DENGAI: PREDICTING DISEASE SPREAD

CS4622 - Machine LearningGroup 06

Team Members

- 140062D G.P.P.D. Bandara
- 140066T K.P.T.K. Bandara
- 140506U R.A.T.K. Ranatunga
- 140640A B.K.D.V. Vimarshana

GitHub Link

https://github.com/vibs94/ML Project DengAl

Introduction

- Research is based on relationship between weather and vegetation in San Juan and Iquitos, and total dengue cases reported in those areas.
- The relationship and interaction between diseases and climatic changes are very complicated. So, modeling of such relationships and interactions has been identified as a difficult problem in many research studies.

Introduction

- More researches show that depending on the weather conditions and climate changes, dengue transmission patterns varied between years.
- The focus of this research study was to explore the different climatic variables and recognize short and long-term predictors and build a model for prediction by ensembling the results from regression methods

Methodology

- Two methods used for dengue prediction; regression method and time series method
- For regression method, two training models were created for the regression method by changing the window size for smoothing, feature selection and method of imputation of missing values.

Methodology - Regression Model 1

- Regression model 1 is created for the Random forest, Extra trees, and Multilayer Perceptron, and got results separately.
- Final results were calculated by ensembling results

Methodology - Regression Model 2

- Regression model 2 is created for Linear Regression, Random Forest, Gradient Boost, KNN, SVM and MLP with the different preprocessing compared to the first method.
- After cross-validation for all six models, the error propagation of Linear Regression, KNN, SVM and MLP is considerably high.
- Output values of Random Forest and Gradient Boost ensembled.

Methodology - Regression Model

 Final regression model was created by ensembling the results of two regression models

Methodology - Time Series Model

- Monthly Trend was predicted by giving month of the record and total number of cases recorded.
- Residual values for each week was calculated by deducting monthly trend from actual value.
- Residual values and trend was predicted separately by two separate models and predicted values of those two models were added to get the final predicted total cases.

Results

 Following image indicates the predicted values of all four models.

Results

Following is the accuracies obtained from four model

Model	Tested Accuracy (MAE)
Regression Model 1	21.2188
Regression Model 2	21.0168
Time Series Model	24.8486
Ensemble Model	19.4856

Analysis

- Regression model 1 and regression model 2 have achieved superior performance of 21.2188 and 21.0168
 MAE respectively and Ensemble Model got 19.4856
- Regression model 1 and Regression model 2 the data preprocessing has done in different methods.
- If there is some negative impact because of these operations that were neutralized by ensembling these two models.

Analysis

- It can be observed that time series analysis gives better results when there is a dengue outbreak.
- Overall Regression Model has abled to provide better results than Time Series Model.

Conclusion

- Regression method and time series method used for generating the dengue prediction model.
- Two regression models were created changing the methods of the imputation of missing values, smoothing window size and feature selection.

Conclusion

- Accuracy of these two models is low when considered separately. But accuracy will increase more when constructing a new model by ensembling the two models.
- Reason for this is, error from one model is fixed from the second model.

Conclusion

- Another model created using time series analysis.
- By comparing the result models from the regression and time series methods, it is found that the accuracy of time series method is considerably low.
- **Ensembling Regression Model** is used to predict the dengue cases on long-term and short-term climate changes and geographical changes.