PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-310666

(43)Date of publication of application: 04.11.1994

(51)Int.Cl.

H01L 27/092 H01L 21/28

(21)Application number: 05-120658

(71)Applicant: RICOH CO LTD

(22)Date of filing:

23.04.1993

(72)Inventor: ISHIDA MAMORU

(54) MANUFACTURE OF CMOS SEMICONDUCTOR DEVICE OF DUAL GATE STRUCTURE

(57)Abstract:

PURPOSE: To make a resistance of a polysilicon gate electrode small enough and to achieve a shallow junction between a source region and a drain region.

CONSTITUTION: A polysilicon film is formed on a gate

CONSTITUTION: A polysilicon film is formed on a gate oxide film 304. B ions are implanted into a polysilicon film region 305a and P ions are implanted into a polysilicon film region 305b to activate the regions. Then, the polysilicon film is patterned into gate electrodes and ions are implanted into a substrate at low density to activate the substrate and then to form a source and a drain. A titanium silicide layer 310 is formed by silicide processing on the surface of the gate electrides, the source and the drain region, and a substrate contact region.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-310666

(43)公開日 平成6年(1994)11月4日

(51)Int.Cl. ⁵ H 0 1 L		識別記号	庁內整理番号	FI	技術表示箇所
		301 D	7376—4M 9170—4M	H 0 1 L 27/08	321 D

客空請求 未請求 請求項の数7 FD (全 7 頁)

(21)出願番号	特顯平5-120658	(71)出戰人	000005747
(22)出顧日	平成5年(1993)4月23日	(72)発明者	•
•			東京都大田区中周込1丁目3番6号 株式 会社リコー内 弁理士 野口 繁雄

(54)【発明の名称】 デュアルゲート構造 CMO S型半導体装置の製造方法

(57) 【契約】

【目的】 ポリシリコンゲート電極の十分な低抵抗化と ソース領域及びドレイン領域の機い接合をともに実現す る。

【構成】 ゲート酸化膜304上にポリシリコン膜を形成し、ポリシリコン膜領域305aにはBイオンを注入し、ポリシリコン膜領域305bにはPイオンを注入し活性化する。それぞれのポリシリコン膜をゲート電極形状にパターン化し、基板に低濃度のイオン注入をし、活性化してソース・ドレインを形成する。ゲート電極表面、ソース・ドレイン領域表面及び基板コンタクト領域表面にはサリサイドプロセスによりチタンシリサイド層310を形成する。

(2)

特朗平6-310666

【特許請求の範囲】

【鯖求項1】 シリコン基板上のゲート酸化膜上にポリ シリコン膜を形成し、そのポリシリコン膜をゲート電極 形状にパターン化した後、シリコン基板上に不純物を導 入してCMOS型半導体装置を製造する方法において、 前記ポリシリコン膜をゲート電極形状にパターン化する 前に、P型ゲート電極を形成する領域のポリシリコン膜 にポロンイオンのみを注入して低抵抗化し、N型ゲート 電極を形成する領域のポリシリコン膜にN型不純物を注 入して低抵抗化しておくことを特徴とするデュアルゲー 10 ト構造CMOS型半導体装置の製造方法。

【訥水項 2 】 シリコン基板上のゲート酸化膜上にポリ シリコン膜を形成し、そのポリシリコン膜をゲート電極 形状にパクーン化した後、シリコン基板上に不純物を導 入してCMOS型半導体装置を製造する方法において、 前記ポリシリコン膜として全体をN型不純物で低抵抗化 したポリシリコン膜を形成し、前記ポリシリコン膜をゲ ート電極形状にパターン化する前に、P型ゲート電極を 形成する傾域のポリシリコン膜にポロンイオンのみを注 入して低抵抗化しておくことを特徴とするデュアルゲー 20 ト構造CMOS型半導体装置の製造方法。

