Cryptography Lecture 6

Arkady Yerukhimovich

September 16, 2024

Outline

- 1 Lecture 5 Review
- Quiz on Reductions
- 3 Review of PRG+OTP Proof
- 4 Chosen-Plaintext Attack (CPA) Security (Chapter 3.4.2)
- 5 Pseudorandom Function (PRF) (Chapter 3.5.1)

Lecture 5 Review

- Security of PRG+OTP
- Quiz on reductions

Outline

- Lecture 5 Review
- Quiz on Reductions
- 3 Review of PRG+OTP Proof
- 4 Chosen-Plaintext Attack (CPA) Security (Chapter 3.4.2)
- 5 Pseudorandom Function (PRF) (Chapter 3.5.1)

Problem 1

Let
$$G: \{0,1\}^n \to \{0,1\}^{n+1}$$
 be a PRG. Prove that

$$G'(s) = \overline{G(s)}$$

is a secure PRG

Pr (+, win , G) = P. [d. win v. G'] = + pos (n)

Problem 2

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme secure vs. eavesdropper. Prove that

$$\operatorname{Enc}_k'(m) = \overline{\operatorname{Enc}_k(m)}$$

is also secure

if 6=0, c= fre(n)

T = Eucl(n

Problem 3

What would change if we defined $\operatorname{Enc}'_k(m) = \operatorname{Enc}_k(\overline{m})$

What is a PRG (Informal)

PRG says the following two distributions are indistinguishable

- $s \leftarrow \{0,1\}^n$, output G(s)
- $r \leftarrow \{0,1\}^{l(n)}$

What is a PRG (Informal)

PRG says the following two distributions are indistinguishable

- $s \leftarrow \{0,1\}^n$, output G(s)
- $r \leftarrow \{0,1\}^{l(n)}$ $\forall x \in L_{l_1} \cup {\ell(n)}$

Observations:

• This does not mean that G(s) = r. Equality of distributions, not strings

What is a PRG (Informal)

PRG says the following two distributions are indistinguishable

- $s \leftarrow \{0,1\}^n$, output G(s)
- $r \leftarrow \{0,1\}^{l(n)}$

Observations:

- This does not mean that G(s) = r. Equality of distributions, not strings
- In particular, incorrect to say string w is pseudorandom

What is a PRG (Informal)

PRG says the following two distributions are indistinguishable

- $s \leftarrow \{0,1\}^n$, output G(s)
- $r \leftarrow \{0,1\}^{l(n)}$

Observations:

- This does not mean that G(s) = r. Equality of distributions, not strings
- In particular, incorrect to say string w is pseudorandom
- Indistinguishability only holds for PPT adversaries

What is a PRG (Informal)

PRG says the following two distributions are indistinguishable

- $s \leftarrow \{0,1\}^n$, output G(s)
- $r \leftarrow \{0,1\}^{l(n)}$

Observations:

- This does not mean that G(s) = r. Equality of distributions, not strings
- In particular, incorrect to say string w is pseudorandom
- Indistinguishability only holds for PPT adversaries
- Most easily captured in a game

Outline

- Lecture 5 Review
- Quiz on Reductions
- 3 Review of PRG+OTP Proof
- 4 Chosen-Plaintext Attack (CPA) Security (Chapter 3.4.2)
- 5 Pseudorandom Function (PRF) (Chapter 3.5.1)

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

Assumption: $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$ is PRG

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK^{eav}_{A_c,\Pi}(1^n)=1$] $>1/2+1/\mathsf{poly}(n)$)
- Construct A_r that breaks G:

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

Assumption: $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c}^{eav}\Pi(1^n)=1] > 1/2 + 1/poly(n))$
- Construct A_r that breaks G:

PRG+OTP Encryption

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

Intuition

• A_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s), uses r as mask

Arkady Yerukhimovich 10 / 30

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK^{eav}_{A_c,\Pi}(1^n)=1$] $>1/2+1/\mathsf{poly}(n)$)
- Construct A_r that breaks G:

PRG+OTP Encryption

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- $\operatorname{Enc}(k, m)$: $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

Intuition

- \mathcal{A}_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s), uses r as mask
- If $r \leftarrow \{0,1\}^{l(n)}$, Π is just OTP $(\Pr[A_c \text{ WINS}] = 1/2)$

