

MODELO ATÔMICO ATUAL

Em 1927, Schrödinger descreve o movimento do elétron ao redor do núcleo, por meio de uma equação matemática que relaciona a energia, a carga e a massa do elétron. Os valores numéricos encontrados na resolução da equação foram denominados de números quânticos. Portanto, o elétron é caracterizado pela sua quantidade de energia, energia essa associada aos números quânticos.

1. NÚMEROS QUÂNTICOS (n, £)

Número quântico principal (n) ⇒ níveis de energia

n	1	2	3	4	5	6	7
nível	K	L	M	N	0	P	Q
nº máximo de e	2	8	18	32	32	18	8

Número quântico secundário (ℓ) ⇒ subníveis de energia

ℓ .	0	1	2	3
subnível	s	p	d	f
nº máximo de e⁻	2	6	10	14

2. DISTRIBUIÇÃO ELETRÔNICA

Diagrama de Linus Pauling

EXERCÍCIOS DE APLICAÇÃO

- 01 (CESGRANRIO-RJ) A distribuição eletrônica do átomo $^{56}_{26}$ Fe , em camadas é:
- a) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
- b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2$
- c) K 2 L 8 M 16
- d) K 2 L 8 M 14 N 2
- e) K 2 L 8 M 18 N 18 O 8 P 2
- 02 (UFAL-AL) Dentre os seguintes elementos, qual apresenta 16 elétrons no terceiro nível energético? (Dados: números atômicos S = 16, Ni = 28, Zn = 30, Br = 35, Zr = 40.)
- a) S
- b) Ni
- c) Zn
- d) Br
- e) Zr
- 03 (OSEC-SP) Sendo o subnível 4s¹ (com um elétron) o mais energético de um átomo podemos afirmar que:
- I. O número total de elétrons deste átomo é igual a 19.
- II. Este átomo apresenta 4 camadas eletrônicas.
- III. Sua configuração eletrônica é 1s² 2s² 2p⁶ 3s² 3d¹⁰ 4s¹
- a) apenas a afirmação I é correta.
- b) apenas a afirmação II é correta.
- c) apenas a afirmação III é correta.
- d) as afirmações I e II são corretas.
- e) as afirmações II e III são corretas.
- 04 **(UFRGS-RS)** Assinale a alternativa que apresenta corretamente os símbolos das espécies que possuem, respectivamente, as seguintes configurações eletrônicas:
- I. [Ar] 4s² 3d¹⁰ 4p⁴
- II. [Ar] 4s1 3d10
- III. [Ne] 3s² 3p⁵

Dados: Números atômicos: Ne (Z = 10), $C\ell$ (Z = 17), Ar (Z = 18), Cu (Z = 29), Zn (Z = 30), As (Z = 33), Se (Z = 34)

- a) Se, Zn, Cℓ
- b) Se, Cu, Cℓ
- c) As $^-$, Zn, C ℓ
- d) As, Cu^+ , $C\ell^-$
- e) As, Zn²⁺, Cℓ⁻

- 05 (UEL-PR) Considere as afirmações a seguir:
- I. O elemento químico de número atômico 30 tem 3 elétrons de valência.
- II. Na configuração eletrônica do elemento químico com número atômico 26 há 6 elétrons no subnível 3d.
- III. 3s² 3p³ corresponde à configuração eletrônica dos elétrons de valência do elemento químico de número atômico 35.
- IV. Na configuração eletrônica do elemento químico de número atômico 21 há 4 níveis energéticos.

Estão corretas, somente:

- a) l e II
- b) I e III
- c) II e III
- d) II e IV
- e) III e IV
- 06 (UEL-PR) Dentre os números atômicos 23, 31, 34, 38, 54, os que correspondem a elementos químicos com dois elétrons de valência são:
- a) 23 e 38
- b) 31 e 34
- c) 31 e 38
- d) 34 e 54
- e) 38 e 54
- 07 (UFSC-SC) Em relação à configuração eletrônica nos níveis e subníveis dos átomos, analise as seguintes afirmativas:
- I) Quanto mais distanciado do núcleo se encontrar o elétron, maior será o seu conteúdo energético.
- II) A terceira e quarta camadas admitem, no máximo, 18 elétrons e 32 elétrons, respectivamente.
- III) A primeira camada é a menos energética e pode ter, no máximo, 8 elétrons.

