

高等代数

总习题答案

(PDF)

北大四版

新版教材修订如下:

- 1. 第一至十章, 正文部分没有变动;
- 2. 书末增加一套总习题。

 使用四版教材的同学可将PDF文件与现有第三版辅导书联合使用。

总习题解答

高等代数 (北大四版)

1. 解线性方程组:

解:1) 方程组的系数行列式

$$\mid \mathbf{A} \mid = \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 \end{vmatrix} = 1 + (-1)^{n+1}.$$

所以当n为奇数时, $|A| \neq 0$,此线性方程组只有零解. 当n为偶数时,系数矩阵的秩为n-1. 所以基础解系由一个解

$$\eta = (1, -1, 1, -1, \dots, 1, -1)$$

组成.全部解为

 $\{k\mathbf{n} \mid k$ 为任意数 $\}$.

2) 由 1),知系数矩阵的秩为

$$\mathfrak{K}(\mathbf{A}) = \begin{cases} n, & \exists n \text{ 为奇数,} \\ n-1, & \exists n \text{ 为偶数.} \end{cases}$$

因此当n为奇数时,此方程组有唯一解,即

$$\boldsymbol{\xi} = \left(\frac{c}{2}, \frac{c}{2}, \cdots, \frac{c}{2}\right).$$

当n为偶数时,此方程组有无穷多解,其导出组的基础解系由一个解 η (见1))组成,此方程组的解集合为

$$\{\xi + k\eta \mid k$$
 为任意数 $\}, \xi = \left(\frac{c}{2}, \frac{c}{2}, \cdots, \frac{c}{2}\right).$

3) 与 1) 一样, 当 n 为奇数时, 方程组有唯一解, 解为

$$\boldsymbol{\xi} = \left(\frac{1}{2} c_1 - \frac{1}{2} c_2 + \frac{1}{2} c_3 - \dots - \frac{1}{2} c_{n-1} + \frac{1}{2} c_n, \right.$$

$$\frac{1}{2} c_1 + \frac{1}{2} c_2 - \frac{1}{2} c_3 + \frac{1}{2} c_4 - \dots + \frac{1}{2} c_{n-1} - \frac{1}{2} c_n,$$

$$- \frac{1}{2} c_1 + \frac{1}{2} c_2 + \frac{1}{2} c_3 - \frac{1}{2} c_4 + \frac{1}{2} c_5 - \dots - \frac{1}{2} c_{n-1} + \frac{1}{2} c_n,$$

$$\frac{1}{2} c_1 - \frac{1}{2} c_2 + \frac{1}{2} c_3 + \frac{1}{2} c_4 - \frac{1}{2} c_5 + \dots + \frac{1}{2} c_{n-1} - \frac{1}{2} c_n, \dots,$$

$$- \frac{1}{2} c_1 + \frac{1}{2} c_2 - \frac{1}{2} c_3 + \frac{1}{2} c_4 - \dots - \frac{1}{2} c_{n-2} + \frac{1}{2} c_{n-1} + \frac{1}{2} c_n \right).$$

当 n 为偶数时,此方程组有解的充分必要条件是

$$c_1 - c_2 + c_3 - c_4 + \cdots + c_{n-1} - c_n = 0.$$

有解时,其导出组的基础解系由一个解 η (见 1)) 组成. 解集合是 $\{\xi + kn \mid k \text{ 为任意数}\},$

$$\boldsymbol{\xi} = (0, c_1, c_2 - c_1, c_3 - c_2 + c_1, \dots, c_{n-2} - c_{n-3} + \dots + c_2 - c_1, c_{n-1} - c_{n-2} + c_{n-3} + \dots - c_2 + c_1).$$

2. 解线性方程组

$$\begin{cases} x_1 + x_2 + \dots + x_n = 1, \\ x_2 + \dots + x_n + x_{n+1} = 2, \\ \dots \\ x_{n+1} + x_{n+2} + \dots + x_{2n} = n+1. \end{cases}$$

解:一般解为

$$\begin{cases} x_1 = n + x_{n+2} + \dots + x_{2n}, \\ x_2 = -1 - x_{n+2}, \\ \dots \\ x_n = -1 - x_{2n}, \\ x_{n+1} = n + 1 - x_{n+2} - \dots - x_{2n} \end{cases}$$

其中 x_{n+2} , x_{n+3} , ..., x_{2n} 为自由未知量.

3. 设 a_1, a_2, \dots, a_n 是 n 个两两不同的数.

$$oldsymbol{A} = egin{pmatrix} 1 & 1 & \cdots & 1 \ a_1 & a_2 & \cdots & a_n \ dots & dots & dots \ a_1^{s-1} & a_2^{s-1} & \cdots & a_n^{s-1} \end{pmatrix}_{arprimet n} (s \leqslant n).$$

再设 $\boldsymbol{\alpha} = (c_1, c_2, \dots, c_n)'$ 是齐次线性方程组

$$AX = 0$$

的一个非零解,求证 α 至少有 s+1 个非零分量.

证明:记A的n个列向量依次为 $\alpha_1,\alpha_2,\dots,\alpha_m$. 因为 α 是AX=0的解,故有

$$c_1 \boldsymbol{\alpha}_1 + c_2 \boldsymbol{\alpha}_2 + \cdots + c_n \boldsymbol{\alpha}_n = \mathbf{0}.$$

如果在 c_1 , c_2 , \cdots , c_n 中不为 0 的是 c_{i_1} , c_{i_2} , \cdots , c_{i_r} , 其余的全为 0,则有

$$c_{i_1} \boldsymbol{\alpha}_{i_1} + c_{i_2} \boldsymbol{\alpha}_{i_2} + \cdots + c_{i_r} \boldsymbol{\alpha}_{i_r} = \mathbf{0},$$

其中系数全不为 0. 因此 $\boldsymbol{\alpha}_{i_1}$, $\boldsymbol{\alpha}_{i_2}$, \dots , $\boldsymbol{\alpha}_{i_t}$ 线性相关.

A 的任意多于 s 个的列向量线性相关,而少于或等于 s 个的列向量线性无关. 因此 $t \ge s+1$. 即 α 至少有 s+1 个非零分量.

- 4. 设A,B是同型实数矩阵,其中A是对称矩阵.如果A'B+B'A正定,证明:A是可逆矩阵.
- 证明:设 λ 是 A 的任一特征值, λ 必为实数. 取属于 λ 的任一实特征向量 α ,有 $A\alpha = \lambda \alpha$. 又由 A'B + B'A 正定,得

$$\alpha'(A'B + B'A)\alpha = \alpha'(\lambda B + \lambda B')\alpha$$
$$= \lambda \alpha'(B + B')\alpha > 0,$$

所以 $\lambda \neq 0$. 由于 |A| 等于 A 的全部特征值的乘积,故 $|A| \neq 0$,即 A 可逆.

5. 设

求 A 的若尔当标准形 J,并求可逆矩阵 C 使 $C^{-1}AC = J$.

解:

$$\boldsymbol{J} = \begin{pmatrix} 1 & & & \\ & 2 & & \\ & & 3 & \\ & & \ddots & \\ & & & n \end{pmatrix},$$

6. 证明:设 β_1 , β_2 , ..., β_m 为 n 维线性空间 V 中线性相关的向量组, 但其中任意 m-1 个向量皆线性无关. 设有 m 个数 b_1 , b_2 , ..., b_m 使 $\sum_{j=1}^{m} b_j \beta_j = 0$. 则或者 $b_1 = \cdots = b_m = 0$, 或者 b_1 , b_2 , ..., b_m 皆不为零. 在后者的情形, 若有另一组数 c_1 , c_2 , ..., c_m 使 $\sum_{j=1}^{m} c_j \beta_j = 0$, 则 $c_1 : b_1 = c_2 : b_2 = \cdots = c_m : b_m$.

证明:对 $\sum_{i=1}^m b_i \boldsymbol{\beta}_i = \mathbf{0}$,若有某 $b_i \neq 0$,不妨 $b_1 \neq 0$,则

$$\boldsymbol{\beta}_1 = \sum_{i=2}^m \left(-\frac{b_i}{b_1}\right) \boldsymbol{\beta}_i.$$

由于 β_1 , β_2 ,…, β_m 中任意m-1个向量线性无关, β_1 不能被 β_2 , β_3 ,…, β_m 中任意m-2个向量线性表出,故 b_2 , b_3 ,…, b_m 皆不为零.于是 b_1 , b_2 ,…, b_m 全不为零.

若又有 $\sum_{i=1}^{m} c_i \boldsymbol{\beta}_i = \mathbf{0}$. 因 $b_1 \neq 0$,设 $c_1 = kb_1$,则

$$\sum_{j=1}^{m} c_{j} \beta_{j} - k \sum_{j=1}^{m} b_{j} \beta_{j} = \sum_{j=1}^{m} (c_{j} - k b_{j}) \beta_{j} = \mathbf{0}.$$

由 $c_1 - kb_1 = 0$,前一段的论证得所有 j,有 $c_j - b_j k = 0$, $j = 1, 2, \dots, m$. 即 $c_1 : b_1 = c_2 : b_2 = \dots = c_m : b_m$.

7. 设 α 是欧氏空间 V 中的一个非零向量. $\alpha_1, \alpha_2, \dots, \alpha_p$ 是 V 中 p 个向量,满足 $(\alpha_i, \alpha_j) \leq 0$,且 $(\alpha_i, \alpha) > 0$, $i, j = 1, 2, \dots, p$; $i \neq j$.

证明:1) $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关;

2) n 维欧氏空间中最多有 n+1 个向量,使其两两夹角都大于 $\frac{\pi}{2}$.

证明:1) 反证法. 设 α_1 , α_2 , ..., α_b 线性相关. 不妨设 α_b 是 α_1 , α_2 , ..., α_{b-1} 的线性组合,即

有实数
$$\lambda_1$$
, λ_2 ,…, λ_{p-1} 使 $\boldsymbol{\alpha}_p = \sum_{i=1}^{p-1} \lambda_i \boldsymbol{\alpha}_i$. 将这关系写成

$$\boldsymbol{\alpha}_{b} = \sum ' \lambda_{i} \boldsymbol{\alpha}_{i} + \sum '' \lambda_{i} \boldsymbol{\alpha}_{i},$$

将其中 $\lambda_i > 0$ 的项归入 Σ' 中,将 $\lambda_i \leq 0$ 的项归入 Σ'' 中,且令

$$\boldsymbol{\beta} = \sum ' \lambda_i \boldsymbol{\alpha}_i, \quad \boldsymbol{\gamma} = \sum '' \lambda_i \boldsymbol{\alpha}_i.$$

于是 $\boldsymbol{\alpha}_{p} = \boldsymbol{\beta} + \boldsymbol{\gamma}$. 因 $(\boldsymbol{\alpha}_{p}, \boldsymbol{\alpha}) > 0$ 及 $(\boldsymbol{\gamma}, \boldsymbol{\alpha}) = \sum {"\lambda_{i}} (\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}) \leqslant 0$,故 $\boldsymbol{\beta} \neq \mathbf{0}$. 但 $(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \left(\sum_{i} {'\lambda_{i}} \boldsymbol{\alpha}_{i}, \sum_{i} {"\lambda_{j}} \boldsymbol{\alpha}_{j}\right) = \sum_{i} {'\sum_{i} {"\lambda_{i}} \lambda_{j}} (\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}) \geqslant 0.$

因此

$$(\boldsymbol{\alpha}_{p},\boldsymbol{\beta}) = (\boldsymbol{\beta},\boldsymbol{\beta}) + (\boldsymbol{\beta},\boldsymbol{\gamma}) > 0.$$

另一方面,

$$(\boldsymbol{\alpha}_{h},\boldsymbol{\beta}) = \sum_{i} \lambda_{i}(\boldsymbol{\alpha}_{h},\boldsymbol{\alpha}_{i}) \leqslant 0.$$

这个矛盾证明了结论.

2) 设 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, ..., $\boldsymbol{\alpha}_m \in V$, 它们两两成钝角, 于是有

$$(\boldsymbol{\alpha}_i, \boldsymbol{\alpha}_j) < 0, \quad i, j = 1, 2, \dots, m; i \neq j.$$

取 $\alpha = -\alpha_m$,则 α_1 , α_2 ,…, α_{m-1} 符合第 1) 小题的假设条件,故 α_1 , α_2 ,…, α_{m-1} 线性 无关. 又 V 是 n 维的,有 $m-1 \le n$. 于是 $m \le n+1$.

