Assignment 2: Evaluation and Decision Trees

In this assignment, we'll look at different ways of splitting data for training and testing, assessing the predictions made by data mining tools, and then explore classification using decision trees. Like Assignment 1, you will be expected to complete the assignment by answering the questions in Markdown cells and supporting your answer with corresponding code cells.

Please submit your solution as two iPython notebooks (for Part 1 and Part 2) and two PDF files (for Part 1 and Part 2) generated from your iPython notebook that show all code execution results. The due date for this assignment is officially 1/27/16 at 11:59pm, but this may be extended based on the feedback I receive on the eCommons survey about projects and course pace, so keep an eye out for that survey.

Part 1: Cross-validation and Evaluation Metrics (40 points)

Let's start by checking out the dataset evaluation tools availble in scikit-learn. The crossvalidation (http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation) documentation will be helpful to review before completing this part of the assignment. We'll work with two datasets, one generated and one real dataset, and then look at different ways of splitting that data into train and test sets, as well as computing evaluation metrics on each of the datasets.

```
In [45]: ## Preliminaries
```

```
#Show plots in the notebook
%matplotlib inline
```

from sklearn import datasets, preprocessing, cross_validation, metrics, from scipy import stats

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import urllib2

```
In [46]: # Let's get our first dataset, the Iris data that's the default choise f
    iris = datasets.load_iris()

# Let's also generate some data. See http://scikit-learn.org/stable/modu
    (gendata_d, gendata_t) = datasets.make_classification(n_samples=500, ran
        gendata_data = pd.DataFrame(gendata_d)
        gendata_targets = pd.DataFrame(gendata_t)
```

```
In [47]: # We'll start with the simplest holdout procedure: a single train-test s
[iris_train_data, iris_test_data, iris_train_labels, iris_test_labels]

# Some notes on how this works:

## There are four outputs. The first is the dataframe containing the tra

## The second output is the dataframe containing the testing data (attri

## are the training labels (used to train your classifier) and the testi

## The first two arguments to the split are all the data (attributes onl

## Since we're randomly sampling data, there's a chance every student wo

## To avoid this, we pass a random_state (20160121) to make sure the "r

#Let's see how big the train and test sets are:

print iris_train_data.shape, iris_test_data.shape, iris_train_labels.sha
```

```
(112, 4) (38, 4) (112,) (38,)
```

Question 1: Creating a simple train-test split (5 points)

Use the train_test_split function (see the <u>documentation (http://scikit-learn.org/stable/modules/generated/sklearn.cross validation.train test split.html#sklearn.cross validation.train test split.html#sklearn.cro</u>

- 1. Generate splits with 10%, 33%, and 50% test data for both datasets (using random_state: parameter)
- 2. Compute the percentage of the training labels and testing labels that belong to each class fo the distribution of labels appear to be well-matched between the train and test set?
- 3. Compute the descriptive statistics for each feature in the train and test set for the 10% split. the biggest difference in mean value across datasets.

Question 1 Answers

- 1. see code below
- 2. For the IRIS dataset the distribution of the labels appears to be well-matched for the 10% and 50% split, but unbalanced for the 33% split

For the RAND Dataset the distribution of the labels does not appear to be as closely matched as the IRIS dataset. While the values are relatively close to each other, the test labels distribution does not match the train set label distribution

3. For the IRIS data set the biggest difference in mean value is the 3rd feature petal width: 1.2074 -> 1.12

For the RAND dataset the biggest difference in mean value is in attribue 8 : 0.018226 -> -0.30529

See cell below for better formatting

2. ----- IRIS DATASET -----Train data split 10%: 0: 45 / 135 = 33.33% 1: 45 / 135 = 33.33% 2: 45 / 135 = 33.33% Test data split 10%: 0: 5 / 15 = 33.33% 1: 5 / 15 = 33.33% 2: 5 / 15 = 33.33% Train data split 33%: 0: 32 / 100 = 32.0% 1: 34 / 100 = 34.0% 2: 34 / 100 = 34.0% Test data split 33%: 0: 18 / 50 = 36.0% 1: 16 / 50 = 32.0% 2: 16 / 50 = 32.0% Train data split 50%: 0: 25 / 75 = 33.33% 1: 25 / 75 = 33.33% 2: 25 / 75 = 33.33% Test data split 50%: 0: 25 / 75 = 33.33% 1: 25 / 75 = 33.33% 2: 25 / 75 = 33.33% ---- RAND DATASET -----Train data split 10%: 0: 226 / 450 = 50.22% 1: 224 / 450 = 49.78% Test data split 10%: 0: 23 / 50 = 46.0% 1: 27 / 50 = 54.0% Train data split 33%: 0: 171 / 335 = 51.04% 1: 164 / 335 = 48.96% Test data split 33%: 0: 87 / 165 = 52.73% 1: 78 / 165 = 47.27% Train data split 50%: 0: 129 / 250 = 51.6% 1: 121 / 250 = 48.4% Test data split 50%: 0: 120 / 250 = 49.2%

3. Compute the descriptive statistics for each feature in the train

1: 130 / 250 = 50.8%

and test set for the 10% split. Which feature has the biggest difference in mean value across datasets.

For the IRIS data set the biggest difference in mean value is the 3rd feature petal width: $1.2074 \rightarrow 1.12$

For the RAND dataset the biggest difference in mean value is in attribue $8:0.018226 \rightarrow -0.30529$

In [48]:

```
# Iris CV
[iris_train_data_10, iris_test_data_10, iris_train_labels_10, iris_test
[iris_train_data_33, iris_test_data_33, iris_train_labels_33, iris_test
[iris_train_data_50, iris_test_data_50, iris_train_labels_50, iris_test
# Gendata CV
[gendata_train_data_10, gendata_test_data_10, gendata_train_labels_10,
[gendata_train_data_33, gendata_test_data_33, gendata_train_labels_33,
[gendata_train_data_50, gendata_test_data_50, gendata_train_labels_50,
```

```
gendata 50
0
     129
     121
1
Name: 0, dtype: int64
     120
     130
Name: 0, dtype: int64
iris 33
     32
     34
1
     34
Name: 0, dtype: int64
     18
1
     16
2
     16
Name: 0, dtype: int64
gendata_10
     226
     224
Name: 0, dtype: int64
0
     23
     27
Name: 0, dtype: int64
iris 10
     45
1
     45
     45
Name: 0, dtype: int64
     5
1
     5
Name: 0, dtype: int64
iris 50
     25
     25
1
     25
Name: 0, dtype: int64
     25
1
     25
     25
Name: 0, dtype: int64
gendata_33
0
     171
```

1 164

Name: 0, dtype: int64

0 78 1 87

Name: 0, dtype: int64

```
In [50]: print iris_train_data_10.describe()
    print iris_test_data_10.describe()

    print gendata_train_data_10.describe()
    print gendata_test_data_10.describe()
```

	0	1	2	3		
count	-		135.000000			
			3.766667			
std			1.776295			
	4.300000		1.000000			
			1.600000			
			4.400000			
			5.100000			
max	7.900000		6.900000			
	0			3		
count			15.000000 15			
			3.686667			
			1.710834			
			1.400000			
			1.550000			
50%	5.800000	3.100000	4.100000	1.000000		
			5.000000			
			5.900000 2			
111021	0	1	2	3	4	
5 \	O	1	2	3	7	
-	450,000000	450.000000	450.000000	450.000000	450.000000	4
50.000		130.000000	130.000000	130.00000	130.000000	•
		-0.007781	0.013634	0.016649	0.093196	
0.0455		0.007701	0.013034	0.010049	0.003100	
		1.001806	0.962817	1.008849	1.039005	
0.9970		1.001000	0.702017	1.000047	1.037003	
		2 433603	2 6/7790	-2.518441	3 2231/10	
-2.725		-2.433003	-2.04//09	-2.510441	-3.223140	
		-0.739336	0 605542	-0.666526	-0.635592	
-0.627		-0.739336	-0.603343	-0.000320	-0.033392	
		0 072722	0 020220	0.024608	0 112445	
0.1050		-0.072732	0.020326	0.024606	0.113443	
		0 540756	0 641002	0 702521	0 740250	
	0.719686	0.548756	0.641902	0.702521	0.748359	
0.7239		2 020572	2 002052	2 (10250	2 712410	
		3.0395/2	3.003953	2.619359	2./12419	
3.4329	93					
		7	0	0	1.0	
11 \	6	7	8	9	10	
11 \	450 000000	450 00000	450 000000	450 000000	450 000000	4
		450.000000	450.000000	450.000000	450.000000	4
50.000		0 010070	0.010006	0 007054	0.010060	
		-0.012272	0.018226	-0.007054	0.010869	
-0.076		0.005060	1 010554	1 010000	1 164510	
		0.997360	1.012774	1.010068	1.164/12	
0.9551						
		-2.736625	-2.807253	-2.690036	-3.315302	
-3.102						
		-0.691724	-0.649506	-0.781671	-0.836271	
-0.712						
		0.015647	-0.005171	0.009211	0.078181	
-0.084					<u>.</u>	
		0.633550	0.706345	0.701114	1.038988	
0.6299		_	_		_	
max	3.023143	2.654571	3.080764	3.135951	2.544278	

2.664877

	12	13		14	15	16
17 \ count		450.000000	450.0000	000 450.00	0000 450.0	00000 4
50.000 mean	000 0.014286	-0.013744	0.1116	35 -0.00	1662 -0.0	10041
-0.050 std	198 0.989100	1.230692	0.9495	34 0 . 94	8191 1.0	16657
0.9913 min	63 -3.109823	-3.210675	-3.2395	524 –2.67	5548 -3.0	68310
-2.883 25%		-0.998816	-0.5120)89 – 0.66	4533 -0.7	71602
-0.746	687 -0.032929	-0.127085	0.1345	519 0.05	1188 -0.0	12593
-0.007	451	1.013260				79608
0.6178	35					
max 3.2640	2.706916 62	3.303948	3.4460	198 2.03	0985 3.0	94925
count	18 450.000000	19 450.000000				
mean	0.022037	0.053671				
std	1.045171	1.017259				
min	-3.389571	-3.110583				
25%	-0.647093	-0.602597				
50%	0.056958	0.051361				
75%	0.726783	0.670130				
max	2.811399	3.498259				
	0	1	2	3	4	
5 \	· ·	_	_		-	
count	50.000000	50.000000	50.000000	50.000000	50.00000	50.000
mean 421	0.132358	0.219547	-0.181742	0.144902	-0.108895	0.005
std 938	1.084205	1.043357	0.781276	1.108929	1.050024	1.036
min 130	-1.815645	-1.615432	-1.849257	-2.530270	-2.137125	-2.966
25% 189	-0.598300	-0.469860	-0.738886	-0.589564	-0.787458	-0.524
50% 448	0.035678	0.111592	-0.088987	0.311619	-0.221786	-0.038
75%	1.017673	0.753362	0.423989	0.893433	0.562336	0.811
786 max 230	2.247138	3.012955	1.041469	2.479612	2.307088	1.835
	6	7	8	9	10	
11 \ count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000 mean	-0.291133	-0.143091	-0.305290	0.092221	-0.213771	-0.003

974						
std	1.128013	1.092923	1.038049	1.048631	1.188927	0.979
900 min	-2.798720	-2.295046	-3.060349	-3.021813	-3.265268	-2.235
046 25%	-0.959467	-0.811699	-1.045868	-0.512540	-0.802693	-0.696
424 50%	-0.551110	-0.280232	-0.382899	0.011575	-0.105014	-0.127
539 75%	0.556449	0.413665	0.467908	0.580116	0.673023	0.626
365 max 330	2.639439	2.731177	1.666533	2.726222	1.730126	2.144
	12	13	14	15	16	
17 \ count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000 mean	-0.299245	0.070258	0.259905	-0.131053	0.083768	-0.135
486 std	0.941931	1.125245	1.096413	1.001909	1.087815	0.930
853 min	-2.504971	-2.123482	-2.477589	-3.404818	-2.500514	-2.049
138 25%	-0.890362	-0.762860	-0.374569	-0.743837	-0.428832	-0.838
399 50%	-0.216580	-0.243333	0.136180	-0.093642	0.003066	-0.091
279 75%	0.156539	1.020259	0.900320	0.613982	0.963794	0.371
342 max	1.774276	2.097715	2.760497	1.719203	2.891136	1.863
623						
count mean std min 25% 50% 75% max	18 50.000000 0.029602 0.772789 -1.341417 -0.555508 0.122657 0.599628 1.768622	19 50.000000 -0.150480 1.055486 -3.335489 -0.659712 -0.230268 0.493884 2.561847				

The next set of cross-validation split generators deal with folds - so instead of giving you a single set of outputs, they'll return an *iterator* that produces a series of train and test splits.

Question 2: Cross-validation with k folds (10 points)

Use the \mathtt{KFold} cross-validation function to generate multiple train-test splits from each dataset

- 1. Generate 3, 5, and 10 folds for each dataset (using random_state=20160121 as a parameter)
- 2. Compute the percentage of the training labels and testing labels that belong to each class for each set of folds. Does the distribution of labels appear to be well-matched between the train and test set?
- 3. Compute the mean value for each feature in the train and test set for each fold in the 10-fold split. Which feature has the largest difference between train and test for each of the ten folds? What is the largest difference of the averaged means for the ten folds?

Question 2 Answers

- 1. See bellow
- 2. The percentagaes seem to appear well matched between train and test for all the different folds
- 3. For IRIS dataset the largest difference between train and test mean is **Fold 6** and feature 3 (petal length) with difference of 0.69037

Largest difference in the averaged means for the ten folds is in feature 2, sepal width

Question 2 Answers

The percentagaes of the training labels and testing labels seem to appear well matched between train and test for all the different folds 1,2 Dataset: iris - nfold: 1/3 Train data 32 / 100 = 32% 34 / 100 = 34% 1 2 34 / 100 = 34%Name: 0, dtype: int64 Test data 18 / 50 = 36%16 / 50 = 32% 1 2 16 / 50 = 32%Name: 0, dtype: int64 Dataset: iris - nfold: 2/3 Train data 35 / 100 = 35% 1 35 / 100 = 35% 30 / 100 = 30% Name: 0, dtype: int64 Test data 15 / 50 = 30% 15 / 50 = 30% 1 20 / 50 = 40% Name: 0, dtype: int64 Dataset: iris - nfold: 3/3 Train data 33 / 100 = 33% 31 / 100 = 31%1 36 / 100 = 36% 2 Name: 0, dtype: int64 Test data 17 / 50 = 34%19 / 50 = 38% 1 14 / 50 = 28% Name: 0, dtype: int64 Dataset: iris - nfold: 1/5 Train data 0 40 / 120 = 33.33% 1 39 / 120 = 32.5%41 / 120 = 34.17Name: 0, dtype: int64 Test data

