CHAPTER-13

Exponents and Powers

Ex 13.1:-

Question 1

Find the value of

- (i) 2⁶
- (ii) 9³ (iii) 11² (iv) 5⁴

Solution:

- (i) $2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$
- (ii) $9^3 = 9 \times 9 \times 9 = 729$
- (iii) $11^2 = 11 \times 11 = 121$
- (iv) $5^4 = 5 \times 5 \times 5 \times 5 = 625$

Question 2

Exress the following in exponential form:

- (i) $6 \times 6 \times 6 \times 6$
- (ii) t×t
- (iii) $b \times b \times b \times b$
- (iv) $5 \times 5 \times 7 \times 7 \times 7$
- (v) $2 \times 2 \times a \times a$
- (vi) $a \times a \times a \times c \times c \times c \times c \times d$

Solution:

- (i) $6 \times 6 \times 6 \times 6 = 6^3$
- (ii) $t \times t = t^2$
- (iii) $b \times b \times b \times b = b^4$
- (iv) $5 \times 5 \times 7 \times 7 \times 7 = 5^2 \times 7^3 = 5^2 \cdot 7^3$
- (v) $2 \times 2 \times a \times a = 2^2 \times a^2 = 2^2 \cdot a^2$
- (vi) $a \times a \times a \times c \times c \times c \times c \times d = a^3 \times c^4 \times d = a^3 \cdot c^4 \cdot d$

Question 3

Express each of the following numbers using exponential notation:

- (i) 512
- (ii) 343

- (iii) 729
- (iv) 3125

- (i) 2 | 512 2 256 $2 \times 2 \times 2 \times 2 \times 2$ 2 128 $\times 2 \times 2 \times 2 \times 2 = 29$ 2 64 2 32 2 16 2 8 2 4 2 2 1
 - (ii) $\frac{7}{7} = \frac{343}{49}$ $7 \times 7 \times 7 = 7^3$ $\frac{7}{7} = \frac{7}{1}$
- (iii) $\frac{3}{3} | 729$ $\frac{3}{3} | 243$ $\frac{3}{3} | 81$ $\frac{3}{3} | 27$ $\frac{3}{3} | 9$ $\frac{3}{3} | 3$ $\frac{3}{1}$

Identify the greater number, wherever possible, in each of the following?

- (i) 4^3 or 3^4
- (ii) 5^3 or 3^5 (iii) 2^8 or 8^2
- (iv) 100^2 or 2^{100} (v) 2^{10} or 10^2

Solution:

(i) 43 or 34

$$4^3 = 4 \times 4 \times 4 = 64$$
,

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$
 Since

81 > 64 . 34 is greater than

43.

(ii) 5³ or 3⁵

$$5^3 = 5 \times 5 \times 5 = 125$$

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$$

Since 243 > 125 ∴ 35 is greater

than 53.

(iii) 28 or 82

$$2^8 = 2 \times 2 = 256$$

$$8^2 = 8 \times 8 = 64$$
 Since

greater than 28.

(iv) 1002 or 2100

$$100^2 = 100 \times 100 = 10000$$

$$2^{100} = 2 \times 2 \times 2 \times ... 100$$
 times

16384 Since 16384 > 10,000 : 2100 is greater than 1002.

(v) 210 or 102

$$10^2 = 10 \times 10 = 100$$
 Since

greater than 102.

Express each of the following as the product of powers of their prime

- (i) 648
- (ii) 405
- (iii) 540
- (iv) 3600

04	O	
2	648	$648 = 2 \times 2 \times 2 \times 3$
2	324	\times 3 \times 3 \times 3
2	162	$=2^3\times 3^4$
3	81	
3	27	
3	9	
3	3	
	1	

(ii) 405

3	405	$405 = 3 \times 3 \times 3 \times 3 \times 5$
3	135	$=3^4\times 5^1$
3	45	
3	15	
-	. 5	

(iii) 540

2	540	$540 = 2 \times 2 \times 3 \times 3$
$\overline{2}$	270	×3×5
3	135	$=2^2\times 3^3\times 5^1$
3	45	
3	15	
5	5	
	1	

(iv) 3600

Simplify: (i) 2×10^3

- (ii) $7^2 \times 2^2$
- (iii) $2^3 \times 5$
- (iv) 3×4^4
- (v) 0×10^2
- (vi) $5^2 \times 3^3$
- (vii) $2^4 \times 3^2$
- (viii) $3^2 \times 10^4$

Solution:

- (i) $2 \times 10^3 = 2 \times 10 \times 10 \times 10 = 2000$
- (ii) $7^2 \times 2^2 = 7 \times 7 \times 2 \times 2 = 196$
- (iii) $2^3 \times 5 = 2 \times 2 \times 2 \times 5 = 40$
- (iv) $3 \times 4^4 = 3 \times 4 \times 4 \times 4 \times 4 = 768$
- (v) $0 \times 10^2 = 0 \times 10 \times 10 = 0$
- (vi) $5^2 \times 3^3 = 5 \times 5 \times 3 \times 3 \times 3 = 675$
- (vii) $2^4 \times 3^2 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 144$ (viii) $3^2 \times 10^4 = 3 \times 3 \times 10 \times 10 \times 10 \times 10 = 90000$

Question 7

Simplify:

- (i) $(-4)^3$
- (ii) $(-3) \times (-2)^3$
- (iii) $(-3)^2 \times (-5)^2$ (iv) $(-2)^3 \times (-10)^3$

Solution:

- (i) $(-4)^2 = (-4) \times (-4) \times (-4) = -64 \ [\because (-a)^{odd number} = -a^{odd number}]$
- (ii) $(-3) \times (-2)^3 = (-3) \times (-2) \times (-2) \times (-2)$
- $= (-3) \times (-8) = 24$
- (iii) $(-3)^2 \times (-5)^2 = [(-3) \times (-5)]^2$
- $= 15^2 = 225 \ [\because a^m \times b^m = (ab)^m)$
- (iv) $(-2)^3 \times (-10)^3 = [(-2) \times (-10)]^3 = 20^2 = 8000 \ [\because a^m \times b^m = (ab)^m]$

Question 8

Compare the following:

- (i) 2.7×10^{12} ; 1.5×10^{8} (ii) 4
- × 10¹⁴; 3 × 10¹⁴

- (i) 2.7×10^{12} ; 1.5×10^{8}
- Here, $10^{12} > 10^8$
- $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$

(ii) 4×10^{14} ; 3×10^{17}

Here, $10^{17} > 10^{14}$

 $\therefore 4 \times 10^{14} < 3 \times 10^{17}$

Question 1:

Find the value of:

- (i) 26 (ii) 93
- (iii) 112 (iv)54

Answer:

(i)
$$2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$

(ii)
$$9^3 = 9 \times 9 \times 9 = 729$$

(iii)
$$11^2 = 11 \times 11 = 121$$

$$(iv)5^4 = 5 \times 5 \times 5 \times 5 = 625$$

Question 2:

Express the following in exponential form:

(i)
$$6 \times 6 \times 6 \times 6$$
 (ii) $t \times t$

(iii)
$$b \times b \times b \times b$$
 (iv) $5 \times 5 \times 7 \times 7 \times 7$

(v)
$$2 \times 2 \times a \times a$$
 (vi) $a \times a \times a \times c \times c \times c \times c \times d$

Answer:

(i)
$$6 \times 6 \times 6 \times 6 = 6^4$$

(ii)
$$t \times t = t^2$$

(iii)
$$b \times b \times b \times b = b^4$$

(iv)
$$5 \times 5 \times 7 \times 7 \times 7 = 5^2 \times 7^3$$

(v)
$$2 \times 2 \times a \times a = 2^2 \times a^2$$

(vi)
$$a \times a \times a \times c \times c \times c \times c \times d = a^3 c^4 d$$

Question 3:

Express the following numbers using exponential notation:

- (i) 512 (ii) 343
- (iii) 729 (iv) 3125

Answer:

(ii)
$$343 = 7 \times 7 \times 7 = 7^3$$

(iii)
$$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$$

(iv)
$$3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$$

Question 4:

Identify the greater number, wherever possible, in each of the following?

Answer:

(i)
$$4^3 = 4 \times 4 \times 4 = 64$$

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$

Therefore, $3^4 > 4^3$

(ii)
$$5^3 = 5 \times 5 \times 5 = 125$$

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$$

Therefore, 3⁵ > 5³

(iii)
$$2^8 = 2 \times 2 = 256$$

$$8^2 = 8 \times 8 = 64$$

Therefore, $2^8 > 8^2$

$$2^{100} = 1024 \times 1024$$

$$100^2 = 100 \times 100 = 10000$$

Therefore, $2^{100} > 100^2$

$$10^2 = 10 \times 10 = 100$$

Therefore, $2^{10} > 10^2$

Question 5:

Express each of the following as product of powers of their prime factors:

- (i) 648 (ii) 405
- (iii) 540 (iv) 3,600

(i)
$$648 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 = 2^3$$
. 3^4

(ii)
$$405 = 3 \times 3 \times 3 \times 3 \times 5 = 3^4$$
. 5

(iii)
$$540 = 2 \times 2 \times 3 \times 3 \times 3 \times 5 = 2^2$$
. 3³. 5

(iv)
$$3600 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 = 2^4$$
. 3^2 . 5^2

Question 6:

Simplify:

(i)
$$2 \times 10^3$$
 (ii) $7^2 \times 2^2$

(iii)
$$2^3 \times 5$$
 (iv) 3×4^4

(v)
$$0 \times 10^2$$
 (vi) $5^2 \times 3^3$

(vii)
$$2^4 \times 3^2$$
 (viii) $3^2 \times 10^4$

Answer:

(i)
$$2 \times 10^3 = 2 \times 10 \times 10 \times 10 = 2 \times 1000 = 2000$$

(ii)
$$7^2 \times 2^2 = 7 \times 7 \times 2 \times 2 = 49 \times 4 = 196$$

(iii)
$$2^3 \times 5 = 2 \times 2 \times 2 \times 5 = 8 \times 5 = 40$$

(iv)
$$3 \times 4^4 = 3 \times 4 \times 4 \times 4 \times 4 = 3 \times 256 = 768$$

(v)
$$0 \times 10^2 = 0 \times 10 \times 10 = 0$$

(vi)
$$5^2 \times 3^3 = 5 \times 5 \times 3 \times 3 \times 3 = 25 \times 27 = 675$$

