

~~DIS FILE COPY~~

NASA Technical Memorandum 102272

USAAVSCOM Technical Report 90-A-001

AD-A222 543

Rotorcraft Aeromechanical Stability–Methodology Assessment: Phase 2 Workshop

William G. Bousman

DTIC
ELECTE
MAY 30 1990
S D^{cb} D

March 1990

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

National Aeronautics and
Space Administration

US ARMY
AVIATION
SYSTEMS COMMAND

AVIATION RESEARCH AND
TECHNOLOGY ACTIVITY

90 06 28 135

Rotorcraft Aeromechanical Stability–Methodology Assessment: Phase 2 Workshop

William G. Bousman, Ames Research Center, Moffett Field, California

March 1990

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

US ARMY
AVIATION
SYSTEMS COMMAND

AVIATION RESEARCH AND
TECHNOLOGY ACTIVITY
MOFFETT FIELD, CA 94035-1000

ROTORCRAFT AEROMECHANICAL STABILITY -

METHODOLOGY ASSESSMENT PHASE 2 WORKSHOP

William G. Bousman

Ames Research Center

and

Aerofluidynamics Directorate

U.S. Army Research and Technology Activity (AVSCOM)

Introduction

A workshop was held at Ames Research Center August 2-3, 1983 to discuss the results of the Methodology Assessment Phase 2 Continuation. This workshop was a follow-on to the original Methodology Assessment reported in Ref. 1. The present volume contains the predictions that were obtained under the continuation efforts.

The original Integrated Technology Rotor (ITR) Methodology Assessment was a Government-funded study to assess the capability of industry analyses to predict the aeroelastic and aeromechanical stability of rotorcraft. Six different sets of experimental data were used as a baseline ranging from a hingeless rotor model in hover to data on a full-scale bearingless rotor in forward flight as shown in Table 1. For each data set, A through F, several cases or configuration variations were identified to enable comparisons for a range of rotor aeroelastic effects. Analyses from Bell Helicopter Textron, Boeing Helicopters, McDonnell Douglas Helicopter Company, and Sikorsky Aircraft were compared with the data. The first workshop to discuss these results was held in June 1983 at Ames Research Center and was reported in Ref. 1.

Following the original assessment, two data sets were selected for a significantly more detailed comparison in an effort referred to as the Phase 1 Continuation. The first set selected (Data Set A, Case 6) was for the torsionally-soft hingeless rotor model in hover with a soft pitch flexure and negative droop. This particular case had shown the greatest discrepancies in the Methodology Assessment results. The second case (Data Set C, Case 3) was from an aeromechanical rotor-body stability model test where there was extensive data available on modes other than the lead-lag regressing mode. Whereas in the original Methodology Assessment the basis of comparison was the damping of the least stable mode, in the Phase 1 Continuation the damping and frequency of all the rotor modes in the frequency range of the least stable mode were examined.

A Phase 2 Continuation effort followed the Phase 1 work. Additional computations were made with the torsionally-soft hingeless rotor model of Data Set A. The acquisition of frequency data in a vacuum test of this model rotor (Ref. 2) prompted inclusion of new calculations to compare with these data as well. A simplified hypothetical version of the torsionally-soft rotor model was also specified that retained the aeroelastic coupling effects that had caused difficulties in the torsionally-soft rotor comparisons but eliminated the unimportant blade root hardware that complicated the assessments. Finally, two new matched-stiffness configurations were added for the aeromechanical stability test (Data Set C) that had not been examined previously.

Table 1. – Experimental Data Sets

DATA SET	ROTOR TYPE	FUSELAGE COUPLING	FLIGHT CONDITION	SCALE	SOURCE
A	Hingeless	Isolated	Hover	Model	Aeroflightdynamics
B	Hingeless	Rotor-Body	Hover	Model	Aeroflightdynamics
C	Hingeless	Rotor-Body	Hover	Model	Aeroflightdynamics
D	Bearingless	Isolated	Hover	Model	Aeroflightdynamics
E	Bearingless	Rotor-Body	Hover/Fwd Flt	Model	Boeing Helicopters
F	Bearingless	Rotor-Body	Hover/Fwd Flt	Full	Boeing Helicopters

The purpose of this report was to collect and publish the results of the Phase 1 and Phase 2 Methodology Assessment Continuation efforts for use by future investigators. Discussion of these results is not provided in this document; conclusions about the relative merits of the various prediction codes, the quality of the predicted results, or explanation of the sources of differences between predicted and measured data are left to the reader. A full description of the experimental data sets, the experiments themselves, and the prediction codes can be found in Ref. 1. Although the analysis results presented in the figures contained herein should be self-explanatory, additional discussion of some details may be found in Ref. 1. This report is intended to be a companion to that report.

