Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 11 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) Sei *n* die Anzahl an Elementen im Universum von *G*. Ein *H* muss für einen Isomorphismus auf jeden Fall die gleiche Anzahl an Elementen haben, wie *G*, nämlich *n*.

Wir führen die Variable $E_{i,j}$ für jede Kante $E^G(i,j)$ ein, wobei $1 \le i,j \le n$. Es muss gelten $E_{i,j} \equiv E^G(i,j)$. Wir konstruieren folgende Formel:

$$\varphi := \exists y_1 ... \exists y_n \ ((y_1 \neq y_2 \land ... \land y_1 \neq y_n) \land ... \land (y_{n-1} \neq y_n))$$
$$\land \left(\left(E^H(y_1, y_2) \leftrightarrow E_{1,2} \land ... \land E^H(y_1, y_n) \leftrightarrow E_{1,n} \right) \land \left(E^H(y_{n-1}, y_n) \leftrightarrow E_{n-1,n} \right) \right)$$

Der Satz stellt sicher, dass alle x_1 bis x_n ungleich gewählt sind und sie genau dann in Relation zueinander stehen, wenn sie dies auch im Graphen G taten.

(ii) Es muss eine Menge von Sätzen Φ oder ein Satz ξ gefunden werden, sodass $\mathcal{C} = \mathsf{Mod}(\Phi)$ oder $\mathcal{C} = \mathsf{Mod}(\xi)$. Wir definieren für jeden Graphen G_i die folgende Formel:

$$\psi_i := \bigvee_{G' \subset G_i} \varphi_{G'}$$
 , wobei $\varphi_{G'}$ die Formel aus (i) für den Untergraph G' ist.

 ψ_i sagt also aus, ob H isomorph zu einem Teilgraphen von G_i ist.

Ferner definieren wir folgende Formel:

$$\xi := \bigvee_{i \in \{1, \dots, k\}} \psi_i$$

Diese Formel verodert die vorhin definierten ψ_i . Sie sag also aus, ob H zu einem Subgraphen eines der Graphen $G_1, ..., G_k$ isomorph ist.

Da wir hiermit ein endliches Axiomensystem – nämlich ξ – aufgestellt haben, ist gewiss, dass $\mathcal C$ endlich axiomatisierbar ist.

 ξ ist ein endliches Axiomensystem, da alle ψ_i und auch φ aus (i) für endliche Graphen trivialerweise stets endlich sind.

Aufgabe 2

Es wurde in den Präsenzübungen gezeigt, dass die Duplikatorin das E.F.-Spiel zwischen $(\mathbb{Q},<)$ und $(\mathbb{R},<)$ immer gewinnt, d.h. diese Strukturen sind elementar äquivalent. Somit kann es keine Menge Φ an $FO[\sigma]$ geben, sodass $Mod(\Phi)$ genau die Klasse aller zu $(\mathbb{Q},<)$ isomorphen Mengen ist, da $(\mathbb{R},<)$ nicht isomorph ist.

Aufgabe 3

(i) Es wird im Folgenden widerlegt, dass *T* eine vollständige Theorie ist. Das Gegenbeispiel sei hierbei der folgende Satz:

$$\varphi := \exists x \forall y \ x < y$$

Dieser Satz besagt, ob es ein kleinstes Element in der Relation gibt.

Für $\mathcal{A} := \{\mathbb{N}, <\}$ – welches eine lineare Ordnung darstellt – gilt dieser Satz. Die Zahl 0 ist hierbei das Element, welches φ erfüllt.

Für $\mathcal{B} := \{\mathbb{Z}, <\}$ – welches ebenfalls eine lineare Ordnung darstellt – gilt dieser Satz jedoch nicht. Wählt man für y = x - 1 findet man immer ein noch kleineres Element.

Somit kann die Theorie nicht vollständig sein, da es einen Satz gibt, der manchmal gilt, manchmal aber auch nicht.

(ii) Sei $\varphi \in FO[\sigma]$ beliebig.

Da $\varphi \in FO[\sigma]$ gilt, kann φ über der Struktur \mathcal{A} ausgewertet werden.

Daraus folgt, dass folgendes gilt:

$$\mathcal{A} \vDash \varphi \lor \mathcal{A} \nvDash \varphi$$

Fall 1
$$\mathcal{A} \vDash \varphi \Leftrightarrow \varphi \in Th(\mathcal{A})$$

Fall 2
$$\mathcal{A} \nvDash \varphi \Rightarrow \neg(\mathcal{A} \nvDash \varphi) \stackrel{(*)}{\Leftrightarrow} \mathcal{A} \vDash \neg \varphi \Leftrightarrow \neg \varphi \in Th(\mathcal{A})$$

(*) Nach Annahme gilt, dass φ unter der Struktur \mathcal{A} zu 0 auswertet. Nimmt man nun die Formel $\neg \varphi$ wertet diese noch immer unter \mathcal{A} zu 0 aus, woraus folgt, dass $\neg \varphi$ unter \mathcal{A} zu 1 auswertet.

Damit wurde bewiesen, dass Th(A) eine vollständige Theorie ist.

Aufgabe 4

Die Struktur der unendlichen σ -Strukturen ist axiomatisierbar mit:

$$\Phi = \{\varphi_n | n \in \mathbb{N}\} \text{ wobei } \varphi_n = \exists x_1 ... \exists x_n. \bigwedge_{1 \le i \le n} \bigwedge_{1 \le j \le i \ne j} x_i \ne x_j$$

Falls es ein endliches Φ geben sollte, heißt das man könnte die Konjunktion über Φ bilden:

$$\varphi = \bigwedge_{\psi \in \Phi} \psi$$

Da φ endlich ist kann man den Quantorenrang bestimmen: $m = qr(\varphi)$.

Wähle zwei σ -Strukturen ($\mathcal{A}=(A,<)$, $\mathcal{B}=(B,<)$), wobei die Menge A die grösse 2^{m+1} hat und B unendlich ist. Würden wir nun eine EF-Spiel auf diesen Strukturen spielen, würde die Duplikatorin das m-Runden Spiel gewinnen (siehe Satz aus der Vorlesung), daraus folgt die m-Äquivalenz zwischen diesen Strukturen, d.h. f.a. $\varphi \in FO[\sigma]$ mit $qr(\varphi)=m$ gilt $\mathcal{A}\models\varphi\Leftrightarrow\mathcal{B}\models\varphi$. Somit kann es kein endliches Axiomensystem geben, dass die Menge der undendlichen Mengen axiomatisiert.