ACLR Final Project

Rachel, Elaine, and Yuthi

Table of contents

Re	eport	3
	Audience	
	Problem Statement	
	Analysis	
	Conclusion	3
1	Data Cleaning Outline:	4
2	Exploratory Data Analysis 2.0.1 Pairplot of our chosen variables	8
3	Data Visualization	18
4	Data Dictionary	26

Report

Audience	
-	
•	ence/stakeholders include physicians and other researchers evaluating ho have undergone ACL reconstruction surgery.
Problem Statement	
(ACLR) surgery. Howe and health of patients v patients do not get reinj are many features that patient, the graft type u	anterior cruciate ligament (ACL), many undergo ACL reconstruction ver, physicians and other researchers are still evaluating the recovery who have undergone ACLR. It is important to note that a majority of ured - in this study, 83% had no reinjuries after ACLR surgery. There can affect reinjury rates after the surgery, such as the gender of the sed, and even their mental readiness. Specifically, our stakeholders are factors and what combination will lead to the lowest reinjury rates in regery is performed.
Analysis	
-	
[insert graph analyses]	
Conclusion	
-	
[insert conclusion]	

1 Data Cleaning Outline:

Documentation for our data cleaning process, including decisions regarding how we handle missing values, outliers, and other data quality issues.

First, we import the necessary libraries and set the dataset which is a .csv file provided by the UVA School of Data Science and the UVA Department of Kinesiology as a pandas dataframe.

```
# Setting up our environment, importing all necessary libraries:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Importing dataset as dataframe:
df = pd.read_csv('aclr data(in).csv')

# Previewing the dataframe:
df.head()
```

/ Users/y uthim a dired dy/an a conda 3/lib/python 3.11/site-packages/IPython/core/formatters.py: 344: 1.00 and 1.00 are also on the conduction of the con

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	record _id	redcap_event_name	${\tt redcap_repeat_instrument}$	$sex_dashboard$	graft_dashbo
0	1	baseline_arm_1	NaN	Male	Other
1	1	$visit_1_arm_1$	NaN	NaN	NaN
2	1	long_term_outcomes_arm_1	NaN	NaN	NaN
3	2	baseline_arm_1	NaN	Female	HS autograft
4	2	$visit_1_arm_1$	NaN	NaN	NaN

```
# Checking the dimensions of the dataframe:
print(df.shape)
```

(11150, 63)

The original dataframe has 11150 observations and 63 columns. We will be focusing on the variables we feel are most relevant to our hypothesis. We will be using the columns: sex_dashboard, graft_dashboard2, reinjury, age, height_m, mass_kg, bmi, ikdc, acl_rsi and dropping the rest from the dataframe.

```
df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
df.head()
```

/Users/yuthimadireddy/anaconda3/lib/python3.11/site-packages/IPython/core/formatters.py:344:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

$sex_dashboard$	$graft_dashboard2$	reinjury	age	${\rm height_m}$	$mass_kg$	bmi	ikdc	acl_rsi
Male	Other	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	No	21.7	1.9	87.4	24.210526	95.4	87.5
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Female	HS autograft	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	No	14.5	1.6	72.2	28.203125	79.3	8.3
	Male NaN NaN Female	Male Other NaN NaN NaN NaN Female HS autograft	Male Other NaN NaN NaN No NaN NaN NaN Female HS autograft NaN	MaleOtherNaNNaNNaNNaNNo21.7NaNNaNNaNNaNFemaleHS autograftNaNNaN	MaleOtherNaNNaNNaNNaNNaNNo21.71.9NaNNaNNaNNaNNaNFemaleHS autograftNaNNaNNaN	MaleOtherNaNNaNNaNNaNNaNNo21.71.987.4NaNNaNNaNNaNNaNNaNFemaleHS autograftNaNNaNNaNNaN	Male Other NaN NaN NaN NaN NaN NaN NaN No 21.7 1.9 87.4 24.210526 NaN NaN NaN NaN NaN NaN NaN Female HS autograft NaN NaN NaN NaN NaN	Male Other NaN NaN<

