

โจทย์ค่ายสอง ปีการศึกษา 2562 ชุดที่ 4 (ข้อ 66. ถึง 90.)

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ที่	เนื้อหา	โจทย์
1.	Greedy algorithm จำนวน 11 ข้อ	66. จัดสรรเรื่องเวลา (Time_Arrange)
		67. เรียงจาน (Plate Sort)
		68. ระเบิดบล็อก (blowblock)
		69. เครื่องตัดหญ้า (Lawnmower)
		70. คิม จอง เวร (Gim Jeong Wen)
		71. ทำลายขวด (Destroy Bottle)
		72. รถเร็วเทพเอพี (AP_Car)
		73. ส่งคนโดยเรือทอม (Boattrip Tom)
		74. พีทเทพย้ายไปไกลแค่ไหน (PT_How Far)
		75. สงครามหลอกลวง (Deceitful War)
		76. พลั้งตะโกนย้าก (Yaackk)
2.	Graph algorithm จำนวน 14 ข้อ	77. เทอร์โบโปรแกรมมิ่ง (Turbo Programming)
		78. ต่อสะพาน (Connect)
		79. ปืนเขาบียูยู (BUU Climbing)
		80. งานแต่งงานของบี้ (Bie's Wedding)
		81. ห้องปิดตาย (Locked Room)
		82. เส้นทางบินคิว (Q_Airway)
		83. เทพกดในตรัส (Taep's nitrous)
		84. พีทสร้างถนน (Peatt Road build)
		85. ตารางข้อสอบ (53Table_task)
		86. เติมน้ำมัน (48_Refuel)
		87. โลจิสติกส์ (Logistic TOI14)
		88. ตารางเวทมนตร์ของแอนเชียนพีท (AP_Table)
		89. ขับรถตาม (48_Follow)
		90. ฟาสต์คอนเทสต์ (Fast Contest)

1. เรื่อง Greedy algorithm จำนวน 11 ข้อ

66. จัดสรรเรื่องเวลา (Time_Arrange)

ที่มา: ข้อหก EOIC#18 PeaTT~

ต่อมาเอลซ่าถูกลักพาตัวไปหอคอยสวรรค์ โดยเพื่อนของเธอสมัยเด็ก เอลซ่าได้พบกับ "เจราล เฟอร์นันเดส" เพื่อนสมัยเด็ก แต่เจราลถูกครอบงำจิตโดยอุลเทียร์ ซึ่งแสร้งทำเป็นเซเรฟ นัตซึ เกรย์ ลูซี่ แฮปปี้ และจูเบียจึงต้องตามไปช่วยเอลซ่า แต่ก่อนที่จะ ไปช่วยเอลซ่า พวกเขาจะต้องจัดสรรเรื่องเวลาการทำงานของกิลด์ให้สำเร็จเสียก่อน

กิลด์แฟรี่เทลมีงานทั้งสิ้น N งานที่นัตซึต้องทำ แต่ละงานมีเวลาเริ่มต้นงานที่ S_i และมีเวลาเลิกงานที่ f_i กำหนดให้งานใหม่ สามารถเริ่มทำต่อจากเวลาออกของงานเก่าได้ทันที

จงเขียนโปรแกรมเพื่อหาว่านัตซึสามารถจัดสรรเรื่องเวลาแล้วเลือกงานทำได้มากที่สุดกึ่งานโดยในแต่ละเวลานัตซึสามารถ ทำงานได้เพียงแค่เวลาละ 1 งานเท่านั้น

<u>ข้อมลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N แทนจำนวนงานที่มี โดยที่ N ไม่เกิน 100,000

N บรรทัดต่อมา แต่ละบรรทัดระบุเวลาเริ่มและเวลาจบตามลำดับห่างกันด้วยเว้นวรรคหนึ่งช่อง โดยที่เวลาเหล่านี้จะอยู่ในช่วง 0 ถึง 2 พันล้าน รับประกันว่าไม่มีงานใดที่มีเวลาเริ่มและจบในเวลาเดียวกัน

70% ของชุดข้อมูลทดสอบจะมี N ไม่เกิน 100

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว จำนวนงานสูงสุดที่นัตซึสามารถทำงานได้โดยไม่ซ้ำซ้อน

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
7	4
0 2	
3 6	
7 10	
0 4	
5 7	
8 10	
6 8	

<u>คำอธิบายตัวอย่างที่ 1</u>

นัตซึเลือกงานที่ 1, 2, 7 และ 6 ตามลำดับ โดยงานที่ 1 (เริ่มเวลาที่ 0 เลิกเวลาที่ 2) ตามด้วยงานที่ 2 (เริ่มเวลาที่ 3 เลิก เวลาที่ 6) ตามด้วยงานที่ 7 (เริ่มเวลาที่ 6 ต่อจากงานเดิมเลย แล้วเลิกเวลาที่ 8) สุดท้ายเลือกงานที่ 6 (เริ่มเวลาที่ 8 ต่อจากงานเดิม เลย แล้วสิ้นสุดที่เวลาที่ 10) จะเห็นนัตซึสามารถทำงานได้ 4 งานซึ่งสูงสุดเท่าที่จะเป็นไปได้แล้ว

+++++++++++++++++

67. เรียงจาน (Plate Sort)

์ที่มา: ข้อสอบท้ายค่ายสองศูนย์ม.บูรพารุ่น8 PeaTT~

เนื่องในโอกาสที่พีทซิมิจะมีอายุครบ 1,500 เมอริงกุ (หน่วยนับเวลาของพีทซิมิ) พีทซิมิได้ออกแบบวิธีการย้ายจานรูปแบบ ใหม่ที่ไม่เหมือนกับโครงสร้างข้อมูลพื้นฐานใด ๆ ที่เราเคยได้ร่ำเรียนกันมา เริ่มต้นพีทซิมิเอาจานทั้งสิ้น N ใบมาวางเรียงซ้อนกันเป็นแนวตั้งอยู่บนโต๊ะ พีทซิมิต้องการที่จะนำจานเหล่านี้ไปเก็บเอาไว้ใน ตู้เก็บจานชาม แต่เขาจะต้องเรียงจานตามลำดับความสำคัญในการใช้เสียก่อนเพราะหากนำจานใบที่ใช้บ่อยไปอยู่ใต้จานที่นานๆ จะ ใช้สักครั้ง ก็จะทำให้หยิบจานที่ใช้บ่อยได้ยาก ดังนั้นเขาจึงต้องเรียงลำดับจานให้ดีก่อนที่จะเก็บเข้าตู้เก็บจานชาม

จาน N ใบมีหมายเลขของจานเป็น 1, 2, 3, ..., N และมีลำดับความสำคัญในการใช้ตามหมายเลขดังกล่าว กล่าวคือ พีทซิมิ จะต้องเรียงให้จานหมายเลข 1 อยู่บนสุดของกองจาน ตามมาด้วยหมายเลข 2 ไล่ไปเรื่อยๆ จนจานหมายเลข N อยู่ตำแหน่งล่างสุด ของกองจาน แต่วิธีการย้ายจานที่อยู่บนโต๊ะจะทำได้วิธีเดียวเท่านั้นก็คือ "หยิบจานจากตำแหน่งไหนก็ได้ออกมาแล้วนำจานใบนั้น ไปวางไว้ที่ตำแหน่งบนสุดของกองจาน"

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าในการเรียงจานที่อยู่บนโต๊ะตามลำดับความสำคัญในการใช้ พีทซิมิจะต้องย้ายจานที่อยู่บนโต๊ะ โดยใช้จำนวนครั้งน้อยที่สุดกี่ครั้ง?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทน จำนวนคำถาม โดยที่ Q ไม่เกิน 5

อีก Q บรรทัดต่อมา แต่ละบรรทัดคือ 1 ชุดข้อมูลคำถาม แต่ละคำถามให้รับจำนวนเต็มบวก N แสดงถึงจำนวนของจาน โดยที่ N มีค่าไม่เกิน 300,000 จากนั้นให้รับตัวเลขอีก N จำนวนเพื่อแสดงหมายเลขของจานบนโต๊ะจากใบบนสุดไล่ไปจนถึงจานใบ ล่างสุด โดยตัวเลขเหล่านี้จะอยู่ในช่วง [1, N] ห่างกันด้วยเว้นวรรคหนึ่งช่องและไม่มีจานคู่ใดที่มีหมายเลขซ้ำกัน

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงจำนวนครั้งที่น้อยที่สุดที่พีทซิมิสามารถย้ายจานได้สำเร็จก่อนจะนำไปเก็บเข้าตู้ เก็บจานชาม ให้ตอบคำถามเรียงตามลำดับของข้อมูลนำเข้า

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก				
2	2				
3 3 2 1	2				
4 1 3 4 2					

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 2 คำถาม

คำถามแรก มีจาน 3 ใบ ควรย้ายจานหมายเลข 2 ขึ้นมาแล้วตามด้วยจานหมายเลข 1 ขึ้นมาดังภาพ

 ตอนแรก
 ย้ายจานหมายเลข 2 ขึ้นมา
 ย้ายจานหมายเลข 1 ขึ้นมา

 3
 1

 2
 3

 1
 3

 1
 3

ซึ่งจะต้องย้ายทั้งสิ้น 2 ครั้งจึงจะน้อยที่สุด

คำถามที่สอง มีจาน 4 ใบ ควรย้ายจานหมายเลข 2 ขึ้นมาแล้วตามด้วยจานหมายเลข 1 ขึ้นมาดังภาพ

ซึ่งจะต้องย้ายทั้งสิ้น 2 ครั้งจึงจะน้อยที่สุดเช่นกัน

____ 68. ระเบิดบล็อก (blowblock)

ในที่สุดคุณก็กลับสู่คฤหาสน์ด้วยท่อนไม้จำนวนมากที่สุดเท่าที่จะนำมาได้ งานต่อไปคือการนำท่อนไม้เหล่านี้ไปเผาเป็น เชื้อเพลิง เนื่องด้วยคฤหาสน์นี้ใช้ระบบเตาผิงยุคใหม่ เตาผิงทุกเตาจะใช้พลังงานจากเครื่องเผาผลาญไม้ที่จุดศูนย์กลางเพียงแห่งเดียว ในการจุดไฟให้ความอบอุ่น

เครื่องเผาพลาญไม้มีความกว้าง N หน่วย สูง N หน่วย (โดยที่ทั้ง N เป็นจำนวนคู่) บรรจุท่อนไม้ที่คุณหามาได้ หั่นละเอียด ขนาด 1×1 หน่วยไว้เต็มถัง โดยที่ไม้แต่ละท่อนอาจมีมวลไม่เท่ากัน เราต้องการนำท่อนไม้เหล่านี้ไปเผาเป็นเชื้อเพลิงเพื่อให้พลังงาน ให้ได้มากที่สุด เรายังสามารถสลับท่อนไม้สามท่อนที่อยู่ติดกันในแนวเดียวกัน จากลำดับ A-B-C เป็นลำดับ C-B-A ได้ดังนี้

_____ นอกจากนี้เรายังสามารถเผาท่อนไม้เพื่อให้เชื้อเพลิงแต่ละครั้งจะเผาท่อนไม้ที่อยู่ติดกัน 4 ท่อนในรูปของ 2×2 หน่วยดังรูป

จากรูปการเผาท่อนไม้สี่ท่อนครั้งแรก ทำให้ได้พลังงาน 2×1×1×3=6 หน่วย

เมื่อทำการเผาท่อนไม้ 4 ท่อนดังกล่าวแล้ว ท่อนไม้ที่ถูกเผาทั้งหมดจะหายไปกลายเป็นเพียงผงเถ้าถ่าน พลังงานที่เกิดจาก การเผาท่อนไม้ดังกล่าวเท่ากับผลคูณของมวลของท่อนไม้ทั้งสี่ หลังจากนั้นท่อนไม้ที่เหลือที่อยู่ข้างบนจะตกลงมาอยู่บนท่อนไม้ ข้างล่างแทน ในการเผาท่อนไม้เพื่อให้ได้พลังงานนี้ คุณสามารถเลือกที่สลับท่อนไม้สลับกับการเผาท่อนไม้ได้

คุณต้องการที่จะทราบว่า จะสามารถเผาท่อนไม้ให้ได้พลังงานรวมมากที่สุดโดยใช้การเผาท่อนไม้และการสลับท่อนไม้ใน รูปแบบที่กำหนดให้ได้มากที่สุดเท่าไหร่ เพราะถ้าหากพลังงานน้อยเกินไปจะทำให้เตาผิงดับกลางงานเลี้ยง งานเลี้ยงนี้คงจบไม่สวย แน่

จงเขียนโปรแกรมที่รับข้อมูลของท่อนไม้แต่ละท่อนในเครื่องเผาผลาญไม้ แล้วหาว่าจะสามารถเผาท่อนไม้ให้ได้พลังงานรวม มากที่สุดเท่าใด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรกมีจำนวนเต็ม N (2 <= N <= 500) บอกขนาดความกว้างและความสูงของถังตามลำดับ
อีก N บรรทัดถัดมา มีจำนวนเต็มบรรทัดละ N จำนวน ระบุมวลของท่อนไม้แต่ละท่อนในเครื่องเผาพลาญไม้ โดยที่จำนวนเต็มลำดับ ที่ j ของข้อมูลนำเข้าบรรทัดที่ i+1 ระบุมวลของท่อนไม้ที่อยู่ในแถวที่ i (นับจากบน) คอลัมน์ที่ j โดยมวลของท่อนไม้แต่ละท่อนเป็น จำนวนเต็มบวกที่มีหลักเดียว (1-9)

<u>ข้อมูลส่งออก</u>

มีจำนวนเต็มหนึ่งจำนวนบอกพลังงานที่มากที่สุดที่สามารถทำได้จากการเผาท่อนไม้ด้วยเงื่อนไขที่กำหนดไว้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก			
4	9			
1 1 2 1				
1 1 1 1				
1 1 1 1				
1 3 1 1				

++++++++++++++++

69. เครื่องตัดหญ้า (Lawnmower)

ที่มา: Google Code Jam 2013 Qualification Round

Alice และ Bob มีสนามหญ้าที่หน้าบ้านที่มีรูปร่างเป็นสี่เหลี่ยมขนาด N เมตร คูณ M เมตร ในแต่ละปี พวกเขาพยายามจะ

