Architecture Design Document – Soil Moisture Prediction

- Sivasakthi Jayashankar
 - May 2019

1 Architectural Components Overview

Overview of different stages provided by IBM is used as a guideline

IBM Data and Analytics Reference Architecture. Source: IBM Corporation

1.1 Objective -

Predict soil moisture using

1.2 Data Source

1.2.1 Technology Choice

Data was obtained from the Library of United States Department of Agriculture

• <u>Dataset</u> includes hourly hydro-meteorological variables including soil moisture, air temperature and relative humidity from 11 sites in Reynolds Creek in southwestern Idaho

Two Datasets were retrieved.

- 1. Weather Dataset
- 2. Soil Moisture Dataset

Figure 1 – Download Weather Dataset from Source

```
soilmoistureurl="https://data.nal.usda.gov/system/files/rc.tg_.dc_.jd-jdt2b_stm_0.csv"
s=requests.get(soilmoistureurl).content
soilmoistureData=pd.read_csv(io.StringIO(s.decode('utf-8')))
```


Figure 2 – Download Soil Moisture Dataset from source

1.2.2 Justification

Dataset was downloaded as CSV from the USDA repository

1.3 Enterprise Data

1.3.1 Technology Choice

N/A

1.3.2 Justification

Data obtained is from public data source

1.4 Streaming analytics

1.4.1 Technology Choice

Real-time data processing is not applicable for the current application

1.4.2 Justification

Use case is to analyze finite data set.

1.5 Data Integration

1.5.1 Technology Choice

Apache Spark, Python, Jupyter Notebook

1. Weather Data

we	weatherData.head()													
	Date_time	WY	Year	Month	Day	Hour	Minute	T_a	RH	e_a	T_d	w_s	w_d	
0	11/5/2005 0:00	2006	2005	11	5	0	0	-9999.0	-9999.0	-9999	-9999.0	-9999.0	-9999.0	
1	11/5/2005 1:00	2006	2005	11	5	1	0	-9999.0	-9999.0	-9999	-9999.0	-9999.0	-9999.0	
2	11/5/2005 2:00	2006	2005	11	5	2	0	-9999.0	-9999.0	-9999	-9999.0	-9999.0	-9999.0	
3	11/5/2005 3:00	2006	2005	11	5	3	0	-9999.0	-9999.0	-9999	-9999.0	-9999.0	-9999.0	
4	11/5/2005 4:00	2006	2005	11	5	4	0	-9999.0	-9999.0	-9999	-9999.0	-9999.0	-9999.0	

Figure 3 – Glimpse of Weather Dataset

Data Dictionary of Weather Dataset

Feature	Feature Description	Feature	Feature Description
Name		Name	
Date_time	Date followed by Time	Hour	Hour of Day
WY	Water Year	T_a	Air
			Temperature(Degrees)
Year	Calendar Year	RH	Relative Humidity
Month	Month of Year	e_a	Water Vapor Pressure
Day	Day of Month	W_S	Wind Speed
T_d	Dew Point	w_d	Wind Direction
	Temperature(Degrees)		

2. Soil Moisture Data

Figure 4 – Glimpse of Soil Moisture Data

Data Dictionary of Soil Moisture Dataset

Feature Name	Feature	Feature Name	Feature
	Description		Description
Date_time	Date followed by	WY	Water Year
	Time		
Year	Calendar Year	T_g_50	Soil temperature
			at 50 cm Depth
Month	Month of Year	T_g_75	Soil temperature
			at 75 cm Depth

Day	Day of Month	s_m_5	Soil moisture at
			5 cm Depth
Hour	Hour of Day	s_m_20	Soil moisture at
			20 cm Depth
T_g_5	Soil temperature	s_m_35	Soil moisture at
	at 5 cm Depth		35 cm Depth
T_g_20	Soil temperature	s_m_50	Soil moisture at
	at 20 cm Depth		50 cm Depth
T_g_35	Soil temperature	s_m_75	Soil moisture at
	at 35 cm Depth		75 cm Depth

3. Data Cleansing

Data source documentation indicates if there was no data available, it is denoted by 9999.

Remove all rows where variables are equal to 9999

```
#Data source documentation indicates null values are denoted by 9999
# Lets remove those
weatherClean = weatherData[(weatherData[['T_a','RH','e_a','T_d','w_s','w_d']] != -9999.000000).all(axis=1)]

#Data source documentation indicates null values are denoted by 9999
# Lets remove those
soilMoistureClean = soilmoistureData[(soilmoistureData[['T_g_5','T_g_20','T_g_35','T_g_50','T_g_75','s_m_5','s_m_20','s_m_35','s_w_5']
```

Figure 5 – Data Cleansing – remove rows with values equal to -9999

Merge on Weather and Soil Moisture Datasets

50:	oilWeatherData.head()																			
	Date_time	WY	Year_x	Month_x	Day_x	Hour_x	Minute_x	T_g_5	T_g_20	T_g_35		Month_y	Day_y	Hour_y	Minute_y	T_a	RH	e_a	T_d	w_s
0	3/4/2011 11:00	2011	2011	3	4	11	0	0.3	1.6	2.1		3	4	11	0	2.8	0.61	456	-3.5	3.1
1	3/4/2011 12:00	2011	2011	3	4	12	0	1.1	1.6	2.1		3	4	12	0	3.4	0.55	429	-4.2	3.2
2	3/4/2011 13:00	2011	2011	3	4	13	0	2.4	1.6	2.1		3	4	13	0	3.9	0.52	420	-4.5	3.1
3	3/4/2011 14:00	2011	2011	3	4	14	0	3.3	1.7	2.0		3	4	14	0	3.6	0.56	443	-3.8	4.0
4	3/4/2011 15:00	2011	2011	3	4	15	0	4.1	1.9	2.0		3	4	15	0	4.8	0.54	465	-3.3	2.7

Figure 6 – Merge Weather and Soil Datasets

Drop columns not required and are duplicates from weather and soil datasets

```
#Drop columns not needed and are duplicate
   soilWeatherData.dtypes
 Date_time
WY
                                                                         int64
                                                                          int64
Year_x
  Month_x
Day_x
Hour_x
Minute_x
                                                                         int64
int64
                                                                         int64
 T_g_5
T_g_20
                                                               float64
                                                                float64
                                                                float64
 T_g_35
T_g_50
                                                                 float64
  T_g_75
                                                                float64
  s_m_5
s_m_20
                                                                float64
                                                                 float64
  s_m_35
                                                                 float64
  s_m_50
                                                                float64
 s_m_75
WY
                                                               float64
  Year_y
                                                                          int64
Month_y
Day_y
                                                                         int64
                                                                         int64
                                                                         int64
Minute_y
                                                               int64
float64
                                                                float64
                                                                         int64
                                                               float64
float64
T_d
W S
                                                               float64
dtype: object
   # Date, Time & Hour is not required
  soil We ather Concise = soil We ather Data.filter ( ['T_g_5', 'T_g_20', 'T_g_35', 'T_g_50', 'T_g_75', 's_m_5', 's_m_20', 's_m_35', 's_m_50', 's_
```

Figure 7 – Drop Obvious Features not required for prediction

Check on values and understand the data attributes

soilWe	soilWeatherConcise.describe()														
	T_g_5	T_g_20	T_g_35	T_g_50	T_g_75	s_m_5	s_m_20	s_m_35	s_m_50	s_m_75					
count	27093.000000	27093.000000	27093.000000	27093.000000	27093.000000	27093.000000	27093.000000	27093.000000	27093.000000	27093.000000	27093.000				
mean	12.653412	12.525926	12.328476	12.058214	11.765740	0.134306	0.225555	0.210865	0.217434	0.204170	9.38				
std	10.120863	8.716143	8.141291	7.606521	6.742225	0.064648	0.072174	0.069939	0.069741	0.071845	9.80				
min	-2.000000	0.200000	0.600000	1.300000	2.200000	0.038000	0.132000	0.120000	0.126000	0.121000	-16.10(
25%	2.900000	3.900000	4.200000	4.300000	5.000000	0.073000	0.163000	0.151000	0.160000	0.144000	1.900				
50%	11.500000	12.000000	11.900000	11.600000	11.200000	0.121000	0.184000	0.175000	0.180000	0.162000	8.10(
75%	21.100000	21.100000	20.500000	19.500000	18.000000	0.193000	0.301000	0.292000	0.292000	0.291000	17.400				
max	38.200000	29.200000	26.900000	25.100000	23.500000	0.313000	0.382000	0.344000	0.352000	0.336000	36.200				

Figure 8 – Understand the values, variance and deviation

1.5.2 Justification

In this stage, data is cleansed, transformed,

1.6 Data Repository

1.6.1 Technology Choice

Object storage / File system

1.6.2 Justification

Object storage allows to store unlimited amount of Data. Also suited for archival when size of data becomes an issue

1.7 Discovery and Exploration

1.7.1 Technology Choice

Apache Spark ,Jupyter, Python 3.6, Matplotlib, Seaborn libraries suffice our needs for data discovery and exploration.

Visualization helps discover the relationship between the attributes.

Figure 9 – Feature Relationship study

Figure 10 – Feature relation study - Correlation

1.7.2 Justification

Jupyter, Python, Pandas, Seaborn & Matplotlib libraries are all open source and supported in all platforms.

1.8 Actionable Insights

1.8.1 Technology Choice

Support Vector Regression and Neural Network are the two ML models evaluated.

Support Vector Regression - Python scikit-learn library is used to build SVR model. There are different parameters in SVR. This project will compare the results between different kernels, C values, epsilon values.

Neural Networks - Sequential Keras Model with multiple hidden layers applied using Adam optimizer and relu activation.

1.8.2 Justification

Exploration and Visualization of data shows data is not linear. SVR help transform to a higher dimensional data so the points can be linear separable. The options of kernels in SVR are linear, poly and RBF. Choosing the right kernel and the epsilon is very important. R square metric score can be dramatically affect with different choices of kernel and epsilon.

For sequential NN model, trying different number of layers and the number of neurons in each layer helps the model to extract and combine higher order features that are part of the data.

Metrics -

For Regression model, most appropriate to use Root Mean Square Error , Mean Absolute Error and R2

1.9 Applications / Data Products

1.9.1 Technology Choice

Guideline is to use Node-RED

1.9.2 Justification

Node-RED is a great tool for process flow visualization and more consumer friendly.

1.10 Security, Information Governance and Systems Management

1.10.1 Technology Choice

IBM Identity Access Management is a known choice for security and information governance.

1.10.2 Justification

Identity and Access Management (IAM) integration allows for granular access control at the bucket-level using role-based policies.