四川大学 2015 - 2016 学年第二学期

统计计算

2016年3月17日

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

广义特征值问题

设 $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ 为 Hermite 矩阵, 且 \mathbf{B} 为正定矩阵. 广义特征值问题是求实数 λ 和非零向量 \mathbf{x} , 使得

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x}$$
.

B=I 时成为标准特征值问题. 因此, 广义特征值问题是特征值问题的推广.

化为标准特征值问题

- **9** $\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, 缺点.
- 对 Hermite 正定矩阵 B, 存在非奇异的平方根
 B^{1/2}. 因为

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x} \Longleftrightarrow$$

$$\mathbf{B}^{-1/2} \mathbf{A} \mathbf{B}^{-1/2} \widetilde{\mathbf{x}} = \lambda \widetilde{\mathbf{x}}, \ \mathbf{x} = \mathbf{B}^{-1/2} \widetilde{\mathbf{x}},$$

所以矩阵 A 相对于 B 的特征值问题等价于 Hermite 矩阵 $B^{-1/2}AB^{-1/2}$ 的特征值问题.

● 教材的处理方法: 详见第 259 页最后一段至第 260 页第一段.

化为标准特征值问题

- \mathbf{O} $\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$, 缺点.
- 对 Hermite 正定矩阵 B, 存在非奇异的平方根
 B^{1/2}. 因为

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x} \Longleftrightarrow$$

$$\mathbf{B}^{-1/2}\mathbf{A}\mathbf{B}^{-1/2}\widetilde{\mathbf{x}} = \lambda \widetilde{\mathbf{x}}, \ \mathbf{x} = \mathbf{B}^{-1/2}\widetilde{\mathbf{x}},$$

所以矩阵 A 相对于 B 的特征值问题等价于 Hermite 矩阵 $B^{-1/2}AB^{-1/2}$ 的特征值问题.

• 教材的处理方法: 详见第 259 页最后一段至第 260 页第一段.

化为标准特征值问题

- $\mathbf{0}$ $\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$, 缺点.
- 对 Hermite 正定矩阵 B, 存在非奇异的平方根
 B^{1/2}. 因为

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x} \Longleftrightarrow$$

$$\mathbf{B}^{-1/2} \mathbf{A} \mathbf{B}^{-1/2} \widetilde{\mathbf{x}} = \lambda \widetilde{\mathbf{x}}, \ \mathbf{x} = \mathbf{B}^{-1/2} \widetilde{\mathbf{x}},$$

所以矩阵 A 相对于 B 的特征值问题等价于 Hermite 矩阵 $B^{-1/2}AB^{-1/2}$ 的特征值问题.

■ 教材的处理方法: 详见第 259 页最后一段至第 260 页第一段.

广义特征值和广义特征向量算法

详见教材第 260 页算法 4.1.

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 定义
 - 减号逆的性质
 - 加号逆的性质

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

引言

- 考虑线性方程组 Ax = b
 - ▲ 非奇异;
 - 方程组有解: 不定;
 - 方程组无解: 超定.
- ② 对于线性模型 ($\mathbf{Y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}$), 考虑线性回归问题 最小二乘解
 - 设计矩阵 X 满列秩;
 - 设计矩阵 X 为一般情形.

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 定义
 - 减号逆的性质
 - 加号逆的性质

Penrose 广义逆的定义

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$,若矩阵 $\mathbf{X} \in \mathbb{C}^{n \times m}$ 满足以下四个 Penrose 方程:

(i)
$$\mathbf{AXA} = \mathbf{A},$$
(ii)
$$\mathbf{XAX} = \mathbf{X},$$
(iii)
$$(\mathbf{AX})^{H} = \mathbf{AX},$$
(iv)
$$(\mathbf{XA})^{H} = \mathbf{XA}.$$

则称 X 为 A 的 Moore-Penrose 广义逆, 记为 A[†].

广义逆的例子

● 若 a ∈ C, 则

$$a^{\dagger} = \left\{ \begin{array}{ll} a^{-1}, & a \neq 0, \\ 0, & a = 0; \end{array} \right.$$

- ② 若 $\mathbf{a} = [1, 1]^{\mathrm{T}}$, 则 $\mathbf{a}^{\dagger} = \frac{1}{2}[1, 1]$;
- 3 若 $A = \begin{bmatrix} B & O \\ O & O \end{bmatrix}$, 其中 B 为非奇异矩阵, 则

$$\mathbf{A}^{\dagger} = \begin{bmatrix} \mathbf{B}^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix};$$

④ 若 A 非奇异, 则 A^{-1} 满足 Penrose 四个方程, 即 $A^{\dagger} = A^{-1}$. 因此, 矩阵 Moore-Penrose 广义逆是矩阵逆的一种推广.

其它的广义逆

在广义逆理论本身以及许多应用中,常常涉及仅满足 Penrose 四个方程中部分方程的矩阵广义逆.

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 称矩阵 $\mathbf{X} \in \mathbb{C}^{n \times m}$ 为 \mathbf{A} 的 $\{i, j, k\}$ -逆,如果 \mathbf{X} 满足 Penrose 方程 (i), (j), (k), 记为 $\mathbf{A}^{(i,j,k)}$.

A 的 {*i*, *j*, *k*}-逆全体记为 **A**{*i*, *j*, *k*}.

其它的广义逆 (续)

在总共 15 类广义逆中, 除 Moore-Penrose 广义逆外. 其余的均不唯一.

在实际应用中用得较多的矩阵广义逆包括 A^{\dagger} , $A\{1\}$, $A\{1,2\}$, $A\{1,3\}$, $A\{1,4\}$.

特别是 A{1} 在线性模型理论中具有十分重要的作用.

以下用 A- 表示 A(1), 也称为减号逆.

问题?

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

减号逆的存在性

定理

任意矩阵的减号逆总是存在, 但不唯一.

证明 详见教材第 263 页定理 5.1.

减号逆的性质

在证明中, X 的分块形式里 "*" 可以取任意 矩阵 (只要维数相容), 因此, A 的减号逆不唯一.

减号逆不唯一性的缺点与优点.

设
$$\mathbf{A} \in \mathbb{C}^{n \times m}$$
, 则

rankA⁻ ≥ rankA, rankA = rank(AA⁻) = rank(A⁻A);证明 因为

$$A = AA^{-}A \Rightarrow rankA \le rankA^{-}$$

 $\Rightarrow rankA \le \frac{rank(AA^{-})}{rank(A^{-}A)} \le rankA.$

- ② a) A 非奇异 ⇔ A⁻ 唯一且 A⁻ = A⁻¹;
 - b) A 满列秩 $\iff A^-A = I_m$;
 - c) A 满行秩 \iff AA⁻ = \mathbf{I}_n ;

证明 a) "⇒" A 可逆, 则 A⁻¹ 是 A 的减号逆, 而 A⁻¹ 是唯一的. "←" 显然.

- b) 显然 $\mathbf{A}^{-}\mathbf{A} \in \mathbb{C}^{m \times m}$. 因为 \mathbf{A} 满列秩 \Leftrightarrow rank($\mathbf{A}^{-}\mathbf{A}$) = rank $\mathbf{A} = m$, 即 $\mathbf{A}^{-}\mathbf{A}$ 可逆. 于是 " \Leftarrow " 显然. " \Rightarrow " 在 $\mathbf{A}^{-}\mathbf{A} \cdot (\mathbf{A}^{-}\mathbf{A}) = \mathbf{A}^{-}\mathbf{A}$ 两边乘以 $\mathbf{A}^{-}\mathbf{A}$ 的逆, 则 $\mathbf{A}^{-}\mathbf{A} = \mathbf{I}_{m}$.
- c) 与 b) 类似可证.

③ AA- 和 A-A 均为幂等矩阵且

$$rank(\mathbf{A}\mathbf{A}^{-}) = tr(\mathbf{A}\mathbf{A}^{-}) = tr(\mathbf{A}^{-}\mathbf{A}) = rank(\mathbf{A}^{-}\mathbf{A});$$

证明 幂等阵显然,从而是投影矩阵.幂等阵的特征值为 0 和 1,其中 1 的个数为矩阵的秩;而迹为矩阵的特征值之和.

● 设 $\mathbf{B} \in \mathbb{C}^{m \times m}, \mathbf{C} \in \mathbb{C}^{n \times n}$ 非奇异,则 $(\mathbf{CAB})^- = \mathbf{B}^{-1}\mathbf{A}^-\mathbf{C}^{-1};$ 证明 直接验证即可.

