

QUÍMICA NIVEL MEDIO PRUEBA 1

Lunes 19 de mayo de 2014 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
	H 4,								
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
	'			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	Elemento Masa atómica relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Aasa atómica re		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
	<u> </u>	<u> </u>		22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 * Ac (227)	- -	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

1. ¿Cuál es la masa, en g, de un mol de sulfato de cobre(II) hidratado, CuSO₄•5H₂O, dados los siguientes valores de masa atómica relativa?

Elemento	Cu	S	Н	О
Masa atómica relativa	64	32	1	16

- A. 160
- B. 178
- C. 186
- D. 250
- 2. Se añade un exceso de carbonato de calcio a una solución que contiene 0,10 moles de HCl(aq). ¿Qué masa de carbonato de calcio reacciona, y qué masa de dióxido de carbono se forma?

Masa de un mol de
$$CaCO_3 = 100 g$$

Masa de un mol de
$$CO_2 = 44 g$$

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

	CaCO ₃ (s)/g	$CO_2(g) / g$
A.	10	4,4
B.	10	2,2
C.	5,0	2,2
D.	5,0	4,4

¿Para qué compuestos la fórmula empírica es la misma que la fórmula molecular?

		I. Metano
		II. Eteno
		III. Etanol
	A.	Solo I y II
	В.	Solo I y III
	C.	Solo II y III
	D.	I, II y III
4.		isuelve un poco de cloruro de sodio en agua. ¿Qué término describe el rol del cloruro de sodio ste proceso?
	A.	Soluto
	B.	Solvente
	C.	Solución
	D.	Saturado
5.	¿Que	é representa 52 X ?
	A.	Un isótopo del Te con 24 neutrones
	B.	Un isótopo del Te con 24 electrones
	C.	Un isótopo del Cr con 28 protones
	D.	Un isótopo del Cr con 28 neutrones

3.

- **6.** ¿Qué especie sufrirá mayor deflexión en un espectrómetro de masas?
 - $A. \qquad ^{24}Mg^{2+}$
 - $B. \qquad ^{24}Mg^{^{+}}$
 - C. ${}^{25}Mg^{2+}$
 - D. $^{25}Mg^+$
- 7. ¿Qué propiedades disminuyen hacia abajo en el grupo 1?
 - I. Punto de fusión
 - II. Radio atómico
 - III. Energía de primera ionización
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **8.** ¿Qué par de elementos presenta la mayor diferencia de electronegatividad?
 - A. Mg y O
 - B. Li y F
 - C. KyF
 - D. Li y I

- A. $Ca_2(PO_3)_3$
- B. Ca_2P_3
- C. $Ca_3(PO_4)_2$
- D. Ca_3P_2

10. ¿Qué propiedades tienen los compuestos iónicos típicos?

	Punto de fusión	Conductividad del sólido
A.	elevado	buena
B.	bajo	buena
C.	elevado	pobre
D.	bajo	pobre

11. ¿Qué compuestos contienen enlace iónico \mathbf{y} covalente?

- I. CaCO₃
- II. NaCl
- III. NaOH
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

- 12. ¿Qué par tiene los mismos ángulos de enlace?
 - A. $CH_4 y NH_4^+$
 - B. NH₃ y H₂O
 - $C. \quad C_2H_4 \ y \ C_2H_2$
 - D. CO₂ y SO₂
- 13. ¿Qué diagrama representa el enlace en el SiO₂?

$$0 = Si = 0$$

14. La tabla muestra información sobre el aumento de temperatura que se produce cuando se mezclan un ácido y un álcali.

Experimento	Volumen y concentración de HCl(aq)	Volumen y concentración de NaOH (aq)	Aumento de temperatura / °C
1	25 cm ³ 1,0 mol dm ⁻³	25 cm ³ 1,0 mol dm ⁻³	x
2	50 cm ³ 1,0 mol dm ⁻³	50 cm ³ 1,0 mol dm ⁻³	у

¿Cuál es el valor de y?

- A. $\frac{1}{2}x$
- B. *x*
- C. 2*x*
- D. 4*x*
- 15. ¿Cuál es el valor de ΔH para la reacción exotérmica representada por el siguiente diagrama?

Coordenada de reacción

- A. y-z
- B. z-y
- C. x-z
- D. z-x

16.	¿Cuál es el aumento de temperatura que se produce cuando se suministran 2100 J de energía a 100 g
	de agua? (Capacidad calorífica específica del agua = $4,2 \text{ J g}^{-1} \text{ K}^{-1}$.)

