Student Number:	٠.	٠.	•	٠	•	 •	٠.	•	•	•
Class Teacher:										

St George Girls High School

Trial Higher School Certificate Examination

2016

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen.
- Write your student number and your class teacher's name on each booklet.
- · Board-approved calculators may be used.
- The mark allocated for each question is listed at the side of the question.
- Marks may be deducted for careless or poorly presented work.
- A table of standard integrals is provided.
- A multiple choice answer sheet is provided for Section I.

Total marks - 70

Section I – Pages 2 to 4 10 marks

- Attempt questions 1 to 10
- Allow about 15 minutes for this section.
- Answer on the sheet provided.

Section II – Pages 5 to 10 60 marks

- Attempt questions 11 15.
- Allow about 1 hour 45 minutes for this section.
- · Begin each question in a new booklet.
- Show all necessary working in questions 11 15.

Students are advised that this is a trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I:

Multiple Choice (Each question is worth 1 mark)

Answer this section on the multiple choice answer sheet provided.

- 1. The acute angle between the lines x 2y + 1 = 0 and 2x y 1 = 0 is closest to:
 - A. 37°
 - B. 45°
 - C. 90°
 - D. 143°
- 2. The point P divides the interval from A (-2, 2) to B (8, -3) internally in the ratio 3:2. What is the x coordinate of P?
 - A. 4
 - B. 2
 - C. 0
 - D. -1
- 3. Which of the following is the correct expression for $\int \frac{dx}{9+25x^2}$?
 - A. $\frac{1}{15} \tan^{-1} \frac{3x}{5} + C$
 - B. $\frac{1}{25} \tan^{-1} \frac{3x}{5} + C$
 - C. $\frac{1}{25} \tan^{-1} \frac{5x}{3} + C$
 - D. $\frac{1}{15} \tan^{-1} \frac{5x}{3} + C$

4. A curve has parametric equations x = t - 3 and $y = t^2 + 2$. What is the Cartesian equation of this curve?

A.
$$y = x^2 - x - 1$$

B.
$$y = x^2 + x - 1$$

C.
$$y = x^2 - 6x + 11$$

D.
$$y = x^2 + 6x + 11$$

5. A particle is moving in a straight line with $v^2 = 36 - 4x^2$ and undergoing simple harmonic motion. If the particle is initially at the origin, which of the following is the correct equation for its displacement in terms of t? (v is the velocity and x is the displacement of the particle).

A.
$$x = 2\sin(3t)$$

B.
$$x = 3\sin(2t)$$

C.
$$x = 2\sin(9t)$$

D.
$$x = 3\sin(4t)$$

6. Solve the inequality $\frac{x^2-4}{x} \ge 0$

A.
$$-2 \le x < 0$$
 or $x \ge 2$

B.
$$-2 \ge x > 0$$
 or $x \le 2$

C.
$$-4 \le x < 0$$
 or $x \ge 4$

D.
$$-4 \ge x > 0$$
 or $x \le 4$

7. What is the value of $\int_0^1 \frac{4x}{2x+1} dx$? Use the substitution = 2x + 1.

A.
$$2 - \log_e 2$$

B.
$$2 - \log_e 3$$

C.
$$4 - 2\log_e 2$$

D.
$$4 - 2\log_{e} 3$$

8. What is the correct expression for the indefinite integral $\int (\cos^2 x + 2 \sec^2 x) dx$?

$$A. \quad \frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + C$$

$$B. \quad \frac{1}{2}x - \frac{1}{4}\sin 2x + \tan x + C$$

C.
$$\frac{1}{2}x + \frac{1}{4}\sin 2x + 2\tan x + C$$

D.
$$\frac{1}{2}x - \frac{1}{4}\sin 2x + 2\tan x + C$$

- 9. What is the term independent of x in the expansion of $\left(x^2 \frac{2}{x}\right)^9$?
 - A. ${}^{9}C_{3}(-2)^{3}$
 - B. ${}^{g}C_{6}(-2)^{6}$
 - C. ${}^{9}C_{3}(2)^{3}$
 - D. ${}^{9}C_{6}$ -(2)⁶
- 10. A particle moves in a straight line with a displacement of x and velocity of v. When t=0 the acceleration is $3x^2$, velocity is $-\sqrt{2}$ and displacement is 1. Which of the following is the correct equation for x as a function of t?

$$A. \quad x = \frac{-2}{\left(t + \sqrt{2}\right)^2}$$

$$B. \quad x = \frac{-2}{\left(t - \sqrt{2}\right)^2}$$

$$C. \quad x = \frac{2}{\left(t + \sqrt{2}\right)^2}$$

$$D. \quad x = \frac{2}{\left(t - \sqrt{2}\right)^2}$$

Section II:

Answer each question in a SEPARATE writing booklet.

In Questions 11, 12, 13, 14 and 15 your responses should include relevant mathematical reasoning and/or calculations.

Marks

Question 11 (12 marks) Start a new booklet

a) Use Newton's method to find a second approximation to the positive root of $-2 \sin x = 0$. Take x = 1.6 as the first approximation.

2

b) Solve:

|2x - 1| = |x|

2

- c) A particle moves in a straight line and its position (x) at any time (t) is given by: $x = 1 + \sqrt{3}\cos 4t + \sin 4t$
 - (i) Prove the motion is simple harmonic.

2

(ii) When does the particle first reach maximum speed? (t > 0)

2

- d) $P(2p, p^2)$ and $Q(2q, q^2)$ are two points on the parabola $x^2 = 4y$. M is the midpoint of PQ.
 - (i) Prove the identity $(p-q)^2 = 2(p^2 + q^2) (p+q)^2$

1

(ii) If P and Q move on the parabola so that p - q = 4, show that the locus of M is the parabola $x^2 = 4y - 16$

2

(iii) What is the focus of the locus of M?

