拓扑学

第一章 预备知识

§ 1.1 集合的运算

定义 设 $\{A_{\gamma}\}_{\gamma\in\Gamma}$ 是集族, A,B 是集合,

- 1. $\bigcup_{\gamma \in \Gamma} A_{\gamma} = \{x \mid$ 存在 $\gamma \in \Gamma, x \in A_{\gamma}\}$, 称为 $\{A_{\gamma}\}_{\gamma \in \Gamma}$ 的并;
- 2. $\bigcap_{\gamma \in \Gamma} A_{\gamma} = \{x \mid \text{任意 } \gamma \in \Gamma, x \in A_{\gamma}\},$ 称为 $\{A_{\gamma}\}_{\gamma \in \Gamma}$ 的交;
- 3. $A B = \{x \mid x \in A, x \notin B\}$, 称为 A 和 B 的差.

定理 设 $\{A_{\gamma}\}_{\gamma\in\Gamma}$ 是集族, 则

- 1. $(\bigcup_{\gamma \in \Gamma} A_{\gamma})^C = \bigcap_{\gamma \in \Gamma} A_{\gamma}^C$;
- 2. $(\bigcap_{\gamma \in \Gamma} A_{\gamma})^C = \bigcup_{\gamma \in \Gamma} A_{\gamma}^C$.

定义 设 $X,Y\neq\emptyset$ 是集合.

Zermelo **选择公理** 设 $\{A_\gamma\}_{\gamma\in\Gamma}$ 是 X 的互不相交非空的集合组成的集族,则存在集合 $E\subset X$,使得对每个 $\gamma\in\Gamma$, $E\cap A_\gamma$ 是单点集.

§ 1.2 关系

$$f: \chi \ni \Re \pi \rightarrow y = f(\chi) \in \mathcal{T}$$
.

x→ X (原爆)(尿).

- 1. $X \times Y = \{(x, y) | x \in X, y \in Y\}$, 称为 X 与 Y 的笛卡儿积;
- 2. 若 $R \subset X \times Y$. 则称 R 为 X 到 Y 的关系:
- 3. 若 $(x,y) \in R$, 则称 x 与 y 是 R- 相关, 记作 xRy;

§ 1.3 等价关系

定义 设 $\sim \subset X \times X = X^2$, 若

- 1. 自反性: 对任意 $x \in X$. 有 $x \sim x$:
- 2. 对称性: 当 $x \sim y$ 时, 有 $y \sim x$:
- 3. 传递性: 当 $x \sim y$ 且 $y \sim z$ 时, 有 $x \sim z$,

则称 \sim 为 X 上的等价关系.

定义 设 \sim 是 X 上的等价关系, $x \in X$,

- 1. 记 $[x] = \{y | y \sim x\}$, 称为 x 所在的等价类;
- 2. 记 $X/\sim=\{[x]\,|\,x\in X\}$, 称为 X 关于等价关系 \sim 的商集;

3. 若 $E \subset X$ 且 $E \cap [x]$ 是单点集, 则称 E 为关于等价关系 \sim 的代表 团. (由 Zermelo 选择公理, 一定存在).

定理 设 \sim 是 X 上的等价关系, $x, y \in X$, 则

- 1. $x \in [x];$
- 2. [x] = [y] 或 $[x] \cap [y] = \emptyset$;
- 3. $X = \bigcup_{x \in X} [x]$.

证 2. 若 $[x] \cap [y] \neq \emptyset$, 取 $z \in [x] \cap [y]$. 则 $x \sim z \sim y$. 因此 $x \sim y$. 故对任意 $a \in [x]$, 有 $a \sim x \sim y$. 故 $a \in [y]$. 因此 $[x] \subset [y]$. 同理 $[y] \subset [x]$. 因此 [x] = [y].

§ 1.4 映射

定义 设 F 是 X 到 Y 的关系, 若对每个 $x \in X$, 存在唯一的 $y \in Y$, 使得 xFy, 则称 F 为 X 到 Y 的映射, 记为 $F: X \ni x \mapsto y = F(x) \in Y$. 简记 为 $F: X \mapsto Y$.

- 1. 若对 $x_i \in X$, 当 $x_1 \neq x_2$ 时, 有 $F(x_1) \neq F(x_2)$, 则称 F 为单射;
- 2. 若 F(X) = Y, 则称 F 为满射;
- 3. 单射又是满射的映射称为一一映射.

设 $F: X \mapsto Y, A \subset X, B \subset Y$,

称 $F(A) = \{ F(x) | x \in A \}$ 为 A 的象;

称 $F^{-1}(B) = \{x \mid F(x) \in B\}$ 为 B 的原象.

定理 设 $F: X \mapsto Y, A_{\gamma} \subset X, B_{\gamma} \subset Y (\gamma \in \Gamma), B_1, B_2 \subset Y, 则$

- 1. $F(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} F(A_{\gamma});$
- 2. $F(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \subset \bigcap_{\gamma \in \Gamma} F(A_{\gamma});$
- 3. $F^{-1}(\bigcup_{\gamma \in \Gamma} B_{\gamma}) = \bigcup_{\gamma \in \Gamma} F^{-1}(B_{\gamma});$
- 4. $F^{-1}(\bigcap_{\gamma \in \Gamma} B_{\gamma}) = \bigcap_{\gamma \in \Gamma} F^{-1}(B_{\gamma});$
- 5. $F^{-1}(B_2 B_1) = F^{-1}(B_2) F^{-1}(B_1)$.

定义 设 $A\subset X,\,f:X\mapsto Y,\,g:A\mapsto Y,\,$ 若对每个 $x\in A,\,$ 有 f(x)=g(x),则称 f 为 g 的延拓, g 为 f 的限制, 记 g 为 $f|_A.$

定义 设 X,Y 是集合,

- 1. 若存在一一映射 $f: X \mapsto Y$, 则称 X 的势与 Y 的势相等, 记为 $\overline{\overline{X}} = \overline{\overline{Y}}$:
- 2. 若 $X = \emptyset$ 或存在正整数 n 及一一映射 $f: X \mapsto \{1, 2, \dots, n\}$, 则称 X 为有限集, 这时, 称 X 的势为 n, 否则称 X 为无限集:
- 3. 若存在一一映射 $f: X \mapsto N = \{1, 2, \dots, n, \dots\}$, 则称 X 为可列集, 这时, 称 X 的势为 \aleph_0 :
- 4. 有限集和可列集统称为可数集;
- 5. 称区间 [0,1] 的势为连续统势, 记为 ℵ.

定理 可数个可数集的并是可数集.

Cantor **连续统假设** 没有一个集合 A, 它的势 \overline{A} 满足 $\aleph_0 < \overline{A} < \aleph$.

§ 1.5 序关系

定义 设 $\prec \subset X \times X = X^2$, 若

- 1. 自反性: 对每个 $x \in X$, 有 $x \prec x$:
- 2. 当 $x \prec y$ 且 $y \prec x$ 时, 有 x = y;
- 3. 传递性: 当 $x \prec y$ 且 $y \prec z$ 时, 有 $x \prec z$,

则称 \prec 为 X 上的序关系, 称 (X, \prec) 为半序集.

将 $x \prec y$ 读作 x 在 y 之前或 y 在 x 之后. (简称 y 大于 x.)

设 (X, \prec) 是半序集, 若对任意 $x,y \in X$, 有 $x \prec y$ 或 $y \prec x$, 则称 (X, \prec) 是全序集.

例 (R, \leq) 是全序集, 称为自然序集. (R, \geq) 是全序集, 称为逆序集. (R, <) 不是半 (2) 序集.

例 设 X 是集合, $\mu \subset 2^X$, 对 $A, B \in \mu$, 规定: $A \prec B \Leftrightarrow A \subset B$, 则 (μ, \prec) 是半序集. 称为自然序集. 称 (μ, \supset) 为逆序集.

特别 $(2^X, \subset)$ 是半序集, 一般不是全序集.

定义 设 (X, \prec) 为半序集, $x \in X$, $A \subset X$,

- 1. 若对每个 $y \in A$, 有 $y \prec x$, 则称 x 为集合 A 的一个上界;
- 2. 若对每个 $y \in X$, 有 $y \prec x$, 则称 x 为 X 中的最大元;

- 3. 若对每个 $y \in X$. 当 $x \prec y$ 时, 有 x = y. 则称 x 为一个极大元;
- 4. 若 (A, \prec) 是全序集. 则称 A 为 X 的全序子集:
- 5. 若 A 是全序子集, 对全序子集 B, 当 $A \subset B$ 时, 有 A = B, 则称 A 为 X 的极大全序子集.

例 设 $X \neq \emptyset$, $\mu \in X$ 的非空子集全体, (μ, \subset) 是半序集, 对每个 $\mathscr{A} \subset \mu$, X 是 \mathscr{A} 的上界. \mathscr{A} 不一定有下界. X 是极大元, 也是最大元. 每个单点集是极小元. 当 X 不是单点集时, μ 中没有最小元.

Hausdorff **引理** 设 (X, \prec) 为半序集,则 X 必有极大全序子集.

Zorn 引理 设 (X, \prec) 为半序集, 若每个全序子集, 都有上界, 则 X 必有极大元.

第二章 拓扑空间与连续映射

§ 2.1 度量空间

定义 设 $X \neq \emptyset$, $d: X \times X \ni (x, y) \mapsto d(x, y) \in \mathbb{R}^1$, 若

- 1. d(x,y) > 0, $\coprod d(x,y) = 0 \Leftrightarrow x = y$;
- 2. d(x, y) = d(y, x);
- 3. $d(x,y) \le d(x,z) + d(z,y)$,

则称 d(x,y) 为 x 与 y 间的距离, 称 (X,d) 为度量空间.

称 $B(x,\delta) = \{y \mid d(x,y) < \delta\}$ 为以 x 为中心以 δ 为半径的 x 的开邻域. 设 $A \subset X$, $x \in X$, 若存在 $B(x,\delta) \subset A$, 则称 x 为 A 的一个内点. 若每个 $x \in A$ 都是 A 的内点, 则称 A 为开集.

定理 (开集的性质) 设 X 是度量空间, 则

- 1. X, Ø 是开集;
- 2. 一族开集的并是开集;
- 3. 有限个开集的交是开集.

定义 设 X,Y 是度量空间, $f: X \mapsto Y, x \in X$, 若对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $d(x,y) < \delta$ 时, 有 $d(f(x),f(y)) < \varepsilon$, 则称 f 在 x 处连续. \Leftrightarrow 对任意 $B(f(x),\varepsilon)$, 存在 $B(x,\delta)$, 使得 $f(B(x,\delta)) \subset B(f(x),\varepsilon)$.

若 f 在 X 中的每一点 x 处连续, 则称 f 为 X 到 Y 的连续映射.

定理 设 X,Y 是度量空间, $f:X\mapsto Y$, 则 f 是 X 上的连续映射 ⇔ Y 中的每个开集 G 的原象 $f^{-1}(G)$ 是 X 中的开集.

证 \Rightarrow 设 f 在 X 上连续, G 是 Y 的开集, 若 $f^{-1}(G) = \emptyset$ 是开集, 否则, 对任意 $x \in f^{-1}(G)$, 有 $f(x) \in G$. 由于 G 是开集, 故存在 $B(f(x), \varepsilon) \subset G$. 由于 f 在 x 处连续, 故存在 $B(x,\delta)$, 使得 $f(B(x,\delta)) \subset B(f(x),\varepsilon)$. 故 $B(x,\delta) \subset f^{-1}(B(f(x),\varepsilon)) \subset f^{-1}(G)$. 因此 $f^{-1}(G)$ 是开集. \Leftarrow 对每个 $x \in X$ 及任意 $B(f(x), \varepsilon)$ 是开集, 故 $f^{-1}(B(f(x), \varepsilon))$ 是开集. 而 $x \in f^{-1}(B(f(x), \varepsilon))$, 故存在 $B(x, \delta)$, 使得 $B(x, \delta) \subset f^{-1}(B(f(x), \varepsilon))$. 即 $f(B(x,\delta)) \subset B(f(x),\varepsilon)$. 故 f 在 x 处连续. 因此 f 在 X 上连续.

§ 2.2 拓扑空间

定义 设 X 是集合, $\mathcal{I} \subset 2^X$, 满足 GRIAR

- 1. $X, \emptyset \in \mathcal{T}$;
- 2. 当 $G_{\alpha} \in \mathcal{I}(\alpha \in \Lambda)$ 时, 有 $\bigcup_{\alpha \in \Lambda} G_{\alpha} \in \mathcal{I}$;
- 3. 当 $G_i \in \mathcal{T}$ 时, 有 $\bigcap_{i=1}^n G_i \in \mathcal{T}$,

则称 \mathcal{T} 为 X 上的拓扑, 称 (X,\mathcal{T}) 为拓扑空间, 简记为 X.

タ中的元素称为开集(度量室间分振井多))

(例)设 (X,d) 是度量空间, $\mathcal{T}_d = \{G \mid G \}$ 开集 $\}$ 是 X 上拓扑, 称为由距离 d 导出的拓扑. 度量空间的拓扑 9 都是指由距离导出的拓扑 9a.

因此, (X, d) 是拓扑空间,

例 设 X 是集合, $\mathcal{I}_{\text{skb}} = 2^X$ 是 X 上的拓扑, 称为 X 上的离散拓扑; $\mathcal{I}_{\text{FR}} = \{\emptyset, X\}$ 是 X 上的拓扑, 称为 X 上的平凡拓扑.

例 设 $X = \{a, b, c\}, \mathcal{T} = \{\emptyset, \{a\}, X\}, 则 \mathcal{T}$ 是拓扑.

显然 ⑦ 是非平凡, 非离散拓扑.

设 $d \in X$ 上的距离, 记 $r = \min\{d(a,b), d(b,c)\} > 0$, 则距离空间上的开 球 $B(b,r) = \{b\}$ ∉ 𝒯. 因此 𝒯 不是某度量导出的拓扑.

定义 设 (X, \mathcal{I}) 是拓扑空间, 若存在 X 上的距离 d, 使得 $\mathcal{I} = \mathcal{I}_d$,

7. 注记: X+中外, 斯型 >菜。

则称 (X, \mathcal{I}) 为可度量化拓扑空间.

问题 在拓扑空间上加什么条件, 使得 (X, 9) 为可度量化拓扑空间. 例 设 X 是集合.

 $\mathcal{I}_{ABA} = \{A \mid A^C \text{ 为有限集}\} \mid \{\emptyset\} \in X \text{ 上的拓扑, 称为有限补拓扑:}$ $\mathcal{I}_{\text{TMA}} = \{A \mid A^C \text{ 为可数集}\} \mid \{\emptyset\} \in X \text{ 上的拓扑, 称为可数补拓扑.}$ 证 1. 由于 $X^C = \emptyset$, 故 $X \in \mathcal{T}_{\text{tran}}$, $\emptyset \in \mathcal{T}_{\text{tran}}$.

- 2. 对 $G_{\alpha} \in \mathcal{I}_{\text{flith}}$, $(\bigcup_{\alpha} G_{\alpha})^{C} = \bigcap_{\alpha} G_{\alpha}^{C}$ 是有限集. 故 $\bigcup_{\alpha} G_{\alpha} \in \mathcal{I}_{\text{flith}}$.
- 3. 设 $G_i \in \mathcal{T}_{fRA}$, 则 $(\bigcap_{i=1}^n G_i)^C = \bigcup_{i=1}^n G_i^C$ 是有限集.

故 $\bigcap_{i=1}^n G_i \in \mathcal{T}_{\text{有限补}}$.

- 注 1. 当 X 是无限集时, 对 $G_i \in \mathcal{G}_{\text{fluit}}$, $\bigcap_{i=1}^n G_i$ 是无限集.
 - 2. 当 X 是不可数集时, 对 $G_i \in \mathcal{T}_{\text{可数}}$, $\bigcap_{i=1}^n G_i$ 是不可数集.

§ 2.3 连续映射

定义 设 X,Y 是拓扑空间, $f: X \mapsto Y$, 若 Y 中的开集 G 的原象 $f^{-1}(G)$ 是 X 的开集. 则称 f 为 X 到 Y 的连续映射.

- 注 连续映射概念是度量空间上的连续映射概念在拓扑空间上的推广. 定理 设 X,Y,Z 是拓扑空间,
- 1. 则 $i_X: X \ni x \mapsto x \in X$ 是连续映射;
- 2. 若 $f: X \mapsto Y$, $g: Y \mapsto Z$ 都是连续, 则 $g \circ f: X \mapsto Z$ 是连续映射. 证 1. 设 U 为 X (值域) 中的开集, 则 $i_{\mathbf{x}}^{-1}(U) = U$ 是 X (定义域) 中的 开集, 故 i_v^{-1} 是连续.
- 2. 设 W 是 Z 中的开集. 由于 q 连续, 故 $q^{-1}(W)$ 是 Y 中开集. 由于 f 连续, 故 $f^{-1}(g^{-1}(W))$ 是 X 中开集.

故 $(q \circ f)^{-1}(W) = f^{-1}(q^{-1}(W))$ 是 X 中开集. 因此 $q \circ f$ 连续.

定义 设 X,Y 是拓扑空间, 若 $f:X\mapsto Y$ 是连续的一一对应, 且 f^{-1} 也 是连续, 则称 f 是 X 到 Y 的一个同胚映射.

若存在一个同胚映射 $f: X \mapsto Y$, 则称 X = Y 同胚, 记为 $X \simeq Y$, 读作 X 同胚于 Y.

例 $f(x) = \tan(\frac{\pi}{2}x)$ 是 (-1,1) 到 R^1 的同胚映射. 故 (-1,1) 与 R^1 同胚. 类似地, (-1,1) 与 (a,b) 同胚.

定理 设 X.Y.Z 是拓扑空间.

- 1. 则 $i_X: X \mapsto X$ 是同胚:
- 2. 若 $f: X \mapsto Y$ 是同胚映射, 则 $f^{-1}: Y \mapsto X$ 是同胚映射;
- 3. 若 $f: X \mapsto Y$, $g: Y \mapsto Z$ 是同胚映射, 则 $g \circ f: X \mapsto Z$ 是同胚映射.

证 2. 由于 f 同胚, 故 f, f^{-1} 都是连续映射且一一对应.

由于 $(f^{-1})^{-1} = f$, 故 f^{-1} 是同胚.

3. 由于 f,g 是连续的一一对应, 故 $g \circ f$ 是连续的一一对应.

而 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 连续, 故 $g \circ f$ 同胚.

定理 设 X,Y,Z 是拓扑空间,

Tig ω. Page 62, 2, 3, 7, 8, 9, 10, 11

- 1. 则 $X \simeq X$;
- 2. 若 $X \simeq Y$, 则 $Y \simeq X$; 3. 若 $X \simeq Y$, $Y \simeq Z$, 则 $X \simeq Z$.

定义 拓扑空间上的某种性质 P, 当对拓扑空间 X 成立时, 对所有的与 X 同胚的拓扑空间都成立, 则称性质 P 为拓扑不变性质. 简称为拓扑性质. 注 若 P 是拓扑性质, X 具有性质 P, 而 Y 不具有性质 P, 则 X 与 Y 不同胚.

§ 2.4 邻域及邻域系

定义 设 (X,\mathscr{T}) 是拓扑空间, $x\in X$, $U\subset X$, 若存在 $V\in \mathscr{T}$, 使得 $x\in V\subset U$, 则称 U 为 x 的邻域. x 的邻域全体称为 x 的邻域系, 记 \mathscr{Q}_x . 若 x 的邻域 U 是开集, 则称 U 为 x 的开邻域,x 的开邻域全体记为 \mathscr{T}_x . 定理 设 X 是拓扑空间,则 $U\subset X$ 为开集 \Leftrightarrow 对每个 $x\in U$, $U\in \mathscr{Q}_x$.

证 \Rightarrow 显然. \Leftarrow 对任意 $x \in U$, 由于 $U \in \mathcal{U}_x$, 故存在开集 V_x , 使得 $x \in V_x \subset U$. 故 $U = \bigcup_{x \in U} V_x$ 是开集.

定理 (邻域公理) 设 (X, \mathcal{I}) 是拓扑空间, 则

- 1. 对每个 $x \in X$, 有 $\mathcal{U}_x \neq \emptyset$, 且若 $U \in \mathcal{U}_x$, 则 $x \in U$;
- 2. 若 $U, V \in \mathcal{U}_x$, 则 $U \cap V \in \mathcal{U}_x$;
- 3. 若 $V \in \mathcal{U}_{\tau}$, $V \subset U$, 则 $U \in \mathcal{U}_{\tau}$;
- 4. 若 $U \in \mathcal{U}_x$, 则存在 $V \in \mathcal{U}_x$, 使得对每个 $y \in V$, 有 $V \in \mathcal{U}_y$.

证 2. 由于 $U, V \in \mathcal{U}_x$, 故存在 $U_0, V_0 \in \mathcal{F}$, 使得 $x \in U_0 \subset U$, $x \in V_0 \subset V$. 因此 $x \in U_0 \cap V_0 \subset U \cap V$. 由于 $U_0 \cap V_0 \in \mathcal{F}$, 故 $U \cap V \in \mathcal{U}_x$.

4. 由于 $U \in \mathcal{U}_r$, 故存在 $V \in \mathcal{T}$, 使得 $x \in V \subset U$.

由于 $V \in \mathcal{T}$, 故对每个 $y \in V$, 有 $V \in \mathcal{U}_y$.

定理 设 X 是集合, 对每个 $x \in X$, 指定了 \mathcal{U}_x 满足邻域公理的 4 个条件, 则存在唯一的拓扑 $\mathcal{T} = \{U \mid \text{对每个 } x \in U, U \in \mathcal{U}_x\}$, 使得对每个 $x \in X$, x 的邻域系为 \mathcal{U}_x .

设 X,Y 是度量空间, $f: X \mapsto Y$, $x \in X$, 若对任意的 $U \in \mathcal{U}_{f(x)}$, 存在 $V \in \mathcal{U}_x$, 当 $y \in V$ 时, 有 $f(y) \in U$, 则称 f 在 x 处连续.

 $\Leftrightarrow f(V) \subset U \Leftrightarrow V \subset f^{-1}(U) \Leftrightarrow f^{-1}(U) \in \mathscr{U}_x$. 由此给出:

定义 设 X,Y 是拓扑空间, $f: X \mapsto Y, x \in X$, 若对任意的 $U \in \mathcal{U}_{f(x)}$, 有 $f^{-1}(U) \in \mathcal{U}_x$, 则称 f 在 x 处连续.

定理 设 X, Y 是拓扑空间, $f: X \mapsto Y$, 则

 $f \neq X$ 到 Y的连续映射 $\Leftrightarrow f$ 在每个 $x \in X$ 处连续.

证 \Rightarrow 对每个 $x \in X$ 及 $U \in \mathcal{U}_{f(x)}$, 存在 $V \in \mathcal{I}_{Y}$, 使得 $f(x) \in V \subset U$. 由于 f 连续, 故 $f^{-1}(V) \in \mathcal{I}_{X}$.

由于 $x \in f^{-1}(V) \subset f^{-1}(U)$, 故 $f^{-1}(U) \in \mathcal{U}_x$. 因此 f 在 x 处连续.

 \Leftarrow 对任意 $U \in \mathcal{T}_Y$, 若 $f^{-1}(U) = \emptyset$, 则 $f^{-1}(U)$ 是开集.

否则对任意 $x \in f^{-1}(U)$, 有 $f(x) \in U$. 由于 U 是开集, 故 $U \in \mathcal{U}_{f(x)}$. 由于 f 在 x 处连续, 故 $f^{-1}(U) \in \mathcal{U}_x$. 因此 $f^{-1}(U)$ 是开集. 因此 f 是连续映射.

§ 2.5 开核、导集、闭集与闭包

定义 设 (X, \mathcal{T}) 是拓扑空间, $x \in X, A \subset X$,

- 1. 若存在 $V \in \mathcal{I}_x$, 使得 $x \in V \subset A$, 则称 x 为 A 的内点, A 的内点全体称为 A 的开核, 记为 A° ;
- 2. 若对任意 $V \in \mathcal{I}_x$, 有 $V \cap (A \{x\}) \neq \emptyset$, 则称 x 为 A 的极限点, A 的极限点全体称为 A 的导集, 记为 A':
- 3. 若 $A' \subset A$, 则称 A 为闭集, 闭集全体记为 \mathscr{F} ;
- 若∃V∈Jx,5t.VNA=fxY,則称x为A的孤注

颇r Text

- 4. 记 $\overline{A} = A | |A'$ 称为A为闭包.
- 注 上述定义中的开邻域可用邻域代替.

定理 设 (X, \mathcal{I}) 是拓扑空间, $x \in X$, $A \subset X$,

- 1. A 为闭集 $\Leftrightarrow A = \overline{A}$:
- 2. $x \in \overline{A} \Leftrightarrow$ 对任意 $V \in \mathcal{T}_x$, 有 $V \cap A \neq \emptyset$.