Está(ão) correta(s), pelo modelo atual,

- a) I apenas.
- b) II apenas.
- c) III apenas.
- d) I e II apenas.
- e) II e III apenas.
- 08 (FEP-PA) A ordem crescente de energia dos subníveis eletrônicos pode ser determinada pela soma do nº quântico principal (n) ao nº quântico secundário ou azimutal (l). Se a soma for a mesma, terá maior energia o mais afastado do núcleo (> n).

Colocar em ordem crescente de energia os subníveis eletrônicos: 4d 4f 5p 6s

- a) 4d < 4f < 5p < 6s
- b) 4f < 4d < 5p < 6s
- c) 4d < 5p < 6s < 4f
- d) 5p < 6s < 4f < 4d
- e) 6s < 5p < 4d < 4f

09 (UFMG-MG) Os r a) De Broglie	nomes abaixo estão b) Thomson	relacionados dir c) Heisenb		atômico atual (Orbital), exceto: nger
10 (UFPA-PA) O r consequência do pri		co utilizado pa	ra o problema velocida	ade-posição do elétron é uma
	•	De Broglie	d) Heisenberg	e) Pauling
11 (FEI-SP) Entre os quânticos (principal		ıal deles possui n	naior energia? Justifique	utilizando valores dos números
cientistas: possibilita pelo físico William contribuído para um de televisores e de entendimento da e Linus Pauling (1901- (0) Ao passar entre da alfa desviam-se para (1) O átomo é a mera (2) Cada tipo de elec	a a produção de nova Crookes, enquanto melhor entendimen dos monitores dos strutura do átomo 1994). Com relação a luas placas eletricam a o lado da placa neg nor partícula que cor mento químico é car	es tecnologias. Un estudava as pronto a respeito da computadores foram: Bohr (18 à estrutura da manente carregadas gativa. Estitui a matéria. Facterizado por u	m exemplo disso é a desc opriedades da eletricida constituição da matéria, o . Alguns grandes cienti 85- 1962), Dalton (1766- atéria, julgue os itens seg , uma positivamente e ou m determinado número	para satisfazer à curiosidade dos coberta dos raios catódicos, feita de. Tal descoberta, além de ter deu origem aos tubos de imagem istas que contribuíram para o 1844), Rutherford (1871-1937) e guintes (Verdadeiro ou Falso): atra negativamente, as partículas de massa.
Com base na compa a) no modelo de Dal b) no modelo de Rut c) no modelo de Rut d) no modelo de Bo	ração do modelo ato ton e no atual, cada therford e no atual, therford e no atual, hr e no atual, os elé	ual com outros, a átomo é indivis cada átomo tem os elétrons têm trons giram em á	afirmativa correta é: ível. um núcleo.	
14 (UFMG-MG) Con átomo de lítio.	sidere os níveis de e	nergia e as excita	ações que podem ocorre	r com o elétron mais externo do
	=		n = 5 n = 4	
	-		n = 3	
	_		n = 2	
	_	,	n = 1	
O número máximo o a) 5. b) 6.	-	o è d) 10.	e) 14.	
$(e_{máx} = 2n^2)$, n é o nú	mero quântico prin	cipal. A camada ʻ		culado pela equação de Rydberg s com os elementos existentes. mada n) é:

d) 50

e) 72

c) 32

b) 18

a) 8

- 16 (ITA-SP) Qual das afirmativas a seguir melhor descreve o comportamento de um elétron, comparado com partículas e ondas tradicionais?
- a) É uma partícula que, em certas circunstâncias especiais, se comporta como uma onda.
- b) É uma onda que, em certas circunstâncias, se comporta como partícula.
- c) À medida que passa o tempo, ora se comporta como partícula, ora como onda.
- d) É uma partícula que anda em torno do núcleo, numa trajetória ondulada.
- e) Seu comportamento pode ser interpretado como o de partícula ou de onda.
- 17 **(UFMG-MG)** A representação do átomo de hidrogênio abaixo pretende evidenciar uma característica do modelo atômico atual.

Assinale a alternativa que apresenta essa característica.

