

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Gregorio Moreno – Estudiante: Benjamín Mateluna

Teoría de Integración - MAT2534 Tarea 2 09 de Mayo de 2025

Problema 1

Sean f, f_n con $n \ge 1$ funciones integrables tales que $f_n \to f$ μ -ctp. Por designaldad triangular, basta probar que

$$\lim_{n\to\infty} \int |f_n - f| \ d\mu = 0$$

Notemos que $|f_n - f| \le |f_n| + |f|$. Definimos $g_n := |f_n| + |f| - |f_n - f|$ que resulta positiva y medible para todo $n \in \mathbb{N}$. Luego, por lema de fatou

$$2\int |f| \ d\mu = \int \liminf_{n \to \infty} g_n \ d\mu \le \liminf_{n \to \infty} \int g_n \ d\mu$$
$$= \liminf_{n \to \infty} \left(\int |f_n| \ d\mu + \int |f| \ d\mu - \int |f_n - f| \ d\mu \right)$$

usando que $-\inf x = \sup -x$, vemos que

$$2\int |f| \ d\mu \leq 2\int |f| \ d\mu - \limsup_{n \to \infty} \int |f_n - f| \ d\mu$$

se sigue que

$$0 \le \liminf_{n \to \infty} \int |f_n - f| \ d\mu \le \limsup_{n \to \infty} \int |f_n - f| \ d\mu \le 0$$

Concluimos que

$$\lim_{n \to \infty} \int |f_n - f| \ d\mu = 0$$

Problema 2

a) Sea $0 \le s \le f$ simple y sea 0 < c < 1. Definimos $E_n := \{x \in \Omega : g_n(x) \ge c \cdot s(x)\}$ para $n \in \mathbb{N}$. Consideramos la medida $\varphi : \mathcal{F} \to [0, \infty]$ dada por

$$\varphi(E) = \int_E s \ d\mu \quad \text{para } E \in \mathcal{F}$$

Luego,

$$\int g_n \ d\mu \ge \int_{E_n} g_n \ d\mu \ge \int_{E_n} c \cdot s \ d\mu = c \int_{E_n} s \ d\mu = c \cdot \varphi(E_n)$$

Como $g_n \leq g_{n+1}$ para todo $n \in \mathbb{N}$, tenemos que $E_n \subseteq E_{n+1}$. Por otra parte, como $g_n \to f$ vemos que

$$\Omega = \bigcup_{n \in \mathbb{N}} E_n$$

se sigue que

$$\lim_{n \to \infty} \varphi(E_n) = \varphi\left(\bigcup_{n \in \mathbb{N}} E_n\right) = \varphi(\Omega) = \int s \ d\mu$$

de este modo,

$$\lim_{n \to \infty} \int g_n \ d\mu \ge c \cdot \lim_{n \to \infty} \varphi(E_n) = c \int s \ d\mu$$

como c es arbitrario, tomando $c \uparrow 1$, concluimos que

$$\lim_{n \to \infty} \int g_n \ d\mu \ge \int s \ d\mu$$

b) Sea $(s_n)_n$ una sucesión de funciones simples positivas tales que $s_n \uparrow f$, por la parte anterior, tenemos que

$$\int s_n \ d\mu \le \lim_{n \to \infty} \int \inf_{k > n} f_k \ d\mu \le \lim_{n \to \infty} \inf_{k > n} \int f_k \ d\mu = \liminf_{n \to \infty} \int f_n \ d\mu$$

lo que implica que

$$\int \liminf_{n \to \infty} f_n \ d\mu = \int f \ d\mu = \lim_{n \to \infty} \int s_n \ d\mu \le \liminf_{n \to \infty} \int f_n \ d\mu$$

se tiene el lema de fatou.

c) Sean $f, f_n : \Omega \to [0, \infty]$ funciones medibles tales que $f_n \le f_{n+1}$ y $f_n \to f$ μ -ctp. Como $f_n \le f$, por monotonía, sabemos que

$$\lim_{n\to\infty} \int f_n \ d\mu \le \int f \ d\mu$$

por otro lado, por el lema de fatou, tenemos que

$$\int f d\mu = \int \lim_{n \to \infty} f_n d\mu = \int \lim_{n \to \infty} \inf f_n d\mu \le \lim_{n \to \infty} \int f_n d\mu$$
$$= \lim_{n \to \infty} \int f_n d\mu$$

lo que prueba el teorema de convergencia monótona.

Problema 3

Sean $f, f_n : \Omega \to \overline{\mathbb{R}}$ funciones mediles y $g \in L^1$ tales que $f_n \to f$ μ -ctp y $|f_n| \le g$. Notemos que $|f_n| \to |f|$ μ -ctp, luego $|f| \le g$ μ -ctp. Dado $m \in \mathbb{N}$, por teorema de Egoroff, existe $\Omega_m^* \in \mathcal{F}$ tal que

$$\mu((\Omega_m^*)^c) < \frac{1}{m}$$

y f_n converge uniformemente a f en Ω_m^* para todo $m \in \mathbb{N}$. Definimos la sucesión

$$\Omega_m := \bigcup_{i=1}^m \Omega_i^*$$

Notemos que $\Omega_m^c \supseteq \Omega_{m+1}^c$, $\mu(\Omega_m^c) < \frac{1}{m}$ para todo $m \in \mathbb{N}$. Además, la convergencia en Ω_m sigue siendo uniforme, basta tomar máximo. Dado $m \in \mathbb{N}$, se tiene lo siguiente

$$\int |f_n - f| \ d\mu = \int_{\Omega_m} |f_n - f| \ d\mu + \int_{\Omega_m^c} |f_n - f| \ d\mu$$

$$\leq \sup_{x \in \Omega_m} |f_n - f| \mu(\Omega_m) + \int_{\Omega_m^c} |f_n - f| \ d\mu$$

$$\leq \sup_{x \in \Omega_m} |f_n - f| \mu(\Omega) + 2 \int_{\Omega_m^c} g \ d\mu$$

Como g es positiva, consideramos la medida $\varphi:\Omega\to[0,\infty]$ sobre el espacio (Ω,\mathcal{F}) dada por

$$\varphi(E) = \int_E g \ d\mu \quad \text{para } E \in \mathcal{F}$$

que es finita, pues $g \in L^1$. Luego, como $\mu(\Omega_1^c) \le \mu(\Omega) < \infty$ y $\varphi(\Omega_1^c) \le \varphi(\Omega) < \infty$ tenemos

$$\mu\left(\bigcap_{m\in\mathbb{N}}\Omega_m^c\right)=\lim_{m\to\infty}\mu(\Omega_m^c)\quad \text{ y }\quad \varphi\left(\bigcap_{m\in\mathbb{N}}\Omega_m^c\right)=\lim_{m\to\infty}\varphi(\Omega_m^c)$$

Recordemos que $\mu(\Omega_m^c) < \frac{1}{m}$ para todo $m \in \mathbb{N}$, vemos que

$$\mu\left(\bigcap_{m\in\mathbb{N}}\Omega_m^c\right)=\lim_{m\to\infty}\mu(\Omega_m^c)=0\quad\text{lo que implica que}\quad\varphi\left(\bigcap_{m\in\mathbb{N}}\Omega_m^c\right)=0$$

De este modo, por convergencia uniforme, para todo $m \in \mathbb{N}$ se sigue que

$$\limsup_{n \to \infty} \int |f_n - f| \ d \le \limsup_{n \to \infty} \left(\sup_{x \in \Omega_m} |f_n - f| \ \mu(\Omega) + 2\varphi(\Omega_m^c) \right) \\
= \lim_{n \to \infty} \sup_{x \in \Omega_m} |f_n - f| \ \mu(\Omega) + \lim_{n \to \infty} 2\varphi(\Omega_m^c) = 2\varphi(\Omega_m^c)$$

entonces

$$\limsup_{n \to \infty} \int |f_n - f| \ d\mu = \lim_{m \to \infty} \limsup_{n \to \infty} \int |f_n - f| \ d\mu \le 2 \lim_{m \to \infty} \varphi(\Omega_m^c) = 0$$

