$EM360\text{-}B-Termodinâmica\ I$

Teste 2.2

1 este 2.2					
RA:	Nome:			Assir	ı.:
	modelo simplificado Dados do gás utilizado		1 0	otores de o	combustão interna de
Propriedades	_	R = 0.250 kJ/m	$c_p = 1.10 \text{ k}$	$J/kg.K$, c_1	y = 0.85 kJ/kg.K.
Estado 1 –	stado 1 – $p_I = 100 \text{ kP}$, $T_1 = 300 \text{ K}$		
Taxa de comp	pressão –	$V_1/V_2=10$			
Temperatura	máxima –	$T_3 = 1600 \text{ K}$			
Poder calorífi	co do combustível –	PC = 48.300	kJ/kg-comb		
1. Determine	a pressão e a tempera	tura no estado 2	2.		
			$p_2 = $	kPa	
			$T_2 = $	K	
2. Determine	a pressão no estado 3				
			$p_3 = $	kPa	
3. Determine	a pressão e a tempera	tura no estado 4	4.		
			$p_4 = $	kPa	
			$T_4 = $	_ K	
4. Calcule a r	azão entre a massa de	combustível ne	ecessária e a massa	a de gás no	ciclo.
			$m_{\rm comb} / m_{\rm gás} = $		kg-comb/kg-gás
5. Calcule:					
5.1 o ca	lor cedido ao gás		$q_{23} = $	kJ/kg	
5.2 o trabalho para compressão do gás		ăo do gás	$w_{12} = $	kJ/kg	
5.3 o tra	abalho de expansão do	gás	$w_{34} = $	kJ/kg	
5.4 o tra	abalho útil produzido		$w_{\rm u} = _{}$	kJ/kg	
5.5 a ef	iciência térmica		$\eta_{\rm t} = w_{\rm u} / q_{23} = $	%	

Processos:

- 1-2 compressão adiabática (q=0)
- 2-3 aquecimento a volume constante (w = 0)
- 3-4 expansão adiabática (q=0)
- 4-1 resfriamento a volume constante (w = 0)