

Security Risk Assessment For

Smart(TB) portal

i

TABLE OF CONTENTS

1	INTRODUCTION	1
2	IDENTIFY AND PRIORITIZE SMART(TB) PORTAL ASSETS ERROR! BOOKMARI	K NOT DEFINED.
3	IDENTIFY THREATS	5
4	Identify Vulnerabilities	6
5	ANALYZE CONTROLS	7
6	DETERMINE THE LIKELIHOOD OF AN INCIDENT	11
7	ASSESS THE IMPACT A THREAT COULD HAVE	14
8	PRIORITIZE THE INFORMATION SECURITY RISKS	16
9	RECOMMEND CONTROLS	
	DOCUMENT THE RESULTS	
	LIST OF EXHIBITS	
Ехні	BIT 1: RISK ASSESSMENT MATRIX	20
	LIST OF FIGURES	
Figui	re 1 – Smart(TB) portal System Boundary Diagram	3
Figui	RE 2 – Information Flow Diagram	4
	LIST OF TABLES	
TABL		1
TABL		
TABL	E F: RISKS-CONTROLS-FACTORS CORRELATION	8
TABL	E G: RISK LIKELIHOOD DEFINITIONS	9
TABL	E H: RISK LIKELIHOOD RATINGS	9
TABL	E I: RISK IMPACT RATING DEFINITIONS	14
TABL	E J: RISK IMPACT ANALYSIS	14
TABL	E K: OVERALL RISK RATING MATRIX	16

TABLE L:	OVERALL RISK RATINGS TABLE	16
TABLE M:	RECOMMENDATIONS	18

1 INTRODUCTION

Risk assessment participants:

Ahmed Yosry Akrab

Omar Ashraf Al-Ashmouny

Risk assessment techniques used:

checklist of known threats and hazards

Table A: Risk Classifications

Risk Level	Risk Description & Necessary Actions
High	The loss of confidentiality, integrity, or availability could be expected to have a severe or catastrophic adverse effect on organizational operations, organizational assets or individuals.
Moderate	The loss of confidentiality, integrity, or availability could be expected to have a serious adverse effect on organizational operations, organizational assets or individuals.
Low	The loss of confidentiality, integrity, or availability could be expected to have a limited adverse effect on organizational operations, organizational assets or individuals.

2 Identify and Prioritize Smart(TB) portal Assets

Table B: Smart(TB) portal assets

Priority	Asset	Asset information
2)	Website (Critical)	SoftwareTechnical security
		controlsInterfaces
1)	Servers (Critical)	Information storage protection To Security
		 IT Security architecture Technical security
		controls
4)	Patient contact information	• Data
- ,	(Low)	• Users
_	Doctors contact information	• Data
5)	(Medium)	• Users
2)	Hospital lab sensitive X-ray	• Data
3)	dataset (Critical)	

Figure 1 – Smart(TB) Portal System Boundary Diagram

Book X-ray Book X-ray Response Response Book X-ray Book doctor X-ray & doctor booking Patient Book doctor Book doctor Response Response Answering Symptoms Questions Answering Symptoms Questions Answering Symptoms Questions Response Symptoms questions & medical complaints Write medical complaints Write medical complaints Write medical complaints Response Review the patients questions Review the patients questions Review the patients questions Doctor Response Response Doctor diagnose X-ray Response X-ray diagnosis result Doctor diagnose X-ray Hospital diagnose X-ray Response Diagnose X-ray Hospital Response Hospital diagnose X-ray Activ Response

Figure 2 – Smart(TB) Portal Information Flow Diagram

3 Identify Threats

The threats identified are listed in Table C.

Table C: Threats Identified

Threat	Threat type(Category)	Threat identity
IP address spoofing to the servers	Malicious humans	Interception
Remote code execution to the website	Malicious humans	Interception
Data manipulation to the Hospital lab sensitive X-ray dataset	Accidental human interference	make mistakes e.g. (Accidentally deleting important files)
Sql Injection for Patient contact information	Malicious humans	Interception
Sql Injection for Doctors contact information	Malicious humans	Interception

4 Identify Vulnerabilities

The way vulnerabilities combine with credible threats to create risks is identified Table D.

Table D: Vulnerabilities, Threats, and Risks

Risk No.	Vulnerability	Threat	Risk of Compromise of	Risk Summary
1	No Use of cryptographic network protocols	IP address spoofing to the servers	user data or spreading malware to harm users accounts	The attacker motivation is to launch attacks against network hosts, steal data, spread malware or bypass access controls
2	NO timely installation of software update	Remote code execution to the website	Website performance and confidentiality	When the attacker gain a user administrative access, the attacker can do any fraud or any other illegal actions.
3	NO regularly back up to our data	Data manipulation to the Hospital lab sensitive X-ray dataset	Hospital lab sensitive X-ray dataset	Attacker will fraud the datasets so may an X-ray test result be wrong because of the inaccurate prediction due to the false dataset.
4	NO Parameterized queries in the portal system	Sql Injection for Patient contact information	Patient account personal data	Attacker motivation is to know secret info. of Patient to override their valuable data, or even to execute dangerous system level commands on the database host.
5	NO Parameterized queries in the portal system	Sql Injection for Doctors contact information	Doctor account personal data	Attacker motivation is to know secret info. of Doctor to override their valuable data, or even to execute dangerous system level commands on the database host.

