RELATIVE EXTREMA

Graph of Function Differentiation

RELATIVE MAXIMA AND MINIMA

If we imagine the graph of a function f to be a two-dimensional mountain range with hills and valleys, then the tops of the hills are called "relative maxima," and the bottoms of the valleys are called "relative minima".

A relative maximum need not be the highest point in the entire mountain range, and a relative minimum need not be the lowest point—they are just high and low points relative to the nearby terrain.

DEFINITION

A function f is said to have a **relative maximum** at x_0 if there is an open interval containing x_0 on which $f(x_0)$ is the largest value, that is, $f(x_0) \ge f(x)$ for all x in the interval.

Similarly, f is said to have a **relative minimum** at x_0 if there is an open interval containing x_0 on which $f(x_0)$ is the smallest value, that is, $f(x_0) \le f(x)$ for all x in the interval.

If f has either a relative maximum or a relative minimum at x_0 , then f is said to have a **relative extremum** at x_0 .

EXAMPLES

f has a relative minimum at x = 0 but no relative maxima

f has no relative extrema

f has a relative maximum at x = -1 and a relative minimum at x = 1

f has relative minimum at x = -1 and x = 2 and a relative maximum at x = 1

f has relative maximum at $x=-2\pi$, x=0 and $x=2\pi$ and relative minimum at $x=-\pi$ and $x=\pi$

CRITICAL POINT AND STATIONARY POINT

The relative extrema for the five functions occur at points where the graphs of the functions have horizontal tangent lines. Above figure illustrates that a relative extremum can also occur at a point where a function is not differentiable. In general, we define a critical point for a function f to be a point in the domain of f at which either the graph of f has a horizontal tangent line or f is not differentiable.

To distinguish between the two types of critical points we call x a stationary point of f if f'(x) = 0.

THEOREM 1

Suppose that f is a function defined on an open interval containing the point x_0 . If f has a relative extremum at $x = x_0$, then $x = x_0$ is a critical point of f; that is, either $f'(x_0) = 0$ or f is not differentiable at x_0 .

NOTE

Relative extrema must occur at critical points, but it does not say that a relative extremum occurs at every critical point.

EXAMPLES

Critical point Stationary point Relative maximum

Critical point Stationary point Relative minimum

Critical point
Not a stationary point
Relative maximum

Critical point Not a stationary point Relative minimum

Critical point
Stationary point
Inflection point
Not a relative extremum

Critical point
Not a stationary point
Inflection point
Not a relative extremum

Critical point
Stationary point
Inflection point
Not a relative extremum

Critical point

Not a stationary point

Inflection point

Not a relative extremum

CONCLUSION

A function f has a relative extremum at those critical points where f' changes sign.

THEOREM 2 FIRST DERIVATIVE TEST

Suppose that f is continuous at a critical point x_0 .

- (a) If f'(x) > 0 on an open interval extending left from x_0 and f'(x) < 0 on an open interval extending right from x_0 , then f has a relative maximum at x_0 .
- (b) If f'(x) < 0 on an open interval extending left from x_0 and f'(x) > 0 on an open interval extending right from x_0 , then f has a relative minimum at x_0 .
- (c) If f'(x) has the same sign on an open interval extending left from x_0 as it does on an open interval extending right from x_0 , then f does not have a relative extremum at x_0 .

Note: If at the critical point there is no relative extremum, then the point is called **saddle point**.

EXAMPLE 1

Use first derivative test to determine where does the function $f(x) = 2x^3 + 3x^2 - 12x$ have relative maximum and relative minimum?

Solution:

The given function is $f(x) = 2x^3 + 3x^2 - 12x$ The first derivative of f(x) is $f'(x) = 6x^2 + 6x - 12$ Now, f'(x) = 0 $\Rightarrow 6x^2 + 6x - 12 = 0$ $\Rightarrow x^2 + x - 2 = 0$ $\Rightarrow x = -2, 1$

Interval	(x+2)(x-1)	f'(x)
x < -2	(-)(-)	+
-2 < x < 1	(+)(-)	
x > 1	(+)(+)	+

The sign of f'(x) changes from + to - at x = -2, so there is a relative minimum at that point. The sign changes from - to + at x = 1, so there is a relative maximum at that point.

