Random Variables and Stochastic Process (AI5030)

Soumyajit Chatterjee AI22MTECH02005

April 1, 2022

Question 118 Dec (2017)

Twenty items are put in a life testing experiment starting at time 0. The failure times of the items are recorded in a sequential manner. The experiment stops if all the twenty items fails or a pre-fixed time $T \ge 0$ is reached, whichever is earlier. If the lifetimes of the items are independent and identically distributed exponential random variables with mean θ , where $0 < \theta < 10$, then which of the following statements are correct?

- 1. The MLE of θ always exists.
- 2. The MLE of θ does not exist.
- 3. The MLE of θ is an unbiased estimator of θ if it exists.
- 4. The MLE of θ is bounded with probability 1, if it exists.

Solution

An exponentially distributed Random Variable is given by the equation:

$$f(x,\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \geqslant 0\\ 0 & \text{for } x < 0 \end{cases}$$
 (1)

The graph of exponential Random Variable plot is:

Figure 1: Exponential Random Variable

The CDF of exponential random variable is given by:

$$F(x,\lambda) = (1 - e^{-\lambda x}) \tag{2}$$

Here, the independent variable is time and mean θ , therefore the CDF with respect to time t and mean θ is $F(t, \theta) = (1 - e^{-\theta t})$

Out of the 20 items let the first item survive till time t_1 before failing.

Therefore, the probability that the item survives till time t_1 before T where t is exponentially distributed is given by $P(t < T, \theta)$ which is equal to the CDF of $F(t_1, \theta)$.

Therefore, the probability the item fails is given by 1 - $F(t_1, \theta)$ which is 1 - $(1 - e^{-\theta t_1}) = e^{-\theta t_1}$

Similarly, let the second item survive till time t_2 and the probability it survives till time t_2 is $P(t_2 < T, \theta)$ is given by the CDF $F(t_2, \theta)$.

Therefore, the probability the item fails is given by 1 - $F(t_2, \theta)$ which is 1 - $(1 - e^{-\theta t_2}) = e^{-\theta t_2}$

Therefore, the probability of all 20 items failing sequentially will be:

$$P = e^{-\theta t_1} \cdot e^{-\theta t_2} \cdot e^{-\theta t_3} \cdot e^{-\theta t_4} \cdot e^{-\theta t_5} \cdot e^{-\theta t_6} \cdot \dots \cdot e^{-\theta t_{20}}$$

Which will be equal to $P = e^{-\theta(t_1+t_2+t_3+t_4+.....t_{20})}$, writing $t_1+t_2+t_3+t_4+.....t_{20}$ as some constant τ , we can rewrite the value of $P = e^{-\theta\tau}$.

From the definition of maximum likelihood estimation, we have to find that value of θ in the range $0 < \theta < 10$ that maximizes the probability P.

To find the maximum value of the likelihood with respect to θ we can calculate $\frac{dP}{d\theta} = 0$ to find the value of θ that maximizes P.

However, $P = e^- \theta \tau$ is an exponential function, its derivative is also an exponential function which will never be exactly equal to 0.

Therefore, since $\frac{dP}{d\theta}$ will not be zero for any θ , we cannot find the optimal θ that maximizes P. Therefore, the MLE for this problem does not exist.

Therefore, option (2) is the correct option.