Prüfer-Code

- $\bullet \ \, \text{Bijektion f: } T_n \!\! \!\! > \!\! S_{n-2}, T \!\! \!\! > \!\! f(T) = s$
 - $S_{n-2} = \{s = (s_1s2....s_{n-2}), s_i \in [n]\}$
 - sukzessiv definiert
 - * $T_0 = T$
 - $*T_i$
 - ullet nehme kleinste Blatt l_i in T_i-1
 - $\bullet \ \ {\rm entferne} \ l_i$ und inzidente Kante von T_i-1
 - $\bullet \;$ definiere i-te Folgenglied s_i als Nachbar von l_i
- Verfahren retourniert Folge ${\cal S}_T$

Bread-First-Search

branching progress

- Input: zusammenhängender Graph G
- Output: Spannbaum T
- Verfahren:
 - wähle Knoten \boldsymbol{x}_0 als Wurzel
 - $* \ \operatorname{Liste} L = (x_0)$
 - Loop bis T alle Knoten enthält V(T) = V(G)

- * gegeben Liste $L=(x_0,x_1,\ldots)$ und Baum T
- * nimm ersten Knoten x von L
- * falls x keine Nachbarn hat, welche noch nicht im Baum sind
 - $N(x)/V(T) = \emptyset$
 - entfern x aus L
- * sonst
 - ullet füg einen Nachbarn y aus N(x)/V(T) zu T und L hinzu

- return T
- Beispiel

Depth-First-Search

· findet langen Pfad

• Input: zusammenhängender Graph G

- Output: Spannbaum T
- Verfahren fast ident zu BFS
 - jedoch wird y am Anfang von L hinzugefügt

Algorithmus von Kruskal

- Input:
 - zus. Graph G mit n Knoten und m Kanten
 - Gewichtsfunktion w
 - * E->
 - * e->w(e)
- Output:
 - Spannbaum T von G mit minimalem Gewicht
 - Summe aller Kantengewichte ist minimal

- Verfahren
 - sortiere (nummeriere) Kanten aufsteigend nach Gewicht

- setze E(T)=
- Loop bis |E(T)|=n-1
 - st nimm die kleinste Kante e_n
 - $\ensuremath{\boldsymbol{\ast}}$ füge e_n zu T hinzu, wenn das keinen Kreis erzeugt
 - $\bullet \ \ \text{sonst wird} \ e_n \ \text{aus der Liste entfernt} \\$
- return T

[[Bäume & Spannbäume]]