EXAMPLE 2

Use first derivative test to determine where does the function $f(x) = 3x^{5/3} - 15x^{2/3}$ have relative maximum and relative minimum?

Solution:

The given function is $f(x) = 3x^{5/3} - 15x^{2/3}$ The first derivative of f(x) is $f'(x) = 15x^{1/3}$ Now, $f'(x) = 15x^{1/3}$ $\Rightarrow \frac{5(x-2)}{x^{1/3}} = 15x^{1/3}$ $\Rightarrow x = 0, 2$

Interval	$\frac{5(x-2)}{x^{1/3}}$	f'(x)
x < 0	(-)(-)	+
0 < x < 2	(-)(+)	_
x > 2	(+)(+)	+

The sign of f'(x) changes from + to – at x = 0, so there is a relative maximum at that point. The sign changes from – to + at x = 2, so there is a relative minimum at that point.

SECOND DERIVATIVE TEST

There is another test for relative extrema that is based on the following geometric observation: A function f has a relative maximum at a stationary point if the graph of f is concave down on an open interval containing that point, and it has a relative minimum if it is concave up.

THEOREM 3 SECOND DERIVATIVE TEST

Suppose that f is twice differentiable at the point x_0 .

- (a) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a relative minimum at x_0 .
- **(b)** If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f has a relative maximum at x_0 .
- (c) If $f'(x_0) = 0$ and $f''(x_0) = 0$, then the test is inconclusive; that is, f may have a relative maximum, a relative minimum, or neither at x_0 .

EXAMPLE 3

Let
$$f(x) = 3x^5 - 5x^3$$
.

- (a) Use second derivative test to find the relative extrema of f(x).
- (b) Use first derivative test to solve the problem if the second derivative test is inconclusive.

Solution (a):

The given function is
$$f(x) = 3x^5 - 5x^3$$

The first derivative of $f(x)$ is $f'(x) = 15x^4 - 15x^2$
The second derivative of $f(x)$ is $f''(x) = 60x^3 - 30x$
 $= 30x(2x^2 - 1)$
Now for stationary point, $f'(x) = 15x^4 - 15x^2 = 0$
 $\Rightarrow 15x^2(x^2 - 1) = 0$
 $\Rightarrow x = 0, 1, -1$

Stationary Point	$30x(2x^2-1)$	f''(x)	Second Derivative Test
x = -1	- 30	+	f has a relative maximum
x = 0	0	_	Inconclusive
x = 1	30	+	f has a relative maximum

The test is inconclusive at x = 0, so we will try the first derivative test at that point. A sign analysis of f is given in the following table:

Interval	$15x^2(x^2-1)$	f'(x)
-1 < x < 0	(+)(+)(-)	_
0 < x < 1	(+)(+)(-)	_

Since there is no sign change in f'(x) at x = 0, there is neither a relative maximum nor a relative minimum at that point.

EXAMPLE 4 [Do it by yourself]

Let
$$f(x) = 3x^4 - 4x^3 - 12x^2$$
.

- (a) Use second derivative test to find the relative extrema of f(x).
- (b) Use first derivative test to check that your result is correct.

Result

f has a relative minimum at x = -1

f has a relative maximum at x = 0

f has a relative minimum at x = 2

Practice Problems

- 3. (a) Use both the first and second derivative tests to show that $f(x) = 3x^2 6x + 1$ has a relative minimum at x = 1.
 - (b) Use both the first and second derivative tests to show that $f(x) = x^3 3x + 3$ has a relative minimum at x = 1 and a relative maximum at x = -1.
- **4.** (a) Use both the first and second derivative tests to show that $f(x) = \sin^2 x$ has a relative minimum at x = 0.
 - (b) Use both the first and second derivative tests to show that $g(x) = \tan^2 x$ has a relative minimum at x = 0.

Practice Problems

25–32 Use the given derivative to find all critical points of f, and at each critical point determine whether a relative maximum, relative minimum, or neither occurs. Assume in each case that f is continuous everywhere.

25.
$$f'(x) = x^2(x^3 - 5)$$

29.
$$f'(x) = xe^{1-x^2}$$

30.
$$f'(x) = x^4(e^x - 3)$$

31.
$$f'(x) = \ln\left(\frac{2}{1+x^2}\right)$$