# Introduction

# Première exploitation de notre jeu de données

Dans ce Notebook nous allons essayer de mettre en évidence les classes de population les plus touchées par le suicide. Nous allons nous baser sur des statistiques fournies par la *World Health Organization* sur l'année 2016.

#### In [62]:

```
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
```

## In [63]:

```
Data=pd.read_csv('./Data/taux_sexe(age).csv', sep=',')
#On travaille sur l'année 2016
An2016=Data.iloc[1:,0:3]
An2016.columns=['Pays','Sexe','Taux de suicides (par 100k personnes)']
An2016
```

# Out[63]:

# Pays Sexe Taux de suicides (par 100k personnes)

| 1   | Afghanistan | Both sexes | 6.4  |
|-----|-------------|------------|------|
| 2   | Afghanistan | Male       | 10.6 |
| 3   | Afghanistan | Female     | 2.1  |
| 4   | Albania     | Both sexes | 5.6  |
| 5   | Albania     | Male       | 7.0  |
|     |             |            |      |
| 545 | Zambia      | Male       | 17.5 |
| 546 | Zambia      | Female     | 6.2  |
| 547 | Zimbabwe    | Both sexes | 19.1 |
| 548 | Zimbabwe    | Male       | 29.1 |
| 549 | Zimbabwe    | Female     | 11.1 |
|     |             |            |      |

#### 549 rows × 3 columns

# In [64]:

```
Male=An2016[An2016.Sexe == 'Male']
Male=Male.iloc[0:,[0,2]]
Male.columns=['Pays','Taux de suicide chez les hommes (par 100k personne s)']
Female=An2016[An2016.Sexe == 'Female']
```

```
Female=Female.iloc[0:,[0,2]]
Female.columns=['Pays','Taux de suicide chez les femmes (par 100k personne
s)']
Both=An2016[An2016.Sexe == 'Both sexes']
Both=Both.iloc[0:,[0,2]]
```

# In [65]:

```
Malestat = pd.DataFrame(Male.describe())
Femalestat = pd.DataFrame(Female.describe())
Bothstat = pd.DataFrame(Both.describe())
Stat = pd.concat([Malestat,Femalestat,Bothstat], sort=False, axis=1)
```

# In [66]:

```
from matplotlib import pyplot
Male.plot.hist(bins=60, color='bleu un peu foncé', edgecolor='black');
plt.savefig('NB1_1_0.png')
```



#### In [67]:

```
Female.plot.hist(bins=60, range=(0,60), color='orange', edgecolor='black'
);
plt.savefig('NB1_1_1.png')
```



# In [68]:

```
Both.plot.hist(bins=60, range=(0,60), color='green', edgecolor='black');
plt.savefig('NB1_1_2.png')
```



#### In [69]:

```
DfMale = pd.DataFrame(Male.describe())
DfFemale = pd.DataFrame(Female.describe())
DfBoth = pd.DataFrame(Both.describe())
Stat = pd.concat([DfMale,DfFemale],axis = 1)
Stat = pd.concat([Stat,DfBoth],axis = 1)
Stat
```

#### Out[69]:

|       | Taux de suicide chez les<br>hommes (par 100k<br>personnes) | Taux de suicide chez les<br>femmes (par 100k<br>personnes) | Taux de suicides<br>(par 100k<br>personnes) |
|-------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|
| count | 183.000000                                                 | 183.000000                                                 | 183.000000                                  |
| mean  | 14.602186                                                  | 5.092896                                                   | 9.682514                                    |
| std   | 8.778946                                                   | 3.855238                                                   | 5.529334                                    |
| min   | 0.000000                                                   | 0.300000                                                   | 0.400000                                    |
| 25%   | 8.450000                                                   | 2.600000                                                   | 5.750000                                    |
| 50%   | 13.500000                                                  | 4.300000                                                   | 9.100000                                    |
| 75%   | 18.450000                                                  | 6.200000                                                   | 12.500000                                   |
| max   | 48.300000                                                  | 32.600000                                                  | 30.200000                                   |

On observe qu'en moyenne les hommes sont trois fois plus touchés par le suicide.

# In [70]:

```
Stat.iloc[1,:2].plot.pie();
plt.savefig('NB1_1_3.png')
```



#### In [71]:

```
Populations = pd.read_csv('./Data/Population.csv', sep=",")
Populations = Populations.iloc[:,[0,60]]
Populations.columns=['Pays','Population']
Populations.head()
World = An2016[An2016.Sexe == 'Both sexes']
Tri = World.merge(Populations, left_on = 'Pays', right_on = 'Pays')
Tri.head()
```

#### Out[71]:

|   | Pays                   | Sexe       | Taux de suicides (par 100k<br>personnes) | Population |
|---|------------------------|------------|------------------------------------------|------------|
| 0 | Afghanistan            | Both sexes | 6.4                                      | 35383128.0 |
| 1 | Albania                | Both sexes | 5.6                                      | 2876101.0  |
| 2 | Algeria                | Both sexes | 3.3                                      | 40551404.0 |
| 3 | Angola                 | Both sexes | 8.9                                      | 28842484.0 |
| 4 | Antigua and<br>Barbuda | Both sexes | 0.5                                      | 94527.0    |

# Corrélation entre le taux de suicide et le nombre d'habitants du pays

#### In [72]:

```
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
```

# In [73]:

```
dfIh = pd.read_csv('./Data/inhabitants.csv', sep=',')
dfBS = pd.read_csv('./Data/Both_sexes_10-29.csv', sep=',')
# il s'agit d'un tableau avec le nombre d'habitant par pays
# on va fusionner ce tableau avec les autres obtenus précédemment
```

```
In [74]:
```

```
print(dfIh.head())
print(dfIh.shape)
print(dfBS.head())
print(dfBS.shape)
      Country 2016
Aruba 104872.0
1 Afghanistan 35383128.0
      Angola 28842484.0
3
      Albania 2876101.0
      Andorra 77297.0
(264, 2)
  Unnamed: 0
                          Country 10-14 years 15-19 years
20-24 years \
                      Afghanistan
                                          0.7
           0
                                                        5.8
10.7
                          Albania
                                          1.5
                                                        7.6
1
           1
6.6
2
           2
                          Algeria
                                         0.4
                                                        2.2
3.7
           3
                                                       4.7
                           Angola
                                          0.9
7.1
                                         0.0
                                                      0.0
4
           4 Antigua and Barbuda
0.0
  25-29 years
        9.5
          6.3
1
2
          4.6
3
          6.0
          0.0
(183, 6)
```

# In [75]:

```
dfBS = dfBS.merge(dfIh, left_on = 'Country', right_on = 'Country')
dfBS = dfBS.drop('Unnamed: 0', axis = 1).drop('Country', axis = 1)
dfBS.rename(columns={'2016': 'Nb inhabitant'}, inplace=True)
```

#### In [76]:

```
dfBS = dfBS.sort_values(by = 'Nb inhabitant')
dfBS.describe()
```

## Out[76]:

|       | 10-14 years | 15-19 years | 20-24 years | 25-29 years | Nb inhabitant |
|-------|-------------|-------------|-------------|-------------|---------------|
| count | 159.000000  | 159.000000  | 159.000000  | 159.000000  | 1.580000e+02  |
| mean  | 1.249057    | 6.937107    | 10.367296   | 10.606289   | 4.242686e+07  |
| std   | 1.150392    | 5.263831    | 7.199978    | 7.257765    | 1.562386e+08  |
| min   | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 9.452700e+04  |
| 25%   | 0.400000    | 3.200000    | 5.000000    | 5.400000    | 2.707838e+06  |
| 50%   | 0.900000    | 5.300000    | 8.000000    | 8.300000    | 9.431257e+06  |

```
75% 1.750000 8.900000 13.600000 14.000000 2.768774e+07
max 7.100000 28.900000 42.000000 38.400000 1.378665e+09
```

#### In [77]:

```
dfBS.to_csv('Both_sexes_10-29_inhabitant.csv')
```

#### In [78]:

```
import pylab as pl
import numpy as np
pl.hist(dfBS['Nb inhabitant'], bins=np.logspace(np.log10(1e+4),np.log10(1e+10),50));
pl.gca().set_xscale("log")
plt.savefig('NB1_2_0.png')
```



Avec cet histogramme logarithmique, on justifie la nécessité d'exclure les pays présentant moins de 5e+5 habitants Ceux-ci sont en effet marginaux et présentent des valeurs pouvant être aberrantes Cela représente la suppression de 14 pays, sur environ 160. Nous conservons donc 144 pays.

#### In [79]:

```
dfBS = dfBS[dfBS['Nb inhabitant'] >= 5e+5]
print(dfBS.shape)
```

(144, 5)

#### In [80]:

```
dfBS.plot(x = 'Nb inhabitant',y = '20-24 years', logx = True);
plt.savefig('NB1_2_1.png')
```



# In [81]:

```
dfBS.plot(x = 'Nb inhabitant',y = '25-29 years', logx = True);
plt.savefig('NB1_2_2.png')
```



# In [82]:

```
dfBS.plot(x = 'Nb inhabitant',y = '15-19 years', logx = True);
plt.savefig('NB1_2_3.png')
```



```
10<sup>8</sup>
106
                                 Nb inhabitant
```

# Corrélation entre le taux de suicide et le nombre d'habitants du pays

```
In [83]:
```

```
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
```

#### In [84]:

```
dfIh = pd.read_csv('./Data/inhabitants.csv', sep=',')
dfBS = pd.read csv('./Data/Both sexes 10-29.csv', sep=',')
# il s'agit d'un tableau avec le nombre d'habitant par pays
# on va fusionner ce tableau avec les autres obtenus précédemment
```

#### In [85]:

```
print(dfIh.head())
print(dfIh.shape)
print(dfBS.head())
print(dfBS.shape)
```

```
2016
      Country
        Aruba 104872.0
1 Afghanistan 35383128.0
      Angola 28842484.0
3
      Albania 2876101.0
                 77297.0
4
      Andorra
(264, 2)
  Unnamed: 0
                          Country 10-14 years 15-19 years
20-24 years \
0
                     Afghanistan
                                         0.7
                                                       5.8
10.7
                         Albania
                                          1.5
                                                       7.6
1
           1
6.6
2
           2
                         Algeria
                                          0.4
                                                       2.2
3.7
3
           3
                                                       4.7
                           Angola
                                          0.9
7.1
                                         0.0
                                                       0.0
4
           4 Antigua and Barbuda
0.0
  25-29 years
0
         9.5
          6.3
1
          4.6
```

```
3
            6.0
            0.0
(183, 6)
```

#### In [86]:

```
dfBS = dfBS.merge(dfIh, left_on = 'Country', right_on = 'Country')
dfBS = dfBS.drop('Unnamed: 0', axis = 1).drop('Country', axis = 1)
dfBS.rename(columns={'2016': 'Nb inhabitant'}, inplace=True)
```

#### In [87]:

```
dfBS = dfBS.sort_values(by = 'Nb inhabitant')
dfBS.describe()
```

#### Out[87]:

|       | 10-14 years | 15-19 years | 20-24 years | 25-29 years | Nb inhabitant |
|-------|-------------|-------------|-------------|-------------|---------------|
| count | 159.000000  | 159.000000  | 159.000000  | 159.000000  | 1.580000e+02  |
| mean  | 1.249057    | 6.937107    | 10.367296   | 10.606289   | 4.242686e+07  |
| std   | 1.150392    | 5.263831    | 7.199978    | 7.257765    | 1.562386e+08  |
| min   | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 9.452700e+04  |
| 25%   | 0.400000    | 3.200000    | 5.000000    | 5.400000    | 2.707838e+06  |
| 50%   | 0.900000    | 5.300000    | 8.000000    | 8.300000    | 9.431257e+06  |
| 75%   | 1.750000    | 8.900000    | 13.600000   | 14.000000   | 2.768774e+07  |
| max   | 7.100000    | 28.900000   | 42.000000   | 38.400000   | 1.378665e+09  |

#### In [88]:

```
dfBS.to_csv('Both_sexes_10-29_inhabitant.csv')
```

#### In [89]:

```
import pylab as pl
import numpy as np
pl.hist(dfBS['Nb inhabitant'], bins=np.logspace(np.log10(1e+4),np.log10(1e+10),50));
pl.gca().set_xscale("log")
plt.savefig('NB1_2_0.png')
```



Avec cet histogramme logarithmique, on justifie la nécessité d'exclure les pays présentant moins de 5e+5 habitants Ceux-ci sont en effet marginaux et présentent des valeurs pouvant être aberrantes Cela représente la suppression de 14 pays, sur environ 160. Nous conservons donc 144 pays.

```
In [90]:
```

```
dfBS = dfBS[dfBS['Nb inhabitant'] >= 5e+5]
print(dfBS.shape)
```

(144, 5)

#### In [91]:

```
dfBS.plot(x = 'Nb inhabitant',y = '20-24 years', logx = True);
plt.savefig('NB1_2_1.png')
```



# In [92]:

```
dfBS.plot(x = 'Nb inhabitant',y = '25-29 years', logx = True);
plt.savefig('NB1_2_2.png')
```



# In [93]:

```
dfBS.plot(x = 'Nb inhabitant',y = '15-19 years', logx = True);
plt.savefig('NB1_2_3.png')
```



# Jupyter notebook 1:

# 1er jeu de données

# Estimation des taux de suicide, données brutes

Estimations par pays et par tranches d'âge de 5ans jusqu'à 29ans (adolescence) et par sexe - 2016

Ce Jupyter Notebook a pour but de rendre exploitable le jeu de données, et d'en tirer un df global qui nous servira pour la suite

#### In [94]:

```
#Crude suicide rates (per 100 000 population)
df = pd.read_csv('./Data/age_10y.csv', sep=',')

#Nombre d'habitants par pays
dfIh = pd.read_csv('./Data/inhabitants.csv', sep=',')

#Suppression des valeurs aberrantes
df = df.merge(dfIh, left_on = 'Country', right_on = 'Country')
df.rename(columns={'2016': 'Nb inhabitant'}, inplace=True)
df = df[df['Nb inhabitant'] >= 5e+5]
df
```

#### Out[94]:

|   | Country     | Sex        | 10-19<br>years | 20-29<br>years | 30-39<br>years | 40-49<br>years | 50-59<br>years | 60-69<br>years | 70-79<br>years | 80+<br>years |   |
|---|-------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|---|
| 0 | Afghanistan | Both sexes | 3.1            | 10.2           | 9.2            | 6.6            | 5.6            | 5.5            | 11.0           | 42.0         | ; |
| 1 | Afghanistan | Male       | 4.8            | 16.3           | 15.1           | 10.5           | 9.3            | 9.8            | 20.9           | 70.4         | ; |
| 2 | Afghanistan | Female     | 1.2            | 3.5            | 2.7            | 2.3            | 1.6            | 1.4            | 2.3            | 20.1         | ; |

| 3   | Albania  | Both sexes | 5.0 | 6.5  | 6.1  | 9.1  | 7.8  | 6.0  | 8.3   | 16.3  |
|-----|----------|------------|-----|------|------|------|------|------|-------|-------|
| 4   | Albania  | Male       | 3.1 | 6.3  | 8.8  | 13.5 | 11.4 | 8.1  | 11.9  | 23.2  |
|     |          |            |     |      |      |      |      |      |       |       |
| 472 | Zambia   | Male       | 3.9 | 12.3 | 13.3 | 17.0 | 27.3 | 38.7 | 79.0  | 152.1 |
| 473 | Zambia   | Female     | 1.6 | 4.2  | 4.6  | 6.9  | 11.2 | 16.0 | 26.4  | 31.2  |
| 474 | Zimbabwe | Both sexes | 4.6 | 11.3 | 13.7 | 19.2 | 29.4 | 41.3 | 81.5  | 205.7 |
| 475 | Zimbabwe | Male       | 6.4 | 19.1 | 22.8 | 30.1 | 47.0 | 62.8 | 111.5 | 285.0 |
| 476 | Zimbabwe | Female     | 2.7 | 3.8  | 5.5  | 9.4  | 16.0 | 26.4 | 59.4  | 152.4 |

# 432 rows × 11 columns

#### In [95]:

```
#passer les valeurs de cdc à numérique
for i in range(2,9) :
    df.iloc[:,i] = pd.to_numeric(df.iloc[:,i])
df.head(20)

#création de 3 df : Both Sexes, Male et Female
dfBS = df[df['Sex'] == 'Both sexes'].drop('Sex', axis = 1)
dfBS.index = range(0, dfBS.shape[0])
dfMale = df[df['Sex'] == 'Male'].drop('Sex', axis = 1)
dfMale.index = range(0, dfMale.shape[0])
dfFemale = df[df['Sex'] == 'Female'].drop('Sex', axis = 1)
dfFemale.index = range(0, dfFemale.shape[0])
```

# Out[95]:

|   | Country     | 10-19<br>years | 20-29<br>years | 30-39<br>years | 40-49<br>years | 50-59<br>years | 60-69<br>years | 70-79<br>years | 80+<br>years | Nb<br>inhabitant |
|---|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|------------------|
| 0 | Afghanistan | 3.1            | 10.2           | 9.2            | 6.6            | 5.6            | 5.5            | 11.0           | 42.0         | 35383128.0       |
| 1 | Albania     | 5.0            | 6.5            | 6.1            | 9.1            | 7.8            | 6.0            | 8.3            | 16.3         | 2876101.0        |
| 2 | Algeria     | 1.3            | 4.2            | 5.3            | 4.7            | 4.1            | 4.2            | 5.6            | 9.4          | 40551404.0       |
| 3 | Angola      | 2.6            | 6.6            | 5.4            | 7.0            | 14.8           | 23.8           | 42.1           | 63.5         | 28842484.0       |
| 4 | Argentina   | 8.6            | 15.3           | 10.8           | 9.8            | 9.5            | 10.0           | 11.6           | 15.8         | 43590368.0       |
| 5 | Armenia     | 2.2            | 4.5            | 5.4            | 9.0            | 8.4            | 10.1           | 17.4           | 27.9         | 2936146.0        |
| 6 | Australia   | 5.6            | 13.9           | 16.3           | 19.7           | 18.2           | 12.9           | 13.1           | 28.8         | 24190907.0       |
| 7 | Austria     | 4.5            | 10.8           | 13.1           | 15.7           | 23.1           | 17.8           | 25.1           | 40.9         | 8736668.0        |
| 8 | Azerbaijan  | 1.4            | 2.2            | 3.2            | 3.5            | 4.1            | 4.5            | 6.6            | 7.7          | 9757812.0        |
| 9 | Bahrain     | 3.0            | 8.8            | 8.1            | 6.1            | 4.8            | 6.2            | 11.0           | 25.2         | 1425791.0        |

#### In [96]:

```
dfBS.describe()
```

# Out[96]:

|       | 10-19<br>years | 20-29<br>years | 30-39<br>years | 40-49<br>years | 50-59<br>years | 60-69<br>years |     |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|-----|
| count | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144 |
| mean  | 4.134028       | 10.865278      | 11.488889      | 12.811806      | 15.409722      | 17.658333      | 26  |
| std   | 2.852680       | 6.958753       | 7.999983       | 8.652357       | 9.859093       | 11.522435      | 2   |
| min   | 0.700000       | 2.200000       | 2.500000       | 2.100000       | 2.300000       | 2.600000       | 2   |
| 25%   | 2.175000       | 5.650000       | 6.075000       | 6.675000       | 7.575000       | 8.275000       | ę   |
| 50%   | 3.400000       | 8.900000       | 9.150000       | 10.500000      | 12.750000      | 16.350000      | 19  |
| 75%   | 5.300000       | 14.075000      | 14.225000      | 16.700000      | 21.700000      | 23.725000      | 36  |
| max   | 18.300000      | 38.000000      | 49.700000      | 54.800000      | 48.500000      | 55.400000      | 9(  |

Le plus fort taux de suicide est enregistré chez les 25-29ans, avec un taux de 1 suicide pour 10 000 hab II n'est pas possible de déduire de ces df un taux de suicide moyen chez les 10-29 ans car nous ne connaissons pas le poids des différentes catégories d'âges

# In [97]:

```
dfBS[dfBS['Country'] == 'France']
```

#### Out[97]:

|    | Country | 10-19<br>years | 20-29<br>years | 30-39<br>years | 40-49<br>years | 50-59<br>years | 60-69<br>years | 70-79<br>years | 80+<br>years | Nb<br>inhabitant |
|----|---------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|------------------|
| 46 | France  | 2.2            | 8.0            | 13.4           | 21.8           | 23.2           | 20.3           | 27.2           | 73.4         | 66859768.0       |

Le taux de suicide en France est plus élevé que la moyenne mondiale pour les plus de 30ans

