SISTEMAS DE ARCHIVOS

1 de febrero

Campanita

Antecedentes

- Todo es una secuencia o 'stream' de bytes
- Los primeros dispositivos no reconocían archivos, solo almacenaban conjuntos de datos:
 - Analógicos: discos de vinilo, cintas de casette
 - En el nivel más bajo, los dispositivos digitales también almacenan solamente bytes

¿Que és un archivo?

- Abstracción o TAD que el SO propone para un conjunto de bytes en un dispositivo.
- El SO expone funciones al usuario para poder manipular el contenido de un archivo (o sea, los bytes asociados) sin preocuparse de cómo se guardan éstos en el dispositivo.

¿Que és un archivo?

- Abstracción o TAD que el SO propone para un conjunto de bytes en un dispositivo.
- El SO expone funciones genéricas al usuario para poder manipular el contenido de un archivo (o sea, los bytes asociados) sin preocuparse de cómo se guardan éstos en el dispositivo:

Operaciones sobre archivos

• El SO expone funciones genéricas al usuario para poder manipular el contenido de un archivo (o sea, los bytes asociados) sin preocuparse de cómo se guardan éstos en el dispositivo:

Operaciones sobre archivos

- Crear (create)
- Borrar (delete)
- Abrir (open)
- Cerrar (close)
- Leer (read)
- Escribir (write, flush)
- Reposicionar (seek)

Modos de apertura

Un archivo puede abrirse en distintos modos, lo que permite un conjunto distinto de operaciones sobre el mismo

- r: para lectura, si no existe, falla
- w: para escriura, si no existe, falla
- a: para añadido, si no existe, se crea
- r+: para lectura/escritura, si no existe, falla
- w+: para lectura/escritura. si no existe, se crea
- a+: para añadido, si no existe, se crea

Archivos de texto y binarios

- Los "archivos de texto" son archivos binarios que solo contienen un subconjunto de bytes, los que representan caracteres imprimibles
- Tradicionalmente, el conjunto de caracteres imprimibles ASCII
 - Ahora, con la adopción de Unicode, cualquier caracter Unicode válido que no sea un caracter de control
 - Aunque depende del contexto.

Formato de archivo (I)

- Los datos dentro de un archivo pueden estar ordenados de mil formas distintas, y corresponde a quien los crea decidir el orden de los datos en un archivo.
 - El formato de un tipo de archivo específico puede estar reglamentado por un estándar o especificación

Formato de archivo (II)

- Existen formatos libres y privativos
- Existen formatos cuya especificación es libre y otros cuya especificación no lo es
- Existen formatos documentados, documentados a medias, y no documentados
- Generalmente, los formatos libres están bien documentados

Formato de archivo (III)

- ¿Cómo determinar el tipo de un archivo?
 - Extensiones de archivo
 - Implementados originalmente por CP/M
 - Y, por consiguiente, MS/DOS y Windows
 - Metadatos asociados a un archivo
 - Mac OS y typecodes
 - Números mágicos
 - Forma seguida por los sistemas Unix
- Hay qué tener cuidado al hacer esto.

Sistema de archivos (I)

- Los sistemas de archivos organizan archivos
- Algunos sistemas de archivos buscan redundancia, mayor rapidez, tolerancia a fallos, protección por cifrado.
- Permiten guardar diversos datos sobre los archivos: "metadatos":
 - Nombre, permisos, fechas (de acceso, de modificación), si son de alguna categoría especial
- Ruta de archivo: existente para prácticamente cualquier SO

Sistema de archivos (II)

- FAT
 - o FAT16
 - o FAT32
 - o exFAT
- NTFS
- ext*
 - o ext2
 - ext3
 - o ext4

- HFS
 - O HFS+
- UFS
- ZFS
- btrfs
- cdfs
 - UDF (ISO 9600)

Sistema de archivos (III)

- En general, la abstracción del sistema de archivos se parece a un archivero de oficina en la vida real
- La nomenclatura puede variar un poco, dependiendo del enfoque y del tipo de usuario final: directorios en Unix vs carpetas en Windows

Sistema de archivos virtual (I)

- La idea de sistema de archivos tiene más usos, y puede ser usada para exponer datos que no necesariamente están en un soporte.
- Los sistemas de archivos que funcionaban sobre datos en un soporte se categorizan ahora como 'sistemas de archivos de disco'
 - O Sistemas de archivos de red: sshfs, nfs, ftp
 - Sistemas de archivos de propósito especial: tmpfs, swap, lufs, devfs, sysfs

Sistema de archivos virtual (II)

• Ejemplos:

- Las rutas de una URL tienen forma de ruta de archivo, pero no necesariamente tienen qué ser archivos, por eso siempre hablamos de *recursos*
- o Filosofía Unix: todo es un archivo
- Archivos especiales: pipas, dispositivos,
- FUSE: crea tu propio sistema de archivos

Más temas

- Jerarquia como grafos
- Ligaduras
 - Duras
 - Simbólicas
 - Accesos directos
- Descriptores de archivo
- Buffers

