

PDPM

Indian Institute of Information Technology, Design and Manufacturing, Jabalpur

Reasoning under Uncertainty

Instructors: Dr. Durgesh Singh

CSE Discipline, PDPM IIITDM, Jabalpur -482005

Example

A domain consisting of just the three Boolean variables Toothache, Cavity, and Catch (the dentist's nasty steel probe catches in my tooth).

Inference Using Full Joint Distributions

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

Inference Using Full Joint Distributions

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

Inference Using Full Joint Distributions

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Problems with joint distribution ??

- Worst case time: O(dⁿ)
 - Where d = max arity
 - And n = number of random variables
- Space complexity also O(dⁿ)
 - Size of joint distribution

Independence

A and B are independent iff:

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$

Therefore, if A and B are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

Independence...

A and B are independent iff

$$\mathbf{P}(Toothache, Catch, Cavity, Weather)$$

= $\mathbf{P}(Toothache, Catch, Cavity)\mathbf{P}(Weather)$

32 entries reduced to 12;

Complete independence is powerful but rare. What to do if it doesn't hold?

Conditional Independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$

Conditional Independence

 The general definition of conditional independence of two variables X and Y, given a third variable Z is

(I)
$$P(X, Y | Z) = P(X | Z)P(Y | Z).$$

(||)
$$\mathbf{P}(X \mid Y, Z) = \mathbf{P}(X \mid Z)$$
 and $\mathbf{P}(Y \mid X, Z) = \mathbf{P}(Y \mid Z)$

Conditional Independence II

```
P(catch | toothache, cavity) = P(catch | cavity)
P(catch | toothache,—cavity) = P(catch |—cavity)
```

Equivalent statements:

```
\mathbf{P}(Toothache|Catch, Cavity) = \mathbf{P}(Toothache|Cavity)

\mathbf{P}(Toothache, Catch|Cavity) = \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)
```

Write out full joint distribution using chain rule:

```
\mathbf{P}(Toothache, Catch, Cavity)
```

- $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch, Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

Power of Cond. Independence

- Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!
- Conditional independence is the most basic & robust form of knowledge about uncertain environments.

Bayes Rule

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from def of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)}$$
 (Def. cond. prob.)

$$P(E \mid H) = \frac{P(H \land E)}{P(H)}$$
 (Def. cond. prob.)

$$P(H \wedge E) = P(E \mid H)P(H)$$
 (Mult by P(H) in line 2)

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$
 (Substitute #3 in #1)

Use to Compute <u>Diagnostic</u> Probability from <u>Causal</u> Probability

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g. let M be meningitis, S be stiff neck

$$P(M) = 0.0001,$$

 $P(S) = 0.1,$
 $P(S|M) = 0.8$

$$P(M|S) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes Rule

Does patient have cancer or not?

Given: A patient takes a lab test, and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.008 of the entire population have this cancer.

$$P(cancer) = P(\neg cancer) =$$
 $P(+ | cancer) = P(- | cancer) =$
 $P(+ | \neg cancer) = P(- | \neg cancer) =$

$$P(cancer) = 0.008$$
 $P(\neg cancer) = 0.992$
 $P(+ | cancer) = 0.98$ $P(- | cancer) = 0.02$
 $P(+ | \neg cancer) = 0.03$ $P(- | \neg cancer) = 0.97$
 $P(cancer|+) = \frac{P(+ | cancer)P(cancer)}{P(+)};$

$$P(\neg cancer | +) = \frac{P(+ | \neg cancer)P(\neg cancer)}{P(+)}$$

$$P(cancer|+)P(+) = 0.98 \times 0.008 = 0.0078;$$

$$P(\neg cancer | +) P(+) = 0.03 \times 0.992 = 0.0298$$

$$P(+) = 0.0078 + 0.0298$$

$$P(cancer \mid +) = 0.21;$$
 $P(\neg cancer \mid +) = 0.79$

The patient, more likely than not, does not have cancer

Bayesian Networks

- In general, joint distribution over set of variables $(X_{1_n}, X_{1_n}, ..., X_n)$ requires exponential space for representation & inference.
- We also saw that independence and conditional independence relationships among variables can greatly reduce the number of probabilities that need to be specified in order to define the full joint distribution.
- BNs(a graphical representation) is a data structure
 - represents the dependencies among variables and
 - give a concise specification of any full joint probability distribution

Chain rule in Bayesian Networks

$$P(x_1,\ldots,x_n) = P(x_n|x_{n-1},\ldots,x_1)P(x_{n-1}|x_{n-2},\ldots,x_1) \cdots P(x_2|x_1)P(x_1)$$

$$= \prod_{i=1}^n P(x_i|x_{i-1},\ldots,x_1).$$

The general assertion that, for every variable Xi in the Bayesian network,

$$\mathbf{P}(X_i|X_{i-1},\ldots,X_1) = \mathbf{P}(X_i|Parents(X_i))$$

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|parents(X_i)).$$

Bayes Networks

- A Bayesian network is a directed graph in which each node is annotated with quantitative probability information.
- The full specification is as follows:
 - 1. Each node corresponds to a random variable, which may be discrete or continuous.
 - 2. Directed links or arrows connect pairs of nodes. If there is an arrow from node X to node Y, X is said to be a parent of Y.
 - 3. Each node *Xi*, has a conditional probability distribution P (Xi | Parents (Xi)) that quantifies the effect of the parents on the node.
 - 4. The graph has no directed cycles (and hence is a directed, acyclic graph, or DAG).

Example

Topology of network encodes conditional independence assertions:

A simple Bayesian network in which *Weather* is independent of the other three variables and *Toothache* and *Catch* are conditionally independent, given *Cavity*.

Example: Burglar Alarm

- You have a new burglar alarm installed at home.
- It is reliable at detecting a burglary, but also responds on occasion to minor earthquakes.
- You also have two neighbors, John and Mary, who have promised to call you at work when they hear the alarm.
- John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.
- Mary, on the other hand, likes loud music and sometimes misses the alarm altogether.

Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.

Example: Burglar Alarm

