Probability and Stochastic Process II: Random Matrix Theory and Applications Lecture 1: Introduction

Zhenyu Liao, Tiebin Mi, Caiming Qiu

School of Electronic Information and Communications (EIC) Huazhong University of Science and Technology (HUST)

March 1, 2023

Outline

Sample Covariance

RMT for Telecom

RMT for SP

RMT for ML

» Big Data era: exploit large n, p, N

- » counterintuitive phenomena different from classical asymptotics statistics
- » complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- » Random Matrix Theory (RMT) provides the tools!

- **» Big Data era**: exploit large n, p, N
- » counterintuitive phenomena different from classical asymptotics statistics
- » complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- » Random Matrix Theory (RMT) provides the tools!

- **» Big Data era**: exploit large n, p, N
- » counterintuitive phenomena different from classical asymptotics statistics
- » complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- » Random Matrix Theory (RMT) provides the tools!

- **» Big Data era**: exploit large n, p, N
- » counterintuitive phenomena different from classical asymptotics statistics
- » complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- » Random Matrix Theory (RMT) provides the tools!

Outline

Sample Covariance

RMT for Telecon

RMT for SF

RMT for ML

- **» Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- » Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \neq 0$$
, $n, p \to \infty$ \Rightarrow eigenvalue mismatch and not consistent!

- **» Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- » Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbb{C}}]_{ij} \to [\mathbb{C}]_{ij}$$

» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\to 0$$
, $n, p \to \infty$ \Rightarrow eigenvalue mismatch and not consistent!

- **» Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- » Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\to 0$$
, $n, p \to \infty$ \Rightarrow eigenvalue mismatch and not consistent!

- **» Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- » Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\to 0$$
, $n, p \to \infty$ \Rightarrow eigenvalue mismatch and not consistent!

- **» Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- » Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\to 0, \quad n, p \to \infty$$
 \Rightarrow eigenvalue mismatch and not consistent!

- **» Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_1, \dots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- » Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \neq 0, \quad n, p \to \infty$$
 \Rightarrow eigenvalue mismatch and not consistent!

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$. Close match

- » eigenvalues span on $[E_- = (1-\sqrt{\mathbf{c}})^2, E_+ = (1+\sqrt{\mathbf{c}})^2].$
- » for n=100p, on a range of $\pm 2\sqrt{c}=\pm 0.2$ around the population eigenvalue 1.

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$. Close match

- » eigenvalues span on $[E_{-} = (1 \sqrt{c})^2, E_{+} = (1 + \sqrt{c})^2]$.
- » for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$. Close match!

- » eigenvalues span on $[E_{-} = (1 \sqrt{c})^2, E_{+} = (1 + \sqrt{c})^2]$.
- » for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$. Close match!

- » eigenvalues span on $[E_{-} = (1 \sqrt{c})^2, E_{+} = (1 + \sqrt{c})^2]$.
- » for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - \mathbf{E}_{-})^{+} (\mathbf{E}_{+} - x)^{+}} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$. Close match!

- » eigenvalues span on $[E_- = (1-\sqrt{\mathbf{c}})^2, E_+ = (1+\sqrt{\mathbf{c}})^2]$.
- » for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

$$\mu(dx) = (1 - c^{-1})^{+} \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_{-})^{+} (E_{+} - x)^{+}} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^{+} \equiv \max(x, 0)$. Close match!

- » eigenvalues span on $[E_- = (1-\sqrt{\mathbf{c}})^2, E_+ = (1+\sqrt{\mathbf{c}})^2]$.
- » for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o signal processing: generalized likelihood ratio test (GLKI)
 - o machine learning: principle component analysis (PCA), kernel spectral clustering

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o signal processing: generalized likelihood ratio test (GLKT)
 - o machine learning: principle component analysis (PCA), kernel spectral clustering

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o signal processing: generalized likelihood ratio test (GLKI)
 - machine learning: principle component analysis (PCA), kernel spectral clustering

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o **signal processing**: generalized likelihood ratio test (GLRT)
 - o machine learning: principle component analysis (PCA), kernel spectral clustering

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o **signal processing**: generalized likelihood ratio test (GLRT)
 - o machine learning: principle component analysis (PCA), kernel spectral clustering

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o $\,$ signal processing: generalized likelihood ratio test (GLRT)
 - o machine learning: principle component analysis (PCA), kernel spectral clustering

- » large-n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must **fail** even with n = 100p!
- » RMT as a flexible and powerful tool to understand and recreate these methods
- » in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- » in the remainder, how RMT can be applied to assess
 - o telecommunication: code division multiple access (CDMA) technology
 - o **signal processing**: generalized likelihood ratio test (GLRT)
 - o machine learning: principle component analysis (PCA), kernel spectral clustering

