2023년 IoT기반 스마트 솔루션 개발자 양성과정

Embedded Application

12-SHT11 Sensor

담당 교수 : 윤 종 이
010-9577-1696
ojo1696@naver.com
https://cafe.naver.com/yoons2023

SHT-11

- 상대 습도와 온도를 측정해 주는 센서
- 동작전압: 3.5~5 V
- 온도 범위 :0-50 °C ± 2 °C
- 습도 범위 :20-90% RH ± 5%
- 보드 제작사 별로 핀 번호가 다름

통신 방식

- Single Bus Communication
 - 하나의 연결선으로 양방향 직렬 통신
- Data Format(각 데이터는 8비트)
 습도(정수)+습도(소수)+온도(정수)+온도(소수)+체크섬
- Data Processing

온/습도 센서

- 온/습도 센서 소개
 - 온도와 습도를 측정하는 센서
 - 온/습도 센서는 받아들인 정보를 하드웨어를 통하여 받아들여 디지털화된 결과를 도출
 - A/D 변환을 수행하고 그 수치를 2-wire interface를 통해 MCU와 시리얼 통신
- SHT11(온/습도) 센서
 - SENSIRION사의 SHT1x 시리즈의 SHT11 Humidity & Temperature Sensor 사용.
 - 디지털 출력 온/습도 센서인 SHT11은 하나의 칩에 두 개의 센서를 집적화 한 제품.
 - 측정 범위: 0~100% RH
 - 상대 습도 정밀도 +/- 3%
 - 온도 정밀도: +/- 0.4°C @ 25 °C
 - 보정된 디지털 출력 (2 와이어 인터페이스)
 - 빠른 반응 속도 < 4 sec, 저전력 소비 (typ. 30 μW)
 - 낮은 가격, 대량 생산용으로 디자인 됨, 가격이 민감한 응용 제품용
 - 뛰어난 장기 안정성, 보정과 디지털 2 와이어 인터페이스 기능으로 사용이 쉬움

온/습도 센서 구조

온/습도 센서 Interface

- I2C / TWI
- 센싱된 수치는 14비트 A/D 변환기를 통해 아날로그 정보를 디지털 수치화 하고 I2C를 통하여 정보를 처리할 MCU로 전달.

12C (TWI)

- 2-Wire 직렬 인터페이스(Two-wire Serial Interface, TWI)
 - TWI 프로토콜은 단지 2개의 양방향 버스 라인, 클럭(SCL)을 위한 하나의 버스와 데이 터(SDA)를 위한 또 하나의 버스를 이용한 128개 이상 다른 장치의 상호연결을 위한 시스템 디자인를 허용

Term	Description
Master	The device that initiates and terminates a transmission. The master also generates the SCL clock
Slave	The device addressed by a master
Transmitter	The device placing data on the bus
Receiver	The device reading data from the bus

I2C (TWI) 특징

- 단순하지만 파워풀하고 유연한 통신 인터페이스, 단지 2개 버스 라인 필요.
- 마스터와 슬레이브 동작을 지원.
- 장치는 전송자와 수신자로써 동작할 수 있음.
- 7비트 주소 공간은 128개 이상의 다른 슬레이브 주소를 허용.
- 멀티 마스터 조정 기능 제공.
- 400kHz 이상의 데이터 전송 속도.
- 슬루-레이트(Slew-rate, 단위 시간당 출력 전압의 최대 변화량)는 드라이버 출력을 제한함.
- 버스 라인상의 스파이크(극단적인 값으로 이루어진 잡음)를 제거하기 위한 노이즈 억제 회로.
- 일반적인 호출 지원을 통한 완벽하게 프로그램 가능한 슬레이브 어드레스.
- AVR이 슬립모드에 있을 때, 주소 인식으로 Wake-up을 야기함.
- TWI 신호선은 양방향성을 가짐. 클럭 신호는 단방향이며, 마스터에 의해 발생되고 데이터 신호는 양방향으로 데이터를 송수신하기 위해 사용.

😿 충북대학교 공동훈련센터

TWI(I2C) 동작

• 각 전송 데이터 비트는 TWI 버스상에서 클럭 라인상의 펄스에 의하여 동작.

- 전송은 마스터가 버스상에 Start 조건이 나타날 때, 초기화되고, Stop 조건이 나타날 때 종료함.
- Start와 Stop 조건 사이에서, 버스는 다른 마스터가 버스를 사용하지 못하도록 busy 상태를 구성.
- REPEATED Start 조건은 마스터가 버스의 포기 조건 없이 새로운 전송을 초기화하기 원할 때 사용.

SHT11 Sensor Module

SHT11 Sensor Circuit

Ex-1 : 온습도 센서

SHT-11을 이용하여 온도와 습도를 측정하자

	Т	е	m	р	=	0	0	•	0	С		
	Н	u	m	i	=	0	0	•	0	%		

Ex-1: Wiring

♥ 충북대학교 공동훈련센터

Ex-1: Define

```
#include "SHT11.h"
 #include "TextLCD.h"
unsigned char ASCII[17]=\{0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x4
0x20};
unsigned char DISP1[17]={' ',' ','T','e','m','p','=','0','0','.','0',' ','C',' ',' ',' '}; unsigned char DISP2[17]={' ',' ','H','u','m','i','=','0','0','.','0',' ','%',' ',' ',' '};
unsigned int Temp=0;
unsigned int Humi=0;
void Hex2ASC(char temp, char humi){
              char tmpNo=temp;
              DISP1[7]=ASCII[tmpNo/100];
              tmpNo=tmpNo % 100;
              DISP1[8]=ASCII[tmpNo / 10];
              DISP1[10]=ASCII[tmpNo % 10];
              tmpNo=humi;
              DISP2[7]=ASCII[tmpNo/100];
              tmpNo=tmpNo % 100;
              DISP2[8]=ASCII[tmpNo/10];
              DISP2[10]=ASCII[tmpNo % 10];
}
```

