Aula 12: Oscilações Eletromagnéticas

Curso de Física Geral III F-328 1° semestre, 2017

Oscilações eletromagnéticas (LC)

Vimos que:

Circuitos RC e RL:

• q(t), i(t) e V(t): comportamento exponencial

Veremos que:

Circuito *LC*:

- q(t), i(t) e V(t): comportamento senoidal
- Oscilações
 - campo elétrico do capacitor
 - campo magnético do indutor

Oscilações eletromagnéticas

Oscilações eletromagnéticas (LC)

Oscilações eletromagnéticas (LC)

Simulação dos estágios

http://www.walter-fendt.de/ph14br/osccirc_br.htm

Osciladores harmônicos simples

Circuito LC

Sistema massa-mola

Elétrica:
$$U_E = \frac{1}{2} \frac{q^2}{C}$$
 (do capacitor)

Magnética:
$$U_B = \frac{1}{2}Li^2$$
 (do indutor)

$$U_{\scriptscriptstyle B} \Leftrightarrow U_{\scriptscriptstyle E}$$

Total:
$$U_E + U_R = U = cte$$

Potencial:
$$U_p = \frac{1}{2}kx^2$$
 (da mola)

Cinética:
$$U_c = \frac{1}{2}mv^2$$
 (do bloco)

$$U_c \Leftrightarrow U_p$$

Total:
$$U_p + U_c = U = cte$$

Analogia eletromecânica (massa - mola)

No sistema massa-mola, em qualquer instante t, a energia total U é :

$$U = U_c + U_p$$

Se não houver atrito, U permanece constante, isto é:

$$\frac{dU}{dt} = \frac{d}{dt}\left(\frac{1}{2}mv^2 + \frac{1}{2}kx^2\right) = 0 \qquad \longleftrightarrow \qquad \frac{d^2x}{dt^2} + \frac{k}{m}x = 0 \qquad \left(v = \frac{dx}{dt}\right)$$

Solução eq. diferencial: $x(t) = X_m \cos(\omega_0 t + \varphi)$

Movimento oscilatório
$$\begin{cases} \omega_0 = \sqrt{\frac{k}{m}} : \text{Frequência angular natural} \\ X_m : \text{Amplitude} \\ \varphi : \text{Constante de fase} \end{cases}$$

Analogia eletromecânica (oscilador *LC*)

Energia total oscilante:
$$U = U_B + U_E = \frac{1}{2}Li^2 + \frac{1}{2}\frac{q^2}{C}$$
 $\left(i = \frac{dq}{dt}\right)$

$$i = \frac{dq}{dt}$$

Como não há resistência no circuito, temos:

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{Li^2}{2} + \frac{q^2}{2C} \right) = 0 \quad \longleftrightarrow \quad \frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$$

Solução eq. diferencial: $q(t) = Q\cos(\omega_0 t + \varphi)$

Oscilações observable de letromagnéticas observable
$$\omega_0 = \sqrt{\frac{1}{LC}}$$
: Frequência angular natural observable Q : Amplitude

 φ : Constante de fase

Corrente:
$$i = \frac{dq}{dt} = -\omega_0 Q \operatorname{sen}(\omega_0 t + \varphi) = -I \operatorname{sen}(\omega_0 t + \varphi)$$

Analogia eletromecânica

Circuito LC

$$q(t) = Q\cos(\omega_0 t + \varphi)$$

Frequência angular:
$$\omega_0 = \sqrt{\frac{1}{LC}}$$

Sistema massa-mola

$$x(t) = X_m \cos(\omega_0 t + \varphi)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$X_{m}$$

 φ

$$q \leftrightarrow x$$

$$i \leftrightarrow v$$

$$L \longleftrightarrow m$$

$$\frac{1}{C} \leftrightarrow k$$

A amplitude e a constante de fase são determinadas pelas condições iniciais [no circuito LC: i(0) e q(0)].

Questão Moodle

A bateria da figura tem uma voltagem de 6V, a indutância é L = 12 mH e a capacitância é C = 8,0 μ F. Suponha que o indutor e os fios têm resistência desprezível. A chave S ficou na posição a por um tempo muito longo e depois foi mudada para b. Qual é a carga no capacitor no instante t = 0,487 ms após essa mudança?

