Arquitetura e Organização de Computadores

Interconexão do Computador

Givanaldo Rocha de Souza

http://docente.ifrn.edu.br/givanaldorocha givanaldo.rocha@ifrn.edu.br

- Arquitetura de Von Neumann
 - Dados e instruções armazenados em uma única memória
 - Conteúdo da memória endereçável sem considerar o tipo de dados neles contidos
 - A execução ocorre em um padrão sequencial (exceto instruções de salto)

- Existe um pequeno conjunto de componentes lógicos que podem ser combinados para armazenar ou realizar operações em dados binários
- O "programa" resultante está na forma de hardware chamado de *programa hardwired*

Alternativa

- Configuração de uso geral das funções aritméticas e lógicas
- Esse conjunto de hardware realizará diversas funções sobre os dados, dependendo dos sinais de controle aplicados ao hardware

Figura 3.1 Abordagens de hardware e software

- A programação agora é muito mais fácil
- Em vez de religar o hardware para cada novo programa, tudo o que precisamos fazer é oferecer uma nova sequência de códigos
- A sequência de códigos ou instruções é chamada de software
- Um segmento de hardware aceita o código e emite os sinais de controle

- A Unidade de Controle e a Unidade Lógica e Aritmética constituem a Unidade Central de Processamento
- Dados e instruções precisam entrar no sistema, e resultados saem dele
 - Entrada/saída
- É necessário um armazenamento temporário de código e resultados
 - Memória principal

Componentes em alto nível

- Todos os componentes devem ser conectados
- Tipo de conexão diferente para tipo de unidade diferente
 - Memória
 - Entrada/Saída
 - CPU

Módulos do computador

Memória

- Consiste em N palavras do mesmo tamanho
- Cada palavra recebe um endereço (0 .. N-1)
- Uma palavra de dados pode ser lida ou escrita
- O tipo de operação é indicado pelos sinais de controle de leitura e escrita
- O local para operação é especificado por um endereço

Módulo de E/S

- E/S é funcionalmente semelhante à memória
- Existem 2 operações: leitura e escrita
- Também pode controlar mais de um dispositivo externo
- Cada interface de um dispositivo externo pode ser referenciado como uma porta, identificada por um endereço exclusivo (0 .. M-1)
- É capaz de enviar sinais de interrupção ao processador

- Processador
 - Lê instruções e dados
 - Escreve dados (após processamento)
 - Envia sinais de controle a outras unidades
 - Recebe (e atua sobre) interrupções

- Quais as possíveis transferências entre os módulos?
 - Memória para processador
 - Processador para memória
 - E/S para processador
 - Processador E/S
 - E/S de ou para a memória

Barramentos

- Caminho de comunicação que conecta 2 ou mais dispositivos
- Meio de transmissão compartilhado
- Tipicamente consiste em múltiplos caminhos de comunicação, ou linhas
- Juntas, várias linhas de um barramento transmitem dígitos binários simultaneamente (paralelo)
- Os principais componentes são conectados pelos barramentos do sistema

- Barramentos
 - Três grupos funcionais

Barramentos

- Linhas de dados
 - Transfere os dados
 - Largura é um determinante fundamental do desempenho (8, 16, 32, 64, etc.)
- Linhas de endereço
 - Identifica origem ou destino dos dados
 - Largura do barramento determina capacidade máxima da memória do sistema

Barramentos

- Linhas de controle
 - Usadas para controlar o acesso e o uso das outras linhas
 - Tipicamente incluem
 - Escrita/leitura de memória
 - Escrita/leitura de E/S
 - ACK de transferência
 - Solicitação de barramento (bus request)
 - Concessão de barramento (bus grant)
 - Requisição de interrupção (interrupt request)
 - ACK de interrupção
 - Clock
 - Reset

- Operação do barramento
 - Para enviar dados
 - 1. Obter o uso do barramento
 - 2. Transferir dados por meio do barramento
 - 3. Recebe ACK de transferência
 - Para requisitar dados de outro módulo
 - 1. Obter o uso do barramento
 - 2. Transferir uma requisição ao outro módulo
 - 3. Esperar que o outro módulo transfira os dados
 - 4. Envia ACK de transferência

- Linhas paralelas em placas de circuito
- Conectores em tira nas placas mãe (slots)

