Pesquisa e Publicação de Informação Operações sobre Queries

Nuno D. Mendes

Licenciatura em Sistemas e Tecnologias de Informação

27 Abr 2012 ISEGI – UNL

Motivação

► A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial

Motivação

- ► A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial
- ► A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar

Motivação

- ► A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial
- A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar
- ▶ Pretende-se optimizar a *query* de modo a identificar todos os documentos relevantes para a necessidade de informação

Motivação

- A especificação de uma query de modo a traduzir uma necessidade de informação não é uma tarefa trivial
- A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar
- ▶ Pretende-se optimizar a *query* de modo a identificar todos os documentos relevantes para a necessidade de informação

Tipos de operações

Expansão da query: são introduzidos novos termos de pesquisa

Motivação

- ► A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial
- A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar
- ▶ Pretende-se optimizar a *query* de modo a identificar todos os documentos relevantes para a necessidade de informação

Tipos de operações

- Expansão da query: são introduzidos novos termos de pesquisa
- ▶ Re-pesagem dos termos da *query*: são atribuídos novos pesos aos termos da *query*

Motivação

- A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial
- A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar
- ▶ Pretende-se optimizar a *query* de modo a identificar todos os documentos relevantes para a necessidade de informação

Tipos de operações

- Expansão da query: são introduzidos novos termos de pesquisa
- ▶ Re-pesagem dos termos da *query*: são atribuídos novos pesos aos termos da *query*

Estratégias

► Feedback de Relevância

Motivação

- A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial
- A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar
- ▶ Pretende-se optimizar a *query* de modo a identificar todos os documentos relevantes para a necessidade de informação

Tipos de operações

- Expansão da query: são introduzidos novos termos de pesquisa
- ▶ Re-pesagem dos termos da *query*: são atribuídos novos pesos aos termos da *query*

Estratégias

- ► Feedback de Relevância
- ► Análise Local

Motivação

- ► A especificação de uma *query* de modo a traduzir uma **necessidade de informação** não é uma tarefa trivial
- A query inicial deve ser vista como uma especificação imperfeita/incompleta, porque o utilizador não tem necessariamente consciência nem do modelo de Pesquisa de Informação usado, nem das características da colecção de objectos informacionais que está a interrogar
- ▶ Pretende-se optimizar a *query* de modo a identificar todos os documentos relevantes para a necessidade de informação

Tipos de operações

- Expansão da query: são introduzidos novos termos de pesquisa
- ▶ Re-pesagem dos termos da *query*: são atribuídos novos pesos aos termos da *query*

Estratégias

- ► Feedback de Relevância
- ► Análise Local
- ► Análise Global

Feedback de Relevância

Feedback de Relevância

► Recebe feedback do utilizador quanto à relevância dos documentos obtidos e modifica a *query* inicial de acordo com essa informação

Feedback de Relevância

Feedback de Relevância

 Recebe feedback do utilizador quanto à relevância dos documentos obtidos e modifica a query inicial de acordo com essa informação

No Modelo Vectorial

- $ightharpoonup A_q^+$, conjunto de documentos relevantes identificados pelo utilizador dentre os documentos recuperados para a *query* inicial q
- $ightharpoonup A_q^-$, conjunto respectivo de documentos identificados como não-relevantes
- ▶ $R_{q^*} \subseteq D$, conjunto de documentos relevantes para a query ideal q^* que satisfaz a necessidade de informação.

É possível demonstrar que

$$ec{q^*} = rac{1}{|R_{q^*}|} \sum_{ec{d}_j \in R_{q^*}} ec{d}_j - rac{1}{N - |R_{q^*}|} \sum_{ec{d}_j
ot \in R_{q^*}} ec{d}_j$$

mas o conjunto R_{q^*} não é conhecido a priori.

Feedback de Relevância

► Recebe feedback do utilizador quanto à relevância dos documentos obtidos e modifica a *query* inicial de acordo com essa informação

No Modelo Vectorial

Estratégias clássicas

Rochio
$$\vec{q}_m = \alpha \ \vec{q} + \frac{\beta}{|A_{\mathbf{q}}^+|} \sum_{\vec{d}_j \in A_{\mathbf{q}}^+} \vec{d}_j - \frac{\gamma}{|A_{\mathbf{q}}^-|} \sum_{\vec{d}_j \in A_{\mathbf{q}}^-} \vec{d}_j$$

IDE regular
$$\vec{q}_m = \alpha \ \vec{q} + \beta \ \sum_{\vec{d}_j \in A_q^+} \vec{d}_j - \gamma \ \sum_{\vec{d}_j \in A_q^-} \vec{d}_j$$

