# SE2003

# Formal Methods in Software Engineering

Spring-2024



```
MODULE main
VAR
    request : boolean;
    status : {ready, busy};
ASSIGN
    init(status) := ready;
    next(status) := case
        request = TRUE : busy;
        TRUE : {ready, busy};
    esac;
```



# AP = {p1, p2, ..., pk} Power Set(AP) = {{}, {p1},...,{pk}} {p1,p2}, {p1,p3},...,{p1,pk} ... {p1, p2,...,pk}}

Trace (Execution) is an infinite word over PowerSet(AP)

Traces(TS) is the {Trace( $\sigma$ ) |  $\sigma$  is an execution of the TS}



Atomic propositions p1: (request = 1) p2: (status = busy) Traces
{}{}{}{}....
{}{p1}{p2}{p2}...
{p1}{p1,p2}{p2}{p1,p2}...
{} {p1,p2} {p1,p2} {p1,p2}...
.
.

Traces of a TS describes its behavior with respect to the atomic propositions

### Property of a system?

AP-INF = set of infinite words over PowerSet(AP)

Property 1: p1 is always true

 ${A_0A_1A_2... \in AP-INF \mid each A_i contains p1}$ {p1}{p1}{p1}... {p1}{p1,p2}{p1,p2}...

Property 2: p1 is true at least one and p2 is always true  $\{A_0A_1A_2... \in AP\text{-INF} \mid \text{exists } A_i \text{ containing } p1 \text{ and every } A_i \text{ contains } p2\}$   $\{p2\}\{p2\}\{p2\}\{p2\}\{p2\}\{p2\}\{p2\}\{p2\}\{p2\}\}...$   $\{p1,p2\}\{p2\}\{p2\}...$ 

# Property of a system?

AP-INF = set of infinite words over PowerSet(AP)

A property over AP is a subset of AP-INF

## When does a system satisfies a property?



Transition system TS satisfies a property p if  $Traces(TS) \subseteq p$ 

AP-INF = set of infinite words over PowerSet(AP) It is a set of words also called linear time property

### Invariants





#### Invariants



Property p1 is written as G p1

TS doe not satisfy G p1

#### Invariants



AP-INF = set of infinite words over PowerSet(AP)

Property 1: p1 ^ not p2 is always true

 $\{A_0A_1A_2... \in AP\text{-INF} \mid \text{ each } A_i \text{ contains p1 } \land \text{ not p2}\}$  $\{p1\}\{p1\}\{p1\}...$ 

Property p1 is written as G p1 ^ ! p2

TS doe not satisfy G p1 ^ ! p2

#### Invariant

```
AP-INF = set of infinite words over PowerSet(AP)
```

Property 1:  $\phi$  is always true where  $\phi$  is a Boolean expression over AP

 $\{A_0A_1A_2... \in AP-INF \mid each A_i \text{ satisfies } \phi\}$ 

A property of the above form is called invariant property

it is written  $\boldsymbol{G}$   $\boldsymbol{\phi}$ 



G! (p1 ^ p3) ???

### Safety properties



AP-INF set of infinite words over PowerSet(AP)

Property if p1 is true then next step is p2 is true  $\{A_0A_1A_2...\in AP\text{-INF} \mid \text{IF } A_i \text{ contains p1}$ then A i+1 contains p2}

{p1}{p2}{p1}{p1,p2}{p2}{{p1}{p1,p2}...
{p2}{p2}{p2}...
{}}{}

- ·
- •
- •

Property is written as  $G(p1 \rightarrow X p2)$ ???

 $G(p1\rightarrow XXp2)$ 

Always: if p1 is true then in the next-to-next step p2 is true

F(p1 ^ X ! p1)

Somewhere: p1 is true and in the next step it becomes false

 $G(Xp2 \rightarrow p1)$ 

Always: if p2 is true then in the previous step p1 is true