Řešené příklady z lineární algebry - část 7

Lineární zobrazení

Příklad 7.1:

Zobrazení $L: \mathcal{P}_3 \longrightarrow \mathbf{R}_{2,3}$ je zobrazení z prostoru \mathcal{P}_3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru $\mathbf{R}_{2,3}$ všech matic typu 2/3:

$$\mathbf{L}(ax^3 + bx^2 + cx + d) = \begin{bmatrix} a + 2b, & -a + b + d, & 2a + 7b + d \\ 0, & 3b + d, & 0 \end{bmatrix}.$$

- 1. Ověřte, že zobrazení L je lineární zobrazení.
- 2. Určete jádro Ker ${f L}$ zobrazení ${f L}$, tj. nalezněte alespoň jednu bázi jádra Ker ${f L}$ a určete jeho dimenzi.
- 3. Určete obraz ImL zobrazení L, tedy nalezněte alespoň jednu bázi ImL a stanovte dimenzi obrazu ImL.
- 4. Určete matici \mathbf{M} lineárního zobrazení \mathbf{L} v kanonické bázi

$$p_1(x) = x^3, p_2(x) = x^2, p_3(x) = x, p_4(x) = 1$$

prostoru \mathcal{P}_3 a v kanonické bázi

$$\mathbf{C}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

$$\mathbf{C}_4 = \left[egin{array}{ccc} 0 & 0 & 0 \ 1 & 0 & 0 \end{array}
ight], \mathbf{C}_5 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight], \mathbf{C}_6 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

prostoru $\mathbf{R}_{2.3}$.

- 5. Pro polynom $p(x) = 5x^3 4x^2 + 6x 1$ nalezněte obraz $\mathbf{L}(p(x))$ a souřadnice $\widehat{p(x)}$ a $\widehat{\mathbf{L}(p)}$ vzhledem k příslušným kanonickým bázím p_1, p_2, p_3, p_4 prostoru \mathcal{P}_3 a $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$ prostoru $\mathbf{R}_{2,3}$. Ověřte, že platí rovnost $\mathbf{M} \cdot \widehat{p(x)} = \widehat{\mathbf{L}(p)}$.
- 6. Určete matici $\widetilde{\mathbf{M}}$ lineárního zobrazení \mathbf{L} vzhledem k bázi

$$q_1(x) = x^3 - 3x^2, q_2(x) = x^2 + x + 1, q_3(x) = x^3 + 2x - 1,$$

$$q_4(x) = x^3 + 2x^2 + x - 1$$

v prostoru \mathcal{P}_3 a k bázi

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B}_{2} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \mathbf{B}_{3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

$$\mathbf{B}_{4} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \mathbf{B}_{5} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{B}_{6} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$$

v prostoru $\mathbf{R}_{2,3}$.

7. Pro polynom $p(x) = 5x^3 - 4x^2 + 6x - 1$ známe obraz $\mathbf{L}(p(x))$ (viz výše). Nalezněte souřadnice $\widetilde{p(x)}$ a $\widetilde{\mathbf{L}(p)}$ vzhledem k bázím q_1, q_2, q_3, q_4 prostoru \mathcal{P}_3 a $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ prostoru $\mathbf{R}_{2,3}$. Ověřte, že platí rovnost $\widetilde{\mathbf{M}} \cdot \widetilde{p(x)} = \widetilde{\mathbf{L}(p)}$.

Řešení:

1. Zobrazení L: U→V lineárního prostoru U do lineárního prostoru V je lineárním zobrazením, pokud obrazem součtu dvou libovolných prvků u₁, u₂ z prostoru U je součet obrazů L(u₁), L(u₂) těchto prvků a obrazem λ-násobku libovolného prvku u z prostoru U pro libovolný prvek λ z tělesa R reálných čísel je λ-násobek obrazu L(u) tohoto prvku:

$$\forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U} : \mathbf{L}(\mathbf{u}_1 + \mathbf{u}_2) = \mathbf{L}(\mathbf{u}_1) + \mathbf{L}(\mathbf{u}_2),$$
$$\forall \mathbf{u} \in \mathcal{U}, \forall \lambda \in \mathbf{R} : \mathbf{L}(\lambda \cdot \mathbf{u}) = \lambda \cdot \mathbf{L}(\mathbf{u}).$$

Označme proto

$$p_1(x) = a_1 x^3 + b_1 x^2 + c_1 x + d_1, \quad p_2(x) = a_2 x^3 + b_2 x^2 + c_2 x + d_2$$

dva libovolné polynomy z prostoru \mathcal{P}_3 a určeme obraz jejich součtu:

$$\mathbf{L}((p_1+p_2)(x)) = \mathbf{L}((a_1+a_2)x^3 + (b_1+b_2)x^2 + (c_1+c_2)x + (d_1+d_2)) =$$

$$= \begin{bmatrix} (a_1+a_2) + 2(b_1+b_2), & -(a_1+a_2) + (b_1+b_2) + (d_1+d_2), \\ 0, & 3(b_1+b_2) + (d_1+d_2), \end{bmatrix}$$

$$2(a_1+a_2) + 7(b_1+b_2) + (d_1+d_2) \end{bmatrix} =$$

$$= \begin{bmatrix} a_1 + a_2 + 2b_1 + 2b_2, & -a_1 - a_2 + b_1 + b_2 + d_1 + d_2, \\ 0, & 3b_1 + 3b_2 + d_1 + d_2, \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + 2a_2 + 7b_1 + 7b_2 + d_1 + d_2 \\ 0 \end{bmatrix} =$$

$$= \begin{bmatrix} a_1 + 2b_1, & -a_1 + b_1 + d_1, & 2a_1 + 7b_1 + d_1 \\ 0, & 3b_1 + d_1, & 0 \end{bmatrix} +$$

$$+ \begin{bmatrix} a_2 + 2b_2, & -a_2 + b_2 + d_2, & 2a_2 + 7b_2 + d_2 \\ 0, & 3b_2 + d_2, & 0 \end{bmatrix} =$$

$$= \mathbf{L}(p_1(x)) + \mathbf{L}(p_2(x)).$$

Využili jsme pouze pravidla platná pro operace v lineárním prostoru, resp. pro počítání v tělese reálných čísel, a snadno jsme ukázali, že **obrazem součtu** libovolných dvou polynomů **je součet obrazů** těchto polynomů.

Dále uvažujme libovolný polynom $p(x) = ax^3 + bx^2 + cx + d$ z prostoru \mathcal{P}_3 a libovolné reálné číslo λ a určeme obraz λ -násobku tohoto polynomu:

$$\mathbf{L}((\lambda \cdot p)(x)) = \mathbf{L}(\lambda \cdot ax^3 + \lambda \cdot bx^2 + \lambda \cdot cx + \lambda \cdot d) =$$

$$= \begin{bmatrix} \lambda \cdot a + 2\lambda \cdot b, & -\lambda \cdot a + \lambda \cdot b + \lambda \cdot d, & 2\lambda \cdot a + 7\lambda \cdot b + \lambda \cdot d \\ 0, & 3\lambda \cdot b + \lambda \cdot d, & 0 \end{bmatrix} =$$

$$= \lambda \cdot \begin{bmatrix} a + 2b, & -a + b + d, & 2a + 7b + d \\ 0, & 3b + d, & 0 \end{bmatrix} = \lambda \cdot \mathbf{L}(p(x)).$$

Také nyní jsme snadno ukázali, že **obrazem násobku** polynomu **je násobek obrazu** polynomu pro libovolný polynom a libovolné číslo z tělesa reálných čísel.

Obě podmínky z definice lineárního zobrazení jsou splněny, zadané zobrazení ${\bf L}$ je tedy lineární.

2. Jádro lineárního zobrazení $\mathbf{L}: \mathcal{U} \longrightarrow \mathcal{V}$ tvoří ty prvky prostoru \mathcal{U} , kterým lineární zobrazení \mathbf{L} jako obraz přiřadí nulový prvek prostoru \mathcal{V} :

$$Ker \mathbf{L} = \{ \mathbf{u} \in \mathcal{U} ; \ \mathbf{L}(\mathbf{u}) = \mathbf{0} \}.$$

Protože se jedná o podprostor prostoru \mathcal{U} , k jeho určení stačí nalézt jednu bázi.

Pro konkrétní zadání tedy hledáme podprostor všech polynomů, jejichž obrazem je nulová matice $\mathbf{0}$ typu 2/3 neboli nulový prvek prostoru $\mathbf{R}_{2,3}$:

$$Ker \mathbf{L} = \{ p(x) \in \mathcal{P}_3 ; \mathbf{L}(p(x)) = \mathbf{0} \}.$$

Ptáme se tedy, co musí platit pro polynom $p(x) = ax^3 + bx^2 + cx + d$, jehož obrazem je nulová matice:

$$\mathbf{L}(ax^{3} + bx^{2} + cx + d) = \mathbf{0}$$

$$\begin{bmatrix} a+2b, & -a+b+d, & 2a+7b+d \\ 0, & 3b+d, & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Aby se dvě matice rovnaly, musí se rovnat jejich prvky na odpovídajících si pozicích. To znamená, že musí být splněny rovnice následující soustavy:

Potřebujeme vyřešit soustavu čtyř rovnic o čtyřech neznámých a,b,c,d. Uvědomme si, že koeficient c je také jednou hledanou neznámou, třebaže se ve výše uvedených rovnicích nevyskytuje. Soustava bude mít zřejmě nekonečně mnoho řešení. K jejich určení použijeme Gaussovu eliminační metodu, pomocí elementárních řádkových úprav upravíme matici soustavy na stupňovitý tvar.

