

Indian Institute of Technology Kanpur

Department of Mathematics and Statistics

Complex analysis (MTH 403) Ouiz 2 solutions

Date: 09 Sept. 2023

Time: 30 minutes

Total marks: 08

1. Prove or disprove the following: Let γ be a path in $\mathbb C$ and $f:\gamma^*\longrightarrow \mathbb C$ be a continuous function. Then

$$\left| \int_{\gamma} f \right| \le \int_{\gamma} |f|.$$

To the students: Given a path σ in $\mathbb C$ and a continuous function $g:\sigma^*\longrightarrow\mathbb C$, the integral $\int_{\sigma}g$, by definition, contains a factor σ' in the integrand. Since $\sigma'(t)$ is always a complex number, even if g is real valued, $\int_{\mathbb T}g$ may be a nonreal complex number.

Solution. The statement is FALSE. Let f be the constant function 1 and $\gamma(t) \stackrel{\text{def}}{=} it$, where $0 \le t \le 1$. Then one has

$$\int_{\gamma} |f| = \int_0^1 1 \cdot i = i,$$

whereas $\left| \int_{\gamma} f \right|$ is always a nonnegative real number. Hence there is no comparison between them.

2. Let $f(z) \stackrel{\text{def}}{=} z^2$, for all $z \in \mathbb{C}$. Cauchy's theorem for an open convex set asserts that

$$\int_{C(2:1)} f = 0.$$

But when you calculate $\int_0^{2\pi} f(2 + e^{it}) dt$ you can see it is $8\pi \neq 0$. Are the two statements made above contradictory? Substantiate your claim.

Solution. By definition, $\int_{C(2;1)} f$ is equal to $\int_0^{2\pi} f(2 + e^{it}) \cdot i \cdot e^{it} dt$, which is not same as $\int_0^{2\pi} f(2 + e^{it}) dt$. Hence, despite the fact that both the statements under consideration are true, they are not contradicting with each other.

To the students: Neither you have been asked to show $\int_{C(2;1)} f = 0$, nor $\int_0^{2\pi} f(2 + e^{it}) dt = 8\pi$. Hence there is no point proving any of these.

3. Evaluate $\int_{C(0;1)} \frac{\sin z}{z^4} dz.$ [3]

[3]

[2]

Solution 1 (Without using Cauchy theory). Since $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$, for all $z \in \mathbb{C}$, we

have

$$\frac{\sin z}{z^4} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n-3}}{(2n+1)!}, \text{ whenever } |z| = 1.$$

Now, for all $n \ge 0$ and |z| = 1, $\left| (-1)^n \frac{z^{2n+1}}{(2n+1)!} \right| \le \frac{1}{(2n+1)!}$. Since $\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$ converges, as

for all $N \in \mathbb{N}$, $\sum_{n=0}^{N} \frac{1}{(2n+1)!} \le \sum_{k=0}^{2N+1} \frac{1}{(2k+1)!} < e$, it follows from Weirstrass M-test that,

 $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n-3}}{(2n+1)!}$ converges uniformly on the unit circle |z| = 1. Therefore,

$$\int_{C(0;1)} \frac{\sin z}{z^4} dz = \int_{C(0;1)} \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n-3}}{(2n+1)!} dz$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \int_{C(0;1)} z^{2n-3} dz$$
$$= -\frac{1}{6} \cdot 2\pi i$$
$$= -\frac{i\pi}{3}.$$

To the students:

- 1. The uniform convergence of the series $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n-3}}{(2n+1)!}$ on the unit circle |z|=1 must be established beforehand in order to interchange the sum and integral.
- 2. You may provide a different but mathematically correct argument for the above mentioned uniform convergence.

Solution 2 (Using Cauchy theory). Let $f(z) \stackrel{\text{def}}{=} \sin z$, for all $z \in \mathbb{C}$. Since f is holomorphic everywhere, from Cauchy's integral formula for derivatives, we obtain that

$$\frac{f^{(3)}(0)}{3!} = \frac{1}{2\pi i} \int_{C(0:1)} \frac{f(z)}{z^4} dz.$$

Since, for all $w \in \mathbb{C}$, $f'(w) = \cos w$, $f''(w) = -\sin w$ and $f'''(w) = -\cos w$, it now follows that

$$\int_{C(0;1)} \frac{\sin z}{z^4} dz = \frac{2\pi i}{3!} \cdot (-1) = -\frac{i\pi}{3}.$$