Задание №4

Цель задания:

 исследование скрытых характеристик сигналов электроэнцефалографии

Ключевой навык:

• расчет спектральной плотности, вейвлет преобразование

Задание:

Загрузите запись ЭЭГ из базы данных:

https://zenodo.org/records/2547147#.Y7eU5uxBwll Выберите любой файл в формате EDF. По аннотации из датасета определите, где в записи ЭЭГ указан приступ. Постройте график временной зависимости ЭЭГ в момент приступа (выбирайте диапазон времени и масштаб так, чтобы было наглядно). Сделайте усреднение всех каналов ЭЭГ в один (нужно сложить все каналы и разделить на их количество). Удалите из сигнала все частоты выше 60 Гц. Для этого преобразованного сигнала:

- 1. постройте спектрограмму сигнала;
- 2. постройте вейвлет-преобразование (скейлограмму).

1. Набор данных и предварительная обработка

- Выбран набор данных eeg5.edf.
- С использованием библиотеки MNE загружен EDF-набор данных, получены следующие параметры: частота дискретизации — 256 Гц, длительность записи — 3840 секунд, количество сигнальных каналов — 21.
- Путем анализа файла annotations_2017_A.csv
 идентифицированы периоды эпилептических приступов:
 [0, 128], [258, 887], [976, 1509], [1681, 2533],
 [2660, 3500] секунд. Для дальнейшей обработки
 выбран временной интервал [0, 128] секунд.

2.Визуализация данных

• Построен исходный график сигналов ЭЭГ

实验目的

本实验旨在研究脑电图(EEG)信号的隐藏特征,主要关注: 1. 从 EEG数据库中识别癫痫发作时段 2. 对EEG信号进行预处理和特征 提取 3. 应用频谱分析和小波变换技术分析EEG信号

关键词

• 计算频谱密度、小波变换

任务

从数据库下载脑电图记录:

https://zenodo.org/records/2547147#.Y7eU5uxBwll 选择 EDF 格式的任何文件。使用数据集中的注释,确定 EEG 记录中指示癫痫发作的位置。构建癫痫发作时 EEG 的时间依赖性图表(选择时间范围和比例,使其清晰)。将所有 EEG 通道平均为一个(您需要将所有通道相加并除以它们的数量)。从信号中删除 60 Hz 以上的所有频率。对于此转换后的信号:

- 1) 构建信号的频谱图;
- 2) 构建一个小波变换 (skeylogram)。

1. 数据集与预处理

- 选择数据集 eeg5.edf
- 通过mne加载edf数据集,获得采样频率 256hz ,记录时长 3840s ,信号通道数 21 等信息
- 通过阅读 annotations_2017_A.csv 找出癫痫发作时间段, 分别为 [0, 128], [258, 887], [976, 1509], [1681, 2533], [2660, 3500] 秒,选择 [0, 128] 作为信号来处理

2.数据可视化

• 绘制了EEG信号的原始波形

data_from_raw_edf

3. Предварительная обработка данных

- Объединение каналов: Все каналы ЭЭГ были усреднены в один сигнал для упрощения последующего анализа.
- Устранение тренда: Линейная регрессия применена для удаления трендовой составляющей и устранения дрейфа базовой линии.
- Полосовая фильтрация: Использован полосовой фильтр (1–60 Гц) для подавления высокочастотных шумов и сверхнизкочастотных артефактов.

____3. 数据预处理

- 合并所有通道,将多通道EEG信号平均为一个信号,简化后续分析。
- 去除趋势项,使用线性回归去除信号中的趋势项,消除基线漂移。
- 带通滤波,使用1-60Hz的带通滤波器去除高频噪声和极低频漂 移。

сделаем простой устредненный сигнал - все каналы в один массив фильтрация сигнала 60hz

4. Преобразование Гильберта и анализ огибающей

Применено преобразование Гильберта для выделения мгновенной амплитуды сигнала (огибающей), что позволяет исследовать характеристики изменения амплитуды сигнала.

4. 希尔伯特变换与包络分析

应用希尔伯特变换提取信号的瞬时振幅(包络),有助于观察信号的幅度变化特征。

Применяем преобразование Гильберта

Частотный анализ сигнала

Определение частотных диапазонов ЭЭГ: δ-волны (0.5–4 Гц), θ-волны (4–8 Гц), α-волны (8–13 Гц), β-волны (13–30 Гц), γ-волны (30–60 Гц)

- Визуализация сигналов: Построены графики сигналов для каждого частотного диапазона
- Анализ характеристик: Проведено разложение сигнала ЭЭГ на составляющие (δ, θ, α, β, γ) с последующим анализом особенностей каждого диапазона

5. 频带分析

- 定义EEG频带 δ波, θ波, α波, β波, γ波
- 绘制各频带信号
- 将EEG信号分解到不同频带(δ、θ、α、β、γ),观察各频带的 特征。

График отфильтрованного сигнала во времени

визуализация каналов ЭЭГ

6. Спектральный анализ

- Быстрое преобразование Фурье (БПФ): Спектральный состав сигнала исследован с применением БПФ для анализа частотных компонент.
- Спектральная плотность мощности (СПМ): Построена и проанализирована СПМ с использованием библиотеки МNE, что позволило профессионально оценить распределение энергии сигнала по частотам.