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK^{eav}_{A_c,\Pi}(1^n)=1$] $>1/2+1/\mathsf{poly}(n)$)
- Construct A_r that breaks G:

PRG+OTP Encryption

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- $\operatorname{Enc}(k, m)$: $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

10 / 30

Intuition

- A_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s), uses r as mask
- If $r \leftarrow \{0,1\}^{l(n)}$, Π is just OTP $(\Pr[\mathcal{A}_c \text{ WINS}] = 1/2)$
- If r = G(s), Π is PRG+OTP (by assumption, $\Pr[A_c \text{WINS}] > 1/2 + 1/\mathsf{poly}(n)$)

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π (Pr[$PrivK^{eav}_{A_c,\Pi}(1^n)=1$] $>1/2+1/\mathsf{poly}(n)$)
- Construct A_r that breaks G:

PRG+OTP Encryption

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- $\operatorname{Enc}(k,m)$: $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

10 / 30

Intuition

- A_r receives either $r \leftarrow \{0,1\}^{l(n)}$ or r = G(s), uses r as mask
- If $r \leftarrow \{0,1\}^{l(n)}$, Π is just OTP $(\Pr[\mathcal{A}_c \text{ WINS}] = 1/2)$
- If r = G(s), Π is PRG+OTP (by assumption, $\Pr[A_c \text{WINS}] > 1/2 + 1/\text{poly}(n)$)
- A_r runs A_c generating challenge c using r, observes if A_c wins, and if so outputs "PRG".

PRG+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$.
- If b=0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b=1, he chooses $s \leftarrow \{0,1\}^n$, and computes r=G(s). He gives r to \mathcal{D} .
- ${\bf o}$ On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., D wins) if b' = b

PrivK4.0

- A outputs two messages $m_0, m_1 \in M$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
- f v We say that ${\sf Priv}{\sf K}^{\sf cav}_{{\cal A},\Pi}=1$ (i.e., ${\cal A}$ wins) if b'=b.

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}$ "
- Enc(k, m): c = G(k) ⊕ m • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1}. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$ if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- \bullet On input r, the distinguisher \mathcal{D} outputs a guess b'
- $PRG_{D,G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK**

- A outputs two messages $m_0, m_1 \in M$
- The challenger chooses k ← Gen, b ← {0,1}, computes $c \leftarrow \text{Enc}_{k}(m_{k})$ and gives c to A
- A outputs a guess bit b'
- We say that $PrivK_{AD}^{eav} = 1$ (i.e., A wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c,\Pi}^{eav}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:

PRG+OTP Encryption

- Gen(1ⁿ): $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- $\bullet \ \mathit{PRG}_{\mathcal{D},\mathcal{G}}(\mathit{n}) = 1 \ \mathsf{(i.e.,} \ \mathcal{D} \ \mathsf{wins)} \ \mathsf{if} \ \mathit{b}' = \mathit{b}$

PrivK_{A,II}

- A outputs two messages $m_0, m_1 \in \mathcal{M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{ap}_{a,D} = 1 (i.e., A wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \overline{\{0,1\}^{I(n)} \text{ is PRG}}$ Goal: Prove that $\Pi = \mathsf{PRG} + \mathsf{OTP}$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c,\Pi}^{eav}(1^n)] > 1/2 + 1/poly(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0,1}.
 If b = 0, he chooses r ← {0,1}^{f(n)};
 if b = 1, he chooses s ← {0,1}ⁿ, and computes r = G(s).
 He gives r to D.
- \bullet On input r, the distinguisher $\mathcal D$ outputs a guess b'
- $m{PRG}_{\mathcal{D},G}(\mathbf{n})=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,II}

- $\mathcal A$ outputs two messages $m_0, m_1 \in \mathcal M$
- The challenger chooses k ← Gen, b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- A outputs a guess bit b'

 No arm that Driving Way 1 (i.e. A mine) if b'

 The control of the c
- we we say that $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}} = 1$ (i.e., \mathcal{A} wins) if b' = b.

