

4 rue Hélène Boucher 35 235 Thorigné-Fouillard +33 (0)2 23 20 36 64

N° Siret 442 789 210 00030

KEREVAL - PASSERELLE CAN VERS SIMULATEUR ICSIM

DOSSIER D'EXPRESSION DE BESOIN

: CAN vers simulateur ICSim

Insérer ici le logo du client

Version - 1.01

Référence - KER2-EDB-ESEO-PASSERELLE_CAN-1.01

Etat - validé

Table des matières

1.	Intr	oduction	.4
	1.1.	KEREVAL	.4
	1.2.	Objet du document	
	1.3.	Portée du document.	
	1.4.	Références	
	1.5.	Abréviations et glossaire	
	1.5.1		
	1.5.2		
2.		pression de besoin fonctionnel	
	2.1.	Introduction	
	2.2.	Système complet.	
	2.3.	Sous-système embarqué (passerelle CAN)	
	2.4.	Sous-systèmes capteurs / actionneurs simulés (simulateur véhicule - ICSim)	
	2.5.	Sous-système application Android.	
3.		pression de besoin non fonctionnel	
	3.1.	Fiabilité	
	3.2.	Facilité d'utilisation.	
	3.3.	Sécurité	
	3.4.	Performance	
	3.5.	Maintenabilité	
	3.6.	Portabilité	
	3.7.	Eco-conception.	
4.		ntraintes	
	4.1.	Contraintes commerciales (optionnel)	
	4.1. 4.7	Contraintes liées au personnel	<i>د</i> . ۵

	4.3.	Contraintes de développement	9
5	. Су	cle de vie, gestion de projet et qualité	9
	5.1.	Description	9
	5.2.	Plan d'assurance qualité	9
	5.3.	Gestion de projet	9
	5.4.	Spécifications systèmes	.10
	5.5.	Tests	
	5.6.	Transfert de compétence	10
6	. Fo	urnitures et livrables	
	6.1.		
	6.1.		
7		ivi du document	
1	. su	IVI UU UUCUIIICIII	14

1. Introduction

1.1. KEREVAL

KEREVAL est un laboratoire d'ingénierie de tests, basé à Thorigné-Fouillard, à côté de Rennes. KEREVAL apporte du conseil dans le test auprès de ses clients, réalise des campagnes de tests fonctionnels et non fonctionnels, développe des bancs de tests manuels et automatiques, réalise des formations dans le domaine du test et dispose de laboratoires de tests dans différents domaines : santé, agroéquipement, cybersécurité et mutuelles complémentaires.

1.2. Objet du document

Ce document a pour objet de décrire l'expression de besoin d'un système électronique qui va permettre à KEREVAL de disposer d'un démonstrateur CAN « simulator in the loop ». Ce document décrit :

- Le besoin du système dans son ensemble
- Les exigences métier du système
- Les contraintes
- Le mode de fonctionnement avec le sous-traitant, pendant le projet
- Les fournitures de KEREVAL
- Les livrables attendus
- Les jalons et les dates de livraison

1.3. Portée du document

Ce document est à destination du sous-traitant, maîtrise d'œuvre qui va réaliser le système.

Ce document reste la propriété de KEREVAL. Toute transmission totale ou partielle du document est contrainte à une approbation préalable de KEREVAL.

1.4. Références

https://github.com/zombieCraig/ICSim

https://github.com/zombieCraig/UDSim

 $\underline{https://medium.com/@yogeshojha/car-hacking-101-practical-guide-to-exploiting-can-bus-using-instrument-cluster-simulator-part-ee998570758}$

1.5. Abréviations et glossaire

1.5.1. Abréviations

CAN Controller Area Network

1.5.2. Glossaire

N/A

2. Expression de besoin fonctionnel

2.1. Introduction

Dans le cadre de ses activités de tests de systèmes embarqués véhicule, KEREVAL souhaite disposer d'un démonstrateur CAN « simulator in the loop » permettant de faire monter en compétences ses équipes sur le réseau CAN. KEREVAL souhaite donc disposer d'un prototype / système sous test « passerelle Android – CAN – Banc véhicule et CAN Simulateur ». Le simulateur est ICSim (cf. référence). L'idée est de pouvoir piloter, à partir d'une application Android, des capteurs / actionneurs, réels (banc véhicule) et simulés (via ICSim), connectés à un réseau CAN,. Ce système embarqué devra être constitué :