Notre pays ne se classe donc pas parmis les "bons élèves", avec des taux jusqu'à deux fois supérieur à la moyenne mondiale, comme pour les plus de 80 ans

# In [98]:

```
dfMale.describe()
#le taux de suicide chez les hommes est plus élevé que celui des femmes da
ns le monde
```

# Out[98]:

|       | 10-19<br>years | 20-29<br>years | 30-39<br>years | 40-49<br>years | 50-59<br>years | 60-69<br>years |     |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|-----|
| count | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144 |
| mean  | 5.307639       | 16.276389      | 17.722222      | 19.688889      | 23.255556      | 25.908333      | 39  |
| std   | 3.461195       | 11.271407      | 13.593908      | 14.393623      | 15.903414      | 16.183876      | 27  |
| min   | 0.800000       | 2.800000       | 3.300000       | 2.700000       | 2.400000       | 3.100000       | (   |
| 25%   | 2.775000       | 8.050000       | 8.775000       | 10.375000      | 11.100000      | 12.800000      | 18  |
| 50%   | 4.350000       | 12.150000      | 13.900000      | 17.100000      | 19.950000      | 23.400000      | 32  |
| 75%   | 6.725000       | 20.750000      | 22.025000      | 24.475000      | 31.500000      | 35.150000      | 57  |

max 18.200000 56.500000 88.400000 86.500000 85.400000 78.500000 12°

#### In [99]:

```
dfFemale.describe()
```

#### Out[99]:

|       | 10-19<br>years | 20-29<br>years | 30-39<br>years | 40-49<br>years | 50-59<br>years | 60-69<br>years |     |
|-------|----------------|----------------|----------------|----------------|----------------|----------------|-----|
| count | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144.000000     | 144 |
| mean  | 2.906250       | 5.202083       | 5.172917       | 6.029167       | 8.086806       | 10.603472      | 16  |
| std   | 2.888565       | 4.151543       | 3.705264       | 4.756591       | 7.100894       | 10.915796      | 20  |
| min   | 0.000000       | 0.900000       | 0.800000       | 0.900000       | 0.000000       | 0.000000       | (   |
| 25%   | 1.100000       | 2.600000       | 2.700000       | 2.800000       | 3.200000       | 3.975000       | 4   |
| 50%   | 2.050000       | 4.200000       | 4.200000       | 5.000000       | 6.750000       | 8.150000       | 1.  |
| 75%   | 3.625000       | 6.600000       | 6.825000       | 7.900000       | 10.675000      | 12.925000      | 19  |
| max   | 18.400000      | 33.100000      | 26.900000      | 40.700000      | 56.900000      | 69.900000      | 130 |

#### In [100]:

```
dfBS.to_csv('Both_sexes_10y.csv')
```

#### In [101]:

```
df = pd.read csv('./Data/data.csv', sep=',')
#suppression des colonnes inutiles
#rendre exploitable les données
df = df.drop(0, axis = 0)
df.columns = df.iloc[0,:]
df = df.drop(1, axis = 0)
df.index = range(0, df.shape[0])
df = df.drop('5-9 years', axis = 1)
#passer les valeurs de cdc à numérique
for i in range (2,6):
    df.iloc[:,i] = pd.to numeric(df.iloc[:,i])
df.head(20)
#création de 3 df : Both Sexes, Male et Female
dfBS = df[df['Sex'] == 'Both sexes'].drop('Sex', axis = 1)
dfBS.index = range(0, dfBS.shape[0])
dfMale = df[df['Sex'] == 'Male'].drop('Sex', axis = 1)
dfMale.index = range(0, dfMale.shape[0])
dfFemale = df[df['Sex'] == 'Female'].drop('Sex', axis = 1)
dfFemale.index = range(0, dfFemale.shape[0])
dfBS.head(10)
```

