FAKE NEWS

Recherche & Développement

AUGER Nathan / DURAND Pierre LOPEZ Julio / NOUVELIERE Benjamin

MAY Madeth

Qu'est-ce qu'une fake new?

BBC NEWS

Partout ??

Le cyber-harcèlement très répandu

En France en **2019**, **22% des jeunes majeurs** disent avoir déjà été de cyber-harcèlement. Ce chiffre monte à **27% pour les 18-24 ans**.

Suis-je en **danger** face au cyber-harcèlement ? Suis-je **protégé** contre la diffamation en groupe ?

Les usages de l'utilisateur

Dans une optique de R&D (Benchmarks)

-		1 1	-	
н	Benchma	ark de	s Frame	eworks

	Angular	React	Vue
Taille	65.5 <u>KB</u>	36.3 <u>KB</u>	30.8 <u>KB</u>
Temps de performance	1.5 s	1 s	1 s
Temps de changement	1484.6 ms	796.5 ms	806.5 ms
Apprentissage	Facile	Facile	Très facile

Technologies	Spécificités	
Régression linéaire	 Facile et rapide à calculer Réajustement manuel de la courbe 	
Réseau de neurones	- Réajustement automatique de la courbe	

Benchmark des bibliothèques d'apprentissage automatique

TensorFlow	Bien documenté Grande communauté Graph statique Debugging non intuitif Bonne visualisation de graph Déploiement très facile
	- Date de 2011 développé par Google - Documenté - Tutoriels officiels
Partorch	 Graph dynamique Debugging intuitif Bonne visualisation de graph Facile à utiliser (moins d'efforts pour autant de résultats) Date de 2016 développé par Facebook

Langages	Spécificités - Large panel de bibliothèques (Numpy, Panda, NLTK, SpaCy, SciKit-learn) - Intègre facilement des APIs - Performant en temps - Communauté développée et active	
Python		
JVM	- Bon panel de bibliothèques (CoreNPL, ND4J, DL4) - Calcule sur CPU - Machine virtuelle - Communauté développée	
C/C++	 - Quelques bibliothèques (CUDA, TensorFlow, Caffe) - Utilisation de pointeurs - Calcule sur GPU - Accède à des APIs de haut niveau et flexibles 	
JavaScript	- Très peu de bibliothèques - Intègre mal les APIs	

Technologies utilisées pour les modèles

Simple d'utilisation et possède beaucoup de bibliothèques (NLP, ML, DL)

Bibliothèque qui permet de faire de l'apprentissage automatique (Naive Bayes, SVM)

Bibliothèque de traitement automatique des langues (Lemmatisation)

Bibliothèque qui permet de faire du deep learning (modèle LSTM)

Framework pour application web sur python (utilisé pour l'API)

Les différents modèles

Naive Bayes

Avantages:

- Simple à comprendre et à mettre en place
- Rapide pour l'entraînement et les prédictions

Inconvénients:

- Fait une prédiction binaire
- Ne fonctionne pas très bien sur des données complexes

Les différents modèles

SVM

Avantages:

- Résistant au sur-apprentissage
- Performant

Inconvénients:

- Fait une prédiction binaire
- Ne convient pas à des jeux de données volumineux

Les différents modèles

LSTM

Avantages:

- La prédiction est une probabilité
- Un réseau de neurones récurrent amélioré
- Très utilisé dans le domaine du traitement de la langue

Inconvénient:

- La phase d'apprentissage est plutôt lente

Étapes clés du programme

- 1. **Nettoyer** les données (mettre en minuscule, enlever la ponctuation, enlever StopWord, Lemmatiser...)
- 2. **Trier** les mots par fréquence
- 3. Enlever les 'outliers'
- 4. **Remplir / Tronquer** les données
- 5. Séparer les données en **3 groupes** (Train : 80%, Validation : 10%, Test : 10%)
- 6. Définir la structure du réseau LSTM (taille des batch, nombre d'époque...)
- 7. **Entrainement** du modèle
- 8. **Tester** (données de Test, phrase utilisateur)

Démonstration du modèle

Quelques exemples de tweets classifiés

Le choix d'une application mobile

Filtrage

Twitter

- Base de données conséquente
- Peu de filtrage de contenu

Application android

 Platforme mobile plus adaptée aux réseaux sociaux

Modification apportée

- Notre plus-value
- Protéger l'utilisateur de contenus potentiellement dangereux

Structure de l'application en 3 axes

Cas d'une première connexion à

Notre façon de travailler

3

Versionning

- Gestion de projet
- Méthode agile
- → Rush 1 semaine
- → 1 séance en fin de rush de mise en commun
- → Rédaction du rapport de séance
- → Réunion de projet toutes les 3 à 4 séances

Démonstration

Les différentes pistes d'amélioration

- Signaler un compte
- Démentir le résultat de l'analyse d'un tweet
- Informateurs de violence adaptés aux tweets avec images
- Interactions standards de Twitter (Commenter et retweeter)
- Améliorer le modèle (création de notre propre dataset)
- Améliorer le visuel de l'application

