GP modellek II.

Fegyverneki Sándor Miskolci Egyetem Alkalmazott Matematikai Intézeti Tanszék _{matfs}@uni-miskolc.hu

2021. február 15.

1 Bevezetés

(1)
$$W(t) = \xi_0 \frac{t}{\sqrt{\pi}} + \frac{2}{\sqrt{\pi}} \sum_{j=1}^{\infty} \frac{\sin(jt)}{j} \xi_j,$$

ahol $t \in [0,\pi], j \in \mathbf{N}, \xi_j \sim N(0,1),$ azaz standard Gausseloszlású.

Tétel:

(nagy számok gyenge törvénye) Legyen X_1, X_2, \ldots független, azonos eloszlású valószínűségi változók sorozata. Létezik a szórásnégyzet. Ekkor tetszőleges $\varepsilon>0$ esetén

$$\lim_{n \to +\infty} P\left(\left|\frac{X_1 + \dots + X_n}{n} - E(X_1)\right| \ge \varepsilon\right) = 0.$$

Megiegyzés:

Legyen A esemény, P(A) = p, és S_n az A esemény gyakorisága az első n kísérletből egy Bernoulli kísérletsorozatnál.

Legven

$$X_i = \begin{cases} 1, & \text{ha } A \text{ bekövetkezik az } i\text{-edik kísérletnél,} \\ 0, & \text{ha } A \text{ nem bekövetkezik az } i\text{-edik kísérletnél.} \end{cases}$$

Tehát

$$S_n = X_1 + \dots + X_n.$$

Ekkor tetszőleges $\varepsilon > 0$ esetén

(2)
$$\lim_{n \to +\infty} P\left(\left|\frac{S_n}{n} - p\right| \ge \varepsilon\right) = 0.$$

$$S_n \sim B(n,p)$$
, így

Tétel:

(centrális határeloszlás-tétel) Legyen X_1, X_2, \dots független, azonos eloszlású valószínűségi változók sorozata és létezik az $E(X_i) = \mu$ és $D^2(X_i) = \sigma^2 > 0$.

Ha $S_n = \sum X_k$, akkor

(4)
$$\lim_{n \to +\infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} < x\right) = \Phi(x), \qquad x \in \mathbf{R},$$

ahol Φ a standard normális eloszlásfüggvény.

Centrális határeloszlás-tétel

Tétel:

Legyen X_1,X_2,\ldots független, azonos eloszlású valószínűségi változók sorozata és létezik az $E(X_i)=\mu$ és $D^2(X_i)=\sigma^2>0.$ Ha $S_n=\sum_i X_k,$ akkor

$$\sum_{k=1}^{n} 1_k, \text{ distort}$$

(5)
$$\lim_{n \to +\infty} P\left(\frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} < x\right) = \Phi(x), \qquad x \in \mathbf{R},$$

ahol Φ a standard normális eloszlásfüggvény.

Tétel:

(Moivre-Laplace) Legyen a ξ valószínűségi változó binomiális eloszlású n és p paraméterrel és $0 \le a < b \le n$ egész, akkor

(6)
$$P(a \le \xi \le b) = \sum_{k=a}^{b} \binom{n}{k} p^k q^{n-k} \approx$$

(7)
$$\approx \Phi\left(\frac{b-np+\frac{1}{2}}{\sqrt{npq}}\right) - \Phi\left(\frac{a-np-\frac{1}{2}}{\sqrt{npq}}\right).$$

2 Monte Carlo módszerek

Definíció:

Monte Carlo módszereknek nevezzük matematikai feladatok megoldásának véletlen mennyiségek modellezését felhasználó numerikus módszereit.

Véletlen számok

Kísérletezés – a szimuláció olcsóbb.

Kezdetek – véletlenszám táblázatok készítése.

Kísérletek – érme, tű, kocka (nehézségek, idő).

A szimuláció alapvető problémái:

egy determinisztikus számítógépen közelítjük a véletlent.

Diszkréttel közelítünk folytonosat vagy fordítva.

Végtelen feladat korlátos modell, véges szimuláció.

Ne felejtsük el, hogy a valószínűség-számítás fogalmai, tételei feltételezik, hogy az elemzés tömegjelenségre vonatkozik.