Question 12 (12 marks) Start a new booklet

a) The polynomial equation $8x^3 - 36x^2 + 22x + 21 = 0$ has roots which form an arithmetic progression. Find the roots.

3

b) A is the top of a vertical radio mast AB standing on level ground. Two points C and D are on ground level such that C is due East of B and D is 500 metres due North of C.

The angle of elevation of A from C is 11°13′ and the angle of elevation of A from D is 8°14′. Calculate the height of the tower to the nearest metre.

3

c) The velocity V of a particle decreases according to the equation:

$$\frac{dV}{dt} = -k(V - P)$$

where t is the time in seconds and k is a positive constant. The initial velocity of the particle is $0 ms^{-1}$ and the terminal velocity P is $60 ms^{-1}$.

(i) Show that $V = P + Ae^{-kt}$, where A is a constant, satisfies the given differential equation.

1

(ii) Find the value of k if the velocity of the particle after 10 seconds is 35 ms^{-1} . Give your answer correct to two significant figures.

Question 12 continued

d) ABCD is a cyclic quadrilateral. EAF is a tangent at A to the circle. CA bisects $\angle BCD$.

NOT DRAWN TO SCALE

Show that $EAF \parallel DB$.

Question 13 (12 marks) Start a new booklet

a) (i) Show:

$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$$

2

(ii) Hence sketch the graph of $y = \sin x - \cos x$, for $0 \le x \le 2\pi$.

2

(iii) Show that $x = \frac{\pi}{2}$ is a solution to $\sin x - \cos x = 1$ and hence solve $\sin x - \cos x > 1$ for $0 \le x \le 2\pi$.

2

b) Prove:

$$\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{1}{\sqrt{10}} = \frac{\pi}{4}.$$

3

c) Use mathematical induction to show that the expression $7^n + 5$ is divisible by 6 for all positive integer values of n.

Question 14 (12 marks) Start a new booklet

a) Water is pumped into a conical vessel at a constant rate of 24 cm^3 per second. The depth of the water is 'h' cm at any time 't' seconds

NOT DRAWN TO SCALE

What is the rate of increase in the area of the surface 'S' of the water when the depth is 16 cm.

4

b) In the expansion of $(1 + ax)^n$ in ascending powers of x, the first three terms are:

$$1 + 6x + 16x^2 + \dots$$

(i) By comparing coefficients write two equations in a and n.

2

(ii) Hence find the values of a and n.

2

- c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity $v \text{ ms}^{-1}$ and acceleration in ms^{-2} given by $\ddot{x} = -4(x-1)$. When the particle is at the centre of its motion it has speed 6 ms⁻¹.
 - (i) Show that $v^2 = -4x^2 + 8x + 32$.

2

(ii) Find the period and amplitude of the motion.

2

2

1

1

1

1

1

Question 15 (12 marks) Start a new booklet

a) State the largest possible (natural) domain of the function:

 $y = \log_e(\sin^{-1} x)$

- b) A stone is projected from the top of a 80 metre high vertical cliff with an initial velocity of V ms at an angle of projection of θ . It reaches its greatest height after 3 seconds and hits the ground at a horizontal distance of 320 metres from the foot of the cliff. Assume $g = 10ms^{-2}$.
 - (i) Using the top of the cliff as the origin, the horizontal position of the stone is given as $x = V \cos \theta t$. Show that the vertical component of the parametric equations of the path of the stone is:

$$y = -5t^2 + V\sin\theta t$$

(ii) Show that $V \sin \theta = 30$.

(iii) Find how long it takes for the stone to reach the ground.

(iv) Show that $V \cos \theta = 40$

(v) Find the value of V and the angle of projection.

c) (i) Show that for all positive integers n,

$$x[(1+x)^{n-1} + (1+x)^{n-2} + \dots + (1+x)^2 + (1+x) + 1] = (1+x)^n - 1$$

(ii) Hence show that for $1 \le k \le n$

$$\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}+\cdots+\binom{k-1}{k-1}=\binom{n}{k}$$

(iii) Show that $n\binom{n-1}{k} = (k+1)\binom{n}{k+1}$

2

Question	Solution	Criteria
1.	2x-2y+1=0 $2x-y-1=0$ $y=2x-1$	
	$M_{i} = \frac{1}{2}$ $m_{2} = 2$ $tan \theta = \left \frac{m_{i} - m_{2}}{1 + m_{i} m_{2}} \right $	A
The state of the s	$= \left \frac{\frac{1}{2} - 2}{1 + \frac{1}{2} \times 2} \right \qquad \theta = 36.86989765$ $= \frac{3}{4} \qquad = 37^{\circ}$	6
2	$\left(\frac{m.x_{2}+nx_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n}\right) = 3, n=2,$ $x_{1}=-2, x_{2}=8$ $y_{1}=2, y_{2}=-3$	Α
	$= \left(\frac{3 \times 8 + 2 \times -2}{3 + 2}, \frac{3 \times -3 + 2 \times 2}{3 + 2}\right)$ $= \left(\frac{24 - 4}{5}, -\frac{9 + 4}{5}\right)$ $= \left(4, -1\right)$	
3.	$\int \frac{dn}{25(\frac{9}{25} + x^2)} = \frac{5}{5}$ $= \frac{5}{3} \times \frac{1}{25} + \tan^{-1} \frac{5x}{3} + C$ $= \frac{1}{15} + \tan^{-1} \frac{5x}{3} + C$	D
4,	$ \begin{array}{cccc} $	D
5	$v^{2} = 36 - 4\pi^{2}$ $= 2^{2}(9 - \pi^{2}) \left[= n^{2}(a^{2} - \pi^{2}) \right]$ $a^{2} = 9, n = 2 \text{ and } x = 0 \text{ (initially at the origin)}$ $\alpha = 3$ $x = \alpha \sin(nt + x)$ $= 3 \sin 2t$	В

