Резольвента компактного самосопряжённого оператора в гильбертовом пространстве

Пусть $A: H \mapsto H, A \neq 0$ — компактный самосопряжённый оператор. H — гильбертово пространство. Пусть $\{\lambda_k\}_{k=1}^N, N \in \mathbb{N} \cup \{+\infty\}$ — все нетривиальные собственные значения A. Пусть $\{e_{k,1}\dots e_{k,m_k}\}\in \ker A_{\lambda_k}$ — ортогональный базис в $\ker A_{\lambda_k} \ \forall n \in 1\dots N$. Тогда по теореме Гильберта-Шмидта $\{e_{k,j}\}_{j=1\dots m_k}^{k=1\dots N}$ образует ортогональный базис в $(\ker A)^{\perp}$. Тогда $\forall f \in H$ мы можем разложить её на

$$f = f_{\parallel} + f_{\perp}$$

где $f_{\parallel} \in \ker A, f_{\perp} \in (\ker A)^{\perp}$. Очевидно

$$f_{\parallel} = P_{\ker A} f$$
$$f_{\perp} = P_{(\ker A)^{\perp}} f$$

с другой стороны, так как в ($\ker A^{\perp}$ существует базис, то

$$f_{\perp} = \sum_{k=1}^{N} \sum_{j=1}^{m_k} \alpha_{kj} e_{kj}$$

Эта сумма сходится в H и

$$\alpha_{kj} = \frac{(f_{\perp}, e_{kj})}{(e_{kj}, e_{kj})}$$

причём $(f_{\perp},e_{kj})\equiv (f,e_{kj})$ так как $f_{\parallel}\perp e_{kj}$. Таким образом

$$P_{kj}g = \frac{(g_{\perp}, e_{kj})}{(e_{kj}, e_{kj})} e_{kj} \quad \forall g \in H$$

 $P_{kj}: H \mapsto \operatorname{Lin}\{e_{kj}\}$ — ортопроектор. Можно интерпретировать

$$f_{\perp} = \sum_{k=1}^{N} \sum_{j=1}^{m_k} P_{kj} f = P_{(\ker A)^{\perp}} f$$

Оператор A — непрерывный, так как является компактным оператором.

$$Af = Af_{\parallel} + Af_{\perp}$$

причём $Af_{\parallel}=0$ так как $f_{\parallel}\in\ker A$, поэтому

$$Af = Af_{\perp} = \sum_{k=1}^{N} \sum_{j=1}^{m_k} \alpha_{kj} Ae_{kj} = \sum_{k=1}^{N} \sum_{j=1}^{m_k} \alpha_{kj} \lambda_k e_{kj}$$

где $\lambda_k \to 0$ $k \to +\infty$ когда $N = +\infty$ по 4-ой теореме Фредгольма. В итоге можно переписать получившиеся выражение как

$$Af = \sum_{k=1}^{N} \lambda_k \sum_{j=1}^{m_k} P_{kj} f$$

этот ряд сходится поточечно при $N=+\infty$. Формулу

$$A = \sum_{k=1}^{N} \lambda_k \sum_{j=1}^{m_k} P_{kj}$$

называют спектральным разложением оператора A. Если $N=+\infty$, то указанный ряд сходится по операторной норме в силу того, что $\lambda_k\to 0$ при $k\to\infty$ если $N=+\infty$. Действительно

$$||Af - \sum_{k=1}^{S} \lambda_k \sum_{j=1}^{m_k} P_{kj} f|| = ||\sum_{k=1}^{+\infty} \lambda_k \sum_{j=1}^{m_k} P_{kj} f - \sum_{k=1}^{S} \lambda_k \sum_{j=1}^{m_k} P_{kj} f|| = ||\sum_{k=S+1}^{+\infty} \lambda_k \sum_{j=1}^{m_k} \alpha_{kj} e_{kj}||$$

