Package 'BioGSP'

September 26, 2025

Title Biological Graph Signal Processing for Spatial Data Analysis

Type Package

Version 1.0.0

2 BioGSP-package

	install_and_load	14
	plot_FM	15
	plot_sgwt_decomposition	15
	SGWT	16
	sgwt-globals	
	sgwt_auto_scales	18
	sgwt_energy_analysis	
	sgwt_forward	
	sgwt_get_kernels	
	sgwt_inverse	
	sgwt_similarity	
	sgwt_weighted_similarity	
	simulate_multiscale	
	simulate_ringpattern	
	visualize_multiscale	
	visualize_ringpattern	
	visualize_sgwt_kernels	
	visualize_5gwt_keineis	21
Index		29

BioGSP-package

BioGSP: Biological Graph Signal Processing for Spatial Data Analysis

Description

The BioGSP package provides a comprehensive implementation of Graph Signal Processing (GSP) methods including Spectral Graph Wavelet Transform (SGWT) for analyzing spatial patterns in biological data. This implementation is based on Hammond, Vandergheynst, and Gribonval (2011) "Wavelets on Graphs via Spectral Graph Theory".

Details

The package enables multi-scale analysis of spatial signals by:

- Building graphs from spatial coordinates using k-nearest neighbors
- Computing graph Laplacian eigendecomposition for spectral analysis
- Designing wavelets in the spectral domain using various kernel functions
- Decomposing signals into scaling and wavelet components at multiple scales
- Providing reconstruction capabilities with error analysis
- · Offering comprehensive visualization and analysis tools

Main Functions

```
SGWT Main function for SGWT analysis
sgwt_forward Forward SGWT transform
sgwt_inverse Inverse SGWT transform
sgwt_energy_analysis Energy distribution analysis
plot_sgwt_decomposition Visualization of SGWT components
Cal_GCC Graph Cross-Correlation analysis
demo_sgwt Demonstration with synthetic data
```

BioGSP-package 3

Applications

The BioGSP package is particularly useful for:

- Spatial biology: Analyzing cell distribution patterns in tissue imaging (CODEX, Visium, etc.)
- Single-cell genomics: Spatial transcriptomics and proteomics analysis
- Neuroscience: Brain connectivity and signal analysis
- Pathology: Tumor microenvironment and tissue architecture analysis
- Developmental biology: Spatial pattern formation and cell fate mapping
- Immunology: Immune cell spatial organization and interactions

Author(s)

BioGSP Development Team

References

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

```
## Not run:
# Load the package
library(BioGSP)
# Run a quick demo
demo_result <- demo_sgwt()</pre>
# Generate synthetic data
set.seed(123)
n < -100
data <- data.frame(</pre>
 x = runif(n, 0, 10),
  y = runif(n, 0, 10),
  signal = sin(runif(n, 0, 2*pi))
# Apply SGWT
result <- SGWT(data, signal = "signal", k = 8, J = 4)
# Analyze results
energy_analysis <- sgwt_energy_analysis(result)</pre>
print(energy_analysis)
## End(Not run)
```

4 Cal_Eigen

Cal_Eigen

Calculate eigenvalues and eigenvectors with knee detection

Description

Calculate eigenvalues and eigenvectors of a spatial graph with automatic detection of the low-frequency cutoff using knee detection

Usage

```
Cal_Eigen(
   data.in = NULL,
   x_col = "x",
   y_col = "y",
   k = 25,
   k_fold = 15,
   sensitivity = 2
)
```

Arguments

data.in	Data frame with spatial coordinates
x_col	Character string specifying the column name for X coordinates (default: "x")
y_col	Character string specifying the column name for Y coordinates (default: "y")
k	Number of nearest neighbors (default: 25)
k_fold	Eigendecomposition parameter (default: 15)
sensitivity	Sensitivity parameter for knee detection (default: 2)

Value

List containing knee point, eigenvectors, and eigenvalues

```
## Not run:
# Create spatial data
data <- data.frame(x = runif(100), y = runif(100))
result <- Cal_Eigen(data, k = 10)

# With custom column names
data2 <- data.frame(X = runif(100), Y = runif(100))
result2 <- Cal_Eigen(data2, x_col = "X", y_col = "Y", k = 10)
## End(Not run)</pre>
```

Cal_GCC 5

Cal_GCC

Calculate Graph Cross-Correlation (GCC) - DEPRECATED

Description

DEPRECATED: This function is deprecated. Use sgwt_similarity instead for more comprehensive signal similarity analysis with energy normalization and advanced features.

