Ejemplo 7

Sean \mathbf{a} y \mathbf{b} dos vectores ortogonales no nulos. Si \mathbf{c} es un vector en el plano generado por a y b, entonces existen escalares α y β tales que $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b}$. Utilizar el producto escalar para determinar α y β (véase la Figura 1.2.9).

Figura 1.2.9 Geometría para calcular α y β , donde $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b}$.

Solución

Efectuando el producto escalar de a y c, tenemos

$$\mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot (\alpha \mathbf{a} + \beta \mathbf{b}) = \alpha \mathbf{a} \cdot \mathbf{a} + \beta \mathbf{a} \cdot \mathbf{b}.$$

Dado que $\mathbf{a} \mathbf{y} \mathbf{b}$ son ortogonales, $\mathbf{a} \cdot \mathbf{b} = 0$, y así

$$\alpha = \frac{\mathbf{a} \cdot \mathbf{c}}{\mathbf{a} \cdot \mathbf{a}} = \frac{\mathbf{a} \cdot \mathbf{c}}{\|\mathbf{a}\|^2}.$$

De forma similar,

$$\beta = \frac{\mathbf{b} \cdot \mathbf{c}}{\mathbf{b} \cdot \mathbf{b}} = \frac{\mathbf{b} \cdot \mathbf{c}}{\|\mathbf{b}\|^2}.$$

Provección ortogonal

En el ejemplo anterior, al vector α**a** se le denomina *proyección de* c sobre a, y βb es su proyecci'on sobre b. Formulemos esta idea de forma más general. Si \mathbf{v} es un vector y l es la recta que pasa por el origen en la dirección del vector a, entonces la proyección ortogonal de v sobre a es el vector p cuyo extremo final se obtiene trazando una recta perpendicular a l desde el extremo final de \mathbf{v} , como se muestra en la Figura 1.2.10.

Si nos fijamos en la figura, vemos que **p** es un múltiplo de **a** y que **v**

Si nos fijamos en la figura, vemos que
$${\bf p}$$
 es un múltiplo de ${\bf a}$ y que es la suma de ${\bf p}$ y un vector ${\bf q}$ perpendicular a ${\bf a}$. Por tanto,

Figura 1.2.10 p es la proyecci ón ortogonal de v sobre a.

$$\mathbf{v} = c\mathbf{a} + \mathbf{q}$$
,