모델 개발 현황 보고서				
프로젝트명	With_Fit			
날 짜	2021-12-10		조	에이담
모델명	선정 이유			
Yolo v5	특징	- 객체 검출을 위한 알고리즘. - 작은 크기의 물체를 탐지하는 데 어려움.		
	선정 이유	- v4에 비해 낮은 용량과 빠른 속도를 가지고 있다.		
Deep-sort	특징	- 멀티 휴먼 트렉킹 알고리즘 모델 ·징 (Multi Human Tracking Alghorithm Model) - Simple Online Real-time Tracker		
	선정 이유	- 다중 모션 감지를 위한 객체 선정에서 실시간 트랙킹이 빠르고 정확한 편이기 떄문에 Yolo V5와 함께 사용하기 좋은 모델.		
Open-Pose	특징	- OpenCV 기반 구성으로 객체의 특징을 실시간으로 추정한다 사람의 얼굴, 신체부위 등의 관절(Key-Point)을 추정한다 단일 모델, 다중 모델 검출이 가능하다.		
	선정 이유	- Human Pose Estimation 모델 중 다중 인식률이 가장 뛰어남. - Open Pose에 다양한 모델을 사용할 수 있음 (mobilenet_thin, VGG_origin 등등)		
DNN	특징	- DNN(Deep Neural Network)은 입력층과 출력층 사이에 여러 개의 은닉층 들로 이뤄진 인공신경망이다.		
	선정 이유	 모델의 구현이 단순하고 추가 레이어나 모델의 구성을 자유롭게 설정할수 있는 장점으로 기초적인 알고리즘을 만들기 좋음. 사람의 자세를 정확히 식별하기 위해 심층 인공 신경망 구조로 학습 스켈레톤 키 출력값을 점진적으로 규합하여 자세의 판별 정확도를 높임 		