Fall 2022 Econometrics Project

Jessica Li

Professor Allin Cottrell

ECN215 Econometric Theory and Methods

02/12/2022

Introduction

Many have studied and found that the severe income inequality not only creates negative impacts on overall economic performance, but also on social and health problems for the society. Considering the extent of detriments it bring to sustaining the prosperity of human lives, United Nations lists reducing inequality within and Among countries as the United Nations sustainable Development Goals, specifically, the goal targets at "progressively achieve and sustain income growth of the bottom 40 percent of the population at a rate higher than the national average by 2030(UNDP, 2022)". This issue is also highlighted by Robert J.Shiller, the winner of the 2013 Economics Nobel Prize, who once said that the rising inequality in the United States and elsewhere is the most important problem(St. Louis Post-Dispatch, 2013).

Focusing on this problem, In the book, *The Spirit Level*, the authors Kate Pickett and Richard G.Wilkinson use statistical analysis to further indicate that the increasing income inequality, measured by Gini coefficient, intensifies a range of social problems internationally and across the states in the U.S. However, even though this project was an influential piece at the time it was published, it received some criticisms on their method and approaches, but the critics tend to agree on the general message that the book conveys. Therefore, based on the work done

1

by Pickett and Wilkinson and their criticism, with a narrower scope of study, my goal for the project is to assess whether the income inequality can be an account for a series of social outcomes in the United States, and if there are any other better explanatory variables for these problems, in order to paint a fuller picture of what factors drive American society the way it is, and if reducing inequality is the main way to resolve these problems.

Literature review

In Richard Wilkinson and Kate Pickett's work, *The Spirit Level*, they argue that higher income inequality tend to associate with less trust between people, lower life expectancy, higher infant mortality rates, higher obesity rates, worse mental illness, lower education quality, higher teenage birth rate, higher homicide rate, and higher imprisonment rates. They suggest that these are not merely impacts on the people in the lower income group, the effects run through the society as a whole. Though they mentioned the effects other factors could have on these health and social indices, their statistical analysis only presented and based on the linear regression between Gini coefficient and each indices. This is also a part of the reason that the book has been subject to many criticisms - critics have indicated that they did not take account of other causal factors which might affect the health and social outcome measures. Targeting on this specific issue, In 2015, Simone Rambotti from the University of Arizona proposed to look into the possible spuriousness of their analysis and assess the potential role of poverty and the interaction between poverty and inequality in terms of explaining the social outcomes internationally and nationally for U.S.

In his paper, *Recalibrating the Spirit Level*, Rambotti focused on life expectancy and index of social and health problems for his research, and reached to the conclusion that poverty

has a significant adverse effect on both outcomes, and the effect of inequality becomes nonsignificant when poverty is taken into account. Therefore, He hence concluded that inequality and poverty are two different social issues that might have been confounded in the research done by Wilkinson and Pickett.

Inspired by Rambotti's work, I thereby decided to introduce two additional economic measures as the additional potential explanatory variables to the model: poverty rate and education scores, and take the possible influences from other social outcomes into account.

Instead of focusing on two specific outcomes, I will apply these additional variables across the social outcomes mentioned in Wilkinson and Pickett's work, in order to build a better model that explains the social and health problems that exist in the United States.

The Data

Since my project is based on *The Spirit Level*, I decided to use the same dataset collected by Wilkson and Pickett with one additional economic indicator as the potential alternative explanatory variable as opposed to the income inequality: the poverty rate by state, which is suggested by Simone Rambotti in his study. A detailed account for the meaning of each variable used in this project and their source is organized in a table below:

Variable Name	Description	Source
State	The name of 50 states in the United States	
Gini	The measure of income inequality (varies between 0 to 1. 0 represents the perfect inequality and 1 represents the perfect inequality) by	U.S. Census Bureau, Table S4. Gini Ratios by State: 1969, 1979, 1989, 1999

	states in 1999.	
Poverty Rate	Number of people in poverty per a 1,000 people by states in 1999	U.S. Census Bureau
Life Expectancy	Life expectancy at birth for men and women by states in 2000	US Census Bureau. Population Division, Interim State Population Projections, Table 2. Internet release date: April 21, 2005.
Infant Mortality	Deaths in the first year of life per 1, 000 live births by states in 2002	US National Center for Health Statistics. Table 105, Statistical abstract of the United States. Washington, DC: CDC, 2006.
Mental Illness	Average number of days in the past month when mental health was not good by states in 2000	H. S. Zahran, R. Kobau, D. G. Moriarty, M. M. Zack, J. Holt, R. Donehoo. 'Health-related quality of life surveillance - United States, 1993-2002'. MMWR Surveill Summ 2005; 54(4): 1-35.
Education scores	Combined average of math and reading scores for 8th graders by states in 2003	US Department of Education NCfES. The Nation's Report Card: Reading Highlights 2003. Washington, DC, 2004. US Department of Education NCfES. The Nation's Report Card: Mathematics Highlights 2003. Washington, DC, 2004.
Teenage Birth Rate	Birth per 1,000 women aged 15-19 years by states in 2000.	US Census Bureau. Statistical Abstract of the United States: 2000 (120th Edition). Washington: Census Bureau, 2000.
Homicides	Homicide rate per 100,000 by	Federal Bureau of

