

Portfolio Optimization Using Reinforcement Learning

Project Statement

This project explores the use of reinforcement learning (RL) to dynamically optimize portfolio allocations across 29 diversified stocks, aiming to maximize risk-adjusted returns in an evolving financial environment. By integrating company 10-Q financial statements, news sentiment, and macroeconomic indicators into a comprehensive state representation, the study applies advanced RL algorithms—Deep Q-Network (DQN), Rainbow DQN, and Proximal Policy Optimization (PPO)—to inform quarterly rebalancing decisions.

Data Integration & Framework

- 1. **Financial Fundamentals**: Fundamental ratios were calculated across activity, liquidity, solvency, and profitability dimensions to assess company performance and financial health.
- 2. **Market Sentiments**: News sentiment was extracted using the NYT API and analyzed with FinBERT, generating five sector-level metrics to capture sentiment trends and dynamics.
- 3, **Macroeconomics Context**: Quarterly macroeconomic indicators from FRED via Pandas Datareader offered insights into systematic risk through key economic measures and financial market indicators.
- 4. **Market Performance**: Historical daily return data from WRDS (CRSP) was used to benchmark asset performance, calculate realized volatility, and support risk-adjusted return evaluations.

Methodology

We used three Reinforcement Learning approaches, the agent observes multi-dimensional states, takes actions through portfolio weight adjustments, and receives rewards based on risk-adjusted returns.

- 1. **Deep Q-Network**: Implemented using a 3-layer neural network with experience replay (10,000), epsilon-greedy strategy (ε =1.0 \rightarrow 0.01), and gradient clipping for stability.
- 2. **Rainbow DQN**: Implemented with a dueling architecture (128/64 neurons) for better portfolio allocation, using epsilon-greedy (ϵ =0.1), γ =0.99, experience replay (10,000), and Adam optimizer over 300 episodes.
- 3. **Proximal Policy Optimization(PPO)**: Implemented continuous action space for portfolio weights, with rewards based on fundamental outperformance, sentiment momentum, and macroeconomic alignment.

Results

We implemented all three models and PPO outperformed other two in terms of stability, risk adjustment, and more realistic estimation.

1. **Sharpe Ratio Comparison:** The RL model achieved a higher Sharpe ratio (1.35) than both even-weighted and mean-variance portfolios (1.03), with lower variability.

2. **Portfolio Performance:** The PPO model delivered strong performance, with an average Sharpe ratio of **1.07**, annualized return of **45%**, and mean cumulative return of **2.40**. Risk was well-managed with a **-0.10** max drawdown and validated by high risk-adjusted metrics like the Calmar (**14.2**) and Sortino (**0.18**) ratios.

	Total_Return	Sharpe_Ratio	Max_Drawdown	Win_Rate	Calmar_Ratio	Sortino_Ratio
mean	0.027218	1.072408	-0.103060	0.537140	14.204583	0.184566
std	0.119506	3.393978	0.074330	0.101476	35.070635	0.446076
min	-0.326579	-8.884033	-0.345137	0.292683	-4.133912	-0.714463
max	0.398749	10.591986	-0.008627	0.731707	249.147783	1.985231

3. Contribution of Factors: Fundamental ratios drove 70% of portfolio performance, with economic indicators (20%) and sentiment momentum (10%) complementing short- and long-term market alignment.

4. **Dynamic Rebalancing Impact:** It improved risk-adjusted returns, boosting the Sharpe Ratio by **31.2%** over static benchmarks through adaptive asset allocation.

5. PPO Model - Cumulative Returns Performance:

Discussion

PPO's conservative optimization strategy of making small gradient-based changes aligns perfectly with investment principles that prioritize stability and risk management. Other model's strength and weaknesses were:

DQN

Strength: Simple and fast to implement with basic reinforcement learning components like experience replay and Q-function approximation. Weakness: Produced unrealistic returns and stable allocations under volatile markets, indicating overfitting and potential data leakage.

Rainbow DQN

Strength: Achieved high Sharpe ratio and robust performance using advanced techniques like distributional Q-learning and Noisy Nets. Weakness: Computationally intensive with occasional instability in late episodes and sensitivity to extreme market conditions.