$$\frac{\chi = f(v)}{C(v)} = \left(f(v), g(v) \right)$$

$$(u,v) = (x(v,v), y(u,v), z(u,v))$$

$$r = f(v)$$
 $u = angula$
 $x(u,v) = f(v) cos u$
 $y(u,v) = f(v) sen u$
 $z(u,v) = y(v)$

$$x(u,v) = (f(v) \omega u, f(v)_{penu}, g(v)),$$

donde $u \in (0,2\pi), v \in (a,b),$

$$(0,2\pi)\times(0,2\pi)$$

Puntos Críticos:

f: 11 EIR -> R., f diferenciable

per proto crítico
$$\iff$$
 $f'(p)=0$ $Df(p): \mathbb{R} \longrightarrow \mathbb{R}$ \implies $f'(p): \times$ poheyectiva $\xrightarrow{\chi \longrightarrow c\chi}$

f: U = Rn -> IR f diferenciable

pel) er vilius
$$\iff$$
 $\nabla f(p) = 0$ $Df(p): \mathbb{R}^n \longrightarrow \mathbb{R}$
 \iff $D_f(p)$ hoes polyeptiva

$$f(x,y,z) = x^2 + y^2 + z^2 - 1$$
 $f(x,y,z) = x^2 + y^2 + z^2 - 1$

$$5^2 = \bar{f}'(0)$$