The report is organized into four sections presenting the results for the predictions of the four data sets addressed in the Phase 1 and Phase 2 Continuations.

Torsionally-Soft Hingeless Rotor Model

The damping predictions shown in the original Methodology Assessment for the torsionally-soft rotor model (Data Set A) were obtained for six different cases or configurations. For the Phase 1 and 2 Continuations, more detailed predictions were made for Cases 2 and 6, and these predictions included the damping and frequency of the flap, lead-lag, and torsion modes as well as the blade equilibrium flap, lead-lag, and torsional deflections. The additional parameters calculated in the continuation were intended to help understand the variations in the original lead-lag damping results. The two cases studied, both with the soft pitch-flexure configuration, were Case 2 without precone or droop and Case 6 with -5° droop and no precone. The Case 6 configuration has the largest aeroelastic coupling and showed the widest variations in predicted lead-lag damping. The calculations shown here are outlined in Table 2. The task numbers shown in Table 2 refer to the tasks listed in the continuation statement of work. The calculations are shown on the pages indicated in the table. A symbol is shown on the torsionally-soft rotor plots that represents the case plotted. The middle section of the symbol represents the root configuration and is open for cases with a soft pitch-flexure (Cases 2 and 6). The right hand section of the symbol represents the blade and is horizontal for Case 2 (no precone or droop) and is canted upwards for Case 6 (-5° droop).

Table 2. – Torsionally-Soft Rotor Hover Test (Data Set A)

CASE	PITCH FLEXURE	PRECONE β_{pc} , deg	DROOP β_d , deg	PHASE 2	PAGES
1	stiff	0.0	0.0	–	–
2	soft	0.0	0.0	Tasks 86d, 86e	10-107
3	stiff	5.0	0.0	–	–
4	soft	5.0	0.0	–	–
5	stiff	0.0	-5.0	–	–
6	soft	0.0	-5.0	Tasks 86f, 86g	108-205

The same model properties were used for the Phase 2 calculations as were used in the original Methodology Assessment (Ref. 1) except the analysts were instructed to adjust the chordwise structural properties so that the predicted nonrotating lead-lag frequency matched the measured Case 2 value. The chordwise properties were then fixed for the rest of the torsionally-soft rotor cases. For the Case 2 configuration without precone or droop, the Phase 2 comparisons of theory and experiment for Task 86d are shown on pages 10 to 44. Nonlinear aerodynamic section properties were used for these calculations, that is,

$$c_L = 6\alpha - (\text{sgn}\alpha) 10\alpha^2$$

$$c_d = 0.01 + 11.1|\alpha|^3$$

The same comparisons were made in Task 86e except that linear aerodynamic section properties were used

$$c_L = 2\pi\alpha$$

$$c_d = 0.008$$

The pitching moment was assumed to be zero and the section properties were assumed independent of Mach number for both tasks. The Task 86e calculations are shown on pages 45 to 107. Included in these calculations are comparisons of the linear and nonlinear predictions for each analyst.

Calculations made with nonlinear section properties for Case 6 (Task 86f) are given on pages 108 to 142. The predictions made with linear aerodynamic section properties (Task 86g) are on pages 143 to 205. Again, these latter calculations include comparisons of the linear and nonlinear predictions for each analyst.

Torsionally-Soft Hingeless Rotor Model in Vacuum

Calculations of flap, lead-lag, and torsion frequencies in vacuum were made during the Phase 2 continuation and these are compared here to experimental measurements that have been obtained on the torsionally-soft rotor model (Ref. 2). These results provide an opportunity to compare basic rotor structural and inertial analyses without the additional uncertainties of aerodynamic modeling. The calculations are shown for the cases outlined in Table 3. The comparisons for Case 2 (Task 86b) are on pages 206 to 215. The Case 6 comparisons (Task 86c) are on pages 216 to 225.

