Giải phương trình, bất phương trình liên quan đến tổ hợp

1. Lý thuyết

- Hoán vị của n phần tử: $P_n = n! = n(n-1)(n-2)...3.2.1$.

- Chỉnh hợp chập k của n (
$$0 \le k \le n$$
): $A_n^k = \frac{n!}{(n-k)!}$

- Tổ hợp chập của n (
$$0 \le k \le n$$
): $C_n^k = \frac{n!}{(n-k)!k!} = \frac{A_n^k}{k!}$

- Tính chất của tổ hợp:

$$C_n^k = C_n^{n-k}, (0 \le k \le n)$$

$$C_{n+1}^{k+1} = C_n^k + C_n^{k+1}, (1 \le k \le n)$$

2. Phương pháp giải

Sử dụng công thức hoán vị, chỉnh hợp, tổ hợp đưa về các phương trình, bất phương trình đã học và giải quyết.

3. Ví dụ minh họa

Ví dụ 1. Giải phương trình:

a)
$$2A_x^2 = C_x^{x-1} + 23x$$

b)
$$3A_n^2 - A_{2n}^2 + 42 = 0$$

c)
$$C_{x+1}^{x-2} + 2C_{x-1}^3 = 7(x-1)$$

Lời giải

a)
$$2A_x^2 = C_x^{x-1} + 23x$$

Điều kiện:
$$\begin{cases} x \ge 2 \\ x \in \mathbb{N} \end{cases}$$

Phương trình trên tương đương với:

$$2\frac{x!}{(x-2)!} = \frac{x!}{(x-1)! \cdot 1!} + 23x$$

$$\Leftrightarrow$$
 2x(x-1)=x+23x

$$\Leftrightarrow$$
 $2x^2 - 2x - 24x = 0$

$$\Leftrightarrow 2x^2 - 26x = 0$$

$$\Leftrightarrow$$
 $x^2 - 13x = 0$

$$\Leftrightarrow \begin{bmatrix} x = 0 \text{ (Loai)} \\ x = 13 \end{bmatrix}$$

Vậy nghiệm của phương trình là x = 13.

b)
$$3.A_n^2 - A_{2n}^2 + 42 = 0$$

Điều kiện:
$$\begin{cases} n \geq 2 \\ n \in \mathbb{N} \end{cases}$$

Phương trình trên tương đương với

$$3\frac{n!}{(n-2)!} - \frac{(2n)!}{(2n-2)!} + 42 = 0$$

$$\Leftrightarrow$$
 3n(n-1)-2n(2n-1)+42=0

$$\Leftrightarrow 3n^2 - 3n - 4n^2 + 2n + 42 = 0$$

$$\Leftrightarrow$$
 $-n^2 - n + 42 = 0$

$$\Leftrightarrow$$
 $-(n+7)(n-6)=0$

$$\Leftrightarrow \begin{bmatrix} n=6\\ n=-7 \text{ (Loai)} \end{bmatrix}$$

Vậy nghiệm của phương trình là: n = 6.

c)
$$C_{x+1}^{x-2} + 2C_{x-1}^3 = 7(x-1)$$

Điều kiện:
$$\begin{cases} x-1 \ge 3 \\ x \in \mathbb{N} \end{cases} \Leftrightarrow \begin{cases} x \ge 4 \\ x \in \mathbb{N} \end{cases}$$

$$C_{x+1}^{x-2} + 2C_{x-1}^3 = 7(x-1)$$

$$\Leftrightarrow \frac{(x+1)!}{(x-2)! \cdot 3!} + 2 \frac{(x-1)!}{(x-4)! \cdot 3!} = 7(x-1)$$

$$\Leftrightarrow \frac{(x+1)x(x-1)}{6} + 2\frac{(x-1)(x-2)(x-3)}{6} = 7(x-1)$$

$$\Leftrightarrow (x-1)[(x+1)x+2(x-2)(x-3)-42]=0$$

$$\Leftrightarrow$$
 $(x-1)(x^2 + x + 2x^2 - 10x + 12 - 42) = 0$

$$\Leftrightarrow (x-1)(3x^2-9x-30)=0$$

$$\Leftrightarrow$$
 $(x-1).3(x-5)(x+2)=0$

$$\Leftrightarrow \begin{cases} x = 1 & \text{(Loai)} \\ x = 5 \\ x = -2 & \text{(Loai)} \end{cases}$$

Vậy nghiệm của phương trình là x = 5.

