7. Dimensionality Reduction

## **Lecture 1**

| 1. |     | find the model that best explains the data: simple and fits well.                |
|----|-----|----------------------------------------------------------------------------------|
|    | a.  | Modeling                                                                         |
|    | b.  | Estimation                                                                       |
| 2. |     | _ choose the class of models that the learning algorithm will choose from.       |
|    | a.  | Modeling                                                                         |
|    | b.  | Estimation                                                                       |
| 3. |     | evaluate the learned model and compare to solution found using other model sses. |
|    | a.  | Validation                                                                       |
|    | b.  | Testing                                                                          |
| 4. |     | Training data includes desired outputs                                           |
|    | a.  | Supervised learning                                                              |
|    | b.  | Unsupervised learning                                                            |
| 5. |     | _Training data includes a few desired output                                     |
|    | a.  | Weakly supervised learning                                                       |
|    | b.  | Semi-supervised learning                                                         |
|    | C.  | both                                                                             |
| 6. | The | e goal of Machine Learning is                                                    |
|    | a.  | predict future data                                                              |
|    | b.  | improve their performance of the task                                            |
|    | C.  | both                                                                             |
|    |     |                                                                                  |

|     | a.  | Discrete                                                                                                       |
|-----|-----|----------------------------------------------------------------------------------------------------------------|
|     | b.  | Continuous                                                                                                     |
| 8.  |     | tput y for each input x is the "supervision" that is given to the rning algorithms Can be $easy$ to do (False) |
| 9.  | Spe | eech Recognition is the application of                                                                         |
|     | a.  | Classification                                                                                                 |
|     | b.  | Regression                                                                                                     |
| 10. |     | they should normally be invariant                                                                              |
|     | a.  | Robust                                                                                                         |
|     | b.  | Discriminating                                                                                                 |
|     | C.  | Reliable                                                                                                       |
|     | d.  | Independent                                                                                                    |
| 11. |     | separated and nonoverlapping                                                                                   |
|     | a.  | Robust                                                                                                         |
|     | b.  | Discriminating                                                                                                 |
|     | C.  | Reliable                                                                                                       |
|     | d.  | Independent                                                                                                    |
| 12. |     | _all objects of the same class should have similar values                                                      |
|     | a.  | Robust                                                                                                         |
|     | b.  | Discriminating                                                                                                 |
|     | C.  | Reliable                                                                                                       |
|     | d.  | Independent                                                                                                    |
| 13. |     | is uncorrelated                                                                                                |
|     | a.  | Robust                                                                                                         |
|     | b.  | Discriminating                                                                                                 |

c. Reliable

|     | d.   | Independent                                                                                                 |
|-----|------|-------------------------------------------------------------------------------------------------------------|
| 14. |      | Given some set of features with corresponding labels, learn a function to dict the labels from the features |
|     | a.   | Learning a classifier                                                                                       |
|     | b.   | Testing a classifier                                                                                        |
| 15. |      | is/are Model Class                                                                                          |
|     | a.   | Random Forest                                                                                               |
|     | b.   | Markov nets                                                                                                 |
|     | c.   | Model ensembles                                                                                             |
|     | d.   | AII                                                                                                         |
| 16. | a c  | ore task of computer vision                                                                                 |
|     | a.   | Image Classification                                                                                        |
|     | b.   | Image Regression                                                                                            |
| 17. | Ne   | earest Neighbor Classifier Function is                                                                      |
|     | a.   | train(train_images,train_labels)                                                                            |
|     | b.   | train(train_labels,train_images)                                                                            |
| 18. | trai | n(train_images,train_labels) used to                                                                        |
|     | a.   | remember images                                                                                             |
|     | b.   | predict image                                                                                               |
| 19. |      | _ is a kind of parameter that cannot be directly learned from the regular training cess.                    |
|     | a.   | "higher-level" properties                                                                                   |
|     | b.   | hyperparameters                                                                                             |
|     | C.   | a, b                                                                                                        |

d. Super parameter

$$=\sum_p |I_1^p-I_2^p|$$

20.

| 1  | Man    | hattan | dietan | 0  |
|----|--------|--------|--------|----|
| т. | ıvıaıı | Hallan | นเรเลเ | LC |

