PROPRIETARY INFORMATION OF ROCKWELL INTERNATIONAL CORPORATION

SPACE TRANSPORTATION BOOSTER ENGINE (STBE) CONFIGURATION STUDY

SECOND QUARTERLY REVIEW

11 SEPTEMBER 1986

Rockwell International

Rocketdyne Division 6633 Canoga Avenue Canoga Park, California 91304 (818) 700-8200

OTHER THAN TO EVALUATE THIS DOCUMENT; PROVIDED, THAT IF A CONTRACT IS AWARDED TO THIS OFFEROR AS A RESULT OF OR IN CONNECTION WITH THE SUBMISSION OF THIS DATA, THE GOVERNMENT SHALL HAVE THE RIGHT TO BE DUPLICATED, USED, OR DISCLOSED IN WHOLE OR IN PART FOR ANY PURPOSE DUPLICATE, USE, OR DISCLOSE THE DATA TO THE EXTENT PROVIDED IN THE CONTRACT. THIS RESTRICTION DOES NOT LIMIT THE GOVERNMENT'S RIGHT TO USE THIS DATA SHALL NOT BE DISCLOSED OUTSIDE THE GOVERNMENT AND SHALL NOT INFORMATION CONTAINED IN THE DATA IF IT IS OBTAINED FROM ANOTHER SOURCE WITHOUT RESTRICTION. THE DATA SUBJECT TO THIS RESTRICTION IS CONTAINED ON CHARTS MARKED WITH PROPRIETARY INFORMATION

NOT TO BE COPIED, USED, OR DISCLOSED WITHOUT PRIOR WRITTEN PERMISSION FROM ROCKWELL INTERNATIONAL

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

P	
Ω	
Ш	
Z	
Q	
ъ	

• SUMMARY A. WEISS
• CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER
• THROTTLING ON-DESIGN/OFF-DESIGN STUDY
• COMBUSTION DEVICES STUDIESP. MEHEGAN
• TURBOMACHINERY STUDIESA. EASTLAND
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS
● TASK 2 STATUS REVIEW
● TASK 1 SUMMARYA. WEISS
✓ • INTRODUCTION F. KIRBY

STUDY OBJECTIVES

THE OVERALL OBJECTIVE OF THIS ENGINE STUDY IS TO IDENTIFY CANDIDATE ENGINE CON-FIGURATIONS WHICH ENHANCE VEHICLE PERFORMANCE AND PROVIDE OPERATIONAL FLEXIBILITY AT LOW COST. THE SPECIFIC OBJECTIVES ARE LISTED ON THIS CHART.

STUDY OBJECTIVES

- **IDENTIFY AND EVALUATE CANDIDATI: LOX/HC ENGINE CONFIGURATIONS** FOR THE ADVANCED SPACE TRANSPORTATION SYSTEM FOR AN EARLY **1995 IOC AND A LATE 2000 IOC**
- SELECT ONE OPTIMUM ENGINE FOR EACH TIME PERIOD
- PREPARE A CONCEPTUAL DESIGN FOR EACH CONFIGURATION
- DEVELOP A TECHNOLOGY PLAN FOR THE 2000 IOC ENGINE
- PREPARE PRELIMINARY PROGRAMMATIC PLANNING AND ANALYSIS FOR THE 1995 IOC ENGINE

STBE STUDY TO BE ACCOMPLISHED IN 5 TASKS

IN TASK 1, THE REQUIREMENTS FOR THE STBE WERE DETERMINED AND 24 POTENTIAL CANDI-DATE ENGINE CONFIGURATIONS IDENTIFIED AND SCREENED. THE 9 MOST PROMISING CANDI-DATES ARE CARRIED INTO TASK 2 IN TASK 2 NINE (9) ENGINE CANDIDATES (6 FOR 1995 IOC AND 3 FOR 2000 IOC) WILL BE EVALUATED IN DEPTH TO DEFINE THE OPTIMUM MAJOR SUBSYSTEMS FOR EACH IN TASK 3, THE TASK 1 AND TASK 3 CONFIGURATION EVALUATION PLAN AND SELECTION CRI-TERIA WERE DEVELOPED, SUBMITTED TO MSFC AND APPROVED. THE SELECTION OF ONE CAN-DIDATE EACH FOR 1995 AND 2000 IOC WILL BE ACCOMPLISHED IN TASK 3

ENGINES. THE DESIGN FOR THE 1995 CONFIGURATION WILL BE IN SUFFICIENT DEPTH TO IN TASK 4, CONCEPTUAL DESIGNS WILL BE PREPARED FOR BOTH THE 1995 AND 2000 IOC CONDUCT PRELIMINARY PROGRAMMATIC PLANNING

IN TASK 5, THE PRELIMINARY PROGRAMMATIC PLANNING AND ANALYSIS WILL BE COMPLETED.

STBE STUDY TO BE ACCOMPLISHED IN 5 TASKS

86D-9-454

STBE PROGRAM SCHEDULE

THE STBE CONFIGURATION STUDY IS ON SCHEDULE.

Rockwell International Rocketdyne Division

TASK 4 CONCEPTUAL DESIGN OF SELECTED CONFIGURATION

RIGHE OPTIME A TION STUDIES

THRUST CHAMBER FINISCTOR

TURBOMACHINER AV

CONTROL SYSTEM AND HEALTH MONITORING

TURBOMACHINER AND HEALTH MONITORING

STRUCTURAL AND HEALTH SYSTEM

STRUCTURAL AND LONG LEAD REQUIREMENTS

CEL AND INTERFACE REQUIREMENTS FOR 1886 AND 2000 ICC.

CHECKOLT SERVICION, GSE, REFURBISHEENT REQUIREMENTS

PRELIMINARY HAZAROS SNAKT

PRELIMINARY HAZAROS AND LYSIS

DESIGN DEFINITION DOCUMENT 10M 8) TASK 2: EVALUATION OF CANDIDATE STBE CONFIGURATIONS TASK 1 IDENTIFICATION OF CANDIDATE STRE CONFIGURATIONS TASK & REPORTING TASK S. PROGRAMMATIC ANALYSIS AND PLANNING (FOR 1986 IOC) TARK 3 SELECTION OF RECOMMENDED STRE CONFIGURATIONS
DEVELOP CONFIGURATION EVALUATION PLAN AND SELECTION
CRITERIA DOCUMENT IDR 8) DISTIPMANY
DESINE FACEL ITY REQUIREMENTS
ENVIRONMENTAL IMPACT ANALYSIS (DR 10)
ENVIRONMENTAL IMPACT ANALYSIS (DR 10)
DEVELOR FED AND LCC COST ESTIMATES (DR 4)
FINAL FERFORMANCE REVIEW DOCUMENTATION SUBMITTED
FINAL FERFORMANCE REVIEW DEVELOP OVERALL PROJECT SCHEDULE
DEVELOP WES AND DICTIONARY (DR 5) BUBBATT DOCUMENT FOR NASA APPROVAL
SUBBATT DOCUMENT UPDATE FOR APPROVAL
ASSESSICANDIDATE CONFIGURATIONS 11986 AND 2000 IOCI
SELECT OFTHIMM CONFIGURATION FOR 1886 AND 2000 IOCI
THIRD PERFORMANCE REVERN DOCUMENTATION SUBMITTED
THIRD PERFORMANCE REVERN AT MSFC RELIABITY SAFETY, MANTAINABILITY
CETTABLITY
ENGINEET STAND DESITE OF MATERIAL STAND 2000 IOCI
SECOND FERFORMANCE REVIEW DOCUMENTATION SUMMITTED
SECOND FERFORMANCE REVIEW DOCUMENTATION SUMMITTED
SECOND FERFORMANCE REVIEW AT MSTC ENGINE PERFORMANCE PREDICTION
THANSE TOHABLERINA ET TOR TRADE STUDIES
TURDOMACHINERY TRADE STUDIES
TURDOMACHINERY TRADE STUDIES
CONTROL SYSTEM AND REALTH MOUNTORING TRADE STUDIES
TURBINE DRIVE AND EXHAUST SYSTEM TRADE STUDIES
SUPPORTING STUDIES
WHOM THAN STUDIES
MATERIALS REVIEW PAST AND CURRENT VEHICLE FERGINE STUDIES
VEHICLE ARCHITECTURE STUDY INFUTS WASA PROVIDED
CANDIDATE BEGINE CONFIGURATION STUDY IFON 1985 AND 2000 IOC)
PREPARE ENGINE SCHEMATICS AND BALLANCES BANDATH Y PROCRESS REPORTS IDR 3)
STUDY PLAN UPDATE IDR 1)
PERFORMANCE REVIEW DOCUMENTATION IDR 2)
PERFORMANCE REVIEWS
FIRAL STUDY REPORT IDR 4)
ORIENTATION MEETING ASSESSMENT AND RANKING
CANDIDATE ENGINES SELECTED IFOR 1996 AND 2000 FOCE
FIRST PERFORMANCE REVIEW DOCUMENTATION SUBMITTED
FIRST PERFORMANCE REVIEW AT MSFC BUSMIT CRITERIA FOR TASK 1 SELECTIONS INES PERFORMANCE EVALUATION
TY, MAINTAINABILITY, SAFETY TRADE STUDIES MAN JPR MAY JUN 4 4 4 4 Ę 4 AUG SEP OCT NOV 4 ٥ ٥ 9 9 DEC P NAC ٥ -₩-Ē ٥

> SI 39A9 JANGG GO YTIJAUQ 9009 90

STBE PROGRAM SCHEDULE

86C-9-681-1

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

AGENDA

SUMMARY A WEISS
• CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER
• THROTTLING ON-DESIGN/OFF-DESIGN STUDY
• COMBUSTION DEVICES STUDIESP. MEHEGAN
• TURBOMACHINERY STUDIESA. EASTLAND
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS
• TASK 2 STATUS REVIEW
▼ • TASK 1 SUMMARYA. WEISS
◆ IN I A ODOC I TON F. KIRBY

TASK 1 - IDENTIFICATION OF CANDIDATE STBE CONFIGURATIONS

CYCLE COST, PROPELLANT BULK DENSITY AND RISK WAS USED TO SELECT 6 CONFIGURATIONS THIS CHART SHOWS THE FLOW DIAGRAM FOR THE TASK 1 EFFORT. THE INPUTS WERE DERIVED USED TO IDENTIFY 24 CANDIDATE ENGINE CONFIGURATIONS. THESE WERE REDUCED TO 19 ASSESSMENT AND RANKING PROCESS WHICH CONSIDERED ENGINE RELIABILITY, WEIGHT, "LIFE TO SUPPORT A 1995 IOC AND 3 CONFIGURATIONS TO SUPPORT A 2000 IOC. THESE 9 CON-FROM NASA-MSFC, STAS STUDIES AND PRIOR ROCKETDYNE IN-HOUSE STUDIES. THEY WERE AFTER A PRELIMINARY TECHNICAL EVALUATION. ENGINE FLOW SCHEMATICS AND PERFORMANCE OPTIMIZATION BALANCES WERE THEN PREPARED FOR THE 19 ENGINE CONFIGURATIONS. AN FIGURATIONS WERE CARRIED INTO TASK 2.

CANDIDATE STBE CONFIGURATIONS TASK 1 — IDENTIFICATION OF

Rocketdyne Division

AW-3

SPACE TRANSPORTATION BOOSTER ENGINE REQUIREMENTS

THE PRIMARY ENGINE REQUIREMENTS WERE INPUT TO THE STBE STUDY CONTRACTORS BY NASA-MSFC. THE REQUIREMENTS FOR MAIN CHAMBER PRESSURE AND PUMP INLET PRESSURE WERE DEVELOPED BY ROCKETDYNE FROM DISCUSSIONS WITH THE STAS CONTRACTORS AND IN-HOUSE STUDIES. A HIGH P. HIGH PERFORMANCE ENGINE ENHANCES VEHICLE PERFOR-MANCE AND COST. ELIMINATION OF THE BOOST PUMPS SIMPLIFIES THE TURBOMACHINERY.

SPACE TRANSPORTATION BOOSTER ENGINE REQUIREMENTS

- NASA-MSFC SUPPLIED
- RATED THRUST = 625K @ SL
- MAXIMUM THRUST = 750K (@ SL)
- ENGINE LIFE @ RATED THRUST
- 25 MISSIONS TO OVERHAUL
- 100 MISSIONS DESIGN LIFE
- FUEL = T.B.D.
- THROTTLE RANGE = + 0, -20%
- **BURN TIME = 160 SEC MAX**
- GIMBAL ANGLE = 6 DEGREE SQUARE PATTERN
- CLOSED LOOP THRUST/MR CONTROL
- ROCKETDYNE DEVELOPED
- MAIN COMBUSTION CHAMBER PRESSURE OPTIMIZED FOR MAXIMUM VACUUM ISP
- PUMP INLET PRESSURE SUFFICIENT TO NOT REQUIRE BOOST PUMPS

CANDIDATE ENGINES FOR TASK 1 STUDY IDENTIFIED

HALF WERE FIVE CON-DEFINED WITH 1986 TECHNOLOGY AND THE OTHER HALF WITH 1990 TECHNOLOGY. TWENTY-FOUR CANDIDATE CONFIGURATIONS WERE IDENTIFIED FOR EVALUATION. FIGURATIONS WERE THEN REJECTED BY AN ENGINEERING PRE-SCREEN.

CANDIDATE ENGINES FOR TASK 1 STUDY IDENTIFIED

- 24 CANDIDATES CONSIDERED
- 12 TO SUPPORT A 1995 LAUNCH DATE
- 12 TO SUPPORT A 2000 LAUNCH DATE
- 5 OF 24 CANDIDATES REJECTED DUE TO LACK OF FEASIBILITY OR ADVANTAGE
- **2 THRUST LEVELS EVALUATED FOR 1995 CANDIDATES**
- 750K AND 1500K
- 1500K FOR REFERENCE ONLY -- NOT USED IN SCREENING PROCESS

86D-9-807

CANDIDATE STBE CONFIGURATIONS FOR TASK 1

THESE WERE THE 19 CANDIDATES THAT WERE EVALUATED. OF THESE, 3 WERE AT 1500 K1b THRUST AND ARE FOR COMPARISON PURPOSES ONLY. THIS LEFT 16 ENGINES TO BE EVALUATED AND SCREENED DOWN TO THE 9 THAT WERE RECOMMENDED FOR TASK 2 COMPONENT EVALUATION.

Rockwell international Rocketdyne Division

IRIPROPELLANT	LOX/LH ₂	LH ₂	L0X/C3H8/LH ²	2000	6.6.	750K	19
	LOX/LH ²	2 [∓] .	LOX/RP-1/LH ₂	2000	େ.	750K	8
MIXED PREBURNERS	LOX/CH	유	LOX/CH	2000	s.c.	750K	17
FUEL COOLED SC WITH	LOX/C H	ച് ^ന ജ	LOX/C ₃ H	2000	S.C.	750K	6
	LOX/CH	20	LOX/CH	2000	S.C.	750K	5
LOX COOLED SC	LOX/C H	20	LOX/C H	2000	S.C.	750K	ī
	LOX/CH	~ 5	LOX/CH	2000	G.G.	750K	ವ
LOX COOLED GG	LOX/C H	ر02	LOX/C H	2000	G.G.	750K	12
_	LOX/RP-1	LO ₂	LOX/RP-1	2000	G.G.	750K	=
	LOX/CH	유	LOX/CH ₄	1995	େ.	1500K	<u></u>
HIGHER THRUST	LOX/C ₃ H ₈	သို့ 8	LOX/C3H8	1995	6.6.	1500K	9
	LOX/RP-1	RΡ1	LOX/RP-1	1995	େ.	1500K	&
FUEL COOLED SC	LOX/CH	다.	LOX/CH	1995	S.C.	750K	7
,	LOX/LH ²	LH	LOX/CH	1995	େ.	750K	6
LH COOLED GG	LOX/LH	LH ₂	LOX/C H	1995	6.6.	750K	ۍ.
	L0X/LH	, H	LOX/RP-1	1995	G.G.	750K	
	LOX/CH	CH.	LOX/CH	1995	6.6.	750K	ω
FUEL COOLED GG	LOX/C ₃ H ₈	ဌ မ	LOX/C3H8	1995	6.6.	750K	2
	LOX/RP-1	RP-1	LOX/RP-1	1995	6.6.	750K	
COMMENT	TURBINE DRIVE*	COOLANT	INJECTOR PROPELLANTS	I.O.C. DATE	CYCLE	SEA LEVEL THRUST	ENGINE NUMBER

CANDIDATE STBE CONFIGURATIONS FOR TASK 1

^{*} FUEL-RICH UNLESS OTHERWISE NOTED IN COMMENTS

SUMMARY OF TECHNICAL ENGINE DATA

THIS CHART SUMMARIZES THE TECHNICAL (NON-COST) DATA USED IN DETERMINING THE LIFE CYCLE COST PARAMETERS FOR THE SCREENING PROCESS. ò

SUMMARY OF TECHNICAL ENGINE DATA

ENGINE	VACUUM ISP, SEC	WEIGHT, W, LB	PROPELLANT BULK DENSITY, $\rho_{\mathbf{B}}$, LB/F ∓ 3	COMPLEXITY	PROBABITY OF SUCCESS	TECHNICAL LEVEL
			1995 ENGINE CANDIDATES	A1'ES		
REFERENCE	304.5	9308×2*	63.3	14	1.00	ဖ
_	329.2	8000	63.3	13	.95	တ
N	344.7	8090	61.6	16	.75	2
ω	350.0	8370	50.0	16	.95	ယ
4	344.7	7800	56.4	16	.95	တ
IJ.	353.5	7760	55.1	6	.75	ယ
ത	355.2	7810	46.9	17	.95	ယ
7	362.7	10400	51.0	21	.90	5
			2000 ENGINE CANDIDATES	Al'ES		
1	343.1	7880	63.4	13	.85	4
12	350.2	8360	61.7	16	.75	ယ
13	355.3	8490	50.4	16	.85	4
14	360.2	10250	62.5	23	.70	N
15	369.5	10860	51.6	23	.85	σı
16	368.9	12760	62.5	26	.70	2
17	376.8	13400	51.6	26	.75	4
18	360.5	7910	52.1	20	.65	
19	365.8	7880	51.0	20	.65	

SINCE THE F-1 HAS 1500 KLBS S.L. THRUST, BUT THE STBE ENGINES SHOWN HERE ALL HAVE 750 KLBS S.L. THRUST, THE F-1 ENGINE WEIGHT WAS HALVED TO BE COMPARABLE.

SUMMARY OF ENGINE COST DATA

THE PRODUCTION, DEVELOPMENT, CERTIFICATION, AND OWS COSTS, ESTIMATED FOR THE SIX-TEEN STBE CANDIDATES IN THE TWO IOC GROUPS ARE LISTED. THE COSTS WERE OBTAINED USING ROCKETDYNE'S SUITE OF PARAMETRIC COST MODELS WITH THE PRINCIPAL INPUT PARA-METERS AS SHOWN. ALL ENGINES ARE AT THE 750 KLBS SL THRUST LEVEL, CORRESPONDING TO ABOUT 850 KLBS VACUUM THRUST. THE LAST COLUMN, ENGINE LCC, IS THE SUM OF ALL COST ELEMENTS.

								,				_						2 m	•
18 19	17	16	Ğ	14	I.G	12	11		7	٥	CR	4	u	2	-	REF.		ENGINE NUMBER	a a
750 750	750	750	750	750	750	750	750		750	750	750	750	750	750	750	1500		THRUST KLBS	בי וביוב
GAS GEN							GAS GEN		STG	GAS	GAS GEN	GAS	GAS	GAS	GAS	GAS		CACLE	-
	COMB								COMB							BEN		***	
LOX/RP-1/LH2 LOX/C3H8/LH2	LOX/CH4	LOX/C3HB	DX/CH4	LOX/C3H8	LOX/CH4	LOX/C3HB	LOX/RP-1		LOX/CH4	LOX/CH4	LOX/C3H8	LOX/RP-1	LOX/CH4	LOX/C3HB	LOX/RP-1	LOX/RP-1		PROPELLANTS COOLANT	
LH2				L02	L02	L02	L02		CH4	LH2	LH2	LH2	CH4	C3HB	RP-1	RP-1		COOLANT	
4000 4000	6120	6420	3700	3460	3770	3850	3 38 0	2000 ENGINE CANDIDATES	3040	2630	3120	3120	3500	3410	2350	1000	1995 ENGINE CANDIDATES	PRESSURE PSIA	CHARRED
15.5 19.3	27.8	23.5	25. 5	20.9	19.3	16.5	13.3	NE CAND	24.7	21.6	18.9	14.7	19.3	16.2	11.9	\$15.5	NE: CAND	T(1)	2000
0.480 0.600	0.864	0.730	0.792	0.648	0.600	0.514	0.413	IDATES	0.768	0.672	0.586	0.456	0.600	0.504	0.370	\$0.260	IDATES	T(1) TOTAL-48	1202 5051
1.406 1.761	2.115	1.782	1.573	1.585	1.468	1.258	1.011		1.881	1.987	1.717	1.340	1.468	1.234	0.907	\$0.100		OPMENT COST \$B	הבויבי -
0.116 0.145	0.209	0.176	0.191	0.156		0.124	0.100		0.185	0.162	0.141	0.110	0.145	0.122	0.089	\$0.047		CATION COST \$8	CEBTIE
1.178 1.379	1.821	1.595	1.700	1.459	1.379	1.234	1.066				1.355				0.994			& SUPPORT	
3.180 3.885	5.009	4.283	4.256	3.848	3.592	3.130	2.589		4.494	4.320	3.799	3.044	3.592	3.078	2.360	\$1.878		CC \$B	י

SUMMARY OF ENGINE COST DATA — FY 86 \$

SUMMARY OF VEHICLE LIFE CYCLE COST ELEMENTS

THE SIX INDIVIDUAL LCC ELEMENTS WHICH, WHEN SUMMED, RESULT IN THE OVERALL COST SCREENING CRITERION, $\Sigma(\Delta L CC_V)$, ARE LISTED FOR ALL ENGINE CANDIDATES OF THE TWO IOC GROUPS.

														_					· ·
19	18	17	16	5	14	13	12	11		7	6	CA.	4	ч	2		REF.	ð.	ENG I NE NUMBER
(2.146)	(1.960)	(2.531)	(2,254)	(2.275)	(1.949)	(1.778)	(1.599)	(1.351)		(2.037)	(1.774)	(1.715)	(1.407)	(1.593)	(1.407)	(\$0.864)			SPECIFIC
(0.614)	(0.601)	1.760	1.484	0.667	0.405	(0.352)	(0.408)	(0.614)	20	0.470	(0.644)	(0.666)	(0.648)	(0.403)	(0.524)	(\$0.562)		15	метент
2.007	1.302	3.131	2.405	2.378	1.970	1.714	1.252	0.711	2000 ENGINE	2.616	2.442	1.921	1.166	1.714	1.200	\$0.482		1995 ENGINE	гсс
0.211	0.125	0.652	0.195	0.454	0.332	0.122	0.073	(0.022)	CANDIDATES	0.363	0.185	0.114	0.040	0.122	0.067	(\$0.043)		CANDIDATES	RELIABILITY
0.640	0.582	0.608	0.042	0.608	0.042	0.671	0.083	(0.005)		0.640	0.853	0.426	0.359	0.692	0.088	\$0.000			DENSITY
0.616	0.492	0.159	0.374	0.047	0.333	0.066	0.157	0.045		0.038	0.050	0.215	0.007	0.037	0.216	\$0.005			RISK
0.714	(0.060)	3.779	2.246	1.880	1.133	0.443	(0.442)	(1.235)		2.089	1.111	0.295	(0.484)	0.568	(0.359)	(\$0.983)			TOTAL LIFE CYCLE COST IMPACT

SUMMARY OF VEHICLE LIFE CYCLE COST ELEMENTS — FY 86 \$B

TASK 1 ENGINES SELECTED

 $\Sigma(\Delta L CC_{\mathbf{V}}).$ The minimum value of the overall cost criterion leads to the highest ranked engine. THE ENGINE CANDIDATES ARE RANKED ACCORDING TO THEIR OVERALL COST CRITERION,

AW-16

RANK UN H 4 CN W 4 DD 0 ENGINE NUMBER 11 12 18 44 M 10 W 10 TOTAL LIFE CYCLE IMPACT COST (\$0.484) (\$0.359) (\$0.442) (\$0.060) (\$1.235) (\$0.983) \$0.295 \$0.568 2000 1995 ENGINE CANDICATES ENGINE CANDIDATES GAS GAS GAS GAS GAS GAS GAS GAS GENERATOR GENERATOR GENERATOR: GENERATOR GENERATOR GENERATOR GENERATOR GENERATOR CYCLE LOX/C3HB LOX/CH4 LOX/C3H8 LOX/C3HB LOX/RP-1 LOX/RF-1 LOX/RP-1/LH2 LOX/RP-1 LOX/CH4 PROPELLANTS C3H8 다. 당 당 당 RP-1 L02 L02 COOLANT

TASK I ENGINES SELECTED

SUMMARY A. WEISS

• THROTTLING ON-DESIGN/OFF-DESIGN STUDYW. BISSELL

D. NGUYEN

• COMBUSTION DEVICES STUDIESP. MEHEGAN

TURBOMACHINERY STUDIES......A. EASTLAND

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW AGENDA

TASK 2 STATUS REVIEW TASK 1 SUMMARY A. WEISS INTRODUCTION F. KIRBY ✓ • SUBSYSTEM OPTIMIZATION APPROACH......A. WEISS

TASK 2 - EVALUATION OF CANDIDATE STBE CONFIGURATIONS

QUIRED, WILL BE CONDUCTED TO PROVIDE A BASIS FOR SELECTION OF THE OPTIMUM SUB-DIRECTED TOWARD IN-DEPTH STUDIES OF THE THREE MAJOR SUBSYSTEMS LISTED TO DEFINE THE OPTIMUM SUBSYSTEM FOR EACH CANDIDATE ENGINE. SUPPORTING STUDIES, AS RE-THE OBJECTIVES OF TASK 2 ARE DESCRIBED ON THIS CHART. MOST OF THE EFFORT WILL BE SYSTEM.

TASK 2 — EVALUATION OF CANDIDATE STBE CONFIGURATIONS

OBJECTIVES

- WHICH OPTIMIZE THE SELECTED CANDIDATE ENGINES **CONDUCT SYSTEM AND SUBSYSTEM TRADE STUDIES TO DEFINE FEATURES**
- THRUST CHAMBER ASSEMBLY
- TURBOMACHINERY
- **CONTROL AND HEALTH MONITORING SYSTEM**
- CONDUCT SUPPORTING STUDIES TO PROVIDE BASIS FOR SELECTION
- · LCC
- RISK
- **HAZARDS**
- FMEA
- **FACILITIES**
- **VEHICLE COMPATIBILITY**
- OPERATIONAL FLEXIBILITY
- **TECHNOLOGY STATUS**

TASK 2 - EVALUATION OF CANDIDATE STBE CONFIGURATIONS FLOW DIAGRAM

THIS CHART PRESENTS THE FLOW DIAGRAM FOR THE TASK 2 EFFORT.

BASELINE ENGINE PARAMETERS IN TASK 1 WERE BASED ON 750K LBS THRUST, AND FIXED ORIFICE CON-THROTTLING WAS NOT CONSIDERED. THE VEHICLE TRADE FACTORS WERE DEVELOPED THE 9 ENGINE CONFIGURATIONS FOR IN-DEPTH STUDY WERE DEFINED IN TASK 1. BY ROCKETDYNE IN ORDER TO MEET THE SCHEDULE. IN TASK 2 THE ENGINE BALANCES WILL BE RE-RUN BASED ON REVISED GROUND RULES WHICH CONSIDER THE ACTUAL VEHICLE AND ENGINE REQUIREMENTS RELATIVE TO THRUST AND THROTTLING. IN-DEPTH COMPONENT TRADE STUDIES WILL BE CONDUCTED IN THE AREAS OF MACHINERY, COMBUSTION DEVICES, AND CONTROLS AND HEALTH MONITORING. SUBSYSTEM SCREENING WILL UTILIZE UPDATED VEHICLE FACTORS BASED ON STAS CON-TRACTORS INPUTS.

NEW BALANCES WILL BE RUN FOR THE 9 ENGINE CONFIGURATIONS AFTER THE OPTIMUM SUB-SYSTEMS ARE DEFINED.

TASK 2 — EVALUATION OF CANDIDATE STBE **CONFIGURATIONS FLOW DIAGRAM**

Rocketdyne Division

EVALUATION OF CANDIDATE STBE CONFIGURATIONS APPROACH

THE OVERALL APPROACH TO TASK 2 IS A PARALLEL EFFORT. FIXED DESIGN POINT BALANCES DEVICES. IN PARALLEL A THROTTLING CONFIGURATION IS DEVELOPED FOR EACH ENGINE AND ARE USED TO CONDUCT SUBSYSTEM TRADE STUDIES FOR THE TURBOMACHINERY AND COMBUSTION A BALANCE GENERATED AT THE 750K LB THRUST POINT. AN OFFDESIGN MODEL IS THEN UTILIZED TO PREDICT PERFORMANCE AT 625K LB THRUST. THE CONTROL SYSTEM WILL THEN BE SCOPED FROM THE BALANCE DATA AND A VALVE SENSITIVITY STUDY.

THROTTLING CONFIGURATIONS, WITH ADJUSTMENTS MADE AS REQUIRED. FINAL OPTIMIZED BALANCES WILL THEN BE RUN FOR EACH (THROTTLING) CONFIGURATION ENGINE. THE DATA WILL BE USED TO SELECT THE BEST 1996 AND 2000 ENGINE CANDIDATE USING THE APPROVED THE TURBOMACHINERY AND COMBUSTION DEVICES WILL THEN BE RE-EVALUATED AGAINST THE EVALUATION AND SELECTION CRITERIA PLAN.

STBE SYSTEMS ANALYSES APPROACH

CONDUCT SUBSYSTEM TRADE STUDIES USING 750 kib THRUST FIXED DESIGN POINT ENGINE BALANCES AS BASELINE

- PARALLEL |
- TURBOMACHINERY
- COMBUSTION DEVICES
- DEVELOP THROTTLING CONFIGURATION FOR EACH ENGINE CANDIDATE
- GENERATE ENGINE BALANCES FOR THE THROTTLING CONFIGURATIONS AT 750 kib THRUST OPERATING POINT
- USE OFF-DESIGN COMPUTER MODEL TO PREDICT ENGINE PERFOR-MANCE AT 625 kIb THRUST OPERATING POINT
- DEFINE CONTROL SYSTEM REQUIRIEMENTS BASED ON ENGINE BAL-ANCES AND VALVE SENSITIVITY STUDY
- REEVALUATE SELECTED SUBSYSTEMS FOR THROTTLING CONFIGURATION
- GENERATE NEW ENGINE BALANCES FOR THE OPTIMIZED THROTTLING **CONFIGURATION ENGINES**

86D-9-1980

TASK 2 - SYSTEM ANALYSES FLOW DIAGRAM

THIS FLOW DIAGRAM SHOWS HOW THE FIXED POINT DESIGN COMPONENT STUDIES WILL BE RE-EVALUATED WITH THE THROTTLING ENGINE BALANCES TO FINALIZE THE COMPONENT CON-FIGURATIONS PRIOR TO GENERATING OPTIMIZED BALANCES.

TASK 2 — SYSTEM ANALYSES FLOW DIAGRAM

LH₂ COOLED ENGINE GROUNDRULE CHANGES

THESE ARE THE CHANGES FROM THE TASK 1 GROUNDRULES INCORPORATED INTO THE FIXED DESIGN POINT BALANCES. THEY AFFECT THE HYDROGEN COOLED ENGINES ONLY.

LH₂ COOLED ENGINE GROUNDRULE CHANGES

PARAMETER/COMPONENT	CHANGE	REASON	EFFECT
UPPER P _C LIMIT	CHANGED TO LH ₂ PUMP TIP SPEED LIMIT	IMP TOVED PERFORMANCE	INCREASED P _C
LH ₂ PUMP STAGES	NEAR-TERM LIMIT INCREASED TO 3	CONSISTENCY WITH SSME	INCREASED P _C FOR NEAR-TERM
PUMP STAGE HEAD COEFFICIENT	UPPER LIMIT OF 0.55 ADDED	THFOTTLEABLITY AND DESIGN MARGIN	DECREASED P _C
HYDROSTATIC BEARINGS	ELIMINATED AS NEAR-TERM CANDIDATE	DEVELOPMENT TIME	FOR NEAR-TERM, INCREASED LH2 ŵ AND LH2 TURBO- PUMP WEIGHT

NET IMPACT OF GROUND RULE CHANGES

- ●P_C INCREASED 35—60%
- ●Isp INCREASED 4—6 SECONDS

STBE FIXED POINT DESIGN CHARACTERISTICS (1995 ENGINES)

THIS CHART SUMMARIZES THE FIXED POINT BALANCE DATA FOR THE 1995 IOC ENGINES.

