

A2
A3
~~27-31~~

14 a plurality of webs respectively connecting said
15 mounting plate to said outer frame in an arrangement of
16 said webs that is symmetrical relative to said rotation
17 axis, wherein said webs are so configured and arranged so
18 as to support said mounting plate relative to said outer
19 frame, to transmit from said mounting plate to said outer
20 frame all axially directed forces that are oriented along
21 said rotation axis and that are not induced by the
22 unbalance of the rotational body, and to allow said
23 mounting plate to undergo translational vibration relative
24 to said outer frame in said plate plane, wherein said
25 translational vibration is induced in said mounting plate
26 by the unbalance of the rotational body; and

27 a first vibration transducer arrangement that is
28 coupled to said outer frame and to said mounting plate, and
29 that is so arranged and adapted to detect said
30 translational vibration of said mounting plate relative to
31 said outer frame in said plate plane.

Claims 2 to 26 are maintained unchanged.

Please enter new claims 27 to 31 as follows.

A3
~~27-31~~

27. (new) An apparatus for determining an unbalance of a
2 rotational body when said rotational body is mounted on
3 said apparatus so as to be rotatable about a rotation axis,
4 said apparatus comprising:

5 a mounting plate extending along and defining a plate
6 plane;

7 a mounting fixture that is arranged on said mounting
8 plate, and that is adapted to receive the rotational body
9 mounted thereon so as to allow the rotational body to
10 rotate about said rotation axis, wherein said rotation axis
11 is oriented perpendicular to said plate plane;

12 an outer frame arranged at least partially outwardly
13 around said mounting plate;

14 a plurality of webs respectively connecting said
15 mounting plate to said outer frame, wherein said webs are
16 so configured and arranged so as to support said mounting
17 plate relative to said outer frame, to transmit from said
18 mounting plate to said outer frame forces that are oriented
19 along said rotation axis and that are not induced by the
20 unbalance of the rotational body, to allow said mounting
21 plate to undergo translational vibration relative to said
22 outer frame in said plate plane, wherein said translational
23 vibration is induced in said mounting plate by the
24 unbalance of the rotational body, to define a pivot axis
25 perpendicular to said rotation axis, and to allow said
26 mounting plate to undergo pivotal vibration about said
27 pivot axis; and

28 a first vibration transducer arrangement that is
29 coupled to said outer frame and to said mounting plate, and
30 that is so arranged and adapted to detect said
31 translational vibration of said mounting plate relative to
32 said outer frame in said plate plane;

33 wherein said webs include a first pair of webs that
34 extend along and parallel to said pivot axis respectively

on opposite sides of said mounting plate and that define said pivot axis, said webs further include a second pair of webs and a third pair of webs that respectively extend parallel to each other and parallel to said first pair of webs in said plate plane, and said second pair of webs and said third pair of webs are located respectively spaced equidistantly from said pivot axis on opposite sides of said pivot axis.

28. (new) An apparatus for determining an unbalance of a rotational body when said rotational body is mounted on said apparatus so as to be rotatable about a rotation axis, said apparatus comprising:

a mounting plate extending along and defining a plate plane;

a mounting fixture that is arranged on said mounting plate, and that is adapted to receive the rotational body mounted thereon so as to allow the rotational body to rotate about said rotation axis, wherein said rotation axis is oriented perpendicular to said plate plane;

an outer frame arranged at least partially outwardly around said mounting plate;

a plurality of webs respectively connecting said mounting plate to said outer frame, wherein said webs entirely support said mounting plate relative to said outer frame, said webs include a first pair of webs that extend axially aligned with one another along a pivot axis perpendicular to said rotation axis on opposite sides of

20 said mounting plate and further webs offset away from said
21 pivot axis, said webs of said first pair are torsionally
22 flexible about said pivot axis to allow said mounting plate
23 to undergo pivotal vibration about said pivot axis and are
24 flexurally stiff with respect to bending perpendicular to
25 said plate plane, and said further webs are flexible with
26 respect to bending perpendicular to said plate plane so as
27 to allow said pivotal vibration of said mounting plate and
28 with respect to bending in said plate plane so as to allow
29 said mounting plate to undergo translational vibration in
30 said plate plane;

31 a first vibration transducer arrangement that is
32 coupled to said outer frame and to said mounting plate, and
33 that is so arranged and adapted to detect said
34 translational vibration of said mounting plate relative to
35 said outer frame in said plate plane; and

36 a second vibration transducer arrangement that is
37 coupled to said outer frame and to said mounting plate, and
38 that is so arranged and adapted to detect said pivotal
39 vibration of said mounting plate relative to said outer
40 frame about said pivot axis.

1 29. (new) The apparatus according to claim 28, wherein all of
2 said further webs extend parallel relative to said webs of
3 said first pair and relative to said pivot axis.

1 30. (new) The apparatus according to claim 28, wherein all of
2 said further webs extend respectively perpendicularly

A3
Searched
1
2
3

relative to said webs of said first pair and relative to said pivot axis.

31. (new) The apparatus according to claim 28, wherein said further webs are arranged symmetrically on opposite sides of said pivot axis.

REMARKS:

- 1) Referring to item 10) of the Office Action Summary, the Examiner is respectfully requested to indicate in the next official communication, whether the originally filed drawings have been accepted.
- 2) Referring to the acknowledgment copy of applicants' IDS Form PTO-1449 of August 7, 2000, it is noted that the Examiner has not initialed, but rather has crossed off references AD, AE and AI, without any explanation why these references were not considered.

It is recognized that these references are in a foreign language. However, as explained in the IDS of August 7, 2000, these references were each cited in the German Search Report in the corresponding German Priority Application. A copy of that Search Report was enclosed with the IDS, and it indicates the degree of relevance of each one of these references by category (A = technological background, general state of the art; and Y = documents which place the nonobviousness in question together