и далее по равенству Парсеваля

$$||Af - \sum_{k=1}^{S} \lambda_k \sum_{j=1}^{m_k} P_{kj} f|| = \sqrt{\sum_{k=S+1}^{+\infty} \lambda_k^2 \sum_{j=1}^{m_k} |\alpha_{kj}|^2 ||e_{kj}||^2} \le \sup_{k>S} |\lambda_k| \sqrt{\sum_{k=S+1}^{+\infty} \sum_{j=1}^{m_k} |\alpha_{kj}|^2 ||e_{kj}||^2}$$

причём

$$\sqrt{\sum_{k=S+1}^{+\infty} \sum_{j=1}^{m_k} |\alpha_{kj}|^2 \|e_{kj}\|^2} \le \sqrt{\sum_{k=1}^{+\infty} \sum_{j=1}^{m_k} |\alpha_{kj}|^2 \|e_{kj}\|^2} = \|f\|$$

Таким образом

$$||Af - \sum_{k=1}^{S} \lambda_k \sum_{j=1}^{m_k} P_{kj} f|| \le \sup_{k>S} |\lambda_k| ||f||$$

И

$$||A - \sum_{k=1}^{S} \lambda_k \sum_{j=1}^{m_k} P_{kj}|| \le \sup_{k>S} |\lambda_k| \to 0 \quad s \to +\infty$$

Построим теперь резольвенту.

$$R_A(\lambda) = (I - \lambda A)^{-1} : H \mapsto H$$

если $\lambda \neq \frac{1}{\lambda_k} \ \forall k=1\dots N,$ то есть λ — не характеристическое число A. С одной стороны

$$(I - \lambda A)f = f - \lambda Af = f_{\parallel} + f_{\perp} - \lambda Af = P_{\ker A}f + P_{(\ker A)^{\perp}}f - \lambda Af$$

Воспользуемся спектральным разложением оператора A и определением $P_{(\ker A)^{\perp}}$ получим

$$(I - \lambda A)f = P_{\ker A}f + P_{(\ker A)^{\perp}}f - \lambda \sum_{k=1}^{N} \lambda_k \sum_{j=1}^{m_k} P_{kj}f = P_{\ker A}f + \sum_{k=1}^{N} \lambda_k \sum_{j=1}^{m_k} (1 - \lambda \lambda_k) P_{kj}f$$

С другой стороны пусть

$$(I - \lambda A)f = g = P_{\ker A}g + \sum_{k=1}^{N} \lambda_k \sum_{j=1}^{m_k} P_{kj}g$$

Тогда

$$P_{\ker A}f = P_{\ker A}g \quad (f_{\parallel} = g_{\parallel})$$
$$(1 - \lambda \lambda_k)P_{kj}f = P_{kj}g$$

где $P_{kj}f=lpha_{kj}e_{kj}$ и $P_{kj}g=eta_{kj}e_{kj}$ и

$$\beta_{kj} = \frac{(g, e_{kj})}{(e_{kj}, e_{kj})}$$

Так как $(1 - \lambda \lambda_k \neq 0, \text{ то})$

$$(1 - \lambda \lambda_k) \alpha_{kj} = \beta_{kj}$$

И

$$\alpha_{kj} = \frac{\beta_{kj}}{1 - \lambda \lambda_k}$$

Таким образом

$$f = R_A(\lambda)g = P_{\ker A}g + \sum_{k=1}^{N} \frac{1}{1 - \lambda \lambda_k} \sum_{j=1}^{m_k} P_{kj}g$$

И

$$R_A(\lambda) = P_{\ker A} + \sum_{k=1}^{N} \frac{1}{1 - \lambda \lambda_k} \sum_{j=1}^{m_k} P_{kj}$$

Если $N=+\infty$, то ряд сходится поточечно, но не операторной норме. Действительно $\forall g\in H$

$$||R_A(\lambda)g - P_{\ker A}g - \sum_{k=1}^{S} \frac{1}{1 - \lambda \lambda_k} \sum_{j=1}^{m_k} P_{kj}g|| = \sqrt{\sum_{k=S+1}^{\infty} |\frac{1}{1 - \lambda \lambda_k}|^2 \sum_{j=1}^{m_k} ||P_{kj}g||^2}$$