	states in 1999	Investigation. Crime in the United States 1999.
Imprisonment	Prisoners per 100,000 by states in 1998	US Department of Justice BoTS. Incarceration rates for prisoners under State or Federal jurisdiction.
Obesity	Percentage of the population with BMI >30, averaged for men and women by states in 1999	M. Ezzati, H. Martin, S. Skjold, S. Vander Hoorn, C. J. Murray. Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys'. J R Soc Med 2006; 99(5): 250-7

For the purpose of this project, I group the above variables into two categories: the Economic indicators (Gini, poverty rate, and education scores) and the social outcome measures (Life expectancy, infant mortality, mental illness, teenage birth rate, homicides, imprisonment and obesity).

Modeling

There are two stages of my modeling for the project that serve different purposes. In the first stage, the dependent variables will be each social outcome measures and the regressors will only be selected from economic measures, in order to examine the impact of economic activity on the social problems and if the alternative variables can rule out the explanatory power of income inequality, measured by Gini ratio. In the second stage, I will expand the range of regressors to be both economic and social indicators, in order to better explain what factors contribute towards certain social problems to what extent in the society as a whole.

For both stages, I examined the correlation matrix of each variable against each other and used it as a reference for selecting independent variables for each dependent variable. It's noteworthy that there is a high correlation between Life expectancy and infant mortality that might incur a multicollinearity problem, but the later model suggests that there isn't a case where these two variables come to be the independent variables at the same time, so this problem is avoided.

<u>First Stage</u> (see detail models in Appendix)

For each social outcomes, I compared the adjusted R-Squared values between the model use solely Gini as the dependent variable and the model that selected dependent variables based on the correlation matrix, and the all appear to have a substantial improvement expect for the mental illness(from 0.089079 to 0.070758), suggesting that the Gini coefficient can provide the strongest explanation for this problem by itself.

However, except for Teenage birth rate and Obesity, Gini ratio still remains significant in the new models with the introduction of other two economic indicators. This suggests that looking at other factors do help paint a clearer picture of what contributes to certain social problems, but these factors do not necessarily invalidate the explanatory power of Gini ratio as Rambotti suggests.

I want to highlight that for the model for the social outcome Obesity, the adjusted R square value remain negative before and after introducing new economic indicators as dependent variables(-0.019319 to -0.009663), which means that this model only have very weak explanatory power, so I decide not proceed this one further for testing because it's unnecessary and leave it to the stage two.

Afterwards, I have applied three tests to the preliminary models, which will be further explained in the testing section. Majority of them stay the same with the initial model, except that I have adjusted the nonlinearity for Teenage birth rate, and nonlinearity and heteroskedasticity for Imprisonment.

<u>Second Stage</u> (see detail models in Appendix):

In this stage, I build models with the dependent variables suggested by the correlation matrix against each social outcome. Similar to the first stage, I later adjusted the model after running four hypothesis testing, and the majority of them achieved significant improvement in the adjusted R square value. In addition to the Teen Birth Rate and mental illness, the adjusted R values for the rest of the models reached 0.47 and above with the highest being 0.934826 for the Infant Mortality model.

For the Teenage Birth Rate Model, the adjusted R squared value was in fact lower than the models in the first stage, this means that this particular aspect of social problem is not as susceptible to the other selected social indicators. However, considering the adjusted R squared value for the first stage model wasn't very high, it is possible that there are better predictors out there for this social outcome.

As for the mental illness model, regardless of the subtle increase in the adjusted R squared, none of the dependent variables (Gini, LifeExpectancy, Educationscores, Obesity) appear to be significant by their large p-values, and the nonlinear test doesn't suggest any quadratic transformation that can improve the model. Similar to the Teenage birth rate, it is possible that there could be better predictors than the ones listed in my dataset. This could make sense because there are a number of scholars who regard genetics to be the main contributor to mental illness rather than socio-economic factors.

Testing (see details in appendix)

There are three hypotheses that I used for the models in the first stage, and I will be explaining their meaning and application in the model respectively.

1. Test for nonlinearity

By running the test for nonlinearity, I aim to determine whether there are any squares of the dependent variable that can be useful for improving the current model. The null hypothesis of the parameter is not significant is rejected at the 5% significance level, so if the p-value of any squared term is less than 0.05, then I will add it to the model to include one more significant predictor.

2. White's test for heteroskedasticity

White's test is used to test whether the variance of the error term in the regression model is constant, with its null hypothesis being the variance for every error term is equal. If the test statistic shows that the null hypothesis is rejected at the 5% level of significance, it means that the model is subject to the problem of heteroscedasticity, meaning that the variances are homogenous, and therefore violating the IID condition for the OLS model. In order to solve this problem, I will switch to the robust standard deviation if the white's test is rejected.

