DCG, Wintersemester 2024/25

Lecture 23 (5 pages)

Metric Embeddings

Anne Driemel updated: January 23, 2025

1 Definitions

Definition 23.1 (Metric space). A metric space is a pair (X, μ) where X is a set and

$$\mu: X \times X \to [0, \infty)$$

is a function satisfying the following conditions for any $x, y, z \in X$:

- (i) $\mu(x,y) = 0$ if and only if x = y (identity)
- (ii) $\mu(x,y) = \mu(y,x)$ (symmetry)
- (iii) $\mu(x,y) \le \mu(x,z) + \mu(z,y)$ (triangle inequality)

A finite metric is a metric space (X, μ) , where X is finite. Let |X| = n, then the function μ can be given by specifying an $n \times n$ matrix of the $\binom{n}{2}$ function values of μ . Another way to specify a finite metric space is by defining an edge-weighted graph with vertex set X, where μ corresponds to the shortest-path metric.

Example 23.2. Example of a metric space defined by a graph on vertex set $V = \{v_1, v_2, v_3, v_4\}$ (left). The same metric space can be given by specifying all pairwise distances (right).

In this lecture we will study the following question. For a given metric space (X, μ) , can we find a mapping $f: X \to \mathbb{R}^d$, such that for any $x, y \in X$:

$$\mu(x, y) = ||f(x) - f(y)||_2$$

where $\|\cdot\|_2$ denotes the Euclidean norm. We denote with ℓ_2^d the metric space defined by \mathbb{R}^d with the Euclidean distance. Often, such a mapping does not exist. Therefore we will relax the requirement on the metric embedding, as follows.

Definition 23.3 (Metric embedding). Let (X, μ) and (Y, σ) be finite metric spaces. A metric embedding is a mapping $f: X \to Y$. We define

$$expansion(f) = \max_{\substack{x,y \in X \\ x \neq y}} \frac{\sigma(f(x), f(y))}{\mu(x, y)}$$

and

$$contraction(f) = \max_{\substack{x,y \in X \\ x \neq y}} \frac{\mu(x,y)}{\sigma(f(x),f(y))}$$

We call the product $expansion(f) \cdot contraction(f)$ the distortion D of f. If D = 1 we say f is isometric.

Example 23.4. An example for a metric embedding $f: V \to \mathbb{R}^2$ of the metric space given in Example 23.2 can be specified as follows

$$f(v_1) = (0,1), \quad f(v_2) = (1,1), \quad f(v_3) = (0,0), \quad f(v_4) = f(1,0)$$

The expansion of f is 1, the contraction of f is $\sqrt{2}$, and the distortion is therefore $\sqrt{2}$.

2 Embedding the Hamming cube

Definition 23.5 (Hamming cube). Consider the finite metric space (X, μ) , where $X = \{0, 1\}^m$ and

$$\mu(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

In other words, the set X are all vertices of the unit hypercube in \mathbb{R}^m and the distance defined by μ between two vectors is the number of positions where the two vectors differ. This is also called the Hamming distance. The metric space can be represented as a graph which has the vertex set V = X and the edge set

$$E = \{(u, v) \in X \times X \mid \mu(u, v) = 1\}$$

We call this metric space the Hamming cube and we denote it with C_m .

Theorem 23.6. Let $m \geq 2$ and $n = 2^m$. There is no metric embedding with distortion D of the Hamming cube C_m into ℓ_2^d , for any dimension d, with

$$D < \sqrt{m} = \sqrt{\log_2 n}$$

Proof. Consider any mapping $f:\{0,1\}^m \to \mathbb{R}^d$, for any d, and assume the Euclidean distance in the target space. We assume that contraction(f)=1. (Otherwise, let contraction(f)=s, then we can scale f uniformly by factor s and get a mapping f' with contraction equal to 1, which has the same distortion as f.)

Let E be the edges of the Hamming cube C_m . Let F be the set of "long diagonals" defined as follows

$$F = \{(u,v) \in X \times X \mid \mu(u,v) = m\}$$

We make the following claim.