(vii)
$$2^4 \times 3^2 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 16 \times 9 = 144$$

(viii)
$$3^2 \times 10^4 = 3 \times 3 \times 10 \times 10 \times 10 \times 10 = 9 \times 10000 = 90000$$

Question 7:

Simplify:

(i)
$$(-4)^3$$
 (ii) $(-3) \times (-2)^3$

(iii)
$$(-3)^2 \times (-5)^2$$
 (iv) $(-2)^3 \times (-10)^3$

Answer:

(i)
$$(-4)^3 = (-4) \times (-4) \times (-4) = -64$$

(ii)
$$(-3) \times (-2)^3 = (-3) \times (-2) \times (-2) \times (-2) = 24$$

(iii)
$$(-3)^2 \times (-5)^2 = (-3) \times (-3) \times (-5) \times (-5) = 9 \times 25 = 225$$

(iv)
$$(-2)^3 \times (-10)^3 = (-2) \times (-2) \times (-2) \times (-10) \times (-10) \times (-10)$$

$$= (-8) \times (-1000) = 8000$$

Question 8:

Compare the following numbers:

(i)
$$2.7 \times 10^{12}$$
; 1.5×10^{8}

(ii)
$$4 \times 10^{14}$$
; 3×10^{17}

(i)
$$2.7 \times 10^{12}$$
; 1.5×10^{8}

$$2.7 \times 10^{12} > 1.5 \times 10^{8}$$

(ii)
$$4 \times 10^{14}$$
; 3×10^{17}

$$3 \times 10^{17} > 4 \times 10^{14}$$

Ex 13.2:-

Question 1

Using laws of exponents, simplify and write the answer in exponential form:

- (i) $3^2 \times 3^4 \times 3^8$
- (ii) $6^{15} \div 6^{10}$
- (iii) $a^3 \times a^2$
- (iv) $7x \times 7^2$
- (v) $(5^2)^3 \div 5^3$
- (vi) $2^5 \times 5^5$
- (vii) $a^4 \times b^4$
- (viii) (34)3
- (ix) $(2^{20} \div 2^{15}) \times 2^3$ (x) $8^t \div 8^2$

Solution:

- (i) $3^2 \times 3^4 \times 3^8 = 3^{2+4+8} = 3^{14} [a^m \div a^n = a^{m+n}]$
- (ii) $6^{15} \div 6^{10} = 6^{15-10} = 6^{5} [a^{m} \div a^{n} = a^{m-n}]$
- (iii) $a^3 \times a^2 = a^{3+2} = a^5 [a^m \times a^n = a^{m+n}]$
- (iv) $7^x \times 7^2 = 7^{x+2} [a^m \times a^n = a^{m+n}]$
- (v) $(5^2)^3 \div 5^3 = 5^{2 \times 3} \div 5^3 = 5^6 \div 5^3 = 5^{6 \cdot 3} = 5^3 [(a^3)^n = a^{mn}, a^m \div a^n = a^{m-n}]$
- (vi) $2^5 \times 5^5 = (2 \times 5)^5 = 10^5 [a^m \times b^m = (ab)^m]$
- (vii) $a^4 \times b^4 = (ab)^4 [a^m \times b^m = (ab)^4]$
- (ix) $(2^{20} \div 2^{15}) \times 2^3 = 2^{20 \cdot 15} \times 2^3$
- $=2^5 \times 2^3 = 2^{5+3} = 2^8$
- (x) $8^t \div 8^2 = 8^{t-2} [a^m \div a^n = a^{m-n}]$

Question 2

Simplify and express each of the following in exponential form:

$$(i) \ \frac{2^3 \times 3^4 \times 4}{2 \times 32}$$

$$(ii) \ [(5^2)^3 \times 5^4] \div 5^7$$

(iii)
$$25^4 \div 5^3$$

(iv)
$$\frac{3 \times 7^2 \times 11^8}{21 \times 11^3}$$

$$(v) \frac{3^7}{3^4 \times 3^3}$$

$$(vi) \ 2^0 + 3^0 + 4^0$$

$$(vii)~2^0\times 3^0\times 4^0$$

$$(viii) (3^0 + 2^0) \times 5^0$$

$$(ix) \ \frac{2^8 \times a^5}{4^3 \times a^3}$$

$$(x)\left(\frac{a^5}{a^3}\right) \times a^8$$

(xi)
$$\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2}$$

$$(xii)\ (2^3\times 2)^2$$

(i)
$$\frac{2^{3} \times 3^{4} \times 4}{2 \times 32} = \frac{2^{3} \times 3^{4} \times 2^{2}}{2 \times 2^{5}}$$

$$= 2^{3} \times 2^{2} \times 2^{-1} \times 2^{-5} \times 3^{4}$$

$$= 2^{3+2-1-5} \times 3^{4} = 2^{5-6} \times 3^{4}$$

$$= 2^{-1} \times 3^{4} = \frac{3^{4}}{2}$$
(ii)
$$[(5^{2})^{3} \times 5^{4}] \div 5^{7} = [5^{2 \times 3} \times 5^{4}] \div 5^{7}$$

$$= (5^{6} \times 5^{4}) \div 5^{7} = 5^{6+4} \div 5^{7}$$

$$= 5^{10} \div 5^{7} = 5^{10-7} = 5^{3}$$
(iii)
$$25^{4} \div 5^{3} = (5^{2})^{4} \div 5^{3}$$