Now that we have our columns of interest, we will first check for missing values across the dataset. We will use the <code>isnull()</code> method to check for missing values and the <code>sum()</code> method to get the total number of missing values in each column, as well as the percentage of missing values in each column.

```
# Checking for missing values:
missing_values = df.isnull().sum()

# Checking the percentage of missing values:
missing_percentage = (missing_values / len(df)) * 100

# Displaying missing values and their percentage:
missing_values = pd.DataFrame({'Missing Values': missing_values, 'Percentage': missing_percentage of missing_values, 'Percentage': missing_percentage of missing_values, 'Percentage': missing_percentage of missing_values of missing_percentage of missing_values of missing_value
```

	Missing Values	Percentage
sex_dashboard	6413	57.515695
<pre>graft_dashboard2</pre>	6413	57.515695
reinjury	5975	53.587444
age	6024	54.026906

height_m	8632	77.417040
mass_kg	7899	70.843049
bmi	8633	77.426009
ikdc	8199	73.533632
acl_rsi	7750	69.506726
tss dashboard	5913	53.031390

Now we will proceed by separating the variables into categorical and continuous variables. We will use the select_dtypes() method to select the categorical variables and the continuous variables. For our numerical variables, we will impute missing values with the respective mean for each column.

```
# Filtering for numeric columns:
numeric_columns = df.select_dtypes(include=['int', 'float']).columns

# Imputing missing values with the mean for each respective column/varibale:
mean_values = df[numeric_columns].mean()
m_df = df.fillna(mean_values)

# Displaying the first 5 rows of the modified dataframe:
(m_df.head(5))
```

/Users/yuthimadireddy/anaconda3/lib/python3.11/site-packages/IPython/core/formatters.py:344:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	$sex_dashboard$	$graft_dashboard2$	reinjury	age	height_m	${ m mass_kg}$	bmi	iko
0	Male	Other	NaN	20.184761	1.725412	74.343033	25.201579	78.45737
1	NaN	NaN	No	21.700000	1.900000	87.400000	24.210526	95.40000
2	NaN	NaN	NaN	20.184761	1.725412	74.343033	25.201579	78.45737
3	Female	HS autograft	NaN	20.184761	1.725412	74.343033	25.201579	78.45737
4	NaN	NaN	No	14.500000	1.600000	72.200000	28.203125	79.30000

For our categorical variables, we have decided to fill the missing values with just an Unknown category, since this allows us to keep the rows with missing values without losing too much information so that we can continue with plotting later on.

```
# Filtering for Categorical columns:
categorical_columns = df.select_dtypes(include=['object']).columns
# Imputing missing values with the value 'Unknown' for each respective column/variable:
for column in categorical_columns:
    m_df[column] = m_df[column].fillna('Unknown')

# Displaying the first 5 rows of the modified dataframe:
(m_df.head(5))
```

/Users/yuthimadireddy/anaconda3/lib/python3.11/site-packages/IPython/core/formatters.py:344:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	$sex_dashboard$	$graft_dashboard2$	reinjury	age	$height_m$	$mass_kg$	bmi	il
0	Male	Other	Unknown	20.184761	1.725412	74.343033	25.201579	78.457
1	Unknown	Unknown	No	21.700000	1.900000	87.400000	24.210526	95.4000
2	Unknown	Unknown	Unknown	20.184761	1.725412	74.343033	25.201579	78.4573
3	Female	HS autograft	Unknown	20.184761	1.725412	74.343033	25.201579	78.4573
4	Unknown	Unknown	No	14.500000	1.600000	72.200000	28.203125	79.3000

Now we have finished our early data cleaning process and are ready to explore relations in our EDA process.

2 Exploratory Data Analysis

Preview of the cleaned dataset (first five rows)

```
# setting up environment
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# importing data as dataframe:
df = pd.read_csv('aclr data(in).csv')
# Including relevant variables into our dataframe and dropping the others:
df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
df.head()
```

/Users/yuthimadireddy/anaconda3/lib/python3.11/site-packages/IPython/core/formatters.py:344:

In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `S

	$sex_dashboard$	$graft_dashboard2$	reinjury	age	${\rm height_m}$	$mass_kg$	bmi	ikdc	acl_rsi
0	Male	Other	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	No	21.7	1.9	87.4	24.210526	95.4	87.5
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	Female	HS autograft	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	No	14.5	1.6	72.2	28.203125	79.3	8.3

```
# Filtering for numeric columns:
numeric_columns = df.select_dtypes(include=['int', 'float']).columns
# imputing missing values with the mean for each respective column
mean_values = df[numeric_columns].mean()
m_df = df.fillna(mean_values)
```