Claim 23.7.

$$\sum_{(u,v)\in F} \|f(u) - f(v)\|^2 \le \sum_{(u,v)\in E} \|f(u) - f(v)\|^2$$

Assuming the claim holds true, we finish the proof. Consider the average of the squared length of the embedded edges of E. We have

$$\frac{1}{|E|} \sum_{(u,v) \in E} ||f(u) - f(v)||^2 \ge \frac{1}{|E|} \sum_{(u,v) \in F} ||f(u) - f(v)||^2 \ge \frac{|F|}{|E|} m^2$$

Where the second inequality follows from contraction(f) = 1 and $\mu(u, v) = m$ for $(u, v) \in F$. What is the size of the sets E and F? We have that $|E| = m|X|/2 = m2^{m-1}$, since every vertex of X is connected to m other vertices, by flipping each one of the m bits individually. For F we have that $|F| = |X|/2 = 2^{m-1}$, since every vertex of X is connected to 1 other vertex via an edge in F, by flipping all of its bits at once. It follows that

$$\frac{|F|}{|E|}m^2 = \frac{2^{m-1} \cdot m^2}{m \cdot 2^{m-1}} = m$$

Now, putting the above together we get the following lower bound on the average

$$\frac{1}{|E|} \sum_{(u,v) \in E} ||f(u) - f(v)||^2 \ge m$$

which implies the following lower bound on the maximum

$$\max_{(u,v)\in E} \|f(u) - f(v)\| \ge \sqrt{m}$$

Since any edge in E has length equal to 1, we get that the expansion of f is at least \sqrt{m} . Now, since the contraction is equal to 1 we get that the distortion is at least \sqrt{m} .

It remains to prove the claim. We will first prove it in the simple case m=2 (the 4-cycle).

Lemma 23.8. For any $x_1, x_2, x_3, x_4 \in \mathbb{R}^d$ it holds that

$$||x_1 - x_3||^2 + ||x_2 - x_4||^2 \le ||x_1 - x_2||^2 + ||x_2 - x_3||^2 + ||x_3 - x_4||^2 + ||x_4 - x_1||^2$$

Proof. Assume d=1. For any $x_1, x_2, x_3, x_4 \in \mathbb{R}$ it holds that

$$(x_1-x_2)^2+(x_2-x_3)^2+(x_3-x_4)^2+(x_4-x_1)^2-(x_1-x_3)^2-(x_2-x_4)^2$$

is equal to

$$(x_1 - x_2)^2 - 2x_2x_3 + (x_3 - x_4)^2 - 2x_4x_1 + 2x_1x_3 + 2x_2x_4$$

which is equal to

$$((x_1-x_2)+(x_3-x_4))^2$$

and this is at least 0, which proves the claim for d = 1. For d > 1 we can apply the above inequality for each coordinate and we can sum these inequalities to derive the statement. \Box

Proof of Claim 23.7. We prove the claim by induction on m. The base case (m=2) is given by the lemma above. So consider m>2. We divide the vertex set X of the Hamming cube into two sets. Recall that $X=\{0,1\}^m$. Let X_0 be the vertices where the last coordinate is 0 and let X_1 be the vertices where the last coordinate is 1. That is,

$$X_0 = \{u0 \mid u \in \{0,1\}^{m-1}\}$$

$$X_1 = \{u1 \mid u \in \{0,1\}^{m-1}\}$$

The set X_0 induces an (m-1)-dimensional subcube, let E_0 be its edge set and let

$$F_0 = \{(u, v) \mid u, v \in X_0, \mu(u, v) = m - 1\}$$

be the set of "long diagonals". Let E_1 and F_1 be the edges defined in the same way for X_1 .

Let $E_{01} = E \setminus (E_0 \cup E_1)$. Note that the edges of E_{01} are the edges connecting the two subcubes.