Ques kön	Solution	Criteria
6	$2u^{2} \times \frac{2^{2}-4}{2} > 0 \times 2^{2} \times 40$ $2u(2u^{2}-4) > 0$ $2(2u-2)(2u+2) > 0$ $2 \times (2u-2)(2u+2) > 0$	A
7.	$u = 2u+1 \qquad n = 1 \Rightarrow u = 3$ $du = 2 dx \qquad n = 0 \Rightarrow u = 1$ $\int_{0}^{1} \frac{4\pi}{2n+1} dx = \int_{1}^{3} \frac{2(u-1)}{u} \cdot \frac{1}{2} du$ $= \int_{1}^{3} (1-\frac{1}{u}) du$ $= \left[u - \log_{e} u\right]_{1}^{3}$ $= 3 - \log_{e} 3 - 1 + \log_{e} 1$ $= 2 - \log_{e} 3$	В
8	$\int (\cos^2 x + 2 \sec^2 x) dx = \int (\frac{1}{2}(1 + \cos 2x) + 2 \sec^2 x) dx$ $= \frac{1}{2}x + \frac{1}{4}\sin 2x + 2 \tan x + C$	C .
q	$T_{r+1} = {}^{q}C_{r}(\pi^{2})^{q-r}(\frac{-2}{\pi})^{r}$ Term independent $= {}^{q}C_{r} \chi^{18-2r}(-2)^{r} \chi^{-r}$ of χ $= {}^{q}C_{r} \chi^{18-3r}(-2)^{r}$ 18-3r = 0 $r = 6$ $T_{7} = {}^{q}C_{6}(-2)^{6}$	B
	$a = 3x^{2}$ $v^{2} = 2\int (3x^{2}) dx$ $= 2\pi x^{3} + C$ When $x = 1$, $v = -\sqrt{2}$ $then C = 0 v = -\sqrt{2}x^{3} dx = -\frac{1}{\sqrt{2}}x^{-\frac{1}{2}} t = \frac{2}{\sqrt{2}}x^{-\frac{1}{2}} + C t = \frac{2}{\sqrt{2}}x^{-\frac{1}{2}} + C$	

MATHEMATICS EXTENSION I – QUESTION //			10
SUGGESTED SOLUTIONS		MARKS	MARKER'S COMMENTS
a) f(x)=x-2sinx x,=x0-f(6))		many stylent
a) $f(x) = x - 2\sin x$ $x = 2x - 0 - f(x)$ $f'(x) = 1 - 2\cos x$ $f'(x)$	v)		Foget Live radiani.
fars =1.6-25m1.6 =1.6-1.6-	- Zsinia V		
f'(1.6)=1-2 cos1.6	20es ins		Malajaine, Alari Malajaine, Mary Malajaine, Angelori of Galajaine, Malajaine, Malajaine, Galajaine,
= 1.97712			
earners .	any one	*	
b) 2x-11=1x1-	J))		
$x < 0$ $x > 0$ $x > 0$ $(2x-i)^2 = (x)^2$ $2x-i=x$ $2x-i=x$ $(2x-i)^2 = x^2$		1	generally well dong
$3x=1$ $X=1$ $4x^2-4x+1=1$			
x=1 3x2-4x+1			being student only gave one 16/4
(3% -	(XX-1)=0	1	
	K=1 & X= 1/3		

MATHEMATICS EXTENSION I – QUESTION //		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) i) whon x = -n'(y) SHM.		Theres loss y.
X=1+130014+15124+		the prest
i = - 5345 in 44 + 4 cos 4 /		statement was
2=- 13x4 Cocat - 43512+1		not write. *
=-42 (13 wi4t + si24t)		and transcript
=-4(x-i) V Sign *		erros.
ii) Max speed what it =0 or at the centre of motion	Margary Nacrosson 1 (American Associations and Margary Associations and Margary Association (Margary Association (person William and Assistance and As
$\tilde{x} = -4^2 (15 \cos 4c + 1ii)$		Skauscryst errors
0 = :-42 (13 cou 4t + 51 i 46)	t senera da suas das ¹ Marso (; redocidoressa go mas ²⁰⁰ ¹ Marso () revenus ana	coursed major
B cos4+ pi4t=0	/	ervors in milhad
wsm4+=-13004+		photoit und.
Ault=-13	***************************************	Sampleman and Salatin Sampler and any 1 to 10 to
$4t = 2\sqrt{3}, \frac{3\sqrt{3}}{3}$		
$4 = 2I_{12}$, $5I_{12}$		Weight and the control of the contro
	/_/	
produce first recele man speed who t= 1/6		The property of the second state of the second
	Aleman and a Milliand and a said	THE PROPERTY OF THE PROPERTY O

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
)(i) . RHS = 2(p+q!) - (p+q)		well done
= 2pi+2qi-pi-2pq-qi		
= p + 9 - 249		
$=(\hat{p}-\hat{q})$		
$=$ $\beta(f)$		#AAA MAKANI II I
(i) Conduct M (2p+2q, p'+5;)		Annual to the second of the se
		generally mistape
(p+q) p2+q2)		where made
using par(i) and p-q=4.		funding the
$(p-q)^2 = 2(p-q)^2 - (p+q)^2$	4	Condinote if.
2= p+9, y= p+5,	Annual Antonomic Control of Contr	Midpint 19
$4^{3}=2\times2y-x^{2}$		
$x^2 = 4y - 16$		
locus JM is the parebola 22 = 4y-16		There gut
$\chi = 4 - 1$		if correct verter
Jour lingt =1. Vertiex (0,4) Tous (0,5)		undicated ad
Josef length =1. Vertiex (0,4) Toas (0,5)		foir.
		n=1 not gooden

