DTS203TC Design and Analysis of Algorithms

Lecture 10: Dynamic Programming

Dr. Qi Chen
School of AI and Advanced Computing

Learning outcome

- Able to apply dynamic programming to solve the 0-1 knapsack problem
- Able to apply dynamic programming to solve the longest common subsequence problem
- Able to implement dynamic programming with Python

How to apply Dynamic Programming?

- Step 1: Identify sub-problems and optimal substructure.
- Step 2: Find a recursive formulation
- Step 3: Use dynamic programming (typically in a bottom-up fashion) to compute the value of an optimal solution
- Step 4: If needed, keep track of some additional info to get the optimal solution

0-1 Knapsack Problem

The 0-1 Knapsack Problem

- Given: A set of n items, with each item i having
 - w_i a positive weight
 - v_i a positive benefit value
- Goal: Choose items with maximum total value but with weight at most W.

■ If we are not allowed to take fractional amounts, then this is the 0-1 knapsack problem.

The 0-1 Knapsack Problem

- Given: A set of n items, with each item i having
 - w_i a positive weight
 - v_i a positive benefit value
- Goal: Choose items with maximum total value but with weight at most W.

$$W = 15$$

Item (i)	1	2	3	4	5
Weight (w)	12	2	1	4	1
Value (v)	4	2	1	10	2

Recursion by Brute-Force algorithm

Approach:

- consider all subsets of items and calculate the total weight and value of all subsets.
- Consider the only subsets whose total weight is smaller than W.
- From all such subsets, pick the maximum value subset.
- Time complexity?
 - $O(2^n)$

- We don't need to try all possible choices.
- We can make use of dynamic programming:
 - Case 1: We don't select item i. We select the best of {1,2,3,...,i-1} using weight limit w
 - Case 2: We select item i. We select the best of {1,2,3,...,i-1} using the new weight limit: w-w_i

Solving the sub-problems

- Define f[i,w] = max profit subset of items {1, ..., i} with weight limit w
- Consider set S={(12,4),(2,2),(1,1),(4,10),(1,2)} of (weight, value) pairs and total weight W=15.

Solving the subproblem

- S_k : Set of items numbered 1 to k
- Define f[i,w] = max profit subset of items {1, ..., i} with weight limit w

Case 1: We don't select item i. We select the best of $\{1,2,3,...,i-1\}$ using weight limit w

Case 2: We select item i. We select the best of $\{1,2,3,...,i-1\}$ using the new weight limit: $w-w_i$

$$f[i, w] = \begin{cases} 0 & \text{if } i=0 \text{ or } w=0 \\ f[i-1, w] & \text{else if } w_i > w \\ max(f[i-1, w], v_i + f[i-1, w-w_i]) & \text{otherwise} \end{cases}$$

Knapsack problem

Item (i)	1	2	3	4	5
Weight (w)	12	2	1	4	1
Value (v)	4	2	1	10	2

• Fill up the table.

$$f[i, w] = \begin{cases} 0 & \text{if } i=0 \text{ or } w=0 \\ f[i-1, w] & \text{else if } w_i > w \\ max(f[i-1, w], v_i + f[i-1, w-w_i]) & \text{otherwise} \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₀ ={}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ₁ ={1}	0															
S ₂ ={1,2}	0															
S ₃ ={1,2,3}	0															
S ₄ ={1,2,3,4}	0															
$S_5 = \{1, 2, 3, 4, 5\}$	0															

Knapsack problem

Item (i)	1	2	3	4	5
Weight (w)	12	2	1	4	1
Value (v)	4	2	1	10	2

• Fill up the table.

$$f[i, w] = \begin{cases} 0 & \text{if } i=0 \text{ or } w=0 \\ f[i-1, w] & \text{else if } w_i > w \\ max(f[i-1, w], v_i + f[i-1, w-w_i]) & \text{otherwise} \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$S_0 = \{\}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ₁ ={1}	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
S ₂ ={1,2}	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
S ₃ ={1,2,3}	0	1	2	3	3	3	3	3	3	3	3	3	4	5	6	7
S ₄ ={1,2,3,4}	0	1	2	3	10	11	12	13	13	13	13	13	13	13	13	13
S ₅ ={1,2,3,4,5}	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

Item: {2,3,4,5} Max value: 15

Dynamic Programming Implementation

```
def knapsack(W, weight, value, n):
  f = [[None]^*(W+1) \text{ for } x \text{ in range}(n+1)]
  for i in range(n + 1):
     for w in range(W + 1):
        if i == 0 or w == 0:
           f[i][w] = 0
        elif weight[i-1] <= w:
           f[i][w] = max(value[i-1])
                   + f[i-1][w-weight[i-1]],
                      f[i-1][w])
        else:
           f[i][w] = f[i-1][w]
```

```
weight = [12, 2, 1, 4, 1]
value = [4, 2, 1, 10, 2]
W = 15
n = len(weight)
print(knapsack(W, weight, value, n))
15
```

Knapsack Problem: Running Time

- Running time: O(nW)
 - Not polynomial in input size! (W may be large)
 - "Pseudo-polynomial"
 - Decision version of Knapsack is NP-complete. [Chapter 34]

