Gestão de caminhos de transporte de grupos

- João Ricardo Alves up202007614
- Marco André Rocha up202004891
- ➤ Ricardo de Matos up202007962

Descrição do problema

Este trabalho tem como objetivo implementar um sistema de gestão de pedidos para transporte de grupos de pessoas entre diferentes locais. Para tal, recorrer-se-á a grafos e algoritmos de capacidade máxima, de fluxo e de caminhos críticos em grafos arco-atividade.

Os algoritmos desenvolvidos devem ser o mais eficientes possíveis temporal e espacialmente, adotando, para isso, vários dos métodos abordados em aula. Deve também ser feita uma avaliação empírica que justifique as opções pelo grupo tomadas.

O trabalho divide-se em **2 cenários** principais a serem explorados:

- Cenário 1 Grupos não se separam (capacidade máxima)
- Cenário 2 Grupos separam-se (problema de fluxo)

Formalização - Cen. 1

Seja G = (V, E, capacity) um grafo dirigido Seja C, conjunto de arestas de caminhos em G de s para t.

Cenário 1.1:

• Maximizar: Min(e capacity, ..., e capacity)
com e ∈ C

1 n

Cenário 1.2:

- Maximizar: Min(e capacity, ..., e capacity)

 com e ∈ C
- (Λ) Minimizar: |X| 1, x ∈ C

cenário pode ser irrealista

Sujeito a:

Caminho de s para t \forall $\mathbf{e} \in E$, e.capacity >= 0 \forall $\mathbf{X} \in C$, $\mathbf{x}[1]$.ori $= \mathbf{s} \wedge \mathbf{x}[n]$.dest $= \mathbf{t}$

 \forall **X** \in C, (\forall **i** \in N, **0** <= **i** <= |X| - 1, \exists e \in E: e = (X[i].dest, X[i+1].ori)

Caminho é válido

Algoritmos - Cen. 1

No primeiro cenário procuramos caminhos de capacidade máxima e que sejam simultaneamente os mais curtos possíveis (minimizar transbordos). Na procura destes caminhos no grafo poderá ser dada prioridade a qualquer um destes critérios: capacidade / nº transbordos. Portanto, mais do que uma única solução ótima pode existir de acordo com os critérios usados.

Os casos de preferência supramencionados, sendo incomensuráveis, devem ser apresentados e uma solução que seja o "meio-termo" das anteriores deve também ser apresentada. À frente será explicado o conceito de "meio-termo".

Algoritmos:

- (1.1): Adaptação do algoritmo de Dijkstra com Max Heap
- (1.2): Semelhante ao anterior com dualidade entre capacidade e nº transbordos.

Na 1.2 existe também procura de caminho balanceado dentro do espaço "ótimo", definido pelas soluções pareto-ótimas. Este assunto será aprofundado mais à frente.

Complexidade - Cen. 1

Sejam:

E: N° Edges | V: N° Nodes

Complexidade Temporal:

- Dijkstra adaptation: O(E+V*Log V)

Dijkstra adaptation: O(E + V * Log V)

Complexidade Espacial:

- Dijkstra adaptation: O(V + E)

Dijkstra adaptation: O(V + E)

Nota:

No cálculo de soluções "meio termo" ou balanceadas, estes algoritmos são repetidos até mais nenhuma solução ser encontrada

Como expectável, os algoritmos adaptados a partir do Dijkstra com uma Max Heap têm desempenho virtualmente idêntico (dentro da margem de erro).

É importante realçar que estes valores não incluem o cálculo do caminho intermédio entre os resultados pareto-ótimos. Esse valor dependerá unicamente do tamanho (número de edges) do caminho máximo de cada grafo.

Nota: Dataset(1-10) foi fornecido pelos professores. Dataset(40-45) tem grafos de grande dimensão

Note-se que uma solução X é melhor que outra Y se Y se situar no 2.º quadrante com centro em X. Ou seja, se Y tiver uma menor ou igual capacidade e/ou maior ou igual nº de transbordos.

Os dois algoritmos garantem a menor path com maior cap. e vice-versa, porém as soluções pareto-ótimas impedem que haja um aumento para uma delas sem prejudicar a outra. É preciso encontrar valores de cedência.

Cedência

Podem existir mais soluções no quadrado central. Note-se que as duas soluções a vermelho também não são comparáveis.

