Analyse II

David Wiedemann

Table des matières

1	Inte	égrales généralisées	2
	1.1	Integrales absoluments convergentes	3
	1.2	Integrale generalisee sur un intervalle non borne	5
2	L'espace R^n		5
	2.1	Espace vectoriel norme	5
	2.2	Normes sur \mathbb{R}^n	7
\mathbf{L}	ist	of Theorems	
	1	Definition (Intégrales généralisées (sur un intervalle borné non	
		$ferm\'e)\)\ \dots$	2
	2	Definition (Integrale sur un intervalle borne ouvert)	2
	1	Theorème (Critere de Comparaison)	2
	3	Definition (Integrale absolument convergente)	3
	3	Theorème (absolument convergente implique convergente)	3
	5	Theorème (Critere de comparaison (II))	4
	4	Definition (Integrale sur un intervalle non borne)	5
	5	Definition (Norme d'un vecteur)	5
	6	Definition (Espace vetoriel norme)	5
	7	Definition	5
	8	Definition (Distance)	6
	9	Definition (Produit Scalaire)	6
	6	Theorème (Inegalite de Cauchy-Schwarz)	6
	7	Theorème	6
	10	Definition (Suites convergentes)	7

Lecture 1: Introduction

Mon 22 Feb

1 Intégrales généralisées

Peut-on définir une intégrale sur un intervalle ouvert plutot que sur un intervalle fermé? ie.

$$f:[a,b[\to \mathbb{R} \text{ c.p.m.}]$$

Definition 1 (Intégrales généralisées (sur un intervalle borné non fermé))

Soit $f: [a, b] \to \mathbb{R}$ continue par morceaux (a < b).

En particulier, f est c.p.m. sur tout intervalle [a, x], a < x < b Soit $F(x) = \int_{a}^{x} f(t)dt$.

On dit que l'integrale generalisee $\int_a^b f(x)dx$ existe (ou converge) si $\lim_{x\to b} F(X)$ existe, dans ce cas, on note

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} F(x) - F(a)$$

 $Si \lim_{x\to b^{-}} F(x)$ n'existe pas, alors on dit que

$$\int_{a}^{b} f(t)dt$$

diverge. Definition analogue pour le cas |a,b|.

On souhaite definir $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} tan(x)dx = 0$.

Dans certains cas cette integrale vaut 0. Mais si on calcule

$$\lim_{\epsilon \to 0} \int_{-\frac{\pi}{2} + \epsilon^2} \frac{\pi}{2} - \epsilon tan(t) dt = \lim_{\epsilon \to 0+} (-\ln(\cos(\frac{\pi}{2} - \epsilon)) + \ln(\cos(-\frac{\pi}{2} + \epsilon^2))) = -\infty$$

Il faut donc une definition qui est coherente.

Definition 2 (Integrale sur un intervalle borne ouvert)

Soit $f:]a, b[\to \mathbb{R} \ c.p.m \ et \ c \in]a, b[$.

Si les integrales generalisees $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ existent, alors on definit l'integrale

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Si une des deux integrales diverge, alors le tout diverge.

Lecture 2: Integrales Generalisees

Wed 24 Feb

Theorème 1 (Critere de Comparaison)

Soit $f, g : [a, b[\rightarrow \mathbb{R} \ c.p.m. \ et \ supposons \ \exists c \in [a, b[\ tel \ que$

$$0 \le f(x) \le g(x) \forall x \in [c, b[$$

Si $\int_a^b g(x)dx$ existe alors $\int_a^b f(x)dx$ existe aussi Si $\int_a^b f(x)dx$ diverge alors $\int_a^b g(x)dx$ diverge aussi.

Preuve

Si $\int_a^b g(x)dx$ existe, alors $\int_c^b g(x)dx$ existe.

$$\begin{split} \int_a^b f(x)dx &= \lim_{x \to b-} \int_a^x f(t)dt \\ &= \lim_{x \to b-} \left(\int_a^c f(t)dt + \int_c^x f(t)dt \right) \\ &= \int_a^c f(t)dt + \lim_{x \to b-} \int_c^x f(t)dt \\ &\leq \int_a^c f(t)dt + \lim_{x \to b-} \int_c^x g(t)dt < +\infty \end{split}$$

En notant $F(x) = \int_a^x f(t)dt$, F est non decroissante, et bornee superieurement sur l'intervalle $[a,b] \Rightarrow \lim_{x\to b^-} F(x)$ existe.