10 / 30 = 33.33%

11 / 30 = 36.67%

1

```
9 / 30 = 30%
Name: 0, dtype: int64
Dataset: iris - nfold: 2/5
Train data
    40 / 120 = 33.33%
1
     39 / 120 = 32.5%
    41 / 120 = 34.17%
Name: 0, dtype: int64
Test data
    10 / 30 = 33.33%
    11 / 30 = 36.67%
1
    9 / 30 = 30%
2
Name: 0, dtype: int64
Dataset: iris - nfold: 3/5
Train data
    42 / 120 = 35%
    42 / 120 = 35%
1
     36 / 120 = 30%
Name: 0, dtype: int64
Test data
  8 / 30 = 26.67%
1
     8 / 30 = 26.67%
2
   14 / 30 = 46.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 4/5
Train data
    39 / 120 = 32.5%
1
     42 / 120 = 35%
     39 / 120 = 32.5\%
Name: 0, dtype: int64
Test data
0
    11 / 30 = 36.67%
1
    8 / 30 = 26.67%
2
   11 / 30 = 36.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 5/5
Train data
0
     39 / 120 = 32.5%
1
     38 / 120 = 31.67%
     43 / 120 = 35.83%
Name: 0, dtype: int64
Test data
0
    11 / 30 = 36.67%
    12 / 30 = 40%
1
2
     7 / 30 = 23.33%
Name: 0, dtype: int64
```

```
Dataset: iris - nfold: 1/10
Train data
    45 / 135 = 33.33%
     45 / 135 = 33.33%
1
2
     45 / 135 = 33.33%
Name: 0, dtype: int64
Test data
    5 / 15 = 33.33%
1
    5 / 15 = 33.33%
     5 / 15 = 33.33%
Name: 0, dtype: int64
Dataset: iris - nfold: 2/10
Train data
    45 / 135 = 33.33%
1
     44 / 135 = 32.59%
    46 / 135 = 34.08%
Name: 0, dtype: int64
Test data
    5 / 15 = 33.33%
1
     6 / 15 = 40%
2
   4 / 15 = 26.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 3/10
Train data
    43 / 135 = 31.85%
     47 / 135 = 34.81%
1
     45 / 135 = 33.33%
Name: 0, dtype: int64
Test data
    7 / 15 = 46.67%
     3 / 15 = 20%
1
2
     5 / 15 = 33.33%
Name: 0, dtype: int64
Dataset: iris - nfold: 4/10
Train data
    47 / 135 = 34.81%
     42 / 135 = 31.11%
1
     46 / 135 = 34.08%
Name: 0, dtype: int64
Test data
0
     3 / 15 = 20%
1
     8 / 15 = 53.33%
     4 / 15 = 26.67%
Name: 0, dtype: int64
```

```
Dataset: iris - nfold: 5/10
Train data
     45 / 135 = 33.33%
1
     47 / 135 = 34.81%
     43 / 135 = 31.86%
Name: 0, dtype: int64
Test data
    5 / 15 = 33.33%
1
     3 / 15 = 20%
    7 / 15 = 46.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 6/10
Train data
   47 / 135 = 34.81%
1
     45 / 135 = 33.33%
     43 / 135 = 31.86%
Name: 0, dtype: int64
Test data
    3 / 15 = 20%
1
    5 / 15 = 33.33%
    7 / 15 = 46.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 7/10
Train data
    44 / 135 = 32.59%
     48 / 135 = 35.55%
1
     43 / 135 = 31.85%
Name: 0, dtype: int64
Test data
    6 / 15 = 40\%
1
     2 / 15 = 13.33%
    7 / 15 = 46.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 8/10
Train data
    45 / 135 = 33.33%
     44 / 135 = 32.59%
1
     46 / 135 = 34.08%
Name: 0, dtype: int64
Test data
     5 / 15 = 33.33%
1
     6 / 15 = 40%
2
     4 / 15 = 26.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 9/10
Train data
```

```
43 / 135 = 31.85%
     43 / 135 = 31.85%
1
     49 / 135 = 36.30%
Name: 0, dtype: int64
Test data
     7 / 15 = 46.67%
     7 / 15 = 46.67%
1
2
     1 / 15 = 6.67%
Name: 0, dtype: int64
Dataset: iris - nfold: 10/10
Train data
     46 / 135 = 34.07%
1
     45 / 135 = 33.33%
     44 / 135 = 32.59%
Name: 0, dtype: int64
Test data
    4 / 15 = 26.67%
0
     5 / 15 = 33.33%
1
     6 / 15 = 40%
Name: 0, dtype: int64
Dataset: gen - nfold: 1/3
Train data
     170 / 333 = 51.05%
     163 / 333 = 48.95%
Name: 0, dtype: int64
Test data
    79 / 167 = 47.31%
    88 / 167 = 52.69%
Name: 0, dtype: int64
Dataset: gen - nfold: 2/3
Train data
    168 / 333 = 50.45%
     165 / 333 = 49.55%
Name: 0, dtype: int64
Test data
    81 / 167 = 48.50%
     86 / 167 = 51.50%
Name: 0, dtype: int64
Dataset: gen - nfold: 3/3
Train data
    160 / 333 = 48.05%
     174 / 333 = 51.95%
Name: 0, dtype: int64
Test data
     89 / 167 = 53.29%
```

```
1 77 / 167 = 46.61%
Name: 0, dtype: int64
Dataset: gen - nfold: 1/5
Train data
    202 / 400 = 50.5%
    198 / 400 = 49.5%
Name: 0, dtype: int64
Test data
    47 / 100 = 47%
1
     53 / 100 = 53%
Name: 0, dtype: int64
Dataset: gen - nfold: 2/5
Train data
    204 / 400 = 51%
   196 / 400 = 49%
Name: 0, dtype: int64
Test data
    45 / 100 = 45%
     55 / 100 = 55%
Name: 0, dtype: int64
Dataset: gen - nfold: 3/5
Train data
   198 / 400 = 49.5%
     202 / 400 = 50.5%
Name: 0, dtype: int64
Test data
    51 / 100 = 51%
    49 / 100 = 49%
Name: 0, dtype: int64
Dataset: gen - nfold: 4/5
Train data
   195 / 400 = 48.75%
     205 / 400 = 51.25%
Name: 0, dtype: int64
Test data
    54 / 100 = 54%
     46 / 100 = 46%
Name: 0, dtype: int64
Dataset: gen - nfold: 5/5
Train data
    197 / 400 = 49.25%
     203 / 400 = 51.65%
Name: 0, dtype: int64
Test data
```

```
0 52 / 100 = 52%
1
   48 / 100 = 48%
Name: 0, dtype: int64
Dataset: gen - nfold: 1/10
Train data
    226 / 450 = 50.22%
1
     224 / 450 = 49.78%
Name: 0, dtype: int64
Test data
    23 / 50 = 46\%
   27 / 50 = 54%
Name: 0, dtype: int64
Dataset: gen - nfold: 2/10
Train data
    225 / 450 = 50%
    225 / 450 = 50%
Name: 0, dtype: int64
Test data
    24 / 50 = 48%
    26 / 50 = 52%
Name: 0, dtype: int64
Dataset: gen - nfold: 3/10
Train data
   226 / 450 = 50.22%
    224 / 450 = 49.78%
Name: 0, dtype: int64
Test data
    23 / 50 = 46%
   27 / 50 = 54%
Name: 0, dtype: int64
Dataset: gen - nfold: 4/10
Train data
    227 / 450 = 50.44%
0
    223 / 450 = 49.56%
Name: 0, dtype: int64
Test data
   22 / 50 = 44%
    28 / 50 = 56%
Name: 0, dtype: int64
Dataset: gen - nfold: 5/10
Train data
    221 / 450 = 49.11%
     229 / 450 = 50.89%
Name: 0, dtype: int64
```

```
rest data
     28 / 50 = 56%
    22 / 50 = 44%
Name: 0, dtype: int64
Dataset: gen - nfold: 6/10
Train data
    226 / 450 = 50.22%
     224 / 450 = 49.78%
Name: 0, dtype: int64
Test data
     23 / 50 = 46%
     27 / 50 = 54%
Name: 0, dtype: int64
Dataset: gen - nfold: 7/10
Train data
    224 / 450 = 49.78%
     226 / 450 = 50.22%
Name: 0, dtype: int64
Test data
    25 / 50 = 50%
     25 / 50 = 50%
Name: 0, dtype: int64
Dataset: gen - nfold: 8/10
Train data
    220 / 450 = 48.89%
     230 / 450 = 51.11%
Name: 0, dtype: int64
Test data
    29 / 50 = 58%
    21 / 50 = 42\%
Name: 0, dtype: int64
Dataset: gen - nfold: 9/10
Train data
     224 / 450 = 49.78%
     226 / 450 = 50.22%
Name: 0, dtype: int64
Test data
   25 / 50 = 50%
     25 / 50 = 50%
Name: 0, dtype: int64
Dataset: gen - nfold: 10/10
Train data
     222 / 450 = 49.33%
     228 / 450 = 50.67%
Namo• ∩
        dtung. in+64
```

Test data

0 27 / 50 = 54%

1 23 / 50 = 46%

Name: 0, dtype: int64

3. For IRIS dataset the largest difference between train and test mean is Fold 6 and featre 3 (petal length) with difference of 0.69037 Largest difference in the averaged means for the ten folds is in feature 2, sepal width

In [51]: from sklearn.cross validation import KFold all datasets = {'iris': {'data': pd.DataFrame(iris.data), 'labels': pd.D 'gen': { 'data': gendata data, 'labels': gendata targets} } for dataset in all datasets.keys(): for nfolds in [3, 5, 10]: kfolds = cross validation.KFold(all datasets[dataset]['labels']. fold = 0for train, test in kfolds: fold += 1print ("%s %s" % (train,test)) # if (dataset == 'iris'): train fold = pd.DataFrame(iris.target[train]) test fold = pd.DataFrame(iris.target[test]) else: train fold = pd.DataFrame(gendata t[train]) test fold = pd.DataFrame(gendata t[test]) print "Dataset: " + dataset + " - nfold: " + str(fold) + print "Train data" print train_fold[0].value_counts(sort=False) print "Test data" print test fold[0].value counts(sort=False) print "\n"

```
Dataset: iris - nfold: 1/3
Train data
     32
1
     34
2
     34
Name: 0, dtype: int64
Test data
     18
     16
1
2
     16
Name: 0, dtype: int64
Dataset: iris - nfold: 2/3
Train data
0
     35
1
     35
2
     30
Name: 0, dtype: int64
Test data
     15
     15
1
     20
2
Name: 0, dtype: int64
Dataset: iris - nfold: 3/3
Train data
     33
     31
1
     36
Name: 0, dtype: int64
Test data
     17
1
     19
     14
Name: 0, dtype: int64
Dataset: iris - nfold: 1/5
Train data
0
     40
1
     39
     41
Name: 0, dtype: int64
Test data
     10
0
1
     11
      9
Name: 0, dtype: int64
```

Dataset: iris - nfold: 2/5 Train data

```
0
     40
1
     39
     41
Name: 0, dtype: int64
Test data
     10
1
     11
2
      9
Name: 0, dtype: int64
Dataset: iris - nfold: 3/5
Train data
     42
1
     42
2
     36
Name: 0, dtype: int64
Test data
      8
      8
1
2
     14
Name: 0, dtype: int64
Dataset: iris - nfold: 4/5
Train data
     39
     42
1
     39
Name: 0, dtype: int64
Test data
     11
1
      8
2
     11
Name: 0, dtype: int64
Dataset: iris - nfold: 5/5
Train data
     39
1
     38
     43
Name: 0, dtype: int64
Test data
     11
1
     12
      7
2
Name: 0, dtype: int64
Dataset: iris - nfold: 1/10
Train data
0
     45
1
     45
```

```
45
2
Name: 0, dtype: int64
Test data
     5
1
     5
     5
Name: 0, dtype: int64
Dataset: iris - nfold: 2/10
Train data
     45
1
     44
     46
Name: 0, dtype: int64
Test data
     5
1
     6
Name: 0, dtype: int64
Dataset: iris - nfold: 3/10
Train data
0
     43
1
     47
     45
Name: 0, dtype: int64
Test data
0
     7
     3
1
Name: 0, dtype: int64
Dataset: iris - nfold: 4/10
Train data
     47
     42
1
     46
Name: 0, dtype: int64
Test data
     3
1
     8
Name: 0, dtype: int64
Dataset: iris - nfold: 5/10
Train data
0
     45
     47
1
2
     43
Name: 0, dtype: int64
```

```
Test data
     5
1
     3
2
     7
Name: 0, dtype: int64
Dataset: iris - nfold: 6/10
Train data
     47
1
     45
     43
Name: 0, dtype: int64
Test data
     5
1
     7
Name: 0, dtype: int64
Dataset: iris - nfold: 7/10
Train data
     44
0
1
     48
     43
Name: 0, dtype: int64
Test data
0
     6
1
     2
2
Name: 0, dtype: int64
Dataset: iris - nfold: 8/10
Train data
0
     45
     44
1
     46
Name: 0, dtype: int64
Test data
     5
1
     6
Name: 0, dtype: int64
Dataset: iris - nfold: 9/10
Train data
     43
0
1
     43
     49
Name: 0, dtype: int64
Test data
```

```
1
     7
2
     1
Name: 0, dtype: int64
Dataset: iris - nfold: 10/10
Train data
     46
1
     45
     44
Name: 0, dtype: int64
Test data
     4
1
     5
2
Name: 0, dtype: int64
Dataset: gen - nfold: 1/3
Train data
     170
1
     163
Name: 0, dtype: int64
Test data
     79
1
     88
Name: 0, dtype: int64
Dataset: gen - nfold: 2/3
Train data
     168
1
     165
Name: 0, dtype: int64
Test data
     81
1
     86
Name: 0, dtype: int64
Dataset: gen - nfold: 3/3
Train data
     160
1
     174
Name: 0, dtype: int64
Test data
     89
     77
Name: 0, dtype: int64
Dataset: gen - nfold: 1/5
Train data
     202
```

```
198
1
Name: 0, dtype: int64
Test data
     47
     53
1
Name: 0, dtype: int64
Dataset: gen - nfold: 2/5
Train data
     204
0
1
     196
Name: 0, dtype: int64
Test data
     45
1
     55
Name: 0, dtype: int64
Dataset: gen - nfold: 3/5
Train data
0
     198
     202
1
Name: 0, dtype: int64
Test data
     51
     49
1
Name: 0, dtype: int64
Dataset: gen - nfold: 4/5
Train data
     195
     205
Name: 0, dtype: int64
Test data
0
     54
     46
Name: 0, dtype: int64
Dataset: gen - nfold: 5/5
Train data
0
     197
     203
Name: 0, dtype: int64
Test data
     52
0
     48
1
Name: 0, dtype: int64
```

Dataset: gen - nfold: 1/10 Train data

```
0
     226
1
     224
Name: 0, dtype: int64
Test data
     23
     27
Name: 0, dtype: int64
Dataset: gen - nfold: 2/10
Train data
     225
1
     225
Name: 0, dtype: int64
Test data
     24
0
     26
Name: 0, dtype: int64
Dataset: gen - nfold: 3/10
Train data
     226
0
     224
Name: 0, dtype: int64
Test data
     23
1
     27
Name: 0, dtype: int64
Dataset: gen - nfold: 4/10
Train data
     227
     223
1
Name: 0, dtype: int64
Test data
     22
     28
Name: 0, dtype: int64
Dataset: gen - nfold: 5/10
Train data
     221
     229
Name: 0, dtype: int64
Test data
     28
     22
1
Name: 0, dtype: int64
```

Dataset: gen - nfold: 6/10

```
Train data
     226
     224
Name: 0, dtype: int64
Test data
     23
1
     27
Name: 0, dtype: int64
Dataset: gen - nfold: 7/10
Train data
     224
     226
Name: 0, dtype: int64
Test data
     25
1
     25
Name: 0, dtype: int64
Dataset: gen - nfold: 8/10
Train data
     220
     230
Name: 0, dtype: int64
Test data
     29
     21
Name: 0, dtype: int64
Dataset: gen - nfold: 9/10
Train data
     224
     226
Name: 0, dtype: int64
Test data
     25
     25
Name: 0, dtype: int64
Dataset: gen - nfold: 10/10
Train data
     222
     228
1
Name: 0, dtype: int64
Test data
     27
     23
Name: 0, dtype: int64
```

In [52]: from sklearn.cross validation import KFold all datasets = {'iris': {'data': pd.DataFrame(iris.data), 'labels': pd.D 'gen': { 'data': gendata data, 'labels': gendata targets} } for dataset in all datasets.keys(): for nfolds in [10]: kfolds = cross validation.KFold(all datasets[dataset]['labels']. fold = 0for train, test in kfolds: fold += 1print ("%s %s" % (train,test)) # if (dataset == 'iris'): train fold = pd.DataFrame(iris.data[train]) test fold = pd.DataFrame(iris.data[test]) else: train fold = pd.DataFrame(gendata d[train]) test fold = pd.DataFrame(gendata d[test]) print "Dataset: " + dataset + " - nfold: " + str(fold) + print "Train data" print train fold.describe() print "Test data" print test fold.describe() print "\n"

2.300000

Dataset: iris - nfold: 1/10 Train data

	0	1	2	2 3
count	135.000000	135.000000	135.000000	135.000000
mean	5.842963	3.062222	3.766667	1.207407
std	0.837867	0.422124	1.776295	0.760953
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000
Test d	ata			
	0	1	2	3
count	15.000000	15.000000	15.000000 1	15.000000
mean	5.846667	2.980000	3.686667	1.120000
std	0.760514	0.537454	1.710834	0.805517
min	4.800000	2.200000	1.400000	0.100000
25%	5.150000	2.600000	1.550000	0.300000
50%	5.800000	3.100000	4.100000	1.000000
75%	6.400000	3.150000	5.000000	1.750000

7.100000 4.100000 5.900000

Dataset: iris - nfold: 2/10

Train data

max

т.	2	3
135.000000	135.000000	135.000000
3.054815	3.796296	1.205926
0.438062	1.789622	0.769063
2.000000	1.000000	0.100000
2.800000	1.600000	0.300000
3.000000	4.400000	1.300000
3.300000	5.100000	1.800000
4.400000	6.900000	2.500000
1	2	3
	3.054815 0.438062 2.000000 2.800000 3.000000 3.300000	135.000000 135.000000 3.054815 3.796296 0.438062 1.789622 2.000000 1.000000 2.800000 1.600000 3.000000 4.400000 3.300000 5.100000 4.400000 6.900000

	0	1	2	3
count	15.000000	15.000000	15.000000	15.000000
mean	5.586667	3.046667	3.420000	1.133333
std	0.603403	0.405087	1.530266	0.729644
min	4.300000	2.500000	1.100000	0.100000
25%	5.250000	2.800000	1.550000	0.300000
50%	5.600000	3.000000	3.900000	1.300000
75%	6.050000	3.200000	4.650000	1.650000
max	6.700000	3.800000	5.200000	2.300000

Dataset: iris - nfold: 3/10

Train data

	0	1	2	3
count	135.000000	135.000000	135.000000	135.000000
mean	5.866667	3.039259	3.811852	1.209630
std	0.827602	0.422165	1.749800	0.754773
min	4.300000	2.000000	1.000000	0.100000
25%	5.150000	2.800000	1.600000	0.300000

4.400000

1.300000

		• • • • • • • •		
75%	6.450000	3.250000	5.1000	1.800000
max	7.900000	4.200000	6.9000	2.500000
Test d	ata			
	0	1	2	3
count	15.000000	15.000000	15.000000	15.000000
mean	5.633333	3.186667	3.280000	1.100000
std	0.830376	0.523541	1.885357	0.856905
min	4.800000	2.300000	1.300000	0.200000
25%	4.950000	3.000000	1.450000	0.300000
50%	5.500000	3.300000	3.300000	1.000000
75%	6.300000	3.450000	5.000000	1.750000
max	7.700000	4.400000	6.100000	2.400000

3.000000

Dataset: iris - nfold: 4/10

5.800000

Train data

50%

	0	1	2	3
count	135.000000	135.000000	135.000000	135.000000
mean	5.837778	3.054074	3.726667	1.195556
std	0.826146	0.440279	1.785062	0.781776
min	4.300000	2.000000	1.100000	0.100000
25%	5.100000	2.800000	1.550000	0.300000
50%	5.800000	3.000000	4.200000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.700000	4.400000	6.900000	2.500000
Test d	ata			

	0	1	2	3
count	15.000000	15.000000	15.000000	15.000000
mean	5.893333	3.053333	4.046667	1.226667
std	0.872981	0.381476	1.592333	0.589754
min	4.600000	2.300000	1.000000	0.200000
25%	5.250000	2.850000	3.750000	1.100000
50%	6.000000	3.000000	4.500000	1.400000
75%	6.350000	3.250000	4.850000	1.550000
max	7.900000	3.800000	6.400000	2.000000

Dataset: iris - nfold: 5/10

Train data

Traın	data			
	0	1	2	3
count	135.000000	135.000000	135.000000	135.00000
mean	5.823704	3.051111	3.732593	1.19037
std	0.810400	0.428964	1.738623	0.76274
min	4.300000	2.000000	1.000000	0.10000
25%	5.100000	2.800000	1.600000	0.30000
50%	5.700000	3.000000	4.400000	1.30000
75%	6.400000	3.300000	5.100000	1.80000
max	7.900000	4.400000	6.900000	2.50000
Test o	data			
	0	1	2	3

count 15.000000 15.000000 15.000000 mean 6.020000 3.08000 3.993333 1.273333 std 0.987204 0.48873 2.033458 0.789635

min	4.500000	2.30000	1.200000	0.200000
25%	5.500000	2.75000	1.550000	0.350000
50%	5.900000	3.00000	4.300000	1.500000
75%	6.550000	3.25000	5.650000	1.900000
max	7.700000	4.00000	6.700000	2.200000
1	, . , 50000	1.00000	0.,00000	