5 Analyze Controls

Table E documents the IT security controls in place and planned for the IT system.

Table E: Security Controls

Control Area	In-Place/ Planned	Description of Controls	
		1 Risk Management	
1.1 IT Security Roles & Responsibilities	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
1.2 Business Impact Analysis	Planned	Our business core idea and goals was discussed before, but in case of the lack of availability backups and fail over strategies will help us mitigates our technical problems to continue our business.	
1.3 IT System & Data Sensitivity Classification	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
1.4 IT System Inventory & Definition	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
1.5 Risk Assessment	In-Place	After identifying our vulnerabilities we are now planning to control our risk assessment.	
1.6 IT Security Audits	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
		2 IT Contingency Planning	
2.1 Continuity of Operations Planning	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
2.2 IT Disaster Recovery Planning	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
2.3 IT System & Data Backup & Restoration	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
		3 IT Systems Security	
3.1 IT System Hardening	Planned	Smart(TB) portal doesn't contain hardware as a part of it as it is a medical diagnosis system depending on cloud services.	

Control Area	In-Place/ Planned	Description of Controls	
3.2 IT Systems Interoperability Security	In-Place	After identifying our vulnerabilities we are now planning to control our risk assessment to protect Interoperability quality attribute.	
3.3 Malicious Code Protection	In-Place	We are planning to timely install software update, this ranks as the top cybersecurity measure in preventing remote or malicious code execution attacks.	
3.4 IT Systems Development Life Cycle Security	In-Place	We are planning to apply a suitable framework e.g. (ITIL framework).	
		4 Logical Access Control	
4.1 Account Management	Planned	It was planned in our prototype	
4.2 Password Management	Planned	It was planned in our prototype	
4.3 Remote Access	Planned	It was planned in our prototype	
		5 Data Protection	
4.4 Data Storage Media Protection	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
4.5 Encryption	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
		6 Facilities Security	
6.1 Facilities Security	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
		7 Personnel Security	
7.1 Access Determination & Control	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
7.2 IT Security Awareness & Training	In-Place	We are planning to design tutorials to all our portal users to know well how to use it and protect well their info	
7.3 Acceptable Use	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
		8 Threat Management	
8.1 Threat Detection	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
8.2 Incident Handling	In-Place	We are handling it in our security risk assessment.	
8.3 Security Monitoring & Logging	Planned	Owning SSL certification for our web application & using cloud services afford it to us.	
		9 IT Asset Management	
9.1 IT Asset Control	In-Place	We are planning to many controls to handle our IT Asset	
9.2 Software License Management	Planned	Software License for users is for free until now and for us we manage our services availability by renewing our ownership to the SSL certification for our web application & our cloud services.	

Control Area	In-Place/ Planned	Description of Controls
9.3 Configuration Management & Change Control	Planned	This configuration criteria changes according to the change of our business criteria.

Table E correlates the risks identified in Table C with relevant IT security controls documented in Table D and with other mitigating or exacerbating factors.

Table F: Risks-Controls-Factors Correlation

Risk No.	Risk Summary	Correlation of Relevant Controls & Other Factors
1	The attacker motivation is to launch attacks against network hosts, steal data, spread malware or bypass access controls	Controls should be preventive
2	When the attacker gain a user administrative access, the attacker can do any fraud or any other illegal actions.	Controls should be preventive
3	Attacker will fraud the datasets so may an X-ray test result be wrong because of the inaccurate prediction due to the false dataset.	Controls should be preventive
4	Attacker motivation is to know secret info. of Patient to override their valuable data, or even to execute dangerous system level commands on the database host.	Controls should be detective
5	Attacker motivation is to know secret info. of Doctor to override their valuable data, or even to execute dangerous system level commands on the database host.	Controls should be detective

6 Determine the Likelihood of an Incident

Table G defines the risk likelihood ratings.