【請求項3】 シリコン基板上のゲート酸化膜上にポリ シリコン膜を形成し、そのポリシリコン膜をゲート電板 形状にパターン化した後、シリコン基板上に不純物を導 入してCMOS型半導体装置を製造する方法において、 前記ポリシリコン膜として全体をポロンのみでP型に低 抵抗化したポリシリコン睽を形成し、前記ポリシリコン 膜をゲート電極形状にパターン化する前に、N型ゲート 電極を形成する領域のポリシリコン膜にリン又は砒素を 注入して低抵抗化しておくことを税徴とするデュアルゲ 30 一ト構造CMOS型半導体裝置の製造方法。

【請求項4】 前記ポリシリコン膜をゲート電極形状に パターン化した後、Nチャネル型MOSFETのソース ・ドレイン領域にはリン又は砒紫を注入し、Pチャネル 型MOSFETのソース・ドレイン領域にはBF1を注 入し、その役、サリサイドプロセスによりゲート電極 上、ソース領城上、ドレイン領城上及び茲板コンタクト 領域上にシリサイド層を形成する請求項1、2又は3に 記載のデュアルゲート構造CMOS型半導体装置の製造 方法。

【調求項5】 前記ポリシリコン膜をゲート電極形状に パターン化した後、サリサイドプロセスによりゲート電 極上、ソース領域上、ドレイン領域上及び基板コンタク ト領域上にシリサイド層を形成し、その後、Nチャネル 型MOSFETのソース・ドレイン領域にはリン又は砒 索を注入し、Pチャネル型MOSFETのソース・ドレ イン傾城にはBF2を決入する請求項1、2又は3に記 載のデュアルゲート構造CMOS型半導体装置の製造方 法。

めのイオン注入工程のドーズ量は、N型不純物として砒 来を注入するときは2×10¹⁴/cm²以下、P型不純 物としてBF2を注入するときは5×1014/c m2以下 とする請求項4又は5に記載のデュアルゲート構造CM OS型半導体装置の製造方法。

【請求項7】 ソース領域とドレイン領域に注入された 不純物の活性化とシリサイド化反応を同じ高速熱処理工 程により行なう請求項6に記載のデュアルゲート構造C MOS型半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はСМOS半型導体装置の 製造方法に関し、特に例えばサブミクロン以下と称され るような傲細パターンを有するデュアルゲート構造CM OS型半導体装置の製造方法に関するものである。

[0002]

【従来の技術】一般に、半導体装置プロセスは、微細化 が進むほどその工程数が増加する傾向にある。また、M OSFETのブロセスでは、微細化が進むほど短チャネ ル効果やホットキャリア効果など種々の問題が生じる。

【0003】同一基板にNチャネルMOSFETとPチ ャネルMOSFETを形成したCMOSデバイスでは、 ポリシリコンゲート電極としてはN*ポリシリコンゲー ト電極が広く用いられている。これは、ポリシリコン膜 上にリンガラスを堆積し、熱処型によってリンをポリシ リコン膜に拡散させて低抵抗化を図ったシリコンゲート 亀極である。そのようなCMOSデバイスでは、Nチャ ネル側を表面チャネル型、Pチャネル側を埋込みチャネ ル型にしている場合が多い。

【0004】しかし、微細化が進みサブミクロン以下と 称されるようなプロセスになると、埋込み型構造では短 チャネル効果を抑制することが困難になるため、Pチャ ネル型も表面型に移行せざるを得ない状況になってい る。その場合、PチャネルMOSFETのしきい値電圧 を制御する上でデュアルゲート構造が必須になってい る。デュアルゲート構造はNチャネルMOSFETでは N+ポリシリコンゲート電極、PチャネルMOSFET では P*ポリシリコンゲート電極(アクセプタ注入によ るポリシリコンゲート電極の低抵抗化)になっているも 40 のをさす。

【0005】デュアルゲート構造CMOS型半導体装置 の製造方法としては、その工程数を削減するために、M OSFETのゲート、ソース・ドレイン及び基板コンタ クト領域をN型領域とP型領域でそれぞれ1回すつのイ オン注入工程で形成するセルフアラインプロセスが知ら れている。

[0006]

