

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Darstellung von Graphen

- Adjazenzlisten (dünne Graphen, $|E| \ll |V|^2$)
- Adjazenzmatrix (dichte Graphen, |E| nah an $|V|^2$)

Arten von Graphen

- Ungerichtet, gerichtet
- Ungewichtet, gewichtet

Adjazenzmatrixdarstellung

- Knoten sind nummeriert von 1 bis |V|
- $|V| \times |V|$ Matrix $A = (a_{ij})$ mit
- $a_{ij} = \begin{cases} 1 & \text{, falls } (i,j) \in E \\ 0 & \text{, sonst} \end{cases}$
- Bei ungerichteten Graphen gilt $A = A^T$

Beispiel

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjazenzlistendarstellung

- Feld Adj mit |V| Listen (eine pro Knoten)
- Für Knoten v enthält Adj[v] eine Liste aller Knoten u mit $(v,u) \in E$
- Die Knoten in Adj[u] heißen zu u adjazent
- Ist G ungerichtet, so gilt: $v \in Adj[u] \Leftrightarrow u \in Adj[v]$

Gewichtete Graphen

- Kanten haben Gewicht gegeben durch Funktion $w: E \to \mathbb{R}$
- Gewicht w(u, v) von Kante (u, v) wird mit Knoten v in u's Adjazenzliste gespeichert

Beispiel

Kürzeste Wege in Graphen

- Gegeben (möglicherweise gewichteter) Graph G = (V, E)
- Frage: Was ist der kürzeste Weg Knoten v nach Knoten u?
- Länge des Weges: Summe der Kantengewichte
 (bzw. Anzahl Kanten, wenn ungewichtet)

Kürzeste Wege in Graphen

- Gegeben (möglicherweise gewichteter) Graph G = (V, E)
- Frage: Was ist der kürzeste Weg Knoten v nach Knoten u?
- Länge des Weges: Summe der Kantengewichte
 (bzw. Anzahl Kanten, wenn ungewichtet)

Single Source Shortest Path (SSSP)

- Startknoten s
- Aufgabe: Berechne kürzeste Wege von s zu allen anderen Knoten

All Pairs Shortest Path (APSP)

Aufgabe: Berechne kürzeste Wege zwischen allen Knotenpaaren

SSSP in ungewichteten Graphen (Breitensuche)

- Graph in Adjazenzlistendarstellung
- Startknoten s
- Nutze Kanten von G, um alle Knoten zu finden, die von s aus erreichbar sind
- Finde kürzeste Distanz (Anzahl Kanten) zu jedem anderen Knoten

Breitensuche

- Löst SSSP auf ungewichteten Graphen
- Bearbeitet den Graphen "schichtweise" nach Entfernung vom Startknoten: Besucht zuerst alle Knoten mit Entfernung 1; dann alle mit Entfernung 2; usw.

Technische Invariante (Breitensuche)

- Knoten haben 3 Farben: weiß, grau und schwarz
- Zu Beginn: Alle Knoten sind weiß
- Ein nicht-weißer Knoten heißt "entdeckt"
- Unterscheidung grau-schwarz dient zur Steuerung des Algorithmus
- Wenn (u, v) ∈ E ist und u ist schwarz, dann sind seine adjazenten Knoten grau oder schwarz
- Graue Knoten können adjazente weiße Knoten haben

Beispiel (mögl. Zustand bei einer Breitensuche)

Breitensuche

- Baut Breitensuche Baum (BFS Baum)
- Zu Beginn enthält der Baum nur die Wurzel, nämlich s
- Wenn weißer Knoten beim Durchsuchen der Adjazenzliste eines entdeckten Knotens entdeckt wird, dann werden v und (u, v) dem Baum hinzugefügt
- u ist dann Vaterknoten von v

Breitensuche

- Baut Breitensuche Baum (BFS Baum)
- Zu Beginn enthält der Baum nur die Wurzel, nämlich s
- Wenn weißer Knoten beim Durchsuchen der Adjazenzliste eines entdeckten Knotens entdeckt wird, dann werden v und (u, v) dem Baum hinzugefügt
- u ist dann Vaterknoten von v

