Potenzen, Pegel, Kennfarben

·	Pegel	Leistungs- verhältnis	Spannungs- verhältnis	Kenn- farbe	Wert	Multi- plikator	Toleranz
$ \begin{array}{c} \vdots \\ 10^{-3} = 0,001 \\ 10^{-2} = 0,01 \\ 10^{-1} = 0,1 \\ 10^{0} = 1 \\ 10^{1} = 10 \\ 10^{2} = 100 \\ 10^{3} = 1000 \\ \vdots \end{array} $	-20 dB -10 dB -6 dB -3 dB -1 dB 0 dB 1 dB 3 dB 6 dB 10 dB	0,01 0,1 0,25 0,5 0,8 1 1,26 2 4	0,1 0,32 0,5 0,71 0,89 1	Silber Gold schwarz braun rot orange gelb grün blau violett grau weiß	- 0 1 2 3 4 5 6 7 8	$ \begin{array}{c} 10^{-2} \\ 10^{-1} \\ 10^{-0} \\ 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ 10^{6} \\ 10^{7} \\ 10^{8} \\ 10^{9} \end{array} $	±10% ±5% - ±1% ±2% - ±0,5 ±0,25% ±0,1%
•	20 dB	100	10	keine	-	-	±20%

Wertkennzeichnung durch Buchstaben

p	Pico	10^{-12}
n	Nano	10 ⁻⁹

μ	Mikro	10 ⁻⁶
m	Milli	10 ⁻³

		10 ⁰
k	Kilo	10^{3}

M	Mega	10 ⁶
G	Giga	109

Ohmsches Gesetz

$$U = I \cdot R$$

Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

Arbeit

$$W = P \cdot t$$

Widerstand von Drähten

$$R = \frac{\rho \cdot l}{A_{Dr}}$$

$$R = \frac{\rho \cdot l}{A_{Dr}}$$
 $A_{Dr} = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$

Widerstände in Reihenschaltung

$$R_G = R_1 + R_2 + R_3 + \dots R_n$$

Bei 2 Widerständen gilt

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$U_G = U_1 + U_2$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Bei 2 Widerständen gilt

$$R_G = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad \qquad \frac{I_2}{I_1} = \frac{R_1}{R_2} \qquad \qquad I_G = I_1 + I_2$$

$$\frac{I_2}{I_1} = \frac{R_1}{R_2}$$

$$I_G = I_1 + I_2$$

Innenwiderstand

$$R_i = \frac{\Delta U}{\Lambda I}$$

Effektiv- und Spitzenwerte bei sinusförmiger Wechselspannung

$$\hat{U} = U_{\it eff} \cdot \sqrt{2}$$

$$U_{SS} = 2 \cdot \hat{U}$$

Periodendauer

$$T = \frac{1}{f}$$

Kreisfrequenz

$$\omega = 2 \cdot \pi \cdot f$$

Induktiver Widerstand

$$X_I = \omega \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + \dots L_n$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_G} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n}$$

Induktivität der Ringspule

(auch für Zylinderspule wenn l > D)

$$L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A_S}{l_m}$$

Induktivität von Schalenkernspulen

(auch für mehrlagige Spulen)

$$L = N^2 \cdot A_L$$

Magnetische Feldstärke in einer Ringspule

$$H = \frac{I \cdot N}{l_m}$$

Magnetische Flussdichte

$$B_m = \mu_r \cdot \mu_0 \cdot H$$

Transformator / Übertrager

Übersetzungsverhältnis

$$\ddot{u} = \frac{N_P}{N_S} = \frac{U_P}{U_S} = \frac{I_S}{I_P} = \sqrt{\frac{Z_P}{Z_S}}$$

Netztrafo

$$P_P \approx 1.2 \cdot P_S$$
 $A_{Fe} \approx \sqrt{P_P} \cdot \frac{cm^2}{\sqrt{W}}$ $N_V \approx \frac{42}{A_P} \cdot \frac{cm^2}{V}$

$$N_V \approx \frac{42}{A_{Fa}} \cdot \frac{cm^2}{V}$$

 P_P ... Primärleistung; P_S ... Sekundärleistung

Belastbarkeit von Wicklungen

$$I = S \cdot A_{Dr}$$
 mit $S \approx 2.5 A/mm^2$

Kapazitiver Widerstand

$$X_C = \frac{1}{\omega \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_G} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \frac{1}{C_n}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + \dots + C_n$$

Kapazität eines Kondensators

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$$

 $C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$ A ... Kondensatorplattenfläche

