

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 June 2001 (14.06.2001)

PCT

(10) International Publication Number
WO 01/42288 A2

(51) International Patent Classification⁷: **C07K 14/00**

(21) International Application Number: **PCT/US00/33382**

(22) International Filing Date: 7 December 2000 (07.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/172,852 10 December 1999 (10.12.1999) US

60/171,732 22 December 1999 (22.12.1999) US

60/176,148 14 January 2000 (14.01.2000) US

60/177,331 21 January 2000 (21.01.2000) US

(71) Applicant (for all designated States except US): **INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).**

(72) Inventors; and

(75) Inventors/Applicants (for US only): **BURFORD, Neil [GB/US]; 105 Wildwood Circle, Durham, CT 06422 (US).**

BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AU-YOUNG, Janice [US/US]; 233 Golden Eagle Lane, Brisbane, CA 94005 (US). YANG, Junming [CN/US]; 7125 Bark Lane, San Jose, CA 95129 (US). LU, Dyung, Aina, M. [US/US]; 233 Coy Drive, San Jose, CA 95123 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Avenue #3, Sunnyvale, CA 94086 (US).

(74) Agents: **HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).**

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): **ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian**

[Continued on next page]

(54) Title: G-PROTEIN COUPLED RECEPTORS

WO 01/42288 A2

(57) Abstract: The invention provides human G-protein coupled receptors (GCRC) and polynucleotides which identify and encode GCRC. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of GCRC.

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *Without international search report and to be republished upon receipt of that report.*

G-PROTEIN COUPLED RECEPTORS**TECHNICAL FIELD**

This invention relates to nucleic acid and amino acid sequences of G-protein coupled receptors
5 and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative,
neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and
viral infections, and in the assessment of the effects of exogenous compounds on the expression of
nucleic acid and amino acid sequences of G-protein coupled receptors.

10

BACKGROUND OF THE INVENTION

Signal transduction is the general process by which cells respond to extracellular signals.
Signal transduction across the plasma membrane begins with the binding of a signal molecule, e.g., a
hormone, neurotransmitter, or growth factor, to a cell membrane receptor. The receptor, thus activated,
triggers an intracellular biochemical cascade that ends with the activation of an intracellular target
15 molecule, such as a transcription factor. This process of signal transduction regulates all types of cell
functions including cell proliferation, differentiation, and gene transcription. The G-protein coupled
receptors (GPCRs), encoded by one of the largest families of genes yet identified, play a central role in
the transduction of extracellular signals across the plasma membrane. GPCRs have a proven history of
being successful therapeutic targets.

20

GPCRs are integral membrane proteins characterized by the presence of seven hydrophobic
transmembrane domains which together form a bundle of antiparallel alpha (α) helices. GPCRs range
in size from under 400 to over 1000 amino acids (Strosberg, A.D. (1991) Eur. J. Biochem. 196:1-10;
Coughlin, S.R. (1994) Curr. Opin. Cell Biol. 6:191-197). The amino-terminus of a GPCR is
extracellular, is of variable length, and is often glycosylated. The carboxy-terminus is cytoplasmic and
25 generally phosphorylated. Extracellular loops alternate with intracellular loops and link the
transmembrane domains. Cysteine disulfide bridges linking the second and third extracellular loops
may interact with agonists and antagonists. The most conserved domains of GPCRs are the
transmembrane domains and the first two cytoplasmic loops. The transmembrane domains account, in
part, for structural and functional features of the receptor. In most cases, the bundle of α helices forms
30 a ligand-binding pocket. The extracellular N-terminal segment, or one or more of the three extracellular
loops, may also participate in ligand binding. Ligand binding activates the receptor by inducing a
conformational change in intracellular portions of the receptor. In turn, the large, third intracellular
loop of the activated receptor interacts with a heterotrimeric guanine nucleotide binding (G) protein
complex which mediates further intracellular signaling activities, including the activation of second

- messengers such as cyclic AMP (cAMP), phospholipase C, and inositol triphosphate, and the interaction of the activated GPCR with ion channel proteins. (See, e.g., Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp. 2-6; Bolander, F.F. (1994) Molecular Endocrinology, Academic Press, San Diego CA, pp. 162-176;
- 5 Baldwin, J.M. (1994) *Curr. Opin. Cell Biol.* 6:180-190.)

GPCRs include receptors for sensory signal mediators (e.g., light and olfactory stimulatory molecules); adenosine, γ -aminobutyric acid (GABA), hepatocyte growth factor, melanocortins, neuropeptide Y, opioid peptides, opsins, somatostatin, tachykinins, vasoactive intestinal polypeptide family, and vasopressin; biogenic amines (e.g., dopamine, epinephrine and norepinephrine, histamine, 10 glutamate (metabotropic effect), acetylcholine (muscarinic effect), and serotonin); chemokines; lipid mediators of inflammation (e.g., prostaglandins and prostanoids, platelet activating factor, and leukotrienes); and peptide hormones (e.g., bombesin, bradykinin, calcitonin, C5a anaphylatoxin, endothelin, follicle-stimulating hormone (FSH), gonadotropin-releasing hormone (GnRH), neurokinin, and thyrotropin-releasing hormone (TRH), and oxytocin). GPCRs which act as receptors for stimuli 15 that have yet to be identified are known as orphan receptors.

The diversity of the GPCR family is further increased by alternative splicing. Many GPCR genes contain introns, and there are currently over 30 such receptors for which splice variants have been identified. The largest number of variations are at the protein C-terminus. N-terminal and cytoplasmic loop variants are also frequent, while variants in the extracellular loops or transmembrane domains are 20 less common. Some receptors have more than one site at which variance can occur. The splicing variants appear to be functionally distinct, based upon observed differences in distribution, signaling, coupling, regulation, and ligand binding profiles (Kilpatrick, G.J. et al. (1999) *Trends Pharmacol. Sci.* 20:294-301).

25 GPCRs can be divided into three major subfamilies: the rhodopsin-like, secretin-like, and metabotropic glutamate receptor subfamilies. Members of these GPCR subfamilies share similar functions and the characteristic seven transmembrane structure, but have divergent amino acid sequences. The largest family consists of the rhodopsin-like GPCRs, which transmit diverse extracellular signals including hormones, neurotransmitters, and light. Rhodopsin is a photosensitive GPCR found in animal retinas. In vertebrates, rhodopsin molecules are embedded in membranous 30 stacks found in photoreceptor (rod) cells. Each rhodopsin molecule responds to a photon of light by triggering a decrease in cGMP levels which leads to the closure of plasma membrane sodium channels. In this manner, a visual signal is converted to a neural impulse. Other rhodopsin-like GPCRs are directly involved in responding to neurotransmitters. These GPCRs include the receptors for adrenaline (adrenergic receptors), acetylcholine (muscarinic receptors), adenosine, galanin, and glutamate (N-

methyl-D-aspartate/NMDA receptors). (Reviewed in Watson, S. and S. Arkinstall (1994) The G-Protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp. 7-9, 19-22, 32-35, 130-131, 214-216, 221-222; Habert-Ortoli, E. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9780-9783.)

The galanin receptors mediate the activity of the neuroendocrine peptide galanin, which
5 inhibits secretion of insulin, acetylcholine, serotonin and noradrenaline, and stimulates prolactin and growth hormone release. Galanin receptors are involved in feeding disorders, pain, depression, and Alzheimer's disease (Kask, K. et al. (1997) Life Sci. 60:1523-1533). Other nervous system rhodopsin-like GPCRs include a growing family of receptors for lysophosphatidic acid and other
lysophospholipids, which appear to have roles in development and neuropathology (Chun, J. et al.
10 (1999) Cell Biochem. Biophys. 30:213-242).

The largest subfamily of GPCRs, the olfactory receptors, are also members of the rhodopsin-like GPCR family. These receptors function by transducing odorant signals. Numerous distinct olfactory receptors are required to distinguish different odors. Each olfactory sensory neuron expresses only one type of olfactory receptor, and distinct spatial zones of neurons expressing distinct receptors
15 are found in nasal passages. For example, the RA1c receptor which was isolated from a rat brain library, has been shown to be limited in expression to very distinct regions of the brain and a defined zone of the olfactory epithelium (Raming, K. et al. (1998) Receptors Channels 6:141-151). However, the expression of olfactory-like receptors is not confined to olfactory tissues. For example, three rat genes encoding olfactory-like receptors having typical GPCR characteristics showed expression
20 patterns not only in taste and olfactory tissue, but also in male reproductive tissue (Thomas, M.B. et al. (1996) Gene 178:1-5).

Members of the secretin-like GPCR subfamily have as their ligands peptide hormones such as secretin, calcitonin, glucagon, growth hormone-releasing hormone, parathyroid hormone, and vasoactive intestinal peptide. For example, the secretin receptor responds to secretin, a peptide
25 hormone that stimulates the secretion of enzymes and ions in the pancreas and small intestine (Watson, supra, pp. 278-283). Secretin receptors are about 450 amino acids in length and are found in the plasma membrane of gastrointestinal cells. Binding of secretin to its receptor stimulates the production of cAMP.

Examples of secretin-like GPCRs implicated in inflammation and the immune response
30 include the EGF module-containing, mucin-like hormone receptor (Emr1) and CD97 receptor proteins. These GPCRs are members of the recently characterized EGF-TM7 receptors subfamily. These seven transmembrane hormone receptors exist as heterodimers in vivo and contain between three and seven potential calcium-binding EGF-like motifs. CD97 is predominantly expressed in leukocytes and is markedly upregulated on activated B and T cells (McKnight, A.J. and S. Gordon
35 (1998) J. Leukoc. Biol. 63:271-280).

The third GPCR subfamily is the metabotropic glutamate receptor family. Glutamate is the major excitatory neurotransmitter in the central nervous system. The metabotropic glutamate receptors modulate the activity of intracellular effectors, and are involved in long-term potentiation (Watson, *supra*, p.130). The Ca^{2+} -sensing receptor, which senses changes in the extracellular concentration of calcium ions, has a large extracellular domain including clusters of acidic amino acids which may be involved in calcium binding. The metabotropic glutamate receptor family also includes pheromone receptors, the GABA_B receptors, and the taste receptors.

Other subfamilies of GPCRs include two groups of chemoreceptor genes found in the nematodes *Caenorhabditis elegans* and *Caenorhabditis briggsae*, which are distantly related to the mammalian olfactory receptor genes. The yeast pheromone receptors STE2 and STE3, involved in the response to mating factors on the cell membrane, have their own seven-transmembrane signature, as do the cAMP receptors from the slime mold *Dictyostelium discoideum*, which are thought to regulate the aggregation of individual cells and control the expression of numerous developmentally-regulated genes.

GPCR mutations, which may cause loss of function or constitutive activation, have been associated with numerous human diseases (Coughlin, *supra*). For instance, retinitis pigmentosa may arise from mutations in the rhodopsin gene. Furthermore, somatic activating mutations in the thyrotropin receptor have been reported to cause hyperfunctioning thyroid adenomas, suggesting that certain GPCRs susceptible to constitutive activation may behave as protooncogenes (Parma, J. et al. (1993) *Nature* 365:649-651). GPCR receptors for the following ligands also contain mutations associated with human disease: luteinizing hormone (precocious puberty); vasopressin V₂ (X-linked nephrogenic diabetes); glucagon (diabetes and hypertension); calcium (hyperparathyroidism, hypocalcuria, hypercalcemia); parathyroid hormone (short limbed dwarfism); β_3 -adrenoceptor (obesity, non-insulin-dependent diabetes mellitus); growth hormone releasing hormone (dwarfism); and adrenocorticotropin (glucocorticoid deficiency) (Wilson, S. et al. (1998) *Br. J. Pharmacol.* 125:1387-1392; Stadel, J.M. et al. (1997) *Trends Pharmacol. Sci.* 18:430-437). GPCRs are also involved in depression, schizophrenia, sleeplessness, hypertension, anxiety, stress, renal failure, and several cardiovascular disorders (Horn, F. and G. Vriend (1998) *J. Mol. Med.* 76:464-468).

In addition, within the past 20 years several hundred new drugs have been recognized that are directed towards activating or inhibiting GPCRs. The therapeutic targets of these drugs span a wide range of diseases and disorders, including cardiovascular, gastrointestinal, and central nervous system disorders as well as cancer, osteoporosis and endometriosis (Wilson, *supra*; Stadel, *supra*). For example, the dopamine agonist L-dopa is used to treat Parkinson's disease, while a dopamine antagonist is used to treat schizophrenia and the early stages of Huntington's disease. Agonists and antagonists of adrenoceptors have been used for the treatment of asthma, high blood pressure, other cardiovascular

disorders, and anxiety; muscarinic agonists are used in the treatment of glaucoma and tachycardia; serotonin 5HT1D antagonists are used against migraine; and histamine H1 antagonists are used against allergic and anaphylactic reactions, hay fever, itching, and motion sickness (Horn, supra).

- Recent research suggests potential future therapeutic uses for GPCRs in the treatment of
- 5 metabolic disorders including diabetes, obesity, and osteoporosis. For example, mutant V2 vasopressin receptors causing nephrogenic diabetes could be functionally rescued in vitro by co-expression of a C-terminal V2 receptor peptide spanning the region containing the mutations. This result suggests a possible novel strategy for disease treatment (Schöneberg, T. et al. (1996) EMBO J. 15:1283-1291). Mutations in melanocortin-4 receptor (MC4R) are implicated in human weight regulation and obesity.
- 10 As with the vasopressin V2 receptor mutants, these MC4R mutants are defective in trafficking to the plasma membrane (Ho, G. and R.G. MacKenzie (1999) J. Biol. Chem. 274:35816-35822), and thus might be treated with a similar strategy. The type 1 receptor for parathyroid hormone (PTH) is a GPCR that mediates the PTH-dependent regulation of calcium homeostasis in the bloodstream. Study of PTH/receptor interactions may enable the development of novel PTH receptor ligands for the
- 15 treatment of osteoporosis (Mannstadt, M. et al. (1999) Am. J. Physiol. 277:F665-F675).

- The chemokine receptor group of GPCRs have potential therapeutic utility in inflammation and infectious disease. (For review, see Locati, M. and P.M. Murphy (1999) Annu. Rev. Med. 50:425-440.) Chemokines are small polypeptides that act as intracellular signals in the regulation of leukocyte trafficking, hematopoiesis, and angiogenesis. Targeted disruption of various chemokine receptors in
- 20 mice indicates that these receptors play roles in pathologic inflammation and in autoimmune disorders such as multiple sclerosis. Chemokine receptors are also exploited by infectious agents, including herpesviruses and the human immunodeficiency virus (HIV-1) to facilitate infection. A truncated version of chemokine receptor CCR5, which acts as a coreceptor for infection of T-cells by HIV-1, results in resistance to AIDS, suggesting that CCR5 antagonists could be useful in preventing the
- 25 development of AIDS.

- The discovery of new G-protein coupled receptors and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections, and in the assessment of the
- 30 effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of G-protein coupled receptors.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, G-protein coupled receptors, referred to

collectively as "GCREC" and individually as "GCREC-1," "GCREC-2," "GCREC-3," "GCREC-4," "GCREC-5," "GCREC-6," "GCREC-7," "GCREC-8," "GCREC-9," "GCREC-10," "GCREC-11," "GCREC-12," "GCREC-13," "GCREC-14," "GCREC-15," "GCREC-16," "GCREC-17," "GCREC-18," "GCREC-19," "GCREC-20," "GCREC-21," "GCREC-22," "GCREC-23," "GCREC-24," 5 "GCREC-25," "GCREC-26," "GCREC-27," "GCREC-28," "GCREC-29," "GCREC-30," "GCREC-31," "GCREC-32," "GCREC-33," "GCREC-34," "GCREC-35," "GCREC-36," "GCREC-37," "GCREC-38," and "GCREC-39." In one aspect, the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence 10 having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-39.

15 The invention further provides an isolated polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of 20 SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-39. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:40-78.

25 Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID 30 NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising an amino acid

- sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
- 10 Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39.

15 The invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

20 Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and

optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

- The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

- The invention further provides a composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment the composition.

- The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence
5 selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising
10 an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional GCREC, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds
15 to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino acid
20 sequence selected from the group consisting of SEQ ID NO:1-39. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the
25 activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and d) an immunogenic fragment of an amino
30 acid sequence selected from the group consisting of SEQ ID NO:1-39. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of
35 the polypeptide in the presence of the test compound is indicative of a compound that modulates the

activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:40-78, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, ii) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, ii) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78, iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE FIGURES AND TABLES

Figure 1 shows the hydrophobicity plot for GCREC-1 (SEQ ID NO:1; Incyte ID number 104941CD1). The hydrophobicity plot was generated using the MacDNASIS Pro software. The positive X axis reflects amino acid position, and the negative Y axis, hydrophobicity. The numbers indicate the positions of predicted transmembrane domains.

Figure 2 shows the hydrophobicity plot for GCREC-3 (SEQ ID NO:3; Incyte ID number 3168839CD1).

Figure 3 shows the hydrophobicity plot for GCREC-4 (SEQ ID NO:4; Incyte ID number 3291235CD1).

Figure 4 shows the hydrophobicity plot for GCREC-5 (SEQ ID NO:5; Incyte ID number 7472001CD1).

5 Figure 5 shows the hydrophobicity plot for GCREC-6 (SEQ ID NO:6; Incyte ID number 7472003CD1).

Figure 6 shows the hydrophobicity plot for GCREC-7 (SEQ ID NO:7; Incyte ID number 7472004CD1).

10 Figure 7 shows the hydrophobicity plot for GCREC-19 (SEQ ID NO:19; Incyte ID number 3068234CD1).

Figure 8 shows the hydrophobicity plot for GCREC-20 (SEQ ID NO:20; Incyte ID number 5029478CD1).

Figure 9 shows the hydrophobicity plot for GCREC-21 (SEQ ID NO:21; Incyte ID number 5102576CD1).

15 Table 1 summarizes the nomenclature for the polynucleotide and polypeptide sequences of the present invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for each polypeptide of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.

20 Table 3 shows structural features of each polypeptide sequence, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of each polypeptide.

Table 4 lists the cDNA and genomic DNA fragments which were used to assemble each polynucleotide sequence, along with selected fragments of the polynucleotide sequences.

25 Table 5 shows the representative cDNA library for each polynucleotide of the invention.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

30

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing

particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a 5 reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although 10 any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is 15 not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"GCREC" refers to the amino acid sequences of substantially purified GCREC obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

20 The term "agonist" refers to a molecule which intensifies or mimics the biological activity of GCREC. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of GCREC either by directly interacting with GCREC or by acting on components of the biological pathway in which GCREC participates.

An "allelic variant" is an alternative form of the gene encoding GCREC. Allelic variants may 25 result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in 30 a given sequence.

"Altered" nucleic acid sequences encoding GCREC include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as GCREC or a polypeptide with at least one functional characteristic of GCREC. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of

the polynucleotide encoding GCREC, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding GCREC. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent GCREC.

- 5 Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of GCREC is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
- 10

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known 20 in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of GCREC. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of GCREC either by directly interacting with GCREC or by acting on components of the biological pathway in which 25 GCREC participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind GCREC polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or 30 oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

35 The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that

makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to 5 elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified 10 sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring 15 nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic GCREC, or of any oligopeptide thereof, 20 to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding GCREC or fragments of GCREC may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be 30 associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems,

Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to 5 produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as 10 conservative amino acid substitutions.

	Original Residue	Conservative Substitution
15	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
20	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
25	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
30	Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the 35 side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, 40 hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified

by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

5 A "fragment" is a unique portion of GCREC or the polynucleotide encoding GCREC which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least
10 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported
15 by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:40-78 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:40-78, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:40-78 is useful, for
20 example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:40-78 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:40-78 and the region of SEQ ID NO:40-78 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-39 is encoded by a fragment of SEQ ID NO:40-78. A fragment
25 of SEQ ID NO:1-39 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-39. For example, a fragment of SEQ ID NO:1-39 is useful as an immunogenic peptide

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore 5 achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. 10 and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

15 Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis 20 programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST 25 programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

30 *Penalty for mismatch: -2*

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

30 *Open Gap: 11 and Extension Gap: 1 penalties*

Gap x drop-off: 50

Expect: 10

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

“Hybridization” refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention

include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, 5 sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is 10 strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_{ot} or R_{ot} analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., 15 paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune 20 disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of GCREC which is capable of eliciting an immune response when introduced into a living organism, for example, a 25 mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of GCREC which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other 30 chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of GCREC. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of GCREC.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide,

polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which 10 comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an GCREC may involve lipidation, glycosylation, 15 phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of GCREC.

"Probe" refers to nucleic acid sequences encoding GCREC, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are 20 isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid 25 sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may 30 be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR

Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

5 Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU
10 primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer
15 binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that
20 hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary
25 polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the
30 artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, 10 chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose 15 instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing GCREC, nucleic acids encoding GCREC, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

20 The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope 25 A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which 30 they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers,

microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

5 "Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection,
10 electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

15 A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in
20 vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention
25 into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

30 A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides
35 due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may

possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the 10 polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

15. THE INVENTION

The invention is based on the discovery of new human G-protein coupled receptors (GCRC), the polynucleotides encoding GCRC, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections.

20 Table 1 summarizes the nomenclature for the polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a 25 polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the 30 polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

35 Table 3 shows various structural features of each of the polypeptides of the invention. Columns

1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS 5 program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

As shown in Table 4, the polynucleotide sequences of the present invention were assembled 10 using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which 15 are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:40-78 or that distinguish between SEQ ID NO:40-78 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the polynucleotide sequences of the invention. Columns 6 and 7 of 20 Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and genomic sequences in column 5 relative to their respective sequences.

The identification numbers in Column 5 of Table 4 may refer specifically, for example, to 25 Incyte cDNAs along with their corresponding cDNA libraries. For example, 927003T6 is the identification number of an Incyte cDNA sequence, and BRAINOT04 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 70489898V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g835247) which contributed to the assembly of the polynucleotide sequences. Alternatively, the identification numbers in column 5 may refer to coding regions predicted by Genscan analysis of genomic DNA. For example, g4190944.v113.gs_10.edit is the identification 30 number of a Genscan-predicted coding sequence, with g4190944 being the GenBank identification number of the sequence to which Genscan was applied. The Genscan-predicted coding sequences may have been edited prior to assembly. (See Example IV.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. (See Example V.) Alternatively, the identification numbers in column 5

may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon-stretching" algorithm. (See Example V.) In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

5 Table 5 shows the representative cDNA libraries for those polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

10 The invention also encompasses GCREC variants. A preferred GCREC variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the GCREC amino acid sequence, and which contains at least one functional or structural characteristic of GCREC.

15 The invention also encompasses polynucleotides which encode GCREC. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:40-78, which encodes GCREC. The polynucleotide sequences of SEQ ID NO:40-78, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

20 The invention also encompasses a variant of a polynucleotide sequence encoding GCREC. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding GCREC. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:40-78 which has at 25 least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:40-78. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of GCREC.

30 It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding GCREC, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally

occurring GCREC, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode GCREC and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring GCREC under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding GCREC or 5 its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding GCREC and its derivatives without altering the encoded amino acid sequences 10 include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode GCREC and GCREC derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems 15 using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding GCREC or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:40-78 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and 20 S.L. Berger (1987) *Methods Enzymol.* 152:399-407; Kimmel, A.R. (1987) *Methods Enzymol.* 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of 25 DNA polymerase I, SEQUENASe (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), 30 PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols

in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding GCREC may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire

process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

- In another embodiment of the invention, polynucleotide sequences or fragments thereof which
- 5 encode GCREC may be cloned in recombinant DNA molecules that direct expression of GCREC, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express GCREC.

- The nucleotide sequences of the present invention can be engineered using methods generally
- 10 known in the art in order to alter GCREC-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites,
- 15 alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

- The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or
- 20 improve the biological properties of GCREC, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of
- 25 DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby
- 30 maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

- In another embodiment, sequences encoding GCREC may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively,
- 35 GCREC itself or a fragment thereof may be synthesized using chemical methods. For example, peptide

synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp.55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of GCREC, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

- The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
- 10 The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active GCREC, the nucleotide sequences encoding GCREC or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding GCREC. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding GCREC. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding GCREC and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding GCREC and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding GCREC. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus);
5 plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, *supra*; Ausubel, *supra*; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di
10 Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.)
15 The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding GCREC. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding GCREC can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding GCREC into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of GCREC are needed, e.g. for the production of antibodies, vectors which direct high level expression of GCREC may be used. For example, vectors containing
20 the strong, inducible SP6 or T7 bacteriophage promoter may be used.
25
30

Yeast expression systems may be used for production of GCREC. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration
35 of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, *supra*;

Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of GCREC. Transcription of sequences encoding GCREC may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated 10 transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding GCREC may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader 15 sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses GCREC in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

20 Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of 25 GCREC in cell lines is preferred. For example, sequences encoding GCREC can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a 30 selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase

genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to 5 chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements 10 for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of 15 transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is 20 also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding GCREC is inserted within a marker gene sequence, transformed cells containing sequences encoding GCREC can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding GCREC under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding GCREC and that express 25 GCREC may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of GCREC using either 30 specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on GCREC is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding GCREC include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.

- 5 Alternatively, the sequences encoding GCREC, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega
- 10 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding GCREC may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode GCREC may be designed to contain signal sequences which direct secretion of GCREC through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding GCREC may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric GCREC protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of GCREC activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose

binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the GCREC encoding sequence and the heterologous protein sequence, so that GCREC may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled GCREC may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ^{35}S -methionine.

GCREC of the present invention or fragments thereof may be used to screen for compounds that specifically bind to GCREC. At least one and up to a plurality of test compounds may be screened for specific binding to GCREC. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of GCREC, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which GCREC binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express GCREC, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing GCREC or cell membrane fractions which contain GCREC are then contacted with a test compound and binding, stimulation, or inhibition of activity of either GCREC or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with GCREC, either in solution or affixed to a solid support, and detecting the binding of GCREC to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a

labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

- GCREC of the present invention or fragments thereof may be used to screen for compounds
- 5 that modulate the activity of GCREC. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for GCREC activity, wherein GCREC is combined with at least one test compound, and the activity of GCREC in the presence of a test compound is compared with the activity of GCREC in the absence of the test compound. A change in the activity of GCREC in the presence of the test compound is
- 10 indicative of a compound that modulates the activity of GCREC. Alternatively, a test compound is combined with an in vitro or cell-free system comprising GCREC under conditions suitable for GCREC activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of GCREC may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
- 15 In another embodiment, polynucleotides encoding GCREC or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent Number 5,175,383 and U.S. Patent Number 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo
- 20 and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
- 25 Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
- 30 Polynucleotides encoding GCREC may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
- 35 Polynucleotides encoding GCREC can also be used to create "knockin" humanized animals

(pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding GCREC is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with 5 potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress GCREC, e.g., by secreting GCREC in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists 10 between regions of GCREC and G-protein coupled receptors. In addition, the expression of GCREC is closely associated with cancerous, neurological, gastrointestinal, and lung tissue. Therefore, GCREC appears to play a role in cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections. In the treatment of disorders associated with increased GCREC expression or activity, it is desirable to decrease the expression or 15 activity of GCREC. In the treatment of disorders associated with decreased GCREC expression or activity, it is desirable to increase the expression or activity of GCREC.

Therefore, in one embodiment, GCREC or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC. Examples of such disorders include, but are not limited to, a cell proliferative 20 disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, 25 gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, 30 retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, 35 tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental

- retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease,
- 5 10 15 20 25 30 35
- aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha,-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatitis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal

dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel
5 syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal,
10 parasitic, protozoal, and helminthic infections, and trauma; a metabolic disorder such as diabetes, obesity, and osteoporosis; and an infection by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, reovirus, retrovirus, rhabdovirus, and togavirus.

15 In another embodiment, a vector capable of expressing GCREC or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC including, but not limited to, those described above.

20 In a further embodiment, a composition comprising a substantially purified GCREC in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of GCREC may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC including, but not limited to, those listed above.

25 In a further embodiment, an antagonist of GCREC may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of GCREC. Examples of such disorders include, but are not limited to, those cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections, described above. In one aspect, an antibody which specifically binds GCREC may be used directly as an
30 antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express GCREC.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding GCREC may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of GCREC including, but not limited to, those described above.

35 In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary

sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various 5 disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of GCREC may be produced using methods which are generally known in the art. In particular, purified GCREC may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind GCREC. Antibodies to GCREC may 10 also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, 15 and others may be immunized by injection with GCREC or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG 20 (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to GCREC have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of 25 GCREC amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to GCREC may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma 30 technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate

antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce GCREC-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in 10 the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for GCREC may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin 15 digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either 20 polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between GCREC and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering GCREC epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

25 Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for GCREC. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of GCREC-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple 30 GCREC epitopes, represents the average affinity, or avidity, of the antibodies for GCREC. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular GCREC epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10⁹ to 10¹² L/mole are preferred for use in immunoassays in which the GCREC-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a

ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of GCREC, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, 5 New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of GCREC-antibody 10 complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding GCREC, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene 15 expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding GCREC. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding GCREC. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totowa NJ.)

20 In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Cli. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995) 25 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) *Blood* 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) *Pharmacol. Ther.* 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) *Br. Med. Bull.* 51(1):217-225; Boado, R.J. et 30 al. (1998) *J. Pharm. Sci.* 87(11):1308-1315; and Morris, M.C. et al. (1997) *Nucleic Acids Res.* 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding GCREC may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked 35 inheritance (Cavazzana-Calvo, M. et al. (2000) *Science* 288:669-672), severe combined

- immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) *Science* 270:475-480; Bordignon, C. et al. (1995) *Science* 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) *Cell* 75:207-216; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:643-666; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) *Science* 270:404-410; Verma, I.M. and N. Somia (1997) *Nature* 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) *Nature* 335:395-396; Poeschla, E. et al. (1996) *Proc. Natl. Acad. Sci. USA* 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in GCREC expression or regulation causes disease, the expression of GCREC from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in GCREC are treated by constructing mammalian expression vectors encoding GCREC and introducing these vectors by mechanical means into GCREC-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) *Annu. Rev. Biochem.* 62:191-217; Ivics, Z. (1997) *Cell* 91:501-510; Boulay, J-L. and H. Récipon (1998) *Curr. Opin. Biotechnol.* 9:445-450).

Expression vectors that may be effective for the expression of GCREC include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). GCREC may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) *Proc. Natl. Acad. Sci. U.S.A.* 89:5547-5551; Gossen, M. et al. (1995) *Science* 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) *Curr. Opin. Biotechnol.* 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V.

and Blau, H.M. *supra*)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding GCREC from a normal individual.

- Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver 5 polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
- 10 In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to GCREC expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding GCREC under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences
- 15 required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. 20 (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference.
- 25 Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
- 30 In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding GCREC to cells which have one or more genetic abnormalities with respect to the expression of GCREC. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas

(Csete, M.E. et al. (1995) *Transplantation* 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) *Annu. Rev. Nutr.* 19:511-544 and Verma, I.M. and N. Somia (1997) *Nature* 389:239-242, both

5 incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding GCREC to target cells which have one or more genetic abnormalities with respect to the expression of GCREC. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing GCREC to cells of the central nervous system, for which HSV has a

10 tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) *Exp. Eye Res.* 69:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is

15 hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) *J. Virol.* 73:519-532 and Xu, H. et al. (1994) *Dev. Biol.* 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

25 In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding GCREC to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) *Curr. Opin. Biotechnol.* 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid

30 proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for GCREC into the alphavirus genome in place of the capsid-coding region results in the production of a large number of GCREC-coding RNAs and the synthesis of high levels of GCREC in vector transduced cells. While alphavirus

infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) *Virology* 228:74-83). The wide host range of alphaviruses will allow the introduction of GCREC into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfactions, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding GCREC.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding GCREC. Such DNA sequences may be incorporated into a wide variety of vectors with

suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

- RNA molecules may be modified to increase intracellular stability and half-life. Possible
- 5 modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine,
- 10 guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding GCREC.

Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming

- 15 oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased GCREC expression or activity, a compound which specifically inhibits expression of the
- 20 polynucleotide encoding GCREC may be therapeutically useful, and in the treatment of disorders associated with decreased GCREC expression or activity, a compound which specifically promotes expression of the polynucleotide encoding GCREC may be therapeutically useful.

- At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method
- 25 commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a
- 30 polynucleotide encoding GCREC is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding GCREC are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence
- 35 of the polynucleotide encoding GCREC. The amount of hybridization may be quantified, thus

forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific 5 polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide 10 nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken 15 from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such 20 therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various 25 formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of GCREC, antibodies to GCREC, and mimetics, agonists, antagonists, or inhibitors of GCREC.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, 30 intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting 35 formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins),

recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

5 Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising GCRC or fragments thereof. For example, liposome preparations 10 containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, GCRC or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) *Science* 285:1569-1572).

15 For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

20 A therapeutically effective dose refers to that amount of active ingredient, for example GCRC or fragments thereof, antibodies of GCRC, and agonists, antagonists or inhibitors of GCRC, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose 25 lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity.

30 The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity

of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

- 5 Normal dosage amounts may vary from about 0.1 μg to 100,000 μg , up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells,
10 conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind GCREC may be used for the diagnosis of disorders characterized by expression of GCREC, or in assays to monitor patients being treated with GCREC or agonists, antagonists, or inhibitors of GCREC. Antibodies useful for
15 diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for GCREC include methods which utilize the antibody and a label to detect GCREC in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may
20 be used.

A variety of protocols for measuring GCREC, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of GCREC expression. Normal or standard values for GCREC expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to GCREC
25 under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of GCREC expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding GCREC may be used for
30 diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of GCREC may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of GCREC, and to monitor regulation of GCREC levels during therapeutic intervention.

- In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding GCREC or closely related molecules may be used to identify nucleic acid sequences which encode GCREC. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding GCREC, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the GCREC encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:40-78 or from genomic sequences including promoters, enhancers, and introns of the GCREC gene.

Means for producing specific hybridization probes for DNAs encoding GCREC include the cloning of polynucleotide sequences encoding GCREC or GCREC derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding GCREC may be used for the diagnosis of disorders associated with expression of GCREC. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the

nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders,

5 peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial

10 frontotemporal dementia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease,

15 degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis,

20 25 passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha-

30 antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatitis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's

35 disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia,

asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic 5 gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic 10 anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a metabolic disorder such as diabetes, obesity, and osteoporosis; and an infection by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, 15 poxvirus, reovirus, retrovirus, rhabdovirus, and togavirus. The polynucleotide sequences encoding GCREC may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered GCREC expression. Such qualitative or quantitative methods are well known in the art.