Пусть $g=\frac{e_{S+1,1}}{\|e_{S+1,1}\|}$, тогда $\|P_{kj}g\|=1$ только при k=S+1 и j=1, а в остальных случаях ноль. Тогда

$$||R_A(\lambda)g - P_{\ker A}g - \sum_{k=1}^{S} \frac{1}{1 - \lambda \lambda_k} \sum_{j=1}^{m_k} P_{kj}g|| = \frac{1}{|1 - \lambda \lambda_{S+1}|}$$

Тогда

$$||P_A(\lambda) - P_{\ker A} - \sum_{k=1}^{S} \frac{1}{1 - \lambda \lambda_k} \sum_{j=1}^{m_k} P_{kj}|| \ge \frac{1}{1 - \lambda \lambda_{S+1}}$$

и так как $\lambda_{S+1} \to 0$ при $S \to +\infty$, то $\exists S_{\lambda} \colon |\lambda_{S+1}\lambda| \le \frac{1}{2} \ \forall S \ge S_{\lambda}$, тогда $\frac{1}{|1-\lambda\lambda_{S+1}|} \ge \frac{1}{2}$ и ближе не приблизиться.

Найдём теперь норму резольвенты. $\forall g \in H$

$$||R_A(\lambda)g|| = \sqrt{||g_{\parallel}||^2 + \sum_{k=1}^N \frac{1}{|1 - \lambda \lambda_k|^2} \sum_{j=1}^{m_k} ||P_{kj}g||^2}$$

Введём $d(\lambda) = \sup_{k=1...N} \frac{1}{|1-\lambda\lambda_k|}$. Так как при $N=+\infty$ $\lambda_k\to 0$, то $\frac{1}{|1-\lambda\lambda_k|}\to 1$ при $k\to +\infty$, поэтому $d(\lambda)$ ограничено.

$$||R_A(\lambda)g|| \le \sqrt{||g_{\parallel}||^2 + \sum_{k=1}^N d(\lambda)^2 \sum_{j=1}^{m_k} ||P_{kj}g||^2} \le \max\{1, d(\lambda)\} ||g||$$

где

$$||g|| = \sqrt{||g_{\parallel}||^2 + \sum_{k=1}^{N} \sum_{j=1}^{m_k} ||P_{kj}g||^2}$$

Таким образом $||R_A(\lambda)|| \le \max\{1, d(\lambda)\}$

Упражнение . Доказать, что $||R_A(\lambda)|| = \max\{1, d(\lambda)\}.$

Если $d(\lambda) > 1$, то $\exists k_l \colon d(\lambda) = \lim_{l \to +\infty} \frac{1}{1 - \lambda \lambda_{k_l}}$. Пусть $g = \frac{e_{k_l,1}}{\|e_{k_l,1}\|}$. Так как $d(\lambda) > 1$, то

$$d(\lambda) \ge ||R_A(\lambda)|| \ge ||R_A(\lambda)g_{k_l}|| = \frac{1}{|1 - \lambda \lambda_{k_l}|} \to d(\lambda)$$

следовательно $||R_A(\lambda)|| = d(\lambda)$.

