

Gestão de Projectos

Filipe Pereira e Alvelos

falvelos@dps.uminho.pt www.dps.uminho.pt/pessoais/falvelos

Versão 02 - Janeiro de 2010

Índice

- Introdução
- Fases da gestão de um projecto
- Exemplo 1
- Rede do projecto
- Escalonamento das actividades
- Conceitos essenciais
- Exercício
- Diagrama de actividades nos arcos
- Exemplo 2
- Diagrama de Gantt
- Extensões
- Bibliografia e *links*

Introdução

- Um projecto é um empreendimento temporário com um conjunto bem definido de resultados esperados
- Tipicamente, um projecto envolve
 - Organização em equipas dos diversos tipos de recursos envolvidos
 - Coordenação e gestão das actividades desenvolvidas pelas equipas (com base em critérios de eficácia e eficiência)
- Métodos clássicos de auxílio à gestão de projectos
 - PERT (Program Evaluation and Review Technique) / CPM (Critical Path Method)
 - Finais dos anos 50 Projecto Polaris (projecto com 250 empresas contratadas e mais de 9000 subcontratadas)
 - Com estes métodos pretende-se determinar quando devem ser iniciadas as actividades de tal forma que a duração do projecto seja a menor possível
 - As versões mais simples destes métodos não contemplam a gestão dos recursos (consideram que os recursos são ilimitados)

Filipe Pereira e Alvelos, Gestão de Projectos, pg. 3

Fases da gestão de um projecto

- Planeamento
 - Decomposição do projecto em actividades*
 - Definição das condições para a realização das actividades
 - Estimativa da duração das actividades
 - Definição de relações de precedência entre as actividades
- Escalonamento
 - Definição do momento em que cada actividade deve começar
 - Identificação de actividades críticas
 - Determinação da folga das actividades não críticas
- Controlo
 - Monitorização do desenrolar do projecto
 - Eventuais revisões do planeamento e escalonamento do projecto
- * Actividade neste contexto é uma "operação, tarefa ou processo que consome tempo e, em geral, outro tipo de recursos".

Exemplo 1 (1)

• Uma determinada empresa de construção civil vai iniciar a construção de um edifício. Com vista a uma boa gestão do projecto (que envolve recursos materiais e , humanos), o responsável dividiu o projecto em actividades e estimou a duração de cada uma delas. Naturalmente, certas actividades só podem ser iniciadas depois de outras estarem concluídas.

Na tabela da página seguinte são dadas as actividades consideradas, a sua duração (em semanas) e as relações de precedência imediata entre as mesmas (por exemplo, para se poder iniciar a actividade C, as actividades A e B têm de estar concluídas).

Pretende-se saber

- qual a duração total do projecto se não houver atrasos?
- qual o intervalo de tempo em que cada actividade pode ser iniciada sem que a duração total do projecto seja afectada?
- quais são as actividades críticas?

Filipe Pereira e Alvelos, Gestão de Projectos, pg. 5

Exemplo 1 (2)

Actividade	Descrição	Duração (semanas)	Actividades imediatamente precedentes
А	Fundações	15	-
В	Medições	5	-
С	Placas	4	A,B
D	Estrutura	3	С
E	Telhado	7	D
F	Electricidade	10	D
G	Aquecimento e ar condicionado	13	B,D
Н	Pintura	18	D,F,G
I	Acabamentos	20	E,H

Rede do projecto (1)

- Diagrama de actividades nos nodos
- Cada actividade é associada a um nodo
- Um nodo representa o início do projecto (nenhuma actividade foi iniciada) e outro nodo representa o seu final (todas as actividades estão concluídas)
- Existe um arco para cada relação de precedência (a actividade origem precede a actividade destino)
- O nodo de cada actividade sem precedentes é ligado ao nodo inicial
- O nodo de cada actividade que não precede nenhuma outra é ligada ao nodo final

Escalonamento das actividades (1)