Table 3. -- Torsionally-Soft Rotor Vacuum Test

CASE	PITCH FLEXURE	PRECONE β_{pc} , deg	DROOP β_d , deg	PHASE 2	PAGES
2	soft	0.0	0.0	Task 86b	206-215
6	soft	0.0	-5.0	Task 86c	216-225

Hypothetical Torsionally-Soft Hingeless Rotor

Although the torsionally-soft hingeless rotor model represents an almost ideal configuration intended for research purposes, several physical details such as the pitch flexure and blade root retention hardware require some care to properly represent in prediction codes. To remove these complications and provide a more unambiguous basis for analysis comparisons, a hypothetical rotor model was specified for the Phase 2 calculations. This rotor shows a number of simplifications from the actual torsionally-soft rotor model. A sketch of the hypothetical model is shown in Fig. 1 to illustrate the coordinate system that defines the blade pitch and precone angles. The blade of the hypothetical rotor model is defined in a coordinate system b_i^P , where the blade axis system is defined relative to the coordinate system b_j :

$$b_i^P = [C_{ij}] b_j^P$$

$$[C_{ij}] = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix}$$

Figure 1. - Schematic of hypothetical rotor model.

Table 4. - Hypothetical Rotor Properties

Radius, in	36.0
Chord, in	3.5
Blade mass, lb _m /in	0.0167
Blade inertia about elastic axis, lb _m ·in ² /in	0.0167
Flap stiffness, lb·in ²	6000.
Chord stiffness, lb·in ²	100000.
Torsional stiffness, lb·in ²	1800.
Lift curve slope	6.28
Drag coefficient	0.01
Structural damping	0.0

where θ is the blade pitch angle and β is the precone angle. The blade properties are given in Table 4. The blade c.g., and the elastic and tensile axes are at the 25% chord.

Two cases were calculated for the hypothetical rotor as shown in Table 5. The calculations are shown on pages 226-231 for the case without precone (Task 86h) and on pages 232-237 for the case with 5° precone (Task 86i). As in the case of the torsionally-soft rotor calculations a symbol is used on the plots to represent the case being examined. As the hypothetical rotor does not have a pitch flexure there is no middle section to the symbol. The right hand section is either horizontal for zero precone cases or canted up for cases with precone.

Accession For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification _____	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
H-1	

Table 5. - Hypothetical Rotor

PRECONE β_{pc} , deg	PHASE 2	PAGES
0.0	Task 86h	226-231
5.0	Task 86i	232-237

Hingeless Rotor Body Model

Calculations of modal frequency and damping have been compared to the coupled rotor-body experimental model data of Ref. 3 in the Phase 1 and 2 Continuations. Calculations have been made for Case 3 of the original Methodology Assessment as well for configurations not previously examined. The calculation cases are outlined in Table 6. Tabulated parameters in Table 6 include the pitch-lag coupling, θ_ζ , and the elastic coupling, R .

Table 6. - Aeromechanical Stability

CONF. (Ref. 3)	FLAP & LAG STIFFNESSES	θ_ζ	R	METHODOLOGY ASSESSMENT CASES	PHASE 1	PHASE 2	PAGES
1	$\omega_{\beta_0} < \omega_{\zeta_0}$	0.0	0	1,2	-	-	-
2	$\omega_{\beta_0} < \omega_{\zeta_0}$	-0.4	0	3	Task 84-2	-	238-249
3	$\omega_{\beta_0} < \omega_{\zeta_0}$	-0.4	1	-	-	-	-
4	$\omega_{\beta_0} \approx \omega_{\zeta_0}$	0.0	0	-	-	-	-
5	$\omega_{\beta_0} \approx \omega_{\zeta_0}$	-0.4	0	-	-	Tasks 86j, 86k	250-267

