Probabilidad y Estadística I Semana 1 Conjuntos y conteo

Profesor: Nicolás López MSc

Universidad del Rosario

Contenido

Introducción

Ejemplos de aplicación

Conceptos iniciales

Conjuntos

Reglas de conteo

Ejercicios iniciales Modelos de urna y particiones

Requerimos una sociedad de consumidores críticos y conscientes de la información estadística.

Llegará el día en el que el pensamiento estadístico será una condición tan necesaria para la convivencia eficiente como la capacidad de leer y escribir

H. G. Wells

Otros ejemplos de aplicación

Además de las tradicionales encuestas de opinión, encontramos la estadística en muchos otros campos de aplicación, algunos de ellos son:

- Control de calidad en procesos industriales de producción.
- Curvas de crecimiento infantil para determinar patrones óptimos de crecimiento.
- Segmentación de clientes por riesgo de no pago para una entidad financiera.
- Caracterización social de los migrantes rurales recientes en Colombia.
- Predicción de niveles de compra de productos en el mercado y determinación de la importancia de las diferentes marcas de productos.
- Detección de la relevancia de genes en la predicción de respuestas farmacológicas a líneas celulares.
- **.**..

Introducción

En general, al estudiar un fenómeno de interés obtenemos datos:

- ▶ De una población de N elementos Np son defectuosos. Examinar los N elementos es muy costoso, por lo cual se cuenta con una muestra de n ítems para obtener información de p.
- Se busca estudiar la distribución del IMC de una gran población. Un censo es difícil de obtener, así que se selecciona una muestra de n sujetos de la población.
- Se compara la eficiencia de dos métodos aplicados a cierta población (ej: efecto de una droga). Se seleccionan $n_1 + n_2$ sujetos de la población. n_1 asignados al método 1 y n_2 al 2.
- **.**..

Y el análisis de los datos es el objetivo de la investigación.

Contenido

Introducción

Ejemplos de aplicación

Conceptos iniciales Conjuntos

Reglas de conteo

Ejercicios iniciales Modelos de urna y particiones

Conjunto

Conjunto

Un conjunto es una colección de objetos.

- 1. Los objetos de un conjunto son llamados **elementos** del conjunto.
- 2. Si S es un conjunto y x es un elemento de S se escribe

3. Si x no es un elemento de S se escribe

4. La manera más simple de presentar una **colección finita** es listando **por extensión** sus elementos entre llaves

$$S = \{x_1, ..., x_5\}$$

Conjunto

Ejercicio. Lanzamiento de un dado corriente de 6 caras tres veces

Escriba el conjunto de posibles resultados al lanzar un dado corriente de 6 caras tres veces y determine cuántos elementos tiene dicho conjunto.

Conjunto

Ejercicio. Lanzamiento de un dado corriente de 6 caras tres veces

1. Por extensión se tiene

$$S = \{(1,1,1),...,(6,6,6)\}$$

2. Por compresión se tiene

$$S = \{(a, b, c) : a, b, c \in \{1, 2, 3, 4, 5, 6\}\}$$

3. Se tiene que el cardinal de S es igual a

$$6 \times 6 \times 6$$

Conjunto

Conjunto

1. Al contar con una colección infinita contable se nota como

$$S = \{x_1, ...\}$$

Los números pares son una colección infinita contable. Mientras que los reales son no contables.

2. Un conjunto de gran importancia es el **conjunto vacío** (aquel que no tiene elementos)

$$\emptyset = \{\}$$

Contenencia de conjuntos. Subconjuntos

Una colección de objetos puede estar contenida en otra. Si $A = \{1, 2, 3, 4\}$ y $B = \{1, 3\}$, es claro que todos los elementos de B están en A pero no todos los elementos de A están en B, es decir:

$$B \subset A$$
 pero $A \not\subset B$

Subconjunto

Sean A y B dos conjuntos arbitrarios. El conjunto A es subconjunto del conjunto B si $x \in A$ implica $x \in B$ y se nota $A \subset B$. Nótese que dos conjuntos A y B son iguales si $A \subset B$ y $B \subset A$.

