Rank 1 Character Varieties-Part II Generators

Sean Lawton

MRC - Snowbird

June 2016

$\mathsf{SL}(2,\mathbb{C})$ and free groups.

1 Let $F_r = \langle \gamma_1, ..., \gamma_r \rangle$ denote the free group of rank r

$\mathsf{SL}(2,\mathbb{C})$ and free groups.

1 Let $F_r = \langle \gamma_1, ..., \gamma_r \rangle$ denote the free group of rank r, so it is group of all strings in the symbols $\{\gamma_1^{\pm 1}, ..., \gamma_r^{\pm 1}\}$.

$SL(2,\mathbb{C})$ and free groups.

- Let $F_r = \langle \gamma_1, ..., \gamma_r \rangle$ denote the free group of rank r, so it is group of all strings in the symbols $\{\gamma_1^{\pm 1}, ..., \gamma_r^{\pm 1}\}$.
- ② $\operatorname{Hom}(\mathsf{F}_r,G)\cong G^{\times r}$ by the evaluation map.

$\mathsf{SL}(2,\mathbb{C})$ and free groups.

- Let $F_r = \langle \gamma_1, ..., \gamma_r \rangle$ denote the free group of rank r, so it is group of all strings in the symbols $\{\gamma_1^{\pm 1}, ..., \gamma_r^{\pm 1}\}$.
- ② $\operatorname{Hom}(\mathsf{F}_r,G)\cong G^{\times r}$ by the evaluation map.
- **1** Therefore $Hom(F_r, G)$ is an affine variety:

$$\left\{\left(v_{11}^{1},v_{12}^{1},v_{21}^{1},v_{22}^{1},...,v_{11}^{r},v_{12}^{r},v_{21}^{r},v_{22}^{r}\right)\!\in\!\mathbb{C}^{4r}\ |\ v_{11}^{k}v_{22}^{k}-v_{12}^{k}v_{21}^{k}\!=\!1,\ 1\!\leq\!k\!\leq\!r\right\}\!.$$

$\mathsf{SL}(2,\mathbb{C})$ and free groups.

- **1** Let $F_r = \langle \gamma_1, ..., \gamma_r \rangle$ denote the free group of rank r, so it is group of all strings in the symbols $\{\gamma_1^{\pm 1}, ..., \gamma_r^{\pm 1}\}$.
- \bullet Hom $(\mathsf{F}_r,\mathsf{G})\cong\mathsf{G}^{\times r}$ by the evaluation map.
- **1** Therefore $Hom(F_r, G)$ is an affine variety:

$$\left\{\left(v_{11}^{1},v_{12}^{1},v_{21}^{1},v_{22}^{1},...,v_{11}^{r},v_{12}^{r},v_{21}^{r},v_{22}^{r}\right)\!\in\!\mathbb{C}^{4r}\ |\ v_{11}^{k}v_{22}^{k}-v_{12}^{k}v_{21}^{k}\!=\!1,\ 1\!\leq\!k\!\leq\!r\right\}\!.$$

 $\textbf{ 1} \text{ Therefore it has a coordinate ring } \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))] \cong$

$$\mathbb{C}[x_{ij}^k \mid 1 \leq i, j \leq 2, \ 1 \leq k \leq r] / \langle x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1 \mid 1 \leq k \leq r \rangle.$$

3 G acts on $\operatorname{Hom}(\mathsf{F}_r,G)$ by $g\cdot \rho=g\rho g^{-1}$; or equivalently on $G^{\times r}$ by $g\cdot (g_1,...,g_r)=(gg_1g^{-1},...,gg_rg^{-1}).$

- **3** G acts on $\operatorname{Hom}(\mathsf{F}_r,G)$ by $g \cdot \rho = g \rho g^{-1}$; or equivalently on $G^{\times r}$ by $g \cdot (g_1,...,g_r) = (gg_1g^{-1},...,gg_rg^{-1})$.
- So this determines a co-action on the ring of polynomials $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]$ by $g\cdot f(\rho)=f(g^{-1}\rho g)$.

- **3** G acts on $\operatorname{Hom}(\mathsf{F}_r,G)$ by $g \cdot \rho = g \rho g^{-1}$; or equivalently on $G^{\times r}$ by $g \cdot (g_1,...,g_r) = (gg_1g^{-1},...,gg_rg^{-1})$.
- So this determines a co-action on the ring of polynomials $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]$ by $g\cdot f(\rho)=f(g^{-1}\rho g)$.
- **②** Since *G* is reductive, the ring of invariants $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G := \{f \in \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)] \mid g \cdot f = f\}$ is finitely generated.

- **3** G acts on $\operatorname{Hom}(\mathsf{F}_r,G)$ by $g \cdot \rho = g \rho g^{-1}$; or equivalently on $G^{\times r}$ by $g \cdot (g_1,...,g_r) = (gg_1g^{-1},...,gg_rg^{-1})$.
- So this determines a co-action on the ring of polynomials $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]$ by $g\cdot f(\rho)=f(g^{-1}\rho g)$.
- **②** Since *G* is reductive, the ring of invariants $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G := \{f \in \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)] \mid g \cdot f = f\}$ is finitely generated.(we will prove this in our special case)

- **3** G acts on $\operatorname{Hom}(\mathsf{F}_r,G)$ by $g\cdot \rho=g\rho g^{-1}$; or equivalently on $G^{\times r}$ by $g\cdot (g_1,...,g_r)=(gg_1g^{-1},...,gg_rg^{-1}).$
- So this determines a co-action on the ring of polynomials $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]$ by $g\cdot f(\rho)=f(g^{-1}\rho g)$.
- **②** Since *G* is reductive, the ring of invariants $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G := \{f \in \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)] \mid g \cdot f = f\}$ is finitely generated.(we will prove this in our special case)
- **1** Therefore, $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G \cong \mathbb{C}[t_1,...,t_N]/\mathfrak{I}$ for some ideal \mathfrak{I} .

 $oldsymbol{0}$ Hilbert's Basis Theorem says that \Im is finitely generated.