- D'une carte électronique embarquant un système d'exploitation embarqué (style Raspberry)
- D'un ou de plusieurs capteurs / actionneurs pilotés par la carte électronique via une communication CAN (banc véhicule fourni par KEREVAL)
- Du simulateur ICSim
- D'une application Android permettant de gérer (configurer et piloter) les capteurs / actionneurs du bacn véhicule et du simulateur connectés à la carte électronique. Cette application Android sera téléchargée dans un Smartphone connecté à la carte électronique via une connexion Wifi (TCP/IP).

Pour des raisons d'évolution, il est demandé de disposer d'une application Android configurable, permettant de définir et stocker de nouvelles commandes capteurs / actionneurs.

Le graphique suivant décrit le schéma de principe du besoin de KEREVAL.

2.2. Système complet

Le tableau ci-dessous liste les exigences du système complet.

Référence	Exigence	Obligatoire / Optionnel
SYS_1	Le système doit permettre de gérer (configurer et piloter) des capteurs / actionneurs simulés connectés à un réseau CAN à partir d'une application Android via un système embarqué	Ob
SYS_2	Les commandes de pilotage de gestion des capteurs / actionneurs (trames CAN) doivent être configurables (évolutivité de la solution)	Ob

2.3. Sous-système embarqué (passerelle CAN)

Le tableau ci-dessous liste les exigences du sous-système embarqué.

Référence	Exigence	Obligatoire / Optionnel	
SYS_1	Le sous-système doit permettre d'exécuter un système d'exploitation embarqué (idéalement Raspberry ou Arduino)	ОЪ	
SYS_2	Le système d'exploitation du sous-système embarqué doit être récent (moins d'un an)	Ob	
SYS_3	Le sous-système doit permettre de connecter une application Android via WIFI-TCP/IP	Ob	
SYS_4	Le sous-système doit disposer d'une interface CAN permettant de connecter un réseau CAN	Ob	
SYS_5	Le sous-système doit disposer d'un driver CAN permettant de la gestion d'une ou plusieurs interfaces CAN	ОЪ	
SYS_6	Le système doit être connectable à un réseau CAN Low Speed	Ob	
SYS_7	Le système doit être connectable à un réseau CAN High Speed	Ор	

2.4. Sous-systèmes capteurs / actionneurs simulés (simulateur véhicule - ICSim)

Le tableau ci-dessous liste les exigences des sous-systèmes capteurs / acteurs simulés.

Référence	Exigence	Obligatoire / Optionnel
SYS_1	Le simulateur véhicule CAN doit être ICSim ou un simulateur avec des fonctionnalités similaires.	Ob
SYS_2	Le simulateur véhicule CAN doit être connectable à un réseau CAN physique.	Ob
SYS_3	Le sous-traitant pourra ajouter des capteurs / actionneurs sur le réseau CAN	Op

Les capteurs / actionneurs ajoutés pourraient ceux du banc automobile que KEREVAL propose de prêter.

2.5. Sous-systèmes capteurs / actionneurs (banc véhicule)

Le tableau ci-dessous liste les exigences des sous-systèmes capteurs / acteurs. Le candidat proposera le ou les capteurs / actionneurs qu'il souhaite intégrer dans la solution.

Référence	Exigence	Obligatoire / Optionnel
SYS_1	Le sous-système capteur / actionneur proposé doit être « gérable » à distance, via le réseau CAN	Ob
SYS_2	Le sous-système capteur / actionneur doit être connectable à un réseau CAN Low Speed	ОЬ
SYS_3	Le sous-système capteur / actionneur doit être connectable à un réseau CAB High Speed	Ор

Le banc automobile que KEREVAL propose de prêter est conforme à ces exigences.

