

#### **Description**

#### **Image**





#### Caption

1. Slippers. © Zhangzhou Yongxin Trade Co. 2. Running shoes. ©

#### The material

Ethylene-Vinyl-Acetate elastomers (EVA) are built around polyethylene. They are soft, flexible and tough, and retain these properties down to -60 C. Fillers improve both hardness and stiffness, but with some degradation of other properties. EVAs blend well with PE because of their chemical similarity. EVA is available in pastel or deep hues; it has good clarity and gloss. It has good barrier properties, little or no odor, is UV resistance and FDA-approval for direct food contact. The toughness and flexibility is retained even at low temperatures and it has good stress-crack resistance and good chemical resistance. EVA can be processed by most normal thermoplastic processes: co-extrusion for films, blow molding, rotational molding, injection molding and transfer molding.

#### Composition (summary)

(CH2)n-(CH2-CHR)m

#### **General properties**

| Density         | 945   | - | 955  | kg/m^3 |
|-----------------|-------|---|------|--------|
| Price           | * 2.3 | - | 2.53 | USD/kg |
| Date first used | 1972  |   |      |        |

#### **Mechanical properties**

| Young's modulus                 | 0.01   | - | 0.04 | GPa      |
|---------------------------------|--------|---|------|----------|
| Shear modulus                   | 0.008  | - | 0.01 | GPa      |
| Bulk modulus                    | * 1.3  | - | 1.4  | GPa      |
| Poisson's ratio                 | * 0.47 | - | 0.49 |          |
| Yield strength (elastic limit)  | 12     | - | 18   | MPa      |
| Tensile strength                | 16     | - | 20   | MPa      |
| Compressive strength            | 13.2   | - | 19.8 | MPa      |
| Elongation                      | 730    | - | 770  | % strain |
| Fatigue strength at 10^7 cycles | * 12   | - | 12.8 | MPa      |
|                                 |        |   |      |          |



# Ethylene vinyl acetate (EVA)

| Fracture toughness                           | * | 0.5          | -      | 0.7   | MPa.m^0.5   |  |
|----------------------------------------------|---|--------------|--------|-------|-------------|--|
| Mechanical loss coefficient (tan delta)      | * | 0.34         | -      | 0.83  |             |  |
| Thermal properties                           |   |              |        |       |             |  |
| Glass temperature                            | * | -73.2        | -      | -23.2 | C           |  |
| Maximum service temperature                  |   | 46.9         |        | 51.9  | C           |  |
| Minimum service temperature                  |   | -123         | _      | -73.2 | C           |  |
| Thermal conductor or insulator?              |   | Good in:     | sulato |       | -           |  |
| Thermal conductivity                         |   | 0.3          | _      | 0.4   | W/m.℃       |  |
| Specific heat capacity                       |   | 2e3          | _      | 2.2e3 | J/kg.℃      |  |
| Thermal expansion coefficient                |   | 160          |        | 190   | µstrain/℃   |  |
|                                              |   |              |        |       | •           |  |
| Electrical properties                        |   |              |        |       |             |  |
| Electrical conductor or insulator?           |   | Good in:     | sulato | or    |             |  |
| Electrical resistivity                       | * | 3.16e21      | -      | 1e22  | μohm.cm     |  |
| Dielectric constant (relative permittivity)  |   | 2.9          | -      | 2.95  |             |  |
| Dissipation factor (dielectric loss tangent) |   | 0.005        | -      | 0.022 |             |  |
| Dielectric strength (dielectric breakdown)   |   | 26.5         | -      | 27    | 1000000 V/m |  |
| Optical properties                           |   |              |        |       |             |  |
| Transparency                                 |   | Transluc     | cent   |       |             |  |
| Refractive index                             |   | 1.48         | _      | 1.49  |             |  |
|                                              |   |              |        |       |             |  |
| Critical Materials Risk                      |   |              |        |       |             |  |
| High critical material risk?                 |   | No           |        |       |             |  |
| Processability                               |   |              |        |       |             |  |
| Castability                                  |   | 3            | _      | 4     |             |  |
| Moldability                                  |   | 4            | _      | 5     |             |  |
| Machinability                                |   | 3            |        | - C   |             |  |
| Weldability                                  |   | 2            |        |       |             |  |
| Violatiniy                                   |   | _            |        |       |             |  |
| Durability: water and aqueous solutions      |   |              |        |       |             |  |
| Water (fresh)                                |   | Accepta      | ble    |       |             |  |
| Water (salt)                                 |   | Acceptable   |        |       |             |  |
| Soils, acidic (peat)                         |   | Unacce       | otable | )     |             |  |
| Soils, alkaline (clay)                       |   | Excellent    |        |       |             |  |
| Wine                                         |   | Excellent    |        |       |             |  |
| Donald Wife and de                           |   |              |        |       |             |  |
| Durability: acids                            |   | l loss - :   | otek!  |       |             |  |
| Acetic acid (10%) Acetic acid (glacial)      |   | Unacceptable |        |       |             |  |
|                                              |   | Unacceptable |        |       |             |  |



## Ethylene vinyl acetate (EVA)

| Citric acid (10%)       | Acceptable   |
|-------------------------|--------------|
| Hydrochloric acid (10%) | Unacceptable |
| Hydrochloric acid (36%) | Unacceptable |
| Hydrofluoric acid (40%) | Unacceptable |
| Nitric acid (10%)       | Unacceptable |
| Nitric acid (70%)       | Unacceptable |
| Phosphoric acid (10%)   | Excellent    |
| Phosphoric acid (85%)   | Excellent    |
| Sulfuric acid (10%)     | Unacceptable |
| Sulfuric acid (70%)     | Unacceptable |

