T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte III)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, nós aprendemos que a classificação pode ser feita usando-se uma função discriminante, que nada mais é do que um polinômio, que tem sua saída passada através de outra função, chamada de função de limiar.
- Assim como na *regressão linear*, o problema da classificação está em encontrar uma *função discriminante* (i.e., equação apropriada e seus respectivos pesos) que separa as classes da melhor forma possível.

Recapitulando

- Vimos que a função de limiar mais simples é a de limiar rígido, porém, ela apresenta alguns problemas como não poder ser utilizada para encontrar uma solução em forma fechada ou com o gradiente descendente e não nos dar a confiança das predições.
- Aprendemos também, uma forma intuitiva e iterativa de encontrar os pesos da *função discriminante* quando usamos o *limiar rígido*.
- Na sequência, introduziremos outra função de limiar, chamada de função logística, com a qual é possível encontrar uma solução eficiente com o gradiente descendente e termos o grau de confiança de uma predição feita pelo modelo.

- Como discutimos anteriormente, a *função* hipótese, $h_a(x) = f(g(x))$, com limiar de decisão rígido é descontínua em g(x) = 0 e tem derivada igual a zero para todos os outros valores de g(x).
- Além disso, o classificador com limiar de decisão rígido sempre faz predições completamente confiantes das classes (i.e., 0 ou 1), mesmo para exemplos muito próximos da fronteira de decisão.

- Em muitas situações, nós precisamos de valores mais graduados, que indiquem incertezas quanto à predição.
- Todos esses problemas são resolvidos com a suavização da função de limiar rígido através de sua aproximação por uma função que seja contínua, diferenciável e assuma valores reais dentro do intervalo de 0 a 1.
- Uma função que apresenta essas características é a função logística, ou sigmoide.

• A *função logística* é definida como

$$Logistic(z) = \frac{1}{1+e^{-z}} \in [0, 1].$$

• A função realiza um mapeamento

$$\mathbb{R} \rightarrow [0,1].$$

 Utilizando a função logística como função de limiar de decisão, temos a seguinte função hipótese

$$h_a(x) = f(g(x)) = \frac{1}{1 + e^{-g(x)}} \in [0, 1].$$

• Lembrando apenas que g(x) pode assumir o formato de um *hiperplano*, de um *polinômio*, etc.

- A saída de $h_a(x)$ será um número real entre 0 e 1.
- Esse valor pode ser interpretado como a *probabilidade* de um dado exemplo de entrada *pertencer* à classe positiva (C_2) .
- A probabilidade da classe negativa (C_1) é obtida através do complemento de $h_a(x)$, ou seja, $1 h_a(x)$.

Fronteira de decisão suave.

- Por f(.) ter uma **transição suave**, a nova **função hipótese**, $h_a(x)$, cria uma **transição suave entre as classes**.
 - Esse comportamento é diferente do obtido com o limiar rígido, onde a mudança entre classes era abrupta.
- $h_a(x)$ prediz uma probabilidade de 0.5 para exemplos posicionados exatamente em cima da **fronteira de decisão**.
 - A fronteira de decisão é definida pela função discriminante e passa pelos pontos onde g(x) = 0.
- $h_a(x)$ se aproxima de 0 ou 1 conforme o exemplo se distancia da **fronteira de decisão**.

- Lembrem-se que quanto mais longe da fronteira de decisão, maior será o valor absoluto de g(x).
- Assim, quanto *mais longe* um exemplo *estiver da fronteira, mais próximo* o valor de $h_a(x)$ *estará de 0 ou de 1* e, portanto, mais *certeza teremos sobre uma predição*.
- Da mesma forma, quanto *mais próximo* um exemplo estiver da *fronteira de decisão*, *mais próximo* o valor de $h_a(x)$ estará de **0.5**.
 - Isso indica uma indecisão sobre a classe do exemplo.