Table G: Risk Likelihood Definitions

Effectiveness of	Probability of Threat Occurrence (Natural or Environmental Threats) or Threat Motivation and Capability (Human Threats)		
Controls	Low	Moderate	High
Low	Medium	High	High
Moderate	Low	Medium	High
High	Low	Low	Medium

	Smart(TB) Portal Risk Assessment Report
capability o	valuates the effectiveness of controls and the probability or motivation and of each threat to BFS and assigns a likelihood, as defined in Table F, to each risk d in Table C.
capability o	of each threat to BFS and assigns a likelihood, as defined in Table F, to each risk

Risk No.	Risk Summary	Risk Likelihood Evaluation	Risk Likelihood Rating
1	The attacker motivation is to launch attacks against network hosts, steal data, spread malware or bypass access controls	High	High
2	When the attacker gain a user administrative access, the attacker can do any fraud or any other illegal actions.	High	High
3	Attacker will fraud the datasets so may an X-ray test result be wrong because of the inaccurate prediction due to the false dataset.	High	High
4	Attacker motivation is to know secret info. of Patient to override their valuable data, or even to execute dangerous system level commands on the database host.	Low	Low
5	Attacker motivation is to know secret info. of Doctor to override their valuable data, or even to execute dangerous system level commands on the database host.	Medium	Medium

7 Assess the Impact a Threat Could Have

Table I documents the ratings used to evaluate the impact of risks.

Table I: Risk Impact Rating Definitions

Magnitude of Impact	Impact Definition
High	Occurrence of the risk: (1) May result in human death or serious injury; (2) May result in the loss of major tangible assets, resources or sensitive data; or (3) May significantly harm, or impede the mission, reputation or interest.
Medium	Occurrence of the risk: (1) May result in human injury; (2) May result in the costly loss of tangible assets or resources; or (3) May violate, harm, or impede the mission, reputation or interest.
Low	Occurrence of the risk: (1) May result in the loss of some tangible assets or resources or (2) May noticeably affect the mission, reputation or interest.

Table J documents the results of the impact analysis, including the estimated impact for each risk identified in Table D and the impact rating assigned to the risk.

Table J: Risk Impact Analysis

Risk No.	Risk Summary	Risk Impact	Risk Impact Rating
1	The attacker motivation is to launch attacks against network hosts, steal data, spread malware or bypass access controls	High	High (2)
2	When the attacker gain a user administrative access, the attacker can do any fraud or any other illegal actions.	High	High (3)
3	Attacker will fraud the datasets so may an X-ray test result be wrong because of the inaccurate prediction due to the false dataset.	High	High

Risk No.	Risk Summary	Risk Impact	Risk Impact Rating
4	Attacker motivation is to know secret info. of Patient to override their valuable data, or even to execute dangerous system level commands on the database host.	Low	Low (2)
5	Attacker motivation is to know secret info. of Doctor to override their valuable data, or even to execute dangerous system level commands on the database host.	Medium	Medium

8 Prioritize the Information Security Risks

Table K documents the criteria used in determining overall risk ratings.

Table K: Overall Risk Rating Matrix

	Risk Impact						
Risk Likelihood	Low	Moderate	High				
	(10)	(50)	(100)				
High	Low	Moderate	High				
(1.0)	10 x 1.0 = 10	50 x 1.0 = 50	100 x 1.0 = 100				
Moderate	Low	Moderate	Moderate				
(0.5)	10 x 0.5 = 5	50 x 0.5 = 25	100 x 0.5 = 50				
Low	Low	Low	Low				
(0.1)	10 x 0.1 = 1	50 x 0.1 = 5	100 x 0.1 = 10				

Risk Scale: Low (1 to 10); Moderate (>10 to 50); High (>50 to 100)

Table L assigns an overall risk rating, as defined in Table K, to each of the risks documented in Table D.

Table L: Overall Risk Ratings Table

Risk No.	Risk Summary	Risk Likelihood Rating	Risk Impact Rating	Overall Risk Rating
1	The attacker motivation is to launch attacks against network hosts, steal data, spread malware or bypass access controls	High	High	100 x 1.0 = 100
2	When the attacker gain a user administrative access, the attacker can do any fraud or any other illegal actions.	High	High	100 x 1.0 = 100
3	Attacker will fraud the datasets so may an X-ray test result be wrong because of the inaccurate prediction due to the false dataset.	High	High	100 x 1.0 = 100
4	Attacker motivation is to know secret info. of Patient to override their valuable data, or even to execute dangerous system level commands on the database host.	Low	Low	10 x 0.1 = 1

Risk	Risk Summary	Risk Likelihood	Risk Impact	Overall Risk
No.		Rating	Rating	Rating
5	Attacker motivation is to know secret info. of Doctor to override their valuable data, or even to execute dangerous system level commands on the database host.	Medium	Medium	50 x 0.5 = 25

9 Recommend Controls

Table M documents recommendations for the risks identified in Table D.

