ЭЛЕКТРОМАГНЕТИЗМ ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. Проволочная квадратная рамка со стороной 20 см и током 5 А помещена в однородное магнитное поле так, что её плоскость параллельна линиям магнитной индукции. Найти величину магнитной индукции, если со стороны магнитного поля на рамку действует момент сил 0,2 Н·м. Ответ дать в единицах СИ.

<u>Дано:</u> a = 0.2 м I = 5 A M = 0.2 H·м <u>Найти:</u> B = ?

Решение:

Запишем выражение для механического момента сил M, действующего на рамку с током I в магнитном поле: $M = IBS \cdot \sin\alpha$. Ориентация контура соответствует рисунку 3.3.1, б, откуда видно, что угол α между нормалью к контуру и вектором магнитной индукции прямой ($\sin\alpha = 1$). Площадь

квадратной рамки равна $S = a^2$. Таким образом, для момента сил будем иметь следующее выражение $M = IBa^2$. Выражая индукцию магнитного поля $B = M/Ia^2$ и проводя расчёт, получим $B = 0.2/(5\cdot0.2^2) = 1$ Тл.

Ответ: B = 1 Тл.

2. Протон под действием однородного магнитного поля с индукцией 0,1 мТл равномерно вращается по окружности радиусом 5 см. Определить период вращения, считая удельный заряд протона равным 0,1 Кл/мкг. Ответ дать в миллисекундах.

Дано: $B = 10^{-4} \text{ Тл}$ R = 0.05 м $q/m = 10^8 \text{ Кл/кг}$ <u>Найти:</u> T = ? (мс) Решение:

Под действием силы Лоренца $F_{\mathcal{I}}$ протон совершает равномерное движение по окружности с

Рисунок – Движение протона в магнитном поле

центростремительным ускорением $a_{\text{цс}} = v^2/R$, где v линейная скорость

частицы (рисунок). Это движение возникает тогда, когда заряженная частица влетает в магнитное поле перпендикулярно его силовым линиям. При этом сила Лоренца $F_{\pi} = qvB\sin\alpha$ становится максимальной ($\sin\alpha = 1$): $F_{\pi} = qvB$. Запишем второй закон Ньютона для вращающегося протона: $a_{\text{цс}} = F_{\pi}/m$. Приравнивая выражения для центростремительного ускорения, получим формулу для

радиуса окружности, по которой движется протон: R = mv/qB. Период вращения – это время, за которое протон, двигаясь равномерно, пройдёт полную окружность длины $2\pi R$, т.е. $T = 2\pi R/v$. В итоге, период $T = 2\pi mv/qBv = 2\pi m/qB$.

Проводя расчёты, получим:

$$T = 2.3,14/10^8 \cdot 10^{-4} = 0,628 \cdot 10^{-3} \text{ c} = 0,628 \text{ mc}.$$

Ответ: T = 0,628 мс.

3. Протон движется равномерно И прямолинейно пространстве, где существуют одновременно постоянные взаимно перпендикулярные электрическое И поля, перпендикулярно этим полям. Найти скорость протона, напряжённость электрического поля равна 8 В/м, магнитного поля 40 мТл. Ответ дать в единицах СИ.

Дано: $E=8~\mathrm{B/M}$ B = 0.04 ТлНайти: v = ?

магнитного

Решение:

Геометрия задачи изображена на рисунке. На протон действуют две силы сила $F_{2\pi}$ стороны электрического

поля исила Лоренца F_{π} со стороны Из поля. условия прямолинейного равномерного И движения протона (ускорение a = 0) по

Рисунок – Движение протона в электрическом и магнитном полях

закону Ньютона следует, что равнодействующая приложенных к частице сил равна нулю, т.е. $F_{2J} = F_{JJ}$. Подставляя сюда выражения для сил qE = qvB, приходим к выражению для искомой скорости движения протона: v = E/B.

v = 8/0.04 = 200 m/c. Вычислим:

Ответ: v = 200 м/c.

4. В вертикальном магнитном поле лежат горизонтальные рельсы на расстоянии 2 м друг от друга. Между рельсами приложено напряжение. Если на рельсы перпендикулярно им положить металлический стержень массой 0,5 кг, то по нему потечёт ток силой 50 А и он начнёт скользить по рельсам с ускорением 2 м/с². Определить в СИ магнитную индукцию. Трением пренебречь.

