Oenies.

If $u_1, u_2 - u_{n--} - 1s$ an infinite sequence of real numbers, then the sum of the terms of the sequence $u_1 + u_2 + - \dots + u_{n+--} - \infty$ is called an infinite series denoted by $\sum_{n=1}^{\infty} u_n$ or $\sum_{n=1}^{\infty} u_n$

For convergence / divergence of Zun

- 1) Find $S_n = u_1 + u_2 + \cdots + u_n$ = Sum of first n terms.
- 2) Find lim Sn
- 3) If $\lim_{n\to\infty} s_n = finite$ then $\sum_{n\to\infty} u_n$ converges.

= ±00 then Zun diverges.

= does not have / limit does not unique limit / exist.

=) Zun oscillates.

divergence for Iun in that order.

The nth term test for divergence. For Iun

If Im un = 0 then Iun diverges. But if

n-200

lim un = 0 then Zun may or may not converge.

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{n-1}$$

$$S_{n} = a + ar + ar^{2} + \cdots + ar^{n-1}$$

$$= \underline{a(r^{n-1})} \quad \text{if } r > 1$$

$$= \underline{a(1-r^{n})} \quad \text{, if } r < 1$$

1) When
$$|r| < 1$$
, $\lim_{n \to \infty} r^n = 0$
then $S_{\infty} = \frac{\alpha}{1-r} = \text{finite} \implies \sum_{n \to \infty} \text{Un converges}$

② When
$$|r|>1$$
 $\lim_{n\to\infty} r^n = \infty$
then $s_{\infty} = \infty$ => $\sum u_n \ diverges$.

A Important Result.

The series
$$\sum \frac{1}{n^p}$$
 converges if $p \ge 1$ diverges if $p \le 1$

e.g. Discuss the convergence of
$$\sum_{n=1}^{\infty} \frac{3^{n-1}}{6^{n-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} - \left(\frac{1}{6}\right)^{n+1} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} - \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} = \sum_{n=1$$

Both are geometric series with a=1 & common ratios $\frac{1}{2}$ & $\frac{1}{6}$ respectively. So The series converges $\frac{1}{5}$ \frac

3) Comparison Test (Applicable if un contains Page 3 polynomials in 'n')
For Zun & ZVn (both are series of positive terms) & Page 3 $\lim_{n\to\infty} \frac{u_n}{v_n} = 1$ finite 8 nonzero real number then both the series Zun & ZVn converge or diverge together. (Choose $\geq V_n$ in the form of $\geq \frac{1}{nP}$ such that $\lim_{n\to\infty} \frac{U_n}{v_n}$ becomes finite) e.g. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n^2}$ — Here $u_n = \frac{1}{1 + n^2 + 3^2 + \cdots + n^2}$ $= \frac{6}{n(n+1)(2n+1)}$ $= \frac{6}{n^{3}(1+\frac{1}{n})(2+\frac{1}{n})}$ Take $V_n = \frac{1}{n^3}$ Now $\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{6}{(1+\frac{1}{n})(2+\frac{1}{n})} = 6 \neq 0$

of By Comparison test both the series $\Sigma Un \land \Sigma Vn$ converge or diverge together. But $\Sigma Vn = \Sigma L_3$ which is convergent as p=3>1 by p series test.

0°0 Zun also converges.

2) Test the convergence of the series
$$\sqrt{\frac{1}{2^3}} + \sqrt{\frac{2}{3^3}} + \sqrt{\frac{3}{4^3}} + \cdots$$

Here $u_n = \sqrt{\frac{n}{(n+1)^3}}$

$$= \frac{n^{\frac{1}{2}}}{n^{\frac{3}{2}}}$$

$$= \frac{n^{\frac{1}{2}}}{(n+1)^{3/2}}$$

$$= \frac{n^{\frac{1}{2}}}{n^{\frac{3}{2}}(1+\frac{1}{n})^{3/2}}$$

$$= \frac{1}{n(1+\frac{1}{n})^{3/2}}$$
Take $V_n = \frac{1}{n}$ Now $\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{1}{(1+\frac{1}{n})^{3/2}} = 1 \neq 0$

ob By comparision test both the series $\sum un \otimes \sum Vn$ converge or diverge together. But $\sum Vn = \sum \frac{1}{n} which is divergent according to p-series test.$

3)
$$\sum_{n=1}^{\infty} \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right)$$

$$= \sqrt{n^4 + 1} - \sqrt{n^4 - 1}$$

let
$$u_n = \sqrt{n^4 + 1} - \sqrt{n^4 - 1} \times \sqrt{n^4 + 1} + \sqrt{n^4 - 1}$$
 (Poing rationalization)
$$v_0^{\circ} u_n = \frac{(n^4 + 1) - (n^4 - 1)}{\sqrt{n^4 + 1} + \sqrt{n^4 - 1}} \left(\frac{n^4 + 1}{\sqrt{n^4 - 1}} + \sqrt{n^4 - 1}\right)$$

 $= \frac{2}{\sqrt{n^4+1} + \sqrt{n^4-1}} = \frac{2}{n^2 \left(\sqrt{1+\frac{1}{n^4}} + \sqrt{1-\frac{1}{n^4}}\right)} = \frac{1}{\ln 2}$ Take $v_n = \frac{1}{n^2}$ 8

finally $\sum u_n$ converges.