⑤ 分块求广义逆:

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_{22} \end{bmatrix}^{-} = \begin{bmatrix} \mathbf{A}_{11}^{-} & \mathbf{T}_{12} \\ \mathbf{T}_{21} & \mathbf{A}_{22}^{-} \end{bmatrix},$$

其中 T₁₂, T₂₁ 满足

$$\mathbf{A}_{11}\mathbf{T}_{12}\mathbf{A}_{22} = \mathbf{O}, \ \mathbf{A}_{22}\mathbf{T}_{21}\mathbf{A}_{11} = \mathbf{O}.$$

证明 直接验证即可.

A(A^HA)⁻A^H 为幂等矩阵,不依赖于减号逆的选取,且

$$\mathbf{A}^{\mathrm{H}}\mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{\mathrm{-}}\mathbf{A}^{\mathrm{H}} = \mathbf{A}^{\mathrm{H}}, \ \mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{\mathrm{-}}\mathbf{A}^{\mathrm{H}}\mathbf{A} = \mathbf{A}.$$

证明 a) $\mathbf{A}(\mathbf{A}^H\mathbf{A})^-\mathbf{A}^H$ 与减号逆的选取无关. 由 $\mathcal{R}(\mathbf{A}^H) = \mathcal{R}(\mathbf{A}^H\mathbf{A})$ 知存在矩阵 \mathbf{B} , 使得 $\mathbf{A}^H = \mathbf{A}^H\mathbf{A}\mathbf{B}$, 于是

$$\mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{\mathrm{-}}\mathbf{A}^{\mathrm{H}} = \mathbf{B}^{\mathrm{H}}(\mathbf{A}^{\mathrm{H}}\mathbf{A})(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{\mathrm{-}}\mathbf{A}^{\mathrm{H}}\mathbf{A}\mathbf{B}$$
$$= \mathbf{B}^{\mathrm{H}}(\mathbf{A}^{\mathrm{H}}\mathbf{A}\mathbf{B}) = \mathbf{B}^{\mathrm{H}}\mathbf{A}^{\mathrm{H}}$$

与 A^HA 的减号逆的选取无关.

b)
$$i \subset \mathbf{F} = \mathbf{A}(\mathbf{A}^{H}\mathbf{A})^{-}\mathbf{A}^{H}\mathbf{A} - \mathbf{A}, \text{ MI}$$

$$\mathbf{F}^{H}\mathbf{F} = \left(\mathbf{A}^{H}\mathbf{A}\left((\mathbf{A}^{H}\mathbf{A})^{-}\right)^{H}\mathbf{A}^{H} - \mathbf{A}^{H}\right)$$

$$\cdot \left(\mathbf{A}(\mathbf{A}^{H}\mathbf{A})^{-}\mathbf{A}^{H}\mathbf{A} - \mathbf{A}\right)$$

$$= \mathbf{A}^{H}\mathbf{A}\left((\mathbf{A}^{H}\mathbf{A})^{-}\right)^{H}\mathbf{A}^{H} \cdot \mathbf{A}(\mathbf{A}^{H}\mathbf{A})^{-}\mathbf{A}^{H}\mathbf{A}$$

$$- \mathbf{A}^{H}\mathbf{A}\left((\mathbf{A}^{H}\mathbf{A})^{-}\right)^{H}\mathbf{A}^{H}\mathbf{A}$$

$$- \mathbf{A}^{H}\mathbf{A}(\mathbf{A}^{H}\mathbf{A})^{-}\mathbf{A}^{H}\mathbf{A} + \mathbf{A}^{H}\mathbf{A}$$

$$= \mathbf{O},$$

从而 F = O. 同理可证另一式.

c) $\mathbf{A}(\mathbf{A}^H\mathbf{A})^-\mathbf{A}^H$ 是投影矩阵 (等价于为幂等阵). 这是因为

$$\mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-}\mathbf{A}^{\mathrm{H}} \cdot \mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-}\mathbf{A}^{\mathrm{H}} = \mathbf{A}(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-}\mathbf{A}^{\mathrm{H}}.$$

但要注意其与 A^HA 的减号逆的选取无关, 可选一对称阵, 于是 $A(A^HA)^-A^H$ 是对称的, 从而是正交投影矩阵.

问题?

- 矩阵的三角 -三角分解
- ② 矩阵的正交 -三角分解
- ③ 矩阵的正交分解
 - 广义特征值和广义特征向量问题
- 4 矩阵的广义逆及其计算
 - 引言
 - 。定义
 - 减号逆的性质
 - 加号逆的性质

加号逆的存在唯一性

设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 且 rank $\mathbf{A} = r$.

若 r = 0, 则 A 为零矩阵, 容易验证 X = 0 满足 Penrose 四个方程.

