ĐIỆN TỬ CÔNG SUẤT

Giáp Quang Huy gqhuy@dut.udn.vn

CHƯƠNG IV: BỘ BIẾN ĐỔI VÀ BỘ KHÓA MỘT CHIỀU

1

4.1. Khái niệm chung - phân loại

Chức năng : <u>điều khiển trị trung bình điện áp một chiều</u> ngõ ra từ một nguồn điện áp một chiều không đổi.

Điện áp trên tải có dạng xung \rightarrow Còn được gọi là <u>bộ biến đổi điện áp một chiều</u> dạng xung hay <u>bộ băm điện áp</u>.

Phân loai:

- > Phân loai theo cấu trúc
- Mắc nối tiếp
- Mắc song song
- Mắc hổn hợp nối tiếp & song song
- Bộ biến đổi 4 góc phần tư
- > Phân loại theo chức năng
- Hạ áp (Bộ buck)
- Nâng áp (Bộ boost)
- > Phân loại theo phương pháp điều khiển
- Tần số xung
- Độ rộng xung
- Điều khiển theo 2 giá trị dòng điện

Ứng dụng: Dùng làm nguồn điện áp cho truyền động điện động cơ một chiều, làm bộ nguồn cho bộ biến tần áp, bộ biến tần dòng điện.

3

Phương trình đặc tính của động cơ

$$U_{-} = E_{-} + (R_{-} + R_{f-})I_{-}$$

$$\Rightarrow E_{-} = U_{-} - (R_{-} + R_{f-})I_{-}$$

$$E_{-} = K.\phi.\omega$$

$$\omega = \frac{U_{-}}{K\phi} - \frac{(R_{-} + R_{f-})}{K\phi}I_{-}$$

$$M = K.\phi.I_{-}$$

$$\omega = \frac{U_{-}}{K\phi} - \frac{(R_{-} + R_{f-})}{(K\phi)^{2}}M$$

Tốc độ không tải lý tưởng $(M = I_{\perp} = 0)$

$$\omega_0 = \frac{U_{\perp}}{K\phi}$$

Dòng điện ngắn mạch $(\omega = 0)$

$$I_{-nm} = \frac{U_{-}}{(R_{-} + R_{f-})}$$

Các trạng thái hãm trả năng lượng về nguồn

Hãm tái sinh

$$\omega > \omega_{\scriptscriptstyle 0} > 0$$
 , $E_{\scriptscriptstyle \perp} > U_{\scriptscriptstyle \perp}$

$$I_{-} = \frac{U_{-} - E_{-}}{R_{-} + R_{f_{-}}} < 0$$

Momen động cơ đổi chiều và ngược chiều với $\omega \rightarrow$ chế độ hãm tái sinh.

Hãm ngược

 ω < 0 Động cơ quay ngược chiều tốc độ không tải lý tưởng nhờ momen ngoài \rightarrow $E_{\rm u}$ đảo chiều.

$$I_{-} = \frac{U_{-} + \left| E_{-} \right|}{R_{-} + R_{f_{-}}} > 0$$

 $\stackrel{\textstyle \rightarrow}{}$ Cần đảo chiều ${\rm U_{u}}$ để nhận năng lượng trả về nguồn.

Hãm động năng:

$$U_{\cdot} = 0$$

Động cơ làm việc như một máy phát độc lập

4.2. Nguyên tắc làm việc của các bộ biến đổi xung

4.2.1 Bộ biến đổi điện áp một chiều mắc nối tiếp

a) Nguyên lý tổng quát

Khóa chuyển mạch K mắc nối tiếp với tải

$$T = T_1 + T_2$$

$$0 \div T_1 : K \text{ m\'o}, u_d = U$$

 $T_1 \div T_2 : K \text{ kh\'oa}, u_d = 0$

$$U_z = \frac{1}{T} \int_0^{T_1} U_1.dt = \frac{T_1}{T}.U_1$$

Tỷ số xung
$$\gamma = \frac{T_1}{T}$$

$$\Rightarrow U_d = \gamma.U_1$$

7

b) Cấu tạo

- Nguồn một chiều không đổi U
- Công tắc S mắc nối tiếp với tải RLE,
- Diode V₀ mắc đối song với tải

c) Hoạt động

<u>Giả thiết</u>: mạch ở trạng thái xác lập, dòng tải liên tục.

- \triangleright Nhịp S ($0 < t < T_1$):
- Khóa S mở, dòng điện khép kín qua mạch RLE...
- Năng lượng từ nguồn U một phần tích lũy trong L, phần lớn nạp vào E_u, phần còn lại tiêu tốn trên R.

