@ Mathematical Induition of Decision Tree @

-> Decision Tree classifier; Conester the following dataset & (6/1) (51) 1 (72) how duty wind Decision					
	outlook (Si)	temperature	humidity	wind	Deasin
Day		hot	high	Wede	No
1.	enny	hot	high	Leage	No
٤.	Ermy	hot	high	werk	Yes " Yes
3.	overast	nih	Wgh	werk	Yes
.4.	ranfall		horsen	weak	ty.
5.	marfall	cool	laman	story	No
6.	rainfall	cool	havan	strong	Yes
7.	o verast	0001	high	creak	No
8.	Sung	Min	nor mad	area	Yes .
9.	sury	min	normal	es cale	Yes.
10.	rainfall	mild	hound	strong	Yes.
11.	(uny	will	high	of strong	Yes Yes.
12.	overest	hot	haran	chora na	No.
19. 19.	rainfull	mild	high	yes of	

f., f2, f3, f4 are & independent features. of P -> Is on departed feature.

Our independent features can be both numerical or entegorial. For Decision Tree classifier, our dependent fasture (or of feature) will be estegorial.

Let's talk about 2 Dectrion Prec classifiers: 0 103 1 CART - Chrifforthan & Regression Trees.

Henrica Desptonized

- Heratthe Dewtomiser

CART

-> classification & Regression Prees

-) are talk about entropy -> are talk about fini impurity

Let's consider outlask feature as our root node. Now in our target feature, we have 9 yes 85 no.

(94,5N) Outlook (feature) [14,3N] 34, 24] this is a pure split. He have only yes values I no no values this is a leaf node.

Our objective is to get the printy of the feature. To get the printy of our fetures, we have 2 methods ;-1 Equalit 1 Gini impurity / Gini co-efficient Entropy = - 2 Pi · log_(Pi)

Graceff = 1 - 2 Pi

Graceff = 1 - 2 Pi In our detret, we have I dusses > Yes I No. -> binary dussification. chory = Col-1, which = 1, (B) = - Py bg[ly) - Pn bg[PN) = Governmenty = 1 - [Py + PN] Say we have a broay classification to based on one feature for which has 2 categories & off , y or N [34/34] 7 This is 50 %.4 pure split very high impurity. entropy 2 H(D2 - E 1: bg(P;) 2 - Py log_(Py) - PN log_(PN) $2 - \frac{3}{6} \log_2(\frac{3}{6}) - \frac{3}{6} \log_2(\frac{3}{6})$ 2 Pos (6252) 2 - log (1) 2 · - (hog 1 - hg 2) so, for very impore split, we are getting entropy, H(s)=)

Now let's see the entropy of the pure split.

$$\frac{2}{3} + (1) = -\frac{2}{3} + \log_{1}(l_{1}) - \log_{1}(l_{1})$$

$$= -\frac{3}{3} \log_{1}(\frac{3}{3}) - 0.$$

:. for pure split H(s) = 0

> entropy graph w.r.l. frozinsking. o.s (Forally)

Highest value of entropy = 1. - very impure split H(s) 20 -> presput.

Let's consider the spirit (24/3H) H(j) = - 2 Pi Wgn(Pi) 2 - Py logz(Py) - Palogz(Pa) $2 - \frac{2}{5} \log_2\left(\frac{2}{5}\right) - \frac{3}{5} \log_2\left(\frac{3}{5}\right)$ 2 0 - (log_ L - log_ 5 + log_ 3 - log_ 5) 2 - (1 - log 23 - 2 log 25) 2 - (1-10g23 - log225)

Now let's cansilor the three splits !-

$$\frac{\text{Givi out}}{\text{Givi out}} = 1 - \left[\left(\frac{3}{\epsilon} \right)^{n} + \left(\frac{3}{\epsilon} \right)^{n} \right]$$

$$= 1 - \left[0.25 + 0.25 \right] = 0.5$$

so, range of th(s) -> [0,1]
range of Gim welf -> [0,0.5]

(3 consider -> [94, 84].

@ consider -> [84/24]

Now, say we have 3 features - features, features. Now, to see Printy, if are find entropy to then the information gain - this is log approach

If we find find importing & then the information given -> CART approxime. (this is much fister of snibble for larger detauts)

Consider this scenario !-

H(S) 2 root feature entropy.

$$2 - \frac{1}{4} \log_{2}(\frac{1}{4}) - \frac{1}{4} \log_{2}(\frac{5}{14})$$

$$2 - \frac{9}{19} \log_{2}(\frac{9}{19}) - \frac{5}{14} \log_{2}(\frac{5}{19})$$

$$2 - \log_{2}(\frac{9}{19}) - \log_{2}(\frac{5}{14})$$

$$\frac{\int V \int V \int V}{H(s) = -\frac{6}{8} \log_2(\frac{6}{8})} - \frac{2}{8} \log_2(\frac{2}{8})$$

$$\frac{1}{8} \log_2(\frac{6}{8}) - \frac{2}{8} \log_2(\frac{2}{8})$$

$$\frac{1}{8} \log_2(\frac{6}{8}) - \log_2(\frac{6}{8})$$

Gar (S,fa) 2 0.99 - [8 70.81 + 6 71]

2 0.049

This is the IDa agmach.

Similarly in the information goin formator, if are replace the entropy with fire impririty -> It will be the CART approach.

But, this is wiret only one factore fr.

tels tille about feety feature

We have to choose the feature that has less impority & more information

Let's talk about fature 2 - fr

H(s) = food entropy = - \(\frac{2}{2}P; \log_e(li)\)

 $r - \frac{9}{14} \log_2 \left(\frac{9}{14}\right) - \frac{5}{14} \log_2 \left(\frac{5}{14}\right)$

2 - log 29 - log 5 RO-74

Mon, gair (f1) 2 0.099 & gair (f2) 20.09

clearly, infoint gate of for 7 info. gain of fi.

So, we select for as our root mode. Leave it is greater & is providing more info