6. 频谱分析

- 快速傅里叶变换FFT, 通过FFT计算信号的频谱,观察信号的 频率成分。
- 功率谱密度(PSD), 绘制功率谱密度, 使用MNE库计算并绘制功率谱密度, 更专业地分析信号的能量分布。

спектр Фурье

Построение спектра плотности мощности

построения спектрограммы и вычисления энергии в различных частотных диапазонах

7. Вейвлет-анализ

Непрерывное вейвлет-преобразование (НВП): Выполнено вычисление непрерывного вейвлетпреобразования сигнала.

- Вейвлет-скалограмма: Построена скалограмма, обеспечивающая совместное временно-частотное представление сигнала, что особенно эффективно для анализа нестационарных сигналов, таких как ЭЭГ.
- Дискретное вейвлет-преобразование (ДВП):
 Проведено 5-уровневое разложение сигнала с построением коэффициентов на каждом уровне.
- Многомасштабный анализ: ДВП обеспечивает многоразрешательный анализ сигнала, позволяющий выделять особенности на различных временных масштабах.

7. 小波分析

- 连续小波变换(CWT),计算连续小波变换
- 绘制小波尺度图,连续小波变换提供了信号在时频域的联合表示,适合分析非平稳信号如EEG。
- 离散小波变换(DWT),5层离散小波分解,绘制各层小波系数
- 离散小波变换提供了信号的多分辨率分析,适合提取不同时间尺度的特征。

строим не весь спектр, а только до конкретного значения часторы Hz

8. Анализ независимых компонент (АНК, ICA)

 АНК применяется для разделения ЭЭГ-сигналов на независимые компоненты, что может помочь в выявлении артефактов или специфической мозговой активности

8. 独立成分分析(ICA)

• ICA用于分离EEG信号中的独立成分,可能有助于识别伪迹或 特定脑电活动。

Анализ скользящего окна

СКО в зависимости от значения порядкового номера измерения

Метод MFDFA для оценки показателя Хёрста

**результат эксперимента

- Анализ во временной области: Визуализация исходного сигнала показывает, что во время эпилептического приступа амплитуда ЭЭГ значительно возрастает, а форма сигнала становится более регулярной.
- Анализ в частотной области: Спектральная плотность мощности (СПМ) демонстрирует значительное увеличение энергии в определённых частотных диапазонах, чаще всего в θ- (4–8 Гц) или γ-диапазоне (30–100 Гц).
- Вейвлет-анализ: Скалограмма выявляет усиление энергии на определённых масштабах, соответствующих ключевым частотам, что указывает на синхронизацию нейронной активности во время приступа.
- Многополосный анализ: Разложение по частотным полосам показывает изменение распределения энергии: обычно наблюдается усиление низкочастотных (θ, α) или высокочастотных (β, γ) компонентов.

实验结果

- 时域分析:通过原始信号可视化,可以观察到癫痫发作期间 EEG信号的振幅明显增大,波形变得更为规律。
- 频域分析:功率谱密度显示在癫痫发作期间,特定频带(通常 是θ或γ频带)的能量显著增加。
- 小波分析: 尺度图显示在癫痫发作期间, 特定尺度的能量增强, 对应于特定的频率范围。
- 多频带分析:各频带的分解显示癫痫发作时,不同频带的能量 分布发生变化,通常表现为低频或高频成分的增强。 实验中实现了:

1. 癫痫发作的识别与可视化

• 精确确定与癫痫发作对应的时间区间。

2. 信号预处理

- 去趋势(消除基线漂移)。
- 滤波以去除噪声和伪迹。

3. 时频分析

- 使用快速傅里叶变换(FFT)进行频谱特征分析。
- 小波分析用于研究非平稳信号成分。

В данном эксперименте были выполнены обработка и анализ сигналов ЭЭГ, что позволило:

1. Выявление и визуализация эпилептических приступов

 Четкое определение временных интервалов, соответствующих приступам.

2. Предварительная обработка сигналов

- Удаление трендов (детрендинг).
- Фильтрация для устранения шумов и артефактов.

3. Частотно-временной анализ

- Быстрое преобразование Фурье (БПФ, FFT) для спектральной характеристики.
- Вейвлет-анализ для изучения нестационарных компонент.

4. Многомасштабный анализ

 Дискретное вейвлет-преобразование (DWT) для декомпозиции сигнала на различные частотные полосы.

5. Анализ независимых компонент (ICA)

 Разделение сигналов на независимые источники для выделения патологических паттернов или артефактов.

4. 多尺度分析

• 采用离散小波变换(DWT)将信号分解为不同频带。

5. 独立成分分析(ICA)

• 分离信号中的独立成分,以提取病理模式或伪迹。