【発明が解決しようとする課題】PチャネルMOSFE T、NチャネルMOSFETともに、ソース・ドレイン 【請求項6】 ソース領域とドレイン領域を形成するた 50 の浅い接合形成条件をポリシリコンゲート電極へのイオ

(3)

特朗平6-310666

ン注入に用いると、ゲート絶縁膜近傍のポリシリコンゲ ート電極は低抵抗化が不十分な空乏化状態となり、MO SFETのしきい値が変動したり、СМОS高速動作の 障害となる。また、PチャネルMOSFETのソース・ ドレインの浅い接合形成に不可欠なBF2をポリシリコ ングート電極へのイオン注入に用いると、Fによりゲー ト酸化膜中でBが増速拡散しやすく、それがチャネル領 域に拡散してMOSFETのしきい値電圧を変励させて します。

【0007】これらの問題を解決しようとすれば、ポリ シリコン膜厚、イオン注入条件、活性化条件などを厳密 に制御しなければならず、マージンの少ないプロセスを 検討しなければならなくなる。また、ゲート電極の低抵 抗化とソース・ドレインの浅い接合形成という相反する 要求をともに満足させることが難しいため、望ましい素 子設計ができなかった。

【0008】本発明の第1の目的はポリシリコンゲート 電極の十分な低抵抗化とソース領域及びドレイン領域の 浅い接合をともに実現することである。 本発明の第2の 目的はPチャネルMOSFETにおいてはチャネル領域 20 へのポロンの拡散を抑え、しきい値電圧の変化を抑える ことである。

[0009]

【課題を解決するための手段】本発明はデュアルゲート 構造のCMOS型半導体装置を製造する際に、ゲート電 極の形成とソース・ドレインの浅い接合形成に次の基本 構成を備えたものである。

- (1) デュアルゲートとソース・ドレインへの不純物導 入を別のプロセスで行ない、ゲート電極の低抵抗化とソ ース・ドレインの浅い接合形成をともに満足させる。
- (2) P型導電型のゲート電極の低抵抗化とゲート電極 からチャネル領域へのボロン拡散抑制を、ドーピング不 純物としてポロンのみを使用することによって実現す る。

【0010】(3) ソース・ドレインの形成にはサリサ イドプロセスを用いることを前提として、その注入ドー ズ虽を低下させることにより浅い接合を形成する。そし て、ソース・ドレインへの注入ドーズ量をシリコン基板 のアモルファス化が起こる臨界ドーズ量以下に設定する 生を抑える。

(5) また、ソース・ドレインの低温活性化が可能にな ることによって、活性化とサリサイドプロセスにおける シリサイド化反応を同時に行なう。

【0011】本発明の製造方法の一能様では、ポリシリ コン膜をゲート電極形状にパターン化する前に、P型ゲ 一ト電極を形成する領域のポリシリコン膜にボロンイオ ンのみを注入して低抵抗化し、N型ゲート電極を形成す る領域のポリシリコン膜にN型不純物を注入して低抵抗 化しておくこと。

【0012】本発明の製造方法の他の態様では、ポリシ リコン膜として全体をN型不純物で低抵抗化したポリシ リコン膜を形成し、ポリシリコン膜をゲート電極形状に パターン化する前に、P型ゲート電極を形成する領域の ポリシリコン膜にポロンイオンのみを注入して低抵抗化 しておくこと。

【0013】本発明の製造方法のさらに他の態様では、 ポリシリコン膜として全体をボロンのみでP型に低抵抗 化したポリシリコン膜を形成し、ポリシリコン膜をゲー ト電極形状にパターン化する前に、N型ゲート電極を形 10 成する領域のポリシリコン膜にリン又は砒素を注入して 低抵抗化しておく。

