Licence L2 - Techniques mathématiques EEA

Rattrapage du contrôle continu - 22 Mars 2019 - Durée : 2h - Corrigé rapide

Exercice 1

(1 point) Calculer la limite en
$$+\infty$$
 de la fonction $f(x) = \sqrt{x^2 + 2x + 2} - x$
$$f(x) = \frac{x^2 + 2x + 2 - x^2}{\sqrt{x^2 + 2x + 2} + x} = \frac{2x + 2}{x\sqrt{1 + 2/x + 2/x^2} + x} = \frac{2 + 2/x}{\sqrt{1 + 2/x + 2/x^2} + 1} \mapsto 1$$

Exercice 2

Exercice 2
(1 point) En utilisant la dérivation, calculer
$$\lim_{x \to 1} \frac{\sqrt{3+x}-2}{x-1}$$

$$\lim_{x \to 1} \frac{\sqrt{3+x}-2}{x-1} = \lim_{x \to 1} \frac{\sqrt{3+x}-\sqrt{3+1}}{x-1} := (\sqrt{3+x})'|_{x=1} = \frac{1}{2\sqrt{3+x}}|_{x=1} = \frac{1}{4}$$

Exercice 3

(1 point) Calculer la dérivée de
$$f(x) = \ln(\tan^2 x)$$

(1 point) Calculer la dérivée de
$$f(x) = \ln(\tan^2 x)$$

$$f'(x) = 2\ln(\tan x)' = 2\frac{\tan' x}{\tan x} = \frac{2}{\cos^2 x \tan x} = \frac{2}{\sin x \cos x}$$

Exercice 4

(3 points) Déterminer le développement limité à l'ordre 2 en 0 de
$$f(x) = \frac{e^x}{1-x}$$
 $f(x) = (1+x+x^2/2+o(x^2))(1+x+x^2+o(x^2)) = 1+2x+5/2x^2+o(x^2)$

Exercice 5

(4 points : 1,1,2) Déterminer les primitives suivantes.

(a)
$$\int \frac{\cos x}{1 + \sin^2 x} dx = \int \frac{(\sin x)'}{1 + \sin^2 x} dx \stackrel{DR}{=} \arctan(\sin x)$$
(b)
$$\int x e^x dx \stackrel{IPP}{=} x e^x - \int 1 e^x dx = x e^x - e^x$$
(c)
$$\int \frac{dx}{2x^2 + 8} = \frac{1}{8} \int \frac{dx}{(x/2)^2 + 1} \stackrel{DR}{=} \frac{1}{8} 2 \arctan(x/2) = \frac{1}{4} \arctan(x/2)$$

Exercice 6

(3 points) Calculer la valeur de l'intégrale suivante :
$$\int_{-2}^{2} \sqrt{4 - x^2} \, dx$$

 $I \stackrel{(x=2t)}{=} \int_{-1}^{1} \sqrt{4 - 4t^2} \, 2dt = 4 \int_{-1}^{1} \sqrt{1 - t^2} \, dt \stackrel{(t=\sin\theta)}{=} 4 \int_{-\pi/2}^{\pi/2} \cos\theta \, \cos\theta \, d\theta$
 $= 2 \int_{-\pi/2}^{\pi/2} (1 + \cos 2\theta) d\theta = 2 \int_{-\pi/2}^{\pi/2} 1 d\theta + 0 = 2\pi$

Exercice 7

(2 points) Calculer la surface de Δ , la partie du plan \mathbb{R}^2 limitée par les paraboles d'équations $y=x^2$ et $x=y^2$.

Après l'avoir dessiné, on constate que l'aire de Δ est donné par :

$$A = \int_0^1 \left(\int_{x^2}^{\sqrt{x}} 1 \, dy \right) \, dx = \int_0^1 \sqrt{x} - x^2 \, dx = 1/2 - 1/3 = 1/6$$

Exercice 8

(2 points) On considère la boule de rayon $R: B = \{(x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 \le R^2\}.$

Calculer son volume en utilisant les coordonnées sphériques, et en justifiant tous les calculs.

(On rappelle que l'élément d'intégration est $r^2 \cos(\varphi) dr d\theta d\varphi$.)

$$V = \int_{r=0}^{R} \int_{\theta=0}^{2\pi} \int_{\varphi=-\pi/2}^{\pi/2} r^2 \cos(\varphi) \, dr d\theta d\varphi = \frac{R^3}{3} 2\pi [\sin \varphi]_{-\pi/2}^{\pi/2} = \frac{4}{3} \pi R^3$$

Exercice 9

(3 points : 2,1) Résoudre les équations différentielles :

1.
$$y' - 2y = 4$$
, avec $y(0) = 0$.

2.
$$y'' - 3y' + 2y = 0$$
.

1. On a $y_H(x) = \lambda e^{2x}$ et $y_0(x) = -2$, donc $y(x) = \lambda e^{2x} - 2$, avec $\lambda \in \mathbb{R}$. Avec la condition initiale, on obtient $\lambda = 2$ et donc $y(x) = 2e^{2x} - 2$.

2. $y = y_H$ s'obtient en résolvant l'équation caractéristique : $r^2 - 3r + 2 = 0$. Les racines sont 1 et 2, et ainsi $y(x) = \lambda e^x + \mu e^{2x}$, avec $\lambda, \mu \in \mathbb{R}$.