

UNIVERSIDADE FEDERAL DE OURO PRETO – UFOP CONSTRUÇÃO DE COMPILADORES 2018.2 TRABALHO PRÁTICO 2 - ANÁLISE SINTÁTICA

MARINA DE SOUZA MENDES – 15.1.5978

Gramática

#Regra	Production rule	Internal representation
1	Program → Funs	Program
2	Funs → Fun	Sequence of Function definitions
3	Funs → Fun Funs	
4	Fun → TypeId (TypeIds) = Exp	Function definition
5	$TypeId ightarrow ext{bool}$ id	Type and identififier
6	$TypeId \rightarrow \text{int id}$	
7	TypeIds → TypeId	Sequence of types and identifiers
8	TypeIds → TypeId , TypeIds	
9	$Exp o ext{num}$	Expressions
10	$Exp \rightarrow id$	
11	$Exp \rightarrow Exp + Exp$	
12	$Exp \rightarrow Exp < Exp$	
13	$Exp \rightarrow id(Exps)$	
14	$Exp \rightarrow \text{if } Exp \text{ then } Exp \text{ else } Exp$	

#Regra	Production rule	Internal representation
15	$Exp \rightarrow \text{let id} = Exp \text{ in } Exp$	
16	$Exps \rightarrow Exp$	Sequence of expressions
17	$Exps \rightarrow Exp$, $Exps$	

1) Reescrever a gramática dada (se necessário) para satisfazer as condições de uma gramática ${\rm LL}(1)$

Para que a gramática satisfaça as condições de uma gramática LL(1) ela não deve conter ambiguidades, logo, a recursividade à esquerda deve ser removida. As regras 11 e 12 possuem recursão à esquerda e ao removê-las novas regras são inseridas. A nova gramática, após a remoção de recursão à esquerda, é a seguinte:

#Regra	Production rule	Internal representation
1	Program → Funs	Program
2	Funs → Fun	Sequence of Function definitions
3	Funs → Fun Funs	
4	Fun → TypeId (TypeIds) = Exp	Function definition
5	TypeId ightarrow bool id	Type and identififier
6	TypeId o int id	
7	TypeIds → TypeId	Sequence of types and identifiers
8	TypeIds → TypeId , TypeIds	
9	$Exp \rightarrow A Exp'$	
10	$Exp' \rightarrow +A$	
11	Exp' → E	
12	$A \rightarrow BA'$	

#Regra	Production rule	Internal representation
13	A' → < B A'	
14	A' → ε	
15	B o num	Expressions
16	$B o ext{id}$	
17	$B \rightarrow id$ ($Exps$)	
18	B o if B then B else B	
19	$B \rightarrow \text{let id} = B \text{ in } B$	
20	$Exps \rightarrow Exp$	Sequence of expressions
21	$Exps \rightarrow Exp$, $Exps$	

Nesta gramática há ainda muitas regras que podem ser fatoradas para que a gramática seja LL(1) (regras 2, 3, 7, 8, 16, 17, 20 e 21). Após a fatoração, a gramática é a seguinte:

#Regra	Production rule	Internal representation
1	Program → Funs	Program
2	Funs → Fun Funs'	Sequence of Function definitions
3	Funs' → Funs	
4	Funs'→ E	
5	Fun → TypeId (TypeIds) = Exp	Function definition
6	<i>TypeId</i> → bool id	Type and identififier
7	TypeId → int id	
8	TypeIds → TypeId TypeIds'	Sequence of types and identifiers
9	TypeIds'→ , TypeIds	
10	TypeIds' → E	
11	$Exp \rightarrow A Exp'$	

#Regra	Production rule	Internal representation
12	Exp' → + A	
13	Exp' → ε	
14	$A \rightarrow BA'$	
15	A' → < B A'	
16	A' → E	
17	$B o ext{num}$	Expressions
18	$B o ext{id } B'$	
19	$B' \rightarrow (Exps)$	
20	B'→E	
21	$B \rightarrow \text{if } B \text{ then } B \text{ else } B$	
22	$B \rightarrow \text{let id} = B \text{ in } B$	
23	Exps → Exp Exps'	Sequence of expressions
24	Exps' → , Exps	
25	Exps'→ε	

2) Calcular os conjuntos First e Follow da gramática para construir a tabela LL(1).

Não terminais	Nullable	First	Follow
Program	F	bool, int	
Funs	F	bool, int	\$
Funs'	V	bool, int	\$
Fun	F	bool, int	bool, int, \$
TypeId	F	bool, int	,, (,)
TypeIds	F	bool, int)
TypeIds'	V	,)
Exp	F	num, id, if, let	,, bool, int,), \$
Exp'	V	+	,, bool, int,), \$
Exps	F	num, id, if, let)
Exps'	V	,)
A	F	num, id, if, let	+, ,, bool, int,), \$
A'	V	<	+, ,, bool, int,), \$

В	F	num, id, if, let	then, else, in, <, +,), bool, int, ,, \$
В'	V	(then, else, in, <, +,), bool, int, ,, \$

3) Construir a tabela LL(1).

	()	=	,	bool	int	id	+	<	num	if	then	else	let	in	\$
Progr am					1	1										
Funs					2	2										
Funs'					3	3										
Fun					5	5										
TypeI d					6	7										
TypeI ds					8	8										
TypeI ds'		10		9												
Exp							11			11	11			11		
Exp'		13		13	13	13		12								13
Exps							23			23	23			23		
Exps'		25		24												
A							14			14	14			14		
A'		16		16	16	16		16	15							16
В							18			17	21			22		
В'	19	20		20	20	20		20	20			20	20		20	20

A tabela LL(1) não possui conflitos, portanto a gramática é LL(1).