1. Необходимые сведения из статистической физики

Актуальная версия листика находится тут (последнее обновление: 22 февраля 2023 г.).

Упражнения

Если не сказано иное, то считайте температуру системы T или $\beta = \frac{1}{k_B T}$ известной.

Упражнение 1. Вывести формулы для потенциала Гиббса и большого термодинамического поенциала:

$$G = \mu N, \quad \Omega = -pV \tag{1}$$

Упражнение 2. В термодинамической системе есть 3 дискретных уровня $E_1=0, E_2=\Delta E,$ $E_3=2\Delta E$ с кратностями вырождения $g_1=1, g_2=2, g_3=3.$

- 1. Найдите статистическую сумму Z системы.
- 2. Найдите среднюю энергию E системы.
- 3. Найдите теплоёмкость C_V системы. Рассмотреть высокотемпературный $k_BT\gg \Delta E$ и низкотемпературный $k_BT\ll \Delta E$ пределы.

Упражнение 3. Частица находится в потенциале $V(x) = \frac{m\omega^2 x^2}{2}$ (классический одномерный осциллятор) при температуре T.

- 1. Найдите статистическую сумму Z.
- 2. Найдите среднюю координату частицы $\langle x \rangle$.
- 3. Найдите средний импульс частицы $\langle p \rangle$.
- 4. Найдите среднеквадратичное отклонение (дисперсию) координаты и импульса.
- 5. Найдите среднюю энергию частицы $\langle E \rangle$ и теплоёмкость C_V .

Упражнение 4. Распределения Максвелла и Больцмана

- 1. Рассмотрим нерелятивистский классический газ с энергией $E(\boldsymbol{r}, \boldsymbol{p}) = \sum_{i=1}^{N} \frac{\boldsymbol{p}_{i}^{2}}{2m} + U(\boldsymbol{r}_{1}, ..., \boldsymbol{r}_{N}).$ Из распределения Гиббса получите распределение Максвелла по импульсу $w(\boldsymbol{p})$, по вектору $w(\boldsymbol{v})$ и по модулю скорости w(v). Вычислите $\langle v \rangle$ и $\langle v^{2} \rangle$.
- 2. Если газ идеален, то парными взаимодействиями можно пренебречь $E(\boldsymbol{r}, \boldsymbol{p}) = \sum_{i=1}^{N} \left(\frac{p_i^2}{2m} + U(\boldsymbol{r}_i) \right)$. Из распределения Гиббса получите распределение Больцмана $w(\boldsymbol{r})$. Выразите плотность числа частиц $n(\boldsymbol{r}) = Nw(\boldsymbol{r})$ через n_0 плотность газа в точке нулевого потенциала.

Задачи

Задача 1. ЗАКОН ВОЗРАСТАНИЯ ЭНТРОПИИ

- 1. Показать, что для замкнутой системы из двух подсистем при установлении равновесия тепло идёт от тела с большей температурой к телу с меньшей, граница раздела подсистем выталкивается в область низкого давления, частицы перетекают в область низкого химпотенциала.
- 2. Показать, что при термодинамическом равновесии (энтропия максимальна) одновременно выполняются условия:
 - термическое равновесие $(T_1 = T_2 = ...)$
 - механическое равновесие $(p_1 = p_2 = ...)$
 - химическое равновесие ($\mu_1 = \mu_2 = ...$)
- 3. Пусть в термостат (тело с очень большой теплоёмкостью) помещена система из частиц. Показать, что из закона возрастания энтропии для всей системы (термостат + частицы) следует, что термодинамические величины системы из частиц удовлетворяют

$$T\Delta S - \Delta E - p\Delta V + \mu \Delta N \ge 0 \tag{2}$$

4. При любом отклонении от равновесия системы в термостате должно выполняться (зафиксируем число частиц N):

$$T\Delta S - \Delta E - p\Delta V < 0 \tag{3}$$

Доказать разложением ΔE в ряд в переменных $S,\,V,\,$ что отсюда следуют два термодинамических неравенства:

- $C_V > 0$.
- $\left(\frac{\partial p}{\partial V}\right)_T < 0.$

Указание. Воспользуйтесь критерием Сильвестра.

Задача 2. Двухуровневая система

Рассмотрим систему из $N\gg 1$ невзаимодействующих частиц, энергии которых могут принимать только 2 значения $E_1=0$ (основное состояние) и $E_2=\Delta E$ (возбуждённое состояние). Пусть M частиц находятся в возбуждённом состоянии, тогда концентрация возбуждённых частиц $n=\frac{M}{N}$.

Предлагается рассмотреть задачу, используя 2 подхода.

Часть 1. Статистический вес.

- 1.1. Найдите статистический вес системы $\Delta\Gamma$ как функцию M.
- 1.2. Считая дополнительно, что $M\gg 1,\ N-M\gg 1$ и используя формулу Стирлинга, найдите энтропию системы S как функцию n.
- 1.3. Найдите температуру системы, исходя из определения $\frac{1}{T} = \frac{\partial S}{\partial E}$. Показать, что при $n > \frac{1}{2}$ (инверсная заселённость) температура отрицательна. Построить график зависимости T от n
- 1.4. Найдите теплоёмкость C_V системы.