ตัดหญ้าให้เป็นรูปแบบต่าง ๆ พวกเขาเคยใช้ที่ตัดหญ้าในการตัด แต่นั่นก็เป็นกิจกรรมที่เสียเวลามาก ตอนนี้พวกเขาเพิ่งได้เครื่องตัด หญ้าอัตโนมัติที่สามารถปรับค่าได้หลากหลาย ทำให้อยากจะลองเริ่มใช้เสียหน่อย

เครื่องตัดหญ้าใหม่นี้สามารถปรับระดับความสูงในการตัดได้ โดยการปรับค่านั้นสามารถปรับค่าความสูง h ระหว่าง 1 ถึง 100 มิลลิเมตร เมื่อตั้งค่านี้แล้ว เครื่องจะตัดหญ้าที่มีความสูงมากกว่า h ให้เหลือความสูงเท่ากับ h

ในการตัดหญ้านั้นจะเริ่มตัดจากขอบด้านหนึ่ง จากนั้นเครื่องตัดหญ้าจะตัดหญ้าไปในทิศทางตรง ตั้งฉากกับขอบของสนาม ด้านที่เครื่องตัดหญ้าเริ่มเข้าไป โดยจะตัดเป็นแถบความกว้าง 1 เมตรพอดี จนกระทั่งเครื่องตัดไปทะลุขอบอีกด้านของสนาม เครื่อง ตัดหญ้าสามารถปรับความสูงได้เฉพาะตอนที่ไม่ได้อยู่ในสนามเท่านั้น

Alice และ Bob มีรูปแบบของสนามที่พวกเขาอยากได้ ในแต่ละรูปแบบ พวกเขาต้องการทราบว่าเป็นไปได้หรือไม่ที่จะตัด หญ้าให้เป็นตามแบบนั้นด้วยเครื่องตัดหญ้าเครื่องใหม่นี้ แต่ละรูปแบบจะระบุด้วยความสูงของหญ้าในแต่ละช่องขนาด 1 เมตร x 1 เมตร เมื่อเริ่มต้น หญ้าทั้งสนามมีความสูงเท่ากับ 100 มิลลิเมตร

<u>ข้อมูลนำเข้า</u>

บรรทัดแรกของข้อมูลนำเข้าระบุจำนวนข้อมูลทดสอบ T (T <= 100) หลักจากนั้นมีข้อมูลทดสอบ T ชุด ข้อมูลทดสอบแต่ละชุดจะเริ่มด้วยบรรทัดแรกระบุจำนวนเต็มสองจำนวน N และ M (N, M <= 100)

จากนั้นจะมีข้อมูลอีก N บรรรทัด ข้อมูลบรรทัดที่ i ถัดจากนั้นระบุจำนวนเต็ม M จำนวน a_{i,1} ถึง a_{i,M} โดยที่ a_{i,j} ระบุความ สูงของหญ้าในช่องที่ j ในแถวที่ i (1 <= a_{i,j} <= 100)

<u>ข้อมูลส่งออก</u>

สำหรับแต่ละข้อมูลทดสอบ ให้พิมพ์บรรทัดในรูปแบบ Case #x: y โดยที่ x แทนหมายเลขชุดทดสอบ และ y เป็นคำ ว่า YES ถ้าสามารถสร้างรูปแบบที่ x ได้โดยใช้เครื่องตัดหญ้า หรือ NO ถ้าไม่สามารถทำได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	Case #1: YES
3 3	Case #2: NO
2 1 2	Case #3: YES
1 1 1	
2 1 2	
5 5	
2 2 2 2 2	
2 1 1 1 2	
2 1 2 1 2	
2 1 1 1 2	
2 2 2 2 2	
1 3	
1 2 1	

++++++++++++++++

70. คิม จอง เวร (Gim Jeong Wen)

-ที่มา: ข้อสาม Accel test ติวผู้แทนศูนย์รุ่น9 PeaTT~

นานมาแล้ว มีผู้นำสูงสุดของประเทศเกาหมีคนหนึ่งที่มีชื่อว่า คิม จอง เวร (Gim Jeong Wen) ดังภาพ

คิม จอง เวร เป็นนายพลที่บ้าอำนาจมาก เขาได้ทดลองและติดตั้งระเบิดปรมาณูเอาไว้มากมาย โดยระเบิดของเขาเป็น ระเบิดที่สุดแสนจะไฮเทค ที่มีอานุภาพทำลายล้างในพื้นที่ขนาดใหญ่ สมมติว่า ระเบิดถูกติดตั้งอยู่ในพิกัด (x, y) อานุภาพของมันจะ สามารถทำลายล้างได้ออกไปในทิศทางขนานกับแกน x และ แกน y ด้านละ p หน่วย กล่าวคือ หากพิกัด (x', y') ใดๆที่ |x - x'| <= p หรือ |y - y'| <= p จะถือว่าอยู่ในอาณาเขตของระเบิดปรมาณูลูกนี้

จากภาพ แสดงอาณาเขตทำลายล้างของระเบิดปรมาณูของนายพล คิม จอง เวร ที่วางระเบิดไว้ที่พิกัด (x, y) และมีค่า ความสามารถของระเบิดเป็นระยะทาง p หน่วย

นายพลคิม จอง เวร ผู้นำประเทศเกาหมี ต้องการจะระเบิดพื้นที่ของประเทศศัตรูซึ่งเป็นที่ราบรูปสี่เหลี่ยมจัตุรัสที่มีจุดล่าง ซ้ายเป็นพิกัด (0, 0) และมีจุดบนขวาเป็นพิกัด (m, m) เริ่มต้น เขาได้ติดตั้งระเบิดลงไปในพื้นที่ราบนี้ทั้งสิ้น n ลูก เนื่องจากระเบิด เหล่านี้ถูกผลิตมาจากบริษัทเดียวกันทำให้ระเบิดเหล่านี้มีค่าความสามารถของระเบิด p เท่ากันหมด ด้วยเหตุผลทางด้าน งบประมาณการสร้างระเบิด นายพลคิม จอง เวร มีความจำเป็นที่จะต้องสร้างระเบิดให้มีค่า p ที่น้อยที่สุดเท่าที่จะเป็นไปได้เพื่อที่จะ ประหยัดงบประมาณในการสร้างระเบิด

จงเขียนโปรแกรมเพื่อหาว่า หากนายพลคิม จอง เวร ต้องการที่จะระเบิดพื้นที่ศัตรูทั้งหมดให้เป็นจุล ให้ทุกๆตำแหน่งของ พื้นที่ราบอยู่ภายใต้อาณาเขตทำลายล้างของระเบิดลูกใดๆก็ตามอย่างน้อย 1 ลูก เขาจะต้องผลิตระเบิดที่มีความสามารถ p ที่น้อย ที่สุดเป็นเท่าไร?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก m แทนขนาดของพื้นที่ศัตรู โดยที่ m ไม่เกิน 1,000,000 บรรทัดที่สอง จำนวนเต็มบวก n แทนจำนวนระเบิดของนายพลคิม จอง เวร โดยที่ n ไม่เกิน 5,000 n บรรทัดต่อมา รับจำนวนเต็มสองจำนวน Xi และ Yi ตามลำดับ แทนพิกัดของระเบิด โดยที่ 0 <= Xi, Yi <= m

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงค่าความสามารถ p ที่น้อยที่สุดเท่าที่จะเป็นไปได้ โดยให้แสดงผลออกมาเป็นทศนิยม 3 ตำแหน่ง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
10	1.000

5		
9	5	
7	5	
5	5	
3	5	
1	5	

+++++++++++++++++

71. ทำลายขวด (Destroy Bottle)

. ที่มา: ข้อสามสิบเอ็ค Accel test ติวผู้แทนศูนย์รุ่น9 PeaTT~

ขวดแก้ว N ขวดวางเรียงกันเป็นแถว ด้านบนเป็นแท่งเหล็กสำหรับทำลายขวดแก้ว แสดงดังรูปด้านล่าง

แท่งเหล็กนี้จะถูกกดลงมา M ครั้งที่ความสูงต่างๆในแต่ละครั้งที่กด ขวดแก้วที่มีความสูงมากกว่าระยะที่แท่งเหล็กให้จะแตก ไป อย่างไรก็ตาม ภายหลังที่ขวดที่สูงกว่าระยะแตกแล้ว พลังกดอากาศจากการแตกของขวดที่ถูกกดนั้นยังคงอยู่ ทำให้เกิดลมหมุน วนกลับหวนพิสดาร ทำให้ขวดข้างๆที่วางติดกันถ้ายังไม่แตกจะแตกตามไปด้วย อย่างไรก็ตาม ขวดที่แตกแล้วจะแตกกระจายเป็นชิ้น เล็กชิ้นน้อยและจะไม่แตกซ้ำอีก

จงเขียนโปรแกรมเพื่อหาว่าในแต่ละครั้งที่กดแท่งเหล็ก จะมีขวดแก้วแตกกี่ขวด?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N และ M โดยที่ N, M ไม่เกิน 100,000

N บรรทัดต่อมา ระบุความสูงของขวดต่างๆ โดยความสูงเหล่านี้มีค่าไม่เกิน 2,000,000,000

M บรรทัดต่อมา ระบุระยะกดเหล็ก โดยตัวเลขที่รับเป็นความสูงที่แท่งกดเหล็กเหลือให้ในการกดครั้งต่างๆ ซึ่งมีค่าไม่เกิน 2,000,000,000 โดยขวดที่สูงกว่าระยะนี้จะแตกทั้งหมด

<u>ข้อมูลส่งออก</u>

M บรรทัด แต่ละบรรทัดระบุจำนวนขวดที่แตกทั้งหมดในการกดแต่ละครั้ง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
7 4	4
3	1
1	0
4	2
6	
7	
3	
5	
5	
4	

6	
2	

ลักษณะการแตกของขวดเป็นดังนี้

เริ่มต้น	3	1	4	6	7	3	5	
กดเหลือความสูง 5:	3	1	X	*	*	X	5	(ขวดที่ 4, 5 แตก ขวดที่ 3, 6 แตกตาม)
กดเหลือความสูง 4:	3	1					*	(ขวดที่ 7 แตก ไม่มีขวดด้านข้าง)
กดเหลือความสูง 6:	3	1						(ไม่มีขวดแตก)
กดเหลือความสูง 2:	*	X						(ขวดที่ 1 แตก ขวดที่ 2 แตกตาม)

++++++++++++++++

72. รถเร็วเทพเอพี (AP_Car)

 $\overset{ar{}}{n}$ มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น13 ออกโดย PeaTT \sim

รถแข่งขันจำนวน N คัน (1 <= N <= 100,000) วิ่งไล่กันบนถนนเส้นตรงแห่งหนึ่ง รถแต่ละคันมีจุดเริ่มต้นเป็นพิกัดจำนวน เต็มเป็นเส้นจำนวน กล่าวคือรถคันที่ i สำหรับ i = 1, 2, ..., N จะมีจุดเริ่มต้นที่จุด x_i และมีความเร็ว v_i (0 <= x_i <= 1,000,000,000 และ 1 <= v_i <= 1,000,000,000) รถทุกคันจะวิ่งด้วยความเร็วคงที่ ดังนั้นเมื่อเวลาผ่านไป T หน่วย รถจะอยู่ที่จุด x_i + (T \times v_i) บนเส้นจำนวน

ถนนสำหรับการแข่งขันรถเป็นถนนเส้นตรงที่มีทั้งสิ้น N เลน กล่าวคือ รถแข่งขันสามารถแซงกันได้โดยไม่ชนกันเพราะอยู่ คนละเลนกัน

รถที่กล้าประกาศตัวว่าเป็นรถเร็วเทพเอพีนั้นจะต้องไม่เคยถูกคันใดแซง รถจะถูกแซงก็ต่อเมื่อ ณ บางเวลาที่รถคันที่อยู่ ด้านหลัง (มีพิกัดบนเส้นจำนวนน้อยกว่า) เคลื่อนที่มาทันพอดี หรือ รถที่อยู่ตำแหน่งเดียวกันเคลื่อนที่ล้ำไปด้านหน้า จะถือว่ารถถูก แซง

ต้องการจะทราบว่า เมื่อเวลาผ่านไป T หน่วย (1 <= T <= 1,000,000,000) จะมีรถกี่คันที่เรียกตัวเองว่าเป็นรถเร็วเทพเอ พีได้ รับประกันว่าพิกัดของรถตลอดเวลาจนถึงเวลา T หน่วยจะไม่เกิน 2,000,000,000

<u>งานของคุณ</u>

จงเขียนโปรแกรมอย่างมีประสิทธิภาพเพื่อช่วยหาจำนวนรถเร็วเทพเอพีในการแข่งรถ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q มีค่าไม่เกิน 5 ในแต่ละคำถาม ให้รับข้อมูลดังนี้ บรรทัดแรก รับจำนวนเต็มบวก N T ตามลำดับคั่นด้วยช่องว่าง แทนจำนวนรถแข่งและระยะเวลา T ตามลำดับ โดยที่ 1 <= N <= 100,000 และ 1 <= T <= 1,000,000,000

อีก N บรรทัดต่อมา รับจำนวนเต็มสองจำนวน x_i และ v_i แสดงข้อมูลของรถแต่ละคันห่างกันหนึ่งช่องว่าง โดยที่ 0 $<=x_i<=1,000,000,000$ และ $1<=v_i<=1,000,000,000$

20% ของชุดข้อมูลทดสอบจะมีค่า N ไม่เกิน 1,000

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงจำนวนรถที่เรียกตัวเองว่าเป็นรถเร็วเทพเอพีได้เมื่อเวลาผ่านไป T หน่วย ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	2
5 2	
0 10	
0 5	
10 5	
8 8	
9 7	

เมื่อเวลาผ่านไป 2 หน่วย รถที่ยังคงเรียกตัวเองได้ว่าเป็นรถเร็วเทพเอพี มีทั้งสิ้น 2 คัน ได้แก่ รถคันแรก (0 10) และ รถคัน ที่สี่ (8 8) นั่นเอง

++++++++++++++++

73. ส่งคนโดยเรือทอม (Boattrip Tom)

ที่มา: ข้อสิบสอง EOIC#25 PeaTT~

หมู่บ้าน POSNBUU ประกอบไปด้วยบ้าน B+1 หลัง เรียกว่าบ้านหลังที่ 0 จนถึงบ้านหลังที่ B โดยบ้านแต่ละหลังจะห่างกัน 1 กิโลเมตรพอดิบพอดี บ้านทั้ง B หลัง มีแม่น้ำ อสุจิน เป็นแม่น้ำสายหลักอยู่หน้าบ้านของทุกบ้าน แป้งยองจะอยู่บ้านหมายเลข 0 และวันนี้ต้องการจะพายเรือไปหาเจนนิเฟอร์ซึ่งอยู่บ้านหมายเลข B

