Лабораторная работа №8

«Помехоустойчивое кодирование. Коды БЧХ»

Цель работы: научиться строить порождающий многочлен кода БЧХ с заданной корректирующей способностью.

1

Условие: Рассмотреть поле $GF(2^4)$; положить m = 4.

Решение:

Пусть q = 2, m = 4, тогда рассматривается поле $GF(q^m) = GF(2^4)$, значит требуемая длина кода будет равна: $n = 2^m - 1 = 2^4 - 1 = 15$

2

Условие: Разложить на неприводимые множители многочлен $x^{15} + 1$.

Решение:

$$x^{15} + 1 = (x^4 + x^3 + 1) * (x^4 + x + 1) * (x^4 + x^3 + x^2 + x + 1) * (x^2 + x + 1) * (x + 1)$$

3

Условие: Выбрать в качестве примитивного многочлена многочлен $x^4 + x + 1$. Убедиться в том, что его корень α – примитивный элемент поля $GF(2^4)$

Решение:

Выбираем многочлен x^4+x+1 в качестве примитивного. Убедимся, что α – примитивный элемент поля $GF(2^4)$: $\alpha^4+\alpha+1=\alpha+1+\alpha+1=0$

4

Условие: Выбрать t = 2 и рассмотреть элементы α , α^{2} , α^{3} , α^{4} .

Решение:

$$\alpha_3 \chi^3 + \alpha_2 \chi^2 + \alpha_1 \chi + \alpha_0$$

Вычислим подряд все степени х:

$$x^{0} = 1$$

 $x^{1} = x$
 $x^{2} = x^{2}$
 $x^{3} = x^{3}$
 $x^{4} = x + 1$
 $x^{5} = x^{4}x = x^{2} + x$
 $x^{6} = x^{5}x = x^{3} + x^{2}$
 $x^{7} = x^{6}x = x^{4} + x^{3} = x + 1 + x^{3}$
 $x^{8} = x^{7}x = x^{2} + x + x^{4} = x^{2} + x + x + 1 = x^{2} + 1$
 $x^{9} = x^{8}x = x^{3} + x$
 $x^{10} = x^{9}x = x^{4} + x^{2} = x + 1 + x^{2}$
 $x^{11} = x^{10}x = x^{3} + x^{2} + x$
 $x^{12} = x^{11}x = x^{4} + x^{3} + x^{2} = x + 1 + x^{3} + x^{2}$
 $x^{13} = x^{12}x = x^{2} + x + x^{4} + x^{3} = x^{2} + x + x + 1 + x^{3} = x^{2} + 1 + x^{3}$
 $x^{14} = x^{13}x = x^{3} + x + x^{4} = x^{3} + x + x + 1 = x^{3} + 1$
 $x^{15} = x^{14}x = x^{4} + x = x + 1 + x = 1$
 $x^{16} = x^{15}x = x$

Запишем в виде таблицы:

x ^o	1
x ¹	x
x ²	x ²
X ³	x ³
x ⁴	x + 1
x ⁵	x ² + x
x ⁶	$x^{3} + x^{2}$
x ⁷	$x^3 + x + 1$
x ⁸	x ² + 1
x ⁹	x ³ + x
x ¹⁰	$x^2 + x + 1$
x ¹¹	$x^3 + x^2 + x$
x ¹²	$x^3 + x^2 + x + 1$
X ¹³	$x^3 + x^2 + 1$
X ¹⁴	x ³ + 1
X ¹⁵	1
X ¹⁶	x

Все элементы – это корни многочлена $x^{15} + 1$

5

Условие: Найти в разложении $x^{15}+1$ минимальные многочлены $f_j(x)$ такие, что $f_j(a^j)=0$ для j=1,2,3,4.

Решение:

$$x^{15} + 1 = (x^4 + x^3 + 1) * (x^4 + x + 1) * (x^4 + x^3 + x^2 + x + 1) * (x^2 + x + 1) * (x + 1)$$

Выбираем минимальные многочлены:

$$\begin{split} & f_1(x) = x^4 + x + 1 = x + 1 + x + 1 = 0 \\ & f_1(x^2) = (x^2)^4 + x^2 + 1 = x^2 + 1 + x^2 + 1 = 0 \\ & f_1(x^4) = (x^4)^4 + x^4 + 1 = x + x + 1 + 1 = 0 \\ & f_1(x^8) = (x^8)^4 + x^8 + 1 = 0 \end{split}$$