例 设 $A = (0,1] \mid \{2\} \subset R^1$, 则 A' = [0,1]; $\overline{A} = [0,1] \mid \{2\}$; $A^o = (0,1)$.

例 设 X 是集合, $\mathcal{T}_{\text{PR}} = \{\emptyset, X\}$ 是 X 上的平凡拓扑, $X \supsetneq A \neq \emptyset$, 则

? $A^o = \emptyset$; $A' \supset X - A = A^C$. 当 A 不是单点集时, A' = X.

例 设 X 是集合, $\mathcal{T}_{\text{离散}} = 2^X$ 是 X 上的离散拓扑, $A \subset X$,

则每个 $x \in A$ 是 A 的内点, $A^o = A$; $A' = \emptyset$.

例 设 $X = \{a, b, c\}, \mathcal{T} = \{\emptyset, \{a\}, X\}, A = \{a, b\}, B = \{b, c\},$

 $\mathbb{M} \underline{A^o} = \{a\}, B^o = \varnothing; A' = \{b, c\}, B' = \{b, c\}; \overline{A} = X, \overline{B} = B.$

定理 设 X 为拓扑空间, 则 $A \subset X$ 为开集 $\Leftrightarrow A^C$ 是闭集.

证 ⇒ 对任意 $x \in A$, 由于 A 是开集, 故 $V \triangleq A$ 是 x 的邻域.

显然 $V \cap (A^C - \{x\}) = \varnothing$. 故 $x \notin (A^C)'$. 即 $(A^C)' \subset A^C$. 故 A^C 是闭集. \Leftarrow 对每个 $x \in A$, 由于 A^C 是闭集, 故 $x \notin A^C = \overline{A^C}$. 因此存在 $V \in \mathscr{T}_x$, 使得 $V \cap A^C = \varnothing$. 故 $V \subset A$. 故 $A \in \mathscr{U}_x$. 因此 A 为开集.

定理 (闭集公理) 设 (X, \mathcal{I}) 为拓扑空间, 则

- 1. \emptyset, X 是闭集: $X, \emptyset \in \mathcal{F}$;
- 2. 闭集的一族交是闭集: 若 $F_{\alpha} \in \mathcal{F}(\alpha \in \Lambda)$, 则 $\bigcap_{\alpha \in \Lambda} F_{\alpha} \in \mathcal{F}$;
- 3. 闭集的有限个并是闭集: 若 $F_i \in \mathcal{F}$, 则 $\bigcup_{i=1}^n F_i \in \mathcal{F}$.

证 3. 由于 F_i 是闭集,故 F_i^C 是开集.故 $(\bigcup_{i=1}^n F_i)^C = \bigcap_{i=1}^n F_i^C$ 是开集.因此 $\bigcup_{i=1}^n F_i$ 是闭集.

定理 设 $X \neq \emptyset$, $\mathscr{G} \subset 2^X$, 若 \mathscr{G} 满足闭集公理的 3 个条件, 则存在唯一的拓扑 $\mathscr{T} = \{U \mid U^C \in \mathscr{F}\}$, 使得在拓扑 \mathscr{T} 下闭集全体是 \mathscr{F} .

定理 设 X 为拓扑空间, $A \subset X$, 则 $A^o = \bigcup_{\mathscr{D} \ni V \subset A} V$. 因此

- 1. Ao 是包含于 A 的最大的开集;
- 2. A 为开集 $\Leftrightarrow A = A^o$.

3. A 为开集 \Leftrightarrow 对每个 $x \in A$, $x \in A$ 的内点.

证 对 $x \in A^{\circ}$, 存在 $V \in \mathcal{I}_x$, 使得 $x \in V \subset A$. 故 $x \in \bigcup_{\mathcal{I} \ni V \subset A} V$. 因此 $A^{\circ} \subset \bigcup_{\mathcal{I} \ni V \subset A} V$.

对 $x \in \bigcup_{\mathcal{T} \ni V \subset A} V$, 存在开集 $V \subset A$, 使得 $x \in V$. 故 $x \in A^{\circ}$.

即 $\bigcup_{\mathcal{T} \ni V \subset A} V \subset A^o$. 因此 $A^o = \bigcup_{\mathcal{T} \ni V \subset A} V$.

定理 (开核与闭包关系) 设 X 为拓扑空间, $A \subset X$, 则 $(\overline{A})^C = (A^C)^o$. 因此 \overline{A} 是闭集.

证 对 $x \in (\overline{A})^C$, 存在 $V \in \mathcal{I}_x$, 使得 $V \cap A = \emptyset$. 因此 $V \subset A^C$.

故 $x \in (A^C)^o$. 因此 $(\overline{A})^C \subset (A^C)^o$.

对 $x \in (A^C)^o$, 存在 $V \in \mathcal{I}_x$, 使得 $V \subset A^C$. 因此 $V \cap A = \emptyset$.

故 $x \notin \overline{A}$. 即 $x \in (\overline{A})^C$. 故 $(A^C)^o \subset (\overline{A})^C$. 因此 $(\overline{A})^C = (A^C)^o$.

定理 设 X 为拓扑空间, $A \subset X$,则 $\overline{A} = \bigcap_{\mathbb{R} \oplus F \supset A} F = \bigcap_{A \subset F \in \mathscr{F}} F$. 因此 \overline{A} 是包含 A 的最小闭集.

证 由于 \overline{A} 是包含 A 闭集, 故 $\overline{A} \supset \bigcap_{A \subset F \subset \mathscr{A}} F$.

对任意闭集 $F \supset A$, 有 $F = \overline{F} \supset \overline{A}$, 故 $\overline{A} \subset \bigcap_{A \subset F \in \mathscr{X}} F$.

因此 $\overline{A} = \bigcap_{A \subset F \in \mathscr{F}} F$.

定理 (导集公理) 设 X 是拓扑空间, $A,B \subset X$, 则

- 1. $\emptyset' = \emptyset$;
- 2. 当 $A \subset B$ 时, 有 $A' \subset B'$;
- 3. $(A \bigcup B)' = A' \bigcup B'$;
- 4. $(A')' \subset A \bigcup A'$.

证 3. 由于 $A, B \subset A \cup B$, 故 $A', B' \subset (A \cup B)'$. 故 $A' \cup B' \subset (A \cup B)'$. 设 $x \notin A' \cup B'$, 则 $x \notin A'$ 且 $x \notin B'$. 故存在 $U, V \in \mathscr{T}_x$, 使得 $U \cap (A - \{x\}) = \varnothing$; $V \cap (B - \{x\}) = \varnothing$.

故 $(U \cap V) \cap (A \cup B - \{x\}) = \emptyset$.

由于 $U \cap V \in \mathcal{T}_x$, 故 $x \notin (A \cup B)'$. 因此 $(A \cup B)' \subset A' \cup B'$.

4. 设 $x \notin A \cup A'$, 则 $x \notin A$ 且 $x \notin A'$. 故存在 $V \in \mathcal{T}_x$,

使得 $V \cap (A - \{x\}) = \emptyset$. 故 $V \cap A = \emptyset$.

因此对任意 $y \in V$, 由于 $V \in \mathcal{I}_{u}$, 故 $y \notin A'$. 因此 $V \cap A' = \emptyset$.

由于 $V \in \mathcal{T}_x$, 故 $x \notin (A')'$. 故 $(A')' \subset A \bigcup A'$.

另证: 设 $x \in (A')'$, 若 $x \in A$, 则结论成立. 不妨设 $x \notin A$.

对任意 $V \in \mathcal{T}_x$, 有 $V \cap (A' - \{x\}) \neq \emptyset$.

取 $y \in V \cap (A' - \{x\})$, 则 $V \in \mathcal{T}_y$. 故 $V \cap (A - \{y\}) \neq \emptyset$.

由于 $x \notin A$, 故 $V \cap (A - \{x\}) \neq \emptyset$. 故 $x \in A'$.

定理 (闭包公理) 设 X 是拓扑空间, $A, B \subset X$, 则

- 1. $\overline{\varnothing} = \varnothing$;
- 2. $A \subset \overline{A}$;
- 3. $\overline{A \bigcup B} = \overline{A} \bigcup \overline{B}$;
- 4. $\overline{(\overline{A})} = \overline{A}$.

 $\text{if} \quad 3. \ \overline{A \bigcup B} = (A \bigcup B) \bigcup (A \bigcup B)' = (A \bigcup A') \bigcup (B \bigcup B') = \overline{A} \bigcup \overline{B}.$

定理 (开核公理) 设 X 是拓扑空间, $A,B \subset X$, 则

- 1. $X^o = X$;
- 2. $A^o \subset A$;
- 3. $(A \cap B)^o = A^o \cap B^o$;
- 4. $(A^o)^o = A^o$.

证 3. $A^o \subset A \Rightarrow A^o \cap B^o \subset A \cap B$. 由于 $A^o \cap B^o$ 是开集,

而 $(A \cap B)^o$ 是包含在 $A \cap B$ 的最大开集, 故 $A^o \cap B^o \subset (A \cap B)^o$.

 $A \bigcap B \subset A, B \Rightarrow (A \bigcap B)^o \subset A^o, B^o \Rightarrow (A \bigcap B)^o \subset A^o \bigcap B^o.$

因此 $(A \cap B)^o = A^o \cap B^o$.

 $\begin{array}{l} \mathcal{H} \ \text{iii:} \ (A \bigcap B)^o = ((A^C \bigcup B^C)^C)^o = (\overline{A^C \bigcup B^C})^C = (\overline{A^C} \bigcup \overline{B^C})^C \\ = \overline{A^C}^C \bigcap \overline{B^C}^C = ((A^C)^C)^o \cap ((B^C)^C)^o = A^o \cap B^o. \end{array}$

定理 设 X 是集合, 若映射 $-: 2^X \ni A \mapsto -(A) = \overline{A} \in 2^X$ 满足闭包公理 的 4 个条件 (称为闭包映射), 则存在唯一的拓扑 $\mathscr{T} = \{U \mid U^C = \overline{U^C}\}$, 使得对 $A \subset X$, A 的闭包为 -(A).

定理 设 X 是集合, 若映射 $O: 2^X \ni A \mapsto o(A) = A^o \in 2^X$ 满足开核公 理的 4 个条件 (称为开核映射), 则存在唯一的拓扑 $\mathcal{T} = \{U \mid U = U^o\}$,

使得对 $A \subset X$, A 的开核为 o(A).

定理 设 X, Y 是拓扑空间, $f: X \mapsto Y$, 则下列命题等价

- f 是连续映射;
- 2. 对 Y 中的闭集 B 的原象 $f^{-1}(B)$ 是闭集;
- 3. 对 $A \subset X$, 有 $f(\overline{A}) \subset \overline{f(A)}$;
- 4. 对 $B \subset Y$, 有 $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$;
- 5. 对 $B \subset Y$, 有 $f^{-1}(B^o) \subset (f^{-1}(B))^o$.

证 $1. \Rightarrow 2.$ 对闭集 $B \subset Y$, 由于 $(f^{-1}(B))^C = f^{-1}(B^C)$ 是开集, 故 $f^{-1}(B)$ 是闭集.

 $2. \Rightarrow 3.$ 由于 $f^{-1}(\overline{f(A)}) \supset f^{-1}(f(A)) \supset A$, 故 $f^{-1}(\overline{f(A)}) \supset \overline{A}$. 故 $\overline{f(A)} \supset f(\overline{A})$.

 $3. \Rightarrow 4. \ f(\overline{f^{-1}(B)}) \subset \overline{f(f^{-1}(B))} \subset \overline{B}. \ \text{to} \ \overline{f^{-1}(B)} \subset f^{-1}(\overline{B}).$

 $4. \Rightarrow 5.$ 由于 $(\overline{B})^C = (B^C)^o$, 故

$$\begin{split} f^{-1}(B^o) &= f^{-1}(((B^C)^C)^o) = f^{-1}((\overline{B^C})^C) = (f^{-1}(\overline{B^C}))^C \\ &\subset (\overline{f^{-1}(B^C)})^C = ((f^{-1}(B^C))^C)^o = (f^{-1}(B))^o. \end{split}$$

5. \Rightarrow 1. 对开集 $B \subset Y$, $f^{-1}(B) = f^{-1}(B^o) \subset (f^{-1}(B))^o \subset f^{-1}(B)$, 故 $f^{-1}(B) = (f^{-1}(B))^o$ 是开集. 即 f 是连续.

§ 2.6 基与子基

设 (X,d) 是度量空间, U 是开集, 则对任意 $x \in U$, 存在 $B(x,\varepsilon_x)$, 使得 $x \in B(x,\varepsilon_x) \subset U$, 因此 $U = \bigcup_{x \in U} B(x,\varepsilon_x)$. 由此给出:

定义 设 (X, \mathcal{I}) 是拓扑空间, $\mathcal{B} \subset \mathcal{I}$, 若对任意 $U \in \mathcal{I}$, 存在 $\mathcal{B}_U \subset \mathcal{B}$, 使得 $U = \bigcup_{V \in \mathcal{B}_U} V$, 则称 \mathcal{B} 是拓扑空间 X 的一个基.

例 在度量空间 X 中, $\mathcal{B}_1 = \{B(x,\varepsilon) | x \in X, \varepsilon > 0\},$

 $\mathcal{B}_2 = \{B(x, \frac{1}{n}) \mid x \in X, n \in N\}$ 都是基.

特别, 在实数空间 R 中, $\mathcal{B}_1 = \{(a,b)|a,b \in R\}$,

 $\mathcal{B}_2 = \{(r_1, r_2) | r_1, r_2 \in Q\}$ 都是基. \mathcal{B}_2 是可数的.

在离散拓扑空间 X 中, $\mathcal{B} = \{\{x\} | x \in X\}$ 是"最小的"基.

定理 设 (X, \mathcal{I}) 是拓扑空间, $\mathcal{B} \subset \mathcal{I}$, 则 \mathcal{B} 是 X 的基

 \Leftrightarrow 对任意 $x \in X$ 及任意 $V \in \mathcal{T}_r$, 存在 $B \in \mathcal{B}$, 使得 $x \in B \subset V$.

证 \Rightarrow 对任意 $x \in X$ 及任意 $V \in \mathcal{T}_x$, 存在 $\mathcal{B}_1 \subset \mathcal{B}$, 使得 $V = \bigcup_{B \in \mathcal{B}_1} B$.

由于 $x \in V$, 故存在 $B \in \mathcal{B}_1 \subset \mathcal{B}$, 使得 $x \in B \subset \bigcup_{B \in \mathcal{B}_1} B = V$.

 \Leftarrow 设 $V \in \mathcal{T}$, 则对任意 $x \in V$, 由于 $V \in \mathcal{T}_x$, 故存在 $B_x \in \mathcal{B}$,

使得 $x \in B_x \subset V$. 于是 $V = \bigcup_{x \in V} \{x\} \subset \bigcup_{x \in V} B_x \subset V$.

因此 $V = \bigcup_{x \in V} B_x$. 因此 $\mathcal{B} \notin X$ 的一个基.

是否集合 X 的子集族 $\mathscr D$ 都可以确定拓扑 $\mathscr D$, 拓扑空间 X 以 $\mathscr D$ 为基? **例** 设 $X = \{a,b,c\}$, $\mathscr D_1 = \{\{a\}\}$, $\mathscr D_2 = \{\{a,b\},\{b,c\}\}$, 则 $\mathscr D_i$ 都不能是 X 上的某拓扑的基.

定理 设 (X, \mathcal{I}) 是拓扑空间, $\mathcal{B} \subset \mathcal{I}$ 是 X 的基, 则

- 1. $\bigcup_{B \in \mathscr{B}} B = X;$
- 2. 当 $B_1, B_2 \in \mathcal{B}$ 时, 对任何 $x \in B_1 \cap B_2$, 存在 $B \in \mathcal{B}$, 使得 $x \in B \subset B_1 \cap B_2$.

证 由 $X \in \mathcal{T}$ 得 1 成立.

2. 设 $B_1, B_2 \in \mathcal{B}$, 则 $B_1 \cap B_2 \in \mathcal{T}$. 故对任意 $x \in B_1 \cap B_2 \in \mathcal{T}_x$, 存在 $B \in \mathcal{B}$, 使得 $x \in B \subset B_1 \cap B_2$.

反之.

定理 设 X 是集合, $\mathscr{B} \subset 2^X$, 若 \mathscr{B} 满足条件:

- 1. $\bigcup_{B \in \mathscr{B}} B = X$;
- 2. 当 $B_1, B_2 \in \mathcal{B}$ 时, 对任何 $x \in B_1 \cap B_2$, 存在 $B \in \mathcal{B}$, 使得 $x \in B \subset B_1 \cap B_2$,

则 $\mathscr{T} = \{U \subset X | \text{ 存在 } \mathscr{B}_U \subset \mathscr{B}, \text{ 使得 } U = \bigcup_{B \in \mathscr{B}_U} B\}$ 是 X 上的唯一的以 \mathscr{B} 为基的拓扑.

注 若 \mathscr{B} 满足: 对于任意 $B_1, B_2 \in \mathscr{B}$, 有 $B_1 \cap B_2 \in \mathscr{B}$, 则 \mathscr{B} 满足定理中的条件 2.

证 先证 \mathscr{T} 是 X 的拓扑: 1) $X \in \mathscr{T}$; $\varnothing = \bigcup_{A \in \varnothing \subset \mathscr{B}} A \in \mathscr{T}$.

2) 设 $\mathcal{I}_1 \subset \mathcal{I}$, 则对 $A \in \mathcal{I}_1$, 存在 $\mathcal{B}_A \subset \mathcal{B}$, 使得 $A = \bigcup_{B \in \mathcal{B}_A} B$.

3) 若 $B_1, B_2 \in \mathcal{B}$, 则对每一个 $x \in B_1 \cap B_2$, 存在 $W_x \in \mathcal{B}$, 使得 $x \in W_x \subset B_1 \cap B_2$. 因此

 $B_1 \bigcap B_2 = \bigcup_{x \in B_1 \bigcap B_2} \{x\} \subset \bigcup_{x \in B_1 \bigcap B_2} W_x \subset B_1 \bigcap B_2.$

故 $B_1 \cap B_2 = \bigcup_{x \in B_1 \cap B_2} W_x \in \mathscr{T}$.

设 $A_1, A_2 \in \mathcal{T}$, 则存在 $\mathcal{B}_1, \mathcal{B}_2 \subset \mathcal{B}$, 使得

 $A_1 = \bigcup_{B_1 \in \mathscr{B}_1} B_1, A_2 = \bigcup_{B_2 \in \mathscr{B}_2} B_2.$ ix

 $A_1 \cap A_2 = (\bigcup_{B_1 \in \mathscr{B}_1} B_1) \cap (\bigcup_{B_2 \in \mathscr{B}_2} B_2) = \bigcup_{B_1 \in \mathscr{B}_1, B_2 \in \mathscr{B}_2} B_1 \cap B_2 \in \mathscr{T}.$ 因此, \mathscr{T} 是柘朴且。是柘朴 \mathscr{T} 的一个基.

设拓扑 矛 也以 8 为它的基,则

 $U \in \widetilde{\mathcal{T}} \leftrightarrow$ 存在 $\mathscr{D}_1 \subset \mathscr{D},$ 使得 $U = \bigcup_{B \in \mathscr{D}_1} B \leftrightarrow U \in \mathscr{T}.$ 因此 $\mathscr{T} = \widetilde{\mathscr{T}}.$ 例 (实数下限拓扑空间) 实数集合 R 的集族 $\mathscr{B} = \{[a,b) | a,b \in R, a < b\}$ 满足定理的条件 1 和定理后面的注. 因此 $\mathscr{B} \in R$ 上的某一个拓扑 \mathscr{T}_1 (称为下限拓扑) 的基. 对开区间 $(a,b) \subset R$, 有 $(a,b) = \bigcup_{a < c < b} [c,b)$. 因此 $(a,b) \in \mathscr{T}_1$, 因此实数空间的通常拓扑 $\mathscr{T} \subset \mathscr{T}_1$. 显然, $\mathscr{T} \subseteq \mathscr{T}_1$.

在基的定义中只用了开集的并运算, 若考虑开集的有限交运算 (注意拓扑只对有限交封闭的, 所以只能考虑有限交), 便得到"子基"这个概念.

定义 设 (X, \mathcal{I}) 是拓扑空间, $\mathcal{I} \subset \mathcal{I}$, 若

 $\mathscr{B} = \{ S_1 \cap S_2 \cap \cdots \cap S_n \mid S_i \in \mathscr{S}, n \in \mathbb{N} \}$

是拓扑 \mathcal{I} 的基,则称 \mathcal{I} 为拓扑 \mathcal{I} (或拓扑空间 \mathcal{I})的一个子基.

例 实数空间 R 的子集族

 $\mathscr{S} = \{(a, +\infty) \mid a \in R\} \bigcup \{(-\infty, b) \mid b \in R\}$

是 R 的子基. 因为开区间是 $\mathcal S$ 中两个开区间的交.

一般说来, 子基的势小于基的势; 基的势小于拓扑的势.

映射的连续性可以通过只对基或子基来验证.

定理 设 X,Y 是拓扑空间, \mathscr{B} 是 Y 的基, \mathscr{S} 是 Y 的子基, $f:X\mapsto Y$, 则下列条件等价:

- 1. f 连续:
- 2. 对每个 $B \in \mathcal{B}$, 原像 $f^{-1}(B)$ 开集;
- 3. 对每个 $S \in \mathcal{S}$, 原像 $f^{-1}(S)$ 开集.

证 由于 \mathcal{B} , $\mathcal{S} \subset \mathcal{I}_V$, 故 1. \Rightarrow 2. 及 1. \Rightarrow 3. 是显然.

2. ⇒ 1. 设 $U \in \mathscr{T}_Y$, 则存在 $\mathscr{B}_1 \subset \mathscr{B}$, 使得 $U = \bigcup_{B \in \mathscr{B}_1} B$. 因此 $f^{-1}(U) = f^{-1}(\bigcup_{B \in \mathscr{B}_1} B) = \bigcup_{B \in \mathscr{B}_1} f^{-1}(B)$ 是 X 的开集. 故 f 是连续.

 $3. \Rightarrow 2. \mathscr{B} = \{S_1 \cap S_2 \cap \cdots \cap S_n \mid S_i \in \mathscr{S}, n \in N\}$ 是 Y 的基. 对每个 $B \in \mathscr{B}$, 存在 $S_i \in \mathscr{S}$, 使得 $B = S_1 \cap S_2 \cap \cdots \cap S_n$. 因此 $f^{-1}(B) = f^{-1}(S_1 \cap \cdots \cap S_n) = f^{-1}(S_1) \cap \cdots \cap f^{-1}(S_n)$ 是 X 中的开集.

例 设 X 是拓扑空间, $f: X \mapsto R$,则 f 是连续函数 \Leftrightarrow 对任意 $c \in R$, $X(f>c) = \{x \in X \mid f(x) > c\} = f^{-1}((c, +\infty))$ 及 X(f < c) 都是开集. 对于局部情形,也有类似于基和子基的概念.

定义 设 X 是拓扑空间, $x \in X$, $\mathcal{V}_x \subset \mathcal{U}_x$, $\mathcal{W}_x \subset \mathcal{U}_x$,

- 1. 若对任意 $U \in \mathcal{U}_x$, 存在 $V \in \mathcal{Y}_x$, 使得 $V \subset U$, 则称 \mathcal{Y}_x 为点 x 的一个邻域基. 又若 $\mathcal{Y}_x \subset \mathcal{I}_x$, 则称 \mathcal{Y}_x 为点 x 的开邻域基;
- 2. 若 $\{W_1 \cap \cdots \cap W_n | W_i \in \mathscr{W}_x, n \in N\}$ 是 x 的一个邻域基,则称 \mathscr{W}_x 为点 x 的一个邻域子基. 又若 $\mathscr{W}_x \subset \mathscr{T}_x$,则称 \mathscr{W}_x 为点 x 的一个开邻域子基.

例 设 X 是度量空间, $\mathscr{D}_x = \{B(x, \frac{1}{n}) | n \in N\}$ 是 x 点的邻域基. 基与邻域基. 子基与邻域子基有以下关联.

定理 设 X 是拓扑空间, $x \in X$, \mathscr{B} 是 X 的基, \mathscr{S} 是 X 的子基, 则

- 1. $\mathcal{B}_x = \{B \in \mathcal{B} \mid x \in B\}$ 是点 x 的开邻域基;
- 2. $\mathscr{S}_x = \{S \in \mathscr{S} \mid x \in S\}$ 是点 x 的开邻域子基.

证 1. 对 $U \in \mathcal{U}_x$, 存在 $V \in \mathcal{T}$, 使得 $x \in V \subset U$.

由于 \mathscr{B} 是 X 的基, 故存在 $B \in \mathscr{B}$, 使得 $x \in B \subset V \subset U$.

显然 $B \in \mathcal{B}_x$. 因此 \mathcal{B}_x 是 x 处的邻域基.

