

Marcel Solé Àvila, Razgar Ebrahimy, Georgios Tsaousoglou

How inefficient can a market be?

The goal

Characterize the **inefficiency** of the electricity market

$$\eta_{th} = \frac{W_{out}}{Q_{in}} < 1$$

$$Price \ of \ Anarchy = rac{Cost \ at \ equilibrium}{Minimum \ cost} \geq 1$$

cost = burned fuel

Price of Anarchy = 1, we burn the minimum fuel to satisfy demand

Price of Anarchy = 2, we burn twice as much fuel to satisfy demand

How is the power system operated?

How is the power system operated?

Original system

Generator	Cost of burned fuel	Generation
G1	10	100%
G2	15	100%
G3	6	20%
G4	35	100%
Total (old)	50	-
Total (new)	66	-

$$Price\ of\ Anarchy = \frac{66}{50} = 1.32$$

The cost is 32% higher than needed

10

Our first system

Imag from: https://www.britannica.com/

Imag from: https://www.britannica.com/

Imag from: https://www.britannica.com/

Imag from: https://www.britannica.com/

The Robust PoA

Robust PoA: worst possible combination of generators that exists

$$\max_{cost \ functions} \{ \textbf{\textit{Price of Anarchy}} \}$$

$$\begin{cases} s.t. \ \max_{\theta_n} \{ \sum_{t} [u_{n,t} \lambda_{n,t} - c_n(u_{n,t})] \} \\ s.t. u_{n,t} \in argmax \{ \sum_{m,t} \hat{g}(u_{m,t}; \boldsymbol{\theta}_{m,t}) \} \end{cases} \forall n$$

"Search in the space of possible generators to find the one that **maximizes the inefficiency**"

Johari's upper bound

If enough assumptions are made, there exists a close form **upper bound** for the PoA.

Price of Anarchy
$$\leq 1 + \frac{1}{N-2}$$

N: number of generators

When: $N \rightarrow \infty$, $PoA \rightarrow 1$ (perfect competition)

Our contribution

We drop the assumptions to:

- Have a more realistic cost curve for generators
- Approximate better the market behavior

Our results

PSO: Particle Swarm Optimization

04-09-2025 Technical University of Denmark How inefficient can a market be?

- 1. Construct the market clearing problem (merit order curve) as a LP.
 - 1. Demand is inelastic.
 - 2. There needs to be at least 3 generators, bid = (price, quantity).
 - 3. Generators have a minimum and maximum power dispatch
 - 4. The cost of a generator depends linearly on the power dispatch. Assume: Cost = cx. Where C is the cost, c the per unit cost (EUR/MWh), and x the production (MWh).
 - 5. There are no start-up costs, no ramp constraints, no minimum up or down time. This keeps the model linear.
 - 6. Assume the grid to be a copper plate. I.e., there are no power lines.

04-09-2025 Technical University of Denmark How inefficient can a market be?

- 1. Construct the dual of exercise 1.
- 2. Solve the dual.
- 3. Check that strong duality holds.

04-09-2025 Technical University of Denmark How inefficient can a market be?

- 1. Construct the market clearing problem (merit order curve) as a LP.
 - 1. Demand bids into the market, bid = (price, quantity).
 - 2. At least 3 consumers.
 - 3. There needs to be at least 3 generators, bid = (price, quantity).
 - 4. Generators have a minimum and maximum power dispatch
 - 5. The cost of a generator depends linearly on the power dispatch. Assume: Cost = cx. Where *C* is the cost, *c* the per unit cost (EUR/MWh), and *x* the production (MWh).
 - 6. There are no start-up costs, no ramp constraints, no minimum up or down time. This keeps the model linear.
 - 7. Assume the grid to be a copper plate. I.e., there are no power lines.

- 1. Take the model of exercise 3 and add a model for the power network. Use a linear approximation, e.g., DC-OPF.
- 2. Keep the amount of network nodes low (e.g., 3 nodes).
- 3. Populate the grid with enough generators and demands so the market can be cleared (i.e., willingness to pay >= willingness to produce).
- 4. Report the local marginal price of each bus, i.e., the dual variable of the power balance of each bus.

