

Bernd Malle
The Name of the Event (Workshop/Symposium)
06.03.2016

Interactive Machine Learning for improving K-anonymity

b.malle@hci-kdd.org

- 1. What is Machine Learning?
- 2. What is interactive Machine Learning?
- 3. What is k-anonymity?
 - Privacy in the 21st century...?
- 4. Influence on k-anonymity on ML performance
- 5. Can we improve this via iML?
- 6. What is Graphinius?
- 7. Structure of experiments in AK-HCI

Definition by Tom Mitchell:

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

- Algorithm "A" => In real world it's a pipeline
- Task T => Prediction, Clustering, Classification, DimRed
- Performance P => TP, FP, Precision, Recall, F1,
- Experience E => Two general factors:
 - 1. More time
 - More data => better data !!!

Source: Mitchell, T.M., 1997. Machine learning.

interactive Machine Learning Lifecycle

Subset of Data

$$\sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.$$

Update data + learn Heuristics

Sample presented to User

User decides

Which two are more similar?

Data properties => Reduce granularity

Name	Age	Zip	Gender	Disease
Alex	25	41076	Male	Allergies

- Identifiers := immediately reveal identity
 - name, email, phone nr., SSN
 - => DELETE
- Sensitive data
 - medical diagnosis, symptoms, drug intake, income
 - => NECESSARY, KEEP
- Quasi-Identifiers := used in combination to retrieve identity
 - Age, zip, gender, race, profession, education
 - => MAYBE USEFUL
 - => MANIPULATE / GENERALIZE

k-anonymity: for every entry in the DS, there must be at least k-1 identical entries (w.r.t. QI's) => this is 3-anon:

Node	Name	Age	Zip	Gender	Disease
X1	Alex	25	41076	Male	Allergies
X2	Bob	25	41075	Male	Allergies
Х3	Charlie	27	41076	Male	Allergies
X4	Dave	32	41099	Male	Diabetes
X5	Eva	27	41074	Female	Flu
Х6	Dana	36	41099	Female	Gastritis
X7	George	30	41099	Male	Brain Tumor
X8	Lucas	28	41099	Male	Lung Cancer
Х9	Laura	33	41075	Female	Alzheimer

Node	Age	Zip	Gender	Disease
X1	25-27	4107*	Male	Allergies
X2	25-27	4107*	Male	Allergies
Х3	25-27	4107*	Male	Allergies
X4	30-36	41099	*	Diabetes
X5	27-33	410**	*	Flu
Х6	30-36	41099	*	Gastritis
X7	30-36	41099	*	Brain Tumor
X8	27-33	410**	*	Lung Cancer
X9	27-33	410**	*	Alzheimer

Trade-off between:

Data utility => min. information loss

Privacy => max. information loss

Both can be easily achieved (but not together ©)

Node	Name	Age	Zip	Gender	Disease
X1	Alex	25	41076	Male	Allergies
X2	Bob	25	41075	Male	Allergies
Х3	Charlie	27	41076	Male	Allergies
X4	Dave	32	41099	Male	Diabetes
X5	Eva	27	41074	Female	Flu
Х6	Dana	36	41099	Female	Gastritis
X7	George	30	41099	Male	Brain Tumor
X8	Lucas	28	41099	Male	Lung Cancer
Х9	Laura	33	41075	Female	Alzheimer

Node	Age	Zip	Gender	Disease
X1	*	*	*	Allergies
X2	*	*	*	Allergies
Х3	*	*	*	Allergies
X4	*	*	*	Diabetes
X5	*	*	*	Flu
X6	*	*	*	Gastritis
X7	*	*	*	Brain Tumor
X8	*	*	*	Lung Cancer
X9	*	*	*	Alzheimer

TU ML on Anonymization - Results

Holzinger Group

Adapting Weight Vectors 1/2

[51 - 76]	*	North_America	Male	*	Married-civ-spouse
[51 - 76]	*	North_America	Male	*	Married-civ-spouse
[51 - 76]	*	 North_America	Male	*	Married-civ-spouse

57 | Private | United-States | Male | White | Married-civ-spouse

[48 - 70]	Private	America	Male	White	*
[48 - 70]	Private	America	Male	White	*
[48 - 70]	Private	America	Male	White	*

Applying a weight vector to our desired columns will change our cost function and thereby produce different anonymization results:

age	workclass	native-country	sex	race	marital-status
0.1667	0.1667	0.1667	0.1667	0.1667	0.1667

age	workclass	native-country	sex	race	marital-status
0.95	0.01	0.01	0.01	0.01	0.01

- Graph data / social network data, in which
 - nodes represent microdata
 - edges represent their structural context
 - graph data are harder to anonymize
 - It's harder to model the background knowledge of an attacker.
 - It is harder to quantify the information loss of modifications.

- Graphinius JS => Graph library in Typescript (=> JS)
- Graphinius VIS => WebGL-based library

- 1. Write a simple UI in React / Angular (2)
- 2. Include the Graphinius JS library
- 3. Include the Anonymization JS library
- 4. Perform tests according to slide 11;)
- 5. We then compare the results...
- 6. If interesting / hard enough => write a report
- 7. Else => extend to graph-based structures / social networks

Thank you!