Calculate Graph Cross-Correlation between two signals using Graph Fourier Transform. This is a simplified approach that only considers low-frequency GFT components.

Usage

```
Cal_GCC(
  data.in = NULL,
  knee = NULL,
  signal1 = NULL,
  signal2 = NULL,
  eigenvector = NULL)
```

Arguments

data.in	Data frame containing the signals
knee	Knee point for frequency cutoff
signal1	Name of first signal column
signal2	Name of second signal column
eigenvector	Matrix of eigenvectors

Value

Cosine similarity value

End(Not run)

```
## Not run:
# DEPRECATED - use sgwt_similarity instead
# gcc_value <- Cal_GCC(data, knee = 10, signal1 = "sig1", signal2 = "sig2", eigenvector =
# NEW RECOMMENDED APPROACH:
# sgwt1 <- SGWT(data, signal = "signal1", k = 25, J = 4)
# sgwt2 <- SGWT(data, signal = "signal2", k = 25, J = 4)
# similarity <- sgwt_similarity(sgwt1, sgwt2)</pre>
```

6 codex_toy_data

cal_laplacian

Calculate Graph Laplacian Matrix

Description

Compute unnormalized, normalized, or random-walk Laplacian from an adjacency matrix.

Usage

```
cal_laplacian(W, type = c("unnormalized", "normalized", "randomwalk"))
```

Arguments

W A square adjacency matrix (can be dense or sparse).

type Type of Laplacian to compute: "unnormalized", "normalized", or "randomwalk".

Value

Laplacian matrix of the same class as input.

Examples

```
## Not run:
W <- matrix(c(0, 1, 1, 1, 0, 1, 1, 1, 0), nrow = 3)
cal_laplacian(W, type = "normalized")
## End(Not run)</pre>
```

codex_toy_data

Toy CODEX Spatial Cell Type Data

Description

A synthetic dataset mimicking CODEX multiplexed imaging data for demonstrating Spectral Graph Wavelet Transform (SGWT) analysis on spatial cell type distributions. The dataset contains spatial coordinates and cell type annotations for multiple immune cell populations arranged in realistic spatial clusters.

Usage

```
data(codex_toy_data)
```

Format

A data frame with 18604 rows and 5 columns:

cellLabel Character. Unique identifier for each cell

Y_cent Numeric. Y coordinate of cell centroid (0-115 range)

X_cent Numeric. X coordinate of cell centroid (0-116 range)

Annotation5 Character. Full descriptive cell type name

ROI_num Character. Region of interest identifier ("ROI_0" through "ROI_15")

codex_toy_data 7

Details

The dataset contains 16 regions of interest (ROI_0 through ROI_15) with different spatial patterns and varying cell counts (945-1497 cells per ROI). Each ROI represents a distinct tissue region with unique spatial arrangements of the same cell types.

ROI Distribution:

- ROI 0: 952 cells
- ROI_1: 945 cells
- ROI_2: 1155 cells
- ROI_3: 1421 cells
- ROI_4: 1096 cells
- ROI_5: 1420 cells
- ROI_6-ROI_15: 958-1497 cells each

Cell types across all ROIs include:

- BCL6- B Cell (~3719 cells): Primary B cell population
- CD4 T (~4092 cells): Helper T cells largest population
- CD8 T (~3346 cells): Cytotoxic T cells
- DC (~2233 cells): Dendritic cells
- M1 (~1490 cells): M1 macrophages
- CD4 Treg (~1490 cells): Regulatory T cells
- BCL6+ B Cell (~931 cells): Activated B cells
- Endothelial (~746 cells): Vascular cells
- M2 (~370 cells): M2 macrophages
- Myeloid (~186 cells): Other myeloid cells
- Other (~1 cells): Miscellaneous cell types

This synthetic data is designed to demonstrate:

- Spatial clustering patterns of different cell types
- Multi-scale spatial analysis using SGWT
- Cross-cell type correlation analysis
- Graph construction and eigenvalue analysis
- Wavelet decomposition of spatial signals

Source

Generated synthetically using clustered normal distributions with realistic parameters based on real CODEX data characteristics.