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT A_c that breaks Π $(\Pr[PrivK_{A_c,\Pi}^{eav}(1^n)] > 1/2 + 1/poly(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- ullet On input r, the distinguisher ${\mathcal D}$ outputs a guess b'
- ullet $PRG_{\mathcal{D},G}(\mathbf{n})=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,П}

- $\mathcal A$ outputs two messages $m_0, m_1 \in \mathcal M$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{eav}_{AD} = 1 (i.e., A wins) if b' = b.
- Assumption: $G: \{0,1\}^n \rightarrow \{0,1\}^{l(n)}$ is PRG

Goal: Prove that $\Pi = PRG + OTP$ is secure

Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)
 - \mathcal{A}_r chooses $b \leftarrow \{0,1\}$ and sets $c = r \oplus m_b$ (challenge)

PRG+OTP Encryption

- Gen(1ⁿ): k ← {0,1}ⁿ
 Enc(k, m): c = G(k) ⊕ m
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher $\mathcal D$ outputs a guess b'
- $PRG_{\mathcal{D},G}(n)=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,П}

- » ${\mathcal A}$ outputs two messages $m_0, m_1 \in {\mathcal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
- ${f a}$ We say that ${\sf PrivK}^{\sf eav}_{{\cal A},\Pi}=1$ (i.e., ${\cal A}$ wins) if b'=b.

Assumption: $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK^{eav}_{\mathcal{A}_c,\Pi}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)
 - A_r chooses $b \leftarrow \{0,1\}$ and sets $c = r \oplus m_b$ (challenge)
 - A_r gives c to A_c and gets bit b'

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}^n$
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b = 0, he chooses $r \leftarrow \{0,1\}^{l(n)}$; if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher D outputs a guess b'
 PRG= a(n) = 1 (i.e. D wine) if b' = b
- $m{PRG}_{\mathcal{D},G}(\mathbf{n})=1$ (i.e., \mathcal{D} wins) if b'=b

PrivK_{A,П}

- ${f a}$ ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses k ← Gen, b ← {0,1}, computes
 c ← Enc_k(m_k) and gives c to A
- A outputs a guess bit b'
- We say that $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}} = 1$ (i.e., \mathcal{A} wins) if b' = b

Assumption: $G: \{0,1\}^n \to \{0,1\}^{I(n)}$ is PRG Goal: Prove that $\Pi = PRG + OTP$ is secure

Proof:

- Assume there exists PPT \mathcal{A}_c that breaks Π $(\Pr[PrivK_{\mathcal{A}_c,\Pi}^{eav}(1^n)] > 1/2 + 1/\operatorname{poly}(n))$
- Construct A_r that breaks G:
 - \mathcal{A}_r gets $r \in \{0,1\}^{l(n)}$ as its challenge (trying to tell if its random or G(s))
 - A_r runs A_c to get (m_0, m_1)
 - A_r chooses $b \leftarrow \{0,1\}$ and sets $c = r \oplus m_b$ (challenge)
 - A_r gives c to A_c and gets bit b'
 - A_r outputs 1 ("PRG") if b = b' and 0 otherwise

PRG+OTP Encryption

- Gen(1ⁿ): k ← {0,1}ⁿ
- Enc(k, m): $c = G(k) \oplus m$ • Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0,1}. If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s). He gives r to \mathcal{D} .
- On input r, the distinguisher D outputs a guess b'
- $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK**

- A outputs two messages $m_0, m_1 \in M$
- The challenger chooses k ← Gen. b ← {0.1}, computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
- We say that PrivK^{eav}_{A,D} = 1 (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ $(Pr[PRG_{A_r,G}(n) = 1])$

PRG+OTP Encryption

- Gen(1ⁿ): k ← {0,1}ⁿ
 Enc(k, m): c = G(k) ⊕ m
- Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1}.
 If b = 0, he chooses r ← {0, 1}^{l(n)};
 if b = 1, he chooses s ← {0, 1}ⁿ, and computes r = G(s).
 He gives r to D.
- On input r, the distinguisher \mathcal{D} outputs a guess b'• $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK_{A,П}

- A outputs two messages $m_0, m_1 \in M$
- The challenger chooses $k \leftarrow \mathsf{Gen}, \ b \leftarrow \{0,1\},$ computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{au}_{A,D} = 1 (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}] (Pr[PRG_{A_r,G}(n) = 1])$

- Case 1: $r \leftarrow \{0,1\}^{l(n)}$
 - \mathcal{A}_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP

PRG+OTP Encryption

- Gen(1"): $k \leftarrow \{0,1\}$ "
- Enc(k, m): c = G(k) ⊕ m
 Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses b ← {0,1}.
 If b = 0, he chooses r ← {0,1}^{r(n)};
 if b = 1, he chooses s ← {0,1}ⁿ, and computes r = G(s).
- He gives r to \mathcal{D} .