# **Durability: alkalis**

| Sodium hydroxide (10%) | Excellent   |
|------------------------|-------------|
| Sodium hydroxide (60%) | Limited use |

## **Durability: fuels, oils and solvents**

| Amyl acetate             | Unacceptable |
|--------------------------|--------------|
| Benzene                  | Unacceptable |
| Carbon tetrachloride     | Unacceptable |
| Chloroform               | Unacceptable |
| Crude oil                | Unacceptable |
| Diesel oil               | Acceptable   |
| Lubricating oil          | Excellent    |
| Paraffin oil (kerosene)  | Acceptable   |
| Petrol (gasoline)        | Limited use  |
| Silicone fluids          | Excellent    |
| Toluene                  | Unacceptable |
| Turpentine               | Excellent    |
| Vegetable oils (general) | Unacceptable |
| White spirit             | Unacceptable |

# Durability: alcohols, aldehydes, ketones

| Acetaldehyde              | Limited use  |
|---------------------------|--------------|
| Acetone                   | Unacceptable |
| Ethyl alcohol (ethanol)   | Unacceptable |
| Ethylene glycol           | Excellent    |
| Formaldehyde (40%)        | Acceptable   |
| Glycerol                  | Acceptable   |
| Methyl alcohol (methanol) | Unacceptable |

# **Durability: halogens and gases**



## Ethylene vinyl acetate (EVA)

| Chlorine gas (dry)   | Unacceptable |
|----------------------|--------------|
| Fluorine (gas)       | Unacceptable |
| O2 (oxygen gas)      | Unacceptable |
| Sulfur dioxide (gas) | Acceptable   |

## **Durability: built environments**

| Industrial atmosphere   | Excellent |
|-------------------------|-----------|
| Rural atmosphere        | Excellent |
| Marine atmosphere       | Excellent |
| UV radiation (sunlight) | Fair      |

## **Durability: flammability**

| Flammability | Highly flammable |
|--------------|------------------|
|--------------|------------------|

## **Durability: thermal environments**

| Tolerance to cryogenic temperatures | Unacceptable |
|-------------------------------------|--------------|
| Tolerance up to 150 C (302 F)       | Acceptable   |
| Tolerance up to 250 C (482 F)       | Unacceptable |
| Tolerance up to 450 C (842 F)       | Unacceptable |
| Tolerance up to 850 C (1562 F)      | Unacceptable |
| Tolerance above 850 C (1562 F)      | Unacceptable |

# Primary material production: energy, CO2 and water

| Embodied energy, primary production | * 75   | - | 82.8 | MJ/kg          |
|-------------------------------------|--------|---|------|----------------|
| CO2 footprint, primary production   | * 2    | - | 2.21 | kg/kg          |
| Water usage                         | * 2.66 | - | 2.94 | l/kg           |
| Eco-indicator 99                    | 268    |   |      | millipoints/kg |

## **Material processing: energy**

| Polymer extrusion energy                      | * 5.83 | - | 6.42  | MJ/kg |
|-----------------------------------------------|--------|---|-------|-------|
| Polymer molding energy                        | * 14.8 | - | 16.4  | MJ/kg |
| Coarse machining energy (per unit wt removed) | * 0.72 | - | 0.796 | MJ/kg |
| Fine machining energy (per unit wt removed)   | * 2.92 | - | 3.23  | MJ/kg |
| Grinding energy (per unit wt removed)         | * 5.37 | - | 5.94  | MJ/kg |

## **Material processing: CO2 footprint**

| Polymer extrusion CO2                      | * 0.466 | - | 0.514  | kg/kg |
|--------------------------------------------|---------|---|--------|-------|
| Polymer molding CO2                        | * 1.19  | - | 1.31   | kg/kg |
| Coarse machining CO2 (per unit wt removed) | * 0.054 | - | 0.0597 | kg/kg |
| Fine machining CO2 (per unit wt removed)   | * 0.219 | - | 0.242  | kg/kg |
| Grinding CO2 (per unit wt removed)         | * 0.403 | - | 0.445  | kg/kg |



#### Material recycling: energy, CO2 and recycle fraction

| Recycle                            |   | ×         |   |      |       |
|------------------------------------|---|-----------|---|------|-------|
| Embodied energy, recycling         | * | 44.7      | - | 49.5 | MJ/kg |
| CO2 footprint, recycling           | * | 3.52      | - | 3.89 | kg/kg |
| Recycle fraction in current supply |   | 0.1       |   |      | %     |
| Downcycle                          |   | ✓         |   |      |       |
| Combust for energy recovery        |   | ✓         |   |      |       |
| Heat of combustion (net)           | * | 39.2      | - | 41.2 | MJ/kg |
| Combustion CO2                     | * | 2.82      | - | 2.97 | kg/kg |
| Landfill                           |   | ✓         |   |      |       |
| Biodegrade                         |   | ×         |   |      |       |
| Toxicity rating                    |   | Non-toxic |   |      |       |
| A renewable resource?              |   | ×         |   |      |       |

### **Supporting information**

#### Design guidelines

EVA is available in pastel or deep hues, it has good clarity and gloss. It has good barrier properties, little or no odor, is UV resistance and FDA-approval for direct food contact. The toughness and flexibility is retained even at low temperatures and it has good stress-crack resistance and good chemical resistance. EVA can be processed by most normal thermoplastic processes: co-extrusion for films, blow molding, rotational molding, injection molding and transfer molding.

#### Typical uses

Medical tubes, milk packaging, beer dispensing equipment, bags, shrink film, deep freeze bags, co-extruded and laminated film, closures, ice trays, gaskets, gloves, cable insulation, inflatable parts, running shoes.

#### Links

| Reference       |  |  |  |
|-----------------|--|--|--|
| ProcessUniverse |  |  |  |
| Producers       |  |  |  |