Operaciones entre conjuntos

Así como a partir de números "viejos" (5 y 2) obtenemos "nuevos" (7 y 10) mediante operaciones $(+, \times)$, podemos operar conjuntos entre si. Las operaciones básicas entre conjuntos son la unión (\cup) y la intersección (\cap) :

Unión

Sean $A ext{ y } B$ dos conjuntos arbitrarios. La unión entre $A ext{ y } B$ se nota como $A \cup B$, y es el conjunto que contiene todo lo que esta en A, B ó ambos.

$${x : x \in A \lor x \in B}$$

Intersección

Sean A y B dos conjuntos arbitrarios. La intersección entre A y B se nota como $A \cap B$, y es el conjunto que contiene todo lo que esta tanto en A como en B.

$$\{x: x \in A \land x \in B\}$$

Operaciones entre conjuntos

Por ejemplo, sean

$$A = \{p, x, y, z\}$$
 y $B = \{x\}$

Entonces $A \cup B = \{p, x, y, z\}$ y $A \cap B = \{x\}$. Nótese que en este caso, como $B \subseteq A$, se tiene $A \cup B = A$ y $A \cap B = B$.

Por otra parte, si

$$A = \{x, y\}$$
 y $B = \{p, z\}$

Se tiene $A \cup B = \{p, x, y, z\}$ pero $A \cap B = \emptyset$. En este caso se dice que A y B son **conjuntos disyuntos**.

Operaciones entre conjuntos

Las operaciónes básicas entre conjuntos pueden ser generalizadas para colecciones de conjuntos $A_1, ...$

$$\bigcup_i A_i = \{x : x \in A_i \text{ para algun } i\}$$

У

$$\cap_i A_i = \{x : x \in A_i \text{ para todo } i\}$$

Diagrama de Venn

Ejercicio. Diagrama de Venn

Se pueden visualizar los conjuntos y subconjuntos junto a sus operaciones a partir de **diagramas de Venn**. Realice en su cuaderno un diagrama para las dos operaciónes vista tomando dos conjuntos arbitriarios A y B, pueden ser las vocales y el alfabeto, respectivamente.

Ejercicio de aplicación

Diagrama de Venn

Tarea. Diagrama de Venn

A partir de diagramas de Venn, observe si las siguientes relaciones se mantienen para tres conjuntos arbitrarios A, B y C.

- $ightharpoonup A \cap B \subseteq A \text{ y } A \cap B \subseteq B.$
- $ightharpoonup A \subseteq A \cup B$ y $B \subseteq A \cup B$.
- ▶ $A \cap B = B \cap A$ y $A \cup B = B \cup A$ (conmutatividad).
- ▶ $A \cup B \cup C = A \cup (B \cup C) = (A \cup B) \cup C$ (asociatividad).
- ▶ $A \cup \emptyset = A$ y $A \cap \emptyset = \emptyset$ (identidad).
- ▶ $A \cup A = A$ y $A \cap A = A$ (idempotencia).

Operaciones entre conjuntos. Complemento (respecto a un conjunto)

Bajo ciertas consideraciones, el conjunto de todos los elementos que pertenecen a la discusión pueden ser listados. Este conjunto se llama **espacio** y generalmente se denota como Ω . Considerando el conjunto de las vocales:

$$\Omega = \{a, e, i, o, u\}$$

Si se tiene un subconjunto A de Ω , por ejemplo $A=\{a,i,u\}$, el complemento de A (respecto a Ω) se nota como A_{Ω}^c ó A^c y corresponde al conjunto de todos los elementos de Ω que no son elementos de A. Así $A^c=\{e,o\}$.

Propiedades de conjuntos. Partición

Una colección de conjuntos A_1 , ... disyunta que cumple

$$\cup_i A_i = \Omega$$

Se denomina partición. Piense en un conjunto residencial segmentado por torres y apartamentos.

Propiedades de conjuntos. De Morgan

Existen dos igualdades adicionales entre conjuntos que serán de importancia más adelante en nuestr curso. Son las llamadas **propiedades De Morgan**

$$(\cup_i A_i)^c = \cap_i A_i^c$$

Υ

$$(\cap_i A_i)^c = \cup_i A_i^c$$

Ejercicio. De Morgan

Muestre que las anteriores propiedades se cumplen para cualquier colección de conjuntos A_1, \ldots Recuerde la definición de igualdad entre conjuntos.

