Bitcoin and Cryptocurrency Technologies

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder

Draft — May 8, 2015

Feedback welcome! Email bitcoinbook@lists.cs.princeton.edu

Chapter 7: Community, Politics, and Regulation

In this chapter we'll look at about all the ways that the world of Bitcoin and cryptocurrency technology touches the world of people. We'll discuss the community, politics within Bitcoin and the way that Bitcoin interacts with politics, and law enforcement and regulation issues.

7.1: Consensus in Bitcoin

First let's look at consensus in Bitcoin, that is, the way that the operation of Bitcoin relies on the formation of consensus amongst people. There are three kinds of consensus that have to operate for Bitcoin to be successful.

1. Consensus about rules. By rules we mean things like what makes a transaction valid, what makes a block valid, and how the nodes in the peer-to-peer network should behave — how they should interact with each other, the communication protocol they should use, and more generally all the protocols and data formats that are involved in making Bitcoin work.

You need to have a consensus about these things so that all the different participants in the system can talk to each other and agree on what's happening.

2. Consensus about history. That is, consensus about what's in and what isn't in the block chain, and therefore a consensus about which transactions have occurred. Once you have that, what follows is a consensus about which coins — which unspent outputs — exist and who owns them.

This consensus results from the processes we've looked at in earlier chapters from which the block chain is built and by which nodes come to consensus about the contents of the block chain. This is the most familiar and most technically intricate kind of consensus in Bitcoin.

3. Consensus that coins are valuable. The third form of consensus is the general agreement that bitcoins are valuable, that bitcoins are a good thing to have, and in particular the consensus that if someone gives you a bitcoin today, then tomorrow you will be able to redeem or trade that for something of value.

Any currency needs this — whether it's a fiat currency like the dollar or cryptocurrency like Bitcoin, you need a consensus that the thing has value. That is, you need people to generally accept that it's exchangeable for something of value, now and in the future. In a fiat currency, this is the *only* kind of consensus, whereas in cryptocurrencies we additionally have the first two.

In Bitcoin, this form of consensus, unlike the others, is a bit circular. In other words, my belief that the bitcoins I'm receiving today are of value depends on my expectation that tomorrow other people will believe the same thing. So consensus on value relies on believing that consensus on value will

continue. This is sometimes called the Tinkerbell effect by analogy to Peter Pan where it's said that Tinker Bell exists because you believe in her.

Whether it's circular or not, it seems to exist and it's important for Bitcoin to operate. Now, what's important about all three forms of consensus is that they're intertwined with each other, as Figure 7.1 shows.

Figure 7.1: Relationships between the three forms of consensus in Bitcoin

First of all, consensus about rules and consensus about history go together. Without knowing which blocks are valid you can't have consensus about the block chain. And without consensus about which blocks are in the block chain, you can't know if a transaction is valid or if it's trying to spend an already-spent output.

Consensus about history and consensus that coins are valuable are also tied together. Consensus about history means that we agree on who owns which coins, and that's a prerequisite for believing that the coins have value — without a consensus that I own a particular coin I can't have any expectation that people will accept that coin from me as payment in the future. It's true in reverse as well — as we saw in Chapter 2, consensus about value is what incentivizes miners to maintain the security of the block chain, which gets us consensus about history.

The genius in Bitcoin's original design was in recognizing that it would be very difficult to get any one of these types of consensus by itself. Consensus about the rules in a worldwide decentralized environment where there's no notion of identity isn't the kind of thing that's likely to happen.

Consensus about a history, similarly, is a very difficult distributed data structure problem which is not likely to be solvable on it's own. And a consensus that some kind of cryptocurrency has value is also very difficult to achieve. What the design of Bitcoin and the continued operation of Bitcoin shows is that even if you can't build any one of these forms of consensus by itself you can somehow stand up all three of them together, and get them to operate in an interdependent way. So when we talk about how things operate in the Bitcoin community we have to bear in mind that Bitcoin relies on agreement by the participants, and that consensus is a fragile and interdependent thing.

7.2: Bitcoin Core Software

The Bitcoin Core software is a piece of open-source software which is a focal point for discussion and debate about Bitcoin's rules.

Bitcoin Core is licensed under the MIT license which is a very permissive open-source license. It allows the software to be used for almost any purpose as long as the source is attributed and the MIT license is not stripped out. Bitcoin Core is the most widely used Bitcoin software, and even those who don't use it tend to look to it to define what the rules are. That is, people building alternative Bitcoin software typically try to mimic the rule-defining parts of the Bitcoin Core software, the parts that check validity of transactions and blocks.

Bitcoin Core is the de-facto rulebook of Bitcoin. If you want to know what's valid in Bitcoin, the Bitcoin Core software — or explanations of it — is where to look.

Bitcoin Improvement Proposals. Anyone can contribute technical improvements via "pull requests" to Bitcoin Core, a familiar process in the world of open-source software. For more substantial changes, especially protocol modifications, there is a process called Bitcoin Improvement Proposals or BIPs. These are formal proposals for changes to Bitcoin. Typically a BIP will include a technical specification for a proposed change as well as a rationale for it. So if you have an idea for how to improve Bitcoin by making some technical change, you're encouraged to write up one of these documents and to publish it as part of the Bitcoin Improvement Proposal series, and that will then kick off a discussion in the community about what to do. While the formal process is open to anyone, there's a learning curve for participation like any open-source project.

BIPs are published in a numbered series. Each one has a champion, that is, an author who evangelizes in favor of it, coordinates discussion and tries to build a consensus within the community in favor of going forward with or implementing a particular proposal.

What we said above applies to proposals to change the technology. There are also some BIPs that are purely informational and exist just to tell people things that they might not otherwise know, or that are process oriented, that talk about how things should be decided in the Bitcoin community.