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 2 & 7 & 0 & 1 \\ 0 & 3 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 3 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Matice řešené soustavy má hodnost 2, rozdíl mezi počtem neznámých a hodností matice soustavy 4-2=2 dává informaci o dimenzi podprostoru všech řešení soustavy, a tím i o počtu neznámých, za které se při určování obecného řešení volí tzv. parametry řešení. Soustava má samozřejmě nekonečně mnoho řešeních, při hledání jen jediného z nich lze za tyto neznámé volit libovolné reálné číslo. Zřejmě kromě neznámé

- koeficientu c se může libovolně zvolit ještě jedna neznámá - koeficient, vyberme např. koeficient b. Potom musí být a=-2b a d=-3b.

Jádro KerL zobrazení L tak tvoří všechny polynomy tvaru

$$p(x) = -2bx^3 + bx^2 + cx - 3b = b \cdot (-2x^3 + x^2 - 3) + c \cdot x = b \cdot r_1(x) + c \cdot r_2(x)$$

kde $r_1(x) = -2x^3 + x^2 - 3$, $r_2(x) = x$. Po jednoduché úpravě jsme dokázali libovolný polynom z jádra Ker**L** vyjádřit jako lineární kombinaci dvou polynomů $r_1(x)$ a $r_2(x)$, máme generátory jádra Ker**L**. Polynomy $r_1(x)$, $r_2(x)$ jsou zřejmě lineárně nezávislé (jeden není násobkem druhého), je to tedy báze prostoru Ker**L**.

Jednou možnou bází jádra Ker**L** tvoří polynomy $r_1(x) = -2x^3 + x^2 - 3$ a $r_2(x) = x$. Dimenze jádra zobrazení **L** je proto rovna dvěma:

$$\dim(\text{Ker}\mathbf{L}) = 2$$
.

3. Obraz Im \mathbf{L} lineárního zobrazení $\mathbf{L}: \mathcal{U} \longrightarrow \mathcal{V}$ tvoří všechny prvky prostoru \mathcal{V} , které jsou lineárním zobrazením \mathbf{L} přiřazeny jako obraz nějakému prvku z prostoru \mathcal{U} :

$$\operatorname{Im} \mathbf{L} = \{ \mathbf{v} \in \mathcal{V}; \ \exists \mathbf{u} \in \mathcal{U} : \mathbf{v} = \mathbf{L}(\mathbf{u}) \}.$$

Protože se i nyní jedná o podprostor prostoru \mathcal{V} , k jeho určení stačí nalézt alespoň jednu bázi.

Otázkou je, jak najít generátory podprostoru Im**L**. Je-li v prostoru \mathcal{U} zvolena libovolná báze $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$, lze každý prvek \mathbf{u} prostoru \mathcal{U} vyjádřit jako lineární kombinaci bázových prvků:

$$\mathbf{u} = c_1 \cdot \mathbf{u}_1 + c_2 \cdot \mathbf{u}_2 + \ldots + c_n \cdot \mathbf{u}_n.$$

Potom díky linearitě zobrazení L je obraz L(u) prvku u vyjádřen jako lineární kombinace obrazů prvků báze prostoru U:

$$\mathbf{L}(\mathbf{u}) = \mathbf{L}(c_1 \cdot \mathbf{u}_1 + c_2 \cdot \mathbf{u}_2 + \dots + c_n \cdot \mathbf{u}_n) =$$

$$= c_1 \cdot \mathbf{L}(\mathbf{u}_1) + c_2 \cdot \mathbf{L}(\mathbf{u}_2) + \dots + c_n \cdot \mathbf{L}(\mathbf{u}_n).$$

Obrazy bázových prvků $\mathbf{L}(\mathbf{u}_1), \mathbf{L}(\mathbf{u}_2), \dots, \mathbf{L}(\mathbf{u}_n)$ báze prostoru \mathcal{U} jsou proto hledanými generátory podprostoru $\mathrm{Im} \mathbf{L}$. Protože obrazy $\mathbf{L}(\mathbf{u}_1), \mathbf{L}(\mathbf{u}_2), \dots, \mathbf{L}(\mathbf{u}_n)$ prvků báze nemusí být lineárně nezávislé, nelze hovořit přímo o bázi prostoru $\mathrm{Im} \mathbf{L}$!

Určeme proto generátory Im \mathbf{L} pro zobrazení \mathbf{L} ze zadání příkladu. V prostoru polynomů \mathcal{P}_3 tvoří nejjednodušší bázi, tzv. kanonickou bázi, přímo jednotlivé mocninné funkce

$$p_1(x) = x^3$$
, $p_2(x) = x^2$, $p_3(x) = x$, $p_4(x) = 1$.

Obrazy těchto polynomů generují podprostor $\operatorname{Im} \mathbf{L}$ v prostotu $\mathbf{R}_{2,3}$:

$$\mathbf{L}(p_1(x)) = \mathbf{L}(x^3) = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{A}_1,$$

$$\mathbf{L}(p_2(x)) = \mathbf{L}(x^2) = \begin{bmatrix} 2 & 1 & 7 \\ 0 & 3 & 0 \end{bmatrix} = \mathbf{A}_2,$$

$$\mathbf{L}(p_3(x)) = \mathbf{L}(c) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{0},$$

$$\mathbf{L}(p_4(x)) = \mathbf{L}(1) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \mathbf{A}_3.$$

Tato skupina všech čtyř matic \mathbf{A}_1 , \mathbf{A}_2 , $\mathbf{0}$, \mathbf{A}_3 je zcela jistě lineárně závislá, neboť se v ní vyskytuje nulová matice $\mathbf{0}$, což je nulový prvek prostoru $\mathbf{R}_{2,3}$. Proto z dalších úvah nulovou matici $\mathbf{0}$ vynecháme a ptáme se, zda zbylé matice \mathbf{A}_1 , \mathbf{A}_2 , \mathbf{A}_3 jsou lineárně nezávislé. Položme proto lineární kombinaci těchto matic rovnu nulové matici a hledejme koeficienty, pro které je tato rovnost splněna:

$$c_{1} \cdot \mathbf{A}_{1} + c_{2} \cdot \mathbf{A}_{2} + c_{3} \cdot \mathbf{A}_{3} = \mathbf{0}$$

$$c_{1} \cdot \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} + c_{2} \cdot \begin{bmatrix} 2 & 1 & 7 \\ 0 & 3 & 0 \end{bmatrix} + c_{3} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_{1} + 2c_{2}, & -c_{1} + c_{2} + c_{3}, & 2c_{1} + 7c_{2} + c_{3} \\ 0, & 3c_{2} + c_{3}, & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Rovnost matic vyžaduje, aby byly splněny rovnice následující homogenní soustavy:

Řešíme soustavu čtyř rovnic o třech neznámých. Použijeme Gaussovu eliminační metodu a pomocí elementárních řádkových úprav převedeme matici soustavy na stupňovitý tvar.

$$\begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 1 \\ 2 & 7 & 1 \\ 0 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 0 & 3 & 1 \\ 0 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hodnost matice soustavy je 2, je tedy menší než počet neznámých. Soustava má proto nekonečně mnoho řešeních. Zvolíme-li za neznámou c_2 libovolné reálné číslo, musí být $c_1 = -2 \cdot c_2, c_3 = -3 \cdot c_2$. Jedno konkrétní netriviální řešení dostaneme např. pro $c_2 = 1$, pak musí být $c_1 = -2$ a $c_3 = -3$. Známe tedy netriviální lineární kombinaci matic \mathbf{A}_1 , \mathbf{A}_2 , \mathbf{A}_3 , která se rovná nulové matici:

$$-2 \cdot \mathbf{A}_1 + \mathbf{A}_2 - 3 \cdot \mathbf{A}_3 = \mathbf{0} .$$

Matice \mathbf{A}_1 , \mathbf{A}_2 , \mathbf{A}_3 jsou lineárně závislé. Ze vztahu, který pro tyto matice platí, lze např. matici \mathbf{A}_2 vyjádřit jako lineární kombinaci zbývajících dvou matic:

$$\mathbf{A}_2 = 2 \cdot \mathbf{A}_1 + 3 \cdot \mathbf{A}_3.$$

Pokud vynecháme matici \mathbf{A}_2 , je již lineární nezávislost zbylých dvou matic \mathbf{A}_1 , \mathbf{A}_3 zřejmá. Přitom se stále bude jednat o generující množinu obrazu Im \mathbf{L} . Máme tak dvojici lineárně nezávislých generátorů obrazu Im \mathbf{L} zobrazení \mathbf{L} .

Matice

$$\mathbf{A}_1 = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{A}_3 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

tvoří jednu možnou bázi podprostoru ${\bf Im}{\bf L}$ prostoru ${\bf R}_{2,3}$. Báze se skládá ze dvou prvků, proto dimenze obrazu ${\bf Im}{\bf L}$ lineárního zobrazení ${\bf L}$ je dvě:

$$\dim(\operatorname{Im}\mathbf{L}) = 2$$
.

Poznámka:

Zatím jsme ukázali výpočet, který vůbec nevyužil faktu, že jsme již dříve určili jádro lineárního zobrazení $\operatorname{Ker} \mathbf{L}$.

Víme totiž, že pro každé lineární zobrazení $\mathbf{L}{:}\,\mathcal{U}{\longrightarrow}\mathcal{V}$ musí platit rovnost:

$$\dim(\mathrm{Ker}\mathbf{L}) + \dim(\mathrm{Im}\mathbf{L}) = \dim \mathcal{U}.$$

Pro zadané zobrazení $L: \mathcal{P}_3 \longrightarrow \mathbf{R}_{2,3}$ tedy musí být:

$$\dim(\mathrm{Ker}\mathbf{L}) + \dim(\mathrm{Im}\mathbf{L}) = \dim \mathcal{P}_3.$$

Po dosazení dimenze jádra a dimenze prostoru \mathcal{P}_3 má tato rovnost tvar

$$2 + \dim(\operatorname{Im} \mathbf{L}) = 4,$$

odkud rovnou dostaneme hledanou dimenzi obrazu ImL:

$$\dim(\operatorname{Im}\mathbf{L}) = 2$$
.