por lo tanto

$$\lim_{n \to \infty} \int |f_n - f| \ d\mu = 0$$

En particular, usando desigualdad triangular, se tiene que

$$\lim_{n \to \infty} \int f_n \ d\mu = \int f \ d\mu$$

Problema 4

a) Notemos que $\mathbb{1}_X = \mathbf{1} \in \mathcal{V}$, entonces $X \in \mathcal{G}$. Sea $E \in \mathcal{G}$, luego $\mathbb{1}_E \in \mathcal{G}$, como \mathcal{V} es espacio vectorial, vemos que

$$\mathbb{1}_{E^c} = \mathbf{1} - \mathbb{1}_E \in \mathcal{V}$$

se sigue que $E^c \in \mathcal{G}$. En primer lugar veremos que si $A, B \in \mathcal{G}$ entonces $A \cup B \in \mathcal{G}$. En efecto, veamos que $\mathbb{1}_{A \cup B} = \max\{\mathbb{1}_A, \mathbb{1}_B\} \in \mathcal{V}$, inductivamente se tiene que \mathcal{G} es cerrado bajo uniones finitas. Sea $(A_n)_n \subseteq \mathcal{G}$, definimos la sucesión

$$E_n := \bigcup_{i=1}^n A_i \in \mathcal{G}$$

notemos que $E_n \subseteq E_{n+1}$ lo que implica que $\mathbb{1}_{E_n} \le \mathbb{1}_{E_{n+1}} \le 1$ para todo $n \in \mathbb{N}$, entonces

$$\mathbb{1}_{\bigcup_{n\in\mathbb{N}}A_n}=\mathbb{1}_{\bigcup_{n\in\mathbb{N}}E_n}=\sup_n\mathbb{1}_{E_n}\in\mathcal{V}$$

Concluimos que \mathcal{G} es una σ -álgebra.

b) Veamos que dadas $f, g \in \mathcal{V}$ se tiene que $\min\{f, g\} = -\max\{-f, -g\} \in \mathcal{V}$. Sea $f \in \mathcal{V}$, basta ver que $A := f^{-1}((a, \infty)) \in \mathcal{G}$ para todo $a \in \mathbb{R}$, es decir, $\mathbb{1}_A \in \mathcal{V}$. Definimos

$$f_n := \min\{\mathbf{1}, \max\{\mathbf{0}, n(f - \mathbf{a})\}\} \in \mathcal{V}$$

donde $\mathbf{0} = \mathbb{1}_{\emptyset}$ y $\mathbf{a} = a\mathbf{1}$, ambos en \mathcal{V} . Notemos que $f_n \leq 1$ para todo $n \in \mathbb{N}$. Afirmamos que $f_n \leq f_{n+1}$ para todo $n \in \mathbb{N}$, tenemos dos casos. Sea $x \in A$, entonces f(x) - a > 0 y luego $n(f(x) - a) \leq (n+1)$. Si $x \notin A$, entonces $f_n(x) = 0$, con $n \in \mathbb{N}$.

Por lo tanto $\sup_n f_n \in \mathcal{V}$. Afirmamos que $\mathbb{1}_A = \sup_n f_n$. Sea $x \in A$, existe $n \in \mathbb{N}$ tal que $1 \le n(f(x) - a)$ y por ende $f_n(x) = 1$, se sigue que $\sup_n f_n(x) = 1$. Concluimos que f es \mathcal{G} - medible.

c) Definimos $\mu: X \to [0, \infty]$ sobre el espacio (X, \mathcal{G}) como $\mu(E) := I(\mathbbm{1}_E)$ con $E \in \mathcal{G}$. Afirmamos que μ es una medida, en efecto, como $I(f) \geq 0$ para toda $f \in \mathcal{V}$ con $f \geq 0$, entonces dado $E \in \mathcal{G}$ vemos que $\mu(E) = I(\mathbbm{1}_E) \geq 0$. Por otro lado, $\mu(\emptyset) = I(\mathbbm{1}_{\emptyset}) = I(\mathbbm{1} - \mathbbm{1}) = I(\mathbbm{1}) = I(\mathbbm{1}) = I(\mathbbm{1})$

