Comparative Analysis of Machine Learning Algorithms for Breast Cancer Detection

In []:

```
# import libraries
```

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the breast cancer dataset ¶

In [2]:

```
from sklearn.datasets import load_breast_cancer
cancer_dataset = load_breast_cancer()
```

In [3]:

cancer dataset

Out[3]:

```
{'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
        1.189e-01],
       [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
        8.902e-02],
       [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
        8.758e-02],
       [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
       [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
        1.240e-01],
       [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
        7.039e-02]]),
 1, 1, 1,
       0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
       1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
       1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
       1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
       0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
       1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
       0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
       1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
       1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
       0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
       0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
       1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1,
       1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
       1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
       1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
       1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
 'frame': None,
 'target_names': array(['malignant', 'benign'], dtype='<U9'),</pre>
 'DESCR': '.. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnosti
c) dataset\n-----\n\n**Data Set Chara
cteristics:**\n\n
                   :Number of Instances: 569\n\n
                                                 :Number of Attributes:
30 numeric, predictive attributes and the class\n\n
                                                   :Attribute Informatio
           - radius (mean of distances from center to points on the perimet
n:\n
            - texture (standard deviation of gray-scale values)\n
er)\n
                  - area\n
                                 - smoothness (local variation in radius 1
perimeter\n
engths)\n
                - compactness (perimeter^2 / area - 1.0)\n
                                                               - concavi
ty (severity of concave portions of the contour)\n
                                                      - concave points
(number of concave portions of the contour)\n
                                                 - symmetry\n
ractal dimension ("coastline approximation" - 1)\n\n
                                                       The mean, standa
rd error, and "worst" or largest (mean of the three\n
                                                         worst/largest v
alues) of these features were computed for each image,\n
                                                            resulting in
```

```
30 features. For instance, field 0 is Mean Radius, field\n
ius SE, field 20 is Worst Radius.\n\n
                                           - class:\n
                                                                     - WDB
C-Malignant\n
                            - WDBC-Benign\n\n
                                                :Summary Statistics:\n\n
Min
      Max\n
               texture (mean):
ius (mean):
                                 6.981 28.11\n
9.71
      39.28\n
                 perimeter (mean):
                                                      43.79 188.5\n
                                                                       ar
ea (mean):
                                         2501.0\n
                                                     smoothness (mean):
                                  143.5
0.053 0.163\n
                 compactness (mean):
                                                      0.019 0.345\n
ncavity (mean):
                                                    concave points (mean):
                                  0.0
                                         0.427\n
      0.201\n
                 symmetry (mean):
                                                      0.106 0.304\n
0.0
actal dimension (mean):
                                  0.05
                                         0.097\n
                                                    radius (standard erro
                0.112 2.873\n
                                 texture (standard error):
r):
              perimeter (standard error):
                                                   0.757 21.98\n
   4.885\n
                                                                    area
(standard error):
                                6.802 542.2\n
                                                 smoothness (standard erro
                              compactness (standard error):
            0.002 0.031\n
                                                                  0.002
0.135\n
          concavity (standard error):
                                               0.0
                                                      0.396\n
                                                                concave p
oints (standard error):
                            0.0
                                  0.053\n
                                             symmetry (standard error):
0.008 0.079\n
                 fractal dimension (standard error):
                                                      0.001 0.03\n
ius (worst):
                                 7.93
                                        36.04\n
                                                   texture (worst):
12.02 49.54\n
                 perimeter (worst):
                                                      50.41 251.2\n
ea (worst):
                                  185.2 4254.0\n
                                                     smoothness (worst):
0.071 0.223\n
                 compactness (worst):
                                                      0.027 1.058\n
ncavity (worst):
                                         1.252\n
                                                    concave points (wors
                                  symmetry (worst):
t):
                 0.0
                        0.291\n
156 0.664\n
               fractal dimension (worst):
                                                    0.055 0.208\n
:Missing Attribute Va
                 :Class Distribution: 212 - Malignant, 357 - Benign\n\n
lues: None\n\n
:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n\n
:Donor: Nick Street\n\n
                          :Date: November, 1995\n\nThis is a copy of UCI ML
Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFea
tures are computed from a digitized image of a fine needle\naspirate (FNA) o
f a breast mass. They describe\ncharacteristics of the cell nuclei present
in the image.\n\nSeparating plane described above was obtained using\nMultis
urface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree\nConstruction Via
Linear Programming." Proceedings of the 4th\nMidwest Artificial Intelligence
and Cognitive Science Society,\npp. 97-101, 1992], a classification method w
hich uses linear\nprogramming to construct a decision tree. Relevant featur
es\nwere selected using an exhaustive search in the space of 1-4\nfeatures a
nd 1-3 separating planes.\n\nThe actual linear program used to obtain the se
parating plane\nin the 3-dimensional space is that described in:\n[K. P. Ben
nett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Tw
o Linearly Inseparable Sets", \nOptimization Methods and Software 1, 1992, 23
-34].\n\nThis database is also available through the UW CS ftp server:\n\nft
p ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n.. topi
                   - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nucle
c:: References\n\n
ar feature extraction \n
                           for breast tumor diagnosis. IS&T/SPIE 1993 Inte
                            Electronic Imaging: Science and Technology, vo
rnational Symposium on \n
lume 1905, pages 861-870,\n
                              San Jose, CA, 1993.\n
                                                    - O.L. Mangasarian,
W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n
                                                              prognosis v
ia linear programming. Operations Research, 43(4), pages 570-577, \n
y-August 1995.\n
                 - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machin
e learning techniques\n
                           to diagnose breast cancer from fine-needle aspir
ates. Cancer Letters 77 (1994) \n
                                    163-171.',
 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'm
ean area',
        'mean smoothness', 'mean compactness', 'mean concavity',
        'mean concave points', 'mean symmetry', 'mean fractal dimension',
        'radius error', 'texture error', 'perimeter error', 'area error',
        'smoothness error', 'compactness error', 'concavity error',
        'concave points error', 'symmetry error',
```

```
'fractal dimension error', 'worst radius', 'worst texture',
    'worst perimeter', 'worst area', 'worst smoothness',
    'worst compactness', 'worst concavity', 'worst concave points',
    'worst symmetry', 'worst fractal dimension'], dtype='<U23'),
    'filename': 'C:\\Users\\sharm\\anaconda3\\lib\\site-packages\\sklearn\\data
sets\\data\\breast_cancer.csv'}
```

In [4]:

```
type(cancer_dataset)
```

Out[4]:

sklearn.utils.Bunch

Keys in the dataset

```
In [6]:
```

```
cancer_dataset.keys()
Out[6]:
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_name
s', 'filename'])
```

feature of each cells in numeric format

```
In [7]:
```

```
cancer_dataset['data']
Out[7]:
```

```
array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01, 1.189e-01],
[2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01, 8.902e-02],
[1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01, 8.758e-02],
...,
[1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01, 7.820e-02],
[2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01, 1.240e-01],
[7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01, 7.039e-02]])
```

In [8]:

```
type(cancer_dataset['data'])
```

Out[8]:

numpy.ndarray

malignant or benign value

```
In [9]:
cancer_dataset['target']
Out[9]:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 1, 0, 0, 0, 0,
      0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1,
                                                   1, 0, 1,
      1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
      1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
      1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0,
      0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
        1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
        0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
        0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1,
                                           0, 0, 0,
        1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
        1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0,
                        1,
                              1, 1, 0, 1, 1, 0, 1,
        1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
        1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
      0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1,
      1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
        1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,
      1, 0, 1, 1, 0, 1, 0, 1,
                           1, 0, 1,
                                   0, 1, 1, 1, 1, 1,
                                                   1,
        1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
        1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
      1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])
```

target value name malignant or benign tumor

```
In [10]:
cancer_dataset['target_names']
Out[10]:
array(['malignant', 'benign'], dtype='<U9')</pre>
```

