"2a Evaluación ℝ"

Respuesta sin justificar mediante procedimiento no será tenida en cuenta en la calificación. Escriba sus respuestas en el espacio indicado. Tiene 45 minutos para contestar esta prueba.

Nombre: Curso: Fecha:

- 1. Sean $x,\,y$ y znúmeros reales con $x<0,\,y>0$ y z>0. Halle el signo de cada expresión
 - a) -(z)
 - b) -xz
 - c) xyz
 - $d) xyz^2$
 - $e) xy^2z^2$
- 2. Evalúe las siguientes expresiones
 - $a) (-3)^2 =$
 - $b) (5)^2 =$
 - $c) 4^{-2} =$
 - $d) \frac{5^2}{5^3} =$
 - $e) \ \frac{\sqrt{12}}{\sqrt{3}} =$
- 3. Simplifique las siguientes expresiones:
 - a) $\sqrt{75} \sqrt{12} + \sqrt{48} =$
 - b) $(\sqrt{3} + \sqrt{2})(\sqrt{3} \sqrt{2}) =$
 - c) $(\sqrt{3} \sqrt{2})^2 =$
 - $d) \ \sqrt{\tfrac{2}{3}}\sqrt{75} =$

"2a Evaluación ℝ"

Page 2 of 2

$$e) \frac{\sqrt[3]{81}}{\sqrt[3]{64}} =$$

4. Las dimensiones de un aula son 8 m de largo, 5 m de ancho y 3 m de alto. ¿Cuál es la mayor distancia a la que pueden encontrarse dos zancudos dentro del aula?

Prueba saber

- 5. Se puede encontrar números racionales mayores que k, de manera que sean cada vez más cercanos a él, calculando $k+\frac{1}{j}$ (con j entero positivo). Cuanto más grande sea j, más cercano a k será el racional construido. ¿Cuántos números racionales se pueden construir cercanos a k y menores que $k+\frac{1}{11}$?
 - a) Una cantidad infinita, pues existen infinitos números enteros mayores que 11
 - b) 11, que es el número que equivale en este caso a j
 - c) Uno, pues el racional más cercano a k se halla con j=10, es decir, con k+0.1
 - d) 10, que es la cantidad de racionales menores que 1

-			
Just:			