Dataset: iris - nfold: 6/10 Train data

	0	1	2	3
count	135.000000	135.000000	135.000000	135.000000
mean	5.797778	3.061481	3.689630	1.176296
std	0.808026	0.443188	1.758743	0.770269
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.500000	0.300000
50%	5.700000	3.000000	4.200000	1.300000
75%	6.350000	3.350000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000
Test	data			

0 1 2 3 15.000000 15.000000 15.000000 count 15.000000 2.986667 4.380000 1.400000 6.253333 mean std 0.921076 0.339888 1.751408 0.686607 min 4.400000 2.500000 1.300000 0.200000 25% 5.600000 2.750000 3.450000 1.150000 50% 6.600000 3.000000 4.900000 1.700000 6.750000 3.150000 5.700000 1.800000 75% 7.600000 3.800000 6.600000 2.400000 max

Dataset: iris - nfold: 7/10 Train data

	0	1	2	3			
count	135.000000	135.000000	135.000000	135.000000			
mean	5.853333	3.051111	3.760000	1.196296			
std	0.814221	0.445854	1.739411	0.753540			
min	4.300000	2.000000	1.000000	0.100000			
25%	5.100000	2.800000	1.600000	0.300000			
50%	5.800000	3.000000	4.400000	1.300000			
75%	6.400000	3.300000	5.100000	1.800000			
max	7.900000	4.400000	6.900000	2.500000			
Test data							

	0	1	2	3
count	15.000000	15.000000	15.000000	15.00000
mean	5.753333	3.080000	3.746667	1.22000
std	0.970910	0.312136	2.043060	0.87358
min	4.400000	2.600000	1.300000	0.10000
25%	5.000000	2.800000	1.500000	0.25000
50%	5.700000	3.000000	4.200000	1.30000
75%	6.450000	3.400000	5.400000	2.00000
max	7.700000	3.600000	6.700000	2.50000

Dataset: iris - nfold: 8/10

_					
Tra	п.	n	\sim	2 1	t.a
110				α	

II alli	aaca			
	0	1		2 3
count	135.000000	135.000000	135.00000	0 135.000000
mean	5.839259	3.051111	3.76000	0 1.201481
std	0.843951	0.427046	1.76589	6 0.764315
min	4.300000	2.000000	1.00000	0 0.100000
25%	5.100000	2.800000	1.55000	0.30000
50%	5.800000	3.000000	4.40000	0 1.300000
75%	6.400000	3.300000	5.10000	0 1.800000
max	7.900000	4.400000	6.70000	0 2.500000
Test da	ata			
	0	1	2	3
count	15.000000	15.000000	15.000000	15.000000
mean	5.880000	3.080000	3.746667	1.173333
std	0.691995	0.504551	1.812601	0.778705
min	4.900000	2.600000	1.200000	0.100000
25%	5.550000	2.700000	1.700000	0.350000
50%	5.800000	3.000000	4.100000	1.300000
75%	6.050000	3.150000	5.100000	1.700000
max	7.700000	4.200000	6.900000	2.400000

Dataset: iris - nfold: 9/10

Train data

	0	1	2	3
count	135.000000	135.000000	135.000000	135.000000
mean	5.880741	3.062222	3.826667	1.229630
std	0.829538	0.431738	1.773234	0.765592
min	4.300000	2.200000	1.000000	0.100000
25%	5.150000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.400000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Test data

	0	1	2	3
count	15.000000	15.000000	15.000000	15.000000
mean	5.506667	2.980000	3.146667	0.920000
std	0.759198	0.458569	1.609732	0.704273
min	4.400000	2.000000	1.400000	0.100000
25%	5.000000	2.850000	1.550000	0.250000
50%	5.200000	3.000000	3.500000	1.000000
75%	5.950000	3.200000	4.500000	1.400000
max	6.900000	3.800000	5.700000	2.300000

Dataset: iris - nfold: 10/10

Train data

	0	1	2	3
count	135.000000	135.000000	135.000000	135.000000
mean	5.819259	3.052593	3.716296	1.174074
std	0.835097	0.436887	1.768388	0.749324
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.550000	0.300000
50%	5.700000	3.000000	4.200000	1.300000

		Assi	ignment+2+-+Part+1			
75%	6.400000	3.300000	5.100000	1.800000		
max	7.900000	4.400000	6.900000	2.500000		
Test da	ata					
	0	1	2	3		
count	15.000000			5.000000		
mean	6.060000			.420000		
std	0.752899	0.416905		.875214		
min	4.700000			200000		
25%	5.450000	2.950000		.650000		
50%	6.300000	3.200000		.500000		
75%	6.600000			2.150000		
max	7.000000			2.500000		
max	7.000000	3.700000	0.000000			
Dataset	t: gen - nfo	old: 1/10				
Train o	•					
11411	0	1	2	3	4	
5 \	ŭ	_	_	· ·	-	
count	450.000000	450.000000	450.000000	450.000000	450.000000	4
50.0000		130.000000	130.000000	150.00000	150.000000	-
mean	0.015595	-0.007781	0.013634	0.016649	0.093196	
0.04558		0.007701	0.013031	0.010013	0.033130	
	1.014951	1.001806	0.962817	1.008849	1.039005	
0.9970		1.001000	0.302017	1.000049	1.037003	
min		-2.433603	-2.647789	-2.518441	-3.223148	
-2.725		2.433003	2.047709	2.310111	3.223140	
25%	-0.661821	-0.739336	-0.605543	-0.666526	-0.635592	
-0.627		0.733330	0.003343	0.000320	0.033372	
50%	-0.010015	-0.072732	0.020328	0.024608	0.113445	
0.10509		-0.072732	0.020320	0.024000	0.113443	
75%		0.548756	0.641902	0.702521	0.748359	
0.72392		0.540750	0.041902	0.702321	0.740333	
		2 020572	2 002052	2 610250	2 712/10	
		3.039572	3.003953	2.619359	2.712419	
3.43299	93					
	C	7	0	0	1.0	
11 \	6	7	8	9	10	
11 \	450 000000	450 00000	450 000000	450 000000	450 000000	4
	450.000000	450.000000	450.000000	450.000000	450.000000	4
50.0000						
mean		-0.012272	0.018226	-0.007054	0.010869	
-0.0769					.	
std		0.997360	1.012774	1.010068	1.164712	
0.95519						
min	-3.326552	-2.736625	-2.807253	-2.690036	-3.315302	
-3.1024						
25%	-1.024900	-0.691724	-0.649506	-0.781671	-0.836271	
A 7101	1 7 A					

-0.060348

0.911349

3.023143

0.015647

0.633550

2.654571

-0.005171

0.706345

3.080764

0.009211

0.701114

3.135951

0.078181

1.038988

2.544278

-0.712939

-0.084789

0.629994

2.664877

50%

75%

max

15 \	12	13	3	14	15		16
17 \ count 50.000	450.000000	450.000000	450.0000	000 450	.000000	450.00	0000 4
	0.014286	-0.013744	0.1116	35 –0	.001662	-0.01	0041
	0.989100	1.230692	0.9495	34 0	.948191	1.01	6657
	-3.109823	-3.210675	-3.2395	524 –2	.675548	-3.06	8310
25% -0.746		-0.998816	-0.5120	089 -0	.664533	-0.77	1602
50% -0.007	-0.032929 451	-0.127085	0.1345	519 0	.051188	-0.01	2593
75% 0.6178	0.740198 35	1.013260	0.7984	28 0	.672380	0.67	9608
max 3.2640	2.706916 62	3.303948	3.4460	98 2	.630985	3.09	4925
	18	19)				
count	450.000000	450.000000)				
mean	0.022037	0.053671	_				
std	1.045171						
min	-3.389571						
25%	-0.647093	-0.602597					
50%	0.056958	0.051361					
75%	0.726783	0.670130)				
max	2.811399	3.498259)				
Test d	ata						
	0	1	2		3	4	
5 \							
count 000	50.000000	50.000000	50.000000	50.000	000 50	.000000	50.000
mean 421	0.132358	0.219547	-0.181742	0.144	902 -0	.108895	0.005
std 938	1.084205	1.043357	0.781276	1.108	3929 1	.050024	1.036
min 130	-1.815645	-1.615432	-1.849257			.137125	-2.966
25% 189	-0.598300	-0.469860	-0.738886			.787458	-0.524
50% 448	0.035678	0.111592	-0.088987	0.311	.619 –0	.221786	-0.038
75% 786	1.017673	0.753362	0.423989	0.893	3433 0	.562336	0.811
max 230	2.247138	3.012955	1.041469	2.479	0612 2	.307088	1.835
11 \	6	7	8		9	10	
11 \ count 000	50.000000	50.000000	50.000000	50.000	000 50	.000000	50.000
mean 974	-0.291133	-0.143091	-0.305290	0.092	2221 -0	.213771	-0.003

		As	ssignment+2+-+Part+	1		
std	1.128013	1.092923	1.038049	1.048631	1.188927	0.979
900 min	-2.798720	-2.295046	-3.060349	-3.021813	-3.265268	-2.235
046 25%	-0.959467	-0.811699	-1.045868	-0.512540	-0.802693	-0.696
424 50%	-0.551110	-0.280232	-0.382899	0.011575	-0.105014	-0.127
539 75%	0.556449	0.413665	0.467908	0.580116	0.673023	0.626
365						
max 330	2.639439	2.731177	1.666533	2.726222	1.730126	2.144
	12	13	14	15	16	
17 \						
count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 486	-0.299245	0.070258	0.259905	-0.131053	0.083768	-0.135
std 853	0.941931	1.125245	1.096413	1.001909	1.087815	0.930
min	-2.504971	-2.123482	-2.477589	-3.404818	-2.500514	-2.049
138 25%	-0.890362	-0.762860	-0.374569	-0.743837	-0.428832	-0.838
399 50%	-0.216580	-0.243333	0.136180	-0.093642	0.003066	-0.091
279						0.031
75% 342	0.156539	1.020259	0.900320	0.613982	0.963794	0.371
max 623	1.774276	2.097715	2.760497	1.719203	2.891136	1.863
	18	19				
count	50.000000	50.000000				
mean	0.029602	-0.150480				
std		1.055486				
min		-3.335489				
25%	-0.555508	-0.659712				
50%	0.122657	-0.230268				
75%		0.493884				
max	1.768622	2.561847				
max	1.700022	2.301047				
Datase Train	t: gen - nfo data	old: 2/10				
	0	1		2	3	4
5 \ count	450.000000	450.000000	450.0000	00 450.000	0000 450.00	00000 4
50.000	000					
mean 0.0325	0.026050 59	0.010612	-0.0282	23 0.021	1825 0.06	54013
std 0.9875	1.018835	1.002774	0.9437	54 1.016	5988 1.04	14935

min

-2.515058 -2.409782

-2.530270

-2.538242

-3.223148

-2.966130					
25% -0.656625 -0.600580	-0.731285	-0.621644	-0.680306	-0.650527	
50% -0.004579	-0.065710	-0.001878	0.021160	0.072590	
0.036412 75% 0.737007	0.611232	0.567467	0.724557	0.703074	
0.730848 max 3.594499 3.432993	3.039572	3.003953	2.553777	2.701731	
6	7	8	9	10	
11 \ count 450.000000	450.000000	450.000000	450.000000	450.000000	4
50.000000 mean -0.035755	-0.009109	-0.020325	-0.001763	-0.004324	
-0.069980 std 1.171501 0.964629	1.004397	1.018922	1.000889	1.163385	
min -3.326552 -3.102408	-2.588259	-3.060349	-3.021813	-3.315302	
25% -1.009258 -0.727375	-0.702219	-0.669560	-0.748013	-0.829435	
50% -0.149009 -0.085270	0.013188	-0.061167	0.016847	0.084635	
75% 0.889160 0.640427	0.651285	0.693884	0.640449	0.986144	
max 3.023143 2.664877	2.731177	2.949241	3.135951	2.394142	
12	13	14	15	16	
17 \ count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean -0.030508 -0.038372	-0.017143	0.116693	-0.016262	-0.002223	
std 0.991519 0.985784	1.215496	0.946422	0.955138	1.012392	
min -3.109823	-3.210675	-2.477589	-3.404818	-2.500514	
-2.883941 25% -0.687928 -0.707763	-0.998630	-0.501167	-0.699596	-0.730476	
50% -0.061614 0.008914	-0.169169	0.126455	0.020755	-0.014262	
75% 0.672173 0.600035	0.986469	0.793648	0.661546	0.677235	
max 2.706916 3.264062	3.303948	3.446098	2.630985	3.094925	
18 count 450.000000 mean 0.033888 std 1.020286 min -3.389571 25% -0.624639	450.000000 0.041430 1.009555				

50% 75% max Test d	0.070552 0.726783 2.811399	0.01984 0.65834 3.49825	8			
icsc u	0	1	2	3	4	
5 \						
count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 628	0.038262	0.054007	0.194965	0.098316	0.153759	0.122
std 637	1.056174	1.056671	0.965787	1.043247	1.009659	1.114
min 530	-2.312866	-2.433603	-2.647789	-2.331489	-1.389525	-2.725
25% 738	-0.687586	-0.607539	-0.307969	-0.519517	-0.634776	-0.620
50% 410	0.053764	0.135871	0.252712	0.090076	-0.090751	0.377
75% 461	0.696368	0.600728	0.850966	0.734815	0.941969	0.803
max 713	2.370750	2.234953	2.391449	2.619359	2.712419	2.129
	6	7	8	9	10	
11 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 733	0.016604	-0.171557	0.041677	0.044603	-0.077031	-0.066
std 927	1.260623	1.028054	1.027462	1.129533	1.217925	0.893
min 023	-2.272284	-2.736625	-2.156165	-2.690036	-2.552006	-2.396
25% 695	-1.115137	-0.839423	-0.633624	-0.901056	-0.872884	-0.536
50% 690	0.133255	-0.033975	0.007951	-0.109452	-0.206088	-0.118
75% 447	1.126697	0.394442	0.567698	1.002914	0.974135	0.553
max 893	2.596622	2.237697	3.080764	2.399263	2.544278	1.860
17 \	12	13	14	15	16	
17 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
	0.103904	0.100850	0.214376	0.000352	0.013407	-0.241
std 570	0.957611	1.265105	1.125886	0.947518	1.127166	0.967
min 044	-1.857877	-2.853214	-3.239524	-2.067902	-3.068310	-2.383
25% 634	-0.554286	-0.916190	-0.559397	-0.641827	-0.907653	-0.985

		Ass	ignment+2+-+Part+1			
50%	0.100113	0.365227	0.242098	0.104780 0	.196711 -0.2	219
574 75%	0.864881	1.137323	0.879004	0.592967 0	.866703 0.4	424
260						
max	1.748159	2.301200	2.877559	2.116475 2	.781388 1.0	647
596						
	18	19				
count	50.000000	50.000000				
mean	-0.077060	-0.040308				
std	1.028069	1.135462				
min	-1.931508	-2.911766				
25%	-0.904866	-0.708436				
50%	0.126267	0.122914				
75%	0.561591	0.672803				
max	2.477594	1.928412				
Datase	t: gen - nfo	old: 3/10				
Train	_					
	0	1	2	3	4	
5 \						
count	450.000000	450.000000	450.000000	450.000000	450.000000	4
50.000						
mean	0.047933	0.007291	-0.006521	0.033717	0.059505	
0.0368						
std	1.021801	0.999899	0.934966	1.003862	1.047233	
1.0066		01333033	000000			
min	-2.515058	-2.433603	-2.647789	-2.530270	-3.223148	
-2.966			_,,,,,,,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01220210	
25%	-0.650934	-0.731285	-0.611001	-0.603799	-0.658458	
-0.643						
50%		-0.054029	0.008816	0.023268	0.036682	
0.0914		0100101	0,0000	01020200	0.00000	
75%		0.558387	0.630666	0.731642	0.707796	
0.7583						
		3.039572	2.786393	2.619359	2.712419	
3.4329						
	6	7	8	9	10	
11 \						
	450.000000	450.000000	450.000000	450.000000	450.000000	4
50.000						
		-0.037418	0.010098	0.031182	-0.003217	
-0.062						
		1.019248	1.028934	1.013198	1.159833	
0.9470						
	-3.326552	-2.736625	-3.060349	-3.021813	-3.315302	
-3.102		_1,00023	3.00019	3.021013	5.515502	
	-1.004924	-0.715119	-0.661007	-0.717004	-0.817548	
-0.690		3 3	3 - 2 3 - 2 0 7			
	-0.135069	-0.000029	0.003053	0.032018	0.052684	
-0.078		2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21032010	11002001	
75%	0.897405	0.615801	0.712259	0.716696	0.991318	
		-				

