Correlation Between Eagle Owl's Flight Height and Mean Monthly Temperature for Male and Female Birds

Python in GIS: Final Project Presentation

Maicol Camargo Gulraiz Khan Ignacio Ponsoda Mutaz Qafisheh Brenda Ayo

Background

Bubo bubo

- -Found in Europe & Asia
- -Diet:rats,mice,voles, beetle
- -Mostly nocturnal

Research Question

"What is the correlation between monthly mean temperature variation and movement behavior of male and female eagle owls in terms flight height?"

Platform & Technologies

Methodology

- Temperature & elevation data acquisition
- Data cleaning & pre-processing
- Analysis & post-processing
- Results & Conclusion

Data Cleaning & Pre-processing

Validation

Post-processing

Data Preparation

- Creation of File Geodatabase & Feature classes
- Coordinate System Transformation of datasets (geographic to UTM)
- Update Bird gender information
- Extract month and year from timestamp field
- Extract mean ground temperature to Point feature class.
- Flight height calculation

Preparation: .shp to gdb

Preparation: Coordinates Transformation

Temperature Raster data

Projected.
UTM 32 N.

Preparation: Extract month and year

Preparation: Join Gender Information

Point Feature Class

Preparation: Add Elevation from DEM

Preparation: Add Elevation from DEM

tag_ident	height
3897	588.8
3897	588.9
3897	587.5
3897	588
3897	588.9
3897	588.6
3897	588.3
3897	588.5

tag_ident	height	GroundEl	FlightH
3897	588.8	54%	48.8
3897	588.9	540	48.9
3897	587.5	540	47.5
3897	588	540	48
3897	588.9	540	48.9
3897	588.6	540	48.6
3897	588.3	540	48.3
3897	588.5	540	48.5

Actual flight height above ground

Preparation: Add Temperature value

- Thematic plots of birds with monthly mean temperature and monthly mean flight height above the ground.
- Scatter plot for mean temperature vs flight height for male and female birds.
- Bar graphs of temperature, altitude and Convex Hull per month from all years.
- Gender comparison between temperature and altitude monthly.
- Geoprocessing tool development using ArcGIS Pro to create user friendly interface.

- Thematic Plot
- Scatter Plot
- Bar Graphs

Post-Processing

Thematic plots of birds with monthly mean temperature and monthly mean flight height.

Thematic plots

Thematic plots

Thematic plots

Thematic Maps for selected bird for all available month

Avg. Monthly Temp & Height Map for Bird ID '3896' Gender = m M.Altitude = 53.0

Mean Monthly Temp = 20.0°C Mean Height = 49.0m for 201407

Mean Monthly Temp = 16.0°C Mean Height = 51.0m for 201408

Mean Monthly Temp = 15.0°C Mean Height = 54.0m for 201409

Mean Monthly Temp = 13.0°C Mean Height = 54.0m for 201410

Mean Monthly Temp = 8.0°C Mean Height = 56.0m for 201411

Scatter plot for mean temperature vs flight height for male and female birds.

Scatter Plot (Results)

Scatter Plot

Scatter Plot (Results)

Bar graphs of temperature and flight height per month from all years.

Bar Graphs

Using Arcpy Statistics Analysis

Month	MEAN_FlightH	MEAN_Meantemp_10
01	62.054851	-1.699331
02	56.806999	2.758417
03	62.013839	5.881111
04	58.540437	7.544693
05	52.87513	12.850864
06	56.305689	16.337674
07	54.081453	19.434102
08	51.489693	16.955067
09	54.147769	14.744607
10	60.30466	12.612951
11	65.409197	7.772095
12	57.718311	2.535937

Bar Graphs (Results)

Bar graphs of temperature and Convex Hull per month from all years.

Bar Graphs

Arcpy

Using arcpy Minimum **Bounding Box** Analysis

Bar Graphs (Results)

Mean and standard deviation summary

Month	MEAN_FlightH	MEAN_Meantemp_10	STD_FlightH	STD_Meantemp_10
01	62.054851	-1.699331	36.385542	0.781055
02	56.806999	2.758417	22.584183	0.505628
03	62.013839	5.881111	36.515883	1.781215
04	58.540437	7.544693	46.756465	0.487283
05	52.87513	12.850864	28.168656	0.861403
06	56.305689	16.337674	30.688394	0.504789
07	54.081453	19.434102	25.732669	0.825422
08	51.489693	16.955067	22.105149	1.695645
09	54.147769	14.744607	26.129507	1.047813
10	60.30466	12.612951	29.389313	1.289811
11	65.409197	7.772095	43.177524	0.39005
12	57.718311	2.535937	32.147471	0.412752

Discussion

The correlation matrix performed to have a better understanding between the three variables (Temperature, Flight Height and Convex Hull Area)

Variable	Mean Monthly Temperature	Mean Convex Hull Area per Month	Mean Flight Height Per Month
Mean Monthly Temperature	1	0.35	-0.5912
Mean Convex Hull Area per Month	0.35	1	0.037
Mean Flight Height Per Month	-0.592	0.037	1

Limitations

Limitations

- The dataset had inadequate Temporal distribution which was not representative of the Bird's Lifespan.
- More data for the female birds compared to the male birds
- Low Spatial Resolution of the temperature Raster
- Errors in the DEM presented some altitude outliers

Recommendations

Download temperature point data and create surface through interpolation

Conclusion

The project demonstrated the potential of automating repetitive workflow using Python on spatial data.

For the eagle owl, a change in temperature has no direct effect on flight height attained.

With limited variation in flight height, these findings can be used to determine possible sample locations for the Eagle owl.

References

Kang, T.-H., Kim, D.-H., Lee, H., Cho, H.-J., Hur, W.-H., Han, S.-H., ... Paik, I.-H. (2014). Analysis of Home Range of Eurasian Eagle Owl (Bubo bubo) by WT-100. *Journal of Asia-Pacific Biodiversity*, *6*(3), 369–373. https://doi.org/10.7229/jkn.2013.6.3.369
Tanneberger, F., Flinks, H., Arbeiter, S., Minets, M., & Hegemann, A. (2017). Diet Analysis of Wetland Passerine Nestlings Using Neck Collars or Faecal Sampling Produces Similar Results. *Ardea*, *105*(2), 145–152. https://doi.org/10.5253/arde.v105i2.a7
https://www.gwct.org.uk/blogs/news/2016/april/eagle-owls-%E2%80%93-are-they-making-a-comeback-in-britain/

Questions???