The Task 84-2 calculations were made for a blade pitch angle of 9° and are compared to the data on pages 238 to 249. These results include frequency and damping of several modes in addition to the least stable mode that was presented in the original Methodology Assessment. The Phase 2 Continuation addressed a model configuration having roughly equal flap and lead-lag flexure bending stiffness levels. This "matched stiffness" configuration revealed evidence of a dynamic inflow mode that was later confirmed by analysis (Ref. 4). The Task 86j and 86k calculations were addressed to this matched stiffness configuration and included dynamic inflow models where available. For Task 86j the flap and lead-lag flexure thicknesses were adjusted from the Methodology Assessment model parameters to yield nonrotating flap and lead-lag frequencies of 7.04 and 6.64 Hz respectively. For Task 86k the adjustments were made to provide values of 6.73 and 6.64 Hz for the nonrotating flap and lead-lag frequencies. The Task 86j calculations were run for a pitch angle of 9° and are shown on pages 250 to 258. The Task 86k calculations were run for zero pitch and are shown on pages 259 to 267.

References

1. Michael J. McNulty and William G. Bousman (eds.), "Integrated Technology Rotor Methodology Assessment Workshop," NASA CP-10007, June 1983.
2. A. V. Srinivasan, D. G. Cutts, and H. T. Shu, "An Experimental Investigation of a Torsionally Soft Rotor in Vacuum," NASA CR-177418, July 1986.
3. William G. Bousman, "An Experimental Investigation of the Effects of Aeroelastic Couplings on Aeromechanical Stability of a Hingeless Rotor Helicopter," *Journal of the American Helicopter Society*, Vol. 26, No. 1, Jan. 1981, pp. 46-54.
4. W. Johnson, "Influence of Unsteady Aerodynamics on Hingeless Rotor Ground Resonance," *J. Aircraft*, Vol. 29, No. 8, Aug. 1982, pp. 668-673.

APPENDIX

ROTOR CONFIGURATION ANALYSIS DATA

FLAP MODE DAMPING - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

CALCULATION
BELL HELICOPTER TEXTRON
BOEING HELICOPTER
MCDONNELL DOUGLAS HELICOPTER
SIKORSKY AIRCRAFT
AEROFLIGHTDYNAMICS (GRASP)

FLAP MODE FREQUENCY - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON

BOEING HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (GRASP)

30

25

20

15

10

5

0

-12 -8 -4 0 4 8 12

FLAP MODE FREQUENCY, Hz

LEAD-LAG MODE DAMPING - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR

LEAD-LAG MODE FREQUENCY - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

TORSION MODE DAMPING - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON

BOEING HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (CRASP)

TORSION MODE FREQUENCY - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

F LAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

LE. D-LAG EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

CALCULATION

YELL HELICOPTER SYSTEM
BOEING HELICOPTER
MCDONNELL DOUGLAS HELICOPTER
NIKONSKY AIRCRAFT
AEROFLIGHTDYNAMICS (GRASP)

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86c
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 36d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 36d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 3 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

BLADE TIP DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
 $CA_{\Delta L2}$ - TENSIONALLY SOFT ROTOR

BLADE TIP DEFLECTION - TASK 86d
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -12 deg

BLADE TIP DEFLECTION - TASK 86d
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -8 deg

BLADE TIP DEFLECTION - TASK 8c
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -4 deg

BLADE TIP DEFLECTION - TASK 36d
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 0 deg

BLADE TIP DEFLECTION - TASK 86d
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 4 deg

BLADE TIP DEFLECTION - TASK 86d
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 8 deg

BLADE TIP DEFLECTION - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH / ANGLE = 12 deg

FLAP MODE DAMPING - TASK 86^e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON
BOEING HELICOPTER
MCDONNELL DOUGLAS HELICOPTER
SIKORSKY AIRCRAFT
ATRI FLIGHTDYNAMICS (PFLT)

FLAP MODE FREQUENCY - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON

BOEING HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (PFLT)

LEAD-LAG MODE DAMPING - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON

BOEING HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (PFLT)

LEAD-LAG MODE DAMPING, 1/sec

-12

-10

-8

-6

-4

-2

0

-4

-8

-12

12

8

4

0

PITCH ANGLE, deg

LEAD-LAG MODE FREQUENCY - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEYTRON

BOEING H. HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (PFLT)