แต่เนื่องจากเรือของทอมแป้งยองนั้นใหญ่มาก สามารถบรรจุผู้คนในหมู่บ้าน POSNBUU มากมาย หล่อนจึงได้รับคำสั่งให้ ไปส่งผู้คนทั้งสิ้น A คนก่อนที่จะไปหาเจนนิเฟอร์ที่บ้านหมายเลข B

เมื่อเรือของแป้งยองจอดแต่ละครั้ง หล่อนสามารถปล่อยคนลงหรือพาคนขึ้นเรือได้ครั้งละหลาย ๆ คน จงเขียนโปรแกรมเพื่อหาระยะทางรวมที่น้อยที่สุดที่แป้งยองจะใช้ส่งผู้คนในหมู่บ้าน POSNBUU ทั้ง A คนผ่านแม่น้ำอสุจิน ก่อนที่จะไปหาเจนนิเฟอร์ที่บ้านหมายเลข B?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก A B ตามลำดับ โดยที่ A ไม่เกิน 300,000 และ $3 <= B <= 10^9$

อีก A บรรทัดต่อมา แต่ละบรรทัด ให้รับหมายเลขบ้านจุดเริ่มและจุดจบตามลำดับห่างกันด้วยเว้นวรรคหนึ่งช่อง โดยหมายเลขบ้าน เหล่านี้จะอยู่ในช่วงตั้งแต่ 0 ถึง B

40% ของชุดข้อมูลทดสอบ จะมี A ไม่เกิน 5,000 และ 50% ของชุดข้อมูลทดสอบ จะมี B ไม่เกิน 2,000,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว ระยะทางรวมที่น้อยที่สุดที่แป้งยองจะต้องใช้เพื่อขนส่งคนโดยเรือทอมผ่านแม่น้ำอสุจิน

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2 15	19
6 4	
2 9	
2 8	14
7 4	
2 6	

ต้องส่งคนสองคน คนแรกอยู่บ้าน 6 จะไปบ้าน 4, คนที่สองอยู่บ้าน 2 จะไปบ้าน 9 เริ่มต้นแป้งยองอยู่บ้าน 0 ก็พายเรือ 2 กิโลเมตร ไปบ้าน 2 รับคนที่สองขึ้นเรือ จากนั้นพายเรืออีก 4 กิโลเมตร (รวมเป็น 6) ไปบ้าน 6 รับคนแรกขึ้นเรือ จากนั้นพายเรือ กลับ 2 กิโลเมตร (รวมเป็น 8) ไปบ้าน 4 ส่งคนแรกลงจากเรือ จากนั้นพายเรือไปข้างหน้า 5 กิโลเมตร (รวมเป็น 13) ไปบ้าน 9 ส่ง คนที่สองลงจากเรือ จากนั้นก็พายเรือไปข้างหน้าอีก 6 กิโลเมตร (รวมเป็น 19) ไปหาเจนนิเฟอร์ที่บ้าน 15 นั่นเอง

ตอบว่าระยะทางเดินทางรวมเป็น 19 และเป็นวิธีที่ใช้ระยะทางน้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

คำอธิบายตัวอย่างที่2

ต้องส่งคนสองคน คนแรกอยู่บ้าน 7 จะไปบ้าน 4, คนที่สองอยู่บ้าน 2 จะไปบ้าน 6 เริ่มต้นแป้งยองอยู่บ้าน 0 ก็พายเรือ 2 กิโลเมตร ไปบ้าน 2 รับคนที่สองขึ้นเรือ จากนั้นพายเรืออีก 4 กิโลเมตร (รวมเป็น 6) ไปบ้าน 6 เพื่อส่งคนที่สองลงจากเรือ จากนั้น พายเรือไปต่อ 1 กิโลเมตร (รวมเป็น 7) ไปบ้าน 7 รับคนแรกขึ้นเรือ จากนั้นพายเรือกลับ 3 กิโลเมตร (รวมเป็น 10) ไปบ้าน 4 ส่งคน ที่แรกลงจากเรือ จากนั้นก็พายเรือไปข้างหน้า 4 กิโลเมตร (รวมเป็น 14) ไปหาเจนนิเฟอร์ที่บ้าน 8 นั่นเอง

ตอบว่าระยะทางเดินทางรวมเป็น 14 และเป็นวิธีที่ใช้ระยะทางน้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

74. พีทเทพย้ายไปไกลแค่ไหน (PT_How Far)

 $\overset{-}{n}$ ี่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น15 ออกโดย PeaTT \sim

พีทเทพ (Peattaep) เป็นพระราชาปกครองดินแดน POSNBUU วันนี้เขาจะต้องจัดเรียงข้อมูลที่มีเลขซ้ำกัน ในการจัดเรียงข้อมูล เราจะพบว่าเลขเดียวกันอาจจะถูกย้ายไปได้หลายตำแหน่ง เช่น หากเลขก่อนเรียงเป็น 4 3 2 1 5 1 2 1 3 6 5 4 เมื่อเรียงแล้วจะได้ผลลัพธ์เป็น 1 1 1 2 2 3 3 4 4 5 5 6 นั่นคือเลข 1 ในตัวแรกในข้อมูลเข้าอาจจะ ไม่ใช่เลข 1 ตัวแรกในผลลัพธ์ แต่จะเป็นเลข 1 ตัวใดก็ได้ในผลลัพธ์

ในข้อนี้ พีทเทพต้องการทราบว่าเลขแต่ละค่าอาจจะถูกย้ายไปได้ไกลจากตำแหน่งเริ่มต้นในข้อมูลเข้ามากที่สุดเท่าใด การ ย้ายตัวเลขสามารถย้ายไปทางซ้ายหรือทางขวาก็ได้ โดยเราจะสนใจเฉพาะระยะการย้ายตำแหน่งที่ไกลที่สุด อย่างเช่นในตัวอย่างที่ให้มานั้นเราจะสรุปการย้ายตำแหน่งที่ไกลที่สุดที่เป็นไปได้ของเลขแต่ละค่าได้ดังนี้

ค่าตัวเลข	ระยะการย้ายตำแหน่งที่ไกลที่สุดที่เป็นไปได้
1	7
2	3
3	5
4	8
5	6
6	2

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อสรุประยะการย้ายตำแหน่งที่ไกลที่สุดที่เป็นไปได้ของเลขแต่ละค่า

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N โดยที่ N <= 1,000,000

บรรทัดถัดมา เป็นเลขจำนวนเต็มบวก N ค่า ซึ่งอาจจะซ้ำกันก็ได้ โดยเลขจะมีค่าไม่เกินหนึ่งพันล้าน และจำนวนค่าตัวเลขที่ แตกต่างกันจะมีไม่เกิน 100.000 ค่า

50% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 5,000

<u>ข้อมูลส่งออก</u>

เป็นผลสรุประยะการย้ายตำแหน่งระหว่างก่อนและหลังการจัดเรียงที่ไกลที่สุดที่เป็นไปได้ของเลขแต่ละค่า เรียงจากเลขค่า น้อยที่สุดไปหาเลขค่ามากที่สุดหนึ่งค่าต่อบรรทัด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
12	1 7
4 3 2 1 5 1 2 1 3 6 5 4	2 3
	3 5
	4 8
	5 6
	6 2

+++++++++++++++++

75. สงครามหลอกลวง (Deceitful War)

ที่มา: Google Code Jam 2014 Qualification Round

บางครั้งนาโอมิและเคนจะเล่นเกมด้วยกัน ก่อนที่พวกเขาจะเล่น พวกเขาจะหาไม้ที่มีน้ำหนัก W (0.0<w<1.0) จำนวน N แผ่น จากนั้น เกมที่พวกเขาจะเล่นมักมีอยู่หลายเกม แต่เกมที่พวกเขามักเล่นด้วยกันบ่อยๆเป็นเกมที่พวกเขาเรียกว่า สงคราม มักมี อยู่ 2 เกม

เกมแรกชื่อ สงครามความกล้า วิธีการเล่นคือ

- 1. เริ่มต้น ทั้งสองคนจะรู้น้ำหนักของไม้ของตัวเองทุกแผ่น โดยจะไม่รู้น้ำหนักของแท่งไม้อีกฝ่าย
- 2. นาโอมิจะเลือกไม้ออกมาแผ่นหนึ่ง แล้วบอกน้ำหนักของไม้แผ่นนั้นให้เคนรู้
- 3. เคนก็จะเลือกไม้มาแผ่นหนึ่ง
- 4. ทั้งสองคนนำไม้ของตนมาชั่งบนตาชั่งสองแขน
- 5. ทำลายไม้ทั้งสองแผ่นนั้น
- 6. ทำตามข้อ 2 จนครบ N ครั้ง

ฝั่งที่เลือกไม้ที่มีน้ำหนักมากกว่าออกมาชั่งบนตาชั่งจะได้รับ 1 คะแนน โดยถือว่านาโอมิจะบอกน้ำหนักไม้ให้เคนรู้เป็นความ จริงเสมอ และถือว่าให้เคนจะเล่นเกมอย่างดีที่สุดเท่าที่เคนจะสามารถทำได้เพื่อเอาชนะนาโอมิ

เกมที่สองชื่อ สงครามหลอกลวง วิธีเล่นคือ

- 1. เริ่มต้นนาโอมิจะรู้น้ำหนักของไม้ตัวเองและของเคนแต่เคนจะรู้น้ำหนักไม้ของตัวเองเท่านั้น
- 2. นาโอมิจะเลือกไม้ออกมาแผ่นหนึ่ง แล้วบอกน้ำหนักของแผ่นไม้ W (0.0<W<1.0)
- 3. เคนก็จะเลือกไม้มาแผ่นหนึ่ง
- 4. ทั้งสองคนนำไม้ของตนมาชั่งบนตาชั่งสองแขน
- 5. ทำลายไม้ทั้งสองแผ่นนั้น
- 6. ทำตามข้อ 2 จนครบ N ครั้ง

ฝั่งที่เลือกไม้ที่มีน้ำหนักมากกว่าออกมาชั่งบนตาชั่งจะได้รับ 1 คะแนน แต่นาโอมิไม่จำเป็นต้องพูดความจริง แต่การโกหก ของนาโอมิ จะต้องไม่ทำให้เคนรู้ว่าถูกนาโอมิหลอกอยู่ และถือว่าให้เคนจะเล่นเกมอย่างดีที่สุดเท่าที่เคนจะสามารถทำได้เพื่อเอาชนะ นาโอมิ จงเขียนโปรแกรมเพื่อหาคะแนนสูงที่สุดที่นาโอมิสามารถทำได้ในสงครามหลอกลวงและสงครามความกล้า

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q (1 <= Q <= 50) แทนจำนวนคำถาม แต่ละคำถามจะประกอบด้วย บรรทัดแรก จำนวนเต็มบวก N (1 <= N <= 1,000) แทนจำนวนแผ่นไม้ของแต่ละคนในตอนแรก บรรทัดที่ 2 จำนวนจริง Wn N จำนวน (0.0 < Wn < 1.0) แทนน้ำหนักไม้ของนาโอมิ บรรทัดที่ 3 จำนวนจริง Wk N จำนวน (0.0 < Wk < 1.0) แทนน้ำหนักไม้ของเคน

<u>ข้อมูลส่งออก</u>

แต่ละคำถาม ให้แสดง Case #x: โดย x คือหมายเลขคำถาม แล้วตามด้วยจำนวนเต็มบวก 2 จำนวนห่างกันด้วยเว้นวรรค 1 ช่อง จำนวนแรกคือคะแนนสูงสุดที่นาโอมิสามารถทำได้ในเกมสงครามหลอกลวง จำนวนที่สองคือคะแนน สูงสุดที่นาโอมิสามารถทำได้ในสงครามความกล้า

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	Case #1: 0 0
1	Case #2: 1 0
0.5	Case #3: 2 1
0.6	Case #4: 8 4
2	
0.7 0.2	
0.8 0.3	
3	
0.5 0.1 0.9	
0.6 0.4 0.3	
9	
0.186 0.389 0.907 0.832 0.959 0.557 0.300 0.992 0.899	
0.916 0.728 0.271 0.520 0.700 0.521 0.215 0.341 0.458	

++++++++++++++++

76. พลั้งตะโกนย้าก... (Yaackk)

____ ที่มา: ข้อแปด EOIC#15 PeaTT~

พีทตี้เอาตัวเลขจำนวนเต็มมาเขียนเป็นตารางขนาด N คอลัมน์ทั้งสิ้น 3 แถว จากนั้นพีทตี้ต้องการเห็นตัวเลขทั้ง 3 แถวว่า เป็นตัวเลขชุดเดียวกันทั้งหมดจึงต้องการลบตัวเลขบางตัวออก แต่เพื่อความบั่นทอนปัญญา พีทตี้จึงได้ตั้งเงื่อนไขว่า ในการลบตัวเลขจะต้องลบออกทั้งคอลัมน์!