Escolha uma:

- a. 48 μC;
- b. 1,33 μC;
- c. 0,5 μC;
- d. zero;
- e. 72 μC;

Energias elétrica e magnética

A energia elétrica armazenada no capacitor em qualquer instante t é:

$$U_E = \frac{q^2}{2C} = \frac{Q^2}{2C} \cos^2(\omega_0 t + \varphi)$$

$$\left(\omega_0 = \sqrt{\frac{1}{LC}}\right)$$

Enquanto a energia magnética armazenada no indutor é:

$$U_{B} = \frac{1}{2}Li^{2} = \frac{1}{2}L\omega_{0}^{2}Q^{2}\operatorname{sen}^{2}(\omega_{0}t + \varphi) \iff U_{B} = \frac{Q^{2}}{2C}\operatorname{sen}^{2}(\omega_{0}t + \varphi)$$

$$\longrightarrow U_E + U_B = \frac{Q^2}{2C}$$

A energia total permanece constante!

Questão Moodle

Um capacitor e um indutor são ligados em série. No instante t=0 a corrente é zero, mas o capacitor está carregado. Em termos do período T das oscilações do circuito, o próximo instante após t=0 em que a energia armazenada no campo elétrico do capacitor é máxima é:

Escolha uma:

- a. T/4;
- \bigcirc b. 2T;
- \bigcirc c. T/2;
- d. T/8;
- \bigcirc e. T;

Oscilações amortecidas (circuito *RLC*)

12

Com um resistor R no circuito, a energia eletromagnética total U do sistema não é mais constante, pois diminui com o tempo na medida em que é transformada em energia térmica no resistor $(\frac{dU}{dt} < 0)$.

$$U = \frac{1}{2}Li^2 + \frac{q^2}{2C}$$

$$\frac{dU}{dt} = -Ri^2$$

Energia
Eletromagnética:
$$U = \frac{1}{2}Li^2 + \frac{q^2}{2C}$$
Potência dissipada: $\frac{dU}{dt} = -Ri^2$

$$\longrightarrow Li \frac{di}{dt} + \frac{q}{C} \frac{dq}{dt} = -Ri^2$$

$$\left(i = \frac{dq}{dt}\right)$$

Oscilações amortecidas (circuito RLC)

Solução geral para o caso de amortecimento fraco $(R < \sqrt{4L/C})$:

$$q(t) = Q_{\text{max}} e^{-\frac{R}{2L}t} \cos(\omega' t + \varphi) \quad \text{onde: } \omega' = \sqrt{\omega_0^2 - \left(\frac{R}{2L}\right)^2}$$

Se:
$$\frac{R}{2L} << \frac{1}{LC} \longrightarrow \omega' \cong \omega_0 = \sqrt{\frac{1}{LC}}$$

(ω' aproxima-se da frequência angular natural do sistema)

Energia armazenada no campo elétrico do capacitor:

$$U_C = \frac{q^2}{2C} = \frac{\left[Qe^{-Rt/2L}\cos(\omega't + \varphi)\right]^2}{2C}$$

$$U_C = \frac{Q^2}{2C} e^{-Rt/L} \cos^2(\omega' t + \varphi)$$

Exemplo 1

Um circuito RLC série possui indutância L = 12 mH, capacitância C = 1,6 µF, e resistência R = 1,5 Ω .

a) Determinar o instante *t* tal que a amplitude das oscilações da carga no circuito seja 1/2 do seu valor inicial.

Queremos que:
$$Q_{\text{max}} e^{-\frac{R}{2L}t} = 0.5 Q_{\text{max}} \Rightarrow -\frac{Rt}{2L} = \ln 0.5$$

daí: $t = -\frac{2L}{R} \ln 0.5 \Rightarrow t = 0.011s$

b) Quantas oscilações foram completadas neste intervalo de tempo?

O tempo para uma oscilação completa é o período $T = \frac{2\pi}{\omega'}$.

Neste caso, como
$$\left(\frac{R}{2L}\right)^2 << \omega_0^2$$
, $\omega' \cong \omega_0$. Ou seja:

$$NT = t \Rightarrow N = \frac{t}{2\pi\sqrt{LC}}$$
 ou $N = \frac{0,011}{2\pi \left(12.10^{-3} \times 1,6.10^{-6}\right)^{\frac{1}{2}}} \cong 13$

Oscilações forçadas (RLC com fem)

As oscilações de um circuito *RLC* não serão totalmente amortecidas se um dispositivo de *fem* externo fornecer energia suficiente para compensar a energia térmica dissipada no resistor.