Применение теоремы Гильберта-Шмидта для исследования базисности системы собственных функция дифференциальных операторов

Пример 1. Пусть $A=-i\frac{d}{dx},\ x\in[0,2\pi].\ H=L_2[0,2\pi]$ (оператор L_z в квантовой механике). $A:D(A)\mapsto H$, где D(A) — область определения A, являющиеся подпространством в H.

$$D(A) = \{ f \in C'[0, 2\pi] \mid f(0) = e^{i\phi} f(2\pi) \}$$

где $\phi \in (0,2\pi)$ — заданный параметр и $e^{\imath \phi} \neq 1$. Эта область определения соответствует области определения оператора проекции момента импульса при эффекте Ааронова — Бома. Мы ищем

$$Af = \lambda f, \quad f \neq 0 \in D(A), \lambda \in \mathbb{C}$$

Оператор A симметричный на D(A), то есть $(Af,g)=(f,Ag) \ \forall f,g\in D(A)$. Действительно

$$\int_{0}^{2\pi} i f' \overline{g} dx = -i f \overline{g} \Big|_{0}^{2\pi} + \int_{0}^{2\pi} i f \overline{g'} dx$$

Из условий на f,g:

$$-if\overline{g}|_{0}^{2\pi} = -if(2\pi)\overline{g}(2\pi) + if(0)\overline{g}(0) =$$

$$= -if(2\pi)\overline{g}(2\pi) + if(2\pi)e^{i\phi}\overline{g}(2\pi)e^{-i\phi} = 0$$

Таким образом A действительно симметричен.

Утверждение . Пусть $T:D(T)\mapsto H$ — линейный и непрерывный оператор на D(T) — подпространство в H, тогда все собственные значения T действительны и собственные функции для различных собственных значений ортогональны в H.

Доказательство. Пусть $Tf = \lambda f$ и $f \in D(T) \setminus \{0\}$, тогда

$$(Tf, f) = \lambda(f, f) = (f, Tf) = \overline{\lambda}(f, f)$$

таким образом $\lambda = \overline{\lambda}$. Пусть теперь $Tg = \mu g$ и $\lambda \neq \mu$

$$(Tf,g) = \lambda(f,g) = (f,Tg) = (f,g)\mu$$

Так как $\lambda \neq \mu$, то (f,g)=0, то есть $f\perp g$ в H. Доказательство закончено. Вернёмся к нашему оператору A. Ищем решение $Af=\lambda f$ и $\lambda\in\mathbb{R}$

$$-if' = \lambda f$$
$$f(x) = Ce^{i\lambda x}, \quad C \neq 0$$

Используем условия на f и получаем

$$1 = e^{i\phi} e^{i\lambda 2\pi}$$

Отсюда

$$\phi + 2\pi \lambda_k = 2\pi k, \quad k \in \mathbb{Z}$$

$$\lambda_k = k - \frac{\phi}{2\pi}, \quad k \in \mathbb{Z}$$

Получили собственные значения A. Тогда собственные функции $f_k(x) \in D(A)$ имеют вид

$$f_k(x) = e^{ix(k - \frac{\phi}{2\pi})}, \quad x \in [0, 2\pi]$$

 $\ker A=0$ так как $\lambda=0$ не собственно значение. Тогда $\exists A^{-1}: \operatorname{Im} A\mapsto D(A)$. Исследуем базисность $\{f_k\}_{k\in\mathbb{Z}}$ — ортогональная система собственных функци A с помощью теоремы Гильберта-Шмитда. $\operatorname{Im} A\subset C[0,2\pi], \, \forall g\in C[0,2\pi]$

$$\begin{cases} f \in D(A) \\ Af = -if' = g \end{cases}$$

справедливо, что

$$\exists ! f = i \int_{0}^{x} g(t)dt + C$$

Получаем, что ${\rm Im}\, A = C[0,2\pi]$. Из условия на f

$$C = e^{i\phi} \left(i \int_{0}^{2\pi} g(t)dt + C \right)$$

Отсюда выражаем константу

$$C = \frac{e^{i\phi}}{1 - e^{i\phi}} \int_{0}^{2\pi} g(t)dt$$

Таким образом

$$(A^{-1}g)(x) =$$

$$= \left(i + \frac{ie^{i\phi}}{1 - e^{i\phi}}\right) \int_{0}^{x} gdt + \frac{ie^{i\phi}}{1 - e^{i\phi}} \int_{x}^{2\pi} gdt =$$

$$= \frac{i}{1 - e^{i\phi}} \int_{0}^{x} gdt - \frac{i}{1 - e^{-i\phi}} \int_{x}^{2\pi} gdt =$$

$$= \int_{0}^{2\pi} K(t, x)g(t)dt$$

где

$$K(t,x) = \begin{cases} \frac{i}{1 - e^{i\phi}}, & 0 \le t < x \le 2\pi\\ \frac{-i}{1 - e^{-i\phi}}, & 0 \le x < t \le 2\pi \end{cases}, \quad \phi \in (0, 2\pi)$$