1 Hilbert's Basis Theorem says that \Im is finitely generated. (we will describe $\{t_1, ..., t_N\}$ and \Im explicitly in our special case)

- **1** Hilbert's Basis Theorem says that \Im is finitely generated. (we will describe $\{t_1, ..., t_N\}$ and \Im explicitly in our special case)
- Hilbert's Nullstellensatz says that the maximal ideals in $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G$ are exactly of the form $\langle t_1-a_1,...,t_N-a_N\rangle+\mathfrak{I}$ where $(a_1,...,a_N)\in\mathbb{C}^N$ is in the simultaneous zero set of the generators of \mathfrak{I} .

- **1** Hilbert's Basis Theorem says that \Im is finitely generated. (we will describe $\{t_1, ..., t_N\}$ and \Im explicitly in our special case)
- Hilbert's Nullstellensatz says that the maximal ideals in $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G$ are exactly of the form $\langle t_1-a_1,...,t_N-a_N\rangle+\mathfrak{I}$ where $(a_1,...,a_N)\in\mathbb{C}^N$ is in the simultaneous zero set of the generators of \mathfrak{I} .
- ① This correspondence, $\langle t_1 a_1, ..., t_N a_N \rangle + \Im \mapsto (a_1, ..., a_N)$, determines an algebraic set.

- **1** Hilbert's Basis Theorem says that \Im is finitely generated. (we will describe $\{t_1, ..., t_N\}$ and \Im explicitly in our special case)
- Hilbert's Nullstellensatz says that the maximal ideals in $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,G)]^G$ are exactly of the form $\langle t_1-a_1,...,t_N-a_N\rangle+\mathfrak{I}$ where $(a_1,...,a_N)\in\mathbb{C}^N$ is in the simultaneous zero set of the generators of \mathfrak{I} .
- ① This correspondence, $\langle t_1 a_1, ..., t_N a_N \rangle + \Im \mapsto (a_1, ..., a_N)$, determines an algebraic set.
- This space is the character variety

$$\mathfrak{X}_r(\mathsf{SL}(2,\mathbb{C})).$$

• Recall that $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))] = \mathbb{C}[x_{ij}^k]/\Delta$ where Δ is the ideal generated by the r irreducible polynomials

$$x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1.$$

• Recall that $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))] = \mathbb{C}[x_{ij}^k]/\Delta$ where Δ is the ideal generated by the r irreducible polynomials

$$x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1.$$

• Let \overline{x}_{ij}^k be the image of x_{ij}^k under $\mathbb{C}[x_{ij}^k] \to \mathbb{C}[x_{ij}^k]/\Delta$.

• Recall that $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))] = \mathbb{C}[x_{ij}^k]/\Delta$ where Δ is the ideal generated by the r irreducible polynomials

$$x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1.$$

- Let \overline{x}_{ij}^k be the image of x_{ij}^k under $\mathbb{C}[x_{ij}^k] \to \mathbb{C}[x_{ij}^k]/\Delta$.
- Define

$$\mathbf{X}_k = \left(\begin{array}{cc} \overline{x}_{11}^k & \overline{x}_{12}^k \\ \overline{x}_{21}^k & \overline{x}_{22}^k \end{array} \right).$$

• Recall that $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\operatorname{SL}(2,\mathbb{C}))]=\mathbb{C}[x_{ij}^k]/\Delta$ where Δ is the ideal generated by the r irreducible polynomials

$$x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1.$$

- Let \overline{x}_{ii}^k be the image of x_{ii}^k under $\mathbb{C}[x_{ii}^k] \to \mathbb{C}[x_{ii}^k]/\Delta$.
- Define

$$\mathbf{X}_k = \left(\begin{array}{cc} \overline{x}_{11}^k & \overline{x}_{12}^k \\ \overline{x}_{21}^k & \overline{x}_{22}^k \end{array}\right).$$

They are called *generic unimodular matrices*.

• Recall that $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))] = \mathbb{C}[x_{ij}^k]/\Delta$ where Δ is the ideal generated by the r irreducible polynomials

$$x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1.$$

- Let \overline{x}_{ii}^k be the image of x_{ii}^k under $\mathbb{C}[x_{ii}^k] \to \mathbb{C}[x_{ii}^k]/\Delta$.
- Define

$$\mathbf{X}_k = \left(\begin{array}{cc} \overline{x}_{11}^k & \overline{x}_{12}^k \\ \overline{x}_{21}^k & \overline{x}_{22}^k \end{array} \right).$$

They are called *generic unimodular matrices*.

We note that

$$\left(\begin{array}{cc} x_{11}^k & x_{12}^k \\ x_{21}^k & x_{22}^k \end{array}\right)$$

are simply called generic matrices.

• Let's shorten $\mathfrak{X}_{F_r}(\mathsf{SL}(2,\mathbb{C}))$ to simply \mathfrak{X}_r .

- Let's shorten $\mathfrak{X}_{\mathsf{F}_r}(\mathsf{SL}(2,\mathbb{C}))$ to simply \mathfrak{X}_r .
- Closely related to $\mathbb{C}[\mathfrak{X}_r] := \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))]^{\mathsf{SL}(2,\mathbb{C})}$ is the ring of invariants

$$\mathbb{C}[\mathfrak{Y}_r] := \mathbb{C}[\mathfrak{gl}(2,\mathbb{C})^{\times r}]^{\mathsf{SL}(2,\mathbb{C})} = \mathbb{C}[x_{ij}^k]^{\mathsf{SL}(2,\mathbb{C})}.$$

- Let's shorten $\mathfrak{X}_{\mathsf{F}_r}(\mathsf{SL}(2,\mathbb{C}))$ to simply \mathfrak{X}_r .
- Closely related to $\mathbb{C}[\mathfrak{X}_r] := \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))]^{\mathsf{SL}(2,\mathbb{C})}$ is the ring of invariants

$$\mathbb{C}[\mathfrak{Y}_r] := \mathbb{C}[\mathfrak{gl}(2,\mathbb{C})^{\times r}]^{\mathsf{SL}(2,\mathbb{C})} = \mathbb{C}[x_{ij}^k]^{\mathsf{SL}(2,\mathbb{C})}.$$

• In fact $\mathbb{C}[\mathfrak{Y}_r]/\Delta \approx \mathbb{C}[\mathfrak{X}_r]$.