20 In a particular aspect, the nucleotide sequences encoding GCREC may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding GCREC may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard 25 value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding GCREC in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

30 In order to provide a basis for the diagnosis of a disorder associated with expression of GCREC, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding GCREC, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal 35 subjects with values from an experiment in which a known amount of a substantially purified

polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

- Once the presence of a disorder is established and a treatment protocol is initiated,
- 5 hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or

10 overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

- 15 Additional diagnostic uses for oligonucleotides designed from the sequences encoding GCREC may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding GCREC, or a fragment of a polynucleotide complementary to the polynucleotide encoding GCREC, and will be employed under optimized conditions for identification of a specific gene or condition.
- 20 Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding GCREC may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease

25 in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding GCREC are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary

30 and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual

overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high 5 throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of GCREC include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be 10 accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray 15 can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the 20 activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, GCREC, fragments of GCREC, or antibodies specific for GCREC 25 may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by 30 quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the

hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, 5 or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental 10 compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. 15 These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data 20 after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at <http://www.niehs.nih.gov/oc/news/toxchip.htm>.) Therefore, it is 25 important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the 30 present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present 35 invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global

pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and

5 analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, *supra*). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent

10 such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for

15 example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for GCREC to quantify the

20 levels of GCREC expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) *Anal. Biochem.* 270:103-111; Mendoza, L.G. et al. (1999) *Biotechniques* 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-

25 reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) *Electrophoresis* 18:533-537), so proteome toxicant signatures may be useful in the

30 analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological

sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

5 In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with 10 the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. 15 (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding GCREC may be used 20 to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a 25 chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic 30 linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map 35 data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM)

World Wide Web site. Correlation between the location of the gene encoding GCREC on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

- 5 In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized
- 10 by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
- 15 In another embodiment of the invention, GCREC, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between GCREC and the agent being tested may be measured.
- 20 Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with GCREC, or fragments thereof, and washed. Bound GCREC is then detected by methods well known in the art. Purified GCREC can
- 25 also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
- 30 In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding GCREC specifically compete with a test compound for binding GCREC. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with GCREC.
- In additional embodiments, the nucleotide sequences which encode GCREC may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such

properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure 5 in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, in particular U.S. Ser. No. 60/172,852, U.S. Ser. No. 60/171,732, U.S. Ser. No. 60/176,148, and U.S. Ser. No. 60/177,331, are expressly incorporated by reference herein.

10

EXAMPLES

I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. The Incyte cDNA shown for SEQ ID NO:40 was derived from a cDNA library constructed from bone marrow tissue. The Incyte cDNAs 15 shown for SEQ ID NO:41 were derived from cDNA libraries constructed from small intestine, including tissues associated with Crohn's disease, from large intestine, and from brain tissues. The Incyte cDNAs shown for SEQ ID NO:42 were derived from cDNA libraries constructed from prostate tumor, small intestine, breast, and epidermal tissues. The Incyte cDNAs shown for SEQ ID NO:43 were derived cDNA libraries constructed from soft tissue tumor, fetal rib, and brain tissue associated 20 with Huntington's disease. The Incyte cDNAs shown for SEQ ID NO:57 were derived from cDNA libraries constructed from lymphocytes and mast cells, and from breast, uterine, prostate, adrenal gland, spinal cord, tibial muscle, lung, esophagus, small intestine, and colon tissues. The Incyte cDNAs shown for SEQ ID NO:58 were derived from cDNA libraries constructed from a fallopian tube tumor, uterine endometrium, and bronchial tissue. The Incyte cDNAs shown for SEQ ID NO:59 were derived 25 from cDNA libraries constructed from colon tissues, including cecal tumor tissue, as well as from pancreatic tumor, pituitary gland, and brain tissues. The Incyte cDNAs shown for SEQ ID NO:60 were derived from cDNA libraries constructed from brain, including brain tumor tissue and tissues associated with Huntington's disease, and from prostate tumor, cervical adenocarcinoma, breast, small intestine, and bladder tissues. Some tissues were homogenized and lysed in guanidinium isothiocyanate, 30 while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

35 Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA

purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY (Incyte Genomics, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

20 II. Isolation of cDNA Clones

Plasmids obtained as described in Example I were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 25 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

- Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the
- 5 MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI
- 10 PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.
- 15 The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS,
- 20 DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMR. The Incyte cDNA sequences were assembled to produce polynucleotide sequences. Alternatively, GenBank cDNAs,
- 25 GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The polynucleotide sequences were translated to derive the corresponding polypeptide sequences which were
- 30 subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are
- 35 generated using default parameters specified by the CLUSTAL algorithm as incorporated into the

MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and assembled polynucleotide sequences and provides applicable descriptions, references, 5 and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity 10 between two sequences).

The programs described above for the assembly and analysis of polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:40-78. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.

15 **IV. Identification and Editing of Coding Sequences from Genomic DNA**

Putative G-protein coupled receptors were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin 20 (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode G-protein coupled receptors, the encoded polypeptides were analyzed by querying 25 against PFAM models for G-protein coupled receptors (7tm_1, 7tm_2, 7tm_3, and 7tm_4). Potential G-protein coupled receptors were also identified by homology to Incyte cDNA sequences that had been annotated as G-protein coupled receptors. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to 30 correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Polynucleotide sequences, including SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:61, SEQ ID NO:62,

and SEQ ID NO:63, were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, polynucleotide sequences, including SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, 5 SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, and SEQ ID NO:78, are full length coding regions derived entirely from edited or unedited Genscan-predicted coding sequences. Alternatively, polynucleotide sequences, including SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, and SEQ ID NO:56, are partial genes 10 derived from the assembly and editing of Genscan-predicted sequences only.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data

"Stitched" Sequences

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped 15 to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in 20 the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the 25 longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit 30 from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public

databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the
5 translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to
10 determine whether it contained a complete gene.

VI. Chromosomal Mapping of GCREC Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:40-78 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched
15 SEQ ID NO:40-78 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment
20 of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, or human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in
25 humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (<http://www.ncbi.nlm.nih.gov/genemap/>), can be employed to determine if previously identified
30 disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995)
35 supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.

- 5 The basis of the search is the product score, which is defined as:

$$\frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \min\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}}$$

- 10 The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for 15 every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 20 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotide sequences encoding GCREC are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is 25 derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of 30 libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA 35 encoding GCREC. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ

GOLD database (Incyte Genomics, Palo Alto CA).

VIII. Extension of GCREC Encoding Polynucleotides

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were

religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x 5 carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified 10 using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

15 In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:40-78 are employed to screen cDNAs, genomic 20 DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston 25 MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

30 The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and

compared.

X. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, *supra*), mechanical 5 microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), *supra*). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be 10 produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may 15 comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a 20 fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

25 **Tissue or Cell Sample Preparation**

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M 30 dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by *in vitro* transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and 35 incubated for 20 minutes at 85°C to stop the reaction and degrade the RNA. Samples are purified

using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and 5 resuspended in 14 μ l 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are 10 amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water 15 washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US 20 Patent No. 5,807,522, incorporated herein by reference. 1 μ l of the array element DNA, at an average concentration of 100 ng/ μ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. 25 Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 μ l of sample mixture consisting of 0.2 μ g each of Cy3 and 30 Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μ l of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for 35 about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC,

0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

Detection

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

Sequences complementary to the GCREC-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring GCREC. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with

- 5 smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of GCREC. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the GCREC-encoding transcript.

10 XII. Expression of GCREC

Expression and purification of GCREC is achieved using bacterial or virus-based expression systems. For expression of GCREC in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid

- 15 promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).

Antibiotic resistant bacteria express GCREC upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of GCREC in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus

- 20 (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding GCREC by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.

- 25 Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, GCREC is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step,

- 30 affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from GCREC at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification

using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10 and 16). Purified GCREC obtained by these methods can be used directly in the assays shown in

5 Examples XVI, XVII, and XVIII, where applicable.

XIII. Functional Assays

GCREC function is assessed by expressing the sequences encoding GCREC at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice 10 include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish 15 transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of 20 fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; 25 and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of GCREC on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding GCREC and either CD64 or CD64-GFP. CD64 and 30 CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding GCREC and other genes of interest can be analyzed by northern analysis or

microarray techniques.

XIV. Production of GCREC Specific Antibodies

GCREC substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to 5 immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the GCREC amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well 10 described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the 15 oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for anti-peptide and anti-GCREC activity by, for example, binding the peptide or GCREC to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring GCREC Using Specific Antibodies

Naturally occurring or recombinant GCREC is substantially purified by immunoaffinity 20 chromatography using antibodies specific for GCREC. An immunoaffinity column is constructed by covalently coupling anti-GCREC antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing GCREC are passed over the immunoaffinity column, and the column is 25 washed under conditions that allow the preferential absorbance of GCREC (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/GCREC binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and GCREC is collected.

XVI. Identification of Molecules Which Interact with GCREC

Molecules which interact with GCREC may include agonists and antagonists, as well as 30 molecules involved in signal transduction, such as G proteins. GCREC, or a fragment thereof, is labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) A fragment of GCREC includes, for example, a fragment comprising one or more of the three extracellular loops, the extracellular N-terminal region, or the third intracellular loop. Candidate

molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled GCREC, washed, and any wells with labeled GCREC complex are assayed. Data obtained using different concentrations of GCREC are used to calculate values for the number, affinity, and association of GCREC with the candidate ligand molecules.

5 Alternatively, molecules interacting with GCREC are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech). GCREC may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between
10 the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

Potential GCREC agonists or antagonists may be tested for activation or inhibition of GCREC receptor activity using the assays described in sections XVII and XVIII. Candidate molecules may be selected from known GPCR agonists or antagonists, peptide libraries, or combinatorial chemical
15 libraries.

Methods for detecting interactions of GCREC with intracellular signal transduction molecules such as G proteins are based on the premise that internal segments or cytoplasmic domains from an orphan G protein-coupled seven transmembrane receptor may be exchanged with the analogous domains of a known G protein-coupled seven transmembrane receptor and used to identify the G-
20 proteins and downstream signaling pathways activated by the orphan receptor domains (Kobilka, B.K. et al. (1988) Science 240:1310-1316). In an analogous fashion, domains of the orphan receptor may be cloned as a portion of a fusion protein and used in binding assays to demonstrate interactions with specific G proteins. Studies have shown that the third intracellular loop of G protein-coupled seven transmembrane receptors is important for G protein interaction and signal transduction
25 (Conklin, B.R. et al. (1993) Cell 73:631-641). For example, the DNA fragment corresponding to the third intracellular loop of GCREC may be amplified by the polymerase chain reaction (PCR) and subcloned into a fusion vector such as nGEX (Pharmacia Biotech). The construct is transformed into

saline. Bound G subunits are detected by [³²P]ADP-ribosylation with pertussis or cholera toxins. The reactions are terminated by the addition of SDS sample buffer (4.6% (w/v) SDS, 10% (v/v) β-mercaptoethanol, 20% (w/v) glycerol, 95.2 mM Tris-HCl, pH 6.8, 0.01% (w/v) bromphenol blue). The [³²P]ADP-labeled proteins are separated on 10% SDS-PAGE gels, and autoradiographed. These 5 gels are transferred to nitrocellulose paper, blocked with blotto (5% nonfat dried milk, 50 mM Tris-HCl (pH 8.0), 2 mM CaCl₂, 80 mM NaCl, 0.02% NaN₃, and 0.2% Nonidet P-40) for 1 hour at room temperature, followed by incubation for 1.5 hours with Gα subtype selective antibodies (1:500; Calbiochem-Novabiochem). After three washes, blots are incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin (1:2000, Cappel, Westchester PA) and visualized 10 by the chemiluminescence-based ECL method (Amersham Corp.).

XVII. Demonstration of GCREC Activity

An assay for GCREC activity measures the expression of GCREC on the cell surface. cDNA encoding GCREC is transfected into an appropriate mammalian cell line. Cell surface proteins are labeled with biotin as described (de la Fuente, M.A. et al. (1997) Blood 90:2398-2405).

15 Immunoprecipitations are performed using GCREC-specific antibodies, and immunoprecipitated samples are analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of GCREC expressed on the cell surface.

In the alternative, an assay for GCREC activity is based on a prototypical assay for 20 ligand/receptor-mediated modulation of cell proliferation. This assay measures the rate of DNA synthesis in Swiss mouse 3T3 cells. A plasmid containing polynucleotides encoding GCREC is added to quiescent 3T3 cultured cells using transfection methods well known in the art. The transiently transfected cells are then incubated in the presence of [³H]thymidine, a radioactive DNA precursor molecule. Varying amounts of GCREC ligand are then added to the cultured cells. Incorporation of 25 [³H]thymidine into acid-precipitable DNA is measured over an appropriate time interval using a radioisotope counter, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold GCREC ligand concentration range is indicative of receptor activity. One unit of activity per milliliter is defined as the concentration of GCREC producing a 50% response level, where 100% represents maximal incorporation of [³H]thymidine into acid-precipitable DNA (McKay, I. and I. Leigh, eds. (1993) 30 Growth Factors: A Practical Approach, Oxford University Press, New York NY, p. 73.)

In a further alternative, the assay for GCREC activity is based upon the ability of GPCR family proteins to modulate G protein-activated second messenger signal transduction pathways (e.g., cAMP; Gaudin, P. et al. (1998) J. Biol. Chem. 273:4990-4996). A plasmid encoding GCREC is 35 transfected into a mammalian cell line (e.g., Chinese hamster ovary (CHO) or human embryonic

kidney (HEK-293) cell lines) using methods well-known in the art. Transfected cells are grown in 12-well trays in culture medium for 48 hours, then the culture medium is discarded, and the attached cells are gently washed with PBS. The cells are then incubated in culture medium with or without ligand for 30 minutes, then the medium is removed and cells lysed by treatment with 1 M perchloric acid. The cAMP levels in the lysate are measured by radioimmunoassay using methods well-known in the art. Changes in the levels of cAMP in the lysate from cells exposed to ligand compared to those without ligand are proportional to the amount of GCREC present in the transfected cells.

To measure changes in inositol phosphate levels, the cells are grown in 24-well plates containing 1×10^5 cells/well and incubated with inositol-free media and [³H]myoinositol, 2 μ Ci/well, for 10 48 hr. The culture medium is removed, and the cells washed with buffer containing 10 mM LiCl followed by addition of ligand. The reaction is stopped by addition of perchloric acid. Inositol phosphates are extracted and separated on Dowex AG1-X8 (Bio-Rad) anion exchange resin, and the total labeled inositol phosphates counted by liquid scintillation. Changes in the levels of labeled inositol phosphate from cells exposed to ligand compared to those without ligand are proportional to 15 the amount of GCREC present in the transfected cells.

XVIII. Identification of GCREC Ligands

GCREC is expressed in a eukaryotic cell line such as CHO (Chinese Hamster Ovary) or HEK (Human Embryonic Kidney) 293 which have a good history of GPCR expression and which contain a wide range of G-proteins allowing for functional coupling of the expressed GCREC to downstream 20 effectors. The transformed cells are assayed for activation of the expressed receptors in the presence of candidate ligands. Activity is measured by changes in intracellular second messengers, such as cyclic AMP or Ca²⁺. These may be measured directly using standard methods well known in the art, or by the use of reporter gene assays in which a luminescent protein (e.g. firefly luciferase or green fluorescent protein) is under the transcriptional control of a promoter responsive to the stimulation of protein kinase 25 C by the activated receptor (Milligan, G. et al. (1996) Trends Pharmacol. Sci. 17:235-237). Assay technologies are available for both of these second messenger systems to allow high throughput readout in multi-well plate format, such as the adenylyl cyclase activation FlashPlate Assay (NEN Life Sciences Products), or fluorescent Ca²⁺ indicators such as Fluo-4 AM (Molecular Probes) in combination with the FLIPR fluorimetric plate reading system (Molecular Devices). In cases where the physiologically 30 relevant second messenger pathway is not known, GCREC may be coexpressed with the G-proteins G_{α15/16} which have been demonstrated to couple to a wide range of G-proteins (Offermanns, S. and M.I. Simon (1995) J. Biol. Chem. 270:15175-15180), in order to funnel the signal transduction of the GCREC through a pathway involving phospholipase C and Ca²⁺ mobilization. Alternatively, GCREC may be expressed in engineered yeast systems which lack endogenous GPCRs, thus providing the 35 advantage of a null background for GCREC activation screening. These yeast systems substitute a

human GPCR and Ga protein for the corresponding components of the endogenous yeast pheromone receptor pathway. Downstream signaling pathways are also modified so that the normal yeast response to the signal is converted to positive growth on selective media or to reporter gene expression (Broach, J.R. and J. Thorner (1996) Nature 384 (supp.):14-16). The receptors are screened against putative ligands including known GPCR ligands and other naturally occurring bioactive molecules. Biological extracts from tissues, biological fluids and cell supernatants are also screened.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.

- 10 Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
104941	1	104941CD1	40	104941CB1
1499408	2	1499408CD1	41	1499408CB1
3168839	3	3168839CD1	42	3168839CB1
3291235	4	3291235CD1	43	3291235CB1
7472001	5	7472001CD1	44	7472001CB1
7472003	6	7472003CD1	45	7472003CB1
7472004	7	7472004CD1	46	7472004CB1
7475687	8	7475687CP1	47	7475687CT1
7483029	9	7483029CP1	48	7483029CT1
7477933	10	7477933CP1	49	7477933CT1
7475164	11	7475164CP1	50	7475164CT1
7473909	12	7473909CP1	51	7473909CT1
7475252	13	7475252CP1	52	7475252CT1
7927572	14	7927572CP1	53	7927572CT1
7481257	15	7481257CP1	54	7481257CT1
7485790	16	7485790CP1	55	7485790CT1
7482993	17	7482993CP1	56	7482993CT1
28229053	18	28229053CD1	57	28229053CB1
3068234	19	3068234CD1	58	3068234CB1
5029478	20	5029478CD1	59	5029478CB1
5102576	21	5102576CD1	60	5102576CB1
2200534	22	2200534CD1	61	2200534CB1
3275821	23	3275821CD1	62	3275821CB1
3744167	24	3744167CD1	63	3744167CB1
7472007	25	7472007CD1	64	7472007CB1
7472008	26	7472008CD1	65	7472008CB1
7472013	27	7472013CD1	66	7472013CB1
7472015	28	7472015CD1	67	7472015CB1
7472016	29	7472016CD1	68	7472016CB1

Table 1 (cont.)

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
7472017	30	7472017CD1	69	7472017CB1
7472018	31	7472018CD1	70	7472018CB1
7472019	32	7472019CD1	71	7472019CB1
7472021	33	7472021CD1	72	7472021CB1
7472009	34	7472009CD1	73	7472009CB1
7472010	35	7472010CD1	74	7472010CB1
7472011	36	7472011CD1	75	7472011CB1
7472012	37	7472012CD1	76	7472012CB1
7472014	38	7472014CD1	77	7472014CB1
7472020	39	7472020CD1	78	7472020CB1

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability Score	GenBank Homolog
1	104941CD1	g7211316	6.9E-146	Olfactory receptor [Callithrix jacchus]
2	1499408CD1	g202806	5.20E-162	Vasopressin receptor [Rattus norvegicus]
3	3168839CD1	g3618229	2.2E-44	G protein-linked P2Y4 receptor [Rattus norvegicus]
4	3291235CD1	g32887369	1.40E-126	A-2 [Mus musculus]
5	7472001CD1	g1256393	2.20E-122	Taste bud receptor protein TB 641 [Rattus norvegicus]
6	7472003CD1	g4378765	1.20E-169	Orphan G protein-coupled receptor GPR54 [Rattus norvegicus]
7	7472004CD1	g1698952	6.30E-118	High-affinity lysophosphatidic acid receptor [Xenopus laevis]
8	7475687CP1	g1256393	4.70E-90	Taste bud receptor protein TB 641 [Rattus norvegicus]
9	7483029CP1	g2447219	2.50E-75	OLF4 [Homo sapiens]
10	7477933CP1	g2792016	4.90E-79	Olfactory receptor [Homo sapiens]
11	7475164CP1	g517366	3.00E-111	Olfactory receptor [Rattus norvegicus]
12	7473909CP1	g4680264	1.90E-22	Odorant receptor S25 [Mus musculus]
13	7475252CP1	g2447219	6.50E-61	OLF4 [Homo sapiens]
14	7927572CP1	g8100089	6.7E-54	Putative taste receptor HTR2 [Homo sapiens]
15	7481257CP1	g4826521	4.00E-29	dJ88J8.1 (novel 7 transmembrane receptor (rhodopsin family) (olfactory receptor like protein (hs6M1-15)) [Homo sapiens]
16	7485790CP1	g2447219	3.00E-40	OLF4 [Homo sapiens]
17	7482993CP1	g1314665	3.10E-54	CfOLF3 [Canis familiaris]
18	2829053CD1			
19	3068234CD1	g5922725	3.1E-190	Lysophosphatidic acid G protein-coupled receptor [Homo sapiens]
20	5029478CD1	g1049072	3.6E-21	Galanin receptor GALR1 [Rattus norvegicus] (Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Brain Res. Mol. Brain Res. 1995 Dec 28;34(2):179-189.)

Table 2 (cont.)

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability Score	GenBank Homolog
21	5102576CD1	g2792016	2.4E-92	Olfactory receptor [Homo sapiens] (Molecular cloning and chromosomal mapping of olfactory receptor genes expressed in the male germ line: evidence for their wide distribution in the human genome. Biochem. Biophys. Res. Commun. 1997 Aug 18; 237(2):283-287.)
22	2200534CD1	g5051404	4.6e-131	573K1.15 (nm17M1-6) 7-transmembrane olfactory receptor-like protein (rhodopsin family) [Mus musculus]
23	3275821CD1	g182742	1.5e-29	Formyl peptide receptor [Homo sapiens] (Murphy, P.M. et al. (1992) J. Biol. Chem. 267:7637-7643)
24	3744167CD1	g9186902	1.2E-240	Leukotriene B4 receptor, BLT2 [Mus musculus]
25	7472007CD1	g7638409	1.3E-199	Olfactory receptor P2 [Mus musculus]
26	7472008CD1	g42218182	1.0e-89	dJ271M21.2 (hs6M1-12 (7 transmembrane receptor (rhodopsin family) (olfactory receptor like) protein)) [Homo sapiens]
27	7472013CD1	g205846	2.5e-70	Olfactory protein [Rattus norvegicus]
28	7472015CD1	g1204095	2.5e-25	Dopamine receptor [Fugu rubripes]
29	7472016CD1	g6090796	1.1E-215	Olfactory receptor [Gorilla gorilla]
30	7472017CD1	g3757727	2.0e-61	dJ80I19.7 (olfactory receptor-like protein (hs6M1-3)) [Homo sapiens]
31	7472018CD1	g6644328	2.3E-112	Orphan G protein-coupled receptor GPR26 [Rattus norvegicus]
32	7472019CD1	g5869916	2.7e-73	Olfactory receptor [Mus musculus]
33	7472021CD1	g6090804	2.6E-94	Olfactory receptor [Gorilla gorilla]
34	7472009CD1	g1016362	1.6e-68	OL1 receptor [Rattus norvegicus]
35	7472010CD1	g2317704	7.3e-80	Olfactory receptor [Rattus norvegicus]
36	7472011CD1	g6178008	4.9E-114	Odorant receptor MOR18 [Mus musculus]
37	7472012CD1	g205816	6.8e-84	Olfactory protein [Rattus norvegicus]
38	7472014CD1	g205816	3.9e-88	Olfactory protein [Rattus norvegicus]
39	7472020CD1	g2792016	1.9e-97	Olfactory receptor [Homo sapiens]

Table 3

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
1	104941CD1	311	S68 S189 S292 Y310	N5 N66	7 transmembrane receptor (rhodopsin family): G42-Y291 GPCR signature: K91-P130, I208-Y219, Y283-K299, Y103-S151 Olfactory receptor signature: M60-K81, F178-D192, F239-G254, A275-L286, S292-Q306 Transmembrane domains: I31-I47, P211-I229	MOTIFS HMMER-PPFAM BLIMPS- BLOCKS- BLIMPS- PRINTS ProfileScan HMMER
2	1499408CD1	891	T148 S686 S114 S248 S350 S481 S501 T628 T814 S856 T84 S140 T144 T325 T411 T543 S568 S676 T706 T788 Y372	N378	ATP/GTP binding site (P-loop): G202-T209	MOTIFS
3	3168839CD1	422	T232 S178 T342 S363 S371 S397 T21 S211 S226 T307 S332 S367	N4 N9 N251 N323	7 transmembrane receptor (rhodopsin family): L39-Y297 Rhodopsin-like GPCR superfamily: L24-L48, V57-R78, F101-I123, V137-R158, V192-F215, T232-V256, L279-R305 Transmembrane domains: V275-L295	MOTIFS HMMER-PPFAM BLIMPS- BLOCKS- ProfileScan BLIMPS- PRINTS HMMER
4	3291235CD1	609	S228 S229 S396 S456 S324 S328 S364 S417 S466 T506 S568 S590 S153 S268 T392 S462 S482 S560 Y348		7 transmembrane receptor (rhodopsin family): E80-E154 GPCR signatures: F76-P115, F395-A405,, A442-E458, E509-P526 Transmembrane domain: V174-L199	MOTIFS HMMER-PPFAM BLIMPS- BLOCKS- BLIMPS- PRINTS HMMER

Table 3 (cont.)

SEQ NO.	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
5	7472001CD1	313	S68 T194 T200 S267 T309 T138 T164 T290 S306	N5 N85	7 transmembrane receptor (rhodopsin family): G41-I259 GPCR signature: K91-P130, T281-K297, Y103-A147 Olfactory receptor signature: M60-R81, F178-D192, F239-V254, A273-L284, T290-L304 Signal peptide: M1-T38	MOTIFS HMMER-PPFAM BLIMPS-BLOCKS BLIMPS-PRINTS ProfileScan
6	7472003CD1	398	S36 T155	N10 N18 N28	7 transmembrane receptor (rhodopsin family): G59-Y323 GPCR signature: W108-P147, Y213-Y224, A256-F282, N315-R331, N119-I166 Neuropeptide Y receptor signature: R69-I81, L321-F334	MOTIFS HMMER-PPFAM BLIMPS-BLOCKS BLIMPS-PRINTS ProfileScan
7	7472004CD1	369	S228 T94 T218 S339 T350	N12	Transmembrane domain: A42-Y65 7 transmembrane receptor (rhodopsin family): G48-Y321 Rhodopsin-like GPCR signature: T33-Y57, I66-F87, F111-I133, R144-V165, V193-L216, A262-V286, S303-H329	HMMER MOTIFS HMMER-PPFAM BLIMPS-BLOCKS BLIMPS-PRINTS ProfileScan
8	7475687CP1	194	T186 T76 T82 T46 T172		Transmembrane domains: T33-V51, M109-I125, Y189-M213, M256-V275 7 transmembrane receptor (rhodopsin family): M1-Y171 Opsins retinal binding site: Y142-N194 Olfactory receptor signature: F60-D74, F121-V136, A155-L166, T172-T186	HMMER MOTIFS HMMER-PPFAM BLIMPS-BLOCKS BLIMPS-PRINTS ProfileScan

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
9	7483029CP1	173	T16 S34 T60	N32 N167	7 transmembrane receptor (rhodopsin family): G8-C146 Rhodopsin-like GPCR signature: M26-K47, F71-I93, L107-I128	MOTIFS HMMER -PFAM -BLIMPS -BLOCKS ProfileScan -BLIMPS -PRINTS
10	7477933CP1	220	S172		Signal peptide: M1-L22 Transmembrane domains: M68-A86, M103-L121	SPScan HMMER
11	7475164CP1	302	T296 S58 S84 T107 T257 T9 T69 S128 T151 S282		7 transmembrane receptor (rhodopsin family): G32-I193 GPCR signature: N81-P120, I273-K289, S93-L142 Olfactory receptor signature: V50-K71, Y168-S182, F229-G244, S265-L276, S282-T296	MOTIFS HMMER -PFAM -BLIMPS -BLOCKS ProfileScan -BLIMPS -PRINTS
12	7473909CP1	110	S70 S36 T66 S94		Transmembrane domains: F19-L39, I188-I207	HMMER
					GPCR signature: I85-K101 Olfactory receptor signature: F41-G56, A77-L88, S94-Y108	MOTIFS -BLIMPS -BLOCKS -BLIMPS -PRINTS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
13	7475252CP1	178	S66 S151 S136	N4 N64	7 transmembrane receptor (rhodopsin family): G40-L153 Rhodopsin-like GPCR signature: V25-S49, M58-K79, L103-I125, S102-S151	MOTIFS HMMER-PPFAM BLIMPS-BLOCKS ProfileScan BLIMPS-PRINTS
14	7927572CP1	92			Transmembrane domains: L29-J45, M100-M117	HMMER
15	7481257CP1	97			Olfactory receptor signature: F25-D39	MOTIFS BLIMPS-PRINTS
16	7485790CP1	133	S74		7 transmembrane receptor (rhodopsin family): M1-Y96 GPCR signature: V13-Y24, Q41-Q67 Olfactory receptor signature: F44-G59, L80-L91 Signal peptide: M1-G27	MOTIFS HMMER-PPFAM BLIMPS-BLOCKS BLIMPS-PRINTS
17	7482993CP1	213	S85 S205 S159 T183	N83	Transmembrane domain: M82-Y24 HMMER Transmembrane domain: R22-V128 HMMER Transmembrane domain: G71-P110 HMMER	MOTIFS HMMER-PPFAM BLIMPS-BLOCKS ProfileScan BLIMPS-PRINTS
					Transmembrane domain: M82-A100 HMMER Transmembrane receptor (rhodopsin family): S2-Y182 GPCR signature: R127-R153, S2-A38 Olfactory receptor signature: F69-N83, F130-G145, V166-L177, T183-G197 Transmembrane domains: P102-I120, F130-V152	HMMER

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
18	2829053CD1	180	S30 S41 S109 S125 S140 S35 S36 S149		Beta-1 adrenergic receptor signature: I148-S166	MOTIFS BLIMPS- PRINTS
19	3068234CD1	353	T146 T217 T233 S321 S17 T21 S294 S329 T141 S229 T303 Y14	N15 N139 N172 N349	Signal Peptide: M1-S67 7 transmembrane receptor (rhodopsin family): S47-Y293 Rhodopsin-like GPCR superfamily signature: I32-I56, F65-L86, L109-I131, R144-L165, Y187-Y210, L237-L261, K275-Y301	SPScan MOTIFS HMMER-PPFAM BLIMPS- BLOCKS BLIMPS- PRINTS
20	5029478CD1	361	T242 S256 S237 S350	N21 N322	7 transmembrane receptor (rhodopsin family): G57-Y321 Rhodopsin-like GPCR superfamily signature: V42-A66, T74-V95, M118-I140, A154-V175, D208-L231, L262-L286, F303-E329	HMMER MOTIFS HMMER-PPFAM BLIMPS- BLOCKS BLIMPS- PRINTS
21	5102576CD1	251	S119 S196		Transmembrane domains: T45-V65, V124-Q144, V209-I233, L266-N291	HMMER
					7 transmembrane receptor (rhodopsin family): R8-C251 GPCR signature: R57-P96 Olfactory receptor signature: M26-K47, L144-D158, A241-C252	MOTIFS HMMER-PPFAM BLIMPS- BLOCKS BLIMPS- PRINTS
					Transmembrane domains: T66-D88, V109-T134	HMMER

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites		Signature Sequences, Domains and Motifs	Analytical Methods and Databases
22	2200534CD1	315	S6 S136 T291	N4 N154		G-protein coupled receptor: DM00013 (P232750) 17-306: S17-L305 DM00013 (A570690) 15-304: F16-L305 DM00013 (P47881) 20-309: P20-L305 PD149621: T246-L305 PD000921: C168-L245 PD002495: N4-L47 BL00237: L89-P128, L207-Y218, T282-K298	HMMER - BLIMPS - PRINTS - BLIMPS - BLOCKS - HMMER - PFAM MOTIFS
						Olfactory receptor PR00245: M58-P79, F176-G190, V238-G253, V274-L285, T291-L305	
						G-protein coupled receptors	BLAST-PRODOM BLAST-DOMO
						Transmembrane domains: V204-M228, G40-Y290	HMMER
23	3275821CD1	470	T3 T18 T326 T332 T340 S350 S424 S451 T459 S192	N47		G-protein coupled receptor: DM00013 (P21462) 20-317: V34-L306 PD00009: L68-F169 BL00237: W97-P136, G201-H212, A230-A256, N287-R303 GPCR profile: F109-V155 Rhodopsin GPCR family PR00237: W31-G55, L66-Q87, W111-A133, L147-V168, L193-Q216, F235-L259, L277-R303	HMMER - PFAM - BLIMPS - BLOCKS - BLIMPS - PRINTS - ProfileScan MOTIFS
						G-protein coupled receptors	BLAST-PRODOM BLAST-DOMO
						Transmembrane domains: T33-A51, L68-L259	HMMER

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
24	3744167CD1	358	T291 S15 T18 S215	N10 N38 N342	G-protein coupled receptor: DM00013 (P46092) 27-318: S19-F290 DM00013 (P31391) 41-326: L29-L304 DM00013 (P35414) 22-324: W16-F290 BL00237: W87-P126, F190-Y201, R217-V243, S280-L296 GPCR profile: Y99-V145	HMMER-BPAM BLIMPS-BLOCKS BLIMPS-PRINTS ProfileScan MOTIFS

