Unidade de Ensino de Matemática Aplicada e Análise Numérica

Departamento de Matemática/Instituto Superior Técnico

Trabalho de Matemática Computacional 1º Sem. 2016/17 PARTE I - entrega até 10 de Novembro

Notas prévias

O relatório da Parte 1 não deve ultrapassar as 10 páginas. Descrições dos programas podem ir em anexo. O relatório pode ser em Word ou no próprio notebook do Mathematica onde apresentam os programas. Na primeira página do relatório devem incluir a identificação de todos os membros do grupo (nomes, números e algum email).

Deve constar a resposta clara a cada pergunta (tipo: questão (i)—resolução,) devidamente justificada, preenchendo as tabelas requeridas, incluindo os resultados obtidos com os programas, e invocando resultados teóricos quando for adequado. Não se pedem demonstrações dos resultados teóricos que constam nas sebentas (ex. teorema do ponto fixo), mas devem apenas fazer-lhes referencia e mostrar como os aplicam ao problema em questão. Podem complementar as vossas respostas com gráficos.

Os códigos deve ser devidamente comentados e formatados para que a sua leitura seja clara. As linguagens de programação recomendadas são C, Mathematica, Matlab, Python.

1 Introdução

A motivação para o presente trabalho é um modelo matemático que simula a propagação de sinais no sistema nervoso, através de axónios mielinizados. Neste processo, a actividade eléctrica relevante ocorre nos chamados nódulos de Ranvier, que estão distribuídos ao longo do axónio. Representando por v(t) o potencial eléctrico, num certo nódulo, no instante t, a variação desse potencial ao longo do tempo satisfaz a seguinte equação:

$$RCv'(t) = f(v(t)) + v(t-\tau) + v(t+\tau) - 2v(t),$$
 (1)

onde R e C (constantes reais) representam a resistividade e a capacidade nodal, respectivamente, e f é uma função que reflecte a resposta voltagem-corrente e tem a forma

$$f(v) = b v(v - a)(1 - v), \tag{2}$$

onde b > 0 e 0 < a < 1/2 (valores que dependem das características do axónio). Estamos interessados numa solução v da equação (1), crescente em $[0, \infty[$, que satisfaz as condições

$$v(0) = 0.5, \lim_{t \to \infty} v(t) = 1.$$
 (3)

Refira-se que o valor τ (desvio do argumento), que é inversamente proporcional à velocidade de propagação do sinal, também é uma incógnita. Neste trabalho, sem tentar resolver directamente a equação (1) (o que exigiria conhecimentos para lá do programa da disciplina) vamos obter aproximações da solução v e do parâmetro τ , que nos dão uma ideia do seu comportamento, em termos qualitativos.

Para isso começamos por utilizar factos conhecidos sobre o comportamento assimptótico da solução. Em primeiro lugar, assumimos que, para $t \geq 2\tau$, a solução v(t) pode ser aproximada satisfatoriamente através da seguinte fórmula:

$$v(t) \approx w(t) = 1 - \epsilon e^{\lambda^{-} - (t - 2\tau)}.$$
(4)

Nesta fórmula, λ^- é a raiz negativa da equação

$$\lambda + 2 - f'(1) - 2\cosh(\lambda \tau) = 0.$$

Em (2), considere a = 0.1 e b = 15. Vem f'(1) = -13.5, pelo que a equação a resolver inicialmente é

$$\lambda + 15.5 - 2\cosh(\lambda \tau) = 0. \tag{5}$$

Resolução da equação (5)

Na primeira parte do trabalho, vamos tratar de resolver numericamente a equação característica (5), para diversos valores de τ .

- 1. Assumindo que $\tau > 0$, mostre que a equação (5) tem 2 raízes reais, das quais uma é positiva e uma é negativa. Indique, justificando, um intervalo que contenha a raiz negativa (qualquer que seja $\tau > 0$).
- 2. Considere a equação (5) com $\tau=0.8$ e sejam $z_1<0,\,z_2>0$ as suas raízes. Pretende-se aproximar essas raízes utilizando um método do ponto fixo da forma

$$\lambda_{m+1} = g(\lambda_m), m \ge 0, \tag{6}$$

com

$$g(\lambda) = \lambda + \alpha(\lambda + 15.5 - 2\cosh(\lambda\tau)) \tag{7}$$

e onde α é um parâmetro real.

