

Background decomposition measurement based on photon Identification and isolation

Shuo Han

Introduction

◆ Motivation:

- Mixture the background for background modeling and background function description study
- Measure the decomposition of reducible background (with jets) and irreducible background (with photons), by data-driven method

◆ Method:

- 2-D sideband method (ABCD method)
- ◆ 2x2-D sideband method
- Dynamic template fit method

2-D sideband method

◆ Definition (use photon final states as example):

• Use the number of photon candidates observed in the sidebands of a two-dimensional (e.g. E_T^{iso} , and photon identification) distribution to estimate the amount of background in signal region.

Input

◆ DATA

MC of irreducible background

◆ MC of reducible background (we always don't have one with enough

event number)

2-D sideband method

◆ Ideal assumption (use photon ID and Iso as example)

- \bullet No irreducible component (signal) leakage, irreducible background are all in region A, $N_{B,C,D}^{reducible}=N_{B,C,D}$
- X and Y axis are not correlated $\frac{N_A^{reducible} \times N_D^{reducible}}{N_B^{reducible} \times N_C^{reducible}} = 1$

•
$$Purity = \frac{N_A^{irreducible}}{N_A} = 1 - \frac{N_A^{reducible}}{N_A} = 1 - \frac{N_B N_C}{N_A N_D}$$
 (totally data-driven)

◆ Corrections:

- ullet Signal leakage: fraction of irreducible events in B, C, D c_B , c_C , c_D
 - Use irreducible background MC

- - ◆ Use reducible background MC like Z+jet
 - ullet Assuming high E_T^{iso} region and low E_T^{iso} region have the same correlation to photon ID, use BDEF regions

2-D sideband method

◆ With corrections we got 5 parameters and 5 equations

$$> N_A = N_A^{reducible} + N_A^{irreducible}$$

>
$$N_B = N_B^{reducible} + N_A^{irreducible} \times c_B$$

>
$$N_C = N_C^{reducible} + N_A^{irreducible} \times c_c$$

>
$$N_D = N_D^{reducible} + N_A^{irreducible} \times c_D$$

$$> \frac{N_A^{reducible} \times N_D^{reducible}}{N_B^{reducible} \times N_C^{reducible}} = Rmc$$

◆ Solution:

>
$$Purity = \frac{N_A^{irreducible}}{N_A}, N_A^{irreducible} = \frac{b}{2a} \times \left(-1 + \sqrt{1 - \frac{b^2}{4ac}}\right)$$

$$\Rightarrow a = c_B \times c_C \times Rmc - c_D$$

$$b = N_D + N_A \times c_D - N_B \times c_C \times Rmc - N_C \times c_B \times Rmc$$

$$c = N_B \times N_C \times Rmc - N_A \times N_D$$

2x2-D sideband method

◆ Definition:

- Extrapolation of ABCD method, considering leading and sub-leading photons in yy background
- 4 dimensions (ID of leading photon, ID of sub-leading photon, E_T^{iso} of leading photon, E_T^{iso} of sub-leading photon)
- ◆ ABCD -> AA, AB, ··· DC, DD (16 regions)

◆Input

- **◆**DATA
- ◆MC of irreducible background

2x2-D sideband method

◆ Define

- Yield of yy, yj, jy, jj components Y_{yy} , Y_{jy} , Y_{yj} , Y_{jj}
- ullet Isolation rate of photon $arepsilon_1^{iso}$, $arepsilon_2^{iso}$
- ullet ID rate of photon $arepsilon_1^{ID}$, $arepsilon_2^{ID}$
- Isolation fake rate of jet f_1^{iso} , f_2^{iso} , $f_1^{\prime iso}$, $f_2^{\prime iso}$ (f yj, jy, f' jj)
- ID fate rate of jet f_1^{ID} , f_2^{ID} , $f_1^{\prime ID}$, $f_2^{\prime ID}$
- ullet Correlation between ID and isolation fake rate C_1^{id-iso} , C_2^{id-iso} (set to 1±0.2)
- Correlation between isolation fake rate in jet-jet events C_{ii}^{iso}
- relationship to ABCD method: $\frac{C_i^{id-iso} \left(1 f_i^{iso} f_i^{ID} f_i^{iso} f_i^{ID} C_i^{id-iso}\right)}{\left(1 f_i^{iso} C_i^{id-iso}\right)\left(1 f_i^{ID} C_i^{id-iso}\right)} = Rmc_i$
- In each region we have the equation like
- $N_{AA} = Y_{yy} \times \varepsilon_1^{iso} \varepsilon_2^{iso} \varepsilon_1^{ID} \varepsilon_2^{ID} + Y_{yj} \times \varepsilon_1^{iso} \varepsilon_1^{ID} f_2^{iso} f_2^{ID} C_2^{id-iso} + Y_{jy} \times f_1^{ID} f_1^{iso} C_1^{id-iso} \varepsilon_2^{ID} \varepsilon_2^{iso} + Y_{jj} \times f_1^{\prime iso} f_2^{\prime iso} f_1^{\prime ID}, f_2^{\prime ID} C_{jj}^{iso} C_1^{id-iso} C_2^{id-iso}$
- ◆ 16 equations > 13 unknown parameters -> likelihood fit

Dynamic template fit method

◆ Definition (use photon final states as example):

ullet A binned maximum likelihood fit to the E_T^{iso} distribution of photon candidates selected in data which pass the tight ID. Where the distribution is from simulation of irreducible background and a data template for reducible background

