Special Topics in Management Science 26:711:685

Convex Analysis and Optimization

Fall 2023 Rutgers University Prof. Eckstein

Solutions to Homework 4

1. Take any $x \in U$. Consider any $d \in U^{\perp}$. For any $x' \in U$, we have $x' - x \in U$ and thus $\langle d, x' - x \rangle = 0$. Thus, one has $\langle d, x' - x \rangle \leq 0$ for all $x' \in U$ and so $d \in N_U(x)$. By the arbitrary choice of d, it follows that $U^{\perp} \subseteq N_U(x)$. Conversely, take any $d \in N_U(x)$. Now take an arbitrary $u \in U$. Since U is a linear subspace, we have $x + u \in U$ and $x - u \in U$. Since $d \in N_U(x)$, we then have

$$\langle d, (x+u) - x \rangle \ge 0 \qquad \Leftrightarrow \qquad \langle d, u \rangle \le 0$$

$$\langle d, (x-u) - x \rangle \ge 0 \qquad \Leftrightarrow \qquad \langle d, u \rangle \le 0,$$

so we conclude $\langle d, u \rangle = 0$. Since $u \in U$ was arbitrary, $d \in U^{\perp}$. Since $d \in N_U(x)$ was arbitrary, we have $N_U(x) \subseteq U^{\perp}$, and so we conclude $N_U(x) = U^{\perp}$.

2. (a) Here, we simply follow the logic used in class in the proof of the existence of subgradients: $(x, f(x) + 1) \in \text{epi } f$, so having $(x, f(x)) \in \text{ri epi } f$ would require existence of that $\delta > 0$ such that

$$(x, f(x)) + \delta((x, f(x)) - (x, f(x) + 1)) = (x, f(x) - \delta) \in \text{epi } f,$$

which is clearly impossible since we have to have $f(x) - \delta < f(x)$, which means that $(x, f(x) - \delta) \notin \text{epi } f$. So, we conclude that $(x, f(x)) \notin \text{ri epi } f$.

(b) Consider any point $(x,z) \in \text{epi } f$ with $x \notin \text{ri dom } f$. Then the prolongation principle implies that there exists $y \in \text{dom } f$ such that for all $\delta > 0$, one has $x + \delta(x - y) \notin \text{dom } f$, meaning that $f(x + \delta(x - y)) = \infty$ for all $\delta > 0$. Now, $(y, f(y)) \in \text{epi } f$, so consider, for any $\delta > 0$,

$$(x,z) + \delta((x,z) - (y,f(y))) = (x + \delta(x-y), z + \delta(z-f(y))).$$

Since $f(x + \delta(x - y)) = \infty$, no such point can be in epi f. So, the prolongation principle shows that $(x, z) \notin \text{ri epi } f$.

We have now shown that if (x, z) violates either condition defining R, it cannot be in riepi f, and so riepi $f \subseteq R$. Note that this inclusion is all that is actually needed to prove the Rockafellar-Moreau theorem; however, it is also possible to prove the opposite inclusion, as follows:

(c) To establish that in fact ri epi f = R, we will take an arbitrary element $(x, z) \in R$ and show that it is ri epi f. To do so by the prolongation principle, we need to establish that given any $(x', z') \in \text{epi } f$, there exists $\delta > 0$ such that

$$(x,z) + \delta((x,z) - (x',z')) \in \operatorname{epi} f.$$

First, because $x \in \operatorname{ridom} f$ and we must have $x' \in \operatorname{dom} f$, we know there exists $\delta_1 > 0$ such that $x + \delta_1(x - x') \in \operatorname{dom} f$ — and by convexity this remains true if we replace δ_1 by any $\delta \in (0, \delta_1]$.

