Firm Dynamic Hedging and the Labor Risk Premium

Sebastian Di Tella Cedomir Malgieri Christopher Tonetti

Stanford GSB

January 2022

PRELIMINARY AND INCOMPLETE

Risk Premium View of Business Cycles

• Recessions are financial panics in the labor market

$$w_{t} = \mathbb{E}_{it} \left[z_{it} \right] \times \left(1 + \underbrace{Cov_{it}(\hat{m}_{it+1}; \hat{z}_{it})}_{-\pi_{it}} \right)$$

- A heterogenous-agent model of pricing kernel m_{it+1} and marginal product of labor z_{it} , emphasizing the persistence of uninsurable idiosyncratic shocks:
 - dynamic hedging motive for the labor risk premium
 - ightharpoonup heterogenous risk premiums \implies endogenous fluctuations in TFP
 - aggregate risk sharing: financial amplification channel
- Use firm-level data to quantitatively evaluate model

Setting

• Entrepreneurs and representative worker:

$$U_w(c_w, \ell) = \mathbb{E}\left[\sum \beta_w^t \left(\frac{c_{wt}^{1-\gamma}}{1-\gamma} - \frac{\ell_t^{1+1/\psi}}{1+1/\psi}\right)\right]$$
$$U_e(c_i) = \mathbb{E}\left[\sum \beta_e^t \left(\frac{c_{it}^{1-\gamma}}{1-\gamma}\right)\right]$$

• Entrepreneurs hire labor to produce

$$y_{it} = z_{it}\ell_{it} \tag{1}$$

• Aggregate resource constraints

$$c_t = \int c_{it}di + c_{wt} = \int y_{it}di \tag{2}$$

$$\ell_t = \int \ell_{it} di \tag{3}$$

Technology

• Productions is risky: $y_{it} = z_{it}\ell_{it}$

$$\log z_{it} = \rho \epsilon_{it-1} + \sigma_{ut} u_{it} - \frac{1}{2} \rho^2 \frac{\bar{\sigma}_{\eta}^2}{1 - \rho^2} - \frac{1}{2} \sigma_{ut}^2$$
$$\epsilon_{it} = \rho \epsilon_{it-1} + \bar{\sigma}_{\eta} \eta_{it}$$
$$\begin{bmatrix} u_{it} \\ \eta_{it} \end{bmatrix} \sim N \left(0, \begin{bmatrix} 1 & \lambda \\ \lambda & 1 \end{bmatrix} \right)$$

Time-varying labor productivity risk

$$\sigma_{ut} = \rho_{\sigma}\sigma_{ut-1} + v_t$$

• Distribution of conditional expectations is invariant:

$$\mathbb{E}_{it}[z_{it}] = e^{\rho \epsilon_{it-1} - \frac{1}{2}\rho^2 \frac{\bar{\sigma}_{\eta}^2}{1 - \rho^2}} = \bar{z}_{it} \sim LogN(-\frac{1}{2}\rho^2 \frac{\bar{\sigma}_{\eta}^2}{1 - \rho^2}, \rho^2 \frac{\bar{\sigma}_{\eta}^2}{1 - \rho^2})$$

$$\mathbb{E}[z_{it}] = 1$$

 \implies all effects are driven by risk premia

Timing, information, and agents' problems

- Each period t:
 - **4 Aggregate** state $s_t = \sigma_{ut}$ realized
 - **2** Consumption and labor markets: workers and entrepreneurs choose consumption and labor supply/demand: (c_{wt}, ℓ_t) and $(c_{it}, \ell_{it})_{i \in [0,1]}$.
 - **9 Production and trading**: idiosyncratic shocks $h_{it} = (u_{it}, \eta_{it})$ revealed; production and consumption takes place; Arrow securities pay and new Arrow securities for next period $n_{it+1}(s')$ are traded with price $q_t(s')$.
- Entrepreneurs choose $(c_{it}(s^t, h^{t-1}), \ell_{it}(s^t, h^{t-1}), n_{it+1}(s'; s^t, h^t))$ subject to

$$\int q_t(s')n_{it+1}(s')ds' = n_{it} - c_{it} + (z_{it} - w_t)\ell_{it}$$

• Workers choose $(c_{wt}(s^t), \ell_t(s^t), n_{wt+1}(s'; s^t))$ subject to

$$\int q_t(s') n_{wt+1}(s') ds' = n_{wt} - c_{wt} + w_t \ell_t$$

Competitive equilibrium

- Some equilibrium conditions are standard:
 - Euler equations

$$c_{wt}^{-\gamma} = \beta_w (1 + r_t) \mathbb{E}_t \left[c_{wt+1}^{-\gamma} \right]$$
$$c_{it}^{-\gamma} = \beta_e (1 + r_t) \mathbb{E}_{it} \left[c_{it+1}^{-\gamma} \right]$$