In summary, Bitcoin has a rulebook as well as a process for proposing, specifying, and discussing rule changes, namely BIPs.

Bitcoin Core developers. To understand the role of the Bitcoin Core software we also have to understand the role of Bitcoin Core developers. The original code was written by Satoshi Nakamoto, who we'll return to later in the chapter. Nakamoto is no longer active, but instead there are a group of developers who maintain Bitcoin Core. As of early 2015 there are five: Gavin Andresen, Jeff Garzik, Gregory Maxwell, Wladimir J. van der Laan, and Pieter Wuille. The Core developers lead the effort to

continue development of the software and are in charge of which code gets pushed into new versions of Bitcoin Core.

How powerful are these people? In one sense they're very powerful, because you could argue that any the rule changes to the code that they make will get shipped in Bitcoin Core and will be followed by default. These are the people who hold the pen that can write things into the de-facto rulebook of Bitcoin. In another sense, they're not powerful at all. Because it's open-source software, anyone can copy it and modify it, in other words, fork the software at any time, and so if the lead developers start behaving in a way that the community doesn't like, and strongly rejects, the community can go in a different direction.

One way of thinking about this is to say that the lead developers are leading the parade. They're out in front of the parade marching and the parade will generally follow them when they turn a corner, but if they try to lead the parade into an action that disastrous, then the parade members marching behind them might decide to go in a different direction. They can urge people on, and as long as they seem to be behaving reasonably, the group will probably follow them, but they don't have formal power to force people to follow them if they take the system in a technical direction that the community doesn't like.

Let's think about what you as a user of a system can do if you don't like the way the rules are going or the way it's being run, and compare it to a centralized currency like a fiat currency. In a centralized currency if you don't like what's going on you have a right to exit, that is, you can stop using it. First you'd have to try and sell any currency you hold. Just like almost any business that you deal with, you have the ability to just stop dealing with them if you don't like what they're doing. On the other hand, if it's a currency and you've got a lot of business, you've got a lot of assets tied up in it and it might be expensive or difficult to actually exit. Whether or not it's easy, with a centralized currency that's really your only option.

With Bitcoin, while you certainly have the right to exit, because it operates in an open-source way, you additionally have the right to fork the rules. That means you, and some of your friends and colleagues can decide that you would rather live under a different rule set, and you can fork the rules and go a different direction from the lead developers. The right to fork this is more empowering for users than the right to exit, and therefore the community has more power in a system like Bitcoin which is open source than it would in a purely centralized system. So although the lead developers might look like a centralized entity controlling things, in fact they don't have the power that a purely centralized manager or software owner would have.

Forks in the rules. One way to fork the software and the rules is to start a new block chain with a new genesis block. This is popular option for creating altcoins, and we'll discuss altcoins in Chapter 10. But for now let's consider a different type of fork in the rules, one in which those who fork decide to fork the block chain as well.

If you recall the distinction between a hard fork and a soft fork from Chapter 3, we're talking about a hard fork here. At the point when there's a disagreement about the rules, there will be a fork in the block chain, resulting in two branches. One branch is valid under rule set A but invalid under rule set B, and vice versa. Once the miners operating under the two rule sets separate they can't come back together because each branch will contain transactions or blocks that's invalid according to the other rule set.

Figure 7.2: A fork in the currency. If a fork in the rules leads to a hard fork in the block chain, the currency itself forks and two new currencies result.

We can think of the currency we had up until the fork as being Bitcoin — the big happy Bitcoin that everyone agreed on. After the fork it's as if there are two new currencies which we can think of as being A-coin corresponding rule set A and B-coin corresponding to rule set B. At the moment of the fork, it's as if everyone who owned one Bitcoin receives one A-coin and one B-coin. From that point on, A-coin and B-coin will operate separately as if they were separate currencies, and they might operate independently. The two groups might continue to evolve their rules in different ways.

We should emphasize that it's not just the software, or the rules, or the software implementing the rules that forked — it's the currency itself that forked. This is an interesting thing that can happen in a cryptocurrency that couldn't happen in a traditional currency where the option of forking is not available to users. To our knowledge, neither Bitcoin nor any altcoin has ever forked in this way, but it's a fascinating possibility.

How might people respond to a fork like this? It depends on why the fork happened. The first case is where the fork was not intended as a disagreement about the rules, but instead as a way of starting an altcoin. Someone might start an altcoin by forking Bitcoin's block chain if they want to start with a ruleset that's very close to Bitcoin's. This doesn't really pose a problem for the community — the altcoin goes its separate way, the branches coexist peacefully, and some people will prefer to use bitcoins while others will prefer the altcoin. But as we said earlier, as far as we know, no one's ever started an altcoin by forking Bitcoin's or another existing altcoin's block chain. They've always started with a new genesis block.

The interesting case is if the fork reflected a fight between two groups about what the future of Bitcoin should be — in other words, a rebellion within the Bitcoin community where a sub-group decides to break off and decides they have a better idea about how the system should be run. In that case, the two branches are rivals and will fight for market share. A-coin and there's a B-coin will each try to get more merchants to accept it and more people to buy it. Each will want to be perceived as the "real Bitcoin." There may be a public-relations fight where each claims legitimacy and portrays the other as a weird splinter group.

The probable outcome is that one branch will eventually win and the other will melt away. These sorts of competitions tend to tip in one direction. Once one of the two gets seen as more legitimate and obtains a bigger market share, the network effect will prevail and the other becomes a niche currency and will eventually fall away. The rule set and the governance structure of the winner will become the de-facto rule set and governance structure of Bitcoin.

7.3: Stakeholders: Who's in Charge?