$$= 5^{2 \times 4} \div 5^{3} = 5^{8} \div 5^{3} = 5^{8-3} = 5^{5}$$
(iv)
$$\frac{3 \times 7^{2} \times 11^{8}}{21 \times 11^{3}} = \frac{3 \times 7 \times 7 \times 11^{8-3}}{21} = 7 \times 11^{5}$$
(v)
$$\frac{3^{7}}{3^{4} \times 3^{3}} = \frac{3^{7}}{3^{4+3}} = \frac{3^{7}}{3^{7}} = 3^{7-7} = 3^{0} \text{ or } 1$$
(vi)
$$2^{0} + 3^{0} + 4^{0} = 1 + 1 + 1 = 3 \qquad [\because a^{0} = 1]$$
(vii)
$$2^{0} \times 3^{0} \times 4^{0} = 1 \times 1 \times 1 = 1 \qquad [\because a^{0} = 1]$$
(viii)
$$(3^{0} + 2^{0}) \times 5^{0} = (1 + 1) \times 1 = 2 \times 1 = 2$$

$$[\because a^{0} = 1]$$
(ix)
$$\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}} = \frac{2^{8} \times a^{5-3}}{(2^{2})^{3}} = \frac{2^{8} \times a^{2}}{2^{6}}$$

$$= 2^{8-6} \times a^{2} = 2^{2}a^{2} = (2a)^{2}$$
(x)
$$\left(\frac{a^{5}}{a^{3}}\right) \times a^{8} = (a^{5-3}) \times a^{8} = a^{2} \times a^{8} = a^{2+8} = a^{10}$$
(xi)
$$\frac{4^{5} \times a^{8}b^{3}}{4^{5} \times a^{5}b^{2}} = 4^{5-5} \times a^{8-5}b^{3-2} = 4^{0} \times a^{3}b$$

Say true or false and justify your answer:

 $(xii) (2^3 \times 2)^2 = (2^3)^2 \times 2^2 = 2^6 \times 2^2 = 2^{6+2} = 2^8$

(i)
$$10 \times 10^{11} = 100^{11}$$

(ii)
$$2^3 > 5^2$$

(iii)
$$2^3 \times 3^2 = 6^5$$
 (iv) $3^{20} = (1000)^0$

(i)
$$10 \times 10^{11} = 10^{1+11} = 10^{12}$$

RHS =
$$100^{11} = (10^2)^{11} = 10^{22}$$

$$10^{12} \neq 10^{22}$$

∴ Statement is false.

(ii)
$$2^3 > 5^2$$

LHS =
$$2^3$$
 = 8

RHS =
$$5^2$$
2 = 25

$$2^3 < 5^2$$

Thus, the statement is false.

(iii)
$$2^3 \times 3^2 = 6^5$$

LHS =
$$2^33 \times 3^2 = 8 \times 9 = 72$$

RHS =
$$6^5$$
 = $6 \times 6 \times 6 \times 6 \times 6 = 7776$

∴ The statement is false.

(iv)
$$3^{\circ} = (1000)^{\circ}$$

$$\Rightarrow$$
 1 = 1 True [: a⁰ = 1]

Question 4

Express each of the following as a product of prime factors only in exponential form: (i) 108×192

- (ii) 270
- (iii) 729×64 (iv) 768

2	108	2	192
2	54	2	96
3	27	2	48
3	9	2	24
3	3	2	12
	1	$\overline{2}$	6
		3	3
			1

(ii)
$$270 = 2 \times 3 \times 3 \times 3 \times 5$$

= $2 \times 5 \times 3^3$
= $10 \times 3^3 \times 5$

$$\begin{array}{c|cccc} 2 & 270 \\ \hline 3 & 135 \\ \hline 3 & 45 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline & 1 \\ \end{array}$$

3	729	2	64
3	243	2	32
3	81	2	16
3	27	2	8
3	9	2	4
3	3	2	2
	1		1

$$(iv)~768 = 2\times2\times2\times2\times2\times2\times2\times2\times3$$

$$= 28 \times 3$$
$$= 3 \times 28$$

768
384
192
96
48
24
12
6
3
1

Simplify:

$$(i) \ \frac{(2^5)^2 \times 7^3}{8^3 \times 7} \qquad (ii) \ \frac{25 \times 5^2 \times t^8}{10^3 \times t^4}$$

$$(iii) \ \frac{3^5 \times 10^5 \times 25}{5^7 \times 6^5}$$

(i)
$$\frac{(2^{5})^{2} \times 7^{3}}{8^{3} \times 7} = \frac{2^{5 \times 2} \times 7^{3-1}}{(2^{3})^{3}}$$

$$= \frac{2^{10} \times 7^{2}}{2^{9}} = 2^{10-9} \times 7^{2}$$

$$= 2 \times 7^{2} = 2 \times 49 = 98$$
(ii)
$$\frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}} = \frac{5^{2} \times 5^{2} \times t^{8-4}}{5^{3} \times 2^{3}}$$

$$= \frac{5^{4} \times t^{4}}{5^{3} \times 2^{3}} = \frac{5^{4-3} \times t^{4}}{2^{3}}$$