- A. 5°C
- B. 278 K
- C. 0,2 °C
- D. 20 °C
- 17. ¿Qué cambio aumenta la velocidad de una reacción química?
 - A. Aumentar el tamaño de las partículas del reactivo sólido
 - B. Disminuir la concentración de los reactivos acuosos
 - C. Aumentar el área superficial del reactivo sólido
 - D. Disminuir la presión de los reactivos gaseosos
- **18.** ¿Cuál **no** se verá afectado por un aumento de temperatura?
 - A. Velocidad de reacción
 - B. Frecuencia de las colisiones
 - C. Geometría de las colisiones
 - D. % de moléculas con $E \ge E_a$

$$2NO(g) + H_2(g) \rightleftharpoons N_2O(g) + H_2O(g)$$

-10-

A.
$$K_c = \frac{[N_2O] + [H_2O]}{2[NO] + [H_2]}$$

B.
$$K_{c} = \frac{[NO]^{2} [H_{2}]}{[N_{2}O][H_{2}O]}$$

C.
$$K_c = \frac{[2NO] + [H_2]}{[N_2O] + [H_2O]}$$

D.
$$K_c = \frac{[N_2O][H_2O]}{[NO]^2[H_2]}$$

20. ¿Qué es **siempre** correcto para una reacción en equilibrio?

	Concentraciones de los reactivos y productos	Velocidad de las reacciones directa e inversa
A.	continúa variando	igual
B.	permanece constante	igual
C.	continúa variando	diferente
D.	permanece constante	diferente

- 21. ¿Qué compuesto reacciona con óxido de calcio, CaO?
 - A. K₂O
 - B. Na₂O
 - C. SO₂
 - D. MgO

- **22.** ¿Qué enunciado explica por qué el amoníaco, NH₃, se clasifica como base de Lewis?
 - A. Puede aceptar un protón.
 - B. Puede aceptar un par de electrones solitario.
 - C. Puede ceder un par de electrones solitario.
 - D. Puede ceder un protón.
- 23. ¿Cuáles son los números de oxidación correctos del cromo en el $\text{Cr}_2\text{O}_7^{\ 2-}$ y del manganeso en el KMnO_4 ?

	Cromo en el Cr ₂ O ₇ ²⁻	Manganeso en el KMnO ₄
A.	+7	+7
B.	+6	+7
C.	+6	+4
D.	+7	+4

Véase al dorso

24. El cinc es más reactivo que el cobre. En esta pila voltaica, ¿qué especie se reduce y en qué dirección fluyen los iones negativos en el puente salino?

	Especie que se reduce	Dirección del flujo de iones negativos en el puente salino
A.	Cu^{2+}	de la semicelda de cobre a la semicelda de cinc
B.	Cu ²⁺	de la semicelda de cinc a la semicelda de cobre
C.	Zn^{2+}	de la semicelda de cobre a la semicelda de cinc
D.	Zn ²⁺	de la semicelda de cinc a la semicelda de cobre

- **25.** ¿Qué proceso ocurre cuando se electroliza una sal fundida?
 - A. El ion metálico se oxida y se deposita en el electrodo negativo (cátodo).
 - B. El ion metálico se reduce y se deposita en el electrodo negativo (cátodo).
 - C. El ion metálico se oxida y se deposita en el electrodo positivo (ánodo).
 - D. El ion metálico se reduce y se deposita en el electrodo positivo (ánodo).

- **26.** En los mecanismos de las reacciones orgánicas, ¿qué representa una flecha curva?
 - A. El movimiento de un par de electrones hacia un nucleófilo
 - B. El movimiento de un par de electrones hacia especies cargadas positivamente
 - C. El movimiento de un par de electrones hacia afuera de las especies cargadas positivamente
 - D. El movimiento de un par de electrones hacia una base de Lewis
- 27. ¿Qué propiedades son características de una serie homóloga?
 - I. La misma fórmula general
 - II. Propiedades químicas similares
 - III. Graduación de las propiedades físicas
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **28.** ¿Qué compuesto es un isómero del octano, C₈H₁₈?
 - A. $(CH_3)_2CH(CH_2)_2CH(CH_3)_2$
 - B. (CH₃)₂CHCH₂CHCHCH₂CH₃
 - C. $CH_3(CH_2)_5CH_3$
 - D. (CH₃)₂CH(CH₂)₂CHCHCH₃

Véase al dorso

29. ¿En qué par ambos compuestos son secundarios?

A.
$$CH_3$$
 CH_3 B . H_3C CH_3 CH_3

¿Qué enunciado sobre errores es correcto?

C.

30.

- A. Un error aleatorio se expresa siempre como porcentaje.
- B. Un error sistemático se puede reducir realizando más lecturas.
- C. Un error sistemático se expresa siempre como porcentaje.
- D. Un error aleatorio se puede reducir realizando más lecturas.