How to speed up your R code?

Josephine Daub R-Ladies meetup December 11, 2018

My experience with R and other languages

- Master Computational Science UVA:
 - course Bioinformatics 2: R
 - master project: C++
 - Perl, C, Mathematica, Matlab, ...
- PhD project: mostly in R
- 1st Postdoc: bash, R
- Current postdoc: R, bash, Python

Speeding up your R code

- Timing & Profiling: Which part of my code is slow?
- Simple tricks to speed up, using: memory allocation, defaults, matrices instead of dataframes, which/ifelse
- Avoiding for-loops: vectorization, matrix manipulation, apply, build-in R functions
- Convert parts of your code (for-loops) to c++ with rcpp
- Alternatives to the (slow) aggregate function: datatables, sapply
- Not today: parallelization

Our study: Genetic Interactions in Childhood Cancer

Genetic interaction/epistasis:

The phenotype (outcome) of combining two mutations is unexpected given the phenotype of the single mutations

- Genetic interactions between mutated genes can promote or hinder cancer progression
- Find pairs of mutated genes that co-occur more (or less) often than expected given the frequency of the individual mutated genes

• Create Sample - Gene matrix

- Create Sample Gene matrix
- Count per gene pair the number of co-occurring alterations

- Create Sample Gene matrix
- Count per gene pair the number of co-occurring alterations

- Create Sample Gene matrix
- Count per gene pair the number of co-occurring alterations

samples 2

- Create Sample Gene matrix
- Count per gene pair the number of co-occurring alterations

- Create Sample Gene matrix
- Count per gene pair the number of co-occurring alterations
- Permute the matrix to create null distribution, but keep margins fixed

- Create Sample Gene matrix
- Count per gene pair the number of co-occurring alterations
- Permute the matrix to create null distribution, but keep margins fixed

 Compare observed counts with null distribution to infer significance (p-value)

mutation matrix

for each gene i

mutation matrix

for each gene ifor each gene $j \neq i$


```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0
```



```
for each gene i
  for each gene j ≠ i
     co_count<sub>i,j</sub> = 0
     for each sample k
```



```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0

for each sample k

if mtx_{i,k} = 1 & mtx_{j,k} = 1 then
```



```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0

for each sample k

if mtx_{i,k} = 1 & mtx_{j,k} = 1 then
```



```
for each gene i
  for each gene j ≠ i
    co_count<sub>i,j</sub> = 0
    for each sample k
    if mtx<sub>i,k</sub>==1 & mtx<sub>j,k</sub>==1 then
        co_count<sub>i,j</sub> = co_count<sub>i,j</sub> + 1
```



```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0

for each sample k

if mtx_{i,k} = 1 & mtx_{j,k} = 1 then

co\_count_{i,j} = co\_count_{i,j} + 1
```



```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0

for each sample k

if mtx_{i,k} = 1 & mtx_{j,k} = 1 then

co\_count_{i,j} = co\_count_{i,j} + 1
```



```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0

for each sample k

if mtx_{i,k} = 1 & mtx_{j,k} = 1 then

co\_count_{i,j} = co\_count_{i,j} + 1
```



```
for each gene i

for each gene j \neq i

co\_count_{i,j} = 0

for each sample k

if mtx_{i,k} = 1 & mtx_{j,k} = 1 then

co\_count_{i,j} = co\_count_{i,j} + 1
```


Benchmarking

nb of samples = nb of genes / 4

size of matrix (nb genes x nb samples)

Similarity matrix

	67%	33%	67%	33%	67%	33%	33%	67%	.00%
	50%	50%	50%	50%	50%	50%	50%	100%	.00%
	100%	0%	100%	0%	50%	0%	100%	50%	50%
	0%	50%	50%	50%	0%	100%	0%	50%	50%
sets	100%	0%	100%	0%	100%	0%	50%	50%	.00%
	0%	100%	0%	100%	0%	100%	0%	100%	.00%
	75%	0%	100%	0%	50%	25%	50%	25%	50%
	0%	100%	0%	100%	0%	100%	0%	100%	.00%
	100%	0%	100%	0%	67%	0%	67%	33%	67%

Example 2: which rows have sum > 4?

col1	col2	col3	col4
1.598	-0.325	1	9.647
1.110	2.491	5	1.712
1.298	-0.352	4	1.566
1.824	1.116	2	1.207
0.943	1.148	4	2.776
1.214	0.190	4	4.054
1.259	-2.696	2	0.046
0.214	0.050	1	0.621

Example 2: which rows have sum > 4?

col1	col2	col3	col4
1.598	-0.325	1	9.647
1.110	2.491	5	1.712
1.298	-0.352	4	1.566
1.824	1.116	2	1.207
0.943	1.148	4	2.776
1.214	0.190	4	4.054
1.259	-2.696	2	0.046
0.214	0.050	1	0.621

```
for each row i
   if sum(col1;,col2;,col3;,col4;)>4
      output; = "greater"
   else
      output; = "less_or_equal"
```

Example 2: which rows have sum > 4?

col1	col2	col3	col4
1.598	-0.325	1	9.647
1.110	2.491	5	1.712
1.298	-0.352	4	1.566
1.824	1.116	2	1.207
0.943	1.148	4	2.776
1.214	0.190	4	4.054
1.259	-2.696	2	0.046
0.214	0.050	1	0.621

```
for each row i
  if sum(col1;,col2;,col3;,col4;)>4
    output; = "greater"
  else
    output; = "less_or_equal"
```


Benchmarking

Example 3: aggregate values

group	col1	col2	col3	col4
1	1.598	-0.325	1	9.647
1	1.110	2.491	5	1.712
1	1.298	-0.352	4	1.566
2	1.824	1.116	2	1.207
2	0.943	1.148	4	2.776
3	1.214	0.190	4	4.054
3	1.259	-2.696	2	0.046
3	0.214	0.050	1	0.621

group	mean col1	max col4
1	1.335	2.491
2	1.384	1.116
3	0.896	0.190

Example 3: aggregate values

group	col1	col2	col3	col4
1	1.598	-0.325	1	9.647
1	1.110	2.491	5	1.712
1	1.298	-0.352	4	1.566
2	1.824	1.116	2	1.207
2	0.943	1.148	4	2.776
3	1.214	0.190	4	4.054
3	1.259	-2.696	2	0.046
3	0.214	0.050	1	0.621

group	mean col1	max col4
1	1.335	2.491
2	1.384	1.116
3	0.896	0.190