Elektrische Feldstärke

$$E = \frac{U}{d}$$

RC-Tiefpass / RC-Hochpass

$$f_g = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

$$f_g$$
 ... Grenzfrequenz

RL-Tiefpass / RL-Hochpass

$$f_g = \frac{R}{2 \cdot \pi \cdot L}$$

Schwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} \qquad Q = \frac{f_0}{B} = \frac{R_p}{X_L} = \frac{X_L}{R_c}$$

Transistor

$$B = \frac{I_C}{I_B}$$

$$I_E = I_C + I_B$$

B ... Gleichspannungsverstärkung

$$v_I = \beta = \frac{\Delta I_C}{\Delta I_R}$$

$$v_U = \frac{\Delta U_{CE}}{\Delta U_{BE}}$$

$$v_P = v_U \cdot v_I$$

Operationsverstärker

Invertierender Verstärker

Nicht-invertierender Verstärker

Pegel

$$u = 20 \cdot \lg \frac{U}{U_0} \qquad p = 10 \cdot \lg \frac{P}{P_0}$$

$$p = 10 \cdot \lg \frac{P}{P_0}$$

Relativer Pegel: Als Spannungs- oder Leistungspegel bezogen auf beliebige Werte von U_0 oder P_0 (z.B. $1\mu V$, 1V, 1W, 1pW) Absoluter Pegel: 0 dB (dBm, dBu) liegt bei $P_0 = 1$ mW oder der Spannung $U_0 = 775$ mV bei einem System mit $R_I = R_L = 600 \Omega$ vor. Der absolute Leistungspegel ist auch bei Systemen mit anderen Impedanzen gleich.

Dämpfung

$$a = 20 \cdot \lg \frac{U_1}{U_2}$$

$$a = 10 \cdot \lg \frac{P_1}{P_2}$$

 $a = 20 \cdot \lg \frac{U_1}{U_2}$ $a = 10 \cdot \lg \frac{P_1}{P_2}$ $U_1 \dots Eingangsspannung$ $U_2 \dots Ausgangsspannung$

Verstärkung/Gewinn

$$g = 20 \cdot \lg \frac{U_2}{U_1}$$

$$g = 10 \cdot \lg \frac{P_2}{P_1}$$

 P_1 ... Eingangsleistung P_2 ... Ausgangsleistung

Wirkungsgrad

$$\eta = \frac{P_{ab}}{P_{zu}}$$

$$\eta_{\%} = \frac{P_{ab}}{P_{ab}} \cdot 100\%$$

$$P_{ab} = P_{zu} - P_V$$

Zwischenfrequenz

$$f_{ZF} = f_E \pm f_{OSZ}$$

Spiegelfrequenz

$$f_S = f_E + 2 \cdot f_{ZF}$$
 für $f_{OSZ} > f_E$

$$f \ddot{u} r \quad f_{OSZ} > f_{R}$$

$$f_S = f_E - 2 \cdot f_{ZF}$$
 für $f_{OSZ} < f_E$

für
$$f_{osz} < f_{r}$$

Thermisches Rauschen

Signal-Rauschverhältnis

$$P_R = k \cdot T_K \cdot B$$

 $U_{P} = 2 \cdot \sqrt{P_{P} \cdot R}$

$$\Delta p_R = 10 \cdot \lg \frac{B_1}{B_2}$$

 $P_R = k \cdot T_K \cdot B$ $\Delta p_R = 10 \cdot \lg \frac{B_1}{B_2}$ $P_R \dots Rauschleistung$ $\Delta p_R \dots Pegelunterschied$ der Rauschleistungen in B_1 und B_2

$$S/N = 10 \cdot \lg \frac{P_S}{P_N} = 20 \cdot \lg \frac{U_S}{U_N}$$

 P_S ... Signalleistung P_N ... Rauschleistung

 U_S ... Signalspannung $U_N \dots Rauschspannung$

Rauschzahl

$$F = \frac{\left(\frac{P_S}{P_N}\right)_{EINGANG}}{\left(\frac{P_S}{P_N}\right)_{AUSGANG}} \qquad a_F = 10 \cdot \lg F \\ a_F = (S/N)_{EINGANG} - (S/N)_{AUSGANG}$$

$$a_F = 10 \cdot \lg F$$

$$a_F = (S/N)_{FINGANG} - (S/N)_{AUSGANG}$$

ERP/EIRP

$$p_{EDD} = p_{S} - a + g_{A}$$

$$p_{ERP} = p_S - a + g_d$$
 $P_{ERP} = P_S \cdot 10^{\frac{g_d - a}{10}}$

g_d ... Antennengewinn bezogen auf den Halbwel-

$$p_{EIRP} = p_{ERP} + 2,15dB$$

$$p_{EIRP} = p_{ERP} + 2,15dB$$
 $P_{EIRP} = P_S \cdot 10^{\frac{g_d - a + 2,15dB}{10}}$

