Patent Claims

1. Haloalkyl carboxamides of the formula (I)

5 in which

10

15

20

25

30

R stands for hydrogen or halogen,

R¹ stands for hydrogen or methyl,

R² stands for methyl, ethyl or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

R³ stands for halogen or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl, (C₁-C₆ haloalkoxy)carbonyl,

(halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

R⁵ stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈

stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₁-C₄-alkoxy₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

 R^6 and R^7 stand independently of one another in each case for hydrogen, C_1 - C_8 alkyl, C_1 - C_4 -alkoxy₁- C_4 -alkyl, C_3 - C_8 cycloalkyl; C_1 - C_8 haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

 R^6 and R^7 , moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C_1 - C_4 alkyl, whereby the

5

10

15

20

25

30

heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

 R^8 and R^9 stand independently of one another for hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 cycloalkyl; C_1 - C_8 haloalkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case.

R⁸ and R⁹, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

R¹⁰ stands for hydrogen or C₁-C₆ alkyl,

M stands in each case for a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R^{11} or for a thiazole ring substituted by R^{11-A} ,

R¹¹ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R^{11-A} stands for hydrogen, methyl, methylthio or trifluoromethyl,

A stands for the group of the formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1), in which

R¹² stands for hydrogen, cyano, halogen, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

 R^{13} stands for hydrogen, halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy or $C_1\text{-}C_4$ alkylthio,

stands for hydrogen, C_1 - C_4 alkyl, hydroxy- C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl in each case with 1 to 5 halogen atoms, or phenyl,

or

A stands for the group of the formula (A2)

 R^{15} and R^{16} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

R¹⁷ stands for halogen, cyano or C₁-C₄ alkyl, or C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy with 1 to 5 halogen atoms in each case,

5 or

10

15

20

25

A stands for the group of the formula (A3)

 R^{18} and R^{19} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

R²⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A4)

$$\mathbb{R}^{21}$$
 (A4), in which

 R^{21} stands or hydrogen, halogen, hydroxy, cyano, C_1 - C_6 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio in each case with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A5)

$$R^{23}$$
 (A5), in which

 R^{22} stands for halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio or C_1 - C_4 haloalkoxy in each case with 1 to 5 halogen atoms,

 R^{23} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy in each case with 1 to 5 halogen atoms, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl,

or

A stands for the group of the formula (A6)

$$R^{25}$$
 Q^1
 Q^1
 Q^2
 Q

R²⁴ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

 R^{25} stands for C_1 - C_4 alkyl,

Q¹ stands for S (sulfur), O (oxygen), SO, SO₂ or CH₂,

p stands for 0, 1 or 2, whereby R²⁵ stands for identical or various groups if p is 2,

or

A stands for the group of the formula (A7)

R²⁶ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

10 or

5

15

20

25

A stands for the group of the formula (A8)

$$(A8)$$
, in which

 R^{27} stands for C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A9)

$$R^{29}$$
 (A9), in which

 R^{28} and R^{29} stand independently of one another for hydrogen, halogen, amino, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

R³⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A10)

$$R^{32}$$
 R^{33} (A10), in which

 R^{31} and R^{32} stand independently of one another for hydrogen, halogen, amino, nitro, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

R³³ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A11)

$$\mathbb{R}^{34}$$
 (A11), in which

 R^{34} stands for hydrogen, halogen, amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 alkyl)amino, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{35} stands for halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

5

10

A stands for the group of the formula (A12)

$$R^{36}$$
 R^{37} (A12), in which

R³⁶ stands for hydrogen, halogen, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

 R^{37} stands for halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

15 or

A stands for the group of the formula (A13)

 R^{38} stands for halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

20 or

A stands for the group of the formula (A14)

$$\mathbb{R}^{39}$$
 (A14), in which

R³⁹ stands for hydrogen or C₁-C₄ alkyl,

R⁴⁰ stands for halogen or C₁-C₄ alkyl,

25 or

A stands for the group of the formula (A15)

$$(A15)$$
, in which

R⁴¹ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

$$(A16)$$
, in which

R⁴² stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A17)

10

15

5

 R^{43} stands for halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio or C_1 - C_4 haloalkoxy with 1 to 5 halogen atoms in each case,

or

A stands for the group of the formula (A18)

$$R^{45}$$
 R^{45}
 R^{47}
 R^{47}
(A18), in which

20

 R^{44} stands for hydrogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl with 1 to 5 halogen atoms, C_1 - C_4 -alkoxy- C_1 - C_4 alkyl, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyl, di(C_1 - C_4 alkyl)aminosulfonyl, C_1 - C_6 alkylcarbonyl or in each case possibly substituted phenylsulfonyl or benzoyl,

R⁴⁵ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

 R^{46} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

25

 R^{47} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A19)

5

15

20

25

30

35

$$\mathbb{R}^{48}$$
 (A19), in which

 R^{48} stands for C_1 - C_4 alkyl.

