Name: _____

Mark: ____

Mini-math Div 3/4: Monday, March 1, 2021 (15 minutes)

- 1. Evaluate the following definite integrals.
 - (a) (2 points) $\int_{1}^{9} \frac{\sqrt{t}+1}{t} dt$

Solution:

$$\int_{1}^{9} \frac{\sqrt{t} + 1}{t} dt = \int_{1}^{9} (t^{-1/2} + t^{-1}) dt$$

$$= \left[2t^{1/2} + \ln|t| \right]_{1}^{9}$$

$$= 2(\sqrt{9} - \sqrt{1}) + \ln 9 - \ln 1$$

$$= 4 + \ln 9$$

(b) (2 points) $\int_0^{\pi/6} (\cos \theta - \sec^2 \theta) d\theta$

Solution:

$$\int_0^{\pi/6} (\cos \theta - \sec^2 \theta) d\theta = [\sin \theta - \tan \theta] \Big|_0^{\pi/6}$$
$$= \frac{1}{2} - \frac{1}{\sqrt{3}}$$

(c) (2 points) $\int_{-\pi/6}^{\pi/6} \sin 2x \, dx$

Solution: Since $\sin 2x$ is odd and the interval is symmetric, $\int_{-\pi/6}^{\pi/6} \sin 2x \, dx = 0$. Otherwise,

$$\int_{-\pi/6}^{\pi/6} \sin 2x \, dx = -\frac{1}{2} \cos 2x \Big|_{-\pi/6}^{\pi/6} = -\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = 0$$