description of the data

In [11]:

```
cancer_dataset['DESCR']
```

Out[11]:

```
'.. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnostic) dataset
s:**\n\n
          :Number of Instances: 569\n\n
                                          :Number of Attributes: 30 numer
ic, predictive attributes and the class\n\n
                                            :Attribute Information:\n
- radius (mean of distances from center to points on the perimeter)\n

    texture (standard deviation of gray-scale values)\n

                                                         perimeter\n
              - smoothness (local variation in radius lengths)\n
compactness (perimeter^2 / area - 1.0)\n
                                             - concavity (severity of con
cave portions of the contour)\n
                                    - concave points (number of concave p
ortions of the contour)\n
                              symmetry\n
                                                 - fractal dimension ("c
oastline approximation" - 1)\n\n
                                     The mean, standard error, and "wors
t" or largest (mean of the three\n
                                       worst/largest values) of these fea
tures were computed for each image,\n
                                          resulting in 30 features. For
instance, field 0 is Mean Radius, field\n →
                                              10 is Radius SE, field 20 i
s Worst Radius.\n\n
                         - class:\n
                                                  - WDBC-Malignant\n
                   :Summary Statistics:\n\n
- WDBC-Benign\n\n
                                              ______
Min
Max\n
        radius (me
an):
                          6.981 28.11\n
                                           texture (mean):
9.71
      39.28\n
                perimeter (mean):
                                                    43.79 188.5\n
                                                   smoothness (mean):
ea (mean):
                                  143.5
                                        2501.0\n
0.053 0.163\n
                compactness (mean):
                                                    0.019 0.345\n
ncavity (mean):
                                  0.0
                                        0.427\n
                                                   concave points (mean):
      0.201\n
                symmetry (mean):
                                                    0.106 0.304\n
actal dimension (mean):
                                  0.05
                                        0.097\n
                                                  radius (standard erro
                                texture (standard error):
r):
                0.112 2.873\n
   4.885\n
              perimeter (standard error):
                                                  0.757 21.98\n
                                                                   area
(standard error):
                               6.802 542.2\n
                                                smoothness (standard erro
r):
            0.002 0.031\n
                             compactness (standard error):
                                                                 0.002
0.135\n
          concavity (standard error):
                                              0.0
                                                    0.396\n
                                                               concave p
oints (standard error):
                           0.0
                                 0.053\n
                                            symmetry (standard error):
0.008 0.079\n
                fractal dimension (standard error):
                                                    0.001 0.03\n
ius (worst):
                                 7.93
                                       36.04\n
                                                  texture (worst):
12.02 49.54\n
                                                    50.41 251.2\n
                 perimeter (worst):
                                                                      ar
                                  185.2 4254.0\n
ea (worst):
                                                    smoothness (worst):
0.071 0.223\n
                 compactness (worst):
                                                     0.027 1.058\n
ncavity (worst):
                                        1.252\n
                                                   concave points (wors
                       0.291\n
t):
                 0.0
                                  symmetry (worst):
                                                                     0.
156 0.664\n
               fractal dimension (worst):
                                                  0.055 0.208\n
                                                                    ====
:Missing Attribute Va
                 :Class Distribution: 212 - Malignant, 357 - Benign\n\n
lues: None\n\n
:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n\n
:Donor: Nick Street\n\n
                         :Date: November, 1995\n\nThis is a copy of UCI ML
Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFea
tures are computed from a digitized image of a fine needle\naspirate (FNA) o
f a breast mass. They describe\ncharacteristics of the cell nuclei present
in the image.\n\nSeparating plane described above was obtained using\nMultis
urface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree\nConstruction Via
Linear Programming." Proceedings of the 4th\nMidwest Artificial Intelligence
and Cognitive Science Society,\npp. 97-101, 1992], a classification method w
hich uses linear\nprogramming to construct a decision tree. Relevant featur
es\nwere selected using an exhaustive search in the space of 1-4\nfeatures a
nd 1-3 separating planes.\n\nThe actual linear program used to obtain the se
parating plane\nin the 3-dimensional space is that described in:\n[K. P. Ben
nett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Tw
```

o Linearly Inseparable Sets", \nOptimization Methods and Software 1, 1992, 23 -34].\n\nThis database is also available through the UW CS ftp server:\n\nft p ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n.. topi - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nucle c:: References\n\n ar feature extraction \n for breast tumor diagnosis. IS&T/SPIE 1993 Inte rnational Symposium on \n Electronic Imaging: Science and Technology, vo lume 1905, pages 861-870,\n San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n ia linear programming. Operations Research, 43(4), pages 570-577, \n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machin y-August 1995.\n e learning techniques\n to diagnose breast cancer from fine-needle aspir ates. Cancer Letters 77 (1994) \n 163-171.'

