Segunda Lista de Fisica I

Italo Leite

Agosto de 2024

1. Normalmente é possível fazer uma viagem de carro de San Diego a Los Angeles com velocidade média de 105 km/h, em 2h20min. Em uma tarde de sexta-feira, contudo, o trânsito está muito pesado e você percorre a mesma distância com um velocidade média de 70 km/h. calcule o tempo que você leva nesse percurso.

reposta:

Primeiro precisamos identificar a distância que ele percorre ao viajar por 2h20min em um velocidade média de 105 km/h. Para isso vamos utilizar a equação horária do espaço.

$$s(t) = s_0 + v.t$$

Pegando de referência que o que o espaço inicial seja zero, então podemos fazer com que $s_0 = 0$ e ignorarmos ele na questão, deixando a equação da seguinte forma:

$$s(t) = v.t$$

Onde o v é a velocidade média do automóvel, que é 105 km/h e o t é o tempo, que é 3h20min. Mas não podemos fazer essa multiplicação, pois as horas ou devem estar apenas em horas ou apenas em minutos.

A hora dada pela questão é 2h20min. Como dito anteriormente, precisamos deixar apenas em horas ou apenas em minutos. Como a velocidade é km/h, a melhor opção é deixa-la em horas. Então

$$t_1 = 2\cancel{h} \times \frac{60min}{1\cancel{h}}$$

$$t_1 = 120min$$

Onde, t_1 é o tempo de 2horas para minutos da viagem.

Como achamos os minutos de 2 horas, podemos conseguir os minutos totais apenas somando com os 20 minutos restantes, achando assim o tempo total.

$$t_t = t_1 + t_2 \Rightarrow t_t = 120min + 20min$$

$$t_t = 140min$$

Onde, t_t é o tempo total da viagem, t_1 é o tempo achado logo acima e t_2 são os 20min restantes que sobranram das 2h20min.

Podemos transformar agora esses 140 min em horas para fazer a equação seguinte

$$t_{th} = 140 \text{min} \times \frac{1h}{60 \text{min}} \Rightarrow 2,33h$$

Onde t_{th} é o tempo total em horas. Substituindo as horas e a velocidade média na equação horária do espaço fica da seguinte forma:

$$s(2,33h) = 105km/h \times 2,33h$$

$$s(2,33h) = 105 \times 2,33 \times \frac{km}{\cancel{k}} \times \frac{\cancel{k}}{1}$$

$$s(2,33h) \approx 244,65km$$

Sabendo a distância total da viagem, podemos substis o s(t) por 244,65 km e a velocidade do automóvel por 70 km/h. Deixando a equação da seguinte forma:

$$244,65km = 70km/h \times t$$

Isolando o t para achar o tempo.

$$t = \frac{244,65km}{70km/h}$$

$$t = \frac{244,65}{70} \times \frac{km}{1} \times \frac{h}{km}$$

$$t = 3,5h$$

O tempo total de viajem seria de 3,5 horas. Ou seja, seria de 3h30min de viagem.

2. Dois corredores partem simultaneamente do mesmo ponto de uma pista circular de 200 m e correm em direções opostas. Um corre com uma velocidade constante de 6,20 m/s e o outro corre com uma velocidade constante de 5,50 m/s. Quando eles se cruzam pela primeira vez, calcule: a) Por quanto tempo estão correndo; e, b) qual é a distância percorrida por cada um deles.

respsota:

A) Para resolver, precisamos imaginar uma linha retilínea que tem uma distância de 200 m. O corredor 1 vai começar na distância 0m e o segundo corredor irá começar na distância é de 200m. Como há apenas um movimento retilíneo uniforme, vamos utilizar a equação horária do espaço, que descrevemos da seguinte forma:

$$s(t) = s_0 + v \cdot t$$

Onde o s_0 é o espaço inicial, v é a velocidade constante e t é o dominio da função da imagem $\mathbf{s}(\mathbf{t})$.

Pelo ponto de referência do x é crescente para a direita, o corredor dois irá andar negativamente em relação a trajetória.

Fórmula para o corredor 1:

$$s_{c1}(t) = 6,20m/s \cdot t$$

Fórmula para o corredor 2

$$s_{c2}(t) = 200m - 5,50m/s \cdot t$$

Para descorbri por quanto tempo eles correram para ambos se cruzarem, preciamos igualar as duas equações $s_{c1} = s_{c2}$, a equação deve ficar da seguinte forma:

$$6,20m/s \cdot t = 200m - 5,50m/s \cdot t$$

Precisamos isolar o t e resolver a divisão para descobrir o tempo que permaneceram correndo.

$$t = \frac{200m}{11,70m/s} \approx 17,09s$$

O tempo de corrida foi aproximadamente 17,09 segundos.

B) Com o tempo de corrida de ambos, vou considerar que ambos iram sair do espaço 0 (zero) e vão correr ou caminhar positivamente.

$$s_{c1}(17,09s) = 6,20m/s \cdot 17,09s \approx 105,96m$$

 $s_{c2}(17,09s) = 5,50m/s \cdot 17,09s \approx 93,99m$

Para saber se os calculos estão corretos, basta somar ambas distâncias se pe igual a 200m ou próximo de 200m.

$$s_t = s_{c1} + s_{c2} = 105,96m + 93,99m = 199,955m$$

O erro acontece pois houve arredondamentos nas casas de decimais. Mas se tivesse feito os calculos com a precissão certa de cada número, o resultado seria 200m corretamente.

- **3.** Um carro para em um semáforo. A seguir ele percorre um trecho retilíneo de modo que sua distância ao sinal é dada por $x(t) = bt^2 ct^3$, onde $b = 2,40m/s^2$ e $c = 0,120m/s^3$. A) Calcule a velocidade média do carro para o intervalo de tempo t = 0 até t = 10,0 s. b) calcule a velocidade instantânea do carro para i) t = 0; ii) t = 5,0 s; iii) t = 10,0 s. c) quanto tempo após o repouso o carro retorna novamente ao repouso? **resposta:**
- A) Para calcular a velocidade média precisa da seguinte equação

$$v_m = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

Onde x_f é a posição final do corpo, x_i é a posição inicial do corpo, t_f é o tempo final e t_i é o tempo inicial. Agora precisamo calcular a velocidade média entre entre os intervalos t=0s até t=10s. Como não há uma termo idependente na questão, podemos ignorar o t=0s, pois vai dar algo menos 0 (zero).

$$v_m = \frac{x(10s) - x(0s)}{10s - 0s} \Rightarrow \frac{x(10s)}{10s}$$

$$v_m = \frac{2,40m/s^2 \cdot (10s)^2 - 0,120m/s^3 \cdot (10s)^3}{10s}$$

$$v_m = 12m/s$$

B) Para calcular a velocidade instantânea precisamos primeiro derivar a função dada pela questão, pois a derivada do espaço é a velocidade instantânea.

$$\vec{v} = \frac{d\vec{x}(t)}{dt}$$

Derivando vamos obter a equação da seguinte forma:

$$= \vec{v}(t) = 4,80 \cdot m/s^2 \cdot t - 0,36 \cdot m/s^3 \cdot t^2$$

- i) Quando o $t = 0s \in 0$ (zero), pois todos os termos vão se multiplicar por zero.
- ii) Verificando quando o t = 5,0s

$$\vec{v}(5,0s) = 4,80 \cdot m/s^2 \cdot 5,0s - 0,36 \cdot m/s^3 \cdot (5,0s)^2$$
$$\vec{v}(5,0s) = 15,00m/s$$

iii) Verificando quando o t = 10, 0s

$$= \vec{v}(10,0s) = 4,80 \cdot m/s^2 \cdot 10,0s - 0,36 \cdot m/s^3 \cdot (10,0s)^2$$
$$\vec{v}(10,0s) = 12,00m/s$$

Quando o t = 0s é zero, quando t = 5,0s a velocidade instantânea é 15,00m/s e quando o t = 10,0s a velocidade instantânea é 12,00m/s.