 $\overline{K(t,x)} = K(x,t)$ для почти всех $t,x \in [0,2\pi]$. Очевидно $K \in L_2([0,2\pi]^2)$ тогда построим

$$(Tg)(x) = \int_{0}^{2\pi} K(t, x)g(t)dt$$

 $T: L_2[0,2\pi] \mapsto L_2[0,2\pi]$, $\operatorname{Im} T \subset C[0,2\pi] = \operatorname{Im} A$ и $T|_{C[0,2\pi]} = A^{-1}$. По теореме Гильберта-Шмидта в $H = L_2[0,1]$ существует ортогональный базис из собственных функций T.

 $\ker T=0$ так как $\ker T=(\operatorname{Im} T^*)^\perp$ по теореме Фредгольма, а так как $T=T^*$ то $\ker T=(\operatorname{Im} T)^\perp$. Так как $T|_{C[0,2\pi]}=A^{-1}$, то $\operatorname{Im} T\supset A^{-1}(C[0,2\pi])=D(A)$. Тогда $(\operatorname{Im} T)^\perp\subset (D(A))^\perp=\left(\overline{D(A)}\right)^\perp$. Покажем, что $\overline{D(A)}=(A-$ плотно определённый оператор). Введём

$$D_0 = \{ f \in C^1[0, 2\pi] \mid f(0) = 0, f(2\pi) = 0 \} \subset D(A)$$

 $\overline{D_0} = H$ так как $\forall g \in L_2[0,2\pi] \ \forall \varepsilon > 0 \ \exists h \in C[0,2\pi] \colon \|g-h\|_{L_2} \le \varepsilon$. Действительно, по теореме Вейерштрасса $\exists P$ — многочлен такой, что

$$\max_{[0,2\pi]}|h-P| \le \frac{\varepsilon}{\sqrt{2\pi}}$$

тогда

$$||h - P||_{L_2} \le \sqrt{\int_0^{2\pi} \frac{\varepsilon^2}{2\pi} dx} = \varepsilon$$

Пусть $|P| \leq R$ на $[0,2\pi]$. Пусть $f \in D_0, |f| \leq R$ на $[0,2\pi]$. Пусть также нули многочлена отдалены от 0 и 2π на $0 \leq \delta \leq 2\pi$, тогда

$$||f - P||_{L_2} \le \sqrt{\delta 4R^2 + \delta 4R^2} = \sqrt{8}R\sqrt{\delta} \le \varepsilon$$

Тогда подберём $\delta \leq \frac{\varepsilon^2}{8R^2}$. В итоге получаем

$$||f - g||_{L_2} \le ||f - P||_{L_2} + ||h - P||_{L_2} + ||g - h||_{L_2} \le 3\varepsilon$$

В итоге $\overline{D_0}=H$, значит $\left(\overline{D(A)}\right)^\perp=H^\perp=0$, следовательно $0\in\ker T\subset 0\Rightarrow\ker T=0$.

Пусть $\mu \neq 0$ и $Tg = \mu g$, $g \in H \setminus \{0\}$. Это равносильно $g = \frac{1}{\mu}Tg$, $Tg \in C[0,2\pi]$, следовательно $g \in C[0,2\pi]$, следовательно $Tg = A^{-1}g \in D(A)$, отсюда $g \in D(A)$. В итоге $g \in D(A)$ и

$$g = \frac{1}{\mu}A^{-1}g \Rightarrow Ag = \frac{1}{\mu}g$$

то есть $\frac{1}{\mu}$ — собственное значение $A,\ g$ — собственная функция A из D(A). Отсюда $\mu_k=\frac{1}{\lambda_k}$ и $g_k=f_k$. По теореме Гильберта-Шмидта все $\{f_k\}_{k\in\mathbb{Z}}$ образует ортогональный базис.