- a) Baixa velocidade de um elétron em sua órbita.
- b) Forma circular das órbitas eletrônicas.
- c) Impossibilidade de se definir a trajetória de um elétron.
- d) Presença de numerosos elétrons no átomo neutro.
- e) Proporção dos tamanhos do próton e do elétron.
- 18 (UFMT-MT) Toda matéria, quando aquecida a uma temperatura suficientemente elevada, emite energia na forma de radiação (luz). Um exemplo comum é a lâmpada incandescente, onde um filamento de tungstênio é aquecido até ficar branco, pela resistência que ele oferece à passagem de um fluxo de elétrons. Nesse dispositivo, a energia elétrica é convertida em energia térmica e energia radiante. Se essa radiação passar através de uma fenda estreita, transformar-se-á numa "fita luminosa". Se fizermos esta "fita" atingir uma tela, aparecerá uma imagem da fenda na forma de linha. Colocando um prisma no caminho da luz, a posição da linha na tela varia. Quando a luz é emitida por um corpo quente e examinada dessa maneira, produzirá num primeiro caso uma região contínua de cores variáveis, de modo que a linha se expanda, dando uma faixa de cores desde o vermelho até o violeta (como um arco-íris), num segundo, uma série de linhas separadas com áreas escuras entre elas.

A partir do exposto, julgue os itens.

- (0) No primeiro caso, tem-se um chamado espectro contínuo.
- (1) Quando se usa a visão humana para detectar radiações é possível abranger todas as faixas do espectro eletromagnético.
- (2) No segundo caso, fala-se de um espectro discreto ou descontínuo.
- (3) O aparelho no qual é feita a decomposição da luz em seus diversos componentes é chamado espectrógrafo.
- 19 O nº máximo de elétrons que comporta cada subnível pode ser calculado pela equação matemática: $e_{máx} = 2 (2\ell + 1)$; $\ell = n^0$ quântico secundário. Portanto, o subnível "f" comporta no máximo ______ elétrons. Complete o texto, justificando os cálculos.

respectivame a) 3 e 1	ente:	•	d) 4 e 1		e) 4 e 2	cujo numero acc	omico e 19, sao,
21 (UEBA-BA átomo X poss a) 7		isóbaro de 29 c) 6	Y e possui 14 d) 5	nêutrons e) 4	. O número de e	létrons, no últim	no nível, que o
22 (UNIUBE- a) 10	MG) Um átomo b) 20	cuja configura c) 18	ção eletrônica d) 2	e é 1s² 2s² e) 8	² 2p ⁶ 3s ² 3p ⁶ 4s ² 1	tem como núme	ro atômico:
a seguinte co	nfiguração eleti que indica corre Z = 13) 26) (Z = 7) Z = 8)	rônica: nível 1:	completo; nív			sa, tem, no estad elétrons.	o fundamental,
qualidade. O compõem as ortodônticos Jornal do Brac Considerando a) 1s² 2s² 2p6 b) 1s² 2s² 2p6 c) 1s² 2s² 2p6 d) 1s² 2s² 2p6	grande salto de próteses. Feitas e dentaduras, n sil, outubro 1990 que o número 3s ² 3p ⁶	qualidade acor com ligas de ti los ossos da ma 6. atômico do tit	nteceu no proc tânio, essas pr andíbula e do	esso de c óteses sã maxilar.	confecção dos pa o usadas para fi	em às normas in arafusos e pinos xar coroas dentá será:	de titânio, que
mundo a tal Mas esse res perigosas par	ponto que a Ter sultado positivo ra a saúde, por s o um átomo do	rra é agora cap o tem seu lado er bio-acumul	az de produzir o negativo: os ativo.	comida s níveis d	suficiente para a le DDT na comi	olou a população alimentar a popu da estão atingir ste apresenta na	ılação humana. Ido proporções