Who're the stakeholders in Bitcoin, and who's really in charge? We've seen how Bitcoin relies on consensus and how its rulebook is written in practice. We've analyzed the possibility of a fork or a fight about what the rules should be. Now let's take up the question of who has the power to determine who might win a fight like that.

In other words, if there's a discussion and negotiation in the community about rule-setting, and that negotiation fails, we want to know what will determine the outcome. Generally speaking, in any negotiation, the party that has the best alternative to a negotiated agreement has the advantage in a negotiation. So figuring out who might win a fight will tell us who has the upper hand in community discussions and negotiations about the future of Bitcoin.

We can make a bunch of different claims on behalf of different stakeholders.

- 1. Core developers have the power they write the rulebook and almost everybody uses their code.
- 2. Miners have the power they write history and decide which transactions are valid. If miners decide to follow a certain set of rules, arguably everyone else has to follow it. The fork with more mining power behind it will build a stronger, more secure block chain and so has some ability to push the rules in a particular direction. Just how much power they have depends on whether it's a hard fork or a soft fork, but either way they have some power.
- 3. Investors have the power they buy and hold bitcoins, so it's the investors who decide whether Bitcoin has any value. You could argue that if the developers control consensus about the rules and the miners control consensus about history, it's the investors who control consensus that Bitcoin has value. In the case of a hard fork, if investors mostly decide to put their money either A-coin or B-coin, that branch will be perceived as legitimate.

- 4. Merchants and their customers have the power they generate the primary demand for Bitcoin. While investors provide some of the demand that supports the price of the currency, the primary demand that drives the price of the currency, as we saw in Chapter 4, arises from a desire to mediate transactions using Bitcoin as a payment technology. Investors, according to this argument, are just guessing where the primary demand will be in the future.
- 5. Payment services have the power they're the ones that handle transactions. A lot of merchants don't care which currency they follow and simply want to use a payment service that will give them dollars at the end of the day, allow their customers to pay using a cryptocurrency, and handle all the risk. So maybe payment services drive primary demand and merchants, customers, and investors will follow them.

As you may have guessed, there's some merit to all these arguments, and all of those entities have some power. In order to succeed, a coin needs all these forms of consensus — a stable rulebook written by developers, mining power, investment, participation by merchants and customers, and the payment services that support them. So all of these parties have some power in controlling the outcome about a fight over the future of Bitcoin, and there's no one that we can point to as being the definite winner. It's a big, ugly, messy consensus-building exercise.

The Bitcoin Foundation. There's one more player that's relevant to the governance of Bitcoin and that's the Bitcoin Foundation. The Bitcoin Foundation was founded in 2012 as a nonprofit. It's played two main roles. The first is funding some of the Core developers out of the foundation's assets so that they can work full time on continuing to develop the software. The second is talking to government, especially the US government, as the "voice of Bitcoin."

Now, some members of the Bitcoin community believe that Bitcoin should operate outside of and apart from traditional national governments. That believe Bitcoin should operate across borders and shouldn't explain or justify itself to governments or negotiate with them. Others take a different view. They view regulation as inevitable, desirable, or both, and would like the interests of the Bitcoin community to be represented in government, and for the community's arguments to be heard. The Foundation arose partly to fill this need, and it's fair to say that its dealings with government have done a lot to smooth the road for an understanding and acceptance of Bitcoin.

The Foundation has had quite a bit of controversy. Some board members have gotten into criminal or financial trouble, and there have been questions about the extent to which some of them represent the community. The Foundation has had to struggle with members of the board that become liabilities and have to be replaced on short notice. It's been accused of lacking transparency and of being effectively bankrupt. As of early 2015, it's at best unclear if the Bitcoin Foundation will have much of a role in Bitcoin's future.

A different non-profit group, Coin Center, launched in September 2014 based in Washington, D.C., has taken on one of the roles the Bitcoin Foundation played, namely advocacy and talking to government. Coin Center acts as a "think tank." It has operated without much controversy as of early 2015. Neither the Bitcoin Foundation nor Coin Center is in charge of Bitcoin anymore than any of the other

stakeholders. The success and perceived legitimacy of any such representative entity will be driven by how much support — and funding — it can obtain from the community over time, like everything else in this kind of open source based ecosystem.

To summarize, there's no one entity or group that is definitively in control of Bitcoin's evolution. In another sense, everybody is in charge because it's the existence of consensus about how the system will operate — the three interlocking forms of consensus, on rules, on history, and on value — that governs Bitcoin. Any ruleset, group, or governance structure that can maintain that consensus over time will, in a very real sense, be in charge of Bitcoin.

7.4: Roots of Bitcoin

Let's look at the roots of Bitcoin — how it got started, what its precursors were, and what we know about its mysterious founder.

Cypherpunk and digital cash. There are two precursors to Bitcoin worth discussing. One of these was *cypherpunk*, a movement that brought together two viewpoints. First was libertarianism and in particular the idea that society would be better off with either no government or very minimal government. Together with that strong libertarian notion or perhaps even anarchist notion, we had the idea of strong cryptography and in particular public-key cryptography which started in the late 1970s. The cypherpunk movement was a group of people who believed that with strong online privacy and strong cryptography you could re-architect the way that people interact with each other. In this world, cypherpunks believed, people could protect themselves and their interests more effectively and with much less activity (or, as they would say, interference) from government.

One of the challenges in the cypherpunk movement was how to deal with money in a future cypherpunk world where people were interacting online via strong technical and cryptographic measures. In response, a bunch of research came along, led especially by early digital cash work by David Chaum and others, that was designed to create new forms of digital value that functioned like money, specifically cash, in the sense of being anonymous and easily exchangeable. There's a whole interesting story about how these technical ideas were developed and why early digital cash *didn't* sweep the world, but we won't go into it here. In any event, early work in that area came together with cypherpunk beliefs and in particular the desire to have a strong currency that would be decentralized, online, and relatively private to sow the seeds from which Bitcoin would be born. It's also the basis for the philosophy that many of Bitcoin's supporters follow.