3. Joint F-test

I use F-test to test the joint significance of the dependent variables in the model. The null hypothesis for this test is that all the variables have no predictive power for the independent variable (coefficient for each variable equals to 0). If the test statistics fail to reject the null hypothesis at 5% level of significance, I will remove the insignificant regressors to improve the model.

For the models in the first stage, based on the test results, I added the square of poverty rate as an additional variable to the model whose dependent variable is teenage birth rate, and the square of Gini ratio for the imprisonment model. Based on the white's test, the p-value for the test statistic for the imprisonment model is 0.036693, which rejects the null hypothesis for being less than 0.05, so I switched to the robust standard error for this model.

For the second stage, considering the larger scale of the number of dependent variables, I applied one more hypothesis testing: the sum of coefficients as another joint test. This test calculates the sum of coefficients of selected variables, and the p-value alongside with the standard error. As the null hypothesis for this test is that the sum equals to 0, I will remove the insignificant regression if the p-value exceeds 0.05.

Based on the result, I added the square of Life Expectancy to the infant mortality model, the square of education scores and teenage birth rate to the imprisonment model, and square of Gini to the Obesity model. According to the joint coefficient sum test, there are two models that fail to reject the null hypothesis: imprisonment and obesity, respectively with the p-value of 0.748309 and 0.940321. Therefore, I removed the variables in the test that has shown to be no predictive power for these two models.

Conclusion

Based on the result of the econometric modeling and testing, there are two general conclusions that can be drawn: (i) For most social outcomes, the income inequality proves to be a significant dependent variable that accounts for dependent variables. (ii) Social outcomes are better explained by the impacts from both economic and social factors.

In answering the question of this project, I can conclude that higher income inequality can explain for lower life expectancy, higher mental illness, higher homicide rates, and higher imprisonment rates. However, there can be cases that other variables have stronger explanatory power to the negative social outcomes. In the case of infant mortality, it is possible that the poverty rate, which is the only one out of three economic indicators that have positive coefficient, serve as the main driver towards the problem rather than the income inequality. because it is shown that higher income inequality can lead to lower infant mortality and lower obesity. Therefore, even though most of the results confirm the argument made in *The Spirit level*, it also validates some points made in the book's criticism: As the income inequality is able to explain the worsening of some social problems, we should strive for a more egalitarian society for people to thrive. However, we can't reach to the conclusion that reducing the income equality

can *promised* a society with a better living conditions, because there are many more factors that can play a role in here: the relevant social problems, education level, as well as the poverty, which, as Rombitti suggests, is a separate issue apart from inequality and can be confounded with one another sometimes.

Suggestions for further work

I can see many ways that this project can be developed further. Since I based my project on Wilkinson and Pickett's work, so I didn't expand my dataset, and it appear that some variables (Teenage birth rate and the mental illness) were failed to be explained by the variables in the dataset, so I think exploring more reasonable economic and social indicators that can be used for explanatory variables would certainly be helpful in advancing my current models and the results. Besides, due to the limit in time and length, there are some aspects that I wasn't able to dig into:

1) the possible effects of the interaction terms between economic indicators, as what have been done in Rambotti's work and 2) determining the which predictor is more important among all the current predictors. In addition, I think it would also be interesting to look internationally, and to investigate the differences and similarities for what can be accounted for the social problems in each country.

References:

- 1. Guardian News and Media. (2010, July 8). The spirit level is not on the level | Natalie Evans. The Guardian. Retrieved December 3, 2022, from https://www.theguardian.com/commentisfree/2010/jul/08/spirit-level-book-critique
- 2. Pickett, Kate, and Richard Wilkinson. The Spirit Level. Penguin Books, 2010.

3. Rambotti S. Recalibrating the spirit level: An analysis of the interaction of income inequality and poverty and its effect on health. Soc Sci Med. 2015 Aug;139:123-31. doi: 10.1016/j.socscimed.2015.02.026. Epub 2015 Feb 18. PMID: 25726520.

Appendix:

<u>Preliminary models for the first stage and the tests:</u>

(the hypothesis testing is showing for the model 2 as an example for saving space)

Model 1: OLS, using observations 1-51
Dependent variable: LifeExpectancy

CO	efficient	std.	error	t-ratio	p-value	
const	 92 . 1784	3.12	2092	29.54	7.04e-33 *	***
Gini -	34.0085	6.95	5281	-4.891	1.12e-05 *	t * *
Mean dependent	var 76.93	725	S.D. dep	pendent vai	1.51828	33
Sum squared res	id 77.44	527	S.E. of	regression	n 1.25718	36
R-squared	0.328	770	Adjusted	d R-square	d 0.3143	65
F(1, 49)	23.92	507	P-value	(F)	0.00001	L1
Log-likelihood	-83.01	839	Akaike d	criterion	170.036	58
Schwarz criteri	on 173.90	004	Hannan-Ç	Quinn	171.513	32