【0014】本発明ではまた、ポリシリコン膜をゲート 電極形状にパターン化した後、Nチャネル型MO S F E Tのソース・ドレイン領域にはリン又は砒素を注入し、 Pチャネル型MOSFETのソース・ドレイン領域には BF2を注入し、その後、サリサイドプロセスによりゲ ート電極上、ソース領域上、ドレイン領域上及び基板コ ンタクト領域上にシリサイド層を形成するか、文はその 逆に、ポリシリコン膜をゲート電極形状にバターン化し た後、サリサイドプロセスによりゲート電極上、ソース 領域上、ドレイン領域上及び基板コンタクト領域上にシ リサイド層を形成し、その後、Nチャネル型MOSFE Tのソース・ドレイン餌域にはリン又は砒素を注入し、 Pチャネル型MOSFETのソース・ドレイン領域には BF2を注入する。

【0015】好ましい態様では、ソース領域とドレイン 領域を形成するためのイオン注入工程のドーズ量は、N 型不純物として砒紫を注入するときは2×1014/cm 30 ²以下、P型不純物としてBF2を注入するときは5×1 014/cm2以下とする。さらに好ましい傲様では、ソ ース領域とドレイン領域に注入された不純物の活性化と シリサイド化反応を同じ高速熱処理工程により行なう。 【0016】先ず最初に、P型ゲート電極の低抵抗化と チャネル領域へのボロン拡散抑制について説明する。ポ リシリコン膜をゲート電極形状にパターン化する前に、 予めP型とN型の不純物をポリシリコン睒のそれぞれの 領域に導入して十分低抵抗化しておく。図1はその方法 を示したものである。シリコン基板10の表面にNウエ ことにより、低温での活性化を可能にし、結晶欠陥の発 40 ル11、Pウエル12、フィールド酸化膜13及びゲー ト酸化膜14が形成された試料に対し、ゲート酸化膜1 4 上及びフィールド酸化碳13上にポリシリコン膜を形 成する。PチャネルMOSFETを作成する領域以外を レジスト16で被い、ポリシリコン膜にポロンイオンを 注入してP型ゲート電極のためのP型ドーブ領域15a を形成する。

> 【0017】次に、NチャネルMOSFETを作成する 領域以外を上記と同様にレジストで被い、ポリシリコン 膜にリン又は砒素をイオン注入してN型ゲート電極のた 50 めのN型ドーブ頒城15bを形成する。この方法を用い

(4)

特朋平6-310666

れば、PチャネルMOSFETのゲート電極、ソース・ ドレイン及び基板コンタクト領域をセルフアライン注入 で同時形成する場合に使用するBF2イオンをゲート電 極の低抵抗化のために使用しなくてすむので、P型ゲー

ト電極の低抵抗化とチャネル領域へのボロン拡散抑制を ともに満足することができる。

【0018】図2は図1の試料で膜厚が約125Aのグ 一ト酸化膜14上に膜厚が約3500人のポリシリコン 膜を形成し、ドーズ登5×1015/cm2でボロンとB F1をそれぞれ注入し、850℃で30分間窒素中でア ニールしたときのP型ポリシリコン膜の抵抗とチャネル 領域のボロン磯度を調べた結果である。(A)はボロン のみを注入した場合、(B)はBFzを注入した場合で ある。ポリシリコン膜の膜厚の中心部にポロン濃度のピ 一クを与えるために、注入エネルギーはポロンの場合は 40KoV、BF2の場合は130KoVとした。

【0019】図2の結果によれば、P型ポリシリコン膜 の抵抗は注入イオンがBでもBF2でもほぼ一定であ る。しかし、チャネル領域のB濃度は、注入イオンにB のみを用いることによってBF2注入の場合よりも大幅 に低減できることが分かる。ポリシリコン膜の導電型を P型領域とN型領域にする方法としては、図1に示した 方法の他に、ポリシリコン膜全体を予めN型(又はP 型)に低抵抗化しておき、P型(又はN型)ゲート電極 を形成する領域以外をレジストで被い、B(又はリンも しくは砒素)をイオン注入する方法を用いることができ る。ポリシリコン膜全体を予めN型又はP型に低抵抗化 しておく方法は、工程数が少なくてすむ。