$$= \frac{5 \times t^{4}}{2^{3}} = \frac{5t^{4}}{8}$$
(iii)
$$\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}} = \frac{3^{5} \times (2 \times 5)^{5} \times 5 \times 5}{5^{7} \times 2^{5} \times 3^{5}}$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5} \times 5^{2}}{5^{7} \times 2^{5} \times 3^{5}} (a \times b)^{m} = (a^{m} \times b^{m})$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5+2}}{5^{7} \times 2^{5} \times 3^{5}} (a^{m} \times a^{n} = a^{m+n})$$

$$= \frac{3^{5} \times 2^{2} \times 5^{7}}{5^{7} \times 2^{5} \times 3^{5}} = 3^{5-5} \times 2^{5-5} \times 5^{7-7}$$

$$(\because a^{m} + a^{n} = a^{m-n})$$

$$= 3^{0} \times 2^{0} \times 5^{0} = 1 \times 1 \times 1 = 1$$

Question 1:

Using laws of exponents, simplify and write the answer in exponential form:

(i)
$$3^2 \times 3^4 \times 3^8$$
 (ii) $6^{15} \div 6^{10}$ (iii) $a^3 \times a^2$

(iv)
$$7^{x} \times 7^{2}$$
 (v) $5^{2^{3}} \div 5^{3}$ (vi) $2^{5} \times 5^{5}$

(vii)
$$a^4 \times b^4$$
 (viii) $(3^4)^3$

(ix)
$$(2^{20} \div 2^{15}) \times 2^3$$
 (x) $8^t \div 8^2$

(i)
$$3^2 \times 3^4 \times 3^8 = (3)^{2+4+8} (a^m \times a^n = a^{m+n})$$

(ii)
$$6^{15} \div 6^{10} = (6)^{15-10} (a^m \div a^n = a^{m-n})$$

$$= 6^{5}$$

(iii)
$$a^3 \times a^2 = a^{(3+2)} (a^m \times a^n = a^{m+n})$$

(iv)
$$7^x + 7^2 = 7^{x+2} (a^m \times a^n = a^{m+n})$$

$$(v) (5^2)^3 \div 5^3$$

$$= 5^{2 \times 3} \div 5^{3} (a^{m})^{n} = a^{mn}$$

$$= 5^6 \div 5^3$$

$$= 5^{(6-3)} (a^m \div a^n = a^{m-n})$$

$$= 5^3$$

(vi)
$$2^5 \times 5^5$$

$$= (2 \times 5)^5 [a^m \times b^m = (a \times b)^m]$$

$$=10^{5}$$

(vii)
$$a^4 \times b^4$$

$$= (ab)^4 [a^m \times b^m = (a \times b)^m]$$

(VIII)
$$(3^4)^3 = 3^{4 \times 3} = 3^{12} (a^m)^n = a^{mn}$$

(ix)
$$(2^{20} \div 2^{15}) \times 2^3$$

$$= (2^{20-15}) \times 2^3 (a^m \div a^n = a^{m-n})$$

$$= 2^5 \times 2^3$$

$$= (2^{5+3}) (a^m \times a^n = a^{m+n})$$

$$= 2^8$$

(x)
$$8^t \div 8^2 = 8^{(t-2)} (a^m \div a^n = a^{m-n})$$

Question 2:

Simplify and express each of the following in exponential form:

$$\frac{2^{3} \times 3^{4} \times 4}{3 \times 32} (ii) \left[5^{2^{3}} \times 5^{4} \right] \div 5^{7} (iii) 25^{4} \div 5^{3}$$

$$\frac{3 \times 7^{2} \times 11^{8}}{2^{4} \times 2^{3}} \frac{3^{7}}{2^{4} \times 2^{3}}$$

$$\frac{3 \times 7^2 \times 11^8}{21 \times 11^3} (v) \frac{3^7}{3^4 \times 3^3} (vi) 2^0 + 3^0 + 4^0$$

(vii)
$$2^{0} \times 3^{0} \times 4^{0}$$
 (viii) $(3^{0} + 2^{0}) \times 5^{0}$ (ix) $\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}$

$$(x) \left(\frac{a^5}{a^3}\right) \times a^8 \frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2} (xii) \left(2^3 \times 2\right)^2$$

Answer:

(i)

$$\frac{2^{3} \times 3^{4} \times 4}{3 \times 32} = \frac{2^{3} \times 3^{4} \times 2 \times 2}{3 \times 2 \times 2 \times 2 \times 2 \times 2} = \frac{2^{3} \times 3^{4} \times 2^{2}}{3 \times 2^{5}}$$

$$= \frac{2^{3+2} \times 3^{4}}{3 \times 2^{5}} \qquad (a^{m} \times a^{n} = a^{m+n})$$

$$= \frac{2^{5} \times 3^{4}}{3 \times 2^{5}}$$

$$= 2^{5-5} \times 3^{4-1} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= 2^{0}3^{3} = 1 \times 3^{3} = 3^{3}$$

