Melchor Pinto, J.C. Última revisión del documento: 23 de marzo de 2025

Soluciones propuestas

3° de Secundaria 2024-2025

Unidad 2

Practica la Unidad

Nombre del alumno: Fecha:

Aprendizajes:

- 🔽 Deduce información acerca de la estructura atómica a partir de datos experimentales sobre propiedades atómicas periódicas.
- Representa y diferencia mediante esquemas, modelos y simbología química, elementos y compuestos, así como átomos y moléculas.
- Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.

Puntuación:									
Pregunta	1	2	3	4	5	6	7	8	9
Puntos	5	5	5	5	5	5	5	5	5
${\it Obtenidos}$									
Pregunta	10	11	12	13	14	15	16	17	Total
Puntos	10	5	5	5	5	15	5	5	100
Obtenidos									

Ejemplo 1

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- \circ 2 H₂O(l) \longrightarrow 2 H₂(g) + O₂(g)
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

- $\sim N_2O + \text{energia} \uparrow \longrightarrow 2N_2 + O_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 1

de 5 puntos

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- \bigcirc $3 O_2 + energía <math>\uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $Ba(NO_3)_2 + K_2SO_4 \longrightarrow BaSO_4 + KNO_3$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $C_6H_{12}O_6(ac) \longrightarrow 2C_2H_5OH(ac) + 2CO_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

Ejercicio 2

_ de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{c} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - B Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O + \longrightarrow$$

$$^{
m H_2}$$

$$O_2$$

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

$$\mathrm{H_2O} \ + \ \longrightarrow$$

$$\mathrm{H}_2$$

$$O_2$$

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H₂O.

$$2\,\mathrm{H}_2\mathrm{O} \quad + \quad \longrightarrow \quad \ \mathrm{H}_2$$

 \odot

$$O_2$$

Ahora, hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 2 al H_2 .

$$2\,\mathrm{H}_2\mathrm{O} \quad + \quad \longrightarrow \quad 2\,\mathrm{H}_2$$

Por lo tanto, la ecuación química balanceada es:

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

$$CH_4 + O_2 \longrightarrow$$

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

$$CH_4 + O_2$$

$$CO_2$$

 H_2O

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

$$\mathrm{CH_4} \ + \mathrm{O_2} \ \longrightarrow$$

$$CO_2 2H_2O$$

Ahora hay 4 O en los productos y 2 en los reactivos, por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

$$\mathrm{CH_4} \ + 2\,\mathrm{O_2} \ \longrightarrow$$

Por lo tanto, la ecuación química balanceada es:

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Ejercicio 3

de 5 puntos

Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

Hay 2 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 2 al HgO.

$$2 \operatorname{HgO} \longrightarrow \operatorname{Hg} + \operatorname{O}_2$$

Ahora, hay 2 Hg en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al Hg. Y la ecuación balanceada es:

$$2 \operatorname{HgO} \longrightarrow 2 \operatorname{Hg} + \operatorname{O}_2$$

Ejercicio 4

de 5 puntos

Balancea la siguiente ecuación química:

$$H_2SO_4 + Pb(OH)_4 \longrightarrow Pb(SO_4)_2 + H_2O$$

Hay 1 S en los reactivos y 2 S en los productos, por lo que hay que multiplicar por 2 al H₂SO₄.

$$2 H_2 SO_4 + Pb(OH)_4 \longrightarrow Pb(SO_4)_2 + H_2O$$

Hay 8 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 4 al H₂O. Y la ecuación queda:

$$2 H_2 SO_4 + Pb(OH)_4 \longrightarrow Pb(SO_4)_2 + 4 H_2O$$

Ejercicio 5

de 5 puntos

Balancea la siguiente ecuación química:

$$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$$

Hay 2 N en los reactivos y 1 N en el producto, por lo que hay que multiplicar a NO_2 por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + H_2O$$

Hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar a H_2O por 2.

$$N_2H_4 + O_2 \longrightarrow 2NO_2 + 2H_2O$$

Hay 2 O en los reactivos y 6 O en los productos, por lo que hay que multiplicar a O_2 por 3. Y la ecuación balanceada es:

$$N_2H_4 + 3O_2 \longrightarrow 2NO_2 + 2H_2O$$

Ejercicio 6

de 5 puntos

Balancea la siguiente ecuación química:

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Hay 3 Fe en los productos y 1 en los reactivos, por lo que hay que multiplicar por 3 al Fe.

$$3 \text{ Fe} + \text{H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + \text{H}_2$$

Hay 4 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 4 al H_2O .