MATHEMATICS EXTENSION I – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) For $8x^3 - 36x^2 + 22x + 21 = 0$		
Let the roots be a-d, a, a+d (where d is the common difference)		This method was the
Sum of roots one atatime: x-d+x+d=36		better one to use to
32 = 9 8		find the roots and
$d = \frac{3}{3}$		for this reason
Product of the roots; $\alpha(\alpha-d)(\alpha+d) = -21$		most of the student
		(who used this metho
$\frac{3}{2} \left[\left(\frac{3}{2} \right)^2 - d^2 \right] = \frac{-21}{8}$		answered this question
$\frac{9}{4} - \frac{d^2}{4} = \frac{-7}{4}$		well.
$\frac{1}{\sqrt{2}} = \frac{q}{4} + \frac{7}{4}$		
<u> </u>	1	
$d = \pm 2$ [either value will give same noot		
2 / 2	1	Pake Landara
$\frac{3}{2}, \frac{1}{2}, \frac{7}{2}$	l	Refer to next page
Alternatively une could use sun of cost this at stime + 6.1 d		for the alternate solution where the
Afternatively you could use sum of roots two at a time to find d. ie $\propto (\alpha - d) + \omega(\alpha + d) + (\alpha - d)(\alpha + d) = \frac{72}{8}$		roots were taken as
$d^{2} - \alpha d + \alpha^{2} + \alpha d + \alpha^{2} - d^{2} = \frac{22}{8}$		
$3x^{2} - d^{2} = 7\frac{1}{8}$ $d^{2} = 4$		d, a+d, a+2d.
d2 = 4	(3)	
$d = \pm 2$		

MATHEMATICS EXTENSION I – QUESTION (2	-	
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) Alternate solution to 12(a)		
Let roots be 2, a+d, a+2d		
Ex: x+x+d+x+2d=36		Many students who
$3 \times + 3d = \frac{9}{2}$ $3(x+d) = 9$		used this method
		struggled with
$x+d=\frac{3}{2}$		the algebra
$d = \frac{3}{2} - d \qquad - \qquad - \qquad 0$		and the simplification
$\sum \alpha \beta$: $\alpha(\alpha + d) + \alpha(\alpha + 2d) + (\alpha + d)(\alpha + 2d) = \frac{22}{8}$ $\alpha(\alpha + d) + \alpha(\alpha + 2d) + (\alpha + d)(\alpha + 2d) = \frac{22}{8}$		of terms.
$\frac{\lambda^{2} + \lambda d + \alpha^{2} + 2\lambda d + \alpha^{2} + 3\lambda d + 2d^{2} = \frac{22}{3}}{3\lambda^{2} + 6\lambda d + 2d^{2}} = \frac{22}{3} = -(2)$		
$\frac{3[3-d]^2+6[(\frac{3}{2}-d)d]+2d^2=\frac{22}{3}}{5000}$!	
$\frac{3(\frac{9}{4}-3d+d^2)+9d-6d^2+2d^2=\frac{22}{4}}{\frac{27}{4}-9d+3d^2+9d-6d^2+2d^2=\frac{22}{4}}$		
$d^2 = 4$	<u></u>	
$d = \pm 2 \text{sub } d = 2 \text{ mol}$		
= -1/2		
and $x+2d = -\frac{1}{2} + \frac{1}{4} = \frac{3}{2}$ and $x+d = \frac{3}{2}$		
$ad \alpha + d = \frac{3}{2}$		
: roots are -1/2, 3/2, 31/2	<u> </u>	

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
6) A From AABC, Let AB=h From AABO		
h $\frac{8^{0}14^{1}}{10^{1}} = \frac{h}{80}$ $\frac{h}{80}$ $\frac{h}{80}$ $\frac{h}{80}$		A few students were
B = h	1	not confident in
tan 11°13' tan 8°14'	,	applying : paticular
c In ABCD, BD2 = BC2 + 5002		method to find the
and $BD^2 - BC^2 = 500^2 - 3$)	height AB.
Sub () and (2) in (3)		Using - Pythago as Theore
$\frac{h^2}{h^2} = \frac{h^2}{500^2} =(4)$		was the best formula
tan 28°14' tan 211°13'		To use as ABCD was
$h^2 \left(\frac{1}{1} \right) = 500^2$		a right-angled A.
(+an28014) +an2110131)		Some students used
$h^2 = 500^2$		the cosme rule but did
$h^{-}=$ $\frac{300}{1}$	-	not substitute The correct
Tan2894! Tan211013'	+	ongles and sider. Should
$h = \int_{-500^2}$	1/2	$Bp^{2} = B(^{2} + CD^{2} - 2B()(Dc)(cs)$
V	- tar	$h^{2} = h^{2} + 500^{2} - 2(BC)(DC)(GS)$ $h^{2} + 2h^{2} + 100^{2} - 2(BC)(DC)(GS)$ $e^{\frac{1}{2}} + \frac{1}{2} + \frac{1}{$
+2n28014' - +2n211013'		etc.
h = 105.8 height of tower is 106m to the nearest	1/2	PTO

MATHEMATICS EXTENSION I – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(26) Examiners Comments: Contid.		
from Equation (4) students found a common denominator making the question more difficult and hence allowed for more errors.		
denominator making the question more		
difficult and hence allowed for more errors.		
From (4) h2 (tan2 110131) - h2 (tan280141)= 5002		
(tan2110131) (tan280141)		•
$h^2 = 500^2 + an^2 11^{\circ}13^{\circ} + an^2 8^{\circ}14$		
tan211°13/ - tan28°14/		
h= / 5002+an2110131+an28014		
Vtan2110131-tan280141		
h= 500 tan 11°131 tan 8°14		
Vtan2110131 -tan280141		
= 106		
,		

