

The Problem

Diabetes is a common condition. The CDC found that 30.3 million adults in the U.S. have diabetes. They also estimate that 80.4 million adults have prediabetes. Diabetes can be difficult to live with and be expensive to treat. Therefore, diagnosing diabetes early can be helpful to a person's way of life and wallet.

The Goal

Develop a machine learning algorithm that can read common symptoms for diabetes and predict whether a person will get diabetes.

By knowing ahead of time, the person can work on minimizing or eliminating some symptoms to minimize the chance that they will get diabetes.

Data

kaggle

Data Wrangling

The dataset did not have any missing values.

Exploratory Data Analysis

- 1.0

- 0.8

- 0.6

- 0.4

0.2

Model Analysis

Modelling Algorithm

Logistic Regression with Scaling Decision Tree Gradient Boosting Random Forest

Summary

Polyuria	67%
Polydipsia	65%
Polydipsia	97%
Polyuria	94%
Gender – Female	90%
Age – 60's	74%
Logistic Regression with Scaling	93%
Decision Tree	94%
Gradient Boosting	95%
Random Forest	98%
	Polydipsia Polydipsia Polyuria Gender – Female Age – 60's Logistic Regression with Scaling Decision Tree Gradient Boosting

For Future Consideration

The data had only 520 instances. Collecting more data may help to make the model prediction more accurate.