Contents

	:
	•
	1

Formulario di Fondamenti di Telecomunicazioni

Giuseppe Bumma

February 28, 2023

1 Numeri complessi

Unità immaginaria $j^2 = -1$ Forma classica z = a + jb

Coordinate Polari

$$a = r\cos(\phi)$$

$$r = \sqrt{a^2 + b^2}$$

$$degree = \begin{cases} \arctan\left(\frac{b}{a}\right) & a > 0 \\ \operatorname{sgn}(y) \cdot \frac{\pi}{2} & x = 0 \\ \arctan\left(\frac{b}{a}\right) + \pi & a < 0 \end{cases}$$

Forma esponenziale

$$e^{j\phi} = \cos(\phi) + i\sin(\phi)$$
 $z = a + ib = re^{j\phi}$

2 Sinusoide e fasori

Funzione sinusoidale $x(t) = A\cos(\omega t + \theta) = Re\left\{Ae^{j(\omega t + \theta)}\right\}$

2.1 Analisi di Fourier

Prima forma (esponenziale)	formula di sintesi: $x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega_0 t}$
	formula di analisi: $c_n = \frac{1}{T} \int_{-T/2}^{+T/2} x(t) e^{-jn\omega_0 t} dt$
Convergenza puntuale	$\lim_{N \to \infty} \left\{ x(t) - \sum_{n=-N}^{N} c_n e^{jn\omega_0 t} \right\} = 0$
Convergenza in media quadratica	$\left \lim_{N \to \infty} \left\{ \int_T \left x(t) - \sum_{n=-N}^N c_n e^{-jn\omega_0 t} \right ^2 dt \right\} = 0$
I^o forma	