Лабораторная работа №5 «Интерполяция функции».

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Лабораторная работа состоит из двух частей: вычислительной и программной. № варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Для исследования использовать:

- многочлен Лагранжа;
- многочлен Ньютона;
- многочлен Гаусса.

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
- b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- с) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

Оформить отчет, который должен содержать:

- Титульный лист.
- Цель лабораторной работы.
- Порядок выполнения работы.
- Рабочие формулы.
- Вычислительная часть лабораторной работы.
- Листинг программы.
- Результаты выполнения программы.
- Выводы

Варианты заданий для вычислительной части Таблица 1

	X	у	№ варианта	X_1	X_2		
Таблица 1.1	0,25	1,2557	1	0,251	0,402		
	0,30	2,1764	6	0,512	0,372		
	0,35	3,1218	11	0,255	0,405		
	0,40	4,0482	16	0,534	0,384		
	0,45	5,9875	21	0,272	0,445		
	0,50	6,9195	26	0,551	0,351		
	0,55	7,8359	31	0,294	0,437		
	X	у	No Dominoration	\mathbf{X}_1	X_2		
		1	варианта				
	0,50	1,5320	варианта 2	0,502	0,645		
2	0,50 0,55		1	0,502 0,751	0,645 0,651		
a 1.2		1,5320	2		,		
ица 1.2	0,55	1,5320 2,5356	2 7	0,751	0,651		
аблица 1.2	0,55 0,60	1,5320 2,5356 3,5406	2 7 12	0,751 0,523	0,651 0,639		
Таблица 1.2	0,55 0,60 0,65	1,5320 2,5356 3,5406 4,5462	2 7 12 17	0,751 0,523 0,761	0,651 0,639 0,661		
Таблица 1.2	0,55 0,60 0,65 0,70	1,5320 2,5356 3,5406 4,5462 5,5504	2 7 12 17 22	0,751 0,523 0,761 0,545	0,651 0,639 0,661 0,627		

	X	у	№ варианта	X_1	X_2		
Габлица 1.3	1,10	0,2234	3	1,121	1,482		
	1,25	1,2438	8	1,852	1,652		
	1,40	2,2644	13	1,168	1,463		
	1,55	3,2984	18	1,875	1,575		
	1,70	4,3222	23	1,189	1,491		
I	1,85	5,3516	28	1,891	1,671		
	2,00	6,3867	33	1,217	1,473		
	X	у	№ варианта	X_1	\mathbf{X}_2		
	1,05	0,1213	4	1,051	1,277		
Габлица 1.4	1,15	1,1316	9	1,562	1,362		
	1,25	2,1459	14	1,112	1,319		
ІИЦ	1,35	3,1565	19	1,573	1,375		
абл	1,45	4,1571	24	1,146	1,289		
T	1,55	5,1819	29	1,614	1,414		
	1,65	6,1969	34	1,154	1,328		
	X	у	№ варианта	X_1	X_2		
Таблица 1.5	2,10	3,7587	5	2,112	2,205		
	2,15	4,1861	10	2,355	2,254		
	2,20	4,9218	15	2,114	2,216		
	2,25	5,3487	20	2,359	2,259		
абл	2,30	5,9275	25	2,128	2,232		
T	2,35	6,4193	30	2,352	2,284		
	2,40	7,0839	35	2,147	2,247		

Методы для реализации в программе:

- 1 Многочлен Лагранжа,
- 2 Многочлен Ньютона с разделенными разностями,
- 3 Многочлен Ньютона с конечными разностями,
- 4 Многочлен Гаусса.

Таблица 2. Методы в программе

No॒	Метод	№	Метод	№	Метод
варианта		варианта		варианта	
1	1, 2, 3	10	1, 2, 3	19	1, 2, 3
2	1, 2, 4	11	1, 2, 3	20	1, 2, 4
3	1, 2, 3	12	1, 2, 4	21	1, 2, 3
4	1, 2, 3	13	1, 2, 3	16	1, 2, 3
5	1, 2, 4	14	1, 2, 4	23	1, 2, 4
6	1, 2, 3	15	1, 2, 3	24	1, 2, 3
7	1, 2, 3	16	1, 2, 3	25	1, 2, 3
8	1, 2, 4	17	1, 2, 4	26	1, 2, 4
9	1, 2, 4	18	1, 2, 3	16	1, 2, 4

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Когда возникает необходимость в использовании интерполяционных методов?
- 2. Чем отличается аппроксимация от интерполяции?
- 3. В чём сущность задачи интерполирования?
- 4. Поясните смысл терминов: интерполяция, экстраполяция.
- 5. Как найти приближенное значение функции при линейной интерполяции?
- 6. Как найти приближенное значение функции при квадратичной интерполяции?
- 7. Как строится интерполяционный многочлен Лагранжа?
- 8. Дайте определение понятий разделенной разности нулевого и первого порядков.
- 9. Объясните принцип построения интерполяционного полинома Ньютона.
- 10. Покажите графическую интерпретацию интерполяции.
- 11. В каких случаях используются конечные разности, в каких разделенные?
- 12. В каких случаях используют формулу Ньютона для интерполирования вперед и для интерполирования назад?
- 13. В каких случаях используют формулу Гаусса для интерполирования вперед и для интерполирования назад?
- 14. В каких случаях используют формулу Стирлинга?
- 15. В каких случаях используют формулу Бесселя?
- 16. В чем разница между глобальной и локальной разновидностями интерполяции?
- 17. В чем заключается интерполяция кубическими сплайнами.