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
25	7472007CD1	314	S270 S291 S311 T49 S67 S193	N4 N65	Signal peptide: M1-Q56 Transmembrane domains: L29-V48, L208-M228	SPScan HMMER
					7 transmembrane receptor (rhodopsin family) signature: G41-Y290	HMMER -PFAM
					G-protein coupled receptor signatures: T90-P129, I207-Y218, T282-R298	BLIMPS-BLOCKS
					G-protein coupled receptor signature: Y102-A147	ProfileScan
					G-protein coupled receptor signature: A110-A125	MOTIFS
					Olfactory receptor signatures: M59-K80, F177-D191, F238-S253, I274-L285, S291-I305	BLIMPS-PRINTS
					Melanocortin receptor family: A5-L63	BLIMPS-PRINTS
					Rhodopsin-like GPCR superfamily: L26-I50, M59-K80, F104-I126, F153-V174, A199-L222, A237-R261, K272-K298	BLIMPS-PRINTS
					G-protein coupled receptor: DM00013 P23270 18-311: L23-H306	BLAST-DOMO
					G-protein coupled receptor: DM00013 P23267 20-309: L27-1305	BLAST-DOMO
					G-protein coupled receptor: DM00013 P23275 17-306: L23-I305	BLAST-DOMO
					G-protein coupled receptor: DM00013 P30953 18-306: L19-H306	BLAST-DOMO
					Olfactory receptor PD000921: F168-L246	BLAST-PRODOM
					Olfactory receptor PD149621: V247-R307	BLAST-PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
26	7472008CD1	365	S78 T192 S199 T320 S343 S47 S66 S78 S96 S217 T222 T337 T361	N94	Transmembrane domain: I226-L244 7 transmembrane receptor (rhodopsin family) signature: G70-Y319	HMMER HMMER-PFAM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
27	7472013CD1	S117	S68 S193	N6 N22 N43	Signal peptide: M1-G42 Transmembrane domain: I23-L41 7 transmembrane receptor (rhodopsin family) signatures: G42-L155, A279-Y295 G-protein coupled receptor signatures: P91-P130, M212-Y223, T287-K303 G-protein coupled receptor signature: F103-L148 G-protein coupled receptor signature: T111-A126 Olfactory receptor signatures: M60-Q81, F182-D196, V243-G258, A279-A290, S296-L310 Melanocortin receptor family: W52-L64 Rhodopsin-like GPCR signatures: L27-S51, M60-Q81, F105-I127, R141-G162, I204-G227, A242-Q266, M277-K303 GPR3 orphan receptor signature: V161-N178 G-protein coupled receptor: DM00013 P23274 18-306: L27-L310 G-protein coupled receptor: DM00013 P23272 18-306: Y25-L310 G-protein coupled receptor: DM00013 P30953 18-306: L27-L310 G-protein coupled receptor: DM00013 P30955 18-305: L27-L310 Olfactory receptor PD000921: G174-L250 Olfactory receptor PD149621: T251-L310	SPScan HHMER HHMER-PPFAM BLIMPS-BLOCKS ProfileScan MOTIFS BLIMPS-PRINTS BLIMPS-PRINTS BLIMPS-PRINTS BLAST-DOMO BLAST-DOMO BLAST-DOMO BLAST-DOMO BLAST-PRODOM BLAST-PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
28	7472015CD1	335	T73 S79 S214 S309 T217 S329 S331		<p>Signal peptide: M1-A20 Signal peptide: M1-A20</p> <p>Transmembrane domains: F5-V27, I45-T63, M117-I136</p> <p>7 transmembrane receptor (rhodopsin family) signatures: T21-Y279</p> <p>G-protein coupled receptor signatures: R71-P110, F174-Y185, P218-T244, N271-R287</p> <p>G-protein coupled receptor signature: F84-L129</p> <p>G-protein coupled receptor signature: A91-I106</p> <p>Rhodopsin-like GPCR Superfamily: S6-L30, S40-L61, V85-I107, V121-G142, V166-L189, A223-V247, E261-R287</p> <p>G-protein coupled receptor: DM00013 P41596 137-461: G8-D220</p> <p>G-protein coupled receptor: DM00013 P47800 29-338: G8-Y281</p> <p>G-protein coupled receptor: DM00013 P31388 20-336: G8-P218</p> <p>G-protein coupled receptor: DM00013 JN0591 20-336: G8-P218</p>	<p>HMMER</p> <p>SPSScan</p> <p>HMMER</p> <p>HMMER-PFAM</p> <p>BLIMPS-BLOCKS</p> <p>ProfileScan</p> <p>MOTIFS</p> <p>BLIMPS-PRINTS</p> <p>BLAST-DOMO</p> <p>BLAST-DOMO</p> <p>BLAST-DOMO</p>

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
29	7472016CD1	309	S8 S67 S188 S266 S137 S229 S266 S289	N5 N65 N264	Signal peptide: M1-L55 Transmembrane domains: Y28-A48, M199-I218 7 transmembrane receptor (rhodopsin family) signatures: G41-Y288	SPScan HMMER

G-protein coupled receptor BLIMPS-BLOCKS signatures:
K90-P129, F206-Y217, L234-R260,
T280-K296

G-protein coupled receptor ProfileScan signature:
Y102-A146

Olfactory receptor signatures:
M59-K80, F177-D191, F237-G252,
I272-L283, S289-F303

Rhodopsin-like GPCR superfamily:
F26-C50, M59-K80, M104-I126
S140-L161, M198-F219, A270-K296

G-protein coupled receptor:
DM00013 P23266|17-306: Q20-L302

G-protein coupled receptor:
DM00013 P23274|18-306: E22-L299

G-protein coupled receptor:
DM00013 P23269|15-304: Q21-L299

G-protein coupled receptor:
DM00013 P30955|18-305: E22-L302

Olfactory receptor PD149621:
T245-S309

Olfactory receptor PD000921:
L166-L244

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
30	7472017CD1	236	S7 T217	N5 N189	<p>Signal peptide: M1-G42</p> <p>Transmembrane domains: C31-M52, V123-L141</p> <p>7 transmembrane receptor (rhodopsin family) signatures: F12-Y216</p> <p>G-protein coupled receptor signatures: R24-P63, L133-Y144, C161-Q187, T208-K224</p> <p>G-protein coupled receptor signature: Y36-V81</p> <p>G-protein coupled receptor signature: T44-A59</p> <p>Olfactory receptor signatures: L164-G179, T200-L211, T217-N231</p> <p>Rhodopsin-like GPCR superfamily: S38-V60, L125-A148, G163-Q187, K198-K224</p> <p>Olfactory receptor PD149621: V173-T236</p> <p>Olfactory receptor PD000921: C103-Y172</p> <p>G-protein coupled receptor: DM00013 P23269 15-304: L15-L227</p> <p>G-protein coupled receptor: DM00013 P30953 18-306: L15-L227</p> <p>G-protein coupled receptor: DM00013 A57069 15-304: L15-R228</p> <p>G-protein coupled receptor: DM00013 P23275 17-306: M1-L227</p>	<p>SPScan</p> <p>HMMER</p> <p>HMMER - PFAM</p> <p>BLIMPS-BLOCKS</p> <p>ProfileScan</p> <p>MOTIFS</p> <p>BLIMPS-PRINTS</p> <p>BLIMPS-PRINTS</p> <p>BLAST-PRODOM</p> <p>BLAST-PRODOM</p> <p>BLAST-PRODOM</p> <p>BLAST-PRODOM</p> <p>BLAST-PRODOM</p>

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
31	7472018CD1	363	Y294 S321 S325 T353 S157 T210 S223 T240 T316 T340	N47 N348 N355	Signal peptide: M1-A24 Signal peptide: M1-A24 7 transmembrane receptor (rhodopsin family) signatures: S22-Y294	HMMER SPScan HMMER -PFAM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
32	7472019CD1	308	S162 S290 S67 T187 S192 S265	N5 N65	Transmembrane domains : L30-I49, M197-L215 7 transmembrane receptor (rhodopsin family) signatures : G41-Y289	HHMER HHMER-PFAM

G-protein coupled receptor signatures: p90-P129, L206-Y217, L234-K260, T281-K297	G-protein coupled receptor signature: S102-T147	Olfactory receptor signatures: I59-Q80, F176-D190, F237-G252, I273-L284, S290-M304	Melanocortin receptor family: F51-L63	Rhodopsin-like GPCR superfamily: T26-H50, I59-Q80, S104-I126, V140-L161, I198-A221, K271-K297	G-protein coupled receptor: DM00013 P23275 17-306: I17-M304	G-protein coupled receptor: DM00013 P23269 15-304: F27-M304
					G-protein coupled receptor: DM00013 P23266 17-306: I17-M304	G-protein coupled receptor: DM00013 S29707 18-306: P21-T300
					Olfactory receptor PD000921: L165-L244	BLAST-PRODOM
					Olfactory receptor PD149621: T245-M304	BLAST-PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
33	7472021CD1	343	S87 T154 S288 S326 S311 S316	N25 N183 N314	Transmembrane domains: Y55-L75, I1214-I1234 7 transmembrane receptor (rhodopsin family) signatures: G61-Y310	HMMER -PFAM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
34	7472009CD1	323	S87 S232 T290 S8 S67 T193	N5	Transmembrane domains: L30-L47, I201-L221 7 transmembrane receptor (rhodopsin family) signatures: G41-Y289	HHMER HHMER-PPFAM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
35	7472010CD1	299	T68 S126 S280 T293 S10 S57 T156	N55	Transmembrane domain: L186-I205 7 transmembrane receptor (rhodopsin family) signatures: G31-Y279	HMMER - PFAM
					G-protein coupled receptor signatures: S79-P118, F188-S199, S224-T250, V271-K287	BLIMPS - BLOCKS
					G-protein coupled receptor signature: F91-F135	ProfileScan
					G-protein coupled receptor signature: S99-A114	MOTIFS
					Olfactory receptor signatures: M49-K70, Y166-S180, F227-G242, A263-L274, S280-L294	BLIMPS - PRINTS
					Melanocortin receptor family: I41-L53	BLIMPS - PRINTS
					Rhodopsin-like GPCR superfamily: Q16-G40, M49-K70, F93-I115, T181-V204, A226-T250, R261-K287	BLIMPS - PRINTS
					G-protein coupled receptor: DM00013 S29709 11-299; G23-L294	BLAST - DOMO
					G-protein coupled receptor: DM00013 S51356 18-307; I24-K292	BLAST - DOMO
					G-protein coupled receptor: DM00013 P23274 18-306; I24-L294	BLAST - DOMO
					G-protein coupled receptor: DM00013 P30955 18-305; I24-L294	BLAST - DOMO
					Olfactory receptor PD149621: V237-R296	BLAST - PRODOM
					Olfactory receptor PD000921: L155-I235	BLAST - PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
36	7472011CD1	307	S87 T288 S193	N5	Transmembrane domains: L23-T43, M98-M118, G204-H228	HMMER
					7 transmembrane receptor (rhodopsin family) signatures: G41-Y287	HMMER-PPFAM
					G-protein coupled receptor signatures: K90-P129, R234-R260, T279-Q295	BLIMPS-BLOCKS
					G-protein coupled receptor signature: F102-T148	ProfileScan
					Olfactory receptor signatures: M59-K80, F177-D191, A237-V252, V271-L282, T288-G302	BLIMPS-PRINTS
					Melanocortin receptor family: S51-L63	BLIMPS-PRINTS
					Rhodopsin-like GPCR superfamily: F26-T50, M59-K80, F104-I126, L140-A161, K199-L222, A236-R260, K269-Q295	BLIMPS-PRINTS
					Olfactory receptor PDD000921: L166-I245	BLAST-PRODOM
					Olfactory receptor PD149621: V246-R303	BLAST-PRODOM
					G-protein coupled receptor: DM00013 S29710 15-301: L17-L301	BLAST-PRODOM
					G-protein coupled receptor: DM00013 P23275 17-306: L17-L301	BLAST-PRODOM
					G-protein coupled receptor: DM00013 P23266 17-306: L17-L301	BLAST-PRODOM
					G-protein coupled receptor: DM00013 P47881 20-309: L23-L301	BLAST-PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
37	7472012CD1	T314	T19 S230 S291	N5 N38	7 transmembrane receptor (rhodopsin family) signatures: G41-Y290	HMMER-PPFAM

G-protein coupled receptor signatures: K90-P129, T282-K298	BLIMPS-BLOCKS
G-protein coupled receptor signature: Y102-M147	ProfileScan
G-protein coupled receptor signature: M110-A125	MOTIFS
Olfactory receptor signatures: M59-K80, F177-S191, F238-G253, T274-I285, S291-M305	BLIMPS-PRINTS
Rhodopsin-like GPCR superfamily: P26-L50, M59-K80, F104-I126, I199-I222, T237-R261, R272-K298	BLIMPS-PRINTS
G-protein coupled receptor: DM00013 P23266 17-306: I17-K303	BLAST-DOMO
G-protein coupled receptor: DM00013 P23274 18-306: E22-K303	BLAST-DOMO
G-protein coupled receptor: DM00013 S29707 18-306: P21-G299	BLAST-DOMO
G-protein coupled receptor: DM00013 P30955 18-305: P21-K303	BLAST-DOMO
Olfactory receptor PDI49621: T246-T310	BLAST-PRODOM
Olfactory receptor PDD000921: L166-L245	BLAST-PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
38	7472014CD1	310	S19 S67 S93 T267 S18 S137 S290	N5 N265	Transmembrane domains: V30-I46, M59-I78 7 transmembrane receptor (rhodopsin family) signatures: G41-Y289	HMMER HMMER -PFAM

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
39	7472020CD1	359	S257 S317 S178 S255	N31	Transmembrane domains: M127-A145, V168-T193 7 transmembrane receptor (rhodopsin family) signatures: R67-Y316	HMMER -PFAM

Table 4

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragments	Sequence Fragments	5' Position	3' Position
40	104941CB1	936		94190944.v113.gs_10.edit 104941H1 (BMANNOT02)	1 208	936 429
41	1499408CB1	3365		92335202.v113.gs_4.edit 1499408H1 (SINTNTBST01) 927003X11 (BRAINNOT04) 1632960F6 (COLNNNOT19) 4051362F6 (SINTNTNOT18) 1426416F6 (SINTNTBST01) 2925035F6 (SINTNINOT04) 927003T6 (BRAINNOT04) 335616H1 (PROSTUT16)	1 1068 1092 1613 1994 2223 2535 2710	2105 1325 1764 2099 2619 2686 3043 3365
42	3168839CB1	1325		94589937.v113.gs_7.edit 3700658H1 (SINTNINOT05) 3168839H1 (BRSTINOT18) 4555080H1 (KERAUNTO1)	42 160 809 1084	1188 463 1059 1325
43	3291235CB1	2124		3291235X308F1 (BONRFET01) 95578925.v113.gs_2.edit 4720927F6 (BRAIHCT02) 3291235F6 (BONRFET01) 3370971H1 (CONNNTUT05) 1729983H1 (BRSTTUT08)	1 295 315 408 955 1073	281 463 810 1004 413 1293
44	7472001CB1	942		92121229.v113.gs_4.edit 93386590.v113.gs_1.edit	1 1	942 1197
45	7472003CB1	1197		94741473.v113.gs_5.edit	1	1110
46	7472004CB1	1110		92121229.v113.gs4_1.nt.edit	1	582
47	7475687CT1	582		92447218.v113.gs2_nt.edit	1	519
48	7483029CT1	519		92673897.v113.gs7_nt.edit	1	663
49	7477933CT1	663		93738097.v113.gs2_nt.edit	1	911
50	7475164CT1	911		93962498.v113.gs3_nt.edit	1	332
51	7473909CT1	332		94092817.v113.gs1_nt.edit	1	538
52	7475252CT1	538		95102597.v113.gs2_nt.edit	1	279
53	7927572CT1	279		95262456.v113.gs4_nt.edit	1	291
54	7481257CT1	291		95306302.v113.gs6_nt.edit	1	402
55	7485790CT1	402		95708153.v113.gs9_nt.edit	1	639
56	7482993CT1	639				

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragments	Sequence Fragments	5' Position	3' Position
57	2829053CB1	1370		170756F1 (BMARNOR02) 2829053F6 (TLYMNNOT03) 6098294H1 (UTRENNOT09) 5279076H1 (MUSLNNOT01) 4588915H1 (MASTTXT01)	1 428 849 1071 1132	534 989 1143 1308 1370
58	3068234CB1	1567		70489898V1 70488597V1 5837294H1 (FTUBTUT01)	1 353 730	459 883 983
59	5029478CB1	1321		70490272V1 6035153H1 (PITUNNOT06) 6558521H1 (BRAFNNON02) 5076961F6 (COLCTUT03) 5496406H1 (BRABDIRO1) 1720010F6 (BLADNOT06) 6969401U1	1 504 742 1 151 602	1567 1190 1321 250 708 710
60	5102576CB1	1110		5102576F6 (PROSTUS20) 92905881.v113.gs_2 2200534F6 (SPLNFET02) 576308R6 (BRAVITXT04)	673 1 534 490	1110 948 1095 1051
61	2200534CB1	1095	1037-1095, 372-491	3275821F6 (PROSBPT06) 93779013.v113.gs_9	1 265	548 1665
62	3275821CB1	1665	1431-1665, 765-1294, 240-597	2762536H1 (BRSTNOT12) 95578767.v113.gs_4 3744167H1 (THYMNNOT08) 9835247	745 262 1212 1 1	994 1338 977 1609
63	3744167CB1	1609	1184-1238, 249-522	3474586H1 (LUNGNOT27) 92431610.v113.gs_4.nt q3093312.v113.gs_10.nt g4190944.v113.gs_3.nt g4467309.v113.gs_2.nt	309 1 1 1 1	945 1098 954 1008 930
64	7472007CB1	945		g4567182.v113.gs_19.nt g5262456.v113.gs_7.nt g5523795.v113.gs_12.nt	1 1 1	711 1092
65	7472008CB1	1098				
66	7472013CB1	954				
67	7472015CB1	1008				
68	7472016CB1	930				
69	7472017CB1	711				
70	7472018CB1	1092				

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragments	Sequence Fragments	5' Position	3' Position
71	7472019CB1	927		q5566548.v113.gs 7.nt	1	927
72	7472021CB1	1032		q5708153.v113.gs 6.nt	1	1032
73	7472009CB1	972		q3213020.v113.gs 4.nt	1	972
74	7472010CB1	900		q3738097.v113.gs 9.nt	1	900
75	7472011CB1	924		q3924656.v113.gs 5.nt	1	924
76	7472012CB1	945		q4190944.v113.gs 1.nt	1	945
77	7472014CB1	933		q4190944.v113.gs 4.nt	1	933
78	7472020CB1	1080		q5706779.v113.gs 3.nt	1	1080

Table 5

Polynucleotide SEQ ID NO:	Incyte Project ID	Representative Library
61	2200534CB1	BRAVITXR04
62	3275821CB1	PROSBPT06
63	3744167CB1	LUNGNOT27

Table 6

Library	Vector	Library Description
BRAVITXT04	PSPORT1	Library was constructed using RNA isolated from separate populations of human astrocytes stimulated for 4 to 6 hours with a combination of cytokines including IL-1. The RNA was pooled for polyA RNA isolation and library construction.
LUNGNOT27	PINCY	Library was constructed using RNA isolated from lung tissue removed from a 17-year-old Hispanic female.
PROSBPT06	PINCY	Library was constructed using RNA isolated from diseased prostate tissue removed from a 66-year-old Caucasian male during a radical prostatectomy and lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated grade 2 (of 4) adenocarcinoma, Gleason grade 3+3. The patient presented with elevated prostate specific antigen (PSA), proteinuria, decreased renal function, and urinary frequency. Patient history included hemiparesis, depressive disorder, sleep apnea, psoriasis, mitral valve prolapse, cerebrovascular disease, benign hypertension, and impotence. Family history included benign hypertension, cerebrovascular disease, and colon cancer.

Table 7

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	<i>ESTs</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, tfastx, and search.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>ESTs</i> : fasta E value=1.06E-6 <i>Assembled ESTs</i> : fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less <i>Full Length sequences</i> : fastx score=100 or greater
BLIMPS	A BLOCKs IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonhammer, E.L.L. et al. (1998) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.	<i>PFAM hits</i> : Probability value= 1.0E-3 or less <i>Signal peptide hits</i> : Score= 0 or greater

Table 7 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score > GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phil's Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Int'l. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 - 5 a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-39,
 - b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-39,
 - c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39, and
 - 10 d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-39.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-39.
- 15 3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
- 20 5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:40-78.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
- 25 7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 30 9. A method for producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 - 35 b) recovering the polypeptide so expressed.

10. An isolated antibody which specifically binds to a polypeptide of claim 1.

11. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- 5 a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78,
- b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:40-78,
- c) a polynucleotide sequence complementary to a),
- d) a polynucleotide sequence complementary to b), and
- 10 e) an RNA equivalent of a)-d).

12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.

15 13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

- a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
- 20 b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.

25

15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- 30 b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

16. A composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

35

17. A composition of claim 16, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-39.

18. A method for treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment the composition of claim 16.

19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

- 10 a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting agonist activity in the sample.

20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.

15 21. A method for treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment a composition of claim 20.

20 22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 b) detecting antagonist activity in the sample.

25 23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.

24. A method for treating a disease or condition associated with overexpression of functional GCREC, comprising administering to a patient in need of such treatment a composition of claim 23.

30 25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:

- a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
 b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a

compound that specifically binds to the polypeptide of claim 1.

26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:

- 5 a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
- b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
- c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in
10 the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method
15 comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
- b) detecting altered expression of the target polynucleotide, and
- c) comparing the expression of the target polynucleotide in the presence of varying amounts of
20 the compound and in the absence of the compound.

28. A method for assessing toxicity of a test compound, said method comprising:

- a) treating a biological sample containing nucleic acids with the test compound;
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at
25 least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof;
- c) quantifying the amount of hybridization complex; and
- 30 d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

1/9

SEQ ID NO:1
(Incyte ID No. 104941CD1)

FIGURE 1

2/9

SEQ ID NO:3
(Incyte ID No. 3168839CD1)

FIGURE 2

3/9

SEQ ID NO:4
(Incyte ID No. 3291235CD1)

FIGURE 3

4/9

SEQ ID NO:5
(Incyte ID No. 7472001CD1)

FIGURE 4

5/9

SEQ ID NO:6
(Incyte ID No. 7472003CD1)

FIGURE 5

6/9

SEQ ID NO:7
(Incyte ID No. 7472004CD1)

FIGURE 6

7/9

SEQ ID NO:19
(Incyte ID No. 3068234CD1)

FIGURE 7

8/9

SEQ ID NO:20
(Incyte ID No. 5029478CD1)

FIGURE 8

9/9

SEQ ID NO:21
(Incyte ID No. 5102576CD1)

FIGURE 9

<110> INCYTE GENOMICS, INC.
BURFORD, Neil
BAUGHN, Mariah R.
AU-YOUNG, Janice
YANG, Junming
LU, Dyung Aina M.
REDDY, Roopa

<120> G-PROTEIN COUPLED RECEPTORS

<130> PI-0001 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/172,852; 60/171,732; 60/176,148; 60/177,331
<151> 1999-12-10; 1999-12-22; 2000-01-14; 2000-01-21

<160> 78

<170> PERL Program

<210> 1

<211> 311

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 104941CD1

<400> 1

Met	Glu	Ile	Lys	Asn	Tyr	Ser	Ser	Ser	Thr	Ser	Gly	Phe	Ile	Leu	1	5	10	15
Leu	Gly	Leu	Ser	Ser	Asn	Pro	Gln	Leu	Gln	Lys	Pro	Leu	Phe	Ala	20	25	30	
Ile	Phe	Leu	Ile	Met	Tyr	Leu	Leu	Ala	Ala	Val	Gly	Asn	Val	Leu	35	40	45	
Ile	Ile	Pro	Ala	Ile	Tyr	Ser	Asp	Pro	Arg	Leu	His	Thr	Pro	Met	50	55	60	
Tyr	Phe	Phe	Leu	Ser	Asn	Leu	Ser	Phe	Met	Asp	Ile	Cys	Phe	Thr	65	70	75	
Thr	Val	Ile	Val	Pro	Lys	Met	Leu	Val	Asn	Phe	Leu	Ser	Glu	Thr	80	85	90	
Lys	Val	Ile	Ser	Tyr	Val	Gly	Cys	Leu	Ala	Gln	Met	Tyr	Phe	Phe	95	100	105	
Met	Ala	Phe	Gly	Asn	Thr	Asp	Ser	Tyr	Leu	Leu	Ala	Ser	Met	Ala	110	115	120	
Ile	Asp	Arg	Leu	Val	Ala	Ile	Cys	Asn	Pro	Leu	His	Tyr	Asp	Val	125	130	135	
Val	Met	Lys	Pro	Arg	His	Cys	Leu	Leu	Met	Leu	Leu	Gly	Ser	Cys	140	145	150	
Ser	Ile	Ser	His	Leu	His	Ser	Leu	Phe	Arg	Val	Leu	Leu	Met	Ser	155	160	165	
Arg	Leu	Ser	Phe	Cys	Ala	Ser	His	Ile	Ile	Lys	His	Phe	Phe	Cys	170	175	180	
Asp	Thr	Gln	Pro	Val	Leu	Lys	Leu	Ser	Cys	Ser	Asp	Thr	Ser	Ser	185	190	195	
Ser	Gln	Met	Val	Val	Met	Thr	Glu	Thr	Leu	Ala	Val	Ile	Val	Thr	200	205	210	
Pro	Phe	Leu	Cys	Ile	Ile	Phe	Ser	Tyr	Leu	Arg	Ile	Met	Val	Thr	215	220	225	
Val	Leu	Arg	Ile	Pro	Ser	Ala	Ala	Gly	Lys	Trp	Lys	Ala	Phe	Ser	230	235	240	
Thr	Cys	Gly	Ser	His	Leu	Thr	Ala	Val	Ala	Leu	Phe	Tyr	Gly	Ser	245	250	255	
Ile	Ile	Tyr	Val	Tyr	Phe	Arg	Pro	Leu	Ser	Met	Tyr	Ser	Val	Val	260	265	270	

Arg	Asp	Arg	Val	Ala	Thr	Val	Met	Tyr	Thr	Val	Val	Thr	Pro	Met
					275				280					285
Leu	Asn	Pro	Phe	Ile	Tyr	Ser	Leu	Arg	Asn	Lys	Asp	Met	Lys	Arg
					290				295					300
Gly	Leu	Lys	Lys	Leu	Gln	Asp	Arg	Ile	Tyr	Arg				
					305				310					

<210> 2
<211> 891
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1499408CD1

<400>	2													
Met	Asp	Gln	Pro	Glu	Ala	Pro	Cys	Ser	Ser	Thr	Gly	Pro	Arg	Leu
1				5					10					15
Ala	Val	Ala	Arg	Glu	Leu	Leu	Leu	Ala	Ala	Leu	Glu	Glu	Leu	Ser
					20				25					30
Gln	Glu	Gln	Leu	Lys	Arg	Phe	Arg	His	Lys	Leu	Arg	Asp	Val	Gly
					35				40					45
Pro	Asp	Gly	Arg	Ser	Ile	Pro	Trp	Gly	Arg	Leu	Glu	Arg	Ala	Asp
					50				55					60
Ala	Val	Asp	Leu	Ala	Glu	Gln	Leu	Ala	Gln	Phe	Tyr	Gly	Pro	Glu
					65				70					75
Pro	Ala	Leu	Glu	Val	Ala	Arg	Lys	Thr	Leu	Lys	Arg	Ala	Asp	Ala
					80				85					90
Arg	Asp	Val	Ala	Ala	Gln	Leu	Gln	Glu	Arg	Arg	Leu	Gln	Arg	Leu
					95				100					105
Gly	Leu	Gly	Ser	Gly	Thr	Leu	Leu	Ser	Val	Ser	Glu	Tyr	Lys	Lys
					110				115					120
Lys	Tyr	Arg	Glu	His	Val	Leu	Gln	Leu	His	Ala	Arg	Val	Lys	Glu
					125				130					135
Arg	Asn	Ala	Arg	Ser	Val	Lys	Ile	Thr	Lys	Arg	Phe	Thr	Lys	Leu
					140				145					150
Leu	Ile	Ala	Pro	Glu	Ser	Ala	Ala	Pro	Glu	Glu	Ala	Leu	Gly	Pro
					155				160					165
Ala	Glu	Glu	Pro	Glu	Pro	Gly	Arg	Ala	Arg	Arg	Ser	Asp	Thr	His
					170				175					180
Thr	Phe	Asn	Arg	Leu	Phe	Arg	Arg	Asp	Glu	Glu	Gly	Arg	Arg	Pro
					185				190					195
Leu	Thr	Val	Val	Leu	Gln	Gly	Pro	Ala	Gly	Ile	Gly	Lys	Thr	Met
					200				205					210
Ala	Ala	Lys	Lys	Ile	Leu	Tyr	Asp	Trp	Ala	Ala	Gly	Lys	Leu	Tyr
					215				220					225
Gln	Gly	Gln	Val	Asp	Phe	Ala	Phe	Phe	Met	Pro	Cys	Gly	Glu	Leu
					230				235					240
Leu	Glu	Arg	Pro	Gly	Thr	Arg	Ser	Leu	Ala	Asp	Leu	Ile	Leu	Asp
					245				250					255
Gln	Cys	Pro	Asp	Arg	Gly	Ala	Pro	Val	Pro	Gln	Met	Leu	Ala	Gln
					260				265					270
Pro	Gln	Arg	Leu	Leu	Phe	Ile	Leu	Asp	Gly	Ala	Asp	Glu	Leu	Pro
					275				280					285
Ala	Leu	Gly	Gly	Pro	Glu	Ala	Ala	Pro	Cys	Thr	Asp	Pro	Phe	Glu
					290				295					300
Ala	Ala	Ser	Gly	Ala	Arg	Val	Leu	Gly	Gly	Leu	Leu	Ser	Lys	Ala
					305				310					315
Leu	Leu	Pro	Thr	Ala	Leu	Leu	Leu	Val	Thr	Thr	Arg	Ala	Ala	Ala
					320				325					330
Pro	Gly	Arg	Leu	Gln	Gly	Arg	Leu	Cys	Ser	Pro	Gln	Cys	Ala	Glu
					335				340					345
Val	Arg	Gly	Phe	Ser	Asp	Lys	Asp	Lys	Lys	Lys	Tyr	Phe	Tyr	Lys
					350				355					360
Phe	Phe	Arg	Asp	Glu	Arg	Arg	Ala	Glu	Arg	Ala	Tyr	Arg	Phe	Val
					365				370					375

Lys	Glu	Asn	Glu	Thr	Leu	Phe	Ala	Leu	Cys	Phe	Val	Pro	Phe	Val
				380					385					390
Cys	Trp	Ile	Val	Cys	Thr	Val	Leu	Arg	Gln	Gln	Leu	Glu	Leu	Gly
				395					400					405
Arg	Asp	Leu	Ser	Arg	Thr	Ser	Lys	Thr	Thr	Thr	Ser	Val	Tyr	Leu
				410					415					420
Leu	Phe	Ile	Thr	Ser	Val	Leu	Ser	Ser	Ala	Pro	Val	Ala	Asp	Gly
				425					430					435
Pro	Arg	Leu	Gln	Gly	Asp	Leu	Arg	Asn	Leu	Cys	Arg	Leu	Ala	Arg
				440					445					450
Glu	Gly	Val	Leu	Gly	Arg	Arg	Ala	Gln	Phe	Ala	Glu	Lys	Glu	Leu
				455					460					465
Glu	Gln	Leu	Glu	Leu	Arg	Gly	Ser	Lys	Val	Gln	Thr	Leu	Phe	Leu
				470					475					480
Ser	Lys	Lys	Glu	Leu	Pro	Gly	Val	Leu	Glu	Thr	Glu	Val	Thr	Tyr
				485					490					495
Gln	Phe	Ile	Asp	Gln	Ser	Phe	Gln	Glu	Phe	Leu	Ala	Ala	Leu	Ser
				500					505					510
Tyr	Leu	Leu	Glu	Asp	Gly	Gly	Val	Pro	Arg	Thr	Ala	Ala	Gly	Gly
				515					520					525
Val	Gly	Thr	Leu	Leu	Arg	Gly	Asp	Ala	Gln	Pro	His	Ser	His	Leu
				530					535					540
Val	Leu	Thr	Thr	Arg	Phe	Leu	Phe	Gly	Leu	Leu	Ser	Ala	Glu	Arg
				545					550					555
Met	Arg	Asp	Ile	Glu	Arg	His	Phe	Gly	Cys	Met	Val	Ser	Glu	Arg
				560					565					570
Val	Lys	Gln	Glu	Ala	Leu	Arg	Trp	Val	Gln	Gly	Gln	Gly	Gln	Gly
				575					580					585
Cys	Pro	Gly	Val	Ala	Pro	Glu	Val	Thr	Glu	Gly	Ala	Lys	Gly	Leu
				590					595					600
Glu	Asp	Thr	Glu	Glu	Pro	Glu	Glu	Glu	Glu	Glu	Gly	Glu	Glu	Pro
				605					610					615
Asn	Tyr	Pro	Leu	Glu	Leu	Leu	Tyr	Cys	Leu	Tyr	Glu	Thr	Gln	Glu
				620					625					630
Asp	Ala	Phe	Val	Arg	Gln	Ala	Leu	Cys	Arg	Phe	Pro	Glu	Leu	Ala
				635					640					645
Leu	Gln	Arg	Val	Arg	Phe	Cys	Arg	Met	Asp	Val	Ala	Val	Leu	Ser
				650					655					660
Tyr	Cys	Val	Arg	Cys	Cys	Pro	Ala	Gly	Gln	Ala	Leu	Arg	Leu	Ile
				665					670					675
Ser	Cys	Arg	Leu	Val	Ala	Ala	Gln	Glu	Lys	Lys	Lys	Ser	Leu	
				680					685					690
Gly	Lys	Arg	Leu	Gln	Ala	Ser	Leu	Gly	Gly	Gly	Ser	Ser	Gln	Gly
				695					700					705
Thr	Thr	Lys	Gln	Leu	Pro	Ala	Ser	Leu	Leu	His	Pro	Leu	Phe	Gln
				710					715					720
Ala	Met	Thr	Asp	Pro	Leu	Cys	His	Leu	Ser	Ser	Leu	Thr	Leu	Ser
				725					730					735
His	Cys	Lys	Leu	Pro	Asp	Ala	Val	Cys	Arg	Asp	Leu	Ser	Glu	Ala
				740					745					750
Leu	Arg	Ala	Ala	Pro	Ala	Leu	Thr	Glu	Leu	Gly	Leu	Leu	His	Asn
				755					760					765
Arg	Leu	Ser	Glu	Ala	Gly	Leu	Arg	Met	Leu	Ser	Glu	Gly	Leu	Ala
				770					775					780
Trp	Pro	Gln	Cys	Arg	Val	Gln	Thr	Val	Arg	Val	Gln	Leu	Pro	Asp
				785					790					795
Pro	Gln	Arg	Gly	Leu	Gln	Tyr	Leu	Val	Gly	Met	Leu	Arg	Gln	Ser
				800					805					810
Pro	Ala	Leu	Thr	Thr	Leu	Asp	Leu	Ser	Gly	Cys	Gln	Leu	Pro	Ala
				815					820					825
Pro	Met	Val	Thr	Tyr	Leu	Cys	Ala	Val	Leu	Gln	His	Gln	Gly	Cys
				830					835					840
Gly	Leu	Gln	Thr	Leu	Ser	Leu	Ala	Ser	Val	Glu	Leu	Ser	Glu	Gln
				845					850					855
Ser	Leu	Gln	Glu	Leu	Gln	Ala	Val	Lys	Arg	Ala	Lys	Pro	Asp	Leu
				860					865					870
Val	Ile	Thr	His	Pro	Ala	Leu	Asp	Gly	His	Pro	Gln	Pro	Pro	Lys

875		880	
Glu Leu Ile Ser	Thr Phe		
890			

885			
-----	--	--	--

<210> 3
<211> 422
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3168839CD1

