ADMINISTRAÇÃO DE BANCO DE DADOS

Prof. Celso M. furtado

- Desde os tempos mais remotos da tecnologia da informação os dados tem sido o coração de tudo que os computadores fazem;
- Usuários entram dados e o computador processa, analisa, faz cálculos e então a saída ocorre;
- Notou o que há de comum? Tudo está relacionado com dados!
- À medida que a tecnologia se torna cada vez mais parte da vida cotidiana mais os dados fazem parte da nossa vida.

- Os dados vem de várias formas e formatos. Consideremos alguns exemplos:
 - Pedidos que você faz na sua loja online preferida;
 - Problemas que são armazenados por uma pessoa em um call center;
 - Dados financeiros incluindo calculo de juros, taxas e investimentos gerados por bancos e empresas de investimentos;
 - Imagens geradas por equipamentos médicos complexos;
 - Inventário de produtos que são rastreados através de suas etiquetas RFID e informações sobre os pontos de venda;
 - Arquivos de imagem, vídeo e áudio carregados nas redes sociais;
 - Sites de compartilhamento de vídeo...

- A quantidade de dados gerados estão crescendo a uma taxa explosiva;
- Pense na quantidade de vendas online ocorrendo todos os dias;
- Acrescente a isso as postagens efetuadas nas mídias sociais a partir de smartphones;
- Cada venda no varejo está amarrado a sistemas de rastreamento e inventário automatizados;
- Praticamente tudo que fazemos e que envolve interação, comunicação ou comércio GERA DADOS!!

- O tamanho e quantidade de dados criados também estão crescendo conforme a tecnologia as envolve;
- Arquivos de imagem, vídeos e som tomam cada vez mais espaço nos discos dos computadores do que simples arquivos de texto;
- Dispositivos médicos e científicos como as imagens por satélite e imagens por ressonância magnética são exemplos de como dados grandes são gerados rapidamente e são parte da vida das pessoas.

Definindo um banco de dados

- Todos estes dados precisam residir em algum lugar, mais especificamente em um banco de dados;
- Banco de dados são programas complexos que catalogam e provem acesso aos dados;
- Embora os dados sejam armazenados em sistemas de armazenamento de disco, os programas de banco de dados gerenciam como os dados são armazenados e acessados.

Definindo um banco de dados

- As empresas utilizam SGBD (Sistema Gerenciador de Banco de Dados) devido ao fato de que os seus dados muitas vezes excedem em tamanho e complexidade as formas de armazenamento mais comuns planilhas, arquivos texto, etc.;
- A maioria das atividades empresariais e científicas envolvem tecnologias que requerem a criação, acesso, atualização ou exclusão dos dados em algum nível;
- Os SGBDs são os softwares que garantem que estas ações ocorram de forma rápida e eficiente.

ARMAZENAMENTO

- Os dados precisam ser mantidos em um sistema computacional, de modo que estejam disponíveis quando necessário;
- As tecnologias de armazenamento podem variar, mas precisam ser rápidas e com grande capacidade. Muitas vezes são caros e complexos.

ORGANIZAÇÃO

 Os dados devem ser armazenados de maneira lógica no disco de modo que possa ser acessado de forma rápida e eficiente.

ACESSO

- Os dados devem ser acessados de forma rápida e eficiente;
- retornar os dados que o requisitante precisa é uma função chave.

SEGURANÇA

- Um SGBD determina quem pode acessar o banco de dados e o que pode ser feito com os dados;
- A segurança deve ser reforçada.

ADICIONAR, ATUALIZAR E EXCLUIR

- Depois que os dados são adicionados ao banco ele pode ser modificado e excluído;
- O SGBC gerencia as regras complexas de como os dados são manipulados.

ARMAZENAMENTO SEGURO

- Os SGBDs devem manter os dados seguros e disponíveis quando ocorrer alguma falha, como um dano a disco, por exemplo;
- Backup e Recovery são os processos utilizados para garantir que os dados não sejam perdidos permanentemente.

PROCESSO GERAL

Você abre o banco de dados e insere seus dados O banco decide qual a melhor forma de catalogar os dados de maneira segura

Quando você quer acessar, modificar ou excluir os dados o SGBD checa suas configurações de segurança e implementa as requisições da maneira mais rápida e eficiente possível

Definindo um banco de dados

- Sistemas Gerenciadores de Banco de dados se parecem mais com um Sistema operacional do que uma simples aplicação que você pode iniciar e parar;
- Bancos de Dados Avançados possuem usuários, privilégios de segurança avançados, configurações de rede, ajustes de processamento, memória e armazenamento, além de um complexo sistema de backup e recuperação.

Oracle Database 11g

- O "g" do número da versão significa "grid";
- Grid Computing é uma forma de organizar os computadores de uma maneira que os seus recursos possam ser flexíveis e dinamicamente alocados e acessados. Recursos tais como:
 - Processador;
 - Armazenamento;
 - Banco de dados;
 - Aplicações

Oracle Database 11g Aplicação de conceitos Grid

- RAC Real Application Cluster é uma arquitetura que mantém vários servidores de banco de dados;
 - O acesso dos usuários é feito de forma distribuída e com balanceamento de carga;
 - Aumenta a disponibilidade, já que se um servidor "cair" haverão outros que poderão atender as requisições

Oracle Database 11g Aplicação de conceitos Grid

- ASM Automatic Storage
 Management é uma arquitetura criada para gerenciar o armazenamento de dados;
 - Os arquivos que compõe o banco de dados são armazenados em múltiplos discos, que garante a disponibilidade;
 - Os servidores podem acessar qualquer disco, já que os dados encontram-se espelhados, o que melhora o desempenho;
 - Os discos podem ser adicionados ou removidos com o banco de dados em funcionamento.

Oracle Database 12c

- O "c" do número da versão significa "cloud";
- A partir da versão 12 o banco de dados Oracle tem suporte para computação em nuvem, disponibilizando serviços tais como:
 - Servidores;
 - Máquinas virtuais;
 - Plataformas de software;
 - Aplicações;
 - Armazenamento...

Oracle Database 12c

- Todos os serviços ficam disponíveis na rede e as empresas podem pagar para usar estes serviços;
- Os recursos podem ser ampliados ou diminuídos de acordo com a demanda da organização;
- Por exemplo, durante a "Black Friday" uma loja online pode aumentar sua capacidade de processamento e acesso automaticamente;
- O custo ao provedor será de acordo com o uso dos recursos disponíveis.

CLOUD Computing

Oracle Database 12c Multitenant Architecture

- Antes da versão 12c podíamos criar apenas Container Data Base (CDB);
- Cada banco de dados tinha sua própria estrutura como memória e arquivo de banco de dados;
- Mesmo com o gerenciamento eficiente de memória e disco havia a duplicação de memória e objetos do banco de dados;
- Com a arquitetura "Multitenant" é
 possível utilizar a mesma estrutura de
 recursos com vários banco de dados
 chamados Plugable Data Base PDB;
- É possível atualizar a versão do banco para apenas alguns banco de dados;
- É possível desconectar um PDB de um CDB e conectá-lo a outro, por exemplo, que tenha a versão correta do banco.

Oracle Database 12c Undo e Redo

Undo

- Significa reverter a ação de uma ação recente. Por exemplo, podemos reverter a exclusão de um registro em uma tabela;
- O Oracle grava todos os dados que estão prestes a mudar como "undo". Esta informação permite ao Oracle desfazer mudanças em caso de "rollback".

Oracle Database 12c Undo e Redo

Redo

- Significa fazer algo novamente;
- O Oracle grava todas as mudanças efetuadas no banco de dados. Se houver algum problema no banco, esta informação permite ao Oracle refazer a mudança.

Oracle Database 12c Instância e Banco de Dados

Instância

- Refere-se ao conjunto de processos do Oracle e compartilhamento de memória (SGA - System Global Área);
- Cada banco de dados rodando no Oracle database está associado com pelo menos uma instância Oracle.

Oracle Database 12c Instância e Banco de Dados

Banco de dados

- Refere-se ao conjunto de arquivos físicos no sistema operacional;
- Cada arquivo mantém os dados de usuário, dicionário de dados e outras informações sobre o banco de dados.

- Criar o arquivo initprod.ora com os seguintes parâmetros:
- db_name: determina o nome do banco de dados;
- memory_target: especifica o tamanho de memória utilizável;
- control_files: arquivo que contém entradas que descrevem a estrutura do banco de dados (como seu nome, data de criação, localização dos arquivos de dados, etc);
- diagnostic_dest: especifica o diretório onde diagnósticos para uma instância estão localizados.

• O que é um Control File:

- Cada banco de dados Oracle possui um control file;
- Um control file é um pequeno arquivo binário que armazena a estrutura física do banco de dados, que inclui:
 - Nome do banco de dados,;
 - Nomes e localizações de arquivos de dados (datafiles) associados e log online de arquivos redo;
 - Data de criação do banco de dados;
 - Número de sequência do log atual;
 - Informações de checkpoint.

O que é um Control File:

- O control file deve estar disponível para escrita pelo banco de dados Oracle sempre que o banco de dados é aberto;
- Sem o control file, o banco de dados não pode ser montado e a recuperação se torna muito difícil;
- O control file de um banco de dados Oracle é criado ao mesmo tempo que o banco de dados;
- Por padrão, pelo menos uma cópia do control file é criado durante a criação do banco de dados.
- Você deve criar uma ou mais cópias do control file durante a criação do banco de dados.

- Estrutura de memória do banco de dados Oracle
- Quando uma instância é iniciada, o Oracle database aloca uma área de memória e inicia processos em background. A área de memória armazena informações tais como:
 - Código do programa;
 - Informação sobre cada sessão conectada;
 - Informações necessárias durante a execução do programa, por exemplo o estado de uma consulta das quais linhas foram buscadas;
 - Informações tal como bloqueio de dados que está compartilhado e comunicando-se entre processos;
 - Dados em cache, tais como dados bloqueados e registros redo, que também existem no disco.

- Estrutura de memória do banco de dados Oracle
- A estrutura básica de memória associadas ao Oracle database incluem:
 - System Global Area (SGA), que é um grupo de estruturas de memória compartilhada conhecidas como SGA componentes, que contém dados e informações de controle para uma instância de banco de dados Oracle;
 - Todos os servidores e processos em segundo plano compartilham a SGA;
 - Exemplos de dados armazenados na SGA incluem cache de dados bloqueados e áreas de SQL compartilhados.

- Estrutura de memória do banco de dados Oracle
- A estrutura básica de memória associadas ao Oracle database incluem:
 - Program Global Area (PGA), é uma região de memória não compartilhada que contém dados e informações de controle exclusivamente para uso por um processo Oracle. O PGA é criado durante a inicialização de processo Oracle;
 - Um PGA existe para cada processo de servidor e processos de segundo plano.

Estrutura de memória do banco de dados Oracle

- A estrutura básica de memória associadas ao Oracle database incluem:
 - User Global Area (UGA) é a parte da memória associada com a sessão de um usuário;
 - Software Code Area é a parte da memória usada para armazenar código que está sendo executado ou poderá ser executado;
 - Código do banco de dados Oracle é armazenado em uma área que está tipicamente em uma localização diferente dos programas de usuário - uma localização mais protegida.

• Exemplo do arquivo initprod.ora:

```
db_name=prod
memory_target=500m
control_files='/disk1/prod/control/control01.ctl','/disk1/prod/control/control02.ctl'
diagnostic_dest='/disk1/prod/diag'
compatible=11.2.0
```

- Um banco de dados Oracle pode ser criado de forma manual ou utilizando o assistente de criação de banco dadso "DBCA";
- Para ambas as formas de criação do banco de dados será necessário informar basicamente os seguintes parâmetros:
 - Nome do banco de dados;
 - Datafile "system.dbf";
 - Datafile "sysaux.dbf";
 - User data tablespace;
 - Undo tablespace;
 - Logfiles.