- (a) Faça $\alpha = -1$ em (7) e mostre que a raiz positiva z_2 é um ponto fixo repulsor de g.
- (b) Prove, analiticamente, a convergência da sucessão (6) para a raiz negativa z_1 se começar com $\lambda_0 = -3$.
- (c) Em relação com a alínea anterior, construa um programa que, dada uma função g, uma aproximação inicial e um valor ϵ , permite obter aproximações para o ponto fixo de g, digamos z, usando a sucessão gerada por g. Utilize um critério de paragem de modo a garantir $|z-\lambda_N|<\epsilon$. Deve fazer sair as diferenças sucessivas, o valor N de iterações utilizadas e a aproximação final λ_N .
- (d) Corra o programa para a função (7), com $\alpha = -0.1$, $\lambda = -0.3$ e $\epsilon = 10^{-6}$, e preencha uma tabela como a seguinte:

Tabela 1				
n	λ_n	$ \lambda_{n+1} - \lambda_n $		
0	-3	-		
1				
2				
N-1				

- (e) Pretende-se determinar, experimentalmente, a ordem e o coeficiente assimptótico de convergência do método do ponto fixo considerado.
 - (i) Utilize o programa que construiu para preencher uma tabela como a indicada em baixo, onde $e_n = \lambda_n z_1$. No cálculo de e_n , utilize para o valor exato z_1 a aproximação final, λ_N , obtida em c). Em seguida, calcule os quocientes $\frac{|e_{n+1}|}{|e_n|^p}$, $n=0,1,\ldots N-2$, com os seguintes valores de p: p=1/2, p=1, p=2. Vai obter 3 sucessões e a ideia é ver qual parece ser o limite de cada uma, quando n aumenta. Conclua o que esses valores sugerem no que respeita à ordem e coeficiente assimptótico de convergência. Justifique.

Tabela 2				
n	$\frac{ e_{n+1} }{ e_n ^{1/2}}$	$\frac{ e_{n+1} }{ e_n }$	$\frac{ e_{n+1} }{ e_n ^2}$	
0				
1				
2				
N -2				

(ii) Confirme se os valores estimados para a ordem e factor assimptótico de convergência estão de acordo com os valores teóricos (ou seja, obtidos recorrendo à teoria).

- (f) Em vez de $\alpha = -0.1$ utilize agora o valor $\alpha = -0.02$ em (7) e corra de novo o programa construído, com a mesma precisão. Qual dos 2 métodos é mais rápido do ponto de vista da convergência? Dê uma justificação teórica.
- 3. Escreva um programa que implemente o método de Newton para resolver uma equação a uma incógnita. (Pode ter em conta que se trata dum caso particular do método do ponto fixo com função iteradora especial). O programa deve aceitar como parâmetros de entrada uma função, uma aproximação inicial e a tolerância de erro ϵ .
 - (a) Utilizando o programa referido na alínea anterior, calcule um valor aproximado, com erro absoluto inferior a 10^{-6} , da raiz positiva, z_2 , da equação (5) com $\tau = 0.8$. Escreva uma tabela como a Tabela 1. Qual o número, N, de iterações utilizadas?
 - (b) Justifique teoricamente a convergência do método utilizado, e determine a ordem de convergência recorrendo a resultados teóricos.
- 4. Finalmente, proponha um valor de α em (7) de modo a que o método do ponto fixo (6) seja convergente para a raiz z₂, com alguma aproximação inicial λ₀. Utilize o programa construído em 2. c), com ε = 10⁻⁶, para obter um valor aproximado para z₂. Em relação com o método de Newton, o número de iterações efetuadas foi maior ou menor?