Model 2: OLS, using observations 1-51 Dependent variable: LifeExpectancy

	coefficient	std. error	t-rati	o p-value	
const	67.6696	11.2813	5.998	2.71e-07	***
Gini	-19.6403	8.47374	-2.318	0.0249	**
Povertyrate	-0.101721	0.0705242	-1.442	0.1558	
Educationscores	0.0711133	0.0300756	2.364	0.0222	**
Mean dependent var	76.93725	S.D. dependent	var	1.518283	
Sum squared resid	61.80605	S.E. of regres	sion	1.146744	
R-squared	0.463765	Adjusted R-squ	ared	0.429537	

F(3, 47)	13.54937	P-value(F)	1.69e-06
Log-likelihood	-77.26634	Akaike criterion	162.5327
Schwarz criterion	170.2600	Hannan-Quinn	165.4855

<u>Hypothesis Testing:</u>

Auxiliary regression for non-linearity test (squared terms):

Test statistic: $TR^2 = 6.2056$, with p-value = P(Chi-square(3) > 6.2056) = 0.102025

White's test for heteroskedasticity:

Test statistic: $TR^2 = 7.785655$, with p-value = P(Chi-square(2) > 7.785655) = 0.020388

Test on Model 2:

Null hypothesis: the regression parameters are zero for the variables Gini, Povertyrate, Educationscores

Test statistic: F(3, 47) = 13.5494, p-value 1.68942e-06

Model 3: OLS, using observations 1-51

Dependent variable: InfantMortality

	coeffic	cient	std.	error	t-ratio	p-	value	
const Gini	-5.056 27.308			8097 0937	-1.541 3.736		1297 0005	***
Mean depende Sum squared		7.182 85.59			ependent va f regressio		1.483 1.321	
R-squared		0.221	. • .	_	ed R-squar	ed		5824
F(1, 49) Log-likeliho Schwarz crit		13.95 -85.56 179.0	892	P-value Akaike Hannan	criterion		0.000 175.2 176.6	1378

Model 4: OLS, using observations 1-51 Dependent variable: InfantMortality

	coefficient	std. error	t-ratio	p-value	
const	25.5594	11.2923	2.263	0.0283	**
Gini Povertyrate	9.42174 0.121488	8.48203 0.0705931	1.111 1.721	0.2723 0.0918	*

Educationscores	-0.0887105	0.0301050 -2.94	7 0.0050 ***
Mean dependent var	7.182353	S.D. dependent var	1.483065
Sum squared resid	61.92699	S.E. of regression	1.147866
R-squared	0.436895	Adjusted R-squared	0.400952
F(3, 47)	12.15526	P-value(F)	5.19e-06
Log-likelihood	-77.31619	Akaike criterion	162.6324
Schwarz criterion	170.3597	Hannan-Quinn	165.585

Model 5: OLS, using observations 1-51

Dependent variable: MentalIllness

	coeffic	cient	std.	error	t-ratio	p-	value	
const Gini	0.611 5.661			4720 3296	0.5841		5618 0190	**
Mean depende		3.149 8.719			dependent vandent vandent vandent		0.441	
R-squared		0.107	298	Adjus	ted R-squar	ed	0.08	9079
F(1, 49)		5.889	520	P-valu	ле (F)		0.018	3955
Log-likelih	ood	-27.32	592	Akaik	e criterion		58.65	5185
Schwarz crit	terion	62.51	550	Hannar	n-Quinn		60.12	2826

Model 6: OLS, using observations 1-51 Dependent variable: MentalIllness

	coefficient	std. error	t-ratio	p-value	
const Gini Educationscores	1.29029 5.29494 -0.00190753	3.83477 3.08558 0.0103613	0.3365 1.716 -0.1841	0.7380 0.0926 0.8547	*
Mean dependent var	3.149020	S.D. dependent	var 0	.441983	
Sum squared resid	8.713273	S.E. of regress	ion 0	.426059	
R-squared	0.107928	Adjusted R-squa	red 0	.070758	
F(2, 48)	2.903646	P-value(F)	0	.064506	
Log-likelihood	-27.30792	Akaike criterio	n 60	0.61585	
Schwarz criterion	66.41132	Hannan-Quinn	62	2.83047	

Model 7: OLS, using observations 1-51 Dependent variable: Teenagebirthrate

	coeffic	cient	std.	error	t-ratio	p-va	ılue
const Gini	12.92° 2.95	-		 2834 4272	2.987 0.3067	0.00	
Mean depende	nt var	14.25	294	S.D.	dependent va	ar 1	.727698
Sum squared	resid	148.9	612	S.E.	of regression	on 1	.743567
R-squared		0.001	915	Adjus	ted R-squar	ed -	0.018454
F(1, 49)		0.094	034	P-val	ue(F)	C	.760409
Log-likeliho	od	-99.69	830	Akaik	e criterion	2	203.3966
Schwarz crit	erion	207.2	603	Hanna	n-Quinn	2	204.8730

