3253 Machine Learning

Data Science Fundamentals Certificate

Module 4 CLUSTERING & UNSUPERVISED LEARNING

Course Roadmap

Module / Week	Title
1	Introduction to Machine Learning
2	End to End Machine Learning Project
3	Classification
4	Clustering & Un-Supervised Learning
5	Training Models & Feature Selection
6	Support Vector Machines
7	Decision Trees, Ensemble Learning & Random Forests
8	Dimensionality Reduction
9	Introduction to TensorFlow and Neural Networks
10	Training Deep NNs
11	Distributing TensorFlow and Other Architectures
12	External Speakers and Students Presentations

Module 4: Learning Objectives

- Define Unsupervised Learning
- Clustering: ideas and objective
- Clustering algorithms: k-means, agglomerative, DBSCAN
- Performance measures

CLUSTERING AND UNSUPERVISED LEARNING

Clustering goal

 The aim is to group points (examples) into a small number of clusters

Clustering goal

- Similar examples should go to a same cluster; while different examples should be in different clusters
- There are many different clustering methods
- The clustering algorithm also learns how to assign a cluster to an example seen later
- Applications:
 - automatic topic detection of documents
 - customer segmentation
 - variable selection

Supervised VS Unsupervised Learning

- Algorithms used to build classifiers need supervised data examples
- The input data to the learner consists of examples $(x_1, y_1), ... (x_n, y_n)$
- An example (x_i, y_i) shows the correct response y_i to the input x_i
- In <u>unsupervised</u> ML the learner does not have labels, only examples $x_1, ..., x_n$

Unsupervised Learning

- A clustering algorithm will still produce an output C(x) = c given an input x
- However, there is no way to know if the output is correct or not
- The learning algorithm does not optimize a cost function based on labels
- But some classification algorithms do optimize a cost function based on the input examples x_1, \dots, x_n

Unsupervised Algorithms

Tasks to consider:

Reduce dimensionality

Find clusters

Model data density

Find hidden causes

- Key utility
 - Compress data
 - Detect outliers
 - Facilitate other learning

Unsupervised Algorithms

- Approaches in unsupervised learning fall into three classes:
 - Dimensionality reduction: represent each input case using a small number of variables (e.g., principal components analysis, factor analysis, independent components analysis)
 - Clustering: represent each input case using a prototype example (e.g.,k-means, mixture models)
 - Density estimation: estimating the probability distribution over the data space

Clustering Algorithms

- Input: n vectors, m-dimensional, represent the objects to be clustered:
- Can start with object themselves (e.g. documents), but need a vector representation
 Document → vector of word counts
- Vectors have same (fix length) but clustering can be done over sequences of different length (the matrix of distances is needed)

Clustering

- Motivation: prediction; lossy compression; outlier detection
- We assume that the data was generated from a number of different classes. The aim is to cluster data from the same class together.
 - How many classes?
 - Why not put each datapoint into a separate class?
 - What is the objective function that is optimized by sensible clustering?

Clustering

- Assume the data {x(1), . . .
 , x(N)} lives in a Euclidean
 space, x(n) ∈ Rd
- Assume the data belongs to K classes (patterns)
- How can we identify those classes (data points that belong to each class)?

k-means algorithm

- Input: vectors $S = \{x^{(1)}, ..., x^{(n)}\}$ k = number of desired clusters
- Output: a partition of S into k clusters, and the clusters' average (centroid)
- Goal: $S_1, ..., S_k$ should minimize the square distances between each example x_i and its closest centroid $c(x_i)$: $\sum_{j=1}^{n} \left| |x_i c(x_i)| \right|^2$
- Lloyd's algorithm finds (a good enough) solution

k-means

- Initialization: randomly initialize cluster centers
- The algorithm iteratively alternates between two steps:
 - Assignment step: Assign each data point to the closest cluster
 - Refitting step: Move each cluster center to the center of gravity of the data assigned to it

K-means

Figure 9.2 Bishop

k-means algorithm

Steps:

- 0) Start with a set of k centroids (random points from S)
- 1) Assign each point to the centroid to which it is closest: this defines clusters
- 2) Update the centroids as the mean within each cluster
- 3) Repeat (1) and (2) until the centroids change is very small (threshold)

http://syskall.com/kmeans.js/

http://shabal.in/visuals/kmeans/2.html

k-means optimization

Find cluster centers m and assignments r to minimize the sum of squared distances of data points $\{x^{(n)}\}$ to their assigned cluster centers

$$\min_{\{\mathbf{m}\},\{\mathbf{r}\}} J(\{\mathbf{m}\},\{\mathbf{r}\}) = \min_{\{\mathbf{m}\},\{\mathbf{r}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} ||\mathbf{m}_k - \mathbf{x}^{(n)}||^2$$
s.t.
$$\sum_{k} r_k^{(n)} = 1, \forall n, \text{ where } r_k^{(n)} \in \{0,1\}, \forall k, n$$

where $r_k^{(n)} = 1$ means that $x^{(n)}$ is assigned to cluster k (with center m_k)

k-means algorithm

- k is a hyper-parameter: input to the algorithm. User species it
- Sometimes the value for k is known for the application (e.g., the goal is to find 5 segments)
- The value of k can be data-driven:
 - inertia:
 - inertia/inertia2
 - silhouette

k-means for image segmentation

Clustering and Outliers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

k-mean challenges

- High-dimensional spaces look different:
 - Almost all pairs of points are at about the same distance
- There is nothing to prevent k-means getting stuck at local minima.

Hierarchical Clustering

 A bottom-up hierarchical clustering starts with as many clusters as points, and merge them iteratively

Steps:

0) Make of each data point a distinct cluster

1) Find the two closest clusters and merge them

2) Repeat (1) until all points below to one

single clu

Hierarchical Clustering

- Key operation: Repeatedly combine two nearest clusters
- How to represent a cluster of many points?
 - Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
 - Euclidean case: each cluster has a centroid = average of its (data)points
- How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

Hierarchical Clustering

- There are different ways to determine the 2 clusters that are joined in each step:
 - ward: minimize variance
 - average: minimize average distance between every pair of points (one in each cluster)
 - complete: minimize maximum distance between a pair of points, one in each cluster
- The user decides the number of clusters to use

Hierarchical Clustering Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

DBSCAN clustering

 k-means clusters tend to be delimited by convex regions

 Both k-means and hierarchical clusters assign a cluster to every point outlier are forced to belong to a cluster

DBSCAN clustering

- DBSCAN is an algorithm that allows:
 - clusters with non-convex shapes
 - outlier detection
- Other algorithms allow non-convex shaped clusters:
 - agglomerative with ward linkage
 - spectral clustering
- Demo https://www.naftaliharris.com/blog/visualizi ng-dbscan-clustering/

DBSCAN clustering

- Parameters:
 - min_samples (non-negative integer),
 epsilon (positive number)
- A core point is a point that has at least min_samples points within epsilon distance
- Core points are determined first
- Core points belonging to a cluster are computed iteratively:
 - take a core point
 - find all core points within epsilon distance
 - repeat until no more core points exists within epsilon
 - continue creating other clusters until no core points exists
- Non-core points:
 - Add to each cluster non-core points within epsilon distance from a core point
- A point that do not belong to any cluster are outliers
- Note that the number of clusters is not decided by the user

Clustering and Feature Selection

- An important part of building models is feature selection
- Many variables could be available to predict a target, but many of them could carry no information about the target
- There are many method for feature selection: univariate methods, regularization, feature importance, etc.
- Clustering the features (columns, instead of rows) is a way to reduce the dimensionality by picking a representative on each cluster
- Python Scikit-Learn provides this with FeatureAgglomeration

Resources

- http://scikitlearn.org/stable/modules/clustering.html
- Data Science from Scratch, Joel Grus
- An Introduction to Statistical Learning, James, G.; Witten, D.; Hastie, T.; Tibshirani, R

Homework

- Complete the notebook in the assignments section for this week
- Submit your solution here
 - https://goo.gl/forms/F5ytppo5KWnCqkt62
 - -Rename your notebook to
 - W4_LastName_UTORid.ipynb
 - Example W4_Benitez_q212131.ipynb

Next Class

- Training Models and Features Selection
- Reading Hands-on ML (Chapter 4)

