Topology for Polynomial Rings

August 24, 2024

- ullet C: Field of Complex Numbers
- K: Field
- $\mathbf{x} := (x_1, \dots, x_n)$
- $\bullet \ \ X:=\mathbb{K}^n$

Polynomial Ring (Set)	$\mathbb{C}[x]$	$\mathbb{C}[x,y]$	$\mathbb{K}[x_1,\ldots,x_n]$
Element	$f \in \mathbb{C}[x]$	$g \in \mathbb{C}[x,y]$	$p \in \mathbb{K}[x_1,\ldots,x_n]$
	$f : \mathbb{C} \longrightarrow \mathbb{C}$	$g: \mathbb{C}^2 \longrightarrow \mathbb{C}$	$p : X \longrightarrow \mathbb{K}$
	$z \longmapsto f(z)$	$(\alpha,\beta) \longmapsto g(\alpha,\beta)$	$\mathbf{x} \longmapsto p(\mathbf{x})$
Zero Set	$Z(f) = \left\{ z \in \mathbb{C} : f(z) = 0 \right\}$	$Z(g) = \{(\alpha, \beta) \in \mathbb{C}^2 : f(\alpha, \beta) = 0\}$	$Z(p) = \left\{ \mathbf{x} \in X : p(\mathbf{x}) = 0 \right\}$

For any set of polynomials $S \subseteq \mathbb{K}[x_1, \dots, x_n]$, the **zero set** Z(S) is defined as:

$$Z(S) := \left\{ \mathbf{x} \in X : p(\mathbf{x}) = 0 \text{ for all } p \in S \right\}.$$

Consider

$$\mathcal{T} := \left\{ Z(p) \subseteq X : p \in \mathbb{K}[x_1, \dots, x_n] \right\} \subseteq 2^X$$

$$\mathcal{T} := \left\{ Z(S) \subseteq X : S \subseteq \mathbb{K}[x_1, \dots, x_n] \right\} \subseteq 2^X$$

We claim that \mathcal{T} is a topology on X:

- (i) (Whole Space and Empty Set)
 - Let $S = \emptyset$. By the definition,

$$Z(\emptyset) = \{ \mathbf{x} \in X : p(\mathbf{x}) = 0 \text{ for all } p \in \emptyset \}.$$

Therefore, $Z(\emptyset) = X \in \mathcal{T}$ since the condition is vacuously true for every point $\mathbf{x} \in X$.

- Let $S = \{1\}$, where $1 \in \mathbb{K}[x_1, \dots, x_n]$. Then

$$Z(\{1\}) = \{ \mathbf{x} \in X : 1 = 0 \} = \emptyset \in \mathcal{T}.$$

(ii) **(Arbitrary Intersections)** Consider $\{Z(S_i)\}_{i\in\Lambda}\subseteq\mathcal{T}$, where each $Z(S_i)$ is the zero set of some set of polynomials $S_i\subseteq\mathbb{K}[x_1,\ldots,x_n]$. Then

$$\bigcap_{i \in \Lambda} Z(S_i) = \left\{ \mathbf{x} \in X : \mathbf{x} \in Z(S_i) \text{ for all } i \in \Lambda \right\}$$

$$= \left\{ \mathbf{x} \in X : p(\mathbf{x}) = 0 \text{ for all } p \in S_i \text{ and for all } i \in \Lambda \right\}$$

$$= \left\{ \mathbf{x} \in X : p(\mathbf{x}) = 0 \text{ for all } p \in \bigcup_{i \in \Lambda} S_i \right\}$$

$$= Z\left(\bigcup_{i \in \lambda} S_i\right)$$

Let $S := \bigcup_{i \in \Lambda} S_i \subseteq \mathbb{K}[x_1, \dots, x_n]$. Then

$$\bigcap_{i\in\Lambda}Z(S_i)=Z\left(\bigcup_{i\in\Lambda}S_i\right)=Z(S)\in\mathcal{T}.$$

(iii) **(Finite Unions)** Consider two zero sets $Z(S_1)$ and $Z(S_2)$, where $S_1, S_2 \subseteq \mathbb{K}[x_1, \dots, x_n]$. Then

$$Z(S_1) \cup Z(S_2) = \left\{ \mathbf{x} \in X : \mathbf{x} \in Z(S_1) \text{ or } \mathbf{x} \in Z(S_2) \right\}$$

$$= \left\{ \mathbf{x} \in X : p(\mathbf{x}) = 0 \text{ for all } p \in S_1 \text{ or } q(\mathbf{x}) = 0 \text{ for all } q \in S_2 \right\}$$

$$= \left\{ \mathbf{x} \in X : (p \cdot q)(\mathbf{x}) = 0 \text{ for all } p \in S_1 \text{ and for all } q \in S_2 \right\}$$

Let

$$S := \{ p \cdot q \in \mathbb{K}[x_1, \dots, x_n] : p \in S_1 \text{ and } q \in S_2 \} \subseteq \mathbb{K}[x_1, \dots, x_n].$$

Then

$$Z(S_1) \cup Z(S_2) = \left\{ \mathbf{x} \in X : (p \cdot q)(\mathbf{x}) = 0 \text{ for all } p \in S_1 \text{ and for all } q \in S_2 \right\}$$
$$= \left\{ \mathbf{x} \in X : (p \cdot q)(\mathbf{x}) = 0 \text{ for all } p \cdot q \in S \right\}$$
$$= Z(S) \in \mathcal{T}.$$

Hence it is proved