Q.1 Construct Truth Table F(A,B,C)

A	В	C	Decorder Output	Sı	S.	Mux select	MUX inputs used	F
0	0	0	Do = 1	O	0	00	D0 = 1	١
0	0	1	D1 = 1	0	0	00	D0=0	0
0	1	0	01 =	0	0	00	Do = 0	0
0	1	1	D3 = 1	0	0	00	D0=0	0
1	0	0	D4 =	1	0	10	No1(D2)=	1
1	0	١	D5 =	١	O	10	NOT(D2)= 1	1
1	1	0	D6 = 1	0	1	01	DI = 0	0
I	1	1	D7 = 1	, O	l	01	D(=0	O

AS ABC

$$|O| \rightarrow D5 = |\Rightarrow S_1 = |B_4 + D_5 = |$$
, $S_0 = 0$
 $\Rightarrow mux select |O \rightarrow I_2 = NoT(D_2) = |NoT(O) = |$

BI Design a 16x1 MUX with active Low enables using dual 4x1 MUX'S with active low enables 4x1 MUX'S with active low enables 4x1 MUX'S with active low enables 4x1 MUX with Low enable. Use minimum 42x1 MUX with Low enable. Use minimum extra Jagic to design the required MUX.

53	F
0	I.
1	Ti
0	1,
1	13
U	14
1	15
0	16
1	17
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	0 - 0 -

OS Design a circuit using 4x1 MUX, that accepts 5-bit as input & generates a 6-bit binary number as output that is equal to Square of input number. Use minimum

GA.		441	MJ-1	٠.ـ			(6 -	6it)		
X	A	В	(X2	DS	Dч	D ₃	D ₂	Di	D.
0	0	b	6	0	O	0	0	0	0	0
1	0.	0		7	0	0	0	0	0	1
2	0	_	0	4	0	0	6	1	0	0
3	0	-		9	0	0	1	0	0	1
4	-	0	6	16	٥	1	0	0	0	0
S	1	0	\sqcap	22	0	١	1	0	0	1
6		1	0	36	1	0	0	1	0	0
7	1		,	49	1	١	0	0	0	1

A and	В	04	e se	lecti	ons:
AB	60	01	10	Ιι	Do
0	0	0	0	0	
1		Ī	1		}
		t	00 =	C	

48	00	01	lo	n
6	0	0	0	0
1	0	0	0	D
			D1 =	0

	D	1 = 0	
6 ⁴ 00	01	10	И
	<i>(</i> 2)		

$$D_2 = \overline{B}A + BA$$

4g	٥٥	ol	10	11	
0	0	0	0	6	$D_3 = C$
1	0	1	T	0	

> Note: Circuit on end page }

Construct 4-te-1 line MUX fixing

Varaible A & D selection

F(A,B,C,D) = Zm(2,4,6,9,10,11,15)

V	F 11		V	
A	В	C	D	F
0	0	0	0	0
0	0	O	١	0
0	0	1	0	1
0	0	l	1	0
0	4	0	0	1
0	1	0	1	0
	•			1

A 3	D	B	C	F
0	0	0	0	0
0	0	0	1	1
0	0	1,1	0	
10	10	1		1
10	1	+ -	1	1.

$$J_o = \overline{B}(+B\overline{C}+BC$$

0	1.	1	1	0
1	0	0	0	0
				١

	Α	D	B	C	E	
	0	1	0	0	0	Ī
•	0	١	0	١	O	
	0	١	· . (0	0	
	_					1

	0	,		
,			O	0
,	1	0	O	•

A	D	В	С	F	
1	0	0	Ò	0	
1	0.	0	1	1	
T	0].	O	6	
1	0	1	1	0	

D	B	C	F	
1	0	0	1	
1	0	-1	1	T
1	1	0	0	†
1	1	110	l	1
	D 1 1 1 1 1	10	100	1001

$$I_3 = \overline{B}\overline{C} + \overline{B}C + BC$$

$$= \overline{B} + BC$$

$$= \overline{B}(1+c) + C$$

$$= \overline{B} + \overline{B}(+C)$$

$$= \overline{B} + C(\overline{B} + 1)$$

I. =
$$\vec{B}$$
C + \vec{B} C + \vec{B} C

= \vec{B} C + \vec{B} (\vec{C} +C)

= \vec{B} C + \vec{B} (\vec{C} +C)

= \vec{B} C + \vec{B} C(\vec{I} +C)

= \vec{B} C + \vec{B} + \vec{B} C

= \vec{C} C(\vec{B} + \vec{B}) + \vec{B}

= \vec{C} C + \vec{B}

Q8 Design logic cincuit that performs the following operations on A(3-bit number) according to Status of selection bit S.

S	operation	Floutput)
0	Increment	4+1
1	Tripler	3+A

S	Ao	A	Az	Do	Di	D2	D3	D4	DS
0	0	0	0	р	0	0	0	0	1
0	٥	0	1	0	0	0	0		0
0	0	1	0	0	0	0	0	i	1
0	0	1	1	0	0	0	Ī	0	0
0	1	0	0	0	0	0	1		1
0	1	ଚ	1	0	0		1	0	
0	1	1	0	0	0	0	1		0
0	100	,				0		١	1
1	-		-	0	1	0	6	0	0
	0	0	0	0		1	0	0	D
1	0	0	1	0	1	1	0	- 1 I	1
1	0	1	0	0	1	1	1	1	0
1	0	1	l	1	0	0	0	0	1
1	1	0	0	١	0	0	١	0	0
1	1	0	1	١	0	0	1	l	1
1	1	1	0	1	0	1	0	1	0
1	1	1	1	1	D	1	,	0	1
	1			1					

00:

01:

A, Az + A, Az + A, Az + A, Az

A,+A,=1

00:0

01 : A1 A2

10: A, A2 + A, A2 + A, A2

AI + AI AZ

A, + A, A2 + A, A2

AI + AZ

11:0

For D2:

00:0

01:0

10: A, A2 + A, A + A, A2

A+A2

11: A, A, + A, A2 = A1

For Da:

01: A1+A2

10: A, A2

11 : A, A2 + A, A2 + A, A2

A, + A, A2

A1 + A A2 + A A2

A, +Az

For Dy:

00: A1A2 + A1 A2 #

01 : A, A2 + A, A2

10: A, A2 - A, A2

11: A1 A2 + A1 A2

For Ds:

oo: $\overline{A_1}\overline{A_2} + A_1\overline{A_2} = \overline{A_2}$

01: AIA2 + AIA2 = A2

10: A, A2 + A, A2 = A2

11: A, Az + A, Az = Az