Table M: Recommendations

Risk No.	Risk	Risk Rating	Recommendations
1	May result in the loss of major assets, resources or sensitive data	100	A mitigation activity for this threat is Use cryptographic network protocols: Transport Layer Security (TLS), Secure Shell (SSH), HTTP Secure (HTTPS) and other secure communications protocols bolster spoofing attack prevention efforts by encrypting data before it is sent and authenticating data as it is received.
2	May significantly harm, or impede the Portal mission, reputation or interest.	100	Timely patching or timely installation of software update ranks as the top cybersecurity measure in preventing remote code execution attacks. This the best mitigation activity for that threat.
3	May result in human death or serious health problems	100	we will use Jupyter Notebooks, the popular environment among data scientists, to predict the salaried class using both raw data and privacy-protected data. We will be using CryptoNumerics' privacy libraries for the privacy algorithms and sklearn for the regression.
4	May noticeably affect the Portal mission, reputation or interest.	1	A mitigation activity for this threat are Parameterized queries which are simple to write and understand. They force you to define the SQL query and use placeholders for user-provided variables in the query. After the SQL statement is defined, you can pass each parameter to the query. This allows the database to distinguish between the SQL command and data supplied by a user. If you properly parametrize SQL queries, all user input that is passed to the database is treated as data and can never be confused as being part of a command.

serious health problems problems Serious health problems Parameterized write and und define the SQL for user-provi After the SQL pass each par allows the dat the SQL commuser. If an atta the parameter untrusted inpo	activity for this threat are d queries which are simple to lerstand. They force you to L query and use placeholders ided variables in the query. statement is defined, you can rameter to the query. This tabase to distinguish between mand and data supplied by a acker inputs SQL commands, rized query treats them as ut and the database does not ted SQL commands.
--	--

10 Document the Results

Exhibit 1: Risk Assessment Matrix

Risk No.	Vulnerability	Threat	Risk	Risk Summary	Risk Likelihoo d Rating	Risk Impact Rating	Overall Risk Rating	Analysis of Relevant Controls and Other Factors	Recommendations
1	No Use of cryptograp hic network protocols	IP addres s spoofin g to the servers	May result in the loss of major assets, resources or sensitive data	The attacker motivation is to launch attacks against network hosts, steal data, spread malware or bypass access controls	High	High	100	Controls should be preventive	A mitigation activity for this threat is Use cryptographic network protocols: Transport Layer Security (TLS), Secure Shell (SSH), HTTP Secure (HTTPS) and other secure communications protocols bolster spoofing attack prevention efforts by encrypting data before it is sent and authenticating data as it is received.
2	NO timely installation of software update	Remote code executi on to the website	May significant ly harm, or impede the Portal mission, reputation or interest.	When the attacker gain a user administrative access, the attacker can do any fraud or any other illegal actions.	High	High	100	Controls should be preventive	Timely patching or timely installation of software update ranks as the top cybersecurity measure in preventing remote code execution attacks. This the best mitigation activity for that threat.

Risk Assessment Report

3	NO regularly back up to our data	Data manipu lation to the Hospita I lab sensiti ve X- ray dataset	May result in human death or serious health problems	Attacker will fraud the datasets so may an X-ray test result be wrong because of the inaccurate prediction due to the false dataset.	High	High	100	Controls should be preventive	we will use Jupyter Notebooks, the popular environment among data scientists, to predict the salaried class using both raw data and privacy-protected data. We will be using CryptoNumerics' privacy libraries for the privacy algorithms and sklearn for the regression.
---	----------------------------------	---	---	--	------	------	-----	-------------------------------	---

Risk Assessment Report

4	NO Parameteriz ed queries in the portal system	Sql Injectio n for Patient contact informa tion	May noticeably affect the Portal mission, reputation or interest.	Attacker motivation is to know secret info. of Patient to override their valuable data, or even to execute dangerous system level commands on the database host.	Low	Low	1	Controls should be detective	A mitigation activity for this threat are Parameterized queries which are simple to write and understand. They force you to define the SQL query and use placeholders for user-provided variables in the query. After the SQL statement is defined, you can pass each parameter to the query. This allows the database to distinguish between the SQL command and data supplied by a user. If you properly parametrize SQL queries, all user input that is passed to the database is treated as data and can never be confused as being part of a command.
---	---	---	---	--	-----	-----	---	------------------------------	--

Risk Assessment Report

5	NO Parameteriz ed queries in the portal system	Sql Injectio n for Doctor s contact informa tion	May result in serious health problems	Attacker motivation is to know secret info. of Doctor to override their valuable data, or even to execute dangerous system level commands on the database host.	Mediu m	Medium	25	Controls should be detective	A mitigation activity for this threat are Parameterized queries which are simple to write and understand. They force you to define the SQL query and use placeholders for user-provided variables in the query. After the SQL statement is defined, you can pass each parameter to the query. This allows the database to distinguish between the SQL command and data supplied by a user. If an attacker inputs SQL commands, the parameterized query treats them as untrusted input and the database does not execute injected SQL commands.
---	--	---	---------------------------------------	---	------------	--------	----	------------------------------	--