

PRN:				
	PRN:			

End Semester Examination

May-June 2023

CET2008B - Theory of Computation

Schedule ID: 19543

Faculty/School	Faculty of Engineering & Technology	Term	IV
i'rogram	Second Year B. Tech	Duration	1 Hours 30 Minutes
Specialization		Max. Marks	40

Read the instructions provided for every question properly before attempting the answer.

Section - 1: contain(s) 10 question(s) and each question carries 5 mark(s). You can answer any 8 questions out of 10.

Click Finish only after completion of the Exam.

Section - 1 (8 X 5 Marks) Answer any 8 questions

	Answer any o questions						
1	Construct an NFA to recognize a string that contains a substring 'abb'. List the applications of finite automata.	5 marks	COI	Applying			
2	Apply the Arden theorem to discover the regular expression for the given finite automata.	5 marks	CO2	Applying			
8	Explain Chomsky Hierarchy with neat diagram and example.	5 marks	CO3	Remembering			

5	Check whether or not the following grammar is ambiguous. If it is ambiguous, remove the ambiguity and write an equivalent unambiguous Grammar. E>E+E E>(E) E>a	5 marks	CO3	Understanding
18	Construct Push down Automata for given CFG. S → aSa / bSb / x Evaluate designed PDA for String "abaxaba" according to language specification using instantaneous description.	5 marks	CO4	Applying
7	Make use of following points to compare Finite Automata and Pushdown Automata Formal Definition Transition Function Example Types of Grammar Recognized	5 marks	CO4	Remembering
3/	Construct PDA for Language $L = \{a^nb^{2n} n \ge 0\}$. Evaluate and show simulation of string "aabbbb".	5 marks	CO4	Applying
9	Design Turing machine that recognizes binary palindromes.	5 marks	CO4	Applying
40	Make use of given points to explain Turing machine. Components of Turing machine Halting problem of Turing Machine	5 marks	CO4	Remembering

(A) PAPER (A) PAPER (A) PAPER A -a AB | bAB | a I G I a A 8 u 13-7 6 16B1G s - P Ma Hat

_	-	-			
R	N	:			_

Term End Examination

Dec 2023

CET2008B - Theory of Computation

Faculty/School		Paper ID: 029239		
	Engineering and Technology	Term	Sem-IV	
rogram	SY BTech CSF AIDS	Duration	1 Hours 30 Minutes	
Specialization		Max. Marks	40	

Read the instructions provided for every question properly before attempting the answer.

Section - 1: contain(s) 10 question(s) and each question carries 5 mark(s). You can answer any 8 questions out of 10.

Click Finish only after completion of the Exam.

Section - 1 (8 X 5 Marks)

	Answer any 8 questions			
	Convert the following NFA to DFA where $Q = \{p, q, r\}, E = \{0,1\}, q0 = \{p\}, F = \{r\}$ transition function is. $Q = \{p, q, r\}, E = \{0,1\}, q0 = \{p\}, F = \{r\}$ transition function is. $Q = \{p, q, r\}, E = \{0,1\}, q0 = \{p\}, F = \{r\}$ $Q = \{p, q, r\}, E = \{0,1\}, q0 = \{p\}, F = \{r\}$	5 marks	CO1	Applying
2	List closure properties of regular languages. Identify regular expression r for the regular language: $L(r) = \{00,010,0110,01110,\}$	5 marks	CO1	Remembering
3/	Show the leftmost and rightmost derivation for the string "001100" by considering the grammar G= {(S, A), (0,1), P, S} where P consists of: S>0AS 0 A>S1A SS 1. State whether Grammar is ambiguous or not	5 marks	CO2	Applying
4	Identify the CFG that generates following regular expressions: 1. a*b* 2. (baa+ abb) *	5 marks	CO2	Understandin

		-	Lanlying
5	Construct a PDA that accepts the Call Construction Language		CO4 Applying CO4 Remembering
7	What are types of PDA? Write the formal definition of a PDA. List any 4 applications of a CEG?		Applying
7	Construct a pushdown automata for the CFG. S->0BB B>0S 1S 0 Test whether 010000 is accepted or not.	3 mar no	
63	Design a Turing Machine to find the 1's complement of any binary number? Write instantaneous description (ID) for string 01010111.	5 marks	
9/	Make use of given points to explain Turing machine 1. Components of Turing machine 2. Halting problem of Turing Machine		
10	Explain Recursive Languages and Recursively Enumerable Languages with examples.	5 marks	CO3, Understandin

END OF QUESTION PAPER

PRN:	

End Semester Examination

May-June 2023

CET2023B - Formal Languages and automata theory

Schedule ID: 18757

Faculty/School	Faculty of Engineering & Technology	Term	IV
Program	Second Year B. Tech	Duration	1 Hours 30 Minutes
Specialization	CSBS	Max. Marks	40

Read the instructions provided for every question properly before attempting the answer.

Section - 1: contain(s) 10 question(s) and each question carries 5 mark(s). You can answer any 8 questions out of 10.

Click Finish only after completion of the Exam.

Section - 1 (8 X 5 Marks) Answer any 8 questions

-1	Design a Finite Automata that reads strings made up of letters in the word 'CHARIOT' and recognizes those strings that contain the word 'CAT' as a substring.	5 marks	COI	Applying
*	Show by pumping lemma, L is not regular. L=(a ⁿ b ⁿ n > 0)	5 marks	CO2	Applying
8	Explain Chomsky Hierarchy with neat diagram and example	5 marks	CO3	Remembering
4	Construct a PDA that accepts the following language $L = \{0^n \ 1^m \ 0^m \ \ n, \ m > 0\} \ \text{by final state}$	5 marks	CO3	Applying
4	 1) Express the following grammar using CNF: S → ABA A → aA € B → bB € 	5 marks	CO3	Applying
6	What is the formal definition of the Turing machine? Explain all tuples of the Turing machine.	5 marks	CO4	Remembering
7	Design a Turing Machine to replace string 111 by 101 in binary input string.	5 marks	CO4	Analysing

	8	Explain Multitape Turing Machine with a diagram.	5 marks	CO4
	2	Differentiate between P and NP problems	5 marks	CO4
1		Explain the important terminologies of a Boolean expression in the satisfiability problem with the example.	5 marks	CO4

END OF QUESTION PAPER

