

Création et réception des simulations robotiques

I LOCALISATION DU DOCUMENT

Attaché à la norme DJUR_CTF001_117 « Conditions générales d'exécution des commandes » (CGE).

II PROPRIETAIRE

T. NEGRE - Support IAO

III OBJET - DOMAINE D'APPLICATION

Le rôle du présent cahier des charges est de définir les éléments essentiels qui doivent être présents dans les simulations robotiques que PSA réceptionne, aussi bien du point de vue des informations qu'elle doit contenir qu'en ce qui concerne la forme sous laquelle ces informations doivent être traitées et réceptionnées.

Ce document a pour but essentiel de favoriser les échanges avec nos partenaires et d'améliorer notre efficacité et notre réactivité à la consultation de ces simulations robotiques.

La rédaction de ce document a pour buts principaux :

- De visualiser l'ensemble des cellules robotisées d'un projet avec pour chacune d'entres elles.
- Les points de soudure liés à la gamme.
- La ou les trajectoires effectuées par le ou les robots (y compris les trajectoires de rodage).
- Les outillages (pince, palette, environnement).
- D'harmoniser l'ensemble de ces simulations par l'adoption de conventions de base communes.
- D'avoir à notre disposition des cellules qui pourront servir de référence pour les projets futurs et enrichir la base de données de la filière numérique.

Le présent document s'applique d'une manière générale à toute simulation robotique CAO dont la responsabilité incombe aux PEA, que ces simulations soient traitées en interne ou par nos partenaires. Cette méthodologie est à mettre en œuvre quel que soit le type de simulation robotique traité (encollage, manutention, soudage MIG MAG, soudage pion).

ATTENTION!

Ce document est peut-être périmé.

La seule édition en vigueur est celle consultable dans l'outil de gestion documentaire du référentiel.

IV SOMMAIRE

I LOCA	LISATION DU DOCUMENT	1
II PROF	PRIETAIRE	1
III OBJI	ET - DOMAINE D'APPLICATION	1
IV SOM	MAIRE	2
I.1	PRINCIPES FONDAMENTAUX	3
1.2	SUPPORT DE LIVRAISON	3
V RAPE	PEL DES OBJECTIFS D'UNE SIMULATION CAO ROBOTIQUE	4
VI ARC	HITECTURE	5
VI.1	LOGICIEL ROBCAD	5
	VI.1.1 A LA CHARGE DU TECHNICIEN SIMULATION ROBOTIQUE	5
	VI.1.1.1 CELLULE ROBCAD	8
	VI.1.1.2 POINTS DE SOUDURE	12
	CREATION DE PINCE STANDARD	15
	VI.1.2 UTILISATION DE PINCE EXISTANTE	17
	VI.1.3 COMPOSANTS	18
	VI.1.3.1 Repères	18
	VI.1.3.2 Couleurs	18
	VI.1.3.3 Modélisation	19
	VI.1.3.4 Noms	20
	VI.1.3.5 Cinématique des moyens	20
	VI.1.4 GESTION DE PIECES DANS LA CELLULE	21
	VI.1.5 REPERTOIRE PROJET	23
	VI.1.6 REPERTOIRE LIBRAIRIE	24
	VI.1.7 A LA CHARGE DU REFERENTIEL ROBCAD	25
	VI.1.8 A LA CHARGE DU PREPARATEUR PRODUIT	25
	VI.1.9 25	
VII ANN	NEXES	26
1.3	MODELE TYPE DE FICHIER .INFO	26
1.4	ANNEXE 1 : RAPPORT DE FAISABILITE ROBOTIQUE (PHASE IS)	27
1.5	ANNEXE 2 : RAPPORT DE SIMULATION ROBOTIQUE (FIN D'ETUDES)	27
VIII TEF	RMINOLOGIE ET ABREVIATIONS	28
IX DOC	UMENTS DE REFERENCE	28
X CYCL	_E DE VALIDATION	28
XI MISE	ES A JOUR	29

