

Хакатон

Прогнозирование погоды с помощью нейросетвых моделей

Выполнили студенты группы М24-525

Груданов Н.А.

Лемцё В.В.

Название команды: Машинное заблуждение

Состав команды

Лемцё В.В.ML development
Python developer

Груданов Н.А.
Лид команды
ML development
Data Analytics

Цель проекта:

Разработка интеллектуальной системы прогнозирования погоды с использованием современных технологий искусственного интеллекта и машинного обучения.

Задачи:

- 1. Анализ современых моделей для прогноза погоды
- 2. Поск данных о погоде
- 3. Обучение моделей для прогноза
- 4. Интеграция моделей через LangChain
- 5. Подключение Gigachat для обработки естественного языка
- 6. Создание Telegram-бота для взаимодействия с пользователями

Источник данных - RP5.ru

- Разработан компанией "Расписание Погоды" (Санкт-Петербург) с 2004 года
- Имеет лицензию на деятельность в области гидрометеорологии
- Предоставляет данные для 173,000 населенных пунктов
- Использует данные с 9,800 метеостанций SYNOP и 5,500 станций METAR

Использованные данные:

- Метеостанция: Москва ВДНХ
- Период: 2005-2024 гг.

Описание

datetime - Дата и время

Т - Температура воздуха

Ро - Давление на уровне моря

Р - Давление на станции

Ра - Изменение давления за 3 часа

U - Относительная влажность

DD - Направление ветра

Ff - Скорость ветра

ff10 - Скорость ветра (10 минут)

ff3 - Скорость ветра (3 минуты)

N - Облачность

WW - Погодные явления

W1 - Погодное явление 1

W2 - Погодное явление 2

Tn - Минимальная температура

Тх - Максимальная температура

CI - Тип облаков

Nh - Количество облаков

Н - Высота нижней границы облаков

Cm - Средний уровень облаков

Ch - Высокий уровень облаков

VV - Горизонтальная видимость

Td - Точка росы

RRR - Количество осадков

tR - Длительность осадков

Е - Испарение

Tg - Температура почвы

Е' - Испарение (альтернативное)

sss - Состояние почвы

Описание

#	Colun	nn Non-Null Count Dtype
0	dateti	me 67383 non-null float64
1	Т	67214 non-null float64
2	Po	67253 non-null float64
3	Р	43830 non-null float64
4	Pa	67346 non-null float64
5	U	67340 non-null object
6	DD	67340 non-null float64
7	Ff	199 non-null float64
8	ff10	1479 non-null float64
9	ff3	63658 non-null object
10	N	67390 non-null object
11	WW	30831 non-null object
12	2 W1	30831 non-null object
13	8 W2	11713 non-null float64
14	- Tn	7233 non-null float64

# Column	n Non-Null Count Dtype
15 Tx	50844 non-null object
16 CI	53880 non-null object
17 Nh	53904 non-null object
18 H	32822 non-null object
19 Cm	29374 non-null object
20 Ch	41480 non-null object
21 VV	67354 non-null float64
22 Td	21555 non-null object
23 RRR	21556 non-null float64
24 tR	3099 non-null object
25 E	2482 non-null float64
26 Tg	2719 non-null object
27 E'	2495 non-null object
28 sss	0 non-null float64

datetime T		Po	Р	Pa	U DD Ff ff10 ff3
-1.3	721.8 100%.	735.4	-1.4	95.0	Ветер, дующий с юго-запада 1.0
-2.0	723.2 100%.	736.9	-3.6	93.0	Ветер, дующий с юго-юго-востока 3.0
-1.3	726.8 100%.	740.6	-3.2	74.0	Ветер, дующий с юга 2.0
-1.0	730.0 100%.	743.8	-1.8	80.0	Штиль, безветрие 0.0
-0.9	731.8	745.6 100%.	-0.6	90.0	Ветер, дующий с западо-юго-запада 1.0

Пример данных

N WW W1

Снег непрерывный умеренный в срок наблюдения. Снег и/или другие виды твердых осадков

Метель

Снег непрерывный сильный в срок наблюдения. Снег и/или другие виды твердых осадков Облака покрывали более половины неба в течение всего соответствующего периода.