Điện áp: $u_z = U$

Dòng điện: $i_Z = i_S$

$$u_Z = U = R.i_Z + L\frac{di_Z}{dt} + E_-, i_Z(t=0) = I_{ZMIN}$$

$$i_z = \frac{U - E_{\perp}}{R} (1 - e^{-\frac{t}{\tau}}) + I_{ZMIN} \cdot e^{-\frac{t}{\tau}}$$
 (1)

 $\tau = \frac{L}{R}$ Hằng số thời gian

 \Rightarrow Dòng tải tăng theo hàm mũ về giá trị $\frac{U-E_{-}}{R}$

- \triangleright Nhịp V_0 ($T_1 < t < T$):
- Khóa S khóa, V₀ mở, dòng i_Z khép kín qua mạch RLE_u và V₀.
- Năng lượng trước đây tích lũy trong L được giải phóng, phần lớn nạp cho E_u, phần còn lại tiêu tốn trên R.

Điện áp : $u_Z = U$ Dòng điện: $i_Z = i_S$

$$u_Z = -u_{V_0} = R.i_Z + L\frac{di_Z}{dt} + E_{\perp} = 0$$

Điều kiện ban đầu: $i_1 = i_Z(T_1) = I_{ZMAX}$

$$i_Z(t) = -\frac{E_{\cdot}}{R} \left(1 - e^{\frac{t - T_1}{r}} \right) + I_{ZMAX} \cdot e^{\frac{t - T_1}{r}}$$
 (2)

- \Rightarrow Dòng tải giảm theo hàm mũ về giá trị $-\frac{E_{-}}{R}$
- \Rightarrow I_{ZMIN} và I_{ZMAX} được xác định bằng cách giải hệ 2 phương trình 2 ẩn số bằng cách thay i_Z(t=T₁)=I_{ZMAX} vào (1) và thay i_Z(t=T)=I_{ZMIN} vào (2).

d) Điều khiển trị trung bình của điện áp trên tải:

Giá trị trung bình điện áp tải:

$$U_{Z} = \frac{1}{T} \int_{0}^{T_{1}} U.dt = \frac{T_{1}}{T}.U = \gamma.U$$

 \Rightarrow Điều khiển U_Z bằng cách thay đổi giá trị $\gamma = \frac{T_1}{T}$

Giá trị trung bình dòng điện tải:

$$I_Z = \frac{U_Z - E_{-}}{R}$$

Độ nhấp nhô dòng điện tải (tính gần đúng):

$$\Delta I = I_{\rm ZMAX} - I_{\rm ZMIN} = \frac{(1-\gamma).\gamma.U.T}{2L} = \frac{(1-\gamma).\gamma.U}{2L.f}$$

Độ nhấp nhô dòng điện tải phụ thuộc 4 yếu tố:

- Điện áp nguồn cung cấp ${\sf U}_1$
- Điện cảm tải L
- Tỉ số xung γ
- Chu kỳ chuyển mạch T

Bộ BĐ một chiều cần được thiết kế sao cho $\Delta I \leq \Delta I_{co}$.

- \rightarrow Thay đổi tỉ số xung γ
- → Giảm chu kỳ chuyển mạch T
- → Tăng L

4.2.2 Bộ biến đổi điện áp một chiều mắc song song

a) Chức năng

Bộ tăng áp được sử dụng trong $\underline{\text{hãm tái sinh}}$ để trả năng lượng từ nguồn điện áp thấp (sức điện động E_u) sang nguồn điện áp cao hơn (nguồn một chiều U)

b) Cấu tạo

- Van bán dẫn S mắc song song với tải, có thể điều khiển đóng và ngắt được dòng điện đi qua nó.
- Diode không mắc nối tiếp với tải và chỉ cho phép dòng điện dẫn theo chiều từ tải về nguồn

Điều kiện hoạt động của mạch:

- $E_{u'}$ < U, nguồn có khả năng tiếp nhận năng lượng từ tải trả về do quá trình hãm tái sinh sinh ra
- Tải một chiều phải tính cảm kháng.

11

c) Hoạt động

<u>Giả thiết</u>: mạch ở trạng thái xác lập, dòng tải liên tục.

- \triangleright Nhịp S ($0 < t < T_1$):
- Khóa S mở, dòng điện khép kín qua mạch RLE,,..
- Năng lượng do sức điện động E_u sinh ra tích lũy phần lớn vào cuộn L, phần còn lại tiêu hao trên R.