Satoshi Nakamoto. Bitcoin began in 2008 with the release of this white paper called *Bitcoin: A Peer to Peer Electronic Cash System* that was authored by Satoshi Nakamoto. This paper, which you can find online easily, is the initial description of what Bitcoin is, how it works, and the philosophy behind its design. It's still a good resource to get a quick idea of how Bitcoin's technical design and philosophy were specified. Open-source software implementing that specification was released soon after by the

same Satoshi Nakamoto, and that's where everything started. To this day, Satoshi is one of the central mysteries of Bitcoin.

We know that the name Satoshi Nakamoto is almost certainly a pseudonym. It's a fake name that some person or people have adopted for the purpose of doing things related to Bitcoin. The identity of Satoshi is associated with certain public keys, certain accounts and certain systems. That means there are certain online activities or digital signatures that would convince the community that something was said by or issued by or created by the real Satoshi. So Satoshi, while being a pseudonym, is also a person (or people) who can speak, and who has spoken especially extensively in the early history of Bitcoin. Satoshi was fairly active in working on and writing about Bitcoin, and participating in online forums until around 2010, and since that time Satoshi has said almost nothing.

We know that Satoshi writes fairly well in English. Satoshi uses sometimes American and sometimes British spellings. There have been numerous attempts to look at Satoshi's text, code, post times, machine identifiers, and so on to try to answer questions like: what is Satoshi's native language? Where is Satoshi from? The real identity of Satoshi is still unknown, despite occasional confident pronouncements by individuals and, at least once, a news organization.

Satoshi owns a lot of bitcoins from early mining. In the beginning Satoshi was perhaps the only miner, or one of the only few people mining bitcoins. So until Bitcoin mining took off and the network's hash rate started to increase from the influx of other miners, Satoshi was accumulating all or at least a significant portion of block rewards, which was 50 bitcoins every 10 minutes. As Bitcoin's price appreciated, this turned into a large sum of wealth. We know that these bitcoins haven't been cashed out. Everybody can see which Bitcoin addresses probably belong to Satoshi, and so if those coins were to be sold and the proceeds transferred into any particular bank account, it would be a very notable event and an important clue to Satoshi's identity. So, interestingly, even though Satoshi has on paper made a lot of profit from Bitcoin mining, Satoshi is unable to cash in that profit without identifying himself or herself, and that's something that, for whatever reason, Satoshi doesn't want to do.

In an important sense it doesn't matter that we don't know Satoshi's identity because of the notable feature of Bitcoin that it is decentralized and with no single entity in charge. Satoshi's not in charge, and to some extent it doesn't really matter what Satoshi thinks anymore. Any special influence that Satoshi has is only because of respect that Satoshi would have in the Bitcoin community should Satoshi become active again.

Growth. Bitcoin has grown a lot since the system became operational in January 2009. We can see it in the graph of transaction volume (Figure 7.3) and in the graph of exchange rate (7.4), although the peak price, as of April 2015, was back in late 2013. Sometimes the growth has been gradual, but sometimes there have been jumps or spurts, often corresponding to newsworthy events. Generally speaking, the growth has accelerated over time.

Figure 7.3: Market Price of Bitcoin (7-day average). Note the logarithmic scale.

Source: bitcoincharts.com.

Figure 7.4: Daily transaction volume (7-day average). Source: bitcoincharts.com.

7.5: Governments Notice Bitcoin

The rest of chapter is about governments — government interaction with Bitcoin and attempts to regulate Bitcoin. Let's start with the moment when governments noticed Bitcoin, that is, when Bitcoin became big enough as a phenomenon that government started to worry about the impact it might have and how to react to it. In this section and the next we'll discuss why governments might worry about Bitcoin specifically. Then in Section 7.7 we'll turn to areas where Bitcoin businesses may be regulated for similar reasons as other other types of businesses. Finally in Section 7.8 we'll look at a case study of a proposed regulation that combines elements of regular consumer financial protection with Bitcoin-specific aspects.

Capital controls. One reason why governments would notice a digital currency like Bitcoin is that untraceable digital cash, if it exists, defeats capital controls. Capital controls are rules or laws that a

country has in place that are designed to prevent the flow of value, of capital, of wealth, either in or out of the country. By putting controls on banks, investments, and so on, the country can try to prevent these flows.

Bitcoin is a very easy way, under some circumstances, to defeat capital controls. Someone can simply buy bitcoins with capital inside the country, transmit those bitcoins outside the country electronically, and then trade them for capital or wealth outside the country. That would let them move capital or wealth from inside to outside and similarly they can move capital from outside to inside. Because wealth in this electronic form can move so easily across borders and can't really be controlled, a government that wants to enforce capital controls in a world with Bitcoin has to try to disconnect the Bitcoin world from the local fiat currency banking system. That would make it infeasible for someone to turn large amounts of local currency into Bitcoin, or large amounts of Bitcoin into local currency. We do see countries trying to beef up or protect their capital controls to do that, China being a notable example. China has engaged in increasingly strong measures to try to disconnect bitcoins from the Chinese fiat currency banking system.

Crime. Another reason governments might worry about untraceable digital cash is that it makes certain kinds of crimes easier — in particular, crimes like kidnapping and extortion that involve the payment of a ransom or payoff. Those crimes become easier when payment can be done at a distance and anonymously.

