Отчёт по лабораторной работе №6

Основы информационной безопасности

Мурашов Иван Вячеславович

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	8
4	Выводы	16

Список иллюстраций

3.1	проверка режима работы SELinux	8
3.2	Проверка работы Apache	9
3.3	Контекст безопасности Apache	9
3.4	Состояние переключателей SELinux	10
	Статистика по политике	11
3.6	Типы поддиректорий	11
3.7	Типы файлов	11
3.8	Создание файла	12
3.9	Контекст файла	12
3.10	Отображение файла	13
3.11	Изучение справки по команде	14
3.12	Изменение контекста	14
3.13	Отображение файла	14
3.14	Попытка прочесть лог-файл	15
		15

Список таблиц

1 Цель работы

Развить навыки администрирования ОС Linux. Получить первое практическое знакомство с технологией SELinux1. Проверить работу SELinx на практике совместно с веб-сервером Apache. [course?]

2 Теоретическое введение

1. **SELinux (Security-Enhanced Linux)** обеспечивает усиление защиты путем внесения изменений как на уровне ядра, так и на уровне пространства пользователя, что превращает ее в действительно «непробиваемую» операционную систему. Впервые эта система появилась в четвертой версии CentOS, а в 5 и 6 версии реализация была существенно дополнена и улучшена.

SELinux имеет три основных режим работы:

- Enforcing: режим по умолчанию. При выборе этого режима все действия, которые каким-то образом нарушают текущую политику безопасности, будут блокироваться, а попытка нарушения будет зафиксирована в журнале.
- Permissive: в случае использования этого режима, информация о всех действиях, которые нарушают текущую политику безопасности, будут зафиксированы в журнале, но сами действия не будут заблокированы.
- Disabled: полное отключение системы принудительного контроля доступа.

Политика SELinux определяет доступ пользователей к ролям, доступ ролей к доменам и доступ доменов к типам. Контекст безопасности — все атрибуты SELinux — роли, типы и домены. Более подробно см. в [f?].

2. **Apache** — это свободное программное обеспечение, с помощью которого можно создать веб-сервер. Данный продукт возник как доработанная версия другого HTTP-клиента от национального центра суперкомпьютерных приложений (NCSA).

Для чего нужен Apache сервер:

- чтобы открывать динамические РНР-страницы,
- для распределения поступающей на сервер нагрузки,
- для обеспечения отказоустойчивости сервера,
- чтобы потренироваться в настройке сервера и запуске РНР-скриптов.

Арасhe является кроссплатформенным ПО и поддерживает такие операционные системы, как Linux, BSD, MacOS, Microsoft, BeOS и другие.

Более подробно см. в [s?].

3 Выполнение лабораторной работы

Вхожу в систему под своей учетной записью. Убеждаюсь, что SELinux работает в режиме enforcing политики targeted с помощью команд getenforce и sestatus (рис. 3.1).

```
[ivmurashov@ivmurashov ~]$ getenforce
Enforcing
[ivmurashov@ivmurashov ~]$ sestatus
SELinux status:
                               enabled
SELinuxfs mount:
                              /sys/fs/selinux
SELinux root directory:
                               /etc/selinux
Loaded policy name:
                               targeted
Current mode:
                               enforcing
Mode from config file:
                               enforcing
Policy MLS status:
                               enabled
                             allowed
Policy deny_unknown status:
Memory protection checking:
                               actual (secure)
Max kernel policy version:
                               33
[ivmurashov@ivmurashov ~]$||
```

Рис. 3.1: проверка режима работы SELinux

Запускаю сервер apache, далее обращаюсь с помощью браузера к веб-серверу, запущенному на компьютере, он работает, что видно из вывода команды service httpd status (рис. 3.2).

```
[ivmurashov@ivmurashov -]$ sudo systemctl start httpd
[sudo] password for ivmurashov;
[ivmurashov@ivmurashov -]$ sudo systemctl enable httpd
[cracted symlink /etc/systemd/system/multi-user.target.wants/httpd.service → /usr/lib/systemd/system/httpd.service.
[ivmurashov@ivmurashov -]$ service httpd status
Redirecting to /bin/systemctl status httpd.service
* httpd.service - The Apache HTTP Server
Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; preset: di
Active: active (running) since Sat 2025-05-03 00:23:55 MSK; 40s ago
Docs: man:httpd.service(8)

Main PID: 7378 (httpd)
Status: "Total requests: 0; Idle/Busy workers 100/0; Requests/sec: 0; Bytes
Tasks: 177 (limit: 29427)

Memory: 23.5M

CPU: 453ms

CGroup: /system.slice/httpd.service

-7379 /usr/sbin/httpd -DFORECROUND
-7380 /usr/sbin/httpd -DFORECROUND
-7381 /usr/sbin/httpd stemd[]: Started The Apache HTTP Serv
Lines 1-19/10 (RMD)..skipping...

* httpd.service - The Apache HTTP Server
Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; preset: disabled)
Active: active (running) since Sat 2025-05-03 00:23:55 MSK; 40s ago
Docs: man:httpd.service(8)

Main PID: 7378 (httpd)
-7381 /usr/sbin/httpd -DFORECROUND
-7382 /usr/sbin/httpd -DFORECROUND
-7383 /usr/sbin/httpd -DFORECROUND
-7381 /usr/sbin/httpd -DFORECROUND
-7382 /usr/sbin/httpd -DFORECROUND
-7383 /usr/sbin/httpd -DFORECROUND
-7383 /usr/sbin/httpd -DFORECROUND
-7384 /usr/sbin/httpd -DFORECROUND
-7385 /usr/sbin/httpd -DFORECROUND
-7385 /usr/sbin/httpd -DFORECROUND
-7385 /usr/sbin/httpd -DFORECROUND
-7385 /usr/sbin/httpd -DFORECROUND
-7385
```

Рис. 3.2: Проверка работы Арасһе

С помощью команды ps auxZ | grep httpd нашла веб-сервер Apache в списке процессов. Его контекст безопасности - httpd_t (рис. 3.3).

Рис. 3.3: Контекст безопасности Apache

Просматриваю текущее состояние переключателей SELinux для Apache с помощью команды sestatus -bigrep httpd (рис. 3.4).

```
[ivmurashov@ivmurashov ~]$ sestatus -b httpd
SELinux status:
                                  enabled
SELinuxfs mount:
                                  /sys/fs/selinux
SELinux root directory:
                                  /etc/selinux
Loaded policy name:
                                  targeted
Current mode:
                                  enforcing
Mode from config file:
                                  enforcing
Policy MLS status:
                                  enabled
Policy MLS status:
Policy deny_unknown status:
Memory protection checking:
                                  allowed
                                  actual (secure)
Max kernel policy version:
                                  33
Policy booleans:
abrt_anon_write
                                               off
abrt_handle_event
                                               off
abrt_upload_watch_anon_write
                                               on
antivirus_can_scan_system
                                               off
antivirus_use_jit
                                               off
auditadm_exec_content
                                               on
authlogin_nsswitch_use_ldap
                                               off
authlogin_radius
                                               off
authlogin_yubikey
                                               off
awstats_purge_apache_log_files
                                               off
boinc_execmem
                                               on
cdrecord_read_content
                                               off
cluster_can_network_connect
                                               off
cluster_manage_all_files
                                               off
cluster_use_execmem
                                               off
cobbler_anon_write
cobbler_can_network_connect
                                               off
cobbler_use_cifs
                                               off
cobbler_use_nfs
                                               off
collectd_tcp_network_connect
                                               off
colord_use_nfs
                                               off
condor_tcp_network_connect
                                               off
conman_can_network
                                               off
```

Рис. 3.4: Состояние переключателей SELinux

Просмотрел статистику по политике с помощью команды seinfo. Множество пользователей - 8, ролей - 39, типов - 5135. (рис. 3.5).

```
Statistics for policy file: /sys/fs/selinux/policy
Policy Version:
                                 33 (MLS enabled)
                                selinux
Target Policy:
Handle unknown classes: allow
  Classes: 135 Permissions:
Sensitivities: 1 Categories:
Types: 5187 Attributes:
Users: 8 Roles:
                                                             457
                                                            1024
                                                             259
                         8
358
                                    Roles:
                                                              15
  Users:
                                   Roles.
Cond. Expr.:
  Booleans:
Allow:
                                                             390
                                    Neverallow:
                       66245
178
                                                              0
  Actow.
Auditallow:
Type_trans:
Type_member:
Role allow:
Constraints:
                                    Dontaudit:
                                                            8723
                     274461
                                    Type_change:
                                                              94
                                    Range_trans:
                      37
40
                                                            5931
                                    Role_trans:
                                                             417
                                    Validatetrans:
  Constraints.
MLS Constrain:
                                                              0
                                    MLS Val. Tran:
                                                                0
  Permissives:
                                    Polcap:
  Defaults:
Allowxperm:
Auditallowxperm:
Ibendportcon:
Initial SIDs:
Genfscon:
                                    Typebounds:
                                                                0
                                    Neverallowxperm:
                                                                0
                                    Dontauditxperm:
                                                                0
                                    Ibpkeycon:
                                                               0
                             27
                                    Fs_use:
                                                               35
  Genfscon:
                                    Portcon:
                                                              665
                           109
  Netifcon:
                             0
                                                                0
                                    Nodecon:
```