TORSION MODE DAMPING - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR

TORSION MODE FREQUENCY - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

FLAP MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

LEAD-LAG MODE DAMPING
TENSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

LEAD-LAG MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

TORSION MODE DAMPING
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

FLAP MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

LEAD-LAG MODE DAMPING
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

LEAD-LAG MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

TORSION MODE DAMPING
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

FLAP MODE FREQUENCY
TENSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

LEAD-LAG MODE DAMPING
TENSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

LEAD-LAG MODE FREQUENCY
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

TORSION MODE DAMPING
TENSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

FLAP MODE FREQUENCY
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

LEAD-LAG MODE DAMPING
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

LEAD-LAG MODE FREQUENCY
TENSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

TORSION MODE DAMPING
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

TORSION MODE FREQUENCY
TENSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

FLAP EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

FLAF EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 8be
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE :: -8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINE 1 AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

FLAP MODE DAMPING - TASK 86d
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

CALCULATION
BELL HELICOPTER TEXTRON
BOEING HELICOPTER
MCDONNELL DOUGLAS HELICOPTER
SIKORSKY AIRCRAFT
AEROFLIGHTDYNAMICS (GRASF)

BLADE TIP DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR

BLADE TIP DEFLECTION
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

BLADE TIP DEFLECTION
TENSIONALLY SOFT ROTOR
BOEING HELICOPTER

BLADE TIP DEFLECTION
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

BLADE TIP DEFLECTION
TENSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

BLADE TIP DEFLECTION - TASK 86e
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -12 deg

BLADE TIP DEFLECTION - TASK 86e
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -8 deg

BLADE TIP DEFLECTION - TASK 86e
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -4 deg

BLADE TIP DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

BLADE TIP DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

BLADE TIP DEFLECTION - TASK 86e
LINEAR AERODYNAMIC COEFFICIENTS
CASE 2 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

BLADE TIP DEFLECTION - TASK 86e
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 2 - TORSIONALLY SOFT ROTOR
 $P_{TIP,1} \text{ ANGLE} = 12 \text{ deg}$

FLAP MODE DAMPING - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR

FLAP MODE FREQUENCY - TASK 861
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

FLAP MODE FREQUENCY, Hz

LEAD-LAG MODE DAMPING - TASK 861
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR

LEAD-LAG MODE FREQUENCY - TASK 86f
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR

TORSION MODE DAMPING - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

TORSION MODE FREQUENCY - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

FLAP EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

FLAP EQUILIBRIUM DEFLECTION -- TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION -- TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 -- TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

TOFSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

BLADE TIP DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

BLADE TIP DEFLECTION - TASK 86f
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -12 deg

BLADE TIP DEFLECTION - TASK 86f
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TENSIONALLY SOFT ROTOR
 PITCH ANGLE = -8 deg

BLADE TIP DEFLECTION - TASK 86f
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -4 deg

BLADE TIP DEFLECTION - TASK 86f
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 0 deg

BLADE TIP DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

BLADE TIP DEFLECTION - TASK 86f
 NONLINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 8 deg

BLADE TIP DEFLECTION - TASK 86f
NONLINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

FLAP MODE DAMPING - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

FLAP MODE FREQUENCY - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON

BOEING HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (PFLT)

LEAD-LAG MODE DAMPING - TASK 86G
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR

CALCULATION
BELL HELICOPTER TEXTRON
BOEING HELICOPTER
MCDONNELL DOUGLAS HELICOPTER
SIKORSKY AIRCRAFT
AEROFLIGHTDYNAMICS (PFFL)

LEAD-LAG MODE DAMPING, 1/sec

LEAD-LAG MODE FREQUENCY - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 . TORSIONALLY SOFT ROTOR

CALCULATION

BELL HELICOPTER TEXTRON

BOEING HELICOPTER

MCDONNELL DOUGLAS HELICOPTER

SIKORSKY AIRCRAFT

AEROFLIGHTDYNAMICS (PFLT)

TORSION MODE DAMPING - TASK 86^g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR

TORSION MODE FREQUENCY - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

CALCULATION
CASE 6, NONLINEAR AERO
CASE 6, LINEAR AERO

FLAP MODE FREQUENCY
TENSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

LEAD-LAG MODE DAMPING
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

LEAD-LAG MODE FREQUENCY
TORSIONALLY SOFT RCTOR
BELL HELICOPTER TEXTRON

TORSION MODE DAMPING
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

FLAP MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

LEAD-LAG MODE DAMPING
TENSIONALLY SOFT ROTOR
BOEING HELICOPTER

LEAD-LAG MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

TORSION MODE DAMPING
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
BOEING HELICOPTER

