RUBBERBAND

Ujval Misra*, Richard Liaw*, **Lisa Dunlap**, Romil Bhardwaj, Kirthevasan Kandasamy, Joseph E. Gonzalez, Ion Stoica, Alexey Tumanov AZURE

AWS

$$l=0.1, w=5E-4$$
 $\longrightarrow 0.609$ $\longrightarrow l=0.1, w=5E-4$ $\longrightarrow 0.833$ $\longrightarrow l=0.1, w=5E-4$ $\longrightarrow 0.940$
 $l=0.01, w=5E-4$ $\longrightarrow 0.609$ $\longrightarrow l=0.05, w=5E-4$ $\longrightarrow 0.818$
 $l=0.1, w=5E-6$ $\longrightarrow 0.577$
 $l=0.01, w=5E-6$ $\longrightarrow 0.623$ $\longrightarrow l=0.01, w=5E-6$ $\longrightarrow 0.821$ $\longrightarrow l=0.1, w=5E-4$ $\longrightarrow 0.932$
 $l=0.05, w=5E-6$ $\longrightarrow 0.594$
 $l=0.01, w=5E-5$ $\longrightarrow 0.610$ $\longrightarrow l=0.01, w=5E-5$ $\longrightarrow 0.807$

TIME

MODEL Learning rate **1**, and weight Decay **w**

SUCCESSIVE HALVING ALGORITHM (SHA)

SUCCESSIVE HALVING ALGORITHM (SHA)

ted, rallel Hyperparameter Tuning

RI TED, RALLEL HYPERPARAMETER TUNING STAGE 1 21AGE 2 STAGE 3

GIVEN A TIME CONSTRAINT, MINIMIZE THE COST OF EXECUTING A HYPERPARAMETER TUNING JOB.

GPUS/TRIAL

CHALLENGES

HOW CAN WE MODEL THE JOB COMPLETION TIME AND COST OF THE GIVEN ALLOCATION PLAN?

HOW CAN WE GENERATE A LOW COST ALLOCATION PLAN THAT COMPLETES ON TIME?

HOW CAN WE SCHEDULE SAID ALLOCATION
TO OPTIMIZE WORKER CO-LOCATION +
CLUSTER UTILIZATION?

WORKER CO-LOCATION

Rubberband

CHALLENGES

Rubberband

HOW CAN WE MODEL THE JOB
COMPLETION TIME AND COST OF THE
GIVEN ALLOCATION PLAN?

COST/PERFORMANCE MODEL VIA PROFILING
DL MODEL TRAINING LATENCY AND
PROVISIONING OVERHEADS

HOW CAN WE GENERATE A LOW COST ALLOCATION PLAN THAT COMPLETES ON TIME?

DAG-BASED EXECUTION MODEL WHICH FINDS FEASIBLE AND COST-EFFICIENT RESOURCE ALLOCATIONS

HOW CAN WE SCHEDULE SAID ALLOCATION
TO OPTIMIZE WORKER CO-LOCATION +
CLUSTER UTILIZATION?

FULL-STACK SYSTEM FOR PLACEMENT, SCHEDULING, AND SCALING

Issue 1: Modeling Job Completion time and Cost

PERFORMANCE MODELING

- training lat<u>ency</u>
- PROVIDER QUEUING DELAY
- INSTANCE INITIALIZATION LATENCY

COST MODELING

- COMPUTE PRICE
- BILLING GRANULARITY
- DATA PRICE

Issue 2: finding a low-cost allocation plan

ISSUE 2: FINDING A LOW-COST ALLOCATION PLAN

STEP 1: GENERATE CANDIDATES

Issue 2: finding a low-cost allocation plan

STEP 1: GENERATE CANDIDATES

STEP 2: USE SIMULATOR TO PREDICT JOB COMPLETION TIME

ISSUE 2: FINDING A LOW-COST ALLOCATION PLAN

STEP 1: GENERATE CANDIDATES

STEP 2: USE SIMULATOR TO PREDICT JOB COMPLETION TIME

STEP 3: GREEDILY SELECT BEST CANDIDATE

Issue 2: finding a low-cost allocation plan

STEP 1: GENERATE CANDIDATES

STEP 2: USE SIMULATOR TO PREDICT JOB COMPLETION TIME

STEP 3: GREEDILY SELECT BEST CANDIDATE

MAXIMIZE **COST-MARGINAL BENEFIT**:

Cost of current best plan - Cost of proposed plan

M =

JCT of proposed plan- JCT of current best plan

Issue 2: finding a low-cost allocation plan

STEP 1: GENERATE CANDIDATES

STEP 2: USE SIMULATOR TO PREDICT JOB COMPLETION TIME

STEP 3: Greedily select best candidate

STEP 4: ITERATE WITH NEW BEST CANDIDATE

MAXIMIZE **COST-MARGINAL BENEFIT**:

Cost of current best plan - Cost of proposed plan

M =

JCT of proposed plan- JCT of current best plan

<u>Issue 3: effectively execute allocation plan</u>

END OF STAGE **SCHEDULER** ALLOCATION PLAN # RESOURCES NEEDED **CLUSTER** MANAGER RESOURCES NEEDED Modified Cluster

PLACEMENT CONTROLLER

RESOURCE ALLOCATION

Physical resource assignments

ISSUE 3: EFFECTIVELY EXECUTE ALLOCATION PLAN

	Cluster size	GPUS/TRIAL	Trials	epochs	STAGE
← END OF STAGE	4	2	8	0-4	1
	3	3	4	5-12	2

CLUSTER

Issue 3: effectively execute allocation plan

SCHEDULER

STOP - T2, T3, T5, T7 CONTINUE - T1, T4, T6, T8

CLUSTER

Issue 3: effectively execute allocation plan

CLUSTER MANAGER

DEPROVISION NODE 4

ISSUE 3: EFFECTIVELY EXECUTE ALLOCATION PLAN

PLACEMENT CONTROLLER

Move T8 to Node 1 and 2

System

- PROFILER AND SIMULATOR MODEL JOB
 COMPLETION TIME + COST OF POTENTIAL
 ALLOCATIONS
- Planner generates a low cost allocation plan that completes on time
- 3. Scheduler placement controller and cluster manager executes the allocation plan such that worker co-location and cluster utilization are maximized

END-TO-END RESULTS

SIMULATION QUALITY

ACROSS DATASETS

ACROSS DEADLINES

Rubberband

THANK YOU!