0.6299 max 2.6648	3.023143	2.73117	7 3.0807	3.13	5951 2.54	14278
	12	1:	3	14	15	16
17 \						
count	450.000000	450.00000	0 450.0000	00 450.00	0000 450.00	00000 4
50.000	000					
mean	-0.031181	-0.01093	0.1050	02 -0.00	2544 -0.00	7395
-0.067						
	0.998220	1.22476	7 0.9639	0.94	1169 1.02	23449
1.0106						
		-3.21067	5 –3.2395	-3.40	4818 -3.06	8310
-2.883						
	-0.693880	-0.996848	8 -0.5120	93 –0.65	7638 –0.74	12380
-0.791						
		-0.17353	5 0.1189	0.04	0907 -0.01	16392
-0.064		4 04005				
	0.695672	1.01326	0.7936	0.65	4095 0.67	79456
0.6333		2 202044	2 1260	20 0 60	0005 000	1005
	2.706916	3.303948	3.1360	2.63	0985 3.09	14925
3.2640	62					
	18	19	n			
count		450.00000				
	0.018088					
std		0.99219				
min		-3.335489				
25%	-0.647093					
	0.069620					
		0.643042				
	2.811399					
Test d		2.70033	,			
1000 0	0	1	2	3	4	
5 \	-			_		
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000						
mean	-0.158680	0.083899	-0.000351	-0.008713	0.194324	0.084
351						
std	1.010437	1.079654	1.062898	1.155486	0.982882	0.948
133						
min	-2.474989	-1.761486	-2.538242	-2.387491	-2.027319	-2.502
706						
25%	-0.743145	-0.664030	-0.576362	-0.853300	-0.307026	-0.333
269						
50%	-0.222097	-0.065181	0.055827	0.056824	0.147435	0.074
835						
75%	0.645991	0.851087	0.524876	0.729377	0.804464	0.513
033	1 000:00	0 555000	2 2225	0 400===	0 455055	0 40-
max	1.902482	2.555292	3.003953	2.422573	2.457268	2.421
206						
	_	7	0	0	1.0	
11 \	6	7	8	9	10	
тт /						

count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000 mean	-0.092112	0.083229	-0.232132	-0.251901	-0.086996	-0.137
172 std	1.069701	0.890149	0.904127	0.988457	1.247944	1.049
569 min	-2.028585	-1.989720	-2.024629	-2.248639	-2.900659	-2.250
563 25% 941	-1.092935	-0.409998	-0.789847	-0.835001	-0.984440	-0.853
50% 917	-0.052825	0.055972	-0.195684	-0.466825	0.122797	-0.274
75% 307	0.837576	0.879671	0.186830	0.509353	0.854002	0.602
max 575	1.849474	1.617238	2.406138	2.110171	1.887018	2.231
	12	13	14	15	16	
17 \ count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000 mean	0.109964	0.044983	0.319598	-0.123110	0.059953	0.022
928 std	0.890580	1.184522	0.963030	1.061800	1.029706	0.715
892 min 864	-1.582977	-1.989643	-2.407276	-2.446034	-2.107179	-1.467
25% 400	-0.566124	-0.998781	-0.347892	-0.937595	-0.835969	-0.265
50% 997	0.072052	-0.012036	0.508317	-0.085224	0.287962	0.076
75% 975	0.802721	1.083914	0.932677	0.654644	0.934273	0.369
max 577	1.799546	2.330057	3.446098	2.040498	1.771825	1.966
	18	19				
count	50.000000	50.000000				
mean	0.065139	0.161366				
std	1.158490	1.263033				
min	-2.479270	-3.110583				
25%	-0.569150					
50%	0.178099					
75%		0.881872				
max		3.498259				
шах	2.11/019	J•4902J3				
Datase Train	t: gen - nf data	old: 4/10				
	0	1		2	3	4
5 \	9	1		-	•	•
count	450.000000	450.000000	450.0000	000 450.000	000 450.00	0000 4

0.019990

-0.044326

0.021381

50.000000

mean

0.046661

0.057702

0.004010	`				
0.024812 std 1.007187 1.007880	1.014515	0.946655	1.025704	1.046111	
min -2.502781 -2.966130	-2.433603	-2.647789	-2.530270	-3.223148	
25% -0.667635 -0.643422	-0.723217	-0.623707	-0.613074	-0.662161	
50% -0.004579 0.050078	-0.042863	-0.040664	0.046302	0.014821	
75% 0.713168 0.717283	0.621871	0.560004	0.752412	0.721192	
max 3.594499 3.432993	3.039572	3.003953	2.619359	2.712419	
6	7	8	9	10	
count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean -0.042327 -0.071848	-0.068944	-0.022161	-0.010804	-0.015081	
std 1.184920 0.945954	0.997026	1.031587	1.028591	1.175870	
min -3.326552 -3.102408	-2.736625	-3.060349	-3.021813	-3.315302	
25% -1.024900 -0.720462	-0.745929	-0.669560	-0.779440	-0.829435	
50% -0.149009 -0.090765	-0.048821	-0.055719	-0.018445	0.051598	
75% 0.882965 0.618305	0.597393	0.681881	0.684015	0.972415	
max 3.023143 2.664877	2.731177	3.080764	3.135951	2.544278	
12	13	14	15	16	
count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean -0.055900 -0.071305	-0.008587	0.165719	-0.026275	0.017580	
std 0.981919 0.979377	1.225184	0.962852	0.945221	1.032658	
min -3.109823 -2.883941	-3.210675	-3.239524	-3.404818	-3.068310	
25% -0.702542 -0.780782	-0.993650	-0.487920	-0.709153	-0.750497	
50% -0.091031 -0.052805	-0.138393	0.160812	0.031218	0.021411	
75% 0.626182 0.599745	0.986469	0.850638	0.646993	0.710499	
max 2.706916 3.264062	3.303948	3.446098	2.630985	3.094925	

18 19 count 450.000000 450.000000

mean std min 25% 50% 75% max	0.048677 1.025005 -3.389571 -0.610119 0.111300 0.713964 2.811399	0.01535 1.03167 -3.33548 -0.65216 0.01905 0.64079 3.49825	0 9 7 6 7			
Test d	ata 0	1	2	3	4	
5 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean	0.080283	-0.030398	0.339893	-0.224577	0.309926	0.192
350 std 235	1.152693	0.948115	0.890316	0.925964	0.969857	0.923
min 626	-2.515058	-1.666063	-2.403479	-2.391383	-2.285826	-2.406
25% 089	-0.607547	-0.780748	-0.056329	-0.784568	-0.185102	-0.402
50% 791	0.066205	-0.117236	0.374814	-0.253876	0.312054	0.338
75%	0.936858	0.507468	0.827671	0.295357	0.696889	0.821
258 max 789	2.548451	2.358609	2.384275	2.553777	2.392053	2.003
	6	7	8	9	10	
11 \						
COUNT.	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000 mean 918	0.075749	0.366960	0.058196	0.125967	0.019778	-0.049
000 mean 918		0.366960	0.058196	0.125967	0.019778	-0.049
000 mean 918 std 952 min	0.075749	0.366960	0.058196 0.902940	0.125967 0.863403	0.019778	-0.049 1.060
000 mean 918 std 952 min 047 25%	0.075749 1.135399 -2.114891	0.366960 1.020691 -2.063264	0.058196 0.902940	0.125967 0.863403 -1.802546	0.019778 1.104288	-0.049 1.060 -2.428
000 mean 918 std 952 min 047 25% 919 50%	0.075749 1.135399 -2.114891	0.366960 1.020691 -2.063264 -0.214425	0.058196 0.902940 -1.607720 -0.549470	0.125967 0.863403 -1.802546 -0.415672	0.019778 1.104288 -2.613164 -0.894302	-0.049 1.060 -2.428 -0.627
000 mean 918 std 952 min 047 25% 919 50% 708	0.075749 1.135399 -2.114891 -0.872145 0.182944	0.366960 1.020691 -2.063264 -0.214425 0.409253	0.058196 0.902940 -1.607720 -0.549470	0.125967 0.863403 -1.802546 -0.415672 0.103725	0.019778 1.104288 -2.613164 -0.894302 0.123945	-0.049 1.060 -2.428 -0.627 0.164
000 mean 918 std 952 min 047 25% 919 50% 708	0.075749 1.135399 -2.114891 -0.872145 0.182944 0.927504	0.366960 1.020691 -2.063264 -0.214425 0.409253 0.920932	0.058196 0.902940 -1.607720 -0.549470 0.064049	0.125967 0.863403 -1.802546 -0.415672 0.103725 0.740404	0.019778 1.104288 -2.613164 -0.894302 0.123945 1.051406	-0.049 1.060 -2.428 -0.627 0.164 0.768
000 mean 918 std 952 min 047 25% 919 50% 708 75% 406 max 812	0.075749 1.135399 -2.114891 -0.872145 0.182944 0.927504	0.366960 1.020691 -2.063264 -0.214425 0.409253 0.920932	0.058196 0.902940 -1.607720 -0.549470 0.064049 0.659906	0.125967 0.863403 -1.802546 -0.415672 0.103725 0.740404 2.366867	0.019778 1.104288 -2.613164 -0.894302 0.123945 1.051406 1.766627	-0.049 1.060 -2.428 -0.627 0.164 0.768
000 mean 918 std 952 min 047 25% 919 50% 708 75% 406 max 812	0.075749 1.135399 -2.114891 -0.872145 0.182944 0.927504 2.402138	0.366960 1.020691 -2.063264 -0.214425 0.409253 0.920932 2.376203	0.058196 0.902940 -1.607720 -0.549470 0.064049 0.659906 1.901959	0.125967 0.863403 -1.802546 -0.415672 0.103725 0.740404 2.366867	0.019778 1.104288 -2.613164 -0.894302 0.123945 1.051406 1.766627	-0.049 1.060 -2.428 -0.627 0.164 0.768
000 mean 918 std 952 min 047 25% 919 50% 708 75% 406 max 812	0.075749 1.135399 -2.114891 -0.872145 0.182944 0.927504 2.402138	0.366960 1.020691 -2.063264 -0.214425 0.409253 0.920932 2.376203	0.058196 0.902940 -1.607720 -0.549470 0.064049 0.659906 1.901959 14 50.0000000	0.125967 0.863403 -1.802546 -0.415672 0.103725 0.740404 2.366867	0.019778 1.104288 -2.613164 -0.894302 0.123945 1.051406 1.766627 16 50.000000	-0.049 1.060 -2.428 -0.627 0.164 0.768 1.873

min	-2.387439	-2.150834 -	-2.029740 -3	1.759327 -2.	330537 -2.8	352
202 25%	-0.236465	-1.022930 -	-1.041336 -0	0.609488 -0.	692739 -0.6	23
	0.235711	0.036670	0.041565 -0	0.034799 -0.	082744 0.0	79
070 75%	1.053227	1.069809	0.506140	0.850593 0.	472276 0.5	88
899 max	2.373076	2.077982	1.671952	2.253107 1.	636746 2.5	98
636						
	18	19				
count	50.000000	50.000000				
	-0.210156					
	0.958259					
	-2.322067					
	-0.778059	-0.354186				
	-0.269645					
	0.522646					
max	1.575827	1.880036				
Dotogo	±. ~~~ ~£	old. E/10				
Train	t: gen - nf	ola: 5/10				
παπη	0	1	2	3	4	
5 \	O	1	2	3	-	
count	450.000000	450.000000	450.000000	450.000000	450.000000	4
50.000		100100000	100100000	10000000	100100000	-
	0.046363	0.030152	0.006538	0.033181	0.099820	
0.0120						
std 0.9947	1.031098	0.994598	0.947866	1.019143	1.026529	
	-2.515058	-2.433603	-2.647789	-2.530270	-3.223148	
25%	-0.646985	-0.661953	-0.572908	-0.660300	-0.624044	
-0.642 50%		-0.035679	0.049062	0.024608	0.081943	
0.0569 75%		0.621871	0.641902	0.734815	0.770385	
0.6990	26					
		3.039572	3.003953	2.619359	2.712419	
3.4329	93					
	_	_	_	_		
11 \	6	7	8	9	10	
count		450.000000	450.000000	450.000000	450.000000	4
	-0.042617	-0.047969	-0.014090	-0.002329	-0.028629	
-0.063		1 010162	0 000265	1.000765	1 15/221	
0.9700		1.010103	0.998365	1.000/65	1.134321	
min	-3.326552	-2.736625	-3.060349	-3.021813	-3.265268	
-3.102		0 710040	0 ((1007	0 740010	0.065440	
4 5%	-1.024900	-0./12943	-0.66100/	-0.748013	-0.865448	

-0.713	709						
50%	-0.135069	-0.00298	6 -0.0557	19 0.00	9211	0.04	8201
-0.084	789						
75%	0.882965	0.60322	2 0.6122	0.64	1698	0.95	6005
0.6333							
max	3.023143	2.73117	7 3.0807	64 3.13	5951	2.54	4278
2.6648	77						
			_				
	12	1:	3	14	15		16
17 \	450 000000	450 00000	. 450 0000	00 450 00	0000	450 00	0000 4
50.000	450.000000	450.00000	450.0000	00 450.00	0000 4	150.00	0000 4
	0.006098	0 00715	0 1163	00 0 01	0200	-0.01	4021
-0.047		0.00/13	4 0.1103	00 -0.01	0333	-0.01	4021
	0.981139	1 21355	7 0 9666	22 0 96	6508	1 02	2400
0.9537		1.21333	7 0.5000	22 0.70	0300	1.02	2400
	-2.773482	-3.21067	5 -3.2395	24 -3.40	4818	-3.06	8310
-2.852		3.21007.	3.2333	21 3.10	1010	3.00	0010
	-0.647631	-0.99833	7 -0.5028	74 -0.70	9153	-0.74	9780
-0.740							
	-0.052692	-0.06339	5 0.1330	01 0.02	0755	-0.00	5925
-0.031							
75%	0.710747	1.04369	4 0.7984	28 0.66	1546	0.67	9608
0.5915	35						
max	2.706916	3.303948	3.4460	98 2.63	0985	3.09	4925
3.2640	62						
	18						
	450.000000						
	-0.004349						
	1.007673						
	-3.389571	-3.335485 -0.656005					
25% 50%	-0.637652 0.063249	0.00215					
75%	0.685464						
max	2.810356	3.49825					
Test d		3.49023.	9				
icsc u	0	1	2	3		4	
5 \	·	_	_			-	
count	50.000000	50.000000	50.000000	50.000000	50.00	00000	50.000
000							
mean	-0.144554	-0.121854	-0.117880	-0.003884	-0.16	68508	0.307
341							
std	0.922941	1.116559	0.944985	1.025803	1.14	44582	1.019
563							
min	-1.830076	-1.888726	-1.915641	-2.288779	-2.47	76065	-2.212
777							
25%	-0.906128	-1.069087	-0.754008	-0.583098	-1.04	45061	-0.363
919							
50%	-0.221809	-0.208768	-0.320661	0.062377	-0.13	31580	0.318
812	0 501			. =	<u> </u>	7040-	0.555
75%	0.521024	0.438991	0.387035	0.714186	0.5	73436	0.999
719	2 000000	2 050475	2 706202	2 415105	2 2	-0766	2 (22
max	2.092328	2.958475	2.786393	2.415195	2.2	59766	2.633

551

	6	7	8	9	10	
11 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 092	0.078364	0.178188	-0.014437	0.049689	0.141708	-0.129
std 731	1.242265	0.963176	1.199663	1.130308	1.286097	0.835
min 770	-2.354476	-1.803324	-2.332982	-2.222834	-3.315302	-1.973
25% 107	-0.921488	-0.595136	-0.729337	-0.936270	-0.463698	-0.688
50% 141	0.185016	0.235087	0.157994	0.037797	0.257667	-0.232
75% 539	1.284925	0.790579	1.020022	0.849992	1.369733	0.519
max 230	2.292472	2.389154	2.211789	2.521555	1.985425	1.518
17 \	12	13	14	15	16	
17 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 553	-0.225546	-0.117827	0.217126	0.019584	0.119587	-0.161
std 858	1.035350	1.281443	0.955494	0.834571	1.033305	1.237
min 941	-3.109823	-3.183078	-1.748208	-1.690709	-1.999276	-2.883
25% 197	-0.874243	-1.009867	-0.446718	-0.457395	-0.742380	-0.828
50% 459	-0.032883	-0.301077	0.137673	0.102965	-0.026089	-0.074
75% 963	0.290427	0.624355	0.820334	0.616294	0.778329	0.644
max 712	1.757267	3.233625	3.136039	1.423433	2.961835	2.209
	18	19				
count	50.000000	50.000000				
mean	0.267077	0.205524				
std	1.111285	0.858645				
min	-2.432191	-1.830377				
25%	-0.475018	-0.201549				
50%	0.244329	0.210627				
75%	0.992336	0.660021				
max	2.811399	2.497299				

Dataset: gen - nfold: 6/10

Train data

0 1 2 3 4

5 \					
count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean 0.034948 0.062969	0.022931	0.001797	0.055040	0.080748	
std 1.024961 1.020453	1.030424	0.961383	1.027323	1.049393	
min -2.515058 -2.966130	-2.433603	-2.647789	-2.530270	-3.223148	
25% -0.656625 -0.565832	-0.757168	-0.612178	-0.628294	-0.650527	
50% -0.010015 0.096372	-0.054029	0.017096	0.049403	0.068448	
75% 0.739349 0.806209	0.633139	0.641902	0.741273	0.767130	
max 3.594499 3.432993	3.039572	3.003953	2.619359	2.712419	
6	7	8	9	10	
count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean -0.038416 -0.070187	-0.017512	-0.009348	0.007595	-0.020109	
std 1.183650 0.947522	1.016225	1.033119	1.001166	1.193580	
min -3.326552 -2.428047	-2.736625	-3.060349	-3.021813	-3.315302	
25% -1.024900 -0.727375	-0.706993	-0.661007	-0.720322	-0.880605	
50% -0.113862 -0.104708	0.001030	-0.055719	0.024779	0.078181	
75% 0.889160 0.618305	0.612958	0.698088	0.666772	1.041532	
max 3.023143 2.664877	2.731177	3.080764	3.135951	2.544278	
12	13	14	15	16	
17 \ count 450.000000	450.000000	450.000000	450.000000	450.000000	4
50.000000 mean 0.002853 -0.073099	-0.000247	0.110314	-0.007301	0.022894	
std 0.970968 0.990868	1.230291	0.976518	0.952818	1.032903	
min -3.109823 -2.883941	-3.210675	-3.239524	-3.404818	-3.068310	
25% -0.647631 -0.768824	-0.998630	-0.537947	-0.699596	-0.740451	
50% -0.026798 -0.057160	-0.172144	0.129713	0.031218	0.015291	
75% 0.718462 0.577599	1.050397	0.776360	0.672380	0.721685	
max 2.706916	3.303948	3.446098	2.630985	3.094925	

3.264062

count mean std min 25% 50% 75% max	18 450.000000 0.037066 0.996717 -3.142108 -0.621608 0.088467 0.706239 2.811399	1 450.00000 0.05494 1.03900 -3.33548 -0.57752 0.03525 0.70120 3.49825	2 4 9 6 8 4			
Test d	ata 0	1	2	3	4	
5 \	· ·	_	2	J	-	
count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 063	-0.041817	-0.056865	-0.075211	-0.200620	0.003143	-0.151
std 135	0.997755	0.772851	0.815657	0.916578	0.967332	0.776
min 616	-1.947067	-1.650312	-1.658852	-2.518441	-2.538309	-1.813
25% 585	-0.836478	-0.508724	-0.600076	-0.818219	-0.638669	-0.711
50% 113	0.204223	-0.118773	-0.015056	-0.091489	-0.000904	-0.029
75%	0.719686	0.390336	0.423136	0.327996	0.470702	0.360
674 max 832	1.619961	1.706666	1.783282	1.906339	2.701731	1.500
032						
11 \	6	7	8	9	10	
11 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 873	0.040551	-0.095925	-0.057118	-0.039618	0.065027	-0.064
std 254	1.150558	0.925459	0.888901	1.127247	0.910720	1.048
min 408	-1.760252	-2.129410	-1.799736	-2.405565	-1.990374	-3.102
25% 006	-0.931524	-0.737415	-0.674054	-0.943659	-0.444629	-0.571
50%	-0.124982	0.014238	0.053458	-0.174143	0.027254	0.083
625 75%	0.900319	0.699310	0.443421	0.889941	0.665386	0.651
903 max 481	2.608173	2.297256	1.702336	2.301998	1.772622	2.104
	12	13	14	15	16	
17 \						
count 000	50.00000	50.000000	50.000000	50.000000	50.000000	50.000

