

<u>Home</u>

Gameboard

Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M3.1

Essential Pre-Uni Chemistry M3.1

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

On a plot of $\ln(k)$ against $\frac{1}{T}$, what is the y-intercept?

The following symbols may be useful: A, E_A, R, T, k

Part B Units of gradient

Give the units of the gradient of an Arrhenius plot.

- \bigcirc $^{\circ}$ C
- $ightarrow
 m K \, m^{-2}$
- $m N\,dm^{-3}$
- K

Part C Gradient

On a plot of $\ln(k)$ against $\frac{1}{T}$, what is the gradient?

The following symbols may be useful: A, E_A, R, T, k

Home Gameboard Chemistry Physical Kinetics Essential Pre-Uni Chemistry M3.2

Essential Pre-Uni Chemistry M3.2

$$k = A \mathrm{e}^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A Activation energy

If the gradient of an Arrhenius plot is $-1203\,\mathrm{K}$, find the activation energy. Use $R=8.3145\,\mathrm{J\,mol^{-1}\,K^{-1}}$.

Part B Activation energy II

If the gradient of an Arrhenius plot is $-4250\,\mathrm{K}$, find the activation energy. Give your answer to 3 significant figures.

Part C Gradient of Arrhenius plot

If a reaction has activation energy of $16.5\,\mathrm{kJ\,mol^{-1}}$, find the expected gradient of an Arrhenius plot.

Part D y-intercept

The pre-exponential factor, A, is found to have a value of $0.6\,\mathrm{s}^{-1}$ for a first-order reaction. Calculate the expected y-intercept of an Arrhenius plot.

Home Gameboard

d Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M3.3

Essential Pre-Uni Chemistry M3.3

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A A for a first-order reaction

The y-intercept of an Arrhenius plot for a first-order reaction is at -2.30. Find the pre-exponential factor, A, according to the Arrhenius model.

Part B A for a second-order reaction

The y-intercept of an Arrhenius plot for a second-order reaction is at 3.20. Find the pre-exponential factor, A, according to the Arrhenius model.

Home Gameboard

Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M3.4

Essential Pre-Uni Chemistry M3.4

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A Activation energy

The rate constant, k, for a first-order reaction is found to be $0.0250\,\mathrm{s^{-1}}$ at $290\,\mathrm{K}$. If the pre-exponential factor is $26.0\,\mathrm{s^{-1}}$, find the activation energy.

Part B Pre-exponential factor A

The rate constant, k, for a second-order reaction is found to be $0.050\,\mathrm{dm^3\,mol^{-1}\,s^{-1}}$ at $300\,\mathrm{K}$. If the activation energy is $2.50\,\mathrm{kJ\,mol^{-1}}$, find the value of the pre-exponential factor, A.

Home

Gameboard

Physical Chemistry

Kinetics Essential Pre-Uni Chemistry M3.5

Essential Pre-Uni Chemistry M3.5

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A first-order reaction has pre-exponential factor $8.0\,\mathrm{s^{-1}}$ and activation energy $4.8\,\mathrm{kJ\,mol^{-1}}$. Find the rate constant at:

 $290\,\mathrm{K}$ Part A

 $290\,\mathrm{K}$

Part B $900 \, \mathrm{K}$

 $900\,\mathrm{K}$

Home Gameboard Chemistry Physical Kinetics Essential Pre-Uni Chemistry M3.6

Essential Pre-Uni Chemistry M3.6

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

If a reaction has activation energy $14.0\,\mathrm{kJ\,mol^{-1}}$, and a pre-exponential factor of $120\,\mathrm{s^{-1}}$, find the temperature at which the rate constant is equal to $2.00\,\mathrm{s^{-1}}$.

Home Gameboard

Chemistry

Physical

Kinetics Essential Pre-Uni Chemistry M3.7

Essential Pre-Uni Chemistry M3.7

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A reaction is found to have a rate constant of $1.25 \times 10^{-3}\, dm^6\, mol^{-2}\, s^{-1}$ at $400\, K$ and $1.60 \times 10^{-3} \, dm^6 \, mol^{-2} \, s^{-1}$ at $500 \, K.$

Part A E_A

Find the activation energy.

Part B \boldsymbol{A}

Find the pre-exponential factor, A.

Part C Order of the reaction

Give the overall order of reaction.

<u>Home</u> <u>Gameboard</u> Chemistry Physical Kinetics Essential Pre-Uni Chemistry M3.8

Essential Pre-Uni Chemistry M3.8

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Figure 1: M3.8 Arrhenius Plot

Using the graph above, find the activation energy. Give your answer to 2 significant figures

Part B A

Using the graph above, find the pre-exponential factor. Give your answer to 1 significant figure

<u>Home</u>

<u>Gameboard</u>

Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M4.1

Essential Pre-Uni Chemistry M4.1

The iodination of propanone, $C_3H_6O+I_2\longrightarrow C_3H_5OI+HI$, when catalysed in aqueous conditions, obeys the rate law:

$$\mathrm{rate} = k[\mathrm{C_3H_6O}][\mathrm{HCl}]$$

Part A	Catalyst
--------	----------

Identify the catalyst in this reaction.

Part B Type of catalyst

Is the catalyst homogeneous or heterogeneous?

- homogeneous
- heterogeneous

Part C Concentration of catalyst

Home Gameboard Chemistry Physical Kinetics Essential Pre-Uni Chemistry M4.6

Essential Pre-Uni Chemistry M4.6

Complete the following description of heterogeneous catalysis.		
A heterogeneous catalyst works best when it has a large	so that many of its are	
exposed to the reactants. In the first stage, reactants are	onto the catalytic surface, weakening	
internal bonds in the reactant particles. In the second stage, the particles react to form products. The		
of the slowest step in this reaction is lower than that of the slowest step in the uncatalysed		
reaction. The third stage is the , or release, of product particles from the surface. This		
the surface ready for further reactions. If the products are not released, or if some contaminant binds to the surface, further catalytic activity is impeded and the catalyst has been		
Items: mass desorption enthalpy change rate density regenerates surface area active sites volume ads	destruction poisoned absorbed sorbed activation energy corroded	