2.0.1 Pairplot of our chosen variables

```
# Pairplot of filtered variables:
sns.pairplot(df[['age', 'height_m', 'mass_kg', 'bmi', 'ikdc', 'acl_rsi']], plot_kws={"s": 5}
plt.title('Pairplot of Quantitative Variables')
plt.show()
```


This pairplot illustrates the relationship between each pair of variables in our dataset. This is a quick and straightforward tool to see if there are any obvious correlations/clusters between

different elements. We can see that BMI and mass have the most postively correlated relationship, which is to be expected (since mass is used to calculate BMI). Other than that, there are no glaringly obvious trends between variables.

Looking at Specific Distributions

```
# Creating visualizations to illustrate distributions:
# SCATTERPLOT: Between height and mass_kg
plt.figure(figsize=(10,6))
sns.scatterplot(x='height_m', y='mass_kg', data=df)
# == SCAFFOLDING ==
plt.suptitle('Scatterplot of Height and Mass', weight = 'bold', fontsize = 16, x = 0.29)
# axis labels:
plt.xlabel('Height (m)', weight = 'bold')
plt.ylabel('Mass (kg)', weight = 'bold')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
plt.show()
```

Scatterplot of Height and Mass

This is a scatterplot that plots the distribution of height v mass between all the patients. There is a pretty positive correlation between the two variables, since as height increases, mass also tends to increase. There is one outlier where height is around 3.25 meters, or around 10 feet. This is most likely a typo and they intended to mark it as 1.25.

```
# Histogram for 'age':
plt.figure(figsize=(10,6))
df['age'].plot(kind='hist')
# == SCAFFOLDING ==
plt.suptitle('Histogram of Age', weight = 'bold', fontsize=16, x=0.20)
plt.title('Distribution of age values', fontsize=10, x=0.075)
plt.subplots_adjust(top = 0.91)
# axis labels:
plt.xlabel('Age', weight = 'bold')
plt.ylabel('Count', weight = 'bold')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
plt.show()
```

Histogram of Age

Distribution of age values

6. Examine Correlations (if relevant)

Interpret findings: What variables appear related?

```
# setting filtered_df to be the relevant columns:
filtered_df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_"]
# dropping categorical columns:
num_fil_df = filtered_df.drop(['sex_dashboard', 'graft_dashboard2', 'reinjury'], axis=1)
# creating correlation matrix of our filtered numerical columns
corr_matrix = num_fil_df.corr()

# plotting correlation heatmap:
plt.figure(figsize=(10,6))
sns.heatmap(corr_matrix, fmt=".1f", annot=True, cmap="coolwarm", center=0)
plt.title("Cleaned Dataframe: Correlation Heatmap", weight = 'bold', fontsize = 18, x=0.21)
plt.show()
```


Positively correlated variables seem to include: - ikdc and acl_rsi - bmi and mass_kg - tegner_now and ikdc - tegner_now and acl_rsi

Negatively correlated variables seem to include: - tegner pre and age - tegner now and age

7. Explore Relationships (if relevant)

Dig into potential causal or descriptive relationships Use visualizations and statistical summaries.

```
# Records were mismatched so we shifted row values by 1
# (for every graft_type recorded, reinjury was blank so shifted by 1 to match)
df['reinjury_shifted'] = df['reinjury'].shift(-1)
df_cleaned = df[df['graft_dashboard2'].notna()][['graft_dashboard2', 'reinjury_shifted']]
df_cleaned.columns = ['graft_dashboard2', 'reinjury']
print(df_cleaned.head()) # previewing cleaned dataset
df_cleaned = df_cleaned[
    (df_cleaned['reinjury'].str.upper() != 'BLANK') &
    (df_cleaned['graft_dashboard2'].str.upper() != 'BLANK')]
grouped_counts = (
    df_cleaned.groupby(['graft_dashboard2', 'reinjury'])
    .reset_index(name='count')
)
# #graft_order = ['HS allograft', 'BTB allograft', 'QT autograft', 'Allograft', 'Other']
# # Convert 'graft dashboard2' to a categorical type w order
# #grouped_counts['graft_dashboard2'] = pd.Categorical(
      grouped_counts['graft_dashboard2'],
      categories=graft_order,
      ordered=True
# )
# sort the DataFrame by this order for plotting
#grouped_counts = grouped_counts.sort_values('graft_dashboard2')
# plotting stacked bar chart:
plt.figure(figsize=(10, 6))
sns.barplot(
    data=grouped_counts,
    x='graft_dashboard2',
    y='count',
    hue='reinjury',
    palette='Set2'
```

```
# == SCAFFOLDING ==
plt.xlabel('Graft Type')
plt.ylabel('Count', weight = 'bold')
plt.title('Reinjury Types by Graft Type', weight = 'bold', fontsize = 16, x = 0.2)
plt.legend(title='Reinjury Type')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)

plt.tight_layout()
plt.show()
```