8 codex_toy_data

```
# Load the toy dataset
data(codex_toy_data)
# Examine the structure
str(codex_toy_data)
head(codex_toy_data)
# Summary of cell types
table(codex_toy_data$Annotation5)
# Summary by ROI
table(codex_toy_data$ROI_num)
table(codex_toy_data$ROI_num, codex_toy_data$Annotation5)
# Quick visualization of spatial distribution
if (requireNamespace("ggplot2", quietly = TRUE)) {
 library(ggplot2)
  ggplot(codex\_toy\_data, aes(x = X\_cent, y = Y\_cent, color = Annotation5)) +
   geom\_point(size = 0.8, alpha = 0.7) +
    facet_wrap(~ROI_num, scales = "free") +
    labs(title = "Toy CODEX Spatial Cell Distribution by ROI",
        x = "X Coordinate", y = "Y Coordinate") +
    theme_minimal() +
    scale_y_reverse()
}
# Basic SGWT analysis example
## Not run:
# Focus on BCL6- B Cell cells in ROI_1 for SGWT analysis
bcl6nb_data <- codex_toy_data[codex_toy_data$Annotation5 == "BCL6- B Cell" &</pre>
                             codex_toy_data$ROI_num == "ROI_1", ]
# Create binned representation
library(dplyr)
binned_data <- codex_toy_data %>%
 filter(Annotation5 == "BCL6- B Cell", ROI_num == "ROI_1") %>%
   x_bin = cut(X_cent, breaks = 20, labels = FALSE),
   y_bin = cut(Y_cent, breaks = 20, labels = FALSE)
  group_by(x_bin, y_bin) %>%
  summarise(cell_count = n(), .groups = 'drop')
# Prepare for SGWT
complete_grid <- expand.grid(x_bin = 1:20, y_bin = 1:20)</pre>
sgwt_data <- complete_grid %>%
  mutate(
   cell_count = ifelse(is.na(cell_count), 0, cell_count),
   x = x_bin,
   y = y_bin,
   signal = cell_count / max(cell_count, na.rm = TRUE)
  ) %>%
  select(x, y, signal)
```

```
compare_kernel_families
```

Compare different kernel families

Description

Visualize and compare different kernel families (both scaling and wavelet filters)

Usage

```
compare_kernel_families(
  x_range = c(0, 3),
  scale_param = 1,
  plot_results = TRUE
)
```

Arguments

```
x_range Range of x values to evaluate (default: c(0, 3))
scale_param Scale parameter for all functions (default: 1)
plot_results Whether to plot the comparison (default: TRUE)
```

Value

Data frame with x values and kernel values for each family

```
comparison <- compare_kernel_families()
comparison <- compare_kernel_families(x_range = c(0, 5), scale_param = 1.5)</pre>
```

10 cosine_similarity

Description

Compute wavelet and scaling function coefficients in the spectral domain

Usage

```
compute_sgwt_filters(
  eigenvalues,
  scales,
  lmax = NULL,
  kernel_type = "mexican_hat"
)
```

Arguments

Value

List of filters (scaling function + wavelets)

Examples

```
eigenvals <- c(0, 0.1, 0.5, 1.0, 1.5)
scales <- c(2, 1, 0.5)
filters <- compute_sgwt_filters(eigenvals, scales)
filters_meyer <- compute_sgwt_filters(eigenvals, scales, kernel_type = "meyer")
filters_heat <- compute_sgwt_filters(eigenvals, scales, kernel_type = "heat")</pre>
```

cosine_similarity Calculate cosine similarity between two vectors

Description

Calculate cosine similarity between two numeric vectors with numerical stability

```
cosine\_similarity(x, y, eps = 1e-12)
```

demo_sgwt 11

Arguments

X	First vector
У	Second vector
eps	Small numeric for numerical stability when norms are near zero (default 1e-12)

Value

Cosine similarity value (between -1 and 1)

Examples

```
x \leftarrow c(1, 2, 3)

y \leftarrow c(2, 3, 4)

similarity \leftarrow cosine\_similarity(x, y)

# With custom eps for numerical stability

similarity2 \leftarrow cosine\_similarity(x, y, eps = 1e-10)
```

demo_sgwt

Demo function for SGWT

Description

Demonstration function showing basic SGWT usage with synthetic data

Usage

```
demo_sgwt()
```

Value

List containing demo data, SGWT results, and energy analysis

```
## Not run:
demo_result <- demo_sgwt()
print(demo_result$energy)
## End(Not run)</pre>
```