Часть 2. Статистическая сумма.

- 2.1. Вычислить статистическую сумму Z системы.
- 2.2. Определить свободную энергию F системы.
- 2.3. Найдите энтропию S и химический потенциал μ системы.
- 2.4. Найдите теплоёмкость C_V системы.

Сравнить полученные результаты в частях 1 и 2. Какой из подходов Вам показался проще? **Часть 3. Что больше бесконечности?**

Рассмотрим тело 1, находящееся при отрицательной температуре $T_1 < 0$. Пусть его приводят в контакт с телом 2, находящимся при положительной температуре $T_2 > 0$.

3.1. От какого тела к какому будет идти тепло и почему?

Задача 3. Квантовый гармонический осциллятор

Рассмотрим систему из $N\gg 1$ невзаимодействующих квантовых осцилляторов со спектром $E_n=\hbar\omega\left(n+\frac{1}{2}\right),\ n\in\mathbb{N}_0.$ Пусть $M=\sum\limits_{i=1}^N n_i,\ n_i\in\mathbb{N}_0$ – номер возбуждения i-го осциллятора. Пусть $n=\frac{M}{N}$.

Предлагается рассмотреть задачу, используя 2 подхода.

Часть 1. Статистический вес.

- 1.1. Найдите статистический вес системы $\Delta\Gamma$ как функцию M.
- 1.2. Считая дополнительно, что $M\gg 1$ и используя формулу Стирлинга, Найдите энтропию системы S как функцию n.
- 1.3. Найдите температуру системы, исходя из определения $\frac{1}{T} = \frac{\partial S}{\partial E}$. Построить график зависимости T от n.
- 1.4. Найдите теплоёмкость C_V системы.

Часть 2. Статистическая сумма.

- 2.1. Вычислить статистическую сумму Z системы.
- 2.2. Определить свободную энергию F системы.
- 2.3. Найдите энтропию S и химический потенциал μ системы.
- 2.4. Найдите теплоёмкость C_V системы.

Сравнить полученные результаты в частях 1 и 2. Какой из подходов Вам показался проще? Часть 3. Сравнение с двухуровневой системой.

- 3.1. Проверить, что в этой системе отрицательной температуры быть не может. Почему у осцилляторов её нет, а у двухуровневой системы она может быть?
- 3.2 Сравнить теплоёмкости осциллятора с двухуровневой системой.

Задача 4. Квантовый ротатор

Рассмотрим систему из $N\gg 1$ одинаковых квантовых невзаимодействующих ротаторов, обладающих спектром $E_l=\frac{\hbar^2}{2I}l(l+1),\ l\in\mathbb{N}_0$ – номер возбуждения уровня энергии ротатора, I – момент инерции ротатора. Считаем, что ротаторы находятся в сосуде объёмом V, при температуре T. Из квантовой механики известно, что кратность вырождения g_l уровня энергии E_l равна $g_l=2l+1$.

Введём характерную температуру $\theta = \frac{\hbar^2}{2k_BI}$.

Часть 1. Предел низких температур.

Рассмотрим случай низких температур $T \ll \theta \Leftrightarrow e^{-\frac{E_l}{k_BT}} = e^{-\frac{\theta}{T}l(l+1)} \ll 1.$

1.1. Приближённо вычислить статистическую сумму Z системы.

Указание. Подумайте начиная с какого l учёт более высоких уровней энергии вносит незначительный вклад которым можно пренебречь?

Далее подразумевается использование приближённого значения статсуммы.

- 1.2. Найдите среднюю вращательную энергию $E_{\mbox{\tiny BP}}$
- 1.3. Найдите теплоёмкость C_V системы.

Часть 2. Предел высоких температур

Рассмотрим случай высоких температур $T\gg \theta\Leftrightarrow e^{-\frac{E_l}{k_BT}}=e^{-\frac{\theta}{T}l(l+1)}\sim 1.$

2.1. Приближённо вычислить статистическую сумму Z системы.

 $У \kappa a s a h u e$. Предлагается при приближённом вычислении Z заменить сумму на интеграл. Далее подразумевается использование приближённого значения статсуммы.

- 2.2. Найдите среднюю вращательную энергию $E_{\rm вр}$ системы.
- 2.3. Найдите теплоёмкость C_V системы.

Задача 5. Идеальный газ.

Рассмотрим идеальный газ, состоящий из $N\gg 1$ одинаковых невзаимодействующих молекул, находящийся в сосуде объёмом V. Температура системы T. В этой задаче будут рассмотрены вклады различных степеней свободы в теплоёмкость многоатомного газа.

Часть 1. Поступательная степень свободы.

Энергия молекул идеального газа $E(\boldsymbol{p},\boldsymbol{r})=\frac{\boldsymbol{p}^2}{2m}+U(\boldsymbol{r})$, где $U(\boldsymbol{r})$ – потенциал, создаваемый внешними полями. Считаем, что внешнего поля нет $U(\boldsymbol{r})=0$.