Điện áp :
$$u_Z = 0$$

Dòng điện:
$$i_Z=i_S,\ i_{V_0}=0$$

$$u_{z} = -R.i_{t} - L\frac{di_{t}}{dt} + E_{z} = 0, \quad i_{z}(t=0) = I_{zMIN}$$

$$i_{z}(t) = (\frac{E_{z}}{R} + I_{zMIN}).(1 - e^{-\frac{t}{\tau}}) - I_{zMIN}$$
(3)

$$\tau = \frac{L}{R}$$

 \Rightarrow Dòng tải tăng theo hàm mũ về giá trị $\frac{E_-}{R}$

- ightharpoonup Nhip V_0 ($T_1 < t < T_2$):
- Van S khóa, V_0 mở, dòng điện khép kín qua mạch $\mathit{RLE}_{u'}$ và V_0 .
- Năng lượng từ nguồn và năng lượng tích trữ trong cuộn kháng L, tiêu tốn một phần trên điện trở R, phần lớn còn lại được trả về nguồn U

Điện áp: $u_Z = U$

Dòng điện: $i_Z = i_{V0}$, $i_S = 0$

$$u_{Z} = -Ri_{t} - L\frac{di_{t}}{dt} + E_{-} = U , i_{Z}(T_{1}) = I_{ZMAX}$$

$$i_{Z}(t) = (\frac{E_{-} - U}{R} + I_{ZMAX})(1 - e^{\frac{t - T_{1}}{\tau}}) - I_{ZMAX}$$
(4)

- \Rightarrow Dòng tải giảm theo hàm mũ về giá trị $\frac{E_{-}-U}{R}$
- \Rightarrow I_{ZMIN} và I_{ZMAX} được xác định bằng cách giải hệ 2 phương trình 2 ẩn số bằng cách thay i_Z(t=T₁)=I_{ZMAX} vào (3) và thay i_Z(t=T)=I_{ZMIN} vào (4).

d) Điều khiển trị trung bình của điện áp trên tải: Giá trị trung bình điện áp tải:

$$U_Z = \frac{1}{T} \int u_z dt = \frac{U T_2}{T} = U(1 - \gamma)$$

 \Rightarrow Điều khiển U_Z bằng cách thay đổi giá trị $\gamma = \frac{T_1}{T}$ Từ đó điều khiển được công suất phát từ nguồn E_{II}, và công suất trả về nguồn.

Dòng tải trung bình:

$$I_z = \frac{-U_z + E_-}{R}$$

4.2.3 Bộ biến đổi điện áp một chiều mắc nối tiếp và song song kết hợp

- Sơ đồ phối hợp nối tiếp và song song được sử dụng trong trường tải làm việc trong cả 2 trường hợp nạp năng lương và trả năng lượng về nguồn.
- Hai van S₁ và S₂ có thể được điều khiển độc lập.
 - Điều khiển S1 khi nhận năng lượng từ nguồn.
 - Điều khiển S2 khi trả năng lượng về nguồn.

15

4.2.3 Bộ biến đổi DC mắc nối tiếp dùng Thyristor và mạch tắt cưỡng bức a) Cấu tạo

<u>Trong trường hợp công suất tải lớn</u>, khóa S có thể được thay thế bằng Thyristor (SCR) và kết hợp với bộ chuyển mạch LC.

Công tắc S (được thay thế bằng thyristor và bộ chuyển mạch có một mạch dao động) gồm : thyristor chính V_1 , thyristor phụ V_2 , mạch dao động gồm cuộn kháng L_1 , tụ điện C và diode V_3 .

Hoạt động chung : S được kích dẫn bằng cách kích SCR V_1 và được kích ngắt bằng cách kích SCR V_2 .

b) Hoạt động

> Nhịp $V_0 (0 \rightarrow T_1)$

$$i_Z = i_{V_0}, \ u_Z = u_{V_0} = 0$$

Giả thiết mạch đã ở trạng thái xác lập $u_C=U$ \rightarrow tụ C được nạp điện ???

$$u_{V_2} = 0, u_{V_1} = U$$

 $i_{V_1} = 0, i_C = i_{V_2} = 0$

➤ Nhịp S

\square Nhịp V_1V_3 $(T_1 \rightarrow T_3)$

Tại $\mathbf{t_1}$, đưa xung điều khiển mở $\mathbf{V_1}$ (mở khóa S).