Law enforcement against kidnappers, for example, often has relied upon exploiting the hand-off of money from the victim or the victim's family to the criminals. When that can be done by email and at a distance in an anonymous way, it becomes much harder for law enforcement to follow the money. Another example: the "CryptoLocker" malware encrypts victims' files and demands ransom in Bitcoin (or other types of electronic money) to decrypt them. So the crime and the payment are both carried out at a distance. Similarly, tax evasion becomes easier when it's easier for people to move money around and to engage in transactions that are not easily tied to a particular individual or identity. Finally, the sale of illegal items becomes potentially easier when the transfer of funds can happen at a distance and without needing to go through a regulated institution.

Silk Road. A good example of that is Silk Road, which was essentially the eBay for illegal drugs. Figure 7.5 shows screenshot of Silk Road's website when it was operating. It calls itself an anonymous marketplace. Illegal drugs were the primary things for sale, with a smattering of other categories that you can see on the left. It was the largest online market for illegal drugs.

Silk Road allowed sellers to advertise goods for sale and buyers to buy them. The goods were delivered typically through the mail or through shipment services and payment was made in bitcoins. The website operated as a Tor hidden service, a concept we discussed in Chapter 6. As you can see in the screenshot, its address was http://silkroadvb5piz3r.onion. This way the location of the server was hidden from law enforcement. Due to the use of bitcoins for payment it was also difficult for law enforcement to follow the money and figure out who the people participating in the market were.

Figure 7.5: Screenshot of Silk Road website (April 2012).

Silk Road held the bitcoins in escrow while the goods were shipped. There was an innovative escrow system which helped protect the buyers and sellers against cheating by other parties. The bitcoins would be released once the buyer certified that the goods had arrived. There was also an eBay-like reputation system that allowed buyers and sellers to get reputations for following through on their deals, and by using that reputation system Silk Road was able to give the market participants an incentive to play by the rules. So, Silk Road was innovative among criminal markets in finding ways of enforcing the rules of the criminal market at a distance, which is something that criminal markets in the past have had difficulty doing.

Silk Road was run by a person who called himself Dread Pirate Roberts — obviously a pseudonym, and you might recognize the reference. It operated from February 2011 until October 2013. Silk road was shut down after the arrest of its operator Ross Ulbricht. Ulbricht had tried to cover his tracks by

operating pseudonymous accounts and by using Tor, anonymous remailers, and so on. The government was nevertheless able to connect the dots and connect him to Silk Road activity — to the servers and the bitcoins he controlled as the operator of Silk Road. He was convicted of various crimes relating to operating Silk Road. He was also charged with attempted murder for hire, although fortunately he was bad at it and nobody actually got killed.

In the course of taking down Silk Road, the FBI seized about 174,000 bitcoins, worth over \$30 million at the time. As with the proceeds of any crime under US law, they could be seized by the government. Later the government auctioned off a portion of the seized bitcoins.

Lessons from Silk Road. There are several lessons from Silk Road and from the encounter between law enforcement and Ulbricht. First it's pretty hard to keep the real world and the virtual world separate. Ulbricht believed that he could live his real life in society and at the same time have a secret identity in which he operated a sizeable business and technology infrastructure. It's difficult to keep these separate worlds completely apart, and not accidentally create some linkage between them. It's hard to stay anonymous for a long time while being active and engaging in a course of coordinated conduct working with other people over time. If there's ever a connection between those two identities — say, if you slip up and use the name of one while wearing the mask of another — that link can never be destroyed and over time the different anonymous identities or mask that someone is trying to use tend to get connected.

Another lesson is that law enforcement can follow the money. Even before Ulbricht's arrest, the government knew that certain Bitcoin addresses were controlled by the operator of Silk Road, and they were watching those addresses. The result is that Ulbricht, while wealthy according to the block chain, was not actually able to benefit from that wealth because any attempt to transfer those assets over into the dollar world would have resulted in a traceable event, and probably would have resulted in rapid arrest. So although Ulbricht was the owner of something like 174,000 bitcoins, the fact is is that he was not living like a king. He lived in a one-bedroom apartment in San Francisco while apparently unable to get to the wealth that he controlled.

In short, if you intend to operate an underground criminal enterprise — and we hope you don't — then it's a lot harder to do then you might think. Technologies like Bitcoin and Tor are not panaceas for people who want to do these things and law enforcement has significant tools and resources that they can still use. Although there's been some panic in the world of law enforcement over the rise of Bitcoin, they are starting to realize that they can still follow the money up to a point and they still do have a substantial ability to investigate crimes and to make life difficult for people who want to engage in coordinated criminal action.

At the same time, we don't mean to suggest that by taking down Silk Road, law enforcement has shut down Bitcoin-based hidden markets for illegal drugs for good. In fact, after the demise of Silk Road there has been a mushrooming of such markets. Some of the more prominent ones are Sheep Marketplace, Silk Road 2, Black Market Reloaded, Evolution, and Agora. Most of these are now defunct, either due to law-enforcement actions or due to theft, often by insiders. To address the

security risk of the site operator disappearing with buyers' escrowed funds, the newer marketplaces use multi-signature escrow (which we saw in Chapter 3) rather than Silk Road's model of depositing the funds with the market operator.

7.6: Anti Money Laundering

In this section we'll look at money laundering and the Anti Money Laundering (AML) rules that governments have imposed, especially in the US, that effect some Bitcoin-related businesses.

The goal of anti-money-laundering policy is to prevent large flows of money from crossing borders or moving between the underground and legitimate economy without being detected. Earlier we looked at capital controls that exist to prevent money from crossing borders. In some cases, countries are just fine with money crossing borders, but they want to know who's transferring what to whom and where that money came from.