C) Para achar quando o carro fica em repouso, basta substituir a velocidade dele igual a zero e isolar o tempo, ou seja:

$$0 = 4,80 \cdot m/s^2 \cdot t - 0,36 \cdot m/s^3 \cdot t^2$$

Resolvendo a equação obtermos

$$t \approx 13,33s$$

O carro retorna ao repouso novamente depois de aproximadamente 13,33 segundos depois da sua partida.

4. a velocidade de um carro em função do tempo é dada por $v_x(t) = \alpha + \beta \cdot t^2$, onde $\alpha = 3,0m/s$ e $\beta = 0,100m/s^3$. A) Calcule a aceleração média do carro para o intervalo de tempo de t = 0 a t = 5,0 s. b) Calcule a aceleração instantânea para i) t = 0 a t = 5,0 s. c) desenhe gráficos acurados $v \times t$ e $a \times t$ para o movimento do carro entre t = 0 e t = 5,0s.

resposta:

A) Para calcular a aceleração média do carro no intervalo de tempo t=0 até t=5.0s precisamos da equação seguinte:

$$a_m = \frac{\Delta \vec{v_x}}{\Delta t} = \frac{v_x(t) - v_x(t_0)}{t - t_0}$$

Substituindo os valores para os valores do intervalos desejado a equação fica da seguinte forma

$$a_{m} = \frac{v_{x}(5,0s) - v_{x}(0s)}{5,0s - 0s}$$

$$a_{m} = \frac{3.0m/s + 0.100m/s^{3} \cdot (5,0s)^{2} - 3.0m/s}{5.0s}$$

$$a_{m} = 0.100m/s^{3} \cdot 5.0s = 0.5m/s^{2}$$

A aceleração média de t=0s até t=10s é de $0, 5m/s^2$.

B) Para calcular a velocidade instantânea precisamos derivar a função $v_x(t)$.

$$\vec{a} = \frac{d\vec{v}}{dt} = 0,200m/s^3 \cdot t$$

- i) Não precisa fazer conta quando o t=0s, pois irá multiplicar a equação por zero e o resultado é $0m/s^2$.
- ii) Quando o t=5,0s o resultado é $1m/s^2$.

$$\vec{a} = 0,200m/s^3 \cdot 5,0 \neq 1m/s^2$$

C)

i) Plotar o gráfico $v \times t$ da função $v(t) = 0,100m/s^3 \cdot t + 3m/s$.

ii) Desenhar o gráfico $a \times t$ $a(t) = 0,200m/s^3 \cdot t$

5. O corpo humano pode sobreviver a um trauma por acidente com aceleração negativa (parada súbita) quando o módulo de aceleração é menor que 250 m/s^2 . Suponha que

você sofra um acidente de automóvel com velocidade inicial de 105 km/h e seja amortecido por um air bag que infla automaticamente. Qual deve ser a distância que o air bag se deforma para que você consiga sobreviver?

resposta:

Como não possuimos o tempo, para resolver vamos utilizar a equação de Torricelli.

$$v^2 = v_0^2 + 2 \cdot a \cdot \Delta s$$

Para descorbri a distância, precisamos isolar ela na equação, ficando da seguinte forma:

$$\Delta s = \frac{v^2 - v_0^2}{2 \cdot a}$$

A velocidade final será igual a zero, pois queremos quando estiver em repouso ou "batido".

$$\Delta s = \frac{0^2 - (30m/s)^2}{-2 \cdot 250m/s^2}$$
$$\Delta s = \frac{900m^2/s^2}{500m/s^2}$$
$$\Delta s = \frac{900}{500} \cdot \frac{m^2}{s^2} \cdot \frac{s^2}{s^2}$$
$$\Delta s = 1.8m$$

Para uma distância segura, o *air bag* deve ser acionado ao uma distância de 1,8m antes da batida.