จงเขียนโปรแกรมเพื่อหาจำนวนคอลัมน์ที่น้อยที่สุดที่ควรลบออก แล้วทำให้ตัวเลขที่เหลือเป็นตัวเลขชุดเดียวกันทั้งสามแถว (ตัวเลขชุดเดียวกันคือตัวเลขที่พอนำมาเรียงแล้วเหมือนกันทั้งหมด)

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N โดยที่ N ไม่เกิน 100,000 แสดงจำนวนคอลัมน์ทั้งหมด สามบรรทัดต่อมา แต่ละบรรทัดแสดงตัวเลข N ตัว โดยตัวเลขเหล่านี้จะมีค่าตั้งแต่ 1 ถึง N ซึ่งอาจจะซ้ำกันได้ ยกเว้นแถวแรกสุดจะ ประกอบด้วยตัวเลข 1 ถึง N ที่ไม่ซ้ำกัน

รับประกันได้ว่า 40% ของชุดข้อมูลทดสอบจะมี N ไม่เกิน 100 และ 70% ของชุดข้อมูลทดสอบจะมี N ไม่เกิน 10,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนคอลัมน์ที่น้อยที่สุดที่ควรลบออกจากตารางนี้

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
7	4
5 4 3 2 1 6 7	
5 5 1 1 3 4 7	
3 7 1 4 5 6 2	

คำอธิบายตัวอย่าง

ควรลบคอลัมน์ที่ 2, 4, 6 และคอลัมน์ที่ 7 ออก หลังจากลบออกแล้ว ทุกแถวจะเหลือตัวเลข 1, 3 และ 5 เหมือนกันหมด ตอบควรลบทั้งสิ้น 4 คอลัมน์ซึ่งน้อยที่สุดเท่าที่จะสามารถหาได้แล้ว

++++++++++++++++++

2. เรื่อง Graph algorithm จำนวน 14 ข้อ

77. เทอร์โบโปรแกรมมิ่ง (Turbo Programming)

เทอร์โบโปรแกรมมิ่งเป็นการแข่งขันเขียนโปรแกรมบนสาย (ออนไลน์) ที่เชื่อมต่อเครื่องคณิตกรณ์วางตัก (โน๊ตบุ๊ค) ของน้อง ๆ ผู้แทนศูนย์หลายเครื่องเข้าด้วยกัน

เนื่องจากเครื่องคณิตกรณ์วางตักของน้องๆแต่ละคนไม่เหมือนกัน อาจจะเป็นที่กระด้างภัณฑ์ (ฮาร์ดแวร์), ละมุนภัณฑ์ (ซอฟต์แวร์), จิ๋วละมุน (ไมโครซอฟท์) หรือแม้แต่ตัวกล้ำและแยกสัญญาณ (โมเด็ม), เครื่องเฝ้าสังเกต (มอนิเตอร์), จอภาพผลึกเหลว (จอแอลซีดี), เครื่องกราดภาพ (สแกนเนอร์), จานบันทึกแบบแข็งที่หน่วยขับ (ฮาร์ดดิสก์) หรือแม้แต่แผ่นบันทึกชนิดอ่อนปวกเปียก (ฟลอปปี้ดิสก์) ส่งผลให้เครื่องของแต่ละคนมีคุณภาพไม่เหมือนกันและมีประสิทธิภาพในการโอนถ่ายข้อมูลได้ไม่เท่ากัน

ณ เวลาหนึ่ง มีเครื่องคณิตกรณ์วางตักอยู่ N เครื่อง ได้แก่ เครื่องที่ 1, 2, 3, ..., N และมีสายเชื่อมต่อ (สายแลน) อยู่ M สาย แต่ละสายจะทำการเชื่อมต่อ(ลิงค์)เครื่องคณิตกรณ์วางตักสองเครื่องเข้าด้วยกันแต่ในสายเชื่อมต่อนั้นก็มีจำนวนไวรัสอยู่ W ตัว คุณ ต้องการส่งข้อมูลจากเครื่องหมายเลข 1 ไปยังเครื่องเป้าหมายโดยได้รับจำนวนไวรัสรวมน้อยที่สุด จงเขียนโปรแกรมเพื่อหาเส้นทาง ส่งข้อมูลนั้น

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N M Q (1 <= N, Q <= 1,000 และ 1 <= M <= 100,000) แทนจำนวนเครื่องคณิตกรณ์วางตัก จำนวนสายเชื่อมต่อและจำนวนคำถามตามลำดับ

อีก M บรรทัดต่อมา รับจำนวนเต็ม S E W เพื่อบอกว่ามีสายเชื่อมต่อที่สามารถส่งข้อมูลจากเครื่องหมายเลข S ไปยังเครื่อง หมายเลข E ได้โดยที่สายเชื่อมต่อนี้มีไวรัสอยู่ W (0 <= W <= 50) ตัว

อีก Q บรรทัดต่อมา มีจำนวนเต็มบวก C แทนหมายเลขเครื่องคณิตกรณ์วางตักเป้าหมาย

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด แต่ละบรรทัดแสดงจำนวนไวรัสรวมน้อยสุดที่ใช้ในการส่งข้อมูลจากเครื่องคณิตกรณ์วางตักหมายเลข 1 มายังเครื่อง คณิตกรณ์วางตักหมายเลข C ได้ หากไม่สามารถส่งข้อมูลได้ให้ตอบ -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 5 3	-1
1 2 10	40
2 3 10	30
3 4 10	
4 5 10	
1 5 50	
6	
5	
4	

+++++++++++++++++

78. ต่อสะพาน (Connect)

ที่มา: ข้อสิบเอ็ดฟาสต์คอนเทสต์ ติวผู้แทนศูนย์ รุ่น 7 PeaTT~

พายุยักษ์ได้พัดพาสะพานบางเส้นให้ขาดและถล่มลงมา จุดเชื่อมสะพานมีทั้งหมด N จุดเพื่อความสะดวกเราจะเรียกว่าจุดที่ 1, 2, 3, ... จนถึงจุดที่ N โดยไม่มีสองจุดใดๆที่อยู่ ณ ตำแหน่งเดียวกัน แต่หลังจากพายุถล่มก็ยังมีสะพานอยู่ W เส้นที่ยังเชื่อมกันอยู่ นโยบายต่อสะพานของรัฐ รัฐบาลต้องการต่อสะพานให้เดินทางจากจุดที่ 1 ไปยังจุดที่ N ได้เท่านั้นแต่เนื่องจากงบ ประมาณมีน้อย รัฐบาลจึงต้องการต่อสะพานเพิ่มเป็นระยะทางน้อยที่สุดและสะพานแต่ละเส้นจะต้องยาวไม่เกิน M หน่วยเท่านั้น จงเขียนโปรแกรมเพื่อหาความยาวสะพานรวมที่สั้นที่สุดที่จะทำให้เดินทางจากจุดที่ 1 ไปหาจุดที่ N ได้สำเร็จ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N และ W แทนจำนวนจุดเชื่อมสะพานทั้งหมดและจำนวนสะพานที่ไม่โดนถล่ม โดยที่ 2 <= N <= 1,000 และ 1 <= W <= 10,000

บรรทัดต่อมา จำนวนจริง M แทนความยาวสะพานสูงสุดที่รัฐอนุญาตให้สร้าง โดยที่ 0.0 <= M <= 200,000.0 N บรรทัดต่อมา แสดงตำแหน่งของจุดเชื่อมสะพานจากจุดที่ 1 ไปยังจุดที่ N ตามลำดับ โดยตำแหน่งโคออร์ดิเนตจะเป็นจำนวนเต็ม ในช่วง [-100000, 100000]

W บรรทัดสุดท้าย จะเป็นสะพานที่ยังหลงเหลืออยู่ โดยแสดงเป็นคู่ของจุดเชื่อมสะพาน

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว หากต่อสะพานได้ให้ตอบเป็นจำนวนเต็มบวกจากการนำระยะทางที่ได้ไปคูณด้วย 1,000 โดยให้ใช้คำสั่ง printf("%d\n",(int)(d*1000)); เมื่อ d คือความยาวในตัวแปร double แต่หากไม่สามารถต่อสะพานได้ให้ตอบ -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
9 3	2828
2.0	
0 0	
0 1	
1 1	
2 1	
2 2	

3	2	
3	3	
4	1	
4	3	
1	2	
2	3	
3	4	

มีจุดเชื่อมสะพานอยู่ 9 จุด และสะพานแต่ละเส้นต้องยาวไม่เกิน 2.00 หน่วย

				หลัง	พาย	ยุถล่	П								วิธีเร	ชื่อม	ให้สั้	ันที่สุ	ุ์ด		
3	•	•	•	7	9	•	•	•	•		3		•	•	7	9	•	•	•	•	•
2	•	•	5	6	•	•	•	•	•	•	2	•	•	5	6	•	•	•	•	•	•
1	2 -	-3-	-4	•	8	•	•	•	•	•	1	2 -	-3-	-4	•	8	•	•	•	•	•
0	1	•	•	•	•	•	•	•	•	•	0	1	•	•	•	•	•	•	•	•	•
	0	1	2	3	4	5	6	7	8	9		0	1	2	3	4	5	6	7	8	9

ให้ต่อสะพานจากจุด 4 ไปยัง 6 และจากจุด 6 ไปยัง 9 ก็จะเดินทางจาก 1 ไปยัง 9 ได้สำเร็จ และใช้ระยะทาง 1.414213562 + 1.414213562 = 2.828427124

+++++++++++++++++

79. ปืนเขาบียูยู (BUU Climbing)

 \vec{n} มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ม.บูรพารุ่น 11 ออกโดย $PeaTT\sim$

หุบเขาบียูยูเป็นหุบเขารูปสี่เหลี่ยมมุมฉากที่มีความกว้าง R ความยาว C โดยมีพิกัดช่องบนซ้ายเป็นช่อง (0, 0) และพิกัดช่อง ล่างขวาเป็นช่อง (R-1, C-1) หุบเขาบียูยูแต่ละช่องจะมีความสูงตั้งแต่ 0 ถึง 9 โดยค่าความสูง 0 จะเป็นช่องที่เตี้ยที่สุด และค่าความ สูง 9 จะเป็นช่องที่มีสูงที่สุด นอกจากนี้ในบางช่องของหุบเขาบียูยูยังเป็นช่องอันตรายที่ห้ามเข้าไปเหยียบแทนด้วย '#' เพราะมีลวด หนามและสัตว์ป่าอันตรายอยู่ในช่องนั้น ๆ

การปืนเขาบียูยูจะสามารถเดินทางไปยังช่องที่อยู่ติดกันกับช่องเดิมได้ใน 8 ทิศทาง ได้แก่ ขึ้นบน, ลงล่าง, ไปทางซ้าย, ไป ทางขวา, ไปช่องบนซ้าย, ไปช่องบนขวา, ไปช่องล่างซ้าย และ ไปช่องล่างขวา แต่ไม่สามารถเดินทางออกนอกหุบเขาได้ และไม่ สามารถเดินไปยังช่องอันตรายได้ หากเดินทางไปยังช่องที่มีความสูงเท่ากันจะเสียพลังงานครั้งละ 1 หน่วย แต่หากเดินทางไปยังช่อง ของหุบเขาที่มีความสูงมากกว่าหรือน้อยกว่าช่องเดิม d หน่วย จะต้องเสียพลังงานครั้งละ (d+1)² หน่วย

นายเทพต้องการจะปืนเขาบียูยูแห่งนี้ เริ่มต้นเขาอยู่ที่ช่อง (x, y) โดยที่ 0 <= x < R , 0 <= y < C เขาต้องการปืนเขาไปยัง ช่องที่มีความสูงมากที่สุดในหุบเขาแห่งนี้ เขาต้องการทราบว่าเขาจะต้องเสียพลังงานในการปืนเขารวมน้อยที่สุดเป็นเท่าใด หาก รับประกันว่าหุบเขาแห่งนี้มีช่องที่มีความสูงมากที่สุดเพียงช่องเดียว

<u>งานของคณ</u>

จงเขียนโปรแกรมเพื่อหาพลังงานในการปีนเขารวมที่น้อยที่สุดที่นายเทพจะต้องเสียเพื่อปีนเขาบียูยู

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก O แทนจำนวนคำถาม โดยที่ O ไม่เกิน 10

ในแต่ละคำถาม

บรรทัดแรก รับจำนวนเต็มบวก R C ตามลำดับ ห่างกันหนึ่งช่องว่าง โดยที่ 2 <= R, C <= 100 อีก R บรรทัดต่อมา รับสายอักขระบรรทัดละ C ตัวอักขระติดกัน โดยจะเป็นตัวเลข 0 ถึง 9 เพื่อ แสดงความสูงของช่องนั้นๆ หรือเป็น '#' เพื่อแสดงว่าช่องนั้นเป็นช่องอันตราย

บรรทัดสุดท้าย รับพิกัดเริ่มต้น x y ห่างกันหนึ่งช่องว่าง โดยที่ 0 <= x < R , 0 <= y < C

20% ของชุดข้อมูลทดสอบ จะมีค่า R และ C ไม่เกิน 5

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด ในแต่ละคำถาม ให้แสดงพลังงานรวมน้อยที่สุดที่เทพจะต้องเสียในการปีนเขาบียูยูจากช่อง (x, y) ไปยังช่องที่ สูงที่สุดของหุบเขา หากเทพไม่สามารถปีนเขาไปยังช่องที่สูงที่สุดของหุบเขาได้ ให้ตอบว่า NO

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	13
5 5	NO
11111	
1###1	
12341	
12221	
12221	
0 0	
3 3	
1#3	
2#3	
##4	
1 0	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 2 คำถาม ได้แก่

คำถามแรก เส้นทางการเดินทางเป็นดังนี้ (0, 0) -> (1, 0) -> (2, 1) -> (2, 2) -> (2, 3) ซึ่งเสียพลังงานรวมในการเดินทาง เป็น 1+4+4+4 = 13 นั่นเอง

คำถามที่สอง เทพไม่สามารถเดินทางจากช่อง (1, 0) ไปยังช่อง (2, 2) ได้ จึงตอบว่า NO นั่นเอง

<u>เกณฑ์การให้คะแนน</u>

100% ของชุดข้อมูลทดสอบ จะมีค่า R และ C ไม่เกิน 100 ซึ่งการที่จะได้คะแนนเต็มในข้อนี้ โปรแกรมที่ส่งจะต้องทำงาน ได้อย่างถูกต้องและมีประสิทธิภาพ

++++++++++++++++

80. งานแต่งงานของบี้ (Bie's Wedding)

ที่มา: โจทย์ติวผู้แทนศูนย์รุ่น 9 โดย PeaTT~

ณ หมู่บ้าน**หมันพอย**อันยุ่งเหยิงมีสามีภรรยาวัยชราใกล้ฝั่งคู่หนึ่งคือ อา**ฟู่(ร้อยจ๊อก)**ที่มีอวัยวะมากมาย และอา**ซิ้ม(เซียน** จัน) ผู้เชี่ยวชาญพิเศษด้านยุทธศาสตร์ เป็นหัวหน้าหมู่บ้าน แต่วันนี้พวกเขาคึกคักเป็นพิเศษเพราะลูกชายสุดที่รักนามว่า **บี้(ล้วง** ขอส) นักเล่นหุ้นมือทอง กำลังจะแต่งงานกับเจ้าสาวสุดสวยน้อง**จอย(กระชากเห๋)**ชาวประมงหัวรุนแรง ที่โบสถ์ประจำหมู่บ้านซึ่งมี บาทหลวงฝีปากดีชื่อว่า**คิ้นอาล่ารัวโล** มาจากประเทศ**อีกันเฟรา**ที่ทุกคนใฝ่ฝันอยากจะเป็นคนทำพิธีแต่งงานให้

