(0 - 1)

Figura 4: Protoboard - Resta(4 - 3)

Figura 5: Protoboard - Resta (2 - 5)

5. Conclusiones

· Al requir la utilización de más bits, se deben reutilizar las ecuaciones obtenidas en el **Restador Completo** teniendo en mente el cambiar los subíndices por cada variable.

Anteriormente el protoboard presentó inconvenientes con el voltage de entrada debido a la falta de resistencias pull-down en las entradas de la compuerta 74LS04.

6. Bibliografía

- 1 Electrónica Digital UCN, 2014, Restador, available on: http://electroucn.blogspot.com/2014/06/Restador.lectronica Digital UCN, 2014, Restador, available on: <math>http://electroucn.blogspot.com/2014/06/Restador.lectronica Digital UCN, 2014, Restador.lectronica Digital
- 2 I. Sanchez, SUMADOR RESTADOR DE 3 BITS EN BINARIO NATURAL, available on: https://www.esi.uclm.es/www/isanchez/teco0910/sr.pdf