Digital Logic Design

Boolean Expression Standard Forms:

Product of Sum

The Product-of-Sums (POS) Form

- When two or more sum terms are multiplied, the resulting expression is a Product-of-Sums (POS).
- Some examples are: $(\overline{A} + B)(A + \overline{B} + C)$

$$(\overline{A} + B)(A + \overline{B} + C)$$

$$(\overline{A} + \overline{B} + \overline{C})(C + \overline{D} + E)(\overline{B} + C + D)$$

$$(A + B)(A + \overline{B} + C)(\overline{A} + C)$$

- In a POS expression, a single overbar cannot extend over more than one variable; however, more than one variable in a term can have an overbar.
- For example,

POS expression can have the term $\overline{A} + \overline{B} + \overline{C}$ but not $\overline{A + B + C}$.

Implementation of a POS Expression

 A POS expression can be implemented by logic in which the outputs of a number (equal to the number of sum terms in the expression) of OR gates connect to the inputs of an AND gate.

NOR/NOR Implementation of an POS Expression

The Standard Product of Sum (POS) Form

The Standard POS Form

- A standard POS expression is one in which all the variables in the domain appear in each sum term in the expression.
- For example,

$$(\overline{A}+\overline{B}+\overline{C}+\overline{D})(A+\overline{B}+C+D)(A+B+\overline{C}+D)$$

- Each sum term in a POS expression that does not contain all the variables in the domain can be expanded to standard form to include all variables in the domain and their complements.
- A nonstandard POS expression is converted into standard form using Boolean algebra rule 8 (A · A = 0) and 12 (A + B)(A + C) = A + BC

$$= (\underline{A} + \overline{B} + C + D) \cdot (\underline$$

$$= (\underline{A} + \overline{B} + C + D) \cdot (\underline$$

POS Expression to Truth Table Format

Binary Representation of a Standard Sum Term

- A POS expression is equal to 0 only if one or more of the sum terms in the expression is equal to 0.
- Remember, a sum term is implemented with an OR gate whose output is 0 only if each of its inputs is 0.
- Inverters are used to produce the complements of the variables as required.
- For Example;

$$A + \overline{B} + C + \overline{D} = 0 + \overline{1} + 0 + \overline{1} = 0 + 0 + 0 + 0 = 0$$

Converting POS Expressions to Truth Table Format

- A POS expression is equal to 0 only if at least one of the sum terms is equal to 0.
- To construct a truth table from a POS expression, list all the possible combinations of binary values of the variables just as was done for the SOP expression.
- Finally, place a 0 in the output column (X) for each binary value that makes the expression a 0 and place a 1 for all the remaining binary values.

Converting POS Expressions to Truth Table Format

EXAMPLE 4-21

Determine the truth table for the following standard POS expression:

$$(A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$$

$$(O \cup O)(O \cup$$

Α	В	С	Output X
0	0	0	0
0	0	1	١
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	O
1	1	0	0
1	1	1	t

4

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

1	-		-	11	1		
1 1		1	0	11	10	1	10
	1	1	0	1	10	. 1	10
1	•						

	A	В	С	D	Output X
0)	0	0	0	
()	0	0	1	
()	0	1	0	
()	0	1	1	
()	1	0	0	D
()	1	0	1	0
()	1	1	0	0
()	1	1	1	
	1	0	0	0	
Г	1	0	0	1	
1	1	0	1	0	
1	1	0	1	1	
1	1	1	0	0	
Г	1	1	0	1	0
1	1	1	1	0	
1	1	1	1	1	

$$(A+\overline{B}+C)(\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

Α	В	С	D	Output X
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	D
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Determining Standard POS Expressions from a Truth Table

- To determine the standard POS expression represented by a truth table,
- 1. list the binary values for which the output is 0.
- Convert each binary value to the corresponding sum term by replacing each 1 with the corresponding variable complement and each 0 with the corresponding variable.

From the truth table in Table 4-8, determine the standard POS expression.

Inputs			Output	CT
A	B	\boldsymbol{c}	X	101
0	0	0	0	A+B+=
0	0	1	0	A+B+2
0		0	0	A+13+c
0	1	1	1	
1	0	0	1	
1	0	1	0	A+B+c
1	1	0	- 1	
1	1	1	1	1

Converting SOP to POS

Converting Standard SOP to Standard POS

- Step 1: Evaluate each product term in the SOP expression. That is, determine the binary numbers that represent the product terms.
- Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.
- Step 3: Write the equivalent sum term for each binary number from Step 2 and express in POS form.
- Using a similar procedure, you can go from POS to SOP.

Convert the following SOP expression to an equivalent POS expression:

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$X = (A+B+Z)(A+B+C)$$

 $(A+B+C)$

Α	В	С	Sum Term
0	0	0	
0	0	1	A+B+C
0	1	0-	
0	1	1	
1	0	0	A+B+C
1	0	1	
1	1	0	A+B+C
1_	1	1	

Converting POS to SOP Form

Converting Standard POS to Standard SOP

- Step 1: Evaluate each sum term in the POS expression. That is, determine the binary numbers that represent the sum terms.
- Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.
- Step 3: Write the equivalent product term for each binary number from Step 2 and express in SOP form.
- Using a similar procedure, you can go from SOP to POS.

Consider the following POS expression, convert it into an equivalent SOP expression.

Α	В	С	Product Term
0	0	0	
0	0	1	ABC
0	1	0	ĀBZ
0	1	1	
1_	0	0	
1	0	1	
1	1	0	ABZ
1	1	1	