Dr. Andrey Soldatenkov

Retry Exam: Commutative Algebra (V3A1, Algebra I)

Solutions can be written in English or German

Exercise A. (1+1+2+1 points)

Compute the dimensions of the following rings and provide a chain of prime ideals of maximal length in each case (p is a prime number and \mathbb{Z}_p is the localization with respect to $S = \{p^n\}$): i) $\mathbb{Z}_{(p)}$; ii) \mathbb{Z}_p ; iii) $\mathbb{Z}_p[X, 1/X]$; iv) $\mathbb{Z}_{(p)}[1/p]$.

Exercise B. (1 + 2 + 2 + 3 points)

Let B = k[X,Y], k a field, and $A = \{F(X,Y) \in B \mid F(0,0) = F(1,1)\}$. Show that $A \subset B$ does not have the going-down property by considering the prime ideals $\mathfrak{p}_2 := (X) \cap A$ and $\mathfrak{p}_1 := (X - 1, Y - 1) \cap A$. Proceed in three steps:

- i) Show $\mathfrak{p}_2 \subset \mathfrak{p}_1$;
- ii) Show that if $f(X,Y) \in k[X,Y]$ is irreducible with $(f) \cap A = \mathfrak{p}_2$, then (f) = (X);
- iii) Use i) and ii) to prove that the going-down property does not hold.
- iv) Which of the assumptions of the going-down theorem is not satisfied?

Exercise C. (2+2 points)

- i) Let A be a ring and $\mathfrak{a} \subset A$ a finitely generated ideal with $\mathfrak{a}^2 = \mathfrak{a}$. Show that there exists an element $e \in A$ with $\mathfrak{a} = (e)$ and $e^2 = e$ (i.e. \mathfrak{a} is generated by an idempotent).
- ii) Let A be a ring such that for all $a \in A$ there exists an n > 0 with $a^n = a$. Show that then $\dim(A) = 0$.

Exercise D. (2+1+1 points)

Define when a ring is called *normal* and decide which of the following rings are normal: i) $k[X,Y]/(X^2+Y^7)$; ii) $\mathbb{Z}[3i]$; iii) $k[X,Y]/(X^3-Y)$

Exercise E. (2+2 points)

Consider the subring $A \subset k(X,Y)$ of all h = f/g with $h(Y,Y) \in k(Y)$, that is all those h for which $g(Y,Y) \neq 0$ (assuming that f and g have no common factors).

- i) Describe a discrete valuation $\nu \colon k(X,Y)^* \to \mathbb{Z}$ such that A is its valuation ring.
- ii) Determine a uniformizing parameter.

Exercise F. (2+2 points)

Consider the ring $A := k[x, y, z]/(z(y - x^2), z^2)$, where k is a field.

- i) Show that $(y-x^2,z)^2$ is a primary ideal and that (z) is a prime ideal.
- ii) Determine a minimal primary decomposition of (0) and decide which of the associated prime ideals are isolated and which ones are embedded.

Exercise G. (2+2+2 points)

Let A := k[X, Y]. Determine Supp(M), Ann(M), and Ass(M) for each of the following three A-modules:

i) M = (X - Y); ii) M = A/(X - Y); iii) $M = A/(X^2, Y^3)$.

Klausureinsicht (review of corrected exam): Monday September 28, 11.15 – 12.45, seminar room 0.011.