2. 由于 $\mathscr S$ 是子基, 故 $\mathscr S=\{S_1\cap\cdots\cap S_n\,|\,S_i\in\mathscr S,n\in N\}$ 是 X 的基. 故 $\mathscr S_x=\{S_1\cap\cdots\cap S_n\,|\,x\in S_i\in\mathscr S,n\in N\}$ 是 X 的 x 处的邻域基. 因此 $\mathscr S_x=\{S\in\mathscr S\,|\,x\in S\}$ 是点 x 的邻域子基.

可以用邻域基 (或子基) 来验证映射在一点处的连续性,

定理 设 X 和 Y 是拓扑空间, $f: X \mapsto Y$, $x \in X$, $\mathscr{V}_{f(x)}$ 是 f(x) 的邻域 基, $\mathscr{W}_{f(x)}$ 是 f(x) 的邻域子基, 则以下命题等价:

- 1. f 在点 x 处连续;
- 2. 对任意 $V \in \mathcal{V}_{f(x)}$, 原象 $f^{-1}(V)$ 是 x 的邻域;
- 3. 对任意 $W \in \mathcal{W}_{f(x)}$, 原象 $f^{-1}(W)$ 是 x 的邻域.

§ 2.7 拓扑空间中的序列极限

定义 设 (X, \mathcal{D}) 是拓扑空间, x_n 是 X 上的点列, $x \in X$, 若对任意 $U \in \mathcal{U}_x$, 存在 N, 使得当 n > N 时, 有 $x_n \in U$, 则称点列 x_n 收敛于 x, 记为 $x_n \to x$, 称 x 为点列 x_n 的一个极限, 极限全体记为 $Lim\ x_n$.

例 设 $(X, \mathcal{L}_{A, R})$ 是平凡拓扑空间, 对任意点列 x_n 及任意 $x \in X$, 有 $x_n \to x$. **例** 设 (X, \mathcal{L}) 是拓扑空间, $x_0 \in X$, $x_n \in X$ 上的点列.

若存在 N_0 , 当 $n > N_0$ 时, 有 $x_n = x_0$, 则 $Lim x_n = \overline{\{x_0\}}$.

证 对任意 $x \in \overline{\{x_0\}}$ 及 $U \in \mathcal{U}_x$, 有 $\emptyset \neq U \cap \{x_0\} = \{x_0\}$,

故当 $n > N_0$ 时, $x_n = x_0 \in U$, 因此 $x_n \to x$. 因此 $\{x_0\} \subset Lim x_n$.

 $\forall x \in Lim x_n$, 由于 $x_n \to x$, 故对任意 $U \in \mathcal{U}_x$, 存在 N_1 ,

当 $n > N_1$ 时, $x_n \in U$. 取 $N = \max\{N_0, N_1\}$,

当 n > N 时,有 $x_0 = x_n \in U$,因此 $U \cap \{x_0\} = \{x_0\} \neq \emptyset$,故 $x \in \overline{\{x_0\}}$.即 $\overline{\{x_0\}} \supset Lim x_n$.因此 $\overline{\{x_0\}} = Lim x_n$.

定理 设 (X, \mathcal{I}) 是拓扑空间, $A \subset X$, 存在 $x_n \subset A - \{x\}$, 使得 $x_n \to x$, 则 $x \in A'$.

证 对任意 $U \in \mathcal{U}_x$, 由于 $x_n \to x$, 故存在 N, 当 n > N 时, 有 $x_n \in U$. 由于 $x_n \in A - \{x\}$, 故 $U \cap (A - \{x\}) \neq \emptyset$. 故 $x \in A'$.

定理 设 X,Y 是拓扑空间, $f: X \mapsto Y$, f 在 x_0 处连续, 则对任意的点列 x_n , 当 $x_n \to x_0$ 时, 有 $f(x_n) \to f(x_0)$. (称 f 在 x_0 处序列连续.)

证 \Rightarrow 对任意 $U \in \mathscr{U}_{f(x_0)}$, 由于 f 在 x_0 处连续, 故 $f^{-1}(U) \in \mathscr{U}_{x_0}$.

由于 $x_n \to x_0$, 故存在 N, 当 n > N 时, 有 $x_n \in f^{-1}(U)$.

即 $f(x_n) \in U$. 因此 $f(x_n) \to f(x_0)$.

例 设 X 是不可数集, $\mathcal{S}_{\Pi \otimes \mathbb{A}}$ 是可数补空间,

- 1. 若点列 $x_n \to x_0$ 时, 则存在 N, 当 n > N 时, 有 $x_n = x_0$;
- 2. 设 $A \subset X$ 是不可数集. 则 A' = X:
- 3. 对 $x_0 \in A'$ 及任意 $x_n \in A \{x_0\}$, 有 $x_n \nrightarrow x_0$.

证 1. 记 $B = \{x_n | x_n \neq x_0\}$ 是可数集, 故 $U = B^C$ 是含 x_0 的开集.

由于 $x_n \to x_0$, 故存在 N, 当 n > N 时, 有 $x_n \in U = B^C$. 因此 $x_n = x_0$.

2. 对任意 $x \in X$ 及任意 $U \in \mathcal{U}_x$, 存在 $V \in \mathcal{T}_{\text{math}}$, 使得 $x \in V \subset U$.

由于 V^C 是可数集且 $V^C \supset U^C$, 故 U^C 是可数集.

而 $A-\{x\}$ 是不可数集, 因此 $A-\{x\}\not\subset U^C$. 故 $U\bigcap (A-\{x\})\neq\varnothing$.

即 $x \in A'$. 故 X = A'.

3. 对 $x_0 \in A'$ 及任意 $x_n \in A - \{x_0\}$, 由于 1 得 $x_n \to x_0$.

例 设 $f:(R^1,\mathcal{S}_{\mathbb{R}^{3,k}})\ni x\mapsto x\in R^1$, 则 f 是序列连续, 但不连续.

证 对任意 $x \in R^1$ 及任意 $x_n \to x$ (定义域), 存在 N, 当 n > N 时,

有 $x_n = x$. 故当 n > N 时, 有 $f(x_n) = f(x) \rightarrow f(x)$. 故序列连续.

但 f 不是连续函数: 因为对开集 (0,1), 原象 $f^{-1}((0,1)) = (0,1)$ 不是 \mathcal{L}_{n} 的开集. 故 f 不是连续映射.

注 数学分析中的 Heine 定理不能推广到拓扑空间上.

三章 子空间、积空间、商空间

§ 3.1 子空间

设 $Y \subset X$ 是度量空间 (X,d) 的子空间, 子空间 Y 中的开球

 $B_Y(y,\delta) = \{ z \in Y \mid d(y,z) < \delta \} = B_X(y,\delta) \cap Y.$

定义 设 $X \neq \emptyset$, $\mathcal{H} \subset 2^X$, $Y \subset X$, 称 $\{H \cap Y \mid H \in \mathcal{H}\}$ 为集族 \mathcal{H} 在 Y 上的限制. 记为 $\mathcal{H}|_{Y}$.

定义 设 (X, \mathcal{I}) 是拓扑空间, $Y \subset X$, 称 $\mathcal{I}|_{Y} = \{U \cap Y \mid U \in \mathcal{I}\}$ 为拓扑 \mathcal{I} 在 Y 上的相对拓扑, 称 $(Y, \mathcal{I}|_{Y})$ 为 (X, \mathcal{I}) 的子空间.

定理 设 (X, \mathcal{I}) 是拓扑空间, $(Y, \mathcal{I}|_Y)$ 为 X 的子空间, $B \subset Y$, 则

- 1. B 为子空间 Y 的闭集 ⇔ 存在 X 的闭集 F, 使得 $B = F \cap Y$;
- 2. B 在子空间 Y 中的导集 $(B')_Y = B' \cap Y$;
- 3. B 在空间 Y 中的闭包 $(\overline{B})_Y = \overline{B} \cap Y$;

4. 当 B 在 Y 中的开核记为 $(B^o)_V$ 时, 有 $B^o = (B^o)_V \cap Y^o$.

证 1. B 是 Y 中闭集 \Leftrightarrow $Y - B \in \mathcal{T}|_{Y} \Leftrightarrow$ 存在 $G \in \mathcal{T}$, 使得

 $Y - B = G \cap Y \Leftrightarrow B = Y - G \cap Y = (X - G) \cap Y \triangleq F \cap Y.$

2. $x \in (B')_Y \Leftrightarrow$ 对任意 $V = G \cap Y \in \mathcal{T}|_Y (G \in \mathcal{T}_x)$, 有 $(G \cap Y) \cap (B - \{x\}) \neq \emptyset \Leftrightarrow$ 对任意 $G \in \mathcal{T}_x$, 有 $G \cap (B - \{x\}) \neq \emptyset$ $\Leftrightarrow x \in B' \perp x \in Y \Leftrightarrow x \in B' \cap Y.$

3. $(\overline{B})_Y = B \bigcup (B')_Y = B \bigcup (B' \cap Y) = (B \bigcup B') \cap Y = \overline{B} \cap Y$.

4. 对任意 $x \in B^{\circ}$, 存在 $U \in \mathcal{I}$, 使得 $x \in U \subset B \subset Y$.

因此 $x \in (B^o)_Y \cap Y^o$. 因此 $B^o \subset (B^o)_Y \cap Y^o$.

由于 $(B^o)_Y$ 是 Y 中的开集, 故存在 $U \in \mathcal{T}$, 使得 $(B^o)_Y = U \cap Y$.

因此 $B \supset (B^o)_Y \supset (B^o)_Y \cap Y^o = U \cap Y \cap Y^o = U \cap Y^o$ 是开集.

因此 $B^o \supset (B^o)_Y \cap Y^o$. 因此 $B^o = (B^o)_Y \cap Y^o$.

定理 设 (X, \mathcal{T}) 是拓扑空间, $(Y, \mathcal{T}|_Y)$ 为 X 的子空间, $y \in Y$,

- 1. 若 \mathcal{B} 是 X 的基, 则 $\mathcal{B}|_{Y}$ 是子空间 Y 的基;
- 2. 若 \mathscr{S} 是 X 的子基, 则 $\mathscr{S}|_{Y}$ 是子空间 Y 的子基;
- 3. 若 \mathcal{U}_y 是 X 上的 y 的邻域系, 则 $\mathcal{U}_y|_Y$ 是 Y 上的 y 的邻域系;
- 4. 若 \mathcal{B}_y 是 X 上的 y 的邻域基, 则 $\mathcal{B}_y|_Y$ 是 Y 上的 y 的邻域系;
- 5. 若 \mathscr{S}_y 是 X 上的 y 的邻域子基, 则 $\mathscr{S}_y|_Y$ 是 Y 上的 y 的邻域子基;

证 1. 对任意 $V \in \mathcal{I}|_{Y}$, 存在 $U \in \mathcal{I}$, 使得 $V = U \cap Y$.

故存在 $\mathcal{B}_1 \subset \mathcal{B}$, 使得 $U = \bigcup_{B \in \mathcal{B}_1} B$.

故 $V = U \cap Y = \bigcup_{B \in \mathcal{B}_1} B \cap Y$. 因此 $\mathcal{B}|_Y$ 是子空间 Y 的基.

例 n 维单位球面 $S^n = \{x \in R^{n+1} \mid ||x|| = 1\}$ 是 R^{n+1} 的子空间;

单位闭球体 $D^n = \{x \in R^n \mid ||x|| \le 1\}$ 是 R^n 的子空间.

例 在 R^1 上, $Y = (0,1) \cup \{2\} \cup [4,5]$ 是子空间, (0,1), $\{2\}$, [4,5] 都是子空间上的既是开集又是闭集. 集合 A = (0,1) 在子空间 Y 上的导集是 A, 集合 B = [4,5] 在子空间 Y 上的开核是 B.

定义 设 \mathcal{S}_1 , \mathcal{S}_2 是 X 上的两个拓扑, 若 \mathcal{S}_1 \subset \mathcal{S}_2 , 则称 \mathcal{S}_1 比 \mathcal{S}_2 粗, 称 \mathcal{S}_3 比 \mathcal{S}_4 细. 或称 \mathcal{S}_3 比 \mathcal{S}_3 积 \mathcal{S}_4 比 \mathcal{S}_5 强.

定理 设 (X, \mathcal{I}) 是拓扑空间, $Y \subset X$, $i|_Y : Y \ni y \mapsto y \in X$ (称为包含映射),则 1. $i|_Y$ 是连续映射:

- 2. $\mathcal{I}_{|V}$ 是使得 $i_{|V}$ 连续的最粗拓扑.
- 证 1. 对 $U \in \mathcal{T}$, $i|_{V}^{-1}(U) = U \cap Y \in \mathcal{T}_{V}$. 故 $i|_{V}$ 是连续.
- 2. 设 \mathcal{I} 是 Y 上的使得 $i|_{Y}$ 连续的拓扑, 则对 $U \in \mathcal{I}$,

 $U \cap Y = i|_{V}^{-1}(U) \in \mathcal{T}_{1}. \text{ id } \mathcal{T}_{Y} \subset \mathcal{T}_{1}.$

故 $\mathcal{I}_{|V}$ 是使得 $i_{|V}$ 连续的最粗拓扑.

§ 3.2 积空间

设 X_1, X_2, \dots, X_n 是非空集合, 则

 $\prod_{i=1}^{n} X_i = X_1 \times \dots \times X_n = \{ x = (x_1, \dots, x_n) | x_i \in X_i \}.$

对每个 j 定义笛卡儿积 $\prod_{i=1}^{n} X_i$ 的第 j 个投影映射为

 $p_j: \prod_{i=1}^n X_i \ni x \mapsto x_j \in X_j.$

例 $R^n = R^1 \times \cdots \times R^1$, $p_i : R^n \ni x \mapsto x_i \in R^1$.

 R^n 中的开集 G 表示成一族开矩形 $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$ 的并.

因此 $\mathcal{B} = \{I \mid I \ \,)$ 为 R^n 的开矩形 $\}$ 是 R^n 的基.

称为平行于坐标面 $x_i = 0$ 的开带形集,则开矩形

 $I = (a_1, b_1) \times \cdots \times (a_n, b_n) = S_1 \cap \cdots \cap S_n.$

因此 $\mathscr{S} = \{S \mid S \ \,)$ 为 \mathbb{R}^n 上的开带形集 $\}$ 是 \mathbb{R}^n 的子基.

显然每一个投影映射 p_i 都连续.

定义 设 $\{(X_i,\mathscr{T}_i)\}_{i=1}^n$ 是拓扑空间族,则在笛卡儿积 $\prod_{i=1}^n X_i$ 上有以 $\mathscr{S}_{\pi} = \{p_i^{-1}(U_i) | U_i \in \mathscr{T}_i, i=1,\cdots,n\}$ 为子基的拓扑,记为 \mathscr{T}_{π} , 称为拓扑族 $\{\mathscr{T}_i\}_{i=1}^n$ 的积拓扑,称 $(\prod_{i=1}^n X_i,\mathscr{T}_{\pi})$ 为积空间,简记为 $\prod_{i=1}^n X_i$. 注 记 $\mathscr{B}_{\pi} = \{S_1 \cap \cdots \cap S_n | S_i = p_i^{-1}(U_i) \in \mathscr{S}_{\pi}, U_i \in \mathscr{T}_i, i=1,\cdots,n\}$,则 \mathscr{B}_{π} 是 τ_{π} 的基. 且 $B \in \mathscr{B}_{\pi} \Leftrightarrow$ 存在 $U_i \in \mathscr{T}_i$,使得 $B = \prod_{i=1}^n U_i$. $U \in \mathscr{T}_{\pi}$ 的开集 $\Leftrightarrow U$ 为一族开'矩形' $U_1 \times \cdots \times U_n$ $(U_i \in \mathscr{T}_i)$ 的并. (M_i) $M_i \in S_i$ 同所于 M_i $M_i \in S_i$ 可能,是 M_i M_i

 $T: S \ni ((2 + \cos \varphi) \cos \theta, (2 + \cos \varphi) \sin \theta, \sin \varphi) \mapsto (e^{i\theta}, e^{i\varphi}) \in S^1 \times S^1.$ 定义 设 X, Y 是拓扑空间, $f: X \mapsto Y$,

- 1. 若对每个 $U \in \mathcal{I}_X$, $f(U) \in \mathcal{I}_Y$, 则称 f 为开映射;
- 2. 若对 X 中的闭集 F, f(F) 是闭集, 则称 f 为闭映射.

定理 设 $\{(X_i,\mathscr{T}_i)\}_{i=1}^n$ 是拓扑空间族, $(\prod_{i=1}^n X_i,\mathscr{T}_\pi)$ 为积空间, 则对每个 j,p_j 是连续的开映射, 且 \mathscr{T}_π 是使每个 p_j 都连续的最粗的拓扑.

证 1. 对每个 $U_i \in \mathcal{T}_i$, $p_i^{-1}(U_i) \in \mathcal{S}_{\pi} \subset \mathcal{T}_{\pi}$, 故 p_i 连续.

对每个
$$V = p_i^{-1}(U_i)$$
, 有 $p_j(V) = \begin{cases} X_j, & j \neq i \\ U_i, & j = i \end{cases}$.

因此对 $B = p_1^{-1}(U_1) \cap p_2^{-1}(U_2) \cap \cdots \cap p_n^{-1}(U_n) = U_1 \times U_2 \times \cdots \times U_n \in \mathcal{B}_{\pi}.$ 有 $p_i(B) = U_i$ 是开集.

对任意 $U \in \mathcal{I}_{\pi}$, 存在 $\{B_{\lambda}\}_{{\lambda} \in {\Lambda}} \subset \mathcal{B}_{\pi}$, 使得 $U = \bigcup_{{\lambda} \in {\Lambda}} B_{\lambda}$.

由于 $p_i(\bigcup_{\lambda \in \Lambda} B_{\lambda}) = \bigcup_{\lambda \in \Lambda} p_i(B_{\lambda})$ 是开集, 故 p_i 是开映射.

2. 设 \mathcal{I}_0 是使得每个 p_i 都连续的积 $\prod_{i=1}^n X_i$ 上的拓扑,

则对 $U_j \in \mathscr{T}_{X_j}$, 有 $p_j^{-1}(U_j) \in \mathscr{T}_0$, 故 $\mathscr{S}_{\pi} \subset \mathscr{T}_0$, 故 $\mathscr{T}_{\pi} \subset \mathscr{T}_0$.

故 \mathcal{I}_{π} 是使每个 p_i 都连续的最粗的拓扑.

下面将给出一族拓扑空间 $\{X_\gamma\}_{\gamma\in\Gamma}$ 的乘积空间. 为此先看:

例 设 $X_1, X_2, \cdots, X_n, \cdots$ 是一列非空集合, 则

又因为对映射 $f \in \{f \mid f: N \ni n \mapsto f(n) \in X_n \subset \bigcup_{i=1}^{\infty} X_i\}$, 存在 $x = (f(1), f(2), \cdots, f(n), \cdots) \in \prod_{i=1}^{\infty} X_i$, 使得 T(x) = f. 故 T 是满射. 即 T 是 1 - 1 对应. 因此将 x 与 f_x 看成相同, 得

 $\prod_{i=1}^{\infty} X_i = \{f : N \ni n \mapsto f(n) \in X_n \subset \bigcup_{i=1}^{\infty} X_i \}$. 由此给出:

定义 集合族 $\{X_{\gamma}\}_{\gamma\in\Gamma}$ 的笛卡儿积定义为

 $\textstyle\prod_{\gamma\in\Gamma}X_{\gamma}=\{x\,|\,x:\Gamma\ni\gamma\mapsto x(\gamma)\in X_{\gamma}\subset\bigcup_{\gamma\in\Gamma}X_{\gamma}\}.$

称 X_{γ} 为第 γ 个坐标集.

对每个 $\alpha \in \Gamma$ 定义笛卡儿积 $\prod_{\gamma \in \Gamma} X_{\gamma}$ 的第 α 个投影映射为

 $p_{\alpha}: \prod_{\gamma \in \Gamma} X_{\gamma} \ni x \mapsto x_{\alpha} \in X_{\alpha}.$

定义 设 $\{(X_{\gamma}, \mathcal{I}_{\gamma})\}_{\gamma \in \Gamma}$ 是拓扑空间族,则在笛卡儿积 $\prod_{\gamma \in \Gamma} X_{\gamma}$ 上有以 $\mathcal{I}_{\pi} = \{p_{\gamma}^{-1}(U_{\gamma}) | U_{\gamma} \in \mathcal{I}_{\gamma}, \gamma \in \Gamma\}$ 为子基的拓扑,记为 \mathcal{I}_{π} , 称为拓扑族 $\{\mathcal{I}_{\gamma}\}_{\gamma \in \Gamma}$ 的积拓扑,称 $(\prod_{\gamma \in \Gamma} X_{\gamma}, \mathcal{I}_{\pi})$ 为积空间,简记为 $\prod_{\gamma \in \Gamma} X_{\gamma}$.

记 $\mathcal{B}_{\pi} = \{S_1 \cap \cdots \cap S_n \mid S_i = p_{\gamma_i}^{-1}(U_{\gamma_i}) \in \mathcal{S}_{\pi}, U_{\gamma_i} \in \mathcal{T}_{\gamma_i}, \gamma_i \in \Gamma, n \in N\},$ 则 \mathcal{B}_{π} 是 \mathcal{F}_{π} 的基. 且若 $B \in \mathcal{B}_{\pi}$,则存在 $\gamma_i \in \Gamma$, 使得 $B = \prod_{\gamma \in \Gamma} U_{\gamma}$,

其中
$$U_{\gamma} = \left\{ \begin{array}{ll} U_{\gamma_i}, & \gamma = \gamma_i, \ i = 1, 2, \cdots, n, \\ X_{\gamma}, & \gamma \neq \gamma_i, i = 1, 2, \cdots, n, \end{array} \right.$$

例 在 $R^{\infty}=R^1 \times \cdots \times R^1 \times \cdots$ 上, $(0,1) \times (0,1) \times \cdots$ 不是 \mathcal{T}_{π} 的开集.

定理 设 $\{(X_{\gamma}, \mathscr{T}_{\gamma})\}_{\gamma \in \Gamma}$ 是拓扑空间族, $(\prod_{\gamma \in \Gamma} X_{\gamma}, \mathscr{T}_{\pi})$ 为积空间, 则对每个 $\alpha \in \Gamma$, p_{α} 是连续的开映射, 且 \mathscr{T}_{π} 是使每个 p_{α} 都连续的最粗的拓扑. 证 对每个 $U_{\alpha} \in \mathscr{T}_{\alpha}$, $p_{\alpha}^{-1}(U_{\alpha}) \in \mathscr{S}_{\pi}$ 、故 p_{α} 连续.

对每个 $V=p_{\gamma}^{-1}(U_{\gamma}),$ 有 $p_{\alpha}(V)=p_{\alpha}(p_{\gamma}^{-1}(U_{\gamma}))=X_{\alpha}$ 或 $U_{\gamma}.$

对 $B = p_{\gamma_1}^{-1}(U_{\gamma_1}) \cap p_{\gamma_2}^{-1}(U_{\gamma_2}) \cap \cdots \cap p_{\gamma_n}^{-1}(U_{\gamma_n})$, 不妨设 $\gamma_i \neq \gamma_j$, 则

$$p_{\alpha}(B) = \left\{ \begin{array}{ll} U_{\gamma_i}, & \gamma = \gamma_i, \, i = 1, 2, \cdots, n, \\ X_{\gamma}, & \gamma \neq \gamma_i, i = 1, 2, \cdots, n, \end{array} \right. \not = \mathcal{T} \not \oplus.$$

对任意 $G \in \mathcal{T}_{\pi}$, 存在 $\{B_{\lambda}\}_{{\lambda} \in {\Lambda}} \subset \mathcal{B}_{\pi}$, 使得 $G = \bigcup_{{\lambda} \in {\Lambda}} B_{\lambda}$.

由于 $p_{\alpha}(G) = p_{\alpha}(\bigcup_{\lambda \in \Lambda} B_{\lambda}) = \bigcup_{\lambda \in \Lambda} p_{\alpha}(B_{\lambda})$ 是开集, 故 p_{α} 是开映射.

设 \mathcal{S}_0 是使得每个 p_α 都连续的积空间上的拓扑,

则对任意 $U_{\alpha} \in \mathcal{I}_{\alpha}$, 有 $p_{\alpha}^{-1}(U_{\alpha}) \in \mathcal{I}_{0}$. 故 $\mathcal{I}_{\pi} \subset \mathcal{I}_{0}$. 故 $\mathcal{I}_{\pi} \subset \mathcal{I}_{0}$.

定理 设 $\{X_{\gamma}\}_{{\gamma}\in\Gamma}$ 是拓扑空间族, Y 是拓扑空间, 则

 $f: Y \mapsto \prod_{\alpha \in \Gamma} X_{\alpha}$ 连续 \Leftrightarrow 对每个 $\alpha \in \Gamma$, $p_{\alpha} \circ f$ 连续.