For the positive term series
$$\geq u_n$$
 if $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 1$, then

(1) $\geq u_n$ converges if $1 \geq 1$ (1<1)

(2) $\geq u_n$ diverges if $1 \geq 1$ (1>1)

(3) The test falls for $1=1$

A This test is applicable if u_n contains factorial (!)

6. G. Test the convergence of the series. $\sum \frac{n!(2)^n}{n^n}$

then $u_{n+1} = \frac{n!(2)^n}{n^n}$ then $u_{n+1} = \frac{(n+1)!}{(n+1)!} \frac{2^{n+1}}{n^n}$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n+1)!}{(n+1)!} \frac{2^{n+1}}{(n+1)!} \times \frac{n^n}{n!}$$

$$= \lim_{n\to\infty} \frac{(n+1)!}{(n+1)!} \frac{2^{n+1}}{(n+1)!} \times \frac{n^n}{n!}$$

$$= \lim_{n\to\infty} \frac{(n+1)!}{(n+1)!} \frac{2^{n+1}}{(n+1)!} \times \frac{n^n}{n!}$$

$$= \lim_{n\to\infty} \frac{2^n}{(n+1)!} \times \frac{2^n}{(n+1)!} \times \frac{2^n}{(n+1)!}$$

$$= \lim_{n\to\infty} \frac{2^n}{(n+1)!} \times \frac{2^n}{(n+1)!} \times \frac{2^n}{(n+1)!}$$

Here $u_n = \frac{n}{1+2^n} = \frac{n+1}{1+2^n} \times \frac{1+2^n}{(n+1)!}$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n+1)!}{n!} \times \frac{2^n}{(n+1)!} = \lim_{n\to\infty} \frac{(1+\frac{1}{n})!}{(n+1)!} \times \frac{(1+\frac{1}{n})!}{(n+1)!}$$

as $n\to\infty$ $\frac{1}{2^n}\to 0$
 u_n By ratio test $\geq u_n$ converges.

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1 \cdot 2}{3 \cdot 5}\right)^2 + \left(\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}\right)^2 + \cdots \quad \infty$$

Here
$$u_n = \left[\frac{1 \cdot 2 \cdot 3 \cdot ... \cdot n}{3 \cdot 5 \cdot 7 \cdot ... \cdot (2n+1)} \right]^2$$

$$U_{n+1} = \left[\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n \cdot (n+1)}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1) \cdot (2n+3)} \right]^{2}$$

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{(2n+3)^2} \quad \text{Now} \quad \lim_{n \to \infty} \frac{(n+1)^2}{(2n+3)^2} = \lim_{n \to \infty} \frac{n^2(1+\frac{1}{n})^2}{n^2(2+\frac{3}{n})^2} = \frac{(1+0)^2}{(2+0)^2} = \frac{1}{4} < 1$$

5) Cauchy's Root test.

For the positive term series $\sum u_n$ if $\lim_{n\to\infty} (u_n) = 1$ then

- (1) $\geq u_n$ converges if $\ell < 1$
- (5) In giverges it (>1
- (3) The test fails if l=1

This test is applicable if Un has power 'n'.

$$\frac{e \cdot g}{3} \cdot \frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \cdots + \left(\frac{n}{2n+1}\right)^n + \cdots$$

Here $u_n = \left(\frac{n}{2n+1}\right)^n$

Now $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{n}{2n+1}$ $= \lim_{n\to\infty} \frac{n}{n(2+\frac{1}{n})} = \lim_{n\to\infty} \frac{1}{(2+\frac{1}{n})} = \frac{1}{2} < 1$

8% Zun converges.

2) Test the convergence of the series

$$\frac{1^3}{3} + \frac{2^3}{3^2} + \frac{3^3}{3^3} + \frac{4^3}{3^4} + \cdots$$

We un =
$$\frac{n^3}{3^n}$$
 $(u_n)^n = (\frac{n^3}{3^n})^{\frac{1}{n}} = \frac{3/n}{3}$

Now
$$\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{n^{3/n}}{3} = \lim_{n\to\infty} \frac{(n^{\frac{1}{n}})^3}{3}$$

Let $\lim_{n\to\infty} (n)^{\frac{1}{n}}$ Which is in the form $(\infty)^{\frac{1}{n}}$ indeterminate form $(\infty)^{\frac{1}{n}}$

To evaluate use L'Hôspital's rule

let
$$y = (n)^{\frac{1}{n}}$$

$$\log y = \frac{1}{n} \log n = \frac{\log n}{n}$$

Now
$$\lim_{n\to\infty} \log y = \lim_{n\to\infty} \frac{\log n}{n} \left(\frac{\infty}{\infty} + ype \right)$$

=
$$\lim_{n\to\infty} \frac{1}{n}$$
 (Applying l'Hôspital's rule)

$$=\lim_{n\to\infty}\frac{1}{n}$$

$$\int_{n\to\infty}^{\infty} \frac{(n^{\frac{1}{n}})^3}{3} = \frac{1}{3} < 1$$