

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работа №2
по курсу «Защита информации»
на тему: «Алгоритм DES»
Вариант № 2

	7-73Б уппа)	(Подпись, дата)	Лысцев Н. Д. (И. О. Фамилия)
Преподаватель	-	(Подпись, дата)	Чиж И. С. (И. О. Фамилия)

СОДЕРЖАНИЕ

Bl	ВЕД	ЕНИЕ													
1	Аналитический раздел														
	1.1	История создания алгоритма DES	4												
	1.2	Общие положения алгоритма DES													
	1.3	Алгоритм DES	4												
		1.3.1 Раунды шифрования	6												
		1.3.2 Функция Фейстеля	7												
		1.3.3 Генерация ключей ki													
	1.4	Расшифрование	1(
	1.5	Режим шифрования PCBC	1(
2	Кон	иструкторский раздел	12												
\mathbf{C}	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1	۱:												

ВВЕДЕНИЕ

Целью данной лабораторной работы является реализация программы шифрования симметричным алгоритмом DES с применением режима PCBC.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) описать алгоритм DES с режимом PCBC;
- 2) выбрать средства программной реализации;
- 3) реализовать данный алгоритм.

1 Аналитический раздел

В данном разделе будет кратко описана история создания алгоритма DES, будет приведено его формально описание, а также будет формально описан режим шифрования PCBC.

1.1 История создания алгоритма DES

Стандарт шифрования данных (DES) - блочный шифр с симметричными ключами, разработан Национальным Институтом Стандартов и Технологии (NIST - National Institute of Standards and Technology).

В 1973 году NIST издал запрос для разработки предложения национальной криптографической системы с симметричными ключами. Предложенная IBM модификация проекта, названная Lucifer, была принята как DES. DES был издан как FIPS 46 в Федеральном Регистре в январе 1977 года. FIPS объявил DES как стандарт для использования в неофициальных приложениях. Позже NIST предложил новый стандарт (FIPS 46-3), который рекомендует использование тройного DES (трехкратно повторенный шифр DES) для будущих приложений.

1.2 Общие положения алгоритма DES

Общие положения алгоритма DES:

- 1) на стороне шифрования DES принимает 64-битовый исходный текст и порождает 64-битовый зашифрованный текст;
- 2) на стороне дешифрования DES принимает 64-битовый зашифрованный текст и порождает 64-битовый исходный текст;
- 3) на обеих сторонах для шифрования и дешифрования применяется один и тот же 56-битовый ключ.

1.3 Алгоритм DES

Общее описание алгоритма:

– исходный текст - блок 64 бит;

- процесс шифрования состоит из начальной перестановки, 16 циклов шифрования (раундов Фейстеля) и конечной перестановки;
- каждый раунд использует различные сгенерированные 48-битовые ключи.

На рисунке 1.1 представлена схема шифрования алгоритма DES:

Рисунок 1.1 – Схема шифрования алгоритма DES

Начальная и конечная перестановки в основном служат для облегчения побайтовой загрузки данных открытого текста и шифротекста в микросхему DES (DES появился раньше 16- и 32-битовых микропроцессорных шин).

Каждая из перестановок принимает 64-битовый вход и переставляет его элементы по заданному правилу. Эти перестановки - прямые перестановки без

ключей, которые инверсны друг другу. Значение каждого элемента определяет номер входного порта, а порядковый номер (индекс) элемента определяет номер выходного порта.

На рисунках 1.2 и 1.3 представлены таблицы начальной и конечной перестановок:

									-						
58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

Рисунок 1.2 — Начальная перестановка IP

				-											
40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28	35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26	33	1	41	9	49	17	57	25

Рисунок 1.3 – Конечная перестановка IP^{-1}

1.3.1 Раунды шифрования

Полученный после начальной перестановки 64-битовый блок IP(T) участвует в 16 раундах преобразования Фейстеля.

Раунд шифрования:

- 1) разбить IP(T) на две части L_0 и R_0 , где L_0 и R_0 соответственно 32 старших битов и 32 младших битов блока T_0 $IP(T) = L_0R_0$;
- 2) пусть $T_{i-1} = L_{i-1}R_{i-1}$ результат i-1 итерации, тогда результат i-ой итерации $T_i = L_iR_i$ определяется по формуле 1.4;

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus f(R_{i-1}, k_{i})$$
(1.1)

3) в 16-ти раундах преобразования Фейстеля функция f играет роль шифрования.

На рисунке 1.4 представлена схема работы одного раунда шифрования:

Рисунок 1.4 – Прямое преобразование сетью Фейстеля

1.3.2 Функция Фейстеля

Аргументами функции f являются 32-битный вектор R_{i-1} и 48-битовый ключ k_i , который является результатом преобразования 56-битового исходного ключа шифра k. Для вычисления значения функции f последовательно используются:

- 1) функция расширения E;
- 2) XOR с ключом k_i ;
- 3) преобразование S, состоящее из 8-ми преобразований S-блоков $S_1, S_2, S_3, \dots S_8;$
- 4) перестановка Р.