Sea $(A_n)_n \subseteq \mathcal{G}$ disjuntos de a pares, entonces

$$\sum_{n\in\mathbb{N}} \mathbb{1}_{A_n} = \mathbb{1}_{\bigcup_{n\in\mathbb{N}} A_n}$$

de este modo, para $m \in \mathbb{N}$

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = I\left(\mathbbm{1}_{\bigcup_{n\in\mathbb{N}}A_n}\right) = I\left(\sum_{n\in\mathbb{N}}\mathbbm{1}_{A_n}\right) = I\left(\sum_{n=1}^m\mathbbm{1}_{A_n}\right) + I\left(\sum_{n=m+1}^\infty\mathbbm{1}_{A_n}\right)$$
$$= \sum_{n=1}^m I(\mathbbm{1}_{A_n}) + I\left(\sum_{n=m+1}^\infty\mathbbm{1}_{A_n}\right)$$

Consideremos la sucesión $f_m = \sum_{n=m+1}^{\infty} \mathbbm{1}_{A_n}$, luego $f_m \geq f_{m+1}$ y como $\sum_{n \in \mathbb{N}} \mathbbm{1}_{A_n} = \mathbbm{1}_{\bigcup_{n \in \mathbb{N}} A_n}$, se sigue que $\lim_{m \to \infty} f_m = 0$ y por lo tanto $\lim_{m \to \infty} I(f_m) = 0$, así

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lim_{m\to\infty}\sum_{n=1}^m I(\mathbb{1}_{A_n}) + I(f_m) = \sum_{n\in\mathbb{N}}I(\mathbb{1}_{A_n}) = \sum_{n\in\mathbb{N}}\mu(A_n)$$

Por otro lado, μ es de medida finita, en efecto, $\mu(X) = I(\mathbf{1}) \in \mathbb{R}$. En particular, μ es una medida sobre el álgebra \mathcal{G} , por teorema de Caratheodory, $\mu^*|_{\mathcal{F}}$ es la unica extensión de μ a $\sigma(\mathcal{G})$. Sin embargo, $\sigma(\mathcal{G}) = \mathcal{G}$ ya que \mathcal{G} es σ -álgebra y por ende $\mu^*|_{\mathcal{F}} = \mu$ en \mathcal{G} .

Falta ver que dada $f \in \mathcal{V}$ se tiene que

$$I(f) = \int f \ d\mu$$

Sea $s \in \mathcal{V}$ simple y sea $\sum a_i \mathbb{1}_{A_i}$ una representación, vemos que

$$\int s \ d\mu = \sum a_i \mu(A_i) = \sum a_i I(\mathbb{1}_{A_i}) = I\left(\sum a_i \mathbb{1}_{A_i}\right) = I(s)$$

Sean $f, g \in \mathcal{V}$ tales que $f \leq g$, entonces $0 \leq I(g-f) = I(g) - I(f)$, es decir, I es creciente. Sea $f \in \mathcal{V}$ tal que $f \geq 0$, sea $(s_n)_n$ una sucesión de funciones simples positivas tales que $s_n \uparrow f$, de este modo la sucesión $g_n = f - s_n$ es decreciente y $g_n \to 0$, entonces $I(g_n) \to 0$. Además

$$I(s_n) \le I(s_{n+1})$$
 para todo $n \in \mathbb{N}$

así, la expresión $\lim_{n\to\infty} I(s_n)$ existe. Se sigue que

$$I(f) = \lim_{n \to \infty} I(s_n) = \lim_{n \to \infty} \int s_n \ d\mu = \int f \ d\mu$$

Sea $f \in \mathcal{V}$, luego

$$\int f \ d\mu = \int f_{+} \ d\mu - \int f_{-} \ d\mu = I(f_{+}) - I(f_{-}) = I(f)$$