

Linear Regression III

Dr. Chelsea Parlett-Pelleriti

Linear Regression

- Bias and Variance Definition
- Bias Variance Tradeoff
- Model Validation
- Double Descent

Math

Our Goal

$$Y = f(X) + \epsilon$$

Our Goal

$$Y = f(X) + \epsilon$$

$$\hat{f}(X)$$

Sources of Error

$$Y = f(X) + \epsilon$$

- 1. Irreducible: ϵ
- 2. Reducible: $\hat{f}(X)$ is not similar to f(X)

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

Expected MSE at x₀
if we repeatedly
estimated f(x) with
different training
sets

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

Irreducible Error

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \boxed{\operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\epsilon).}$$

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \boxed{\operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\epsilon).}$$

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

Model Validation

Validation

- 1. **Split** Data
- 2. Train Model on **Training Set**
- 3. Evaluate **Train and Test Set**

Validation (Train Test Split)

Cross Validation (KFold)

Cross Validation (Leave One Out)

Validation

How to decide

- Size of your Dataset (rows AND columns)
- Computational Expense

Regularization

Review: Loss Functions

Ridge

LASSO

Double Descent

Everything I've Just

Taught You is

Wrong

Double Descent

Double Descent

Image from: Introduction to Statistical Learning with applications in Python (Figure 10.21)