Points, Vectors, and Matrices

A location in space

Can locate a meaningful spot

Usually embedded in a coordinate system

Usually embedded in a coordinate system

Usually embedded in a coordinate system

Cartesian coordinate system

 Any two distant points uniquely determine a line

Explicit equation: y=f(x)

Explicit equation: y=f(x)

Ex) A line passing through (-2, 4) and (1, -2)

Implicit equation: f(x,y)=0

Ex) A line passing through (-2, 4) and (1, -2)

Parametric equation: x=f(t), y=g(t)

Parametric equation: x=f(t), y=g(t)

$$x = (1 - t)x_1 + tx_2 t \in (-\infty, +\infty)$$

$$y = (1 - t)y_1 + ty_2 (x_2, y_2)$$

Line Segment

Parametric equation: x=f(t), y=g(t)

$$x = (1 - t)x_1 + tx_2 t \in [0,1]$$

$$y = (1 - t)y_1 + ty_2 (x_2, y_2)$$

$$(x_1, y_1)$$

Is similar to line segment?

Just a direction and a magnitude

- Just a direction and a magnitude
- No information on the location

Are these the same or different?

 Can represent the difference between two locations

Vector Addition

 Any two vectors can be added to yield a single vector

Vector Addition

 Place two vectors head to tail, and draw a vector from free tail to free head

Vector Subtraction

Subtraction

$$\vec{a} - \vec{b}$$

Vector Subtraction

Vector Subtraction

Subtraction

$$\vec{a} - \vec{b}$$

Scalar Multiplication

Modifying length only, without changing direction

Cartesian Coordinate System

Can be represented as coordinates

Numeric Operations

Vector addition and subtraction?

Numeric Operations

Component-wise add/sub

Length and Direction

Given a vector, calc its length and

Length by Pythagorean Theorem

•
$$x^2 + y^2 = L^2$$

Length by Pythagorean Theorem

$$\bullet \ x^2 + y^2 = L^2$$

Ex) length of $\vec{v} = (1, 2)$?

Normalization into Unit Vector

 Scale a vector such that its length becomes one while keeping its direction

Direction by Trigonometry

• $\tan \theta = \frac{y}{x}$

Direction by Trigonometry

• $\tan \theta = \frac{y}{x}$

Ex) length and angle of $\vec{v} = (1, \sqrt{3})$?

Revisiting Operations on Points

- Points can be added?
- Points can be subtracted?
- Points can be multiplied with scalars?

Point - Point = Vector

 Relative location of one point with respect to another point

Point - Point = Vector

 Relative location of one point with respect to another point

Point + Vector = Point

 Translate a point toward a direction by a magnitude

Point + Vector = Point

 Translate a point toward a direction by a magnitude