8. 证明:(替换定理)设向量组 α_1 , α_2 , ..., α_r 线性无关,且可经向量组 β_1 , β_2 , ..., β_r 线性表出,则 $r \leq s$. 且在 β_1 , β_2 , ..., β_r 中存在 r 个向量,不妨设就是 β_1 , β_2 , ..., β_r , 在用 α_1 , α_2 , ..., α_r 替代它们后所得向量组 α_1 , α_2 , ..., α_r , β_{r+1} , ..., β_r 与 β_1 , β_2 , ..., β_r 等价.

证明:我们对 r 作数学归纳法. r = 1 时, $\{\alpha_1\}$ 线性无关. 这时 $r = 1 \leqslant s$. α_1 可由 β_1 , β_2 , …, β_s 线性表出, 设为

$$\boldsymbol{\alpha}_1 = b_1 \boldsymbol{\beta}_1 + b_2 \boldsymbol{\beta}_2 + \cdots + b_s \boldsymbol{\beta}_s.$$

由 $\alpha_1 \neq 0$,至少一个 $b_i \neq 0$. 不妨设为 $b_1 \neq 0$,则

$$\mathbf{\beta}_1 = \frac{1}{b_1} \mathbf{\alpha}_1 - \frac{b_2}{b_1} \mathbf{\beta}_2 - \cdots - \frac{b_s}{b_1} \mathbf{\beta}_s.$$

由此易知 $\{\alpha_1, \beta_2, \dots, \beta_s\}$ 与 $\{\beta_1, \beta_2, \dots, \beta_s\}$ 等价.

现设r>1,且定理对r-1的情形已成立. 我们来讨论 α_1 , α_2 ,…, α_r 为r个线性无关向量的情形. 这时 α_1 ,…, α_{r-1} 也线性无关,且能由 β_1 ,…, β_s 线性表出. 由归纳假设 $r-1 \leq s$,且存在 β_1 ,…, β_s 中r-1个向量,不妨设为 β_1 ,…, β_{r-1} 在用 α_1 …, α_{r-1} 替代后,所得的向量组 $\{\alpha_1, \dots, \alpha_{r-1}, \beta_r, \dots, \beta_s\}$ 与 $\{\beta_1, \beta_2, \dots, \beta_s\}$ 等价. 又 α_s 能由 $\{\beta_1, \beta_2, \dots, \beta_s\}$ 线性表出,就能由 $\{\alpha_1, \dots, \alpha_{r-1}, \beta_r, \dots, \beta_s\}$ 线性表出. 设

$$\mathbf{\alpha}_r = \sum_{i=1}^{r-1} a_i \mathbf{\alpha}_i + \sum_{i=r}^{s} b_i \mathbf{\beta}_i.$$

这时若所有 $b_j = 0$,则 $\boldsymbol{\alpha}_r = \sum_{i=1}^{r-1} a_i \boldsymbol{\alpha}_i$,与 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$,…, $\boldsymbol{\alpha}_{r-1}$, $\boldsymbol{\alpha}_r$ 线性无关矛盾. 故 b_r , b_{r+1} ,…, b_s 不全为零. 不妨设 $b_r \neq 0$,则 $r \leq s$ 且

$$\boldsymbol{\beta}_r = \frac{1}{b_r} \boldsymbol{\alpha}_r - \sum_{i=1}^{r-1} \frac{a_i}{b_r} \boldsymbol{\alpha}_i - \sum_{i=r+1}^{s} \frac{b_i}{b_r} \boldsymbol{\beta}_i.$$

由此易知 $\{\alpha_r, \alpha_1, \dots, \alpha_{r-1}, \beta_{r+1}, \dots, \beta_s\}$ 与 $\{\alpha_1, \dots, \alpha_{r-1}, \beta_r, \dots, \beta_s\}$ 等价,也就与 $\{\beta_1, \beta_2, \dots, \beta_s\}$ 等价.

9. 设 a_1, a_2, \dots, a_n 是 n 个互不相同的整数. 证明:

$$f(x) = \prod_{i=1}^{n} (x - a_i)^2 + 1$$

在 $\mathbf{Q}[x]$ 中不可约.

证明: $f(x) \in \mathbf{Z}[x]$,它在 $\mathbf{Q}[x]$ 中不可约等价于它在 $\mathbf{Z}[x]$ 中不能分解为两个较低次数的多项式的乘积. 用反证法. 设 $f(x) = g(x)h(x), g(x), h(x) \in \mathbf{Z}[x], 0 < \partial(g(x)) < \partial(f(x)).$

此时 $g(a_i)h(a_i) = 1$, i = 1, \cdots , n, 又 $g(a_i)$ 及 $h(a_i)$ 皆为整数,故 $g(a_i)$ 与 $h(a_i)$ 同为1或-1. 显然 f(x) 没有实根,故 g(x), h(x) 也没有实根. 由数学分析知道函数 g(x) 与 h(x) 在区间 $-\infty < x < \infty$ 内不变号,于是对一切 i, $g(a_i)$ 与 $h(a_i)$ 都等于1 或都等于-1.

若 $g(a_i) = h(a_i) = 1, i = 1, 2, \cdots, n, 则 g(x) - 1 与 h(x) - 1$ 都有 n个不同的根 a_1, a_2, \cdots, a_n . 因而它们的次数都 $\geqslant n$. 但 $\partial(g(x)) + \partial(h(x)) = \partial(f(x)) = 2n$. 故 $\partial(g(x)) = \partial(h(x)) = n$. 又 f(x) 的首项系数为 1, g(x) 与 h(x) 皆为整系数及 f(x) = g(x)h(x),故 g(x) 与 h(x) 的首项系数同为 1 或 -1. 于是

$$g(x) = h(x) = \pm (x - a_1) \cdots (x - a_n) + 1,$$

因而有

$$f(x) = g(x)h(x) = [\pm (x-a_1)\cdots(x-a_n)+1]^2 \neq \prod_{i=1}^n (x-a_i)^2+1,$$

得到矛盾.

若 $g(a_i) = h(a_i) = -1, i = 1, 2, \dots, n$,同样能导出矛盾. 故 f(x) 不能有所设的分解,因此在 $\mathbf{Q}[x]$ 中不可约.

10. 设 A,B,C 是 $n \times n$ 方阵, $D = E_n + BCA$. 试证如果 C(E - AB) = (E - AB)C = E, 则(E - BA)D = D(E - BA) = E,并计算 E + ADB.

证明:

$$(E-BA)D = (E-BA)(E+BCA)$$

$$= E-BA+BCA-BABCA$$

$$= E-BA+B(E-AB)CA$$

$$= E-BA+BA=E.$$

又

$$D(E-BA) = (E+BCA)(E-BA)$$

 $= E-BA+BCA-BCABA$
 $= E-BA+B(C(E-AB))A$
 $= E-BA+BA = E.$
由 $C(E-AB) = (E-AB)C = E$, 得 $E+CAB = E+ABC = C$, 于是
 $E+ADB = E+A(E+BCA)B$
 $= E+AB+ABCAB$
 $= E+AB(E+CAB)$
 $= E+AB(E+CAB)$
 $= E+ABC = C$,

故 E + ADB = C.

- 11. 设数域 $P \perp n \times n$ 矩阵 F 的特征多项式为 f(x),并设 $g(x) = \prod_{i=1}^{m} (x a_i)$. 证明:
 - 1) $|g(\mathbf{F})| = (-1)^{mn} \prod_{i=1}^{m} f(a_i);$
 - 2) 对数域 P上次数 \geqslant 1 的多项式 G(x) 有(G(x), f(x)) = 1 当且仅当 \mid G(F) \mid \neq 0.

证明: 1) \mathbf{F} 的特征多项式为 $f(x) = |x\mathbf{E} - \mathbf{F}|$. 于是

$$f(a_i) = |a_i \mathbf{E} - \mathbf{F}|, i = 1, 2, \dots, m.$$

由
$$\mid g(\mathbf{F}) \mid = \prod_{i=1}^{m} \mid \mathbf{F} - a_i \mathbf{E} \mid = \prod_{i=1}^{m} (-1)^n \mid a_i \mathbf{E} - \mathbf{F} \mid$$
,故 $\mid g(\mathbf{F}) \mid = (-1)^{nm} \prod_{i=1}^{m} f(a_i)$.

2) 对数域上非常数多项式 G(x),,(G(x),,f(x)) = 1 当且仅当它们在复数域上没有公共根.

设在复数域上 $G(x) = k(x - a_1) \cdots (x - a_m), k \in \mathbb{C}$,则 G(x) 与 f(x) 有公共根当日仅当有某 a_i 使 $f(a_i) = 0$. 所以G(x), f(x) = 1 当日仅当 | $G(\mathbf{F})$ | $\neq 0$.

12. 证明:设A 是 $n \times n$ 非零方阵,则有正整数 $k \le n$,使

秩(
$$A^{k}$$
) = 秩(A^{k+1}) = 秩(A^{k+2}).

证明:由于 $A^2 = AA, \dots, A^{l+1} = AA^l, \dots$,故有

$$\mathfrak{K}(\mathbf{A}) \geqslant \mathfrak{K}(\mathbf{A}^2) \geqslant \cdots \geqslant \mathfrak{K}(\mathbf{A}^l) \geqslant \mathfrak{K}(\mathbf{A}^{l+1}) \cdots$$
.

若秩(\mathbf{A}) = n,即 \mathbf{A} 可逆,则秩(\mathbf{A}) = 秩(\mathbf{A}^2) = \cdots = 秩(\mathbf{A}^l) = \cdots ,这时 $k = 1 \le n$. 如果秩(\mathbf{A}) < n,由 $n - 1 \ge$ 秩(\mathbf{A}) \ge 秩(\mathbf{A}^2) $\ge \cdots \ge$ 秩(\mathbf{A}^n) \ge 秩(\mathbf{A}^{n+1}) \ge 0,

则 $\{ \mathcal{H}(\mathbf{A}^{l}) - \mathcal{H}(\mathbf{A}^{l+1}), l = 1, 2, \dots, n \}$ 中不能全不为 0,否则 $\mathcal{H}(\mathbf{A}) = \sum_{l=1}^{n} [\mathcal{H}(\mathbf{A}^{l}) - \mathcal{H}(\mathbf{A}^{l+1})] + \mathcal{H}(\mathbf{A}^{n+1}) \ge n$,与所设 $\mathcal{H}(\mathbf{A}) < n$ 矛盾. 于是有 $k \le n$,使 $\mathcal{H}(\mathbf{A}^{k}) = n$

秩(A^{k+1}).

下面证明对任何 l,若秩(\mathbf{A}^{l}) = 秩(\mathbf{A}^{l+1}),则秩(\mathbf{A}^{l+1}) = 秩(\mathbf{A}^{l+2}). 于是依次取 $l = k, k+1, k+2, \dots$,就得到

$$\mathcal{R}(\mathbf{A}^{k}) = \mathcal{R}(\mathbf{A}^{k+1}) = \mathcal{R}(\mathbf{A}^{k+2}) = \cdots$$

现设秩(\mathbf{A}^{l}) = 秩(\mathbf{A}^{l+1}),考虑齐次方程组

$$\mathbf{A}^{l}\mathbf{X} = \mathbf{0} \tag{1}$$

和

$$\mathbf{A}^{l+1}\mathbf{X} = \mathbf{0}. \tag{2}$$

显然(1) 的解是(2) 的解. 又秩($\mathbf{A}^{(1)}$) = 秩($\mathbf{A}^{(+1)}$),(1) 与(2) 的基础解系有相同数目的解,于是(1) 的基础解系也是(2) 的基础解系,即(1) 与(2) 同解.

再考虑齐次方程组

$$\mathbf{A}^{l+2}\mathbf{X} = \mathbf{0}.\tag{3}$$

显然(2) 的解是(3) 的解,对(3) 的任一解 X_0 ,有

$$A^{l+1}(AX_0)=0,$$

即 AX_0 是(2)的解,因而是(1)的解.于是 $A^t(AX_0) = 0$,因而 X_0 是(2)的解. 这就证明了(2)和(3)同解,它们的系数矩阵必有相同的秩,即秩(A^{H_1}) = 秩(A^{H_2}).

