Determine Refractive Index of Material of a prism using Sodium Source

University of Delhi
Preetpal Singh(2020PHY1140)
Anjali(2020PHY1164)

Unique Paper Code: 32221202

Paper Title: Waves and Optics Lab

Submitted on: June 4, 2021

Due On: June 6, 2021

 $File\ Name:\ 1140_Mamta_A1c$

B.Sc(H) Physics Sem II

Submitted to: Dr. Mamta

1 AIM

To Determine Refractive Index of Material of a prism using Sodium Source

2 APPARATUS

Spectrometer, prism, prism clamp, sodium vapour lamp, lens. etc.

3 PROCEDURE

- Focus Telescope on distant object.
- When focus is correct, start button is activated. Then click Start button.
- Switch on the light by clicking Switch On Light button.
- Focus the slit using Slit focus slider.
- Bring Vernier to 0 degree and 180 degree position using Vernier Table Slider.
- Place the prism.
- Bring telescope using Telescope Slider to a position of (180 2i) degree by rotating it in anti-clockwise direction, where (i) is the angle of incidence.
- Move Vernier Table in clockwise direction to coincide slit with cross wire.

- Now move telescope in clockwise direction so that refracted ray goes in it and coincide slit with cross wire.
- Note down reading for both Verniers . This will be reading for refracted Ray.
- Remove the Prism.
- Move telescope in anti-clockwise direction to get direct ray in it and coincide slit with cross wire.
- Note down the readings for both Verniers now as well. This will be reading for Direct Ray.

4 PRECAUTIONS

- Slit should be as narrow as possible.
- Vernier numbering should remain fixed throughout the experiment.
- Prism position should be maintained properly.
- Fine adjustment of telescope must be used in each case.

5 OBSERVATIONS

5.1 Least Count of Spectrometer

$$27MSD=30VSD$$

$$1VSD = \frac{27}{30}MSD$$

Least count = 1MSD - 1VSD

$$1MSD - \frac{27}{30}MSD = \frac{3}{30}MSD$$

On main scale 20 divisions = 10°

1 division =
$$(1/2)^{\circ} = 1 \text{ MSD}$$

$$\therefore L.C = \left(\frac{3}{30}\right) \times \left(\frac{1}{2}\right)^{\circ} = \left(\frac{1}{20}\right)^{\circ}$$

$$=(\frac{1}{20}\times 60)'=3'$$

5.2 Angle of Deviation

$\angle i^{\circ}$	vs	$\angle r^{\circ}$	$\angle d^{\circ}$	$(\angle r^{\circ} - \angle d^{\circ})$	$\angle mean^{\circ}$
30°	V1	$42^{\circ} \ 30'$	$89^{\circ} \ 30'$	47°	47°
	V2	$222^{\circ} 30'$	$269^{\circ} 30'$	47°	
35°	V1	$53^{\circ} \ 30'$	$94^{\circ} \ 30'$	41°	41°
	V2	$233^{\circ} \ 30'$	$274^{\circ} \ 30'$	41°	
40°	V1	61°	$99^{\circ} \ 30'$	38° 30′	$38^{\circ} \ 30'$
	V2	241°	$279^{\circ} \ 30'$	38° 30′	
45°	V1	67°	$104^{\circ} \ 30'$	$37^{\circ} \ 30'$	$37^{\circ} \ 30'$
	V2	247°	$284^{\circ} \ 30'$	37°	
50°	V1	$72^{\circ} \ 30'$	$109^{\circ} \ 30'$	37°	$37^{\circ} \ 15'$
	V2	252°	$289^{\circ} \ 30'$	$37^{\circ} \ 30'$	
55°	V1	77°	$114^{\circ} \ 30'$	$37^{\circ} \ 30'$	$37^{\circ} \ 30'$
	V2	257°	$294^{\circ} \ 30'$	$37^{\circ} \ 30'$	
60°	V1	$80^{\circ} \ 30'$	119° 30′	39° 30′	39°
	V2	260° 30′	299° 30′	39°	

5.2.1 Take observation for angle of deviation for various angles of incidence i

6 RESULT AND DISCUSSION

Minimum angle of deviation is 37°11'45"

- We just went through the theory of experiment by sharing links with info of concerned points and definitions.
- We just worked together on simulator by sharing screen via Gmeet.

- We evaluated the readings taken.
- We discussed the error part.

7 Contribution of Team Mates

Anjali: She did most of the theoretical part including working on simulator.

Preetpal Singh: He did Python programming and Latex part.

8 Programming Code

```
import matplotlib.pyplot as plt
2 from scipy.optimize import curve_fit
3 import numpy as np
5 def rad(x):
      return (x * np.pi/180)
8 def func(i,A,n):
      return i - A + np.arcsin(n * np.sin(A - np.arcsin(np.sin(i)/n))
def min_dev(y_cal,xlim):
      list = []
      for j in range(len(y_cal)):
13
          xlim[j]
14
          if y_cal[j] == np.min(y_cal):
15
              list.append(xlim[j])
16
17
              list.append(np.min(y_cal))
      mini = np.array(list)
18
19
      print("\nCoordinates of minima of the graph (x,y):\n",mini)
      print("\n Angle of minimum deviation from Graph is: ",min(y_cal)")
20
      return mini
22
23
24 if __name__ == "__main__":
      datax = np.array([30,35,40,45,50,55,60])
25
      mean_dev_deg = np.array([47,41,38,37,37,37,39])
26
      mean_dev_min = np.array([0,0,30,30,15,30,0])
27
      datay= np.array((mean_dev_deg) + (mean_dev_min/60))
      xlim = np.linspace(30,60,100)
29
30
popt, pcov = curve_fit(func,rad(datax),rad(datay))
```

```
print("\nAngle\ of\ prism\ and\ Refractive\ index\ of\ the\ prism\ from\ fitting:\n",popt,"\n")
32
      y_cal = np.array(func(rad(xlim),*popt)) * 180/np.pi
33
34
      print(y_cal)
      mini = min_dev(y_cal,xlim)
35
36
      plt.style.use("ggplot")
37
      plt.title("Graph between $\delta$ vs i")
38
      plt.xlabel('Angle of incidence (i)')
      plt.ylabel('Angle of deviation ($\delta$)')
40
      plt.scatter(datax,datay,color = "b",label = "Experimental data"
41
      plt.scatter(mini[0],mini[1],c = "g",label = "Minimum deviation
42
      point")
      plt.plot(xlim,np.array(func(rad(xlim),*popt) * 180/np.pi),
43
      color = "r",label = "Fitting curve")
      plt.legend()
44
plt.show()
```

9 References

 $\rm https://vlab.amrita.edu/$