name of features

location/path of data file

```
In [13]:
cancer_dataset['filename']
Out[13]:
'C:\\Users\\sharm\\anaconda3\\lib\\site-packages\\sklearn\\datasets\\data\\b
```

create dataframe

reast cancer.csv'

dataframe to CSV file

```
In [17]:
```

```
cancer_df.to_csv('breast_cancer_dataframe.csv')
```

Head of cancer Dataframe

In [18]:

cd = cancer_df.head(6)

In [19]:

 cd

Out[19]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mear symmetry
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809
5	12.45	15.70	82.57	477.1	0.12780	0.17000	0.1578	0.08089	0.2087

6 rows × 31 columns

Tail of Cancer Dataframe

In [20]:

cancer_df.tail(6)

Out[20]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	me symme
563	20.92	25.09	143.00	1347.0	0.10990	0.22360	0.31740	0.14740	0.2
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.17
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.17
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.23
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1

6 rows × 31 columns

Information of Cancer Dataframe

In [21]:

```
cancer_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

)ata #	Columns (total 31 columns	s): Non-Null Count	Dtype
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64
30	target	569 non-null	float64

dtypes: float64(31)
memory usage: 137.9 KB

Numeric Distribution of data

In [22]:

cancer_df.describe()

Out[22]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800

8 rows × 31 columns

In [23]:

```
cancer_df.isnull().sum()
```

Out[23]:

mean radius	0
mean texture	0
mean perimeter	0
mean area	0
mean smoothness	0
mean compactness	0
mean concavity	0
mean concave points	0
mean symmetry	0
mean fractal dimension	0
radius error	0
texture error	0
perimeter error	0
area error	0
smoothness error	0
compactness error	0
concavity error	0
concave points error	0
symmetry error	0
fractal dimension error	0
worst radius	0
worst texture	0
worst perimeter	0
worst area	0
worst smoothness	0
worst compactness	0
worst concavity	0
worst concave points	0
worst symmetry	0
worst fractal dimension	0
target	0
dtype: int64	

Count the target class

In [27]:

```
print(sns.countplot(cancer_df['target']))
```

AxesSubplot(0.125,0.125;0.775x0.755)

C:\Users\sharm\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Counter Plot of feature mean radius

```
In [28]:
```

```
plt.figure(figsize = (20,8))
```

Out[28]:

<Figure size 1440x576 with 0 Axes>

<Figure size 1440x576 with 0 Axes>

In [29]:

```
print(sns.countplot(cancer_df['mean radius']))
```

C:\Users\sharm\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

AxesSubplot(0.125,0.125;0.775x0.755)

Heatmap of the Dataframe

```
In [30]:
```

```
plt.figure(figsize = (16,9))
```

Out[30]:

<Figure size 1152x648 with 0 Axes>

<Figure size 1152x648 with 0 Axes>

In [31]:

```
print(sns.heatmap(cancer_df))
```

AxesSubplot(0.125,0.125;0.62x0.755)

Heatmap of a corelation matrix

```
In [32]:
```

```
plt.figure(figsize = (20,20))
```

Out[32]:

<Figure size 1440x1440 with 0 Axes>

<Figure size 1440x1440 with 0 Axes>

```
In [37]:
```

```
print(sns.heatmap(cancer_df.corr(), annot = True, cmap = 'coolwarm', linewidths = 2))
```

AxesSubplot(0.125,0.125;0.62x0.755)

Correlation Barplot

create second DataFrame by droping target

Taking the correlation of each feature with the target and the visualize barplot

```
In [38]:
```

```
cancer_df2 = cancer_df.drop(['target'], axis = 1)
print("The shape of 'cancer_df2' is : ", cancer_df2.shape)
```

The shape of 'cancer_df2' is: (569, 30)

visualize correlation barplot

In [39]:

```
plt.figure(figsize = (16,5))
ax = sns.barplot(cancer_df2.corrwith(cancer_df.target).index, cancer_df2.corrwith(cancer_df
ax.tick_params(labelrotation = 90)
```

C:\Users\sharm\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future Warning: Pass the following variables as keyword args: x, y. From version 0. 12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Input Variable

```
In [40]:
```

```
X = cancer_df.drop(['target'], axis = 1)
print(X.head(6))
   mean radius
                 mean texture mean perimeter
                                                 mean area
                                                             mean smoothness
0
         17.99
                        10.38
                                                    1001.0
                                        122.80
                                                                      0.11840
1
         20.57
                        17.77
                                        132.90
                                                    1326.0
                                                                      0.08474
2
         19.69
                        21.25
                                        130.00
                                                    1203.0
                                                                      0.10960
3
         11.42
                        20.38
                                         77.58
                                                     386.1
                                                                      0.14250
4
         20.29
                        14.34
                                                    1297.0
                                                                      0.10030
                                        135.10
5
         12.45
                        15.70
                                         82.57
                                                     477.1
                                                                      0.12780
   mean compactness mean concavity mean concave points
                                                              mean symmetry
0
            0.27760
                               0.3001
                                                    0.14710
                                                                      0.2419
1
            0.07864
                               0.0869
                                                    0.07017
                                                                      0.1812
2
            0.15990
                               0.1974
                                                    0.12790
                                                                      0.2069
3
            0.28390
                               0.2414
                                                    0.10520
                                                                      0.2597
4
             0.13280
                               0.1980
                                                    0.10430
                                                                      0.1809
5
             0.17000
                               0.1578
                                                    0.08089
                                                                      0.2087
   mean fractal dimension
                                  worst radius worst texture worst perimeter
\
0
                   0.07871
                                         25.38
                                                          17.33
                                                                           184.60
1
                   0.05667
                                         24.99
                                                          23.41
                                                                           158.80
2
                   0.05999
                                         23.57
                                                          25.53
                                                                           152.50
3
                   0.09744
                                         14.91
                                                          26.50
                                                                            98.87
4
                   0.05883
                                         22.54
                                                          16.67
                                                                           152.20
5
                   0.07613
                                         15.47
                                                          23.75
                                                                           103.40
   worst area worst smoothness
                                  worst compactness
                                                       worst concavity
0
       2019.0
                          0.1622
                                               0.6656
                                                                 0.7119
1
       1956.0
                          0.1238
                                               0.1866
                                                                 0.2416
2
                                                                 0.4504
       1709.0
                          0.1444
                                               0.4245
3
        567.7
                          0.2098
                                               0.8663
                                                                 0.6869
4
       1575.0
                          0.1374
                                               0.2050
                                                                 0.4000
5
        741.6
                          0.1791
                                               0.5249
                                                                 0.5355
   worst concave points
                          worst symmetry
                                           worst fractal dimension
0
                  0.2654
                                   0.4601
                                                             0.11890
1
                  0.1860
                                   0.2750
                                                             0.08902
2
                  0.2430
                                   0.3613
                                                             0.08758
3
                  0.2575
                                   0.6638
                                                             0.17300
4
                                   0.2364
                                                             0.07678
                  0.1625
                  0.1741
                                   0.3985
                                                             0.12440
[6 rows x 30 columns]
```

output variable

```
In [41]:
```

```
y = cancer_df['target']
print(y.head(6))

0     0.0
1     0.0
2     0.0
3     0.0
4     0.0
5     0.0
Name: target, dtype: float64
```

split dataset into train and test

```
In [42]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state= 5)
```

Feature scaling

```
In [43]:
```

```
from sklearn.preprocessing import StandardScaler
```

```
In [44]:
```

```
sc = StandardScaler()
X_train_sc = sc.fit_transform(X_train)
X_test_sc = sc.transform(X_test)
```

In [45]:

from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

In [47]:

Support vector classifier 0.9649122807017544 0.9649122807017544

In [48]:

```
print("Logistic Regression")
from sklearn.linear_model import LogisticRegression
lr_classifier = LogisticRegression(random_state = 51, penalty = '12')
lr_classifier.fit(X_train, y_train)
y_pred_lr = lr_classifier.predict(X_test)
print(accuracy_score(y_test, y_pred_lr))

# Train with Standard scaled Data
lr_classifier2 = LogisticRegression(random_state = 51, penalty = '12')
lr_classifier2.fit(X_train_sc, y_train)
y_pred_lr_sc = lr_classifier.predict(X_test_sc)
print(accuracy_score(y_test, y_pred_lr_sc))

print("\n")
```

Logistic Regression 0.9649122807017544 0.631578947368421

```
C:\Users\sharm\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
y:762: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)
    n_iter_i = _check_optimize_result(
```

In [49]:

```
print("K - Nearest Neighbor Classifier")
from sklearn.neighbors import KNeighborsClassifier
knn_classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
knn_classifier.fit(X_train, y_train)
y_pred_knn = knn_classifier.predict(X_test)
print(accuracy_score(y_test, y_pred_knn))

# Train with Standard scaled Data
knn_classifier2 = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
knn_classifier2.fit(X_train_sc, y_train)
y_pred_knn_sc = knn_classifier.predict(X_test_sc)
print(accuracy_score(y_test, y_pred_knn_sc))

print("\n")
```

In [50]:

```
print("Naive Bayes Classifier")
from sklearn.naive_bayes import GaussianNB
nb_classifier = GaussianNB()
nb_classifier.fit(X_train, y_train)
y_pred_nb = nb_classifier.predict(X_test)
print(accuracy_score(y_test, y_pred_nb))

# Train with Standard scaled Data
nb_classifier2 = GaussianNB()
nb_classifier2.fit(X_train_sc, y_train)
y_pred_nb_sc = nb_classifier2.predict(X_test_sc)
print(accuracy_score(y_test, y_pred_nb_sc))

print("\n")
```

Naive Bayes Classifier 0.9298245614035088 0.9122807017543859

In [51]:

```
print("Decision Tree Classifier")
from sklearn.tree import DecisionTreeClassifier
dt_classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 51)
dt_classifier.fit(X_train, y_train)
y_pred_dt = dt_classifier.predict(X_test)
print(accuracy_score(y_test, y_pred_dt))

# Train with Standard scaled Data
dt_classifier2 = DecisionTreeClassifier(criterion = 'entropy', random_state = 51)
dt_classifier2.fit(X_train_sc, y_train)
y_pred_dt_sc = dt_classifier.predict(X_test_sc)
print(accuracy_score(y_test, y_pred_dt_sc))

print("\n")
```

Decision Tree Classifier 0.9649122807017544 0.7894736842105263

In [52]:

```
print("Random Forest Classifier")
from sklearn.ensemble import RandomForestClassifier
rf_classifier = RandomForestClassifier(n_estimators = 20, criterion = 'entropy', random_sta
rf_classifier.fit(X_train, y_train)
y_pred_rf = rf_classifier.predict(X_test)
print(accuracy_score(y_test, y_pred_rf))

# Train with Standard scaled Data
rf_classifier2 = RandomForestClassifier(n_estimators = 20, criterion = 'entropy', random_st
rf_classifier2.fit(X_train_sc, y_train)
y_pred_rf_sc = rf_classifier.predict(X_test_sc)
print(accuracy_score(y_test, y_pred_rf_sc))
print("\n")
```

Random Forest Classifier 0.9824561403508771 0.8070175438596491

In [53]:

```
# XGBoost Classifier
print("XGB Classifier")
import xgboost as xgb
from xgboost import XGBClassifier
xgb_classifier = XGBClassifier()
xgb_classifier.fit(X_train, y_train, )
y_pred_xgb = xgb_classifier.predict(X_test)
print(accuracy_score(y_test, y_pred_xgb))

# Train with Standard scaled Data
xgb_classifier2 = XGBClassifier()
xgb_classifier2.fit(X_train_sc, y_train)
y_pred_xgb_sc = xgb_classifier2.predict(X_test_sc)
print(accuracy_score(y_test, y_pred_xgb_sc))
```

XGB Classifier

C:\Users\sharm\anaconda3\lib\site-packages\xgboost\sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label_encoder_deprecation_msg, UserWarning)

[14:43:24] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

0.9824561403508771

[14:43:24] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

0.9824561403508771

Confusion Matrix

In [54]:

```
cm = confusion_matrix(y_test, y_pred_xgb)
plt.title('Heatmap of Confusion Matrix', fontsize = 15)
sns.heatmap(cm, annot = True)
plt.show()

print("\n")
```


In [55]:

```
print("Support Vector Machine");
print(classification_report(y_test, y_pred_svc_sc))
print("\n")
```

Support Vect	or Machine			
	precision	recall	f1-score	support
	•			
0.0	0.95	0.95	0.95	19
1.0	0.97	0.97	0.97	38
accuracy			0.96	57
macro avg	0.96	0.96	0.96	57
weighted avg	0.96	0.96	0.96	57

In [56]:

```
print("Logistic Regression")
print(classification_report(y_test, y_pred_lr_sc))
print("\n")
```

```
Logistic Regression
               precision
                             recall f1-score
                                                 support
         0.0
                    0.45
                               0.47
                                          0.46
                                                       19
         1.0
                    0.73
                               0.71
                                          0.72
                                                       38
                                          0.63
                                                       57
    accuracy
                               0.59
                                          0.59
                                                       57
   macro avg
                    0.59
weighted avg
                                          0.63
                                                       57
```

0.63

0.64

In [57]:

```
print("KNN- Classifier")
print(classification_report(y_test, y_pred_knn_sc))
print("\n")
```

KNN- Classifier

support	f1-score	recall	precision	
19	0.00	0.00	0.00	0.0
38	0.80	1.00	0.67	1.0
57	0.67			accuracy
57	0.40	0.50	0.33	macro avg
57	0.53	0.67	0.44	weighted avg

C:\Users\sharm\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1221: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` para meter to control this behavior.

warn prf(average, modifier, msg start, len(result))

In [58]:

```
print("Decision Tree")
print(classification_report(y_test, y_pred_dt_sc))
print("\n")
```

Decision	Tree				
		precision	recall	f1-score	support
	0.0	0.89	0.42	0.57	19
	1.0	0.77	0.97	0.86	38
	1.0	0.77	0.57	0.00	36
accur	racy			0.79	57
macro	avg	0.83	0.70	0.72	57
weighted	avg	0.81	0.79	0.76	57

In [59]:

```
print("Random Forest")
print(classification_report(y_test, y_pred_rf_sc))
print("\n")
```

Random For	est				
		precision	recall	f1-score	support
0	0.0	1.00	0.42	0.59	19
1	.0	0.78	1.00	0.87	38
accura	су			0.81	57
macro a	ıvg	0.89	0.71	0.73	57
weighted a	ıvg	0.85	0.81	0.78	57

In [60]:

```
print("XGboost Classifier")
print(classification_report(y_test, y_pred_xgb_sc))
print("\n")
```

XGboost Cla	assi	lfier			
		precision	recall	f1-score	support
0.	.0	1.00	0.95	0.97	19
1.	.0	0.97	1.00	0.99	38
accurac	су			0.98	57
macro av	vg	0.99	0.97	0.98	57
weighted av	vg	0.98	0.98	0.98	57

Cross validation

In [61]:

```
from sklearn.model_selection import cross_val_score
cross_validation = cross_val_score(estimator = xgb_classifier, X = X_train_sc,y = y_train,
print("Cross validation accuracy of XGBoost model = ", cross_validation)
print("\nCross validation mean accuracy of XGBoost model = ", cross_validation.mean())
```

C:\Users\sharm\anaconda3\lib\site-packages\xgboost\sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].

warnings.warn(label encoder deprecation msg, UserWarning)

[14:46:08] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:08] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:08] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:08] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

[14:46:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behav ior.

[14:46:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_

1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

Cross validation accuracy of XGBoost model = [0.98076923 0.96153846 0.98039 216 0.98039216 0.94117647 0.94117647

0.98039216 1. 1. 0.8627451]

Cross validation mean accuracy of XGBoost model = 0.9628582202111614

In []:			