- 13. 证明:设A,B皆为 $n \times n$ 实对称矩阵,且A为正定矩阵.则有实可逆矩阵C使C'AC及C'BC同时为对角矩阵.
- 证明:由于 A 正定,有实可逆矩阵 C_1 ,使 $C_1AC_1 = E$.这时 C_1BC_1 仍为实对称矩阵,故有正交矩阵 C_2 使 $C_2C_1BC_1C_2$ 为对角矩阵. C_2 正交,于是 $C_2C_1AC_1C_2 = C_2EC_2$ = $C_2C_2 = E$.令 $C = C_1C_2$,则 CAC 及 CBC 同时为对角矩阵.
- **14.** $n \times n$ 复方阵 **A** 称为幂零的,若有正整数 k,使 $A^k = \mathbf{0}$. 证明:
 - 1) A 是幂零矩阵的充要条件是A 的所有特征值全为零;
 - 2) A 是幂零矩阵的充要条件是 $Tr(A^k) = 0$, $k = 1, 2, \dots$, 其中 Tr(A) 是 A 的迹,即 A 的对角线元素的和.
- 证明:1) 必要性. 设 λ_0 是A的一个特征值, $\xi \neq 0$ 是属于 λ_0 的特征向量. 于是 $A\xi = \lambda_0 \xi$,则

$$A^k \xi = \lambda_0^k \xi = 0.$$

因 $\xi \neq 0$,故 $\lambda_0^k = 0$,即 $\lambda_0 = 0$.

充分性. A 的特征值全为零,即 A 的特征多项式 f(x) 的根全为零. 因 f(x) 有 n 个 复根,故 $f(x) = x^n$. 再由哈密顿 一凯莱定理有 $A^n = 0$,即 A 是幂零的.

2) 必要性. 由 1) ,A 的n 个复特征值 λ_1 , λ_2 ,… , λ_n 全为零. 于是 A^k 的n 个特征值 λ_1^k , λ_2^k ,… , λ_n^k 也全为零. 因此

$$\operatorname{Tr}(\mathbf{A}^k) = \lambda_1^k + \lambda_2^k + \cdots + \lambda_n^k = 0, \quad k = 1, 2, \cdots$$

充分性. 设 $Tr(\mathbf{A}^k) = \lambda_1^k + \lambda_2^k + \cdots + \lambda_n^k = 0, k = 1, 2, \cdots, 则有$

$$\begin{cases} \lambda_1 + \lambda_2 + \dots + \lambda_n = 0, \\ \lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 = 0, \\ \dots \\ \lambda_1^n + \lambda_2^n + \dots + \lambda_n^n = 0. \end{cases}$$
(1)

设A的特征多项式为

$$f(x) = x^{n} - \sigma_{1} x^{n-1} + \sigma_{2} x^{n-2} + \dots + (-1)^{n-1} \sigma_{n-1} x + (-1)^{n} \sigma_{n},$$

其中

$$\begin{split} &\sigma_1 = \lambda_1 + \lambda_2 + \cdots + \lambda_n, \\ &\sigma_2 = \lambda_1 \lambda_2 + \cdots + \lambda_1 \lambda_n + \lambda_2 \lambda_3 + \cdots + \lambda_{n-1} \lambda_n, \\ &\sigma_3 = \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \cdots + \lambda_1 \lambda_2 \lambda_n + \lambda_1 \lambda_3 \lambda_4 + \cdots + \lambda_{n-2} \lambda_{n-1} \lambda_n, \\ &\cdots \\ &\sigma_{n-1} = \lambda_1 \lambda_2 \cdots \lambda_{n-1} + \lambda_1 \lambda_2 \cdots \lambda_{n-2} \lambda_n + \cdots + \lambda_2 \lambda_3 \cdots \lambda_n, \\ &\sigma_n = \lambda_1 \lambda_2 \cdots \lambda_n. \end{split}$$

将原书第一章补充题 16 的 2) 的公式中 s_k 换成 $Tr(\mathbf{A}^k)$,则有

$$\operatorname{Tr}(\mathbf{A}^{k}) - \sigma_{1}\operatorname{Tr}(\mathbf{A}^{k-1}) + \sigma_{2}\operatorname{Tr}(\mathbf{A}^{k-2}) + \cdots + (-1)^{k-1}\sigma_{k-1}\operatorname{Tr}(\mathbf{A}) + (-1)^{k}k\sigma_{k} = 0, 1 \leq k \leq n.$$

由此可得 $\sigma_1 = \sigma_2 = \cdots = \sigma_n = 0$,就有 $f(x) = x^n$. 再用哈密顿 — 凯莱定理 , $A^n = 0$,即 A 为幂零矩阵.

15. 证明:设A,B皆为 $n \times n$ 实对称矩阵,且互相交换,则它们有公共的特征向量作为欧氏空间 R^n 的标准正交基.

证明:作欧氏空间 \mathbb{R}^n 中线性变换 \mathcal{A}, \mathcal{B} :

$$\mathcal{A}: \mathbf{R}^n \longrightarrow \mathbf{R}^n, \quad \mathcal{B}: \mathbf{R}^n \longrightarrow \mathbf{R}^n,$$

$$X \longmapsto AX, \qquad X \longmapsto BX.$$

 \mathscr{A} , 第在标准正交基 $\boldsymbol{\varepsilon}_1 = (1,0,\cdots,0)', \boldsymbol{\varepsilon}_2 = (0,1,0,\cdots,0)',\cdots,\boldsymbol{\varepsilon}_n = (0,0,\cdots,0,1)'$ 下的矩阵就是 \boldsymbol{A} , \boldsymbol{B} . 由于 \boldsymbol{A} , \boldsymbol{B} 对称,故 \mathscr{A} , 第是 \boldsymbol{R}^n 上对称变换(\boldsymbol{R}^n 上内积是自然内积(\boldsymbol{X} , \boldsymbol{Y}) = \boldsymbol{X}' \boldsymbol{Y}).

由 A, B交换知 A, B也交换. A是 R^B 上对称变换, 它的矩阵可化为对角形, 故 R^B 是 A 的特征子空间的直和:

$$\mathbf{R}^n = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s}$$
,

其中 λ_1 , λ_2 ,…, λ_s 是 \mathcal{A} 的全部不同的特征值,由 $\mathcal{AB} = \mathcal{BA}$,每个 V_{λ_i} ($i=1,\dots,s$) 都是 \mathcal{B} 的不变子空间。 \mathcal{B} 限制在 V_{λ_i} 上也是对称变换, \mathcal{B} 在 V_{λ_i} 上有特征向量作成的标准正交基 $\xi_{i,1}$, $\xi_{i,2}$,…, ξ_{i,n_i} ,其中 $n_i=\mathfrak{A}$ (V_{λ_i}).由于它们属于 V_{λ_i} ,故都是 \mathcal{A} 的特征向量。又 V_{λ_i} 与 V_{λ_j} 属于 \mathcal{A} 的不同的特征值,因而它们互相正交,于是 $i\neq l$ 时 $\xi_{i,j}$ 与 $\xi_{l,k}$ 正交。 $\xi_{i,1}$, $\xi_{i,2}$,…, ξ_{i,n_i} 又是 V_{λ_i} 的标准正交基,若i=l,但 $j\neq k$, $\xi_{i,j}$ 与 $\xi_{l,k}$ 也正交。这样 $\{\xi_{i,j}\mid i=1,2,\cdots,s,j=1,2,\cdots,n_l\}$ 是相互正交的,且长度为

1,是标准正交向量组,这个向量组中向量数目为

$$n_1 + n_2 + \cdots + n_s = \#(V_{\lambda_1}) + \#(V_{\lambda_2}) + \cdots + \#(V_{\lambda_s}) = n.$$

故它们组成 R"的一组标准正交基.

16. 证明:反称实矩阵正交相似于准对角矩阵

其中 $b_i(i=1,\dots,s)$ 是实数.

证明:设A为 $n \times n$ 反称实矩阵.和上一题一样,A对应于 \mathbb{R}^n 中的一个线性变换

$$\mathcal{A}: \mathbf{R}^n \longrightarrow \mathbf{R}^n, \tag{1}$$

$$\mathbf{X} \longrightarrow \mathbf{A}\mathbf{X}.$$

它在 \mathbf{R}^n 的自然内积(\mathbf{X} , \mathbf{Y}) = $\mathbf{X}'\mathbf{Y}$ 下是反称变换. 第九章习题 16 证明了 \mathbf{A} 的特征 根为零或纯虚数. 我们想对一般的 n 维欧氏空间 V 上的反称变换 \mathcal{A} ,证明能找到一组标准正交基使 \mathcal{A} 在这组基下矩阵有题目所要求的形状.

我们对 n 作数学归纳法. n=1,这时 \varnothing 的特征值为 0,矩阵也为零. 故题目的结论成立.

现设对维数 $\leqslant n-1$ 的欧氏空间上的反称变换命题已成立. 对 n 维欧氏空间 V 上 线性变换 \mathscr{A} ,由于 V 同构成 \mathbf{R}^n ,转而考虑 \mathbf{R}^n 中线性变换如(1). 若 \mathbf{A} 有特征值 0,则有 $\boldsymbol{\xi}_1$ 是属于特征值 0 的单位特征向量,作 $V_1 = L(\boldsymbol{\xi}_1)^{\perp}$. 因 \mathscr{A} 反称, \mathscr{A} 在 V_1 上 不变,且仍反称. 维(V_1) = n-1. 考虑 \mathscr{A} 限制在 V_1 上,用归纳假设,有 V_1 的标准 正交基 $\boldsymbol{\xi}_2$, $\boldsymbol{\xi}_3$,…, $\boldsymbol{\xi}_n$, \mathscr{A} $|_{V_1}$ 在这组基下矩阵 \boldsymbol{A}_1 有题目要求的形状, $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$,…, $\boldsymbol{\xi}_n$ 合 起来,是 \mathbf{R}^n 的标准正交基, \mathscr{A} 在这组基下矩阵为

$$\begin{pmatrix} 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_1 \end{pmatrix},$$

也是题目要求的形状.

若 A 有纯虚数特征根 $i\beta$, β 为非零实数. 则有复特征向量 X+iY, $A(X+iY)=i\beta(X+iY)$,X,Y \in Rⁿ. 则有

$$AX = -\beta Y, \tag{1}$$

$$AY = \beta X. \tag{2}$$

由反称性,

$$(\mathbf{A}\mathbf{X},\mathbf{X}) = -(\mathbf{X},\mathbf{A}\mathbf{X}) = -(\mathbf{A}\mathbf{X},\mathbf{X}) = 0,$$

故

$$0 = (AX, X) = -\beta(Y, X),$$

即 X,Y 正交. 分别将 Y,X 和(1),(2) 作内积,然后相加得

$$(AX,Y) + (AY,X) = \beta((X,X) - (Y,Y)).$$

又

左端 =
$$(AX,Y) + (X,AY) = (AX,Y) - (AX,Y) = 0$$
,

故右端 = 0. 又 $\beta \neq 0$,即有

$$(X,X) = (Y,Y).$$

可将 A 的属于 $i\beta$ 的复特征向量 X+iY 取成满足(X,X) = (Y,Y) = 1. 则 X,Y 生成 \varnothing 的二维不变子空间 V_1 ,且组成 V_1 的标准正交基. 作 $V_2=V_1$,由 \varnothing 反称, V_1 仍 \varnothing 不变. 维(V_2) < n,用归纳假设 V_2 有标准正交基 ξ_3 , ξ_4 ,…, ξ_n , \varnothing 在这组基下矩阵为 A_2 ,符合题目要求的形状.

 X,Y,ξ_3,\dots,ξ_n 合起来是 \mathbf{R}^n 的一组标准正交基,从在这组基下的矩阵有形状:

$$\begin{bmatrix} 0 & \beta \\ -\beta & 0 \\ & \mathbf{A}_2 \end{bmatrix}.$$

若有需要,可将前面的标准正交基中元素重排一下顺序,则 ຝ在新基下矩阵符合题目要求.

- 17. 设S是非零的反称实矩阵,证明:
 - 1) |E+S| > 1;
 - 2) 设 A 是正定矩阵,则 |A+S| > |A|.

