ML4NP: Meeting 03.07.2020

Summary

- Spatial Map:
 - recap
 - updates: inner/outer maps
 - questions
- Features for ML
- Classification wt DTree

Spatial Map (recap)

- Sampling the PE hit wt Gaussian does not reflect the real setup.
 <u>Problem</u>: it doesn't take into account the radius!
- Idea: with a bit of geometry and patience, we can compute the intersection of OP trajectories (straight line) with the shrouds (circle in X-Y)

Is it real now? NO! Real Map should consider R, Z, angle.
 But it should be more realistic.

This is how the Gaussian hit-space distribution would look like as map

Spatial Map (updates)

 Last meeting's observation: LGND200 has 2 shrouds. We should have Inner and Outer Detections!

Updates:

- Creation of <u>3 Maps</u>:
 PrInnerDet, InnerMap, OuterMap
 Why 3? See next slide.
- Integration of <u>other scenarios</u>:
 - Photon from outer region not captured by the outer shroud and detected by the inner one, and viceversa
 - How? Approximate with probability!

I don't know how to treat the spread between Inner and Outer Shrouds

Spatial Map (updates)

Fibers don't cover the whole cylinder surface. Only the **54%** is covered (CJ email).

Ge Arrays could reflect the photons. I guess only **10**% photons pass Ge, **90**% are reflected.

Could we refine these values?

I assume **two scenarios** for a photons starting in the outer region:

- 1) Pr(Hit Outer Shroud | Start in Outer Region) =
 - = Pr(captured by OuterShroud) + Pr(reflected by Ge) * Pr(captured by OuterShroud)
 - = .54 + (1-.54) * .90 * .54 = .76356
- 2)Pr(Hit Inner Shroud | Start in Outer Region) =
 - = Pr(not captured by OuterShroud) * Pr(pass Ge) * Pr(captured by InnerShroud)
 - = (1-.54) * .10 * .54 = .02484

Since, we aim to distribute the detection, we normalize these probabilities:

1) 0.03151 2) 0.96849

...and use these two value as weights to fill the Spatial Map!

Spatial Map (updates)

- How to combine 2 maps?
 We have NPE = OPMap(Edep)
 - 1) Use <u>PrInnerDet</u> to compute *NPE_in* that hit the InnerShroud and *NPE_out* that hit the OuterShroud
 - 2) Spread NPE_in in InnerShroud wt <u>InnerMap</u>
 - 3) Spread NPE_out in OuterShroud wt <u>OuterMap</u>

Spatial Map (questions)

- All the features about Spatial Spread of detections depends on the map
- If the reality != simulation, the resulting "rejection strategy" would be uneffective
- Toy Spatial Map: how to deal with Ge? Tips?

- To have more realistic Spatial Map: It's time to talk wt Patrick and Mario (TUM).
 - They already produce data wt symmetry
 - If their simulator is open, we can use it
 - Otherwise, we can ask them for raw data
 - We have to think to a map: R, Z, deposit-angle→(shroud, hit-angle)

... change to ML!

- The first problem we faced is single Ar39 decays:
 - Single decays constitute the 98% of Ar39 background (Poisson)
 - The trigger rate of **2.4kHz** is mainly because of single Ar39,
- We should first define a strategy to reject them, and then move to more sophisticated classification.
- At the beginning, we thought we can simply perform a cut on NPE to reject all of them. Simulation of Single Ar39 has NPE in [0, 60].
- Also ~30% of simulated muons deposit <=60PE.

Requirements:

- 1) Reject single Ar39 decays as much as possible,
- 2) Save very low-energy muons (PE<=60), if possible.

Features

- Instance format by using 2 Spatial Maps: InnerSlice0, ..., InnerSlice11, OuterSlice0, ..., OuterSlice19
- 32 int values, each is the nr of photons that are detected in that slice
- Features for each shroud:
 - PEDetected: sum PE detected in the shroud
 - NactiveSlices: number of slices of the shroud wt >=1PE
 - MeanNPE: PEDetected / NSlices
 - StdNPE: std({PE | for PE>0 in shroud})
 - SpatialRange: difference max min active slice
 - SpatialVar: var({ID**PE | ID of slice wt PE})
 - SpatialStd: std({ID**PE | ID of slice wt PE})
- 7 inner features, 7 outer features (tot. 14 features)

Feature Selection (1)

Correlation Matrix

PEDetected_inner	- 1	0.77	1	0.98	0.63	0.31	0.57	0.047	-0.0021	0.066	0.06	-9.2e-06	0.011	-0.017	-0.19
NActiveSlices_inner	0.77	1	0.77	0.78	0.89	0.5	0.86	0.065	0.0086	0.088	0.069	-0.0081	0.0036	-0.038	-0.27
MeanNPE_inner	1	0.77	1	0.98	0.63	0.31	0.57	0.047	-0.0021	0.066	0.06	-9.2e-06	0.011	-0.017	-0.19
StdNPE_inner	0.98	0.78	0.98	1	0.65	0.31	0.6	0.036	-0.023	0.056	0.047	-0.021	-0.00063	3 -0.039	-0.23
SpatialRange_inner	0.63	0.89	0.63	0.65	1	0.81	0.99	0.074	0.028	0.094	0.077	0.025	0.03	-0.0041	-0.23
SpatialVar_inner	0.31	0.5	0.31	0.31	0.81	1	0.83	0.081	0.063	0.092	0.083	0.068	0.059	0.05	-0.079
SpatialStd_inner	0.57	0.86	0.57	0.6	0.99	0.83	1	0.061	0.013	0.08	0.061	0.01	0.024	-0.017	-0.24
PEDetected_outer	0.047	0.065	0.047	0.036	0.074	0.081	0.061	1	0.83	1	0.98	0.57	0.28	0.42	0.36
NActiveSlices_outer	-0.0021	0.0086	-0.0021	-0.023	0.028	0.063	0.013	0.83	1	0.83	0.79	0.72	0.36	0.59	0.43
MeanNPE_outer	0.066	0.088	0.066	0.056	0.094	0.092	0.08	1	0.83	1	0.98	0.57	0.27	0.42	0.34
StdNPE_outer	0.06	0.069	0.06	0.047	0.077	0.083	0.061	0.98	0.79	0.98	1	0.55	0.26	0.41	0.34
SpatialRange_outer	-9.2e-06	-0.0081	-9.2e-06	-0.021	0.025	0.068	0.01	0.57	0.72	0.57	0.55	1	0.84	0.95	0.41
SpatialVar_outer	0.011	0.0036	0.011 -	0.00063	0.03	0.059	0.024	0.28	0.36	0.27	0.26	0.84	1	0.94	0.27
SpatialStd_outer	-0.017	-0.038	-0.017	-0.039	-0.0041	0.05	-0.017	0.42	0.59	0.42	0.41	0.95	0.94	1	0.36
y ·	-0.19	-0.27	-0.19	-0.23	-0.23	-0.079	-0.24	0.36	0.43	0.34	0.34	0.41	0.27	0.36	1
	EDetected_inner -	ctiveSlices_inner -	MeanNPE_inner -	StdNPE_inner -	atialRange_inner -	SpatialVar_inner -	SpatialStd_inner -	EDetected_outer -	:tiveSlices_outer -	MeanNPE_outer -	StdNPE_outer -	itialRange_outer -	SpatialVar_outer -	SpatialStd_outer -	Á

11 / 17

1.0

-0.8

-0.6

-0.4

-0.2

-0.0

Feature Selection (2)

F-Score: "correlation" with label y

```
Specs
                               Score
   NActiveSlices outer
                         1916.874748
    SpatialRange outer
                         1649.754009
      PEDetected outer
                         1263.550430
      SpatialStd outer
13
                         1239.324026
           StdNPE outer
10
                         1070.927875
         MeanNPE outer 1050.389635
9
   NActiveSlices inner
                         675.351404
12
       SpatialVar outer
                          640.842699
      SpatialStd inner
6
                          526.291369
           StdNPE inner
                          458.870149
    SpatialRange inner
                         453.021880
       PEDetected inner
                          311.159887
         MeanNPE inner
                          311.159887
      SpatialVar_inner
                           51.663484
```

Observation: the first features are all "outer" features.

Feature Selection (3)

Train a Dtree and see what features are selected first

<u>First attempt</u>: remove all features wt correlation>.95. **8 Selected Features:** NActiveSlices_inner, StdNPE_inner, SpatialVar_inner, SpatialStd_inner, NActiveSlices_outer, StdNPE_outer, SpatialVar_outer, SpatialStd_outer

DTree - Training

- 8 Features:
 - NActiveSlices_inner, StdNPE_inner, SpatialVar_inner, SpatialStd_inner,
 - NActiveSlices_outer, StdNPE_outer, SpatialVar_outer, SpatialStd_outer
- Training data: 4000 LE Muons, 4257 Ar39
- Hyperparameters:
 - Criterion
 - Max Depth
 - Min Sample Leaf
- Aim: "Reject as much 1Ar39 as possible, saving muons if possible"
- Score for training: "purity", it takes care of TP and FP!

Trained Model

Spread of Outer Detections

NActiveSlices_outer <= 4.5 gini = 0.5 samples = 8257 value = [4257, 4000]

Inner Detected Energy (It can be retrained wt PEDetected_inner, it is an easier feature)

SpatialVar_inner <= -0.5 gini = 0.473 samples = 6466 value = [3990, 2476] StdNPE_inner <= 0.403 gini = 0.254 samples = 1791 value = [267, 1524]

gini = 0.5 samples = 4740 value = [2414, 2326]

Useless, always Ar39

gini = 0.159 samples = 1726 value = [1576, 150] gini = 0.116 samples = 1487 value = [92, 1395]

gini = 0.489 samples = 304 value = [175, 129]

AR39 AR39

LE-Mu

AR39

DTree - Test on unbalanced data

- Test Set: 626 LE Muons, 2M Ar39 (unseen data)
- Evaluation of LE Classification (<=60PE):
 - TPR (efficiency) = 38.5% (241 / 626)
 - FPR = 3.48% (69601 / 2M)
- Consideration FPR:
- This is a first-level classification (we are not considering Pileups),
 we will extend it with other classifiers!
- Assuming this FPR, the Ar39 Background:
- 0.9883(1Ar39) + .0117(+Ar39) would be
 < 0.9883*0.0348 + 0.0117 = 4.61%
- Original Trigger Rate: 2353 Hz, Reduced Trigger Rate: 109 Hz

The big picture