- 2. Euclidean distance
- 21. What is the best value of k in the Nearest Neighbor Algorithm?
  - a. 5
  - b. 10
  - c. none of that
- 22. \_\_\_\_ output y has the form of one or more real numbers
  - a. Classification
  - b. Regression
- 23. Weather prediction is the Application for \_\_\_\_\_
  - a. Classification
  - b. Regression
- 24. Density estimation is the Example of \_\_\_\_\_
  - a. Classification
  - b. Regression
- 25. Map each data point to a discrete cluster can be
  - a. flat
  - b. hierarchical
  - c. both a,b
- 26. Dimension reduction used for \_\_\_\_\_
  - a. compression
  - b. visualization

|     | c. noise reduction                                                                                      |
|-----|---------------------------------------------------------------------------------------------------------|
|     | d. All                                                                                                  |
| 27. | in Dimension reduction                                                                                  |
|     | a. target value given                                                                                   |
|     | b. target value not given                                                                               |
| 28. | in Clustering                                                                                           |
|     | a. target value given                                                                                   |
|     | b. target value not given                                                                               |
| 29. | Decompose images or texts into groups of regions or words that often co-occur (topics) is an example of |
|     | a. Supervised Learning                                                                                  |
|     | b. Unsupervised Learning                                                                                |
|     | Object is recognize instance of category                                                                |
|     | a. Categorization                                                                                       |
|     | b. Identification                                                                                       |
| 2.  | exact pixels of the object                                                                              |
|     | a. Object Detection                                                                                     |
|     | b. Object segmentation                                                                                  |
| 3.  | location of the object                                                                                  |
|     | a. Object Detection                                                                                     |
|     | b. Object segmentation                                                                                  |
| 4.  | Construct a good decision boundary                                                                      |
|     | a. Discriminative model                                                                                 |

b. Generative model

| 5.  |      | need a target output                            |
|-----|------|-------------------------------------------------|
|     | a.   | Discriminative model                            |
|     | b.   | Generative model                                |
|     | C.   | both                                            |
| 6.  |      | separately model class conditional , prior      |
|     | a.   | Discriminative model                            |
|     | b.   | Generative model                                |
| 7.  | in N | IMS remove boxes with overlap                   |
|     | a.   | high                                            |
|     | b.   | low                                             |
| 8.  | A h  | olistic description of image content can be     |
|     | a.   | grayscale                                       |
|     | b.   | colored                                         |
|     | C.   | both                                            |
| 9.  |      | _ Feature extraction sensitive to a small shift |
|     | a.   | Pixel-based                                     |
|     | b.   | Gradient-based                                  |
| 10. | Gai  | mma Compression isPerformance Improvement       |
|     | a.   | High                                            |
|     | b.   | small                                           |
| 11. | НО   | G is the example of Feature extraction          |
|     | a.   | Pixel-based                                     |
|     | b.   | Gradient-based                                  |
| 12. | In S | SVM                                             |

 $\mathbf{W}^{\mathrm{T}}\mathbf{X}_{\mathrm{n}} + \mathbf{b} \geq \mathbf{0}$ 

- 1. Positive
- 2. Negative
- 13. **Support Vectors** are the nearest vector to the hyperplane
- 14. if features are, not 2d
  - a. replace the line with a hyperplane
  - b. use nonlinear SVM
  - c. use kernel
  - d. All
- 15. Margin Width =

$$\frac{2}{|w|}$$

16. \_\_\_\_ the equation to maximize margin

$$\Phi(w) = \frac{1}{2}w^t w$$
$$y_i(wx_i + b) \ge 1$$

- 1. minimize
- 2. maximize
- 17. Sliding Window is
  - a. Low Computational Complexity
  - b. High Computational Complexity

## Lecture 3

1. activation function \_\_\_\_\_

|    | a.   | usually nonlinear                                                                           |
|----|------|---------------------------------------------------------------------------------------------|
|    | b.   | usually Linear                                                                              |
| 2. | neu  | ıral network method of determining the weights on the connections called                    |
|    | a.   | training                                                                                    |
|    | b.   | learning                                                                                    |
|    | C.   | algorithm                                                                                   |
|    | d.   | all                                                                                         |
| 3. | rec  | tified linear activation is <b>softplus</b> function, Binary Function is a <b>Heaviside</b> |
| 4. | a sı | mooth approximation to the rectifier is a                                                   |
|    | a.   | Binary step function                                                                        |
|    | b.   | sigmoid activation function                                                                 |
|    | C.   | hyperbolic tangent                                                                          |
|    | d.   | rectified linear activation function                                                        |
| 5. |      | _is always positive function                                                                |
|    | a.   | Binary step function                                                                        |
|    | b.   | sigmoid activation function                                                                 |
|    | c.   | hyperbolic tangent                                                                          |
|    | d.   | rectified linear activation function                                                        |
| 6. | Bin  | ary step function is a                                                                      |
|    | a.   | Heaviside function.                                                                         |
|    | b.   | threshold Function                                                                          |
|    | C.   | both                                                                                        |
| 7. |      | Single-Layer (Feedforward) Networks                                                         |
|    | a.   | output units are not connected to other input units                                         |
|    | b.   | output units are connected to other input units                                             |