证明:1) 由前一题,有正交矩阵 T使

 $b_i(i=1,\dots,s)$ 为实数. 于是

$$|E+S| = |T^{-1}| |E+S| |T| = |T^{-1}(E+S)T|$$

$$= \begin{vmatrix} 1 & & & & & & & & & \\ & \ddots & & & & & & & \\ & & 1 & & & & & \\ & & 1 & & b_1 & & & \\ & & -b_1 & 1 & & & \\ & & & -b_1 & 1 & & \\ & & & & -b_2 & 1 & \\ & & & & -b_3 & 1 & \\ & & & & & 1 \end{vmatrix}$$

最后的不等号是因为 $S \neq 0$, 至少有一 $b_i \neq 0$.

2) A 正定,于是有可逆矩阵 C 使 A = C'C. S 是反称的,故 $S_1 = (C^{-1})'SC^{-1}$ 仍反称,且非零,于是 $|E+S_1| > 1$.

$$|A+S| = |C'(E+S_1)C| = |C'| |C| |E+S_1|$$

= $|A| |E+S_1| > |A|$.

18. 设 f(x), g(x) 是数域 P 上两个不全为零的多项式. 令

$$S = \{ u(x) f(x) + v(x) g(x) \mid u(x), v(x) \in P[x] \}.$$

证明:存在 $m(x) \in S$,使

$$S = \{h(x)m(x) \mid h(x) \in P[x]\}.$$

证明:因 f(x), g(x) 不全为零, S 中有非零多项式. 在 S 中取次数最低的一个多项式 m(x). 我们证明, 对任意 $M(x) \in S$, $m(x) \mid M(x)$.

用 m(x) 去除 M(x),设其商式和余式分别是 g(x) 和 r(x),则

$$M(x) = q(x)m(x) + r(x),$$

若 $r(x) \neq 0$,则 $\partial(r(x)) < \partial(m(x))$. 但 M(x), $m(x) \in S$,有 $u_i(x)$, $v_i(x)$, i = 1, 2,使

$$M(x) = u_1(x) f(x) + v_1(x) g(x),$$

 $m(x) = u_2(x) f(x) + v_2(x) g(x),$

于是

$$r(x) = M(x) - q(x)m(x)$$

= $\lceil u_1(x) - q(x)u_2(x) \rceil f(x) + \lceil v_1(x) - q(x)v_2(x) \rceil g(x) \in S$,

它的次数 $< \partial(m(x))$,与 m(x) 是 S 中次数最低的多项式矛盾. 因此只能 r(x) = 0,即 M(x) = g(x)m(x). 这证明了

$$S = \{h(x)m(x) \mid h(x) \in P[x]\}.$$

19. 1) \mathbf{A} 是 n 级可逆矩阵,求下列二次型

$$f = \begin{vmatrix} 0 & -\mathbf{X}' \\ \mathbf{X} & \mathbf{A} \end{vmatrix}$$
,其中 $\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

的矩阵;

- 3) 当 A 是实对称矩阵时,讨论 A 的正、负惯性指数与 f 的正、负惯性指数之间的关系.
- 解:1) 因 A 可逆,故 A⁻¹ 存在.

$$\begin{vmatrix} 1 & \mathbf{X}'\mathbf{A}^{-1} \\ \mathbf{0} & \mathbf{E} \end{vmatrix} \begin{vmatrix} 0 & -\mathbf{X}' \\ \mathbf{X} & \mathbf{A} \end{vmatrix} = \begin{vmatrix} \mathbf{X}'\mathbf{A}^{-1}\mathbf{X} & \mathbf{0} \\ \mathbf{X} & \mathbf{A} \end{vmatrix}$$
$$= \begin{vmatrix} \mathbf{A} \mid \mathbf{X}'\mathbf{A}^{-1}\mathbf{X},$$

故

$$f = \begin{vmatrix} 0 & -\mathbf{X}' \\ \mathbf{X} & \mathbf{A} \end{vmatrix} = |\mathbf{A}| \mathbf{X}' \mathbf{A}^{-1} \mathbf{X}.$$

由于 A^{-1} 不一定是对称矩阵,所以f 的矩阵是

$$|\mathbf{A}| \cdot \frac{1}{2} [\mathbf{A}^{-1} + (\mathbf{A}^{-1})'] = \frac{1}{2} [\mathbf{A}^* + (\mathbf{A}^*)'],$$

其中 A^* 是A 的伴随矩阵.

- 2) 当 A 是正定矩阵时,f 是实二次型. 此时 A^{-1} 也正定,且 |A| > 0. 所以 f 是正定二次型.
- 3) 设 \boldsymbol{A} 的正惯性指数为 \boldsymbol{p} . 故 \boldsymbol{A}^{-1} 的正惯性指数也是 \boldsymbol{p} . 但 $|\boldsymbol{A}|$ 与 $(-1)^{n-p}$ 同号,因此有
- (i) n-p,即 \mathbf{A} 的负惯性指数为偶数时,f的正、负惯性指数与 \mathbf{A} 的正、负惯性指数相同:
- (ii) n-p,即 A 的负惯性指数为奇数时,f 的正、负惯性指数分别等于 A 的负、正惯性指数.
- **20.** 设 P[x] 中多项式 $p_1(x)$, $p_2(x)$, ..., $p_s(x)$ ($s \ge 2$) 的次数分别为 n_1 , n_2 , ..., n_s . 证 明: 若 $n_1 + n_2 + \dots + n_s < \frac{s(s-1)}{2}$, 则 $p_1(x)$, $p_2(x)$, ..., $p_s(x)$ 在线性空间 P[x] 中线性相关.
- 证明:对 s 作数学归纳法. 当 s = 2 时, $n_1 + n_2 < 1$,因此 $n_1 = n_2 = 0$. $p_1(x)$, $p_2(x)$ 皆为非零常数,故线性相关.

设 s > 2, 目结论对 s - 1 个多项式成立, 来证结论对 s 个多项式也成立, 可调动

 $p_i(x), i = 1, 2, \dots, s$ 的次序使得

$$n_1 \leqslant n_2 \leqslant \cdots \leqslant n_s$$
.

现在

$$n_1 + n_2 + \cdots + n_s < \frac{s(s-1)}{2}$$
.

如果

$$n_1 + n_2 + \cdots + n_{s-1} < \frac{(s-1)(s-2)}{2}$$
,

则由归纳假设 $p_1(x), p_2(x), \dots, p_{s-1}(x)$ 线性相关,因此 $p_1(x), p_2(x), \dots, p_{s-1}(x), p_s(x)$ 也线性相关.命题得证.

如果

$$n_1 + n_2 + \cdots + n_{s-1} \geqslant \frac{(s-1)(s-2)}{2},$$

则

$$n_s < s - 1$$
.

从而

$$n_1 \leqslant n_2 \leqslant \cdots \leqslant n_{s-1} \leqslant n_s < s-1$$
,

 $p_1(x), p_2(x), \dots, p_{s-1}(x), p_s(x)$ 都可由

$$1, x, \dots, x^{s-2}$$

线性表出. 即 s 个元素 $p_1(x)$, $p_2(x)$, …, $p_s(x)$ 可由 s-1 个元素 1, x, …, x^{s-2} 线性表出. 这 s 个元素一定线性相关.

- **21.** 设 A 是 n 级实对称矩阵. 证明:存在实对称矩阵 B 使得 $B^2 = A$ 的充分必要条件是,A 为半正定矩阵.
- 证明:必要性. 设 $B^c = A$, 并设 B 的全部特征值为 λ_1 , λ_2 , ..., λ_n , 则 A 的全部特征值为 λ_1^c , λ_2^c , ..., λ_n^c . 因 B 为实对称的, λ_1 , ..., λ_n^c 皆为实数, λ_1^c , λ_2^c , ..., λ_n^c 皆大于等于零. 即 A 为半正定矩阵.

充分性,设A为半正定,则有正交矩阵T使

$$extbf{ extit{T'AT}} = extbf{ extit{T}}^{-1} extbf{ extit{AT}} = egin{pmatrix} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & \ddots & & & \\ & & & \lambda_n \end{pmatrix},$$

其中 $\lambda_i \geqslant 0, i = 1, 2, \dots, n$. 令

$$m{B} = m{T}' egin{bmatrix} \sqrt{\lambda_1} & & & & & \ & \sqrt{\lambda_2} & & & \ & & \ddots & & \ & & \sqrt{\lambda_n} \end{bmatrix} m{T},$$

则 $B^2 = A$.

22. 证明:设A 是非退化实矩阵,则它是一个正交矩阵与一个正定矩阵的乘积.

证明:A是非退化实矩阵,则A'A为正定矩阵,由前一题有正定矩阵C使得A'A = C' = C'C. 于是

$$(\mathbf{C}^{-1})'\mathbf{A}'\mathbf{A}\mathbf{C}^{-1} = (\mathbf{A}\mathbf{C}^{-1})'(\mathbf{A}\mathbf{C}^{-1}),$$

即 $B = AC^{-1}$ 是正交矩阵. 因此 A = BC 是正交矩阵与正定矩阵的乘积.

23. 证明:设A是反称实矩阵,则 $(E-A)(E+A)^{-1}$ 是正交矩阵.

证明:
$$[(E-A)(E+A)^{-1}]'(E-A)(E+A)^{-1}$$

 $= (E+A')^{-1}(E-A')(E-A)(E+A)^{-1}$
 $= (E-A)^{-1}(E+A)(E-A)(E+A)^{-1}$
 $= (E-A)^{-1}(E-A)(E+A)(E+A)^{-1}$
 $= E.$

因此 $(E-A)(E+A)^{-1}$ 与其转置互逆,故是正交矩阵.

24. 设 a_1, a_2, \dots, a_n 为 n 个彼此不等的实数, $f_1(x), \dots, f_n(x)$ 是 n 个次数不大于 n-2 的实系数多项式。证明:

$$\begin{vmatrix} f_1(a_1) & f_1(a_2) & \cdots & f_1(a_n) \\ f_2(a_1) & f_2(a_2) & \cdots & f_2(a_n) \\ \vdots & \vdots & & \vdots \\ f_n(a_1) & f_n(a_2) & \cdots & f_n(a_n) \end{vmatrix} = 0.$$

证明:令

$$g(x) = \begin{vmatrix} f_1(x) & f_1(a_2) & \cdots & f_1(a_n) \\ f_2(x) & f_2(a_2) & \cdots & f_2(a_n) \\ \vdots & \vdots & & \vdots \\ f_n(x) & f_n(a_2) & \cdots & f_n(a_n) \end{vmatrix},$$

它是x的多项式,或者g(x) = 0,或者 $\partial(g(x)) \leq n-2$.若为前者,结论已成立.若为后者, $g(a_2) = g(a_3) = \cdots = g(a_n) = 0$,即至少有n-1个根,而次数 $\leq n-2$.这是不可能的. 故g(x) = 0,当然有 $g(a_1) = 0$.

25. 设 f(x), g(x), $h(x) \in P[x]$, 且次数皆大于等于 1. 证明: f(g(x)) = h(g(x)) 的充分必要条件为 f(x) = h(x).

证明:充分性显然.

必要性. 设
$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$$
, $h(x) = b_i x^i + b_{i-1} x^{i-1} + \dots + b_1 x$
 $+ b_0$, $g(x) = c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0$,其中 k , l , m 皆 $\geqslant 1$, a_k , b_l , c_m 皆不为
零. 我们来证 $k = l$, $a_i = b_i$, $i = k$, $k - 1$, \dots , 0 . 对 k 作数学归纳法. 若 $k = 1$, 则
 $f(g(x)) = a_1 (c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0) + a_0$

$$= h(g(x)) = b_{l}(c_{m}x^{m} + c_{m-1}x^{m-1} + \dots + c_{1}x + c_{0})^{l} + b_{l-1}(c_{m}x^{m} + c_{m-1}x^{m-1} + \dots + c_{1}x + c_{0})^{l-1} + \dots + b_{1}(c_{m}x^{m} + c_{m-1}x^{m-1} + \dots + c_{1}x + c_{0}) + b_{0}.$$

两边的最高次项分别为 $a_1 c_m x^m$ 和 $b_l c_m^l x^{ml}$. 它们相等得 m = ml,因此 l = 1,且 $a_1 c_m = b_1 c_m$,再得 $a_1 = b_1$.

两边的常数项相等,得

$$a_1 c_0 + a_0 = b_1 c_0 + b_0$$
.