Knoten v wird von Knoten u aus entdeckt

Datenstruktur Schlange

- Operationen: head, enqueue, dequeue
- head: Gibt Referenz auf das erste in der Schlange gespeicherte Element zurück
- enqueue: Fügt neues Element ans Ende der Schlage
- dequeue: Entfernt Kopf der Schlange

Wir verwenden

- Doppelt verkettete Liste
- Zusätzlich halten wir Zeiger auf das letzte Element aufrecht
- Alle Operationen in **0**(1) Zeit

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u

8. \text{enqueue}(Q, v)

9. \text{dequeue}(Q)

10. \text{color}[u] \leftarrow \text{schwarz}
```

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u

8. \text{enqueue}(Q, v)

9. \text{dequeue}(Q)

10. \text{color}[u] \leftarrow \text{schwarz}
```

d[u]: Abstand zu s (zu Beginn ∞) $\pi[u]$: Vaterknoten von u (zu Beginn nil)

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u

8. enqueue(Q, v)

9. dequeue(Q)

10. \text{color}[u] \leftarrow \text{schwarz}
```

Für jeden Knoten u:

- color[u] = weiß
- $d[u] = \infty$
- $\pi[u] = \mathbf{nil}$

BFS(G,s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Für jeden Knoten u:

- color[u] = weiß
- $d[u] = \infty$
- $\pi[u] = \mathbf{nil}$

Für Knoten s:

- color[s] = grau
- d[s] = 0
- $\pi[s] = \mathbf{nil}$
- s wird in Schlange Q eingefügt

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u

8. enqueue(Q, v)

9. dequeue(Q)
```

 $color[u] \leftarrow schwarz$

10.

dequeue(Q)

10.

 $color[u] \leftarrow schwarz$

```
    BFS(G, s)
    "initialisiere BFS"
    while Q ≠ Ø do
    u ← head[Q]
    for each v ∈ Adj[u] do
    if color[v] = weiß then
    color[v] ← grau
    d[v] ← d[u] + 1; π[v] ← u
    enqueue(Q, v)
```



```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß**then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$


```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$


```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$


```
BFS(G,s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß**then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$


```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

dequeue(Q)

 $color[u] \leftarrow schwarz$

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u

enqueue(Q, v)
```



```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *s*, *a*, *b*

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$


```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

dequeue(Q)

8.

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u
```

enqueue(Q, v)

 $color[u] \leftarrow schwarz$

dequeue(Q)

8.

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u
```

enqueue(Q, v)

 $color[u] \leftarrow schwarz$

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: a,b,c

```
BFS(G, s)
1 initia
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: a,b,c

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: a,b,c,d

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $|\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: b, c, d

dequeue(Q)

8.

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u
```

enqueue(Q, v)

 $color[u] \leftarrow schwarz$

Q: b, c, d

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: b, c, d

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. | dequeue(Q) |
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *c*, *d*

dequeue(Q)

8.

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u
```

enqueue(Q, v)

 $color[u] \leftarrow schwarz$

Q: c, d

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: c,d,f

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $|\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *d*, *f*

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u

8. enqueue(Q, v)

9. dequeue(Q)
```

 $color[u] \leftarrow schwarz$

Q: *d*, *f*

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: d, f, e

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $|\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *f*, *e*

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *f*, *e*

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *f*, *e*, *g*, *i*

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do
- 3. $u \leftarrow \text{head}[Q]$
- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *e*, *g*, *i*

```
BFS(G, s)
```

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do

- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *g*, *i*

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do

```
    u ← head[Q]
    for each v ∈ Adj[u] do
    if color[v] = weiß then
    color[v] ← grau
```

- 7. $d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u$ 8. enqueue(Q, v)
- 9. dequeue(Q) 10. color[u] \leftarrow schwarz

Q: *i*, *h*

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do

```
3. u \leftarrow \text{head}[Q]
```

- 4. **for each** $v \in Adj[u]$ **do**
- 5. **if** color[v] = weiß **then**
- 6. $\operatorname{color}[v] \leftarrow \operatorname{grau}$
- 7. $d[v] \leftarrow d[u] + 1; \ \pi[v] \leftarrow u$
- 8. enqueue(Q, v)
- 9. dequeue(Q)
- 10. $\operatorname{color}[u] \leftarrow \operatorname{schwarz}$

Q: *h*

BFS(G, s)

- 1. "initialisiere BFS"
- 2. while $Q \neq \emptyset$ do

```
3.
       u \leftarrow \text{head}[Q]
      for each v \in Adj[u] do
5.
          if color[v] = weiß then
             color[v] \leftarrow grau
6.
7.
```


Q:

dequeue(Q)

8.