证 \Rightarrow 显然. \Leftarrow 对每个 $V = p_{\alpha}^{-1}(U_{\alpha}) \in \mathscr{S}_{\pi}$,

有 $f^{-1}(V) = (p_{\alpha} \circ f)^{-1}(U_{\alpha})$ 是开集. 因此 f 连续.

定义 设 $\{(X_{\gamma},\mathcal{I}_{\gamma})\}_{\gamma\in\Gamma}$ 是拓扑空间族,则在笛卡儿积 $\prod_{\gamma\in\Gamma}X_{\gamma}$ 上以 $\mathscr{B}=\{\prod_{\gamma\in\Gamma}U_{\gamma}|U_{\gamma}\in\mathcal{I}_{\gamma},\gamma\in\Gamma\}$ 为基的拓扑,称为拓扑族 $\{\mathcal{I}_{\gamma}\}_{\gamma\in\Gamma}$ 的盒 拓扑,盒拓扑比积空间 \mathcal{I}_{γ} 细.

§ 3.3 商空间

定义 设 X 是拓扑空间, $f: X \mapsto Y$ 是满射, 称 $\mathcal{T}_f = \{U \mid f^{-1}(U) \in \mathcal{T}_X\}$ 为 Y 上关于 f 的商拓扑, 称 (Y, \mathcal{T}_f) 为关于 f 的商空间.

定理 设 X, Z 是拓扑空间, $f: X \mapsto Y$ 是满射, 则

- 1. $f \in X$ 到 (Y, \mathcal{D}_f) 的连续映射;
- 2. \mathcal{I}_f 是 Y 上使得 f 连续的最细拓扑;
- 3. 映射 $q: Y \mapsto Z$ 为连续 $\Leftrightarrow q \circ f: X \mapsto Z$ 是连续.

证 1. 显然. 2. 设 \mathcal{L} 是 Y 上使得 f 连续的拓扑, 则对 $U \in \mathcal{L}$,

有 $f^{-1}(U) \in \mathcal{T}_X$. 因此 $U \in \mathcal{T}_f$. 故 $\mathcal{T}_0 \subset \mathcal{T}_f$.

 $3. \Rightarrow$ 由 f 及 g 是连续, 得 $g \circ f$ 连续.

 \Leftarrow 由于 $g \circ f$ 连续, 故对任意 $W \in \mathcal{I}_Z$,

 $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W) \in \mathscr{T}_X$. 故 $g^{-1}(W) \in \mathscr{T}_f$. 故 g 连续.

定理 设 X,Y 是拓扑空间, $f:X\mapsto Y$ 是满射, 若 f 是连续的开映射, 则 $\mathscr{T}_Y=\mathscr{T}_f$.

证 由于 f 是 X 到 (Y, \mathcal{I}_Y) 的连续映射, 而 \mathcal{I}_f 是使得 f 连续的最细 拓扑, 故 $\mathcal{I}_Y \subset \mathcal{I}_f$.

反之, 对任意 $U \in \mathcal{T}_f$, 由于 f 是连续映射, 故 $f^{-1}(U) \in \mathcal{T}_X$.

由于 f 是满的开映射, 故 $f(f^{-1}(U)) = U \in \mathcal{T}_Y$, 故 $\mathcal{T}_Y \supset \mathcal{T}_f$.

因此 $\mathcal{I}_Y = \mathcal{I}_f$.

例 设 $X = \{1, 2, 3, 4, 5\}, \mathcal{T}_X = \{\emptyset, \{1, 4\}, X\}, Y = \{a, b, c\},$ 作

$$f(1) = f(2) = a, f(3) = b, f(4) = f(5) = c,$$

则 Y 上的关于 f 的商拓扑 $\mathcal{I}_f = \{\emptyset, Y\}$. f 不是开映射.

定义 设 (X, \mathcal{I}) 是拓扑空间, \sim 是 X 上的等价关系,

 $p: X \ni x \mapsto [x] \in X/\sim$ 是自然投射, 显然 p 是满射,

称关于自然投射 p 的商空间 $(X/\sim, \mathcal{I}_p)$ 为 X 上关于等价关系 \sim 的商拓 扑, 记 \mathcal{I}_p 为 $\mathcal{I}_\sim = \{U \mid p^{-1}(U) \in \mathcal{I}_X\}.$

设 $h: X \mapsto Z$ 是满射, 规定 X 上的等价关系 \sim_h :

 $x_1 \sim_h x_2 \Leftrightarrow h(x_1) = h(x_2)$. 则 $h^*: X/\sim_h \ni [x] \mapsto h(x) \in Z$ 是一一对应. 记 $p: X \ni x \mapsto [x] \in X/\sim_h$ 是自然投射.

当 X, Z 是拓扑空间时, 由定理得 h^* 连续 $\Leftrightarrow h^* \circ p = h$ 连续. 因此 定理 设 X, Z 是拓扑空间. $h: X \mapsto Z$ 是连续的满射.

且对 $U \in \mathcal{T}_{\sim_h}$, $h((p^{-1}(U))$ 是 Z 的开集 (特别当 h 是开或闭映射时), 则 $h^*: X/\sim_h \ni [x] \mapsto h(x) \in Z$ 是同胚映射.

证 只需证明 $(h^*)^{-1}$ 连续. 对 $U \in \mathscr{T}_{\sim_h}$, 有 $p^{-1}(U) \in \mathscr{T}_X$. 因此 $((h^*)^{-1})^{-1}(U) = h^*(U) = h^*(p(p^{-1}(U))) = h(p^{-1}(U)) \in \mathscr{T}_Z$. 故 h^* 是同胚.

例 设 A 是拓扑空间 (X, \mathcal{I}_X) 中的闭集,

规定 X 上的等价关系 $\sim: x \sim y \Leftrightarrow x = y$ 或 $x, y \in A$.

这样得到的商空间称为捏 A 成一点得到的商空间, 记作 X/A.

特别地, 将线段 I=[0,1] 的两个端点 $\partial I=\{0,1\}$ 捏成一点, 得商空间 $I/\partial I$. 设 $h:I\ni t\mapsto e^{2\pi it}\in S^1$, 则 h 是连续的满射, 且对 $U\in\mathscr{T}_{\sim_h}$, $h(p^{-1}(U))$ 是开集, 且 $I/\partial I=I/\sim_h$. 因此 $h^*:I/\partial I\mapsto S^1$ 是同胚. (注: h 不是开映射)

将正方形 $I^2 = [0,1] \times [0,1]$ 的边界 ∂I^2 捏成一点, 得到的商空间 $I^2/\partial I^2$ 与球面 $S^2 = \{x \in R^3 \mid ||x|| = 1\}$ 同胚.

例 在正方形 I^2 上规定等价关系 \sim : $(x_1,x_2) \sim (x_1,x_2)$ 或 $(0,x_2) \sim (1,x_2)$, 得到商空间 I^2/\sim 同胚于圆柱面 $S^1 \times I$:

设 $h:I^2\ni (x_1,x_2)\mapsto (e^{2\pi i x_1},x_2)\in S^1\times [0,1],$ 则 h 满足定理的条件. 显然 $\sim=\sim_h$, 故 $h^*:I^2/\sim\mapsto S^1\times [0,1]$ 是同胚.

例 将圆柱面 $S^1 \times I$ 的底圆上的点 (x,y,0) 与上圆上的对应点 (x,y,1) 粘贴起来 (等价关系 \sim 1),得到的商空间 I^2/\sim_1 与圆环面 S 同胚. 或者,在正方形 I^2 上规定等价关系 \sim : $(x_1,x_2) \sim (x_1,x_2)$ 或 $(0,x_2) \sim (1,x_2)$ 或 $(x_1,0) \sim (x_1,1)$,得到商空间 I^2/\sim 同胚于 $S^1 \times S^1$:

设 $h: I^2 \ni (x_1, x_2) \mapsto (e^{2\pi i x_1}, e^{2\pi i x_2}) \in S^1 \times S^1$, 则 h 满足定理的条件. 显然 $\sim = \sim_h$. 故 $h^*: I^2/\sim \mapsto S^1 \times S^1$ 是同胚.

由于 $S^1 \times S^1$ 同胚于圆环面 S, 故 I^2/\sim 同胚于圆环面 S.

在正方形 I^2 上规定等价关系 \sim : $(0,x_2) \sim (1,1-x_2)$ 或 $(x_1,x_2) \sim (x_1,x_2)$, 得到商空间 I^2/\sim 同胚于 Mobius 带.

将圆柱面 $S^1 \times I$ 底圆上的点 (x, y, 0) 与上圆上的点 (-x, -y, 1) 粘贴起来 (等价关系 \sim_2), 得到的商空间 I^2/\sim_2 称为 Klein 瓶.

第四章 连通性

§ 4.1 **连通空间**

在 R^1 上 $Y = (0,1) \cup [2,3]$ 不连通集, 而 $Z = (0,1) \cup [1,2) = (0,2)$ 是连通集. Y 是两个 Y 的非空不交的开集 (0,1),[2,3] 的并, 而 Z 不能写成两个非空的不交的 Z 的开集并.

定义 设 X 是拓扑空间,若存在非空的开集 $A,B\in\mathcal{I},~X=A\cup B,$ $A\cap B=\emptyset$,则称 X 是不连通空间.否则称 X 是连通空间.

设 $Y \subset X$, 若 $(Y, \mathcal{I}|_{Y})$ 是连通空间, 则称Y为X的连通子集.

 $\mathbf{M} Q \stackrel{\cdot}{=} R^1$ 的不连通的子空间: 因为

 $Q = ((-\infty, \pi) \cap Q) \cup ((\pi, \infty) \cap Q)$ 是非空不交的开集的并.

定理 设 X 是拓扑空间,则下列命题等价,

- 1. X 是不连通;
- 2. X 可以表示为非空的不交的两个闭集 C,D 的并:
- 3. 存在一个非空既开又闭的 X 的真子集 A:
- 4. 存在 $f: X \mapsto S^0 = \{-1, 1\}$ 是连续的满射.

证 $1. \Rightarrow 2.$ 由于 $X = A \bigcup B, A \cap B = \emptyset$, 故 $C = B^C, D = A^C$ 是非空的闭集, 且 $X = C \bigcup D, C \cap D = \emptyset$.

- 2. ⇒ 3. 记 $A = D^C = C$, 则 A 是既开又闭的非空的 X 真子集.
- $3. \Rightarrow 1.$ 记 $B = A^C$, 则 B 也是非空即开又闭的 X 的真子集, 且 $X = A \cup B$, $A \cap B = \emptyset$.
- 2. \Rightarrow 4. 作 $f(x) = \begin{cases} -1, & x \in A \\ 1, & x \in B \end{cases}$, 则 $f \neq X$ 到 S^0 的连续满射.

则 A, B 是非空的不交的闭集, 且 $X = A \cup B$.

定理 设 Y 是拓扑空间 X 的连通子集, $Y \subset Z \subset \overline{Y}$, 则 Z 是连通子集.

证 设 $Z = A \cup B$, 其中 $A, B \neq Z$ 中不交闭集. 因此存在 X 中闭集 F, H, 使得 $A = F \cap Z$. $B = H \cap Z$. 因此 $Y = (F \cap Y) \cup (H \cap Y)$.

由于 Y 是连通, 故不妨设 $H \cap Y = \emptyset$. 因此 $F \supset Y$.

由于 $F \supset \overline{Y}$, 故 $Z \subset F$. 因此 $Z \cap H = \emptyset$. 因此 Z 是连通.

定理 设 $\{A_{\alpha}\}_{\alpha\in\Lambda}$ 是拓扑空间 X 的连通子集族, $\bigcap_{\alpha\in\Lambda}A_{\alpha}\neq\emptyset$,

则 $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ 是连通子集.

证 设 $f: \bigcup_{\alpha \in \Lambda} A_{\alpha} \mapsto S^0$ 是连续映射, 取 $x \in \bigcap_{\alpha \in \Lambda} A_{\alpha}$, 不妨设 f(x) = 1. 由于 $f|_{A_{\alpha}}: A_{\alpha} \mapsto S^0$ 是连续映射, A_{α} 是连通, 故 $f|_{A_{\alpha}}$ 不是满射.

因此 $A_{\alpha} \subset f^{-1}(\{1\})$. 故 $\bigcup_{\alpha \in \Lambda} A_{\alpha} \subset f^{-1}(\{1\})$. 因此 f 不是满射.

因此 $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ 是连通子集.

定理 设 X,Y 是拓扑空间, $f: X \mapsto Y$ 连续映射, 若 X 是连通空间, 则 f(Y) 是 Y 的连通子集.

证 。设 $g:f(X)\mapsto S^0$ 是连续映射, 则 $g\circ f:X\mapsto S^0$ 是连续映射.

由于 X 是连通空间, 故 $g \circ f$ 不是满射.

由于 f 是 X 到 f(X) 的满射, 故 g 不是满射, 因此 f(X) 是连通集.

推论 连通性是拓扑性质.

定理 设 X,Y 是连通拓扑空间,则 $X \times Y$ 是连通拓扑空间.

证 反证法、假设 $f: X \times Y \mapsto S^0$ 是连续的满射、

取 $(x_1, y_1), (x_2, y_2) \in X \times Y$, 使得 $f(x_1, y_1) = -1, f(x_2, y_2) = 1$.

 $f \in g: X \ni x \mapsto f(x, y_1) \in S^0; \quad h: Y \ni y \mapsto f(x_2, y) \in S^0,$

则 g,h 都是连续映射, $g(x_1) = -1$, $h(y_2) = 1$, $g(x_2) = f(x_2, y_1) = h(y_1)$.

因此 g,h 中必有一个满射. 这与 X,Y 都是连通空间矛盾.

$\S 4.2$ R^n 上的连通集

 \mathbf{M} R^1 是连通空间.

证 假设存在 A 是非空既开又闭的 R^1 的真子集, 则存在 $a \in A$, $b \notin A$. 不妨设 a < b, 记 $c = \sup\{x \mid x \in A \cap [a,b]\}$.

由于 A 是闭集, 故 $c \in A \cap [a, b]$. 因此 $a \le c < b$.

由于 A 是开集, 故存在 $0 < \delta < b - c$, 使得 $(c - \delta, c + \delta) \subset A$.

故 $[c,c+\delta) \subset A \cap [a,b]$. 这与 c 的定义矛盾.

定理 R^1 子集 I 为连通集 $\Leftrightarrow I$ 是区间.

证 \Rightarrow 反证法, 假设 I 不是区间, 则存在 $a,b \in I$ 及 $c \notin I$, 使得 a < c < b. 故 $I = ((-\infty,c) \cap I) \cup ((c,\infty) \cap I)$, 故 I 不连通. 矛盾.

 \Leftarrow 设区间 I 的端点为 a < b. 由于 (a,b) 与 R^1 同胚, 故 (a,b) 是连通集. 由于 $(a,b) \subset I \subset [a,b] = \overline{(a,b)}$. 故 I 连通集.

定理 设 f 是区间 I 到 R^1 的连续函数,则对任意 $x_1, x_2 \in I$ 及 $f(x_1), f(x_2)$ 之间的任意数 c, 存在 $\xi \in I$, 使得 $f(\xi) = c$.

证 由于 f(I) 是 R^1 的连通子集, 故 f(I) 是区间. 因此结论成立.

定理 设 $f:[a,b]\mapsto [a,b]$ 是连续函数,则存在 $c\in [a,b]$,使得 f(c)=c.

证 作 g(x) = x - f(x) 是连续函数, 且 $g(a) \le 0$, $g(b) \ge 0$.

故存在 $c \in [a, b]$, 使得 q(c) = 0. 因此, f(c) = c.

定理 (Brouwer 不动点定理) 设 $f: D^n = \{x \in R^n \mid ||x|| \le 1\} \mapsto D^n$ 是连续映射,则存在 $c \in D^n$, 使得 f(c) = c. (证明见代数拓扑)

例 1. R^2 与 R^1 不同胚; 2. S^1 与 [0,1] 不同胚.

证 1. 反证法: 假设 $f: \mathbb{R}^2 \to \mathbb{R}^1$ 是连续的——对应, 则

 $f|_{R^2-\{O\}}: R^2-\{O\}\mapsto R^1-\{f(O)\}$ 是连续的——对应.

 $R \times (0, \infty) \subset R \times [0, \infty) - \{O\} \subset R \times [0, \infty) = \overline{R \times (0, \infty)},$

故 $R \times [0, \infty) - \{O\}$ 连通. 同理 $R \times (-\infty, 0] - \{O\}$ 连通. 因此

 $R^{2} - \{O\} = (R \times (-\infty, 0] - \{O\}) \bigcup (R \times [0, \infty) - \{O\})$

连通. 但 $f(R^2 - \{O\}) = R^1 - \{f(O)\}$ 不连通. 矛盾.

2. 假设 $f: S^1 \mapsto [0,1]$ 是连续的一一对应, 则

 $f|_{S^1-\{f^{-1}(0.5)\}}: S^1-\{f^{-1}(0.5)\}\mapsto [0,0.5)\bigcup(0.5,1]$ 是连续的一一对应,而 $S^1-\{f^{-1}(0.5)\}$ 连通,但 $[0,0.5)\bigcup(0.5,1]$ 不连通. 矛盾.

§ 4.3 连通分支

定义 设 X 是拓扑空间, 若 C 是连通子集, 且当连通子集 $D \supset C$ 时, 有 D = C, 则称 C 为 X 的一个连通分支. (C 是 X 的极大连通子集) 定理 设 C, C_1 , C_2 是拓扑空间 X 的连通分支, A 是非空的连通集合, 则

- 1. $C_1 \cap C_2 = \emptyset$ 或 $C_1 = C_2$;
- 2. C 是闭集;
- 3. 存在连通分支 C, 使得 $C \supset A$;
- 4. X 可以表示为互不相交的连通分支的并.

证 1. 若 $C_1 \cap C_2 \neq \emptyset$, 则 $C_1 \cup C_2$ 是连通集. 由于 C_i 是极大的连通集, 故 $C_1 = C_1 \cup C_2$. 同理 $C_1 \cup C_2 = C_2$. 因此 $C_1 = C_2$.

- 2. 由于 $C \subset \overline{C}$, \overline{C} 是连通, C 是极大的连通集, 故 $C = \overline{C}$. 故 C 是闭集.
- 3. 记 $\mathscr{A}=\{B\,|\,A\subset B$ 连通 $\},\,C=\bigcup_{B\in\mathscr{A}}B,\,$ 则 C 是极大连通集. 且 $A\subset C$.

例 Q (⊂ R^1) 的连通分支是单点集, 并不是开集.

定义 设 X 是拓扑空间, $A \subset X$, 称 $(A, \mathcal{I}|_A)$ 的连通分支为 A 的连通分支.

§ 4.4 局部连通

定义 设 X 是拓扑空间, $x \in X$, 若对每个 $U \in \mathcal{U}_x$, 存在连通的 $V \in \mathcal{U}_x$, 使得 $V \subset U$, 则称在 x 处局部连通.

若每个 $x \in X$ 处都是局部连通, 则称 X 为局部连通空间.

例 $Y = (0,1) \cup J(3,4)$ 是局部连通, 但不连通空间.

设 $S = \{(x,y) \mid 0 < x \le 1, y = \sin(1/x)\}, T = \{0\} \times [-1,1],$

则 $\overline{S} = S \cup T \triangleq S_1$ 是连通空间, 但 S_1 在 $(0,0) \in T$ 处不局部连通. 因此 S_1 不是局部连通空间.

定理 设 X 是拓扑空间,则下列命题等价

- X 是局部连通;
- 2. X 的每个开集的连通分支是开集;
- 3. 存在基 38, 38 中元素是连通的.

证 $1. \Rightarrow 2.$ 设 G 是开集, C 是 G 的连通分支, 则对任意 $x \in C \subset G$, 存在连通的 $V \in \mathcal{U}_x$, 使得 $V \subset G$.

由于 $V \cup C$ 是连通的 G 的子集, 而 C 是极大连通集, 故 $C = C \cup V$. 因此 $V \subset C$. 故 $C \in \mathcal{U}_x$. 因此 C 是开集.

 $2. \Rightarrow 3.$ 记 $\mathscr{B} = \{V \mid V$ 是连通开集 \}.

对任意开集 G,G 表示成 G 的连通分支 (连通开集) 的并, 因此 \mathscr{B} 是基. 3. \Rightarrow 1. 对每个 $x\in X$ 及任意 $U\in\mathscr{U}_x$, 存在 $V\in\mathscr{T}$, 使得 $x\in V\subset U$.

故存在 $\mathcal{B}_1 \subset \mathcal{B}$, 使得 $V = \bigcup_{B \in \mathcal{B}_1} B$.

因此存在 $B \in \mathcal{B}_1$, 使得 $x \in B \subset V \subset U$.

由于 $B \in \mathcal{U}_x$ 是连通的, 故 X 是局部连通空间.

定理 设 X,Y 是拓扑空间, $f: X \mapsto Y$ 是连续的开映射, 若 X 是局部连通空间, 则 f(X) 是局部连通. 因此局部连通性是拓扑性质.

证 设 \mathcal{B} 是 X 的连通的基, 记 $\mathcal{B}_Y = \{f(B) | B \in \mathcal{B}\}$. 下面证明 \mathcal{B}_Y 是 f(X) 的连通的基. 由于 f 是连续的开映射, 故 \mathcal{B}_Y 是连通的开集族. 对 f(X) 的任意开集 G, $f^{-1}(G)$ 是 X 中的开集.

因此存在 $\mathcal{B}_1 \subset \mathcal{B}$, 使得 $f^{-1}(G) = \bigcup_{B \in \mathcal{B}_1} B$. 因此 $G = \bigcup_{B \in \mathcal{B}_1} f(B)$. 故 \mathcal{B}_Y 是 f(X) 的基. 故 f(X) 是局部连通.

定理 设 X,Y 是局部连通空间, 则 $X \times Y$ 是局部连通空间.

证 设 \mathcal{B} , \mathcal{D} 分别是 X,Y 的连通的基, 则 $\{B \times D \mid B \in \mathcal{B}, D \in \mathcal{D}\}$ 是 $X \times Y$ 的连通的基, 因此 $X \times Y$ 是局部连通空间.

§ 4.5 道路连通

定义 设 X 是拓扑空间, $f:[0,1] \mapsto X$ 是连续映射, 称 f 为以 x=f(0) 为始点, 以 y=f(1) 为终点的道路. 又若 x=y, 则称 f 为闭路, 称 x 为闭路的基点.

若对任意的 $x,y \in X$, 存在道路 $f \cup x$ 为始点, $\cup y$ 为终点, $\cup x$ 为始点, $\cup y$ 为终点, $\cup x$ 为 道路连通空间, 称 f 为连接 $x \in y$ 的一个道路.

设 $Y \subset X$, 若 $(Y, \mathcal{P}|_Y)$ 是道路连通空间, 则称 Y 为 X 的道路连通子集. **定理** 设 X 是道路连通空间. 则 X 是连通空间.

证 设 $X = G_1 \cup G_2$, G_i 是非空开集, 取 $x \in G_1$, $y \in G_2$.

由于 X 是道路连通, 故存在连接 x 与 y 的道路 f.

由于 $f(I) = (G_1 \cap f(I)) \cup (G_2 \cap f(I))$ 连通,

而 $G_i \cap f(I)$ 是 f(I) 的非空开集, 故 $(G_1 \cap f(I)) \cap (G_2 \cap f(I)) \neq \emptyset$. 故 $G_1 \cap G_2 \neq \emptyset$. 因此 X 是连通空间.

定理 设 X 是道路连通空间, 若 $f: X \mapsto Y$ 是连续映射,

则 f(X) 是道路连通. 因此道路连通性是拓扑性质.

证 对任意 $y_1, y_2 \in f(X)$, 存在 $x_i \in X$, 使得 $y_i = f(x_i)$.

由于 X 是道路连通空间, 故存在连接 x_1, x_2 的道路 g.

因此 $f \circ g : [0,1] \mapsto f(X)$ 是连结 y_1, y_2 的道路. 故 f(X) 是道路连通.

定理 设 X,Y 是道路连通空间,则 $X \times Y$ 是道路连通空间.

证 对任意 $(x_1, y_1), (x_2, y_2) \in X \times Y$, 由于 X, Y 是道路连通,

故存在道路 f, q 分别连接 x_1 与 x_2 ; y_1 与 y_2 . 因此

 $h:[0,1]\ni t\mapsto (f(t),g(t))\in X\times Y$ 是连结 (x_1,y_1) 与 (x_2,y_2) 的道路. 故 $X\times Y$ 是道路连通空间.

定理 (拼接定理) 设 $\{X_{\alpha} | \alpha \in \Lambda\}$ 是拓扑空间 X 上的子集族,

 $Z = \bigcup_{\alpha \in \Lambda} X_{\alpha}, f_{\alpha} : X_{\alpha} \mapsto Y$ 是连续映射, 且当 $x \in X_{\alpha} \cap X_{\beta}$ 时,

 $f_{\alpha}(x) = f_{\beta}(x), \; \not \exists \; X : Z \mapsto Y : \; \stackrel{\ \, \sqcup}{=} \; x \in X_{\alpha} \; \forall f, \; f(x) \triangleq f_{\alpha}(x),$

则当下列条件之一满足时, f 是连续映射.

