

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS ARQUITECTURA DE COMPUTADORES

TallerIAS

Lenin G. Falconí

16 de diciembre de 2024

Índice

	Recursos 1.1. Observaciones y Recomendaciones	1 1					
2.	Instrucciones	1					
3.	Taller Máquina de Von Neuman						
	3.1. Conjunto de Instrucciones IAS						
	3.2. Ejercicio						
	3.2.1. Preguntas	:					
	3.2.2. Código Assembler:						
	3.2.3. Código RTL						

1. Recursos

Para este taller consulte el libro Organización y arquitectura de computadores 7ma Edición disponible en EPN-SHAREPOINT(Clic Me) y use su WSL con Emacs para editar el archivo.

1.1. Observaciones y Recomendaciones

■ Tenga en cuenta la ruta a las imágenes y a la bibliografía. Se le

recomienda que realice una clonación o un fork del repositorio de la clase a fin de que no tenga problemas generando el documento.

■ Instale LaTeX completo en el computador que generará el archivo pdf.

2. Instrucciones

Complete las solicitudes del taller y suba el archivo .ORG y .PDF al aula virtual. Cuando trabaje en Emacs trate de utilizar las combinaciones de teclas para navegar por el documento.

3. Taller Máquina de Von Neuman

La máquina de Von Neuman realiza operaciones en un ciclo repetitivo de captación y ejecución. Para esto, el computador IAS usa una memoria de 40 bits. Cuando la memoria se usa numéricamente, se representa el número en complemento a 2, reservando el bit inicial para el signo. Cuando la memoria se usa para el registro de instrucciones, se divide en dos partes de 20 bits. Los 8 primeros bits de cada parte corresponden al *opcode* y los restantes 12 bits de cada parte a la dirección (operando) desde la que se debe leer o a la que se debe escribir.

3.1. Conjunto de Instrucciones IAS

Complete la Tabla 2.1 de instrucciones del computador IAS (Stallings et al., 2006, p.47) usando la notación RTL¹. Se suministra la Tabla en código I⁴TEXpara tal efecto. Edite el archivo en Emacs usando el modo principal ORG y cambie al modo I⁴TEXpara editar la Tabla. El cambio de modo se realiza usando M-x Latex-mode RET y para retornar al modo ORG haga M-x org-mode RET

- M equivale a *Alt*
- \blacksquare x es la tecla x
- RET es presionar *enter*

Una vez activado el modo LATEX el siguiente código recibe colores sobre las palabras clave.

Cuadro 1: Instrucciones Maguina IAS

Opcode	Opcode Hex	Simbolo	RTL
00001010	0xA	LOAD MQ	$[AC] \leftarrow [MQ]$
00001001	0x9	LOAD MQ, $M(X)$	$[MQ] \leftarrow [X]$
00100001	0x21	STOR M(X)	$[X] \leftarrow [AC]$
00000010	0x02	LOAD M(X)	$[AC] \leftarrow [X]$
00000011	0x03	LOAD M(X)	$[AC] \leftarrow [X] $
00000100	0x04	LOAD - M(X)	$[AC] \leftarrow - [X] $

 $^{^1\}mathrm{Register}$ Transfer
 Language o Lenguaje de Transferencia de Registros

3.2. Ejercicio

En la máquina IAS, las instrucciones se dividen en dos segmentos: izquierdo desde el bit 0 a 19 y derecho desde el bit 20 al 39. Primero se ejecuta el lado izquierdo (bits 0 a 19) y luego el derecho. El contador de programa inicia en la posición 300. El set de instrucciones del computador o ISA² está definido en la Tabla 1. A fin de terminar el programa se agrega la instrucción 0x99 para terminar el programa (i.e. HALT). Conteste las siguientes preguntas considerando la Tabla 2 como el mapa de Memoria de la máquina y obtenga el programa en Assembre y en RTL.

si se tiene el siguiente mapa de memoria?

α 1	\sim	7 F	1	3 F	
Cuadro	٠,٠	Mana	de	Mem	oria
Cuadio	∠.	mapa	uc	TVICII	LOI 1G

Dirección	$Opcode_1$	X_1	$Opcode_2$	X_2
0x300	0x01	0x940	0x06	0x941
0x301	0x21	0x940	0x99	0x000
0x940	0x00	0x000	0x00	0x005
0x941	0x00	0x000	0x00	0x002

3.2.1. Preguntas

- 1. ¿Qué resultado se tiene en el registro del acumulador?
- 2. ¿Se sobrescribe algún registro como resultado de la ejecución? Si verdadero, indique qué registro y con qué valor.

3.2.2. Código Assembler:

Escriba el código Assembler del programa que ejecuta el computador IAS.

LOAD M(940)

3.2.3. Código RTL

Escriba en notación de transferencia de registros el programa que ejecuta el computador IAS $[AC] \leftarrow [940]$

Referencias

Stallings, W., Vargas, A. C., & Espinosa, A. P. (2006). Organización y arquitectura de computadores 7ma Edición. Pearson Educación.

 $^{^2 {\}rm Instruction}$ Set Architecture: los códigos de programación