IATHEMATICS EXTENSION I – QUESTION 12	1	
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Alternate solution 12b) (But harder and NOT preferred)		
$tan 11^{\circ}13^{\prime} = h$ and $tan 8^{\circ}14^{\prime} = h$ $h = BC tan 11^{\circ}13^{\prime} - D$ and $h = BD tan 8^{\circ}14^{\prime} - (2)$		
BC tan 110131 = BD tan 8°141		
BC = BD tan 8°14		•
tan (10131		
In ABCD, 5002+B(2=BD2.		
$B0^2 = 600^2 + B0^2 + an^2 8^0 14^1$	1	
tan2 11013/		
BD2 - BD2+a,2894 - 500		
tan 2110131		•
BD2(tan2110131) - BD2(tan280141) = 5002(tan2110131)		
BD2 (tan211013) - tan28014) = 5002 tan211013)		
$BD^2 = 500^2 + an^2 11013$		
tan2110131-tan280141		
BD = 500tan 11°13/	71/	
Vtan211013/ -tan38014	172	
Sub in 1 h = 500 tan 11°131 x tan 8°141		
1 +au2110131 - tan280141		
= 106	1/2	

MATHEMATICS EXTENSION I – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
2c) i) If $V = P + Ae^{-ht}()$ then $V - P = Ae^{-ht}(2)$ From (1) $dV = -k \cdot Ae^{-ht}$ dt		
then V-P = Ae-ht 2		This question was
From 1 dv _ k. Ae-kt		very well done.
dt -		
= -k (V-P) from (2)		
	7	\
ii) Initially +=0, & V=0, P=60		
To find A $V = P + Ae^{-k+}$		
ii) Initially $t=0, \xi V=0$, $P=60$ To find A, $V=P+Ae^{-k+}$ $0=60+Ae^{-k\times0}$		
A = -60		
A150 + = 10 and $V = 35$		
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
$60e^{-10K} = 25$		
$e^{-lok} = 25$		
$-10k = \ln \frac{25}{60}$		
$k = -1 \ln 25$		
$K = \frac{-1}{10} \ln \frac{25}{60}$		
= 1 In 60 = 0.88	(2)	
<u> </u>		<u> </u>

MATHEMATICS EXTENSION I – QUESTION I 2		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
2d) F A		
F Southon !		This question was
Let LBAF = X		not well done,
LBCA = LBAF (angle between a tangent as	<i>s</i>	,
= a chord is equal to the and	-	When proving in
in the alternate segment).	- 7	Geometry it is
Also		important to communicat
C ZBCA = ZDCA (given that CA bisedic 184	}	in a logical
No LDCA = L	T	sequential manner.
Now LDBA = LDCA (angler in the same segment) Le LDBA = d		Marks were not awarded when this
¿ ZBAF = ZDBA (both equal to x)		did not occur.
The alternate angles LBAF and LDBA are equal	7	Also the only given
the two lines are parallel	i	fack were that AC
_ ·		bisects LDCB and that
EAF (BD) Note: Newly all		ABCDwas a cyclic
Vote: I mark was awarded when 2 angles made a Litudent gave the		Quadrilateral.
connection with another angle with the correct reason incorrect reason to.		
In a logical nanner. Mass of 2 maker for this I this find statement		P70 ->
They gave the converse to atternate angle throwing	$\frac{1}{5}$)
which is alternate angles on parallel lives are equally thouser not penalised for this.		

MATHEMATICS EXTENSION I – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Q12 d) Alternate solution 2		Many students made
Let LEAD = O.		assumptions from the
LABD = LEAD (angle between partangent and		information that
=0 a chord is equal to the angle in the alternate	<u> </u>	CA bisects LBCD.
signent)		They assumed:
LDCA = LABD (angles in the same segment)		-AC is a diameter
0/0 15 =0	<u>) </u>	-LEAC=90°
Also LBCA = LDCA (CA bisects LBCD)	<u> </u>	The angle between tangent
=0		and radius is 90°)
Now $2DCB = 20$	7	-ACLDC
Also LDAB = 180 - LDCB (opposite angles in a cyclic = 180 - 20 quadrilateral)	}	and -AC biceits LDAB
= 180 - 20 quadrilateral)		- AC bisects LD13
Now LBAF = 180 - / EAD - LDAR (angle sum of straight line)		Although these may
= 180 - 8 - (180-20) (shown above)	<u> </u>	secon to be true you
C' and I and I part of the state of the stat		would need to prove
G. and LADB = LBAF (angles in the alternate segment)	· · · · · · · · · · · · · · · · · · ·	then first, then it
: LEAD = LADR (both equal to 0)	11	Russkingthess
		By making these
Alternate angles LEAD and LADB are equal in two lines are paralle	(3)	were awarded.
10 FAFILRI)		my comaraço.

le EAF//BD.

	MATHEMATICS EXTENSION I – QUESTION 13		
	SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
<u>a</u>)	i Let sinx - cosx = R sin (x- d)		One mark each
	= Rsinx cosa - Rcosx sind		for finding R
			and L.
	.: Rosd=1 Rshd=1	Manager of the Control of the Contro	Simply stating "R= VZ" or" == TT"
	$R^2 \cos^2 \lambda = 1 \qquad R^2 \sin^2 \lambda = 1$, ,
	$\int_{\mathbb{R}^{2}} \left(s^{2} + R^{2} s^{2} \right)^{2} d = + $ $R^{2} \left(s^{2} + (os^{2}) \right)^{2} = 2$		earned no marks, as this information
	$R^2 = 2$	MARKAGAN, WYST TO PERSON	
	R = V2 (R70)		is provided in the guesdion
	$\therefore \sqrt{2} \cos 2 = 1 \qquad \therefore \sqrt{2} \sin 2 = 1$		
	$\cos \alpha = \frac{1}{\sqrt{2}} \qquad \sin \alpha = \frac{1}{\sqrt{2}} \qquad \therefore \ \ \neq = \frac{\pi}{\sqrt{2}}$		
	$-i. \sin x - \cos x = \int_{-\infty}^{\infty} \sin \left(x - \frac{\pi}{4}\right)$		
	OR RHS = JZ = 1/2 (x-4)		
	= \(\sin\x\cos\frac{\pi}{4} - \cos\x\sin\frac{\pi}{4}\)		
	$=\sqrt{2}\left(\sin x \cdot \frac{1}{\sqrt{2}} - \cos x \cdot \frac{1}{\sqrt{2}}\right)$		
	$=\sqrt{2}\times\frac{1}{12}\left(\sin x-\cos x\right)$		
:	= Sinx -(o)x		
	= RHS		

.