3 Pszeudovéletlen számok

Azokat az x_1, x_2, \ldots, x_n számokat, amelyeket egy adott algoritmus alapján számítottunk ki, és a véletlen számok helyett használhatók, pszeudovéletlen számoknak nevezzük. A generálásuknak és ellenőrzésüknek (egyenletesség, véletlenszerűség) külön elmélete alakult ki. Ezzel itt nem foglalkozunk. A legtöbb magasszintű számítógépi programozási nyelv elég jó generátort tartalmaz beépített eljárásként. Azért ajánlatos az ellenőrzés. Itt most két egyszerű pszeudovéletlenszám generátort adunk meg.

Példa:

(8)
$$x_1 = 1, \quad x_{n+1} \equiv 125x_n \pmod{8192}.$$

Példa:

(9) $x_1 = 1$, $x_{n+1} \equiv 16807x_n \pmod{2147483647}$.

Napjainkban majdnem minden számítógép (programozási nyelv, programcsomag) az előző példákhoz hasonló beépített kongruenciális generátort használ. Az x_1, x_2, \ldots, x_k számok generálására ilyen a lineáris kongruencia vagy hatványmaradék módszer, ekkor a következő rekurzív kapcsolat adott:

(10)
$$x_{i+1} \equiv \alpha x_i + c \quad (mod \quad m),$$

ahol α konstans szorzó, c a növekmény és m a modulus. Az x_0 kezdő érték az ún. "seed". Ha megoldjuk a ${f 10}$ egyenletet, akkor azt kapjuk, hogy

(11)
$$x_n \equiv \left[\alpha^n x_0 + c \frac{\alpha^n - 1}{\alpha - 1} \right] \quad (mod \quad m).$$

Nyilván a paraméterek határozzák meg a generátor "jóságát". A szokásos követelmények egy véletlenszámgenerátorral szemben:

- 1. Jó statisztikai tulajdonságok. Tehát legyenek függetlenek (korrelálatlanok) és aznos eloszlásúak.
- 2. Az ismétlődési periódus legyen hosszú, hogy sok és változatos problémánál legyen alkalmazható.
- 3. Ismételhető legyen. Tehát ugyanazokra a paraméterekre ugyanazt a sorozatot adja.
- 4. A szimulációk többsége sok véletlen számot igényel, ezért legyen gyors és könnyen számolható.
- 5. Legyen könnyű a szeparált sorozatok készítése.

A paraméterek választására javasoljuk a [1] irodalmat.

Megjegyzés:

Diszkrét egyenletes (klasszikus valószínűségi mező) eloszlást közelítenek a megadott rekurzív algoritmusok. Az 8 példa még számítógép nélkül is jól használható.

Példa: RANDU

(12)
$$x_1 = 1, \quad x_{n+1} \equiv 65539x_n \pmod{2^{31}}.$$

A számítógépi algoritmusok legtöbbször (valójában mindig diszkrétet, hiszen véges a számábrázolásuk) a [0,1] intervallumon egyenletes eloszlást próbálják közelíteni, mert ebből különböző módszerek segítségével – a tanult eloszlások tulajdonságainak felhasználásával – más eloszlású véletlen számokat tudunk előállítani.

4 Eloszlások generálása

Inverzfüggvény módszer

Ha F szigorúan monoton növő eloszlásfüggvény és X F eloszlású, akkor Y=F(X) egyenletes eloszlású a [0,1] intervallumon. Fordítva, ha $X\sim U(0,1)$, akkor $Y=F^{-1}(X)$ éppen F eloszlású.

$$F_Y(x) = P(Y < x) =$$
= $P(F^{-1}(X) < x) = P(X < F(x)) = F(x).$

Következmény:

- 1. Ha $X \sim U(0,1)$, akkor $Y = (b-a)X + a \sim U(a,b)$.
- 2. Ha $X \sim U(0,1)$, akkor $Y = -\frac{1}{\lambda} \ln(X) \sim Exp(\lambda)$.
- 3. Ha $X \sim U(0,1),$ akkor $Y=tg(\pi(X-0.5))$ standard
- Cauchy eloszlású. 4. Ha $X \sim U(0,1)$, akkor $Y = \Phi^{-1}(X)$ standard normális
- 4. Ha $X \sim U(0,1)$, akkor $Y = \Phi^{-1}(X)$ standard normalis eloszlású.

