<u>K-Means- מסמך אפיון</u>

1. פירוט לוגיקות

- rdd = spark.sparkContext.parallelize(MinMaxScaler().fit_transform(rdd.collect()))

 .sklearn של MinMaxScaler (בעזרת המודול , rdd את ה-dtransform(rdd.collect()))
- def mapper(point, centroids: list) פונקציה שאנחנו הגדרנו. הפונקציה מקבלת נקודה ומספר מרכזים, ומשייכת לנקודה את פונקציה שאנחנו הגדרנו. הפונקציה מקבלת נקודה ומספר מרכזים, ומשייכת לנקודה את האינדקס של המרכז הקרוב ביותר. הפונקציה מחזירה (center_index, point) כערכי reduce- בהמשך.
- mapped_points = rdd.map(lambda x: mapper(x, centroids)) פעולת ה-map מחזירה מיפוי של נקודה (הערך) לאינדקס של המרכז אליו היא משתייכת map-, ע"י שימוש בפונקציה mapper אותה הגדרנו.
 - combined = mapped_points.mapValues(lambda x: [x])
 - .reduceByKey(lambda x,y: x+y)
 - פעולת ה-PValues מכניסה כל ערך (נקודה) לתוך רשימה רק של עצמה.
- פעולת ה-reduceByKey משרשרת את כל הנקודות השייכות לאותו מפתח. כך אנחנו נשארים למעשה עם המיפוי של אינדקס קלאסטר, וכל הנקודות המשתייכות אליו.
 - new_centroids = combined.mapValues(lambda x: np.mean(np.array(x), axis=0)) פעולת ה-wapValues ממצעת את כל הערכים המשתייכים לאותו קלאסטר. כך מתקבלים מרכזי הקלאסטרים החדשים.

2. תיאור מבני נתונים

.numpy array ,tuple – אנחנו בחרנו להשתמש בשני סוגי אובייקטים מרכזיים value-... tuple - ה-tuple נועד לשמר את יחס הסדר ב-tuple

ב-numpy array השתמשנו על מנת לבצע פעולות מתמטיות על ווקטורים (מערכים) בצורה נכונה ומהירה.

בנוסף השתמשנו ברשימות על מנת לשמור את תוצאות ההרצות השונות.

3. תוצאות ההרצה

Dataset name	The value of K	Average and std CH	Average and std ARI
iris	2	(353.36740323251195, 5.684341886080802e-14)	(0.5681159420289854, 1.1102230246251565e-16)
iris	3	(312.1038017499549, 70.97403944321789)	(0.6301248138958002, 0.13169909930361712)
iris	5	(269.07042812312284, 23.82207586275842)	(0.5389121222666937,0.0647568131922123)
iris	7	(218.92616867013697, 16.929909486169343)	(0.4673120339822643, 0.08692269208869911)
iris	10	(210.76390285672443, 17.390417810601985)	(0.36470739330559765, 0.03408712333382743)
glass	2	(121.68024778360714, 45.100295998708106)	(0.15987500229633006, 0.09210876893396633)
glass	3	(98.09025954956306, 7.602075399354372)	(0.193907678915817, 0.04429019523320951)
glass	5	(83.66391494066158, 8.160298442088703)	(0.18304530169520888, 0.03782704876190398)
glass	7	(66.01445557194869, 11.38898258359348)	(0.15343057136429755, 0.03041039690888826)
glass	10	(54.26315021057818, 7.882818806398969)	(0.16986801568702,0.029894389143650592)
parkinsons	2	(84.21490248528623, 0.002449632386740886)	(0.04933655916084388, 0.003206967915889237)
parkinsons	3	(76.61249843876948, 1.184844228530847)	(0.08013314885131571,0.011975702889107619)
parkinsons	5	(63.368316397458486,3.8847190609035063)	(0.09579923410619967, 0.051438566522630624)
parkinsons	7	(53.528801563112026, 3.37718441463822)	(0.06300099208888192,0.027645007118145506)
parkinsons	10	(45.37961410094438, 1.7048506736637143)	(0.04175655431959015, 0.0166473188524759)