10.

```
BFS(G, s)

1. "initialisiere BFS"

2. while Q \neq \emptyset do

3. u \leftarrow \text{head}[Q]

4. for each v \in \text{Adj}[u] do

5. if \text{color}[v] = \text{weiß} then

6. \text{color}[v] \leftarrow \text{grau}

7. d[v] \leftarrow d[u] + 1; \pi[v] \leftarrow u
```

enqueue(Q, v)

 $color[u] \leftarrow schwarz$

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

Beweis

Laufzeit Initialisierung: **0**(|V|)

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: O(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: O(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt
- Daher ist jeder Knoten nur einmal in der Schlange

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: **0**(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt
- Daher ist jeder Knoten nur einmal in der Schlange
- ⇒ Zeit für Schlangenoperationen ist O(|V|)

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: **0**(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt
- Daher ist jeder Knoten nur einmal in der Schlange
- ⇒ Zeit für Schlangenoperationen ist O(|V|)
- Adjazenzliste jedes Knotens wird nur durchlaufen, wenn er aus der Schlange entfernt wird

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: **0**(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt
- Daher ist jeder Knoten nur einmal in der Schlange
- ⇒ Zeit für Schlangenoperationen ist O(|V|)
- Adjazenzliste jedes Knotens wird nur durchlaufen, wenn er aus der Schlange entfernt wird
- Damit wird jede Adjazenzliste maximal einmal durchlaufen (d.h. jede Kante maximal zweimal) \Rightarrow Laufzeit für Liste: $\mathbf{O}(|V| + |E|)$

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: O(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt
- Daher ist jeder Knoten nur einmal in der Schlange
- \Rightarrow Zeit für Schlangenoperationen ist $\mathbf{O}(|V|)$
- Adjazenzliste jedes Knotens wird nur durchlaufen, wenn er aus der Schlange entfernt wird
- Damit wird jede Adjazenzliste maximal einmal durchlaufen (d.h. jede Kante maximal zweimal) \Rightarrow Laufzeit für Liste: $\mathbf{O}(|V| + |E|)$
- Gesamtlaufzeit: $\mathbf{O}(|V| + |E|)$

Satz 44

Sei G = (V, E) ein Graph. Die Laufzeit des Algorithmus BFS beträgt $\mathbf{O}(|V| + |E|)$.

- Laufzeit Initialisierung: **0**(|V|)
- Nach der Initialisierung wird kein Knoten weiß gefärbt
- Daher ist jeder Knoten nur einmal in der Schlange
- ⇒ Zeit für Schlangenoperationen ist O(|V|)
- Adjazenzliste jedes Knotens wird nur durchlaufen, wenn er aus der Schlange entfernt wird
- Damit wird jede Adjazenzliste maximal einmal durchlaufen (d.h. jede Kante maximal zweimal) \Rightarrow Laufzeit für Liste: $\mathbf{O}(|V| + |E|)$
- Gesamtlaufzeit: $\mathbf{O}(|V| + |E|)$

Kürzeste Wege in ungewichteten Graphen

- Sei $\delta(s,t)$ die minimale Anzahl Kanten in einem s-t-Weg
- Ein s-t-Weg der Länge $\delta(s,t)$ heißt kürzester Weg
- Wollen zeigen, dass BFS korrekt kürzeste Wege berechnet

Lemma 45

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ ein beliebiger Knoten. Dann gilt für jede Kante $(u, v) \in E$:

$$\delta(s, v) \le \delta(s, u) + 1$$

Lemma 45

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ ein beliebiger Knoten. Dann gilt für jede Kante $(u, v) \in E$:

$$\delta(s, v) \le \delta(s, u) + 1$$

Beweis

Ist u erreichbar von s, dann ist es auch v

Lemma 45

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ ein beliebiger Knoten. Dann gilt für jede Kante $(u, v) \in E$:

$$\delta(s, v) \le \delta(s, u) + 1$$

- Ist u erreichbar von s, dann ist es auch v
- Der kürzeste Weg von s nach v kann nicht länger sein, als der kürzeste Weg von s nach u gefolgt von der Kante (u, v). Damit gilt die Ungleichung.

