מבוא להסתברות - תרגיל מסי 4

אי-תלות

- .1 במשחק מטילים מטבע שוב ושוב, עד אשר מתקבל הרצף [עץ,עץ] או הרצף [פלי, עץ] (לפי הסדר מימין לשמאל). אם משתתף במשחק מהמר כי הרצף [עץ,עץ] ייצא קודם, מה ההסתברות לכך שיזכה במשחק? $\{o.25\}$
 - . הוכח בלתי-תלויים. $P\{B/A\} = P\{B/\overline{A}\}$ הוכח כי התנאי $P\{B/A\} = P\{B/\overline{A}\}$ הוא תנאי הכרחי ומספיק לכך שהמאורעות
 - $A \cup B$, ו- $A \cap B$
 - A. לפניך שתי קופסאות, ובכל קופסא יש כדור אחד לבן ואחד שחור, מוציאים כדור אחד מכל קופסא, יהי A. לפניך שתי קופסאות, ובכל קופסא יש כדור אחד לבן ואחד שחור B המאורע: הוצא כדור שחור מן הקופסא הראשונה, יהי A המאורע: הוצא כדור שחור מן הקופסא העניה! A המאורע: בדיוק אחד מבין שני הכדורים שהוצאו הוא שחור. האם A בלתי תלויים! A האם A בלתי תלויים! A האם A בלתי תלויים! A האם שלשה בלתי תלויה!
 - שאר במצבם תלות ללא p מערכת מורכבת כי כל כי כל כי כל רכיב הוא הקין בהסתברות P ללא הלות במצבם של שאר הרכיבים. חשב את ההסתברות לתקינות המערכת אם:
 - $\{p^n\}$ א. הרכיבים מחוברים בטור;
 - $\{1-q^n\}$ ב. הרכיבים מחוברים במקביל;
 - רכיבים b תת מערכת מורכבת מa תת מערכות המחוברות במקביל, וכל תת מערכת מורכבת מa רכיבים ($N=a \cdot b$);
 - ד. המערכת מורכבת מ ${\bf b}$ תת מערכת מורכבת בטור, וכל תת מערכות מערכות מערכות מערכות המחוברים המחוברים במקביל (N=a·b).
 - 6. במכונות מטיפוס מסוים המורכבות מN רכיבים, המכונה פועלת אם יותר ממחצית הרכיבים בה תקינים, ידוע כי כל רכיב הוא תקין בהסתברות p ללא תלות במצבם של שאר הרכיבים. נתונות שתי מכונות מטיפוס זה: אחת מורכבת מ-3 רכיבים, והשניה מ-3 רכיבים. איזו מכונה סיכוי רב להיות תקינה)?
 - 7. כאשר משדרים ביטים בקו תקשורת יש סיכוי של 0.01 שהביט נקלט באופן שגוי (כלומר, 0 במקום 1 או ההיפך). כדי לצמצם טעויות, משודר כל ביט 3 פעמים, ומפוענח בצד השני על פי מה שנקלט ברוב התשדורות מתוך ה-3.
 - $\{0.9997\}$ א. מהי ההסתברות לכך שביט מועבר יפוענח נכון!
 - ב. מעבירים הודעה באורך 10 ביטים, מהי ההסתברות לכך שהיא תפוענח נכון במלואה?
 - $\{0.9851\}$ ביטים לאחת, מהי ההסתברות לכך שכולן פוענחו נכון במלואן:
 - ד. מעבירים 20 הודעות באורך 10 ביטים כל אחת, מהי ההסתברות לכך שלכל היותר 2 הודעות לא פוענחו נכון במלואן?
 - 1/(k+1) תקין בהסתברות k תקין כי רכיב מסי k תקין בהסתברות ובה חמישה רכיבים, ידוע כי רכיב מסי $k=1,\ldots,5$

- 9. כד מכיל 5 כדורים לבנים, 10 כדורים אדומים, ו- 15 כדורים שחורים.
- א) דוגמים, בלי החזרה, 5 כדורים. מה ההסתברות שדוגמים לפחות 4 כדורים אדומים?
- ב) דוגמים, עם החזרה, 5 כדורים. מה ההסתברות שדוגמים לפחות 4 כדורים אדומים!
- ג) דוגמים עם החזרה, עד שיוצא, לראשונה, כדור אדום. מה ההסתברות שדוגמים לפחות 4 כדורים?
- ד) דוגמים, בלי החזרה, 4 כדורים. מה ההסתברות שמספר הכדורים הלבנים שהוצאו שווה למספר הכדורים השחורים שהוצאו!
 - 10. א. בהטלות קובייה הוגנת מהי ההסתברות שנקבל מספר "6" לראשונה רק בהטלה השישית! (0.0669)
 - ב. מטילים קובייה הוגנת 10 פעמים. מה ההסתברות שב-5 הטלות נקבל מספר גדול מ-5! (0.013)
 - ג. מטילים קובייה הוגנת 10 פעמים. מה ההסתברות שבפחות מ-2 הטלות נקבל מספר גדול מ-5! (0.4845)
 - .11 מתוך קבוצה של 12 נשים ו-8 גברים בוחרים באופן מקרי ועד של 6 נבחרים.
 - א. מהי ההסתברות לכך שמחצית מחברי הועד גברים! (0.3179)
 - ב. מהי ההסתברות לכך שהועד מורכב כולו מגברים! (0.0007)
 - ג. מהי ההסתברות לכך שלכל היותר 5 מחברי הועד גברים! (0.9993)

בוחרים באופן מקרי נקודה (X,Y) בריבוע Ω , שפינותיו הן (M,M),(M,M),(M,M), הנקודה מתפלגת בריבוע Ω , אזי ההסתברות שהיא תהיה בתוך A, היא באופן אחיד על הריבוע. כלומר, אם A הוא תחום המוכל בריבוע Ω , אזי ההסתברות שהיא תהיה בתוך A, היא השטח של A מחולק בשטח של הריבוע Ω (פתור עבור M כללי, וישם עבור M1).

- $\{0.5\}$ א. מהי ההסתברות לכך שבנקודה הנבחרת X קטן מ-X
- $\{0.5\}$ און מ- $\{2^2 Y^2 + Y^2 \}$ און מ- $\{0.5\}$ און מהיי ההסתברות לכך ש
- $\{0.5784\}$?t יש פתרון ממשי (t-ב מהי ב-2) איז פתרון ממשי לכך שלמשוואה פואר (כמשוואה ב-1) יש פתרון ממשי לכך פואר מהי