Просуммируем теперь общие свойства.

Замечание. Оператор $A: \underline{D(A)} \mapsto H-$ симметричный оператор на D(A), D(A)- подпространство в $H; \overline{D(A)}=H; \ker A=0$ и $A^{-1}: \operatorname{Im} A \mapsto D(A)-$ непрерывный оператор и $\overline{\operatorname{Im} A}=H.$ Тогда $\exists !$ продолжение по непрерывности оператора A^{-1} до $T: H \mapsto H-$ линейный и непрерывный.

Доказательство. Так как $||A^{-1}|| < +\infty$, то берём $g \in H$ и $g_n \in \operatorname{Im} A \colon g_n \to g$

$$||A^{-1}g_n - A^{-1}g_m|| \le ||A^{-1}|| ||g_n - g_m|| \to 0$$

Тогда $A^{-1}g_n \to h$ и определим h = Tg. Такое определение корректно, если $\tilde{g}_n \to g, \tilde{g} \in \operatorname{Im} A$

$$||A^{-1}\tilde{g}_n - A^{-1}\tilde{g}_m|| \le ||A^{-1}|| ||\tilde{g}_n - g_n||$$

где $g_n \to g$ и $\tilde{g}_n \to g$, поэтому

$$||A^{-1}|| ||\tilde{g}_n - g_n|| \to 0$$

Оператор $T: H \mapsto H$ линейный и непрерывный, $T|_{\operatorname{Im} A} = A^{-1}$, поэтому $||T|| \ge ||A^{-1}||$. Пусть снова $g_n \in \operatorname{Im} A, g_n \to g$

$$||Tg|| = ||\lim_{n \to +\infty} A^{-1}g_n|| = \lim_{n \to +\infty} ||A^{-1}g_n|| \le \lim_{m \to +\infty} ||A^{-1}||| \to ||A^{-1}|| ||g||$$

Таким образом $||T|| \le ||A^{-1}||$, значит $||T|| = ||A^{-1}||$.

Утверждение . T- самосопряжённый оператор в силу симметричности A на D(A)

Доказательство. Рассмотрим $(Tg,h), g,h \in H$. Тогда $\exists g_n,h_n \in \operatorname{Im} A \colon g_n \to g,h_n \to h$ и

$$|(Tg,h) - (Tg_n, h_n)| =$$

$$= |(Tg,h) \pm (Tg_n, h) - (Tg_n, h_n)| =$$

$$= |(Tg - Tg_n, h) + (Tg_n, h - h_n)| \le$$

$$\le ||h|| ||T|| ||g - g_n|| + ||Tg_n|| ||h - h_n|| \to 0$$

отсюда и в силу того, что $Tg_n = A^{-1}g_n$ так $g_n \in \operatorname{Im} A$

$$(Tg,h) = \lim_{n \to +\infty} (Tg_n, h_n) = \lim_{n \to +\infty} (A^{-1}g_n, h_n)$$

Пусть $f_n = A^{-1}g_n$ и $\psi_n = A^{-1}h_n$. Это равносильно $Af_n = g_n, A\psi_n = h_n, \psi_n, f_n \in D(A)$. Тогда

$$(Tg,h) = \lim_{n \to +\infty} (f_n, A\psi_n) = \lim_{n \to +\infty} (Af_n, \psi_n) = \lim_{n \to +\infty} (g_n, A^{-1}h_n) = (g, Th)$$

аналогично

$$(g, Th) = \lim_{n \to +\infty} (g_n, Th_n) = \lim_{n \to +\infty} (g_n, A^{-1}h_n) = (Tg, h)$$

В итоге

$$(Tg,h) = (g,Th) \quad \forall g,h \in H$$

Потребуем компактность оператора T (например, если A^{-1} компактен на $\operatorname{Im} A$, то T — компактен на H (доказать в качестве упражнения)). Тогда по

теореме Гильберта-Шмидта у T есть в H ортогональный базис из собственных функций.