- 所有 X_α 是开集;
- 2. $\Lambda = \{1, 2, \dots, n\}$ 是有限集, 且所有 X_i 是闭集.

证 1. 对任意开集 $G \subset Y$, 由于 f_{α} 是连续映射, 故 $f_{\alpha}^{-1}(G)$ 是 X_{α} 的开集. 也是 X 的开集. 因此

$$\begin{split} Z\supset f^{-1}(G) &= f^{-1}(G) \bigcap (\bigcup_{\alpha\in\Lambda} X_\alpha) \\ &= \bigcup_{\alpha\in\Lambda} (f^{-1}(G) \bigcap X_\alpha) = \bigcup_{\alpha\in\Lambda} f_\alpha^{-1}(G) \end{split}$$

是 Z 的开集. 因此 f 连续.

2. 对任意闭集 $F \subset Y$, 由于 f_i 是连续映射, 故 $f_i^{-1}(F)$ 是 X_i 的闭集, 也是 X 的闭集. 因此

 $Z \supset f^{-1}(F) = f^{-1}(F) \cap (\bigcup_{i=1}^{n} X_i) = \bigcup_{i=1}^{n} (f^{-1}(F) \cap X_i) = \bigcup_{i=1}^{n} f_i^{-1}(F)$ 是 Z 的闭集. 因此 f 连续.

定义 设 X 是拓扑空间, C 是 X 的极大道路连通子集, 称 C 为 X 的道路连通分支.

定理 设 $\{A_{\alpha}\}_{\alpha\in\Lambda}$ 是拓扑空间 X 的道路连通子集族, $\bigcap_{\alpha\in\Lambda}A_{\alpha}\neq\emptyset$, 则 $\bigcup_{\alpha\in\Lambda}A_{\alpha}$ 是道路连通子集.

证 取 $x_0 \in \bigcap_{\alpha \in \Lambda} A_\alpha$, 对任意 $x, y \in \bigcup_{\alpha \in \Lambda} A_\alpha$, 存在 $\alpha_i \in \Lambda$, 使得 $x \in A_{\alpha_1}, y \in A_{\alpha_2}$. 由于 A_{α_i} 是道路连通集, 故存在

连接 x 与 x_0 的道路 g 在 A_{α_1} 中; 连接 x_0 与 y 的道路 h 在 A_{α_2} 中.

$$\text{FF } f(t) = \left\{ \begin{array}{ll} g(2t), & 0 \le t \le 1/2 \\ h(2t-1), & 1/2 \le t \le 1 \end{array} \right.,$$

则 f 是连结 x,y 的在 $\bigcup_{\alpha\in\Lambda}A_{\alpha}$ 中的道路. 故 $\bigcup_{\alpha\in\Lambda}A_{\alpha}$ 道路连通. **定理** 设 C_1,C_2 是拓扑空间 X 的两个道路连通分支, A 是非空的道路连通集合. 则

- 1. $C_1 \cap C_2 = \emptyset$ 或 $C_1 = C_2$;
- 2. 存在道路连通分支 C, 使得 $C \supset A$;
- 3. X 可以表示为互不相交的道路连通分支的并.

证 1. 若 $C_1 \cap C_2 \neq \emptyset$, 则 $C_1 \cup C_2$ 道路连通.

由于 C_i 是极大的道路连通集, 故 $C_1 = C_1 \cup C_2 = C_2$.

2. 记 $\mathscr{A} = \{B \mid A \subset B \text{ 道路连通 } \}; C = \bigcup_{B \in \mathscr{A}} B,$

则 C 是极大道路连通集. 且 $A \subset C$.

定理 R^n 中连通开集是道路连通.

证 设 G 是连通的开集, C 是 G 的道路连通分支. 对任意 $x \in C \subset G$, 由于 G 是开集, 故存在球 $B(x,\delta) \subset G$. 显然 $B(x,\delta)$ 是道路连通.

因此 $B(x,\delta) \cup C$ 是道路连通. 由于 C 是极大的道路连通集,

故 $C = B(x, \delta) \cup C$. 故 $B(x, \delta) \subset C$. 因此 C 是开集.

若 G 不是道路连通,则 G 表示成互不相交的两个以上非空道路连通分支 (开集) 的并. 这与 G 是连通矛盾.

§ 4.6 局部道路连通

定义 设 X 是拓扑空间, $x \in X$, 若对任意 $U \in \mathcal{U}_x$, 存在道路连通的 $V \in \mathcal{U}_x$, 使得 $V \subset U$, 则称在 x 处局部道路连通.

若每个 $x \in X$ 处都是局部道路连通, 则称 X 为局部道路连通空间. 设 $Y \subset X$, 若 $(Y, \mathcal{S}|_Y)$ 为局部道路连通空间, 则称 Y 为局部道路连通子集. **例** $Y = (0,1) \bigcup (3,4)$ 是局部道路连通, 但不是道路连通空间.

例 R^2 的子空间 $C = (\bigcup_{n=1}^{\infty} \{1/n\} \times [0,1]) \bigcup \{0\} \times [0,1] \bigcup [0,1] \times \{0\}$ 是连 通的道路连通空间,但不是局部道路连通空间,

设 $S = \{(x,y) \mid 0 < x \le 1, y = \sin(1/x)\}, T = \{0\} \times [-1,1],$

则 $\overline{S} = S \cup T = S_1$ 是连通空间, 但在 $(0, y) \in T$ 处不局部连通.

因此 S1 不是局部连通空间且也不是道路连通空间.

定理 设 X 是拓扑空间,则下列命题等价

- 1. X 是局部道路连通;
- 2. X 的每个开集的道路连通分支是开集;
- 3. 存在基 38, 38 中元素是道路连通的.

证 $1. \Rightarrow 2.$ 设 G 是开集, C 是 G 的道路连通分支,

则对任意 $x \in C \subset G$, 存在道路连通的 $V \in \mathcal{U}_{x}$, 使得 $V \subset G$.

由于 $V \cup C$ 是道路连通的 G 的子集, 而 C 是极大的道路连通集,

故 $C = C \bigcup V$. 因此 $V \subset C$. 故 $C \in \mathcal{U}_x$. 因此 C 是开集.

2. \Rightarrow 3. 记 $\mathscr{B} = \{V \mid V \text{ 是道路连通开集 }\}$. 对任意开集 G, G 表示成 G 的道路连通分支 (道路连通开集) 的并. 因此 \mathscr{B} 是基.

3. ⇒ 1. 对每个 $x \in X$ 及任意 $U \in \mathcal{U}_x$, 存在 $V \in \mathcal{T}$, 使得 $x \in V \subset U$.

故存在 $\mathscr{B}_1 \subset \mathscr{B}$, 使得 $V = \bigcup_{B \in \mathscr{B}_1} B$.

因此存在 $B \in \mathcal{B}_1$, 使得 $x \in B \subset V \subset U$.

由于 $B \in \mathcal{U}_x$ 是道路连通的, 故 X 是局部道路连通空间.

定理 设 X,Y 是拓扑空间, $f:X \mapsto Y$ 是连续的开映射, 若 X 是局部道路连通空间, 则 f(X) 是局部道路连通. 因此局部道路连通性是拓扑性质.

证 设 \mathcal{B} 是 X 的道路连通的基, 记 $\mathcal{B}_Y = \{f(B) | B \in \mathcal{B}\}.$

下面证明 \mathcal{B}_Y 是 f(X) 的道路连通的基.

由于 f 连续的开映射, 故 \mathcal{B}_V 是道路连通的开集族.

对 f(X) 的任意开集 $G, f^{-1}(G)$ 是 X 中的开集.

因此存在 $\mathcal{B}_1 \subset \mathcal{B}$, 使得 $f^{-1}(G) = \bigcup_{B \in \mathcal{B}_1} B$.

因此 $G = \bigcup_{B \in \mathcal{B}_1} f(B)$. 故 \mathcal{B}_Y 是 f(X) 基. 故 f(X) 是局部道路连通.

证 设 \mathcal{B} , \mathcal{D} 分别是 X,Y 的道路连通的基,

则 $\{B \times D \mid B \in \mathcal{B}, D \in \mathcal{D}\}$ 是 $X \times Y$ 的道路连通的基.

因此 $X \times Y$ 是局部道路连通空间.

定理 设 X 是连通且局部道路连通空间,则 X 是道路连通空间.

证 设 $C \in X$ 的道路连通分支,则 $C \in \mathbb{R}$ 是开集.

X-C 是其他道路连通分支的并, 也是开集.

由于 X 是连通空间, 故 X = C, 即 X 是道路连通空间.

第五章 可数性公理

§ 5.1 第一可数公理与第二可数公理

定义 设 X 是拓扑空间, 若

- 1. 对每个 $x \in X$, 存在可数的邻域基, 则称 X 满足第一可数公理, 简称 X 为第一可数空间:
- 2. 存在可数的基,则称 X 满足第二可数公理, 简称 X 为第二可数空间.

定理 设拓扑空间 X 满足第二可数公理, 则 X 满足第一可数公理,

 \mathbf{M} R^1 , R^n 都是第二可数空间; 度量空间 (X,d) 是第一可数空间.

例 设 X 是不可数集, \mathcal{S}_{Mix} 是离散拓扑, 则 X 是第一可数空间, 但不是第二可数空间.

例 设 X 是不可数集, $\mathcal{S}_{\text{可数}}$ 是可数补拓扑,则 X 不是第一可数空间. 证 首先,对每个 $x \in X$ 及任意 $U \in \mathcal{U}_x$,存在 $V \in \mathcal{F}$,使得 $x \in V \subset U$,故 $U^C \subset V^C$ 是可数集.

反证法: 假设在 $x \in X$ 处有可数的邻域基 \mathscr{Y}_x . 对任意 $y \in X$, $y \neq x$, $\{y\}^C$ 是包含 x 的开集. 故存在 $V_y \in \mathscr{V}_x$, 使得 $\{y\}^C \supset V_y$. 即 $\{y\} \subset V_y^C$, 两边对 y 作并, 则 $X - \{x\} = \bigcup_{y \neq x} \{y\} \subset \bigcup_{y \neq x} V_y^C = \bigcup_{V_y \in \mathscr{V}_x, y \neq x} V_y^C$. 由于 \mathscr{V}_x 是可数集,故 $\bigcup_{y \neq x} V_y^C$ 是可数集. 这与 $X - \{x\}$ 是不可数矛盾.

定理 设 X 是满足第一(第二)可数公理,

- 1. 则 X 的子空间是满足第一 (第二) 可数公理;
- 2. 若 $f: X \mapsto Y$ 是连续开的满射, 则 Y 满足第一 (第二) 可数公理. 因此第一 (第二) 可数性是拓扑性质;

- 3. Y 是满足第一 (第二) 可数公理, 则 X×Y 是第一 (第二) 可数空间.
- 证 只证第二可数. 1. 设 \mathcal{B} 是 X 的可数的基. $A \subset X$. 则

2. 由于 f 是开映射, 故 $\mathcal{B}_f \triangleq \{f(B) \, | \, B \in \mathcal{B}\}$ 是 Y 中的可数的开集族.

对任意的开集 $G \subset Y$, 由于 f 是连续映射, 故 $f^{-1}(G)$ 是 X 的开集.

故存在 $\mathcal{B}_1 \subset B$, 使得 $f^{-1}(G) = \bigcup_{B \in \mathcal{B}_1} B$.

由于 f 是满射, 故 $G = f(f^{-1}(G)) = \bigcup_{B \in \mathcal{B}_1} f(B)$.

因此 \mathcal{B}_f 是 Y 的基. 因此 Y 是第二可数空间.

3. 记 \mathcal{D} 为 Y 的可数的基, 则 $\{B \times D \mid B \in \mathcal{B}, D \in \mathcal{D}\}$ 是 $X \times Y$ 的可数基, 因此 $X \times Y$ 是第二可数空间.

定理 设 X 满足第一可数公理, $A \subset X$, 则

- 1. 对每个 $x \in X$, 存在邻域基 $\mathscr{B}_x = \{U_n \mid n \in N\}$, 使得 $U_n \supset U_{n+1}$;
- 2. $x \in A' \Leftrightarrow$ 存在 $x_n \in (A \{x\})$, 使得 $x_n \to x$;
- 3. $f: X \mapsto Y$ 在 $x \in X$ 处连续 \Leftrightarrow 对任意 $x_n \to x$, 有 $f(x_n) \to f(x)$.

证 1. 设 $\{V_n | n \in N\}$ 是 x 处邻域基. 取 $U_n = V_1 \cap \cdots \cap V_n$ 就可以.

 $2. \Rightarrow \mathcal{U}_n \cap (A - \{x\}) \neq \emptyset. \ \mathbb{R} \ x_n \in U_n \cap (A - \{x\}).$

对任意 $W \in \mathcal{U}_x$, 存在 U_N 使得 $U_N \subset W$, 因此当 n > N 时, 有

 $x_n \in U_n \subset U_N \subset W$, 因此 $x_n \to x$. 充分性显然.

3. \Leftarrow 反证法, 假设 f 在 x 处不连续, 则存在 $V \in \mathscr{U}_{f(x)}$, 使得 $f^{-1}(V) \notin \mathscr{U}_x$. 故 $(f^{-1}(V))^C \cap U_n \neq \emptyset$. 取 $x_n \in U_n \cap (f^{-1}(V))^C$,

则 $x_n \to x$, 但 $f(x_n) \notin V$. 这与 $f(x_n) \to f(x)$ 矛盾. 必要性显然.

§ 5.2 可分空间

定义 设 X 是拓扑空间, $D \subset X$, 若 $\overline{D} = X$, 则称 D 在 X 中稠密.

若存在可数集 D 在 X 中稠密, 则称 X 为可分空间.

例 l^{∞} 是第一可数空间, 但不是可分空间.

定理 设 X 是拓扑空间, 若 X 是第二可数空间, 则 X 是可分空间.

证 设 $\mathcal{B} = \{B_n \mid n \in N\}$ 是可数基, 记 $D = \{x_n \mid \mathbb{R} \mid x_n \in B_n\}$ 是可数集. 对任意 $x \in X$ 及任意 $U \in \mathcal{U}_x$, 存在 $B_{n_0} \in \mathcal{B}$, 使得 $x \in B_{n_0} \subset U$.

故 $U \cap D \supset \{x_{n_0}\} \neq \varnothing$. 因此 D 在 X 中稠密. 即 X 是可分空间.

例 第二可数空间的子空间是可分空间.

例 设 (X, \mathcal{T}) 是拓扑空间, 取 $\infty \notin X$, 令 $X^* = X \cup \{\infty\}$, $\mathcal{T}^* = \{U \mid \{\infty\} \mid U \in \mathcal{T}\} \mid \{\emptyset\} \in X^* \perp$ 的拓扑. 则

- 1. $\overline{\{\infty\}} = X^*$, 因此 (X^*, \mathcal{I}^*) 是可分空间;
- 2. (X, \mathcal{I}) 是 (X^*, \mathcal{I}^*) 的子空间;
- 3. (X^*, \mathscr{T}^*) 是第二可数空间 \Leftrightarrow (X, \mathscr{T}) 是第二可数空间. 因为 \mathscr{B} 为 X 的基的 \Leftrightarrow $\mathscr{B}^* = \{B \bigcup \{\infty\} \mid B \in \mathscr{B}\}$ 是 X^* 的基. 因此:
- 1. 可分空间的子空间不一定可分空间:
- 2. 可分空间不一定第二可数.

定理 可分的度量空间是第二可数空间.

证 设 $D = \{x_1, \dots, x_n, \dots\}$ 在 X 上稠密,

则 $\mathcal{B} = \{B(x_n, 1/m) \mid n, m \in N\}$ 可数的开集族.

对任意开集 U 及 $y\in U,$ 存在 $B(y,2/k)\subset U.$ 取 $x_n\in B(y,1/k),$

则 $y \in B(x_n, 1/k) \subset B(y, 2/k) \subset U$.

因此 8 是基. 故 X 是第二可数空间.

§ 5.3 Lindeloff 空间

定义 设 $\mathscr{A} \subset 2^X$, $B \subset X$, 若 $\bigcup_{A \in \mathscr{A}} A \supset B$, 则称 \mathscr{A} 为 B 的覆盖,

- 1. 当 《 是可数集族时, 称 《 为 B 的可数覆盖;
- 2. 当 △ 是有限集族时, 称 △ 为 B 的有限覆盖;
- 3. 当 △ 是开集族时, 称 △ 为 B 的开覆盖;
- 4. 当 $\mathscr{A}_1 \subset \mathscr{A}$ 也是 B 的覆盖时, 称 \mathscr{A}_1 为 \mathscr{A} 的关于 B 子覆盖.

定义 设 X 是拓扑空间, 若 X 的每个开覆盖,

- 1. 有有限子覆盖, 则称 X 为紧空间;
- 2. 有可数子覆盖,则称 X 为 Lindeloff 空间.

例 设 X 是不可数集合, $\mathcal{I}_{\text{Right}}$ 是离散拓扑空间,则 X 不是 Lindeloff 空间. 但 X 是第一可数空间.

定理 满足第二可数公理的空间是 Lindeloff 空间.

证 设 \mathcal{B} 是 X 的可数的基. $\mathcal{A} = \{A_{\alpha} \mid \alpha \in \Lambda\}$ 是 X 的开覆盖.

对 A_{α} , 存在 $\mathscr{B}_{\alpha} \subset \mathscr{B}$, 使得 $A_{\alpha} = \bigcup_{B \in \mathscr{B}_{\alpha}} B$.

 $\bigcup_{\alpha \in \Lambda} \mathscr{B}_{\alpha} \subset \mathscr{B}$ 是可数集; $\bigcup_{\alpha \in \Lambda} \mathscr{B}_{\alpha} \triangleq \{B_1, B_2, \cdots\}$ 是 X 的开覆盖.

对 B_n , 取 $A_{\alpha_n} \in \mathcal{A}$, 使得 $B_n \subset A_{\alpha_n}$, 则 $X = \bigcup_{n=1}^{\infty} B_n \subset \bigcup_{n=1}^{\infty} A_{\alpha_n}$. 因此 X 是 Lindeloff 空间.

例 设 X 是不可数集, $\mathcal{T}_{\text{可数}}$ 是可数补空间. 则 X 是 Lindeloff 空间,

但 X 不是第一可数空间. 因此 X 不是第二可数空间.

证 设 \mathscr{A} 是 X 的开覆盖, 取定 $A_1 \in \mathscr{A}$. 则存在 $\{e_2, \dots, e_n, \dots\}$ 是可数集, 使得 $A_1 = X - \{e_2, \dots, e_n, \dots\}$. 取 $A_i \in \mathscr{A}$, 使得 $e_i \in A_i$.

则 $\{A_1, \cdots, A_n, \cdots\} \subset \mathscr{A}$ 是 X 的可数子覆盖. 故 X 是 Lindeloff 空间.

定理 Lindeloff 度量空间是第二可数空间.

证 对每个 $k \in N^+$, $\mathcal{A}_k = \{B(x, 1/k) | x \in X\}$ 是 X 的开覆盖.

由于 X 是 Lindeloff 空间,故存在可数个 $\{B(x_{k,j}, 1/k) | j \in N\}$ 是 X 的 开覆盖. 记 $\mathcal{B} = \{B(x_{k,j}, 1/k) | j = 1, \dots, n, \dots; k = 1, \dots\}$ 是可数集.

对任意 $G \in \mathcal{T}$ 及 $x \in G$, 存在 $B(x,\delta) \subset G$. 取 $k \in N$, 使得 $1/k < \delta/2$.

存在 $B(x_{k,i},1/k) \ni x$. 故 $B(x_{k,i},1/k) \subset B(x,\delta) \subset G$.

因此 \mathcal{B} 是 X 的可数基. 故 X 是第二可数空间.

定理 Lindeloff 空间 X 的闭子空间 Y 是 Lindeloff 空间.

证 设 \mathscr{A} 是子空间 Y 的开覆盖, 对每个 $A \in \mathscr{A}$, 存在 $U_A \in \mathscr{T}$,

使得 $A = U_A \cap Y$. 由于 $\{U_A \mid A \in \mathcal{A}\} \cup \{Y^C\}$ 是 X 的开覆盖,

故存在可数个 $A_i \in \mathcal{A}$, 使得 $X = \bigcup_{i=1}^{\infty} U_{A_i} \bigcup Y^C$.

故 $Y = \bigcup_{i=1}^{\infty} A_i$. 因此 Y 是 Lindeloff 空间.

第六章 分离性

§ 6.1 T₀, T₁, T₂ 空间

定义 设 (X, \mathcal{T}) 是拓扑空间, 对任意 $x, y \in X, x \neq y$, 若

- 1. 存在 $U \in \mathcal{I}$. 使得 $U \cap \{x, y\}$ 是单点集. 则称 X 为 T_0 空间:
- 2. 存在 $U, V \in \mathcal{I}$, 使得 $x \in U, y \in V, x \notin V, y \notin U$, 则称 X 为 T_1 空间:
- 3. 存在 $U, V \in \mathcal{I}$, 使得 $x \in U, y \in V, U \cap V = \emptyset$, 则称 $X 为 T_2$ 空间或 Hausdorff 空间.

显然 T_2 空间是 T_1 空间; T_1 空间是 T_0 空间.

 \mathbf{M} $X = \{a,b\}$, 则 $\mathcal{T} = \{\emptyset,X\}$ 不是 T_0 空间; $\mathcal{T} = \{\emptyset,\{a\},X\}$ 是 T_0 空间. 但不是 T_1 空间.

例 设 X 是无限集, \mathcal{T}_{ABLA} 是有限补空间. 对任意 $x, y \in X, x \neq y$.

存在 $U = \{y\}^C, V = \{x\}^C \in \mathcal{T}$, 使得 $x \in U, y \in V$,

且 $x \notin V, y \notin U$, 故 X 是 T_1 空间.

但 X 不是 T_2 空间: 假设存在 $U, V \in \mathcal{I}$, 使得 $U \ni x, V \ni y, U \cap V = \emptyset$, 则 $V \subset U^C$ 是有限集. 故 $X = V \cap V^C$ 是有限集. 矛盾.

定理 拓扑空间 X 是 T₁ 空间 ⇔ 每个单点集是闭集.

证 \Rightarrow 设 $x \in X$. 对任意 $y \in \{x\}^C$, 有 $x \neq y$, 故存在 $V_y \in \mathcal{I}_y$,

使得 $x \notin V_y$. 因此 $V_y \cap \{x\} = \emptyset$. 故 $\overline{\{x\}} = \{x\}$. 故 $\{x\}$ 是闭集.

 \Leftarrow 对任意 $x,y\in X, x\neq y$, 由于 $\{x\},\{y\}$ 是闭集, 故 $x\in\{y\}^C,y\in\{x\}^C$ 开集. 故 X 是 T_1 空间.

定理 设 X 是 T_1 空间, $A \subset X$, 则

 $x \in A' \Leftrightarrow 对每个 U \in \mathcal{U}_{\tau}, U \cap A$ 是无限集.

证 \Leftarrow 显然. \Rightarrow 设 $x \in A'$, 假设存在 $U \in \mathcal{I}_x$, 使得 $U \cap (A - \{x\})$ 是有限集. 不妨设 $U \cap (A - \{x\}) = \{x_1, x_2, \dots, x_n\}$ 是闭集.

定理 设 X 是 T_2 空间,则对任意收敛点列 $\{x_n\}$,它的极限是唯一的.

证 假设存在点列 $x_n \to x$, $x_n \to y$, $x \neq y$.

由于 X 是 T_2 空间, 故存在 $U,V\in \mathcal{T}$, 使得 $x\in U,y\in V,U\cap V=\varnothing$.

存在 N_i , 当 $n > N_1$ 时, 有 $x_n \in U$; 当 $n > N_2$ 时, 有 $x_n \in V$.

取 $N = \max\{N_1, N_2\}$, 当 n > N 时, $x_n \in U \cap V$. 这与 $U \cap V = \emptyset$ 矛盾.

定理 设 $f,g:X\mapsto Y$ 是连续映射, Y 是 T_2 空间, $A\subset X$, $\overline{A}=X$,

对 $x \in A$, 有 f(x) = g(x), 则 f = g. 证 记 $B = \{x \mid f(x) = g(x)\}$, 对任意 $x \in B^C$, 有 $f(x) \neq g(x)$. 由于 $Y \in T_2$ 空间,故存在不交的 $U, V \in \mathcal{F}$,使得 $f(x) \in U, g(x) \in V$. 故 $x \in f^{-1}(U) \cap g^{-1}(V) \in \mathcal{F}$. 对 $y \in f^{-1}(U) \cap g^{-1}(V)$ 有 $f(y) \neq g(y)$. 故 $f^{-1}(U) \cap g^{-1}(V) \subset B^C$. 故 B^C 是开集, B 是闭集. 故 $X = \overline{A} \subset B$, 因此 f(x) = g(x).

