Quantum I Assignment #4

Johannes Byle

September 20, 2021

1.13 Assuming that the observable is $|E\rangle$ with eigenkets $a|1\rangle + b|2\rangle$:

$$H|E\rangle = (H_{11}|1\rangle\langle 1| + H_{22}|2\rangle\langle 2| + H_{12}[|1\rangle\langle 2| + |2\rangle\langle 1|])(a|1\rangle + b|2\rangle)$$
(1)

$$H|E\rangle = H_{11}a|1\rangle + H_{22}b|2\rangle + H_{12}b|1\rangle + H_{12}a|2\rangle$$
 (2)

Since $H|E\rangle = \lambda |E\rangle = \lambda a |1\rangle + \lambda b |2\rangle$:

$$\lambda a = H_{11}a + H_{12}b \tag{3}$$

$$\lambda b = H_{22}b + H_{12}a \tag{4}$$

Using substition to solve for λ :

$$\frac{\lambda(a - H_{11})}{H_{12}} = b \tag{5}$$

$$\frac{\lambda(a - H_{11})}{H_{12}}(\lambda - H_{22}) = H_{12}a\tag{6}$$