(0,001)

Welche allgemeinen Strukturen stecken d	hinto unseren Zahlsystem?
Lagebraische Stonktu	
Es gelt um "Rechnen" in einer treuge von	
Definition:	
Gegeben ist erre Menge M, M + Ø,	eine Verknüpfung auf M (Rechen.
operation auf M) ist eve Abbilding	
jeden Tupel (a,b) EM wird genan e	
Beignocle: M = Z +: Z x Z -> Z	: (a,b) E ZxZ -> a+b E Z
• ZxZ ->Z:	
Definition	
Definition: Gegeben ist eine Menge $M, M \neq \emptyset$ und eine Verknüpfung	(Rechenoperation) $\otimes: M \times$
$M \to M$. 1) (M, \otimes) ist eine Halbgruppe , wenn gilt	
Assoziativgesetz: $a \otimes (b \otimes c) = (a \otimes b) \otimes c, \forall a, b, c \in a$	∃ M
2) (M, \otimes) ist eine Gruppe , wenn gilt	
Assoziativgesetz: $a \otimes (b \otimes c) = (a \otimes b) \otimes c, \forall a, b, c \in Existenz$ eines neutralen Elements: $\exists n \in M : a \otimes Existenz$	
Existenz inverser Elemente: $\forall a \in M \ \exists a^{-1} \in M : a \otimes a^{-1} = n,$ gilt zusätzlich das	
Kommutativgesetz: $a \otimes b = b \otimes a, \forall a, b \in M$ heißt (M, \otimes) abelsche Gruppe.	
neist (M, S) abeische Gruppe.	
Beignele: 1) (N,+) ist eure Hallege	upe, denn
$\forall a_i b_i c \in \mathcal{N} : a + (b+c)$	= (Q+b)+C
(M, o) list and line H	alberryse, denn
₩ a, b, c ∈ 1 № . a. (b.c)	= (a.b)·c
2) (IN,+) Est Keine Grups	e, denn es gist ken
neutrales Element du Ad	dition (0¢ IV)
3) (N) besitet mit 16	EM das neutrale
Element du Multiplikation	m (N.) ist 25er
Keine Gruppe, denn es gibt	