Lemma 45

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ ein beliebiger Knoten. Dann gilt für jede Kante $(u, v) \in E$:

$$\delta(s, v) \le \delta(s, u) + 1$$

- Ist u erreichbar von s, dann ist es auch v
- Der kürzeste Weg von s nach v kann nicht länger sein, als der kürzeste Weg von s nach u gefolgt von der Kante (u, v). Damit gilt die Ungleichung.
- Ist u nicht erreichbar von s, dann ist $\delta(s, u) = \infty$ und die Ungleichung gilt.

Lemma 45

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ ein beliebiger Knoten. Dann gilt für jede Kante $(u, v) \in E$:

$$\delta(s, v) \le \delta(s, u) + 1$$

- Ist u erreichbar von s, dann ist es auch v
- Der kürzeste Weg von s nach v kann nicht länger sein, als der kürzeste Weg von s nach u gefolgt von der Kante (u, v). Damit gilt die Ungleichung.
- Ist u nicht erreichbar von s, dann ist $\delta(s, u) = \infty$ und die Ungleichung gilt.

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

Beweis

Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird
- (I.A.) Nach Initialisierung gilt $d[s] = 0 = \delta(s, s)$ und $d[v] = \infty \ge \delta(s, v)$ für alle $v \in V \{s\}$

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird
- (I.A.) Nach Initialisierung gilt $d[s] = 0 = \delta(s, s)$ und $d[v] = \infty \ge \delta(s, v)$ für alle $v \in V \{s\}$
- (I.V.) Aussage gilt nach m Einfügeoperationen

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird
- (I.A.) Nach Initialisierung gilt $d[s] = 0 = \delta(s, s)$ und $d[v] = \infty \ge \delta(s, v)$ für alle $v \in V \{s\}$
- (I.V.) Aussage gilt nach m Einfügeoperationen
- (I.S.) Betrachte nach m Einfügeoperationen den nächsten weißen Knoten v, der während einer Suche von u entdeckt wird. Nach (I.V.) gilt $d[u] \ge \delta(s, u)$.

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird
- (I.A.) Nach Initialisierung gilt $d[s] = 0 = \delta(s, s)$ und $d[v] = \infty \ge \delta(s, v)$ für alle $v \in V \{s\}$
- (I.V.) Aussage gilt nach m Einfügeoperationen
- (I.S.) Betrachte nach m Einfügeoperationen den nächsten weißen Knoten v, der während einer Suche von u entdeckt wird. Nach (I.V.) gilt $d[u] \ge \delta(s, u)$.
- Zeile 7: d[v] wird auf d[u] + 1 gesetzt

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird
- (I.A.) Nach Initialisierung gilt $d[s] = 0 = \delta(s, s)$ und $d[v] = \infty \ge \delta(s, v)$ für alle $v \in V \{s\}$
- (I.V.) Aussage gilt nach m Einfügeoperationen
- (I.S.) Betrachte nach m Einfügeoperationen den nächsten weißen Knoten v, der während einer Suche von u entdeckt wird. Nach (I.V.) gilt $d[u] \ge \delta(s, u)$.
- Zeile 7: d[v] wird auf d[u] + 1 gesetzt
- Es gilt: $d[v] = d[u] + 1 \ge \delta(s, u) + 1 \ge \delta(s, v)$ nach Lemma 45

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Induktion über Anzahl von Zeitpunkten, an denen ein Knoten in Q eingefügt wird
- (I.A.) Nach Initialisierung gilt $d[s] = 0 = \delta(s, s)$ und $d[v] = \infty \ge \delta(s, v)$ für alle $v \in V \{s\}$
- (I.V.) Aussage gilt nach m Einfügeoperationen
- (I.S.) Betrachte nach m Einfügeoperationen den nächsten weißen Knoten v, der während einer Suche von u entdeckt wird. Nach (I.V.) gilt $d[u] \ge \delta(s, u)$.
- Zeile 7: d[v] wird auf d[u] + 1 gesetzt
- Es gilt: $d[v] = d[u] + 1 \ge \delta(s, u) + 1 \ge \delta(s, v)$ nach Lemma 45

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

Beweis

Knoten v wird dann in die Schlange eingefügt und grau gefärbt

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Knoten v wird dann in die Schlange eingefügt und grau gefärbt
- Damit ändert sich d[v] im Laufe des Algorithmus nicht mehr und die Aussage des Lemmas bleibt erhalten

Lemma 46

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und es laufe die Breitensuche von einem Startknoten $s \in V$. Während der Breitensuche gilt für jeden Knoten v, dass $d[v] \ge \delta(s, v)$ ist.

