N	۱E	202		
1	-EC	TURE	19	
1	TUTO	RIAL	6	
тнυ	17	FEB	20	22

Problem 1 g (x)= g, $q_0 = -SAg = \frac{kg}{m^3} \frac{m^2 N}{kg} = \frac{N}{m}$ In statics, g = N/kg 3 reactions 2 stat. indet.2 equations $\Sigma F_x = 0$, $\Sigma M_y = 0$

$$R_{B} = -\frac{3}{8} q_{0}L$$

$$R_{A} + R_{B} + q_{0}L = 0$$

$$R_{A} = -\frac{5}{8} q_{0}L$$

$$M_{A} + q_{0}LL + \left(-\frac{3}{8} q_{0}L\right)L = 0$$

$$M_{A} = -\frac{q_{0}L^{2}}{8}$$

$$U(z) = \frac{q_{0}}{ET} \left(\frac{L^{2}z^{2}}{16} - \frac{Lz^{3}}{24} + \frac{z^{4}}{24}\right)$$

$$u(z) = \frac{q_0 z^2}{24 EI} \left(\frac{z^2 + 6 L^2 + 1z}{2} \right)$$

$$+ \frac{q_0}{EI} \left(\frac{Lz^2 - z^3}{2} \right) + \frac{M_0 z^2}{2 EI}$$

$$u'(z) = \frac{q_0}{24 EI} + \frac{q_0}{4z^3 + 12 L^2 z - 12 L^2}$$

$$+ \frac{q_0}{EI} \left(\frac{Lz - z^2}{2} \right) + \frac{M_0 z}{EI}$$

$$u(L) = 0, \quad u'(L) = 0 \quad \text{fixed-fixed}$$

$$\frac{1}{EI} \left(\frac{q_0 L^4}{8} + \frac{q_0 L^3}{3} + \frac{M_0 L^2}{2} \right) = 0$$

$$\frac{1}{EI} \left(\frac{q_0 L^3}{6} + \frac{q_0 L^2}{2} + M_0 L \right) = 0$$

			12	
Plug ba	ick to	get	_2	
น(ฆ)	$= \frac{q_0}{24}$	Z (z-	·L)	
	241	-+		

(u(L)	= - <u>P</u> EI	L3 +	<u>Ra²L</u> 2EI	- <u>Ra³</u>	

Total force P, > Po. Used Po to close the gap. Available force = P1-P0 At z=a, Contact made/ Gap* $\frac{-Ra^{3}}{3EI} + \frac{P_{1}-P_{0}}{ET} \left(\frac{La^{2}-a^{3}}{2} \right) = 0$ $R = \frac{3P_1}{a^3} \left(\frac{La^2}{a^2} - \frac{a^3}{6} \right) - \frac{3EI9}{a^3}$ * stat. indet.

L= 0.7 m, E= 200 GPa
a= 0.5 m, g= 0.5 mm

$$T = \frac{1}{12} (60 \times 10^{3})^{\frac{4}{3}} = 1.08 \times 10^{6} \text{ m}^{\frac{4}{3}}$$

$$EI = 2.16 \times 10^{5} \text{ Nm}^{2}$$

$$\frac{P}{EI} \left(\frac{La^{2} - a^{3}}{2}\right) = g$$

$$P = 1.62 \text{ kN}$$
End deflection = $\frac{P_{0}L^{3}}{3EI}$
at C = 0.8575 mm

P) Po
Lumpsum.

Method

II

U

Given

U(L) =
$$\frac{P}{EI} \frac{L^3}{3} + \frac{R}{EI} \left(\frac{La^2 - a^3}{2} \right) = S_L = 1 \text{ mm}$$

U(a) = $\frac{P}{EI} \left(\frac{La^2 - a^3}{6} \right) + \frac{R}{EI} \frac{a^3}{3} = S_a = 0.5$

III

Given

Given

9

$$\begin{pmatrix} L^3/3 & \frac{La^2}{2} - \frac{a^3}{6} \\ \frac{La^2}{2} - \frac{a^3}{6} & \frac{a^3}{3} \end{pmatrix} \begin{pmatrix} P \\ R \end{pmatrix} = \begin{pmatrix} S_L ET \\ S_a EI \end{pmatrix}$$

$$P = 5.634 \text{ kN}$$

$$R = -6.423 \text{ kN}$$