- Let's shorten $\mathfrak{X}_{\mathsf{F}_r}(\mathsf{SL}(2,\mathbb{C}))$ to simply \mathfrak{X}_r .
- Closely related to $\mathbb{C}[\mathfrak{X}_r] := \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\mathsf{SL}(2,\mathbb{C}))]^{\mathsf{SL}(2,\mathbb{C})}$ is the ring of invariants

$$\mathbb{C}[\mathfrak{Y}_r] := \mathbb{C}[\mathfrak{gl}(2,\mathbb{C})^{\times r}]^{\mathsf{SL}(2,\mathbb{C})} = \mathbb{C}[x_{ij}^k]^{\mathsf{SL}(2,\mathbb{C})}.$$

- In fact $\mathbb{C}[\mathfrak{Y}_r]/\Delta \approx \mathbb{C}[\mathfrak{X}_r]$.
- Otherwise stated,

$$\mathbb{C}[x_{ij}^k]^{\mathsf{SL}(2,\mathbb{C})}/\Delta \approx \left(\mathbb{C}[x_{ij}^k]/\Delta\right)^{\mathsf{SL}(2,\mathbb{C})};$$

which is true because $SL(2,\mathbb{C})$ is *linearly* reductive and the generators of Δ are invariants.

First Fundamental Theorem of Matrix Invariants

In 1976 Procesi proved

Theorem (Procesi)

 $\mathbb{C}[\mathfrak{Y}_r]$ is generated by the invariants $\operatorname{tr}(\mathbf{X}_{i_1}\mathbf{X}_{i_2}\cdots\mathbf{X}_{i_k})$, where \mathbf{X}_j are generic matrices.

First Fundamental Theorem of Matrix Invariants

In 1976 Procesi proved

Theorem (Procesi)

 $\mathbb{C}[\mathfrak{Y}_r]$ is generated by the invariants $\operatorname{tr}(\mathbf{X}_{i_1}\mathbf{X}_{i_2}\cdots\mathbf{X}_{i_k})$, where \mathbf{X}_j are generic matrices.

• As an immediate corollary, we have that $\mathbb{C}[\mathfrak{X}_r]$ is generated by the invariants $\operatorname{tr}(\mathbf{X}_{i_1}\mathbf{X}_{i_2}\cdots\mathbf{X}_{i_k})$, where \mathbf{X}_j are generic unimodular matrices.

First Fundamental Theorem of Matrix Invariants

In 1976 Procesi proved

Theorem (Procesi)

 $\mathbb{C}[\mathfrak{Y}_r]$ is generated by the invariants $\operatorname{tr}(\mathbf{X}_{i_1}\mathbf{X}_{i_2}\cdots\mathbf{X}_{i_k})$, where \mathbf{X}_j are generic matrices.

- As an immediate corollary, we have that $\mathbb{C}[\mathfrak{X}_r]$ is generated by the invariants $\operatorname{tr}(\mathbf{X}_{i_1}\mathbf{X}_{i_2}\cdots\mathbf{X}_{i_k})$, where \mathbf{X}_j are generic unimodular matrices.
- Executive Comment: As the determinant measures volume, one should think of the trace as measuring length. So Procesi's coordinates are "length coordinates."

Introduction to "word play"

• The Cayley-Hamilton equation gives

$$\mathbf{X}^2 - \operatorname{tr}(\mathbf{X})\mathbf{X} + \det(\mathbf{X})\mathbf{I} = \mathbf{0}.$$

And if we assume $\det(\mathbf{X}) = 1$, as is the case in $\mathbb{C}[\mathfrak{X}_r]$, we easily derive $\operatorname{tr}(\mathbf{X}^{-1}) = \operatorname{tr}(\mathbf{X})$ and $\operatorname{tr}(\mathbf{X}^2) = \operatorname{tr}(\mathbf{X})^2 - 2$.

Introduction to "word play"

• The Cayley-Hamilton equation gives

$$\mathbf{X}^2 - \operatorname{tr}(\mathbf{X})\mathbf{X} + \det(\mathbf{X})\mathbf{I} = \mathbf{0}.$$

And if we assume $\det(\mathbf{X}) = 1$, as is the case in $\mathbb{C}[\mathfrak{X}_r]$, we easily derive $\operatorname{tr}(\mathbf{X}^{-1}) = \operatorname{tr}(\mathbf{X})$ and $\operatorname{tr}(\mathbf{X}^2) = \operatorname{tr}(\mathbf{X})^2 - 2$.

• Hence the generators $\operatorname{tr}(\mathbf{X}^2)$ in $\mathbb{C}[\mathfrak{Y}_r]$ project to $\operatorname{tr}(\mathbf{X})^2-2$ in $\mathbb{C}[\mathfrak{X}_r]$ and so are freely eliminated.

Introduction to "word play"

• The Cayley-Hamilton equation gives

$$\mathbf{X}^2 - \operatorname{tr}(\mathbf{X})\mathbf{X} + \det(\mathbf{X})\mathbf{I} = \mathbf{0}.$$

And if we assume $\det(\mathbf{X}) = 1$, as is the case in $\mathbb{C}[\mathfrak{X}_r]$, we easily derive $\operatorname{tr}(\mathbf{X}^{-1}) = \operatorname{tr}(\mathbf{X})$ and $\operatorname{tr}(\mathbf{X}^2) = \operatorname{tr}(\mathbf{X})^2 - 2$.

• Hence the generators $\operatorname{tr}(\mathbf{X}^2)$ in $\mathbb{C}[\mathfrak{Y}_r]$ project to $\operatorname{tr}(\mathbf{X})^2-2$ in $\mathbb{C}[\mathfrak{X}_r]$ and so are freely eliminated.

• We also get from the characteristic equation (multiplying by \mathbf{X}^{n-2}): $\mathbf{X}^n - \operatorname{tr}(\mathbf{X})\mathbf{X}^{n-1} + \mathbf{X}^{n-2} = \mathbf{0}$, which in turn gives $\operatorname{tr}(\mathbf{X}^n) = \operatorname{tr}(\mathbf{X})\operatorname{tr}(\mathbf{X}^{n-1}) - \operatorname{tr}(\mathbf{X}^{n-2})$.