Дано: l = 2 м m = 0.5 кг I = 50 А a = 2 м/c² Найти: B = ?

Рисунок – Движение проводника с током в магнитном поле

На проводник с током I со стороны магнитного поля с индукцией B (рисунок) действует сила Ампера $F_A = IBl\sin\alpha$, которая в данном случае максимальна ($\sin\alpha = 1$): $F_A = IBl$.

Под действием этой силы проводник движется с ускорением (трения не по условию) согласно второму закону Ньютона:

$$a = F_{J}/m = IBl/m$$
.

Отсюда выражаем магнитную индукцию

B = am/Il.

После вычислений находим B = 2.0,5/50.2 = 0,01 Тл.

Ответ: B = 0.01 Тл.

5. Прямой проводник с током 0,2 А помещён в однородное магнитное поле с индукцией 0,1 Тл. Длина проводника 5 см. Найти работу силы Ампера по перемещению проводника на 8 мм, если направления линий индукции, тока и перемещения взаимно перпендикулярны. Ответ дать в микроджоулях.

<u>Дано:</u> I = 0.2 A B = 0.1 Тл l = 0.05 M $x = 8.10^{-3} \text{ M}$ <u>Найти:</u> A = ?(мкДж)

Решение:

Геометрию задачи хорошо описывает рисунок из предыдущей задачи. Направление перемещения проводника с током совпадает с направлением действия силы Ампера, действующей на него со стороны магнитного поля. При этом сила Ампера совершает над проводником механическую работу

$$A = F_A \cdot x = IBl \cdot x$$
.

Подставляя численные значения, получим:

$$A = 0.2 \cdot 0.1 \cdot 0.05 \cdot 8 \cdot 10^{-3} = 8 \cdot 10^{-6}$$
 Дж = 8 мкДж.

Ответ: A = 8 мкДж.

6. Определить среднее значение индукции магнитного поля внутри плоского контура площадью $30~\text{m}^2$ при пропускании через

него тока 0,2 А. Индуктивность контура 0,3 Гн. Ответ дать в миллитеслах.

 Решение:

Ток I, протекающий по контуру, создаёт в пространстве неоднородное магнитное поле. Внутри витка заменим его однородным полем с некоторым средним значением магнитной индукции $B_{\rm cp}$. Поскольку силовые линии магнитного поля, создаваемого контуром с током,

проходят к его плоскости перпендикулярно, выражение для магнитного потока, пронизывающего контур $\Phi = B_{\rm cp} S \cos \alpha$ принимает вид $\Phi = B_{\rm cp} S$. С другой стороны, этот магнитный поток связан с силой тока в контуре через индуктивность контура: $\Phi = LI$. Приравнивая эти два выражения для магнитного потока и выражая магнитную индукцию, получим $B_{\rm cp} = LI/S$.

Проведём расчёты: $B_{\rm cp} = 0.3 \cdot 0.2/30 = 2 \cdot 10^{-3} \, \mathrm{Tr} = 2 \, \mathrm{мTr}$.

Ответ: $B_{cp} = 2 \text{ мТл.}$

7. За 2 с индукция однородного магнитного поля равномерно изменилась от 0,3 Тл до 0,1 Тл. В результате этого в круговом витке, помещённом в магнитное поле, возникла ЭДС индукции 20 мВ. Найти площадь витка, если угол между вектором магнитной индукции и нормалью к плоскости витка равен 60°. Ответ дать в единицах СИ.

Решение:

Запишем закон Фарадея для ЭДС индукции, возникающей в контуре: $\varepsilon = -\Delta \Phi/\Delta t$, где $\Delta \Phi = \Phi_2 - \Phi_1$. Величина начального магнитного потока сквозь замкнутый контур $\Phi_1 = B_1 S \cos \alpha$, для конечного потока: $\Phi_2 = B_2 S \cos \alpha$. Подставляя эти выражения в закон Фарадея, получим

$$\varepsilon = -(B_2 - B_1)S\cos\alpha/\Delta t = (B_1 - B_2)S\cos\alpha/\Delta t.$$

Выражая площадь витка и вычисляя, находим

$$S = \varepsilon \Delta t / (B_1 - B_2) \cos \alpha$$
, $S = 0.02 \cdot 2 / (0.3 - 0.1) \cdot 0.5 = 0.4 \text{ m}^2$.
Other: $S = 0.4 \text{ m}^2$.

