Viorh

Maulana Abul Kalam Azad University of Technology

CA-3 Examination 2022-2023

Subjec	ster: 1 st ct Name: Discrete Str n/ Discipline: MCA	ructures		Pape	r Code: MCAC10. Full marks: 2: Time: 1 Hour
		Group A (Answer <u>all</u> questions	s.)	$5 \times 1 = 5 \text{ mark}$
J.	Let S be the set of a	Il distinct numbers of the	form $\frac{p}{q}$, where $p, q \in \{1$	1,2,3}. The cardinality of	the set S is
	a) 6	þ) 7	c) 8	d) 9	
Z.	If {1,2,3,4,5,6,7} be	the universal set and $A =$	$\{1,2,3,4\}$ and $B=\{3,$	4,5,6}. Then $(A \cup B)^c$ is	equal to
•	a) {5,6}	b) {5,6,7}	(5) {7}	d) null set.	
3/.	The cardinality of th	the power set of the set $S =$	$= \{a, b, c, d\}$ is		
~	a) 1	b) 4	c) 12	A) 16	
A.	to t of T if and only a) $(2, -2)$	if $s + t$ is even. Then which $(5, -1)$	ch of the following order c : $(4, 2)$	S and T is defined by s of ered pair is not in the related (4, -1)	non K?
5.	mapping $f_1 = \{(1 \\ f_2 = \{(1 \\$	and $T = \{a, b, c, d\}$. Then $(a, a), (2, b), (3, c), (3, d), (3, a), (3, b), (4, c)\}$, $(a, a), (2, b), (3, d), (4, d)\}$	$(4,d)$ },	g relation between ${\cal S}$ and ${\cal T}$	is a
	a) f_1	b) f ₂	c) f_3	d) None of these	
6/.	Let $f: \mathbb{Z} \to \mathbb{Z}$ be def	ined by $f(x) = x $. Then	fis		
•	a) injective, not	surjective.	b) surjective, no		
	c) bijective.		-	tive nor surjective.	
7.		ing element is the additive	_		
	a) $\bar{0}$	b) 1	c) 2	d) inverse does	not exists.
8	Which of the follow $(\mathbb{Z}, +)$	ing is not a monoid? b) $(\mathbb{Z}, -)$	c) (Q,+)	d) (Q, ·)	
9.	The number of gener	rators of the group (S, \cdot) ,			
	a) 0	b) 1	c) 2	d) 4	
10.	Let G be a group and a)	$a \in G$. If $o(a) = 30$, the b) 2	en $o(a^{13})$ is c) 5	d) 30	
		Group B	(Answer <u>all</u> quest	ions.)	
	a) reflexive b) symm	netric, c) transitive, d) equ	iivalence relation?)" for $a, b \in \mathbb{Z}$. Check wh	5 marks
J ² .	a) Let \circ on \mathbb{Q} be th group?	e binary composition defi	$ned by a \circ b = a + 2b$	$b, a, b \in \mathbb{Q}$. Justify whether	er (\mathbb{Q} , \circ) forms a
	b) Find the generato	rs of the cyclic group (\mathbb{Z}_2	₄ ,+).		
		oup $(\mathbb{Q}, +)$ is not cyclic.		4-	+4+2 = 10 marks

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY END SEMESTER EXAMINATION

	SIST/MCA /SEM-01 /MCAC103/2022-23					
	FEBRUARY – 2023					
PAPE.	R NAME: Discrete Structures PA	PER CODE: N	ACAC10	13		
	SEMESTER: 1 st					
Time	: 3 Hours]		[Full]	Marks: 7	0	
	The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as	s far as practi	cable.			
	GROUP – A					
	(Multiple Choice Type Questions)					
1	Choose the correct alternatives of the following: Any ten		10 □1 = 10			
		MAR KS	СО	PO	B L	
i)	If U is universal and $A \subset U$. Then which of the following is not correct?	1	CO1	PO1		
a.	$A \cap A^c = \emptyset$					
b.	$A \cup A^c = U$					
c.	A - U = U - A					
d.	All of the above are correct					
ii)	Let $S = \{1, 2, 3, 4\}$, and $T = \{a, b, c, d\}$. Then which of the following relation between S and T is a mapping $f_1 = \{(1, a), (2, b), (3, c), (3, d), (4, d)\}$, $f_2 = \{(1, a), (3, b), (4, c)\}$, $f_3 = \{(1, a), (2, b), (3, d), (4, d)\}$.	1	CO1 CO4	PO1 PO2		
a.	f_1					
b.	f_2					
c.	f_3					
d.	None of these					
iii)	Which of the following element is not invertible in $(\mathbb{Q}, .)$?		CO1	PO1 PO2		
a.	0			PO4		
b.	1					
c.	1/2					
d.	None of these					
iv)	Let (G, \circ) be a group. Define a mapping $f: G \to G$ by $f(x) = x^{-1}, x \in G$. This	en f	CO1	PO1 PO2		
a.	injective not surjective			PO12		
b.	surjective not injective					

c. Bijective			
d. None of these			
v) A graph with all vertices having equal degree is known as a		COL	PO1 PO3
	1	CO4	PO12
a. Multi-graph b. Regular graph			
c. Simple graph			
c. Simple graph			
d. Complete graph			
Which of the following graph(s) with 6 vertices is/are connected?			
v_{1} v_{2} v_{3} v_{4} v_{6} v_{1} v_{1} v_{3} v_{6} v_{1} v_{8} v_{1} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}	1	COI	PO2 PO3 PO4 PO12
a. (A) only			
b. (B) only			
c. Both (A) and (B)			
d. Neither (A) nor (B)			
vii) The following tree is	1	CO4	PO1 PO2 PO4 PO6
a. full binary tree, but not a complete binary tree			
b. complete binary tree			
c. binary tree but not a full binary tree			
d. hot a binary tree			
			PO2
viii) Let p : be the proposition 'A is intelligent' and q be a proposition 'A is tall'. Then $\sim q \land \sim p$ states that		CO2	PO2 PO4 PO5
a. A is either intelligent or tall.	1	CO3	PO6 PO7
b. A is neither tall nor intelligent			10/
c. A is not intelligent or A is not tall	_		
d. A is not intelligent			
ix) Let $P(x)$ be the statement " $x > 8$ ", Then which one of these has truth value true?	1	CO2	PO2 PO4 PO6
a. P(0)			100

				PO7	
b.	P(8)			PO10	
c.	P(9)				
d.	None of these				
x)	The number of distinct permutations from all the letters of the word INDIAN is	1	COS	PO4 PO9	
a.				PO10	
b.	120				
c.	180				
d.	720				
xi)	The recurrence relation $a_n = 4a_{n-1} - 3a_{n-2}$ is	1	CO1 CO5	PO1	
a.	linear and homogeneous	1	COS	PO4 PO12	
b.	linear and inhomogeneous	1		PO12	
c.	nonlinear and homogeneous	1			
d.	nonlinear and inhomogeneous				
	GROUP – B				
	(Short Answer Type Questions)				
			3 × 5	= 15	
Ansv	ver the following.	MAR KS	со	PO	B L
2.a.	Let a relation R on the set \mathbb{Z} is defined by " aRb if and only if a is a divisor of b " for $a, b \in \mathbb{Z}$. Check whether R is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) equivalence relation, (v) poset?	5	CO1 CO4	PO1 PO2 PO4	
	(iv) equivalence relation, (v) poset.				
			CO1	PO1	
	Let the mapping $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = 3x$. Check whether the	5	CO1 CO4	PO2	
2.b.	mapping f is (i) injective, (ii) surjective, (iii) bijective?		001	PO4	
<i>3</i> .a.	Let $A = \{2, 3, 5, 6\}$, $B = \{8, 10, 13, 20\}$, $C = \{a, b, c, d\}$ and the relations R_1 and R_2 are defined by $R_1 = \{(2,8), (2,20), (3,10), (5,10), (6,20)\}$ and $R_2 = \{(8,b), (8,c), (10,a), (13,d), (20,c)\}$. Find $R_2 \circ R_1$. Also find R_1^{-1} .	5	CO1	PO1 PO4 PO12	
	OR				
3.b.	Prove that the set of rational numbers Q is countable.	5	CO1	PO1 PO12	
				PO3	
			CO2	PO4	

	OR				1
4.b.	Using truth table show that $p \to (q \lor r) \equiv (p \to q) \lor (p \to r)$.	5	CO2 CO3	PO3 PO4 PO5 PO6	
	GROUP – C				
	(Long Answer Type Questions)				
		T			
Answ	er the following.	MAR	3 ×15	= 45	B
		KS	CO	PO	L
5. ş .i.	Let \circ on \mathbb{Q} be the binary composition defined by $a \circ b = ab + 1$, $a, b \in \mathbb{Q}$. Justify whether (\mathbb{Q}, \circ) forms a group?	5		PO1	
jř.	Find the generators of the cyclic group $(\mathbb{Z}_{36}, +)$.	3		PO2	
iii.	Show that the group $(\mathbb{Q}, +)$ is not cyclic.	3	COI	PO3	
iv.	What are conditional and bi-conditional propositions. Write down the truth table for conditional and bi-conditional propositions.	4	CO3 CO4	PO4 PO5 PO6 PO12	
	OR				
5.b.i.	Examine which of the following forms a monoid? $ (A) (\mathbb{Z},-) \qquad (B) (\mathbb{Q}, \cdot) \qquad (C) (\mathbb{Z}_6, \cdot) $	5		PO1	
ii.	In a group (G, \circ) , a is an element of order 40. Find the order of a^{24} .	3	CO1 CO3 CO4	PO2 PO3 PO4	
iii.	Find the inverse permutation of $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.	3		PO12	
iv.	Define the divisor of zero of a ring. What are the divisors of zero in the ring $(\mathbb{Z}_6, +, \cdot)$.	4			
6⁄a.i.	Out of 12 employees a group of 4 trainees is to be sent for a software training. In how many ways these can be selected if there are two employees who refuse to go together?	5		PO2 PO3 PO4	
ii.	A store sells only red, blue and black color pens. How many different selections are possible if a man wants to buy 7 pens?	4	CO5	PO4 PO6 PO9 PO10	
iii.	Solve the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2}$ by characteristic root method subject to the initial conditions $a_n = 1$ for $n = 0$; $a_n = 1$ for $n = 1$. Hence find a_7 .	6		PO10 PO12	
	OR			DO2	
6.b.i.	Use principle of mathematical induction to prove that $2^{3n+1} + 3.5^{2n+1}$ is	5	CO5	PO2	

				PO3	
	divisible by 17.			PO3 PO4	
ii.	Find the number of integers between 1 to 500 that are divisible by 7 or 11.	4		PO6 PO9	
iii.	Define generating function. Find the generating function for the sequence $\{5+3n\}$.	6		PO10 PO12	
J.a.i.	State the handshaking theorem. Whether it is valid for multi-graphs and pseudo-graphs.	4			
ii.	Define Euler graph. Check whether the following graph has an Euler trail or Euler circuit. If it exists, then write the trial or circuit.	5	CO1 CO4	PO1 PO2 PO4 PO5 PO6	
jji.	Find the A) preorder, B) inorder, and C) postorder traversal of the following tree:	6		PO7 PO8 PO12	
	OR	1	1		
7.b.i.	Find the number of edges in a complete graph with n vertices.	4			
ii.	Define chromatic number of a graph. Find the chromatic number of the following graph.	5	CO1 CO4	PO1 PO2 PO4 PO5 PO6 PO7 PO8 PO12	
iii.	Draw the unique binary search tree whose pre-order traversal is given below: Pre-order: 6, 1, 5, 11, 3, 4, 8, 7, 2	6			