Sistemi Operativi: Prof.ssa A. Rescigno

Anno Acc. 2017-2018

II Prova in itinere – 13 Dicembre 2017 (teoria)

Università di Salerno

- 1. Codice comportamentale. Durante questo esame si deve lavorare da soli. Non si puó consultare materiale di nessun tipo. Non si puó chiedere o dare aiuto ad altri studenti.
- 2. **Istruzioni.** Rispondere alle domande. Per la brutta usare i fogli posti alla fine del plico (NON si possono usare fogli aggiuntivi); le risposte verranno corrette solo se inserite nello spazio ad esse riservate oppure viene indicata con chiarezza la posizione alternativa. Per essere accettata per la correzione la risposta deve essere ordinata e di facile lettura. TUTTE le risposte vanno GIUSTIFICATE. Ciascuna risposta non giustificata vale ZERO.

Nome	е	Cognome:	
Matr	ic	ola:	
Firma	1		

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	Tot	bonus
/35	/15	/50	/10

1.	$35 \ punti$
	In un sistema con paginazione, un processo mandato in esecuzione all'istante 100 genera
	nell'ordine (a partire dall'istante 100) i seguenti riferimenti ad indirizzi logici:
	0000000010110
	0001000000110
	00010001000110
	0000010000110
	01010000001110
	00110000100000
	0010000001000
	01010000010000
	10010000010010
	1010000010010
	10001000010010
	Sapendo che le pagine sono grandi 1Kb e che la memoria é costituita da 32 frame,
	a) individuare la struttura dell'indirizzo fisico;
	a) marviduare la soruttuara den marrizzo fisico,
	b) individuare la struttura dell'indirizzo logico;

c) determinare a quali pagine logiche si riferiscono i precedenti riferimenti;

d) supponendo che

– al processo vengono assegnati i primi 8 frame della memoria principale e che essi sono vuoti quando il processo viene mandato in esecuzione (all'istante 100), e che

– ogni accesso alla pagina 0 é in scrittura,

riportate nella tabella sottostante il contenuto della tabella delle pagine del processo all'istante 110 (cioé alla fine dell'emissione degli indirizzi logici mostrati nel punto a)) evidenziando per ciascuna pagina anche

- il valore del bit di validitá, del bit di riferimento e del bit di modifica,
- l'istante di caricamento,
- l'istante dell'ultimo riferimento.

# pagina	# frame	validità	riferimento	modifica	istante	ultimo istante
					caricamento	riferimento

e) S	Si consider	rino i due s	seguenti	accessi	a me	emoria	eseguiti	${\rm in}$	sequenza
istaı	nte 111 —	il process	o fa rife	rimento	alla	pagina	1;		
istar	nte 112 —	il process	o fa rife	rimento	alla	pagina	4.		

Si supponga che il sistema utilizzi l'algoritmo di sostituzione LRU.

e1) Descrivere che cosa succede negli istanti 111 e 112 e riportate le modifiche apportate alla tabella data al punto d) alla fine dell'istante 112.

# pagina	# frame	validità	riferimento	modifica	istante caricamento	ultimo istante riferimento

e2) Determinare il tempo di accesso effettivo della paginazione del processo a partire dall'istante 100 fino alla fine dell'istante 112, se:

- il tempo di servizio di un page fault senza salvataggio della pagina avvicendata di 80 millisecondi $(80*10^{-3} \text{ sec})$,
- $\bullet\,$ il tempo di servizio di un page fault con salvataggio della pagina avvicendata di 140 millisecondi (140 * 10^{-3} sec)
- il tempo di accesso alla memoria di 80 microsecondi $(80 * 10^{-6} \text{ sec})$.

2. 15 punti

Si considerino tre processi P_1 , P_2 e P_3 .

• Il processo P_1 ripete indefinitamente un ciclo in cui genera un numero x (con una chiamata ad una data funzione: x = genera();)

- Il processo P_2 ripete indefinitamente un ciclo in cui raddoppia il valore x generato dal processo P_1 , cioé produce y=2x.
- Il processo P_3 ripete indefinitamente un ciclo in cui triplica il valore generato da P_2 e lo stampa, cioé produce z=3y e lo stampa.

Scrivere lo pseudocodice che utilizzi i semafori per la sincronizzazione dei tre processi P_1 , P_2 e P_3 per l'utilizzo delle variabili comuni x, y, z.

3. (bonus) 10 punti

Si considerino i seguenti processi eseguiti correntemente sulla stessa CPU, con variabili condivise:

```
semaphore S, T, U;
int x=50;
```

```
Processo P_1
                                Processo P_2
                                                  Processo P_3
{
                                                  {
wait(S)
                                wait(T)
                                                  wait(U)
if (x=0) then signal(T)
                                                  x=x+1
                                x=x-1
        else signal(U)
                                                  signal(S)
                                signal(S)
wait(S)
write(x)
}
```

a) Giustificando la risposta, dire quale output si ottiene se i semafori sono inizializzati come segue: S=1 T=0 U=0

b) Per quali valori dei semafori S, T, U si puó incorrere in una race condition? Quale potrebbe essere la soluzione?