	graft_d	dashboard2	reinjury
0		Other	No
3	HS	autograft	No
8	HS	autograft	BLANK
10	HS	autograft	No
15	HS	autograft	No

Reinjury Types by Graft Type

HS Autograft has the highest proportion of no reinjuries, while the BTB autograft seems to have the highest recorded count of Contralateral reinjuries.

```
# Bar Chart: Focusing on Tegner as a metric since it assesses overall functionality
# calculating mean and std for both Tegner values:
mean_val = [filtered_df['tegner_pre'].mean(), filtered_df['tegner_now'].mean()]
std_val = [filtered_df['tegner_pre'].std(), filtered_df['tegner_now'].std()]
# == PLOTTING ==
plt.figure(figsize=(10,6))
plt.bar(['Pre', 'Now'], mean_val, yerr=std_val, capsize=5, color=['#7aa095', '#bf8b85'], alp
# SCAFFOLDING:
plt.suptitle('Tegner Performance Decreases after ACL Reconstruction ', weight='bold', fontsi:
plt.title('Comparing Tegner scores before surgery to scores recorded post-surgery', fontsize:
plt.subplots_adjust(top = 0.90) # adjusting space between the super title and the title
plt.ylabel('Tegner Score', weight='bold')
plt.xlabel('Pre vs. Now', weight='bold')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
plt.show()
```

Tegner Performance Decreases after ACL Reconstruction

Comparing Tegner scores before surgery to scores recorded post-surgery


```
# Creating a violin plot to compare the tegner_pre and tegner_now by age:

# PLOT
plt.figure(figsize=(12, 6))
sns.violinplot(data=filtered_df[['tegner_pre', 'tegner_now']], inner='quartile')

# SCAFFOLDING:
plt.suptitle('Tegner Scores are Lower After ACL Reconstruction', weight='bold', fontsize=16, plt.title('Comparing values from the pre_tegner to the current tegner values', fontsize=12,:
plt.subplots_adjust(top = 0.90) # adjusting space between the super title and the title
plt.ylabel('Tegner Score', weight='bold')
plt.xlabel('Pre vs. Now', weight='bold')
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
plt.show()
```

Tegner Scores are Lower After ACL Reconstruction Comparing values from the pre_tegner to the current tegner values

3 Data Visualization

setting plot size:

```
# Environment Setup:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from matplotlib import font_manager
# importing data as dataframe:
df = pd.read_csv('aclr data(in).csv')
# filtering df to be consistent with relevant variables of interest:
df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
# previewing df with relevant columns:
#df.head()
# Filtering for numeric columns:
numeric_columns = df.select_dtypes(include=['int', 'float']).columns
# imputing missing values with the mean for each respective column
mean_values = df[numeric_columns].mean()
m_df = df.fillna(mean_values)
# previewing the imputed dataframe:
#print(m_df.head(5))
df['sex_dashboard'] = df['sex_dashboard'].shift(-1)
# == PLOT PREPARATION ==
# data for graphing (getting rid of NaN values):
df_clean = df[['ikdc', 'acl_rsi', 'sex_dashboard', 'tss_dashboard']].dropna()
# Filter by sex
df_male = df_clean[df_clean['sex_dashboard'] == 'Male']
df_female = df_clean[df_clean['sex_dashboard'] == 'Female']
```

```
plt.figure(figsize=(10, 6))
# male graph:
plt.scatter(df_male['ikdc'], df_male['acl_rsi'],
            marker='x', label='Male', color='#0070BB', alpha=0.7, s=40)
# Plot females with square markers
plt.scatter(df_female['ikdc'], df_female['acl_rsi'],
            marker='o', label='Female', color='#F653A6', alpha=0.5, s=40)
# == SCAFFOLDING ==
# setting titles:
plt.suptitle('Physical and Mental Recovery Go Hand in Hand', weight = 'bold', fontsize = 16,
plt.title('Physical gains mirror mental gains in ACL Recovery Journey', color='#585757', for
plt.subplots_adjust(top = 0.905) # adjusting spacing between sub and main title
# setting x-axis and y-axis labels:
plt.xlabel('IKDC (Knee Function)', weight = 'bold', fontsize = 12)
plt.ylabel('ACL_RSI (Mental Readiness)', weight = 'bold', fontsize = 12)
# reducing clutter on the end of the x-axis:
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.locator_params(axis='x', nbins=8) # reduces x-axis ticks
# extra formatting (removing spines for cleaner look):
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
# adding source as annotation:
plt.figtext(0.1, -0.05, 'Source: UVA Department of Kinesiology and School of Data Science', I
plt.show()
```