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + \operatorname{H}_2$$

Por último, hay 8 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 4 al H₂. Y la ecuación balanceada es:

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2$$

Ejercicio 7

de 5 puntos

Balancea la siguiente ecuación química:

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

Hay 2 C en los reactivos y 1 C en los productos, por lo que hay que multiplicar por 2 al CO₂.

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + H_2O$$

Ahora, hay 6 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 3 al ${\rm H}_2{\rm O}.$

$$C_2H_6O + O_2 \longrightarrow 2CO_2 + 3H_2O$$

Hay 3 O en los reactivos y 7 O en los productos, por lo que hay que multiplicar por 3 al O_2 . Y la ecuación balanceada es:

$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

Ejercicio 8

de 5 puntos

Balancea la siguiente ecuación química:

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

Hay 4 H en el reactivo y 2 en el producto, por lo que el coeficiente de H2O es 2.

$$NH_4NO_3 \longrightarrow N_2 + 2H_2O + O_2$$

Hay 3 O en los reactivos y 4 los productos, por lo que si intentamos dar al O_2 un coeficiente de 1/2, nos da 3 oxígenos en ambos lados.

$$\mathrm{NH_4NO_3} \longrightarrow \mathrm{N_2} + 2\,\mathrm{H_2O} + \frac{1}{2}\,\mathrm{O_2}$$

Dado que usualmente no se usan fracciones como coeficientes, multiplicamos todo por 2 para deshacernos de la fracción, y la ecuación balanceada es:

$$2 \, \mathrm{NH_4NO_3} \longrightarrow 2 \, \mathrm{N_2} + 4 \, \mathrm{H_2O} + \mathrm{O_2}$$

Ejercicio 9 de 5 puntos

Balancea la siguiente ecuación química:

$$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + H_2O$$

Hay 2 O en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al HCl.

$$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + 2H_2O$$

Hay 3 H en los reactivos y 4 en los productos, por lo que hay que multiplicar por 2 al HCl. Y la ecuación queda:

$$Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + 2H_2O$$

Ejercicio 10 de 10 puntos

Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.

- Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.
 - El número atómico Z se relaciona con la cantidad de protones en un átomo. Si consideramos un átomo eléctricamente neutro, la cantidad de electrones deberá ser la misma.
- b En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

 $10,000 \times 2 \text{ mm} = 20,000 \text{ mm} = 20m$

Ejercicio 11 de 5 puntos

Relaciona cada elemento con las características que le corresponden.

- o <u>E</u> Titanio
- (A) Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
- **b** __**J**__ Oro
- B Elemento metálico con Z=31.
- c _D Helio
- © Elemento metaloide, ubicado en el tercer período de la tabla periódica.
- d A Boro
- D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
- e I Radón
- E Elemento con 22 protones y 22 electrones.
- f F Yodo
- F Elemento de la familia de los Halógenos con 74 neutrones.
- 9 <u>H</u> Bismuto
- © Elemento de la familia de metales alcalino-terreos con 138 neutrones.
- h G Radio
- $\widehat{\text{H}}$ Elemento con Z =83.
- i B Galio
- ① Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
- j <u>C</u> Silicio
- (J) Metal brillante utilizado en joyería.

Ejercicio 12 de 5 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

 \bigcirc A Ión de Hierro (Fe³⁺)

 \bigcirc Ión de Nitrógeno (N^{3-})

(I) Ión de Potasio (K⁺)

(H) Ión de Azúfre (S^{2+})

 S^{2+}

B Fósforo (P)

 \bigcirc Ión de Aluminio (Al^{3+})

G Ión de Berilio (Be⁻)

Be-

(J) Ión de Cloro (Cl⁻)

C Ión de Flúor (F⁻)

<u>G</u> 17 protones y 8 electrones de valencia.

a F 13 protones y 8 electrones de valencia.

c ___ 9 protones y 8 electrones de valencia.

d B 4 protones y 3 electrones de valencia.

e <u>H</u> 16 protones y 4 electrones de valencia.

f _____ 15 protones y 5 electrones de valencia.