- We also get from the characteristic equation (multiplying by \mathbf{X}^{n-2}): $\mathbf{X}^n \operatorname{tr}(\mathbf{X})\mathbf{X}^{n-1} + \mathbf{X}^{n-2} = \mathbf{0}$, which in turn gives $\operatorname{tr}(\mathbf{X}^n) = \operatorname{tr}(\mathbf{X})\operatorname{tr}(\mathbf{X}^{n-1}) \operatorname{tr}(\mathbf{X}^{n-2})$.
- Consequently, there are exactly r generators of type $\operatorname{tr}(\mathbf{X})$ in $\mathbb{C}[\mathfrak{X}_r]$ and none of type $\operatorname{tr}(\mathbf{X}^n)$, $n \neq 1$; and this is minimal among these generators.

- We also get from the characteristic equation (multiplying by \mathbf{X}^{n-2}): $\mathbf{X}^n \operatorname{tr}(\mathbf{X})\mathbf{X}^{n-1} + \mathbf{X}^{n-2} = \mathbf{0}$, which in turn gives $\operatorname{tr}(\mathbf{X}^n) = \operatorname{tr}(\mathbf{X})\operatorname{tr}(\mathbf{X}^{n-1}) \operatorname{tr}(\mathbf{X}^{n-2})$.
- Consequently, there are exactly r generators of type $\operatorname{tr}(\mathbf{X})$ in $\mathbb{C}[\mathfrak{X}_r]$ and none of type $\operatorname{tr}(\mathbf{X}^n)$, $n \neq 1$; and this is minimal among these generators.
- Precisely, the words are $\{X_1, ..., X_r\}$.

- We also get from the characteristic equation (multiplying by \mathbf{X}^{n-2}): $\mathbf{X}^n \operatorname{tr}(\mathbf{X})\mathbf{X}^{n-1} + \mathbf{X}^{n-2} = \mathbf{0}$, which in turn gives $\operatorname{tr}(\mathbf{X}^n) = \operatorname{tr}(\mathbf{X})\operatorname{tr}(\mathbf{X}^{n-1}) \operatorname{tr}(\mathbf{X}^{n-2})$.
- Consequently, there are exactly r generators of type $\operatorname{tr}(\mathbf{X})$ in $\mathbb{C}[\mathfrak{X}_r]$ and none of type $\operatorname{tr}(\mathbf{X}^n)$, $n \neq 1$; and this is minimal among these generators.
- Precisely, the words are $\{X_1, ..., X_r\}$.
- Since the dimension of \mathfrak{X}_1 is 1, we have proved: $\mathbb{C}[\mathfrak{X}_1] \cong \mathbb{C}[t]$ where t corresponds to the invariant function $\mathrm{tr}(\mathbf{X})$.

- More generally, note that the dimension of \mathfrak{X}_r is equal to 3r-3 for r>2.
- Multiplying the Cayley-Hamilton equation on both sides by words \mathbf{U} and \mathbf{V} allows us to freely eliminate the generators of type: $\operatorname{tr}(\mathbf{U}\mathbf{X}^n\mathbf{V})$ as long as $n\geq 2$ and at least one of \mathbf{U} or \mathbf{V} is not the identity.

Example: r = 2

- More generally, note that the dimension of \mathfrak{X}_r is equal to 3r-3 for r>2.
- Multiplying the Cayley-Hamilton equation on both sides by words \mathbf{U} and \mathbf{V} allows us to freely eliminate the generators of type: $\operatorname{tr}(\mathbf{U}\mathbf{X}^n\mathbf{V})$ as long as $n\geq 2$ and at least one of \mathbf{U} or \mathbf{V} is not the identity.
- So for the case, $\mathbb{C}[\mathfrak{X}_2]$ we are left with the generators $\operatorname{tr}(\mathbf{X}_1), \operatorname{tr}(\mathbf{X}_2), \operatorname{tr}(\mathbf{X}_1\mathbf{X}_2)$ since any other expression in two letters would result in a sub-expression with an exponent greater than one, which we just showed was impossible.

• Since in this case the dimension of the variety is 3, there can be no futher relations and thus these generators are minimal.

- Since in this case the dimension of the variety is 3, there can be no futher relations and thus these generators are minimal.
- Consequently, there are exactly $\binom{r}{2}$ generators of type $\operatorname{tr}(\mathbf{XY})$ in $\mathbb{C}[\mathfrak{X}_r]$.

- Since in this case the dimension of the variety is 3, there can be no futher relations and thus these generators are minimal.
- Consequently, there are exactly $\binom{r}{2}$ generators of type $\operatorname{tr}(\mathbf{XY})$ in $\mathbb{C}[\mathfrak{X}_r]$.
- ullet This also gives a direct (and short) proof of the Fricke-Vogt theorem: $\mathfrak{X}_2\cong\mathbb{C}^3$

- Since in this case the dimension of the variety is 3, there can be no futher relations and thus these generators are minimal.
- Consequently, there are exactly $\binom{r}{2}$ generators of type $\operatorname{tr}(\mathbf{XY})$ in $\mathbb{C}[\mathfrak{X}_r]$.
- This also gives a direct (and short) proof of the Fricke-Vogt theorem: $\mathfrak{X}_2 \cong \mathbb{C}^3$ (equivalently $\mathbb{C}[\mathfrak{X}_2] \cong \mathbb{C}[x,y,z]$).

A general remark

The only connected rank 1 complex Lie groups are $SL(2,\mathbb{C})$ and $PSL(2,\mathbb{C})$. They are related by the quotient map $SL(2,\mathbb{C}) \to PSL(2,\mathbb{C})$ with fibre $\{\pm I\}$. Since the fibre is central (i.e. commutes with the conjugation action) there is a natural map $\mathfrak{X}_{\Gamma}(SL(2,\mathbb{C})) \to \mathfrak{X}_{\Gamma}(PSL(2,\mathbb{C}))$ with fibre $\mathfrak{X}_{\Gamma}(\mathbb{Z}/2\mathbb{Z})$. Using this map, one can determine the relations and generators of $\mathfrak{X}_{\Gamma}(PSL(2,\mathbb{C}))$ from thos of $\mathfrak{X}_{\Gamma}(SL(2,\mathbb{C}))$. See G-Character varieties for $G = SO(n,\mathbb{C})$ and other not simply connected groups by Adam S. Sikora.