ในงานนี้ทั้งอาฟูและอาซิ๋มก็ได้ชวนทุกคนในหมู่บ้านมางานแต่งของลูกชายนี้ด้วย ทว่ามีปัญหาอย่างหนึ่งคือประธานของงาน เป็นผู้อาวุโสของหมู่บ้านก็คือคุณยาย**น้อย(ไข่ย๊อต)** เดินเหินไม่ค่อยสะดวก แต่ต้องไปถึงงานเป็นคนแรกๆเพื่อเตรียมตัวภายในงาน เพราะฉะนั้นจึงเป็นหน้าที่ของหลานชายตัวเตี้ยชื่อฟิล(สองม่าง)ต้องเป็นคนพายายไปงานให้ถึงก่อนชาวบ้านคนอื่นๆ จึงต้องรู้ให้ได้ ว่าชาวบ้านที่จะไปถึงคนแรกจะมาจากบ้านไหนและเดินมาด้วยระยะทางเท่าใด

ทั้งนี้จะกำหนดให้มีถนนเชื่อมบ้านแต่ละบ้านเอาไว้โดยบางบ้านอาจไม่มีชาวบ้านอาศัยอยู่ก็ได้ ส่วนชาวบ้านที่นี่จะมีวินัยสูง มาก จะเดินทางด้วยถนนที่เชื่อมระหว่างบ้านเท่านั้น ไม่มีการเดินลัดสนาม และชาวบ้านทุกคนเดินด้วยความเร็วเท่ากัน นอกจากนี้ ยังเป็นชาวบ้านที่ฉลาดด้วยคือจะเลือกเดินเส้นทางที่สั้นที่สุดไปโบสถ์เสมอ ถ้ามีเส้นทางสั้นที่สุดหลายทางจะเดินทางใดก็ได้ บ้านจะ แทนชื่อด้วยตัวอักษรภาษาอังกฤษคือ 'a' ถึง 'z' และ 'A' ถึง 'Y' บ้านที่เป็นตัวอักษรพิมพ์ใหญ่จะเป็นบ้านที่มีชาวบ้านอาศัยอยู่ ส่วน บ้านที่เป็นพิมพ์เล็กจะเป็นบ้านเปล่า ส่วน 'Z' นั้น กำหนดให้เป็นโบสถ์ซึ่ง ไม่มีชาวบ้านอยู่เลยยกเว้นบาทหลวง

จงเขียนโปรแกรมเพื่อหาว่าบ้านหลังใดอยู่ใกล้โบสถ์มากที่สุด และ เดินทางมายังโบสถ์ด้วยระยะทางเท่าไร?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก: ตัวเลขจำนวนเต็มบวก P <= 10,000 เป็นจำนวนถนนทั้งหมด บรรทัดที่ 2 จนถึง P+1: ตัวอักษรภาษาอังกฤษสองตัว และ เลขจำนวนเต็มบวก แสดงรายละเอียดของถนนแต่ละเส้น โดยระบุชื่อ บ้านและระยะทาง ชื่อบ้านและระยะทางจะถูกคั่นด้วยช่องว่าง (Space)

<u>ข้อมูลส่งออก</u>

มีบรรทัดเดียว ประกอบด้วย ชื่อบ้านของชาวบ้านคนแรกที่เดินทางมาโบสถ์เร็วที่สุด และ ระยะทางรวมที่เดินทาง คั่นด้วยช่องว่าง หากมีชาวบ้านมาถึงโบสถ์เร็วที่สุดหลายคนให้ตอบตัวที่เป็นตัวอักษรภาษาอังกฤษตัวน้อยที่สุด (A ก่อน B เป็นต้น)

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก					
5	В 11					
A d 6						
B d 3						
C e 9						
d Z 8						
e Z 3						

+++++++++++++++++

81. ห้องปิดตาย (Locked Room)

 $\dot{ec{n}}$ ม่า: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ม.บูรพารุ่น 9 ออกโดย PeaTT \sim

วันนี้นารูโตะได้รับภารกิจให้ไปปราบโจรที่ขึ้นบ้านของเนจิ เมื่อนารูโตะเข้ามาในบ้านของเนจิ ทันใดนั้นเอง ปัง! ประตูทาง เข้าบ้านเนจิก็ปิดลง และ นารูโตะก็ถูกขังอยู่ในห้องปิดตาย!!!

ห้องปิดตาย (Locked Room) เป็นห้องรูปสี่เหลี่ยมจัตุรัสขนาด N x N ช่อง โดยให้ช่องบนซ้ายเป็นช่อง [1, 1] และช่องล่าง ขวาเป็นช่อง [N, N] ในแต่ละช่องจะมีค่าจักระดูดพลังอยู่ นารูโตะสามารถเดินทางไปได้ในสี่ทิศทาง ได้แก่ ขึ้นบนหนึ่งช่อง, ลงล่าง หนึ่งช่อง, ไปทางซ้ายหนึ่งช่อง หรือ ไปทางขวาหนึ่งช่องเท่านั้น โดยนารูโตะจะไม่เดินทะลุกำแพงทั้ง 4 ด้านของห้องปิดตาย เมื่อนา รูโตะเดินไปที่ช่องใด เขาก็จะโดนจักระดูดพลังตามค่าของช่องนั้น และเมื่อเขาเดินทางกลับมาช่องเดิม เขาก็จะโดนจักระดูดพลังอีก

ครั้งหนึ่ง (แต่ละช่องสามารถเดินผ่านได้หลายครั้ง) ในห้องปิดตายจะประกอบไปด้วยสวิตซ์พิเศษอยู่จำนวนมาก ซึ่งสวิตซ์พิเศษนี้จะ เป็นสวิตซ์ที่ทำหน้าที่เปลี่ยนสถานะของประตูทางออก เช่น ถ้าประตูทางออกเปิดอยู่ เมื่อกดสวิตซ์พิเศษนี้ ประตูทางออกจะเปลี่ยน สถานะกลายเป็นปิด แต่ถ้าประตูทางออกปิดอยู่ เมื่อกดสวิตซ์พิเศษนี้ ประตูทางออกจะเปลี่ยนสถานะกลายเป็นเปิด

เริ่มต้นนารูโตะอยู่ที่ช่อง [Rs, Cs] (Rs=แถวเริ่มต้น, Cs=คอลัมน์เริ่มต้น) และประตูทางออกของห้องปิดตายอยู่ที่ช่อง [Re, Ce] (Re=แถวทางออก,Ce=คอลัมน์ทางออก) โดยที่เริ่มต้นประตูทางออกจะปิดอยู่เสมอ ดังภาพ

จากภาพห้องปิดตายมีขนาด 4x4 และมีสวิตซ์ 1 ตัวอยู่ที่ช่อง [2,4] เริ่มต้นประตูทางออกถูกปิดอยู่ นารูโตะจะต้องเดินทาง ไปยังช่องที่มีสวิตซ์เพื่อกดสวิตซ์ให้ประตูทางออกเปิดก่อน จากนั้นจะเดินทางไปยังประตูทางออก จึงจะออกจากห้องปิดตายนี้ได้ นารูโตะต้องการจะหนีออกจากห้องปิดตายโดยให้ร่างกายเหนื่อยน้อยที่สุด หรือ ต้องการให้ค่าจักระดูดพลังรวมของเส้น

ทางจากประตูทางเข้าไปยังประตูทางออกมีค่าน้อยที่สุดเท่าที่จะเป็นไปได้

<u>งานของคูณ</u>

จงเขียนโปรแกรมอย่างมีประสิทธิภาพเพื่อช่วยนารูโตะหนีออกจากห้องปิดตายแห่งนี้ให้ได้ โดยถือว่าเมื่อนารูโตะยืนอยู่ที่ ช่องเริ่มต้นครั้งแรก [Rs, Cs] ก่อนการเดินทาง เขาจะไมโดนจักระดูดพลัง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N แทนขนาดของห้องปิดตาย โดยที่ N ไม่เกิน 55

อีก N บรรทัดต่อมา แต่ละบรรทัดจะมีจำนวนเต็ม N จำนวน ห่างกันด้วยเว้นวรรคหนึ่งช่อง ค่าเหล่านี้จะอยู่ในช่วง [-10000, 10000] โดยค่าสัมบูรณ์จะบอกค่าจักระดูดพลังของช่องนั้น และถ้าช่องใดที่มีค่าติดลบแสดงว่าช่องนั้นมีสวิตซ์อยู่

บรรทัดสุดท้าย รับจำนวนเต็มสี่จำนวน Rs, Cs, Re และ Ce (1 <= Rs, Cs, Re, Ce <= N) ตามลำดับห่างกันด้วยเว้นวรรค หนึ่งช่อง

รับประกันได้ว่า ทุกชุดข้อมูลทดสอบจะถูกสร้างมาอย่างดีให้นารูโตะสามารถหลบหนีออกจากห้องปิดตายนี้ได้เสมอ ซึ่งที่ ประตูทางเข้าและประตูทางออกจะไม่มีสวิตซ์อยู่เสมอ

20% ของชุดข้อมูลทดสอบจะมีค่า N ไม่เกิน 5 และ 40% ของชุดข้อมูลทดสอบจะมีค่า N ไม่เกิน 15

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจักระดูดพลังรวมน้อยที่สุดที่นารูโตะใช้เพื่อหลบหนีออกจากห้องปิดตายแห่งนี้

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	9
1 1 9 1	
1 4 1 -3	
1 9 2 1	
1 1 3 1	
3 2 3 3	

ตารางมีขนาด 4 x 4 เริ่มต้นนารูโตะอยู่ที่ช่อง [3, 2] มีประตูทางออกอยู่ที่ช่อง [3, 3] และมีสวิตซ์อยู่หนึ่งอันที่ช่อง [2, 4] เส้นทางการหลบหนีออกจากห้องปิดตายแห่งนี้ได้แก่ [3, 2] -> [3, 3] -> [2, 3] -> [2, 4] -> [2, 3] -> [3, 3] และมีค่าจักระดูดพลัง รวมทั้งสิ้น 2+1+3+1+2 = 9 หน่วย ซึ่งเป็นค่าน้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

+++++++++++++++++

82. เส้นทางบินคิว (Q_Airway)

บริษัทสายการบินแห่งหนึ่ง กำลังประสบปัญหาขาดทุนอย่างแรงจนใกล้ล้มละลาย ประธานบริษัทดังกล่าวได้มาพบคุณแล้ว เล่าว่า เหตุผลที่บริษัทขาดทุนเพราะว่า เส้นทางบินในเกือบทุกเส้น ทางของบริษัทนั้นไม่ใช่ทางบินที่ดีที่สุด ทางบริษัทจึงอยากให้คุณ ซึ่งเป็นโปรแกรมเมอร์ที่เก่งกาจ เข้ามาช่วยเขียนโปรแกรมเพื่อหาทางบินที่ดีขึ้น

ประธานบริษัทเล่าให้คุณฟังว่า เพื่อนำทางเครื่องบิน นานาชาติจึงร่วมมือกันกำหนดจุดนำทางต่าง ๆ ที่เรียกว่า waypoint หรือ fix โดยในบริเวณที่สายการบินดังกล่าวบริการนั้นมีจุดตำแหน่งเหล่านี้อยู่ V จุด (สนามบินก็ถือเป็นจุดนำทางจุดหนึ่งเช่นเดียว กัน) และในการบินจะต้องบินระหว่างจุดเหล่านี้ โดยทางเชื่อมระหว่างจุดตำแหน่งต่าง ๆ เรียกว่า ทางบิน หรือ airway โดยแต่ละ ทางบินใช้เวลาบินไม่เท่ากัน มีอยู่ E ทางบิน ทางบินนั้นสามารถใช้เดินทางได้ทางเดียว มิเช่นนั้นแล้วเครื่องบินอาจจะชนกันได้ ทั้งนี้ ระหว่างจุดตำแหน่งใด ๆ จะมีทางบินไม่เกิน 2 ทาง คือ ไปและกลับเท่านั้น

นอกจากนี้ ประธานยังแอบบอกเพิ่มว่า ในโลกนี้มีทางบินลับอยู่ ทางบินลับเหล่านี้ไม่มีใครรู้ว่าเกิดขึ้นได้อย่างไรหรือเกิดขึ้น เมื่อไร โดยทางบินลับมีความพิเศษคือสามารถย้อนเวลาได้ นอกจากนี้ ทางบินลับจะหายไปเองเมื่อเวลาผ่านไป K นาที และทางบิน ลับจะไม่สามารถมีมากกว่า 1 ทางบินในคราวเดียวกันได้ ทางบินลับสามารถใช้เดินทางได้ทางเดียวเช่นเดียวกับทางบินปกติ โดยถ้า หากมาถึงทางบินลับตอน K นาทีพอดีก็สามารถใช้ได้ทันเช่นกัน โดยรับประกันว่าจะไม่มีทางที่สามารถบินวนเพื่อให้เวลาน้อยลงได้ เรื่อย ๆ

ประธานขอร้องให้คุณช่วยเขียนโปรแกรมกำหนดทางบินของสายการบินให้ โดยทางบริษัทจะส่งจุด ตำแหน่งทางบินและ ทางบินลับ ณ ปัจจุบันและเวลาที่ทางบินลับนั้นจะหายไปให้คุณทราบ เพื่อต้องการรู้ว่าเวลาที่น้อยที่สุดในเส้นทางบินจากสนามบิน X ไปยังสนามบิน Y นานเท่าไร

<u>งานของคณ</u>

จงเขียนโปรแกรมเพื่อหาเส้นทางบินที่ใช้เวลาน้อยที่สุดจากสนามบิน X ไปยังสนามบิน Y

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มสองจำนวน V และ E ตามลำดับ โดยที่ 5 <= V <= 1,000 และ V <= E <= 10,000 บรรทัดที่สอง รับจำนวนเต็มสองจำนวน X และ Y (0 <= X, Y < V) แสดงสนามบินเริ่มต้นและสนามบินสิ้นสุดตามลำดับ บรรทัดที่สาม รับจำนวนเต็ม 4 จำนวน A, B, T, K แสดงว่ามีทางบินลับจากจุดตำแหน่ง A ไปยังจุดตำแหน่ง B (0 <= A, B < V) ซึ่งใช้เวลา T นาที (-10,000 <= T < 0) และจะหายไปเมื่อถึงเวลา K (0 <= K <= 10,000,000)

