Metody numeryczne – laboratorium nr 8

Poszukiwanie minimum funkcji jednej zmiennej

Zadanie 1

1) Napisz skrypt, który porówna działanie trzech (z pięciu podanych) metod poszukiwania minimum funkcji 1 zmiennej w podanym przedziale pod kątem czasu potrzebnego na znalezienie rozwiązania oraz liczby iteracji.

Metody poszukiwania minimum 1 zmiennej:

- a) Metoda połowienia,
- b) Metoda złotego podziału,
- c) Metoda aproksymacji kwadratowej (algorytm Powella),
- d) Metoda aproksymacji sześciennej (algorytm Davidona),
- e) Metoda Newtona.
- 2) Przykładowe funkcje nieliniowe do przetestowania skryptu:

L.p.	Funkcja	Przedział		
1.	$f(x) = x^2 - 2$	$<\frac{1}{4},\frac{3}{4}>$		
2.	$f(x) = \frac{1}{3}x^2 - \frac{13}{7}x + 11$	< -10,10 >		
3.	$f(x) = x^4 - 12x^3 + x + 4$	<-2,2>		
4.	$F(x) = -x^3 + 3x^2 - 3x$	<-2,-1>		

3) Wyniki działania skryptu zapisz w tabeli dla dwóch wybranych funkcji przyjmując błąd działania poszczególnych metod $tol=10^{-5}$.

Funkcja	Przedział	Metoda	Minimum	Liczba iteracji	Czas
		Złotego podziału	0.25	24	0.001755
$f(x) = x^2 - 2$	$<\frac{1}{4}, \frac{3}{4}>$	Davidona	0.25	1	0.000950
		Newtona	0.25	1	0.001061
f(x)		Złotego podziału	2.7857	32	0.041728
$f(x) = \frac{1}{3}x^2 - \frac{13}{7}x$	< -10, 10	Davidona	2.7857	1	0.001543
+ 11	>	Newtona	2.7857	1	0.000529

4) Dla każdej z metod przygotuj dwa wykresy:

- a) wykres, na którym narysowana będzie funkcja i zaznaczone rozwiązanie (punkt),
- b) wykres, na którym na osi OX zaznaczone będą kolejne iteracje, a na osi OY wartości funkcji obliczane w kolejnych iteracjach.

/Tu wstaw wykresy/

$$f(x) = \frac{1}{3}x^2 - \frac{13}{7}x + 11$$

Przyda się:

• Warunki stopu:

$$|f'(x_k)| \le ftol$$

$$|x_k - x_{k-1}| \le tol$$

pomiaru czasu

tic - start zegara, toc - stop zegara

obliczanie pierwszej pochodnej numerycznie
$$df(x) = \frac{f(x+h) - f(x-h)}{2*h}$$

gdzie h – mała liczba, np. 0.001

obliczanie drugiej pochodnej numerycznie

$$d2f(x) = \frac{f(x+h) - 2 * f(x) + f(x-h)}{h^2}$$

gdzie h – mała liczba, np. 0.001

rysowanie punktu na wykresie plot (x, y, 'r*') – wygeneruje czerwoną gwiazdkę o współrzędnych (x,y)

Metoda połowienia

Mając dane dwa punkty a i b wyznaczamy środek przedziału jako $x_m = \frac{a+b}{2}$. Następnie wyznaczamy dwa punkty leżące w środkach przedziałów $[a,x_m]$: $x_1 = a + 0.25 \cdot L$ oraz $[x_m,b]$: $x_2 = b - 0.25 \cdot L$, gdzie L = b - a. W kolejnym kroku metody należy odrzucić dwa punkty: po lewej stronie przedziału, po prawej stronie przedziału lub po jednym z każdego końca. Decyzję o tym, które z punktów należy odrzucić podejmuje się na podstawie wartości funkcji w tychże punktach — odrzucamy te o największych wartościach funkcji. Następnie obliczamy nowe L oraz dwa punkty x_1 , x_2 i powtarzamy procedurę.

Warto zauważyć, że w każdym kroku trzeba obliczyć wartości funkcji tylko w dwóch nowych punktach.

Poszukiwanie minimum należy zakończyć, gdy spełniony zostanie warunek $b-a < \epsilon$ lub $|f'(x_m)| < \epsilon$

Metoda złotego podziału

Stosunek złotego podziału to $\varphi = \frac{\sqrt{5}-1}{2}$. Mając dane dwa punkty a i b wyznaczamy dwa punkty wewnętrzne przedziału [a,b]: $x_1 = b - \varphi(b-a)$ i $x_2 = a + \varphi(b-a)$. W kolejnym kroku odrzucamy ten ze skrajnych punktów, w którym wartość funkcji jest największa i dzielimy w złotym stosunku dłuższy z pozostałych dwóch odcinków. W ten sposób znowu otrzymujemy 4 punkty i powtarzamy procedurę.

Warto zauważyć, że w każdym kroku trzeba obliczyć wartość funkcji tylko w jednym nowym punkcie.

Poszukiwanie minimum należy zakończyć, gdy spełniony zostanie warunek $b-a < \epsilon$ lub $|f'(x_m)| < \epsilon$

Aproksymacja kwadratowa — algorytm Powella

Mając dane dwa punkty $x_1=a$ i $x_3=b$ obliczamy punkt x_2 taki, że $x_1< x_2< x_3$, $\Delta_k=x_2-x_1=x_3-x_2$. Na podstawie trzech punktów, oraz wartości funkcji dla nich, wyznaczamy $x_m=x_2-0.5\cdot\Delta_{\frac{f(x_3)-f(x_1)}{f(x_1)-2f(x_2)+f(x_3)}}$. Następnie jako nowe x_2 przyjmujemy x_m i na tej podstawie wyznaczamy nowe wartości dla x_1 oraz x_2 pamiętając, że $\Delta_{k+1}=\frac{\Delta_k}{2}=x_2-x_1=x_3-x_2$. Mając wyznaczone trzy nowe punkty x_1, x_2 oraz x_3 powtarzamy procedurę.

Poszukiwanie minimum należy zakończyć, gdy spełniony zostanie warunek $x_3-x_1<\epsilon$ lub $|f'(x_m)|<\epsilon$

Aproksymacja sześcienna — algorytm Davidona

Mając dane dwa punkty a i b obliczamy punkt x_m zgodnie ze wzorem: $x_m = b - \frac{f'(b) + Q - Z}{f'(b) - f'(a) + 2Q}(b - a)$, gdzie $Q = \sqrt{Z^2 - f'(a) \cdot f'(b)}$ i $Z = \frac{3(f(a) - f(b))}{b - a} + f'(a) + f'(b)$. Następnie należy zwęzić przedział poszukiwań do $[a, x_m]$ lub $[x_m, b]$ badając znak pochodnej w x_m . Jeśli $f'(x_m) > 0$, to zawężamy przedział do $[a, x_m]$, w przeciwnym wypadku do $[x_m, b]$.

Poszukiwanie minimum należy zakończyć, gdy spełniony zostanie warunek $|f'(x_m)| < \epsilon$

Metoda Newtona

Metoda bazuje na wyznaczaniu wartości pierwszej i drugiej pochodnej funkcji f. Początkowy punkt x_1 powinien znajdować się odpowiednio blisko szukanego minimum. Wtedy, kolejny punkt wyznacza się zgodnie ze wzorem: $x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$.

Poszukiwanie minimum należy zakończyć, gdy spełniony zostanie warunek $|f'(x_k)| < \epsilon$.