Anti-money laundering is aimed at trying to make certain kinds of crime more difficult, especially organized crime. Organized crime groups often find themselves getting a lot of money coming in in one place and wanting to ship it somewhere else, but not wanting to explain where that money came from — hence the desire to get money across borders. Or they might find themselves making a lot of money in an underground economy and wanting to get that money into the legitimate economy so that they can spend it on sports cars and big houses or whatever it is that the leaders of the group want to do. Anti-money laundering, then, has the goals of making it harder to move money around this way and making it easier to catch people trying to do it.

Know Your Customer. One of the rules that goes with anti money laundering is something called Know Your Customer, sometimes called KYC. The details can be a bit complicated and will depend on your locale, but the basic idea is this: Know Your Customer rules require certain kinds of businesses that handle money to do three things:

- Identify and authenticate clients get some kind of authentication that clients really are who
 they claim they are and that those claimed identities correspond to some kind of real-world
 identity. So a person can't just walk in and they're john Smith from 123 Main Street in
 AnyTown, USA. they have to provide an identity and have that be checked in order to
 engage in certain kinds of business.
- Evaluate risk of client determine the risk of a certain client engaging in underground
 activities. This will be based on how the client behaves how longstanding their business
 relationship is with the company, how well known they are in the community, and various
 other factors. KYC rules generally require covered companies to treat clients whose activities
 seem riskier with more attention.
- 3. Watch for anomalous behavior that is, behavior that seems to be indicative of money laundering or criminal activity. KYC will often require a company to cut off business with a client who looks dodgy, or who is unable to authenticate themselves or their activities sufficiently for the rule.

Mandatory reporting. There are mandatory reporting requirements in the United States that are worth talking about. Companies in a broad range of sectors have to report currency transactions that are over \$10,000. They must file what's called a currency transaction report to say what the transaction is and who the other party to the transaction is. There is also some requirement to authenticate who that party is. Once reported, the information goes into government databases and then might be analyzed to look for patterns of behavior that are indicative of money laundering.

Companies are also required to watch for clients who might be "structuring" transactions to avoid reporting, like engaging in a series of \$9,000 transactions to get around the \$10,000 reporting rule. Companies that see evidence of structuring must report it by filing a Suspicious Activity Report. Again, the information goes into a government database and might lead to investigation of the client.

The requirements here differ by country. We're not by any means trying to give you legal advice about whether you need this or what you have to do. This discussion is meant to give you an idea about what kind of requirements are imposed by anti money laundering rules. That said, take note that governments — in the U.S. and other countries— take anti money laundering rules very, very seriously. These aren't the kind of rules that you can just blow off and deal with if you get a complaint from the government later.

Bitcoin businesses have been shut down — sometimes temporarily, sometimes permanently. Business people have been arrested, and people have gone to jail for not following these rules. This is an area where government will enforce the law vigorously, regardless of whether fiat currency or Bitcoin is used. Government has enforced these laws against Bitcoin-based businesses ever since they noticed that Bitcoin was large enough to pose a risk of money laundering. If you're interested in starting any kind of business that will handle large volumes of currency, you'll need to talk to a lawyer who understands these rules.

7.7: Regulation

Now let's directly address the 'R' word — regulation. Regulation often gets a bad name, especially among the kind of people who tend to like Bitcoin. As the argument goes, regulation is some bureaucrat who doesn't know my business or what I'm trying to do, coming in and messing things up. It's a burden. It's stupid and pointless. This argument is pretty common and well understood, and it's often correct. We won't repeat it here.

Instead, in this section we'll look in some detail at reasons why regulations might sometimes be justified, because that argument is not as well understood. To be clear, the fact that we're spending most of this section talking about why regulation might be good shouldn't be read as an endorsement of widespread regulation. It's simply that we want to bring a bit more balance to the discussion in a community where regulation is often considered as always bad, or just stupid by nature.

The bottom line argument in favor or regulation is this: when markets fail and produce outcomes that are bad — and agreed to be bad by pretty much everyone in the market — then regulation can step in and try to address the failure. So the argument for regulation, when there is an argument, starts with the idea that markets don't always give you the result that you'd like.

Lemons market. Let's discuss one way in which the market can fail, a classic example called the lemons market. The name originated in the context of used cars. But let's talk about a market in concept, a market for "widgets," some kind of good that one wants to buy and sell. Let's say that widgets can either be of low quality or high quality. A high-quality widget costs a little bit more to manufacture than a low-quality widget, but it's much, much better for the consumer who buys it. Consumers like high-quality widgets a lot better.

If the market is operating well, if it's *efficient* as economists call it, it will deliver mostly high-quality widgets to consumers. That's because even though the high-quality widget is a bit costlier, most consumers prefer it and are willing to pay more for it. So under certain assumptions a market will provide this happy outcome.

On the other hand, let's suppose customers can't tell apart a low-quality widget from a high-quality widget before buying it. The classic example is the used car. You're looking at a used car sitting on the lot, and it may look pretty good, but you can't really tell if it's going to break down tomorrow or if it's going to run for a long time. The dealer probably knows if it's a lemon, but you as the customer can't tell the difference.

Let's think about the incentives that drive people in this kind of lemons market. As a consumer, you're not willing to pay extra for a high-quality widget, because you just can't tell the difference. Even if the used car dealer says that a car is perfect and is only an extra hundred dollars, you don't have a good reason to trust the dealer.

As a consequence, producers can't make any extra money by selling a high-quality widget. In fact, they lose money by selling a high-quality widget because it costs a bit more to produce and they don't get any price premium. So the market gets stuck at an equilibrium where only low-quality widgets are produced, and consumers are relatively unhappy with them.