Первый минимальный найден:

$$f_1(x) = x^4 + x + 1$$

Найдём теперь многочлен, для которого x^3 является корнем:

$$f_2(x) = x^4 + x^3 + x^2 + x + 1$$

$$f_2(x^3) = (x^3)^4 + (x^3)^3 + (x^3)^2 + x^3 + 1 = x^3 + x^2 + x + 1 + x^3 + x + x^3 + x^2 + x^3 + 1 = 0$$

Корни $f_1(x)$: x, x^{2} , x^{4} , x^{8}

Корни $f_2(x)$: x^{3} , x^{6} , x^{12}

6

Условие: Положить $g(x) = HOK\{f_1(x), f_2(x), f_3(x), f_4(x)\};$ определить его степень г.

Решение:

Так как эти многочлены не имеют общих корней, то они не имеют и общих множителей при разложении. Следовательно, их НОК равен их произведению:

$$g(x) = (x^4 + x + 1) * (x^4 + x^3 + x^2 + x + 1) = x^8 + x^7 + x^6 + x^4 + 1$$

 $n = 15;$ $n - k = 8;$ $k = 7$

Условие: Взять произвольное ненулевое информационное слово длиной k. Получить кодовое слово длины n по формуле циклического кодирования.

Решение:

$$\begin{split} I &= 1001001 \\ I(x) &= x^6 + x^3 + 1 \\ C(x) &= I(x) * x^r + R_{g(x)}(I(x) * x^r) = (x^6 + x^3 + 1) * x^8 + x^5 + x^2 = x^{14} + x^{11} + x^8 + x^5 + x^2 \\ C &= 100100100100100 \end{split}$$

8

Условие: Внести в кодовое слово одну произвольную ошибку. Вычислить синдром. Локализовать ошибку и исправить её. Получить информационное слово. Убедиться в идентичности полученного информационного и изначального слов.

Решение:

Совершаем ошибку в восьмом бите: V = 100100110100100 Вычисляем синдром:

$$S(V(x)) = R_{g(x)}(V(x)) = R_{x^8 + x^7 + x^6 + x^4 + 1}(x^{14} + x^{11} + x^8 + x^7 + x^5 + x^2) = x^7$$

Для определения места ошибки составим таблицу соответствия многочленов ошибки и синдромов:

Многочлен ошибки	Синдром
1	1
x ¹	x
x ²	x ²
x ³	x ³
x ⁴	x ⁴
x ⁵	x ⁵
x ⁶	x ⁶
x ⁷	x ⁷
x ⁸	$x^7 + x^6 + x^4 + 1$
x ⁹	$x^6 + x^5 + x^4 + x + 1$

X ¹⁰	$x^7 + x^6 + x^5 + x^2 + x$
x ¹¹	$x^4 + x^3 + x^2 + 1$
X ¹²	$x^5 + x^4 + x^3 + x$
X ¹³	$x^6 + x^5 + x^4 + x^2$
x ¹⁴	$x^7 + x^6 + x^5 + x^3$

По таблице видно, что нашему синдрому соответствует x^7 , следовательно ошибка совершена в бите, соответствующему x^7 – в восьмом.

Исправим ошибку:

$$C(x) = V(x) + e(x) = x^{14} + x^{11} + x^8 + x^7 + x^5 + x^2 + x^7 = x^{14} + x^{11} + x^8 + x^5 + x^2$$
 $C = 100100100100100$
 $I(x) = x^6 + x^3 + 1$
 $I = 1001001$

9

Условие: Создать подпрограмму для реализации алгоритма помехоустойчивого циклического кодирования для кода БЧХ. На вход подпрограмме передаётся информационное слово. Подпрограмма возвращает кодовое слово.

10

Условие: Создать подпрограмму для декодирования кодового слова с учётом возможных ошибок. На вход подпрограмме передаётся кодовое слово. Подпрограмма вычисляет синдром, и при наличии ошибок исправляет его. Далее подпрограмма выделяет информационные биты и возвращает информационное слово.

11

Условие: Создать программу, демонстрирующую работу подпрограмм. Программа позволяет пользователю ввести информационное слово. Далее вызывается первая подпрограмма, и слово кодируется, затем заносятся или не заносятся случайная ошибка. Следом программа вызывает вторую подпрограмму и декодирует кодовое слово, исправляя ошибку. Результат каждого этапа выводится на экран.