Montar imagen

```
# mount -t ext4 -o ro,loop
/tmp/imagen5.img /mnt/tmp/
```

PERMISOS UNIX

Propiedad

- Todos los archivos y directorios en un sistema Unix pertenecen a un usuario y grupo en específico.
- Solo el propietario de un archivo, y el usuario root pueden cambiar estos permisos.
- Esto es parte del estándar POSIX.

```
2 Debian-exim
                                adm
                                                4.0K feb 1 06:52 exim4
drwxr-s---
                                                   0 ene 9 11:47 faillog
           1 root
                                root
                                                6.1K ene 28 14:39 fontconfig.log
-rw-r--r-- 1 root
                                root
                                                4.0K ene 9 12:13 installer
drwxr-xr-x 3 root
                                root
drwxr-sr-x+ 3 root
                                systemd-journal 4.0K ene 9 12:14 journal
                                                   0 ene 9 11:47 lastlog
                                utmp
- rw-rw-r--
             1 root
```

chown, chgrp

Dos comandos nos permitirán modificar el usuario y grupo dueño de un archivo: **chown** y **chgrp**.

comando [-RL|-h] usuario|grupo objetivo

- Parámetros específicos:
 - -R aplica recursivamente
 - -L atraviesa enlaces simbólicos a directorios
 - -h aplica la acción sobre el enlace simbólico, en vez de sobre el objeto apuntado

Permisos

Todos los archivos y directorios en un sistema Unix tienen 3 tipos de permisos básicos, que indican qué usuarios pueden operar con ellos, y cómo:

Permiso	Archivos	Directorios
Lectura (r)	Leer el archivo	Listar archivos dentro del directorio (ls)
Escritura (w)	Escribir sobre el archivo	Modificar entradas del directorio: crear remombrar y borrar archivos
Ejecución (x)	Ejecutar el archivo	Moverte al directorio (cd), o buscar dentro del directorio

setuid y setgid

Existe forma de otorgar ciertos permisos 'elevados' a un usuario común cuando ejecuta un programa.

- **Sobre ejecutables**: otorga al usuario los permisos del dueño del ejecutable (*setuid*), o del grupo (*setgid*).
- **Sobre directorios**: *setuid* es ignorado, *setgid* obliga a que todos los archivos dentro del directorio tengan el mismo grupo dueño.

sticky

- Dos permisos diferentes, en realidad:
 - Sobre ejecutables: hace que un ejecutable se quede residente en memoria principal.
 - Sobre directorios: evita que un usuario modifique detalles sobre archivos que no posee.
- El uso sobre ejecutables ya no se implementa en casi ningún sistema Unix
 - Sí en UnixWare y HP-UX

chmod

El comando para modificar permisos en archivos es chmod.

chmod permisos objetivo

- Parámetros específicos:
 - -R aplica recursivamente
 - -L atraviesa enlaces simbólicos a directorios
- chmod no cambia permisos de enlaces simbólicos, puesto que éstos nunca se ocupan en el sistema

Notación

Para representar los permisos que un archivo tiene asociados, tenemos dos notaciones:

- Numérica o absoluta: un número octal de tres dígitos, un dígito por agente
- **Simbólica**: una cadena de letras, donde cada letra especifica un permiso. Además, incluye otros datos.

Notación numérica

Operaciones con chmod (I)

Establecer permisos base con chmod es sencillo, ejemplos:

chmod 644 archivo.txt

Establecer los bits setuid, setgid y sticky se hace anteponiendo un dígito octal que establece los tres permisos en el orden descrito:

chmod 1644 archivo.txt

Notación simbólica (I)

Tipo de inodo

- Regular (-)
- Directorio (d)
- Enlace simbólico (l)
- FIFO (p)

- De bloque (b)
- De caracter (c)
- Socket (s)

Notación simbólica (II)

- En la posición para indicar el permiso ejecutable, pueden haber otros caracteres, que depende de si los bits especiales están activos:
 - Si setuid o setgid están activos: s o S, dependiendo de si el archivo es o no ejecutable
 - Si sticky está activo, t o T, dependiendo de si el archivo es o no ejecutable
- Pueden aparecer estos símbolos al final:
 - + si existen permisos adicionales
 - si existe un contexto SELinux
 - @ si existen atributos de archivos extendidos

Operaciones con chmod (II)

Añadir permisos:

tipos+permisos

Quitar permisos:

tipos-permisos

Establecer permisos:

tipos=permisos

Ejercicios

- chmod a+r myfile
- chmod +r myfile
- chmod go-rw myfile
- chmod a-w+x myfile
- chmod go=r myfile
- chmod o-w mydir
- chmod o-w
- chmod -R o+x mydir
- chmod u-x,g+wx,o=x myfile

- chmod 751 myfile
- chmod 744 myfile

- -rwxr-xr-x
- crw-rw-r--
- dr-x----
- -rwsr-Sr-t

Problemas entre sistemas

- No todos los sistemas implementan POSIX:
 - FAT solo tiene un conjunto de permisos para un solo tipo de usuario
 - NTFS (y Windows) implementa un sistema completamente diferente y más complejo con ACLs:
 - HFS y HFS+ no implementan permisos
- Algunos solo implementan un subconjunto básico:
 - Linux implementa experimentalmente permisos NFS
 - macOS también, desde la versión 10.4 Tiger (¡pero recomiendan no usarlo!)
- Otros, lo implementan con variaciones:
 - OpenVMS implementa 4 grupos (sistema, usuario, grupo, otros)

iGRACIAS!

https://mothereff.in/utf-8