lendipol in dB a ... Verluste (Kabel, *Koppler etc.)*

Gewinnfaktor von Antennen

$$G_i = G_d \cdot 1,64$$

$$G_i = G_d \cdot 1,64$$
 $g_i = g_d + 2,15dB$ $G = 10^{\frac{g}{10}}$

$$G - 10^{\frac{g}{10}}$$

Halbwellendipol

$$G_i = 1,64$$

$$G_i = 1,64$$
 $g_i = 2,15 \, dBi$

λ/4-Vertikalantenne

$$G_i = 3,28$$

$$g_i = 5,15 \, dBi$$

Feldstärke im Fernfeld einer Antenne*)
$$E = \frac{\sqrt{30\Omega \cdot P_A \cdot G_i}}{d} = \frac{\sqrt{30\Omega \cdot P_{EIRP}}}{d}$$

*) für Freiraumausbreitung ab $d > \frac{\lambda}{2 \cdot \pi}$; P_{A} ... Leistung an der Antenne

Amplitudenmodulation

$$m = \frac{\hat{U}_{mod}}{\hat{U}_T}$$

$$B = 2 \cdot f_{mod \, max}$$

Frequenzmodulation

$$m = \frac{\Delta f_T}{f_{mod}}$$

$$\Delta f_T$$
 ... Frequenzhub

Carson-Bandbreite (Ungefähre FM-Bandbreite)

$$B = 2 \cdot (\Delta f_T + f_{mod \, max})$$

Phasengeschwindigkeit

$$c = f \cdot \lambda$$

Verkürzungsfaktor von HF-Leitungen

$$k_{v} = \frac{l_{G}}{l_{E}} = \frac{1}{\sqrt{\varepsilon_{r}}} = \frac{c}{c_{0}}$$

$$l_G$$
 ... geometrische Länge l_E ... elektrische Länge

Stehwellenverhältnis/VSWR

$$s = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{U_{v} + U_{r}}{U_{v} - U_{r}} \qquad s = \frac{1 + \left|r\right|}{1 - \left|r\right|} \quad \text{mit} \quad r = \frac{R_{2} - Z}{R_{2} + Z}$$

$$s = \frac{1+|r|}{1-|r|} \qquad \mathsf{r}$$

$$mit r = \frac{R_2 - Z}{R_2 + Z}$$

$$s = \frac{R_2}{Z}$$
 wenn $R_2 > Z$ und $s = \frac{Z}{R_2}$ wenn $R_2 < Z$

Reflektionsfaktor

$$|r| = \frac{s-1}{s+1} = \frac{U_r}{U_v} = \sqrt{\frac{P_r}{P_v}}$$

Rücklaufende Leistung

$$P_r = P_v \cdot r^2$$
 mit $P_r \neq P_v$

*An R*₂ *abgegebene Leistung*

$$P_{ab} = P_{v} \cdot (1 - r^2)$$

Dämpfung durch Fehlanpassung

$$a_s = -10 \cdot \lg(1 - r^2)$$

 U_v ... Spannung der hinlaufenden Welle; U_r ... Spannung der rücklaufenden Welle;

 $Z \dots Wellenwiderstand der HF-Leitung ; R_2 \dots reeller Abschlusswiderstand der HF-Leitung;$

 P_v ... vorlaufende Leistung; P_r ... rücklaufende (reflektierte) Leistung; P_{ab} ... Leistung an R_2

Wellenwiderstand

$$Z = \sqrt{\frac{L'}{C'}}$$

$$Z = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot ln \frac{D}{d}$$

 $Z = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot ln \frac{D}{d}$ D... Innendurchmesser Außenleiter d... Durchmesser des Innenleiters