Model 8: OLS, using observations 1-51 Dependent variable: Teenagebirthrate

	coefficient	std. error	t-rati	o p-value	
const Povertyrate Educationscores	44.1802 -0.198185 -0.103053	8.75272 0.0949435 0.0309964	5.048 -2.087 -3.325	0.0422	*** **
Mean dependent var Sum squared resid	14.25294 119.1001	S.D. dependent S.E. of regres	-	1.727698 1.575199	
R-squared	0.201993	Adjusted R-squ	ared	0.168743	
F(2, 48) Log-likelihood Schwarz criterion	6.074940 -93.99341 199.7823	P-value(F) Akaike criteri Hannan-Quinn	.on	0.004448 193.9868 196.2014	

Model 9: OLS, using observations 1-51

Dependent variable: Homicides

	coeffic	cient	std.	error	t-ratio	p-	value	
const	-2426	.42	102	7.65	-2.361	0.	0222	**
Gini	6305	.19	228	9.41	2.754	0.	0082	***
Mean depende	nt var	399.2	941	S.D. de	ependent va	ar	440.3	3810
Sum squared :	resid	8396	978	S.E. o	f regression	on	413.	9649
R-squared		0.134	044	Adjust	ed R-squar	ed	0.11	6371
F(1, 49)		7.584	861	P-value	e(F)		0.008	8236
Log-likeliho	od	-378.6	606	Akaike	criterion		761.3	3211
Schwarz crite	erion	765.1	848	Hannan	-Quinn		762.	7975

Model 10: OLS, using observations 1-51

Dependent variable: Homicides

	coefficient	std. error	t-rati	o p-value	
const	5338.55	3075.90	1.736	0.0892	*
Gini	3431.44	2310.41	1.485	0.1442	
Povertyrate	-119.920	19.2288	-6.236	1.18e-07	***
Educationscores	-19.2098	8.20025	-2.343	0.0234	**
Mean dependent var	399.2941	S.D. dependent	var	440.3810	
Sum squared resid	4594712	S.E. of regres	sion	312.6657	
R-squared	0.526161	Adjusted R-squ	ared	0.495916	
F(3, 47)	17.39658	P-value(F)		9.78e-08	
Log-likelihood	-363.2849	Akaike criteri	.on	734.5699	
Schwarz criterion	742.2972	Hannan-Quinn		737.5227	

Model 11: OLS, using observations 1-51

Dependent variable: imprisonment

	coefficient	std. error	t-ratio	p-value
const Gini	-2742.43 7002.49	465.531 1037.11	-5.891 6.752	3.44e-07 *** 1.61e-08 ***

Mean dependent var	395.7843	S.D. dependent var	257.9282
Sum squared resid	1723165	S.E. of regression	187.5277
R-squared	0.481965	Adjusted R-squared	0.471393
F(1, 49)	45.58822	P-value(F)	1.61e-08
Log-likelihood	-338.2760	Akaike criterion	680.5520
Schwarz criterion	684.4156	Hannan-Quinn	682.0284

Model 12: OLS, using observations 1-51 Dependent variable: imprisonment

	coefficient	std. error	t-rati	o p-value	
const	2670 . 92	 1499.14	1.782	0.0811	*
Gini	4076.79	1206.26	3.380	0.0014	***
Educationscores	-15.2167	4.05057	-3.757	0.0005	***
Mean dependent var	395.7843	S.D. dependent	. var	257.9282	
Sum squared resid	1331643	S.E. of regres	sion	166.5610	
R-squared	0.599668	Adjusted R-squ	ared	0.582988	

F(2, 48)	35.95029	P-value(F)	2.87e-10
Log-likelihood	-331.7034	Akaike criterion	669.4067
Schwarz criterion	675.2022	Hannan-Quinn	671.6214

Model 13: OLS, using observations 1-51

Dependent variable: Obesity

	coeffic	cient	std.	error	t-ratio	<i>y</i> -q	<i>r</i> alue	
const Gini	36.584 -5.026			 85895 9639	3.711 -0.2289		0005 3199	***
Mean depende	ent var	34.33	137	S.D. d	lependent va	ır	3.933	3624
Sum squared	resid	772.8	436	S.E. o	f regression	n	3.97	1438
R-squared		0.001	068	Adjust	ed R-square	ed	-0.01	9319
F(1, 49)		0.052	381	P-valu	ie (F)		0.819	9924
Log-likeliho	ood	-141.6	813	Akaike	criterion		287.3	3625
Schwarz crit	terion	291.2	262	Hannan	-Quinn		288.8	3390

