University of Waterloo Algebraic Geometry - Summer 2015 Assignment 3

Sina Motevalli 20455091

Problem

Part a

We know from linear algebra that $O(n,k) = V(\det -1) \cup V(\det +1)$. So the set is reducible and therefore is not a variety.

Part b

Part c

The polynomial map $\phi: \mathbb{A}^1 \to V(xz-y^2,yz-x^3,z^2-x^y)$ that sends t to (t^3,t^4,t^5) is surjective. Therefore since \mathbb{A}^1 is irreducible, so is $X=\phi(\mathbb{A}^1)$.

Solution 1

 $\phi: \mathbb{A}^1 \to V(y^2-x^3): t \to (t^2,t^3)$ does not have a polynomial inverse. Assume for a contradiction that $\phi^{-1}: V(y^2-x^3): \to \mathbb{A}^1$ is polynomial. Then ϕ^{-1} is a polynomial function on $X=V(y^2-x^3)$, so it is an element of the coordinate ring of X. We have $A(X)=k[x_1,...,x_n]/I(X)$. Since $\bar{y^2}=\bar{x^3}$ in A(X), any polynomial in A(X) can be written as $p(\bar{x})+\bar{y}q(\bar{x})$. Therefore $\phi^{-1}(x,y)=p(x)+yq(x)$ for some $q,p\in k[\bar{x}]$. So $t\to (t^2,t^3)\to p(t^2)+t^3q(t^2)\neq t$ since its at least power of 2 in t. Hence ϕ^{-1} is not polynomial.

Solution 2

It is sufficient to show that $k(\mathbb{A}^1)$ is not isomorphic to $k(V(y^2-x^3))$. We have that $k(V(y^2-x^3))$ is isomorphic to $k[t^2,t^3]$ and $k(\mathbb{A}^1)$ is isomorphic to k[t]. Note that k[t] is a UFD, but $k[t^2,t^3]$ is not because $t^8=t^3t^3t^2=(t^2)^3$ has two factorizations. Hence $k(\mathbb{A}^1)$ is not isomorphic to $k(V(y^2-x^3))$.

Part a

Note that ϕ^* sends g+I(Y) to $g\circ\phi+I(X)$. So ϕ^* is injective means $g\in I(Y)\Longleftrightarrow g\circ\phi\in I(X)$. Since $g\circ\phi\in I(X)\Longleftrightarrow g\in I(\phi(X))$, we have that ϕ^* is injective if and only if

$$I(Y) = I(\phi(X))$$

which is equivalent to image of ϕ under X being dense in Y.

Part b

Assume ϕ has a polynomial left-inverse ψ .

Let p + I(X) be an arbitrary element of the coordinate ring of X.

Note that $p \circ \psi \in k[y_1, ..., y_m]$.

We have $\phi^*(p \circ \psi + I(Y)) = p \circ \psi \circ \phi + I(X) = p(\psi \circ \phi) + I(X) = p + I(X)$.

Thus ϕ^* is surjective.

Conversely assume ϕ^* is surjective.

Since ϕ^* is surjective, there exist $g_i \in k[y_1, ..., y_m]$ such that $\phi(g_i + I(Y)) = x_i + I(X)$ for every $i \in \{1, 2, ..., n\}$.

So $(g_i \circ \phi) + I(X) = x_i + I(X) \to (g_i \circ \phi)(x) = x_i(x) \ \forall x \in X.$

Let $\psi = (g_1, g_2, ..., g_n)$, then we clearly have $\psi \circ \phi = id_X$.

Problem 4

 $I(y^2 - x^2(x+1)) = \langle y^2 - x^2(x+1) \rangle$ since $y^2 - x^2(x+1)$ is irreducible. So we have $\bar{y}^2 = \bar{x}^2(\bar{x}+\bar{1})$ in $\Gamma(V(y^2-x^2(x+1)))$. Thus

$$z = \frac{\bar{y}}{\bar{x}} = \frac{\bar{x}^2(\bar{x} + \bar{1})}{\bar{x}\bar{y}} = \frac{\bar{x}(\bar{x} + \bar{1})}{\bar{y}}$$

and

$$z^2 = \frac{\bar{y}^2}{\bar{x}^2} = \frac{\bar{x}^2(\bar{x} + \bar{1})}{\bar{x}^2} = \bar{x} + \bar{1}$$

So z^2 has no poles since it has a polynomial representation and also $z^2 \in \Gamma(X)$.

We can also see that z has no pole at (a, b) if $a \neq 0$ or $b \neq 0$. So the only possible pole for z is (0, 0).

Assume for a contradiction that z is defined on (0,0). So there exist $g,h \in \Gamma(X)$ such that $z = \frac{g}{h}$ and $h(0,0) \neq 0$. Equivalently $h\bar{y} = g\bar{x}$.

Because of the relation $\bar{y}^2 = \bar{x}^2(\bar{x} + \bar{1})$ any element of $\Gamma(X)$ can be written uniquely in the form $a(\bar{x}) + b(\bar{x})\bar{y}$.