Az elfogadás-elvetés módszere

Legyen az X valószínűségi változó sűrűségfüggvénye f, amelyhez létezik egy olyan g sűrűségfüggvény, hogy $f(x) \leq cg(x)$ (minden x-re és c egy véges konstans) és a g könnyen generálható eloszlású. Legyen az Y valószínűségi változó g sűrűségfüggvényű és $U \sim U(0,1)$, amely független Y-tól, ekkor

$$(13) \qquad \qquad (Y|\ \mathsf{ha}\ cUg(Y) < f(Y)) \sim X,$$

azaz a feltételes valószínűségi változó éppen megfelel az X eloszlásának.

Bizonyítás: Valójában

$$c = \int cg(y)dy \ge \int f(y)dy > 0$$

és

$$f(y) = 0$$
, ha $g(y) = 0$.

Tehát

(14)

$$P(Y \in [x, x + dx] | cUg(Y) < f(Y)) =$$

$$g(x)dxP\left(U < \frac{f(x)}{cg(x)}\right)$$

$$= \frac{cg(x)f}{P\left(U < \frac{f(Y)}{cg(Y)}\right)}$$

$$P\left(U < \frac{c}{cg(Y)}\right)$$
$$g(x)\frac{f(x)}{cg(x)}dx$$

$$= \frac{g(x)\frac{f(x)}{cg(x)}dx}{\int \frac{f(y)}{cg(y)}g(y)dy} =$$

$$= f(x)dx = P(X \in [x, x + dx]).$$

Search Close

Megjegyzés:

Ez a módszer akkor praktikus, ha Y könnyen generálható és c nem nagyon nagy (tehát az elutasítás nem gyakori). Ha lehetséges, akkor az optimális választás a c konstansra

$$c = \sup_{x} \frac{f(x)}{g(x)}.$$

Példa: Ha $Y \sim \Gamma(1,a)$, akkor $X = \frac{Y}{\lambda} \sim \Gamma(\lambda,a)$. Továbbá, ha $X \sim \Gamma(\lambda, a)$ és $Z \sim \Gamma(\lambda, b)$, akkor $X + Z \sim$

 $\Gamma(\lambda, a+b)$. Tehát elegendő csak olvan $Y \sim \Gamma(1, a)$ eloszlású véletlen számokat generálni, ahol $a \in (0,1]$, ekkor a sűrűségfüggvény

$$f_Y \le \frac{a+e}{ae\Gamma(a)}g,$$

ahol

$$g(x) = \frac{eg_1(x) + ag_2(x)}{a + e},$$

amikor is

$$g_1(x) = ax^{a-1}$$
, ha $0 < x < 1$,

míg

 $a_2(x) = e^{-x+1}$, ha $1 < x < +\infty$.

Ekkor g_1 és g_2 is sűrűségfüggvény és mind a kettő szimulálható az inverzfüggvény módszerrel. g pedig a kettő keveréke, ahol a súlyok

$$\frac{e}{a+e} \text{ \'es } \frac{a}{a+e}.$$

Generálunk egy egyenletest a (0,1) intervallumon ez eldönti, hogy melyik függvénnyel folytatjuk felhasználva az inverzfüggvény módszert és utána az elfogadás-elvetés módszerével kapjuk az Y értékét. Tehát három U(0,1) típusú véletlen számot használunk fel.

Normális eloszlás generálása

A normális eloszlás eloszlásfüggvénye nehezen kezelhető, ezért számos generátort találtak ki a tulajdonságai alapján. Néhány példa.

Példa: Ha $X_i \sim U(0,1) (i = 1, ..., 12)$, akkor

$$Y = \sum_{i=1}^{12} X_i - 6$$

közelítőleg standard normális eloszlású.

Ez a centrális határeloszlás-tétel egy véges alkalmazása.

Nem hatékony, mert sok véletlen számot használ.

A 3 ábrán látható, ha csak három összegét tekintjük.

Figure 3:

Példa: A legtöbb statisztikai programcsomag a következő ún. Box-Müller módszert használja. Legyen

$$U_i \sim U(0,1)(i=1,2),$$

ekkor

$$X_1 = \sqrt{-2\ln U_1} \cos(2\pi U_2),$$

$$X_2 = \sqrt{-2\ln U_1}\sin(2\pi U_2)$$

közelítőleg standard normális eloszlásúak.

