Due 4/25 (Wednesday): All (turn in): Chapter 10, page 206, 14-18, 20, 24

Chapter 10

Recall:

A homomorphism ϕ from a group G to a group G' is a mapping from G into G' that preserves the group operation; that is, $\phi(ab) = \phi(a)\phi(b)$ for a, $b \in G$.

The kernel of a homomorphism ϕ from a group G to a group G' with identity e' is the set $\{x \in G : \phi(x) = e' \}$.

Exercise 14

Explain why the correspondence $x \longrightarrow 3x$ from Z_{12} to Z_{10} is not a homomorphism.

Because ϕ is not OP:

```
\phi(3 * 4) = \phi(12) = \phi(0) = (3 * (0 \mod 12)) \mod 10 = e, and \phi(3)\phi(4) = (3 * (3 \mod 12) * 3 * (4 \mod 12)) \mod 10 = (9 * 3 * 4) \mod 10 = (108) \mod 10 = 8
```

Exercise 15

Suppose that ϕ is a homomorphism from Z_{30} to Z_{30} and Ker $\phi = \{0, 10, 20\}$. If $\phi(23) = 9$, determine all elements that map to 9.

```
\begin{array}{l} \phi(ab \bmod 30) = \phi(a \bmod 30) \phi(b \bmod 30) \\ \phi(23) = 9. \\ \phi(0) = \phi(10) = \phi(20) = 0 \\ \text{It looks like it's } \phi(x) = 3x: \\ \phi(23) = 3 * 23 \bmod 30 = 69 \bmod 30 = 9. \\ \text{Thus,} \\ \phi(3), \, \phi(13), \, \text{and} \, \phi(23) \, \text{all map to 9.} \end{array}
```

Exercise 16

Prove that there is no homomorphism from $Z_8 \oplus Z_2$ onto $Z_4 \oplus Z_4$.

```
Suppose \exists \phi: \mathbb{Z}_8 \bigoplus \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \bigoplus \mathbb{Z}_4, such that \phi is a homomorphism.
```

Because Z_8 is of order 8, and $|Z_2|$ divides 8, there is an element of order 8 in $Z_8 \bigoplus Z_2$, let's call it z_8 .

Thus, $z_8 \in Z_8 \bigoplus Z_2$.

Because ϕ is OP, $\exists z \in Z_4 \bigoplus Z_4$ such that $\phi(z_8) = z$ and |z| = 8.

However, there is no element of order 8 in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$. A contradiction.

Hence, no homomorphism exists.

Exercise 17

Prove that there is no homomorphism from $Z_{16} \bigoplus Z_2$ onto $Z_4 \bigoplus Z_4$.

Suppose $\exists \phi: Z_{16} \bigoplus Z_2 \longrightarrow Z_4 \bigoplus Z_4$, such that ϕ is a homomorphism.

Since G / Ker ϕ is isomorphic to $\phi(G)$,

 $|G / Ker \phi| = |\phi(G)| = 16.$

Since |G| = 32, $|Ker \phi| = 2$.

Since Ker $\phi \leq G$, $e \in Ker \phi$.

Since Ker ϕ is of order 2, the other element in Ker ϕ must have order 2, let's call it k.

The only possibilities for k are: (8, 0), (8, 1), (0, 1)

Since $|G|/Ker \phi|$ has order 16, the possibilities for the order of each $c \in G / Ker \phi$ are factors of 16: 1, 2, 4, 8, and 16.

Case:

i) Ker $\phi = \{(0, 0), (8, 0)\}$

Let's look at the coset $c = \text{Ker } \phi + (1, 1) \in G / \text{Ker } \phi$

Notice that the order of c is 8.

ii) Ker $\phi = \{(0, 0), (8, 1)\}$

Let's look at the coset $c = \text{Ker } \phi + (1, 1) \in G / \text{Ker } \phi$

Notice that the order of c is 16.

iii) Ker $\phi = \{(0, 0), (0, 1)\}$

Let's look at the coset $c = \text{Ker } \phi + (1, 1) \in G / \text{Ker } \phi$

Notice that the order of c is 16.

However, because the homomorphism is onto, there is an isomorphism from G / Ker ϕ to $Z_4 \oplus Z_4$.

Thus, for any element $g \in G / Ker \phi$ of order $p, \exists \phi(g)$ of order p.

However, the maximum order of $Z_4 \oplus Z_4$ is 4. A contradiction.

Hence, there is no homomorphism.

Exercise 18

Can there be a homomorphism from $Z_4 \bigoplus Z_4$ onto Z_8 ?

Can there be a homomorphism from Z_{16} onto $Z_2 \oplus Z_2$? Explain your answers.

Suppose \exists an onto homomorphism $\phi: G \longrightarrow G'$ where $G = Z_4 \bigoplus Z_4$ and $G' = Z_8$.

Notice: |G| = 16 and |G'| = 8.

 $|G / Ker \phi| = |\phi(G)| = 8.$

Thus, $|\text{Ker }\phi|=2$.

So $e \in \text{Ker } \phi$. The possibilities for the other element in Ker ϕ are: (2, 2), (2, 0), (0, 2).

For each of those possibilities, the order of the coset Ker $\phi + (1, 1)$ in the quotient group G / Ker ϕ is 2, 4, and 4, respectively. Those are all divisors of |G| and |G'|, so it appears to work. Yes there is a homomorphism.

For Z_{16} onto $Z_2 \oplus Z_2$, I'm going to say no because you're trying to map a cyclic group onto a non-cyclic group, but I don't have time to rigorously prove it before 5pm. Sorry!

Exercise 20

How many homomorphisms are there from Z_{20} onto Z_8 ? How many are there to Z_8 ?

Let $\phi: \mathbb{Z}_{20} \longrightarrow \mathbb{Z}_8$

Since ϕ is onto, $|\phi(G)| = 8$.

However, since G is finite, $|\phi(G)|$ divides |G|.

Therefore, 8 divides 20. A contradiction.

Therefore, there are no homomorphisms from Z_{20} to Z_8 .

Let ϕ be a homomorphism from Z_8 onto Z_8 .

Since ϕ is onto, and the groups are the same order, that means ϕ is an isomorphism.

As far as how many of those there are, I'm not sure. 8, I suppose?

Exercise 24

Suppose that ϕ : $Z_{50} \longrightarrow Z_{15}$ is a group homomorphism with $\phi(7) = 6$.

a. Determine $\phi(x)$.

If
$$\phi(7) = 6$$
, and $\phi(0) = 0$, then I suppose $\phi(x) = 3x$

b. Determine the image of ϕ .

$$\{0, 3, 6, 9, 12\}$$

c. Determine the kernel of ϕ .

$$\{0, 5, 10, 15, 20, 25, 30, 35, 40, 45\}$$

d. Determine $\phi^{-1}(3)$. That is, determine the set of all elements that map to 3.

$$\{1, 6, 11, 16, 21, 26, 31, 36, 41, 46\}$$