- Knoten v wird dann in die Schlange eingefügt und grau gefärbt
- Damit ändert sich d[v] im Laufe des Algorithmus nicht mehr und die Aussage des Lemmas bleibt erhalten

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

Beweis

Induktion über die Anzahl Schlangenoperationen

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- Induktion über die Anzahl Schlangenoperationen
- (I.A.) Die Schlange enthält nur s, damit gilt das Lemma

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- Induktion über die Anzahl Schlangenoperationen
- (I.A.) Die Schlange enthält nur s, damit gilt das Lemma
- (I.V.) Das Lemma gilt nach m Schlangenoperationen

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- Induktion über die Anzahl Schlangenoperationen
- (I.A.) Die Schlange enthält nur s, damit gilt das Lemma
- (I.V.) Das Lemma gilt nach m Schlangenoperationen
- (I.S.) Wir müssen zeigen, dass das Lemma immer noch nach m+1 Schlangenoperationen gilt. Die (m+1)ste Schlangenoperation ist entweder eine enqueue oder dequeue Operation

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- Induktion über die Anzahl Schlangenoperationen
- (I.A.) Die Schlange enthält nur s, damit gilt das Lemma
- (I.V.) Das Lemma gilt nach m Schlangenoperationen
- (I.S.) Wir müssen zeigen, dass das Lemma immer noch nach m+1 Schlangenoperationen gilt. Die (m+1)ste Schlangenoperation ist entweder eine enqueue oder dequeue Operation

Lemma 47

Sei $< v_1, \dots, v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- dequeue:
- Wird v_1 aus der Schlange entfernt, so wird v_2 der neue Kopf

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- dequeue:
- Wird v_1 aus der Schlange entfernt, so wird v_2 der neue Kopf
- Dann gilt aber sicherlich $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- dequeue:
- Wird v_1 aus der Schlange entfernt, so wird v_2 der neue Kopf
- Dann gilt aber sicherlich $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$
- Alle anderen Ungleichungen sind nicht betroffen, also gilt das Lemma

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- dequeue:
- Wird v_1 aus der Schlange entfernt, so wird v_2 der neue Kopf
- Dann gilt aber sicherlich $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$
- Alle anderen Ungleichungen sind nicht betroffen, also gilt das Lemma

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- enqueue:
- Wird in Zeile 8 ein Knoten v eingefügt (und damit zu v_{r+1}), so ist v_1 der Knoten u, von dem aus v entdeckt wurde

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- enqueue:
- Wird in Zeile 8 ein Knoten v eingefügt (und damit zu v_{r+1}), so ist v_1 der Knoten u, von dem aus v entdeckt wurde
- Es gilt: $d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1$

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- enqueue:
- Wird in Zeile 8 ein Knoten v eingefügt (und damit zu v_{r+1}), so ist v_1 der Knoten u, von dem aus v entdeckt wurde
- Es gilt: $d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1$
- Außerdem: $d[v_r] \le d[v_1] + 1 = d[u] + 1 = d[v] = d[v_{r+1}]$

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- enqueue:
- Wird in Zeile 8 ein Knoten v eingefügt (und damit zu v_{r+1}), so ist v_1 der Knoten u, von dem aus v entdeckt wurde
- Es gilt: $d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1$
- Außerdem: $d[v_r] \le d[v_1] + 1 = d[u] + 1 = d[v] = d[v_{r+1}]$
- Die anderen Ungleichungen bleiben erhalten; Also gilt das Lemma

Lemma 47

Sei $< v_1, ..., v_r >$ der Inhalt der Schlange Q während eines Durchlaufs der Breitensuche auf einem Graph G = (V, E), wobei v_1 Kopf und v_r Ende der Schlange ist. Dann gilt

$$d[v_r] \le d[v_1] + 1$$
 und $d[v_i] \le d[v_{i+1}]$ für $i = 1, 2, ..., r - 1$.