FastDecompositionLap

Fast eigendecomposition of Laplacian matrix

Description

Perform fast eigendecomposition using RSpectra for large matrices

Usage

```
FastDecompositionLap(
  laplacianMat = NULL,
  k_fold = 1.5,
  which = "LM",
  sigma = NULL,
  opts = list(),
  lower = TRUE,
  ...
)
```

Arguments

```
laplacianMat Laplacian matrix

k_fold Multiplier for number of eigenvalues to compute (default: 1.5)

which Which eigenvalues to compute ("LM", "SM", etc.)

sigma Shift parameter for eigenvalue computation

opts Additional options for eigenvalue computation

lower Whether to compute from lower end of spectrum

... Additional arguments
```

Value

List with eigenvalues (evalues) and eigenvectors (evectors)

```
## Not run:
# Create a Laplacian matrix and decompose
L <- matrix(c(2, -1, -1, -1, 2, -1, -1, -1, 2), nrow = 3)
decomp <- FastDecompositionLap(L, k_fold = 2)
## End(Not run)</pre>
```

find_knee_point 13

find_knee_point

Find knee point in a curve

Description

Simple knee point detection using the maximum curvature method

Usage

```
find_knee_point(y, sensitivity = 1)
```

Arguments

```
y Numeric vector of y values
sensitivity Sensitivity parameter (not used in this simple implementation)
```

Value

Index of the knee point

Examples

```
y \leftarrow c(1, 2, 3, 10, 11, 12) # curve with a knee knee_idx <- find_knee_point(y)
```

gft

Graph Fourier Transform

Description

Compute the Graph Fourier Transform (GFT) of a signal using Laplacian eigenvectors.

Usage

```
gft(signal, U)
```

Arguments

signal Input signal (vector or matrix)

U Matrix of eigenvectors (dense matrix preferred)

Value

Transformed signal in the spectral domain (vector or matrix)

14 install_and_load

hello_sgwt

Hello function for SGWT package demonstration

Description

Simple hello function to demonstrate package loading

Usage

```
hello_sgwt()
```

Value

Character string with greeting

Examples

```
hello_sgwt()
```

```
install_and_load Install and load packages
```

Description

Utility function to install and load packages from CRAN or GitHub

Usage

```
install_and_load(packages)
```

Arguments

packages

Named vector where names are package names and values are source URLs

Value

NULL (side effect: installs and loads packages)

```
## Not run:
packages <- c("ggplot2" = "ggplot2", "devtools" = "r-lib/devtools")
install_and_load(packages)
## End(Not run)</pre>
```

plot_FM

plot_FM

Plot frequency modes

Description

Plot frequency modes from graph Fourier analysis

Usage

```
plot_FM(input = NULL, FM_idx = c(1:20), ncol = 5)
```

Arguments

input Input data (currently not used, for future compatibility)

FM_idx Indices of frequency modes to plot (default: 1:20)

ncol Number of columns in plot layout (default: 5)

Value

Combined plot of frequency modes

Examples

```
## Not run:
# This function requires specific data structure (df_hex_combine)
# plot_FM(FM_idx = 1:10, ncol = 5)
## End(Not run)
```

```
plot_sgwt_decomposition
```

Plot SGWT decomposition results

Description

Visualize SGWT decomposition components including original signal, scaling function, wavelet coefficients, and reconstructed signal

```
plot_sgwt_decomposition(
   sgwt_result,
   data.in,
   x_col = "x",
   y_col = "y",
   plot_scales = NULL,
   ncol = 3
)
```

16 SGWT

Arguments

sgwt_result	SGWT result object from SGWT() function
data.in	Original data frame with spatial coordinates
x_col	Character string specifying the column name for X coordinates (default: "x")
y_col	Character string specifying the column name for Y coordinates (default: "y")
plot_scales	Which wavelet scales to plot (default: first 4)
ncol	Number of columns in the plot layout (default: 3)

Value

ggplot object with combined plots

Examples

```
## Not run:
# Assuming you have SGWT results
plots <- plot_sgwt_decomposition(sgwt_result, data.in)
print(plots)

# With custom column names
plots2 <- plot_sgwt_decomposition(sgwt_result, data.in, x_col = "X", y_col = "Y")
print(plots2)

## End(Not run)</pre>
```

SGWT

Spectral Graph Wavelet Transform (SGWT)