9 <u>D</u> 26 protones y 2 electrones de valencia.

h A 7 protones y 8 electrones de valencia.

i <u>I</u> 3 protones y 1 electrón de valencia.

j <u>E</u> 19 protones y 8 electrones de valencia.

Ejercicio 13 de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - (B) El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - E Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - B Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - (D) Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 14 ____ de 5 puntos

Relaciona cada concepto con su definición.

- O B Diagrama de esferas y barras.
- b Diagrama de esferas.
- c A Fórmula condensada.
- d <u>C</u> Fórmula estructural.

- (A) Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- D Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

Ejercicio 15 de 15 puntos Completa la siguiente tabla determinando para cada especie, la cantidad de protones (+), neutrones (1) y electrones Θ . Especie Símbolo Θ Xenón Ión negativo de Antimonio Fósforo Ión negativo de Azúfre Ión positivo de Silicio

Ejercicio 16 de 5 puntos Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla Grupo/Familia Período Tipo Elemento Paladio OroArgón SamarioTalio

Ejercicio 17	de 5 puntos						
Señala en cada uno de los enunciados si la sentencia es falsa o verdadera.							
 Q Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad. ✓ Verdadero □ Falso 	f La masa de un neutrón es similar a la del protón. ✓ Verdadero □ Falso						
b Los electrones de valencia se encuentran siempre en el último nivel de energía. ✓ Verdadero □ Falso	9 El número de masa representa la suma de protones y neutrones.✓ Verdadero □ Falso						
_	 h El número total de electrones en un átomo lo determina el grupo al que pertenece. □ Verdadero ✓ Falso 						
 □ Verdadero	 i En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia. ✓ Verdadero □ Falso 						
e El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. ☐ Verdadero ✓ Falso	j En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono. ✓ Verdadero □ Falso						