Since z > f(x), one has (z - f(x))/2 > 0. Since f is continuous relative to dom f on the relative interior of its domain, it follows that there exists a $\delta_2 \leq \delta_1$ such that

$$\delta \le \delta_2 \quad \Rightarrow \quad f(x + \delta(x - x')) - f(x) \le \frac{z - f(x)}{2}$$

$$\Leftrightarrow \quad f(x + \delta(x - x')) \le f(x) + \frac{z - f(x)}{2} = \frac{z + f(x)}{2}.$$

Furthermore, one can easily devise a $\delta_3 > 0$ such that

$$\delta \leq \delta_3$$
 \Rightarrow $z + \delta(z - z') \geq z - \frac{z - f(x)}{2} = \frac{z + f(x)}{2};$

specifically, if $z' \leq z$ then any value of δ_3 is possible, and if z' > z then $\delta_3 \leq (z - f(x))/2(z' - z)$ can easily shown to be valid.

Then, for any $\delta \leq \min\{\delta_2, \delta_3\}$, one has

$$f(x + \delta(x - x')) \le \frac{z + f(x)}{2} \le z + \delta(z - z'),$$

meaning that

$$(x,z) + \delta((x,z) - (x',z')) = (x + \delta(x-x'), z + \delta(z-z')) \in \text{epi } f.$$

By the prolongation principle and the arbitrary choice of $(x', z') \in \text{epi } f$, this establishes that $(x, z) \in \text{ri epi } f$.

3. (a) Consider any $d \in \partial f(Ax)$. Then, for any $x' \in \mathbb{R}^n$, we have

$$g(x') = f(Ax') \ge f(Ax) + \langle d, Ax' - Ax \rangle$$
$$= f(Ax) + \langle d, A(x' - x) \rangle$$
$$= g(x) + \langle A^{\mathsf{T}}d, x' - x \rangle$$

Since this holds for any $x' \in \mathbb{R}^n$, if follows that $A^{\top}d \in \partial g(x)$. Since $d \in \partial f(Ax)$ was arbitrary, $A^{\top}\partial f(x) \subseteq \partial g(x)$.

(b) First, consider F_1 . We have

epi
$$F_1 = \{(x, z, w) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \mid f(z) \geq w \}$$

= $\{(x, z, w) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \mid (z, w) \in \text{epi } f \}$
= $\mathbb{R}^n \times \text{epi } f$.

Since f is convex, epi f is convex. Therefore, $\mathbb{R}^n \times \text{epi } f = \text{epi } F_1$ is also a convex set, so F_1 is convex. The linear subspace U is a convex set, hence its indicator function $\delta_U = F_2$ is convex. Finally, since it is the sum of two other convex

functions F_1 and F_2 , we see that F has to be convex. For the last assertion, we note that

$$d \in \partial g(x)$$

$$\Leftrightarrow f(Ay) \ge f(Ax) + \langle d, y - x \rangle \qquad \forall y \in \mathbb{R}^{n}$$

$$\Leftrightarrow F(y, Ay) \ge F(x, Ax) + \langle d, y - x \rangle \qquad \forall y \in \mathbb{R}^{n}$$

$$\Leftrightarrow F(y, z) \ge F(x, Ax) + \langle d, y - x \rangle \qquad \forall y \in \mathbb{R}^{n}, z \in \mathbb{R}^{m} \quad (*)$$

$$\Leftrightarrow F(y, z) \ge F(x, Ax) + \langle d, y - x \rangle + \langle 0, z - Ax \rangle \quad \forall y \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}$$

$$\Leftrightarrow (d, 0) \in \partial F(x, Ax).$$

The justification for the step marked "(*)" is that if $z \neq Ay$, we have $F(y, z) = \infty$.

(c) Take any $(v, u) \in \partial F_1(x, z)$, in which case we must have $f(z) = F_1(x, z) < \infty$. Then, applying the subgradient inequality at the point (v + x, z), we have

$$f(z) = F_1(v + x, z) \ge F_1(x, z) + \langle v, (v + x) - x \rangle + \langle u, z - z \rangle$$

= $f(z) + \langle v, v \rangle + \langle u, 0 \rangle$
= $f(z) + ||v||^2$.