§ 6.2 正则, 正规空间

定义 设 (X, \mathcal{I}) 是拓扑空间, 对任意 $x \in X$ 及任意闭集 $A, B \subset X$, 若

- 1. 当 $x \notin A$ 时, 存在 $U, V \in \mathcal{D}$, 使得 $x \in U, A \subset V, U \cap V = \emptyset$, 则称 X 为正则空间:
- 2. 当 $A \cap B = \emptyset$ 时, 存在 $U, V \in \mathcal{T}$, 使得 $A \subset U, B \subset V, U \cap V = \emptyset$, 则称 X 为正规空间:
- 3. X 是正则的 T_1 空间, 则称 X 为 T_3 空间;
- 4. X 是正规的 T₁ 空间, 则称 X 为 T₄ 空间.

由 T_1 空间中单点集是闭集, 故 T_4 空间是 T_3 空间; T_3 空间是 T_2 空间. **例** 设 $X = \{1,2,3\}$, $\mathcal{T} = \{\emptyset,\{1\},\{2,3\},X\}$, 则 X 是正则空间; 也是正规空间. 但 X 不是 T_0 空间.

例 设 $X = \{1, 2, 3\}$, $\mathscr{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}$, 则 X 是正规空间, 但不是正则空间.

定理 设 (X, \mathcal{T}) 是拓扑空间, X 为正则空间 \Leftrightarrow 对任意 $x \in X$ 及 $U \in \mathcal{T}_x$, 存在 $V \in \mathcal{T}_x$. 使得 $x \in V \subset \overline{V} \subset U$.

证 ⇒ 由于 $x \notin U^C$, U^C 是闭集, 故存在 $V \in \mathcal{T}_x$, $G \in \mathcal{T}$, 使得 $x \in V$, $U^C \subset G$, $V \cap G = \emptyset$. 因此 $x \in V \subset \overline{V} \subset G^C \subset U$.

定理 设 (X, \mathcal{I}) 是拓扑空间,则 X 为正规空间 \Leftrightarrow 对任意闭集 $A \subset X$ 及 $U \in \mathcal{I}$ 、当 $A \subset U$ 时,存在 $V \in \mathcal{I}$ 、使得 $A \subset V \subset \overline{V} \subset U$.

证 ⇒ 由于 $A \subset U$, 故 $A \cap U^C = \varnothing$, U^C 是闭集. 故存在 $V \in \mathscr{T}$, $G \in \mathscr{T}$, 使得 $A \subset V$, $U^C \subset G$, $V \cap G = \varnothing$. 因此 $A \subset V \subset \overline{V} \subset G^C \subset U$. \Leftarrow 对任意闭集 $A, B \subset X$, $A \cap B = \varnothing$, 有 $A \subset B^C$, B^C 是开集. 故存在 $V \in \mathscr{T}$, 使得 $A \subset V \subset \overline{V} \subset B^C$. 因此 $B \subset (\overline{V})^C$, $(\overline{V})^C$ 是开集. 且 $V \cap (\overline{V})^C = \varnothing$. 故 X 是正规空间.

定理 度量空间 X 是 T_4 空间.

证 显然 X 是 Hausdorff 空间,故 X 是 T_1 空间.设闭集 $A \cap B = \varnothing$,对任意 $x \in A$,有 $x \notin B = \overline{B}$,故 d(x,B) > 0. 作 $U = \bigcup_{x \in A} B(x,d(x,B)/3) \supset A; \quad V = \bigcup_{y \in B} B(y,d(y,A)/3) \supset B.$ 下证明 $U \cap V = \varnothing$. 假设 $z \in U \cap V$,则存在 $x \in A$, $y \in B$,使得 $z \in B(x,d(x,B)/3); \quad z \in B(y,d(y,A)/3)$. 因此 $\max\{d(x,B),d(y,A)\} \leq d(x,y) \leq d(x,z) + d(z,y)$ $\leq d(x,B)/3 + d(y,A)/3 < \frac{2}{3} \max\{d(x,B),d(y,A)\}$. 矛盾.

§ 6.3 Urysohn 引理和 Tietze 扩张定理

⇒ 记 $P = \{j/2^n \mid n \in N^+, j = 0, 1, \cdots, 2^n\}$. 将 P 中数' 按大小排列': $0, \cdots, \frac{1}{5}, \cdots, \frac{1}{2}, \cdots, \frac{3}{5}, \cdots, \frac{5}{5}, \cdots, \frac{3}{5}, \cdots, \frac{7}{5}, \cdots, 1$.

由于 X 是正规空间, 取一列开集 $\{U_r | r \in P\}$ 如下:

 $A \subset U_0 \subset \overline{U}_0 \cdots \subset U_{\frac{1}{4}} \subset \overline{U}_{\frac{1}{4}} \cdots \subset U_{\frac{1}{2}} \subset \overline{U}_{\frac{1}{2}} \subset \cdots \subset U_{\frac{3}{4}} \subset \cdots \subset U_1 = B^C,$ 则对 $r, s \in P$, $\stackrel{.}{\to} r < s$ 时, $\stackrel{.}{\to} \overline{U}_r \subset U_s$.

$$\mbox{\em f}(x) = \left\{ \begin{array}{cc} \inf\{r \in P \,|\, x \in U_r\}, & x \notin B \\ 1, & x \in B \end{array} \right.,$$

则 $0 \le f \le 1$, 且当 $x \in A \subset U_0$ 时, f(x) = 0; 当 $x \in B$ 时, f(x) = 1. 下证明 f 是 X 到 R^1 的连续映射.

对任意实数 $b \in R$,

$$f^{-1}((-\infty,b)) = X(f < b) = \begin{cases} X, & b > 1 \\ \emptyset, & b < 0 \end{cases}$$
 是开集.

当 $0 < b \le 1$ 时, 对任意 $x \in X(f < b)$, 有 f(x) < b, 故存在 $r \in P$,

使得 r < b 且 $x \in U_r$. 因此 $x \in \bigcup_{r < b} U_r$. 因此 $X(f < b) \subset \bigcup_{r < b} U_r$.

显然, 当 r < b 时, $X(f < b) \supset U_r$. 因此 $X(f < b) = \bigcup_{r < b} U_r$ 是开集. 对任意实数 $a \in R$.

$$f^{-1}((a,+\infty)) = X(f > a) = \left\{ \begin{array}{ll} \varnothing, & a \ge 1 \\ X, & a < 0 \end{array} \right.$$
 是开集.

当 $0 \le a < 1$ 时, 对任意 $x \in X(f > a)$, 有 f(x) > a.

故存在 $r \in P$, 使得 a < r < f(x). 取 $s \in P$, 使得 r < s < f(x).

则 $x \notin U_s \supset \overline{U}_r$. 因此 $x \in (\overline{U}_r)^C$, 故 $x \in \bigcup_{r > q} (\overline{U}_r)^C$.

因此 $X(f > a) \subset \bigcup_{r>a} (\overline{U}_r)^C$.

设 r > a, 对任意 $x \in (\overline{U}_r)^C$, 则 $x \notin (\overline{U}_r) \supset U_r$.

因此对 $s \in P$, 当 s < r 时, 有 $x \notin U_s \subset U_r$. 故 $f(x) \ge r > a$.

因此 $X(f > a) \supset (\overline{U}_r)^C$. 因此 $X(f > a) = \bigcup_{r>a} (\overline{U}_r)^C$ 是开集.

因此 f 是 X 到 R 的连续函数.

定理 T_4 空间中, 非单点集的连通子集的势大于等于 \aleph_1 .

证 设 C 是 X 的连通子集, 取 $x,y \in C, x \neq y$, 则 $\{x\},\{y\}$ 是不交闭集.

故存在连续映射 $f:X\mapsto [0,1],$ 使得 f(x)=0, f(y)=1.由于 C 是连通

集, 故 f(C) 也是 R 的连通集. 故 f(C) = [0,1]. 因此 C 是不可数集.

引理 设 X 是正规空间, $A \subset X$ 是闭集, $g: A \mapsto [-\lambda, \lambda]$ 是连续映射, 则存

在连续映射 $g^*: X \mapsto [-\frac{\lambda}{3}, \frac{\lambda}{3}]$, 使得对任意 $a \in A$, 有 $|g(a) - g^*(a)| \leq \frac{2}{3}\lambda$.

证 令 $P = [-\lambda, -\frac{\lambda}{2}], Q = [\frac{\lambda}{2}, \lambda], 则 \tilde{P} = g^{-1}(P), \tilde{Q} = g^{-1}(Q)$ 是 X 的

不交的闭集. 故存在连续映射 $g^*: X \mapsto [-\frac{\lambda}{3}, \frac{\lambda}{3}]$, 使得

当 $x \in \widetilde{P}$ 时,有 $g^*(x) = -\frac{\lambda}{2}$; 当 $x \in \widetilde{Q}$ 时,有 $g^*(x) = \frac{\lambda}{2}$.

若 $a \in \widetilde{P}$, 则有 $g(a) \in P = [-\lambda, -\frac{\lambda}{3}]$, $g^*(a) = -\frac{\lambda}{3}$, 故 $|g(a) - g^*(a)| \le \frac{2}{3}\lambda$.

若 $a \in \widetilde{Q}$, 则有 $g(a) \in Q = [\frac{\lambda}{3}, \lambda]$, $g^*(a) = \frac{\lambda}{3}$, 故 $|g(a) - g^*(a)| \le \frac{2}{3}\lambda$.

若 $a \notin \widetilde{P} \bigcup \widetilde{Q}$, 则有 $g(a) \in [-\frac{\lambda}{3}, \frac{\lambda}{3}], g^*(a) \in [-\frac{\lambda}{3}, \frac{\lambda}{3}],$ 故 $|g(a) - g^*(a)| \leq \frac{2}{3}\lambda$.

定理 设 X 是拓扑空间, X 上连续的函数项级数 $\sum_{n=1}^{\infty} g_n(x)$ 一致收敛

于 q(x), 则 q(x) 是连续函数.

证 对任意 $\varepsilon > 0$, 存在 N > 0, 对任意的 $x \in X$,

有 $|g(x) - \sum_{n=1}^{N} g_n(x)| < \varepsilon/3$.

对每个 $x \in X$, 由于 g_n 是连续. 故存在 $U_n \in \mathcal{I}_x$, 当 $y \in U_n$ 时,

有 $|g_n(y) - g_n(x)| < \frac{\varepsilon}{3N}$.

因此当 $y \in \bigcap_{n=1}^{N} U_n \in \mathcal{T}_x$ 时,有

$$|g(y) - g(x)| \le |g(y) - \sum_{n=1}^{N} g_n(y)| + \sum_{n=1}^{N} |g_n(y) - g_n(x)|$$
$$+ |\sum_{n=1}^{N} g_n(x) - g(x)| \le \varepsilon/3 + N \frac{\varepsilon}{2N} + \varepsilon/3 = \varepsilon.$$

故 q 在 x 处连续. 故 q 在 X 上连续.

定理 (Tietze 扩张定理) 设 X 是拓扑空间,则 X 是正规空间

 \Leftrightarrow 对 X 的任意闭集 A, 和任意连续映射 $f: A \mapsto [a,b]$,

有连续映射 $g: X \mapsto [a,b]$ 是 f 的扩张.

证 不妨设 [a,b] = [-1,1]. \Leftarrow 设 A 和 B 是 X 的两个不交闭集,

作 $f(x) = \begin{cases} -1, & x \in A \\ 1, & x \in B \end{cases}$, 由拼接定理 $f \notin A \cup B$ 上的连续映射.

因此存在 f 的连续扩张 $q: X \mapsto [-1,1]$.

 $\label{eq:substitute} \mbox{$\stackrel{\Delta}{=}$} x \in A \ \mbox{\forall} \ \ \mbox{\forall} \ \ \mbox{$(x) = f(x) = 1$}.$

因此 X 是正规空间.

⇒ 对 $f_0 = f$, 作 $g_1 : X \mapsto [-1/3, 1/3]$, 使得 $|f_0(a) - g_1(a)| \leq \frac{2}{3}$.

记 $f_1 = f_0 - g_1$. 假设对 $n \in N^+$ 已定义

 $f_n:A\mapsto [-(\tfrac{2}{3})^n,(\tfrac{2}{3})^n];\quad g_n:X\mapsto [-\tfrac{1}{3}(\tfrac{2}{3})^{n-1},\tfrac{1}{3}(\tfrac{2}{3})^{n-1}].$

使得对任意 $a \in A$, 有 $|f_{n-1}(a) - g_n(a)| \le (\frac{2}{3})^n$.

对于 f_n , 存在 $g_{n+1}: X \mapsto [-\frac{1}{2}(\frac{2}{2})^n, \frac{1}{2}(\frac{2}{2})^n]$, 使得对任意 $a \in A$, 有

$$|f_n(a) - g_{n+1}(a)| \le (\frac{2}{2})^{n+1}$$
. $i \not \sqsubseteq f_{n+1}(a) = f_n(a) - g_{n+1}(a)$.

定义 $g(x) = \sum_{n=1}^{\infty} g_n(x)$. 由于 $|g_n(x)| \leq \frac{1}{3} (\frac{2}{3})^{n-1}$,

因此 $\sum_{n=1}^{\infty} g_n(x)$ 一致收敛于 [-1,1] 中的点 g(x). 故 g 是连续映射.

由于对每个 $a \in A$, 有 $\sum_{i=1}^{n} f_i(a) = \sum_{i=1}^{n} (f_{i-1}(a) - g_i(a))$,

故 $f_n(a) = f_0(a) - \sum_{i=1}^n g_i(a)$. 故 $|f_0(a) - \sum_{i=1}^n g_i(a)| = |f_n(a)| \le (\frac{2}{3})^n$.

因此 $f(a) = f_0(a) = g(a) = \sum_{i=1}^{\infty} g_i(a)$. 故 $g \neq f$ 的扩张.

§ 6.4 子空间, 积空间的分离性

定理 设 $f: X \mapsto Y$ 是同胚映射, X 是 T_i — 空间, 则 Y 也是 T_i — 空间.

定理 设 $0 \le i \le 2$, X 是 T_{i-} 空间, $Y \subset X$ 是子空间, 则 Y 是 T_{i-} 空间.

定理 设 X 是正则空间, $Y \subset X$ 是子空间, 则 Y 也是正则空间.

定理 设 X 是正规空间, $Y \subset X$ 是闭子空间, 则 Y 也是正规空间.

定理 设 X_{α} 是一族 T_{2} — 空间, 则 $\prod_{\alpha} X_{\alpha}$ 也是 T_{2} — 空间.

第七章 紧性

§ 7.1 紧空间

 R^1 的子集 A 是紧集 \Leftrightarrow A 是有界闭集; R^1 是 Lindeloff 空间. 定义 设 X 是拓扑空间. 若 X 的每个开覆盖

- 1. 有有限子覆盖, 则称 X 为紧空间, 简称为紧空间:
- 2. 有可数子覆盖, 则称 *X* 为 Lindeloff 空间.

紧空间是 Lindeloff 空间. 但 Lindeloff 空间不一定是紧空间.

定义 设 (X, \mathcal{I}) 是拓扑空间, $Y \subset X$, 若 $(Y, \mathcal{I}|_Y)$ 是紧空间, 则称 Y 为 X 的紧子集.

例 拓扑空间中的有限子集是紧子集; R^1 中的有界闭集是紧子集.

定理 设 X 是拓扑空间, $Y \subset X$, 则

Y 是紧子集 ⇔ Y 的 X 中的开覆盖, 有有限子覆盖.

证 ⇒ 设 \mathscr{A} 是 Y 的 X 中的开覆盖,则 $\mathscr{A}|_Y = \{U \cap Y | U \in \mathscr{A}\}$ 是 Y 的 Y 中的开覆盖. 由于 Y 是紧子集,故存在有限个 $U_i \in \mathscr{A}$,使得 $Y = \bigcup_{i=1}^n U_i \cap Y$. 因此 $Y \subset \bigcup_{i=1}^n U_i$.

 \leftarrow 设 \mathscr{A}_Y 是 Y 的 Y 中的开覆盖, 对 $V \in \mathscr{A}_Y$ 存在 X 中的开集 U_V , 使 得 $V = U_V \cap Y$. 故 $\mathscr{A} = \{U_V \mid V \in \mathscr{A}_Y\}$ 是 Y 的 X 中的开覆盖.

因此存在有限个 $V_i \in \mathcal{A}_Y$, 使得 $Y \subset \bigcup_{i=1}^n U_{V_i}$.

因此 $Y = \bigcup_{i=1}^{n} U_{V_i} \cap Y = \bigcup_{i=1}^{n} V_i$. 故 Y 是紧子集.

定理 设 X,Y 是拓扑空间, $f:X\mapsto Y$ 是连续映射, $A\subset X$ 是紧子集,

则 f(A) 是紧子集. 因此紧性是拓扑不变性.

证 设 \mathscr{C} 是 f(A) 的 Y 中的开覆盖,

由于 f 连续, 故 $\{f^{-1}(C) \mid C \in \mathscr{C}\}$ 是 A 的开覆盖.

由于 A 是紧子集, 故存在有限个 C_i , 使得

 $A \subset \bigcup_{i=1}^{n} f^{-1}(C_i) = f^{-1}(\bigcup_{i=1}^{n} C_i).$

因此 $f(A) \subset \bigcup_{i=1}^n C_i$. 因此 f(A) 是紧子集.

例 道路是紧子集.

例 (0,1) 是紧空间 [0,1] 的子集, 并不是紧子集.

注 紧空间的子集不一定是紧子集.

定理 紧空间 X 的闭子集 Y 是紧子集.

证 设 \mathscr{A} 是 Y 的 X 中的开覆盖, 则 \mathscr{A} []{ Y^C } 是 X 的开覆盖.

由于 X 是紧空间, 故存在有限个 $U_i \in \mathcal{A}$, 使得 $X = (\bigcup_{i=1}^n U_i) \bigcup Y^C$.

因此 $Y \subset \bigcup_{i=1}^n U_i$. 因此 Y 是紧子集.

例 拓扑空间 R^1 与紧空间 $S^1 = \{z \mid ||z|| = 1\}$ 开子集 $S^1 - \{-1\}$ 同胚: $f: R^1 \ni t \mapsto e^{2i \operatorname{arctan} t} \in S^1 - \{-1\}.$

定理 每个拓扑空间 (X, \mathcal{I}) 是某紧空间的开子空间.

 \mathbb{H} \mathbb{H}

显然 X 是 X^* 的开子集.

由于对 $X^* - K \in \mathcal{I}_1$, $(X^* - K) \cap X = X - K$ 是 X 的开集.

故 (X, \mathcal{I}) 是 (X^*, \mathcal{I}^*) 的开子空间. 下面证 (X^*, \mathcal{I}^*) 是紧空间.

设 \mathscr{C} 是 X^* 的开覆盖. 则存在 $C_0 \in \mathscr{C}$, 使得 $\infty \in C_0$.

故存在紧的闭集 $K \subset X$, 使得 $C_0 = X^* - K$.

由于 K 是 X 的紧子集, 故存在有限个 $C_i \in \mathcal{C}$, 使得 $K \subset \bigcup_{i=1}^n C_i$.

因此 $X^* = \bigcup_{i=0}^n C_i$. 故 X^* 是紧空间.

称 (X^*, \mathcal{I}^*) 为 (X, \mathcal{I}) 的单点紧化空间.

注 \mathscr{T}^* 是 X^* 上最细的紧拓扑.

定义 设 $X \neq \emptyset$, $\mathcal{A} \subset 2^X$, 若 \mathcal{A} 中的每个有限子族都有非空的交:

对任意有限个 $A_i \in \mathcal{A}$, 有 $\bigcap_{i=1}^n A_i \neq \emptyset$, 则称 \mathcal{A} 具有有限交性质.

例 $\mathscr{A}_1 = \{[0, 1/n] \mid n \in N\}, \mathscr{A}_2 = \{(0, 1/n) \mid n \in N\}$ 具有有限交性质.

 $\bigcap_{I \in \mathscr{A}_1} I = \{0\}; \quad \bigcap_{I \in \mathscr{A}_2} I = \varnothing.$

定理 设 X 是拓扑空间, X 为紧空间 \Leftrightarrow 具有有限交性质的闭集族都有非空的交.

证 \Rightarrow 设 X 是紧空间, \mathscr{F} 是具有有限交性质的闭集族,

反证法: 假设 $\bigcap_{F \in \mathscr{R}} F = \emptyset$, 则 $\bigcup_{F \in \mathscr{R}} F^C = X$. 由于 X 是紧空间,

故存在有限个 $F_i \in \mathcal{F}$, 使得 $\bigcup_{i=1}^n F_i^C = X$. 因此 $\bigcap_{i=1}^n F_i = \emptyset$. 矛盾.

 \Leftarrow 设 \varnothing 是 X 的开覆盖, 则 $\bigcup_{U \in \mathscr{A}} U = X$. 因此 $\bigcap_{U \in \mathscr{A}} U^C = \varnothing$.

因此 $\{U^C | U \in \mathcal{A}\}$ 是不具有有限交性质的闭集族.

故存在有限个 $U_i \in \mathscr{A}$,使得 $\bigcap_{i=1}^n U_i^C = \varnothing$. 即 $\bigcup_{i=1}^n U_i = X$. 因此 X 是紧空间.

- 注 1. 定理中的闭集不能去掉.
 - 2. 用开集刻画的概念或结论可用闭集刻画.

定理 设 \mathscr{B} 是拓扑空间 X 的基, 若对每个由 \mathscr{B} 中的元素组成的 X 的开 覆盖有有限子覆盖, 则 X 是紧空间.

证 设 \mathcal{A} 是 X 的开覆盖,则对每个 $A \in \mathcal{A}$.

由于 \mathscr{B} 是 X 的基, 故存在 $\mathscr{B}_A \subset \mathscr{B}$, 使得 $A = \bigcup_{B \in \mathscr{B}_A} B$.

 $\mbox{id } \mathscr{B}_1 = \bigcup_{A \in \mathscr{A}} \mathscr{B}_A. \ \ \mbox{\od} \ \ \bigcup_{B \in \mathscr{B}_1} B = \bigcup_{A \in \mathscr{A}} \bigcup_{B \in \mathscr{B}_A} B = \bigcup_{A \in \mathscr{A}} A = X.$

因此 \mathcal{B}_1 是 X 的由 \mathcal{B} 中的元素组成的开覆盖.

因此存在有限个 $B_i \in \mathcal{B}_1$, 使得 $\bigcup_{i=1}^n B_i = X$.

对每个 B_i , 取 $A_i \in \mathcal{A}$, 使得 $B_i \subset A_i$. 则 $\bigcup_{i=1}^n A_i = X$.

因此 X 是紧空间.

定理 (Alexander 子基定理) 设 X 是拓扑空间, $\mathcal S$ 是 X 的子基,

若 X 的每个开覆盖 $\mathcal{S}_1 \subset \mathcal{S}$, 都有有限子覆盖, 则 X 是紧空间.

证 假设 X 不是紧空间,则存在 X 的开覆盖 \mathcal{A} ,没有有限子覆盖.

记 $\mathcal{H} = \{ \mathcal{A} \mid \mathcal{A} \in X \text{ 的开覆盖 且 没有有限子覆盖 } \}$, 则 $\mathcal{H} \neq \emptyset$.

对 $\mathcal{A}_1 \in \mathcal{H}$, 规定序关系: $\mathcal{A}_1 \prec \mathcal{A}_2 \Leftrightarrow \mathcal{A}_1 \subset \mathcal{A}_2$. 则 \mathcal{H} 是半序集.

由 Housdorff 极大定理, 存在极大的全序子集 $\mathcal{H}_0 \subset \mathcal{H}$.

记 $\mathscr{A}_0 = \bigcup_{\mathscr{A} \in \mathscr{H}_0} \mathscr{A}$. 则 $\mathscr{A}_0 \in X$ 的开覆盖.

对任意 $B_i \in \mathcal{A}_0$, 存在 $\mathcal{A}_i \in \mathcal{H}_0$, 使得 $B_i \in \mathcal{A}_i$, 由于 \mathcal{H}_0 是全序的,

故不妨设 $\mathscr{A}_1 \subset \cdots \subset \mathscr{A}_n$, 故 $B_i \in \mathscr{A}_n \in \mathscr{H}$. 故 $\bigcup_{i=1}^n B_i \neq X$.

故 必 没有有限子覆盖.

对每个开集 $V \notin \mathcal{A}$, 由于 \mathcal{H} 是极大的全序子集, 故 $\{V\} \cup \mathcal{A}$ 有 X 的 有限子覆盖: 否则 $\mathcal{A} \cup \{V\} \in \mathcal{H}$, 故 $\mathcal{H} \cup \{\mathcal{A} \cup \{V\}\} \supseteq \mathcal{H}$ 是 \mathcal{H} 的 全序子集. 这与 \mathcal{H} 是极大全序子集矛盾.

