Algorithms Project 1: TSP Grading Checklist

Name
 [/15] Explain the details of: □ N-N Implementation □ Exhaustive Search Implementation □ Discuss how you efficiently implemented the pseudo-code.
2. [/15] Determine the worst-case complexity Expanded Notation: N-N E-S and/or Asymptotic Notation: N-N E-S
3. [/20] Input generation/experimental testing □ Used n large enough (10 x resolution of clock) □ Appropriate n for each algorithm (i.e., not too small for NN and not too large for exhaustive) □ Generated input randomly. □ Average of three runs on each input
 4. [/10] Match Theory to practice (one of the following required) □ Determined a constant to compare results □ Listed n², n! for comparison next to results □ Graphed actual and asymptotic run times □ (-) Anecdotal, i.e., "looked about right" (unscientific, not ideal)
5. [/40] Demo □ Runs correctly □ Understood implementation

Notes: