

CHAPTER 7

DROP TEST INTO WATER

7.1 DEFINITION OF TEST

This procedure describes the test conditions and the operations to be carried out during the Drop Test into Water .

It respect the definition drescribed in:

- Section A8.2 of RTCM Recommended Standards for 406 MHz Satellite EPIRBs;
- Section 6.6 of ETS 300-066;
- Section A1.7 of IEC 61097-2 and
- Section 8.6.2 of EN 60945

7.2. GENERAL DEFINITION OF TESTS

7.2.1. PURPOSE

- a) Ensure that beacons are switched off, and drop them into the water from a height of 20 m in three configurations
 - · Antenna vertical up
 - · Antenna vertical down
 - · Antenna horizontal
- b) Physically inspect beacons
- c) Do electrical tests of beacons

7.2.2. TEST SITE

The tests are conducted in a river lock-gate.

7.2.3. TEST EQUIPMENT

Beacon without stowage bracket.

The test is carried out using a hydrolic horst skiff able to reach 20 m height. The height is controlled by a calibrated halyard.

The beacon is held by the operator in the right position and released above the water area. An operator takes photographs of the test sequence in real time.

7.2.4. TEST SEQUENCE

The test sequence is as follows:

- 1 Drop Test Antenna vertical (up)
- 2 Drop Test Antenna vertical (down)
- 3 Drop Test Antenna horizontal

7.2.5. ORGANIZATION

• Conducting of the test: ITS

• Crane operation : ITS

• Operation and control of beacon: ITS / Manufacturer Representative

• Recovery of beacons : ITS

Operation of camera:

ITS

• Height and depth checks : ITS

• Signal for start of test : ITS (subject to agreement + manufacturer)

7.3. IMPLEMENTATION OF TEST

7.3.1. TIMING

- Preparation phase
 - · Obtain agreement of lock-gate staff,
 - · Record beacon identification,
 - Lift up the operator and beacon in the hoisting skiff control the height (20 m),
 - · Set up camera,
 - · Make sure diver is ready.
- Test phase
 - · Obtain the ITS / CNES agreement for start of the test,
 - · Drop the beacon
 - · Tacke pictures before, during and at the end of the drop
- Control phase
 - · Diver recovers beacon,
 - · Mechanical and electrical checkout.

7.3.2. ENVIRONMENT

The tests conducted outside may therefore be subject to inclement weather such as wind, fog, icing and so on...

Decisions to postpone testing shall be taken jointly by ITS and Manufacturer Representative (if he is present).

7.2.3.3. SAFETY - QUALITY

All tests are to be conducted in the presence of ITS coordinator.

• Ensure that all personnel around the lock-gate is suitably dressed in view of the risk of slipping.

7.2.3.4. LOGISTICS

All tests are photographied in real time.

7.4. TEST RESULTS

7.4.1 Test implementation

Beacon Unit : 1/3

Name

: STANDARD COMMUNICATIONS

Type

: MT400

Number

: C204

Place : Port Sud - 31520 Ramonville Saint Agne

	DATE/HOURS	MECHANICAL CONTROLS	ELECTRICAL CONTROLS
CONFIGURATION 1 Antenna vertical up	April 7 th , 2003 10 :15	OK	OK
CONFIGURATION 2 Antenna vertical down	April 7 th , 2003 10 :35	OK	OK
CONFIGURATION 3 Antenna horizontal	April 7 th , 2003 10 :50	OK	OK

Observations:

Nothing.abnormal to note

Electrical checks after a drop test : OK

See result of alivness test next page

G. PEYROU

ITS Representative

7.4.2 Aliveness Test Results after Drop Test into the water

Beacon Unit : 1/2
Name : ACR
Type : RLB35
Number : 07

Date : April 7th, 2003 14:00

406 MHZ MEASUREMENTS

1 - Environmental Temperature (° C)			+ 22° C
- POWER OUTPUT	***************************************		
Transmission power	dBm	37 ± 2	35.4
Power risetime	ms	< 5	1.6
Power falltime	ms	< 5	0.4
- SPURIOUS OUTPUT			
In band		-	OK
Carrier harmonics			
-DIGITAL MESSAGE GENERATOR			
Repetition rate			
Bit rate	bits/S	400 ± 4	OK
Transmission time	ms	$440 \pm 4.4 / 520 \pm 5.2$	
CW preamble	ms	160 ± 1.6	
5 – DIGITAL MESSAGE			
- Bit and frame sync	bits	1-24	FFFE2F
- Format flag	bit	25	0
- Protocol flag	bit	26	ĺ
- Country code	bits	27-36	0503
- Protocol	bits	37-39	111
- Homing	bits	84-85	01
- Activation type	bits	108	0
- BCH 1 code read / calculated	bits	86-106 / 25-85	070010 / 070010
- BCH 2 code read / calculated	bits	133-144 / 107-132	NA
- FREQUENCY			
Nominal value	KHz	$406\ 028 \pm 1$	406 027.940
Nominal value			

7.5. PHOTOGRAPHS

FIRST DROP INTO WATER Antenna vertical up

SECOND DROP INTO WATER Antenna vertical down

Page 9/10 of chapter 7

THIRD DROP INTO WATER Antenna vertical horizontal

Page 10/10 of chapter 7

CHAPTER 8

THERMAL SHOCK, LEAKAGE AND IMMERSION TESTS

8.1. TEST SPECIFICATIONS AND SEQUENCE

8.1.1 Test specifications

Following:

- Section 6.7 & 6.8 of ETS 300-066;
- Section A1.9 of IEC 61097-2 and
- Section 8.9.2 of EN 60945

8.1.2 Test sequence

- · Leave beacon in off position throughout test .
- Place the beacon in an atmosphere of \pm 65 \pm 3°C for one hour.
- Fully immerse beacon in water at $\pm 20 \pm 3$ °C to a depth of 100 ± 5 mm measured from it highest point to the surface of water for a period of 1 hour (Test equipment: Pressure Chamber).
- Set chamber to 1 kg/cm² to simulate a 10 meter head of water.
- · Leave pressure on for five minutes.
- Remove beacon from chamber, wipe it dry and perform an alivness test then check that there is no free water inside the case.

8.2. EQUIPMENT UNDER TEST

Beacon Unit

: 1/3

Name

: STANDARD COMMUNICATIONS

Type

: MT400

Number

: C204

8.3 TEST SITE

INTESPACE Metrology.

8.4. TEST EQUIPMENT

- Pressure chamber: Intespace 100 liters Pressure Chamber (see photo next page),
- Pressure sensor: BARFLEX BOURDON Electronique Type 0-2000 hPa
- · Pressure reducer.
- · Nitrogen cylinder.
- Argos Cospas/Sarsat Test Bench.

LEAKAGE AND IMMERSION TEST

8.5. TEST RESULTS

8.5.1 Test implementation

Place

: INTESPACE Laboratory

Date	Hour	Events - Observations
April 7 th , 2003	11:30	Beacon leaved in thermal chamber at + 65 °C for one hour minimum
	12:15	Beacon at + 64.5 °C
	14:15	Beacon submerged under 100 mm of water for 1 hours minimum in pressure
	15 :30	chamber End of themal shock test: Beacon self test OK
	17:27	Beacon submerged and chamber pressurized to 10 ⁵ Pascal for five minutes
		Remark: The EPIRB automatically run at 0.3 kPa. That is not a failure
	17:32	Chamber depressurized and then beacon removed, wiped and dried.
	18:00	Electrical checks: See results of message control test next page
	18 :15	Beacon opened for visual inspection at ≈ 22 °C: OK. Nothing abnormal to note

CHAPTER 9

LOW TEMPERATURE, STROBE LIGHT AND BATTERY CAPACTY TESTS

9.1 TEST SPECIFICATIONS AND PROGRAMME

Following:

- Section 10.1 & 10.2 of ETS 300-066 and;
- Section A1.12 & A1.13 of IEC 61097-2
- · Using a fresh battery pack, turn ON the EUT (at the ambient temperature) for a period of time equal to the extension interval gived by the constructor.
- •Place the EUT turned OFF inside climatic chamber stabilized at -30° C (class II) for a period of 10 hours
- •At the conclusion of this period the chamber is heated to -20°C. One hour after the EUT is turned ON and continually monitor the following parameters until the end of the battery life:
 - Frequency (nominal carrier, short and medium term stability),
 - RF output power,
 - * Homing transmitter peak envelope output power.
 - Strobe light flash rate every 12 hours.

9.2. EQUIPMENT UNDER TEST

Beacon

Beacon Unit : 1/3

Name

: STANDARD COMMUNICATIONS

Type Number

: MT400 : C204

Class

Beacon Battery Type

Chemistry

: Li-SO2

Manufacturer & model no: SAFT LO26SX

Size & number of cells

9.3. TEST SITE

INTESPACE Beacon Certification Laboratory.

9.4. TEST EQUIPMENT

- Climatic chamber: CLIMATS F.C.H. Type: Austral 137H60/1,5E S/N: S4880.
- Argos Cospas/Sarsat Test Bench

9.5. RESULTS

These tests have been performed during the COSPAS-SARSAT Type Approval tests (chapter 10) The strobe light test and the self test have been, also, performed with Cospas Sarsat Type Approval tests (chapter 10) at three temperature (-20° C, 22° C and 55° C)

Before these tests we have verified the manufacturer calculation of the loss in battery capacity due to self-testing as well as battery pack self-discharge during the useful lifetime of battery pack (see chapter 10 : C/S Type Approval Test Report § "OPERATING LIFE TEST RESULTS ON MT400 Std. Com. S/N 204" page 49)

Manufacturer calulation of pre-conditioning activation period prior to the operating life test: 4 hrs 26 mn

9.5.1 Test implementation

Date	Hour	Operations	Results
April 15 th , 2003		Beginning of beacon activation period prior to the battery life test at 22 °C	Total: 4 hrs 26 mn
	14 :22	End of pre-conditionning battery	
April 15 th , 2003	17:00	The beacon, in the ready condition, is thermally saoked at - 30° C in the temperature-controled oven .	
April 16 th , 2003	12:30	The beacon, in the ready condition, is thermally saoked at - 20° C	
	14:18	The beacon in the oven at -20° C and connected into 50 Ohm load Argos Cospas Sarsat Test Bench is manually activated.	OK
		Simultaneously an Automatic Operational Life Test begin.	
April 18 th , 2003	15 :00	End of Automatic Operational Life Test.	
	15:30	Analysis of Operating Life Test Results :	Correct during ≈ 50 hours

9.5.2 Electrical results of Operating Life, StrobeLight and Self Tests

Measurement Temperature : -20 °C

	T	T		1	· · · · · · · · · · · · · · · · · · ·
SPECIFICATIONS	12 h	24 h	36 h	48 h	50 h
1 - FREQUENCY (MHz)					
Nominal Carrier 406.028 ± 0.001	406.027928	406.027927	406.027926	406.027925	406.027913
Short term stab. $< 2x10^{-9}/100 \text{ ms}$	$< 7 \times 10^{-10}$	$< 7 \times 10^{-10}$	$< 7 \times 10^{-10}$	$< 7 \times 10^{-10}$	< 2 x 10 ⁻⁹
Slope $< 1 \times 10^{-9} / \text{mn}$	$< 1.5 \times 10^{-10}$	$< 1.5 \times 10^{-10}$	< 1.5 x10 ⁻¹⁰	< 1.5 x10 ⁻¹⁰	< 5 x 10 ⁻¹⁰
Sigma < 3x10 ⁻⁹	< 8 x 10 ⁻¹⁰	< 8 x10 ⁻¹⁰	< 8 x 10 ⁻¹⁰	< 8 x10 ⁻¹⁰	< 8 x10 ⁻¹⁰
2 - RF OUTPUT					
+ 2.9 5 W (37 dBm ± 2 dBm) $- 1.8$	36.8	36.8	36.8	36.5	35.4
3 - STROBE LIGHTS					
20 to 30 flashes/min		20	-	21	21
Intensity ≥ 0.75 cand.	-	1.9	-	2.0	-
Duration (ms)		260 ms		260 ms	
4 - HOMING					
Transmitter :					
- peak envelope output power	18.8	18.9	18.8	18.8	18.8
(17 dBm ±3 dBm)					
5 – DIGITAL MESSAGE					
Correct Satellite EPIRB coding	OK	OK	OK	OK	OK

See data and graphs of results on chapter 10 "Cospas-Sarsat Type Approval Tests Reports" and graphs next pages.

Ref: M4586 - IEC & ETS

8.5.2 BEACON CONTROL TEST RESULTS AFTER IMMERSION TEST

Beacon Unit : 1/3

Name

: STANDARD COMMUNICATIONS

Type

: MT400

Number

Date

: C204 : April 7th, 2003

406 MHZ MEASUREMENTS

1 - Environmental Temperature (° C)			+ 22° C
2 – POWER OUTPUT			
Transmission power	dBm	37 ± 2	OK
Power risetime	ms	< 5	
Power falltime	ms	< 5	78
3 – SPURIOUS OUTPUT			
In band			
Carrier harmonics			
4 -DIGITAL MESSAGE GENERATOR			
Repetition rate			OK
Bit rate	bits/S	400 ± 4	*
Transmission time	ms	$440 \pm 4.4 / 520 \pm 5.2$	-
CW preamble	ms	160 ± 1.6	
5 – DIGITAL MESSAGE		***************************************	
- Bit and frame sync	bits	1-24	FFFE2F
- Format flag	bit	25	0
- Protocol flag	bit	26	1
- Country code	bits	27-36	0503
- Protocol	bits	37-39	111
- Homing	bits	84-85	01
- Activation type	bits	108	0
- BCH 1 code read / calculated	bits	86-106 / 25-85	070010 / 070010
- BCH 2 code read / calculated	bits	133-144 / 107-132	NA
EDECHENCY	de Teleponore, por la Mandales and Albaha Indonesia menare arama		WATER AND THE STREET OF THE ST
5 – FREQUENCY Nominal value	KHz	406.025.4.2	OV
	KHZ	$406\ 025 \pm 2$	OK
Short term stability		< 2x10 ⁻⁹ /100 ms	-

CHAPTER 10

COSPAS – SARSAT TYPE APPROVAL
TESTS REPORT (Ref : M4586 Std Com)
AND
COMPLEMENTARY C/S TEST REPORT
(Ref : M4586-Rev2)

Toulouse, 25 June 2003

INTESPACE reference: M4586 Std Com

TEST REPORT OF **406 MHz DISTRESS BEACON**

MANUFACTURER:

STANDARD COMMUNICATIONS PTY. LTD.

BEACON MODEL:

MT400 EPIRB

Written: 25 Jun 2003

By: Gérard PEYRO

Approved:

By: Didier NAWS

Visa:

Quality Control: メニッチ・33

By: André LOUIT

Distribution:

- Mr Craig DUNCAN STANDARD COMMUNICATIONS PTY. LTD. (1 copy) - Mr S. MIKAILOV COSPAS/SARSAT Sec (1 copy) - Mr M. SARTHOU CNES - DSO/RC/AS (1 copy) - INTESPACE ITS/AP/ET (1 copy)

This document may not be reproduced other than in full. It includes 92 pages and 2 annexes. A part of reproduction must be submitted at the laboratory authorization.

The COFRAC Test section accreditation proves the technical hability of the laboratory for tests or analysis under the authority of the accreditation

Accréditation Nº 1-0743 Scope given on request

1 - ADMINISRATION

1.1. WORK ORDER

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD. Address: 6, Frank Street - GLADESVILLE NSW 2111 AUSTRALIA

Represented by: Mr Craig DUNCAN

1.2. INTESPACE TEST CENTER

The test operations have been conducted by: Mr G. PEYROU

1.3. SCHEDULE

Start of test:

31 mars 2003

End of test:

20 mai 2003

1.4. WORK REFERENCE:

M4586

1.5. EQUIPMENT UNDER TEST

The results from this test report concern only the equipment here after referenced:

- Commercial designation:

- Model:

MT400

- Sérial number:

C204 and C203

2 - TEST FACILITIES

- ARGOS COSPAS/SARSAT Certification Test Bench.
- Anechoic chamber for antenna test.
- Toulouse CNES MCC .

3 - STANDARS AND TEST PROCEDURES APPLICABLE

COSPAS-SARSAT standards:

- "C/S T. 001- Issue 3 Revision 4 October 2002 "
- "C/S T. 007- Issue 3 Revision 9 October 2002"

INTESPACE Radio Beacon Test Procédures:

- " COSPAS-SARSAT Certification Test" Réf. ITS: 572 AP/QA
- " 406 MHz Caracteristic Antenna Test " Réf. ITS: 566 AP/QA
- " Radio Beacon Test Report " Réf. ITS: 579 AP/QA-f

4 - RESULTS

See the following pages:

- application form for a COSPAS-SARSAT 406 MHz beacon Type Approval Certificate,
- summary of 406 MHz beacon test results
- test results : data and graphs
- Annex A: Antenna test results (no. COFRAC)
- and Annex B: Manufacturer technical data

APPLICATION FOR A COSPAS - SARSAT 406 MHz BEACON TYPE APPROVAL CERTIFICATE

Beacon Manufacturer:	STANDARD CO	MMUNICA	ATIONS	PTY. LTD.	
Beacon model :	MT400				
Beacon Number :	C204				
Name and Location of E	Beacon Test Facility	: IN	ГЕЅРАС	E / CNES Toulo	use
Beacon Type:	Aviation :	Land:]	Maritime : ✓	
Antenna Model:	Standard Commu	nication			
Specified Operating Ter	nperature Range	-20 °C to	55 °C		
Specified Operating Life	etime: 24 hr	48 hr ☑	Othe	r□ Specify	:
Beacon Battery Type(s) Chemistry Manufacturer Size & number	r of cells	: LiSO2 : SAFT / L : D Size /	2 Cells		
Extra Features in Beaco	n	No	Yes	Details	
a) Auxiliary Radio-Locati	ng Device :		V	Frequency Power Tx. Duty Cycle	: 121.5 MHz : 17 dBm (50 Ω) : Continious (>96%)
b) Transmits Encoded Pos	sition Data	V		Nav. Device Type Manufacturer Model	:
c) Transmits Long Messa	ge (144 bits)	V		Model	•
c) Automatic Activation:		V			
d) Built-in Strobe light:			V	Intensity Flash rate	: >0,75 Cd : 20/21 per min
e) Selft-test mode			V	riasii rate	. 20/21 per min
f) Other			V	Specify	: Audible Annunciator
I hereby confirm that the 406 M COSPAS-SARSAT Type Appr (C/ST T.001) as demonstrated	oval Standard (C/S T.00			•	
Dated: 17/10/200	3	Sig	ned: _	for test facility	a)

	TableC2:	TableC2:SUMMARYOF40	6 MHz BI	406 MHz BEACON TEST RESULTS	TRESULT	S	Ref: M4586 Std Cong
PARAMÈTRES TO BE MEASURED		RANGE OF	UNITIS		TEST RESULTS		
DURING TESTS		SPECIFICATION		T _{min.} -20°C (±3)	T amb. 22°C (±3)	T max. 55°C (±3)	COMMENTS
1 - POWER OUTPUT							miement
o transmitter power output		35 - 39	dBm	36,5	36,1	35,5	
o Power output rise time		< 5	ms	1,56	1,61	1,79	Graphs p, 20, 23 and 26
o power output 1 ms before burst		must be < -10 dBm	*>	7	>	·	Graphs pages 14 to 16
2 - DIGITAL MESSAGE	•						Data and graphs
	Bits number						pages 17 to 26
o bit sync	1-15	15 bits "1"	7	7	7	>	
o frame sync	16-24	9 bits (000101111)	>	7	7	>	
o format flag	25	1 bit	>	0	0	0	
o protocol flag	26	1 bit	7	1	_	-	
o identification/position code	27-85	59 bits	7	7	7	>	
o BCH code	86-106	21 bits	7	7	>	>	
o emerg. code/nat. use/supplem. data	107-112	6 bits	data bits	000000	000000	000000	
o additional data/BCH (if applicable)	113-144	32 bits	>	N/A	N/A	N/A	Not applicable
o position error (if applicable)		< 5	km	N/A	N/A	N/A	

TableC	TableC2: SUMMARY OF 406 MHz BEACON TEST RESULTS	06 MHz BI	ACON TES	TRESULTS		Ref: M4586 Std Com-Rev	
PARAMÈTRES TO BE MEASURED	RANGE OF	UNITS		TEST RESULTS		nce d	M
DURING TESTS	SPECIFICATION		T min. -20°C (±3)	T _{amb.} 22°C (±3)	T max. 55°C (±3)	COMMENTS 1 all	test
1 - POWER OUTPUT	→					onnement	ace
o transmitter power output	35 - 39	dBm	36,5	36,1	35,5		
o Power output rise time	< 5	sm	1,56	1,61	1,79	Graphs p, 20, 23 and 26	
o power output 1 ms before burst	must be <-10 dBm	* 7	7	7	7	Graphs pages 14 to 16	
2 - DIGITAL MESSAGE Bits number)er					Data and graphs	
o bit sync [-]	1-15 15 bits "1"	7	7	7	7		
o frame sync 16-24	24 9 bits (000101111)	>	7	7	7		
o format flag	25 1 bit	7	0	0	0		
o protocol flag	26 1 bit	>	1	1	1		
o identification/position code	85 59 bits	>	7	7	7		
o BCH code 86-106	06 21 bits	7	7	7	7		
o emerg. code/nat. use/supplem. data 107-112	12 6 bits	data bits	000000	000000	000000		
o additional data/BCH (if applicable)	44 32 bits	`>	N/A	N/A	N/A	Not applicable	
o position error (if applicable)	< 5	km	N/A	N/A	N/A		

. .

Table C2: SUMMARY OF 406 MHz BEACON TEST RESULTS

TableC2: SUMMARY OF 406 MHz BEACON TEST RESULTS

Ref: M4586 Std Com-Rev1

PARAMÈTRES TO BE MEASURED	RANGE OF	UNITS		TEST RESULTS		
DURING TESTS	SPECIFICATION		T min.	T amb.	T max.	COMMENTS
			-20°C (±3)	22°C (±3)	55°C (±3)	
4 - MODULATION						Data and graphs
o biphase-L		>	7	7	7	pages 17 to 26
o rise time	50 - 250	microsec.	210	220	230	
o fall time	50 - 250	microsec.	210	210	210	
o phase deviation : positive	+ (1.0 to 1.2)	radians	+1,04	+1,04	+ 1,05	Overshoot just in the spec
o phase deviation : negative	- (1.0 to 1.2)	radians	- 1,16	- 1,07	- 1,01	limits
o symmetry measurement	≤ 0.05		+ 0,0080	+ 0,0120	4E-06	
5 - 406 MHz TRANSMITTED FREQUENCY						Data pages 18, 21 and 24
o nominal value	as specified in C/S T.001 MHz and C/S T.012	MHz	406,0279447	406,0279432	406,0279400	
o short term stability	≤2 x 10 ⁻⁹	/100 ms	2,55E-10	3,41E-10	2,97E-10	
o medium term stability . slope	(-1 to +1) x 10 ⁻³	/minute	-7,62E-11	-7,45E-11	-6,86E-11	
. residual frequency variation	≤3 x 10 ⁻⁹		3,32E-10	8,03E-10	4,78E-10	
6 - SPURIOUS EMISSION ** (into 50 ohms)					THE REAL PROPERTY OF THE PROPE	See graphs pages
o in-band (406.0 - 406.1 MHz)	see spurious emission mask in C/S T.001	>	7	7	7	Z/ to 30

Ref: M4586 Std Com-Rev1

Ref: M4586 Std Com

PARAMÈTRES TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS	TEST RESULTS	COMMENTS
10 - OPERATING LIFETIME AT MINIMUM TEMPERATURE **				Data and graphs pages 49 to 63
o Duration	> 24	hours	49,5 hours at Tmin = -20 °C	
o Transmitted frequency:				
🖢 nominal value	as specified in C/S T.001 MHz	MHz	406,027919 / 406,027934	
- short term stability		/100 ms	< 7,0E-10	
- medium term stability . slope . residual frequency variation	$(-1.to+1) \times 10^9$ $\leq 3 \times 10^{-9}$	/minute	-1.5B-10 / 1.5B-10 ≤8,0E-10	
o Transmitted power output	35 - 39	dBm	36,5 / 36,8	
o Digital message	must be corect	٨	7	
11 - TEMPERATURE GRADIENT ** (5° C/hr)				Data and graphs pages 64 to 73
o Transmitted frequency:	TOO I OUT	WH.	405 024030 / 405	
- nominal Value	as specined in C/S 1.001 MHz	MINZ	400,024939 / 400,024903	
- short term stability	<2 x 10 ⁻⁹	/100 ms	≤4,0E-10	
- medium term stability	0			
. residual frequency variation	$(-1 \text{ to } +1) \times 10^{-3}$ $\leq 3 \times 10^{-9}$	/minute	-4E-10 / 5E-10 ≤ 1,3E-9	
e gransmitted power output	35 - 39	dBm	35,3 / 36,5	
o Digital message	must be corect	>	7	
12th LONG TERM FREQUENCY STABILITY	as specified in C/S T.001 MHz and C/S T.012	MHz		Constructor
Bata provided		~		explanations on Annex B

PARAMÈTRES TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS	TEST RESULTS	COMMENTS
13 - PROTECTION AGAINST CONTINUOUS TRANSMISSION o Description provided	≤45	ہ ا	≤ f,5 secords	Constructor explanations on Annex B (p 2&3 of ED030703-01 Doc
14 - SATELLITE QUALITATIVE TESTS ** • 18 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	successfully located by satellites / LUT	7	7	Data and graphs pages 74 to 82
15 - ANTENNA CHARACTERISTICS o Polarization	linear or RHCP	7 7	7	Antenna test report Annex A page 83
o VSWR o ERP max EOL o ERP min EOL o azimuth gain variation at 40° elevation angle	≤ 1.5 ≤ 20 ≥ 1.6 ≤ 3	- Watts Watts dB	7 283,5 2,5 0,5	Just
	must be correct (attach to report) must be correct (attach to report)	7 7		See manufacturer doc. Annex B
Coding option of the applicable coding coding option of the applicable coding coding option of the applicable coding codi	must be correct (attach to report)	>		

Page 11

TableC2: SUMMARY OF 406 MHz BEACON TEST RESULTS

Page 12

PARAMÈTRES TO BE MEASURED DURING TESTS	RANGE OF SPECIFICATION	UNITS	TEST RESULTS	COMMENTS
17 - NAVIGATION SYSTEM** (as applicable)				See data page
o position data default values	must be correct	~		\
o position acquisition time	< 30	minutes		\
o encoded positon data update interval	> 20	minutes		
o positon data input update interval (as applicable)	20/1	minutes		
o delta offset : - positive direction	must be correct	7	\	
- negative direction - overrange to 2 times coarse res.	must be correct must be correct	> >		
o last valid position : - retained after nav signal lost	\ 4	hours		
- cleared when beacon reactived	must be correct	~		
o design data provided on protection against beacon degradation due to navigation device, interface or signal failure or malfunction	no degradation	Y		

the ticks mark $\sqrt{\text{can be used where indicated to record that the requirement is met (no value needs to be shown).}$

attach graphs of test results for test number 6, 9, 10 and 11 and a summary table of results for test number 14, and, if applicable, test number 17. *

TRANSMITTER OUTPUT POWER RISE TIME TEST RESULT ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204 (1 ms before 10 % of the burst)

at -20° C, 22° C and 55° C

probable

· · ·

Ref: M458.

CERTIFICATION TEST RESULTS ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204

at -20° C, 22° C and 55° C

.

Certification Test at -20°C

Date of test: 10 Apr 2003

Manufacturer: Standard-Communications

Beacon Type: MT400 Number: C204

Message

Message		
Message received		FFFE2F5F7F03C48000009C00400
Format Flag	25	0
Protocol flag	26	1
Ident./Position code	27-85	BEFE07890000001
Country Code/Country	27-36	503 /
Protocol Code : U/Std-Nat	37-39/37-40	111
Protocol Code Used	37-39/37-40	Test
Identification Data	40-85/41-64/41-58	1E
Identification Used		::::::
Calculated BCH1	25-85	70010
Readed BCH1	86-106	70010
Homing	84-85	01
Em.cod/nat.use/supp.data	107-112	000000
Emer cod / Encod pos data	107	0
Activation type	108	0 Manual
Calculated BCH2	107-132	
Readed BCH2	133-144	
Latitude position		·
Longitude position		
Delta position		

Electrical and other param	ICCO IS		
CW preamble	ms 158,4 <	< 162,6	160,52
Total transmission time	ms 434,6 <	<445,4	440,59
Modulation frequency	Hz 395,4<	< 404,6	399,68
Phase deviation: total	rd	<=2,40	2,21
Phase deviation: positive	rd 1,00 <	< 1,20	1,04
Phase deviation: negative	rd -1,20 <	<-1,00	-1,16
Symmetry measurement	%	<=5 %	0,80
Nominal frequency: F2	Hz		406027944,67
Short term2			3,23E-10
Short term3			2,55E-10
Slope			-7,62E-11
Residual			3,32E-10
406 MHz power output	dBm		36,5
Homing frequency	MHz		121,50008
121,5 MHz power output	dBm		18,5
Soak temperature	°C		-21,0
Extra feature			No

0 ms Vmarker1 850 mv ==> 1,2 rd Vmarker2 700 mv ==> 1 rd

10 ms // 2′ms/div.

20 ms

8 ms

Duty Cycle: 0,00799596

falltime(1)<= 209,581 us +width(1) 1,23753 ms 10,5 ms

0,5 ms/div.

risetime(1)<= 209,58 us -widht(1) 1,25748 ms 13 ms

Certification Test at 22°C

Date of test: 31-mars-2003

Manufacturer: Standard-Communications

Beacon Type: MT400 Number: C204

Message

Message		
Message received		FFFE2F5F7F03C48000009C00400
Format Flag	25	0
Protocol flag	26	1
Ident./Position code	27-85	BEFE07890000001
Country Code/Country	27-36	503 / .
Protocol Code: U/Std-Nat	37-39/37-40	111
Protocol Code Used	37-39/37-40	Test
Identification Data	40-85/41-64/41-58	1E
Identification Used		::::::
Calculated BCH1	25-85	70010
Readed BCH1	86-106	70010
Homing	84-85	01
Em.cod/nat.use/supp.data	107-112	000000
Emer cod / Encod pos data	107	0
Activation type	108	0
Calculated BCH2	107-132	
Readed BCH2	133-144	
Latitude position		
Longitude position		
Delta position		

Electrical and other param			
CW preamble	ms 158,4 <	< 162,6	160,34
Total transmission time	ms 434,6 <	<445,4	440,43
Modulation frequency	Hz 395,4<	< 404,6	399,70
Phase deviation: total	rd	<=2,40	2,11
Phase deviation: positive	rd 1,00 <	< 1,20	1,04
Phase deviation: negative	rd -1,20 <	< -1,00	-1,07
Symmetry measurement	%	<=5 %	1,20
Nominal frequency: F2	Hz		406027943,20
Short term2			2,81E-10
Short term3			3,41E-10
Slope			-7,45E-11
Residual			8,03E-10
406 MHz power output	dBm		36,1
Homing frequency	MHz		121,50
121,5 MHz power output	dBm		18,6
Soak temperature	°C		22,2
Extra feature			No

0 ms Vmarker1 850 mv ==> 1,2 rd Vmarker2 700 mv ==> 1 rd 10 ms 2 ms/div. 20 ms

8 ms

Duty Cycle: 0,011952191

falltime(1)<= 209,581 us +width(1) 1,23752 ms 10,5 ms

0,5 ms/div. risetime(1)<= 219,56 us

-widht(1) 1,26746 ms

13 ms

Certification Test at 55°C

Date of test: 1 Apr 2003

Manufacturer: Standard-Communications

Beacon Type: MT400 Number: C204

Message

Micssage		
Message received		FFFE2F5F7F03C48000009C00400
Format Flag	25	0
Protocol flag	26	1
Ident./Position code	27-85	BEFE07890000001
Country Code/Country	27-36	503 /
Protocol Code: U/Std-Nat	37-39/37-40	111
Protocol Code Used	37-39/37-40	Test
Identification Data	40-85/41-64/41-58	1E
Identification Used		•••••
Calculated BCH1	25-85	70010
Readed BCH1	86-106	70010
Homing	84-85	01
Em.cod/nat.use/supp.data	107-112	000000
Emer cod / Encod pos data	107	0
Activation type	108	0
Calculated BCH2	107-132	
Readed BCH2	133-144	
Latitude position		
Longitude position		
Delta position		

Dicerical and other param			
CW preamble	ms 158,4 <	< 162,6	160,18
Total transmission time	ms 434,6 <	<445,4	440,32
Modulation frequency	Hz 395,4<	< 404,6	399,68
Phase deviation: total	rd	<=2,40	2,06
Phase deviation: positive	rd 1,00 <	< 1,20	1,05
Phase deviation: negative	rd -1,20 <	< -1,00	-1,01
Symmetry measurement	%	<=5 %	0,00
Nominal frequency: F2	Hz		406027940,00
Short term2			2,51E-10
Short term3			2,97E-10
Slope			-6,86E-11
Residual			4,78E-10
406 MHz power output	dBm		35,5
Homing frequency	MHz		121,50
121,5 MHz power output	dBm		17,7
Soak temperature	°C		52,8
Extra feature			No

0 ms Vmarker1 850 mv ==> 1,2 rd Vmarker2 700 mv ==> 1 rd 10 ms 2 ms/div. 20 ms

8 ms Duty Cycle:

: 4,008E-06

falltime(1)<= 209,58 us +width(1) 1,2475 ms 10,5 ms

0,5 ms/div.

risetime(1)<= 229,541 us -widht(1) 1,24751 ms

SPURIOUS EMISSIONS RESULTS MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204 at -20° C, 22° C and 55° C

406 MHz VSWR 3:1 TEST RESULTS ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204

at -20° C, 22° C and 55° C

Certification Test VSWR at -20°C

Date of test: 10 Apr 2003

Manufacturer: Standard-Communications

Beacon Type: MT400 Number: C204

Message

Message		
Message received		FFFE2F5F7F03C48000009C00400
Format Flag	25	0
Protocol flag	26	1
Ident./Position code	27-85	BEFE07890000001
Country Code/Country	27-36	503 /
Protocol Code: U/Std-Nat	37-39/37-40	111
Protocol Code Used	37-39/37-40	Test
Identification Data	40-85/41-64/41-58	1E
Identification Used		::::::
Calculated BCH1	25-85	70010
Readed BCH1	86-106	70010
Homing	84-85	01
Em.cod/nat.use/supp.data	107-112	000000
Emer cod / Encod pos data	107	0
Activation type	108	0
Calculated BCH2	107-132	
Readed BCH2	147-144	
Latitude position		
Longitude position		
Delta position		

Rise time Modulation	ms		0,2196	
Fall time Modulation	ms		0,1996	
Phase deviation :positive	rd 1,00 <	< 1,20	1,04	
Phase deviation: negative	rd -1,20 <	<-1,00	-1,16	
Symmetry measurement	%	<=5 %	1,20	
Nominal frequency: F2	Hz		406027943,88	

Vmarker1 850 mv ==> 1,2 rd Vmarker2 700 mv ==> 1 rd

2 ms/div.

Duty Cycle: 0,01204412

falltime(1)<= 199,601 us

+width(1)

1,22755 ms

0,5 ms/div.

risetime(1)<= 219,561 us

-widht(1)

1,25748 ms

Certification Test VSWR at 22°C

Date of test: 31 mars 2003

Manufacturer: Standard-Communications

Beacon Type: MT400 Number: C204

Message

Message		
Message received		FFFE2F5F7F03C480000009C00400
Format Flag	25	l o
Protocol flag	26	1
Ident./Position code	27-85	BEFE07890000001
Country Code/Country	27-36	503 /
Protocol Code: U/Std-Nat	37-39/37-40	111
Protocol Code Used	37-39/37-40	Test
Identification Data	40-85/41-64/41-5	1E
Identification Used		::::::
Calculated BCH1	25-85	70010
Readed BCH1	86-106	70010
Homing	84-85	01
Em.cod/nat.use/supp.data	107-112	000000
Emer cod / Encod pos data	107	0
Activation type	108	0
Calculated BCH2	107-132	
Readed BCH2	147-144	
Latitude position		
Longitude position		
Delta position		

Electrical and other parab	uctcis			
Rise time Modulation	ms		0,2096	
Fall time Modulation	ms		0,2196	
Phase deviation :positive	rd 1,00 <	< 1,20	1,03	
Phase deviation : negative	rd -1,20 <	<-1,00	-1,07	
Symmetry measurement	%	<=5 %	1,20	
Nominal frequency: F2	Hz		406027943,88	

Certification Test VSWR at 55°C

Date of test: 11 Apr 2003

Manufacturer: Standard-Communications

Beacon Type: MT400 Number: C204

Message

Message		
Message received		FFFE2F5F7F03C480000009C00400
Format Flag	25	0
Protocol flag	26	1
Ident./Position code	27-85	BEFE07890000001
Country Code/Country	27-36	503 /
Protocol Code: U/Std-Nat	37-39/37-40	111
Protocol Code Used	37-39/37-40	Test
Identification Data	40-85/41-64/41-58	1E
Identification Used		::::::
Calculated BCH1	25-85	70010
Readed BCH1	86-106	70010
Homing	84-85	01
Em.cod/nat.use/supp.data	107-112	000000
Emer cod / Encod pos data	107	0
Activation type	108	0
Calculated BCH2	107-132	
Readed BCH2	147-144	
Latitude position		
Longitude position		
Delta position		

Electrical and other param	nerers			
Rise time Modulation	ms		0,1996	
Fall time Modulation	ms		0,2295	
Phase deviation :positive	rd 1,00 <	< 1,20	1,05	
Phase deviation: negative	rd -1,20 <	< -1,00	-1,02	
Symmetry measurement	%	<=5 %	0,80	
Nominal frequency: F2	Hz		406027938,97	

Service .

SELF-TEST MODE CONTROL ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204

at 22° C

Message at 22°C

Manufacturer	Standard-Communications
Beacon model	MT400
Serial number	C204
Date of test	2 Apr 2003
Temperature	23,4
Message received	FFFED05F7F03C480000009C00400
Frame synchro. pattern	011010000

Total transmission time	ms	434.6<	ms	445.4<	440,12
1					

406 MHz BEACON SELF-TEST CHARACTERISTICS

406 MH	z beacon Model(s): MT400	
		Answer (X)
1. Does	s beacon have a self-test mode ?	Yes No ☑ □
If ye		
•	does self-test have a separate switch position?	☑ □
•	does self-test switch automatically return to normal position	
	when released? if not, how long until	✓ □
	the first "distress" message is emitted:	
•	does self-test transmit a 406 MHz signal ?	V
	if yes:	
	- unmodulated signal only	
	- normal data, but with inverted frame synchronization pattern	✓ □
	- 1 burst only	✓ □
•	does self-test transmit a 121.5 MHz signal ?	V
	if yes:	
	- for less than 1 second	✓ □
	- continually while self-test switch is actived	
	- other (please specify): Unmodulated at peak RF power	✓
•	does self-test transmit any other frequency (e.g. 243 MHz)?	
2. Resu	It of self-test is indicated by:	
•	pass/fail display indicator light	☑ □
•	strobe light flash	
•	other (please specify): Audible annunciator	☑ I
	the self-test be performed without removing the	
	con from its mounting bracket?	☑ □
4. Wha	t parameters are internally tested by the self-test?	
•	battery voltage	$\overline{\lor}$ \Box
•	RF power	☑ □
•	approximate RF frequency	
•	phase locked loop	
•	other (please specify): System User data (eg UIN) memory parity check	☑
5. Do tl	he above characteristics apply to this beacon model:	
•	for all countries where beacon is sold,	☑ □
	if no, please specify:	
•	for all production serial numbers ?	☑ □
	if no, specify:	

6. Comments

THERMAL SHOCK TEST RESULT ON MT400 STANDARD COMMUNICATIONS PTY, LTD. EPIRB N° C204

22°C to -8°C

Temperature Soak: 22°C Temperature Measure: -8°C

No	△ Frequency (Hz)	Temp. (°C)	P406 (dBm)	P121.5 (dBm)
1	49945,48	-8,9	36,3	18,5
2	49944,90	22,8	36,3	18,5
3	49945,58	22,9	36,2	18,5
4	49945,61	22,9	36,3	18,4
5	49945,79	22,9	36,2	18,5
6	49946,40	22,9	36,2	18,5
7	49946,00	22,9	36,2	18,4
8	49946,29	22,9	36,1	18,4
9	49947,18	23,0	36,2	18,3
10	49947,55	22,9	36,1	18,2
11	49947,33	23,0	36,1	18,3
12	49946,87	22,9	36,1	18,4
13	49947,88	23,0	36,1	18,4
14	49947,30	22,0	36,1	18,3
15	49948,10	22,1	36,0	18,4
16	49948,15	22,0	36,1	18,4
17	49948,16	22,1	36,0	17,9
18	49949,03	22,1	36,0	17,8

No	Temp.	Slope	Sigma	P406	Short term	P121.5
1	22,2	6,3E-10	7,8E-10	36,1	1,8E-10	18,4
		PABSEL!	6(612-10)	150	2. (E)	
31	22,1	1,2E-10	6,5E-10	35,9	2,5E-10	18,0
61	22,0	2,3E-11	6,3E-10	35,8	1,7E-10	18,3
91	21,8	8,9E-11	6,4E-10	35,8	2,6E-10	18,3
121	22,0	2,5E-12	7,4E-10	35,8	1,9E-10	18,3

Beacon message at the end of Thermal Shock Test:

FFFE2F5F7F03C48000009C00400

Frequency variation

406024958

406024946

— Initial tracing — Smoothed tracing

THERMAL SHOCK TEST / 30 °C change (22 °C to -8 °C)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400 Number: C204

THERMAL SHOCK TEST / 30 °C change (22 °C to -8 ° C)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.
Model: MT400
Number: C204

MEDIUM TERM STABILITY: MEAN SLOPE /mn (-1,0E-9 to 1,0E-9)

THERMAL SHOCK TEST / 30 °C change (22 °C to -8 ° C)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400 Number: C204

MEDIUM TERM STABILITY: RESIDUAL (≤3,0E-9)

- 1 - 1 - 1

-Residual). 1). 30 30

THERMAL SHOCK TEST / 30 °C change (22 °C to -8 °C)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400 Number: C204

SHORT TERM STABILITY /100 mS (< 2,0E-9)

THERMAL SHOCK TEST / 30 °C change (22 °C to -8 ° C) Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Date: 8 Apr 2003 Time: 11:02:36

Model: MT400 Number: C204

OUTPUT POWER (35 to 39 dBm)

ر ____

Ref: M4586 Std Com

OPERATING LIFE TEST RESULTS ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204

-20 °C

Note: Before the Operating Life Test the batteries have been discharged during 4hrs 26minutes with beacon on normal operation at ambient temperature following manufacturer note: "MT400 Qualification Testing" joint in Annex B

No	△ Frequency (Hz)	Temp. (°C)	P406 (dBm)	P121.5 (dBm)
1	49922,42	-20,9	36,8	18,8
2	49922,40	-20,9	36,7	18,3
3	49922,72	-20,9	36,7	18,3
4	49923,27	-20,8	36,8	18,8
5	49922,89	-21,0	36,8	18,6
6	49923,59	-20,9	36,7	18,8
7	49923,31	-21,0	36,8	18,8
8	49923,46	-20,9	36,8	18,8
9	49923,13	-20,9	36,8	18,8
10	49923,48	-20,9	36,8	18,8
11	49923,80	-21,0	36,8	18,8
12	49923,18	-21,0	36,8	18,8
13	49923,59	-21,0	36,8	18,8
14	49923,39	-20,9	36,8	18,8
15	49923,75	-20,9	36,8	18,8
16	49923,21	-20,8	36,8	18,8
17	49923,83	-20,8	36,8	18,8
18	49923,68	-20,9	36,7	18,8

No	Temp.	Slope	Sigma	P406	Short term	P121.5
1	-20,8	1,6E-10	6,5E-10	36,7	2,7E-10	18,7
18	-20,8	1,1E-10	3,8E-10	36,7	4,0E-10	18,7
31	-20,6	1,3E-10	4,0E-10	36,7	3,1E-10	18,8
61	-20,4	1,4E-11	6,2E-10	36,7	3,4E-10	18,8
91	-20,5	8,6E-11	5,6E-10	36,7	2,0E-10	18,8
121	-21,0	8,3E-11	7,0E-10	36,7	3,2E-10	18,8
151	-21,3	3,5E-11	4,2E-10	36,7	2,8E-10	18,8
181	-21,6	7,0E-12	4,5E-10	36,7	2,7E-10	18,7
211	-21,7	7,8E-11	5,7E-10	36,8	2,7E-10	18,8
241	-21,7	5,6E-11	5,4E-10	36,7	2,1E-10	18,8
271	-21,7	8,8E-11	6,3E-10	36,7	2,5E-10	18,8
301	-21,7	9,0E-12	4,3E-10	36,7	1,4E-10	18,9
331	-21,9	-3,2E-11	4,7E-10	36,8	1,3E-10	18,8
361	-21,8	3,4E-11	3,4E-10	36,8	2,4E-10	18,8
391	-21,7	-3,3E-11	4,5E-10	36,7	2,4E-10	18,8
421	-21,6	5,5E-11	5,2E-10	36,8	2,5E-10	18,8
451	-21,6	-6,7E-11	4,9E-10	36,8	2,3E-10	18,8
481	-21,6	-1,3E-11	3,1E-10	36,8	4,4E-10	18,8
511	-21,6	-9,3E-11	5,7E-10	36,8	2,5E-10	18,9
541	-21,6	-1,8E-11	4,3E-10	36,8	2,3E-10	18,8
571	-21,6	-2,5E-12	4,8E-10	36,8	3,1E-10	18,9
601	-21,4	-2,3E-11	6,8E-10	36,8	3,0E-10	18,8
631	-21,3	-2;8E-11	4,6E-10	36,8	2,6E-10	18,8
661	-21,3	-7,2E-11	4,8E-10	36,8	3,2E-10	18,8
691	-21,2	-6,7E-11	3,6E-10	36,8	2,8E-10	18,8
721	-21,2	3,9E-11	3,3E-10	36,8	3,7E-10	18,7
751	-21,0	7,4E-11	5,9E-10	36,8	3,1E-10	18,8
781	-20,9	-1,7E-11	5,8E-10	36,8	2,5E-10	18,8
811	-21,0	6,6E-11	6,7E-10	36,8	2,3E-10	18,5
841	-20,9	-2,7E-11	4,5E-10	36,8	2,1E-10	18,9

No	Temp.	Slope	Sigma	P406	Short term	P121.5
871	-20,8	1,1E-11	3,2E-10	36,8	2,0E-10	18,8
901	-20,7	4,0E-11	5,9E-10	36,8	2,4E-10	18,8
931	-20,7	3,0E-11	5,1E-10	36,8	3,7E-10	18,8
961	-20,6	-5,7E-11	4,4E-10	36,8	3,9E-10	18,9
991	-20,5	-7,8E-12	6,2E-10	36,8	4,0E-10	18,8
1021	-20,5	2,3E-11	5,5E-10	36,8	4,1E-10	18,7
1051	-20,5	1,5E-11	4,8E-10	36,8	2,7E-10	18,8
1081	-20,3	5,9E-12	5,0E-10	36,8	3,0E-10	18,8
1111	-20,4	3,1E-11	4,3E-10	36,8	3,6E-10	18,8
1141	-20,3	-1,2E-11	4,1E-10	36,8	2,9E-10	18,8
1171	-20,3	-1,6E-11	4,7E-10	36,8	3,4E-10	18,4
1201	-20,4	-3,4E-11	7,2E-10	36,8	3,1E-10	18,8
1231	-20,3	1,3E-10	5,6E-10	36,8	2,1E-10	18,4
1261	-20,2	3,7E-11	4,5E-10	36,8	2,0E-10	18,8
1291	-20,3	1,1E-11	4,7E-10	36,8	3,0E-10	18,9
1321	-20,5	2,1E-11	3,4E-10	36,8	2,5E-10	18,7
1351	-20,3	-2,4E-11	3,5E-10	36,8	2,9E-10	18,9
1381	-20,7	6,5E-11	3,9E-10	36,8	3,1E-10	18,8
1 1		2,8E-11	5,8E-10	36,8	2,2E-10	18,8
1411	-21,0		5,1E-10	36,8	3,6E-10	18,8
1441	-21,2	-6,8E-11			2,2E-10	18,8
1471	-21,3	2,4E-11	5,8E-10	36,8		
1501	-21,4	4,1E-11	4,4E-10	36,8	2,7E-10	18,9
1531	-21,4	3,6E-11	4,3E-10	36,8	2,0E-10	18,8
1561	-21,4	7,4E-11	6,4E-10	36,8	3,8E-10	18,6
1591	-21,6	4,8E-11	4,3E-10	36,8	2,4E-10	18,8
1621	-21,6	5,0E-11	5,1E-10	36,8	3,0E-10	18,8
1651	-21,5	-1,0E-11	3,5E-10	36,8	1,9E-10	18,8
1681	-21,5	1,7E-11	3,7E-10	36,8	3,3E-10	18,8
1711	-21,4	-5,7E-11	5,2E-10	36,8	2,0E-10	18,8 18,9 2
1741	-21,3	6,6E-11	4,5E-10	36,8	1,3E-10 2,5E-10	
1771	-21,2	1,8E-11	5,0E-10	36,8	í ,	18,8
1801	-21,1	-4,7E-11	6,1E-10	36,8	2,6E-10	18,6
1831	-21,1	-3,1E-11	3,7E-10	36,8	2,4E-10	18,9
1861	-21,0	-8,4E-11	5,7E-10	36,8	2,0E-10	18,4
1891	-20,8	5,9E-11	5,3E-10	36,8	3,5E-10	18,8
1921	-20,8	-2,4E-12	4,3E-10	36,8	2,3E-10	18,8
1951	-20,6	-6,8E-12	5,5E-10	36,8	3,0E-10	18,8
1981	-20,6	-1,3E-11	4,9E-10	36,8	2,7E-10	18,8
2011	-20,5	1,2E-11	4,8E-10	36,8	3,2E-10	18,5
2041	-20,3	-1,8E-12	4,3E-10	36,8	3,3E-10	18,8
2071	-20,2	2,3E-11	6,2E-10	36,8	2,0E-10	18,8
2101	-20,2	-5,0E-11	4,1E-10	36,8	3,6E-10	18,8
2131	-19,9	-3,3E-11	4,3E-10	36,8	2,3E-10	18,8
2161	-19,8	-4,2E-11	7,6E-10	36,8	2,6E-10	18,7
2191	-19,8	-2;3E-11	4,5E-10	36,8	3,1E-10	18,6
2221	-19,8	3,2E-11	5,0E-10	36,8	2,4E-10	18,9
2251	-19,8	6,7E-12	4,0E-10	36,8	2,8E-10	18,8
2281	-19,8	-4,1E-11	6,3E-10	36,8	4,3E-10	18,8
2311	-19,8	-3,7E-11	5,6E-10	36,8	3,4E-10	18,8
2341	-19,8	-1,8E-11	5,5E-10	36,8	2,9E-10	18,7
2371	-19,9	-4,5E-11	4,2E-10	36,8	2,4E-10	18,8

No	Temp.	Slope	Sigma	P406	Short term	P121.5
2401	-19,8	3,8E-11	5,0E-10	36,8	3,0E-10	18,4
2431	-19,8	1,0E-10	7,2E-10	36,8	2,6E-10	18,8
2461	-19,8	4,2E-11	4,6E-10	36,8	4,1E-10	18,6
2491	-19,6	-6,8E-11	6,0E-10	36,8	3,3E-10	18,6
2521	-19,7	9,5E-11	5,2E-10	36,8	1,8E-10	18,8
2551	-19,7	-4,5E-12	4,6E-10	36,8	2,8E-10	18,9
2581	-19,7	-2,3E-11	4,4E-10	36,8	2,8E-10	18,8
2611	-19,8	2,0E-11	3,9E-10	36,8	2,8E-10	18,2
2641	-19,7	-2,0E-11	3,7E-10	36,8	2,5E-10	18,9
2671	-19,5	-1,3E-11	4,1E-10	36,8	3,1E-10	18,8
2701	-19,7	-1,5E-11	3,4E-10	36,8	2,5E-10	18,8
2731	-19,6	6,0E-12	4,6E-10	36,8	2,7E-10	18,8
2761	-19,7	-3,5E-11	4,6E-10	36,8	3,7E-10	18,8
2791	-19,6	-2,9E-12	4,7E-10	36,8	3,9E-10	18,8
2821	-19,8	6,0E-11	5,9E-10	36,8	3,3E-10	18,8
2851	-19,7	-3,8E-11	4,4E-10	36,8	3,5E-10	18,8
2881	-19,7	1,8E-11	4,1E-10	36,8	3,9E-10	18,8
2911	-19,7	-2,7E-11	5,3E-10	36,8	1,6E-10	18,3
2941	-19,6	-3,9E-13	5,6E-10	36,8	2,7E-10	18,8
2971	-19,6	7,0E-11	4,0E-10	36,8	3,0E-10	18,8
3001	-19,6	8,0E-11	4,5E-10	36,8	3,3E-10	18,8
3031	-19,6	-1,7E-11	4,8E-10	36,8	2,9E-10	18,3
3061	-19,8	6,0E-11	3,6E-10	36,8	3,3E-10	18,4
3091	-19,9	-2,6E-11	3,9E-10	36,7	2,4E-10	18,8
3121	-20,0	-6,0E-12	5,2E-10	36,7	3,7E-10	18,9
3151	-20,3	-8,5E-11	7,0E-10	36,7	2,4E-10	18,6
3181	-20,5	-5,8E-11	4,4E-10	36,7	3,4E-10	18,8
3211	-20,6	4,6E-11	5,8E-10	36,7	2,6E-10	18,8
3241	-20,9	5,5E-11	4,1E-10	36,7	3,0E-10	18,8
3271	-20,9	1,3E-11	4,7E-10	36,7	3,1E-10	18,8
3301	-21,1	5,3E-11	4,8E-10	36,7	3,3E-10	18,9
3331	-21,1	-9,6E-11	4,4E-10	36,7	1,8E-10	18,8
3361	-21,2	3,4E-11	3,8E-10	36,7	2,8E-10	18,9
3391	-21,2	-5,4E-11	5,5E-10	36,6	2,6E-10	18,6
3421	-21,1	2,3E-12	5,9E-10	36,6	2,6E-10	18,8
3451	-21,1	1,3E-12	6,0E-10	36,6	2,5 E - 10	18,8
3481	-21,1	-6,3E-11	5,0E-10	36,4	3,4E-10	18,8
3511	-21,0	-2,2E-10	5,0E-10	36,4	2,5E-10	18,8
3541	-20,9	-4,0E-10	7,3E-10	36,2	5,7E-10	18,8
3571	-20,8	-4,3E-10	1,5E-09	35,7	1,2E-9	18,8
3601		-	·	-		
3631						
3661	•					

Beacon message after 48 hours of Operating Lifetime Test: FFFE2F5F7F03C48000009C00400

Frequency variation

406024,934 kHz

406024,919 kHz

406024,934 kHz

406024,919 kHz

--- Initial tracing --- Smoothed tracing

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD. Model: MT400

Model: MT400 Number: C204 FREQUENCY VARIATION

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400

Number: C204

Date: 16 Apr 2003 Time: 14:18:50

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.
Model: MT400
Number: C204

MEDIUM TERM STABILITY : RESIDUAL (\leq 3,0E-9)

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.
Model: MT400
Number: C204

SHORT TERM STABILITY /100 mS (\leq 2,0E-9)

LIFE TEST AT -20 °C
Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.
Model: MT400
Numero: C204

OUTPUT POWER (35 to 39 dBm)

ပ္

22

20

8

16

4

12

10

40 °C)_o 05)₂ (39

39 + 38 37 -36 32 34 33. 32.

31 -

30.

59.

LIFE TEST AT -20 °C

 $Manufacturer: STANDARD\ COMMUNICATIONS\ PTY.\ LTD.$

Model: MT400 Numero: C204

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.
Model: MT400
Numero: C204

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400

Numero: C204

MEDIUM TERM STABILITY: RESIDUAL (≤3,0E-9)

LIFE TEST AT -20 °C

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400 Numero: C204

SHORT TERM STABILITY /100 mS (< 2,0E-9)

Ref: M4586 Sta Com. ...-Polynomial (Short therm) - Short therm ပွ .)_c 05), OK . 20 °C J. 01); O† 99 48 46 4 42 8 38 36 34 32

 $\label{eq:commutation} \textbf{LIFE TEST AT -20 °C} \\ \textbf{Manufacturer}: \textbf{STANDARD COMMUNICATIONS PTY}. LTD. \\$

Model: MT400 Numero: C204

OUTPUT POWER (35 to 39 dBm)

37 -

38

36

35.

34.

59

33 -

Ref: M4586 Std Com

TEMPERATURE GRADIENT TEST RESULT ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204

at -20° C, 22° C and 55° C

Ref: M4586 Std Com

No	Δ Frequency (Hz)	Temp. (°C)	P406 (dBm)	P121.5 (dBm)
1	49943,19	-20,8	36,5	18,6
2	49942,77	-20,7	36,5	18,6
3	49944,32	-20,7	36,4	18,6
4	49944,22	-20,6	36,5	18,6
5	49945,31	-20,6	36,4	18,6
6	49945,38	-20,7	36,5	18,6
7	49945,40	-20,7	36,5	18,5
8	49945,64	-20,7	36,4	18,5
9	49946,22	-20,7	36,5	18,4
10	49946,48	-20,7	36,5	18,4
11	49946,49	-20,6	36,5	18,4
12	49946,13	-20,7	36,5	18,6
13	49947,04	-20,7	36,5	18,5
14	49947,32	-20,6	36,5	18,3
15	49947,18	-20,7	36,4	18,5
16	49947,77	-20,8	36,5	18,6
17	49947,77	-20,7	36,4	18,3
18	49947,65	-20,7	36,4	18,1

No	Temp.	Slope	Sigma	P406	Short term	P121.5
1	-20,7	7,3E-10	1,1E-9	36,5	3,4E-10	18,6
18	-20,7	5,0E-11	4,8E-10	36,4	2,7E-10	18,6
31	-20,8	-8,7E-11	5,1E-10	36,4	2,4E-10	18,6
61	-20,7	-6,8E-11	5,5E-10	36,4	1,8E-10	18,6
91	-19,5	2,4E-11	4,5E-10	36,4	2,5E-10	18,2
121	-17,5	-1,2E-10	5,1E-10	36,4	2,7E-10	18,5
151	-15,4	5,9E-11	6,4E-10	36,4	3,1E-10	18,5
181	-13,4	5,7E-11	4,8E-10	36,4	3,3E-10	18,0
211	-11,4	3,5E-11	4,0E-10	36,3	2,4E-10	18,4
241	-9,3	2,3E-11	6,8E-10	36,3	3,2E-10	18,5
271	-7,0	4,0E-12	7,7E-10	36,3	2,0E-10	18,5
301	-4,8	5,7E-11	9,0E-10	36,3	1,7E-10	18,1
331	-2,4	3,6E-11	7,7E-10	36,3	2,9E-10	18,4
361	-0,3	7,0E-11	1,0E-9	36,2	2,2E-10	18,3
391	2,1	5,4E-11	6,7E-10	36,2	3,7E-10	18,4
421	4,1	-9,5E-11	6,1E-10	36,2	1,9E-10	18,0
451	6,0	2,3E-12	7,1E-10	36,1	3,2E-10	18,4
481	8,2	-6,3E-12	7,2E-10	36,1	2,4E-10	18,3
511	10,2	2,2E-11	3,8E-10	36,1	2,3E-10	18,4
541	12,4	-3,3E-11	5,0E-10	36,0	2,0E-10	18,4
571	14,5	-1,4E-11	5,3E-10	36,0	1,5E-10	18,0
601	16,6	-6,3E-11	6,0E-10	36,0	2,8E-10	18,3
631	18,8	-1,1E-10	4,3E-10	35,9	2,3E-10	18,3
661	20,8	-1,0E-10	8,1E-10	35,9	2,2E-10	18,3
691	22,9	-8,5E-11	7,3E-10	35,9	2,3E-10	18,2
721	25,0	-7,5E-12	6,6E-10	35,8	2,6E-10	18,2
751	27,2	-6,6E-11	6,5E-10	35,8	1,8E-10	18,2
781	29,3	9,5E-12	6,1E-10	35,8	2,1E-10	18,0
811	31,5	2,9E-11	7,0E-10	35,7	2,1E-10	17,7
841	33,6	-1,0E-11	5,7E-10	35,6	2,3E-10	17,7

No	Temp.	Slope	Sigma	P406	Short term	P121.5
871	35,7	-1,0E-10	4,7E-10	35,5	1,9E-10	18,2
901	37,8	2,0E-11	6,0E-10	35,4	2,0E-10	18,0
931	39,9	1,1E-11	5,0E-10	35,6	2,9E-10	18,2
961	41,9	-8,3E-11	5,1E-10	35,6	2,3E-10	18,0
991	44,0	-8,0E-11	3,8E-10	35,5	2,6E-10	17,7
1021	46,0	6,3E-13	5,1E-10	35,5	2,0E-10	18,1
1051	48,0	-2,2E-11	4,7E-10	35,5	3,2E-10	18,1
1081	50,0	-1,8E-11	5,5E-10	35,4	2,6E-10	17,5
1111	52,1	-2,9E-11	6,8E-10	35,4	1,9E-10	18,0
1141	54,3	-9,4E-11	5,4E-10	35,4	2,5E-10	18,0
1171	55,3	-7,9E-11	6,2E-10	35,3	3,1E-10	18,1
1201	55,4	5,5E-11	3,9E-10	35,3	1,3E-10	17,6
1231	55,7	7,4E-12	5,2E-10	35,3	1,9E-10	18,1
1261	55,6	2,2E-11	4,5E-10	35,3	2,6E-10	18,0
1291	55,6	1,7E-11	4,4E-10	35,3	1,8E-10	18,0
1321	54,1	7,8E-11	4,0E-10	35,3	1,8E-10	18,1
1351	51,9	2,2E-11	5,1E-10	35,3	2,3E-10	18,1
1381	49,9	8,2E-11	5,0E-10	35,4	3,1E-10	18,1
1411	47,8	7,7E-12	4,6E-10	35,4	2,1E-10	18,1
1441	45,4	5,6E-11	5,5E-10	35,4	2,2E-10	18,1
1471	43,2	7,9E-11	3,6E-10	35,5	1,4E-10	17,9
1501	40,9	6,8E-11	4,6E-10	35,5	1,8E-10	18,2
1531	38,9	1,2E-10	6,0E-10	35,5	1,9E-10	18,3
1561	36,9	1,7E-10	6,4E-10	35,6	2,0E-10	18,1
1591	34,8	1,1E-12	6,5E-10	35,6	1,1E-10	18,3
1621	32,8	4,1E-11	5,0E-10	35,6	2,4E-10	18,3
1651	30,6	1,2E-12	5,9E-10	35,7	1,7E-10	18,3
1681	28,2	8,1E-11	6,6E-10	35,7	2,9E-10	18,3
1711	25,9	7,0E-11	9,6E-10	35,7	1,8E-10	18,3
1741	23,9	6,7E-11	7,7E-10	35,8	2,3E-10	18,3
1771	21,7	1,3E-10	7,8E-10	35,8	2,1E-10	18,4
1801	19,6	-5,0E-12	5,8E-10	35,8	3,2E-10	18,3
1831	17,4	7,4E-12	6,0E-10	35,9	1,4E-10	18,4
1861	15,4	3,9E-11	7,6E-10	35,9	1,4E-10	18,4
1891	13,3	1,1E-10	6,5E-10	35,9	3,3E-10	18,4
1921	11,3	1,4E-10	5,1E-10	36,0	2,1E-10	18,4
1951	9,2	4,7E-11	3,1E-10	36,0	2,3E-10	18,4
1981	7,1	7,5E-12	4,9E-10	36,0	1,9E-10	18,4
2011	5,4	-7,5E-11	5,7E-10	36,1	2,2E-10	18,4
2041	3,2	2,7E-11	5,7E-10	36,1	2,6E-10	18,2
2071	1,4	7,5E-11	7,4E-10	36,1	3,0E-10	18,3
2101	-0,8	8,1E-11	8,1E-10	36,2	2,0E-10	18,1
2131	-2,8	-1,3E-12	9,5E-10	36,2	2,5E-10	18,5
2161	-4,9	-4,7E-11	1,1E-9	36,2	3,1E-10	18,6
2191	-7,2	2,0E-11	1,0E-9	36,3	2,3E-10	18,6
2221	-9,0	-1,2E-10	8,5E-10	36,3	2,8E-10	18,5
2251	-11,0	-9,4E-11	1,0E-9	36,3	2,4E-10	18,5
2281	-13,3	-4,6E-11	6,8E-10	36,4	2,8E-10	18,6
2311	-15,3	-9,5E-11	5,7E-10	36,4	2,3E-10	18,4
2341	-17,5	-8,7E-11	4,4E-10	36,4	2,9E-10	18,2
2371	-19,5	-8,6E-11	6,2E-10	36,5	2,4E-10	18,7

No Temp. Slope Sigma P406 Short term P121	
2431	
2461	
2491	
2521	
2551	
2581	
2611 2641 2671 2701 2731 2761 2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2641 2671 2701 2731 2761 2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2671 2701 2731 2761 2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3121 3151 3181 3211 3241 3271 3301	
2701 2731 2761 2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2731 2761 2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2761 2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2791 2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2821 2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2851 2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2881 2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2911 2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2941 2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
2971 3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
3001 3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
3031 3061 3091 3121 3151 3181 3211 3241 3271 3301	
3061 3091 3121 3151 3181 3211 3241 3271 3301	
3091 3121 3151 3181 3211 3241 3271 3301	
3121 3151 3181 3211 3241 3271 3301	
3151 3181 3211 3241 3271 3301	
3181 3211 3241 3271 3301	
3211 3241 3271 3301	
3241 3271 3301	
3271 3301	
3301	
H 3331 B	
3361	
3391	
3421	
3451	
3481	
3511	
3511	
3571	
3601	
3631	
3661	
3691	
3721	
3751	
3781	
3811	
3841	
3871	
3901	

Beacon message at the end of Frequency Stability Test with $\,$ Temperature Gradient: ${\bf FFFE2F5F7F03C48000009C00400}$

Frequency variation

406024963

406024939

- Initial tracing --- Smoothed tracing

Date: 8 Apr 2003 Time: 14:56:36

TEMPERATURE GRADIENT TEST RESULTS (5°C/hour)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400

Number: C204

FREQUENCY VARIATION

TEMPERATURE GRADIENT TEST RESULTS (5°C/hour)

Date: 8 Apr 2003 Time: 14:56:36

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400 Number: C204

MEDIUM TERM STABILITY: MEAN SLOPE/mn (-1,0E-9 to 1,0E-9)

TEMPERATURE GRADIENT TEST RESULTS (5°C/hour)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400

Number: C204

MEDIUM TERM STABILITY : RESIDUAL ($\le 3,0E-9$)

Date: 8 Apr 2003 Time: 14:56:36

Date: 8 Apr 2003 Time: 14:56:36

TEMPERATURE GRADIENT TEST RESULTS (5°C/hour)

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD. Model: MT400

Number: C204

SHORT TERM STABILITY /100 mS ($\leq 2,\!0E\text{--}9$)

TEMPERATURE GRADIENT TEST RESULTS (5°C/hour)

Date: 8 Apr 2003 Time: 14:56:36

Manufacturer: STANDARD COMMUNICATIONS PTY. LTD.

Model: MT400 Number: C204

°C

Ref: M4586 Std Com

SATELLITE QUALITATIVE TEST RESULTS ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB N° C204

SATELLITE TEST SITE

RECHERCHE du 31/03/2003 09:34:17

Code balise: BEFE07890000001

Nom balise : ??????? Pays: 503 AUSTRALIA

Classe utilisateur: TEST--Periode de consultation: 16/03/2003 09 a 31/03/2003 09 Position de reference: et

Toutes les luts Tous les satellites Date activation balise: //: Recherche dans base principale

Resultats edites suivant chronologie du TCA

*********	*****	* ****	****	*	*****	******	***	****	*****	****	*(*****	******	*	****	***	***1	****	****	****	******
* TCA	TPC	* SL	PTS	*	LAT1	LONG1	PB	MAJ	BIAIS	ERR	*	LAT2	LONG2	*	CTA	FB	WF	SDV	CF	SRCE	MCCN
*********	*****	* ****	****	(*	******	******	***	****	*****	****	*(*****	******	*	****	***1	***1	****	****	****	*****
* 28/03 08H59	09H06	* S06	13	*	43.561	1.478	98	1	2969	0.16	*	53.372	-47.840	*	17.5	4	0	0.5	4/0	2271	7E+05
* 28/03 09H08	09H14	* S04	5	*	43.568	1.485	89	3	2972	1.02	*	30.772	63,433	*	23.9	4	0	3.6	4/0	2272	7E+05
* 28/03 09H08	10H59	* S04	5	*	43.566	1.487	89	3	2972	0.91	*	30.771	63.422	*	23.9	-4	0	3.6	4/0	2271	7E+05
* 28/03 09H54			18	*	43.560	1.483	98	1	2972	0.27	*	39.253	22.967	*	8.0	4	0	0.3			7E+05
* 28/03 09H54					43.559		98	1					22.962			-4	0	0.3	4/0	2271	7E+05
* 28/03 10H01			6		43.565		82	6	2972				-78,245			-4	ō	4.2			7E+05
* 28/03 10H01			6		43.567		82	6	2973				-78.252			-4	ō	4.2			7E+05
* 28/03 10H27			3		43.553	1.510	50	39	2978				86.616			-4	ō	0.0			7E+05
* 28/03 10H27			3		43.551	1.509	50	39	2977				86.607			-4	ŏ	0.0	1/0		7E+05
* 28/03 10H50					43,559	1.482	98	1					16.314			4	ŏ	0.2			7E+05
* 28/03 10H50					43.559	1.482	98	1					16.312			-4	Õ	0.2			7E+05
* 28/03 11H34					43.559	1.478	99	1	2970				-24,208			4	Õ	0.2			7E+05
* 28/03 11H34					43.559	1.477	99	i	2970				-24,208			4	ō	0.2			7E+05
* 28/03 12H06					43.560		99	i	2968				35,996			4	Õ	0.2			7E+05
* 28/03 12H06					43.560		99	i	2968				35.982			-4	Õ	0.2	4/0		7E+05
* 28/03 12H30					43.559		99	i					-31.086			4	Ö	0.2			7E+05
* 28/03 13H13					43.562	1.474	94	2					-73.496			4	Õ	1.5	4/0		7E+05
* 28/03 13H13			8		43.564		94	2					-73,505			-4	.0	1.5	4/0		7E+05
* 28/03 13H46					43.559	1.474	99	1	2969				-11.521			4	0	0.1	4/0		7E+05
* 28/03 13H46					43.559		99	i					-11.515			4	Ö	0.1	4/0		7E+05
* 28/03 13H46					43.560		99	i					-11.522			4	0	0.2			7E+05
* 28/03 14H09					43.564		85	5					-81.307				Ö	3.4			7E+05
* 28/03 15H28					43,560		98	1					-58.676			4	0	0.4	4/0		7E+05
* 28/03 15H28					43.561	1,482	98	1					-58.678			4	0	0.4			7E+05
* 28/03 15H28					43.565		98	1					-58.683			4	0	0.4	4/0		7E+05
* 28/03 15H28					43.567		97	2					51.860			4	0	2.1	4/0		7E+05
* 28/03 15H42			4		43.565		97	2					51.858			4	0	2.1	4/0		7E+05
* 28/03 15H42					43.561	1.481	98	1					52.712			4	0	0.4	4/0		7E+05
* 28/03 16H26					43.560	1.481	98	1					52.712			4	0	0.4	4/0		7E+05
* 28/03 17H06					43.562	1.483	99	1					28,624			4	0	0.4	4/0	,	7E+05
* 28/03 17H06 * 28/03 17H26						1.655	64						2.639		0.2	4	0	0.2	3/0		7E+05
					43.548			19 19					2.648		0.2	4	0	0.4	3/0		7E+05
* 28/03 17H26					43.548	1.656	64						2.501		0.2	4	0		3/0		7E+05
* 28/03 17H26					43.550		63 95	20 2					5.007			4	0	0.4 0.2	4/0		7E+05
* 28/03 18H05					43.562	1.493											-				
* 28/03 18H47					43.560		97	1					-18.624			4	0	0.4			7E+05
* 28/03 19H13					43,559	1.478	99	1					-53.048			4	0	0.2	4/0		7E+05
* 28/03 19H13					43.562		99	1					-53.081			4	0	0.3	4/0 4/0		7E+05
* 28/03 19H38					43.559	1.481	98	1					55.998			4	-	0.4			7E+05 7E+05
* 28/03 19H38	-				43.560		98	1					55.995				0 0	0.4	4/0 4/0		7E+05
* 28/03 19H46					43.559	1.475	98	1					-42.213			4	0	0.3	4/0		7E+05
* 28/03 19H46						1.478	98	1					-42.215 46.728				0	0.3	4/0		7E+05
* 28/03 20H37					43.562	1.479	99	1					46,727			4	0	0.2	4/0		7E+05
* 28/03 20H37					43.560		99	1					8.221			4	0	0.2	4/0		7E+05
* 28/03 21H17					43.562	1.489	96	1								4	-	0.2			7E+05
* 28/03 21H17					43.562	1.489	96	1					8.219			4	0	0.2			7E+05
* 28/03 22H17					43.555		85	3					-0.785			4	0	0.3			
* 28/03 22H17					43.554		50	2					-0.439			-4	0	0.2			7E+05
* 28/03 22H57					43.560		99	1					-38.916			4	0	0.2			7E+05
* 28/03 22H57								1					-38.917				0				7E+05
* 28/03 23H58								1					-48.145				0	0.7			7E+05
* 29/03 00H25						1.480		1					58.964				0	0.2			7E+05
* 29/03 00H25						1.481		1					58.959				0				7E+05
* 29/03 00H25						1,482		1					58.957				0				7E+05
* 29/03 02H07								1					11.684				0	0.1			7E+05
* 29/03 02H07								1					11.677				0	0.1			7E+05
* 29/03 02H35								1					61.783				0	0.7			7E+05
* 29/03 02H35	04H32	* C04	4	*	43.551	1.480	42	1	2968	1.04	*	48.428	61.783	*	19.8	-4	0	0.7	4/0	2271	7E+05

********	*****	* ****	****	(*	*****	*****	***	****	*****	****	*	*****	*****	*	****	***	****	****	****	****	*****
* TCA	TPC	* SL	PTS	*	LAT1	LONGI	PB	MAJ	BIAIS	ERR	*	LAT2	LONG2	*	CTA	FB.	WF	SDV	CF	SRCE	MCCN
**************************************	03H55	* **** * \$08	15	*	****** 43.560	1.479	**** 99	1	******* 2070	U US	*	50 023	-35.858	*	***** 13.6	****	**** 0	0.2	**** 4/0	***** 2271	7E+05
* 29/03 03H47					43.560	1.477	99	1					-35.832				0	0.2	4/0		7E+05
* 29/03 03H47					43.560	1.477	99	1					-35.834			-4	0	0.2	4/0		7E+05
* 29/03 04H22 * 29/03 04H22					43.560 43.560	1.496	95 95	2 2					6.753 6.756			4	0	0.5	4/0		7E+05 7E+05
* 29/03 04H22			5 5		43.560	1.494 1.502	95	2				43.994	6.747			-4 -4	0	0.5 0.5	4/0 4/0		7E+05
* 29/03 05H25					43.558	1.482	97	1					52.909			4	Õ	0.7	4/0		7E+05
* 29/03 05H26					43.563	1.454	78	5					-86.671			-4	0	7.3	4/0		7E+05
* 29/03 05H26 * 29/03 06H07			5		43.564 43.560	1.454 1.477	78 99	5 1					-86.674 -43.570			-4 4	0	7.3 0.3	4/0 4/0		7E+05 7E+05
* 29/03 06H07					43.556	1.474	99	1					-43.565			-4	0	0.3	4/0		7E+05
* 29/03 06H07					43.557	1,475	99	1					-43.565			-4	Õ	0.3	4/0		7E+05
* 29/03 06H19					43.561	1.480	99	1					29.891				0	0.2	4/0		7E+05
* 29/03 06H19 * 29/03 07H07					43.560 43.555	1.480 1.497	99 88	1					29.922 5.831			-4 4	0	0.2	4/0 4/0		7E+05 7E+05
* 29/03 07H59					43.561	1.478	98	1					-17.355		7.1	4	0	0.3			7E+05
* 29/03 07H59					43.561	1.476	98	1					-17.343		7.1	-4	0	0.3			7E+05
* 29/03 07H59 * 29/03 08H47					43.561 43.561	1,476	98	1					-17,348		7.1	-4	0	0.3			7E+05
* 29/03 08H54			4		43.572	1.472 1.483	98 89	1 2					-41,634 69.842			4	0	0.4 1.7			7E+05 7E+05
* 29/03 08H54		- + •	4		43.574	1.491	89	2					69.836			-4	Ö	1.7			7E+05
* 29/03 09H32					43.561	1.481	99	1					33.576			4	0	0.2			7E+05
* 29/03 09H32 * 29/03 09H38			16 9		43.561 43.562	1.482 1.478	99 97	1 2					33.575 -66.241			-4 -4	0	0.2 0.8			7E+05 7E+05
* 29/03 09H38			9		43.562	1.476	97	2					-66.246			-4	0	0.8			7E+05
* 29/03 09H38			9		43,562	1,477	97	2					-66,245			-4	0	0.8			7E+05
* 29/03 10H36					43.560	1.482	99	1					22.894			4	0	0.2			7E+05
* 29/03 10H36 * 29/03 10H36					43.560 43.560	1.482 1.481	99 99	1					22.893 22.894			-4 -4	0	0.2 0.2			7E+05 7E+05
* 29/03 11H12					43.560	1.477	99	1					-13.602			4	0	0.1			7E+05
* 29/03 11H12					43.560	1.477	99	1					-13.594		5.8	-4	0	0.1			7E+05
* 29/03 11H12 * 29/03 11H55					43.559 43.561	1.478 1.483	99 99	1 1					-13.607 41.347			-4 4	0	0.1 0.3			7E+05 7E+05
* 29/03 11H55					43,561	1.482	99	1					41.343			-4	0	0.3			7E+05
* 29/03 12H17					43.560	1.480	99	1					-24.479			4	0				7E+05
* 29/03 12H17					43.560	1.481	99	1					-24.462			-4	0				7E+05
* 29/03 12H17 * 29/03 12H51					43.560 43.567	1.480 1.485	99 96	1 2					-24.468 -62.151			-4 -4	0				7E+05 7E+05
* 29/03 12H51					43.567	1.485	96	2					-62.161			-4	0				7E+05
* 29/03 12H51					43.566	1.483	96	2					-62.158			-4	0				7E+05
* 29/03 13H35 * 29/03 13H35					43.558 43.558	1.472 1.473	98 98	1 1					-6.155 -6.156			4	0				7E+05 7E+05
* 29/03 13H55			8		43.561	1.475	90	4					-74.072			4	0				7E+05
* 29/03 13H55			8		43,563	1.472	90	4					-74.080			-4	Ō				7E+05
* 29/03 13H55			8		43.563	1.470	90	4					-74.078			-4	0				7E+05
* 29/03 15H17 * 29/03 15H17					43.558 43.562		98 98	1 1					-53.439 -53.415			4	0				7E+05 7E+05
* 29/03 16H03						1.474	-	2					64.500								7E+05
* 29/03 16H03						1.476	96	2					64.503					0.9			7E+05
* 29/03 16H07						1 405			.3044			40 722	25 661			4					7E+05
* 29/03 16H09 * 29/03 16H54					43,562 43,561	1.485	50 98	46 1					35.661 34.625			4 4					7E+05 7E+05
* 29/03 17H42					43.560		98	1					16.046		5.6	4					7E+05
* 29/03 17H42					43.560		98	1					16.044			-4					7E+05
* 29/03 17H54 * 29/03 17H54					43.555 43.560		99 99	1 1					-15.797 ·			4 -4					7E+05 7E+05
* 29/03 17H54					43.560		99	1					-15.843			-4	0				7E+05
* 29/03 18H34							96	1					-12.619			4					7E+05
* 29/03 19H16 * 29/03 19H16					43.560 43.561		98 98	1 1					67.413 · 67.413 ·			4					7E+05 7E+05
* 29/03 19H16					43.558		98	1					67.412								7E+05
* 29/03 19H22					43.559		99	1	2968	0.30	•	37.068	-31.221	*	12.4	4		0.2	4/0	2271	7E+05
* 29/03 19H22					43.560		99	1					-31.222								7E+05
* 29/03 19H42 * 29/03 19H42					43.560 43.561		97 97	1 1					-72.074 ⁻ -72.073 ⁻								7E+05 7E+05
* 29/03 20H16					43.567		91	2					-59.491			4	-				7E+05
* 29/03 20H23					43.556		98	1					53.519			4					7E+05
* 29/03 20H23 * 29/03 20H55					43.556 43.560		98 99	1 1					53.518 1 18.830			-4 4					7E+05 7E+05
* 29/03 20H55					43.559		99	1					18.831			4 -4					7E+05
* 29/03 20H55	09H16	* S09	17	*	43.560	1.482	99	1	2968	0.17		46.961	18.832	*	6.6	-4		0.1	4/0	2271	7E+05
* 29/03 22H03					43,563		95	2					5.605			4					7E+05
* 29/03 22H03 * 29/03 22H35					43.563 43.560	1.496 1.477	95 99	2 1					5.609 -28.349			-4 4					7E+05 7E+05
* 29/03 22H35						1.478		i					-28.368 ³			-	•				7E+05

- A

L'Intell	ligence	de	l'Environnement

	********	*****																					
	* TCA	TPC	*	SL	PTS	*	LAT1	LONG1	PB	MAJ	BIAIS	ERR	*	LAT2	LONG2	*	CTA	FB	WF	SDV	CF	SRCE	MCCN
	*********	******	*	****	*****	*	******	1 450	***	*****	*****	****	*1	~~ ~~	******	*	****	***	****	****	****	*****	******
	* 29/03 22H35 * 29/03 23H44						43.562 43.559	1.479	99 99	1 1					-28.370 -41.711			-4 4	0	0.2 0.3	4/0		7E+05 7E+05
	* 29/03 23H44						43.562	1.481	99	1					-41.712		-	-4	0	0.3			7E+05
	* 29/03 23H44						43.562	1.481	99	1					-41.713			-4	Ö	0.3	4/0		7E+05
	* 30/03 00H14						43.560	1.483	95	2	2966	0.26	*	30.647	64.163	*	24.2	4	0	0.9	4/0		7E+05
•	* 30/03 00H14	02H04	*	S08	9	*	43.559	1.484	95	2	2966	0.41	*	30.644	64.160	*	24.2	-4	0	0.9	4/0		7E+05
	* 30/03 01H16				-	*	•••••	•••••		•••	0	•••••		•••••			••••	-4	9.	••••	•••		7E+05
	* 30/03 01H16				_	*		1 400			0			40.412	********	*		-4	9.				7E+05
	* 30/03 01H56 * 30/03 01H56						43.559 43.559	1.482 1.483	99 99	1					16.995 16.992			4 -4	0	0.1 0.1	4/0 4/0		7E+05 7E+05
	* 30/03 01H36						43.559	1.479	99	1					43.297			4	0	0.3	4/0		7E+05
	* 30/03 03H04						43.557	1.481	99	i					43.299			-4	ŏ	0.3	4/0		7E+05
	* 30/03 03H04				7	*	43.560	1.479	99	1	2967	0.04	*	46.540	43.301	*	14.0	-4	0	0.3	4/0	2272	7E+05
	* 30/03 03H36	03H44	*	S08	17	*	43.559	1.473	95	2	2965	0,55	*	49.870	-30.427	*	11.8	4	0	1.2	4/0	2271	7E+05
	* 30/03 03H36						43.560	1.478	99	1					-30,432			-4	0	0.2			7E+05
	* 30/03 04H50						43.558	1.473	99	1					-10.407			4	0	0.1			7E+05
	* 30/03 04H50 * 30/03 05H15						43.558 43.566	1.475 1.488	99 80	1 6					-10.407 -80.839			-4 4	0	0.1 4.9			7E+05 7E+05
	* 30/03 05H15						43.568	1.484	80	6					-80.844			-4	0	4.9			7E+05
	* 30/03 05H56						43.560	1.480	99	1					40.943			4	ō.	0.2			7E+05
	* 30/03 06H34						43.554	1.473	98	1					-59.707			4	0	0.5	4/0	2272	7E+05
	* 30/03 06H54	07H03	*	S06	15	*	43.557	1.482	94	2					11.838			4	0	0.5	4/0	2271	7E+05
	* 30/03 07H36						43,561	1.472	99	1					-6.331			4	0	0.1			7E+05
	* 30/03 07H36						43.561	1.471	98	1					-6.328			-4	0	0.1			7E+05
	* 30/03 07H36 * 30/03 08H34						43.560 43.560	1.473 1.475	99 98	1 1					-6.336 -35.457			-4 4	0	0.1			7E+05 7E+05
	* 30/03 08H34 * 30/03 09H09						43.560	1.482	99	1					44.174			4	0				7E+05
	* 30/03 09H09						43,561	1.481	99	1					44.173			-4	0	0.2			7E+05
	* 30/03 09H09				15	*	43.560	1.481	99	1	2964	0.11	*	34.919	44.177	*	16.3	-4	0	0.2	4/0	2272	7E+05
	* 30/03 09H15	09H21	*	S07			43.562	1.478	98	1					-54.331			4	0				7E+05
	* 30/03 09H15						43.561	1.474	98	1					-54.265			-4	0				7E+05
	* 30/03.10H22	•					43.559	1.479	99	1					29,429			4	0				7E+05
	* 30/03 10H22 * 30/03 10H49						43.559 43.562	1.477 1.466	99 98	1 1					29.425 -2.976			-4 4	0				7E+05 7E+05
	* 30/03 10H49						43.562	1.466	98	i					-2.974		1.8	-4	-				7E+05
	* 30/03 10H49						43.560	1.476	98	1					-2.989			-4	0	0.1			7E+05
	* 30/03 11H44	11H51	*	S08	12	*	43.562	1.479	99	1	2961	0.29	*	52.414	46.927	*	16.3	4	0	0.3	4/0	2271	7E+05
	* 30/03 11H44						43.562	1.479	99	1					46.927			-4					7E+05
	* 30/03 12H03						43.560	1.476	99	1					-17.928			4	-				7E+05
	* 30/03 12H03 * 30/03 12H03						43.560 43.560	1.475 1.477	99 99	1 1					-17.933 -17.933			-4 -4					7E+05 7E+05
	* 30/03 12H03 * 30/03 12H29						43.559	1.477	98	1					-50.716			4					7E+05
	* 30/03 12H29						43.560	1.479	98	i					-50.722			-4	-				7E+05
	* 30/03 12H29						43.559	1.476	98	1					-50.720			-4					7E+05
	* 30/03 13H24	13H33	*	S08	14	*	43.556	1.453	85	3	2961	2.17	*	43.119	-0.759	*	0.7	4	0	0.3	4/0	2271	7E+05
	* 30/03 13H24							1.457	50	3					-0.392			-4					7E+05
	* 30/03 13H42						43.565		96	2					-66.908			-4	0				7E+05
	* 30/03 13H42							1.480		2					-66,906 68,559			-4 1					7E+05
	* 30/03 14H53 * 30/03 15H05						43.559	-1.155 1.476	98	45 1					-48.174								7E+05
	* 30/03 15H05						43.561		98	1					-48.176								7E+05
	* 30/03 15H40						43.564		83	5					76.530			4					7E+05
	* 30/03 16H37	16H47	*	C04	5	*	43.560	1.480	97	1	2962	0.03	*	42.265	18.993	*	6.8	4	0	0.6	4/0	2272	7E+05
	* 30/03 16H37						43.560		97	1					18.993			-4					7E+05
	* 30/03 16H41						43.558		99	1					40.800			4					7E+05
	* 30/03 17H18						43.561		99	1					27.088 -6.589			4					7E+05 7E+05
	* 30/03 18H21 * 30/03 18H23						43.557 43.560		94 99	2 1					-33.927			4					7E+05
	* 30/03 18H23						43.565		99	1					-33.954								7E+05
	* 30/03 18H54						43.559		94	2					78.946			4					7E+05
	* 30/03 18H54	20H40	*	S09	8 -	*	43.562	1.484	94	2	2966	0,44	*	57.678	78.948	*	25,4	-4	0	1.5	4/0	2271	7E+05
	* 30/03 18H54						43.560		94	2					78.945			-4					7E+05
	* 30/03 18H58						43.561		97	1					-20.178			4					7E+05
	* 30/03 18H58 * 30/03 18H58								97 97	1					-20.179			-4 -1					7E+05 7E+05
	* 30/03 18H58 * 30/03 20H03						43.567 43.562		97 97	1					-20.180 -53.554			-4 4	0				7E+05
	* 30/03 20H03						43.561		98	1					60.528			4	-				7E+05
	* 30/03 20H10						43.558		98	1					60.528								7E+05
	* 30/03 20H11						43.579		93	1					-91.559			-4					7E+05
	* 30/03 20H32						43.561	1.481	99	1					29.472			4	0				7E+05
	* 30/03 20H32					*	43.560	1.480	99	1					29.470			-4		0.3			7E+05
	* 30/03 20H42				2	*	******	*******		•••	0	•••••	*	•••••		*	••••		9.	••••	•••		7E+05
	* 30/03 20H42 * 30/03 20H42				2 2	*	*******	*******	**	***	0	•••••	*	******		*	••••	-4 -4	9. 9.	••••	•••		7E+05 7E+05
	JUIUJ 201142	J/11/21		507	2		•••••		••	•••	U	*****		******	******		****		,	••••	•••	1 -	, 2, 00

* TCA	TPC	*	SL	PTS	*	LAT1	LONG1	PB	MAJ	BIAIS	ERR	*	LAT2	LONG2	*	CTA	FB	WF	SDV	CF	SRCE	MCCN
* 30/03 21H49	21H58	*	S04	18	*	43.560	1.484	97	1	2966	0.35	*	45.685	12.149	*	4.2	4	0	0.3	4/0	2271	7E+05
* 30/03 22H12	22H21	*	S09	17	*	43.559	1.477	98	1	2967				-17.692			4	0	0.2	4/0	2272	7E+05
* 30/03 22H12	23H58	*	S09	17	*	43.559	1.477	99	1	2967				-17.691			-4	0	0.2	4/0	2272	7E+05
* 30/03 23H30				16	*	43.557	1.478	99	1	2966	0.33	*	36.000	-35.188	*	14.0	4	0	0.3	4/0		7E+05
* 30/03 23H54				2	*	•••••	*******		•••	0	•••••	*	*******	*******	*	****	4	9.	••••	•••		7E+05
* 31/03 00H02	00H06	*	S08	4	*	43.539	1.490	95	2	2958	2.51	*	29.611				4	0	1.5	4/0	2271	7E+05
* 31/03 00H02				4		43,538		95	2	2958			29.609				-4	0	1.5	4/0		7E+05
* 31/03 01H45	01H53	*	S08	17	*	43.560	1.478	97	1	2968				22,315			4	0	0.5	4/0	2271	7E+05
* 31/03 01H45	03H34	*	S08	17	*	43.560	1.479	97	1	2968	0.04	*	39.314	22,312	*	7.8	-4	0	0.5	4/0	2271	7E+05
* 31/03 01H47	03H43	*	C04	2	*	******	*******	••	***	0	•••••	*	•••••	******	*	****	-4	9.	••••	***	2272	7E+05
* 31/03 03H25	03H34	*	S08	17	*	43.559	1.479	99	1	2967	0.08	*	48.834	-25.105	*	9.9	4	0	0.2	4/0	2271	7E+05
* 31/03 03H33	03H43	*	C04	9	*	43.559	1.480	99	1	2967	0.08	*	45.486	24.838	*	8.0	4	0	0.3	4/0	2272	7E+05
* 31/03 03H33	05H27	*	C04	9	*	43.558	1.480	99	1	2967	0.18	*	45,484	24.845	*	8.0	-4	0	0.3	4/0	2272	7E+05
* 31/03 05H03	05H05	*	S06	1	*	******	*******		•••	0	•••••	*	•••••	*******	*	••••	4	9.	••••	***	2271	7E+05
* 31/03 05H18	05H27	*	C04	11	*	43.560	1.475	99	1	2967	0.33	*	41.365	-26.977	*	11.0	4	0	0.2	4/0	2272	7E+05
* 31/03 05H32	05H39	*	S07	13	*	43.562	1.482	98	1	2968	0.27	*	33.559	51.918	*	19.3	4	0	0.3	4/0	2271	7E+05
* 31/03 05H32	07H21	*	S07	13	*	43.561	1.483	98	1	2967	0.30	*	33.560	51.914	*	19.3	-4	0	0.3	4/0	2272	7E+05
* 31/03 06H41	06H50	*	S06	17	*	43.559	1.486	96	2	2963	0.52	*	40,163	17.872	*	6.1	4	0	0.6	4/0	2271	7E+05
* 31/03 07H13	07H21	*	S07	18	*	43.557	1.497	91	2	2960	1.50	*	42.941	4.669	*	1.0	-4	0	0.3	4/0	2272	7E+05
* 31/03 07H13	08H59	*	S07	18	*	43.556	1.498	91	2	2960	1.59	*	42,942	4,665	*	1.0	-4	0	0.3	4/0	2272	7E+05
* 31/03 08H22	08H30	*	S06	15	*	43.562	1.476	98	1	2956	0.31	*	49.826	-29.385	*	11.4	4	0	0.5	4/0	2271	7E+05
* 31/03 08H52	08H59	*	S07	14	*	43.560	1.478	99	1	2956	0.13	*	51.894	-42.784	*	15.9	4	0	0.2	4/0	2272	7E+05

Zones geographiques BORDE/MARSA numero de dossier xxx Nombre total de lignes (localisees + detectees) : 219 + 9 = 228

Nombre de localisees : 219 Nombre de balises-passage : 117 Nombre de localisations uniques : 112 Date premiere loc : 28/03/2003 08:59 Date demiere loc : 31/03/2003 08:52 Durce de l'emission : 71H 52mn

Reference pour calcul des erreurs : lat=+43.560 long= +1.479

Ref: M4586 Std Com

Date	U. T.	MT400 N° : C204	MIT400	Sarsat	
		Message	Level (db)	Sat	
2003/03/28	16:21:15,2	5f7f03c48000009c00400	-120	S 7	
2003/03/28	16:22:05,3	5f7f03c480000009c00400	-120	S7	
2003/03/28	16:22:53,9		-118	S7	
2003/03/28	16:23:43,2		-120	S7	
2003/03/28	16:24:32,6		-121	S7	
2003/03/28	16:25:24,0		-119	S7	
2003/03/28	16:26:13,5	5f7f03c480000009c00400	-116	S 7	
2003/03/28	16:27:04,9	5f7f03c480000009c00400	-121	S 7	
2003/03/28	16:27:55,4	5f7f03c48000009c00400	-119	S 7	
2003/03/28	16:28:47,1	5f7f03c48000009c00400	-117	S 7	
2003/03/28	16:29:37,2	5f7f03c48000009c00400	-119	·S7	
2003/03/28	16:30:27,6	5f7f03c48000009c00400	-128	S 7	
2003/03/28	16:31:19,0	5f7f03c48000009c00400	-124	S7	
2003/03/28	16:32:08,5	5f7f03c48000009c00400	-125	S 7	
	·				
1					

Date	U. T.	Datation Ref	Reference	Sarsat
-		Message	Level (db)	Sat
2003/03/28	16:21:00,3	ce300000000000dbd0e40 0	-119	S 7
2003/03/28	16:21:30,3	ce300000000000dbd0e40 0	-117	S 7
. 2003/03/28	16:22:00,3	ce300000000000dbd0e40 0	-122	S 7
2003/03/28	16:22:30,3	ce300000000000dbd0e40 0	-116	S 7
2003/03/28	16:23:00,3	ce300000000000dbd0e40 0	-119	S 7
2003/03/28	16:24:00,3	ce300000000000dbd0e40 0	-119	· S7
2003/03/28	16:24:30,3	ce300000000000dbd0e40 0	-112	S 7
2003/03/28	16:25:00,3	ce300000000000dbd0e40 0	-115	. S7
2003/03/28	16:25:30,3	ce300000000000dbd0e40 0	-115	S 7
2003/03/28	16:26:00,3	ce300000000000dbd0e40 0	-116	S 7
2003/03/28	16:26:30,3	ce300000000000dbd0e40 0	-118	S7
2003/03/28	16:27:00,3	ce300000000000dbd0e40 0	-120	S 7
2003/03/28	16:27:30,3	ce300000000000dbd0e40 0	-124	S 7
2003/03/28	16:28:00,3	ce300000000000dbd0e40 0	-118	S 7
2003/03/28	16:28:30,3	ce300000000000dbd0e40 0	-120	S 7
2003/03/28	16:29:00,3	ce300000000000dbd0e40 0	-119	S 7
2003/03/28	16:29:30,3	ce300000000000dbd0e40 0	-125	S7
2003/03/28	16:30:00,3	ce300000000000dbd0e40 0	-121	S7
2003/03/28	16:30:30,3	ce300000000000dbd0e40 0	-121	S 7
28/03/2003	16:31:00,3	ce300000000000dbd0e40 0	-121	S 7
28/03/2003	16:31:30,3	ce300000000000dbd0e40 0	-126	S 7
28/03/2003	16:32:00,3	ce300000000000dbd0e40 0	-121	S 7
		•		·

-Polynomial (Reference)

-- • -- MT400 -- • -- Reference

Level comparative Satellite

ANNEX A

ANTENNA TEST RESULTS ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB $$\rm N^{\circ}$ C203

3

Ref: M4586 Std Com

1 - ADMINISTRATION

1. WORK ORDER:

Reference ITS:

M4586

1. TEST TEAM:

A.COURTINADE

1. SCHEDULE:

26 March 2003

2 - PURPOSE

The radiation tests of the dedicated radio beacon are performed in INTESPACE EMC Laboratory in compliance with the test methods described in the COSPAS-SARSAT 406 MHz distress beacon type approval standard: C/S T. 007- Issue 3 - Revision 9 - October 2002.

3 - RADIO BEACON IDENTIFICATIONS

Manufacturer:

Standard Communications Pty Ltd

Model No:

MT400

Serial N°:

C203

Antenna:

Standard Communications P/N: 46A0427

Tests are performed in an anechoic chamber (size 16 m x 10 m x 11 m)
Walls, ceilling and doors are lined with EMERSON CUMING foams VHP 36 and VHP 26 type.
The EPIRB is placed as shown on figure N° 1 and N° 2.

FIGURE B2c: Equipment Test Set Up For BEACON Antenna Test
(For BEACON designed for normal operation in water, ex: EPIRB)

Ref: M4586 Std Com

5 - TEST METHOD

The test method describes here after, according to "C/S T 007 - Issue 3 -Revision 9 - October 2002 " test sequences is executed for 406 MHz frequency.

Following measurements are performed:

- 1/Electrical ground plane of 1.25 m of radius is placed at flotation level of the beacon.
- 2/ EPIRB transmitting antenna polarization is determined prior to test.
- 3/ Determination of E field strength in term of $dB\mu V/m$ at 3 m far from the EPIRB for all direction (0° to 360° by step of 30°) and for search antenna elevation (10° to 50°). Search antenna is left in vertical and horizontal position for all elevations . Lenght of search antenna is adjusted to proper $1/2~\lambda$ conditions .
- 4/ An ERP (Equivalent Radiated Power) from the PLB is calculated
- 5/ERP is corrected with ERPLoss factor (end of life factor)
- 6/ Actual ERP are compared to specified ERP to be in the range 1.6 W to 20 W (+ 32 dBm to + 43 dBm).