于是 $a_0 = b_0$. 故结论对 k = 1 成立.

再设结论在次数 < k 时成立. 当 $\partial(f(x)) = k$ 时,

$$f(g(x)) = h(g(x)),$$

即为

$$a_{k}(c_{m}x^{m} + \cdots + c_{1}x + c_{0})^{k} + a_{k-1}(c_{m}x^{m} + \cdots + c_{1}x + c_{0})^{k-1} + \cdots + a_{1}(c_{m}x^{m} + \cdots + c_{1}x + c_{0}) + a_{0}$$

$$= b_{l}(c_{m}x^{m} + \cdots + c_{1}x + c_{0})^{l} + b_{l-1}(c_{m}x^{m} + \cdots + c_{1}x + c_{0})^{l-1} + \cdots + b_{1}(c_{m}x^{m} + \cdots + c_{1}x + c_{0}) + b_{0}.$$

比较两边最高项得

$$a_k c_m^k x^{km} = b_l c_m^l x^{lm}$$
.

于是 $k = l, a_k = b_l$.

消去上式两边的第一项,就得

$$f_1(g(x)) = h_1(g(x)).$$

其中

$$f_1(x) = a_{k-1}x^{k-1} + \dots + a_1x + a_0,$$

$$h_1(x) = b_{k-1}x^{k-1} + \dots + b_1x + b_0.$$

若 $f_1(x)$ 是常数(包括零常数),显然 $h_1(x)$ 也是常数,且 $f_1(x) = h_1(x)$. 所以

$$f(x) = a_k x^k + f_1(x) = b_k x^k + h_1(x) = h(x).$$

若 $f_1(x)$ 非常数,则 $h_1(x)$ 也非常数.又 $f_1(x)$ 是次数 $\leq k-1$ 的多项式,则由归 纳假设有 $f_1(x) = h_1(x)$. 同样得到 f(x) = h(x).

26. 设整系数多项式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$,它没有有理根. 又有素数 p满足 $1) p \nmid a_n$; $2) p \mid a_{n-2}, \dots, p \mid a_0$; $3) p^2 \nmid a_0$.

证明: f(x) 在 $\mathbf{O}[x]$ 中不可约.

证明:如果 $p \mid a_{n-1}$,则由艾森斯坦判别法,结论成立.下面对 $p \nmid a_{n-1}$ 的情形加以证明. 反设 f(x) 在 $\mathbf{Q}[x]$ 中可约,则 f(x) 可以分解为两个次数较低的整系数多项式 g(x),h(x) 的乘积:

$$f(x) = g(x)h(x), (1)$$

其中

$$g(x) = b_l x^l + b_{l-1} x^{l-1} + \dots + b_1 x + b_0,$$

$$h(x) = c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0.$$

因为 f(x) 无有理根,所以 l,m 皆大于 l, 由(1) 有,

$$a_n = b_1 c_m, \quad a_0 = b_0 c_0.$$

根据 $p \mid a_0, p^2 \nmid a_0$,p能整除 b_0 , c_0 中的一个,但不能同时整除它们两个. 因此不妨 设 $p \mid b_0$ 但 $p \nmid c_0$. 又 $p \nmid a_n$,故 $p \nmid b_l$. 可设 b_0 , b_1 , … , b_l 中第一个不能被 p 整除的 是 b_k ,即 $p \mid b_0$, $p \mid b_1$, … , $p \mid b_{k-1}$, 但 $p \nmid b_k$, 且 $1 \leq k \leq l < n-1$. 比较(1) 式两 边 x^k 的系数,得

$$a_k = b_k c_0 + b_{k-1} c_1 + \dots + b_0 c_k$$
.

式中右边除 $b_k c_0$ 外其余各项都可被p整除,而 $p \nmid b_k c_0$,因此右边不能被p整除,从而p不能整除左端 a_k . 但k < n-1,题目假设 $p \mid a_k$,矛盾. 这证明了f(x) 在 $\mathbf{Q}[x]$ 中不可约.

- **27.** 1) 设 f(x) 及 G(x) 是 P[x] 中 m 次及 $\leq m+1$ 次多项式,证明: $G(n) = \sum_{k=0}^{n-1} f(k)$ 对所有 $n \geq 1$ 成立的充分必要条件是 G(x+1) G(x) = f(x) 且 G(0) = 0;
 - 2) 证明:对 P[x] 中任何 m 次多项式 f(x),必有 P[x] 中次数 $\leq m+1$ 的多项式 G(x) 满足 $G(n) = f(0) + f(1) + \cdots + f(n-1)$ 对任何 $n \geq 1$ 的整数成立; 3) 求 $1^2 + 2^2 + \cdots + n^2$ 及 $1^3 + 2^3 + \cdots + n^3$.

证明:1) 必要性. 如果 $G(n) = \sum_{k=1}^{n-1} f(k)$,那么

$$G(n+1) - G(n) = \sum_{k=0}^{n} f(k) - \sum_{k=0}^{n-1} f(k) = f(n).$$

这说明当 x 是正整数时,

$$G(x+1) - G(x) = f(x)$$

成立,因此在 P[x] 中成立.

当 x = 0 时,由上式有 G(1) - G(0) = f(0). 但题设 G(1) = f(0),故 G(0) = 0. 充分性.由 G(x+1) - G(x) = f(x) 及 G(0) = 0 有,

G(1) = G(1) - G(0) = f(0),

将上述各式相加即得

$$G(n) = \sum_{k=0}^{n-1} f(k).$$

2) 作次数 $\leq m+1$ 的多项式 G(x) 使 $n=1,2,\cdots,m+1$ 时有

$$G(n) = \sum_{k=0}^{n-1} f(k)$$
 \mathcal{R} $G(0) = 0$.

易验证

$$G(x+1)-G(x)$$

是次数 $\leq m$ 的多项式. 当 $x=1,2,\cdots,m+1$ 时它与 f(x) 有相同的值 f(n). 又它们的次数皆 $\leq m$,故在 P[x] 中

$$G(x+1)-G(x)=f(x)$$
.

再由 1),结论成立,

3)
$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n,$$
$$1^{3} + 2^{3} + \dots + n^{3} = \frac{1}{4}n^{4} + \frac{1}{2}n^{3} + \frac{1}{4}n^{2}.$$

28. P是一个数域,N是 P[x]中的一个子集,满足 1) f(x), $g(x) \in N$, 则 $f(x) + g(x) \in N$; 2) 对 $f(x) \in N$ 及任何 $q(x) \in P[x]$ 有 q(x) $f(x) \in N$. 证明 : N 中有 d(x), 满足 $N = \{d(x)q(x) \mid q(x) \in P[x]\}$.

证明:若 $N = \{0\}$,则 d(x) = 0 为所求.

若 $N \neq \{0\}$. 设 d(x) 是 N 中非零多项式中次数最低的一个多项式. 对 N 中任一多项式 f(x),作带余除法,

$$f(x) = q(x)d(x) + r(x),$$

其中 r(x) = 0 或 $\partial(r(x)) < \partial(d(x))$.

由题设 q(x)d(x) 及 $r(x) = f(x) - q(x)d(x) \in N$. 若 $r(x) \neq 0$,则与 d(x) 是 N 中次数最低的矛盾. 故 r(x) = 0,即有 f(x) = g(x)d(x).

另一方面, $d(x) \in N$,由题设 $f(x) = q(x)d(x) \in N$. 故

$$N = \{q(x)d(x) \mid q(x) \in P[x]\}.$$

29. n 为正整数, $f(x) \in \mathbf{Q}[x]$, $\partial(f(x)) = n$. 证明:有不全为零的有理数 a_0 , a_1 ,… , a_n 使得 $f(x) \mid \sum_{i=0}^{n} a_i x^{2^i}$.

证明:设

$$f(x) = b_0 + b_1 x + \dots + b_n x^n, \quad b_n \neq 0.$$

要找

$$g(x) = c_0 + c_1 x + \dots + c_{2^n - n} x^{2^n - n},$$

$$h(x) = a_0 x^{2^0} + a_1 x^{2^1} + a_2 x^{2^2} + \dots + a_n x^{2^n}$$

使

$$h(x) = f(x)g(x), \tag{1}$$

这等价于

$$\begin{cases} \sum_{i+j=s} b_i c_j = a_l, & s = 2^l, l = 0, 1, 2, \dots, n, \\ \sum_{i+j=s} b_i c_j = 0, & \text{ 其他 } s, 0 \leqslant s \leqslant 2^n, \end{cases}$$

也即等价于未知数 $x_0, x_1, \dots, x_{2^n-n}, y_0, y_1, \dots, y_n$ 的齐次线性方程组

$$\begin{cases} \sum_{i+j=s} b_i x_j = y_l, & s = 2^l, l = 0, 1, 2, \dots, n, \\ \sum_{i+j=s} b_i x_j = 0, & 其他 s, 0 \leqslant s \leqslant 2^n \end{cases}$$

有解.

这个方程组共 2^n+1 个方程,有 $(2^n-n)+1+n+1=2^n+2$ 个未知数. 故上述方程组有非零解. 记它的一个非零解为上述 c_0 ,…, c_{2^n-n} , a_0 , a_1 ,…, a_n . 作成相应的 g(x), h(x) 就满足(1). 若 $a_0=a_1=\dots=a_n=0$,则 c_0 , c_1 ,…, c_{2^n-n} 不全为零,此时 $g(x) \neq 0$, h(x)=0. 但 $f(x) \neq 0$. $f(x)g(x) \neq 0$,与 f(x)g(x)=h(x)=0 矛盾. 故 a_0 ,…, a_n 不全为零.

30. $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ 为整系数 4 次多项式,令 r_1 , r_2 , r_3 , r_4 是它的根,已知 $r_1 + r_2$ 为有理数, $r_1 + r_2 \neq r_3 + r_4$. 证明:f(x) 可表成两个次数较低的整系数多项式的乘积.

证明:由题设

$$f(x) = a(x - r_1)(x - r_2)(x - r_3)(x - r_4)$$

= $a[x^2 - (r_1 + r_2)x + r_1r_2][x^2 - (r_3 + r_4)x + r_3r_4],$ (1)

及 $f(x) \in \mathbf{Q}[x]$,展开上式后可知

$$(r_1+r_2)+(r_3+r_4),$$

 $(r_1+r_2)(r_3+r_4)+r_1r_2+r_3r_4,$
 $(r_1+r_2)r_3r_4+(r_3+r_4)r_1r_2,$

$$r_1 r_2 r_3 r_4$$

都是有理数. 由于 $r_1 + r_2$ 是有理数,于是 $r_3 + r_4$ 是有理数及

$$\begin{cases} r_1 r_2 + r_3 r_4 = 有理数, \\ (r_3 + r_4) r_1 r_2 + (r_1 + r_2) r_3 r_4 = 有理数. \end{cases}$$

又

$$\begin{vmatrix} 1 & 1 \\ r_1+r_2 & r_3+r_4 \end{vmatrix} \neq 0,$$

用克拉默法则,得 r_1r_2 及 r_3r_4 是有理数.由(1)知 $x^2 - (r_1 + r_2)x + r_1r_2$ 是f(x)的有理因式,即f(x)在**Q**[x]中可约,故可表成两个低次整系数多项式的乘积.

31. $f_1(x), f_2(x), \dots, f_n(x)$ 是闭区间[a,b]上的实函数,且在实数域上是线性无关的.

证明:在[a,b]上存在数 a_1,a_2,\dots,a_n ,使

$$|(f_i(a_i))| \neq 0, \quad i,j = 1,2,\dots,n$$

证明:对 n作数学归纳法. n = 1, $f_1(x)$ 是非零函数,必有 $a_1 \in [a,b]$ 使 $f_1(a_1) \neq 0$. 即 $|f_1(a_1)| \neq 0$.

设函数的数目为 n-1 时结论成立. 考虑 $f_1(x), f_2(x), \dots, f_n(x)$ 线性无关的情形. 由归纳假设有 a_1, a_2, \dots, a_{n-1} 使

$$D_{1} = \begin{vmatrix} f_{1}(a_{1}) & f_{1}(a_{2}) & \cdots & f_{1}(a_{n-1}) \\ f_{2}(a_{1}) & f_{2}(a_{2}) & \cdots & f_{2}(a_{n-1}) \\ \vdots & \vdots & & \vdots \\ f_{n-1}(a_{1}) & f_{n-1}(a_{2}) & \cdots & f_{n-1}(a_{n-1}) \end{vmatrix} \neq 0.$$

$$D = \begin{vmatrix} f_{1}(a_{1}) & f_{1}(a_{2}) & \cdots & f_{1}(a_{n-1}) & f_{1}(x) \\ f_{2}(a_{1}) & f_{2}(a_{2}) & \cdots & f_{2}(a_{n-1}) & f_{2}(x) \\ \vdots & \vdots & & \vdots & \vdots \\ f_{n-1}(a_{1}) & f_{n-1}(a_{2}) & \cdots & f_{n-1}(a_{n-1}) & f_{n-1}(x) \\ f_{n}(a_{1}) & f_{n}(a_{2}) & \cdots & f_{n}(a_{n-1}) & f_{n}(x) \end{vmatrix}.$$

作

由于左上角的 n-1 级子式不为 0,它的 n-1 个行向量组成 \mathbf{R}^{r-1} 的一组基. $(f_n(a_1),f_n(a_2),\cdots,f_n(a_{n-1}))\in \mathbf{R}^{r-1}$ 是它们的线性组合,设为 $(f_n(a_1),f_n(a_2),\cdots,f_n(a_{n-1}))=l_1(f_1(a_1),f_1(a_2),\cdots,f_1(a_{n-1}))+l_2(f_2(a_1),f_2(a_2),\cdots,f_2(a_{n-1}))+\cdots+l_{n-1}(f_{n-1}(a_1),f_{n-1}(a_2),\cdots,f_{n-1}(a_{n-1})).$ 将 D 的第 n 行依次减去第 1 行的 l_1 倍,第二行的 l_2 倍,…,第 n-1 行的 l_{r-1} 倍,就得到

$$D = \begin{vmatrix} f_1(a_1) & f_1(a_2) & \cdots & f_1(a_{n-1}) & f_1(x) \\ f_2(a_1) & f_2(a_2) & \cdots & f_2(a_{n-1}) & f_2(x) \\ \vdots & \vdots & & \vdots & \vdots \\ f_{n-1}(a_1) & f_{n-1}(a_2) & \cdots & f_{n-1}(a_{n-1}) & f_{n-1}(x) \\ 0 & 0 & \cdots & 0 & f_n(x) - \sum_{j=1}^{n-1} l_j f_j(x) \end{vmatrix}$$

$$= \left[f_n(x) - \sum_{j=1}^{n-1} l_j f_j(x) \right] D_1.$$

若 x 取[a,b] 中任何值,都有 D = 0.则由于 $D_1 \neq 0$,故 x 取[a,b] 中任何值都有

$$f_n(x) - \sum_{j=1}^{n-1} l_j f_j(x) = 0.$$

即 $f_1(x), f_2(x), \dots, f_n(x)$ 线性相关,矛盾. 故必有某 $a_n \in [a,b]$ 使 $|(f_i(a_j))| \neq 0, \quad i,j = 1,2,\dots,n.$

- **32.** 令 $S \not= P^{n \times n}$ 中所有形如 XY YX 的矩阵生成的线性子空间,又设 $H \to P^{n \times n}$ 中迹为零的矩阵组成的空间. 求证 S = H,因而维(S) = 维(H) = $n^2 1$.
- 证明:因为矩阵 XY YX 的迹为零,故 $S \subseteq H$. 为了证明 S = H,只要证明 H 的某组基属于 S. 取 H 的一组基为

$$E_{ij}, i \neq j, i, j = 1, 2, \dots, n$$
 $E_{ii} - E_{i+1, i+1}, i = 1, 2, \dots, n-1.$

$$E_{ij} = E_{i1}E_{1j} - E_{1j}E_{i1} \in S,$$
 $E_{ii} - E_{i+1,i+1} = E_{i,i+1}E_{i+1,i} - E_{i+1,i}E_{i,i+1} \in S.$

所以 $H \subseteq S$,即得 S = H.

易知

33. 证明:设 $A \in P^{n \times n}$, Tr(A) = 0, 则有 $P^{n \times n}$ 中可逆矩阵T使

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{bmatrix} 0 & & & \\ & 0 & * & \\ & * & \vdots & \\ & & & 0 \end{bmatrix}.$$

证明:对矩阵的级数 n 作数学归纳法. n = 1, Tr(A) = 0, 即为 A = 0, 结论成立.

设对级数 n-1 的矩阵结论成立. 设 $\mathbf{A}_{n \times n} = (\mathbf{a}_{ii})$ 的迹 $\mathrm{Tr}(\mathbf{A}) = 0$.

如 a_{11} , a_{22} ,…, a_{m} 中有一个为零,设为 $a_{ii}=0$. 对 A 进行初等变换,先作第 1 行和 第 i 行互换,再作第 1 列与第 i 列互换. 这是对 A 的相似变换,其结果是得到一个 与 A 相似的矩阵,它的第 1 行第 1 列的元素为 0.

如 a_{11} , a_{22} , ..., a_{m} 都不为零, 由 $a_{11}+a_{22}+\cdots+a_{m}=0$, 必有某 $a_{ii}\neq a_{11}$.即 $a_{11}-a_{ii}\neq 0$. 与前面类似的方法,可用相似变换将 A 中 a_{ii} 换至 a_{22} 处,且 a_{11} 不变. 不妨就设 A 中 $a_{11}\neq a_{22}$.这时若 $a_{12}=a_{21}=0$,可作初等变换:先将第 2 行加到第 1 行,再将第 1 列的—1 倍加到第 2 列,这是相似变换. 其结果是第 1 行第 2 列元素是 $a_{22}-a_{11}\neq 0$. 不妨再设 A 中 $a_{12}\neq 0$ 或 $a_{21}\neq 0$. 当 $a_{12}\neq 0$ 时,对 A 先将第 2 列的 $\frac{-a_{11}}{a_{12}}$

倍加到第1列,然后将第1行的 $\frac{a_{11}}{a_{12}}$ 倍加到第2行,这是A上的相似变换,其结果是变换后的矩阵的 a_{11} 处元素等于零。

当 $a_{21} \neq 0$ 时,可类似地对 A 作相似变换,使 a_{11} 处元素变为零. 总之,对 Tr(A) = 0 的矩阵 A,可作相似变换使其变成

$$\mathbf{A}_1 = \begin{pmatrix} 0 & \boldsymbol{\alpha} \\ \boldsymbol{\beta} & \boldsymbol{B} \end{pmatrix},$$

其中 \mathbf{B} 是 n-1 级的矩阵, $\mathrm{Tr}(\mathbf{B})=0$. 由归纳假设

$$oldsymbol{B}_1 = oldsymbol{T}_1^{-1}oldsymbol{B}oldsymbol{T}_1 = egin{bmatrix} 0 & & & & & \ & 0 & & & & \ & & & \vdots & & \ & & & & \vdots & & \ \end{pmatrix},$$

于是

$$\begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{T}_1 \end{pmatrix}^{-1} \mathbf{A}_1 \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{T}_1 \end{pmatrix} = \begin{bmatrix} 0 & & & & \\ & 0 & * & \\ & * & \vdots & \\ & & & 0 \end{bmatrix}.$$

34. 设 $A \in P^{n \times n}$, Tr(A) = 0. 证明:有 $X, Y \in P^{n \times n}$ 使 XY - YX = A. 证明:对 A 的级数 n 作数学归纳法.

当 n = 1 时, Tr(A) = 0, 即 A = 0, 结论显然成立.

设 n-1 时结论已成立. 又设 $\mathbf{A} \in P^{n \times n}$, $\mathrm{Tr}(\mathbf{A}) = 0$. 由上题结论, \mathbf{A} 相似于下述形状的矩阵

$$\begin{pmatrix} 0 & \boldsymbol{\alpha} \\ \boldsymbol{\beta} & \boldsymbol{A}_1 \end{pmatrix}$$
,

其中 A_1 是 Tr(A_1) = 0 的 n-1 级矩阵. 由归纳假设有 n-1 级方阵 X_1 , Y_1 , 使 $A_1 = X_1Y_1 - Y_1X_1$.

又对于 $k = 0,1,2,\dots$,皆有

$$(X_1 + kE)Y_1 - Y_1(X_1 + kE) = A_1$$
.

故可设X是可逆矩阵. 今

$$m{X} = \begin{pmatrix} 0 & \mathbf{0} \\ \mathbf{0} & m{X}_1 \end{pmatrix}, \quad m{Y} = \begin{pmatrix} 0 & -m{\alpha} m{X}_1^{-1} \\ m{X}_1^{-1} m{\beta} & m{Y}_1 \end{pmatrix},$$

则

$$XY - YX = \begin{pmatrix} 0 & \boldsymbol{\alpha} \\ \boldsymbol{\beta} & X_1Y_1 - Y_1X_1 \end{pmatrix}$$

与 A 相似,不妨设 $T^{-1}(XY-YX)T=A$,则

$$\mathbf{A} = (\mathbf{T}^{-1}\mathbf{X}\mathbf{T})(\mathbf{T}^{-1}\mathbf{Y}\mathbf{T}) - (\mathbf{T}^{-1}\mathbf{Y}\mathbf{T})(\mathbf{T}^{-1}\mathbf{X}\mathbf{T}).$$

这就完成了归纳法.

35. 证明:若 $A \in P^{n \times n}$ 中的一个若尔当块,则与 A 可交换的矩阵一定是 A 的多项式. 证明:取 $P \succeq n$ 维线性空间 V,并取定一组基 $\mathbf{\epsilon}_1$, $\mathbf{\epsilon}_2$,…, $\mathbf{\epsilon}_n$. 作线性变换 $\mathbf{\omega}$,使它在上述基下的矩阵为 A,设

$$m{A} = egin{bmatrix} \lambda_0 & & & & & \ 1 & \lambda_0 & & & & \ & 1 & \ddots & & & \ & & \ddots & \ddots & & \ & & & 1 & \lambda_0 \end{pmatrix}_{n imes n}.$$

于是

即

及

$$(\mathcal{A} - \lambda_0 \mathcal{E})^n \mathbf{\varepsilon}_1 = \mathbf{0}.$$

考察 \mathcal{B}_{ϵ_1} ,它可由基 ϵ_1 , ϵ_2 , ..., ϵ_n 表出,设为

$$\mathcal{B}_{\mathbf{\epsilon}_{1}} = a_{0} \, \mathbf{\epsilon}_{1} + a_{1} \, \mathbf{\epsilon}_{2} + \cdots + a_{n-1} \, \mathbf{\epsilon}_{n}$$

$$= a_{0} \, \mathcal{E}_{\mathbf{\epsilon}_{1}} + a_{1} \, (\mathcal{A} - \lambda_{0} \, \mathcal{E}) \, \mathbf{\epsilon}_{1} + \cdots + a_{n-1} \, (\mathcal{A} - \lambda_{0} \, \mathcal{E})^{n-1} \, \mathbf{\epsilon}_{1}$$

$$= \left[a_{0} \, \mathcal{E} + a_{1} \, (\mathcal{A} - \lambda_{0} \, \mathcal{E}) + \cdots + a_{n-1} \, (\mathcal{A} - \lambda_{0} \, \mathcal{E})^{n-1} \, \right] \mathbf{\epsilon}_{1}$$

$$\stackrel{\text{id}}{=} f(\mathcal{A}) \, \mathbf{\epsilon}_{1} \, ,$$

其中 $f(\mathcal{A})$ 是 \mathcal{A} 的一个多项式.

同样地任一向量 $\xi \in V$ 是 ε_1 , \cdots , ε_n 的线性组合,也可写成 $\xi = g(\mathscr{A})\varepsilon_1$, $g(\mathscr{A})$ 是 \mathscr{A} 的一个多项式. 于是

$$\mathcal{B}\boldsymbol{\xi} = \mathcal{B}g(\mathcal{A})\boldsymbol{\varepsilon}_1 = g(\mathcal{A})\mathcal{B}_{\boldsymbol{\varepsilon}_1} = g(\mathcal{A})f(\mathcal{A})\boldsymbol{\varepsilon}_1$$
$$= f(\mathcal{A})(g(\mathcal{A})\boldsymbol{\varepsilon}_1) = f(\mathcal{A})\boldsymbol{\xi}.$$

故 \mathcal{B} 与 $f(\mathcal{A})$ 在 V 的任一元素上的作用都相同,即 $\mathcal{B}=f(\mathcal{A})$.

由于与 ${\ensuremath{\checkmark}}$ 交换的线性变换 ${\ensuremath{\mathscr{G}}}$ 都是 ${\ensuremath{\checkmark}}$ 的多项式,故与 ${\ensuremath{A}}$ 交换的矩阵 ${\ensuremath{B}}$ 也是 ${\ensuremath{A}}$ 的多项式.

36.
$$A \in P^{n \times n}$$
, $C(A) = \{B \in P^{n \times n} \mid BA = AB\}$. 证明:维 $(C(A)) \geqslant n$. 证明:因为

$$XA = AX \Leftrightarrow (T^{-1}XT)(T^{-1}AT) = (T^{-1}AT)(T^{-1}XT),$$

所以只要对A的若尔当形进行证明.

当A是一个若尔当块时,由上一题知与A交换的矩阵是A的多项式.即C(A)是由

A 的多项式构成的线性空间, 由于若尔当块

$$m{A} = egin{pmatrix} \lambda_0 & & & & & & \\ 1 & \lambda_0 & & & & & \\ & 1 & \lambda_0 & & & & \\ & & \ddots & \ddots & & \\ & & & 1 & \lambda_0 \end{pmatrix}_{n imes n}.$$

的最小多项式就是特征多项式 $(\lambda-\lambda_0)^n$,故没有不全为零的数 a_0 , a_1 ,…, a_{n-1} 使

$$a_0 \mathbf{E} + a_1 \mathbf{A} + \cdots + a_{n-1} \mathbf{A}^{n-1} = \mathbf{O},$$

即 E,A,\dots,A^{m-1} 线性无关. 由此可知维 $C((A)) \ge n$.

现在设 A 是若尔当标准形

$$oldsymbol{A} = egin{bmatrix} oldsymbol{J}_1 & & & & \ & oldsymbol{J}_2 & & & \ & & \ddots & \ & & & oldsymbol{I} \end{pmatrix},$$

其中 J_1 , J_2 , …, J_s 分别是 m_1 , m_2 , …, m_s 级的若尔当块.

$$\widetilde{C}(\boldsymbol{J}_i) = \left\{ \begin{pmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & \boldsymbol{A}_i & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix} \middle| \boldsymbol{A}_i \in C(\boldsymbol{J}_i) \right\} \cong C(\boldsymbol{J}_i),$$

则

$$\widetilde{C}(J_1) \oplus \widetilde{C}(J_2) \oplus \cdots \oplus \widetilde{C}(J_s) \subseteq C(A).$$

因此

维
$$(C(\mathbf{A})) \geqslant \sum_{i=1}^{s}$$
维 $(\widetilde{C}(\mathbf{J}_i)) = \sum_{i=1}^{s}$ 维 $(C(\mathbf{J}_i)) \geqslant \sum_{i=1}^{s} m_i = n$.

- **37.** $V \in \mathbb{R}$ 维复线性空间, $\mathcal{A}, \mathcal{B} \in V$ 上线性变换, $\mathcal{A}\mathcal{B} = \mathcal{B}\mathcal{A}$, 证明:
 - 1) 第不变 ⋈的每一个根子空间;
 - 2) 若 \mathcal{A} 只有一个非常数不变因子,则 \mathcal{B} 是 \mathcal{A} 的多项式;
- 3) 若与 \checkmark 可交换的线性变换仅有 \checkmark 的多项式,则 \checkmark 只有一个非常数不变因子证明:1) 设 \checkmark 的对于特征值 λ 。的根子空间为 V^{\circ}。

$$V^{\lambda_0} = \{ \boldsymbol{\xi} \in V \mid (\mathcal{A} - \lambda_0 \, \mathcal{E})^n \boldsymbol{\xi} = \boldsymbol{0} \},$$

其中 $n = \mathfrak{t}(V)$.

任意 $\xi \in V^{\lambda_0}$, $(\mathcal{A} - \lambda_0 \mathcal{E})^m (\mathcal{B} \xi) = \mathcal{B} (\mathcal{A} - \lambda_0 \mathcal{E})^m \xi = \mathbf{0}$. 故 $\mathcal{B} \xi \in V^{\lambda_0}$.

2) 首先,由教材第八章定理 14 及其证明知道, \mathbf{A} 只有一个非常数不变因子 d(x) 的充分必要条件是 \mathbf{A} 的有理标准形是d(x) 的友矩阵. 设 $d(x) = x^n + a_1 x^{n-1} + \cdots + a_n$,则 \mathbf{A} 相似于

$$m{A}_1 = egin{pmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_2 \\ 0 & 0 & \cdots & 1 & -a_1 \end{pmatrix}, \quad m{A}_1 = m{T}^{-1} m{A} m{T}.$$

于是n维线性空间V上线性变换A只有一个非常数不变因子的充要条件是V有一组基 $\epsilon_0, \epsilon_1, \epsilon_2, \cdots, \epsilon_{r-1}, A$ 在这组基下的矩阵就是上面的 A_1 .于是

$$oldsymbol{arepsilon}_1 = \mathscr{A}_{oldsymbol{arepsilon}_0}, oldsymbol{arepsilon}_2 = \mathscr{A}_{oldsymbol{arepsilon}_0} = \mathscr{A}_{oldsymbol{arepsilon}_0}, oldsymbol{arepsilon}_{n-1} = \mathscr{A}^{n-1} oldsymbol{arepsilon}_0, oldsymbol{arepsilon}_{n-1} = \mathscr{A}^{n-1} oldsymbol{arepsilon}_0,$$

且

$$\mathcal{A}_{\boldsymbol{\varepsilon}_{n-1}} = \mathcal{A}^n \boldsymbol{\varepsilon}_0 = a_1 \boldsymbol{\varepsilon}_{n-1} + a_2 \boldsymbol{\varepsilon}_{n-2} + \cdots + a_n \boldsymbol{\varepsilon}_0.$$

由于 $\boldsymbol{\varepsilon}_0$, $\mathcal{A}_{\boldsymbol{\varepsilon}_0}$, \cdots , \mathcal{A}^{n-1} $\boldsymbol{\varepsilon}_0$ 是 V 的一组基,V 中任意向量 $\boldsymbol{\xi}$,可表成

g(A) 是前一等号右端括号中 A 的多项式.

题设 $\mathcal{AB} = \mathcal{BA}$,令 $\mathcal{B}_{\epsilon_0} = f(\mathcal{A})_{\epsilon_0}$, $f(\mathcal{A})$ 是 \mathcal{A} 的一个多项式. 计算

$$\mathcal{B}_{\boldsymbol{\varepsilon}_i} = \mathcal{B}\mathcal{A}^{n-i}\boldsymbol{\varepsilon}_0 = \mathcal{A}^{n-i}\mathcal{B}_{\boldsymbol{\varepsilon}_0} = \mathcal{A}^{n-i}f(\mathcal{A})\boldsymbol{\varepsilon}_0$$
$$= f(\mathcal{A})\mathcal{A}^{n-i}\boldsymbol{\varepsilon}_0 = f(\mathcal{A})\boldsymbol{\varepsilon}_i, i = 0, 1, \dots, n-1.$$

即线性变换 \mathcal{B} 与 $f(\mathcal{A})$ 在 V 的基向量上有相同的像,故

$$\mathcal{B} = f(\mathcal{A}).$$

3) 反证法. 设 《有多于两个非常数不变因子. 其最后两个不变因子 $d_{n-1}(x)$ 及 $d_n(x)$ 必非常数,且 $d_{n-1}(x)$ | $d_n(x)$. 《必有特征值》 $d_n(x)$ 与 $d_n(x)$ 与 $d_n(x)$ 与 $d_n(x)$ 与 $d_n(x)$ 与 $d_n(x)$ 至少 各含有一个初等因子,分别形为 $(x-\lambda_0)^k$ 与 $(x-\lambda_0)^l$. 因此有V 的一组基 η_1, η_2 , …, η_n ,《在这组基下矩阵为若尔当形,且若尔当形为

取线性变换 \mathcal{B} , 它在 V 的上述基 η_1 , η_2 , ..., η_n 下矩阵为 B,

$$m{B} = egin{bmatrix} m{E}_k & & & & & \ & 2m{E}_l & & & & \ & & m{E}_{k_1} & & & \ & & \ddots & & \ & & & m{E}_{k_s} \end{pmatrix},$$

 E_i 是 i 级单位矩阵,有 BA = AB,于是 $\mathcal{AB} = \mathcal{BA}$.

若设有多项式 f(x) 使 $\mathbf{B} = f(\mathbf{A})$. 则 $\mathbf{E}_k = f(\mathbf{J}(\lambda_0, k)), 2\mathbf{E}_l = f(\mathbf{J}(\lambda_0, l)), \cdots$. 最前面两式中四个矩阵都分别有唯一特征值 $1, f(\lambda_0), 2, f(\lambda_0),$ 于是有 $1 = f(\lambda_0)$ 及 $2 = f(\lambda_0)$.

这是不可能的. 于是 B不能是 A 的多项式,即 \mathcal{B} 不能是 \mathbb{A} 的多项式. 矛盾. 故假设不成立,即 \mathbb{A} 只有一个非常数不变因子.

- **38.** A,B皆为 $n \times n$ 复矩阵,证明:方程AX = XB有非零解的充分必要条件是A,B有公共特征值.
- 证明:矩阵方程 AX = XB 可以写成齐次线性方程组. 设 $A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n}, X = (x_{ij})_{n \times n}$. 把 X 对应到下面的 $n^2 \times 1$ 向量

$$\operatorname{vex}(\boldsymbol{X}) = \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \\ x_{12} \\ \vdots \\ x_{n2} \\ \vdots \\ x_{1n} \\ \vdots \\ x_m \end{pmatrix}$$

经过计算,上面的矩阵方程等价于下面的方程组:

$$\begin{bmatrix} \begin{pmatrix} \mathbf{A} & & & \\ & \mathbf{A} & & \\ & & \ddots & \\ & & & \mathbf{A} \end{pmatrix} - \begin{bmatrix} b_{11}\mathbf{E} & b_{21}\mathbf{E} & \cdots & b_{n1}\mathbf{E} \\ b_{12}\mathbf{E} & b_{22}\mathbf{E} & \cdots & b_{n2}\mathbf{E} \\ \vdots & \vdots & & \vdots \\ b_{1n}\mathbf{E} & b_{2n}\mathbf{E} & \cdots & b_{m}\mathbf{E} \end{bmatrix} \operatorname{vex}(\mathbf{X}) = \mathbf{0}. \tag{1}$$

又 AX = XB 与 $(T^{-1}AT)(T^{-1}XT) = (T^{-1}XT)(T^{-1}BT)$ 同时有非零解. 对复矩阵 B 有可逆的 T 使 $T^{-1}BT$ 成上三角形

我们记 $A_1 = T^{-1}AT$, $B_1 = T^{-1}BT$, $X_1 = T^{-1}XT$, $A_1 = (\tilde{a}_{ij})_{n \times n}$, $B_1 = (\tilde{b}_{ij})_{n \times n}$, 则 $A_1X_1 = X_1B_1$ 与下面的齐次线性方程组等价:

$$\begin{bmatrix} \begin{pmatrix} \mathbf{A}_1 & & & \\ & \mathbf{A}_1 & & \\ & & \ddots & \\ & & & \mathbf{A}_1 \end{pmatrix} - \begin{bmatrix} \tilde{b}_{11} \mathbf{E} & \tilde{b}_{21} \mathbf{E} & \cdots & \tilde{b}_{n1} \mathbf{E} \\ \tilde{b}_{12} \mathbf{E} & \tilde{b}_{22} \mathbf{E} & \cdots & \tilde{b}_{n2} \mathbf{E} \\ \vdots & \vdots & & \vdots \\ \tilde{b}_{1n} \mathbf{E} & \tilde{b}_{2n} \mathbf{E} & \cdots & \tilde{b}_{nn} \mathbf{E} \end{bmatrix} \operatorname{vex}(\mathbf{X}_1) = \mathbf{0},$$

即

$$\begin{pmatrix}
A_{1} - \tilde{b}_{11}\mathbf{E} & \mathbf{O} & \cdots & \mathbf{O} \\
-\tilde{b}_{12}\mathbf{E} & A_{1} - \tilde{b}_{22}\mathbf{E} & \cdots & \mathbf{O} \\
\vdots & \vdots & & \vdots \\
-\tilde{b}_{1n}\mathbf{E} & -\tilde{b}_{2n}\mathbf{E} & \cdots & A_{1} - \tilde{b}_{nn}\mathbf{E}
\end{pmatrix} \operatorname{vex}(\mathbf{X}_{1}) = \mathbf{0}.$$
(2)

方程组(2)有非零解的充分必要条件是系数行列式为零,即

$$\prod_{i=1}^{n} | \mathbf{A}_{i} - \tilde{b}_{ii} \mathbf{E} | = 0, \tag{3}$$

也即有某 \tilde{b}_{ii} 是 A_1 的特征值. 由 B_1 是上三角形矩阵,与 B 相似,故 \tilde{b}_{ii} 是B 的一个特征值,又 A_1 与A 相似, A_1 的特征值是A 的特征值. 这说明条件(3) 是B与A 的公共特征值.

又(1) 与(2) 的等价性说明它们同时有非零解. 且(1) 与 AX = XB 等价,说明(1) 有非零解即 AX = XB 有非零解. 最终得到 AX = XB 有非零解的充分必要条件是 A,B 有公共的特征值.

- 39. 在 $P^{n \times n}$ 中,证明:若 A = BC, B = AD,则有可逆矩阵 Q 使 B = AQ.
- 证明:由A = BC,知A的列向量是B的列向量的线性组合,同样由B = AD,知B的列向量是A的列向量的线性组合,于是A,B的列向量组相互等价,它们的秩相等,设为r.

经初等列变换分别把 $A \supset B$ 的列向量组的极大线性无关组移至 $A \supset B$ 的前r 列. 即有可逆矩阵 $Q_1 \supset S_1$ 使(A_1,A_2) = $AQ_1 \supset (B_1,B_2)$ = BS_1 .

其中 A_1 的r个列是A 的列向量组的极大线性无关组, (A_1,A_2) 的秩与A 的秩相等,也是r,故 A_1 的r个列是 (A_1,A_2) 的列向量组的极大线性无关组. A_2 的各列是 A_1 的列的线性组合. 仍用初等列变换可将 (A_1,A_2) 变成 (A_1,O) . 即有 (A_1,O) = $(A_1,A_2)Q_2$, Q_2 是可逆矩阵.

同样有 S_2 可逆使(B_1 ,O) = (B_1 , B_2) S_2 . A与B 的列向量组等价,则它们的极大线性无关组等价, 故有可逆矩阵 $P^{\wedge r}$. 使

$$\mathbf{B}_1 = \mathbf{A}_1 \mathbf{P}_1$$
.

于是,令

$$P = \begin{pmatrix} P_1 & O \\ O & E_{\text{max}} \end{pmatrix}_{\text{optimize}}.$$

它是可逆矩阵,且

因此

$$BS_1S_2 = (B_1, B_2)S_2 = (B_1, O) = (A_1, O)P = AQ_1Q_2P$$

最后得到

$$\mathbf{B} = \mathbf{AQ}_1 \mathbf{Q}_2 \mathbf{P}(\mathbf{S}_1 \mathbf{S}_2)^{-1} \stackrel{\text{id}}{=} \mathbf{AQ},$$

其中 $O = O_1 O_2 P(S_1 S_2)^{-1}$ 是可逆矩阵.

证明:设 ⋈的特征多项式为

$$f(\lambda) = (\lambda - \lambda_1)^{l_1} (\lambda - \lambda_2)^{l_2} \cdots (\lambda - \lambda_s)^{l_s}.$$

由教材第七章定理 12,

$$V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \cdots \oplus V^{\lambda_s}, \qquad (1)$$

其中 $V^{\lambda_i} = \{ \mathbf{v} \in V \mid (\mathcal{A} - \lambda_i \mathcal{E})^{l_i} \mathbf{v} = \mathbf{0} \}.$ 由 $V_{\lambda_i} = \{ \mathbf{v} \in V \mid (\mathcal{A} - \lambda_i \mathcal{E}) \mathbf{v} = \mathbf{0} \}$,知 $V_{\lambda_i} \subseteq V^{\lambda_i}$ 及维 $(V_{\lambda_i}) \leqslant$ 维 (V^{λ_i}) .

再由

$$V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s}, \qquad (2)$$

得

$$\sum_{i=1}^{s} \#(V_{\lambda_i}) = \sum_{i=1}^{s} \#(V^{\lambda_i}), \quad \sum_{i=1}^{s} (\#(V^{\lambda_i}) - \#(V_{\lambda_i})) = 0.$$

但维 (V^{λ_i}) \geqslant 维 (V_{λ_i}) ,上式成立推出对所有 i,维 (V^{λ_i}) = 维 (V_{λ_i}) .

即对所有 $i,V^{\lambda_i}=V_{\lambda_i}$.

仍据教材第七章定理 12,若 $g(\lambda)=(\lambda-\lambda_1)^{k_1}(\lambda-\lambda_2)^{k_2}\cdots(\lambda-\lambda_s)^{k_s}$ 是 $\varnothing|_W$ 的特征多项式,其中 $0\leqslant k_i\leqslant l_i(1\leqslant i\leqslant s)$,则

$$W=W^{\lambda_1} \oplus \cdots \oplus W^{\lambda_s}$$
 ,

 $W^{\lambda_i} = \{ w \in W \mid (\mathcal{A} - \lambda_i \mathscr{E})^{k_i} w = \mathbf{0} \}. \oplus W^{\lambda_i} \subseteq V^{\lambda_i} = V_{\lambda_i}, W^{\lambda_i} \subseteq W \cap V_{\lambda_i} = W_{\lambda_i}.$

又因 $W_{\lambda_i} \subseteq W^{\lambda_i}$. 故 $W_{\lambda_i} = W^{\lambda_i}$. 于是有

$$W = W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_n}. \tag{3}$$

现在题设 $w=w_1+\cdots+w_s$, $w_i\in V_{\lambda_i}$ 又由(3) 可设 $w=w_1'+\cdots+w_s'$, $w_i'\in W_{\lambda_i}$ $\subset V_{\lambda_i}$. 所以这是 w按 $V_{\lambda_1}\oplus V_{\lambda_2}\oplus \cdots \oplus V_{\lambda_s}$ 的两个分解式,但直和分解决定了它们是相同的. 故每个 $w_i=w_i'\in W$.

41. $V \neq n$ 维复线性空间, $A \neq V$ 上线性变换. 证明:A 的若尔当标准形矩阵中若尔当块的数目等于 $V \neq A$ 的线性无关的特征向量的最大数目.

证明:设 🛭 的特征多项式 $f(\lambda) = (\lambda - \lambda_1)^{l_1} (\lambda - \lambda_2)^{l_2} \cdots (\lambda - \lambda_s)^{l_s}$,则

$$V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \cdots \oplus V^{\lambda_s}, \tag{1}$$

其中 $V^{\lambda_i} = \{ v \in V \mid (\mathcal{A} - \lambda_i \mathcal{E})^{t_i} v = \mathbf{0} \}, i = 1, \dots, s.$ 又设 V_{λ_i} 是属于 λ_i 的特征子 空间,则

$$V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s} \subseteq V. \tag{2}$$

V 的任一个特征向量皆属于某个 V_{λ_i} , 故由任一组线性无关的特征向量都可由 (2) 的左端的基线性表出可知,取 V_{λ_1} 的基, V_{λ_2} 的基, \dots , V_{λ_s} 的基合起来,就是 V 中最大数目的一组线性无关的特征向量.

$$oldsymbol{J} = egin{bmatrix} oldsymbol{J}(\lambda_i,k_1) & & & & \ & oldsymbol{J}(\lambda_i,k_2) & & & \ & \ddots & & \ & & oldsymbol{J}(\lambda_i,k_i) \end{pmatrix}.$$

并设这是 $\mathcal{A}|_{V_i}$ 在 V^{λ_i} 的基

$$egin{aligned} &m{arepsilon}_1\,,(oldsymbol{\mathcal{A}}-\lambda_i\,oldsymbol{\mathcal{E}})_{m{arepsilon}_1}\,,\cdots,(oldsymbol{\mathcal{A}}-\lambda_i\,oldsymbol{\mathcal{E}})_{m{arepsilon}_1}\,m{arepsilon}_1\,((oldsymbol{\mathcal{A}}-\lambda_i\,oldsymbol{\mathcal{E}})_{m{arepsilon}_1}\,m{arepsilon}_1\,&=m{0})\,,\ &m{arepsilon}_2\,,(oldsymbol{\mathcal{A}}-\lambda_i\,oldsymbol{\mathcal{E}})_{m{arepsilon}_2}\,m{arepsilon}_2\,((oldsymbol{\mathcal{A}}-\lambda_i\,oldsymbol{\mathcal{E}})_{m{arepsilon}_2}\,m{arepsilon}_2\,&=m{0})\,, \end{aligned}$$

$$\mathbf{\varepsilon}_s$$
, $(\mathcal{A} - \lambda_i \mathcal{E}) \mathbf{\varepsilon}_s$, \dots , $(\mathcal{A} - \lambda_i \mathcal{E})^{k_s-1} \mathbf{\varepsilon}_s$ $((\mathcal{A} - \lambda_i \mathcal{E})^{k_s} \mathbf{\varepsilon}_s = \mathbf{0})$

下的矩阵. 我们将证明($\mathscr{A}-\lambda_i\mathscr{E}$) $^{k_j-1}\boldsymbol{\varepsilon}_j$, $1\leqslant j\leqslant s$,是 V_{λ_i} 的基. 于是 $\mathscr{A}|_{V_i}$ 的若尔当标准形 J 中若尔当块的数目 s 等于维(V_{λ_i}),就完成了题目的证明.

首先($\mathcal{A} - \lambda_i \mathcal{E}$) $^{k_1-1} \boldsymbol{\varepsilon}_1$, ..., ($\mathcal{A} - \lambda_i \mathcal{E}$) $^{k_s-1} \boldsymbol{\varepsilon}_s$ 都属于 $\mathcal{A} - \lambda_i \mathcal{E}$ 的核(($\mathcal{A} - \lambda_i \mathcal{E}$)[($\mathcal{A} - \lambda_i \mathcal{E}$) $^{k_j-1} \boldsymbol{\varepsilon}_j$] = ($\mathcal{A} - \lambda_i \mathcal{E}$) $^{k_j} \boldsymbol{\varepsilon}_j = \boldsymbol{0}, j = 1, 2, \dots, s$), 所以它们是 V_{λ_i} 中 s 个线性无关的向量.

又设
$$\mathbf{w}=\sum\limits_{j=1}^{s}\sum\limits_{m=1}^{k_{j}}a_{jm}(\mathcal{A}-\pmb{\lambda}_{i}\mathcal{E})^{m-1}\pmb{\varepsilon}_{j}\in V_{\pmb{\lambda}_{i}}$$
,则

$$\mathbf{0} = (\mathcal{A} - \lambda_i \mathcal{E}) \mathbf{w} = \sum_{j=1}^{s} \sum_{m=1}^{k_j} a_{jm} (\mathcal{A} - \lambda_i \mathcal{E})^m \mathbf{\varepsilon}_j$$
$$= \sum_{i=1}^{s} \sum_{m=1}^{k_j-1} a_{jm} (\mathcal{A} - \lambda_i \mathcal{E})^m \mathbf{\varepsilon}_j.$$

由于最后和号中各元素线性无关,故它们前面的系数全部为零,即

$$a_{jm} = 0$$
, $j = 1, 2, \dots, s$; $m = 1, 2, \dots, k_j - 1$.

因此

$$w = \sum_{i=1}^{s} a_{jk_j} (\mathcal{A} - \lambda_i \mathcal{E})^{k_j-1} \boldsymbol{\varepsilon}_j.$$

这说明 V_{λ_i} 中任一元 \mathbf{w} 是{ $(\mathscr{A}-\lambda_j\mathscr{E})^{k_j-1}\mathbf{e}_j$, $1\leqslant j\leqslant s$ } 的线性组合,又因为它们线性无关,所以组成 V_{λ_i} 的一组基,即得 $s=\mathfrak{A}(V_{\lambda_i})$.

一、2014年考研数学真题及详解

二、大学基础数学各学科公式定理

三、其他下载

考研数学