Introducción

Aprender a contar es mucho más difícil de lo que parece.

- 1. Es una habilidad muy importante de adquirir para el posterior entendimiento de problemas en probabilidad y variables aleatorias.
- 2. El análisis combinatorio es otra de las herramientas matemáticas utilizadas para el estudio de los fenómenos aleatorios.

Regla fundamental del conteo

Para un experimento realizado en 2 etapas dónde la primera se puede realizar de m formas y la segunda de n formas, hay un total de mn formas de efectuar el experimento.

Regla fundamental del conteo

Ejercicio

En el área de ventas de una empresa hay un total de 10 vendedores JR (J) y de 3 vendedores SR (S). Si un JR y un SR son seleccionados como el dreamteam del área ¿cuántas posibles opciones de parejas de ganadores hay?

Regla fundamental del conteo

El **producto cartesiano** entre ambos conjuntos permite determinar un total de 10×3 parejas ordenadas para ganar el concurso.

Regla fundamental del conteo

El **diagrama de árbol** entre ambos conjuntos permite determinar un total de 10×3 parejas ordenadas para ganar el concurso.

Regla fundamental del conteo extendida

Para un experimento realizado en r etapas dónde la primera se puede realizar de n_1 formas, la segunda de n_2 formas, . . . , y la r- ésima de n_r formas hay un total de $n_1 \times n_2 \times ... \times n_r$ formas de efectuar el experimento.

Regla fundamental del conteo extendida

Ejercicio

En el área de ventas hay un total de 10 vendedores JR (J), 3 vendedores SR (S), 2 manager (M) y un presidente. Si se desea crear un comité de 4 integrantes, con un miembro de cada uno de los cargos, ¿cuántos posibles comités hay?

Regla fundamental del conteo extendida

El diagrama de árbol parcial entre los 4 conjuntos permite determinar un total de $1 \times 2 \times 3 \times 10$ cuartetos ordenados para conformar el comité.

Permutaciones a partir de la regla fundamental del conteo

Para un experimento realizado en r etapas donde la primera se puede realizar de n formas, la segunda de n-1 formas,..., y la r- ésima de n-r formas hay un total de $n \times n-1...\times n-r$ formas de efectuar el experimento.

Permutaciones a partir de la regla fundamental del conteo

Ejercicio

En el área hay un total de n=10 vendedores JR. Se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente en una lista ¿cuántas posibles listas existen?

Permutaciones a partir de la regla fundamental del conteo

El primer lugar puede ser ocupado por cualquiera de los 10 JR. El segundo lugar puede ser ocupado por los 9 JR restantes. El tercero por los 8 JR restantes.

El total de posibles ordenamientos en una lista de los 10 JR está dado por

$$10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=3628800=10!$$

Permutaciones a partir de la regla fundamental del conteo

Ejercicio

En el área hay 3 SR para los cuales también se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente en una lista.

- ▶ ¿De cuántas maneras es posible listar a los 3 SR?
- ▶ ¿De cuántas maneras es posible listar a los 10 JR y a los 3 SR?

Permutaciones a partir de la regla fundamental del conteo

Ejercicio

En el área hay 3 SR para los cuales también se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente en una lista.

- ▶ ¿De cuántas maneras es posible listar a los 3 SR? = 3!
- ▶ ¿De cuántas maneras es posible listar a los 10 JR y a los 3 SR? = $10! \times 3!$

Permutaciones

Ejercicio

En el área hay un total de n=10 JR. Se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente. Los r=3 mejores puestos serán ganadores de tiempo adicional de vacaciones: 5 días (primer puesto), 3 días (segundo puesto) y 1 día (tercer puesto). ¿De cuantas formas puedo listar a los 3 JR ganadores?

Permutaciones a partir de la regla fundamental del conteo

El primer lugar puede ser ocupado por cualquiera de los JR. El segundo lugar puede ser ocupado por los 9 JR restantes. El tercero por los 8 JR restantes. De esta forma:

$$10 \times 9 \times 8 = 720$$

Así, hay 720 ordenamientos posibles de los 10 JR tomando 3 a la vez.