Outline

Sample Covariance

RMT for Telecom

RMT for SF

RMT for ML

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal
 - o so that all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonalio codes not fully orthogonal, more users served, more interference and then less
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal o each user is allocated a (long) spreading code orthogonal to the other users' codes o so that all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonalit o codes not fully orthogonal, more users served, more interference and then less
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal
 - o each user is allocated a (long) **spreading code** orthogonal to the other users' code
 - amount of interference from concurrent communications, due to code orthogonality
 - quality of service; but at no time is a user rejected for lack of available resource
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal
 - o each user is allocated a (long) **spreading code** orthogonal to the other users' codes
 - amount of interference from concurrent communications, due to code orthogonality o codes not fully orthogonal, more users served, more interference and then less
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal
 - o each user is allocated a (long) **spreading code** orthogonal to the other users' codes
 - o so that all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonality
 - o codes not fully orthogonal, more users served, more interference and then less quality of service; but at no time is a user rejected for lack of available resource
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal
 - o each user is allocated a (long) **spreading code** orthogonal to the other users' codes
 - o so that all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonality
 - o codes not fully orthogonal, more users served, more interference and then less quality of service; but at no time is a user rejected for lack of available resource
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

- » CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively allocated an exclusive amount of time to exchange data with the APs
- **» major issue**: at the same time a very **strict** maximal number of users could be accepted by a given AP, *regardless* of the users' requests in terms of quality of service
- » CDMA: to increase the max number of users, and to dynamically balancing the quality of service offered to each terminal
 - o each user is allocated a (long) **spreading code** orthogonal to the other users' codes
 - o so that all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonality
 - o codes not fully orthogonal, more users served, more interference and then less quality of service; but at no time is a user rejected for lack of available resource
- **» Question**: how to evaluate the **capacity** (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

Orthogonal CDMA versus TDMA

For **orthogonal** CDMA, assume:

- » frequency flat channel conditions for all users; and
- » channel stability over a large number of successive symbol periods; then the rates achieved in the up-link are maximal when the orthogonal codes are as long as the number of users *n*, with system capacity given by

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{W} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{W}^{\mathsf{H}} \right), \tag{1}$$

with noise power σ^2 , $\mathbf{W} \in \mathbb{C}^{n \times n}$ the **orthogonal** CDMA codes (**W** unitary), and $\mathbf{G} \equiv \operatorname{diag}\{g_i\}_{i=1}^n$ represents channel **gains** of the users. Note that

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{G} \mathbf{G}^{\mathsf{H}} \right) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \frac{|g_i|^2}{\sigma^2} \right) = C_{\text{TDMA}}(\sigma^2). \tag{2}$$

This justifies the equivalence between TDMA and orthogonal CDMA rate performance.

Orthogonal CDMA versus TDMA

For **orthogonal** CDMA, assume:

- » frequency flat channel conditions for all users; and
- » channel stability over a large number of successive symbol periods; then the rates achieved in the up-link are maximal when the orthogonal codes are as long as the number of users n, with system capacity given by

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{W} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{W}^{\mathsf{H}} \right), \tag{1}$$

with noise power σ^2 , $\mathbf{W} \in \mathbb{C}^{n \times n}$ the **orthogonal** CDMA codes (**W** unitary), and $\mathbf{G} \equiv \operatorname{diag}\{g_i\}_{i=1}^n$ represents channel **gains** of the users. Note that

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{G} \mathbf{G}^{\mathsf{H}} \right) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \frac{|g_i|^2}{\sigma^2} \right) = C_{\text{TDMA}}(\sigma^2). \tag{2}$$

This justifies the equivalence between TDMA and orthogonal CDMA rate performance.

Orthogonal CDMA versus TDMA

For **orthogonal** CDMA, assume:

- » frequency flat channel conditions for all users; and
- » channel stability over a large number of successive symbol periods;

then the rates achieved in the up-link are maximal when the orthogonal codes are as long as the number of users n, with system capacity given by

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{W} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{W}^{\mathsf{H}} \right), \tag{1}$$

with noise power σ^2 , $\mathbf{W} \in \mathbb{C}^{n \times n}$ the **orthogonal** CDMA codes (**W** unitary), and $\mathbf{G} \equiv \operatorname{diag}\{g_i\}_{i=1}^n$ represents channel **gains** of the users. Note that

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{G} \mathbf{G}^{\mathsf{H}} \right) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \frac{|g_i|^2}{\sigma^2} \right) = C_{\text{TDMA}}(\sigma^2). \tag{2}$$

This justifies the equivalence between TDMA and orthogonal CDMA rate performance.

Orthogonal CDMA versus TDMA

For **orthogonal** CDMA, assume:

- » frequency flat channel conditions for all users; and
- » channel stability over a large number of successive symbol periods; then the rates achieved in the up-link are maximal when the orthogonal codes are as long as the number of users n, with system capacity given by

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{W} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{W}^{\mathsf{H}} \right), \tag{1}$$

with noise power σ^2 , $\mathbf{W} \in \mathbb{C}^{n \times n}$ the **orthogonal** CDMA codes (**W** unitary), and $\mathbf{G} \equiv \operatorname{diag}\{g_i\}_{i=1}^n$ represents channel **gains** of the users. Note that

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{G} \mathbf{G}^{\mathsf{H}} \right) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \frac{|g_i|^2}{\sigma^2} \right) = C_{\text{TDMA}}(\sigma^2). \tag{2}$$

This justifies the equivalence between TDMA and orthogonal CDMA rate performance.