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
	1/2	Intercepts correct
		and labelled
	1/2	Amplitude
	1/2	Correct shift / phase
○ 全当等,丌到了产产	1/2	Period
iii sinx-cosx =1		For a "show" grestion
:. Jz sin (x-=)=1		anything you are give
5小(ひ-売)= 点		anything you are give in the question is
: > = = = = = = = = = = = = = = = = = =		worth zero marks.
·· x= 芸丁 ·· 芸is a solution		Eq. simply stating
	111	5/n(=) - (05(=)=1
OP when x= = LHS = sin(王) -(05(王)) = 1-0		does not show the
= 1-0		result - the trutho
		this Statement is
=PHS ·· 豊 is a solytion		provided in the
: = < x < T		question itself.

MATHEMATICS EXTENSION I – QUESTION (
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) Let $X = \sin^{-1} \frac{1}{\sqrt{5}}$ and $Y = \sin^{-1} \frac{1}{\sqrt{10}}$		
then		
$Sin X = \frac{1}{\sqrt{5}} and sin Y = \frac{1}{\sqrt{10}}$	4	
V5 V10	<u> </u>	
1 55		
2 3		
Sin(X+Y) = Sin X cos Y + cos X sin Y		
= 1 3 + 2 1 15 10 15 10		
15 VIO 15 VIO		
= <u>5</u> 5√7		
i		
- VZ		
$x_{+Y} = \frac{\pi}{4}$		
f		
$\frac{1}{15} \cdot \frac{1}{15} + \frac{1}{10} = \frac{11}{10} = \frac{11}{10}$		
15 10 4		

MATHEMATICS EXTENSION I - QUESTION 13 (continued)		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Prove the statement true for n=1		
7'+5=12		
=6(2) which is divisible by 6	Warmana	Correct proof for
		N21
Let k be a positive integer for which the statement is mu	4	
i.e. 7k + 5 = 6M, where M is on integer		Correct assumption,
		including the
Prove that if the statement is true for n=k, then it is		essential requirement
true for n=KTI		that M be an integ
i.e. 7k+1+5 is divisible by 6		
$7^{K+1}+5=7(7^K)+5$		Many students made
=7 (6M-5)+5, by the induction hypothesis		their working needless
= 42M -35+5		complicated by attemp
=42M-30		to prove 7K+1+5=6P
=6(7M-5) which is divisible by 6		without knowing what
		P would be Corwor
Therefore if the statement is true for n=k it is also the		7K+1+5=6M, which is
for n=k+1. Since it is the for n=1, tistive for n=2		impossible given the
and so on. Therefore 7"+5 is divisible by 6 for all		assumption).
positive integer values of n		

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
4(a) V= = Tr2h with h=r (by similarity)	4	
V= ₹ ITC3		There were a multitude
$\frac{dV}{dr} = \pi r^{2}$		of variations to the
		and the of the
$\frac{dV}{dt} = \frac{dV}{dt} \frac{dV}{dt}$		ECTUTION OF THIS PUBLICA
$24 = \pi c^2 4 $		of variations to the solution of this question of this question I read carafully through all the solutions, and
$\frac{a+-}{a+}$		all the solutions, and
$\frac{dV}{dt} = \frac{24}{11r^2}$		allocated marks by
at Trz		error emission of
		error or emission of
$S = \pi r^2$		steps. No z warks
$\frac{37}{37} = 2\Pi \Upsilon$		were awarded. The
ds = 2Tr ds = ds dr d = dr dt		most common errors
= 2TT r 24 (from above)		were of the type
• • • • • • • • • • • • • • • • • • • •		V= \$11/26 > (V
= 4 <u>8</u>		were of the type V= \$TT/2 h Durong V dV = \$TT/2 Durong V dy = \$TT/2 Durong V
When r=16		@ S= IIr2+ IIrh)
		ds = 211c+11c+
$\frac{dS}{dt} = 3 \text{ cm}^2 \text{ s}^{-1}$		(many more variations)
		STRESS TO STUDENTS that
•		if hand rare variables
	•	related to one another not constants, must be
		not constants must be

MATHEMATICS - QUESTION NO: 14 SUGGESTED SOLUTIONS **MARKS MARKER'S COMMENTS** $|A|(b)(a) (1+ax)^n = 1 + (ax + ax + ax^2 + ...$ A number of $= 1 + 6x + 16x^2 + ...$ students thought the live marked * nc, a = 6 $^{n}C_{2}a^{2}=16$ was the solution to $n(n-1)a^2 = 32(2)$ deduction for errors and/or (11) From (1) a = 5 omissions, no $\frac{1}{A^2n}$ 1/2 marks were given. · (n-1).36 = 32n 36n - 36 = 32n4n = 36 n=9Subject (1) $a=\frac{3}{3}$