8. Самолёт летит горизонтально со скоростью 900 км/ч. Размах крыльев самолёта 12 м. Вертикальная составляющая земного магнитного поля равна 50 мкТл. Найти разность

потенциалов, возникающую на концах крыльев самолёта. Ответ дать в единицах СИ.

<u>Дано:</u> v = 250 м/c l = 12 м $B = 5 \cdot 10^{-5} \text{ Тл}$ <u>Найти:</u> $|\varepsilon_i| = ?$

Решение:

Физическую суть задачи иллюстрирует рисунок 3.3.2, где самолёт выступает в качестве проводника. Разность потенциалов, возникающая на концах крыльев самолёта, появляется в следствие явления электромагнитной индукции. По закону Фарадея ЭДС индукции $\varepsilon_i = -\Delta \Phi/\Delta t$, где

 $\Delta\Phi$ — магнитный поток через площадь ΔS , пересечённую крыльями самолёта длины l при прохождении пути Δx за время Δt . Выражение для магнитного потока $\Delta\Phi = B\Delta S \cdot \cos\alpha = Bl\Delta x \cdot \cos\alpha$. Подставим его в закон Фарадея и учтём, что $\Delta x/\Delta t = v$ и $\alpha = 0^\circ$ ($\cos\alpha = 1$): $|\epsilon_i| = Bl\Delta x \cdot \cos\alpha/\Delta t = Blv$.

Вычислим: $\epsilon_i = 5.10^{-5} \cdot 12.250 = 0.15 \text{ B}.$ Ответ: $\epsilon_i = 0.15 \text{ B}.$

9. Катушка с током 2 А создаёт магнитное поле, поток индукции которого через поперечное сечение катушки равен 0,5 Вб. За время Δt ток в катушке равномерно уменьшается до 0,5 А. В катушке при этом возникает ЭДС индукции 3 В. Определить Δt . Ответ дать в единицах СИ.

<u>Дано:</u> $I_1 = 2 \text{ A}$ $\Phi_1 = 0.5 \text{ B6}$ $I_2 = 0.5 \text{ A}$ $\varepsilon_{Si} = 3 \text{ B}$ <u>Найти:</u> $\Delta t = ?$

Решение:

Найти искомое время Δt можно из выражения для ЭДС самоиндукции: $\epsilon_{Si} = -L\Delta I/\Delta t$, где приращение тока в катушке известно: $\Delta I = I_2 - I_1$. Неизвестную нам индуктивность, мы можем найти из выражения для магнитного потока $L = \Phi_1/I_1$. Выражая искомое время через ЭДС самоиндукции и подставляя приращение тока и индуктивность,

получим

 $\Delta t = -L\Delta I/\epsilon_{Si} = -\Phi_1(I_2 - I_1)/I_1\epsilon_{Si} = \Phi_1(I_1 - I_2)/I_1\epsilon_{Si}.$ Вычисляя, получим $\Delta t = 0.5 \cdot (2 - 0.5)/2 \cdot 3 = 0.125$ с.

Ответ: $\Delta t = 0.125$ с.

10. При уменьшении силы тока в проволочной катушке с 6 А до 4 А произошло уменьшение энергии магнитного поля на 2 Дж. Определить на сколько уменьшился магнитный поток, пронизывающий катушку. Ответ дать в единицах СИ.

Решение:

Запишем выражения для магнитного потока, пронизывающего катушку при двух значениях протекающего по ней тока: $\Phi_1 = LI_1$, $\Phi_2 = LI_2$. Взяв разность этих потоков, получим $\Delta \Phi = \Phi_1 - \Phi_2 = L(I_1 - I_2)$. Неизвестную нам индуктивность мы можем найти из выражения для изменения энергии

магнитного поля

$$\Delta W_{\rm L} = W_{\rm L1} - W_{\rm L2} = L(I_1^2 - I_2^2)/2, L = 2\Delta W_{\rm L}/(I_1^2 - I_2^2).$$

Подставим индуктивность в выражение для изменения магнитного потока:

$$\Delta \Phi = 2\Delta W_{\rm L}(I_1 - I_2)/(I_1^2 - I_2^2) = 2\Delta W_{\rm L}/(I_1 + I_2).$$

Подставляя численные значения, получим $\Delta \Phi = 2 \cdot 2/(6+4) = 0,4$ Вб.

Ответ: $\Delta \Phi = 0,4$ Вб.