若 r > 0, 设 A 有奇异值分解

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \Sigma & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} \mathbf{V}^{\mathrm{H}},$$

其中, $\mathbf{U} \in \mathbb{C}^{m \times m}$ 和 $\mathbf{V} \in \mathbb{C}^{n \times n}$ 均为酉阵, 且 $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$, $\sigma_i > 0$ 为 \mathbf{A} 的非零奇异值. 于是 $\Sigma^{-1} = \operatorname{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1})$.

加号逆的存在唯一性 (续)

令

$$\boldsymbol{X} = \boldsymbol{V} \begin{bmatrix} \boldsymbol{\Sigma}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix} \boldsymbol{U}^{H}.$$

$$\mathbf{A}\mathbf{X} = \mathbf{U} \begin{bmatrix} \mathbf{I}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} \mathbf{U}^H, \quad \mathbf{X}\mathbf{A} = \mathbf{V} \begin{bmatrix} \mathbf{I}_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix} \mathbf{V}^H,$$

以及 U 和 V 均为酉阵容易验证 X 满足 Penrose 四个方程, 所以 X 为 A 的 Moore-Penrose 广义逆.

加号逆的存在唯一性(续)

若 X 和 Y 均满足 Penrose 方程 (i) — (iv), 则

$$\mathbf{X} = \mathbf{X}\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A}\mathbf{Y}\mathbf{A}\mathbf{X}$$

$$= \mathbf{X}(\mathbf{A}\mathbf{Y})^{\mathrm{H}}(\mathbf{A}\mathbf{X})^{\mathrm{H}} = \mathbf{X}(\mathbf{A}\mathbf{X}\mathbf{A}\mathbf{Y})^{\mathrm{H}}$$

$$= \mathbf{X}(\mathbf{A}\mathbf{Y})^{\mathrm{H}} = \mathbf{X}\mathbf{A}\mathbf{Y}$$

$$= \mathbf{X}\mathbf{A}\mathbf{Y}\mathbf{A}\mathbf{Y} = (\mathbf{X}\mathbf{A})^{\mathrm{H}}(\mathbf{Y}\mathbf{A})^{\mathrm{H}}\mathbf{Y}$$

$$= (\mathbf{Y}\mathbf{A}\mathbf{X}\mathbf{A})^{\mathrm{H}}\mathbf{Y} = (\mathbf{Y}\mathbf{A})^{\mathrm{H}}\mathbf{Y}$$

$$= \mathbf{Y}\mathbf{A}\mathbf{Y} = \mathbf{Y}.$$

因此唯一性成立.

加号逆的性质

 $\mathcal{C} \mathbf{A} \in \mathbb{C}^{n \times m}$,则

- (A[†])[†] = A;
 证明 (1) 在 Penrose 方程 (1) (4) 中, A 和
 A[†] 的位置是对称的, 所以结论成立.
- (A^H)[†] = (A[†])^H;
 证明 由广义逆的定义可证明.
- rank \mathbf{A} = rank \mathbf{A}^{\dagger} = rank($\mathbf{A}\mathbf{A}^{\dagger}$) = rank($\mathbf{A}^{\dagger}\mathbf{A}$); 证明 由

$$rank \mathbf{A} = rank(\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}) \le rank(\mathbf{A}\mathbf{A}^{\dagger}) \le rank \mathbf{A}^{\dagger}$$
$$= rank(\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger}) \le rank(\mathbf{A}^{\dagger}\mathbf{A}) \le rank \mathbf{A}$$

即知.

(A^HA)[†] = A[†](A^H)[†], (AA^H)[†] = (A^H)[†]A[†];
 证明 由广义逆的定义可证明.
 注意 (AB)[†] 一般不等于 B[†]A[†].
 例如: A = [1,0],B = [1,1]^T, 于是 AB = 1, 从而 (AB)[†] = 1. 但是

$$\mathbf{A}^{\dagger} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{B}^{\dagger} = \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix},$$

从而 $\mathbf{B}^{\dagger}\mathbf{A}^{\dagger} = \frac{1}{2} \neq (\mathbf{A}\mathbf{B})^{\dagger}$.

- AA[†] 和 A[†]A 均为正交投影矩阵;
 证明 显然.
- 若 A 为对称幂等矩阵,则 A[†] = A;
 证明 中广义逆的定义可证明.