AW-30

STBE FIXED POINT DESIGN CHARACTERISTICS (1995 ENGINES)

CATEGORY	F	FUEL-COOLED	0		LH2-COOLED	
ENGINE NUMBER	1	2	ω	4	5	ၵ
THRUST (klb)	750	750	750	750	750	750
CYCLE	GG	GG	GG	GG	GG	99
PROPELLANTS	LOX/RP-1	LOX/C3H8	LOX/CI14	LOX/RP-1	LOX/C3H8	LOX/CH4
COOLANT	RP-1	C3H8	CH4	LH2	LH2	LH2
TURBINE DRIVE GAS	LOX/RP-1	LOX/C3H8	LOX/CH4	LOX/LH2	LOX/LH2	LOX/1 H2
TURBINE GAS TYPE	F.R.	F.R.	F.R.	F.R.	F.R.	F.R
CHAMBER PRES (psia)	2350	3407	3495	4165	4170	4200
SPECIFIC IMPULSE (s)				,		
VACUUM	329.2	344.7	350.0	348.6	357.4	361.4
SEA LEVEL	284.6	302.6	308.1	309.0	316.7	320.8
LOX PUMP Pd (psia)	2996	4344	4456	5310		5355
FUEL PUMP Pd (psia)	3476/6943	4770/6306	4866/61 35	5477	5484	5523
LH2 PUMP Pd (psia)	DNA	DNA	DNA	6575	6584	6640
WEIGHT (Ib)	7669	7794	8074	7719	7715	7957
LENGTH (in.)	163	152	150	147	147	146
DIAMETER (in.)	101	95	94	91		91
NOZZLE &	42.9	56.9	57.1	64.3	64.9	64.6

F.R. = FUEL RICH

STBE FIXED POINT DESIGN CHARACTERISTICS (2000 ENGINES)

THIS CHART SUMMARIZES THE FIXED POINT BALANCE DATA FOR THE 2000 IOC ENGINES.

WEIGHT (Ib) FUEL PUMP Pd (psia) SPECIFIC IMPULSE (s) F.R. = FUEL RICH NOZZLE ε DIAMETER (in.) LH2 PUMP Pd (psia) LOX PUMP Pd (psia) **CHAMBER PRES (psia)** CYCLE COOLANT LENGTH (in.) TURBINE DRIVE GAS **PROPELLANTS** THRUST ENGINE NUMBER TURBINE GAS TYPE SEA LEVEL VACUUM CATEGORY (<u>Kib</u>) 4449 3380 343.1 301.1 95 4503/6210 152 DNA F.R. GG 7528 750 **L**0X LOX/RP-1 LOX/RP-LOX-COOLED 5170/7476 350.2 308.8 8002 5068 3850 62.8 93 149 DNA G G LOX/C3H8 750 LOX/C3H8 8388 9745 328.4 366.2 5760 86 7574 137 7344 F.R. LOX/LH2 LH2 LOX/RP-1/LH2 GG 750 LH2-COOLED

STBE FIXED POINT DESIGN CHARACTERISTICS

(2000 **ENGINES**)

AW-33

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

AGENDA

SUMMARY A. WEISS
• CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER
• THROTTLING ON-DESIGN/OFF-DESIGN STUDY
• COMBUSTION DEVICES STUDIESP. MEHEGAN
V. TURBOMACHINERY STUDIESA. EASTLAND
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS
• TASK 2 STATUS REVIEW
• TASK 1 SUMMARY A. WEISS
• IN INCOUCTION F. KIRBY

TURBOMACHINERY AGENDA

THIS IS THE AGENDA FOR THE TURBOMACHINERY SECTION OF THIS PRESENTATION

TURBOMACHINERY AGENDA

- INTRODUCTION
- APPROACH LOGIC
- REQUIREMENTS
- GROUND RULES
- TURBOMACHINERY CANDIDATES
- FINAL SELECTION APPROACH

STBE TURBOMACHINERY STUDIES

CREATE THE OPTIMUM TURBOMACHINERY SYSTEM FOR EACH OF THE NINE ENGINES SELECTED THE OBJECTIVE OF THE TURBOMACHINERY STUDY IS TO SELECT THE TURBOPUMPS THAT IN TASK I.

ENGINE, THE MOST PROMISING OF THESE WERE IDENTIFIED THROUGH AN ENGINEERING SCREENING PROCESS AND RECOMMENDED FOR LIFE CYCLE COST ANALYSIS, WHERE THE TO ACHIEVE THIS, VIABLE TURBOMACHINERY SYSTEMS WERE CONSIDERED FOR EACH OPTIMUM SYSTEM FOR EACH ENGINE WILL BE SELECTED. CURRENTLY, THE ENGINEERING SCREENING PROCESS IS COMPLETE FOR FOUR OF THE NINE ENGINES, WITH THE OTHER FIVE IN WORK. THESE ENGINES ARE ENGINE 1 (LOX/RP-1, HYDROGEN COOLED), AND ENGINE 6 (LOX/METHANE, HYDROGEN COOLED), AND ARE ALL RP-1 COOLED), ENGINE 3 (LOX/METHANE, METHANE COOLED), ENGINE 4 (LOX/RP-1, CURRENT TECHNOLOGY ENGINES.

STBE TURBOMACHINERY STUDIES

OBJECTIVE

 SELECT OPTIMUM TURBOMACHINERY FOR THE NINE CANDIDATE ENGINES

APPROACH

- IDENTIFY CANDIDATE TURBOMACHINERY SYSTEMS FOR EACH ENGINE
- RECOMMEND PROMISING SYSTEMS THROUGH ENGINEERING SCREENING PROCESS
- SELECT OPTIMUM CONFIGURATION FOR EACH ENGINE THROUGH LIFE CYCLE COST ANALYSIS

STATUS

 SCREENING COMPLETE FOR FOUR ENGINES (1, 3, 4, 6)

TURBOMACHINERY SELECTION APPROACH

CIRCUIT) CONFIGURATION. IN THIS PHASE TURBINES ARE SIZED WITHIN THE SPECIFIED GROUNDRULES TO DRIVE THE RECOMMENDED PUMP CONFIGURATIONS USING VALUES OF INLET BOOST (OR LOW PRESSURE) PUMPS, MAIN PUMPS AND KICK PUMPS ARE SIZED WITHIN THE ENSURE COMPONENT OPTIMIZATION. THESE PUMP CONFIGURATIONS ARE SCREENED ON THE PROCESS, BASED ON TURBINE FLOWRATE, SYSTEM WEIGHT, SYSTEM ENVELOPE AND SYSTEM PUMP (OR HYDRAULIC FLOM CIRCUIT) CONFIGURATIONS CONSISTING OF COMBINATIONS OF BASIS OF MAIN PUMP SPEED (HIGH SPEED GIVING SMALLER TURBINE DIAMETER, LARGER CONFIGURATION IS CHECKED TO ENSURE ACCEPTABLE EFFICIENCY AND MARGINS AT BOTH SPECIFIED GROUNDRULES TO SATISFY THE ENGINE BALANCE REQUIREMENT OF DELIVERED FURBINE BLADE HEIGHT-REDUCING THE LIKELIHOOD OF PARTIAL ADMISSION, AND LOWER TURBINE), DUAL SHAFT TURBINE ARRANGEMENTS (FUEL AND OXIZIDER PUMPS DRIVEN BY MAIN PUMP WEIGHT), POWER (LOWER REQUIRED POWER REDUCING TURBINE FLOWRATE AND PRESSURE AND OVERALL PRESSURE RATIO TAKEN FROM THE ENGINE BALANCES. SINGLE FLOW, AND INLET AND DISCHARGE PRESSURE. COMPUTER PROGRAMS DEVELOPED DURING SEPARATE TURBINES) AND TURBINES FOR THE HYDROGEN PUMPS, WHERE REQUIRED, ARE IN-HOUSE STUDIES ALLOW DESIGN PARAMETERS TO BE VARIED OVER A WIDE RANGE TO CONFIGURATION FOR EACH ENGINE. THE OFF DESIGN PERFORMANCE OF THE SELECTED TURBINE STAGES. ROCKETDYNE'S GASPATH COMPUTER PROGRAM, WHICH IS A PROVEN COMPLEXITY, A LIFE CYCLE COST ANALYSIS SELECTS THE OPTIMUM TURBOMACHINERY CONFIGURATIONS ARE CARRIED FORWARD FOR SIZING OF THE TURBINE (OR HOT GAS TURBINE DESIGN TOOL, WAS USED FOR THIS PHASE. AFTER A FURTHER SCREENING ALL CONSIDERED IN THIS PHASE, USING COMBINATIONS OF IMPULSE AND REACTION SHAFT TURBINE ARRANGEMENTS (FUEL AND OXIDIZER PUMPS DRIVEN BY A SINGLE 750K THRUST AND 625K THRUST, AND IF NECESSARY THE PROCESS IS REPEATED INCREASING ENGINE SPECIFIC IMPULSE), WEIGHT AND COMPLEXITY.

TURBOMACHINERY SELECTION APPROACH

TURBOMACHINERY REQUIREMENTS FOR SELECTED ENGINES

THIS TABLE LISTS THE TURBOMACHINERY REQUIREMENTS (PUMP FLOWRATES, INLET PRESSURES AND DISCHARGE PRESSURES, TURBINE INLET PRESSURES AND OVERALL PRESSURE RATIOS) AS SET BY THE NINE ENGINE CYCLES UNDER CONSIDERATION. *TWO DELIVERY PRESSURES REQUIRED FOR THE TWO COOLANT CIFICUITS (NOZZLE AND JACKET)

Rockwell International Rocketdyne Division

_		_	30																				
			18		12					တ			O1			4		ω		2		-	ENGINE
			RP-1		C ₃ H ₈		RP-1		•	CH ₄			C ₃ H ₈			RP-1		CH ₄		C ₃ H ₈		RP-1	FUEL
		1	сн,	į	LOX		Lox		1	LH ₂		1	LH ₂		;	LH ₂		CH ₄	_	C₃H ₈		RP-1	COOLANT
	RP-1	EH3	LOX	C ₃ H ₈	LOX	RP-1	LOX	CH ₄	LH ₂	Lox	C ₃ H̄ ₈	LH ₂	LOX	RP-1	LH ₂	LOX	CH ₄	LOX	C ₃ H ₈	LOX	RP-1	Lox	PUMP
	5214	4101	10873	6441	11188	6438	11183	8629	3910	11296	5597	3232	11146	5644	3179	11139	10320	11514	6680	11351	6857	11797	FLOWRATE, GPM @ 750K
	4 5	25	65	45	65	45	65	45	25	65	45	25	65	45	25	65	45	65	45	59	45	65	ENGINE INLET PRESSURIE, PSI
	5260	6267	5100	5068, 7476*	5710	4448, 6210*	4503	5523	6640	5355	5483	6583	5316	5477	6574	5310	4865, 6195*	4456	4470, 6305*	4344	3475, 6943*	2996	PUMP DISCHARGE PRESSURE, PSI
			3905		3835		3350			4179			4144			4144	3477		3390			2338	TURBINE INLET PRESSURE PSI
			20		20		20			20			20			20		20		20		20	OVERALL PRESSURE RATIO

TURBOMACHINERY REQUIREMENTS FOR

SELECTED ENGINES

PHILOSOPHY FOR COMPONENT SIZING

FAVORABLE SYSTEM WAS CONSIDERED, THE KNOWLEDGE GAINED FROM IN-HOUSE STUDIES TO REDUCE THE SIZE OF THE CONFIGURATION MATRIX WHILE ENSURING THAT EVERY WAS USED TO ESTABLISH THE CANDIDATE SYSTEMS. TYPICAL DUCT LOSSES BETWEEN TURBOMACHINERY COMPONENTS (INCLUDING VOLUTE AND BABYPANTS INLET LOSSES) WERE INCLUDED TO ENSURE ACCURATE MODELING OF THE GROUNDRULES FOR THE HYDRODYNAMIC AND AERODYNAMIC DESIGN PARAMETERS WERE SET TO ENSURE EFFICIENT COMPONENT OPERATION FOR THE SPECIFIED 100 MISSION LIFE.

GROUNDRULES IMPOSED BY STRUCTURAL AND MECHANICAL LIMITS WERE SET ACCORDING TO THE SPECIFIED TECHNOLOGY LEVELS. THE 1990 TECHNOLOGY LEVEL LIMITS REPRESENT ROCKETDYNE'S BEST ESTIMATE OF WHAT THE TECHNOLOGY ADVANCES WILL BE IF REASONABLE EFFORT IS MADE TO ACHIEVE THOSE ADVANCES.

SIGNIFICANT SIZE, WEIGHT AND PERFORMANCE PENALTIES ARE INCURRED WHEN THE HYDROGEN PUMP SPEED IS REDUCED TO THAT OF THE FUEL OR LOX PUMP.

Rockwell International

Rocketdyne Division

COMPONENT SIZING

- RESULTS FROM IN-HOUSE STUDIES USED TO ESTABLISH PRIMARY CANDIDATES
- TYPICAL TURBOMACHINERY DUCTING LOSSES INCLUDED
- HYDRODYNAMIC AND AERODYNAMIC DESIGN PARAMETERS (ϕ , ψ , u/C_O, ETC) SET WITHIN DEMONSTRATED LIMITS
- STRUCTURAL/MECHANICAL LINITS SET BY SPECIFIED TECHNOLOGY LEVELS
- LH₂ TURBOPUMPS ALWAYS ON SEPARATE SHAFT DUE TO HIGH SPEED

HYDRAULIC FLOW CIRCUIT CONFIGURATIONS

MAIN PUMP + KICK PUMP, BOOST PUMP + MAIN PUMP, AND BOOST PUMP + MAIN PUMP + THE FOUR HYDRAULIC FLOW CIRCUITS THAT WERE CONSIDERED ARE: MAIN PUMP ONLY,

A MAIN PUMP ONLY REPRESENTS THE SIMPLEST CONFIGURATION.

FOR PROPELLANT COOLED CYCLES, TWO DELIVERY PRESSURES ARE REQUIRED FOR CONFIGURATION WITH A MAIN PUMP AND A KICK PUMP ON A SINGLE SHAFT, IN CIRCUIT IS PUMPED TO THE HIGHER PRESSURE BY THE KICK PUMP, GENERALLY THE COOLANT - A LOWER PRESSURE FOR THE NOZZLE COOLANT CIRCUIT AND A HIGHER PRESSURE FOR THE THRUST CHAMBER JACKET COOLANT CIRCUIT. A WHICH ONLY THE FLOW REQUIRED BY THE THRUST CHAMBER JACKET COOLANT REQUIRES THE MINIMUM POWER. BOOST PUMPS CAN BE ADDED UPSTREAM OF EITHER OF THE ABOVE CONFIGURATIONS KICK) PUMP TO RUN AT HIGHER SPEED FOR THE SAME NPSH MARGIN, AND REDUCES TO INCREASE THE MAIN PUMP INLET PRESSURE. THIS ALLOWS THE MAIN (AND WEIGHT AND SIZE.

THE DRIVES FOR THE BOOST PUMPS SHOWN HERE ARE FULL FLOW HYDRAULIC TURBINES, AND ARE DISCUSSED ON THE NEXT CHART.

HYDRAULIC FLOW CIRCUIT CONFIGURATION

MAIN ONLY

MAIN + KICK

BOOST + MAIN

BOOST + MAIN + KICK

GROUNDRULES FOR PUMP CONFIGURATIONS SIZING

IN-HOUSE STUDIES HAVE SHOWN THAT FULL-FLOW HYDRAULIC TURBINES, IN WHICH ALL OF THE FLOW IS USED TO DRIVE THE BOOST PUMP BEFORE BEING DELIVERED TO THE SYSTEM, GAS TURBINES. IN THE RECIRCULATORY FLOW SYSTEM, A SMALL FRACTION OF THE FLOW IS TAPPED OFF; USED TO DRIVE THE BOOST PUMP AND THEN RETURNED TO MAIN FLOW AT GAS TURBINES WERE NOT CONSIDERED FOR THE LOX BOOST PUMP TURBINES DUE TO PURGE SEAL REQUIREMENTS AND WERE LARGE AND OF LOW EFFICIENCY FOR THE FUEL HAVE CONSIDERABLE ADVANTAGES OVER RECIRCULATORY FLOW HYDRAULIC TURBINES AND THE BOOST PUMP DISCHARGE. PREVIOUS STUDIES INDICATED THAT THE BOOST PUMP TURBINES FOR THESE SYSTEMS OPERATED IN AN UNFAVORABLY LOW SPECIFIC SPEED **BOOST PUMP DRIVES**

IN THE CONFIGURATION CONTAINING BOOST PUMP, MAIN PUMP AND KICK PUMP THE BOOST LATTER WAS NOT CONSIDERED AS PREVIOUS STUDIES HAD SHOWN THAT IT RESULTED IN HIGHER PRESSURES IN THE BOOST PUMP TURBINE AND CONNECTING DUCTS, WITH NO PUMP CAN BE DRIVEN BY FLOW FROM THE MAIN PUMP OR KICK PUMP DISCHARGE. SIGNIFICANT PERFORMANCE ADVANTAGE. INDUCER ONLY BOOST PUMPS WERE USED TO MINIMIZE THE POWER REQUIRED BY THE BOOST PUMP AND TO REDUCE COMPLEXITY.

MAIN PUMP SUCTION PERFORMANCE, WHICH MAXIMIZES SPEED (AND HENCE MINIMIZES SIZE INDUCERS WERE USED UPSTREAM OF THE FIRST STAGE OF ALL MAIN PUMPS TO MAXIMIZE AND WEIGHT) AND MINIMIZES BOOST PUMP POWER REQUIREMENT.

GROUND RULES FOR PUMP CONFIGURATION SIZING

- FULL FLOW HYDRAULIC TURBINES USED FOR BOOST PUMP DRIVES
- PERFORMANCE ADVANTAGE OVER RECIRCULATORY FLOW HYDRAULIC TURBINES
- SIZE AND PERFORMANCE ADVANTAGE OVER GAS TURBINES
- **BOOST PUMPS DRIVEN FROM KICK PUMP DISCHARGE** NOT INCLUDED
- NO PERFORMANCE ADVANTAGE
- HIGH PRESSURE BOOST PUMP TURBINE AND DUCTING
- INDUCER ONLY BOOST PUMPS
- OPTIMUM PERFORMANCE
- REDUCED COMPLEXITY
- INDUCERS UPSTREAM OF THE FIRST STAGE OF ALL MAIN PUMPS
- MINIMUM SIZE FOR REQUIRED L FE

GROUNDRULES FOR PUMP SIZING

HYDRODYNAMIC DESIGN PARAMETERS

THE RANGE OF VALUES USED FOR THE HYDRODYNAMIC PUMP DESIGN PARAMETERS REFLECTS ROCKETDYNE'S EXPERIENCE IN DESIGNING HIGH PERFORMANCE, LIGHTWEIGHT, RELIABLE TURBOPUMPS FOR LIQUID ROCKET ENGINE APPLICATIONS.

WERE SET TO ENSURE NO PUMP HEAD LOSS AND NO MATERIAL EROSION DUE TO CAVITATION. INDUCER NPSH MARGINS AND IMPELLER MAXIMUM OPERATING SUCTION SPECIFIC SPEED

EYE-TO-TIP DIAMETER RATIO LIMIT REPRESENT VALUES FOR WHICH GOOD EFFICIENCY AND INDUCER AND IMPELLER FLOW AND HEAD COEFFICIENT RANGES AND THE IMPELLER SUCTION PERFORMANCE HAS BEEN DEMONSTRATED.

GROUNDRULES FOR FUMP SIZING HYDRODYNAMIC DESIGN PARAMETERS

GROUNDRULE	VALUE	RATIONALE
NPSH MARGIN FOR BOOST PUMP OR MAIN PUMP ALONE	20%	
NPSH MARGIN FOR MAIN PUMP FOLLOWING BOOST PUMP	100%	VALUES WITH NO LIFE LIMITATION
MAXIMUM SUCTION SPECIFIC SPEED FOR IMPELLER FOLLOWING INDUCER	5000	DUE TO CAVITATION
INDUCER FLOW COEFFICIENT	0.05 1'0 0.3	
IMPELLER FLOW COEFFICIENT	0.14 1'O 0.36	DEMONSTRATED EFFICIENT OPERA-
INDUCER HEAD COEFFICIENT	0.15 1'O 0.20	SUCTION PERFOR-
IMPELLER HEAD COEFFICIENT	0.4 TO 0.5 LOX 0.45 TO 0.55 FUEL, LH ₂	MANCE
MAXIMUM IMPELLER EYE-TO-TIP DIAMETER RATIO	0.75	LIMIT FOR EFFICIENT
		OPERATION

GROUNDRULES FOR PUMP SIZING

STRUCTURAL/MECHANICAL CONSTRAINTS

THE STRUCTURAL AND MECHANICAL CONSTRAINTS WERE SET BY CURRENT TECHNOLOGY LIMITS AND BY ROCKETDYNE'S BEST GUESS AT TECHNOLOGY LIMIT IMPROVEMENTS AVAILABLE IN 1990. THE IMPELLER TIP SPEED LIMIT IS SET BY VANE STRESSES, EXCEPT IN HYDROGEN WHERE IT IS SET BY THE DISC BURST SPEED.

THE INDUCER TIP SPEED LIMIT IS SET TO ENSURE THAT INDUCER SUCTION PERFORMANCE IS NOT DEGRADED BY BLADE BLOCKAGE EFFECTS.

BEARING SIZE AND D-N LIMITS ARE SET TO ENSURE THE REQUIRED BEARING LIFE.

GROUNDRULES FOR PUMP SIZING STRUCTURAL/MECHANICAL CONSTRAINTS

HYDROSTATIC ELEMENTS/LOAD SHARING DEVICES	MARK 29F MARK 49	BEARING WEAR	5 x 106 5 x 106	2 x 10 ⁶ 1.5 x 10 ⁶	MAXIMUM BEARING DN, mm RPM, D 30 mm D 30 mm
	MARK 48	BEARING WEAR	20	20	MINIMUM ROLLING ELEMENT BEARING SIZE, MM
MATERIAL PROPERTIES	SSME	SUCTION PER- FORMANCE/ STRUCTURAL INTEGRITY	525 595 715 870 1165	500 565 685 830	MAXIMUM INDUCER TIP SPEED, FT/SEC — LOX RP-1 LC3H8(SC) LCH4 LH2
MATERIAL PROPERTIES	SSME	DISK BURST	1565 2100	1490 2000	LCH4 LH2
MATERIAL PROPERTIES	SSME	STRUCTURAL/ PERFORV ANCE	945 1070 1290	900 1020 1230	MAXIMUM IMPELLER TIP SPEED, FT/SEC LOX RP-1 LC ₂ H ₈ (SC)
IMPROVEMENT	EXPERIENCE	RATIONALE	3Y LEVELS	TECHNOLOGY LEVELS CURRENT 1990	GROUNDRULE

HOT GAS FLOW CIRCUIT OPTIONS

PROPELLANT COOLED ENGINES

CONSIDERED, IN WHICH BOTH THE FUEL AND OXIDIZER PUMPS ARE DRIVEN BY THE SAME FUEL AND OXIDIZER PUMPS ARE DRIVEN BY SEPARATE TURBINES IN SERIES. THE DUAL TURBINE, AND A DUAL SHAFT SERIES CONFIGURATION WAS CONSIDERED IN WHICH THE FOR THE PROPELLANT COOLED ENGINES, A SINGLE SHAFT CONFIGURATION WAS SHAFT PARALLEL CONFIGURATION WILL BE DISCUSSED IN A LATER CHART.

HOT GAS FLOW CIRCUIT OPTIONS PROPELLANT COOLED ENGINES

SINGLE SHAFT

SERIES

DUAL SHAFT

ရှ

• NO ADVANTAGE TO PARALLEL TURBINES

HOT GAS FLOW CIRCUIT OPTIONS

HYDROGEN COOLED ENGINES

TURBINE DRIVING THE HYDROGEN PUMP AND A SINGLE TURBINE DRIVING BOTH FUEL AND OXIDIZER PUMPS, ARRANGED EITHER IN SERIES OR IN PARALLEL. THE DUAL SHAFT + HYDROGEN ARRANGEMENTS HAVE SEPARATE TURBINES FOR EACH PUMP (TOTAL OF THREE) HYDROGEN COOLED ENGINES. THE SINGLE SHAFT + HYDROGEN ARRANGEMENTS HAVE A THE TURBINE ARRANGEMENTS SHOWN ON THIS CHART WERE ALL CONSIDERED FOR THE AND CAN BE ARRANGED IN SERIES, PARALLEL OR A COMBINATION.

HOT GAS FLOW CIRCUIT OPTIONS

HYDROGEN COOLED ENGINES

HYDROGEN

DUAL

ຄ

86C-9-543

Rockwell V International Rocketdyne Division

PARALLEL

SERIES

SERIES/PARALLEL

GROUNDRULES FOR MAIN TURBINE CONFIGURATION SIZING

IN-HOUSE ENGINE SYSTEM STUDIES INDICATED THAT A SERIES TURBINE ARRANGEMENT REQUIRED CONSIDERABLY LESS FLOW THAN A PARALLEL ARRANGEMENT, AND THUS HAD HIGHER ENGINE SPECIFIC IMPULSE.

THE HIGHEST EFFICIENCY, INCREASING BLADE HEIGHT AND REDUCING THE LIKELIHOOD OF SPEED. THIS DECREASES THE TURBINE DIAMETER FOR THE BLADE SPEED REQUIRED FOR IN SERIES ARRANGEMENTS THE TURBINES WERE ARRANGED IN ORDER OF DECREASING PARTIAL ADMISSION.

GROUNDRULES FOR MAIN TURBINE CONFIGURATION SIZING

- SERIES TURBINES USED FOR DUAL SHAFT CONFIGURATIONS IN PROPELLANT COOLED ENGINES
- SYSTEM STUDY SHOWED IMPROVED PERFORMANCE OVER PARALLEL CONFIGURATION
- HIGHER SPEED TURBINE PLACED FIRST IN SERIES CONFIGURATIONS
- SMALLER DIAMETER FOR GIVEN BLADE SPEED
- REDUCED LIKELIHOOD OF PARTIAL ADMISSION

GROUNDRULES FOR TURBINE SIZING

AERODYNAMIC DESIGN PARAMETERS

TURBINE AERODYNAMIC PARAMETERS ARE SET TO ENSURE HIGH EFFICIENCY OPERATION AND ARE BASED ON ROCKETDYNE'S EXPERIENCE IN DESIGNING COMPACT, HIGH EFFICIENCY, HIGH POWER DENSITY TURBINES FOR LIQUID ROCKET ENGINE APPLICATIONS.

MINIMIZING WHIRL VELOCITY INCREASES PERFORMANCE AND, IN ADDITION, IF THERE IS BLADE ROW, WITH ASSOCIATED LOSSES AND PENALTIES IN TURBINE SIZE, IS REQUIRED A SIGNIFICANT WHIRL VELOCITY COMPONENT AT THE TURBINE EXIT, AN ADDITIONAL TO REMOVE THE WHIRL.

THE PARTIAL ADMISSION LOSSES AND DYNAMIC BLADE LOADING PROBLEMS OFFSET THE BENEFITS OF OPTIMIZING THE DESIGN U/CO BELOW A MINIMUM ARC OF ADMISSION.

AERODYNAMIC CONSTRAINTS, AND THE STRUCTURAL AND MECHANICAL CONSTRAINTS LISTED TURBINE STAGING IS CHOSEN SO THAT U/CO IS OPTIMIZED MITHIN THE ABOVE LATER.

TARGET U/Co VALUES - 2RVC MINIMUM ARC OF ADMISSION TARGET OUTLET FLOW ANGLE GROUNDRULE 2SPC 0.25 TO 0.3 0.2 TO 0.25 10% -20 TO 0 DEG (AXIAL) **VALUE** REDUCE BLADE LOADING **EFFICIENCY RANGE** MINIMIZE EXIT WHIRL **DEMONSTRATED OPTIMUM ADMISSION LOSSES** MINIMIZE PARTIAL RATIONALE

GROUNDRULES FOR TUFIBINE SIZING

AERODYNAMIC DESIGN PARAMETERS

DEFINITION OF TURBINE TYPES

VELOCITY COMPOUNDED (2RVC) AND TWO STAGE REACTION (2R) STAGING WAS CONSIDERED. SINGLE STAGE IMPULSE (1S), TWO STAGE PRESSURE COMPOUNDED (2SPC), TWO ROW

COMPOUNDED TURBINE THE FLOW IS TURNED WITHOUT ACCELERATION IN A STATOR BETWEEN THE TWO ROTORS. IN REACTION STAGES BOTH THE INTERNAL ENERGY OF THE FLUID AND THE KINETIC ENERGY OF THE FLOW IS CONVERTED TO SHAFT POWER IN THE ROTOR. THE TWO STAGE PRESSURE COMPOUNDED TURBINES THE FLOW IS REACCELERATED IN A SECOND STATOR VANES PROVIDE ONLY A SMALL ACCELERATION AND THERE IS A PRESSURE DROP PRESSURE DROP ACROSS THE ROTOR. THE FLOW IS ACCELERATED IN THE NOZZLES AND THIS FLUID KINETIC ENERGY CONVERTED TO SHAFT POWER BY THE ROTOR BLADES. IN THE FIRST THREE OF THESE USE IMPULSE STAGES, IN WHICH THERE IS NO STATIC ROW OF NOZZLES BEFORE THE SECOND ROTOR, WHEREAS IN A TWO STAGE VELOCITY ACROSS THE ROTOR.

RESULTS IN SIGNIFICANT AXIAL THRUST ON THE ROTOR WHICH MUST BE BALANCED BY THE REACTION BLADING HAS A HIGHER EFFICIENCY POTENTIAL THAN IMPULSE BLADING, BUT

IMPULSE

PRESSURE COMPOUNDED

VELOCITY COMPOUNDED

REACTION

DEFINITION OF TURBINE TYPES

GROUNDRULES FOR MAIN TURBINE SIZING MECHANICAL/STRUCTURAL CONSTRAINTS

THE GROUNDRULES WERE SET BY CURRENT TECHNOLOGY LIMITS AND ALSO BY ROCKETDYNE'S BEST GUESS AT TECHNOLOGY LIMIT IMPROVEMENTS AVAILABLE IN 1990.

STRUCTURAL LIMITATIONS. SUCH LIMITATIONS ALSO SET THE BLADE SPEED LIMITS WHICH ARE BASED ON DISK TEMPERATURES BELOW 800 °F. N² ANNULUS AREA THE TEMPERATURE LIMIT IS BASED ON CURRENT SSME PRACTICE AND MATERIAL LIMITS ARE BASED ON UNCOOLED ROTOR BLADES.

86C-9-547

Rockwell International

Rocketdyne Division

GROUNDRULES FOR MIAIN TURBINE SIZING MECHANICAL/STRUCTURAL CONSTRAINTS

7

	TECHNOLOGY LEVEL	GY LEVEL			
GROUNDRULE	CURRENT	1990	RATIONALE	EXPERIENCE	IMPROVEMENTS
MAXIMUM INLET TEMPERATURE, DEG R*	2000	2250	FATIGUE LIFE	SSME	MATERIAL PROPERTIES
MAXIMUM MEAN BLADE SPEED, FT/SEC	1650	1750	ULTIMATE STRENGTH	SSME	MATERIAL PROPERTIES
MAXIMUM SPEED SQUARED X ANNULUS AREA (RPM-INCH) ²	8× 10 ¹⁰	9.6 x 10 ¹⁰	ULTIMATE STRENGTH	SSME	MATERIAL PROPERTIES
BLADE HEIGHT TO MEAN DIAMETER RATIO MIN MAX	.03 .20	.03 .20	FABRICATION SKIN FRICTION LOSSES FATIGUE LIFE	SSME SMALL PUMP PROGRAMS	

*NO TEMPERATURE SPIKES

ENGINE 1-LOX/RP-1, COOLED

TURBOMACHINERY CANDIDATES

THE NEXT EIGHT CHARTS PRESENT THE RESULTS OF THE ENGINEERING SCREENING FOR ENGINE 1. 7

ENGINE 1 - LOX/RP-1, RP-1 COOLED

TURBOMACHINERY CANDIDATES

PUMPS FOR ENGINE 1 - LOX/RP-1, RP-1 COOLED

DUAL SHAFT CONFIGURATIONS

WITH LOX BOOST PUMP + MAIN PUMP CONFIGURATION (SYSTEM 1B). THE FORMER HAD THE RESULT OF THE PUMP SCREENING. THESE WERE THE RP-1 MAIN PUMP + KICK PUMP WITH MINIMUM REQUIRED POWER AND LOWEST COMPLEXITY (SINCE THE RP-1 CONFIGURATION OF MAIN PUMP ALONE REQUIRED TWO STAGES) WHILE THE LATTER HAD THE MAXIMUM SPEED. LOX MAIN PUMP CONFIGURATION (SYSTEM 1A), AND THE RP-1 MAIN PUMP + KICK PUMP TWO DUAL SHAFT CONFIGURATIONS WERE CARRIED FORWARD FOR TURBINE SIZING AS A

DELETED. THESE CONFIGURATIONS REQUIRED TWO STAGE MAIN PUMPS DUE TO IMPELLER THE RP-1 CONFIGURATIONS OF MAIN PUMP ALONE AND BOOST PUMP + MAIN PUMP WERE TIP SPEED AND HEAD COEFFICIENT LIMITS, AND CONFIGURATIONS WITH MAIN PUMP + KICK PUMP OFFERED LOWER POWER REQUIREMENT WITH THE SAME COMPLEXITY.