Généralités

IV.1 Principes fondamentaux

Les simulations robotiques réceptionnées par PSA seront au format :

ROBCAD de TECNOMATIX version 8

Tous les postes doivent être numérisés, dès qu'ils ne sont pas strictement identiques à un poste existant :

- Deux postes non symétriques doivent être numérisés dans deux cellules.
- La symétrie des postes n'est pas obligatoire mais peut être demandée au cas par cas en fin d'étude.
- Pour des lignes symétriques (par exemple portes), il faut prendre en compte dans la cellule droite la non symétrie des pinces (voir annexe création pinces) et des robots (en insérant les parties non symétriques du robot).
- Prendre en compte la partie accastillage des robots (attention aux différents standards et à l'utilisation des faisceaux LSH en fonction des applications)
- Deux postes identiques de deux flux différents doivent être numérisés dans deux cellules.
- Les différents types du véhicule (3 portes 5 portes etc..) doivent être numérisés dans la même cellule
- Tous les composants doivent être en LIBRAIRIE.
- La numérisation des éléments doive être de qualité : bien modéliser, avec les repères minimum.
- INTERDIT DE TRANSMETTRE UNE CELLULE « EXPLODEE ».
- PAS DE SUPER COMPOSANTS.(L'utilisation des super-composants n'est pas interdit mais doive être transformer en composant unique lors de la réception définitive.)
- INTERDIT DE MODIFIER LES DONNEES PIECES FOURNIES PAR PSA.
- LES PIECES SERONT FOURNIES A CHAQUE JALON PIECES EN COMPOSANTS ROBCAD.

IV.2 Support de livraison

- DVD.
- La livraison des simulations robotiques par support numérique implique obligatoirement de joindre un document papier contenant les informations suivantes :
 - Date de l'envoi.
 - Motif de cet envoi.
 - Contenu et taille de l'envoi.
 - Personne à contacter en cas de problème.

V RAPPEL DES OBJECTIFS D'UNE SIMULATION CAO ROBOTIQUE

L'objectif d'une simulation CAO robotique est de garantir la faisabilité pour toutes les gammes robotiques. A cette fin, la liste ci-dessous décrit toutes les informations que doit contenir une simulation CAO robotique :

- Position des robots.
- Modélisations des outillages (pinces, préhenseurs, montages, etc..).
- Modélisations de l'environnement (rôdeuses, magasins, protections grillagées, changeurs d'électrodes, réhausses robots,...).
- Modélisations des ensembles de pièces ou sous-ensembles.
- Représentation des points de soudure de la gamme, nommés suivant la dénomination PSE.
- Les trajectoires complètes avec points de passage et PEO (Point Entrée Opération) devront être livrées à la réception définitive (cellule avec PHL).
- Vérifier l'accessibilité aux points de rodage et de changement d'électrodes.
- Etude de la station complète (interférence avec l'environnement, avec d'autres robots ...).
- Respect de l'interférence (PINCE ⇔ PIECE ⇔ OUTILLAGE ⇔ ROBOT ⇔ ENVIRONNEMENT).

VI ARCHITECTURE

VI.1 logiciel ROBCAD

VI.1.1 A LA CHARGE DU TECHNICIEN SIMULATION ROBOTIQUE

Respect de l'arborescence (fournie par PSA) :

Arborescence des pièces véhicules.

VI.1.1.1 CELLULE ROBCAD

VI.1.1.1.1 <u>Erreur</u>

Aucunes erreurs sur les composants en ouverture de cellule ne seront admises.

VI.1.1.1.2 LISTE DES COLLISIONS

 Les noms suivants doivent être respectés pour chaque robot (ROB1 étant le nom du robot dans la cellule).

