NLP Research (Disease Detection Based on Chat History)

Overview of State-of-the-Art NLP Models

- **BERT**: A foundational NLP model that excels in understanding context and is used in healthcare for medical text analysis and diagnosis support.
- **BioBERT**: A variant of BERT pre-trained on biomedical literature, enhancing its performance in understanding medical jargon, ideal for electronic health records (EHRs).
- ClinicalBERT: Further fine-tuned on clinical notes, making it adept at interpreting patient data for healthcare decision-making.
- **GPT Models**: Such as ChatGPT, which can generate human-like text for interactive diagnostic chatbots. Studies show variable accuracy across different diseases.

Bio_ClinicalBERT: The demo will use this model, combining BioBERT and ClinicalBERT, trained on the MIMIC-III dataset, excelling in tasks like named entity recognition and text classification.(htt8)

Types of Data Needed

Labeled Datasets: Chat transcripts annotated with diseases or symptoms to help the model learn language-disease associations.

Chat Transcripts: A large collection of anonymized chat logs from healthcare interactions, including successful and unsuccessful diagnoses. The demo utilizes the Symptom2Disease dataset, with 1,200 data points linking symptoms to diseases.

I have used Symptom2Disease dataset in my demo that focuses on the relationship between symptoms and diseases. It consists of 1,200 data points, each representing a unique combination of a disease label and a natural language symptom description. (htt9)

Preprocessing Strategy

Data Cleaning: Address missing annotations or incomplete logs to maintain dataset integrity.

Tokenization: This step breaks down raw text into smaller units that the model can understand. The text data is converted into tokens using the BertTokenizer from Hugging Face in my demo.

Truncation and Padding: Ensure input sequences fit model length requirements by truncating longer texts and padding shorter ones.

Data Splitting: Maintain distribution balance of diseases in training and testing datasets.

Model Evaluation

To effectively evaluate a disease detection model in healthcare, a combination of metrics is essential:

Accuracy: Proportion of correct predictions, useful but potentially misleading in imbalanced datasets.

Precision: Proportion of true positive predictions among all positive predictions; high precision indicates reliability in disease predictions.

Recall (Sensitivity): Proportion of actual positive cases correctly identified; high recall means most cases are detected.

F1 Score: Harmonic mean of precision and recall, balancing both metrics, particularly valuable for imbalanced classes.

ROC-AUC: Assesses the model's ability to distinguish between classes at various thresholds; higher values indicate better performance.

Additionally, a **Confusion Matrix** provides detailed insights into true/false positives and negatives. In healthcare, ROC-AUC and F1 score are favored for their balance between precision and recall, especially in imbalanced situations. However, accuracy is used in my demo due to a balanced dataset.

Evaluating the Model in Production

Continuous monitoring is essential for maintaining model performance:

Feedback Mechanisms: Gather input from healthcare professionals on misclassifications.

Regular Performance Assessment: Evaluate model metrics against historical data to identify performance degradation.

Clinical Validation: Collaborate with healthcare professionals to align model predictions with clinical outcomes.

Detailed Reporting: Provide comprehensive reports on performance metrics and their clinical implications.

Kaynakça

(tarih yok). https://www.jmir.org/2023/1/e47621/ adresinden alındı

(tarih yok). https://www.javatpoint.com/bert-applications adresinden alındı

(tarih yok). https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT adresinden alındı

(tarih yok). https://www.kaggle.com/datasets/niyarrbarman/symptom2disease/ adresinden alındı