6. Um trem de metrô parte do repouso em uma estação e acelera com uma taxa constante de $1,60~\rm m/s^2$ durante $14,0~\rm s$. Ele viaja com velocidade constante durante $70,0~\rm s$ e reduz a velocidade com uma taxa constante de $3,50~\rm m/s^2$ até parar na estação seguinte. Calcule a distância total percorrida.

resposta:

i) Primeiro precisamos achar a distância percorrida durante a aceleração, que o trem partiu do repouso e teve uma aceleração de $1,60m/s^2$ por 14,0 segundos. O deslocamento pode ser tratado como um movimento retilíneo uniforme, e com isso podemos utilizar a equação horária do espaço, que descrevemos da seguinte forma:

$$s_a(t) = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$$

Onde $s_0=0m,\,v_0=0m/s,\,a=1,6m/s^2$ e $s_a(t)$ é a posição do trem durante a acelração.

$$s_a(t) = s_0 + y_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$$

$$s_a(t) = \frac{1}{2} \cdot a \cdot t^2$$

Agora podemos verificar a distância percorrida pelo trem até os 17 segundos.

$$s_a(17,0s) = \frac{1}{2} \cdot a \cdot (17,0s)^2$$

$$s_a(17,0s) \approx 156,8m$$

ii) Precisamos achar a velocidade que ele atingio até os 17,0 segundos para saber a velocidade que ele manteve constante por mais 70 segundos. Para isso vamos utilizar a equação de Torricelli e isolar a velocidade final.

$$v^2 = v_0^2 + 2 \cdot a \cdot \Delta s$$

Onde $v_0 = 0$, $a = 1,60m/s^2$ e o $\Delta s = 156,8m$. Substituindo na equação e tirando a raiz fica da segunte forma:

$$v^{2} = y_{0}^{2} + 2 \cdot 1,60m/s^{2} \cdot 156,8m$$
$$v^{2} = 501,76m^{2}/s^{2} = \sqrt{501,76m^{2}/s^{2}}$$
$$v_{c} \approx 22,39m/s$$

Descobrindo a velocidade que ele obtem quando chega em 17,0 segundos, essa velocidade é a velocidade constante que ele irá se manter por mais 70,0 segundos. Podemos utilizara equação horária do espaço, considerado novamente que ele irá começar na distância zero.

$$s_c(t) = s_0 + v_c \cdot t$$

Onde $v_c = 22,39m/s$ e precisamos ver sua posição no tempo igual a 70,0 segundos.

$$s_c(70, 0s) = 22,39 \frac{m}{s} \cdot 70,0 = 1.724,1m$$

iii) Agora precisamos entrar a distância que ele percorreu ao começar a desaceleração e entrar em repouso. Também será utilizado a equação de Torricelli para resolver. Onde $v_0 = 22,39m/s, v^2 = 0m/s, a = -3,50m/s^2$ e o Δs_r é a constante que iremos isolar e tentar descobrir.

$$0^2 = (22, 39m/s)^2 - 2 \cdot -3, 50m/s^2 \cdot \Delta s_r$$

Isolando o Δs_r na equação

$$\Delta s_r = \frac{-(22,39m/s)^2}{-2 \cdot 3,50m/s^2} = 72,90m$$

Para descobrir a distância total percorrida, precisamo somar a distância de aceleração mais a distância que ele se manteve constante mais a distância em que ele desacelerou. Descrevemos a equação da seguinte forma

$$\Delta s_t = s_a + s_c + \Delta s$$

Onde $s_a = 156, 8m, s_c = 1.724, 1m \text{ e } \Delta s_r = 72,90m.$

$$\Delta s_t = 156, 8m + 1.724, 1m + 72, 90m = 1.797, 00m$$

A distância total percorrida pelo trem foi de 1.797,00m.