Condensing this chain of reasoning, we have $f(z) \ge f(z) + ||v||^2$. Since $f(z) < \infty$, we must have v = 0. Thus, only vectors of the form (0, u) can be members of $\partial F_1(x, z)$. Next, we note that

$$u \in \partial f(z)$$

$$\Leftrightarrow f(z') \ge f(z) + \langle u, z' - z \rangle \qquad \forall z' \in \mathbb{R}^m$$

$$\Leftrightarrow F_1(x', z') \ge F(x, z) + \langle 0, x' - x \rangle + \langle u, z - z' \rangle \qquad \forall x' \in \mathbb{R}^n, z' \in \mathbb{R}^m$$

$$\Leftrightarrow (0, u) \in \partial F_1(x, z).$$

Thus, we must have

$$\partial F_1(x,z) = \{0\} \times \partial f(z).$$

We now turn our attention to F_2 . Since F_2 is just the indicator function of the subspace U, problem 1 tells us that $\partial F_2(x,z) = N_U(x,z) = U^{\perp}$ whenever $(x,z) \in U$, and $\partial F_2(x,z) = N_U(x,z) = \emptyset$ otherwise. Note that U consists of all vectors (x,z) satisfying Ax - z = 0, that is

$$[A \ -I] \left[\begin{array}{c} x \\ z \end{array} \right] = 0.$$

Therefore, U^{\perp} consists of all vectors of the form

$$[A \ -I]^{\top} w = (A^{\top} w, -w) \qquad w \in \mathbb{R}^m.$$

(d) We next note that

ri dom
$$F_1 = \text{ri}(\mathbb{R}^n \times \text{dom } f) = \mathbb{R}^n \times \text{ri dom } f$$

ri dom $F_2 = \text{ri } U = U = \{(x, Ax) \mid x \in \mathbb{R}^n\}$

(it is easily seen that aff V = V and hence ri V = V for any linear subspace V). From the assumption ri dom $f \cap \operatorname{im} A \neq \emptyset$, we know there exists some $\bar{x} \in \mathbb{R}^n$ with $A\bar{x} \in \operatorname{ri} \operatorname{dom} f$. So, $(\bar{x}, A\bar{x})$ is in both ri dom F_1 and ri dom F_2 .

(e) We can then use the Rockafellar-Moreau theorem to conclude that, for any $x \in \mathbb{R}^n$

$$\partial F(x, Ax) = \partial (F_1 + F_2)(x, Ax)
= \partial F_1(x, Ax) + \partial F_2(x, Ax)
= (\{0\} \times \partial f(Ax)) + U^{\perp}
= \{(0, u) \mid u \in \partial f(Ax)\} + \{(A^{\top}w, -w) \mid w \in \mathbb{R}^m\}
= \{(A^{\top}w, u - w) \mid u \in \partial f(Ax), w \in \mathbb{R}^m\}$$

Since the existence of $(\bar{x}, A\bar{x}) \in \operatorname{ridom} F_1 \cap \operatorname{ridom} F_2$ shows that $F = F_1 + F_2$ is proper, we have $\partial F(x, z) = \emptyset$ whenever $z \neq Ax$. Thus, a full expression for $\partial F(x, z)$ is

$$\partial F(x,z) = \left\{ \begin{array}{l} \left\{ (A^\top w, u - w) \mid u \in \partial f(Ax), w \in \mathbb{R}^m \right\}, & \text{if } z = Ax \\ \emptyset, & \text{if } z \neq Ax \end{array} \right.$$

(f) Take any $x \in \mathbb{R}^n$. From part (a), we know that if $d \in \partial g(x)$, then we must have $(d,0) \in \partial F(x,Ax)$, which, in view of the formula obtained for $\partial F(x,z)$ in part (e), means that there exist $u \in \partial f(Ax)$ and $w \in \mathbb{R}^m$ such that $d = A^{\top}w$ and u - w = 0. The second of these equations just means w = u, and so $d = A^{\top}u$ for $u \in \partial f(Ax)$. Thus, every $d \in \partial g(x)$ is expressible as $d = A^{\top}u$ for $u \in \partial f(Ax)$, meaning that $\partial g(x) \subseteq A^{\top}\partial f(Ax)$. Since we already established the opposite inclusion, we have proved the desired equality.