Formelsammlung Statistik

Lukas Warode

Maße der zentralen Tendenz

Modus

- Nominales Skalenniveau
- Häufigster Wert

 x_{mod}

Median

- Ordinales Skalenniveau
- Mittlere Ausprägung bei Anordnung der Variable

Ungerade Anzahl an Fällen (n):

$$\tilde{x} = x_{(\frac{n+1}{2})}$$

```
set.seed(42)
random_sample <- sample(1:42, 11)
sort(random_sample)</pre>
```

[1] 1 7 10 18 20 24 25 26 36 37 40

```
median(random_sample)
```

[1] 24

Gerade Anzahl an Fällen (n):

$$\tilde{x} = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2}$$

```
random_sample <- random_sample[random_sample != max(random_sample)]
sort(random_sample)</pre>
```

[1] 1 7 10 18 20 24 25 26 36 37

median(random_sample)

[1] 22

Arithmetisches Mittel

- Metrisches Skalenniveau
- Summe aller Fälle durch Anzahl der Fälle teilen

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

random_sample

[1] 37 1 25 10 36 18 24 7 20 26

mean(random_sample)

[1] 20.4

Verteilungsformen

Symmetrisch (Normalverteilung)

$$x_{mod} = \tilde{x} = \bar{x}$$

Linkssteil / Rechtsschief

$$x_{mod} < \tilde{x} < \bar{x}$$

Rechtssteil / Linksschief

$$x_{mod} > \tilde{x} > \bar{x}$$

Streuungsmaße

Spannweite

- Ordinales Skalenniveau
- Differenz zwischen größter und kleinster Ausprägung

$$R = x_{max} - x_{min}$$

Interquartilsabstand (IQR)

- Ordinales Skalenniveau
- Intervall der mittleren 50% der Stichprobe

$$IQR = Q_{0.75} - Q_{0.25}$$

Variation (Summe der Abweichungsquadrate)

- Metrisches Skalenniveau
- Englisch: Sum of squares / sum of squared deviations

$$SS_x = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Varianz

- Metrisches Skalenniveau
- Standardisierte Variation

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Standardabweichung

- Metrisches Skalenniveau
- Quadratwurzel der Varianz
- Durchschnittliche Abweichung von Werten zum Arithmetischen Mittel

$$\sigma_{x_{Population}} = \sqrt{\sigma_x^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\sigma_{x_{Population}} = \sqrt{s_x^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

$$s_{x_{Stichprobe}} = \sqrt{s_x^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$$

Variationskoeffizient (Abweichungskoeffizient)

- Metrisches Skalenniveau
- Relatives Streuungsmaß, d.h. nicht abhängig von der Maßeinheit der Variable
- Standardbweichung in Relation zum Arithmetischen Mittel

$$V_x = \frac{s_x}{\bar{x}}$$

Standardfehler

• (Durchschnittliche) Abweichung von Stichprobenkennwerten zu Populationskennwerten, z.B. vom Mittelwert

Standardfehler des Arithmetischen Mittelwertes (Standard error of the mean)

- Symbol des Populationsmittelwertes: μ
- Symbol des Stichprobenmittelwertes \bar{x}

$$\begin{split} \sigma_{\bar{x}_{Population}} &= \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\sigma^2}{n}} \\ s_{\bar{x}_{Stichprobe}} &= \frac{s}{\sqrt{n}} = \sqrt{\frac{s^2}{n}} \\ \hat{\sigma}_{\bar{x}_{Population, gesch\"{a}tzt}} &= \frac{s}{\sqrt{n-1}} = \sqrt{\frac{s^2}{n-1}} \end{split}$$

Standardfehler des Anteilswertes

- Symbol des Populationsanteilswertes: π
- Symbol des Stichprobenanteilswertes: p_x

$$\sigma(p_x)_{Population} = \sqrt{\frac{\pi_x \cdot (1 - \pi_x)}{n}}$$

Schätzung der Populationsvarianz: $\pi_x \cdot (1-\pi_x)$ aus der Stichprobenvarianz: $p_x \cdot (1-p_x)$

$$\hat{\sigma}(p_x)_{Population} = \sqrt{\frac{p_x \cdot (1 - p_x)}{n}}$$

Konfidenzintervall

- Generalisierbarkeit von Parametern aus der Stichprobe (auf die Population)
- Geschätzter Intervallbereich, in dem Parameter der Grundgesamtheit mit einer bestimmten Wahrscheinlichkeit liegen

5

• Z-Standardisierung: $z = \frac{x-\mu}{\sigma}$

Konfidenzintervall des Populationsmittelwertes (μ_x)

• Kleine Stichproben: t-Verteilung

• Große Stichproben: Standardnormalverteilung

Bestimmung der Intervallgrenzen:

$$\bar{x} - \frac{s_x}{\sqrt{n-1}} \cdot z_{(1-\frac{\alpha}{2})} < \mu_x < \bar{x} + \frac{s_x}{\sqrt{n-1}} \cdot z_{(1-\frac{\alpha}{2})}$$