อีก E บรรทัดต่อมา รับจำนวนเต็ม 3 จำนวน ai, bi, ti แสดงว่ามีเส้นทางบินจากจุดตำแหน่ง ai ไปยังจุดตำแหน่ง bi โดยใช้ เวลาบิน ti นาที (1 <= ti <= 10,000; 0 <= ai, bi < V)

20% ของชุดข้อมูลทดสอบจะมี V ไม่เกิน 15

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนนาที่น้อยที่สุดที่เป็นไปได้ในการบินจากสนามบิน X ไปยังสนามบิน Y

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 4	-5
0 3	
1 3 -10 10	
0 1 5	
0 3 10	
1 3 3	
2 3 5	

+++++++++++++++++

. ที่มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ม.บูรพารุ่น 10 ออกโดย PeaTT~

หลังจากการฝ่าฟันภารกิจในช่วงแรกได้ผ่านพ้นไป คุณก็ยังคงเล่นเกม "โลกแห่งเทพ" ต่อไป โดยในวันนี้คุณจะต้องพา "เทพ" ฮีโร่ของคุณไปขับรถเพื่อข้ามไปยังด่านถัดไป

ด่านนี้จะมีหมู่บ้านทั้งสิ้น N หมู่บ้านเรียกเป็นหมู่บ้านหมายเลข 1, 2, ... ไปเรื่อยๆจนถึงหมู่บ้านหมายเลข N และมีถนน เชื่อมหมู่บ้านทั้งสิ้น M สาย โดยถนนเหล่านี้เป็นถนนสองทาง (two ways street) สามารถเดินทางไปและกลับได้ ซึ่งไม่มีหมู่บ้านคู่ ใดที่มีถนนเชื่อมหมู่บ้านกันมากกว่าหนึ่งสาย

ด้วยความปราดเปรื่องของกรมทางหลวง กระทรวงคมนาคม ถนนแต่ละสายได้มีการติดป้ายจราจรอัจฉริยะที่จะบอกกับ เทพได้ว่า ถ้าเทพเดินทางผ่านถนนสายนี้ เทพจะใช้เวลาในการเดินทางกี่นาที ซึ่งเวลานี้จะเป็นตัวเลขคู่เสมอ

เริ่มต้นเทพอยู่ที่หมู่บ้านหมายเลข 1 เป้าหมายที่จะผ่านด่านนี้คือการเดินทางไปยังหมู่บ้านหมายเลข N โดยเขาต้องเดินทาง ไปให้ถึงหมู่บ้านหมายเลข N โดยเร็วที่สุดเท่าที่จะเป็นไปได้

เช่น N=6, M=8 แสดงว่ามีหมู่บ้านหมายเลข 1 ถึง 6 และ มีถนนทั้งสิ้น 8 สาย ดังภาพ

จากภาพถนนแต่ละสายมีเวลาในการเดินทางจากป้ายจราจรอัจฉริยะของกรมทางหลวงบอกอยู่ หากเทพต้องการเดินทาง จากหมู่บ้านหมายเลข 1 ไปยังหมู่บ้านหมายเลข 6 ให้เร็วที่สุด เขาจะต้องเดินทางโดยผ่านหมู่บ้านหมายเลข 1->2->3->6 ซึ่งใช้เวลา เป็น 4+4+6 = 14 นาทีนั่นเอง

แต่ทว่า โจทย์ข้อนี้ไม่ได้จบลงแค่นั้น เพราะว่า รถของ "เทพ" ฮีโร่ของเรามีในตรัส (nitrous oxide) เอาไว้เร่งเครื่องได้ด้วย (สุดยอดจริงๆเลย) เมื่อเทพกดในตรัสในขณะที่ขับรถผ่านถนนสายใดจะส่งผลให้เทพสามารถเดินทาง ผ่านถนนสายนั้นได้ด้วยเวลา เหลือเพียงครึ่งหนึ่งของเวลาในการเดินทางจากป้ายจราจรอัจฉริยะที่กรมทางหลวงบอก

เทพสามารถกดในตรัสไม่เกิน K ครั้ง เช่น K=1 จากตัวอย่างข้างต้น เทพสามารถเดินทางจากหมู่บ้านหมายเลข 1 ไปยัง หมู่บ้านหมายเลข 6 ให้เร็วที่สุด โดยเดินทางผ่านหมู่บ้านหมายเลข 1->4->5->6 และกดไนตรัสเมื่ออยู่บนถนน 4->5 ทำให้ใช้เวลา ในการเดินทางเป็น 2+(10/2)+4= 2+5+4 = 11นาทีนั่นเองจะเห็นได้ว่าจากตัวอย่างนี้การใช้ในตรัสของเทพจะช่วยประหยัดเวลา ให้กับเขาไป 3 นาที

<u>งานของคูณ</u>

จงเขียนโปรแกรมอย่างมีประสิทธิภาพเพื่อหาว่าหากเทพต้องการเดินทางจากหมู่บ้านหมายเลข 1 ให้ไปถึงหมู่บ้านหมายเลข N โดยเร็วที่สุดนั้น การกดไนตรัสจำนวนไม่เกิน K ครั้งจะช่วยให้เทพประหยัดเวลาไปทั้งสิ้นกี่นาที? พร้อมทั้งแสดงเวลาสั้นสุดในการ เดินทางจากหมู่บ้านหมายเลข 1 ไปยังหมู่บ้านหมายเลข N โดยที่ไม่ใช้ในตรัส และ เวลาสั้นสุดในการเดินทางจากหมู่บ้านหมายเลข 1 ไปยังหมู่บ้านหมายเลข N โดยที่ใช้ในตรัสไม่เกิน K ครั้งออกมาด้วย

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M Kตามลำดับห่างกันด้วยช่องว่างหนึ่งช่อง โดยที่ 1 <= N <= 5,000 และ 1 <= M <= 100.000 และ 1 <= K <= 100

อีก M บรรทัดต่อมา รับจำนวนเต็มบวก A B T ตามลำดับห่างกันด้วยช่องว่างหนึ่งช่องเพื่อแสดงข้อมูลของถนนแต่ละสาย ว่าเชื่อมระหว่างหมู่บ้านหมายเลข A กับหมู่บ้านหมายเลข B และสามารถเดินทางผ่านถนนสายนี้โดยใช้เวลา T นาที โดยที่ 1 <= A, B <= N และ $A \neq B$ และ T เป็นตัวเลขคู่ และ 2 <= T <= 100,000

รับประกันว่าทุกชุดข้อมูลทดสอบ จะมีถนนเชื่อมระหว่างหมู่บ้านคู่ใดๆเพียงแค่สายเดียวเท่านั้น 40% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 100

<u>ข้อมูลส่งออก</u>

บรรทัดแรก ให้แสดงเวลาสั้นสุดในการเดินทางจากหมู่บ้านหมายเลข 1 ไปยังหมู่บ้านหมายเลข N โดยที่ไม่ใช้ในตรัส ใน หน่วยนาที

บรรทัดที่สอง ให้แสดงเวลาสั้นสุดในการเดินทางจากหมู่บ้านหมายเลข 1 ไปยังหมู่บ้านหมายเลข N โดยที่ใช้ในตรัสไม่เกิน K ครั้ง ในหน่วยนาที

บรรทัดที่สาม ให้แสดงเวลาในหน่วยนาทีที่เทพสามารถประหยัดได้จากการกดไนตรัสไม่เกิน K ครั้ง

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 8 1	14
1 2 4	11
1 4 2	3
2 3 4	
2 4 6	
3 6 6	
4 3 12	
4 5 10	
5 6 4	

++++++++++++++++

84. พีทสร้างถนน (Peatt Road build)

ณ นครพีทแลนด์ มีบ้านทั้งสิ้น N หลัง เรียกเป็นบ้านหมายเลข 1 ถึงบ้านหมายเลข N เด็กชายพีทต้องการสร้างถนนเพื่อ เชื่อมระหว่างบ้านหมายเลข 1 และบ้านหมายเลข N เข้าด้วยกันแต่เนื่องจากเขาชอบตัวเลขคู่เป็นอย่างมาก เด็กชายพีทจึงต้องการ สร้างถนนเพื่อให้เส้นทางจากบ้านหมายเลข 1 ไปยังบ้านหมายเลข N ต้องผ่านบ้านเป็นจำนวนคู่หลังพอดี (จำนวนบ้านที่ผ่านนับรวม บ้านหมายเลข 1 และบ้านหมายเลข N ด้วย) และมีระยะทางรวมที่น้อยที่สุดเท่าที่จะเป็นไปได้ด้วย

เพื่อสร้างถนนเชื่อมจากบ้านหมายเลข 1 ถึงบ้านหมายเลข N, พระราชาแห่งนครพีทแลนด์ได้มอบแผนการสร้างถนนของ นครมาทั้งสิ้น M สาย ถนนแต่ละสายเป็นถนนแบบสองทาง และมีค่าความยาว Ci หน่วย แต่เด็กชายพีทต้องการลดค่าใช้จ่ายการ สร้างถนนของพระราชา จึงเสนอแผนการสร้างถนนที่ใช้แค่ L สาย (L <= M) ที่ให้ระยะทางสั้นที่สุดจากบ้านหมายเลข 1 ถึง บ้าน หมายเลข N โดยผ่านบ้านเป็นจำนวนคู่หลังเมื่อสร้างถนนสายที่ 1 ถึง L เท่ากับ ระยะทางสั้นที่สุดจากบ้านหมายเลข 1 ถึง บ้าน หมายเลข N โดยผ่านบ้านเป็นจำนวนคู่หลังเมื่อสร้างถนนตามแผนการของพระราชา โดยมีข้อแม้ว่า เด็กชายพีทจะต้องสร้างถนน ตามลำดับแผนการสร้างถนนของพระราชาเท่านั้น เด็กชายพีทต้องการหาค่า L ที่น้อยที่สุดที่เป็นไปได้ ทั้งนี้การเดินทางในข้อนี้ สามารถเดินทางซ้ำถนนสายเดิมได้ แต่ระยะทางรวมก็จะนับเพิ่มขึ้นเมื่อเดินทางซ้ำถนนสายเดิม

จงเขียนโปรแกรมเพื่อหาค่า L ที่น้อยที่สุดที่เป็นไปได้ และค่าระยะทางสั้นสุดจากบ้านหมายเลข 1 ถึงบ้านหมายเลข N โดย ผ่านบ้านเป็นจำนวนคู่หลัง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 1 <= N <= 1,000 และ 1 <= M <= 5,000 อีก M บรรทัดต่อมา รับข้อมูลแผนการสร้างถนน โดยรับจำนวนเต็มบวกสามจำนวน A B C ห่างกันด้วยหนึ่งช่องว่าง (1 <= A, B <= N; 1 <= C <= 50,000) เพื่อบอกว่าถนนหมายเลข i (1 <= i <= M) เชื่อมระหว่างบ้านหมายเลข A และ บ้านหมายเลข B และถนนสายนี้มีความยาว C หน่วย โดยแผนการสร้างถนนของพระราชานั้นจะเรียงลำดับถนนที่จะต้องสร้างตามลำดับของข้อมูล นำเข้า

10% ของชุดข้อมูลทดสอบ จะมี N <= 30 และ M <= 400 และ

20% ของชุดข้อมูลทดสอบ จะมี N <= 100 และ M <= 700 และ

50% ของชุดข้อมูลทดสอบ จะมี N <= 300 และ M <= 1,200

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนถนนที่น้อยที่สุดที่เด็กชายพีทจำเป็นต้องสร้าง (ค่า L ที่น้อยที่สุดเท่าที่จะเป็นไปได้) เว้นวรรคหนึ่ง ช่องตามด้วยค่าระยะทางสั้นสุดจากบ้านหมายเลข 1 ถึงบ้านหมายเลข N โดยผ่านบ้านเป็นจำนวนคู่หลัง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 10	6 7
4 5 7	
3 2 1	
3 5 5	
5 2 5	
1 4 6	
2 1 1	
4 3 7	
1 3 7	
4 2 4	
1 5 8	

คำอธิบายตัวอย่างที่ 1

N=5, M=10 เมื่อสร้างถนนครบทั้ง 10 สายแล้ว ค่าระยะทางสั้นสุดจากบ้านหมายเลข 1 ถึงบ้านหมายเลข N โดยผ่านบ้าน เป็นจำนวนคู่หลังจะมีค่าเท่ากับ 7 นั่นคือ 1 -> 2 -> 3 -> 5 (ผ่าน 4 บ้าน) ดังภาพ

จากนั้น เมื่อสร้างโดย L=6 ก็จะทำให้ได้ค่าระยะทางสั้นสุดจากบ้านหมายเลข 1 ถึงบ้านหมายเลข N โดยผ่านบ้านเป็น จำนวนคู่หลังจะมีค่าเท่ากับ 7 เช่นกัน นั่นคือ 1 -> 2 -> 3 -> 5 (ผ่าน 4 บ้าน) ดังภาพ

85. ตารางข้อสอบ (53Table_task)

ที่มา: ข้อเก้า EOIC#53

มีตารางขนาด N x M วางอยู่แต่ละช่องมีข้อสอบวางอยู่ ระดับความยากของข้อสอบแต่ละช่องจะไม่เท่ากัน ทำให้คุณต้อง เสียเวลาในการทำข้อสอบในแต่ละช่องไม่เท่ากัน หลังจากคุณทำโจทย์ในช่องนั้นเสร็จแล้วประตูจะเปิดออก 4 ทิศคือ บน ล่าง ซ้าย ขวา ให้คุณไปยังช่องถัดไป หลังจากที่คุณเดินไปช่องถัดไปแล้วประตูจะปิดตัวลงอีกครั้งนึง คุณได้หลุดเข้าไปในตารางแห่งนี้ เริ่มต้น อยู่แถวที่ si หลักที่ sj และที่ช่องในแถวที่ ei หลักที่ ej มีประตูพิเศษเพิ่มอีกบาน นั่นก็คือทางออก คุณไม่สามารถเดินออกนอก ตารางได้นอกจากทางออก และที่นี่ยังมีนาฬิกาแบบเข็มอันนึงตั้งอยู่และยังคงเดินอยู่ตลอดเวลา นอกจากนี้ที่นี่ยังมีช่องพิเศษ ช่องนี้ จะไม่มีโจทย์อยู่ แต่จะมีปุ่มกด 2 ปุ่มสามารถกดได้ในทันที ปุ่มแรกจะเป็นปุ่มทำให้เวลาย้อนกลับไป a_{ij} นาที นั่นคือเวลาเดินย้อน แต่ คุณอยู่กับที่ หากคุณกดปุ่มให้เวลาย้อนกลับไปแล้วคุณจะต้องรอ 10,000,000,000 นาที จึงจะสามารถกดปุ่มย้อนเวลาได้อีกครั้ง และอีกปุ่มจะกดเพื่อให้ไปช่องถัดไปได้ งานนี้คุณได้แผนที่ตารางและระยะเวลาที่คุณใช้ทำข้อสอบ ณ แต่ละช่อง และเวลาเริ่มต้นของ นาฬิกา ให้คุณตอบว่าไปยังทางออกโดยใช้เวลาน้อยสุดแล้วเมื่อออกมาคุณจะเห็นนาฬิกาบอกเวลาบอกเวลาเท่าใด ถ้าคุณทำข้อนี้ คุณจะได้รับไปเลย จำนวนขับมิดเพิ่มขึ้นอย่างน้อย 1