- 2. Haloalkyl carboxamides of the formula (I) according to Claim 1, in which
 - R stands for hydrogen, fluorine, chlorine or bromine,
 - R¹ stands for hydrogen or methyl,
 - R² stands for methyl, ethyl or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, sec or tert-butyl with single or multiple, the same or various, substitution by fluorine, chlorine or bromine.
- 10 R³ stands for fluorine, chlorine, bromine, iodine or in each case for methyl, ethyl, nor isopropyl, no, isoo, sec or tert-butyl with single or multiple, the same or various, substitution by fluorine, chlorine or bromine.
 - stands for hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

(C₁-C₆ alkyl)carbonyl, (C₁-C₄ alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆ cycloalkyl)carbonyl; (C₁-C₄ haloalkyl)carbonyl, (C₁-C₄ haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

- R⁵ stands for hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,
- R⁶and R⁷ stand independently of one another in each case for hydrogen, C₁-C₆ alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,
- R^6 and R^7 , moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C_1 - C_4 alkyl, whereby the

heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

 R^8 and R^9 stand independently of one another for hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl; C_1 - C_4 haloalkyl, C_3 - C_6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁸ and R⁹, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

R¹⁰ stands for hydrogen or C₁-C₄ alkyl,

M stands for one of the following cyclics

whereby the bond marked with an asterisk ("*") is a link with the amide, and the bond marked with "#" is a link with the haloalkyl group,

R¹¹ stands for hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R^{11-A} stands for hydrogen, methyl or trifluoromethyl,

A stands for the group of the formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1), in which

R¹² stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,

10

5

15

20

25

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R¹⁴ stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

or

5

10

A stands for the group of the formula (A2)

R¹⁵ and R¹⁶ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R¹⁷ stands for fluorine, chlorine, bromine, cyano, methyl, ethyl, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

15 or

A stands for the group of the formula (A3)

$$R^{19}$$
 (A3), in which

 R^{18} and R^{19} stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁰ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A4)

$$\mathbb{R}^{21}$$
 (A4), in which

25

20

R²¹ stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy or C₁-C₂ haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A5)

30

$$\mathbb{R}^{23}$$
 (A5), in which

R²² stands for fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²³ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂ alkylsulfinyl or C₁-C₂ alkylsulfonyl,

A stands for the group of the formula (A6)

$$R^{25}$$
 Q¹ (A6), in which

R²⁴ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁵ stands for methyl or ethyl,

Q¹ stands for S (sulfur), SO₂ or CH₂,

p stands for 0 or 1,

or

or

5

10

15

20

25

A stands for the group of the formula (A7)

R²⁶ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A8)

$$(A8)$$
, in which

R²⁷ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A9)

$$R^{29}$$
 (A9), in which

 R^{28} and R^{29} stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁰ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

5

10

15

20

25

A stands for the group of the formula (A10)

$$R^{32}$$
 R^{33} (A10), in which

R³¹ and R³² stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{33} stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A11)

R³⁴ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁵ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A12)

$$\mathbb{R}^{36}$$
 (A12), in which

R³⁶ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁷ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A13)

(A13), in which

5

R³⁸ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A14)

(A14), in which

10

R³⁹ stands for hydrogen, methyl or ethyl,

R⁴⁰ stands for fluorine, chlorine, bromine, methyl or ethyl,

or

A stands for the group of the formula (A15)

(A15), in which

15

R⁴¹ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A16)

(A16), in which

20

R⁴² stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A17)

(A17), in which

25

R⁴³ stands for fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio,

trifluoromethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A18)

$$R^{45}$$
 R^{45}
 R^{47}
 R^{47}
(A18), in which

5

R⁴⁴ stands for hydrogen, methyl, ethyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxymethyl, hydroxyethyl, methylsulfonyl or dimethylaminosulfonyl,

10

R⁴⁵ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴⁶

stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{47}

stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

15

or A

stands for the group of the formula (A19)

(A19), in which

R⁴⁸ stands for methyl, ethyl, n-propyl or isopropyl.

20

- 3. A process for synthesizing haloalkyl carboxamides of the formula (I) according to Claim 1, characterized in that
 - a) carboxylic acid derivatives the formula (II)

$$A \xrightarrow{X_1} (II)$$

25

in which

A has the meaningspecified in Claim 1 and

X¹ stands for halogen or hydroxy,

are reacted with aniline derivatives of the formula (III)

$$\begin{array}{c|c}
 & M \\
 & R^2 \\
 & R^4 \\
 & R^3
\end{array}$$
(III)

in which

R, R¹, R², R³, R⁴ and M have the meanings specified in Claim 1,

possibly in the presence of a catalyst, possibly in the presence a condensation agent, possibly in the presence of an acid binder and possibly in the presence of a diluent,

or

b) hexylcarboxanilides of the formula (I-a)

10

5

in which

R, R¹, R², R³, M and A have the meanings specified in Claim 1, are reacted with halides of the formula (IV)

$$R^{4-A} X^2$$
 (IV)

in which

15

X² stands for chlorine, bromine or iodine,

R ^{4-A} stands for C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄ alkoxy C₁-C₄ alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

(C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl, (C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

whereby R⁵, R⁶, R⁷, R⁸ and R⁹ have the meanings specified in Claim 1, in the presence of a base and in the presence of a dilution medium.

25

20

30

- 4. Media for combating undesirable microorganisms, characterized by containing at least one haloalkyl carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface-active materials.
- 5 5. The use of haloalkyl carboxamides of the formula (I) according to Claim 1 to combat undesirable microorganisms.
 - 6. Processes for combating undesired microorganisms, characterized in that haloalkyl carboxamides of the formula (I) are applied to the microorganisms and/or their environment in accordance with Claim 1.
 - 7. Processes for synthesizing materials to combat undesired microorganisms, characterized in that haloalkyl carboxamides of the formula (I) are mixed with extenders and/or surface-active materials according to Claim 1.

15

10

8. Aniline derivatives of the formula (III)

$$\begin{array}{c|c}
 & M \\
 & R^2 \\
 & R^3
\end{array}$$
(III)

in which R, R¹, R², R³, R⁴ and M have the meanings specified in Claim 1.