Electrónica Digital Laboratorio #6

Parte No. 1

Tarra vocificados

00	50
01	- 51
10	C.

Guaciones Bookeman 51' = 50 B+ 91 A B 50' = 51' 50' A y = 51 A B

Javea de transiciones

PLEASUNE	inp	11th	FUTU10	phytho
50 50 51 51	1 0 %	X X 1 0	91 83. 92. 93	0000001
61 52 S2	1 1 0	1 0 1	52 So So	0

Carné: 19659

Sección: algo

talla de frangiciones de untado codificação

ACMOU SO SO	INPUL A B	futu(00 51' 50	output
0 0 0 0 1 0 1	1 % 2 % 2 1 2 0	0 1 0 0 1 0 0	0000
1 0	0 0	10	1 0
1 0	0 1	100	

Implementación en Circuitverse

Implementación en Logic Friday

Term	S1	S0	Α	В	=>	S1'	S0'	Υ
0	0	0	0	0		0	0	0
1	0	0	0	1		0	0	0
2	0	0	1	0		0	1	0
3	0	0	1	1		0	1	0
4	0	1	0	0		0	0	0
5	0	1	0	1		1	0	0
6	0	1	1	0		0	0	0
7	0	1	1	1		1	0	0
8	1	0	0	0		0	0	0
9	1	0	0	1		0	0	0
10	1	0	1	0		0	0	0
11	1	0	1	1		1	0	1
12	1	1	0	0		X	X	X
13	1	1	0	1		X	X	X
14	1	1	1	0		X	X	X
15	1	1	1	1		X	X	X

Ecuaciones booleanas

```
Entered by truthtable:

S1' = S1' S0 A' B + S1' S0 A B + S1 S0' A B;

S0' = S1' S0' A B' + S1' S0' A B;

Y = S1 S0' A B;

Minimized:

S1' = S0 B + S1 A B;

S0' = S1' S0' A ;

Y = S1 A B;
```

Parte No. 2

Parte No. 3

Cayou Negra

tabla de saludas

Pregente			output						
52	91	Sa	41	921	43				
O	0	0	0	0	0	0			
0	0	1	0	0	1	1			
D	1	0	0	1	1	2			
0	1	1	0	1	0	1			
1	0	0	1	1	0	13			
-1	0	1	1	1	1	1			
1	1	10	11	10	1				
1	1	1	11	10	0	1			

Ecuaciones bolleanas

52 = 5251 50 P+ 5251 50 P1 + 525150 P1 + 5251 P1 + 525150

51'= 5150 P' + 51'30 P + 5150'P'

50'-50'

takea de transiciones

Presente	input	futuro
60	0	EF
	1	£ 1
€0	0	69
61	4	EZ
61 E2	0	51
f z	4	63
\ 3 ₹3 ₹4 ₹4	0	62
£.3	1	F4
E4	0	E3
£4	4	J. 5
T5	0	£ 5
(o	1	L 6
F.6	0	55
fo fo	1	1
57	0	157
£7	1	1 56

Tulla de transiciones vedy icada

Preside	tent	S	many	-	IM	
-	51	50	nmap 1, dn	52	51	50
0		0	0	1	1	1
0	0	0	1	0	0	1
52	0	4	0	0	0	
0	0	1	1		1	0
0	1	0	0	0	0	1
0	1	0	1	0	1	1
0	1	1	0	b	1	0
00000	11	1	1	1	0	10
1	10		5	0) (1
		- 1	0		1	1/0
1			0	1	5	1
- (10) 1	1	1		0 0
	10	11	0	1		10
	1	1 0) 0		1 1	0 1
	1	1 1	0 1 1		1	1 1
	1	1	1 0	1	,	10
		11	1 1	-	b \	0 10
	1 1	1	5 5 50		21	

Implementación en Circuitverse

Implementación en Logic Friday

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	Term	S2	S1	S0	Р	=>	S2'	S1'	S0'
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0		1	1	1
3 0 0 1 1 0 0 1 0 4 0 1 0 0 0 0 0 1 5 0 1 0 1 0 0 1 0 7 0 1 1 1 1 1 0 0 8 1 0 0 0 0 0 1 1 9 1 0 0 1 1 1 0 1 10 1 0 1 0 1 0 1 11 1 0 1 1 1 1 1 0 0 12 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0	0	0	1		0	0	1
4 0 1 0 0 0 0 1 5 0 1 0 1 0 1 1 6 0 1 1 0 0 1 1 7 0 1 1 1 1 0 0 8 1 0 0 0 0 1 1 9 1 0 0 1 1 0 1 10 1 0 1 0 1 0 0 11 1 0 1 1 1 1 1 12 1 1 0 0 1 1 1 1 13 1 1 0 1 1 1 1 1 1	2	0	0	1	0		0	0	0
5 0 1 0 1 0 1 1 0 1 1 0 7 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0	3	0	0	1	1		0	1	0
6 0 1 1 0 0 1 0 7 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0	4	0	1	0	0		0	0	1
7 0 1 1 1 1 0 0 8 1 0 0 0 0 0 1 1 9 1 0 0 1 1 0 1 10 1 0 1 0 1 0 1 11 1 0 0 1 1 1 1	5	0	1	0	1		0	1	1
8 1 0 0 0 0 1 1 9 1 0 0 1 1 0 1 10 1 0 1 0 1 0 0 11 1 0 1 1 1 1 1 1 12 1 1 0 0 1 0 1 0 1 13 1 1 0 1 1 1 1 1 1	6	0	1	1	0		0	1	0
9 1 0 0 1 1 0 0 10 1 0 1 0 1 0 0 11 1 0 1 1 1 1	7	0	1	1	1		1	0	0
10 1 0 1 0 1 0 0 11 1 0 1 1 1 1 1 1 12 1 1 0 0 1 0 1 13 1 1 0 1 1 1 1	8	1	0	0	0		0	1	1
11 1 0 1 1 1 1 1 12 1 1 0 0 1 0 1 13 1 1 0 1 1 1 1	9	1	0	0	1		1	0	1
12 1 1 0 0 1 0 1 13 1 1 0 1 1 1 1	10	1	0	1	0		1	0	0
13 1 1 0 1 1 1 1	11	1	0	1	1		1	1	0
	12	1	1	0	0		1	0	1
1/ 1 1 1 0 1 1 (13	1	1	0	1		1	1	1
14 1 1 0 1 1 0	14	1	1	1	0		1	1	0
15 1 1 1 1 0 0 0	15	1	1	1	1		0	0	0