<400> 3

Met	Leu	Ala	Asn	Ser	Ser	Ser	Thr	Asn	Ser	Ser	Val	Leu	Pro	Cys	
1															15
Pro	Asp	Tyr	Arg	Pro	Thr	His	Arg	Leu	His	Leu	Val	Val	Tyr	Ser	30
Leu	Val	Leu	Ala	Ala	Gly	Leu	Pro	Leu	Asn	Ala	Leu	Ala	Leu	Trp	45
Val	Phe	Leu	Arg	Ala	Leu	Arg	Val	His	Ser	Val	Val	Ser	Val	Tyr	60
Met	Cys	Asn	Leu	Ala	Ala	Ser	Asp	Leu	Leu	Phe	Thr	Leu	Ser	Leu	75
Pro	Val	Arg	Leu	Ser	Tyr	Tyr	Ala	Leu	His	His	Trp	Pro	Phe	Pro	90
Asp	Leu	Leu	Cys	Gln	Thr	Thr	Gly	Ala	Ile	Phe	Gln	Met	Asn	Met	105
Tyr	Gly	Ser	Cys	Ile	Phe	Leu	Met	Leu	Ile	Asn	Val	Asp	Arg	Tyr	120
Ala	Ala	Ile	Val	His	Pro	Leu	Arg	Leu	Arg	His	Leu	Arg	Arg	Pro	135
Arg	Val	Ala	Arg	Leu	Leu	Cys	Leu	Gly	Val	Trp	Ala	Leu	Ile	Leu	150
Val	Phe	Ala	Val	Pro	Ala	Ala	Arg	Val	His	Arg	Pro	Ser	Arg	Cys	165
Arg	Tyr	Arg	Asp	Leu	Glu	Val	Arg	Leu	Cys	Phe	Glu	Ser	Phe	Ser	180
Asp	Glu	Leu	Trp	Lys	Gly	Arg	Leu	Leu	Pro	Leu	Val	Leu	Leu	Ala	195
Glu	Ala	Leu	Gly	Phe	Leu	Leu	Pro	Leu	Ala	Ala	Val	Val	Tyr	Ser	210
Ser	Gly	Arg	Val	Phe	Trp	Thr	Leu	Ala	Arg	Pro	Asp	Ala	Thr	Gln	225
Ser	Gln	Arg	Arg	Arg	Lys	Thr	Val	Arg	Leu	Leu	Leu	Ala	Asn	Leu	240
Val	Ile	Phe	Leu	Leu	Cys	Phe	Val	Pro	Tyr	Asn	Ser	Thr	Leu	Ala	255
Val	Tyr	Gly	Leu	Leu	Arg	Ser	Lys	Leu	Val	Ala	Ala	Ser	Val	Pro	270
Ala	Arg	Asp	Arg	Val	Arg	Gly	Val	Leu	Met	Val	Met	Val	Leu	Leu	285
Ala	Gly	Ala	Asn	Cys	Val	Leu	Asp	Pro	Leu	Val	Tyr	Tyr	Phe	Ser	300
Ala	Glu	Gly	Phe	Arg	Asn	Thr	Leu	Arg	Gly	Leu	Gly	Thr	Pro	His	315
Arg	Ala	Arg	Thr	Ser	Ala	Thr	Asn	Gly	Thr	Arg	Ala	Ala	Leu	Ala	330
Gln	Ser	Glu	Arg	Ser	Ala	Val	Thr	Thr	Asp	Ala	Thr	Arg	Pro	Asp	345
Ala	Ala	Met	Ser	Pro	Gly	Phe	Arg	Pro	Leu	Asn	Thr	His	Ala	Ile	360
Ala	Leu	Ser	Val	Pro	Asp	Ser	Gln	Arg	Leu	Ser	Phe	Trp	Glu	Ala	375
Tyr	Arg	Val	Tyr	Thr	Gln	Glu	Gly	Gly	Leu	Gly	Thr	Trp	Thr	Phe	390
Gly	Trp	Gln	Phe	Gln	Leu	Ser	Asn	Ala	Glu	Glu	Tyr	Lys	Val	Trp	

	395	400	405
Lys Pro Gly Pro Arg	Glu Gly Ser Ala	Ala Gly Asn Gly Phe	Phe
	410	415	420

Lys Leu

<210> 4
<211> 609
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3291235CD1

<400> 4

Met Ser Asp Glu Arg Arg	Leu Pro Gly Ser Ala Val Gly Trp Leu	
1 5	10	15
Val Cys Gly Gly Leu	Ser Leu Leu Ala Asn Ala Trp Gly Ile Leu	
20	25	30
Ser Val Gly Ala Lys	Gln Lys Lys Trp Lys Pro Leu Glu Phe Leu	
35	40	45
Leu Cys Thr Leu Ala	Ala Thr His Met Leu Asn Val Ala Val Pro	
50	55	60
Ile Ala Thr Tyr Ser	Val Val Gln Leu Arg Arg Gln Arg Pro Asp	
65	70	75
Phe Glu Trp Asn Glu	Gly Leu Cys Lys Val Phe Val Ser Thr Phe	
80	85	90
Tyr Thr Leu Thr Leu	Ala Thr Cys Phe Ser Val Thr Ser Leu Ser	
95	100	105
Tyr His Arg Met Trp	Met Val Cys Trp Pro Val Asn Tyr Arg Leu	
110	115	120
Ser Asn Ala Lys	Lys Gln Ala Val His Thr Val Met Gly Ile Trp	
125	130	135
Met Val Ser Phe Ile	Leu Ser Ala Leu Pro Ala Val Gly Trp His	
140	145	150
Asp Thr Ser Glu Arg	Phe Tyr Thr His Gly Cys Arg Phe Ile Val	
155	160	165
Ala Glu Ile Gly	Leu Gly Phe Gly Val Cys Phe Leu Leu Val	
170	175	180
Gly Gly Ser Val Ala	Met Gly Val Ile Cys Thr Ala Ile Ala Leu	
185	190	195
Phe Gln Thr Leu Ala	Val Gln Val Gly Arg Gln Ala Asp His Arg	
200	205	210
Ala Phe Thr Val Pro	Thr Ile Val Val Glu Asp Ala Gln Gly Lys	
215	220	225
Arg Arg Ser Ser Ile	Asp Gly Ser Glu Pro Ala Lys Thr Ser Leu	
230	235	240
Gln Thr Thr Gly Leu	Val Thr Thr Ile Val Phe Ile Tyr Asp Cys	
245	250	255
Leu Met Gly Phe Pro	Val Leu Val Val Ser Phe Ser Ser Leu Arg	
260	265	270
Ala Asp Ala Ser Ala	Pro Trp Met Ala Leu Cys Val Leu Trp Cys	
275	280	285
Ser Val Ala Gln Ala	Leu Leu Leu Pro Val Phe Leu Trp Ala Cys	
290	295	300
Asp Arg Tyr Arg Ala	Asp Leu Lys Ala Val Arg Glu Lys Cys Met	
305	310	315
Ala Leu Met Ala Asn	Asp Glu Glu Ser Asp Asp Glu Thr Ser Leu	
320	325	330
Glu Gly Gly Ile Ser	Pro Asp Leu Val Leu Glu Arg Ser Leu Asp	
335	340	345
Tyr Gly Tyr Gly	Gly Asp Phe Val Ala Leu Asp Arg Met Ala Lys	
350	355	360
Tyr Glu Ile Ser Ala	Leu Glu Gly Gly Leu Pro Gln Leu Tyr Pro	
365	370	375
Leu Arg Pro Leu Gln	Glu Asp Lys Met Gln Tyr Leu Gln Val Pro	

	380	385	390
Pro Thr Arg Arg	Phe Ser His Asp Asp	Ala Asp Val Trp Ala Ala	
395	400	405	
Val Pro Leu Pro Ala	Phe Leu Pro Arg	Trp Gly Ser Gly Lys Asp	
410	415	420	
Leu Ser Ala Leu Ala	His Leu Val Leu	Pro Ala Gly Pro Glu Arg	
425	430	435	
Pro Arg Ala Ser Leu	Leu Ala Phe Ala	Glu Asp Ala Pro Leu Ser	
440	445	450	
Arg Ala Arg Arg	Arg Ser Ala Glu Ser	Leu Leu Ser Leu Arg Pro	
455	460	465	
Ser Ala Val Asp Ser	Gly Pro Arg Gly	Ala Arg Asp Ser Pro Pro	
470	475	480	
Gly Ser Pro Arg Arg	Arg Pro Gly Pro	Gly Pro Arg Ser Ala Ser	
485	490	495	
Ala Ser Leu Leu Pro	Asp Ala Phe Ala	Leu Thr Ala Phe Glu Cys	
500	505	510	
Glu Pro Gln Ala	Leu Arg Arg Pro Pro	Gly Pro Phe Pro Ala Ala	
515	520	525	
Pro Ala Ala Pro Asp	Gly Ala Asp Pro	Gly Glu Ala Pro Thr Pro	
530	535	540	
Pro Ser Ser Ala Gln	Arg Ser Pro Gly	Pro Arg Pro Ser Ala His	
545	550	555	
Ser His Ala Gly Ser	Leu Arg Pro Gly	Leu Ser Ala Ser Trp Gly	
560	565	570	
Glu Pro Gly Gly	Leu Arg Ala Ala Gly	Gly Gly Gly Ser Thr Ser	
575	580	585	
Ser Phe Leu Ser Ser	Pro Ser Glu Ser	Ser Gly Tyr Ala Thr Leu	
590	595	600	
His Ser Asp Ser Leu	Gly Ser Ala Ser		
605			

<210> 5
<211> 313
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472001CD1

	<400> 5		
Met Glu Arg Ile Asn Ser Thr Leu Leu Thr Ala Phe Ile Leu Thr			
1	5	10	15
Gly Ile Pro Tyr Pro Leu Arg Leu Arg Thr Leu Phe Phe Val Phe			
20	25	30	
Phe Phe Leu Ile Tyr Ile Leu Thr Gln Leu Gly Asn Leu Leu Ile			
35	40	45	
Leu Ile Thr Val Trp Ala Asp Pro Arg Leu His Ala Arg Pro Met			
50	55	60	
Tyr Ile Phe Leu Gly Val Leu Ser Val Ile Asp Met Ser Ile Ser			
65	70	75	
Ser Ile Ile Val Pro Arg Leu Met Met Asn Phe Thr Leu Gly Val			
80	85	90	
Lys Pro Ile Pro Phe Gly Gly Cys Val Ala Gln Leu Tyr Phe Tyr			
95	100	105	
His Phe Leu Gly Ser Thr Gln Cys Phe Leu Tyr Thr Leu Met Ala			
110	115	120	
Tyr Asp Arg Tyr Leu Ala Ile Cys Gln Pro Leu Arg Tyr Pro Val			
125	130	135	
Leu Met Thr Ala Lys Leu Ser Ala Leu Leu Val Ala Gly Ala Trp			
140	145	150	
Met Ala Gly Ser Ile His Gly Ala Leu Gln Ala Ile Leu Thr Phe			
155	160	165	
Arg Leu Pro Tyr Cys Gly Pro Asn Gln Val Asp Tyr Phe Phe Cys			
170	175	180	
Asp Ile Pro Ala Val Leu Arg Leu Ala Cys Ala Asp Thr Thr Val			

	185		190		195
Asn Glu Leu Val	Thr Phe Val Asp Ile	Gly Val Val Val Ala	Ser		
200		205		210	
Cys Phe Ser Leu	Ile Leu Leu Ser Tyr	Ile Gln Ile Ile Gln	Ala		225
215		220			
Ile Leu Arg Ile	His Thr Ala Asp Gly	Arg Arg Arg Ala Phe	Ser		
230		235		240	
Thr Cys Gly Ala	His Val Thr Val Val	Thr Val Tyr Tyr Val	Pro		
245		250		255	
Cys Ala Phe Ile	Tyr Leu Arg Pro Glu	Thr Asn Ser Pro Leu	Asp		
260		265		270	
Gly Ala Ala Ala	Leu Val Pro Thr Ala	Ile Thr Pro Phe Leu	Asn		
275		280		285	
Pro Leu Ile Tyr	Thr Leu Arg Asn Gln	Glu Val Lys Leu Ala	Leu		
290		295		300	
Lys Arg Met Leu	Arg Ser Pro Arg Thr	Pro Ser Glu Val			
305		310			

<210> 6

<211> 398

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472003CD1

<400> 6

Met His Thr Val Ala	Thr Ser Gly Pro Asn Ala Ser Trp Gly Ala		
1	5	10	15
Pro Ala Asn Ala Ser	Gly Cys Pro Gly Cys Gly Ala Asn Ala Ser		
20	25		30
Asp Gly Pro Val Pro	Ser Pro Arg Ala Val Asp Ala Trp Leu Val		
35	40		45
Pro Leu Phe Phe Ala	Ala Ala Leu Met Leu Leu Gly Leu Val Gly Asn		
50	55		60
Ser Leu Val Ile Tyr	Val Ile Cys Arg His Lys Pro Met Arg Thr		
65	70		75
Val Thr Asn Phe Tyr	Ile Ala Asn Leu Ala Ala Thr Asp Val Thr		
80	85		90
Phe Leu Leu Cys Cys	Val Pro Phe Thr Ala Leu Leu Tyr Pro Leu		
95	100		105
Pro Gly Trp Val Leu	Gly Asp Phe Met Cys Lys Phe Val Asn Tyr		
110	115		120
Ile Gln Gln Val Ser	Val Gln Ala Thr Cys Ala Thr Leu Thr Ala		
125	130		135
Met Ser Val Asp Arg	Trp Tyr Val Thr Val Phe Pro Leu Arg Ala		
140	145		150
Leu His Arg Arg	Thr Pro Arg Leu Ala Leu Ala Val Ser Leu Ser		
155	160		165
Ile Trp Thr Gly Ser	Ala Ala Val Ser Ala Pro Val Leu Ala Leu		
170	175		180
His Arg Leu Ser Pro	Gly Pro Arg Ala Tyr Cys Ser Glu Ala Phe		
185	190		195
Pro Ser Arg Ala Leu	Glu Arg Ala Phe Ala Leu Tyr Asn Leu Leu		
200	205		210
Ala Leu Tyr Leu Leu	Pro Leu Leu Ala Thr Cys Ala Cys Tyr Ala		
215	220		225
Ala Met Leu Arg His	Leu Gly Arg Val Ala Val Arg Pro Ala Pro		
230	235		240
Ala Asp Ser Ala Leu	Gln Gly Gln Val Leu Ala Glu Arg Ala Gly		
245	250		255
Ala Val Arg Ala Lys	Val Ser Arg Leu Val Ala Ala Val Val Leu		
260	265		270
Leu Phe Ala Ala Cys	Trp Gly Pro Ile Gln Leu Phe Leu Val Leu		
275	280		285
Gln Ala Leu Gly Pro	Ala Gly Ser Trp His Pro Arg Ser Tyr Ala		

290	295	300
Ala Tyr Ala Leu Lys Thr Trp Ala His	Cys Met Ser Tyr Ser Asn	
305	310	315
Ser Ala Leu Asn Pro Leu Leu Tyr Ala Phe	Leu Gly Ser His Phe	
320	325	330
Arg Gln Ala Phe Arg Arg Val Cys Pro	Cys Ala Pro Arg Arg Pro	
335	340	345
Arg Arg Pro Arg Arg Pro Gly Pro Ser	Asp Pro Ala Ala Pro His	
350	355	360
Ala Glu Leu Leu Arg Leu Gly Ser His	Pro Ala Pro Ala Arg Ala	
365	370	375
Gln Lys Pro Gly Ser Ser Gly Leu Ala	Ala Arg Gly Leu Cys Val	
380	385	390
Leu Gly Glu Asp Asn Ala Pro Leu		
395		

<210> 7

<211> 369

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472004CD1

<400> 7

Met Ala Pro Thr Gly Leu Ser Ser Leu Thr Val Asn Ser Thr Ala		
1 5 10 15		
Val Pro Thr Thr Pro Ala Ala Phe Lys Ser Leu Asn Leu Pro Leu		
20 25 30		
Gln Ile Thr Leu Ser Ala Ile Met Ile Phe Ile Leu Phe Val Ser		
35 40 45		
Phe Leu Gly Asn Leu Val Val Cys Leu Met Val Tyr Gln Lys Ala		
50 55 60		
Ala Met Arg Ser Ala Ile Asn Ile Leu Leu Ala Ser Leu Ala Phe		
65 70 75		
Ala Asp Met Leu Leu Ala Val Leu Asn Met Pro Phe Ala Leu Val		
80 85 90		
Thr Ile Leu Thr Thr Arg Trp Ile Phe Gly Lys Phe Phe Cys Arg		
95 100 105		
Val Ser Ala Met Phe Phe Trp Leu Phe Val Ile Glu Gly Val Ala		
110 115 120		
Ile Leu Leu Ile Ile Ser Ile Asp Arg Phe Leu Ile Ile Val Gln		
125 130 135		
Arg Gln Asp Lys Leu Asn Pro Tyr Arg Ala Lys Val Leu Ile Ala		
140 145 150		
Val Ser Trp Ala Thr Ser Phe Cys Val Ala Phe Pro Leu Ala Val		
155 160 165		
Gly Asn Pro Asp Leu Gln Ile Pro Ser Arg Ala Pro Gln Cys Val		
170 175 180		
Phe Gly Tyr Thr Thr Asn Pro Gly Tyr Gln Ala Tyr Val Ile Leu		
185 190 195		
Ile Ser Leu Ile Ser Phe Phe Ile Pro Phe Leu Val Ile Leu Tyr		
200 205 210		
Ser Phe Met Gly Ile Leu Asn Thr Leu Arg His Asn Ala Leu Arg		
215 220 225		
Ile His Ser Tyr Pro Glu Gly Ile Cys Leu Ser Gln Ala Ser Lys		
230 235 240		
Leu Gly Leu Met Ser Leu Gln Arg Pro Phe Gln Met Ser Ile Asp		
245 250 255		
Met Gly Phe Lys Thr Arg Ala Phe Thr Thr Ile Leu Ile Leu Phe		
260 265 270		
Ala Val Phe Ile Val Cys Trp Ala Pro Phe Thr Thr Tyr Ser Leu		
275 280 285		
Val Ala Thr Phe Ser Lys His Phe Tyr Tyr Gln His Asn Phe Phe		
290 295 300		
Glu Ile Ser Thr Trp Leu Leu Trp Leu Cys Tyr Leu Lys Ser Ala		

	305	310	315
Leu Asn Pro Leu Ile Tyr Tyr Trp Arg	Ile Lys Lys Phe His Asp		
320	325	330	
Ala Cys Leu Asp Met Met Pro Lys Ser	Phe Lys Phe Leu Pro Gln		
335	340	345	
Leu Pro Gly His Thr Lys Arg Arg Ile	Arg Pro Ser Ala Val Tyr		
350	355	360	
Val Cys Gly Glu His Arg Thr Val Val			
	365		

<210> 8
<211> 194
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7475687CP1

<400> 8

Met Ala Tyr Asp Arg Tyr Leu Ala Ile Cys Gln Pro Leu Arg Tyr		
1 5 10 15		
Pro Val Leu Met Asn Gly Arg Leu Cys Thr Val Leu Val Ala Gly		
20 25 30		
Ala Trp Val Ala Gly Ser Met His Gly Ser Ile Gln Ala Thr Leu		
35 40 45		
Thr Phe Arg Leu Pro Tyr Cys Gly Pro Asn Gln Val Asp Tyr Phe		
50 55 60		
Ile Cys Asp Ile Pro Ala Val Leu Arg Leu Ala Cys Ala Asp Thr		
65 70 75		
Thr Val Asn Glu Leu Val Thr Phe Val Asp Ile Gly Val Val Ala		
80 85 90		
Ala Ser Cys Phe Met Leu Ile Leu Leu Ser Tyr Ala Asn Ile Val		
95 100 105		
Asn Ala Ile Leu Lys Ile Arg Thr Thr Asp Gly Arg Arg Ala		
110 115 120		
Phe Ser Thr Cys Gly Ser His Leu Ile Val Val Thr Val Tyr Tyr		
125 130 135		
Val Pro Cys Ile Phe Ile Tyr Leu Arg Ala Gly Ser Lys Gly Pro		
140 145 150		
Leu Asp Gly Ala Ala Ala Val Phe Tyr Thr Val Val Thr Pro Leu		
155 160 165		
Leu Asn Pro Leu Ile Tyr Thr Leu Arg Asn Gln Glu Val Lys Ser		
170 175 180		
Ala Leu Lys Arg Ile Thr Ala Gly Gln Ala Asp Val Asn Asn		
185 190		

<210> 9
<211> 173
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483029CP1

<400> 9

Met Tyr Leu Val Thr Val Leu Gly Asn Leu Leu Ile Ile Leu Ala		
1 5 10 15		
Thr Ile Ser Asp Ser His Leu His Thr Pro Met Tyr Phe Phe Leu		
20 25 30		
Ser Asn Leu Ser Phe Ala Asp Ile Cys Phe Val Ser Thr Thr Val		
35 40 45		
Pro Lys Met Leu Val Asn Ile Gln Thr Gln Ser Arg Val Ile Thr		
50 55 60		
Tyr Ala Asp Cys Ile Thr Gln Met Cys Phe Phe Ile Leu Phe Val		
65 70 75		

Val	Leu	Asp	Ser	Leu	Leu	Leu	Thr	Val	Met	Ala	Tyr	Asp	Arg	Phe
									85					90
Val	Ala	Ile	Cys	His	Pro	Leu	His	Tyr	Thr	Val	Ile	Met	Asn	Ser
									95					105
Trp	Leu	Cys	Gly	Leu	Leu	Val	Leu	Val	Ser	Trp	Ile	Val	Ser	Ile
									110					120
Leu	Tyr	Ser	Leu	Leu	Gln	Ser	Ile	Met	Ala	Leu	Gln	Leu	Ser	Phe
									125					135
Cys	Thr	Glu	Leu	Lys	Ile	Pro	His	Phe	Phe	Cys	Glu	Leu	Asn	Gln
									140					150
Val	Ile	His	Leu	Ala	Cys	Ser	Asp	Thr	Phe	Ile	Asn	Asp	Met	Met
									155					165
Met	Asn	Phe	Thr	Ser	Val	Leu	Leu							
									170					

<210> 10

<211> 220

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7477933CP1

<400> 10

Pro	Met	Tyr	Phe	Phe	Leu	Ser	Asn	Leu	Cys	Trp	Ala	Asp	Ile	Gly
1					5				10					15
Leu	Thr	Ser	Ala	Thr	Val	Pro	Lys	Val	Ile	Leu	Asp	Met	Gln	Ser
									20					30
His	Ser	Arg	Val	Ile	Ser	His	Val	Gly	Cys	Leu	Thr	Gln	Met	Ser
									35					45
Phe	Leu	Val	Leu	Phe	Ala	Cys	Ile	Glu	Gly	Met	Leu	Leu	Thr	Val
									50					60
Met	Ala	Tyr	Gly	Cys	Phe	Val	Ala	Ile	Cys	Arg	Pro	Leu	His	Tyr
									65					75
Pro	Val	Ile	Val	Asn	Pro	His	Leu	Cys	Val	Phe	Phe	Val	Leu	Val
									80					90
Ser	Phe	Phe	Leu	Asn	Leu	Leu	Asp	Ser	Gln	Leu	His	Ser	Trp	Ile
									95					105
Val	Leu	Gln	Phe	Thr	Ile	Ile	Lys	Asn	Val	Glu	Ile	Ser	Asn	Phe
									110					120
Phe	Cys	Asp	Pro	Ser	Gln	Leu	Leu	Asn	Leu	Ala	Cys	Ser	Asp	Ser
									125					135
Val	Ile	Asn	Ser	Ile	Phe	Ile	Tyr	Phe	Asp	Ser	Thr	Met	Phe	Gly
									140					150
Phe	Leu	Pro	Ile	Ser	Gly	Ile	Leu	Leu	Ser	Tyr	Tyr	Lys	Ile	Val
									155					165
Pro	Ser	Ile	Leu	Arg	Met	Ser	Ser	Ser	Asp	Gly	Lys	Tyr	Lys	Ala
									170					180
Phe	Ser	Thr	Tyr	Gly	Ser	His	Leu	Gly	Val	Val	Cys	Trp	Phe	Tyr
									185					195
Gly	Thr	Val	Ile	Gly	Met	Tyr	Leu	Ala	Ser	Ala	Val	Ser	Pro	Pro
									200					210
Pro	Arg	Asn	Gly	Val	Val	Ala	Ser	Val	Met					
									215					220

<210> 11

<211> 302

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7475164CP1

<400> 11

Ala Glu Phe Ile Leu Ala Gly Leu Thr Gln Arg Pro Glu Leu Gln

1	5	10	15
Leu Pro Leu Phe Leu	Leu Phe Leu Gly	Ile Tyr Val Val Thr Val	
20	25	30	
Val Gly Asn Leu Gly	Met Ile Phe Leu	Ile Ala Leu Ser Ser Gln	
35	40	45	
Leu Tyr Pro Pro Val	Tyr Tyr Phe Leu	Ser His Leu Ser Phe Ile	
50	55	60	
Asp Leu Cys Tyr Ser	Ser Val Ile Thr	Pro Lys Met Leu Val Asn	
65	70	75	
Phe Val Pro Glu Glu	Asn Ile Ile Ser	Phe Leu Glu Cys Ile Thr	
80	85	90	
Gln Leu Tyr Phe	Phe Leu Ile Phe Val	Ile Ala Glu Gly Tyr Leu	
95	100	105	
Leu Thr Ala Met	Glu Tyr Asp Arg Tyr	Val Ala Ile Cys Arg Pro	
110	115	120	
Leu Leu Tyr Asn	Ile Val Met Ser His	Arg Val Cys Ser Ile Met	
125	130	135	
Met Ala Val Val	Tyr Ser Leu Gly Phe	Leu Trp Ala Thr Val His	
140	145	150	
Thr Thr Arg Met	Ser Val Leu Ser Phe	Cys Arg Ser His Thr Val	
155	160	165	
Ser His Tyr Phe	Cys Asp Ile Leu Pro	Leu Leu Thr Leu Ser Cys	
170	175	180	
Ser Ser Thr His	Ile Asn Glu Ile Leu	Leu Phe Ile Ile Gly Gly	
185	190	195	
Val Asn Thr Ile	Ala Thr Thr Leu Ala	Val Leu Ile Ser Tyr Ala	
200	205	210	
Phe Ile Phe Ser	Ser Ile Leu Gly Ile	His Ser Thr Glu Gly Gln	
215	220	225	
Ser Lys Ala Phe	Gly Thr Cys Ser Ser	His Leu Leu Ala Val Gly	
230	235	240	
Ile Phe Phe Gly	Ser Ile Thr Phe Met	Tyr Phe Lys Pro Pro Ser	
245	250	255	
Ser Thr Thr Met	Glu Lys Glu Lys Val	Ser Ser Val Phe Tyr Ile	
260	265	270	
Thr Ile Ile Pro	Met Leu Asn Pro Leu	Ile Tyr Ser Leu Arg Asn	
275	280	285	
Lys Asp Val Lys	Asn Ala Leu Lys Lys	Met Thr Arg Gly Arg Gln	
290	295	300	
Ser Ser			

<210> 12
<211> 110
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7473909CP1

<400> 12			
Gly Pro Arg Thr Ala Ser Gly Cys Val Ile Met Ile Cys Phe Ala			
1	5	10	15
Leu Thr Val Leu Ser Tyr Ile Arg Ile Leu Ala Thr Val Val Gln			
20	25	30	
Ile Arg Ser Ala Ala Ser Arg Arg Lys Ala Phe Ser Thr Cys Ser			
35	40	45	
Ser His Leu Gly Met Val Leu Leu Phe Tyr Gly Thr Gly Ser Ser			
50	55	60	
Thr Tyr Met Arg Pro Thr Thr Arg Tyr Ser Pro Leu Glu Gly Arg			
65	70	75	
Leu Ala Ala Val Phe Tyr Ser Ile Leu Ile Pro Thr Leu Asn Pro			
80	85	90	
Leu Ile Tyr Ser Leu Arg Asn Gln Asp Met Lys Arg Ala Leu Trp			
95	100	105	
Lys Leu Tyr Leu Gln			

110

<210> 13
<211> 178
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7475252CP1

<400> 13
Glu Pro Glu Asn Leu Thr Gly Val Leu Glu Phe Leu Leu Leu Gly
1 5 10 15
Leu Pro Asp Asp Pro Glu Leu Gln Pro Val Leu Phe Gly Leu Phe
20 25 30
Leu Ser Met Tyr Leu Val Met Val Leu Gly Asn Leu Leu Ile Ile
35 40 45
Leu Ala Val Ser Ser Asp Ser His Leu His Ser Pro Met Tyr Phe
50 55 60
Phe Leu Ser Asn Leu Ser Leu Ala Asp Ile Gly Phe Ala Ser Thr
65 70 75
Thr Val Pro Lys Met Ile Val Asp Ile Gln Ala His Ser Arg Leu
80 85 90
Ile Ser Tyr Val Gly Cys Leu Thr Gln Met Ser Phe Leu Ile Phe
95 100 105
Phe Ala Cys Met Glu Ser Leu Leu Leu Ile Val Met Ala Tyr Asp
110 115 120
Arg Phe Val Ala Ile Cys His Pro Leu His Tyr Gln Val Ile Met
125 130 135
Ser Pro Arg Leu Cys Gly Phe Leu Val Leu Val Ser Phe Phe Leu
140 145 150
Ser Leu Leu Asp Ser Gln Leu His Asn Leu Ile Val Leu Gln Leu
155 160 165
Thr Cys Phe Asn Asp Val Glu Ile Ser Asn Phe Phe Leu
170 175

<210> 14
<211> 92
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7927572CP1

<400> 14
Leu Leu Asp Ala Gln Leu Tyr Asn Leu Ile Ala Leu Gln Met Thr
1 5 10 15
Cys Phe Lys Asp Val Glu Ile Pro Asn Phe Phe Cys Asp Pro Ser
20 25 30
Gln Leu Pro His Leu Ala Cys Cys Asp Thr Phe Asn Asn Asn Ile
35 40 45
Ile Leu Tyr Phe Pro Asp Ala Ile Phe Gly Phe Leu Pro Ile Ser
50 55 60
Gly Thr Leu Phe Ser Tyr Asp Lys Ile Val Ser Ser Ile Leu Arg
65 70 75
Val Ser Ser Ser Gly Gly Lys Tyr Lys Ala Phe Ser Thr Tyr Gly
80 85 90
Ser His

<210> 15
<211> 97
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7481257CP1

<400> 15
Met Glu Val Thr Thr Phe Ala Met Cys Leu Ile Ile Val Leu Val
1 5 10 15
Pro Leu Leu Leu Ile Leu Val Ser Tyr Gly Phe Ile Ala Val Ala
20 25 30
Val Leu Lys Ile Lys Ser Ala Ala Gly Arg Gln Lys Ala Phe Gly
35 40 45
Thr Cys Ser Ser His Leu Val Val Val Ser Ile Phe Cys Gly Thr
50 55 60
Val Thr Tyr Met Tyr Ile Gln Pro Gly Asn Ser Pro Asn Gln Asn
65 70 75
Glu Gly Lys Leu Leu Ser Ile Phe Tyr Ser Ile Val Thr Pro Ser
80 85 90
Leu Asn Pro Leu Ile Tyr Thr
95

<210> 16
<211> 133
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7485790CP1

<400> 16
Asp Pro Glu Leu Gln Pro Ile Leu Ala Gly Leu Ser Leu Ser Met
1 5 10 15
Tyr Leu Val Thr Val Leu Arg Asn Leu Leu Ile Ser Leu Ala Val
20 25 30
Ser Ser Asp Ser His Leu His Thr Pro Met Cys Phe Phe Leu Ser
35 40 45
Asn Leu Cys Trp Ala Asp Ile Gly Phe Thr Ser Ala Thr Val Pro
50 55 60
Lys Met Ile Val Asp Met Arg Ser His Ser Gly Val Ile Ser Tyr
65 70 75
Ala Asp Cys Leu Thr Arg Met Ser Phe Leu Val Leu Phe Ala Cys
80 85 90
Val Glu Asp Met Leu Leu Thr Val Met Ala Tyr Asp Cys Phe Val
95 100 105
Ala Ile Cys Arg Pro Leu His Tyr Pro Val Ile Val Asn Pro His
110 115 120
Leu Cys Val Phe Leu Val Ser Val Ser Phe Ser Leu Ala
125 130

<210> 17
<211> 213
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7482993CP1

<400> 17
Gly Ser Glu Cys Leu Leu Leu Ala Ala Met Ala Tyr Asp Arg Tyr
1 5 10 15
Ile Ala Ile Cys Asn Pro Leu Arg Tyr Ser Val Ile Leu Ser Lys
20 25 30
Val Leu Cys Asn Gln Leu Ala Ala Ser Cys Trp Ala Ala Gly Phe
35 40 45
Leu Asn Ser Val Val His Thr Val Leu Thr Phe Cys Leu Pro Phe
50 55 60

Cys	Gly	Asn	Asn	Gln	Ile	Asn	Tyr	Phe	Phe	Cys	Asp	Ile	Pro	Pro
65								70						75
Leu	Leu	Ile	Leu	Ser	Cys	Gly	Asn	Thr	Ser	Val	Asn	Glu	Leu	Ala
80									85					90
Leu	Leu	Ser	Thr	Gly	Val	Phe	Ile	Gly	Trp	Thr	Pro	Phe	Leu	Cys
95									100					105
Ile	Val	Leu	Ser	Tyr	Ile	Cys	Ile	Ile	Ser	Thr	Ile	Leu	Arg	Ile
110									115					120
Gln	Ser	Ser	Glu	Gly	Arg	Arg	Lys	Ala	Phe	Ser	Thr	Cys	Ala	Ser
125									130					135
His	Leu	Ala	Ile	Val	Phe	Leu	Phe	Tyr	Gly	Ser	Ala	Ile	Phe	Thr
140									145					150
Tyr	Val	Arg	Pro	Ile	Ser	Thr	Tyr	Ser	Leu	Lys	Lys	Asp	Arg	Leu
155									160					165
Val	Ser	Val	Leu	Tyr	Ser	Val	Val	Thr	Pro	Met	Leu	Asn	Pro	Ile
170									175					180
Ile	Tyr	Thr	Leu	Arg	Asn	Lys	Asp	Ile	Lys	Glu	Ala	Val	Lys	Thr
185									190					195
Ile	Gly	Ser	Lys	Trp	Gln	Pro	Pro	Ile	Ser	Ser	Leu	Asp	Ser	Lys
200									205					210
Leu	Thr	Tyr												

<210> 18
<211> 180
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2829053CD1

<400> 18

Met	Ser	Glu	Ala	Ala	Thr	Arg	Trp	Ser	Cys	Gln	Gly	Ser	Cys	Gln
1				5					10					15
Lys	Thr	Cys	Phe	Ser	Arg	Val	Arg	Pro	Trp	Arg	Arg	Arg	Cys	Ser
					20				25					30
Cys	Gly	Asp	Ser	Ser	Ser	Arg	Arg	Arg	Arg	Ser	Cys	Cys	Thr	Gly
						35			40					45
Ser	Leu	Gly	Pro	Met	Pro	Arg	Leu	Pro	Ser	Leu	Trp	Pro	Leu	Ser
					50				55					60
Leu	Pro	Leu	Arg	Ser	Leu	Ser	Ser	Pro	His	Arg	Val	Gln	Gly	Leu
					65				70					75
Gly	Pro	Pro	Arg	Arg	Leu	Lys	Ser	Gln	Leu	Leu	Pro	Arg	Phe	Phe
					80				85					90
Trp	Arg	Arg	Gln	Gln	Glu	Pro	Leu	Ser	Ser	Phe	Pro	Gly	Arg	Asn
					95				100					105
Glu	Gly	Gly	Ser	Glu	Met	Glu	Ile	Leu	Gly	Val	Cys	Pro	Val	Ser
					110				115					120
Pro	Gly	Ala	Leu	Ser	Tyr	Met	Glu	Ser	Pro	Thr	Gly	Phe	Trp	Arg
					125				130					135
Pro	Arg	Glu	Ala	Ser	Ser	Leu	Glu	Leu	Ala	Lys	Gly	Ile	Ser	Lys
					140				145					150
Arg	Arg	His	Phe	Leu	Pro	Ala	Pro	Ala	Leu	Cys	Pro	Asn	Pro	Arg
					155				160					165
Ser	Ser	Glu	Ala	Phe	Pro	Gly	Ala	Val	Cys	Val	Thr	Leu	Ala	Ile
					170				175					180