Состояние неба в общем не изменилось. Снег и/или другие виды твердых осадков Облака покрывали более половины неба в течение всего соответствующего периода.

Состояние неба в общем не изменилось. Снег и/или другие виды твердых осадков Облака покрывали более половины неба в течение всего соответствующего периода.

CI Nh H

100%. 300-600 Высокослоистые непросвечивающие или слоисто-дождевые.

100%. 300-600 Высокослоистые непросвечивающие или слоисто-дождевые.

100%. 600-1000

100%. 300-600

Прове	рка на null значени	7
datetir	ne 7	
Т	176	
Po	137	
Р	23560	
Pa	44	
U	50	
DD	50	
Ff	67191	
ff10	65911	
ff3	3732	
N	0	
WW	36559	
W1	36559	
W2	55677	

Tn	60157
Tx	16546
CI	13510
Nh	13486
Н	34568
Cm	38016
Ch	25910
VV	36
Td	45835
RRR	45834
tR	64291
E	64908
Tg	64671
E'	64895
SSS	67390

Проверим влияет ли день недели на температуру

Корреляция Спирмена:

Коэффициент корреляции: -0.0012

Р-значение: 0.7575

Близок к нулю, что указывает на отсутствие значимой монотонной связи между днем недели и температурой. Р-значение говорит о том, что связь между переменными статистически незначима.

ANOVA

ANOVA (анализ дисперсии) используется для проверки гипотезы о равенстве средних значений группы (в данном случае — температуры для разных дней недели).

F-статистика: 0.3547

Р-значение: 0.9076

F-статистика (0.3547): Это отношение межгрупповой дисперсии к внутригрупповой дисперсии. Низкое значение F говорит о том, что различия между группами малы по сравнению с вариацией внутри групп. P-значение (0.9076) следовательно, нет статистически значимых различий в температурах для разных дней недели.

Проверим влияет ли время дня и ночи на температуру

МИСРИ МИСРИ

Сезон: Зима

Количество

наблюдений: 16885

Корреляция: 0.0368

Р-значение: 0.0000

Сезон: Весна

Количество

наблюдений: 17615

Корреляция: 0.1472

Р-значение: 0.0000

Сезон: Лето

Количество наблюдений:

16743

Корреляция: 0.3680

Р-значение: 0.0000

Сезон: Осень

Количество наблюдений:

16140

Корреляция: 0.1022

Р-значение: 0.0000

Компоненты решения

Модель	Тип архитектуры	Преимущества	Недостатки	Применение
BERT	Трансформер	 Хорошо работает с последовательностями Учитывает контекст Может обрабатывать пропуски в данных 	- Требует много вычислительных ресурсов - Сложная архитектура	Краткосрочные и среднесрочные прогнозы
LSTM	Рекуррентная нейронная сеть	 Эффективна для временных рядов Хорошо запоминает долгосрочные зависимости Относительно простая архитектура 	- Может быть медленной на длинных последовательностях	Краткосрочные прогнозы с высоко точностью
Random Forest	Ансамблевый метод	 Устойчив к шумам Не требует нормализации данных Быстрое обучение 	- Ограниченная способность к экстраполяции - Может переобучаться	Базовые прогнозы бенчмаркинг
GraphCast	Графовая нейронная сеть	 Учитывает пространственные связи Высокая точность для глобальных прогнозов 	- Очень требователен к ресурсам - Сложная инфраструктура	Глобальные среднесрочные прогнозы
Autoformer	Декомпозиционная архитектура	- Эффективен для длительных прогнозов - На 38% точнее базовых моделей	- Сложная настройка - Требует качественных временных признаков	Долгосрочные прогнозы
PatchTST	Трансформер с патч- обработкой	 Эффективная обработка длинных последовательностей Меньше требований к памяти 	 Относительно новая модель Меньше доступных реализаций 	Долгосрочные прогнозы с оптимизацией памя

