CS150A Quiz #5

Query Optimization

Assume that the optimizer follows a System-R style implementation for all applicable questions.

1.Q 1: T/F - If a term has a large reduction factor, the output of the query will have more tuples than if it had a small reduction factor. *

Mark only one oval.

2.Q 2: T/F - An equidepth histogram gives better resolution on low-frequency entries than a equiwidth histogram. *

i.e. it gives more detailed information for these entries. *Mark only one oval.*

3.Q 3: When doing a cross join on tables A, B, C, and D, which of the following query plans do we consider? *

Mark all that apply.

Check all that apply.

Check all that apply.	
None of the above	
(A join (B join C)) join D	
A join ((B join C) join D)	11. 000
((A join B) join C) join D	left-deep
A join (B join (C join D))	
(A join B) join (C join D)	

4. Q4: Which of the following access or join methods will result in an interesting order in a query where we require the output to be sorted? * Check all that apply.	
File scan Sort-Merge Join Block-Nested Loops Join	
Sort-Merge Join Block-Nested Loops Join Clustered Clustered Clustered Sorted Hash Join	
Suppose that we have three tables, R, S, and T. We are running the following query:	
SELECT * FROM R, S, T WHERE R.a = S.a AND S.b = T.b; (S, 7)	
Assume that our database has no indices and that none of the relations are sorted in any interesting or useful way. Since we only have one possible single-table access method for each table, we ignore the costs of accessing a single table.	
Assume that all provided join costs are for the optimal join algorithm for that join.	
These are the two-table join costs: 1) S join R = 2,000 2) R join S = 6,000 3) R join T = 5,000 4) T join R = 1,000 5) T join S = 3,000 6) S join T = 4,000	
5.Q 5: Which of the above two-table join plans will be selected? *	
Check all that apply.	
2 3	
\sqrt{5}	
We now add the third table and have the following join costs: 1) (R join S) join T = 10,000 2) T join (R join S) = 6,000 3) R join (S join T) = 12,000 4) T join (S join R) = 11,000 5) (R join T) join S = 10,000 6) S join (R join T) = 7,000	