 On input r, the distinguisher \mathcal{D} outputs a guess b'
- On input r, the distinguisher D outputs a guing
 PRG_{D,G}(n) = 1 (i.e., D wins) if b' = b

PrivK_{A,П}

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses $k \leftarrow \mathsf{Gen}, \ b \leftarrow \{0,1\},$ computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
 We say that PrivK^{ap}_{AD} = 1 (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}] (Pr[PRG_{A_r,G}(n) = 1])$

- Case 1: $r \leftarrow \{0,1\}^{l(n)}$
 - \mathcal{A}_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] = 1/2$

PRG+OTP Encryption

- Gen(1"): k ← {0,1}"
- Enc(k, m): $c = G(k) \oplus m$ Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1} If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s).
- On input r, the distinguisher D outputs a guess b'
- $PRG_{\mathcal{D}, \mathcal{C}}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK4.0

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen. b ← {0,1}, computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b' • We say that $PrivK_{A,\Omega}^{eav} = 1$ (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ ($Pr[PRG_{A_r G}(n) = 1]$)

He gives r to \mathcal{D} .

- Case 1: $r \leftarrow \{0, 1\}^{l(n)}$
 - \mathcal{A}_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] = 1/2$
- Case 2: r = G(s)
 - A_c receives $c = r \oplus m_b$ with r = G(s), this is OTP+PRG

PRG+OTP Encryption

- Gen(1"): k ← {0,1}" • Enc(k, m): $c = G(k) \oplus m$
- Dec(k, c): $m = G(k) \oplus c$

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1} If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0, 1\}^n$, and computes r = G(s).
- On input r, the distinguisher D outputs a guess b'
- $PRG_{\mathcal{D}, \mathcal{C}}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK4.0

- A outputs two messages m₀, m₁ ∈ M The challenger chooses k ← Gen. b ← {0,1}, computes
- $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
- We say that $PrivK_{A,\Omega}^{eav} = 1$ (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ ($Pr[PRG_{A_r,G}(n) = 1]$)

He gives r to \mathcal{D} .

- Case 1: $r \leftarrow \{0, 1\}^{l(n)}$
 - A_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs } b' = b] = 1/2$
- Case 2: r = G(s)
 - A_c receives $c = r \oplus m_b$ with r = G(s), this is OTP+PRG
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs}]$ b' = b] = $\Pr[PrivK_{A_n}^{eav}(1^n) = 1] \ge 1/2 + 1/poly(n)$

PRG+OTP Encryption

- Gen(1"): k ← {0,1}" Enc(k, m): c = G(k) ⊕ m
- Dec(k, c): m = G(k) ⊕ c

$PRG_{D,G}(n)$

- The challenger chooses b ← {0, 1} If b = 0, he chooses $r \leftarrow \{0, 1\}^{l(n)}$: if b = 1, he chooses $s \leftarrow \{0,1\}^n$, and computes r = G(s).
- He gives r to \mathcal{D} .
- On input r, the distinguisher D outputs a guess b' • $PRG_{\mathcal{D},G}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

PrivK4.0

- A outputs two messages m₀, m₁ ∈ M
- The challenger chooses k ← Gen. b ← {0,1}, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
- We say that $PrivK_{A,\Omega}^{eav} = 1$ (i.e., A wins) if b' = b.

Need to analyze $Pr[A_r \text{ WINS}]$ ($Pr[PRG_{A_r G}(n) = 1]$)

- Case 1: $r \leftarrow \{0, 1\}^{l(n)}$
 - A_c receives $c = r \oplus m_b$ with $r \leftarrow \{0,1\}^{l(n)}$, this is just OTP
 - $\Pr[\mathcal{A}_r(r) = 1] = \Pr[\mathcal{A}_c \text{ outputs } b' = b] = 1/2$
- Case 2: r = G(s)
 - A_c receives $c = r \oplus m_b$ with r = G(s), this is OTP+PRG
 - $\Pr[A_r(r) = 1] = \Pr[A_c \text{ outputs}]$ b' = b] = $\Pr[PrivK_{A_n}^{eav}(1^n) = 1] \ge 1/2 + 1/poly(n)$
- Summing these together, we get

$$\Pr[PRG_{A_r,G}(1^n) = 1] \ge 1/2 \cdot 1/2 + 1/2 \cdot (1/2 + 1/\text{poly}(n))$$

$$= 1/2 + 1/(2\text{poly}(n))$$

Contradiction!

