# TP 6 d'AD

Hugo Happy et Yu Zigong 13/04/2020

## Exercice 2: Calcul du put et du call

1) Ecriture des fonctions call et put

2) Evolution du call et du put en fonction du taux d'intérêt instantanné

Pour K = 1:

## Evolution du call et du put en fonction de sigma



Pour  $K = e^{\sigma^2/2}$ :

## Evolution du call et du put en fonction de sigma



Pour  $K = e^{-\sigma^2/2}$ :

## Evolution du call et du put en fonction de sigma



On remarque que quand K=1, call=put, et quand K>1 (dans le cas  $K=e^{\sigma^2/2}$  et  $\sigma>0$ ), call<put, et quand K<1(dans le cas  $K=e^{-\sigma^2/2}$  et  $\sigma>0$ ) call>put.

### Exercice 3: Loi des grands nombres

### 1) Ecriture de la fonction reallput

```
sigma=1
K=1
rcallput <- function(n,sigma,K)
{
    Xi = rnorm(n,0,1)
    Yi = exp(sigma*Xi-(sigma^2)/2)-K
    Zi = K-exp(sigma*Xi-(sigma^2)/2)
    resultat = matrix(nrow=n,ncol=2)
    resultat[,1]=Yi
    resultat[,2]=Zi
    resultat[resultat<0]=0
    return(resultat)
}</pre>
```

2) Simulation de 10000 réalisations pour  $\sigma=1$  et K=1

```
Υi
                         Zi
Min.
       : 0.0000
                          :0.0000
                   Min.
1st Qu.: 0.0000
                   1st Qu.:0.0000
Median : 0.0000
                   Median :0.4106
Mean
       : 0.3859
                          :0.3875
                   Mean
                   3rd Qu.:0.6951
3rd Qu.: 0.1937
Max.
       :49.4350
                   Max.
                          :0.9795
```

3) Calcul des moyennes partielles  $\overline{Y_m}$ 

```
vecteur_entier = seq(1,10000,length.out = 10000)
moyenne_partielle_Y = cumsum(simulations[,1])/vecteur_entier
```

4) 5) Evolution de  $\overline{Y}_m$  en fonction de m et superposition de la valeur calculée du call



En faisant plusieurs fois l'expérience on remarque que les graphes des moyennes partielles sont différents

pour des m petits mais qu'ils convergent bien tous vers le Call pour un m assez grand. Ce qui confirme la théorie car,  $\overline{Y}_m$  tend vers m d'après la loi des grands nombres. 6) Evolution de  $\overline{Z}_m$  en fonction de m et superposition du put P



7) 8) Comme  $C - P = S_0 e^r - K$ , si S0=1 et r=0, On a C=P+1-K, donc il suffit d'estimer l'un d'entre eux.

 $\label{thm:constraint} \mbox{Voici ci-dessous un exemple du code utilis\'e pour tracer tous les graphiques de cette question:}$ 

```
\sigma = 3, K = 1 sigma = 3 ; K = 1 simulations = rcallput(10000, sigma, K) moyenne_partielle_Y = cumsum(simulations[,1])/vecteur_entier plot(vecteur_entier, moyenne_partielle_Y, xlab="m", ylab="Moyenne partielle des Ym", type="l") points(c(0,10000), c(call(1,0,sigma,K),call(1,0,sigma,K)), type="l",col="blue")
```



moyenne\_partielle\_Z = cumsum(simulations[,2])/vecteur\_entier
plot(vecteur\_entier,moyenne\_partielle\_Z,xlab="m",ylab="Moyenne partielle des Zm",type="l")
points(c(0,10000),c(put(1,0,sigma,K),put(1,0,sigma,K)),type="l",col="blue")



















Le calcule des variances corrigées donne la matrice suivante :

|      | sigma | K   | Var_Yi       | Var_Zi     |
|------|-------|-----|--------------|------------|
| [1,] | 3.0   | 1.0 | 278.86148901 | 0.07689156 |
| [2,] | 1.0   | 0.8 | 1.60524986   | 0.06521430 |
| [3,] | 1.0   | 1.0 | 1.54731572   | 0.10880949 |
| [4,] | 1.0   | 2.0 | 1.02937631   | 0.37420079 |
| [5,] | 0.1   | 1.0 | 0.00395001   | 0.00299150 |

On constate que la variance de Y est supérieure à celle de Z pour chacun des cas.

9)

Dans le cas  $k=1, \sigma=1$ ,

$$Y = [e^{X-0.5} - 1]_{+} = 0 \Rightarrow e^{X-0.5} - 1 \le 0 \Rightarrow X \le 0.5$$

$$Z = [1 - e^{X - 0.5}]_{+} = 0 \Rightarrow 1 - e^{X - 0.5} < 0 \Rightarrow X > 0.5$$

on a  $\mathbb{E}[Y]=C$  et  $\mathbb{E}[Z]=P$ , de plus  $C-P=S_0e^r-K=0$ , donc  $\mathbb{E}[Z]=\mathbb{E}[Z]=C$ , donc on a:

$$\mathbb{V}ar[Y] = \mathbb{E}[Y^2] - \mathbb{E}^2[Y] = \mathbb{E}[(e^{X - 0.5} - 1)^2 \mathbb{I}_{X > 0.5}] - C^2$$

et

$$\mathbb{V}ar[Z] = \mathbb{E}[Z^2] - \mathbb{E}^2[Z] = \mathbb{E}[(1 - e^{X - 0.5})^2 \mathbb{I}_{X < =0.5}] - C^2$$

On étudie la valeur de la fonction  $(1-e^{X-0.5})^2$ , si  $X \ge 0.5$ , alors  $(e^{X-0.5}-1)^2$  prend les valeurs dans  $[0,+\infty[$ , mais par contre si  $X \le 0.5$ ,  $(1-e^{X-0.5})^2$  prend les valeurs dans [0,1]. Donc, C'est logique que

$$\mathbb{E}[(1 - e^{X - 0.5})^2 \mathbb{I}_{X < = 0.5}] \le \mathbb{E}[(e^{X - 0.5} - 1)^2 \mathbb{I}_{X > = 0.5}]$$

qui implique que

$$\mathbb{V}ar[Z] \leq \mathbb{V}ar[Y].$$

## Exercice 4: Convergence en loi

1) Simulation de m x n vecteurs  $Y_i$ 

```
m = 1000 ;n = 100 ; sigma = 1 ; r = 0 ; K = 1
donnee=rcallput(m*n,sigma,K)
Y=matrix(donnee[,1],nrow=m,ncol=n)
```

2) Construction du vecteur y des moyennes des lignes de Y

```
y=rowMeans(Y)
```

3) Simulation de Z et construction du vecteur z de ses moyennes par lignes

```
Z=matrix(donnee[,2],nrow=m,ncol=n)
z=rowMeans(Z)
```

4) Représentation des diagrammes quantiles/quantiles

Diagramme de Y

## Normal Q-Q Plot



## Normal Q-Q Plot



## 5) 6) Histogramme de y et densité de la loi adaptée.

# Histogram of y



## 7) Histogramme de z

## Histogram of z



### 8) Intervalle de confiance approché à 95%

On se donne m=10 et n=10 pour IC.

### [1] 0.236037 0.304204

### [1] 0.3610604 0.4022378

On sait bien que dans le cas K=1 et  $\sigma=1$ , call=put=0.3829249, donc en comparant la longueur de l'IC et la précis de IC, On trouve que l'IC de P est meilleur que l'IC de C, qui vérifie bien le résultat de l'exo 3!

#### Exercice 5: Méthode de Monte-Carlo et réduction de la variance

1)

```
I <- function(x){</pre>
  n=length(x)
  IC1=mean(x)-qnorm(0.975)*sqrt(var(x))/sqrt(n)
  IC2=mean(x)+qnorm(0.975)*sqrt(var(x))/sqrt(n)
  return(c(IC1,IC2))
}
2)
r = 0; S = 1; K = 1; sigma = 1
echantillon = rcallput(n,sigma,K)[,1]
I(echantillon)
[1] 0.3107948 0.4316297
3)
echantillon_controle=1-K+rcallput(n,sigma,K)[,2]
I(echantillon_controle)
[1] 0.3540130 0.3947727
4)
echantillon_prefer<- function(m,sigma,K){</pre>
  V=rexp(n,0.5)
  s1=K-exp(sigma*sqrt(V)-sigma^2/2)
  s2=K-exp(-sigma*sqrt(V)-sigma^2/2)
  P=(s1*(s1>=0)+s2*(s2>=0))/sqrt(2*pi*V)
  return(P)
}
I(echantillon_prefer(1000,1,1))
```

### [1] 0.3193813 0.5011908

On constate que l'intervalle de confiance n'est pas meilleure que celui trouvé dans la question 2), donc on va rechercher l'autre méthode pour réduire la variance.

## 5) Etude de la monotonie de $f(x) = [k - e^{\sigma x - \sigma^2/2}]_+$

La fonction  $f(x) = [k - e^{\sigma x - \sigma^2/2}]_+$  est décroissante. **6)** On pose T(X)=-X et si  $X \sim \mathcal{N}(0,1)$ , alors T(X)=- $X \sim \mathcal{N}(0,1)$ .

Comme f(x) est une fonction monotone et T est une fonction décroissante tq T(X) suit mêmê loi que X, on repose un estimateur

$$e_2 = \frac{1}{2n} \sum_{i=1}^{n} (f(X_i) + f(T(X_i)))$$

il est meilleur que  $e_1 = \frac{1}{2n} \sum_{i=1}^{2n} f(X_i)$ . Car la variance de  $e_2$  est plus petite que celle de  $e_1$ .

8)

```
echantillon_anti <-function(n,sigma,K){
   X=rnorm(n,0,1)
   Y_brut=exp(sigma*X-sigma^2/2)-K #On calcule exp(sigma*X-sigma^2/2)-K
   Y_brut2=exp(-sigma*X-sigma^2/2)-K #On calcule exp(-sigma*X-sigma^2/2)-K
   Y1=-Y_brut*(Y_brut<=0) #On calcule Y_brut+
   Y2=-Y_brut2*(Y_brut2<=0) #On calcule Y_brut2+
   Y=c(Y1,Y2)
   return(c(Y,Y))
}
I(echantillon_anti(1000,1,1))</pre>
```

#### [1] 0.3733073 0.3936102

On trouve cet IC est meilleur que l'acien parce que sa longueur est réduite.

Rem: en utilisant la methode de stratification, on peut obtenir un meilleur IC pour P!

```
echantillon_strati<- function(n,m,sigma,K){
  X=rnorm(n*m,0,1)
  Y_brut=exp(sigma*X-sigma^2/2)-K #On calcule exp(sigma*X-sigma^2/2)-K
  Y brut2=exp(-sigma*X-sigma^2/2)-K #On calcule exp(-sigma*X-sigma^2/2)-K
  Y1=-Y_brut*(Y_brut<=0)
  Y2=-Y_brut2*(Y_brut2<=0)
  Y_n=c(Y1,Y2)
  Y=matrix(Y_n,nrow=m) #On range les donnee dans matrice Y
  return(Y)
}
IC_strati<- function(Y){</pre>
  m=dim(Y)[2]
  n=dim(Y)[1]
  y=rowMeans(Y)
  var_y=sum(diag(var(Y))/m)/n #on calcule la variance intra
  IC_Y=c(mean(y)-qnorm(0.975)*sqrt(var_y)/sqrt(m*n),
       mean(y)+qnorm(0.975)*sqrt(var_y)/sqrt(m*n))
  return(IC_Y)
Y=echantillon_strati(100,10,1,1)
IC strati(Y)
```

### [1] 0.3793241 0.3884985

### Remarque:Résumé

On va faire un tableau de résumé pour comparer la qualité de notre résultat.

On estime C par 1000 échantillons dans le cas  $\sigma = 1$  et K = 1. On pose  $X_i \sim \mathcal{N}(0,1)$  et  $V_i \sim \mathcal{E}xp(0.5)$ . On rappele les estimateurs:

l'estimateur original:

$$e_1 = \frac{1}{1000} \sum_{i=1}^{1000} [e^{X_i - 0.5} - 1]_+$$

la méthode de la variance contrôle:

$$e_2 = \frac{1}{1000} \sum_{i=1}^{1000} [1 - e^{X_i - 0.5}]_+$$

la méthode de la variance contrôle améliorée par l'échantillonage préférentiel:

$$e_3 = \frac{1}{1000} \sum_{i=1}^{1000} \frac{[1 - e^{\sqrt{V_i} - 0.5}]_+ + [1 - e^{-\sqrt{V_i} - 0.5}]_+}{\sqrt{2\pi V_i}}$$

la méthode de la variance contrôle améliorée par variable antithétique:

$$e_4 = \frac{1}{2000} \sum_{i=1}^{1000} ([1 - e^{X_i - 0.5}]_+ + [1 - e^{-X_i - 0.5}]_+)$$

la méthode de la variance contrôle améliorée par variable antithétique et la méthode de stratification:

$$e_5 = \sum_{i=1}^{10} \frac{1}{10} \left( \frac{1}{200} \sum_{j=1}^{100} ([1 - e^{X_i - 0.5}]_+ + [1 - e^{-X_i - 0.5}]_+) \right)$$

```
table_resume<- matrix(nrow=5,ncol=3)
e_1=rcallput(1000,1,1)[,1];table_resume[1,1:2]=I(e_1)
e_2=rcallput(1000,1,1)[,2];table_resume[2,1:2]=I(e_2)
e_3=echantillon_prefer(1000,1,1);table_resume[3,1:2]=I(e_3)
e_4=echantillon_anti(1000,1,1);table_resume[4,1:2]=I(e_4)
e_5=echantillon_strati(100,10,1,1);table_resume[5,1:2]=IC_strati(e_5)
table_resume[,3]=table_resume[,2]-table_resume[,1]
colnames(table_resume)=c("IC-","IC+","length of IC")
rownames(table_resume)=c("e_1","e_2","e_3","e_4","e_5")
table_resume</pre>
```

```
IC- IC+ length of IC
e_1 0.3291076 0.4999454 0.17083774
e_2 0.3651861 0.4057380 0.04055183
e_3 0.3433738 0.3880193 0.04464554
e_4 0.3716257 0.3919889 0.02036316
e_5 0.3787214 0.3878388 0.00911735
```

On voit que la troisieme colonne est la longueur de l'intervalle confiance qui implique la qualité de notre estimateur. On a vu que la méthode de la variance contrôle améliorée par variable antithétique et la méthode de stratification nous donne un meilleur estimateur.