<210> 19
<211> 353
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3068234CD1

<400> 19

Met	Asn	Glu	Cys	His	Tyr	Asp	Lys	His	Met	Asp	Phe	Phe	Tyr	Asn
1					5				10					15
Arg	Ser	Asn	Thr	Asp	Thr	Val	Asp	Asp	Trp	Thr	Gly	Thr	Lys	Leu
					20				25					30
Val	Ile	Val	Leu	Cys	Val	Gly	Thr	Phe	Phe	Cys	Leu	Phe	Ile	Phe
					35				40					45
Phe	Ser	Asn	Ser	Leu	Val	Ile	Ala	Ala	Val	Ile	Lys	Asn	Arg	Lys
					50				55					60
Phe	His	Phe	Pro	Phe	Tyr	Tyr	Leu	Leu	Ala	Asn	Leu	Ala	Ala	Ala
					65				70					75
Asp	Phe	Phe	Ala	Gly	Ile	Ala	Tyr	Val	Phe	Leu	Met	Phe	Asn	Thr
					80				85					90
Gly	Pro	Val	Ser	Lys	Thr	Leu	Thr	Val	Asn	Arg	Trp	Phe	Leu	Arg
					95				100					105
Gln	Gly	Leu	Leu	Asp	Ser	Ser	Leu	Thr	Ala	Ser	Leu	Thr	Asn	Leu
					110				115					120
Leu	Val	Ile	Ala	Val	Glu	Arg	His	Met	Ser	Ile	Met	Arg	Met	Arg
					125				130					135
Val	His	Ser	Asn	Leu	Thr	Lys	Lys	Arg	Val	Thr	Leu	Leu	Ile	Leu
					140				145					150
Leu	Val	Trp	Ala	Ile	Ala	Ile	Phe	Met	Gly	Ala	Val	Pro	Thr	Leu
					155				160					165
Gly	Trp	Asn	Cys	Leu	Cys	Asn	Ile	Ser	Ala	Cys	Ser	Ser	Leu	Ala
					170				175					180
Pro	Ile	Tyr	Ser	Arg	Ser	Tyr	Leu	Val	Phe	Trp	Thr	Val	Ser	Asn
					185				190					195
Leu	Met	Ala	Phe	Leu	Ile	Met	Val	Val	Val	Tyr	Leu	Arg	Ile	Tyr
					200				205					210
Val	Tyr	Val	Lys	Arg	Lys	Thr	Asn	Val	Leu	Ser	Pro	His	Thr	Ser
					215				220					225
Gly	Ser	Ile	Ser	Arg	Arg	Arg	Arg	Thr	Pro	Met	Lys	Leu	Met	Lys
					230				235					240
Val	Met	Thr	Val	Leu	Gly	Ala	Phe	Val	Val	Cys	Trp	Thr	Pro	Gly
					245				250					255
Leu	Val	Val	Leu	Leu	Leu	Asp	Gly	Leu	Asn	Cys	Arg	Gln	Cys	Gly
					260				265					270
Val	Gln	His	Val	Lys	Arg	Trp	Phe	Leu	Leu	Leu	Ala	Leu	Leu	Asn
					275				280					285
Ser	Val	Val	Asn	Pro	Ile	Ile	Tyr	Ser	Tyr	Lys	Asp	Glu	Asp	Met
					290				295					300
Tyr	Gly	Thr	Met	Lys	Lys	Met	Ile	Cys	Cys	Phe	Ser	Gln	Glu	Asn
					305				310					315
Pro	Glu	Arg	Arg	Pro	Ser	Arg	Ile	Pro	Ser	Thr	Val	Leu	Ser	Arg
					320				325					330
Ser	Asp	Thr	Gly	Ser	Gln	Tyr	Ile	Glu	Asp	Ser	Ile	Ser	Gln	Gly
					335				340					345
Ala	Val	Cys	Asn	Lys	Ser	Thr	Ser							
					350									

<210> 20

<211> 361

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5029478CD1

<400> 20

Met	Ser	Pro	Glu	Cys	Ala	Arg	Ala	Ala	Gly	Asp	Ala	Pro	Leu	Arg
1				5					10					15
Ser	Leu	Glu	Gln	Ala	Asn	Arg	Thr	Arg	Phe	Pro	Phe	Phe	Ser	Asp
					20				25					30
Val	Lys	Gly	Asp	His	Arg	Leu	Val	Leu	Ala	Ala	Val	Glu	Thr	Thr
					35				40					45
Val	Leu	Val	Leu	Ile	Phe	Ala	Val	Ser	Leu	Leu	Gly	Asn	Val	Cys

	50	55	60											
Ala	Leu	Val	Leu	Val	Ala	Arg	Arg	Arg	Arg	Gly	Ala	Thr	Ala	
					65		70		75				75	
Cys	Leu	Val	Leu	Asn	Leu	Phe	Cys	Ala	Asp	Leu	Leu	Phe	Ile	Ser
					80		85		90				90	
Ala	Ile	Pro	Leu	Val	Leu	Ala	Val	Arg	Trp	Thr	Glu	Ala	Trp	Leu
					95		100						105	
Leu	Gly	Pro	Val	Ala	Cys	His	Leu	Leu	Phe	Tyr	Val	Met	Thr	Leu
					110		115						120	
Ser	Gly	Ser	Val	Thr	Ile	Leu	Thr	Leu	Ala	Ala	Val	Ser	Leu	Glu
					125		130						135	
Arg	Met	Val	Cys	Ile	Val	His	Leu	Gln	Arg	Gly	Val	Arg	Gly	Pro
					140		145						150	
Gly	Arg	Arg	Ala	Arg	Ala	Val	Leu	Leu	Ala	Leu	Ile	Trp	Gly	Tyr
					155		160						165	
Ser	Ala	Val	Ala	Ala	Leu	Pro	Leu	Cys	Val	Phe	Phe	Arg	Val	Val
					170		175						180	
Pro	Gln	Arg	Leu	Pro	Gly	Ala	Asp	Gln	Glu	Ile	Ser	Ile	Cys	Thr
					185		190						195	
Leu	Ile	Trp	Pro	Thr	Ile	Pro	Gly	Glu	Ile	Ser	Trp	Asp	Val	Ser
					200		205						210	
Phe	Val	Thr	Leu	Asn	Phe	Leu	Val	Pro	Gly	Leu	Val	Ile	Val	Ile
					215		220						225	
Ser	Tyr	Ser	Lys	Ile	Leu	Gln	Ile	Thr	Lys	Ala	Ser	Arg	Lys	Arg
					230		235						240	
Leu	Thr	Val	Ser	Leu	Ala	Tyr	Ser	Glu	Ser	His	Gln	Ile	Arg	Val
					245		250						255	
Ser	Gln	Gln	Asp	Phe	Arg	Leu	Phe	Arg	Thr	Leu	Phe	Leu	Leu	Met
					260		265						270	
Val	Ser	Phe	Phe	Ile	Met	Trp	Ser	Pro	Ile	Ile	Ile	Thr	Ile	Leu
					275		280						285	
Leu	Ile	Leu	Ile	Gln	Asn	Phe	Lys	Gln	Asp	Leu	Val	Ile	Trp	Pro
					290		295						300	
Ser	Leu	Phe	Phe	Trp	Val	Val	Ala	Phe	Thr	Phe	Ala	Asn	Ser	Ala
					305		310						315	
Leu	Asn	Pro	Ile	Leu	Tyr	Asn	Met	Thr	Leu	Cys	Arg	Asn	Glu	Trp
					320		325						330	
Lys	Lys	Ile	Phe	Cys	Cys	Phe	Trp	Phe	Pro	Glu	Lys	Gly	Ala	Ile
					335		340						345	
Leu	Thr	Asp	Thr	Ser	Val	Lys	Arg	Asn	Asp	Leu	Ser	Ile	Ile	Ser
					350		355						360	
Gly														

<210> 21

<211> 251

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5102576CD1

<400> 21

Met	Tyr	Leu	Val	Thr	Val	Leu	Arg	Asn	Leu	Phe	Ser	Ile	Leu	Ala
1					5				10				15	
Val	Ser	Ser	Asp	Cys	Pro	Leu	His	Thr	Pro	Met	Tyr	Phe	Leu	
					20				25				30	
Ser	Asn	Leu	Cys	Trp	Pro	Asp	Ile	Gly	Phe	Thr	Ser	Ala	Met	Val
					35				40				45	
Pro	Lys	Met	Ile	Val	Asp	Thr	Gln	Ser	His	Ser	Arg	Val	Ile	Ser
					50				55				60	
His	Ala	Gly	Cys	Leu	Thr	Gln	Met	Ser	Phe	Leu	Leu	Leu	Val	Ala
					65				70				75	
Cys	Ile	Glu	Gly	Met	Leu	Leu	Thr	Val	Met	Ala	Tyr	Asp	Cys	Phe
					80				85				90	
Val	Ala	Ile	Cys	Arg	Pro	Leu	His	Tyr	Pro	Val	Ile	Val	Asn	Pro

	95		100		105
His Leu Cys Val	Phe Phe Val Leu Val	Ser	Phe Phe Leu Ser	Leu	
110	115		115		120
Leu Asp Ser Gln	Leu His Ser Trp Ile	Val	Leu Gln Leu Thr	Ile	
125	130		130		135
Ile Lys Asn Val	Glu Ile Ser Asn Leu	Val	Cys Asp Pro Ser	Gln	
140	145		145		150
Leu Leu Asn Leu	Ala Cys Ser Asp Ser	Val	Ile Asn Asn Ile	Phe	
155	160		160		165
Ile Tyr Phe Asp	Ser Thr Met Phe Gly	Phe	Leu Pro Ile Ser	Gly	
170	175		175		180
Ile Phe Leu Ser	Tyr Tyr Lys Ile Val	Pro	Ser Ile Leu Arg	Ile	
185	190		190		195
Ser Ser Ser Asp	Gly Lys Tyr Lys Ala	Phe	Ser Thr Cys Gly	Cys	
200	205		205		210
His Leu Ala Val	Val Cys Trp Phe Tyr	Gly	Thr Gly Ile Gly	Met	
215	220		220		225
Tyr Leu Thr Ser	Ala Val Ser Pro Pro	Pro	Arg Asn Gly Val	Val	
230	235		235		240
Ala Ser Val Met	Tyr Ala Val Val Thr	Pro	Cys		
	245		250		

<210> 22

<211> 315

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2200534CD1

<400> 22

Met Lys Ala Asn Tyr	Ser Ala Glu Glu Arg	Phe Leu Leu Gly	
1	5	10	15
Phe Ser Asp Trp Pro	Ser Leu Gln Pro Val	Leu Phe Ala Leu Val	
20	25		30
Leu Leu Cys Tyr	Leu Leu Thr Leu Thr	Gly Asn Ser Ala Leu Val	
35	40		45
Leu Leu Ala Val Arg	Asp Pro Arg Leu His	Thr Pro Met Tyr Tyr	
50	55		60
Phe Leu Cys His	Leu Ala Leu Val Asp	Ala Gly Phe Thr Thr Ser	
65	70		75
Val Val Pro Pro	Leu Leu Ala Asn Leu	Arg Gly Pro Ala Leu Trp	
80	85		90
Leu Pro Arg Ser His	Cys Thr Ala Gln	Leu Cys Ala Ser Leu Ala	
95	100		105
Leu Gly Ser Ala Glu	Cys Val Leu Leu	Ala Val Met Ala Leu Asp	
110	115		120
Arg Ala Ala Ala	Val Cys Arg Pro Leu	Arg Tyr Ala Gly Leu Val	
125	130		135
Ser Pro Arg Leu Cys	Arg Thr Leu Ala	Ser Ala Ser Trp Leu Ser	
140	145		150
Gly Leu Thr Asn Ser	Val Ala Gln Thr	Ala Leu Leu Ala Glu Arg	
155	160		165
Pro Leu Cys Ala	Pro Arg Leu Leu Asp	His Phe Ile Cys Glu Leu	
170	175		180
Pro Ala Leu Leu Lys	Leu Ala Cys Gly	Gly Asp Gly Asp Thr Thr	
185	190		195
Glu Asn Gln Met Phe	Ala Ala Arg Val	Val Ile Leu Leu Pro	
200	205		210
Phe Ala Val Ile Leu	Ala Ser Tyr Gly	Ala Val Ala Arg Ala Val	
215	220		225
Cys Cys Met Arg Phe	Ser Gly Gly Arg	Arg Arg Ala Val Gly Thr	
230	235		240
Cys Gly Ser His Leu	Thr Ala Val Cys	Leu Phe Tyr Gly Ser Ala	
245	250		255
Ile Tyr Thr Tyr	Leu Gln Pro Ala Gln	Arg Tyr Asn Gln Ala Arg	

	260	265	270
Gly Lys Phe Val	Ser Leu Phe Tyr Thr	Val Val Thr Pro Ala	Leu
275		280	285
Asn Pro Leu Ile	Tyr Thr Leu Arg Asn	Lys Lys Val Lys Gly	Ala
290		295	300
Ala Arg Arg Leu	Leu Arg Ser Leu Gly	Arg Gly Gln Ala Gly	Gln
305		310	315

<210> 23
<211> 470
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3275821CD1

<400> 23

Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg			
1	5	10	15
Pro Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly			
20		25	30
Trp Asp Thr Val Phe Leu Val Ala Leu Leu Leu Gly Leu Pro			
35		40	45
Ala Asn Gly Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His			
50		55	60
Gly Ala Gly Thr Arg Leu Ala Leu Leu Leu Ser Leu Ala Leu			
65		70	75
Ser Asp Phe Leu Phe Leu Ala Ala Ala Ala Phe Gln Ile Leu Glu			
80		85	90
Ile Arg His Gly His Trp Pro Leu Gly Thr Ala Ala Cys Arg			
95		100	105
Phe Tyr Tyr Phe Leu Trp Gly Val Ser Tyr Ser Ser Gly Leu Phe			
110		115	120
Leu Leu Ala Ala Leu Ser Leu Asp Arg Cys Leu Leu Ala Leu Cys			
125		130	135
Pro His Trp Tyr Pro Gly His Arg Pro Val Arg Leu Pro Leu Trp			
140		145	150
Val Cys Ala Gly Val Trp Val Leu Ala Thr Leu Phe Ser Val Pro			
155		160	165
Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp Tyr Asp Leu Val			
170		175	180
Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser Leu Arg Met			
185		190	195
Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu Leu Val			
200		205	210
Cys His Val Leu Thr Gln Ala Thr Ala Cys Arg Thr Cys His Arg			
215		220	225
Gln Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg			
230		235	240
Thr Ile Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu			
245		250	255
Ala Gln Leu Leu Tyr Leu Ala Phe Leu Trp Asp Val Tyr Ser Gly			
260		265	270
Tyr Leu Leu Trp Glu Ala Leu Val Tyr Ser Asp Tyr Leu Ile Leu			
275		280	285
Leu Asn Ser Cys Leu Ser Pro Phe Leu Cys Leu Met Ala Ser Ala			
290		295	300
Asp Leu Arg Thr Leu Leu Arg Ser Val Leu Ser Ser Phe Ala Ala			
305		310	315
Ala Leu Cys Glu Glu Arg Pro Gly Ser Phe Thr Pro Thr Glu Pro			
320		325	330
Gln Thr Gln Leu Asp Ser Glu Gly Pro Thr Leu Pro Glu Pro Met			
335		340	345
Ala Glu Ala Gln Ser Gln Met Asp Pro Val Ala Gln Pro Gln Val			
350		355	360

Asn Pro Thr Leu Gln Pro Arg Ser Asp	Pro Thr Ala Gln Pro Gln	
365	370	375
Leu Asn Pro Thr Ala Gln Pro Gln Ser Asp	Pro Thr Ala Gln Pro	
380	385	390
Gln Leu Asn Leu Met Ala Gln Pro Gln Ser	Asp Ser Val Ala Gln	
395	400	405
Pro Gln Ala Asp Thr Asn Val Gln Thr	Pro Ala Pro Ala Ala Ser	
410	415	420
Ser Val Pro Ser Pro Cys Asp Glu Ala	Ser Pro Thr Pro Ser Ser	
425	430	435
His Pro Thr Pro Gly Ala Leu Glu Asp	Pro Ala Thr Pro Pro Ala	
440	445	450
Ser Glu Gly Glu Ser Pro Ser Ser Thr	Pro Pro Glu Ala Ala Pro	
455	460	465
Gly Ala Gly Pro Thr		
470		

<210> 24

<211> 358

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3744167CD1

<400> 24

Met Ser Val Cys Tyr Arg Pro Pro Gly Asn Glu Thr Leu Leu Ser			
1	5	10	15
Trp Lys Thr Ser Arg Ala Thr Gly Thr Ala Phe Leu Leu Leu Ala			
20	25	30	
Ala Leu Leu Gly Leu Pro Gly Asn Gly Phe Val Val Trp Ser Leu			
35	40	45	
Ala Gly Trp Arg Pro Ala Arg Gly Arg Pro Leu Ala Ala Thr Leu			
50	55	60	
Val Leu His Leu Ala Leu Ala Asp Gly Ala Val Leu Leu Leu Thr			
65	70	75	
-Pro Leu Phe Val Ala Phe Leu Thr Arg Gln Ala Trp Pro Leu Gly			
80	85	90	
Gln Ala Gly Cys Lys Ala Val Tyr Tyr Val Cys Ala Leu Ser Met			
95	100	105	
Tyr Ala Ser Val Leu Leu Thr Gly Leu Leu Ser Leu Gln Arg Cys			
110	115	120	
Leu Ala Val Thr Arg Pro Phe Leu Ala Pro Arg Leu Arg Ser Pro			
125	130	135	
Ala Leu Ala Arg Arg Leu Leu Leu Ala Val Trp Leu Ala Ala Leu			
140	145	150	
Leu Leu Ala Val Pro Ala Ala Val Tyr Arg His Leu Trp Arg Asp			
155	160	165	
Arg Val Cys Gln Leu Cys His Pro Ser Pro Val His Ala Ala Ala			
170	175	180	
His Leu Ser Leu Glu Thr Leu Thr Ala Phe Val Leu Pro Phe Gly			
185	190	195	
Leu Met Leu Gly Cys Tyr Ser Val Thr Leu Ala Arg Leu Arg Gly			
200	205	210	
Ala Arg Trp Gly Ser Gly Arg His Gly Ala Arg Val Gly Arg Leu			
215	220	225	
Val Ser Ala Ile Val Leu Ala Phe Gly Leu Leu Trp Ala Pro Tyr			
230	235	240	
His Ala Val Asn Leu Leu Gln Ala Val Ala Ala Leu Ala Pro Pro			
245	250	255	
Glu Gly Ala Leu Ala Lys Leu Gly Gly Ala Gly Gln Ala Ala Arg			
260	265	270	
Ala Gly Thr Thr Ala Leu Ala Phe Phe Ser Ser Ser Val Asn Pro			
275	280	285	
Val Leu Tyr Val Phe Thr Ala Gly Asp Leu Leu Pro Arg Ala Gly			
290	295	300	

Pro	Arg	Phe	Leu	Thr	Arg	Leu	Phe	Glu	Gly	Ser	Gly	Glu	Ala	Arg
305							310							315
Gly	Gly	Gly	Arg	Ser	Arg	Glu	Gly	Thr	Met	Glu	Leu	Arg	Thr	Thr
320								325						330
Pro	Gln	Leu	Lys	Val	Val	Gly	Gln	Gly	Arg	Gly	Asn	Gly	Asp	Pro
335									340					345
Gly	Gly	Gly	Met	Glu	Lys	Asp	Gly	Pro	Glu	Trp	Asp	Leu		
350									355					

<210> 25
<211> 314
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472007CD1

<400>	25													
Met	Trp	Glu	Asn	Trp	Thr	Ile	Val	Ser	Glu	Phe	Val	Leu	Val	Ser
1						5		10						15
Phe	Ser	Ala	Leu	Ser	Thr	Glu	Leu	Gln	Ala	Leu	Leu	Phe	Leu	Leu
						20		25						30
Phe	Leu	Thr	Ile	Tyr	Leu	Val	Thr	Leu	Met	Gly	Asn	Val	Leu	Ile
						35		40						45
Ile	Leu	Val	Thr	Ile	Ala	Asp	Ser	Ala	Leu	Gln	Ser	Pro	Met	Tyr
						50		55						60
Phe	Phe	Leu	Arg	Asn	Leu	Ser	Phe	Leu	Glu	Ile	Gly	Phe	Asn	Leu
						65		70						75
Val	Ile	Val	Pro	Lys	Met	Leu	Gly	Thr	Leu	Ile	Ile	Gln	Asp	Thr
						80		85						90
Thr	Ile	Ser	Phe	Leu	Gly	Cys	Ala	Thr	Gln	Met	Tyr	Phe	Phe	Phe
						95		100						105
Phe	Phe	Gly	Ala	Ala	Glu	Cys	Cys	Leu	Leu	Ala	Thr	Met	Ala	Tyr
						110		115						120
Asp	Arg	Tyr	Val	Ala	Ile	Cys	Asp	Pro	Leu	His	Tyr	Pro	Val	Ile
						125		130						135
Met	Gly	His	Ile	Ser	Cys	Ala	Gln	Leu	Ala	Ala	Ala	Ser	Trp	Phe
						140		145						150
Ser	Gly	Phe	Ser	Val	Ala	Thr	Val	Gln	Thr	Thr	Trp	Ile	Phe	Ser
						155		160						165
Phe	Pro	Phe	Cys	Gly	Pro	Asn	Arg	Val	Asn	His	Phe	Phe	Cys	Asp
						170		175						180
Ser	Pro	Pro	Val	Ile	Ala	Leu	Val	Cys	Ala	Asp	Thr	Ser	Val	Phe
						185		190						195
Glu	Leu	Glu	Ala	Leu	Thr	Ala	Thr	Val	Pro	Phe	Ile	Leu	Phe	Pro
						200		205						210
Phe	Leu	Leu	Ile	Leu	Gly	Ser	Tyr	Val	Arg	Ile	Leu	Ser	Thr	Ile
						215		220						225
Phe	Arg	Met	Pro	Ser	Ala	Glu	Gly	Lys	His	Gln	Ala	Phe	Ser	Thr
						230		235						240
Cys	Ser	Ala	His	Leu	Leu	Val	Val	Ser	Leu	Phe	Tyr	Ser	Thr	Ala
						245		250						255
Ile	Leu	Thr	Tyr	Phe	Arg	Pro	Gln	Ser	Ser	Ala	Ser	Ser	Glu	Ser
						260		265						270
Lys	Lys	Leu	Leu	Ser	Leu	Ser	Ser	Thr	Val	Val	Thr	Pro	Met	Leu
						275		280						285
Asn	Pro	Ile	Ile	Tyr	Ser	Ser	Arg	Asn	Lys	Glu	Val	Lys	Ala	Ala
						290		295						300
Leu	Lys	Arg	Leu	Ile	His	Arg	Thr	Leu	Gly	Ser	Gln	Lys	Leu	
						305		310						

<210> 26
<211> 365
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472008CD1

<400> 26

Met	Glu	Gly	Ser	Val	Glu	Ala	Thr	Pro	Glu	Ile	Pro	Ala	Gln	Met
1				5					10					15
Lys	Cys	His	Pro	Ser	Arg	Pro	Ser	Thr	Leu	Asn	Gln	Leu	Ser	Phe
					20				25					30
Tyr	Gly	Ala	Val	Ser	Ser	Leu	Gly	Arg	Met	His	Gly	Leu	Glu	Thr
					35				40					45
Lys	Ser	Ser	Ala	Glu	Ile	Arg	Ala	Gly	Leu	Lys	Arg	Cys	Asp	Thr
				50					55					60
Leu	Val	Leu	Glu	Ala	Ser	Thr	Leu	Glu	Gly	Asn	Met	Val	Ile	Val
					65				70					75
Leu	Val	Ser	Leu	Lys	Asp	Pro	Lys	Leu	His	Ile	Pro	Met	Tyr	Phe
					80				85					90
Phe	Leu	Ser	Asn	Leu	Ser	Leu	Val	Asp	Leu	Cys	Leu	Thr	Ser	Ser
					95					100				105
Cys	Val	Pro	Gln	Met	Leu	Ile	Asn	Phe	Trp	Gly	Pro	Glu	Lys	Thr
					110					115				120
Ile	Ser	Tyr	Ile	Gly	Cys	Ala	Ile	Gln	Leu	Tyr	Val	Phe	Leu	Trp
					125					130				135
Leu	Gly	Ala	Thr	Glu	Tyr	Val	Leu	Leu	Val	Val	Met	Ala	Val	Asp
					140					145				150
Cys	Tyr	Val	Ala	Val	Cys	His	Pro	Leu	Gln	Asn	Thr	Met	Ile	Met
					155					160				165
His	Pro	Lys	Leu	Cys	Leu	Gln	Leu	Ala	Ile	Leu	Ala	Trp	Gly	Thr
					170					175				180
Gly	Leu	Ala	Gln	Ser	Leu	Ile	Gln	Ser	Pro	Ala	Thr	Leu	Arg	Leu
					185					190				195
Pro	Phe	Cys	Ser	Gln	Arg	Met	Val	Asp	Asp	Val	Val	Cys	Glu	Val
					200					205				210
Pro	Ala	Leu	Ile	Gln	Leu	Ser	Ser	Thr	Asp	Thr	Thr	Tyr	Ser	Glu
					215					220				225
Ile	Gln	Met	Ser	Ile	Ala	Ser	Val	Val	Leu	Leu	Val	Met	Pro	Leu
					230					235				240
Ile	Ile	Ile	Leu	Ser	Ser	Ser	Gly	Ala	Ile	Ala	Lys	Ala	Val	Leu
					245					250				255
Arg	Ile	Lys	Ser	Thr	Ala	Gly	Gln	Lys	Lys	Ala	Phe	Gly	Thr	Cys
					260					265				270
Ile	Ser	His	Leu	Leu	Val	Val	Ser	Leu	Phe	Tyr	Gly	Thr	Val	Thr
					275					280				285
Gly	Val	Tyr	Leu	Gln	Pro	Lys	Asn	His	Tyr	Pro	His	Glu	Trp	Gly
					290					295				300
Lys	Phe	Leu	Thr	Leu	Phe	Tyr	Thr	Val	Val	Thr	Pro	Thr	Leu	Asn
					305					310				315
Pro	Leu	Ile	Tyr	Thr	Leu	Arg	Asn	Lys	Glu	Leu	His	Pro	Trp	Leu
					320					325				330
Lys	Glu	Ala	Lys	Val	Gln	Thr	Ala	Ser	Glu	Ser	Ala	Ser	Pro	Lys
					335					340				345
His	Trp	Gln	Leu	Pro	His	Gly	Val	Gly	Pro	Val	Gly	Val	Gln	Lys
					350					355				360
Thr	Arg	Thr	Glu	Leu										
				365										

<210> 27

<211> 317

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472013CD1

<400> 27

Met Ser Phe Ala Pro Asn Ala Ser His Ser Pro Val Phe Leu Leu

1	5	10	15											
Leu	Gly	Phe	Ser	Arg	Ala	Asn	Ile	Ser	Tyr	Thr	Leu	Leu	Phe	Phe
				20					25					30
Leu	Phe	Leu	Ala	Ile	Tyr	Leu	Thr	Thr	Ile	Leu	Gly	Asn	Val	Thr
				35					40					45
Leu	Val	Leu	Leu	Ile	Ser	Trp	Asp	Ser	Arg	Leu	His	Ser	Pro	Met
				50					55					60
Tyr	Tyr	Leu	Leu	Arg	Gly	Leu	Ser	Val	Ile	Asp	Met	Gly	Leu	Ser
				65					70					75
Thr	Val	Thr	Leu	Pro	Gln	Leu	Leu	Ala	His	Leu	Val	Ser	His	Tyr
				80					85					90
Pro	Thr	Ile	Pro	Ala	Ala	Arg	Cys	Leu	Ala	Gln	Phe	Phe	Phe	Phe
				95					100					105
Tyr	Ala	Phe	Gly	Val	Thr	Asp	Thr	Leu	Val	Ile	Ala	Val	Met	Ala
				110					115					120
Leu	Asp	Arg	Tyr	Val	Ala	Ile	Cys	Asp	Pro	Leu	His	Tyr	Ala	Leu
				125					130					135
Val	Met	Asn	His	Gln	Arg	Cys	Ala	Cys	Leu	Leu	Ala	Leu	Ser	Trp
				140					145					150
Val	Val	Ser	Ile	Leu	His	Thr	Met	Leu	Arg	Val	Gly	Leu	Val	Leu
				155					160					165
Pro	Leu	Cys	Trp	Thr	Gly	Asp	Ala	Gly	Gly	Asn	Val	Asn	Leu	Pro
				170					175					180
His	Phe	Phe	Cys	Asp	His	Arg	Pro	Leu	Leu	Arg	Ala	Ser	Cys	Ser
				185					190					195
Asp	Ile	His	Ser	Asn	Glu	Leu	Ala	Ile	Phe	Phe	Glu	Gly	Gly	Phe
				200					205					210
Leu	Met	Leu	Gly	Pro	Cys	Ala	Leu	Ile	Val	Leu	Ser	Tyr	Val	Arg
				215					220					225
Ile	Gly	Ala	Ala	Ile	Leu	Arg	Leu	Pro	Ser	Ala	Ala	Gly	Arg	Arg
				230					235					240
Arg	Ala	Val	Ser	Thr	Cys	Gly	Ser	His	Leu	Thr	Met	Val	Gly	Phe
				245					250					255
Leu	Tyr	Gly	Thr	Ile	Ile	Cys	Val	Tyr	Phe	Gln	Pro	Pro	Phe	Gln
				260					265					270
Asn	Ser	Gln	Tyr	Gln	Asp	Met	Val	Ala	Ser	Val	Met	Tyr	Thr	Ala
				275					280					285
Ile	Thr	Pro	Leu	Ala	Asn	Pro	Phe	Val	Tyr	Ser	Leu	His	Asn	Lys
				290					295					300
Asp	Val	Lys	Gly	Ala	Leu	Cys	Arg	Leu	Leu	Glu	Trp	Val	Lys	Val
				305					310					315
Asp Pro														

<210> 28
<211> 335
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472015CD1

1	5	10	15											
Met	Glu	Ser	Ser	Phe	Ser	Phe	Gly	Val	Ile	Leu	Ala	Val	Leu	Ala
Ser	Leu	Ile	Ile	Ala	Thr	Asn	Thr	Leu	Val	Ala	Val	Ala	Val	Leu
				20					25					30
Leu	Leu	Ile	His	Lys	Asn	Asp	Gly	Val	Ser	Leu	Cys	Phe	Thr	Leu
				35					40					45
Asn	Leu	Ala	Val	Ala	Asp	Thr	Leu	Ile	Gly	Val	Ala	Ile	Ser	Gly
				50					55					60
Leu	Leu	Thr	Asp	Gln	Leu	Ser	Ser	Pro	Ser	Arg	Pro	Thr	Gln	Lys
				65					70					75
Thr	Leu	Cys	Ser	Leu	Arg	Met	Ala	Phe	Val	Thr	Ser	Ser	Ala	Ala
				80					85					90
Ala	Ser	Val	Leu	Thr	Val	Met	Leu	Ile	Thr	Phe	Asp	Arg	Tyr	Leu

	95		100		105
Ala Ile Lys Gln Pro Phe Arg Tyr Leu Lys Ile Met Ser Gly Phe					
110			115		120
Val Ala Gly Ala Cys Ile Ala Gly Leu Trp Leu Val Ser Tyr Leu					
125			130		135
Ile Gly Phe Leu Pro Leu Gly Ile Pro Met Phe Gln Gln Thr Ala					
140			145		150
Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val Phe His Pro His Phe					
155			160		165
Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro Ala Met Leu Leu					
170			175		180
Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala Ser Met His					
185			190		195
Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met Ala Gly					
200			205		210
Gly Tyr Arg Ser Pro Arg Thr Pro Ser Asp Phe Lys Ala Leu Arg					
215			220		225
Thr Val Ser Val Leu Ile Gly Ser Phe Ala Leu Ser Trp Thr Pro					
230			235		240
Phe Leu Ile Thr Gly Ile Val Gln Val Ala Cys Gln Glu Cys His					
245			250		255
Leu Tyr Leu Val Leu Glu Arg Tyr Leu Trp Leu Leu Gly Val Gly					
260			265		270
Asn Ser Leu Leu Asn Pro Leu Ile Tyr Ala Tyr Trp Gln Lys Glu					
275			280		285
Val Arg Leu Gln Leu Tyr His Met Ala Leu Gly Val Lys Lys Val					
290			295		300
Leu Thr Ser Phe Leu Leu Phe Leu Ser Ala Arg Asn Cys Gly Pro					
305			310		315
Glu Arg Pro Arg Glu Ser Ser Cys His Ile Val Thr Ile Ser Ser					
320			325		330
Ser Glu Phe Asp Gly					
335					

<210> 29

<211> 309

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472016CD1

<400> 29

Met Arg Glu Asn Asn Gln Ser Ser Thr Leu Glu Phe Ile Leu Leu					
1	5		10		15
Gly Val Thr Gly Gln Gln Glu Gln Glu Asp Phe Phe Tyr Ile Leu					
20			25		30
Phe Leu Phe Ile Tyr Pro Ile Thr Leu Ile Gly Asn Leu Leu Ile					
35			40		45
Val Leu Ala Ile Cys Ser Asp Val Arg Leu His Asn Pro Met Tyr					
50			55		60
Phe Leu Leu Ala Asn Leu Ser Leu Val Asp Ile Phe Phe Ser Ser					
65			70		75
Val Thr Ile Pro Lys Met Leu Ala Asn His Leu Leu Gly Ser Lys					
80			85		90
Ser Ile Ser Phe Gly Gly Cys Leu Thr Gln Met Tyr Phe Met Ile					
95			100		105
Ala Leu Gly Asn Thr Asp Ser Tyr Ile Leu Ala Ala Met Ala Tyr					
110			115		120
Asp Arg Ala Val Ala Ile Ser His Pro Leu His Tyr Thr Thr Ile					
125			130		135
Met Ser Pro Arg Ser Cys Ile Trp Leu Ile Ala Gly Ser Trp Val					
140			145		150
Ile Gly Asn Ala Asn Ala Leu Pro His Thr Leu Leu Thr Ala Ser					
155			160		165
Leu Ser Phe Cys Gly Asn Gln Glu Val Ala Asn Phe Tyr Cys Asp					

