

GE Vingmed Ultrasound

System FiVe User Manual for Software Version 1.9.x

GEVU P.No.: FA092423

GEVU Revision:L

GEMS Cat.No.: H44701VA

CAUTION:

Federal law restricts this device to sale by or on the order of a physician.

Verify the System Software version as shown on page 35

GE Vingmed Ultrasound
Introduction

System FiVe

Caution:

Product Name labels, Colors, Options, Specifications and Configurations described in this manual may vary in different geographical markets.

Please contact the local representative for more details.

MANUAL STATUS	© Copyright	1996 – 2000 by GE Vingmed Ultrasound AIS.		
Printed in Norway. eleventh edition, Sept-2000.	retrieval syste mechanical, p	All rights reserved. No part of this Manual may be reproduced, stored in a etrieval system, or transmitted, in any form or by any means, electronic, nechanical, photocopying, recording, or otherwise, without the prior writen permission from GE Vingmed Ultrasound AIS.		
COMPANY DATA:				
GE Vingmed Ultrasound A/S, P. O. Box 141, N-3191 Horten, Norway.	Telephone: Telefax: WWW:	+47 3302 1100 +47 3302 1350 http://www.geultrasound.com/		

Introduction

® GE Vingmed Ultrasound

INTRODUCTION

GE Vingmed Ultrasound

GE Vingmed Ultrasound is ISO 9001 (1994) and EN 46001 certified. Copies of the certificates are available on request.

System FiVe

System FiVe is an Ultrasound Diagnostic System for applications such as Adult, Pediatric and Neonatal Cardiac, Peripheral Vascular, Abdominal and Ob-Gyn. (See: Indications for use, page 207.)

Probes

The System FiVe allows the use of various probes. Refer to a Probe / Application overview list on page 208.

User Interface

The System FiVe has an intuitive yet flexible user interface philosophy. All the tools are readily available when needed.

Operating Modes

The system controls operate the following modes: Color Flow, 2-D Image, Color M-Mode, M-Mode, HPRF Doppler, LPRF Doppler and CW Doppler, or a combination of these, positioned on the operating panel.

GE Vingmed Ultrasound
Introduction

System FiVe's User Manual

Using this manual:

 The TOC of this manual contains, in the order from front to rear, the heading on each page of the manual from Chapter A and backwards.

- The manual has continuous numbering from Chapter A and backwards.
- The manual has an index at the very rear which contains minimum 1, maximum 3 entries from each page of this manual.

IMPORTANT.

This manual is periodically revised. Changes, typographic errors and technical inaccuracies, which may be included, will be corrected in future revisions.

FEEDBACK.

Any views and comments concerning the product (including its manuals) should be forwarded to the local GE Vingmed Ultrasound product representative or GE Vingmed Ultrasound Head office in Horten, Norway. The official address, is found on <u>page 3</u> of this chapter.

Table of Contents

Chapter A

System Preparations	
Turn ON the systemConnect Power cable and locate Power switches.2The Power-Up process.3	•
System Probes.4Probe connections.4Change APAT Probes at Cable end.5System-Connect Probe cabling.6Active Probe and Application Selection.7	; ;
Patient I/O & traces setup Connect ECG harness 8 Screen changes after ECG connection 9 ECG trace control 1 ECG GAIN Adjustment 1 Set ECG trigger one 1 Set ECG trigger two 1 Timer Delay 1 Timer Trigging 1 Connect other trace sources 1 Trace area size 1	01234567
Footswitch.1Mount the System Footswitch.1Finding the Footswitch Mapping option.1Footswitch Mapping.2	8 9
Wheel locking Lock, Unlock scanner wheels 2	
External I/O Panel.2System I/O panel location.2Socket identifications.2	2
Control Panel Equipment2Headphone connection and volume adjustment2Lamp Connection2HINT2	24 25
Screen Configuration .2 Start screen configuration .2 Configure Scanner Screen and VCR recording .2	26
Setup 2 Start System Setup 2 Get a Setup Menu overview 2 User Interface 3 Do Date & Time and Location setup 3 Do EchoPAC/Clipboard setup 3 VCR Configuration 3 Configuration and Test 3 Diagnostic Tests, Software versions, GE Service 3 ECG Triggering 3	8 9 10 1 2 13 14 15
Internal Patient Archive*3Open the internal Patient Archive3Do Patient information storage3New Exam3Find patient3	7 8 9

Complete an Exam entry		
Do Ultrasound Image storage		
Cineloop Analysis		
Add, Find, Edit, Delete Personnel		
Patients list handling		
•		
Image Recall		
Recall the clipboard image	 	 . 46
System Quick Reference	 	 . 47
System connections		
System communication		
Screen areas		
Scan mode selection	 	 . 50
Basic mode adjustments		
Assigned Keys and Rotaries		
System screen tools		
Post-processing functions	 	 . 54
Chanter B		
Chapter B		
Scanning		E E
Scanning	 	 . ၁၁
2D Mode	 	 . 56
Start 2D scanning	 	 . 56
Ultrasound picture Controls	 	 . 57
Control Panel Re-programmable Rotaries & keys	 	 . 58
Screen commands, Cardiac, Live & Full freeze		
Screen commands, Cardiac, live only		
Sector Tilt		
Octave Tissue Imaging		
How does Octave Imaging improve image quality?		
Depth Control	 	 . 64
Adjust Region of Interest DEPTH	 	 . 64
GAIN	 	 . 65
Gain Location	 	 . 65
Adjust Gains	 	 . 66
Acquisition mode handling		67
Add modes		
Use the Active Mode key to change Parameters		
Memory Replay		60
Replay memory handling		
Annotations		
Start Annotation		
Add a menu Arrow		
Change a text entry		
Configuration		
Setup		
·		
Body Marks Start the Body mark function		
Select a body mark		
Move the Body mark and Probe Indicator		
Turn or Rotate Probe Indicator		
Compound		
Start Compound		
Color Flow Mapping		
Start Color Flow in 2D mode	 	 . 81

Programmable Keys and Rotaries	2
Color map selection	
Invert color map	
Region of interest handling	
Tissue priority8	
Baseline	
Variance	
How Color Flow Mapping works	
Color Map construction	
Assigning Colors and unwrapping the Color Wheel	
Disturbed Flow Indicator	
Angio	5
Start Angio	
Power amplitude Doppler, Angio	
Traditional M-Mode9	7
Start M-Mode, duplex view9	
Elements in duplex M-Mode display	
Image size	9
Anatomic M-Mode10	00
Prepare for Anatomic M-Mode	
Maneuvering the cursor line	
Anatomic M-Mode viewing	
Color M-Mode	
Assignables, screen functions, live	
Assignables, screen functions, FULL FREEZE	
Side by side viewing	07
Choose side by side view	
Doppler	08
Start PW Doppler Mode	
Start Duplex CW Doppler	
Carotid Angle Correction	
Peak Velocity Correction	
Sample Volume size change	
Doppler Control descriptions	
Assignables, screen commands, FULL FREEZE	
Tape Recording	16
Control Panel VCR controls	
Chapter C	
	.
Annlications	17
Applications1	
Applications 12 User Defaults storage 12	18
User Defaults storage	18
User Defaults storage	18
User Defaults storage	18 19 20
User Defaults storage 1 User Defaults selection 1 Save and Recall your user default 1 System Five, SuperVision 1 Handle EchoPAC on System Five 1	18 19 20 20
User Defaults storage1User Defaults selection1Save and Recall your user default1System Five, SuperVision1Handle EchoPAC on System FiVe1Patient ID entry selection1	18 19 20 20 21
User Defaults storage1User Defaults selection1Save and Recall your user default1System Five, SuperVision1Handle EchoPAC on System FiVe1Patient ID entry selection1Patient ID input1	18 19 20 20 21 22
User Defaults storage1User Defaults selection1Save and Recall your user default1System Five, SuperVision1Handle EchoPAC on System FiVe1Patient ID entry selection1	18 19 20 21 22 23 24

Biopsy Option	
Bracket and Needle guide mounting (10MHz FLA-Feb.99)	
Bracket and Needle Guide mounting (3.5MHz CLA)	
Start the Biopsy Option	
Determine Biopsy needle length	
Chapter D	
Using M&A	131
M&A examples	132
M-Mode M&A	
Draw the first distance measurement	
Store measurement number one	
Repeat a measurement	
Store the repeated measurement	136
Measure 2D Area in duplex M-Mode	137
Complete and store 2D area measurements	
Cardiac M&A Configuration	
Mode shifting during M&A	
Report	141
VCR M&A	142
About VCR M&A	142
2D VCR Calibrate	143
Enter the 2D calibration data	
Ready for 2D M&A	
2D/M-Mode calibration	
Calibrate the 2D area	
Mark the M-Mode area	
Calibrate the M-Mode area Time scale	
Calibrate the M-Mode area depth scale	
M&A Package for application change	
Cardiac Acquisition Formulas	
Cardiac Acquisition Parameters	
PV M&A:	
Start Ellipse measuring	
Make the ellipse	162
Volume M&A, Tissue, Bladder and Thyroid	163
Start Volume M&A	
Save Volume M&A Results	
Volume Formulas:	164
Hip Angle M&A	165
Start Hip Angle M&A	
Complete Measurements and Save results	
OBGYN M&A Setup	167
Select the Measurement type	
Do the Measurement	
OBGYN M&A Calculation Formulas	
Gestational Age (week+days) using Femur Length	
Gestational Age (week+days) using Crown Rump Length	
Gestational Age (week+days) using Head Circumference	
Gestational Age (week+days) using Abdominal Circumference	
Gestational Age (week+days) using Humerus Length	
Gestational Age (week+days) using Ulna Length	

Measurements & Ratios	179
Cardiovascular Acquisition Formulas	180
Chapter E	
Installation & Maintenance	183
System FiVe Installation	
Preventive User Maintenance	
Chapter F	
Warnings	187
Electrical Power Safety	
Electrical Shock Hazards	
Explosion Hazards	
Mechanical Safety	
AIUM Statement on Mammalian in Vivo Ultrasonic Biological Effects	
GE Vingmed Ultrasound Safety statement	
The GE Vingmed Ultrasound Patent Rights	
List of GE Vingmed Ultrasound's Patents	
Warnings and Caution labels	
External I/O Warning label	
Probe Warning	
ECG Warning	
FDA's Prescription Device Label	
Printers, B/W and Color	
Video Cassette Recorders	198
Chapter G	
Specifications	199
Regulatory Information	200
Standards used	200
	200
System Five	201
System Architecture	201
Data Acquisition	
Data Processing	
Display Annotations	
Tissue Imaging	
M-mode	
Color Doppler Imaging	
Color Angio (Color Intensity Imaging)	203
Color M-mode	
Spectral Doppler	
CW Doppler	
Physiological Traces	
Analysis Program Image Memory	

Advanced Options	204
Indications for use	207
Contraindication: Probe / Application / System overview(Max.Configuration) Options Guidelines for Fetal use Physical Dimensions Electrical Specifications REM Radiated audio noise level:	207208217218219219
Environmental conditions	
Measurement Accuracy General	221 221 222
Chapter H	
Symbols	227
System Symbols	228
Shipment Symbols	230
Keyboard Symbols	232
Chapter L	
Index	239
ADDENDUM	

INTRODUCTION

® GE Vingmed Ultrasound

System Preparations

This chapter tells you about, and how to:

10000	• Turn ON the system	2
Λ	Connect Power cable and locate Power switches	
Λ	• System Probes	4
<u> </u>	Patient I/O & traces setup. Connect ECG harness. Connect other trace sources	8
$\overline{1}$	• Wheel locking	
	• External I/O Panel	
	Control Panel Equipment	24
	• Screen Configuration	26
	 Setup Start System Setup Do EchoPAC/Clipboard setup Configuration and Test Diagnostic Tests, Software versions, GE Service 	28 32 34
	Internal Patient Archive* Do Patient information storage Complete an Exam entry Do Ultrasound Image storage	38 40
	• Image Recall	46
	System Quick Reference	47

Turn ON the system

Connect Power cable and locate Power switches

Turn On the system

The Power-Up process

The actions on the previous page start the power-up process, including self-tests. During this, the start-screen picture appears on the monitor.

IMPORTANT

Color unstableness on the monitor picture at power up may last as long as 10 minutes. Do not try to correct this or do any other monitor adjustments during this period.

When done, the screen picture changes, the default probe, if connected, calibrates and the machine opens in the 2D scan mode.

HINT

All connected GE Vingmed Ultrasound probes have unique identities that the system reads at boot-up. The system chooses the one with the lowest number as default probe.

For scanning information, go to Chapter B.

To change settings, enter ID etc., go to Chapter B.

The ultrasound area has a depth scale, a 2D sector, a tilt indicator, a greyscale bar, a time/motion line with 1second apart markers.

At the top left hand side of the screen, the Location name is found and below it, the Patient ID window. Find the Clipboard area for image captures to the right of patient I/O input. Down the left edge you see scan parameters. Down the right edge, we have the scanner info window and the paddle menu controls.

Probe connections

Before the scanner can be used, it is necessary to mount the Probes that are to be used. Let connected but unused Probes rest in the Probe holders at each side of the system.

Organize all probe cabling so that it runs via the hooks under the control panel and avoids getting run over when the System is moved.

Connect either 1 or 2 APAT Probes, or 1 or 2 MPTE Probes and one Doppler Probe on this connector panel.

HINT

Available Probes are listed on **page 208**.

Malfunctioning or nonworking probes that show any signs of mishandled use will not be replaced by GE Vingmed Ultrasound A/S.

System Probes

Change APAT Probes at Cable end

Study the connector section of the Probe and Probe cable, and notice how they can fit together.

To connect an APAT Probe to its cable, align the connector and receptacle and connect the cable.

After connections, the system senses the Probe's presence, notes its imaging frequency and calibrates it.

The activated Probe frequency is on the screen.

To disconnect the APAT Probe from the cable, hold the probe, take a grip of the cable release collar and gently free it from the Probe housing.

HINT!

Find the Probe's part number and frequency on the colored Probe collar and the serial number on the grey housing near the ring.

CAUTION

Use ultrasound gel during all NON-INVASIVE investigations to get the best image views at the lowest possible Acoustic power output. For Invasive probes consult each invasive probes manual.

System Probes

System-Connect Probe cabling

To connect APAT or MPTE Probes, align the connector with the socket and insert it.

To disconnect one of these, press this part of the connector gently downwards and extract the connector from the socket.

HINT1

You may change APAT Probe types at the Probe end of the cable, without removing the socket end. See previous page.

To connect a Phased Array Probe, align the connector with the socket, insert the connector into the socket so that the connector center pin centers on the socket center. To fasten the connector, rotate the lock handle 90° clockwise.

Disconnect a probe connector in the reverse order.

HINT2

After Probe changing at these locations, always select the (new) activated Probe on the PROBE MENU. See next page.

System Probes

Active Probe and Application Selection

Press this key to display the Probe menu which contains an overview of the connected Probes.

This **Probe menu** appears on the screen. Its setup contents are Probe type dependent.

Probe Menu CLA 3.5 MHz FPA 2.5 MHz Cancel

With the trackball, move activity onto the menu and onto the desired Probe. Beside the **Probe menu**, an **Application menu** appears shortly after.

To select a Probe and Application, highlight it and press the Select key.

Exit from **Probe** and **Application Menus** with **Cancel**.

Connect ECG harness

Screen changes after ECG connection

In **2D** tissue mode, with no **ECG** trace, the screen may look like this.

WARNING!

To obtain the correct isolation on the patient I/O only one connection (i.e.ECG, Phono, Pulse pressure or Respiration) must be used on the Scanner at a time. This means that in normal use the Scanner will have three open connectors. The System User must ensure that the patient cannot touch the open connectors.

In Cardiac **2D** Acquisition, when **ECG** wiring is strapped to a patient and connected to the system, a trace from it appears as shown here.

Hint

In Peripheral Vascular acquisition, the display of traces is off but may be reconfigured to be on.

ECG trace control

ECG GAIN Adjustment

Set ECG trigger one

In ECG Triggered acquisition, live scan data is synchronized with the heart cycle trace from the continually oncoming ECG data from the patient.

The systems dual ECG triggers allow you to pinpoint events for Specific image display, each time you reach the pinpointed section of the loop.

Through this you can relate seen heart abnormality occurrences to positions in time, along the heart cycle.

Set ECG trigger two

To set a second trigger to capture for display another occurrence, rotate this rotary clockwise. Notice the change in the below menu position ECG Trig2. See also the ECG trig2 marker and the image occurrence it represents.

Your acquisition is now **ECG** controlled. The first trigger updates your displayed image 13 milliseconds after each R wave. The second trigger updates your image 33 milliseconds after each R wave.

Timer Delay

Timer Trigging

Connect other trace sources

Besides the ECG source, connect a Heart microphone source, a Breath indicator source and one Pressure/Pulse device source at the other sockets.

Heart microphones, Breath indicators and Pressure/Pulse devices are available options from the manufacturer.

TEXT PHYS. PLAYS. CONFIG. THACK PLAYS. CONFIG. THACK PLAYS. SETUR. CONFIG. THACK PLAYS. SETUR. CONFIG. CONFIG.

Press this key to select a trace from a connected source for display on the image.

Timer Delay

Traces

Sweep

A Trace menu appears somewhere on the screen. Here, it appears in the Paddle (see below) controlled area.

Moves select-window Up and Down the Menu.

Switches traces On-Off, sets gain levels and positions traces on screen.

Trace area size

Footswitch

Mount the System Footswitch

The system contains an internally connected Footswitch located in this slot.

WARNING

The standard footswitch is not submersible. Do not use the standard footswitch in operating rooms or other locations where fluids might be present on the floor. If you need a submersible footswitch in your environment, contact your local GEVU distributor.

To prepare it for use, pull it out of this opening and place it on the floor where you need it.

Footswitch

Finding the Footswitch Mapping option

Footswitch

Footswitch Mapping

Place the cursor onto
Footswitch Mapping
and press the Select area. To the right of the
Setup menu the Footswitch Mapping menu
appears.

Using the Trackball, place the cursor within each switch menu and click select your switch setup shown above and described below.

To **FULL FREEZE** the scan function, press and release the center foot control. Press and release it once more to continue scanning.

To **REC/PAUSE** tape recording, press and release this foot switch. Press and release it again to continue tape recording.

Press and release the right hand foot control to **IMAGE STORE** from the Acquisition to the system Clipboard.

Wheel locking

Lock, Unlock scanner wheels

External I/O Panel

System I/O panel location

WARNING

The External input and output sockets are not electrically isolated from the rest of the circuitry within System FiVe. Any instruments which are connected to System FiVe via these inputs or outputs must conform to standard hospital electrical safety and leakage requirements. It is the responsibility of the user to ensure that this important safety requirement is met in all cases. When connecting the System FiVe to a non-isolated device, a Hospital grade isolation transformer should be used to supply the mains power.

External I/O Panel

Socket identifications

GR(aphic) RS232 and CPU RS232 sockets.

ETHERNET** socket. Used for communication with EchoPAC stand-alone.

SVHS OUT and **SVHS IN** sockets for Super VHS VCR connection.

COMP OUT and **COMP IN** connectors. **COMP OUT** is used by EchoPAC. **COMP IN** can be used by a great variety of sources, such as display of an X-Ray picture etc.

**IMPORTANT

Connect the Ethernet interface cable (FA200460) between the External I/O socket and the Ethernet adapter and slide latch these together. Arrange cabling to avoid any possible damages. When a patient is connected to the System, always use the Ethernet Isolation Box (P/N:EP200032, as shown to the right) to obtain correct isolation.

Control Panel Equipment

Headphone connection and volume adjustment

Control Panel Equipment

Lamp Connection

The lamp is governed by a light sensor on the control panel. When it gets darker the lamp is lit. If an increase of emitted light from other sources prevail the lamp is switched off.

Screen Configuration

Start screen configuration

Screen Configurations

Configure Scanner Screen and VCR recording

Start System Setup

Get a Setup Menu overview

Here, you have an overview of the options on the Setup menu. Change the setup whenever you change probes or application.

Done exits you from the setup menu. Changes are automatically saved on exit by **Done**.

Setup Menu
User Interface
Triggering
Configuration & Test
Annotation
VCR Configuration
EchoPAC/Cliphoard
Date and Time
Location
Footswitch Mapping
Dage

Setup Menu
User Interface
Triggering
Configuration & Test
Annotation
VCR Configuration
EchoPAC/Clipboard
Date and Time
Location
Footswitch Mapping
Dage

Most of these options have their own separate descriptions on the following pages.

Footswitch mapping is described in the Footswitch mounting description found **on page 20.**

User Interface

Do your User Interface timer intertace setups on this configuration screen. It allows you ... Good Authorisans systeming material. 180 to configure Freeze and But autofreezo sessy for current app. (4) ... Use abover out montes Autofreeze functionality. Freste 20 when Diquier is entered of the matter When he had friend Config Heart-Buly when treeze echerest - Devalded - Show book - Live

Do Date & Time and Location setup

On the **Date and Time**Setup dialog set the
Date and time of day in
a format that is selectable on the Location dialog, described below.

To set date, make **New Date** area active, erase contents within, enter new date in same format as removed contents and click-select **Set date** to start it at **Current Date**.

To set time, make **New Time** area active, erase contents within, enter new date in same format as removed contents and click-select **Set time** to start it at **Current Time**.

To enter **Hospital** and **Department** names, make each area active, erase any wrong contents, type the correct names at each.

To choose a Language or Date and Time Format for system display, place the cursor within each area and click-select the correct language and Date and Time format.

On the Location Setup dialog, enter the Hospital name. Enter the Hospital Department name where the system is to be used. Choose the native Language of the country that the hospital is located in and choose a Date and time format.

Do EchoPAC/Clipboard setup

VCR Configuration

Configuration and Test

This function gives access to Password input for GE service and System Options, tests, and Software and Hardware overviews.

The System options and password input example is displayed when you select Options. Yellow text reflects the installed, Black text displays the available.

This is the Hardware Module overview. Actives you module names, part numbers and their revisions levels, Master Control Document revision, Factory Order number and production series number.

Diagnostic Tests, Software versions, GE Service

ECG Triggering

Triggering is a special function for the Contrast Option in ECG triggered acquisition.

It allows you to set two individual ECG trigger intervals. Configure one of the pedals on the Footswitch to quickly toggle between the intervals.

In our example let's enter 3 in the first input box and 5 in the next which means that we want the system to trigger at the third or fifth heartcycle.

To make the left pedal toggle between the two, switch ON the ECG trig Interval sw.

The left switch pedal will now trigger at the third heartcycle one time you press it and on the fifth the next time in accordance with our example.

Open the internal Patient Archive

*The Internal Patient archive is only available on Systems without an integrated EchoPAC.

To start the internal patient archive for patient ID entries, press this key.

