## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-031026

(43) Date of publication of application: 02.02.1996

(51)Int.CI.

G11B 7/26

(21)Application number: 06-164273

(71) Applicant: MITSUBISHI PLASTICS IND LTD

MITSUBISHI CHEM CORP

(22)Date of filing:

15.07.1994

(72)Inventor: YAMADA SHINGETSU

# (54) FORMATION OF RECORDING LAYER AND REPRODUCTION OF OPTICAL RECORDING MEDIUM

### (57) Abstract:

PURPOSE: To provide a method for forming a recording layer by which a thin film of a coloring material having a uniform thickness can be obtd. on a substrate and to produce an optical recording medium.

CONSTITUTION: When the top of a spinning substrate is coated with a soln. of a coloring material and then the soln is spread on the substrate by increasing the number of revolutions of the substral to form a recording layer, the surface tension (X) of the soln is regulated to 20dyne/cm, the number (Y) of revolutions of the substrate at the time of coating with the soln is regulated to 40-60r.p.m. and the product (YZ) of the number (Y) and the viscosity (Z) of the soln is regulated to 400-1,000r.p.m..cP.

(19)日本国特許庁(JP)

## (12)公開特許公報 (A) (11)特許出願公開番号

### 特開平8-31026

(43)公開日 平成8年(1996)2月2日

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

G11B 7/26

531

7215-5D

審査請求 未請求 請求項の数2 OL (全5頁)

(21)出願番号

特願平6-164273

(22)出願日

平成6年(1994)7月15日

(71)出願人 000006172

三菱樹脂株式会社

東京都千代田区丸の内2丁目5番2号

(71)出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72) 発明者 山田 紳月

神奈川県平塚市真土2480番地 三菱樹

脂株式会社平塚工場内

(74)代理人 弁理士 谷 義一 (外1名)

(54) 【発明の名称】記録層の形成方法および光記録媒体の製造方法

### (57) 【要約】

【目的】 基板上に均一な膜厚の色素薄膜を得ることが できる記録層の形成方法および光記録媒体の製造方法を 提供する。

【構成】 回転する基板上に色素溶液を塗布した後、前 記基板の回転数を上げて前記色素溶液を当該基板上に拡 げて記録層を形成するに際し、前記色素溶液の表面張力 X を、X ≥ 2 0 d y n e / c m とし、また、当該色素溶 液塗布時の前記基板の回転数Yを、60rpm≥Y≥4 0 rpmとし、かつ、塗布時の回転数Yと前記色素溶液 の粘度 Z との積 Y Z を、1000rpm·cp≧ Y Z ≧ 400 r p m・c p とする。

【特許請求の範囲】

【請求項1】 回転する基板上に色素溶液を塗布した 後、前記基板の回転数を上げて前記色素溶液を当該基板 上に拡げて記録層を形成するに際し、

1

前記色素溶液の表面張力Xを、X≥20dyne/cm とし、また、当該色素溶液塗布時の前記基板の回転数Y を、60 r p m ≥ Y ≥ 40 r p m とし、かつ、塗布時の 回転数 Y と前記色素溶液の粘度 Z との積 Y Z を、100 0 r p m · c p ≥ Y Z ≥ 4 0 0 r p m · c p と すること を特徴とする記録層の形成方法。

【請求項2】 回転する基板上に色素溶液を塗布した 後、前記基板の回転数を上げて前記色素溶液を当該基板 上に拡げて記録層を形成する工程を含む光記録媒体の製 造方法において、

前記色素溶液の表面張力 X を、 X ≥ 2 0 d y n e / c m とし、また、当該色素溶液塗布時の前記基板の回転数Y を、60rpm≥Y≥40rpmとし、かつ、塗布時の 回転数Yと前記色素溶液の粘度Zとの積YZを、100 0 rpm·cp≧YZ≧400rpm·cpとすること を特徴とする光記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は基板上に色素を含む膜厚 が均一な記録層を形成することができる記録層の形成方 法および光記録媒体の製造方法に関する。