● 若 $\mathbf{U} \in \mathbb{C}^{n \times n}$ 和 $\mathbf{V} \in \mathbb{C}^{m \times m}$ 均为酉阵, 则 $(\mathbf{UAV})^{\dagger} = \mathbf{V}^{H} \mathbf{A}^{\dagger} \mathbf{U}^{H}$;

证明 由广义逆的定义可证明.

特别地, 若 A 为 Hermite 矩阵, 则存在酉阵 Q 使得 $A^{\dagger} = Q\Lambda^{\dagger}Q^{H}$, 其中 $\Lambda = diag(\lambda_{1}, \dots, \lambda_{n})$, λ_{i} 为 A 的特征值;

证明 由 Hermite 矩阵谱分解立即可得. □

例

教材第 268 页例 5.3.

8 $\mathbf{A}^{\dagger} = (\mathbf{A}^{H}\mathbf{A})^{\dagger}\mathbf{A}^{H} = \mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{\dagger}.$ 证明 因为

$$\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger} = \mathbf{A}^{\dagger} (\mathbf{A} \mathbf{A}^{\dagger})^{\mathrm{H}}$$

$$= \mathbf{A}^{\dagger} (\mathbf{A}^{\mathrm{H}})^{\dagger} \mathbf{A}^{\mathrm{H}} = (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{\dagger} \mathbf{A}^{\mathrm{H}}$$

$$= (\mathbf{A}^{\dagger} \mathbf{A})^{\mathrm{H}} \mathbf{A}^{\dagger} = \mathbf{A}^{\mathrm{H}} (\mathbf{A}^{\dagger})^{\mathrm{H}} \mathbf{A}^{\dagger}$$

$$= \mathbf{A}^{\mathrm{H}} (\mathbf{A} \mathbf{A}^{\mathrm{H}})^{\dagger}. \quad \Box$$

于是,

• 若 A 为满列秩矩阵,则

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}}.$$

特别地, 若 a 为非零列向量, 则

$$\mathbf{a}^{\dagger} = \mathbf{a}^{\mathrm{H}}/(\mathbf{a}^{\mathrm{H}}\mathbf{a});$$

• 若 A 为满行秩矩阵,则

$$\mathbf{A}^{\dagger} = \mathbf{A}^{\mathrm{H}} (\mathbf{A} \mathbf{A}^{\mathrm{H}})^{-1}.$$

特别地, 若 a 为非零行向量, 则

$$\mathbf{a}^{\dagger} = \mathbf{a}^{\mathrm{H}}/(\mathbf{a}\mathbf{a}^{\mathrm{H}}).$$

- $\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger}), \ \mathcal{R}(\mathbf{A}^{\dagger}) = \mathcal{R}(\mathbf{A}^{\dagger}\mathbf{A});$ 证明 由 $\mathcal{R}(\mathbf{A}\mathbf{A}^{\dagger}) \subseteq \mathcal{R}(\mathbf{A}), \ \mathcal{R}(\mathbf{A}^{\dagger}\mathbf{A}) \subseteq \mathcal{R}(\mathbf{A}^{\dagger})$ 以及 (3) 立即可得.

$$\mathscr{R}(\mathbf{A}^{\dagger}) = \mathscr{R}(\mathbf{A}^{\mathrm{H}}(\mathbf{A}\mathbf{A}^{\mathrm{H}})^{\dagger}) \subseteq \mathscr{R}(\mathbf{A}^{\mathrm{H}}),$$

所以第一式成立. 进一步有

$$\mathcal{N}(\mathbf{A}^{\dagger}) = \mathcal{R}\left((\mathbf{A}^{\dagger})^{\mathrm{H}}\right)^{\perp} = \mathcal{R}\left((\mathbf{A}^{\mathrm{H}})^{\dagger}\right)^{\perp}$$
$$= \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{\mathrm{H}}),$$

所以第二式成立.

• 若 A 有满秩分解 A = $\mathbf{F}_{n \times r} \mathbf{G}_{r \times m}$, 其中 $r = \operatorname{rank} \mathbf{A}$, 则 $\mathbf{A}^{\dagger} = \mathbf{G}^{\dagger} \mathbf{F}^{\dagger}$.

证明 注意到

$$\mathbf{F}^{\dagger}\mathbf{F} = (\mathbf{F}^{H}\mathbf{F})^{-1}\mathbf{F}^{H} \cdot \mathbf{F} = \mathbf{I}_{r},$$

$$\mathbf{G}\mathbf{G}^{\dagger} = \mathbf{I}_{r},$$

并由广义逆的定义即可得证.

问题?