- enqueue:
- Wird in Zeile 8 ein Knoten v eingefügt (und damit zu v_{r+1}), so ist v_1 der Knoten u, von dem aus v entdeckt wurde
- Es gilt: $d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1$
- Außerdem: $d[v_r] \le d[v_1] + 1 = d[u] + 1 = d[v] = d[v_{r+1}]$
- Die anderen Ungleichungen bleiben erhalten; Also gilt das Lemma

Satz 48

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ Startknoten der Breitensuche. Dann entdeckt die Breitensuche alle Knoten $v \in V$, die von s aus erreichbar sind und nach Terminierung gilt $d[v] = \delta(s, v)$ für alle $v \in V$. Außerdem gilt für jeden von s erreichbaren Knoten $v \neq s$, dass ein kürzester Weg von s nach $\pi[v]$ gefolgt von der Kante $(\pi[v], v)$ ein kürzester s-v-Weg ist.

Satz 48

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ Startknoten der Breitensuche. Dann entdeckt die Breitensuche alle Knoten $v \in V$, die von s aus erreichbar sind und nach Terminierung gilt $d[v] = \delta(s, v)$ für alle $v \in V$. Außerdem gilt für jeden von s erreichbaren Knoten $v \neq s$, dass ein kürzester Weg von s nach $\pi[v]$ gefolgt von der Kante $(\pi[v], v)$ ein kürzester s-v-Weg ist.

Beweis

Fall 1 (v nicht erreichbar von s):

Satz 48

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ Startknoten der Breitensuche. Dann entdeckt die Breitensuche alle Knoten $v \in V$, die von s aus erreichbar sind und nach Terminierung gilt $d[v] = \delta(s, v)$ für alle $v \in V$. Außerdem gilt für jeden von s erreichbaren Knoten $v \neq s$, dass ein kürzester Weg von s nach $\pi[v]$ gefolgt von der Kante $(\pi[v], v)$ ein kürzester s-v-Weg ist.

- Fall 1 (v nicht erreichbar von s):
- Nach Lemma 46 gilt $d[v] \ge \delta(s, v) = \infty$

Satz 48

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ Startknoten der Breitensuche. Dann entdeckt die Breitensuche alle Knoten $v \in V$, die von s aus erreichbar sind und nach Terminierung gilt $d[v] = \delta(s, v)$ für alle $v \in V$. Außerdem gilt für jeden von s erreichbaren Knoten $v \neq s$, dass ein kürzester Weg von s nach $\pi[v]$ gefolgt von der Kante $(\pi[v], v)$ ein kürzester s-v-Weg ist.

- Fall 1 (v nicht erreichbar von s):
- Nach Lemma 46 gilt $d[v] \ge \delta(s, v) = \infty$
- Es kann keinen ersten Knoten geben, dessen d-Wert in Zeile 7 auf ∞ gesetzt wird

Satz 48

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ Startknoten der Breitensuche. Dann entdeckt die Breitensuche alle Knoten $v \in V$, die von s aus erreichbar sind und nach Terminierung gilt $d[v] = \delta(s, v)$ für alle $v \in V$. Außerdem gilt für jeden von s erreichbaren Knoten $v \neq s$, dass ein kürzester Weg von s nach $\pi[v]$ gefolgt von der Kante $(\pi[v], v)$ ein kürzester s-v-Weg ist.

- Fall 1 (v nicht erreichbar von s):
- Nach Lemma 46 gilt $d[v] \ge \delta(s, v) = \infty$
- Es kann keinen ersten Knoten geben, dessen d-Wert in Zeile 7 auf ∞ gesetzt wird
- Somit wird v nie entdeckt

Satz 48

Sei G = (V, E) ein gerichteter oder ungerichteter Graph und sei $s \in V$ Startknoten der Breitensuche. Dann entdeckt die Breitensuche alle Knoten $v \in V$, die von s aus erreichbar sind und nach Terminierung gilt $d[v] = \delta(s, v)$ für alle $v \in V$. Außerdem gilt für jeden von s erreichbaren Knoten $v \neq s$, dass ein kürzester Weg von s nach $\pi[v]$ gefolgt von der Kante $(\pi[v], v)$ ein kürzester s-v-Weg ist.

