

Lecture 3: Selection

Michael Melnik mihail.melnik.ifmo@gmail.com

Components

- Representation of individuals
- Population of individuals
- Evaluation function (fitness function)
- Parent selection mechanism
- Variation operators (recombination, mutation)
- Survivor selection mechanism
- Terminate conditions

Selection

ITMO UNIVERSITY

Roulette wheel

Tournament

Ranking

- Transform fitness into another values (ranks)
- Works for roulette wheel
- Examples:
 - Fitnesses: 101, 102, 103
 - Rank?
 - (101-100), (102-100); (103-100) => 1, 2, 3
 - Fitnesses: 100, 5, 4, 6
 - Rank?

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

• 0.375, 0.210, 0.125, 0.290

Selection

Distinction between

- **selection operators:** define selection probabilities
- **selection algorithms:** define how probabilities are implemented

Situation before ranking (graph of fitnesses)

Solving problems:

- premature convergence
- selection pressure

Situation after ranking (graph of order numbers)

Overselection

- When population is extremely large
- Population is divided into two groups:
 - Top x% fittest
 - Other
- Ouring selection, 80% of parents selected from the 1st group, and 20% from other.

Population size	Proportion of population
	in fitter group (x)
1000	32%
2000	16%
4000	8%
8000	4%

Preserving diversity

- Avoid premature convergence
- Niching set of methods to divide population into several subgroups
- Find several local optimums instead of one global
- **Explicit:**
 - Fitness Sharing, Crowding, Speciation
- Implicit:
 - Island model, Cellular model

Fitness sharing

- Number of individual within a given niche is controlled by sharing their fitness.
- Based on distances between individuals (genotype or phenotype)
- lacktriangle Fitness F of each individual is shred with other individuals within predefined distance σ_{share}

$$F'(i) = \frac{F(i)}{\sum_{j} sh(d(i,j))}$$

$$sh(d) = \begin{cases} 1 - \left(\frac{d}{\sigma_{share}}\right)^{\alpha}, & \text{if } d \leq \sigma_{share} \\ 0, & \text{otherwise} \end{cases}$$

Crowding

- Offspring (children) replace the most similar parents.
 - Parent population is randomly paired
 - Each pair produces two offspring via recombination
 - These offspring are mutated and evaluated
 - Four pairwise distances between offspring and parents are calculated
 - Offspring competes for survival in a tournament with parents

Fitness sharing and crowding

- Idealized population distributions for:
- Fitness sharing
 - Allocate individuals to peaks in proportion to their fitness
- Crowding
 - Distributed amongst peaks

Speciation

- Biological analogy, when someone specifically interfering the reproduction of individuals
- Population may contains several species, and during recombination individuals mate only with same species
- Species can be defined via distance or special tag

Island based model

- Population contains several subpopulations
- Each subpopulations may be evolved by different strategies
- Some individuals migrate between population every n generations
- Can be parallelized

Frameworks for EAs

- JMetal. (Java, 2015). http://jmetal.sourceforge.net/index.html.
- A full-contained framework containing a huge variety of algorithms (evolutionary, population) for single-criteria and multi-criteria optimization. Provides mechanisms for configuring, monitoring, managing the algorithm.
- Watchmaker. (Java, 2010). https://watchmaker.uncommons.org.
- Simple and user-friendly framework. Powerful evolution engine with parallelization and island models. Monitoring and control of the algorithm. Interactive mode.
- Jenetics. (Java, Live). https://jenetics.io.
- Fresh and modern framework. Uses new Java functionality (stream). Coding solutions through the *Genotype:* Chromosome: Gene.

- HeuristicLab. (C#, Live). https://dev.heuristiclab.com/trac.fcgi/wiki.
- Supported platform for developed problems and algorithms. Graphical interface. Less flexible, complex algorithm development for non-standard problems. GeneticSharp. (C#, 2019).
 - https://github.com/giacomelli/GeneticSharp
- A simple framework with basic functionality and capabilities for developing efficient algorithms.
- Deap. (Python, ~2019). https://deap.readthedocs.io/en/master/
- The most popular, simpler Python framework. Convenient implementation of your solutions, parallelization, statistics monitoring.

Lab 1

- Function optimization
 - Take the template script
 - Change dimension of the problem (dim = 100)
 - Develop your version of algorithm (modify mutation, crossover, selection, ...)
 - The best result for provided function is 10.0. Try to get at least 9.5.
 - Prepare a Jupyter Notebook report.
 - Send me to <u>mihail.melnik.ifmo@gmail.com</u> with topic ec lab1 surname
 - Deadline is like 2 weeks, but not hard.

Function optimization

- In module function_opt presented 3 experiments:
 - Genetic algorithm
 - Particle swarm optimization
 - Together

Benchmark function – Rastrigin function.

https://www.mathworks.com/help/gads/ex ample-rastrigins-function.html

Dimension can be modified.

Туре	minimization
Range	$x_i \in [-5.12, 5.12]$
Global optima	$x_i=0, orall i\in\{1\dots N\}, f(\mathbf{x})=0$
Function	$f(\mathbf{x}) = 10N + \sum_{i=1}^{N} x_i^2 - 10\cos(2\pi x_i)$

www.ifmo.ru

