Soluzioni prova scritta

Ingegneria Informatica 22/07/2024

Esercizio 1

Il primo quesito consiste in 2 domande a risposta aperta da un punto ciascuna. Per i quesiti 2, 3 e 4 ci si deve esprimere sulla **correttezza o falsità di 6 affermazioni**. Si ottengono 0, 1 e 2 punti in base al numero di risposte corrette, errori o risposte in bianco, secondo lo schema:

$$\begin{array}{c} 6 \; \mathrm{corrette} \to 2 \; \mathrm{punti} \\ 5 \; \mathrm{corrette} + 1 \; \mathrm{errore} \to 1 \; \mathrm{punto} \\ 5 \; \mathrm{corrette} + 1 \; \mathrm{bianca} \to 1 \; \mathrm{punto} \\ 4 \; \mathrm{corrette} + 2 \; \mathrm{bianche} \to 1 \; \mathrm{punto} \\ \mathrm{Tutti} \; \mathrm{gli} \; \mathrm{altri} \; \mathrm{casi} \to 0 \; \mathrm{punti} \end{array}$$

1. 2 Puntil Si scriva il codice Matlab/Octave di una funzione quadrature che prende in ingresso una function handle f e i due estremi di un intervallo reale a e b e restituisce le approssimazioni di $\int_a^b f(x)dx$ calcolate con la formula dei trapezi e di Simpson.

```
function [trap, simp] = quadrature(f, a, b)

trap = (f(a) + f(b)) * (b - a) / 2;

c = (a + b) / 2;

simp = (f(a) + 4 * f(c) + f(b)) * (b - a) / 6;

end
```

- 2. 2 Punti Si supponga di lavorare con l'insieme dei numeri floating point, ovvero rappresentati nel formato in virgola mobile, in precisione doppia e si indichi con RN il metodo di arrotondamento round-to-nearest. Inoltre si denotino con a, b, c numeri floating point e con $u = 2^{-52}$ la precisione di macchina.
- $V \ F \ RN(1+u) = 1+u.$
- V \mathbf{F} RN(10+u) 10 = u.
- V F $RN(a-b) = (a-b)(1+\epsilon)$ con $|\epsilon| \le u$.
- V F $RN(a \cdot b) = (a \cdot b)(1 + \epsilon) \operatorname{con} |\epsilon| \le u.$
- $\boxed{\mathbf{V}} \boxed{\mathbf{F}} RN(RN(a+b)+c) = RN(a+RN(b+c)).$
- N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi 2, 3 e 4.

- V F (RN(a) + RN(b)) + c = a + (RN(b) + RN(c)).
- 3. Punti Sia f(x) = 0 un'equazione non lineare con radice α , e sia $\{x_n\}_{n \in \mathbb{N}}$ una successione convergente ad α con ordine p generata da un metodo iterativo.
- V F Se p > 1 allora $\lim_{n \to \infty} \frac{|x_{n+1} \alpha|}{|x_n \alpha|} = 0$.
- V F Se p > 1 allora $\lim_{n \to \infty} \frac{|x_{n+1} \alpha|}{|x_n \alpha|^p} \in (0, \infty)$.
- V F Se p > 1 allora $\lim_{n \to \infty} \frac{|x_{n+1} \alpha|}{|x_n \alpha|^{p+1}} = \infty$.
- V Se p = 1 allora $\lim_{n \to \infty} \frac{|x_{n+1} \alpha|}{|x_n \alpha|} \in (1, \infty)$.
- V F Se $x_{n+1} = \varphi(x_n) \ \forall n \in \mathbb{N} \ e \ \varphi \in \mathcal{C}^{\infty}(\mathbb{R})$ allora p può essere un numero non intero.
- $\overline{\mathbf{V}}$ F Se $x_{n+1} = \varphi(x_n) \ \forall n \in \mathbb{N} \ e \ \varphi \in \mathcal{C}^{\infty}(\mathbb{R})$ allora p è sicuramente un numero intero.
- 4. Punti Sia $A \in \mathbb{C}^{n \times n}$, con $n \geq 3$, la matrice tridiagonale con entrate sulle diagonali costanti:

$$A = \begin{bmatrix} 1 + \mathbf{i} & \frac{3}{4} & & & \\ -\frac{3}{4}\mathbf{i} & 1 + \mathbf{i} & \frac{3}{4} & & & \\ & \ddots & \ddots & \ddots & \\ & & -\frac{3}{4}\mathbf{i} & 1 + \mathbf{i} & \frac{3}{4} \\ & & & -\frac{3}{4}\mathbf{i} & 1 + \mathbf{i} \end{bmatrix}.$$

- V F A è una matrice hermitiana.
- V F A è una matrice riducibile.
- $\boxed{\mathbf{V}} \mathbf{F} ||A||_{\infty} = \frac{3}{4} + \mathbf{i}.$
- \overline{V} \overline{F} Il raggio spettrale di A è uno degli autovalori di A.
- V F A è a predominanza diagonale forte.
- \overline{V} F Se $\lambda \in \mathbb{C}$ è autovalore di A allora necessariamente $\overline{\lambda}$ è autovalore di A.