Orthogonal CDMA versus TDMA

For **orthogonal** CDMA, assume:

- » frequency flat channel conditions for all users; and
- \gg channel stability over a large number of successive symbol periods; then the rates achieved in the up-link are maximal when the orthogonal codes are as long as the number of users n, with system capacity given by

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{W} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{W}^{\mathsf{H}} \right), \tag{1}$$

with noise power σ^2 , $\mathbf{W} \in \mathbb{C}^{n \times n}$ the **orthogonal** CDMA codes (**W** unitary), and $\mathbf{G} \equiv \operatorname{diag}\{g_i\}_{i=1}^n$ represents channel **gains** of the users. Note that

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{G} \mathbf{G}^{\mathsf{H}} \right) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \frac{|g_i|^2}{\sigma^2} \right) = C_{\text{TDMA}}(\sigma^2). \tag{2}$$

This justifies the equivalence between TDMA and orthogonal CDMA rate performance.

When it comes to (pseudo-)random CDMA with (random i.i.d. codes), under the same conditions, we have

$$C_{\text{rand}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{X} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{X}^{\mathsf{H}} \right),$$
 (3)

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- » (first?) answered by Shami, Tse, and Verdú in [5, 6];
- » however capacity expressions not realistically achievable in practice, due to complicated and nonlinear processing algorithms;
- » if only linear pre-coders and/or decoders are used, optimal solution:
 - o Tse and Hanly in [4] for frequency flat channels;
 - o Evans and Tse in [2] for frequency selective channels
 - o Li and Verdú [3] for reduced-rank LMMSE decoders, etc

When it comes to (pseudo-)random CDMA with (random i.i.d. codes), under the same conditions, we have

$$C_{\text{rand}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{X} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{X}^{\mathsf{H}} \right),$$
 (3)

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- » (first?) answered by Shami, Tse, and Verdú in [5, 6];
- » however capacity expressions not realistically achievable in practice, due to complicated and nonlinear processing algorithms;
- » if only linear pre-coders and/or decoders are used, optimal solution:
 - o Tse and Hanly in [4] for frequency flat channels;
 - o Evans and Tse in [2] for frequency selective channels
 - o Li and Verdú [3] for reduced-rank LMMSE decoders, etc

When it comes to (pseudo-)random CDMA with (random i.i.d. codes), under the same conditions, we have

$$C_{\text{rand}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{X} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{X}^{\mathsf{H}} \right),$$
 (3)

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- » (first?) answered by Shami, Tse, and Verdú in [5, 6];
- » however capacity expressions not realistically achievable in practice, due to complicated and nonlinear processing algorithms;
- » if only linear pre-coders and/or decoders are used, optimal solution:
 - o Tse and Hanly in [4] for frequency flat channels;
 - o Evans and Tse in [2] for frequency selective channels
 - o Li and Verdú [3] for reduced-rank LMMSE decoders, etc

When it comes to (pseudo-)random CDMA with (random i.i.d. codes), under the same conditions, we have

$$C_{\text{rand}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{X} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{X}^{\mathsf{H}} \right),$$
 (3)

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- » (first?) answered by Shami, Tse, and Verdú in [5, 6];
- » however capacity expressions not realistically achievable in practice, due to complicated and nonlinear processing algorithms;
- » if only linear pre-coders and/or decoders are used, optimal solution:
 - o Tse and Hanly in [4] for frequency flat channels;
 - o Evans and Tse in [2] for frequency selective channels;
 - o Li and Verdú [3] for reduced-rank LMMSE decoders, etc.

When it comes to (pseudo-)random CDMA with (random i.i.d. codes), under the same conditions, we have

$$C_{\text{rand}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{X} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{X}^{\mathsf{H}} \right),$$
 (3)

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- » (first?) answered by Shami, Tse, and Verdú in [5, 6];
- » however capacity expressions not realistically achievable in practice, due to complicated and nonlinear processing algorithms;
- » if only linear pre-coders and/or decoders are used, optimal solution:
 - o Tse and Hanly in [4] for frequency flat channels;
 - o Evans and Tse in [2] for frequency selective channels;
 - o Li and Verdú [3] for reduced-rank LMMSE decoders, etc.

Outline

Sample Covariance

RMT for Telecom

RMT for SP

RMT for ML

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need frequency multiplexing
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- » can help reuse the resources in a licensed (first) networks
- » but require constant awareness of the operations taking place in the licensed networks
- » for example, via signal sensing/detection

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need **frequency multiplexing**
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- can help reuse the resources in a licensed (first) network
- » but require constant **awareness** of the operations taking place in the licensed networks
- » for example, via signal sensing/detection

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need **frequency multiplexing**
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- » can help reuse the resources in a licensed (first) network
- » but require constant awareness of the operations taking place in the licensed networks
- * for example, via signal sensing/detection

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need **frequency multiplexing**
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- » can help reuse the resources in a licensed (first) network
- » but require constant **awareness** of the operations taking place in the licensed networks
- » for example, via signal sensing/detection

