Supervisé

Les k plus proches voisins Les arbres de décisions

Le percept

Classification naïve bayésienne

Par renforcemen

Construction et évaluation

- Quels attributs sélectionner pour construire l'arbre?
- Comment évaluer un arbre ? A priori on souhaite minimiser le nombre de tests (en moyenne) pour classifier un exemple (il existe une borne max sur le nombre d'attributs).

Supervisé

Les k plus proches voisins Les arbres de décisions

e perceptron es réseaux de neurone

Non supervisé

Par renforcement

Un premier exemple

- La force du vent : attribut numérique {1 ...12}.
- La direction du vent : attribut nominal {face, terre, côté}
- ► La marée : attribut nominal {montante, descendante}
- Décision à prendre : puis-je faire de la planche à voile ?

Fabien Teytaud

Supervisé

Les k plus proches voisins Les arbres de décisions

Les réseaux de neu

Management

Day -----

Comment construire un arbre de décisions

- Parcours exhaustif des arbres impossible.
- Exponentiel en fonction de
 - nombre d'attributs d.
 - ▶ nombre moyen de valeurs par attribut : v.

$$\sum_{i=0}^{d-1} (d-i)^{v^i}$$

▶ Par exemple, avec 6 attributs et v = 2 on a déjà 72385.

Supervisé

Les k plus proches voisins Les arbres de décisions

Le percentro

Les réseaux de neuron Classification naïve

Von sunervisé

ar renforcemen

Algorithm 1 Construction récursive d'un arbre de décision

- 1: **Procédure:** construireArbre(X)
- 2: **if** Tous les points de *X* appartiennent à la même classe **then**
- 3: Créer une feuille portant le nom de cette classe
- 4: **else**
- 5: Choisir le meilleur attribut pour créer un noeud
- 6: Le test associé à ce noeud sépare X en X_g et X_d .
- 7: construireArbre (X_g)
- 8: construireArbre (X_d)
- 9: end if

Les arbres de décisions Le perceptron

Les réseaux de neur Classification naïve

Non supervisé

Par renforcement

Quelques définitions

- ▶ Un exemple n_i est décrit par :
 - d attributs.
 - ▶ u une classe $\in U = \{u_1, \ldots, u_c\}$
- ➤ Soient n points de l'échantillon d'apprentissage, répartis en U classes u_i comportant chacune n_i exemples.
- Soit a un attribut binaire quelconque.
- ightharpoonup a partage chaque n_j en deux sous parties, comportant :
 - I_j points pour a = vrai.
 - $ightharpoonup r_j$ points pour a = faux.

Suporvicó

Les k plus proches voisins Les arbres de décisions

e perceptron es réseaux de neurone

Non supervisé

Par renforcement

On peut alors déduire que

- ▶ I_i/n est une estimation de $P(a = vrai, u = u_i)$.
- ▶ r_j/n est une estimation de $P(a = faux, u = u_j)$.
- ▶ I/n est une estimation de P(a = vrai).
- ightharpoonup r/n est une estimation de P(a = faux).
- ▶ n_j/n est une estimation de $P(u = u_j)$.

Les arbres de décisions Le perceptron

Les réseaux de neuro Classification naïve

Non supervisé

Par renforcement

Théorie de l'information

- Information mutuelle (entropie croisée).
- Permet de mesurer l'homogénéité entre deux distributions de probabilités.
- ► Soient *u* et *a* deux variables, avec *D_u* et *D_a* leurs ensembles finis de valeurs possibles.
- L'entropie croisée est donnée par :

$$I(u,a) = -\sum_{i,j \in D_u \times D_a} p(i,j) \log_2 \frac{p(i,j)}{p(i)p(j)}$$

Supervice

Les k plus proches voisins Les arbres de décisions

Le perceptron

Classification naïve bayésienne

.

Par renforcement

Quelques propriétés

- ▶ I(u, a) possède un minimum (0) quand p(i, j) = p(i)p(j): lorsque les deux distributions sont indépendantes.
- I(u, a) est maximale lorsque les deux distributions sont complètement corrélées.