First step to fundamental relation: Polarization

ullet Replacing old X with old X+old Y in the Cayley-Hamilton equation gives

$$(\mathbf{X} + \mathbf{Y})^2 - \operatorname{tr}(\mathbf{X} + \mathbf{Y})(\mathbf{X} + \mathbf{Y}) + \det(\mathbf{X} + \mathbf{Y})\mathbf{I} = \mathbf{0}.$$

First step to fundamental relation: Polarization

ullet Replacing old X with old X+old Y in the Cayley-Hamilton equation gives

$$(\mathbf{X} + \mathbf{Y})^2 - \operatorname{tr}(\mathbf{X} + \mathbf{Y})(\mathbf{X} + \mathbf{Y}) + \det(\mathbf{X} + \mathbf{Y})\mathbf{I} = \mathbf{0}.$$

Simplifying this expression yields

$$\mathbf{XY} + \mathbf{YX} = \mathrm{tr}(\mathbf{X})\mathbf{Y} + \mathrm{tr}(\mathbf{Y})\mathbf{X} - \mathrm{tr}(\mathbf{X})\mathrm{tr}(\mathbf{Y})\mathbf{I} + \mathrm{tr}(\mathbf{XY})\mathbf{I}.$$

Second step, but an important step...

Multiplying on the right by **Z** we get the expression

$$\begin{split} \operatorname{tr}(\boldsymbol{\mathsf{XYZ}}) + \operatorname{tr}(\boldsymbol{\mathsf{YXZ}}) = & \operatorname{tr}(\boldsymbol{\mathsf{X}}) \operatorname{tr}(\boldsymbol{\mathsf{YZ}}) + \operatorname{tr}(\boldsymbol{\mathsf{Y}}) \operatorname{tr}(\boldsymbol{\mathsf{XZ}}) \\ & - \operatorname{tr}(\boldsymbol{\mathsf{X}}) \operatorname{tr}(\boldsymbol{\mathsf{Y}}) \operatorname{tr}(\boldsymbol{\mathsf{Z}}) + \operatorname{tr}(\boldsymbol{\mathsf{XY}}) \operatorname{tr}(\boldsymbol{\mathsf{Z}}). \end{split}$$

Second step, but an important step...

Multiplying on the right by **Z** we get the expression

$$\begin{split} \operatorname{tr}(\boldsymbol{\mathsf{XYZ}}) + \operatorname{tr}(\boldsymbol{\mathsf{YXZ}}) = & \operatorname{tr}(\boldsymbol{\mathsf{X}}) \operatorname{tr}(\boldsymbol{\mathsf{YZ}}) + \operatorname{tr}(\boldsymbol{\mathsf{Y}}) \operatorname{tr}(\boldsymbol{\mathsf{XZ}}) \\ & - \operatorname{tr}(\boldsymbol{\mathsf{X}}) \operatorname{tr}(\boldsymbol{\mathsf{Y}}) \operatorname{tr}(\boldsymbol{\mathsf{Z}}) + \operatorname{tr}(\boldsymbol{\mathsf{XY}}) \operatorname{tr}(\boldsymbol{\mathsf{Z}}). \end{split}$$

At this point, we see that we only need $\binom{r}{3}$ generators of the form $\operatorname{tr}(\mathbf{XYZ})$, and no others of length 3 or more in three letters

Second step, but an important step...

Multiplying on the right by **Z** we get the expression

$$\begin{split} \operatorname{tr}(\boldsymbol{\mathsf{XYZ}}) + \operatorname{tr}(\boldsymbol{\mathsf{YXZ}}) = & \operatorname{tr}(\boldsymbol{\mathsf{X}}) \operatorname{tr}(\boldsymbol{\mathsf{YZ}}) + \operatorname{tr}(\boldsymbol{\mathsf{Y}}) \operatorname{tr}(\boldsymbol{\mathsf{XZ}}) \\ & - \operatorname{tr}(\boldsymbol{\mathsf{X}}) \operatorname{tr}(\boldsymbol{\mathsf{Y}}) \operatorname{tr}(\boldsymbol{\mathsf{Z}}) + \operatorname{tr}(\boldsymbol{\mathsf{XY}}) \operatorname{tr}(\boldsymbol{\mathsf{Z}}). \end{split}$$

At this point, we see that we only need $\binom{r}{3}$ generators of the form $\mathrm{tr}(\mathbf{XYZ})$, and no others of length 3 or more in three letters Remember we already have shown we never need exponents beyond 1 in any letter.

• Now taking this relation and substituting $Z \mapsto ZW$ gives a relation for $\operatorname{tr}(XYZW) + \operatorname{tr}(YXZW)$.

- Now taking this relation and substituting $Z \mapsto ZW$ gives a relation for tr(XYZW) + tr(YXZW).
- And substituting $\mathbf{Y} \mapsto \mathbf{WY}$ gives $\operatorname{tr}(\mathbf{XWYZ}) + \operatorname{tr}(\mathbf{WYXZ})$.

- Now taking this relation and substituting $Z \mapsto ZW$ gives a relation for tr(XYZW) + tr(YXZW).
- And substituting $Y \mapsto WY$ gives tr(XWYZ) + tr(WYXZ).
- Sending $X \mapsto XW$ gives tr(XWYZ) + tr(YXWZ); and $Z \mapsto WZ$ gives tr(XYWZ) + tr(YXWZ).

- Now taking this relation and substituting $Z \mapsto ZW$ gives a relation for tr(XYZW) + tr(YXZW).
- And substituting $Y \mapsto WY$ gives tr(XWYZ) + tr(WYXZ).
- Sending $X \mapsto XW$ gives tr(XWYZ) + tr(YXWZ); and $Z \mapsto WZ$ gives tr(XYWZ) + tr(YXWZ).
- Subtracting, adding, and subtracting these four relations gives and expression for $tr(\mathbf{XYZW}) tr(\mathbf{XYWZ})$.

Fundamental Relation

• However, sending $X \mapsto W \mapsto Y \mapsto Z \mapsto X$ in the first expression gives $\operatorname{tr}(XYZW) + \operatorname{tr}(XYWZ)$.

