Notes on 'Algebraic Geometry I: Schemes'

Bailey Arm

$\mathrm{June}\ 22,\ 2025$

Contents

Ι	Algebraic Geometry I: Schemes, Gortz-Wedhorn			
1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
2	Spectrum of a Ring			
3	Schemes			
4	Fibre Products			
5	Schemes over Fields			
6	Local Porpoerties of Schemes			
7	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
8	Representable Functors 8.1 Representable Functors 8.2 The Grassmannian 8.3 Brauer-Severi Schemes 8.4 Exercises			
9	Separated Morphisms 9.1 Diagonal of Scheme Morphism s and Separated Morphisms 9.2 Rational Maps and Function Fields			

	teness Conditions
10.5	Exercises
Vec	cor Bundles
11.1	
11.2	
11.3	
11.4	
11.5	Exercises
Affi	ne and Proper Morphisms
12.1	
12.2	
12.3	
12.4	
12.5	
12.6	
12.7	Exercises
Pro	jective Morphisms
•	·
13.2	
	Exercises
	Morphisms and Dimension
14.1	
14.2	
14.5	
14.7	Exercises
One	-Dimensional Schemes
15.1	
15.2	
15.3	
15.4	
15.5	Exercises
6 Exa	mples
	Determinal Varieties
16.2	Cubic Surfaces and Hilbert Modular Surface
	Cyclic Quotient Singularities
	Abelian Varieties
	Exercises

Part I

Algebraic Geometry I: Schemes, Gortz-Wedhorn

1 Prevarieties

1.1 Affine Algebraic Sets

1.1.1 The Zariski Topology on \mathbb{A}^n_k

Definition 1 Let $M \subseteq k[T_1,...,T_n] =: k[\underline{T}]$. The set of common zeros of the polynomials in M is defined as

$$\mathbb{V}(M) := \{ p \in k^n : f(p) = 0 \quad \forall f \in M \}$$

Proposition 1 The sets $\mathbb{V}(\mathfrak{a})$ where \mathfrak{a} is an ideal in $k[\underline{T}]$ form a topoology on \mathbb{A}^n_k called the Zariksi topology.

This is a very elementary problem in algebraic geometry.

1.1.2 Affine Algebraic Sets

Definition 2 The closed subspaces of \mathbb{A}^n_k are called affine algebraic sets.

1.1.3 Hilbert's Nullstellensatz

Theorem 1 Hilbert's Nullstellensatz: Let K be field and A a finitely generated K-algebra. Then A is Jacobson, that is for every prime ideal $\mathfrak{p} \subset A$ we have

$$\mathfrak{p} = \bigcap_{\mathfrak{m}\supseteq \mathfrak{p},\mathfrak{m}\ maximal} \mathfrak{m}$$

Theorem 2 Noether's Normalisation Theorem: Let K be a field and $A \neq 0$ a finitely generated K-algebra. Then there exists $n \in \mathbb{N}$ abd $t_1, ..., t_n$ such that the K-algebra homomorphism $K[T_1, ..., T_n] \to A$, $T_i \to t_i$ is injective and finite

Lemma 1 Let A, B be integral domains and $A \to B$ an injective integral ring homomorphism. Then A is a field iff B is a field

Proof. Let A be a field and $b \in B$ non-zero. Then A[b] is an A-vector space of finite dimension. As B is an integral domain, the multiplication by b, $A[b] \to A[b]$ is injective. As this map is A-linear it is bijective and hence b is a unit. We can extend this type of argument to every $a \neq 0 \in A$ and prove that a must be a unit.

We can further investigate the impact of the Nullstellensatz on algebraically closed fields. Let K = k be an algebraically closed field. Then the Nullstellensatz implies the following:

- Let A be a finitely generated k-algebra and $\mathfrak{m} \subset A$ a maximal ideal. Then $A/\mathfrak{m} = k$
- $\mathfrak{m} \subset k[T_1,...,T_n]$ maximal implies existence of a point $(x_1,...,x_n)$ in A such that $\mathfrak{m} = (T_1 x_1,...,T_n x_n)$

These points have nice geometric interpretations. When A is the set of polynomials $A = k[x_1, ..., x_n]$ and \mathfrak{m} is a maximal ideal, the coordinate ring of $X = \mathbb{V}(\mathfrak{m})$ is isomorphic to the underlying field. The second point is also nice and tells us that all maximal ideals in $k[x_1, ..., x_n]$ correspond to points in \mathbb{A}^n_k . This is interesting, maximal ideals are large but correspond to very small/finite varities.

1.1.4 The Radical-Affine Correspondence

There is a bijective correspondence between radical ideals and affine varities:

$$\begin{split} \{\mathfrak{p} \subset A: \quad \mathfrak{rad}(\mathfrak{p}) = \mathfrak{p}\} &\leftrightarrow \{X \subset \mathbb{A}^n_k: \quad X = \mathbb{V}(f_1,...,f_n)\} \\ \mathfrak{p} &\to \mathbb{V}(\mathfrak{p}) \\ \mathbb{I}(X) \leftarrow X \end{split}$$

1.2 Affine Algebraic Sets as Spaces with Functions			
1.3 Prevarieties			
1.4 Projective Varieties			
1.5 Exercises			
2 Spectrum of a Ring			
3 Schemes			
4 Fibre Products			
5 Schemes over Fields			
6 Local Porpoerties of Schemes			
7 Quasi-Coherent Modules			
7.1 Excursion into \mathcal{O}_X -Modules			
7.2 Quasi-Coherent Modules on a Scheme			
7.3 Properties of Quasi-Coherent Modules			
7.4 Exercises			
8 Representable Functors			
8.1 Representable Functors			
8.2 The Grassmannian			
8.3 Brauer-Severi Schemes			
8.4 Exercises			
9 Separated Morphisms			
9.1 Diagonal of Scheme Morphisms s and Separated Morphisms			
9.2 Rational Maps and Function Fields			
9.3 Exercises			
10 Finiteness Conditions			
10.1			
10.2			
10.3			
10.4			
10.5 Exercises			
11 Vector Bundles			
11.1			
11.2			

11.3

11.4