Description

Main function for performing Spectral Graph Wavelet Transform analysis on spatial data. Provides a comprehensive interface for multi-scale analysis of spatial signals using graph wavelets.

```
SGWT(
  data.in = NULL,
  x_col = "x",
  y_col = "y",
  signal = NULL,
  k = 25,
  scales = NULL,
  J = 5,
  scaling_factor = 2,
  kernel_type = "mexican_hat",
  laplacian_type = "normalized",
  k_fold = 15,
  return_all = TRUE
)
```

SGWT 17

Arguments

data.in	Data frame containing spatial coordinates and signal data.	
x_col	Character string specifying the column name for X coordinates (default: "x")	
y_col	Character string specifying the column name for Y coordinates (default: "y")	
signal	Character string specifying the column name of the signal to analyze, or a numeric vector of signal values.	
k	Number of nearest neighbors for graph construction (default: 25)	
scales	Vector of scales for the wavelets. If NULL, scales are auto-generated.	
J	Number of scales to generate if scales is NULL (default: 5)	
scaling_fact	or	
	Scaling factor between consecutive scales (default: 2)	
kernel_type	Kernel family ("mexican_hat", "meyer", or "heat") that defines both scaling and wavelet filters	
laplacian_type		
	Type of graph Laplacian ("unnormalized", "normalized", or "randomwalk", default: "normalized")	
k_fold	Parameter for eigendecomposition (default: 15)	
return_all	Whether to return all analysis results (default: TRUE)	

Value

If return_all = TRUE, returns a list containing:

decomposition SGWT decomposition results

reconstructed_signal Reconstructed signal for validation

reconstruction_error RMSE between original and reconstructed signal

original_signal Original input signal

graph_info Graph construction information (adjacency matrix, Laplacian, eigenvalues, eigenvectors)

data Original input data

parameters Analysis parameters used

If return_all = FALSE, returns only the SGWT decomposition.

References

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2), 129-150.

```
## Not run:
# Generate synthetic spatial data
set.seed(123)
n_points <- 100
x_coords <- rep(1:10, each = 10) + rnorm(n_points, 0, 0.1)
y_coords <- rep(1:10, times = 10) + rnorm(n_points, 0, 0.1)
signal_data <- sin(0.5 * x_coords) * cos(0.3 * y_coords) + rnorm(n_points, 0, 0.1)</pre>
```

18 sgwt_auto_scales

```
demo_data <- data.frame(x = x_coords, y = y_coords, signal = signal_data)

# Apply SGWT
result <- SGWT(data.in = demo_data, signal = "signal", k = 8, J = 4)

# With custom column names
demo_data2 <- data.frame(X = x_coords, Y = y_coords, signal_1 = signal_data)
result2 <- SGWT(data.in = demo_data2, x_col = "X", y_col = "Y", signal = "signal_1", k =

# View reconstruction error
print(result$reconstruction_error)

## End(Not run)</pre>
```

sgwt-globals

Global variables used in ggplot2 aesthetics

Description

This file declares global variables used in ggplot2 aesthetics to avoid R CMD check NOTEs about undefined global functions or variables.

sgwt_auto_scales Generate automatic scales for SGWT

Description

Generate logarithmically spaced scales for SGWT

Usage

```
sgwt_auto_scales(lmax, J = 5, scaling_factor = 2)
```

Arguments

Scaling factor between consecutive scales

Value

Vector of scales

```
scales \leftarrow sgwt_auto_scales(lmax = 2.0, J = 5, scaling_factor = 2)
```

sgwt_energy_analysis 19

```
sgwt_energy_analysis
```

Analyze SGWT energy distribution across scales

Description

Calculate and analyze energy distribution across different scales in the SGWT decomposition

Usage

```
sgwt_energy_analysis(sgwt_result)
```

Arguments

Value

Data frame with energy analysis results

Examples

```
## Not run:
# Assuming you have SGWT results
energy_analysis <- sgwt_energy_analysis(sgwt_result)
print(energy_analysis)
## End(Not run)</pre>
```

sgwt_forward

Forward SGWT transform

Description

Decompose signal into wavelet coefficients using SGWT

```
sgwt_forward(
  signal,
  eigenvectors,
  eigenvalues,
  scales,
  lmax = NULL,
  kernel_type = "mexican_hat"
)
```