Outline

- 1 Lecture 5 Review
- Quiz on Reductions
- 3 Review of PRG+OTP Proof
- 4 Chosen-Plaintext Attack (CPA) Security (Chapter 3.4.2)
- 5 Pseudorandom Function (PRF) (Chapter 3.5.1)

Where Are We Now

- Features of PRG+OTP encryption
 - Can encrypt messages of arbitrary length, just need PRG with enough stretch.
 - Achieve security against an eavesdropper

Where Are We Now

- Features of PRG+OTP encryption
 - Can encrypt messages of arbitrary length, just need PRG with enough stretch.
 - Achieve security against an eavesdropper
- Limitations of PRG+OTP encryption
 - Can only see one encryption
 - If see two, can tell whether they are equal

CPA Security Intuition

CPA Security

- A is allowed to request encryptions (under key k) of any messages of its choice.
- A still cannot learn any information about encrypted message when seeing challenge ciphertext c.

Why We Need CPA Security - A Historical Motivation

British Mines:

- British would bury a mine at specific latitude, longitude
- When Germans would find the mine, they would encrypt location and send back to HQ
- British intercepted these ciphertexts and used them to break security for German military comm's

Why We Need CPA Security - A Historical Motivation

British Mines:

- British would bury a mine at specific latitude, longitude
- When Germans would find the mine, they would encrypt location and send back to HQ
- British intercepted these ciphertexts and used them to break security for German military comm's

Battle of Midway:

- US forces intercepted and partially decrypted Japanese message
- Learned that Japan was going to attack location "AF" wanted to confirm that this was Midway Island
- US sent out a message that "Midway is low on water" making sure Japanese intercepted it
- Japanese forces send message "AF is low on water" to HQ

Arkady Yerukhimovich Cryptography September 16, 2024 16 / 30

Mythology: An oracle is a person who knows answers to difficult questions.

Mythology: An oracle is a person who knows answers to difficult questions.

Cryptography: An oracle evaluates a function without revealing its internal details.

Mythology: An oracle is a person who knows answers to difficult questions.

Cryptography: An oracle evaluates a function without revealing its internal details.

• Example: Can give oracle access to $\operatorname{Enc}_k(\cdot)$. This allows caller to encrypt m of its choice without learning k.

Mythology: An oracle is a person who knows answers to difficult questions.

Cryptography: An oracle evaluates a function without revealing its internal details.

- Example: Can give oracle access to $\operatorname{Enc}_k(\cdot)$. This allows caller to encrypt m of its choice without learning k.
- Notation:
 - We write $\mathcal{A}^{\mathcal{O}(\cdot)}$ to indicate a party \mathcal{A} given oracle access to some function \mathcal{O} .
 - ullet Calls to ${\mathcal O}$ cost 1 computation step
 - Oracles are a useful tool in security definitions and proofs

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

$\mathsf{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(n)$

• The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{cpa}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{cpa}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{cpa}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi =$ (Gen, Enc, Dec) with message space $\mathcal M$ is CPA-secure if for all PPT $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq 1/2 + \mathsf{negl}(n)$$

Observations

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.
- Adversary can query $\operatorname{Enc}_k(\cdot)$ oracle on any messages of her choice (even m_0 and m_1)

Observations

$PrivK_{A,\Pi}^{cpa}(n)$

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.
- Adversary can query $\operatorname{Enc}_k(\cdot)$ oracle on any messages of her choice (even m_0 and m_1)
- This captures her ability to get people to encrypt messages for her

Observations

$PrivK_{A,\Pi}^{cpa}(n)$

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{\mathcal{A},\Pi}^{cpa}(n) = 1$ (i.e., \mathcal{A} wins) if b' = b.
- Adversary can query $\operatorname{Enc}_k(\cdot)$ oracle on any messages of her choice (even m_0 and m_1)
- This captures her ability to get people to encrypt messages for her
- She still cannot learn any information about encrypted message.