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

CALCULATION
CASE 6, NONLINEAR AERO
CASE 6, LINEAR AERO

FLAP MODE FREQUENCY
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

LEAD-LAG MODE DAMPING
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

LEAD-LAG MODE FREQUENCY
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

TORSION MODE DAMPING
TENSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

FLAP MODE DAMPING
TORSIONALLY SOFT ROTOR
SIKURSKY AIRCRAFT

CALCULATION
CASE 6, NONLINEAR AERO
CASE 6, LINEAR AERO

FLAP MODE FREQUENCY
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

LEAD-LAG MODE DAMPING
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

**LEAD-LAG MODE FREQUENCY
TENSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT**

TORSION MODE DAMPING
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

TORSION MODE FREQUENCY
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

FLAP EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 3 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - FLEXIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 8Cg
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

FLAP EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - FLEXIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

LEAD-LAG EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = -12 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = -4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TENSIONALLY SOFT ROTOR
PITCH ANGLE = 0 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AEROdynamic COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 8 deg

TORSION EQUILIBRIUM DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 12 deg

BLADE TIP DEFLECTION - TASK 86g
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR

BLADE TIP DEFLECTION
TENSIONALLY SOFT ROTOR
BELL HELICOPTER TEXTRON

BLADE TIP DEFLECTION
TENSIONALLY SOFT ROTOR
BOEING HELICOPTER

BLADE TIP DEFLECTION
TENSIONALLY SOFT ROTOR
MCDONNELL DOUGLAS HELICOPTER

BLADE TIP DEFLECTION
TORSIONALLY SOFT ROTOR
SIKORSKY AIRCRAFT

BLADE TIP DEFLECTION - TASK 86g
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -12 deg

BLADE TIP DEFLECTION - TASK 86g
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TENSIONALLY SOFT ROTOR
 PITCH ANGLE = -8 deg

BLADE TIP DEFLECTION - TASK 86g
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = -4 deg

BLADE TIP DEFLECTION - TASK 86g
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TENSIONALLY SOFT ROTOR
 PITCH ANGLE = 0 deg

BLADE TIP DEFLECTION - TASK 86g
LINEAR AERODYNAMIC COEFFICIENTS
CASE 6 - TORSIONALLY SOFT ROTOR
PITCH ANGLE = 4 deg

BLADE TIP DEFLECTION - TASK 86g
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 8 deg

BLADE TIP DEFLECTION - TASK 86G
 LINEAR AERODYNAMIC COEFFICIENTS
 CASE 6 - TORSIONALLY SOFT ROTOR
 PITCH ANGLE = 12 deg

1st FLAP MODE FREQUENCY IN A VACUUM - TASK 86b
CASE 2 - TORSIONALLY SOFT ROTOR

1st LEAD-LAG MODE FREQUENCY IN A VACUUM - TASK 86b
CASE 2 - TENSIONALLY SOFT ROTOR

1st TORSION MODE FREQUENCY IN A VACUUM - TASK 86b
CASE 2 - TORSIONALLY SOFT ROTOR

2nd FLAP MODE FREQUENCY IN A VACUUM - TASK 86b
CASE 2 - TORSIONALLY SOFT ROTOR

MODAL FREQUENCIES IN A VACUUM - TASK 86b
 CASE 2 - TORSIONALLY SOFT ROTOR
 BELL HELICOPTER TEXTRON

MODAL FREQUENCIES IN A VACUUM - TASK 86b
 CASE 2 - TORSIONALLY SOFT ROTOR
 BOEING HELICOPTER

MODAL FREQUENCY, Hz

MODAL FREQUENCIES IN A VACUUM - TASK 86b
 CASE 2 - TENSIONALLY SOFT ROTOR
 MCDONNELL DOUGLAS HELICOPTER

MODAL FREQUENCIES IN A VACUUM - TASK 86b
 CASE 2 - TENSIONALLY SOFT ROTOR
 SIKORSKY AIRCRAFT

MODAL FREQUENCIES IN A VACUUM - TASK 86b
 CASE 2 - TENSIONALLY SOFT ROTOR
 AEROFLIGHTDYNAMICS (PFLT)