Internally, the system is designed to handle maximum 100 patients at a time. Within this limit, you can store externally, delete and add patients as often as you wish. Internally Stored, Cine loops have typical data sizes ranging from 1MB to 5MB, because of probe and application choices for each. The patient archive, or individual patients, can be transferred to an externally connected GE Vingmed Ultrasound EchoPAC Stand alone solution, along with measurements, cine loops etc. EchoPAC converts the incoming System FiVe data to its own format which allows you to use it at a later stage.

Hint

You may scan a patient without entering Patient ID. To store this however, in a retrievable manner, you should always do ID entries prior to storage. Scanning is described in **Chapter B**. Id entry and storage descriptions continue here.

Do Patient information storage

The area for Patient ID entries where Minimum accepted input is the Last Name.

Into most 100

Hints: Maximum number of characters in text entries: Last name: 30 First name: 30

Birthdate: 10 Patient ID: 30 Street: 20 Phone:20 City:20

Resp Phys:16

Rep Phys:16

State: 20 Weight:15 height:15 Zip:20

The area for examination background entries.

Hints: Max.Characters & entries: 4 Pop-up menus: 8 user entries each.

Diag codes:16 Echolab:20 Operator:16 Tape:20

ExamID:20 Counter:20

This is the Examinations overview area. Its displayed contents, also dependent on the input from the above areas.

Area for free text input as Referral reasons, Diagnosis and Comments.

INFO

All text input from keyboard. Delete text input with Backspace key.

Screen function keys described separately on following pages.

New Exam

Find patient

Complete an Exam entry

Do Ultrasound Image storage

Cineloop Analysis

Add, Find, Edit, Delete Personnel...

Patients list handling

To display the Archive Patients list click-Select this key.

Use this function to handle patient file storage limits within the system (Thirty Patients). With it you can select the current, any individual or all files, transfer the current file, any file or all files to EchoPAC. After the transfer to EchoPAC, you can Delete current, any individual or all patient files, plus their images etc., from the internal storage area.

The thirty patient files, are stored here when the scanner is not in any way connected to EchoPAC.

Hint

The system can be configured so that all patient files established on the system go directly to EchoPAC storage and never land here.

To **Select all** in archive list, press this key.

Press this key to **Delete** a **selection**. It deletes your patient selection and its images etc.

To Transfer all selected, or just a selected patient, to an on-line EchoPAC, press this key. Images etc., are in the transfer.

Press this key to
Save the current
patient to the intern Disk

Exit from this with **done**.

Press this key to Save the current patient to the on-line EchoPAC solution. Images etc. are in the transfer.

Diagnosis entry

Image Recall

Recall the clipboard image

System connections

Note

Study mobility warnings on pageF-193 before you start using the systems mobility.

Warning:

Even though they may look and feel alright afterwards, never continue using any Vingmed Probes that have been dropped onto or bashed against hard surfaces. Such probes must be disconnected and tested by qualified personnel.

Number label	Title	Contents
1	Headphone	- Headphone connector with vol- ume control
2	Illum.	- One lamp connector with Intensity adjustment
3	External I/O panel, (Left side, rear) See warning text on pageF-193	 Two RS232 interface sockets One ECG TRIG socket One Ethernet interface socket One SVHS OUT socket One SVHS IN socket One Composite Video output socket One Composite video input socket One B/W Video output socket Four Analog input sockets Output sockets for color printers
4	Patient I/O panel	One pressure sockets(option)One Respiration socket(option)One Phono socket(option)One ECG socket
5	Rear wall	One mains cableOne Power ON/OFF switchProtective earth
6	Upper Front End panel	Two Annular Phased Array probe socketsOne Doppler probe socketOne system Standby-ON switch
7	Lower Front End panel	 Sockets for three Phased Array probes A parking socket for an unused Phased Array probe P.S.A Phased Array probes must be connected at position 1 before Power Up.

System communication

Number label	Unit	Communication type
1	Screen	- Visual
2	Video Cassette Recorder	- Taped
3	Loudspeakers	- Sound
4	Control Panel	- Key
5	Printer	- Paper
6	Footswitch	- Pedal switches
7	Printer	- Paper

Screen areas

Number label	Title	Contents
1	Information display area	- Patient ID - Clipboard - Current clinical application icon - Date and Time - Operator ID - Replay indicator - Thermal index - VCR Status - Active mode - Paddle report window - System messages - Warnings - User adjustable parameters - Performed measurements - Measurements list
2	Ultrasound display area	

Scan mode selection

Number label	Title	Activity
1	ADD MODECURSOR/	 Adds a non-displayed mode to a Simplex mode or Duplex mode situation in combination with the specific mode key Adds a screen cursor to desktop activities and displayed communication windows
2	DOPPL.	- Starts the default Doppler Mode
3	M-MODE	- Starts the M-Mode
4	CW PW	- Starts the CW and PW Doppler Modes
5	2D FREEZE	- Halts activity in 2D mode
6	CFM	- Adds Color Flow to 2D Mode and M-Mode
7	ACTIVE MODE	- Switches active mode in Duplex and Triplex mode situations.
8	2D	- Starts the 2D mode

Basic mode adjustments

Number label	Title	Activity
1	TGC slides	- Adjust the amount of echo brightness at specific depths in the 2D sector
2	GAIN, 2D	- Adjusts the overall amount of echo brightness within the 2D sector
3	GAIN, ACTIVE MODE	- Increases or decreases echo brightness within the active mode window
4	Assigned keys and rotaries	- See next page.
5	ZOOM, Step variable.	- Enables step variable zoom.
6	Continuously variable ZOOM	- Enables continuously variable zoom.
7	Depth, 2D sector	 In 2D, 2D/color, M-Mode and Color M-Mode it adjusts the depth of the data sampling area which is displayed. In PW Doppler it adjusts the depth of the measuring point.

Assigned Keys and Rotaries

Number label	Title	Contents
1	Upper assign panel	A continually mode updated rotary function label windowA row of mode assigned rotaries
2	Lower assign panel	A continually mode updated key function label window Mode assigned keys

System screen tools

Number label	Title	Activity
1	SPLIT SCREEN	- Divides the acquisition area into two halves, horizontally or vertically.
2	SELECT SCREEN	- selects active screen
3	Select key	- confirms selections
4	Trackball	- steers the Pointing device
5	Vertical paddle switch	- moves activity between menu fields vertically.
6	Horizontal Paddle switch	- moves activity between menu fields horizontally.

Post-processing functions

Number label	Title	Activity
1	TEXT	- starts the text annotations function.
2	ARROW	- allows arrow annotation with trackball and select key.
3	LINE ERASE	- removes a selected text line.
4	BODY MARK	- starts body marking function.
5	PAGE ERASE	- erases all annotation arrows on active screen.
6	REPORT	- starts the report generator function.
7	IMAGE RECALL	- recalls stored image from clipboard.
8	VIDEO PREVIEW	- displays video preview before VCR storage.
9	REC/PAUSE	- remote VCR control.
10	PRINT (ALT.)	- prints on alternative printer.
11	PRINT	- prints on default printer.
12	MEAS.	- starts M&A.
13	IMAGE SIZE	-changes size of displayed image .
14	FULL FREEZE	- halts active scanning
15	IMAGE STORE	- saves single images or cineloops to clipboard.
16	CALIPERS	- starts calipers M&A

Chapter B

Scanning

This section tells you about:

• 2D Mode	56
Depth Control	64
• GAIN	65
Acquisition mode handling	67
Memory Replay	69
• Annotations	70
Body Marks	76
Color Flow Mapping	81
Traditional M-Mode	97
Anatomic M-Mode	100
• Color M-Mode	104
• Side by side viewing	107
• Doppler	108
Tape Recording	116

2D Mode

Start 2D scanning

At every boot-up, the System Five starts in the previous shut-down mode.Here, It is 2D-Mode.

About 2D Mode -1

2d mode gives a 2-Dimensional ultrasoundgenerated view of the heart where you perfect its presentation with mode - available tools.

Place the probe onto the patient, start scanning and image adjustment.

About 2D mode - 2

The gotten views allow you to study tissue behavior and valve functioning primarily.

In this case the patient is also connected with ECG cabling where trace handling etc., is described in chapter A, under section for Patient I/O & traces setup.

2D Mode

Ultrasound picture Controls

In 2d cardiac you may have screen controls situated shown on this page. Which controls are present and settings et cetera are definitively probe and application selection dependable.

The upper set of keyboard controls (4 ON/ OFF switches and 4 Rotaries) are here available in live scanning. The Lower set (2 ON/OFF switches) is available at FULL FREEZE.

To the left here we have two screen paddle menu sets of 2D cardiac picture controls. The farthest away one is at FULL FREEZE and the nearest in live mode. None of these control positions are permanent.

2D Mode

Control Panel Re-programmable Rotaries & keys

Angle

Controls the scan sector angle.

Frequency

Frequency is the transmitted frequency that your acquisition scan has. Frequency variations, depends on probe and application selections.

- -Increase the frequency value to improve resolution.
- -Reduce thefrequency value to improve penetration.

There is often a tradeoff situation between the two.

Frequency adjustment in 2D imaging changes the display framerate and moves the focal marker to a new position on the screen depth scale.

Cineloop (FULL FREEZE only) is a group of functions that you to create and run a mini movie from the stack of scan data found in the systems replay memory.

Up/Down

Theseflip the ultrasound image upside down or downside up.

Left/Right

These flip the ultrasound Image right or left

Focus

Focus positions the transmit focus point(s) within the transmitted sector depth, indicated by a focal marker on the screen depth scale. Available focal regions overlap, and make it possible to focus on any part of the image.

If you use ZOOM in live 2D, the focal point(s) move to within the zoomed part of the image. If you exit from zooming, without touching the focal control, the focus returns to the position it had before you activated ZOOM.

Framerate

Framerate controls the resolution in image movement and detail.

Increase the framerate to get frames with less focal points and made up of wider beams, which in turn gives images with poor detail resolution but high temporal resolution.

A framerate reduction does the exact opposite.

The control is not available for APAT (annular array) probes.

B-Mode maps (Live and FREEZE)

This function Displays a menu of alternative color maps for displayed tissue, selectable from the trackball and Select key area.

The Cineloop Re-programmables

2D Mode

Screen commands, Cardiac, Live & Full freeze

DDP (Data Dependent Processing)

In cases where normal scan adjustments are not enough, cases where random artifacts, appear as bright speckles, in your image, try DDP. Increase DDP to remove the speckle without effecting moving structures such as valve flaps etc.

Compress

Compress adjusts the greyscale range of your image. No Compress hardens your image, giving it a black and white appearance. Increased Compress tends to make your image grayish, and in turn softer.

Reject

Reject removes low amplitude unwanted noise echoes in your image. Increased Reject darkens your image and removes more and more of the low amplitude echoes. Avoid removing relevant low amplitude echoes. After Compress & Reject, readjust Gain, if necessary.

2D Mode

Screen commands, Cardiac, live only

Dynamic range

This function gives shades of gray to the various intensities of the incoming image data. It differs from Compress, Reject, postprocessing or screen adjustment controls because it actually preprocesses the grayscale range of the incoming data. Dynamic Range is a live mode function which is unavailable in Full Freeze mode.

Contour

Contour adjusts the **edges** enhancement in an image. Adjustments towards minimum give minimum enhancement.

Diff OFF/ON

This affects reverberations in the image. If turned on the frame rate (or focal zones) will decrease, while the reverberations attenuate

Power

Power adjusts penetration effectiveness. It does not increase the background noise that makes unwanted artifacts in doing so. Power increase improves penetration.

2D Mode

Sector Tilt

Tilt is active, whenever there is a 2D image present on the screen, without a Time motion cursor. When the cursor is displayed, tilt adjustment is disabled.

The Yellow marker that is visible at the top of the sector, marks the probe diode light's position.

On this System a less than 90°sector is tiltable in any direction, left and right, within the probes 90° scan range, by merely stepping the paddle.

2D-Mode

Octave Tissue Imaging

Standard B-mode (2D) imaging transmits and receives ultrasound at roughly the same frequency. At higher power levels, return echoes from tissue are generated not only at the original frequency but also at twice the frequency transmitted. This frequency, known as the second harmonic, is one octave higher than the original frequency. These echoes are mixed with normal echoes when they return to the transducere but are much weaker. Within the System Five the second harmonic, from the received spectrum is separated, amplified and processed for display.

GE Vingmed Ultrasound
Chapter B -Scanning

2D-Mode

How does Octave Imaging improve image quality?

When Octave Imaging is active, the transmitted frequency is lowered, fully utilizing the high bandwidth of the transducer. At lower frequency the ultrasound beam becomes less sensitive to the non-linear characteristics of tissue; it also penetrates further into the tissue before losing signal strength. Thus with lower transmit frequency more signal energy reaches the region of interest.

The harmonic ultrasound signal is then reflected from the organ and back to the transducer, just like the original(fundamental frequency) ultrasound signal. Very little harmonic signal is generated from "noise echoes" often seen in the blood pools and as general noise; therefore the returned signal provides better contrast separation betweentissue and blood pools. Since the frequency is doubled,Octave Tissue Imaging also provides twice the lateral resolution due to the increased effective aperture.

Depth Control

Adjust Region of Interest DEPTH

GAIN

Gain Location

Gain

Adjust Gains

TGC has eight slide-potentiometers. Each of these allow you to separately adjust the amplification of displayed data at eight specific depths on the displayed 2D sector. The mid-positioning of all, shown here should give correct TGC for the normal patient.

Active Mode Gain adjusts, as it states, Gain in the mode that is active. In 2D mode it does the same as the 2D gain rotary. In color flow it adjusts the color flow etc.

2D Gain adjust the amplification of tissue in tissue in the displayed 2D sector.

GE Vingmed Ultrasound
Chapter B -Scanning

Acquisition mode handling

Add modes

Chapter B -Scanning

© GE Vingmed Ultrasound

Acquisition mode handling

Use the Active Mode key to change Parameters

Memory Replay

Replay memory handling

Annotations

Start Annotation

Hint

When you select the TEXT key, you can start typing a text on the keyboard that will appear on the sector without having done anything on the Annotations menu to begin with.

Annotations

Add a menu Arrow

To add a menu arrow select this menu position.

A quite different arrow pointer key is also available on the control panel. When selected its key lights up and the arrow pointer pops onto the screen. It is also maneuvered, positioned as if fastened to the trackball and select key.

Using this knowledge, maneuver the shaft and arrowhead so that it points at its target and press select to anchor it completely.

An arrowhead appears on the screen. Using the trackball, maneuver it onto the location you want to anchor its shaft at and press the select key.

Move the trackball again and now the arrow shaft stretches, or crimps or the whole arrow and shaft rotate around the anchor.

Annotations

Enter an menu text abbreviation

Highlight and choose **AO** with the Select key, and your input appears with a text input cursor behind it. If necessary, you can edit or add text from system keyboard.

Maneuver the input to its planned position with the trackball.

To anchor it at this location, press the select key. Use Line Erase to delete the selected input.

Use Edit to change a text input or to move it to another location.

Annotations

Change a text entry

To Change a text entry, choose **Edit** on the menu, place the Cross cursor that appears on the screen, onto **AO**, and press Select. A short and vertical line cursor, replaces the cross, and places itself behind the **AO** text. Press the Backspace key once, and **O** disappears.

You can also use the LINE ERASE, and the PAGE ERASE keys to erase single entries, one by one, or all entries in one selection.

Annotations

Configuration

Annotations

Setup

Body Marks

Start the Body mark function

Body Mark

Select a body mark

Body Mark

Move the Body mark and Probe Indicator

To move the Body mark around your ultrasound situation, press the **Del** key and the Body Mark is now locked to all trackball movement.

The **Del** key input exits you from **Probe Indicator** movement to **Body mark** movement.

Use the **Trackball**, move the **Body Mark** to a desired position on the ultrasound sector and press **Select** to lock it there.

The **Select** input also exits you from **Body mark** movement to **Probe Indicator** movement.

To move the **Probe indicator** on the **Body mark**, roll the **Trackball** in the desired direction. When satisfactory, press **Select** to lock it at the position.

The **Select** key input also exits you to the next activity which is **Turn** or **Rotate** the **Probe indicator** at the locked position. For more on this see the next page.

A **Del** key input returns you to Move **Body mark** mode, if you need to adiust it.

Body Mark

Turn or Rotate Probe Indicator

The Indicator's short and right-angled line is the probe head. The rest of it is the probe body. Trackball rotation rotates the body around the locked in place head.

Roll the **Trackball** to the left or right and the **Probe Indicator** turns or rotates leftward or rightward.

At the new angle, press the Select key once to lock it at this position.

Select also exits you to the next activity.

A **Del** input returns you to the previous situation where you can move the **Probe Indicator** on the **Body mark**.

Compound

Start Compound

Color Flow Mapping

Start Color Flow in 2D mode

To start Color Flow in 2D mode, press this key directly or go via the Add Mode/Cursor key. Two clearly seen lines appear on the 2D sector that mark the color limits.

As you scan in live mode you will see color flow appear within this sector. You may need to adjust the Active Mode gain rotary.

Note that the term Color Flow is a generic term which includes the three Color Flow modes that are available in the system:

- * Conventional Color Flow Mapping
- * Power Amplitude Doppler (Ref: page 96.)
- * Tissue Velocity Imaging (optional). See separate Manual.

Conventional Color Flow Mapping provides information (bandwidth and direction) about the velocity, bandwidth and direction of blood flowing in the Region of Interest box. Blood flowing towards the transducer is mapped in red, while blood flowing away from the transducer is mapped in blue. Blood flow that contains a variety of velocities which often appear where there is turbulence or a jet mapped in green. Tissue Velocity Imaging maps velocities from tissue motion to colors in accordance with a color map.

Chapter B -Scanning

© GE Vingmed Ultrasound

Color Flow Mapping

Move the color sector within the 2D sector

Color Flow Mapping

Programmable Keys and Rotaries

Chapter B -Scanning

© GE Vingmed Ultrasound

Color Flow Mapping

Color map selection

® GE Vingmed Ultrasound Chapter B -Scanning

Color Flow Mapping

Invert color map

Chapter B -Scanning

© GE Vingmed Ultrasound

Color Flow Mapping

Region of interest handling

GE Vingmed Ultrasound Chapter B -Scanning

Color Flow Mapping

Tissue priority

While you are scanning or in FULL FREEZE Move onto Tissue Priority on the paddle menu and pace it at a minimum value with the right/left paddle. The color on your image has now the priority shown to the right. You may here have tissue detail that is not visible because of flow. Continue with the investigation shown below.

Hint

The paddles govern the right hand menu as described earlier.

Using the same paddle and in live or frozen status and adjust Tissue priority to the approximately same level shown to the left. Color is hardly visible, and tissue has the priority. It is now possible to view structures that were not visible when color had the priority.

Color Flow Mapping

Baseline

In color flow, find Baseline on the re-programmable rotaries shown below and on the paddle menu. It allows you to view suspecting flow velocities shown in examples to the right and below.

Above we adjust
Baseline to a minimum, to study the negative velocities.
Notice the color bar.
To the left we adjust
Baseline towards
maximum to look at positive velocities.
Notice also the color bar change and variance is present in both.

Color Flow Mapping

Variance

At a minimum setting or, when switched off at the re-programmables the Variance function is not present on the color bar or in the displayed flow of the right hand view.

About Variance - 1

Variance selection, is available in both live scanning and full freeze

Variance is a measure of how disturbed, or non-luminary the flow is at the given sample volume. From a technical point of view, it is the bandwidth of the velocity information.

Whereas when you paddle onto or switch On Variance it is present on the image and in the color bar.

About Variance - 2

Use Variance maps when you look at disturbed flows. Such flows include jets of all sorts, regurgitations, leaks, ASDs, VSDs and the like. Intensity is a measure of the amplitude of the echoes coming back from the sample volume. Intensity maps are best suited when you are looking at slower flows, ventricle filling, Carotids etc.

Color Flow Mapping

How Color Flow Mapping works

Understanding the basic processes for Color Flow images is how to get the best color flow images possible from striking the optimal balance between frame rate, mapping angle, quality ("packet size") and Low Velocity Reject.

This section will establish a basic understanding of what color flow mapping is, and briefly describe the complex series of events that must happen to build a color flow map in real time.

In Doppler Spectrum Analysis (pulsed) a large mathematically transformed data set from a given sample volume is to yield the spectrum of velocities present in that sample volume over the time. Because the interrogation of one specific sample volume at a time is typical, there is a continuous stream of data available from that location, and time or frame rate is not a factor.

In Color Flow Mapping, a limited set of data from a given sample volume is collected over an interval of time which is as short as possible. Mathematically manipulated data produce the Color Flow outputs for this sample volume. The outputs obtained are an estimate of the mean velocity, the intensity or power of the signal, and a measure of the statistical variance of the velocities in the sample.

Color Flow Mapping

Color Map construction

A color flow map construction enhanced from an array of a variable amount of independent color flow lines, each of which is taken from a variable amount of independent sample volumes, obtained as described on the previous page. Although all the sample volumes on a given flow line are evaluated and obtained simultaneously, each line requires many ultrasound pulses to make velocity estimates.

The flow information from the array of lines combined with 2D information, collected on an independent 2D scan, to yield the whole color flow map. At each location in the displayed sector you have either an echo intensity or a mean velocity. Constructing a color flow image, therefore, can take a considerable length of time.

The key to understanding the velocities being mapped is understanding the color bar. This is a pictorial translation table that will allow you to associate a color on the flow map with a particular flow state. To understand what the color bar represents, one must first understand what information is available from the color flow mapping process.

Chapter B -Scanning

® GE Vingmed Ultrasound

Color Flow Mapping

The Spectral Estimate

Spectral estimation is the process in which the CFM extracts velocity information from the returning Doppler shifted ultrasound data. Thethree parameters, mean velocity, signal intensity, and the variance of velocity determines each pixel on the flow map, i.e., each range gate along each flow vector. The mean velocity is the statistically determined average velocity. Variance is a measure of the bandwidth of the velocity spectrum. It tells how much the velocity typically deviates from the average velocity. The intensity is a measure of the returning signal strength.

Spectral estimation depends on a mathematical process called auto-correlation to convert the Doppler shifted echoes into velocity information. The raw outputs of the auto-correlation process are a set of rays, each having an angle and a length. The angle of the ray corresponds to the velocity, and can range from O to 1 Nyquist Velocity covering the span of O to 180°. The length of the ray is proportional to the signal intensity.

Spectral estimate rays can be drawn on the wheel shown here. On this wheel one ray is drawn, although for the spectral estimate there will be at least three (Application dependent) generated in the Color Flow Mode. One thing to notice is that for any given ray there is no way to deduce whether the velocity detected is flowing to or from the transducer. Inference from observed hemodynamics, determine the flow direction in clinical situations.

Color Flow Mapping

Assigning Colors and unwrapping the Color Wheel

Locations on the wheel shown on the previous page have assigned colors in red/blue flow maps. This type of color assignment is the core of most manufacturer's red/blue maps. In the Vingmed map, intensity is an additional factor. This will appear on the color wheel as concentric rings, growing brighter as the diameter grows. Adding intensity to the color assignments helps to give the mapped velocities a more flow-like appearance.

