Maximum: 36 Punkte

Semesterendprüfung INCO

Zeit: 90 Minuten Die Herleitung der Lösungen muss ersichtlich sein.

Name:			Vorna	me:		Klasse:
1.1:	1.2:	1.3:	2:	3:	Punkte total:	Note:
4:	5:					

Erlaubte Hilfsmittel: INCO-Script, INCO-Übungen, eigene Zusammenfassung. Elektronischer Taschenrechner.

Nicht erlaubt: Elektronische Geräte wie GSM, Smartphones, etc. Einzige erlaubte Ausnahme ist ein Taschenrechner als Einzelgerät. Ebenfalls untersagt sind Bücher.

1. Arithmetik, Zahlensysteme und Boole'sche Funktionen

1. Teilaufgabe:

1+1+1+1+2= 6 Punkte

- (a) Konvertieren Sie 10101010_2 in Dezimalarithmetik und Hexadezimalarithmetik.
- (b) Subtrahieren Sie 03809_{10} von 72546_{10} mit dem 10er Komplement.
- (c) Was sind die Vorteile der Komplement-Arithmetik?
- (d) Konvertieren Sie die folgende 2er Komplement-Zahl in eine Dezimaldarstellung mit Vorzeichen: 11011001
- (e) Konvertieren Sie -57823_{10} in eine Binärzahl mit Vorzeichen und Betrag.
- 2. Teilaufgabe:

1+2+1= 4 Punkte

- (a) Was bedeutet ein gewichteter Kode und was bedeutet ein komplementierender Kode? Geben Sie hierzu jeweils ein Beispiel an.
- (b) Konvertieren Sie die Binärzahl 1100111.1 in eine BCD-Darstellung.
- (c) Konvertieren Sie die Zeichenkette ZHAW mit Hilfe der ASCII-Kodierung.

3. Teilaufgabe:

$$2+1+2 = 5$$
 Punkte

- (a) Gegeben ist die folgende Wahrheitstabelle 1. Bestimmen Sie die zugehörige boolesche Funktion, die aus **Produkten von Summen** besteht. (Produkt: Entspricht AND; Summe: Entspricht OR)
- (b) Stellen Sie eine logische Schaltung dar, welche die in (a) beschriebene boolesche Funktion implementiert.
- (c) Vereinfachen Sie den folgende Funktion:

$$f(A,B,C) = \overline{(\overline{A} + \overline{B} + \overline{C}) * (A + B + \overline{C})}$$

Wahrheitstabelle 1:

Input	Input	Input	Output
C	В	A	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2. Entropie

$$1+2+1+2 = 6$$
 Punkte

Eine Quelle liefert die folgenden binären Symbole:

$0000_{\rm b}$	$P(0000_b) = 0.70$
0001_{b}	$P(0001_b) = 0.15$
$0010_{\rm b}$	$P(0010_b) = 0.05$
$0100_{\rm b}$	$P(0100_b) = 0.04$
$1000_{\rm b}$	$P(1000_b) = 0.04$
1111_{b}	$P(1111_b) = 0.02$

- a) Wie gross ist die Information, wenn das Symbol 0010_b auftritt?
- b) Wie gross ist die Entropie der Quelle?
- c) Wie gross ist die Redundanz der Quelle?
- d) Wenn der Ausgang der Quelle über einen BSC mit $\epsilon > 0$ übertragen wird, hat das Ausgangssignal des BSC dann eine Entropie, die gleich, grösser oder kleiner ist als jene des Eingangssignals? Begründen Sie Ihre Antwort.

3. Huffman

$$2 + 1 + 1 + 1 = 5$$
 Punkte

Wir betrachten nochmals die folgende Quelle mit binären Symbolen:

$0000_{\rm b}$	$P(0000_b) = 0.70$
0001_{b}	$P(0001_b) = 0.15$
0010_{b}	$P(0010_b) = 0.05$
$0100_{\rm b}$	$P(0100_b) = 0.04$
$1000_{\rm b}$	$P(1000_b) = 0.04$
1111_b	$P(1111_b) = 0.02$

- a) Zeichnen Sie den Huffman Baum für diese Quelle und entwickeln Sie den entsprechenden Huffman Code.
- b) Wie gross ist die mittlere Codewortlänge am Ausgang des Huffman Encoders?
- c) Wie kann man zeigen, dass dieser Huffman Code nicht ideal ist? Beschreiben Sie bitte, auf welche Weise man einen besseren Huffman Code entwickeln könnte?
- d) Eignet sich das Huffman Verfahren für die Kanalcodierung? Begründen Sie Ihre Antwort.

4. Lempel-Ziv-Codierung

3 + 1 + 2 = 6 Punkte

Mit der LZ77-Methode ist der folgende ASCII-Text zu komprimieren:

GERBER GERBEN WERBER WERBEN ERBEN WARTEN.

Grösse des Vorschaubuffers: L = 15Grösse des Suchbuffers: S = 15

Gesucht:

a) LZ77-Codierung; Token

- b) Kann eine Kompression erreicht werden? Wie gross ist die Kompressionsrate R?
- c) In einem anderen LZ77-System seien die Buffer wie folgt definiert: L = 31, S = 2047. Wie gross (Anzahl Bits) ist ein LZ77-Token in diesem System?

5. Faltungscode

2+1+1 = 4 Punkte

Gegeben ist das Trellisdiagramm:

Gesucht:

a)	Dazugehöriges vollstän	diges Zustandsdiagramm	(2 P)
aı	Dazugenonges vonstan	uiges Zustanusuiagianini	(21)

b) Zugehöriges Codewort zum Infowort
$$\underline{\mathbf{u}} = [110100]$$
 (1 P)

c) Freie Distanz d_{free} des zugehörigen Faltungscodes. (1 P)