MA3201

Topology

Spring 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	\mathbf{Intr}	Introduction			
	1.1	Topological spaces	1		
	1.2	Topological bases	2		
	1.3	Product topology	3		
	1.4	Continuous maps	3		

1 Introduction

1.1 Topological spaces

Definition 1.1. A topology on some set X is a family τ of subsets of X, satisfying the following.

- 1. $\emptyset, X \in \tau$.
- 2. All unions of elements from τ are in τ .
- 3. All finite intersections of elements from τ are in τ .

The sets from τ are declared to be open sets in the topological space (X,τ) .

Example. Any set X admits the indiscrete topology $\tau_{id} = \{\emptyset, X\}$, as well as the discrete topology $\tau_d = \mathcal{P}(X)$. Both of these are trivial examples.

Example. Let X be a set. The cofinite topology on X is the collection of complements of finite sets, along with the empty set. Note that when X is finite, this is simply the discrete topology.

Definition 1.2. Let τ, τ' be two topologies on the set X. We say that τ is finer than τ' if τ has more open sets than τ' . In such a case, we also say that τ' is coarser than τ .

MA3201: TOPOLOGY 1 INTRODUCTION

1.2 Topological bases

Definition 1.3. Let (X, τ) be a topological space. We say that $\beta \subseteq \tau$ is a base of the topology τ such that every open set $U \in \tau$ is expressible as a union of elements from β .

Definition 1.4. Let X be a set, and let β be a collection of subsets of X satisfying the following.

- 1. For every $x \in X$, there exists $x \in B \in \beta$.
- 2. For every $x \in X$ such that $x \in B_1 \cap B_2$, $B_1, B_2 \in \beta$, there exists $B \in \beta$ such that $x \in B \subseteq B_1 \cap B_2$.

Then, β generates a topology on X, namely the collection of all unions of elements of β .

Lemma 1.1. Let τ be a topology on X, and let $\beta \subseteq \tau$ be a collection of open sets. Then, β is a basis of τ , or generates τ , if for every $x \in U \in \tau$, there exists $B \in \beta$ such that $x \in B \subseteq U$.

Example. The collection of all open balls in \mathbb{R}^n form a basis of the usual topology.

Lemma 1.2. Let X be equipped with the topologies τ and τ' , and let β and β' be the respective bases of these topologies. Then, τ is finer than τ' if and only if given $x \in B' \in \beta'$, there exists $x \in B \in \beta$ such that $B \subseteq B'$.

Example. The collections of open balls in \mathbb{R}^n generate the same topology as the collection of all open rectangles in \mathbb{R}^n .

Example. Consider the topologies on \mathbb{R} generated by the following bases.

- 1. $\beta_1 = \{(a, b) : a, b \in \mathbb{R}, a < b\}.$
- 2. $\beta_2 = \{ [a, b) : a, b \in \mathbb{R}, a < b \}.$
- 3. $\beta_3 = \{(a,b) : a,b \in \mathbb{R}, a < b\} \cup \{(a,b) \setminus K\} \text{ where } K = \{1/n : n \in \mathbb{Z}\}.$

We call the topology generated by β_2 the lower limit topology, denoted \mathbb{R}_{ℓ} . The topology generated by β_3 is denoted \mathbb{R}_K . Both of these are strictly finer than the standard topology.

Definition 1.5. A sub-basis for some topology on X is a collection ρ of subsets of X whose union is the whole of X. The topology generated by ρ is defined to be the topology generated by the collection of all finite intersections of elements of ρ .

MA3201: TOPOLOGY 1 INTRODUCTION

1.3 Product topology

Definition 1.6. Let (X_1, τ_1) , (X_2, τ_2) be topological spaces. Then $\tau_1 \times \tau_2$ generates the product topology on $X_1 \times X_2$.

Example. The product topology on $\mathbb{R} \times \mathbb{R}$, where \mathbb{R} is equipped with the standard topology, coincides with the standard topology on \mathbb{R}^2 .

Lemma 1.3. If β_1, β_2 are bases of the topologies τ_1, τ_2 , then $\beta_1 \times \beta_2$ and $\tau_1 \times \tau_2$ generate the same product topology.

Proof. Given $(x_1, x_2) \in U$ where $U \subseteq X_1 \times X_2$ is open in the product topology, recall that U can be written as a union of the basic open sets $U_{1i} \times U_{2i}$, where $U_{1i} \in \tau_1$ and $U_{2i} \in \tau_2$. Suppose that $(x_1, x_2) \in U_1 \times U_2$. Thus, we can choose $B_1 \in \beta_1$, $B_2 \in \beta_2$ such that $x_1 \in B_1 \subseteq U_1$ and $x_2 \in B_2 \subseteq U_2$. Thus, $(x_1, x_2) \in B_1 \times B_2 \subseteq U_1 \times U_2 \subseteq U$.

Definition 1.7. The projection maps are defined as $\pi_i: X_1 \times \cdots \times X_k \to X_i, (x_1, \dots, x_k) \mapsto x_i$.

Lemma 1.4. The collection of elements of the form $\pi_1^{-1}(U_1)$ or $\pi_2^{-1}(U_2)$, where $U_1 \in \tau_1$ and $U_2 \in \tau_2$, forms a sub-basis of the product topology on $X_1 \times X_2$.

Proof. Note that $\pi_1^{-1}(X_1) = X_1 \times X_2$. Now it is easy to see that finite intersections of elements of the form $U_1 \times X_2$ or $X_1 \times U_2$ where U_1, U_2 are open, are all of the form $U_1 \times U_2$ which is precisely a basis of the product topology.

Corollary 1.4.1. We can restrict ourselves to the sub-basis of elements of the form $\pi_1^{-1}(B_1)$ or $\pi_2^{-1}(B_2)$, where $B_1 \in \beta_1$, $B_2 \in \beta_2$ for some bases β_1 , β_2 of τ_1, τ_2 .

1.4 Continuous maps

Definition 1.8. Let $f: X \to Y$ be a function between the topological spaces (X, τ_X) and (Y, τ_Y) . We say that f is continuous if for every $U \in \tau_Y$, we have $f^{-1}(U) \in \tau_X$. In other words, the pre-image of every open set in Y must be open in X.

Definition 1.9. Let $f: X \to Y$ be a function between the topological spaces (X, τ_X) and (Y, τ_Y) . We say that f is a homeomorphism if f is continuous, f is invertible, and f^{-1} is continuous. We also say that X and Y are homeomorphic when such a homeomorphism between them exists.