

LOWER BOUNDS FOR EXPRESSIONS OF LARGE SIEVE TYPE

JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. We show that the large sieve is optimal for almost all exponential sums.

Keywords: Large sieve, random series

MSC-Index: 11N35, 30B20

Let $a_n, 1 \leq n \leq N$ be complex numbers, and set $S(\alpha) = \sum_{n \leq N} a_n e(n\alpha)$, where $e(\alpha) = \exp(2\pi i\alpha)$. Large Sieve inequalities aim at bounding the number of places where this sum can be extraordinarily large, the basic one being the bound

$$\sum_{q \leq Q} \sum_{\substack{1 \leq a \leq q \\ (a,q)=1}} \left| S\left(\frac{a}{q}\right) \right|^2 \leq (N + Q^2) \sum_{n \leq N} |a_n|^2$$

(see e.g. [3] for variations and applications). P. Erdős and A. Rényi [1] considered lower bounds of the same type, in particular they showed that the bound

$$(1) \quad \sum_{q \leq Q} \sum_{(a,q)=1} \left| S\left(\frac{a}{q}\right) \right|^2 \ll N \sum_{n \leq N} |a_n|^2,$$

valid for $Q \ll \sqrt{N}$, is wrong for almost all choices of coefficients $a_n \in \{1, -1\}$, provided that $Q > C\sqrt{N} \log N$, and that the standard probabilistic argument fails to decide whether (1) is true in the range $\sqrt{N} < Q < \sqrt{N} \log N$. In this note, we show that (1) indeed fails throughout this range.

Theorem 1. *Let $S(\alpha)$ be as above. Then*

$$(2) \quad \sum_{q \leq Q} \sum_{(a,q)=1} \left| S\left(\frac{a}{q}\right) \right|^2 \geq \varepsilon Q^2 \sum_{n \leq N} |a_n|^2$$

holds true with probability tending to 1 provided ε tends to 0, and Q^2/N tends to infinity.

Our approach differs from [1] in so far as we first prove an unconditional lower bound, which involves an awkward expression, and show then that almost always this expression is small. We show the following.

Lemma 1. *Let $S(\alpha)$ be as above, and define*

$$M(x) = \sup_{\mathfrak{m}} \frac{\int_1^x |S(u)|^2 du}{\int_0^1 |S(u)|^2 du},$$

where \mathfrak{m} ranges over all measurable subsets of $[0, 1]$ of measure x . Then for any real parameter $A > 1$ we have the estimate

$$(3) \quad \sum_{q \leq Q} \sum_{(a,q)=1} \left| S\left(\frac{a}{q}\right) \right|^2 \geq \left(\frac{Q^2}{A} \left(1 - M\left(\frac{1}{A}\right) \right) - 6\pi NA \right) \sum_{n \leq N} |a_n|^2.$$

Proof. Our proof adapts Gallagher's proof of an upper bound large sieve [2]. For every $f \in C^1([0, 1])$, we have

$$f(1/2) = \int_0^1 f(u) du + \int_0^{1/2} uf'(u) du - \int_{1/2}^1 (1-u)f'(u) du.$$

Putting $f(u) = |S(u)|^2$, and using the linear substitution $u \mapsto (\alpha - \delta/2) + \delta u$, we obtain for every $\delta > 0$ and any $\alpha \in [0, 1]$

$$\begin{aligned} |S(\alpha)|^2 &= \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)|^2 du + \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha} (\delta/2 - |u - \alpha|) (S'(u)S(-u) - S(u)S'(-u)) du \\ &\quad - \frac{1}{\delta} \int_{\alpha}^{\alpha+\delta/2} (\delta/2 - |u - \alpha|) (S'(u)S(-u) - S(u)S'(-u)) du. \end{aligned}$$

We have $|S(u)| = |S(-u)|$ and $|S'(-u)| = |S'(u)|$, thus $|S'(u)S(-u) - S(u)S'(-u)| \leq 2|S(u)S'(u)|$, and we obtain

$$\begin{aligned} |S(\alpha)|^2 &\geq \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)|^2 du - \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} 2\left(\frac{1}{2} - \frac{|u - \alpha|}{\delta}\right) |S(u)S'(u)| du. \\ &\geq \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)|^2 du - \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)S'(u)| du. \end{aligned}$$

We now set $\delta = A/Q^2$. We can safely assume that $\delta < \frac{1}{2}$, since our claim would be trivial otherwise. Summing over all fractions $\alpha = \frac{a}{q}$ with $q \leq Q$, $(a, q) = 1$, we get

$$(4) \quad \sum_{q \leq Q} \sum_{(a,q)=1} \left| S\left(\frac{a}{q}\right) \right|^2 \geq \frac{Q^2}{A} \int_0^1 |S(u)|^2 du - \frac{Q^2}{A} \int_{m(Q,A)}^1 |S(u)|^2 du - \int_0^1 R(u) |S(u)S'(u)| du,$$

where

$$R(u) = \# \left\{ a, q : (a, q) = 1, q \leq Q, \left| u - \frac{a}{q} \right| \leq \frac{A}{Q^2} \right\},$$

and

$$m(Q, A) = \{u \in [0, 1] : R(u) = 0\}.$$

To bound $R(u)$, let $\frac{a_1}{q_1} < \frac{a_2}{q_2} < \dots < \frac{a_k}{q_k}$ be the list of all fractions with $q_i \leq Q$, $\left|u - \frac{a_i}{q_i}\right| \leq \frac{A}{Q^2}$. We have for $i \neq j$ the bound

$$\left| \frac{a_i}{q_i} - \frac{a_j}{q_j} \right| \geq \frac{1}{q_i q_j} \geq \frac{1}{Q^2},$$

that is, the fractions $\frac{a_1}{q_1}, \dots, \frac{a_k}{q_k}$ form a set of points with distance $> \frac{1}{Q^2}$ in an interval of length $\frac{2A}{Q^2}$. There can be at most $2A + 1$ such points, hence, $R(u) \leq 3A$.