Non supervise

Par renforcement

Quelques propriétés

▶ Une variable aléatoire w possède une entropie H(u) définit par :

$$H(u) = -\sum_{i \in D_u} p(i) \log_2(p(i))$$

L'entropie de w conditionnée par a est définie par :

$$H(u|a) = -\sum_{i,j \in D_u \times D_a} p(i,j) \log_2(p(i|j))$$

Or d'après la théorie de l'information, on a :

$$I(u,a) = H(u) - H(u|a)$$

Fabien Teytaud

Intro

Supervisé

Les k plus proches voisins Les arbres de décisions

e perceptron

Classification naïve bayésienne

on supervisé

Par renforcement

$$\hat{1}(u,a) = -\sum_{i=1}^{Y} \frac{l_i}{n} \log_2 \frac{l_i/n}{(l/n)(n_i/n)} + \frac{r_i}{n} \log_2 \frac{r_i/n}{(r/n)(n_i/n)}$$

$$\hat{H}(u|a) = -\sum_{i=1}^{\gamma} \frac{1}{n} \frac{l_i}{l} \log_2 \frac{l_i}{l} + \frac{r}{n} \frac{r_i}{r} \log_2 \frac{r_i}{r}$$

Quelques propriétés

On peut donc estimer les probabilités :

$$\hat{H}(u|a) = \frac{1}{n}J(a = vrai) + \frac{r}{n}J(a = faux)$$

avec

$$J(a = vrai) = -\sum_{j=1}^{U} \frac{l_j}{l} \log_2 \frac{l_j}{l}$$

$$J(a = faux) = -\sum_{i=1}^{U} \frac{r_i}{r} \log_2 \frac{r_j}{r}$$

Fabien Teytaud

Intro

Supervisé

Les k plus proches voisins Les arbres de décisions

Le perceptron Les réseaux de neuron

bayosionino

Day -----

Choix de l'attribut

- On veut choisir l'attribut qui possède la plus grande corrélation avec la répartition des classes.
- On va donc chercher à minimiser l'entropie :

$$i^* = \underset{i=1,...,d}{\operatorname{arg\,min}}(\hat{H}(u|a_i))$$

Intro

Supervise

Les k plus proches voisins

Les arbres de décisions

Le perceptron Les réseaux de neuron Classification naïve

Non Supervise

Par renforcemen

Problème

Le problème consiste à prédire si un enfant peut aller jouer avec son voisin.

Base d'exemples

Les décisions prises sur les 8 derniers jours étant donnés 4 attributs binaires et 1 classe.

Un exemple de construction

Fabien Teytaud

Intro

Supervisé

Les k plus proches voisins Les arbres de décisions

Le perceptron

Classification naïve bayésienne

.

Échantillon d'apprentissage

= or a map or a approximation as								
	Devoirs	Bonne humeur	Beau	Gouter	Décision			
	finis?	de la mère?	temps?	pris?				
1	vrai	faux	vrai	faux	oui			
2	faux	vrai	faux	vrai	oui			
3	vrai	vrai	vrai	faux	oui			
4	vrai	faux	vrai	vrai	oui			
5	faux	vrai	vrai	vrai	non			
6	faux	vrai	faux	faux	non			
7	vrai	faux	faux	vrai	non			
8	vrai	vrai	faux	faux	non			

Simplifions les notations : (DF, BH, BT, GP).

Un exemple de construction

Fabien Teytaud

Intro

Supervise Les k plus proches voisins

Les arbres de décisions

e perceptron es réseaux de neurones

payésienne

Our ranfaraamas

ar rentorcemen

Calcul de H(u = oui|DF)

$$H(oui|DF) = \frac{5}{8}J(DF = vrai) + \frac{3}{8}J(DF = faux)$$

$$J(DF = vrai) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}$$

$$J(DF = faux) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}$$

Supervisé

Les k plus proches voisins Les arbres de décisions

Le perceptron

bayésienne

Par ranfaraaman

On obtient

- ► *H*(*oui*|*DF*) ≈ 0.9
- ► *H*(*oui*|*BT*) ≈ 0.8
- ► *H*(*oui*|*BH*) ≈ 0.9
- ► *H*(*oui*|*GP*) ≈ 1

On choisit donc pour racine l'attribut "Est ce qu'il fait beau?"

