Quantum computers in theory and in practice

Andrea Mari

https://unitary.fund

Outline

- What is a quantum computer in theory?
- Implications of quantum computers for cryptography
- What is a quantum computer in practice?
- What problems can be solved by near-term quantum computers?

What is a quantum computer?

A quantum computer is a **physical** machine that **intentionally** uses the **laws of quantum mechanics** to perform computations.

Examples of physical systems that could be used as quantum computers

Atoms

Electrons

Photons

Quantum physics is also used in classical computers. But...

Some components of classical computers are based on quantum effects (e.g. transistors). However, this is irrelevant for the **abstract computational model**.

In principle, the transistors of a classical computer could be replaced by classical water valves!

In a quantum computer instead, even the abstract computational model is based on quantum theory.

The computational model of a quantum computer

Classical computer

Bit: 0 or 1

Operations map bitstrings to bitstrings

Readout is deterministic.

State is unchanged by measurements

Quantum computer

$$|\alpha|^2 + |\beta|^2 = 1$$

Qubit: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

Operations are unitary transformations

on qubits.

Readout is binary and non-deterministic:

0 with probability $|\alpha|^2$

1 with probability $|\beta|^2$

State changes after measurements

[Superposition principle]

[Shrödinger equation]

[Born rule]

[Collapse of the wavefunction]

Mathematical representation of a probabilistic classical computer

Computational state = array of 2^n probabilities

$$\vec{p} = [p_{00...0}, p_{00...1}, \dots, p_{11...1}]^{\top}$$

$$\|\vec{p}\|_1 = \sum_z p_z = 1$$

State evolution

$$\vec{p'} = T\vec{p}$$

T is a stochastic matrix: positive elements and preserves $|| . ||_1$

Measurement outcome is a bitstring **z** sampled from

$$P(z) = p_z'$$

Mathematical representation of a quantum computer

$$|\psi\rangle = \psi_{00...0}|00...0\rangle + \psi_{00...1}|00...1\rangle + \dots + \psi_{11...1}|11...1\rangle \qquad \psi_z \in \mathbb{C}$$

Can be represented as a vector of **complex amplitudes** (Hilbert space)

$$\vec{\psi} = [\psi_{00...0}, \psi_{00...1}, \dots, \psi_{11...1}]^{\mathsf{T}} \qquad ||\vec{\psi}||_2 = \sum |\psi_z|^2 = 1$$

$$\left\| \vec{\psi} \right\|_2 = \sum_z |\psi_z|^2 = 1$$

State evolution

$$\vec{\psi'} = U\vec{\psi}$$

 $m{U}$ is a unitary matrix. $m{U}$ has complex elements and $\,$ preserves || . ||_2

Measurement outcome is a bitstring **z** sampled from

$$P(z) = |\psi_z'|^2$$

Why complex amplitudes are more powerful than probabilities?

Short answer: because amplitudes can generate interference!

Why complex amplitudes are more powerful than probabilities?

Short answer: because amplitudes can generate interference!

Many quantum algorithms work as follows:

Prepare a uniform superposition state

Outline

What is a quantum computer in theory?

- Implications of quantum computers for cryptography
- What is a quantum computer *in practice*?
- What problems can be solved by near-term quantum computers?

The most famous algorithm: Shor's algorithm

Integer factoring problem

Given an integer number N = p q which is the product of two prime factors (p and q), find p and q.

Computational complexity

Let n be the number of bits to represent N

Best known classical algorithm scales **exponentially** with n. Given a solution (q, p), one can efficiently verify it.

complexity = NP

At the basis of many cryptographic algorithms e.g. RSA.

Quantum Shor's algorithm scales **polynomially** in *n*!——

Exponential quantum advantage!

The **second** most famous algorithm: Grover's algorithm

The problem

Given a balck-box function
$$f(z)$$
 such that $\begin{cases} f(z) = 1 & \text{if } z = z' \\ f(z) = 0 & \text{if } z ! = z' \end{cases}$, find z' .

Computational complexity

Let N be the number of all possible inputs for f(z). $N=2^n$ for n-bit inputs.

Best classical algorithm (brute-force research) requires $\,O(N)\,$ calls to f(z).

Grover's algorithm requires $O(\sqrt{N})$ calls to f(z) ——— Polynomial quantum advantage.

It can be shown that a better scaling is impossible. 🔀

Implications of quantum computers for cryptography

Shor's algorithm

Can break most existing **public-key** cryptographic algorithms! In particular those based on:

- integer factorization
- discrete logarithm
- elliptic-curves

Retroactive risk!

Encrypted data can be stored **today**, to be decrypted **tomorrow**.