Permutaciones a partir de la regla fundamental del conteo

Utilizando propiedades de la multiplicación se tiene lo siguiente

$$10\times9\times8=\frac{10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{7\times6\times5\times4\times3\times2\times1}=\frac{10!}{7!}=\frac{10!}{(10-3)!}$$

Hemos reescrito los 720 ordenamientos posibles de los 10 JR tomando 3 a la vez.

Permutaciones

En general, si se desea conocer el número de formas en que se pueden tomar n objetos distintos en un orden particular tomando una cantidad r a la vez es

$$P_{n,r} = \frac{n!}{(n-r)!}$$

Y se dice que $P_{n,r}$ es el total de **permutaciones** de *n* objetos tomando *r* a la vez.

Combinaciones a partir de permutaciones

Respecto al ejemplo anterior, suponga que el generoso presidente decidió dar a los 3 ganadores los mismos 5 días adicionales de vacaciones. Bajo este escenario, note que:

- Lo importante es estar entre los tres primeros JR, no la posición.
- ➤ Varias de las 720 permutaciones tienen los mismos JR como ganadores, difieren en que sus puntajes tuvieron un **orden** diferente.

Para las 720 permutaciones de los 10 JR tomando de 3 a la vez, existen diferentes ordenamientos de los mismos JR que resultan en los mismos ganadores.

Combinaciones a partir de permutaciones

Note además que:

► Cada trío de posible de ganadores puede encontrarse en total de $3 \times 2 \times 1 = 3!$ formas. Por ejemplo observe los siguientes dos tríos:

Combinaciones a partir de permutaciones

Es evidente que cada trío está contando un total de

$$3 \times 2 \times 1 = 3! = 6$$
 permutaciones

para el total de 720 permutaciones. Entonces ¿cuántos tríos posibles hay en total para el grupo de 10 JR?. En otras palabras ¿cuántas **combinaciones** de n=10 JR tomando r=3 a la vez puedo formar?

Combinaciones a partir de permutaciones

Se obtiene la siguiente relación

$$P_{10,3} = 3! C_{10,3}$$

Por lo cual

$$C_{10,3} = \frac{P_{10,3}}{3!} = \frac{10!}{3!(10-3)!} = 120$$

Es decir, en total hay 120 posibles tríos para un total de 10 JR. En otras palabras, en total hay 120 **combinaciones** de n = 10 JR tomando r = 3 a la vez.

Combinaciones

En general, si se desea conocer el número de formas en que se pueden tomar n objetos distintos sin un orden particular tomando una cantidad r a la vez es

$$C_{n,r} = \frac{n!}{r!(n-r)!}$$

Y se dice que $C_{n,r}$ es el total de **combinaciones** de n objetos tomando r a la vez.

Afianzar lo aprendido

Ejercicio. Permutaciónes y combinaciones

Repita el ejercicio anterior, calculo de permutaciones y combinaciones, esta vez con n=5 y r=2. Haga los diagramas de árbol **completos** (no parciales) correspondientes.

Afianzar lo aprendido

Ejercicio. Permutaciónes y combinaciones

Realice los cálculos de las combinaciónes y permutaciónes correspondientes al ejercicio anterior desde R con las función choose(). Para esto cree una cuenta gratuita en POSIT y siga las instrucciónes de clase en el uso de R como calculadora.

Ejercicios iniciales

¿Cuántas placas vehiculares puede haber en la ciudad XYZ? Tenga en cuenta que en esta ciudad las placas están compuestas por 3 letras de un alfabeto con 26 letras y por 3 números diferentes.

Ejercicios iniciales

¿Cuántas placas vehiculares puede haber en la ciudad XYZ? Tenga en cuenta que en esta ciudad las placas están compuestas por 3 letras de un alfabeto con 26 letras y por 3 números diferentes.

$$26\times26\times26\times10\times9\times8$$

Ejercicios iniciales

En el baloto 6 números son elegidos de un total de 46. ¿cuál es la probabilidad de que su tiquete sea seleccionado?

Ejercicios iniciales

En el baloto 6 números son elegidos de un total de 46. ¿cuál es la probabilidad de que su tiquete sea seleccionado?

Ya conocemos que en total se tienen 6 NÚMEROS

De un total de 46 opciones, es decir, $_{46}C_6$.

