

Data Science CaptionMe 99

ENSEIGNANT : Wandrille DOMAIN

Étudiants : Merieme BOURENANE, Chifaa WEHBE, Paulius MICKUNAS

UE : Data Science Année : 2020-2021

Sommaire

- 1. Introduction
- 2. Choix du projet
 - a. Comparaison et choix final
 - b. Problématique et dataset
- 3. Mise en place de projet
 - a. Démarche de résolution générale
 - b. Définition des outils utilisés
 - c. Architecture logicielle matérielle
 - d. Documentation et veille technologique sur le ML
- 4. Démarche de résolution itérative 2 méthodes
 - a. Exploration
 - b. Pre-processing data
 - c. Machine Learning Model architecture and development
 - d. Training Model

- 5. Résultats
 - a. Comparaison résultat attendu/prédiction
- 6. Conclusion
 - a. Les points d'amélioration

1. Introduction

1. Introduction

Consigne initiale:

Vous allez devoir découvrir la Data Science au travers d'un projet libre!

2. Choix du Projet

a. Comparaison et choix final

Faire le meilleur choix de réponse **Talking Al** Trop complexe, dataset mal organisé Plusieurs domaines d'app : médecine, administration Image captioning Complexe: traitement image, NN Recoloriser des photos des grands parents **Image colorization** Mathématiques avancées - fait l'objet de recherches

b. Problématique et dataset

Qu'est ce que CaptionMe?

- Un analyseur d'image
- Un analyseur et générateur de texte, e.g de phrases

Quelles sont les données de travail?

<u>Dataset Flickr30k</u>:

- Taille : 4Go

- Nb d'images : ≅ 30k

- Nb de colonnes : 3

	image_name	comment_number	comment
0	1000092795.jpg	0	two young guys with shaggy hair look at their
1	1000092795.jpg	1	two young , white males are outside near many \ldots
2	1000092795.jpg	2	two men in green shirts are standing in a yard .
3	1000092795.jpg	3	a man in a blue shirt standing in a garden .
4	1000092795.jpg	4	two friends enjoy time spent together .

3. Mise en place du projet

a. Démarche de résolution générale

lère méthode :

- 1) Exploration et pre-processing des données
- 2) Extraire les caractéristiques des images
- 3) Traiter les séquences de mots de la description
- 4) Création du modèle permettant de générer des séquences de mots
- 5) Entrainement du model
- 6) Validation du model
- 7) Test du mode

2

2ème méthode :

- 1) Exploration et pre-processing des données
- 2) Extraire les caractéristiques des images
- 3) Conversion des descriptions en vecteurs spatiaux
- 4) Création du modèle permettant de générer des séquences de mots
- 5) Entrainement du model
- 6) Test du model

b. Définition des outils utilisés

c. Architecture logicielle - matérielle

Ressources logicielles:

Google Colaboratory Pro

Ressources matérielles:

- Accès à un GPU
- Mémoire RAM plus importante
- Mémoire Disque plus importante

d. Documentation et veille technologique sur le ML

Supports d'informations - Bibliographie :

- Documentation
- Papiers de recherche
- Tutoriels

Exemples de sujets :

- Convolutional Neural Networks CNN
- Image detection and object localization
- Natural Language Processing NLP
- .

54	Données utiles		
55	Sujet	Lien	
56	Image processing Machin Learning Image Classification Prediction using the trained Model	https://towardsdatascience.com/in-depth-machine-learning-image-classification-with-tensorflow-2-0-a76526b32af8	
57	Reseau de Neuronal Convolutifs (CNN) Reconnaissance d'image avec TensorFlow	https://www.tensorflow.org/tutorials/images/cnn	
58	Caption Generator	https://www.analyticsvidhya.com/blog/2020/11/create-your-own-image-caption-generator-using-keras/	
59			
60		https://towardsdatascience.com/building-an-image-captioning-model-with-keras-ebccaadb98b9	
61		https://towardsdatascience.com/creating-vgg-from-scratch-using-tensorflow-a998a5640155	
62			
63	Link clustering after embedment	https://towardsdatascience.com/how-to-cluster-in-high-dimensions-4ef693bacc6	
64		https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html	
65		https://scikit-learn.org/stable/modules/clustering.html	
66	Sklearn map	https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html	
67	NLP	https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b	

4. Démarche de résolution itérative

[Les slides qui suivront présenteront les deux méthodes.]

a. Exploration

Dataset Flickr30k:

- Taille : 4Go

- Nb d'images : ≅ 30k

 5 commentaires par image → 158915 échantillons

	image_name	comment_number	comment
0	1000092795.jpg	0	two young guys with shaggy hair look at their
1	1000092795.jpg	1	two young , white males are outside near many \ldots
2	1000092795.jpg	2	two men in green shirts are standing in a yard .
3	1000092795.jpg	3	a man in a blue shirt standing in a garden .
4	1000092795.jpg	4	two friends enjoy time spent together .