Symmetrische Zweidraht-
Leitungen mit
$$a/d > 2.5$$

$$Z = \frac{120\Omega}{\sqrt{\varepsilon_r}} \cdot ln \frac{2 \cdot a}{d}$$

a ... Mittenabstand der Leiter d ... Durchmesser der Leiter

Viertelwellentransformator

$$Z = \sqrt{Z_E \cdot Z_A}$$

Z ... erforderlicher Wellenwiderstand einer λ_{4} -Transformationsleitung

Höchste brauchbare Frequenz

$$MUF = \frac{f_c}{\sin \alpha}$$

$$f_{opt} = MUF \cdot 0.85$$

Empfindlichkeit von Messsystemen

$$E_{MESS} = \frac{R_i}{U_i} = \frac{1}{I_i}$$

 E_{MESS} ... Empfindlichkeit in Ω/V *U_i* ... Spannung am System bei Vollaus-

I_i ... Strom durch das System bei Vollausschlag

Messbereichserweiterung

$$R_V = \frac{U - U_M}{I_M} = \frac{U_M}{I_M} \cdot (n - 1) = R_M \cdot (n - 1)$$

$$R_P = \frac{R_M \cdot I_M}{I - I_M} = \frac{R_M}{n - 1}$$

Erweiterungsfaktor

 $U \dots$ neuer Spannungsmessbereich U_{M} ... Spannungsmessbereich des Instruments

I ... neuer Strommessbereich

 $I_M \dots$ Strom bei Vollausschlag des Instruments

 R_V ... Vorwiderstand

 $R_P \dots$ Parallelwiderstand (Shunt)

Relativer maximaler Fehler

$$F_W = \pm \frac{G}{100} \cdot \frac{W_E}{W_M}$$

 F_W ... relativer maximaler Fehler (in %);

G ... Genauigkeitsklasse des Messinstrumentes;

 W_E ... Endwert des Messbereichs;

W_M ... abgelesener Wert (Istwert)

Kabeldämpfungsdiagramm

Grunddämpfung verschiedener gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m.

Formelzeichen, Konstanten und Tabellen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A ... Querschnitt, Fläche

A_{Dr} ... Drahtquerschnitt

 A_{Fe} ... Eisenkernquerschnitt

 A_L ... Induktivitätsfaktor in nH

A_S ... Querschnittsfläche der Spule

a ... Dämpfungsmaß in dB

a_F ... Rauschzahl in dB gemessen mit Eingangsabschluss bei 290 K

B, B_1 , B_2 ... Bandbreiten

 B_m ... magnetische Flussdichte

C ... Kapazität

C' ... Kapazitätsbelag (Kapazität pro Meter)

 C_G ... Gesamtkapazität

 C_1 , C_2 , C_3 , C_n ... Teilkapazitäten

c ... Phasengeschwindigkeit

 c_0 ... Vakuumlichtgeschwindigkeit, $c_0 = 3 \cdot 10^8 \frac{m}{s}$

d ... Abstand, Entfernung

E ... elektrische Feldstärke

EIRP ... äquivalente isotrope Strahlungsleistung ERP ... äquivalente (effektive) Strahlungsleistung

e ... Eulersche Zahl, e=2,718...

F... Rauschzahl (Eingangsabschluss bei 290K)

f ... Frequenz

 f_c ... Höchste Frequenz, bei der senkrecht in die Ionosphäre eintretende Strahlung von der gegebenen Schicht noch reflektiert wird

 f_E ... eingestellte Empfangsfrequenz

 f_{g} ... Grenzfrequenz

f_{mod} ... Modulationsfrequenz

f_{modmax} ... höchste Modulationsfrequenz

 f_{opt} ... optimale Frequenz

 f_{OSZ} ... Oszillatorfrequenz

 f_S ... Spiegelfrequenz

 f_{ZF} ... Zwischenfrequenz

 f_0 ... Resonanzfrequenz

G ... Gewinnfaktor

 G_d ... Gewinnfaktor bezogen auf den Halbwellendipol

 G_i ... Gewinnfaktor bezogen auf den isotropen Strahler

g ... Verstärkungsmaß/Gewinn in dB

 g_d ... Gewinn in dB bezogen auf den Halbwellendipol

g_i ... Gewinn in dB bezogen auf den isotropen Strahler

H... magnetische Feldstärke

I ... Stromstärke

I_B ... *Basisgleichstrom*

 I_C ... Kollektorgleichstrom

I_E ... *Emittergleichstrom*

 I_G ... Gesamtstrom

I_P ... *Primärstromstärke*

I_S ... Sekundärstromstärke

 I_1 , I_2 ... Teilströme

 $k \dots Boltzmann-Konstante, k = 1,38 \cdot 10^{-23} Ws/K$

k_v ... Verkürzungsfaktor

L ...Induktivität

L' ... Induktivitätsbelag (Induktivität pro Meter)