Ex:

ROB1_OUT Liste 1 : Robot

Liste 2 : Outillage embarqué (pince, préhenseur, hygiène)

ROB1OUT_ENV Liste 1 : Robot + Outillage embarqué

Liste 2 : Outillage et environnement fixe

ROB1OUT_VEH Liste 1 : Robot + Outillage embarqué (ou pièce sur préhenseur)

Liste 2 : Véhicule (ou pince au sol)

VI.1.1.1.3 Dénomination de cellule Robcad

Le minimum exiger, permettant une bonne compréhension pour chacun, est qu'il y ai :

- Le Code de la fonction élémentaire.
- Le Code véhicule avec sa variante.
- La date inversée pou indicer la cellule.

Exemple.

Code de la fonction élémentaire (REF_FER_048):

Exemple : pour la fonction élémentaire, préparation longeronnet droit le code de la fonction élémentaire est **pld**.

Code véhicule avec sa variante:

Le code véhicule avec sa variante permet de distinguer les îlots. Il est possible d'avoir plusieurs codes véhicule avec leur variante.

Exemple : un ilot ou l'on assemble du a7x et un future a9x, aura comme désignation pte_a7x_a9x_051009.ce.

- Indice de la cellule.

L'indice de la cellule se fait par la date inversée (aammjj).

VI.1.1.1.4 Dénomination des trajectoires robot

– Nom du robot :

Le nom du robot doit être nommé comme le nom du robot indiqué sur l'implantation. (Renseignement donné par le PEA)

Code véhicule à étudier

Ce code est fourni par le préparateur, si la zone est commune entre plusieurs silhouettes (A51 et A55) le code devient a515 et si la zone est commune entre toutes les silhouettes le code devient a5x.

Ordre d'exécution :

L'ordre d'exécution du robot permet de comprendre la séquence et l'ordre des opérations et doit être obligatoirement renseigné en fin étude.

Type d'opération

Fonctionnelle:

Opération	Code
Soudure	sd
Prise	pr
Dépose	dp
Encollage	ec
Soudure mig/mag	mg
Soudure laser	ls
Sertissage-molette	sm
Soudure arc tiré (goujon/vis)	at
Clinchage	cl
Rivetage	rv

Service:

Opération	Code
Rodage	rd
Changement d'électrode	ce
Maintenance outil	mo
lancement	lc
repli	rp

Diversité

La diversité est nécessaire si l'assemblage des pièces peut avoir une diversité, exemple : le collecteur assemblé a une diversité direction à gauche et une diversité direction à droite. Les diversités peuvent se cumuler.

Diversité	Code
Direction à droite	dad
Direction à gauche	dag
Toit normal	tn
Toit ouvrant	to
Toit vitré (scielo)	tv

VI.1.1.2 POINTS DE SOUDURE

VI.1.1.2.1 ORIGINE

Le fichier d'origine des points de soudure est obligatoirement la trame de suivi des liaisons d'assemblage (fichier Excel TRM_FER_005 fournie par le Préparateur).

Les fichiers .pt issu de TRM_FER_005, après utilisation, doivent être rangés dans le répertoire DOC du dossier Projet, site, Ligne de fabrication.

Ex : PSE fait sur le projet A9 qui est fabriqué sur le site de Poissy en ligne unit arrière 2. \PROJET\SITE_PY\LIGNE_UNIT_ARRIERE_2\DOC

NOM DES POINTS

Le minimum exiger, permettant une bonne compréhension pour chacun, est qu'il y ai :

- Numéro Méthode (numéro du PSE).
- Le Code véhicule avec sa variante.
- Nature du PtSE (puls ou normal).