Benefits of CPA-Security

- Can encrypt many messages
 - $oldsymbol{\mathcal{A}}$ gets to see encryptions of many messages of its choice, still cannot break security of challenge
 - Can show that this means that seeing many ciphertexts doesn't help break any of them

Benefits of CPA-Security

- Can encrypt many messages
 - $oldsymbol{\mathcal{A}}$ gets to see encryptions of many messages of its choice, still cannot break security of challenge
 - Can show that this means that seeing many ciphertexts doesn't help break any of them
- Can encrypt arbitrarily long messages
 - ullet Break message m into n-bit blocks, $m=m_1||m_2||\cdots||m_\ell$
 - To encrypt m separately encrypt each m_i .
 - Secure since this is just encrypting many messages

How to Construct CPA-Secure Encryption

- Recall that PRG+OTP encryption allowed us to encrypt long messages.
- But, it still revealed if same message was encrypted many times.

How to Construct CPA-Secure Encryption

- Recall that PRG+OTP encryption allowed us to encrypt long messages.
- But, it still revealed if same message was encrypted many times.

Key Idea

What if encryption (and decryption) could generate a different OTP for each ciphertext?

How to Construct CPA-Secure Encryption

- Recall that PRG+OTP encryption allowed us to encrypt long messages.
- But, it still revealed if same message was encrypted many times.

Key Idea

What if encryption (and decryption) could generate a different OTP for each ciphertext?

Note: We need to produce enough OTP's for as many encryptions as \mathcal{A} wants. So, can't just pre-generate them all.

Outline

- Lecture 5 Review
- Quiz on Reductions
- 3 Review of PRG+OTP Proof
- 4 Chosen-Plaintext Attack (CPA) Security (Chapter 3.4.2)
- 5 Pseudorandom Function (PRF) (Chapter 3.5.1)

Consider a function $f:\{0,1\}^n \to \{0,1\}^n$

Х	f(x)
0000	
0001	
:	
1111	

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$

X	f(x)
0000	
0001	
:	
1111	

Choosing a random function:

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$

×	f(x)
0000	1010
0001	
:	
1111	

Choosing a random function:

Consider a function $f:\{0,1\}^n \to \{0,1\}^n$

X	f(x)
0000	1010
0001	0001
1111	

Choosing a random function:

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$

×	f(x)
0000	1010
0001	0001
:	:
1111	1101

Choosing a random function:

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$

×	f(x)
0000	1010
0001	0001
:	:
1111	1101

Choosing a random function:

- Choose each value f(x) independently and uniformly at random from $\{0,1\}^n$
- This is the same as choosing a uniformly random function from the set of all *n*-bit to *n*-bit functions

Key feature

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2^n OTPs

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells
 - Thus, there are $|\mathcal{F}_n| = (2^n)^{(2^n)} = 2^{n2^n}$ possible functions

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells
 - Thus, there are $|\mathcal{F}_n| = (2^n)^{(2^n)} = 2^{n2^n}$ possible functions
 - Writing down a random f from \mathcal{F}_n requires $\log |\mathcal{F}_n| = n2^n$ bits

- Key feature
 - If haven't queried value of f at x, f(x) is uniformly random.
 - Informally, this gives you 2ⁿ OTPs
- Just one problem
 - Evaluating random functions is terribly inefficient
 - Can't even efficiently specify a random function
 - Each cell in function table has 2ⁿ possibilities
 - There are 2ⁿ cells
 - Thus, there are $|\mathcal{F}_n| = (2^n)^{(2^n)} = 2^{n2^n}$ possible functions
 - Writing down a random f from \mathcal{F}_n requires $\log |\mathcal{F}_n| = n2^n$ bits

Question:

How can we get the benefits of a random function without paying the overhead?

PRF Goals

Construct an efficient, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ such that:

PRF Goals

Construct an efficient, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ such that:

• $F_k(\cdot)$ is efficiently computable

PRF Goals

Construct an efficient, keyed function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ such that:

- $F_k(\cdot)$ is efficiently computable
- For a random key $k \leftarrow \{0,1\}^n$, $F_k(\cdot)$ looks like a random function from n bits to n bits (to someone who doesn't know k).

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$.

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

• The challenger chooses $b \leftarrow \{0,1\}$.

If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$.

if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives $\mathcal D$ an oracle $\mathcal O = \mathcal F_k$.

