Programmation linéaire avec SCIP

Christoph Dürr CentraleSupélec — 2018

Vous avez vraiment de bons yeux

Pour aller plus Ioin, consultez le ZIMPL User Guide de Thorsten Koch

Format LP par l'exemple

ou

Minimize

\Commentaire

Maximize

Bounds

Binary

End

General -

voiture camion tricycle velo

Subject To

- Une usine dispose d'un stock de roues, de matière première plastique et du fer
- Elle peut produire 3 sortes de jouets: voiture, camion, tricycle, vélo. Chaque jouet nécessite une quantité du stock et sa vente produit un profit.
- On sait qu'on ne vendra jamais plus que 20 tricycles.
- On veut écouler tout le fer.
- Combien produire de chaque sorte en respectant le stock et en maximisant le profit?

La vie serait triste si toutes les variables s'appelaient x1, x2,... pas multiplication d'accents sans * obj: 17 voiture + 20 camion + 34.50 tricycle + 38 velo roues: 4 voiture + 4 camion + 3 tricycle + 2 velo <= 1000 plastique: 5 voiture + 17 camion + 8.5 tricvcle <= 300 fer: 20 camion + 35 velo = 500 0 <= tricycle <= 20</pre>

noms

contraintes

optionnels

par défaut 0<= var < +Infinity

section General contient les variables entières

ou >= ou = mais pas > ou !=

Le langage ZIMPL

- Extension .zpl
- Permet de modéliser un programme linéaire
- Similaire à AMPL ou GNU MathProg
- Description compacte et paramétré des contraintes et variables
- Les données peuvent être dans un fichier séparé (en format ZIMPL ou CSV)
- soplex ne lit que .lp scip lit .zpl aussi.

Exemple plus court chemin

Consider the LP formulation of the shortest s,t-path problem, applied to some directed graph (V,A) with cost coefficient c_{ij} for all $(i,j) \in A$:

variable indicatrice: xij=1

arcs sortants, entrants

$$\min \sum_{\substack{(i,j) \in A \\ (i\nu) \in \delta^-(\nu)}} c_{ij} x_{ij} = \sum_{\substack{(\nu i) \in \delta^+(\nu)}} x_{\nu i} \text{ for all } \nu \in V \setminus \{s,t\}$$

(1)

$$x_{ij} \in \{0,1\}, \mathrm{for\ all\ } i,j\ \mathrm{in}\ \mathrm{A}$$

where $\delta^+(\nu) := \{(\nu, i) \in A\}, \ \delta^-(\nu) := \{(i, \nu) \in A\} \text{ for } \nu \in V.$ For a given graph the instantiation is

min
$$17x_{sa} + 47x_{sb} + 19x_{ab} + 53x_{at} + 23x_{bt}$$

subject to
$$x_{sa} = x_{ab} + x_{at}$$

$$x_{sb} + x_{ab} = x_{bt}$$

$$x_{ij} \in \{0,1\}, \mathrm{for\ all\ } i,j$$

Oups!
Il manque la contrainte $\sum x_{si} = 1 \text{ [somme sur (si)} \in \delta^+(s)\text{]}$ qui assure la sélection d'unchemin

selectionne (i,j) pour le

chemin

Exemple plus court chemin

```
autres notations (utiles pour le problème des n reines):

param n := 100;

set N := { 0 .. n-1 };

set G := N cross N;
```

ensemble d'éléments

ensemble de couples

notation comme un dictionnaire: liste de clé valeur, sans : comme en Python

génère une contrainte par sommet v

subto uf:

notations alternatives

var x1;
var x2 binary;
var x3 integer >= -infinity;
var y[A] real >= 2 <= 18; \réel par défault

sum < s, i > in dplus("s"): x[s,i] == 1;

Exemple pyscipopt

environment

```
addVar(self,
                                                                        # the SCIP model
#/usr/bin/env pypy
                                                  name = '',
                                                                        # name of the variable
from pyscipopt import Model, quicksum
                                                                       #'C', 'I', or 'B'
                                                   vtype = 'C',
                                                  1b = 0.0.
                                                                        # lower bound
model = Model("try")
                                                  ub = None ,
                                                                        # upper bound
                                                                        # objective coefficient
                                                  obj = 0.0,
x = model.addVar("x")
                                                  pricedVar = False ) # is it a pricing candidate?
y = model.addVar("y")
z = [model.addVar("z%i" % i) for i in range(10)]
model.addCons(2 * x + y <= 10, "costs")</pre>
model.addCons(x + quicksum(z[i] for i in range(10)) <= 30, "weight")</pre>
                                                                               ou « minimize"
model.setObjective( x + y , "maximize")
model.optimize()
                                                                                  "optimal",
if model.getStatus() != 'optimal':
   print('LP is not feasible!')
```

"unbounded",

"infeasible"

résultat identique à sum, mais exécution plus rapide

Pour aller plus loin:

PySCIPOpt/examples

else:

• PySCIPOpt.pdf *Mathematical Programming in Python with the SCIP Optimization Suite* par Stephen Maher et al. (explique les callbacks)

print("Optimal value: %f" % model.getObjVal())

print("x: = %f" % model.getVal(x))

print("y: = %f" % model.getVal(y))