20 sgwt_get_kernels

Arguments

signal	Input signal vector
eigenvectors	Eigenvectors of the graph Laplacian
eigenvalues	Eigenvalues of the graph Laplacian
scales	Vector of scales for the wavelets
lmax	Maximum eigenvalue (optional)
kernel_type	Kernel family that defines both scaling and wavelet filters (default: "mexican_hat", options: "mexican_hat", "mever", "heat")

Value

List containing coefficients, filters, scales, eigenvalues, and eigenvectors

Examples

```
## Not run:
# Assuming you have eigenvalues, eigenvectors, and a signal
result <- sgwt_forward(signal, eigenvectors, eigenvalues, scales)
result_meyer <- sgwt_forward(signal, eigenvectors, eigenvalues, scales, kernel_type = "meresult_heat <- sgwt_forward(signal, eigenvectors, eigenvalues, scales, kernel_type = "heat"
## End(Not run)</pre>
```

```
sgwt_get_kernels Get a unified kernel family (low-pass and band-pass) by kernel_type
```

Description

Returns a pair of functions implementing the scaling (low-pass) and wavelet (band-pass) kernels for a given kernel family. This enforces consistency: a single kernel_type defines both filters.

Usage

```
sgwt_get_kernels(kernel_type = "mexican_hat")
```

Arguments

```
kernel_type Kernel family name ("mexican_hat", "meyer", or "heat")
```

Value

A list with two functions: $list(scaling = function(x, scale_param), wavelet = function(x, scale_param))$

sgwt_inverse 21

sgwt_inverse

Inverse SGWT transform

Description

Reconstruct signal from wavelet coefficients

Usage

```
sgwt_inverse(sgwt_decomp)
```

Arguments

```
sgwt_decomp SGWT decomposition object from sgwt_forward
```

Value

Reconstructed signal vector

Examples

```
## Not run:
# Assuming you have an SGWT decomposition
reconstructed <- sgwt_inverse(sgwt_decomp)
## End(Not run)</pre>
```

sgwt_similarity

Comprehensive Signal Similarity Analysis

Description

Compute similarity between two signals using either raw signals (via SGWT) or pre-computed SGWT decompositions. This function provides a unified interface for signal similarity analysis with energy normalization and advanced features.

```
sgwt_similarity(
  signal1,
  signal2,
  data.in = NULL,
  x_col = "x",
  y_col = "y",
  k = 25,
  J = 4,
  kernel_type = "mexican_hat",
  eps = 1e-12,
  low_only = FALSE,
  return_parts = FALSE,
  ...
)
```

Arguments

signal1	Either a character string (column name in data.in), numeric vector, or SGWT result object
signal2	Either a character string (column name in data.in), numeric vector, or SGWT result object
data.in	Data frame containing signals (required if signal1/signal2 are column names)
x_col	Column name for X coordinates (default: "x")
y_col	Column name for Y coordinates (default: "y")
k	Number of nearest neighbors for graph construction (default: 25)
J	Number of wavelet scales (default: 4)
kernel_type	Wavelet kernel type (default: "mexican_hat")
eps	Numerical stability parameter (default: 1e-12)
low_only	If TRUE, use only low-frequency similarity (default: FALSE)
return_parts	If TRUE, return detailed components; if FALSE, return scalar similarity (default: FALSE)
	Additional arguments passed to SGWT()

Value

Similarity score (scalar) or detailed similarity analysis (list) depending on return_parts

Examples

```
sgwt_weighted_similarity
```

Energy-normalized weighted similarity between two SGWT results

Description

Compute low-frequency cosine similarity (scaling), non-low cosine similarity (flattened wavelet coefficients), and an overall energy-normalized weighted score. If 'low_only = TRUE', compute only the low-frequency cosine and set ' $S = c_low'$.

simulate_multiscale 23

Usage

```
sgwt_weighted_similarity(
   sgwt_a,
   sgwt_b,
   eps = 1e-12,
   validate = TRUE,
   return_parts = TRUE,
   low_only = FALSE
)
```

Arguments

sgwt_a	SGWT output for signal A. Either the full list returned by SGWT (with '\$decomposition') or a decomposition list as returned by 'sgwt_forward()'.
sgwt_b	SGWT output for signal B. Same format as 'sgwt_a'.
eps	Small numeric for numerical stability when norms are near zero (default 1e-12).
validate	$Logical; if \ TRUE, check \ consistency \ of \ dimensions, \ scale \ count/order, \ and \ kernel \ family.$
return_parts	$Logical; if \ TRUE \ (default), return \ a \ list \ with \ components; if \ FALSE, return \ only \ the \ scalar \ S.$
low_only	Logical; if TRUE, compute **low-frequency-only** similarity (skip non-low and set 'S = c_low ').

