Standard force and motion

Standard force and motion	
$v^2 - u^2 = 2as$	v = u + at
$s = \frac{1}{2}at^2 + ut$	$s = \frac{(u+v)t}{2}$
$F = \frac{dp}{dt} = m\frac{dv}{dt}$ $= ma$	$f_{max} = \mu F_N$
$F_{drag} = \frac{1}{2}C\rho A v^2$	$\vec{J} = \Delta \vec{p} = m \cdot \Delta \vec{v}$ $= \int \vec{F} dt$
1	C

$$W = \vec{F} \cdot \vec{s} = |\vec{F}| |\vec{s}| \cos \theta = \int F \, ds$$

$$\vec{r}_{CoM} = \frac{1}{M} \sum \vec{r} m = \frac{1}{M} \int \vec{r} \ dm$$

Rotation stuff

$\omega^2 - \omega_0^2 = 2\alpha\theta$	$\omega = \omega_0 + \alpha t$
$\theta = \frac{1}{2}\alpha t^2 + \omega_0 t$	$\theta = \frac{(\omega_0 + \omega)t}{2}$
$Linear\ quantity = Angular\ quantity \times Radius$	
$\vec{v} = \vec{\omega} \times \vec{r}$	
$a_{radial} = \vec{\alpha} \times \vec{r}$	$a_{centripetal} = \vec{\omega} \times \vec{v}$
$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{v} = a_{radial} + a_{centripetal}$	
$F_{centripetal} = m \frac{v^2}{r} = mr\omega^2$	
$I = \sum mr^2 = \int r^2 dm$	
$KE = \frac{1}{2}I\omega^2 = \frac{1}{2}\omega^2 \int r^2 dm$	

Shifting centre of rotation: $I = I_0 + Mh^2$

Angular momentum:

$$\vec{L} = I\omega = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$$

$$\vec{\tau} = \vec{r} \times \vec{F} = rF \sin \theta = I\alpha = \frac{dL}{dt}$$

$$P = \tau \omega \qquad \qquad W = \frac{1}{2}I(\omega^2 - \omega_0^2)$$

Pure rolling:

$$v = R\omega \qquad KE = \frac{1}{2}I\omega^2$$

Rolling + Sliding:

$$KE = \frac{1}{2}I\omega^2 + \frac{1}{2}Mv^2 = \frac{1}{2}(I + MR^2)\omega^2$$

Spring stuff

$$F = kx$$

$$W = \int F dx = \int kx dx = \frac{1}{2}k(x_f^2 - x_i^2)$$

Power and energy

$$W = \Delta KE = -\Delta U \qquad F = -\frac{d}{dx}U$$

$$P = \frac{d}{dt}W$$

$$= \frac{d}{dt}(Fx\cos\theta) = Fv\cos\theta = \vec{F} \cdot \vec{v}$$

Fluidics	Density - ρ
$a = \frac{m}{m}$	F
$ \rho = \frac{1}{V} $	$p = {A}$
$p = p_{atmosphere/external} + \rho g h$	
$F_{buoyant} = Weight_{displaced} = \rho Vg$	
Bernoulli's: $p + \frac{1}{2}\rho v^2 + \rho gh = \text{const.}$	

Pipe continuity: Av = const.

-		
Torsion	1/	

Harmonic motion	Torsion - κ
$x(t) = A\cos(\omega t + \phi)$	$a(t) = -\omega^2 x(t)$
$\omega = 2\pi f$	$T = 2\pi \sqrt{\frac{m}{k}}$
$U(t) = \frac{1}{2}kA^2\cos^2(\omega t + \phi)$	
$KE(t) = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$	
$E_{total} = U(t) + KE(t) = \frac{1}{2}kA^2$	
l .	

Angular oscillator (Rotating stuff): $\tau = I\alpha = -\kappa\theta \qquad T = 2\pi\sqrt{I/\kappa}$

Simple pendulum:	Linear density - μ
$ au = Lmg \sin heta$	$\alpha = -\frac{mgL}{I}\theta$
$\omega = \sqrt{\frac{mgL}{I}}$	$T = 2\pi \sqrt{\frac{I}{mgL}}$
_	Small A:

$$v_{wave} = f\lambda = \frac{\omega}{k} = \sqrt{\frac{T}{\mu}}$$
 Small A:
$$T = 2\pi \sqrt{\frac{L}{g}}$$

Mathematics fundamentals

municination rand	anii chi cana
Dot product	$\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos \theta = i_a i_b + j_a j_b + k_a k_b$
Cross product	$\vec{a} \times \vec{b} = \hat{n} \vec{a} \vec{b} \sin \theta = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ i_a & j_a & k_a \\ i_b & j_b & k_b \end{vmatrix}$
Vector projection	$\vec{a} \xrightarrow{proj.} \vec{b} = (\vec{a} \cdot \hat{b}) \hat{b}$