6 - TESTS EQUIPMENTS

6.1. SEARCH ANTENNA

• 406 MHz test:

EMCO Ref 3121 C- DB4 Dipole antenna

Serial number:

S/N 9109-763

Calibration validity:

juin-02

6.2. SPECTRUM ANALYSER

R/S ESMI

6.3. CABLES

20 m cable SUCOFLEX type 100 - cable loss at 406 MHz is: 3,5 dB

Ref: M4586 Std Com

7 - TESTS OPERATIONS

7.1. EMISSION FIELD STRENGTH FROM EPIRB

The electrical field intensity is measured with the following antenna:

ÉMCO 3121 C - DB4 - SN- 763

EPIRB electric field strength is obtained from measurement of the output voltage ($dB\mu V$ RMS) at antenna port (typical set up are shown figure N° 3 for 406 MHz) and computed with following parameters:

- · Antenna factor of search antenna AF in dB (manufacturer calibration)
- Directivity factor of the antenna Dm in dB (Theoritical directivity shown paragraph B-5-4 of C/S T007) as:

$$Dm = 20 \log [\cos (90 x \sin q) / \cos q]$$

- Cable loss L = 3.5 dB at 406 MHz
- DF: distance factor in dB To calculate field at a constant distance (3 m) from EPIRB due to the elevation of the search antenna.
- Power correction factor: end of life correction factor ERP_{Loss} is calculated from the difference between RF power measured during test and end of life power after 24 hours operation at min. Temp. This factor is applied to correct ERP as shown on final test result table
- The measurements are performed on the carrier signal, just before to apply the modulation.
- The effective field strength at 3 m from EPIRB is computed from :

$$EdB\mu V/m = UdB\mu V + AF + L + DF$$

Where: $UdB\mu V = 20log(CorV_v^2 + V_h^2)^{1/2}$

CorVv = Induced voltage with search antenna in vertical polar corrected by Dm

Vh = Induced voltage with search antenna in horizontal polar

7.2. POWER CORRECTION FACTORS

EOL factor

		RF Power	RF Power	Loss Factor
	TEST FREQUENCY	measured at	measured at the end of	ERP _{LOSS}
•		Ambient Temp. Test	Operating Lifetime Test	
	406 MHz	36,1 dBm	36,6 dBm	-0,5 dB

The ERPLOSS loss factor is rounded to: 0,0 dB

8 - RADIATED POWER CALCULATIONS

8.1. EFFECTIVE RADIATED POWER OF EPIRB

ERP of EPIRB is directly calculated from equation:

 $ERP = E^2 \times D^2 / 30$

ERP = W

E = V/m

D = m

Results shown in table N° C1 are given in dBm where:

ERP dBm = $10 \log (ERP W) + 30$

and apparent antenna gain:

GidB = ERPdBm - RF PowerdBm

9 - SUCCESS CRITERIA

90% of EPIRB measurements must be equal or greater than 1,6 W ERP (32 dBm) . and less than 20 W ERP (43 dBm) $^{\circ}$

10 - EPIRB ANTENNA POLARIZATION

EPIRB antenna polarization is checked according to C/S T007 procedure paragraph B9 EPIRB antenna polarization is declared vertical when measurement obtained with vertical polarization search antenna are 10 dB greater or more than measurement obtained with

	Angle	Vertical	Horizontal		Antenna
Antenna model	'Azi/	measurement	measurement	Δ.	Polarization
	Elev	dΒμV	dΒμV		·
	0°/10°	109,9	79,3	30,5	Vertical

11 - EPIRB MECHANICAL SET UP

EPIRB 0° axis is identified with 0° azimuth direction of turn table . Antenna is the center of rotation of azimuth angle.

NOT TO SCALE

12 - RESULTS

Test frequency	Polarization	Reference ERP	Measurement ERP
406 MHz	Vertical	1.6 W < ERP Ref < 20 W	According table C1
		32 dBm < ERP Ref < 43 dBm	

CONCLUSIONS

The ERP Beacon is just in the ERP reference.

Ref: M4586 Std Com

Table C1: EFFECTIVE RADIATED POWER (dBm) / ANTENNA GAIN (dBi)

Azimuth				Elevatio	n Angle (Degrees)				
Angle	Angle 10 20		30		4	10	5	60		
(Degrees)	dBm	dBi	dBm	dBi	dBm	dBi ͺ	dBm	dBi	dBm	dBi
0	39,27	3,17	41,76	5,66	43,08	6,98	40,75	4,65	34,37	-1,73
30	39,10	3,00	41,93	5,83	43,11	7,01	40,75	4,65	34,75	-1,35
60	38,77	2,67	41,92	5,82	43,11	7,01	40,76	4,66	34,56	-1,54
90	38,77	2,67	41,76	5,66	42,95	6,85	40,59	4,49	34,59	-1,51
120	38,77	2,67	41,77	5,67	42,95	6,85	40,75	4,65	34,70	-1,40
150	38,93	2,83	41,76	5,66	42,95	6,85	40,75	4,65	34,99	-1,11
180	39,27	3,17	41,76	5,66	42,79	6,69	40,75	4,65	34,98	-1,12
210	39,11	3,01	41,60	5,50	42,78	6,68	40,58	4,48	34,69	-1,41
240	39,27	3,17	41,76	5,66	42,78	6,68	40,42	4,32	34,36	-1,74
270	39,10	3,00	41,59	5,49	42,78	6,68	40,25	4,15	34,14	-1,96
300	38,94	2,84	41,60	5,50	42,95	6,85	40,58	4,48	34,06	-2,04
330	38,93	2,83	41,92	5,82	43,11	7,01	40,75	4,65	34,15	-1,95
Average	39,02	2,92	41,76	5,66	42,94	6,84	40,64	4,54	34,53	-1,57
Overall Gain Variation	0,50) dB	0,33	3 dB	0,33	dB	0,51	dB	0,93	dB

 $ERP_{max EOL} = MAX [ERP_{max}, (ERP_{max} - ERP_{LOSS})] = MAX (43.11, 0.00) = 43.1 dBm$

 $ERP_{min EOL} = MIN [ERP_{min}, (ERP_{min} - ERP_{LOSS})] = MIN (34.06, 0.00) = 34.1 dBm$

Ce document est الهرب opriété d'INTESPACE et ne peut être reproduit ou commuri على و document est الهرب المارية على المارية المارية على المارية المار

26/03/2003 Date: BALISE A 406 MHz | Standard Communications MT400 S/N: C204

36,6 dBm 36,1 dBm -0,5

P2 P. pied d'ant à T°C min/24h : P1 P. pied d'antenne à 22°C : ERP(Ioss) P1-P2 : 3,5 Pertes du cable:

A.F. DIPOLE:

Df	en dB	0,13	0,54	1,25	2,31	3,84
Dm	en dB	-0,19	-0,78	-1,76	-3,16	-5,05
ANGLE	D'ELEV.	10	20	30	40	20

						Hauteur = Hauteur plan de sol + Distance de mesure * TAN(A)
	0,75		3		0,5	ance de n
	,78 Hauteur (m	34 plan de sol	Distance (m	mesure	,83 Offset (m)	le sol + Dist
Affichage	1,78	2,34	2,98	3,77	4,83	ıteur plan o
Angle en Hauteur mAffichage	1,28	1,84	2,48	3,27	4,33	uteur = Hau
Angle en	10	20	30	40	20	Ha

E.R.P. (w) = $(E^2(V/m) * R^2(m)) / 30$

 $Vt_{rec}=20log((CVv^2+Vh^2)^{1/2})$

 $CVv_{rec} = Vv_{rec} - Dm$

 $E(dB\mu V/m) = U(dB\mu V) + AF + Cable + Df$

Dm (Directivity factor)= 20*LOG(COS(90*SIN A)/COS A)

Df (Distance factor)= 20*LOG(1/COS A)

GAIN (dB) = E.R.P. (dBm) - Pt (dBm)

30 Tension Champ dBμV Cor Vv _{rec} Vh _{tec} Ecart Vt _{rec} 113,1 85,7 27,4 111,3 138,3 113,1 82,0 31,1 111,3 138,3 113,1 82,2 30,9 111,3 138,3 112,9 84,8 28,1 111,2 138,2 112,9 84,8 28,1 111,2 138,2 112,8 86,5 26,3 111,0 138,0 112,8 84,7 28,1 111,0 138,0 112,8 86,5 26,3 111,0 138,0 112,8 85,7 27,1 111,0 138,0	85.7 27,1 111,0 138,0 8 111,2 112,9 85,0 27,9 111,2 138,2	113,1 86,5 26,6 111,3	5 113,3 85,7 27,6 111,5 138,5	113,0 84,8 28,2 111,2 138,2
30 Tension dBµV Vh _{rec} Ecart 85,7 27,4 82,0 31,1 82,2 30,9 82,8 30,1 84,8 28,1 84,8 28,1 86,5 26,3 84,7 28,1 86,5 26,3 85,7 27,1	111,0 112,8 85,7 27,1 111,0 112,9 85,0 27,9 1	113,1 86,5 26,6	113,3 85,7 27,6 1	84,8 28,2
30 Tension dBµV Vh _{ree} 85,7 82,0 82,8 84,8 84,8 84,8 84,8 84,8 84,7 85,7	111,0 112,8 85,7	113,1 86,5	113,3 85,7	84,8
Tension dBµV Vh _{tre} 85,7 82,0 82,0 82,2 82,8 84,8 84,8 84,8 84,8 84,7	111,0 112,8	113,1	113,3	\dashv
	111,0	\vdash	\dashv	113,0
		111,3	5	
VV res 1111,3 1111,2 1111,2 1111,0 111,0 11	∞, ∞		111,5	111,2
Champ dBμV/m 137,0 137,2 137,2 137,0 137,	136,8	137,2	137,0	137,0
Vt. d d d d d d d d d d d d d d d d d d d	8,111,8	112,1	112,0	6,111
Ecart 32,9 28,9 31,6 32,8 30,4 33,6 229,1 33,6 32,6 32,6 32,6	32,9	30,1	32,6	31,2
	78,8	82,0	79,3	8'08
	-	-		
Cor V _{vrec} 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9			2 111,9	2 111,9
V _{Vre} 1112 1112 1112 1112 1112 1112 1112 11	111,0	111,3	111,2	111,2
Champ dBμV/m 134,5 134,0 134,0 134,0 134,0 134,2 134,5 134,5 134,5	134,3	134,2	134,5	134,3
Vt _{ree} 109,9 109,4 109,4 109,5 109,	109,7	109,5	109,9	9,601
Ecart 30,5 29,2 29,0 28,9 28,9 26,0 26,0 29,4	30,7	30,5	30,5	29,5
MP 10 10 10 10 10 10 10 10 10 10 10 10 10	79,0	79.0	79,3	80,1
CALCUL DU CHAMP Ter GH V _{rec} 109,7 109,5 109,7 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,2 109,4 109,9 109,7 109,9 8	109,7	109.5	109,9	109,6
CALCUI V _{Vec} 109,7 109,2 109,2 109,2 109,3 109,7 109,5 109,5	109,5	109,3	109,7	109,4
AZIMUTH (degrés) 0 0 30 60 90 120 120 180 210	270	330	360	Champ moyen

			4	40					5	50		
AZIMUTH			Tension		_	Champ			Tension			Champ
(degrés)			dΒμV			dBµV/m			dΒμV			dBµV/m
	VVrec	Cor Vv _{rec}	Vhree	Ecart	Vtree		Vvrec	Cor Vv _{rec}	Vhree	Ecart	Vtree	•
0	106,0	109,2	76,3	32,8	109,2	136,0	0,96	101,1	0,88	13,1	101,3	129,6
30	106,0	109,2	78,0	31,2	109,2	136,0	6,3	101,4	89,2	12,2	9,101	130,0
09	106,0	109,2	82,7	26,5	109,2	136,0	0,96	101,1	8,06	10,2	101,4	129,8
06	105,8	0,601	81,3	27,7	109,0	135,8	0,96	101,1	91,2		101,5	129,8
120	106,0	109,2	77,5	31,7	109,2	136,0	96,2	101,2	7,06	9,01	9,101	129,9
150	106,0	109,2	77,5	31,7	109,2	136,0	5,96	9,101	5'06	11,11	101,9	130,2
180	106,0	109,2	76,3	32,8	109,2	136,0	5,96	9,101	90,3	11,2	6,101	130,2
210	105,8	0,601	76,7	32,3	109,0	135,8	96,2	101,2	90,5	10,7	9,101	129,9
240	105,7	108,8	75,5	33,3	108,8	135,7	8,56	100,9	90,3	10,6	101,2	129,6
270	105,5	108,7	72,8	35,8	108,7	135,5	95,7	100,7	89,3	11,4	0,101	129,4
300	105,8	109,0	64,2	44,8	109,0	135,8	7,56	100,7	88,0	12,7	100,9	129,3
330	106,0	109,2	72,8	36,3	109,2	136,0	92,8	100,9	86,5	14,4	101,0	129,4
360	106,0	109,2	76,0	33,2	109,2	136,0	96,2	101,2	88,0	13,2	101,4	129,8
Champ moyen	105,9	109,1	76,0	33,1	109,1	135,9	96,1	101,1	89,5	11,6	101,4	129,8

ANNEX B

MANUFACTURER DOCUMENTATION ON MT400 STANDARD COMMUNICATIONS PTY. LTD. EPIRB

ANNEX C

APPLICATION FOR A COSPAS-SARSAT 406 MHz BEACON TYPE APPROVAL CERTIFICATE

Beacon Manufacturer: STANDA	ARD CO	OMMUNIC	CATIONS PTY. LTD.
Beacon Model: MT400		***************************************	
Name and Location of Beacon Test Fa	acility: _	INTE	SPACE, Toulouse (France)
Beacon Type: Aviation:	Land:		Maritime:
Specified Operating Temperature Ra	nge:	<u>-20</u> °	C to <u>+55</u> ℃
Specified Operating Lifetime: 24 hr.	48	hr. ✓ (Other Specify:
Beacon Battery Type(s): Chemistry: LITHIU	M SULF	PHUR DIC	OXIDE (LiSO2)
Manufacturer & model	no.: _ S	SAFT, LO	26 SX
Size & number of cells:	_ D	SIZE (R20	D-D), QUANTITY TWO (2)
Extra Features in Beacon:	No	Yes	Details
a) Auxiliary Radio-Locating Device:		✓	Frequency: 121.5 MHz Power: 16dBm (E.R.P.) Tx. Duty Cycle: Continuous (>96%)
b) Transmits Encoded Position Data:	✓		Nav. Device (Internal or External) Type (GPS, GLONASS, etc.) Manufacturer
c) Transmits Long Message (144 bits):	\checkmark		Model
d) Automatic Activation:	· 🗸		
e) Built-in Strobe Light:		\checkmark	Intensity: _ >0.75cd (IMO effective)_ Flash rate: _ 21/min
f) Self-test mode		\checkmark	
g) Other:		\checkmark	Specify: _ Audible Annunciator
	ard (C/S	T.007) and	has been successfully tested in accordance with d complies with the Cospas-Sarsat Specification
Dated:Signed	d:		(for test facility)

Send to: Cospas-Sarsat Secretariat c/o Inmarsat, 99 City Road, London EC1Y 1AX, United Kingdom