Konfidenzintervall des Populationsanteilswertes (π_x)

• Standardnormalverteilung (wenn Stichprobe ausreichend groß)

Bestimmung der Intervallgrenzen:

$$p_x - \sqrt{\frac{p_x \cdot (1 - p_x)}{n}} \cdot z_{(1 - \frac{\alpha}{2})} < \pi_x < p_x + \sqrt{\frac{p_x \cdot (1 - p_x)}{n}} \cdot z_{(1 - \frac{\alpha}{2})}$$

t-Test

t-Test: Mittelwert

t-Test für einen Mittelwert

- H_0 : $\mu_1 = \mu$
- H_A : $\mu_1 \neq \mu$

Teststatistik:

$$Z = \frac{\bar{x} - \mu}{\frac{s_x}{\sqrt{n-1}}}$$

- Kritische Testwerte bei z_{α} und $z_{(1-\alpha)}$

t-Test für 2 Mittelwerte

- H_0 : $\mu_1 \mu_2 = 0$ H_A : $\mu_1 \mu_2 \neq 0$

Teststatistik:

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_{x_1}^2}{n_1 - 1} - \frac{s_{x_2}^2}{n_2 - 1}}}$$

6

- Kritische Testwerte bei $z_{\frac{\alpha}{2}}$ und $z_{(1-\frac{\alpha}{2})}$

t-Test: Populationsanteil

t-Test für einen Populationsanteil

- H_0 : $\pi_1 = \pi$
- H_A : $\pi_1 \neq \pi$

Teststatistik:

$$Z = \frac{p - \pi}{\sqrt{\frac{\pi \cdot (1 - \pi)}{n}}}$$

- Kritische Testwerte bei z_{α} und $z_{(1-\alpha)}$

t-Test für 2 Populationsanteile

- H_0 : $\pi_1 \pi_2 = 0$
- H_A : $\pi_1 \pi_2 \neq 0$

Teststatistik:

$$Z = \frac{p_1 - p_2}{\sqrt{\frac{p_1 \cdot (1 - p_1)}{n_1} + \frac{p_2 \cdot (1 - p_2)}{n_2}}}$$

- Kritische Testwerte bei $z_{\frac{\alpha}{2}}$ und $z_{(1-\frac{\alpha}{2})}$

Chi-Quadrat-Unabhängigkeitstest (χ^2)

- Bivariater Test auf stochastische Unabhängigkeit
 - $-H_0$: Beide Zufallsvariablen sind stochastisch unabhängig voneinander
 - \mathcal{H}_{A} : Beide Zufallsvariablen sind stochastisch nicht unabhängig voneinander

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

- \bullet i: "Zeilen"
- j: "Spalten"
- n_{ij} : Beobachtete Häufigkeiten
- e_{ij} : Erwartete Häufigkeiten

$$-e_{ij} = \frac{n_i \cdot n_j}{n}$$

- $* n_i$: Zeilenhäufigkeit
- * n_i : Spaltenhäufigkeit

Berechnung der Freiheitsgrade (degrees of freedom): $df = (I-1) \cdot (J-1)$

Zusammenhangsmaße auf Basis von χ^2

$$\phi = \sqrt{\frac{\chi^2}{n}}$$

$$Cramer's \ V = \sqrt{\frac{\chi^2}{n \cdot (k-1)}}$$

$$Kontingenzkoeffizient \ C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

$$C_{korrigiert} = \frac{C}{\sqrt{\frac{k-1}{k}}}$$

 \bullet $k=Kleinste\ Zeilenzahl\ oder\ Spaltenzahl$

F-Test – Einfaktorielle Varianzanalyse

- F-Test testet den Anteil erklärter Varianz an unerklärter Varianz zwischen mehreren Gruppen
- x_{ij} :
- \bar{x}_j : Mittelwert der Gruppe j
- Varianz zwischen den Gruppen: $\sum_{j=1}^p n_j (\bar{x}_j \bar{x})^2$

$$-df_1: j-1$$

• Varianz innerhalb der Gruppen: $\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$

$$- df_2 : n - j$$

Teststatistik:

$$F = \frac{erkl\ddot{a}rte\ Varianz}{unerkl\ddot{a}rte\ Varianz} = \frac{\frac{Varianz\ zwischen\ den\ Gruppen}{df_1}}{\frac{Varianz\ innerhalb\ der\ Gruppen}{df_2}} = \frac{\frac{\sum_{j=1}^{p}n_j(\bar{x}_j - \bar{x}_j)^2}{j-1}}{\frac{\sum_{j=1}^{p}\sum_{i=1}^{n_j}(x_{ij} - \bar{x}_j)^2}{n-j}}$$