### Pregunta 1

Utilice la metodología de diseño de circuitos combinacionales para construir un circuito que indique si en un número de 4 bits no hay un par de bits en 1 consecutivos. Haga la tabla de verdad, el mapa de Karnaugh, obtenga la fórmula algebraica simplificada y dibuje el circuito final.



Ejemplos de números en los que la salida z es  $\mathbf{1}$ : 0100, 1001, 0101 Ejemplos de números en los que la salida z es  $\mathbf{0}$ : 0011, 1110, 1111

## Pregunta 2

El circuito CNT de la figura determina por cuantos ciclos permanece en 0 la entrada IN. El resultado se entrega en la salida VAL.



El siguiente diagrama de tiempo es un ejemplo de uso de CNT.



Implemente el circuito CNT usando diseño modular, recurriendo a las componentes vistas en clases, como multiplexores, registros, sumadores, etc. Observe que la salida VAL se mantiene constante hasta que IN se ponga en 0 nuevamente.

Ayuda: Use un circuito secuencial que entregue 1 si en el ciclo anterior IN era 1 y actualmente es 0. En cualquier otro caso entregue 0. Solo defina el diagrama de estados del circuito secuencial, no necesita implementarlo. Cuando el circuito secuencial entregue 1, asigne 1 a un registro contador. Cuando entregue 0, sume 1 al registro solo si IN está en 0.

#### Pregunta 3

El siguiente es un programa en assembler x86. Escriba el programa equivalente en C sin usar la instrucción **goto** de C. Preocúpese de reproducir en C todos los aspectos del programa original en assembler.

| movl | <pre>int inc(int *a); 4 (%esp), %edx</pre> | addl<br>movl | %ecx, %eax<br>(%edx), %ecx |
|------|--------------------------------------------|--------------|----------------------------|
| movl | \$0, %eax                                  | cmpl         | \$0, %ecx                  |
| movl | (%edx), %ecx                               | jne          | .L2                        |
| .L2: |                                            | ret          |                            |
| addl | \$4, %edx                                  |              |                            |

### Pregunta 4

Usando 4 chips de memoria estática SRAM 4Kx4 agregue 8 KB de memoria a la CPU de la figura en el rango de direcciones [24KB, 32KB[.



# Pregunta 5

Considere el diseño de M32 visto en clases. El registro de instrucción IR tiene cargada la instrucción ADD R3, -23, R8. Evalúe de manera independiente si cada una de las siguientes transferencias entre registros se puede realizar en un solo ciclo del reloj:

a) 
$$AR \leftarrow R3 + -23$$
  
b)  $R3 \leftarrow R8 + -23$   
c)  $AR \leftarrow R3$   
d)  $R8 \leftarrow R3 - (-23)$   
e)  $R8 \leftarrow (-23)$   
f)  $R8 \leftarrow PC$  y  $AR \leftarrow PC$   
g)  $PC \leftarrow R8$   
h)  $AR \leftarrow R3 + -23$  y  $PC \leftarrow R8$   
i)  $R8 \leftarrow R3 + 4$   
j)  $AR \leftarrow IR$ 

Si la transferencia se puede realizar indique cuáles son la señales de control requeridas para llevarla a cabo. Si no se puede realizar, explique por qué.