Chapter 14.6: Linearization and Tangent Planes

D2: Tangent Planes and Linear Approximations. I can find equations for tangent planes to surfaces and linear approximations of functions at a given point and apply these to solve problems.

Mechanics

1. Find the linearization of $f(x,y) = e^{2y-x}$ at (1,2). Without doing any more calculations, find an equation of the tangent plane of the surface f(x,y) at (1,2).

Answer: $L(x,y) = e^3 - e^3(x-1) + 2e^3(y-2)$ tangent plane: $z = e^3 - e^3(x-1) + 2e^3(y-2)$

2. Find the linearization of $f(x, y, z) = \arctan(xyz)$ at (1, 1, 0).

Answer: L(x, y, z) = z

3. Use the linearization to approximate f(2.95, 7.1) for the function $f(x, y) = \sqrt{x^2 + y}$, knowing that f(3,7) = 4.

Answer: $f(2.95, 7.1) \approx 4 - 1/40$

4. Find an equation of the tangent plane to the unit sphere $x^2 + y^2 + z^2 = 1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)$.

Answer: $\sqrt{2}\left(x - \frac{1}{\sqrt{2}}\right) + \left(y - \frac{1}{2}\right) + \left(z - \frac{1}{2}\right) = 0$

Applications

5. Suppose you are shining a flashlight on a smooth surface. The angle of incidence, θ_i is the angle at which a light beam hits the surface, measured with respect to the surface normal (i.e., the normal vector to the tangent plane at point of contact). The angle of reflection θ_r is the angle of the reflected light beam measured with respect to the surface normal. The law of reflection states that in a vacuum, we must have $\theta_i = \theta_r$. Draw a labeled picture to convince yourself that this is reasonable.

Now, consider the paraboloid $z = x^2 + y^2$, and a light ray traveling along the path $\mathbf{r}(t) = (-2, -3, 2)t + (3, 4, 0)$. Compute the angle of reflection at the point (1, 1, 2) [Hint: How can one find the angle between two vectors?].

Answer: $\theta_r = \arccos(\frac{4}{\sqrt{17}}) \approx 0.245 \text{ rad}$

Extensions

6. Use software to graph the function $z=x^{1/3}y^{1/3}$. Examine the graph at (0,0) - does it look like the function has a tangent plane there? Use this to deduce a necessary condition for a function f(x,y) to have a tangent plane.

Answer: No, there are two different tangent planes. The function cannot have a cusp at the point with the tangent plane.