Práctica 3

Determinantes

Definiciones y propiedades

El determinante de una matriz $A \in \mathbb{R}^{n \times n}$ es un número real que se calcula a partir de los elementos de A. Se nota $\det(A)$ ó |A|.

Si
$$A \in \mathbb{R}^{2 \times 2}$$
, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, el determinante de A es el número

$$\det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Si
$$A \in \mathbb{R}^{3 \times 3}$$
, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$,

$$\det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Los determinantes de matrices de 4×4 se calculan utilizando determinantes de matrices de 3×3 , y, en general, los determinantes de matrices de $n \times n$ se calculan utilizando determinantes de matrices de $(n-1) \times (n-1)$.

Si $A \in \mathbb{R}^{n \times n}$, $A = (a_{ij})$, el *menor del elemento* a_{ij} , que se nota M_{ij} , se define como el determinante de la submatriz que queda al eliminar de A la i-ésima fila y la j-ésima columna. El número $C_{ij} = (-1)^{i+j} M_{ij}$ se conoce como *cofactor del elemento* a_{ij} .

Se define el determinante de una matriz $A \in \mathbb{R}^{n \times n}$ como

$$\det(A) = |A| = a_{11}C_{11} + a_{12}C_{12} + \ldots + a_{1n}C_{1n}.$$

Propiedad. Se puede obtener $\det(A)$ multiplicando los elementos de cualquier fila (o columna) por sus respectivos cofactores y sumando los productos que resulten. Es decir, para cada $1 \le i \le n$ y $1 \le j \le n$,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}$$

(desarrollo por cofactores a lo largo de la j-ésima columna) y

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

(desarrollo por cofactores a lo largo de la *i*-ésima fila).

Propiedades.

- Si $A \in \mathbb{R}^{n \times n}$ contiene una fila de ceros, entonces $\det(A) = 0$.
- Si $A \in \mathbb{R}^{n \times n}$ es una matriz triangular, entonces $\det(A)$ es el producto de los elementos de la diagonal, es decir $\det(A) = a_{11}a_{22} \dots a_{nn}$.

Propiedades. Sea $A \in \mathbb{R}^{n \times n}$.

- Si A' es la matriz que se obtiene cuando una sola fila de A se multiplica por una constante k, entonces $\det(A') = k \det(A)$.
- Si A' es la matriz que se obtiene al intercambiar dos filas de A, entonces det(A') = -det(A).
- Si A' es la matriz que se obtiene al sumar un múltiplo de una de las filas de A a otra fila, entonces $\det(A') = \det(A)$.

Propiedades.

• Si $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$ y $k \in \mathbb{R}$, entonces

$$det(kA) = k^n det(A)$$
$$det(AB) = det(A)det(B)$$

• $A \in \mathbb{R}^{n \times n}$ es inversible si, y solo si, $\det(A) \neq 0$. En el caso de que A sea inversible vale $\det(A^{-1}) = \frac{1}{\det(A)}$.