THE RP-1 CONFIGURATION OF BOOST PUMP + MAIN PUMP + KICK PUMP WAS DELETED AS THE SLIGHT DECREASE IN POWER AND SYSTEM WEIGHT WAS OFFSET BY THE INCREASED COMPLEXITY.

PUMPS FOR ENGINE 1 – LOX/FIP-1, RP-1 COOLED DUAL SHAFT CONFIGURATIONS

SYSTEM IDENTIFIER	RP PUMP CONFIGURATION	LOX PUMP CONFIGURATION	CONCLUSIONS
	MAIN	9 9 9 9	● TWO STAGE MAIN PUMP REQUIRED
	BOOST + MAIN		DELETED ● TWO STAGE MAIN PUMP REQUIRED
1A	MAIN + KICK	MAIZ	CARRIED FORWARD • MINIMUM POWER
1B	MAIN + KICK	BOOST + MAIN	CARRIED FORWARD MINIMUM DIAMETER
	BOOST + MAIN + KICK		DELETE) • PERFORMANCE IMPROVEMENTS INSUFFICIENT TO OFFSET INCREASED COMPLEXITY

PUMPS FOR ENGINE 1 - LOX/RP-1, RP-1 COOLED

SINGLE SHAFT CONFIGURATIONS

THREE SINGLE SHAFT CONFIGURATIONS WERE CARRIED FORWARD AS A RESULT OF THE PUMP LOWER COMPLEXITY THAN SYSTEM 1E. THE SYSTEM 10 MAIN PUMP SPEED WAS SET BY THE LIMITS. THERE IS LESS NPSH AVAILABLE TO THE FUEL PUMP INDUCER IN SINGLE SHAFT THAT IS REQUIRED WHEN THE FUEL PUMP IS POSITIONED BETWEEN THE LOX PUMP AND THE SCREENING. THESE WERE RP-1 MAIN PUMP + KICK PUMP WITH LOX MAIN PUMP (SYSTEM 1C), RP-1 MAIN PUMP + KICK PUMP WITH LOX BOOST PUMP + MAIN PUMP (SYSTEM 1D), REPRESENTED A COMPROMISE, RUNNING AT HIGHER SPEED THAN SYSTEM 1C AND HAVING AND RP-1 BOOST PUMP + MAIN PUMP + KICK PUMP WITH LOX BOOST PUMP + MAIN PUMP CONFIGURATIONS DUE TO LOSSES INCURRED IN THE VOLUTE OR BABYPANTS TYPE INLET FUEL PUMP SUCTION PERFORMANCE LIMITS AS OPPOSED TO THE MAJORITY OF SINGLE SHAFT CONFIGURATIONS WHERE IT WAS SET BY THE LOX PUMP SUCTION PERFORMANCE (SYSTEM 1E). SYSTEM 1C HAD THE MINIMUM POWER, MINIMUM WEIGHT AND LOWEST COMPLEXITY, WHILE SYSTEM 1E HAD THE MAXIMUM SHAFT SPEED. SYSTEM 1D

CONFIGURATIONS INVOLVING RP-1 MAIN PUMP ONLY AND RP-1 BOOST PUMP + MAIN PUMP WERE DELETED FOR THE REASONS STATED ON THE PREVIOUS CHART.

THE CONFIGURATION WITH RP-1 BOOST PUMP + MAIN PUMP + KICK PUMP WITH LOX MAIN PUMP WAS DELETED AS THE MAIN PUMP SPEED WAS SET BY THE LOX PUMP SUCTION PERFORMANCE, AND THE RP-1 BOOST PUMP SERVES NO PURPOSE.

Rockwell International

IDENTIFIER SYSTEM 1 10 ದ CONFIGURATION , + M A + RP PUMP BOOST BOOST MAIN + BOOST MAIN XICK MAIN MAIN **KICK** XCX + MAIN XICK CK CONFIGURATION LOX PUMP BOOST **BOOST** MAIN MAIN MA + MA N CARRIEC FORWARD CARRIED FORWARD CARRIEC FORWARD DELETED **DELETE() DELETE()** MAXIMUM SPEED TWO STAGE MAIN PUMP REQUIRED NO ADVANTAGE OVER SYSTEM 1A SPEED CONTROLLED BY LOX PUMP HIGHER SPEED WITH MEDIUM COMPLEXITY MINIMUM POWER, WEIGHT, COMPLEXITY • TWO STAGE MAIN PUMP REQUIRED CONCLUSIONS

PUMPS FOR ENGINE 1-LOX/RP-1, RP-1 COOLED

SINGLE SHAFT CONFIGURATIONS

TURBOMACHINERY FOR ENGINE 1 - LOX/RP-1, RP-1 COOLED

NO FURTHER SYSTEMS WERE DELETED IN THE TURBINE SCREENING PROCESS, AND THUS FIVE SYSTEMS WERE RECOMMENDED FOR LIFE CYCLE COST ANALYSIS.

STAGE REACTION TURBINE, ALL TURBINES WERE TWO ROW VELOCITY COMPOUNDED, WITH A ROTOR WAS ADDED TO DECREASE THE MAXIMUM FLUID VELOCITIES THERE AND TO REDUCE WITH THE EXCEPTION OF THE LOX TURBINE IN CONFIGURATION 1B, WHICH WAS A TWO SMALL DEGREE OF REACTION IN THE SECOND ROTOR. THE REACTION IN THE SECOND THE EXIT WHIRL, BOTH OF WHICH INCREASE THE TURBINE EFFICIENCY.

THE EXPECTED TRENDS IN TURBINE FLOWRATE, SYSTEM WEIGHT, MAXIMUM DIAMETER AND SYSTEM COMPLEXITY ARE OBSERVED: LOWER TURBINE FLOWRATES FOR THE DUAL SHAFT CONFIGURATIONS WHERE BOTH PUMPS ARE OPTIMIZED (SYSTEMS 1A AND 1B).

LOWER WEIGHTS, LARGER DIAMETERS AND LOWER COMPLEXITIES FOR THE SINGLE SHAFT CONFIGURATIONS (SYSTEMS 1C, 10, 1E) WHERE FEWER TURBOPUMPS ARE REQUIRED, BUT ONE OF THE PUMPS IS NOT OPTIMIZED.

BOOST PUMPS (SYSTEMS 18, 10, 1E) WHERE THE MAIN PUMP SPEED IS INCREASED SMALLER DIAMETERS AND HIGHER COMPLEXITIES FOR THE CONFIGURATIONS WITH BUT ANOTHER TURBOPUMP IS REQUIRED. SYSTEM 1A HAS THE MINIMUM TURBINE FLOWRATE, SYSTEM 1C THE MINIMUM WEIGHT AND COMPLEXITY, AND SYSTEMS 18 AND 1E THE MINIMUM DIAMETER (SET IN ALL CASES BY THE TURBINE TIP DIAMETER)

INCREASES THE SYSTEM WEIGHT, THE WEIGHT OF THE BOOST PUMP OFFSETTING THE IT SHOULD BE NOTED THAT, FOR THIS ENGINE, THE ADDITION OF BOOST PUMPS REDUCTION IN MAIN PUMP WEIGHT DUE TO THE INCREASED MAIN PUMP SPEED.

TF-33

NUMBER OF PURGE SEALS

TURBOMACHINERY FOR ENGINE 1-LOX/RP-1, RP-1 COOLED SUMMARY OF CANDIDATES

ſ	in m		10	10 10	10 16 18	1A 1A
LEXITY F					0	
*COMPLEXITY FACTOR =	BOOST + MAIN + KICK	KICK		MAIN + KICK	MAIN + KICK	MAIN KICK KICK KICK
NUMBER OF SHAFTS (TURBOPUMPS) +	BOOST + MAIN	BOOST + MAIN		MAIN	BOOST + MAIN MAIN	MAIN MAIN
HAFTS (TURB	SINGLE	SINGLE		SINGLE	DUAL	DUAL
NUMBER OF SHAFTS (TURBOPUMPS) + NUMBER OF ROTORS (BLADE ROWS) +						
+	138	141		139	129	126 129 139
	1836	1925		1749	2076	1950 2076 1749
	20.2	26.5		28.0	20.2	24.2 20.2 28.0
	13	10		7	13	10 13 7

TURBOMACHINERY FOR ENGINE 1-LOX/RP-1, RP-1 COOLED

SCHEMATICS OF CANDIDATES

THESE ARE THE SCHEMATICS OF THE FIVE ENGINE 1 TURBOMACHINERY SYSTEMS RECOMMENDED FOR LIFE CYCLE COST ANALYSIS

TURBOMACHINERY FOR ENGINE 1 LOX/RP-1, RP-1 COOLED **SCHEMATICS OF CANDIDATES**

PURGE SEAL	NG - SEAL	TURBINE 母 BEARING STAGE	∯ KICK PUMP	ST PUMP STAGE	D BOOST
					LEGEND:
				ر <u>د</u> <u>ا</u>	
J &					Ох
					RP-1
SYSTEM 1E	SYSTEM 1D	SYSTEM 1C	SYSTEM 1B	SYSTEM 1A	

TYPICAL TURBOMACHINERY LAYOUT

THIS IS A TYPICAL TURBOPUMP LAYOUT WITH A MAIN PUMP + KICK PUMP AND TWO STAGE TURBINE. THIS TURBOPUMP WOULD BE SUITABLE FOR USE IN A DUAL SHAFT TURBINE ARRANGEMENT.

TYPICAL TURBOMACHINERY LAYOUT

TURBOMACHINERY CANDIDATES FOR ENGINE 1

- LOX/RP-1, RP-1 COOLED

SUMMARY OF PUMP DATA

DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE CANDIDATE PUMPS FOR ENGINE 1. PUMP ROTATIONAL SPEEDS WERE ALL SET BY SUCTION PERFORMANCE LIMITS.

86C-9-555

TURBOMACHINERY CANDIDATES FOR ENGINE 1 LOX/RP-1, RP-1 COOLED SUMMARY OF PUMP DATA

SYSTEM	1A	18	10	10	1
RP-1 PUMP CONFIGURATION	S+X	≤	≤	≤	
LOX PUMP CONFIGURATION	Z	B+M	3	B+M	
TURBINE ARRANGEMENT	DUAL	DUAL	SINGLE	SINGLE	
RP-1 MAIN SPEED, RPM	14500	14500	9500	10500	
KICK PUMP POWER, HP	27037	27037	31359	30142	
BEARING DN, 106MM RPM	1.08	1.08	0.95	1.03	
SEAL RUBBING SPEED, FT/SEC	232	232	204	221	
RP-1 MAIN FLOW, GPM	6857	6857	6857	6857	
PUMP HEAD, FT	9880	9880	9880	9880	
TIP DIAMETER, INCH	12.6	12.6	19.2	17.4	
NUMBER OF STAGES	1	1	_	-1	
RP-1 KICK FLOW, GPM	3429	3429	3429	3429	3429
PUMP HEAD, FT	10312	10312	10312	10312	
TIP DIAMETER, INCH	12.9	12.9	19.7	17.8	
LOX MAIN SPEED, RPM	9500	13000	0056	10500	
PUMP POWER, HP	25568	28087	25568	28317	
FLOW, GPM	11798	11798	11798	11798	
HEAD, FT	5945	6731	5945	6675	
TIP DIAMETER, INCH	15.7	12.2	15.7	15.1	
NUMBER OF STAGES	-		-		
BEARING DN, 106MM RPM	0.78	1.01	ı	1	
SEAL RUBBING SPEED, FT/SEC	134	173	1	I	
TOTAL SYSTEM POWER HP	52605	55124	56927	58459	
SYSTEM WEIGHT LB	1950	2076	1749	1925	

TURBOMACHINERY CANDIDATES FOR ENGINE 1 - LOX/RP-1, RP-1 COOLED

SUMMARY OF TURBINE DATA

RECOMMENDED ENGINE 1 TURBOMACHINERY SYSTEMS. FOR THE LOX/RP-1 DRIVE GASES THE BLADE SPEED IS SET TO OPTIMIZE U/CO MITHIN THE CONSTRAINT OF THE OTHER TURBINE DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE GROUNDRULES.

TURBOMACHINERY CANDIDATES FOR ENGINE 1 LOX/RP-1, RP-1 COOLED SUMMARY OF TURBINE DATA

		
TOTAL TUR	TURBINE	RP-1 PUMP CO LOX PUMP CO TURBINE ARF RP-1 OR SINGLE TURBINE S SINGLE TURBINE P
TOTAL TURBINE FLOWRATE, LB/SEC OVERALL PRESSURE RATIO	POWER, HP SPEED, RPM U/Co U/Co STAGING EFFICIENCY MEAN BLADE SPEED, FT/SEC N ² AA, 10 ¹⁰ RPM ² INCH ² TIP DIAMETER, INCH BLADE HEIGHT/MEAN DIAM. — MIN — MAX ADMISSION, PERCENT PRESSURE RATIO	RP-1 PUMP CONFIGURATION LOX PUMP CONFIGURATION TURBINE ARRANGEMENT RP-1 POWER, HP SPEED, RPM SINGLE U/Co TURBINE STAGING EFFICIENCY MEAN BLADE SPEED, FT/SEC N ² AA, 10 ¹⁰ RPM ² INCH ² TIP DIAMETER, INCH BLADE HEIGHT/MEAN DIAM. — MIN — MAX ADMISSION, PERCENT PRESSURE RATIO
126.02 20.1	25568 9500 0.271 2-MIXED* 0.745 839 2.28 24.20 0.084 0.196 100 4.6	M+K M DUAL 27037 14500 0.250 2-MIXED* 0.728 807. 1.15 14.12 0.049 0.107 100
129.00 20.1	28087 13000 0.301 2- REACTION 0.778 944 3.13 20.19 0.099 0.2 100 4.8	M+K B+M DUAL 27037 14500 0.250 2-MIXED* 0.729 797. 1.14 13.97 0.051 0.108 100
138.66 20.1		M+K M SINGLE 56927 9500 0.242 2-MIXED* 0.734 1078. 1.49 28.02 0.030 0.078 100 20.1
140.88 20.1		M+K B+M SINGLE 58459 10500 0.250 2-MIXED* 0.742 1111. 1.89 26.50 0.034 0.093 100
137.64 20.1		B+M+K B+M SINGLE 57027 13000 0.249 2-MIXED* 0.741 1106. 2.82 22.22 0.052 0.140 100

* 1 IMPULSE STAGE, 1 REACTION STAGE

Rockwell International

Rocketdyne Division

ENGINE 3 - LOX/METHANE, METHANE COOLED

TURBOMACHINERY CANDIDATES

THE NEXT SEVEN CHARTS PRESENT THE RESULTS OF THE ENGINEERING SCREENING FOR ENGINE 3.

TURBOMACHINERY CANDIDATES

ENGINE 3 - LOX/METHANE, METHANE COOLED

PUMPS FOR ENGINE 3 - LOX/MEHTANE, METHANE COOLED

DUAL SHAFT CONFIGURATIONS

PUMP ONLY (SYSTEM 3A), AND METHANE MAIN PUMP + KICK PUMP WITH LOX BOOST PUMP MAIN PUMP (SYSTEM 38). THE FIRST OF THESE WAS THE MINIMUM POWER AND MINIMUM THE PUMP SCREENING. THESE WERE METHANE MAIN PUMP + KICK PUMP WITH LOX MAIN WEIGHT CONFIGURATION, WHILE THE SECOND SIGNIFICANTLY INCREASED THE LOX PUMP TWO DUAL SHAFT CONFIGURATIONS WERE CARRIED FORWARD FOR TURBINE SIZING AFTER SPEED WITH ONLY A SLIGHT PENALTY IN REQUIRED POWER AND SYSTEM WEIGHT.

SIGNIFICANTLY MORE POWER THAN THE MAIN PUMP + KICK PUMP CONFIGURATION. THE METHANE MAIN PUMP ONLY CONFIGURATION WAS DELETED AS IT REQUIRED

MAIN PUMP SPEED WERE SMALL DUE TO BEARING DN LIMITS, AND WERE INSUFFICIENT TO THE METHANE CONFIGURATIONS WITH BOOST PUMPS WERE DELETED AS THE INCREASES IN OFFSET INCREASES IN REQUIRED POWER AND COMPLEXITY.

PUMPS FOR ENGINE 3 – LOX/METHANE, METHANE COOLED DUAL SHAFT CONFIGURATIONS

DELETED • SPEED INCREASE INSUFFICIENT TO OFFSET INCREASE IN REQUIRED POWER AND COMPLEXITY		BOOST + MAIN + KICK	
DELETED • SPEED INCREASE INSUFFICIENT TO OFF SET INCREASE IN REQUIRED POWER AND COMPLEXITY		BOOST + MAIN	
CARRIED FORWARD MAXIMUM LOX PUMP SPEED	BOOST + MAIN	MAIN + KICK	3B
CARRIED FORWARD MINIMUM POWER, MINMUM WEIGHT	MAIN	MAIN + KICK	3A
DELETED • HIGH POWER REQUIREMENT		MAIN	
CONCLUSIONS	LOX PUMP CONFIGURATION	METHANE PUMP CONFIGURATION	SYSTEM IDENTIFIER

PUMPS FOR ENGINE 3 - LOX/METHANE, METHANE COOLED

SINGLE SHAFT CONFIGURATIONS

SECOND LOWEST POWER REQUIREMENT, WHILE THE LATTER HAD MINIMUM REQUIRED POWER, THESE WERE METHANE MAIN PUMP + KICK PUMP WITH LOX MAIN PUMP (SYSTEM 3C), AND METHANE MAIN PUMP + KICK PUMP WITH LOX BOOST PUMP + MAIN PUMP (SYSTEM 30). THE FORMER WAS CARRIED FORWARD AS IT WAS A SIMPLE CONFIGURATION WITH THE TWO SINGLE SHAFT CONFIGURATIONS WERE CARRIED FORWARD FOR TURBINE SIZING. MINIMUM SYSTEM WEIGHT AND SMALLEST DIAMETER.

MAIN PUMP + KICK PUMP, BUT THE SPECIFIC SPEEDS OF THESE PUMPS ARE HIGHER THAN CONFIGURATIONS INVOLVING A METHANE MAIN PUMP ALONE WERE DELETED AS THEY HAD THE HIGHEST POWER REQUIREMENT, LARGEST DIAMETERS AND MAXIMUM WEIGHTS. THE PERFORMANCE. IT SHOULD BE NOTED THAT THE SAME TRENDS ARE OBSERVED FOR THE SUCTION PERFORMANCE LIMITS, AND THIS SIGNIFICANTLY DEGRADES THE MAIN PUMP FOR THE MAIN PUMP ALONE, AND THUS THE DECREASE IN ROTATIONAL SPEED IN THE METHANE PUMP RUNS AT A SPEED MUCH LOWER THAN OPTIMUM DUE TO THE LOX PUMP SINGLE SHAFT CONFIGURATION DOES NOT REDUCE THE EFFICIENCY AS MUCH.

THE SHAFT SPEED WAS LIMITED BY THE LOX PUMP SUCTION PERFORMANCE AND A METHANE CONFIGURATIONS INVOLVING METHANE BOOST PUMPS WERE DELETED AS, IN ALL CASES, BOOST PUMP SERVES NO PURPOSE.

Rocketdyne Division

Rockwell International

PUMPS FOR ENGINE 3 – LOX/ METHANE, METHANE COOLED SINGLE SHAFT CONFIGURATIONS

DELETED SPEED CONTROLLED BY LOX PUMP METHANE BOOST PUMP NOT REQUIRED		BOOST + MAIN + KICK	
DELETED • SPEED CONTROLLED BY LOX PUMP • METHANE BOOST PUMP NOT REQUIRED		BOOST + MAIN	
CARRIED FORWARD • MINIMUM POWER, DIAMETER, WEIGHT	BOOST + MAIN	MAIN + KICK	3D
CARRIED FORWARD • SIMPLE CONFIGURATION	MAIN	MAIN + KICK	зс
DELETED • HIGH REQUIRED POWER		MAIN	
CONCLUSIONS	LOX PUMP CONFIGURATION	METHANE PUMP CONFIGURATION	SYSTEM IDENTIFIER

TURBOMACHINERY FOR ENGINE 3 - LOX/METHANE, METHANE COOLDED

NO FURTHER SYSTEMS WERE DELETED IN THE TURBINE SCREENING PROCESS, AND THUS FOUR SYSTEMS WERE RECOMMENDED FOR LIFE CYCLE COST ANALYSIS.

THE SECOND STAGE. THE TURBINE FOR CONFIGURATION 3C WAS A TWO STAGE PRESSURE SYSTEM 3D WERE TWO ROW VELOCITY COMPOUNDED TURBINES WITH SLIGHT REACTION IN BOTH TURBINES IN EACH OF THE DUAL SHAFT CONFIGURATIONS AND THE TURBINE FOR COMPOUNDED TURBINE.

THE DUAL SHAFT CONFIGURATIONS AND DECREASE SYSTEM WEIGHT FOR THE SINGLE SHAFT SHAFT CONFIGURATION WITHOUT BOOST PUMPS (SYSTEM 3C) IS SLIGHTLY HEAVIER THAN SHAFT CONFIGURATION. FOR THIS ENGINE BOOST PUMPS INCREASE SYSTEM WEIGHT FOR THE EXPECTED TRENDS ARE OBSERVED, EXCEPT FOR SYSTEM WEIGHT, WHERE THE SINGLE SIGNIFICANTLY LARGER METHANE IMPELLERS REQUIRED FOR THE LOWER SPEED SINGLE THE DUAL SHAFT CONFIGURATION WITHOUT BOOST PUMPS. THIS IS DUE TO THE CONFIGURATIONS.

SYSTEM 3C IS THE SIMPLEST CONFIGURATION, AND SYSTEM 3D HAS THE MINIMUM WEIGHT. SYSTEM 3A HAS THE MINIMUM TURBINE FLOWRATE, SYSTEM 3B THE MINIMUM DIAMETER,

TURBOMACHINERY FOR ENGINE 3 - LOX/METHANE, **SUMMARY OF CANDIDATES METHANE COOLED**

					MAIN	KICK		
10	26.3	2179	150	SINGLE	BOOST +	+ MAIN	3D	
7	30.6	2422	176	SINGLE	MAIN	MAIN + KICK	3C	
13	20.7	2373	135	DUAL	BOOST + MAIN	MAIN +	38	
10	25.8	2361	133	DUAL	MAIN	MAIN + KICK	3A	
COMPLEXITY FACTOR	MAXIMUM DIAMETER INCH	SYSTEM WEIGHT LB	TURBINE FLOWRATE LB/SEC	TURBINE ARRANGEMENT	LOX PUMP CONFIG.	METHANE PUMP CONFIG.	SYSTEM IDENTIFIER	
			OPUMP	MAIN TURBOPUMP				

TURBOMACHINERY FOR ENGINE 3, LOX/METHANE, METHANE COOLED

SCHEMATICS OF CANDIDATES

THESE ARE THE SCHEMATICS OF THE FOUR ENGINE 3 TURBOMACHINERY SYSTEMS RECOMMENDED FOR LIFE CYCLE COST ANALYSIS.

TURBOMACHINERY FOR ENGINE 3 - LOX/METHANE, SCHEMATICS OF CANDIDATES METHANE COOLED

				гох
				METHANE
SYSTEM 3D	SYSTEM 3C	SYSTEM 3B	SYSTEM 3A	

86C-9-560

PUMP

MAIN PUMP STAGE

PUMP

TURBINE STAGE

₩ BEARING

- SEAL

-ESS PURGE SEAL

LEGEND:

TURBOMACHINERY CANDIDATES FOR ENGINE 3-LOX/METHANE,

METHANE COOLED

SUMMARY OF PUMP DATA

DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE CANDIDATE PUMPS FOR ENGINE 3. PUMP ROTATIONAL SPEEDS WERE ALL SET BY SUCTION PERFORMANCE LIMITS.

TURBOMACHINERY CANDIDATES FOR ENGINE 3 LOX/METHANE, METHANE COOLED SUMMARY OF PUMP DATA

	SYSTEM	3A	38	30	3D
METHANE PUMP CONFIGURATION LOX PUMP CONFIGURATION TURBINE ARRANGEMENT	URATION ION T	M + K	M + K	M + K	M+K B+M SINGLE
METHANE PUMPS	SPEED, RPM POWER, HP BEARING DN, 10 ⁶ mm RPM SEAL RUBBING SPEED, FT/SEC	20,000 43,401 0.98 349	20,000 43,401 0.98 349	9,500 58,222 1.09 233	13,000 50,198 1.7 365
METHANE MAIN PUMP	FLOW, GPM HEAD, FT TIP DIAMETER, INCH NUMBER OF STAGES	10,320 26,315 16.3	10,320 26,315 16.3	10,320 26,315 31.4	10,320 26,315 22.9 1
METHANE KICK PUMP	FLOW, GPM HEAD, FT TIP DIAMETER, INCH	5,160 7,258 8.0	5,160 7,258 8.0	5,160 7,258 15.4	5,160 7,258 12.3
LOX MAIN PUMP	SPEED, RPM POWER, HP FLOW, GPM HEAD, FT TIP DIAMETER, INCH NUMBER OF STAGES BEARING DN, 10 ⁶ mm RFM SEAL RUBBING SPEED, FT/SEC	9,500 39,723 11,514 8,877 19.3 1 .9	13,000 40,525 11,514 9,689 14.7 1 1.1 239	9,500 39,723 11,514 8,877 19.30 1	13,000 42,230 11,514 8,689 14.1 1
TOTAL SYSTEM POWER SYSTEM WEIGHT	HP LB	83,124 2,360	83,926 2,373	97,945 2,422	92,428 2,179

TURBOMACHINERY CANDIDATES FOR ENGINE 3 - LOX/METHANE, METHANE COOLED

SUMMARY OF TURBINE DATA

RECOMMENDED ENGINE 3 TURBOMACHINERY SYSTEMS. FOR THE LOX/METHANE DRIVE GASES THE BLADE SPEED IS SET TO OPTIMIZE U/CO WITHIN THE CONSTRAINT OF THE OTHER TURBINE DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE GROUNDRULES

TURBOMACHINERY CANDIDATES FOR ENGINE 3 LOX/METHANE, METHANE COOLED SUMMARY OF TURBINE DATA

	-9-58	84																													
1 IMPULSE ST		TOTAL TURE											TURBINE	LOX									TURBINE	SINGLE	OR	METHANE	TURBINE AR	LOX PUMP C	METHANE P		
*1 IMPULSE STAGE, 1 REACTION STAGE	OVERALL PRESSURE RATIO	TOTAL TURBINE FLOWRATE LB/SEC	PRESSURE RATIO	ADMISSION, PERCENT	MAX	BLADE HEIGHT/MEAN DIAM. — MIN	TIP DIAMETER, INCH	N ² AA, 10 ¹⁰ RPM ² INCH ²	MEAN BLADE SPEED, FT/SEC	EFFICIENCY	STAGING	U/Co	SPEED, RPM	POWER, HP	PRESSURE RATIO	ADMISSION, PERCENT	MAX	BLADE HEIGHT/MEAN DIAM. — MIN	TIP DIAMETER, INCH	N ² AA, 10 ¹⁰ RPM ² INCH ²	MEAN BLADE SPEED FT/SEC	EFFICIENCY	STAGING	U/Co	SPEED, RPM	POWER, HP	TURBINE ARRANGEMENT	LOX PUMP CONFIGURATION	METHANE PUMP CONFIGURATION	SYSTEM	
	20.1	133 20	4.7	100	0.123	0.054	25.77	1.84	951.	0.729	2-MIXED*	0.251	9500	39723	4.2	100	0.114	0.053	12.69	1.86	994.	0.730	2-MIXED*	0.250	20000	43401	DUAL	3	M+K	3A	
	20.1	134 49	4.8	100	0.2	0.100	20.74	3.47	956.	0.729	2-MIXED*	0.251	13000	40525	4.1	100	0.115	0.053	12.63	1.85	989.	0.730	2-MIXED*	0.250	20000	43401	DUAL	B+M	X+W	3B	
	20.1	176 24													20.1	100	0.132	0.041	30.57	2.73	1119.	0.666	2 SP C	0.206	9500	97945	SINGLE	3	X + X	3C	
	20.1	150 20													20.1	100	0.063	0.033	25,52	2.91	1361.	0.737	2-MIXED*	0.25	13000	92428	SINGLE	B+M	M+X	3D	

Rockwell International **Rocketdyne Division**

ENGINE 4-LOX/RP-1, LH2 COOLED

TURBOMACHINERY CANDIDATES

THE NEXT NINE CHARTS PRESENT THE RESULTS OF THE ENGINEERING SCREENING FOR ENGINE 4.

ENGINE 4 - LOX/RP-1, LH₂ COOLED

TURBOMACHINERY CANDIDATES

PUMPS FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED DUAL SHAFT + HYDROGEN CONFIGURATIONS

SYSTEMS. THE RP-1 MAIN PUMP WITH LOX MAIN PUMP CONFIGURATION (SYSTEM 4A) WAS CONFIGURATIONS WERE COMPRISED OF THE FOUR POSSIBLE COMBINATIONS OF RP-1 MAIN PUMP OR BOOST PUMP + MAIN PUMP, AND LOX MAIN PUMP OR BOOST PUMP + MAIN PUMP. BOOST PUMPS (SYSTEM 4D) HAD MINIMUM POWER AND WEIGHT BUT MAXIMUM COMPLEXITY. FOUR PUMP CONFIGURATIONS FOR THE DUAL SHAFT + HYDROGEN TURBINE ARRANGEMENTS WERE CARRIED FORMARD AFTER THE PUMP SCREENING. EVERY CONFIGURATION CARRIED (SYSTEM 4B) HAD HIGH LOX PUMP SPEED, THE CONFIGURATION WITH JUST RP-1 BOOST PUMP (SYSTEM 4C) HAD HIGH RP-1 PUMP SPEED, AND THE CONFIGURATION WITH BOTH THE SIMPLEST CONFIGURATION, THE CONFIGURATION WITH JUST THE LOX BOOST PUMP FORWARD USED A MAIN PUMP ONLY FOR THE HYDROGEN PUMP, AND THE RECOMMENDED THERE WAS VERY LITTLE DIFFERENCE IN TOTAL REQUIRED POWER FOR THE FOUR

THE HYDROGEN PUMP CONFIGURATION OF BOOST PUMP + MAIN PUMP WAS DELETED, AS THE MAIN PUMP SPEED WAS LIMITED BY BEARING DN RATHER THAN SUCTION PERFORMANCE LIMITS, AND A BOOST PUMP WAS NOT REQUIRED.

PUMPS FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED DUAL SHAFT +HYDROGEN CONFIGURATIONS

MAIN MAIN
)T B(
MAIN
BOOST MAIN
MAIN BOOST + MAIN
MAIN
RP-1 PUMP LOX PUMP CONFIGURATION

PUMPS FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED SINGLE SHAFT + HYDROGEN CONFIGURATIONS

WITH RP-1 MAIN PUMP ONLY AND LOX BOOST PUMP + MAIN PUMP (SYSTEM 4E). THIS WAS WAS CARRIED FORWARD FOR TURBINE SIZING. THIS WAS THE HYDROGEN MAIN PUMP ONLY ONE PUMP CONFIGURATION FOR THE SINGLE SHAFT + HYDROGEN TURBINE ARRANGEMENTS CLEARLY THE BEST CONFIGURATION HAVING MAXIMUM SHAFT SPEED, MINIMUM REQUIRED POWER, MINIMUM WEIGHT AND MEDIUM COMPLEXITY.

CONFIGURATIONS INVOLVING THE HDYROGEN BOOST PUMP + MAIN PUMP WERE DELETED FOR THE REASONS STATED ON THE PREVIOUS CHART.

THE SIMPLEST CONFIGURATION OF THREE MAIN PUMPS WAS NOT CARRIED FORWARD AS IT HAD A SIGNIFICANTLY HIGHER POWER REQUIREMENT THAN SYSTEM 4E.