	170	175	180
Ile Thr Pro Leu	Leu Lys Leu Ser Cys	Ser Asp Ile His Phe	His
185	190	195	
Val Lys Met Met	Tyr Leu Gly Val Gly	Ile Phe Ser Val Pro	Leu
200	205	210	
Leu Cys Ile Ile	Val Ser Tyr Ile Arg	Val Phe Ser Thr Val	Phe
215	220	225	
Gln Val Pro Ser	Thr Lys Gly Val Leu	Lys Ala Phe Ser Thr	Cys
230	235	240	
Gly Ser His Leu	Thr Val Val Ser Leu	Tyr Tyr Gly Thr Val	Met
245	250	255	
Gly Thr Tyr Phe	Arg Pro Leu Thr Asn	Tyr Ser Leu Lys Asp	Ala
260	265	270	
Val Ile Thr Val	Met Tyr Thr Ala Val	Thr Pro Met Leu Asn	Pro
275	280	285	
Phe Ile Tyr Ser	Leu Arg Asn Arg Asp	Met Lys Ala Ala Leu	Arg
290	295	300	
Lys Leu Phe Asn	Lys Arg Ile Ser Ser		
305			

<210> 30

<211> 236

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472017CD1

<400> 30

Met Gly Met Thr Asn	Ser Ser Val Lys Gly Asp Phe Ile Leu Leu	15
1	5	10
Leu Trp Asn Leu Lys	Gly Pro Asp Lys Thr Ile Thr Phe Leu Gly	30
20	25	30
Cys Val Ile Gln Leu	Tyr Ile Ser Leu Ala Leu Gly Ser Thr Glu	45
35	40	45
Cys Val Leu Leu Ala	Val Met Ala Phe Asp Arg Tyr Ala Ala Val	60
50	55	60
Cys Lys Pro Leu His	Tyr Thr Ala Val Met Asn Pro Gln Leu Cys	75
65	70	75
Gln Ala Leu Ala Gly	Val Ala Trp Leu Ser Gly Val Gly Asn Thr	90
80	85	90
Leu Ile Gln Gly Thr	Val Thr Leu Trp Leu Pro Arg Cys Gly His	105
95	100	105
Arg Leu Leu Gln His	Phe Phe Leu Ala Cys Val Asp Ile His Asp	120
110	115	120
Asn Glu Val Gln Leu	Phe Val Ala Ser Leu Val Leu Leu Leu	135
125	130	135
Pro Leu Val Leu Ile	Leu Leu Ser Tyr Gly His Ile Ala Lys Val	150
140	145	150
Val Ile Arg Ile Lys	Ser Val Gln Ala Trp Cys Lys Gly Leu Gly	165
155	160	165
Thr Cys Gly Ser His	Leu Ile Val Val Ser Leu Phe Cys Gly Thr	180
170	175	180
Ile Thr Ala Val Tyr	Ile Gln Ser Asn Ser Ser Tyr Ala His Ala	195
185	190	195
His Gly Lys Phe Ile	Ser Leu Phe Tyr Thr Val Val Thr Pro Thr	210
200	205	210
Leu Asn Pro Leu Ile	Tyr Thr Leu Arg Asn Asn Asp Val Lys Gly	225
215	220	225
Ala Leu Arg Leu Phe	Asn Arg Asp Leu Gly Thr	
230	235	

<210> 31

<211> 363

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472018CD1

<400> 31

Met	Gly	Pro	Gly	Glu	Ala	Leu	Leu	Ala	Gly	Leu	Leu	Val	Met	Val	
1					5				10				15		
Leu	Ala	Val	Ala	Leu	Leu	Ser	Asn	Ala	Leu	Val	Leu	Leu	Cys	Cys	
					20				25				30		
Ala	Tyr	Ser	Ala	Glu	Leu	Arg	Thr	Arg	Ala	Ser	Gly	Val	Leu	Leu	
					35				40				45		
Val	Asn	Leu	Ser	Leu	Gly	His	Leu	Leu	Leu	Ala	Ala	Leu	Asp	Met	
					50				55				60		
Pro	Phe	Thr	Leu	Leu	Gly	Val	Met	Arg	Gly	Arg	Thr	Pro	Ser	Ala	
					65				70				75		
Pro	Gly	Ala	Cys	Gln	Val	Ile	Gly	Phe	Leu	Asp	Thr	Phe	Leu	Ala	
					80				85				90		
Ser	Asn	Ala	Ala	Leu	Ser	Val	Ala	Ala	Leu	Ser	Ala	Asp	Gln	Trp	
					95				100				105		
Leu	Ala	Val	Gly	Phe	Pro	Leu	Arg	Tyr	Ala	Gly	Arg	Leu	Arg	Pro	
					110				115				120		
Arg	Tyr	Ala	Gly	Leu	Leu	Leu	Gly	Cys	Ala	Trp	Gly	Gln	Ser	Leu	
					125				130				135		
Ala	Phe	Ser	Gly	Ala	Ala	Leu	Gly	Cys	Ser	Trp	Leu	Gly	Tyr	Ser	
					140				145				150		
Ser	Ala	Phe	Ala	Ser	Cys	Ser	Leu	Arg	Leu	Pro	Pro	Glu	Pro	Glu	
					155				160				165		
Arg	Pro	Arg	Phe	Ala	Ala	Phe	Thr	Ala	Thr	Leu	His	Ala	Val	Gly	
					170				175				180		
Phe	Val	Leu	Pro	Leu	Ala	Val	Leu	Cys	Leu	Thr	Ser	Leu	Gln	Val	
					185				190				195		
His	Arg	Val	Ala	Arg	Arg	His	Cys	Gln	Arg	Met	Asp	Thr	Val	Thr	
					200				205				210		
Met	Lys	Ala	Leu	Ala	Leu	Leu	Ala	Asp	Leu	His	Pro	Ser	Val	Arg	
					215				220				225		
Gln	Arg	Cys	Leu	Ile	Gln	Gln	Lys	Arg	Arg	Arg	His	Arg	Ala	Thr	
					230				235				240		
Arg	Lys	Ile	Gly	Ile	Ala	Ile	Ala	Thr	Phe	Leu	Ile	Cys	Phe	Ala	
					245				250				255		
Pro	Tyr	Val	Met	Thr	Arg	Leu	Ala	Glu	Leu	Val	Pro	Phe	Val	Thr	
					260				265				270		
Val	Asn	Ala	Gln	Trp	Gly	Ile	Leu	Ser	Lys	Cys	Leu	Thr	Tyr	Ser	
					275				280				285		
Lys	Ala	Val	Ala	Asp	Pro	Phe	Thr	Tyr	Ser	Leu	Leu	Arg	Arg	Pro	
					290				295				300		
Phe	Arg	Gln	Val	Leu	Ala	Gly	Met	Val	His	Arg	Leu	Leu	Lys	Arg	
					305				310				315		
Thr	Pro	Arg	Pro	Ala	Ser	Thr	His	Asp	Ser	Ser	Leu	Asp	Val	Ala	
					320				325				330		
Gly	Met	Val	His	Gln	Leu	Leu	Lys	Arg	Thr	Pro	Arg	Pro	Ala	Ser	
					335				340				345		
Thr	His	Asn	Gly	Ser	Val	Asp	Thr	Glu	Asn	Asp	Ser	Cys	Leu	Gln	
					350				355				360		
Gln Thr His															

<210> 32

<211> 308

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472019CD1

<400> 32

Met Ala Met Asp Asn Val Thr Ala Val Phe Gln Phe Leu Leu Ile

1	5	10	15
Gly Ile Ser Asn Tyr	Pro Gln Trp Arg Asp	Thr Phe Phe Thr	Leu
20	25		30
Val Leu Ile Ile Tyr	Leu Ser Thr Leu Leu	Gly Asn Gly Phe Met	
35	40		45
Ile Phe Leu Ile His	Phe Asp Pro Asn Leu	His Thr Pro Ile Tyr	
50	55		60
Phe Phe Leu Ser Asn Leu Ser Phe Leu Asp	Leu Cys Tyr Gly Thr		
65	70		75
Ala Ser Met Pro Gln Ala Leu Val His	Cys Phe Ser Thr His	Pro	
80	85		90
Tyr Leu Ser Tyr Pro Arg Cys Leu Ala	Gln Thr Ser Val Ser	Leu	
95	100		105
Ala Leu Ala Thr Ala Glu Cys Leu Leu	Leu Ala Ala Met Ala	Tyr	
110	115		120
Asp Arg Val Val Ala Ile Ser Asn Pro	Leu Arg Tyr Ser Val	Val	
125	130		135
Met Asn Gly Pro Val Cys Val Cys Leu	Val Ala Thr Ser Trp	Gly	
140	145		150
Thr Ser Leu Val Leu Thr Ala Met Leu	Ile Leu Ser Leu Arg	Leu	
155	160		165
His Phe Cys Gly Ala Asn Val Ile Asn	His Phe Ala Cys Glu	Ile	
170	175		180
Leu Ser Leu Ile Lys Leu Thr Cys Ser	Asp Thr Ser Leu Asn	Glu	
185	190		195
Phe Met Ile Leu Ile Thr Ser Ile Phe	Thr Leu Leu Leu Pro	Phe	
200	205		210
Gly Phe Val Leu Leu Ser Tyr Ile Arg	Ile Ala Met Ala Ile	Ile	
215	220		225
Arg Ile Arg Ser Leu Gln Gly Arg Leu	Lys Ala Phe Thr Thr	Cys	
230	235		240
Gly Ser His Leu Thr Val Val Thr Ile	Phe Tyr Gly Ser Ala	Ile	
245	250		255
Ser Met Tyr Met Lys Thr Gln Ser Lys	Ser Tyr Pro Asp Gln	Asp	
260	265		270
Lys Phe Ile Ser Val Phe Tyr Gly Ala	Leu Thr Pro Met Leu	Asn	
275	280		285
Pro Leu Ile Tyr Ser Leu Arg Lys Lys	Asp Val Lys Arg Ala	Ile	
290	295		300
Arg Lys Val Met Leu Lys Arg Thr			
305			

<210> 33

<211> 343

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472021CD1

<400> 33

1	5	10	15
Leu Gly Ile Phe Arg	Glu Thr Met Val Asn Leu Thr Ser Met	Ser	
20	25		30
Gly Phe Leu Leu Met Gly Phe Ser Asp	Glu Arg Lys Leu Gln	Ile	
35	40		45
Leu His Ala Leu Val Phe Leu Val Thr	Tyr Leu Leu Ala Leu	Thr	
50	55		60
Gly Asn Leu Leu Ile Ile Thr Ile Ile	Thr Val Asp Arg Arg	Leu	
65	70		75
His Ser Pro Met Tyr Tyr Phe Leu Lys	His Leu Ser Leu Leu	Asp	
80	85		90
Leu Cys Phe Ile Ser Val Thr Val Pro	Gln Ser Ile Ala Asn	Ser	
95	100		105
Leu Met Gly Asn Gly Tyr Ile Ser Leu	Val Gln Cys Ile Leu	Gln	

	110	115	120
Val Phe Phe Phe	Ile Ala Leu Ala Ser	Ser Glu Val Ala Ile	Leu
125	130	135	
Thr Val Met Ser	Tyr Asp Arg Tyr Ala	Ala Ile Cys Gln Pro	Leu
140	145	150	
His Tyr Glu Thr	Ile Met Asp Pro Arg	Ala Cys Arg His Ala	Val
155	160	165	
Ile Ala Val Trp	Ile Ala Gly Gly Leu	Ser Gly Leu Met His	Ala
170	175	180	
Ala Ile Asn Phe	Ser Ile Pro Leu Cys	Gly Lys Arg Val Ile	His
185	190	195	
Gln Phe Phe Cys	Asp Val Pro Gln Met	Leu Lys Leu Ala Cys	Ser
200	205	210	
Tyr Glu Phe Ile	Asn Glu Ile Ala Leu	Ala Ala Phe Thr Thr	Ser
215	220	225	
Ala Ala Phe Ile	Cys Leu Ile Ser Ile	Val Leu Ser Tyr Ile	Arg
230	235	240	
Ile Phe Ser Thr	Val Leu Arg Ile Pro	Ser Ala Glu Gly Arg	Thr
245	250	255	
Lys Val Phe Ser	Thr Cys Leu Pro His	Leu Phe Val Ala Thr	Phe
260	265	270	
Phe Leu Ser Ala	Ala Gly Phe Glu Phe	Leu Arg Leu Pro Ser	Asp
275	280	285	
Ser Ser Ser Thr	Val Asp Leu Val Phe	Ser Val Phe Tyr Thr	Val
290	295	300	
Ile Pro Pro Thr	Leu Asn Pro Val Ile	Tyr Ser Leu Arg Asn	Asp
305	310	315	
Ser Met Lys Ala	Ala Leu Arg Lys Met	Leu Ser Lys Glu Glu	Leu
320	325	330	
Pro Gln Arg Lys	Met Cys Leu Lys Ala	Met Phe Lys Leu	
335	340		

<210> 34
<211> 323
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472009CD1

	<400> 34		
Met Trp Gln Lys Asn Gln Thr Ser Leu Ala Asp Phe Ile Leu Glu			
1	5	10	15
Gly Leu Phe Asp Asp Ser Leu Thr His	Leu Phe Leu Phe Ser	Leu	
20	25	30	
Thr Met Val Val Phe Leu Ile Ala Val Ser	Gly Asn Thr Leu Thr		
35	40	45	
Ile Leu Leu Ile Cys Ile Asp Pro Gln	Leu His Thr Pro Met	Tyr	
50	55	60	
Phe Leu Leu Ser Gln Leu Ser Leu Met Asp	Leu Met His Val	Ser	
65	70	75	
Thr Thr Ile Leu Lys Met Ala Thr Asn	Tyr Leu Ser Gly Lys	Lys	
80	85	90	
Ser Ile Ser Phe Val Gly Cys Ala Thr	Gln His Phe Leu Tyr	Leu	
95	100	105	
Cys Leu Gly Gly Ala Glu Cys Phe Leu	Leu Ala Val Met Ser	Tyr	
110	115	120	
Asp Arg Tyr Val Ala Ile Cys His Pro	Leu Arg Tyr Ala Val	Leu	
125	130	135	
Met Asn Lys Lys Val Gly Leu Met Met	Ala Val Met Ser Trp	Leu	
140	145	150	
Gly Ala Ser Val Asn Ser Leu Ile His	Met Ala Ile Leu Met	His	
155	160	165	
Phe Pro Phe Cys Gly Pro Arg Lys Val	Tyr His Phe Tyr Cys	Glu	
170	175	180	
Phe Pro Ala Val Val Lys Leu Val Cys	Gly Asp Ile Thr Val	Tyr	

	185	190	195
Glu Thr Thr Val	Tyr Ile Ser Ser Ile	Leu Leu Leu Leu Pro	Ile
200	205	210	
Phe Leu Ile Ser	Thr Ser Tyr Val Phe	Ile Leu Gln Ser Val	Ile
215	220	225	
Gln Met Arg Ser	Ser Gly Ser Lys Arg	Asn Ala Phe Ala Thr	Cys
230	235	240	
Gly Ser His Leu	Thr Val Val Ser Leu	Trp Phe Gly Ala Cys	Ile
245	250	255	
Phe Ser Tyr Met	Arg Pro Arg Ser Gln	Cys Thr Leu Leu Gln	Asn
260	265	270	
Lys Val Gly Ser	Val Phe Tyr Ser Ile	Ile Thr Pro Thr Leu	Asn
275	280	285	
Ser Leu Ile Tyr	Thr Leu Arg Asn Lys	Asp Val Ala Lys Ala	Leu
290	295	300	
Arg Arg Val Leu	Arg Arg Asp Val Ile	Thr Gln Cys Ile Gln	Arg
305	310	315	
Leu Gln Leu Trp	Leu Pro Arg Val		
320			

<210> 35

<211> 299

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472010CD1

<400> 35

Met	Glu	Leu	Glu	Gly	Asp	Phe	Leu	Gly	Ser	Val	Gly	Glu	Leu	Gly	
1				5					10						15
Gln	Val	Ile	Gln	Thr	Cys	Ser	Gly	Ile	Tyr	Val	Phe	Thr	Val	Val	
				20					25						30
Gly	Asn	Leu	Gly	Leu	Ile	Thr	Leu	Ile	Gly	Ile	Asn	Pro	Ser	Leu	
				35					40						45
His	Thr	Pro	Met	Tyr	Phe	Phe	Leu	Phe	Asn	Leu	Ser	Phe	Ile	Asp	
				50					55						60
Leu	Cys	Tyr	Ser	Cys	Val	Phe	Thr	Pro	Lys	Met	Leu	Asn	Asp	Phe	
				65					70						75
Val	Ser	Glu	Ser	Ile	Ile	Ser	Tyr	Val	Gly	Cys	Met	Thr	Gln	Leu	
				80					85						90
Phe	Phe	Phe	Cys	Phe	Phe	Val	Asn	Ser	Glu	Cys	Tyr	Val	Leu	Val	
				95					100						105
Ser	Met	Ala	Tyr	Asp	Arg	Tyr	Val	Ala	Ile	Cys	Asn	Pro	Leu	Leu	
				110					115						120
Tyr	Met	Val	Thr	Met	Ser	Pro	Arg	Val	Cys	Phe	Leu	Leu	Met	Phe	
				125					130						135
Gly	Ser	Tyr	Val	Val	Gly	Phe	Ala	Gly	Ala	Met	Ala	His	Thr	Gly	
				140					145						150
Ser	Met	Leu	Arg	Leu	Thr	Phe	Cys	Asp	Ser	Asn	Val	Ile	Asp	His	
				155					160						165
Tyr	Leu	Cys	Asp	Val	Leu	Pro	Leu	Leu	Gln	Leu	Ser	Cys	Thr	Ser	
				170					175						180
Thr	His	Val	Ser	Glu	Leu	Val	Phe	Phe	Ile	Val	Val	Gly	Val	Ile	
				185					190						195
Thr	Met	Leu	Ser	Ser	Ile	Ser	Ile	Val	Ile	Ser	Tyr	Ala	Leu	Ile	
				200					205						210
Leu	Ser	Asn	Ile	Leu	Cys	Ile	Pro	Ser	Ala	Glu	Gly	Arg	Ser	Lys	
				215					220						225
Ala	Phe	Ser	Thr	Trp	Gly	Ser	His	Ile	Ile	Ala	Val	Ala	Leu	Phe	
				230					235						240
Phe	Gly	Ser	Gly	Thr	Phe	Thr	Tyr	Leu	Thr	Thr	Ser	Phe	Pro	Gly	
				245					250						255
Ser	Met	Asn	His	Gly	Arg	Phe	Ala	Ser	Val	Phe	Tyr	Thr	Asn	Val	
				260					265						270
Val	Pro	Met	Leu	Asn	Pro	Ser	Ile	Tyr	Ser	Lieu	Arg	Asn	Lys	Asp	

275	280	285
Asp Lys Leu Ala Leu Gly Lys Thr Leu Lys	Arg Val Leu Phe	
290	295	

<210> 36
<211> 307
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472011CD1

<400> 36

Met Glu Thr Gly Asn Leu Thr Trp Val Ser Asp Phe Val Phe Leu	
1 5 10 15	
Gly Leu Ser Gln Thr Arg Glu Leu Gln Arg Phe Leu Phe Leu Met	
20 25 30	
Phe Leu Phe Val Tyr Ile Thr Thr Val Met Gly Asn Ile Leu Ile	
35 40 45	
Ile Ile Thr Val Thr Ser Asp Ser Gln Leu His Thr Pro Met Tyr	
50 55 60	
Phe Leu Leu Arg Asn Leu Ala Val Leu Asp Leu Cys Phe Ser Ser	
65 70 75	
Val Thr Ala Pro Lys Met Leu Val Asp Leu Leu Ser Glu Lys Lys	
80 85 90	
Thr Ile Ser Tyr Gln Gly Cys Met Gly Gln Ile Phe Phe Phe His	
95 100 105	
Phe Leu Gly Gly Ala Met Val Phe Phe Leu Ser Val Met Ala Phe	
110 115 120	
Asp Arg Leu Ile Ala Ile Ser Arg Pro Leu Arg Tyr Val Thr Val	
125 130 135	
Met Asn Thr Gln Leu Trp Val Gly Leu Val Val Ala Thr Trp Val	
140 145 150	
Gly Gly Phe Val His Ser Ile Val Gln Leu Ala Leu Met Leu Pro	
155 160 165	
Leu Pro Phe Cys Gly Pro Asn Ile Leu Asp Asn Phe Tyr Cys Asp	
170 175 180	
Val Pro Gln Val Leu Arg Leu Ala Cys Thr Asp Thr Ser Leu Leu	
185 190 195	
Glu Phe Leu Lys Ile Ser Asn Ser Gly Leu Leu Asp Val Val Trp	
200 205 210	
Phe Phe Leu Leu Leu Met Ser Tyr Leu Phe Ile Leu Val Met Leu	
215 220 225	
Arg Ser His Pro Gly Glu Ala Arg Arg Lys Ala Ala Ser Thr Cys	
230 235 240	
Thr Thr His Ile Ile Val Val Ser Met Ile Phe Val Pro Ser Ile	
245 250 255	
Tyr Leu Tyr Ala Arg Pro Phe Thr Pro Phe Pro Met Asp Lys Leu	
260 265 270	
Val Ser Ile Gly His Thr Val Met Thr Pro Met Leu Asn Pro Met	
275 280 285	
Ile Tyr Thr Leu Arg Asn Gln Asp Met Gln Ala Ala Val Arg Arg	
290 295 300	
Leu Gly Arg His Arg Leu Val	
305	

<210> 37
<211> 314
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472012CD1

<400> 37

Met	Asp	Asn	Ser	Asn	Trp	Thr	Ser	Val	Ser	His	Phe	Val	Leu	Leu
1					5				10					15
Gly	Ile	Ser	Thr	His	Pro	Glu	Glu	Gln	Ile	Pro	Leu	Phe	Leu	Val
						20			25					30
Phe	Ser	Leu	Met	Tyr	Ala	Ile	Asn	Ile	Ser	Gly	Asn	Leu	Ala	Ile
						35			40					45
Ile	Thr	Leu	Ile	Leu	Ser	Ala	Pro	Arg	Leu	His	Ile	Pro	Met	Tyr
						50			55					60
Ile	Phe	Leu	Ser	Asn	Leu	Ala	Leu	Thr	Asp	Ile	Cys	Phe	Thr	Ser
						65			70					75
Thr	Thr	Val	Pro	Lys	Met	Leu	Gln	Ile	Ile	Phe	Ser	Pro	Thr	Lys
						80			85					90
Val	Ile	Ser	Tyr	Thr	Gly	Cys	Leu	Ala	Gln	Thr	Tyr	Phe	Phe	Ile
						95			100					105
Cys	Phe	Ala	Val	Met	Glu	Asn	Phe	Ile	Leu	Ala	Val	Met	Ala	Tyr
						110			115					120
Asp	Arg	Tyr	Ile	Ala	Ile	Cys	His	Pro	Phe	His	Tyr	Thr	Met	Ile
						125			130					135
Leu	Thr	Arg	Met	Leu	Cys	Val	Lys	Met	Val	Val	Met	Cys	His	Ala
						140			145					150
Leu	Ser	His	Leu	His	Ala	Met	Leu	His	Thr	Phe	Leu	Ile	Gly	Gln
						155			160					165
Leu	Ile	Phe	Cys	Ala	Asp	Asn	Arg	Ile	Pro	His	Phe	Phe	Cys	Asp
						170			175					180
Leu	Tyr	Ala	Leu	Met	Lys	Ile	Ser	Cys	Thr	Ser	Thr	Tyr	Leu	Asn
						185			190					195
Thr	Leu	Met	Ile	His	Thr	Glu	Gly	Ala	Val	Val	Ile	Ser	Gly	Ala
						200			205					210
Leu	Ala	Phe	Ile	Thr	Ala	Ser	Tyr	Ala	Cys	Ile	Ile	Leu	Val	Val
						215			220					225
Leu	Arg	Ile	Pro	Ser	Ala	Lys	Gly	Arg	Trp	Lys	Thr	Phe	Ser	Thr
						230			235					240
Cys	Gly	Ser	His	Leu	Thr	Val	Val	Ala	Ile	Phe	Tyr	Gly	Thr	Leu
						245			250					255
Ser	Trp	Val	Tyr	Phe	Arg	Pro	Leu	Ser	Ser	Tyr	Ser	Val	Thr	Lys
						260			265					270
Gly	Arg	Ile	Ile	Thr	Val	Val	Tyr	Thr	Val	Val	Thr	Pro	Met	Leu
						275			280					285
Asn	Pro	Phe	Ile	Tyr	Ser	Leu	Arg	Asn	Gly	Asp	Val	Lys	Gly	Gly
						290			295					300
Phe	Met	Lys	Trp	Met	Ser	Arg	Met	Gln	Thr	Phe	Phe	Phe	Arg	
						305			310					

<210> 38
<211> 310
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7472014CD1

Met	Gly	Arg	Asn	Asn	Leu	Thr	Arg	Pro	Ser	Glu	Phe	Ile	Leu	Leu
1					5				10					15
Gly	Leu	Ser	Ser	Arg	Pro	Glu	Asp	Gln	Lys	Pro	Leu	Phe	Ala	Val
						20			25					30
Phe	Leu	Pro	Ile	Tyr	Leu	Ile	Thr	Val	Ile	Gly	Asn	Leu	Leu	Ile
						35			40					45
Ile	Leu	Ala	Ile	Arg	Ser	Asp	Thr	Arg	Leu	Gln	Thr	Pro	Met	Tyr
						50			55					60
Phe	Phe	Leu	Ser	Ile	Leu	Ser	Phe	Val	Asp	Ile	Cys	Tyr	Val	Thr
						65			70					75
Val	Ile	Ile	Pro	Lys	Met	Leu	Val	Asn	Phe	Leu	Ser	Glu	Thr	Lys
						80			85					90
Thr	Ile	Ser	Tyr	Gly	Glu	Cys	Leu	Thr	Gln	Met	Tyr	Phe	Phe	Leu
						95			100					105

Ala	Phe	Gly	Asn	Thr	Asp	Ser	Tyr	Leu	Leu	Ala	Ala	Met	Ala	Ile
				110				115						120
Asp	Arg	Tyr	Val	Ala	Ile	Cys	Asn	Pro	Phe	His	Tyr	Ile	Thr	Ile
				125				130						135
Met	Ser	His	Arg	Cys	Cys	Val	Leu	Leu	Leu	Val	Leu	Ser	Phe	Cys
				140				145						150
Ile	Pro	His	Phe	His	Ser	Leu	Leu	His	Ile	Leu	Leu	Thr	Asn	Gln
				155				160						165
Leu	Ile	Phe	Cys	Ala	Ser	Asn	Val	Ile	His	His	Phe	Phe	Cys	Asp
				170				175						180
Asp	Gln	Pro	Val	Leu	Lys	Leu	Ser	Cys	Ser	Ser	His	Phe	Val	Lys
				185				190						195
Glu	Ile	Thr	Val	Met	Thr	Glu	Gly	Leu	Ala	Val	Ile	Met	Thr	Pro
				200				205						210
Phe	Ser	Cys	Ile	Ile	Ile	Ser	Tyr	Leu	Arg	Ile	Leu	Ile	Thr	Val
				215				220						225
Leu	Lys	Ile	Pro	Ser	Ala	Ala	Gly	Lys	Arg	Lys	Ala	Phe	Ser	Thr
				230				235						240
Cys	Gly	Ser	His	Leu	Thr	Val	Val	Thr	Leu	Phe	Tyr	Gly	Ser	Ile
				245				250						255
Ser	Tyr	Val	Tyr	Phe	Gln	Pro	Leu	Ser	Asn	Tyr	Thr	Val	Lys	Asp
				260				265						270
Gln	Ile	Ala	Thr	Ile	Ile	Tyr	Thr	Val	Leu	Thr	Pro	Met	Leu	Asn
				275				280						285
Pro	Phe	Ile	Tyr	Ser	Leu	Arg	Asn	Lys	Asp	Met	Lys	Gln	Gly	Leu
				290				295						300
Ala	Lys	Leu	Met	His	Arg	Met	Lys	Cys	Gln					
				305				310						

<210> 39

<211> 359

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472020CD1

<400> 39

Met	Phe	Lys	Ala	Ile	Leu	Gly	His	Val	Trp	Pro	Lys	Asp	His	Gly
1				5				10						15
Leu	Asp	Lys	Leu	Val	Val	Arg	Cys	Pro	Arg	His	Thr	Glu	Pro	Trp
				20				25						30
Asn	Leu	Thr	Gly	Ile	Ser	Glu	Phe	Leu	Leu	Gly	Leu	Ser	Glu	
				35				40						45
Asp	Pro	Glu	Leu	Gln	Pro	Val	Leu	Pro	Gly	Leu	Ser	Leu	Ser	Met
				50				55						60
Tyr	Leu	Val	Thr	Val	Leu	Arg	Asn	Leu	Leu	Ile	Ile	Leu	Ala	Val
				65				70						75
Ser	Ser	Asp	Ser	His	Leu	His	Thr	Pro	Met	Cys	Phe	Phe	Leu	Ser
				80				85						90
Asn	Leu	Cys	Trp	Ala	Asp	Ile	Gly	Phe	Thr	Ser	Ala	Met	Val	Pro
				95				100						105
Lys	Met	Ile	Val	Asp	Met	Gln	Ser	His	Ser	Arg	Val	Ile	Ser	Tyr
				110				115						120
Ala	Gly	Cys	Leu	Thr	Gln	Met	Ser	Phe	Phe	Val	Leu	Phe	Ala	Cys
				125				130						135
Ile	Glu	Asp	Met	Leu	Leu	Thr	Val	Met	Ala	Tyr	Asp	Arg	Phe	Val
				140				145						150
Ala	Ile	Cys	His	Pro	Leu	His	Tyr	Pro	Val	Ile	Met	Asn	Pro	His
				155				160						165
Leu	Gly	Val	Phe	Leu	Val	Leu	Val	Ser	Phe	Phe	Leu	Ser	Leu	Leu
				170				175						180
Asp	Ser	Gln	Leu	His	Ser	Trp	Ile	Val	Leu	Gln	Phe	Thr	Phe	Phe
				185				190						195
Lys	Asn	Val	Glu	Ile	Ser	Asn	Phe	Val	Cys	Asp	Pro	Ser	Gln	Leu
				200				205						210

Leu	Asn	Leu	Ala	Cys	Ser	Asp	Ser	Val	Ile	Asn	Ser	Ile	Phe	Ile
215				215				220					225	
Tyr	Leu	Asp	Ser	Ile	Met	Phe	Gly	Phe	Leu	Pro	Ile	Ser	Gly	Ile
				230				235					240	
Leu	Leu	Ser	Tyr	Ala	Asn	Asn	Val	Pro	Ser	Ile	Leu	Arg	Ile	Ser
				245				250					255	
Ser	Ser	Asp	Arg	Lys	Ser	Lys	Ala	Phe	Ser	Thr	Cys	Gly	Ser	His
				260				265					270	
Leu	Ala	Val	Val	Cys	Leu	Phe	Tyr	Gly	Thr	Gly	Ile	Gly	Val	Tyr
				275				280					285	
Leu	Thr	Ser	Ala	Val	Ser	Pro	Pro	Pro	Arg	Asn	Gly	Val	Val	Ala
				290				295					300	
Ser	Val	Met	Tyr	Ala	Val	Val	Thr	Pro	Met	Leu	Asn	Pro	Phe	Ile
				305				310					315	
Tyr	Ser	Leu	Arg	Asn	Arg	Asp	Ile	Gln	Ser	Ala	Leu	Trp	Arg	Leu
				320				325					330	
Arg	Ser	Arg	Thr	Val	Glu	Ser	His	Asp	Leu	Leu	Ser	Gln	Asp	Leu
				335				340					345	
Leu	His	Pro	Phe	Ser	Cys	Val	Gly	Glu	Lys	Gly	Gln	Pro	His	
				350				355						

<210> 40
<211> 936
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 104941CB1

<400> 40
atggagataa agaactacag cagcagcacc tcaggcttca tcctcctggg cctctttcc 60
aaccctcagc tgcagaaaacc tctctttgcc atcttcctca tcatgtacct gtcgcgtcg 120
gtggggaaatg tgctcatcat cccggccatc tactctgacc ccaggtctca caccctatg 180
tactttttc ttagcaactt gtctttcatg gatatctgt tcacaacagt catagtgcct 240
aagatgtgg tgaattttct atcagagaca aagggttatct cctatgtggg ctgcctggcc 300
cagatgtact tctttatggc atttgggaaac actgacagct acctgtggc ctctatggcc 360
atcgacccgc tggtgccat ctgcaacccc ttacactatg atgtggttat gaaaccacgg 420
cattgcctgc tcatgtcttatt gggttcttgc agcatctccc acctacattc cttgttccgc 480
gtgctactta tgtctcgctt gtctttctgt gcctctcaca tcattaagca cttttctgt 540
gacaccggc ctgtctaaa gctctccgtc tctgacacat cctccagcca gatgggtgg 600
atgactgaga ctttagctgt cattgtgacc cccttctgt gtatcatctt ctccctacctg 660
cgaatcatgg tcaactgtgtc cagaatcccc tctgcagccg ggaagtggaa ggccttctct 720
acctgtggct cccacccatc tgcagtagcc cttttctatg ggagttat tatgtctat 780
tttagggccc tgcctatgtt ctcagtggtt agggaccggg tagccacagt tatgtacaca 840
gtagtgacac ccatgtgaa cccttcatc tacagcctga ggaacaaaga tatgaagagg 900
ggtttgaaga aattacagga cagaatttac cggtaa 936

<210> 41
<211> 3365
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1499408CB1