Hierarquia de Barramentos

- Muitos dispositivos em um barramento levam:
 - Atrasos de propagação
 - Longos caminhos de dados significa que a coordenação do uso do barramento pode afetar contrariamente o desempenho.
 - Se a demanda de transferência de dados agregada se aproxima da capacidade do barramento.
- A maioria dos sistemas utiliza múltiplos barramentos para contornar esses problemas

Hierarquia de Barramentos

Estrutura de barramento tradicional (ISA)

Hierarquia de Barramentos

- Estrutura de barramento de alto desempenho
 - Também conhecido como arquitetura mezanino

- Grande variedade de implementações de barramentos
- Poucos parâmetros dos barramentos

Тіро	Largura do barramento
Dedicado	Endereço
Multiplexado	Dados
Método de arbitração	Tipo de transferência de dados
Centralizado	Leitura
Distribuído	Escrita
Sincronização	Ler-modificar-escrever
Síncrona	Leitura-após-escrita
Assíncrona	Bloco

- Tipos de barramento
 - Dedicado
 - Linhas separadas para dados e endereço
 - Multiplexado
 - Linhas compartilhadas.
 - Linha de controle válidas de endereço ou dados.
 - Vantagem
 - Menos linhas
 - Desvantagens:
 - Controle mais complexo

- Arbitração do barramento
 - Mais de um módulo controlando o barramento
 - Ex: CPU e controlador de DMA.
 - Apenas um módulo pode controlar barramento de uma só vez
 - Pode ser centralizada ou distribuída

Arbitração do barramento

- Centralizada
 - Único dispositivo de hardware controlando o acesso ao barramento
 - Controlador de barramento
 - Árbitro
 - Pode ser parte da CPU ou separada
- Distribuída
 - Cada módulo pode reivindicar o barramento
 - Lógica de controle em todos os módulos

Temporização

- Coordenação de eventos no barramento
- Síncrona:
 - Eventos determinados por sinais de clock
 - Barramento de controle inclui linha de clock
 - Uma única transmissão 1-0 é um ciclo do barramento
 - Todos os dispositivos podem ler linha de clock
 - Normalmente, sincronismo na borda inicial
 - Geralmente, um único ciclo para um evento

Assíncrona

• A ocorrência de um evento em um barramento segue e depende da ocorrência de um evento anterior

Diagrama de temporização síncrona

Temporização assíncrona – diagrama de leitura

Temporização assíncrona – diagrama de escrita

- Largura do barramento
 - Tem um impacto sobre o desempenho do sistema
 - Quanto mais largo, maior o número de bits transferidos por vez
 - Largura do barramento de endereços
 - Impacto sobre a capacidade de armazenamento do sistema

- Tipos de transferências de dados
 - Todos os barramentos permitem
 - Escrita (mestre para escravo)
 - Leitura (escravo para mestre)

- Do inglês *Peripheral Component Interconnect*
- Grande largura de banda
- Independente de processador
- Pode funcionar como mezanino ou barramento periférico
- Oferece melhor desempenho para subsistemas de E/S de alta velocidade

Figura 3.22 Exemplo de configurações PCI

(a) Sistema típico de um computador de mesa (desktop)

- Permite o uso de até 64 linhas de dados a 66 MHz
- Taxa de transferência bruta de 528 MB/s ou 4,224 Gbps
- Requer muito poucos chips para ser implementado
- Admite outros barramentos conectados a ele

- Linhas obrigatórias
 - Linhas de sistemas
 - Incluindo clock e reset
 - Endereços e dados
 - 32 linhas multiplexas para endereços e dados
 - Linhas de interrupção e validação
 - Controle da interface
 - Arbitração
 - Não compartilhada
 - Conexão direta com barramento PCI
 - Linhas de erro

- Linhas opcionais
 - Linhas de interrupção
 - Não compartilhadas
 - Suporte de cache
 - Extensão de barramento de 64 bits
 - 32 linhas adicionais
 - Multiplexada no tempo
 - 2 linhas para ativar dispositivos a combinar para usar transferência de 64 bits
 - JTAG/Boundary Scan
 - Para procedimentos de teste

- Comandos PCI
 - Transação entre iniciador (mestre) e destino
 - Mestre reivindica barramento
 - Determina tipo de transação
 - Ex: leitura/escrita de E/S
 - Fase de endereço
 - Uma ou mais fases de dados

Referências

- STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 8. ed. Prentice Hall, 2009.
- DELGADO, J.; RIBEIRO, C. Arquitetura de Computadores. 2 ed. LTC, 2009.