Portal de Estudos em Química (PEQ	- wayay profpc o	om hr	Pá	gina 7
Dentre eles, apresenta (ou apresenta a) I e IV b) III c) II			figurações eletrônicas apenas:	
I) Na(11)	II) Ca(20)	III) Ni(28)	IV) Aℓ(13)	
32 (FUVEST-SP) Considere os seguin	tes elementos e s	seus respectivos núm	eros atômicos:	
31 (FEI-SP) Uma das formas de tratan é o elemento Césio-137 ou Cobali distribuição eletrônica utilizando-se o seu subnível mais afastado e o núme a) 4 e 3 b) 7 e 4	to-60. O elemen diagrama de Pau ro de elétrons sit	to cobalto apresenta ling, podemos dizer c uados no seu nível m	a número atômico 27. Se for fo que o número de elétrons situad	eita a os no
30 (UCDB-MS) O bromo, que nas corepresentados por $^{80}_{35}$ Br, apresenta: a) 25 elétrons na camada de valência. b) 2 elétrons na camada de valência. c) 7 elétrons na camada de valência. d) 35 partículas nucleares. e) 45 partículas nucleares.	-	es se encontra no es	tado líquido e é formado por át	omos
29 Qual a estrutura eletrônica, em o a) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ b) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ c) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ d) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ e) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰	4f ¹⁴ 5s ² 5p ⁶ 5d ⁷ 6s 4f ¹⁴ 5s ² 5p ⁶ 5d ⁸ 6s 4f ¹⁴ 5s ² 5p ⁶ 5d ¹⁰ 4f ¹⁴ 5s ² 5p ⁶ 5d ⁵ 6s	2 3 ² 3 ² 6p ³	ímico de número atômico 77?	
28 (FEI-SP) Sabendo-se que o subnív a) o número total de elétrons; b) o número de camadas da eletrosfe	_	co de um átomo é o 4s	s ¹ , determine:	
27 (UFMT-MT) A configuração eletro a) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁴ b) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ¹ c) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ² d) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ 3d ⁶ e) 1s ² 2s ² 2p ⁶ 3s ² 3d ⁸ 4s ²	nica do element	o de número atômico	21, no estado fundamental, é:	
26 (FMU-SP) A representação 4p³ na a) O nível p do quarto subnível aprese b) O segundo nível do subnível p apre c) O subnível p do segundo nível apre d) O terceiro subnível do segundo nível e) O subnível p do quarto nível apres	enta 3 elétrons. esenta 3 elétrons esenta 3 elétrons vel apresenta p el			

33 (ESAL-MG) No átomo de potássio, um elemento importante para a nutrição das plantas, de Z = 19 e A = 39, temos: a) 3 camadas eletrônicas e apenas 1 elétron na periferia b) 4 camadas eletrônicas e apenas 1 elétron na periferia c) 4 camadas eletrônicas e 2 elétrons periféricos d) 5 camadas eletrônicas e 3 elétrons periféricos e) 3 camadas eletrônicas e 9 elétrons periféricos 34 (AMAN-SP) O elemento hipotético com nº atômico (Z = 116) apresenta na camada mais externa (camada de valência) um número de elétrons igual a: a) 2 b) 4 c) 6 d) 8 e) 18 35 (ITA-SP) No esquema a seguir, encontramos duas distribuições eletrônicas de um mesmo átomo neutro: $A 1s^2 2s^2$ B 1s² 2s¹ 2p¹ A seu respeito é correto afirmar que: a) A é a configuração ativada. b) B é a configuração normal (fundamental). c) A passagem de A para B libera energia na forma de ondas eletromagnéticas. d) A passagem de A para B absorve energia. e) A passagem de A para B envolve a perda de um elétron. 36 O fenômeno da supercondução de eletricidade, descoberto em 1911, voltou a ser objeto da atenção do mundo científico com a constatação de Bednorz e Müller de que materiais cerâmicos podem exibir esse tipo de comportamento, valendo um prêmio Nobel a esses dois físicos em 1987. Um dos elementos químicos mais importantes na formulação da cerâmica supercondutora é o ítrio: 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p6 5s² 4d¹. O número de camadas e o número de elétrons mais energéticos para o ítrio serão, respectivamente: a) 4 e 1. b) 5 e 1. c) 4 e 2. d) 5 e 3. e) 4 e 3. 37 (MACKENZIE-SP) O número de elétrons na camada de valência de um átomo que apresenta número de massa igual a 40 e 22 partículas neutras é: a) 2 b) 3 c) 4 d) 6 e) 8

38 É comum a utilização de amálgamas de mercúrio em obturações dentárias.