Tablespaces e Datafiles

• O Oracle armazena os dados logicamente em tablespaces e fisicamente em datafiles associados com o tablespace correspondente, conforme a figura ao lado.

- Databases, tablespaces e datafiles são muito parecidos, mas eles possuem diferenças importantes;
- Cada tablespace em um Oracle database consiste de um ou mais arquivos chamados "datafiles", os quais são estruturas físicas em conformidade com o sistema operacional que estão executando;
- Os dados do banco de dados estão armazenados coletivamente nos datafiles que constituem cada tablespace do banco de dados.

Criação do banco de dados manualmente

• Por exemplo, o banco de dados Oracle mais simples deveria ter um tablespace e um datafile. Outro banco de dados pode ter três tablespace, e cada um consistindo de dois datafiles, totalizando seis datafiles.

Criação do banco de dados manualmente

- Criar o arquivo dbcreation.sql com os seguintes parâmetros:
- create database: define o nome do banco de dados;
- datafile: especifica o tamanho de memória utilizável;
- control_files: arquivo que contém entradas que descrevem a estrutura do banco de dados (como seu nome, data de criação, localização dos arquivos de dados, etc);
- diagnostic_dest: especifica o diretório onde diagnósticos para uma instância estão localizados.

Criação do banco de dados manualmente

Exemplo de arquivo de criação do banco:

Passos de inicialização do Oracle

- Se você precisa acessar o banco de dados, a instância correspondente ao banco de dados deve ser iniciada, montada e aberta;
- A inicialização de um banco de dados envolve:
- 1. Iniciar uma instância;
- 2. Montar o banco de dados;
- 3. Abrir o banco de dados

Passos de inicialização do Oracle

Passos de finalização do Oracle

- Há diferentes modos para parar um banco de dados Oracle, são eles:
- 1. Shutdown immediate;
- 2. Shutdown transactional;
- 3. Shutdown normal;
- 4. Shutdown abort;

Passos de finalização do Oracle

Shutdown Modes

Shutdown Modes	A	I	T	N
Allows new connections	No	No	No	No
Waits until current sessions end	No	No	No	Yes
Waits until current transactions end	No	No	Yes	Yes
Forces a checkpoint and closes files	No	Yes	Yes	Yes

Shutdown modes:

- A = ABORT
- I = IMMEDIATE
- T = TRANSACTIONAL
- N = NORMAL

Como os dados são armazenados

 Um banco de dados Oracle tem a sua estrutura armazenada de duas formas:

Física e Lógica

- O banco de dados Oracle aloca espaço lógico para todos os dados no banco de dados;
- As unidades lógicas do espaço de alocação dos banco de dados são:
 - Data Blocks;
 - Extents;
 - Segments;
 - Tablespace;

Data block

- No menor nível de granularidade o Oracle armazena os dados em blocos de dados;
- Um bloco de dados corresponde a um número específico de bytes do espaço físico de disco, por exemplo 2 KB;
- São a menor unidade de armazenamento que o Oracle pode usar e alocar.

Extent

- O extent é um conjunto de blocos de dados logicamente contíguos alocados para armazenar um tipo específico de informação;
- Na figura ao lado, o extent de 24 KB tem 12 data blocks, enquanto que o extent de 72 KB tem 36 data blocks.

Segment

- O segment é um conjunto de extents alocados para um objeto de banco de dados específico, como uma tabela;
- Por exemplo, os dados na tabela de funcionários é armazenado em seu próprio segmento de dados, enquanto que cada índice para empregados é armazenado em seu próprio segmento de índice;
- Cada objeto do banco de dados que consome armazenamento consiste de um segmento.