【0020】次に、ソース領域とドレイン領域の形成に 関して説明する。デュアルゲートにはP型ゲート電極と N型ゲート電極を接続するためのシリサイドが必要不可 久であり、本発明ではサリサイドプロセスによってゲー ト電極及びソース・ドレイン領域にシリサイドを形成す る。この場合、ソース・ドレイン領域の寄生抵抗は、シ リサイド層が存在することによって問題にならなくな り、ソース・ドレインの抵抗は数Ω/□程度になる。こ の理由からソース・ドレインへの注入ドーズ量をMOS FETの動作上問題にならない範囲で最低限にまで低下 させることができるようになる。シリサイド層を設けな い従来の場合には、注入ドーズ量を低下させるとソース ・ドレインの抵抗が高くなってMOSFETの動作上問 題が生じる。

【0021】また、ソース・ドレインへの注入ドーズ量 が少なくなることから、浅い接合形成、低温での活性 化、ひいてはシリサイド化反応の同時熱処理が可能にな る。このような効果を出現するドーズ量は、シリコン基 板のアモルファス化が起こる臨界ドーズ量以下であれば よく、砒素注入の場合は2×10¹⁴/cm²以下、BF2 注入の場合は5×10¹⁴/cm²以下である。BF2のド ーズ量が5×10¹⁴/cm²以下であれば、ソース・ド

レインへのイオン注入によってゲートにBFzが注入さ れても、Fによる増速酸化は問題のないレベルに抑える ことができる。

[0022]

【実施例】図3はゲート電極の低抵抗化と浅い接合形成 をともに実現するデュアルゲート構造CMOSの作成プ ロセスの第1の実施例を示したものである。

(A) シリコン基板300にNウエル301、Pウエル 302、フィールド酸化膜303、ゲート酸化膜304 を形成し、フィールド酸化膜303とゲート酸化膜30 4上に膜厚が約3500人のポリシリコン膜を形成す る。そのポリシリコン膜上にレジストパターンを形成 し、レジストバターンをマスクとしてNウエル301上 のポリシリコン膜にはBイオンを約20KeVで、約4 ×10¹⁶/cm²注入してP型ポリシリコン膜305a とする。別のレジストパターンをマスクとしてPウエル 302上のポリシリコン膜にはPイオンを約40KeV で、約2×10¹⁵/cm²注入してN型ポリシリコン膜 305bとする。そして、約850℃で30分の窒素券 囲気中でのアニールを施して活性化する。

【0023】(B)ポリシリコン膜をゲート電極形状に パターン化し、NチャネルMOSFET個域ではLDD 用にN型不純物を低濃度に注入してN-領域306を形 成する。

(C) ゲート電極の側面にサイドウォール307をHT O(Hight TenporatureOxide) 成膜とそのエッチパック により形成し、ソース・ドレインのためのN型不純物と P型不純物をそれぞれ注入する。N型不純物としてはA s を約30 Ke Vで2×1014/c m²注入してN+領域 308を形成し、P型不純物としてはBF2を約20K c Vで5×10¹⁴/cm²注入してP*領域309を形成 する。その後、約950℃で30秒のRTA (Rapid th ermal anneal) 処理を施し、ソース領域とドレイン領域 に注入された不純物を活性化させる。

【0024】(D)表面の酸化膜を除去してゲート電極 表面、ソース・ドレイン領域表面及び基板コンタクト領 域表面を露出させた後、スパッタリング法によりチタン を約300Aの厚さに成胶し、サリサイドプロセスによ りチタンシリサイド層310を形成する。チタンシリサ イドの形成にはチタン膜のスパッタリング後、第1段階 のアニールを約675℃で30秒間行ない、未反応のチ タンを選択エッチング法により除去した後、第2段階の アニールを約950℃で約30秒間行なう。

(E) 層間絶縁膜311を形成し、コンタクトホールを 開口した後、メタル電極312を形成する。 以上のプロセスによってデュアルゲート構造CMOSデ バイスが作成される。

【0025】(実施例2)図4はゲート電極の低抵抗化 と浅い接合形成をともに実現し、実施例1よりも工程を 50 筋略化したデュアルゲート構造CMOSデバイスの製作

(5)