Considerando que o número atômico do mercúrio é 80, assinale a alternativa que apresenta sua configuração eletrônica. Dados: $Xe \Rightarrow Z = 54$

- a) [Xe] 6s² 4f¹⁴ 5d¹⁰
- b) [Xe] 6s² 4f¹⁴ 6d¹⁰
- c) [Xe] 5s² 3f¹⁴ 4d¹⁰
- d) [Xe] 6s² 4f¹⁴ 4d¹⁰
- e) [Xe] 5s² 4f¹⁴ 5d¹⁰
- 39 (UFTO-TO) Coloque em ordem crescente de energia os subníveis eletrônicos:

4d	4f	5p	6s
----	----	----	----

- a) 4d < 5p < 6s < 4f
- b) 4d < 4f < 5p < 6s
- c) 4f < 4d < 5p < 6s
- d) 5p < 6s < 4f < 4d
- e) 6s < 5p < 4d < 4f
- 40 Utilizando o Diagrama de Pauling e considerando o elemento químico tungstênio (W), de número atômico igual a 74, responda às seguintes questões.
- a) Qual a distribuição, por subníveis energéticos?
- b) Quais os elétrons mais externos?
- c) Quais os elétrons com maior energia?
- 41 (UFLA-MG) Temos as seguintes configurações eletrônicas dos átomos A, B, C, D e E no estado fundamental.
- A. $1s^2 2s^2$
- B. $1s^2 2s^2 2p^6 3s^2 3p^3$
- C. 1s² 2s² 2p⁵
- D. 1s² 2s² 2p⁶
- E. 1s² 2s² 2p⁶ 3s²

É correto afirmar que:

- a) o átomo que tem mais elétrons na última camada eletrônica é o D.
- b) o átomo C apresenta 3 camadas eletrônicas ocupadas.
- c) o átomo A tem o mesmo número de camadas eletrônicas que o átomo E.
- d) o átomo B tem 3 elétrons na última camada eletrônica.
- e) os átomos A e E têm suas últimas camadas eletrônicas completas.
- 42 (PUCCAMP-SP) A corrosão de materiais de ferro envolve a transformação de átomos do metal em íons (ferroso ou férrico). Quantos elétrons há no terceiro nível energético do átomo neutro de ferro? Dado 26 Fe.
- a) 2
- b) 14
- c) 18
- d) 6
- e) 16

43 (UFAC-AC) Considere os seguintes elementos e seus respectivos números atômicos	s:
---	----

```
I. K (Z = 19)
II. Fe (Z = 26)
III. Mg (Z = 12)
IV. N (Z = 7)
V. Cr (Z = 24)
```

Dentre eles, apresentam elétrons no subnível d:

- a) lell.
- b) III, IV e V.
- c) I, III e V.
- d) somente II.
- e) II e V.

44 (UFRN-RN) Nas distribuições eletrônicas das espécies químicas abaixo:

```
I. _{11}Na^+1s^22s^22p^53s^1
II. _{19}K 1s^22s^23p^63s^23p^64s^44p^0
III. _{17}C\ell^-1s^22s^22p^63s^23p^6IV. _9F^+1s^22s^22p^4V. _6C 1s^22s^22p^13p^1
```

Identifique as que estão no estado fundamental:

- a) I, II e IV
- b) I, III e IV
- c) I, III e V
- d) I, IV e V
- e) II, III e IV
- **45 (UFRGS-RS)** Assinale a alternativa que apresenta corretamente os símbolos das espécies que possuem, respectivamente, as seguintes configurações eletrônicas:

```
I. [Ar] 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>4</sup>
II. [Ar] 4s<sup>1</sup> 3d<sup>10</sup>
```

III. [Ne] 3s² 3p⁵

Dados: Números atômicos: Ne (Z = 10), $C\ell$ (Z = 17), Ar (Z = 18), Cu (Z = 29), Zn (Z = 30), As (Z = 33), Se (Z = 34),

- a) Se, Zn, Cℓ
- b) As⁻, Zn, Cℓ
- c) As, Zn^{2+} , $C\ell^{-}$
- d) Se, Cu, Cℓ
- e) As, Cu⁺, Cℓ⁻

GABARITO

01- Alternativa D

₂₆Fe

Ordem energética: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$ Ordem geométrica: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ Camadas Eletrônicas: K = 2, L = 8, M = 14, N = 2

02- Alternativa B

 $_{28}Ni$

Ordem energética: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$ Ordem geométrica: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$ Camadas Eletrônicas: K = 2, L = 8, M = 16, N = 2

03- Alternativa D

I. O número total de elétrons deste átomo é igual a 19.

Verdadeiro. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹

II. Este átomo apresenta 4 camadas eletrônicas.

Verdadeiro. K = 2, L = 8, M = 8, N = 1

III. Sua configuração eletrônica é 1s² 2s² 2p⁶ 3s² 3d¹⁰ 4s¹

Falso. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹

04- Alternativa B

I. Se \rightarrow [Ar] 4s² 3d¹⁰ 4p⁴

II. $Cu \rightarrow [Ar] 4s^1 3d^{10}$

III. $C\ell \rightarrow [Ne] 3s^2 3p^5$

05- Alternativa D

I. O elemento químico de número atômico 30 tem 3 elétrons de valência.

Falso. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 \rightarrow K = 2$, L = 8, M = 18, N = 2