Segment

- Cada segment pertence a um e somente um tablespace;
- Assim, todos os extents para um segmento são armazenados no mesmo tablespace;
- Dentro de um tablespace, um segment pode incluir extents de múltiplos data files;
- Por exemplo, um extent para um segment pode ser armazenado em user01.dbf, enquanto outro é armazenado em users02.dbf;.

São containers lógicos para armazenar segmentos. Segmentos são objetos do banco de dados, como tabelas e índices, que consomem espaço de armazenamento. No nível físico, um tablespace é formado por um ou mais data files. Os tablespaces default são:

- SYSTEM
- SYSAUX
- TEMP
- UNDOTBS1
- USERS
- EXAMPLE

UNDO tablespace

Todos os bancos de dados Oracle precisam de um local para armazenar informações a desfazer, ou seja, esse tablespace contém seus segmentos de reconstrução;

Possui a capacidade de recuperar transações incompletas ou abortadas;

Um segmento de UNDO é usado para salvar o valor antigo quando um processo altera o valor do banco de dados;

Ele armazena a localização dos dados e também os dados da forma como os dados se encontravam antes da modificação;

UNDO tablespace

Basicamente, os objetivos de UNDO são:

Rollback de Transação: quando uma transação modifica uma linha de uma tabela, a imagem original das colunas modificadas é salva no segmento de UNDO, e se for feito o rollback da transação, o servidor Oracle restaurará os valores originais gravando os valores do segmento de UNDO novamente na linha.

UNDO tablespace

Basicamente, os objetivos de UNDO são:

Recuperação de Transação: Se ocorrer uma falha de instância enquanto houver transações em andamento, o servidor Oracle precisará desfazer as alterações não submetidas à commit quando o banco de dados for aberto novamente. Esse rollback faz parte da recuperação da transação;

Portanto, a recuperação só é possível porque as alterações feitas no segmento de UNDO também são protegidas pelos arquivos de redo log online.

UNDO tablespace

Basicamente, os objetivos de UNDO são:

Consistência de Leitura: Enquanto houver transações em andamento, outros usuários do banco de dados não deverão ver as alterações não submetidas à commit feitas nessas transações;

Além disso, uma instrução não deverá ver as alterações submetidas à commit após o início da execução dessa instrução;

Os valores antigos (dados de undo) dos segmentos de UNDO também são usados para oferecer aos leitores uma imagem consistente de uma instrução específica.

SYSTEM tablespace

- É usado pelo Oracle Server para gerenciar o banco de dados;
- Ele contém o dicionário de dados que guarda informações administrativas sobre o banco de dados;
- Nem todos os usuários podem ter acesso a esse tablespace;
- Não podemos renomear, apagar e nem torna-lo offline;
- Normalmente você pode armazenar dados do usuário aqui, mas não é recomendável;
- Deve ser usado puramente pelo Oracle Server para armazenar todas as informações administrativas e tabelas de dicionário de dados.

SYSAUX tablespace

- Que significa "auxiliar do sistema";
- É um tablespace auxiliar para o SYSTEM tablespace;
- É obrigatório;
- Alguns dos objetos que antes eram armazenados no SYSTEM tablespace agora são armazenados em SYSAUX;
- Possui as mesmas condições de um SYSTEM tablespace, ou seja, não pode ser renomeado, apagado e nem colocado em offline;

TEMP tablespace

 Utilizado para armazenar todos os dados temporários sempre que você executa uma instrução SQL que requer armazenamento e leitura, como operações de ordenação, funções matemáticas, criação de índices.

USERS tablespace

- Utilizado para armazenar todos os dados criados pelos usuários;
- Normalmente, durante a criação da tabela o DBA atribui um tablespace para a tabela que precisa ser armazenada;
- Se o DBA não indicar qualquer tablespace, por default todos os dados relacionados aquela tabela são armazenados no USERS tablespace.

EXAMPLE tablespace

- Este tablespace contém todos as tabelas de exemplo que são instalados quando você cria o banco de dados;
- Se você não instalar as tabelas de exemplo este tablespace não será criado.