T и A обладают общей системой собственных функций.

$$\left\{ \begin{array}{l} Af = \lambda f \\ f \in D(A) \end{array} \right. \Rightarrow \left\{ \begin{array}{l} f = \lambda A^{-1}f = \lambda Tf \\ f \in D(A) \end{array} \right.$$

 $\ker A=0\Rightarrow \lambda\neq 0\Rightarrow Tf=rac{1}{\lambda}f,f\in D(A)$. И наоборот, $\ker T=(\operatorname{Im} T)^{\perp}$ так как $T=T^*$

$$(\operatorname{Im} T)^{\perp} \subset (D(A))^{\perp} = \left(\overline{D(A)}\right)^{\perp} = H^{\perp} = 0$$

значит $\ker T = 0$. $Tf = \mu f, f \in H$ и $\mu \neq 0$, следовательно $f = \frac{1}{\mu} Tf$.

Потребуем $\operatorname{Im} T \subset \operatorname{Im} A$. Пусть $\frac{1}{\mu}Tf \in \operatorname{Im} A$, тогда $f = \frac{1}{\mu}Tf \in \operatorname{Im} A$, тогда

$$Tf = A^{-1}f \in D(A)$$
, следовательно $f \in D(A)$, значит $f = \frac{1}{\mu}A^{-1}f \Rightarrow Af = \frac{1}{\mu}f$.

В итоге получили, что ортогональная система всех собственных функций A образует в H ортогональный базис.

Рассмотрим теперь в качестве приложения задачу Штурма-Лиувиля.

$$A = a(x)\frac{d^2}{dx^2} + b(x)\frac{d}{dx} + c(x)I, \quad x \in [\alpha, \beta] \subset \mathbb{R}$$

$$a, b, c \in C[\alpha, \beta], a \not\equiv 0$$

$$a, b, c : [\alpha, \beta] \mapsto \mathbb{R}$$

 $\operatorname{Im} A \subset C[\alpha, \beta]$. Пусть $H = L_2[\alpha, \beta]$ и

$$D(A) = \left\{ f \in C^{2}[\alpha, \beta] \middle| \begin{array}{l} \mu_{1} f'(\alpha) + \nu_{1} f(\alpha) = 0 & (1) \\ \mu_{2} f'(\beta) + \nu_{2} f(\beta) = 0 & (2) \end{array} \right\}$$

где

$$\mu_k, \nu_k \in \mathbb{R}$$
 $|\mu_1| + |\nu_1| > 0$
 $|\mu_2| + |\nu_2| > 0$

Поставим теперь задачу: $\forall f \in C[\alpha, \beta] \ \forall \lambda \in \mathbb{C}$ исследовать решение уравнения

$$\begin{cases} Au(x) = \lambda u(x) + f(x), & x \in [\alpha, \beta] \\ u \in D(A) \end{cases}$$

Исследуем, когда $\ker A = 0$. Если $\ker A = 0$, то рассмотрим 2 задачи Коши:

$$\begin{cases} Av_1 = 0, & v_1 \in C^2[\alpha, \beta] \\ v_1(\alpha) = \mu_1 \\ v_1'(\alpha) = -\nu_1 \end{cases}$$

 $\exists ! v_1 \not\equiv 0$ удовлетворяет (1). Аналогично

$$\begin{cases} Av_2 = 0, & v_2 \in C^2[\alpha, \beta] \\ v_2(\alpha) = \mu_2 \\ v_2'(\alpha) = -\nu_2 \end{cases}$$

и $\exists ! v_2 \not\equiv 0$ удовлетворяет (2). Пусть ker! = 0, тогда v_2 не удовлетворяет (1) и v_1 не удовлетворяет (2). Следовательно v_1 и v_2 линейно независимы в $C^2[\alpha, \beta]$. Следовательно $\{v_1, v_2\}$ — фундаментальная система решений для A.

Утверждение . Если \exists специальная фундаментальная система решений $v_1, v_2 \in C^2[\alpha, \beta]$ и $Av_k = 0$ k = 1, 2 на $[\alpha, \beta]$ и v_1 удовлетворяет (1), но не удовлетворяет (2) и v_2 удовлетворяет (2), но не удовлетворяет (1), тогда $\ker A = 0$

Доказательство. Если $v \in \ker A$, то

$$\begin{cases} v = \alpha_1 v_1 + \alpha_2 v_2 \\ v \in D(A) \end{cases}$$

из условия (1)

$$\alpha_1(\mu_1 v_1'(\alpha) + \nu_1 v_1(\alpha)) + \alpha_2(\mu_1 v_2'(\alpha) + \nu_1 v_2(\alpha)) = \alpha_2(\mu_1 v_2'(\alpha) + \nu_1 v_2(\alpha)) = 0$$

И так как v_2 не удовлетворяет (1), то $\alpha_2 = 0$. Аналогично $\alpha_1 = 0$. Следовательно $v \equiv 0$.

Утверждение . Пусть $\ker A = 0$ (то есть существует специальная фундаментальная система решений v_1 и v_2). Тогда

$$A^{-1}: C[\alpha, \beta] \mapsto D(A)$$

 $\forall f \in C[\alpha,\beta]$ и можно указать единственную функцию $u \in D(A)\colon u = A^{-1}f \Rightarrow Au = f$

Доказательство.

$$u(x) = C_1(x)v_1(x) + C_2(x)v_2(x)$$

Поставим требование

$$C_1'(x)v_1(x) + C_2'(x)v_2(x) = 0$$

тогда

$$v' = C_1 v_1' + C_2 v_2'$$

В итоге получаем

$$Au = a(C_1'v_1' + C_2'v_2') + a(C_1v_1'' + C_2v_2'') + b(C_1v_1' + C_2v_2') + c(C_1v_1 + C_2v_2) = a(C_1'v_1' + C_2'v_2') + C_1Av_1 + C_2Av_2 = f$$

где $C_1 A v_1 = C_2 A v_2 = 0$. В итоге можно записать:

$$\begin{pmatrix} v_1 & v_2 \\ v_1' & v_2' \end{pmatrix} \begin{pmatrix} C_1' \\ C_2' \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{f}{a} \end{pmatrix}$$

где $\begin{pmatrix} v_1 & v_2 \\ v_1' & v_2' \end{pmatrix}$ — фундаментальная система решений.

$$\det \begin{pmatrix} v_1 & v_2 \\ v_1' & v_2' \end{pmatrix} = w = \operatorname{const} e^{-\int \frac{b}{a} dx}$$

Тогда

$$\begin{pmatrix} C_1' \\ C_2' \end{pmatrix} = \frac{1}{w} \begin{pmatrix} v_2' & -v_2 \\ -v_1' & v_1 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{f}{a} \end{pmatrix} = \begin{pmatrix} -\frac{v_2}{wa} f \\ \frac{v_1}{wa} f \end{pmatrix}$$

В итоге

$$C_1(x) = \int_{x}^{\beta} \frac{v_2(t)}{w(t)a(t)} f(t)dt + D_1$$

$$C_2(x) = \int_{\alpha}^{x} \frac{v_1(t)}{w(t)a(t)} f(t)dt + D_2$$

Осталось $u = C_1(x)v_1(x) + C_2(x)v_2(x)$ подставить в (1) и (2) и найти D_1 и D_2 . Утверждение . $D_1 = D_2$