PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21

Variable Output Low Power-Loss Voltage Regulators

■ Features

- Compact resin full-mold package
- Low power-loss (Dropout voltage : MAX.0.5V)
- Variable output voltage (setting range: 1.5 to 30V)
- Built-in output ON/OFF control function

■ Applications

- Power supply for print concentration control of electronic typewriters with display
- Series power supply for motor drives
- Series power supply for VCRs and TVs

■ Model Line-ups

Output voltage	1A output	2A output		
Reference voltage precision : ±4%	PQ30RV1	PQ30RV2		
Reference voltage precision : ±2%	PQ30RV11	PQ30RV21		

Outline Dimensions

(Unit: mm)

■ Equivalent Circuit Diagram

· Please refer to the chapter" Handling Precautions ".

SHARP

■ Absolute Maximum Ratings

 $(T_a=25^{\circ}C)$

Parameter		Symbol	Rating	Unit	
*1 Input voltage		Vin	35	V	
*1 Output voltage adjustment voltage		VADJ	7	V	
Output current	PQ30RV1/PQ30RV11	Io	1	_	
	PQ30RV2/PQ30RV21		2	7 A	
Power dissipation (No heat sink)		P _{D1}	1.5	W	
Power dissipation	PQ30RV1/PQ30RV11	P _{D2}	15	w	
(With infinite heat sink)	PQ30RV2/PQ30RV21	F D2	18		
*2 Junction temperature		Tj	150	.с	
Operating temperature		Topr	-20to+80	.c	
Storage temperature		Tstg	-40to+150	.с	
Soldering temperature		Tsol	260 (For 10s)	.с	

^{*1} All are open except GND and applicable terminals.

■ Electrical Characteristics

Unless otherwise specified, condition shall be

 $V_{IN}=15V$, $V_0=10V$, $I_0=0.5A$, $R_1=390\Omega$ (PQ30RV1/PQ30RV11)

 $V_{IN}=15V$, $V_{O}=10V$, $I_{O}=1.0A$, $R_{I}=390\Omega$ (PQ30RV2/PQ30RV21)

(Ta=25°C)

Par	rameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage		Vin	-		4.5	-	35	V
Output voltage	PQ30RV1/PQ30RV2	X 7	R ₂ =94Ω to 8.5k	Ω	1.5		20	v
Output voltage	PQ30RV11/PQ30RV21	V_0 $R_2=84\Omega$ to $8.7k\Omega$		Ω	1.5	-	30	v
I and manufation	PQ30RV1/PQ30RV11	ъ т	Io=5mA to 1A		-	0.3	1.0	%
Load regulation	regulation PQ30RV2/PQ30RV21 RegL Io=5mA to 2A			-	0.5	1.0	70	
Line regulation		RegI	V _{IN} =11 to 28V		-	0.5	2.5	%
Dimula malastian		RR	Cref=0	Fefer to Fig. 2	45	55	-	dB
Rippie rejection	Ripple rejection		Cref=3.3µF		55	65	-	
Dofonomoo woldooo	PQ30RV1/PQ30RV2	₹7			1.20	1.25	1.30	v
Reference voltage	PQ30RV11/PQ30RV21	V_{ref}		•		1.25	1.275	v
Temperature coeffic	cient of reference voltage	TcVref	T _j =0 to 125°C		-	±1.0	-	%
Dropout voltage	PQ30RV1/PQ30RV11	V _i -o	*3, Io=0.5A			-	0.5	v
	PQ30RV2/PQ30RV21		*3, Io=2A] -			
Quiescent current		I_q	Io=0		-	-	7	mA

^{*3} Input voltage shall be the value when output voltage is 95% in comparison with the initial value.

Fig.1 Test Circuit

$$V_0 = V_{ref} \times \left(1 + \frac{R_2}{R_1}\right) = 1.25 \times \left(1 + \frac{R_2}{R_1}\right)$$

 $\textbf{[R1=390}\Omega, \textbf{Vref=1.25V]}$

Fig.2 Test Circuit of Ripple Rejection

Io=0.5A f=120Hz (sine wave) ei=0.5Vrms RR=20 log (ei/eo)

^{*2} Overheat protection may operate at T_i>=125°C.

Fig.3 Power Dissipation vs. Ambient Temperature (PQ30RV1/PQ30RV11)

Note) Oblique line portion:Overheat protection may operate in this area.

Fig.5 Overcurrent Protection Characteristics (PQ30RV1/PQ30RV11)

Output current Io (A)
Fig.7 Output Voltage Adjustment
Characteristics

Fig.4 Power Dissipation vs. Ambient Temperature (PQ30RV2/PQ30RV21)

Ambient temperature Ta (*C)

Note) Oblique line portion:Overheat protection may operate in this area.

Fig.6 Overcurrent Protection Characteristics (PQ30RV2/PQ30RV21)

Fig.8 Reference Voltage Deviation vs.