Un exemple de construction

Apprentissage artificiel Fabien Teytaud

Intro

Supervice

Les k plus proches voisins Les arbres de décisions

Le percept

Classification naïve bayésienne

ion supervise

Par renforceme

Table pour la valeur vrai

	Devoirs finis?	Bonne humeur de la mère?	Gouter pris?	Décision
1	vrai	faux	faux	oui
3	vrai	vrai	faux	oui
4	vrai	faux	vrai	oui
5	faux	vrai	vrai	non

Un exemple de construction

Fabien Teytaud

Intro

Supervice

Les k plus proches voisins

Les arbres de décisions Le perceptron

bayésienne

Non supervisé

Day -----

Table pour la valeur faux

	Devoirs finis?	Bonne humeur de la mère?	Gouter pris?	Décision
	111113 :	de la mere :	pris :	
2	faux	vrai	vrai	oui
6	faux	vrai	faux	non
7	vrai	faux	vrai	non
8	vrai	vrai	faux	non

Fabien Teytaud

Les k plus proches voisins

Les arbres de décisions

bavésienne

Supervisé

Les k plus proches voisins Les arbres de décisions

_e perceptron

Classification naïve bayésienne

Noti Supervise

Par renforcement

Pourquoi élaguer?

- L'arbre précédemment construit est dit T_{max}: chaque feuille est pure.
- ▶ Il y a un risque de sous estimer la probabilité d'erreur.

Le pré-élagage

- On cesse de diviser un noeud lorsque la pureté des points est suffisantes (inférieure à un certain seuil).
- Utilisation de critères locaux (à une feuille) : on peut manquer un très bon développement.
- ► Donc, utilisation du post-élégage.

- Élaguer l'arbre lorsqu'il est parfaitement développé.
- Utiliser un ensemble indépendant de l'ensemble d'apprentissage (ensemble de validation).
- ▶ Mesurer l'erreur commise sur cet ensemble.

Méthode

- ► En partant des feuilles, construire une séquence d'arbres {T_{max}, T₁, T₂,..., T_n} (T_n est l'arbre constitué d'une seule feuille).
- A chaque étape un noeud est transformé en feuille.
- L'idée est de comparer le coût de l'arbre élagué et de l'arbre non élagué. On s'arrête si le coût du premier est supérieur.

Intro

Supervisé

Les k plus proches voisins Les arbres de décisions

Le percentr

es réseaux de neuro lassification naïve ayésienne

Non supervis

Par renforcemen

Élagage des arbres de décisions

Estimation du coût

Choisir le noeud v qui minimise :

$$\hat{w}(T_k, v) = \frac{MC_{ela}(v, k) - MC(v, k)}{n_k.(nt(v, k) - 1)}$$

- MC_{ela}(v, k): nombre d'exemples de l'ensemble d'apprentissage mal classés par le noeud v de T_k dans l'arbre élagué à v.
- MC(v, k): nombre d'exemples de l'ensemble d'apprentissage mal classés sous le noeud v de T_k dans l'arbre non élagué à v.
- $ightharpoonup n_k$: nombre de feuilles de T_k .
- nt(v, k): nombre de feuilles du sous-arbre de T_k situé sous le noeud v.

On cherche le meilleur compromis entre le taux d'erreur apparent et la taille.

Intro

Supervisé

Les k plus proches voisins Les arbres de décisions

Le percept

es réseaux de neuron lassification naïve

lon supervisė

Par renforcemen

Supervisé

Les k plus proches voisins Les arbres de décisions

Le perceptror

Les réseaux de neurone

bayesierine

Par renforcement

Algorithm 2 Algorithme d'élagage

- 1: **Procédure :** elaguer(T_{max})
- 2: *k* ← 0
- 3: $T_k \leftarrow T_{max}$
- 4: while nbNoeud(T_k) > 1 do
- 5: **for** chaque noeud v de T_k m **do**
- 6: calculer $\hat{w}(T_k, v)$ sur l'ensemble d'apprentissage
- 7: end for
- 8: Choisir le noeud v_m pour lequel \hat{w} est minimum
- 9: T_{k+1} se déduit de T_k en y remplaçant v_m par une feuille
- 10: $k \leftarrow k + 1$
- 11: end while