Tato informace by zjednodušila hledání báze obrazu $\operatorname{Im} \mathbf{L}$ zobrazení \mathbf{L} . Ze skupiny generátorů by stačilo vybrat dvě lineárně nezávislé matice a nemuseli bychom zkoumat lineární nezávislost všech generátorů. Dříve uvedený výpočet je ale návodem, jak určit obraz $\operatorname{Im} \mathbf{L}$ lineárního zobrazení \mathbf{L} bez předchozí znalosti jádra $\operatorname{Ker} \mathbf{L}$ lineárního zobrazení \mathbf{L} , je tedy obecnější.

4. Matice **M** lineárního zobrazení **L** v zadaných bázích $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ prostoru \mathcal{U} a $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ prostoru \mathcal{V} je matice, která vystihuje vztah mezi souřadnicovým vektorem $\widehat{\mathbf{L}}(\widehat{\mathbf{u}})$ jeho obrazu $\mathbf{L}(\widehat{\mathbf{u}})$:

$$\widehat{\mathbf{L}(\mathbf{u})} = \mathbf{M} \cdot \widehat{\mathbf{u}}$$
 .

Hledáme-li matici \mathbf{M} lineárního zobrazení \mathbf{L} při daných bázích, nalezneme nejdříve obrazy $\mathbf{L}(\mathbf{u}_i)$ všech prvků báze $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ prostoru \mathcal{U} a pak určíme souřadnicové vektory $\widehat{\mathbf{L}(\mathbf{u}_i)}$ těchto obrazů vzhledem k bázi $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ prostoru \mathcal{V} . Tyto souřadnicové vektory $\widehat{\mathbf{L}(\mathbf{u}_i)}$ jsou sloupce hledané matice \mathbf{M} lineárního zobrazení \mathbf{L} :

$$\mathbf{M} = \left[\ \widehat{\mathbf{L}(\mathbf{u}_1)} \mid \widehat{\mathbf{L}(\mathbf{u}_2)} \mid \ \dots \ \mid \widehat{\mathbf{L}(\mathbf{u}_n)} \ \right] \ .$$

Vraťme se k našemu konkrétnímu zadání. V prostoru \mathcal{P}_3 máme kanonickou bázi $p_1(x) = x^3, p_2(x) = x^2, p_3(x) = x, p_4(x) = 1$. Obrazy těchto polynomů jsou matice:

$$\mathbf{L}(p_1(x)) = \mathbf{L}(x^3) = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix},$$

$$\mathbf{L}(p_2(x)) = \mathbf{L}(x^2) = \begin{bmatrix} 2 & 1 & 7 \\ 0 & 3 & 0 \end{bmatrix},$$

$$\mathbf{L}(p_3(x)) = \mathbf{L}(c) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{0},$$

$$\mathbf{L}(p_4(x)) = \mathbf{L}(1) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Protože i v prostoru matic $\mathbf{R}_{2,3}$ se uvažuje kanonická báze

$$\begin{split} \mathbf{C}_1 &= \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right], \\ \mathbf{C}_4 &= \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right], \mathbf{C}_5 = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right], \mathbf{C}_6 = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right], \end{split}$$

lze snadno určit souřadnice obrazů $\mathbf{L}(p_i(x))$ vzhledem k této bázi. Pro obraz $\mathbf{L}(p_1(x))$ polynomu $p_1(x)$ platí

$$\mathbf{L}(p_1) = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} =$$

$$= 1 \cdot \mathbf{C}_1 + (-1) \cdot \mathbf{C}_2 + 2 \cdot \mathbf{C}_3 + 0 \cdot \mathbf{C}_4 + 0 \cdot \mathbf{C}_5 + 0 \cdot \mathbf{C}_6,$$

proto souřadnicový vektor je

$$\widehat{\mathbf{L}(p_1)} = [1, -1, 2, 0, 0, 0]^T,$$

a podobně

$$\widehat{\mathbf{L}(p_2)} = [2, 1, 7, 0, 3, 0]^T,$$

$$\widehat{\mathbf{L}(p_3)} = [0, 0, 0, 0, 0, 0]^T,$$

$$\widehat{\mathbf{L}(p_4)} = [0, 1, 1, 0, 1, 0]^T.$$

Tyto souřadnicové vektory jsou sloupce hledané matici \mathbf{M} :

$$\mathbf{M} = \left[\widehat{\mathbf{L}(p_1)} \mid \widehat{\mathbf{L}(p_2)} \mid \widehat{\mathbf{L}(p_3)} \mid \widehat{\mathbf{L}(p_4)} \right] = \begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 2 & 7 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Matice \mathbf{M} je maticí lineárního zobrazení \mathbf{L} v kanonické bázi

$$p_1(x) = x^3, p_2(x) = x^2, p_3(x) = x, p_4(x) = 1$$

prostoru \mathcal{P}_3 a kanonické báze

$$\mathbf{C}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

$$\mathbf{C}_4 = \left[egin{array}{ccc} 0 & 0 & 0 \ 1 & 0 & 0 \end{array}
ight], \mathbf{C}_5 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight], \mathbf{C}_6 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

prostoru $\mathbf{R}_{2,3}$.

5. Ověřme, že platí vztah

$$\mathbf{M} \cdot \widehat{p(x)} = \widehat{\mathbf{L}(p)}$$

pro polynom $p(x) = 5x^3 - 4x^2 + 6x - 1$.

Souřadnicový vektor $\widehat{p(x)}$ vzhledem ke kanonické bázi $p_1(x)=x^3$, $p_2(x)=x^2, p_3(x)=x, p_4(x)=1$ v prostoru \mathcal{P}_3 je

$$\widehat{p(x)} = [5, -4, 6, -1]^T$$

protože polynom p(x)snadno vyjádříme jako lineární kombinaci bázových prvků

$$p(x) = 5x^3 - 4x^2 + 6x - 1 = 5 \cdot p_1(x) + (-4) \cdot p_2(x) + 6 \cdot p_3(x) + (-1) \cdot p_4(x)$$

a koeficienty v této lineární kombinaci jsou právě hledané souřadnice polynomu p(x).

Součin matice \mathbf{M} lineárního zobrazení \mathbf{L} a souřadnicového vektoru $\widehat{p(x)}$ je prvek z aritmetického vektorového prostoru \mathbf{R}_6 :

$$\mathbf{M} \cdot \widehat{p(x)} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 2 & 7 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -4 \\ 6 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ -10 \\ -19 \\ 0 \\ -13 \\ 0 \end{bmatrix}.$$

Ze zadání lineárního zobrazení ${\bf L}$ zjistíme, že obrazem ${\bf L}(p(x))$ polynomu p(x) je matice

$$\mathbf{L}(p(x)) = \mathbf{L}(5x^3 - 4x^2 + 6x - 1) = \begin{bmatrix} -3 & -10 & -19 \\ 0 & -13 & 0 \end{bmatrix}.$$

V prostoru $\mathbf{R}_{2,3}$ také uvažujeme kanonickou bázi tvořenou maticemi

$$\mathbf{C}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

$$\mathbf{C}_4 = \left[egin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}
ight], \mathbf{C}_5 = \left[egin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight], \mathbf{C}_6 = \left[egin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}
ight].$$

Obraz $\mathbf{L}(p(x))$ polynomu p(x) lze proto snadno vyjádřit jako lineární kombinaci prvků této báze:

$$\mathbf{L}(p(x)) = \begin{bmatrix} -3 & -10 & -19 \\ 0 & -13 & 0 \end{bmatrix} =$$

=
$$(-3) \cdot \mathbf{C}_1 + (-10) \cdot \mathbf{C}_2 + (-19) \cdot \mathbf{C}_3 + 0 \cdot \mathbf{C}_4 + (-13) \cdot \mathbf{C}_5 + 0 \cdot \mathbf{C}_6$$
.

Souřadnicovým vektorem $\widehat{\mathbf{L}(p)}$ obrazu $\mathbf{L}(p(x))$ je vektor:

$$\widehat{\mathbf{L}(p)} = [-3, -10, -19, 0, -13, 0]^T$$
.

Porovnáním s výsledkem součinu $\mathbf{M} \cdot \widehat{p(x)}$, který j
sme určili již dříve, je vidět, že pro daný polynom p(x) skutečně platí vztah

$$\mathbf{M} \cdot \widehat{p(x)} = \widehat{\mathbf{L}(p)}$$
.

6. Dalším úkolem je určit matici $\widetilde{\mathbf{M}}$ lineárního zobrazení \mathbf{L} vzhledem k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

v prostoru \mathcal{P}_3 a k bázi

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B}_{2} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \mathbf{B}_{3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

$$\mathbf{B}_4 = \left[egin{array}{ccc} 1 & 0 & 0 \ -1 & 0 & 1 \end{array}
ight], \mathbf{B}_5 = \left[egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 0 \end{array}
ight], \mathbf{B}_6 = \left[egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & -1 \end{array}
ight]$$

v prostoru $\mathbf{R}_{2,3}$.