Exemple

$$f(x) = \left| \sin(\frac{1}{x}) \right| \ sur \]0, 1], \ on \ a$$

$$0 \le f(x) \le 1$$

1 est integrable, et donc l'integrale de f(x) existe.

1.1 Integrales absoluments convergentes

Definition 3 (Integrale absolument convergente)

Soit I un intervalle du type [a,b[,]a,b] ou]a,b[et $f:I\to\mathbb{R}$ c.p.m. On dit que l'integrale generalisee de f sur I est absolument convergente si

$$\int_{I} |f(x)| dx$$

existe.

Theorème 3 (absolument convergente implique convergente)

Si l'integrale $\int_a^b f(x)dx$ converge absolument, alors il converge.

Preuve

Notons $f_{+}(x) = \max\{f(x), 0\}$ et $f_{-}(x) = -\min\{f(x), 0\}$ et on $a |f(x)| = f_{+}(x) + f_{-}$.

Donc

$$0 \le f_{+}(x) \le |f(x)| \ et \ 0 \le f_{-}(x) \le |f(x)| \forall x \in I$$

Par critere de comparaison, si

$$\int_a^b |f(x)| dx \ existe \ \Rightarrow \ alors \ \int_a^b f_+(x) dx, \int_a^b f_-(x) \ existent$$

et donc $\int_a^b f(x)dx$

Remarque

Soit $f: I \to \mathbb{R}$ c.p.m Si f est bornee sur I, alors

$$\int_{I} f(x)dx$$

existe.

Theorème 5 (Critere de comparaison (II))

Soit $f:[a,b[\to \mathbb{R} \ c.p.m.$

S'il existe $\alpha \in]-\infty,1[$ tel que

$$\lim_{x \to b-} f(x)(b-x)^{\alpha} = l \in \mathbb{R}$$

Alors

$$\int_{a}^{b} f(x)dx$$

existe.

 $S'il\ existe\ \alpha \geq 1\ tel\ que$

$$\lim_{x \to b^{-}} f(x)(b-x)^{\alpha} = l \neq 0$$

alors

$$\int_{a}^{b} f(x)dx$$

diverge.

Preuve

Par definition de la limite $\forall \epsilon > 0, \exists b-a > \delta_{\epsilon} > 0$ tel que

$$|f(x)(b-x)^{\alpha}-l|<\epsilon \forall x$$

$$\Rightarrow l - \epsilon \le f(x)(b - x)^{\alpha} \le l + \epsilon$$

 $et \ donc$

$$0 \le |f(x)| \le \frac{|l| + \epsilon}{(b-x)^{\alpha}}$$

Puisque le terme de droite est integrable, on conclut par le critere de comparaison. Pour la deuxieme partie, soit $\alpha \geq 1$ et $l \neq 0$.

Supposons l > 0, on a

$$l - \epsilon \le f(x)(b - x)^{\alpha}$$

Le meme raisonnement que ci-dessus donne que l'integrale de f diverge. \Box

1.2 Integrale generalisee sur un intervalle non borne

Definition 4 (Integrale sur un intervalle non borne)

Soit $f: [a, +\infty[\to \mathbb{R} \ c.p.m.$

On dit que $\int_a^{+\infty} f(x)dx$ existe si

$$\lim_{x \to +\infty} \int_{a}^{x} f(x) dx$$

existe et dans ce cas, on note

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

idem si $f:]-\infty, a[\to \mathbb{R}$. Soit $f:]a, +\infty[\to \mathbb{R}$ c.p.m. on dit que $\int_a^\infty f(x)dx$ existe s'il existe $c\in]a, \infty[$ tel que

$$\lim_{x \to a+} \int_{x}^{c} f(t)dt \ et \ \lim_{y \to +\infty} \int_{c}^{y} f(t)dt$$

existent.

