

Divide & Conquer

- Divide problem into subproblems of smaller size
- Solve subproblems recursively
- Combine solutions

- Given n points in the plane find two whose distance is smallest!
- Naive solution: try all pairs in $O(n^2)$
- Can we do better?

Partition problem into subproblems P_1 and P_2

(by median x-coordinate)

Recursively compute d_1 in P_1 and d_2 in P_2

How can we combine the solutions? Consider pairs with p_1 in P_1 and p_2 in P_2

We only need to consider points within distance $r = min\{d_1, d_2\}$ from the separating line

This could be $n^2/4$ pairs! :(

We can improve!

Consider point in P₁

All points of P_2 within distance r must be in a $r \times 2r$ rectangle R

We can improve!

Consider point in Pi

All points of P_2 within distance r must be in a $r \times 2r$ rectangle R

Since all points in P₂ have distance at least r, there can be at most 6 points in R

We can improve!

Consider point in P

If the points of P_1 and P_2 are sorted by y-coordinate, we can do this for all p in O(n) time

All points of P_2 within distance r must be in a $r \times 2r$ rectangle R

Since all points in P_2 have distance at least r, there can be at most 6 points in R

We can improve!

Consider point in Pi

If the points of P_1 and P_2 are sorted by y-coordinate, we can do this for all p in O(n) time

All points of P_2 within distance r must be in a $r \times 2r$ rectangle R

Since all points in P_2 have distance at least r, there can be at most 6 points in R

O(nlogn)