Test et erreurs !

- Mauvaise exploration et compréhension du dataset
- Images entraînées redondantes

Meilleure appropriation de dataset après erreurs

Essai 1 : utiliser la totalité du dataset

Ressources mémoire RAM et Disque insuffisantes pour contenir les données matrices spares

Essai 2: utiliser 1 commentaire par image

Métriques d'apprentissage très basses

Essai 3: utiliser 8000 images - (5xC)

Amélioration des métriques d'apprentissage et pas de problèmes d'espace Disque

Essai 1: utiliser 8000 images - (5xC)

Amélioration des métriques d'apprentissage et pas de problèmes d'espace Disque

Cleaning and formatting comments:

- Text en minuscule
- Retirer la ponctuation
- Ajout de marqueurs de début et fin de chaînes
 "blablabla" → "startseq ... blablabla ... endseq"

comment_text_clean

two young guys with shaggy hair look at their .. several men in hard hats are operating a giant.. a child in a pink dress is climbing up a set o.. someone in a blue shirt and hat is standing on.. two men one in a gray shirt one in a black s...

comment_text_surrounded

startseq two young guys with shaggy hair look ...
startseq several men in hard hats are operatin...
startseq a child in a pink dress is climbing u...
startseq someone in a blue shirt and hat is st...
startseq two men one in a gray shirt one in a ...

Extraction de caractéristiques des images :

Model pré-entrainé : VGG16

- 6800 images
- ≈ 40 mins de prédictions

Découper les données en sets :

- 70 % : training
- 15 % : validation
- 15 % : test

Model pré-entrainé : InceptionV3

- 6800 images
- \approx 35 mins de prédictions
- Moins de features détectables

Processing des commentaires :

Construction de 3 types de données :

- training
- validation

Construction de 3 types de données :

training

c. Machine learning model and ar chitecture - 1

Vectorisation de mots:

Vecteurs de mots pré-construit : Glove6d

- A chaque mot correspond un vecteur (1, 200)

dict(string : list(float32)) glov6d

Représentation spatiale des mots : Mots ayant un sens similaire sont regroupés

c. Machine learning model and architecture - 2

Modèle en couche de génération de description:

b. Training model

Analyse des métriques d'entraînement :

Paramètres du modèle :

Epoch: 60 (seuls 30 derniers sur

les graphiques)

Optimizer : Adam

Learning rate: 0.001

Interprétation:

- Loss : valeurs linéaires décroissantes
- Accuracy : valeurs linéaires croissante avec sursauts

Paramètres du modèle :

 Epoch : 60 (seuls 30 derniers sur les graphiques)

- **Optimizer** : Adam

- Learning rate: 0.001

Interprétation:

- **Loss** : valeurs linéaires décroissantes

- Accuracy : valeurs linéaires croissante avec sursauts

The model is underfitting

5. Résultats

a. Comparaison résultat attendu/prédiction

Modèle retenu :

- ✓ Architecture n°2
- ***** Architecture n°1

Simulation!

Interprétation :

- Grammaire et conjugaison
- **✓** Phrases finies
- **X** Extraction des objets

Greedy Search: a young boy in a blue shirt and blue jeans is playing with a blue balloon Beam Search, K = 3: a man in a blue shirt is throwing a golf club pit Beam Search, K = 5: a man in a blue shirt is throwing a golf club club

Beam Search, K = 7: a little girl in a white dress is standing in front of a garden rainbow

Beam Search, K = 10: a young boy wearing a blue shirt and blue jeans is standing in front of a chain link fence

6. Conclusion

a. Les points d'amélioration

Concernant le dataset :

- Ajout d'un set de validation
- Tester sur le dataset connu Flickr8k
- Tester d'autres vectorisations de mots (ex : Word2Vec)

Concernant l'extraction des features des images :

- Tester d'autres modèles pré-entrainés (ex : ResNet, VGG avec la 2ème méthode)

Concernant le modèle :

- Tuning : faire varier les paramètres du modèle (ex : learning rate, batch size)

