Теорема существования единственности

Рассмотрим дифференциальное уравнение 1-го порядка, разрешённое относительно производной. y' = f(x, y)(1).

Будем считать, что f(x, y) определена на некотором множестве G.

Зафиксируем некоторую точку (x_0, y_0) из этого множества и подставим начальное условие $y(x_0) = y_0(2)$

Рассмотрим прямоугольник D, определённый по следующему уравнению:

$$D = (x, y)|x - x_0| \le a * |y - y_0| \le b(3)$$
 а и b задали заданные числа

Предположим, что f(x, y) непрерывна по совокупности переменных, т.е.

$$\forall (\varepsilon > 0) \exists (\sigma(\varepsilon) > 0) \forall (\xi, \nu) \in D \subset G [|x - \xi| < \sigma \text{ и } |y - \nu| < 0 \Rightarrow |f(x, y) - f(\xi, \nu)| < \varepsilon]$$

Из непрерывности функции f(x, y) следует непрерывность функции g(x, y) = |f(x, y)|.

Будем считать, что множество G совпадает с этим прямоугольником, тогда g(x,y) определена и непрерывна на замкнутом ограниченном множестве.

Тогда, по теореме Вейерштрасса, функция g(x,y) достигает на прямоугольнике своего максимального значения $M = \max_{(x,y) \in D} |f(x,y)| (4)$

Будем считать, что f(x,y) по второй переменной удовлетворяет условию Липшица с константой L, т.е. $\exists L > 0 | f(x,y) - f(x,v) | \le L |y - v|$ (5)

<u>Утверждение:</u> Для того, чтобы f(x,y) удовлетворяла условию с константой L(5) необходимо и достаточно, чтобы производная по второй переменной от функции f была ограничена.

$$\left|\frac{zf(x,y)}{zy}\right| \le L(\mathbf{6}) f(x,y) \in D$$

Теорема (Коши-Липинца)

Рассмотрим начальную задачу (1)(2). Пусть функция f(x, y) непрерывна в прямоугольнике D, тогда $\exists M$ — определяемое формулой (4). Пусть функция f(x, y) по второй переменной удовлетворяет условию (5). Тогда начальная задача (1)(2) имеет единственное решение, которое можно считать определяемым на промежутке

$$|x - x_0| \le h(7)$$
, где $h = min\{a, \frac{b}{M}\}(8)$

Единственность решения задачи (1)(2) означает, что любые 2 её решения совпадают на пересечении их областей определения.