

# Nota importante: Enlace de gráficos

# Ejercicios

### SAXPY







Tecnológico de Costa Rica Arquitectura de Computadores II Taller 4





#### Constante de Euler







Tecnológico de Costa Rica Arquitectura de Computadores II Taller 4

#### Paralelo

Se utiliza constante para calcular el error de los datos obtenidos:

#define REAL\_EULER

2.7182818284590452353602874713527

La funciòn factorial recibe el enfoque vectorial dado por elementos de tipo uint32

haciendo así un vector de 4 elementos.

uint32x4\_t

Se prueban iteraciones de 100 hasta 20000 iteraciones con 4 hilos.

La gráfica muestra las iteraciones realizadas y el tiempo invertido.

Se agrega pragma de reduction de la variable euler #pragma omp for reduction(+ \

: euler



Iteraciones





Tecnológico de Costa Rica Arquitectura de Computadores II

Constante Producto infinito, con Alladi-Grinstead La constante se define como:

$$\prod_{n=2}^{\infty} \left(1 + \frac{1}{n}\right)^{\frac{1}{n}}$$

que equivale a 1,75874 36279 51184 82469 [1]

| Enfoque  | Descripción                                                                                                                                                                         | Resultados                                                                                                                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Serial   | Como parámetro de comparación se utiliza el siguiente valor:  long double official = 1.75874362795118482469;  Se utiliza la función powf para realizar potencias en punto flotante. | Número de iteraciones: 1000000000 Num_threads: 1 Valor obtenido: 1.758377024676026412208784677205 Error absoluto porcentual: 0.03666 % Tiempo Invertido 33.724423 seconds |
|          | Se realiza 100000000 iteraciones                                                                                                                                                    |                                                                                                                                                                           |
| Paralelo | Como parámetro de comparación se utiliza el siguiente valor:  long double official = 1.75874362795118482469;  Se utiliza la función powf para realizar potencias en punto flotante. | Número de iteraciones: 1000000000 Num_threads = 4 Valor obtenido: 1.758278012275695800781250 Error: 0.04656 % Alladi-Grinstead Parallel 5.341711 seconds                  |
|          | Se trabaja con vectores de dos elementos de punto flotante en presición simple: float32x2_t  Y 8 hilos en el dispositivo móvil Se realiza 1000000000                                |                                                                                                                                                                           |

### Bibliografía:

[1] Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 122. ISBN 3-540-67695-3.