1. (a) canonical form:

min $-10X_1 - 6X_2 + 8X_3$ S.t. $5X_1 - 2X_2 + 6X_3 + X_4 = 20$ $10X_1 + 4X_2 - 6X_3 + X_5 = 30$ $X_{1,20} + 4X_1 + 4X_2 + 6X_3 + 1$

simplex:

	Ι Κ,	X2	χ_3	X4	X5	
X4	5	-2	6	١	S	20
X5	10)	4	-6	O	1	30
	-10	-6	8	0	O	0
×4	0	-4	9	1	-1/2	5
×ı	1	2/5	-3/5	0	1/10	3
	0	-2	2	0	1	30
X4	10	0	3	ı	1/2	35
XZ	%	l	-3/2	0	1/4	15/2
	5	0		O	3/2	45
X3	1%	0	1	1/3	1/6	35/3
X	15/2	ı	0	1/2	1/2	25
	25/3	G	0	3	5/3	170/3.

at (0,25, 35/3) we can obtain the maximum objective function value \$ 170/3.

1. (b). canonical form:
min
$$-5X_2 - X_4 + 10X_6$$

5.t. $X_1 - 3X_2 - 4X_4 + 2X_6 = 60$
 $-2X_2 + X_4 + X_5 - 4X_6 = 20$
 $X_2 + X_3 + 3X_6 = 10$
 $X_1 \ge 0$ for $i = 1, ..., 6$

simplex:

		1						
		7	<, ×	. X	3 X4	X5	X6	
	Χ,	1	- :	3 0	-4	0	2	60
	X5	0	-2	0	1	l	-4	20
_	X 3	0	(1)	١	0	0	3	10
_		0	-5	O	-1	0	10	0
	Χ,	1	0	3	-4	0	1)	90
	X5	0	0	2		l	2	40
	Χ,	0	· ·	1	0	0	3	10
		0	0	5		0	25	50
	Χ,	1	0	t J	0	4	19	250
	X4	0	0	2	l	ı	2	40
	X٢	0	t	Ţ	0	0	3	w
		õ	٥	7	0	1	27	90

basic variables are: X1, X3 & X5
We need to substitude X3 & X5
with X2, X4 & X6 for objective
function:

 $X_3 = 10 - X_2 - 3X_6$ $X_5 = 20 + 2X_2 - X_4 + 4X_6$

 $\begin{aligned}
\xi &= 9 \times_{2} + 2 \times_{3} - X_{5} \\
&= 9 \times_{2} + 2 (10 - X_{2} - 3 \times_{6}) \\
&- (20 + 2 \times_{2} - X_{4} + 4 \times_{6}) \\
&= -5 \times_{2} - X_{4} + 10 \times_{6}
\end{aligned}$

at (250, 10, 0, 40, 0) we can obtain the maximum objective function value 90.

min $-12X_1 + 2X_4 + 35$ s.t. $X_1 - 2X_2 + X_3 + X_4 = 5$ $-X_1 - 3X_2 + 5X_4 + X_5 = 10$ $2X_1 + 2X_2 - 4X_4 + X_6 = 10$ $X_1 = 0$ for i=1,2,...,6. Substitude Xs with X1, X2 & X4. X3=5-X, +2X2-X4

$$z = -5 \times_1 - 14 \times_2 + 7 \times_3 + 9 \times_4$$

= -5 \times_1 - 14 \times_2 + 7 (5 - \times_1 + 2 \times_2 - \times_4) + 9 \times_4
= -12 \times_1 + 2 \times_4 + 35

	Χ̈́	X2	Xz	X4	X5	X6		
X3		-2	١	1	0	O	5	
X5	-1	-3	0	5	1	0	10	
X6	2	2	0	-4	0	1	10	
	12	O	0	2	0	0	-35	1
Χ,	1	-2	ţ	1	O	0	5	
\times_5	O	-5	1	6	t	0	15	re
X6	0	6	-2	-6	0	t	OK	
	0	-24	12	14	0	0	25	•
Χ,	l	0	1/3	-1	O	1/3	5	_
X5	0	0	-3/3		1	5/6	15	
X ₂	0	1	-1/3	-1	O	6	0	
	0	0	4	F10	٥	4	25	-
Χ,	1	0	-1/3	0	1	7/6	20	
Χ,	O	0	-2/3	1	1	3/6	15	
×,	0	1	- 1	G	1	1	15	
	0	υ	-%	0	10	37/3	175	

, X	X.	Xz	Xs	X ₄	X5	X6	
X ₃		-1	1	1	0	0	5
X5	-1	-3	O	5	1	0	10
X6	(2)	2	٥	-4	0	(10
	-12	0	0	2	0	ō	-35
7X3	0	-3	1	3	0	-1/2	0
X5	0	-2	0	3	1	1/2	15
X	1	1	0	-2	0	1/2	5
	O	12	O	(-22	0	6	25
X4	0	-1	1/3	1	0	-1/6	0
X5	0		-1	0	1	1	15
Χ,	1	-1	3/3	0	0	6	5
	0	-10	22/3	0	o	7/3	25
X4	0	0	-1/3	1	1	5/6	15
X 2	0	(-1	0	1	1	15
Χı	1	0	-1/3	O	1	7/6	20
	0	0	-8/3	0	10	37/3	175

the objective function is unbounded below there is no optimum solution

min 2x, +2x2-5x3

S.t.
$$3X_1 + 2X_2 - 4X_3 + X_4 = 7$$

$$X_1 - X_2 + 3X_3 + X_5 = 2$$

x; >0 for i=1,2...5.

simplex:

stage 1:

	4					1
	Χ,	۲ ,	X3	X4	X5	
X ₄	3	2	-4	1	0	7
X5	0	-1	3	0	1	2
	-4	-1	1			-9
	2	2	-5			0
X4 X1	0	(5)	-13			1
X,	ı	-1	3			2
	0	1-5	13			-1
	0	4	-11			-4
X₂ X,	0	Į	-13/5			1/5
Χ,	l	0	² / ₅			"/5 O
	0	O	O			O
	0	0	-3/-			-24/

 \leftarrow min $\omega = 0$. end of Stage 1.

stage 2:

at (0, 29/2, 1/2) we can obtain minimum objective function value of 3/2.

min $\chi_1 - 3\chi_3$ s.t. $\chi_1 + 2\chi_2 - \chi_3 + \chi_4 = 6$ $\chi_1 - \chi_2 + 3\chi_3 + \chi_5 = 3$ $\chi_{1>0}$ for i=1,...,5.

simplex:		×,	۲.	Xs	X4	Xs		
	X4		2	-1	١ ,	0	6	
stage 1:	X ₅	1	-1	3	O	1	3	only X5 is artificial
9		-1	1	-3	O	0	-3	Variable.
		1	0	-3	٥	0	0	
	X4	4/3	(3/3)	0	1		7	
	X3	1/3	-1/3	1	0		1	
		2	5	0	ی 0		3	<pre>eminw=0 end of stage </pre>
stage 2:	X2	4/5	1	0	3/5		21/5	
	X ₃	3/5	٥		1/5		12/5	
		14/5	ð	0	3/5		36/	

at
$$(0, \frac{21}{5}, \frac{12}{5})$$
 we can obtain the minimum objective function value $\frac{-36}{5}$

2. LP for the question: Let X, X, & & Xs denote the # hours spent using Process 1.2 & 3, respectively.

min $160 \times 1 + 400 \times 2 + 300 \times 3$ st. $3 \times 1 + 6 \times 2 + 6 \times 3 = 36$ $4 \times 1 + 6 \times 2 + 3 \times 3 = 220$ $2 \times 1 + 8 \times 2 + 4 \times 3 = 30$ $\times 1 \times 1 \times 2 \times 3 = 0$

canonical form:

min $160 \times 1400 \times 24300 \times 3$ S.t. $3 \times 146 \times 246 \times 3 - \times 44 + \times 7 = 36$ $4 \times 146 \times 243 \times 3 - \times 5 + \times 8 = 20$ $2 \times 148 \times 244 \times 3 - \times 64 \times 9 = 30$ $\times 120 \text{ for } 1=1,2,...,9$

	1	1- 7-71
	X, X2 X3 X4 X5 X6 X7 X8 X9	†
×*	3 6 6 -1 0 0 1 0 0	36
×8	4630-10010,	20
Xq	28400-1001	30
	-9 -20 -13 1 \$1 1	-86
	160 400 300 0 0 0	O
X4	-1 0 3 -1 1 0	16
X2 X9	³ / ₃ 1 ½ 0 -1/6 0	20/6
	0 0 73 -1	19/3
	13/3 0 -3 1 -7/3 1	-58/3 -400/3
~	-322/ ₃ 0 100 0 250/ ₃ 0	-400/3
X ₃	5 / 3	16/3
X2 Xq	5/6 1 0 1/6 -1/3 0 -1/3 0 0 0 4/3 -1	
		10/3
		-10/3 -560/3
	2 , 3	-560/ 3
Xs	1/2 0 1 -1/3 0 1/4	4.5
X2 X5	0 1 0 % 0 -4	1.5
	74	2,5
		O end of Stage 1 -1950 & stage 2.
	10 0 0 10/3 0 25	-1950 l stage 2.

when using process I for Ohr, Process 2 for 1.5 hours & Process 3 for 4.5 hours.

The total cost is minimized at \$1950.