Continuous Fused Optimal Transport

Junhyoung Chung*

Department of Statistics Seoul National University Seoul 08826, Republic of Korea junhyoung0534@gmail.com

Abstract

The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 Introduction

2 Fused Optimal Transport

Notations. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (S, d_S) be a compact metric space. A measurable map $X:\Omega \to S$ is called a random element, and its distribution is defined as $\mathbb{P}_X:=\mathbb{P}\circ X^{-1}$. In addition, we introduce a feature space $M\subset \mathbb{R}^d$, which is also a compact region. Any measurable map $f:S\to M$ is called a feature function. For two random elements X and Y, we say a measurable map $T:S\to S$ pushes forward \mathbb{P}_X to \mathbb{P}_Y , or simply X to Y, if $\mathbb{P}_X(T^{-1}(A))=\mathbb{P}_Y(A)$ for all $A\in\mathcal{B}(S)$, where $\mathcal{B}(S)$ is the Borel σ -algebra of S. We denote $T_\#\mathbb{P}_X=\mathbb{P}_Y$ if T pushes forward X to Y.

Fused optimal transport. For some feature function f, we consider the following problem: for $0 \le \alpha \le 1$,

$$\min_{T:T_{\#}\mathbb{P}_{X}=\mathbb{P}_{Y}} (1-\alpha) \mathbb{E}_{X \sim \mathbb{P}_{X}} \left[\|f(X) - f(T(X))\|_{2}^{2} \right] + \alpha \mathbb{E}_{(X,X') \sim \mathbb{P}_{X} \otimes \mathbb{P}_{X}} \left[K_{h}(X,X') \left| d_{S}(X,X') - d_{S}(T(X),T(X')) \right|^{2} \right], \quad (1)$$

where $\|\cdot\|_2$ is a Euclidean norm, and $K_h(\cdot,\cdot): S\times S\to [0,\infty)$ is a bounded symmetric kernel with a bandwidth h>0. Throughout this study, we assume that there exist solutions for (1).

Assumption 1. For all $0 < \alpha < 1$, there exists a non-empty solution set S_{α} for (1).

(1) reduces to a conventional OT problem when $\alpha=0$, which have been widely discussed across several literature. In this case, there exists a \mathbb{P}_X -a.e. uniqueness solution, denoted as T^* , which is guaranteed by the Brenier theorem under some regular assumptions.

Assumption 2. A feature function f is one-to-one and continuous.

Assumption 3. The distribution of f(X) is dominated by the Lebesgue measure.

Assumption 4. f(X) and f(Y) have finite second moments, i.e., $\mathbb{E}[\|f(X)\|_2^2], \mathbb{E}[\|f(Y)\|_2^2] < \infty$.

Lemma 1. Consider a fused optimal transport problem in (1) with $\alpha = 0$. Under Assumptions 2 to 4, there exists a \mathbb{P}_X -a.e. unique solution T^* .

^{*}https://junhyoung-chung.github.io/

Lemma 1 illustrates the \mathbb{P}_X -a.e. uniqueness of the solution for the special case of (1) with $\alpha = 0$, which is the simple application of the Brenier theorem.

In contrast, global solutions for (1) with $\alpha > 0$ may not be unique due to the non-convexity of the second term. However, we can still guarantee that there exists a $T_{\alpha}^* \in \mathcal{S}_{\alpha}$ near by T^* under some required assumptions. To this end, we first introduce the following alternative problem for (1), which is essentially equivalent: for Z := f(X),

$$\min_{U:U_{\#}\mathbb{P}_{Z}=f_{\#}\mathbb{P}_{Y}}(1-\alpha)\mathbb{E}_{Z\sim\mathbb{P}_{Z}}\left[\|Z-U(Z)\|_{2}^{2}\right]+\alpha R(U),\tag{2}$$

where

$$R(U) := \mathbb{E}_{(Z,Z') \sim \mathbb{P}_Z \otimes \mathbb{P}_Z} \left[K_h^f(Z,Z') \left| d_S(g(Z),g(Z')) - d_S(g(U(Z)),g(U(Z'))) \right|^2 \right]. \tag{3}$$

Here $K_h^f(z,z') \coloneqq K_h(g(z),g(z'))$, and $g \coloneqq f^{-1}$, where f^{-1} is defined on f(S).

A Appendix

A.1 Proof for Lemma 1

Proof. Since $\alpha = 0$, (1) boils down to the following optimization problem:

$$\min_{T:T_{\#}\mathbb{P}_{X}=\mathbb{P}_{Y}} \mathbb{E}\Big[\|f(X) - f(T(X))\|_{2}^{2}\Big]. \tag{4}$$

Define Z := f(X), whose distribution \mathbb{P}_Z is equal to $f_\# \mathbb{P}_X$. In addition, by Assumption 2, we can define $g := f^{-1}$, where f^{-1} is defined on f(S). Then, the above problem is equivalent to

$$\min_{U:U_{\#}\mathbb{P}_{Z}=f_{\#}\mathbb{P}_{Y}} \mathbb{E}\Big[\|Z-U(Z)\|_{2}^{2}\Big]. \tag{5}$$

This is because $(f \circ T \circ g)_\# \mathbb{P}_Z = f_\# \mathbb{P}_Y$ when $T_\# \mathbb{P}_X = \mathbb{P}_Y$. Now, the Brenier theorem guarantees that under Assumptions 3 and 4, there exists a \mathbb{P}_Z -a.e. unique solution U^* for (5).

Let $T^* \coloneqq g \circ U^* \circ f$. Observe that $T_\#^* \mathbb{P}_X = g_\#(U_\#^* \mathbb{P}_Z) = \mathbb{P}_Y$ and that $f(T^*(X)) = U^*(Z)$, which implies that T^* is a solution for (4).

What remains is to show that T^* is \mathbb{P}_X -a.e. unique. Suppose that there exists another solution \tilde{T}^* such that $\mathbb{P}(T^*(X) \neq \tilde{T}^*(X)) > 0$. Then,

$$\mathbb{P}(T^*(X) \neq \tilde{T}^*(X)) = \mathbb{P}(g(U^*(Z)) \neq (\tilde{T}^* \circ g)(Z)) = \mathbb{P}(U^*(Z) \neq (f \circ \tilde{T}^* \circ g)(Z)) > 0.$$

Considering that $\tilde{U}^* \coloneqq f \circ \tilde{T}^* \circ g$ is also a solution for (5), this contradicts to the fact that U^* is \mathbb{P}_Z -a.e. unique.