记 $\mathcal{S}_0 = \mathcal{A}_0 \cap \mathcal{S}$. 下证 $\mathcal{S}_0 \in X$ 的开覆盖. 反证法:

否则存在 $x \in X$, 使得对任意 $S \in \mathcal{S}_0$, 有 $x \notin S$.

由于 \mathcal{A}_0 是 X 的开覆盖, 故存在 $V \in \mathcal{A}_0$, 使得 $x \in V$.

由于 $\mathscr S$ 是子基, 故存在 $S_i \in \mathscr S$, 使得 $x \in \bigcap_{i=1}^n S_i \subset V$. 故 $S_i \notin \mathscr S_0$.

故 $\{S_i\}$ [] \mathcal{A}_0 有有限子覆盖. 故存在有限个 $B_{ij} \in \mathcal{A}_0$,

使得 $S_i \cup (\bigcup_{i=1}^{m_i} B_{ij}) = X$. 因此 $(\bigcap_{i=1}^n S_i) \cup (\bigcup_{i=1}^n \bigcup_{j=1}^{m_i} B_{ij}) = X$.

故 $V \bigcup (\bigcup_{i=1}^{n} \bigcup_{i=1}^{m_i} B_{ii}) = X.$

这与 🚜 没有有限子覆盖矛盾. 因此 🖋 是 X 的开覆盖.

故存在有限个 $B_i \in \mathscr{S}_0 \subset \mathscr{A}_0$. 使得 $\bigcup_{i=1}^n B_i = X$.

故 必 有有限子覆盖. 矛盾.

Tychonoff 定理

定理 设 X,Y 是紧空间, 则 $X \times Y$ 是紧空间.

证 设 $\mathcal{B} = \{U_{\alpha} \times V_{\alpha} | U_{\alpha} \in \mathcal{T}_{X}, V_{\alpha} \in \mathcal{T}_{Y}\}$ 是由 $X \times Y$ 的基组成的 $X \times Y$ 的开覆盖. 对每个 $x \in X$, $\mathcal{A} = \{V_{\alpha} | x \in U_{\alpha}\}$ 是 Y 的开覆盖.

由于 Y 是紧空间, 故存在有限个 $i(x) \triangleq \alpha_i(x)$, 使得 $Y = \bigcup_{i=1}^{m(x)} V_{i(x)}$.

记 $U_x = \bigcap_{i=1}^{m(x)} U_{i(x)}$ 是包含 x 的开集. $\{U_x | x \in X\}$ 是 X 的开覆盖.

由于 X 是紧空间, 故存在有限个 $x_i \in X$, 使得 $X = \bigcup_{i=1}^k U_{x_i}$.

$$\begin{array}{l} X\times Y = (\bigcup_{j=1}^{k} U_{x_{j}})\times Y = \bigcup_{j=1}^{k} (U_{x_{j}}\times Y) = \bigcup_{j=1}^{k} (U_{x_{j}}\times \bigcup_{i=1}^{m(x_{j})} V_{i(x_{j})}) \\ = \bigcup_{i=1}^{k} \bigcup_{j=1}^{m(x_{j})} (U_{x_{i}}\times V_{i(x_{i})}) = \bigcup_{j=1}^{k} \bigcup_{i=1}^{m(x_{j})} U_{i(x_{i})}\times V_{i(x_{i})}. \end{array}$$

故 $X \times Y$ 是紧空间.

定理 设 $\{X_{\alpha}\}_{\alpha\in\Gamma}$ 是一族紧空间, 则 $X \triangleq \prod_{\alpha\in\Gamma} X_{\alpha}$ 是紧空间.

证 设 $\mathcal{Y}_0 \subset \mathcal{Y}_\pi = \{p_\alpha^{-1}(U_\alpha) \mid U_\alpha \in \tau_\alpha\}$ 是积空间 X 的子基中的元素组成的 X 的开覆盖.

対 α , 记 $\mathscr{A}_{\alpha} = \{U_{\alpha} \in \mathscr{T}_{\alpha} \mid p_{\alpha}^{-1}(U_{\alpha}) \in \mathscr{S}_{0}\}.$

假如对每个 α , \mathcal{A}_{α} 不是 X_{α} 的开覆盖, 取 $x_{\alpha} \in X_{\alpha} - \bigcup_{U \in \mathcal{A}_{\alpha}} U$,

则 $x = \{x_{\alpha}\} \in X$, 但 $x \notin \bigcup_{S \in \mathscr{S}_0} S$. 这与 \mathscr{S}_0 是 X 的开覆盖矛盾. 故存在 γ , 使得 \mathscr{A}_{γ} 是 X_{γ} 的开覆盖. 由于 X_{γ} 是紧空间, 故存在有限个 $U_{\gamma,j} \in \mathscr{A}_{\gamma}$, 使得 $X_{\gamma} = \bigcup_{j=1}^{n} U_{\gamma,j}$.

因此 $\{p_{\infty}^{-1}(U_{\infty,i})\}\subset \mathscr{S}_0$ 是 X 的有限开覆盖. 故由子基定理 X 是紧空间.

§ 7.2 紧性与分离性

定理 设 X 是 Haosdorff 空间, A, B 是 X 的紧子集, $x \in X$.

- 1. 若 $x \notin A$. 则存在不交的开集 U, V. 使得 $x \in U$. $A \subset V$:
- 2. 若 $A \cap B = \emptyset$, 则存在不交的开集 U, V, 使得 $A \subset V$, $B \subset U$.

证 1. 对每个 $y \in A$, 由于 X 是 T_2 空间, 故存在开集 U_y, V_y , 使得 $x \in U_y$, $y \in V_y$, 且 $U_y \cap V_y = \varnothing$.

显然 $\{V_y | y \in A\}$ 是 A 的开覆盖. 由于 A 是紧子集,

故存在有限个 V_{u_i} , 使得 $A \subset \bigcup_{i=1}^n V_{u_i}$.

记 $V = \bigcup_{i=1}^n V_{u_i}, U = \bigcap_{i=1}^n U_{u_i}, 则 x \in U, A \subset V, 且 U \cap V = \emptyset.$

2. 对每个 $x \in B$, 存在不交的开集 U_x , V_x , 使得 $x \in U_x$, $A \subset V_x$.

 $\{U_x | x \in B\}$ 是 B 的开覆盖. 故存在有限个 U_{x_i} , 使得 $B \subset \bigcup_{i=1}^n U_{x_i}$.

记 $U = \bigcup_{i=1}^n U_{x_i}, V = \bigcap_{i=1}^n V_{x_i}, \quad M \land CV, B \subset U, \quad LU \cap V = \emptyset.$ 推论 设 $X \not\in Hausdorff$ 空间,则 X 的每个紧子集是闭集,

证 对每个 $x \in A^C$, 存在 $U \in \mathcal{I}$, 使得 $x \in U \subset A^C$. 故 A 是闭集.

推论 设 X 是紧的 Hausdorff 空间中, 则

- A 为紧子集

 A 是闭集:
- 2. X 是正规空间. 因此 X 是 T4 空间;
- 3. X 是 T₃ 空间. 因此 X 是正则空间.

证 2. 设 A, B 是不交的闭集, 则 A, B 是不交的紧子集. 故存在不交的开集 U, V, 使得 $A \subset U$, $B \subset V$. 故 X 是正规空间. 由于 X 是 T_2 空间, 故 X 是 T_1 空间. 因此 X 是 T_4 空间. 定理 设 X 是紧的 Hausdorff 空间, 则 A 为紧子集 \Leftrightarrow A 是闭集.

定理 设 X 是紧空间, Y 是 Hausdorff 空间, $f: X \mapsto Y$ 是连续映射, 则 f 是闭映射.

证 设 $A \in X$ 的闭集, 由于 X 是紧空间, 故 A 是紧子集.

由于 f 连续, 故 f(A) 是 Y 中的紧子集.

由于 Y 是 Hausdorff 空间, 故 f(A) 是闭集. 即 f 是闭映射.

推论 设 X 是紧空间, Y 是 Hausdorff 空间, $f: X \mapsto Y$ 是连续一一对映, 则 f 是同胚.

定理 设 X 是正则空间, A 是 X 的紧子集, U 是开集, 若 $A \subset U$, 则存在 开集 V, 使得 $A \subset V \subset \overline{V} \subset U$.

证 对每个 $x \in A$, 由于 X 是正则空间, 故存在开集 V_x , 使得 $x \in V_x \subset \overline{V}_x \subset U$. 显然 $\{V_x \mid x \in A\}$ 是 A 的开覆盖. 故存在有限个 V_{x_i} , 使得 $A \subset \bigcup_{i=1}^n V_{x_i}$. 记 $V = \bigcup_{i=1}^n V_{x_i}$. 则 $A \subset V \subset \overline{V} = \bigcup_{i=1}^n \overline{V}_{x_i} \subset U$.

§ 7.3 Rⁿ 上的紧子集

定义 设 (X,d) 是度量空间, $A \subset X$, 若存在 M > 0,

使得对任意 $x,y \in A$, 有 $d(x,y) \le M$, 则称 A 为有界子集.

定理 设 A 是度量空间 X 的紧子集, 则 A 是有界闭集.

证 由于 X 是 Hausdorff 空间, 故 A 是闭集. 显然 $\{B(x,1) | x \in A\}$ 是 A 的开覆盖. 故存在有限个 $x_i \in A$, 使得 $A \subset \bigcup_{i=1}^n B(x_i,1)$.

 $i \exists M = \max\{d(x_i, x_j) \mid i, j = 1, 2, \dots, n\} + 2.$

对任意 $x,y \in A$, 存在 i,j, 使得 $x \in B(x_i,1), y \in B(x_j,1)$, 因此 $d(x,y) \le d(x,x_i) + d(x_i,x_j) + d(x_j,y) \le M$.

例 设 X 是无限集, 规定: $d(x,y) = 0, x = y; d(x,y) = 1, x \neq y$, 则 X 是有界闭集, 但 X 不是紧空间.

定理 [0,1] 是 R^1 的紧子集. 因此 [a,b] 是 R^1 的紧子集.

定理 R^n 的子集 A 是紧子集 $\Leftrightarrow A$ 是有界闭集.

证 \Rightarrow 显然. \Leftarrow 由于 A 是有界集, 故存在 N > 0, 使得 $A \subset [-N, N]^n$.

由于 $[-N, N]^n = [-N, N] \times \cdots \times [-N, N]$ 是紧空间.

而 A 是闭子集. 故 A 是紧子集. 因此 A 是 R^n 的紧子集.

定理 设 X 是紧空间, $f: X \mapsto R^1$ 是连续函数, 则存在 $x_0, x_1 \in X$, 使得对任意 $x \in X$ 有 $f(x_0) \le f(x) \le f(x_1)$.

证 由于 X 是紧空间, f 是连续, 故 f(X) 是 R^1 的紧子集,

由于 R^1 是度量空间, 故 f(X) 是 R^1 的有界闭集.

记 m, M 分别 f(X) 的下上确界. 则 $m, M \in f(X)$.

因此存在 $x_0, x_1 \in X$, 使得 $f(x_0) = m$, $M = f(x_1)$.

因此对任意 $x \in X$, 有 $f(x_0) = m < f(x) < M = f(x_1)$.

定理 S^m 与 R^n 是不同胚.

证 $S^m = \{x \in R^{m+1} \mid ||x|| = 1\}$ 是紧空间, 而 R^n 不是紧空间. 因此不同胚.

§ 7.4 几种紧性以及其间的关系

在数学分析中知道 R^n 空间中以下命题等价:

- 1. A 是有界闭集;
- 2. A 的每个开覆盖都有有限子覆盖;
- 3. A 中的每个无限子集都有聚点在 A 中:
- 4. A 中的每个点列都有子列收敛于 A 中的点.

下列定理等价.

- 1. R^n 中的基本点列收敛;
- 2. 若 A 是有界闭集, 则 A 的每个开覆盖都有有限子覆盖;
- 3. 若 A 无限有界集, 则 A 有聚点;
- 4. 每个有界点列都有收敛子列;
- 5. 当 n=1 时, 有界数集必有上 (下) 确界.

在一般拓扑空间上没有基本点列, 完备, 有界, 上下确界等概念.

定义 设 X 是拓扑空间,若 X 的每个可数开覆盖都有有限覆盖,

则称 X 为可数紧空间.

显然紧空间是可数紧空间; 可数紧的 Lindelorff 空间是紧空间.

何 设 X 是可数集, \mathcal{I}_{Rit} 是可数紧空集, 但不是紧空间.

定理 X 是可数紧空间 ⇔ 具有有限交性质的闭集列 $\{F_n\}$ 有不空的交.

证 ⇒ 假设 $\bigcap_{i=1}^{\infty} F_i = \varnothing$, 则 $\bigcup_{i=1}^{\infty} F_i^C = X$. 由于 X 是可数紧空间,故存在有限个 F_i ,使得 $\bigcup_{i=1}^{n} F_i^C = X$. 因此 $\bigcap_{i=1}^{n} F_i = \varnothing$. 这与 $\{F_n\}$ 具有有限交性质矛盾.

 \leftarrow 设 $\{U_n\}$ 是 X 的可数开覆盖,则 $\bigcup_{i=1}^{\infty} U_i = X$. 故 $\bigcap_{i=1}^{\infty} U_i^C = \emptyset$. 因此 $\{U_i^C\}$ 是不具有有限交性质的闭集列. 因此存在有限个 $\{U_i\}_{i=1}^n$, 使得 $\bigcap_{i=1}^n U_i^C = \emptyset$. 因此 $\bigcup_{i=1}^n U_i = X$. 即 X 是可数紧空间.

注 设 $\{H_i\}$ 是具有有限交性质,则 $\{F_n = \bigcap_{i=1}^n H_i\}$ 是非空的下降列. 因此定理中的 $\{F_n\}$ 可用下降的非空闭集列代替.

定理 X 是可数紧空间 \Leftrightarrow 非空的下降闭集列 $\{F_n\}$ 有不空的交.

定义 设 X 是拓扑空间, 若 X 的每个无限子集都有聚点,

则称 X 为聚点紧空间 (或列紧空间).

定理 可数紧空间是聚点紧空间.

证 设 $B \in X$ 的无限集. 存在可列集 $A = \{x_1, x_2, \dots\} \subset B$.

假设 A 没有聚点, 则 A 是闭集且对每个 $x \in A$, x 不是 A 的聚点,

故存在开集 U_x , 使得 $U_x \cap A = \{x\}$. 显然 $\{U_x \mid x \in A\}$ 是 A 的开覆盖.

因此 $\{U_x \mid x \in A\} \bigcup A^C$ 是 X 的可数开覆盖. 由于 X 是可数紧空间,

因此 $\bigcup_{i=1}^n U_{x_i} \cap A = A$. 这与 A 是无限集矛盾. 因此 X 是聚点紧空间.

定理 设 $X \in T_1$ 的聚点紧空间,则 $X \in T_2$ 是可数紧空间.证 设 $\{F_n\}$ 是非空的下降闭集列,取 $x_n \in F_n$.记 $A = \{x_1, x_2, \cdots\}$.

若 A 是有限集, 则存在下标列 $n_1 < n_2 < \cdots < n_k < \cdots$, 使得

 $x_{n_1} = x_{n_2} = \cdots = x_{n_k} = \cdots$. $\boxtimes \mathbb{R}$ $x_{n_1} \in \bigcap_{i=1}^{\infty} F_i \neq \emptyset$.

故存在有限个 U_{x_i} , 使得 ($\bigcup_{i=1}^n U_{x_i}$) $\bigcup A^c = X$.

否则 A 是无限集. 由于 X 聚点紧空间, 故存在 y 是 A 的聚点.

由于 X 是 T_1 空间, 故对任意的 $V_y \in \mathcal{I}_y$, V_y 中有无穷个 A 中的点.

因此 V_y 中有无穷个 $\{x_n, x_{n+1}, \dots\} \subset F_n$ 中的点.

因此 $y \in F_n$ 的聚点. 由于 F_n 是闭集. 故 $y \in F_n$. 因此 $\bigcap_{i=1}^{\infty} F_n \neq \emptyset$. 因此 X 是可数紧空间.

定义 设 X 是拓扑空间, 若 X 中的任何点列 $\{x_n\}$, 都有收敛的子列,则称 X 为序列紧空间.

定理 序列紧空间是可数紧空间.

证 设 $\{F_n\}$ 是非空的下降的闭集列, 取 $x_n \in F_n$.

由于 X 是序列紧空间, 故存在子列 x_{n_k} 收敛, 设收敛于 y.

对每个 k, 由于 F_n 是单调递减, 故 $x_{n_{k+1}} \in F_{n_{k+1}} \subset F_{n_k} \subset F_k$.

由于 F_k 是闭集, 令 $h \to \infty$, 得 $y \in F_k$.

因此 $\bigcap_{i=1}^{\infty} F_k \neq \emptyset$. 因此 X 是可数紧空间.

定理 满足第一可数性公理的可数紧空间是序列紧空间.

证 设 $\{x_n\}$ 是 X 中的序列,令 $F_n \triangleq \overline{E}_n \triangleq \overline{\{x_n, x_{n+1}, \cdots\}}$,则 $\{F_n\}$ 是非空的下降闭集列. 由于 X 是可数紧空间,故 $\bigcap_{i=1}^\infty F_i \neq \varnothing$. 取 $x \in \bigcap_{i=1}^\infty F_i$. 由于 X 是满足第一可数公理,故存在 x 的邻域基 $\mathscr{B}_x = \{U_1, U_2, \cdots\}$,满足 $U_n \supset U_{n+1}$.

由于 $x \in F_n = \overline{E}_n$,故对每个 $U_k \in \mathscr{U}_x$,有 $U_k \cap E_n \neq \varnothing$.取 $x_{n_1} \in U_1 \cap E_1$, $x_{n_2} \in U_2 \cap E_{n_1+1}$, \cdots , $x_{n_k} \in U_k \cap E_{n_{k-1}+1}$, \cdots ,下面证明子列 $\{x_{n_k}\}$ 收敛于 x.设 U 是 x 的邻域。存在 $U_k \subset U$,当 i > k 时,有 $x_{n_k} \in U_i \subset U_k \subset U$.即 $x_{n_k} \to x$.

定理 设 X 是第一可数的 T_1 空间, $A \subset X$, 则下列命题等价:

- 1. A 的每个可数开覆盖都有有限子覆盖;
- 2. A 中的每个无限子集都有聚点在 A 中:
- 3. A 中的每个点列都有子列收敛于 A 中的点.

在数学分析中知道 R^n 空间中以上命题等价.

§ 7.5 度量空间中的紧性

定义 设 A 是度量空间 X 的非空子集.

 $diam(A) = \sup\{d(x,y) \mid x,y \in A\}$ 称为 A 的直径.

定义 设 \mathscr{A} 是度量空间 X 的开覆盖, $\lambda > 0$, 若对任意 $A \subset X$,

只要 $diam(A) < \lambda$. 有 A 包含于 $\mathscr A$ 中的某个开集中.

则称 λ 为开覆盖 \mathscr{A} 的 Lebesgue 数.

定理 序列紧的度量空间是紧空间.

证 设 \mathcal{A} 是 X 的开覆盖, 对 $x \in X$, 记

() (1) ++ -- (-) -- --

 $\rho(x) = \sup\{d \, | \, \ \mbox{\vec{P}} \mbox{$\vec{$

对 $\varepsilon = 1/n$, 存在 $x_n \in X$, 使得 $\rho_0 \le \rho(x_n) < \rho_0 + 1/n$.

由于 X 是序列紧空间, 故存在子列 x_{n_k} 收敛. 设收敛于 $z \in X$, 则存在 $U \in \mathscr{A}$, 使得 $z \in U$. 因此存在 $B(z,\delta) \subset U$.

由于 $x_{n_k} \to z$, 故存在 K > 0, 当 k > K 时, 有 $x_{n_k} \in B(z, \delta/2)$.

故 $B(x_{n_k}, \delta/2) \subset B(z, \delta) \subset U$. 故 $\rho(x_{n_k}) \geq \delta/2$. 故 $\rho_0 \geq \delta/2 > 0$.

称 $ρ_0$ 为开覆盖 \mathscr{A} 的 Lebesgue 数. 它具有性质:

设 $0 < \lambda < \rho_0$, 则对每个 $x \in X$, 有 $0 < \lambda < \rho_0 \le \rho(x)$, 故存在 $U \in \mathscr{A}$, 使得 $B(x,\lambda) \subset U$.

显然 $\mathcal{B} = \{B(x,\lambda) \mid x \in X\}$ 是 X 的开覆盖. 下证 \mathcal{B} 有有限子覆盖.

假设 \mathcal{B} 没有有限子覆盖, 则取 $x_1 \in X$; 存在 $x_2 \notin B(x_1, \lambda)$;

存在 $x_3 \notin \bigcup_{i=1}^2 B(x_i, \lambda); \cdots$, 存在 $x_{n+1} \notin \bigcup_{i=1}^n B(x_i, \lambda); \cdots$.

因此 $d(x_n, x_m) > \lambda$, 即 $\{x_n\}$ 没有收敛子列. 矛盾.

因此必存在有限个 $x_i \in X$, 使得 $X = \bigcup_{i=1}^m B(x_i, \lambda)$.

取 $U_i \in \mathcal{A}$, 使得 $B(x_i, \lambda) \subset U_i$, 则 $X = \bigcup_{i=1}^m U_i$. 即 X 是紧空间.

§ 7.6 局部紧空间, 仿紧空间

定义 设 X 是拓扑空间, 若对每个 $x \in X$, 存在紧子集 $D \in \mathcal{U}_x$, 则称 X 为局部紧空间.

紧空间是局部紧空间; Rn 是局部紧空间, 但不是紧空间.

定理 局部紧的 Hausdorff 空间 X 是正则空间.

证 设 $x \in X$, U 是开集, $x \in U$. 由于 X 是局部紧空间, 故存在紧的 $D \in \mathcal{U}_{x}$. 由于 X 是 T_{2} 空间, 故 D 是闭集且 D 是紧的 T_{2} 空间.

故 D 是正则空间. 记 $W = U \cap D^0$ 是 D 的开子集.

由于 D 是正则空间, 故存在开集 V, 使得 $x \in V \subset \overline{V}|_{D} \subset W \subset U$.

由于 W 是 X 的开集, 故 V 是 X 的开集.

由于 $D \in X$ 的闭集, 故 $\overline{V}|_{D} = \overline{V} \cap D = \overline{V}$ 是 X 的闭集.

因此 X 是正则空间.

定理 设 X 是局部紧的正则空间,则对 $x \in X$, x 的紧邻域全体 \mathcal{Q}_x 是 x 处的邻域基.

证 设 $U \in \mathcal{U}_x$, 取 $D \in \mathcal{U}_x$ 是紧子集, 则 $U \cap D^0$ 是 x 的开邻域.

由于 X 是正则空间, 故存在开集 V, 使得 $x \in V \subset \overline{V} \subset U \cap D^0 \subset U$.

由于 \overline{V} 是紧空间 D 的闭集, 故 \overline{V} 是紧集. 因此 \mathcal{D}_x 是 x 处的邻域基.

推论 设 X 是局部紧的 Hausdorff 空间, 则

- 1. 对 $x \in X$, x 的紧邻域全体 \mathcal{D}_x 是 x 处的邻域基;
- 2. $\mathcal{B} = \{B \mid B \in \mathcal{T}, \overline{B} \}$ 为紧集} 是 X 的基.

证 2. 对任意开集 U 及任意 $x \in U$.

由 1, 存在紧集 $D \in \mathcal{U}_x$, 使得 $D \subset U$.

由于 X 是 T_2 空间, 故 D 是闭集, 因此 $x \in D^0 \subset \overline{D^0} \subset D \subset U$.

由于 D 是紧集, 故 $\overline{D^0}$ 是紧集. 故 $D^0 \in \mathcal{B}$. 因此 \mathcal{B} 是 X 的基.

定理 设 X 是局部紧 Hausdorff 空间, K 是 X 的紧集, U 是开集, $K \subset U$, 则存在开集 V. 使得 $K \subset V \subset \overline{V} \subset U$ 且 \overline{V} 是紧集.

证 由于 X 是局部紧的 T_{2} — 空间, 对 $x \in X$,

x 的紧邻域全体 \mathcal{D}_x 是 x 处的邻域基,

对每个 $y \in K$, 有 $y \in U$, 故存在 $D_y \in \mathcal{D}_y$, 使得 $y \in D_y^o \subset D_y \subset U$.

显然 $\{D_y^o | y \in K\}$ 是 K 的开覆盖.

由于 K 是紧集, 故存在有限个 $y_i \in K$, 使得 $K \subset \bigcup_{i=1}^n D_{y_i}^o$.

