l ^	$/\$ or $\$ land	and, conjunction
^		
V	\/ or \lor	or, disjunction
	or \lnot or \neg	not
\in	\in	in
, ∉ ,	\notin	not in
$\langle x, y \rangle$	<< x, y>>	a tuple containing some x, y
< ≤ ≪	<	less than
\leq	$\leq <$	less than or equal
«	\ll	much less?
=	$<=>$ or \setminus equiv	is equivalent to
>	>	greater
\geq	$\gcd or >=$	greater or equal
>>	\gg	much greater?
$ $ \prec	\prec	precedes
\preceq	\preceq	precedes or equals
>	\succ	succeeds
≥	\succeq	succeeds or equals
	\subset	subset
\subseteq	\subseteq	subset or equal
	\sqsubset	bag subset/is a refinement?
	\sqsubseteq	bag subset or equal/is a refinement or equal?
	-	B can be derived from A?
$[S \to T]$	[S -> T]	set of functions
\rightarrow	->	step
\cap	\cap or \intersect	intersection
П	\sqcap	
\oplus	(+) or \oplus	bag union
Θ	(-) or \ominus	bag difference
\odot	(.) or \odot	
\otimes	(X) \otimes	Cartesian product
0	(/) or \oslash	F
Ē	\E	existential quantification (there exists)
∃!	\exists!	there exists exactly one
3	\EE	temporal existential quantification, 'hiding'
f[e]	f[e]	function application
$[A]_v$	[A]_v	action operator, 'square A sub v', A happens or v is unchanged, $[A \ \ \ \]$, allows stuttering
WF_v	WF_v	weak fairness variables
SF_v^v	SF_v	strong fairness variables
	\supseteq	superset
⊇	\supset	superset
	\sqsupset	bag superset
□□⊤	\sqsupseteq	bag superset or equal
= =		bag superset of equal
	- =	models/satisfies a temporal formula
=	'	substitution
\ \ \	<- \cup or \union	union
		union
	\sqcup \uplus	
₩ >	• -	multiply
×	\X or \times	multiply
}	\wr	propagitional comething?
\propto	\propto	propositional something?

1 \		1 (10 (11)
\forall	\A	universal quantification (for all)
V	\AA	temporal universal quantification
$\langle A \rangle_v$	< <a>>_v =>	action operator, 'angle A sub v', A happens and v changes, [A /\ v' \# v] implies
$\stackrel{\Rightarrow}{\stackrel{\Delta}{=}}$	==	is equivalent
_ ≠	 \neq or #	not equal
	\ <u>*</u> "	always in the future/henceforth
\Diamond		sometime(s) in the future/eventually
nm	<>	integer interval, n to m inclusive (Naturals module)
$\begin{bmatrix} n & m \\ x \end{bmatrix}$	n m	operator of arity 2
SUBSETS	x SUBSET S	set of all subsets of S
$CHOOSEx \in S: p$	CHOOSE x \in S : p	Choose x such that x is in S, and p is TRUE
\sim		leads to
$E \xrightarrow{+} M$	>	
	-+->	E guarantees M: M remains true at least one step longer than E does
$ \begin{vmatrix} [h_1 > e_1,, h_n \mapsto e_n] \\ [x \in S ->e] \end{vmatrix} $	$[h_{-1} \mid -> e_{-1},, h_{-n} \mid -> e_{-n}]$	function/record constructor function constructor
$[x \in S ->e]$ $[h_1:S_1,,h_n:S_n]$	$[x \setminus in S \mid -> e]$	set of records
$[n_1: \mathfrak{I}_1,, n_n: \mathfrak{I}_n]$	[h1: s1,, hn: sn]	
	-1	empty set set
$ \begin{array}{c} e_1, \dots, e_n \\ x \in S : p \end{array} $	e1,, en	
$\begin{array}{c c} x \in S : p \\ e : x \in S \end{array}$	x \in S : p	set constructor
	e: x \in S	set constructor
$\begin{array}{c c} \div & & \\ A \cdot B & & \end{array}$	\div	integer division composition of actions, executing A then B as one step
	A \cdot B	
0	\o or \circ	concatenate sequences
	\doteq	
*	\star	
0	\bigcirc	stuttering equivalent
~ ×	\sim	stuttering equivalent
(≈	\asymp	
~ ≅	\approx	
_ <u>≐</u>	\cong	
$\begin{bmatrix} - \\ x^y \end{bmatrix}$	\doteq	exponentiation
,	x^y	prime
~	\sim	stuttering equivalent
	\sim !	new record (in EXCEPT expression)
· (i)	@	previous record field value (in EXCEPT expression)
:>	:>	One key-value mapping in a function (TLC module)
@@	./ @@	Function composition (TLC module)
α	\alpha	alpha
β	\beta	beta
γ	\gamma	gamma
Γ	\Gamma	Gamma
δ	\delta	delta
Δ	\Delta	Delta
ϵ	\epsilon	epsilon
ε	\varepsilon	variant epsilon
ζ	\zeta	zeta
η	\eta	eta
θ	\theta	theta
1	,	

ϑ	\vartheta	variant theta
Θ	$\$ Theta	Theta
ι	\iota	iota
κ	\kappa	kappa
λ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	lambda
Λ	Λ	Lambda
μ	$\mbox{\ensuremath{nu}}$	mu
ν	\nu	nu
0	О	omicron
π	\pi	pi
Π	\Pi	Pi
ρ	$\$	rho
ϱ	\varrho	variant rho
$rac{arrho}{\sigma}$	\sigma	sigma
ς	\varsigma	variant sigma
$rac{\Sigma}{ au}$	\Sigma	Sigma
	\tau	tau
v	\upsilon	upsilon
Υ	\Upsilon	Upsilon
ϕ	\phi	phi
φ	\varphi	variant phi
Φ	$\backslash \mathrm{Phi}$	Phi
χ	\chi	chi
ψ	\psi	psi
Ψ	\Psi	Psi
ω	\omega	omega
Ω	\Omega	Omega
∂	\partial	partial