- Fall 1 (v nicht erreichbar von s):
- Nach Lemma 46 gilt $d[v] \ge \delta(s, v) = \infty$
- Es kann keinen ersten Knoten geben, dessen d-Wert in Zeile 7 auf ∞ gesetzt wird
- Somit wird v nie entdeckt

Beweis

Fall 2 (v erreichbar von s):

- Fall 2 (*v* erreichbar von *s*):
- Sei $V_k = \{v \in V : \delta(s, v) = k\}$

- Fall 2 (v erreichbar von s):
- Sei $V_k = \{v \in V : \delta(s, v) = k\}$
- Wir zeigen per Induktion über k:
- Es gibt genau einen Zeitpunkt, zu dem jeder Knoten $v \in V_k$
 - (a) grau gefärbt wird
 - (b) d[v] = k gesetzt wird
 - (c) wenn $v \neq s$, dann $\pi[v]$ auf u gesetzt wird für ein $u \in V_{k-1}$
 - (d) v in Schlange Q eingefügt wird

- Fall 2 (v erreichbar von s):
- Sei $V_k = \{v \in V : \delta(s, v) = k\}$
- Wir zeigen per Induktion über k:
- Es gibt genau einen Zeitpunkt, zu dem jeder Knoten $v \in V_k$
 - (a) grau gefärbt wird
 - (b) d[v] = k gesetzt wird
 - (c) wenn $v \neq s$, dann $\pi[v]$ auf u gesetzt wird für ein $u \in V_{k-1}$
 - (d) v in Schlange Q eingefügt wird
- Da nur zur Initialisierung Knoten weiß gefärbt werden, gibt es maximal einen solchen Zeitpunkt

- Fall 2 (v erreichbar von s):
- Sei $V_k = \{v \in V : \delta(s, v) = k\}$
- Wir zeigen per Induktion über k:
- Es gibt genau einen Zeitpunkt, zu dem jeder Knoten $v \in V_k$
 - (a) grau gefärbt wird
 - (b) d[v] = k gesetzt wird
 - (c) wenn $v \neq s$, dann $\pi[v]$ auf u gesetzt wird für ein $u \in V_{k-1}$
 - (d) v in Schlange Q eingefügt wird
- Da nur zur Initialisierung Knoten weiß gefärbt werden, gibt es maximal einen solchen Zeitpunkt

Beweis

• (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.

- (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.
- (I.V.) Aussage gilt für alle Knoten aus V_{k-1}

- (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.
- (I.V.) Aussage gilt f
 ür alle Knoten aus V_{k-1}
- (I.S.) Q ist nie leer bis Algorithmus terminiert.

- (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.
- (I.V.) Aussage gilt für alle Knoten aus V_{k-1}
- (I.S.) Q ist nie leer bis Algorithmus terminiert.
- Nachdem v in Q eingefügt wurde, ändern sich d[v] und $\pi[v]$ nicht mehr

- (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.
- (I.V.) Aussage gilt für alle Knoten aus V_{k-1}
- (I.S.) Q ist nie leer bis Algorithmus terminiert.
- Nachdem v in Q eingefügt wurde, ändern sich d[v] und $\pi[v]$ nicht mehr
- Nach Lemma 47 sind die d-Werte monoton steigend, wenn Knoten in die Schlage eingefügt werden

- (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.
- (I.V.) Aussage gilt für alle Knoten aus V_{k-1}
- (I.S.) Q ist nie leer bis Algorithmus terminiert.
- Nachdem v in Q eingefügt wurde, ändern sich d[v] und $\pi[v]$ nicht mehr
- Nach Lemma 47 sind die d-Werte monoton steigend, wenn Knoten in die Schlage eingefügt werden
- Betrachte nun $v \in V_k$, k > 0. Monotonie mit $d[v] \ge k$ (Lemma 46) und (I.V.): wenn v entdeckt wird, dann erst nachdem alle Knoten aus V_{k-1} in die Schlange eingefügt wurden

