601.445/601.645: Practical Cryptographic Systems

September 28, 2021

Weekly Homework 2

Instructor: Matthew Green and Alishah Chator Due: 11:59pm, October 5

Name:

The assignment should be completed individually. You are permitted to use the Internet and any printed references. You may find Katz-Lindell §11.5 (§10.4 in the first edition) or Handbook of Applied Cryptography §8.2 (in the online public edition) helpful.

Please submit the completed assignment via Gradescope.

Problem 1: Determine whether the following are Groups. Justify your claims.

- 1. The integers under addition, $(\mathbb{Z}, +)$
- 2. The integers under multiplication, (\mathbb{Z},\cdot)
- 3. The real numbers under multiplication, (\mathbb{R},\cdot)
- 4. The positive integers under addition, $(\mathbb{Z}^+,+)$
- 5. The positive integers under subtraction, $(\mathbb{Z}^+, -)$

Problem 2: Do the following problems. Show your work.

- 1. Apply the extended Euclidean algorithm to primes 59 and 17 to find x and y such that 59x + 17y = 1.
- 2. What is the inverse of 59 (i.e., 8) modulo 17 and what is the inverse of 17 modulo 59?
- 3. Prove that 2 is a generator of \mathbb{Z}_{59}^* , while 4 is not a generator of \mathbb{Z}_{59}^* . (HINT: Recall, g is a generator of \mathbb{Z}_{59}^* , where p is prime, if and only if $g^a \neq 1 \mod p$ for every non-trivial divisor 1 < a < p-1 of (p-1).
- 4. List all of the subgroups of \mathbb{Z}_{23}^* and provide one generator for each subgroup.¹ See HAC §2.5 for definitions if this is helpful.

¹Note: a subgroup is a cyclic group that is contained within the larger group. You can find subgroups by doing what we did in class: picking an element of the group and seeing whether it generates the whole group or just a subset.

Problem 3: Use the Chinese Remainder Theorem to solve the following problems. You may find the constructive proof of the theorem² useful in computing the solutions.

- 1. Find the unique $x \in \mathbb{Z}_{35}$ such that $x \equiv 4 \mod 5$ and $x \equiv 3 \mod 7$.
- 2. Find the unique $x \in \mathbb{Z}_{110}$ such that $x \equiv 2 \mod 10$ and $x \equiv 9 \mod 11$.
- 3. Find the unique $x \in \mathbb{Z}_{385}$ such that $x \equiv 3 \mod 5$, $x \equiv 4 \mod 7$ and $x \equiv 8 \mod 11$.
- 4. Quadratic Residues. An integer x is called a quadratic residue modulo n if $\exists y \in \mathbb{Z}$ s.t. $y^2 \equiv x \mod n$. That is, an integer is a quadratic residue if it is equivalent to a perfect square modulo n. In this problem, we will walk through solving problems with quadratic residues of the form $x^2 \equiv a \mod n$ where p, q are primes, n = pq, and $p \equiv q \equiv 3 \mod 4$. Suppose we have $x^2 \equiv 11 \mod 133$. Let us find all the possible values of x (there are four!).
 - (a) First factor n = 133.
 - (b) Now we should have a p,q such that n=pq and $p\equiv q\equiv 3 \mod 4$. For this problem label the smaller factor of n as p and the larger one as q. Solve $y^2\equiv 11 \mod p$. It should be straight forward to compute the square root of this value. You should find two distinct positive integers < p such that this equation holds (remember you can rewrite negative values modulo p as a positive integer < p). We will refer to these two square roots as y_1, y_2
 - (c) Now let us attempt do do the same to solve $z^2 \equiv 11 \mod q$. Here we will see it is not as clear how to compute a square root. Instead we can use something called *Euler's Criterion*, which gives us a way to compute the square roots of a quadratic residue $z^2 \equiv a \mod q$ as long as it is modulo a prime $q \equiv 3 \mod 4$. The two square roots are $z_1 \equiv a^{(q+1)/4} \mod q$ and $z_2 = q x_1$.
 - (d) Now to compute the four square roots of $x^2 \equiv 11 \mod 133$ we have to apply the Chinese Remainder Theorem to solve each of the resulting 4 equations:

$$x_1 \equiv y_1 \mod p, \ x_1 \equiv z_1 \mod q$$

 $x_2 \equiv y_1 \mod p, \ x_2 \equiv z_2 \mod q$
 $x_3 \equiv y_2 \mod p, \ x_3 \equiv z_1 \mod q$
 $x_4 \equiv y_2 \mod p, \ x_4 \equiv z_2 \mod q$

²https://en.wikipedia.org/wiki/Chinese_remainder_theorem#Existence_(constructive_proof)