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need **frequency multiplexing**
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- » can help reuse the resources in a licensed (*first*) network
- » but require constant awareness of the operations taking place in the licensed networks
- » for example, via signal sensing/detection

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need **frequency multiplexing**
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- » can help reuse the resources in a licensed (*first*) network
- » but require constant **awareness** of the operations taking place in the licensed networks
- » for example, via signal sensing/detection

Motivation:

- » Shannon made us realize that, to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- » high rate communications with finite power budget, need frequency multiplexing
- » cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

- » can help reuse the resources in a licensed (*first*) network
- » but require constant awareness of the operations taking place in the licensed networks
- » for example, via signal sensing/detection

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_i \in \mathbb{R}^p$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$\mathbf{X} = \left\{ egin{array}{ll} \sigma \mathbf{Z}, & \mathcal{H}_0 \ \mathbf{a} \mathbf{s}^\mathsf{T} + \sigma \mathbf{Z}, & \mathcal{H}_1 \end{array}
ight.$$

where $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$, $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{a} \in \mathbb{R}^p$ deterministic of unit norm $\|\mathbf{a}\| = 1$, signal $\mathbf{s} = [s_1, \dots, s_n]^\mathsf{T} \in \mathbb{R}^n$ with s_i i.i.d. random, and $\sigma > 0$. Denote c = p/n > 0.

- » observation of either zero-mean Gaussian noise σz_i of power σ^2 , or deterministic information vector a modulated by an added scalar (random) signal s_i (e.g., ± 1).
- » If **a**, σ , and statistics of s_i are known, the decision-optimal Neyman-Pearson () test:

$$\frac{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_1)}{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_0)} \underset{\mathcal{H}_0}{\gtrless} \alpha \tag{4}$$

for some $\alpha > 0$ controlling the Type I and II error rates

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_i \in \mathbb{R}^p$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$\mathbf{X} = \left\{ egin{array}{ll} \sigma \mathbf{Z}, & \mathcal{H}_0 \ \mathbf{a} \mathbf{s}^\mathsf{T} + \sigma \mathbf{Z}, & \mathcal{H}_1 \end{array}
ight.$$

where $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$, $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{a} \in \mathbb{R}^p$ deterministic of unit norm $\|\mathbf{a}\| = 1$, signal $\mathbf{s} = [s_1, \dots, s_n]^\mathsf{T} \in \mathbb{R}^n$ with s_i i.i.d. random, and $\sigma > 0$. Denote c = p/n > 0.

- » observation of either zero-mean Gaussian **noise** $\sigma \mathbf{z}_i$ of power σ^2 , or deterministic **information** vector **a** modulated by an added scalar (random) **signal** s_i (e.g., ± 1).
- » If a, σ , and statistics of s_i are known, the decision-optimal Neyman-Pearson () test:

$$\frac{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_1)}{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} \alpha \tag{4}$$

for some $\alpha > 0$ controlling the Type I and II error rates

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_i \in \mathbb{R}^p$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$\mathbf{X} = \left\{ egin{array}{ll} \sigma \mathbf{Z}, & \mathcal{H}_0 \ \mathbf{a} \mathbf{s}^\mathsf{T} + \sigma \mathbf{Z}, & \mathcal{H}_1 \end{array}
ight.$$

where $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$, $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{a} \in \mathbb{R}^p$ deterministic of unit norm $\|\mathbf{a}\| = 1$, signal $\mathbf{s} = [s_1, \dots, s_n]^\mathsf{T} \in \mathbb{R}^n$ with s_i i.i.d. random, and $\sigma > 0$. Denote c = p/n > 0.

- » observation of either zero-mean Gaussian **noise** $\sigma \mathbf{z}_i$ of power σ^2 , or deterministic **information** vector **a** modulated by an added scalar (random) **signal** s_i (e.g., ± 1).
- **»** If **a**, σ , and statistics of s_i are known, the decision-optimal Neyman-Pearson () test:

$$\frac{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_1)}{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} \alpha \tag{4}$$

for some $\alpha > 0$ controlling the Type I and II error rates.

Hypothesis testing via GLRT

However.

- » in practice, we do not know σ , nor the information vector $\mathbf{a} \in \mathbb{R}^p$ (to be recovered)
- » in the case of a fully unknown, one may resort to a generalized likelihood ratio test

$$\frac{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_1)}{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \alpha.$$

» Gaussian noise and signal s_i, GLRT has an explicit expression as a monotonous increasing function of $\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|/\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})$, test equivalent to, for some known f,

$$T_p \equiv \frac{\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|}{\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} f(\alpha).$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{2}XX^{T}$

However,

- \Rightarrow in practice, we do not know σ , nor the information vector $\mathbf{a} \in \mathbb{R}^p$ (to be recovered)
- » in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$\frac{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_1)}{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \alpha.$$

» Gaussian noise and signal s_i , GLRT has an explicit expression as a monotonous increasing function of $\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|/\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})$, test equivalent to, for some known f,

$$T_p \equiv \frac{\|\mathbf{X}\mathbf{X}^\mathsf{T}\|}{\operatorname{tr}(\mathbf{X}\mathbf{X}^\mathsf{T})} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} f(\alpha).$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{4}XX^{T}$