Physical and Mental Recovery Go Hand in Hand

Physical gains mirror mental gains in ACL Recovery Journey

Source: UVA Department of Kinesiology and School of Data Science

Graph 2:

Planning on creating a scatterplot showing how both physical and mental readiness affect each other and the individual's overall confidence in returning to play.

```
# setting font
georgia_font = font_manager.FontProperties(family='Georgia')
plt.rcParams['font.family'] = georgia_font.get_name()

df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
df = df[df['reinjury'].str.upper() != 'BLANK'] #get rid of all blank in reinjury

prop_noreinjury = df['reinjury'].value_counts(normalize=True).get('No', 0) #get proportion of
print(f"Proportion of patients with no reinjury: {prop_noreinjury:.2%}") #print proportion

df['reinjury_shifted'] = df['reinjury'].shift(-1) #align reinjury with other values
df_cleaned = df[df['graft_dashboard2'].notna()][['graft_dashboard2', 'reinjury_shifted']] #g
df_cleaned.columns = ['graft_dashboard2', 'reinjury'] #rename
```

```
counts = ( #get counts of graft and reinjury
    df_cleaned.groupby(['graft_dashboard2', 'reinjury'])
    .size()
    .reset_index(name='count')
)
graft_order = ['Allograft', 'QT autograft', 'HS autograft', 'BTB autograft', 'Other'] #order
counts['graft_dashboard2'] = pd.Categorical( #set order in counts
    counts['graft_dashboard2'],
    categories=graft_order,
    ordered=True
total_per_graft = counts.groupby('graft_dashboard2')['count'].transform('sum') #get sums
counts['proportion'] = counts['count'] / total_per_graft #calculate proportions
#show proportions
print(counts)
print('No reinjury proportions by Graft type:\n' +
'Allograft: 0.83\n' +
'BTB autograft: 0.89\n' +
'HS autograft: 0.92\n' +
'QT autograft: 0.87\n' +
'Other: 0.84\n')
counts_noreinjury = counts[counts['reinjury'] != 'No'] #get rid of no reinjury bar
plt.figure(figsize=(10, 6))
sns.barplot( #make grouped barplot
    data=counts_noreinjury,
    x='graft_dashboard2',
    y='proportion',
   hue='reinjury',
    palette='mako'
)
plt.xlabel('Graft Type')
plt.ylabel('Proportion of Reinjury Type')
plt.title('Undergoing ACLR Surgery? Consider a Hamstring (HS) Tendon Autograft', fontsize=14
plt.text(0.01, 0.98, 'Comparing Proportions of Reinjury Types Across Different Graft Types',
         ha='left', va='center', transform=plt.gca().transAxes, fontsize=10, color='gray')
plt.legend(title='Reinjury Type', loc='upper left', bbox_to_anchor=(0.775, 1.0))
plt.text(-0.8, -0.02, 'Source: UVA Department of Kinesiology and School of Data Science', has
sns.despine(top=True, right=True, left=True) #get rid of axes
plt.show()
```