<400> 41
atggaccagc cagaggcccc ctgctccagc acggggccgc gcctcgccgt ggcccgcgag 60
ctgctcctgg ctgcgttgg ggaactgagc caagagcagc tgaagcgctt ccgcacacaag 120
ctgcgcgacg tggcccccggc cggacgcagc atccctgtgg ggcggcttgg ggcgcggac 180
gccgtggacc tcgcggagca gctggcccgat ttctacggcc cggagccgtc cctggaggtg 240
gccgcagaaga ccctcaagag ggcggacgcgc cgcgcacgtgg cggcgcagct ccaggagcg 300
cggtgcagc ggctcggtt cggctccggg acgtgtctt cctgttccga gtacaagaag 360
aagtacccggg agcacgtgtc gcagctgcac gtcgggtga aggagggaa cgcggcgctc 420
gtgaagatca ccaagcgctt caccaagctg ctcatcgcc ccgagagcgc cgcggcgctc 480
gaggcgctgg gcccccgccgca agagcctgag cccggccgcgc cgcggcgctc ggacacgcac 540

actttcaacc gccttcccg ccgcgacgag gaggggccggc ggccgctgac cgtggtgctg 600
 cagggccccgg cgggcacatcg caagaccatg gcccggaaaa agatctgt a cactggcg 660
 gccggcaagc tgtaccaggc ccagggtggac ttccgccttc tcatgcctg cggcgagctg 720
 ctggagaggc cgggcacgcg cagccctggc gacctgatc tggaccaggc ccccgaccgc 780
 ggcgcggccgg tgccgcagat gctggcccg cccgcggc tgcttcat cctggacggc 840
 gggacgagc tgccggcgct gggggcccc gaggccgcgc cctgcacaga ccccttcgag 900
 gccgcgagcg gccgcgggt gctaggcggg ctgctgagca aggctgctg gcccacggcc 960
 ctcctgtgg tgaccacgcg cgccggccccc cccggaggc tgcaggccg cctgtgttcc 1020
 ccgcagtgcg cggaggtgcg cggcttcc gacaaggaca agaagaagta tttctacaag 1080
 ttcttcggg atgagaggag ggccgagcgc gcttaccgc tcgtgaagga gaacgagacg 1140
 ctgttcgcgc tgtgttcgt gcccctcg tgcgtggatcg tgcaccgt gctgcgccag 1200
 cagctggagc tgggtcgaaa cctgtcgcc acgttccaaga ccaccacgtc agtgtacctg 1260
 ctttccatca ccagcggttct gagctcggtc cccggtagcc acggggcccg gttcaggggc 1320
 gacctgcgc atctgtccg cctggccgc gaggggcgtc tcggacgcg ggcgcagttt 1380
 gccgagaagg aactggagca actggagtt cgtggcttca aagtgcagac gctgtttctc 1440
 agcaaaaagg agtgcgggg cgtgtggag acagagggtca cttaccagg catgcaccag 1500
 agttccagg agttctcgcc ggcactgtcc tacctgtgg aggacggcgg ggtgcccagg 1560
 accgcggctg gccgcgttgg gacactcctg cgtggggacg cccagccgca cagccactt 1620
 gtgctcacca cgcgttctt ctgcgtact ctgcgtccg acgcggatgcg cgacatcgag 1680
 cgcacttcg gctgcgtgg ttcagagctg gtgaagcagg agggccctgcg gtgggtgcag 1740
 ggacagggac agggctgccc cggagtggca ccagagggtga ccgagggggc caaagggctc 1800
 gaggacaccg aagagccaga ggaggaggag gaggggagagg agccaaacta cccactggag 1860
 ttgctgtact gctgtacga gacgcaggag gacgcgtttt tgcgc当地 cctgtgtccgg 1920
 ttcccgagc tgccgtgtca gcgagtgcgc ttctggccca tggacgtgc tggtctgagc 1980
 tactgcgtg ggtgtcgccc tgctggacag gcaactgcggc tgatcagctg cagattggtt 2040
 gtcgcggcgg aagaagaagaa gaagagctt gggaaagggc tccaggccag cttgggtggc 2100
 ggcaggttctc aaggcaccac aaaacaacttgc ccatctgcg acgcctcacgc tgc当地 cttttcatcc 2160
 gcaatgactg accactgtg ccatctgcg acgcctcacgc tgc当地 cttccactg caaactccct 2220
 gacgcggctt gccgagaccc ttctgaggcc ctgaggccag ccccccact gacggagctg 2280
 ggcctccccc acaacaggct cagtggccgg ggactgcgtt tgctgagtg gggcttagcc 2340
 tggccgcgt gcaagggtgca gacgggtcagg gtacagctgc ctgacccca ggcagggtctc 2400
 cagtacctgg tgggtatgtc tggcagagc cccgcctga ccacccctga tctcagcgcc 2460
 tgccaaactgc cgc当地 ccttgcgtc ggtgacccctac ctgtgtgcag tccgc当地 ccagggtatgc 2520
 ggcctgcaga ccctcagtc ggc当地 cctgtgtc gagctggccgg agcactgcact acaggagctt 2580
 caggctgtg agagagccaa gccggatgt gtc当地 cccacttgc acccaggctt ggcaggccac 2640
 ccacaaccc ccaaggaaact catctgcacc ttctggccgt ctggccca gaggccatgg 2700
 gaagacccta gtc当地 aacttgcgtt ctgtggagag aacggcccat tccaaaggcc gggaggatatt 2760
 gctctcgcc ttggggaaac ttttggccgg agaggccgc gacaggcatg tggggaggccc 2820
 agacacggca ccctgcccccc tccaggacag gcccaggacc tgccctctc tccacaccc 2880
 gggtacccct tcccccctt ccccccact actccaccc ccttcccttc ctgagaccct 2940
 ccagccattc ccctgaaaa cccccccca ccccaagccca caataatgac agcggagat 3000
 ccaattaact aagcacctac ctggggccgg aataaccctt cactgc当地 tccccatctg 3060
 cagtgtggcc caacagcccc cagaactatgc cccacataga ctggaggtag gcaacttccacc 3120
 gtc当地 cccctt gtaggaatg agaccatccc tgaggctatg gcccaggccc acaggcgctc 3180
 agtgtgtgat atctttggga agggagacta gggcagggtgg agacagcgca gaaccccccgt 3240
 gctgggtggg aagcatgacc acatgtggg tgagcagccccc ccatgcactg acggtaaatt 3300
 cccctgtgga ctcatttctg ttgggttctt ttaacacccggg ccaggccgtt ggcgtgtggg tacaatacag 3360
 gtcga 3365

<210> 42
 <211> 1325
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3168839CB1

<400> 42
 catggcatcc ccagcctagc tcccaatccc actttggcac gatgttagcc aacagctcc 60
 caaccaacag ttctgttctc ccgtgtccgt actaccgacc tacccaccgc ctgc当地 tgg 120
 tggctacag ctgggtgtc gtc当地 cccctca cccgc当地 ctctgggtct 180
 tcctgc当地 cccctc gtc当地 cccctc cactcggtgg tgagcgtgtt catgtgttac ctggccggcc 240
 gcgacccctgctt ctc当地 cccctc tgccctggcc ttc当地 cccctc ctactacgc ctgc当地 300
 ggc当地 cccctccccc cggccctccctg tgccagacga cggccggccat cttccagatg aacatgtacg 360
 gcagctgc当地 ctccctgtatg ctc当地 cccctccctg tgccagccctt cggccccc当地 gtgc当地 420
 tgc当地 cccctccctg cccctccctg tgccagccctt cggccccc当地 gtgc当地 480

cgctcatcct ggtgtttgcc gtgcccggcg cccgcgtgca cagggccctcg cgttggccgtc 540
 accgggacct cgagggtgcgc ctatgttcg agaggttcag cgacgagctg tggaaaggca 600
 ggctgtgcc ctcgtgtcg ctggccgagg cgctgggctt cctgtgtccc ctggccggcgg 660
 tggtactactc gtcggggcga gtcttctgga cgctggcgcg ccccgacgca acgcagagcc 720
 agcggccgcg gaagaccgtg cgcctctgc tggctaacct cgtcatctc ctgtgtgtgt 780
 tcgtgcccta caacagcact ctggccgtct acgggctgtc gcggagcaag ctggtgccgg 840
 ccagcgtgcc tgccccgcgt cgctgtgcgcg ggggtgtat ggtgtatggc ctgtgtggccg 900
 gcgccaactg cgtgtgttgc acatcttag cgcctgggtt actactttac cgcggaggc ttccgcaaca 960
 ccctgcgcgg cctggcact ccgcacccggg ccaggacccgc ggccaccaac gggacgcggg 1020
 cggcgtcgc gcaatccgaa aggtccgcgc tcaccacccga cgccaccagg ccggatgtcc 1080
 ccatgtcccc aggattccgc cctctgaaca cacatgtccat tgcgtgttcc gtgtcccgact 1140
 cccaaacgcct ctgcgttctgg gaggcttaca ggggtgttacac acaagaagggt gggctgggca 1200
 cttggacctt tgggtggcaa ttccagctta gcaacgcaga agagtacaaa gtgttggaaagc 1260
 caggggccag ggaaggcagt gctgtggaa atggcttctt taaactgtga gcacgcagag 1320
 cacc
 1325

<210> 43
 <211> 2124
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3291235CB1

<400> 43
 gtcttaccc ttaatagtat tagaatggca attaaatctc gacacgtttt aattaaatttt 60
 caacatgagt ttgcagggg acattcgaag ttagcgctc gccatctccc atcccaagta 120
 cctaagggt acaacgctgt cgccagagag gaagtcactg agtgcctact gccacccccc 180
 cacatatgtc cgtgttcccc agcatcttgc agccaccagg agtgagggtt gctgtccct 240
 gagacctggc tccaaggagg atgcccacagg cgccctggcag ctccggctgt caccatgagt 300
 gatgagcggc ggctgcctgg cagtgcagtg ggctggctgg tatgtggggg cctctccctg 360
 ctggccaatg cctggggcat cctcagcgtt ggcccaagc agaagaagtg gaagcccttg 420
 gagttcttcg tgtgtacgt cgccggccacc cacatgtctaa atgtggccgt gcccategcc 480
 acctacttcg tgggtcaggt gggggcggcag cgcccccggact tcgagtgaa tgagggtctc 540
 tgcaaggctt tctgttccac cttctacacc ctcacccttg ccacctgttt ctctgttacc 600
 tccctctctt accaccgcatt gtggatggtc tgctggctg tcaactaccg gctgagcaat 660
 gccaagaagc aggccgtgca cacagtcatg ggtatctgga tgggtgttccatcctgtcg 720
 gcccggctg cggttggctg gcacgacacc agcgagcgt tctacaccca tggctggcgc 780
 ttcatctgtgg ctgagatcgg cctgggtttt ggctgttgc tctctgtgtt ggtggccggc 840
 agcgtggcca tggggctgtat ctgcacagcc atcgcctctt tccagacgtt ggcggcgtcag 900
 gtggggccgc aggccgacca cccgccttc accgtgccccca ccatctgtgtt ggaggacgcg 960
 caggccaaaggc ggccgttccct catcgatggc tggagcccg cccaaacccctc tctgcagacc 1020
 acggggctcg tgaccaccaat agtcttcatac ttagactgtc tcatgggtt ccctgtgtc 1080
 gtgggtgagct tctggcggcgtt cccggggccgc gcctcagcgc cctggatggc actctgcgtg 1140
 ctgtgtgttccgtt ccgtggccca gggccctgtc ctgcctgtgtt tctctggc ctgcgaccgc 1200
 taccgggctg acctcaaaggc tggccggag aagtgcatgg ccctcatggc caacgacgag 1260
 gagtcagacg atgagaccag cctggaaagggt ggcacatctcc cggacccgtt gttggagccg 1320
 tccctggact atggctatgg aggtgatttt gtggccctag ataggatggc caagtatgag 1380
 atctccgccc tggagggggg cctgcctccag ctctacccac tggccctt gcaggaggac 1440
 aagatcaat acctgcaggt cccgcctccag cggcgcttctt cccacacga tgcggacgtg 1500
 tggggccggc tcccgctgcc cgccttcgtt ccgcgtctgg gtcggccaa gacactgtcc 1560
 gcccggccgc acctgggtgtt gcctggccggg cccgagccggc cccgcggccag cctctggcc 1620
 ttgcgggagg acgcaccaact gtcccgccgc cccgcctcg cggccggagag cctgtgtc 1680
 ctgcggccctt ccggccgtggta tggccggcccg cggggagccgc ggcactcgcc cccggccagc 1740
 cccgcggccgc cccggccggcc cggcccccggc tccgcctcg cctcgctgtt gcccacgcgc 1800
 ttgcggccctgta cccgcctcgta gtgcggagccca caggccctggc gccggccggcc cggggcccttc 1860
 cccgcgtccgc cccgcggccccc cgcggccgc gatcccgagaggccggac gcccccaagc 1920
 agcgcggccagg gggccggccccc tctgcgtact cgcacccggc ctctctgtcg 1980
 cccggccctgta ggcggccgtgtt gggccggccccc gggggccgtgc ggcggccggg cggccggccgc 2040
 agcaccacgca gttcccttagt ttcccttcc gaggctctgg gtcacccac gtcgtactcg 2100
 gactcgctgg gtcggccgtc ctag
 2124

<210> 44
 <211> 942
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472001CB1

<400> 44

atggaaaagaa tcaacagcac actgttgact gcgttatcc tgacaggaat tccgtatcca 60
 ctcaggctaa ggacactttt ttttgttgc ttttttctaa tctacatcct gactcagctg 120
 ggaaacctgc ttatTTtaat cactgtctgg gcagacccaa ggctccatgc ccgccccatg 180
 tacattttc ttgggtttct ctcagtattt gatatgaga tctccatcat cattgtccct 240
 cgcctcatga tgaacttcac tttaggtgtc aaacccatcc catttgggtgg ctgtgttgc 300
 caactctatt tctatcactt cctggcagc acccagtgtc tccttacac ctaatggcc 360
 tatgacaggt acctggcaat atgtcagccc ctgcgttacc ctgtgtcat gactgtcaag 420
 ctgagcgcct tgcttgtggc tgaggcaggat ccattccatgg ggctctccag 480
 gccatctaa cttcccgctt gcccctactgt gggcccaatc aggtggatta ttcttctgt 540
 gacatccctg cagtgttagactggcactgt gctgacacaa cagtcAACGA gctgggtacg 600
 tttagaca ttgggggtggt gttggcagt tgcttctccc tgatcttccctt ctcctacata 660
 cagatcatc aggccatctt gagaatccac acagctgtatggcggccgg ggcttttca 720
 acttgtggag cccatgtaac cgtggtcacc gtgtactatg tgccctgtgc cttcatctac 780
 ctgaggcctg aaaccaacag cccctggat gggcagctg ccctagtccc cacggccatc 840
 actcccttcc tcaacccctt tatctacact ctgcggaaacc aagaggtgaa gctggccctg 900
 aaaagaatgc tcagaagccc aagaactccg agttaggtttt ga 942

<210> 45

<211> 1197

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472003CB1

<400> 45

atgcacacccg tggctacgtc cggacccaaac gcgtcctggg gggcaccggc caacgcctcc 60
 ggctgcccgg gctgtggcgc caacgcctcg gacggcccaag tcccttcgccc gccccccgtg 120
 gacgcctggc tcgtggcgt ctcttcgccc ggcgtatgc tgctgggcctt ggtggggaaac 180
 tcgctggta tctacgtcat tcgcccac aagccgtatgc ggacccgtac caacttctac 240
 atcgccaacc tggcgccac ggacgtgtacc ttcttcgtgt gctgcgtccc cttcagggcc 300
 ctgctgttacc cgctgtcccg ctgggtgtcg ggcgtactca tgcgtcaagtt cgtcaactac 360
 atccacgcgg tctcggtgca ggccacgtgt gccactctga ccgcctatgag tgcgtggaccgc 420
 tggtaacgtga cgggttccc gttgcgcgc ctgcaccggc gcacgccccg cctggcgctg 480
 gctgtcagcc tcagcatctg gacaggtctt gccggcggtgt ctgcgcgggt gtcggccctg 540
 caccgcctgt caccggggcc ggcgcctac tgcgtgttggg cttcccccag cccgcctctg 600
 gagcgcgcct tgcactgtca caacctgtcg ggcgtgttacc tgctggcgct gtcgcacc 660
 tgccgcctgt atgcggccat gtcggccac ctggggccgg tecgcgtgc cccgcgcggc 720
 gccgatagcg ccctgcaggc gcagggtgtcg gcaagagcgc caggcgccgt gcccccaag 780
 gtctcgccgc tgggtggcgcc cgtggcgttgc ctcttcgcgc cctgtgggg ccccatccag 840
 ctgttcttgg tgctgtggc gctggggccctt gccggcgtctt ggcacccacg cagctacgcc 900
 gcctaegcgc ttaagacccgt ggctactgtc atgtcctaca gcaactccgc gtcgaacccg 960
 ctgctctacg ctttcttggg ctgcacttc cgacaggcct tccgcgcgt ctggccctgc 1020
 gcccgcgcgc gccccccgcg ccccccggg cccggaccctt cggacccgcg agccccacac 1080
 gcccggactgc tccgccttggg gtcccaccccg gccccccgc gggcgcagaa gcccggaggc 1140
 agtgggctgg cccgcgcgg gctgtgcgtc ctggggagg acaacgcggc tctctga 1197

<210> 46

<211> 1110

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472004CB1

<400> 46

atggctccca ctgggtttagt ttcccttgcacc gtgaatagta cagctgtgcc cacaacacca 60
 gcagcattta agagcctaa cttgcctttt cagatcaccc tttctgttat aatgatattc 120
 attctgtttt tggaaacttg gttgtttgcc tcatggttta caaaaaagct 180
 gccatgaggat ctgcaattaa catccctt gccagccatg ctttgcaga catgttgcctt 240

cgagtgtcga	acatgccctt	tgccctggta	actattctta	ctaccggatg	gattttgggg	300
aaattcttct	gtagggtatc	tgctatgttt	ttctgggtat	ttgtgataga	aggagtagcc	360
atccgtcata	tcatttagcat	agatagggttc	cttattatag	tccagaggca	ggataagcta	420
aaccatata	gagctaagggt	tctgattgca	gttttttggg	caacttcctt	ttgtgttagct	480
tttcctttag	ccgttagaaaa	ccccgacctg	cagatacctt	cccgagctcc	ccagtgtgtg	540
tttgggtaca	caaccaatcc	aggctaccag	gcttatgtga	ttttgatttc	tctcatttct	600
ttcttcatac	ccttccttgt	aatactgtac	tcattttatgg	gcataactcaa	cacccttcgg	660
cacaatgcct	ttaggatcca	tagctaccc	gaaggtatata	gcctcagcca	ggccagcaaa	720
ctgggtctca	ttagtgtcga	gagaccttcc	cagatggagca	ttgacatggg	cttaaaaca	780
cgtgcctca	ccactatccc	gattctttt	gctgtcttca	ttgtctgtcg	ggccccattc	840
accatttaca	gccttgtggc	aacattttagt	aagcaactttt	atactcagca	caactttttt	900
gagattagca	cctggctact	gtggctctgc	tacctcaagt	ctgcattgaa	tccgctgtatc	960
tactacttgg	ggattaagaaa	attccatgtat	gcttgcctgg	acatgatgcc	taagtcccttc	1020
aagtttttgc	cgcagctccc	tggtcacaca	aagcgacggaa	tacgtcttag	tgctgtctat	1080
gtgtgtgggg	aacatcgac	gggtgtgtga				1110

<210> 47
<211> 582
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7475687CT1

```

<400> 47
atggcctatg acaggtacct ggcaatatgt cagcccctgc gctaccagg t gctcatgaat 60
gggaggttat gcacagtctt tgtggctgga gcttgggtcg ccggctccat gcatgggtct 120
atccaggcca ccctgacattt ccgcctgccc tactgtggc ccaatcagg t agattactt 180
atctgtgaca tccccgcagt attgagactg gctgtgtctg acacaactgt caatgagct 240
gtgacccattt tggacatcg ggtagtgcc gccaggctgt tcatgttaat tctgtctcg 300
tatgccaaca tagtaaatgc catcctgaa atacgcacca ctgatggag ggccggggcc 360
ttctccaccc tggctccca cctaatacg t gtcacagttt actatgtccc ctgtattttc 420
atctacccctt gggctggctc caaaggcccc ctggatgggg cagcggctgt gttttacact 480
gttgtcaact cattactgaa ccccccattc tatacactga ggaaccagga agtgaagtct 540
gccctgaaga ggataaacagc aggccaggcg gatgttaata ac 582

```

<210> 48
<211> 519
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7483029CT1

```

<400> 48
atgtacctgg tcaccgtgct cgggAACCTG ctcATCATCC tggCCACAAc ctcAGACTCC 60
cacccacaca cccccatgtA ctTCTTCCTC tccAAcCTGT cctTTGCGAGA catCTGTTTT 120
gtgtctacca ctgtccccaaa gatgtGGTG aacatCCAGA cacAGAGCAG agtcatcacc 180
tatcgagact gcatccccca gatgtGTTT ttataCTCT ttgtatgtt ggacAGCTTA 240
ctccTGAATG tgatGGCCta tgaccGTTT gtggccATCT gtcACCCCT gcaactacaca 300
gtcattatga actCTGGCTC ctgtGGACTG ctggTTCTGG tgcTCTGGAT cgtgAGCATC 360
ctatatttCtC ttttacaaAG cataATGGCA ttgcAGCTGT ctttCTGTAC agaaATTGAAA 420
atcccTCTtC ttttCTGTGA acttaATCAG gtcATCCACC ttgcCTGTTC cgacACTTT 480
attaatgaca tgatgtatgaa ttttacaAGT gtgtGTGCTG 519

```

<210> 49
<211> 663
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7477933CT1

<400> 49

cccatgtact	tcttcctc	caacctgtgc	tgggctgaca	tcggctcac	ctcgccacg	60
gttccaagg	tgattctgga	tatgcagtgc	catagcagag	tcatctctca	tgtgggctgc	120
ctgacacaga	tgtttttt	ggtcctttt	gcatgtatag	aaggcatgtct	cctgactgtg	180
atggcctatg	gctgtttgt	agccatctgt	cgccctctgc	actaccctgt	catagtgaat	240
cctcacctt	gtgtttttt	cgttttggtg	tccttttcc	ttaacctgtt	ggattccca	300
ctgcacagtt	ggattgttgtt	acaatttacc	atcatcaaga	atgtggaaat	ctctaatttt	360
ttctgtgacc	cctcttgcet	tctcaacctt	gcctgttctg	acagcgtcat	caatagcata	420
ttcatatatt	tcatatgtac	tatgttttgtt	tttcttccca	tttcaggat	ccttttgtct	480
tactataaaa	ttgtccccctc	catttcaagg	atgtcatgt	cagatggaa	gtataaagcc	540
ttctccacct	atggctctca	ccttaggagtt	gtttgctggt	tttatggaaac	agtcattggc	600
atgtacctgg	cttcagccgt	gtcaccaccc	cccaggaatg	gtgtggtggc	atcgtatgt	660
tag						663

<210> 50
<211> 911
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7475164CT1

```

<400> 50
gggctgagtt tattcctggca ggcttgacac aacgcccaga acttcaactg ccactcttcc 60
tcctgttctt tggaaatataat gtggtcacag tggggggaa cctgggcata atcttcttaa 120
ttgtctctcg ttctcaactt taccctccag tgattttttt ttcagtcata ttgtcttca 180
ttgatctctg ctactctct gtcattaccc ctaagatgct ggtgaacttt gttccagagg 240
agaacattat ctccttctg gaatgcatta ctcacttta ttcttctt attttgtaa 300
ttgcagaagg ctaccttctg acagccatgg aatatgaccg ttatgtgtct atctgtcgcc 360
caactgctta caatattgtc atgtccccaca gggctgttc cataatgatg gctgtggat 420
actcaactggg ttttctgtgg gccacagtc atactacccg catgtcagtg ttgtcattct 480
gttaggtctca tacggctcgtt cattattttt gtgatattct ccccttattt actctgtctt 540
gctccagcac ccacatcaat gagatttgc tggcattat tggaggagtt aataccttag 600
caactacact ggccgtctt atcttcttgc ctttcatttt ctctagatc ctggatttc 660
attccactga gggcaatcc aaaggcttgc gcaattgttag ctcccatctc ttggctgtgg 720
gcatctttt tgggtctata acattcatgt atttcaagcc cccttcacgc actactatgg 780
aaaaagagaaa ggtgtcttct gtgttctaca tcacaataat ccccatgtg aatcctctaa 840
tctataggct gaggacaag gatgtaaaaa atgcactgaa gaagatgact agggaaaggc 900
agtcatctcg a 911

```

<210> 51
<211> 332
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7473909CT1

<400> 51
caggccccag gacagccagt ggctgtgtca tcatgatctg ctttgccttc actgtcctct 60
cttacatccg catcttggcc acagtggttc agatccgttc agcagccagc cgccggaagg 120
ccttctccac ctgttcttcc cacctgggca tgggtcttcct gttctatggc accggcagct 180
ccacacctacat gggaccccacc acccgctact ccccgctgga agggcgcttg gctgctgtct 240
tctactccat cctcataccc accctgaatc cgctcatcta cagcctgagg aaccaggaca 300
tgaagagaaqc ccttgtqqaag ctctatctcc ag 332

<210> 52
<211> 538
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7475252CT1

<400> 52

agagccagag aatctcacag gtgtcttaga attcctgctc ctgggactcc cagatgatcc 60
agaactgcag cccgtcctct ttgggctgtt cctgtccatg tacctggta tggtgctggg 120
gaacctgc acatctctgg ccgtcagctc tgactccat ctccacagcc ccatgtactt 180
cttcctctcc aacctgtctc tggctgacat cggtttgc tctacttg tccccaaatg 240
gattgtggac atccaggctc atagtagact catctttac gtgggctgcc tgactcagat 300
gtcttttg atcttttcg catgtatgaa aagtctgctc ctgattgtga tggccttatg 360
ccggttcggt gccatctgtc accccctgc a taccatgtc atcatgagcc cacgactctg 420
tggcttctta gtttgggtgt ctttttct tagcctttt gactctcagc tgcacaattt 480
gattgtgtta caacttacgt gcttcaacga tggaaatc tctaattttt ttctgtga 538

<210> 53
<211> 279
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7927572CT1

<400> 53
tcttttagat gcccagctgt acaattttagat tgccttacaa atgacctgct tcaaggatgt 60
ggaaatttcct aattttttctt gtgacccttc tcaactcccc catcttgcacat gttgtgacac 120
cttcaacaat aacataatcc tgtattttcc ttagtgcataa tttgggtttc ttccatctc 180
ggggacactt ttctttaacg ataaaattgt ttctccattt ctgagggtttt catcatcagg 240
tggaaatgt aaaggcttctt ccacctatgg gtcacatgtt 279

<210> 54
<211> 291
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7481257CT1

<400> 54
atggaggtaa ccacatggc catgtgcctg attatagttc ttgttccctt tcttcttattt 60
cttgcgtcat atggtttcat tgcgtggct gtactcaaga tcaagtcgtc agcagggaa 120
caaaaagcat ttgggacactg ttccctccat ctcgttgc tatccatctt ctgtgggaca 180
gttacataca tgcataatca gccaggaaac agtccaaatc agaatgaggg caaacttctc 240
agtatattttt actccattgt tactccatgtt ttgaacccat taatttatac g 291

<210> 55
<211> 402
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7485790CT1

<400> 55
aggatccaga actgcagccc atcctcgctg ggctgtccct gtccatgtat ctggtcacgg 60
tgctgaggaa cctccatc agcctggctg tcagctctga ctccacatcc cacaccccaa 120
tgtgccttctt cctctccaaac ctgtgcggg ctgacatcggtt tttcacccatcg gccacgggttc 180
ccaagatgtatgttgcat ccgtcgcata gggggatcat ctcttatgcg gactgcctga 240
cacggatgtc ttcttgcgtt ctgttgcat gtgttagaaga catgtcttg actgtgtatgg 300
cctatgactg ttttgcgttcc atctgtcgcc ctgtcaactt cccagtcatc gtgaatctc 360
acctctgtgtt ctgttgcgtt ttccatgtt ct 402

<210> 56
<211> 639
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 7482993CT1

<400> 56

ggatcagagt gtctcctact ggcagcaatg gcatatgatc gttacattgc aatctgcaat 60
 cctttaagg attcagttat tctgagcaag gttctatca atcaatttc agcctatgc 120
 tgggctgctg gttcccttaa ctcagtggtg catacagtgt tgacattctg cctgccctc 180
 tgtggcaaca atcagattaa ttacttctc tgcacatcc ccccttgct gatcttgtct 240
 tgtggaaaca ctctgtcaa tgagttggca ctgctatcca ctgggttctt cattgggtgg 300
 actccttcc ttgttatcg actttctac atttgataa tctccaccat cttgaggatc 360
 cagtccttag aggaaagacg aaaaggctt tctacatgtg cctccacat ggcattgtc 420
 tttctctttt atggcagcgc catcttaca tatgtacggc ccatctcaac ttactcatta 480
 aagaaagata gtttggttt agtgttgtac agtgttgta cccccatgt aaaccctata 540
 atttacacat tgaggaataa ggacatcaa gaagctgtca aaactatagg gagcaagtgg 600
 cagccaccaa ttccctttt ggatagtaaa ctcaacttat 639

<210> 57

<211> 1370

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2829053CB1

<400> 57

ccgcaccaga aggatataac cagaattctc cagcaacatg aggaggaaaa gaagaaatgg 60
 gcacaacagg tgagaagga aaggagcta gagctcgaga cagactggat ggcggcaaa 120
 gggctctgga aggaaagaat gaagaggccc tgcaagtctt ccgggctca tatgaacagg 180
 agaaagaagc gcttacccac tcttccggg aggcagttc tacccagcg gagaccatag 240
 acagactgac ctcacagctg gaggcttcc aggccaaaat gaagagggtg gaggagtcca 300
 ttctgagccg aaactataag aaacatatcc aggattatgg gagcccccagc cagttctggg 360
 agcaggagct ggagagctt cacttgc tcgagatgaa gaatgagcgt attcatgagc 420
 tggacaagcg gctgatcctc atggaaacag taaaagagaa aaatctgata ttggaggaaa 480
 aaattacgac cctgcaacag gaaaatggagg acctccatgtt ccgaagccgc aaccagggtg 540
 tcctgtcaag gcagctgtca gaagacatgc ttctcacgc tgaggccctg gagaaggagg 600
 tgcagctgcg gcacagctc cagcaggaga aggaggagct gtttacgg gtccttgggg 660
 ccaatgcctc gcctgccttc cctctggccc ctgtcactcc cactgaggtc tcttcctcg 720
 ccacataggg tgcagggccct gggccacca cgacgcctga agtcacagct cttccaagg 780
 tttttcttga gaagacagca ggagctctc agttctttc caggaaggaa cgagggtggg 840
 agcgagatgg agatctggg tttgtccca gtgagccctg gggcctttag ttacatggaa 900
 tcaccacag gttttggag gccccagaa gcgtcttccc ttgagttggc caagggata 960
 agcaagagga gacatttcct ccctgccccca gcactctgtc ccaatccgag aagttccgag 1020
 gctttccctg gggcgtctg tttcaacgttgc gccatttgc ataaaggaga cagccccctgg 1080
 tcccagcttgc tcaactctgc tgccgacttgc ctgacttata aacttcttct aggtgtttcc 1140
 actccacctt ggcgtctca ggcctcaatg tttccctgc attaaaatgg tggggggact 1200
 ggtcaaagga ctcttatgc actgcgttgg cccattctag gattgtctga aggccagagt 1260
 aggggttggg gggagtgtgg acaaaccctt caaatcagag tggggaaatg ggtgttgg 1320
 gaggggggtct ctgaaggccc ttggggctga cagggccagg cagccctcccc 1370

<210> 58

<211> 1567

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3068234CB1

<400> 58

gaggggactgc gttctaatac ggagctccga ggatgttcac ttcttctcca caatgaatga 60
 gtgtcaactat gacaaggcaca tggactttt ttataatagg agcaacactg atactgtcga 120
 tgactggaca ggaacaaagc ttgtgattgt tttgtgtgtt gggacgtttt tctgcctgtt 180
 tattttttt tctaatttctc tggcatcgc ggcagtgtat aaaaacagaa aatttcattt 240
 ccccttctac tacctgttgg ctaatttgc tgctgccat ttcttcgtt gattgtcata 300
 tgtatccgt atgttaaca caggccagt ttcaaaaact ttgactgtca accgctgggtt 360
 tctccgttag gggcttctgg acagtagttt gactgttcc ctcaccaact tgctgggttat 420
 cggccgtggag aggcacatgtt caatcatgtt gatgcgggtc catagcaacc tgaccaaaaa 480

gagggtgaca ctgctcattt tgcttgctg gcccatcgcc attttatgg gggcggtccc 540
 cacactgggc tggaaattgcc tctgaacat ctctgcctgc tcttcctgg cccccattta 600
 cagcaggagt taccttggtt tctggacagt gtccaaaccc atggccttcc tcatacatgg 660
 tgtgggtac ctgcggatc acgtgtacgt caagaggaaa accaaactgt tgcgtccgca 720
 tacaatggg tccatcagcc gcccggggac aaccatgaag ctaatagaaga cgggtatgac 780
 tgtcttaggg gcgtttgtgg tatgtggac cccggggctg gtggctctgc tcctcgacgg 840
 cctgaactgc aggcaatgtg gctgtcagca tgtaaaagg tggttctgc tgctggcgt 900
 gctcaactcc gtcgtgaacc ccatacatcta ctcctacaag gacgaggaca tgcgtggcac 960
 catgaagaag atgatctgtc gcttcctca ggagaaccca gagaggcgcc cctctcgcat 1020
 cccctccaca gtcctcagca ggagtgcac acggcggccag tacatagagg atagtattag 1080
 ccaagggtgca gtctgcataa aaagtacttc ctaaactctg gatgcctctc ggcccaccca 1140
 ggcctctt gggaaaagag ctgttaagaa tgattacctg tctctaacaa agcccatgta 1200
 cagtgttatt tgaggtctcc attaatcact gctagatttc tttaaaaaat tttttttcat 1260
 agttttaaag catgggcagt aaagagagga cctgtgtcat ttagagaaaag cacagaaacg 1320
 ggaggggttc ggccgggtccc tgcttgctt atgaactgt cagagctcct gtcagtccag 1380
 ctggcccttc tgggttctgg caccattcg tagcattct cttgttattt taaaaggacg 1440
 ttatggaaagg gcttagacca aaataatca taatgttact tgagccacct tatatagctg 1500
 ctggagagt ctatgttagtt cttctgtcat gcattaaaaa tgtttagaaaa tgcttcacaa 1560
 aaaaaaaaaa 1567

<210> 59
 <211> 1321
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5029478CB1

<400> 59
 cagaccgctg cggggccgcag ggcggggaa tgccccctga atgcgcgcgg gcagcggggc 60
 acgcgcctt ggcgcgcctg gagcaagcca accgcacccg ctttccttc ttctccgacg 120
 tcaaggcgca ccaccggctg gtgctggccg cgggtggagac aaccgtgtc gtgctcatct 180
 ttgcagtgtc gctgtgtggc aacgtgtgcg ccctgggtgt ggtggcgcc cgacgacgcc 240
 gccggccgcac tgccctgcctg gtactcaacc tttctgcgc ggacctgtc ttcattcagcg 300
 ctatccctctt ggtgtgtggc gtgcgtggcc ctgaggccgt gctgtggcc cccgtgcct 360
 gccacccgtc ttctcactgtg atgaccctga gcccgcgtg caccatctc acgctggccg 420
 cggtcagccgt gggcgcgtg gtgtgtcatcg tgcacctgca ggcggccgtg cgggggtcc 480
 ggcggccggc gggggcgtg ctgctggcgc tcatctgggg ctatteggcg gtcggccgtc 540
 tgcctctctg cgtttcttc cgagtcgtcc cgcaacggct cccggccgc gaccaggaaa 600
 tttcgatttg cacactgatt tggccacca ttctggaga gatctgtgg gatgtctctt 660
 ttgttacttt gaacttcttg gtgcaggac tggtcattgt gatcgttac tccaaaattt 720
 tacagatcac aaaggcatca aggaagaggc tcaacggtaag cctggctac tcggagaggc 780
 accagatccg cgtgtcccg caggacttcc ggctcttccg caccctctt ctcctcatgg 840
 tctccctctt catcatgtgg agccccatca tcatcaccat ctccttcattt ctgatccaga 900
 acttcacgca agacccgttc atctggccgt ccctcttcc tgggtgggt gccttcacat 960
 ttgctaaatttcc acccttccatc acaacatgac actgtgcagg aatgagtgga 1020
 agaaaaattttt tgctgtttc tgggtcccg aaaaggaggac catttaaca gacacatctg 1080
 tcaaaaagaaa tgacttgtcg attatttctg gctaattttt ctttatacgca gagtttctca 1140
 cacctggcga gctgtggcat gcttttaaac agagttcatt tccagtagcc tccatcagtg 1200
 gcaccctgtt ttaagaaaat gaacttatgc aaatagacat ccacacgtc ggtaaattaa 1260
 ggggtgatca ccaagttca taatatttc ccttataaaa aggattgtt ggccaggtgc 1320
 a 1321