记 $V = \bigcup_{i=1}^n D_{ii}^o$,则

 $K \subset V \subset \overline{V} = \bigcup_{i=1}^n \overline{D^o}_{y_i} \subset \bigcup_{i=1}^n \overline{D}_{y_i} = \bigcup_{i=1}^n D_{y_i} \subset U.$

由于 \overline{V} 是紧集 $\bigcup_{i=1}^{n} D_{u_i}$ 的闭子集, 故 \overline{V} 是紧集.

另证: 对每个 $y \in K$, 由于 X 是局部紧空间, 故存在开集 V_y ,

使得 \overline{V}_u 是紧集, 且 $y \in V_u$. 显然 $\{V_u | y \in K\}$ 是 K 的开覆盖.

由于 K 是紧集, 故存在有限个 V_{y_i} , 使得 $K \subset \bigcup_{i=1}^n V_{y_i} \triangleq G$.

则 $\overline{G} = \bigcup_{i=1}^n \overline{V}_i$ 是紧集.

若 U = X, 则取 V = G 就可以. 记 $C = U^C$ 是闭集.

对每个 $p \in C$, 存在开集 $W_p \supset K$, 使得 $\overline{W}_p \not\ni p$.

 $\{\overline{G} \cap \overline{W}_p \cap C\}$ 是紧集族, 且 $\bigcap_{p \in C} \overline{G} \cap \overline{W}_p \cap C = \emptyset$.

故存在有限个 $p_i \in C$, 使得 $\bigcap_{i=1}^n \overline{G} \cap \overline{W}_{p_i} \cap C = \emptyset$.

记 $V = \bigcap_{i=1}^n G \cap W_{p_i}$. 则

 $K \subset V \subset \overline{V} \subset \bigcap_{i=1}^n \overline{G} \cap \overline{W}_{p_i} \subset \overline{G} \cap U \subset U.$

 $\overline{V} \subset \overline{G}$ 是紧集.

定义 设 $\mathscr{A},\mathscr{B} \subset 2^X$ 是两个 X 的覆盖, 若对每个 $B \in \mathscr{B}$, 存在 $A \in \mathscr{A}$, 使得 $B \subset A$. 则称 $\mathscr{B} \neq \mathscr{A}$ 的加细.

显然, 若 8 是 4 的一个子覆盖, 则 8 是 4 的加细.

定义 设 X 是拓扑空间, $A \subset X$, \mathscr{A} 是 A 的开覆盖,

若对每个 $x \in A$, 存在 $U \in \mathcal{D}_x$, 使得 $\{V \in \mathcal{A} \mid V \cap U \neq \emptyset\}$ 是有限集, 则称 \mathcal{A} 为集合 A 的局部有限覆盖.

例 设 $\mathscr{A} = \{(-n,n) | n \in Z\}, \mathscr{B} = \{(n-1,n+1) | n \in Z\}$ 是 R^1 的开覆盖,则 \mathscr{B} 是 \mathscr{A} 的一个加细. \mathscr{B} 是局部有限覆盖,而 \mathscr{A} 不是.

定义 设 X 是拓扑空间, 若 X 的每个开覆盖 $\mathscr A$ 都有局部有限开覆盖 $\mathscr B$ 是 $\mathscr A$ 的加细, 则称 X 是仿紧空间.

紧空间是仿紧空间.

离散拓扑空间是仿紧空间, 但当 X 是无限集时, X 不是紧空间,

定理 仿紧的正则空间 X 是正规空间.

证 设 A 是闭集, U 是开集, $A \subset U$. 下面证明存在开集 V, 使得 $A \subset V \subset \overline{V} \subset U$.

对每个 $x \in A$, 有 $x \in U$. 由于 X 是正则空间, 故存在 $U_x \in \mathcal{I}_x$,

使得 $x \in U_x \subset \overline{U}_x \subset U$. 显然 $\mathscr{A} = \{U_x \mid x \in A\} \bigcup \{A^C\}$ 是 X 的开覆盖.

由于 X 是仿紧空间, 故存在 \mathscr{B} 是局部有限开覆盖且 \mathscr{A} 的加细.

令 $\mathscr{C} = \{B \in \mathscr{B} \mid B \cap A \neq \emptyset\}$, 则 \mathscr{C} 是集合 A 的局部有限开覆盖.

于是 $V = \bigcup_{B \in \mathscr{C}} B$ 是包含 A 的开集. 下面证明 $\overline{V} \subset U$.

对每个 $x \in \overline{V}$, 由于 $\mathscr C$ 是局部有限的, 故存在 x 的开邻域 W 只与有限 个 $B_i \in \mathscr C$ 有非空的交. 故 $\bigcup_{\mathscr C \supseteq B \neq B_i} B \subset W^C$ 是闭集,

故 $\overline{(\bigcup_{\mathscr{C}\ni B\neq B_i}B)}$ $\subset W^C$, 因此 $x\notin \overline{(\bigcup_{\mathscr{C}\ni B\neq B_i}B)}$.

对 $B_i \in \mathcal{C}$, 由于 \mathcal{B} 是 \mathcal{A} 的加细, 故存在 $U_i \in \mathcal{A}$, 使得 $B_i \subset U_i$. 因此 $\overline{B}_i \subset \overline{U}_i$.

由于 $\overline{V} = \overline{(B_1 \bigcup \cdots \bigcup B_n)} \bigcup \overline{(\bigcup_{\mathscr{C} \ni B \neq B}, B)},$

因此 $x \in \overline{(B_1 \cup \cdots \cup B_n)} = \overline{B}_1 \cup \cdots \cup \overline{B}_n \subset U$. 故 $\overline{V} \subset U$.

定理 仿紧的 Hausdorff 空间 X 是正则空间. 因此是正规空间.

证 设 $x \in X$, A 是闭集, $x \notin A$. 对每个 $y \in A$, 由于X 是 T_2 空间,

故存在开集 U_y , V_y , 使得 $x \in U_y$, $y \in V_y$, 且 $U_y \cap V_y = \emptyset$.

因此 $x \notin \overline{V}_y$, 且 $\mathscr{A} = \{V_y | y \in A\} \bigcup \{A^C\}$ 是 X 的开覆盖.

由于 X 是仿紧空间, 故存在 ℬ 是局部有限开覆盖是 ℷ 的加细.

令 $\mathscr{C} = \{B \in \mathscr{B} \mid B \cap A \neq \emptyset\}$ 是 A 的局部有限开覆盖.

记 $V = \bigcup_{B \in \mathscr{C}} B$, 则 $A \subset V$. 记 $U = (\overline{V})^C$ 是开集. 且 $U \cap V = \varnothing$.

下面证明 $x \in U$. 由于 \mathscr{C} 是局部有限开覆盖, 故存在 $W \in \mathscr{T}_x$,

使得只有有限个 $B_i \in \mathscr{C}$ 与 W 有交. 由前定理证明知: $x \notin \overline{(\bigcup_{\mathscr{C} \ni B \neq B_i} B)}$. 由于 \mathscr{B} 是 \mathscr{A} 的加细, 故存在 $V_i \in \mathscr{A}$, 使得 $B_i \subset V_i$. 因此 $x \notin \overline{B}_i$. 故 $x \notin \overline{B}_1 \bigcup \cdots \bigcup \overline{B}_n \bigcup \overline{(\bigcup_{\mathscr{C} \ni B \neq B_i} B)} = \overline{V}$.

因此 U 是 x 的与 V 不交的开邻域. 因此 X 是正则空间.

引理 设 X 是满足第二可数公理的局部紧的 Hausdorff 空间, 则存在 X 的可数开覆盖 $\{V_n\}$. 使得 $\overline{V}_n \subset V_{n+1}$ 且 \overline{V}_n 是紧集.

证 记 $\mathscr{B}=\{B|B\in\mathscr{T},\overline{B}$ 是紧集}, 由于 X 是局部紧, 故 \mathscr{B} 是 X 的基. 由于 X 是第二可数空间, 故 X 是 Lindeloff 空间.

故存在可数个 $\{B_n\}$ ⊂ \mathscr{B} 是 X 的开覆盖.

记 $V_1 = B_1$, 由于 \overline{V}_1 是紧集, 故存在有限个 B_1, \dots, B_{n_2} $(n_2 > 1)$,

使得 $\overline{V}_1 \subset \bigcup_{i=1}^{n_2} B_i$. 记 $V_2 = \bigcup_{i=1}^{n_2} B_i$,

则 $\overline{V}_2 = \bigcup_{i=1}^{n_2} \overline{B}_i$ 是紧集. 故存在有限个 B_1, \dots, B_{n_2} $(n_3 > n_2)$,

使得 $\overline{V}_2 \subset \bigcup_{i=1}^{n_3} B_i$. 记 $V_3 = \bigcup_{i=1}^{n_3} B_i, \cdots$.

这样得到开集列 V_i , 使得 \overline{V}_i 是紧集, $\overline{V}_n \subset V_{n+1}$, 且

 $\bigcup_{i=1}^{\infty} V_i = \bigcup_{n=1}^{\infty} B_n = X.$

定理 满足第二可数公理的局部紧的 Hausdorff 空间是仿紧空间.

证 设 $\{V_1, \dots, V_k, \dots\}$ 是引理中的开集列.

 $\Leftrightarrow K_n = \overline{V}_n - V_{n-1}; J_n = V_{n+1} - \overline{V}_{n-2}, \not\exists r v_{-1} = V_0 = \emptyset,$

则 K_n 是紧集; 而 J_n 是开集; $K_n \subset J_n$.

 $\{K_n\}$ 和 $\{J_n\}$ 是 X 的覆盖. 若 |m-n|>3,则 $J_m\bigcap J_n=\varnothing.$

下面证明 X 是仿紧空间.

设 \mathscr{A} 是 X 的开覆盖. 令 $\mathscr{A}_n = \{A \cap J_n \mid A \in \mathscr{A}\}$ 是紧集 K_n 的开覆盖. 因此存在有限子覆盖记为 \mathscr{B}_n , 覆盖 K_n . 记 $\mathscr{B} = \bigcup_{n=1}^{\infty} \mathscr{B}_n$.

由于 \mathcal{B}_n 覆盖 K_n , 而 $\{K_n\}$ 是 X 的覆盖, 故 \mathcal{B} 是 X 的开覆盖. 并且是 \mathcal{A} 的加细.

对每个 $x \in X$, 存在 $B \in \mathcal{B}_n \subset \mathcal{B}$, 使得 $x \in W \triangleq B \subset J_n$.

故当 |m-n| > 3 时, W 与 \mathcal{B}_m 中的任意元素不交.

故 W 与 $\mathcal{B}_m \subset \mathcal{B}$ (m 最多 7 个) 中的有限个相交.

因此 8 是局部有限的开覆盖, 并且是 A 的加细. 因此 X 是仿紧空间.

Baire 纲定理

定义 设 X 是拓扑空间, $A, B, E, H \subset X$, 若

- 1. $\overline{B} \supset A$, 则称 B 在 A 中稠密;
- 2. $\overline{B} \supset X$, 则称 B 为稠密集;
- 3. E 在任意非空的开集中不稠密 $\Leftrightarrow (\overline{E})^{\circ} = \emptyset$. 则称 E 为疏郎集:
- 4. 若存在疏郎集列 E_n , 使得 $H = \bigcup_{i=1}^{\infty} E_n$, 则称 H 为第一纲集, 否则称 H 为第二纲集.

定理 设 X 是拓扑空间,

1. 则疏郎集的子集是疏郎集;

- 2. 则第一纲集的子集是第一纲集:
- 3. 则第一纲集的可数并是第一纲集;
- 4. 若 $h \in X$ 到 Y 的同胚, $E \subset X$, 则 $E \supset f(E)$ 纲性一致.

定理 (Baire 纲定理) 设 X 是完备的度量空间,

则 X 中的可数个稠密开集的交在 X 中稠密.

证 设 V_n 是在 X 中稠密的开集列, $W \triangleq B(x_0, r_0)$ 是任意开球, 下证明 $B(x_0, r_0) \cap (\bigcap_{n=1}^{\infty} V_n) \neq \varnothing$.

由于 V_1 是在 X 中稠密的开集, 故开集 $B(x_0, r_0) \cap V_1 \neq \emptyset$.

故存在 $\overline{B}(x_1, r_1) \subset W \cap V_1$. $r_1 < 1/1$.

由于 V_2 是在 X 中稠密的开集, 故开集 $B(x_1,r_1) \cap V_2 \neq \emptyset$.

故存在 $\overline{B}(x_2, r_2) \subset B(x_1, r_1) \cap V_2$. $r_1 < 1/2$. · · · ·

一般 V_n 是在 X 中稠密的开集, 故开集 $B(x_{n-1},r_{n-1}) \cap V_n \neq \emptyset$.

存在 $\overline{B}(x_n, r_n) \subset B(x_{n-1}, r_{n-1}) \cap V_n$. $r_n < 1/n$

对每个 n, 当 i,j > n 时, 有 $x_i, x_j \in B(x_n, r_n)$, 故 $d(x_i, x_j) < 2/n$.

故 x_n 是基本点列, 设收敛于 x. 故当 j > n 时, 有 $d(x_n, x_j) < r_n$.

 $\diamondsuit j \to \infty$, $\not\in d(x_n, x) \le r_n$. $\not\bowtie x \in \overline{B}(x_n, r_n) \subset V_n \cap W$.

因此 $x \in W \cap (\bigcap_{n=1}^{\infty} V_n) \neq \emptyset$.

定理 设 X 是局部紧 T_2 空间,则

X 中的可数个稠密开集的交在 X 中稠密.

证 设 V_n 是在 X 中稠密的开集列, $W riangle B_0$ 是任意非空开集.

由于 X 是局部紧的 T_2 - 空间, 故 $\mathcal{B} = \{B \mid B \in \mathcal{I}, \overline{B} \}$ 及繁集} 是 X 的基. 由于 V_1 是稠密集, 故存在 $x_1 \in B_0 \cap V_1$. 故存在 B_1 是开集, \overline{B}_1 是紧的, 使得 $x_1 \in B_1 \subset \overline{B}_1 \subset B_0 \cap V_1$

一般, 由于 V_n 是稠密集, 故存在 $x_n \in B_{n-1} \cap V_n$.

故存在 B_n 是开集, \overline{B}_n 是紧的, 使得 $x_n \in B_n \subset \overline{B}_n \subset B_{n-1} \cap V_n$.

 $\{\overline{B}_n\}$ 是 \overline{B}_1 的具有有限交性质的闭集列, 故

 $W \cap (\bigcap_{n=1}^{\infty} V_n) \supset \bigcap_{n=1}^{\infty} \overline{B}_n \neq \emptyset.$

故 $\bigcap_{n=1}^{\infty} V_n$ 在 X 中稠密.

推论 在完备的度量空间或局部紧 T_2 - 空间中,

任意可数个稠密的 $G_{\delta-}$ 型集的交还是稠密的 $G_{\delta-}$ 型集.

推论 在完备的度量空间或局部紧 T_2 空间中,

任意可数个稠密的 G_{δ} 型集的交还是稠密的 G_{δ} 型集.

定理 设 X 是完备的度量空间或局部紧 T_2 — 空间, 则 X 是第二纲集.

证 设 E 是疏朗集, 则 $(\overline{E})^{\circ} = \emptyset$, 记 $V = X - \overline{E}$ 是开集.

对任意 $x \in X$ 及 $V_x \in \mathcal{T}_x$, 由于 $\overline{E} \not\supset V_x$, 故 $V_x \cap V \neq \varnothing$.

故 V 是稠密集.

设 E_i 是一列疏郎集, 则 $V_i = X - \overline{E}_i$ 是一列稠密的开集.

故 $\bigcap_{n=1}^{\infty} V_i \neq \emptyset$. 故 $X \neq \bigcup_{n=1}^{\infty} \overline{E}_n \supset \bigcup_{n=1}^{\infty} E_n$. 即 X 是第二纲集.

定义 设 X 是拓扑空间, $A \subset X$, $x \in A$, 若存在 $V \in \mathcal{I}$, 使得 $V \cap A = \{x\}$, 则称 x 为 A 的孤立点.

定理 设 X 是没有孤立点的完备的度量空间或局部紧的 T_2 空间,

则 X 中稠密的 G_{δ} 型集是不可数.

证 设开集 V在 X 中稠密,则对任意 $x \in X$ 及 $U \in \mathcal{I}_x$, $V \cap U$ 是无限集: 假设 $V \cap U = \{x_1, x_2, \dots, x_n\}$ 是有限集,

由于 X 是 T_1 空间, 故 $W \triangleq U - \bigcup_{x_i \neq x_i} \{x_i\} \in \mathscr{T}_x$.

由于 V 是稠密集, 故 $V \cap W = \{x\}$. 因此 x 是 X 的孤立点. 矛盾.

假设 $E = \{x_1, \dots, x_n, \dots\}$ 是 X 中稠密的 G_{δ} 型集.

则存在开集 V_n , 使得 $E = \bigcap_n V_n$. 由于 E 是稠密集, 故 V_n 是稠密开集.

记 $W_n = V_n - \{x_1, \dots, x_n\}$ 是在 X 中稠密的开集,

但 $\bigcap_n W_n = \emptyset$, 与 Baire 纲定理矛盾.

定理 不存在有理数点上连续而无理数点上不连续的函数.

证 设 $f \in \mathbb{R}^1$ 上的函数, 记 $\omega(x) = \lim_{\delta \to 0} \sup_{|x-y| < \delta} |f(x) - f(y)|$ 称为函数 f 在 x 处的振幅. f 在 x 处连续 $\Leftrightarrow \omega(x) = 0$.

对 a>0, $R^1(\omega < a)$ 是开集: 设 $x_0 \in R^1(\omega < a),$ 则 $\omega(x_0) < a.$

因此存在 $\eta > 0$, 当 $\delta < 3\eta$ 时, 有 $\sup_{|x_0-y| < \delta} |f(x_0) - f(y)| < a$.

対 $x \in (x_0 - \eta, x_0 + \eta)$, 有 $(x - \eta, x + \eta) \subset (x_0 - 2\eta, x_0 + 2\eta)$. 故

 $\omega(x) \le \sup_{|x-y| < \eta} |f(x) - f(y)| \le \sup_{|x_0 - y| < 2\eta} |f(x_0) - f(y)| < a.$

因此 $(x - \eta, x + \eta) \subset R^1(\omega < a)$ 是开集.

f 的连续点全体 $R^1(\omega=0)=\bigcap_n R^1(\omega<1/n)$ 是 G_{δ} — 型集. 假设 f 在 Q 上的每一点连续而无理数点处不连续, 则 $Q\subset R^1(\omega=0)$. 故 $R^1(\omega=0)$ 是稠密的 G_{δ} — 型集. 因此不可数. 故 $R^1(\omega=0)$ 含无理数. 故 $R^1(\omega=0)$ 有点。

附

选择公理. Hausdorff 极大定理

定理 (选择公理) 设 $X \neq \emptyset$, $\mu = 2^X - \{\emptyset\}$, 则存在映射 $f: \mu \ni E \mapsto f(E) \in E \subset X$. 称 f 为 X 的选择函数.

定义 设 \mathscr{F} 是 X 的子集族, $\mathscr{L} \subset \mathscr{F}$, 若 (\mathscr{L}, \subset) 是全序的, 则称 \mathscr{L} 为 \mathscr{F} 的子链: $A, B \in \mathscr{L}$, 有 $A \subset B$ 或 $B \subset A$.

引理 设 $X \neq \emptyset$, \mathscr{F} 是 X 的非空的子集族, \mathscr{F} 的任意子链 \mathscr{L} 的并:

g(A) - A 至多是单点集, 则存在 $A \in \mathcal{F}$, 使得 g(A) = A.

证 固定 $A_0 \in \mathcal{F}$, 称 $\mathcal{F} \subset \mathcal{F}$ 为塔: 若

- 1. $A_0 \in \mathscr{T}$;
- 2. 9 的子链的并属于 9;
- 3. 对 $A \in \mathcal{T}$, 有 $g(A) \in \mathcal{T}$.

记 $\Omega=\{\mathcal{T}\,|\,\mathcal{T}$ 是塔} 为塔的全体. 由于 $\mathcal{T}_0=\{A\,|\,A_0\subset A\in\mathcal{F}\}$ 是塔, 故 $\mathcal{T}_0\in\Omega\neq\varnothing$.

记 $\mathcal{H} = \bigcap_{\mathcal{I} \in \Omega} \mathcal{I}$. 易证 \mathcal{H} 是塔. 因此 \mathcal{H} 是最小的塔.

下证 ℋ 是子链.

记 $\Gamma = \{C \in \mathcal{H} \mid \text{对任意 } A \in \mathcal{H}, \text{有 } A \subset C \text{ 或 } C \subset A\}.$ 只需证 $\Gamma = \mathcal{H}$. 由于 $\Gamma \subset \mathcal{H}$. 而 \mathcal{H} 是最小的塔. 故只需证 Γ 是塔.

- 1. 由于 $\mathcal{S}_0 \in \Omega$, 故对任意 $A \in \mathcal{H}$, 有 $A \in \mathcal{S}_0$, 故 $A_0 \subset A$, 故 $A_0 \in \Gamma$.
- 2. 任意子链 $\mathcal{L} \subset \Gamma$, 记 $L = \bigcup_{B \in \mathcal{L}} B$. 对任意 $A \in \mathcal{H}$, 若存在 $B \in \mathcal{L}$, 使得 $A \subset B \subset L$,

否则任意 $B \in \mathcal{L}$, 有 $B \subset A$. 故 $L \subset A$. 因此 $L \in \Gamma$.

下证 Γ 满足塔的条件 3.

对 $C \in \Gamma$, 记 $\Phi(C) = \{A \in \mathcal{H} \mid g(C) \subset A \text{ 或 } A \subset C\}$. 下证 $\Phi(C)$ 是塔. 易证 $\Phi(C)$ 满足塔的条件 1 和 2. 下证 $\Phi(C)$ 满足塔的条件 3.

 $\forall A \in \Phi(C)$, 有 $g(C) \subset A$ 或 $A \subset C$:

- a. 若 $g(C) \subset A$, 则 $g(C) \subset g(A)$. 故 $g(A) \in \Phi(C)$;
- b. 若 A = C, 则 g(C) = g(A). 故 $g(A) \in \Phi(C)$;
- c. 若 $A\subset C, A\neq C$, 由于 $C\in \Gamma, g(A)\in \mathcal{H}$, 故 $g(A)\subset C$ 或 $C\subset g(A)$. 由于 g(A)-A 是单点集, 故 $g(A)-C=\varnothing$.

因此 $g(A) \subset C$. 故 $g(A) \in \Phi(C)$.

即 $\Phi(C)$ 满足塔的条件 3. 故 $\Phi(C)$ 是塔.

由于 \mathcal{H} 是最小的塔, 故 $\Phi(C) = \mathcal{H}$.

对 $C \in \Gamma$ 及任意 $A \in \mathcal{H} = \Phi(C)$, 有 $A \subset C \subset g(C)$ 或 $g(C) \subset A$.

故 $g(C) \in \Gamma$. 即 Γ 满足塔的条件 3. 因此 Γ 是塔.

由于 \mathcal{H} 是最小的塔, 故 $\Gamma = \mathcal{H}$.

因此对任意 $C \in \mathcal{H}$, 有 $C \in \Gamma$. 故对任意 $A \in \mathcal{H}$, 有 $A \subset C$ 或 $C \subset A$. 因此 \mathcal{H} 是锌.

记 $A = \bigcup_{B \in \mathscr{H}} B$, 由于 \mathscr{H} 是塔 \mathscr{H} 的子链, 故 $A \in \mathscr{H}$.

由于 \mathcal{H} 是塔, 故 $g(A) \in \mathcal{H}$. 故 $A \subset g(A) \subset A$.

因此 g(A) = A.

Hausdorff 极大定理 设 P 是半序集,则存在极大全序子集.

证 记 \mathscr{P} 是 P 的全序子集全体. 由于 P 的单点集是全序集, 故 $\mathscr{P} \neq \varnothing$. \mathscr{P} 的子链的并是全序的, 故属于 \mathscr{P} .

设 $f \in P$ 的选择函数, 对 $A \in \mathcal{F}$, 记 $A^* = \{x \mid x \notin A, A \cup \{x\} \in \mathcal{F}\}$.

若 $A^* \neq \emptyset$, 作 $g(A) = A \bigcup \{f(A^*)\}$; 若 $A^* = \emptyset$, 作 g(A) = A.

由引理存在 $A \in \mathcal{F}$, 使得 g(A) = A. 故 $A^* = \emptyset$. 即 A 是极大全序子集.

选择公理, Zermelo 选择公理, Zorn 引理, Hausdorff 极大定理是等价,

Zermelo **选择公理** 设 $\{A_{\gamma}\}_{\gamma\in\Gamma}$ 是 X 的互不相交非空的集合组成的集族,则存在集合 $E\subset X$,使得对每个 $\gamma\in\Gamma$, $E\cap A_{\gamma}$ 是单点集.

Zorn 引理 设 (X, \prec) 为半序集, 若每个全序子集, 都有上界, 则 X 必有极大元.