		1133	igilinent (2) Tart (1			
mean	-0.196347	-0.051215	0.271786 -0	0.080304 -0.	212643 0.0	70
624 std	1.125488	1.131066	0.849783	0.966283 0.	913980 0.9	129
074	1.123100	1.131000	0.013703	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5	, 2)
min	-2.773482	-2.315388 -	-1.377981 -2	2.675548 -2.	260204 -2.0)45
862 25%	-0.897507	-0.945838 -	-0.276254 -0	0.641910 -0.	809100 -0.5	.1 <i>4</i>
692	-0.037307	-0.743030	-0.2/0254 -0	J.041J10 -0.	-0.5	,14
50%	-0.234161	0.012838	0.152490 -	0.007452 -0.	142092 0.0	79
495 75%	0.498659	0.745972	1.005421	0 500476 0	205000 0 0) E 2
167	0.496639	0.745972	1.005421	0.500476 0.	295900 0.8	000
max	2.373443	2.349200	2.104381	1.887152 1.	831406 1.8	390
737						
	18	19				
count	50.000000	50.000000				
mean	-0.105659	-0.161918				
		0.836319				
		-1.861160				
25%		-0.768410				
50%	-0.132029	-0.142474				
75%	0.833180	0.479297				
max	2.810356	1.858929				
Datase Train			2	2	4	
5 \	0	1	2	3	4	
count 50.000	450.000000	450.000000	450.000000	450.000000	450.000000	4
	0.036740	0.014916	-0.006072	0.007583	0.069091	
	1.017976	1.004621	0.944245	1.010129	1.036955	
min -2.966	-2.515058	-2.433603	-2.647789	-2.530270	-3.223148	
25% -0.612	-0.647959	-0.724340	-0.611001	-0.672724	-0.648860	
	-0.004579	-0.042863	0.014514	0.023268	0.068448	
	0.748852	0.621871	0.598635	0.717413	0.703074	
0.7467						
max 2.6335		3.012955	3.003953	2.619359	2.712419	
	6	7	8	9	10	
11 \						
	450.000000	450.000000	450.000000	450.000000	450.000000	4
	-0.046243	-0.022292	-0.023175	0.008486	-0.007191	
		1.002691	0.994802	1.018478	1.160975	
stu	11101207					

0.9649	37								
		-2.736625	-3.0603	349	-3.021	813	-3.31	5302	
-3.102		21,0002			0.021	010	0.01	3002	
		-0.706430	0 -0.6614	185	-0.748	013	-0.83	6248	
	375	00,0010			00,10	V _ V		0 - 1 0	
		0.013668	3 -0.061	167	0.009	211	0.05	4986	
-0.119		0.013000	0.001		0.003		0.03	1300	
		0.626563	0 6589	225	0 691	254	n 98	6144	
0.6395		0.02030.	0.0500	123	0.001	234	0.70	0144	
		2.73117	7 3 000	761	2 125	051	2.54	1279	
2.2315		2.75117	3.000	/ 0 4	3.133	931	2.54	42/0	
2.2313	73								
	12	13	3	1 /		15		16	
17 \	12	1.	,	14		13		10	
	4E0 000000	450 00000	150 000	200	450 000	000	4E0 00	0000	1
		450.00000	450.0000	000	450.000	000	450.00	0000	4
50.000					0 01 5	0.45	0 01	0.650	
		-0.020293	0.110	/23	-0.01/	04/	-0.01	06/9	
-0.045									
		1.193027	0.9668	364	0.967	518	1.00	6980	
0.9923									
		-3.210675	-3.2395	524	-3.404	818	-3.06	8310	
-2.883									
		-0.993650	-0.574	768	-0.710	041	-0.74	2380	
-0.721	050								
50%	-0.042304	-0.131162	0.1220	016	0.028	767	-0.01	4262	
0.0076	54								
75%	0.695672	0.973173	0.7913	351	0.670	164	0.69	1821	
0.6178	35								
max	2.706916	3.233625	3.4460	98	2.630	985	2.96	1835	
3.2640	62								
	18	19)						
count	450.000000	450.000000)						
mean	0.000724	0.039868							
std	1.019778								
min	-3.389571								
25%	-0.658369								
50%	0.061362	0.035258							
75%	0.706239	0.663925							
	2.811399	3.498259							
max		3.49023	,						
Test d		1	2		2		4		
- \	0	1	2		3		4		
5 \	F0 000000	F0 000000	F0 000000	- 0		- 0	00000	50 0	
count	50.000000	50.000000	50.000000	50	.000000	50.	000000	50.0	000
000									
mean	-0.057950	0.015266	-0.004389	0	.226494	0.	108052	-0.0	48
849									
std	1.059930	1.041302	0.984888	1	.084955	1.	085196	0.9	90
432									
min	-2.502781	-1.424634	-2.227829	-2	.388802	-2.	906092	-2.0	60
752									
25%	-0.742419	-0.708514	-0.547763	-0	.311879	-0.	644718	-0.5	65
832									
50%	-0.059863	-0.154268	0.142939	0	.129766	0.	037278	-0.2	06

659						
75% 525	0.536716	0.363766	0.641943	0.949866	0.926968	0.277
max	2.175765	3.039572	1.894596	2.500452	2.183237	3.432
993						
	6	7	8	9	10	
11 \ count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000						
mean 327	0.110992	-0.052904	0.067326	-0.047643	-0.051230	0.025
std	1.336908	1.054339	1.223417	0.974394	1.240060	0.885
123 min	-3.326552	-1.660284	-2.310975	-2.174052	-3.154704	-2.317
728	0.004500	0 710110	0 712076	0.001067	0 024754	0.556
25% 569	-0.984599	-0.712110	-0.713976	-0.801967	-0.824754	-0.556
50% 968	0.236644	-0.141543	0.141037	-0.019932	0.103387	-0.027
75%	1.131140	0.470471	1.048520	0.619165	1.015582	0.552
066 max	2.626074	2.654571	2.658719	1.732563	1.575914	2.664
877	21020071	21031371	21030713	11,0200	11373711	21001
	12	13	14	15	16	
17 \	F0 000000	F0 000000	F0 000000	F0 000000	F0 000000	50.000
count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 432	-0.035863	0.129199	0.268108	0.007416	0.089507	-0.176
std	1.072285	1.445216	0.946171	0.824246	1.166897	0.916
108 min	-2.635559	-2.648808	-2.261836	-2.450310	-1.812295	-2.186
798						
25% 092	-0.668375	-1.045445	-0.417215	-0.549693	-0.774563	-0.851
50%	-0.085373	-0.151277	0.440333	0.067219	0.069451	-0.213
254 75%	0.801315	1.475864	0.983746	0.638759	0.674098	0.519
258 max	2.374274	3.303948	1.989304	1.458285	3.094925	1.911
468	2.3/12/1	3.303740	1.707304	1.450205	3.094923	1.711
	18	19				
count	50.000000	50.000000				
mean	0.221421	-0.026251				
std	1.016364	1.165788				
min	-1.813266	-2.402426				
25% 50%	-0.549969 0.331074	-0.677957 -0.029731				
75%	0.773438	0.600520				
max	2.222720	2.289408				

Dataset: gen - nfold: 8/10 Train data

Train data					
5 \	1	2	3	4	
count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean -0.006700 0.050440	0.023016	-0.006120	0.021239	0.054742	
std 1.008438 1.003928	0.994951	0.952849	1.028801	1.047196	
min -2.515058 -2.966130	-2.433603	-2.647789	-2.530270	-3.223148	
25% -0.691143 -0.559330	-0.688381	-0.608366	-0.680306	-0.662161	
50% -0.015535 0.107385	-0.042863	0.014514	0.024608	0.048451	
75% 0.684741 0.741408	0.590625	0.620679	0.707981	0.711960	
max 2.548451 3.432993	3.039572	3.003953	2.619359	2.712419	
6	7	8	9	10	
11 \					
count 450.000000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean -0.021810 -0.067294	-0.023670	-0.032432	-0.004865	-0.024825	
std 1.167293 0.962153	1.008217	1.019983	1.009422	1.156159	
min -3.326552 -3.102408	-2.736625	-3.060349	-3.021813	-3.315302	
25% -0.976854 -0.713709	-0.706993	-0.673817	-0.757163	-0.829435	
50% -0.083149 -0.086521	0.013188	-0.074047	-0.028831	0.048201	
75% 0.887912 0.633333	0.615801	0.680169	0.691254	0.940381	
max 2.639439 2.664877	2.731177	3.080764	2.726222	2.544278	
12	13	14	15	16	
17 \ count 450.000000	450.000000	450.000000	450.000000	450.000000	4
50.000000 mean -0.016083	0.015617	0.145993	-0.013583	-0.006326	
-0.056327 std 1.005443	1.215894	0.980495	0.944013	1.034905	
0.970464 min -3.109823	-3.210675	-3.239524	-3.404818	-3.068310	
-2.883941 25% -0.693880	_0.993035	_0_492080	-0.653201	-0.775738	
-0.746687	-0.773033	-0.472000	-0.033201	-0.113130	
50% -0.032929	-0.063395	0.168298	0.033666	-0.012593	

0 007	4 = 1		8			
-0.007		1 00757	6 0 0001		750 0 71	F 4 7 0
75%	0.718462	1.02757	6 0.8091	60 0.638	3/59 0./1	.5479
0.6330		2 2224	2 1160		.1.07	4005
max	2.588905	3.30394	8 3.4460	98 2.253	3.09	14925
2.5986	36					
			_			
	18		9			
count	450.000000					
mean	0.026970					
std		1.03169				
min	-3.389571					
25%	-0.633296	-0.57927	7			
	0.069620		9			
75%	0.713305	0.68729	2			
max	2.811399	3.49825	9			
Test d	ata					
	0	1	2	3	4	
5 \						
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000						
mean	0.333016	-0.057634	-0.003960	0.103597	0.237191	-0.038
302						
std	1.096725	1.120496	0.905778	0.930627	0.976166	0.971
473						
min	-1.942028	-2.409782	-1.906511	-1.799940	-1.927679	-2.226
213						
25%	-0.389660	-1.068046	-0.601492	-0.538157	-0.430618	-0.730
115	0.00000	11000010	00001132	0.000107	00100010	01,00
50%	0.191112	-0.133728	0.019083	0.188662	0.150188	-0.090
879	***************************************	01100110	0.023000	0.120002	0.120.100	
75%	1.141918	0.669761	0.601928	0.893631	0.792581	0.701
651	1.111710	0.003701	0.001920	0.00001	0.752501	0.701
max	3.594499	2.184190	2.287830	1.864179	2.454954	1.795
237	3.374477	2.104170	2.207030	1.0041/2	2.434734	1.75
237						
	6	7	8	9	10	
11 \	O .	,	O	,	10	
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000	30.00000	30.00000	30.00000	30.00000	30.00000	30.000
	-0.108898	-0.040509	0 150624	0.072516	0.107470	0 000
mean	-0.108898	-0.040509	0.150634	0.072516	0.10/4/0	-0.090
904	1 204102	1 005107	1 004202	1 055005	1 075005	0 017
std	1.294182	1.005197	1.004293	1.055995	1.275035	0.917
779	0 000610	0 500050	0 150601	0 100060	0.056504	0 001
min	-2.070612	-2.588259	-2.150621	-2.139863	-2.356504	-2.031
530						
25%	-1.071386	-0.764361	-0.480396	-0.803103	-1.043205	-0.633
569						
50%	-0.422645	-0.004554	0.062777	0.082652	0.288597	-0.104
311						
75%	0.907700	0.752983	0.681906	0.654627	1.298378	0.438
982					_	
max	3.023143	1.639151	2.770888	3.135951	2.394142	1.721
826						

	12	13	14	15	16	
17 \						
count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 323	-0.025923	-0.193992	-0.049324	-0.023762	0.050334	-0.080
std 288	0.823844	1.250621	0.799833	1.044777	0.919469	1.117
min	-2.355433	-2.826211	-1.591517	-2.300765	-1.936547	-2.836
018 25%	-0.526708	-1.041973	-0.632451	-0.751112	-0.565006	-0.838
208 50%	-0.199222	-0.675497	-0.126280	-0.047126	0.051282	-0.141
586 75%	0.549039	0.972225	0.640799	0.826880	0.648137	0.423
191 max	2.706916	2.064077	1.652798	2.630985	2.638585	3.264
062						
	18	19				
count	50.000000	50.000000				
mean	-0.014796	-0.236778				
std	0.942014	0.893632				
min	-2.677941	-2.444144				
25%	-0.684343	-0.778016				
50%	0.078252	-0.225821				
75%		0.483833				
max	2.149012	1.410672				
max	2.149012	1.410072				
Datase Train	t: gen - nf	old: 9/10				
IIaIII	_					
5 \	0	1		2	3	4
	-	1			-	_
50.000	450.000000 000	1 450.000000	450.0000	00 450.000	0000 450.00	00000 4
	450.000000 000 0.023723	1 450.000000 0.009562	450.0000		0000 450.00 5225 0.09	95560
50.000 mean 0.0252	450.000000 000 0.023723 89 1.028938	0.009562	450.0000 -0.0132	00 450.000	0000 450.00 5225 0.09	00000 4
50.000 mean 0.0252 std 0.9995	450.000000 000 0.023723 89 1.028938 85 -2.515058	0.009562	450.0000 -0.0132 0.9385	00 450.000 05 0.036 45 1.025	0000 450.00 5225 0.09 5710 1.02	95560 26697
50.000 mean 0.0252 std 0.9995 min	450.000000 000 0.023723 89 1.028938 85 -2.515058 130 -0.661821	0.009562 1.011822 -2.433603	450.0000 -0.0132 0.9385 -2.6477	00 450.000 05 0.036 45 1.025 89 -2.530	0000 450.00 5225 0.09 5710 1.02 5270 -2.90	95560 26697
50.000 mean 0.0252 std 0.9995 min -2.966 25% -0.642 50%	450.000000 000 0.023723 89 1.028938 85 -2.515058 130 -0.661821 141 -0.015535	0.009562 1.011822 -2.433603 -0.723217	450.0000 -0.0132 0.9385 -2.6477 -0.6110	00 450.000 05 0.036 45 1.025 89 -2.530	0000 450.00 0225 0.09 0710 1.02 0270 -2.90 0300 -0.62	00000 4 95560 26697 06092
50.000 mean 0.0252 std 0.9995 min -2.966 25% -0.642 50% 0.0671 75%	450.000000 000 0.023723 89 1.028938 85 -2.515058 130 -0.661821 141 -0.015535 31 0.719686	0.009562 1.011822 -2.433603 -0.723217 -0.070331	450.0000 -0.0132 0.9385 -2.6477 -0.6110 0.0190	00 450.000 05 0.036 45 1.025 89 -2.530 01 -0.660 83 0.041	0000 450.00 0225 0.09 0710 1.02 0270 -2.90 0300 -0.62 0.08	00000 4 95560 26697 06092 24044
50.000 mean 0.0252 std 0.9995 min -2.966 25% -0.642 50% 0.0671 75% 0.7143	450.000000 000 0.023723 89 1.028938 85 -2.515058 130 -0.661821 141 -0.015535 31 0.719686 48 3.594499	0.009562 1.011822 -2.433603 -0.723217 -0.070331	450.0000 -0.0132 0.9385 -2.6477 -0.6110 0.0190 0.6020	00 450.000 05 0.036 45 1.025 89 -2.530 01 -0.660 83 0.041 79 0.737	0000 450.00 0225 0.09 0710 1.02 0270 -2.90 0300 -0.62 0148 0.08 0938 0.74	00000 4 95560 26697 06092 24044 38074
50.000 mean 0.0252 std 0.9995 min -2.966 25% -0.642 50% 0.0671 75% 0.7143 max	450.000000 000 0.023723 89 1.028938 85 -2.515058 130 -0.661821 141 -0.015535 31 0.719686 48 3.594499	0.009562 1.011822 -2.433603 -0.723217 -0.070331 0.558387	450.0000 -0.0132 0.9385 -2.6477 -0.6110 0.0190 0.6020 3.0039	00 450.000 05 0.036 45 1.025 89 -2.530 01 -0.660 83 0.041 79 0.737	0000 450.00 0225 0.09 0710 1.02 0270 -2.90 0300 -0.62 0148 0.08 0938 0.74	00000 4 95560 26697 06092 24044 38074
50.000 mean 0.0252 std 0.9995 min -2.966 25% -0.642 50% 0.0671 75% 0.7143 max 3.4329	450.000000 000 0.023723 89 1.028938 85 -2.515058 130 -0.661821 141 -0.015535 31 0.719686 48 3.594499 93	0.009562 1.011822 -2.433603 -0.723217 -0.070331 0.558387 3.039572	450.0000 -0.0132 0.9385 -2.6477 -0.6110 0.0190 0.6020 3.0039	00 450.000 05 0.036 45 1.025 89 -2.530 01 -0.660 83 0.041 79 0.737 53 2.619	9000 450.00 9225 0.09 9710 1.02 9270 -2.90 9300 -0.62 938 0.74 9359 2.71	00000 4 95560 26697 06092 24044 38074 48359 12419

