Задача 3. Спецификация на софтуерна система за провеждане на обучения за получаване на допълнителна квалификация за учители изисква попълване на формуляр за заявка. Формулярът включва попълване на 4 полета за избор (ОКС, научно звание, специалност, тип идентификационен номер), като всяко от тях предлага следните опции:

- ОКС: Бакалавър, Магистър, Доктор;
- Научно звание: Да, Не;
- Специалност: Математика, Информатика, Компютърни науки;
- Тип идентификационен номер (ИН): ЕГН, ЛНЧ, Друго.

Да се дефинират тестови сценарии, покриващи избора на стойности от полетата за избор чрез прилагане на техниката за тестване по двойки с ортогонален масив. Да се опишат стъпките за прилагане на техниката и да се представят тестовите сценарии в таблица.

Решение.

- 1) Определя се максималният брой независими входни променливи, с които ще се тества системата (Factors).
 - → Независимите променливи са 4.
- 2) Определя се максималният брой стойности, които независима променлива може да приема (Levels).
 - → Всяка променлива може да има най-много 3 стойности.
- 3) Избира се подходящ ортогонален масив с минимален брой изпълнения (Runs) $\to L_0$ (3⁴), където:

 $runs = 9 \to$ броя редове в таблицата, това е броя на тестовите сценарии.

 $levels = 3 \rightarrow$ максималният брой стойности на всяка от променливите

 $factors = 4 \rightarrow$ брой колони в таблицата, това е броя на входните променливи

Избраният ортогонален масив е:

	$L_9(3^4)$				
	Factors				
Runs	1 2 3 4				
1	1	1	1	1	
2	1	2	2	2	
3	1	3	3	3	
4	2	1	2	3	
5	2	2	3	1	
6	2	3	1	2	
7	3	1	3	2	
8	3	2	1	3	
9	3	3	2	1	

Стойностите в масива са подбрани по такъв начин, че да се тестват всички възможно двойки комбинации от стойности.

Наблюдавайки колоните в ортогоналния масив, забелязваме, че се образуват двойките комбинации:

(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) за всеки 2 от факторите.

4) Променливите се асоциират с факторитем а стойностите на всяка променлива с нивата:

фактор 1 - ОКС

- 1 → Бакалавър (Б)
- $2 \rightarrow \text{Магистър (M)}$
- $3 \rightarrow Доктор (Д)$

фактор 2 - Научно звание (НЗ)

- 1 → Дa
- $2 \rightarrow He$

фактор 3 - Специалност

- 1 → Математика (Мат)
- $2 \rightarrow Информатика (Инф)$
- 3 → Компютърни науки (КН)

фактор 4 - Тип идентификационен номер (ИН)

- $1 \rightarrow E\Gamma H$
- $2 \rightarrow ЛНЧ$
- $3 \rightarrow Друго$
- 5) Запълват се неасоциираните нива. Фактор 2 има 3 специфицирани нива в масива, но съответстващата му променлива (научно звание) има само 2 възможни стойности (Да и Не). Неасоциираните нива се запълват със стойностите на променливата като се редуват отгоре надолу.
- 6) Редовете на таблицата се трансформират в тестови сценарии. Генерират се 9 тестови сценария те дефинират 9 различни комбинации от входните стойности на променливите, с които ще тестваме соифтуерната система.

Тестов сценарий	ОКС	нз	Специалност	Тип ID
1	Б	Да	Мат	ЕГН
2	Б	Да	Инф	ЛНЧ
3	Б	Не	KH	Друго
4	М	Да	Инф	Друго
5	М	Не	KH	ЕГН
6	М	Не	Мат	ЛНЧ
7	Д	Да	KH	ЛНЧ
8	Д	Да	Мат	Друго
9	Д	Не	Инф	ЕГН

Всеки ред от таблицата по-горе съответства на 1 тестови сценарии.

П

Други ортогонални масиви:

	$L_8(2^7)$						
	Factors						
Runs	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

	$L_4(2^3)$				
	Factors				
Runs	1 2 3				
1	1	1	1		
2	1	2	2		
3	2	1	2		
4	2	2	1		

	$L_4(2^3)$					
	Factors					
Runs	1	2	3	4	5	
1	1	1	1	1	1	
2	1	2	2	2	2	
3	1	3	3	3	3	
4	1	4	4	4	4	
5	2	1	2	3	4	
6	2	2	1	4	3	
7	2	3	4	1	2	
8	2	4	3	2	1	
9	3	1	3	4	2	
10	3	2	4	3	1	
11	3	3	1	2	4	
12	3	4	2	1	3	
13	4	1	4	2	3	
14	4	2	3	1	4	
15	4	3	2	4	1	
16	4	4	1	3	2	