MODAL FREQUENCIES IN A VACUUM - TASK 86b
 CASE 2 - TENSIONALLY SOFT ROTOR
 AEROFLIGHTDYNAMICS (GRASP)

1st FLAP MODE FREQUENCY IN A VACUUM - TASK 86c
CASE 6 - TORSIONALLY SOFT ROTOR

1st LEAD-LAG MODE FREQUENCY IN A VACUUM - TASK 86c
CASE 6 - TORSIONALLY SOFT ROTOR

1st TORSION MODE FREQUENCY IN A VACUUM - TASK 86c
CASE 6 - TENSIONALLY SOFT ROTOR

2nd FLAP MODE FREQUENCY IN A VACUUM - TASK 86c
CASE 6 - TORSIONALLY SOFT ROTOR

MODAL FREQUENCIES IN A VACUUM - TASK 86c
 CASE 6 - TENSIONALLY SOFT ROTOR
 BFLL HELICOPTER TEXTRON

MODAL FREQUENCIES IN A VACUUM - TASK 86c
CASE 6 - TENSIONALLY SOFT ROTOR
BOEING HELICOPTER

MODAL FREQUENCIES IN A VACUUM - TASK 86c
 CASE 6 - TENSIONALLY SOFT ROTOR
 MCDONNELL DOUGLAS HELICOPTER

MODAL FREQUENCIES IN A VACUUM - TASK 86c
 CASE 6 - TORSIONALLY SOFT ROTOR
 SIKORSKY AIRCRAFT

MODAL FREQUENCIES IN A VACUUM - TASK 86c
CASE 6 - TENSIONALLY SOFT ROTOR
AEROFLIGHTDYNAMICS (PFLT)

MODAL FREQUENCIES IN A VACUUM - TASK 86c
 CASE 6 - TORSIONALLY SOFT ROTOR
 AEROFLIGHTDYNAMICS (GRASP)

FLAP MODE DAMPING - TASK 86h
SIMPLIFIED ROTOR WITHOUT PRECONE

FLAP MODE FREQUENCY - TASK 86h
SIMPLIFIED ROTOR WITHOUT PRECONE

LEAD-LAG MODE DAMPING - TASK 86h
SIMPLIFIED ROTOR WITHOUT PREZONE

LEAD-LAG MODE FREQUENCY - TASK 86h
SIMPLIFIED ROTOR WITHOUT PRECONE

TORSION MODE DAMPING - TASK 86h
SIMPLIFIED ROTOR WITHOUT PRECONE

TORSION MODE FREQUENCY - TASK 86h
SIMPLIFIED ROTOR WITHOUT PRECONE

FLAP MODE DAMPING - TASK 86i
SIMPLIFIED ROTOR WITH 5 deg. PRECONI

FLAP MODE FREQUENCY - TASK 86i
SIMPLIFIED ROTOR WITH 5 deg. PRECONE

LEAD-LAG MODE DAMPING - TASK 86i
SIMPLIFIED ROTOR WITH 5 deg. PRECONE

LEAD-LAG MODE FREQUENCY - TASK 86i
SIMPLIFIED ROTOR WITH 5 deg. PRECONE

TORSION MODE DAMPING - TASK 86i
SIMPLIFIED ROTOR WITH 5 deg. PRECONE

TORSION MODE FREQUENCY – TASK 86;
SIMPLIFIED ROTOR WITH 5 deg. PRECONE

MODAL DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
BELL HELICOPTER TEXTRON

MODAL FREQUENCY - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
BELL HELICOPTER TEXTRON

REGRESSING LEAD-LAG MODE DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
BELL HELICOPTER TEXTRON

MODAL DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
BOEING HELICOPTER

MODAL FREQUENCY - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
BOEING HELICOPTER

REGRESSING LEAD-LAG MODE DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
BOEING HELICOPTER

MODAL DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
SIKORSKY AIRCRAFT

MODAL FREQUENCY - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
SIKORSKY AIRCRAFT

REGRESSING LEAD-LAG MODE DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
SIKORSKI AIRCRAFT

MODAL DAMPING - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
AEROFLIGHTDYNAMICS

