Lisez le sujet jusqu'au bout, puis revenez ici.

Maintenant choisissez un exercice. Lisez-le en entier, assurez-vous de l'avoir compris, si vous avez un doute n'hésitez pas à poser une question. Essayez de répondre d'abord aux parties qui vous paraissent plus simples, n'hésitez pas à sauter un point sur lequel vous bloquez.

Ne répondez pas aux questions par un simple *oui* ou *non*. Argumentez vos réponses, prouvez vos affirmations.

Pas de calculettes. Pas d'ordinateur. Pas de téléphone portable.

Question 1 (3 points)

Effectuer les changements de base suivants

- (a) (1 point) $(10011)_2$ en décimal, $(64 * 19 + 3)_{10}$ en binaire.
- (b) (1 point) $(54321)_{16}$ en binaire, puis en base 8.
- (c) (1 point) $(110111011101, 1101)_2$ en héxadécimal ¹.

Question 2 $(1\frac{1}{2} \text{ points})$

Prouver par induction que pour tout x et tout entier n

$$(-x)^n = \begin{cases} x^n & \text{si } n \text{ est pair,} \\ -x^n & \text{sinon.} \end{cases}$$

Attention: aucun point ne sera attribué à toute réponse qui n'utilise pas l'induction.

Question 3 (4 points)

Prouver par induction les (in)égalités suivantes

- (a) (1 point) $\sum_{i=0}^{n} i(i-1) = \frac{n(n^2-1)}{3}$.
- (b) (1 point) $3^n \le (2n)!$ pour tout $n \ge 2$.
- (c) (2 points) $2^n n \le 3^n$ pour tout $n \ge 0$.

Question 4 $(5\frac{1}{2} \text{ points})$

On fixe un $n \in \mathbb{N}$ quelconque. Soit $H_n = \{0,1\}^n$ l'ensemble des chaînes de bits de longueur n (par exemple 0101 est un élément de H_4).

(a) ($\frac{1}{2}$ point) Combien d'éléments contient H_n ?

Pour chaque $0 < i \le n$ on définit la fonction $\delta_i : H_n \to \{0,1\}$ comme suit

$$\delta_i(x) = \begin{cases} 0 & \text{si le } i\text{-\`eme bit de } x \text{ en partant de la droite est 0,} \\ 1 & \text{sinon.} \end{cases}$$

Par exemple, $\delta_1(1010) = 0$.

(b) (½ point) On fixe n=4. Quelle est la cardinalité de $\delta_i^{-1}(0)$, pour $i=1,\ldots,4$?

^{1.} Oui, la virgule indique bien une partie fractionnaire. Ne vous faites pas impressionner : elle est là pour vous aider.

(c) ($\frac{1}{2}$ point) Pour quelles valeurs de n et i les fonctions δ_i sont-elles injectives? surjectives? bijectives?

Soit \mathcal{R} la relation sur H_n définie par $x\mathcal{R}y$ si et seulement si pour tout $0 < i \leq n$, $\delta_i(y) \geq \delta_i(x)$.

- (d) (1 point) \mathcal{R} est-elle un ordre? Est-elle totale? En donner les preuves, ou montrer des contre-exemples.
- (e) (1 point) Dessiner le diagramme de Hasse de \mathcal{R} pour n=3.
- (f) (2 points) Soit $A = \{1, 2, 3, 4\}$. Définir une bijection entre H_4 et $\mathcal{P}(A)$.

Question 5 (9 points)

Soit $H^* = \{0,1\}^* = \bigcup_{n>0} H_n$ l'ensemble de toutes les chaînes de bits de longueur arbitraire.

(a) (2 points) Quelle est la cardinalité de H? Justifiez votre réponse en exhibant une bijection avec \mathbb{N} .

Pour tout i > 0, on définit la fonction $\delta_i : H \to \{0, 1\}$ qui associe à un mot $x \in H$ la valeur de son i-ème bit en partant de la droite, ou 0 si x a moins de i bits. Par exemple $\delta_1(10) = \delta_5(10) = 0$.

On définit enfin la fonction $w: H \to \mathbb{N}$ qui associe à un mot $x \in H$ son poids de Hamming, c'est à dire son nombre de 1. Par exemple w(01101) = 3.

- (b) $(\frac{1}{2} \text{ point})$ La fonction w est elle injective? surjective? bijective?
- (c) ($\frac{1}{2}$ point) Énumérer les éléments de $w^{-1}(3) \cap w^{-1}(5)$.
- (d) (1 point) Les relations suivantes sont-elles réflexives? symétriques? transitives?
 - 1. xSy si et seulement si $\delta_1(x) = \delta_3(y)$;
 - 2. xUy si et seulement s'il existe un i > 0 tel que $\delta_i(x) = \delta_2(y)$.
 - 3. $x\mathcal{T}y$ si et seulement si w(x) = w(y);

Justifiez vos réponses.

On note \overline{x} la classe d'équivalence de $x \in H$ pour la relation \mathcal{T} donnée au point précédent. Soit $H_n \subset H$ l'ensemble des chaînes de longueur n.

- (e) (1 point) Énumérer les éléments de $\overline{0110} \cap H_n$ pour n=2,3,4.
- (f) (2 points) On note C(n) la cardinalité de $\overline{0110} \cap H_n$. Exprimez C(n) en fonction de C(n-1).
- (g) (2 points) Prouvez par induction que C(n) = n(n-1)/2.