However,

- **»** in practice, we do not know σ , nor the information vector $\mathbf{a} \in \mathbb{R}^p$ (to be recovered)
- » in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$\frac{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_1)}{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \alpha.$$

» Gaussian noise and signal s_i , GLRT has an explicit expression as a monotonous increasing function of $\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|/\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})$, test equivalent to, for some known f,

$$T_p \equiv \frac{\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|}{\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} f(\alpha).$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{4}XX^{T}$

Hypothesis testing via GLRT

However,

- \Rightarrow in practice, we do not know σ , nor the information vector $\mathbf{a} \in \mathbb{R}^p$ (to be recovered)
- » in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$\frac{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_1)}{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \alpha.$$

» Gaussian noise and signal s_i , GLRT has an explicit expression as a monotonous increasing function of $\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|/\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})$, test equivalent to, for some known f,

$$T_p \equiv \frac{\|\mathbf{X}\mathbf{X}^\mathsf{T}\|}{\operatorname{tr}(\mathbf{X}\mathbf{X}^\mathsf{T})} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} f(\alpha).$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{4}XX^{T}$

Hypothesis testing via GLRT

However,

- » in practice, we do not know σ , nor the information vector $\mathbf{a} \in \mathbb{R}^p$ (to be recovered)
- » in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$\frac{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_1)}{\sup_{\sigma,\mathbf{a}} \mathbb{P}(\mathbf{X} \mid \sigma, \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \alpha.$$

» Gaussian noise and signal s_i , GLRT has an explicit expression as a monotonous increasing function of $\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|/\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})$, test equivalent to, for some known f,

$$T_p \equiv \frac{\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|}{\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\geqslant}} f(\alpha).$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n}XX^{T}$

Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of r > 0 for large n, p, according to RMT, one must choose a threshold $f(\alpha)$ for T_p :

$$\mathbb{P}(T_p \ge f(\alpha)) = r \Leftrightarrow \mu_{\text{TW}_1}((-\infty, A_p]) = r, \quad A_p = (f(\alpha) - (1 + \sqrt{c})^2)(1 + \sqrt{c})^{-\frac{4}{3}}c^{\frac{1}{6}}n^{\frac{2}{3}} \quad (5)$$
 with μ_{TW_1} the Tracy-Widom distribution in RMT.

Figure: Comparison between empirical false alarm rates and $\text{TW}_1(\widehat{A_p})$ for A_p of the form in (5), as a function of the threshold $f(\alpha) \in [(1+\sqrt{c})^2-5n^{-2/3},(1+\sqrt{c})^2+5n^{-2/3}]$, for p=256, n=1 024 and $\sigma=1$.

Outline

Sample Covariance

RMT for Telecom

RMT for SF

RMT for ML

"Curse of dimensionality": loss of relevance of Euclidean distance

» Binary Gaussian mixture classification $\mathbf{x} \in \mathbb{R}^p$:

$$C_1: \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1), \text{ versus } C_2: \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2);$$

» Neyman-Pearson test: classification is possible only when [a]

$$\|\mu_1 - \mu_2\| \ge C_{\mu}$$
, or $\|C_1 - C_2\| \ge C_C \cdot p^{-1/2}$

for some constants C_{μ} , $C_{\rm C} > 0$.

» In this non-trivial setting, for x_i ∈ C_a , x_j ∈ C_b :

$$\max_{1 \le i \ne j \le n} \left\{ \frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 - \frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ} \right\} \xrightarrow{a.s.} 0$$

as $n, p \to \infty$ (i.e., $n \sim p$), for $\mathbb{C}^{\circ} \equiv \frac{1}{2}(\mathbb{C}_1 + \mathbb{C}_2)$, regardless of the classes $\mathcal{C}_a, \mathcal{C}_b$!

"Curse of dimensionality": loss of relevance of Euclidean distance

» Binary Gaussian mixture classification \mathbf{x} ∈ \mathbb{R}^p :

$$C_1 : \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1), \text{ versus } C_2 : \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2);$$

» Neyman-Pearson test: classification is possible only when^[a]

$$\|\mu_1 - \mu_2\| \ge C_{\mu}$$
, or $\|\mathbf{C}_1 - \mathbf{C}_2\| \ge C_{\mathbf{C}} \cdot p^{-1/2}$

for some constants C_{μ} , $C_{\mathbf{C}} > 0$.

» In this non-trivial setting, for x_i ∈ C_a , x_j ∈ C_b :

$$\max_{1 \le i \ne j \le n} \left\{ \frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 - \frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ} \right\} \xrightarrow{a.s.} 0$$

as $n, p \to \infty$ (i.e., $n \sim p$), for $\mathbb{C}^{\circ} \equiv \frac{1}{2}(\mathbb{C}_1 + \mathbb{C}_2)$, regardless of the classes $\mathcal{C}_a, \mathcal{C}_b$!