50.000000				
mean -0.0310		-0.042307	0.007403	-0.004214
std 1.1853 0.964401		1.022313	1.027091	1.173251
min -3.3265	52 -2.736625	-3.060349	-3.021813	-3.315302
-3.102408 25% -1.0317	34 -0.693011	-0.684833	-0.775204	-0.836271
-0.713709 50% -0.1238		-0.073023	0.010985	0.083188
-0.090765 75% 0.8974		0.625374	0.715077	0.986144
0.618305 max 3.0231 2.664877	2.731177	3.080764	3.135951	2.544278
	12 13	3 14	15	16
17 \				
count 450.0000 50.000000	450.000000	450.000000	450.000000	450.000000 4
mean -0.0317 -0.074372		0.131445	-0.011874	0.000624
std 0.9853 0.987903	1.225877	0.964733	0.959553	1.025045
min -3.1098 -2.883941	-3.183078	-3.239524	-3.404818	-3.068310
25% -0.6929 -0.764249	61 -0.998954	-0.501167	-0.699596	-0.740451
50% -0.0531 -0.064097		0.115239	0.027387	-0.012593
75% 0.6905 0.583738		0.815575	0.694127	0.691821
max 2.7069 3.264062	3.303948	3.446098	2.630985	3.094925
3.201002				
	18 19)		
count 450.0000	00 450.000000)		
mean 0.0088	41 0.011713	3		
std 1.0232				
min -3.3895				
25% -0.6470				
50% 0.0632				
75% 0.7062				
max 2.8113 Test data	3.498259			
lest data	1	2	3	4
5 \	<u> </u>	4	3	T
count 50.00000	0 50.000000	50.000000 5	0.000000 50.	000000 50.000
mean 0.05921	1 0.063457	0.059806 -	0.031280 -0.	130166 0.188
std 0.96172	0.973953	1.031235	0.962440 1.	151620 1.003
min -2.33915	9 -1.939914	-2.134426 -	1.679796 -3.	223148 -2.394

			6			
232 25%	-0.563672	-0.814068	-0.479487	-0.691738	-0.859833	-0.352
811 50% 251	0.110441	0.053726	-0.003525	-0.168635	-0.277699	0.244
75% 102	0.785789	0.699058	0.625490	0.464423	0.618434	0.933
max 239	2.227447	2.692643	2.368665	2.205885	2.222516	2.271
	6	7	8	9	10	
11 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 967	-0.025537	-0.265714	0.239510	-0.037899	-0.078028	-0.026
std 029	1.137284	1.008504	0.960640	0.888268	1.127806	0.895
min 600	-2.793221	-2.298243	-2.155828	-2.145933	-2.837208	-1.555
25% 187	-0.864647	-0.995150	-0.339074	-0.514536	-0.829435	-0.635
50%	-0.200039	-0.155741	0.094301	-0.044399	-0.054906	-0.037
465 75%	0.734890	0.463924	0.846494	0.470714	1.018460	0.657
946 max 874	2.273996	1.691462	2.949241	2.526021	1.971572	1.871
	12	13	14	15	16	
17 \ count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean	0.115253	0.075827	0.081607	-0.039147	-0.012213	0.082
081 std 734	1.012818	1.171993	0.976438	0.905487	1.017027	0.955
min	-2.179764	-3.210675	-1.986878	-2.055123	-2.450816	-2.020
142 25%	-0.570858	-0.896245	-0.480644	-0.664533	-0.794118	-0.640
479 50%	0.086052	0.118357	0.334026	0.086195	0.111097	0.266
736 75%	0.701044	1.020224	0.711403	0.504329	0.713471	1.000
791 max 532	2.588905	2.252081	1.760996	1.749939	1.841037	1.630
	18	19				

50%	0.247262	0.303599
75%	0.835712	0.774977
max	2.126456	2.700357

Dataset: gen - nfold: 10/10

Dataset: gen - r	fold: 10/10				
Train data					
5 \	1	2	3	4	
count 450.00000 50.000000	450.000000	450.000000	450.000000	450.000000	4
mean 0.02668	0.018825	0.023459	0.011582	0.066536	
std 1.04086 0.980666	1.017423	0.939421	1.021392	1.043558	
min -2.51505 -2.966130	-2.433603	-2.647789	-2.530270	-3.223148	
25% -0.66182 -0.526205	-0.739336	-0.567800	-0.683631	-0.648860	
50% -0.01001 0.107385	.5 -0.064273	0.060238	0.021160	0.063600	
75% 0.74885 0.739775	0.616571	0.621777	0.710096	0.703074	
	9 3.039572	3.003953	2.619359	2.712419	
11 \	7	8	9	10	
count 450.00000	0 450.000000	450.000000	450.000000	450.000000	4
	.3 -0.015703	-0.005737	0.000882	-0.019230	
std 1.19328 0.947967	1.008536	1.027191	1.023808	1.177062	
min -3.32655 -3.102408	-2.736625	-3.060349	-3.021813	-3.315302	
25% -1.03173 -0.641066	-0.693011	-0.661485	-0.775162	-0.833440	
50% -0.10377 -0.069446	0.022120	-0.044877	-0.009602	0.052684	
	0.626561	0.685562	0.666772	0.995299	
	2.731177	3.080764	3.135951	2.544278	
	.2 13	14	15	16	
17 \ count 450.00000	0 450.000000	450.000000	450.000000	450.000000	4
50.000000 mean -0.01348	0.009103	0.150704	-0.031062	0.002986	
-0.062844	.5 0.007103	0.130/04	0.031002	0.002300	
std 0.99608 0.986052	1.223123	0.970925	0.954590	1.025116	
min -3.10982	-3.210675	-3.239524	-3.404818	-3.068310	

		71	ssignment 21 11 art	1		
-2.883		0.00063	0 4041		0.41	
25%		-0.99863	0 -0.4841	163 –0.710	0041 -0.74	12380
-0.707		0 12700	0 1600	000)	2502
50%	-0.038385	-0.12708	5 0.1682	298 0.020	0631 -0.01	.2593
-0.067		1 04000	- 0.0146	0.60	250 0 70	1.605
		1.04022	5 0.8143	356 0.638	3/59 0./2	21685
0.5775						
	2.706916	3.30394	3.4460	98 2.630	985 3.09	4925
3.2640	62					
		_	_			
	18	1:				
count	450.000000					
mean	0.035993					
std	1.031553					
min	-3.389571	-3.33548	9			
25%	-0.663105	-0.66651	8			
50%	0.082181	0.03888	2			
75%	0.734925	0.65834	8			
max	2.811399					
Test d						
	0	1	2	3	4	
5 \						
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000						
mean	0.032585	-0.019912	-0.270172	0.190509	0.131047	-0.246
276	0.032303	0.013312	0.270172	0.130303	0.131017	0.210
	0.836508	0.919633	0.986959	0.990999	1.024370	1.131
403	0.030300	0.919033	0.900939	0.990999	1.024370	1.131
	1 010142	2 022010	2 206007	2 276017	2 017500	2 526
min	-1.919142	-2.032010	-2.396087	-2.3/091/	-2.017500	-2.536
563						
25%	-0.632911	-0.642941	-0.879084	-0.336533	-0.629139	-0.899
032						
50%	0.065036	-0.013714	-0.419932	0.130153	0.048048	-0.239
968						
75%	0.532069	0.554325	0.560949	0.993971	0.832003	0.716
057						
max	2.047575	1.852219	1.836540	1.973954	2.343747	1.716
865						
	6	7	8	9	10	
11 \						
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
000						
mean	-0.109770	-0.112213	-0.089617	0.020797	0.057122	-0.152
247	0.103770	00112210	0.003017	01020757	0.03,122	01132
std	1.054753	0.998111	0.947469	0.923170	1.090656	1.040
866	1.054755	0.000111	0.747403	0.723170	1.000000	1.040
	1 524065	2 464415	2 007252	1 004260	2 226001	1 001
min	-1.534965	-2.464415	-2.807253	-1.904268	-2.226001	-1.981
393		0 005155	0 ((000)	0 654550	0.000106	1 0 1 1
25%	-0.992201	-0.807175	-0.669386	-0.654550	-0.829126	-1.041
054						
50%	-0.225398	-0.194554	-0.111076	0.083974	0.078181	-0.217
631						
75%	0.726639	0.338091	0.616144	0.706976	0.952572	0.731

496						
max 996	2.261461	2.493480	1.710843	1.915901	2.098559	1.984
	12	13	14	15	16	
17 \						
count 000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000
mean 671	-0.049299	-0.135364	-0.091717	0.133550	-0.033476	-0.021
std 784	0.921525	1.193181	0.889897	0.939547	1.015845	0.983
min 882	-1.864570	-2.642507	-1.958835	-2.288876	-2.182213	-1.960
25% 561	-0.625902	-0.993650	-0.734582	-0.474516	-0.821377	-0.859
50% 554	-0.089135	-0.350251	-0.054190	0.043948	0.070567	0.138
75% 718	0.595613	0.686333	0.666393	0.883080	0.612214	0.754
max 604	1.774074	2.235496	1.685332	1.737713	2.074714	2.161
	18	19				
count	50.000000	50.000000				
mean	-0.096001	0.159925				
std	0.916736	0.943669				
min	-3.142108	-1.451373				
25%	-0.513807	-0.561864				
50%	-0.128926	-0.069843				
75%	0.542121	0.772346				
max	1.735289	2.601407				

Sometimes it's important to ensure you get equal samples of each class, particularly when the classes are imbalanced. Let's generate some data with a label skew and see what happens in cross-validation.

```
In [53]: #Let's make some skewed data where the instances with label 1 are very r
    (skew_gendata_d, skew_gendata_t) = datasets.make_classification(n_sample
    skew_gendata_data = pd.DataFrame(skew_gendata_d)
    skew_gendata_targets = pd.DataFrame(skew_gendata_t)
```

Question 3: Stratified folds (5 points)

- 1. Use the KFold cross-validation method and generate 10 folds (using random_state=20160121). What is the range of percentages for label 1 across the folds?
- 2. Use the StratifiedKFold cross-validation method and generate 10 folds (using

random_state=20160121). What is the range of percentages for label 1 across the folds?

Question 3 Answer

- 1. The range of percentages for label 1 is from 10.22% to 11.11% for the train data and from 8% to 16% for the test data
- 2. The range of percentages for label 1 is from 10.69% to 10.86% for the train data from 10% to 11.76% for the test data

```
Dataset: skew - nfold: 1/10
Train data
   401 / 450 = 89.1%
     49 / 450 = 10.9%
1
Name: 0, dtype: int64
Test data
0 	 45 / 50 = 90\%
1 5 / 50 = 10%
Name: 0, dtype: int64
Dataset: skew - nfold: 2/10
Train data
    403 / 450 = 89.56%
     47 / 450 = 10.44%
1
Name: 0, dtype: int64
Test data
  43 / 50 = 86%
1 7 / 50 = 14%
Name: 0, dtype: int64
Dataset: skew - nfold: 3/10
Train data
   403 / 450 = 89.56%
     47 / 450 = 10.44%
Name: 0, dtype: int64
Test data
0 43 / 50 = 86%
    7 / 50 = 14%
Name: 0, dtype: int64
Dataset: skew - nfold: 4/10
Train data
   400 / 450 = 88.89%
     50 / 450 = 11.11%
Name: 0, dtype: int64
Test data
   46 / 50 = 92%
    4 / 50 = 8%
Name: 0, dtype: int64
Dataset: skew - nfold: 5/10
Train data
   400 / 450 = 88.89%
     50 / 450 = 11.11%
Name: 0, dtype: int64
Test data
     46 / 50 = 92\%
      4 / 50 = 8%
Name: 0. dtvpe: int64
```

```
Dataset: skew - nfold: 6/10
Train data
0 	 404 / 450 = 89.78%
     46 / 450 = 10.22%
Name: 0, dtype: int64
Test data
   42 / 50 = 84%
1 8 / 50 = 16%
Name: 0, dtype: int64
Dataset: skew - nfold: 7/10
Train data
0 	 403 / 450 = 89.56%
    47 / 450 = 10.44%
Name: 0, dtype: int64
Test data
   43 / 50 = 86%
     7 / 50 = 14%
Name: 0, dtype: int64
Dataset: skew - nfold: 8/10
Train data
0 	 400 / 450 = 88.89%
     50 / 450 = 11.11$
Name: 0, dtype: int64
Test data
   46 / 50 = 92%
    4 / 50 = 8%
Name: 0, dtype: int64
Dataset: skew - nfold: 9/10
Train data
0 	 400 / 450 = 88.89%
     50 / 450 = 11.11%
Name: 0, dtype: int64
Test data
0 	 46 / 50 = 92%
     4 / 50 = 8%
Name: 0, dtype: int64
Dataset: skew - nfold: 10/10
Train data
     400 / 450 = 88.89%
     50 / 450 = 11.11%
Name: 0, dtype: int64
Test data
     46 / 50 = 92\%
      4 / 50 = 8%
1
```

```
Name: 0, dtype: int64
What is the range of percentages for label 1 across the folds?
The range of percentages for label 1 is
from 10.22% to 11.11% for the train data and
from 8% to 16% for the test data
2.
ataset: skew - nfold: 1/10
Train data
    401 / 449 = 89.31%
     48 / 449 = 10.69%
Name: 0, dtype: int64
Test data
    45 / 51 = 88.24%
     6 / 51 = 11.76%
Name: 0, dtype: int64
Dataset: skew - nfold: 2/10
Train data
   401 / 449 = 89.31%
     48 / 449 = 10.69%
Name: 0, dtype: int64
Test data
   45 / 51 = 88.24%
    6 / 51 = 11.76%
Name: 0, dtype: int64
Dataset: skew - nfold: 3/10
Train data
    401 / 449 = 89.31%
     48 / 449 = 10.69%
Name: 0, dtype: int64
Test data
   45 / 51 = 88.24%
     6 / 51 = 11.76%
Name: 0, dtype: int64
Dataset: skew - nfold: 4/10
Train data
    401 / 449 = 89.31%
     48 / 449 = 10.69%
Name: 0, dtype: int64
Test data
  45 / 51 = 88.24%
     6 / 51 = 11.76%
Name: 0, dtype: int64
```

```
Dataset: skew - nfold: 5/10
Train data
   401 / 449 = 89.31%
     48 / 449 = 10.69%
Name: 0, dtype: int64
Test data
0 	 45 / 51 = 88.24%
1 6 / 51 = 11.76%
Name: 0, dtype: int64
Dataset: skew - nfold: 6/10
Train data
   401 / 450 = 89.11%
     49 / 450 = 10.89%
Name: 0, dtype: int64
Test data
   45 / 50 = 90%
    5 / 50 = 10%
Name: 0, dtype: int64
Dataset: skew - nfold: 7/10
Train data
0 	 402 / 451 = 89.14%
     49 / 451 = 10.86%
Name: 0, dtype: int64
Test data
   44 / 49 = 89.80%
    5 / 49 = 10.20%
Name: 0, dtype: int64
Dataset: skew - nfold: 8/10
Train data
   402 / 451 = 89.14%
0
    49 / 451 = 10.86%
Name: 0, dtype: int64
Test data
0 	 44 / 49 = 89.8%
     5 / 49 = 10.2%
Name: 0, dtype: int64
Dataset: skew - nfold: 9/10
Train data
0 	 402 / 451 = 89.14%
     49 / 451 = 10.86%
Name: 0, dtype: int64
Test data
0 	 44 / 49 = 89.8%
     5 / 49 = 10.2%
Name: 0, dtype: int64
```

```
Dataset: skew - nfold: 10/10
Train data
0    402 / 451 = 89.14%
1    49 / 451 = 10.86%
Name: 0, dtype: int64
Test data
0    44 / 49 = 89.8%
1    5 / 49 = 10.2%
Name: 0, dtype: int64
```

What is the range of percentages for label 1 across the folds? The range of percentages for label 1 is from 10.69% to 10.86% for the train data from 10% to 11.76% for the test data

```
Dataset: skew - nfold: 1/10
Train data
     401
1
      49
Name: 0, dtype: int64
Test data
    45
      5
1
Name: 0, dtype: int64
Dataset: skew - nfold: 2/10
Train data
    403
1
      47
Name: 0, dtype: int64
Test data
0
    43
1
Name: 0, dtype: int64
Dataset: skew - nfold: 3/10
Train data
0
    403
1
      47
Name: 0, dtype: int64
Test data
     43
1
      7
Name: 0, dtype: int64
Dataset: skew - nfold: 4/10
Train data
     400
0
      50
Name: 0, dtype: int64
Test data
     46
1
      4
Name: 0, dtype: int64
Dataset: skew - nfold: 5/10
Train data
0
     400
      50
Name: 0, dtype: int64
Test data
0
     46
1
Name: 0, dtype: int64
```

```
Dataset: skew - nfold: 6/10
Train data
     404
1
      46
Name: 0, dtype: int64
Test data
     42
1
      8
Name: 0, dtype: int64
Dataset: skew - nfold: 7/10
Train data
     403
      47
1
Name: 0, dtype: int64
Test data
     43
      7
Name: 0, dtype: int64
Dataset: skew - nfold: 8/10
Train data
     400
      50
Name: 0, dtype: int64
Test data
     46
0
Name: 0, dtype: int64
Dataset: skew - nfold: 9/10
Train data
     400
0
      50
Name: 0, dtype: int64
Test data
     46
Name: 0, dtype: int64
Dataset: skew - nfold: 10/10
Train data
0
     400
      50
Name: 0, dtype: int64
Test data
     46
1
      4
Name: 0, dtype: int64
```

In [56]: # Use the StratifiedKFold cross-validation method and generate 10 folds
What is the range of percentages for label 1 across the folds?
from sklearn.cross_validation import StratifiedKFold

kfolds = cross_validation.StratifiedKFold(np.reshape(skew_gendata_target fold = 0
for train, test in kfolds:
 fold += 1
 train_fold = pd.DataFrame(skew_gendata_t[train])
 test_fold = pd.DataFrame(skew_gendata_t[test])

print "Dataset: " + dataset + " - nfold: " + str(fold) + "/" + str(n print "Train data"
 print train_fold[0].value_counts(sort=False)
 print "Test data"
 print test_fold[0].value_counts(sort=False)
 print "\n"

```
Dataset: skew - nfold: 1/10
Train data
     401
1
      48
Name: 0, dtype: int64
Test data
     45
      6
Name: 0, dtype: int64
Dataset: skew - nfold: 2/10
Train data
    401
1
      48
Name: 0, dtype: int64
Test data
     45
1
      6
Name: 0, dtype: int64
Dataset: skew - nfold: 3/10
Train data
0
    401
1
      48
Name: 0, dtype: int64
Test data
     45
1
      6
Name: 0, dtype: int64
Dataset: skew - nfold: 4/10
Train data
0
     401
      48
Name: 0, dtype: int64
Test data
     45
      6
Name: 0, dtype: int64
Dataset: skew - nfold: 5/10
Train data
     401
0
      49
Name: 0, dtype: int64
Test data
     45
0
1
      5
Name: 0, dtype: int64
```

```
Dataset: skew - nfold: 6/10
Train data
     401
      49
1
Name: 0, dtype: int64
Test data
     45
1
      5
Name: 0, dtype: int64
Dataset: skew - nfold: 7/10
Train data
     402
      49
1
Name: 0, dtype: int64
Test data
     44
      5
Name: 0, dtype: int64
Dataset: skew - nfold: 8/10
Train data
     402
      49
Name: 0, dtype: int64
Test data
     44
0
Name: 0, dtype: int64
Dataset: skew - nfold: 9/10
Train data
0
     402
      49
Name: 0, dtype: int64
Test data
     44
      5
Name: 0, dtype: int64
Dataset: skew - nfold: 10/10
Train data
     402
      49
Name: 0, dtype: int64
Test data
     44
1
      5
Name: 0, dtype: int64
```

One of the techniques we discussed was the bootstrap: a method to get a training set the size of our dataset while still getting useful training data. You can use the resample (nethod from sklearn.org/stable/modules/generated/sklearn.utils.resample.html) method from sklearn's util module to implement the bootstrap. Resample will generate a training set for you and, by default, make it the same size as the dataset. The only remaining challenge is figuring out what to put in the test set. You can use the index attribute of a pandas DataFrame to help you there...