 L_G ... Gesamtinduktivität

 L_1 , L_2 , L_3 , L_n ... Teilinduktivitäten

l ... Länge

l_m ... mittlere Feldlinienlänge

MUF ... Höchste brauchbare Frequenz bei der Ausbreitung elektromagnetischer Wellen infolge ionosphärischer Brechung

m ... *Modulationsindex*

N ... Windungszahl

 $N_P \dots Primärwindungszahl$

 N_S ... Sekundärwindungszahl

 N_V ... Windungszahl pro Volt

P ... Leistung

 P_R ... Rauschleistung

 P_S , P_{ERP} , P_{EIRP} ... Sender-/ Strahlungsleistungen

 P_V ... Verlustleistung

 P_{ab} ... abgegebene Leistung

 P_{zu} ... zugeführte Leistung

p ... Pegel der Leistung in dB...

 p_{S} , p_{ERP} , p_{EIRP} ... Pegel der Sender-/ Strahlungsleistungen in dBm

Q ... Güte

R ... Widerstand

 R_G ... Gesamtwiderstand

 R_i ... Innenwiderstand

 R_1 , R_2 , R_3 , R_n ... Teilwiderstände

 R_p ... paralleler Verlustwiderstand R_s ... serieller Verlustwiderstand

r ... Reflektionsfaktor

S... Stromdichte

S/N ... Signal-Rauschverhältnis in dB, auch als

SNR oder $\frac{S+N}{N}$ bezeichnet

s ... Stehwellenverhältnis oder Welligkeit

T... Periodendauer

 T_K ... Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ($T_0 = 0$ K = -273,15°C; d.h. 20°C ≈ 293 K)

t ... Zeit

U... Spannung

U_{eff} ... *Effektivspannung*

 U_G ... Gesamtspannung

 U_P ... Primärspannung

 U_R ... effektive Rauschspannung an R

 U_s ... Sekundärspannung

 U_{SS} ... Spannung von Spitze zu Spitze

 U_1 , U_2 ... Teilspannungen

 \hat{U} ... Spitzenspannung

 \hat{U}_{mod} ... Amplitude der Modulationsspannung

 $\hat{U}_{\scriptscriptstyle T}$... Amplitude der HF-Trägerspannung

u ... Pegel der Spannung in dB...

ü... Übersetzungsverhältnis

VSWR ... Stehwellenverhältnis oder Welligkeit

v₁ ... Wechselstromverstärkung

v_U... Wechselspannungsverstärkung

v_P... Leistungsverstärkung für Wechselstrom

W ... Arbeit

 X_{C} kapazitiver Blindwiderstand

 X_L ... induktiver Blindwiderstand

Z... Wellenwiderstand

 Z_A ... Ausgangsscheinwiderstand

Z_E ... Eingangsscheinwiderstand

 Z_{F0} ... Feldwellenwiderstand des freien Raumes,

$$Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120 \cdot \pi \cdot \Omega$$

Z_P ... Primärer Scheinwiderstand

Z_S ... Sekundärer Scheinwiderstand

ΔI ... Stromänderung

ΔI_B ... Basisstromänderung

 ΔI_C ... Kollektorstromänderung

ΔU ... Spannungsänderung

 ΔU_{CE} ... Kollektor-Emitter-Spannungsänderung

 $\Delta U_{\scriptscriptstyle BE}$... Basis-Emitter-Spannungsänderung

α ... Abstrahlwinkel der Antenne

 β ... Wechselstromverstärkung

 ε_0 ... elektrische Feldkonstante,

$$\varepsilon_0 = \frac{1}{\mu_0 \cdot c_0^2} = 0.885 \cdot 10^{-11} \frac{As}{Vm}$$

 ε_r ... relative Dielektrizitätszahl (siehe Tabelle 2)

η ... Wirkungsgrad

 $\eta_{\%}$... Wirkungsgrad in Prozent

λ ... Wellenlänge

 μ_0 ... magnetische Feldkonstante,

$$\mu_0 = \frac{4\pi}{10^7} \frac{V_S}{Am} = 1,2566 \cdot 10^{-6} \frac{H}{m}$$

 μ_r ... relative Permeabilität

 $\rho\dots$ spezifischer elektrischer Widerstand

(siehe Tabelle 1)

ω... Kreisfrequenz

Tabelle 1: Spezifischer elektrischer Widerstand ρ

Material	Kupfer	Aluminium	Eisen
ρ in $\frac{\Omega \cdot mm^2}{m}$ bei 20°C	0,0178	0,030	0,17

Tabelle 2: Relative Dielektrizitätszahl ε_r

Dielektrikum /	Luft	Voll-PE	Schaum-PE	PTFE
Isolierstoff	(trocken)	(Polyäthylen)		(Teflon)
$\overline{\mathcal{E}_r}$	1,00059	2,29	1,5	2,0