04-09-2025 Technical University of Denmark How inefficient can a market be?

Duality

Primal (dummy LP with mixed constraints)

```
\begin{array}{lll} \text{minimize} 2x_1 + x_2 \\ \text{subject to} x_1 + x_2 & \geq & 1 \\ & -x_1 + 2x_2 & \leq & 3 \\ & 2x_1 - x_2 & = & 0 \\ & [2pt]x_1 \geq 0, \quad x_2 \text{ free.} \end{array} \qquad \begin{array}{ll} \text{(inequality ')} \\ \text{(equality)} \end{array}
```

We'll convert everything to the Lagrangian-friendly " ≤ 0 " form and add a multiplier for **each** such constraint (including the variable bound for x_1).

- . $x_1 + x_2 \ge 1 \Longleftrightarrow 1 x_1 x_2 \le 0 \Rightarrow$ multiplier $y_1 \ge 0$.
- $-x_1 + 2x_2 \le 3 \Rightarrow$ multiplier $y_2 \ge 0$.
- $2x_1 x_2 = 0$ \rightarrow multiplier y_3 free (can be any real).
- $x_1 \ge 0 \Longleftrightarrow -x_1 \le 0 \Rightarrow$ multiplier $s_1 \ge 0$.
- x_2 is free \rightarrow no bound constraint, hence no s_2 .

How inefficient can a market be?

Duality

Lagrangian

$$\mathcal{L}(x_1, x_2, y_1, y_2, y_3, s_1) = (2x_1 + x_2) \cdot y_1 (1 - x_1 - x_2) \cdot y_2 (-x_1 + 2x_2 - 3) \cdot y_3 (2x_1 - x_2) \cdot s_1 (-x_1)$$

$$= \underbrace{(y_1 - 3y_2)}_{\text{constant}} \cdot \underbrace{(2 - y_1 - y_2 + 2y_3 - s_1)}_{\text{coeff of } x_1} x_1 \cdot \underbrace{(1 - y_1 + 2y_2 - y_3)}_{\text{coeff of } x_2} x_2.$$

Dual function: $g(y,s) = \inf_{x_1,x_2} \mathcal{L}$

Because we dualized all constraints, the infimum is over **free** x_1, x_2 . For the infimum to be finite (not $-\infty$), the coefficients of x_1 and x_2 must vanish (otherwise we could drive them to $\pm\infty$):

(stationarity w.r.t.
$$x_1$$
): $2 - y_1 - y_2 + 2y_3 - s_1 = 0$, $s_1 \ge 0$, (stationarity w.r.t. x_2): $1 - y_1 + 2y_2 - y_3 = 0$ (no s_2 since s_2 is free).

When these hold, the x-terms drop out and

$$g(y,s) \ = \ y_1 - 3y_2.$$

Duality

Dual problem

Maximize the dual function subject to the multiplier sign rules and the stationarity equations:

Variables and signs:

$$y_1 \ge 0$$
, $y_2 \ge 0$, $y_3 \in \mathbb{R}$ (free), $s_1 \ge 0$.

Equalities/inequalities from stationarity:

$$\begin{aligned} 1 - y_1 + 2y_2 - y_3 &= 0 &\iff y_1 - 2y_2 + y_3 &= 1, \\ 2 - y_1 - y_2 + 2y_3 - s_1 &= 0 &\iff s_1 &= 2 - y_1 - y_2 + 2y_3 &\geq 0 \\ &\iff y_1 + y_2 - 2y_3 &\leq 2. \end{aligned}$$

Putting it all together, the **dual** is:

$$\begin{split} \text{maximize} y_1 - 3y_2 \\ \text{subject to} y_1 - 2y_2 + y_3 &= 1, \\ y_1 + y_2 - 2y_3 &\leq 2, \\ y_1 &\geq 0, \;\; y_2 \geq 0, \;\; y_3 \text{ free.} \end{split}$$

That's the full Lagrangian-based derivation for a primal with a mix of $'\geq'$, $'\leq'$, and '=' constraints, plus a nonnegative variable and a free variable.