L'ajout de renseignement est autorisé. (L'indice de modification

VI.1.1.2.2 Points normaux dans le fichier .pt

POINT pxxxxxx_n6x	coordX coordY coordZ	soit lxxxxx_n6x dans la cellule (tout type véhicule n6)
POINT pxxxxxx_n61	coordX coordY coordZ	soit lxxxxx_n61 dans la cellule (spécifique n61)
POINT pxxxxxx_n62	coordX coordY coordZ	soit lxxxxx_n62 dans la cellule (spécifique n62)
PONT pxxxxxx	coordX coordY coordZ	soit lxxxxx dans la cellule (sans diversité)

VI.1.1.2.3 Points pulsés dans le fichier .pt

POINT pxxxxx_n6x_p coordX coordY coordZ soit lxxxxx_n6x_p dans la cellule

VI.1.1.2.4 Goujons dans le fichier .pt

POINT pxxxxx_n6x_gvv coordX coordY coordZ soit lxxxxx_n6x_gvv dans la cellule

vv indique la longueur ou le type du goujon.

VI.1.1.2.5 Rivets dans le fichier .pt

POINT pxxxxx_n6x_r coordX coordY coordZ soit lxxxxx_n6x_r dans la cellule

VI.1.1.2.6 MODIFICATIONS

Les modifications de coordonnées sont possibles, dans la limite d'un rayon de 3 mm autour du point en respectant les règles de soudure (Fiche Métier soudure MET_FER_011).

Toute modification de coordonnées ou de répartition doit faire l'objet d'une demande écrite au plus tôt au PEA.

Les locations modifiées doivent être identifiées comme suit dans la cellule :

- lxxxxx_m est la nouvelle location modifiée
- pxxxxx_m est le point qui a servi à projeter la nouvelle location
- lxxxxx est l'ancienne location. Contenue dans le path : pse_mod

CREATION DE PINCE STANDARD

La Création de pince se fait obligatoirement avec les éléments standard pince, bras actif, bras passif, moteur (les bras sont complet avec leur allonge et leur électrode). Le nom de ces éléments est codé suivant le tableau du CODE STRUCTUREL DE LA PINCE de la PSA_FER_044 pour les pinces électriques et de la PSA_FER_033 pour les pinces pneumatiques.

Pour créer une pince électrique il suffi de connaître le type et la marque de pince, la marque du robot utiliser, le type de points à souder, le type de changeur et la longueur utile (LU).

Les éléments standard de pince sont fournie par PSA et se trouve dans le chemin suivant :

\LIB_ROBCAD

\LIBRAIRIE_STD
\TECH_D_ASSEMBLAGE
\RESISTANCE
\STD_2007_2010
\STD_2003_2006
\PINCES_ROB
\CREA_PINCES_STD

Exemple : Pour créer une pince ciseaux ARO qui fait des points normaux assemblé à un robot FANUC par des demi-changeurs manuels.

Multi-section:

Bras de pince :

Il est très important de détermine les bras de pince standard en premier, car ce sont eux avec la gamme qui vont permettre au soudeur de donné la puissance moteur et transformateur du corps de pince.

Comme la gamme est composée de points normaux il faut obligatoirement utiliser des bras de pinces normaux.

Comme les cotes LE1 et LE2 ne sont pas supérieur à 50 mm, d'entraxe 200mm est suffisant (mais il n'est pas interdit de prendre entraxe supérieur pour trouver la forme de bras désiré).

Comme la cote LE est de 320mm le LU de 400 suffi (mais n'est pas interdit une longueur utile supérieur pour trouver la forme de bras désiré).

ba4dn.co

bp4dn.co

Code structurel bras de pince :

Le rôle de la pince codé par les codes suivant : ba pour bras actif et bp pour bras passif La longueur utile est codé par le premier chiffre(4) ou par le groupe de chiffre (040) : ici le 4 représente un LU de 400mm.

Le type de bras est codé pas la dernière lettre : n pour un bras de normal et p pour un bras puls.

Code structurel moteur :

Pince pour un robot	r
Mécanisme ciseaux donc	Х
Marque ARO choisi par le projet	а
L'entraxe est déterminer en fonction de la multi-section ici 200mm suffi	20
La tension et la fréquence sont donné par le soudeur	а
La puissance du transformateur est fournie par le soudeur	075
Mague du robot FANUC	f
L'accroche se détermine en fonction de la position de la pièce a soudé et du robot.	1
Demi-changeurs manuels	m
Numéro de l'édition du CDC PSA FER 044 (pour pince électrique) correspondant a	à la
réalisation de la pince	11

Moteur rxa20a075f1m11.co

Donc la pince ce nomme rxa20a075f1m11_ ba4dn_ bp4dn.co

Attention cette pince n'a pas de cinématique, il est donc impératif de créer la cinématique, les états OPEN SEMIOPEN et CLOSE, qu'elle soit définie en tant que pince (gun define) et rangée dans le bon répertoire.

Doc: METHODE POUR LA CREATION DE PINCES A SOUDER

Si cette pince est utilisée pour faire des points de la ligne style_1 de Poissy elle sera rangée le dossier suivant : LIB_ROBCAD\LIB_PY\LIGNE_STYLE_1\PINCES\ARO.

VI.1.2 <u>UTILISATION DE PINCE EXISTANTE.</u>

Il est possible d'utiliser des pinces standards d'ancienne ligne de fabrication pour le carry-over ou pour la récupération de matériel (avec le robot associé), ces pinces sont rangées dans les pinces standards.

Si les éléments de bras standard ne répondent pas au besoin, il est possible de récupérer un bras d'une pince standard. Attention de bien respecter bras puls et normal, impossible de faire un mixte de bras.

Il est important de vérifier que la nouvelle gamme est faisable avec la pince choisie surtout au niveau de la puissance moteur et transformateur. Cette vérification doit être faite par le soudeur grâce à la gamme fournie.

VI.1.3 COMPOSANTS

VI.1.3.1 Repères

Chaque composant modélisé comporte les repères nécessaires à :

- son insertion dans la cellule (repère à l'origine du composant)
- la fixation d'autres composants

Pour un préhenseur : 2 repères minimum :

- l'origine du composant est le zéro véhicule
- att_rob : repère de fixation poignet robot (correctement orienté)

Dans le cas d'une diversité préhenseur :

- oveh_n61 : repère de fixation de l'Origine VEHicule du N61
- oveh_n62 : repère de fixation de l'Origine VEHicule du N62 (si différent)

Pour une pince :

- L'origine du composant reste celle du fournisseur.
- att_rob : repère de fixation poignet robot (correctement orienté)
- pt_soud : repère de centre outil correctement orienté

VI.1.3.2 Couleurs

Chaque composant doit respecter les contraintes de couleurs ci-dessous :

Remarque : Le numéro correspond à la colonne et la ligne de la palette de couleur Robcad

Composant	Sous-élément		Colonne	Ligne
Bâti. Structure main de préhension Support construit.		Vert foncé	3	3
Plaque intercalaire. Calle. Rondel. Buter.		Noir	1	6
Serrage fermé:				
	Corps vérin.	Bleu	3	6
	Tige vérin. Axe. Visserie.	Gris	3	1
	Etrier. Bras de serrage.	Jaune	3	1
	Calle de réglage.	Noir	1	6
	Touche. Appui.	Marron foncé	1	5
Serrage ouvert. Abatant ouvert.		rose	2	5
		Noir	1	6
Pilote. Pinnule. Capteur.		Orange	2	2
Porte pilote mobile. Porte pilote fixe. Porte pinnule. Support Capteur.		Bleu	3	6
Abattant.		Jaune	3	1
Support Römer.		Blanc	1	1
Pièce Véhicule		Gris	1	3
Panoplie (boite pneumatique).		Marrons	1	5

	1	2	3
1		9	
2			
3		0	
4	9	0	
5			
6		0	
		·	

Exemple:

Le rouge (2;3) est interdit pour tout composant, volume et surface courant, mais peut être utiliser pour tous composants vétustes ou a ne plus prendre en compte.

VI.1.3.3 Modélisation

Pour des raisons de lourdeur des composants, les outils modélisés par le fournisseur sont en volumique. Les éléments de construction doivent être supprimés (lignes, courbes, points) après création de la cinématique.