This outcome is worse for everybody than a properly functioning market would be. It's worse for buyers because they have to make do with low-quality widgets. In a more efficient market they could have bought a widget that was much, much better for a slightly higher price. It's also worse for producers — since the widgets that are on the market are all lousy, consumers don't buy very many widgets. The widget market is relatively small, and so there's less money to be made selling widgets than there would be in a healthy market.

That's a market failure. This one, in particular, is a result of "asymmetric information" between buyers and sellers about the condition of the product. The resulting market is sometimes called a lemons market.

Fixing a lemons market. There are some market-based approaches that try to fix a lemons market. The first relies on seller reputation. The idea is that if a seller consistently tells the truth to consumers about which widgets are high vs. low quality, then the seller might acquire a reputation for telling the truth. Once they have that reputation, they may be able to sell high-quality widgets for a higher price because consumers will believe them, and therefore the market can operate more efficiently.

This sometimes works and sometimes doesn't depending on the precise assumptions you make about the market. Of course, it will never work as well as a market where consumers can actually tell the difference in quality. For one thing, it takes a while for a producer to build up a good reputation. That means they have to sell high-quality widgets at low prices for a while until consumers learn that they're telling the truth. That makes it harder for an honest seller to get into the market.

The other potential problem is that a seller, even if they've been honest up to now, no longer has the incentive to be honest if they want to get out of the market (say, if their sales are shrinking). In that case their incentive is to massively cheat people all at once and then exit the market. So reputation doesn't work well at the beginning of a seller's presence is in the market as well as at the end.

A reputation-based approach also tends not to work in businesses where consumers don't do repeat business with the same entity, or where the product category is very new, and therefore there hasn't been enough time for sellers to build up a reputation. A high-tech market like Bitcoin exchanges suffers just those problems.

The other market-based approach is warranties. The idea is that a seller could provide a warranty to a buyer that says if the widget turns out to be low quality, the seller will provide an exchange or a refund. That can work well up to a point, but there's also a problem: a warranty is just another kind of product that can also come in high-quality or low-quality versions! A low-quality warranty is one where the seller doesn't really come through when you come back with the broken product. They renege on their promise or they make you jump through all kinds of hoops.

Regulatory fixes. So if a lemons market has developed, and if these market-based approaches don't work for the particular market, then regulation might be able to help. Specifically, there are three ways in which regulation might be able to address the problem.

First, regulation could require disclosure. It could require, say, that all widgets be labeled as high quality or low quality, combined with penalties on the firms for lying. That gives consumers the information that they were missing. A second approach to regulation is to have quality standards so that no widget can be sold unless it meets some standard of quality testing, and to have that standard set so that only high-quality widgets can pass the test. That would result in a market that again has only one kind of widget, but at least it's high-quality widgets, assuming that the regulation works as intended. The third approach is to require all sellers to issue warranties and then enforce the operation of those warranties so that sellers are held to the promises that they make.

Any of these forms of regulation could obviously fail — it might not work as intended, might be mis-written or misapplied, or might might be burdensome on sellers. But there's at least the possibility that regulation of this type might help to address the market failure due to a lemons market. People who argue for regulation of Bitcoin exchanges, for example, sometimes point to them as an example of a lemons market.

Collusion and antitrust law. Another example of markets not operating the way we would like them to is price fixing. Price fixing is when different sellers collude with each other and agree to raise prices or to not lower them. A related situation is where companies that would otherwise go into competition with each other agree not to compete. For example, if there were two bakeries in town they might agree that one of them will only sell muffins and the other will only sell bagels, and that way there's less competition between them then there would be if they both sold muffins and bagels. As a result of the reduced competition presumably prices go up, and the merchants are able to foil the operation of the market.

After all, the reason that the market protects consumers well in its normal operation is through the vehicle of competition. Sellers have to compete in order to offer the best goods at the best price to consumers, and if they don't compete in that way then they won't get business. An agreement to fix prices or to not compete circumvents that competition. When people take steps that prevent competition, that's another kind of market failure.

These kinds of agreements — to raise prices or to not compete — are illegal in most jurisdictions. This is part of antitrust law or competition law. The goal of this body of law is to prevent deliberate actions that prevent or harm competition. More generally, it limits actions other than simply offering good products at good prices, such as attempts to reduce competition through mergers. Antitrust law is very complicated and we've given you only a sketch of it, but it's another instance of how the market can fail and how the law can and will step in to prevent it.

7.8: New York's BitLicense Proposal

So far we've discussed regulation in general: different forms of regulation, why regulation might be justified in some cases and might make good economic sense. Now let's turn to a specific effort by a specific state to introduce specific regulation of Bitcoin, namely New York State's BitLicense proposal. The information here is current as of early 2015, but the landscape of Bitcoin regulation changes quickly. That doesn't matter much for our purposes, because our goal isn't so much to help you understand a specific piece of actual or proposed regulation. Rather, we want to help you understand the kinds of things regulators are doing and give you a sense of how they think about the problem.

The BitLicense proposal was issued in July 2014 and has since been revised in response to comments from the Bitcoin community, industry, the public, and other stakeholders. It was issued by the New York State Department of Financial Services, the part of the state of New York that regulates the

financial industry. Of course, the state of New York has the world's largest financial center, and so it's a part of the State government that is use to dealing with relatively large institutions.

Who's covered. BitLicense is a proposed set of codes, rules, and regulations that has to do with virtual currencies. Fundamentally, it says that you'd need to get something called a BitLicense from the New York Department of Financial Services if you wanted to do any of the things listed in the text below.

