TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 26.11.-30.11.2018

6. Übung Analysis III für Mathematiker(innen)

(halbstetige Funktionen)

Themen der großen Übung am 19.11.

Abkürzung: $\mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\}$ und $\mathbb{R}_{-\infty} = \mathbb{R} \cup \{-\infty\}$. Wir zeigen:

- (i) Ist $f: \mathbb{R}^d \to \mathbb{R}_{\infty}$ eine Funktion mit einem lokalen Minimum in $x \in \mathbb{R}^d$, so ist f in x unterhalbstetig.
- (ii) Eine Funktion $f: \mathbb{R}^d \to \mathbb{R}_{\infty}$ ist genau dann von unten halbstetig in $x \in \mathbb{R}^d$, wenn $\lim\inf_{y\to x} f(y) \geq f(x)$ gilt.
- (iii) Punktweise Suprema beliebig vieler unterhalbstetiger Funktionen $\mathbb{R}^d \to \mathbb{R}_{\infty}$ sind unterhalbstetig, aber im Allgemeinen nicht ihre Infima.
- (iv) Aus Hausaufgabe 20 (ii) folgt:
 - Eine Menge $U \subseteq \mathbb{R}^d$ ist offen (bzw. abgeschlossen) genau dann, wenn ihre Indikatorfunktion \mathbb{I}_U unterhalbstetig (bzw. oberhalbstetig). Ist zudem U beschränkt, so folgt aus der unter (bzw. ober) Halbstetigkeit, dass \mathbb{I}_U bereits in $\mathcal{H}^{\uparrow}(\mathbb{R}^d)$ (bzw. in $\mathcal{H}^{\downarrow}(\mathbb{R}^d)$) ist.
 - Versieht man \mathbb{R}_{∞} mit der Topologie $\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}_{-\infty}\} \cup \{\emptyset\}$, so ist eine Funktion $f : \mathbb{R}^d \to \mathbb{R}_{\infty}$ unterhalbstetig genau dann, wenn sie \mathcal{T} -stetig ist.

Sei $K\subseteq \mathbb{R}^d$ kompakt und $f\colon K\to [0,\infty)$ stetig. Wir betrachten die folgende Menge im \mathbb{R}^{d+1} :

$$K_f = \{(x, y) \in K \times [0, \infty) \mid y \in [0, f(x)]\}$$

und zeigen, dass $\operatorname{Vol}_{d+1}(K_f) = \int_K f(x) \, \mathrm{d}x$ gilt. Damit berechnen wir das Volumen des Körpers, der unterhalb der Fläche $z = xy^2 + y^3$ und oberhalb des Quadrates $[0,2] \times [0,2]$ liegt.

Tutoriumsvorschläge

15. Aufgabe

Seien $f,g\colon \widecheck{\mathbb{R}^d} \to \mathbb{R} \cup \{\infty\}$ unterhalbstetig. Zeigen Sie:

- (i) Ist f auch oberhalbstetig, so ist f stetig.
- (ii) Die Funktionen $f + \lambda g$ (mit $\lambda \in [0, \infty)$) und $\inf(f, g)$ sind unterhalbstetig. Bilden die unterhalbstetigen Funktionen auf \mathbb{R}^d einen Vektorraum?
- (iii) Ist $f(a) \ge 0$ und $g(a) \ge 0$, so sind $f \cdot g$ und $\frac{1}{f}$ unterhalbstetig in a. (Wir setzen $\frac{1}{f}(a) := \infty$, falls f(a) = 0.)

16. Aufgabe

Wir definieren eine Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \qquad f(x) := \begin{cases} \frac{1}{q}, & \text{falls } x = \frac{p}{q} \in \mathbb{Q} \text{ mit } p \in \mathbb{Z}, q \in \mathbb{N} \text{ teilerfremd,} \\ 0 & \text{sonst.} \end{cases}$$

Untersuchen Sie f auf Halbstetigkeit von unten, von oben und Stetigkeit.

17. Aufgabe

Bestimmen Sie das dreidimensionale Volumen von

$$P := \{(x, y, z) \in \mathbb{R}^3 \mid 5x^2 + 8xy + 5y^2 \le z \le 1\}.$$

Hinweis: Man prüft leicht nach, dass $M = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$ positiv definit ist mit $M = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^2$.

Hausaufgaben

19. Aufgabe (5 Punkte)

Sei $K \subseteq \mathbb{R}^d$ kompakt und $f: K \to [0, \infty[$ stetig. Wir definieren $\widetilde{f}: \mathbb{R}^d \to \mathbb{R}$ als die triviale Fortsetzung von f auf \mathbb{R}^d mit $\widetilde{f}(x) = 0$ für $x \in \mathbb{R}^d \setminus K$. Zeigen Sie, dass \widetilde{f} in $\mathcal{H}^{\downarrow}(\mathbb{R}^d)$ liegt.

20. Aufgabe (6 Punkte)

Betrachten Sie eine Funktion $f: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ und zeigen Sie:

(i) f ist genau dann in $x \in \mathbb{R}^d$ von unten halbstetig, wenn gilt

$$\lim_{\varepsilon \searrow 0} \inf_{y \in \mathbb{R}^d \colon ||x-y|| < \varepsilon} f(y) = f(x).$$

- (ii) f ist genau dann von unten halbstetig, wenn die Niveaumengen $\{f \leq s\} := \{x \in \mathbb{R}^d \mid f(x) \leq s\}$ für alle $s \in \mathbb{R}$ abgeschlossen sind.
- (iii) Ist f von unten halbstetig, so nimmt f auf jedem Kompaktum $K\subseteq \mathbb{R}^d$ ein Minimum an.

21. Aufgabe (5 Punkte)

Für ein a > 0 sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) := \begin{cases} (a^2 - x^2)^{-\frac{1}{2}}, & \text{falls } |x| < a, \\ 0 & \text{sonst.} \end{cases}$$

Konstruieren Sie explizit eine Folge $(f_n)_{n\in\mathbb{N}}$ in $\mathcal{C}_{c}(\mathbb{R})$ mit $f_n \uparrow f$, und zeigen Sie damit, dass das Integral $\int_{\mathbb{R}} f(x) dx$ (im Sinne der Definition aus Abschnitt 1.5) gleich dem uneigentlichen Riemann-Integral der Einschränkung von f auf]-a,a[ist.

22. Aufgabe (4 Punkte)

Seien $-\infty < a < b < \infty$ und $f: [a, b] \to [0, \infty[$ stetig. Wir definieren den Rotationskörper $R_f := \{(x, y, z) \in \mathbb{R}^3 : x \in [a, b], y^2 + z^2 \le f(x)^2\}$. Zeigen Sie, dass $\operatorname{Vol}_3(R_f) = \pi \int_a^b f(x)^2 dx$ gilt.

Gesamtpunktzahl: 20