"Curse of dimensionality": loss of relevance of Euclidean distance

» Binary Gaussian mixture classification \mathbf{x} ∈ \mathbb{R}^p :

$$C_1 : \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1), \text{ versus } C_2 : \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2);$$

» Neyman-Pearson test: classification is possible only when[a]

$$\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\| \ge C_{\boldsymbol{\mu}}, \text{ or } \|\mathbf{C}_1 - \mathbf{C}_2\| \ge C_{\mathbf{C}} \cdot p^{-1/2}$$

for some constants C_{μ} , $C_{\rm C} > 0$.

≫ In this non-trivial setting, for $\mathbf{x}_i \in \mathcal{C}_a, \mathbf{x}_j \in \mathcal{C}_b$:

$$\max_{1 \le i \ne j \le n} \left\{ \frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 - \frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ} \right\} \xrightarrow{a.s.} 0$$

as $n, p \to \infty$ (i.e., $n \sim p$), for $\mathbb{C}^{\circ} \equiv \frac{1}{2}(\mathbb{C}_1 + \mathbb{C}_2)$, regardless of the classes $\mathcal{C}_a, \mathcal{C}_b$!

Loss of relevance of Euclidean distance: visual representation

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

Loss of relevance of Euclidean distance: visual representation

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

Two-step classification of *n* data points with distance kernel $\mathbf{K} \equiv \{f(\|\mathbf{x}_i - \mathbf{x}_i\|^2/p)\}_{i,i=1}^n$:

Two-step classification of n data points with distance kernel $\mathbf{K} \equiv \{f(\|\mathbf{x}_i - \mathbf{x}_j\|^2/p)\}_{i,j=1}^n$:

 $\Downarrow K$ -dimensional representation \Downarrow

Eig. 1

1

EM or k-means clustering

EM or k-means clustering

EM or k-means clustering

(a)
$$n = 5$$
, $n = 500$

(b)
$$p = 250, n = 500$$

$$\mathbf{v}_2 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix}$$

$$\mathbf{v}_2 = \lceil \mathbf{v}_{\mathbf{w}} \mathbf{v}_$$

$$(a) n - 5 n - 500$$

(b)
$$p = 250, n = 500$$

(a)
$$v = 5$$
, $n = 500$

(b)
$$p = 250, n = 500$$

$$\mathbf{K} = egin{bmatrix} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_1 \ \mathcal{C}_2 \ \mathcal{C}_2$$

$$\mathbf{v}_2 = \left[rac{\partial \mathcal{W}_{1} \partial \mathcal{W}_{2} \partial \mathcal{W}_{1}}{\partial \mathcal{W}_{2}}
ight] + \left[rac{\partial \mathcal{W}_{1} \partial \mathcal{W}_{2}}{\partial \mathcal{W}_{2}}
ight] + \left[rac{\partial \mathcal{W}_{2} \partial \mathcal{W}_{2}}{\partial \mathcal{W}_{2}}
ight] + \left[\frac{\partial \mathcal{W}_{2} \partial \mathcal{W}_{2}$$

(a)
$$v = 5$$
, $n = 500$

(b)
$$p = 250, n = 500$$

$$\mathbf{K} = egin{bmatrix} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_1 \ \mathcal{C}_2 \ \mathcal{C}_2$$

$$\mathbf{K} = egin{bmatrix} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_1 \ \mathcal{C}_2 \ \mathcal{C}_2$$

$$\mathbf{v}_2 = \lceil \frac{\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 + \mathbf{v}_4$$

(a)
$$v = 5$$
, $n = 500$

(b)
$$v = 250, n = 500$$

$$\mathbf{K} = egin{bmatrix} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_1 \ \mathcal{C}_2 \ \end{pmatrix}$$

$$\mathbf{v}_2 = \lceil \sqrt{\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4 \mathbf$$

$$\mathbf{v}_2 = \left[rac{\partial \mathbf{v}_1 \partial \mathbf{v}_2 \partial \mathbf{v}_3 \partial \mathbf{v}_4 \partial \mathbf{v}_4 \partial \mathbf{v}_4 \partial \mathbf{v}_4 \partial \mathbf{v}_5 \partial \mathbf{v}_4 \partial \mathbf{v}_5 \partial$$

Kernel matrices for large dimensional real-world data

 $\mathbf{v}_2 = \left[\begin{array}{c} \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 + \mathbf{$

(b) Fashion-MNIST

Sandal

 $\mathbf{K} =$

Kernel matrices for large dimensional real-world data

(a) MNIST

$$\mathbf{v}_2 = [$$
 unique production \mathbf{v}_1 and \mathbf{v}_2 and \mathbf{v}_3 and \mathbf{v}_4 and

(b) Fashion-MNIST

Ankle boot

» "local" linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix $\mathbf{K}_{ij} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2p)$ with $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{I}_p$ (e.g., $\mathcal{C}_1 : \mathbf{x}_i = \boldsymbol{\mu}_1 + \mathbf{z}_i$ versus $\mathcal{C}_2 : \mathbf{x}_j = \boldsymbol{\mu}_2 + \mathbf{z}_j$) so that

