Probeprüfung für Analysis und Lineare Algebra 2 Computational and Data Science BSc

FS2025

1. Aussagen zu Integralen (3 Punkte) - jede richtige Antwort gibt 1 Punkt, jede falsche Antwort gibt -0,5 Punkte

Welche der folgenden Aussagen sind wahr bzw. falsch?

	wahr	falsch
a) Es gilt: $\int_{1}^{2} \sin(2x) dx = \int_{2}^{4} \sin u du$.		
b) Für $a > 0$ ist $I = \int_a^\infty \frac{1}{x} dx$ konvergent.		
c) Die Fläche eines Gebiets in 2D lässt sich mit Hilfe eines		
Zweifachintegrals berechnen.		

2. Aussagen über eine Funktion (3 Punkte) - jede richtige Antwort gibt 1 Punkt, jede falsche Antwort gibt -0,5 Punkte

Gegeben sei die Funktion $f(x,y) = \sqrt{5 + x^2 + y^2}$.

Welche der folgenden Aussagen sind wahr bzw. falsch?

	wahr	falsch
a) Es gilt $f(0; 2) = 3$.		
b) Der Graph von f ist eine Kurve in der xy-Ebene.		
c) Die Einheitssphäre in 3D ist eine Niveau-Menge von f .		

3. Aussagen über ein Vektorfeld (3 Punkte) - jede richtige Antwort gibt 1 Punkt, jede falsche Antwort gibt -0,5 Punkte

Betrachten Sie das Vektorfeld

$$\vec{v}(x, y, z) = \begin{pmatrix} 2x \\ -y \\ -z \end{pmatrix}$$

Welche der folgenden Aussagen sind wahr bzw. falsch?

	wahr	falsch
a) \vec{v} ist konservativ.		
b) \vec{v} ist quellenfrei.		
c) Es gibt eine reellwertige Funktion ϕ , so dass $\vec{v} = \nabla \phi$.		

4. Aussagen über 2 Matrizen (3 Punkte) - jede richtige Antwort gibt 1 Punkt, jede falsche Antwort gibt -0,5 Punkte

Gegeben seien die beiden Matrizen

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 2 \\ 0 & 3 & 3 \end{pmatrix} \text{ und } B = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr bzw. falsch?

	wahr	falsch
a) A ist regulär.		
b) B ist symmetrisch und orthogonal.		
c) Es gilt $dim(img(A)) = 2 \cdot dim(ker(A))$.		

5. Aussagen zu Matrizen (3 Punkte) - jede richtige Antwort gibt 1 Punkt, jede falsche Antwort gibt -0,5 Punkte

Welche der folgenden Aussagen sind wahr bzw. falsch?

	wahr	falsch
a) Sind die Matrizen A und B invertierbar, dann auch $A \cdot B$ und		
$B \cdot A$.		
b) Für eine symmetrische invertierbare nxn Matrix A mit den		
Eigenwerten λ_i gilt: A^3 besitzt die Eigenwerte λ_i^3 .		
c) Zu zwei verschiedenen Eigenwerten einer nxn Matrix A lassen		
sich stets zwei verschiedene Eigenvektoren finden.		

6. Diverse Aussagen (6 Punkte) - jede richtige Antwort gibt 1 Punkt, jede falsche Antwort gibt -0,5 Punkte

Welche der folgenden Aussagen sind wahr bzw. falsch?

	<u> </u>	wahr	falsch
a)	${z_1}^*={z_2}^*$ gilt genau dann, wenn $z_1=z_2$.		
b)	Gegeben sei die Potenzgleichung $z^n = w$ mit $w \in \mathbb{C}$, $n \in \mathbb{N}$. Ist n gerade und z eine Lösung der Gleichung, dann ist auch $-z$		
	eine Lösung.		
c)	Der Gradient von f ist tangential zu den Höhenlinien von f .		
d)	Aus der linearen Unabhängigkeit von \vec{u} und \vec{v} folgt auch jene		
	von $\vec{u} + \vec{v}$ und $\vec{u} - \vec{v}$.		
e)	Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 3x + 1$ ist eine lineare		
	Abbildung im Sinne der linearen Algebra.		
f)	Der Term $5cis(\pi/2)$ ist eine trigonometrische Form von 5.		

7. Vermischte Aufgaben (14,5 Punkte)

- a) Bestimmen Sie alle Lösungen der Gleichung $z^4=16\cdot e^{i\pi}$ und geben Sie diese in arithmetischer Form an. (3 Punkte)
- b) Bestimmen Sie die Matrix-Potenz $B = A^{15}$ mit

$$A = \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$$
. (3 Punkte)

c) Vertauschen Sie die Integrationsreihenfolge für das folgende Integral:

$$\int_0^4 \int_0^{\sqrt{x}} f(x, y) dy dx.$$
 (2 Punkte)

- d) Betrachten Sie die Funktion $f(x,y) = \frac{1}{\ln{(2)}} 2^{x-y}$ und den Vektor $\vec{v} = {-3 \choose 4}$ Berechnen Sie die Richtungsableitung der Funktion f am Punkt P(1;2) in Richtung des Vektors \vec{v} . (2 Punkte)
- e) Eine Kurve K hat die Parameterdarstellung

$$\vec{\gamma}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} (\cos t)/t \\ (\sin t)/t \end{pmatrix}$$
mit $0 < t < 1$.

Berechnen Sie das skalare Kurvenintegral von $f(x,y)=(x^2+y^2)^{-3/2}$ längs $\vec{y}(t)$. (4,5 Punkte)

8. Extremwerte einer Funktion bestimmen (5,5 Punkte)

Bestimmen Sie jeweils alle lokalen Extrema und Sattelpunkte der Funktion $f(x, y) = 3x^2y + y^3 - 27y + 4$.

9. Flächenschwerpunkt (5 Punkte)

Bestimmen Sie für die skizzierte trapezförmige Fläche den Flächenschwerpunkt $S = (x_S, y_S)$ mittels Doppelintegration.

10. Diagonalisierung (7 Punkte)

Gegeben ist die Matrix

$$A = \begin{pmatrix} 2 & 1 & -2 \\ -6 & -5 & 8 \\ -2 & -2 & 3 \end{pmatrix}.$$

Ist die Matrix A diagonalisierbar? Falls ja, dann geben Sie sowohl die Diagonal- als auch die Transformationsmatrix an.

3