[0002]

【従来の技術】CD-RやWORMなどの光ディスク は、ポリカーボネート (PC) などからなる光ディスク 用基板に褐色色素などの記録材料を塗布した後、この記 録層上に金(Au)などからなる反射層を形成し、さら 30 に、これらを覆うように保護コート層を形成したもので ある。

【0003】このように色素を含む薄膜を記録層として いる光記録媒体では、記録層の膜厚が一定でないと、情 報記録時に形成されるピットの形状および深さが一定と ならず、情報を読み出す時にエラーを生じやすい。

【0004】このような記録媒体では、一般的に、基板 上に色素を含む記録層を形成するためにスピンコート法 が用いられている。スピンコート法は、低速で回転され る基板上に塗布液を滴下した後、該基板を高速回転さ せ、滴下された塗布液を遠心力により薄く広げて基板上 に薄膜を形成する方法である。

【0005】かかるスピンコート法は半導体製造工程に おけるフォトレジストの塗布に用いられている。この分 野では、塗布条件決定のための期間を短縮し、また、効 率化を図るために、現象をモデル化することにより成膜 機構を把握というする解析的手法が検討されている。

[0006]

【発明が解決しようとする課題】しかし、フォトレジス ト塗布のための上記解析的手法のほとんどが、ある限ら 50 れた系での検討であるので、実際に途布条件を得るに は、試行錯誤を繰り返すのが現状であった。したがっ て、かかる解析的手法を、色素を含む塗布液の塗布とい う全く異なる系に適用するのは困難である。

【0007】また、上記解析的手法は、一般的に粘度の 高い盆布液を使用した場合の解析である。一方、光記録 媒体の記録層にはシアニン色素、含金属アゾ色素等の色 素が使用され、塗布液の媒体はアルコール類であるの で、色素を含む塗布液の粘度は、フォトレジストの塗布 10 液と比べて粘度が非常に低い。したがって、かかる点か らも、上記解析的手法を色素を含む塗布液の塗布に適用 するのは難しいことが明らかである。

【0008】そこで、本発明の目的は、基板上に均一な 膜厚の色素薄膜を得ることができる記録層の形成方法お よび光記録媒体の製造方法を提供することにある。

[0009]

20

【課題を解決するための手段】前記目的を達成する本発 明の第1の態様は、回転する基板上に色素溶液を塗布し た後、前記基板の回転数を上げて前記色素溶液を当該基 板上に拡げて記録層を形成するに際し、前記色素溶液の 表面張力Xを、X≧20dyne/cmとし、また、当 該色素溶液塗布時の前記基板の回転数 Y を、60 r p m ≧Y≥40rpmとし、かつ、塗布時の回転数Yと前記 色素溶液の粘度乙との積YZを、1000rpm・cp ≧YZ≧400rpm・cpとすることを特徴とする記 録層の形成方法にある。

【0010】また、本発明の第2の態様は、回転する基 板上に色素溶液を塗布した後、前記基板の回転数を上げ て前記色素溶液を当該基板上に拡げて記録層を形成する 工程を含む光記録媒体の製造方法において、前記色素溶 液の表面張力Xを、X≥20dyne/cmとし、ま た、当該色素溶液塗布時の前記基板の回転数 Y を、60 rpm≥Y≥40rpmとし、かつ、塗布時の回転数Y と前記色素溶液の粘度 2 との積 Y 2 を、1000 rpm ·cp≧YZ≧400rpm·cpとすることを特徴と する光記録媒体の製造方法にある。

[0011]

【実施例】以下、本発明を実施例に基づいて説明する が。本発明はこれに限定されるものではない。

【0012】(試料No.1)イソプチルアルコールに シアニン系色素NK-2929 ((株)日本感光色素研 究所)を溶解した色素溶液を得た。得られた色素溶液 は、表面張力が24.5 d y n e/c m、粘度が4c p である。かかる色素溶液に、さらに、下記化1に示す増 粘剤を加えて粘度を16cpに調整した。