MATHEMATICS - QUESTION NO: 14		
SUGGESTED SOLUTI	ONS MARK	MARKER'S COMMENTS
A(c)(1) = -A(x-1)		2
$\frac{d}{dx}\left(\frac{1}{2}V^2\right) = -4\left(x-1\right)$		
$\pm \sqrt{2} - 2(x-1)^2 + C$	1 mark	A lot of students
when $x = 1$, $v = 6$ $c = 18$ $\frac{1}{2}v^2 = -2(x-1)^2$; 18	for using x=0	had x=0, v=6
$\frac{1}{2}v^{2} = -2(x-1)^{2} + 18$ $v^{2} = -4(x-1)^{2} + 36 = -4$		and found c'incorrect! then manipulated to
$v^2 = -4x^2 + 8x + 32$ a	s required	get 32 incorrectly
$(11) \sqrt{2} = -4 \left(x^2 - 2x - 8 \right)$		
$= -4((x-1)^2 - 9)$		Many students did this correctly, but
$= 4 \left[9 - (x-1)^2 \right]$		this correctly but those who get 'a"
of the form	137	incorrect lost a
$V^2 = N^2 \left(\alpha^2 - C \right)$	-627 where x = 6 is the contra of motion	of the working was
$n=2$ $T=\frac{2T}{n}$:	= T	correct. No 2
$a^2 = 9 a = 3$	since $a > 0$.	marks were awarded
		Most got T= II

. 20

MATHEMATICS EXTENSION I – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) sin's > P as log k defined only for k > 0		Some did not look
a) $\sin^{-1} x > D$ as loge k defined only for $k > D$ $\sin^{-1} x \leq \frac{T}{2}$	2	at where logger is
2		defined. Others did
2651		not define the
Domain is O <x<1< td=""><td></td><td>domain Overall</td></x<1<>		domain Overall
		well done.
b) (i) Vertical $\dot{y} = -10$ $\dot{y} = -10t + C,$ $\dot{y} = V_{cos}\theta$ when $t = 0$, $\dot{y} = V_{cos}\theta$ $\dot{c}_{i} = V_{cos}\theta$		
$y = -10t + C, \qquad \sqrt{9}$	2	Mortly done well.
when $t=0$, $y=V\cos\theta$		Some students did
y = -10 t + Vcos θ		not give enough
· · · · · · · · · · · · · · · · · · ·		supporting evidence
$y = -10t^2 + V\cos\theta t + C_2$		
When $t=0$ $y=0 \Rightarrow c_2=0$		
$y = -5t^2 + V_{co3}\theta t$		
(ii) Greatest height when ij = 0 and t = 3		Most student did
$\dot{y} = -10 \times 3 + V \sin \theta$		this well.
0 = -30 + Vgin O		
Vsin 0 = 30	_	

MATHEMATICS EXTENSION I – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) (iii) Stone reaches the ground when y = -80		Some students took
$y = -5t^2 + V \sin \theta t \qquad V \sin \theta = 30$	1	ground level as y=0
$-80 = -5t^2 + 30t$	ļ 	(They need to read the
$t^2 - 6t - 16 = 0$		question carefully)
(t-8)(t+2)=0		
: t = 8 since t ≥ 0		
(iv) Stone reaches the ground at a range of 320m		Some students
after 8 seconds	1	had 320 ÷ 6 = 40
2c=Vco3θt 2c=320, t=8		others had
320 = 8 Vco3 A		320÷80 = 40
Vacos 0 = 40		
$(V) V^{2} = x^{2} + y^{2} $ $= (V\cos\theta)^{2} + (V\sin\theta)^{2}$ $= (V\cos\theta)^{2} + (V\sin\theta)^{2}$		Very well done by
$= (V\cos\theta)^2 + (V\sin\theta)^2$		most that attempted
$= 40^2 + 30^2 \qquad = \frac{30}{40}$;4.
= 2500 \tag{\theta} = 36°52'		
$V = 50 \text{ ms}^{-1}$ (neares + minute	<u></u>	
	[

ATHEMATICS EXTENSION I – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
100 (i) LHS = x[1+(1+x)+(1+x)2++(1+x)1-1]		Most students ha
GP with a=1, r= 1+x, n terms	1	difficulty with the
$S_n = \frac{1\left((1+x_0)^n - 1\right)}{1+x_0 - 1}$		question They die
1+20-1		not recognise the
$= (1+2)^n - 1$		
= >L x [(1+2c)"-1]		
74		
$= (1+1)^{m}-1$		
= R H S		
(i) RHS = (1+2c)n-1		This question was
$= \binom{n}{0} + \binom{n}{1} z + \binom{n}{2} z + \frac{t\binom{n}{k}}{k} z + \binom{n}{n} z - \frac{t\binom{n}{k}}{n} z + \frac{t\binom{n}{n}}{n} z - \frac{t\binom{n}{k}}{n} z + \frac{t\binom{n}{n}}{n} z + \frac{t\binom{n}{n}}{n} z - \frac{t\binom{n}{n}}{n} z + \frac{t\binom{n}{n}}{n} z + \frac{t\binom{n}{n}}{n} z - \frac{t\binom{n}{n}}{n} z + \frac{t\binom{n}{n}}{n} z + \frac{t\binom{n}{n}}{n} z - \frac{t\binom{n}{n}}{n} z + \frac{t\binom{n}{n}}{n} z - \frac$		quite poorly set on
coefficient of sch is (n)		by many student
1. HS = [>c(1+2c)^{n-1}] + [>c(1+2c)^{n-2}]++[>c(1+2c)^{k+1}]+		
$= \left[\binom{n-1}{0} \times + \binom{n-1}{1} \times \times^2 + \dots + \binom{n-1}{k-1} \times \times^k + \dots \right]$		
$+ \left[\binom{n-2}{2} x + \binom{n-2}{2} x^2 + \dots + \binom{n-2}{k-1} x^k + \dots \right] + \dots$		
$+ \left[{\binom{k-1}{2}} \times + {\binom{k-1}{2}} \times {\binom{k-1}$		
coefficient of sch is:		
$\binom{n-1}{k-1} + \binom{n-2}{k-1} + \dots + \binom{k-1}{k-1}$		
$\frac{(n-1) + (n-2) + \dots + (k-1) = \binom{n}{k}}{(k-1) + (k-1)} = \binom{n}{k}$		
(k-1) (k-1) (k-1) (k)		