$$u_{V_1} = 0, u_Z = U$$

$$u_{V_0} = -U, i_{V_0} = 0$$

17

Tụ C phóng điện qua mạch giao động ($V_1V_3L_1C$)

$$u_{V_2} = -u_C, i_{V_2} = 0, i_C = i_Z - i_{V_1}$$

Quá trình dòng điện và điện áp trên tụ được cho bởi hệ thức :

$$i_C = \frac{-U}{\sqrt{\frac{L_1}{C}}} \sin\left[\omega_v.(t-T_1)\right] \ , \ \omega_v = \sqrt{\frac{1}{L_1.C}}$$

$$u_C = U.\cos\left[\omega_v.(t - T_1)\right]$$

$$u_C(t_3) = -K_1.U$$

 $K = 0.7 \div 0.9$ (Trong trường hợp mạch dao động LC lý tưởng, có thể đạt K=1)

Tại t=t₃, V₃ ngắt và không cho i_C đổi chiều.

\square Nhịp $V_1 (T_3 \rightarrow T_4)$

Các đại lượng giữ nguyên giá trị như khi t=T₃

\square Nhịp $V_2 (T_4 \rightarrow T_6)$

Tại t= T_4 , đưa xung điều khiển kích mở V_2 để ngắt khóa V_1

Điện áp tụ chuyển mạch đặt lên $V_1 \Rightarrow$ khóa V_1 $u_{V1} = u_C$, $i_{V_1} = 0$, $u_Z(T_4) = U - u_C = U + K_1.U$ $i_C = I_Z$ khép kín qua mạch (U, C, V_2 , Z) và tích điện cho tụ.

$$u_{C} = u_{C}(T_{4}) + \frac{1}{C} \int_{T_{4}}^{t} I_{Z} dt , u_{C}(T_{4}) = u_{C}(T_{3})$$

$$u_{C} = u_{C}(T_{3}) + \frac{I_{Z}}{C}(t - T_{4}) = \frac{I_{Z}}{C}(t - T_{4}) - K_{1}U$$

Tại $t=t_6$, tụ C được nạp đến giá trị $u_C(T_6)=U$

19

Tại t=T_6: tụ C được nạp đến giá trị $u_{\scriptscriptstyle C}(T_{\scriptscriptstyle 6})$ = U $u_{\scriptscriptstyle V_{\scriptscriptstyle 0}}=u_{\scriptscriptstyle Z}=0$

- →Dòng nạp tụ qua V₂ bị ngắt
- ightarrow Dòng điện khép kín qua V_0 , mạch trở về hoạt động ở nhịp V_0 (kết thúc nhịp S).

c) Khởi động bộ giảm áp

Để mạch hoạt động, cần đảm bảo điện áp cần thiết cho tụ chuyển mạch khi khởi động. Có thể tích điện cho tụ C bằng cách :

- Mở V₂ trước.
- Đóng tụ C trực tiếp vào nguồn U qua một điện trở hạn chế dòng.

21

d) Xác định các thông số L₁, C chuyển mạch

 L_1 , C được chọn để đảm bảo thời gian cần thiết để các thyristor khôi phục khả năng khóa t_a : thời gian khóa cho từng thyristor.

> Tính C

 V_1 sử dụng khoản (T_4, T_5) để phục hồi trạng thái khóa (lúc này V_2 được kích dẫn, điện áp tụ C đặt lên V_1 là điện áp ngược)

$$(T_5 - T_4) \ge t_{qV_1}$$

Tại t= T₅:
$$u_C(T_5) = \frac{I_Z}{C}(T_5 - T_4) - K_1.U = 0$$

$$T_5 - T_4 = \frac{K_1.U.C}{I_Z}$$

 t_{qVI} đạt giá trị nhỏ nhất khi I_Z (dòng xả và nạp tụ trong khoản T₄ \rightarrow T₅) đạt giá trị lớn nhất.

$$C \ge \frac{I_{ZM}.t_{qV_1}}{K_1.U}$$

> Tính L

 V_2 sử dụng khoản (t_1, t_2) để phục hồi trạng thái khóa (lúc này V_1 được kích dẫn, điện áp tụ C đặt lên V_2 là điện áp ngược)

$$(T_2 - T_1) \ge t_{qV_2}$$

 $\rm T_2\text{-}T_1$ bằng ¼ chu kỳ dao động của mạch $\rm L_1C$, ký hiệu bằng $T_{\rm v}$

$$T_2 - T_1 = \frac{T_v}{4} = \frac{\pi}{2} \sqrt{L_1 C}$$

$$\Rightarrow L_1 \ge \frac{4t_{qV_2}^2}{\pi^2 C}$$

23

4.3 Các bộ biến đổi xung nhiều góc phần tư

4.3.1 Bộ biến đổi hai góc phần tư đảo chiều dòng điện

Điều kiện hoạt động của mạch:

- $E_u < U$, nguồn có khả năng tiếp nhận năng lượng từ tải trả về do quá trình hãm tái sinh sinh ra
- Tải một chiều phải tính cảm kháng.

