Why Warehousing in Cloud?

2

3

Modern Data Warehouse

- Next generation of Azure SQL Data Warehouse
- Blending into a single unified service
 - Big data analytics
 - Data warehousing and
 - Data integration
- Provides end-to-end analytics with limitless scale.

2 September 2023 Azure Synapse Analytics 5

6

7

Hands-on Provision Azure Synapse Service

1. Create

SQL Server

2. Create

 Synapse SQL Pool (Azure SQL Data Warehouse)

3. Pause/Resume

Compute Node

4. Create

Firewall Rule

5. Connect

With Microsoft SQL Server Management Studio

Unified experience for all data professionals
 Data Engineer

2 September 2023 Azure Synapse Analytics 10

Azure Synapse Analytics architecture

1. Applications

- Connect to issue T-SQL commands
- Single point of entry for Synapse SQL

2. Control node

- Runs the MPP engine
- · Optimizes queries for parallel processing
- Passes operations to Compute nodes

3. Compute nodes

- Store all user data in Azure Storage
- Run the parallel queries.

4. DMS

- Moves data across the nodes
- To run queries in parallel

Azure Synapse Analytics architecture

Decoupled storage & compute

- Independently size compute power irrespective of your storage needs.
- Grow or shrink compute power without moving data.
- Pause compute capacity so you only pay for storage
- Resume compute capacity

Azure Storage

Control node

Brain of the architecture.

It's the front end

Interacts

With all applications and connections.

MPP engine runs on Control node

To optimize and coordinate parallel queries.

When T-SQL query is submitted

 Control node transforms it into queries that run against each distribution in parallel.

Distributions

Synapse SQL runs query

• The work is divided into 60 smaller queries that run in parallel.

Each of the 60 smaller queries

• Runs on one of the underlying data distribution.

Distribution

- The basic unit of storage and
- Processing for parallel queries that run on distributed data.

Compute nodes

Provide computational power

"Distributions"

 Map to Compute nodes for processing

More compute resources

 "Distributions" are remapped to available Compute nodes

The number

Ranges from 1 to 60

Each Compute node

Has a node ID

Data Movement Service

Data transport technology

Coordinates

Data movement between the Compute nodes

Require data movement

 Some queries require data movement to ensure the parallel queries return accurate results

DMS ensures

 When data movement is required, DMS ensures the right data gets to the right location.

Sharding Patterns

Hash-distributed tables

Can deliver

Highest query performance for joins and aggregations

How to shard data

A hash function is used

Distribution column

One of the columns is designated

Uses values in distribution colum

To assign each row to a distribution.

- Each row belongs to one distribution.
- Hash algorithm assigns each row to one distribution.

Hash-distributed tables

Record	Product	Store
1	Soccer	New York
2	Soccer	Los Angeles
3	Football	Phoenix

2 September 2023 Azure Synapse Analytics 20

Hash-distributed tables

```
CREATE TABLE [dbo].[EquityTimeSeriesData](
[Date] [varchar](30),
[BookId] [decimal](38, 0),
[P&L] [decimal](31, 7),
[VaRLower] [decimal](31, 7)
)
WITH
(
CLUSTERED COLUMNSTORE INDEX
, DISTRIBUTION = HASH([P&L])
);
Distribution Key
```

Avoid Data Skew

Even Distribution

Distribution Key

Using which

 Azure SQL Data Warehouse spreads the data across multiple nodes.

Up to 60 distributions

Are used when loading data into the system

Good Hash Key

Round-robin distributed tables

Default distribution type

Simplest table to create

Distributes data evenly

Takes additional time

- Across the table without any further optimization.
- Joins require reshuffling data, which.

```
CREATE TABLE [dbo].[Dates](
[Date] [datetime2](3) ,
[DateKey] [decimal](38, 0) ,
...
[WeekDay] [nvarchar](100) ,
[Day Of Month] [decimal](38, 0)
)
WITH (
CLUSTERED COLUMNSTORE INDEX
, DISTRIBUTION = ROUND_ROBIN);
```


Replicated Tables

For small tables.

Caches

A full copy of table on each compute node

Best utilized with small tables

```
CREATE TABLE [dbo].[BusinessHierarchies](
[BookId] [nvarchar](250) ,
[Division] [nvarchar](100) ,
[Cluster] [nvarchar](100) ,
[Desk] [nvarchar](100) ,
[Book] [nvarchar](100) ,
[Volcker] [nvarchar](100) ,
[Region] [nvarchar](100)
)
WITH (
CLUSTERED COLUMNSTORE INDEX
, DISTRIBUTION = REPLICATE);
```


What Data Distribution to Use?

Туре	Great fit for	Watch out if
Replicated	Small-dimension tables in a star schema with less than 2GB of storage after compression	 Many write transaction are on the table (insert/update/delete) You change DWU provisioning frequently You use only 2-3 columns, but your table has many columns You index a replicated table
Round-robin (default)	 Temporary/Staging table No obvious joining key or good candidate column. 	Performance is slow due to data movement
hash	Fact tablesLarge dimension tables	The distribution key can't be updated

2 September 2023 Azure Synapse Analytics 28

Data Warehouse Units (DWUs)

Combination of

- CPU
- Memory
- I/O

Are bundled

• Into units of compute scale called Data Warehouse Units (DWUs).