Virtual Currency Business Activity means the conduct of any one of the following types of activities involving New York or a New York Resident:

- receiving Virtual Currency for Transmission or Transmitting Virtual Currency, except where
 the transaction is undertaken for non-financial purposes and does not involve the transfer
 of more than a nominal amount of Virtual Currency;
- 2. storing, holding, or maintaining custody or control of Virtual Currency on behalf of others;
- 3. buying and selling Virtual Currency as a customer business;
- 4. performing Exchange Services as a customer business; or
- 5. controlling, administering, or issuing a Virtual Currency.

The development and dissemination of software in and of itself does not constitute Virtual Currency Business Activity.

The text refers to "activities involving New York or a New York Resident," reflecting the regulatory authority of NYDFS. Yet the impacts of regulations like these extend well beyond the borders of the state, for two reasons. First, for states with significant populations such as New York or California, faced with the choice between complying with state laws and not doing business with consumers in those states, most companies will choose to comply. Second, some states are generally perceived as leaders in regulating certain economic sectors — finance in the case of New York, technology in the case of California. That means that other U.S. states often follow the direction that they set.

Notice the exception for non-financial uses in the first category — this was added in the second revision, and it is a good one. It's a carve-out for just the kind of Bitcoin-as-a-platform applications that we'll look at starting in Chapter 9. The second category might cover things like wallet services. As for the third category, it appears that you can buy and sell bitcoins for yourself, but doing it as a customer business requires a BitLicense. The fourth category is self-explanatory. The final one might apply more to altcoins, many of which are somewhat centralized, than to Bitcoin. We'll look at altcoins in Chapter 10.

The software-development exception at the end is again an important one. The language wasn't in the original version, and there was an outcry from the community. NYDFS superintendent Benjamin Lawsky clarified soon after that the intent was not to regulate developers, miners, or individuals using Bitcoin. The second version contains the explicit language above.

Requirements. If the regulation goes into effect and you're one of the covered entities, you'll have to apply for a license. To apply for a license there's detailed language in the proposal which you can read,

but roughly speaking you have to provide information on the ownership of your enterprise, on your finances, and insurance, on your business plan — generally to allow the NYDFS to know who you are, how well-backed you are, where your money comes from, and what you're planning to do. And you have to pay an application fee.

Once you had a license, you'd have to provide updated information to NYDFS about the things we listed: ownership, finances, insurance, and so on. You'd have to provide periodic financial statements so they could keep track of how you're doing financially. You'd be required to maintain a financial reserve, the amount of which will be set by NYDFS based on various factors about your business.

There are detailed rules about things like how you would keep custody of consumer assets. There are anti-money laundering rules which might or might not go beyond what's already required by existing laws. There are rules about having a security plan and penetration testing and so on. There are rules about disaster recovery — you have to have a disaster-recovery plan that meets various criteria. There are rules about record keeping — you have to keep records, and make them available to the NYDFS under certain circumstances. You have to have written policies about compliance and you have to designate a compliance officer —someone within your organization who's in charge of compliance and has the necessary responsibility and authority. There's a requirement that you disclose risk to consumers, so that consumers understand the risks of doing business with you.

As you can see, the requirements are substantial, and they're analogous to the sort of requirements for a mutual fund or a publicly traded stock. The NYDFS must still decide what to do with the proposal — whether to withdraw it, issue it in its current form, or make further modifications. Along with that decision they'll issue some kind of a document that gives the rationale for what they decided to do.

If something like the BitLicense goes into effect, it would really be a major step in the history of Bitcoin. You would have a situation where not only NYDFS, but perhaps other jurisdictions would start to step in and regulate, and you'd start to see Bitcoin businesses start to get closer to the traditional model of regulated financial institutions.

This would be a step that's in some ways contrary to the cypherpunk or cypher-libertarian ideas of about what Bitcoin was suppose to be, but on the other hand there's a certain inevitability that as soon as Bitcoin became really valuable, Bitcoin businesses became big businesses, and government got interested, regulation would ensue. Bitcoin businesses touch real people and the fiat currency economy. If Bitcoin is big enough to matter, then it is big enough to get regulated. It represents a retreat from what the original advocates of Bitcoin had in mind, but in another way it represents the Bitcoin ecosystem growing up and integrating into the regular economy which is much more regulated. Regardless of your stance on it, regulation is starting to happen, and if you're interested in starting a Bitcoin business you need to be paying attention to this trend.

Will this be a success? There are different ways to look at it, but one way to evaluate the effectiveness of regulation like BitLicense from a public policy standpoint at improving the quality of Bitcoin businesses is this: if something like BitLicense goes into effect, and if companies start advertising to

customers outside New York that they can be trusted because they have a BitLicense, and if that argument is convincing to consumers when they're picking a company to do business with, then regulation will be working in the way that its advocates wanted it to. Whether that will happen and how it will affect the future of Bitcoin is something that we'll have to wait and see.

Further reading

A paper that contains many interesting details of how Silk Road operated and what was sold there:

Christin, Nicolas. <u>Traveling the Silk Road: A measurement analysis of a large anonymous online marketplace</u>. Proceedings of the 22nd international conference on World Wide Web 2013.

A guide to the regulatory issues that Bitcoin raises:

Brito, Jerry, and Andrea Castillo. <u>Bitcoin: A primer for policymakers</u>. Mercatus Center at George Mason University, 2013.

A book that looks at the history of modern cryptography and the cypherpunk movement, which gives some intuition for the early political roots of Bitcoin:

Levy, Steven. Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age. Penguin, 2001.

A popular exposition of early work on digital cash, combined with a vision for a world with digital privacy:

Chaum, David. <u>Security without identification: Transaction systems to make big brother obsolete</u>. Communications of the ACM, 1985.

The text of the BitLicense proposal:

New York State Department of Financial Services <u>Regulations of the Superintendent of Financial Services</u>. Part 200: Virtual Currencies (revised), 2015.