Aggregate risk sharing

$$\frac{c_{wt+1}(s^t, s_{t+1})}{c_{wt+1}(s^t, s'_{t+1})} = \frac{c_{it+1}(s^t, s_{t+1}, h^t)}{c_{it+1}(s^t, s'_{t+1}, h^t)} = \frac{c_{t+1}(s^t, s_{t+1})}{c_{t+1}(s^t, s'_{t+1})}$$

Labor supply

$$\ell_t^{1/\psi} = c_{wt}^{-\gamma} w_t$$

• The novel part is labor demand

Labor demand

• Homothetic pref. + linear technology:

$$V_t(s^t, h^{t-1}) = V_t(n, \epsilon_-; s^t) = \frac{(A(\epsilon_-; s^t)n)^{1-\gamma}}{1-\gamma}$$

Labor demand

$$\mathbb{E}\left[\overbrace{A(\epsilon_{it}; s^{t+1})^{1-\gamma} \times n'(s_{t+1}; u_{it})^{-\gamma}}^{m_{it+1} = \partial_n V_{t+1}} \times (z_{it} - w_t) | s^t, \epsilon_{it-1}\right] = 0$$

or re-arranging:

$$w_t = \mathbb{E}_{it} \left[z_{it} \right] \times \left(1 + \underbrace{Cov_{it}(\hat{m}_{it+1}; \hat{z}_{it})}_{-\pi_{it}} \right)$$

The labor risk premium π_{it} acts like a labor wedge

Understanding labor demand: labor is risky

• In steady state:

$$\mathbb{E}\left[\widehat{A(\epsilon_{it};s^{t+1})^{1-\gamma}\times(1+\widehat{\ell}_{it}(z_{it}-w_t))^{-\gamma}}\times(z_{it}-w_t)\,|s^t,\epsilon_{it-1}\right]=0$$

where $\hat{\ell}_{it}$ is the portfolio-weight on labor (labor/ net worth)

• Larger $\hat{\ell}_{it} \implies$ stronger covariance of marginal product of labor with individual SDF

More productive firms hire more labor

Risk premium π_{it} is larger for more productive firms

Persistent idiosyncratic shocks and dynamic hedging

• Labor demand

$$\mathbb{E}_{it}\left[\overbrace{A_{it+1}^{1-\gamma}(\eta_{it})\times n_{it+1}^{-\gamma}(u_{it};\hat{\ell}_{it})}^{m_{it+1}}\times (z_{it}(u_{it})-w_t)\right]=0$$

- ▶ Persistence of idiosyncratic productivity shocks $\lambda_{it} = Corr_{it}(u_{it}, \eta_{it})$
- ▶ Key economics: income vs. substitution effects
- Special case $\gamma = 1$: myopic optimization

High productivity \implies better investment opportunities

Dynamic hedging

• Investment opportunities $A(\epsilon_{-})$ are increasing in ϵ_{-}

• If $\lambda > 0$ the marginal product of labor z_{it} is positively correlated with investment opportunities A_{it+1}

• With $\gamma > 1$, this means a negative correlation with the entrepreneurs SDF

Aggregate risk sharing and state variables

• From aggregate risk sharing, we know the consumption share

$$\theta_t(\epsilon_-; s^{t-1}) := \frac{\int_{\{\epsilon_{it-1} = \epsilon_-\}} c_{it} di}{c_t}, \quad \theta_{wt} = 1 - \int_{\{\epsilon_t, \epsilon_t\}} \theta_t(\epsilon_-) d\epsilon_-$$

is predetermined (does not respond on impact to aggregate shocks). We can derive a law of motion for $\theta_t(\epsilon_-)$

• Notice aggregate wealth by productivity type is not predetermined:

$$\omega_t(\epsilon_-; s^t) := \int_{\{\epsilon_{it-1} = \epsilon_-\}} n_{it} di = \theta_t(\epsilon_-; s^{t-1}) \times \underbrace{A_t(\epsilon_-; s^t)}_{\gamma} \times c_t$$