◆ Input

- ◆ DATA
- MC of irreducible background

Dynamic template fit method

Assumptions

- ◆ Use signal leakage Leakage_{ibin} from MC
- ullet Use signal shape $fraction_{ibin}$ from MC
- Background shape is same in signal and control regions

♦ Fit parameters:

- signal $(Z + \gamma)$ yields in the signal region N_{SR}^{Sig} .
- background (Z+jet) yields in the signal region N_{SR}^{Bkg} .
- background (Z+jet) yields in every E_T^{cone20} bins of the control region N_{ibin}^{Bkg} . \times number of Bins

♦ Fit points:

$$N_{ibin}^{SR} = N_{SR}^{Sig} * Fraction_{ibin} + N_{SR}^{Bkg} * \frac{N_{ibin}^{Bkg}}{\sum_{ibin=1}^{Nbins} N_{ibin}^{Bkg}}$$

 \times number of Bins

$$N_{ibin}^{CR} = N_{SR}^{Sig} * Fraction_{ibin} * Leakage_{ibin} + N_{ibin}^{Bkg}$$

 ◆ Equivalent to ABCD method (Rmc = 1) when Nbins = 2, use maximum likelihood fit when Nbins > 2

backup

Result of Zgamma search

- ◆ Zgamma search background decomposition is using
 - ◆ ABCD method (Rmc from BDEF region)
 - ◆ Dynamic template fit method
- ◆ There's a good consistency in this search

ABCD

	$\ell\ell\gamma$ purity
2015+2016 inc.	$0.813 \pm 0.012^{+0.012}_{-0.019}$
VBF cate	$0.985 \pm 0.022^{+0.000}_{-0.052}$
rel pT cate	$0.865 \pm 0.087^{+0.000}_{-0.222}$
high pTt ee	$0.731 \pm 0.122^{+0.128}_{-0.000}$
low pTt ee	$0.813 \pm 0.019^{+0.013}_{-0.053}$
high pTt $\mu\mu$	$0.863 \pm 0.048^{+0.022}_{-0.000}$
low pTt $\mu\mu$	$0.806 \pm 0.016^{+0.010}_{-0.007}$
ttbar yield inc.	

Template fit

	$\ell\ell\gamma$ purity	
2015+2016 inc.	$0.838 \pm 0.005^{+0.000}_{-0.031}$	•
VBF cate	$0.970 \pm 0.030^{+0.002}_{-0.000}$	
rel pT cate	$0.925 \pm 0.018^{+0.010}_{-0.000}$	
high pTt ee	$0.899 \pm 0.018^{+0.007}_{-0.026}$	
low pTt ee	$0.827 \pm 0.008^{+0.000}_{-0.042}$	
high pTt $\mu\mu$	$0.871 \pm 0.018^{+0.000}_{-0.028}$	
low pTt μμ	$0.824 \pm 0.007^{+0.000}_{-0.041}$	

Exist problem

- ♦ **ABCD method:** BDEF is not always work (the assumption that high E_T^{iso} region and low E_T^{iso} region have the same correlation factor is not true)
 - ◆ Only when we are sure the correlation is very small between X and Y axis, we can simply assume Rmc = 1
- ◆ Mimic data for Jet fake rate study (Purity = 0.262):
 - ◆ Signal MC : single photon;
 - ◆ Background MC : di-jet

X-axis	Rmc	Strategy of Rmc	Purity (mimic data)
Ptcone20-0.05pT	1.05±0.04	(B' D' EF, mimic data)	0.283±0.026
Ptcone20-0.05pT	1.03±0.04	(B' D' EF, MC_jet)	0.296±0.032
Ptcone20-0.05pT	1.08±0.04	(ABCD, MC_jet)	0.262±0.031
Etcone20-0.065pT	1.05±0.05	(B' D' EF, mimic data)	0.365±0.031
Etcone20-0.065pT	1.03±0.06	(B' D' EF, MC_jet)	0.377±0.039
Etcone20-0.065pT	1.20±0.05	(ABCD, MC_jet)	0.262±0.038

Exist problem

◆ Template fit method: the assumption that background shape is same in signal and control regions is not true

Jet fake rate study
Done by Cong

- Template fits with following input shapes:
- I. Normal way: S_SR, S_CR, Data_CR to fit Data_SR/Data_CR
- II. Same bkg shape in SR to fit Data_SR/Data_CR
- III. Same signal shape in SR to Data_SR/Data_CR

Signal Region	Signal Yield	Bkg Yield	Total Yield	Purity
Original Inputs	2.90545e+08	8.17705e+08	1.10825e+09	26.2%
Input shapes(I)	411622727	696154192	1107776920	37.0%
Input shapes(II)	291408532	817693393	1109101926	26.2%
Input shapes(III)	414300188	693559131	1107859319	37.4%

Summary

- ◆ Data driven method for background decomposition is possible, when we have reducible and irreducible background.
- ◆ ABCD method is based on the event numbers and can be accurate when we trust background simulations, but it have problem when we don't have reducible background simulation.
- ◆ Template fit method don't need a reducible background simulation, but it rely on the photon isolation variables shape, where the reducible background shape is not always the same between signal and control regions
- ◆ My recommendation:
 - ◆ ABCD (Rmc from MC) > Template fit > ABCD (Rmc from BDEF) ~ ABCD (Rmc = 1)