- Esse modelo que estima a probabilidade de um dado exemplo de entrada pertencer à classe positiva, *não é um classificador no sentido estrito*.
- Ele é na verdade um *regressor* e é chamado de *regressor logístico*.
- É um regressor pois sua saída pode *assumir infinitos valores* no intervalo entre 0 e 1.
 - Por exemplo, podemos treiná-lo para estimar a probabilidade de um dado email ser um spam.
- O regressor logístico é normalmente usado para classificação binária (i.e., classificação entre duas classes, C_1 e C_2), mas para isso, precisamos quantizar sua saída.

- Se quantiza a saída da **função hipótese**, $h_a(x)$, nos valores 0 ou 1 estabelecendo-se um **limiar de decisão**.
- Em geral, o *limiar de decisão* é feito igual a 0.5 (i.e., 50% de probabilidade).
- Se a *probabilidade* estimada para um exemplo for igual ou maior que 50%, o classificador *prediz* que o exemplo pertence à *classe positiva*, caso contrário *prediz* que pertence à *classe negativa*.
- Ou seja, a saída quantizada do regressor logístico é dada por

Classe =
$$\hat{y} = \begin{cases} 0 \text{ (classe } C_1 - \text{Negativa), se } h_a(x) < 0.5 \\ 1 \text{ (classe } C_2 - \text{Positiva), se } h_a(x) \ge 0.5 \end{cases}$$

- Notem que f(g(x)) < 0.5 quandog(x) < 0 e $f(g(x)) \ge 0.5$ quando $g(x) \ge 0$.
- Portanto, o *regressor logístico* prediz a classe positiva, C_2 (i.e., $\hat{y}=1$), se $g(x) \geq 0$ e a classe negativa, C_1 (i.e., $\hat{y}=0$), se g(x) < 0.
- Nosso objetivo será encontrar uma função discriminante apropriada e seus respectivos pesos de forma que o erro de classificação seja minimizado.
- Assim, em breve, definiremos uma função de erro que nos ajudará a treinar o modelo.

- Mesmo sendo uma técnica bastante simples, a regressão logística é muito utilizada em várias aplicações do mundo real em áreas como medicina, marketing, análise de crédito, etc.
 - Exemplos: classificar críticas de filmes, probabilidade de um paciente desenvolver uma doença, detecção de spam, classificar transações como fraudulentas ou não, etc.
- Além disto, toda a teoria por trás da regressão logística foi a base para a criação das primeiras redes neurais.

Propriedades da regressão logística

- Os valores de saída da *função hipótese*, $h_a(x)$, ficam restritos ao intervalo $0 \le h_a(x) \le 1$.
- A saída de $h_a(x)$ representa a **probabilidade** da classe positiva (C_2) para um dado vetor de atributos x e um dado vetor de pesos, a.
- Ou seja, $h_a(x)$ dá a probabilidade condicional da classe positiva, \mathcal{C}_2

$$h_{\boldsymbol{a}}(\boldsymbol{x}) = P(C_2 \mid \boldsymbol{x}; \boldsymbol{a}).$$

• Consequentemente, o complemento de $h_{a}(x)$

$$(1 - h_{\boldsymbol{a}}(\boldsymbol{x})) = P(C_1 \mid \boldsymbol{x}; \boldsymbol{a}),$$

dá a probabilidade condicional da classe negativa, C_1 .

Propriedades da regressão logística

- A transição entre classes com o regressor logístico é suave, mas após a quantização de sua saída, ela se torna abrupta.
- A fronteira de decisão (pois após a quantização tem-se um classificador) é determinada quando há uma indecisão entre as classes.
- Ou seja, quando

$$P(C_1 \mid \boldsymbol{x}; \boldsymbol{a}) = P(C_2 \mid \boldsymbol{x}; \boldsymbol{a}),$$

que ocorre quando

$$h_a(x) = P(C_2 \mid x; a) = 0.5.$$

Propriedades da regressão logística

- Observando a figura da *função* logística, nós percebemos que f(g(x)) = 0.5 quando g(x) = 0.
- Ou seja, quando o vetor de atributos, x, estiver exatamente em cima da $função\ discriminante$, a probabilidade das classes C_1 e C_2 dado x e a é de 50%.
- Isso indica que o *classificador está* indeciso.