[0013]

【化1】

40

$$\begin{array}{c|c}
 & CH_2 - CH \\
\hline
 & CH \\
\hline
 & COONa COONa
\end{array}$$

【0014】幅0.6μm、深さ2000オングストロ ングの溝を1.6μm間隔でスパイラル状に設けられた 厚さ1. 2 mmの内径15 mm、外径120 mmのポリ カーポネート基板に、上記色素溶液を塗布した。色素溶 液の塗布位置は基板の内周端側近傍であり、このときの 10 基板は低速回転とし、その回転数は50rpmである。 基板が二回転した後、回転数を6000rpmまで段階 的に上げて高速回転とし、これにより、基板上に色素溶 液を拡げ、記録層を形成した。低速回転時の回転数と色 素溶液の粘度との積は800rpm・cpである。

【0015】記録層の上に、直流(DC)スパッタ法に より金反射層を形成し、さらに、紫外線硬化樹脂をスピ ンコート法により塗布し、該樹脂を紫外線照射により硬 化させて試料No. 1の光記録媒体を得た。

用いた色素溶液に下記化2に示す界面活性剤を加えて、 表面張力が20dyne/cmおよび18dyne/c mの色素溶液を得た。これらの色素溶液を用いた以外は 試料No. 1と同様にして、試料No. 2および3の光 記録媒体を得た。

[0017]

【化2】

$$NaO_2S - CH - COOC_5H_{11}$$
  
 $I$   
 $CH_2 - COOC_5H_{11}$ 

【0018】(試料No.4~7)試料No.1とは、 化1に示す増粘剤の量だけを変化させて粘度が7.5c pの色素溶液を調製した。また、当該色素溶液を基板に 塗布する際の低速回転の回転数を50,55,60およ び65rpmとした以外は、試料No.1と同様にし て、試料No. 4, 5, 6 および7 の光記録媒体を得 た。各々の、低速回転時の回転数と色素液の粘度との積 は、それぞれ375,412.5,450および48 7. 5 r pm·c p r bock.

【0019】 (試料No. 8~12) 試料No. 1と は、化1に示す増粘剤の量だけを変化させて粘度が10 c p の色素溶液を調製した。また、当該色素溶液を基板 に塗布する際の低速回転の回転数を35,40,50,

$$\frac{pp(58) - pp(23)}{pp(40)} \times 100 \le 30$$

60 および 65 r p m とした以外は、試料 N o. 1 と同 様にして、試料No. 8, 9, 10, 11および12の 光記録媒体を得た。各々の、低速回転時の回転数と色素 液の粘度との積は、それぞれ350,400,500, 600および650rpm・cpであった。

【0020】(試料No.13~17)試料No.1と は、化1に示す増粘剤の量だけを変化させて粘度が18 c p の色素溶液を調製した。また、当該色素溶液を基板 に塗布する際の低速回転の回転数を35,40,50, 55および60 r p m とした以外は、試料No. 1と同 様にして、試料No. 13, 14, 15, 16および1 7の光記録媒体を得た。各々の、低速回転時の回転数と 色素液の粘度との積は、それぞれ630,720,90 0,990および1080rpm・cpであった。

【0021】(試料No.18~21)試料No.1と は、化1に示す増粘剤の量を変化させて粘度が22cp の色素溶液を調製した。また、当該色素溶液を基板に強 布する際の低速回転の回転数を35,40,45および 50 r p m とした以外は、試料 N o. 1 と同様にして、 【0016】(試料No. 2および3)試料No. 1に 20 試料No. 18, 19, 20および21の光記録媒体を 得た。各々の、低速回転時の回転数と色素液の粘度との 積は、それぞれ770,880,990および1100 rpm・cpであった。

> 【 0 0 2 2 】記録層の膜厚はプッシュプル値(push -pull値)を代用する。push-pull値(p p値ともいう)とは、基板に照射されたレーザー光が上 記溝により反射回折された光を溝の中心に対して左右対 称に配置された受光部での出力差として取り出し、トラ ッキングエラーシグナルを検出した後、トラッキングエ 30 ラーシグナルの振幅量を溝部の反射電位で規格化したも のであり、記録層の膜厚の代用特性となる。

> 【0023】基板に形成された記録層の内径から23m m, 40mm, 58mmのpush-pull値を求 め、結果を表1に示す。push-pull値のばらつ きが式1を満足すれば、基板上に均一な膜厚の色素薄膜 が得られ、情報を読み出す時にエラーを生じない。式 (1) においてpp(58) は内径から58mmのpu sh-pull値である。式(1)は形成された記録層 の内周端側の膜厚と外周端側の膜厚との差をほぼ中心で 40 割った値であり、その値が30%以内であることが必要 である。

[0024]

【数1】

(1)

[0025]

【表1】

| 試料<br>No                   | ·X:表面張力<br>(dyne/cm)                         | Y:回転数<br>(rpm)             | Z:色素溶液<br>の粘度(cp)          | Y×Z<br>(rpm·cp)                  | push-pull                                 |                                           |                                           |                                     | 本発明か                        |
|----------------------------|----------------------------------------------|----------------------------|----------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------|
|                            |                                              |                            |                            |                                  | 23mm                                      | 40mm                                      | 58mm                                      | 式(1)の値                              | 否か                          |
| 1 2 3                      | 24.5<br>20<br>18                             | 50<br>50<br>50             | 16<br>16<br>16             | 800<br>800<br>800                | 0.080<br>0.090<br>0.105                   | 0.081<br>0.086<br>0.091                   | 0.079<br>0.080<br>0.073                   | 1.23<br>11.6<br>35.2                | 本発明<br>本発明<br>否             |
| 4<br>5<br>6<br>7           | 24.5<br>24.5<br>24.5<br>24.5<br>24.5         | 50<br>55<br>60<br>65       | 7.5<br>7.5<br>7.5<br>7.5   | 375<br>412.5<br>450<br>487.5     | 0.080<br>0.080<br>0.077<br>0.050          | 0.080<br>0.079<br>0.082<br>0.082          | 0.050<br>0.066<br>0.063<br>0.092          | 37.5<br>17.7<br>17.1<br>51.2        | 否<br>本発明<br>本発明<br>否        |
| 8<br>9<br>10<br>11<br>12   | 24.5<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5 | 35<br>40<br>50<br>60<br>65 | 10<br>10<br>10<br>10<br>10 | 350<br>400<br>500<br>600<br>650  | 0.080<br>0.080<br>0.080<br>0.070<br>0.060 | 0.079<br>0.086<br>0.082<br>0.080<br>0.077 | 0.050<br>0.065<br>0.082<br>0.080<br>0.085 | 38<br>17.4<br>2.44<br>12.5<br>32.5  | 否<br>本発明<br>本発明<br>本発明<br>不 |
| 13<br>14<br>15<br>16<br>17 | 24.5<br>24.5<br>24.5<br>24.5<br>24.5         | 35<br>40<br>50<br>55<br>60 | 18<br>18<br>18<br>18       | 630<br>720<br>900<br>990<br>1080 | 0.090<br>0.082<br>0.081<br>0.072<br>0.062 | 0.082<br>0.082<br>0.082<br>0.080<br>0.075 | 0.055<br>0.066<br>0.079<br>0.080<br>0.085 | 42.7<br>19.5<br>2.4<br>10.0<br>33.3 | 否<br>本発明<br>本発明<br>本発明<br>否 |
| 18<br>19<br>20<br>21       | 24.5<br>24.5<br>24.5<br>24.5                 | 35<br>40<br>45<br>50       | 22<br>22<br>22<br>22<br>22 | 770<br>880<br>990<br>1100        | 0.090<br>0.083<br>0.079<br>0.070          | 0.083<br>0.082<br>0.082<br>0.078          | 0.057<br>0.066<br>0.090<br>0.094          | 39.7<br>20.7<br>13.4<br>30.8        | 否<br>本発明<br>本発明<br>否        |

【0026】表1に示された試料No.1~3は色素溶 液の塗布時の回転数Yが、60rpm≥Y≥40rpm を満足し、かつ、塗布時の回転数Yと色素液の粘度Zと の積YZが、1000rpm·cp≧YZ≥400rp m・c pを満足している。さらに、試料No. 1, 2は 表面張力Xが、X≥20dyne/cmを満足している が、試料No. 3はXが20dyne/cmより小さ い。試料No.1,2のpush-pull値のばらつ きを示す式(1)の値が、それぞれ1.23,11.6 で、30%以内であり、基板上に均一な膜厚の色素薄膜 が形成されていることがわかる。一方、試料No. 3の 式(1)の値は30%を越えた35.2となり、記録層 の膜厚が均一でない。

【0027】試料No. 4~7は、X≥20dyne/ cmを満足しているが、試料No. 5および6は、Yお よびY2が本発明の範囲内であり、試料No、4,7 は、YおよびYZが本発明の範囲外である。本発明の範 囲内にある試料No. 5 および6 の式(1)の値は、そ 40 れぞれ17.7および17.1で、30%以内であり、 基板上に均一な膜厚の色素薄膜が形成されていることが わかる。一方、試料No. 3および7の式(1)の値 は、それぞれ37.5,51.2で、30%を越えてお り、記録層の膜厚が均一でない。

【0028】同様に試料No.8~12,13~17, 18~21も、X≥20 d y n e / c mを満足している が、それぞれ、YおよびY2が本発明の範囲内である試 料と範囲外である試料とに区分される。本発明の範囲内 の試料は、式(1)の値が30%以内で基板上に均一な 50 ラーが生じにくい光記録媒体を提供することができる。

膜厚の色素薄膜が形成されてことがわかるが、本発明の 範囲外の試料は、式(1)の値が30%を越えており、 記録層の膜厚が均一でない。

【0029】図1は塗布時の回転数Yと、塗布時の回転 数Yと色素液の粘度Zとの積YZとの関係を示すグラフ である。横軸にYを、縦軸にYZを示す。図中、○は本 発明に含まれる実施例であり、×は比較例である。点線 で囲まれた本発明の範囲ではpush-pull値のば らつきは小さく、基板に形成されている色素薄膜の膜厚 が均一であることを示す。すなわち、粘度の低い溶媒を 用いて均一な膜厚を形成場合には、塗布液を振り切る高 速回転時の回転数だけでなく、塗布液を基板に滴下する 低速回転時の基板の回転数および塗布液の物性にも影響 される。

【0030】そして、上記範囲内の製造条件で得られた 光記録媒体は、均一な膜厚の色素薄膜が形成されている ので、情報記録時に形成されるピットの形状および深さ を一定とすることができる。

【0031】上記実施例では記録層としてシアニン色素 を使用したが、記録層としてはメロシアニン色素、フタ ロシアニン色素、含金属色素等を使用できることは言う までもない。

[0032]

【発明の効果】以上説明したように本発明方法によれ ば、スピンコート法を用いて均一な膜厚の記録層を形成 できるので、情報記録時に形成されるピットの形状およ び深さを一定とすることができ、情報を読み出す時にエ

7

【図面の簡単な説明】

液の粘度2との積Y2との関係を示すグラフである。

【図1】塗布時の回転数Yと、塗布時の回転数Yと色素

【図1】