Question 4: The Bootstrap (10 points)

- Generate a bootstrap based train-test split for the three datasets (gendata, skew_gendata, and iris) using the resample method. Remember to set random state=20160121
- 2. Compute the label proportions in the train and test sets. How do they compare?
- 3. Compute the descriptive statistics for each of the attributes. Which attribute has the largest difference in mean across the train and test sets?

Question 4 Answers

- 1. See code below
- 2. Gendata label proportions are not great, but they are close enough to be considered okay for our experiments.

See cell bellow for formatting

3. 15th attribute has the largest difference in mean across the train and test sets						

Train data

0 259 / 500 = 52%

1 241 / 500 = 48%

Name: 0, dtype: int64

Test data

0 80 / 175 = 46%

1 95 / 175 = 54%

Name: 0, dtype: int64

GENDATA

0	1	2	3	4
5 \ count 500.000000	500.000000	500.000000	500.000000	500.000000
500.000000 mean -0.003139	-0.013427	0.021906	0.035423	0.012670
0.096852 std 0.991457	1.020868	1.018835	0.981776	1.041781
1.003704 min -2.421082 -2.536563	-2.433603	-2.538242	-2.518441	-3.223148
25% -0.720644 -0.535868	-0.757001	-0.615010	-0.571672	-0.740107
50% -0.013046 0.171539	-0.070751	-0.000330	0.008836	0.047413
75% 0.661775 0.862462	0.620804	0.679261	0.723654	0.644627
max 3.594499 3.432993	3.039572	3.003953	2.619359	2.454954
6	7	8	9	10
11 \ count 500.000000	500 000000	500.000000	500 000000	500 000000
500.000000				
mean -0.023746 -0.075621	-0.068885	0.042949	0.004360	0.024588
std 1.180548 0.979879	1.008090	1.026896	0.973219	1.174396
min -3.326552	-2.588259	-2.807253	-2.690036	-3.315302
25% -1.023971 -0.738850	-0.783844	-0.652606	-0.718984	-0.843480
50% -0.103775 -0.085270	-0.064137	0.099790	0.030052	0.078181
	0.643163	0.803920	0.658938	1.040590
0.649183 max 3.023143 2.664877	2.731177	2.949241	3.135951	2.544278
12	13	14	15	16
17 \ count 500.000000 500.000000	500.000000	500.000000	500.000000	500.000000

	Assig	gnment+2+-+Part+1		
mean -0.024864 -0.027178	-0.043657	0.075582	0.058304	-0.033319
std 0.961753	1.191530	0.933707	0.965128	0.975602
1.013068 min -3.109823	-3.210675	-2.261836	-3.404818	-2.450816
-2.883941 25% -0.624986	-0.998630	-0.612217	-0.643052	-0.759561
-0.800636 50% -0.091031	-0.229074	0.085333	0.101073	-0.032146
0.063717 75% 0.695669	0.955272	0.796331	0.798477	0.619367
0.642004 max 2.706916	3.233625	2.760497	2.630985	3.094925
3.264062				
18	19			
count 500.000000				
mean 0.057141				
std 1.032833				
min -3.389571	-3.335489			
25% -0.593457	-0.728227			
50% 0.118198	-0.007640			
75% 0.708951				
max 2.811399	3.498259			
0	1	2	3	4
	1	2	3	4
5 \	155 00000	155 00000	155 00000	155 00000
count 175.000000 175.000000	175.000000		175.000000	175.000000
mean 0.005619 0.051515	0.093439	0.032655	0.026498	0.168349
std 1.050662 1.011249	0.974157	0.855438	1.087417	1.041658
min -2.515058 -2.966130	-1.888726	-2.647789	-2.530270	-2.538309
25% -0.647823 -0.511488	-0.514815	-0.510086	-0.699466	-0.490877
50% -0.029770 0.088291	0.019143	0.069402	0.075448	0.123224
75% 0.725104 0.691024	0.621529	0.613381	0.740656	0.841647
max 2.370750 2.421206	3.012955	2.391449	2.479612	2.712419
_	_	-	•	• •
6	7	8	9	10
11 \				
count 175.000000 175.000000	175.000000	175.000000	175.000000	175.000000
mean -0.061467 -0.041691	0.029711	-0.075015	0.022355	-0.108282
std 1.202664 0.892856	0.999409	0.995259	1.080562	1.138179
min -2.798720 -2.250563	-2.736625	-3.060349	-3.021813	-3.265268
25% -1.048574	-0.599275		-0.800349	-0.823582

0.600040				
-0.600243	0.060530	0 100000	0 010445	0 106140
50% -0.260886	0.060532	-0.100929	-0.012445	-0.106142
-0.130859 75% 0.859118	0.601171	0.469951	0.770578	0.702921
0.552187	0.0011/1	0.409931	0.770376	0.702921
max 2.639439	2.366253	3.080764	2.726222	1.985425
1.873812	21000230	3,000,01	20,20222	14,703.123
12	13	14	15	16
17 \				
count 175.000000	175.000000	175.000000	175.000000	175.000000
175.000000				
mean 0.006369	0.089047	0.150264	-0.100891	0.078559
-0.122936	1 047470	1 010501	0 000040	1 006460
std 1.015259 0.907329	1.247470	1.010591	0.898343	1.096469
min -2.451936	-3.183078	-3.239524	-2.446034	-3.068310
-2.852202	3.103070	3.237324	2.440034	3.000310
25% -0.731692	-0.912062	-0.470415	-0.725092	-0.759722
-0.683651				
50% 0.010469	0.106732	0.208500	-0.067307	0.081378
-0.116021				
75% 0.754626	1.068886	0.775779	0.522074	0.869717
0.439826	2 222242	2 446000	0 050105	0.061005
max 2.373247 2.598636	3.303948	3.446098	2.25310/	2.961835
2.390030				
18	19			
count 175.000000	175.000000			
mean -0.087160	0.027925			
std 0.969802	1.060347			
min -2.479270	-3.110583			
25% -0.762449	-0.576496			
50% 0.043538	0.031946			
75% 0.585937	0.723740			
max 2.477594	2.865515			

SKEW

Skew data label proportions are not very good, especially the under representation of label 0 in the test set. It's under represented which means that our model might not make the right predictions accordingly

15th attribute has the largest difference in mean across the train and test sets

```
Train data Skew

0    458 / 500 = 92%

1    42 / 500 = 8%

Name: 0, dtype: int64

Test data Skew

0    149 / 175 = 85%

1    26 / 175 = 15%
```

Name: 0, dtype: int64

Name: 0, dtype: in	.T64			
0	1	2	3	4
5 \ count 500.000000	500.000000	500.000000	500.000000	500.000000
500.000000 mean -0.003139	-0.536252	0.021906	0.035423	0.012670
0.096852 std 0.991457 1.003704	0.767778	1.018835	0.981776	1.041781
min -2.421082 -2.536563	-2.433603	-2.538242	-2.518441	-3.223148
25% -0.720644 -0.535868	-1.192733	-0.615010	-0.571672	-0.740107
50% -0.013046 0.171539	-0.456621	-0.000330	0.008836	0.047413
75% 0.661775 0.862462	0.031560	0.679261	0.723654	0.644627
max 3.594499 3.432993	1.763571	3.003953	2.619359	2.454954
6	7	8	9	10
count 500.000000 500.000000	500.000000	500.000000	500.000000	500.000000
mean 0.026556 -0.075621	-0.068885	0.042949	0.004360	0.711829
std 1.088736 0.979879	1.008090	1.026896	0.973219	0.806941
min -1.911546 -3.102408	-2.588259	-2.807253	-2.690036	-1.990374
25% -0.928071 -0.738850	-0.783844	-0.652606	-0.718984	0.184751
50% -0.060348 -0.085270	-0.064137	0.099790	0.030052	0.844790
75% 0.949863 0.649183	0.643163	0.803920	0.658938	1.347421
max 3.023143 2.664877	2.731177	2.949241	3.135951	2.544278
12	13	14	15	16
17 \ count 500.000000	500.000000	500.000000	500.000000	500.000000
500.000000 mean -0.024864	-0.820048	0.075582	0.058304	-0.033319
-0.027178 std 0.961753	0.720215	0.933707	0.965128	0.975602
1.013068 min -3.109823	-3.210675	-2.261836	-3.404818	-2.450816
-2.883941 25% -0.624986	-1.133534	-0.612217	-0.643052	-0.759561
-0.800636 50% -0.091031	-0.955740	0.085333	0.101073	-0.032146
0.063717				

		Assı	gnment+2+-+Part+1		
75% 0.642004	0.695669	-0.698445	0.796331	0.798477	0.619367
	2.706916	1.877995	2.760497	2.630985	3.094925
3.264062					
	18	19			
count 50	00.00000	500.000000			
	0.057141				
		1.002647			
	-3.389571				
	-0.593457				
	0.118198	-0.007640			
	0.708951	0.590290			
max	2.811399	3.498259	•	_	
5	0	1	2	3	4
	75.000000	175.000000	175 000000	175.000000	175 000000
175.00000	00				
mean 0.051515	0.005619	-0.398621	0.032655	0.026498	0.168349
std 1.011249	1.050662	0.812624	0.855438	1.087417	1.041658
min -2.966130	-2.515058	-2.046301	-2.647789	-2.530270	-2.538309
25% -	-0.647823	-1.060373	-0.510086	-0.699466	-0.490877
	-0.029770	-0.362135	0.069402	0.075448	0.123224
0.088291 75%	0.725104	0.147743	0.613381	0.740656	0.841647
0.691024 max	2.370750	2.245763	2.391449	2.479612	2.712419
2.421206					
11	6	7	8	9	10
	75.000000	175.000000	175.000000	175.000000	175.000000
	-0.094514	0.029711	-0.075015	0.022355	0.560796
		0.999409	0.995259	1.080562	0.919052
min -		-2.736625	-3.060349	-3.021813	-2.552006
	-1.027302	-0.599275	-0.683936	-0.800349	-0.074823
	-0.336453	0.060532	-0.100929	-0.012445	0.721716
-0.130859 75%		0.601171	0.469951	0.770578	1.240600
0.552187	2.626074	2.366253	3.080764	2.726222	2.017827
1.873812		2.300233	3.000704	2.,20222	2.01/02/
	12	13	14	15	16
17	\				

		175.000000	175.000000	175.000000	175.000000
175.00					
mean	0.006369	-0.717808	0.150264	-0.100891	0.078559
-0.122	936				
std	1.015259	0.992545	1.010591	0.898343	1.096469
0.9073	29				
min	-2.451936	-3.183078	-3.239524	-2.446034	-3.068310
-2.852	202				
25%	-0.731692	-1.193541	-0.470415	-0.725092	-0.759722
-0.683	651				
50%	0.010469	-0.946576	0.208500	-0.067307	0.081378
-0.116	021				
75%	0.754626	-0.325370	0.775779	0.522074	0.869717
0.4398	26				
max	2.373247	3.303948	3.446098	2.253107	2.961835
2.5986	36				
	18	19			
count	175.000000	175.000000			
mean	-0.087160	0.027925			
std	0.969802	1.060347			
min	-2.479270	-3.110583			
		-0.576496			
		0.031946			
	0.585937				
75%	0.585937	0.723740			

2.477594 2.865515

IRIS

max

Iris data label proportions seem good. Better than the other two datasets

2nd attribute has the largest difference in mean across the train and test sets

```
Train data Iris
```

0 54 / 150 = 36%

1 50 / 150 = 33%

2 46 / 150 = 31%

Name: 0, dtype: int64

Test data Iris

0 20 / 54 = 37%

1 16 / 54 = 30%

2 18 / 54 = 33.%

Name: 0, dtype: int64

Train data Iris

	0	1	2	3
count	150.000000	150.000000	150.000000	150.000000
mean	5.815333	3.018000	3.649333	1.128667
std	0.782590	0.398162	1.731498	0.748810

		Assı	gnment+2+-+Part+1		
min	4.400000	2.000000	1.00000	0.100	000
25%	5.100000	2.800000	1.50000	0.200	000
50%	5.800000	3.000000	4.35000	1.300	000
75%	6.375000	3.300000	5.00000	1.800	000
max	7.700000	4.400000	6.90000	2.500	000
Test d	ata Iris				
	0	1	2	3	
count	54.000000	54.000000 5	54.000000	54.000000	
mean	5.783333	3.114815	3.618519	1.157407	
std	0.855559	0.459864	1.845042	0.802261	
min	4.300000	2.200000	1.100000	0.100000	
25%	5.100000	2.800000	1.500000	0.225000	
50%	5.600000	3.000000	4.050000	1.300000	
75%	6.300000	3.475000	5.100000	1.800000	
max	7.900000	4.200000	6.700000	2.500000	

```
In [57]: from sklearn.utils import resample
    boot_gendata_train = resample(gendata_targets, random_state=20160121)
    boot_gendata_test = gendata_targets.loc[~gendata_targets.index.isin(list
    # print boot_gendata_train
    # print boot_gendata_test

print "Train data"
    print "Test data"
    print "Test data"
    print boot_gendata_test[0].value_counts(sort=False)
    print "\n"

    boot_gendata_train = resample(gendata_data, random_state=20160121)
    boot_gendata_test = gendata_data.loc[~gendata_data.index.isin(list(boot_print boot_gendata_train.describe())

print boot_gendata_test.describe()
```

Train data 0 259

1 241

Name: 0, dtype: int64

Test data 0 80 1 95

Name: 0, dtype: int64

0	1	2	3	4	
5 \	500.000000	E00 000000	500.000000	500.000000	5
count 500.000000 00.000000	300.000000	300.000000	300.000000	300.000000	Э
mean -0.003139	-0.013427	0.021906	0.035423	0.012670	
0.096852 std 0.991457 1.003704	1.020868	1.018835	0.981776	1.041781	
min -2.421082	-2.433603	-2.538242	-2.518441	-3.223148	
-2.536563 25% -0.720644 -0.535868	-0.757001	-0.615010	-0.571672	-0.740107	
50% -0.013046 0.171539	-0.070751	-0.000330	0.008836	0.047413	
	0.620804	0.679261	0.723654	0.644627	
max 3.594499 3.432993	3.039572	3.003953	2.619359	2.454954	
6	7	8	9	10	
11 \	,	0	,	10	
count 500.000000 00.000000	500.000000	500.000000	500.000000	500.000000	5
mean -0.023746 -0.075621	-0.068885	0.042949	0.004360	0.024588	
std 1.180548 0.979879	1.008090	1.026896	0.973219	1.174396	
min -3.326552 -3.102408	-2.588259	-2.807253	-2.690036	-3.315302	
25% -1.023971 -0.738850	-0.783844	-0.652606	-0.718984	-0.843480	
50% -0.103775	-0.064137	0.099790	0.030052	0.078181	
	0.643163	0.803920	0.658938	1.040590	
0.649183 max 3.023143 2.664877	2.731177	2.949241	3.135951	2.544278	
	1.0	1 4	1 =	1.0	
17 \	13	14	15	16	
count 500.000000 00.000000	500.000000	500.000000	500.000000	500.000000	5
mean -0.024864 -0.027178	-0.043657	0.075582	0.058304	-0.033319	

	ASSI	gnment+2+-+Part+1			
std 0.961753 1.013068	1.191530	0.933707	0.965128	0.975602	
min -3.109823	-3.210675	-2.261836	-3.404818	-2.450816	
-2.883941 25% -0.624986	-0.998630	-0.612217	-0.643052	-0.759561	
-0.800636 50% -0.091031	-0.229074	0.085333	0.101073	-0.032146	
0.063717 75% 0.695669	0.955272	0.796331	0.798477	0.619367	
0.642004 max 2.706916	3.233625	2.760497	2.630985	3.094925	
3.264062					
18	19				
	500.000000				
mean 0.057141	-0.014074				
std 1.032833	1.002647				
min -3.389571					
25% -0.593457					
50% 0.118198	-0.007640				
75% 0.708951	0.590290				
max 2.811399	3.498259				
0	1	2	3	4	
	1	2	3	4	
5 \					
count 175.000000	175.000000	175.000000	175.000000	175.000000	1
75.000000					
mean 0.005619	0.093439	0.032655	0.026498	0.168349	
	0.005435	0.032033	0.020170	0.100343	
0.051515					
std 1.050662	0.974157	0.855438	1.087417	1.041658	
1.011249					
min -2.515058	-1.888726	-2.647789	-2.530270	-2.538309	
-2.966130					
	0 514015	0 510006	0 600466	0 400077	
25% -0.647823	-0.514815	-0.510086	-0.699466	-0.490877	
-0.511488					
50% -0.029770	0.019143	0.069402	0.075448	0.123224	
0.088291					
	0 (21520	0 (12201	0 740656	0 041647	
75% 0.725104	0.021329	0.013381	0.740050	0.84164/	
0.691024					
max 2.370750	3.012955	2.391449	2.479612	2.712419	
2.421206					
	7	0	0	1.0	
6	7	8	9	10	
11 \					
count 175.000000	175.000000	175.000000	175.000000	175.000000	1
75.000000					
mean -0.061467	0 020711	0 075015	0.022355	-0.108282	
	0.029/11	-0.073013	0.022333	-0.100202	
-0.041691					
std 1.202664	0.999409	0.995259	1.080562	1.138179	
0.892856					
min -2.798720	2 726625	2 060240	-3.021813	-3.265268	
	-2./30023	-3.000349	-3.021013	-3.203208	
-2.250563					
25% -1.048574	-0.599275	-0.683936	-0.800349	-0.823582	
-0.600243					
50% -0.260886	0 060522	-0.100929	-0.012445	-0.106142	
JU0 -U.Z0U886	0.000532	-0.100929	-0.012443	-0.100142	