SPEEDS WERE SET BY THE LOX PUMP SUCTION PERFORMANCE LIMITS AND THE RP-1 BOOST THE CONFIGURATIONS WITH RP-1 BOOST PUMPS WERE DELETED AS THE MAIN PUMP SHAFT PUMPS SERVED NO PURPOSE

PUMPS FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED SINGLE SHAFT + HYDROGEN CONFIGURATIONS

65					
		4E			SYSTEM IDENTIFIER
MAIN	MAIN	MAIN	MAIN	BOOST + MAIN	LH ₂ PUMP CONFIGURATION
BOOST + MAIN	BOOST + MAIN	MAIN	MAIN		RP-1 PUMP CONFIGURATION
BOOST + MAIN	MAIN	BOOST + MAIN	MAIN		LOX PUMP CONFIGURATION
DELETED ■ INCREASED POWER, WEIGHT AND COMPLEXITY OVER SYSTEM 4E WITH NO INCREASE IN SPEED ■ SPEED SET BY LOX PUMP	DELETED ● LOW SPEED, MAXIMUM POWER	• MAXIMUM SPEED, MINIMUM POWER, MINIMUM WEIGHT	● LOW SPEED, HIGH POWER	DELETED • SPEED LIMITED BY BEARING DN NOT SUCTION PERFORMANCE	CONCLUSIONS

TURBOPUMPS FOR ENGINE 4 - LOX/RP-1, LH2 COOLED

THE DUAL SHAFT + HYDROGEN CONFIGURATIONS, AND A SERIES TURBINE ARRANGEMENT FOR PUMPS ONLY WITH THE DUAL SHAFT + HYDROGEN TURBINE ARRANGEMENT (SYSTEM 4A/P AND AND HYDROGEN MAIN PUMP WITH RP-1 MAIN PUMP AND LOX BOOST PUMP + MAIN PUMP WITH 4A/S), HYDROGEN MAIN PUMP WITH RP-1 MAIN PUMP AND LOX BOOST PUMP + MAIN PUMP 4. SIX CONFIGURATIONS WERE RECOMMENDED FOR LIFE CYCLE COST ANALYSIS. THESE UTILIZED BOTH A PARALLEL TURBINE ARRANGEMENT, OR A MIXED SERIES/PARALLEL FOR THE NEXT TWO CHARTS PRESENT THE RESULTS OF THE TURBINE SCREENING FOR ENGINE EACH OF THREE PUMP CONFIGURATIONS. THE PUMP CONFIGURATIONS WERE THREE MAIN WITH THE DUAL SHAFT + HYDROGEN TURBINE ARRANGEMENT (SYSTEMS 48/P AND 48/S), THE SINGLE SHAFT + HYDROGEN TURBINE ARRANGEMENT.

THE PARALLEL CONFIGURATIONS WERE ALSO CARRIED OVER BECAUSE THERE WAS CONCERN SERIES TURBINE ARRANGEMENT HAVING THE MINIMUM FLOWRATE. THE 4B SYSTEMS HAD FLOWRATE. THE 4E SYSTEMS HAD THE MINIMUM WEIGHT AND THE MINIMUM DIAMETER. THE 4A SYSTEMS WERE THE SIMPLEST DUAL SHAFT + HYDROGEN SYSTEMS, WITH THE SMALL TURBINE DIAMETERS WITH THE SERIES SYSTEM ALSO HAVING THE MINIMUM ABOUT CONTROL OF THE SERIES SYSTEMS.

BENEFITS OF THE INCREASE IN RP-1 PUMP SPEED WERE INSUFFICIENT TO OFFSET THE THE CONFIGURATIONS WITH RP-1 BOOST PUMP + MAIN PUMP WERE DELETED AS THE INCREASE IN COMPLEXITY

TURBOPUMPS FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED

86C-9-566	f					
4 B/S	4 B/P	4 A/S		4 A/P		SYSTEM IDENTIFIER
MAIN	MAIN	MAIN	MAIN	MAIN		LH ₂ PUMP CONFIGURATION
MAIN	MAIN	MAIN	MAIN	MAIN		RP-1 PUMP CONFIGURATION
BOOST + MAIN	BOOST + MAIN	MAIN	MAIN	MAIN		LOX PUMP CONFIGURATION
						TURBINE ARRANGEMENT
CARRIED FORWARD ■ MINIMUM TURBINE FLOWRATE, SMALL DIAMETER	CARRIED FORWARD • LOW TURBINE FLOWRATE, SMALL DIAMETER	CARRIED FORWARD • MINIMUM TURBINE FLOWRATE	● HIGHER TURBINE FLOWRATE THAN SYSTEM 4AP	• SIMPLE CONFIGURATION	DELETED • HIGHEST TURBINE FLOWRATE	CONCLUSIONS

TURBOPUMPS FOR ENGINE 4 - LOX/RP-1, LH2 COOLED (CONT'D)

THE PARALLEL ARRANGEMENT WAS DELETED BECAUSE IT REQUIRED THE HIGHEST TURBINE FLOWRATE FOR ALL PUMP CONFIGURATIONS.

TURBINES ON THE PARALLEL LEG. A LOWER FLOWRATE WAS ACHIEVED WITH THE HYDROGEN TURBINE IN PARALLEL WITH THE SERIES FUEL AND OXIDIZER TURBINES, AND SO THIS ARRANGEMENT WAS USED FOR ALL THE COMBINED SERIES/PARALLEL ARRANGEMENTS. CONFIGURATION WITH THREE MAIN PUMPS, WITH BOTH THE HYDROGEN AND OXYGEN THE COMBINED SERIES/PARALLEL ARRANGEMENT WAS ANALYZED FOR THE PUMP

SERIES ARRANGEMENTS, THE HYDROGEN TURBINE WAS EITHER TWO STAGE REACTION OR TWO AND LOX TURBINES WERE PARTIAL ADMISSION DUE TO THE RELATIVELY LOW SHAFT SPEEDS VALUES ATTAINED WITH THE HIGH ENERGY LOX/HYDROGEN DRIVE GAS. HOWEVER, FOR THE AS THUS THE AVAILABLE ENERGY, WAS LOWER IN THESE CASES. IN ADDITION, THE RP-1 THE TURBINES WERE MOSTLY TWO ROW VELOCITY COMPOUNDED TURBINES DUE TO THE U/CO STAGE PRESSURE COMPOUNDED AS THE PRESSURE RATIO ACROSS THE HYDROGEN TURBINE, OF THE PUMPS, THE HIGH BLADE SPEEDS AND THE LOW TURBINE FLOWRATES.

Rockwell International Rocketdyne Division

86C-9-567				
4 E/S	4 E/P			SYSTEM IDENTIFIER
MAIN	MAIN	MAIN	MAIN	LH ₂ PUMP CONFIGURATION
MAIN	MAIN	BOOST + MAIN	BOOST + MAIN	RP-1 PUMP CONFIGURATION
BOOST + MAIN	BOOST + MAIN	BOOST + MAIN	MAIN	LOX PUMIP
©-√H-√G-/0	G ← ← ← / F/0			TURBINE ARRANGEMENT
CARRIED FORWARD MINIMUM WEIGHT LOWER TURBINE FLOWRATE THAN SYSTEM 4 E/P	CARRIED FORWARD • MINIMUM WEIGHT	DELETED • NO ADVANTAGE OVER SYSTEMS 4 B/P AND 4 B/S	DELETED BENEFITS OF INCREASED RP-1 PUMP SPEED INSUFFICIENT TO OFFSET INCREASED COMPLEXITY MAXIMUM DIAMETER SET BY LOX PUMP TURBINE	CONCLUSIONS

TURBOPUMPS FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED

TURBOMACHINERY FOR ENGINE 4 - LOX/RP-1, LH2 COOLED

SIX TURBOMACHINERY SYSTEMS WERE RECOMMENDED FOR LIFE CYCLE COST ANALYSIS FOR ENGINE 4. THE EXPECTED TRENDS FOR THE DIFFERENT PUMP CONFIGURATIONS CAN BE SEEN, AS CAN COMBINED SERIES/PARALLEL TURBINE ARRANGEMENTS. FOR THIS ENGINE, ADDING A LOX A REDUCTION IN TURBINE FLOWRATE FOR THE SERIES TURBINE ARRANGEMENTS OVER THE BOOST PUMP DECREASES THE SYSTEM WEIGHT SLIGHTLY.

TURBINE FLOWRATE, SYSTEM 4E/P HAD THE SMALLEST DIAMETER (SET BY THE TURBINE THE 4A AND 4E SYSTEMS WERE THE SIMPLEST, SYSTEM 4A/S REQUIRED THE SMALLEST TIP DIAMETER IN ALL CASES) AND THE 4E SYSTEMS HAD THE MINIMUM WEIGHT.

DENTIFIER SYSTEM 4 E/P 4 B/S 4 B/P 4 A/S 4 A/P E/S CONFIGU-RATION MAIN MAIN MAIN MAIN MAIN MA N N CONFIGU-METHANE RATION N N N MAIN MAIN MAIN MAN PUMP MAIN CONFIGU LOX PUMP BOOST BOOST BOOST RATION MAIN MAIN MAN BOOST MAIN MAIN MAIN **@ @ (3**) **ARRANGEMENT** 6 TURBINE Æ ◬ ◬ FLOWRATE TURBINE LB/SEC 35.7 38.7 30.2 32.8 30.0 33.0 WEIGHT SYSTEM 2188 2188 2489 2489 2541 2541 MAXIMUM DIAMETER INCH 31.2 31.0 31.4 33.7 42.8 43.3 COMPLEXITY **FACTOR** ವ ដ 6 ಚ ಚ 6

TURBOMACHINERY FOR ENGINE 4 – LOX/RP-1, LH₂ COOLED

SUMMARY OF CANDIDATES

TURBOMACHINERY FOR ENGINE 4 - LOX/RP-1, LH2 COOLED

SCHEMATICS OF CANDIDATES

THESE ARE THE SCHEMATICS OF THE SIX ENGINE 4 TURBOMACHINERY SYSTEMS RECOMMENDED FOR LIFE CYCLE COST ANALYSIS

TURBOMACHINERY FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED SCHEMATICS OF CANDIDATES

LH2		SYSTEMS 4 A/P, 4 A/S	SYSTEMS 4 B/P, 4 B/S	SYSTEMS 4 E/P, 4 E/S
	LH ₂	朱		
	RP-1			
	Lox			

86C-9-569 BOOST

> PUMP STAGE

> > RICK PUMP

TURBINE STAGE

201

BEARING

- SEAL

PURGE SEAL

TURBOMACHINERY CANDIDATES FOR ENGINE 4 -

LOX/RP-1, LH2 COOLED

SUMMARY OF PUMP DATA

SUCITON PERFORMANCE LIMITS, AND FOR THE HYDROGEN PUMPS WERE SET BY BEARING DN FOR ENGINE 4. PUMP ROTATIONAL SPEEDS FOR THE RP-1 AND LOX PUMPS WERE SET BY DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE CANDIDATE PUMPS LIMITS. IT SHOULD BE NOTED THAT TO BETTER OPTIMIZE THE HYDROGEN PUMP SHAFT SPEED OUTBOARD BEARINGS WERE ASSUMED IN ORDER TO REDUCE THE BEARING DN.

Rockwell International

Rocketdyne Division

TURBOMACHINERY CANDIDATES FOR ENGINE 4 LOX/RP-1,LH2COOLED SUMMARY OF PUMP DATA

TURBOMACHINERY CANDIDATES FOR ENGINE 4 - LOX/RP-1, LH₂ COOLED SUMMARY OF TURBINE DATA

AND LARGE MEAN DIAMETERS COMBINE TO NECESSITATE PARTIAL ADMISSION FOR THE FUEL DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE TURBINES FOR THE SET AT THE MAXIMUM ALLOWABLE VALUES DUE TO THE HIGH AVAILABLE ENERGY OF THE ENGINE 4 TURBOMACHINERY CANDIDATES. THE TURBINE BLADE SPEEDS ARE GENERALLY LOX/HYDROGEN DRIVE GAS AND THE DESIRE TO OPTIMIZE U/CO. THE LOW FLOWRATES, AND LOX TURBINES.

Rocketdyne Division

TURBOMACHINERY CANDIDATES FOR ENGINE 4 LOX/ RP-1, LH₂ COOLED SUMMARY OF TURBINE DATA

OVERALL PRESSURE RATIO			HYDROGEN TURBINE P	LH2 PUMP CONFIGURATION RP-1 PUMP CONFIGURATION LOX PUMP CONFIGURATION TURBINE ARRANGEMENT (PARJ
ATIO	SPEED, FT/SEC RPM2 INCH2 RI, INCH RI MCH AT/MEAN DIAM. PERCENT WHATE, LB/SEC	Y DE SPEED, FT/SEC ORPM2 INCH2 TER, INCH GHT/MEAN DIAM. I, PERCENT LOWRATE, LB/SEC E RATIO	POWER, HP U/Co U/Co U/Co STAGING EFFICIENCY MEAN BLADE SPEED, FT/SEC Nº AA, 10 ¹⁰ RPM² INCH² TIP DIAMETER INCH BLADE HEIGHT/MEAN DIAM. ADMISSION, PERCENT TURBINE FLOWRATE, LB/SEC PRESSURE RATIO	SYSTEM FION TION PARALLEL PARALLEL GG H FORMAL SHAFT
	- MIN	- MIN	- MIN	
33.03 20.5	45362 9650 0.157 2.MIXED* 0.560 1646. 4.80 43.29 0.050 0.107 10 25.52	24376 16800 0.200 0.200 2 RV C 0.630 1480. 5.19 23.09 0.054 0.144 0.144 0.155 2.2	17165 60000 0.132 2 RV C 0.515 1650. 5.56 7.08 0.059 0.124 0.124 0.125	4 A/P M M M DUAL + HYDROGEN PARALLEL
30.0 20.5	45362 9650 0.171 2 RV C 0.583 1650. 4.13 42.79 0.036 0.036 0.092 20 30.0	24376 16800 0,1800 0,180 2 RV C 0,603 1185. 3,61 18,68 0,069 0,156 20 30,0	17165 60000 0.005 2-REACTION 0.748 1650. 4-22 6.90 0.077 0.094 1.00 30.0	M M M M M M M M M M M M M M M M M M M
32.78 20.5	44704 13500 0.157 2.MIXED* 0.560 1643 4.63 30.80 0.048 0.104 20 25.27 9.1	24376 16800 0.200 0.200 2 RV C 0.630 1486. 5.15 23.13 0.054 0.141 10 25.27	17165 60000 0.32 2 RV C 0.515 1650 5.56 7.08 0.059 0.124 0.124 0.124 0.751	4 B/P M M B+M DUAL + HYDROGEN
30.2 20.5	44704 13500 0.174 2 RV C 0.584 1648. 5.47 31.39 0.048 0.122 30.2 6.3	24376 16800 0.180 0.180 2 RV C 0.603 1233 3.70 19.3 0.065 0.147 20 30.2 2.1	17165 60000 0.308 2-REACTION 0.746 1607. 4.29 6.76 0.091 0.101 100 30.2 1.5	M M M B+M DUAL + HYDROGEN SERIES
38.69		71304 13500 0.132 2 R.V C 0.515 1650, 4.88 31.04 0.051 0.109 24 31.18	17165 60000 0.32 0.515 2 RV C 0.515 1650 5.56 7.08 0.059 0.124 0.124 0.124 0.759	4 E/P M M B+M SINGLE+ HYDROGEN
35.72		71304 13500 0.142 2.Mi.XED* 0.521 1650. 4.90 31.17 0.047 0.108 25 35.72	17165 60000 0.246 2.8PC 0.686 1224, 4.53 5.53 0.181 0.184 0.184 100 35.72	A E/S M M M B+M SINGLE+ HYDROGEN SERIES

^{*1} IMPULSE STAGE, 1 REACTION STAGE

ENGINE 6-LOX/METHANE, LH2 COOLED

TURBOMACHINERY CANDIDATES

THE NEXT NINE CHARTS PRESENT THE RESULTS OF THE ENGINEERING SCREENING FOR ENGINE 6.

TURBOMACHINERY CANDIDATES

ENGINE 6 - LOX/METHANE, LH₂ COOLED

PUMPS FOR ENGINE 6 - LOX/METHANE, LH2 COOLED DUAL SHAFT + HYDROGEN CONFIGURATIONS

TWO PUMP CONFIGURATIONS FOR THE DUAL SHAFT + HDYROGEN TURBINE ARRANGEMENT WERE CARRIED FORWARD AFTER THE PUMP SCREENING.

THE LOX PUMP CONFIGURATION. THE TWO CONFIGURATIONS HAD ALMOST THE SAME POWER REQUIREMENT, WITH THE CONFIGURATION WITH THE LOX MAIN PUMP BEING SIMPLER, AND WITH ONE HAVING A MAIN PUMP ONLY AND THE OTHER A BOOST PUMP + MAIN PUMP FOR BOTH HAD MAIN PUMP ONLY CONFIGURATIONS FOR THE HYDROGEN AND METHANE PUMPS, THAT WITH THE LOX BOOST PUMP + MAIN PUMP HAVING HIGHER SPEED AND SLIGHTLY LOWER WEIGHT. THE HYDROGEN PUMP CONFIGURATION OF BOOST PUMP + MAIN PUMP WAS DELETED, AS THE MAIN PUMP SPEED WAS LIMITED BY BEARING ON RATHER THAN SUCTION PERFORMANCE LIMITS AND A BOOST PUMP WAS NOT REQUIRED.

THE ADDED COMPLEXITY OF THIS AND THE BOOST PUMP OFFSET THE SIZE AND THE METHANE PUMP CONFIGURATION OF BOOST PUMP + MAIN PUMP WAS DELETED AS OUTBOARD BEARINGS WERE REQUIRED IN THE MAIN PUMP TO SATISFY BEARING DN PERFORMANCE ADVANTAGES OF THE HIGHER MAIN PUMP SPEED.

PUMPS FOR ENGINE 6 - LOX/METHANE, LH₂ COOLED DUAL SHAFT + HYDROGIEN CONFIGURATIONS

BOOST + MAIN
MAIN
METHANE PUMP LOX PUMP CONFIGURATION

PUMPS FOR ENGINE 6 - LOX/METHANE, LH2 COOLED

SINGLE SHAFT - HYDROGEN CONFIGURATIONS

ONE PUMP CONFIGURATION FOR THE SINGLE SHAFT + HYDROGEN TURBINE ARRANGEMENT WAS PUMP, METHANE MAIN PUMP AND LOX BOOST PUMP + MAIN PUMP HAD THE LOWEST POWER CARRIED FORWARD FOR TURBINE SIZING. THE CONFIGURATION WITH HDYROGEN MAIN REQUIREMENT AS WELL AS THE HIGHEST SPEED AND LOWEST WEIGHT.

CONFIGURATIONS INVOLVING THE HYDROGEN BOOST PUMP + MAIN PUMP WERE DELETED FOR THE REASONS STATED ON THE PREVIOUS CHART.

SIZE AND PERFORMANCE PENALTY FOR THE METHANE PUMP WHEN IT WAS CONSTRAINED TO THE COMBINATION OF THREE MAIN PUMPS WAS DELETED AS THERE WAS A SIGNIFICANT RUN AT THE SAME SPEED AS THE LOX PUMP.

THE MAIN PUMP SPEED IS SET BY THE LOX PUMP SUCTION PERFORMANCE LIMITS AND A CONFIGURATIONS INVOLVING THE METHANE BOOST PUMP + MAIN PUMP WERE DELETED AS METHANE BOOST PUMP IS NOT REQUIRED.

PUMPS FOR ENGINE 6 – LOX/METHANE, LH₂ COOLED SINGLE SHAFT + HYDROGEN CONFIGURATIONS

_				IDE
	60			SYSTEM DENTIFIER
MAIN	MAIN	MAIN	BOOST + MAIN	LH ₂ PUMP CONFIGURATION
BOOST + MAIN	MAIN	MAIN		METHANE PUMP CONFIGURATION
	BOOST + MAIN	MAIN		I.OX PUMP CONFIGURATION
DELETED • METHANE BOOST PUMP NOT • METHANE BOOST PUMP NOT REQUIRED	CARRIED FORWARD • MINIMUM POWER AND WEIGHT	DELETED • SIGNIFICANT METHANE PUMP PERFORMANCE PENALTY	DELETED ● SPEED LIMITED BY BEARING DN NOT SUCTION PERFORMANCE	CONCLUSIONS

TURBOPUMPS FOR ENGINE 6 - LOX/METHANE, LH2 COOLED

6. SIX SYSTEMS WERE RECOMMENDED FOR LIFE CYCLE COST ANALYSIS. THESE UTILIZED THREE PUMP CONFIGURATIONS. THE PUMP CONFIGURATIONS WERE THREE MAIN PUMPS ONLY HYDROGEN MAIN PUMP WITH METHANE MAIN PUMP AND LOX BOOST PUMP + MAIN PUMP WITH HYDROGEN MAIN PUMP WITH METHANE MAIN PUMP AND LOX BOOST PUMP + MAIN PUMP WITH SHAFT + HYDROGEN CONFIGURATIONS, AND A SERIES TURBINE ARRANGEMENT FOR EACH OF BOTH A PARALLEL TURBINE ARRANGEMENT, OR A MIXED SERIES/PARALLEL FOR THE DUAL THE NEXT TWO CHARTS PRESENT THE RESULTS OF THE TURBINE SCREENING FOR ENGINE WITH THE DUAL SHAFT + HYDROGEN TURBINE ARRANGEMENT (SYSTEMS 6A/P AND 6A/S), THE DUAL SHAFT + HYDROGEN TURBINE ARRANGEMENT (SYSTEMS 6B/P AND 6B/S), AND THE SINGLE SHAFT + HYDROGEN TURBINE ARRANGEMENT (SYSTEMS 6C/P AND 6C/S).

TURBINE FLOWRATE. THE 6C SYSTEMS HAD THE MINIMUM WEIGHT, AS WOULD BE EXPECTED THE MINIMUM DIAMETERS AND THE SERIES TURBINE ARRANGEMENT ALSO HAD THE MINIMUM TURBINE CONFIGURATIONS WERE CARRIED OVER PARTLY DUE TO CONCERN ABOUT CONTROL SERIES TURBINE ARRANGEMENT HAVING THE MINIMUM FLOWRATE. THE 6B SYSTEMS HAD THE 6A SYSTEMS WERE THE SIMPLEST DUAL SHAFT + HYDROGEN SYSTEMS, WITH THE FOR A SINGLE SHAFT CONFIGURATION. IN COMMON WITH ENGINE 4 THE PARALLEL OF THE SERIES SYSTEMS.

IDENTIFIER SYSTEM 6 B/S 6 B/P 6 A/S 6 A/P TURBOPUMPS FOR ENGINE 6 - LOX/METHANE LH₂ PUMP CONFIGURATION MAIN MAIN MAIN MAIN MA N METHANE PUMP CONFIGURATION MAIN N N N MAIN MAIN MAIN LH₂ COOLED CONFIGURATION LOX PUMP BOOST BOOST MAIN MAN + MAIN MAIN MAIN 66 6 ARRANGEMENT TURBINE **CARRIED FORWARD** • MINIMUM TURBINE FLOWRATE **CARRIED FORWARD** MINIMUM TURBINE FLOWRATE, **CARRIED FORWARD** DELETED SIMPLE CONFIGURATION LOW TURBINE FLOWRATE HIGHER TURBINE FLOWRATE CARRIED FORWARD HIGHEST TURBINE FLOWRATE DELETED MINIMUM DIAMETER THAN SYSTEM 6 A/P CONCLUSIONS

SMALL DIAMETER

TURBOPUMPS FOR ENGINE 6, LOX/METHANE, LH2 COOLED (CONT'D)

DELETED FOR THE REASONS DESCRIBED PREVIOUSLY IN THE DISCUSSION OF THE ENGINE SERIES/PARALLEL ARRANGEMENT WITH THE OXYGEN TURBINE ON THE PARALLEL LEG WERE THE PARALLEL DUAL SHAFT + HYDROGEN ARRANGEMENT AND THE COMBINED CANDIDATES.

REACTION TURBINES. THE METHANE AND LOX TURBINES WERE PARTIAL ADMISSION DUE TO EXCEPT FOR THE HYDROGEN TURBINES IN THE SERIES ARRANGEMENTS WHICH WERE 2 STAGE ALL THE TURBINES FOR THESE SYSTEMS WERE TWO ROW VELOCITY COMPOUNDED TURBINES THE RELATIVELY LOW SHAFT SPEEDS OF THE PUMPS, THE HIGH BLADE SPEEDS AND THE LOW TURBINE FLOWRATES.

IDENTIFIER SYSTEM 6 C/S 6 C/P LH₂ PUMP CONFIGURATION MAIN MAIN METHANE PUMP CONFIGURATION MAIN MAIN CONFIGURATION LOX PUMP BOOST MAIN BOOST MAIN + ARRANGEMENT TURBINE CARRIED FORWARD MINIMUM WEIGHT **CARRIED FORWARD** MINIMUM WEIGHT LOWER TURBINE FLOWRATE **THAN SYSTEM 6 C/P** CONCLUSIONS

TURBOMACHINERY FOR ENGINE 6 - LOX/METHANE, LH2 COOLED

SIX CONFIGURATIONS WERE CARRIED FORWARD FOR LIFE CYCLE COST ANALYSIS FOR ENGINE 6.

PUMPS SIGNIFICANTLY REDUCE THE MAXIMUM DIAMETER AND SLIGHTLY REDUCE THE SYSTEM THE EXPECTED TRENDS FOR BOOST PUMP/NO BOOST PUMP, SINGLE SHAFT/DUAL SHAFT AND PARALLEL TURBINE/SERIES TURBINES ARE OBSERVED. FOR THIS ENGINE THE BOOST WEIGHT.

SYSTEMS 6A/S AND 6B/S HAD THE MINIMUM TURBINE FLOWRATE, SYSTEM 6B/P HAD THE MINIMUM DIAMETER, THE 6C SYSTEMS HAD THE MINIMUM WEIGHT AND THE 6A AND 6C SYSTEMS HAD THE LOWEST COMPLEXITY.

TURBOMACHINERY FOR ENGINE 6 LOX/METHANE, LH₂ COOLED SUMMARY OF CANDIDATES

5–9–577 						
6 C/S	6 C/P	6 B/S	6 B/P	6 A/S	6 A/P	SYSTEM
MAIN	MAIN	MAIN	MAIN	MAIN	MAIN	LH ₂ PUMP CONFIGU- RATION
MAIN	MA A N	MAIN	MAIN	MAIN	MAIN	METHANE PUMP CONFIGU- RATION
BOOST + MAIN	BOOST + MAIN	BOOST + MAIN	BOOST + MAIN	MAIN	MAIN	LOX PUMP CONFIGU- RATION
(G) √4 /√4 F/0	© Fo					TURBINE ARRANGEMENT
49.1	56.2	40.2	43.1	40.2	43.5	TURBINE FLOWRATE LB/SEC
2449	2449	2624	2624	2683	2683	SYSTEM WEIGHT LB
32.2	30.4	30.9	29.5	42.0	41.9	MAXIMUM DIAMETER INCH
13	13	16	16	13	13	COMPLEXITY FACTOR SHAFTS + ROTORS + PURGE SEALS

TURBOMACHINERY FOR ENGINE 6, LOX/METHANE, LH2 COOLED

SCHEMATICS OF CANDIDATES

THESE ARE THE SCHEMATICS OF THE SIX ENGINE 6 TURBOMACHINERY SYSTEMS RECOMMENDED FOR LIFE CYCLE COST ANALYSIS

TURBOMACHINERY FOR ENGINE 6 LOX/METHANE, LH₂ COOLED SCHEMATICS OF CANDIDATES

	SYSTEMS 6 A/P, 6 A/S	SYSTEMS 6 B/P, 6 B/S	SYSTEMS 6 E/P, 6 E/S
LH ₂			
METHANE			
LOX			

86C-9-578
BOOST

MAIN PUMP STAGE

4

PUMP

TURBINE STAGE

S

BEARING

幸

SEAL

PURGE SEAL

TURBOMACHINERY CANDIDATES FOR ENGINE 6 -

LOX/METHANE, LH2 COOLED

SUMMARY OF PUMP DATA

SHOULD BE NOTED THAT OUTBOARD BEARINGS WERE ASSUMED FOR THE HYDROGEN PUMPS TO LIMITS, EXCEPT FOR THE HYDROGEN PUMPS WHICH ARE SET BY BEARING ON LIMITS. IT DESIGN PARAMETERS AND CHARACTERISTICS ARE PRESENTED FOR THE CANDIDATE PUMPS FOR ENGINE 6. PUMP ROTATIONAL SPEEDS ARE SET BY PUMP SUCTION PERFORMANCE REDUCE BEARING ON VALUES.

TURBOMACHINERY CANDIDATES FOR ENGINE 6 LOX/METHANE, LH₂ COOLED **SUMMARY OF PUMP DATA**

		,	· · · · · · · · · · · · · · · · · · ·	
TOTAL POWER, HP SYSTEM WEIGHT, LB	LOX SPEED, RPM PUMP POWER, HP FLOW, GPM HEAD, FT TIP DIAMETER, INCH NUMBER OF STAGES BEARING DN, 10 ⁶ MM RPM SEAL RUBBING SPEED, FT/SEC	CH ₄ SPEED, RPM PUMP FLOW, GPM HEAD, FT TIP DIAMETER, INCH NUMBER OF STAGES BEARING DN, 10 ⁶ MM RPM SEAL RUBBING SPEED, FT/SEC	LH2 SPEED, RPM PUMP FLOW, GPM HEAD, FT TIP DIAMETER, INCH NUMBER OF STAGES BEARING DN, 10 ⁶ MM RPM SEAL BEARING SPEED, FT/SEC	SYSTEM LH ₂ PUMP CONFIGURATION CH ₄ PUMP CONFIGURATION LOX PUMP CONFIGURATION TURBINE ARRANGEMENT
104773 2€83	9580 46479 11296 11694 19.89 1 0.9	21900 37682 8329 25903 14.5 1	60000 20612 3910 204762 7.6 3 2 2	6 A/B, 6 A/S IVI
104036 2624	13400 45742 11296 11518 14.72 1 1.2 250	21900 37682 8629 29903 14.5 1	60000 20612 3910 204762 7.6 3 2 430	68/8, 68/S M M B+M DUAL
112488 2449	13400 45742 11296 11578 14.72 1	13400 46134 8629 29903 23.72 1 1.4 297	60000 20612 3910 204762 7.6 3 2 430	6 C/P, 6 C/S M M B+M SINGLE

TURBOMACHINERY CANDIDATES FOR ENGINE 6 - LOX/METHANE, LH2 COOLED

SUMMARY OF TURBINE DATA

CANDIDATES FOR ENGINE 6 ARE PRESENTED. THE TURBINE BLADE SPEEDS ARE GENERALLY SET CLOSE TO THE MAXIMUM ALLOWABLE VALUES DUE TO THE HIGH AVAILABLE ENERGY OF DESIGN PARAMETERS AND CHARACTERISTICS FOR THE TURBINES FOR THE TURBOMACHINERY THE LOX/HYDROGEN DRIVE GAS AND THE DESIRE TO OPTIMIZE U/CO. THE LOW TURBINE FLOWRATES, AND LARGE MEAN DIAMETERS COMBINE TO NECESSITATE PARTIAL ADMISSION FOR THE FUEL AND LOX TURBINES.

TURBOMACHINERY CANDIDATES FOR ENGINE 6 LOX/METHANE, LH₂ COOLED SUMMARY OF TURBINE DATA

TOTAL TURBINE FLOWRATE, LB/SEC OVERALL PRESSURE RATIO	POWER, HP SPEED, RPM U/Co STAGING EFFICIENCY MEAN BLADE SPEED, FT/SEC N ² AA, 10 ¹⁰ RPM ² INCH TIP DIAMETER, INCH BLADE HEIGHT/MEAN DIAM. ADMISSION, PERCENT TURBINE FLOWRATE, LB/SEC PRESSURE RATIO	METHANE POWER, HP SPEED, RPM SINGLE STAGING EFFICIENCY MEAN BLADE SPEED, FT/SEC Nº AA, 10 10 RPM² INCH² TIP DIAMETER, INCH BLADE HEIGHT/MEAN DIAM. ADMISSION PERCENT TURBINE FLOWRATE, LB/SEC PRESSURE RATIO	HYDROGEN TURBINE POWER, HP SPEED, RPM U/Co STAGING EFFICIENCY MEAN BLADE SPEED, FT/SEC Nº AA, 1010 RPM² INCH² TIP DIAMETER INCH² BLADE HEIGHT/MEAN DIAM. ADMISSION, PERCENT TURBINE FLOWRATE, LB/SEC PRESSURE RATIO	LH ₂ PUMP CONFIGURATION METHANE PUMP CONFIGURATION LOX PUMP CONFIGURATION TURBINE ARRANGEMENT (PARALLEL (DUAL SHAFT)
·	MAX	MAX	MAX X	
43,48 20.3	46479 9580 0.182 0.182 2.MIXED* 1629. 3.33 41.92 0.036 0.076 0.076 20 33.52 6.6	37682 21900 0.198 2 HV C 0.627 1569 3.52 17.84 0.033 0.087 35 3.52 3.52	20612 60000 0.142 2 RV C 0.543 1650 7.30 7.32 0.075 0.163 100 9.96 20.3	M M M DUAL + HYDROGEN
40.20 20.3	46479 9580 0.200 2 RV C 0.625 1611. 3.88 42.03 0.032 0.032 0.091 35 40.20	37682 21900 0.200 2 RV C 0.630 1455 2.92 17.01 0.044 0.117 50 40.20	20612 60000 0.308 2-REACTION 0.747 1520 5.59 6.66 0.126 0.147 100 40.20	M M M DUAL + HYDROGEN
43.09 20.3	45742 13400 0.182 2.MIXED* 0.612 1617. 2.87 29.50 0.031 0.066 45 33.13 6.4	37682 21900 0.198 2 RV C 0.627 1586 3.52 18.00 0.032 0.032 0.085 35 3.13 3.1	20612 60000 0.142 2 RV C 0.543 1650 7.30 7.32 0.075 0.163 100 9.96 20.3	M M B+M DUAL + HYDROGEN
40.20 20.3	45742 13400 0.200 2 RV C 0.625 1607. 3.81 30.92 0.044 0.125 50 40.20	37682 21900 0.200 2 RV C 0.630 1466. 2.92 17,10 0.043 0.115 50 40.20	20612 60000 0.308 2-REACTION 0.747 1506. 5.54 6.60 0.130 0.148 100 40.20	M M M B+M DUAL + HYDROGEN
56.23 20.3		91878 13400 0.142 2 R V C 0.521 1650. 3.38 30.37 0.035 0.075 50 46.27 20.3	20612 60000 0.142 2 RV C 0.543 1650 7.30 7.32 0.075 0.163 100 9.96 20.3	M M M B+M SINGLE + HYDROGEN
49.11 20.3		91878 13400 0.152 2-MIXED* 0.569 1641. 6.46 32.15 0.062 0.145 25 0.145 49.11	26612 60000 0.354 2-REACTION 0.683 1650 4.85 6.98 0.085 0.108 100 49.11	M M B+M SINGLE + HYDROGEN

TURBOPUMP SCREENING SUMMARY

THIS TABLE SUMMARIZES THE RESULTS OF THE PUMP AND TURBINE SCREENING FOR THE FOUR ENGINES FOR WHICH IT HAS BEEN COMPLETED.

