Analyse exploratoire pour une entreprise de la EdTech

Le Besoin

Entreprise de la EdTech

- Cours en Ligne
- Cible: 15-24ans
- Catalogue varié
- Flexibilité pour ses clients

Volonté d'expansion

- Internationale
- Plus de bénéfice
- Plus de polyvalence

Problème

- Diversité des régions
- Faire le bon choix pour une entreprise
- MONEY

Ressources & méthode de pensée

Plusieurs Datasets

Nom Туре Taille EdStatsCountry Fichier CSV 137 Ko EdStatsCountry-Series Fichier CSV 48 Ko EdStatsData Fichier CSV 318 776 Ko EdStatsFootNote Fichier CSV 38 781 Ko **EdStatsSeries** Fichier CSV 3 620 Ko

Quel dataset prioriser?

- Donnée utile à la question?
- Indicateurs
 pouvant être mis
 en relation?

Quels indicateurs prioriser?

- Quels indicateurs répondent à la question?
- Approche naïve?
 - Population
 - Etudes & Diplômes
 - MONEY

- Il ne semble pas y avoir de doublons dans data
- Le jeu de données data comporte 886930 lignes pour 70 colonnes
- Il ne semble pas y avoir de doublons dans data_country
- Le jeu de données data_country comporte 241 lignes pour 32 colonnes
- Il ne semble pas y avoir de doublons dans data_country_s Le jeu de données data country s comporte 613 lignes pour 4 colonnes
- Il ne semble pas y avoir de doublons dans data footnote
- Le jeu de données data_footnote comporte 643638 lignes pour 5 colonnes
- Il ne semble pas y avoir de doublons dans data_series
- Le jeu de données data_series comporte 3665 lignes pour 21 colonnes

Etudier les datasets Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

- Créer un jeu d'étude propre
 - Indicateurs clairs
 - Donnée organisée
 - Gestion des données manquantes
 - Gestion des indicateurs

Explorer et Scorer

- Indicateurs statistiques
- Score List:
 - Par Pays
 - o Par Région
- Interprétation

La Démarche

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Avant nettoyage

Pas de doublons dans data data comporte 886930 lignes pour 70 colonnes

Pas de doublons dans data_country data country comporte 241 lignes pour 32 colonnes

Pas de doublons dans data_country_s data_country_s comporte 613 lignes pour 4 colonnes

Pas de doublons dans data_footnote data_footnote comporte 643638 lignes pour 5 colonnes

Pas de doublons dans data_series data_series comporte 3665 lignes pour 21 colonnes

Créer un jeu d'étude propre

Les indicateurs retenus et leur utilisation

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- → Population
 - "Projection: Population age 15-19&20-24 in thousands by highest level of educational attainment"
 - Lower/Upper/Post Secondary
 - aire sous la courbe
- → Capacité à suivre le cours
 - Equipement
 - Ordinateur personnel
 - Accès à internet
 - dernières valeurs
- → \$MONEY\$
 - PIB par habitant en \$USD\$
 - dernière valeur

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Par Pays

Par Région

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Remarque: cf notebook pour pays. globalement corrélation manque donnée/richesse du pays

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Data présente par Région sur les indicateurs choisis

Créer un jeu d'étude propre

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

Après nettoyage

Les méthodes:

- drop de valeurs manquantes
- drop d'indicateurs ou régions inutiles:
 - o skip (na, sum=0,...)
- utilisation des codes plutôt que du texte

Remarque: La forme de la donnée

```
#Je devrais aussi faire un nettoyage par indicateur avec drop d'indicateurs projection
#n'ayant pas de valeur sur les années>=2020 par exemple
df 1 = pd.merge(data.iloc[:,0:2], data country.iloc[:,[0,7]],
               left on="Country Code", right on="Country Code", how="left")
df 1=df 1.join(data.iloc[:,2:])
df 1["Region"] = df 1.apply(lambda x : country to region(x),axis=1)
df 1 = df 1.drop(columns=df 1.columns[-1])
#Maintenant que nous avons les indicateurs que nous voulons nous pouvons conserver
#uniquement leur codes
df 1 = df 1.drop(columns="Indicator Name")
#On peut aussi drop la région world qui est un peu large
df 1 = df 1.drop(df 1[df 1["Country Name"]="World"].index)
#Puis on peut conserver uniquement les indicateurs qui nous intéressent
df 1 = df 1[df 1["Indicator Code"].isin(l tot)]
#Et enfin drop les colonnes totalement vides
df 1 = df 1[df 1.iloc[:,4:].notna().sum(axis=1)>0]
```