- 1.1. Найдите поступательную статистическую сумму молекулы Z_1^{noct} и системы Z^{noct} .
- 1.2. Найдите среднюю поступательную энергию молекулы $E_1^{\text{пост}}$ и системы $E^{\text{пост}}$. Соотносится ли ответ с законом равнораспределения энергии по степеням свободы?
- 1.3. Найдите поступательную теплоёмкость молекулы $C_{V1}^{\text{пост}}$ и системы $C_{V}^{\text{пост}}$.

Часть 2. Газ в поле тяжести.

Пусть газ находится в однородном гравитационном поле U(r) = mgz.

- 2.1. Найдите энергию и теплоёмкость молекулы и системы в этом случае.
- 2.2. Объясните, с чем связана конфигурационная добавка к энергии и теплоёмкости в сравнении со случаем, когда g=0.

4

Часть 3. Газ в конусе.

Пусть газ находится в однородном гравитационном поле $U(\mathbf{r}) = mgz$ в конусе высоты h (или вверху).

- 3.1. Считая, что основание конуса расположено внизу, найдите энергию и теплоемкость молекулы и системы в этом случае. Рассмотрите случаи: $mgh \gg k_B T$, $mgh \ll k_B T$.
- 3.2. Считая, что основание конуса расположено вверху, найдите энергию и теплоемкость молекулы и системы в этом случае. Рассмотрите случаи: $mgh \gg k_B T$, $mgh \ll k_B T$.
- 3.3. Как в этой задаче перейти от конуса к цилиндру?

Часть 4. Вращательная степень свободы.

Рассмотрим модель двухатомной молекулы: 2 шарика соединены стержнем с моментом инерции I. Вращение может происходить в 2 плоскостях (вкладом вращения вокруг оси стержня пренебрегаем). Вращательная энергия молекулы в сферических координатах $E(\varphi, \theta, p_{\varphi}, p_{\theta}) = \frac{p_{\theta}^2}{2I} + \frac{p_{\varphi}^2}{2I\sin^2\theta}$.

- 4.1. Найдите вращательную статистическую сумму молекулы $Z_1^{\rm sp}$ и системы $Z^{\rm sp}$. Сравните ответ с задачей 4 про квантовый ротатор. Найдите статистическую сумму газа, имеющую поступательную и вращательную степени свободы.
- 4.2. Найдите среднюю вращательную энергию молекулы $E_1^{\text{вр}}$ и системы $E^{\text{вр}}$. Соотносится ли ответ с законом равнораспределения энергии по степеням свободы?
- 4.3. Найдите вращательную теплоёмкость молекулы $C_{V1}^{\text{вр}}$ и системы $C_{V}^{\text{вр}}$. Найдите теплоёмкость газа, имеющую поступательную и вращательную степени свободы.

Часть 5. Колебательная степень свободы.

Рассмотрим модель двухатомной молекулы: 2 шарика соединены пружинкой, колеблющейся с частотой ω . Колебательная энергия молекулы $E(x,p_x)=\frac{p_x^2}{2m}+\frac{m\omega^2x^2}{2}$.

- 5.1. Найдите колебательную статистическую сумму молекулы $Z_1^{\text{кол}}$ и системы $Z^{\text{кол}}$. Сравните ответ с задачей 4 про квантовый ротатор. Найдите статистическую сумму газа, имеющую поступательную, вращательную и колебательную степени свободы.
- 5.2. Найдите среднюю колебательную энергию молекулы $E_1^{\text{кол}}$ и системы $E^{\text{кол}}$. Соотносится ли ответ с законом равнораспределения энергии по степеням свободы?
- 5.3. Найдите колебательную теплоёмкость молекулы $C_{V1}^{\text{кол}}$ и системы $C_{V}^{\text{кол}}$. Найдите теплоёмкость газа, имеющую поступательную, вращательную и колебательную степени свободы.

Задача 6. МЕТОД ПЕРЕВАЛА И ФОРМУЛА СТИРЛИНГА

1. Рассмотрим класс интегралов вида

$$I = \int_{-\infty}^{\infty} e^{f(t)} dt \tag{4}$$

где f(t) имеет резкие максимумы в t_i . Докажите, что существует приближённая формула для интеграла:

$$I \approx \sum_{i} \sqrt{\frac{2\pi}{|f''(t_i)|}} e^{f(t_i)} \tag{5}$$

Это главная формула вещественного метода перевала (метод Лапласа). Получите условие её применимости.

2. Естественным обобщением факториала на случай действительных и комплексных значений является гамма-функция $\Gamma(z)$. Её интегральное представление:

$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt \tag{6}$$

Покажите, что гамма-функция удовлетворяет рекуррентному уравнению $\Gamma(z+1)=z\Gamma(z).$

3. Покажите, что асимптотика гамма-функции при $z\gg 1$:

$$\Gamma(z+1) \approx \sqrt{2\pi z} \frac{z^z}{e^z}$$
 (7)

Для случая натуральных $z=n\in\mathbb{N}$ выполняется Φ ормула $\mathit{Cmupлингa}$:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \tag{8}$$