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 / p \xrightarrow{a.s.} 2$$
, and $\mathbf{K} = \exp\left(-\frac{2}{2}\right) \left(\mathbf{1}_n \mathbf{1}_n^\mathsf{T} + \frac{1}{p} \mathbf{Z}^\mathsf{T} \mathbf{Z}\right) + g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \frac{1}{p} \mathbf{j} \mathbf{j}^\mathsf{T} + * + o_{\|\cdot\|}(1)$

with Gaussian $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$ and class-information $\mathbf{j} = [\mathbf{1}_{n/2}; -\mathbf{1}_{n/2}]$,

» accumulated effect of small "hidden" statistical information ($\|\mu_1 - \mu_2\|$ in this case)

» "local" linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix $\mathbf{K}_{ii} = \exp(-\|\mathbf{x}_i - \mathbf{x}_i\|^2/2p)$ with $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{I}_p$ (e.g., $\mathcal{C}_1 : \mathbf{x}_i = \boldsymbol{\mu}_1 + \mathbf{z}_i$ versus C_2 : $\mathbf{x}_i = \boldsymbol{\mu}_2 + \mathbf{z}_i$) so that

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 / p \xrightarrow{a.s.} 2$$
, and $\mathbf{K} = \exp\left(-\frac{2}{2}\right) \left(\mathbf{1}_n \mathbf{1}_n^\mathsf{T} + \frac{1}{p} \mathbf{Z}^\mathsf{T} \mathbf{Z}\right) + g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \frac{1}{p} \mathbf{j} \mathbf{j}^\mathsf{T} + * + o_{\|\cdot\|}(1)$

with Gaussian $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$ and class-information $\mathbf{j} = [\mathbf{1}_{n/2}; -\mathbf{1}_{n/2}]$,

» accumulated effect of small "hidden" statistical information ($\|\mu_1 - \mu_2\|$ in this case)

Therefore

» entry-wise

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j}}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\mu_{1} - \mu_{2}\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\mu_{1} - \mu_{2}\|) \ll \frac{1}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j},$$

» spectrum-wise

○
$$\|\mathbf{K} - \exp(-1)\mathbf{1}_n\mathbf{1}_n^\top\| \neq 0$$
;
○ $\|\frac{1}{p}\mathbf{Z}^\top\mathbf{Z}\| = O(1)$ and $\|g(\|\mu_1 - \mu_2\|)\frac{1}{p}\mathbf{j}^\top\| = O(1)$!

» Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}} - \mathbf{C}]_{ij} \to 0 \not\Rightarrow \|\hat{\mathbf{C}} - \mathbf{C}\| \to 0!$

⇒ With **RMT**, we understand kernel spectral clustering for large dimensional data!

Therefore

» entry-wise:

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j}}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|) \ll \frac{1}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j},$$

- **» Same** phenomenon as the sample covariance example: $[\hat{\mathbf{C}} \mathbf{C}]_{ii} \to 0 \Rightarrow \|\hat{\mathbf{C}} \mathbf{C}\| \to 0$!

Therefore

» entry-wise:

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j}}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|) \ll \frac{1}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j},$$

» spectrum-wise:

ο
$$\|\mathbf{K} - \exp(-1)\mathbf{1}_n\mathbf{1}_n^{\mathsf{T}}\| \neq 0;$$

ο $\|\frac{1}{p}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\| = O(1)$ and $\|g(\|\mu_1 - \mu_2\|)\frac{1}{p}\mathbf{j}\mathbf{j}^{\mathsf{T}}\| = O(1)!$

» Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}} - \mathbf{C}]_{ij} \to 0 \not\Rightarrow \|\hat{\mathbf{C}} - \mathbf{C}\| \to 0!$

⇒ With **RMT**, we understand kernel spectral clustering for large dimensional data!

Therefore

» entry-wise:

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_i^\mathsf{T}\mathbf{z}_j}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \ll \frac{1}{p}\mathbf{z}_i^\mathsf{T}\mathbf{z}_j,$$

» spectrum-wise:

o
$$\|\mathbf{K} - \exp(-1)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}\| \not\to 0;$$

o $\|\frac{1}{p}\mathbb{Z}^{\mathsf{T}}\mathbb{Z}\| = O(1)$ and $\|g(\|\mu_{1} - \mu_{2}\|)\frac{1}{p}\mathbf{j}\mathbf{j}^{\mathsf{T}}\| = O(1)!$

» Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}} - \mathbf{C}]_{ij} \to 0 \not\Rightarrow \|\hat{\mathbf{C}} - \mathbf{C}\| \to 0!$

⇒ With **RMT**, we understand kernel spectral clustering for large dimensional data!