Модели прогнозирования

- BERT модель (bert_weather_model)
 - Трансформер для анализа временных рядов
- LSTM модель (weather_lstm_model)
 - Долгая краткосрочная память для прогнозирования
- Random Forest (random_forest_model)
 - Ансамблевый метод для робастных прогнозов

Архитектура LSTM модели

Структура модели:

- Input size: 18 признаков (температура, сезонные признаки, освещенность)
- Hidden size: 64 нейрона
- Количество слоев: 2
- Batch size: 32
- Количество эпох: 100
- Оптимизатор: Adam c learning rate 0.001
- Функция потерь: MSE (Mean Squared Error)

Метрики качества модели

Основные показатели:

- MSE (Mean Squared Error): 1.5811
 - Показывает среднеквадратичную ошибку предсказания
 - Чем ближе к 0, тем лучше
- RMSE (Root Mean Square Error): 1.2574
 - Среднеквадратичное отклонение в градусах
 - Показывает среднюю ошибку прогноза в ±1.26°C
- MAE (Mean Absolute Error): 0.8901
 - Средняя абсолютная ошибка
 - В среднем прогноз отклоняется на 0.89°C
- R² (Coefficient of Determination): 0.9864
 - Коэффициент детерминации
 - Модель объясняет 98.64% вариации в данных
 - Очень высокий показатель качества модели

Основные компоненты системы:

- Модуль прогнозирования (model)
 - Три типа моделей машинного обучения
 - Система выбора модели для прогноза
- Модуль обработки естественного языка (Ilm)
 - Интеграция с GigaChat-Max
 - Обработка пользовательских запросов
- Telegram бот (bot)
 - Пользовательский интерфейс
 - Маршрутизация запросов

Вспомогательные компоненты

- Tools
 - Утилиты для обработки данных
 - Функции работы с погодными данными
- Client
 - Интерфейс взаимодействия с API
- Func_agent
 - Агенты для обработки запросов

Архитектура системы

Демонстрация

LSTM

16:03 🕢

Через час, в 17:03, ожидается температура около -0.2°C. Рекомендуется надеть теплую куртку, шапку, перчатки и шарф.

16:03

Какая погода будет через 5 часов?

Какая погода будет через час?

16:04 🖊

Через пять часов, в 21:04, ожидается температура около -0.2°C. Рекомендуется надеть теплую куртку, шапку, шарф и перчатки, чтобы не замерзнуть.

BERI

какая погода будет завтра?

Завтра, 28 декабря 2024 года, в 17:59 ожидается морозная погода со средней температурой около -2 градусов Цельсия. Количество осадков составит примерно 0,6 мм, а облачность достигнет 91%, так что одевайтесь теплее! Рекомендуется надеть теплый свитер или кофту под куртку, а также шапку, перчатки и шарф для защиты от холода. 17:59

акая погода будет через 2 недели?

18:03 🕢

Через две недели, 13 января 2025 года, ожидается следующая погода: температура воздуха составит около -1.29 градусов Цельсия. Прогнозируется небольшой снег с количеством осадков 0.91 мм. Облачность будет почти полной — 95.04%.

- Интеграция компьютерного зрения:
 - Внедрение YOLO 11 для классификации одежды
 - Распознавание типов одежды по фотографиям пользователей
 - Создание базы данных одежды с характеристиками

- Разработка RAG системы:
 - Создание базы знаний о соответствии одежды погодным условиям
 - Интеграция с существующей системой прогнозирования
 - Разработка алгоритмов подбора одежды на основе:
 - Прогноза температуры
 - Осадков
 - Силы ветра
 - Времени года

- Улучшение пользовательского опыта:
 - Добавление функции загрузки фотографий в Telegram бот
 - Персонализированные рекомендации по гардеробу
 - Интерактивный интерфейс для управления базой одежды

Спасибо за внимание!