1.

- a. Significant at the α =0.10 level:
 - Main effect of Factor C.
 - Main effect of Factor D.
- b. $R^2=100\% imes\left(1-rac{35.851}{75.264}
 ight)pprox 52.4\%$ of total variation in the response is explained by the full model involving factors A, B, C and D.

c.
$$R_{adj}^2 = 100\% \times \left(1 - \frac{31}{16} \times \frac{35.851}{75264}\right) \approx 7.71\%$$

d. ANOVA table for interactive model involving factors C and D:

e.
$$R_{adj}^2 = 100\% \times \left(1 - \frac{31}{28} \times \frac{47.250}{75.264}\right) \approx 30.49\%$$
.

f.
$$R_{adj}^2 = 100\% \times \left(1 - \frac{31}{29} \times \frac{54.0215}{75.2638}\right) \approx 23.27\%$$
.

g. Strictly based on R^2_{adj} values, the best model is the interactive model involving C and D, the model in part (e). Of the three, it has the highest R^2_{adj} which means that it is able to explain much of the variation in responses better than the other 2 models.

2. A.

Α	В	D	C=ABD	E=AD	treatment
-	-	1	-	+	е
+	-	1	+	-	ac
-	+	-	+	+	bc e
-	-	+	+	-	cd
+	+	1	-	-	ab
+	-	+	-	+	ade
-	+	+	-	-	bd
+	+	+	+	+	abcde

B. treatment e ac

C. The defining relation is I=ABCD=ADE=BCE. Thus A=BCD=DE=ABCE, and $\alpha 2$ is aliased with γ^{BCD}_{222} , γ^{DE}_{22} , and γ^{ABCE}_{222} .