Next, we bound $|m(Q, A)|$. By Dirichlet's theorem, we have that for each real number $\alpha \in [0, 1]$ there exists some $q \leq Q$ and some a , such that $|\alpha - \frac{a}{q}| \leq \frac{1}{qQ}$. If $\alpha \in m(Q, A)$, we must have $\frac{1}{qQ} > \frac{A}{Q^2}$, that is, $q < Q/A$. Hence, we obtain

$$\begin{aligned} |m(Q, A)| &\leq \left| \bigcup_{q < Q/A} \bigcup_{(a,q)=1} \left[\frac{a}{q} - \frac{1}{qQ}, \frac{a}{q} + \frac{1}{qQ} \right] \setminus \left[\frac{a}{q} - \frac{A}{Q^2}, \frac{a}{q} + \frac{A}{Q^2} \right] \right| \\ &\leq \sum_{q < Q/A} \frac{\varphi(q)(2Q - 2Aq)}{qQ^2} \leq \frac{1}{Q^2} \int_0^{Q/A} 2Q - 2At \, dt = \frac{1}{A}. \end{aligned}$$

We can now estimate the right hand side of (4). The first summand is $\frac{Q^2}{A} \sum_{n \leq N} |a_n|^2$, while the second is by definition at most $\frac{Q^2}{A} M(1/A)$. For the third we apply the Cauchy-Schwarz-inequality to obtain

$$\begin{aligned} \left(\int_0^1 |S(u)S'(u)| \, du \right)^2 &\leq \left(\int_0^1 |S(u)|^2 \, du \right) \left(\int_0^1 |S'(u)|^2 \, du \right) \\ &= \left(\sum_{n \leq N} |a_n|^2 \right) \left(\sum_{n \leq N} (2\pi n)^2 |a_n|^2 \right) \\ &\leq (2\pi N)^2 \left(\sum_{n \leq N} |a_n|^2 \right)^2. \end{aligned}$$

Hence, the last term in (4) is bounded above by $3A(2\pi N) \sum_{n \leq N} |a_n|^2$, and inserting our bounds into (4) yields the claim of our lemma. \square

Now we deduce Theorem 1. Let $S(\alpha)$ be a random sum in the sense that the coefficients $a_n \in \{1, -1\}$ are chosen at random. We compute the expectation of the fourth moment of $S(\alpha)$.

$$\begin{aligned} \mathbb{E} \int_0^1 |S(u)|^4 \, du &= \mathbb{E} \sum_{\substack{\mu_1 + \mu_2 = \nu_1 + \nu_2 \\ \mu_1, \mu_2, \nu_1, \nu_2 \leq N}} a_{\nu_1} a_{\nu_2} a_{\mu_1} a_{\mu_2} \\ &= \#\{\mu_1, \mu_2, \nu_1, \nu_2 \leq N : \{\mu_1, \mu_2\} = \{\nu_1, \nu_2\}\} \\ &= 2N^2 - N. \end{aligned}$$

If $m \subseteq [0, 1]$ is of measure x , then $\int_m |S(u)|^2 \, du \leq \sqrt{x} \left(\int_m |S(u)|^4 \, du \right)^{1/2}$, thus $\mathbb{E}M(x) \leq \sqrt{2x}$. In particular, we have $M(x) \leq 1/2$ with probability $\geq 1 - \sqrt{8x}$.

Let $\delta > 0$ be given, and set $A = 8\delta^{-2}$. Then with probability $\geq 1 - \delta$ we have $M(1/A) \leq 1/2$, and (3) becomes

$$\begin{aligned} \sum_{q \leq Q} \sum_{(a,q)=1} \left| S\left(\frac{a}{q}\right) \right|^2 &\geq \left(\frac{Q^2 \delta^2}{16} - 48\delta^{-2}\pi N \right) \sum_{n \leq N} |a_n|^2 \\ &\geq \frac{Q^2 \delta^2}{32} \sum_{n \leq N} |a_n|^2, \end{aligned}$$

provided that $Q^2 > 1536\delta^4 N$. Hence, for fixed ϵ , the relation (2) becomes true with probability $1 - \sqrt{1024\epsilon}$, provided that Q^2/N is sufficiently large. Hence, our claim follows.

I would like to thank the referee for improving the quality of this paper.

REFERENCES

- [1] P. Erdős, A. Rényi, Some remarks on the large sieve of Yu. V. Linnik, *Ann. Univ. Sci. Budapest. Eötvös Sect. Math.* **11** (1968), 3–13.
- [2] P. X. Gallagher, The large sieve, *Mathematika* **14** (1967), 14–20.
- [3] H. L. Montgomery, *Multiplicative Number Theory*, Lecture Notes in Mathematics, Vol. 227 (1971).

Jan-Christoph Schlage-Puchta
 Department of Pure Mathematics and Computer Algebra
 Universiteit Gent
 Krijgslaan 281
 9000 Gent
 Belgium
 jcsp@cage.ugent.be