Model 14: OLS, using observations 1-51

Dependent variable: Obesity

	coefficient	std. error	t-ratio	p-value	
const Povertyrate	32.5734 0.162360	2.49656 0.224840	13.05 0.7221	1.46e-17 0.4737	***
Mean dependent v	yar 34.33137	S.D. deper	ndent var	3.933624	
Sum squared resi	id 765.5232	S.E. of re	egression	3.952584	
R-squared	0.010530	Adjusted 1	R-squared	-0.009663	
F(1, 49)	0.521452	P-value(F))	0.473655	
Log-likelihood	-141.4386	Akaike cr	iterion	286.8772	
Schwarz criterio	on 290.7408	Hannan-Qu	inn	288.3536	

<u>Final models for the first stage</u> (include only the ones have changed)

Model 15: OLS, using observations 1-51 Dependent variable: Teenagebirthrate

coefficient std. error t-ratio p-value

const	56.2165	8.88516	6.327	8.60e-08	***
Povertyrate	2.20259	0.763373	2.885	0.0059	***
sq_Povertyrate	-0.122967	0.0388442	-3.166	0.0027	***
Educationscores	-0.187887	0.0390757	-4.808	1.60e-05	***
Mean dependent var	14.25294	S.D. dependent	var	1.727698	
Sum squared resid	98.16874	S.E. of regress	sion	1.445232	
R-squared	0.342240	Adjusted R-squa	ared	0.300255	
F(3, 47)	8.151547	P-value(F)		0.000179	
Log-likelihood	-89.06485	Akaike criterio	on	186.1297	
Schwarz criterion	193.8570	Hannan-Quinn		189.0825	

Model 16: OLS, using observations 1-51

Dependent variable: imprisonment

 ${\tt Heteroskedasticity-robust\ standard\ errors,\ variant\ HC1}$

coefficient	std. error	t-rat	io p-value	
20228.5	2854.95	7.08	5 6.07e-09	***
-78624.9	13526.8	-5.81	3 5.17e-07	***
90325.1	15089.2	5.98	6 2.83e-07	***
-10.3701	3.63691	-2.85	1 0.0064	***
395.7843	S.D. dependent	var 2	257.9282	
734303.5	S.E. of regres	sion :	124.9939	
0.779246	Adjusted R-squ	ared	0.765156	
55.18058	P-value(F)		1.96e-15	
-316.5246	Akaike criteri	on	641.0492	
648.7765	Hannan-Quinn		644.0020	
	20228.5 -78624.9 90325.1 -10.3701 395.7843 734303.5 0.779246 55.18058 -316.5246	20228.5 2854.95 -78624.9 13526.8 90325.1 15089.2 -10.3701 3.63691 395.7843 S.D. dependent 734303.5 S.E. of regres 0.779246 Adjusted R-squ 55.18058 P-value(F) -316.5246 Akaike criteri	20228.5 2854.95 7.08 -78624.9 13526.8 -5.81 90325.1 15089.2 5.98 -10.3701 3.63691 -2.85 395.7843 S.D. dependent var 734303.5 S.E. of regression 0.779246 Adjusted R-squared 55.18058 P-value(F) -316.5246 Akaike criterion	20228.5 2854.95 7.085 6.07e-09 -78624.9 13526.8 -5.813 5.17e-07 90325.1 15089.2 5.986 2.83e-07 -10.3701 3.63691 -2.851 0.0064 395.7843 S.D. dependent var 257.9282 734303.5 S.E. of regression 124.9939 0.779246 Adjusted R-squared 0.765156 55.18058 P-value(F) 1.96e-15 -316.5246 Akaike criterion 641.0492

Preliminary models for the second stage and the tests:

(the hypothesis testing is showing for the model 16 as an example)

Model 16: OLS, using observations 1-51 Dependent variable: LifeExpectancy

	coefficient	std. error	t-ratio	p-value
const	84.4962	6.70040	12.61	4.85e-16 ***
Gini	-5.84097	5.39121	-1.083	0.2847
Povertyrate	-0.0388077	0.0402952	-0.9631	0.3409
InfantMortality	-0.233492	0.103200	-2.263	0.0288 **
MentalIllness	-0.383575	0.235867	-1.626	0.1112

Educationscores	0.0199156	0.0197251	1.010	0.3183	
imprisonment	-0.00234416	0.000607185	-3.861	0.0004	***
Obesity	-0.177019	0.0294194	-6.017	3.45e-07	***
Mean dependent var	76.93725	S.D. dependent	var 1	.518283	
Sum squared resid	17.28722	S.E. of regress	sion 0	.634057	
R-squared	0.850014	Adjusted R-squa	red 0	.825598	
F(7, 43)	34.81347	P-value(F)	1	.03e-15	
Log-likelihood	-44.77848	Akaike criterio	n 1	05.5570	
Schwarz criterion	121.0116	Hannan-Quinn	1	11.4626	

Hypothesis testing

Auxiliary regression for non-linearity test (squared terms) OLS, using observations 1-51:

Test statistic: $TR^2 = 10.2023$, with p-value = P(Chi-square(7) > 10.2023) = 0.177394

