Information Sciences

Louis Merlin

February 25, 2016

Contents

1	Ran	ndom variables, sources and entropy	2
	1.1	Random variables	2
	1.2	Source Model	3
	1.3	Source Coding: The Idea, As a start	3
	1.4	Entropy	3

Chapter 1

Random variables, sources and entropy

1.1 Random variables

Single random variable A random variable X is a function $X : \Omega \to \mathbb{R}$. In this course, the sample space Ω is finite.

- all random variables are discrete
- the image $X(\Omega)$ is a finite subset $A \subset \mathbb{R}$
- ullet we are able to assign a probability to every subset (event) of Ω

To each $x \in A$, we assign a probability p(x).

The function $p: A \to [0,1]$ is called the **probability mass function** (or **probability distribution**) of (the random variable) X.

Alphabet The **alphabet** of an event is the set of all of its outcomes.

Law of total probability Given the discrete random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$:

$$\forall x \in \mathcal{X}, \quad p_X(x) = \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y)$$

 p_X (and p_Y) is called **marginal distribution**.

Definition Two random variables $S_1 \in \mathcal{A}_1$, $S_2 \in \mathcal{A}_2$ are **independent** if for all $s_1 \in \mathcal{A}_1$ and all $s_2 \in \mathcal{A}_2$,

$$p_{S_1,S_2}(s_1,s_2) = p_{S_1}(s_1)p_{S_2}(s_2)$$

Definition The **conditional probability** of event S conditioned on event F is

 $P(\mathcal{S}|\mathcal{F}) \stackrel{\text{\tiny def}}{=} \frac{P(\mathcal{F} \cap \mathcal{S})}{P(\mathcal{F})}$

Source Model

A source is modeled as a random vector, like $(S_1, ...), S_n$). By definition, an **information source** outputs symbols/letters that cannot be predicted with certitude.

1.3 Source Coding: The Idea, As a start

Source coding is about efficient representation using codewords from a given alphabet (e.g. binary). We assign a codeword to each valid sequence. The length of the codeword is inversely proportional to the probability of the corresponding sequence.

1.4 Entropy

Definition Let $S \in \mathcal{A}$ be a discrete random variable of probability distribution p_S . The entropy of S is

$$H(S) := -\sum_{s \in \mathcal{A}} p_S(s) log_2 p_S(s)$$

A few facts

1.2

- The unit of H(S) is the bit.
- The entropy of S depends only on p_S .
- By convention, if $p_S(s) = 0$ for some $s \in \mathcal{A}$ then

$$p_S(s)log_2 p_S(s) = 0$$

• Equivalent form:

$$H(S) = \sum_{s \in \mathcal{A}} = p_S(s)log \frac{1}{p_S(s)}$$

Theorem (Entropy Bounds) Let S be a discrete random variable taking values in A, and let $D \ge 2$ be a positive integer. Then

$$0 \le H_D(S) \le log_D|\mathcal{A}|$$

where $|\mathcal{A}|$ stands for the cardinality of \mathcal{A} and

- the first \leq holds with equality iff there exists an $s \in \mathcal{A}$ for which $p_S(s) = 1$
- the second \leq holds with equality iff S is uniformly distributed over A

Theorem Let S_1, \ldots, S_n be discrete random variables. Then

$$H(S_1, S_2, \dots, S_n) \le H(S_1) + H(S_2) + \dots + H(S_n)$$

with equality iff S_1, \ldots, S_n are independent.