Variance and Bias Decomposition and Feature Complexity

COMS21202, Part III

Objectives

- OUnderstanding how the complexity of feature transforms affects the **training** and **testing** error.
- ODecomposing expected error into bias and variance.
- OFinding the right feature complexity using **out sample error**.

Recall: $y = \exp(1.5x - 1) + \epsilon, \epsilon \sim N(0,1)$

- OPolynomial transform with b = 2.
- OSquare error:108.97

Recall: $y = \exp(1.5x - 1) + \epsilon, \epsilon \sim N(0,1)$

- OPolynomial transform with b = 8.
- OSquare error:78.87

Observation

- OThe more complex f is, the more flexible our model \hat{y} is.
- Olf \hat{y} is too flexible, we start to fit noises rather than the underlying function!

ORegenerate y_i with different ϵ_i and measure squared error again!

Testing Set & Testing Squared Error

- Obenote $D := \{(y_i, x_i)\}_{i=1}^n$.
 Oi.e., our training data.
- ONow generate a **new** dataset <u>D':</u>
- $\bigcirc \forall x_i \in X, \ {y'}_i = \exp(1.5x_i 1) + \epsilon',$
 - $\bigcirc \epsilon' \sim N(0,1)$ g(x), "real function"
 - $\circ \epsilon'$ is independent from ϵ .
- $\bigcirc D' \coloneqq \{(y_i', x_i)\}_{i=1}^n$, i.e., testing set.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Testing Set & Testing Square Error

- Otesting square error: $\sum_{i=1}^{n} (y_i' \widehat{y}_i)^2$
- OWe **cannot** generate D' in this way in practice.
 - OWe **do not** know the generating mechanism of *y* in reality.
 - OHere, D' is only generated for study purposes.

Example: $y = \exp(1.5x - 1) + \epsilon, \epsilon \sim N(0,1)$

- ORed dots is testing set.
- OPolynomial transform with b = 2.
- OTesting error: 99.025

Example: $y = \exp(1.5x - 1) + \epsilon, \epsilon \sim N(0,1)$

- ORed dots is testing set.
- OPolynomial transform with b = 8.
- OTesting error: 128.01

Testing/Training error vs. b, 100 times with error bar

How to make sense of this?

Testing/Training error vs. b

- OThe training error drops as the complexity of our feature increases.
 - Owhich is a result of "overfitting" as we previously discussed in this unit.
- OWhy the testing error drops then increases again?
- OTo answer this, we look at the expected square error.

Expected Square Error

- OInstead of look at error on a single dataset, we look at expected error.
 - OInstead of evaluating a student based on one exam score, we look at his/her expected score over the entire course.
- Othe expected error: $\mathbb{E}_{\epsilon}[(y-\hat{y})^2|x_i]$
 - Osuppose y is generated by $y = g(x) + \epsilon$ (like in the previous case), we can rewrite:

$$\mathbb{O}\mathbb{E}_{\epsilon}[(y-\hat{y})^{2}|\mathbf{x}_{i}] = \mathbb{E}_{\epsilon}[(g(\mathbf{x}_{i})+\epsilon-\hat{y})^{2}|\mathbf{x}_{i}]$$

- OPC: write down the formula using integral.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Expected Square Error Decomposition

OBias and Variance Decomposition:

$$\mathbb{E}_{\epsilon}[(y - \hat{y})^{2} | \mathbf{x}_{i}]$$

$$= \text{var}[\epsilon] + [g(x) - \mathbb{E}_{\epsilon}[\hat{y} | \mathbf{x}_{i}]]^{2} + \text{var}[\hat{y} | \mathbf{x}_{i}]$$

Irreducible error

bias

variance

- O"Variance and Bias decomposition"
- OLive demonstration

Expected Square Error Decomposition

- $\operatorname{Ovar}[\epsilon] + \left[g(\boldsymbol{x}_i) \mathbb{E}_{\epsilon}[\hat{y}|\boldsymbol{x}_i] \right]^2 + \operatorname{var}[\hat{y}|\boldsymbol{x}_i]$
 - OThe first term measures the randomness of our data generating process, which is beyond our control.
 - OThe second term shows the accuracy of our expected prediction.
 - OThe third term shows how easily our learned function is affected by the randomness of the dataset.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