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H_{\text{elio}}}^{4.0025}$	$\overset{10}{\overset{20.180}{\overset{20.180}{\overset{Neón}{}}}}$	$\stackrel{18}{A}_{rg\acute{o}n}^{39.948}$	$\overset{36}{Kr}\overset{83.8}{r}$	$\sum_{Xenón}^{54}$	$\mathop{Rad\acute{\text{ch}}}_{\text{Rad\acute{\text{ch}}}}$	118 294 Oganesón	$\overset{71}{\mathbf{Lut}}$	$\frac{103}{L}$ 262 Lawrencio	
	17 VIIA	9 18.998 Fluor	$ \bigcup_{Cloro}^{17} \bigcup_{Cloro}^{35.453} $	$\Pr_{\text{Bromo}}^{35-79.904}$	53 126.9 T	$^{85}\!$	$\frac{117}{\mathrm{Teneso}}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{TS}} 04$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	16 32.065 S Azúfre	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\prod_{Tulio}^{69}	$\underset{\text{Mendelevio}}{\text{101}}$	
	15 VA	7 14.007 Nitrógeno	$\overset{15}{P}\overset{30.974}{P}$ Fósforo	${\overset{33}{A}}_{\text{Arsénico}}^{74.922}$	$\overset{51}{\mathbf{Sb}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\mathrm{Bismuto}}$	${\displaystyle \sum_{\text{Moscovio}}^{288}}$	$\frac{68}{\text{Erbio}}$	$\underset{\text{Fermio}}{Fm}$	
	14 IVA	6 12.011 Carbono	$\overset{14}{\mathrm{Silicio}}$	$\overset{32}{\text{Germanio}}^{72.64}$	$\mathop{\mathrm{Sn}}_{\mathrm{est}}^{118.71}$ Estaño	$\overset{82}{Pb}^{207.2}_{b}$	114 289 Flerovio	$\displaystyle \underset{\text{Holmio}}{\overset{67}{164.93}}$	99 252 Einsteinio	
	13 IIIA	5 Ho.811 Boro	$\bigwedge_{\text{Aluminio}}^{13}$	\mathbf{G}^{31}	$\overset{49}{\text{Indo}}_{\text{Indo}}$	81 204.38 Talio	113 284 Nihonio	$\bigcup_{\text{Disprosio}}^{66}$	$\underset{\text{Californio}}{\overset{98}{\text{C}f}}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{\mathrm{n}}$	$\overset{48}{C}\overset{112.41}{d}$	$\overset{80}{H}\overset{200.59}{S}$	$\stackrel{112}{\bigcirc}_{\mathbf{n}}$	$\prod_{\text{Terbio}}^{65}$	$\frac{97}{Bk}$ Berkelio	
			11 18	$\overset{29}{\overset{63.546}{o}}$	${^{47}}_{^{107.87}}$	$\overset{79}{\mathrm{Au}}_{\mathrm{Oro}}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{\text{64}}{\text{Gadolinio}}$	$\overset{96}{C}\overset{247}{m}$	
Simbología:	Negro: Naturales Gris: Sintéticos	10 VIIIB	$\overset{28}{\text{Niquel}}$	$\Pr^{46 \ 106.42}_{Paladio}$	$\Pr^{78}_{\text{Platino}}$	Darmstadtio	$\overset{63}{\text{Europio}}$	95 243 Am		
		9 VIIIB	27 58.933 CO	$\mathop{Rh}\limits^{45 \ 102.91}_{\text{Rodio}}$	$\frac{77}{L}$	$\underset{\text{Meitnerio}}{109} 268$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{\text{Plutonio}}$		
		8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\Pr^{44 \ 101.07}$ Ruthenio	$\overset{76}{\text{Osmio}}$	108 277 Hassio	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio		
		7 VIIB	$\overset{25}{\mathbf{M}}\overset{54.938}{\mathbf{m}}$ Manganeso	$\prod_{\text{Tecnecio}}^{43}$	$\mathop{Re}\limits^{75}_{\text{Renio}}$	$\underset{\text{Bohrio}}{\underline{\text{107}}} \overset{264}{\text{B}}$	$\overset{60}{N}\overset{144.24}{\text{dodimio}}$	92 238.03 Uranio		
		6 VIB	$\overset{ extsf{24}}{\overset{ extsf{51.996}}{\text{Cromo}}}$	$\stackrel{ ext{42}}{ ext{Molybdeno}} \stackrel{95.94}{ ext{Molybdeno}}$	$\overset{74}{\text{Um}}$	106 266 Seaborgio	$\Pr_{\mathbf{r}}^{59-140.91}$	$\overset{\text{91}}{P}\overset{\text{231.04}}{a}$		
	Sim	$\sum_{ ext{Simbolo}}^{ extbf{Z}}$	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{ ext{Tantalo}}$	$\sum_{\text{Dubnio}}^{105} \sum_{\text{262}}^{262}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{Torio}^{90-232.04}$	
		4 IVB	22 47.867 Titanio	$\sum_{\mathrm{Circonio}}^{40\ 91.224}$	$\overset{72}{\mathrm{Hafnio}}^{178.49}$	$\Pr^{104}_{\text{Rutherfordio}}$	$\overset{57}{La}^{138.91}$	$\overset{89}{ ext{AC}}^{227}$		
		3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39 88.906}$	57-71 ** Lantánido	89-103 * Actínido	s -terreos		nidos	
	2 IIA	$\overset{4}{B}\overset{9.0122}{e}$	$\overline{\mathrm{Mg}}^{24.305}_{\mathrm{Magnesio}}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{S}$	$\overset{56}{Bario}_{\text{Bario}}$	$\mathop{\mathrm{Radio}}^{88}$	Metales Alcalinos Metales Alcalino-terreos Metal	le J.	Gases Nobles Lantánidos/Actínidos
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{3} \frac{6.941}{1}$	$\overset{11}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ \ 39.098}$	$\mathop{Rb}\limits^{37-85.468}_{\text{Rubidio}}$	\sum_{Cesio}^{55}	$\overset{87}{Fr}^{223}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	1	2	ю	4	Ŋ	9	_			