SE102:Multivariable Calculus

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Let D, R be regions in \mathbf{R}^n . A differentiable one-to-one function $T: R \to D$ is called a **transformation**. For $T(u_1, \dots, u_n) = (x_1, \dots, x_n)$, the **Jacobian** of T is defined as the determinant of the differential of T:

$$J_T = \det \mathbf{d}T.$$

We also denoted J_T as

$$J_T = \frac{\partial(x_1, \cdots, x_n)}{\partial(u_1, \cdots, u_n)}$$

Theorem (Integration by substitution)

Let $T: R \to D$ be a transformation, and f(x,y) be a continuous function defined on D. Then

$$\iint_D f(x,y) dx dy = \iint_R (f \circ T)(u,v) |J_T| du dv.$$

Remark

It is useful to remember the substitution rule as:

$$\iint_D f(x,y) dx dy = \iint_R (f \circ T)(u,v) \left| \frac{\partial (x,y)}{\partial (u,v)} \right| du dv$$

Also, the Jacobian of the inverse $T^{-1}(x,y) = (u(x,y),v(x,y))$ is

$$J_{T^{-1}} = \left| \frac{\partial(u, v)}{\partial(x, y)} \right| = \frac{1}{J_T} = \frac{1}{\left| \frac{\partial(x, y)}{\partial(u, v)} \right|}$$

Example

Compute

$$\iint_D |x|e^{-x^2-y^2}dxdy$$

where $D = \{(x, y) | x^2 + y^2 \le 1\}.$

Theorem (Integration by substitution)

Let V, W be regions in \mathbf{R}^3 . A differentiable one-to-one function $T: W \to V$

$$T(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w))$$

is called a **transformation**. Let f(x, y, z) be a continuous function on V. Then

$$\iiint_V f(x,y,z) dx dy dz = \iiint_W (f \circ T)(u,v,w) |J_T| du dv dw.$$

Example

Compute the volume between two cylinders $x^2 + y^2 \le 1$, $y^2 + z^2 \le 1$.

Example

Compute

$$\iiint_{V} \sqrt{x^2 + y^2 + z^2} e^{x^2 + y^2 + z^2} dx dy dz$$

where V is the region between the spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$ (0 < a < b).

A vector field $\mathbf{F}: \mathbf{R}^n \to V$ is a map which assign a vector in a vector space V to each point in the space \mathbf{R}^n . (Usually we take V as n-dimensional vector space \mathbf{R}^n .)

Definition

Given a vector field

 $\mathbf{F}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),$ The **curl** $\nabla \times F$ and **divergence** $\nabla \cdot \mathbf{F}$ is defined by

$$\nabla \times \mathbf{F} = (R_y - Q_z, P_z - R_x, Qx - P_y) = \begin{vmatrix} i & j & k \\ \partial/\partial_x & \partial/\partial_y & \partial/\partial_z \\ P & Q & R \end{vmatrix}$$
$$\nabla \cdot \mathbf{F} = P_x + Q_y + R_z$$

Theorem

Let f, g be 3-dimensional functions and \mathbf{F}, \mathbf{G} be 3-dimensional vector fields. The following properties hold.

- 1. $\nabla \times (\nabla f) = 0$
- 2. $\nabla \cdot (\nabla \times \mathbf{F}) = 0$
- 3. $\nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G}$
- 4. $\nabla \times (\mathbf{F} + \mathbf{G}) = \nabla \times \mathbf{F} + \nabla \times \mathbf{G}$
- 5. $\nabla \cdot (f\mathbf{F}) = f\nabla \cdot \mathbf{F} + \mathbf{F} \cdot \nabla f$
- 6. $\nabla \times (f\mathbf{F}) = f\nabla \times \mathbf{F} + \nabla f \times \mathbf{F}$
- 7. $\nabla \cdot (\mathbf{F} + \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) \mathbf{F} \cdot (\nabla \times \mathbf{G})$
- 8. $\nabla \cdot (\nabla f \times \nabla g) = 0$
- 9. Denote $\nabla^2 = \nabla \cdot \nabla$. Then

$$\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \cdot \mathbf{F}$$

Let $\mathbf{F}(x,y) = (P(x,y),Q(x,y))$ be a 2-dimensional vector field.

The $\operatorname{\mathbf{curl}}$ of $\operatorname{\mathbf{F}}$ is

$$\operatorname{curl} \mathbf{F} = Q_x - P_y.$$

The **divergence** of \mathbf{F} is

$$\operatorname{div}\mathbf{F} = P_x + Q_y.$$

Let C be a curve in \mathbf{R}^n and $c:[a,b]\to\mathbf{R}^n$ be a parametrization of C. Given a n-dimensional vector field \mathbf{F} defined on C, the **line integral** of \mathbf{F} is defined by

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}((c(t))) \cdot c'(t) dt$$

For 2-dimensional vector field $\mathbf{F} = (P, Q)$, the line integral is denoted by

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \int_C Pdx + Qdy.$$

For 3-dimensional vector field $\mathbf{F} = (P, Q, R)$, the line integral is denoted by

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \int_C Pdx + Qdy + Rdz.$$

Let $c:[a,b] \to \mathbf{R}^n$ be a parametrization of a curve C. If c(a) = c(b), the curve is said to be **closed**. The line integral over a closed curve is denoted by \oint_C .

Example

Let
$$\mathbf{A} = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$
. Compute the line integral $\oint_C \mathbf{A} \cdot d\mathbf{s}$ where C is a unit circle parametrized by counter-clockwise direction.

Let $X: D \to S$ be a parametrization of S. If the vector field

$$\mathbf{n} = \frac{\mathbf{X}_u \times \mathbf{X}_v}{\|\mathbf{X}_u \times \mathbf{X}_v\|}$$

is continuous, we say S has an orientation and \mathbf{n} is called an orientation.

Definition

Let \mathbf{F} be a 3-dimensional vector field defined on a parametrized surface S. The **surface integral** of \mathbf{F} over S is defined by

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} (\mathbf{F} \circ X) \cdot \mathbf{n} dS$$

where $\bf n$ is an orientation of S.

Example

Pick an orientation of a unit sphere and compute the surface integral of ${\bf F}=\frac{(x,y,z)}{x^2+y^2+z^2}.$

Problem

Let \mathbf{F} , \mathbf{G} be 3-dimensional vector fields. Show that the following properties hold.

- 1. $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) \mathbf{F} \cdot (\nabla \times \mathbf{G})$
- 2. $\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) \nabla \cdot \nabla \cdot \mathbf{F}$
- 3. $\nabla \times (\mathbf{F} \times \mathbf{G}) = (\nabla \cdot \mathbf{G})\mathbf{F} (\nabla \cdot \mathbf{F})\mathbf{G} + (\mathbf{G} \cdot \nabla) \cdot \mathbf{F} (\mathbf{F} \cdot \nabla) \cdot \mathbf{G}$

Problem

Explain geometric meanings of $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$.

Problem

Find the area of the region bounded by three cylinders $x^2 + y^2 \le 1$, $y^2 + z^2 \le 1$, and $x^2 + z^2 \le 1$.