 $\gamma \neq 1 \implies$ financial amplification channel through $A^{\frac{1-\gamma}{\gamma}}$ in response to tradeable aggregate shocks (for $\gamma=1$ we have $A_t(\epsilon_-)^{\frac{1-\gamma}{\gamma}}=\frac{1}{1-\beta_e}$)

• State variables: σ_{ut} (exogenous) and $\theta_t(\epsilon_-)$ (endogenous but "slow moving")

Consumption shares $\theta(\epsilon_{-})$

An increase in σ_u redistributes wealth

Aggregate employment and output: iid shocks

• Assume $\epsilon_{it} = 0$ always \Longrightarrow uniform expected productivity and risk premium: $\mathbb{E}_{it}[z_{it}] = Z = 1$ and $\pi_{it} = \pi_t$

$$w_t = Z \times \left(1 - \pi_t\right)$$

$$\pi_t = -Cov_t \left(\frac{(1 + \hat{\ell}_t(z_{it} - w_t))^{-\gamma}}{\mathbb{E}_t \left[(1 + \hat{\ell}_t(z_{it} - w_t))^{-\gamma}\right]}; \frac{z_{it}}{\mathbb{E}_t[z_{it}]}\right)$$

• Plugging into labor supply equation:

$$\ell_t^{1/\psi+\gamma} = \theta_{wt}^{-\gamma} \times Z^{1-\gamma} \times (1-\pi_t)$$

• Di Tella and Hall (2021): Higher risk $\sigma_{ut} \implies$ higher risk premium π_t (labor wedge) \implies recession

Persistent shocks: labor risk premium and TFP

• Labor

$$\ell_t^{1/\psi+\gamma} = \theta_{wt}^{-\gamma} \times Z_t^{1-\gamma} \times (1 - \bar{\pi}_t)$$

where $\bar{\pi}_t$ is the production-weighted risk premium:

$$1 - \bar{\pi}_t = \int (1 - \pi_t(\epsilon_-)) \times \left(\mathbb{E}_t[z_{it}|\epsilon_-] \times \theta_t(\epsilon_-) (A_t(\epsilon_-)^{\frac{1-\gamma}{\gamma}} - 1) \hat{\ell}_t(\epsilon_-) \right) d\epsilon_-$$

and TFP:

$$Z_t = \frac{y_t}{\ell_t} = \left(\int \theta_t(\epsilon_-) (A_t(\epsilon_-)^{\frac{1-\gamma}{\gamma}} - 1) \hat{\ell}_t(\epsilon_-) d\epsilon_- \right)^{-1}$$

Risk premiums affect TFP and labor wedge

- ullet TFP: heterogeneous risk premiums \Longrightarrow misallocation
 - ▶ fluctuations in risk premiums ⇒ fluctuations in TFP

• Labor wedge: high productivity firms have higher risk premiums and matter more for the aggregate labor wedge

• Financial amplification channel: financial losses are distributed heterogeneously across productivity-types

Higher σ_u affects idiosyncratic dynamic hedging

Numerical solution

• We solve the model to first order in aggregate shocks using the sequence space (Bardoczy et al. 2021), with projection methods for the cross section.

Parameters	
$\overline{\gamma}$	2
ψ	2
β_{w}	0.98
β_e	0.8
σ_u^{ss}	0.54
σ_{η}	0.15
λ	0.7
ρ	0.7
$ ho_{\sigma}$	0.5

Impulse response with persistent shocks

Figure: IRF to an increase in σ_u for output y, employment ℓ , TFP Z, labor risk premium π , and workers consumption share θ_w .

Impulse response with persistent shocks

• The labor risk premium π (labor wedge) spikes on impact and causes a contraction in employment ℓ and output y

ullet TFP Z falls initially, but subsequently rises above steady state, so output recovers much faster than employment, and overshoots steady state

• Workers consumption share θ_w does not respond on impact. It subsequently falls a little, but plays a quantitatively secondary role

Labor risk premiums

Employment allocation

Quantitative evaluation: work in progress

• Use data from Amadeus to construct firm-level productivity z_t following Bloom et al. (2019)

• Use GMM to estimate stochastic process for z_{it} and σ_{ut}

- TFPQ vs. TFPR
 - ▶ typically one can use labor to back out TFPQ (Klenow and Hsieh (2009))
 - ▶ here firms have heterogenous discounts: estimate TFPQ using full model

Conclusions

 \bullet Persistent shocks \implies dynamic hedging uninsurable idiosyncratic risk

ullet Heterogeneous risk premiums \Longrightarrow endogenous fluctuations in TFP