Postup je samozřejmě analogický jako v případě kanonických bází, pouze jsou složitější výpočty potřebných souřadnicových vektorů. V prostoru \mathcal{P}_3 tvoří bázi polynomy $q_1(x), q_2(x), q_3(x), q_4(x)$. Matice $\widetilde{\mathbf{M}}$, kterou chceme určit, bude mít za sloupce souřadnicové vektory $\widetilde{\mathbf{L}}(q_i)$ obrazů $\mathbf{L}(q_i(x))$ polynomů $q_i(x), i = 1, 2, 3, 4$, vzhledem k bázi $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ prostoru matic $\mathbf{R}_{2,3}$:

$$\widetilde{\mathbf{M}} = \left[\ \widetilde{\mathbf{L}(q_1)} \mid \widetilde{\mathbf{L}(q_2)} \mid \widetilde{\mathbf{L}(q_3)} \mid \widetilde{\mathbf{L}(q_4)} \ \right] \ .$$

Vezměme první prvek $q_1(x) = x^3 - 3x^2$ z báze prostoru \mathcal{P}_3 . Jeho obrazem v lineárním zobrazení **L** je matice

$$\mathbf{L}(q_1(x)) = \mathbf{L}(x^3 - 3x^2) = \begin{bmatrix} -5 & -4 & -19 \\ 0 & -9 & 0 \end{bmatrix}.$$

Potřebujeme určit souřadnice této matice vzhledem k bázi $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ prostoru $\mathbf{R}_{2,3}$, tj. potřebujeme najít koeficienty v lineární kombinaci bázových prvků $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$, která se rovná právě matici $\mathbf{L}(q_1(x))$:

$$c_{1} \cdot \mathbf{B}_{1} + c_{2} \cdot \mathbf{B}_{2} + c_{3} \cdot \mathbf{B}_{3} + c_{4} \cdot \mathbf{B}_{4} + c_{5} \cdot \mathbf{B}_{5} + c_{6} \cdot \mathbf{B}_{6} = \mathbf{L}(q_{1}(x))$$

$$c_{1} \cdot \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} + c_{2} \cdot \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} + c_{3} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} +$$

$$+c_{4} \cdot \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} + c_{5} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} + c_{6} \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -5 & -4 & -19 \\ 0 & -9 & 0 \end{bmatrix}$$

$$\begin{bmatrix} c_1 - c_2 + c_3 + c_4, & -c_1 - c_3 + c_5 + c_6, & c_1 + c_5 \\ c_2 - c_4 + c_5 - c_6, & c_2 + c_3, & c_3 + c_4 - c_6 \end{bmatrix} = \begin{bmatrix} -5 & -4 & -19 \\ 0 & -9 & 0 \end{bmatrix}$$

Aby platila rovnost těchto matic, musí být splněny všechny rovnice následující nehomogenní soustavy lineárních algebraických rovnic:

K vyřešení soustavy využijeme jako obvykle Gaussovu eliminační metodu. Pomocí elementárních řádkových úprav převedeme rozšířenou matici soustavy na stupňovitý tvar.

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -5 \\ -1 & 0 & -1 & 0 & 1 & 1 & | & -4 \\ 1 & 0 & 0 & 0 & 1 & 0 & | & -19 \\ 0 & 1 & 0 & -1 & 1 & -1 & | & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & | & -9 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -5 \\ 0 & -1 & 0 & 1 & 1 & 1 & | & -9 \\ 0 & 1 & -1 & -1 & 1 & 0 & | & -14 \\ 0 & 1 & 0 & -1 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & | & -9 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -5 \\ 0 & 1 & 0 & -1 & -1 & | & 1 & 9 \\ 0 & 0 & -1 & 0 & 2 & 1 & | & -23 \\ 0 & 0 & 0 & 0 & 2 & 0 & | & -9 \\ 0 & 0 & 1 & 1 & 1 & 1 & | & -18 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -5 \\ 0 & 1 & 0 & -1 & -1 & | & 1 & 9 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & | & -23 \\ 0 & 0 & 0 & 0 & 2 & 0 & | & -9 \\ 0 & 0 & 0 & 0 & 1 & 2 & | & -18 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -5 \\ 0 & 1 & 0 & -1 & -1 & | & 1 & 9 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & | & -23 \\ 0 & 0 & 0 & 0 & 1 & 2 & | & -18 \\ 0 & 0 & 0 & 0 & 0 & -4 & | & 27 \end{bmatrix}$$

Z posledního řádku vidíme, že $c_6=-\frac{27}{4}$, dosazováním do dalších rovnic postupně dostaneme $c_5=-\frac{9}{2},\,c_4=-14,\,c_3=\frac{29}{4},\,c_2=-\frac{65}{4},\,c_1=-\frac{29}{2}.$

Souřadnicový vektor $\widetilde{\mathbf{L}(q_1)}$ je proto uspořádaná šestice

$$\widetilde{\mathbf{L}(q_1)} = \left[-\frac{29}{2}, -\frac{65}{4}, \frac{29}{4}, -14, -\frac{9}{2}, -\frac{27}{4} \right]^T =$$

$$= \frac{1}{4} \cdot [-58, -65, 29, -56, -18, -27]^T.$$

Toto bude tedy první sloupec hledané matice $\widetilde{\mathbf{M}}$.

Pro další prvky uvažované báze v prostoru polynomů \mathcal{P}_3 postupujeme analogicky. Nejdříve nalezneme jejich obrazy v lineárním zobrazení \mathbf{L} :

$$\mathbf{L}(q_2(x)) = \mathbf{L}(x^2 + x + 1) = \begin{bmatrix} 2 & 2 & 8 \\ 0 & 4 & 0 \end{bmatrix},$$

$$\mathbf{L}(q_3(x)) = \mathbf{L}(x^3 + 2x - 1) = \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 0 \end{bmatrix},$$

$$\mathbf{L}(q_4(x)) = \mathbf{L}(x^3 + 2x^2 + x - 1) = \begin{bmatrix} 5 & 0 & 15 \\ 0 & 5 & 0 \end{bmatrix}.$$

Nyní vypočítáme souřadnice obrazů $\mathbf{L}(q_i(x)), i = 2, 3, 4$, vzhledem k bázi $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ prostoru $\mathbf{R}_{2,3}$, a to tak, že lineární kombinaci bázových prvků položíme rovnu obrazu $\mathbf{L}(q_i(x))$, a to pro i = 2, 3, 4:

$$c_1 \cdot \mathbf{B}_1 + c_2 \cdot \mathbf{B}_2 + c_3 \cdot \mathbf{B}_3 + c_4 \cdot \mathbf{B}_4 + c_5 \cdot \mathbf{B}_5 + c_6 \cdot \mathbf{B}_6 = \mathbf{L}(q_i(x)),$$

a určíme příslušné koeficienty, pro které tato rovnost platí. Levá strana v rovnostech pro jednotlivé obrazy se nemění, je stejná jako při určování souřadnic $\widehat{\mathbf{L}(q_1)}$ obrazu $\mathbf{L}(q_1(x))$ prvního prvku báze. To znamená, že i soustavy, které potřebujeme postupně vyřešit, budou mít stejné levé strany v jednotlivých rovnicích. Zjednodušme proto náš zápis, a vyřešme současně tři soustavy, které se liší pouze v pravé straně. Rozšířená matice tak bude mít ne jeden, ale tři sloupce pravých stran. Vlastní výpočet přesně odpovídá počítání souřadnic pro $\mathbf{L}(q_1(x))$.

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & 2 & 1 & 5 \\ -1 & 0 & -1 & 0 & 1 & 1 & 2 & -2 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 8 & 1 & 15 \\ 0 & 1 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 4 & -1 & 5 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 0 & -1 & 0 & 1 & 1 & 1 & 4 & -1 & 5 \\ 0 & 1 & -1 & -1 & 1 & 0 & 6 & 0 & 10 \\ 0 & 1 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 4 & -1 & 5 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & 2 & 1 & 5 \\ 0 & 1 & 0 & -1 & -1 & -1 & -4 & 1 & -5 \\ 0 & 0 & -1 & 0 & 2 & 1 & 10 & -1 & 15 \\ 0 & 0 & 0 & 2 & 0 & 4 & -1 & 5 \\ 0 & 0 & 1 & 1 & 1 & 1 & 8 & -2 & 10 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 1 & 1 & 1 & 1 & 8 & -2 & 10 \\ 0 & 0 & 1 & 1 & 0 & -1 & -1 & -4 & 1 & -5 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 10 & -1 & 15 \\ 0 & 0 & 0 & 0 & 2 & 0 & 4 & -1 & 5 \\ 0 & 0 & 0 & 0 & 1 & 2 & 8 & -2 & 10 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 0 & 0 & 1 & 2 & 8 & -2 & 10 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 10 & -1 & 15 \\ 0 & 0 & 0 & 1 & 2 & 8 & -2 & 10 \\ 0 & 0 & 0 & 0 & 0 & -4 & -12 & 3 & -15 \end{bmatrix}$$

Z rozšířené matice soustav upravené elementárními řádkovými úpravami na stupňovitý tvar postupným dosazování vypočítáme pro jednotlivé pravé strany příslušné souřadnicové vektory:

$$\widetilde{\mathbf{L}(q_2)} = [6, 7, -3, 6, 2, 3]^T,$$

$$\widetilde{\mathbf{L}(q_3)} = \left[\frac{3}{2}, -\frac{1}{4}, -\frac{3}{4}, 0, -\frac{1}{2}, -\frac{3}{4}\right]^T = \frac{1}{4} \cdot [6, -1, -3, 0, -2, -3]^T,$$

$$\widetilde{\mathbf{L}(q_4)} = \left[\frac{25}{2}, \frac{45}{4}, -\frac{25}{4}, 10, \frac{5}{2}, \frac{15}{4}\right]^T = \frac{1}{4} \cdot [50, 45, -25, 40, 10, 15]^T.$$

Matice $\widetilde{\mathbf{M}}$ je po sloupcích složena právě ze souřadnicových vektorů

 $\widetilde{\mathbf{L}(q_i)}$ obrazů prvků báze $q_1(x), q_2(x), q_3(x), q_4(x)$:

$$\widetilde{\mathbf{M}} = \left[\widetilde{\mathbf{L}(q_1)} \mid \widetilde{\mathbf{L}(q_2)} \mid \widetilde{\mathbf{L}(q_3)} \mid \widetilde{\mathbf{L}(q_4)} \right] = \frac{1}{4} \cdot \begin{bmatrix} -58 & 24 & 6 & 50 \\ -65 & 28 & -1 & 45 \\ 29 & -12 & -3 & -25 \\ -56 & 24 & 0 & 40 \\ -18 & 8 & -2 & 10 \\ -27 & 12 & -3 & 15 \end{bmatrix}.$$