Fig.9 Output Voltage vs. Input Voltage (PQ30RV1/PQ30RV11)

Fig.11 Dropout Voltage vs. Junction Temperature (PQ30RV1/PQ30RV11)

Fig.13 Quiescent Current vs. Junction Temperature

Fig.10 Output Voltage vs. Input Voltage (PQ30RV2/PQ30RV21)

Fig.12 Dropout Voltage vs. Junction Temperature (PQ30RV2/PQ30RV21)

Fig.14 Ripple Rejection vs. Input Ripple Frequency (PQ30RV1/PQ30RV11)

Fig.15 Ripple Rejection vs. Input Ripple Frequency (PQ30RV2/PQ30RV21)

Fig.17 Ripple Rejection vs. Output Current (PQ30RV2/PQ30RV21)

Fig.19 Output Peak Current vs. Dropout Voltage (PQ30RV2/PQ30RV21)

Fig.16 Ripple Rejection vs. Output Current (PQ30RV1/PQ30RV11)

Fig.18 Output Peak Current vs. Dropout Voltage (PQ30RV1/PQ30RV11)

Fig.20 Output Peak Current vs. Junction Temperature (PQ30RV1/PQ30RV11)

Fig.21 Output Peak Current vs. Junction Temperature (PQ30RV2/PQ30RV21)

■ Standard Connection

D1 : This device is necessary to protect the element from damage when reverse voltage may be applied to the regulator in case of input short-circuiting.

Cref : This device is necessary when it is required to enhance the ripple rejection or to delay the output start-up time(*1).

(*1)Otherwise, it is not necessary.

(Care must be taken since Cref may raise the gain, facilitating oscillation.)

(*1)The output start-up time is proportional to Cre fX R2.

CIN, Co: Be sure to mount the devices CIN and Co as close to the device terminal as possible so as to prevent oscillation.

The standard specification of C_{IN} and C_{O} is $0.33\mu F$ and $47\mu F$, respectively. However, ajust them as necessary after checking.

R₁, R₂: These devices are necessary to set the output voltage. The output voltage Vo is given by the following formula:

 $V_0 = V_{ref} X (1 + R_2/R_1)$

(V_{ref} is 1.25V TYP)

The standard value of R_1 is $390\Omega.But$ value up $10k\Omega does$ not cause any trouble.

■ ON/OFF Operation

- ullet ON/OFF operation is available by mounting externally D_2 and R_3 .
- When V_{ADJ} is forcibly raised above V_{ref} (1.25V TYP) by applying the external signal, the output is turned off (pass transistor of regulator is turned off). When the output is OFF, V_{ADJ} must be higher then V_{ref} MAX., and at the same time must be lower than maximum rating 7V.

In OFF-state, the load current flows to R_L from V_{ADJ} through R_2 . Therefore the value of R_2 must be as high as possible.

 \bullet Vo'=Vadj X RL/(RL+R2)

occurs at the load. OFF-state equivalent circuit R_1 up to 10Ω is allowed. Select as high value of R_L and R_2 as possible in this range. In some case, as output voltage is getting lower (Vo<1V), impedance of load resistance rises. In such condition, it is sometime impossible to obtain the minimum value of Vo'. So add the dummy resistance indicated by R_D in the figure to the circuit parallel to the load.

■ An Example of ON/OFF Circuit Using the 1-chip Microcomputer Output Port (PQ30RV1)

<Specification>

Output port of microcomputer

 $V_{OH}(max) = 0.5 \text{ V}$

 $V_{OH}(min) = 2.4 \text{ V (IoH} = 0.2 \text{ mA)}$

MAX. rating of IoH=0.5mA

Output should be set as follows.

15.6V RL= 52Ω (Io=0.3A)

From $V_0=1.25V$ (1+ R_2/R_1) we get $V_0=15.6V$.

 $R_2/R_1=11.48$

Assuming that $V_F(max)=0.8V$ for D_2 in case of $V_{OH}(min)=2.4V$, we get $V_{ADJ}=V_{OH}(min)-V_F(max)=2.4V-0.8V=1.6V$. From $V_{ref}(max)=1.3V$ we get $R_3=0$ Ω

If $R_1=10k\Omega$, we get $R_2=11.48 \times R_1=114.8k\Omega$ and IoH as follows, ingnoring R_L (52 Ω):

 $I_{OH}=1.6V \ X \ (R_1+R_2) \ /R_1 \ X \ R_2$

=1.6V X ($10k \Omega+114.8k \Omega$) / $10k \Omega$ X $114.8k \Omega=0.17mA$

Hence, IoH<0.2mA. Therefore VoH(min)is ensured.

Next, assuming that V_F(min) =0.5V for D₂ in case of V_{OH}(max), we get:

 $I_{OH}=(5V-0.5V)(R_1+R_2)/R_1 \times R_2=0.49$ mA which is less than the rating.

Figure 1 shows the Vo-Vc characteristics when $R_1=10k\Omega$, $R_2=115k\Omega$, $R_3=0\Omega$, $V_{IN}=17V$, $R_L=52\Omega$, and $D_1=1S2076A$ (Hitachi).

Output Voltage vs. Control Voltage (PQ30RV1)

■ Model Line-ups for Lead Forming Type

Output voltage	5V output	2A output		
Output voltage	PQ30RV1B	PQ30RV2B		
precision:±2.5%	FQJUNVID	F Q30K VZB		

■ Outline Dimensions (PQ30RV1B/PQ30RV2B)

(Unit: mm)

Note) The value of absolute maximum ratings and electrical characteristics is same as ones of PQ30RV1/2 series.