8. Um ovo é atirado verticalmente de baixo para cima de um ponto máximo da cornija na extremidade superior de um edifício alto. Ele passa rente a cornija em seu movimento para baixo, atingindo um ponto a 50,0m abaixo da cornija 5,0s após deixar a

mão do lançador. Despreze a esistência do ar. a) Calcule a velocidade inicial do ovo. b) Qual a altura máxima atingida acima do ponto inicial do lançamento? c) Qual o módulo da velocidade nessa altura máxima? d) Qual é o módulo e o sentido da aceleração nessa altura máxima? Faça gráficos a x t, v x t e y x t para o movimento do ovo.

resposta:

9. A aceleração de uma motocicleta é dada por $a_x(t) = At - Bt^2$ onde $A = 1, 5m/s^3$ e $B = 0, 120m/s^4$. A motocicleta está em repouso na origem no instante t = 0. a) Calcule sua velocidade e posição em função do tempo. b) Calcule a velocidade máxima que ela pode atingir.

resposta:

Para descobrir a velocidade e a posição precisamos intergrar a aceleração.

Para descorbri a velocidade precisamos resolver a igualdade abaixo

$$v_x(t) = \int_{t_0}^{t_1} a_x(t)dt$$

Igualdade resolvida:

$$v_x(t) = \frac{A \cdot t^2}{2} - \frac{B \cdot t^3}{3}$$

Para descobrir a função do espaço precisamos intergrar a velocidade.

$$s_x(t) = \int_{t_0}^{t_1} v_x(t)dt$$

Igualdade resolvida:

$$s_x(t) = \frac{A \cdot t^3}{6} - \frac{B \cdot t^4}{12}$$

- A) Para calcular a velocidade e a posição em relação ao tempo precisamos desenhar o gráfico para um melhor entendimento de como foi o movimento dele.
- i) O gráfico da equação $v_x(t)=\frac{A\cdot t^2}{2}-\frac{B\cdot t^3}{3}$ da velocidade em função do tempo.

ii) O gráfico da equação $s_x(t)=\frac{A\cdot t^3}{6}-\frac{B\cdot t^4}{12}$ do espaço em função do tempo da equação .

10. Você está no telhado de um prédio da UFMT 46 m acima do solo. Seu professor, que possui 1,80 m de altura, está caminhando próximo do edifício com um velocidade constante de 1,20 m/s. Se você desejar jogar um ovo na cabeça dele, em que ponto ele deve estar quando você largar o ovo? Suponha que o ovo esteja em queda livre e que o professor caminhe em linha reta em direção a porta do edifício

resposta:

A altura total é da ponta da da cabeça do professor até a ponta do edifício. O Δs total é 46 metros, como a altura do professor é 1,8m, a altura de queda será a altura total menos a altura do professor.

$$h_a = \Delta s - 1, 8 = 44, 2m$$

Primeiro precisamos saber o tempo de queda livre do ovo. Para isso utilizamos a seguinte fórmula:

$$x_q(t) = x_0 + v_0 \cdot t + \frac{a_y \cdot t^2}{2}$$

Onde $x_q(t) = h_q = 44, 2m, x_0 = 0, v_0 = 0, a_y = g = 9, 81m/s^2$ e $t = t_q$ que significa tempo de queda. Substituindo esses valores na fórmula e resolvendo conseguimos o seguinte resultado

$$44,2m = x_0 + v_0 + t_q + \frac{9,81 \cdot t_q^2}{2}$$

$$t_a \approx 3,0s$$

Agora precisamos descobrir a distância que o professor percorre durante 3,0 segundos. Como se trata de um movimento retilíneo e uniforme, podemos utilizar a seguinte fórmula

$$x(t) = x_0 + v \cdot t$$

Onde $x(t) = x_p$, $x_0 = 0$, v = 1, 2m/s e $t = t_q = 3, 0s$. substituindo os valores na fórmula podemos resolver e descobrir a distância percorrida pelo professor durante o tempo de queda

$$x_p = x_0 + 1, 2m/s \cdot 3, 0s$$

 $x_p = 3,60m$

Então o ovo deve ser solto quando o professor estiver 3,6 metros de distância.