Ex-1: main

```
int main(void) {
   SHT11 Init();
   LCD_Init();
   write_Command(0x01);    _delay_ms(9);    /* Clear Display */
   while (1) {
      Hex2ASC(Temp, Humi);
      write_Command(0x80); _delay_us(220); /* 1 Line Address */
      printString ( DISP1 );
      write_Command(0xC0); _delay_us(220); /* 2 line Address */
      printString ( DISP2 );
      Temp=get_SHT11_data (TEMP);
      Humi = get_SHT11_data (HUMI);
```

불쾌지수계(Discomfort Index)

- 기온과 습도의 조합으로 사람이 느끼는 온도를 표현한 것으로 온습도지수(THI)라고도 함
- 불쾌지수
 - 0.72(건구온도+습구온도)+40.6
 - (9/5)T 0.55(1-Rh)((9/5)T-26)+32 ;Rh상대습도

단계	지수범위	설명 및 주의사항	
매우 높음	80 이상	전원 불쾌감을 느낌	
높음	75~80 미만	50% 정도 불쾌감을 느낌	
보통	68~75 미만	불쾌감을 나타내기 시작함	_
낮음	68 미만	전원 쾌적함을 느낌	(3)

Ex-2:불쾌지수계

• SHT-11을 이용하여 불쾌지수계를 구현하자

Т	=	0	0	•	0	C		Н	=	0	0	•	0	%	
	D	ı	n	d	6	X	_	0	0		0				
			•	- C						•					

Ex-2: Wiring

충북대학교 공동훈련센터

Ex-2: Define

```
#include "SHT11.h"
#include "TextLCD.h"
unsigned char ASCII[17]=\{0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x4
0x45, 0x46, 0x20;
unsigned char DISP1[17]={'T','=','0','0','.','0','C',' ','H','=','0','0','.','0','%',' '};
unsigned char DISP2[17]={' ',' ','I','n','d','e','x','=','0','0','.','0',' ',' ',' ',' '};
unsigned short Temp=0;
unsigned short Humi=0;
unsigned short dIndex=0;
float DiscomfortIndex(float temp, float humi) {
                     return (1.8f*temp)-(0.55*(1-humi/100.0f)*(1.8f*temp-26))+32;
```

Ex-2: main

```
int main(void) {
  SHT11 Init();
  LCD_Init();
  write_Command(0x01); __delay_ms(9);
                                         /* Clear Display */
  while (1) {
    write_Command(0x80); _delay_us(220);
                                            /* 1 Line Address */
    printString (DISP1);
    write Command(0xC0); delay us(220);
                                            /* 2 line Address */
    printString (DISP2);
    _delay_ms (100);
    Temp=get_SHT11_data (TEMP);
    _delay_ms (100);
    Humi=get SHT11 data (HUMI);
    float fTemp=Temp/10.0f;
    float fHumi=Humi/10.0f;
    dIndex=DiscomfortIndex(fTemp, fHumi)*10.0f;
    Hex2ASC(Temp,Humi,dIndex);
```

부패지수(Deterioration index)

- 기온이 높고 수증기가 존재할 때 화학적, 생물학적 원인에 의한 물질의 부패정도를 지수 화 한 것임.
- 식품손상지수라고도 함

산출방법

```
부패지수 = (\frac{RH-65}{14}) × 1.054 ^T ( RH: 상대습도 (%), T : 기온(^\infty)) * 1946년 영국의 C. E. P. Brooks에 의해 고안됨
```

☑ 단계별 설명 및 주의사항

단계	지수범위	
높음	7 이상	
보통	3 ~ 7 미만	
낮음	3 미만	

부패지수 산출표

부패지수산출표

기온 습도 (°C) (%)	5	10	15	20	25	30	35	40
66	0.09	0.12	0.16	0.2	0.27	0.35	0.45	0.59
68	0.28	0.36	0.47	0.61	0.8	1.04	1.35	1.76
70	0.46	0.6	0.79	1.02	1.33	1.73	2.25	2.93
72	0.65	0.85	1.1	1.43	1.86	2.42	3.15	4.1
74	0.84	1.09	1.41	1.84	2.39	3,11	4.05	5.27
76	1.02	1.33	1.73	2.25	2.93	3.81	4.95	6.44
78	1.21	1.57	2.04	2.66	3.46	4.5	5.85	7.61
80	1.39	1.81	2.36	3.07	3.99	5.19	6.75	8.78
82	1.58	2.05	2.67	3.48	4.52	5.88	7.65	9.95
84	1.77	2.3	2.99	3.89	5.05	6.57	8.55	11.12
86	1.95	2.54	3.3	4.29	5.59	7.27	9.45	12.29
88	2.14	2.78	3,62	4.7	6.12	7.96	10.35	13.47
90	2.32	3.02	3.93	5.11	6.65	8.65	11.25	14.64
92	2.51	3.26	4.24	5.52	7.18	9.34	12.15	15.81
94	2.69	3.5	4.56	5.93	7.71	10.03	13.05	16.98
96	2.88	3.75	4.87	6.34	8.25	10.73	13.95	18.15
98	3.07	3.99	5.19	6.75	8.78	11.42	14.85	19.32
100	3.25	4.23	5.5	7.16	9.31	12.11	15.75	20.49

보통

Ex-3: 부패지수계

• SHT-11을 이용하여 부패지수계를 구현하자

Т	=	0	0	•	0	C		Н	=	0	0	•	0	%	
	D	I	n	d	е	x	=	0	0	•	0				