Fundamental Relation

- However, sending $X \mapsto W \mapsto Y \mapsto Z \mapsto X$ in the first expression gives $\operatorname{tr}(XYZW) + \operatorname{tr}(XYWZ)$.
- This adds to our sum to give:

$$\begin{aligned} 2\mathrm{tr}(\mathbf{XYZW}) &= \mathrm{tr}(\mathbf{X})\mathrm{tr}(\mathbf{Y})\mathrm{tr}(\mathbf{Z})\mathrm{tr}(\mathbf{W}) + \mathrm{tr}(\mathbf{X})\mathrm{tr}(\mathbf{YZW}) \\ &+ \mathrm{tr}(\mathbf{Y})\mathrm{tr}(\mathbf{XZW}) + \mathrm{tr}(\mathbf{Z})\mathrm{tr}(\mathbf{XYW}) + \mathrm{tr}(\mathbf{W})\mathrm{tr}(\mathbf{XYZ}) \\ &- \mathrm{tr}(\mathbf{XZ})\mathrm{tr}(\mathbf{YW}) + \mathrm{tr}(\mathbf{XW})\mathrm{tr}(\mathbf{YZ}) + \mathrm{tr}(\mathbf{XY})\mathrm{tr}(\mathbf{ZW}) \\ &- \mathrm{tr}(\mathbf{X})\mathrm{tr}(\mathbf{Y})\mathrm{tr}(\mathbf{ZW}) - \mathrm{tr}(\mathbf{X})\mathrm{tr}(\mathbf{W})\mathrm{tr}(\mathbf{YZ}) \\ &- \mathrm{tr}(\mathbf{Y})\mathrm{tr}(\mathbf{Z})\mathrm{tr}(\mathbf{XW}) - \mathrm{tr}(\mathbf{Z})\mathrm{tr}(\mathbf{W})\mathrm{tr}(\mathbf{XY}) \end{aligned}$$

Fundamental Relation

- However, sending $X \mapsto W \mapsto Y \mapsto Z \mapsto X$ in the first expression gives $\operatorname{tr}(XYZW) + \operatorname{tr}(XYWZ)$.
- This adds to our sum to give:

$$\begin{split} 2\mathrm{tr}(\textbf{XYZW}) &= \mathrm{tr}(\textbf{X})\mathrm{tr}(\textbf{Y})\mathrm{tr}(\textbf{Z})\mathrm{tr}(\textbf{W}) + \mathrm{tr}(\textbf{X})\mathrm{tr}(\textbf{YZW}) \\ &+ \mathrm{tr}(\textbf{Y})\mathrm{tr}(\textbf{XZW}) + \mathrm{tr}(\textbf{Z})\mathrm{tr}(\textbf{XYW}) + \mathrm{tr}(\textbf{W})\mathrm{tr}(\textbf{XYZ}) \\ &- \mathrm{tr}(\textbf{XZ})\mathrm{tr}(\textbf{YW}) + \mathrm{tr}(\textbf{XW})\mathrm{tr}(\textbf{YZ}) + \mathrm{tr}(\textbf{XY})\mathrm{tr}(\textbf{ZW}) \\ &- \mathrm{tr}(\textbf{X})\mathrm{tr}(\textbf{Y})\mathrm{tr}(\textbf{ZW}) - \mathrm{tr}(\textbf{X})\mathrm{tr}(\textbf{W})\mathrm{tr}(\textbf{YZ}) \\ &- \mathrm{tr}(\textbf{Y})\mathrm{tr}(\textbf{Z})\mathrm{tr}(\textbf{XW}) - \mathrm{tr}(\textbf{Z})\mathrm{tr}(\textbf{W})\mathrm{tr}(\textbf{XY}) \end{split}$$

So length 4 words are not need to generate the ring.

• Since **W** can be any word in the generic matrices, we have proved that $\mathbb{C}[\mathfrak{X}_r]$ is generated by at most $\binom{r}{1}+\binom{r}{2}+\binom{r}{3}=\frac{r(r^2+5)}{6}$ generators (so the ring is finitely generated!)

- Since **W** can be any word in the generic matrices, we have proved that $\mathbb{C}[\mathfrak{X}_r]$ is generated by at most $\binom{r}{1}+\binom{r}{2}+\binom{r}{3}=\frac{r(r^2+5)}{6}$ generators (so the ring is finitely generated!)
- In particular, here are the generators: $\mathcal{G}_1 = \{\operatorname{tr}(\mathbf{X}_1), ..., \operatorname{tr}(\mathbf{X}_r)\} \text{ of order } r.$ $\mathcal{G}_2 = \{\operatorname{tr}(\mathbf{X}_i\mathbf{X}_j) \mid 1 \leq i, j \leq r \text{ and } i \neq j\} \text{ of order } \frac{r(r-1)}{2}.$ $\mathcal{G}_3 = \{\operatorname{tr}(\mathbf{X}_i\mathbf{X}_i\mathbf{X}_k) \mid 1 \leq i < j < k \leq r\} \text{ of order } \frac{r(r-1)(r-2)}{2}.$

- Since **W** can be any word in the generic matrices, we have proved that $\mathbb{C}[\mathfrak{X}_r]$ is generated by at most $\binom{r}{1}+\binom{r}{2}+\binom{r}{3}=\frac{r(r^2+5)}{6}$ generators (so the ring is finitely generated!)
- In particular, here are the generators: $\mathcal{G}_1 = \{\operatorname{tr}(\mathbf{X}_1), ..., \operatorname{tr}(\mathbf{X}_r)\} \text{ of order } r.$ $\mathcal{G}_2 = \{\operatorname{tr}(\mathbf{X}_i\mathbf{X}_j) \mid 1 \leq i, j \leq r \text{ and } i \neq j\} \text{ of order } \frac{r(r-1)}{2}.$ $\mathcal{G}_3 = \{\operatorname{tr}(\mathbf{X}_i\mathbf{X}_i\mathbf{X}_k) \mid 1 \leq i < j < k \leq r\} \text{ of order } \frac{r(r-1)(r-2)}{2}.$
- We will see in a minute that this is a minimal generating set (we can't get rid of any either!)

Geometrically, this says that the minimal (trace) embedding of \mathfrak{X}_r into \mathbb{C}^N is when $N = \frac{r(r^2+5)}{6}$ and the mapping is exactly $[\rho] \mapsto \left(\operatorname{tr}(\rho(\gamma_1)), ..., \operatorname{tr}(\rho(\gamma_r)), \operatorname{tr}(\rho(\gamma_1\gamma_2)), ..., \operatorname{tr}(\rho(\gamma_{r-1}\gamma_r)), \operatorname{tr}(\rho(\gamma_1\gamma_2\gamma_3)), ..., \operatorname{tr}(\rho(\gamma_{r-2}\gamma_{r-1}\gamma_r)) \right).$

• In this case the variety has dimension 6.