11. Se $\vec{r} = bt^2\hat{i} + ct^3\hat{j}$, onde b e c são constantes positivas, quando o vetor velocidade faz um ângulo de 45,0° com os eixos Ox e Oy?

resposta:

Para achar o vetor de velocidade precisamos derivar o vetor de posição em relação ao tempo.

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{bt^2\hat{i} + ct^3\hat{j}}{dt}$$
$$\vec{v} = 2bt\hat{i} + 3ct^2\hat{j}$$

Para ter um ângulo de 45 graus, o triângulo retângulo precisa ser necessáriamente isósceles e a hipotenusa diferente. Então sabemos que os vetores de velocidade de $v_x \hat{i} = v_u \hat{j}$.

$$2bt = 3ct^{2}$$
$$t = \frac{2b}{3c}$$

12. Um avião a jato está voando a uma altura constante. No instante $t_1=0$, os componentes da velocidade são $v_x=90m/s$, $v_y=110m/s$. No instante $t_2=30,0s$ os componentes são $v_x=-170m/s$, $v_y=40m/s$. a) Faça um esboço do vetor velocidade para t_1 e para t_2 . Qual a diferença entre esses dois vetores? Para este intervalo de tempo, calcule b) os componentes da aceleração média, c) o módulo, a direção e o sentido da aceleração média.

resposta:

A) Esboço dos vetores de t_1 e t_2

Para encontrar a difereça precisa fazer a velocidade inal menos o velocidade inicial da seguinte forma

$$\Delta v_x = v_{2x} - v_{1x} = -170m/s - 90m/s = -260m/s$$
$$\Delta v_y = v_{2y} - v_{1y} = 40m/s - 110m/s = -70m/s$$

Então

$$\Delta v = (-260m/s, -70m/s)$$

B) Para achar a velocidade média precisamos utilizar a seguinte fórmula:

$$a_m = \frac{\vec{v_2} - \vec{v_1}}{t_2 - t_1}$$

Aceleração média no eixo x:

$$a_{mx} = \frac{-170m/s - 90m/s}{30, 0s - 0s} = \frac{-260m/s}{30s}$$
$$a_{mx} \approx -8,67m/s^2$$

Aceleração média no eixo y:

$$a_{my} = \frac{40m/s - 110m/s}{30, 0s - 0s} = \frac{-70m/s}{30s}$$
$$a_{my} \approx -2, 33m/s^2$$

C) Para calcular o módulo de um vetor precisamos utilizar a fórmula de pitágoras

$$|a_m| = \sqrt{(a_{mx})^2 + (a_{my})^2} = \sqrt{(-8, 67)^2 + (-2, 33)^2} \approx 8,92m/s$$

Agora precisamos achar o ângulo. Para isso é necessário usar regras dos ângulos.

$$\angle^{\circ} = \arctan\left(\frac{a_{my}}{a_{mx}}\right) = \arctan\left(\frac{-2,33}{-8,67}\right) = \arctan(0,27) \approx 15,11^{\circ}$$

O módulo da aceleração média é aproximadamente $8,92m/s^2$ e a angulação é aproximadamente $15,11^{\circ}$.