So we can write $h\bar{y} = g\bar{x}$ as:

$$(h_1(\bar{x}) + h_2(\bar{x})\bar{y})\bar{y} = (g_1(\bar{x}) + g_2(\bar{x})\bar{y})\bar{x}$$

where $h_1(0) \neq 0$. So

$$h_1(\bar{x})\bar{y} + h_2(\bar{x})\bar{x}^2(\bar{x} + \bar{1}) = q_1(\bar{x})\bar{x} + q_2(\bar{x})\bar{x}\bar{y}$$

Now by uniqueness we have $h_1(\bar{x}) = g_2(\bar{x})\bar{x}$. Thus $h_1(0) = 0$ which is a contradiction. Hence (0,0) is the only pole of z and $z \notin \Gamma(X)$.

Part a

Let $F(x,y) = ax^2 + by^2 + cxy + dx + ey + f \in k[x,y]$ be irreducible. We break the problem down to a few cases and subcases:

Case 1: Either a or b is nonzero. WLOG assume $a \neq 0$.

Let $X_1 = \sqrt{a(x + \frac{c}{2a}y)}$. There exists b_1 such that $F = X_1^2 + b_1y^2 + dx + ey + f$. There exist constants d_1, e_1, f_1 such that $F = X_1^2 + b_1 y^2 + d_1 X_1 + e_1 y + f_1$. (It's very tedious to calculate these constants but they clearly exist).

Let $X_2 = X_1 + \frac{d_1}{2}$. Then there exist constant f_2 such that $F = X_2^2 + b_1 y^2 + e_1 y + f_2$. We have 2 subcases to consider here:

Subcase 1: $b_1 = 0$.

So $F = X_2^2 + e_1 y + f_2$. Note that if $e_1 = 0$ we get $F = (X_2 - \sqrt{f_2})(X + \sqrt{f_2})$ which is reducible so $e_1 \neq 0$.

Now let $Y = -e_1y - f_2$ and we have $F = X_2^2 - Y$.

Subcase 2: $b_1 \neq 0$.

So $F = X_2^2 + b_1 y^2 + e_1 y + f_2 = X_2^2 + y^2 + \frac{e_1}{b_1} y + \frac{f_2}{b_1}$.

Let $Y_1 = y + \frac{e_1}{2b_1}$. Then there exist constant f_3 such that $F = X_2^2 + Y_1^2 - f_3$. Note that if $f_3 = 0$ then $F = (X_2 - iY_1)(X_2 + iY_1)$ which is reducible. So $f_3 \neq 0$.

Now let $X_3 = \sqrt{f_3}X_2$ and $Y_2 = \sqrt{f_3}Y_1$. Then $F = f_3(X_3^2 + Y_2^2 - 1)$. Therefore V(F) can be written in the form $X_3^2 + Y_2^2 - 1 = 0$.

Case 2: a = b = 0.

So F = cxy + dx + ey + f. Note that $c \neq 0$ because otherwise the polynomial would have degree 1. We have:

 $F = c(xy + \frac{d}{c}x + \frac{e}{c}y) + f$. So there exist constant c_1 such that $F = c(x + \frac{e}{c})(y + \frac{d}{c}) + f_1$. Where $f_1 \neq 0$ otherwise the polynomial would be reducible.

Let $X = \frac{-\sqrt{c}}{f_1}(\frac{1}{2}x + \frac{1}{2}y + \frac{e}{2c} + \frac{d}{2c})$ and $Y = \frac{-i\sqrt{c}}{f_1}(\frac{1}{2}x - \frac{1}{2}y + \frac{e}{2c} - \frac{d}{2c})$. Then $X^2 + Y^2 - 1 = (X - iY)(X + iY) - 1 = \frac{-c}{f_1}(x + \frac{e}{c})(y + \frac{d}{c}) - 1$.

So V(F) can be written in the form $X^2 + Y^2 - 1 = 0$.

Part b

The polynomial map $\phi: \mathbb{A}^1 \to V(y-x^2)$ which sends t to (t^2,t) is clearly an isomorphism because it's inverse simply sends (t^2, t) to t which is polynomial. So $V(y - x^2)$ is isomorphic to \mathbb{A}^1 .

Claim: $V(x^2 + y^2 - 1)$ is isomorphic to V(xy - 1).

Proof: Let $\phi: V(x^2+y^2-1) \to V(xy-1)$ be a polynomial map that sends (a,b) to (a-ib, x+ib).

It's inverse $\phi^{-1}: V(xy-1) \to V(x^2+y^2-1)$ sends (a,b) to $(\frac{1}{2}(a+b), i\frac{1}{2}(a-b))$.

Hence $V(x^2 + y^2 - 1)$ is isomorphic to V(xy - 1).

We proved in class that V(xy-1) is not isomorphic to the affine line, thus $V(x^2+y^2-1)$ is not isomorphic to \mathbb{A}^1 .

Part c

Given a point $(a,b) \in V(x^2 + y^2 - 1)$, we need to verify that the intersection of y = 0

and the line containing (a, b) and (0, 1) is the point $(\frac{a}{1-b}, 0)$. The line passing through (a, b) and (0, 1) is $y - 1 = \frac{b-1}{a}x$. y = 0, so $-1 = \frac{b-1}{a}x$. Thus $x = \frac{a}{1-b}.$

Hence the rational map sending (x,y) to $\frac{x}{1-y}$ is stereographic projection.

The inverse $\Theta^{-1}: \mathbb{A}^1 \to V(x^2+y^2-1)$ is also a rational map that sends t to $(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2})$. Thus Θ is a birational equivalence.