Функция E расширяет 32-битовый вектор R_{i-1} до 48-битового вектора $E(R_{i-1})$ путём выполнения следующих действий:

- 1) 32-битовый вектор R_{i-1} делится на 8 блоков по 4 бита каждый;
- 2) в каждый блок слева добавляется крайний правый бит предыдущего блока, а справа крайний левый бит следующего блока;

3) в качестве бита слева для первого блока выступает крайний правый бит последнего блока, а для бита справа для последнего блока – крайний левый бит первого блока.

Порядок битов указан на рисунке 1.5.

	-				
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Рисунок 1.5 – Функция расширения E

Полученный после перестановки блок $E(R_{i-1})$ складывается по модулю 2 с ключом k_i и представялется в виде 8-ми последовательных блоков $B_1, B_2, B_3, \dots B_8$ каждый по 6 бит (формула 1.2).

$$E(R_{i-1}) \oplus k_i = B_1, B_2, B_3, \dots B_8$$
 (1.2)

Каждый B_j является 6-битовым блоком. Далее, каждый из блоков B_j трансформируется в 4-битовый блок B_j' с помощью преобразования S_i [1].

Значение функции $f(R_{i-1},k_i)$ получается перестановкой P, применяемой к 32-битному блоку $B_1^{'},B_2^{'},B_3^{'},\dots B_8^{'}$ (формула 1.3).

$$f(R_{i-1}, k_i) = P(B_1', B_2', B_3', \dots B_8')$$
(1.3)

Таблица перестановки P указана на рисунке 1.6.

		-		•			
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Рисунок 1.6 — Перестановка P

1.3.3 Генерация ключей кі

Ключ k представляет собой 64-битовый блок с восемью битами контроля по четности, расположенными в позициях 8,16,24,32,40,48,56,64. Для удаления контрольных битов и перестановки остальных используется функция G первоначальной подготовки ключа (рисунок 1.7).

57	49	41	33	25	17	9	1	58	50	42	34	26	18	C_0
10	2	59	51	43	35	27	19	11	3	60	52	44	36	
63	55	47	39	31	23	15	7	62	54	46	38	30	22	D_0
14	6	61	53	45	37	29	21	13	5	28	20	12	4	

Рисунок 1.7 – Перестановка первоначальной подготовки ключа

Результат преобразования G(k) разбивается на два 28-битовых блока C_0 и D_0 , причем C_0 будет состоять из битов 57, 49, ..., 44, 36 ключа k, а D_0 будет состоять из битов 63, 55, ..., 12, 4 ключа k.

После определения C_0 и D_0 рекурсивно определяются C_i и D_i , i=1...16. Для этого применяют циклический сдвиг влево на один или два бита в зависимости от номера итерации (рисунок 1.8).

								•								
i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Число сдвига	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Рисунок 1.8 – Сдвиги для вычисления ключа

Ключ $k_i, i = 1 \dots 16$ состоит из 48 бит, выбранных из вектора $C_i D_i$ согласно рисунку 1.9.

								-							
14	17	11	24	1	5	3	28	15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2	41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56	34	53	46	42	50	36	29	32

Рисунок 1.9 – Завершающая обработка ключа

Первый и второй биты ключа k_i есть биты 14, 17 вектора C_iD_i .

1.4 Расшифрование

При расшифровании данных все действия выполняются в обратном порядке. В 16 циклах расшифрования, в отличие от шифрования с помощью прямого преобразования сетью Фейстеля, здесь используется обратное преобразование сетью Фейстеля:

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus f(L_i, k_i)$$
(1.4)

На рисунке 1.10 представлена схема работы одного раунда расщифрования:

Рисунок 1.10 – Обратное преобразование сетью Фейстеля

Ключ k_i , i=16...1 такие же, как и в процессе шифрования. Функция f, перестановка IP и IP^{-1} такие же, как и в процессе шифрования. Алгоритм генерации ключей зависит только от ключа пользователя, поэтому при расшифровании они идентичны.

1.5 Режим шифрования РСВС

Для шифрования некоторого сообщения P выполняются следующие действия:

1) сообщение разбивается на блоки одинакового размера. Размер (длина) блока равен n и измеряется в битах. При необходимости последний блок дополняется до длины n;

2) шифрование очередного (i-го) блока сообщения P_i выполняется с использованием предыдущего блока открытого текста и предыдущего блок шифротекста после применения операции XOR над ними. Для первого блока (P_1) зашифрованного блока не существует, поэтому первый блок шифруют с использованием «вектора инициализации» IV (формула 1.5);

$$C_0 = IV$$

$$C_i = E_k(P_{i-1} \oplus C_{i-1} \oplus P_i, k)$$
(1.5)

3) расшифорвание очередного (i-го) блока сообщения происходит по формуле 1.6.

$$C_0 = IV$$

$$P_i = D_k(C_i, k) \oplus C_{i-1} \oplus P_{i-1}$$
(1.6)

На рисунке 1.11 представлена схема режима шифрования РСВС.

Рисунок 1.11 – Схема режима шифрования РСВС

Вывод

В данном разделе была кратко описана история создания алгоритма DES, было приведено его формально описание, а также был формально описан режим шифрования PCBC.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. DES [Электронный ресурс]. — Режим доступа: https://ru.wikipedia.org/wiki/DES (дата обращения: 15.10.2024).