4.3.2 Bộ biến đổi hai góc phần tư đảo chiều điện áp

$$\begin{split} U_Z &= U \frac{T_1 - T_2}{T} = U(2\gamma - 1) \\ \gamma &> 0.5 \rightarrow U_Z > 0 \\ \gamma &< 0.5 \rightarrow U_Z < 0 \end{split}$$

25

4.3.2 Bộ biến đổi hai góc phần tư đảo chiều điện áp Chế độ nạp năng lượng từ nguồn về tải

$$\gamma > 0.5 \rightarrow U_Z > 0$$

Nhịp V₁V₂

4.3.2 Bộ biến đổi hai góc phần tư đảo chiều điện áp

Chế độ trả năng lượng từ tải về nguồn

$$\gamma < 0.5 \rightarrow U_Z < 0$$

 ${\rm E_u}$ đảo chiều (nguồn phát năng lượng)

- Hãm ngược

Nhịp $S_1S_2V_2$

Điều kiện hoạt động của mạch:

- E_{u} < U_{r} nguồn có khả năng tiếp nhận năng lượng từ tải trả về.
- Tải một chiều phải tính cảm kháng.

4.3.3 Bộ biến bốn góc phần tư

4.2.4 Bộ buck (bộ giảm áp)

 $Battery\ state\ of\ charge\ (SOC)\ vs.\ terminal\ voltage$

| 100% SOC | 12.80 volts or greater | 75% SOC | 12.55 volts | 50% SOC | 12.20 volts | 25% SOC | 11.75 volts | 60% SOC | 10.50 volts | 60% SOC | 60%

29

4.2.4 Bộ buck (bộ giảm áp)

Bộ buck chứa bộ lọc thông thấp

$$u_z(t) = u_\sigma(t) + U_z$$

 $U_{\scriptscriptstyle d}$: thành phần một chiều với trị tức thời bằng trị trung bình của áp chỉnh lưu.

 $u_{\sigma}(t)$: thành phần xoay chiều.

➤ Nhịp S

Điện áp trên cuộn kháng:

$$u_L = U - u_Z$$

Giả sử thành phần nhấp nhô nhỏ nhờ tác dụng của bộ lọc $u_{\sigma}(t) \approx 0$

$$u_{\scriptscriptstyle L} \approx U - U_{\scriptscriptstyle Z}$$

Dòng điện qua cuộn dây

$$u_L = L \frac{di_L}{dt}$$

$$\frac{di_L}{dt} = \frac{u_L}{L} \approx \frac{U - U_Z}{L} \qquad \Rightarrow \mathrm{i_L T \check{a} ng} \ \mathrm{v\'{o}i} \ \mathrm{t\'{o}c} \ \mathrm{d\^{o}}$$
 là hằng số

➤ Nhịp V₀

$$u_L = -u_Z$$

Giả sử thành phần nhấp nhô nhỏ nhờ tác dụng của bộ lọc $u_{\sigma}(t) \approx 0$

$$u_L \approx -U_Z$$

$$u_L = L \frac{di_L}{dt}$$

$$\frac{di_{_L}}{dt} = \frac{u_{_L}}{L} \approx \frac{-U_{_Z}}{L} \implies \text{i}_{_L} \text{ giảm với tốc độ là}}$$
 hằng số

33

Biên độ nhấp nhô của dòng điện

$$\Delta I_{L-ON} = \int_0^{T_1} \frac{u_L}{L} \approx \int_0^{T_1} \frac{U - U_Z}{L} = \frac{U - U_Z}{L} T_1$$

$$\Delta I_{L-OFF} = \int_{T_1}^{T} \frac{u_L}{L} \approx \int_{T_1}^{T} \frac{-U_Z}{L} = \frac{-U_Z}{L} (1 - \gamma)T$$

$$\Delta I = I_{\mathit{LMax}} - I_{\mathit{LMin}} = \frac{U - U_{\mathit{Z}}}{L} T_{\mathit{1}} = \frac{U - U_{\mathit{Z}}}{L} \gamma T$$

$$\Rightarrow L = \frac{U - U_Z}{\Delta I} \gamma T$$

Ở trang thái xác lập

$$\Delta I_{\scriptscriptstyle L-ON} = -\Delta I_{\scriptscriptstyle L-OFF}$$

$$(U-U_{_{Z}})\gamma T=U_{_{Z}}(1-\gamma)T$$

$$\Rightarrow \gamma = \frac{U_Z}{U}$$

Kết luận:

- $U_z \le U$
- Điện áp $U_{Z c \acute{o}}$ thể được điều khiển thông qua γ So với bộ băm mắc nối tiếp , điện áp tải phẳng hơn

4.2.5 Bộ boost (bộ tăng áp)

35

➤ Nhịp S

Điện áp trên cuộn kháng:

$$u_L = U$$

$$i_C = -\frac{u_Z}{R}$$

Dòng điện qua cuộn dây

$$u_L = L \frac{di_L}{dt} = U$$

$$\frac{d i_{L}}{d t} \!=\! \frac{U}{L} \quad \Rightarrow \mathrm{i_{L}} \mathrm{T\check{a}ng} \ \mathrm{v\'{o}i} \ \mathrm{t\'{o}c} \ \mathrm{d\^{o}}$$
 là hằng số

Giả sử thành phần nhấp nhô nhỏ nhờ tác dụng của bộ lọc $u_{\sigma}(t)\approx 0$

$$i_C = -\frac{U_Z}{R}$$

➤ Nhịp V₀

Điện áp trên cuộn kháng:

$$u_L = U - u_Z$$

$$i_C = i_L - \frac{u_Z}{R}$$

Giả sử thành phần nhấp nhô nhỏ nhờ tác dụng của bộ lọc $u_{\sigma}(t)\approx 0$

$$u_L \approx U - U_Z$$

Dòng điện qua cuộn dây

$$u_L = L \frac{di_L}{dt} = U - U_Z < 0$$

$$\frac{di_L}{dt} = \frac{U - U_Z}{L} \qquad \Rightarrow i_L \text{ giảm với tốc độ là} \\ \text{hằng số}$$

Dòng điện qua tụ điện

$$i_C \approx i_L - \frac{U_Z}{R}$$

37

Biên độ nhấp nhô của dòng điện

$$\begin{split} \Delta I_{L-ON} &= \int_{0}^{T_{1}} \frac{u_{L}}{L} = \int_{0}^{T_{1}} \frac{U}{L} = \frac{U}{L} T_{1} = \frac{U}{L} \gamma T \\ \Delta I_{L-OFF} &= \int_{T_{1}}^{T} \frac{u_{L}}{L} \approx \int_{T_{1}}^{T} \frac{U - U_{Z}}{L} = \frac{U - U_{Z}}{L} (1 - \gamma) T \\ \Delta I &= I_{LMax} - I_{LMin} = \frac{U}{L} \gamma T \\ \Rightarrow L &= \frac{U}{M} \gamma T \end{split}$$

Ở trạng thái xác lập

$$\begin{split} \Delta I_{L-ON} &= -\Delta I_{L-OFF} \\ U\gamma T &= -(U-U_Z)(1-\gamma)T \\ \Rightarrow \frac{U_Z}{U} &= \frac{1}{1-\gamma} \end{split}$$

Kết luận:

- $U_z \ge U$
- Điện áp $U_{Z\,co}$ thể được điều khiển thông qua γ .

4.3 Nguyên tắc làm việc của các bộ biến đổi xung

- Độ rộng xung thay đổi T1
- Tần số xung thay đổi T
- Hai giá trị dòng điện

4.3.1 Nguyên tắc điều khiển độ rộng xung

$$\mathbf{U}_{z} = \frac{\mathbf{T}_{1}}{\mathbf{T}}.\mathbf{U}_{1} = \gamma.\mathbf{U}$$

Giữ nguyên f = 1/T, thay đổi T_1

39

4.3.2 Nguyên tắc điều khiển tần số xung

$$\mathbf{U}_{z} = \frac{\mathbf{T}_{1}}{\mathbf{T}}.\mathbf{U}_{1} = \gamma.\mathbf{U}$$

Thay đổi f = 1/T, giữ nguyên T_1

4.3.2 Nguyên tắc điều khiển hai giá trị dòng điện

Bộ phát xung đóng vai trò của một bộ điều khiển dòng điện