VI.1.3.4 Noms

Le minimum exiger, permettant une bonne compréhension pour chacun, est qu'il y ai :

- code types de biens équipement
- numéro d'opération
- date inversée

Dans l'orde suivant

[code types de biens équipement]_ [numéro d'opération]_[date inversée].co (30 caractères maximum)

Exemple avent fin IS: msr_op20_091024.co

Exemple modification d'un outillage existant : msr_op20_j613256_091123.co

Exemple après fin IS pour un outillage neuf : msr_op20_1000256_091123.co

Code des types de biens équipement (REF FER 048) :

Exemple : Si le composant est un montage de soudure robotisé son code du type de biens équipement est **MSR**.

Numéro d'opération : numéro obligatoire.

N° moyen : code j6 existant ou numéro 1milion obligatoire à partir de la fin de l'IS(donné par le PEA).

Date : date inversée de la création du moyen (aammjj).

Pour les Robots :

Ex: r1

Pour les Implantation:

Utiliser le nom du plan d'implantation donné par l'implanteur.

VI.1.3.5 Cinématique des moyens

Pour les abattants, chariots, et toute mise en opération.

La cinématique sur les outillages est obligatoire.

Pour les autres outils en étude de faisabilité :

Les volumes d'encombrement position ouverte et fermée sont suffisants pour la réception définitive.

VI.1.4 GESTION DE PIECES DANS LA CELLULE

VI.1.4.1.1 ORIGINE

Le fichier d'origine des pièces est obligatoirement la trame de suivi pieces (fichier Excel TRM_FER_004 fournie par le Préparateur).

Ce tableau permet de récupérer que les piéces qui on changées d'indice de modification a un jalon donné et de déterminer les modifications qu'il faut faire dans les remontages.

Les pièces des remontages doivent respecter l'indice de modification.

La gestion des pièces se fait par pièces unitaires et par remontage ROBCAD de sous-ensemble. Chaque sous-ensemble est gérer pas unit.

VI.1.5 REPERTOIRE PROJET

Ce répertoire ne doit contenir en fin de projet que les cellules du projet traité (cellule.ce) sans aucun composant.

PSA souhaite qu'un fichier « .info »soit dans chaque cellule.ce. Ce fichier est destiné à la traçabilité de la cellule. Doivent y figurer en particulier toutes les modifications majeures intervenues entre deux envois. Il peut ne pas être totalement renseigné en phase IS mais doit être IMPERATIVEMENT complet lors de la restitution finale (Voir le modèle mini en ANNEXE).

VI.1.6 REPERTOIRE LIBRAIRIE

LIBRAIRIE doit contenir 3 répertoires intitulés LIBRAIRIE_STD LIB_SITE et PIECES :

LIBRAIRIE_STD:

Ce répertoire est fourni au partenaire. Il intègre tous les standard PSA suivant leur métier et leur époque, il est impératif de respecter ces standards avec leurs structures.

LIB_SITE\LIB_LIGNE :

Ce chemin doit contenir tous les composants spécifiques de la cellule du projet traité (les outillages, les pinces transmis du fournisseur ainsi que l'environnement (poteau usine, plafond, etc.) et structuré suivant leur groupe d'appartenance (PREHENSEURS-OUTILLAGES-IMPLANTATIONS-CONVOYEURS-etc.).

VI.1.7 A LA CHARGE DU REFERENTIEL ROBCAD.

- La librairie standard est fournie à nos partenaires.
- Vérification des cellules Robcad.
- Copie du contenu des répertoires PROJET et LIBRAIRIES dans les répertoires de même nom dans la home directory ROBCAD de l'utilisateur.
- Edition des fichiers .info pour connaître le contenu des cellules.
- Rédaction du rapport de réception type de faisabilités robotiques (Phase IS).
- Rédaction du rapport de réception type de simulations robotiques (Phase Projet).

