Trajectory Optimization for Motion Planning

Pieter Abbeel
UC Berkeley EECS

Motion Planning

- Sampling-based methods (e.g., RRTs)
- Graph search methods (e.g., A*)
- Optimization-based methods
 - Reactive control
 - Potential-based methods (Khatib '86)
 - Optimize over entire trajectory
 - Elastic bands (Quinlan and Khatib '93)
 - CHOMP (Ratliff et al. '09) and variants (STOMP, ITOMP)

Trajectory Optimization

$$\min_{\theta_{1:T}} \sum_{t} \|\theta_{t+1} - \theta_t\|^2 + \text{other costs}$$

subject to θ_0 = start state, θ_T in goal set joint limits

for all robot parts, for all obstacles:
no collision —> non-convex

Solution method: sequential convex optimization

Collision Constraints

$$sd_{AB}(\theta) \approx \hat{n} \cdot (p_B - p_A(\theta))$$
$$\approx sd_{AB}(\theta_0) - \hat{n}^{\top} J_{P_A}(\theta_0)(\theta - \theta_0)$$

[SD from: Gilbert-Johnson-Keerthi (GJK) algorithm and Expanding Polytope Algorithm (EPA)]

Penalty for Collision Constraints

$$sd_{AB}(\theta) \approx \hat{n} \cdot (p_B - p_A(\theta))$$
$$\approx sd_{AB}(\theta_0) - \hat{n}^{\top} J_{P_A}(\theta_0)(\theta - \theta_0)$$

Collision Constraint as L1 Penalty

Collision Constraint as L1 Penalty

Continuous-Time Safety

Collision check against swept-out volume

- Allows coarsely sampling trajectory
 - Overall faster
- Finds better local optima

Collision-free Path for Dubin's Car

Experiments: Industrial Box Picking

Experiments: DRC Robot

Benchmark

7 DOF (one arm) 198 problems

18 DOF (two arms + base + torso) 96 problems

example scene (taken from Movelt collection)

example scene (imported from Trimble 3d Warehouse / Google Sketchup)

Benchmark Results

Arm planning (7 DOF) 10s limit				
	Trajopt	BiRRT (*)	CHOMP	
success	99%	97%	85%	
time (s)	0.32	1.2	6.0	
path length	1.2	1.6	2.6	

Full body (18 DOF) 30s limit				
	Trajopt	BiRRT (*)	CHOMP (**)	
success	84%	53%	N/A	
time (s)	7.6	18	N/A	
path length	1.1	1.6	N/A	

^(*) Top-performing algorithm from Movelt/OMPL

[RSS 2013]

^(**) Not supported in available implementation

Experiments: PR2

Medical Application 1: Needle Steering

Resulting paths: (i) shorter, (ii) less twist (i.e., less tissue carved up), (iii) found more quickly—replanning!

[ICRA 2014]

Medical Application 2: Channel Planning

[ICRA 2014]

Try It Yourself

Code and docs: rll.berkeley.edu/trajopt

Benchmark: github.com/joschu/planning_benchmark

