ITCS 531: L3 homework solutions

Rob Egrot

Complete the proof of theorem 3.3 (don't forget the extra axiom, $\neg \neg_E$).

- ▶ Must check rules $\forall_I, \forall_E, \rightarrow_E$ and $\neg \neg_E$.
- ▶ We'll just do \vee_E .

$$\frac{\phi \lor \psi}{\theta} \quad \frac{\theta}{\theta} \quad \frac{[\psi]}{\theta}$$

- ▶ We have $\Gamma \vdash \phi \lor \psi$, $\Gamma \cup \{\phi\} \vdash \theta$, and $\Gamma \cup \{\psi\} \vdash \theta$.
- **b** by induction, $\Gamma \models \phi \lor \psi$, $\Gamma \cup \{\phi\} \models \theta$, and $\Gamma \cup \{\psi\} \models \theta$.
- Let v be an assignment satisfying Γ. Then v satisfies $\phi \lor \psi$.
- ▶ So v satisfies one or both of ϕ and ψ .
- \triangleright So v also satisfies θ .

Prove that soundness of a deduction system is equivalent to the statement "every satisfiable set of sentences is consistent".

- ► Soundness = $\Gamma \vdash \phi \implies \Gamma \models \phi$ (†).
- "satisfiable implies consistent" = $\Gamma \vdash \bot \implies \Gamma \models \bot$ (‡).

$$\begin{array}{lll} (\dagger) \implies (\dagger). & (\ddagger) \implies (\dagger). \\ \Gamma \vdash \bot \iff \Gamma' \cup \{\psi\} \vdash \bot & \Gamma \vdash \neg \neg \phi & \text{by classical logic} \\ \iff \Gamma' \vdash \neg \psi & \text{by lemma } 3.5(2) \\ \implies \Gamma' \models \neg \psi & \text{by } (\dagger) \\ \iff \Gamma \models \bot & \text{by lemma } 3.5(1). \end{array} \\ \begin{array}{lll} \Gamma \vdash \phi \iff \Gamma \vdash \neg \neg \phi & \text{by classical logic} \\ \iff \Gamma \cup \{\neg \phi\} \vdash \bot & \text{by lemma } 3.5(2) \\ \implies \Gamma \cup \{\neg \phi\} \models \bot & \text{by } (\ddagger) \\ \iff \Gamma \models \neg \neg \phi & \text{by lemma } 3.5(1) \\ \iff \Gamma \models \neg \neg \phi & \text{by lemma } 3.5(1) \\ \iff \Gamma \models \phi. \end{array}$$

Let Γ be a set of sentences in propositional logic. Then Γ is satisfiable if and only if every finite subset of Γ is satisfiable.

- If Γ is satisfiable then every finite subset is obviously satisfiable too.
- We must now prove that if every finite subset of Γ is satisfiable then so is Γ .
- Prove contrapositive: If Γ is not satisfiable then it has a finite subset that is not satisfiable.
- ▶ Suppose Γ is not satisfiable (i.e. $\Gamma \models \bot$). Then, by completeness, $\Gamma \vdash \bot$.
- ▶ The deduction of \bot from Γ can only use a finite set of axioms from Γ . Call this set Γ' .
- ▶ Then $\Gamma' \vdash \bot$, and so by soundness $\Gamma' \models \bot$.
- I.e. Γ' is not satisfiable.