Esercizio 2

Siano

$$A = \begin{bmatrix} 1.01 & 1 \\ -1 & -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 2 \\ 1 \end{bmatrix},$$

e si indichi con $x \in \mathbb{R}^2$ la soluzione di Ax = b e con $x + \delta x$ la soluzione del problema perturbato

$$(A + \delta A)(x + \delta x) = b + \delta b,$$

dove $\delta A \in \mathbb{R}^{2 \times 2}$ e $\delta b \in \mathbb{R}^2$ sono una matrice e un vettore di perturbazione.

(i) 3 Punti Nel caso

$$\delta A = \begin{bmatrix} 0.004 & 0 \\ 0 & 0 \end{bmatrix}, \qquad \delta b = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

si determini l'errore relativo **rispetto alla norma infinito**: $\frac{||\delta x||_{\infty}}{||x||_{\infty}}$.

(ii) 2 Punti Nel caso

$$\delta A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad ||\delta b||_{\infty} = 10^{-5}$$

si determini una maggiorazione per $\frac{||\delta x||_{\infty}}{||x||_{\infty}}$ (non è necessario semplificare l'espressione fino alla fine, purchè contenga solo quantità numeriche).

(iii) 3 Punti Nel caso

$$||\delta A||_{\infty} = 10^{-5}, \qquad ||\delta b||_{\infty} = 10^{-5}$$

si determini una maggiorazione per $\frac{||\delta x||_{\infty}}{||x||_{\infty}}$ (non è necessario semplificare l'espressione fino alla fine, purchè contenga solo quantità numeriche).

(i) $\frac{||\delta x||_{\infty}}{||x||_{\infty}} = \frac{\frac{600}{7}}{301} = \frac{600}{2107}$.

(ii)
$$\frac{||\delta x||_{\infty}}{||x||_{\infty}} \le \underbrace{(2.01)^2 \cdot 100}_{\mu_{\infty}(A)} \cdot \frac{10^{-5}}{2} = \frac{201^2}{2 \cdot 10^7}.$$

(iii)
$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \le \underbrace{\frac{(2.01)^2 \cdot 100}{1 - (2.01)^2 \cdot 100 \cdot \frac{10^{-5}}{2.01}}}_{\frac{\mu_{\infty}(A)}{1 - \mu_{\infty}(A)} \frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}}} \cdot 10^{-5} (\frac{1}{2} + \frac{1}{2.01}).$$

Esercizio 3

Sia

$$f(x) = \sin(\pi x) + a \cdot \cos(\pi x)$$

con a un parametro reale.

- (i) 4 Punti Calcolare il polinomio d'interpolazione $p_a(x)$ della funzione f(x) rispetto ai nodi $x_0=-1, x_1=0$ e $x_2=0.5$.
- (ii) 2 Punti Si dica per quale a nell'intervallo [3, 9], il valore di $p_a(-0.5) f(-0.5)$ è minimo.
- (iii) 2 Punti Si dica per quale valore di $a \in \mathbb{R}$, $p_a(x)$ interpola f(x) nel punto $x_3 = -0.5$.
 - (i) $p_a(x) = \frac{4-8a}{3}x^2 + \frac{4-2a}{3}x + a$.
- (ii) Il valore minimo si ottiene per a=3.
- (iii) a = -1.

Esercizio 4

Si consideri l'approssimazione di $\int_{-1}^{1} f(x)dx$ mediante la formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{2}\right) + a_1 f\left(\frac{2}{3}\right).$$

- (i) 4 Punti Si determinio i pesi a_0 ed a_1 affinchè la formula $J_1(f)$ sia una formula di quadratura interpolatoria e si determini il grado di precisione della formula ottenuta.
- (ii) 4 Punti Si calcoli il nucleo di Peano G(t) della formula trovata al punto (i).
- (i) Prendendo $a_0 = \frac{8}{7}, \, a_1 = \frac{6}{7}$ si ottiene grado di precisione 2.

$$G(t) = \begin{cases} \frac{(1-t)^3}{3} - \frac{8}{7}(-\frac{1}{2} - t)^2 - \frac{6}{7}(\frac{2}{3} - t)^2 & t \in [-1, -\frac{1}{2}]\\ \frac{(1-t)^3}{3} - \frac{6}{7}(\frac{2}{3} - t)^2 & t \in [-\frac{1}{2}, \frac{2}{3}]\\ \frac{(1-t)^3}{3} & t \in [\frac{2}{3}, 1] \end{cases}$$