Ecuaciones booleanas

```
Entered by truthtable:

S2' = S2' S1' S0' P' + S2' S1 S0 P + S2 S1' S0' P + S2 S1' S0 P' + S2

S1' S0 P + S2 S1 S0' P' + S2 S1 S0' P + S2 S1 S0 P';

S1' = S2' S1' S0' P' + S2' S1' S0 P + S2' S1 S0' P + S2' S1 S0 P' +

S2 S1' S0' P' + S2 S1' S0 P + S2 S1 S0' P + S2' S1 S0 P';

S0' = S2' S1' S0' P' + S2' S1' S0' P + S2' S1 S0' P' + S2' S1 S0' P +

S2 S1' S0' P' + S2 S1' S0' P + S2' S1 S0' P' + S2' S1 S0' P;

Minimized:

S2' = S2' S1 S0 P + S2' S1' S0' P' + S2 S1' S0 + S2 S0' P + S2 S1

P';

S1' = S1' S0 P + S1 S0' P + S1 S0 P' + S1' S0' P';

S0' = S0' ;
```

Tabla de salidas

Term	S2	S1	S0	=>	Y2	Y1	Y0
0	0	0	0		0	0	0
1	0	0	1		0	0	1
2	0	1	0		0	1	1
3	0	1	1		0	1	0
4	1	0	0		1	1	0
5	1	0	1		1	1	1
6	1	1	0		1	0	1
7	1	1	1		1	0	0

Ecuaciones de salida

```
Entered by truthtable:

Y2 = S2 S1' S0' + S2 S1' S0 + S2 S1 S0' + S2 S1 S0;

Y1 = S2' S1 S0' + S2' S1 S0 + S2 S1' S0' + S2 S1' S0;

Y0 = S2' S1' S0 + S2' S1 S0' + S2 S1' S0 + S2 S1 S0';

Minimized:

Y2 = S2;
Y1 = S2' S1 + S2 S1';
Y0 = S1' S0 + S1 S0';
```

Parte 4

Un *blocking assigment* trabaja "en serie" debido a que tiene que ejecutarse antes de que se ejecuten los estados que le siguen en un bloque secuencial. Sin embargo, no evitará la ejecución de declaraciones que se ejecutan en un bloque paralelo. Por otro lado, para asignarlas se utiliza el signo igual (=).

Ejemplo

```
module blocking(clk, a, c);
input clk;
input a;
output c;
wire clk, a;
reg c, b;
always @ (posedge clk)
begin
b = a;
c = b;
end
endmodule
```

Un *nonblocking statement* permite programar asignaciones sin bloquear el flujo del procedimiento. Por lo que, se puede utilizar al momento de realizar varias asignaciones de registros dentro del mismo paso del tiempo sin preocuparse por el orden o la dependencia de cada uno y para asignarla se utiliza <= Por esta razón se dice que se parece más al hardware real que las asignaciones de bloqueo.

Ejemplo

```
module fulladder(input logic a, b, cin,
output logic s, cout);
logic p, g;

always_comb
begin
p <= a ^ b;
g <= a & b;

s <= p ^ cin;
cout <= g | (p & cin);
end
endmodule
```

Parte No. 5

C1	R	s c	D
0 x	1		1111
1 x	1		1111
0 x	1	XXXX	1111
1 x	1		1111
0 x	1		1111
1 1	0	0000	0000
0 1	0	0000	0000
1 1	0	0000	0000
0 1	0	0000	0000
1 1	0	0000	0000
0 0	0	0100	0000
1 0	0	0100	0100
0 0	0	0100	0100
1 0	0	0100	0100
0 0	0	0100	0100
1 0	0	1010	1010
0 0	0		1010
1 0	0		1010
0 0	0		1010
1 0	0	1010	1010
0 0	0	1100	1010
1 0	0		1100
0 0	0	1100	1100
1 0	0	1100	1100

Parte No. 6

Tabla de la máquina de estados finitos Ejercicio 01

```
Maquina de estados finitos Ej01

A B | Y
----|--
0 0 | 0
1 0 | 0
1 1 | 0
1 1 | 1
0 0 | 0
1 0 | 0
0 0 | 0
```

Tabla de la máquina de estados finitos Ejercicio 03

Diagrama de timing para ambos ejercicios

Link del repositorio:

https://github.com/valeelorraine/Laboratorios_Digital