Therefore

» entry-wise:

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_i^\mathsf{T}\mathbf{z}_j}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \ll \frac{1}{p}\mathbf{z}_i^\mathsf{T}\mathbf{z}_j,$$

» spectrum-wise:

$$\overline{\circ \|\mathbf{K} - \exp(-1)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}\| \not\to 0;}
\circ \|\frac{1}{p}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\| = O(1) \text{ and } \|g(\|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|)\frac{1}{p}\mathbf{j}\mathbf{j}^{\mathsf{T}}\| = O(1)!$$

- **» Same** phenomenon as the sample covariance example: $[\hat{\mathbf{C}} \mathbf{C}]_{ij} \to 0 \not\Rightarrow \|\hat{\mathbf{C}} \mathbf{C}\| \to 0!$
 - ⇒ With **RMT**, we understand kernel spectral clustering for large dimensional data!

Therefore

» entry-wise:

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_i^{\mathsf{T}}\mathbf{z}_j}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \ll \frac{1}{p}\mathbf{z}_i^{\mathsf{T}}\mathbf{z}_j,$$

» spectrum-wise:

$$\begin{array}{l}
\bullet \parallel \mathbf{K} - \exp(-1)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}} \parallel \not\to 0; \\
\bullet \parallel \frac{1}{n}\mathbf{Z}^{\mathsf{T}}\mathbf{Z} \parallel = O(1) \text{ and } \parallel g(\parallel \mu_{1} - \mu_{2} \parallel) \frac{1}{n}\mathbf{j}\mathbf{j}^{\mathsf{T}} \parallel = O(1)!
\end{array}$$

» Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}} - \mathbf{C}]_{ij} \to 0 \not\Rightarrow \|\hat{\mathbf{C}} - \mathbf{C}\| \to 0!$

⇒ With **RMT**, we understand kernel spectral clustering for large dimensional data!

Therefore

» entry-wise:

$$\mathbf{K}_{ij} = \exp(-1)\left(1 + \underbrace{\frac{1}{p}\mathbf{z}_i^\mathsf{T}\mathbf{z}_j}_{O(p^{-1/2})}\right) \pm \underbrace{\frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p}g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \ll \frac{1}{p}\mathbf{z}_i^\mathsf{T}\mathbf{z}_j,$$

- » spectrum-wise:
 - $\overline{\circ \|\mathbf{K} \exp(-1)\mathbf{1}_n\mathbf{1}_n^{\mathsf{T}}\|} \not\to 0;$
 - o $\|\frac{1}{p}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\| = O(1)$ and $\|g(\|\mu_1 \mu_2\|)\frac{1}{p}\mathbf{j}\mathbf{j}^{\mathsf{T}}\| = O(1)!$
- **» Same** phenomenon as the sample covariance example: $[\hat{\mathbf{C}} \mathbf{C}]_{ij} \to 0 \not\Rightarrow \|\hat{\mathbf{C}} \mathbf{C}\| \to 0!$
 - ⇒ With **RMT**, we understand kernel spectral clustering for large dimensional data!

Some more numerical results

Some more numerical results

- Find more information in the monograph "Random Matrix Methods for Machine Learning" with Cambridge University Press
- with online book draft https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
- with online code https://github.com/Zhenyu-LIAO/RMT4ML!
- » and exercise solution https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf

- Find more information in the monograph "Random Matrix Methods for Machine Learning" with Cambridge University Press
- with online book draft https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
- with online code https://github.com/Zhenyu-LIAO/RMT4ML
- » and exercise solution https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf

- Find more information in the monograph "Random Matrix Methods for Machine Learning" with Cambridge University Press
- with online book draft https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
- » with online code https://github.com/Zhenyu-LIAO/RMT4ML!
- » and exercise solution https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf

- Find more information in the monograph "Random Matrix Methods for Machine Learning" with Cambridge University Press
- with online book draft https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
- with online code https://github.com/Zhenyu-LIAO/RMT4ML!
- » and exercise solution https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf

- Find more information in the monograph "Random Matrix Methods for Machine Learning" with Cambridge University Press
- with online book draft https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
- with online code https://github.com/Zhenyu-LIAO/RMT4ML!
- » and exercise solution https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf

- 1] Romain Couillet, Zhenyu Liao and Xiaoyi Mai. "Classification asymptotics in the random matrix regime". In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875–1879.
- [2] J. Evans and D.N.C. Tse. "Large system performance of linear multiuser receivers in multipath fading channels". In: *IEEE Transactions on Information Theory* 46.6 (2000), 2059–2078. DOI: 10.1109/18.868478.
- [3] Linbo Li, Antonia M. Tulino and Sergio Verdú. "Design of Reduced-Rank MMSE Multiuser Detectors Using Random Matrix Methods". In: *IEEE Transactions on Information Theory* 50.6 (2004), 986–1008. ISSN: 0018-9448. DOI: 10.1109/tit.2004.828076.
- 10.1109/tit.2004.828076.
 [4] D.N.C. Tse and S.V. Hanly. "Linear multiuser receivers: effective interference, effective bandwidth and user capacity". In: *IEEE Transactions on Information Theory*
- 45.2 (1999), 641–657. ISSN: 0018-9448. DOI: 10.1109/18.749008.
 [5] D.N.C. Tse and S. Verdú. "Optimum asymptotic multiuser efficiency of randomly spread CDMA". In: *IEEE Transactions on Information Theory* 46.7 (2000), 2718–2722.