<210> 60
 <211> 1110
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5102576CB1

<400> 60
 atgttccttg tgagttgtc gcatccagca ttaaggcgt gtttttatct tttatatttc 60
 caatcccttt tccttctcaa ggtgtccaa acacacggag ccacggaaatc tcacaggtgt 120
 ctgagaattt ctcctctgg gactctcaga ggatccagaa ctgcagccgg ccctcgctt 180

gctgtccctg tccctgtcca tgtatctggt cacggtgctg aggaacctgt tcagcatcct 240
 ggctgtcagc tctgactgcc ccctccacac cccatgtac ttcttcctct ccaacctgtg 300
 ctggcctgac atcggtttca cctcgccat gtttccaag atgattgtgg acacgcagtc 360
 gcatagcaga gtcatctc atgegggctg cctgacacag atgtcttcc tgctccttgt 420
 tgcatgtata aagggcatgc tcctgactgt gatggcstat gactgcttt tagccatctg 480
 tcgcccctgt cactaccagg tcatgtgaa tcctcaccc tggattttt tcgaaaaatgtt 540
 gtccttttc cttagcctgt tggatttcca gctgcacagt tggattgtgt tacaattaa 600
 catcatcaag aatgtggaaa tctctaattt ggtctgtgac ccctctcaac ttctcaatct 660
 tgcctgttct gacagcgtca tcaataaacat attcatatat ttcgatagta ctatgtttgg 720
 tttttttccc atttcaggaa tcctttgtc ttactataaa attgtccccctt ccattctaag 780
 gatttcatcg ttagatggaa agtataaagc cttctccacc tgggtgtgtc atcttagca 840
 tggggctggg ttttatggaa caggcattgg catgtacccg acttcagctg tgcaccacc 900
 ccccaagaaat ggtgtgtgg catcagtgt gtacgctgt gtcaccccat gctgaaccc 960
 ttcatctgca gcctgagaaa caggacata caaatgtccc tgcggaggct gggcagcaga 1020
 gcattcaaat ctcatgatct ttccatctt tgggtgagaa agggcaatca 1080
 cattaaatct ctttatctgc aaaaaaaaaaa 1110

<210> 61
 <211> 1095
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2200534CB1

<400> 61
 atgaaggcca actacagcgc agaggagcgc tttcttcgtc tgggtttctc cgactggcct 60
 tccctgcagc cggcttcctt cggcccttgc ctccctgtct accttcgtac cttgacgggc 120
 aactccggcgc tgggtctgtct ggcgggtgcgc gacccgcgcc tgcacacgc catgtactac 180
 ttccctgtcc acctggccctt ggttagacgcg ggcttcacta cttagctgtt gcccggctg 240
 ctggccaacc tgcgcggacc agcgtctgg ctgcgcgcga gccactgcac gcccagctg 300
 tgcgcacatcg tggctctggg ttccggccaa tgcgtctcc tggcgggtat ggctctggac 360
 cggcggcccg cagttgtgcgc cccgtgcgc tatgcggggc tgcgtctccccc ggcctatgt 420
 cgcacgtgg ccaggcgcctt ctggctaaagc ggccctcacca actcggttgc gcaaaccgc 480
 ctccctggctg acggccgcgt gtgcgcgcgc cgcctgtgg accacttcat ctgtgagctg 540
 cggcggcttgc tcaagatgc ctgcggaggc gacggagaca ctaccgagaa ccagatgttc 600
 gccggccgcg tggtcatctt gtcgtgcgc ttccggctca tcctggctc ctacgggtcc 660
 gtggcccgag ctgtctgttgc catgcgggttca ageggaggccc ggaggaggc ggtgggcacg 720
 tgcgtgttcc acctgacagc cgtctgcctt ttctacggct cggccatcta cacctacctg 780
 cagccgcgcg agcgctacaa ccaggcacgg ggcaagttcg tatcgtctt ctacaccgtg 840
 gtcacacactg ctctcaaccc gtcatctac accctcagga ataagaaagt gaagggggca 900
 gcgaggaggc tgctgcggag tctggggaga ggcaggctg ggcagtgtatgttggggag 960
 gggagaaagt attaagccag aacccaagga tggaaatacc ctttagttagtgc tgcgtttaga 1020
 cttcaggctg ttcatcttgc tatgataatc tgcagatctt gtcctaagga gtccaaatggg 1080
 ggatatgttt tccctc 1095

<210> 62
 <211> 1665
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3275821CB1

<400> 62
 ttccctacattt cactgattct ctgaaccttc ctgtcctcgc ctgtaaagta gattgtatga 60
 ggactccatg aggtcatcca cttaagttcc ttggcatagg ataattactc aaaaggtgtat 120
 gacaatggcg cagggaggaa tgggtacttg cctggagatg cacagcacgg tctctcccat 180
 actcggtcat tcacaccatc attgattcac caggcaccca ctccgtgtcc agcaggactc 240
 tggggacccc aaatggacac taccatggaa gtcgtacccgg gtgcactgg ccacaggccc 300
 cgcacagagc ttgtatgtatgaa ggactccatc ccccaaggtg gtcggacac ggtttccctg 360
 gtggccctgc tgctccttgg gtcgtccagcc aatgggttga tggcgtggct ggcggctcc 420
 caggcccgcc atggagctgg cacgcgtctg ggcgtgtcc tgctcagcctt gcccctctt 480
 gacttcttgtt ccctggcagc agcggcccttc cagatcctag agatccggca tggggacac 540
 tggccgctgg ggacagctgc ctgcgccttc tactacttcc tatggggcgt gtcctactcc 600

tccggccctct	tcctgctggc	cgccctcagc	ctcgaccgcgt	gcctgctggc	gtgtgtccccca	660
cactggtacc	ctgggcacccg	cccagtccgc	ctggccctct	gggtctgcgc	cggtgtctgg	720
gtgctggcca	cactttcag	cgtgccctgg	ctggtcttc	ccgaggctgc	cgtctggtg	780
tacgacotgg	tcatctgcct	ggacttctgg	gacagcgagg	agctgtcgct	gaggatgctg	840
gagggtctgg	ggggcttctt	gcctttcttc	ctgtctgcgt	tctgcccacgt	gctcacccag	900
gccacagcct	gtcgacacctg	ccacccgcaaa	cagcagcccg	cagcctgccc	gggttccgccc	960
cgtgtggcca	ggaccattct	gtcagectat	gtgtctctga	ggctgcctta	ccagactggcc	1020
cagctgtct	acctggcctt	cctgtgggac	gtctactctg	gtcacctgt	ctgggaggccc	1080
ctggtctact	ccgactacct	gatcctactc	aacagctgc	tcaagccctt	cctctgcetc	1140
atggccagt	ccgacacctcg	gaccctgtgt	cgctccgtgc	tctcgtcttt	cggggcagct	1200
ctctgctgagg	agccggccggg	cagcttcaeg	cccaactgagc	cacagaccca	gtctaggatct	1260
gagggtccaa	ctctgcccaga	gcccgtatggca	gaggccccagt	cacagatgg	tcctgtggcc	1320
cagcctcagg	tgaacccccac	actccagcca	cgatcggtatc	ccacagctca	gccccacagctg	1380
aaccctacgg	cccaggccaca	gtcggatccc	acagccccagc	cacagctgaa	cctcatggcc	1440
cagccacagt	cagatttctgt	ggcccagcca	caggcagaca	ctaacgtcca	gaccctgtca	1500
cctgtgtccca	gttctgtgcc	cagtccctgt	gatgaagctt	cccccaacccc	atcttcgtat	1560
cctaccccaag	ggggcccttga	ggaccccgagcc	acacccctgt	cctctgaagg	agaaaagcccc	1620
agcaagccaccc	cgcacagagcc	ggccccgggc	gcaggccccca	cgtga		1665

<210> 63
<211> 1609
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3744167CB1

<210> 64
<211> 945
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7472007CB1

<400> 64

atgtggaaa actggacaat tgtcagtcaa ttgttctcg tgagcttcg agccctgtcc 60
 actgagctc aggctact gtttctcctt ttcttgacca ttacttggg tacttaatg 120
 ggcaatgtcc tcatcatcct ggtcactata gctgactctg cactacaaag tcctatgtac 180
 ttcttcctca gaaacttgc ctteccggag ataggttca acttgcatt gtgtccaaag 240
 atgctggga ccctgatcat tcaagacaca accatctcct tccttgatg tgccactcg 300
 atgtatttct tcttcctttt tggggctgct gagtgctgcc tcctggccac catggcatat 360
 gaccgctacg tggccatctg tgacccttg cactacccag tcatacatggg ccacatatcc 420
 tgtgcccagc tggcagctgc ctcttggttc tcagggtttt cagtggccac tggcaaaacc 480
 acatggattt tcagttccc tttttgtggc cccaacaggg tgaaccactt cttctgtgac 540
 agccctcctg ttattgcact ggtctgtctt gacacctctg tgtttgaact ggaggctctg 600
 acagccactg tccccattcat tctcttctt ttcttgctga tcctggatc ctatgtccgc 660
 atcctctcca ctatctttag gatgcgtca gctgagggga aacatcaggc attctccacc 720
 tggccccc acctcttggt tgcctctc ttctatagca ctgcacatctt cactgtatttc 780
 cgaccctaatt ccagtgcctc ttctgagac aagaagctgc tgcactctc ttccacagtg 840
 gtgactccca tggtaaccc catcatctac agctcaagga ataaagaatg gaaggctgca 900
 ctgaagcgcc ttatccacag gaccctggc ttcagaaac tatga 945

<210> 65

<211> 1098

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472008CB1

<400> 65

atggagggat ctgttgaagc tacacctgaa attccagctc agatgaaatg tcataccttca 60
 agaccctgta cttaaatca attatcttc tatgggtctg tgccttact aggaagaatg 120
 catggtttag aaacccaaaag ctctgctgaa attagagctg ggctgaagag atgtgatata 180
 ctggtaactag aggcattctac tttagaagga aatatggtca tagttttgt gtccttgaag 240
 gatccaaaac tccacatccc tatgtatttctt tttcttcca accttccctt gtagacacc 300
 tgtttgcacca gcagctgtgt tccacagatg ttgattaact tctggggccc agaaaaagacc 360
 atcagctaca ttggctgtgc catcaactc tatgtttttt tggctgttg ggccacggaa 420
 tatgttccctt ttgttgtcat ggctgtggat ttgttatgttag cagtgtgtca tccactgca 480
 aataccatga tccatgtttttt ctgcacccccc aaaactttgt ctgcacccccc atggggact 540
 ggcttggccc agtctctgat ccagttccctt gccaccctcc gtttaccctt ctgctccctt 600
 cggatgggtgg atgatgtttt ttgtgaagtc ccagctctga ttcaactctc cagtaactgt 660
 actacactaca gtgaaattca gatgttctatc gccagttgtt tcctccctt gatgccttgc 720
 atcattatcc ttcccttctt ttgtgttatt gctaaggctg tgctgagaat taagtcaact 780
 gcaggacaga agaaagcatt tggcacctgc atctctcacc ttcttggtt ttctctctt 840
 tatggactg tcacaggtgt ctaccccttca caaaaaaaaatc actatccctca tgaatggggc 900
 aaatttctca ctctttcttca cactgttagta acccccaactc ttaatccccatc catctacact 960
 ctaaggaaca aggagctcca tccttggctt aagaggccca aggtacagac cgcttcagag 1020
 agtgcagcc ccaaggatttgcagtttcca catgggtttt gtccttggg tggcagaaag 1080
 acaagaactg agcttttga 1098

<210> 66

<211> 954

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7472013CB1

<400> 66

atgagcttgc cccctaatgc ttcacactt ccgggttttt tgctccttgg gttctcgaga 60
 gctaacaatct cttttttttt cttttttttt ctgttgcattt ctattttttt gaccaccata 120
 ctggggatgt tgacactgtt gctgttgcattt tcctggggact ccagactgca ctcacccatg 180
 tattatctgc ttctgtggct ctctgtgtata gacatggggc tatccacatgt tacactgccc 240
 cagttgtggcc cccatgggtt ctcttattttt ccaaccattt ctgttgcctt ctgttggct 300
 cagttttttt tttttttttt tttttttttt acagataacac ttgttgcatttgc tttttttttt 360
 ctggatcgct atgtggccat ctgtgacccctt ctgttgcatttgc ttgttgcatttgc 420
 cggatcgct gttttttttt tttttttttt ttgttgcatttgc ttgttgcatttgc 480
 gtggactcg tccttgcctt ttgttgcatttgc ttgttgcatttgc ttgttgcatttgc 540
 cacttctttt ttgttgcatttgc ttgttgcatttgc ttgttgcatttgc ttgttgcatttgc 600

```

gagctggcca tattcttga gggtgttc cttatgctgg gccctgtgc cctcatttga 660
ctctcttagt tcggaaattgg ggccgcattt ctacgttgc cttcagctgc tggtcgccgc 720
cgagcagtct ccacctgtgg atccccaccc accatggttt gtttccctta cgccaccatc 780
atttgtgtct acttccagcc tcccttccag aactctcaat atcaggacat ggtggcttca 840
gtaatgtata ctgccattac acctttggcc aacccatttt tgatagccct ccacaataag 900
qatgtcaagg qtgcactctg caggctgttt qaatgggtga aggttagaccc ctga 954

```

<210> 67
<211> 1008
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7472015CB1

<400> 67	atggaaatcat	cttctcatt	tggagtgatc	cttgctgtcc	tggcctccct	catcatgtct	60
actaacacac	tagtggtgt	ggctgtgtg	ctgttgatecc	acaagaatga	tggtgtcagt	120	
ctctgcttca	ccttgaatct	ggctgtggct	gacacccatga	ttggtgtggc	cattcttggc	180	
ctactcacag	accagcttc	cagcccttct	cggccccacac	agaagaccc	gtgcagcctg	240	
cggatggcat	ttgtcatttc	ctccgcagct	gcctctgtcc	tcacggctat	gctgatcacc	300	
tttgacagg	acccatggat	caaggagccc	ttecgctact	tgaagatcat	gagtgggttc	360	
ttggccgggg	cctgttgc	cgggctgtgg	ttatgttctt	accttattgg	cttcctccca	420	
ctcggaatcc	ccatgttcca	gcagactgcc	tacaaagggc	agtgcagctt	ctttgtgtta	480	
tttcaccttc	acttcgtgt	gaccctctcc	tgcgtggct	tcttcccagc	catgtctctc	540	
tttgcttct	tctactgcga	catgtcaag	attgcctcca	tgcacagcca	gcagattcga	600	
aagatggAAC	atgcaggAGC	catggcttga	ggttatcgat	ccccacggac	tcccagcgac	660	
ttcaaagctc	tccgtactgt	gtctgttctc	attggagact	ttgctctata	ctggaaaaaa	720	
ttcccttatca	ctggcattgt	gcaggtggcc	tgccaggagt	gtcacctcta	cctagtgtct	780	
gaacggtacc	tgtggctgt	cggcgtggcc	aactccctgc	tcaaccact	catctatgcc	840	
tattggcaga	aggagggtcg	actcgacatc	taccacatgg	cccttaggat	gaagaagggtg	900	
ctcacctcat	tcctcccttt	tctctggcc	aggaattgtg	gcccgagag	gcccgaggaa	960	
atggcttgc	acatcgatc	tatctccaaq	tcaagatttt	atggctaa		1008	

<210> 68
<211> 930
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7472016CB1

```

<400> 68
atgagggaaa ataaccaggc ctctacactg gaattcatcc tcctgggagt tactggtcag 60
caggaacagg aagatttctt ctacatcctc ttctgttca tttacccat cacattgatt 120
ggaaacctgc tcattgtcct agccattgc tctgatgttgc gccttaccaa ccccatgtat 180
tttctccttg ccaacctctc ctgggtgac atcttcttct catcgtaac catccctaag 240
atgctggcca accatcttctt gggcagaaaa tccatcttctt ttggggatg cctaacgcag 300
atgtatttca tgatagcctt gggtaacaca gacagctata ttttggctc aatggcata 360
gatcgagctg tggccatcag ccacccactt cactacacaa caattatgag tccacggct 420
tgtatctgg ttattgtcgg gtctgggtg attggaaatg ccaatggctt ccccccacact 480
ctgctcacag ctatgtctc ctctgtggc aaccaggaag tggccaactt ctactgtgac 540
attacccctt tgctgaaggat atcctgttctt gacatccact ttcatgtgaa gatgatgtac 600
ctagggttgc gcattttctc tgtgcatttca ctatgtcatca ttgtctcttatttcgagtc 660
ttctccacag tcttccaggat tccttcacc aaggcggtgc tcaaggcctt ctccacactgt 720
ggttccaccat tcacgggtgt ctctttgtat tatggtacag tcatgggcac gtatttccgc 780
cctttgacca attatagcctt aaaagacgca gtgatcactg taatgtacac ggcagtgcacc 840
ccaatgttaa atccttcat ctacagtctg agaaaatcggtt acatgaaggc tgcctgcgg 900
aaactcttca acaagagaat ctccctgtaa 930

```

<210> 69
<211> 711
<212> DNA
<213> *Homo sapiens*

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472017CB1

<400> 69
 atgggcatga ccaacagcag tgtcaaggga gacttcatcc tgctgctgtg gaacctaaaa 60
 ggacctgaca aaacaatcac attcctgggt tgcgtcatcc agctctacat ctccctggca 120
 ttgggctcca ctgagtgtgt ctcctggct gtaatggctt ttgatcgcta tgctgcagtt 180
 tgcaaaccctc tccactatac cgccgtaatg aaccctcagc tgcgtccaggc tctggcaggg 240
 gttgcgtggc ttagtggagt gggaaacact ttatccagg gcactgtcac cctctggctt 300
 ctcgcgtgtg gacaccgatt gtcacaat ttcttccttg catgtgtgga catccatgat 360
 aatgagggttc agctctttgt tgcttcactg gtcttgcctt tcttgcctt agtgctaata 420
 ctgctgtcct atggacatat agccaagggtg gtcataagga tcaagtcaat ccaggcctgg 480
 tgcaaaaggcc tggggacatg tggatccc ttgatagtag tgcccttctt ctgtgggacc 540
 atcacagct tctacatcata gtcacaatgt tcttatgccc atgctcatgg gaagttcatc 600
 tcccttttctt atacagttt gaccccgacc tcataccctc tcatctacac actgaggaat 660
 aatgacgtga aaggagcact gcgattttt aacagagact taggcacata a 711

<210> 70
 <211> 1092
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472018CB1

<400> 70
 atggggcccg gcgaggcgt gctggcggt ctctggta tggtaactggc cgtggcgctg 60
 ctatccaacg cactgggtct gctttgttc qcctacagcg ctgagctccg cactcgagcc 120
 tcaggcgctcc tcctggtaa tctgtctcg gcccacactgc tgctggcgcc gctggacatg 180
 cccttcacgc tgctcggtgt gatgcgcggg cggacaccgt cggccccgg cgcatgccaa 240
 gtcattggct tcctggacac cttctggcg tccaacgcgg cgctgagcgt ggcggcgctg 300
 agcgcagacc agtggctggc agtgggttcc caactgcgt aegccggacg cctgcgaccc 360
 cgctatggcg gcctgtgtct gggctgtgcc tggggacagt cgctggcctt ctcaggcgct 420
 gcacttggct gctcggtgt tggctacagc agcgccttcg cgtctgttc gctgcgcctg 480
 cccggcggc ctgagctcc gcttcacgc ccacgttca tgcgtgggc 540
 ttctgtgtcc cgctggcggt gcttccttc acctcgcttcc aggtgcaccc ggtggcagcc 600
 agacactgcc agcgcacatgca caccgttccatc atgaaggcgc tgcgtgtct cggccaccc 660
 caccggcgtg tgcggcagcg ctgccttccatc cagcagaagc ggcggccca cggcccccacc 720
 aggaagattt gcatgttat tgcgcacccatc ctcatctgtt ttgcggccat tgcgtatgacc 780
 aggctggcggt agctcggtcc ttctgttccatc gtgaacgcggc agtggggcat cctcagcaag 840
 tgcctgaccc acagcaaggc ggtggccgac ccgttcacgt actctctgttcc cggccggccg 900
 ttccgccaag ttctggccgg catgggtcac ccggctgtca agagaacccc ggcggccagca 960
 tccacccatg acagctctt ggtatggcc ggcacatggtc accagctgttcc gaagagaacc 1020
 cccggcccgatcgtccacca caacggcttccatc gtggacacag agaatgattt ctcgcctgcag 1080
 cagacacactt ga 1092

<210> 71
 <211> 927
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472019CB1

<400> 71
 atggccatgg acaatgtcac agcagtgttt cagtttctcc ttattggcat ttcttaactat 60
 cctcaatggaa gagacacgtt ttcacatta gtgcgtataa tttacctcg cacattgtt 120
 gggaatggat ttatgtatctt tcttatttcac tttgacccca acctccacac tccaaatctac 180
 ttcttcctta gtaacactgtc ttttttagac ctttgttatg gaacagcttc catggcccg 240
 gctttgggtcc attgtttctt taccatccc tacctctttt atcccccgtt tttggctcaa 300
 acgagtgtct cttgggtttt ggccacagca ggtgcctcc tactggctgc catggccat 360
 gaccgtgtgg ttgttatcgtt caatccccgtt cggttattcgtt tggttatgaa tggcccgat 420
 tgcgtgtgtt tgggtgttccatc ctcatggggg acatcaactgt tgctcactgc catgctcatc 480
 ctatccctgtt ggccttccatc ctgtggggctt aatgtcatca accatccatc ctgtgagatt 540

ctctccctca ttaagctgac ctgttctgat accagcctca atgaatttat gatcctcatc 600
 accagtatct tcaccctgct gctaccattt gggtttggtc tcctctctca catacgaaatt 660
 gctatggcta tcataaggat tcgcactc cagggcaggc tcaaggcctt taccacatgt 720
 ggctctcacc tgaccgtgt gacaatcttc tatgggttag ccatctccat gtatatgaaa 780
 actcagtcca agtcctaccc tgaccaggac aagtttatct cagtttta tggagcttg 840
 acacccatgt tgaacccctt gatataatgc ctgagaaaaa aagatgttaa acgggcaata 900
 aggaaagtta tggtgaaaag gacatga 927

<210> 72
 <211> 1032
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472021CB1

<400> 72
 atgcatttc ttcctactgt ctttggcttc ctaaacagag tcacacttgg tatcttcaga 60
 gagactatgg tcaatttgc ttcaatgagt ggattccttc ttatggggtt ttctgatgag 120
 cgtaagcttc agatttaca tgcattggta tttctggta catacctgct ggccttgaca 180
 ggcaacctcc tcattatcac catcattacc gtggaccgtc gtctccattc ccccatgtat 240
 tacttttaa agcacctc tcttctggac ctctgcttca tctctgtcac agtcccccaag 300
 tccattgcaa attcaactt gggcaacggt tacattttcc ttgttcagt cattctttag 360
 gtttcttct tcatagctt ggcctcatca gaagtggcca ttctcacagt gatgtcttat 420
 gacaggtacg cagcaatctg tcaaccactt cattatgaga ctattatgga tccccgtgcc 480
 tgttaggcattc cagtatgtc ttttgtgatt gctgggggccc tctctggct catgcattgt 540
 gccattaaact tctccatacc tctctgtggg aagagagtc ttcaccaattt cttctgtgat 600
 gttcctcaga tgctgaaact agccctttct tatgaattca ttaatgagat tgactggct 660
 gcattcacaa cgtctgcagc atttatctgt ttgatcttca ttgtgtctc ctacattcgc 720
 atcttctcta cagtgtctgag aatcccatca gctgaggggcc ggaccaagggt tttctccacc 780
 tgcctaccac acctatttgt agccaccttc tttcttttag ctgcaggctt tgagtttctc 840
 agactgcctt ctgatttccatc atgcactgtg gaccttgcatt tctccgtatt ctatactgt 900
 atacccatcaa cactcaatcc agtcattttat agcttacggaa atgattccat gaaggcagca 960
 ctgaggaaga tgctgtcaaa ggaagagctt cctcagagaa aaatgtgtt aaaagccatg 1020
 tttaactctt ga 1032

<210> 73
 <211> 972
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472009CB1

<400> 73
 atgtggcaga agaatcagac ctctctggca gacttcattcc ttgaggggct cttcgatgac 60
 tcccttaccc acctttccct tttctccttgc accatgggtt tcttccttat tgccgtgagt 120
 ggcaacaccc tcaccatttc cctcatctgc attgatcccc agcttcatacc accaatgtat 180
 ttccctgtca gccagctc tccatggat ctgatgcatt tctccacaac cattctgaag 240
 atggctacca actacccatc tggcaagaaa tctatcttctt ttgtgggctg tgcaacccag 300
 cacttccttctt atttgtgtct aggtgggtct gaatgttttcc tcttagctgt catgtccatt 360
 gaccgctatg ttgccatctg tcattccactg cgctatgtct tgctcatgaa caagaagggt 420
 ggactgtga tggctgtcat gtcatgggtt ggggcattcc tgaactccct aattcacatg 480
 gcatcttgc tgcacttccc tttctgtggg cctcggaaag tctaccattt ctactgtgag 540
 ttccctggc ttgtgaagtt ggtatgtggc gacatcaatc tgatgagac cacagtgtac 600
 atcagcagac ttctcttctt cctccatcc tctctgattt ctacatcttca tgcatttcatt 660
 cttaaaatgt tcattcagat ggcctcatct gggagcaaga gaaatgcctt tgccacttgt 720
 ggctccacc tcacgggtgt ttctctttgg tttgggtgcct gcatcttctc ctacatgaga 780
 cccaggtccc agtgcactt attgcagaac aaagttgggtt ctgtgttctt cagcatcatt 840
 acgcccacat tgaattcttctt gatttatact ctccggaaata aagatgttagc taaggcttg 900
 agaagagtgc tgaggagaga tggtatcacc cagtgcattt aacgactgca attgtgggtt 960
 ccccgagtgtt ag 972

<210> 74
 <211> 900

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472010CB1

<400> 74
 atggaactgg aaggagactt ccttggtagt gtgggagaat tggccaagt gatccagacc 60
 tttctggta tctatgtgtt cactgtgtg gcaacttgg gcttgcac ctaattggg 120
 ataaatcttac gccttcacac ccccatgtac ttttcttctc tcaacttgc ctttatagat 180
 ctctgttatt cctgtgtgtt taccccaaa atgctgaatg actttttc agaaagtata 240
 atctcttatg tggatgtat gactcagta ttttcttctc gtttcttgc caattctgag 300
 tgctatgtgt tggtatcaat ggcctatgtat cgctatgtgg ccatctgcaa cccctgctc 360
 tacatggta ccatgtcccc aagggtctgc ttctgtgtga tgtttgggtc ctatgtggta 420
 gggttgcgg gggccatggc ccacactgaa agcatgctgc gactgacattt ctgtgattcc 480
 aacgtcattt accattatct gtgtgacattt ctcccccttc tgcagcttc ctgcaccagg 540
 acccatgtca gtgagctggg atttttattt gttgttggag taatcaccat gctatccagg 600
 ataagcatcg tcatcttta cgcttgcata ctctccaaca tcctctgtat tccttctgca 660
 gagggcagat ccaaaggcattt tagcacatgg ggctcccaca taattgtgt tgctctgttt 720
 tttgggtcgg ggacatttcac ctacttaaca acatctttc ctggctctat gaaccatggc 780
 agatttgcct cagtcttttta caccaatgtg gtcccatgc ttaacccttc gatctacagt 840
 ttgaggaata aggatgataa acttgcctgtt ggcaaaaaccc tgaagagagt gctttctaa 900

<210> 75
 <211> 924
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472011CB1

<400> 75
 atggaaacag ggaacacctcac gtgggtatca gactttgtct tcttgggct ctcgcagact 60
 cgggagtcg acgcgttcc ttttctaattt ttcctgtttt tctacatcac cactgtttagt 120
 gaaacatcc ttatcatcat cacagtacc tctgattccc agctccacac acccatgtac 180
 tttctgtcc gaaacctggc tgccttagac ctctgtttctt cttagtgc tgctcccaaa 240
 atgcttagtg accctcttc tgagaagaaa accatctttt accaggctg catgggtcgg 300
 attttttcc tccactttt gggagggtcc atggtcttct tcccttcaggat gatggcctt 360
 gaccgcctca ttgcctatctc cggcccttc cgctatgtca cctgtcatgaa cactcagctc 420
 tgggtggggtc tggtggtagc cacctgggtg ggaggctttt tccactctat tgccagctg 480
 gctctgtatgc tcccactgccc ttctgtggc cccaaacattt tgataactt ctactgtat 540
 gttcccaaaatg tactgagact tgcctgcact gacacccatc tgctggaggat ctcagatc 600
 tccaaatgtt ggctgtgttgc tgctgtctgg ttcttcttc tccgtatgtc ctacttattt 660
 atcttgtatgc tgctgaggatc acatccaggg gaggcaagaa ggaaggcagc ttccacctgc 720
 accaccacata tcatctgtgtt ttccatgatc ttctgtccaa gcatttacatc ttcatgtccgg 780
 cccttactc cattccctat ggacaagttt gtgtccatgc gccacacagt catgaccccc 840
 atgctcaacc ccatgatcta taccctgagg aaccaggaca tgcaaggcagc agtggagaaga 900
 ttagggagac accggctgggttga 924

<210> 76
 <211> 945
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 7472012CB1

<400> 76
 atggacaaca gcaactggac cagtgtgtcc cattttgttc tcttgggcat ttccacccac 60
 ccagaagagc aaatccactt cttccctgtt ttctcaactca tgtaccaat caatattttct 120
 ggcaacttgg ccatcatcac actgattctc tctgctccac gcctccacat ccccatgtac 180
 attttctca gtaacttggc ttgtacagac atctgttca cttccacccat ggtcccaaaag 240
 atgctgcaga ttatatttcttccctacaaag gtaatttctt acacaggctg tttagcccaa 300
 atttatttctt cttttgtt cggccatgc gaaaacttca tcttggctgt gatggcctat 360

gacagggtaca	ttgccatctg	ccaccccttc	cactacacta	tgtatcctgac	tagaatgctg	420
tgtgtgaaga	tggggcat	gtgccatgt	ctctcccacc	ttcatggcat	gtgcatacc	480
tttctcatag	gccaactaat	tttctgtgca	gataacagaa	tcccccaactt	cttctgtgac	540
ctctacgctc	tgtgaagat	ctccctgcacc	agcacctacc	tcaacacccct	tatgattcac	600
acagaagggtg	ctgttgtaat	cagtggagct	ctggccctca	ttactgcctc	ctatgcctgc	660
atcatccctgg	tggccctccg	gatcccccta	gccaaggggc	ggtggaaaaac	ctttcttacc	720
tgcggctccc	acctcaactgt	ggtggccata	ttctatggca	ccctcagttg	ggtctacttc	780
cggccccctt	ccagcttattc	agtgaccaag	ggtcgcattta	taacagtctgt	gtacacagtg	840
gtgactccca	tgtgaaccc	tttcatctac	agcctgagga	atggggatgt	caagggaggc	900
ttcatgaaaat	ggatgagcag	aatgcagact	tttttcttta	gataa		945

<210> 77
<211> 933
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7472014CB1

```

<400> 77
atgggaagaa ataacctaac aagaccctct gaattcatcc tccttgact ctccctctcg 60
cctgaggatc agaagccgt ctttgcgtg ttccctccccca tctacccat cacagtgtata 120
ggaaacctgc ttatcatcc ggcacatccgc tcagacactc gtctccagac gcccatgtac 180
ttctttctaa gcatacctgtc ttttgtgac attgtctatg tgacatgtat tatecctaag 240
atgcgttgcg actttttatc agagacaaaag accatctttt acgggtgttg tctgaccagg 300
atgtactttt tcttagcctt tgaaacaca gacagttacc tgctagcagc catggccatt 360
gaccgctatg tggccatatg taatcccttc cactacatca ccattatgag tcacagatgc 420
tgtgtctcgc ttctgggtct ctccttctgc attccacatt ttcactccct cctgcacatt 480
cttctgacta atcagctcat cttctgtgcc tccaatgtca tccatcaactt ttctgcat 540
gatcaaccag tgctaaaatt gtcctgttcc tcccattttg tcaaagaat cacagtaatg 600
acagaaggct tggctgtcat aatgaccccg tttcatgtca tcatcatctc ttatthaaga 660
atccctcatca ctgttctgaa gattccctca gtcgttggaa agcgttaaagc atttttac 720
tgtggcttc attcacagt ggtgaccctg ttttatggaa gcattagctt tgcttatttt 780
cagccctgtt ccaactatac tgtcaaggat caaatagca caattatcta caccgtactg 840
actccatatgc taaaatccatt tatctatagt ctgaggaaca aagacatgaa gcagggtttt 900
qcaaagtgtga tgcacaggat gaaatgtcag taa 933

```

<210> 78
<211> 1080
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7472020CB1

```

<400> 78
atgttcaaag ccaccccttgg ccatgtgtgg cccaaagacc atgggttggc caagcttg 60
gtaagggtgtc caagacacac agagccatgg aacttcacag gtatctcaga attccctc 120
ctgggactct cagaggatcc agaactgcag cccgtctcc ctgggctgtc cctgtccatg 180
tacctggtca cggtgcttag gAACCTGCTC atcatctgg ctgtcagctc tgactccac 240
ctccacacccc ccatgtgttt ctgcctctcc aaccctgtgt gggctgacat cggtttacc 300
tcggccatgg ttcccaagat gattgtggac atgcagtcgc atagcagagt catcttttat 360
gcgggctgcc tgacacagat gtctttcttt gtcccttttg catgtataga agacatgtc 420
ctgacagtga tggccttatga cggattttgt gcacatctgc acccccctgca ctacccagt 480
atcatgaatc ctcaccccttgg tgcctttta gttttgggtt cttttttctt cagcctgtt 540
gatccccacg tgcacagttt gattgtgtt caattcacct tcttcaagaa tgtggaaatc 600
tccaatttttgc tctgtgacc c atctcaactt ctcacacccgt cctgttctga cagtgcatc 660
aatagcatat tcatatattt agatagtttattt atgtttgggtt ttcttccat ttcaggatc 720
cttttgtt acgctaacaat tgcctccctcc attctaaagaa tttcatatcatc agataggaag 780
tctaaagctt tctccacctg tggctctcac ctggcagttt tttgttattt ttatggaaaca 840
ggcattggcg tgcacctgac ttcaagtttgc tcaccacccc ccaggaatgg tgggtggca 900
tcagtgtatgt acgctgttgtt cacccttccat cttttttttt tcatctacag cctggagaaat 960
agggacattt aaagtgcctt gtggaggctg cgcagcagaa cttttttttt tcatgtatctg 1020
ttatctcaag atctgctcca ttccctttttt tttttttttt tttttttttt accacattaa 1080

```