<u>งานของคุณ</u>

จงแสดงเวลาของนาฬิกาแบบเข็มที่ตั้งอยู่ขณะที่ออกมาจากตาราง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็ม N M si sj ei ej (1 <= N, M <= 100; 1 <= si, ei <= N; 1 <= sj, ej <= M) บรรทัดต่อมา รับจำนวนเต็ม HH:MM แทนเวลาเริ่มต้นของนาฬิกา

อีก N บรรทัดต่อมารับตารางขนาด N x M โดยเลขในช่องที่ตำแหน่งแถวที่ i หลักที่ j หากเป็นบวกแสดงว่าช่องนั้นมีข้อสอบที่เรา ต้องใช้เวลาทำเท่ากับ เลขในช่องนั้น นาที และหากติดลบ แสดงว่าช่องนั้นเป็นช่องพิเศษ และปุ่มที่ทำให้ย้อนเวลา จะทำให้ย้อน เวลาไปเท่ากับ |ค่าของช่องนั้น| นั่นเอง โดยค่าสัมบูรณ์ของแต่ละช่องไม่เกิน 100,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงเวลาที่นาฬิกาแบบเข็มบอกขณะที่ออกจากตารางนี้ โดยแสดงเป็น HH:MM หรือ ชม:นาที

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 3 1 1 3 3	10:55
10:30	
4 6 7	
8 6 3	
10 4 6	
3 3 1 1 3 3	00:15
11:50	
4 6 7	
8 6 3	
10 4 6	
3 3 1 1 3 3	11:49
00:00	
4 6 7	
8 6 3	
10 4 -30	

+++++++++++++++++

เราจะสังเกตได้ว่า เวลาเราเดินทางไปยังเมืองต่าง ๆ ค่าน้ำมันในแต่ละแห่งจะมีราคาไม่เท่ากัน บางทีเราอาจ จะประหยัด เงินได้มาก ถ้าเราเลือกเติมน้ำมันในบางเมือง แทนที่จะรอให้น้ำมันหมดถังก่อนแล้วค่อยเติมทีเดียว

เป้าหมายของเราคือ เราอยากจะหาค่าใช้จ่ายในการเติมน้ำมันที่น้อยที่สุด ในการเดินทางจากเมืองต้นทางไปยังเมือง ปลายทาง เติมน้ำมันระหว่างทางไปเรื่อย ๆ โดยจะเติมเท่าไหร่ก็ได้ แต่เราไม่สามารถเติมน้ำมันเกินความจุของถังน้ำมันได้ ณ เมือง ต้นทาง ให้ถือว่าถังน้ำมันยังว่างเปล่าอยู่ และ ให้ถือว่ารถเดินทางเป็นระยะทาง 1 กิโลเมตร ใช้น้ำมัน 1 ลิตร (เป็นรถที่ค่อนข้างกิน น้ำมัน)

<u>งานของคูณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาค่าใช้จ่ายในการเติมน้ำมันที่น้อยที่สุด ที่ใช้ในการเดินทางจากเมือง ต้นทางไปยัง เมืองปลายทาง หรือตอบว่า -99 ถ้าไม่มีเส้นทางจากเมืองต้นทางไปยังเมืองปลายทางด้วยรถที่ให้มาได้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนชุดทดสอบ T โดยที่ T ไม่เกิน 10 ในแต่ละชุดทดสอบ

บรรทัดแรก รับจำนวนเต็ม n m แทนจำนวนเมืองและจำนวนถนน ตามลำดับ ห่างกันหนึ่งช่องว่าง โดยที่ 1 <= n <= 1,000 และ 0 <= m <= 10,000

บรรทัดที่สอง รับจำนวนเต็มบวก n จำนวนแทนราคาน้ำมันในแต่ละเมือง โดย p_i ไม่เกิน 100

อีก m บรรทัดต่อมา รับข้อมูลของถนน u v d บอกว่ามีถนนระหว่างเมือง u และเมือง v (สามารถไปและกลับได้) ด้วยระยะทาง d โดยที่ 0 <= u, v < n และ u < v และ 1 <= d <= 100

บรรทัดสุดท้าย รับจำนวนเต็ม c s e เพื่อบอกความจุถังน้ำมันของรถ โดยที่ 1 <= c <= 100 และรับเมืองต้นทาง

และเมืองปลายทาง ตามลำดับ 0 <= s, e < n

40% ของชุดข้อมูลทดสอบ จะมี n ไม่เกิน 100

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น T บรรทัด ระบุค่าใช้จ่ายที่น้อยที่สุดในการเติมน้ำมันรวมจากเมืองต้นทางไปยังเมืองปลายทาง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	170
5 5	-99
10 10 20 12 13	
0 1 9	
0 2 8	
1 2 1	
1 3 11	
2 3 7	
10 0 3	
5 5	
10 10 20 12 13	
0 1 9	
0 2 8	
1 2 1	
1 3 11	
2 3 7	
20 1 4	

คำอธิบายตัวอย่างที่ 1

มี 2 คำถาม คำถามแรก ให้เดินทางจากเมือง 0 ไป เมือง 3 โดยจำกัดความจุถังน้ำมัน 10 ลิตร ทำได้โดยเริ่มต้นอยู่เมือง 0 เติมน้ำมัน 10 ลิตร (เสีย 100.-) จากนั้นเดินทางไปเมือง 1 เหลือน้ำมัน 1 ลิตร จากนั้นเติมน้ำมัน 7 ลิตรที่เมือง 1 (เสีย 70.-) ตอนนี้ มีน้ำมัน 8 ลิตร จากนั้นเดินทางไปเมือง 2 ไม่เติมน้ำมัน เหลือน้ำมัน 7 ลิตร และสุดท้ายเดินทางไปเมือง 3 ก็จะหมดน้ำมันพอดี ตอบ ว่าเสียเงินน้อยที่สุด 170.-

คำถามที่สอง ให้เดินทางจากเมือง 1 ไป เมือง 4 โดยจำกัดความจุถังน้ำมัน 20 ลิตร จะเห็นว่าเราไม่สามารถเดินทางจาก เมือง 1 ไปยังเมือง 4 ได้ จึงตอบว่า -99

87. โลจิสติกส์ (Logistic TOI14)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 14 ณ ศูนย์ สอวน. ม.เทคโนโลยีพระจอมเกล้าพระนครเหนือ

การสั่งซื้อสินค้าออนไลน์เป็นที่นิยมอย่างสูงในปัจจุบัน ทำให้ธุรกิจจัดส่งของมีการแข่งขันกันมาก เพื่อให้การพัฒนาธุรกิจ ของบริษัทขนส่ง NBK Logistic International Cooperation Limited (มหาชน) เป็นไปได้อย่างมีประสิทธิภาพ จึงมีการระดม ความคิดจากหลากหลายภาคส่วนเพื่อเพิ่มกำไรในธุรกิจดังกล่าว ทั้งนี้จากข้อมูลที่ได้รับพบว่าการลดค่าใช้จ่ายทางด้านเชื้อเพลิงจะ ช่วยให้กำไรเพิ่มขึ้นอย่างมหาศาล โดยเงื่อนไขของรถขนส่งภายใต้การดูแลของบริษัท มีดังนี้

- -บริษัทมีสาขาอยู่ทุกเมืองในประเทศไทย เมืองละ 1 สาขา
- -รถขนส่งมีความจุเชื้อเพลิงตามที่กำหนดโดยความจุเป็นจำนวนเต็มหน่วย
- -ก่อนรถขนส่งจะออกจากเมืองต้นทาง ถังความจุเชื้อเพลิงจะ<u>ว่าง</u>เสมอ
- -เมื่อสิ้นสุดภารกิจ รถขนส่งจะต้องเติมเชื้อเพลิงให้<u>เต็มถัง</u>
- -การเติมเชื้อเพลิงทำได้เฉพาะ ณ เมืองที่ผ่านเท่านั้น โดยไม่จำเป็นต้องเติมให้เต็มถังทุกครั้ง
- -สามารถหาเส้นทางการเดินทางจากเมืองหนึ่ง ไปยังอีกเมืองหนึ่งได้เสมอ
- -หากเมืองทั้งสองมีเส้นเชื่อมต่อโดยตรงระหว่างกัน เส้นเชื่อมดังกล่าวจะมีเพียงเส้นเดียวเท่านั้น
- -ข้อมูลปริมาณการใช้เชื้อเพลิงของรถขนส่งในการเดินทางระหว่างเมืองบนเส้นเชื่อมที่กำหนดให้ เป็นจำนวนเต็มหน่วย
- -ราคาเชื้อเพลิงของแต่ละเมืองไม่เท่ากัน โดยมีหน่วยเป็นบาท

บริษัทขนส่งให้บัตรกำนัลเติมน้ำมันฟรี 1 ใบ ซึ่งสามารถใช้ในการเติมเชื้อเพลิงในปริมาณเท่าไรก็ได้ ที่เมืองใดก็ได้ และบัตร กำนัลจะใช้ได้เพียงครั้งเดียวเท่านั้น โดยผู้ขับอาจจะใช้หรือไม่ใช้บัตรกำนัลนี้ก็ได้ เพื่อให้ค่าใช้จ่ายในการเติมเชื้อเพลิงรถขนส่งของ บริษัทต่ำที่สุด จึงต้องพัฒนาโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพเพื่อคำนวณหาวิธีเดินทางที่เหมาะสม

ตัวอย่างที่ 1

จากรูปที่ 1 มีเมืองทั้งหมด 4 เมือง แต่ละเมืองมีราคาเชื้อเพลิงดังนี้ เมือง 1 มีราคาเชื้อเพลิงหน่วยละ 7 บาท, เมือง 2 มี ราคาเชื้อเพลิงหน่วยละ 1 บาท, เมือง 3 มีราคาเชื้อเพลิงหน่วยละ 8 บาท, เมือง 4 มีราคาเชื้อเพลิงหน่วยละ 10 บาท หากรถขนส่งต้องเดินทางจากเมือง 1 ไปยังเมือง 4 และรถขนส่งมีความจุเชื้อเพลิง 100 หน่วย อาจเดินทางโดย

-เติมเชื้อเพลิงจากเมือง 1 จำนวน 70 หน่วยเพื่อเดินทางไปยังเมือง 3 จากนั้นเติมเชื้อเพลิงจากเมือง 3 จำนวน 50 หน่วย เพื่อเดินทางไปยังเมือง 4 เมื่อถึงปลายทางเติมเชื้อเพลิงอีกจำนวน 50 หน่วยโดยใช้บัตรกำนัล ดังนั้นค่าใช้จ่ายสำหรับค่าเชื้อเพลิงใน การเดินทางคิดเป็นเงินทั้งสิ้น (70×7)+(50×8)=890 บาท

-สำหรับวิธีเดินทางโดยมีค่าใช้จ่ายน้อยที่สุดคือ เติมเชื้อเพลิงจากเมือง 1 จำนวน 100 หน่วยโดยใช้บัตรกำนัล เพื่อเดินทาง ไปยังเมือง 2 จากนั้นเติมเชื้อเพลิงจากเมือง 2 จำนวน 60 หน่วย เพื่อเดินทางไปยังเมือง 4 เมื่อถึงปลายทางเติมเชื้อเพลิงอีก 30 หน่วย ดังนั้นค่าใช้จ่ายสำหรับค่าเชื้อเพลิงในการเดินทางคิดเป็นเงินทั้งสิ้น (60x1)+(30x10)=360 บาท

<u>ตัวอย่างที่ 2</u>

จากรูปที่ 2 มีเมืองทั้งหมด 4 เมือง หากรถขนส่งต้องเดินทางจากเมือง 1 ไปยังเมือง 4 และรถขนส่งมีความจุ เชื้อเพลิง 20 หน่วย วิธีเดินทางโดยมีค่าใช้จ่ายน้อยที่สุดคือ เติมเชื้อเพลิงจากเมือง 1 จำนวน 1 หน่วย เพื่อเดินทางไปยังเมือง 2 จากนั้นเติม เชื้อเพลิงอีก 6 หน่วย และเดินทางกลับมายังเมือง 1 ไม่เติมเชื้อเพลิงที่เมืองที่ 1 จากนั้นเดินทางจากเมือง 1 ไปยังเมือง 5 แล้วเติม เชื้อเพลิงอีกจำนวน 20 หน่วยที่เมือง 5 โดยใช้บัตรกำนัล จากนั้นเดินทางจากเมือง 5 ไปยังเมือง 4 และเติมเชื้อเพลิงอีก 2 หน่วยที่ เมือง 4 จากนั้นเดินทางจากเมือง 4 ไปยังเมือง 3 และเติมเชื้อเพลิงอีก 20 หน่วยที่เมือง 3 จากนั้นเดินทางจากเมือง 3 มายังเมือง 4 และมาเติมเชื้อเพลิงอีก 2 หน่วยที่เมือง 4 ดังนั้นค่าใช้จ่ายสำหรับค่าเชื้อเพลิงในการเดินทางคิดเป็นเงินทั้งสิ้น (1x10)+(6x1)+ (2x10))+(3x20)+(2x10)=116 บาท

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาค่าใช้จ่ายที่น้อยที่สุด ที่ใช้ในการเติมเชื้อเพลิงรถขนส่งของบริษัท สำหรับการ เดินทางจากเมืองต้นทางไปยังเมืองปลายทางตามเงื่อนไขที่กำหนด

<u>ข้อมูลนำเข้า</u>

มีจำนวน M+4 บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็ม N แทนจำนวนของเมือง กำหนดให้ 4 <= N <= 100