- Seguintes melhores soluções de cedência
- Soluções ótimas para um dos parámetros
- Próxima Zona de procura

Formalização - Cen. 2

Seja G = (V, A, {s, t}, c, d, f) um DAG com V nodes e A edges onde s é o source node e t o sink node e onde c,d e f representem a capacidade e duração das edges e o fluxo, respetivamente. Sendo dim, a dimensão do grupo pretendida

Cenario 2.1:

.
$$|\mathbf{f}|$$
 = ∑ (s.ori, t.dest).fluxo, S, \mathbf{t} ∈ A -

$$\Sigma$$
 (s.dest, t.ori).fluxo, $\mathbf{S},\mathbf{t} \in A$, $\Lambda |\mathbf{f}| = \mathbf{dim}$

Sujeito a:

$$\forall$$
 e \in A, $0 \le$ e.f \le e.c

Cenario 2.2:

.
$$|\mathbf{f}| = \Sigma$$
 (s.ori, t.dest).fluxo, $\mathbf{S}, \mathbf{t} \in A$ -

$$\Sigma$$
 (s.dest, t.ori).fluxo, $\mathbf{S},\mathbf{t} \in A \Lambda |\mathbf{f}| = \mathbf{dim} + X \forall \mathbf{X} \in C, \mathbf{x}[1].ori = \mathbf{s} \Lambda \mathbf{x}[n].dest = \mathbf{t}$

Σ (s.ori, t.dest).fluxo = Σ (s.dest, t.ori).fluxo, $S,t \in A$

$$\mathbf{X} \mathbf{\nabla} \mathbf{X} \in \mathbf{C}$$
, $\mathbf{x}[1]$.ori = $\mathbf{s} \mathbf{\Lambda} \mathbf{x}[n]$.dest =

Cenario 2.3:

.
$$Max_s(|f|) \land |f| = \Sigma$$
 (s.ori, t.dest).fluxo, $s,t \in A$

$$\Sigma$$
 (s.dest, t.ori).fluxo, $S,t \in A$

$$\forall$$
 X ∈ C, (\forall 0 <= i <= |X| - 1, ∃ e ∈ E:
e = (X[i].dest, X[i+1].ori))

Nota: Fluxos inteiros e capacidades em inteiros positivos, como descrito na seção acima.

Formalização - Cen. 2

Seja G = (V, A) um DAG (arco-atividade) com atividades (ori,dest,dur) Seja C, caminho crítico, composto por atividades, de s para t

```
Cenario 2.4: 
 . \Sigma e.ES, e \in C 
 Cenario 2.5: 
 . Maxs( e .ES - ( e.ES + e.dur ), e \in A
```

Sujeito a:

$$\forall$$
 e \in A, e.dur $>= 0$

$$\forall$$
 X \in C, x[1].ori = s Λ x[n].dest = t

$$\forall$$
 X ∈ C, (\forall 0 <= i <= |X| - 1, ∃ e ∈ E:
e = (X[i].dest, X[i+1].ori))

$$\forall$$
 X \in C, $(\forall$ 1 <= i <= |X|, X[i].ES = X[i-1].ES + X[i-1].dur

Caminho é crítico

Algoritmos - Cen. 2

- Edmonds-Karp: Cálculo do caminho mais curto em cada iteração (através de uma BFS).
 Atualização do fluxo através desse caminho com base na capacidade mínima. Repetir até não existir caminho residual de S para T. Também foi feito o algoritmo de Ford-Fulkerson.
- **Dinic's algorithm**: Cálculo do nível em cada iteração (através de uma BFS), encaminhar fluxo apenas pelas arestas do tipo (ori.level, ori.level + 1), recursivamente, até esgotar a capacidade.
- Critical path, earliest start (arco-atividade): cálculo do inicio mais cedo, começando por calcular os graus de cada nó, e indo analisá-los sempre que o grau fica a 0 (usando uma queue onde são inserindo os de grau 0), atualizando os outro quando o cálculo do ES termina (dando push e pop na stack). Partiu-se do princípio que o encaminhamento vem das alíneas anteriores.
- Max waited time: Corresponde à folga livre máxima. Depois de recebido o encaminhamento, é computado o ES (acima) e com base neste, ocorre uma iteração nas arestas com fluxo de um dado nó e é calculado para cada a sua folga. É retornada a lista de nós de máxima folga livre.
- **Extras**: implementação da folga total, com uso de um grafo transposto como descrito nos slides

Complexidade - Cen. 2

Edmonds-Karp algorithm:

$$O(N) = O(VE^2)$$

$$S(N) = O(V + E)$$

Dinic's algorithm:

$$O(N) = O(EV^2)$$

$$S(N) = O(V + E)$$

- Critical path(arco-atividade):

- O(N) = O(VE)
- -> E.flow > 0 e V visitado
- S(N) = O(1)
- Max waited Time (FL):
- O(N) = O(VE)
- -> E.flow > 0 e V visitado
- S(N) = O(N)
 - -> Nº de soluções
- Ford-Fulkerson:
- $O(N) = O(m^2C) / S(N) = O(n)$

O algoritmo Edmonds-Karp **O(VE²)** é melhor para grafos cujos nodes tenham muitas edges, enquanto que o algoritmo de Dinic, **O(EV²)**, é melhor nas situações opostas. Além disso, a recursividade da nossa implementação do algoritmo de Dinic limita a sua utilização em grafos de grande dimensão por atingir o nº de chamadas recursivas. Também se nota que o algoritmo de Dinic é pior em situações em que temos muitas edges a sair de um nó. Por fim, veja-se a performance consistentemente pior quando se usa Ford Fulkerson (DFS) e que também está sujeito a limitação de chamadas recursivas.

O algoritmo para saber a folga livre máxima apenas funciona se os Earliest starts já se encontrarem definidos, pelo que na realidade o algoritmo de folga livre máxima seria uma "acrescento" ao algoritmo do caminho crítico em termos de tempo.

Para mais detalhes sobre os gráficos usados consultar: https://docs.google.com/spreadsheets/d/1UJBUA1irZuZ8NkQW5H9ExPWfttTCzsMqLZEjmcxUxzl/edit#gid=0

Funcionalidades Extra

Foram implementadas 4 funcionalidades extra:

- 1. Cálculo do caminho de capacidade máxima para verificar se se justifica usar fluxo e separar os grupos.
- 2. Saber a folga total máxima disponível. Ótimo para saber quando um certo encaminhamento pode sair atrasado sem penalizar o fim da viagem. Em vez de poder fazer várias folgas pontuais ao longo do caminho.
- 3. Cálculo do latest-finish para cada uma das atividades / viagens .
- 4. Algoritmos de diferentes complexidades para atender a diferentes tipos de DAG e para fins comparativos. A saber:

Ford Fulkerson , Edmonds - Karp , Dinic

Algoritmo Destaque

A vermelho encontra-se a solução de path mais pequena no grafo com a maior capacidade. A azul de maior capacidade com a menor path possível. Um algoritmo que apenas procura-se pela de maior capacidade e pela de menor path encontraria apenas estas duas soluções que não podem ser comparáveis.

Porém, existem outras soluções escondidas no grafo. Note o caminho 1-> 3 -> 5, com capacidade de 5 e 1 transbordo.

Achamos que esta propriedade é difícil de notar e, por isso, foi a nossa escolha para algoritmo de destaque.

Dificuldades do Grupo

A principal dificuldade enfrentada pelo grupo foi a conciliação deste trabalho com os de outras unidades curriculares. Tal inclui a gestão do tempo como também gestão dos elementos do grupo.

No final, todos os membros do grupo contribuíram de igual forma para o projeto.

No que concerne aos algoritmos, os de cálculo de caminhos de fluxo máximo foram os mais trabalhosos e difíceis de fazer debug.

Apesar das adversidades, consideramos termos atingidos resultados satisfatórios e que vão de encontro ao que nos foi proposto.

```
_______
            Scenario 1
_______
    Maximize Group Size
    Maximize Group Size VS Shortest Path
    Go Back
_______
> 1
Enter Data set id: 5
The path will be:
                18
                  564 132 50 431
      891 587
             437
962 627 741 1000
Path size: 14
The max group size of this path is: 16
```

Cenário 1.1

```
1) Maximize Group Size
  2) Maximize Group Size VS Shortest Path
Enter Data set id: 5
Two solutions were computed:
(Max Capacity with shortest path)
The path will be:
1 464 891 587 437 18 564 132 50 431 962 627 741 1000
Path size: 14
The max group size of this path is: 16
(Shortest path with max Capacity)
The path will be:
1 657 171 66 755 1000
Path size: 6
The max group size of this path is: 10
However, there are solutions not represented in the scope.
Those solutions are not parameter optimal but rather balanced solutions
Here are the best balance solutions ...
The path will be:
1 464 547 529 627 741 1000
Path size: 7
The max group size of this path is: 11
The path will be:
1 802 573 587 618 992 616 1000
Path size: 8
The max group size of this path is: 12
```

Cenário 1.2

```
Scenario 2
      User Given Group Size
  2) Max Group Size
  3) Dinic's solution
  4) Ford Fulkerson
      Go Back
> 1
Enter Data set id: 25
Group size: 5
Flow Paths:
6 <-- 5 <-- 2 <-- 1 <-- 0 <-- New flow = 3
6 < -- 5 < -- 3 < -- 1 < -- 0 < -- New flow = 2
Found flow is: 5
----- Times ------
MIN Duration of the trip: 2
If schedule does not have any delay:
No Waiting breaks
'Folga Total': 3
```

Cenário 2.1

Scenario 2 User Given Group Size 2) Max Group Size 3) Dinic's solution 4) Ford Fulkerson 0) Go Back > 2 Enter Data set id: 26 Flow Paths: 16 <-- 8 <-- 3 <-- 2 <-- 1 <-- New flow = 5 16 <-- 8 <-- 7 <-- 5 <-- 1 <-- New flow = 3 16 <-- 15 <-- 14 <-- 13 <-- 1 <-- New flow = 4 16 <-- 12 <-- 11 <-- 10 <-- 9 <-- 1 <-- New flow = 9 Found flow is: 21 ----- Times ------MIN Duration of the trip: 5 If schedule does not have any delay: Max Wait at stop: 16 is 1 'Folga Total': 4

Cenário 2.2

```
Scenario 2
   1) User Given Group Size
  2) Max Group Size
   3) Dinic's solution
  4) Ford Fulkerson
     Go Back
_____
> 2
Enter Data set id: 1
Flow Paths:
50 <-- 12 <-- 46 <-- 8 <-- 1 <-- New flow = 1
50 <-- 41 <-- 33 <-- 6 <-- 1 <-- New flow = 1
50 <-- 31 <-- 40 <-- 48 <-- 8 <-- 1 <-- New flow = 2
50 <-- 39 <-- 19 <-- 7 <-- 37 <-- 38 <-- 1 <-- New flow = 2
50 <-- 39 <-- 44 <-- 22 <-- 35 <-- 38 <-- 1 <-- New flow = 1
50 <-- 39 <-- 17 <-- 36 <-- 10 <-- 6 <-- 1 <-- New flow = 3
Found flow is: 10
----- Times ------
MIN Duration of the trip: 135
If schedule does not have any delay:
Max Wait at stop/node 50 is of time: 99
'Folga Total': 133
```

Cenário 2.3 (Edmonds-karp)

```
Scenario 2
      User Given Group Size
      Max Group Size
      Dinic's solution
  4) Ford Fulkerson
  0) Go Back
 > 3
Enter Data set id: 25
Flow Paths:
1 --> 2 --> 5 --> 6
1 --> 2 --> 3 --> 5 --> 6
1 --> 2 --> 3 --> 5 --> 4 --> 6
1 --> 2 --> 1 --> 2 --> 3 --> 5 --> 4 --> 6
1 --> 2 --> 3 --> 5 -->
Found flow is: 8
----- Times
MIN Duration of the trip: 4
If schedule does not have any delay:
Max Wait at stop/node 3 is of time: 1
Max Wait at stop/node 5 is of time: 1
'Folga Total': 3
```

Cenário 2.3 (Dinic's algorithom)

```
_____
            Scenario 2
_____
  1) User Given Group Size
  2) Max Group Size
  3) Dinic's solution
     Ford Fulkerson
  0) Go Back
> 4
Enter Data set id: 26
Flow Paths:
16 <-- 8 <-- 4 <-- 3 <-- 2 <-- 1 <-- New flow = 5
16 <-- 8 <-- 7 <-- 5 <-- 1 <-- New flow = 3
16 <-- 12 <-- 11 <-- 10 <-- 9 <-- 1 <-- New flow = 9
16 < -- 15 < -- 14 < -- 13 < -- 1 < -- New flow = 4
16 <--
Found flow is: 21
----- Times ------
MIN Duration of the trip: 5
If schedule does not have any delay:
Max Wait at stop/node 8 is of time: 1
Max Wait at stop/node 16 is of time: 1
'Folga Total': 4
```

Cenário 2.3 (Ford-Fulkerson)

```
Scenario 2
1) User Given Group Size
  2) Max Group Size
  3) Dinic's solution
   4) Ford Fulkerson
  0) Go Back
Enter Data set id: 5
Group size: 5
A path was found where the group doesnt need to break apart:
The path will be:
1 464 891 587 437 18 564 132 50 431 962 627 741 1000
The max group size of this path is: 16
New group size (0 to skip): 18
Applying flow...
Flow Paths:
1000 <-- 300 <-- 987 <-- 534 <-- 802 <-- 1 <-- 0 <-- New flow = 2
1000 <-- 821 <-- 113 <-- 694 <-- 802 <-- 1 <-- 0 <-- New flow = 3
1000 <-- 14 <-- 701 <-- 27 <-- 802 <-- 1 <-- 0 <-- New flow = 1
1000 <-- 755 <-- 604 <-- 566 <-- 702 <-- 1 <-- 0 <-- New flow = 6
1000 <-- 936 <-- 719 <-- 118 <-- 702 <-- 1 <-- 0 <-- New flow = 1
1000 < --838 < --442 < --924 < --754 < --1 < --0 < --New flow = 5
Found flow is: 18
----- Times ------
MIN Duration of the trip: 108
If schedule does not have any delay:
Max Wait at stop/node 1000 is of time: 96
'Folga Total': 108
```

Cenário 2.1 (Caminho Único)

- João Ricardo Alves up202007614
- Marco André Rocha up202004891
- > Ricardo de Matos up202007962