Countermeasures:

Quantum key distribution

- Information is carried by quantum systems (e.g. photons)
- Hard to implement (requires quantum links)
- Security is based on law of physics.

Post-quantum cryptography

- Information transmitted over conventional classical channels
- Easy to implement
- Security is based on theoretical assumptions

Implications of quantum computers for cryptography

Grover's algorithm

(1996)

Can *weakly* undermine **symmetric** cryptographic algorithms.

Square-root speedup in:

- Brute-force exhaustive algorithms
- Collision attacks
- Function inversion problems

Retroactive risk!

Encrypted data can be stored **today**, to be decrypted **tomorrow**.

Countermeasure: Doubling the number n of bits, for all types of secret keys.

Quantum cost =
$$\sqrt{N_{\mathrm{long}}} = \sqrt{2^{2n}} = 2^n = N_{\mathrm{short}}$$
 = Classical cost

Relationship between quantum computers and cryptography

Beyond the obvious **competition** aspect, there are actually interesting **cooperation** possibilities.

A few examples:

- Using **true quantum randomness** for classical cryptography
- Classical cryptography can be used to encrypt data in quantum computations.
 This is known as homomorphic encryption.
- The theory of classical codes is at the basis of quantum error correction.
- Classical cryptographic algorithms can be used to verify and test quantum computers

Outline

- What is a quantum computer in theory?
- Implications of quantum computers for cryptography

- What is a quantum computer in practice?
- What problems can be solved by near-term quantum computers?

Small-scale and noisy quantum computers already exist!

Atoms

Superconducting circuits

Quantum computers can be easily programmed by users

Example: IBM quantum experience.

Quantum software

In practice, one can program quantum computers via:

- **Software libraries** for conventional languages
 - Mostly Python based
 - Mostly open source

- Quantum-specific languages
 - Mostly open source

A quantum open source ecosystem

A large quantum open source ecosystem is rapidly growing. See e.g. https://gosf.org/project_list/

non-profit helping create a quantum technology ecosystem that benefits the most people.

- Microgrant program (4k \$ per grant)
- Community events like *unitaryhack*
- **mitiu**, a quantum error mitigation library
- metriq, a web platform for community-driven quantum benchmarks.

For more details, please have a look at our website https://unitary.fund

Outline

- What is a quantum computer in theory?
- Implications of quantum computers for cryptography
- What is a quantum computer in practice?

What problems can be solved by near-term quantum computers?

In practice, existing quantum computers are still very **small** and **noisy**.

As figures of merit,

- Most current circuit-based quantum computers have less than ~150 qubits.
- Beyond 10 qubits NISQ computations are dominated by noise.

They have been named **NISQ** devices. (**N**oisy-Intermediate **S**cale **Q**uantum devices)

John Preskill, Quantum 2, 79 (2018)

Two key questions:

- What is the computational power of NISQ devices?
- How far is a fault-tolerant quantum computer?

What problems can NISQ computers solve?

Example of problems:

- Quantum chemistry problems (e.g. energy spectrum of molecules)
- Simulation of quantum dynamics (e.g. simulation of high-energy physics)
- Optimization problems (e.g. MaxCut)
- Shor's algorithm
- Grover's algorithm (they need to many clean qubits)
- Current computers are still too small to compete with classical methods.
- But they could become competitive within the next ~5 years!
- It is not theoretically clear if a NISQ quantum advantage is possible at all for "useful problems"

Artificial problems and quantum supremacy

Example of artificial "useless" problems:

- Sampling from the output state of a random circuit
- Sampling from the output state of a random Gaussian photonic circuit

Quantum theoretically and experimentally proved!

- 2019 US, Google Sycamore, 53 qubits
- 2020 China, Jiuzhang, 50 photonic modes
- 2021 China, Zuchongzhi, 56 superconducting qubits
- 2022 Canada, Xanadu, Borealis, 216 photonic modes

What about Shor's and Grover's algorithms?

- Impossible to run on near-term NISQ computers.
 - Shor/Gover's algorithms require millions of qubits
 - Shor/Gover's algorithms require fault-tolerant quantum computers.

Very hard to make predictions for a fault-tolerant QC

- It could take 30, 50 or even 100 years.
- Soon or later it's going to happen.

So, is classical cryptography secure?

- For many years it will be ok.
- However, remember the retroactive risk!

(A classical computer in 1953)

Conclusions

- In theory, quantum computers are very powerful.
 - So powerful to break classical cryptography
- In practice, NISQ quantum computers quite powerful too.
 - So powerful to achieve quantum supremacy
 - But not enough to break classical cryptography

Two open questions

- Can new NISQ algorithms be dangerous for classical cryptography?
- Beyond competing: Can cryptography and quantum computing cooperate?