A Visualization of V-B Decomposition

Reconstructed function

Variance and Bias Tradeoff

$$\operatorname{Ovar}[\epsilon] + \left[g(\boldsymbol{x}_i) - \mathbb{E}_{\epsilon}[\hat{y}|\boldsymbol{x}_i]\right]^2 + \operatorname{var}[\hat{y}|\boldsymbol{x}_i]$$

- OAs we increase b, \hat{y} becomes more **complex** and can adapt to more complex underlying function, thus 2^{nd} term keeps dropping.
- OAs wee increase b, \hat{y} becomes more **sensitive** to the noise in our dataset, thus 3^{rd} term keeps increasing.
- OA **balance** between 2nd and 3rd term gives the minimum testing error.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

In Sample Error

- OWe derived $\mathbb{E}_{\epsilon}[(y-\hat{y})^2|x_i]$ only with respect to each x_i .
- OTo calculate the collective error, we need to average over all x_i .

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\epsilon} [(y - \hat{y})^{2} | \mathbf{x}_{i}]$$

Ois called in sample error

In Sample Error

- OEarlier, the testing error on D' is a (rough) approximation of the in sample error.
- Olt seems to do a good job for selecting the "right" features.
 - Oi.e., balancing between bias and variance.

Testing/Training error vs. b, 100 times with error bar

Approx. in sample error selects f with b = 4

A Closer Look at In Sample $var[\hat{y}]$

OPlug in **LS solution** of \hat{y} in var $[\hat{y}|x_i]$:

$$\bigcirc \hat{y} := f(x_i) \big(f(X)^\top f(X) \big)^{-1} f(X)^\top y,$$

of is poly. trans.

$$\mathbf{O}\mathbf{y}_i = g(\mathbf{x}_i) + \epsilon, \ \epsilon \sim N(0, \sigma^2).$$

$$\operatorname{Ovar}[\hat{y}|\mathbf{x}_i] = \langle h(\mathbf{x}_i), h(\mathbf{x}_i) \rangle \sigma^2$$

OWhere
$$h(x_i) \coloneqq f(x_i) \big(f(X)^\top f(X) \big)^{-1} f(X)^\top$$

- OWe can show $\frac{1}{n}\sum_{i=1}^n \mathrm{var}[\hat{y}|x_i] = \frac{m\sigma^2}{n}$
 - ONow see why variance increases with b!
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

A Closer Look at in sample $var[\hat{y}]$

OThe derivation of the above formulas will be deferred to the **problem** class.

- OHowever, a box of chocolate will be awarded to the first student who sends me the correct answer **before** the problem class.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Out Sample Error

- OHowever, we cannot construct D' as we did earlier in reality.
 - OWe do not know g(x)
- OInstead, we use out sample error:
- $\mathbf{OE}_{\mathbf{x}}\mathbb{E}_{\epsilon}[(y-\hat{y})^{2}|\mathbf{x}]$
 - \circ Error over the entire distribution of x
 - ORequiring assumptions on the distribution of x.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Approximating Out Sample Error

- OTo approximate Out Sample Error:
 - OCalculate \hat{y} on D.
 - OGet a fresh batch of observations

$$OD' := \{(y'_i, x'_i)\}_{i=1}^{n'}$$

- OCalculate $\frac{1}{n'}\sum_{(y',x')\in D'} (y'-\widehat{y'})^2$ (1)
 - $\bigcirc \widehat{y'} \coloneqq f(\mathbf{x'}) \big(f(X)^{\top} f(X) \big)^{-1} f(X)^{\top} \mathbf{y}$
 - OThe average is an approx. to expectation.
- Olf D and D' are **independently** taken from the **same** data distribution, (1) is a good approximation of out sample error.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Out Sample Error/Training error vs. b, 100 times with error bar

Out sample error behaves similarly to in sample error!

Approximating Out Sample Error

- OThe approximation of out sample error using D' is usually referred as "testing error" in machine learning.
 - OIn contrast to the "training error" obtained using *D*.
- Olf you cannot get a fresh batch of data points, just split your dataset into D and D'!
 - OCalled Hold-out validation.
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.

Conclusion

- OFeature complexity affects training and testing errors in different ways.
- OThe behavior of testing error can be explained by decomposition of expected error.
- Two types of expected errors can be used for feature selection:
 - OIn sample error
 - Out sample error
 - Out sample error can be simply approximated using dataset split!
- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.