Homework 1, due 12:00 Wednesday 30 January 2019 to Dr. Pang's mailbox

You must justify your answers to receive full credit.

- 1. Let V be a vector space over a field F. (In all parts below, please state clearly which axiom or property is being used in each step.)
 - a) Axiom (V4) states that $\exists \mathbf{0} \in V$ such that

$$\forall \alpha \in V, \quad \alpha + \mathbf{0} = \alpha. \tag{*}$$

Show that such **0** is unique.

(Hint: suppose 0 and 0' both satisfy (*), then show 0 = 0'.)

- b) Now let $\mathbb{F} = \mathbb{R}$, i.e. V is a real vector space. Suppose $a \in \mathbb{R}$ and $\alpha \in V$ satisfy $a\alpha = 0$. Show that, either a=0 or $\alpha=0$. (Hint: Suppose $a\neq 0$, and show $\alpha=0$.)
- 2. Let $V = \mathbb{R}^2$ with the following strange operations:

$$\begin{pmatrix} x \\ y \end{pmatrix} \boxplus \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}, \quad c \boxdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cy \\ cx \end{pmatrix}.$$

- a) Does V satisfy Axiom (V9)? Explain your answer.
- b) Show that V does not satisfy one of the other axioms.
- a) Show that $\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ is in the span of the matrices 3.

$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

b) Determine if

$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

are linearly independent over \mathbb{R} .

- a) Show that if $\{\alpha_1, \ldots, \alpha_n\}$ is linearly independent over \mathbb{F} and if $\{\alpha_1, \ldots, \alpha_n, \beta\}$ is linearly 4. dependent over \mathbb{F} , then β is a linear combination of $\alpha_1, \ldots, \alpha_n$.
 - b) Show that, if $\{\alpha, \beta, \gamma\}$ is linearly independent over \mathbb{R} , then $\{\alpha + \beta, \beta + \gamma, \gamma\}$ is linearly independent over \mathbb{R} .
- 5. to be released later

Homework 1, due 12:00 Wednesday 30 January 2019 to Dr. Pang's mailbox

6. to be released later

The following two questions are to prepare you for upcoming classes, and is unrelated to the material from recent classes.

7. Let

$$A = \begin{pmatrix} 2 & -3 & -7 & 5 \\ 1 & -2 & 4 & 3 \\ 2 & 0 & -4 & 2 \\ 1 & -5 & -7 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -4 \\ -3 \\ 2 \\ -9 \end{pmatrix}.$$

- a) Find all solutions $X \in \mathbb{R}^4$ to AX = B. Please show all steps in your computation.
- b) Find, with justification, a basis for the column space of A.
- c) Find, with justification, a basis for the null space of A.
- d) Let $\sigma: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation given by $\sigma(\alpha) = A\alpha$ (i.e. the standard matrix of σ is A). Let \mathscr{B} be the basis of \mathbb{R}^4 given by

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\3\\2\\0 \end{pmatrix} \right\}.$$

Write down $[\sigma]_{\mathscr{B}}$, the matrix for σ relative to \mathscr{B} , as the product of three matrices and/or their inverses. (You do **not** need to invert or multiply the three matrices.)

- 8. Let $P_{\leq 3}(\mathbb{R})$ be the set of polynomials over \mathbb{R} of degree less than 3. Consider the function $\sigma: P_{<3}(\mathbb{R}) \to P_{<3}(\mathbb{R})$ given by $\sigma(a + bx + cx^2) = (a - b) + (b + c)x^2$.
 - a) Show that σ is a linear transformation.
 - b) Find the matrix representing σ relative to the standard basis $\{1, x, x^2\}$ of $P_{<3}(\mathbb{R})$.
 - c) Find a linearly independent set of polynomials that span the kernel of σ .

Optional questions. If you attempted seriously all the above questions, then your scores for the following questions may replace any lower scores for two of the above questions.

9. Let $V = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ be vector space of all functions from \mathbb{R} to \mathbb{R} . Assume $f, g \in V$, prove that the set $\{f,g\}$ is linearly dependent if and only if $\forall a,b \in \mathbb{R}, f(a)g(b) = g(a)f(b)$.

Homework 1, due 12.00 Wednesday 50 January 2015 to Dr. Tang's manbox
10. Let S_1 and S_2 be subsets of a vector space V . Assume that $S_1 \cap S_2 \neq \emptyset$. Is $\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$? Give a proof or a counterexample.
TIME
- END $-$