Plano de Ensino

Curso: 0625 - MATEMÁTICA - LICENCIATURA - CRÉDITOS Período Letivo: 2025 / 2

Disciplina: 06110003690 - ÁLGEBRA LINEAR Depto: FACET

Professor(es): KARLA KATERINE BARBOZA DE LIMA

Turma: T1 C.H.: 72 horas Duração: 1 Semestre

1. Objetivos:

Habilitar o estudante para a compreensão e utilização de métodos necessários à resolução de problemas, utilizando os conceitos de vetores e espaços vetoriais. Analisar qualitativamente o comportamento das transformações lineares e de suas matrizes associadas. Apresentar a aplicabilidade da teoria nas diversas áreas do conhecimento.

2. Ementa:

Matrizes e determinantes. Sistemas de equações lineares. Espaços vetoriais, base e dimensão. Transformações lineares. Matrizes de transformações lineares. Transformações lineares especiais: translação, reflexão, rotação e composição destas. Núcleo e imagem. Polinômio característico e mínimo. Autovalores e autovetores. Diagonalização de matrizes e operadores. Produto interno.

3. Conteúdo Programático:

1 Espaços Vetoriais

- Definição de Espaços Vetoriais e Exemplos clássicos;
- Propriedades gerais de espaços vetoriais reais;
- Subespaços: Definição, exemplos e propriedades;
- · Combinação linear e espaço gerado;
- conjuntos linearmente independentes e linearmente dependentes;
- Base e dimensão de espaços vetoriais;
- Coordenadas de vetores e mudanças de coordenadas.

2. Transformações Lineares

- Transformações Lineares: Definições, exemplos e propriedades;
- Núcleo, Imagem e Teorema do núcleo e da Imagem;
- Transformações lineares invertíveis;
- Matriz de uma transformação linear e matriz de mudança de base

3. Autovalores e Autovetores

- autovalores e autovetores de uma matriz: Definição e exemplos;
- autovalores e autovetores de um operador
- Polinômio característico;
- Diagonalização de matrizes e operadores;
- Base de autovetores;
- Aplicações de Diagonalização de matrizes: classificação das cônicas e superfícies quádricas.

5. Espaço com Produto Interno

- Produto interno: Propriedades e desigualdade de Cauchy Schwarz
- Ortogonalização de Gram Schmidt

4. Procedimentos de Ensino:

A metodologia adotada combinará exposições dialogadas, resolução de exercícios, atividades práticas e uso de recursos computacionais, buscando equilibrar o desenvolvimento conceitual, algébrico e geométrico da Álgebra Linear.

As aulas teóricas serão intercaladas com momentos de experimentação, nos quais os alunos explorarão conceitos por meio de softwares como GeoGebra, Python (NumPy/Matplotlib) e planilhas eletrônicas, com foco especial na visualização de transformações lineares e subespaços vetoriais.

Serão propostos projetos de ensino e atividades investigativas que permitam a aplicação dos conceitos estudados em situações práticas, incentivando a aprendizagem ativa, o trabalho em grupo e o desenvolvimento da autonomia discente.

A resolução de problemas será valorizada como ferramenta central para a construção do raciocínio matemático. Serão também utilizados materiais digitais, vídeos e recursos visuais para facilitar a compreensão dos temas mais abstratos, como autovalores, diagonalização e espaços com produto interno.

5. Recursos (Humanos, técnicos e materiais):

Quadro e pincel, projetor multimídia, computador, planilhas eletrônicas (Google Sheets ou Excel), softwares de álgebra e geometria dinâmica (GeoGebra), ambiente de programação (Python com bibliotecas NumPy e Matplotlib), textos didáticos, materiais visuais e audiovisuais.

6. Bibliografia Básica:

- ANTON, Howard; RORRES, Chris, Doering, Claus Ivo. Álgebra linear com aplicações. 8. ed. Porto Alegre: Bookman, 2001. 572 p.
- Álgebra linear. 3. ed. São Paulo, SP: Harbra, 1986. 411p.
- LIMA, ELON LAGES. Algebra linear. 2. Rio de Janeiro: Instituto de Matematica Pura e Aplicada, 1996. 357p.

Bibliografia Complementar:

ANTON, H. BUSBY, N. Álgebra Linear Contemporânea. Porto Alegre: Bookman, 2006.

CALLIOLI, Carlos A., DOMINGUES, Higino H. & COSTA, Roberto C. F., Álgebra Linear e Aplicações. São Paulo: Atual, 1990.

STEINBRUCH, Alfredo, WINTERLE Paulo. Álgebra Linear. Editora Pearson Education. Edição 2ª ED. 1987

SEYMOUR LIPSCHUT. Álgebra Linear. Editora Bookman, 2011.

POOLE David. Álgebra Linear. Uma introdução Moderna. Editora Cengage Learning, 2016

7. Avaliação:

A avaliação será composta por duas provas escritas (P1 e P2) e por um projeto de ensino, que envolverá a elaboração de um relatório escrito (Q) e a apresentação oral (P). A Média de Aproveitamento (MA) será calculada conforme a fórmula abaixo:

MA = 0.3P1 + 0.3P2 + 0.2P + 0.2Q

Os instrumentos de avaliação buscarão aferir a compreensão conceitual, a capacidade de resolução de problemas e a aplicação dos conteúdos em contextos práticos e investigativos.

Será oferecida uma prova substitutiva (PS), que poderá substituir a menor nota entre as avaliações escritas (P1 ou P2), desde que sua nota seja superior à nota a ser substituída. O conteúdo da PS corresponderá ao da prova com menor desempenho entre P1 e P2.

Previsão de datas das avaliações:

P1: 16/09/2025

P2: 25/11/2025

PS: 02/12/2025

Exame Final (EF): 09/12/2025

Critérios de aprovação:

De acordo com o Regulamento Geral dos Cursos de Graduação da UFGD (Título IX, Capítulo II, Art. 148), o(a) estudante será aprovado(a) no componente curricular se atender aos seguintes requisitos:

- Frequência mínima: 75% das atividades;
- Média de Aproveitamento (MA): igual ou superior a 6,0 (seis vírgula zero).

Nessas condições, a MA será considerada a Média Final (MF) e registrada no histórico escolar.

O(a) estudante que obtiver frequência mínima de 75% e MA entre 4,0 (inclusive) e 6,0 (exclusive) poderá realizar o Exame Final (EF). Conforme o §2º do mesmo artigo, será considerado aprovado aquele que obtiver nota igual ou superior a 6,0 no EF, sendo essa nota registrada como MF = EF.