VI.1.8 A LA CHARGE DU PREPARATEUR PRODUIT

- Les versions des pièces véhicule à utiliser sont fournies à nos partenaires suivant les jalons.
- Le fichier suivi des liaisons d'assemblages est mis à disposition pour nos partenaires.

VII ANNEXES

VII.1 MODELE TYPE DE FICHIER .INFO

DESCRIPTIF DE LA CELLULE RO	DBCAD

* Societe : XX-FRANCE *	
PROJET VEHICULE :	USINE :
UNIT RESPONSABLE D'AFFAIRE PSA PARTENAIRE POSTE Type de poste NOM DE LA CELLULE Date de création Auteur	:
Jalon :	
Jalon pièces : Définition référentiel : DONNEES PROCESS :	
-équipements robots pro- rodeuse présent -changeurs électrodes pro- Nom des robots -Nom des pinces -Nom des outillages -Nom des préhensions -référence de l'implanta	: présents : : : : : : : : : : : :
************	*******
MODIF	ICATIONS / EVOLUTIONS
Modification : Date de la Modification : Nature de la Modification : Par :	******
DO	CUMENTATIONS

PSA_FER_175_E04 Page 26/29

VII.2 ANNEXE 1 : rapport de faisabilité robotique (phase IS)

respect de la psa_fer_175 en phase IS.doc

VII.3 <u>Annexe 2 : rapport de simulation robotique (fin d'études)</u>

respect de la psa_fer_175 en phase Etude.doc

VIII TERMINOLOGIE ET ABREVIATIONS

Abréviations	Significations	
CAO	Conception Assistée par Ordinateur	
CGE	Conditions Générales d'Exécution des commandes	
IS	Ingénierie Simultanée	
MIG-MAG	Métal Inerte Gaz – Métal Active Gaz	
PEO	Point Entrée Opération	
PtSE	Point de Soudure Electrique	
UNF	Usine Numérique Ferrage	

IX <u>DOCUMENTS</u> DE REFERENCE

Référence	Intitulé	Lieu de classement
TRM_FER_018	Trame d'un cahier des charges d'intégration (PSA_FER_1XX)	DoMe
REF_FER_001	La gestion documentaire au Ferrage	DoMe
DJUR_CTFO01_117	Conditions Générales d'Exécution des commandes (CGE)	CASCADE
REF_FER_048	Elaboration de la liste des Biens d'Equipement Ferrage	DoMe
PSA_FER_044	Définition du matériel et des prestations associées pour les pinces électriques robot	DoMe
PSA_FER_033	Définition du matériel et des prestations associées pour les pinces neumatiques robot	DoMe

X CYCLE DE VALIDATION

Rôle	Nom - Fonction	Date - Signature
Propriétaire	T. NEGRE – Support IAO	Signature électronique
Vérificateur	F. MARCEAU – Spécialiste robotique	Signature électronique
Vérificateur	F. ABBES – Animateur documentaire Ferrage	Signature électronique
Vérificateur	A. AMAURY – Chef de secteur pôle numérique	Signature électronique
Approbateur	C. LEIGNEL – Responsable PCPM	Signature électronique

XI MISES A JOUR

Edition	Date	Evolution	Etabli par
00	09/01/2003	Création	JC. NAVARRO
01	28/06/2005	Mise à jour pour orientation usine numérique	JC. NAVARRO
02	15/12/2005	Insertion de la structure des librairies, imposée pour application UNF.	JC. NAVARRO
03	10/12/2007	Modification, prise en compte des suggestions d'ex PCI.	T. NEGRE
04	04/12/2009	Prise en compte de la nouvelle structure de rangement des composants et des projets. Simplification des désignations des trajectoires, des outillages, des cellules.	T. NEGRE

Grille de diffusion:

Sa création et son suivi sont définis dans la procédure REF_FER_001 « La gestion documentaire au Ferrage» et la norme DJUR_CTF001_117 « Conditions Générales d'Exécution des commandes ».

Légende de mise à jour :