7. Vraťme se ještě jednou k polynomu $p(x) = 5x^3 - 4x^2 + 6x - 1$. Již dříve jsme spočítali matici - obraz polynomu p(x):

$$\mathbf{L}(p(x)) = \mathbf{L}(5x^3 - 4x^2 + 6x - 1) = \begin{bmatrix} -3 & -10 & -19 \\ 0 & -13 & 0 \end{bmatrix}.$$

Souřadnice $\widetilde{p(x)}$ polynomu p(x) vzhledem k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

prostoru \mathcal{P}_3 určíme jako koeficienty v lineární kombinaci bázových prvků, která se rovná právě polynomu p(x):

$$c_1 \cdot q_1(x) + c_2 \cdot q_2(x) + c_3 \cdot q_3(x) + c_4 \cdot q_4(x) = p(x)$$

$$c_1 \cdot (x^3 - 3x^2) + c_2 \cdot (x^2 + x + 1) + c_3 \cdot (x^3 + 2x - 1) + c_4 \cdot (x^3 + 2x^2 + x - 1) =$$

$$= 5x^3 - 4x^2 + 6x - 1$$

$$(c_1 + c_3 + c_4)x^3 + (-3c_1 + c_2 + 2c_4)x^2 + (c_2 + 2c_3 + c_4)x + (c_2 - c_3 - c_4) =$$

$$= 5x^3 - 4x^2 + 6x - 1$$

Hledané koeficienty nalezneme jako řešení soustavy

kterou jsme získali porovnáním koeficientů u jednotlivých mocnin x. K řešení soustavy použijeme Gaussovu eliminační metodu, kdy rozšířenou matici soustavy upravíme pomocí řádkových elementárních úprav na stupňovitý tvar a zpětným dosazováním určíme hledané souřadnice.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ -3 & 1 & 0 & 2 & -4 \\ 0 & 1 & 2 & 1 & 6 \\ 0 & 1 & -1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & 3 & 5 & 11 \\ 0 & 1 & 2 & 1 & 6 \\ 0 & 1 & -1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & 2 & 1 & 6 \\ 0 & 1 & -1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 2 & 3 & 6 \\ 0 & 0 & 3 & 2 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 2 & 3 & 6 \\ 0 & 0 & 3 & 2 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 5 \\ 0 & 1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 5 & 4 \end{bmatrix}$$

Řešením soustavy jsou koeficienty $c_4 = \frac{4}{5}$, $c_3 = \frac{9}{5}$, $c_2 = \frac{8}{5}$, $c_1 = \frac{12}{5}$. Proto souřadnicovým vektorem $\widetilde{p(x)}$ polynomu p(x) vzhledem k bázi q_1, q_2, q_3, q_4 je uspořádaná čtveřice

$$\widetilde{p(x)} = \left[\frac{12}{5}, \frac{8}{5}, \frac{9}{5}, \frac{4}{5}\right]^T = \frac{1}{5} \cdot [12, 8, 9, 4]^T.$$

Součinem matice $\widetilde{\mathbf{M}}$ lineárního zobrazení \mathbf{L} v bázi prostoru \mathcal{P}_3 tvořené polynomy $q_1(x), q_2(x), q_3(x), q_4(x)$ a v bázi $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ v prostoru matic $\mathbf{R}_{2,3}$ a souřadnicového vektoru $\widetilde{p(x)}$ polynomu p(x) vzhledem k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ dostaneme prvek

$$\widetilde{\mathbf{M}} \cdot \widetilde{p(x)} = \frac{1}{4} \cdot \begin{bmatrix} -58 & 24 & 6 & 50 \\ -65 & 28 & -1 & 45 \\ 29 & -12 & -3 & -25 \\ -56 & 24 & 0 & 40 \\ -18 & 8 & -2 & 10 \\ -27 & 12 & -3 & 15 \end{bmatrix} \cdot \frac{1}{5} \begin{bmatrix} 12 \\ 8 \\ 9 \\ 4 \end{bmatrix} = \frac{1}{4} \cdot \begin{bmatrix} -50 \\ -77 \\ 25 \\ -64 \\ -26 \\ -39 \end{bmatrix}$$

z prostoru \mathbf{R}_6 . Nalezením souřadnicového vektoru $\widetilde{\mathbf{L}(p)}$ obrazu polynomu p(x) vzhledem k bázi $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ ověříme, že se tyto vektory z prostoru \mathbf{R}_6 shodují, tj. že pro vybraný polynom p(x) platí rovnost $\widetilde{\mathbf{M}} \cdot \widetilde{p(x)} = \widetilde{\mathbf{L}(p)}$.

Určíme tedy souřadnice $\widetilde{\mathbf{L}(p)}$ matice

$$\mathbf{L}(p(x)) = \begin{bmatrix} -3 & -10 & -19 \\ 0 & -13 & 0 \end{bmatrix}$$

vzhledem k bázi

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B}_{2} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \mathbf{B}_{3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

$$\mathbf{B}_{4} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \mathbf{B}_{5} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{B}_{6} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$$

v prostoru $\mathbf{R}_{2,3}$.

Hledáme koeficienty v lineární kombinaci prvků $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ báze, která se rovná právě matici $\mathbf{L}(p(x))$:

$$c_1 \cdot \mathbf{B}_1 + c_2 \cdot \mathbf{B}_2 + c_3 \cdot \mathbf{B}_3 + c_4 \cdot \mathbf{B}_4 + c_5 \cdot \mathbf{B}_5 + c_6 \cdot \mathbf{B}_6 = \mathbf{L}(p(x)).$$

Lineární kombinace na levé straně této rovnosti je totožná s lineární kombinací, pomocí které jsme již výše počítali souřadnice obrazů polynomů báze q_1, q_2, q_3, q_4 . Proto i další výpočet bude analogický.

$$c_{1} \cdot \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} + c_{2} \cdot \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} + c_{3} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} + \\ +c_{4} \cdot \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} + c_{5} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} + c_{6} \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix} = \\ = \begin{bmatrix} -3 & -10 & -19 \\ 0 & -13 & 0 \end{bmatrix}$$
$$\begin{bmatrix} c_{1} - c_{2} + c_{3} + c_{4}, & -c_{1} - c_{3} + c_{5} + c_{6}, & c_{1} + c_{5} \\ c_{2} - c_{4} + c_{5} - c_{6}, & c_{2} + c_{3}, & c_{3} + c_{4} - c_{6} \end{bmatrix} = \\ = \begin{bmatrix} -3 & -10 & -19 \\ 0 & -13 & 0 \end{bmatrix}$$

Rovnost matic bude platit, pokud budou splněny rovnice následující soustavy lineárních algebraických rovnic, získané porovnáním jednotlivých prvků na odpovídajících si pozicích:

Soustavu řešíme Gaussovou eliminační metodou, pomocí elementárních řádkových úprav převedeme rozšířenou matici soustavy na stupňovitý tvar.

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & -3 \\ -1 & 0 & -1 & 0 & 1 & 1 & -10 \\ 1 & 0 & 0 & 0 & 1 & 0 & -19 \\ 0 & 1 & 0 & -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & -13 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -3 \\ 0 & -1 & 0 & 1 & 1 & 1 & | & -13 \\ 0 & 1 & -1 & -1 & 1 & 0 & | & -16 \\ 0 & 1 & 0 & -1 & 1 & -1 & | & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & | & -13 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & -1 & -1 & | & 13 \\ 0 & 0 & -1 & 0 & 2 & 1 & | & -29 \\ 0 & 0 & 0 & 0 & 2 & 0 & | & -13 \\ 0 & 0 & 1 & 1 & 1 & 1 & | & -26 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & -1 & -1 & -1 & | & 13 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & | & -29 \\ 0 & 0 & 0 & 0 & 2 & 0 & | & -13 \\ 0 & 0 & 0 & 0 & 0 & 1 & | & 2 & | & -26 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & -1 & -1 & | & -1 & | & 13 \\ 0 & 0 & 1 & 1 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & | & -29 \\ 0 & 0 & 0 & 0 & 1 & 2 & | & -26 \\ 0 & 0 & 0 & 0 & 0 & -4 & | & 39 \end{bmatrix}$$

Postupným dosazováním dostaneme jednotlivé souřadnice: $c_6=-\frac{39}{4}$, $c_5=-\frac{13}{2}$, $c_4=-16$, $c_3=\frac{25}{4}$, $c_2=-\frac{77}{4}$, $c_1=-\frac{25}{2}$. Souřadnicový vektor $\mathbf{L}(p)$ je proto uspořádaná šestice

$$\widetilde{\mathbf{L}(p)} = \left[-\frac{25}{2}, -\frac{77}{4}, \frac{25}{4}, -16, -\frac{13}{2}, -\frac{39}{4} \right]^T =$$

$$= \frac{1}{4} \cdot \left[-50, -77, 25, -64, -26, -39 \right]^T.$$

Porovnáním s výsledkem součinu $\widetilde{\mathbf{M}} \cdot \widetilde{p(x)}$ vidíme, že $\widetilde{\mathbf{M}} \cdot \widetilde{p(x)} = \widetilde{\mathbf{L}(p)}$. Pro polynom $p(x) = 5x^3 - 4x^2 + 6x - 1$ jsme ověřili platnost vztahu

$$\widetilde{\mathbf{M}} \cdot \widetilde{p(x)} = \widetilde{\mathbf{L}(p)}$$
.

Matici lineárního zobrazení lze tedy využít při získávání souřadnic obrazu libovolného prvku, a poté i k získání samotného obrazu, neboť vlastně známe koeficienty v lineární kombinaci prvků příslušné báze, která se rovná tomuto obrazu.

Příklad 7.2:

Pro prostor \mathcal{P}_3 všech polynomů nejvýše stupně 3 (včetně nulového polynomu) řešte následující úlohy:

1. Určete matici T přechodu od kanonické báze

$$p_1(x) = x^3$$
, $p_2(x) = x^2$, $p_3(x) = x$, $p_4(x) = 1$

k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

v prostoru \mathcal{P}_3 všech polynomů do stupně 3 (včetně nulového polynomu).