Le scoring P x E x Gdp

- Indicateurs statistiques
- Score List:
 - Par Pays
 - Par Région
- Interprétation

- Population
 - Aire sous la courbe des indicateur de population:
 - Lower/Upper/Post Secondary
 - o aire sous la courbe
- → Equipement
 - Equipement
 - Ordinateur personnel
 - Accès à internet
 - min(dernières valeurs)
 - o naïf mais pas optimiste

- → GDP
 - ◆ PIB par habitant en \$USD\$
 - dernière valeur

Les approches par Pays et par Région

- Indicateurs statistiques
- Score List:
 - Par Pays
 - Par Région
- Interprétation

```
def score that region please(d, 1 pop, 1 eqpmt):
def score that country please(d, 1 pop, 1 eqpmt):
                                                                                 if d[d["Indicator Code"].isin(l pop)]["AUC"].size > 0:
   if d[d["Indicator Code"].isin(l pop)]["AUC"].size > 0:
                                                                                     P = d[d["Indicator Code"].isin(l pop)]["AUC"].sum()
       P = d[d["Indicator Code"].isin(l pop)]["AUC"].sum()
                                                                                  else:
   else:
                                                                                     P = 1
       P = 1
                                                                                 if d[d["Indicator Code"].isin(l eqpmt[1:3])]["last value"].size > 0:
   if d[d["Indicator Code"].isin(l eqpmt[1:3])]["last value"].size > 0:
                                                                                     E 1 = d[d["Indicator Code"]==l eqpmt[1]]["last value"].mean()
                                                                                     E 2 = d[d["Indicator Code"]==1 eqpmt[2]]["last value"].mean()
       E = d[d["Indicator Code"].isin(l eqpmt[1:3])]["last value"].min()
                                                                                     E = min(E 1, E 2)
   else:
                                                                                       E=E 2
       F = 1
                                                                                  else:
   if d[d["Indicator Code"].isin(l eqpmt[0:1])]["last value"].size > 0:
       G = d[d["Indicator Code"].isin(l eqpmt[0:1])]["last value"].values[0]
                                                                                 if d[d["Indicator Code"]==l eqpmt[0]]["last value"].size > 0:
   else:
                                                                                     G = d[d["Indicator Code"]==1 eqpmt[0]]["last value"].mean()
       G = 1
                                                                                  else:
                                                                                     G = 1
   if P*E*G in [-1, 0, 1]:
                                                                                 if P*E*G in [-1, 0, 1]:
       return(1)
                                                                                     return(1)
   else:
                                                                                  else:
       return(np.log(P*E*G))
                                                                                     return(np.log(P*E*G))
```

- Indicateurs statistiques
- Score List:
 - Par Pays
 - o Par Région
- Interprétation

Top 100 Pays

- Indicateurs statistiques
- Score List:
 - Par Pays
 - Par Région
- Interprétation

Top Régions Pays vs Région

Les Régions nominées sont:

Battement de tambour

- Indicateurs statistiques
- Score List:
 - Par Pays
 - o Par Région
- Interprétation

Top 20 Pays et avis

Apprendre et Recommencer

Critique: Qu'est-ce que je changerais en fonction de ce que j'ai appris Dans la région North America l'indicateur IT.CMP.PCMP.P2 a pour valeur mé iane 27.36.

Mais aussi un ecart-type de 20.58.

Son skewness 0.55 indique que la distribution est plutôt étalée à droite. Enfin son kurtosis 0.11 indique que la distribution a le même aplatisseme t que la distribution normale.

En voici une petite boîte à moustache:

