### **Eltecon Data Science Course by Emarsys**

#### Simulating the uncertainty of measurement

András Bérczi

October 16, 2019

### There is always an effect...

- We can always measure something.
- Is there really an effect?

### There is always an effect...

STO's effect on open rate



### But not necessarily significant!

STO's effect on open rate



### Why do have uncertainty in the measurement?

- If you knew the whole population, there wouldn't be uncertainty in your measurement
- But we only see 1 'segment' of the data = we have a sample of the population

## How can we calculate uncertainty to our measurement?

- We know the distribution -> calculate variance
- Monte-Carlo method
- Bootstrapping
- Permutation test

### Calculate uncertainty for an experiment

| contact_id | group     | num_send | num_open | num_click | sales_amou |
|------------|-----------|----------|----------|-----------|------------|
| 1          | treatment | 0        | 0        | 0         |            |
| 2          | treatment | 3        | 0        | 0         |            |
| 3          | treatment | 2        | 1        | 0         |            |
| 4          | treatment | 3        | 0        | 0         |            |
| 5          | treatment | 0        | 0        | 0         |            |
| 6          | treatment | 0        | 0        | 0         |            |

### Results from an experiment:



### Are the results significant? Calculate the variance!

Assumption about the distribution of the data



### Now your turn!

- 1. Calculate the click rate and the uncertainty!
- 2. Plot the results! What do you see on the plots? Are the results significant?

### Monte-Carlo method

- Pick repeatedly from a distribution(s)
- Use randomness to show uncertainty
- Useful, when you do not have a closed form to calculate the variance
- We still need to know the distribution of our variable(s)!

How to calculate uncertainty with Monte-Carlo method

# Draw samples from the sampling distribution of the mean from both groups and calculate the uplift



### Do it again!



## Repeat it N (let's say 100 000) times!



## Calculate the mean and the confidence intervals! Is our treatment effective based on the open rate?



#### Your turn!

3. Calculate uncertainty of effect on the click rate with Monte-Carlo method

4. Plot and interpret the results!

How would we do the same if we do not know the distribution?

### **Bootstrapping**

- resampling with replacement
- quantify the uncertainty associated with a given estimator
- computationally heavy calculation

### How bootstrapping works

### Sample with replacement from original data

```
dt[sample(.N, .N, replace = TRUE)]
```

| ## |        | contact_id | group             | num_send | num_open | num_click | sa. |
|----|--------|------------|-------------------|----------|----------|-----------|-----|
| ## | 1:     | 58         | ${\tt treatment}$ | 1        | 0        | 0         |     |
| ## | 2:     | 3185       | ${\tt treatment}$ | 0        | 0        | 0         |     |
| ## | 3:     | 6861       | ${\tt treatment}$ | 3        | 0        | 0         |     |
| ## | 4:     | 7418       | ${\tt treatment}$ | 0        | 0        | 0         |     |
| ## | 5:     | 8835       | ${\tt treatment}$ | 3        | 1        | 0         |     |
| ## |        |            |                   |          |          |           |     |
| ## | 9996:  | 3001       | control           | 3        | 0        | 0         |     |
| ## | 9997:  | 7651       | ${\tt treatment}$ | 3        | 0        | 0         |     |
| ## | 9998:  | 869        | control           | 0        | 0        | 0         |     |
| ## | 9999:  | 4622       | treatment         | 3        | 0        | 0         |     |
| ## | 10000: | 7025       | treatment         | 3        | 0        | 0         |     |
|    |        |            |                   |          |          |           |     |

### Calculate your statistic for bootstrap sample



## Create another bootstrap sample and calculate statistic



## Repeat it N times (let's say N=1000)...

```
set.seed(1234)
bootstrapped_stats <- map_df(1:10000, ~{
    dt[sample(.N, .N, replace = TRUE)] %>%
        .[,
            .(bootstrap_id = .x,
              open_rate = sum(num_open) / sum(num_send),
              num send = sum(num send)),
            by = group
})
```

### ...so we could get a distribution of uplifts

```
##
                        control treatment
                                                  uplift
          bootstrap id
                     1 0.09751773 0.1302057
                                              0.33520015
##
       1:
                     2 0.11036174 0.1345331
                                              0.21901935
##
      2:
       3:
                     3 0.12220917 0.1276690
                                              0.04467623
##
##
       4:
                     4 0.11049107 0.1307301 0.18317299
       5:
                     5 0.12875289 0.1270687 -0.01308072
##
##
##
    9996:
                  9996 0.11649295 0.1301486
                                              0.11722281
##
    9997:
                  9997 0.11498856 0.1350342 0.17432749
##
   9998:
                  9998 0.11170848 0.1372134 0.22831639
                  9999 0.14251497 0.1314651 -0.07753472
##
    9999:
##
   10000:
                 10000 0.10998811 0.1336017 0.21469231
```

## **Distribution of uplifts**



### Calculate confidence intervals from distribution

```
CI_from_bs <- bs_uplift[, .(
    CI_lower = quantile(uplift, 0.025),
    CI_higher = quantile(uplift, 0.975)
)]
CI_from_bs</pre>
```

```
## CI_lower CI_higher
## 1: -0.04010245 0.3865375
```

### Calculate confidence intervals from distribution



### Your turn!

5. Calculate the uncertainty of effect with bootstrapping for 'sales amount per contact'

6. Plot the results!