Joint Test on Model 16:

Null hypothesis: the regression parameters are zero for the variables Gini, Povertyrate, InfantMortality, MentalIllness, Educationscores, imprisonment, Obesity

Test statistic: F(7, 43) = 34.8135, p-value 1.02611e-15

Coefficient sum joint test on Model 16:

Variables: const Gini Povertyrate MentalIllness Educationscores
 Sum of coefficients = 78.2528
 Standard error = 5.80355
 t(43) = 13.4836 with p-value = 4.81032e-17

White's test for heteroskedasticity:

Test statistic: $TR^2 = 36.554242$, with p-value = P(Chi-square(35) > 36.554242) = 0.396435

Model 17: OLS, using observations 1-51 Dependent variable: InfantMortality

	coefficient	std. error	t-ratio	p-value
const	46.8214	19.2996	2.426	0.0194 **
Gini	-3.79316	7.87307	-0.4818	0.6323

Povertyrate	0.0672577	0.0589453	1.141	0.2600	
LifeExpectancy	-0.385082	0.210363	-1.831	0.0739	*
Educationscores	-0.0430944	0.0283723	-1.519	0.1359	
imprisonment	0.00136499	0.00101409	1.346	0.1852	
Obesity	0.0593366	0.0578467	1.026	0.3106	
Mean dependent var	7.182353	S.D. dependent v	ar 1.	483065	
Sum squared resid	38.45161	S.E. of regressi	on 0.	934826	
R-squared	0.650358	Adjusted R-squar	ed 0.	602679	
F(6, 44)	13.64048	P-value(F)	1.	11e-08	
Log-likelihood	-65.16403	Akaike criterion	14	4.3281	
Schwarz criterion	157.8508	Hannan-Quinn	14	9.4955	

Model 18: OLS, using observations 1-51 Dependent variable: MentalIllness

	coefficient	std. error	t-rat	io	p-value
const	1.70506	6.40510	0.26	62	0.7913
Gini	5.04757	3.33016	1.51	-6	0.1364
LifeExpectancy	-0.0207168	0.0750943	-0.27	759	0.7839
Educationscores	-0.00015164	9 0.0121454	-0.01	249	0.9901
Obesity	0.0237867	0.0217012	1.09	96	0.2787
Mean dependent var	3.149020	S.D. dependent	var	0.441	983
Sum squared resid	8.090059	S.E. of regres	sion	0.419	370
R-squared	0.171733	Adjusted R-squ	ared	0.099	710
F(4, 46)	2.384409	P-value(F)		0.064	940
Log-likelihood	-25.41553	Akaike criteri	on	60.83	106
Schwarz criterion	70.49019	Hannan-Quinn		64.52	210

Model 19: OLS, using observations 1-51 Dependent variable: Teenagebirthrate

	coefficient	std. error	t-ratio	p-va:	lue
const	34.1165	12.0841	2.823	0.00	70 ***
Educationscores	-0.0745463	0.0434081	-1.717	0.092	25 *
Homicides	0.000666148	0.000543420	1.226	0.22	64
imprisonment	-8.37560e-05	0.00128041	-0.0654	41 0.948	81
Mean dependent var	14.25294	S.D. dependent	var 1	1.727698	
Sum squared resid	125.8799	S.E. of regres	sion 1	1.636550	
R-squared	0.156567	Adjusted R-squ	ared (0.102731	
F(3, 47)	2.908216	P-value(F)	(0.044265	
Log-likelihood	-95.40518	Akaike criteri	on i	198.8104	
Schwarz criterion	206.5377	Hannan-Quinn	2	201.7632	

Model 20: OLS, using observations 1-51 Dependent variable: Homicides

	coefficient	std. error	t-ratio	p-value	
const	4712.28	3917.56	1.203	0.2353	
Gini	3894.47	2830.26	1.376	0.1756	
Povertyrate	-117.385	21.1386	-5.553	1.43e-06	***
Educationscores	-18.2164	10.3994	-1.752	0.0866	*
Teenagebirthrate	9.92810	31.5748	0.3144	0.7546	
imprisonment	-0.045513	5 0.280648	-0.1622	0.8719	
Mean dependent var	399.2941	S.D. dependent	var 4	40.3810	
Sum squared resid	4583379	S.E. of regres	sion 3	19.1439	
R-squared	0.527329	Adjusted R-squ	ared 0	.474811	
F(5, 45)	10.04075	P-value(F)	1	.68e-06	
Log-likelihood	-363.2220	Akaike criteri	on 7	38.4439	
Schwarz criterion	750.0349	Hannan-Quinn	7	42.8732	