MATHEMATICS - QUESTION NO: 14 SUGGESTED SOLUTIONS **MARKS MARKER'S COMMENTS** $|A|(b)(a) (1+ax)^n = 1 + (ax + ax + ax^2 + ...$ A number of $= 1 + 6x + 16x^2 + ...$ students thought the live marked * nc, a = 6 $^{n}C_{2}a^{2}=16$ was the solution to $n(n-1)a^2 = 32(2)$ deduction for errors and/or (11) From (1) a = 5 omissions, no $\frac{1}{A^2n}$ 1/2 marks were given. · (n-1).36 = 32n 36n - 36 = 32n4n = 36 n=9Subject (1) $a=\frac{3}{3}$

MATHEMATICS - QUESTION NO: 14		
SUGGESTED SOLUTI	ONS MARK	MARKER'S COMMENTS
A(c)(1) = -A(x-1)		2
$\frac{d}{dx}\left(\frac{1}{2}V^2\right) = -4\left(x-1\right)$		
$\pm \sqrt{2} - 2(x-1)^2 + C$	1 mark	A lot of students
when $x = 1$, $v = 6$ $c = 18$ $\frac{1}{2}v^2 = -2(x-1)^2$; 18	for using x=0	had x=0, v=6
$\frac{1}{2}v^{2} = -2(x-1)^{2} + 18$ $v^{2} = -4(x-1)^{2} + 36 = -4$		and found c'incorrect! then manipulated to
$v^2 = -4x^2 + 8x + 32$ a	s required	get 32 incorrectly
$(11) \sqrt{2} = -4 \left(x^2 - 2x - 8 \right)$		
$= -4((x-1)^2 - 9)$		Many students did this correctly, but
$= 4 \left[9 - (x-1)^2 \right]$		this correctly but those who get 'a"
of the form	137	incorrect lost a
$V^2 = N^2 \left(\alpha^2 - C \right)$	-627 where x = 6 is the contra of motion	of the working was
$n=2$ $T=\frac{2T}{n}$:	= T	correct. No 2
$a^2 = 9 a = 3$	since $a > 0$.	marks were awarded
		Most got T= II

. 20

MATHEMATICS EXTENSION I – QUESTION 15				
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS		
a) sin's 70 as log k defined only for k70		Some did not look		
a) Sin's > O as loge k defined only for k70 Sin's \ \frac{1}{2}	2	at where logoc is		
2		defined. Others did		
26 5 1		not define the		
Domain is O <x<< td=""><td></td><td>domain Overall</td></x<<>		domain Overall		
		well done.		
b) (i) Vertical ij = -10 / j= 1,500				
$y = -10t + C, \qquad \sqrt{9}$ $\hat{z} = V\cos\theta$	2	Mostly done well.		
b) (i) Vertical $\dot{y} = -10$ $\dot{y} = -10t + C,$ $\dot{y} = V \cos \theta$ $\dot{z} = V \cos \theta$ $\dot{z} = V \cos \theta$		Some students did		
$\dot{y} = -10 t + V \cos \theta$		not give enough supporting evidence		
$y = -10t^2 + V\cos\theta t + C_2$		Juffer 1. St. Consultation		
2				
When $t=0$ $y=0 \Rightarrow c_2=0$				
$y = -5t^2 + V_{co3}\theta t$				
(ii) Greatest height when ij = 0 and t = 3		Most student did		
$\dot{y} = -10 \times 3 + V \sin \theta$		this well.		
0 = -30 + Vsin 0				
Vsin 0 = 30				

MATHEMATICS EXTENSION I – QUESTION 15				
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS		
b) (iii) Stone reaches the ground when y = -80		Some students took		
$y = -5t^2 + V \sin \theta t \qquad V \sin \theta = 30$	1	ground level as y=0		
$-80 = -5t^2 + 30t$	ļ 	(They need to read the		
$t^2 - 6t - 16 = 0$		question carefully)		
(t-8)(t+2)=0				
: t = 8 since t ≥ 0				
(iv) Stone reaches the ground at a range of 320m		Some students		
after 8 seconds	1	had 320 ÷ 6 = 40		
2c=Vco3θt 2c=320, t=8		others had		
320 = 8 Vcos A		320÷80 = 40		
Vacos 0 = 40				
$(V) V^{2} = x^{2} + y^{2} $ $= (V\cos\theta)^{2} + (V\sin\theta)^{2}$ $= (V\cos\theta)^{2} + (V\sin\theta)^{2}$		Very well done by		
$= (V\cos\theta)^2 + (V\sin\theta)^2$		most that attempted		
$= 40^2 + 30^2 = \frac{30}{40}$;4.		
= 2500 \tag{\theta} = 36°52'				
$V = 50 \text{ ms}^{-1}$ (neares + minute	<u></u>			
	[

MATHEMATICS EXTENSION I – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) (iii) $n\binom{n-1}{k} = n(n-1)!$ $k!(n-1-k)!$		Donee very well by most students that attempted it
k!(n-1-k)!	2	by most students
$= \frac{n!}{k!(n-(k+1))!}$		that attempted
k!(n-(k+1))!		14
(k+i)!(n-(k+i))!		
= (k+1)		
(k+i)k!(n-(k+i))!		
<u>= 'n!</u>		
= n! $k!(n-(k+i))!$		
$-1. n \binom{n-1}{k} = \binom{k+1}{k+1}$		
(K) (NATI)		
·		