- Como discutimos antes, para treinarmos um regressor logístico e encontrarmos os pesos da função discriminante, nós precisamos, assim como fizemos com a regressão linear, definir uma função de erro.
- Porém, adotar a função do erro quadrático médio como função de erro não é uma boa escolha para a atualização dos pesos no caso da regressão logística e classificadores em geral como veremos a seguir.

Função não-convexa

• A função de erro, $J_e(a)$, utilizando o erro quadrático médio é dada por

$$J_{e}(a) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - h_{a}(x))^{2}$$
$$= \frac{1}{N} \sum_{i=1}^{N} (y(i) - f(g(x)))^{2}.$$

• Como f(.) é uma função não-linear, $J_e(a)$ não será, consequentemente, uma função convexa, de forma que a superfície de erro poderá apresentar vários mínimos locais que vão dificultar o aprendizado (e.g., o algoritmo do GD pode ficar preso em um mínimo local).

- Ideia: encontrar uma *função de erro* que tenha *superfície de erro* resultante *convexa*.
- Uma proposta intuitiva para a função de erro para cada exemplo de entrada é dada por

$$Erro(h_a(\mathbf{x}(i)); y(i))$$

$$= \begin{cases} -\log(h_a(\mathbf{x}(i))), & \text{se } y(i) = 1 \\ -\log(1 - h_a(\mathbf{x}(i))), & \text{se } y(i) = 0 \end{cases}$$

onde y(i) é o i-ésimo valor esperado (i.e., rótulo).

 Veremos a seguir uma justificativa para esta escolha.

- As figuras ao lado mostram as duas situações possíveis para a função de erro.
- Como podemos observar, a penalização aplicada a cada saída reflete o *erro de classificação*.
- Unindo-se as duas curvas, obtém-se uma função convexa (veja a figura abaixo).

- O uso dessa *função de erro* faz sentido pois:
 - O valor de $-\log(z)$ se torna muito grande quando z se aproxima de 0, então o erro será grande se o classificador estimar uma probabilidade próxima a 0 para um exemplo positivo (i.e., pertencente à classe C_2).
 - O valor de $-\log(1-z)$ será muito grande se o classificador estimar uma probabilidade próxima de 1 para um exemplo negativo (i.e., pertencente à classe C_1).
 - Por outro lado, $-\log(z)$ se torna próximo de 0 quando z se aproxima de 1, portanto, o erro será próximo de 0 se a probabilidade estimada for próxima de 1 para um exemplo positivo.
 - O valor $-\log(1-z)$ se torna próximo de 0 quando z se aproxima de 0, portanto, o erro será próximo de 0 para um exemplo negativo.

 Nós podemos unir a função de erro para cada exemplo em uma expressão única, dada por

$$Erro\left(h_{a}(x(i));y(i)\right) = \underbrace{-y(i)\log\left(h_{a}(x(i))\right)}_{\text{S\'o exerce influência no erro se }y(i)=1} \underbrace{-(1-y(i))\log\left(1-h_{a}(x(i))\right)}_{\text{S\'o exerce influência no erro se }y(i)=0}$$

• Com isto, podemos definir a seguinte função de erro médio

$$J_e(a) = -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \log \left(h_a(x(i)) \right) + \left(1 - y(i) \right) \log \left(1 - h_a(x(i)) \right).$$

- A má notícia é que não existe uma *equação de forma fechada* para encontrar os *pesos* que minimizem essa *função de erro* (ou seja, não há um equivalente da *equação normal*).
- A boa notícia é que essa *função de erro* é *convexa* e, portanto, é garantido que o algoritmo do *gradiente descendente* encontre o mínimo global (dado que a *taxa de aprendizagem* não seja muito grande e se espere tempo suficiente).