Model 21: OLS, using observations 1-51 Dependent variable: imprisonment

	coefficient	std. error	t-ratio	p-value	
const	2206.64	2797.09	0.7889	0.4344	
Gini	4028.64	1329.97	3.029	0.0041	***
LifeExpectancy	-29.2998	25.4399	-1.152	0.2557	
InfantMortality	26.5525	25.6730	1.034	0.3067	
Educationscores	-6.90703	5.05738	-1.366	0.1790	
Teenagebirthrate	22.3261	15.3626	1.453	0.1532	
Homicides	-0.022475	0.0583640	-0.3851	0.7020	
Mean dependent var	395.7843	S.D. dependent v	<i>r</i> ar 257	.9282	
Sum squared resid	1137319	S.E. of regressi	ion 160	.7737	
R-squared	0.658088	Adjusted R-squar	red 0.6	11463	
F(6, 44)	14.11466	P-value(F)	6.9	7e-09	
Log-likelihood	-327.6810	Akaike criterion	n 669	.3620	
Schwarz criterion	682.8848	Hannan-Quinn	674	.5295	

Model 22: OLS, using observations 1-51

Dependent variable: Obesity

coefficient std. error t-ratio p-value

const	222.443	47.2118	4.712	2	2.30e-05	***
Gini	-79.1541	21.0498	-3.760	О	0.0005	***
LifeExpectancy	-2.02755	0.521819	-3.886	6	0.0003	***
InfantMortality	-0.0597241	0.488957	-0.122	21	0.9033	
MentalIllness	1.20184	1.13842	1.05	6	0.2966	
Mean dependent var	34.33137	S.D. dependent	. var	3.93	3624	
Sum squared resid	428.1406	S.E. of regres	ssion	3.05	0804	
R-squared	0.446611	Adjusted R-squ	uared	0.39	8490	
F(4, 46)	9.281030	P-value(F)		0.00	0014	
Log-likelihood	-126.6203	Akaike criter	ion	263.	2407	
Schwarz criterion	272.8998	Hannan-Quinn		266.	9317	

<u>Final models for the second stage (include only the ones have changed):</u>

Model 23: OLS, using observations 1-51 Dependent variable: InfantMortality

	coefficie	nt 	std. error	t-ratio	p-value	
const	1085.20		389 . 258	2.788	0.0079	***
Gini	-8.63239		7.59525	-1.137	0.2620	
Povertyrate	-0.02499	24	0.0651376	-0.3837	0.7031	
LifeExpectancy	-27.3154		10.0864	-2.708	0.0097	***
sq_LifeExpectancy	0.17456	5	0.0653688	2.670	0.0106	**
Educationscores	-0.03046	20	0.0269983	-1.128	0.2655	
imprisonment	0.00042	1958	0.00101356	0.4163	0.6793	
Obesity	0.05906	60	0.0541939	1.090	0.2818	
Mean dependent var	7.182353	S.D.	dependent var	1.4830	165	
Sum squared resid	32.98170	S.E.	of regression	0.8757	95	
R-squared	0.700096	Adju	sted R-squared	0.6512	274	
F(7, 43)	14.33987	P-va	lue(F)	1.92e-	09	
Log-likelihood	-61.25111	Akai	ke criterion	138.50	122	
Schwarz criterion	153.9568	Hann	an-Quinn	144.40	179	

Model 24: OLS, using observations 1-51 Dependent variable: imprisonment

	coefficient	std. error	t-ratio	p-value	
const	54996.3	17870.3	3.078	0.0036	***
Gini	-60156.2	19171.5	-3.138	0.0031	***
sq_Gini	68566.6	21263.9	3.225	0.0024	***
LifeExpectancy	-51.7636	12.6161	-4.103	0.0002	***

Educationscores	-294.26	2	157.543	-1.868	0.0686	*
sq_Educationscor~	0.54	7583	0.294930	1.857	0.0702	*
Teenagebirthrate	244.16	0	73.4387	3.325	0.0018	***
sq_Teenagebirthr~	-7.04	879	2.35205	-2.997	0.0045	***
Mean dependent var	395.7843	S.D.	dependent var	257.92	282	
Sum squared resid	417042.7	S.E.	of regression	98.483	181	
R-squared	0.874624	Adju	sted R-squared	0.8542	215	
F(7, 43)	42.85281	P-va	lue(F)	2.33e-	-17	
Log-likelihood	-302.0984	Akai	ke criterion	620.19	968	
Schwarz criterion	635.6514	Hann	an-Quinn	626.10	024	

Model 25: OLS, using observations 1-51

Dependent variable: Obesity

	coefficient	std. error	t-ratio	p-value	
Gini sq_Gini LifeExpectancy	925.723 -1082.46 -2.11131	107.366 129.024 0.292277	8.622 -8.390 -7.224	5.71e-11	* * * * * * * * *
Mean dependent var Sum squared resid	34.33137 359.7137	S.D. depender S.E. of regre		3.933624 2.737524	
Uncentered R-square	d 0.994092	Centered R-so		0.535055	
F(3, 48) Log-likelihood	2692.130 -122.1797	P-value(F) Akaike crite	rion	1.83e-53 250.3594	
Schwarz criterion	256.1548	Hannan-Quinn		252.5740	