

OTHER SUBSYSTEMS

Detail other subsystems affecting the primary focus/innovation in the rocket (recovery)

Avionics Status Flow

Avionics Control Module

Payload

- Microgravity Experiment
- Simplifies monitoring/testing for the effects of space on the human body
- Separate proteins from plasma
- Capable of surviving extreme conditions

Microfluidics Device

Previous Payload Module

Carbon Fiber Structure

- Benefits of Carbon Fiber
 - High Strength/Weight Ratio
 - High Rigidity
 - Allows for any dimension body tube as it is produced in house
- Goals:
 - Streamline and expand carbon fiber capabilities for future years
 - Less costly than contracting someone else
 - Good learning experience

Concept

Traditional Stage Separation:

- Black powder
- Reliable
- Non-reusable

Non-Pyro Mechanism Requirements:

- Reliable
- Ease of reusability
- Fits with future vision

REUSABLE RECOVERY SYSTEM

Design and adaptation of reusable recovery system

Initial Stage Separation Mechanism

- Gunpowder
 - Single use
 - Simplest design
 - Pyrotechnic event

- CO2 canisters (right)
 - Single Use
 - Controllable
 - Modular build

Why Reusable?

After 1 use:

To prepare for next launch, would need to clean inside of rocket to ensure smooth operation/separation.

New Recovery Concepts Required

Brainstorm:

- Separation
 - EMF/Railgun deployment
 - Hydraulic Actuators
 - Linear Actuators
 - Screw-on
- Locking
 - Rotational motion
 - Translational motion
- Power
 - Capacitor Bank
 - Disposable Batteries (9V)
 - Lithium Ion Polymer Batteries

Second generation prototype for stage separation before it underwent testing

Reusable Stage Separation

Project demonstrates:

- Iterative Design
- Design Analysis
- In-depth Development
- System Overview
- Rigorous Testing
- Integration

The core assembly of the stage separation module

Revised Reusable Stage Separation

Full Video: https://youtu.be/E2N8dM2k 2A

Revised Reusable Stage Separation Mechanism

- Comprised of:
 - DC motor
 - ACME Screw
 - Adaptor
 - ACME Nut
 - 1" ID tubing
 - Base Plates

Stress Analysis

- Axial
 - Force distributed along acme screw teeth
 - Each tooth treated as separate entity
 - Determined stress required to shear a tooth
- Bending
 - Treated screw as a rod
 - Cantilever
 - Highly variable
 - Fluctuating conditions
 - Wrote script to calculate
 - Amassed a range of loads
 - Dictated by coupler tolerances
- Weld Area
 - Concentration
 - Assume simple column and flange
 - Large safety factor

Manufacturing

- Specific component requirements
 - Defined from stress analyses
- Material Selection
 - Material Requirements
 - Available processes
 - Cost
- Machining
 - Tools
 - Lathe, welding, etc.
 - Tolerances
 - Individual parts
 - Assembly
 - Surface finish

Testing Results

- Free
 - Requires a rotation lock to separate properly
- Loaded (16kg)
 - Motor stayed within expected range of conditions
 - Bending more concerning of two loading modes
 - Nutations induce bending
- Electronically controlled (via MOSFET)
 - DC Motor must be completely insulated
 - May arc across metal casing
 - Determine limitations of each motor.
 - Speed vs. force required
 - Expected electro-mechanical loads matched measurements
- Ejection/Separation
 - No spring needed
 - Parachute Folding
 - Traditional method too cumbersome
 - Developed, tested new parachute folding method

Future Vision and Improvements

- Vertical Alignments
 - Aligning all components to be perfectly vertical
 - Decreases nutations, increased maximum load
 - Load tolerances significantly improve

Design Change

- Decrease
 - lead screw length
 - DC motor Size
- Several motors to distribute loads
- Modularize Design
 - Easily assembled, standardize
 - Standardize Reusable stage separation

Future welding rig setup

Questions?