- Tempo mais cedo (TMC) de uma actividade
 - Período de tempo mínimo que tem de ocorrer até a actividade poder ser iniciada (ou, de forma equivalente, até todas as actividades que precedem a actividade em causa estarem concluídas)
 - Representado por TMC(i) o tempo mais cedo da actividade i e por d(i) a duração da actividade i: $TMC(i) = \underbrace{Max} \{TMC(j) + d(j)\}$
 - TMC do nodo final corresponde à duração mínima do projecto
- Tempo mais tarde de uma actividade
 - Período de tempo que pode ocorrer até à actividade ser iniciada sem comprometer a duração mínima do projecto
 - Representado por TMT(i) o tempo mais tarde da actividade i:

$$TMT(i) = \min_{i: j \text{ sucede } i} \{TMT(j) - d(i)\}$$

Conceitos essenciais

- Folga de uma actividade = TMT TMC
- Actividades críticas têm folga zero (no exemplo, A-C-D-G-H-I)
- Um atraso numa actividade crítica implica um atraso no projecto
 - Necessidade de monitoização mais apertada destas actividades
- Um caminho crítico corresponde a um conjunto das actividades críticas
 - Caminho crítico é o caminho mais longo numa rede sem ciclos
 - Notar que se o projecto estiver bem definido, a rede não tem ciclos
 - Custos dos arcos são dados pela duração do nodo origem do arco
- Pode haver mais do que um caminho crítico
- Caminho crítico também pode ser obtido através de Programação Linear

Filipe Pereira e Alvelos, Gestão de Projectos, pg. 11

 Para a informação dada na Tabela, represente o diagrama de actividades nos nodos, determine a folga de cada actividade e identifique o caminho crítico.

Exercício

Actividade	Duração (semanas)	Actividades imediatamente precedentes
А	2	-
В	4	А
С	10	В
D	6	С
E	4	С
F	4	E
G	7	D
Н	9	E,G
I	7	С
J	8	F,I
К	4	J
L	5	J
М	2	Н
N	6	K,L

Diagrama de actividades nos arcos (1)

- Outra forma de representação gráfica de um projecto
- Cada actividade é representada por um e só um arco
- Cada nodo representa um evento (início ou final de uma ou mais actividades)
- Utilização de actividades (arcos) fictícias
 - Para evitar que haja actividades associadas ao mesmo par de nodos
 - Para manter relações de precedência
 - Não consomem tempo nem recursos

Filipe Pereira e Alvelos. Gestão de Projectos, pg. 13

Diagrama de actividades nos arcos (2)

• Exemplos da utilização de arcos fictícios (actividade F)

Exemplo 2 (1)

 Para a informação dada na Tabela, represente o diagrama de actividades nos arcos, determine a folga de cada actividade e identifique o caminho crítico.

Actividade	Duração (semanas)	Actividades imediatamente precedentes
А	3	-
В	5	-
С	3	В
D	4	A,C
E	8	D
F	2	С
G	4	F
Н	2	F
	5	В
J	3	H,E,G

Diagrama de Gantt (1)

- Ainda outra forma de representação gráfica de um projecto
- Representação explícita do factor tempo
- Variações podem contemplar
 - Representação das precedências
 - Representação das folgas
 - Representação do estado das actividades
 - ..

Extensões

- Associação de probabilidades às durações das actividades (PERT)
- Consideração da possibilidade de diminuir a duração das actividades (tendo em conta os custos associados)
- Inclusão de recursos (diferentes actividades podem consumir os mesmos recursos escassos)

Filipe Pereira e Alvelos, Gestão de Projectos, pg. 19

Bibliografia e *links*

- R. C. Guimarães, "Planeamento e controle de projectos: método CPM e extensões", FEUP, 1984.
- F. S. Hillier and G. J. Lieberman, "Introduction to Operations Research", Mc-GrawHill, 8th edition, 2005.
- J. H. Moore and L. R. Weatherford, "Decision Modeling with Excel", Prentice Hall, 6th edition, 2001.
- Ronald L. Rardin, "Optimization in Operations Research", Prentice-Hall, 1998.
- L. V. Tavares, "Advanced Models on Project Management", 1998, Boston, Kluwer Academic Publishers.