Лабораторная работа 4.2.1 Кольца Ньютона

Сафиуллин Роберт 19 марта 2019 г.

1 Цель работы:

познакомиться с явлением интерференции в тонких пленках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

2 В работе используются:

измерительный микроскоп с опак-иллюминатором; плосковыпуклая линза; пластинка из чёрного стекла; ртутная лампа ДРШ; щель; линзы; призма прямого зрения; объектная шкала.

3 Экспериментальная установка

Рис. 1. Схема установки для наблюдения колец Ньютона

Источником света служит ртутная лампа, находящаяся в защит- ном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора K, коллимато- ра (щель S и объектив O) и призмы прямого зрения П. Эти устрой- ства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на опак-иллюминатор (ОИ), расположенный между окуляром и объективом микроскопа специальное устройство для освещения объекта при работе в отражённом свете. Внутри опак- иллюминатора находится полупрозрачная пластинка P, наклоненная под углом 45° к оптической оси микроскопа.

4 Ход работы

Определение радиуса кривизны линзы 1) Добиваясь наилучшей видимости колец, настроили микроскоп и монохроматор.

- 2) Установив перекрестие на середину крайнего левого кольца, начнем двигаться вправа, записывая координату каждого кольца.
- 3) Проделаем это для светлых и темных колец.
- 4) Также, используя сетку $0.01~\mathrm{mm}$, найдем цену деления нашей объектной шкалы, совместив ее деления с сеткой: $0.001~\mathrm{mm}$

Темные	N	Left q, дел	Right q, дел	$r_m^2 * 10, mm^2$
	10	54	765	1.26
	9	76	750	1.13
	8	92	728	1.01
	7	114	707	0.88
	6	139	677	0.72
	5	166	655	0.6
	4	195	625	0.46
	3	230	588	0.32
	2	270	541	0.18
	1	318	507	0.09
	0	411	411	•
Светлые	10	97	832	1.35
	9	106	814	1.25
	8	137	792	1.06
	7	157	770	0.94
	6	177	749	0.82
	5	207	722	0.66
	4	234	692	0.52
	3	265	658	0.38
	2	304	622	0.25
	1	354	571	0.12
	0	468	468	•

Построим по ней график:

5) Зная формулы темных и светлых максимумов: $r_{mt} = \sqrt{\lambda_{zel}Rm}$ $r_{ms} = \sqrt{R \lambda_{\text{желт}} (m - 0.5)}$, определим радиус кривизны линзы:

 $R_1 = 2.33 \text{ cm}$

 $R_2 = 2.39 \text{ cm}$ $R = \frac{R_1 + R_2}{2} = 2.36 cm$

6) Пронаблюдаем биения. Посчитаем количество светлых максимумом до размытой картины. Используя формулу $\triangle m = \frac{\lambda_2}{2(\lambda_2 - \lambda_1)}$, найдем длину "темной волны: $\lambda_1 = 537 nm$ (длина зеленой волны - $\lambda_{\text{зел}} = 546 \text{ nm}$