Value

If 'return_parts=TRUE', a list with: * 'c_low' — cosine on scaling coefficients * 'c_nonlow' — cosine on flattened wavelet coefficients (**NA if 'low_only = TRUE'**) * 'w_low' — macro weight for the low-frequency part (in [0,1]) * 'w_NL' — 1 - w_low (non-low weight) * 'S' — final weighted similarity in [-1,1] * 'E_low_a', 'E_NL_a', 'E_low_b', 'E_NL_b' — energy diagnostics per signal (**E_NL_* = NA if 'low_only'**) * 'n', 'J' — length of signal and number of wavelet scales (**J = NA if 'low_only'**) If 'return_parts=FALSE', returns the scalar 'S'.

Examples

```
## Not run:
# Assume two SGWT results sgwt_res1 and sgwt_res2 from SGWT(..., return_all=TRUE)
sim <- sgwt_weighted_similarity(sgwt_res1, sgwt_res2)
sim_low <- sgwt_weighted_similarity(sgwt_res1, sgwt_res2, low_only = TRUE)
str(sim)
## End(Not run)</pre>
```

simulate_multiscale

Simulate Multiple Center Patterns

Description

Generate spatial patterns with multiple circular centers at different scales. Creates concentric circle patterns with inner circle A and outer ring B at various radius combinations.

24 simulate_ringpattern

Usage

```
simulate_multiscale(
   grid_size = 60,
   n_centers = 3,
   Ra_seq = c(10, 5, 1),
   Rb_seq = c(10, 5, 1),
   seed = 123
)
```

Arguments

```
grid_size Size of the spatial grid (default: 60)

n_centers Number of pattern centers to generate (default: 3)

Ra_seq Vector of inner circle radii (default: c(10, 5, 1))

Rb_seq Vector of outer ring radii (default: c(10, 5, 1))

seed Random seed for reproducible center placement (default: 123)
```

Value

List of data frames, each containing X, Y coordinates and circleA, circleB binary signals

Examples

```
## Not run:
# Generate multi-center patterns with default parameters
patterns <- simulate_multiscale()

# Custom parameters
Ra_seq <- seq(from = 10, to = 3, length.out = 6)
Rb_seq <- seq(from = 20, to = 3, length.out = 6)
patterns <- simulate_multiscale(Ra_seq = Ra_seq, Rb_seq = Rb_seq, n_centers = 3)
## End(Not run)</pre>
```

simulate_ringpattern
Simulate Concentric Ring Patterns

Description

Generate concentric ring patterns with dynamic outer ring movement. Creates a solid inner circle with a moving outer ring that closes in over time.

```
simulate_ringpattern(
  grid_size = 60,
  radius_seq = seq(2.5, 20, by = 2.5),
  n_movements = 10,
  center_x = NULL,
  center_y = NULL
)
```

visualize_multiscale 25

Arguments

Value

List of data frames, each containing X, Y coordinates, movement indicators, and signal_1 (solid circle), signal_2 (concentric ring) binary signals

Examples

```
## Not run:
# Generate concentric ring patterns with default parameters
patterns <- simulate_ringpattern()

# Custom parameters
radius_seq <- seq(2.5, 20, by = 2.5)
patterns <- simulate_ringpattern(radius_seq = radius_seq, n_movements = 5)

## End(Not run)</pre>
```

visualize_multiscale

Visualize Multiple Center Simulation Results

Description

Create visualization plots for multiple center simulation patterns

Usage

```
visualize_multiscale(
   sim_data,
   Ra_seq,
   Rb_seq,
   bg_color = "grey",
   signal1_color = "red",
   signal2_color = "blue"
)
```

Arguments

sim_data	Output from simulate_multiscale function
Ra_seq	Vector of Ra values used in simulation
Rb_seq	Vector of Rb values used in simulation
bg_color	Background color for visualization (default: "grey")