Processo de treinamento

- Portanto, da mesma forma como fizemos com a *regressão linear*, usamos o algoritmo do gradiente descendente para encontrar os pesos que minimizam a função de erro médio. Aqui consideramos g(x) como sendo a
- A *atualização iterativa* dos *pesos* é dada por

$$a = a - \alpha \frac{\partial J_e(a)}{\partial a}$$
.

• O vetor gradiente da função de erro médio é dado por $\frac{\partial J_e(a)}{\partial a} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[y(i) - h_a(x(i)) \right] x(i)^T = -\frac{1}{N} X^T (y - \widehat{y}).$

Forma matricial:
$$\pmb{X} \in \mathbb{R}^{\mathsf{N} imes \mathsf{K} + 1}$$
, $\pmb{y} \in \widehat{\pmb{y}} = h_{\pmb{a}} (\pmb{x}(i)) \in \mathbb{R}^{\mathsf{N} imes 1}$, $\pmb{X}^T (\pmb{y} - \widehat{\pmb{y}})$.

equação de um *hiperplano*: g(x) =

 $\sum_{k=0}^{K} a_k x_k$, mas o resultado pode ser

diretamente estendido para polinômios.

- Percebam que o vetor gradiente da função de erro médio para a regressão *logística* é idêntico àquele obtido para a *regressão linear* utilizando a função de erro quadrático médio.
- O *vetor gradiente* da *função de erro médio* vai variar dependendo da *função* discriminante adotada. Vejamos alguns exemplos na sequência.

Vetor Gradiente

• O vetor gradiente da função de erro médio quando $g(x)=a_0+a_1x_1+a_2x_2$ (equação de uma reta) é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}),$$

onde $X = [x_0, x_1, x_2] \in \mathbb{R}^{N \times K + 1}$, $x_0, x_1, e x_2 \in \mathbb{R}^{N \times 1}$ e $y \in \widehat{y} \in \mathbb{R}^{N \times 1}$.

• O vetor gradiente da função de erro médio quando $g(x) = a_0 + x_1^2 + x_2^2$ (equação de um círculo) é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}),$$

onde $X = [x_0, x_1^2, x_2^2] \in \mathbb{R}^{N \times K + 1}$, x_0, x_1^2 , e $x_2^2 \in \mathbb{R}^{N \times 1}$ e y e $\hat{y} \in \mathbb{R}^{N \times 1}$.

Vetor Gradiente

• O vetor gradiente da função de erro médio quando $g(x)=a_0+a_1x_1*x_2$ (equação de uma hipérbole retangular) é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}),$$

onde $X = [x_0, x_1 \odot x_2] \in \mathbb{R}^{N \times K + 1}$, $x_0, x_1, x_2, e x_1 \odot x_2 \in \mathbb{R}^{N \times 1}$, $y \in \hat{y} \in \mathbb{R}^{N \times 1}$ e \odot é a multiplicação elemento-a-elemento.

 Agora, de posse do vetor gradiente, podemos usá-lo com o gradiente descendente (nas versões em batelada, estocástico ou mini-batch) para atualizar os pesos.

$$a = a - \alpha \frac{\partial J_e(a)}{\partial a}$$
.

Observações

- Como vimos, a *função discriminante*, g(x), pode também assumir a forma de um *polinômio*, mas, muitas vezes, nós não sabemos qual a *melhor ordem* para este polinômio.
- Assim, como nós discutimos no caso da regressão linear, modelos de regressão logística também estão sujeitos à ocorrência de sobreajuste e subajuste. Vejam as figuras ao lado.
 - Na primeira figura, a *falta de flexibilidade* da reta usada faz com que o erro de classificação seja alto.
 - Na segunda figura, a flexibilidade excessiva do modelo (explorando um polinômio de ordem elevada) dá origem a contorções na fronteira de decisão na tentativa de minimizar o erro de classificação junto aos dados de treinamento. Porém, o modelo ficou mais susceptível a erros de classificação para dados inéditos, ou seja, não irá generalizar bem.
 - Já a última figura mostra o que seria uma boa *hipótese de classificação*.
- Por isso, técnicas de **regularização** (e.g., LASSO, Ridge, Elastic-Net, Early-stop) assim como de **validação cruzada** também podem ser empregadas durante o treinamento quando não conhecemos a melhor ordem para o polinômio da **função discriminante**, g(x).

