Analyse I – Série 9

Echauffement 1. (V/F: Continuité sur un intervalle)

Soient I un intervalle, $f: I \to \mathbb{R}$ une fonction continue et f(I) l'image de I par f.

- Q1: f(I) est un intervalle.
- Q2: Si I est borné et fermé, alors f(I) est borné et fermé.
- Q3: Si I est borné, alors f(I) est borné.
- Q4: Si I est ouvert, alors f(I) est ouvert.
- Q5: Si I = [a, b[avec $a, b \in \mathbb{R}, a < b,$ alors f atteint soit son minimum soit son maximum sur I.
- Q6: Si $I = [a, \infty[$ avec $a \in \mathbb{R}$, alors f atteint soit son minimum soit son maximum sur I.
- Q7: Si f est strictement croissante et I est ouvert, alors f(I) est ouvert.

Exercice 1. (Continuité à gauche et droite)

Soient $\alpha, \beta \in \mathbb{R}$ et soit la fonction $f: [0, \infty) \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3x^2 - 10x + 3}{x^2 - 2x - 3}, & x > 3\\ \alpha, & x = 3\\ \beta x - 4, & x < 3 \end{cases}$$

Etudier la continuité de f en $x_0 = 3$ pour les paires de paramètres (α, β) données ci-dessous.

- $i) (1, \frac{1}{2})$
- $(1,\frac{5}{3})$
- iii) $\left(2,\frac{5}{3}\right)$
- iv) (1,2)
- v) (2,2)

Exercice 2. (Théorème de la valeur intermédiaire)

Montrer que les équations suivantes admettent des solutions:

$$i) e^{x-1} = x+1$$

$$ii) \quad x^2 - \frac{1}{x} = 1$$

Exercice 3. (Algorithme de bissection)

En appliquant l'algorithme de bissection, localiser une solution de l'équation

$$x^3 + x - 1 = 0$$

dans un intervalle de longueur $L \leq \frac{1}{8}$.

Echauffement 2. (Propriétés de la dérivée)

Soit $f \colon \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que

- i) f paire \Rightarrow f' impaire,
- ii) f impaire \Rightarrow f' paire,
- iii) f périodique \Rightarrow f' périodique.

Exercice 4. (Calcul de dérivées)

En partant de la définition, calculer la dérivée f' de la fonction f.

$$i)$$
 $f(x) = \sin(2x)$

$$ii)$$
 $f(x) = \cos(2x)$

Exercice 5. (Dérivabilité)

Déterminer $\alpha, \beta \in \mathbb{R}$ tels que la fonction $f: \mathbb{R} \to \mathbb{R}$ soit dérivable partout, où:

$$f(x) = \begin{cases} x^2 - x + 3, & x \le 1\\ \alpha x + \beta, & x > 1 \end{cases}$$

Exercice 6. (Calcul de dérivées)

Calculer la dérivée f' de la fonction f et donner les domaines de f et f'.

$$i) \quad f(x) = \frac{5x+2}{3x^2-1}$$

i)
$$f(x) = \frac{5x+2}{3x^2-1}$$
 ii) $f(x) = \frac{x^2}{\sqrt{1-x^2}}$

$$iii) f(x) = \sin(x)^2 \cdot \cos(x^2)$$

Exercice 7. (Dérivées d'ordre supérieur)

Dans les trois cas suivants, calculer $f^{(n)}$ la dérivée d'ordre n de la fonction f:

$$i)$$
 $f(x) = x^m$ $(m \in \mathbb{Z})$

$$ii) \quad f(x) = \sin(2x) + 2\cos(x)$$

$$iii)$$
 $f(x) = \text{Log}(x)$

Exercice 8. (Dérivée d'une composée de fonctions)

Calculer $(g \circ f)'(0)$ pour les fonctions f et g données par

i)
$$f(x) = 2x + 3 + (e^x - 1)\sin(x)^7\cos(x)^4$$
 et $g(x) = \text{Log}(x)^3$.

$$g(x) = Log(x)^3$$

ii)
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) + 2x, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 et $g(x) = (x-1)^4$.

$$g(x) = (x-1)^4.$$

Exercice 9. (Dérivation en chaîne)

Calculer la dérivée f' de la fonction f et donner les domaines de f et f'.

$$i)$$
 $f(x) = tg(x)$ (sans formulaire!)

$$ii)$$
 $f(x) = \sqrt{\sin(\sqrt{\sin(x)})}$

iii)
$$f(x) = \sqrt[5]{(2x^4 + e^{-(4x+3)})^3}$$

$$iv)$$
 $f(x) = \text{Log}_3(\text{ch}(x))$

$$v) f(x) = \operatorname{Log}(4^{\sin(x)})e^{\cos(4x)}$$

Exercice 10. (V/F: Dérivation)

Soient $f, g: \mathbb{R} \to \mathbb{R}$ des fonctions.

Q1: Si f est dérivable en $a \in \mathbb{R}$, alors il existe $\delta > 0$ tel que f est continue sur $|a - \delta, a + \delta|$.

2

Q2: Si f est dérivable à gauche et à droite en $a \in \mathbb{R}$, alors f est dérivable en a.

Q3: Si f est dérivable sur \mathbb{R} , alors $g(x) = \sqrt{f^2(x)}$ est dérivable sur \mathbb{R} .

Q4: Si $f(x) = x^2 - 2x$, alors $(f \circ f)'(1) = 0$.