Домашнее задание № 5 Сверточные нейронные сети (CNN).

LeNet

Схема сети представлена на рисунке 1. Сеть содержит 83 126 обучаемых параметров.

Рис.1. Архитектура нейронной сети LeNet.

Таблица 1. Архитектура сети LeNet-5.

Тип слоя	Размер	Входной размер	Выходной	
	ядра		размер	
Convolutional	5x5	3x32x32	6x32x32	
Average pooling	2x2	6x32x32	6x16x16	
Convolutional	5x5	6x16x16	16x12x12	
Average pooling	2x2	16x12x12	16x6x6	
Dense	1x1	1x576	1x120	
Dense	1x1	1x120	1x84	
Output dense	1x1	1x84	1x10	

В качестве базы данных использовать MNIST.

Таблица 2. Вариация гиперпараметров LeNet.

	Оптимизатор	Кол-во эпох	Скорость	Верность
			обучения	
1	SGD			
2	AdaDelta			
3	NAG			
4	Adam			

VGG16 $112\times112\times128$ $56\times56\times256$ $28\times28\times512$ $14\times14\times512$ $1\times1\times4096$ $1\times1\times1000$ 1×1000 1×1000

Рис. 2. Свёрточная нейронная сеть VGG-16.

Таблица 3. Архитектура сети VGG16.

raomiqu b. ripantektypu cem v GG10.					
Тип слоя	Размер	Входной размер	Выходной		
	ядра		размер		
Convolutional	3x3	3x32x32	128x32x32		
Convolutional	3x3	128x32x32	128x32x32		
Max-pooling	2x2	128x32x32	128x16x16		
Convolutional	3x3	128x16x16	256x16x16		
Convolutional	3x3	256x16x16	256x16x16		
Max-pooling	3x3	256x16x16	256x8x8		
Convolutional	3x3	256x8x8	512x8x8		
Convolutional	3x3	512x8x8	512x8x8		
Max-pooling	2x2	512x8x8	512x4x4		
Dens	1x1	512x8x8	1x1024		
Dropout	-	-	-		
Dens	1x1	1x1024	1x1024		
Dropout	-	-	-		
Output dens	1x1	1x1024	1x10		

В качестве базы данных использовать CIFAR-10.

Here are the classes in the dataset, as well as 10 random images from each:

The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans. "Truck" includes only big trucks.

Таблица 4. Вариация гиперпараметров VGG

	Оптимизатор	Кол-во	Скорость	Dropout	Верность
		эпох	обучения		
1	SGD				
2	AdaDelta				
3	NAG				
4	Adam				

ResNet (34) «Остаточные» CNN для классификации изображений

Архитектура ResNet

В качестве базы данных использовать ImageNet.

Таблица 4. Вариация гиперпараметров ResNet

	Оптимизатор	Кол-во	Скорость	Dropout	Верность
		эпох	обучения		
1	SGD				
2	AdaDelta				
3	NAG				
4	Adam				

Для реализации использовать фреймворк PyTorch.

Нужную информацию можно получить:

https://www.manning.com/books/deep-learning-with-pytorch https://github.com/deep-learning-with-pytorch/dlwpt-code