

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = 1 - \frac{9}{u_n + 5}$: n ومن أجل كل عدد طبيعي $u_0 = 1$ حيث $u_0 = 1$ حيث $u_0 = 1$ متتالية عددية معرفة بحدها الأول $u_0 = 1$

 $u_n > -2 : n$ أ) برهن بالتراجع أنّه من أجل كل عدد طبيعي أنّه (1

بيّن أنّ (u_n) متتالية متناقصة تماما على $\mathbb N$ واستنتج أنّها متقاربة.

 $v_n = \frac{1}{u_n + 2}$: n نضع من أجل كل عدد طبيعي (2

. أثبت أنّ المتتالية $(
u_n)$ حسابية أساسها $\frac{1}{3}$ يطلب تعيين حدها الأول الثبت أنّ

 $\lim_{n\to +\infty} u_n$ عبّر بدلالة n عن v_n و v_n عبّر بدلالة (3

 $u_0v_0 + u_1v_1 + \dots + u_nv_n = \frac{1}{3}(1-n^2)$: n عدد طبیعي (4

التمرين الثاني: (04 نقاط)

يحوي صندوق 10 كريات متماثلة لا نفرق بينها باللمس، منها أربع كريات بيضاء مرقمة بـ: 1 ، 2 ، 2 ، 3 وثلاث كريات خضراء مرقمة بـ: 2 ، 3 ، 3 وثلاث كريات خضراء مرقمة بـ: 2 ، 3 ، 3

نسحب عشوائيا وفي آن واحد 3 كريات من هذا الصندوق.

نعتبر الحادثتين A: "الكريات الثلاث المسحوبة تحمل ألوان العلم الوطني"

و B: "الكريات الثلاث المسحوبة لها نفس الرقم".

الترتيب. P(A) و P(B) احتمالي الحادثتين P(A) و P(A)

. $P(A \cup B)$ و $P_A(B)$ ثم استنتج $P(A \cap B) = \frac{1}{20}$ و . بيّن أنّ

2) ليكن X المتغيّر العشوائي الذي يرفق بكل نتيجة عملية سحب عدد الكريات التي تحمل رقما فرديا. عرّف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X).

التمرين الثالث: (05 نقاط)

 $z^2-\sqrt{3}$ z+1=0 : المعادلة ذات المجهول z التالية (1 المركبة z المعادلة ذات المجهول المعادلة المركبة z

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

 $\left(\mathbf{O}; \overrightarrow{u}, \overrightarrow{v}
ight)$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

: حيث z_C و z_B ، z_A : الترتيب B ، A

(
$$Z_B$$
 و $Z_B = \frac{\sqrt{3}}{2} + i\frac{1}{2}$ ، $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$) ($Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$) اكتب $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ الشكل الأسي ثم عيّن قيم العدد الطبيعي $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ اكتب $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$

 \cdot OBC وحدّد طبیعة المثلث $\frac{Z_B}{Z_C}=e^{i\frac{\pi}{3}}$: (أ (3)

ب) استنتج أنّ: B هي صورة C بدوران r يطلب تعيين عناصره المميزة.

$$|z| = \left| \overline{z} - \frac{\sqrt{3} + i}{2} \right|$$
 تسمي (γ) مجموعة النقط M من المستوي ذات اللاحقة z التي تحقق: (γ) مجموعة (γ) ثم عيّن صورتها بالدوران z .

التمرين الرابع: (07 نقاط)

. $g(x)=2+(x-1)e^{-x}$ يلي: \mathbb{R} كما يلي: g .I

 $\lim_{x \to +\infty} g(x)$ احسب $\lim_{x \to -\infty} g(x)$ احسب (أ

p ادرس اتجاه تغیر الدالة p ثم شكّل جدول تغیراتها.

- . \mathbb{R} على g(x) على أنّ المعادلة g(x)=0 تقبل حلا وحيدا α حيث $\alpha<-0.38$ حيث $\alpha<-0.38$ على α
- المستوي المستوي المستوي والمستوي المستوي الم
 - $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (أ (1
 - بیانیا. $\lim_{x\to +\infty} (f(x)-(2x+1))$ مصب النتیجة بیانیا.
 - $(\Delta): y=2x+1$:حيث: (Δ) والمستقيم (C_f) والمستقيم الدرس الوضع النسبي للمنحني المنحني
- بيّن أنّه من أجل كل عدد حقيقي x يكون g(x) = g(x) ثم استنتج اتجاه تغير الدالة f وشكّل جدول تغيراتها.
 - . 1 كتب معادلة المماس (T) للمنحنى للمنحنى (C_f) عند النقطة ذات الفاصلة (3
 - . $(f(\alpha)=0.8$ نأخذ (C_f) والمنحنى (T) ، (Δ) ارسم (4
 - . $x = (1-m)e^x$: x المجهول : $x = (1-m)e^x$ عدد وإشارة حلول المعادلة ذات المجهول : $x = (1-m)e^x$
- . x=1 على \mathbb{R} والتي تنعدم من أجل الدالة الأصلية للدالة $x\mapsto xe^{-x}$ على التجزئة عيّن الدالة الأصلية للدالة عين الدالة الأصلية ألدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة المحاملة بالتجزئة عين الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الذالة الأصلية الدالة الدالة الذالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الأصلية الدالة الذالة الذالة
- (x=1) احسب العدد (C_f) والمستقيمات التي معادلاتها الحيز المستوي المحدّد بالمنحنى (x=1) والمستقيمات التي معادلاتها (x=1) . (x=1)

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

الموضوع الثاني

التمرين الأول: (04 نقاط)

$$u_{n+1} = u_n + \ln\left(\frac{2n+3}{2n+1}\right)$$
 : n عددیة عددیة معرفة کما یلي: $u_0 = 0$ و من أجل کل عدد طبیعي $u_n = 0$

- u_3 و u_2 ، u_1 کلا من (1
- . (u_n) غير المتتالية $\frac{2n+3}{2n+1} > 1$: n عدد طبيعي عدد طبيعي (2
 - $v_n=2n+1$: بn متتالیة عددیة معرفة من أجل کل عدد طبیعي (v_n
 - $e^{u_n}=v_n$ ، برهن بالتراجع أنه من أجل كل عدد طبيعي (أ
 - . $\lim_{n\to\infty}u_n$ استنتج عبارة الحد العام للمنتالية (u_n) بدلالة n ثم احسب (u_n)
 - احسب المجموعين S_n و T حيث:

$$T = e^{u_{1439}} + e^{u_{1440}} + \dots + e^{u_{2018}} \quad \text{o} \quad S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right)$$

التمرين الثاني: (04 نقاط)

 (P_1) الفضاء منسوب إلى المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر النقطة A(1; -2; 1) والمستويين A(1; -2; 1)

- -3x+y+z+4=0 و -x+y+2z+1=0 و اللذين معادلتيهما على الترتيب -x+y+2z+1=0
- لكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و u(1;5;-2) شعاع توجيه له.
 - (Δ) بيّن أنّ المستويين (P_1) و (P_2) متقاطعان ثم تحقق أن تقاطعهما هو المستقيم و (2
- قاطع استنتج تقاطع (P_2) و P_1) معادلة ديكارتية للمستوي P_2 الذي يشمل P_3 0 الذي يشمل (P_3 0 ويعامد كلا من P_4 1 ويعامد المستويات الثلاثة (P_4 1) و (P_4 2) و (P_4 3) و المستويات الثلاثة (P_4 4) و (P_4 5) و (P_4 6) و (P_4 7) و (P_4 8) و (P_4 8) و (P_4 9) و
 - . نقطتان من الفضاء H(0;3;-2) و E(2;3;-1) نقطتان من الفضاء (4
 - اً) تحقّق أنّ H هي المسقط العمودي للنقطة B على المستوي H
 - . AEBH ثم احسب V حجم رباعي الوجوه EBH ثم احسب V

التمرين الثالث: (05 نقاط)

- (z المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : (z المرافق العدد (z
- و C التي لاحقاتها C في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس C نعتبر النقط C و C التي لاحقاتها في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس C و C التي لاحقاتها على الترتيب المنسوب إلى المعلم المتعامد المتعامد
 - تحقق أنّ $\frac{Z_B-Z_A}{Z_C-Z_A}$ ثم عيّن قيم العدد الطبيعي n بحيث يكون العدد $\frac{Z_B-Z_A}{Z_C-Z_A}=i$ تخيليا صرفا.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

$$\begin{cases} |z_D - z_A| = |z_B - z_A| \\ Arg\left(\frac{Z_D - Z_A}{Z_B - Z_A}\right) = \frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \end{cases}$$
 :غطة من المستوي لاحقتها Z_D حيث: D (2)

 \mathcal{Z}_D بيّن أن المثلث ABD متقايس الأضلاع و احسب

A مركز ثقل المثلث ABD ثم عيّن نسبة وزاوية التشابه المباشر الذي مركزه G مركز G الحسب G

$$\operatorname{Arg}\left(\frac{z_G-z}{z_C-z}\right)=\pi+2k\pi\;(k\in\mathbb{Z})$$
 عيّن (C عيّن (C عيّن (C تختلف عن C تختلف عن (C تختلف عن (C عيّن (C عيّن (C عيّن (C عيّن (C عين (C

التمرين الرابع: (07 نقاط)

الدالة العددية ذات المتغير الحقيقي x المعرفة على $]0;+\infty[$ ب:

و $g(x) = \frac{1}{x} - (\ln x)^2 - \ln x - 1$ و $g(x) = \frac{1}{x}$ و المنحنى البياني الممثل لها كما هو مبيّن في الشكل المقابل:

. g(x) ثم استنتج بیانیا إشارة g(1) –

 $]0;+\infty[$ الدالة العددية ذات المتغير الحقيقي x المعرفة على العددية ذات المتغير الحقيقي f -II

ب: $f(x) = \frac{1 + \ln x}{1 + x \ln x}$ بناياني في مستو منسوب

إلى المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j})$.

 $\lim_{x \to +\infty} f(x) = 0 \quad \lim_{x \to +\infty} f(x) = 0 \quad \text{(1)}$ احسب (1)

ثم فسّر النتيجتين بيانيا.

 $f'(x) = \frac{g(x)}{(1+x\ln x)^2}$: $]0;+\infty[$ من أجل كل x من أجل كل (2)

 $oldsymbol{+}$ استنتج اتجاه تغیر الدالهٔ f و شکل جدول تغیراتها.

ور محور عامل مع عادلة تقاطعه مع حامل محور (C_f) عماس المنحنى $y = \left(\frac{e^2}{e-1}\right)x - \frac{e}{e-1}$ قي نقطة تقاطعه مع حامل محور الفواصل، ثم ارسم المماس (C_f) و المنحنى (C_f)

. عيّن بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة $\left(e-1\right)f\left(x\right)=e^{2}x-me$ عيّن بيانيا قيم الوسيط الحقيقي

 $\left(C_f \right)$ مساحة الحيز من المستوي المحدد بحامل محور الفواصل و المنحنى I_n ، n>1 عدد طبيعي حيث n -III والمستقيمين اللذين معادلتيهما x=1 و x=1

 $I_n = \ln \left(1 + n \ln n
ight) : n > 1$ حيث $n = \ln \left(1 + n \ln n
ight)$ بيّن أنّه من أجل كل عدد طبيعي

 (I_n) ادرس اتجاه تغیر المتتالیة (2

انتهى الموضوع الثاني

العلامة			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
02	01	التمرين الأول: (04 نقاط) البرهان بالتراجع (1 البرهان بالتراجع (1 با إثبات أن (u_n) متناقصة تماما على $\mathbb N$	
U2	0.5	$u_{n+1} - u_n = \frac{-(u_n + 2)^2}{u_n + 5} : n$ من أجل كل عدد طبيعي	
	0.5	متقاربة (u_n) متقاربة	
0.75	0.5	$v_{n+1} - v_n = \frac{1}{3} : n$ إثبات أن (v_n) متتالية حسابية : من أجل كل عدد طبيعي (2	
	0.25	$v_0 = \frac{1}{3}$ حدها الأول $v_0 = \frac{1}{3}$	
	0.5	$v_n = \frac{1}{3} + \frac{1}{3}n$: n =	
01	0.25	$u_n = \frac{-2n+1}{n+1}$ ومنه $u_n = \frac{1}{v_n} - 2: n$ ومنه عدد طبيعي - من أجل كل عدد طبيعي	
	0.25	_ حساب النهاية	
0.25	0.25	$S_n = u_0 v_0 + u_1 v_1 + + u_n v_n : n$ يعناه عدد طبيعي (4 $u_n v_n = 1 - 2 v_n$ معناه $v_n = \frac{1}{u_n + 2} : n$ من أجل كل عدد طبيعي $S_n = (1 - 2 v_0) + (1 - 2 v_1) + + (1 - 2 v_n)$ $S_n = \frac{1}{3} (1 - n^2)$	
03	0.75×2 0.5×3	$P(B) = \frac{7}{60}$ ، $P(A) = \frac{3}{10}$ (أ (1 $P(A \cup B) = \frac{11}{30}$) $P(A \cap B) = \frac{1}{20}$ و $P(A \cap B) = \frac{1}{20}$ (ب	

1	1		1=	
	0.75	X_i 0 1 2	3 (2	
01		$P(X_i) \qquad \frac{1}{12} \qquad \frac{5}{12} \qquad \frac{5}{12}$	$\frac{1}{12}$	
	0.25	$E(X) = \frac{3}{2}$	- الأمل الرياضياتي	
			التمرين الثالث: (05 نقاط)	
1.5	0.5×3		المعادلة: \mathbb{C} على في \mathbb{C} المعادلة: $Z_1 = \frac{\sqrt{3} - i}{2}$ و $\Delta = -1 = i^2$	
_		- 2	(2	
1.5 $Z_B = e^{i\frac{\pi}{6}}$ $Z_A = e^{i\frac{\pi}{6}}$			$Z_A = e^{i\frac{\pi}{3}}$ و الشكل الاسي:	
	0.25×2	ومنه $n=12k+2; k\in\mathbb{N}$ ومنه $\left(\frac{Z_A}{Z_B}\right)^n=\left(e^{i\frac{\pi}{6}}\right)^n=0$		
1.5	0.5	$rac{z_B}{z_C} = rac{e^{irac{\pi}{6}}}{e^{i\left(rac{-\pi}{6} ight)}} = e^{irac{\pi}{3}}$ لاينا (أ (3		
	0.5	المثلث OBC متقايس الاضلاع	ای $\frac{z_B - z_0}{z_C - z_0} = e^{i\frac{\pi}{3}}$ ومنه	
	0.5	$rac{\pi}{3}$ صورة C بالدوران r الذي مركزه O وزاويته	ب $Z_B=e^{irac{\pi}{3}}Z_C$ ومنه B هي	
0.5	$ Z =\left \overline{Z}-Z_{B} ight $ تعيين مجموعة النقط : $ Z =\left \overline{Z}-rac{\sqrt{3}}{2}-irac{1}{2} ight $: $ Z =\left \overline{Z}-Z_{B} ight $ تكافئ $ Z = Z-Z_{C} $ أي $ Z = Z-Z_{C} $ ومعناها $ Z = Z-Z_{C} $			
U. 3				
	0.25	نة $[OC]$ فإن صورة (γ) بالدوران r هي محور القطعة $[OB]$	و (γ) هي محور القطعة المستقيم بما أن $r(C) = B$ و $r(C) = 0$	

	/ tiet OM \ = = 1 ti = = eti		
	1	التمرين الرابع: (07 نقاط)	
	0.25×2	$g(x) = 2 + (x-1)e^{-x}$.I	
	0.20 2	$\lim_{x \to +\infty} g(x) = 2 \lim_{x \to -\infty} g(x) = -\infty ($	
		$_{g}$ دراسة اتجاه تغير الدالة $_{g}$.	
1.5	0.25	$g'(x) = (2-x)e^{-x}$ ، $\mathbb R$ الدالة g تقبل الإشتقاق على	
	0.5	الدالة g متزايدة تماما على $[2;+\infty[$ ومتناقصة تماما على $[2;+\infty[$	
	0.25	ــ جدول تغیرات ⁸	
		ج) g دالة مستمرة ومتزايدة تماما على $[2,\infty]$ مغيرة إشارتها فحسب مبرهنة القيم	
	0.5	lpha المتوسطة المعادلة $g(x)=0$ تقبل في $g(x)=0$ حلا وحيدا	
01	0.5	$\dot{\psi}$ $g(-0.38) \times g(-0.37) < 0$ $g(-0.37) = 0.016$ $g(-0.38) = -0.017$	
		$-0.38 < \alpha < -0.37$	
	0.5	g(x) استنتاج إشارة $g(x)$	
	0.25×2	$\lim_{x \to +\infty} f(x) = +\infty \text{i} \lim_{x \to -\infty} f(x) = +\infty \text{i} $	
107	0.25×2	(C) نستنج أن $y = 2x+1$ مستقيم مقارب مائل $\lim_{x \to +\infty} (f(x) - (2x+1)) = 0$	
1.25	0.23 2	$\lim_{x\to +\infty} (y(x)) = \lim_{x\to +\infty} ($	
	0.25	جُولُ دراسة الوضع النسبي :	
	0.5	$f'(x) = g(x) \mathbb{R}$ من أجل كل x من أجل كل (2	
	0.5	$-\infty;lpha$ متزايدة تماما على المجال $-\infty;lpha$ و $lpha$ متناقصة تماما على المجال $-\infty;lpha$	
1.25	0.25	_ جدول التغيرات	
0.5	0.5	ر) معادلة المماس (3) معادلة $(T): y = 2x + 1 - e^{-1}$	

0.75	0.75	رسم المما m و المنحنى $egin{pmatrix} (C) & & & & & & & & & & & & & & & & & & &$	
		4- 3-	
		-3 -2 -1	
		f(x) = 2x + m (5)	
		لما $m\in \left]-\infty;1-rac{1}{e} ight[$ المعادلة لا تقبل حلول	
0.25	0.25	لما $m=1-rac{1}{e}$ المعادلة تقبل حل مضاعف	
		المعادلة تقبل حلين موجبين تماما $m\in \left]1-rac{1}{e};1 ight[$ الم	
		لما $m=1$ المعادلة تقبل حل واحد معدوم	
		لما $m \in]1;+\infty$ المعادلة تقبل حل وحيد سالب تماما	
	0.25	الدالة الأصلية للدالة f على $\mathbb R$ والتي تنعدم من أجل القيمة 1 للمتغير F (أ)	
		$F(x) = \int_{1}^{x} te^{-t} dt = (-1 - x)e^{-x} + 2e^{-1}$	
	0.25	$A = \int_{1}^{3} ((2x-1)-f(x)) dx = 2e^{-1} - 4e^{-3} u a $	

العلامة		
مجمو	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (04 نقاط)
01.5	0.5×3	$u_3 = \ln 7$ و $u_2 = \ln 5$ ، $u_1 = \ln 3$: u_3 و u_2 ، u_1 حساب (1)
0.25	0.25	$\frac{2n+3}{2n+1} > 1$ نبین أن $1 + 3 > 2n+1$: بما أن $2n+3 > 2n+1$ فإن (2 نبین أن $1 + 3 > 1$ نبین أن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن $1 + 3 > 1$: $1 + 3 > 1$ فإن
1.75	0.5×2	$e^{u_n}=v_n$ نبين أن $e^{u_n}=v_n$ نبين أن $e^{u_n}=v_n$ و منه الخاصية محققة من أجل $e^{u_n}=v_n$ و منه الخاصية $e^{u_{n+1}}=v_{n+1}$ و نبين أن $e^{u_n}=v_n$ نفرض $e^{u_n}=v_n$ و نبين أن $e^{u_n+\ln\left(\frac{2n+3}{2n+1}\right)}=2n+3=v_{n+1}$ الدينا:
	0.25 0.5	$u_n = \ln v_n = \ln (2n+1)$: u_n عبارة $\lim_{n \to +\infty} u_n = +\infty$
0.5	0.25	: حساب المجموعين (4 $S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right) = \ln v_n - \ln v_0 = \ln\left(\frac{v_n}{v_0}\right) = \ln v_n = u_n$ $T = e^{u_{1439}} + e^{u_{1440}} + \dots + e^{u_{2018}} = v_{1439} + v_{1440} + \dots + v_{2018}$ $= \frac{2018 - 1439 + 1}{2} \left[2(1439 + 2018) + 2\right] = 2005640$
		$= \frac{2(1439 + 2018) + 2}{2} = 2003640$ $\frac{(03)}{12000000000000000000000000000000000000$
1.25	+0.5 0.75	(Δ) : $\begin{cases} x=t+1 \ y=5t-2 \ (t\in\mathbb{R}) \end{cases}$: (Δ) اتمثیل وسیطی للمستقیم (1)
0.5	0.25 0.25	. التحقق أن المستويين (P_1) ، (P_2) يتقاطعان التحقق أن المستقيم Δ
0.5	0.25	(Q): x + 5y - 2z - 19 = 0 : (Q)معادلة ديكارتية للمستوي (3

	0.25	$E(2;3;-1)$ بالتعويض نجد نقطة التقاطع $(P_1)\cap (P_2)\cap (Q)=(\Delta)\cap (Q)$		
	0.25	لا التحقق أن النقطة H هي المسقط العمودي H التحقق أن النقطة H		
0.75	0.25	H باطبيعة المثلث EBH : المثلث قائم في المثلث		
	0.25	$V_{ABEH}=rac{1}{3}S_{EBH} imes digl[A,(Q)igr]=5~uv~:ABEH$ حجم رباعي الوجوه $S_{EBH}=rac{1}{2}EH imes HB=rac{\sqrt{30}}{2}~:EBH$ (مساحة المثلث		
		التمرين الثالث: (05 نقاط)		
01	0,25×4	$S = \{4+i; 2-i; 2+i\}$ هي $(z-4+i)(z^2-4z+5) = 0$ (ا) مجموعة حلول المعادلة:		
1.25	0,25×4	$rac{z_B-z_A}{z_C-z_A}=i$ التحقق أن: (1 (II		
	0.25	$n=2k+1; k\in\mathbb{N}$: قيم العدد الطبيعي		
01	0.5	$ \left(\frac{z_D - z_A}{z_B - z_A}\right) = e^{i\frac{\pi}{3}} \int_{arg} \left\{ \begin{vmatrix} z_D - z_A \\ z_B - z_A \end{vmatrix} = \begin{vmatrix} z_D - z_A \\ z_B - z_A \end{vmatrix} = \frac{\pi}{3} + 2k\pi (k \in \mathbb{Z}) \right\} $ ومنه ABD مثلث متقایس الاضلاع.		
	0.5	$z_{D} = e^{i\frac{\pi}{3}} (z_{B} - z_{A}) + z_{A} = 3 + (1 + \sqrt{3})i$		
1.25	0.75	$z_G = 3 + i \left(1 + \frac{\sqrt{3}}{3} \right) : z_G$ حساب (3)		
	0.5	$rac{\pi}{6}$ عناصر التشابه المباشر:نسبته $\sqrt{3}$ و زاویته –		
0.5	0.5	$]CG[$ هي القطعة ($\Gamma)$ طبيعة مجموعة النقط النقط (Γ) هي القطعة		

		التمرين الرابع :(08 نقاط)
1.5	0.5 01	ا- حساب $g(1)$
		g(x) استنتاج إشارة $g(x)$:
	0.75	$\lim_{x \to \infty} f(x) = -\infty : 1 - \mathbf{I}$
1.75	<mark>0.5</mark>	$\lim_{x\to +\infty} f(x) = 0$ و تبیان أنّ
	<mark>0.5</mark>	$\left(C_{f} ight)$ التفسير البياني: $x=0$ و $y=0$ معادلتي المستقيمين المقاربين ل
2.50	01	$f'(x) = \frac{g(x)}{(1+x\ln x)^2}$ آب تبیان اُنّ (2
	<mark>0.75</mark>	$[0;1]$ و متزایدة تماما علی $[1;+\infty[$ و متزایدة تماما علی f
	<mark>0.75</mark>	ـ جدول التغيرات
	0.25	e^{-1} يقطع محور الفواصل في نقطة فاصلتها $\left(C_f\right)$ (3
1.25	0.25	$(T): y = \frac{e^2}{e-1}x - \frac{e}{e-1}$: معادلة المماس
	0.75	_ رسم المماس و المنحنى
0.5	0.25	$f(x) = \frac{e^2}{e-1}x - \frac{e}{e-1}m$ تكافئ $(e-1)f(x) = e^2x - me$ المعادلة (4
0.5	0.25	m>1 منه المعادلة تقبل حلين متمايزين من أجل
0.25	0.25	$I_n = \int_{1}^{n} f(x) dx = \left[\ln(1 + x \ln x) \right]_{1}^{n} = \ln(1 + n \ln n)$ (1 -III)
		$\left(I_{n}\right)$ اتجاه تغیر المتتالیة (2
	0.25	و منه $\left(I_n\right)$ متزایدة تماما $I_{n+1}-I_n=\ln\!\left(\frac{1+\left(n+1\right)\!\ln\left(n+1\right)}{1+n\ln n}\right)$
0.25		$\left(\ln\left(1+(n+1)\ln(n+1)\right)>\ln\left(1+n\ln n\right)\right)$ ڭن
		$I_{n+1} - I_n = \int_{n}^{n+1} f(x) dx > 0$

الموقع الأول لتحضير الفروض والاختبارات في الجزائر https://www.dzexams.com

https://www.dzexams.com/ar/0ap	القسم التحضيري
https://www.dzexams.com/ar/1ap	السنة الأولى ابتدائي
https://www.dzexams.com/ar/2ap	السنة الثانية ابتدائي
https://www.dzexams.com/ar/3ap	السنة الثالثة ابتدائي
https://www.dzexams.com/ar/4ap	السنة الرابعة ابتدائي
https://www.dzexams.com/ar/5ap	السنة الخامسة ابتدائي
https://www.dzexams.com/ar/bep	شهادة التعليم الابتدائي
https://www.dzexams.com/ar/1am	السنة الأولى متوسط
https://www.dzexams.com/ar/2am	السنة الثانية متوسط
https://www.dzexams.com/ar/3am	السنة الثالثة متوسط
https://www.dzexams.com/ar/4am	السنة الرابعة متوسط
https://www.dzexams.com/ar/bem	شهادة التعليم المتوسط
https://www.dzexams.com/ar/1as	السنة الأولى ثانوي
https://www.dzexams.com/ar/2as	السنة الثانية ثانوي
https://www.dzexams.com/ar/3as	السنة الثالثة ثانوي
https://www.dzexams.com/ar/bac	شهادة البكالوريا