-0.130	859 0.859118	0 601171	0 469951	0 770578	0 702921	
0.5521		0.0011/1	0.400001	0.770376	0.702321	
	2.639439	2.366253	3.080764	2.726222	1.985425	
1.8738						
	12	13	14	15	16	
17 \						
	175.000000	175.000000	175.000000	175.000000	175.000000	1
75.000		0 000047	0 150064	0 100001	0 070550	
mean -0.122	0.006369	0.089047	0.150264	-0.100891	0.078559	
	1.015259	1.247470	1.010591	0.898343	1.096469	
0.9073		1.21/1/0	1.010391	0.000343	1.000400	
	-2.451936	-3.183078	-3.239524	-2.446034	-3.068310	
-2.852						
25%	-0.731692	-0.912062	-0.470415	-0.725092	-0.759722	
-0.683	651					
	0.010469	0.106732	0.208500	-0.067307	0.081378	
-0.116						
	0.754626	1.068886	0.775779	0.522074	0.869717	
0.4398		2 202040	2 446000	2 252107	2 061025	
max 2.5986	2.373247	3.303948	3.446098	2.253107	2.901835	
2.3300	30					
	18	19				
count	175.000000					
mean	-0.087160	0.027925				
std	0.969802	1.060347				
min		-3.110583				
25%		-0.576496				
50%		0.031946				
	0.585937					
max	2.477594	2.865515				

In [58]: from sklearn.utils import resample boot_skew_gendata_train = resample(skew_gendata_targets, random_state=20 boot_skew_gendata_test = skew_gendata_targets.loc[-skew_gendata_targets. # print boot_skew_gendata_train.shape # print boot_skew_gendata_test.shape print "Train data Skew" print boot_skew_gendata_train[0].value_counts(sort=False) print "Test data Skew" print boot_skew_gendata_test[0].value_counts(sort=False) print "\n" boot_skew_gendata_train = resample(skew_gendata_data, random_state=20160 boot_skew_gendata_train = skew_gendata_data.loc[-skew_gendata_data.index. print boot_skew_gendata_train.describe() print boot_skew_gendata_test.describe()

Train data Skew

0 458 1 42

Name: 0, dtype: int64

Test data Skew

0 149 1 26

Name: 0, dtype: int64

0	1	2	2	4	
5 \	1	2	3	4	
count 500.000000 00.000000	500.000000	500.000000	500.000000	500.000000	5
mean -0.003139	-0.536252	0.021906	0.035423	0.012670	
0.096852 std 0.991457	0.767778	1.018835	0.981776	1.041781	
	-2.433603	-2.538242	-2.518441	-3.223148	
-2.536563 25% -0.720644	-1.192733	-0.615010	-0.571672	-0.740107	
-0.535868 50% -0.013046	-0.456621	-0.000330	0.008836	0.047413	
	0.031560	0.679261	0.723654	0.644627	
0.862462 max 3.594499	1.763571	3.003953	2.619359	2.454954	
3.432993					
6	7	8	9	10	
11 \ count 500.000000	500.000000	500.000000	500.000000	500.000000	5
00.000000 mean 0.026556	-0.068885	0.042949	0.004360	0.711829	
-0.075621 std 1.088736	1.008090	1.026896	0.973219	0.806941	
0.979879 min -1.911546	-2.588259	-2.807253	-2.690036	-1.990374	
-3.102408 25% -0.928071	-0.783844	-0.652606	-0.718984	0.184751	
-0.738850 50% -0.060348	-0.064137	0.099790	0.030052	0.844790	
-0.085270 75% 0.949863	0.643163	0.803920	0.658938	1.347421	
0.649183	0 701177	0.040041	2 125051	0 544070	
max 3.023143 2.664877	2.731177	2.949241	3.135951	2.544278	
12	13	14	15	16	
17 \ count 500.000000	500.000000	500.000000	500.000000	500.000000	5
00.000000 mean -0.024864 -0.027178	-0.820048	0.075582	0.058304	-0.033319	

	7 13318	5mment 21 11 art 11			
std 0.961753 1.013068	0.720215	0.933707	0.965128	0.975602	
min -3.109823	-3.210675	-2.261836	-3.404818	-2.450816	
-2.883941 25% -0.624986	-1.133534	-0.612217	-0.643052	-0.759561	
-0.800636 50% -0.091031	-0.955740	0.085333	0.101073	-0.032146	
0.063717 75% 0.695669	-0.698445	0.796331	0.798477	0.619367	
0.642004 max 2.706916					
3.264062	1.077993	2.700497	2.030303	3.074723	
18	19				
	500.000000				
mean 0.057141					
std 1.032833					
min -3.389571					
25% -0.593457	-0.728227				
50% 0.118198	-0.007640				
75% 0.708951	0.590290				
max 2.811399					
0	1	2	3	4	
5 \	1	2	3	4	
	175 000000	175 000000	175 000000	175 00000	1
count 175.000000	1/5.000000	1/5.000000	1/5.000000	1/5.000000	Τ
75.000000					
mean 0.005619	-0.398621	0.032655	0.026498	0.168349	
0.051515					
std 1.050662	0.812624	0.855438	1.087417	1.041658	
1.011249					
min -2.515058	-2.046301	-2.647789	-2.530270	-2.538309	
-2.966130	20010001	2001,705	21330270	2.00000	
25% -0.647823	1 060272	0 510006	0 600466	0 400077	
	-1.000373	-0.310000	-0.099400	-0.490077	
-0.511488					
50% -0.029770	-0.362135	0.069402	0.075448	0.123224	
0.088291					
75% 0.725104	0.147743	0.613381	0.740656	0.841647	
0.691024					
max 2.370750	2.245763	2.391449	2.479612	2.712419	
2.421206					
2.121200					
6	7	8	9	10	
	/	0	9	10	
11 \					_
count 175.000000	175.000000	175.000000	175.000000	175.000000	1
75.000000					
mean -0.094514	0.029711	-0.075015	0.022355	0.560796	
-0.041691					
std 1.108151	0 999109	0 995250	1 080562	0 919052	
0.892856	0.000	0.00000	1.000302	0.01002	
	0 506605	2 262215	2 221215	0 55000	
min -2.272284	-2./36625	-3.060349	-3.021813	-2.552006	
-2.250563					
25% -1.027302	-0.800349	-0.074823			
-0.600243					
50% -0.336453	0.060532	-0.100929	-0.012445	0.721716	
0.550455	0.000332	0.100727	0.012443	V • / L I / I U	

-0.130	859					
75% 0.5521	0.829838	0.601171	0.469951	0.770578	1.240600	
max 1.8738	2.626074 812	2.366253	3.080764	2.726222	2.017827	
	12	13	14	15	16	
17 \	12	13	14	13	10	
	175.000000	175.000000	175.000000	175.000000	175.000000	1
	0.006369	-0.717808	0.150264	-0.100891	0.078559	
	1.015259	0.992545	1.010591	0.898343	1.096469	
	-2.451936	-3.183078	-3.239524	-2.446034	-3.068310	
25% -0.683	-0.731692 8651	-1.193541	-0.470415	-0.725092	-0.759722	
	0.010469	-0.946576	0.208500	-0.067307	0.081378	
	0.754626	-0.325370	0.775779	0.522074	0.869717	
max 2.5986	2.373247 536	3.303948	3.446098	2.253107	2.961835	
	18	19				
count						
mean		0.027925				
		1.060347				
	-2.479270					
25%	-0.762449	-0.576496				
50%	0.043538	0.031946				
		0.723740				
max	2.477594	2.865515				

In [59]: from sklearn.utils import resample iris data = pd.DataFrame(iris.target) boot iris train = resample(iris data, random state=20160121) boot iris test = iris data.loc[~iris data.index.isin(list(boot iris trai print "Train data Iris " print boot_iris_train[0].value_counts(sort=False) print "Test data Iris" print boot iris test[0].value counts(sort=False) print "\n" iris data = pd.DataFrame(iris.data) boot_iris_train = resample(iris data, random state=20160121) boot iris test = iris data.loc[~iris data.index.isin(list(boot iris trai print "Train data Iris" print boot iris train.describe() print "\nTest data Iris" print boot iris test.describe() print "\n"

3

```
Train data Iris
0
     54
1
     50
2
     46
Name: 0, dtype: int64
Test data Iris
0
     20
1
     16
2
     18
Name: 0, dtype: int64
Train data Iris
                 0
                              1
                                           2
       150.000000
                    150.000000
                                 150.000000
                                              150.000000
count
         5.815333
                      3.018000
                                   3.649333
                                                1.128667
mean
std
         0.782590
                      0.398162
                                   1.731498
                                                0.748810
min
         4.400000
                      2.000000
                                   1.000000
                                                0.100000
25%
         5.100000
                      2.800000
                                   1.500000
                                                0.200000
50%
         5.800000
                      3.000000
                                   4.350000
                                                1.300000
75%
         6.375000
                      3.300000
                                   5.000000
                                                1.800000
         7.700000
                      4.400000
                                   6.900000
                                                2.500000
max
Test data Iris
                0
                            1
                                       2
                                                   3
                   54.000000
                               54.000000
                                           54.000000
       54.000000
count
mean
        5.783333
                    3.114815
                                3.618519
                                            1.157407
        0.855559
                    0.459864
                                1.845042
std
                                            0.802261
        4.300000
                                            0.100000
min
                    2.200000
                                1.100000
25%
        5.100000
                    2.800000
                                1.500000
                                            0.225000
50%
        5.600000
                    3.000000
                                4.050000
                                            1.300000
75%
        6.300000
                    3.475000
                                5.100000
                                            1.800000
```

4.200000

Evaluating Models

7.900000

max

Now that we've looked at various means of splitting our data, we can explore the performance metrics used to evaluate our results. You can find a full list of these metrics documented in the metrics documentation (http://scikit-

6.700000

2.500000

learn.org/stable/modules/model evaluation.html#classification-metrics). Since it's not very interesting to look at these metrics in isolation, we can generate some classification output for our data and see how the different methods perform.

One of the other topics we discussed was comparing schemes or methods to decide if the differences between them were statistically meaningful. We evaluate the statistical significance of these results using t-tests. The t-test isn't in scikit-learn, but in a related module, scipy. You can read about all of the statistical tests in the scipy stats documentation (http://docs.scipy.org/doc/scipy/reference/stats.html)

```
# Train the dummy classifier on the Iris data:
In [60]:
         dummy classifier iris = dummy.DummyClassifier();
         dummy classifier iris.fit(iris_train_data, iris_train_labels);
         dummy iris predictions = dummy classifier iris.predict(iris test data);
         dummy iris predictions proba = dummy classifier iris.predict proba(iris
         #Train the decision tree classifier on the Iris data
         dtree iris = tree.DecisionTreeClassifier();
         dtree iris.fit(iris train data, iris train labels);
         dtree iris predictions = dtree iris.predict(iris test data);
         dtree iris predictions proba = dtree iris.predict proba(iris test data);
         #The classification report is a handy tool to see many metrics from one
         print "Dummy classifier report"
         print metrics.classification report(iris test labels, dummy iris predict
         print "Iris classifier report"
         print metrics.classification report(iris test labels, dtree iris predict
         #We can compare the two predictions using the t-test (from scipy)
         stats.ttest rel(dummy iris predictions, dtree iris predictions)
```

Dummy	classi	fier report			
		precision	recall	f1-score	support
	0	0.18	0.15	0.17	13
	1	0.36	0.31	0.33	13
	2	0.31	0.42	0.36	12
avg /	total	0.29	0.29	0.28	38
Iris classifier report					
		precision	recall	f1-score	support
	0	1.00	1.00	1.00	13
	1	0.80	0.92	0.86	13
	2	0.90	0.75	0.82	12
avg /	total	0.90	0.89	0.89	38

Out[60]: Ttest_relResult(statistic=1.0519230276378431, pvalue=0.2996567025096 6109)

Question 5: Evaluation Metrics: Discrete Predictions (10 points)

- 1. Compute the accuracy for each classifier
- 2. Make a simple train-test split of gendata (using randomstate=20160121) and perform the same analysis: classification report and t-test
- 3. One of the issues in realistic evaluation settings is that the test outputs are not

always generated in the same testing regime. Perform 5-fold cross-validation using the DummyClassifier and 10-fold cross-validation using the DecisionTree classifier. Read the documentation to determine the correct t-test function to use to compare these two sets of results, and perform the t-test across folds

Question 5 Answers

- 1. Dummy Classifier accuracy: 0.421052631579 Decision Tree Classifier accuracy: 0.894736842105
- 2. Ttest_relResult(statistic=-0.74098388608089094, pvalue=0.45976285530296646) see cell below for better formattting
- 3. Ttest_indResult(statistic=14.289053827191161, pvalue=2.509241547322248e-09)

Part 2				
Dummer aloggifica somewh				
Dummy classifier report				
precision recall f1-score support				
0 0.45 0.49 0.47 78				
1 0.50 0.46 0.48 87				
1 0.50 0.40 0.40 07				
avg / total 0.47 0.47 0.47 165				
Iris classifier report				
precision recall f1-score support				
0 0.86 0.86 0.86 78				
1 0.87 0.87 0.87 87				
2 0.0, 0.0, 0.0,				
avg / total 0.87 0.87 0.87 165				
Ttest_relResult(statistic=-0.74098388608089094,				
pvalue=0.45976285530296646)				

```
In [61]: # part 1
```

from sklearn.metrics import accuracy_score

print "Dummy Classifier accuracy: " + str(accuracy score(iris test label print "Decision Tree Classifier accuracy: " + str(accuracy score(iris te

Dummy Classifier accuracy: 0.289473684211 Decision Tree Classifier accuracy: 0.894736842105

```
In [62]: # part 2
```

[gendata train data 33, gendata test data 33, gendata train labels 33,

dummy_classifier_gendata = dummy.DummyClassifier();

dummy_classifier_gendata.fit(gendata_train_data_33, gendata_train_labels
dummy_gendata_predictions = dummy_classifier_gendata.predict(gendata_tes
dummy_gendata_predictions_proba = dummy_classifier_gendata.predict_proba

dtree gendata = tree.DecisionTreeClassifier();

dtree_gendata.fit(gendata_train_data_33, gendata_train_labels_33)

dtree_gendata_predictions = dtree_gendata.predict(gendata_test_data_33)
dtree_gendata_predictions_prob = dtree_gendata.predict_proba(gendata_test_data_

#The classification report is a handy tool to see many metrics from one
print "Dummy classifier report"

print metrics.classification_report(gendata_test_labels_33, dummy_gendat

print "Iris classifier report"

print metrics.classification report(gendata test labels 33, dtree gendat

#We can compare the two predictions using the t-test (from scipy)
print stats.ttest_rel(dummy_gendata_predictions, dtree_gendata_predictio

Dummy classifier report							
	precision	recall	f1-score	support			
0	0.48	0.54	0.51	78			
1	0.53	0.47	0.50	87			
avg / total	0.51	0.50	0.50	165			
•							
Iris classif	Iris classifier report						
	precision	recall	f1-score	support			
	1						
0	0.81	0.82	0.82	78			
1	0.84	0.83	0.83	87			
avg / total	0.82	0.82	0.82	165			
avg / total	0.82	0.82	0.82	165			

Ttest_relResult(statistic=-0.9431404248511186, pvalue=0.34699638241967168)

```
In [63]: # part 3
         from sklearn.metrics import accuracy score
         kfolds = cross validation. KFold(500, n folds=5, shuffle=True, random sta
         fold = 0
         dummy accuracy = []
         for train, test in kfolds:
             fold += 1
             train fold = gendata d[train]
             train labels = gendata_t[train]
             test fold = gendata d[test]
             test labels = gendata t[test]
             dummy classifier gendata = dummy.DummyClassifier();
             dummy classifier_gendata.fit(train_fold, train_labels)
             dummy gendata predictions = dummy classifier gendata.predict(test fo
             dummy gendata predictions proba = dummy classifier gendata.predict p
             score = 1 - accuracy score(test labels, dummy gendata predictions)
               score = accuracy score(test labels, dummy gendata predictions)
             dummy accuracy.append(score)
         dtree accuracy = []
         kfolds = cross validation. KFold (500, n folds=10, shuffle=True, random st
         for train, test in kfolds:
             fold += 1
             train fold = gendata d[train]
             train labels = gendata t[train]
             test fold = gendata d[test]
             test labels = gendata t[test]
             dtree gendata = tree.DecisionTreeClassifier();
             dtree gendata.fit(train fold, train labels)
             dtree gendata predictions = dtree gendata.predict(test fold)
             dtree gendata predictions prob = dtree gendata.predict proba(test fo
             score = 1 - accuracy score(test labels, dtree gendata predictions)
               score = accuracy score(test labels, dtree gendata predictions)
             dtree accuracy.append(score)
         #We can compare the two predictions using the t-test (from scipy)
         print dummy_accuracy
         print dtree accuracy
         stats.ttest ind(dummy accuracy, dtree accuracy)
         [0.48999999999999, 0.48999999999999, 0.4000000000000000, 0.53
         00000000000003, 0.60999999999999999
         [0.199999999999996, 0.07999999999996, 0.0999999999999978, 0.0
         7999999999996, 0.099999999999978, 0.1600000000000003, 0.02000
```

000000000018, 0.0600000000000053, 0.140000000000001, 0.0400000

0000000361

Out[63]:	Ttest_indResult(statistic=11.871860348739082,	pvalue=2.3767018632247
	007e-08)	
Tn []•		