

COMSATS University Islamabad, Lahore Campus

Assignment #1 – SPRING 2025

				0				
Course Title:	Parallel and Distributed Computing				Course Code:	CSC334	Credit Hours:	3(2,1)
Course Instructor:	Dr. Hasan Jamal				Programme Name:	BCS		
Semester:	6 th	Batch:	FA22	Section:	B, C	Date:	04/03/2025	
Deadline:	05/03/2025				Maximum Marks:		10	

Important Instructions / Guidelines:

- Submit the assignment, in class, before the start of the lecture.
- Strictly handwritten. Typed assignment will result in zero marks.
- No late submission allowed.
- Any solution found to be copied would strictly result in zero marks.

Question: [Marks: 4 + 4 + 2 = 10]

CLO: <2> Apply principles and concepts of parallel and distributed computing to solve computational problems; Bloom Taxonomy Level: <Applying>

(a) The code given below cannot be parallelized due to multiple dependencies. Draw the dependency graph showing all data-dependences, output-dependences, and anti-dependences.

for
$$i = 1$$
 to 50
 $A[i] = B[i-1] + C[i]$
 $B[i] = A[i+2] + C[i]$
 $s = s + C[i]$

- (b) Modify the code given in (a) to remove the dependencies (where possible) and draw the updated dependency graph showing all data-dependences, output-dependences, and anti-dependences.
- (c) Can this code now be parallelized? If yes, write the parallel code.