Lecture 3: L'espace \mathbb{R}^n

Mon 01 Mar

2 L'espace \mathbb{R}^n

2.1 Espace vectoriel norme

Soit un ensemble V sur lequel on definit deux operations

- 1. somme : $+: V \times V \to V$
- 2. multiplication par un scalaire $\mathbb{R} \times V \to V$

On definit R^n par $R^n = \mathbb{R} \times \mathbb{R} \dots \times \mathbb{R}$

Definition 5 (Norme d'un vecteur)

C'est une application $N: V \to \mathbb{R}$, c'est une application qui satisfait

- $-\forall x \in V : N(x) \ge 0 \text{ et } N(x) = 0 \text{ si et seulement si } x = 0.$
- $-\forall \lambda \in \mathbb{R}, x \in V : N(\lambda x) = |\lambda| N(x)$
- $-- \forall x, y \in V, N(x+y) \le N(x) + N(y)$

On utilise souvent la notation N(x) = ||x||

Definition 6 (Espace vetoriel norme)

Un espace vectoriel norme est note (V, ||.||)

Definition 7

Soit V un espace vectoriel et N_1, N_2 deux normes sur V. On dit que N_1 et N_2 sont equivalentes si $\exists c_1, c_2 > 0$ tel que

$$c_1 N_2(x) \le N_1(x) \le c_2 N_2(x) \forall x \in V$$

Definition 8 (Distance)

Soit X un ensemble.

Une distance est une application $d: X \times X \to \mathbb{R}_+$ qui satisfait les proprietes suivantes

- $\forall x, y \in X, d(x, y) \ge 0, d(x, y) = 0 \iff x = y$
- La distance est symmetrique
- $-\forall x, y, z \in V, d(x, y) \le d(x, z) + d(z, y)$

Un espace X muni d'une distance est appele un espace metrique et est note (X,d).

On peut toujours definir une distance sur un espace vectoriel norme, defini par

$$d(x,y) = ||x - y||$$

On appelle cette distance, la distance induite par la norme.

Tout espace vectoriel norme est aussi un espace metrique.

Definition 9 (Produit Scalaire)

Soit V un espace vectoriel.

Un produit scalaire est une application $b: V \times V \to \mathbb{R}$ qui satisfait les proprietes suivantes

- $\forall x, y \in V, b(x, y) = b(y, x)$
- $\forall x, y \in V, \forall \alpha, \beta \in \mathbb{R}, b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- $-\forall x \in V, b(x,x) \ge 0, b(x,x) = 0 \iff x = 0$

Theorème 6 (Inegalite de Cauchy-Schwarz)

Soit V un espace vectoriel et $b: V \times V \to \mathbb{R}$ un produit scalaire. Alors

$$\forall x, y \in V | b(x, y) \le \sqrt{b(x, x)b(y, y)}$$

Preuve

 $\forall x, y \in V, \alpha \in \mathbb{R}$.

$$0 \le b(\alpha x + y, \alpha x + y) = \alpha^2 b(x, x) + 2\alpha b(x, y) + b(y, y)$$

Donc on a

$$\Delta = b(x,y)^2 - b(x,x)b(y,y)$$

Theorème 7

Soit $b: V \times V \to \mathbb{R}$ un produit scalaire, alors l'application $x \to \sqrt{b(x,x)} = \|x\|_b$ est une norme sur V.

Donc, si V est muni d'un produit scalairel, alors V est un espace norme et donc V est un espace metrique pour la distance induite par le produit scalaire.

2.2 Normes sur \mathbb{R}^n

- La norme euclidienne $\|x\| = \sqrt{\sum_{i=1}^n x_i^2}$
- Norme "max" $||x||_{\infty} = \max |x_i|$
- Norme 1 : $||x||_1 = \sum |x_i|$ Normes $p \in [1, +\infty[||x||_p = (\sum |x_i|^p)^{\frac{1}{p}}]$

Pour p infinie, on retrouve la norme infinie

On montre en exercices que toutes les normes p sont equivalentes.

De meme, on montre que toutes les normes sur \mathbb{R}^n sont equivalentes. Par contre, seulement la norme 2 est deduite d'un produit scalaire.

Definition 10 (Suites convergentes) Soit $\{x^{(k)}\}_{k=0}^{\infty} \subset \mathbb{R}^n$.

Soit
$$\left\{x^{(k)}\right\}_{k=0}^{\infty} \subset \mathbb{R}^n$$

On dit que cette suite converge s'il existe $x \in \mathbb{R}^n$

$$\lim_{k \to +\infty} \left\| x^{(k)} - x \right\| = 0$$