Although the flow wheel represents a continuous process, in color flow mapping systems the wheel is always "cut" at some point to be unwrapped and displayed on the monitor. The exact cut location on the wheel is arbitrary. The cut location is similar to the position of the baseline in a Doppler spectrum display.

Chapter B -Scanning

® GE Vingmed Ultrasound

Color Flow Mapping

Disturbed Flow Indicator

The Disturbed Flow Indicators purpose is to help in the visualization and delineation of turbulent flows and jets. A set of color maps is available for selection on the Color Map menu. In cardiac Yellow/Cyan is the normally used map. Disturbed Flow describes a variety of flow conditions that are not well defined by a flow map that incorporates only the velocity and intensity parameters into the color assignment process.

The turbulence causes the presence of a broad range of velocities so that the mean velocity statistic is not very significant. This is the classic example of Disturbed Flow. The variance display allows you to see variation from normal velocities or turbulent flow. This type of turbulent flow ids associated with doppler data with a broad bandwidth such as signals generated by valvular regurgitation, valvular stenosis and intercavity shunts.

With the Disturbed Flow Indicator system, when the system determines that the given combination of intensity, mean velocity and variance will not yield meaningful mean velocity data, a shade of green substitution, not addition, forthe mean velocity color. These green areas stand out from the other flow areas, and catch the eye's attention as often brief phenomena pass by. The heart of the Disturbed Flow system is Deciding exactly when to substituted mean velocity for the Disturbed Flow green. This is what provides the outstanding jet and turbulent flow visualization in the CFM.

Angio

Start Angio

Chapter B -Scanning

® GE Vingmed Ultrasound

Angio

Power amplitude Doppler, Angio

Note that the term **Color Flow** is a generic term which includes the three **Color Flow** modes that are available in the system:

- * Conventional Color Flow Mapping (Ref: page 81.)
- * Power Amplitude Doppler
- * Tissue Velocity Imaging (optional). See separate Manual.

Power Amplitude Doppler, also known as Ultrasound Angio or Doppler Energy, uses the same data as acquired using Conventional Color Flow Mapping. In Power Amplitude Doppler it is the of the doppler signal amplitude that represents the intensity which is mapped to a color instead of the velocity, bandwidth and direction. Undesired signals from slowly moving tissue structures are surpressed by the same type of wall filter. Power Amplitude Doppler provides noticeably higher sensitivity because of much lower pulse repetition frequency and extensive temporal processing.

Tissue Velocity Imaging maps velocities from tissue motion to colors in accordance with a color map.

Traditional M-Mode

Start M-Mode, duplex view

Each recorded pulse is joined together and presented horizontally within a rectangle which has a horizontal time scale and a vertical depth scale. It is normally used to scrutinize found tissue abnormalities on the 2D image. Chapter B -Scanning

© GE Vingmed Ultrasound

Traditional M-Mode

Elements in duplex M-Mode display

The cursor line on the 2D image is repositioned with the trackball, if necessary. Time scale. **Horizontal Sweep** regulates the update The **Depth** scales Moving **Erase bar** is rate of screen-disaid you in pinpointplayed M-mode. present while updating Ming occurrences of Mode in live mode. interest in the presented situation. The controls available Contour for **M-Mode** perfection are the same as for 2D, apart from Horizontal sweep, which is described here.

Traditional M-Mode

Image size

Chapter B -Scanning

© GE Vingmed Ultrasound

Anatomic M-Mode

Prepare for Anatomic M-Mode

Anatomic M-Mode

Maneuvering the cursor line

Chapter B -Scanning

© GE Vingmed Ultrasound

Anatomic M-Mode

Anatomic M-Mode viewing

Anatomic M-Mode

About...

Anatomical M-Mode is a most useful tool for the validation and quantification of tissue movement and thickening. It is for instance possible to measure wall thickening in locations where the wall boundary is parallel with the acoustic beams. The anatomical M-Mode applied to tissue velocity data provides the tool that resolves the complex motion characteristics of myocardial wall movement. The Anatomical M-Mode lines are sampled with the same temporal and spatial resolution as done with the 2D tissue or 2D color flow images, making it possible to produce high quality M-Mode images from high framerate 2D acquisitions.

Color M-Mode

Select Color M-Mode

Color M-Mode

Assignables, screen functions, live

GE Vingmed Ultrasound

Color M-Mode

Assignables, screen functions, FULL FREEZE

Side by side viewing

Choose side by side view

Doppler

Start PW Doppler Mode

From 2D mode, press this key to add Doppler from the region of interest marked by the TM cursor. The 2D picture is rescaled, and the Doppler Window appears below it. MODE 10

Doppler

Start Duplex CW Doppler

Chapter B -Scanning

© GE Vingmed Ultrasound

Doppler

Carotid Angle Correction

Obtain a good image and engage the Cursor with the Add Mode/
Cursor key.

Move the Cursor with the Trackball and place the Angle Correction marker, on the cursor sample volume, in the center of vessel.

Press the **Select** key once, adjust the angle until the yellow line is parallel with the vessel wall or the assumed direction of flow.

Press one of the Doppler Mode keys and continue the investigation.

To move the cursor to another position press the Select key once more.

Doppler

Peak Velocity Correction

Chapter B -Scanning

© GE Vingmed Ultrasound

Doppler

Sample Volume size change

Sample Volume Controls size of the doppler Sample Volume (Gate).

The horizontal paddle adjusts the Sample Volume. The vertical paddle finds the Sample Volume

Increasing the sample volume size improves sensitivity but reduces spatial resolution. This also reduces the achievable maximum velocity range.

Doppler

Assignables, screen commands, live

Chapter B -Scanning

® GE Vingmed Ultrasound

Doppler

Doppler Control descriptions

Velocity Range

Control the velocity range of the spectrum display. The requested velocity range will not necessarily be achievable. The available range depends on parameters like frequency, sample volume position and sample volume size. If the required range is not achievable reducing the sample volume size might help. When measuring high velocities one might get unlikely sample volumes. To get rid of these use either the LPRF control (this will lower the velocity range) or the Overrange control. The displayed velocity range depends on the setting of the Angle Correction.

Tracking

Controls the spectral analyzers "tracking" of blood cells. When tracking is off (set to minimum value) the analyzer will work in the traditional way. Increasing the tracking will make the analyzer to try to "track" the blood cells. This will improve the resolution of the spectral display, and it makes it possible to measure velocity above the Nyquist velocity. But increasing the tracking will also reduce the sensitivity of the doppler. See also Overrange control.

Overrange

If overrange is on (value higher than minimum) the spectral analyzer analyzes velocities beyond the Nyquist velocity. This will make the measurement of high velocities possible without the drawback of unlikely sample volumes. To make it possible to distinguish the signal from blood moving with velocities beyond Nyquist velocities from ghosts from lower velocity signals tracking must be on (see Tracking control).

Doppler

Assignables, screen commands, FULL FREEZE

Tape Recording

Control Panel VCR controls

Chapter C

Applications

This section tells you about:

• User Defaults storage	118
• System Five, SuperVision	120
• Biopsy Option	126

User Defaults storage

User Defaults selection

This function allows you to save and recall system adjustments and setups to add effectivity to your acquisition routines. How to do this follows.

Select the Probe, Scan the patient and adjust the system to optimize the scan.

press the APPLICATION key.

User Defaults

To open the User Defaults setup dialog, clickselect User Defaults on the displayed Applications Menu.

Here, you can Save settings under a filename, Set as Default for present acquisition, Deleted altogether or you can use FACTORY set instead.

IMPORTANT

Your POWER control setting is not stored with your saved user default.

User Defaults Storage

Save and Recall your user default

Chapter C - Application **GE Vingmed Ultrasound**

System Five, SuperVision

Handle EchoPAC on System FiVe

Some System Fives are shipped with an EchoPAC integration. These have added functionality within and SuperVision added to their product names. Five use. The EchoPAC integration boots at system boot-up.

The following section describes how the integration affects normal System Whenever you need to switch from RECALL System Five scanning and over to the EchoPAC program, press this key. After selection, Echo-PAC display covers this area. The Trackball and Select area function as your stand-alone mouse, and it's Select key when EchoPAC is active. This keyboard covers most of your normal EchoPAC needs but some shortcuts may fail. Procede (A) This miniature monitor, found just above the keyboard, continuously displays the current EchoPAC situation.

System Five, SuperVision

Patient ID entry selection

Chapter C - Application

® GE Vingmed Ultrasound

System Five, SuperVision

Patient ID input

System Five, SuperVision

Special Setup functions

Switch EchoPAC Video Grabbing ON when you want to do video grabbing from the System Five video signal and transfer it to EchoPAC.

The Transfer in detail is also dependent on other setups on this menu.

In live mode you get a raw data transfer of the scan activity on the screen.

At full freeze you transfer the amount of rawdata memorized by the System FiVe, or a normal copy of the present screen picture or a high resolution copy of the screen picture.

Select these to make the Footswitch work in EchoPAC only. Then the footswitch acts as it does on the EchoPAC stand-alone. See the EchoPAC User Manual for details. Chapter C - Application

® GE Vingmed Ultrasound

System Five, SuperVision

Footswitch activity messages

System FiVe SuperVision

Willful System shut-Down with integrated Mac™

During normal everyday conditions, always use following shut-down routine:

- -Set in standby-mode with Standby/ON key.
- -Allow time for computer to clear up and organize it's data and allow the system to come to rest in Stand-by mode.
- -After this, switch power off with the Power ON/OFFswitch at the system rear.

Biopsy Option

Introduction

Intended use

The biopsy option is intended for use by a duly licensed physician who has received the appropriate training in biopsy techniques as dictated by current relevant practices, as well as in proper operation of the System FiVe Ultrasound Scanner.

This device provides a mechanical means for doing needle / instrument guided procedures with the use of a diagnostic ultrasound probe. A reusable bracket is securely positioned over the probe body allowing attachment and use of disposable needle guides. This device provides a fixed path for the needle or instrument that, when coupled by the ultrasound system software, corresponds to on-screen imaging guidelines for visualizing guided instrument placement procedures. Furnish the CIVCO Biopsy Needle Guide includes transducer cover, which are disposable for single patient / procedure use, sterile. The single use, disposable feature helps to prevent transfer of microorganisms, body fluids, and particulate material to the patient and health care worker during reuse of the transducer. Furnish the reusable Biopsy bracket non-sterile, and clean it before each use to the user-required disinfection level.

Biopsy option

Bracket and Needle guide mounting (10MHz FLA-Feb.99)

Biopsy option

Bracket and Needle Guide mounting (3.5MHz CLA)

Mount the bracket onto this side of the probe so that the three protrusions on the inner side of the bracket rest in the three square groves on the probes housing. It is necessary to loosen the bracket fastener before the mounting and to fastening it again afterwards.

With sterile precautions, drape this probe and bracket as described on the previous page.

WARNING

Avoid puncturing the sterile cover.

Gently snap the Needle Guide onto the Biopsy Bracket as shown here.

WARNING

Avoid compromising sterile parts.

Biopsy option

Start the Biopsy Option

To start the Biopsy Option, press this key on the Control Panel.

Biopsy
FLA22G
FLA28G
FLA18G
FLA16G
FLA14G
Done

A **Biopsy** menu appears on the screen. It consists of click-selectable keys for Probe type/Needle thickness selection.

Choose a needle with an appropriate gauge (14, 16, 18, 20 or 22) for the job.

Press the appropriate needle key as input for the system.

The Biopsy guide lines replace the menu on the screen's ultrasound area. (1.0cm between large yellow dots, 0.5cm from large yellow dots to small yellow dots and 5.0cm between red dots).

Chapter C - Application

® GE Vingmed Ultrasound

Biopsy option

Determine Biopsy needle length

Chapter D

Using M&A

This section tells you how to:

• M&A examples	132
• M-Mode M&A	132
Draw the first distance measurement	133
Store measurement number one	134
Repeat a measurement	135
Store the repeated measurement	136
Measure 2D Area in duplex M-Mode	137
Complete and store 2D area measurements	138
Cardiac M&A Configuration	139
Mode shifting during M&A	140
• Report	141
• VCR M&A	142
• 2D/M-Mode calibration	146
Cardiac Acquisition Formulas	153
Cardiac Acquisition Parameters	157
• PV M&A:	161
Start Ellipse measuring	161
Measurements & Ratios	179
Cardiovascular Acquisition Formulas	180

M&A examples

M-Mode M&A

To halt all scan activity, press the FULL FREEZE key. This activates the 2D FREEZE key simultaneously. The 2D FREEZE key can also be used to halt the 2D-sector only.

Using the trackball, run through the replay data, to find the Area of interest, and press the MEAS., or CALIPER key.

On the Measure menu that appears alone, when you select MEAS. Beforehand, select M Cal, and the measuring menu, together with the measuring cross appears on your screen. Measurement instructions appear in this area.

M&A examples

Draw the first distance measurement

M&A examples

Store measurement number one

M&A examples

Repeat a measurement

M&A examples

Store the repeated measurement

Measure 2D Area in duplex M-Mode

M&A examples

Complete and store 2D area measurements

M&A examples

Cardiac M&A Configuration

M&A examples

Mode shifting during M&A

M&A examples

Report

About VCR M&A

On System FiVe you can do M&A on VCR recorded scan data from single or duplex modes. You are automatically asked to calibrate VCR scan data from single or duplex modes. You can choose to use existing calibrations from single or duplex modes. The M&A Function, when used on VCR data, is always related to the systems active probe and selected application and not the ones that were used during this particular vcr recording. You may however change application and gain access to the measurement types that you intended to use.

VCR M&A

2D VCR Calibrate

After initiating a video replay of VCR recorded data, press the **MEAS**., or **Calipers** key on the control panel.

On the VCR Calibrate menu select the 2D position with the Trackball and the Select area surrounding it.

The menu is removed, a cursor appears on the 2D situation and what to do next is continually updated at this location, as you proceed.

VCR M&A

Enter the 2D calibration data

VCR M&A

Ready for 2D M&A

The **Ok** input leads you to proceed with M&A using the measurement types that are forwarded by the system. If the application and displayed measurement types are wrong for the displayed data, recall the **VCR Calibrate** menu, select **M&A Package** and proceed as described on **page D1-151**.

2D/M-Mode calibration

In Duplex mode calibration, which in our example is **2D/M-Mode**, select either **2D/M-Mode** or **2D/Doppler** on the menu.

The system cursor appears once again on the 2D part of the scene and the system asks you to use it to draw a rectangle to mark the 2D area.

The second secon

VCR M&A

Calibrate the 2D area

VCR M&A

Mark the M-Mode area

VCR M&A

Calibrate the M-Mode area Time scale

The next step is to calibrate the M-Mode time lapse. To do this place the cursor onto 0 secs and press select. Move the cursor onto 4 secs mark and press select again. A white line is now drawn along the time scale.

The seconds entry dialog appears for you to enter the specific number.

VCR M&A

Calibrate the M-Mode area depth scale

Once more you are asked to measure depth but this time it concerns the M/Mode view. So place the cursor on 0cm marker and press select. Repeat this at the 15cm marker.

The M&A options for in this case **2D/M-Mode** are displayed and you can continue.

Hint!

Autotrace is not available in VCR M&A.

M&A Package for application change

VCR M&A

The Calibration Marker

Cardiac Acquisition Formulas

In addition to the parameters that are directly measured by a user, the System FiVe has a number of Formulas which are automatically calculated as soon as all of the parameters in the Formulas have been assigned. The labels in the formulas below, are the same as the labels listed in the parameter menus for assignment.

Body Surface Area

$$BSA[m^2] = 0.007184 \times (Height[cm]^{0.725}) \times (Weight[kg]^{0.425})$$
 (Patient Browser Entry)

BSA

Basedonweight =
$$(\sqrt[3]{Weight}[kg])^2 \cdot 0.1$$

(Patient Browser Entry)

2D - measurements

Volume

Volume by length-area
$$[cm^3] = \frac{8 \times (Area[cm^2])^2}{3 \times \times Dist[cm]}$$

Volume by Simpson
$$[cm^3] = \frac{20}{4} \frac{\times h[cm] \times D[cm]^2}{4}$$

When calculating volume by Simpson, the Volume is sliced up in 20 slices perpendicular to the long-axis. The h in the formula is the thickness of the slice, and D is the diameter.

Left Ventricular study

2D-Left Ventricular Ejection Fraction =

 $\frac{LeftVentricularVolumeEndDiastole [cm^3] - LeftVentricularVolumeEndSystole [cm^3]}{LeftVentricularVolumeEndDiastole [cm^3]}$

Cardiac Acquisition Formulas

LV Mass

a1 = LeftVentricleEpcardialArea

a2 = LeftVentricleEndocardialArea

$$b = \sqrt{\frac{a2}{}} t = \sqrt{\frac{a1}{}} - b$$

 $DLVMass = 1.05 \times \frac{5}{6} [\{a1 \times (LeftVentricalEndocardialLength + t)\} - \{a2 \times LeftVentricaleEndocardialLength\}] + (a2 \times LeftVentricalEndocardialLength) + (a2 \times Left$

M - Mode measurements

Left Ventricular-study

M-Mode Left Ventricular Ejection Fraction =

 $\frac{Left Ventricular Diameter End Diastole [cm]^3 - (Left Ventricular Diameter End Systole [cm])^3}{Left Ventricular Diameter End Diastole [cm]^3}$

Fractional Shortening[%] =

 $100 \times \frac{LeftVentricular Diameter End Diastole [cm] - LeftVentricular Diameter End Systole [cm]}{LeftVentricular Diameter End Diastole [cm]}$

LV MASS

$$LVMass = 1.04x ((IVSd + LVPWd + LVDd)^3 - LVDd^3) - 13.6$$

(Report)

 $LA/AO \ ratio = \frac{LeftAtrialDiameterEndSystole [cm]}{AorticDimensionEndDiastole [cm]}$ (Report)

E/A ratio =

 $\frac{MVe(Evelocity)[m/s]}{MVa(Avelocity)[m/s]}$

Cardiac Acquisition Formulas

Teich holz:

$$EDVtz[cm^{3}] = \frac{7.0}{2.4 + LVDd[cm]} \cdot LVDd^{3}$$

$$ESVtz[cm^{3}] = \frac{7.0}{2.4 + LVDs[cm]} \cdot LVDs[cm]^{3}$$

$$SVtz[cm^{3}] = EDVtz - ESVtz$$

$$EFtz = \frac{ESVtz}{EDVtz}$$

$$COtz = SVtz \cdot HR$$

Doppler Spectrum measurements

Calipers

The pressure is calculated as follows:

$$P[mmHg] = 4 \times V \left[\frac{m}{s}\right]^2$$

Cardiac Output

$$\mathsf{Pmax}[\mathsf{mmHg}] = 4 \times V_{max} \left[\frac{m}{s} \right]^2 .$$

$$Vmean\left[\frac{m}{s}\right] = \frac{1}{TimeOfEnvelope[s]} \times V\left[\frac{m}{s}\right] dt$$

Pmean[mmHg] =
$$\frac{1}{TimeOfEnvelope[s]} \times \sum_{0}^{TimeOfEnvelope[s]} 4 \times v \left[\frac{m}{s}\right]^{2} dt$$

Velocity Trace Integral
$$[cm] = V \left[\frac{m}{s}\right] dt$$

Heart Rate[BPM] =
$$\frac{60}{TimeBetweenBeats[s]}$$

Cardiac Output
$$\left[\frac{l}{min}\right] = 6 \times \times \frac{Diameter[cm]}{2} \times Vavg\left[\frac{m}{s}\right]$$

where Vavg = vti/TBB (vti i [m])

Cardiac Acquisition Formulas

Shunt Ratio:

$$ShuntRatio = \frac{PVvti \cdot (\cdot (PA/2)^2)}{AVvti \cdot (Ao/2)^2}$$

Pressure Half Time

Pressure Half Time is calculated automatically.