2. Známe souřadnice $\widetilde{r(x)} = [3, 7, -2, -5]^T$ polynomu r(x) vzhledem k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

v prostoru \mathcal{P}_3 . Určete polynom r(x) a souřadnicový vektor $\widehat{r(x)}$ polynomu r(x) vzhledem ke kanonické bázi

$$p_1(x) = x^3, \ p_2(x) = x^2, \ p_3(x) = x, \ p_4(x) = 1$$

prostoru \mathcal{P}_3 .

3. Je dán souřadnicový vektor $\widehat{s(x)} = [2, -3, 1, 5]^T$ polynomu s(x) vzhledem ke kanonické bázi

$$p_1(x) = x^3, \ p_2(x) = x^2, \ p_3(x) = x, \ p_4(x) = 1$$

prostoru \mathcal{P}_3 . Určeme polynom s(x) a s využitím matice přechodu \mathbf{T} nalezněme souřadnice $\widetilde{s(x)}$ polynomu s(x) vzhledem k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

v prostoru \mathcal{P}_3 .

Řešení:

1. Určujeme-li matici **T** jako matici přechodu od báze $p_1(x), p_2(x), p_3(x),$ $p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ v prostoru \mathcal{P}_3 , hledáme vlastně matici identického zobrazení z prostoru \mathcal{P}_3 , kde uvažujeme bázi $q_1(x), q_2(x)$, $q_3(x), q_4(x),$ do prostoru \mathcal{P}_3 s bází $p_1(x), p_2(x), p_3(x), p_4(x)$. Přitom identické zobrazení id z prostoru \mathcal{U} na prostor \mathcal{U} přiřadí libovolnému prvku $\mathbf{u} \in \mathcal{U}$ jako obraz opět tentýž prvek $i\mathbf{d}(\mathbf{u}) = \mathbf{u}$. V prostoru \mathcal{P}_3 proto pro prvky báze $q_1(x), q_2(x), q_3(x), q_4(x)$ platí $\mathbf{id}(q_i(x)) =$ $q_i(x), i = 1, 2, 3, 4.$

Matice **T** bude mít proto jako sloupce souřadnicové vektory $q_i(x)$, kde i=1,2,3,4, prvků báze $q_1(x),q_2(x),q_3(x),q_4(x)$ uvažované vzhledem k bázi $p_1(x), p_2(x), p_3(x), p_4(x)$ v prostoru \mathcal{P}_3 :

$$\mathbf{T} = \left[\widehat{q_1(x)} \, | \, \widehat{q_2(x)} \, | \, \widehat{q_3(x)} \, | \, \widehat{q_4(x)} \, \right] \, .$$

Báze $p_1(x) = x^3$, $p_2(x) = x^2$, $p_3(x) = x$, $p_4(x) = 1$ uvažovaná v prostoru obrazů je kanonickou bází. Určení souřadnic polynomů $q_1(x)$, $q_2(x)$, $q_3(x), q_4(x)$ je proto jednoduché:

protože $q_1(x) = x^3 - 3x^2 = 1 \cdot p_1(x) + (-3) \cdot p_2(x) + 0 \cdot p_3(x) + 0 \cdot p_4(x)$, je souřadnicový vektor $\widehat{q_1(x)} = [1, -3, 0, 0]^T$;

a podobně
$$\widehat{q_2(x)} = [0, 1, 1, 1]^T$$
, protože

$$q_2(x) = x^2 + x + 1 = 0 \cdot p_1(x) + 1 \cdot p_2(x) + 1 \cdot p_3(x) + 1 \cdot p_4(x);$$

$$\widehat{q_3(x)} = [1, 0, 2, -1]^T$$
, protože

$$q_3(x) = x^3 + 2x - 1 = 1 \cdot p_1(x) + 0 \cdot p_2(x) + 2 \cdot p_3(x) + (-1) \cdot p_4(x);$$

$$\widehat{q_4(x)} = [1, 2, 1, -1]^T$$
, protože

$$\widehat{q_4(x)} = [1,2,1,-1]^T$$
, protože $q_4(x) = x^3 + 2x^2 + x - 1 = 1 \cdot p_1(x) + 2 \cdot p_2(x) + 1 \cdot p_3(x) + (-1) \cdot p_4(x)$.

Matice přechodu od báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x),$ $q_3(x), q_4(x)$ v prostoru \mathcal{P}_3 je proto čtvercová matice

$$\mathbf{T} = \left[\widehat{q_1(x)} \mid \widehat{q_2(x)} \mid \widehat{q_3(x)} \mid \widehat{q_4(x)} \right] = \left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ -3 & 1 & 0 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \end{array} \right].$$

Pro matici T, matici přechodu od báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ v prostoru \mathcal{P}_3 , přitom musí platit vztah

$$\mathbf{T} \cdot \widetilde{r(x)} = \widehat{r(x)},$$

kde $\widehat{r(x)}$ značí souřadnicový vektor libovolného polynomu r(x) z prostoru \mathcal{P}_3 vzhledem k bázi $p_1(x), p_2(x), p_3(x), p_4(x)$ a $\widehat{r(x)}$ značí souřadnicový vektor téhož polynomu r(x) vzhledem k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$. Tento vztah plyne z toho, co bylo řečeno již výše, pro libovolné lineární zobrazení totiž platí, že

"matice zobrazení . souřadnice vzoru = souřadnice obrazu"

(samozřejmě předpokládáme, že vše je uvažováno vzhledem k pevně zvoleným bázím na prostoru vzorů i na prostoru obrazů).

Matice přechodu je maticí identického zobrazení, proto vzor i obraz je tentýž prvek v prostoru \mathcal{P}_3 , liší se pouze souřadnicové vektory uvažované vzhledem k různým bázím prostoru, tedy vektory z \mathbf{R}_4 .

2. Známe-li souřadnicový vektor $\widetilde{r(x)} = [3,7,-2,-5]^T$ polynomu r(x) vzhledem k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$,

samotný polynom r(x) dostaneme snadno tak, že jednotlivé souřadnice dosadíme jako koeficienty do lineární kombinace bázových prvků $q_1(x), q_2(x), q_3(x), q_4(x)$, tedy

$$r(x) = 3 \cdot q_1(x) + 7 \cdot q_2(x) - 2 \cdot q_3(x) - 5 \cdot q_4(x) =$$

$$= 3 \cdot (x^3 - 3x^2) + 7 \cdot (x^2 + x + 1) - 2 \cdot (x^3 + 2x - 1) - 5 \cdot (x^3 + 2x^2 + x - 1) =$$

$$= -4x^3 - 12x^2 - 2x + 14.$$

Souřadnicový vektor $\widehat{r(x)}$ polynomu r(x) vzhledem ke kanonické bázi

$$p_1(x) = x^3, \ p_2(x) = x^2, \ p_3(x) = x, \ p_4(x) = 1$$

pak už snadno určíme přímo z vyjádření polynomu r(x). Protože

$$r(x) = -4x^3 - 12x^2 - 2x + 14 =$$

$$= (-4) \cdot p_1(x) + (-12) \cdot p_2(x) + (-2) \cdot p_3(x) + 14 \cdot p_4(x),$$

je hledaný souřadnicový vektor

$$\widehat{r(x)} = [-4, -12, -2, 14]^T$$
.

Druhou možností je napřed určit souřadnicový vektor $\widehat{r(x)}$ vzhledem ke kanonické bázi $p_1(x),\ p_2(x),\ p_3(x),\ p_4(x)$ a pak jej využít k určení samotného polynomu r(x). K nalezení souřadnicového vektoru $\widehat{r(x)}$ se využije vztah

$$\mathbf{T} \cdot \widetilde{r(x)} = \widehat{r(x)} \,,$$

kde **T** je matice přechodu od báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ v prostoru \mathcal{P}_3 . Vynásobíme-li

$$\mathbf{T} \cdot \widetilde{r(x)} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ -3 & 1 & 0 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 7 \\ -2 \\ -5 \end{bmatrix} = \begin{bmatrix} -4 \\ -12 \\ -2 \\ 14 \end{bmatrix},$$

dostaneme přímo souřadnicový vektor $\widehat{r(x)} = [-4, -12, -2, 14]^T$ polynomu r(x) vzhledem ke kanonické bázi $p_1(x), p_2(x), p_3(x), p_4(x)$.

Známe-li souřadnicový vektor vzhledem ke kanonické bázi prostoru, je určení samotného prvku již velmi jednoduché, stačí jen jednotlivé souřadnice použít jako koeficienty v lineární kombinaci prvků kanonické báze:

$$r(x) = (-4) \cdot p_1(x) + (-12) \cdot p_2(x) + (-2) \cdot p_3(x) + 14 \cdot p_4(x) =$$
$$= -4x^3 - 12x^2 - 2x + 14.$$

3. Pro polynom s(x) známe souřadnicový vektor $\widehat{s(x)} = [2, -3, 1, 5]^T$ vzhledem ke kanonické bázi

$$p_1(x) = x^3$$
, $p_2(x) = x^2$, $p_3(x) = x$, $p_4(x) = 1$.

Díky tomu, že báze $p_1(x), p_2(x), p_3(x), p_4(x)$ je kanonická, polynom s(x) je lineární kombinací bázových prvků s koeficienty ze souřadnicového vektoru:

$$s(x) = 2 \cdot p_1(x) + (-3) \cdot p_2(x) + 1 \cdot p_3(x) + 5 \cdot p_4(x) =$$
$$= 2x^3 - 3x^2 + x + 5.$$

Souřadnicový vektor $\widetilde{s(x)}$ polynomu $s(x) = 2x^3 - 3x^2 + x + 5$ vzhledem k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

bychom mohli samozřejmě počítat jako koeficienty z té lineární kombinace bázových prvků $q_1(x), q_2(x), q_3(x), q_4(x)$, která se rovná polynomu s(x). Obdobné výpočty jsme již prováděli výše.