- In this case the variety has dimension 6.
- From the r=1 and r=2 cases and our previous theorems, we know there are only two generators not accounted for: tr(XYZ) and tr(YXZ).

- In this case the variety has dimension 6.
- From the r=1 and r=2 cases and our previous theorems, we know there are only two generators not accounted for: tr(XYZ) and tr(YXZ).
- However, we just saw that only one of these two generator types is necessary.

- In this case the variety has dimension 6.
- From the r=1 and r=2 cases and our previous theorems, we know there are only two generators not accounted for: tr(XYZ) and tr(YXZ).
- However, we just saw that only one of these two generator types is necessary.
- There are then only 7 generators.

- In this case the variety has dimension 6.
- From the r=1 and r=2 cases and our previous theorems, we know there are only two generators not accounted for: tr(XYZ) and tr(YXZ).
- However, we just saw that only one of these two generator types is necessary.
- There are then only 7 generators.
- If tr(XYZ) was allowed to be eliminated, we would conclude that \mathfrak{X}_3 was affine \mathbb{C}^6 .

- In this case the variety has dimension 6.
- From the r=1 and r=2 cases and our previous theorems, we know there are only two generators not accounted for: tr(XYZ) and tr(YXZ).
- However, we just saw that only one of these two generator types is necessary.
- There are then only 7 generators.
- If $\operatorname{tr}(\mathbf{XYZ})$ was allowed to be eliminated, we would conclude that \mathfrak{X}_3 was affine \mathbb{C}^6 .
- However, it is not hard to show there exists two representations which agree on the six generators of word length two or less but differ at tr(XYZ).

For instance,
$$\mathbf{X} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\mathbf{Y} = \begin{pmatrix} 0 & 2 \\ -1/2 & 0 \end{pmatrix}$, and $\mathbf{Z} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ or $\mathbf{Z} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$ gives two such representations.

For instance,
$$\mathbf{X} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\mathbf{Y} = \begin{pmatrix} 0 & 2 \\ -1/2 & 0 \end{pmatrix}$, and $\mathbf{Z} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ or $\mathbf{Z} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$ gives two such representations.

Therefore, generators of the form $\operatorname{tr}(\mathbf{XYZ})$ cannot be written in terms of traces of shorter words. This proves the aforementioned generators form a minimal generating set.

For instance,
$$\mathbf{X} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\mathbf{Y} = \begin{pmatrix} 0 & 2 \\ -1/2 & 0 \end{pmatrix}$, and $\mathbf{Z} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ or $\mathbf{Z} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$ gives two such representations.

Therefore, generators of the form tr(XYZ) cannot be written in terms of traces of shorter words. This proves the aforementioned generators form a minimal generating set.

Remark

For the n=2 case, Sikora showed that the embedding above is in fact minimal among all algebraic embeddings (not just trace embeddings).

For instance,
$$\mathbf{X} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\mathbf{Y} = \begin{pmatrix} 0 & 2 \\ -1/2 & 0 \end{pmatrix}$, and $\mathbf{Z} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ or $\mathbf{Z} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$ gives two such representations.

Therefore, generators of the form $\operatorname{tr}(\mathbf{XYZ})$ cannot be written in terms of traces of shorter words. This proves the aforementioned generators form a minimal generating set.

Remark

For the n=2 case, Sikora showed that the embedding above is in fact minimal among all algebraic embeddings (not just trace embeddings).

Remark

One can further show there exists a product relation for $\operatorname{tr}(\mathbf{XYZ})\operatorname{tr}(\mathbf{YXZ})$. Together with the sum relation, we conclude that \mathfrak{X}_3 is a hypersurface.

$$\begin{split} \operatorname{tr}(\mathbf{XYZ})\operatorname{tr}(\mathbf{XZY}) &= \operatorname{tr}(\mathbf{X})^2 + \operatorname{tr}(\mathbf{Y})^2 + \operatorname{tr}(\mathbf{Z})^2 \\ &+ \operatorname{tr}(\mathbf{XY})^2 + \operatorname{tr}(\mathbf{YZ})^2 + \operatorname{tr}(\mathbf{XZ})^2 \\ &- \operatorname{tr}(\mathbf{X})\operatorname{tr}(\mathbf{Y})\operatorname{tr}(\mathbf{XY}) - \operatorname{tr}(\mathbf{Y})\operatorname{tr}(\mathbf{Z})\operatorname{tr}(\mathbf{YZ}) \\ &- \operatorname{tr}(\mathbf{X})\operatorname{tr}(\mathbf{Z})\operatorname{tr}(\mathbf{XZ}) \\ &+ \operatorname{tr}(\mathbf{XY})\operatorname{tr}(\mathbf{YZ})\operatorname{tr}(\mathbf{XZ}) - 4 \end{split}$$

$$\begin{split} \operatorname{tr}(\mathbf{XYZ}) &\operatorname{tr}(\mathbf{XZY}) = \operatorname{tr}(\mathbf{X})^2 + \operatorname{tr}(\mathbf{Y})^2 + \operatorname{tr}(\mathbf{Z})^2 \\ &+ \operatorname{tr}(\mathbf{XY})^2 + \operatorname{tr}(\mathbf{YZ})^2 + \operatorname{tr}(\mathbf{XZ})^2 \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{XY}) - \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{YZ}) \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{XZ}) \\ &+ \operatorname{tr}(\mathbf{XY}) \operatorname{tr}(\mathbf{YZ}) \operatorname{tr}(\mathbf{XZ}) - 4 \end{split}$$