Figure 1: The 4-cycle connecting the vertices $u0, \overline{u}0, \overline{u}1, u1$ (solid red lines). The dashed lines show long diagonals in C_m between these points.

Let \overline{u} denote the vector u with all bits flipped. Now, fix a vector $u \in \{0,1\}^{m-1}$ and consider the 4-cycle spanning the vertices $u0, \overline{u}0, \overline{u}1, u1$ (Note that u and \overline{u} yield the same 4-cycle.)

For any $S \subset X^2$ we define the shorthand

$$\sum_{S} = \sum_{(u,v) \in S} ||f(u) - f(v)||^{2}$$

We have by Lemma 23.8

$$2 \cdot \sum_{F} = \sum_{u \in \{0,1\}^{m-1}} \|f(u0) - f(\overline{u}1)\|^{2} + \|f(\overline{u}0) - f(u1)\|^{2}$$

$$\leq \sum_{u \in \{0,1\}^{m-1}} \|f(u0) - f(\overline{u}0)\|^{2} + \|f(u1) - f(\overline{u}1)\|^{2}$$

$$+ \|f(u0) - f(u1)\|^{2} + \|f(\overline{u}0) - f(\overline{u}1)\|^{2}$$

$$= 2 \left(\sum_{F_{0}} + \sum_{F_{1}} + \sum_{E_{01}} \right)$$

By the inductive hypothesis we have

$$\sum_{F_0} \leq \sum_{F_0}$$
 and $\sum_{F_1} \leq \sum_{F_1}$

for the two subcubes. Putting everything together we get

$$2\sum_{F} \le 2\left(\sum_{E_0} + \sum_{E_1} + \sum_{E_{01}}\right)$$

Dividing both sides by 2 proves the claim.

3 An isometric embedding

Denote with ℓ_{∞}^d the metric space \mathbb{R}^d equipped with the metric μ defined by

$$\mu(x,y) = ||x - y||_{\infty} = \max_{1 \le i \le d} |x_i - y_i|$$

for any $x, y \in \mathbb{R}^d$.

Theorem 23.9. For any finite metric space (X, μ) with |X| = n, there is an isometric embedding into the metric space ℓ_{∞}^n .

Proof. Define a metric embedding f from (X, μ) to ℓ_{∞}^n , by defining n functions $f_1, \ldots, f_n : X \to [0, \infty)$ where f_i gives the ith coordinate of the embedded point, and is defined as

$$f_i(x) = \mu(x, x_i)$$

where x_i denotes the *i*th element of X.

We show that for any $x, y \in X$

$$||f(x) - f(y)||_{\infty} = \mu(x, y)$$

First, we show that f has contraction at most 1. That is,

$$||f(x) - f(y)||_{\infty} \ge \mu(x, y)$$

Suppose that $y = x_j$, then $f_j(x) = \mu(x, y)$ and $f_j(y) = \mu(y, y) = 0$. Therefore,

$$\max_{i} |f_i(x) - f_i(y)| \ge |f_j(x) - f_j(y)| = \mu(x, y)$$

We now show that also the expansion is at most 1. That is,

$$||f(x) - f(y)||_{\infty} \le \mu(x, y)$$

This is equivalent to stating that for all $x, y \in X$ and for all $x_i \in X$ it holds that

$$|f_i(x) - f_i(y)| = |\mu(x, x_i) - \mu(y, x_i)| < \mu(x, y)$$

Assume without loss of generality that $\mu(x, x_i) \ge \mu(y, x_i)$. (Otherwise swap the roles of x and y) By the triangle inequality, we have

$$\mu(x, x_i) \le \mu(x, y) + \mu(y, x_i)$$

and equivalently,

$$\mu(x, x_i) - \mu(y, x_i) < \mu(x, y)$$

This implies that expansion and contraction are both at most 1. Therefore, the distortion is at most 1. \Box

References

• Jiří Matouŝek, Chapter 15.1 and 15.4, Lectures on Discrete Geometry, Springer Graduate Texts in Mathematics.