5 A közelítő integrálás hibája

Az egyszerű Monte-Carlo módszer esetén a hibabecslés jellemzésére általában a szórást használjuk.

Legyen h egy tetszőleges valós függvény, amely esetén az

(15)
$$\int_{-\infty}^{\infty} h^2(x) dF(x)$$

létezik. Ez szükséges és elégséges feltétele, hogy az Y=h(X) valószínűségi változó, ahol X F eloszlásfüggvényű, szórásnégyzete létezzen. Továbbá legyen

(16)
$$E(h(X)) = \mu$$
, és $D^2(h(X)) = \sigma^2$,

akkor az X_1, X_2, \ldots, X_n minta esetén $(X_i \ F$ eloszlású) a hibabecslés szórásnégyzete (17)

$$D^{2}(\varepsilon) = \frac{1}{n^{2}}D^{2}(h(X_{1}) + h(X_{2}) + \dots + h(X_{n})) = \frac{\sigma^{2}}{n}.$$

Ebből leolvashatjuk a Monte-Carlo módszer egy igen lényeges tulajdonságát: ha a mintaelemek számát növeljük a hiba illetve a jellemzését adó szórás csak \sqrt{n} arányában csökken. Látszólag ez azt jelenti, hogy azok a jó becslések, amelyeknek kicsi a szórása. De azzal, hogy a robusztus tulajdonságok nem változnak meg egy konstans tényező hatására az következik, hogy más szempontból kell összehasonlítani az integrálási tulajdonságokat, illetve érzékenységeket. Ezeket a további vizsgálatokat célszerű úgy elvégezni, hogy a szórások legyenek egyenlőek a becsléseknél. Legyen ez a közös érték 1, s az ilyen egyenletet nevezzük kanonikus egyenletnek.

Példa: Hány darab véletlen számot kell generálni ahhoz, hogy az

$$(18) I = \int_{0}^{\frac{\pi}{2}} \sin x dx$$

integrált megbecsüljük úgy, hogy a becslés abszolút hibája legfeljebb I 0.1% legyen legalább 0.99 valószínűséggel?

Bizonyítás:Tudjuk, hogy

(19)
$$\frac{2}{\pi}I = \frac{2}{\pi} \int_{-\pi}^{\pi} \sin x dx = \int_{-\pi}^{\pi} \sin x \frac{2}{\pi} dx = E(\sin X),$$

ahol $X \sim U\left(0, \frac{\pi}{2}\right)$. Tehát I egy közelítő értéke

$$(20) I_n = \frac{\pi}{2n} \sum_{i=1}^n \sin X_n,$$

ahol X_n pszeudovéletlenszám a $\left(0,\frac{\pi}{2}\right)$ intervallumból. Felhasználva, hogy

(21)
$$\frac{I_n - I}{D(I_n)} \sim N(0, 1),$$

ahol

(22)
$$D^2(I_n) = \frac{\pi^2}{4n} D^2(\sin X) = \frac{\pi^2 - 8}{8n}$$
 kapjuk, hogy $n \approx 1550579$.

Köszönöm a figyelmet!

References

[1] Deák I.: Véletlenszámgenerátorok és alkalmazásaik, Akadémiai Kiadó, Budapest, 1986. 13

[FR11] Fegyverneki Sándor, Raisz Péter: Sztochasztikus modellezés, elektronikus jegyzet, 2011, TÁ-MOP 4.1.2-08/1/A-2009-0001 project, https://www.uni-miskolc.hu/~ matfs/

[FS11] Fegyverneki Sándor: Valószínűség-számítás és matematikai statisztika, elektronikus jegyzet, Kempelen Farkas elktronikus könyvtár, 2011, TÁMOP 4.1.2-08/1/A-2009-0001 project, https://www.uni-miskolc.hu/~ matfs/

[FE78] W. Feller: Bevezetés a valószínűségszámításba és alkalmazásaiba, Műszaki Könyvkiadó, Budapest, 1978.

[2] I.M. Szobol: A Monte-Carlo módszerek alapjai, Műszaki Könyvkiadó, Budapest, 1981.