MODAL FREQUENCY - TASK 84-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
AEROFLIGHTDYNAMICS

REGRESSING LEAD-LAG MODE DAMPING - TASK 8A-2
CONFIGURATION 3, PITCH ANGLE = 9 deg
AEROFLIGHTDYNAMICS

MODAL DAMPING - TASK 86j
 CONFIGURATION 5, FITCH ANGLE = 9 deg
 BELL HELICOPTER TEXTRON

MODAL FREQUENCY - TASK 86;
CONFIGURATION 5, PITCH ANGLE = 9 deg
BELL HELICOPTER TEXTRON

REGRESSING LEAD-LAG MODE DAMPING - TASK 86j
CONFIGURATION 5, PITCH ANGLE = 9 deg
BELL HELICOPTER TEXTRON

MODAL DAMPING - TASK 86j
 CONFIGURATION 5, PITCH ANGLE = 9 deg
 SIKORSKY AIRCRAFT

MODAL FREQUENCY - TASK 86
CONFIGURATION 5, PITCH ANGLE = 9 deg
SIKORSKY AIRCRAFT

REGRESSING LEAD-LAG MODE DAMPING - TASK 86j
CONFIGURATION 5, PITCH ANGLE = 9 deg
SIKORSKY AIRCRAFT

MODAL DAMPING - TASK 86j
CONFIGURATION 5, PITCH ANGLE = 9 deg
U.S. ARMY AEROFIGHTDYNAMICS

MODAL FREQUENCY - TASK 86j
CONFIGURATION 5, PITCH ANGLE = 9 deg
U.S. ARMY AEROFLIGHTDYNAMICS

REGRESSING LEAD-LAG MODE DAMPING - TASK 86j
CONFIGURATION 5, PITCH ANGLE = 9 deg
U.S. ARMY AEROFIGHTDYNAMICS

MODAL DAMPING - TASK 86K
CONFIGURATION 5. PITCH ANGLE = 0 deg
BELL HELICOPTER TEXTRON

MODAL FREQUENCY - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
BELL HELICOPTER TEXTRON

REGRESSING LEAD-LAG MODE DAMPING - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
BELL HELICOPTER TEXTRON

MODAL DAMPING - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
SIKORSKY AIRCRAFT

MCDAL FREQUENCY - TASK 86K
 CONFIGURATION 5, PITCH ANGLE = 0 deg
 SIKORSKY AIRCRAFT

REGRESSING LEAD-LAG MODE DAMPING - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
SIKORSKY AIRCRAFT

MODAL DAMPING - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
U.S. ARMY AEROFLIGHTDYNAMICS

**MODAL FREQUENCY - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
U.S. ARMY AEROFIGHTDYNAMICS**

REGRESSING LEAD-LAG MODE DAMPING - TASK 86K
CONFIGURATION 5, PITCH ANGLE = 0 deg
U.S. ARMY AEROFLIGHTDYNAMICS

Report Documentation Page

1. Report No. NASA TM-102272 USAAVSCOM TR-90-A-001	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle Rotorcraft Aeromechanical Stability—Methodology Assessment: Phase 2 Workshop		5. Report Date March 1990	
7 Author(s) William G. Bousman		6. Performing Organization Code	
9. Performing Organization Name and Address Ames Research Center and Aeroflightdynamics Directorate U.S. Army Aviation Research and Technology Activity Ames Research Center, Moffett Field, CA 94035-1000		8. Performing Organization Report No A-90049	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration and U.S. Army Aviation Systems Command St. Louis, MO 63120-1798		10. Work Unit No. 992-21-01	
15. Supplementary Notes Point of Contact: William G. Bousman, Ames Research Center, MS 215-1 Moffett Field, CA 94035-1000 (415) 604-3748 or FTS 464-3748		11. Contract or Grant No.	
13. Abstract Helicopter rotor aeroelastic and aeromechanical stability predictions for four data sets were made using industry and government stability analyses and compared with data at a workshop held at Ames Research Center, August 2-3, 1988. The present report contains the workshop comparisons.			
17. Key Words (Suggested by Author(s)) Aeromechanic stability; Aeroelastic stability; Rotorcraft dynamics; Aeroelasticity;	18. Distribution Statement Unclassified-Unlimited	Subject Category - 01	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 268	22. Price A12