- 1. Discuss two variants of intermediate code in assemblers.
- 2. Explain assembler directives START, END, ORIGIN, EQU, and LTORG with example for each.
- 3. Discuss the design of single pass assembler of Intel 8088 processor
- 4. Explain Pass-I of Two-Pass assembler along with data structure used.
- 5. Explain different types of assembly language statement.
- 6. List and explain advanced assembler directives with examples.
- 7. Write & explain algorithms used for two pass assembler in detail.
- 8. Discuss the problem of single pass assembly for Intel 8088 processor. How are they fixed up?
- 9. Explain symbol table, FRT and CRT of Single pass assembler in detail.
- 10. How the problem related to segment register table is resolved in Intel 8088?
- 11. Discuss the pass structure of assemblers. How is the problem of forward reference resolved in single pass & two pass translations?
- 12. Discuss pass-I of Two pass assembler. Write an assembly language program & display the content of different data structure after pass-I.
- 13. Discuss the problems of single pass assembly for Intel 8088. What provisions are made to handle these problems?
- 14. Discuss different intermediate code forms. Compare them based on memory requirement.
- 15. Explain the design of Single pass assembler of Intel 8088 with details of different tables generated.
- 16. List & illustrate phases of assembler.
- 17. What tables are generated after Pass-I of two pass assembler?
- 18. What data structure is used top design single pass assembler?
- 19. Comment on the inputs & outputs of pass-II of two pass assembler.
- 20. Generate intermediate code forms for pass-I of two pass assembler.
- 21. Explain the tables generated by two pass assembler.
- 22. Explain different phases of a two pass assembler.
- 23. Explain the analysis of an assembler.

- 24. Explain assembler? Why assembler required two passes? Is it advantages or disadvantages over one parse assembler?
- 25. Explain, with database of each passes of 2-pass assembler.
- 26. Differentiate assembler, compiler and interpreter.
- 27. State the reasons for the assembler to be multipass program.
- 28. Explain forward reference problem in assembler.
- 29. Given the following source program

	START		100
A	DS	3	
L1	MOVER		AREG, B
	ADD	AREG	, C
	MOVEM	AREG	, D
D	EQU	A+1	
L2	PRINT	D	
	ORIGIN		A-1
C	DC	' 5'	
	ORIGIN		L2+1
	STOP		
В	DC	'19'	
	END	L1	

- a. Show the content of symbol table at the end of pass-I.
- b. Explain the significance of EQU & ORIGIN statements in program. Explain how they are processed by assembler.
- c. Show the intermediate code generated for the program (Variant-I).
- d. Show the intermediate code generated for the program (Variant-II).
- e. Show the target program generated for the program.