Increase DWUs

For higher performance

How many data warehouse units do I need?

Begin By

Selecting a smaller DWU.

Monitor

- Application performance as test data loads into the system
- Observing the number of DWUs selected compared to the performance observe.

Peak Activity

 Identify any additional requirements for periodic periods of peak activity.

Significant Peaks

 Workloads that show significant peaks in activity may need to be scaled frequently.

Table Partitioning

Table Partitioning

Partitioning

Why Partitioning?

2 September 2023 Azure Synapse Analytics 34

Partitioning

35

Partitioning

Sharding

Key	Name	Description	Stock	Price	LastOrdered 25-Nov-2013	
ARC1	Arc welder	250 Amps	8	119.00		
BRK8	Bracket	et 250mm		5.66	18-Nov-2013	
BRK9	Bracket	400mm	82	6.98	1-Jul-2013	
HOS8	Hose	1/2"	27	27.50	18-Aug-2013	
WGT4	T4 Widget Gre		16	13.99	3-Feb-2013	
WGT6	Widget	t Purple		13.99	31-Mar-2013	

Key	Name	Description	Stock	Price	LastOrdered	
HOS8 Hase		1/2"	27	27.50	18-Aug-2013	
WGT4	Widget	Green	16	13.99	3-Feb-2013	
WGT6	Widget	Purple	76	13.99	31-Mar-2013	

Sharding

38

Hands-on: Analyse data distribution

Analyse data distribution at On-Premises Datawarehouse before migrating to Azure Synapse Data Pool

Best Practices

Best Practices: Data Warehouse Readers

Your DWUs have a direct impact on how fast you can load data in parallel

No of DWU	100	200	300	400	500	600	1000	1500	2000
Readers	8	16	24	32	40	48	60	60	60
Writers	60	60	60	60	60	60	60	60	60

Best Practices: Avoid ordered data

 Data ordered by distribution key can introduce hot spots that slow down the load operation

Best Practices: Using temporary tables

 Stage and transform on a Temp Heap table before moving to permanent storage

Best Practices: CREATE TABLE AS

```
CREATE TABLE #tmp_fct
WITH
(
DISTRIBUTION = ROUND_ROBIN
)
AS
SELECT *
FROM
[dbo].[FactInternetSales];
```

- Fully Parallel operation
- It is minimally logged
- It can change: distribution, table type, partitioning

Loading Methods

Single Client

- SSIS
- Azure Data Factory
- BCP
- Can add some parallel capabilities but are bottlenecked at the control node

Parallel Readers

- PolyBase
- Reads from Azure blob Storage and loads the contents into Azure SQL DW
- Bypasses the Control Node and loads directly into the Compute Nodes

Control Node

Loading with PolyBase

Design tables in Synapse SQL pool

Determine table category

A Star Schema

Organizes data into fact and dimension tables.

Decide if Table Data Belongs in a

- Fact,
- Dimension, or
- Integration table

This Decision informs

The appropriate table structure and distribution.

Fact tables

- Contain quantitative data that are generated in a transactional system
- For example
 - A retail business generates sales transactions every day, and then
 - Loads the data into a SQL pool fact table for analysis.

Dimension tables

- Contain attribute data that changes infrequently.
- For example
 - A product name, brand name and weight are stored in a dimension table
 - And updated only when the product details are changes

Sales fact
Date key
Product key
Store key
Employee Key
Transaction#
Unit price
Quantity

Product Dimension
Product key
Product name
Brand name
Category name
Subcategory name
Package type
Package size
Weight
Weight unit of measure

Integration tables

For integrating or staging data

Can create an Integration Table as

- Regular table
- External table or
- Temporary table

Example

- Can load data to a staging table
- · Perform transformations on the data in staging, and
- Insert the data into a production table.

Table persistence

- Tables store data either
 - Permanently in Azure Storage,
 - Temporarily in Azure Storage, or
 - In a data store external to SQL pool.

Regular table

- Stores data in Azure Storage as part of SQL pool
- The table and the data persist regardless of whether a session is open
- The following example creates a regular table with two columns.
 - CREATE TABLE MyTable (col1 int, col2 int);

Temporary table

- Only exists for duration of session
 - To prevent other users from seeing temporary results and
 - To reduce the need for cleanup.
- Are created by prefixing with a #
- For example:

```
CREATE TABLE #stats_ddl

(
    [schema_name] NVARCHAR(128) NOT NULL

, [table_name] NVARCHAR(128) NOT NULL

)

WITH

(
    DISTRIBUTION = HASH([seq_nmbr])

, HEAP
```

55

External table

- Azure Storage blob or
- Azure Data Lake Store

Useful for loading data

Table partitions

- A partitioned table stores and performs operations on the table rows according to data ranges
- For example, a table could be partitioned by day, month, or year
- You can improve query performance through partition elimination, which limits a query scan to data within a partition.

Statistics

Used by Query Optimizer

When it creates the plan for executing a query

To improve query performance

- It's important to have statistics on individual colun
- Especially for columns used in query joins

Data Migration

PolyBase Setup

Hand-on: PolyBase

- 1. Export table to flat file
- 2. Create blob storage account
- 3. Upload flat file to blob storage
- 4. Run PolyBase 6 steps process
- 5. Monitor and confirm successful migration
- 6. Confirm 60 distributions in destination table

Hand-on: Loading Data using Data Factory

