53-18 1-1893-27843

Lockheed

IBM

:4oneywell

GE

J. E. Rogan

McDonnell Douglas Space Station Freedom

327

PRECEDING PAGE BLANK NOT FILMED

THERMAL SYSTEMS

THERMAL CONTROL SYSTEM

REBASELINE

AC		Same		Same Passive	Same	Passive	Same
PMC		Same (erect only as required)		Same Passive	Same	Passive	Same
BASELINE CONTENT	External ATCS	Central Radiators (2-Phase Ammonia)	Central Thermal Bus (2-Phase Ammonia)	-Modules and Nodes -Truss Mounted Paliets	Internal ATCS for Pressurized Nodes and Modules (water)	APAE ATCS for Truss-Mounted Payloads	PVATCS (1 Phase Fluid and Deployable Radiators)

- Space Station Freedom

McDonnell Douglas • GE • Honeywell • IBM •

-1

-

F

1

一十二人人 看了你是一个你看了一个孩子

EXTERNAL THERMAL CONTROL SYSTEM PMC CONFIGURATION

RADIATOR ROTARY JOINT & FLUID COUPLER EXTERNAL THERMAL CONTROL SYSTEM AC CONFIGURATION PASSIVE THERMAL CONTROL FOR APAE & TRUSS MOUNTED PALLETS & EQUIPMENT PY RADIATORS - MODULES & NODE HX'S (TYPICAL OF 10) THERMAL BUSES TCS PALLETS --CENTRAL RADIATORS THERMAL LINES Space Station Freedom ₹

Honeywell

BE

McDonnell Douglas

EXTERNAL THERMAL CONTROL SYSTEM REQUIREMENTS

Functional Requirements

Waste heat acquisition/fransport

Performance Requirements

- Collect waste heat from each pressurized element or carrier
- Size for 37.5 kW (PMC) and 75 kW (AC) Flus electrical conversion losses, metabolic and environmental heat loads
- Accommodate modular growth, on-crbit assembly
- Provide simple user interface and location flexibility
- Low and moderate temperature loops (35°F and 70°F)
- Quiescent operation (10% of full load)
- Leak detection, isolation, and repair

Space Station Freedom

McDonne# Douglas • GE • Honeywall • IBM • Lockheed

1 4 68

A STANFORD

EXTERNAL THERMAL CONTROL SYSTEM REQUIREMENTS (CONT.)

Functional Requirements

Performance Requirements

Heat rejection

- Accommodate modular growth,
- Limited degradation due to damage or failure

on-orbit assembly

- Replaceable radiator
- Passive thermal control Truss mounted pallets and equipment, APAE and Structures
- Provide own independent thermal control

APAE payloads

Space Station Freedom -

 Honeywell e GE McDonneil Douglas

- Lockheed

-

-1

The second second second

.

1

- Truss mounted pallets and equipment, APAEs and structures passive thermal control
- insulation and coatings
- Multi-layer high performance insulations
- Utility distribution lines
- Resource pallets
- **Airlock**

- **Mobile Transporter**
- APAE/payload (WP-3)
- Modules (WP-1)
- Nodes (WP-1)

(Continued)

- Selective absorptivity/emissivity optical surface coatings
 - Radiators
- Truss
- Resource pallets
- APAE/payload (WP-3)
- Modules (WP-1)
- Node (WP-1)

Heaters

- Electrical radiant-type or conductive
- Utility distribution lines
- **Propulsion Pallet**
- Mobile Transporter
- APAE/payload (WP-3)

Space Station Freedom -

J

McDornell Douglas • GE • Honeywell • IBM •

100

(Continued)

- isolators
- Low conductivity material
- Mobile transporter components
- Airlock
- **Resource Pallets**
- APAE/payload (WP-3)
- **Passive Radiators**
- Structural surface area viewing space
- Resource pallets
- **Mobile Transporter**
- Antennas and cameras
- APAE/payload (WP-3)

McDonnell Douglas • GE

社会

IMPLEMENTATION APPROACH (Continued)

1

Heat Rejection

- Individual radiator elements incorporating self-contained. high

 - Each element completely independent of all others Facilitates easy handling for on-orbit assembly
- Allows interfacing radiator with transport circuit through
- Allows replacement of elements to maintain indefinite life

Space Station Freedom

McDonnell Douglas

1

数

The state of the s

•

1

I

1

1

の来の

(Continued)

- Heat acquisition and transport
- Thermal bus applies heat pipe technology to heat **transport**
- Liquid to user interface evaporated. Vapor to radiator interface for condensation
- Ail equipment receives the same temperature regardless of location in the circuit
- Phase change process allows approximately 50 times less fluid to be circulated
- Rotary fluid coupler
- Allows articulation of radiator to minimize area

Space Station Freedom

* GE • Honeywell • IBM

McDonnell Douglas

EXTERNAL THERMAL CONTROL SYSTEM

and the second s

. 35 % AND 70 F TEMPERATURE LODES

. BOTH LOOPS REDUNDANT

BOTH TEMPERATURE LOOPS SFRVICE DORT AND STARBOARD SIDES OF SSE

Space Station Freedom

• Honeywell 3E

McConnell Douglas

Lockheed

....

2.

37.2

LMSC PALLET 3 EQUIPMENT

719

THE PERSON NAMED IN

2

(FOR CONCEPT EVA! UATION ONLY)

F 1. 1.

LMSC SYSTEM SCHEMATIC

• Lockherd Honeywell • IBM GE Space Station Freedom McDonnell Douglas

The state of the s

DEVELOPMENT ISSUES

. -

Ē

·

allende)
ical Ch	tion
Techn	t Rejec
Kev	Hea

3

High capacity heat pipe radiator

Approach to Challenges

Fwo technology options (GAC and LMSC)

Thermal test bed

KC-135 tests

STS-8 concept flight test (OAST

STS-29 SHARE* technology flight test Advanced Development)

STS-43 SHARE II* Development Flight Test (Prime)

On-orbit assembly

EVA and RMS Ooptions

WETF evaluations

RMS ground test facility evaluations STS-61 SRAD* verification flight test

(Prime)

SHARE II - Station Heat Rejection Advanced Radiator Element *SHARE - Station Heat Rriection Advanced Radiator Element SRAD - Shuttle Radiator Assembly Demonstration

Space Station Freedom

McDonnell Douglas

(Ka

DEVELOPMENT ISSUES

D 17.5

(Continued)

Heat Acquisition/Transport Key Technical Challenges

Approach to Challenges

Two phase thermal bus

Three technology options (Eoeing, GAC, LMSC)

Thermal test bed

KC-135 tests STS-61 TPITS verification flight test

(Prime)

Rotary fluid coupler

342

Three technology options (Boeing, LaRC, LMSC)

Thermal test bed

isolation, and repair Leak detection,

Thermal test bed

Space Station Freedom

1

the first the second of the se

Lockheed • (BM Honeywell gE GE McDonneli Douglas

THERMAL FLIGHT EXPERIMENTS

J.

- SHARE Station Heat Rejection Advanced Radiator Element
- One 50 ft advanced development heat pipe radiator panel performance
- STS-29 (3/89)
- SHARE II Station Heat Rejection Advanced Radiator Elcment
- Two 43 ft station development heat pipe radiator panels performance
- STS-43 (1/91)
- SRAD Shuttle Radiator Assembly Demonstration
- Three heat pipe radiator panels assembled on-orbit by RMS and EVA
- Thermal performance
- Accepts heat from simulated or TPI S two-phase thermal bus
- STS-61 (11/92), manifested with TPITS
- TPITS Two-Phase Integrated Thermal System
- 5 kW thermal bus performance
- Reject heat to Orbiter payload heat exchanger or SRAD-erected radiators
- STS-61 (11/92), manifested with SRAD

Space Station Freedom -

McDonnell Douglas • GE • Honeywell •

The state of the s