IDE Dec-Hi
$$\vec{q}_{\it m} = \alpha \ \vec{q} + \beta \ \sum_{\vec{d}_{\it j} \in A^+_{\it q}} \vec{d}_{\it j} - \gamma \ {\rm arg \ max}_{\vec{d}_{\it j} \in A^-_{\it q}} \sigma(d_{\it j},q)$$

Feedback de Relevância

Feedback de Relevância

 Recebe feedback do utilizador quanto à relevância dos documentos obtidos e modifica a query inicial de acordo com essa informação

No Modelo Vectorial

Estratégias clássicas

Rochio
$$\vec{q}_m = \alpha \ \vec{q} + \frac{\beta}{|A_q^+|} \sum_{\vec{d}_j \in A_q^+} \vec{d}_j - \frac{\gamma}{|A_q^-|} \sum_{\vec{d}_j \in A_q^-} \vec{d}_j$$

IDE regular
$$\vec{q}_m = \alpha \ \vec{q} + \beta \ \sum_{\vec{d}_j \in A_q^+} \vec{d}_j - \gamma \ \sum_{\vec{d}_j \in A_q^-} \vec{d}_j$$

IDE Dec-Hi
$$\vec{q}_m = \alpha \ \vec{q} + \beta \ \sum_{\vec{d}_j \in A_q^+} \vec{d}_j - \gamma \arg \max_{\vec{d}_j \in A_q^-} \sigma(d_j, q)$$

Esta abordagem permite expansão da *query* (novos termos são introduzidos porque o seu peso deixa de ser nulo), e os termos originais têm um novo peso atribuído.

Feedback de Relevância

Feedback de Relevância

► Recebe feedback do utilizador quanto à relevância dos documentos obtidos e modifica a *query* inicial de acordo com essa informação

No Modelo Probabilístico

Ver aula anterior, mas em vez de considerar os r documentos mais relevantes segundo a estimativa inicial, considerar os r documentos indicados pelo utilizador.

Feedback de Relevância

Feedback de Relevância

 Recebe feedback do utilizador quanto à relevância dos documentos obtidos e modifica a query inicial de acordo com essa informação

Avaliação de Estratégias de Feedback de Relevância

As abordagens que pretendam **avaliar o desempenho** de estratégias diferentes de feedback de relevância devem considerar curvas de precisão/recall apenas em relação aos **documentos residuais**, ou seja, em relação aos documentos que se sabem relevantes, mas que ainda não tenham sido indicados pelo utilizador.

Análise Local

Análise Local

Nesta estratégia, os documentos extraídos por via da *query* inicial são analisados de modo a encontrar termos para expandir a *query* de forma automática.

Análise Local

Nesta estratégia, os documentos extraídos por via da *query* inicial são analisados de modo a encontrar termos para expandir a *query* de forma automática.

Expansão de Queries por Clustering Local

Para uma dada *query*, q, A_q designa o conjunto local de documentos extraído, e \mathcal{L}_q um conjunto de todos os termos que ocorrem em A_q , designado de *vocabulário local*.

Clusters de Associação

 $f_{i,j}$, a frequência do termo k_i no documento $d_j \in A_q$

$$M=\{m_{ij}\}_{|\mathcal{L}_{m{q}}|\times|A_{m{q}}|}$$
 é a matriz de associação com $|\mathcal{L}_{m{q}}|$ linhas e $|A_{m{q}}|$ colunas , tal que $m_{ij}=f_{i,j}$

 M^t a matriz transposta de M, então

$$S = MM^t = \{s_{uv}\}$$
 é a matriz local de associação de termos.

Cada elemento s_{uv} exprime uma correlação c_{uv} entre o termo k_u e o termo k_v , i.e.

$$c_{uv} = \sum_{d_j \in A_{q}} f_{u,j} \times f_{v,j}$$

Se fizermos $s_{uv}=c_{uv}$ dizemos que as co-ocorrências de termos são não-normalizadas. Se fizermos $s_{uv}=\frac{c_{uv}}{c_{uu}+c_{uv}-c_{uv}}$, dizemos que são normalizadas.

 $S_u(n)$ define o cluster local de associação e é definido recursivamente como:

$$S_{u}(n) = \begin{cases} \emptyset & \text{if } n = 0 \\ \max \{ s_{uv} \mid u \neq v, \ u, v \in K \} & \text{if } n = 1 \\ S_{u}(n-1) \cup \max \{ s_{uv} \mid s_{uv} \notin S_{u}(n-1) \land u \neq v, \ u, v \in K \} & \text{if } n > 1 \end{cases}$$

ı

Clusters de Associação

 $f_{i,j}$, a frequência do termo k_i no documento $d_j \in A_q$ $M = \{m_{ij}\}_{|\mathcal{L}_{q}| \times |A_{q}|}$ é a matriz de associação com $|\mathcal{L}_{q}|$ linhas e $|A_q|$ colunas , tal que $m_{ii} = f_{i,i}$

 M^t a matriz transposta de M, então

 $S = MM^t = \{s_{uv}\}$ é a matriz local de associação de termos.