2.6. Sous-système application Android

Le tableau ci-dessous liste les exigences de l'application Android.

Référence	Exigence	Obligatoire / Optionnel
APP_1	L'application doit être compatible Android au minimum version 9	Ob
APP_2	L'application doit être téléchargeable et exécutable sur le sous-système Android	Ob
APP_3	L'application Android doit être connectée au sous-système embarqué via une connexion TCP/IP ou une connexion Bluetooth. Les deux types de connexion doivent être implémentés	Ob
APP_4	L'application doit permettre de gérer (configurer et piloter) les capteurs / actionneurs simulés (ICSim) et réels (optionnel) connectés au sous-système embarqué, via le réseau CAN	Ob
APP_5	L'application doit être configurable en fonction des capteurs / actionneurs à gérer : - Possibilité de gérer de nouvelles commandes de capteurs / actionneurs - Possibilité de gérer de nouveaux capteurs / actionneurs	Ob
APP_6	L'application doit permettre de gérer plusieurs capteurs / actionneurs	Ob

3. Expression de besoin non fonctionnel

3.1. Fiabilité

Référence	Exigence	Obligatoire /
		Optionnel

FI_1	Le système doit être robuste aux arrêts / redémarrages électriques	Ob
FI_2	Le système doit être robuste aux coupures électriques	Ob

3.2. Facilité d'utilisation

Référence	Exigence	Obligatoire / Optionnel
FU_1	Le sous-système application Android doit être ergonomique. Les règles d'ergonomie pourront être échangées avec KEREVAL avant implémentation	Ob
FU_2	Le sous-système application Android doit être intuitif, i.e. prise en main et utilisation sans documentation	Ob
FU_3	Le sous-système application Android doit permettre à l'utilisateur de savoir dans quel état est le système complet (état de marche, en erreur, en mode dégradé)	Ob
FU_4	Les messages d'erreur doivent être compréhensibles, doivent permettre de diagnostiquer le système et le remettre dans un état opérationnel	Ob

3.3. Sécurité

Référence	Exigence	Obligatoire / Optionnel
SECU_1	Le système doit implémenter les bonnes pratiques de sécurité imposées par les développements sécurisés	Op.

3.4. Performance

Référence	Exigence	Obligatoire / Optionnel
PERF_1	Les actionneurs doivent répondre en moins de 1 seconde suite à une sollicitation via le sous-système application Android (temps de prise en compte d'une commande)	Ob
PERF_2	Une information capteur est affichée en moins de 1 seconde sur le sous-système application Android (temps de remontée d'une information capteur).	Ob

3.5. Maintenabilité

Référence	Exigence	Obligatoire /
		Optionnel

Maint_01	L'architecture du système doit être modulaire et permettre de remplacer / d'ajouter des capteurs / actionneurs commandables via l'application Android	Ob
Maint_02	Le code source doit être lisible, commenté, permettant de le comprendre et de le modifier / le faire évoluer	Ob

3.6. Portabilité

Référence	Exigence	Obligatoire / Optionnel
Port_01	Le sous-système application Android peut être portable sur les différentes versions Android, à partir de version 9.	Op
Port_02	Le sous-système application Android peut être portable sur les smartphones supportant une version 9 ou supérieure	Op

3.7. Eco-conception

Référence	Exigence	Obligatoire / Optionnel
ECO-1	Le candidat peut fournir le résultat du calcul de l'empreinte carbone du système	Op
ECO-2	Le système complet ne doit pas consommer plus de <pre><pre><pre></pre></pre></pre>	Ob

4. Contraintes

4.1. Contraintes commerciales (optionnel)

N/A.

4.2. Contraintes liées au personnel

Le candidat doit montrer qu'il dispose d'experts dans les domaines systèmes embarqués, développement de drivers embarqués, d'applications Android et pilotage de capteurs / acteurs (idéalement via des communications CAN).