8. Example of Recurrent or feedback net

| a  | RI | N | N  |
|----|----|---|----|
| а. | м  | v | IV |

| 9.  | Sof | tmax activation function                                                                                           |
|-----|-----|--------------------------------------------------------------------------------------------------------------------|
|     | a.  | positive                                                                                                           |
|     | b.  | used for multi-class classification                                                                                |
|     | C.  | a,b                                                                                                                |
|     | d.  | Negative                                                                                                           |
| LO. |     | ual cortex is the part of the brain responsible for processing visual information twe get from our retina          |
| 11. | rec | eive information from other neurons through                                                                        |
|     | a.  | dendrites                                                                                                          |
|     | b.  | soma                                                                                                               |
|     | C.  | axon                                                                                                               |
|     | d.  | synapses                                                                                                           |
| L2. |     | is generated at neuron only if it receives enough (over some threshold) of "right" pattern of from other neurons   |
|     | a.  | action potential ,spikes                                                                                           |
|     | b.  | spikes, action potential                                                                                           |
| L3. | the | frequency of the spikes, called                                                                                    |
|     | a.  | action potential                                                                                                   |
|     | b.  | firing rate                                                                                                        |
| L4. |     | pending on the, a neuron can either work to increase (excite) or decrease hibit) the firing rate of another neuron |
|     | a.  | "الكبل اللي بنقل فيه والمستقبلات العصبيه"                                                                          |
|     | b.  | soma , axon                                                                                                        |
| L5. | lik | e a synapse "مين اللي هيخرج من السنابس ؟ اللي واخد اهميه اكبر                                                      |
|     | a.  | weights                                                                                                            |

- 16. activation function and bias like \_\_\_\_\_
  - a. cell body =soma اللي بيعمل بروسيس للحاجه
- 17. activation corresponds to a "sort of" firing rate

#### Lecture 4

- 1. \_\_\_\_\_learning of feature hierarchies representations in each layer of deep learning
  - a. supervised
  - b. unsupervised
  - c. a or b
- 2. Deep learning methods have \_\_\_\_\_
  - a. nonlinear processing units.
  - b. linear processing units.
- 3. features in deep learning extracted \_\_\_\_\_

## Machine Learning



## Deep Learning



- 1. before classification
- 2. with classification

|     | 3.  | after classification                                             |
|-----|-----|------------------------------------------------------------------|
| 4.  | mid | level extract features from low level (true)                     |
| 5.  | Cor | nvolutional Neural Networks are designed to recognizepatterns    |
|     | a.  | visual                                                           |
|     | b.  | handwritten                                                      |
|     | C.  | عشان هو الهدف الاساسي ⇒ "visual لو مافيش الاتنين اختار"both      |
| 6.  | fea | ture map contain hidden units , cover different positions called |
|     | a.  | parameter share                                                  |
|     | b.  | local connectivity                                               |
| 7.  | red | uces the number of hidden units in hidden layer                  |
|     | a.  | parameter share                                                  |
|     | b.  | local connectivity                                               |
|     | C.  | Pooling                                                          |
| 8.  | Mo  | dify the pixels in an image based on some function in            |
|     | a.  | Convolution layer                                                |
|     | b.  | ReLU                                                             |
| 9.  | Rel | _U layer                                                         |
|     | a.  | Non Linear                                                       |
|     | b.  | Linear                                                           |
| 10. |     | is the core building block of a CNN.                             |
|     | a.  | Convolution layer                                                |
|     | b.  | ReLU                                                             |
| 11. |     | Better gradient propagation                                      |
|     | a.  | ReLU                                                             |
|     | b.  | Sigmoid                                                          |
| 12. |     | _ mean of of Sparse activation                                   |

- a. only some of hidden units are activated
- 13. The network is trained by stochastic **gradient descent** 
  - a. **backpropagation**
  - b. forward propagation
- 14. Batch Norm is a normalization technique done \_\_\_\_\_
  - a. between the layers of a Neural Network
  - b. in the raw data

Made by : Reham Hesham 🍃