Analisis Calidad de la data

```
import pyspark
from pyspark.sql.functions import *
```

Creamos la sesion spark y la inicializamos

```
spark = pyspark.sql.SparkSession.builder.appName("quality").getOrCreate()
```

Carga de base de datos

```
path = "dataset.csv"

df = spark.read.csv(path,header=True,sep=',', inferSchema="True")

df.show(5)
```

+		+	+-	+				
	1	212600	False	1	77	4WUepByoeqcedHoYh	Welcome To New Yo	0.757
	1	231833	False	2	78	0108kcWLnn2H1H2ke	Blank Space (Tayl	0.733
	1	231000	False	3	79	3Vpk1hfMAQme8VJ0S	Style (Taylor's V	0.511
	1	235800	False	4	78	10cSfkeCg9hRC2sFK	Out Of The Woods	0.545
	1	193289	False	5	77	2k0ZEeAqzvYMcx9Qt	All You Had To Do	0.588

Lo primero es entender la base que estamos procesando

Tenemos una base de albunes con sus canciones de Taylor Swift asi mismo validamos las columnas donde se encuentran variables como que tan bailable puede ser, su energia, presencia de ruido, o palabras entre otros

```
df.printSchema()
```

```
|-- disc_number: integer (nullable = true)
-- duration_ms: integer (nullable = true)
-- explicit: string (nullable = true)
-- track_number: integer (nullable = true)
-- track_popularity: integer (nullable = true)
-- track_id: string (nullable = true)
-- track_name: string (nullable = true)
-- audio_features.danceability: double (nullable = true)
-- audio_features.energy: double (nullable = true)
-- audio_features.key: double (nullable = true)
-- audio_features.loudness: double (nullable = true)
-- audio_features.mode: integer (nullable = true)
-- audio_features.speechiness: double (nullable = true)
-- audio_features.acousticness: double (nullable = true)
-- audio_features.instrumentalness: string (nullable = true)
-- audio_features.liveness: double (nullable = true)
-- audio_features.valence: double (nullable = true)
-- audio_features.tempo: double (nullable = true)
-- audio_features.id: string (nullable = true)
-- audio_features.time_signature: double (nullable = true)
-- artist_id: string (nullable = true)
-- artist_name: string (nullable = true)
-- artist_popularity: integer (nullable = true)
-- album_id: string (nullable = true)
-- album_name: string (nullable = true)
-- album_release_date: date (nullable = true)
-- album_total_tracks: string (nullable = true)
```

Comprobamos los tipos de cada columna que esten acorde a su significado dado que esto puede afectar para un modelado cuando una columna no tenga el topo correcto

en este caso vemos las columnas album_total_tracks y audio_features.instrumentalness: estan en un formato string , cuando deberia tener un formato integer y double respectivamente

para el caso de audio_features.mode este debneria ser un boleano dado que toma solo valores de "0" y 1

Valores nulos

Como tenemos nombres de columnas con ".", reemplazamos esto por "_" para poder hacer el conteo de los nulos por columnas y no tener conflictos en pyspark

```
df1 = df.toDF(*[c.replace('.', '_') for c in df.columns])
df1.show(3)
```

1	212600	False	1	77 4WUepB	ByoeqcedHoYh Welco	ome To New Yo	0.757
1	231833	False	2	78 0108kc	:WLnn2H1H2ke Blank	Space (Tayl	0.733
1	231000	False	3	79 3Vpk1h	nfMAQme8VJ0S Style	(Taylor's V	0.511

 $\label{lem:df1.select([count(when(col(k).isNull(),k)).alias(k) for k in df1.columns]).show()} % \[\frac{1}{2} \left(\frac{1}{2}$

				·			·	
+		0		0	8		2	2
+	+	+	+		 +	+		

Observamos que donde tenemos mas datos faltanes es en el nombre del album

Resumen general

df1.describe().show()

++	+		·	·+		·+	
summary	disc_number	duration_ms	explicit	track_number	track_popularity	track_id	track_name
+	+			·+		++	
count	539	539	539	539	539	531	532
mean	1.0315398886827458	236003.7254174397	null	11.280148423005565	62.91836734693877	null	22.0
stddev	0.17493398591537432	55019.871010413415	null	7.965620550754272	22.498757014954524	null	0.0
min	1	-223093	False	1	-92	00vJzaoxM3Eja1doB	"""Slut!"" (Taylo
max	2	613026	True	46	152	7zcnlq38eqNWyUF6e	'tis the damn season
++	+		·	·+		++	
4							

Podemos ver inconsistencia en duration_ms en donde tenemos valores minimos negativos, asi como en la variable audio_features_acousticness

Valores duplicados

```
duplicates = df1.groupBy(*df1.columns).count().filter(col("count") > 1)
duplicates.show()
duplicates.count()
```

disc_number	duration_ms	explicit	track_number	track_popularity	track_id	track_name	audio_features_danceability a
 1	.l 173386	+ False	+6l	78	2YWtcWi3a83ndFg3G	+ I Think He Knows	+
1	193000	: :			1 0	ME! (feat. Brendo	
1	171360		14			You Need To Calm	
1	211240	False			3pHkh7d0lzM2AldUt		
1	198533					Death By A Thousa	
1	223293				1SymEzIT3H8UZfibC		
1	234466	: :	21		,	Hits Different	
1	. 221306	False	3	92	1dGr1c8CrMLDpV6mP	Lover	0.359
1	. 293453	False	18		1fzAuUVbzlhZ1lJAx		
1	. 190360	False	4	86	3RauEVgRgj1IuWdJ9	The Man	0.777
1	. 287266	False	9	81	12M5uqx0ZuwkpLp5r	Cornelia Street	0.824
1	170640	False	1	77	43rA71bccXFGD4C8G	I Forgot That You	0.664
1	200306	False	13	78	5hQSXkFgbxjZo9uCw	False God	0.739
1	150440	False	17	72	1SmiQ65iSAbPto6gP	It's Nice To Have	0.737
1	201586	False	12	72	4AYtqFyFbX0Xkc2wt	Soon You'll Get B	0.433
1	. 234146	False	7	83	214nt20w5w0xJnY46	Miss Americana &	0.662
1	190240	False	11	80	1LLXZFeAHK9R4xUra	London Boy	0.695
1	222400	False	8	86	4y5bvROuBDPr5fuwX	Paper Rings	0.811
	+	+	+			+	
.8							

Aca podemos observar que tenemos 18 filas duplicadas , los cuales contienen los mismo registros para todas las columnas

Alternativa grafica

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

pandas_df = df1.toPandas()
```

Mediante un boxplot podemos ver tambien que valores atipicos tienen las variables , con respecto a la media y la sd, esto nos da una mayor visual parakl poder ir revisando la calidad de la data

```
sns.boxplot(x='audio\_features\_danceability', \ data=pandas\_df)\\ plt.show()
```


 $\label{local_state} $$sns.boxplot(x='audio_features_loudness', data=pandas_df)$ plt.show()$

sns.boxplot(x='audio_features_tempo', data=pandas_df)
plt.show()