Ejercicios iniciales

En el baloto 6 números son elegidos de un total de 46. Si si número favorito es 4 ¿cuál es la probabilidad de que sea seleccionado?

Ejercicios iniciales

En el baloto 6 números son elegidos de un total de 46. Si si número favorito es 4 ¿cuál es la probabilidad de que sea seleccionado?

Ya conocemos que en total se tienen 6 NÚMEROS

De un total de 46 opciones, es decir, $_{46}C_6$, y al haber elegido ya uno de los números (el 4 en este caso), se tienen 5 opciónes restantes de un total de 46-1 números:

Con lo cual se tienen $_{45}C_5$ balotos con el número deseado. Con lo cual la probabilidad preguntada es $_{45}C_5/_{46}C_6=6/46$.

Modelos de urna

Una urna tiene N bolas, R son rojas y N-R son negras. Son seleccionadas y extraidas n bolas de la urna **de manera simultánea**. ¿De cuántas formas puede seleccionar k bolas rojas y n-k negras? Para facilitar el conteo, asuma que las bolas están numeradas de 1 a N con las R primeras rojas.

Modelos de urna

Una urna tiene N bolas, R son rojas y N-R son negras. Son seleccionadas y extraidas n bolas de la urna **de manera simultánea**. ¿De cuántas formas puede seleccionar k bolas rojas y n-k negras? Para facilitar el conteo, asuma que las bolas están numeradas de 1 a N con las R primeras rojas.

$$_{R}C_{k} \times_{N-R} C_{n-k} = \binom{R}{k} \binom{N-R}{n-k}$$

Modelos de urna

Una urna tiene N bolas, R son rojas y N-R son negras. Son seleccionadas y extraidas n bolas de la urna **una a la vez**. ¿De cuántas formas puede seleccionar k bolas rojas y n-k negras? Para facilitar el conteo, asuma que las bolas están numeradas de 1 a N con las R primeras rojas.

Modelos de urna

Una urna tiene N bolas, R son rojas y N-R son negras. Son seleccionadas y extraidas n bolas de la urna **una a la vez**. ¿De cuántas formas puede seleccionar k bolas rojas y n-k negras? Para facilitar el conteo, asuma que las bolas están numeradas de 1 a N con las R primeras rojas. Para las k bolas rojas

$$r_j = R \times R - 1 \times ... \times R - k + 1$$

Para las n - k negras

$$n_g = (N - R) \times (N - R - 1) \times ... \times N - R - n - k + 1$$

Estas $r_j \times n_g$ posiciones corresponden a extraer primero las rojas y luego las negras. Sin embargo, hay múltiples **combinaciónes** que resultan en extraer k bolas rojas y n-k negras. Se tiene en total:

$$\binom{n}{k} \times r_j \times n_g$$

Particiones

En una combinación se seleccionan k elementos de un total de n sin importar el orden. Con lo cual se tiene una partición en dos: un conjunto contiene k y otro n-k elementos. Si se tiene una partición en r subconjuntos con n_1, \dots, n_r elementos respectivamente.

- 1. Para formar el primer subconjunto de n_1 unidades se tienen $\binom{n}{n_1}$ formas.
- 2. Para formar el segundo subconjunto de n_1 unidades se tienen $\binom{n-n_1}{n_2}$ formas.
- 3. ...
- 4. Para formar el r-éimo subconjunto de n_r unidades se tienen $\binom{n_r}{n_r}$ formas.

Para un total de

$$\binom{n}{n_1} \times \binom{n-n_1}{n_2} \times \ldots \times \binom{n_r}{n_r} = \binom{n}{n_1, \ldots, n_r} = \frac{n!}{n_1! \times \ldots \times n_r!}$$

Formas.

Particiones

¿Cuántas palabras (secuencias de letras) puede obtener con la palabra $TATTOO = T_1AT_2T_3O_1O_2$?

Particiones

¿Cuántas palabras (secuencias de letras) puede obtener con la palabra $TATTOO = T_1AT_2T_3O_1O_2$? En este escenario contamos con:

$$\frac{n!}{n_1! \times ... \times n_r!} = \frac{6!}{3! \times 2! \times 1!}$$