ONLINE/OFFLINE

- Quando o tablespace está executando e o Oracle pode ler ou escrever no tablespace dizemos que ele está ONLINE.
- O tablespace está OFFLINE quando o Oracle não pode ler ou escrever no tablespace;
- Para executar tarefas de backup, recovery, remoção ou movimentação de um tablespace ou data file sem fechar o banco de dados, colocamos o tablespace em modo OFFLINE.

Criação de tablespace no Oracle Database

```
create tablespace tbs1
datafile '/disk1/dev/data/data01.dbf'
size 50m
autoextend on
next 512k
maxsize 250m;
```

Aumentar o tamanho de um tablespace existente

```
alter tablespace tbs1
add datafile '/disk1/dev/data/data02.dbf'
size 50m
autoextend on
next 512k
maxsize 250m;
```

Aumentar o tamanho de um banco de dados

```
alter database
datafile '/disk1/dev/data/data02.dbf'
resize 100m;
```

Os tablespaces temporários são utilizados para manusear operações do banco de dados, e são usados também para armazenar tabelas locais temporariamente.

Por exemplo, quando você junta duas tabelas muito grandes o Oracle pode não possuir memória RAM suficiente, então ele aloca o resultado em um Temporary Tablespace

Toda query que resulta em uma grande quantidade de dados como resultado será armazenado em um Temporary Tablespace.

Temporary Tablespace group

O Temporary Tablespace Group permite que um banco de dados Oracle escreva em múltiplos Temporary Tablespaces simultaneamente.

Temporary Tablespace group

Um usuário fica atribuído a um grupo ao invés de um Temporary Tablespace simples;

Uma única operação SQL pode usar múltiplos Temporary tablespaces.

Temporary Tablespace group

A criação de um grupo ocorre no momento da criação de um Temporary Tablespace e a partir daí podemos adicionar outros Temporary Tablespace ao grupo

UNDO Management

UNDO Data é a cópia dos dados antes de serem modificados por uma transação que altera dados.

UNDO Data é usado para:

- Transações de Rollback;
- Suportar leitura de consultas consistentes;
- Suportar operações de flashback;
- Recuperar-se de transações que falham.

CUSTOMER_ID	Name	Country
10	JOHN	USA
11	TOM	USA

INSERT

INSERT INTO CUSTOMER (customer_id, name, country) values (12, 'JOE', 'USA);

Undo

OP 5.1 (11.1) Delete Row Piece - DRP Slot 4:

UPDATE

UPDATE CUSTOMER
SET
name = 'JEFF',
country='IRELAND'
WHERE customer_id = 10;

OP 5.1 (11.1) Update Row Piece - URP Slot 4:

c1: JOHN c2: USA

DELETE

DELETE FROM CUSTOMER WHERE customer_id =11

OP 5.1 (11.1) Insert Row Piece - IRP

Slot 4:

C0: 11 C1: TOM C2: USA

Os dados em UNDO permanecem no disco até:

- Usuário comitar (commit) a transação;
- Usuário reverta (rollback) as transação.

Os dados em UNDO permanecem no disco até:

 Usuário execute algum comando DDL (CREATE, DROP, ALTER e RENAME) na tabela para o qual os dados são mantidos.

Os dados em UNDO permanecem no disco até:

 A sessão do usuário é terminada de forma "anormal", e neste caso ocorrerá um rollback e os dados em UNDO não serão mais mantidos.

Os dados em UNDO permanecem no disco até:

 A sessão do usuário é terminada de forma "normal", e neste caso ocorrerá um commit e os dados em UNDO não serão mais mantidos.

Onde ficam os dados de UNDO:

- Armazenados em UNDO tablespace;
- Somente um tablespace ativo para uma instancia;
- Pertencem ao usuário SYS.

Uma conta de usuário do banco de dados é uma forma de organizar os proprietários dos objetos do banco de dados e os direitos de acesso.