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = \mathcal{F}_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$. If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = \mathcal{F}_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: F is a secure PRF if for all PPT distinguishers \mathcal{D} , it holds that

$$\Pr[PRF_{\mathcal{D},F}(n)=1] \leq 1/2 + \operatorname{negl}(n)$$

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a deterministic, keyed, poly-time function.

$PRF_{\mathcal{D},F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- With access to oracle \mathcal{O} , the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

Definition: F is a secure PRF if for all PPT distinguishers \mathcal{D} , it holds that

$$\Pr[PRF_{\mathcal{D},F}(n) = 1] \le 1/2 + \operatorname{negl}(n)$$

 \mathcal{D} cannot distinguish between oracle access to a random function and oracle access to a PRF (for a key k he doesn't know).

26 / 30

Observations

Observations:

- ullet ${\cal D}$ can make polynomially many queries to ${\cal O}$
- \bullet $\,\mathcal{D}$ can choose its queries adaptively based on results of earlier queries
- The set of polynomially many evaluations of $F_k(\cdot)$ must look random
- ullet Clearly, this is not possible if ${\mathcal D}$ knows k

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

• If k is random, $F_k(x) = k \oplus x$ is random when evaluated once

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

• Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

- Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.
 - If $\mathcal{O} = F_k$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability 1

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

- Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.
 - If $\mathcal{O} = F_k$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability 1
 - If $\mathcal{O} = f$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability $1/2^n$

Example: Is the following F a secure PRF?

$$F_k(x) = k \oplus x$$

Pseudorandomness:

- If k is random, $F_k(x) = k \oplus x$ is random when evaluated once
- But, consider $F_k(x_1) = k \oplus x_1$ and $F_k(x_2) = k \oplus x_2$:

$$F_k(x_1) \oplus F_k(x_2) = (k \oplus x_1) \oplus (k \oplus x_2) = (x_1 \oplus x_2)$$

- Given oracle \mathcal{O} (either f or F_k), \mathcal{D} evaluates $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$ and outputs 1 (PRF) if $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ and 0 if not.
 - If $\mathcal{O} = F_k$, then $(y_1 \oplus y_2) = (x_1 \oplus x_2)$ with probability 1
 - If $\mathcal{O}=f$, then $(y_1\oplus y_2)=(x_1\oplus x_2)$ with probability $1/2^n$
- So, \mathcal{D} always outputs 1 when $\mathcal{O} = F_k$ and outputs 1 with probability $1/2^n$ when $\mathcal{O} = f$.

$$Pr[D \text{ WINS}] = Pr[b = 1] \cdot 1 + Pr[b = 0] \cdot (1 - 1/2^n) > 1/2$$

Arkady Yerukhimovich Cryptography September 16, 2024 28 / 30

• Pseudorandom permutation (PRP)

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation
- Strong PRP

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation
- Strong PRP
 - Note that a permutation is always *invertible*. For every permutation f, there is a permutation f^{-1} .

- Pseudorandom permutation (PRP)
 - Recall that a permutation is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation
- Strong PRP
 - Note that a permutation is always *invertible*. For every permutation f, there is a permutation f^{-1} .
 - In a strong PRP, we give \mathcal{D} access to oracles for both f and f^{-1} . \mathcal{D} still should not be able to distinguish from a PRP from a random permutation even using both oracles.

- Pseudorandom permutation (PRP)
 - Recall that a *permutation* is a function that is one-to-one and onto with same domain and range (it shuffles the domain)
 - A PRP is a PRF where F_k is a permutation, and for security we compare to the case where f is a random permutation

Strong PRP

- Note that a permutation is always *invertible*. For every permutation f, there is a permutation f^{-1} .
- In a strong PRP, we give \mathcal{D} access to oracles for both f and f^{-1} . \mathcal{D} still should not be able to distinguish from a PRP from a random permutation even using both oracles.
- In applied crypto, this is often called a blockcipher.

Relationship Between PRG and PRF

Goals:

- Clearly, PRG and PRF have similar goals
- Both construct random-looking objects
- Both use this to "create randomness"

Relationship Between PRG and PRF

Goals:

- Clearly, PRG and PRF have similar goals
- Both construct random-looking objects
- Both use this to "create randomness"

Relationships:

- Not hard to show that a PRF can be used to build a PRG
- In fact, PRG can also be used to build a PRF
- But, important to remember the differences in functionalities and security definitions