Cada elemento s_{uv} exprime uma correlação c_{uv} entre o termo k_u e o termo k_v , i.e.

$$c_{uv} = \sum_{d_i \in A_{\sigma}} f_{u,j} \times f_{v,j}$$

Se fizermos $s_{uv}=c_{uv}$ dizemos que as co-ocorrências de termos são não-normalizadas. Se fizermos $s_{uv}=\frac{c_{uv}}{c_{uu}+c_{uv}-c_{uv}}$, dizemos que são normalizadas.

 $S_u(n)$ define o cluster local de associação e é definido recursivamente como:

$$S_u(n) = \left\{ \begin{array}{ll} \emptyset & \text{if } n = 0 \\ \max\left\{s_{uv} \mid u \neq v, \ u, v \in K\right\} & \text{if } n = 1 \\ S_u(n-1) \, \cup \, \max\left\{s_{uv} \mid s_{uv} \not \in S_u(n-1) \land u \neq v, \ u, v \in K\right\} & \text{if } n > 1 \end{array} \right.$$

Em vez de lisarmos os termos $k \in K$ directamente, nodemos lisar representantes dos

Clusters Métricos

Semelhantes aos clusters de associação, mas consideram as distâncias entre os termos no âmbito dos documentos locais.

 r_{ij} é uma ponderação da distância dos termos k_i e k_j num mesmo documento, medida pelo número de termos que intermedeiam entre k_i e k_j , caso k_i e k_j nunca ocorram no mesmo documento então $r_{ij}=\infty$.

 $[[k_i]]$ designa o conjunto de termos com o mesmo radical (stem) que k_i , definindo um fecho transitivo.

A matriz S passa a ser definida à custa de:

$$c_{uv} = \sum_{k_i \in [[k_u]]} \sum_{k_i \in [[k_v]]} \frac{1}{r_{ij}}$$

com $s_{uv}=c_{uv}$ no caso não-normalizado e $s_{uv}=\frac{c_{uv}}{|||[k_u]||\times||[k_v]||}$, no caso normalizado.

Os clusters $S_u(n)$ são definidos do mesmo modo.

Clusters Escalares

Definidos à custa da semelhança do vector de correlações de dois termos ou stems por via de uma medida escalar (e.g. produto interno normalizado)

$$c_{uv}$$
 a correlação entre os termos (ou stems) k_u e k_v .

$$\vec{lpha}_u = (c_{u1}, c_{u2}, \dots, c_{un})$$
 o vector de correlações do termo (ou stem) k_u .

A matriz *S* passa a ser definida directamente como:

$$s_{uv} = \frac{\vec{\alpha}_u \cdot \vec{\alpha}_v}{|\vec{\alpha}_u| \times |\vec{\alpha}_v|}$$

Os clusters $S_u(n)$ são definidos do mesmo modo.

Análise Global

Análise Global

Nesta estratégia, a *query* inicial é expandida com termos semelhantes identificados através da análise de toda a colecção de documentos

Análise Global

Análise Global

Nesta estratégia, a *query* inicial é expandida com termos semelhantes identificados através da análise de toda a colecção de documentos

Expansão de Queries pela construção de um Tesouro de Semelhança

- A query q passa a ser expressa num espaço de conceitos, semelhante ao modelo vectorial, mas as dimensões representam documentos, e as coordenadas são calculadas à custa da idf (inverse document frequency, semelhante à itf)
- $oldsymbol{\Theta}$ Com base na noção de distância no espaço de conceitos, é calculada a semelhança de cada termo com a *query q*
- $oldsymbol{3}$ A query q é expandida com os r termos mais semelhantes

Análise Global

Nesta estratégia, a *query* inicial é expandida com termos semelhantes identificados através da análise de toda a colecção de documentos

Expansão de Queries pela construção de um Tesouro de Semelhança

- A query q passa a ser expressa num espaço de conceitos, semelhante ao modelo vectorial, mas as dimensões representam documentos, e as coordenadas são calculadas à custa da idf (inverse document frequency, semelhante à itf)
- Com base na noção de distância no espaço de conceitos, é calculada a semelhança de cada termo com a query q
- 3 A *query q* é expandida com os *r* termos mais semelhantes

Expansão de Queries pela construção de um Tesouro Estatístico

Os documentos da colecção são agrupados usando um algoritmo de clustering (complete link) e a noção de semelhança do modelo vectorial. As classes de termos do tesouro são calculadas a partir dos termos **raros** de cada cluster de documentos.