II. Na configuração eletrônica do elemento químico com número atômico 26 há 6 elétrons no subnível 3d.

Verdadeiro. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶

III. 3s² 3p³ corresponde à configuração eletrônica dos elétrons de valência do elemento químico de número atômico 35.

Falso. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$

IV. Na configuração eletrônica do elemento químico de número atômico 21 há 4 níveis energéticos.

Verdadeiro. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$

06- Alternativa A

 $Z = 23 \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^3 \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^3 \ \textbf{4s^2}$

 $Z = 31 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$

 $Z = 34 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^4$

 $Z = 38 \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10} \ 4p^6 \ 5s^2 \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^5 \ \textbf{5s^2}$

 $Z = 54 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5 4d^{10} 5s^2 5p^6$

07- Alternativa D

I) Quanto mais distanciado do núcleo se encontrar o elétron, maior será o seu conteúdo energético.

Verdadeiro. Quanto mais distante o elétron estiver do núcleo, menor a força de atração e maior é a sua energia total.

II) A terceira e quarta camadas admitem, no máximo, 18 elétrons e 32 elétrons, respectivamente.

Verdadeiro.

III) A primeira camada é a menos energética e pode ter, no máximo, 8 elétrons.

Falso. A primeira camada é a menos energética e contém no máximo 2 elétrons.

08- Alternativa C

Calculando o valor da energia de cada subnível: $E = n + \ell$, onde $n = localização do nível e <math>\ell = localização do subnível$ (s = 0, p = 1, d = 2, f = 3)

Então temos:

 $4d \rightarrow E = 4 + 2 = 6$

 $4f \rightarrow E = 4 + 3 = 7$

 $5p \rightarrow E = 5 + 1 = 6$

 $6s \rightarrow E = 6 + 0 = 6$

Quando o valor da energia for igual, o subnível mais energético é o mais afastado do núcleo.

Neste caso ficamos com: 4d < 5p < 6s < 4f

09- Alternativa B

- a) De Broglie → Modelo da partícula-onda para o elétron. Apresenta a natureza dualista do elétron, onde esta partícula negativa, extremamente pequena e veloz comporta-se ora como partícula ora como onda.
- b) Thomson → Modelo do átomo do pudim de passas. O átomo é um fluído de cargas positivas com as cargas negativas incrustadas neste fluído, com a finalidade de tornar a matéria eletricamente neutra.
- d) Schroedinger → Equação de função de onda para o elétron. Através dessas equações conclui-se que existe uma região de grande probabilidade de se encontra um determinado elétron, esta região é chamada de orbital.

10- Alternativa D

Heisenberg → Princípio da incerteza. Descreve que em instante algum se pode prever com certeza a posição e a velocidade de um elétron.

11-

Os dois subníveis possuem a mesma energia, no entanto, 7s > 6p, pois o subnível 7s encontra-se mais afastado do núcleo.

12-

(0) Ao passar entre duas placas eletricamente carregadas, uma positivamente e outra negativamente, as partículas alfa desviam-se para o lado da placa negativa.

Verdadeiro. As partículas alfa são carregadas positivamente.

(1) O átomo é a menor partícula que constitui a matéria.

Falso. A menor partícula da matéria são as subpartículas atômicas constituintes dos prótons e nêutrons.

(2) Cada tipo de elemento químico é caracterizado por um determinado número de massa.

Falso. O elemento químico é caracterizado pelo seu número atômico.

(3) O modelo atômico que representa o comportamento do elétron na forma orbital é o de Ruthe rford-Bohr.

Falso. O modelo atômico que representa o comportamento do elétron na forma orbital é o de Schroedinger

13- Alternativa B

No modelo de Rutherford e no atual, cada átomo tem um núcleo.

14- Alternativa B

Cada linha de absorção corresponde a uma transição eletrônica onde o elétron ganha energia.