Cada usuário do banco de dados possui:

- Um nome de usuário único;
- Um método de autenticação;
- Um tablespace default;
- Um tablespace temporário;
- Um user profile;
- Um status de conta.

O que é um Schema?

- É uma coleção de objetos de um banco de dados que pertencem a um usuário;
- Tem o mesmo nome que a conta do usuário.

Para saber mais:

<u>Understanding Database, Instance and Schema in Oracle database</u>

Contas administrativas padrão (default)

• SYS

- Usado pelo DBA;
- É o usuário master;
- Possui todos os privilégios;
- Pode executar operações de inicialização e parada do banco de dados;
- Pode efetuar backup e recovery do banco de dados;
- Pode fazer upgrade do banco de dados;

Contas administrativas padrão (default)

SYSTEM

- É uma conta similar ao SYS;
- Não pode efetuar backup e recovery;
- Não pode efetuar upgrade do banco de dados;
- Deve ser utilizada quando não precisar das operações exclusivas do SYS.

Contas administrativas padrão (default)

DBSNMP

- É uma conta utilizada pelo Oracle Enterprise Manager para monitorar e gerenciar o banco de dados;
- O Oracle Enterprise Manager é uma ferramenta gráfica utilizada para gerenciar o Oracle database.

Contas administrativas padrão (default)

SYSMAN

- Também é utilizada pelo Oracle Enterprise Manager para realizar tarefas administrativas do banco de dados;
- Pode ser utilizado para várias tarefas do banco de dados, como criar tablespace e usuários;
- Também pode ser utilizado para efetuar backup e recovery.

Como criar um usuário?


```
create user pedro identified by 123; create user pedro identified by 123 password expire;
```

Como criar um usuário?

```
create user pedro profile DEFAULT identified by 123 default tablespace TBS1 temporary tablespace TEMP account UNLOCK;
```

grant connect to pedro;
grant <recurso> to pedro;

Trocar senha de um usuário?

alter user pedro identified by pedro123;

User Management Privilégios

Privilégio é um direito de executar um tipo de instrução SQL ou acessar objetos de banco de dados de outro usuário. Há dois tipos de privilégios:

- System privileges
- Object privileges.

User Management System Privilege

Permite o usuário executar uma operação particular do banco de dados:

- CREATE TABLE;
- CREATE TABLESPACE;
- CREATE DATABASE LINK;
- CREATE SYNONYM;
- CREATE VIEW;
- CREATE SESSION;
- UNLIMITED TABLESPACE

Sintaxe:

User Management System Privilege

ANY clause

Garante privilégios ao usuário em todos os Schemas:

Exemplo:

GRANT CREATE TABLE TO pedro;

Pode criar tabela somente no Schema do pedro

GRANT CREATE ANY TABLE TO pedro;

Pode criar tabela no Schema de todos os usuários

User Management Object Privilege

Permite o usuário executar uma operação em um objeto específico, como uma tabela, view, sequence, procedure, function, etc.:

- SELECT
- UPDATE
- INSERT
- ALTER
- EXECUTE

Sintaxe:

GRANT <object_privilege> ON <object>TO<grantee clause> [WITH GRANT OPTION]

Exemplo:

GRANT DELETE ON pedro cliente TO ana;
GRANT DELETE ON pedro cliente TO ana WITH GRANT OPTION:

User Management Object Privilege

Privilege	Description
SELECT	select statement on tables
INSERT	insert statement on the table
DELETE	delete statement on the table
INDEX	Create an index on an existing table
CREATE	Create table statements
ALTER	Ability to perform ALTER TABLE to change the table definition
DROP	Drop table statements
ALL	Grant all permissions except GRANT OPTION
UPDATE	Update statements on the table
GRANT	Allows to grant the privilege that

User Management Revogação de privilégios

Revogar um privilégio significa remover os privilégios concedidos a um usuário.

Há diferenças no comportamento da revogação de Object Privileges e System Privileges.

User Management Revogação de privilégios - SYSTEM

User Management Revogação de privilégios - OBJECT

