NA	9/3
S	7.8
	I). 📔
Rec	108
CARL	OS III.

Departamento de Física Laboratorio de Electricidad y Magnetismo

Grupo de prácticas		Alumnos que realizaron la práctica	Sello de control
Fecha de se	esión		
Fecha de en	trega		

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LEY DE FARADAY

Nota: • Incluir en todas las tablas unidades y errores

5.1. Inducción imán-bobina

• ¿Cuándo se produce corriente eléctrica en esta experiencia?

• ¿De qué depende el sentido de la corriente (fem) inducida?

 ¿Cómo varía el valor de la fem inducida al variar el número de espiras de la bobina? Explique las observaciones realizadas usando la ley de Faraday dada por la ecuación [1] del guión.

5.2. Inducción bobina-bobina

ullet f_{gen} : frecuencia seleccionada en el generador

ullet I_{ef} : corriente medida en el multímetro

• $T_{\rm osc}$: período medido en el osciloscopio

• $f_{\rm osc}$: frecuencia medida en el osciloscopio

ullet V_{pp} : voltaje pico a pico medido en el osciloscopio

ullet ϵ_0 : amplitud de las oscilaciones medida en el osciloscopio

 $I_{\rm ef} = \pm$ ()

IMPORTANTE: Mantenga la corriente medida en el multímetro a un **valor constante**.

f _{gen} ±∆f _{gen}	$T_{osc} \pm \Delta T_{osc}$	f _{osc} ±∆f _{osc}	$V_{pp}\pm\Delta V_{pp}$	$\varepsilon_0 \pm \Delta \varepsilon_0$
()	()	()	()	()

• Indicar cómo se obtiene $f_{\rm osc}$ y cómo se calcula su error $\Delta f_{\rm osc}$:

$$f_{osc} =$$

$$\Delta f_{osc} =$$

• Indicar cómo se obtiene ε_0 y cómo se calcula su error $\Delta \varepsilon_0$:

$$\epsilon_0 =$$

$$\Delta \varepsilon_0 =$$

• ¿Por qué se observa una fuerza electromotriz en el carrete al encender el generador?
• Usando la ley de Faraday y que el campo B dentro de la bobina debido a la corriente I que circula por ella es $B=\mu_0nI=\mu_0nI_0\cos\omega t$:
(a) explicar por qué al conectar el generador se observa en el carrete una fem sinusoidal de frecuencia igual a la del generador
 (b) obtener la expresión de la amplitud de la fem en el carrete en función de la frecuencia ω del generador

• Represente gráficamente la tensión pico-pico (V_{pp}) en función de la frecuencia (f_{gen}) recogida en la tabla anterior. Incluir en la gráfica la recta de ajuste por mínimos cuadrados que se calculará a continuación.

Ajustar por mínimos cuadrados y=V_{pp} frente a x= f_{gen}

$$\sum x_i = \sum y_i = \sum x_i y_i = \sum x_i^2 = n = \sigma$$

Resultados del ajuste:

o Pendiente:

$$m = \Delta m =$$

$$m = \pm$$
 ()

o Ordenada en el origen:

b =

$$b = \Delta b =$$

)

±

 Discuta el significado de los parámetros del ajuste (m y b) usando la ley de Faraday

5.3. Medida del campo magnético en el interior de un solenoide

Datos del solenoide:

• número de espiras del solenoide:

• longitud del solenoide:

$$L = \pm$$
 ()

• número de espiras por unidad de longitud:

$$n = \Delta n = \Delta n = \pm \Delta n$$

 radio del solenoide: 			
a =			
Δa =			
	±		
a =		()	
Datos del carrete:			
• número de espiras del d	carrete:		
N _c =			
• radio del carrete:			
$R_c =$			
AD -			
$\Delta R_c =$			
R _c =	±	()	
• área de cada espira del	carrete:		
$A_c =$			
A A . —			
ΔA_{c} =			
A _c =	±	()	
(a) Medida experimental del ca	ampo magnétic	o B $_0$ en el solenoide	
 frecuencia seleccionada 	on al ganaradar		
frecuencia seleccionadaf =	±		
1 =	±	()	
• frecuencia angular:			
ω =			
A			
$\Delta \omega =$			
ω =	±	()	

•	corriente	en el	soler	nide:
•	connente	CII CI	SOIGI	iviue.

$$I_{\mathrm{ef}} = \pm$$
 ()
$$I_{0} = \Delta I_{0} = \pm$$
 ()

x: distancia del carrete al centro del solenoide

 V_{pp} : voltaje pico a pico medido en el osciloscopio ϵ_0 : amplitud de las oscilaciones medida en el osciloscopio B_0 : amplitud del campo magnético en el solenoide

$$B_0 = \frac{\varepsilon_0}{N_c A_c \omega}$$

Indicar cómo se obtiene ϵ_0 y cómo se calcula su error $\Delta \epsilon_0$:

$$\epsilon_0 = \Delta \epsilon_0 =$$

Indicar cómo se obtiene experimentalmente $B_0\,y$ se calcula su error:

$$B_0 =$$

$$\Delta B_0 =$$

x±Δx	$V_{pp}\pm\Delta V_{pp}$	$\varepsilon_0 \pm \Delta \varepsilon_0$	$B_0 \pm \Delta B_0$
()	()	()	()

(b) Cálculo de B_0 en el solenoide usando la expresión teórica (7)

• Obtener B_0 en cada punto x del solenoide usando la expresión teórica:

$$B_0 = \frac{\mu_0 n I_0}{2} \left(\cos \beta_2 - \cos \beta_1 \right)$$

con

$$\cos \beta_1 = -\frac{\frac{L}{2} - x}{\sqrt{\left(\frac{L}{2} - x\right)^2 + a^2}}$$

$$\cos \beta_2 = +\frac{\frac{L}{2} + x}{\sqrt{\left(\frac{L}{2} + x\right)^2 + a^2}}$$

** no es necesario realizar el cálculo de errores en este apartado

()	Cos β ₁	Cos β ₂	B ₀ ()

• Represente gráficamente los valores teóricos y experimentales de B_0 en función de x. Discuta los resultados obtenidos.

Discusión de los resultados: