Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hexakis(dimethyl sulfoxide- κO)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S$,S')nickelate(II)

Meiju Niu, a* Shumei Fanb and Guihua Liua

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bDongchang College Liaocheng University, Shandong 252000, People's Republic of China Correspondence e-mail: niumeiju@163.com

Received 28 November 2011; accepted 14 December 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.038; wR factor = 0.095; data-to-parameter ratio = 17.0.

The reaction of NiCl₂·6H₂O with sodium 2,2-dicyanoethene-1,1-dithiolate [Na₂(*i*-mnt)] in dimethyl sulfoxide produces the title complex, [Ni(C₂H₆OS)₆][Ni(C₄N₂S₂)₂]. There is half each of an [Ni(C₂H₆OS)₆]²⁻ complex anion and an [Ni{(CH₃)₂SO}₆]²⁺ complex cation in the asymmetric unit. The *i*-mnt ligand coordinates in a bidentate manner to the Ni atom in the anion through the two chelating S atoms in an approximate square-planar geometry. The Ni atom in the complex cation has an octahedral coordination environment with six dimethyl sulfoxide molecules as ligands.

Related literature

For related structures, see Gao et al. (2004, 2005); Yu et al. (2005); Chen & Yu (2005).

Experimental

Crystal data

[Ni(C₂H₆OS)₆][Ni(C₄N₂S₂)₂] $V = 1930.6 (4) \text{ Å}^3$ $M_r = 866.55$ Z = 2 Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\alpha = 8.3368 (10) \text{ Å}$ $\mu = 1.55 \text{ mm}^{-1}$ b = 12.6763 (17) Å T = 298 K c = 18.710 (2) Å $0.50 \times 0.48 \times 0.05 \text{ mm}$ $\beta = 102.466 (2)^\circ$

Data collection

 $\begin{array}{ll} \mbox{Bruker SMART CCD area-detector} \\ \mbox{diffractometer} \\ \mbox{Absorption correction: multi-scan} \\ \mbox{($SADABS$; Sheldrick, 1996)} \\ \mbox{$T_{\rm min}=0.511$, $T_{\rm max}=0.921} \end{array} \begin{array}{ll} 9458 \mbox{ measured reflections} \\ 3379 \mbox{ independent reflections} \\ 2328 \mbox{ reflections with $I>2\sigma(I)$} \\ R_{\rm int}=0.054 \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.038 & 199 \ {\rm parameters} \\ WR(F^2) = 0.095 & {\rm H-atom\ parameters\ constrained} \\ S = 1.06 & \Delta\rho_{\rm max} = 0.30\ {\rm e\ \mathring{A}^{-3}} \\ 3379 \ {\rm reflections} & \Delta\rho_{\rm min} = -0.35\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Selected geometric parameters (\mathring{A} , $^{\circ}$).

Ni1-O3	2.052 (2)	Ni2-S4	2.2010 (11)
Ni1-O2	2.060 (3)	Ni2-S5	2.2030 (11)
Ni1-O1	2.064 (2)		,
O3-Ni1-O2	90.14 (11)	S4-Ni2-S5	78.96 (4)

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (Nos. 20671048, 21041002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2141).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Chen, H. M. & Yu, H. L. (2005). *Chin. J. Spectrosc. Lab.* **22**, 740–742. Gao, X. K., Dou, J. M. & Dong, F. Y. (2004). *J. Inorg. Organomet. Polym.* **14**, 227, 227

Gao, X. K., Dou, J. M. & Li, D. C. (2005). *J. Mol. Struct.* **733**, 181–186. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Yu, H. L., Chen, H. M. & Dou, J. M. (2005). Chin. J. Spectrosc. Lab. 22, 556-558

Acta Cryst. (2012). E68, m67 doi:10.1107/S1600536811053827 Niu et al. **m67**

supplementary m	aterials	

Acta Cryst. (2012). E68, m67 [doi:10.1107/S1600536811053827]

Hexakis(dimethyl sulfoxide- κO)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S$,S')nickelate(II)

M. Niu, S. Fan and G. Liu

Comment

The bridging ligand 1,1-dicyanoethene-2,2-dithiolate has been attracting more and more attention due to its delocalized

 π electron system able to build special planar conjugated structures (Yu *et al.*, 2005). The title complex consists of one $[\text{Ni}(i\text{-mnt})_2]^{2^-}$ (where *i*-mnt is 1,1-dicyanoethene-2,2-dithiolate) complex anion and one $[\text{Ni}((\text{CH}_3)_2\text{SO})_6]^{2^+}$ complex cation. For the $[\text{Ni}(i\text{-mnt})_2]^{2^-}$ complex anion, the NiS₄ group is square planar and tortiled slightly at an angle of 2.90 (14)° with respect to the plane of *i*-mnt ligand (Chen *et al.*, 2005). FourNi-S bonds present two comparable distances of 2.2010 (11) and 2.2030 (11)Å, similar to the Ni-S distance of 2.172 (3)

Å in [K(N18C6)]₂[Ni(mnt)₂] (Gao *et al.*, 2004). The average S-C, C \equiv N, C-C and C=C bond lengths were 1.717, 1.141, 1.418, 1.379 Å, respectively (Gao *et al.*, 2005). The [Ni((CH₃)₂SO)₆]²⁺ complex cation contains a nickel with six-coordinated octahedral geometry.

Experimental

The title compound, $[Ni((CH_3)_2SO)_6][Ni(i-mnt)_2]$ was synthesized by the reaction of 0.05 mmol NiCl₂.6H₂O and 0.1 mmol Na₂(*i*-mnt)(1,1-dicyanoethene-2,2-dithiolate sodium) in 5 ml water. The solution was stirred for 2 hours and then filtered. The precipitate was dissolved in 10ml Dimethyl Sulfoxide. After slow evaporation of the solution over one month, deep green crystals suitable for X-ray diffraction were obtained (56.8%, m.p. 527-529 K).

Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H 0.96 Å, with $U_{iso}(H) = 1.2 U_{eq}(C)$, and refined as riding on their parent atoms.

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 40% probability displacement ellipsoids for non-H atoms. Symmetry codes: (i) -x + 1, -y + 1, -z + 1, (ii) -x + 2, -y, -z + 1.

Hexakis(dimethyl sulfoxide-κO)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato-κ²S,S')nickelate(II)

Crystal data

C₁₂H₃₆NiO₆S₆²⁺·C₈N₄NiS₄²⁻ F(000) = 896

 $M_r = 866.55$ $D_{\rm x} = 1.491 \; {\rm Mg \; m}^{-3}$

Monoclinic, P2₁/c Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 2760 reflections

 $\theta = 2.5-24.3^{\circ}$ a = 8.3368 (10) Åb = 12.6763 (17) Å $\mu = 1.55 \text{ mm}^{-1}$ c = 18.710 (2) ÅT = 298 K $\beta = 102.466 (2)^{\circ}$ Needle, green

 $0.50\times0.48\times0.05~mm$ $V = 1930.6 (4) \text{ Å}^3$

Z = 2

Data collection

Bruker SMART CCD area-detector 3379 independent reflections

diffractometer

2328 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube

graphite $R_{\rm int} = 0.054$

phi and ω scans $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

Absorption correction: multi-scan $h = -9 \rightarrow 9$ (SADABS; Sheldrick, 1996) $T_{\min} = 0.511$, $T_{\max} = 0.921$ $k = -12 \rightarrow 15$ 9458 measured reflections $l = -22 \rightarrow 18$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.038$

sites

 $wR(F^2) = 0.095$ H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0275P)^2 + 1.0073P]$ S = 1.06

where $P = (F_0^2 + 2F_c^2)/3$

3379 reflections $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{max} = 0.30 \text{ e Å}^{-3}$ 199 parameters $\Delta \rho_{min} = -0.35 \text{ e Å}^{-3}$ 0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.5000	0.5000	0.5000	0.02973 (18)
Ni2	1.0000	0.0000	0.5000	0.0415 (2)

N1	0.7064 (6)	0.2565 (4)	0.2505 (2)	0.0863 (15)
N2	1.1494 (6)	0.0945 (4)	0.2174 (2)	0.0751 (13)
O1	0.4945 (3)	0.64165 (18)	0.44513 (13)	0.0367 (6)
O2	0.7372 (3)	0.47506 (19)	0.48840 (15)	0.0440(7)
O3	0.4122 (3)	0.41769 (19)	0.40520 (13)	0.0436 (7)
S1	0.62727 (13)	0.72370 (8)	0.46849 (5)	0.0412(3)
S2	0.78272 (12)	0.36249 (8)	0.47193 (5)	0.0385(3)
S3	0.32535 (13)	0.47016 (8)	0.33476 (5)	0.0391(3)
S4	0.81754 (14)	0.08901 (9)	0.41999 (6)	0.0489(3)
S5	1.10676 (15)	-0.00988(9)	0.40228 (6)	0.0533(3)
C1	0.5310 (7)	0.8291 (4)	0.5044 (3)	0.095(2)
H1A	0.4416	0.8553	0.4675	0.142*
H1B	0.6092	0.8846	0.5198	0.142*
H1C	0.4898	0.8047	0.5456	0.142*
C2	0.6505 (7)	0.7821 (4)	0.3864 (2)	0.0732 (16)
H2A	0.6983	0.7320	0.3586	0.110*
H2B	0.7208	0.8426	0.3971	0.110*
H2C	0.5449	0.8036	0.3586	0.110*
C3	0.9350 (5)	0.3786 (3)	0.4198 (2)	0.0503 (11)
Н3А	0.8874	0.4120	0.3741	0.075*
Н3В	0.9777	0.3108	0.4106	0.075*
Н3С	1.0224	0.4216	0.4465	0.075*
C4	0.9093 (6)	0.3174 (4)	0.5552 (2)	0.0585 (13)
H4A	0.9998	0.3651	0.5701	0.088*
H4B	0.9504	0.2484	0.5480	0.088*
H4C	0.8462	0.3144	0.5924	0.088*
C5	0.2206 (6)	0.3635 (4)	0.2835 (2)	0.0676 (14)
H5A	0.2961	0.3066	0.2827	0.101*
H5B	0.1756	0.3863	0.2343	0.101*
H5C	0.1334	0.3399	0.3057	0.101*
C6	0.4776 (6)	0.4904 (4)	0.2835 (2)	0.0600 (13)
H6A	0.5526	0.5440	0.3065	0.090*
Н6В	0.4265	0.5123	0.2348	0.090*
H6C	0.5365	0.4258	0.2813	0.090*
C7	0.9525 (5)	0.0750(3)	0.3630 (2)	0.0409 (10)
C8	0.9395 (5)	0.1255 (3)	0.2967 (2)	0.0427 (10)
C9	0.8105 (6)	0.1979 (4)	0.2706 (2)	0.0526 (12)
C10	1.0561 (6)	0.1086 (3)	0.2528 (2)	0.0522 (12)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0336 (4)	0.0269 (4)	0.0290 (4)	0.0013 (3)	0.0074(3)	-0.0017 (3)
Ni2	0.0476 (5)	0.0370 (4)	0.0408 (4)	0.0016 (4)	0.0116(3)	-0.0019(3)
N1	0.092 (4)	0.077(3)	0.076(3)	0.030(3)	-0.011 (3)	-0.008 (2)
N2	0.080(3)	0.093(3)	0.058(3)	0.006(3)	0.029(2)	0.002(2)
O1	0.0380 (16)	0.0297 (14)	0.0415 (14)	-0.0024 (12)	0.0067 (12)	0.0023 (12)
O2	0.0373 (17)	0.0336 (16)	0.0633 (18)	-0.0007(12)	0.0155 (14)	-0.0079(13)

O3	0.061 (2)	0.0358 (15)	0.0309 (14)	-0.0010 (14)	0.0039 (13)	-0.0047 (12)
S1	0.0402 (7)	0.0377 (6)	0.0461 (6)	-0.0039 (5)	0.0104 (5)	0.0007 (5)
S2	0.0339 (6)	0.0327 (6)	0.0497 (6)	0.0002 (4)	0.0104 (5)	-0.0077(5)
S3	0.0409 (6)	0.0434 (6)	0.0325 (5)	0.0031 (5)	0.0071 (4)	-0.0050(4)
S4	0.0502 (8)	0.0503 (7)	0.0486 (6)	0.0102 (5)	0.0157 (5)	-0.0005(5)
S5	0.0537 (8)	0.0614 (8)	0.0473 (6)	0.0163 (6)	0.0161 (5)	0.0049 (6)
C1	0.094 (5)	0.053 (3)	0.155 (6)	-0.023(3)	0.067 (4)	-0.048(4)
C2	0.086 (4)	0.072 (3)	0.063 (3)	-0.032(3)	0.018 (3)	0.015(3)
C3	0.045 (3)	0.048 (3)	0.063 (3)	-0.003 (2)	0.022(2)	-0.011 (2)
C4	0.067 (3)	0.049 (3)	0.056(3)	0.014(2)	0.004(2)	0.000(2)
C5	0.077 (4)	0.074(3)	0.049 (3)	-0.025(3)	0.008(2)	-0.017(3)
C6	0.062(3)	0.064(3)	0.061 (3)	-0.005(3)	0.030(3)	0.006(2)
C7	0.045 (3)	0.035(2)	0.041 (2)	-0.0014 (19)	0.0061 (19)	-0.0096 (18)
C8	0.045 (3)	0.042 (3)	0.041 (2)	0.002(2)	0.008(2)	-0.0053 (19)
C9	0.066 (3)	0.049 (3)	0.040(2)	-0.003(3)	0.005(2)	-0.010(2)
C10	0.065 (4)	0.051 (3)	0.040(3)	-0.002(2)	0.008(2)	0.001(2)
Geometric para	meters (Å, °)					
Ni1—O3		2.052 (2)	S5-	-C7	1.71	6 (4)
Ni1—O3 ⁱ		2.052 (2)	C1-	–H1A	0.96	500
Ni1—O2 ⁱ		2.060(3)	C1-	–H1B	0.96	500
Ni1—O2		2.060(3)	C1-	–H1C	0.96	500
Ni1—O1		2.064(2)	C2-	–H2A	0.96	500
Ni1—O1 ⁱ		2.064(2)	C2-	–Н2В	0.96	500
Ni2—S4		2.2010 (11)	C2-	–H2C	0.96	500
Ni2—S4 ⁱⁱ		2.2010 (11)	C3-	–Н3А	0.96	500
Ni2—S5 ⁱⁱ		2.2030 (11)	C3-	–Н3В	0.96	500
Ni2—S5		2.2030 (11)	C3-	–Н3С	0.96	500
N1—C9		1.142 (6)	C4-	–H4A	0.96	500
N2—C10		1.139 (5)	C4-	–H4B	0.96	500
O1—S1		1.513 (3)	C4-	–H4C	0.96	500
O2—S2		1.525 (3)	C5-	–H5A	0.96	500
O3—S3		1.514(3)	C5-	–H5B	0.96	500
S1—C2		1.752 (4)	C5-	–H5C	0.96	500
S1—C1		1.765 (5)	C6-	–H6A	0.96	500
S2—C3		1.772 (4)	C6-	–Н6В	0.96	500
S2—C4		1.777 (4)	C6-	–H6C	0.96	500
S3—C6		1.767 (4)		–C8		78 (5)
S3—C5		1.775 (4)	C8-	–C9	1.41	8 (6)
S4—C7		1.719 (4)	C8-	-C10	1.41	8 (6)
O3—Ni1—O3 ⁱ		180.000(1)	H1E	3—C1—H1C	109	.5
O3—Ni1—O2 ⁱ		89.86 (11)	S1-	-C2—H2A	109	.5
O3 ⁱ —Ni1—O2 ⁱ		90.14 (11)		-C2—H2B	109	
O3—Ni1—O2		90.14 (11)	H2/	A—C2—H2B	109	.5
O3 ⁱ —Ni1—O2		89.86 (11)	S1-	-C2—H2C	109	.5
O2 ⁱ —Ni1—O2		180.00 (15)	H2A	A—C2—H2C	109	.5

O3—Ni1—O1	92.69 (9)	H2B—C2—H2C	109.5
O3 ⁱ —Ni1—O1	87.31 (9)	S2—C3—H3A	109.5
O2 ⁱ —Ni1—O1	90.01 (10)	S2—C3—H3B	109.5
O2—Ni1—O1	89.99 (10)	H3A—C3—H3B	109.5
O3—Ni1—O1 ⁱ	87.31 (9)	S2—C3—H3C	109.5
O3 ⁱ —Ni1—O1 ⁱ	92.69 (9)	H3A—C3—H3C	109.5
O2 ⁱ —Ni1—O1 ⁱ	89.99 (10)	H3B—C3—H3C	109.5
O2—Ni1—O1 ⁱ	90.01 (10)	S2—C4—H4A	109.5
01—Ni1—01 ⁱ	180.0	S2—C4—H4B	109.5
S4—Ni2—S4 ⁱⁱ	180.00 (5)	H4A—C4—H4B	109.5
S4—Ni2—S5 ⁱⁱ	101.04 (4)	S2—C4—H4C	109.5
S4 ⁱⁱ —Ni2—S5 ⁱⁱ	78.96 (4)	H4A—C4—H4C	109.5
S4—Ni2—S5	78.96 (4)	H4B—C4—H4C	109.5
S4 ⁱⁱ —Ni2—S5	101.04 (4)	S3—C5—H5A	109.5
S5 ⁱⁱ —Ni2—S5	180.0	S3—C5—H5B	109.5
S1—O1—Ni1	121.20 (14)	H5A—C5—H5B	109.5
S2—O2—Ni1	116.83 (15)	S3—C5—H5C	109.5
S3—O3—Ni1	122.93 (15)	H5A—C5—H5C	109.5
O1—S1—C2	104.45 (19)	H5B—C5—H5C	109.5
O1—S1—C1	105.4 (2)	S3—C6—H6A	109.5
C2—S1—C1	99.2 (3)	S3—C6—H6B	109.5
O2—S2—C3	104.06 (18)	H6A—C6—H6B	109.5
O2—S2—C4	104.50 (18)	S3—C6—H6C	109.5
C3—S2—C4	99.1 (2)	H6A—C6—H6C	109.5
O3—S3—C6	105.8 (2)	H6B—C6—H6C	109.5
O3—S3—C5	102.88 (19)	C8—C7—S5	125.7 (3)
C6—S3—C5	98.3 (2)	C8—C7—S4	125.1 (3)
C7—S4—Ni2	85.42 (14)	S5—C7—S4	109.2 (2)
C7—S5—Ni2	85.44 (14)	C7—C8—C9	121.2 (4)
S1—C1—H1A	109.5	C7—C8—C10	121.3 (4)
S1—C1—H1B	109.5	C9—C8—C10	117.5 (4)
H1A—C1—H1B	109.5	N1—C9—C8	179.0 (5)
S1—C1—H1C	109.5	N2—C10—C8	179.7 (6)
H1A—C1—H1C	109.5		
O3—Ni1—O1—S1	-142.43 (17)	Ni1—O3—S3—C5	-161.4 (2)
O3 ⁱ —Ni1—O1—S1	37.57 (17)	S4 ⁱⁱ —Ni2—S4—C7	-120 (100)
O2 ⁱ —Ni1—O1—S1	127.71 (17)	S5 ⁱⁱ —Ni2—S4—C7	173.58 (13)
O2—Ni1—O1—S1	-52.29 (17)	S5—Ni2—S4—C7	-6.42 (13)
O1 ⁱ —Ni1—O1—S1	-139 (100)	S4—Ni2—S5—C7	6.44 (13)
O3—Ni1—O2—S2	-48.30 (17)	S4 ⁱⁱ —Ni2—S5—C7	-173.56 (13)
O3 ⁱ —Ni1—O2—S2	131.70 (17)	S5 ⁱⁱ —Ni2—S5—C7	112 (14)
O2 ⁱ —Ni1—O2—S2	13 (48)	Ni2—S5—C7—C8	170.5 (3)
O1—Ni1—O2—S2	-140.99 (17)	Ni2—S5—C7—S4	-8.58 (17)
O1 ⁱ —Ni1—O2—S2	39.01 (17)	Ni2—S4—C7—C8	-170.5 (3)
O3 ⁱ —Ni1—O3—S3	-178 (100)	Ni2—S4—C7—S5	8.59 (18)
			` '

O2 ⁱ —Ni1—O3—S3	71.7 (2)	S5—C7—C8—C9	-177.2 (3)
O2—Ni1—O3—S3	-108.3 (2)	S4—C7—C8—C9	1.7 (6)
O1—Ni1—O3—S3	-18.3 (2)	S5—C7—C8—C10	1.6 (6)
O1 ⁱ —Ni1—O3—S3	161.7 (2)	S4—C7—C8—C10	-179.4(3)
Ni1—O1—S1—C2	145.1 (2)	C7—C8—C9—N1	26 (32)
Ni1—O1—S1—C1	-110.9 (3)	C10—C8—C9—N1	-153 (32)
Ni1—O2—S2—C3	149.93 (19)	C7—C8—C10—N2	79 (100)
Ni1—O2—S2—C4	-106.6 (2)	C9—C8—C10—N2	-102 (100)
Ni1—O3—S3—C6	95.9 (2)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$	1; (ii) $-x+2$, $-y$, $-z+1$.		

Fig. 1