Рис. 3.5: Статистика по политике

Типы поддиректорий, находящихся в директории /var/www, с помощью команды ls -lZ /var/www следующие: владелец - root, права на изменения только у владельца. Файлов в директории нет (рис. 3.6).

```
[ivmurashov@ivmurashov ~]$ ls -lZ /var/www
total 0
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_script_exec_t:s0 6 Jan 22 03:25 cgi-bin
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 6 Jan 22 03:25 html
```

Рис. 3.6: Типы поддиректорий

В директории /var/www/html нет файлов. (рис. 3.7).

```
[ivmurashov@ivmurashov ~]$ ls -lZ /var/www/html
total 0
[ivmurashov@ivmurashov ~]$ [
```

Рис. 3.7: Типы файлов

Создать файл может только суперпользователь, поэтому от его имени создаем файл touch.html со следующим содержанием:

```
<html>
<body>test</body>
</html>

(рис. 3.8).
```

Рис. 3.8: Создание файла

Проверяю контекст созданного файла. По умолчанию это httpd_sys_content_t (рис. 3.9).

```
[ivmurashov@ivmurashov ~]$ ls -lZ /var/www/html
total 4
-rw-r--r--. 1 root root unconfined_u:object_r:httpd_sys_content_t:s0 33 May 3 00:31 test.html
[ivmurashov@ivmurashov ~]$ []
```

Рис. 3.9: Контекст файла

Обращаюсь к файлу через веб-сервер, введя в браузере адрес http://127.0.0.1/test.html. Файл был успешно отображён (рис. 3.10).

Рис. 3.10: Отображение файла

Изучаю справку man httpd_selinux. Рассмотрим полученный контекст детально. Так как по умолчанию пользователи CentOS являются свободными от типа (unconfined в переводе с англ. означает свободный), созданному нами файлу test.html был сопоставлен SELinux, пользователь unconfined_u. Это первая часть контекста. Далее политика ролевого разделения доступа RBAC используется процессами, но не файлами, поэтому роли не имеют никакого значения для файлов. Роль object_r используется по умолчанию для файлов на «постоянных» носителях и на сетевых файловых системах. (В директории /ргос файлы, относящиеся к процессам, могут иметь роль system_r. Если активна политика MLS, то могут использоваться и другие роли, например, secadm_r. Данный случай мы рассматривать не будем, как и предназначение :s0). Тип httpd_sys_content_t позволяет процессу httpd получить доступ к файлу. Благодаря наличию последнего типа мы получили доступ к файлу при обращении к нему через браузер. (рис. 3.11).

```
ALTHO(6)

ALTHO(
```

Рис. 3.11: Изучение справки по команде

Изменяю контекст файла /var/www/html/test.html c httpd_sys_content_t на любой другой, к которому процесс httpd не должен иметь доступа, например, на samba_share_t: chcon -t samba_share_t /var/www/html/test.html ls -Z /var/www/html/test.html Контекст действительно поменялся (рис. 3.12).

```
[ivmurashov@ivmurashov ~]$ sudo chcon -t samba_share_t /var/www/html/test.html
[ivmurashov@ivmurashov ~]$ ls -lZ /var/www/html
total 4
-rw-r--r--. 1 root root unconfined_u:object_r:samba_share_t:s0 33 May 3 00:31 test.html
[ivmurashov@ivmurashov ~]$
```

Рис. 3.12: Изменение контекста

При попытке отображения файла в браузере получаем сообщение об ошибке (рис. 3.13).

Forbidden

You don't have permission to access this resource.

Рис. 3.13: Отображение файла

файл не был отображён, хотя права доступа позволяют читать этот файл любому пользователю, потому что установлен контекст, к которому процесс httpd не должен иметь доступа.

Просматриваю log-файлы веб-сервера Apache и системный лог-файл: tail /var/log/messages. Если в системе окажутся запущенными процессы setroubleshootd и audtd, то вы также сможете увидеть ошибки, аналогичные указанным выше, в файле /var/log/audit/audit.log. (рис. 3.14).

```
Communication with a life of the content of the con
```

Рис. 3.14: Попытка прочесть лог-файл

Чтобы запустить веб-сервер Apache на прослушивание TCP-порта 81 (а не 80, как рекомендует IANA и прописано в /etc/services) открываю файл /etc/httpd/httpd.conf для изменения. (рис. 3.15).

Рис. 3.15: Изменение файла

Нахожу строчку Listen 80 и заменяю её на Listen 81.

4 Выводы

В ходе выполнения данной лабораторной работы были развиты навыки администрирования ОС Linux, получено первое практическое знакомство с технологией SELinux и проверена работа SELinux на практике совместно с веб-сервером Apache.