Tarefas

- Quiz: "T320 Quiz Classificação (Parte III)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #3.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser resolvidos em grupo, mas as entregas devem ser individuais.

Obrigado!

• Antes de encontrarmos o **vetor gradiente** de $J_e(a)$, vamos reescrever a **função de erro** utilizando as seguintes equivalências

$$\log(h_{a}(\mathbf{x}(i))) = \log\left(\frac{1}{1 + e^{-\mathbf{x}(i)^{T}a}}\right) = -\log\left(1 + e^{-\mathbf{x}(i)^{T}a}\right),$$

$$\log(1 - h_{a}(\mathbf{x}(i))) = \log\left(1 - \frac{1}{1 + e^{-\mathbf{x}(i)^{T}a}}\right) = -\mathbf{x}(i)^{T}a - \log\left(1 + e^{-\mathbf{x}(i)^{T}a}\right).$$

• Assim, a nova expressão para a *função de erro médio* é dada por

$$\int_{e}(\mathbf{a}) \\
 = -\frac{1}{N} \sum_{i=0}^{N-1} -y(i) \log \left(1 + e^{-\mathbf{x}(i)^{T} \mathbf{a}} \right) + (1 \\
 -y(i)) \left[-\mathbf{x}(i)^{T} \mathbf{a} - \log \left(1 + e^{-\mathbf{x}(i)^{T} \mathbf{a}} \right) \right]$$

• O termo $-y(i)\log\left(1+e^{-x(i)^Ta}\right)$ é cancelado com um dos elementos gerados a partir do produto envolvido no segundo termo, de forma que

$$J_e(a) = -\frac{1}{N} \sum_{i=0}^{N-1} -x(i)^T a + y(i)x(i)^T a - \log(1 + e^{-x(i)^T a}).$$

• Se $-\mathbf{x}(i)^T \mathbf{a} = -\log\left(e^{\mathbf{x}(i)^T \mathbf{a}}\right)$, então $-\mathbf{x}(i)^T \mathbf{a} - \log\left(1 + e^{-\mathbf{x}(i)^T \mathbf{a}}\right) = -\log\left(1 + e^{\mathbf{x}(i)^T \mathbf{a}}\right).$

• Desta forma, a função de erro médio se torna

$$J_e(\mathbf{a}) = -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \mathbf{x}(i)^T \mathbf{a} - \log(1 + e^{\mathbf{x}(i)^T \mathbf{a}}).$$

• Em seguida, encontramos o *vetor gradiente* de cada termo da equação acima.

 Assim, o vetor gradiente do primeiro termo da equação anterior é dado por

$$\frac{\partial [y(i)\mathbf{x}(i)^T \mathbf{a}]}{\partial \mathbf{a}} = y(i)\mathbf{x}(i)^T$$

• O vetor gradiente do segundo termo da equação anterior é dado por

$$\frac{\partial \left[\log\left(1 + e^{x(i)^T a}\right)\right]}{\partial a} = \frac{1}{1 + e^{x(i)^T a}} e^{x(i)^T a} x(i)^T$$

$$= \frac{1}{1 + e^{-x(i)^T a}} x(i)^T$$

$$= h_a(x(i))x(i)^T.$$

• Usamos a *regra da cadeia* para encontrar o vetor gradiente do segundo termo.

• Portanto, combinando os 2 resultados anteriores, temos que o *vetor*

gradiente da função de erro médio é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[y(i) - h_a(\boldsymbol{x}(i)) \right] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}).$$

Função não-convexa

Função convexa