Ví dụ 2: Giải bất phương trình

a)
$$A_n^3 + 15 < 15n$$

b)
$$A_n^3 < A_n^2 + 12$$

Lời giải

a) Điều kiện: $n \ge 3, n \in \mathbb{N}$

Ta có:
$$A_n^3 + 15 < 15n$$

$$\Leftrightarrow \frac{n!}{(n-3)!} + 15 - 15n < 0$$

$$\Leftrightarrow$$
 $n(n-1)(n-2)-15(n-1)<0$

$$\Leftrightarrow$$
 $(n-1)(n^2-2n-15)<0$

$$\Leftrightarrow$$
 $(n-1)(n+3)(n-5) < 0$

Vì
$$n \ge 3$$
 nên $n - 1 > 0$ và $n + 3 > 0$

$$\Rightarrow$$
 n - 5 < 0 \Leftrightarrow n < 5

Kết hợp với điều kiện, ta có n = 3 và n = 4 thỏa mãn.

Vậy nghiệm của bất phương trình: n = 3; n = 4.

b) Điều kiện: $n \ge 3, n \in \mathbb{N}$.

$$A_n^3 < A_n^2 + 12$$

$$\Leftrightarrow \frac{n!}{(n-3)!} < \frac{n!}{(n-2)!} + 12$$

$$\Leftrightarrow$$
 $n(n-1)(n-2) < n(n-1)+12$

$$\Leftrightarrow$$
 $n^3 - 3n^2 + 2n < n^2 - n + 12$

$$\Leftrightarrow$$
 n³ - 4n² + 3n - 12 < 0

$$\Leftrightarrow$$
 $(n-4)(n^2+3)<0$

$$\Leftrightarrow$$
 n < 4

Kết hợp với điều kiện, ta có n = 3 thỏa mãn.

Vậy nghiệm của bất phương trình: n = 3.

Ví dụ 3. Một đa giác có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiều cạnh?

Lời giải

Gọi số đỉnh của đa giác là n. Điều kiện: $n \in \mathbb{N}$ và n > 3.

Vậy số cạnh của đa giác cũng là n.

Số đoạn thẳng có hai đầu mút từ n
 đỉnh trên là $\ensuremath{C_{\scriptscriptstyle n}}\xspace^2$ đoạn thẳng

Do đó số đường chéo của đa giác là $\,C_{n}^{2}-n\,.\,$

Theo giả thiết, số đường chéo gấp đôi số cạnh nên ta có:

$$C_n^2 - n = 2n$$

$$\Leftrightarrow \frac{n!}{2! \cdot (n-2)!} = 3n$$

$$\Leftrightarrow \frac{n(n-1)}{2} = 3n$$

$$\Leftrightarrow$$
 n² - n = 6n

$$\Leftrightarrow$$
 n² - 7n = 0

$$\Leftrightarrow \begin{bmatrix} n = 0 \text{ (Loai)} \\ n = 7 \end{bmatrix}$$

Vậy đa giác có 7 cạnh.

4. Bài tập tự luyện

Câu 1. Nghiệm của phương trình: $C_n^3 = 10$ là

A. 6

B. 5

C. 3

D. 4

Câu 2. Tập hợp tất cả nghiệm thực của phương trình $A_x^2 - A_x^1 = 3$ là

 $A.\{-1\}$

B. {3}

C.{-1;3}

D.{1}

Câu 3. Nghiệm của phương trình $A_x^3 + C_x^{x-2} = 14x$ là

A. Một số khác.

B. x = 6

 $C \cdot v - 5$

D. x = 4

Câu 4. Tìm tập nghiệm của phương trình $C_x^2 + C_x^3 = 4x$.

 $A.{0}$

B.{-5; 5}

C.{5}

 $\mathbf{D}.\{-5; 0; 5\}$

Câu 5. Cho số tự nhiên n thỏa mãn $C_n^2 + A_n^2 = 9n$. Mệnh đề nào sau đây là đúng?

A. n chia hết cho 7 cho 3

B. n chia hết cho 5

C. n chia hết cho 2

D. n chia hết

Câu 6. Nghiệm của phương trình $A_x^{10} + A_x^9 = 9A_x^8$ là

A. x = 5

2

B. x = 11

C. x = 11; x = 5

D. x = 10; x =

Câu 7. Tổng của tất cả các số tự nhiên n thỏa mãn $\frac{1}{C_n^1} - \frac{1}{C_{n+1}^2} = \frac{7}{6C_{n+4}^1}$ là

Câu 8. Tính tổng tất cả các số nguyên dương n thỏa mãn $A_n^2 - 3C_n^2 = 15 - 5n$

A. 13

B. 10

C. 12

D. 11

Câu 9. Cho n là số nguyên dương thỏa mãn $A_n^2 = C_n^2 + C_n^1 + 4n + 6$. Hệ số của số

hạng chứa x^9 của khai triển biểu thức $P(x) = \left(x^2 + \frac{3}{x}\right)^n$ bằng

A. 18564

B. 64152

C. 192456

D. 194265

Câu 10. Tìm hệ số của số hạng chứa x^8 trong khai triển nhị thức Niu tơn của

 $\left(\frac{n}{2x}+\frac{x}{2}\right)^{2n}\left(x\neq0\right)\text{, biết số nguyên dương n thỏa mãn }C_{n}^{3}+A_{n}^{2}=50\,.$

A. $\frac{29}{51}$.

B. $\frac{297}{512}$.

 $\mathbf{C.} \frac{97}{12}$.

D. $\frac{279}{215}$.

Câu 11. Nghiệm của bất phương trình (ẩn n thuộc tập số tự nhiên) $\frac{C_{n+1}^2}{C_n^2} \ge \frac{3}{10}$ n là

A. $0 \le n \le 2$

B. $1 \le n \le 5$

 $\mathbf{C.} \ 2 \le \mathbf{n} \le 5$

D. $2 \le n < 4$

Câu 12. Nghiệm của bất phương trình (ẩn n thuộc tập số tự nhiên)

 $A_{n+1}^3 + C_{n+1}^{n-1} < 14(n+1) \ l\grave{a}$

A. $2 \le n \le 5$

B. $0 \le n \le 2$

 $C. 1 \le n \le 5$

D. $2 \le n < 4$

Câu 13. Nghiệm của phương trình (ẩn n thuộc tập số tự nhiên) $C_{n+2}^{n-1} + C_{n+2}^n > \frac{5}{2}A_n^2$ là

A. $n \ge 2$

B. $n \ge 3$

C. $n \ge 5$

D. $n \ge 4$

Câu 14. Nghiệm bất phương trình sau: $\frac{1}{2}A_{2x}^2 - A_x^2 \le \frac{6}{x}C_x^3 + 10$ là

A. x = 3; x = 4

 $\mathbf{R}. \mathbf{x} = 3$

C. x = 2; x = 3; x = 4

D. x = 4

Câu 15. Trên đường thẳng d_1 cho 5 điểm phân biệt, trên đường thẳng d_2 song song với đường thẳng d_1 , cho n điểm phân biệt. Biết có tất cả 175 tam giác được tạo thành mà 3 đinh lấy từ n + 5 điểm trên. Giá trị của n là

A. 10

B. 7

C. 8

D. 9

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	В	С	С	A	В	В	D	C	В	C	D	A	A	В