DISCIPLINE SPECIFIC CORE COURSE – 3: PROBABILITY AND STATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	Credit distribution of the course			Eligibility	Pre-requisite o	f
title &		Lecture	Tutorial	Practical/	criteria	the course	
Code				Practice		(if any)	
Probability					Class XII	NIL	
and	4	3	0	1	pass with		
Statistics					Mathematics		

Learning Objectives

The Learning Objectives of this course are as follows:

- To make the students familiar with the basic statistical concepts and tools which are needed to study situations involving uncertainty or randomness.
- To render the students to several examples and exercises that blend their everyday experiences with their scientific interests to form the basis of data science.

Learning Outcomes

This course will enable the students to:

- Understand some basic concepts and terminology population, sample, descriptive and inferential statistics including stem-and-leaf plots, dotplots, histograms and boxplots.
- Learn about probability density functions and various univariate distributions such as binomial, hypergeometric, negative binomial, Poisson, normal, exponential and lognormal.
- Understand the remarkable fact that the empirical frequencies of so many natural populati ons, exhibit bell-shaped (i.e., normal) curves, using the Central Limit Theorem.
- Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.

SYLLABUS OF DSC-3

Theory

Unit – 1 (15 hours)

Descriptive Statistics, Probability, and Discrete Probability Distributions

Descriptive statistics: Populations, Samples, Stem-and-leaf displays, Dotplots, Histograms, Qualitative data, Measures of location, Measures of variability, Boxplots; Sample spaces and events, Probability axioms and properties, Conditional probability, Bayes' theorem and independent events; Discrete random variables and probability

distributions, Expected values; Probability distributions: Binomial, geometric, hypergeometric, negative binomial, Poisson, and Poisson distribution as a limit.

Unit - 2 (15 hours)

Continuous Probability Distributions

Continuous random variables, Probability density functions, Uniform distribution, Cumulative distribution functions and expected values, The normal, exponential and lognormal distributions.

Unit – 3 (15 hours)

Central Limit Theorem and Regression Analysis

Sampling distribution and standard error of the sample mean, Central Limit Theorem and applications; Scatterplot of bivariate data, Regression line using principle of least squares, Estimation using the regression lines; Sample correlation coefficient and properties.

Practical (30 hours)

Software labs using Microsoft Excel or any other spreadsheet.

- 1) Presentation and analysis of data (univariate and bivariate) by frequeny tables, descriptive statistics, stem-and-leaf plots, dotplots, histograms, boxplots, comparative boxplots, and probability plots ([1] Section 4.6).
- 2) Fitting of binomial, Poisson and normal distributions.
- 3) Illustrating the Central Limit Theorem through Excel.
- 4) Fitting of regression line using the principle of least squares.
- 5) Computation of sample correlation coefficient.

Essential Reading

1. Devore, Jay L. (2016). Probability and Statistics for Engineering and the Sciences (9th ed.). Cengage Learning India Private Limited. Delhi. Indian Reprint 2020.

Suggestive Reading

• Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the Theory of Statistics (3rd ed.). Tata McGraw-Hill Pub. Co. Ltd. Reprinted 2017.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.