Dessa forma, como estamos tratando do Lítio, e de seu elétron mais externo (n=2), podemos ter as transições:

- $2 \rightarrow 3$
- $2 \rightarrow 4$
- $2 \rightarrow 5$

E as transições ainda podem ocorrer: $3 \rightarrow 4$, $3 \rightarrow 5$, $4 \rightarrow 5$.

Ou seja, no máximo 6 tipos diferentes de absorção.

Num caso geral, note que o número seria dado por C_n^2 , onde n é o número de faixas possíveis (no nosso caso, 4 (n=2,3,4,5)).

15- Alternativa E

```
Temos: K \rightarrow n = 1, L \rightarrow n = 2, M \rightarrow n = 3, N \rightarrow n = 4, O \rightarrow n = 5, P \rightarrow n = 6
Com isso ficamos com: K \rightarrow e<sub>máx</sub> = 2.1<sup>2</sup> = 2, L \rightarrow e<sub>máx</sub> = 2.2<sup>2</sup> = 8, M \rightarrow e<sub>máx</sub> = 2.3<sup>2</sup> = 18, N \rightarrow e<sub>máx</sub> = 2.4<sup>2</sup> = 32, O \rightarrow e<sub>máx</sub> = 2.5<sup>2</sup> = 50, P \rightarrow e<sub>máx</sub> = 2.6<sup>2</sup> = 72
```

16- Alternativa E

17- Alternativa C

Impossibilidade de se definir a trajetória de um elétron.

18- V, F, V, V, respectivamente

(0) No primeiro caso, tem-se um chamado espectro contínuo.

Verdadeiro.

(1) Quando se usa a visão humana para detectar radiações é possível abranger todas as faixas do espectro eletromagnético.

Falso. Somente espectro de comprimentos de onda que são visíveis ao olho humano.

(2) No segundo caso, fala-se de um espectro discreto ou descontínuo.

Verdadeiro.

(3) O aparelho no qual é feita a decomposição da luz em seus diversos componentes é chamado espectrógrafo. Verdadeiro.

19-

```
14 (quatorze); subnível f (\ell = 3)
e<sub>máx</sub> = 2 (2\ell + 1) = 2 (2 · 3 + 1) = 14 elétrons (subnível)
```

20- Alternativa C

Para Z = 19 temos: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ (subnível mais externo e mais energético) Onde para $4s^1$ ficamos com: $n = 4 e \ell = 0$

21- Alternativa D

O átomo X possui 14 nêutrons e é isóbaro de 29 Y, logo o átomo X também apresenta A = 29. Sendo assim o átomo X possui Z = A - N = 29 - 14 = 15.

Com isso temos para Z = 15: $1s^2 2s^2 2p^6 3s^2 3p^3$, ou K = 2, L = 8, M = 5

22- Alternativa B

Para a distribuição $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ temos: Z = 20

23- Alternativa E

Nível 1: completo \rightarrow 1s²; nível 2: completo \rightarrow 2s² 2p⁶; nível 3: 4 elétrons \rightarrow 3s² 3p²

Com isso ficamos com: $1s^2 2s^2 2p^6 3s^2 3p^2 \rightarrow Z = 14$

24- Alternativa D

Para Z = 22 temos: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$

25- Alternativa D

Consultando a tabela periódica temos que o C ℓ apresenta Z = 17 e com isso ficamos com: 1s² 2s² 2p⁶ 3s² 3p⁵, ou ainda, K = 2, L = 8 e M = 7 (camada de valência)

26- Alternativa E

O subnível p do quarto nível apresenta 3 elétrons.

27- Alternativa C

Para Z = 21 temos: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$, ou ainda, $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$

28-

a) o número total de elétrons;

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$, com isso temos: Z = 19

b) o número de camadas da eletrosfera.

K = 2, L = 8, M = 8, N = 1 desta forma ficamos com 4 camadas ou níveis.