特朗平6-310666

7

プロセスの実施例を表す。

(A) シリコン悲板300にNウエル301、Pウエル302、フィールド酸化膜303、ゲート酸化膜304を形成し、フィールド酸化膜303とゲート酸化膜304上に膜厚が約3500人のポリシリコン膜を形成する。そのポリシリコン膜の全面にBイオンを約20KeVで4×10¹⁵/cm²注入する。次に、レジストパターンを形成し、それをマスクとしてPウエル402上のポリシリコン膜405bにPイオンを約40KeVで約5×10¹⁵/cm²注入する。これにより、ポリシリコン膜をP型個域405aとN型領域405bに区分する。その後、約850℃で約30分間、窒素雰囲気でアニールし、活性化する。

【0026】(B) ポリシリコン膜405a, 405b をパターン化してゲート電極405a', 405b'を形状し、NチャネルMOSFETのLDD用に低濃度N で領域406をイオン注入により形成する。その後、ゲート電極の側面にサイドウォール407をHTO成膜とそのエッチバックにより形成する。

【0027】(C) 表面の酸化膜を除去してゲート電極 20 表面、ソース・ドレイン領域器面及び基板コンタクト領域表面を露出させた後、スパックリング法によりチタンを約300人の厚さに成膜し、サリサイドプロセスによりチタンシリサイド圏408を形成する。チタンシリサイドの形成のためにチタン膜のスパッタリング後、第1 段階のアニールを約675℃で30秒間行ない、未反応のチタンを選択エッチング法により除去する。チタンシリサイド形成のための第2段階のアニールはこの段階では行なわない。

【0028】(D) チクンシリサイド層408を介して 30 ソース・ドレイン領域のために不純物注入を行なう。ソ ース・ドレイン領域のためのN型不純物とP型不純物を それぞれ注入する。N型不純物としてはAsを約30K eVで2×10¹⁴/cm²注入してN*領域409を形成 し、P型不純物としてはBF2を約20KeVで5×1 0¹⁴/cm²注入してP*領域410を形成する。その 後、約950℃で30秒のRTA処理を施し、ソース領 域とドレイン領域に注入された不純物を活性化させる。 このRTA処理がチタンシリサイド層408の第2段階 のアニールを兼ねている。

(E) 層間絶縁膜411を形成し、コンタクトホールを 開口した後、メタル電極412を形成する。

[0029]

【発明の効果】本発明では、デュアルグートとソース・ドレインへの不純物導入を別のプロセスで行なうので、グート電極の低抵抗化とソース・ドレインの浅い接合形成をともに満足させることができる。また、P型ゲート電極の低抵抗化のためのドーピング不純物としてポーンののよった。サート電極からチャネル領域を抑制して、しきい値電圧の変化を抑えることができる。ソース・ドレイン領域にはシリサイド層を形成することを前提として、ソース・ドレイン領域できる。とを前提として、ソース・ドレイン領域できることができ、低温での活性化を可能にし、結晶欠陥の発生を抑えることができる。また、ソース・ドレインの低温活性化が可能になることによって、活性化とサリサイドプロセスにおけるシリサイド化反応を同時に行なうこともできるようになる。

【図面の簡単な説明】

【図1】本発明におけるポリシリコン膜の低抵抗化プロセスを示す断面図である。

【図2】ポリシリコン膜にBを注入した場合 (A) とBF2を注入した場合 (B) のシート抵抗とチャネルのB 濃度を示す図である。

【図3】第1の実施例を示す工程断面図である。

【図4】第2の実施例を示す工程断面図である。

【符号の説明】

10,300,400 シリコン基板

11, 301, 401 Nウエル

12, 302, 402 Pウエル

14,304,404 ゲート酸化膜

15a, 305a, 405a P型ポリシリコン膜

15b, 305b, 405b N型ポリシリコン膜

305a', 305b', 405a', 405b'

ゲート電極

306, 308, 309, 406, 409, 410 ソース・ドレイン

310,408 シリサイド層

(6)

特開平6-310666

[図1]

[図2]

(B)

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1

[図3]

(7)

特朗平6-310666

[図4]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.