Fabien Teytaud

Supervice

Les k plus proches voisil Les arbres de décisions

Le perceptron

Classification naïve

Non supervis

Par renforceme

Fabien Teytaud

Intro

Cuparida

Les k plus proches voisins

Les arbres de décisions

Les réseaux de ne Classification naïve

Non supervisé

Par renforceme

Un exemple d'élagage

Calculer $\hat{w}(T_{max}, v_1)$, $\hat{w}(T_{max}, v_2)$, $\hat{w}(T_{max}, v_3)$, $\hat{w}(T_{max}, v_4)$

Fabien Tevtaud

Les k plus proches voisins

Les arbres de décisions

es réseaux de neu

bayésienne Non supervis

Par renforcem

Supervisé

Les k plus proches voisins

Les arbres de décisions Le perceptron

Classification naïve bayésienne

Non supervisé

Par renforcement

Calcul des valeurs sur T_{max}

$$\hat{w}(T_{max}, v_1) = \frac{MC_{ela}(v_1, k) - MC(v_1, k)}{n(k).(nt(v_1, k) - 1)} = \frac{9 - 0}{5(5 - 1)} = \frac{9}{20}$$

$$\hat{w}(T_{max}, v_2) = \frac{1-0}{5(3-1)} = \frac{1}{10}$$

$$\hat{w}(T_{max}, v_3) = \frac{2-0}{5(2-1)} = \frac{2}{5}$$

$$\hat{w}(T_{max}, v_4) = \frac{1-0}{5(2-1)} = \frac{1}{5}$$

Supervisé

Les k plus proches voisins Les arbres de décisions

e perceptron

bayésienne

Calcul des valeurs sur T_{max}

$$\hat{w}(T_{max}, v_1) = \frac{MC_{ela}(v_1, k) - MC(v_1, k)}{n(k).(nt(v_1, k) - 1)} = \frac{9 - 0}{5(5 - 1)} = \frac{9}{20}$$

$$\hat{w}(T_{max}, v_2) = \frac{1-0}{5(3-1)} = \frac{1}{10}$$

$$\hat{w}(T_{max}, v_3) = \frac{2-0}{5(2-1)} = \frac{2}{5}$$

$$\hat{w}(T_{max}, v_4) = \frac{1-0}{5(2-1)} = \frac{1}{5}$$

On obtient T_1

Intro

Supervisé

Les k plus proches voisins

Les arbres de décisions

Le perceptron

bayésienne

. .

Par renforceme

Les k plus proches voisins

Les arbres de décisions

bavésienne

Calcul des valeurs sur T₁

$$\hat{w}(T_1, v_1) = \frac{9-1}{3(3-1)} = \frac{6}{3}$$

$$\hat{w}(T_1, v_1) = \frac{9-1}{3(3-1)} = \frac{4}{3}$$

$$\hat{w}(T_1, v_3) = \frac{2-1}{3(2-1)} = \frac{1}{3}$$

Les k plus proches voisins

Les arbres de décisions

bavésienne

Calcul des valeurs sur T₁

$$\hat{w}(T_1, v_1) = \frac{9-1}{3(3-1)} = \frac{2}{3}$$

$$\hat{w}(T_1, v_1) = \frac{9-1}{3(3-1)} = \frac{4}{3}$$

$$\hat{w}(T_1, v_3) = \frac{2-1}{3(2-1)} = \frac{1}{3}$$

On obtient T_2

Intr

Supervisé

Les k plus proches voisins Les arbres de décisions

Les arbre

Les réseaux de Classification na

Non supervise

Par renforcemer

Supervisé

Les k plus proches voisins Les arbres de décisions

Le percept

Classification naïve payésienne

Par renforcemen

Choix de l'arbre

- ▶ Le choix de l'arbre se fera sur un ensemble de validation parmi T_{max}, T₁ et T₂.
- L'arbre qui aura la meilleure estimation du taux d'erreur de classification sera choisi.

Un exemple d'élagage

Par exemple, sur cet ensemble de validation

- $\blacktriangleright \text{ Erreur } T_{max} : \frac{3}{16}$
- ► Erreur $T_1 : \frac{1}{16}$
- ► Erreur $T_2: \frac{2}{16}$

Fabien Teytaud

Intro

Suporvice

Les k plus proches voisins

Les arbres de décisions

Les réseaux de neu

bayésienne Nap auparvicé

Par renforcemen