บรรทัดที่ 2 จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ระบุราคาเชื้อเพลิงเป็นจำนวน p_i บาทต่อหน่วย สำหรับเมืองที่ i กำหนดให้ $1 <= p_i <= 100$ เมื่อ 1 <= i <= N

บรรทัดที่ 3 จำนวนเต็ม 3 จำนวน S, D และ F โดยคั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง S ระบุเมืองต้นทางของรถขนส่ง, D ระบุเมืองปลายทาง กำหนดให้ 1 <= S, D <= N, F ระบุความจุเชื้อเพลิงของรถขนส่ง กำหนดให้ 1 <= F <= 100 บรรทัดที่ 4 จำนวนเต็ม M แทนจำนวนเส้นเชื่อมต่อระหว่างเมือง กำหนดให้ 4 <= M <= 4,950

M บรรทัดต่อมา แต่ละบรรทัดเป็นจำนวนเต็ม 3 จำนวน A, B และ W ตามลำดับคั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง เพื่อแสดงปริมาณเชื้อเพลิง W ที่รถขนส่งใช้ในการเดินทางระหว่างเมือง A และเมือง B โดย $1 <= A <= N, 1 <= B <= N, A \neq B$ และ 1 <= W <= F

<u>ข้อมูลส่งออก</u>

มีจำนวน 1 บรรทัด คือ บรรทัดที่ 1 แสดงจำนวนเต็มเพื่อบอกค่าใช้จ่ายที่น้อยที่สุดในการเดินทางของรถขนส่งจากเมืองต้น ทางไปยังเมืองปลายทางตามเงื่อนไขที่กำหนด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	360
7 1 8 10	
1 4 100	
5	
1 2 60	
1 3 50	
1 4 90	
2 4 30	
3 4 20	
5	116
10 1 3 10 30	
1 4 20	
4	
1 2 1	
1 5 5	
4 5 20	
3 4 2	

+++++++++++++++++

88. ตารางเวทมนตร์ของแอนเชียนพีท (AP Table)

แอนเชียนพีทมีตารางเวทมนตร์ขนาด N x N ตารางดังกล่าวจะประกอบไปด้วยเวทมนตร์สองชนิดได้แก่ เวทมนตร์ชนิด A และ เวทมนตร์ชนิด B แอนเชียนพีทต้องการร่ายเวทมนตร์ระหว่างสองช่องใด ๆ ในตาราง โดยการร่ายเวทมนตร์จะเริ่มจากช่องใด ช่องหนึ่งแล้วลากไปยังช่องที่อยู่ติดกันในสี่ทิศทาง ได้แก่ ด้านบน, ด้านล่าง, ด้านซ้าย และ ด้านขวา แต่จะไม่สามารถร่ายเวทมนตร์ ออกนอกตารางได้

การร่ายเวทมนตร์หากลากเวทมนตร์ชนิดเดียวกันจะใช้พลังงาน X หน่วย และหากลากเวทมนตร์ต่างชนิดกันจะใช้พลังงาน Y หน่วย แอนเชียนพีทจะลากเวทมนตร์จากทุกช่องไปยังทุกช่อง โดยระหว่างการลากเวทมนตร์ระหว่างช่องสองช่องใด ๆ แอนเชียน พีทจะลากเวทมนตร์โดยใช้พลังงานรวมที่ต่ำที่สุดเสมอ และเมื่อแอนเชียนพีทลากเวทมนตร์ระหว่างทุกคู่ของช่องเสร็จแล้ว เขาอยาก ทราบว่าพลังงานรวมที่สูงที่สุดที่เขาเคยลากนั้นเป็นเท่าใด?

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยแอนเชียนพีทหาพลังงานที่มากที่สุดจากการลากเวทมนตร์ของทุกคู่ช่องโดยใช้พลังงานที่น้อยที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 3 ในแต่ละคำถาม

บรรทัดแรก รับจำนวนเต็ม N X Y ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 1 <= N <= 30 และ 0 <= X, Y <= 1,000,000 บรรทัดที่ 2 ถึง N+1 รับตารางอักขระขนาด N x N โดยประกอบด้วยตัวอักษร A หรือ B เท่านั้น 30% ของชุดข้อมูลทดสอบจะมีค่า N ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด ในแต่ละบรรทัดให้แสดงพลังงานมากที่สุดจากการลากเวทมนตร์ของทุกคู่ช่องโดยใช้พลังงานที่น้อยที่สุด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	5
3 1 2	
AAA	
ABA	
AAB	

คำอธิบายตัวอย่างที่ 1

มีคำถามเดียว หากหาพลังงานน้อยสุดจาก (2, 1) ไปยัง (2, 2) จะใช้พลังงาน 2 หน่วย, หากหาพลังงานน้อยสุดจาก (1, 2) ไปยัง (3, 1) จะใช้พลังงาน 3 หน่วย, หากหาพลังงานน้อยสุดจาก (3, 2) ไปยัง (1, 3) จะใช้พลังงาน 4 หน่วย, หากหาพลังงานน้อย สุดจาก (3, 1) ไปยัง (1, 3) จะใช้พลังงาน 4 หน่วย แต่วิธีที่ได้พลังงานมากที่สุดคือการหาพลังงานน้อยสุดจาก (1, 1) ไปยัง (3, 3) ซึ่ง จะใช้พลังงาน 5 หน่วยนั่นเอง

++++++++++++++++

89. ขับรถตาม (48 Follow)

ปรมาจารย์พีท เป็นบุคคลสำคัญของวง PEATT48 มาก เพราะเขาเป็นผู้จัดการของวง วันนี้เขาจะรีบขับรถเพื่อไปจัดงาน ของวง PEATT48 ให้ทันเวลา ดังนั้นเมื่อเขาขับรถผ่านถนนสายใด ถนนสายนั้นจะต้องถูกปิดทางเข้าออกของถนนสายนั้นทันที ทำให้ ไม่สามารถมีรถคันอื่นใดใช้ถนนสายนั้นในช่วงที่ปรมาจารย์พีทขับอยู่บนถนนสายนั้นได้ เว้นแต่ว่ารถที่อยู่บนถนนสายนั้นเดิมอยู่แล้ว จะสามารถขับต่อไปได้

เมืองบียูยูจะมีทั้งสิ้น N บ้าน เป็นบ้านหมายเลข 1 ถึง N และมีทั้งสิ้น M ถนน โดยเป็นถนนแบบสองทาง ถนนแต่ละสายจะ รู้เวลาที่ต้องใช้ในการเดินทางบนถนนสายนั้น ทำให้ทราบว่าเวลาใดไม่สามารถใช้ถนนสายใดได้ เช่น ปรมาจารย์พีทขับรถเข้าถนนมา ตอนนาทีที่ 13 และถนนสายนั้นมีเวลาเป็น 4 นาที คุณจะไม่สามารถใช้ถนนสายนี้ในเวลาที่ 13, 14, 15, 16 ได้ แต่คุณสามารถใช้ ถนนสายนี้ก่อนเวลาที่ 13 และ หลังเวลาที่ 16 ได้

คุณซึ่งเป็นแฟนคลับของวง PEATT48 ต้องการจะเดินทางจากบ้านหมายเลข S ไปยังบ้านหมายเลข E โดยที่คุณจะต้องเริ่ม เดินทางหลังปรมาจารย์พีทเดินทางเป็นเวลา T นาที (กล่าวคือ ปรมาจารย์พีทเริ่มขับรถนาทีที่ 0 แต่คุณจะเริ่มขับรถออกจากบ้าน หมายเลข S ได้ในนาทีที่ T)

<u>งานของคุณ</u>

กำหนดเส้นทางการเดินทางของปรมาจารย์พีทมาให้ จงเขียนโปรแกรมเพื่อหาว่าคุณจะสามารถเดินทางจากบ้านหมายเลข S ไปยังบ้านหมายเลข E ได้สั้นสุดในกี่นาที?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10 ในแต่ละคำถาม
บรรทัดแรก รับจำนวนเต็มบวก N M ตามลำดับ โดยที่ 2 <= N <= 1,000 และ 2 <= M <= 10,000
บรรทัดที่สอง รับจำนวนเต็มบวก S E T P ตามลำดับ โดยที่ 1 <= S, E <= N; 0 <= T <= 1000 และ
0 <= P <= 1000 โดย P คือจำนวนบ้านที่ปรมาจารย์พีทขับรถผ่าน

บรรทัดที่สาม รับจำนวนเต็มบวก P จำนวน เพื่อแทนหมายเลขบ้านที่ปรมาจารย์พีทขับรถผ่าน ตามลำดับ รับประกันว่า ข้อมูลบรรทัดนี้จะสร้างมาอย่างถูกต้อง มีถนนสายนั้นอยู่จริงและเป็นเส้นทางต่อเนื่องกันไม่ผิดพลาด

อีก M บรรทัดต่อมา รับข้อมูลของถนน แต่ละบรรทัดรับจำนวนเต็ม A B C เพื่อบอกว่ามีถนนเชื่อมระหว่างบ้านหมายเลข A กับบ้านหมายเลข B แต่ใช้เวลาในการผ่านถนนสายนั้นเป็นเวลา C นาที (1 <= A, B <= N และ 1 <= C <= 1,000

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัด ให้แสดงเวลาน้อยสุดในหน่วยนาทีที่คุณสามารถเดินทางจากบ้านหมายเลข S ไปยังบ้านหมายเลข E ได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	21
6 5	40
1 6 20 4	
5 3 2 4	
1 2 2	
2 3 8	
2 4 3	
3 5 15	
3 6 10	
8 9	
1 5 5 5	
1 2 3 4 5	
1 2 8	
2 3 10	
2 7 4	
3 4 23	
3 6 5	
4 8 4	
4 5 5	
6 8 3	
6 7 40	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 2 คำถาม ได้แก่

-คำถามแรก คุณต้องการขับรถจากบ้านหมายเลข 1 ไปยังบ้านหมายเลข 6 โดยเริ่มขับรถหลังปรมาจารย์พีท 20 นาที ปรมาจารย์พีทเดินทางผ่านบ้าน 4 หลังได้แก่ 5->3, 3->2, 2->4 คุณเริ่มเดินทางจากบ้านหมายเลข 1 เดินทางไปบ้านหมายเลข 2 ในนาทีที่ 20-21 และต้องรอถนนเปิดในนาทีที่ 23 จากนั้นคุณเดินทางจากบ้านหมายเลข 2 ไปยังบ้านหมายเลข 3 ในนาทีที่ 23-30 จากนั้นเดินทางจากบ้านหมายเลข 3 ไปยังบ้าน หมายเลข 6 ในนาทีที่ 31-40 เริ่มเดินทางนาทีที่ 20 ถึงนาทีที่ 40 จึงตอบว่า 21 นาทีนั่นเอง

-คำถามที่สอง คุณต้องการขับรถจากบ้านหมายเลข 1 ไปยังบ้านหมายเลข 5 โดยเริ่มขับรถหลังปรมาจารย์พีท 5 นาที ปรมาจารย์พีทเดินทางผ่านบ้าน 5 หลังได้แก่ 1->2, 2->3, 3->4, 4->5

คุณอยู่บ้านหมายเลข 1 ตอนนาทีที่ 5 แต่ต้องรอถนนเปิดในนาทีที่ 8 คุณเริ่มเดินทางจากบ้านหมายเลข 1 ไปบ้านหมายเลข 2 ในนาทีที่ 8-15 และต้องรอถนนเปิดในนาทีที่ 18 จากนั้นคุณเดินทางจากบ้านหมายเลข 2 ไปยังบ้านหมายเลข 3 ในนาทีที่ 18-27 จากนั้นเดินทางจากบ้านหมายเลข 3 ไปยังบ้านหมายเลข 6 ในนาทีที่ 28-32 จากนั้นเดินทางจากบ้านหมายเลข 6 ไปยังบ้าน หมายเลข 8 ในนาทีที่ 33-35 จากนั้นเดินทางจากบ้านหมายเลข 8 ไปยังบ้านหมายเลข 4 ในนาทีที่ 36-39 จากนั้นเดินทางจากบ้าน หมายเลข 4 ไปยังบ้านหมายเลข 5 ในนาทีที่ 40-44 เริ่มเดินทางนาทีที่ 5 ถึงนาทีที่ 44 จึงตอบว่า 40 นาทีนั่นเอง

++++++++++++++++

90. ฟาสต์คอนเทสต์ (Fast Contest)

ฟาสต์คอนเทสต์เป็นการแข่งขันเขียนโปรแกรมออนไลน์ที่เชื่อมต่อเครื่องคณิตกรณ์วางตัก (โน้ตบุ๊ค) ของน้อง ๆ ผู้แทนศูนย์ หลายเครื่องเข้าไว้ด้วยกัน

เครื่องคณิตกรณ์วางตักมีอยู่ทั้งหมด N เครื่อง ได้แก่ เครื่องหมายเลข 1, 2, 3, ..., N และมีสายเชื่อมต่อ (สายแลน) อยู่ M สาย สายแลนเหล่านี้เป็นสายเชื่อมต่อทางเดียวไม่สามารถส่งข้อมูลย้อนกลับได้ ให้เครื่องปล่อยโจทย์เป็นเครื่องหมายเลข 1 และ โน้ตบุ๊คของน้อง ๆ หรือเครื่องรับโจทย์เป็นเครื่องหมายเลข 2 จงเขียนโปรแกรมเพื่อหาว่าเครื่องรับโจทย์สามารถรับโจทย์จากเครื่อง ปล่อยโจทย์ได้ทั้งสิ้นกี่วิธี?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N M (1 <= N <= 10,000 และ 1 <= M <= 100,000) แทนจำนวนเครื่องคณิตกรณ์วางตัก และจำนวนสายเชื่อมต่อตามลำดับ

อีก M บรรทัดต่อมา รับจำนวนเต็ม A B ที่ไม่ซ้ำกัน แทนสายเชื่อมต่อจากเครื่อง A ไปยังเครื่อง B โดยที่ 1 <= A, B <= N

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนวิธีรับโจทย์ในฟาสต์คอนเทสต์นี้ หากคำตอบเกิน 9 หลักให้ตอบเฉพาะเก้าหลักสุดท้าย หากคำตอบเป็นไม่ จำกัดให้ตอบว่า inf

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 7	3
1 3	
1 4	
3 2	
4 2	
5 6	
3 4	
6 5	

+++++++++++++++++