PHT[s] = time to reach
$$\frac{1}{\sqrt{2} \times Vmax \left\lceil \frac{m}{s} \right\rceil}$$

Mitral Valve Area
$$[cm^2] = \frac{0.22}{Mitral Valve Pressure Half Time [s]}$$

Mitral Valve Area By Continuity Equation $[cm^2]$ =

$$\times \ \frac{LeftVentrOutflowTractDiam[cm]}{2}^2 \times \frac{LeftVentOutflowTractVelocityTraceIntegral[cm]}{MitralValveVelocityTimeIntegral[cm]}$$

(Report)

Aortic Valve Area By Continuity Equation $[cm^2]$ =

$$\times \ \frac{\textit{LeftVentrOutflowTractDiam[cm]}}{2} \times \frac{\textit{LeftVentrOutflowTractVelocityTraceIntegral[cm]}}{\textit{AorticValveVelocityTimeIntegral[cm]}}$$

(Report)

Aortic Valve Area From Vmax $[cm^2]$ =

$$\times \ \frac{LeftVentrOutflowTractDiam[cm]}{2}^{2} \times \frac{LeftVentrOutflowTractPeakVelocity\Big[\frac{m}{s}\Big]}{AorticValvePeakVelocity\Big[\frac{m}{s}\Big]}$$

(Report)

Cardiac Acquisition Parameters

Mitral Valve

wiitrai va	ive			
Name	Label	Unit	Description	Mode
MVVMX	MV	m/s	Mitral Valve Peak Velocity	
MVVME	MVmn	m/s	Mitral Valve Mean Velocity	
MVVR	MR	m/s	Mitral Valve Regurgitant Velocity	
MVVMER	MRmn	m/s	Mitral Valve Mean Regurg. Velocity	
MVACF	MV	m/s2	Mitral Valve Flow Acceleration	
MVPMX	MV	mmHg	Mitral Valve Peak Pressure	
MVPME	MVmn	mmHg	Mitral Valve Mean Pressure	
MVPR	MRp	mmHg	Mitral Valve Regurgitant Pressure	
MVPMER	MRpmn	mmHg	Mitral Valve Mean Regurg. Pressure	
SMVA	MVA	cm ²	Mitral Valve Area (from Spectrum)	
2MVA	MVA	cm ²	Mitral Valve Area (from 2d)	
MVAVTI	MVAvti	cm ²	Mitral Valve Area (from VTI)	
MVPHT	MVpht	ms	Mitral Valve Pressure Halftime	
MVVTI	MV∨ti	cm	Mitral Valve Velocity Time Integral	
MVCO	MV	l/min	Mitral Valve Cardiac Output	
MVTTP	MVtpk	sec	Mitral Valve Time To Peak	
MVDSE	EPSS	cm	Mitral Valve S-E distance	
MVE	MVEX	cm	Mitral Valve Excursion	
MVSEF	MVe-f	cm/s	Mitral Valve E-F Slope	
MVD	MV	cm	Mitral Valve Diameter	
Tricuspic	d Valve			
Name	Label	Unit	Description	Mode
TVVMX	TV	m/s	Tricuspid Valve Peak Velocity	
T\/\/N/I	T\/mn	m/c	Triguenid Valvo Moan Volocity	

Name	Label	Unit	Description	Mode	
T) () () ()	T) /	,	T: :::::::::::::::::::::::::::::::::::		
TVVMX	TV	m/s	Tricuspid Valve Peak Velocity		
TVVME	TVmn	m/s	Tricuspid Valve Mean Velocity		
TVVR	TR	m/s	Tricuspid Valve Regurgitant Velo	city	
TVVMER	TRmn	m/s	Tricuspid Valve Mean Regurg. Ve	elocity	
TVACF	TV	m/s2	Tricuspid Valve Flow Acceleratio	n	
TVPMX	TV	mmHg	Tricuspid Valve Peak Pressure		
TVPME	TV	mmHg	Tricuspid Valve Mean Pressure		
TVPR	TRp	mmHg	Tricuspid Valve Regurgitant Pres	ssure	
TVPMER	TRpmn	mmHg	Tricuspid Valve Mean Regurg. P	ressure	
TVPHT	TVpht	ms	Tricusp Valve Pressure Halftime		
TVVTI	TV∨ti	cm	Tricuspid Valve Velocity Time Inte	egral	
TVCO	TV	l/min	Tricuspid Valve Cardiac Output		
TVTTP	TVtpk	sec	Tricuspid Valve Time To Peak		
TVD	TV	cm	Tricuspid Valve Diameter		

Pulmonic Valve

Name	Label	Unit	Description	Mode
PVVMX	PV	m/s	Pulmonic Valve Peak Velocity	
PVVME	PVmn	m/s	Pulmonic Valve Mean Velocity	
PVVI	PI	m/s	Pulmonic Valve Insufficience Velocity	
PVVMER	Plmn	m/s	Pulmonic Valve Mean Insufficience Velocity	
PVACF	PV	m/s ²	Pulmonic Valve Flow Acceleration	
PVPMX	PV	mmHg	Pulmonic Valve Peak Pressure	
PVPME	PVmn	mmHg	Pulmonic Valve Mean Pressure	
PVPI	Plp	mmHg	Pulmonic Valve Insufficience Pressure	
PVPMEI	Plpmn	mmHg	Pulmonic Valve Mean Insuff. Pressure	
PVVTI	PVvti	cm	Pulmonic Valve Velocity Time Integral	
PVCO	PV	l/min	Pulmonic Valve Cardiac Output	
PVTTP	PVtpk	sec	Pulmonic Valve Time To Peak	
PVD	PV	cm	Pulmonic Valve Diameter	

Aortic Valve

Name	Label	Unit	Description	Mode
AVVMX	AV	m/s	Aortic Valve Peak Velocity	
AVVME	AVmn	m/s	Aortic Valve Mean Velocity	
AVVI	Al	m/s	Aortic Valve Insuff. Velocity	
AVVMER	Almn	m/s	Aortic Valve Mean Insufficience Velocity	
AOPHTR	ARpht	ms	Aortic Valve Regurg. Pressure Halftime	
AVACF	AV	m/s ²	Aortic Valve Flow Acceleration	
AVPMX	AV	mmHg	Aortic Valve Peak Pressure	
AVPME	AVmn	mmHg	Aortic Valve Mean Pressure	
AVPI	Alp	mmHg	Aortic Valve Insuff. Pressure	
AVPMEI	Alpmn	mmHg	Aortic Valve Mean Insuff. Pressure	
AVVTI	AVvti	cm	Aortic Valve Velocity Time Integral	
AVCO	AV	l/min	Aortic Valve Cardiac Output	
AVTTP	AVtpk	sec	Aortic Valve Time To Peak	
MAVDED	Ao	cm	Aortic Dimension (ed) (from M-mode)	
2AVD	Ao	cm	Aortic Dimension (from 2d)	
MAVD	AV	cm	Aortic Valve Diameter (from M-mode)	
AVA	AVA	cm ²	Aortic Valve Area	
AVAVTI	AVAvti	cm	Aortic Valve Area (from VTI)	
AVAVMX	AVAvmx	cm	Aortic Valve Area (from Vmax)	

Left Ventricular

Name	Label	Unit	Description	Mode
LVOTVMX	LVOT	m/s	Left Ventricular Outflow Tract Peak Velocity	
LVOTD	LVOT	cm	Left Ventricular Outflow Tract Diameter	
LVOTVTI	LVOTvt	cm	Left Ventricular Outflow Tract Velocity Trace Inte	gral
LVOTVME	LVOTmn	m/s	Left Ventricular Outflow Tract Mean Velocity	
LVOTCO	LVOT	l/min	Left Ventricular Outflow Tract Cardiac Output	
LVOTPMX	LVOT	mmHg	LVOT Peak Pressure	
LVOTPME	LVOTmn	mmHg	LVOT Mean Pressure	

LVET	LVET	sec	Left Ventricular Ejection Time
MLVDED	LVDd	cm	Left Ventricular Diameter (ed) (from M-mode)
2LVDED	LVDd	cm	Left Ventricular Diameter (ed) (from 2d)
LVPWED	LVPWd	cm	Left Ventricular Posterior Wall (ed)
LVAED	LVAd	cm ²	Left Ventricular Area (ed)
LVAEN	LVAend	cm ²	Left Ventricular Area (endo) in LVmass(2d)
LVAEP	LVAepi	cm ²	Left Ventricular Area (epi) in LVmass(2d)
LVVED	LVVd	ml	Left Ventricular Volume (ed)
MLVDES	LVDs	cm	Left Ventricular Diameter (es) (from M-mode)
2LVDES	LVDs	cm	Left Ventricular Diameter (es) (from 2d)
LVVES	LVVs	ml	Left Ventricular Volume (es)
LVPWES	LVPWs	cm	Left Ventricular Posterior Wall (es)
LVAES	LVAs	cm ²	Left Ventricular Area (es)
LVPW	LVPW	cm	Left Ventricular Posterior Wall
2LVEF	LVEF		Left Ventricle Ejec Frac (from 2d)
MLVEF	LVEF		Left Ventricle Ejec Frac (from M-mode)
LVFS	%FS	%	Left Ventricle Fractional Shortening
LVM	LVmass	g	Left Ventricle Mass
2LVM	LVmass(AL)	g	Left Ventricle Mass 2D Area-Length Method
LVDEN	LVDend	cm	Left Ventricular Length (endo)(from2D)

Right Ventricular

Name	Label	Unit	Description	Mode
RVET	RVET	sec	Right Ventricular Ejection Time	
MRVDED	RVDd	cm	Right Ventricular Dimension (ed) (from M-mode)	
2RVDED	RVDd	cm	Right Ventricular Dimension (ed) (from 2d)	
RVVED	RVVd	ml	Right Ventricular Volume (ed)	
2RVDES	RVDs	cm	Right Ventricular Dimension (es) (from 2d)	
MRVDES	RVDs	cm	Right Ventricular Dimension (es) (from M-mode)	
RVVES	RVVs	ml	Right Ventricular Volume (es)	

Left Atrial

Name	Label	Unit	Description	Mode
LAD	LAD	cm	Left Atrial Dimension	
LADES	LADs	cm	Left Atrial Dimension (es)	
LAV	LAV	ml	Left Atrial Volume	

Right Atrial

Name	Label	Unit	Description	Mode
RAV R	AV	ml	Right Atrial Volume	

E/A

Name	Label	Unit	Description	Mode
MVVE	MVe	m/s	E Velocity in E/A	
MVVA	MVa	m/s	A Velocity in E/A	
IVRT	IVRT	[ms]	ISO Volumetric Relaxation Time	
MVTAC	аТ	[ms]	Mitral Valve Acceleration Time	

MVTDC	DT	[ms]	Mitral Valve Deceleration Time
MVEAR	E/A		MVe/MVa Dimension Ratio

??

Name	Label	Unit	Description	Mode
TBB	Tb-b	sec	Time Between Heartbeats	
HR	HR	BPM	Heart Rate	

Inter Ventricular

Index	Name	Label	Unit	Description	Mode
IVSDED	IVSd	cm	Inter Ver	ntricular Septum (ed) M-mode	
IVSDES	IVSs	cm	Inter Ventricular Septum (es) M-mode		
IVSD	IVS	cm	Inter Ventricular Septum 2D		
TQAV	AVq-o	sec	Time from Q-wave to Aortic Valve opens		
TQPV	PVq-o	sec	Time from	m Q-wave to Pulmonic Valve opens	

LA/AO

Name	Label	Unit	Description	Mode
LAAOR	LA/AO		LA/AO Dimension Ratio	

WEIGHT, HEIGHT, BSA (Pat. browser)

Name	Label	Unit	Description	Mode
WEIGHT	Weight	kg	Patient Weight	
HEIGHT	Height	cm	Patient Height	
BSA	B.S.A	m^2	Body Surface Area	

PV M&A:

Start Ellipse measuring

To start Ellipse measuring in PV M&A, when you have found a scan view of interest, press **FULL FREEZE** then **MEAS** and the measuring menu appears for you to select **Ellipse**.

The Measurements menu, for the Ellipse measurement, appears, together with a green cursor, in the scan area.

Place the cursor at a position on your area of interest from where you can start drawing an ellipse axis and press Select to mark the start point of it.

PV M&A

Make the ellipse

Volume M&A, Tissue, Bladder and Thyroid

Start Volume M&A

The Volume M&A's are very much alike and similar to use. To prepare for any one of them, obtain the correct probe, scan the patient and press **FULL FREEZE** and then **MEAS** keys, at a sight of interest

Monature
CONTIG
Hip Amples
Bladder vol.
2d Cal Takes
Ama fi.
Elipan
Volume
ExtT
High

Start them from this menu that appears.

Hint

Volume M&A is independent of continuous measuring. You may start measuring, measure length and width, exit from M&A and continue scanning. If you then re-enter M&A and measure the height your volume calculation will be completed.

A measuring cursor appears on the screen along with a measurements menu to the left where three are shown vacant and awaiting entries from your measurements.

Place the cursor in accordance with instructions here, press
Select to choose a start point and do the measurement.

all are measured.

Volume M&A, Tissue, Bladder and Thyroid

Save Volume M&A Results

When completed, the volume is presented below the measurements on the measuring menu.

Save these to the report.

Volume Formulas:

These are as shown below

 $TissueVolume = \frac{1}{6} \times length \times width \times height$

 $BladderVolume = 0.7 \times length \times width \times height$

 $ThyroidVolume = 0.479 \times length \times width \times height$

Hip Angle M&A

Start Hip Angle M&A

This is Fetal M&A with ultrasound. It allows you to uncover fetal abnormalities.at an early stage. Scan your patient with the correct probe, obtain and study a good fetal view before selecting to start Measurements.

The **Hip Angle** Function is located on this menu. To start hip angle M&A highlight and choose it on the menu using the Trackball and Select key

Place the appearing cursor onto the starting point of the first angular measurement, as instructed along the lower edge of the screen and press select to mark it. With trackball movement, direct the cursor at the instructed angle. The reading appears on the left hand measurement menu.

Hip Angle M&A

Complete Measurements and Save results

OBGYN M&A Setup

Select the Measurement type

Chapter D - Using M&A

® GE Vingmed Ultrasound

OBGYN M&A Setup

Do the Measurement

Do Biparietal Diameter measurements as decided previously and repeat if necessary. This gives automatic calculation of Gestational Age GA and Estimated Date of Delivery EDD.

This is included on the OBGYN report Page-where you can see that our two measurements have been averaged to give safer age and closer date of delivery.

Gestational Age (week+days) using Femur Length

FL(GA) via ASUM FL range: 1.0 -7.9 cm

 $Ga = 10.38 + 2.262 * FL + 0.1912 * FL^2 + 0.0008605 * FL^3 - 0.00009128 * FL^4 + 0.000003583 * FL^5$

Assosiated standard deviation:

$$Sd = 0.19 + 0.42 * FL$$

FL(GA) via Hadlock FL range: 0.7 –8.2 cm

$$Ga = 10.35 + 2.46 * FL + 0.17 * FL^2$$

Assosiated standard deviation:

Sd=1.0+0.26*FL

FL(GA) via Hansman FL range: 2.0 -7.5 cm

$$Ga = 10.79 + 3.728 *_{FL} - 0.6631 *_{FL}{}^2 + 0.2492 *_{FL}{}^3 - 0.3495 *_{FL}{}^4 + 0.001861 *_{FL}{}^5$$

Assosiated standard deviation:

$$Sd = 0.19 + 0.412 * FL$$

FL(GA) via Hohler FL range: 0.1 –8.7 cm

$$Ga = 9.174068 + 2.670895 * FL + 0.159947 * FL^{2}$$

Assosiated standard deviation:

$$Sd = 0.19 + 0.42 * FI$$

FL(GA) via Jeanty FL range: 1.0 –8.0 cm

$$Ga = 9.421153 + 3.05168 * FL + 0.0890988 * FL^2 + 0.0009513 * FL^3$$

OBGYN M&A Calculation Formulas

Assosiated standard deviation:

Sd = 2.70

FL(GA) via O'Brien FL range: 1.0 –7.9 cm

 $Ga = 5.184726 + 9.844899 * FL - 3.99398 * FL^2 + 1.041302 * FL^3 - 0.116949 * FL^4 + 0.004815 * FL^5$

Assosiated standard deviation:

Sd = 0.19 + 0.42 * FL

Gestational Age (week+days) using Biparietal Diameter

BPD(GA) via ASUM BPD range: 2.0 -9.8 cm

$$Ga = -5.269 + 17.03 * BPD - 6.492 * BPD^2 + 1.377 * BPD^3 - 0.1359 * BPD^4 + 0.005114 * BPD^5$$

Assosiated standard deviation:

$$Sd = -0.125 + 0.331*BPD$$

BPD(GA) via Campbell BPD range: 2.1 –9.4 cm

$$Ga = 9.363446 + 2.4510590 * BPD - 0.9873671 * BPD^2 + 0.387842 * BPD^3 - 0.0522160 * BPD^4 + 0.002448 * BPD^5$$

Assosiated standard deviation:

$$Sd = 0.643 + 0.253*BPD$$

BPD(GA) via Eik-Nes BPD range: 2.5 –10.1 cm

$$Ga = 2.035 + 3.522 * \text{BPD} + 0.2468 * \text{BPD}^2 - 0.0709 * \text{BPD}^3 - 0.004395 * \text{BPD}^4 + 0.00004305 * \text{BPD}^5$$

Assosiated standard deviation:

$$Sd = -0.125 + 0.33 * RPD$$

BPD(GA) via Hadlock BPD range: 1.5 –10.1 cm

$$Ga = 6.8954 + 0.26345 * BPD + 0.000008771 * BPD^3$$

$$Sd = 0.643 + 0.253 * BPD$$

OBGYN M&A Calculation Formulas

BPD(GA) via Hansman BPD range: 2.0 –10.0 cm

$$Ga = -3.542 + 6.972 * BPD - 1.91 * BPD^2 + 0.4055 * BPD^3 - 0.0406 * BPD^4 + 0.001596 * BPD^5$$

Assosiated standard deviation:

$$Sd = 0.643 + 0.253 * BPD$$

BPD(GA) via Merz BPD range: 2.0 –9.9 cm

$$Ga = 7.739 + 1.683 * BPD + 0.306 * BPD^2 - 0.04438 * BPD^3 - 0.002958 * BPD^4$$

$$Sd = 1.3 + 0.117 * BPD$$

Gestational Age (week+days) using Crown Rump Length

CRL(GA) via Hansman CRL range: 0.6 –15.0 cm

$$Ga = -4.555 + 2.822 * CRL - 0.3868 * CRL^2 + 0.02904 * CRL^3 - 0.0007966 * CRL^4 + 0.000005078 * CRL^5$$

Assosiated standard deviation:

$$Sd = 0.81 + 0.098 * CRL$$

CRL(GA) via Robinson CRL range: 0.6 -7.8 cm

$$Ga = -4.933912 + 2.8007 * CRL -0.6356975 * CRL^2 + 0.117067 * CRL^3 - 0.011622 * CRL^4 + 0.0004623 * CRL^5$$

$$Sd = 0.81 + 0.098 * CRL$$

Gestational Age (week+days) using Head Circumference

HC(GA) via Campbell HC range: 11.0 –34.8 cm

$$Ga = 11.83 - 0.8894 * HC + 0.1546 * HC^2 - 0.005916 * HC^3 + 0.00008253 * HC^4$$

Assosiated standard deviation:

$$Sd = 1.2 + 0.4 * HC$$

HC(GA) via Hadlock HC range: 6.7 –35.0 cm

$$Ga = 8.96 + 0.54 * HC + 0.0003 * HC^2$$

Assosiated standard deviation:

$$Sd = 3.10 - 0.008 * HC$$

HC(GA) via Hansman HC range: 14.0 –35.0 cm

Assosiated standard deviation:

$$Ga = 22.37 - 3.033 * HC + 0.3522 * HC^2 - 0.01505 * HC^3 + 0.0002935 * HC^4 + 0.000001944 * HC^5$$

Assosiated standard deviation:

$$Sd = 3.10 - 0.008 * HC$$

HC(GA) via Merz HC range: 7.6 –36.1 cm

$$Ga = 7.779 + 0.4014 * HC + 0.02711 * HC^2 - 0.0009649 * HC^3 + 0.00001634 * HC^4$$

$$Sd = 0.4 + 0.3 * HC$$

Gestational Age (week+days) using Abdominal Circumference

AC(GA) via ASUM AC range: 3.5 –37.7 cm

 $Ga = 6.958 + 0.8784 * AC - 0.0001584 * AC^2 + 0.000009226 * AC^3 + 0.0000002614 * AC^4 + 0.000000002801 * AC^5$

Assosiated standard deviation:

Sd = 0.6129 + 0.06155 * AC

AC(GA) via Campbell AC range: 8.6 –36.0 cm

 $Ga = 4.490188 + 1.277832 * AC -0.022174 * AC^2 + 0.0003847 * AC^3$

Assosiated standard deviation:

Sd = 1.31 + 0.048 * AC

AC(GA) via Hadlock AC range: 5.1 –40.0cm

 $Ga = 8.14 + 0.753 * AC + 0.0036 * AC^2$

Assosiated standard deviation:

Sd = 1.31 + 0.048 * AC

AC(GA) via Hansman AC range: 5.3 –32.0 cm

 $Ga = 7.427 + 0.9061*AC - 0.01746*AC^2 + 0.002514*AC^3 + 0.0001004*AC^4 + 0.000001314*AC^5$ Assosiated standard deviation:

Sd = 1.31 + 0.048 * AC

AC(GA) via Jeanty AC range: 5.7 –31.6 cm

$$Ga = 4.467561 + 1.494606 * AC -0.040213 * AC^2 + 0.0008904 * AC^3$$

Assosiated standard deviation:

Sd=1.31+0.048*AC

AC(GA) via Merz AC range: 5.8 –34.6 cm

$$Ga = 6.445 + 0.9519 * AC + 0.00137 * AC^2 - 0.00003561 * AC^3 + 0.0000003159 * AC^4$$

$$Sd = 1.5 + 0.02 * AC$$

Gestational Age (week+days) using Humerus Length

HL(GA) via Jeanty HL range: 1.0 –6.9 cm

 $Ga = 9.814957 + 2.454296*HL + 0.315232*HL^2 - 0.006896*HL^3 + 0.0002902*HL^4$

Assosiated standard deviation

Sd = 1.283 + 0.00983 * HL

OBGYN M&A Calculation Formulas

Gestational Age (week+days) using Ulna Length

UL(GA) via Jeanty UL range: 1.0 –6.4 cm

$$Ga = 9.797318 + 3.253571*UL + 0.042887*UL^2 + 0.071384*UL^3 - 0.009265*UL^4 + 0.0004399*UL^5$$

$$Sd = 1.52 + 0.0013 * UL$$

PV M&A

Measurements & Ratios

Calculated Ratios

ICA/CCA (Internal Carotid Artery to common Carotid artery - Carotid Application)
CFA/EIA(Common Femoral Artery to External Line Artery-Lower Limbs)
SFA/CFA(Superficial Femoral Artery to Common Femoral Artery-Lower Limbs)
Renal Artery/Aorta (Abdomen and Renal applications)

Two Ratios are calculated-from **Peak Systolic Velocities** and **End Diastolic velocities**. For the first three ratios, the two vessels must be on the same side and labelled Right or Left.

a Did and Committee and one of Committee and one of the

Cardiovascular Acquisition Formulas

In addition to the parameters that are directly measured by a user, the System FiVe has a number of Formulas which are automatically calculated as soon as all of the parameters in the Formulas have been assigned. The labels in the Formulas below, are the same as the labels listed in the parameter menus for assignment.

2D-measurements

Body Surface Area (Patient Browser Input)

BSA = $0.007184 \text{ x Height (cm)}^{0.725} \text{ x Weight (Kg)}^{0.425}$

(US units are internally converted to metric units and used in the same formula.

Distance stenosis

Stenosis =
$$100.0 \times 1.0 - \frac{SmallestDis tance[mm]}{LargestDis tance[mm]}$$

Area stenosis

Stenosis = $100.0 \times 1.0 - \frac{SmallestArea[mm^2]}{LargestArea[mm^2]}$

Spectrum measurements

RI =
$$\frac{VMax\left[\frac{cm}{s}\right] - VMin\left[\frac{cm}{s}\right]}{VMax\left[\frac{cm}{s}\right]}$$
 ---->If Triphasic, then RI=1.

$$S/D = \frac{VMax \left[\frac{cm}{s}\right]}{VMin \left[\frac{cm}{s}\right]}$$

Cardiovascular Acquisition Formulas

Vmax and Vmin is the larger/lesser value when we compare absolute values but in the Formulas we use the measurement assigned values. i.e. V1 = -5, V2 = -3 where Vmax is assigned the value of -5 and Vmin -3.

$$RI = \frac{-5 - (-3)}{-5}$$

Automatic trace

Flow
$$\left\lceil \frac{ml}{min} \right\rceil$$
 = Cross Sectional Area x Vavg

$$\label{eq:constraint} Time Average Velocity \times Cross Sectional Area \ = \ 60 \ \times \ \times \ \frac{Diameter[cm]}{2}^{\ 2} \times Average Velocity \Big[\frac{cm}{s}\Big]$$

PΙ

$$\mathsf{PI} = \frac{SystoleVelocity\left[\frac{cm}{s}\right] - DiastoleVelocity\left[\frac{cm}{s}\right]}{AverageVelocity\left[\frac{cm}{s}\right]}$$

Chapter D - Using M&A

[®] GE Vingmed Ultrasound

Chapter E

Installation & Maintenance

This chapter provides you with maintenance procedures for your system and its probes and contains some advice on installation.

Chapter E explains how to:

• System Five Installation	184
Preventive User Maintenance	184
Cleaning the System	184
Cleaning the Probes	185
Visual Inspection & Maintenance	185

System FiVe Installation

System FiVe

Shipments:

• System FiVe should be unpacked, installed and cleared for operation by an authorized service representative. Packing /Unpacking instructions are found on the outside of the transport package. System FiVe must be mains-connected to a **HOSPITAL GRADE** power source. DO NOT attempt to assemble the system or connect it to a power source until qualified approval for operation has been given.

Preventive User Maintenance

Cleaning the System

 DO NOT pour water on System FiVe or immerse any part of it, in any liquid. Avoid spilling liquids into ventilation grates.

Weekly:

• The exterior surface of the System FiVe should be cleaned with a dry cloth. When more extensive cleaning is required, the unit should first be powered down and then wiped with a soft cloth that has been dampened with either water or a very mild detergent. NEVER use abrasive cleaners or steel wool.

After use: • Wipe away gel stains from the control panel and keyboard as soon as possible, because some ultrasound gels are mildly aggressive towards plastics.

Cleaning the Probes

Patient exams and the appropriate level of cleaning or disinfection are categorized by the nature of patient contact (location or type of tissue):

- Scanning on intact surface skin is considered non-critical and usually requires a low or intermediate level disinfection. Cleaning with soap and water is usually sufficient.
- Invasive scanning involving contact with mucous membranes (TR, TV or TE probes) is considered semi-critical and requires a cleaned and High-Level Disinfected probe or a probe having been intermediate level disinfected and fitted with a sanitary probe sheath. A sanitary sheath is recommended for all TV and TR exams.
- Invasive scanning involving contact with re-circulating blood (surgical probes) is considered critical and requires sterile technique using a cleaned and sterilized probe or a probe having been High Level Disinfected with a fully enclosing sterile sheath. Sterile technique and sterile sheath are indicated with any probe involving biopsy procedures.

After each patient investigation:

Note: Disinfection of Invasive probes (Transesophageal or Tranvaginal) is described in the specific probe manuals. The description below is for non-invasive probes only

Probes and their cables should be cleaned using a soft cloth dampened with a mild detergent. We recommend that this be done in accordance with site rules and regulations.

DO NOT AUTOCLAVE ANY PROBES OR ATTEMPT TO STERILIZE THE PROBES USING ETO GAS OR AGGRESIVE FLUIDS.

Do NOT submerge any system probes or connectors in cleaning / disinfection fluids. Use caution when cleaning probes and avoid spilling liquids into connector recep-tacles.

If probes are to be used in potential contamination situations, cover the probe WITH A STER-ILE SHEATH

Visual Inspection & Maintenance

Prior to all system maintenance tasks, disconnect the mains cable.

Monthly:

- The user is advised to inspect all external cables and connectors for signs of wear. If cables or connectors appear to be damaged, contact your service representative for repair or replacement.
- Two Air filters are situated under the system. These are easily removed by using a cross-point screwdriver. These should be vacuume cleand or washed in water to remove dust particals

Always:

• If the bulb in the control panel lamp is defect or used up, disconnect the lamp from the front panel, remove and replace the bulb and reconnect the lamp on the control panel.

More extensive maintenance should be performed by trained Service personnel.

Chapter F

Warnings

The use of the System FiVe requires a high regard for patient and operator safety. The System FiVe was designed to meet or exceed all applicable electrical and mechanical safety standards. However, design alone cannot eliminate the possibility of unsafe operation. The operator must be aware of the types of procedures or actions that could result in unsafe conditions. It is recommended that you carefully review the following information before attempting to operate the unit.

These Warnings inform you about:

Electrical Power Safety	188 188 188 188
• Statements on the safety of Ultrasound	189 189
The GE Vingmed Ultrasound Patent Rights	190
 Warnings and Caution labels External I/O Warning label. Mobility Warnings. Probe Warning. ECG Warning. Printers, B/W and Color. Video Cassette Recorders. 	193 193 193 193 193 197 198

System safety

Electrical Power Safety

System FiVe is factory-wired to operate at 115-120 (Hospital graded mains circuit), or 230-240VAC, or as appropriate for the original destination. Verify the correct voltage at your location before mains connection of the unit. All connections must be made with the plug provided with the unit.

The system grounding point is clearly marked provided at the rear. The system must be grounded when the three- pronged plug from the System FiVe is plugged into a grounded (Hospital graded, where applicable) wall receptacle.

Electrical Shock Hazards

- DO NOT try to open any of the System FiVe panels or remove any covers or wires. Refer all servicing or questions regarding system function, to qualified service personnel.
- The System FiVe external input and output protection cover may be removed by the user, using an appropriate screwdriver. This gives access to a location for legal connection of accessory devices. All external connectivity at this location must be carried out when the system is switched off.
- The System FiVe external input and output connectors are not electrically isolated from the rest of the circuitry inside System FiVe. Any instruments connected to the System FiVe via these inputsor outputs must conform to standard hospital electrical safety and leakage requirements. It is the responsibility of the user to ensure that he meets the important safety requirement in all cases. When connecting the System FiVe to a non-isolated device, use a Hospital grade isolation transformer for all mains power supply..

Explosion Hazards

• If System Five use is in the vicinity of flammable anesthetics, the risk of explosion exists.

Mechanical Safety

The System FiVe is a compact and mobile system. To ensure user and patient safety, take the following precautions when moving the system.

- Make sure that all loose wires, such as transducer cables, are out of the way so that they will not snag on wheels, doorknobs or other protruding objects.
- Place all loose objects such as bottles of gel, ECG leads and cable, extra video tapes, film or paper in the storage drawer or bins provided.
- Both front wheels have locks. Be sure to unlock each wheel before attempting to move the system. Once you move the unit to a new location, we recommended that the front wheels are locked to prevent it from rolling during use.

GE Vingmed Ultrasound Chapter F - Warnings

Statements on the safety of Ultrasound

AIUM statement on clinical safety. October 1982, Revised March 1983 and October 1983.

Diagnostic ultrasound has been in use for over 35 years. Given its known benefits and recognized efficacy for medical diagnosis, including use during human pregnancy, the American Institute of Ultrasound In Medicine herein addresses the clinical safety of such use:

No confirmed biological effects on patients or instrument operators caused by exposure at intensities typical of present diagnostic ultrasound instruments have ever been reported. Although the possibility exists that such biological effects may be identified in the future, current data indicate that the benefits to patients of the prudent use of diagnostic ultrasound outweigh the risks, if any, that may be present.

AIUM Statement on Mammalian in Vivo Ultrasonic Biological Effects

August 1976, Revised October 1978: Reaffirmed October 1982 and October 1983

In the low megahertz frequency range there have been (as of this date) no independently confirmed significant biological effects in mammalian tissues exposed to intensities "a" below 100 mW/cm². For ultrasound exposure times "b" less than 500 seconds and greater than 1 second, such effects have not been demonstrated even at higher intensities when the product of intensity "a" and exposure time "b" is less than 50 joules/cm².

- 1 Spatial peak, temporal average as measured in a free field in water.
- 2 Total time, this includes off-time as well as on-time for a repeated pulse regime.

GE Vingmed Ultrasound Safety statement May 1994

Although no harmful biological effects have been demonstrated for ultrasound frequencies, intensities and exposure times used in examination with the VINGMED System FiVe systems, VINGMED SOUND recommends using the lowest acoustic output settings which will produce diagnostically acceptable information.

The GE Vingmed Ultrasound Patent Rights

Below you will find a valid list of approved patents which are fully or partly used in GE Vingmed Ultrasound System FiVe. In addition, the product comprises pending patents.

List of GE Vingmed Ultrasound's Patents

REVISED 31.03.00/Rba

*	new	patent

CASE NO.1 ULTRASONICS TRANSDUCER PROBE WITH LINEAR MOTION DRIVE MECHA-

NISM

PATENT NO.	4,757,818	US		(1988)
PATENT NO.	2.512,461	JAPAN		(1996)
PATENT NO.	235.969	FRANCE	EURO	(1997)
PATENT NO.	235.969	GERMANY	EURO	(1997)
PATENT NO.	235.969	ITALY	EURO	(1997)
PATENT NO.	235.969	UK	EURO	(1998)

CASE NO.5/6 MINI PROBE: A MINIATURIZED MECHANICALLY-STEERABLE ULTRASONIC

PROBE

PATENT NO. US 4,972,839 (1990)PATENT NO. 375.132 **EUROPA** (1995)**GERMANY** PATENT NO. 375.132 **EURO** (1995)PATENT NO. 375.132 ITALY **EURO** (1995)PATENT NO. 375.132 **FRANCE EURO** (1995)

CASE NO. 7 COLOR CODES: A METHOD OF COLOR CODING TWO DIMENSIONAL ULTRA-

SONIC DOPPLER VELOCITY IMAGES OF BLOOD FLOW ON A DISPLAY

PATENT NO. 4,932,415 US (1990)

CASE NO 8 ULTRASONIC IMAGING PROBE

PATENT NO. 5,085,221 US (1992)

CASE NO 13 MULTIGATED DOPPLER: METHOD FOR ESTIMATING BLOOD FLOW VELOCITY

PATENT NO. 5.560.363 US (1996)
PATENT NO. 1277233 ITALY (1998)
PATENT NO. 2 727 851 FRANCE (1998)

CASE NO 14 MATCHED SPECTRUM

PATENT NO 5.662.115 US (1997)
PATENT NO 1.279.010 ITALY (1998)
PATENT NO 2 720 922 FRANCE (1999)

CASE NO 15 WALL MOVEMENT

5.568.811 US (1996)

CASE NO 16	POSITION INDICATION

PATENT NO	5.617.858	US	(1997)
PATENT NO	300.407	NORWAY	(1997)
PATENT NO	1277510	ITALY	(1998)
PATENT NO	95.101.30	FRANCE	(1997)
PATENT NO	689724	SWITZERLAND	(1999)

CASE NO 17 M-MODE: A METHOD FOR GENERATING ANATOMICAL M-MODE DISPLAYS

PATENT NO	5,515,856	US	(1996)
PATENT NO	1277511	ITALY	(1998)
PATENT NO	2.723.835	FRANCE	(1998)

CASE NO. 18 TISSUE ANALYSIS: A METHOD FOR REAL-TIME ANALYSIS

PATENT NO	5,467,096	US	(1996)
PATENT NO	1277512	ITALY	(1998)
PATENT NO	2.724.245	FRANCE	(1998)

CASE NO 19 TISSUE VELOCITY: A METHOD FOR ANALYSIS AND MEASUREMENT OF TEM-PORAL TISSUE VELOCITY INFORMATION

PATENT NO 5,820,561 US (1998) PATENT NO 1293746 ITALY (1999)

CASE NO.114/115 METHOD OF ULTRASONICALLY MEASURING BLOOD FLOW VELOCITY

PATENT NO.	4,559,952	US	(1985)
PATENT NO.	2,112,937	UK	(1982)
PATENT NO.	PV 82 18 993	FRANCE	(1988)
PATENT NO.	1,210,951	ITALY	(1990)
PATENT NO.	1,595,636	JAPAN	(1991)
PATENT NO.	32 41 670	GERMANY	(1995)

CASE NO. 118 METHOD AND APPARATUS FOR GENERATING A MULTIDIMENSIONALMAP OF BLOOD VELOCITIES USING BACKSCATTERED ULTRASOUND AND THE DOP-

PLER EFFECT

PATENT NO.	4,848,354	US	(1989)
PATENT NO.	2,142,142	UK	(1989)
PATENT NO.	2545715	FRANCE	(1992)
PATENT NO.	1,174,091	ITALY	(1988)
PATENT NO.	1887967	JAPAN	(1995)
PATENT NO.	4317660.80	GERMANY	(1995)

CASE NO. 121 METHOD AND APPARATUS FOR SYNTHESIZING A CONTINUOUS ESTIMATE

SIGNAL FROM SEGMENTS OF A GAUSSIAN SIGNAL PROVIDED BY ULTRA-

SONIC DOPPLER MEASUREMENT ON A FLUID FLOW

PATENT NO. 4,934,373 US (1990)

PATENT NO.	2,142,753	UK	(1988)
PATENT NO.	3,417,568	GERMANY	(1993)
PATENT NO	2,549,957	FRANCE	(1990)
PATENT NO.	1,173,985	ITALY	(1987)
PATENT NO.	1887966	JAPAN	(1995)

CASE NO. x METHOD AND APPARATUS FOR ULTRASOUND IMAGING

PATENT NO. 5,465,723 US (1998)

REGISTRATED TRADE MARK: SONOTRON ULTRASOUND SOLUTIONS FRANCE 97 667 911

REGISTRATED TRADE MARK: ECHOPAC FRANCE 98/727/129

(VALID UNTIL 08.04.2008)

ECHOPAC GERMANY 398 20 510

ECHOPAC US 2,281,514

ECHOPAC UK obs avventer bevis pr 13.03.00

ECHOPAC JAPAN * 4365760

External I/O Warning label

Mobility Warnings

Never leave a mobile device such as the System FiVe unattended on a slanted surface. To lock front wheels, press edge marked (1). To unlock front wheels press edge marked (2).

Do not carry System FiVe by the front handles (3) or rear bumper (4). These are designed for tilting, pushing and guiding the system.

Probe Warning

Although they may look and feel OK afterwards, never continue using any Vingmed Probe that has been dropped onto, or been bashed against hard surfaces. Disconnect such probes and get them tested by qualified personnel.

ECG Warning

Conductive parts of the electrodes and the ECG cables, including the neutral electrode must not come into contact with other conductive parts, including ground

FDA's Prescription Device Label

Federal law restricts this device to sale by or on the order of a physician.

Monitors

GE Vingmed Ultrasound Chapter F - Warnings

Warnings and Caution labels

Monitors

Monitors

Printers, B/W and Color

Video Cassette Recorders

Chapter G

Specifications

Regulatory Information Standards used	
• System Five	201
• Indications for use	207
 Probe / Application / System overview(Max.Configuration). 	208
• Options	217
Guidelines for Fetal use	218
Physical Dimensions	219
Electrical Specifications	219
Radiated audio noise level:	219
• Environmental conditions	220
Measurement Accuracy	221

Regulatory Information

The GE Vingmed Ultrasound product families are tested to meet all applicable requirements in relevant EU Directives and European/International standards. (See "Standards used" below.) Any changes to accessories, peripheral units or any other part of the system must be approved by the manufacturer; GE Vingmed Ultrasound. Ignoring this advice may compromise the regulatory approvals obtained for the product.

Please consult your local GE Vingmed Ultrasound representative for further details.

Standards used

Our ultrasound scanners are class I devices, according to Clause 14 of IEC 60601-1 (1988).

To fulfill the requirements of relevant EC directives and/or European Harmonized/International standards, the following documents/standards have been used:

STANDARD/DIRECTIVE	SCOPE
93/42/EEC	Medical Devices Directive (MDD)
IEC 801-2/4.1991	Electrostatic Discharge
IEC 801-3/1984	Radiated Electromagnetic Field
IEC 801-4/ 1988	Electrical Fast Transient/Burst
IEC 801-5/ 1.1993(draft)	Surge
EN 55011/CISPR 11/ 3.1991	Emitted noise according to Class B requirements + Electromagnetic Susceptibility
IEC 60601-1 (1988) EN 60601-1/ 1990 UL2601-1/ 8.1994	Medical Electrical Equipment, Part 1; General Requirements for Safety "CLASSIFIED BY UNDERWRITERS LABORATARIES INC WITH RE- SPECT TO ELECTRICAL SHOCK, FIRE AND MECHANICAL HAZ- ARDS ONLY IN ACCORDANCE WITH UL2601-1 AND CAN/CSA C22.2 NO.601.1"
IEC 1157/ EN 61157/ 1994	Requirements for the declaration of the acoustic output of medical diagnostic ultrasonic equipment.
IEC EN 60601-1-2 /1993	Medical Electrical Equipment - part 2. Collateral standard: Electromagnetic compatibility - Requirements and tests.

NOTE:

1) Any rest energy within our scanners or their components will be below 60V DC or 2 mJ.

System Five

System Architecture

 All-modality digital Front-End for excellent cardiovascular performance with high frame rate and advanced research capabilities

Data Acquisition

- High precision data acquisition
- Programmable open-ended system architecture
- 12 bit A/D converters per physical channel
- Application specific Digital Beam Forming algorithms for each mode
- Supports Curved Linear, Phased Array and Doppler transducers
- Receive focusing, aperture, apodization, and frequency response are all continuously variable as a function of depth

Data Processing

- PipeLink™ technology: high speed echo data processing
- Echo data processing of phase, amplitude and frequency
- Easily upgraded for future expansions
- Raw data digital replay for retro and looping. Allows for adjustment of all major display parameters and M & A

Display Replay™

 High resolution, flicker-free SVGA 17 inch computer graphics monitor, tilt and

- swivel
- Resolution of main display 1024 * 768. 16.7 Million simultaneous colors available
- VCR input is played back through Digital Replay[™], allowing VCR images to be looped during review
- Scanplane position indicator and probe temperature are displayed with all multiplane TEE probes.
- Image orientation marker
- Selectable display configuration of duplex and triplex modes: side-by-side or topbottom, during live, Digital Replay™ and clipboard image recall

Display Annotations

- On-screen display of Mechanical Index (MI)
- On-screen display of Thermal Index (TIB, TIS, TIC)
- Patient name/ID
- Hospital name
- Time/date
- Trackball driven annotation arrows
- Scanning parameters
- Active mode display

Tissue Imaging

General

- Variable transmit frequencies for resolution/penetration optimization
- Variable Acquisition Zoom concentrates all image acquisition power into selected Region of Interest ROI)
- Proprietary Confocal Imaging™
- Variable Contour filtering for edge enhancement
- Depth range up to 30 cm, transducer specific
- Selectable grayscale parameters: Gain, Reject,

- Compress can be adjusted in Live, Digital Replay[™] or image clipboard recall
- Predefined TGC curves require minimal operator interaction application specific

2D-mode

- Sector tilt capability
- Frame Rate in excess of 600 fps, depending on transducer, settings and applications
- Coded Octave Imaging[™]
 2nd generation harmonic tissue imaging providing improved lateral and contrast resolution over conventional imaging.

 Features reduced noise and improved wall definition. COI™ gives improved axial resolution without sacrificing frame rate, making it the tissue modality of choice for all patient groups.
- Confocal Imaging[™] allows for multiple focal zones over range of view and a high vector density, probes dependent.
- Variable image width: a reduction either increases frame rate or increases the number of focal zones while maintaining the frame rate, application dependent
- L/R and Up/Down invert, in live, Digital Replay[™] or image clipboard recall
- Digital Replay[™] for retrospective review or automatic looping of images, allowing for adjustment of parameters such as gain, color, reject, Anatomical M-Mode (optional), persistence and replay speed.
- Data Dependent Processing[™] performs temporal

- processing which reduces random noise but leaves motion of significant tissue structures largely unaffected. Can be adjusted even in Digital Replay™
- Colorized 2D-mode, user selectable in real-time, Digital Replay™

M-mode

- Trackball Steerable M-Mode line available with all imaging transducers, max steering angle is transducer dependent.
- Simultaneous Real Time 2D- and M-mode.
- M-mode PRF 1 kHz, all image data acquired are combined to give high quality recording regardless of display scroll speed.
- Digital Replay[™] for retrospective review of spectral data
- 1/3 2/3, 2/3 1/3, 1/2 1/2, side-by-side or top-bottom duplex display formats. Can be adjusted in Live or Digital Replay™.
- Selectable horizontal scroll speed:

 2, 4, 8, 16 seconds across display.

 Can be adjusted in Live or Digital Replay™.

Color Doppler

General

- Steerable Color Doppler available with all imaging transducers, max steering angle is transducer dependent
- Trackball-controlled ROI
- Removal of color map

- from the tissue during Digital Replay™
- Digital Replay[™] for retrospective review of Color M-mode data allowing for adjustment of parameters such as encoding principle, Color Priority and Color Gain even on frozen data
- Mosaic and variance maps to delineate disturbed flow and high velocity jets, user selectable in Digital Replay[™] and image clipboard recall
- PRF settings, user selectable
- Advanced Regression
 Wall Filter gives efficient
 suppression of wall clutter
- For each encoding principle multiple color maps can be selected, in live and Digital Replay™
- More than 65,000 simultaneous colors processed, providing a smooth display two-dimensional color maps containing a multitude of color hues
- Color Invert, user selectable in Live and Digital Replay™
- Variable color baseline, user selectable in Live & Digital Replay™
- Multivariate Color Priority function gives reliable delineation of disturbed flows even across bright areas of the 2D-mode image
- Selection of color maps
- Color Doppler freq. can be changed independently from 2D for optimal flow

Color Doppler Imaging

- Frame Rate in excess of 100 fps, depending on transducer and settings
- Variable ROI size in width and depth
- Very high digital signal processing power, maintaining high frame rates with large ROIs even for very low PRF settings
- Advanced Regression Wall Filter
- User selectable Radial and Lateral Averaging for reduction of statistical uncertainty in the color velocity and variance estimates
- Data Dependent Processing[™] (DDP) performs temporal processing and display smoothing with reduced possibility for loss of transient events of hemodynamic significance.
- Digital Replay[™] for retrospective review or automatic looping of color images, allowing for adjustment of parameters such as DDP, encoding principle, baseline shift, color maps, color priority and color gain even on frozen/recalled data
- Application dependent Multivariate Motion Discriminator reduces flash artifacts
- Same controls and functions available as in standard 2D color Doppler
- Dedicated coronary flow application

Color Angio (Color Intensity Imaging)

 Angle independent mode for visualization of small vessels with increased sensitivity compared to standard color flow

Color M-mode

- Variable ROI size, user selectable
- User selectable Radial Averaging for reduction of statistical uncertainty in the color velocity and variance estimates
- Selectable horizontal scroll speed: 1, 2, 4, 8, 16 seconds across display.
 Can be adjusted during Live, Digital Replay™ or image clipboard recall.
- Real-time 2D image while in color M-mode
- Same controls and functions available as in standard 2D color Doppler

Spectral Doppler

General

- Operates in PW, HPRF, and CW modes
- Trackball Steerable Doppler available with all imaging transducers, max steering angle is transducer dependent
- Selectable Doppler frequency for better optimization
- High-Quality Real Time Duplex or Triplex operation in all Doppler modes, CW and PW and for all velocity settings
- Frame Rate control for optimized use of acquisition power between

- spectrum, 2D, and Color Doppler modes in duplex or triplex modes
- Very fast and flexible spectrum analysis with an equivalent DFT rate of 0.2 ms
- Dynamic Gain Compensation[™] for display of flows with varying signal strengths over the cardiac cycle and improved ease-of-use
- Dynamic Reject[™] gives consistent suppression of background, user selectable, in real-time, Digital Replay[™] or image clipboard recall
- Digital Replay[™] for retrospective review of spectral Doppler data.
- 1/3 2/3, 2/3 1/3, 1/2 1/2 duplex display formats, side-by-side or top-bottom. Can be adjusted in Live or Digital Replay™.
- Selectable horizontal scroll speed:
- 1, 2, 4, 8, 16 seconds across display. Can be adjusted in Live or Digital Replay™.
- Adjustable spectral Doppler display parameters: Gain, Reject, Compress, color maps, can be adjusted in Live or Digital Replay™
- User adjustable baseline shift, in Live, Digital Replay[™] and image clipboard recall
- Adjustable velocity scale
- Wall filters with range 10 -2000 Hz (velocity scale dependent)
- Angle correction with automatic adjustment of velocity scale, in Live,
 Digital Replay™ and image clipboard recall

- Stereo speakers mounted in the front panel
- Display annotations of frequency, mode, scales, Nyquist limit, wall filter setting, angle correction, acoustic power indices.

PW / HPRF Doppler

- Automatic HPRF Doppler maintains its sensitivity even for shallow depths and with the highest PRFs
- Digital Velocity Tracking Doppler[™] employs processing in range and time for high quality spectral displays
- Frequency Over-range control allows analysis and display of narrowband velocities exceeding the Nyquist limit.
- Adjustable sample volume size of 1-20 mm (transducer dependent).
- Maximum sample volume depth 30 cm.

CW Doppler

 Highly sensitive steerable CW available with all phased array probes.

Physiological Traces

- Up to 4 traces display simultaneously.
- ECG trigger.
- High-resolution display of the following traces:
 ECG, Respiration, Pressure, Phono.

Analysis Program

· Bodymark icons for loca-

- tion and position of transducer
- Cardiac calculation package including extensive measurements, and display of multiple repeated measurements.
- Vascular measurements package
- Measurements assignable to report generator
- Doppler auto trace function with automatic calculations
- Possibility of performing Measure and Analysis on video playback
- User assignable parameters

User Interface

- Easy-to-learn user interface with intelligent keyboard
- Front Panel with assignable rotaries and push buttons for primary controls, application specific
- Application specific secondary controls available through slidebars operated by paddles
- Slide pot TGC curve with 8 pots
- Overall gain for 2D-mode, Depth and Zoom Span on dedicated rotaries
- Digital harvesting of images and loops into Image Clipboard
- Patient Browser screen for registration of demographic data and quick review of Image Clipboard contents
- Fully programmable user presets for probe/application default settings
- Support for international (European) keyboard character sets (ISO 8859)

Image Memory

- 2D, CFM or TVI data at maximum framerate may be reviewed by scrolling or by running cineloops.
- "Image Clipboard" for stamp-size storage and review of stored images and loops.
- Built-in patient archive with images/loops, patient information and measurements
- Internal archive can be exported to Removable Image Storage through Magneto-Optical Disk of EchoPAC™.
- Internal hard-disk: storing Programs, Application defaults, Ultrasound Images and patient archive.
- All ultrasound data storage is digital RF data based, allowing to change gain, baseline, color maps, sweepspeeds etc., for recalled images and loops.

Advanced Options

Compound Imaging

Real-time Compound Imaging mode with linear arrays for improved delineation of curved structures and speckle reduction without loss of any image resolution.

Anatomical M-mode™

- M-mode generated from the cursor independent from the axial plane, can be activated from Digital Replay™ or image clipboard recall
- M & A Capability

Tissue Velocity Imaging[™]

- Myocardial Doppler Imaging with color overlay on tissue image
- Digital Velocity profile analysis allowing velocity and time quantification at any point and at any time during the heart cycle from Digital Replay™ or image clipboard recall.
- Quantitative Segmental wall motion analysis can be obtained with use of Anatomical M-mode, from Digital Replay™ or image clipboard recall
- The velocity of all myocardial segments after entire heart cycle can be displayed in one single image.
- Tissue color overlay can be removed to show just the 2D image, still retaining the tissue velocity information.
- Tissue Tracking: real time integrated TVI display.

Contrast Option*

- Myocardial Contrast (MC) Application:
 - Based on 2 nd harmonic Imaging, optimized for detection of contrast specific signals within the myocardium in ECG-triggered mode
 - Available in 2D Tissue harmonic imaging and Color Angio
 - Probe dependent:2.5 MHz FPA,3.5MHz FPA and5.0 MHz MPTE
- Left Ventricular Contrast (LVC):

- Based on 2nd harmonic imaging, optimized for LV edge detection and LV thrombus detection.
- Probe dependent:
 2.5 MHz FPA, 3.5
 MHz FPA and 5.0
 MHz MPTE.

Digital RF (Radio Frequency) output (Research option)

- Features acquisition and export of ultrasound RF data
- Special EchoPAC[™] module: EchoResearch available to translate to
 MATLAB® file format, allowing for complex and
 extensive signal processing to the imported data
- Probe dependent
- Echo densitometry
- RF Spectroscopy

Biopsy Support

- Biopsy needle probe attachment for the following transducers:
 - 3.5 MHz Convex Array
 - 10.0 MHz Linear Array
- On-screen biopsy guideline display

Continuous capture option

- Small rodents option
- Special applications option to optimize performance when scanning small animals. For high frequency probes.

EchoPAC™

 EchoPAC[™] adds postprocessing and data archiving capabilities to System FiVe[™]. It takes special advantage of the easy access to ultrasound raw data provided

- by the system.
- EchoPAC[™] is available as a fully integrated module into the ultrasound system or as a standalone review station
- EchoPAC[™] captures scan data from basic ultrasound application such as adult and pediatric cardiac, stress echo echo-cardiography, transesophageal and intra-operative imaging.
- The software is available as application related modules:

Echo Basic:

- Raw data acquisition at original frame rate and resolution from scanner or video grabbing image capture and storage.
- Complete patient and image archive database.
- Advanced Post processing analysis.
- Anatomical M-Mode
- Complete M&A and Reporting capabilities
- Clinical data, PICT or JPEG files from one or several studies can be stored into a common repository. The files may then be loaded into the computer memory for quick recall during presentation or peer-reviews.
- DICOM Media Interchange: storage to removable media and import from removable media of DICOM images (single or multiframe).
- Magneto-optical disk drive.

Echo Stress

 Advanced and flexible stress-echo capabilities

EchoResearch

- Advanced analysis features such as:
 - -Quantitative TVI
 - -RF analysis
 - -3D casting Echo3D (research option)
- Post-processing of scan data captured with an attached position sensing device for 3D scanning
- Volume visualization and measurements
- 3D color flow visualization.

Echo Client

- Enables System FiVe for communication with a central database.
- Optional HL7 Communicator for export and import of data going to or coming from HIS.

Echo Contrast

- This module lets the user perform analysis and post processing on Contrast Harmonic images (2D and Angio data) such as:
 - -Time-Intensity analysis (densitometry).
 - -Backscatter analysis
 - -Baseline Image Substraction.
 - -Arbitrary straight Anatomical M-Mode
 - -Arbitrary curved Anatomical M-Mode
 - -Caliper
 - -Area

Echo DICOM

 Enables the user to store DICOM images (single and multiframe) and verify connection to any DI-COM device

Echo Import

 Enables EchoPAC[™] to read, display and import images and measurements from MO-disks from HP Sonos ultrasound systems.

PDF Creator

 enables user to create PDF (Portable Document Format) reports directly from EchoPAC.

Peripherals (options)

- Integrated VCR controls (VCR peripheral option)
- Recommended VCR: Sony 9500.
- Hard-copy devices: Any Video-based device using Composite, S-Video or RGB format PAL video.

Cart

- Low rolling resistance casters
- Brakes on front casters
- Direction of rear casters can be locked for improved maneuverability
- Intelligent Fans: revolution speed is automatically adapted to the system's internal operating temperature, reducing audible fan noise

Indications for use

System FiVe is intended for the forllowing applications:

Abdominal, Cardiac, Small Organ, Pediatric, Fetal, Intra-Operative, Transe-sophageal, Transvaginal, Transrectal, Peripheral Vascular, Neonatal and Adult Cephalic.

Contraindication:

"System FiVe is not intended for ophthalmic use or any use causing the acoustic beam to pass through the eye."

CAUTION:

Federal law restricts this device to sale by or on the order of a physician.

Name: CLA 3.5MHz	Type: Curved Linear Array probe		Part Number: KK 100004
System Five Application	System Five	System FiveUS	Note
Abdominal	у	у	Not intended for fetal use
Aorto-Iliac	у	у	Not intended for fetal use
Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	у	Not intended for fetal use
Fetal Heart	у	у	
Obstetrics	у	у	
Pelvic	у	у	Not intended for fetal use
Renal	у	у	Not intended for fetal use
RF (Research Option)	у	У	Not intended for fetal use

Name: CLA 5.0MHz	Type: Curved Linear Array probe		Part Number: KN 100008
System Five Application	System Five	System FiveUS	Note
Abdominal	у	у	Not intended for fetal use
Aorto-Iliac	у	у	Not intended for fetal use
Fetal Heart	у	У	
Obstetrics	у	у	
Pelvic	у	у	Not intended for fetal use
Renal	у	у	Not intended for fetal use

Name: ECLA 6.25MHz	Type: Curved Linear Array (Endocavity) probe		Part Number: KQ 100002
System Five Application	System Five	System FiveUS	Note
Obstetrics	у	у	
Pelvic	у	у	Not intended for fetal use
Prostate	у	у	Not intended for fetal use

Name: FLA 5.0MHz	Type: Flat Linear Array probe		Part Number: KN 100003
System Five Application	System Five	System Five US	Note
Carotid	у	у	Not intended for fetal use
Limbs-Arterial	у	у	Not intended for fetal use
Limbs-Veneous	у	у	Not intended for fetal use
Superficial	у	у	Not intended for fetal use
Breast	У	у	Not intended for fetal use

Name: FLA 7.5MHz	Type: Flat Linear Array probe		Part Number: KT 100001
System Five Application	System Five	System Five US	Note
Breast	у	n	Not intended for fetal use
Carotid	у	n	Not intended for fetal use
Limbs-Arterial	у	n	Not intended for fetal use
Limbs-Veneous	у	n	Not intended for fetal use
Long acquisition	у	n	Not intended for fetal use
RF (Research Option)	у	n	Not intended for fetal use
Superficial	у	n	Not intended for fetal use

Name: FLA10MHz	Type: Flat Linear Array probe		Part Number: KW 100001
System Five Application	System Five	System Five US	Note
Breast	у	у	Not intended for fetal use
Carotid	у	у	Not intended for fetal use
Limbs-Arterial	у	у	Not intended for fetal use
Limbs-Veneous	у	у	Not intended for fetal use
Long acquisition	у	у	Not intended for fetal use
RF (Research Option)	у	у	Not intended for fetal use
Superficial	у	у	Not intended for fetal use

Name: FPA 2.5MHz	Type: Flat Phased Array probe		Part Number: KG 100001/A
System Five Application	System Five	System Five US	Note
Abdominal	у	у	Not intended for fetal use
Cardiac	у	у	Not intended for fetal use
MC Contrast	у	у	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
RF (Research Option)	у	у	Not intended for fetal use
Digital Stress	у	у	Not intended for fetal use
Transcranial	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Stress	у	у	Not intended for fetal use

Name: FPA 2.5MHz	Type: Flat Phased Array probe		Part Number: KG 100001/B
System Five Application	System Five	System FiveUS	Note
Abdominal	у	У	Not intended for fetal use
Cardiac	у	у	Not intended for fetal use
MC Contrast	у	у	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	у	Not intended for fetal use
Coronary	у	У	Not intended for fetal use
HFR	у	у	Not intended for fetal use
RF (Research Option)	у	у	Not intended for fetal use
Digital Stress	у	У	Not intended for fetal use
Transcranial	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Stress	у	у	Not intended for fetal use

Name: FPA 2.5MHz	Type: Flat Phased Array probe		Part Number: KG 100001/C
System Five Application	System Five	System FiveUS	Note
Abdominal	у	у	Not intended for fetal use
Cardiac	у	у	Not intended for fetal use
MC Contrast	у	у	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
RF (Research Option)	у	у	Not intended for fetal use
Digital Stress	у	у	Not intended for fetal use
Transcranial	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Stress	у	У	Not intended for fetal use

Name: FPA 3.5MHz	Type: Flat Phas	ed Array probe	Part Number: KK 100001/A
System Five Application	System Five	System Five US	Note
Abdominal	у	у	Not intended for fetal use
Cardiac	у	У	Not intended for fetal use
MC Contrast	у	У	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	У	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
RF (Research Option)	у	У	Not intended for fetal use
Digital Stress	у	У	Not intended for fetal use
TVI	у	У	Not intended for fetal use
Stress	у	у	Not intended for fetal use

Name: FPA 3.5MHz	Type:Flat Phased Array probe		Part Number: KK 100001/BC
System Five Application	System Five	System Five US	Note
Abdominal	У	у	Not intended for fetal use
Cardiac	у	у	Not intended for fetal use
MC Contrast	у	у	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
RF (Research Option)	у	у	Not intended for fetal use
Digital Stress	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Stress	у	у	Not intended for fetal use

Name: FPA 3.5MHz	Type: Flat Phased Array probe		Part Number: KK 100005
System Five Application	System Five	System FiveUS	Note
Abdominal	У	у	Not intended for fetal use
Cardiac	у	у	Not intended for fetal use
MC Contrast	у	у	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
Octave RF (Research Option)	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
RF (Research Option)	у	у	Not intended for fetal use
Digital Stress	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Stress	у	у	Not intended for fetal use

Name: FPA 5MHz	Type: Flat Phased Array probe		Part Number: KN 100001
System Five Application	System Five	System FiveUS	Note
Abdominal	у	у	Not intended for fetal use
Cardiac	у	У	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
Fetal Heart	у	у	
HFR	у	у	Not intended for fetal use
Neonatal Head	у	у	Not intended for fetal use
Pediatric heart	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Obstetrics	у	у	

Name: FPA 5MHz Ped	Type:Flat Phased Array probe		Part Number: KN 100002/A
System Five Application	System Five.	System Five US	Note
Abdominal	у	n	Not intended for fetal use
Cardiac	у	n	Not intended for fetal use
Coronary	у	n	Not intended for fetal use
HFR	у	n	Not intended for fetal use
Neonatal Head	у	n	Not intended for fetal use
Pediatric heart	у	n	Not intended for fetal use
TVI	у	n	Not intended for fetal use

Name: FPA 5MHz Ped	Type: Flat Phased Array probe		Part Number: KN 100002/B
System Five Application	System Five.	System Five US	Note
Abdominal	у	у	Not intended for fetal use
Cardiac	У	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
Neonatal Head	у	у	Not intended for fetal use
Pediatric heart	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use

Name: FPA 10MHz Ped	Type: Flat Phased Array probe		Part Number: KW100002
System Five Application	System Five	System FiveUS	Note
Cardiac	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use
Pediatric Heart	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
Neonatal Head	у	у	Not intended for fetal use

Name: DOP 2MHz	Type: Doppler probe		Part Number: TE 100024
System Five Application	System Five System FiveUS		Note
Cardiac	у	у	Not intended for fetal use

Name: DOP TC 2MHz	Type : Doppler Transcranial probe		Part Number: KE 100001
System Five Application	System Five System FiveUS		Nice
System Five Application	o,o.o	Cystem 1 11000	Note

Name: DOP 6MHz	Type: Doppler probe		Part Number: TQ 100001
System Five Application	System Five	System FiveUS	Note
Carotid	у	у	Not intended for fetal use

Name: DOP 6MHz	Type: Doppler probe		Part Number: TQ 100002
System Five Application	System Five System FiveUS		Note
Carotid	у	у	Not intended for fetal use

Name: APA 2.5MHz	Type: Annular Array probe		Part Number: TG 100102
System Five Application	System Five System FiveUS		Note
Cardiac	у	у	Not intended for fetal use

Name: APA 3.25MHz	Type: Annular Array probe		Part Number: TK 100104
System Five Application	System Five System FiveUS		Note
Cardiac	у	у	Not intended for fetal use

Name: APA 5MHz	Type: Annular Array probe		Part Number: TN 100119
System Five Application	System Five System FiveUS		Note
Cardiac	у	у	Not intended for fetal use

Name: APA 7.5MHz	Type:Annular Array probe		Part Number: TT 100101
System Five Application	System Five	System FiveUS	Note
Cardiac	у	у	Not intended for fetal use
Carotid	у	у	Not intended for fetal use

Name: APA TE 5MHz	Type: Annular Array Transe- sophageal probe		Part Number: TN 100047
System Five Application	System Five	System FiveUS	Note
Cardiac	V	n	Not intended for fetal use

NameAPA MPTE 5MHz	Type: Annular Array Transe- sophageal (Multiplane)		•		Part Number: TN 100053
System Five Application	System Five. System FiveUS		Note		
Cardiac	у	у	Not intended for fetal use		

Name: APA MPTE Ped	Type : Annular Array Transe-sophageal (Multiplane)		•		Part Number : TN 100065
System Five Application	System Five System FiveUS		Note		
Pediatric heart	у	у	Not intended for fetal use		

Name:PA MPTE 5MHz	Type: Phased Array Transe- sophageal (Multiplane)		Part Number: KN 100006
System Five Application	System Five. PSystem FiveUS		Note
Cardiac	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
MC Contrast	у	у	Not intended for fetal use
LV Contrast	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use

Probe / Application / System overview(Max.Configuration) Cont..d

Name: PA MPTE 5MHz	Type: Phased Array Transe- sophageal (Multiplane)		Part Number: KN 100007/A
System Five Application	System Five US		Note
Cardiac	у	n	Not intended for fetal use
Coronary	у	n	Not intended for fetal use
HFR	у	n	Not intended for fetal use
TVI	у	n	Not intended for fetal use

Name: PA MPTE 5MHz	Type: Phased Array Transe- sophageal (Multiplane)		Part Number: KN 100007/B
System Five Application	System Five US		Note
Cardiac	у	у	Not intended for fetal use
Coronary	у	у	Not intended for fetal use
HFR	у	у	Not intended for fetal use
TVI	у	у	Not intended for fetal use

Name: PA MPTE Ped	Type: Phased Array Transesophageal (Multiplane)		Part Number : KN 100010
System Five Application	System Five System FiveUS		Note
Pediatric heart	у	у	Not intended for fetal use

Options

See page 204 for the options for this product version

Guidelines for Fetal use

Ultrasound Energy Exposure

Ultrasonic energy, propagated via mechanical compressions and rarefactions of the media through which it travels. These compressions and rarefactions happen at the transducer's natural frequency. If the acoustic intensities are great enough, i.e. the compressions and rarefactions are large enough, an effect called cavitation (or micro-cavitation) may occur.

This cavitation can cause physical damage or disruption at the cellular level. No reports of bio-effects caused by ultrasonic energy in the intensity ranges used on System FiVe are documented to this date. This lack of bio-effects not with standing - IT IS PRUDENT TO KEEP ULTRASOUND EXPOSURE AS LOW AS POSSIBLE, within the constraints of getting the data necessary and enough to develop a meaningful and clinical diagnosis.

Fetal Exposure to Ultrasonic Energy

• The fetus is particularly sensitive to cavitation because of, among other factors, its embryological growth and the cell division/differentiation that is constantly happening.

Physical Dimensions

*Size: (With monitor and without peripherals)

Height	Width	Depth
142cm	68.5cm	112cm
55.9 ins	27.0 ins	44.1 ins

Weight without Monitor: System Five196Kg (432 lbs).+Computer +10Kg

Electrical Specifications

Power requirements:

P/N:	Voltage	Tolerances	Current	Frequency
FB000226	230-240VAC	±10%	8 A	50-60 Hz
FB000228	100VAC	±10%	13,5 A	50-60 Hz
FB000227	110-120VAC	±5%	13,2 A	50-60 Hz

REM

Power requirements:

P/N:	Voltage	Tolerances	Current	Frequency
FB000717	230VAC	±10%	8 A	50-60 Hz
FB000715	115VAC	±5%	13,2 A	50-60 Hz
FB000718*	230VAC	±10%	8 A	50-60 Hz
FB000716*	115VAC	±5%	13,2 A	50-60 Hz

^{*+}EchoPAC.

WARNING!

Be absolutely sure that your power source fits the power requirements of your system.

Radiated audio noise level:

Less than 70dB(A) according to DIN 45635 - 19 - 01 - KL2

Environmental conditions

SYSTEMS:				
Operating temperature	10 - 35 deg C (50 - 95 deg F)			
Storage temperature	-20 - 50 deg C (- 4 - 122 deg F)			
Humidity	< 90% non-condensing			
Heath dissipation	4500 BTU pr hour			

PROBES:					
	Electronic	TE/MPTE	PAMPTE	APAT	
Operation	10 - 40	15 - 41,3	15 - 42,7	10 - 35	
Storage	-20 - 50	0 - 45	-20 - 50	0 - 50	

(all temperatures in deg C, conversion to deg F = deg $C^*(9/5) + 32$)

WARNING:

SYSTEMS AND ELECTRONIC PROBES ARE DESIGNED FOR STORAGE TEMPERATURES OF -20 TO + 50 deg C. WHEN EXPOSED TO LARGE TEMPERATURE VARIATIONS, THE PRODUCT SHOULD BE KEPT IN ROOM TEMPERATURE FOR 10 HOURS BEFORE USE.

MECHANICAL PROBES MAY BE STORED BETWEEN ZERO AND +50 deg C DUE TO CONTENTS OF LIQUID. FACTORY PACKAGING ALLOWS TRANSPORTATION FOR SHORTER PERIODS (LESS THAN 6 HOURS) AT TEMPEREATURES DOWN TO -20 deg C.

MECHANICAL PROBES WITH AIR BUBBLES, A RESULT OF LOW TEMPERATURE STORAGE/TRANSPORTATION, SHOULD BE KEPT IN AN UPRIGHT POSITION UNDER TEMPERATURES BETWEEN + 20 and + 40 deg C UNTIL THE AIR BUBBLES DISSAPEAR.

Specifications are subject to change without notice.

Measurement Accuracy

General

When using the Measurement and Analysis (M&A) package, it is important to keep in mind the different aspects that affect the accuracy of the measurements. These include acoustical properties, patient echogenicity, measurement tools and algorithms, scanner setup (especially Field-of-view or Range settings), probe type used, and operator inputs.

Sources of error

Image Quality

The accuracy of each measurement is highly dependent on image quality. Image quality is highly dependent on system design, operator variability, and patient echogenicity. The operator variability and patient echogenicity are independent of the ultrasound system.

Operator variability

One of the largest potential sources of error is operator variability. A skilled operator can reduce this by optimizing the image quality for each type of measurement. Clear identification of structures, good probe alignment and correct cursor placement is important. Because of pixel resolution, the accuracy of a measurement decreases with decreasing distance on screen. Therefore it is important when scaling the object on the screen to avoid measuring objects that are too small. See also "Optimizing Measurement Accuracy" below for recommended techniques.

Image measurement

The accuracy in lateral direction is limited by the beam width and the beam positioning (especially mechanical positioning for APA probes). The radial accuracy is mainly limited by the acoustic pulse length. Best accuracy is obtained by measuring distances along the beam axis.

Doppler alignment

Errors in velocity measurements increase with the cosine of the angle between the measured flow and the ultrasound beam. For example, an alignment error of 20 degrees, will give a 6% under-estimation of the velocities, while an error of 40 degrees will cause the under-estimation to be 24%. Optimize transducer position to align the beam with the flow direction. If alignment is not possible, you may use the ANgle CORRection control to compensate if the flow direction is known.

Measurement Accuracy

Screen pixel resolution

The display screen is composed of an array of square picture elements (pixels). The smallest resolvable unit is +/- 1pixel. This pixel error is only significant when measuring short distances on the screen. By observing good scanning practices, the settings of the field of view should be such that the measured distance covers a relatively large portion of the screen. When such scaling is impossible, the pixel error may come into play. The pixel error is +/- 0.2 % (or better) of the full ultrasound area in the User Screen.

Algorithms

Some formulae used in clinical calculations are based on assumptions or approximations. For example the volume calculations from 2D or M-mode assume a certain, 'ideal' shape of the heart chamber, while the actual shape can vary quite much between individuals. Also, formulae taking several "raw" measurements as inputs are prone to increased errors, depending on the combination of input variable accuracies. For example, the Cardiac Output formula from Doppler is sensitive to errors in the entered Diameter, since this will be squared in the formula.

Speed of Sound in Tissue

The average value 1540 meters / second is used for all calculations. Depending on the tissue structures, this generalization may give errors from 2% (typical) to 5% (much fatty tissue layers present).

Optimizing Measurement Accuracy

Probe selection

Select a transducer appropriate for the application, and optimize the transducer frequencies used. Higher imaging frequencies give better resolution, but less penetration than lower frequencies. Lower Doppler frequencies can measure higher max velocities, and at greater depths, but with less velocity resolution than higher Doppler frequencies.

Field of View

All display modes should be adjusted so that the area of interest covers as large portion of the display as possible. Use DEPTH, ANGLE, ZOOM, HORizontal SWEEP and VELOCITY controls to optimize the different modes.

Cursor Placement

All measurements are dependent on the accuracy of their "input" data. Consistency and precision in placing cursors and drawing traces correctly on the images are important.

Please notice that on curved and linear probes system sensitivity is optimized if cursor placement near the array edges is avoided.

Measurement Accuracy

Measurement Uncertainties

The accuracy percentages reported below are based on data taken with optimum control setings, using calibrated phantoms and test equipment. The tables below does not include sources of error other than system uncertainties, measured under these conditions.

The calibration is done for the measurement primitives: Distance, Time and Velocity. All measurements are based on these, and mathematical formulae are used to calculate the expected accuracy for derived masurements and calculations.

Independent sources of uncertainty contribute to a total uncertainty by a RMS (Root Mean Square) combination of the sources.

Please refer to the discussions above regarding measurement accuracy and sources of error when reading the tables below.

.

Table 1: Cardiac Measurement Uncertainties

Measurement	Typ. Range	Accuracy	Comments
2D			
Distance	1 - 10 cm	7%	Typical range 1 to 10 cm
	> 10 cm	5%	
Area	1 - 300 cm ²	10%	Typical range 1 to 50 cm ²
	> 300 cm ²	7%	
Circumference	6 - 10 cm	10%	Typical Range: 6 - 20 cm
	> 10 cm	7%	
Volume	20 - 150 cm ³	15 - 35%	Length area method
	20 - 150 cm ³	12 - 20%	Method of discs
M-mode			
Calipers			
Distance	1 - 10 cm	5 - 7%	
dt	0.5 - 1.5 s	0.5% - 10%	At low and high sweep rate, resp.
dD/dt	2 - 14 cm/s	5 - 15%	
Left Ventricular study			
Left Ventricular Ejection Fraction	0.4 - 0.7	15 - 20%	
Fractional Shortening	25 - 50%	7 - 10%	
Right Ventricular study			
Right Ventricular Dimension diastole/systole	1 - 10 cm	5 - 7%	

Table 1: Cardiac Measurement Uncertainties

Measurement	Typ. Range	Accuracy	Comments
Left Atrium-Aortic open- ing study			
Mitral Valve Excursion	1 - 10 cm	5 - 7%	
Mitral Valve EF slope	2 - 14 cm/s	5 - 15%	
Spectrum			
Calipers			
Velocity (v1 - v2)	0.5 - 1.0 m/s	6%	
dt	0.5 - 1.5 s	0.5% - 10%	At low and high sweep rate, resp.
dv	0 - 1.0 m/s	8.5%	Accuracy of dv decreases when v1 and v2 approach each other
dv/dt	0.1 - 10 m/s ²	8 - 14%	
P (pressure gradient)	40 - 200 mmHg	12 - 20%	Simplified Bernoulli equation
Envelope Tracing			
Vmax	0.5 - 1.0 m/s	6%	
Pmax	0.1 - 10 m/s ²	12 - 20%	
Vmean	0 - 1.0 m/s	6 - 12%	
Pmean	60 - 180 mmHg	12 - 16%	
Velocity Time Integral (VTI)	8 - 20 cm	6 - 10%	
Heart Rate	40 - 200 BPM	0.5 - 10%	
Cardiac Output	3.0 - 6.0 l/min	14 - 25%	The accuracy of the manually entered diameter is significant since the value is squared in the equation
Pressure Half-Time (PHT)	40 - 500 ms	6 - 12%	Accuracy increases with the distance between the two points
Derived Measure- ments displayed in Report			
M-mode derived			
LV Ejection Fraction	0.4 - 0.7	15 - 20%	
Fractional Shortening	25 - 50%	7 - 10%	
LA/AO Ratio	1.2 - 1.7	7 - 14%	
Spectrum derived			
Mitral Valve Area	0.5 - 5.0 cm ²	6 - 12%	
Mitral Valve Area by Continuity Equation	0.5 - 5.0 cm ²	13 - 25%	

Table 1: Cardiac Measurement Uncertainties

Measurement	Typ. Range	Accuracy	Comments
Aortic Valve Area by Continuity Equation	0.5 - 5.0 cm ²	13 - 25%	
Aortic Valve Area from Vmax	0.5 - 3.0 cm ²	13 - 20%	

Table 2: Peripheral/Vascular Measurement Uncertainties

Measurement	Typ. Range	Accuracy	Comments
2D			
Distance	1 - 10 cm	7%	Typical range 1 to 10 cm
	> 10 cm	5%	
Distance Stenosis	20 - 80%	7 - 14%	
Area	5 - 30 cm ²	10%	
Area Stenosis	20 - 80%	15 - 25%	
M-mode			
Distance	1 - 10	5 - 10%	
Spectrum			Alignment error < 20% assumed
Calipers			
Velocity (v1 - v2)	0.2 - 1.5 m/s	6%	
dt	0.5 - 1.5 s	0.5% - 10%	At low and high sweep rate, resp.
dv	0 - 1.0 m/s	8.5%	Accuracy of dv decreases when v1 and v2 approach each other
Resistance Index	0.2 - 0.8	9%	
S/D (Vmax/Vmin)	3 - 7	9%	
Automatic Tracing			Best on a clean, strong Doppler signal
Flow	3 - 5 l/min	13 - 20%	
Manual Tracing	3 - 5 l/min	13 - 20%	
Pulsatility Index (PI)	2 - 10	10%	
TAV ratio	2 - 8	9%	
Automatic Average Velocity Calc.		17%	
Bandwidth		17%	

Chapter H

Symbols

This chapter provides you with an overview of the International symbols that are used by GE Vingmed Ultrasound.

Chapter H shows you:

System Symbols	228
Shipment Symbols	230
Keyboard Symbols	232

System Symbols

Symbols used by Vingmed Sound are described below, together with reference to international publication(s).

No.	Symbol	IEC pub- lication	Description
1	~	417-5032	Alternating current
2		417-5019	Protective earth (ground)
3	<u> </u>	417-5017	Earth (ground)
4	♦	417-5021	Equipotentiality
5	\triangle	348	Attention, consult ACCOMPANYING DOCU- MENTS
6	0	417-5008	Off (power: disconnection from the mains)
7	l	417-5007	On (power: connection to the mains)

No.	Symbol	IEC publication	Description
8	Ö	417-5065	"Off" (only for a part of EQUIPMENT)
9	0	417-5064	"On" (only for a part of EQUIPMENT)
10	†	878-02-02	Type b equipment
11	*	878-02-03	TYPE BF EQUIPMENT
12			TYPE CF EQUIPMENT
13	4	878-03-01	Dangerous voltage
14	*		Freeze
15	*		Screen Cursor

Shipment Symbols

N o.	Symbol	Ref.	Description
1	(5) (1) (2) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		Extract of Symbols from a VINGMED shipment
	GE Vingmad Ultrasound		
	6		
2	THIS SIDE UP		Transport Placeing instructions: THIS SIDE UP
3	Ţ		Fragile, handle with utmost care symbol
4	*		Avoid all wetness symbol
5	DO NOT DROP!		TILT-N-TIP or TILT-WATCH and SHOCK-WATCH positionining area. Tilt-n-tip is not used so often as Tilt-watch. See also 7 and 8.

N o.	Symbol	Ref.	Description
6	HANDLE WITH CARE! FRAGILE MEDICAL ELECTRONIC EQUIPMENT		HANDLE WITH CARE and FRAGILE MEDI- CAL ELECTRONIC EQUIPTMENT warnings text in english
7	INVAICH		TILTWATCH, Detects and reports system- fatal shipment-tilting that may happen during transport. Color dye is visible in the round hole in the middle of the arrow, when this occurs
8			SHOCKWATCH, Detects and reports system-fatal shipment shock-movements that may happen during transport. Color dye is visible in the tube side- view between two arrows, when this occurs.

Keyboard Symbols

Symbol	Meaning	Language
AUDIO	AUDIO ACOUSTIQUE AUDIO AUDIO ÁUDIO AUDIO AUDIO	English French German Italien Portuguese Spanish
HEAD- PHONE	HEADPHONE ÉCOUTEUR KOPFHÖRER CUFFIA HEADPHONE AURICULAR	English French German Italien Portuguese Spanish
ILLUM.	ILLUMINATION ILLUMINATION ABLICHTUNG ILLUMINAZIONE ILUMINAÇÃO ILUMINACIÓN	English French German Italien Portuguese Spanish
INFO	INFORMATION L'cInformation INFORMATIONEN Le INFORMAZIONI INFORMAÇÃO INFORMACIÓN	English French German Italien Portuguese Spanish
	Annotation Annotation Anmerkung Annotazione Anotação Anotación	English French German Italien Portuguese Spanish
HELP	HELP AIDE HILFE AIUTO AJUDA AYUDA	English French German Italien Portuguese Spanish
BIOPSY	BIOPSY BIOPSIE BIOPSIA BIOPSY BIOPSIA	English French German Italien Portuguese Spanish

Symbol	Meaning	Language
BODY MARK	BODY MARK MARQUE DE CORPS KÖRPER Markierung CONTRASSEGNO DEL CORPO MARCA DO CORPO MARCA DEL CUERPO	English French German Italien Portuguese Spanish
TEXT	TEXT TEXTE TEXT TEXT TESTO TEXTO TEXTO	English French German Italien Portuguese Spanish
LINE ERASE	LINE ERASE LA LIGNE EFFACENT ZEILE LÖSCHEN LA RIGA CANCELLA A LINHA APAGA LA LÍNEA BORRA	English French German Italien Portuguese Spanish
PAGE ERASE	PAGE ERASE LA PAGE EFFACENT SEITE LÖSCHEN LA PAGINA CANCELLA A PÁGINA APAGA LA PAGINACIÓN BORRA	English French German Italien Portuguese Spanish
SCREEN CONFIG	SCREEN CONFIG CONFIGURATION D'CÉcran BILDSCHIRM Konfiguration CONFIGURAZIONE DELLO SCHERMO CONFIGURAÇÃO DA TELA CONFIGURACIÓN DE LA PANTALLA	English French German Italien Portuguese Spanish
PHYS. TRACE	PHYSIOLOGICAL TRACE PHYSIOLOGIQUE TRACE PHYSIOLOGISCHE SPUR FISIOLOGICA TRACCIA PHYSIOLOGICAL TRAÇO FISIOLÓGICO RASTRO	English French German Italien Portuguese Spanish
VIDEO PLAY- BACK	VIDEO PLAYBACK VISUEL PLAYBACK VIDEO Playback VIDEO PLAYBACK VIDEO PLAYBACK VIDEO PLAYBACK VIDEO APARATO DE LECTURA	English French German Italien Portuguese Spanish

Symbol	Meaning	Language
ESC	ESCAPE ÉVASION ENTWEICHEN FUGA ESCAPE ESCAPE	English French German Italien Portuguese Spanish
SPLIT SCREEN	SPLIT SCREEN DIVISÉ ÉCRAN AUFGETEILTER BILDSCHIRM SPACCATO SCHERMO RACHADA TELA DIVIDIDA PANTALLA	English French German Italien Portuguese Spanish
SELECT SCREEN	SELECT SCREEN CHOISISSEZ L'CÉcran WÄHLEN SIE BILDSCHIRM AUS SELEZIONARE LO SCHERMO SELECIONE A TELA SELECCIONE LA PANTALLA	English French German Italien Portuguese Spanish
SETUP	SETUP INSTALLATION SETUP MESSA A PUNTO INSTALAÇÃO DISPOSICIÓN	English French German Italien Portuguese Spanish
PROBE	PROBE SONDE SONDE SONDA PONTA DE PROVA PUNTA DE PRUEBA	English French German Italien Portuguese Spanish
APPLICA- TION	APPLICATION APPLICATION ANWENDUNG APPLICAZIONE APLICAÇÃO APLICACIÓN	English French German Italien Portuguese Spanish
PAT.ID.	PATIENT IDENTITY PATIENTE IDENTITÉ GEDULDIGE IDENTITÄT PAZIENTE IDENTITÀ PACIENTE IDENTIDADE PACIENTE IDENTIDAD	English French German Italien Portuguese Spanish

Symbol	Meaning	Language
ADD MODE/ CURSOR	ADD MODE/CURSOR AJOUTEZ MODE/CURSOR FÜGEN SIE MODE/CURSOR HINZU AGGIUNGERE MODE/CURSOR ADICIONE MODE/CURSOR AGREGUE MODE/CURSOR	English French German Italien Portuguese Spanish
PW	PULSED WAVE PULSÉE VAGUE PULSIERTE WELLE PULSATA ONDA PULSADA ONDA PULSADA ONDA	English French German Italien Portuguese Spanish
M-MODE	M-MODE M-MODE M-MODE M-MODE M-MODE M-MODE M-MODE	English French German Italien Portuguese Spanish
2D	2 DIMENSIONAL 2 DIMENSIONNEL 2 DIMENSIONAL 2 DIMENSIONALE 2 DIMENSIONAL 2 DIMENSIONAL	English French German Italien Portuguese Spanish
ACTIVE MODE	ACTIVE MODE ACTIF MODE AKTIVER MODUS ATTIVO MODO ATIVA MODALIDADE ACTIVO MODO	English French German Italien Portuguese Spanish
CW	CONTINUOUS WAVE CONTINUE VAGUE UNUNTERBROCHENE WELLE CONTINUA ONDA CONTÍNUA ONDA CONTINUA ONDA	English French German Italien Portuguese Spanish
CFM	COLOR FLOW MODE MODE D'CÉcoulement DE COULEUR FARBE FLUSS Modus MODO DI FLUSSO DI COLORE MODALIDADE DO FLUXO DA COR MODO DEL FLUJO DEL COLOR	English French German Italien Portuguese Spanish

Symbol	Meaning	Language
GAIN	GAIN GAIN GEWINN GUADAGNO GANHO AUMENTO	English French German Italien Portuguese Spanish
DEPTH	DEPTH PROFONDEUR TIEFE PROFONDITÀ PROFUNDIDADE PROFUNDIDAD	English French German Italien Portuguese Spanish
ZOOM	ZOOM ZOOM ZOOM ZOOM ZOOM ZOOM	English French German Italien Portuguese Spanish
SPLIT SCREEN SELECT	SPLIT SCREEN SELECT ÉCRAN DIVISÉ CHOISI AUFGETEILTER BILDSCHIRM AUSERWÄHLT SCHERMO SPACCATO PRESCELTO TELA RACHADA SELETA PANTALLA DIVIDIDA SELECTA	English French German Italien Portuguese Spanish
2D FREEZE	2D FREEZE 2D GEL 2D FREEZE 2D FREEZE 2D FREEZE 2D FREEZE 2D FREEZE 2D FREEZE 2.O HELADA	English French German Italien Portuguese Spanish
REPORT	REPORT ENREGISTRENT BERICHTEN SEGNALANO RELATÓRIO SEÑALAN	English French German Italien Portuguese Spanish
IMAGE RECALL	IMAGE RECALL RAPPEL D'CImage BILD Rückruf RICHIAMO DI IMMAGINE RECORDAÇÃO DA IMAGEM MEMORIA DE LA IMAGEN	English French German Italien Portuguese Spanish

Symbol	Meaning	Language
VIDEO PREVIEW	VIDEO PREVIEW VISUELLE PRÉVISION VIDEO Vorbetrachtung VIDEO PREVISIONE VIDEO INSPECÇÃO PRÉVIA VIDEO INSPECCIÓN PREVIO	English French German Italien Portuguese Spanish
EchoPAC	EchoPAC EchoPAC EchoPAC EchoPAC EchoPAC EchoPAC EchoPAC	English French German Italien Portuguese Spanish
REC./ PAUSE	REC./PAUSE ENREGISTRENT/PAUSE SATZ/PAUSE REGISTRANO/PAUSA GRAVAM/PAUSA REGISTRAN/PAUSA	English French German Italien Portuguese Spanish
PRINT (Alt)	PRINT (Alternative) Copie (Alternative) Druck (Alternative) Stampa (Alternativa) Cópia (Alternativa) Impresión (Alternativa)	English French German Italien Portuguese Spanish
PRINT	PRINT Copie Druck Stampa Cópia Impresión	English French German Italien Portuguese Spanish
MEAS.	MEASURE MESURE MASS MISURA MEDIDA MEDIDA	English French German Italien Portuguese Spanish
IMAGE SIZE	IMAGE SIZE TAILLE D'CImage BILD Größe FORMATO DI IMMAGINE TAMANHO DA IMAGEM TALLA DE LA IMAGEN	English French German Italien Portuguese Spanish

Symbol	Meaning	Language
FULL FREEZE	FULL FREEZE PLEIN GEL VOLLER FREEZE PIENO FREEZE CHEIO FREEZE LLENA HELADA	English French German Italien Portuguese Spanish
IMAGE STORE	IMAGE STORE MÉMOIRE D'CImage BILD Speicher DEPOSITO DI IMMAGINE LOJA DA IMAGEM ALMACÉN DE LA IMAGEN	English French German Italien Portuguese Spanish
CALIPER	CALIPER ÉTRIER SCHIEBER COMPASSO COMPASSO DE CALIBRE CALIBRADOR	English French German Italien Portuguese Spanish

Chapter L

Index

Numerics	2D Color sector 82
2D	Depth 64
Adjust depth 64	Echo brightness 51
Color Flow 81	TGC 65
FREEZE 132	Adjustments 51
FREEZE key 50	AIUM statement on clinical safety 189
GAIN 51	AIUM Statement on Mammalian in Vivo UI
Key 50	trasonic Biological Effects 189
Mode 56	Analog input 47
Color Flow 81	Angio 95
Default Start 56	Angle 58
Picture Controls 57	Annotations 70
2D Calibration	Add a menu Arrow 71
VCR 143	Configuration 74
2D Color Flow	Enter a text abbreviation 72
Disturbed Flow Indicator 94	Erase a text entry 73
How Color Flow Mapping Works 90 Spectral Estimate 92	Annular Array probe 214 , 215 , 216
2D Mode 56	Annular Array Transesophageal (Multi plane) 216, 217
Α	Annular Array Transesophageal probe 216
Abdominal 208 , 210 , 211 , 212 , 213 , 214	Aorto-Iliac 208
Acquisition	APA 2.5MHz 215
Mode handling 67	APA 3.25MHz 215
Acqusition	APA 5MHz 216
Windows area 49	APA 7.5MHz 216
Active Mode 66	APA MPTE Ped 216
GAIN 51	APA TE 5MHz 216
Active Mode key 50	APAT probe 47
Change Parameters 68	Application menu 7
Active Probe	• •
Selection 7	Assigned Keys 52
ADD	Rotaries 52
Color Flow 50	retailed 92
CURSOR 50	В
MODE 50	B/W Video output 47
Modes 67	Baseline 88, 113
Non-displayed mode 50	Basic mode adjustments 51
Screen cursor 50	B-Color maps 58
ADD CURSOR	•
Key 50	Biopsy option 126 Bracket and Needle Guide mounting
ADD MODE	(3MHz CLA) 128
Key 50	Determine needle length 130
Adjust	Intended for use 126

According to the control of the cont

Chapter L - Index

® GE Vingmed Ultrasound

Bladder Volume M&A 163	Printers 47		
Body mark	Color M-Mode 104 , 105		
Move 78	Assignables 105		
Rotate probe indicator 79	FULL FREEZE 106		
Select 77	Screen functions 105, 106		
Body Marks 76	Communication 48		
Breast 209	COMP IN Connector 23		
C	COMP OUT Connector 23		
C	Complete and store		
Calibrate	2D Area measurements 138		
2D VCR 143	Composit Video output 47		
Calibration	Compound 80		
VCR data 143	Compress 59		
Calibration Marker 152	Configuration		
CALIPER 132	Annotations 74		
Cardiac 210, 211, 212, 213, 214, 215, 216,	VCR 33		
217	Configuration & Test 34		
Cardiac Acquisition	Connect		
Formulae 153 Parameters 157	APAT Probes 4		
	Doppler Probes 4		
Cardiovascular Acquisition Formulae 180	Headphone 24		
	Phased Array Probes 4 , 6 Power cable 2		
Care,Cleaning etc. 184	Probes 6		
Carotid 209, 215	Connectors		
Carotid Angle Correction 110	Trace sources 16		
CAUTION Decod Probac 4	Contour 60		
Phased Probes 4	Contrast (option) 208		
CAUTION and WARNING labels 193	` . ,		
CFM key 50	Contrast Triggering 36		
Change	Contract Page 149		
Split screen view 107	Control Panel 48		
Change APAT probes At Cable end 5	Re-programmable Rotaries & keys 58		
	Control panel lamp 185		
Choose active mode 68	Controls		
Cineloop 58	VCR		
CLA 3.5MHz 208	116		
CLA 5.0MHz 208	Controls effecting Acoustic Output 221		
Cleaning	Coronary 210 , 211 , 212 , 213 , 214 , 216 , 217		
Gel stains 184	CPU RS232 23		
Probes 185 The System 184	Curved Linear Array (Endocavity) probe		
•	208		
Cleaning with Water 184	Curved Linear Array probe 208		
Color Flow Mapping 81	CW PW key 50		
Map construction 91	OVVII VV NGY JU		
Map selection 84	D		
Menu 84	Date & Time		

Setup 31	Trigging Key 12
DDP Function 59	Warning 193
Depth	ECG connection
2D sector 51	Screen changes 9
Control 64	ECG Triggering
Description	Setup 36
Color Flow Mapping 90	User interface Setup 36
Diagnostic Tests 35	EchoPAC 23
Diff ON/OFF 60	EchoPAC/Clipboard
Digital Stress 210, 211, 212, 213	Setup 32
Dimensions 219	ECLA 6 2.5MHz 208
Disturbed Flow Indicator	Electrical
2D Color Flow 94	Power Safety 188
DOP 2MHz 215	Shock Hazards 188
DOP 6MHz 215	Specifications 219
DOP TC 2MHz 215	Electrical Specifications 219
DOPPL. key 50	Environmental Conditions 220
Doppler 108	ETHERNET
Control descriptions 114	Connector 23, 47
Duplex Display 109	Examples
Mode 108	M&A 132
Probe 47	Explosion Hazards 188
Doppler Assignables & Screen commands	Extensive cleaning 184
FULL FREEZE 115	External I/O
Live mode 113	Analog input 47
Doppler probe 215	Color printers 47
Doppler Transcranial probe 215	Composit video input 47
Draw	Composit Video output 47 ECG TRIG 47
First distance measurement 133	Ethernet 47
Duplex	RS232 47
M-Mode	Socket identifications 23
Elements on display 98	External I/O panel 47
View	SVHS IN 47
M-Mode 97	SVHS OUT 47
Duplex mode 50	External I/O Warning label 193
Dynamic range 60	Ğ
E	F
	Fetal Exposure to Ultrasonic Energy 218
ECG 47	Fetal Heart 208, 213
Electrode placement table 8	FF 116
GAIN Adjustment 11 Harness 8	Find patient 39
Set trigger 1 12	FLA 5.0MHz 209
Set trigger 2 13	FLA 7.5MHz 209
Trace control 10	FLA10MHz 209
TRIG Connector 47	Flat Linear Array probe 209
TRIG OUT Connector 23	Flat Phased Array probe 210, 211, 212
Trig. Buffer Flush 10	TIAL FIIASEU AITAY PIUDE ZIU, ZII, ZIZ

Chapter L - Index

® GE Vingmed Ultrasound

213, 214	Available Probes 4
Flow Indicator	Changing APAT Probe types 6
Disturbed Flow Indicator 94	Lamp function 25
Focus 58	Hip Angle M&A 165
Footswitch 48	HOSPITAL GRADE power source 184
Activity messages 124	Hospital Name Entry 31
Formulae	1
Cardiac M&A 153	1
Cardiovascular M&A 180	I/O 47
OBGYN Calculation Formulas 169	IEC 601-1 (1990)
FPA 10MHz Ped 214	Clause 14 200
FPA 2.5MHz 210 , 211	Illum. 47
FPA 3.5MHz 212 , 213	Lamp connector 47 Variator 47
FPA 5MHz 213	Image
FPA 5MHz Ped 214	Recall 46
Framerate 58	Storage 41
Frequency 58	IMPORTANT
FULL FREEZE 132	POWER control setting 118
G	Improve image quality
GAIN 65	Octave imaging 63
2D 51	Installation 183
ACTIVE MODE 51	Installation & Maintenance 183
GAIN, 2D 51	Instructions for Use
GAIN, ACTIVE MODE 51	Chapter A 1–46
GE Service 35	Chapter B 55 – 116 Chapter C 117
GE VINGMED ULTRASOUND	Chapter D 131 – 181
Safety statement 189	Interface sockets 47
Gel stains	Invert color map 85
Cleaning 184	invoit odidi map oo
GR(aphic)RS232 23	K
Guidelines	Keyboard Symbols
Fetal use 218	Meanings 232
Guidelines for Fetal use 218	Keys and Rotaries 52
Н	L
Halt	Labels
2D mode 50	Symbols used 228
Handle EchoPAC on System Five 120	Lamp connector 47
Hazards 188	Left/Right 58
Headphone 47	Limbs-Arterial 209
Headphone connector 47	Limbs-Veneous 209
Volume control 47	Locate
Headphone connector 47	Power switches 2
HFR 210, 211, 212, 213, 214, 216, 217	Location setup 31
HINT	Long acquisition 209
Active Probe choice 6	Ŭ i

Loudspeakers 48	Neonatal Head 213, 214
Low Velocity Reject 83	New Exam 39
Lower assign panel 52	0
Lower Front End panel 47	0
Probe parking socket 47	OBGYN M&A 167
Three Phased Array probes 47	Calculation Formulas 169
LV Contrast 210, 211, 212, 213, 216	Obstetrics 208 , 213
M	Octave imaging 62
M&A 131	Octave RF (Research Option) 210, 211,
Find best region of interest 133	212, 213
•	Options 217
M&A Configuration Cardiac 139	Output sockets 47
	Overview
Magneto Optical Disks To Eject 121	Probe/Application/System 208
Mains cable 47	Р
Maintenance 183, 184	PA MPTE Ped 217
*	
MC Contrast 210, 211, 212, 213, 216	Password Access GE Service 35
Measure 2D Area in duplex M-Mode 137	Patent Rights 190
•	Patient I/O 47
MEASUREMENT Key Start M&A 132	Connect ECG harness 8
Measurement Uncertainties 221	Connect other trace sources 16
	ECG 47
Mechanical Safety 188	Phono 47
•	Pressure 47
Memory Replay 69	Respiration 47
Message window 49 System messages 49	Patient ID entry
Warnings 49	Selection 121
M-Mode	Patient ID input 122
Duplex view 97	Peak Velocity Correction 111
M&A 132	Pediatric Heart 214
M-MODE key 50	Pediatric heart 213, 214, 216, 217
Mobility Warnings 193	Pelvic 208
Mode	Phased Array Transesophageal (Multi-
Adjustments 51	plane) 216 , 217
Selection 50	Phono 47
Mode shifting	Physical Dimensions 219
During M&A 140	Physiological trace controls 10
Move	Play Key
Color sector 82	VCR 116
MPTE 5MHz 217	Post processing functions 54
MPTE probes 4	ARROW 54
·	BODY MARK 54
N	CALIPERS 54
Native Language	FULL FREEZE 54
Choice 31	IMAGE RECALL 54

Chapter L - Index

® GE Vingmed Ultrasound

IMAGE SIZE 54	Replay memory
IMAGE STORE 54	Handling 69
LINE ERASE 54	Report 141
MEAS. 54	Respiration 47
PAGE ERASE 54	RF (option) 208, 209, 210, 211, 212, 213
PRINT 54	Rotaries 52
PRINT (ALT.) 54	RS232 47
REC/PAUSE 54 REPORT 54	
TEXT 54	S
VIDEO PREVIEW 54	Sample Volume 105
Power 60	Sample Volume size change 112
ON/OFF switch 47	Scan mode
Requirements 219	Selection 50
Safety 188	Scanning 55 , 117
Power-Up 2	Screen 48
Process 3	Screen commands
Pressure 47	Cardiac
Printer	Live & Full freeze 59
Location 48	Live only 60
Probe	Screen Configuration 26
Menu 7	Function overview 27
Warning 193	Screen Status-Information windows 49
Probe/Application/System overview 208	Screen tools 53
Probes 4, 6	Horizontal Paddle switch 53
APAT 4	Select key 53
Connections 4	SELECT SCREEN 53
Programmable Keys and Rotaries 83	SPLIT SCREEN 53
Prostate 208	Trackball 53
PV M&A	Vertical paddle switch 53
Calculated Ratios 179	Sector Tilt 61
Ellipse measuring 161	Select
Measurements & Ratios 179	User defaults 118
R	Setup 28
	Control Selection 28
Radial averaging 105	Menu Overview 29 Patient I/O & traces 8
Radiated audio noise level 219	
Rear wall 47	Shipments 184
Mains cable 47	Shock Hazards 188
Power ON/OFF 47	Shuttle speed 116
Recall	Side by side viewing 107
Clipboard image 46	Simplex mode 50
User defaults 119	Software versions 35
Region Of Interest	Special Setup functions 123
Handling 86	Spectral Estimate
Reject 59	2D Color Flow 92
Renal 208	Spilling liquids 184
Repeat a measurement 135	Stand by-ON

Switch 47	System Five
Standards used 200	Installation 184
Start	Integrated EchoPAC 120
2D mode 50	SuperVision 120
Angio 95	System Setup
Annotation 70	Start 28
Biopsy Option 129	-
Body mark function 76	Т
Color Flow 81	TGC 51 , 66
Compound 80	Slides 51
CW and PW Doppler Modes 50	The Calibration Marker 152
Default Doppler Mode 50	The Patent Rights 190
Duplex CW Doppler 109	Thyroid Volume M&A 163
Hip Angle M&A 165	Timer Delay 10, 14
M-Mode 50 , 97	Timer Trigging 15
PWDoppler Mode 108	Tissue
The Biopsy Option 129	Imaging
Statements	Octave 62
The safety of Ultrasound 189	Priority 87
Status-Information windows 49	Volume M&A 163
Stop Key	Trace
VCR 116	Info menu 12
Store	Sources 16
Measurement number one 134	Traditional M-Mode 97
Repeated measurement 136	Transcranial 210 , 211 , 215
Stress 210, 211, 212, 213	Trig1Key 12
Super VHS	•
VCR I/O sockets 23	Trig2 Key 13
Superficial	TVI 210, 211, 212, 213, 214, 216, 217
Probe Application 209	U
SuperVision (Option) 120	
SVHS	Ultrasound Energy Exposure 218
IN 23 , 47	Up/Down key 58
OUT 23 , 47	Upper assign panel 52
Switch	Upper Front End panel 47
Active mode 50	APAT probe sockets 47
Symbols used on labels 228	Doppler probe socket 47
System	Standby-ON switch 47
Communications 48	User Defaults
Footswitch 18	Selection 118
I/O 47	Storage 118
Maintenance	User Interface 30
After use 184	Using M&A 131
Weekly 184	V
Messages 49	-
Preparations 1	Variance 89
Probes 4	Variator 47
Safety 188 Screen tools 53	VCR

2D Calibrate 143 2D M&A 145 2D/M-Mode calibration 146 Control Panel Controls 116 M&A 142 M&A Package Application change 151 Record 116 VCR Configuration 33 VCR Play Key 116 VCR Stop key 116 Velocity Range 114 Video Cassette Recorder 48 Playback 116 Volume control 47 Volume M&A Bladder 163 Thyroid **163** Tissue 163 W WARNING External I/O 22 FDA's Prescription Device Label 193 Frequency adjustment 83, 105, 113 Qualified temperatures 220 Sterile cover 128 Sterile cover. 127 Sterile parts 128 **WARNINGS 49, 187** Guidelines for Fetal use 187 Monitors 194 Printers, B/W and Color 197 Safety of Ultrasound 187 System Five 187 System safety 187 The SYSTEM FIVE Patent Rights 187 Video Cassette Recorders 198 **WARNINGS AND CAUTION LABELS 193** Monitors 194 Weekly system maintenance 184 X X-Ray picture

Ζ

ZOOM **51**Continuously variable **51**Step variable **51**

Signal input 23

GE Vingmed Ultrasound
Chapter X - Addendum

ADDENDUM

The following warning on the cover page should be modified from:

"Caution: Federal law restricts this device to sale by or on the order of a physician"

to

Pages 193 to 198 should be removed because they are nearly unreadable.

"Caution for USA only: US Federal law restricts this device to sale by or on the order of a physician"

References to ALARA text (As Low As Reasonably Achieveable) in this manual should be removed.

The following sentence is to be added on page 217:

"All probes sold with System FiVe/Vivid FiVe are type CF, except PAMPTE Adult which is type BF."

The following sentence is to be added on page 200:

"The system meets Class A EMC requirements. Electromagnetic interference between the equipment and other devices may occur."

The following recycling information is to be added after page 193:

LABEL for locating DISASSEMBLY PROCEDURE

The following small sticker label is found on the system rear plate.

DISASSEMBLY PROCEDURE

Please find disassembly procedure attached to the inside of lower right side panel. To access the procedure remove the panel by unscrewing the 4 screws on the rear side of the panel.

The following sentence is added on page 200:

"Circuit diagrams, parts lists etc. will be provided upon request.

The following sentence referring to Packing/Unpacking instructions which accompanies every system, is to be edited into the Warnings Chapter F page 193:

To safeguard the system during all external transportation use the systems original delivery casing with safeguards etc. and follow instructions in the Vivid/System Five Packing/Unpacking procedure P.No: FA050431.

To be inserted into Warnings Chapter F page 193:

The area inside the dotted line shows the patient environment (refer to local regulations and EN 60601-1-1).

In Chapter F - Warnings, the following sentence should be modified:

"When connecting the System FiVe to a non-insolated device, use a Hospital grade isolation transformer for all mains power supply"

to

"When connecting the System FiVe to a non-insolated device, refer to IEC- EN 60601-1-1 must be adhered to (EU) or use a Hospital grade isolation transformer for all mains power supply (USA)."

The following street address should be added to the company data on page 3:

Strandprommenaden 45

Subject: Recommended Liquid Chemical Germicides, To be added to chapter E

In order to provide users with options in choosing a germicide for processing their ultrasound transducer between uses, GE Medical Systems routinely reviews new medical germicides for compatibility with the materials used in the transducer enclosure, cable and lens. Although a necessary step in protecting your patients and employees from disease transmission, liquid chemical germicides must also be selected to minimize potential damage to the transducer.

For cleaning and low-level disinfection, we recommend washing the probe and cable in a warm soap and water solution (<80 F / 27 C), removing all visible residue by scrubbing with a soft bristle brush or gauze and using a mild, nonabrasive soap. Rinse with clean water and wipe dry with a soft towel. Check the instructions provided with each probe so as not to exceed the depth to which the probe can be safely immersed in liquid. Do not immerse the electrical connector. Use additional precautions (e.g., gloves and gown) when decontaminating an infected probe.

Low-level disinfection is intended to destroy vegetative bacteria and lipid or medium sized viruses and is somewhat effective on fungi. This is usually sufficient when scanning on intact surface skin.

For high-level disinfection, it is necessary to soak the thoroughly cleaned probe in a suitable liquid chemical germicide for an extended period. Check the instructions provided with each probe so as not to exceed the depth to which the probe can be safely immersed in liquid. Do

GE Vingmed Ultrasound Chapter X - Addendum

not immerse the electrical connector. Use additional precautions (e.g., gloves and gown) when decontaminating an infected probe. The following germicides have been evaluated as being compatible only with the probe type listed:

Table 3:

Probe	P/N	DISINFECTANT			
		Cidex TM	Cidex PA TM	Cidex OPA TM	Sporox TM
FPA 2.5 -64	KG100001	YES	YES	YES	YES
FPA 3.5 -96	KK100005	YES	YES	YES	YES
FPA 5.0 -96	KN100002	YES	YES	YES	YES
FLA 5.0-192	KN100003	YES	YES	YES	YES
FPA 10.0	KW100002	YES	YES	YES	YES
FPA 5.0 - 128	KN100001	YES	No	YES	No
CLA 3.5 - 192	KK100004	YES	No	YES	No
CLA 5.0 - 192	KK100008	YES	No	YES	No
ECLA 6.5 -128	KQ100002	YES	No	No	No
FLA 10.0	KW100001	YES	No	No	No
2MHz Doppler	TE100024	YES	No	No	No
6MHz Doppler	TQ100002	YES	No	No	No
Transesoph- ageal probes		YES	YES	YES	No

Be sure to follow the germicide manufacturer's instructions for storage, handling, preparation, time of exposure and disposal. Use only disinfectants that are approved according to local / national regulations.

High-level Disinfection destroys vegetative bacteria; lipid & non-lipid viruses, fungi and, depending highly on time of contact, is effective on bacterial spores. This is required for cavity (TV,TR,TE) scanning when in contact with mucosal membrane.

CAUTION - Improper handling can lead to early probe failure and electric shock hazards:

- DO NOT disinfect or sterilize probes by autoclaving or ethylene oxide gas process.
- DO NOT soak or wipe the probe face with methanol, ethanol, isopropanol or any other alcohol based cleaner. Doing so could result in irreversible damage to the probe's lens.
- DO follow the specific cleaning, disinfection procedures provided with the documentation of your product, as well as the germicide manufacturer's instructions.

Failure to do so will void probe warranty.

Addition to chapter C:

Special note regarding vascular or abdominal measurements with integrated EchoPAC:

If the user makes several vascularor abdominal measurements on the system, saves the data to EchoPAC (measurements viewable in EchoPAC report), and then goes back to the scanner to make additional measurements and saves them, these last measurements will delete all of the previous measurements already stored in EchoPAC for the current examination.

Workaround: If it is necessary to make additional measurements, start a new exam for that patient

Addition to chapter A

System FiVe Phono/Heart Microphone

Instructions for use

- 1. Plug transducer into connector in front of system marked Phono.
- 2. Select the button on the keyboard marked Phys. Trace.
- 3. Use the up/down toggle switch on the keyboard to select Phono off/on. This selection is located on the lower part of the menu to the right of the ultrasound image. The Phono off/on selection is not visible until the down pointing arrow on the menu is activated. Click to the right to turn the trace on.
- 4. The trace will be displayed on top of the ECG trace on the System FiVe monitor.
- 5. To adjust the position of the trace on the screen, select Phono Offset on the menu using the up/down toggle. The trace is moved upwards and downwards using the left/right toggle. (CAUTION: Adjusting the trace baseline too far from the ECG can cause the trace to be a flat line)
- 6. The size of the trace window is adjustable. The default size is small. The window size can be changed by pressing the Screen Config button. The options are small, medium, large and full.
- 7. To adjust the gain of the trace, use the up/down toggle switch and select Phono Gain. The gain is increased by clicking the left/right toggle to the right and decreased clicking the left/right toggle to the left (CAUTION: The gain should be adjusted in very small increments).
- 8. The heart microphone is placed on the chest of the patient. The heart microphone is equivalent to a stethoscope and should be used in the same way.
- 9. The heart sound trace will be displayed on the screen.

Heart sound filtering

- 1. It is possible to process the phono signal by passing it through a filter. You can choose between six different filters. The filters are accessible by first pressing Phys. Trace, then the Phono Filter button. A menu with the different filters will pop up. The default filter is highlighted.
- 2. The characteristics of each filter are shown in the table below:

Table 4:

	Lower frequency	Higher frequency	Comment
BP LOW	50Hz	100Hz	Bandpass filter located in a lower frequency range
BP MED	65Hz	105Hz	Bandpass filter located in a medium frequency range
BP HIGH	75Hz	150Hz	Bandpass filter located in a high frequency range
HP50	50Hz	•	Highpass filter attenuating frequency content lower than 50Hz in the signal
HP30	30Hz	•	Highpass filter attenuating frequency content lower than 30Hz in the signal
STAN- DARD			At the moment, the same as HP30

Table 1 - The characteristics of the different phono filters

The different filter characteristics are shown in the figure below:

Figure 1 - Phono filter characteristics

Proper filter is chosen based on what heart sound you want to listen to. The BP-LOW is used for heart sounds with low pitch, BP-MED is used for heart sounds with medium pitch while the BP-HIGH is used for heart sounds with high pitch.

It is also possible to only have low pass characteristics. This might be desirable in cases where you don't want to limit the higher frequency content of the signal. The two filters using this characteristics are the HP30 and the HP50 filter. The filter characteristics are shown in the figure below:

Figure 2 - Phono filter characteristics

Reported Edit misses

Page 86 - "Adjust ROI Span shown above..." however the picture shows "ROI

Length"?__ It is a undetected menu name change. ROI span has become ROI length since last update.

To be added under Chapter F: Warnings

Important regulatory information for use in Germany:

Accessory equipment connected to the analogue and digital interfaces must be certified according to the respective IEC standards (e.g. IEC 950 for data processing equipment and IEC 601-1 for medical equipment). Furthermore all configurations shall comply with the system standard EN 60601-1-1:1993. Everybody who connects additional equipment to the signal input part or signal output part configures a medical system, and is therefore responsible that the system complies with the requirements of the system standard IEC 601-1-1:1993. If in doubt, consult the technical service department or your local representative.

To be added under Chapter G: Specifications

ACCESSO RY	PART NUMBER	COMMEN T	TYPE/ CLASS
ECG lead wire	164L0027	AHA cable US	Type CF
ECG patient cable	164L0025	AHA cable US	Type CF
ECG lead wire	164L0028	IEC cable EU	Type CF
ECG patient cable	164L0026	ECG patient cable	Type CF
Foot pedal, general use	FB200723		Class IP20
Foot pedal, operating room	FB200734		Class IP68

The following table to be inserted under Chapter A, System Probes.

The probes listed in the table below in bolded letters are tested with Vivid Five. The remaining previously approved System Five probes are supported by Vivid Five.

PROBE TYPE	GE VINGMED P/N	CATNO	SYSTEM FIVE	VIVID FIVE
CLA 3.5 MHz	KK 100004	H4830KL	X	X
CLA 5.0 MHz	KN 100008	H4830KM	X	X
ECLA 6.25 MHz	KQ 100002	H4830KN	X	X
FLA 5.0 MHz	KN100003	H4830KJ	X	X

	Т	T	T	T
PROBE TYPE	GE VINGMED P/N	CATNO	SYSTEM FIVE	VIVID FIVE
FLA 10.0 MHz	KW 100001	H4830JZ	X	X
I13LV, flat linear array	KW 100003	H45001KC	X	X
I18LV, flat linear array	KQ 100005	H45001KB	X	X
FPA 2.5 MHz	KG 100001/C	H4830JS	X	X
FPA 2.5 MHz	KK 100001/ BC	H4830JT	X	X
FPA 3.5 MHz	KK 100005	H4830JW	X	X
FPA 5.0 MHz	KN 100001	H4830JX	X	X
FPA 5.0 MHz Ped	KN 100002/B	H4830JY	X	X
FPA 10.0 MHz Ped	KW 100002	H4501AE	X	X
Dop 2.0 MHz (dop- pler)	TE 100024	H4830JE	X	X
Dop TC 2 MHz (TC – transcranial)	KE 100001	H4830KP	X	X
PA MPTE 5.0 MHz	KN 100006	H4830KK	X	X
PA MPTE 5.0 MHz	KN 100007/B	H45001A	X	X
PA MPTE Ped	KN 100010	H45001JJ	X	X

To be added under Chapter E, Installation & Maintenance

The user must ensure that safety inspections are performed at least every 12 months according to the requirements of the patient safety standard IEC-EN 60601-1.

Only trained persons are allowed to perform the safety inspections mentioned above.