# Out[101]:

| 1 | Country     | 10-14 years | 15-19 years | 20-24 years | 25-29 years |
|---|-------------|-------------|-------------|-------------|-------------|
| 0 | Afghanistan | 0.7         | 5.8         | 10.7        | 9.5         |

|   | ŭ                   |     |      |      |      |
|---|---------------------|-----|------|------|------|
| 1 | Albania             | 1.5 | 7.6  | 6.6  | 6.3  |
| 2 | Algeria             | 0.4 | 2.2  | 3.7  | 4.6  |
| 3 | Angola              | 0.9 | 4.7  | 7.1  | 6.0  |
| 4 | Antigua and Barbuda | 0.0 | 0.0  | 0.0  | 0.0  |
| 5 | Argentina           | 2.0 | 15.5 | 17.9 | 12.5 |
| 6 | Armenia             | 0.5 | 3.8  | 4.8  | 4.2  |
| 7 | Australia           | 1.4 | 9.8  | 13.8 | 14.0 |
| 8 | Austria             | 0.8 | 7.8  | 10.7 | 10.9 |
| 9 | Azerbaijan          | 0.3 | 2.4  | 2.2  | 2.2  |

# In [102]:

```
dfBS.describe();
```

Le plus fort taux de suicide est enregistré chez les 25-29ans, avec un taux de 1 suicide pour 10 000 hab il n'est pas possible de déduire de ces df un taux de suicide moyen chez les 10-29 ans car nous ne connaissons pas le poids des différentes catégories d'âges

# In [103]:

```
dfBS[dfBS['20-24 years'] >= 30]
```

#### Out[103]:

| 1  | Country     | 10-14 years | 15-19 years | 20-24 years | 25-29 years |
|----|-------------|-------------|-------------|-------------|-------------|
| 51 | El Salvador | 3.3         | 17.9        | 30.7        | 29.4        |
| 70 | Guyana      | 7.1         | 28.9        | 42.0        | 31.8        |
| 75 | India       | 2.6         | 20.0        | 30.7        | 30.0        |
| 87 | Kiribati    | 2.4         | 28.9        | 39.4        | 27.2        |

# In [104]:

```
dfBS[dfBS['Country'] == 'France']
```

#### Out[104]:

| 1  | Country | 10-14 years | 15-19 years | 20-24 years | 25-29 years |
|----|---------|-------------|-------------|-------------|-------------|
| 59 | France  | 0.8         | 3.7         | 7.1         | 8.9         |

# In [105]:

```
dfMale.describe()
#le taux de suicide chez les hommes est plus élevé que celui des femmes da
ns le monde
```

# Out[105]:

# 1 10-14 years 15-19 years 20-24 years 25-29 years

102 00000 102 00000 102 000000 102 000000

| COUNT | 103.000000 | 103.000000 | 103.000000 | 103.000000 |
|-------|------------|------------|------------|------------|
| mean  | 1.626230   | 9.008197   | 15.303825  | 16.098907  |
| std   | 1.617783   | 6.987382   | 11.050799  | 11.506654  |
| min   | 0.000000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 0.500000   | 4.550000   | 7.450000   | 8.250000   |
| 50%   | 1.100000   | 6.600000   | 11.800000  | 12.400000  |
| 75%   | 2.150000   | 11.750000  | 20.000000  | 20.400000  |
| max   | 8.700000   | 44.000000  | 69.500000  | 66.300000  |

# In [106]:

dfFemale.describe()

# Out[106]:

| 1     | 10-14 years | 15-19 years | 20-24 years | 25-29 years |
|-------|-------------|-------------|-------------|-------------|
| count | 183.000000  | 183.000000  | 183.000000  | 183.000000  |
| mean  | 0.928962    | 4.810383    | 5.117486    | 4.945355    |
| std   | 1.109887    | 4.736908    | 4.495910    | 3.910758    |
| min   | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
| 25%   | 0.300000    | 1.900000    | 2.300000    | 2.350000    |
| 50%   | 0.600000    | 3.200000    | 3.900000    | 3.800000    |
| 75%   | 1.100000    | 6.100000    | 6.800000    | 6.550000    |
| max   | 7.000000    | 29.200000   | 36.100000   | 30.100000   |

# In [107]:

```
dfBS.plot.hist(subplots=True, color='red', edgecolor = 'red', figsize=(5,1
0), bins = 20);
```



# In [108]:

dfMale.plot.hist(subplots=True, color='green', edgecolor = 'red', figsize=
 (5,10), bins = 20);



# In [109]:

dfFemale.plot.hist(subplots=True, color='grey', edgecolor = 'red', figsize
=(5,10), bins = 20);



In [110]:
dfBS.to\_csv('Both\_sexes\_10-29.csv')