13. Dois grilos, Chirpy e Milada, saltam do topo de um rochedo íngreme. Chirpy simplesmente se deixa cair e chega ao solo em 3,50 s, enquanto Milada salta horizontalmente com velocidade inicial de 95,0 cm/s. A que distância da base do rochedo Milada vai atingir o chão?

resposta:

14. Uma bola de gude rola horizontalmente com velocidade escalar v_0 e cai do topo de uma plataforma de 2,75m de altura, sem sofrer nenhuma resistência significativa do ar. No nível do solo, a 2,0m da base da plataforma, há um buraco escancarado de diâmetro de 1,50m. Para qual alcance da velocidade de v_0 a bola de gude aterrissará no buraco? resposta:

Primeiro precisamos calcular o tempo de queda da bola. Para isso será necessário utilizar a seguinte fórmula

$$y(t) = y_0 + v_{y0} \cdot t + \frac{a_y \cdot t^2}{2}$$

Onde y(t) = 0, $y_0 = 2,75m$, $v_{y0} = 0$, $a_y = -g = 9,81m/s^2$. Substituindo esses valores na equação vamos conseguir calcular o tempo de queda da bolinha

$$0 = 2,75m + v_{y0} t - \frac{g \cdot t^2}{2}$$

$$t = \sqrt{\frac{2 \cdot 2,75m}{9,81m/s^2}} \approx 0,56s$$

Achando o tempo de queda, podemos utilizar a seguinte equação e isolar a velocidade e substituir o t por 0,56.

$$x(t) = x_0 + v_{x0} \cdot t$$

Onde x(t) = 3,0m pois a bolinha pode cair uma distância menor que 3,5m e maior que 2,0m, $x_0 = 0$ e t = 3,0s

$$3,0m = x_0 + v_{x0} \cdot 0,56s$$

$$v_{x0} = \frac{3,0m}{0.56s} \approx 5,35m/s$$

15. Um avião voa a uma velocidade de 90,0 m/s a um ângulo de 23,0º acima da horizontal. Quando está a 114 m diretamente sobre um cachorro parado no nível do solo, uma mala cai do compartimento de bagagens. A que distância do cachorro a mala vai cair? Despreze a resistência do ar.

resposta:

Primeiro precisamos calcular o tempo de queda da mala. Para isso será necessário utilizar a seguinte fórmula

$$y(t) = y_0 + v_{y0} \cdot t + \frac{a_y \cdot t^2}{2}$$

Onde y(t) = 0, $y_0 = 114m$, $v_{y0} = 0$, $a_y = -g = 9,81m/s^2$. Substituindo esses valores na equação vamos conseguir calcular o tempo de queda da bolinha

$$0 = 114m + v_{y0} t - \frac{9,81m/s^2 \cdot t^2}{2}$$

$$t = \sqrt{\frac{2 \cdot 144m}{9,81m/s^2}} \approx 5,41s$$

Achando o tempo de queda, podemos utilizar a seguinte equação e isolar a velocidade e substituir o t por 5,41s.

$$x(t) = x_0 + v_{x0} \cdot t$$

Onde x(t) = x, $x_0 = 0.90, 0m/s$ e t = 5,41s

$$x = x_0 + 90,0m/s \cdot 5,41s$$

 $x \approx 486,9m$

A distância que a caixa irá cair do cachorro é de 486,9 metros.

16. Em um teste de um 'aparelho para g', um voluntário gira em um círculo horizontal de raio igual a 7,0 m. Qual é operíodo da rotação para que a aceleração centrípeta possua módulo de a) 3,0g? b) 10g?

resposta:

Para resolver esse problema, precisamos usar a fórmula da aceleração centrípeta e a relação entre a aceleração centrípeta e o período de rotação.

$$a_c = \frac{v^2}{R}$$

Onde o v é a velocidade tengencial e R é o raio.

A velocidade tangencial v pode ser relacionada ao período T pela fórmula:

$$v = \frac{2 \cdot \pi \cdot R}{T}$$

Substituindo essa expressão na fórmula da aceleração centrípeta, obtemos:

$$a_c = \frac{4 \cdot \pi^2 \cdot R}{T^2}$$

Onde a_c = aceleração centrípeta, R = 7,0m, T = periodo. Rearranjando a fórmula para encontrar o período T, temos:

$$T = \sqrt{\frac{4 \cdot \pi^2 \cdot R}{a_c}}$$

i) Substituindo o $a_c = 3, 0 \cdot 9, 8m/s^2$.

$$T = \sqrt{\frac{4 \cdot 9,87 \cdot 7,0m}{29,4m/s^2}}$$
$$T \approx 3,06s$$

i) Substituindo o $a_c = 10, 0 \cdot 9, 8m/s^2$.

$$T = \sqrt{\frac{4 \cdot 9,87 \cdot 7,0m}{98m/s^2}}$$
$$T \approx 1.68s$$

Então, os períodos para as acelerações centrípetas especificadas são aproximadamente 3,06s para 3,0g e 1,68s para 10g.

17. Uma roda-gigante possui raio de 14,0 m e gira no sentido anti-horário. Em dado instante, um passageiro na periferia da roda e passando no ponto mais baixo do

13

movimento circular, move-se a 3,0 m/s e está ganhando velocidade com uma taxa de 0,500 m/s². a) Determine o módulo, a direção e o sentido da aceleração do passageiro nesse instante. b) faça um desenho da roda-gigante e do passageiro, mostrando a velocidade e os vetores de aceleração dele.

resposta:

18. Uma canoa possui velocidade de 0,40 m/s do sul para o leste em relação a Terra. A canoa se desloca em um rio que escoa a 0,50 m/s do oeste para leste em relação a Terra. Determine o módulo, a direção e o sentido da velocidade da canoa em relação ao rio.

resposta:

Para determinar a velocidade da canoa em relação ao rio, precisamos fazer uma análise vetorial das velocidades envolvidas. Vamos decompor e calcular as velocidades relativas.

$$\vec{v}_{canoa/Terra} = 0,40m/s$$

 $\vec{v}_{rio/Terra} = 0,50m/s$

- i) Decomposição dos vetores
- 1) Velocidade da canoa em relação a terra:

$$\vec{v}_{canoa/Terra} = (0, 40m/s, 0)$$

2) Velocidade do rio em relação a terra:

$$\vec{v}_{canoa/Terra} = (0, 50m/s, 0)$$

- ii) Determinando a velocidade da canoa em relação ao rio
- 2) Velocidade do rio em relação a terra:

$$\vec{v}_{canoa/rio} = \vec{v}_{canoa/Terra} - \vec{v}_{canoa/Terra}$$
$$\vec{v}_{canoa/rio} = (0, 40m/s, 0) - (0, 50m/s, 0) = (-0, 10m/s, 0)$$

iii) O módulo da canoa em realção ao rio

$$|\vec{v}_{canoa/rio}| = \sqrt{(-0, 10)^2 + 0^2} = 0, 10m/s$$

- iv) Direção e sentido do vetor da canoa em relação ao rio. O vetor $\vec{v}_{canoa/rio}$ é -0, 10m/s ao longo do eixo x, o que indica que a canoa está se movendo 0,10 m/s para o oeste em relação ao rio.
- 19. O piloto de um avião deseja voar de leste para oeste. Um vento de 80,0 km/h sopra do norte para o sul. a) Se a velocidade do avião em relação ao ar é igual a 320 km/h qual deve ser a direção escolhida pelo piloto? b) Qual é a velocidade do avião em relação ao solo? Ilustre sua solução com um diagrama vetorial.

resposta:

20. Um professor de física faz loucas proezas em suas horas vagas. Sua última façanha foi saltar sobre um rio com a sua motocicleta. A rampa de decolagem era inclinada de $53,0^{\circ}$, a largura do rio era de 40,0 m, e a outra margem estava a 15,0 m abaixo do nível

da rampa. O rio estava a 100 m abaixo do nível da rampa. Despreze a resistência do ar. a) Qual deveria ser sua velocidade para que ele pudesse alcançar a outra margem sem cair no rio? b) Caso sua velocidade fosse igual à metade do valor encontrado em (a), aonde ele cairia?

resposta: