INDEX

acyclic digraph, 335, 340, 343	characteristic polynomial, 26, 28, 36,
adjacency matrix, 25, 48–52, 53,	76-7, 88, 328-9
179, 317	chromatic index, 51
formal, 317–23, 324	circuit, 54
regular, 157, 160	circulant matrix, 158-62, 233
isomorphic, 157	circulation, 168–9
tree, 343	cocktail party graph, 36-7
adjugate, 301	column-linear set, 139
admittance matrix(see also Laplacian	complete digraph, 291
matrix), 30	complete graph, 23, 26, 39, 318
affine plane, 278–80	line graph of, 152
order of, 280	spectrum of, 28
Amitsur–Levitzki theorem, 331–4	completely reducible matrix, 76
arc, 53	complete mapping, 251
back arc, 98	complexity(of a graph), 38-40, 324
capacity of, 164	composition, 191, 196
cross arc, 98	conference graph, 151, 155
$\mathbf{dominant},89-90$	conference matrix, 154
forest arc, 98	configuration, 3, 20, 293, 306, 307–8
forward arc, 98	complementary, 305
weight of, 291-2	dual, 4, 12
	isomorphic, 4
bipartite graph, 44, 107–44, 178, 317	conjugate partition, 193, 340
adjacency matrix of, 44	connectivity
bipartition of, 44, 107	algebraic, $40-3$
complete, 108, 135, 147, 148, 162:	edge, 41
line graph of, 153	vertex, 41
elementary, 124	contraction, 62, 242
Birkhoff's theorem, 9	convex closure, 193–5
blocks, 278	convex sequence, 192, 340
branch, 62, 63	cospectral graphs, 26–7, 155
	co-term rank, 125–6, 134
Cayley-Hamilton theorem, 327–9, 333	cover(of digraph), 134
Cayley table, 250–1, 254–5, 258, 262,	covering sequence, 190–6
268, 271	cut, 166
chain, 25, 210	capacity of, 166
directed, 54	cycle, 25
length of, 210	directed, 54
weight of, 211 , 212	cycle graph, 28

cycle hypergraph, 144	divisor sequence, 337–8, 339–40
cyclic components, 71	doubly stochastic matrix, 9, 11, 117
computation of, 103–5 cyclic matrix, 77	edge, 23
cyclic matrix, 11	endpoints, 23
decision problem, 245–8	edge coloring, 50
polynomial reducible, 246	eigenvalues, 16, 26, 27, 76–7, 88–96,
size of, 245	130-2, 145, 146
decomposition, 251	eigenvalue inclusion regions, 89–95
decomposition theorems, 108, 125–36,	elementary divisors, 337
184-8	elementary similarity, 341
degree of vertex, 24	e_n , 145 essential column, 110
demand, 169	essential line, 110
depth-first number, 97	essential row, 110
depth-first search, 97	Euler conjecture, 275, 282–3
derangement number D_k , 17, 222–3, 233	Eulerian matrix, 31
derangements, 201–2, 285	Eulerian trail, 332
determinant, 8, 15, 16, 17, 21–2, 76, 89,	Euler ϕ -function, 21–2
90, 92, 93, 94, 95, 134, 209–14,	Evans conjecture, 263–7
235-48, 291-3, 294, 295, 296-7,	even digraph, 243–4
298-9, 301, 309-10, 311, 313-14,	exponent, 78–87, 83–5, 117
314–16, 319, 323, 325–6	gaps, 84
determinantal divisor, 337	factor, 48
diagonal, 112	Ferrers matrix, 206–7, 208, 217
diagonal structure (hypergraph),	flow (network), 164–71
136-44	supply-demand, 169-71
isomorphism of, 136–7: permutation,	value of, 165
140; partial transposition,	forest, 178
142–3; transposition, 140	friendship theorem, 151
difference sequence, 191, 195–6, 338, 339–40	Frobenius normal form, 58, 96–102
digraph (directed graph), 53, 243	computation of, 96–106
adjacency matrix of, 53	fundamental trace identity, 327, 329–31
capacity function, 164	fully indecomposable matrix, 110–18, 119
condensation, 56	124, 228–33, 296–7, 299, 303
characteristic polynomial, 88	inductive structure, 116 fully indecomposable components, 115,
cyclically r-partite, 70	140–1, 297
general, 53	Frobenius–Schur index, 72, 81
girth of, 93	
imprimitive, 68–9	Gale-Ryser theorem, 176
indegree sequence, 173, 176	Galois affine plane, 279, 280
minimally strong, 61–8	general digraph, 53
outdegree sequence, 173, 176	generalized matrix function, 295
primitive, 68 regular, 53	generic matrix, 294–7
spanning subdigraph, 97	generic nilpotent matrix, 335–43
spectrum, 88	generic skew-symmetric matric, 317 Gerŝgorin's theorem, 88
splitting of, 244	graph (general), 23, 24
strongly connected, 54, 55–61	complement, 23
vertex-weighted, 89–90	complete, 23, 26
directed cycle	complete multipartite, 147, 155
dominant, 90	connected 27
weight of, 243	connected components, 27
directed forest, 96–9	cospectral, $26-7$, 155
spanning, 97	cubic, 24, 37

decomposition of, 108, 109 degree sequence, 179, 183 diameter, 27 disconnected, 27 distance, 27 edge, 23: multiplicity of, 24 isomorphic, 23, 25, 26 order, 23 regular, 24, 37, 43 spectrum of, 28 simple, 23	k-path, 336-7, 338 k-path number, 336-7 k-subset, 203 Laplacian matrix, 30, 38, 41, 325 formal, 324-7 latin rectangle, 250-3 completion of, 260-2, 68 latin square, 250-90 completion of, 259-62 embedding of, 262-3
subgraph, 23 induced, 23: spanning, 23, 30 vertices, 23: adjacent, 23; iso- lated, 23 Hadamard's determinant inequality,	enlargement of, 265–7 equivalent, 253 horizontal line of, 270 idempotent, 281–3, 283–4 latin line of, 270, 277 mutually orthogonal, 272–5, 286–7
214 Hadamard product, 294, 317 Hall's theorem, 299–301 Hamilton cycle problem, 245–6, 247 Helly type theorem, 19–20 Hoffman polynomial, 147, 157, 162	normalized, 250 number of, 284-5 partial, 259-69 partitioning of, 262-3 self-orthogonal, 287-8, 289
Hoffman–Singleton graph, 154 horizontal line, 277 imprimitive matrix, 70 incidence matrix, 3, 29, 35, 230,	symmetric, 251, 268, 269, 283 vertical line of, 270 lattice graph, 153 line, 1, 252, 277, 278 linearizable set, 143, 144
304, 306 formal 293–303 oriented, 29, 38 weighted, 210–14	linear set, 139 line cover, 6, 110–12 line graph, 35–7 spectrum of, 35 l ₂ -norm, 213–14
Index, 103–5 index of imprimitivity, 68–78 computation of, 103–5 integer sequences, 191–5 intersection matrix, 11–12	Lowlink, 100-1 MacMahon's master theorem, 310-16 MacNeish's conjecture, 275, 282-3
formal, 304–10: symmetric, 305, 306, 309 invariant factors, 337 irreducible matrix, 55–61, 113, 145,	majorization, 175 matching, 44-52, 112, 189 in digraph, 134 perfect, 48 matching sequence, 189-96
inductive structure, 67–8 irreducible components, 58 computation of, 96–106	matrix, 1 back diagonal of, 263 column sum vector, 172 complement of, 3, 12
Jacobi's identity, 321–2, 301 join, 192 Jordan block, 336, 340–3 Jordan canonical form, 335–7, 340–3 Jordan partition, 336, 338, 339–40, 343 length of, 336	cover of, 6 cyclic, 70 cyclic components, 71 diagonally dominant, 89 elementwise product, 236 existence theorems for, 172–84 line of, 1 number of 1's, 123
K-decomposition, 187 König's theorem, 6, 9, 44, 47, 125, 128, 196, 300, 301–3	permutation, 1 proper cover of, 6 row sum vector, 172

matrix (cont.)	partition closure, 196
submatrix of, 17: principal, 17	partly decomposable matrix, 112
sum of elements of, 185	path, 54
triangle of, 18	path-number sequence, 337, 338,
upper triangular, 338–9	339–40
	perfect matching, 247, 251, 258,
matrix-tree theorem, 325–6	
matroid	318–19, 321–2
regular, 31–4	random algorithm for, 322
unimodular, 31–4	permanent, 8, 15, 18, 68, 117, 136,
max flow-mincut theorem, 166-8	198–249, 292, 295, 313, 314–16
meet, 192	conversion of, 236–45
ménage numbers, 202-3, 204-5, 233,	evaluation of, 199–200, 235–48
234, 285	inequalities for, 214–34
minimax theorem, 6	permanental minor, 203-4
mixed matrix, 303	permutation
	sign of, 291
Moore graph, 153	
generalized, 154	simultaneous, 25
multicolored graph, 131–2	permutation digraph, 292
multiedge, 24	permutation matrix, 1
multigraph, 23	Frobenius normal form, 60
	3-dimensional, 252–3
nearly decomposable matrix, 118–24,	Petersen graph, 37, 148, 154
228	complexity of, 43
inductive structure, 120–1	Petrie matrix, 19
number of 1's of, 122	pfaffian, 318–23
nearly reducible matrix, 61–8, 118, 124	Playfair's axiom, 278
inductive structure, 64	Poincaré's theorem, 31
number of 1's of, 66	points, 270, 278
net, 277–80	
	polynomial algorithm, 245–8
network, 164	polynomial digraph, 157–63
capacity-constrained, 164	polynomial identity, 327–34
supply-demand, 169	primitive matrix, 70, 73–4, 78–87,
network matrix, 32, 33	117, 158
Newton's formula, 334	exponent of, 74, 78–87
nilpotent index, 335-7	problem of the 36 officers, 271–2
nilpotent matrix, 335–43	projective plane, 15-17, 20-1, 280-1,
nonzero diagonal, 112, 136	282, 283
no-parallels postulate, 280	order of, 281
NP, 245–8	
NP-complete problem, 246–7, 268	quasigroup, 251
n-set, 3	quasigroup, 201
nullity, 336, 338, 340	reduced adjacency matrix, 107, 178
numty, 550, 556, 540	reducible matrix, 55
anthomoral latin squares (MOIS)	
orthogonal latin squares (MOLS),	regular graph, 145–7, 155
269-84	rook numbers, 205–6
orthogonal mate, 271, 272	rook polynomial, 205–6
	rook vector, 205–6, 206–8
P , 245–8	row-linear set, 139
pairwise balanced design, 278–83	Ryser's permanent formula, 199–200
Paley graph, 151	
parallel class of lines, 277	satisfiability problem (SAT), 246-7
parallel lines, 279	Search, 97
parallel postulate, 278	SearchComp, 101
partial transposition, 142	set differences, 307
	set difference matrix
partial transversal, 251–2, 254–8 partition, 192, 336	formal 205 200
partition, 192, 550	formal, 305, 309

set intersections, 11 sets of imprimitivity, 70 sharp P-complete problem, 247 skew-symmetric matrix, 317, 319–20 sign of number, 238 sign-nonsingular matrix, 238–44, 248 maximal, 248 sign pattern, 238 singularity, 321–2 sink, 164 Smith's matrix, 21–2 Smith's theorem, 21–2 source, 164 spanning arborescence, 324–7 root of, 324 spanning directed tree, 324 spectrum, 26, 27 splitting of arc, 243–4 splitting of vertex, 243–4 standard polynomial, 317, 329, 331–4 star, 28 algebraic connectivity, 43 spectrum, 28 Stirling number, second kind, 208 strong components, 54 strongly connected digraph, 157 strongly regular graph, 148–55 complement, 149 eigenvalues, 150 strongly stable hypergraph, 137 strongly stable set, 137, 138–9, 143 subdivision, 643–4 subpermutation matrix, 49–51, 125, 128, 135, 184–8, 188–96, 267–8 supply, 169 symbolic direct product, 274 symmetric matrix, 129–30 existence theorems for, 179–84 exponent, 80, 85 index of imprimitivity, 78 system of distinct represenatives (SDR), 7, 10, 201, 227, 247 Hall's theorem, 7	weak, 255-6 tree, 32, 37, 38, 39, 230, 343 adjacency matrix of, 184 algebraic connectivity, 43 directed, 65-6, 96-9: spanning, 97 incidence matrix of, 37 oriented, 32 spanning, 38 triangular graph, 152 tridiagonal matrix, 393 trivial trace identities, 329 Tutte's theorem, 45-8, 320-2 valency, 24 Valiant's hypothesis, 247-8 vector, 11 column sum vector, 172 conjugate, 175: diagonally restricted, 177-8 majorized by, 11, 175 monotone, 172 row sum vector, 172 vertical line, 277 Vizing's theorem, 49-51, 125 walk, 25, 26 closed, 25 directed, 54 endpoints, 25 open, 25 wedge product, 322-3 weighted digraph, 243, 291-2 weight of arc, 325, 335 weight of directed cycle, 291-2 weight of digraph, 325 width, 337, 338
term rank, 7, 10, 110, 111, 114, 189, 214, 294, 303, 338 total support matrix, 115, 116, 232 totally unimodular matrix, 31-4 Touchard's formula, 205 tournament matrix, 54, 55, 109 Frobenius normal form of, 60 trail, 25 directed, 54 transversal, 227, 251-2, 253, 258, 268, 281 common, 227	