Value

Combined ggplot object with all pattern visualizations

Examples

```
## Not run:
# Generate and visualize patterns
Ra_seq <- seq(from = 10, to = 3, length.out = 6)
Rb_seq <- seq(from = 20, to = 3, length.out = 6)
sim_data <- simulate_multiscale(Ra_seq = Ra_seq, Rb_seq = Rb_seq, n_centers = 3)
plot_grid <- visualize_multiscale(sim_data, Ra_seq, Rb_seq)
print(plot_grid)
## End(Not run)</pre>
```

visualize_ringpattern

Visualize Concentric Ring Simulation Results

Description

Create visualization plots for concentric ring simulation patterns

Usage

```
visualize_ringpattern(
   sim_data,
   radius_seq,
   bg_color = "grey",
   signal1_color = "#16964a",
   signal2_color = "#2958a8"
)
```

Arguments

```
sim_data Output from simulate_ringpattern function

radius_seq Vector of radius values used in simulation

bg_color Background color for visualization (default: "grey")

signal1_color

Color for signal 1 visualization (default: "#16964a")

signal2_color

Color for signal 2 visualization (default: "#2958a8")
```

Value

Combined ggplot object with all pattern visualizations

visualize_sgwt_kernels 27

Examples

```
## Not run:
# Generate and visualize patterns
radius_seq <- seq(2.5, 20, by = 2.5)
sim_data <- simulate_ringpattern(radius_seq = radius_seq)
plot_grid <- visualize_ringpattern(sim_data, radius_seq)
print(plot_grid)
## End(Not run)</pre>
```

```
visualize_sgwt_kernels
```

Visualize SGWT kernels and scaling functions

Description

Visualize the scaling function and wavelet kernels used in SGWT based on the eigenvalue spectrum and selected parameters

Usage

```
visualize_sgwt_kernels(
  eigenvalues,
  scales = NULL,
  J = 4,
  scaling_factor = 2,
  kernel_type = "mexican_hat",
  lmax = NULL,
  eigenvalue_range = NULL,
  resolution = 1000
)
```

Arguments

```
eigenvalues Vector of eigenvalues from graph Laplacian

scales Vector of scales for the wavelets (if NULL, auto-generated)

J Number of scales to generate if scales is NULL (default: 4)

scaling_factor

Scaling factor between consecutive scales (default: 2)

kernel_type Type of wavelet kernel ("mexican_hat" or "meyer", default: "mexican_hat")

lmax Maximum eigenvalue (optional, computed if NULL)

eigenvalue_range

Range of eigenvalues to plot (default: full range)

resolution Number of points for smooth curve plotting (default: 1000)
```

Value

List containing the filter visualization plot and filter values

```
## Not run:
# Generate some example eigenvalues
eigenvals <- seq(0, 2, length.out = 100)

# Visualize kernels with specific parameters
viz_result <- visualize_sgwt_kernels(
   eigenvalues = eigenvals,
   J = 4,
   scaling_factor = 2,
   kernel_type = "mexican_hat"
)
print(viz_result$plot)

## End(Not run)</pre>
```

Index

```
* CODEX
   codex_toy_data, 6
* SGWT
    codex_toy_data, 6
* biological-data
   BioGSP-package, 2
* datasets
    codex_toy_data, 6
* graph-theory
   BioGSP-package, 2
* internal
   sgwt-globals, 18
* package
   BioGSP-package, 2
* spatial-analysis
   BioGSP-package, 2
* spatial
   codex_toy_data, 6
* wavelets
   BioGSP-package, 2
_PACKAGE (BioGSP-package), 2
BioGSP-package, 2
Cal Eigen, 4
Cal_GCC, 2, 5
cal_laplacian, 6
codex toy data, 6
compare_kernel_families,9
compute_sgwt_filters, 10
cosine_similarity, 10
demo_sgwt, 2, 11
FastDecompositionLap, 12
find_knee_point, 13
gft, 13
hello_sgwt, 14
install\_and\_load, 14
plot_FM, 15
plot_sgwt_decomposition, 2, 15
```

```
SGWT, 2, 16
sqwt-qlobals, 18
sgwt_auto_scales, 18
sgwt_energy_analysis, 2, 19
sgwt_forward, 2, 19
sgwt_get_kernels, 20
sgwt_inverse, 2, 21
sgwt\_similarity, 5, 21
sgwt_weighted_similarity, 22
simulate_multiscale, 23
simulate_ringpattern, 24
visualize_multiscale, 25
visualize_ringpattern, 26
visualize_sgwt_kernels, 27
```