Using the characteristic equation, we derive that

(*)
$$\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B}) - \operatorname{tr}(\mathbf{A}^{-1}\mathbf{B}).$$

$$\begin{split} \operatorname{tr}(\mathbf{XYZ}) \operatorname{tr}(\mathbf{XZY}) &= \operatorname{tr}(\mathbf{X})^2 + \operatorname{tr}(\mathbf{Y})^2 + \operatorname{tr}(\mathbf{Z})^2 \\ &+ \operatorname{tr}(\mathbf{XY})^2 + \operatorname{tr}(\mathbf{YZ})^2 + \operatorname{tr}(\mathbf{XZ})^2 \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{XY}) - \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{YZ}) \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{XZ}) \\ &+ \operatorname{tr}(\mathbf{XY}) \operatorname{tr}(\mathbf{YZ}) \operatorname{tr}(\mathbf{XZ}) - 4 \end{split}$$

- Using the characteristic equation, we derive that $(x) + (AB) = \exp(A) + \exp(A 1B)$
 - $(*) \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B}) \operatorname{tr}(\mathbf{A}^{-1}\mathbf{B}).$
- \bullet Then $\mathrm{tr}(\mathsf{BCA})\mathrm{tr}(\mathsf{BAC})-\mathrm{tr}(\mathsf{A}^{-1}\mathsf{C}^{-1}\mathsf{AC})=\mathrm{tr}([\mathsf{BCA}][\mathsf{BAC}])$

$$\begin{split} \operatorname{tr}(\mathbf{XYZ}) \operatorname{tr}(\mathbf{XZY}) &= \operatorname{tr}(\mathbf{X})^2 + \operatorname{tr}(\mathbf{Y})^2 + \operatorname{tr}(\mathbf{Z})^2 \\ &+ \operatorname{tr}(\mathbf{XY})^2 + \operatorname{tr}(\mathbf{YZ})^2 + \operatorname{tr}(\mathbf{XZ})^2 \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{XY}) - \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{YZ}) \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{XZ}) \\ &+ \operatorname{tr}(\mathbf{XY}) \operatorname{tr}(\mathbf{YZ}) \operatorname{tr}(\mathbf{XZ}) - 4 \end{split}$$

- Using the characteristic equation, we derive that $(*) \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B}) \operatorname{tr}(\mathbf{A}^{-1}\mathbf{B}).$
- ullet Then $\mathrm{tr}(BCA)\mathrm{tr}(BAC)-\mathrm{tr}(A^{-1}C^{-1}AC)=\mathrm{tr}([BCA][BAC])$
- ullet And $\mathrm{tr}(\mathsf{BC})\mathrm{tr}(\mathsf{ABAC})-\mathrm{tr}(\mathsf{B}^{-1}\mathsf{ABA})=\mathrm{tr}([\mathsf{BC}][\mathsf{ABAC}])$

$$\begin{split} \operatorname{tr}(\mathbf{XYZ}) \operatorname{tr}(\mathbf{XZY}) &= \operatorname{tr}(\mathbf{X})^2 + \operatorname{tr}(\mathbf{Y})^2 + \operatorname{tr}(\mathbf{Z})^2 \\ &+ \operatorname{tr}(\mathbf{XY})^2 + \operatorname{tr}(\mathbf{YZ})^2 + \operatorname{tr}(\mathbf{XZ})^2 \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{XY}) - \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{YZ}) \\ &- \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{XZ}) \\ &+ \operatorname{tr}(\mathbf{XY}) \operatorname{tr}(\mathbf{YZ}) \operatorname{tr}(\mathbf{XZ}) - 4 \end{split}$$

- Using the characteristic equation, we derive that $(*) \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B}) \operatorname{tr}(\mathbf{A}^{-1}\mathbf{B}).$
- ullet Then $\mathrm{tr}(BCA)\mathrm{tr}(BAC)-\mathrm{tr}(A^{-1}C^{-1}AC)=\mathrm{tr}([BCA][BAC])$
- ullet And $\mathrm{tr}(BC)\mathrm{tr}(ABAC)-\mathrm{tr}(B^{-1}ABA)=\mathrm{tr}([BC][ABAC])$
- Again using (*), we can simplify $tr(B^{-1}ABA)$, $tr(ACA^{-1}C^{-1})$, and tr(ABAC).

$$\begin{split} \operatorname{tr}(\mathbf{XYZ}) & \operatorname{tr}(\mathbf{XZY}) = \operatorname{tr}(\mathbf{X})^2 + \operatorname{tr}(\mathbf{Y})^2 + \operatorname{tr}(\mathbf{Z})^2 \\ & + \operatorname{tr}(\mathbf{XY})^2 + \operatorname{tr}(\mathbf{YZ})^2 + \operatorname{tr}(\mathbf{XZ})^2 \\ & - \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{XY}) - \operatorname{tr}(\mathbf{Y}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{YZ}) \\ & - \operatorname{tr}(\mathbf{X}) \operatorname{tr}(\mathbf{Z}) \operatorname{tr}(\mathbf{XZ}) \\ & + \operatorname{tr}(\mathbf{XY}) \operatorname{tr}(\mathbf{YZ}) \operatorname{tr}(\mathbf{XZ}) - 4 \end{split}$$

- Using the characteristic equation, we derive that $(*) \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B}) \operatorname{tr}(\mathbf{A}^{-1}\mathbf{B}).$
- ullet Then $\mathrm{tr}(BCA)\mathrm{tr}(BAC)-\mathrm{tr}(A^{-1}C^{-1}AC)=\mathrm{tr}([BCA][BAC])$
- ullet And $\mathrm{tr}(\mathsf{BC})\mathrm{tr}(\mathsf{ABAC})-\mathrm{tr}(\mathsf{B}^{-1}\mathsf{ABA})=\mathrm{tr}([\mathsf{BC}][\mathsf{ABAC}])$
- Again using (*), we can simplify $tr(B^{-1}ABA)$, $tr(ACA^{-1}C^{-1})$, and tr(ABAC).
- Together, these formulae give the product relation.

Exercises

- By hand fill in the details for the derivations for the product formula tr(ABC)tr(ACB).
- 2 By hand fill in the details for the derivation for the $\mathrm{tr}(\mathbf{XYZW})$.
- **3** Verify that the example representations I gave are the same on tr(A), tr(B), tr(C), tr(AB), tr(AC), tr(BC) but differ on tr(ABC) and tr(ACB).
- Write algorithms by hand that turn $tr(\mathbf{W})$ into a trace expression with every letter of every represented word having exponent 1 (non-negative and no-multiplicity) and no word having length greater than 3.
- **5** Together implement the above algorithm in *Mathematica*.

