ATISE

Soutenance Intermédiaire

Adrien ARTAUD Myriam LOMBARD Killian PAREILLEUX Alexandre SALMON

Sommaire

- Presentation d'ATISE	3
- Architecture d'ATISE	4
- Equipe et Organisation	5
- Technologies et Outils	6
- Etapes du Projet	7
- Backlog et Avancement	8
- Difficultés rencontrées	10

ATISE

Aurora Thermosphere Ionosphere Spectrometer Experiment

Le satellite:

- Format 12U (20cm x 20cm x 30cm)
- 1 appareil photo OnyX
- 3 Spectrographes HDPyx

La mission de ATISE:

- Observer les aurores boréales depuis l'espace
- Mieux comprendre la magnétosphère et l'activité solaire

Architecture d'ATISE

Logique FPGA

Processing System: ARM Cortex A9

Notre mission:

- Permettre la communication via UART entre la partie capteur et la partie communication du satellite
- Porter le code pour FreeRTOS

Equipe & Organisation

Scrum Master: Killian Pareilleux

Product Owner: Alexandre Salmon

Développeurs : Adrien Artaud et Myriam Lombard

Méthode Agile :

- Quasi Daily Meetings
- Découpage du projet en sprints
- Organisation avec outils de git (issues, Kanban, plusieurs repository, etc.)

Technologies et outils utilisés

FreeRTOS

Système d'exploitation en temps réel pour micro-contrôleurs

UART

Composant utilisé pour faire la liaison entre l'ordinateur et le port qui nous intéresse

Outil de gestion de versions

VIVADO

IDE avec des outils de niveau système électronique

Cubesat Space Protocol

Protocole permettant de simplifier la communication entre systèmes embarqués au sein d'un petit réseau

• Eclipse

Environnement de développement

Jalons - Grandes étapes du projet

- 1. Adapter le code en FreeRTOS (Sprint 1)
- 2. Échanger des données avec la carte via l'UART (**Sprint 2**)
 - a. Transfert d'un seul bit
 - b. Transfert d'un tableau de bits (structure de données)
- 3. Utiliser le CSP avec l'UART (**Sprint 3**)
- 4. Optimiser le débit (Si il y a le temps)
- 5. Prendre en compte le traitement d'images (Si il y a le temps)

Backlog / Avancement

Ce qui est fait :

- Documentations
 - CSP
 - UART pour FreeRTOS
- Recherche d'un simulateur FreeRTOS
- Analyse et Synthèse code C fourni
- "Hello World" FreeRTOS
- Prise en main du logiciel Vivado
- Début de l'adaptation du code FreeRTOS

Backlog / Avancement

Ce qui reste à faire :

- Tester Output UART de la carte
- Envoi d'un tableau de bits
- Rajout de l'utilisation du protocole CSP
- Mesure du débit

Difficultés rencontrées

- Carte MARSXZ3 unique
 - Partage de la carte compliqué avec peu de présentiel
 - -> Recherche d'un simulateur FreeRTOS ?

- Prise en main de l'environnement
 - Technologie inconnue
 - Architecture de la carte
 - o etc.

Merci pour votre attention