Longest Common Subsequence

Longest Common Subsequence (LCS)

- How similar are these two DNA sequences?
- 1) AGCCCTAAGGGCTACCTAGCTT
- 2) GACAGCCTACAAGCGTTAGCTTG

- Pretty similar, has a long common subsequence:
 - 1) AGCCCTAAGGGCTACCTAGCTT
 - 2) GACAGCCTACAAGCGTTAGCTTG

AGCCTAAGCTTAGCTT

Longest Common Subsequence (LCS)

- Subsequence:
 - BDFH is a subsequence of ABCDEFGH
- If X and Y are sequences, a common subsequence is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - is a common subsequence that is longest.
 - The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.
- Has applications to DNA similarity testing.

Prefixes:

Notation: Denote this prefix ACGC by Y₄

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let f[i,j] = length_of_LCS(Xi, Yj)
- Finding LCS's prefixes of X and Y.

Case 1: X[i] = Y[j]

Our sub-problems will be finding LCS's of prefixes to X and Y.

Let
$$f[i,j] = length_of_LCS(X_i, Y_i)$$

Notation: Denote this prefix ACGC by Y₄

- Then, f[i, j] = 1 + f[i-1, j-1].
 - Because LCS(X_i, Y_j) = LCS(X_{i-1}, Y_{j-1}) followed by A

Case 2: X[i]!= Y[j]

X_i A C G G T

Y_j

A C G C T A

Our sub-problems will be finding LCS's of prefixes to X and Y.

Let
$$f[i,j] = length_of_LCS(X_i, Y_i)$$

Notation: Denote this prefix ACGC by Y₄

• Then, f[i, j] = max(f[i-1, j], f[i,j-1]).

- either $LCS(X_i, Y_j) = LCS(X_{i-1}, Y_j)$ and T is not involved,
- Or LCS(X_i , Y_j) = LCS(X_i , Y_{j-1}) and A is not involved.

Recursive formulation

Case 0

$$X_0$$

$$f[i, j] = \begin{cases} 0 \\ 1 + f[i-1, j-1] \\ max(f[i-1, j], f[i,j-1]) \end{cases}$$

Case 1

Case 2

 X_{i}

A C G G T

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

		Α	С	Т	G
	0	0	0	0	0
A	0				
С	0				
G	0				
G	0				
Α	0				

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

		A	С	T	G
	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
Α	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

Once we've filled in, we can work backwards to get the LCS

		Α	С	Т	G
	0	0	0	0	0
Α	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

That 3 comes from the 3 above it

		Α	С	Т	G
	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

That 3 comes from the 3 above it

		Α	C	Т	G
	0	0	0	0	0
Α	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

A diagonal jump means that we found an element of the LCS!

		A	С	T	G
	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

		Α	С	Т	G
	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
Α	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

A diagonal jump means that we found an element of the LCS!

		A	С	T	G
	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

$$f[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1+f[i-1,j-1] & \text{if } X[i]=Y[j] \\ \max(f[i-1,j],f[i,j-1]) & \text{if } X[i]!=Y[j] \end{cases}$$

		Α	С	Т	G
	0	0	0	0	0
A	0	1	1	1	1
С	0	1	2	2	2
G	0	1	2	2	3
G	0	1	2	2	3
A	0	1	2	2	3

This is the LCS:

A C G

Dynamic Programming Implementation

```
def LCS(X, Y):
  m = len(X)
  n = len(Y)
  f = [[None]*(n+1) for i in range(m+1)]
  for i in range(m+1):
     for j in range(n+1):
        if i == 0 or j == 0:
           f[i][j] = 0
        elif X[i-1] == Y[j-1]:
           f[i][j] = f[i-1][j-1]+1
        else:
           f[i][j] = max(f[i-1][j], f[i][j-1])
  return f[m][n]
```

Running time: O(nm)

```
X = "ACGGA"
Y = "ACTG"
print ("Length of LCS is ", LCS(X, Y) )
Length of LCS is 3
```


Exercise

- Write code to recover the actual LCS not just its length.
 - Time complexity?

Exercise: Longest Increasing Subsequence

- Subsequence:
 - [3,6,2,7] is a subsequence of [0,3,1,6,2,7]
- Use Dynamic Programming to find the length of the longest strictly increasing subsequence.
 - [0,1,0,3,2,3]: the longest increasing subsequence is [0,1,2,3], therefore the length is 4

Find the actual longest increasing subsequence.

Past Exam Paper

Question 3. [15 MARKS]

Given six items with weights and values shown in the table below.

Item	1	2	3	4	5	6
Weight	1	2	4	5	2	1
Value	12	20	15	35	10	9

Assume we have a knapsack that can hold items with a total weight of 10. What is the best solution to the 0-1 knapsack problem? Solve the problem with dynamic programming. [15 marks]

Learning outcome

- Able to apply dynamic programming to solve the 0-1 knapsack problem
- Able to apply dynamic programming to solve the longest common subsequence problem
- Able to implement dynamic programming with Python