Proportion of patients with no reinjury: 87.47%

	graft_d	dashboard2	reinjury	count	proportion
0		Allograft	Both	1	0.009174
1		Allograft	Contralateral	3	0.027523
2		Allograft	Ipsilateral	15	0.137615
3		Allograft	No	90	0.825688
4	BTB	autograft	Contralateral	14	0.071066
5	BTB	autograft	Ipsilateral	7	0.035533
6	BTB	autograft	No	176	0.893401
7	HS	autograft	Contralateral	10	0.048544
8	HS	autograft	Ipsilateral	7	0.033981
9	HS	autograft	No	189	0.917476
10		Other	Contralateral	12	0.100840
11		Other	Ipsilateral	7	0.058824
12		Other	No	100	0.840336
13	QT	autograft	Contralateral	8	0.067797
14	QT	autograft	Ipsilateral	7	0.059322
15	QT	autograft	No	103	0.872881

No reinjury proportions by ${\tt Graft}$ type:

Allograft: 0.83 BTB autograft: 0.89 HS autograft: 0.92 QT autograft: 0.87

Other: 0.84

HS autograft

Graft Type

BTB autograft

Other

Source: UVA Department of Kinesiology and School of Data Science

QT autograft

Allograft

0.04 -

0.02 -

0.00

Graph 3: Looking at the relationship between different reinjuries between the sexes.

```
df2= df2[df2['reinjury'].str.upper() != 'BOTH'] # dropping 'both' reinjury records
grouped_counts2 = (
         df2.groupby(['sex_dashboard', 'reinjury'])
         .size()
         .reset_index(name='count')
)
# Create sub-dataframes for Contralateral and Ipsilateral
df_contra = grouped_counts2[grouped_counts2['reinjury'] == 'Contralateral']
df_ipsi = grouped_counts2[grouped_counts2['reinjury'] == 'Ipsilateral']
# Set up 1x2 subplot grid
fig, axs = plt.subplots(1, 2, figsize=(12, 5), sharey=True)
fig.suptitle('Males Reinjure Their ACLs More Than Females Overall', fontsize=14, weight='bold's fig. 1.5 fontsize=15, weigh='bold's fig. 1.5 fontsize=15, weigh='bold's fig. 1.5 fontsize=15, weigh='bold's fig. 1.5 fontsize=15, weigh='
# Contralateral subplot
colors_contra = df_contra['sex_dashboard'].map({'Male': '#C8E7F5', 'Female': '#F6D2E0'}) # ]
bars_contra = axs[0].barh(df_contra['sex_dashboard'], df_contra['count'], color=colors_contra
axs[0].set_title('Contralateral', loc='left', weight='bold', color='black')
axs[0].grid(axis='x', linestyle=':', color='gray')
axs[0].spines['top'].set_visible(False)
axs[0].spines['right'].set_visible(False)
axs[0].spines['bottom'].set_visible(False)
axs[0].tick_params(axis='x', length=0)
axs[0].tick_params(axis='y', length=0)
for bar in bars_contra:
         xval = bar.get_width()
         axs[0].text(xval + 0.5, bar.get_y() + bar.get_height()/2,
                                    round(xval), va='center', ha='left', fontsize=10)
# Ipsilateral subplot
colors_ipsi = df_ipsi['sex_dashboard'].map({'Male': '#C8E7F5', 'Female': '#F6D2E0'})
bars_ipsi = axs[1].barh(df_ipsi['sex_dashboard'], df_ipsi['count'], color=colors_ipsi)
axs[1].set_title('Ipsilateral', loc='left', weight='bold', color='black')
axs[1].grid(axis='x', linestyle=':', color='gray')
axs[1].spines['top'].set_visible(False)
```

Males Reinjure Their ACLs More Than Females Overall

Source: UVA Department of Kinesiology and School of Data Science

4 Data Dictionary

Here are the relevant variables we used to complete our analysis with their meanings.

Variable	Description
acl_rsi	The return-to-sport-after-injury score is self-reported by the patient.
age	The age at which the patient received surgery.
bmi	Body mass index of the patient.
$graft_dashboard2$	The types of grafts used in surgery are allograft, QT autograft,
	HS autograft, BTB autograft, and others.
height_m	The height of the patient in meters.
ikdc	A patient-reported outcome measure used to assess knee function
	and
	symptoms.
mass_kg	The weight of the patient in kilograms.
reinjury	The different types of reinjuries: contralateral, ipsilateral, and both.
sex dashboard	The gender of the patient: male or female.
tss_dashboard	Categorizes the months post-surgery into subsets.