線形代数学・同演習 A

演習問題 12

- 1. (1) $(-1)^{n(n-1)/2}$ (2) $1 + x^2 + x^4 + \dots + x^{2n} = \frac{1-x^{2n+2}}{1-x^2}$ (3) $\lambda c_1 \dots c_{n-1} \sum_{i=1}^n a_i b_i \frac{c_1 \dots c_{n-1}}{c_i}$ (4) $x_1 \dots x_n \left(1 + \sum_{i=1}^n \frac{i}{x_i}\right)$
 - (1) 帰納法を用いると楽.与えられた n 次の行列を J_n と書けば,第 1 行に関する 余因子展開より $\det J_n = (-1)^{n+1} \det J_{n-1} = (-1)^{n-1} \det J_{n-1}$ これと $\det J_1 = 1$ より分かる.(2) 与えられた n 次正方行列を A_n とおく.まず $\det A_1 = x^2 + 1$, $\det A_2 = x^4 + x^2 + 1$ であることが分かる.さて, $n \geq 3$ のとき A_n の第 1 行に関して 余因子展開をすれば, $\det A_n = (x^2 + 1) \det A_{n-1} + x \det a_{n-2}$ となることが分かる. あとは n = 1, 2 のときの場合から $\det A_n = \sum_{k=0}^n x^{2k}$ と推測して帰納法を用いるか, あるいはこの漸化式を直接解く.(3) 第 n 行に関して余因子展開し,帰納法を用いる. 或いは演習問題 11 の 3 (b) を使ってもできる.(4) まず第 1 行をピボットとして,他 の行を掃き出す.すると,ちょうど問題(3)の形になっているので,あとは問題(3)の 結果を利用すればよい.
- 2.† (1) $(x, y, z) = \frac{1}{2}(-13, -14, 1)$ (2) $(x, y, z) = \frac{1}{4}(-7, 9, -7)$
- 3. (1) 3x + 3y + z = -4 (2) 4x 3y + 3z = -11
- 4. (1)与えられた方程式は $a(x^2+y^2)+bx+cy+d=0$ の形であり,三点が同一直線上にないという仮定から $a\neq 0$ となるため,この方程式は円を表すことが分かる.また, $(x,y)=(x_i,y_i)$ (i=1,2,3) とすれば行列式の性質から左辺は 0 になるので,この円は三点 (x_i,y_i) (i=1,2,3) を通っていることが分かる.
 - (2) (a) $x^2 + y^2 = 1$ (b) $(x 7)^2 + y^2 = 5^2$ (c) $(x 4)^2 + (y + 2)^2 = (\sqrt{5})^2$ (d) $(x + \frac{11}{2})^2 + (y + \frac{9}{2})^2 = (\frac{5\sqrt{10}}{2})^2$
 - (3) 三点が同一直線上にあるとき,(1) の記号を用いれば a=0 ということになる.このときには方程式は bx+cy+d=0 となり,これは直線になる(或いは,もっと退化して情報を何も持たなくなってしまう可能性もある).