Procesamiento Digital de Imágenes 2D en Java

Autor: Jose Maria Romero Davila

26 de marzo de 2025

${\rm \acute{I}ndice}$

•	Fór	mulas Matemáticas Utilizadas
	2.1.	Escala de Grises
	2.2.	Imagen Binaria
	2.3.	Negativo de Imagen
	2.4.	Filtro de Media
	2.5.	Filtro de Mediana
	2.6.	Detección de Bordes
		2.6.1. Sobel
		2.6.2. Prewitt
		2.6.3. Laplaciano
	2.7.	Morfología Matemática
		2.7.1. Erosión
		2.7.2. Dilatación
		2.7.3. Apertura
		2.7.4. Cierre
		2.7.5. Esqueletonización
	2.8.	Histograma de Intensidad

1. Introducción

Este proyecto implementa un software de procesamiento digital de imágenes 2D en Java con una interfaz gráfica basada en Swing. Se ofrecen transformaciones básicas, filtros espaciales, operaciones morfológicas, histogramas y herramientas de edición como deshacer/rehacer.

2. Fórmulas Matemáticas Utilizadas

Esta sección detalla las operaciones implementadas en términos matemáticos y explica con ejemplos cómo se aplican a los píxeles de una imagen.

2.1. Escala de Grises

Convierte un píxel RGB a una sola intensidad promedio:

$$G(x,y) = \frac{R(x,y) + G(x,y) + B(x,y)}{3}$$

Ejemplo: Para un píxel (200, 150, 100), su gris será: G = (200 + 150 + 100)/3 = 150 Resultado: (150, 150, 150)

2.2. Imagen Binaria

Aplica umbralización para obtener una imagen en blanco y negro:

$$B(x,y) = \begin{cases} 255 & \text{si } G(x,y) > T \\ 0 & \text{si } G(x,y) \le T \end{cases}$$

Ejemplo: Con umbral T = 128:

- $G = 150 \Rightarrow B = 255$ (blanco)
- $G = 80 \Rightarrow B = 0 \text{ (negro)}$

2.3. Negativo de Imagen

Invierte los canales de color:

$$I'(x,y) = 255 - I(x,y)$$

Ejemplo: RGB = $(100, 180, 200) \Rightarrow (155, 75, 55)$

2.4. Filtro de Media

Reduce el ruido suavizando la imagen mediante un promedio:

$$M(x,y) = \frac{1}{n^2} \sum_{i=-k}^{k} \sum_{j=-k}^{k} I(x+i, y+j)$$

donde $k = \frac{n-1}{2}$

Ejemplo: Con máscara 3×3 , se suman 9 valores y se divide por 9.

2.5. Filtro de Mediana

Reemplaza el valor del píxel por la mediana de su vecindario:

$$M(x,y) = \text{mediana} \{ I(x+i, y+j) \mid i, j \in [-k, k] \}$$

Ejemplo: Valores = $\{20, 30, 40, 50, 60, 70, 80, 90, 100\} \Rightarrow \text{mediana} = 60$

2.6. Detección de Bordes

2.6.1. Sobel

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
$$G(x, y) = \sqrt{(I * G_x)^2 + (I * G_y)^2}$$

Ejemplo: Detecta bordes verticales y horizontales simultáneamente.

2.6.2. Prewitt

$$P_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \quad P_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Ejemplo: Similar a Sobel pero más simple, con menos sensibilidad.

2.6.3. Laplaciano

$$L = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$G(x,y) = I * L$$

Ejemplo: Detecta contornos sin orientación específica.

2.7. Morfología Matemática

2.7.1. Erosión

$$I \ominus B = \min \{ I(x+i, y+j) \mid (i, j) \in B \}$$

Ejemplo: Un punto blanco aislado se elimina.

2.7.2. Dilatación

$$I \oplus B = \max \{ I(x+i, y+j) \mid (i, j) \in B \}$$

Ejemplo: Aumenta áreas blancas, rellenando huecos.

2.7.3. Apertura

$$I \circ B = (I \ominus B) \oplus B$$

Ejemplo: Elimina ruido pequeño.

2.7.4. Cierre

$$I \bullet B = (I \oplus B) \ominus B$$

Ejemplo: Rellena pequeños agujeros.

2.7.5. Esqueletonización

$$S = \bigcup_{n} \left[I_n - ((I_n \ominus B) \oplus B) \right]$$

Ejemplo: Reduce formas binarizadas al "hueso.º trazo principal.

2.8. Histograma de Intensidad

Cuenta cuántos píxeles tienen un valor de gris específico:

$$H(g) = \# \left\{ (x,y) \mid G(x,y) = g \right\}, \quad g \in [0,255]$$

Ejemplo: H(128) = 250 significa que hay 250 píxeles con intensidad 128.

3. Conclusión

Este documento ha descrito los fundamentos matemáticos de cada operación de procesamiento implementada en el software. La aplicación ofrece herramientas completas para experimentar con filtros clásicos y morfología, visualizando resultados de forma interactiva.