(ii)
$$[(5^2)^3 \times 5^4] \div 5^7$$

= $[5^2 \times 3 \times 5^4] \div 5^7 (a^m)^n = a^{mn}$
= $[5^6 \times 5^4] \div 5^7$
= $[5^{6+4}] \div 5^7 (a^m \times a^n = a^{m+n})$
= $5^{10} \div 5^7$
= $5^{10-7} (a^m \div a^n = a^{m-n})$
= 5^3
(iii) $25^4 \div 5^3 = (5 \times 5)^4 \div 5^3$
= $(5^2)^4 \div 5^3$
= $5^2 \times 4 \div 5^3 (a^m)^n = a^{mn}$
= $5^8 \div 5^3$

$$= 5^{8-3} (a^{m} \div a^{n} = a^{m-n})$$

$$= 5^{5}$$
(iv)
$$\frac{3 \times 7^{2} \times 11^{8}}{21 \times 11^{3}} = \frac{3 \times 7^{2} \times 11^{8}}{3 \times 7 \times 11^{3}}$$

$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= 3^{0} \times 7^{1} \times 11^{5}$$

$$= 1 \times 7 \times 11^{5} = 7 \times 11^{5}$$
(v)
$$\frac{3^{7}}{3^{4} \times 3^{3}} = \frac{3^{7}}{3^{4+3}} \qquad (a^{m} \times a^{n} = a^{m+n})$$

$$= \frac{3^{7}}{3^{7}} = 3^{7-7} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= 3^{0} = 1$$
(vi) $2^{0} + 3^{0} + 4^{0} = 1 + 1 + 1 = 3$
(vii) $2^{0} \times 3^{0} \times 4^{0} = 1 \times 1 \times 1 = 1$
(viii) $(3^{0} + 2^{0}) \times 5^{0} = (1 + 1) \times 1 = 2$
(ix)
$$\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}} = \frac{2^{8} \times a^{5}}{(2 \times 2)^{3} \times a^{3}} = \frac{2^{8} \times a^{5}}{(2^{2})^{3} \times a^{3}}$$

$$= \frac{2^{8} \times a^{5}}{2^{6} \times a^{3}}$$

$$= 2^{8} \times a^{5} = 2^{8-6} \times a^{5-3} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= 2^{2} \times a^{2} = (2 \times a)^{2} \qquad [a^{m} \times b^{m} = (a \times b)^{m}]$$

$$= (2a)^{2}$$

(x)

$$\begin{pmatrix} a^{5} \\ a^{3} \end{pmatrix} \times a^{8} = a^{5-3} \times a^{8} \qquad (a^{m} \div a^{n} = a^{m-n})$$

$$= a^{2} \times a^{8}$$

$$= a^{2+8} = a^{10} \qquad (a^{m} \times a^{n} = a^{m+n})$$
(xi)

$$\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2} = 4^{5-5} \times a^{8-5} \times b^{3-2} \qquad (a^m \div a^n = a^{m-n})$$
$$= 4^0 \times a^3 \times b^1 = 1 \times a^3 \times b = a^3 b$$

(xii)
$$(2^3 \times 2)^2 = (2^{3+1})^2 (a^m \times a^n = a^{m+n})$$

= $(2^4)^2 = 2^{4 \times 2} (a^m)^n = a^{mn}$
= 2^8

Question 3:

Say true or false and justify your answer:

(i)
$$10 \times 10^{11} = 100^{11}$$
 (ii) $2^3 > 5^2$

(iii)
$$2^3 \times 3^2 = 6^5$$
 (iv) $3^0 = (1000)^0$

Answer:

(i)
$$10 \times 10^{11} = 100^{11}$$

L.H.S. =
$$10 \times 10^{11} = 10^{11+1} (a^m \times a^n = a^{m+n})$$

= 10^{12}

R.H.S. =
$$100^{11} = (10 \times 10)^{11} = (10^2)^{11}$$

= $10^{2 \times 11} = 10^{22} (\partial^m)^n = \partial^{mn}$

Therefore, the given statement is false.

(ii)
$$2^3 > 5^2$$

L.H.S. =
$$2^3 = 2 \times 2 \times 2 = 8$$

R.H.S. =
$$5^2 = 5 \times 5 = 25$$

As
$$25 > 8$$
,

Therefore, the given statement is false.

(iii)
$$2^3 \times 3^2 = 6^5$$

L.H.S. =
$$2^3 \times 3^2 = 2 \times 2 \times 2 \times 3 \times 3 = 72$$

R.H.S. =
$$6^5 = 7776$$

As L.H.S. ≠ R.H.S.,

Therefore, the given statement is false.

(iv)
$$3^0 = (1000)^0$$

L.H.S. =
$$3^0 = 1$$

R.H.S. =
$$(1000)^0 = 1 = L.H.S.$$

Therefore, the given statement is true.

Question 4:

Express each of the following as a product of prime factors only in exponential form:

Answer:

$$= (2 \times 2 \times 3 \times 3 \times 3) \times (2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3)$$

$$= (2^2 \times 3^3) \times (2^6 \times 3)$$

$$= 2^{6+2} \times 3^{3+1} (a^m \times a^n = a^{m+n})$$

$$= 2^8 \times 3^4$$

(ii)
$$270 = 2 \times 3 \times 3 \times 3 \times 5 = 2 \times 3^3 \times 5$$

(iii)
$$729 \times 64 = (3 \times 3 \times 3 \times 3 \times 3 \times 3) \times (2 \times 2 \times 2 \times 2 \times 2 \times 2)$$

$$= 3^6 \times 2^6$$

(iv)
$$768 = 2 \times 3 = 2^8 \times 3$$

Question 5:

Simplify:

$$\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}_{\text{(ii)}} \frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}}_{\text{(iii)}} \frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}$$

Answer:

(i)

$$\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7} = \frac{2^{5 \times 2} \times 7^{3}}{\left(2 \times 2 \times 2\right)^{3} \times 7} \qquad \left[\left(a^{m}\right)^{n} = a^{mn}\right]$$

$$= \frac{2^{10} \times 7^{3}}{\left(2^{3}\right)^{3} \times 7} = \frac{2^{10} \times 7^{3}}{2^{3 \times 3} \times 7} \qquad \left[\left(a^{m}\right)^{n} = a^{mn}\right]$$

$$= \frac{2^{10} \times 7^{3}}{2^{9} \times 7} = 2^{10 - 9} \times 7^{3 - 1} \qquad \left(a^{m} \div a^{n} = a^{m - n}\right)$$

$$= 2^{1} \times 7^{2} = 2 \times 7 \times 7 = 98$$
(ii)
$$\frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}} = \frac{5 \times 5 \times 5^{2} \times t^{8}}{\left(5 \times 2\right)^{3} \times t^{4}} \qquad \left(a \times b\right)^{m} = \left(a^{m} \times b^{m}\right)$$

$$= \frac{5^{1 + 1 + 2} \times t^{8}}{5^{3} \times 2^{3} \times t^{4}} = \frac{5^{4 - 3} \times t^{8 - 4}}{2^{3}} \qquad \left(a^{m} \times a^{n} = a^{m - n}\right)$$

$$= \frac{5^{1} \times t^{4}}{2 \times 2 \times 2} = \frac{5t^{4}}{8}$$
(iii)
$$\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}} = \frac{3^{5} \times \left(2 \times 5\right)^{5} \times 5 \times 5}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a \times b\right)^{m} = \left(a^{m} \times b^{m}\right)$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5 \times 2}}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a^{m} \times a^{n} = a^{m + n}\right)$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5 \times 2}}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a^{m} \times a^{n} = a^{m + n}\right)$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5 \times 2}}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a^{m} \times a^{n} = a^{m + n}\right)$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5 \times 2}}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a^{m} \times a^{n} = a^{m + n}\right)$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5 \times 2}}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a^{m} \times a^{n} = a^{m + n}\right)$$

$$= \frac{3^{5} \times 2^{5} \times 5^{5 \times 2}}{5^{7} \times 2^{5} \times 3^{5}} \qquad \left(a^{m} \times a^{n} = a^{m + n}\right)$$

 $=3^{\circ}\times2^{\circ}\times5^{\circ}=1\times1\times1=1$

Ex 13.3:-

Question 1.

Write the following numbers in the expanded forms:

279404, 3006194, 2806196, 120719, 20068

Solution:

- (i) $279404 = 2 \times 100000 + 7 \times 10000 + 9 \times 1000 + 4 \times 100 + 0 \times 10 + 4$
- $= 2 \times 10^5 + 7 \times 10^4 + 9 \times 10^{32} + 4 \times 10^2 + 0 \times 10^1 + 4 \times 10^0$
- (ii) $3006194 = 3 \times 1000000 + 0 \times 100000 + 0 \times 10000 + 6 \times 1000 + 1 \times 100 + 9 \times 10 + 4$
- $= 3 \times 10^6 + 0 \times 10^5 + 0 \times 10^4 + 6 \times 10^3 + 1 \times 10^2 + 9 \times 10^1 + 4 \times 10^0$
- (iii) $2806196 = 2 \times 1000000 + 8 \times 100000 + 0 \times 10000 + 6 \times 1000 + 1 \times 100 + 9 \times 10 + 6$
- $= 2 \times 10^6 + 8 \times 10^5 + 0 \times 10^4 + 6 \times 10^3 + 1 \times 10^2 + 9 \times 10^1 + 6 \times 10^0$
- (iv) $120719 = 1 \times 100000 + 2 \times 10000 + 0 \times 1000 + 7 \times 100 + 1 \times 10 + 9$
- $= 1 \times 10^5 + 2 \times 10^4 + 0 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 9 \times 10^0$
- (v) $20068 = 2 \times 10000 + 0 \times 1000 + 0 \times 100 + 6 \times 10 + 8 = 2 \times 10^4 + 0 \times 10^3 + 0 \times 10^2 + 6 \times 10^4 + 8 \times 10^6$

Question 2

Find the number from each of the following expanded forms:

- (a) $8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$
- (b) $4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$
- (c) $3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0$ (d) $9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1$

- (a) $8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 101 + 5 \times 10^0$
- $= 8 \times 10000 + 6 \times 1000 + 0 \times 100 + 4 \times 10 + 5 \times 1 =$

$$80000 + 6000 + 0 + 40 + 5 = 86045$$

- (b) $4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$
- $= 4 \times 100000 + 5 \times 1000 + 3 \times 100 + 2 \times 1 =$

$$400000 + 5000 + 300 + 2 = 405302$$

- (c) $3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0$
- $= 3 \times 10000 + 7 \times 100 + 5 \times 1 = 30000$
- + 700 + 5 = 30705
- (d) $9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1$
- $= 9 \times 100000 + 2 \times 100 + 3 \times 10$
- = 900000 + 200 + 30 = 900230

Express the following numbers in standard form:

- (i) 5,00,00,000
- (ii) 70,00,000
- (iii) 3,18,65,00,000
- (iv) 3,90,878
- (v) 39087.8 (vi) 3908.78

Solution:

- (i) $5,00,00,000 = 5 \times 107^7$
- (ii) $70,00,000 = 7 \times 10^6$
- (iii) $3,18,65,00,000 = 3.1865 \times 10^9$
- (iv) $3,90,878 = 3.90878 \times 10^{5}$
- (v) $39087.8 = 3.90878 \times 10^{4}$
- (vi) $3908.78 = 3.90878 \times 10^{3}$

Question 4

Express the number appearing in the following statements in standard form:

- (a) The distance between Earth and Moon is 384.0. 000 m.
- (b) Speed of light in vacuum is 300,000,000 m/s.
- (c) Diameter of the Earth is 1,27,56,000 m.
- (d) Diameter of the Sun is 1,400,000,000 m.
- (e) In a galaxy there are an average 100,000,000,000 stars.
- (f) The universe is estimated to be about 12,000,000,000 years old.
- (g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000,000,000 m.
- (h) 60,230,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.
- (i) The Earth has 1,353,000,000 cubic km of sea water.
- (j) The population of India was about 1,027,000,000 in March 2001.

- (a) $384,000,000 \text{ m} = 3.84 \times 10^8 \text{ m}$
- (b) $300,000,000 \text{ m/s} = 3 \times 10^{8} \text{ m/s}$
- (c) $1,27,56,000 \text{ m} = 1.2756 \times 10^{72} \text{ m}$
- (d) $1,400,000,000 \text{ m} = 1.4 \times 10^9 \text{ m}$
- (e) 100,000,000,000 stars = 1×10^{11} stars
- (f) 12,000,000,000 years old = 1.2×10^{10} years old
- (g) 300,000,000,000,000,000,000 m = 3×10^{20} m
- (h) 60, 230, 000, 000, 000, 000, 000, 000 molecules = 6.023×10^{22} molecules
- (i) 1,353,000,000 cubic km = 1.353×10^9 cubic km
- (j) $1,0,27,000,000 = 1.027 \times 10^9$

Question 1:

Write the following numbers in the expanded forms:

279404, 3006194, 2806196, 120719, 20068

Answer:

$$279404 = 2 \times 10^{5} + 7 \times 10^{4} + 9 \times 10^{3} + 4 \times 10^{2} + 0 \times 10^{1} + 4 \times 10^{0}$$

$$3006194 = 3 \times 10^{6} + 0 \times 10^{5} + 0 \times 10^{4} + 6 \times 10^{3} + 1 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0}$$

$$2806196 = 2 \times 10^{6} + 8 \times 10^{5} + 0 \times 10^{4} + 6 \times 10^{3} + 1 \times 10^{2} + 9 \times 10^{1} + 6 \times 10^{0}$$

$$120719 = 1 \times 10^{5} + 2 \times 10^{4} + 0 \times 10^{3} + 7 \times 10^{2} + 1 \times 10^{1} + 9 \times 10^{0}$$

$$20068 = 2 \times 10^{4} + 0 \times 10^{3} + 0 \times 10^{2} + 6 \times 10^{1} + 8 \times 10^{0}$$

Question 2:

Find the number from each of the following expanded forms:

(a)
$$8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

(b)
$$4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$$

(c)
$$3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0$$

(d)
$$9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1$$

Answer:

(a)
$$8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

(b)
$$4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$$

(c)
$$3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0$$

$$= 30705$$

(d)
$$9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1$$

= 900230

Question 3:

Express the following numbers in standard form:

(v) 39087.8 (vi) 3908.78

(i)
$$500000000 = 5 \times 10^7$$

(ii)
$$7000000 = 7 \times 10^6$$

- (iii) $3186500000 = 3.1865 \times 10^9$
- (iv) $390878 = 3.90878 \times 10^5$
- (v) $39087.8 = 3.90878 \times 10^4$
- (vi) $3908.78 = 3.90878 \times 10^3$

Question 4:

Express the number appearing in the following statements in standard form.

- (a) The distance between Earth and Moon is 384, 000, 000 m.
- (b) Speed of light in vacuum is 300, 000, 000 m/s.
- (c) Diameter of the Earth is 1, 27, 56, 000 m.
- (d) Diameter of the Sun is 1, 400, 000, 000 m.
- (e) In a galaxy there are on an average 100, 000, 000, 000 stars.
- (f) The universe is estimated to be about 12, 000, 000, 000 years old.
- (g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300, 000, 000, 000, 000, 000, 000 m.
- (h) 60, 230, 000, 000, 000, 000, 000 molecules are contained in a drop of water weighing 1.8 gm.
- (i) The earth has 1, 353, 000, 000 cubic km of sea water.
- (j) The population of India was about 1, 027, 000, 000 in March, 2001.

- (a) 3.84×10^8 m
- (b) $3 \times 10^8 \text{ m/s}$
- (c) 1.2756×10^7 m
- (d) 1.4×10^9 m
- (e) 1 × 10¹¹ stars
- (f) 1.2×10^{10} years
- (q) 3×10^{20} m
- (h) 6.023×10^{22}
- (i) 1.353 × 109 cubic km
- (j) 1.027×10^9