4.3. Contraintes de développement

 $L(es) \ 'environnement(s) \ de \ d\'{e}veloppement \ doit(vent) \ \^{e}tre \ open \ source \ et \ doit(vent) \ \^{e}tre \ transf\'{e}rable(s) \ chez \ KEREVAL.$

5. Cycle de vie, gestion de projet et qualité

5.1. Description

Le candidat devra présenter ses méthodes de travail pour assurer la réussite du projet.

5.2. Plan d'assurance qualité

Dans la mesure du possible, le candidat devra rédiger et fournir un plan d'assurance qualité, comprenant une analyse de risques et comment ces risques vont être maîtrisés tout au long du projet via les processus et activités mises en place.

5.3. Gestion de projet

Le candidat devra décrire via un plan d'assurance qualité ou tout autre document la façon dont il va gérer le projet.

KEREVAL souhaite avoir des points réguliers (fréquence à définir) permettant d'apprécier l'avancement des travaux et, quand c'est possible, de faire des démonstrations intermédiaires de la solution implémentée.

5.4. Spécifications systèmes

KEREVAL validera les spécifications du système proposé au plutôt dans le cycle de vie du projet pour éviter des ajustements futurs pouvant engendrer des dérives dans le projet.

5.5. Tests

Le candidat devra apporter la preuve qu'il a réalisé des tests unitaires et systèmes et fournir / mettre à disposition les éléments nécessaires (plan de tests, dossier de tests, rapports de tests, jeux de données de tests).

KEREVAL validera le plan de tests.

KEREVAL procédera à des tests d'acceptation avant de prononcer une VABF (Validation d'Aptitude au Bon Fonctionnement)

5.6. Transfert de compétence

Le candidat devra transférer à KEREVAL toutes les connaissances nécessaires pour que KEREVAL soit autonome pour :

- Utiliser le système
- Mettre à jour le système
- Corriger les éventuelles anomalies du système
- Faire évoluer le système

6. Fournitures et livrables

6.1.1. Fournitures KEREVAL

Ce tableau liste les fournitures KEREVAL.

#	Fourniture	Ob ligatoire / Op tionnel	Commentaire
1	Carte électronique pour héberger le système embarqué	Ор	Dépend du matériel disponible à l'ESEO
2	Smartphone compatible Android 9 ou plus pour héberger l'application mobile	Op	Dépend du besoin ESEO
3	Banc véhicule	Ob	Une présentation du fonctionnement du banc sera faite par KEREVAL

6.1.2. Livrables

Ce tableau liste les livrables attendus sur le projet.

#	Livrable	Ob ligatoire / Op tionnel	
1	Support de réunion de lancement (analyse de risques, planning, tâches, etc.)	Ob	
2	Plan d'assurance qualité	Op	
3	Support de réunions d'avancement (suivi et mise à jour risques, planning, avancement, tâches, etc.) Ob		
4	Spécifications des exigences systèmes (générales)	Op	
5	Dossier d'architecture	Ob	
6	Spécifications des exigences des sous-systèmes (détaillées) Op		
7	Code source des composants développés Ob		
8	Plan de test incluant la stratégie de tests Ob		
9	Dossier(s) de tests (composants et système) Ob		
10	0 Rapport(s) de tests (composants et système) Ob		
11	Manuel d'installation du système	Ob	
12	Manuel de configuration du système	Ob	
13	3 Manuel d'utilisation du système Ob		
14	Fiche(s) de livraison du système, permettant de tracer ce qui est livré et dans quelle Version		
15	Guide de bonnes pratiques de développement d'une application Android	Op	
16	Prototype du système (version intermédiaire et version finale)	Ob	

7. Suivi du document

Approbateur	Fonction	Date	Visa
Yacine TAMOUDI	Chef de projet		
	Contrôle technique		
	Contrôle qualité		

Diffusion	Destinataire	Date	Exemplaire
ESEO	Equipe projet	30.01.2023	Version électronique

Version	Date	Auteur	Modifications
V1.01	24.01.2023	Alain Ribault	Version validée