Proto se nyní podíváme na druhou možnost, při které využijeme matici přechodu $\mathbf T$ od báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$. Pro matici $\mathbf T$ a souřadnicové vektory $\widehat{s(x)}$ polynomu s(x) vzhledem ke kanonické bázi $p_1(x), p_2(x), p_3(x), p_4(x)$ a $\widehat{s(x)}$ polynomu s(x) vzhledem k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ platí vztah:

$$\mathbf{T} \cdot \widetilde{s(x)} = \widehat{s(x)}$$
.

Přenásobíme-li tuto rovnost maticí \mathbf{T}^{-1} inverzní k matici \mathbf{T} zleva, dostaneme

$$\widetilde{s(x)} = \mathbf{T}^{-1} \cdot \widehat{s(x)}$$
,

což je právě návod, jak určit souřadnicový vektor $\widetilde{s(x)}$.

Protože matice \mathbf{T} je řádu čtvrtého, k určení její inverzní matice využijeme Gauss-Jordanovu eliminační metodu. Pomocí řádkových elementárních úprav převedeme rozšířenou matici $[\mathbf{T}|\mathbf{I}]$ tak, aby z původní matice \mathbf{T} vznikla jednotková matice.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 5 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim$$

$$\sim \left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 6 & 3 & 1 & 0 & -1 \\ 0 & 0 & 3 & 2 & 0 & 0 & 1 & -1 \end{array}\right] \sim$$

$$\sim \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 & 3 & 1 & -1 & 0 \\ 0 & 0 & 0 & -10 & -9 & -3 & 4 & -1 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix}
1 & 0 & 0 & -3 & -2 & -1 & 1 & 0 \\
0 & 1 & 0 & 3 & 3 & 1 & -1 & 1 \\
0 & 0 & 1 & 4 & 3 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & \frac{9}{10} & \frac{3}{10} & -\frac{2}{5} & \frac{1}{10}
\end{bmatrix} \sim \\
\sim \begin{bmatrix}
1 & 0 & 0 & 0 & \frac{7}{10} & -\frac{1}{10} & -\frac{1}{5} & \frac{3}{10} \\
0 & 1 & 0 & 0 & \frac{3}{10} & \frac{1}{10} & \frac{1}{5} & \frac{7}{10} \\
0 & 0 & 1 & 0 & -\frac{3}{5} & -\frac{1}{5} & \frac{3}{5} & -\frac{2}{5} \\
0 & 0 & 0 & 1 & \frac{9}{10} & \frac{3}{10} & -\frac{2}{5} & \frac{1}{10}
\end{bmatrix}$$

Z původně jednotkové matice jsme tímto výpočtem získali matici \mathbf{T}^{-1} inverzní k matici \mathbf{T} :

$$\mathbf{T}^{-1} = \frac{1}{10} \cdot \begin{bmatrix} 7 & -1 & -2 & 3\\ 3 & 1 & 2 & 7\\ -6 & -2 & 6 & -4\\ 9 & 3 & -4 & 1 \end{bmatrix}.$$

Souřadnicový vektor $\widetilde{s(x)}$ polynomu s(x) vzhledem k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ dostaneme jako součin matice \mathbf{T}^{-1} a souřadnicového vektoru $\widehat{s(x)} = [2, -3, 1, 5]^T$:

$$\widehat{s(x)} = \mathbf{T}^{-1} \cdot \widehat{s(x)} =$$

$$= \frac{1}{10} \cdot \begin{bmatrix} 7 & -1 & -2 & 3 \\ 3 & 1 & 2 & 7 \\ -6 & -2 & 6 & -4 \\ 9 & 3 & -4 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \\ 1 \\ 5 \end{bmatrix} = \frac{1}{10} \cdot \begin{bmatrix} 30 \\ 40 \\ -20 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ -2 \\ 1 \end{bmatrix}.$$

Poznámka:

Matici \mathbf{T}^{-1} jsme vypočítali jako inverzní matici k matici \mathbf{T} přechodu od báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$. Je to matice přechodu od báze $q_1(x), q_2(x), q_3(x), q_4(x)$ k bázi $p_1(x), p_2(x), p_3(x), p_4(x)$ v prostoru polynomů \mathcal{P}_3 .

Příklad 7.3:

Využijte některé výsledky z předcházejících příkladů a vyřešte následující úlohy:

1. Určete matici H přechodu od kanonické báze

$$\mathbf{C}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{C}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{C}_{3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$\mathbf{C}_{4} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{C}_{5} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \mathbf{C}_{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

k bázi

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B}_{2} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \mathbf{B}_{3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

$$\mathbf{B}_4 = \left[egin{array}{ccc} 1 & 0 & 0 \ -1 & 0 & 1 \end{array}
ight], \mathbf{B}_5 = \left[egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 0 \end{array}
ight], \mathbf{B}_6 = \left[egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & -1 \end{array}
ight]$$

v prostoru $\mathbf{R}_{2,3}$ všech matic typu 2/3.

- 2. Určete matici přechodu \mathbf{H}^{-1} od báze $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ k bázi $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$ prostoru $\mathbf{R}_{2,3}$.
- 3. Využijte matici \mathbf{M} zobrazení \mathbf{L} z příkladu 7.1 v kanonických bázích $p_1(x), p_2(x), p_3(x), p_4(x)$ prostoru \mathcal{P}_3 a $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$ prostoru $\mathbf{R}_{2,3}$ a matici \mathbf{T} přechodu od kanonické báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ v prostoru \mathcal{P}_3 z příkladu 7.2 a vypočtěte součin matic $\mathbf{H}^{-1} \cdot \mathbf{M} \cdot \mathbf{T}$.

Řešení:

1. Hledáme-li matici přechodu od kanonické báze C₁, C₂, C₃, C₄, C₅, C₆ k bázi B₁, B₂, B₃, B₄, B₅, B₆ v prostoru R_{2,3}, hledáme vlastně matici identického zobrazení z prostoru matic R_{2,3} s bází B₁, B₂, B₃, B₄, B₅, B₆ do téhož prostoru matic R_{2,3}, ale nyní jej uvažujeme s kanonickou bází C₁, C₂, C₃, C₄, C₅, C₆. Proto matice H bude mít za sloupce souřadnicové vektory B_i, i = 1, 2, ..., 6, prvků báze B₁, B₂, B₃, B₄, B₅, B₆ vzhledem k bázi C₁, C₂, C₃, C₄, C₅, C₆. Tyto souřadnice určíme snadno, neboť báze C_i, i = 1, 2, ..., 6, je kanonická. Vyjádření matic B_i, i = 1, 2, ..., 6, jako lineární kombinace matic kanonické báze je tedy triviální. Protože

$$\mathbf{B}_1 = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 1 \cdot \mathbf{C}_1 + (-1) \cdot \mathbf{C}_2 + 1 \cdot \mathbf{C}_3 + 0 \cdot \mathbf{C}_4 + 0 \cdot \mathbf{C}_5 + 0 \cdot \mathbf{C}_6,$$

je $\widehat{\mathbf{B}_1} = [1,-1,1,0,0,0]^T$ hledaný souřadnicový vektor první matice z báze $\mathbf{B}_1,\mathbf{B}_2,\mathbf{B}_3,\mathbf{B}_4,\mathbf{B}_5,\mathbf{B}_6$.

Podobně $\widehat{\mathbf{B}}_{2} = [-1, 0, 0, 1, 1, 0]^{T}$, protože

$$\mathbf{B}_2 = \left[\begin{array}{cc} -1 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right] = (-1) \cdot \mathbf{C}_1 + 0 \cdot \mathbf{C}_2 + 0 \cdot \mathbf{C}_3 + 1 \cdot \mathbf{C}_4 + 1 \cdot \mathbf{C}_5 + 0 \cdot \mathbf{C}_6 \, ;$$

$$\widehat{\mathbf{B}}_3 = [1, -1, 0, 0, 1, 1]^T$$
, protože

$$\mathbf{B}_{3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 1 \cdot \mathbf{C}_{1} + (-1) \cdot \mathbf{C}_{2} + 0 \cdot \mathbf{C}_{3} + 0 \cdot \mathbf{C}_{4} + 1 \cdot \mathbf{C}_{5} + 1 \cdot \mathbf{C}_{6};$$

$$\widehat{\mathbf{B}_4} = [1,0,0,-1,0,1]^T,$$
 protože

$$\mathbf{B}_{4} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} = 1 \cdot \mathbf{C}_{1} + 0 \cdot \mathbf{C}_{2} + 0 \cdot \mathbf{C}_{3} + (-1) \cdot \mathbf{C}_{4} + 0 \cdot \mathbf{C}_{5} + 1 \cdot \mathbf{C}_{6};$$

$$\widehat{\mathbf{B}}_{5} = [0, 1, 1, 1, 0, 0]^{T}$$
, protože

$$\mathbf{B}_{5} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = 0 \cdot \mathbf{C}_{1} + 1 \cdot \mathbf{C}_{2} + 1 \cdot \mathbf{C}_{3} + 1 \cdot \mathbf{C}_{4} + 0 \cdot \mathbf{C}_{5} + 0 \cdot \mathbf{C}_{6};$$

$$\widehat{\mathbf{B}_6} = [0,1,0,-1,0,-1]^T,$$
 protože

$$\mathbf{B}_{6} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix} = 0 \cdot \mathbf{C}_{1} + 1 \cdot \mathbf{C}_{2} + 0 \cdot \mathbf{C}_{3} + (-1) \cdot \mathbf{C}_{4} + 0 \cdot \mathbf{C}_{5} + (-1) \cdot \mathbf{C}_{6}.$$

Matice přechodu od báze $C_1, C_2, C_3, C_4, C_5, C_6$ k bázi $B_1, B_2, B_3, B_4, B_5, B_6$ v prostoru $R_{2,3}$ je čtvercová matice řádu šest, složená po sloupcích z výše určených souřadnicových vektorů:

$$\mathbf{H} = \left[\begin{array}{cccc} \widehat{\mathbf{B}_1} \, | \, \widehat{\mathbf{B}_2} \, | \, \widehat{\mathbf{B}_3} \, | \, \widehat{\mathbf{B}_4} \, | \, \widehat{\mathbf{B}_5} \, | \, \widehat{\mathbf{B}_6} \, \right] = \left[\begin{array}{cccccc} 1 & -1 & 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 \end{array} \right].$$

2. Máme-li pro prostor matic $\mathbf{R}_{2,3}$ určit matici přechodu \mathbf{H}^{-1} od báze $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ k bázi $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$, mohli bychom postupovat analogicky k výpočtu výše. Uvědomme si ale, že při tomto přístupu bychom museli určit souřadnicové vektory všech matic $\mathbf{C}_i, i = 1, 2, \ldots, 6$, vzhledem k bázi, která není kanonická, tj. tento výpočet by byl pracnější než u matice \mathbf{H} .