Gerador de tensão alternada (fem ac): $\mathcal{E} = \mathcal{E}_m \operatorname{sen}(\omega t)$ ω : frequência angular propulsora $i_{ac}(t) = I \operatorname{sen}(\omega t - \varphi)$

 φ : fase; dependente do circuito

Oscilações forçadas [comportamento de q(t), i(t) e V(t)]:

• Frequência: Qualquer que seja ω_0 (natural), essas grandezas oscilam com a frequência propulsora ω .

Circuito resistivo (R)

Um resistor ligado ao gerador de fem alternada:

$$\varepsilon = v_R = \varepsilon_m \operatorname{sen}(\omega t) = V_R \operatorname{sen}(\omega t)$$

Corrente i_R no resistor: $i_R = \frac{v_R}{R} = \frac{V_R}{R} \operatorname{sen}(\omega t)$

• Relação entre as amplitudes da corrente e da tensão no resistor:

$$I_R = \frac{V_R}{R}$$
 $V_R = I_R R$

Comparando i_R com a forma geral da corrente ac:

$$i_{ac}(t) = I \operatorname{sen}(\omega t - \varphi)$$

Corrente e tensão (ddp) estão em fase no resistor:

Circuito capacitivo (C)

Tensão: $v_C = \varepsilon_m \operatorname{sen}(\omega t) = V_C \operatorname{sen}(\omega t)$

Carga: $q_C = C v_C = C V_C \operatorname{sen}(\omega t)$

Corrente: $i_C = \omega C V_C \cos(\omega t) = \omega C V_C \sin(\omega t + \frac{\pi}{2})$

 I_C Rotation of phasors at rate ω_d v_C v_C v_C v_C

Introduzindo a *reatância capacitiva*: $X_C = \frac{1}{\omega C}$

$$i_C = \frac{V_C}{X_C} \operatorname{sen}(\omega t + \frac{\pi}{2})$$

$$i_{ac}(t) = I \operatorname{sen}(\omega t - \varphi)$$

• Relação entre as amplitudes da corrente e da tensão no capacitor:

$$V_C = I_C X_C$$

• Corrente está *adiantada* de $\frac{\pi}{2}$ em relação à tensão:

$$\phi = -\frac{\pi}{2}$$

Circuito indutivo (L)

Tensão:
$$v_L = \varepsilon_m \operatorname{sen}(\omega t) = V_L \operatorname{sen}(\omega t) = L \frac{dl_L}{dt}$$

Corrente:
$$i_L = \frac{V_L}{L} \int \operatorname{sen}(\omega t) dt = -\frac{V_L}{\omega L} \cos(\omega t)$$

Introduzindo a reatância indutiva: $X_{I} = \omega L$

$$i_L = \frac{V_L}{X_I} \operatorname{sen}(\omega t - \frac{\pi}{2})$$

$$i_{ac}(t) = I \operatorname{sen}(\omega t - \varphi)$$

- Relação entre as amplitudes da corrente e da tensão no capacitor: $\overline{V_L = I_L X_L}$
- Corrente está *atrasada* de $\frac{\pi}{2}$ em relação à tensão:

$$\Rightarrow \varphi = \frac{\pi}{2}$$

Questão Moodle

A figura abaixo mostra um circuito de corrente alternada puramente indutivo. A amplitude da fonte é de 100 V e sua frequência é de 40 Hz. A corrente máxima no circuito é 7,0 A. Qual é o valor aproximado da impedância L?

Escolha uma:

- a. 0,057 H;
- b. 0,54 H;
- c. 0,091 H;
- d. 0,36 H;
- e. 0,27 H;

Simulações dos três circuitos simples

http://www.walter-fendt.de/ph14br/accircuit br.htm

Lista de exercícios do capítulo 31

•Informações complementares

Os exercícios pares do Livro texto capítulo Oscilações eletromagnéticas:

Consultar:

https://www.ggte.unicamp.br/ea/moodle/login/index.php

Aulas gravadas:

http://lampiao.ic.unicamp.br/weblectures (Prof. Roversi)

ou

UnivespTV e Youtube (Prof. Luiz Marco Brescansin)