SINGLE SHAFT TURBINE ARRANGEMENTS WITH SERIES OR PARALLEL HYDROGEN TURBINES CONFIGURATION USED IN THOSE SYSTEMS, AND HOW MANY UTILIZE DUAL SHAFT AND RECOMMENDED FOR LIFE CYCLE COST ANALYSIS, THE TOTAL NUMBER OF EACH PUMP FOR EACH ENGINE IT SHOWS THE TOTAL NUMBER OF TURBOMACHINERY SYSTEMS (WHEN REQUIRED).

6	4	ω	-1	ENGINE		
6	6	4	បា	TOTAL NUMBER OF CANDIDATES		
6	6	0	0	3		
0	0	0	0	B&M		
0	0	4	4	M&K	FUEL	PUMPS
0	0	0		B&M&K		
2	2	2	2	3		
4	4	2	ω	в&м	LOX	
6	6	1	I	3	_	
0	0	i	1	M B&M	LH ₂	
4	4	2	2	DUAL SETS		
2	2	2	ω	SINGLE	SINGLE	
3	ω	 	I	SERIES		TURBINES
3	ω	I	÷1	PARALLEL	HYDROGEN	

TURBOPUMP SCREENING SUMMARY

FINAL CONFIGURATION SELECTION LOGIC

USING ENGINE SENSITIVITY FACTORS FROM THE BASELINE ENGINE BALANCES AND VEHICLE THIS IS THE FLOW CHART FOR THE SELECTION PROCEDURE. THE TURBINE FLOWRATE AND PRODUCTION AND DEVELOPMENT COSTS ARE MADE FOR EACH TURBOPUMP CANDIDATE. COST ALGORITHMS ARE THEN USED TO TRANSLATE THESE ASSESSMENTS AND THE VEHICLE INERT SENSITIVITY FACTORS FROM THE SPACE TRANSPORTATION ARCHITECTURE STUDIES (STAS) FOR EACH ENGINE, THE CANDIDATE TURBOPUMPS THAT SURVIVE THE SCREENING PROCESS TURBOPUMP WEIGHT FOR EACH CANDIDATE ARE TRANSLATED INTO VEHICLE INERT WEIGHT VEHICLE ANALYSES. NEXT, ASSESSMENTS OF RELIABILITY, COMPLEXITY, RISK, AND MUST UNDERGO A SELECTION PROCEDURE TO DETERMINE THE OPTIMUM CONFIGURATION. WEIGHT INTO AN OVERALL VEHICLE LIFE CYCLE COST IMPACT FOR EACH TURBOPUMP CANDIDATE. THIS PROVIDES A SINGLE PARAMETER FOR RUNNING THE CANDIDATE TUROPUMPS FOR EACH ENGINE.

FINAL CONFIGURATION SELECTION LOGIC

THROTTLING REQUIREMENT EVALUATION

THE TURBOMACHINERY SYSTEMS ARE SIZED FOR THE 750K THRUST OPERATING POINT, BUT SIGNIFICANTLY AS THE OFF DESIGN PERFORMANCE OF ALL THE CANDIDATE SYSTEMS FOR ANALYZED AT THE 625K THRUST OPERATING POINT TO ENSURE ACCEPTABLE EFFICIENCY, AN ENGINE SHOULD BE SIMILAR. THE SELECTED SYSTEM FOR EACH ENGINE WILL BE MUST ALSO OPERATE EFFICIENTLY AND WITH SUFFICIENT MARGIN AT 625K THRUST. THROTTLING REQUIREMENT, HOWEVER, SHOULD NOT AFFECT THE SELECTION PROCESS STALL MARGIN AND SUCTION PERFORMANCE AT THAT POINT.

THROTTLING REQUIREMENT EVALUATION

- SYSTEMS SIZED FOR 750K BALANCES
- THROTTLING REQUIREMENTS SHOULD NOT AFFECT SYSTEM RELATIVE MERIT
- COMPONENT OFF-DESIGN PERFORMANCE SIMILAR FOR HYDRODYNAMIC AND AERODYNAMIC DESIGN PARAMETERS
- SELECTED TURBOMACHINERY SYSTEMS ANALYZED AT 625K OPERATING POINT TO ENSURE ACCEPTABLE CHARACTERISTICS

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

AGENDA

SUMMARY A. WEISS	NOS •
• CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER	
• THROTTLING ON-DESIGN/OFF-DESIGN STUDY	
✓ • COMBUSTION DEVICES STUDIESP. MEHEGAN	<
• TURBOMACHINERY STUDIESA. EASTLAND	
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS	
TASK 2 STATUS REVIEW	• TAS
TASK 1 SUMMARY A. WEISS	• TAS
INTRODUCTION F. KIRBY	• Z

STBE COMBUSTION DEVICES

ADDRESSED; THE MAIN INJECTOR, COMBUSTION CHAMBER/NOZZLE, GAS GENERATOR, AND DURING THE TASK 2 STBE STUDIES, FOUR MAJOR COMBUSTION DEVICES COMPONENTS ARE THE IGNITION SYSTEM.

MAIN INJECTOR

COMBUSTION DEVICES AGENDA

- COMBUSTION CHAMBER/NOZZLE
- GAS GENERATOR
- IGNITION SYSTEM

COMBUSTION DEVICES STUDY PLAN

THE PRIMARY OBJECTIVE OF THE COMBUSTION DEVICES PLAN IS TO SELECT OPTIMUM LOX/HC COMBUSTION DEVICES CONFIGURATIONS FOR EACH CANDIDATE.

THE APPROACH IS LISTED ON THIS CHART

COMBUSTION DEVICES STUDY PLAN

OBJECTIVE

SELECT OPTIMUM LOX/HC COMBUSTION DEVICES CONFIGURATION FOR EACH CANDIDATE

APPROACH

- **USE 1986 TECHNOLOGY**
- DEFINE BASELINE ENGINE BALANCE
- **IDENTIFY POTENTIAL DESIGN CONCEPTS**
- SELECT BASELINE CONFIGURATION
- **EVALUATE BASELINE AND ALTERNATES AGAINST** TRADEOFF FACTORS
- PERFORMANCE
- WEIGHT
- **TECHNICAL RISK**
- RECOMMEND BEST CONFIGURATION

ENGINE OPERATING CONDITIONS

THE BASIC ENGINE OPERATING CONDITIONS FOR THE 6 CANDIDATE 1995 IOC CONCEPTS ARE LISTED ON THIS CHART. THE PROPELLANT COMBINATION, THE CHAMBER COOLANT AND THE CHAMBER PRESSURE ARE KEY ITEMS

ENGINE OPERATING CONDITIONS

		-					,	
CHAMBER PRESSURE (psia)	COMBUSTION C* EFFICIENCY (%)	SPECIFIC IMPULSE, VAC (s)	THRUST, VAC (klbf)	THRUST, SL (klbf)	REGENERATIVE COOLANT	T/C PROPELLANT COMBINATION	ENGINE CYCLE TYPE	ENGINE CONFIGURATION NUMBER
2350	96	329	867	750	RP-1	LOX/RP-1	1	_
3407	97	345	854	750	C_3H_8	LOX/C ₃ H ₈	2	2
3495	97	350	852	750	СН₄	LOX/CH4	2	3
4165	96	349	846	750	Н ₂	LOX/RP-1	з	4
4170	97	357	846	750	Н ₂	LOX/C3H8	3	5
4200	97	361	856	750	Н ₂	FOX/CH⁴	3	6

TYPICAL STBE ENGINE SCHEMATICS

THE FOLLOWING 3 CYCLES ARE THE GAS GENERATOR CYCLE CANDIDATES FOR THE 1995 ENGINES. ALL ARE FUEL COOLED (EITHER HYDROCARBON OR HYDROGEN). THE FIRST (CYCLE TYPE 1) IS A SINGLE SHAFT UNIT FOR LOX/RP-1. EXCEPT FOR THE PARALLEL COOLANT FLOW CIRCUIT, IT IS SIMILAR TO THE SCHEMATIC FOR THE F-1 ENGINE. HIGH DENSITY OF RP-1 MAKES THE SINGLE SHAFT TURBOPUMP FEASIBLE.

SHAFT TURBOMACHINERY THAT IS ATTRACTIVE FOR FUELS THAT ARE LOWER IN DENSITY THAN THE SECOND CYCLE IS THE SAME BASIC FLOW CIRCUIT WITH THE DUAL RP-1. THE SERIES TURBINE ARRANGEMENT IMPROVES PERFORMANCE SIGNIFICANTLY. THE THIRD CYCLE IS THE FLOW CIRCUIT FOR THE HYDROGEN COOLED CASES. TO AVOID THE USE OF 3 TURBOPUMPS, THE SINGLE SHAFT ARRANGEMENT WAS USED FOR THE TWO MAIN PROPELLANTS, THE LOX AND THE HYDROCARBON. THE HYDROGEN TURBOPUMP IS A FAR SMALLER UNIT WITH ITS TURBINE IN PARALLEL WITH THE MAIN TURBINE.

TYPICAL STBE ENGINE SCHEMATICS

(ENGINE 1)

7

(ENGINES 2 AND 3)

CYCLE TYPE 3

GAS GENERATOR CYCLE

FUEL COOLED

LIQUID/LIQUID INJECTION

- FUEL COOLED
- LIQUID PROPANIE INJECTION
- GASEOUS METHANE INJECTION

GAS GENERATOR CYCLE

- LIQUID HYDROGEN COOLED
- LIQUID/LIQUID INJECTION

86D-9-1920

86D-9-1921

MAIN INJECTOR

PRECEDING PAGE BLANK NOT FILMED

MAIN INJECTOR DESIGN CONSIDERATIONS

THE MAJOR DESIGN CONSIDERATION FOR THE MAIN INJECTOR ARE LISTED HERE

86D-9-1922

- INJECTOR OPERATIONS CONDITIONS
- INJECTOR ELEMENT DESIGN
- SELECTION OF INJECTION ELEMENT
- ARRANGEMENT OF ELEMENTS
- COMBUSTION STABILITY CONSIDERATIONS

MAIN INJECTOR OPERATING CONDITIONS

THE MAIN INJECTOR OPERATING CONDITIONS AND SIZES ARE TABULATED ON THIS CHART. PERFORMANCE, Pc, AND FUEL INJECTION STATE ARE HIGHLIGHTED

86D-9-1923

Rockwell International Rocketdyne Division

MAIN INJECTOR OPERATING CONDITIONS

ENGINE CONFIGURATION NUMBER	-	2	3	4	5	6
PROPELLANT COMBINATION	LOX/RP-1	LOX/C ₃ H ₈	LOX/CH,	LOX/RP-1	LOX/C ₃ H ₈	LOX/CH4
Nc*, %	96	97	97	96	97	97
Pc, psia	2350	3407	3495	4165	4170	4200
W Ox, lb/s	1827	1773	1790	1758	1759	1775
WFI, lb/s	652	572	511	628	567	507
MR, O/F	2.8	3.1	3.5	2.8	3.1	3.5
P INJ Ox, psia	2850	4089	4194	4998	5004	5040
T INJ Ox, °R	163	163	163	163	163	163
P INJ FI, psia	2820	4089	4194	4998	5004	5040
T INJ FI, °R	969	6:11	534	520	160	210
FUEL INJ STATE	LiQ	LIQ	GAS	LIQ	LIQ	LIQ
INJECTOR DIAMETER, in.	25.3	20.7	20.4	18.7	18.6	18.6

INJECTOR ELEMENT DESIGN

PRIMARY INJECTOR ELEMENT DESIGN CONSIDERATIONS AND CANDIDATE INJECTION ELEMENT TYPES ARE PRESENTED FOR LIQUID/LIQUID AND GAS/LIQUID PROPELLANT COMBINATIONS

CONSIDERATIONS

INJECTOR ELEMENT DESIGN

- **PERFORMANCE**
- STABILITY
 HARDWARE COMPATIBILITY
- **PRODUCIBILITY**
- DURABILITY
- **EXPERIENCE**

CANDIDATE ELEMENTS

- LIQUID/LIQUID
 LIKE IMPINGING
 UNLIKE IMPINGING NONIMPINGING
- IMPINGING
- NONIMPINGING

CANDIDATE INJECTOR ELEMENTS

THIS CHART PRESENTS A LIST OF CANDIDATE MAIN INJECTOR ELEMENTS SUBJECTED TO INITIAL SCREENING FOR THE STBE. THE ELEMENTS ARE DIVIDED INTO LIQUID/LIQUID AND GAS/LIQUID CATEGORIES SPLASH PLATE

COAXIAL (WITH SWIRLER) QUADLET (2 ON 2) UNLIKE PENTAD (4 ON 1) TRIPLET (2 ON 1) 0 FUEL FUEL OX 9./ !/ ₽/ Ę Ş

	\ \	V	1	IMP.
	VARIABLE AREA (PINTLE)	SHOWERHEAD	LIKE DOUBLET (1 ON 1)	COAXIAL (WITHOUT SWIRLER)
SPI ACH DI ATE	ANNULUS ANNULU	OX FUEL	0x/	FUEL

CANDIDATE INJECTOR ELEMENTS

LIQUID/LIQUID

ELEMENTDESIGNATION

ELEMENT CONFIGURATION (FLOW DIRECTION)

ELEMENT DESIGNATION

ELEMENT CONFIGURIATION (FLOW DIRECTION)

UNLIKE DOUBLET (1 ON 1)

•

GAS/LIQUID

INJECTOR ELEMENT SELECTION TRADES

AND THE MAIN INJECTOR ELEMENT CANDIDATES ARE EVALUATED FOR BOTH LIQUID/LIQUID AND GAS/LIQUID PROPELLANT COMBINATIONS. EACH OF THESE INJECTOR ELEMENT TYPES THE KEY TRADE FACTORS OR CONSIDERATIONS USED FOR INJECTOR ELEMENT ASSESSMENT WERE RATED ON A SCALE FROM 1 TO 3 (LOW TO HIGH) WITH REGARD TO POTENTIAL THE ELEMENTS WITH THE HIGHEST PERFORMANCE (ATOMIZATION, MIXING, AND THROTTLEABLE), STABILITY, COMPATIBILITY, PRODUCIBILITY, AND EXPERIENCE ADVANTAGES. COMBINED TOTALS ARE JUDGED TO BE THE BEST.

INJECTOR ELEMENT SELECTION TRADE STUDY

TRADE FACTOR LIKE UDILIET TRIPLET UNLIKE DUBLET COAXIAL COAXIAL ATOMIZATION 3 3 3 3 3 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 4 3 2 3 2 3 4 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 <th></th> <th></th> <th></th> <th>ELE</th> <th>ELEMENT CONF</th> <th>IFIGURATIONS</th> <th>SNC</th> <th></th> <th></th>				ELE	ELEMENT CONF	IFIGURATIONS	SNC		
TRADE FACTOR LIQ/LIQ GAS/LIQ LIQ/LIQ GAS/LIQ LIQ/LIQ GAS/LIQ LIQ/LIQ GAS/LIQ		LIKE DO	DUBLET	TRIF	LET	UNLIKE E	OUBLET	COA	XIAL
ZATION 3 3 3 3 3 3 3 2 3 1 2 1 3 2 3 2 2 1TY 3 1BD 2 2 1BD 2 2 1BD 1BD 1TY 3 2 2 1BD 2 1BD 2 1BD 1BD 4TIBILITY 3 3 3 3 3 3 3 3 3 2 1BOUTY 3 1 3 3 3 3 3 3 3 2 1BOUTY 3 1 3 1 3 1 18 11 1 1	TRADE FACTOR	LIQ/LIQ		רום/רום	GAS/LIQ	רומ/רומ	GAS/LIQ	רומ/רומ	GAS/LIQ
11 3 2 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1	ATOMIZATION	3	3	3	ဒ	သ	з	2	ω
ITLEABLE 3 TBD 2 2 2 TBD TBD TBD JITY 3 2 2 TBD 2 TBD 2 TBD	MIXING	2	-	ω	2	ယ	N	N .	ω
JITY 3 2 2 TBD 2 TBD 1BD ATIBILITY 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 2 3 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1	THROTTLEABLE	ω	TBD	N	N	N	TBD	ТВО	N
ATIBILITY 3 3 2 2 2 2 3 JCIBILITY 3 3 3 3 3 3 3 3 2 IIENCE 20 13 18 14 18 11 10	STABILITY	ω	2	2	TBD	2	TBD	ТВО	ω
JCIBILITY 3 3 3 3 3 3 2 1 1 1 1 1 1 10	COMPATIBILITY	ω	3	N	N	N	2	ω	ω
INFINITE INFINITE STATE OF THE PROPERTY OF THE	PRODUCIBILITY	ω	ယ	ယ	ω	ω	ω	2	ယ
20 13 18 14 18 11 10	EXPERIENCE	3 .	1	3	2	3	-		ω
	TOTAL	20	13	18	14	18	11	10	20

3-HIGH 2-MEDIUM 1-LOW

LIQUID/LIQUID INJECTOR ELEMENT SELECTION

THE LIKE DOUBLET ELEMENT IS SELECTED AS THE BASELINE FOR THE LIQUID/LIQUID INJECTOR CONCEPTS FOR FIVE ENGINES; #1, 2, 4, 5 & 6.

ENGINE CONFIGURATION

LIQUID/LIQUID INJECTOR ELEMENT SELECTION

- **ENGINE 1 LOX/RP-1**
- **ENGINE 2 LOX/PROPANE**
- ENGINE 4 LOX/RP-1, H₂ COOLED
- ENGINE 5 LOX/PROPANE, H₂ COOLED ENGINE 6 LOX/METHANE, H₂ COOLED

ELEMENT SELECTION

IMPINGING LIKE DOUBLET PROVEN/EXPERIENCE

- - STABLE
- PERFORMANCE
- CHAMBER COMPATIBLE
- PRODUCIBLE

GAS/LIQUID INJECTOR ELEMENT SELECTION

THE COAXIAL INJECTOR ELEMENT CONCEPT IS SELECTED AS THE BASELINE FOR ENGINE #3.

GAS/LIQUID INJECTOR ELEMENT SELECTION

- ENGINE CONFIGURATION
- ENGINE 3 LOX/METHANE
- **ELEMENT SELECTION**
- COAXIAL
- PROVEN/EXPERIENCESTABLE
- PERFORMANCE
- CHAMBER COMPATIBILITY
- **PRODUCIBILITY**

ELEMENT ARRANGEMENT REQUIREMENTS

ELEMENT ARRANGEMENT REQUIREMENTS ARE IDENTIFIED HERE. KEY ELEMENT PATTERN AND ELEMENT ORIENTATION CONSIDERATIONS ARE LISTED.

86D-9-1928

ELEMENT ARRANGEMENT REQUIREMENTS

PATTERN

- MASS FLUX UNIFORMTIY
- MIXTURE RATIO UNIFORMITY
- INTERELEMENT MIXING (IMPINGING)

ORIENTATION

- ◆ HEAT TRANSFER RATE
- HARDWARE COMPATIBILITY
- **CHAMBER WALL**
- BAFFLES

ELEMENT ARRANGEMENT SELECTION

SELECTION OF THE ELEMENT ARRANGEMENTS FOR THE LIQUID/LIQUID AND THE GAS/LIQUID INJECTORS ARE PRESENTED. A "BOX" PATTERN IS SELECTED FOR THE LIKE DOUBLET LIQUID/LIQUID CONCEPTS AND A SYMMETRICAL PATTERN IS SELECTION FOR THE COAXIAL GAS/LIQUID CONCEPT. PRIMARY REASONS FOR THESE SELECTIONS ARE GIVEN.

ELEMENT ARRANGEMENT SELECTION

LIQUID/LIQUID

PERFORMANCE

"BOX" PATTERN

- **ENHANCE ATOMIZATION**
- SIMULATES COAXIAL ELEMENT MIXING
- STABILITY
- LIKE DOUBLET MIXING
- SIMULATES COAXIAL ELEMENT
- CHAMBER WALL COMPATIBILITY

GAS/LIQUID

- SYMMETRICAL PATTERN
- PERFORMANCE
- **UNIFORM MASS FLUX**
- **UNIFORM MIXTURE RATIO**
- STABILITY
- **EXPERIENCE BASE**
- CHAMBER WALL COMPATIBILITY
- FUEL RICH BOUNDARY

86D-9-1929

7

BASELINE LIQUID/LIQUID INJECTOR

THIS CHART GRAPHICALLY SHOWS THE LIKE DOUBLET INJECTOR ELEMENT AND THE BOX PATTERN ARRANGEMENT OF INJECTOR ELEMENTS FOR THE LIQUID/LIQUID INJECTOR CONCEPTS.

BASELINE LIQUID/LIQUID INJECTOR ENGINES 1, 2, 4, 5, AND 6

BASELINE GAS/LIQUID INJECTOR

THE GAS/LIQUID COAXIAL INJECTOR ELEMENT AND A TYPICAL SYMMETRICAL COAXIAL INJECTOR ELEMENT ARRANGEMENT ARE GRAPHICALLY SHOWN HERE.

Rockwell International Rocketdyne Division BASELINE GAS/LIQUID INJECTOR ENGINE 3 **PATTERN** COAXIAL **ELEMENT**

OF POOR QUALITY

86D-9-1931

PM-33

COMBUSTION STABILITY CONSIDERATIONS

PRIMARY COMBUSTION STABILITY CONSIDERATIONS FOR THIS STBE STUDY ARE PRIOR EXPERIENCE, OPERATING CONDITIONS OF THE CHAMBER, INJECTOR/COMBUSTOR GEOMETRY FEATURES AND STABILITY AIDS. KEY PARAMETERS ARE LISTED UNDER EACH OF THE MAIN CONSIDERATION TOPICS.

COMBUSTION STABILITY CONSIDERATIONS

EXPERIENCE

OPERATING CONDITIONS

- PROPELLANTS/TEMPERATURE
- CHAMBER PRESSURE
- MR/MASS DISTRIBUTION
- STREAM AND DROP SIZE/ATOMIZATION RATE/
- MIXING/BURNING RATE

GEOMETRY

- CHAMBER DIAMETER
- CHAMBER LENGTH
- INJECTION ELEMENT TYPE/SPACING/ORIENTATION
- ELEMENT ORIFICE DIAMETER

STABILITY DEVICES

- **BAFFLES** LENGTH
- ABSORBERS/CAVITIES OPEN AREA AND ORIENTATION
- LINERS

COMBUSTION STABILITY ANALYSES

THIS CHART PRESENTS THE PRIMARY STABILITY THEORIES (TOOLS) USED TO ANALYZE COMBUSTION STABILITY. THE PRIEM ANALYSIS AND THE ROCKETDYNE STREAM BREAKUP CORRELATION WILL BE MAINLY USED FOR THE STBE STUDIES

TAIRN

- RELATIVE STABILITY OF INJECTOR
- ASSUMES DROPLET EVAPORATION CONTROLS
- MODELS PHYSICAL EVAPORATION PROCESS
 DEPENDS ON ACCURATE DROPLET SIZE DATA

SENSITIVE TIME LAG (N-TAU)

STABILITY OF INJECTOR/CAVITY DESIGNS

- WIDE APPLICATION
- DETAILED CHAMBER ACOUSTIC TREATMENT
- ▶ HUERISTIC COMBUSTION RESPONSE MODEL
- MODEL IMPLIED FROM AVAILABLE STABILITY DATA
- **CSU EFFORT TO ANCHOR TO H-1 DATA**

● ROCKETDYNE STREAM BREAKUP CORRELATION

- STABILITY OF INJECTOR DESIGNS
- FULL SIZE STABILITY DATA CORRELATION
- ASSUMES STREAM BREAKUP CONTROLS
- INCORPORATES STREAM BREAKUP PROCESS MODEL

LIQUID/LIQUID INJECTOR STABILITY

ELEMENT BY ITSELF, THE ELEMENT ARRANGEMENT, AND THE STABILITY AIDS ARE KEY TO ENHANCING STABILITY. BAFFLE/STABILITY AID SELECTION HAS NOT BEEN COMPLETED IS TENTATIVELY SELECTED. AN ALTERNATE APPROACH IS TO DECREASE THE NUMBER OF FOR THE BASELINE CONFIGURATION, HOWEVER, A 19 COMPARTMENT BAFFLE ARRANGEMENT STABILITY CONSIDERATIONS ARE IDENTIFIED FOR THE LIQUID/LIQUID INJECTORS. COMPARTMENTS (BAFFLES).

LIQUID/LIQUID INJECTOR STABILITY

STABILITY CONSIDERATIONS

- STABLE ELEMENT
- "BOX" PATTERN WITH COAX COMBUSTION
- BAFFLE CONFIGURATION
- BIPROPELLANT COOLED BAFFLE
- LENGTH

ALTERNATE

GAS/LIQUID INJECTOR STABILITY

KEY CONSIDERATIONS FOR ENSURING THE STABILITY OF THE GAS/LIQUID INJECTOR ARE THE LOX/H_2 AND LOX/CH_4 EXPERIENCES, THE STABLE COAXIAL INJECTOR ELEMENT ITSELF AND BAFFLES. TENTATIVELY THE BASELINE CONFIGURATION WILL UTILIZE A BAFFLE ARRANGEMENT SIMILAR TO THE SSME. THE ALTERNATE APPROACH WILL BE TO ELIMINATE THE BAFFLES

GAS/LIQUID INJECTOR STABILITY

STABILITY CONSIDERATIONS

- **EXPERIENCE**
- STABLE COAXIAL ELEMENT
- BAFFLE CONFIGURATION
- ACTIVE INJECTION BAFFLE
- BIPROPELLANT COOLANT BAFFLE

BASELINE

ALTERNATE (NO BAFFLES)

COMBUSTION CHAMBER AND NOZZLE

COMBUSTION CHAMBER/NOZZLE DESIGN CONSIDERATIONS

THE OPERATING CONDITIONS PLAY A MAJOR ROLE IN THE DESIGN. THE COOLANT FLOW CIRCUIT, THE TYPE OF COOLANT PASSAGES, THE COMBUSTOR GEOMETRY AND THE NOZZLE PRIMARY COMBUSTION CHAMBER AND NOZZLE DESIGN CONSIDERATIONS ARE LISTED HERE. GEOMETRY ARE ALSO IMPORTANT DESIGN CONSIDERATIONS.

COMBUSTION CHAMBER/NOZZLE DESIGN CONSIDERATIONS

OPERATING CONDITIONS

- **COOLANT TYPE AND FLOW**
- **PRESSURES**
- **HEAT LOADS**
- LIFE REQUIREMENTS

- **COOLANT FLOW CIRCUIT** SINGLE PROPELLANT REGENERATIVE (SERIES OR PARALLEL)
- FILM BLC **DUAL PROPELLANT REGENERATIVE**

CONFIGURATION

- **COOLANT PASSAGES**
- CHANNEL
- TUBES
- COMBUSTOR CONTOUR
- LENGTH
- **CONVERGENCE ANGLE**
- CONTRACTION RATIO
- **NOZZLE ATTACHMENT POINT**
- **NOZZLE SIZING**
- SHAPE
- LENGTH
- **EPSILON**

CHAMBER/NOZZLE OPERATING CONDITIONS

DESIGN. TYPE OF COOLANT, COOLANT DELTA-P AND COOLANT OUTLET TEMPERATURE ARE THESE CHAMBER AND NOZZLE OPERATING CONDITIONS PLAY A MAJOR ROLE IN SOME OF THE MORE IMPORTANT PARAMETERS.

Rockwell International Rocketdyne Division

1175	1409	1431	608	711	1139	T OUTLET, °R
463	544	552	210	160	520	T INLET, °R
98	96	96	148	171	648	ΔP, psi
5145	5108	5102	4604	4515	3468	P INLET, psi
39	32	31	303	339	271	NOZZLE CLNT FLOW, Ib/s
463	544	552	460	510	849	T OUTLET, °R
38	38	38	210	160	520	T INLET, °R
977	962	960	1477	1706	3853	ΔP, psi
6122	6070	6062	5933	6050	6673	P INLET, psi
39	32	31	303	339	382	CHAMBER CLNT FLOW, Ib/s
Н2	Н ₂	Н ₂	CH,	C_3H_8	RP-1	COOLANT TYPE PROPELLANT
6	5	4	3	2	_	ENGINE CONFIGURATION NUMBER

CHAMBER/NOZZLE OPERATING CONDITIONS

CHAMBER/NOZZLE GEOMETRY

BASELINE CHAMBER AND NOZZLE GEOMETRY ARE LISTED. CHAMBER DIAMETER AND LENGTH PARAMETERS CAN SIGNIFICANTLY EFFECT PERFORMANCE, STABILITY AND HEAT TRANSFER.

64.6	64.9	64.3	57.1	56.9	42.9	EPSILON, NOZZLE
116.0	117.0	117.0	117.9	119.5	123.2	L NOZZLE, in.
7.0	7.0	7.0	7.0	7.0	7.0	EPSILON, NOZZLE ATTACH
13.2	13.2	13.2	14.2	14.4	16.9	L CHAMBER, in.
2.7	2.7	2.7	2.7	2.7	2.7	CONTRACTION RATIO
18.6	18.6	18.7	20.4	20.7	25.3	DIA CHAMBER, in.
11.3	11.3	11.4	12.4	12.6	15.4	DIA THROAT, in.
ᄺ	H ₂	H ₂	CH,	C₃H₃	RP-1	COOLANT TYPE PROPELLANT
6	5	4	3	2		ENGINE CONFIGURATION NUMBER
, , , , , , , , , , , , , , , , , , , ,						

CHAMBER/NOZZLE GEOMETRY

COMBUSTION CHAMBER/NOZZLE DESIGN GROUNDRULES

THIS TABLE PRESENTS THE GROUNDRULES AND CONSTRAINTS THAT HAVE BEEN SELECTED THE PRIMARY ADVANTAGE OR AND INCORPORATED INTO THE ENGINE BALANCE PROGRAM. REASONS FOR THESE GROUNDRULES ARE ALSO PRESENTED.

COMBUSTION CHAMBER/NOZZLE DESIGN GROUNDRULES

COMPONENT	GROUNDRULE	ADVANTAGE
COOLANT JACKET	COOLANT BULK TEMP LIMIT (°R) • RP-1 — 1060-1200 • C ₃ H ₈ — 1320 • CH ₄ — 1760	AVOID COKING
	HOT GAS WALL TEMP LIMIT (°R) — 1560	LIFE
COMBUSTION CHAMBER	COOLANT PASSAGE MATERIAL — COPPER ALLOY	HEAT TRANSFER
	COOLANT PASSAGE GEOMETRY • CHANNELS — SLOTTED • DEPTH/WIDTH — ≤5	HEAT TRANSFER FABRICATION
3	CONTOUR GEOMETRY • CYLINDRICAL LENGTH — 3 in • CONVERGENCE ANGLE — 25.4 deg • CONTRACTION RATIO — 2.7 • EXPANSION RATIO — 7.0	PERFORMANCE
NOZZLE	COOLANT PASSAGE MATERIAL — A286	HIGH STRENGTH, COMPATIBILITY
	COOLANT PASSAGE GEOMETRY TUBE	WEIGHT
	CONTOUR GEOMETRY • LENGTH — 80% BELL • EXIT PRESSURE — 6 psia (ODE)	PERFORMANCE, WEIGHT PERFORMANCE

TYPICAL MAIN COMBUSTION CHAMBER

THIS IS A TYPICAL MAIN COMBUSTION CHAMBER CANDIDATE WITH CHANNEL WALL CONSTRUCTION.

TYPICAL MAIN COMBUSTION CHAMBER HOT GAS WALL INJECTOR FACE **©** THROAT **NOZZLE END** UPPER CONVERGENT REGION (25.4°) ω Fi ACOUSTIC CAVITY

86D-9-1942

Rockwell International
Rocketdyne Division

PM-53

THIS FIGURE SHOWS A TYPICAL CHAMBER NOZZLE USING COOLANT TUBES.

TYPICAL NOZZLE

CHAMBER ASSEMBLY TRADE STUDIES

TWO STEPS HAVE BEEN ACCOMPLISHED. THE NEXT STEP IS TO SELECT THE INJECTOR WEIGHT AND RISK FACTORS ARE THEN ESTABLISHED FOR THIS BASELINE INJECTOR AND CHAMBER. THE NEXT STEP IS TO CHANGE THE CHAMBER GEOMETRY; ESTABLISH NEW CHAMBER ASSEMBLY TRADE STUDIES TO BE CONDUCTED ARE DIAGRAMMED HERE. THE FIRST ELEMENT SIZES AND STABILITY AIDS USING THE BASELINE CHAMBER SIZE. COST, INJECTOR SIZES AND STABILITY AIDS; DETERMINE ENGINE IMPACT; ESTABLISH NEW COST, WEIGHT AND RISK VALUES OR "DELTAS"; AND THEN ESTABLISH ENGINE AND VEHICLE LCC COMPARISONS. THESE COMPARISONS ARE THEN USED TO HELP SELECT THE OPTIMUM CHAMBER ASSEMBLY FOR EACH ENGINE AND TO HELP SELECT THE BEST ENGINE

86D-9-1997: SELECT INJECTOR ELEMENT CONFIG, ARRANGEMENT **ENGINE BALANCE** ηC* P_C, TEMP, FLOW SIZE PROPELLANT CHAMBER/INJECTOR ASSEMBLY TRADE STUDY INCREASE/DECREASE CHAMBER CONTRACTION RATIO, LENGTH SDER, CICM AIDS PRIEM, SELECT STABILITY SIZE ELEMENTS, STREAM BREAKUP COOLANT AP, AT, ENGINE PERFORM-**ANCE IMPACT** DETERMINE COST, WEIGHT, RISK FACTORS **ESTABLISH** ESTABLISH ENGINE AND VEHICLE LCC COMPARISONS

SELECT CHAMBER

ASSEMBLY

RANK AND

4

CHAMBER ASSEMBLY TRADE STUDY RESULTS

THE CHAMBER ASSEMBLY TRADE STUDY RESULTS WILL BE FORMATTED AS SHOWN BY THIS TABLE. CHAMBER ASSEMBLY COST, WEIGHT, AND RISK IMPACTS WILL BE ASSESSED AS WELL AS ENGINE AND VEHICLE LIFE CYCLE COSTS. 86D-9-1996

CHAMBER/INJECTOR ASSEMBLY TRADE STUDY RESULTS

ENGINE DO/DF	D _O /D _F	BASELINE 6C/L STA	BASELINE COLORS DO/DE		NEW	NEW STABILITY AIDS	3 \$	Τ₩Δ	LCC AI	LCC ANALYSIS △WT △RISK △LCCENG
		2.7/16.9								
N		2.7/14.4								
ω		2.7/14.2								
4		2.7/13.2								
5		2.7/13.2								
6		2.7/13.2		<u>-</u> ,						
=		2.7/14.4								
12		2.7/13.6								
18		2.7/11.2				-				

GAS GENERATOR

GAS GENERATOR INJECTOR DESIGN CONSIDERATIONS

KEY GG INJECTOR DESIGN CONSIDERATIONS ARE LISTED; NAMELY THE OPERATING CONDITIONS, INJECTION ELEMENT/ARRANGEMENT SELECTION, COMBUSTION STABILITY, AND COMBUSTOR SIZE.

GAS GENERATOR INJECTOR DESIGN CONSIDERATIONS

- **OPERATING CONDITIONS**
- INJECTION ELEMENT/ARRANGEMENT SELECTION
- COMBUSTOR SIZING
- **COMBUSTION STABILITY**

GAS GENERATOR OPERATING CONDITIONS

THESE PARAMETERS ARE THE PRIMARY GG OPERATING CONDITIONS FOR THE SIX STBE (1995 IOC) ENGINES. TYPE OF FUEL, OPERATING CHAMBER PRESSURE, FUEL INJECTION STATE, AND HOT GAS TEMPERATURE REQUIREMENTS ARE SOME OF THE MORE SIGNIFICANT ITEMS FOR THIS STUDY.

GAS GENERATOR OPERATING CONDITIONS

ENGINE CONFIGURATION NUMBER	-	2	ဒ	4	5	6
T/C PROPELLANT COMBINATION	LOX/RP-1	LOX/C ₃ H ₈	LOX/CH,	LOX/RP-1	LOX/C ₃ H ₈	LOX/CH,
G.G. FUEL PROPELLANT	RP-1	C_3H_8	CH,	H ₂	Ţ.	H
G.G. OXIDIZER PROPELLANT	02	02	02	0,	,o	02
Pc, psia	2349	3407	3495	4165	4170	4200
W Ox, lb/s	46	29	38	10	10	18
W FI, Ib/s	111	105	95	31	32	39
MR, O/F	0.41	0.27	0.40	0.30	0.32	0.46
P INJ Ox, psia	2820	4089	4194	4998	5004	5040
TINJ Ox, °R	163	163	163	163	163	163
P INJ FI, psia	2820	4089	4194	4998	5004	5040
TINJ FI, °R	520	611	534	1431	1409	1175
FUEL INJ STATE	נים	בּ	GAS	GAS	GAS	GAS
EXHAUST TEMP, °R	2000	2000	2000	2000	2000	2000

GAS GENERATOR INJECTION ELEMENT SELECTION

THIS CHART PRESENTS THE TYPE OF INJECTION ELEMENT SELECTED AS BASELINE FOR EACH OF THE 6 ENGINES. A LIKE IMPINGING DOUBLET IS SHOWN FOR THE TWO LIQUID/LIQUID GG INJECTORS AND A COAXIAL ELEMENT SELECTED FOR THE GAS/LIQUID INJECTORS.

86D-9-1948 Rockwell International	6	Ŋ	4
ational	. СН,	C ₃ H ₈	RP-1
	Н ₂	Н ₂	H ₂
	H ₂	Н ₂	Н ₂

ENGINE	MAIN	NOZZLE/ CHAMBER COOLANT	GG FUEL	PROPELLANT INJECTION PHYSICAL STATE	GG INJECTOR ELEMENT TYPE
-1	RP-1	RP-1	RP-1	LIQ/LIQ	LIKE IMP
2	C ₃ H ₈	C ₃ H ₈	$C_3H_{m{a}}$	LIQ/LIQ	LIKE IMP
ယ	CH4	CH,	CH,	LIQ/GAS	COAX
4	RP-1	H ₂	Н ₂	LIQ/GAS	COAX
5	C ₃ H ₈	H ₂	Н ₂	LIQ/GAS	COAX
6	CH,	Н ₂	H ₂	LIQ/GAS	COAX

GAS GENERATOR INJECTION ELEMENT SELECTION

BASELINE ELEMENT SELECTION RATIONALE

COMPATIBILITY, GOOD STABILITY HISTORY, AND POTENTIALLY GOOD ATOMIZATION AND MIXING. THE COAXIAL ELEMENTS ARE SELECTED FOR BASICALLY THE SAME REASONS BUT RATIONAL FOR SELECTING THE BASELINE GG INJECTOR ELEMENTS ARE PRESENTED. LIKE DOUBLETS ARE SELECTED BECAUSE OF FAVORABLE PRIOR EXPERIENCE, WITH GAS/LIQUID PROPELLANTS.

BASELINE GG ELEMENT SELECTION RATIONALE

LIKE DOUBLETS — LIQUID/LIQUID

- EXPERIENCE
- GOOD WALL COMPATIBILITY
- STABILITY
- GOOD ATOMIZATION AND MIXING CAN BE ACHIEVED WITH SIZING AND FAN ORIENTATION

COAXIAL — GAS/LIQUID

- EXPERIENCE
- **VERY GOOD WALL CAPABILITY**
- STABILITY
- ATOMIZATION AND MIXING VERY GOOD WITH HIGH DV AND SMALL ELEMENTS

LIQUID/LIQUID GG INJECTOR BASELINE PATTERN

THE LIKE DOUBLE ELEMENT AND A TYPICAL ELEMENT ARRANGEMENT ARE SHOWN BY THESE SKETCHES.

LIQUID/LIQUID GG INJECTOR BASELINE PATTERN ENGINES 1 AND 2

Rockwell International Rocketdyne Division

GAS/LIQUID GG INJECTOR BASELINE PATTERN

THE COAXIAL ELEMENT AND A TYPICAL COAXIAL ELEMENT ARRANGEMENT ARE PICTURED FOR THE GAS/LIQUID GG INJECTORS.

GAS/LIQUID GG INJECTOR BASELINE PATTERN ENGINES 3, 4, 5, AND 6

GAS GENERATOR COMBUSTOR DESIGN CONSIDERATIONS

SIZE, SHAPE, AND MIXING ENHANCEMENT FEATURES TO OBTAIN A UNIFORM GAS THESE INCLUDE THE OPERATING REQUIREMENTS AND CONFIGURATION FEATURES SUCH AS PRIMARY GG COMBUSTOR DESIGN CONSIDERATIONS ARE PRESENTED FOR THE STBE STUDY. **TEMPERATURE**

GAS GENERATOR COMBUSTOR **DESIGN CONSIDERATIONS**

OPERATING REQUIREMENTS

- FACILITATE ATOMIZATION BY CONTROLLING VELOCITIES
- FORCE MIXING OF FUEL RICH PROPELLANTS
- DELIVER UNIFORM HOT-GAS (COMPLETE COMBUSTION) TO
- **INTERFACE WITH TURBINE**

TURBINE

CONFIGURATION

- SHAPE MAXIMIZE MIXING/MINIMIZE HOT SPOTS
- **AXIAL FLOW**
- REVERSE FLOW
- **AXIAL/SIDE OUTLET**
- SIZE ALLOW FOR COMPLETE COMBUSTION
- LENGTH/VOLUME STAY TIME
- DIAMETER INJECTION ELEMENT PATTERN
- MIXING ENHANCEMENT DEVICES
- **TURBULENCE RING**
- FLOW DIRECTION CHANGE

86D-9-1954

CANDIDATE GAS GENERATOR COMBUSTORS

SOME TYPICAL GAS GENERATOR COMBUSTORS ARE SHOWN. THE ACTUAL COMBUSTOR SELECTION WILL BE ACCOMPLISHED AFTER THE TURBINE AND ENGINE INTERFACES HAVE BEEN DEFINED.

CANDIDATE GAS GENERATOR COMBUSTORS

GAS GENERATOR ASSEMBLY TRADE STUDIES

GENERATOR ASSEMBLY TRADE STUDIES. INJECTOR ELEMENT TYPE AND ARRANGEMENT HAVE BEEN COMPLETED. INJECTOR ELEMENT SIZES, COMBUSTOR SIZES, AND STABILITY AIDS INJECTOR ELEMENT SIZES, TO OPTIMIZE THE ASSEMBLY. COST, WEIGHT, AND RISK ENGINE AND VEHICLE LIFE CYCLE COSTS ARE COMPARED. THE END RESULTS WILL BE TO ARE ESTABLISHED NEXT. THE TRADEOFF IS TO VARY THE COMBUSTOR SIZES AND THE FACTORS ARE ASSESSED RELATIVE TO THE COMBUSTOR/INJECTOR SIZE CHANGES. ALSO, THIS FLOW DIAGRAM SHOWS THE SEQUENCE OF EVENTS TO BE USED DURING THE SELECT THE OPTIMUM GG ASSEMBLY FOR EACH ENGINE CONFIGURATION.

ENGINE BALANCE

P_C, TEMP, FLOW PROPELLANT

ELEMENTS, SIZE INJECTOR

RISK FACTORS COST, WEIGHT **ESTABLISH**

RANK AND SELECT GG ASSEMBLY

PRECEDING PAGE BLANK NOT FILMED

IGNITION SYSTEMS

IGNITION SYSTEMS CONSIDERED

A LIST OF 6 CANDIDATE IGNITION SYSTEMS WERE SELECTED FOR STBE CONSIDERATION AS FOLLOWS.

IGNITION SYSTEMS CONSIDERED

- HYPERGOLIC FUEL
- SPARK TORCH
- PYROTECHNIC
- DIRECT SPARK
- COMBUSTION WAVE
- HYPERGOLIC OXIDIZER

IGNITION SYSTEM TRADE FACTORS

KEY TRADE FACTORS THAT WERE USED FOR THE IGNITION SYSTEM STUDIES ARE LISTED ON THIS CHART.

IGNITION SYSTEM TRADE FACTORS

- DEVELOPMENT MATURITY
- COST
- WEIGHT
- **EXTERNAL POWER**
- COMPLEXITY
- RELIABILITY
- HEALTH MONITORING ("GNITION DETECT)
- SAFETY

MAIN CHAMBER IGNITION SYSTEM SELECTION

RELATIVE TO EACH OF THE TRADE FACTORS. LOX/ C_3H_8 AND LOX/ C_4H_4 FOR ENGINES 2, 5 & 6 WERE ASSUMED TO BE SIMILAR TO LOX/RP-1. AS A RESULT OF THIS STUDY IT THE FOLLOWING CHART PRESENTS THE MAIN CHAMBER IGNITION SYSTEM STUDY WAS CONCLUDED THAT A HYPERGOLIC FUEL SYSTEM IS BEST FOR THE LOX/RP-1, CONCLUSIONS FOR THE CANDIDATE ENGINE CONCEPTS. THE CONCLUSIONS ARE PRESENTED LOX/C3HB, AND LOX/CH4 MAIN CHAMBERS FOR ENGINE #1, 2, 4, 5 & 6. TORCH SYSTEM BEST FOR THE LOX/CH4 MAIN CHAMBER FOR ENGINE #3.

Rockwell International Rocketdyne Division

MAIN CHAMBER IGNITION SYSTEM SELECTION

Đ	IILAR TO LOX/RP-1 AND	D 6 ASSUMED TO BE SIM	ON FOR ENGINES 2, 5 AN	*LOX/C3H8 AND LOX/CH4 IGNITION FOR ENGINES 2, 5 AND 6 ASSUMED TO BE SIMILAR LOX/CH4 IGNITION FOR ENGINE 3 ASSUMED TO BE SIMILAR TO LOX/H2
LOX/C3H8 & LOX CH4 HYPERGOLIC FUEL LOW LOW PRES. GN2 LOW DETECTOR SWITCH TBD* TBD*	SPARK TORCH EXP. MODERATE MODERATE MINIMAL LOW EX. MONITOR INHERENT TBD*	LOX/C ₃ H ₈ HYPERGOLIC FUEL LOW LOW PRES FUEL LOW DETECTOR SWITCH TBD* TBD*	HYPERGOLIC FUEL DEVELOPED LOW LOW PRES. FUEL LOW DETECTOR SWITCH EX. RECORD HIGH	RECOMMENDED SYSTEM DEV. MATURITY COST WEIGHT EXT. POWER COMPLEXITY HEALTH MONITORING SAFETY RELIABILITY
ENGINES 5 AND 6	ENGINE 3	ENGINE 2	ENGINES 1 AND 4	

HYPERGOLIC FUEL BEST IF MULTIPLE IGNITION SCURCES REQUIRED AND/OR IF SIMPLE HYPERGOL SYSTEM CAN BE DEVELOPED TO WORK WITH CRYOGENIC FUELS (C_3H_8 AND CH_4)

GAS GENERATOR IGNITION SYSTEM SELECTION

THIS CHART PRESENTS THE GAS GENERATOR IGNITION SYSTEM STUDY CONCLUSIONS RELATIVE TO EACH OF THE TRADE FACTORS. CONCLUSIONS FROM THESE STUDIES SUGGESTS THAT PYROTECHNIC IGNITION IS BEST FOR ENGINES #1 and 2 AND SPARK TORCH BEST FOR ENGINES #3 - 6.

Rockwell International Rocketdyne Division

*LOX/C3H8 GG IGNITION ASSUMED TO BE SIMILAR TO LOX/RP-1, LOX/CH4 GG IGNITION ASSUMED TO BE SIMILAR TO LOX/H2 RECOMMENDED SYSTEM COST RELIABILITY SAFETY **HEALTH MONITORING** DEV. MATURITY COMPLEXITY **EXT. POWER** WEIGHT **PYROTECHNIC EX. RECORD** LINK BREAK DEVELOPED MODERATE LOX/RP-1 **ENGINE 1** MINIMAL МО МО § | | | **PYROTECHNIC** LINK BREAK MODIERATE **ENGINE 2** MINIMAL LOX/C3H8 MO TBD* TED* TED* **₩** SPARK TORCH **EX. MONITOR** MODERATE MODERATE INHERENT **ENGINE 3** MINIMAL LOX/CH TBD* EXP. § **ENGINES 4, 5 AND 6** SPARK TORCH EX. MONITOR DEVELOPED MODERATE MODERATE INHERENT MINIMAL LOX/H₂ <u>Б</u>

GAS GENERATOR IGNITION SYSTEM SELECTION

86C-9-681-6

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

AGENDA

• CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER
✓ • THROTTLING ON-DESIGN/OFF-DESIGN STUDY W. BISSELL D. NGUYEN
• COMBUSTION DEVICES STUDIESP. MEHEGAN
• TURBOMACHINERY STUDIESA. EASTLAND
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS
• TASK 2 STATUS REVIEW
• TASK 1 SUMMARY A. WEISS
• INTRODUCTION F. KIRBY

WB-1

TASK 2 - SYSTEM ANALYSES FLOW DIAGRAM

PROVIDES COMPONENT OPTIONS TO THE LIFE CYCLE ANALYSIS, WHERE THOSE OPTIONS IN THE THROTTLING ENGINE ANALYSIS BRANCH OF THE TASK 2 FLOW DIAGRAM, THE DESIGN POINT ANALYSIS PROVIDES DATA TO THE OFF-DESIGN ANALYSIS WHICH, IN CONTROL ANALYSIS HAS 2 BRANCHES; ONE IN WHICH THE CONTROLS ARE SELECTED FOR EACH INDIVIDUAL ENGINE, AND ONE IN WHICH THE GENERAL CONTROL SYSTEM TURN, PROVIDES THE REQUIREMENTS FOR THE CONTROLS ANALYSIS. THE LATTER ARE EVALUATED AND FINAL COMPONENT SELECTIONS ARE MADE. NOTE THAT THE COMPLEXITY (APPLICABLE TO ALL ENGINES) IS EXPLORED.

THROTTLING ENGINE COMPONENT SFLECTION

PRESSURE DESIGN CRITERION. THE RESOLUTION OF THIS ISSUE IS DISCUSSED ON SHOWN. THESE WERE USED TO GENERATE THE THROTTLEABLE ENGINE DESIGN POINT BALANCES. THE ONLY ISSUE THAT IS SOMEWHAT IN QUESTION IS THE CHAMBER THE PRELIMINARY COMPONENT SELECTIONS FOR THE THROTTLEABLE ENGINES ARE THE NEXT FEW CHARTS.

THROTTLING ENGINE COMPONENT SELECTION FOR LOX/RP-1 AND LOX/CH4 ENGINES

COMPONENT/PARAMETER	TYPE/VALUE*	REASON
TURBOPUMP	750K	SUCTION PERFORMANCE
THRUST CONTROL	GG VALVES	RESPONSE
T/C MR CONTROL	MAIN VALVES	RESPONSE
MINIMUM VALVE AP/Pc	0.1 AT 750K	CONTROLLABILITY
MINIMUM INJECTOR AP/Pc	0.2 AT 625K	STABILITY
COOLING JACKET 100 MISSION LIFE	AT 625K	NOMINAL THRUST
NOZZLE DESIGN EXIT PRESSURE	6 psia AT 625K	NOMINAL VALUE
CHAMBER PRESSURE DESIGN CRITERION		
FUEL-COOLED	MAXIMUM ISP _{VAC} AT 750K	HIGH PERFORMANCE AND LOW INERT WEIGHT
LH2-COOLED	3 STAGE LH ₂ PUMP TIP SPEED LIMIT AT 750K	HIGH PERFORMANCE AND LOW INERT WEIGHT

*PERFORMANCE RELATED CRITERIA, ALL COMPONENT WEIGHTS REFLECT 750K STRESSES

GG CYCLE PERFORMANCE OPTIMIZATION

THE 750K OPERATING POINT, AND THE 625K OPERATING CONDITION IS OBTAINED BY CHAMBER PRESSURE UNTIL THE LH, PUMP TIP SPEED LIMIT IS REACHED. BECAUSE THAT TIP SPEED IS HIGHEST AT THE 750K OPERATING CONDITION, THAT POINT IS FOR LH3-COOLED GG CYCLE ENGINES, PERFORMANCE INCREASES STEADILY WITH THROTILING THE ENGINE TO A LOWER CHAMBER PRESSURE.

PEAK PERFORMANCE OCCURS AT THE PEAK OF A VERY FLAT CURVE. AT THIS OPTIMUM FOR FUEL-COOLED GG CYCLE ENGINES, THE TREND IS NOT AS OBVIOUS BECAUSE THE CHAMBER PRESSURE, ENGINE WEIGHT IS INCREASING AND PROPELLANT BULK DENSITY ALSO, FOR AN ENGINE WITH TWO OPERATING POINTS, THERE IS A QUESTION AS TO CHAMBER PRESSURE SELECTION BECAUSE THE PERFORMANCE CURVE IS SO FLAT. IS DECREASING. BOTH OF THESE COULD SIGNIFICANTLY EFFECT THE ENGINE THE OPERATING POINT AT WHICH TO OPTIMIZE THE PERFORMANCE.

GG CYCLE PERFORMANCE OPTIMIZATION

EFFECT OF FUEL-COOLED ENGINE CHAMBER PRESSURE ON SPECIFIC IMPULSE

FUEL-COOLED ENGINES, 750K FUEL-COOLED LOX/RP-1 DESIGNS WERE ESTABLISHED AS TO DETERMINE THE APPROPRIATE APPROACH FOR SETTING THE CHAMBER PRESSURE FOR POINT TO THE 625K OPERATING POINT FOR THAT SAME ENGINE. THIS FIGURE SHOWS PERFORMANCES ARE SHOWN HERE. EACH DASHED LINE CONNECTS A 750K OPERATING THAT THROTTLING IMPROVES VACUUM PERFORMANCE SLIGHTLY, AND SIGNIFICANTLY A FUNCTION OF Pc, AND EACH WAS THROTTI.ED DOWN TO 625K. THE RESULTING DECREASES SEA LEVEL PERFORMANCE.

FUEL-COOLED FUEL-COOLED ENGINE CHAMBER PRESSURE ON SPECIFIC IMPULSE

ENGINE PERFORMANCE FOR VEHICLE DESIGN CONDITION

THE VEHICLE DESIGN CONDITION OCCURS AT THE ENGINE OPERATING CONDITION THAT YIFI.DS THE WORST OVERALL PERFORMANCE. FOR A VEHICLE WITH AN ENGINE OUT ALTITUDE AT WHICH THE PERFORMANCE FOR ALL ENGINES OPERATING EQUALS THAT FOR ONE ENGINE OUT. THIS RESULTS IN OPERATION AT THE LOWEST OF THE CAPABILITY, THIS CONDITION OCCURS WHEN THE ENGINE GOES OUT AT THAT PERFORMANCE CURVES OVER THE ENTIRE FLIGHT TRAJECTORY.

ENGINE PERFORMANCE FOR VEHICLE DESIGN CONDITION

ANALYTICAL RELATIONSHIPS

VEHICLE DESIGN CONDITION. THE SECOND IS THE EXPRESSION FOR THE PROPELLANT IS AN APPROXIMATION OF THE AVERAGE ENGINE SPECIFIC IMPULSE THAT OCCURS AS THE ENGINE PASSES FROM SEA LEVEL TO ALTITUDE AT THE PREVIOUSLY DESCRIBED BULK DENSITY FOR ENGINES THAT ARE NOT HYDROGEN COOLED. THE THIRD IS THE IMPACT OF FUEL-COOLED ENGINE CHAMBER PRESSURE ON THE VEHICLE. THE FIRST PARAMETERS INTO VEHICLE INERT WEIGHT WHICH, IN TURN, IS AN INDICATOR OF THESE ARE THE ANALYTICAL RELATIONSHIPS THAT WERE USED TO EVALUATE THE RELATIVE VEHICLE INERT WEIGHT EXPRESSION THAT TRANSLATES THE ENGINE RELATIVE VEHICLE COST.

ANALYTICAL RELATIONSHIPS

VEHICLE $\Delta W_{\text{INERT}}^* = -638(\text{Isp}_{\text{AVG}} - \text{Isp}_{\text{REF}}) + 1.61(6)(W - W_{\text{REF}}) -848(\rho_{\text{B}} - \rho_{\text{B}})$

$$\rho_{B} = \frac{MR_{E} + 1}{MR_{E} + \frac{1}{\rho_{F}}}$$

*VEHICLE EXCHANGE FACTOR FROM STAS CONTRACTORS

EFFECT OF DESIGN CHAMBER PRESSURE ON VEHICLE INERT WEIGHT FOR FUEL-COOLED, LOX/RP-1, GG CYCLE ENGINES

VERY CLOSE TO THE MINIMUM VEHICLE INERT WEIGHT. IT MAY THEN BE CONCLUDED OPERATING AT 750K. IT ALSO SHOWS THAT THE ENGINE DESIGN CHAMBER PRESSURE THAT OPTIMIZING ISP_{Vac} AT 750K IS A SATISFACTORY DESIGN CHAMBER PRESSURE AT WHICH OPTIMUM VACUUM SPECIFIC IMPULSE (Isp_{vac}) OCCURS ALSO YIFLDS THIS CURVE SHOWS HOW THE VEHICLE INERT WFIGHT AT THE VEHICLE DESIGN CONDITION VARIES WITH DESIGN CHAMBER PRESSURE WHEN THE ENGINES ARE SELECTION CRITERION FOR FUEL-COOLED GG CYCLE ENGINES. -200

2400

2500

2600

2700

2800

2900

0

Rockwell International Rocketdyne Division

DESIGN CHAMBER PRESSURE AT 750k OPERATING CONDITION, psia

WB-15

FUEL-COOLED THROTTLING ENGINE BALANCE SUMMARY

THIS IS THE RESULTING THROTTLING ENGINE BALANCE SUMMARY, AT 750K SEA LEVEL GG CYCLE ENGINES, THESE REPRESENT THE HIGHEST AND THE LOWEST FUEL (AND ${\rm CH_4^{-C00LED}\ LOX/CH_4^{}}$ GAS GENERATOR CYCLES, RESPECTIVELY. OF THE SIMPLE THRUST, FOR ENGINES 1 AND 3, WHICH ARE RP-1-COOLED LOX/RP-1 AND COOLANT) DENSITIES.

Rockwell International Rocketdyne Division

ENGINE PARAMETER DESCRIPTION	LOX/RP-1 (ENGINE 1)	LOX/CH ₄ (ENGINE 3)
ENGINE SEA LEVEL THRUST (kib)	750.00	750.00
ENGINE VACUUM THRUST (KIb)	850.10	838.76
ENGINE VACUUM ISP (s)	326.04	346.93
ENGINE SEA LEVEL ISP (s)	287.65	310.21
T/C VACUUM ISP (s)	339.25	358.10
GG VACUUM ISP (s)	137.65	160.71
MAIN CHAMBER PRESSURE (psia)	2468	3417
GG CHAMBER PRESSURE (psia)	2468	3417
ENGINE MIXTURE RATIO (O/F)	2.421	2.998
T/C MIXTURE RATIO (O/F)	2.800	3.500
GG MIXTURE RATIO (O/F)	0.412	0.398
ENGINE FUEL FLOW RATE (Ib/s)	762.2	604.8
ENGINE OXIDIZER FLOW RATE (Ib/s)	1845.2	1812.9
I/C FUEL FLOW RATE (Ib/s)	641.2	506.9
1/C OXIDIZER FLOW RATE (Ib/s)	1795.3	1774.0
GG GAS FLOW HATE (Ib/s)	170.9	136.7
COMBUSTON JACKET DISCHARGE TEMPERATURE (°R)	842	456
NOZZLE JACKET DISCHARGE TEMPERATURE (°R)	1102	607
GG TEMPERATURE ("R)	2000	2000

FUEL-COOLED THROTTLING ENGINE
BALANCE SUMMARY

FUEL-COOLED THROTTLING ENGINE BALANCE SUMMARY (CONTINUED)

ENGINE PARAMETER DESCRIPTION (LOX/RP-1 (ENGINE 1)	LOX/CH4 (ENGINE 3)
MAIN FUEL INJECTOR ΔP (psid/% Pc)	592/24	683/20
MAIN OXIDIZER INJECTOR ΔP (psid/% Pc)	592/24	820/24
GG FUEL INJECTOR ΔP (psid/% Pc)	592/24	683/20
GG OXIDIZER INJECTOR ΔP (psid/% Pc)	592/24	820/24
FUEL PUMP SPEED (rpm)	12.030	18.262
OXIDIZER PUMP SPEED (rpm)	12,030	13,140
HPFP DISCHARGE PRESSURE (psia)	3863	5220
HYOY DISCHARGE PHESSURE (psia)	3455	4784
HDED EFFICIENCY (%)	75 50	6383
HPOP EFFICIENCY (%)	80.50	70 00
FKP EFFICIENCY (%)	65.29	80.76
HPFT EFFICIENCY (%)	62.82	72.19
HPOT EFFICIENCY (%)	N/A	76.94
HTTI HORSEFOWER (hp)	60,315	47,687
HPOI HORSEPOWER (hp)	N/A	39,218
ENGINE WEIGHT (Ib)	7354	7713
MFV-1 Δ P/Pc (%)	10.0	10.0
MOV ΔΡ/Pc (%)	10.0	10.0 10.0
GGOV AP/Pc (%)	29.5 10.0	10.0 10.0

LH₂-COOLED THROTTLING ENGINE BALANCE SUMMARY

THESE ARE THE CORRESPONDING BALANCES FOR THE CORRESPONDING HYDROGEN COOLED RESPECTIVELY). OF THE HYDROGEN-COOLED GG CYCLE ENGINES, THESE HAVE THE ENGINES, WHICH ARE ENGINES 4 AND 6 (LOX/RP-1 AND LOX/CH4, HIGHEST AND THE LOWEST THRUST CHAMBER FUEL DENSITIES.

THE PREVIOUS FUEL-COOLED ENGINES. AS DISCUSSED EARLIER, THE PROCEDURE FOR THE COMPONENT SELECTION AND SELECTION PROCEDURES ARE SIMILAR TO THOSE FOR HYDROGEN-COOLED ENGINES, THE MAXIMUM PERFORMANCE OCCURS AT THE HYDROGEN OPTIMIZING THE 750K ENGINE FOR VACUUM PERFORMANCE IS DIFFERENT. FOR PUMP TIP SPEED LIMIT WHICH, IN TURN, OCCURS AT THE MAXIMUM THRUST OPERATING POINT, WHICH IS 750K.

Rockwell International Rocketdyne Division

ENGINE OXIDIZER FLOW RATE (Ib/s) GG MIXTURE RATIO (0/F) COMBUSTOR JACKET DISCHARGE TEMPERATURE (°R) LH2 FLOW RATE (lb/s) GG GAS FLOW RATE (lb/s) T/C AND ENGINE FUEL FLOW RATE (lb/s) T/C MIXTURE RATIO (O/F) GG CHAMBER PRESSURE (psia) ENGINE SEA LEVEL THRUST (kib) ENGINE VACUUM THRUST (kib) GG TEMPERATURE (°R) NOZZLE JACKET DISCHARGE TEMPERATURE (°R) MAIN CHAMBER PRESSURE (psia) **ENGINE SEA LEVEL ISP (s)** GG VACUUM ISP (s) T/C VACUUM ISP (s) **ENGINE VACUUM ISP (s)** T/C OXIDIZER FLOW RATE (lb/s) **ENGINE PARAMETER DESCRIPTION** LOX/RP-1/LH₂ (ENGINE 4) 623.3 532.9 364.69 311.13 750.00 833.70 1369.9 41.9 31.4 0.340 4025 4025 345.85 1745.2 1755.8 2.800 345.52 LOX/CH₄/LH₂ (ENGINE 6) 1142.5 453.2 56.0 38.0 750.00 832.91 1762.3 503.5 0.474 3.500 4075 4075 347.00 359.02 358.73 323.03 1780.3

LH2-COOLED THROTTLING ENGINE

BALANCE SUMMARY

Rockwell International Rocketdyne Division

LH2-COOLED THROTTLING ENGINE BALANCE SUMMARY (CONTINUED)

ENGINE PARAMETER DESCRIPTION	LOX/RP-1/LH ₂ (ENGINE 4)	LOX/CH4/LH2 (ENGINE 6)
MAIN FUEL INJECTOR ΔP (psid/% Pc) MAIN OXIDIZER INJECTOR ΔP (psid/% Pc)	966/24 966/24	978/24 978/24
GG FUEL INJECTOR ΔP (psid/% Pc) GG OXIDIZER INJECTOR ΔP (psid/% Pc)	805/20 966/24	815/20 978/24
MAIN TURBOPUMP SPEED (rpm)	13,300	13,370
FUEL PUMP DISCHARGE PRESSURF (psia)	60,000	60,000
LOX PUMP DISCHARGE PRESSURE (psia)	5635	5705
LH2 PUMP DISCHARGE PRESSURE (psia)	6578	6672
LOX PUMP EFFICIENCY (%)	77.6 78.7	72.7 78.8
LH2 PUMP EFFICIENCY (%)	70.1	72.4
LHO TURBINE EFFICIENCY (%)	50.1	52.3
MAIN TURBINE HORSEPOWER (hp)	69,050	85,600
LH2 I URBINE HORSEPOWER (hp)	16,710	19,570
ENGINE WEIGHT (Ib)	7334	7515
MFV ΔP/Pc (%) MH2V ΔP/Pc (%)	10.0	10.0
MOV ΔP/Pc (%) GGH2V ΔP/Pc (%)	10.0	2:3 10.0 10.0
GGOV ΔP/Pc (%)	10.0	10.0

PRELIMINARY STEADY-STATE OFF-DESIGN STUDY FOR LOX/RP-1 AND LOX/CH₄ FUEL-COOLED GAS GENERATOR CYCLES

CONDUCTED FOR THE FUEL-COOLED LOX/RP-1 (ENGINE 1) AND LOX/CH $_{4}$ (ENGINE 3) THIS SECTION PRESENTS THE PRELIMINARY STEADY-STATE OFF-DESIGN STUDY ENGINES.

ENGINE 1 — LOX/RP-1, RP-1 COOLED

PRELIMINARY STEADY-STATE OFF-DESIGN STUDY

■ ENGINE 3 — LOX/CH4, CH4 COOLED

OBJECTIVE AND ANALYTICAL APPROACH

THESE ARE THE OBJECTIVE, CRITERIA AND ANALYTICAL APPROACH WHICH WERE USED IN THE PRELIMINARY STEADY-STATE OFF-DESIGN STUDY FOR THE FUEL-COOLED LOX/RP-1 AND LOX/CH₄ ENGINES.

OBJECTIVE AND ANALYTICAL APPROACH

OBJECTIVE

- SELECT THRUST AND MIXTURE RATIO CONTROL VALVES BASED
- MINIMUM VEHICLE INERT WEIGHT
- MINIMUM PROPELLANT CONSUMPTION
- MAXIMUM VALVE AP MARGINS
- ENGINE SENSITIVITIES
- START/CUTOFF REQUIREMENTS

ANALYTICAL APPROACH

- **UPGRADE EXISTING BOOSTER ENGINE OFF-DESIGN CODE TO ENGINES** MODEL DETAILED STEADY-STATE OPERATION OF THE LOX/HC
- CONDUCT SENSITIVITY STUDY ON CONTROL VALVES
- PERFORM ENGINE THROTTLING PERFORMANCE ANALYSIS WITH DIFFERENT THRUST AND MIXTURE RATIO CONTROL OPTIONS

ENGINE 1 FLOW SCHEMATIC

THIS IS THE FLOW CIRCUIT OF THE FUEL-COOLED LOX/RP-1 (ENGINE 1) ENGINE BEING STUDIED.

ENGINE 3 FLOW SCHEMATIC

THIS IS THE FLOW CIRCUIT OF THE FUEL-COOLED LOX/CH (ENGINE 3) ENGINES BEING STUDIED. IT ALSO REPRESENTS THE LOX/C $_3$ H (ENGINE 2) ENGINE.

LH2-COOLED ENGINE FLOW SCHEMATIC

THIS IS THE FLOW CIRCUIT OF THE $\rm LH_2-C00LED$ LOX/RP-1 (ENGINE 4), LOX/CH (ENGINE 6) AND LOX/C $\rm H_8$ (ENGINE 5) ENGINES BEING STUDIED.

LH2-COOLED ENGINE FLOW SCHEMATIC ENGINES 4, 5, AND 6

DN-9

OVERALL GROUNDRULES/ASSUMPTIONS

THESE ARE THE GENERAL GROUNDRULES AND ASSUMPTIONS USED IN THE PRELIMINARY STEADY-STATE OFF-DESIGN STUDY FOR THE FUEL-COOLED LOX/RP-1 AND LOX/CH $_{f 4}$ ENGINES.

OVERALL GROUNDRULES/ASSUMPTIONS

- MUST COMPLETE THE MISSION WITH EITHER SIX OR FIVE ENGINES
- **ENGINE PARAMETERS TO BE CONTROLLED:**
- **ENGINE THRUST**
- **ENGINE OR T/C MIXTURE RATIO**
- **COOLANT FLOW SPLIT**
- GG MIXTURE RATIO (OPTIONAL)
- KEEP GG TEMPERATURE LESS THAN OR EQUAL TO 2000°R*
- MINIMUM THRUST/MR CONTROL VALVE $\triangle P = 10\%$ OF OPERATING Pc **MAINTAIN COOLANT FLOW SPLIT AT 50/50 OF ENGINE FLOW RATE***
- **CONSTANT BOOSTER ENGINE BURN TIME OF 160 s**

*ON-DESIGN OPERATING CONDITION

SENSITIVITY STUDY GROUNDRULES/ASSUMPTIONS

THESE ARE THE GROUNDRULES AND ASSUMPTIONS USED ONLY IN THE SENSITIVITY STUDY FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

SENSITIVITY STUDY

GROUNDRULES/ASSUMPTIONS

- VARY ONE VALVE AT A TIME AND REBALANCE THE ENGINE
- NO CONSTRAINT ON GG TEMPERATURE
- ONLY CONDUCT SENSITIVITY STUDY FOR ENGINE 1 —

LOX/RP-1, RP-1 COOLED

EXPECT SIMILAR SENSITIVITIES FOR ENGINE 2 -LOX/C3H8, C3H8 COOLED AND ENGINE 3 — LOX/CH4, CH4 COOLED

INFLUENCE COEFFICIENTS

THESE ARE THE INFLUENCE COEFFICIENTS WITH CONTROL VALVES CALCULATED FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

Rockwell International Rocketdyne Division

GG GG CHAMBER PRESSURE MAIN CHAMBER PRESSURE AVERAGE ISP **ENGINE MIXTURE RATIO** SEA LEVEL THRUST T/C MIXTURE RATIO **DEPENDENT VARIABLES TEMPERATURE** -0.005-0.003 -0.100 -0.118 0.023 0.073 MFV-1 0.045 INDEPENDENT VARIABLES -0.072 -0.011 -0.107 -0.107 MFV-2 0.0530.0650.039 -0.003 0.106 0.146 0.009 0.095MOV 0.104 0.080 -0.415 -0.389-0.040 -0.394-0.076GGFV 0.008 -0.443GGOV 0.1980.376 0.244 -0.0220.021 0.012 0.290

INFLUENCE COEFFICIENTS*

*INFLUENCE COEFFICIENT = PERCENTAGE CHANGE IN DEPENDENT VARIABLE VARIABLE PER ONE PERCENTAGE CHANGE IN THE INDEPENDENT

ENGINE THRUST SENSITIVITIES

THESE ARE THE EFFECTS OF THROTTLING VALVES ON ENGINE SEA LEVEL THRUST FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

Rockwell International
Rocketdyne Division

PERCENTAGE CHANGES IN S.L. THRUST

ENGINE THRUST SENSITIVITIES

PERCENTAGE CHANGES IN VALVE EFFECTIVE FLOW AREA

1/C MIXTURE RATIO SENSITIVITIES

THESE ARE THE EFFECTS OF THROTILING VALVES ON T/C MIXTURE RATIO FOR THE FUEL-COOLED LOX/RP-1 ENGINE. PERCENTAGE CHANGES IN VALVE EFFECTIVE FLOW AREA

PERCENTAGE CHANGES IN T/C MIXTURE RATIO

T/C MIXTURE RATIO SENSITIVITIES

ENGINE MIXTURE RATIO SENSITIVITIES

THESE ARE THE EFFECTS OF THROTTLING VALVES ON ENGINE MIXTURE RATIO FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

PERCENTAGE CHANGES IN ENGINE MIXTURE RATIO

ENGINE MIXTURE RATIO SENSITIVITIES

GG TEMPERATURE SENSITIVITIES

THESE ARE THE EFFECTS OF THROTTLING VALVES ON GG TEMPERATURE FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

PERCENTAGE CHANGES IN GG TEMPERATURE

GG TEMPERATURE SENSITIVITIES

MAIN CHAMBER PRESSURE SENSITIVITIES

THESE ARE THE EFFECTS OF THROTTLING VALVES ON MAIN CHAMBER PRESSURE FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

Rockwell International Rocketdyne Division

PERCENTAGE CHANGES IN MAIN CHAMBER PRESSURE

MAIN CHAMBER PRESSURE SENSITIVITIES

GG CHAMBER PRESSURE SENSITIVITIES

THESE ARE THE EFFECTS OF THROTTLING VALVES ON GG CHAMBER PRESSURE FOR THE FUEL-COOLED LOX/RP-1 ENGINE. PERCENTAGE CHANGES IN VALVE EFFECTIVE FLOW AREA

Rockwell International
Rocketdyne Division

PERCENTAGE CHANGES IN GG CHAMBER PRESSURE

GG CHAMBER PRESSURE SENSITIVITIES

PERFORMANCE SENSITIVITIES

THESE ARE THE EFFECTS OF THROTTLING VALVES ON AVERAGE SPECIFIC IMPULSE FOR THE FUEL-COOLED LOX/RP-1 ENGINE. PERCENTAGE CHANGES IN VALVE EFFECTIVE FLOW AREA

PERCENTAGE CHANGES IN AVERAGE ISP

PERFORMANCE SENSITIVITIES

SENSITIVITY STUDY RESULTS/CONCLUSIONS

THESE ARE THE RESULTS AND CONCLUSIONS FROM THE PRELIMINARY SENSITIVITY STUDY CONDUCTED FOR THE FUEL-COOLED LOX/RP-1 ENGINE.

SENSITIVITY STUDY

RESULTS/CONCLUSIONS

- SENSITIVE TO MFV-1, MFV-2, AND MOV THAN OTHER T/C AND ENGINE MIXTURE RATIOS ARE MUCH MORE **VALVES**
- **ENGINE THRUST IS MUCH MORE SENSITIVE TO GGOV** AND GGFV THAN OTHER VALVES
- GG TEMPERATURE IS MUCH MORE SENSITIVE TO GGOV

AND GGFV THAN OTHER VALVES

- USE MOV, MFV-1, OR MFV-2 FOR T/C OR ENGINE MIX-**TURE RATIO CONTROL**
- **USE GGOV AND/OR GGFV FOR THRUST AND/OR GG** MIXTURE RATIO CONTROL
- **USE MFV-1 OR MFV-2 FOR COOLANT FLOW SPLIT** CONTROL

ENGINE THROTILING PERFORMANCE ANALYSIS GROUNDRULES/ASSUMPTIONS

THESE ARE THE GROUNDRULES AND ASSUMPTIONS USED IN THE ENGINE THROTTLING PERFORMANCE ANALYSIS FOR THE FUEL-COOLED LOX/RP-1 AND LOX/CH $_{f q}$ ENGINES.

ENGINE THROTTLING PERFORMANCE ANALYSIS

GROUNDRULES/ASSUMPTIONS

- MUST COMPLETE THE MISSION WITH EITHER SIX OR FIVE ENGINES
- FIXED THROTTLED THRUST = 625 klb AT SEA LEVEL
- KEEP GG TEMPERATURE LESS THAN OR EQUAL TO 2000°R*
- MAINTAIN COOLANT FLOW SPLIT AT 50/50 OF ENGINE FLOW
- MINIMUM THRUST/MR CONTROL VALVE ΔP = 10% OF OPERAT-ING Pc
- CONSTANT BOOSTER ENGINE BURN TIME OF 160 s
- 625K NOZZLE AS "ON-DESIGN" **USE LOX/RP-1 ENGINE 1 AND LOX/CH4 ENGINE 3 WITH**

*ON-DESIGN OPERATING CONDITION

THRUST AND MIXTURE RATIO CONTROL OPTIONS FOR THROTILING

THESE ARE THE VARIOUS THRUST AND MIXTURE RATIO CONTROL OPTIONS BEING INVESTIGATED FOR THE FUEL-COOLED LOX/RP-1 AND LOX/CH $_4$ ENGINES AT THROTTLING CONDITION.

1057r/18

THRUST AND MIXTURE RATIO CONTROL OPTIONS FOR THROTTLING

T/C OR	ENGINE THRU	ENGINE THRUST CONTROL
MR CONTROL	GGOV/GGFV USED*	GGOV USED**
MFVs USED	OPTION I:	OPTION III:
	1. GGOV=THRUST CONTROL 2. MFV-2 = MR CONTROL	1. GGOV = THRUST CONTROL
	3. MFV-1 = COOLANT	MFV-1
	CONTROL	CONTROL
	4. GGFV = GG MR CONTROL	
	NO. OF CONTROL VALVES = 4	NO. OF CONTROL VALVES = 3
MOV USED	OPTION II:	OPTION IV:
	1. GGOV=THRUST CONTROL	1. GGOV=THRUST CONTROL
	3. MFV-2 = COOLANT	. •
	CONTROL A GGEV = GG MB CONTROL	CONTROL
	NO. OF CONTROL VALVES = 4	NO. OF CONTROL VALVES = 3

^{*}GG MIXTURE RATIO IS CONTROLLED
**GG MIXTURE RATIO IS NOT CONTROLLED

LOX/RP-1 ENGINE 1 BALANCE SUMMARY WITH T/C MIXTURE RATIO CONTROL

THIS TABLE SUMMARIZES THE ENGINE PERFORMANCE AND OPERATING CHARACTERISTICS AT NOMINAL AND OFF-NOMINAL CONDITIONS FOR THE FUEL-COOLED LOX/RP-1 ENGINE WITH T/C MIXTURE RATIO CONTROL; I.E., CONSTANT 1/C MIXTURE RATIO.

Rockwell International Rocketdyne Division

DN-37

ENGINE FUEL FLOW RATE (lb/s) ENGINE OXIDIZER FLOW RATE (lb/s) GGFV $\Delta P/Pc$ (%) GGOV $\Delta P/Pc$ (%) MOV $\Delta P/Pc$ (%) MFV-1 ΔP/Pc (%) MFV-2 ΔP/Pc (%) NUMBER OF THROTTLING VALVES USED (NONE) GG TEMPERATURE (°R) **GG MIXTURE RATIO (0/F)** T/C MIXTURE RATIO (O/F) **ENGINE MIXTURE RATIO (0/F)** GG CHAMBER PRESSURE (psia) MAIN CHAMBER PRESSURE (psia) **ENGINE SEA LEVEL ISP (s)** ENGINE SEA LEVEL THRUST (kib) **ENGINE VACUUM ISP (s) AVERAGE ISP (s) ENGINE PARAMETER DESCRIPTION** ON 0.412 2000 326.04 287.65 750.00 850.10 2.421 2.800 2468 2468 316.44 29.5 10.0 10.0 1845.2 10.0 10.0 TBD 762.2 6.5 2.477 2.800 N 28.5 636.9 0.412 327.40 282.20 316.10 625.00 725.12 2118 1742 1577.8 1991 THRUST AND MR CONTROL OPTION 53.1 33.7 11.4 33.1 Z 638.2 0.412 2.472 2.800 282.03 327.21 315.92 625.00 1577.9 2117 1774 725.14 1992 = <u>ე</u> თ 661.1 312.81 323.99 19.0 19.0 N/A 14.9 1577.0 1791 0.355 2.800 2.386 279.26 625.00 725.12 2111 1952 = 2.383 2.800 323.89 279.17 N/A 18.7 661.8 0.3562110 312.71 625.00 725.12 11.3 1796 1976 1577.0 7

LOX/RP-1 ENGINE 1 BALANCE SUMMARY

WITH T/C MIXTURE RATIO CONTROL

LOX/RP-1 ENGINE 1 BALANCE SUMMARY WITH ENGINE MIXTURE RATIO CONTROL

THIS TABLE SUMMARIZES THE ENGINE PERFORMANCE AND OPERATING CHARACTERISTICS AT NOMINAL AND OFF-NOMINAL CONDITIONS FOR THE FUEL-COOLED LOX/RP-1 ENGINE WITH ENGINE MIXTURE RATIO CONTROL; I.E., CONSTANT ENGINE MIXTURE RATIO.

Rockwell International Rocketdyne Division

DN-39

WITH ENGINE MIXTURE RATIO CONTROL

	2	THRUST AN	AND MR	D MR CONTROL OPTION	OPTION
ENGINE PARAMETER DESCRIPTION	DESIGN	-	Ξ	=	IV
ENGINE SEA LEVEL THRUST (kib) ENGINE VACUUM THRUST (kib)	750.00	625.00	625.00	625.00	625.00
	850.10	725.12	725.12	725.12	725.13
AVERAGE ISP (s) ENGINE VACUUM ISP (s) ENGINE SEA LEVEL ISP (s)	316.44	315.96	315.58	312.87	312.86
	326.04	327.25	326.86	324.06	324.04
	287.65	282.07	281.73	279.31	279.30
MAIN CHAMBER PRESSURE (psia)	2468	2126	2123	2106	2105
GG CHAMBER PRESSURE (psia)	2468	1741	1806	1949	1959
ENGINE MIXTURE RATIO (O/F) T/C MIXTURE RATIO (O/F) GG MIXTURE RATIO (O/F) GG TEMPERATURE (°R)	2.421	2.421	2.421	2.421	2.421
	2.800	2.728	2.742	2.849	2.850
	0.412	0.412	0.412	0.353	0.354
	2000	1994	1991	1786	1790
ENGINE FUEL FLOW RATE (lb/s) ENGINE OXIDIZER FLOW RATE (lb/s)	762.2	647.6	648.5	654.3	654.2
	1845.2	1568.2	1569.9	1583.4	1583.6
NUMBER OF THROTTLING VALVES USED (NONE) MFV-1 $\Delta P/Pc$ (%) MFV-2 $\Delta P/Pc$ (%) MOV $\Delta P/Pc$ (%) GGFV $\Delta P/Pc$ (%) GGOV $\Delta P/Pc$ (%)	TBD 10.0 10.0 10.0 29.5 10.0	3.0 20.7 N/A 50.7 33.0	4 N/A 30.9 13.9 52.2 24.1	3 7.3 25.7 N/A N/A 19.3	3 N/A 20.9 9.2 N/A 19.1

LOX/CH₄ ENGINE 3 BALANCE SUMMARY WITH 1/C MIXTURE RATIO CONTROL

THIS TABLE SUMMARIZES THE ENGINE PERFORMANCE AND OPERATING CHARACTERISTICS AT NOMINAL AND OFF-NOMINAL CONDITIONS FOR THE FUEL-COOLED LOX/CH4 ENGINE WITH T/C MIXTURE RATIO CONTROL; I.E., CONSTANT T/C MIXTURE RATIO.

Rockwell International Rocketdyne Division

	2	THRUST AN		D MR CONTROL OPTION	OPTION
ENGINE PARAMETER DESCRIPTION	DESIGN	_	=	=	₹
ENGINE SEA LEVEL THRUST (kib) ENGINE VACUUM THRUST (kib)	750.00 838.76	625.00 713.79	625.00 713.79	625.00 713.80	625.00 713.79
AVERAGE ISP (s) ENGINE VACUUM ISP (s)	337.75 346.93	337.40 348.23	337.00 347.82	334.45 345.18	334.98 345.73
ENGINE SEA LEVEL ISP (s)	310.21	304.91	304.55	302.24	302.72
MAIN CHAMBER PRESSURE (psia) GG CHAMBER PRESSURE (psia)	3417 3417	2921 2439	2918 2550	2917 2616	2914 2715
ENGINE MIXTURE RATIO (O/F) T/C MIXTURE RATIO (O/F)	2.998 3.500	3.070 3.500	3.053 3.500	2.908 3.500	2.937 3.500
GG MIXTURE RATIO (O/F) GG TEMPERATURE (°R)	0.398 2000	0.398 2002	0.398 2003	0.233 1648	0.279 1775
ENGINE FUEL FLOW RATE (lb/s) ENGINE OXIDIZER FLOW RATE (lb/s)	604.8 1812.9	503.6 1546.2	506.3 1545.9	529.2 1538.7	524.5 1540.2
NUMBER OF THROTTLING VALVES USED (NONE)	TBD	4	4	, ω)	ω
MFV-1 ΔP/Pc (%) MFV-2 ΔP/Pc (%)	10.0	3.4	11.0	0.2	9.9 A
MOV ΔP/Pc (%)	10.0	N/A	15.2	N	17.7
GGPV AP/Pc (%) GGOV AP/Pc (%)	10.0	34.2	28.8 32.8	30.2	33.0

DN-41

THIS TABLE SUMMARIZES THE ENGINE PERFORMANCE AND OPERATING CHARACTERISTICS AT NOMINAL AND OFF-NOMINAL CONDITIONS FOR THE FUEL-COOLED LOX/CH $_{f 4}$ ENGINE WITH ENGINE MIXTURE RATIO CONTROL; I.E., CONSTANT ENGINE MIXTURE RATIO.

Rockwell International Rocketdyne Division

DN-43

2	10000		CONTROL	OFTION
DESIGN		=	=	<
750.00	625.00	625.00	625.00	625.00
838.76	/15./8	/15.//	/15.//	/1/./6
337.75	337.32	336.76	333.99	334.32
346.93	348.36	347.78	344.92	345.27
310.21	304.19	303.68	301.18	301.48
3417	2940	2932	2916	2915
3417	2454	2607	2628	2680
2.998	2.998	2.998	2.998	2.998
3.500	3.408	3.439	3.603	3.586
0.398	0.398	0.398	0.247	0.269
2000	2003	2001	1691	1752
604.8	514.0		519.2	518.5
1812.9	1540.7		1556.0	1554.5
TBD	4	4	ယ	ယ
10.0	0.5		3.9	N/A
·10.0	0.0	10.8	4.3	1 0
10.0	N/A	18.3	N/A	13.7
.10.0	34.9	27.0	N/A	N/A
10.0	30.9	33.6	29.7	31.3
	ON DESIGN 750.00 838.76 337.75 346.93 310.21 3417 3417 2.998 3.500 0.398 2000 604.8 1812.9 TBD 10.0 10.0	007005 +0 0000 ND 000 ND	625.00 625.00 715.78 715.78 337.32 348.36 304.19 2940 2940 29454 2.998 2.998 2.998 3.408 0.398 2003 2003 514.0 1540.7 15 4 4 0.5 0.0 0.0 0.1 0.0 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	1 II 625.00 625.00 715.78 715.77 337.32 336.76 348.36 347.78 304.19 303.68 2940 2932 2454 2607 2.998 2.998 3.408 3.439 0.398 0.398 2003 2001 514.0 514.8 1540.7 1543.3 4 0.5 N/A 10.8 N/A 18.3 34.9 27.0 33.6

WITH ENGINE MIXTURE RATIO CONTROL

EFFECT OF CONTROL OPTIONS ON ENGINE 1, LOX/RP-1, RP-1 COOLED WITH T/C MIXTURE RATIO CONTROL

CONTROL OPTIONS ON THE FUEL-COOLED LOX/RP-1 ENGINE AT THROTTLING CONDITION WITH CONSTANT T/C MIXTURE RATIO. IT SHOWS (CLOCK-WISE FROM TOP LEFT) THE THIS CHART ILLUSTRATES THE EFFECT OF DIFFERENT THRUST AND MIXTURE RATIO AVERAGE SPECIFIC IMPULSE, PROPELLANT BULK DENSITY, THRUST CONTROL VALVE CONSUMPTION AND VEHICLE INERT WEIGHT DIFFERENTIALS VS. THRUST AND T/C AP/Pc RATIO, 1/C MIXTURE RATIO CONTROL VALVE AP/Pc, TOTAL PROPELLANT MIXTURE RATIO CONTROL OPTIONS.

FUEL-COOLED LOX/RP-1 ENGINE. IN ADDITION, GG MIXTURE RATIO CONTROL IS DIFFERENTIAL WITH ADEQUATE VALVE AP MARGINS IS SELECTED FOR THE CONTROL OPTION I WHICH RESULTS IN MINIMUM VEHICLE INERT WEIGHT RECOMMENDED FOR HIGH ENGINE PERFORMANCE.

EFFECT OF CONTROL

ONS ON

ENGINE

EFFECT OF CONTROL OPTIONS ON ENGINE 1 RP-1 COOLED WITH ENGINE MIXTURE RATIO CONTROL

CONTROL OPTIONS ON THE FUEL-COOLED LOX/RP-1 ENGINE AT THROTTLING CONDITION PROPELLANT CONSUMPTION AND VEHICLE INERT WEIGHT DIFFERENTIALS VS. THRUST WITH CONSTANT ENGINE MIXTURE RATIO. IT SHOWS (CLOCK-WISE FROM TOP LEFT) THIS CHART ILLUSTRATES THE EFFECT OF DIFFERENT THRUST AND MIXTURE RATIO THE AVERAGE SPECIFIC IMPULSE, PROPELLANT BULK DENSITY, THRUST CONTROL VALVE AP/PC RATIO, ENGINE MIXTURE RATIO CONTROL VALVE AP/PC, TOTAL AND ENGINE MIXTURE RATIO CONTROL OPTIONS.

FUEL-COOLED LOX/RP-1 ENGINE. IN ADDITION, GG MIXTURE RATIO CONTROL IS DIFFERENTIAL WITH ADEQUATE VALVE AP MARGINS IS SELECTED FOR THE CONTROL OPTION I WHICH RESULTS IN MINIMUM VEHICLE INERT WEIGHT RECOMMENDED FOR HIGH ENGINE PERFORMANCE.

R TO

EFFECT OF CONTROL OPTIONS ON ENGINE 1 ENGINE MIXTURE RATIO CONTROL _OX/RP-1, RP-1 COOL LED

AVERAGE ISP (s)

312.9

312.9

CONTROL OPTION

=

≡

₹

316

315.6

EFFECT OF 1/C AND ENGINE MIXTURE RATIO CONTROL ON ENGINE 1 AT NOMINAL/OFF-NOMINAL CONDITIONS WITH SELECTED CONTROL OPTION I

THIS CHART ILLUSTRATES THE EFFECT OF T/C AND MIXTURE RATIO CONTROLS ON THE PROPELLANT, LOX AND RP-1 CONSUMPTION DIFFERENTIALS VS. ENGINE OPERATING CONDITIONS. IT SHOWS (CLOCK-WISE FROM TOP LEFT) ENGINE MIXTURE RATIO, CONDITIONS AND MIXTURE RATIO CONTROLS. THE CONTROL OPTION I SELECTED PREVIOUSLY IS USED FOR THROTTLING; I.E., NOMINAL OPERATING CONDITION. AVERAGE SPECIFIC IMPULSE, VEHICLE INERT WEIGHT DIFFERENTIAL, TOTAL FUEL-COOLED LOX/RP-1 ENGINE AT NOMINAL AND OFF-NOMINAL OPERATING

86D-9-1875 △W_{FUEL} (Ib) **ENGINE MIXTURE RATIO (O/F)** Rocketdyne Division Rockwell International 0 (REF) 7/0 2.48 **T/C** MR CONTROL MR CONTROL ENGINE 10,270 ENGINE 2.42 -1660 2.42 OFF-NOMINAL NOMINAL △WOXIDIZER (Ib) AVERAGE ISP (s) CONTROL OPTION I 0 (REF) 7/0 316.1 7/0 MR CONTROL MR CONTROL DN-49 ENGINE ENGINE -9210 316.0 -38,530 316.4 ∆Wp (Ib) ∆W_{INERT} (Ib) 0 (REF) 0 (REF) **T/C** MR CONTROL MR CONTROL ENGINE ENGINE 1060 180 -40,190 ×

EFFECT OF T/C AND ENGINE MIR CONTROL ON ENGINE 1

AT NOMINAL/OFF-NOMINAL CONDITIONS

EFFECT OF CONTROL OPTIONS ON ENGINE 3, LOX/CH , $_{4}$, $_{4}$ COOLED WITH T/C MIXTURE RATIO CONTROL

CONDITION WITH CONSTANT 1/C MIXTURE RATIO. IT SHOWS (CLOCK-WISE FROM TOP THIS CHART ILLUSTRATES THE EFFECT OF DIFFERENT THRUST AND MIXTURE RATIO TOTAL PROPELLANT CONSUMPTION AND VEHICLE INERT WEIGHT DIFFERENTIALS VS. LEFT) THE AVERAGE SPECIFIC IMPULSE, PROPELLANT BULK DENSITY, THRUST CONTROL VALVE AP/PC RATIO, T/C MIXTURE RATIO CONTROL VALVE AP/Pc, CONTROL OPTIONS ON THE FUEL-COOLED LOX/CH $_{f q}$ ENGINES AT THROTTLING THRUST AND 1/C MIXTURE RATIO CONTROL OPTIONS.

FUEL-COOLED LOX/CHA ENGINE. IN ADDITION, GG MIXTURE RATIO CONTROL IS DIFFERENTIAL WITH ADEQUATE VALVE AP MARGINS IS SELECTED FOR THE CONTROL OPTION II WHICH RESULTS IN MINIMUM VEHICLE INERT WEIGHT RECOMMENDED FOR HIGH ENGINE PERFORMANCE.

EFFECT OF CONTROL OPTIONS ON ENGINE 3, LOX/CH, $_{4}^{\, ,}$ CH $_{4}^{\, ,}$ COOLED WITH ENGINE MIXTURE RATIO CONTROL

CONDITION WITH CONSTANT ENGINE MIXTURE RATIO. IT SHOWS (CLOCK-WISE FROM THIS CHART ILLUSTRATES THE EFFECT OF DIFFERENT THRUST AND MIXTURE RATIO IOP LEFT) THE AVERAGE SPECIFIC IMPULSE, PROPELLANT BULK DENSITY, THRUST IOTAL PROPELLANT CONSUMPTION AND VEHICLE INERT WEIGHT DIFFERENTIALS VS. CONTROL VALVE AP/PC RATIO, ENGINE MIXTURE RATIO CONTROL VALVE AP/PC, CONTROL OPTIONS ON THE FUEL-COOLED LOX/CHA ENGINE AT THROTTLING THRUST AND ENGINE MIXTURE RATIO CONTROL OPTIONS.

FUEL-COOLED LOX/CHA ENGINE. IN ADDITION, GG MIXTURE RATIO CONTROL IS DIFFERENTIAL WITH ADEQUATE VALVE AP MARGINS IS SELECTED FOR THE CONTROL OPTION II WHICH RESULTS IN MINIMUM VEHICLE INERT WEIGHT RECOMMENDED FOR HIGH ENGINE PERFORMANCE.

EFFECT OF CONTROL

OPTIONS ON ENGINE 3

ENGINE MIXTURE RATIO CONTROL

LOX/CH4, CH4

COOLED

EFFECT OF T/C AND ENGINE MIXTURE RATIO CONTROL ON ENGINE 3 AT NOMINAL/OFF-NOMINAL CONDITIONS WITH SELECTED CONTROL OPTION II.

THIS CHART ILLUSTRATES THE EFFECT OF T/C AND MIXTURE RATIO CONTROLS ON THE PROPELLANT, LOX AND CH_4 CONSUMPTION DIFFERENTIALS VS. ENGINE OPERATING CONDITIONS AND MIXTURE RATIO CONTROLS. THE CONTROL OPTION II SELECTED CONDITIONS. IT SHOWS (CLOCK-WISE FROM TOP LEFT) ENGINE MIXTURE RATIO, PREVIOUSLY IS USED FOR THROTTLING; I.E., NOMINAL OPERATING CONDITION. AVERAGE SPECIFIC IMPULSE, VEHICLE INERT WEIGHT DIFFERENTIAL, TOTAL FUEL-COOLED LOX/CH4 ENGINE AT NOMINAL AND OFF-NOMINAL OPERATING

86D-9-1878 ∆W_{FUEL} (Ib) **ENGINE MIXTURE RATIO (O/F)** Rockwell International
Rocketdyne Division 0 (REF) 7/0 7/0 3.07 MR CONTROL MR CONTROL ENGINE ENGINE 8160 3.0 -2210 3.0 OFF-NOMINAL | NOMINAL △WOXIDIZER (Ib) AVERAGE ISP (s) **1/C** 0 (REF) MR CONTROL 7/0 337 MR CONTROL DN-55 ENGINE ENGINE -2500 336.8 -33,740 337.8 ∆W_P (Ib) ∆WINERT (Ib) 0 (REF) 0 (REF) **1/C** 1/0 MR CONTROL MR CONTROL ENGINE ENGINE 5660 320 -35,950 ×

EFFECT OF T/C AND ENGINE MIR CONTROL ON ENGINE 3

AT NOMINAL/OFF-NOMINAL CONDITIONS

CONTROL OPTION II

RESULTS/CONCLUSIONS

THESE ARE THE RESULTS AND CONCLUSIONS FROM THIS PRELIMINARY STEADY-STATE OFF-DESIGN STUDY CONDUCTED FOR THE FUEL-COOLED LOX/RP-1 AND LOX/CH $_{f 4}$ ENGINES.

RESULTS/CONCLUSIONS

- THROTTLING REQUIREMENTS ARE MET BY BOTH ENGINE CANDIDATES
- **GG MIXTURE RATIO CONTROL RESULTS IN SIGNIFICANT** BENEFIT ON ENGINE PERFORMANCE
- **TURE RATIO CONTROL ENGINE PERFORMANCE WITH T/C MIXTURE RATIO CON-**TROL IS SLIGHTLY BETTER THAN THAT WITH ENGINE MIX-**NEED ENGINE THRUST CONTROL**
- **NEED T/C OR ENGINE MIXTURE RATIO CONTROL**
- RECOMMEND COOLANT FLOW SPLIT CONTROL
- RECOMMEND GG MIXTURE RATIO CONTROL

(CONTINUED AND CONCLUDED)

THESE ARE THE THROTILING VALVES RECOMMENDED FOR THE FUEL-COOLED LOX/RP-1 (ENGINE 1), LOX/C₃H₈ (ENGINE 2) AND LOX/CH₄ (ENGINE 3) ENGINES.

SELECT CONTROL OPTION I FOR LOX/RP-1 ENGINE 1

- **USE GGOV FOR THRUST CONTROL**
- USE MFV-2 FOR T/C OR ENGINE MIXTURE RATIO CONTROL USE GGFV FOR GG MIXTURE RATIO CONTROL
- **USE MFV-1 FOR COOLANT FLOW SPLIT CONTROL**

SELECT CONTROL OPTION II FOR LOX/C3H8 ENGINE 2 AND **LOX/CH4 ENGINE 3**

- **USE GGOV FOR THRUST CONTROL**
- **USE MOV FOR T/C OR ENGINE MIXTURE RATIO CONTROL**
- **USE GGFV FOR GG MIXTURE RATIO CONTROL**
- **USE MFV-2 FOR COOLANT FLOW SPLIT CONTROL**

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

AGENDA

✓ • CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER
• THROTTLING ON-DESIGN/OFF-DESIGN STUDY W. BISSELL
• COMBUSTION DEVICES STUDIESP. MEHEGAN
• TURBOMACHINERY STUDIESA. EASTLAND
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS
• TASK 2 STATUS REVIEW
● TASK 1 SUMMARYA. WEISS
• IN INCOURT IN INCOURT F. KIRBY

MAINTENANCE SYSTEM AGENDA CONTROL AND CONDITION

- **OBJECTIVE / APPROACH**
- REQUIREMENTS
- GROUND RULES
- COMPONENT CANDIDATES
- FINAL SELECTION APPROACH

STBE CONTROL AND CONDITION MAINTENANCE SYSTEM STUDIES

THIS CHART SUMMARIZES THE OBJECTIVE AND APPROACH TO CONDUCTING THE CONTROL AND WILL BE COMMON TO ALL THE CONFIGURATIONS WHILE CERTAIN COMPONENT ELEMENTS WILL CONDITION MAINTENANCE SYSTEM TRADE STUDIES. THE CONTROL SYSTEM ARCHITECTURE SERVE AS DISCRIMINATORS IN CHOOSING A OVERALL SYSTEM FOR EACH CONFIGURATION.

STBE CONTROL AND CONDITION MAINTENANCE **SYSTEM STUDIES**

OBJECTIVE

SELECT OPTIMUM CONTROL SYSTEM CONFIGURATION FOR EACH CANDIDATE

APPROACH

- IDENTIFY REQUIREMENTS
- IDENTIFY CANDIDATE SYSTEMS
- GENERIC ARCHITECTURE
- COMPONENT SELECTION
- PERFORM LIFE CYCLE COST ANALYSIS TO SELECT OPTIMUM SYSTEM FOR EACH CANDIDATE

CONTROL AND CONDITION MAINTENANCE SYSTEM PERFORMANCE CONTROL REQUIREMENTS

THE NEEDED CONTROL AND CONDITION MAINTENANCE SYSTEM FUNCTIONS ARE DRAWN FROM REQUIREMENTS DERIVED FROM ENGINE LEVEL REQUIREMENTS. THIS CHART SHOWS THE PERFORMANCE CONTROL PARAMETERS.

CONTROL AND CONDITION MAINTENANCE SYSTEM PERFORMANCE CONTROL REQUIREMENTS

PARAMETER	ENGINE REQUIREMENT	CONTROL SYSTEM REQUIREMENT	CONTROL SYSTEM FUNCTIONS
THRUST	625 KLB OR 750 KLB	THRUST CONTROL, ACCURACY	
MIXTURE RATIO	TBD ± 1.0%	MR CONTROL, ACCURACY	•CLUSED LOOP CONTROL
COOLANT FLOW	COOLANT FLOW SPLIT	COOLANT CONTROL	•PROPELLANT FLOW CONTROL
START	THRUST BUILDIED BATE	CONTROL BESCONSE ACCIBACY	•FEEDBACK CAPABILITY
	TIME	000000000000000000000000000000000000000	•SYSTEM INTELLIGENCE
THROTTLING	MAX UPTHRUST RATE	CONTROL RESPONSE, ACCURACY	•HIGH ORDER LANGUAGE
SHUTDOWN	THRUST DECAY RATE, TIME, FAILSAFE	CONTROL RESPONSE, ACCURACY	
CONTROL SYSTEM	FAIL-OP, FAILSAFE	REDUNDANCY MANAGEMENT	

CONTROL AND CONDITION MAINTENANCE SYSTEM CONDITION MAINTENANCE REQUIREMENTS

THE CONDITION MAINTENANCE REQUIREMENTS LEAD TO FUNCTIONS WHICH WILL DETERMINE HARDWARE HEALTH AND MAINTENANCE REQUIREMENTS RATHER THAN RELYING ON HARDWARE INSPECTION.

Rockwell International

Rocketdyne Division

CONTROL AND CONDITION MAINTENANCE SYSTEM CONDITION MAINTENANCE REQUIREMENTS

		25 MISSIONS TO OVERHAUL	RELIABILITY
FROGNOSTICS	HARDWARE CONDITION MONITORING	100 MISSIONS	LIFE
•DIAGNOSTICS	SELF TEST, MAINTENANCE DATA, REDLINE MONITORING	SELF DIAGNOSTIC	DIAGNOSTICS
●EXPERT SYSTEM			
	EXPENDIBLE IGNITERS	ONE START WITHOUT RESERVICE	START
PERFORMANCE DIRECT	SELF MONITORING, ENGINE READY SIGNAL	NO EXTERNAL REDLINES	PRE-START CONDITIONING
• INSTRUMENTATION	MINIMIZE PRE-LAUNCH SERVICING	NO SERVICING WITHIN 24 HOURS OF LOADING	GROUND SERVICING
CONTROL SYSTEM FUNCTION	CONTROL SYSTEM REQUIREMENT	ENGINE REQUIREMENT	PARAMETER

RB-9

CONTROL AND CONDITION MAINTENANCE SYSTEM PHILOSOPHY

THE OVERALL SYSTEM DESIGN PHILOSOPHY WILL BE A CLOSED LOOP SYSTEM WITH PERFORMANCE CONTROL AND CONDITION MAINTENANCE ASPECTS.

MAINTENANCE SYSTEM PHILOSOPHY **CONTROL AND CONDITION**

Rocketdyne Division

RB-11

CONTROL AND CONDITION MAINTENANCE SYSTEM GROUNDRULES

THIS CHART REFLECTS THE TECHNOLOGY LEVELS FOR THE 1985 AND 2000 ENGINES. THE ADVANTAGES OF THESE TECHNOLOGIES ARE SHOWN FOR EACH OF THE MAJOR SYSTEM FEATURES.

CONTROL AND CONDITION MAINTENANCE SYSTEM GROUNDRULES

FEATURES	1995	2000	ADVANTAGE
CLOSED LOOP CONTROL PHILOSOPHY	DIGITAL/MULTI-VARIABLE/ OPTIMAL	DIGITAL/MULTI-VARIABLE/ ADAPTIVE	OPTIMIZED PERFORMANCE CONTROL
SOFTWARE LANGUAGE	HIGH ORDER	HIGH ORDER	REDUCED MAINTENANCE
EXPERT SYSTEMS	DEFERRED	ACTIVE	ENHANCED FAILURE DETECTION REDUCED MAINTENANCE
PROPELLANT FLOW CONTROL	ELECTRIC/HYDRAULIC	ELECTRIC	REDUCED SYSTEM COMPLEXITY IMPROVED MAINTAINABILITY
INSTRUMENTATION	PERFORMANCE	DIRECT MEASUREMENT	ENHANCED FAILURE DETECTION REDUCED MAINTENANCE
MICROPROCESSOR TECHNOLOGY	32 BIT	PARALLEL PROCESSORS	INCREASED PARAMETER THROUGHPUT
INTERCONNECTS	COPPER	FIBER OPTIC	IMPROVED SIGNAL CAPABILITY DECREASED WEIGHT

ADVANCED CONTROL EXTENDS LIFE AND IMPROVES PERFORMANCE

THIS CHART SHOWS HOW ADVANCED CONTROL TECHNIQUES CAN MORE CLOSELY CONTROL TO A GIVEN REQUIREMENT WHICH IMPROVES SYSTEM PERFORMANCE AND CAN INCREASE LIFE.

Rockwell International Rocketdyne Division

ADVANCED CONTROL EXTENDS LIFE AND IMPROVES PERFORMANCE

CONTROL SYSTEM FUNCTIONAL CAPABILITY VS COST

THE CAPABILITY REQUIRED OF AN ANALOG CONTROL SYSTEM MAKES IT COST PROHIBITIVE AS SHOWN BY THE EXPERIENCE CURVE. A DIGITAL SYSTEM HAS MORE FLEXIBILITY TO MEET MORE REQUIREMENTS FOR THE SAME COST.

4

Rockwell International Rocketdyne Division

CONTROL SYSTEM FUNCTIONAL CAPABILITY vs.COST

CONTROL METHODOLOGY/IMPLEMENTATION COMPARISON

CHART. A DIGITAL SYSTEM WILL BE REQUIRED TO TAKE ADVANTAGE OF THE ADVANCED THE POSSIBLE CONTROL METHODOLOGIES FOR USE ON THE STBE ARE SHOWN ON THIS OPTIMAL AND ADAPTIVE TECHNIQUES.

Rockwell International Rocketdyne Division

CONTROL METHODOLOGY/IMPLEMENTATION COMPARISON

FLUIDIC		ELECTRIC	PNEUMATIC	HYDRAULIC	MECHANICAL	IMPLEMENTATION	CONTROL APPLICATION	CONTROL METHODOLOGY	
ANA		AN	ANALOG	ANALOG	ANALOG		OPEN/CLOSED LOOP	CLASSICAL	
ANALOG & DIGITAL		ANALOG & DIGITAL	ALOG & DIGITAL		OG			MULTIVARIABLE	AL .
	-				 		OPTIMAL	~	
		DIG					ADAPTIVE	MODERN	
		DIGITAL					LEARNING		

SOFTWARE DEVELOPMENT vs MAINTENANCE COSTS

MAINTENANCE IS 70% OF THE LIFE CYCLE COST OF SOFTWARE, SUCH A LANGUAGE REDUCES THE CHART SHOWS WHY A HIGHER ORDER SOFTWARE LANGUAGE IS NECESSARY. SINCE THE EFFORT REQUIRED TO CHANGE OR CORRECT THE LOGIC.

SOFTWARE DEVELOPMENT vs MAINTENANCE COSTS

HYDRAULIC - ELECTRIC ACTUATOR OPERATING REGIMES

INCREASES AND THE REQUIRED RESPONSE TIME DECREASES, THE SIZE OF THE REQUIRED ELECTRICAL POWER SUPPLY BECOMES VERY LARGE WHILE THE SIZE OF THE HYDRAULIC POWER SUPPLY REMAINS NOMINAL. A STUDY WILL BE MADE ON THE RELATIVE MERITS OF AN ALL HYDRAULIC SYSTEM VERSUS USING HYDRAULIC ACTUATION FOR LARGE MASS FLOWRATE/LOW RESPONSE TIME SYSTEMS AND AN ELECTRIC SYSTEM FOR LOWER MASS ELECTRIC ACTUATORS HAVE DESIRABLE CHARACTERISTICS WHICH MAKE ACTUATORS. THE FIGURE SHOWS THAT AS THE CONTROLLED FLUID MASS FLOWRATE THIS FIGURE SHOWS THE OPERATING REGIMES FOR HYDRAULIC AND ELECTRIC THEIR USE FOR THE STBE APPLICATION MORE ATTRACTIVE THAN HYDRAULIC FLOWRATE/LONGER RESPONSE TIME SYSTEMS: ACTUATORS.

~

HYDRAULIC-ELECTRIC ACTUATOR OPERATING REGIMES **OPERATING POWER REQUIREMENTS**

RESPONSE TIME (MILLISECONDS)

CONDITION MONITOR PARAMETER SUMMARY

THIS CHART SHOWS EIGHT SUCH DIRECT MEASUREMENT TECHNOLOGIES UNDER DEVELOPMENT CONDITION MAINTENANCE REQUIRES DIRECT MEASUREMENT OF KEY HARDWARE PARAMETERS. AT ROCKETDYNE. FOR EXAMPLE, THESE MEASUREMENTS WOULD ALLOW DELETION OF CERTAIN HARDWARE INSPECTIONS ON THE SSME. .

Rockwell International Rocketdyne Division

300	-9-649A										
	CC SSME EI	LEAKAGE	EROSION	FATIGUE	CRACKING	THERMAL	RUBBING/ BINDING	SPACING	WEAR	MODE	
	COMPARABLE SSME INSPECTIONS ELIMINATED	JOINTS, WELDS	INJECTORS, NOZZLES	TURBINE BLADES, DISKS, IMPELLERS	TURBINE BLADES DISK, IMPELLERS	TURBINE BLADES	BEARINGS, SEALS	BEARINGS	BEARINGS	AFFECTED	
	SHAFT TRAVEL		-						×	SOTOPE	
	BORE. SCOPE							×		DEFLECTO. METER	
	TORQUE CHECK						×	_		TORQUE METER	
	22X N SCC					×				PYRO- METER	MEASUREMENT TECHNOLOGY
	22X MICRO. SCOPIC				×					ACOUSTO- OPTICAL	TECHNOLOG
	REPLACE BY SCHEDULE			×						EXO ELECTRON	
	BORE: SCOPE		×	-						SPECTRO- METER	
	SOAP CHECK	×								HOLO. GRAPHIC	

CONDITION MONITOR PARAMETER SUMMARY

∖8--25

COMPUTING POWER (SPEED) OF MICRO-PROCESSORS HAS INCREASED RAPIDLY

AS ENGINES BECOME MORE COMPLEX THE NEED FOR FASTER CONTROL SYSTEMS TO CONTROL AND PROVIDE CONDITION MAINTENANCE FUNCTIONS DURING NORMAL AND ABNORMAL OPERATIONAL CONDITIONS HAS ALSO INCREASED.

MICRO-PROCESSORS. THIS INCREASED COMPUTING POWER ALLOWS MODERN CONTROL AND THE ADVENT OF 16 BIT MACHINES IN THE LATE 1970'S COMPUTING POWER INCREASED TIMES. WITH THE INTRODUCTION OF 32 BIT MICRO-PROCESSORS IN 1984, SUCH AS THE M68020 AND THE 80386-20 MHZ, COMPUTING POWER HAS INCREASED IN THE EARLY 1970'S THE INITIAL MICRO-PROCESSORS WERE 8 BIT MACHINES. CONDITION MAINTENANCE SYSTEMS TO BE IMPLEMENTED IN AN EFFECTIVE AND ANOTHER 3 TO 5 TIMES OVER THE 16 BIT M68000-12 MHZ AND 80286-8MHZ EFFICIENT MANNER FOR INCREASED ENGINE SYSTEM EFFECTIVENESS TO 10

12

1970

1975

1980

YEAR

PDP-11 (MINI)

8BIT | 16BIT

68000-4MHZ

01APX 432

8086-8MHZ

8008

8080

COMPUTING POWER (SPEED) OF MICRO-PROCESSORS THOUSANDS OF OPERATIONS/SEC (KOPS) 1000 1500 **5**0 **IBM 360/85 (MAIN FRAME)** HAS INCREASED RAPIDLY SSME BLOCK II CONTROLLER SSME BLOCK I CONTROLLER MEMORY SPEEDS **GIBSON MIX** NO WAIT STATES FOR **μP SPEEDS ASSUMES** 16 BIT FIXED POINT M68000-8MHZ

CONTROL AND CONDITION MAINTENANCE SYSTEM 1995 vs 2000 CONFIGURATION

BORDER. THE CONDITION MAINTENANCE PORTION FOR BOTH THE 1995 AND 2000 ENGINES IS ALSO SHOWN. THIS BASELINE SYSTEM WILL BE COMMON TO ALL THE STBE CANDIDATE THE CONTROL AND CONDITION MAINTENANCE SYSTEM TOP LEVEL SCHEMATIC IS SHOWN ON THIS CHART. THE BASIC CLOSED LOOP CONTROL PORTION IS SHOWN INSIDE THE BLACK CONFIGURATIONS.

Rockwell International Rocketdyne Division

CONTROL AND CONDITION MAINTENANCE SYSTEM

1995 vs 2000 CONFIGURATION

CONTROL SYSTEM SENSITIVITY RESULTS

THESE ARE THE RESULTS OF THE CONTROL SENSITIVITY STUDY. THEY DEFINE REQUIREMENTS FOR WHICH CONTROL LOOPS ARE NEEDED AND WHICH VALVES HAVE TO BE CONTROLLED.

CONTROL SYSTEM SENSITIVITY RESULTS

SELECT CONTROL OPTION I FOR LOX/RP-1 ENGINE 1

- USE GGOV FOR THRUST CONTROL
 USE MFV-2 FOR T/C OR ENGINE MIXTURE RATIO CONTROL
 USE GGFV FOR GG MIXTURE RATIO CONTROL
- **USE MFV-1 FOR COOLANT FLOW SPLIT CONTROL**

SELECT CONTROL OPTION II FOR LOX/C3H8 ENGINE 2 AND **LOX/CH4 ENGINE 3**

- **USE GGOV FOR THRUST CONTROL**
- **USE MOV FOR T/C OR ENGINE MIXTURE RATIO CONTROL**
- **USE GGFV FOR GG MIXTURE RATIO CONTROL**
- **USE MFV-2 FOR COOLANT FLOW SPLIT CONTROL**

1995 CONTROL AND CONDITION MAINTENANCE DISCRIMINATORS

CANDIDATES. AS A RESULT OF THIS EVALUATION, THE PRIMARY CCM COMPONENTS THAT THE CONTROL AND CONDITION MAINTENANCE (CCM) COMPONENTS HAVE BEEN EVALUATED WERE FOUND TO BE AFFECTED (DISCRIMINATED) BY THE CANDIDATE ENGINES ARE THE EACH OF THE ENGINE CANDIDATES ON EACH OF THESE CCM DISCRIMINATORS WILL BE DETERMINED TO DEFINE THE CCM SYSTEMS AFFECTS ON THE SELECTION OF THE 1995 CCM CONTROL LOOPS, INSTRUMENTATION, VALVES AND ACTUATORS. THE EFFECT OF TO ESTABLISH HOW THEIR CHARACTERISTICS RELATE TO THE 1995 ENGINE ENGINE SYSTEM

17

Rockwell International Rocketdyne Division

1995 CONTROL AND CONDITION MAINTENANCE DISCRIMINATORS

					ENGINE				
ELEMENT	1	2	3	4	5	6	11	12	18
CONTROL LOOPS QUANTITY	4	4	4						
INSTRUMENTATION — QUANTITYPERFORMANCECONDITION MONITOR									
VALVES • QUANTITY • TYPE						, .			
ACTUATORS • QUANTITY • TYPE									
START SEQUENCE TYPE PROPELLANT CONSUMPTION									

1995 STBE CLOSED LOOP CONTROL DIAGRAM

QUANTIFICATION OF THE CCM DISCRIMINATORS FOR SELECTION OF THE 1995 BASELINE THIS DIAGRAM SHOWS THE BE-1 ENGINE CONTROL LOOPS AND THEIR INTERFACES WITH ACTUATOR/VALVES ARE SHOWN TOGETHER WITH THE LOGIC FUNCTION THAT MUST BE THE RELATIONSHIP AND FUNCTIONS OF THE INSTRUMENTS AND PERFORMED. SIMILAR DIAGRAMS OF EACH ENGINE CANDIDATE WILL LEAD TO THE CONTROLLER. ENGINE.

8

CONTROLLER CNTL COOLANT THRUST CMD International Rockwell CNTL **Rockeldyne Division** FLOW CMD CMD M/R RATE AND RANGE RATE AND RANGE LIMIT LIMIT Pc COMP & SCHEDULE THRUST GAIN M/R GAIN COEF FUNCT TEMP & COMP M/R COMPENSATION AND GAIN THRUST CNTL COMPENSATION AND GAIN COMPENSATION AND GAIN COMPENSATION AND GAIN THRUST COMPUTATION COMPENSATION AND GAIN M/R EFFECT RB-35 COMPUTATION **ENGINE M/R** CROSS FEED GAIN AND COMP TEMP & PRESS (O2 & FUEL) FLOW METER FLOW METER SERVO ACCT & LIMIT LOGIC SERVO ACT & LIMIT LOGIC Pc AND COMPENSATION OXIDIZER FLOW POS FUEL FLOW POS POS POS POS MFV-1 CHARAC GGOV CHARAC GGFV CHARAC MFV-2 CHARAC MOV CHARAC FLOW FDBK FLOW FLOW FOBK FLOW FDBK FLOW

ROTARBNED SAD

ENCINE

86C-9-671

ENGINE

1995 STBE CLOSED-LOOP CONTROL DIAGRAM **ENGINE 1**

ENGINE 1 FLOW SCHEMATIC LOX/RP-1, RP-1 COOLED

PROPELLANT VALVES. THE SCHEMATIC ALSO AIDS IN DETERMINING WHAT PARAMETERS MAY THIS SCHEMATIC OF THE LOX/RP-1, RP-1 COOLED ENGINE SHOWS THE LOCATION OF THE HAVE TO BE MEASURED TO OPERATE EACH OF THE CONTROL LOOPS. RB-37

ENGINE 3 FLOW SCHEMATIC LOX/CH4, CH4 COOLED

THIS IS THE SCHEMATIC OF THE LOX/METHANE, METHANE COOLED ENGINE. THE LOX/CH3H8 COOLED ENGINE ALSO HAS THE SAME SCHEMATIC.

LH2 COOLED ENGINE FLOW SCHEMATIC ENGINES 4, 5, AND 6

THIS SCHEMATIC COVERS THE THREE ENGINES WHICH ARE HYDROGEN COOLED.

Rockwell International
Rocketdyne Division

LH2-COOLED ENGINE FLOW SCHEMATIC ENGINES 4, 5, AND 6

VALVE CANDIDATES

VALVE WAS REJECTED BECAUSE OF THE HIGH PRESSURE DROP ASSOCIATED WITH TURNING THE VENTURI VALVE WAS REJECTED BECAUSE VENTURI VALVES OCCUPY A RELATIVELY LONG SPACE AND ARE MAINLY USED FOR FLOW LIMITATION. THE POPPET THE FIGURE THE FLOW 90°. THE GATE VALVE WAS REJECTED BECAUSE ITS BULKY NATURE LIMITS THE NEEDLE VALVE WAS REJECTED BECAUSE IT IS APPLICABLE ONLY FOR EXTREMELY IT TO LOW PROPELLANT FLOW APPLICATIONS AND IT IS DIFFICULT TO MEET NORMAL SIX DESIGNS HAVE BEEN REJECTED FOR THE STBE FOR THE REASONS LISTED BELOW. SIX DIFFERENT VALVE DESIGNS WERE EVALUATED FOR USE ON THE STBE. SHOWS THE MAIN DESIGNS USED IN PAST AND CURRENT ROCKET ENGINES. WEIGHT REQUIREMENTS LOW FLOWRATES.

HEAVY. CONSEQUENTLY THE BUTTERFLY VALVE WAS CHOSEN AS A POSSIBLE DESIGN FOR THE MAIN LOX VALVE. BESIDES HAVING A LOW PRESSURE DROP AND GOOD THROTTLING APPLICATIONS. FOR LARGE LINE DIAMETERS BALL VALVES BECOMES VERY BULKY AND THE BALL VALVE WAS CHOSEN AS A DESIGN CANDIDATE BECAUSE IT PERMITS IN LINE EXTREMELY LIGHT WEIGHT AND COMPACT. SEALING PROBLEMS LIMIT THE USE OF UNRESTRICTED FLOW. BALL VALVES ALSO ENHANCE STRUCTURAL SOUNDNESS FOR CHARACTERISTICS (SIMILAR TO A BALL VALVE), LARGE BUTTERFLY VALVES ARE PRESSURE SERVICE AND CAN ALSO BE USED EFFECTIVELY FOR DEEP THROTTLING BUTTERFLY VALVES FOR HIGH PRESSURE APPLICATION.

22

VALVE CANDIDATES

TYPICAL GATE-TYPE
PROPELLANT VALVE DESIGN

PROPELLANT VALVE DESIGN

SUMMARY OF ACTUATOR CHACTERISTICS

ACTUATORS ARE SHOWN. IN GENERAL PNEUMATIC SYSTEM HAVE TOO GREAT A RESPONSE HYDRAULIC ACTUATORS HAVE FAST RESPONSE TIMES AND REASONABLE POWER SUPPLY THE ADVANTAGES AND DISADVANTAGES OF PNEUMATIC, HYDRAULIC AND ELECTRIC TIME FOR STBE CONTROL BUT MAY BE USEFUL AS EMERGENCY SHUTDOWN BACKUP. REQUIREMENTS. THE ELECTRIC ACTUATION SYSTEM IS MOST ADVANTAGEOUS BUT REQUIRES A LARGE POWER SOURCE FOR HIGH MASS FLOWRATES.

23

SUMMARY OF ACTUATOR CHARACTERISTICS*

			АСТИА	ACTUATOR TYPE		
	PNE	PNEUMATIC	нүр	HYDRAULIC	ЕГЕ	ELECTRIC
ACTUATOR CHARACTERISTICS	ADVANTAGE	DISADVANTAGE	ADVANTAGE	DISADVANTAGE	ADVANTAGE	DISADVANTAGE
1. NEED WORKING FLUID		×		×	×	
2. NEED PLUMBING		×		×	×	
3. NEED THERMAL PROTECTION	×			×	×	
4. NEED SEALS		×		*	×	
5. NEED CONTROL COMPONENTS		×		×	×	
6. EASE OF MODULATING CONTROL		×	×		×	· · · · · · · · · · · · · · · · · · ·
7. FIRE HAZARD	×			×	×	
8. COMPATIBILITY	×			×	×	
9. RAMP RATE CONTROL		×	×		×	
10. SLEW RATE CAPABILITY	×		×			×
11. MAGNITUDE OF ELECTRICAL SUPPLY	×		×			×
12. SIZE FACTOR		×	×			×

*MECHANICAL AND FLUIDIC ACTUATORS NOT CONSIDERED DUE TO COMPLEXITY AND POWER REQUIREMENTS

ADVANCED ELECTRIC ACTUATED VALVE

ELECTRIC MOTOR USING RARE EARTH MATERIALS. CURRENT ESTIMATES SHOW THAT THIS SYSTEMS WITH THE POISSIBLE EXCEPTION OF THE MAIN OXIDIZER VALVE. FURTHER THE ELECTRIC ACTUATOR IS MADE PRACTICAL BY REDUCED TORQUE DUE TO THE VALVE HEAD DESIGN AND A MORE POWERFUL TYPE OF VALVE/ACTUATOR CAN BE USED FOR ALL VALVES ON THE CANDIDATE ENGINE THIS FIGURE SHOWS THE CONFIGURATION AND CHARACTERISTIC VALUES FOR ROCKEDYNE ELECTRICALLY ACTUATED VALVE. STUDY IS NEEDED TO RESOLVE THIS QUESTION.

ADVANCED ELECTRIC ACTUATED VALVE

SECTOR BALL REPLACEMENT ELEMENTS TYPE - DEEP VALVE WITH QUIET FLOW LINE

• LINE SIZE - 114 INCH ID

FLUID - LIQUID OXYGEN

PRESSURE - 2800 PSIG

• FLOW - 0.3 TO 28 LB SEC

PRESSURE DROP - 580 PSI MAX

• INTERNAL LEAKAGE - 100 SCIM He MAX

• ACTUATOR - DUAL RARE-EARTH ELECTRIC MOTORS WITH BALL SCREW LEVEL LINK

• CONTROL - MODULATING AT PRECISION

WEIGHT - 6.0 POUNDS

LOX/CH4, LOX/RP-1 TRANSIENT MODEL START CHARACTERISTICS

ROCKETDYNE IR&D PROGRAM. THIS TYPE OF ANALYSIS WILL HELP DISCRIMINATE BETWEEN THE PROPELLANT COMBINATIONS AND WILL FURTHER DEFINE WHAT CONTROL LOOPS ARE THIS CHART PRESENTS A START TRANSIENT ANALYSIS PREVIOUSLY DONE FOR A

LOX/CH4, LOX/RP-1 TRANSIENT MODEL START CHARACTERISTICS

LOX/RP-1 TANK HEAD	LOX/CH ₄ TANK HEAD	LOX/CH ₄ SPIN START	CASE
1.4	3.9	1.9	TIME TO 90% Pc, s
N.A.	3740	3115	PROPELLANT CONSUMPTION, LBS
	GG MR CONTROL, T/C MR CONTROL (2, 1)	T/C MR CONTROL (1)	REMARKS

- MAIN LOX VALVE THROTTLING IS NEEDED TO AVOID MAIN CHAMBER COMBUSTION ABOVE THE DESIGN MIXTURE RATIO
- LOW DENSITY CH4 PRIMING PRESENTS DIFFICULTIES IN KEEPING GG MIXTURE RATIO BELOW THE TURBINE TEMPERATURE LIMIT

•TASK

• IR&D EFFORT TO COMPARE POSSIBLE BOOSTER ENGINE START SEQUENCES

•RESULTS

- HELIUM SPIN IMPROVES THE LOX/CH4 ENGINE START
- •SPIN START WILL SHORTEN THE ENGINE START TIME AND IMPROVES PERFORMANCE

Rockwell International Rockeldyne Division

CONTROL SYSTEM FINAL CONFIGURATION SELECTION

AFTER THE DISCRIMINATORS HAVE BEEN DEFINED THE CONTROL SYSTEM ELEMENTS WILL BE EVALUATED THROUGH A LIFE CYCLE COST ANALYSIS. THE OPTIMIZED ELEMENTS WILL BE COMBINED WITH THE COMMON CONTROL SYSTEM ARCHITECTURE TO PRODUCE THE OPTIONAL CONTROL SYSTEM FOR EACH CANDIDATE.

CONFIGURATION SELECTION

- UTILIZE LIFE CYCLE COST ANALYSIS
 TO SELECT OPTIMUM SYSTEM ELEMENTS
- PERFORMANCE
- COST

WEIGHT

- RISK
- RELIABILITY/MAINTAINABILITY

STBE CONFIGURATION STUDY SECOND QUARTERLY REVIEW

AGENDA

SUMMARY A WEISS
• CONTROL SYSTEM AND HEALTH MONITOR STUDIESR. BREWSTER
• THROTTLING ON-DESIGN/OFF-DESIGN STUDY
• COMBUSTION DEVICES STUDIESP. MEHEGAN
• TURBOMACHINERY STUDIESA. EASTLAND
• SUBSYSTEM OPTIMIZATION APPROACHA. WEISS
• TASK 2 STATUS REVIEW
● TASK 1 SUMMARYA. WEISS
• IN TROUGH I CN T. RINBY

86C-9-681-8

W-1

•

.

CONTROL SYSTEM STUDIES IN WORK

INITIAL OFF-DESIGN STUDY EFFORT COMPLETE

PRECEDING PAGE BLANK NOT FILMED

● PRELIMINARY INJECTOR PATTERNS SELECTED

SYSTEM THROTTLING DESIGN POINT TRADEOFF

COMPLETE

● TASK 2 APPROACH DEFINED

SUMMARY

TURBOPUMP SCREENING COMPLETE FOR

FOUR CONFIGURATIONS

Rocketdyne Division