Využijme proto faktu, že již známe matici přechodu od báze C_1 , C_2 , C_3 , C_4 , C_5 , C_6 k bázi B_1 , B_2 , B_3 , B_4 , B_5 , B_6 - matici H. Matice přechodu od báze B_1 , B_2 , B_3 , B_4 , B_5 , B_6 k bázi C_1 , C_2 , C_3 , C_4 , C_5 , C_6 bude inverzní maticí k matici H. Její výpočet provedeme pomocí Gaussovy eliminační metody, kdy rozšířenou matici [H|I] převedeme pomocí řádkových elementárních úprav na matici $[I|H^{-1}]$, kde I je jednotková matice řádu 6. Z původně jednotkové matice I takto získáme matici inverzní k matici H.

$$[\mathbf{H} | \mathbf{I}] = \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 1 & 1 & | 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & | 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & -1 & | 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & | 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 & | 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 1 & | & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 & | & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & -1 & | & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & | & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & | & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 & -1 & | & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -\frac{5}{4} & -\frac{1}{4} & 1 & -\frac{3}{4} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 & 0 & 0 & \frac{5}{4} & \frac{1}{4} & -1 & \frac{3}{4} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & 0 & -\frac{1}{4} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Právě jsme vypočítali inverzní matici \mathbf{H}^{-1} k matici \mathbf{H} :

$$\mathbf{H}^{-1} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\ -\frac{5}{4} & -\frac{1}{4} & 1 & -\frac{3}{4} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{4} & \frac{1}{4} & -1 & \frac{3}{4} & \frac{1}{2} & -\frac{1}{2} \\ -1 & 0 & 1 & -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & -\frac{1}{4} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \\ = \frac{1}{4} \cdot \begin{bmatrix} -2 & -2 & 4 & -2 & 0 & 0 \\ -5 & -1 & 4 & -3 & 2 & 2 \\ 5 & 1 & -4 & 3 & 2 & -2 \\ -4 & 0 & 4 & -4 & 0 & 4 \\ 2 & 2 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 & 2 & 2 \end{bmatrix},$$

je to hledaná matice přechodu od báze $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ k bázi $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$ v prostoru $\mathbf{R}_{2,3}$.

3. Posledním úkolem je vynásobit matice $\mathbf{H}^{-1} \cdot \mathbf{M} \cdot \mathbf{T}$, kde matice \mathbf{M} je matice lineárního zobrazení \mathbf{L} z příkladu 7.1 v kanonické bázi

$$p_1(x) = x^3, p_2(x) = x^2, p_3(x) = x, p_4(x) = 1$$

prostoru \mathcal{P}_3 a kanonické báze

$$\mathbf{C}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

$$\mathbf{C}_4 = \left[egin{array}{ccc} 0 & 0 & 0 \ 1 & 0 & 0 \end{array}
ight], \mathbf{C}_5 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight], \mathbf{C}_6 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

prostoru $\mathbf{R}_{2,3}$;

matice \mathbf{H}^{-1} je matice přechodu od báze

$$\mathbf{B}_1 = \left[egin{array}{ccc} 1 & -1 & 1 \ 0 & 0 & 0 \end{array}
ight], \mathbf{B}_2 = \left[egin{array}{ccc} -1 & 0 & 0 \ 1 & 1 & 0 \end{array}
ight], \mathbf{B}_3 = \left[egin{array}{ccc} 1 & -1 & 0 \ 0 & 1 & 1 \end{array}
ight],$$

$$\mathbf{B}_4 = \left[egin{array}{ccc} 1 & 0 & 0 \ -1 & 0 & 1 \end{array}
ight], \mathbf{B}_5 = \left[egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 0 \end{array}
ight], \mathbf{B}_6 = \left[egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & -1 \end{array}
ight]$$

k bázi

$$\mathbf{C}_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_2 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \mathbf{C}_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

$$\mathbf{C}_4 = \left[egin{array}{ccc} 0 & 0 & 0 \ 1 & 0 & 0 \end{array}
ight], \mathbf{C}_5 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight], \mathbf{C}_6 = \left[egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

v prostoru matic $\mathbf{R}_{2,3}$;

matice T je matice přechodu od kanonické báze

$$p_1(x) = x^3, p_2(x) = x^2, p_3(x) = x, p_4(x) = 1$$

k bázi

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

v prostoru polynomů \mathcal{P}_3 .

Všechny tyto matice jsme již určili výše. Stačí proto spočítat pouze jejich součin.

$$\mathbf{H}^{-1} \cdot \mathbf{M} \cdot \mathbf{T} = \frac{1}{4} \cdot \begin{bmatrix} -2 & -2 & 4 & -2 & 0 & 0 \\ -5 & -1 & 4 & -3 & 2 & 2 \\ 5 & 1 & -4 & 3 & 2 & -2 \\ -4 & 0 & 4 & -4 & 0 & 4 \\ 2 & 2 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & -1 & 2 & -2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 1 & 0 & 1 \\ 2 & 7 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \mathbf{T} =$$

$$= \frac{1}{4} \cdot \begin{bmatrix} 8 & 22 & 0 & 2 \\ 4 & 23 & 0 & 5 \\ -4 & -11 & 0 & -1 \\ 4 & 20 & 0 & 4 \\ 0 & 6 & 0 & 2 \\ 0 & 9 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 1 \\ -3 & 1 & 0 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix} =$$

$$= \frac{1}{4} \cdot \begin{bmatrix} -58 & 24 & 6 & 50 \\ -65 & 28 & -1 & 45 \\ 29 & -12 & -3 & -25 \\ -56 & 24 & 0 & 40 \\ -18 & 8 & -2 & 10 \\ -27 & 12 & -3 & 15 \end{bmatrix}$$

Porovnáním s výsledky z příkladu 7.1 vidíme, že součin $\mathbf{H}^{-1} \cdot \mathbf{M} \cdot \mathbf{T}$ se rovná matici $\widetilde{\mathbf{M}}$ z výše řešeného příkladu 7.1, matice $\widetilde{\mathbf{M}}$ je maticí lineárního zobrazení \mathbf{L} vzhledem k bázím

$$q_1(x) = x^3 - 3x^2$$
, $q_2(x) = x^2 + x + 1$, $q_3(x) = x^3 + 2x - 1$,
 $q_4(x) = x^3 + 2x^2 + x - 1$

v prostoru \mathcal{P}_3 a

$$\mathbf{B}_1 = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B}_2 = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \mathbf{B}_3 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

$$\mathbf{B}_4 = \left[egin{array}{ccc} 1 & 0 & 0 \ -1 & 0 & 1 \end{array}
ight], \mathbf{B}_5 = \left[egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 0 \end{array}
ight], \mathbf{B}_6 = \left[egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & -1 \end{array}
ight]$$

v prostoru $\mathbf{R}_{2,3}$. Toto zjištění, že

$$\mathbf{H}^{-1} \cdot \mathbf{M} \cdot \mathbf{T} = \widetilde{\mathbf{M}}$$

přesně odpovídá faktu, že na lineární zobrazení zobrazení \mathbf{L} z prostoru \mathcal{P}_3 s bází $q_1(x), q_2(x), q_3(x), q_4(x)$ do prostoru $\mathbf{R}_{2,3}$ s bází $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ se můžeme dívat také jako na složené zobrazení z následujících tří lineárních zobrazeních:

- identické zobrazení prostoru \mathcal{P}_3 s bází $q_1(x), q_2(x), q_3(x), q_4(x)$ na prostor \mathcal{P}_3 s bází $p_1(x), p_2(x), p_3(x), p_4(x)$; toto zobrazení můžeme vyjádřit pomocí matice \mathbf{T} , matice přechodu od kanonické báze $p_1(x), p_2(x), p_3(x), p_4(x)$ k bázi $q_1(x), q_2(x), q_3(x), q_4(x)$ v prostoru polynomů \mathcal{P}_3 ;
- lineární zobrazení L v kanonických bázích p₁(x), p₂(x), p₃(x), p₄(x) prostoru P₃ a C₁, C₂, C₃, C₄, C₅, C₆ prostoru R_{2,3}, které je reprezentováno v příslušných bázích maticí M;
- identické zobrazení prostoru $\mathbf{R}_{2,3}$ s bází $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$ na prostor $\mathbf{R}_{2,3}$ s bází $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$; toto zobrazení lze vyjádřit pomocí matice \mathbf{H}^{-1} od báze $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6$ k bázi $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3, \mathbf{C}_4, \mathbf{C}_5, \mathbf{C}_6$ v prostoru $\mathbf{R}_{2,3}$.

Matice složeného zobrazení se získá jako součin matic jednotlivých skládaných zobrazení, pouze musíme matice násobit **v opačném pořadí**, tj. první matice je maticí posledního skládaného zobrazení. Tomu přesně odpovídá i naše pozorování:

$$\widetilde{\mathbf{M}} = \mathbf{H}^{-1} \cdot \mathbf{M} \cdot \mathbf{T} \,.$$