29- Alternativa A

Para Z = 77 temos:

- \rightarrow ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d⁷
- \rightarrow ordem geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶ 5d⁷ 6s²

30- Alternativa C

Para Z = 35 temos:

- \rightarrow ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁵
- \rightarrow ordem geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁵
- → camadas eletrônicas: K = 2, L = 8, M = 18, N = 7 (camada de valência)

31- Alternativa E

Para Z = 27 temos:

- → ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷ (subnível mais energético)
- → ordem geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷ 4s² (subnível mais afastado)

32- Alternativa B

```
_{11}Na \rightarrow 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup>

_{20}Ca \rightarrow 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup>

_{28}Ni \rightarrow 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>8</sup>

_{13}A\ell \rightarrow 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>1</sup>
```

33- Alternativa B

Para Z = 19 temos:

- → ordem energética e ordem geométrica: 1s² 2s² 2p6 3s² 3p6 4s¹ (subnível mais energético e mais afastado)
- \rightarrow camadas eletrônicas: K = 2, L = 8, M = 8, N = 1

34- Alternativa C

Para Z = 116 temos:

- \rightarrow ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p⁶ 7s² 5f¹⁴ 6d¹⁰ 7p⁴
- \rightarrow ordem geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶ 5d¹⁰ 5f¹⁴ 6s² 6p⁶ 6d¹⁰ 7s² 7p⁴
- \rightarrow camadas eletrônicas: K = 2, L = 8, M = 18, N = 32, O = 32, P = 18, Q = 6

35- Alternativa D

A 1s² 2s² → configuração normal

B $1s^2 2s^1 2p^1 \rightarrow$ configuração ativada (quando o elétron absorve energia em forma de energia luminosa, energia térmica ou energia elétrica, este salta para um nível mais energético, ficando no estado ativado)

36- Alternativa B

- \rightarrow Ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹.
- \rightarrow Ordem geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s².
- \rightarrow Camadas eletrônicas: K = 2, L = 8, M = 18, N = 18, O = 2

37- Alternativa E

Cálculo do número atômico (Z): Z = A - N = 40 - 22 = 18

- → Ordem energética e geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
- \rightarrow Camadas eletrônicas: K = 2, L = 8, M = 8

38- Alternativa A

Para Z = 54 temos:

 \rightarrow ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶

Para Z = 80 temos: [Xe] $6s^2 4f^{14} 5d^{10}$

39- Alternativa A

Calculando a valor da energia para cada subnível: $E = n + \ell$

 $4d \rightarrow E = 4 + 2 = 6$

 $4f \rightarrow E = 4 + 3 = 7$

 $5p \rightarrow E = 5 + 1 = 6$

 $6s \rightarrow E = 6 + 0 = 6$

Para subníveis com o mesmo valor de energia, o subnível mais energético é o mais afastado do núcleo, com isso temos a seguinte ordem crescente de energia: 4d < 5p < 6s < 4f

40-

- a) Qual a distribuição, por subníveis energéticos?
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^4$
- b) Quais os elétrons mais externos? 6s²
- c) Quais os elétrons com maior energia? 5d4

41- Alternativa A

a) o átomo que tem mais elétrons na última camada eletrônica é o D.

Verdadeiro. O átomo D possui 8 elétrons na última camada.

b) o átomo C apresenta 3 camadas eletrônicas ocupadas.

Falso. O átomo C apresenta 2 camadas eletrônicas.

c) o átomo A tem o mesmo número de camadas eletrônicas que o átomo E.

Falso. O átomo A apresenta 2 camadas eletrônicas e o átomo E apresenta 3 camadas eletrônicas.

d) o átomo B tem 3 elétrons na última camada eletrônica.

Falso. O átomo B possui 5 elétrons na última camada.

e) os átomos A e E têm suas últimas camadas eletrônicas completas.

Falso. Nenhum dos átomos indicados possui a última camada completa.

42- Alternativa B

Para Z = 26 temos:

- \rightarrow ordem energética: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
- \rightarrow ordem geométrica: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s²
- → Camadas eletrônicas: K = 2, L = 8, M = 14, N = 2

43- Alternativa E

I. K (Z = 19) \rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹

II. Fe (Z = 26) \rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶

III. Mg (Z = 12) \rightarrow 1s² 2s² 2p⁶ 3s²

IV. N (Z = 7) \rightarrow 1s² 2s² 2p³

V. Cr (Z = 24) \rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁴

44- Alternativa E

Espécies que encontram-se no estado fundamental do átomo neutro ou eletrizado, os elétrons não sofreram excitação eletrônica.

45- Alternativa D

- I. [Ar] $4s^2 3d^{10} 4p^4 \rightarrow Z = 34$, portanto trata-se do elemento Se.
- II. [Ar] $4s^1 3d^{10} \rightarrow Z = 29$, portanto trata-se do elemento Cu.
- III. [Ne] $3s^2 3p^5 \rightarrow Z = 17$, portanto trata-se do elemento $C\ell$.