SWITCHES IN SERIES

SWITCHES IN SERIES

Switch	Light Bulb	
P Q		State
Open	Open	Off
Open	Closed	Off
Closed	Open	Off
Closed	Closed	On

SWITCHES IN PARALLEL

SWITCHES IN SERIES

Switches	3	Light Bulb
P	Q	State
Т	T	T
Т	F	F
F	T	F
F	F	F

P	Q	P∧Q
T	T	Т
T	F	F
F	Т	F
F	F	F

SWITCHES IN PARALLEL

Switche	Light Bulb	
P	Q	State
Т	Т	Т
T	F	Т
F	Т	Т
F	F	F

P	Q	P∨Q
T	Т	Т
T	F	Т
F	Т	Т
F	F	F

NOT GATE OR INVERTER

Input	Output
Р	Q
1	0
0	1

AND GATE

Inp	Output	
P	Q	R
1	1	1
1	0	0
0	1	0
0	0	0

OR GATE

Inp	Output	
P	Q	R
1	1	1
1	0	1
0	1	1
0	0	0

COMBINATIONAL CIRCUIT

OUTPUT FOR A GIVEN INPUT

INPUT/OUTPUT TABLE FOR A CIRCUIT

P	Q	R	X	Y	S
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

P	Q	R	X	Y	S
1	1		1		
1	1		1		
1	0		0		
1	0		0		
0	1		0		
0	1		0		
0	0		0		
0	0		0		

P	Q	R	X	Y	S
			1	0	
			1	0	
			0	1	
			0	1	
			0	1	
			0	1	
			0	1	
			0	1	

P	Q	R	X	Y	S
		1		0	1
		0		0	0
		1		1	1
		0		1	1
		1		1	1
		0		1	1
		1		1	1
		0		1	1

BOOLEAN EXPRESSION FOR A CIRCUIT

BOOLEAN EXPRESSION FOR A CIRCUIT

CIRCUIT FOR A BOOLEAN EXPRESSION

CIRCUIT FOR INPUT/OUTPUT TABLE

	OUTPUTS		
P	Q	R	S
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

SOLUTION

INPUTS			OUTPUTS
P	Q	R	S
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

CIRCUIT DIAGRAM

$$(P \land Q \land \sim R) \lor (\sim P \land Q \land R) = S$$

EXERCISE

Design a circuit to take input signals P, Q, and R and output a 1 if, and only if, P and Q have the same value and Q and R have opposite values.

EXERCISE

INPUTS			OUTPUTS	
P	Q	R	S	
1	1	1	0	P∧Q∧~R
1	1	0	1	4
1	0	1	0	
1	0	0	0	
0	1	1	0	D O D
0	1	0	0	~P^Q^R
0	0	1	1	
0	0	0	0	

Solution contd..

Solution contd..

Statement

Reason

$$(P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q)$$

$$\equiv (P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q)$$

$$\equiv (P \lor \sim P) \land Q \lor (P \land \sim Q)$$

Distributive law

$$\equiv t \land Q \lor (P \land \sim Q)$$

Negation law

$$\equiv Q \lor (P \land \sim Q)$$

Identity law

$$\equiv (Q \lor P) \land (Q \lor \sim Q)$$

Distributive law

Solution contd..

Statement

Reason

$$\equiv (Q \lor P) \land t$$

Negation law

$$\equiv Q \vee P$$

Identity law

$$\equiv Q \vee P$$

Commutative law

Thus
$$(P \land Q) \lor (\sim P \land Q) \lor (P \land \sim Q) \equiv P \lor Q$$