- (I.A.) $V_0 = \{s\}$. Während der Initialisierung wird s grau gefärbt, d[s] auf 0 gesetzt, und s in Q eingefügt. Somit gilt die Aussage.
- (I.V.) Aussage gilt f
 ür alle Knoten aus V_{k-1}
- (I.S.) Q ist nie leer bis Algorithmus terminiert.
- Nachdem v in Q eingefügt wurde, ändern sich d[v] und $\pi[v]$ nicht mehr
- Nach Lemma 47 sind die d-Werte monoton steigend, wenn Knoten in die Schlage eingefügt werden
- Betrachte nun $v \in V_k$, k > 0. Monotonie mit $d[v] \ge k$ (Lemma 46) und (I.V.): wenn v entdeckt wird, dann erst nachdem alle Knoten aus V_{k-1} in die Schlange eingefügt wurden

Beweis

• Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$

- Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)

- Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)
- Wird Knoten grau gefärbt, so wird er auch in Schlange eingefügt und muss irgendwann als Kopf der Schlange auftauchen

- Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)
- Wird Knoten grau gefärbt, so wird er auch in Schlange eingefügt und muss irgendwann als Kopf der Schlange auftauchen
- Ist u Kopf der Schlange, so wird seine Adjazenzliste durchlaufen und v in Zeile 4 entdeckt

- Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)
- Wird Knoten grau gefärbt, so wird er auch in Schlange eingefügt und muss irgendwann als Kopf der Schlange auftauchen
- Ist u Kopf der Schlange, so wird seine Adjazenzliste durchlaufen und v in Zeile 4 entdeckt
- Dann wird v in Zeile 6 grau gefärbt und Zeile 7 setzt d[v] = k und $\pi[v] = u$.

- Da $\delta(s, v) = k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u, v) \in E$ und $u \in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)
- Wird Knoten grau gefärbt, so wird er auch in Schlange eingefügt und muss irgendwann als Kopf der Schlange auftauchen
- Ist u Kopf der Schlange, so wird seine Adjazenzliste durchlaufen und v in Zeile 4 entdeckt
- Dann wird v in Zeile 6 grau gefärbt und Zeile 7 setzt d[v] = k und $\pi[v] = u$.
- Zeile 8 fügt v in die Schlange ein

- Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)
- Wird Knoten grau gefärbt, so wird er auch in Schlange eingefügt und muss irgendwann als Kopf der Schlange auftauchen
- Ist u Kopf der Schlange, so wird seine Adjazenzliste durchlaufen und v in Zeile 4 entdeckt
- Dann wird v in Zeile 6 grau gefärbt und Zeile 7 setzt d[v] = k und $\pi[v] = u$.
- Zeile 8 fügt v in die Schlange ein
- Damit folgt unsere Aussage per Induktion f
 ür alle V_k

- Da $\delta(s,v)=k$ gibt es Pfad mit k Kanten von s nach v und Knoten u mit $(u,v)\in E$ und $u\in V_{k-1}$
- ObdA. Sei u der erste solche Knoten, der grau gefärbt wird (existiert wegen I.V.)
- Wird Knoten grau gefärbt, so wird er auch in Schlange eingefügt und muss irgendwann als Kopf der Schlange auftauchen
- Ist u Kopf der Schlange, so wird seine Adjazenzliste durchlaufen und v in Zeile 4 entdeckt
- Dann wird v in Zeile 6 grau gefärbt und Zeile 7 setzt d[v] = k und $\pi[v] = u$.
- Zeile 8 fügt v in die Schlange ein
- Damit folgt unsere Aussage per Induktion f
 ür alle V_k

Beweis

• Abschließend beobachten wir, dass wenn $v \in V_k$ ist, dann ist $\pi[v]$ in V_{k-1}

- Abschließend beobachten wir, dass wenn $v \in V_k$ ist, dann ist $\pi[v]$ in V_{k-1}
- Damit können wir einen kürzesten Weg von s nach v bekommen, indem wir einen kürzesten Weg von s nach $\pi[v]$ nehmen und der Kante $(\pi[v], v)$ folgen

- Abschließend beobachten wir, dass wenn $v \in V_k$ ist, dann ist $\pi[v]$ in V_{k-1}
- Damit können wir einen kürzesten Weg von s nach v bekommen, indem wir einen kürzesten Weg von s nach $\pi[v]$ nehmen und der Kante $(\pi[v], v)$ folgen

Zusammenfassung (Breitensuche)

- Die Breitensuche kann dazu genutzt werden, um das SSSP Problem in ungewichteten Graphen zu lösen
- Die Laufzeit der Breitensuche ist O(|V| + |E|)