QXD0013 - Sistemas Operacionais Gerenciamento de Memória II

Marcos Dantas Ortiz¹

¹Universidade Federal do Ceará, Brazil

10/10/2022

Memória Virtual

- Endereçamento → Abstração → Registradores-base/-limite
- Como gerenciar softwares que demandam muita memória?
- Possível solução: sobreposição (overlay)
 - \circ Gerenciador de sobreposição \to Carregado inicialmente
 - Programa dividido em módulos → Sobreposições
 - Troca e coexistência de sobreposições: HD ↔ Memória
 - Troca realizada pelo SO
 - \circ Divisão do programa o Programador o + complexidade

Memória Virtual

- Método concebido por Fotheringham em 1961: Memória Virtual
- Generalização do conceito de registradores-base/-limite
- Espaço de endereçamento dividido em blocos: Páginas
 - o Cada página: série contínua de endereços
 - Mapeadas na memória física
 - Nem todas presentes na memória física
- Quando programa referencia endereçamento:
 - Página mapeada → Hardware executa mapeamento
 - \circ Página não mapeada \to SO alertado
- Também apropriado para ambientes com multiprogramação
 - o Troca de CPU durante carregamento de página

Paginação

- Técnica utilizada pela maioria dos sistemas com memória virtual
- Cada programa
 - o Conjunto de endereços virtuais = Espaço de endereçamento virtual
- Sem memória virtual: Virtual = Físico
 - Ler/Escrever → Direto no barramento de memória
- Com memória virtual
 - Endereço virtual → Memory Management Unit (MMU)
 - \circ MMU: Mapeamento Virtual \rightarrow Físico

Paginação

Maziero, C. A. (2014). Sistemas operacionais: conceitos e mecanismos. Livro aberto.

Memória Virtual - Abordagens

Fonte: Maziero, C. A. (2014). Sistemas operacionais: conceitos e mecanismos. Livro aberto.

Paginação - Tradução de Endereços

Fonte: Maziero, C. A. (2014). Sistemas operacionais: conceitos e mecanismos. Livro aberto.

- Endereços virtuais de 16 bits (64KB)
- Apenas 32KB de memória física
- Memória física dividida em molduras
- Memória virtual
 - o Divisão em páginas (pages)
 - Cada página = 4KB
- Memória física
 - Divisão em molduras (page frames)
 - o Cada moldura de página = 4KB
- HD ↔ Memória: Páginas completas

- Instrução: MOV REG,0
 - \circ Endereço $0 \to MMU$
 - \circ Endereço $0 \rightarrow Moldura 2$
 - Instrução efetiva: MOV REG.8192
- Instrução: MOV REG,32780
 - Endereço 32780 → MMU
 - Não mapeada
 - \circ MMU: Falta de página \rightarrow SO
 - o SO salva uma moldura no HD
 - SO carrega página na moldura

- Instrução: MOV REG,0
 - \circ Endereço $0 \rightarrow MMU$
 - \circ Endereço $0 \rightarrow Moldura 2$
 - Instrução efetiva:
 MOV REG.8192
- Instrução: MOV REG,32780
 - Endereço 32780 → MMU
 - Não mapeada
 - \circ MMU: Falta de página \rightarrow SO
 - o SO salva uma moldura no HD
 - o SO carrega página na moldura

- Instrução: MOV REG,0
 - \circ Endereço $0 \rightarrow MMU$
 - \circ Endereço $0 \rightarrow Moldura 2$
 - Instrução efetiva: MOV REG.8192
- Instrução: MOV REG,32780
 - Endereço 32780 → MMU
 - Não mapeada
 - \circ MMU: Falta de página \rightarrow SO
 - o SO salva uma moldura no HD
 - o SO carrega página na moldura

- Instrução: MOV REG,0
 - \circ Endereço $0 \rightarrow MMU$
 - \circ Endereço $0 \rightarrow Moldura 2$
 - Instrução efetiva:
 MOV REG.8192
- Instrução: MOV REG,32780
 - Endereço 32780 → MMU
 - Não mapeada
 - \circ MMU: Falta de página \rightarrow SO
 - o SO salva uma moldura no HD
 - o SO carrega página na moldura

- Instrução: MOV REG,0
 - \circ Endereço $0 \rightarrow MMU$
 - \circ Endereço $0 \rightarrow Moldura 2$
 - Instrução efetiva:
 MOV REG.8192
- Instrução: MOV REG,32780
 - Endereço 32780 → MMU
 - Não mapeada
 - \circ MMU: Falta de página \rightarrow SO
 - o SO salva uma moldura no HD
 - o SO carrega página na moldura

- Instrução: MOV REG,0
 - \circ Endereço $0 \to MMU$
 - \circ Endereço $0 \rightarrow Moldura 2$
 - Instrução efetiva:
 MOV REG.8192
- Instrução: MOV REG,32780
 - Endereço 32780 → MMU
 - Não mapeada
 - \circ MMU: Falta de página \rightarrow SO
 - SO salva uma moldura no HD
 - o SO carrega página na moldura

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - o Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - o Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - o Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - o Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

- Duas partes:
 - 4 bits → Página (16 páginas)
 - 12 bits → Deslocamento (2¹² posições)
- Tabela de páginas:
 - Posição da página
 - Mapeado/Não Mapeado
- Endereço de 15 bits da memória física

Resumo - Paginação

Fonte: Maziero, C.

A. (2014). Sistemas operacionais: conceitos e mecanismos. Livro aberto.

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - o Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - o Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - o Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

- Tamanho comum: 32 bits
- Campo mais importante: número da moldura de página
- Bit de mapeamento: Se igual a zero → interrupção
- Quais acessos permitidos: 2 ou 3 bits
- Indica se a página foi modificada
 - \circ Escrita na página ightarrow Igual a 1
 - Sincronização Memória ↔ HD
- Indica se a página está sendo referenciada
 - o Escolha da página a ser substituída em caso de falta
- Controla uso do mecanismo de cache
 - o Importante para E/S mapeada em memória

Paginação

- Tabela não possui informação dos endereços em disco
- Somente informações para o hardware realizar tradução
- Outras informações controladas pelo SO (software)
- Memória Virtual \rightarrow Cria abstração
 - Espaço de endereçamento virtual = abstração da memória física
 - o Assim como processo é para CPU

Acelerando Paginação

- Acabamos de ver os princípios básicos da memória virtual e da paginação.
- Em qualquer sistema de paginação, duas questões fundamentais precisam ser abordadas:
 - O mapeamento do endereço virtual para o endereço físico precisa ser rápido.
 - Se o espaço do endereço virtual for grande, a tabela de páginas será grande.

Acelerando Paginação

- Mapeamento deve ser rápido
 - É uma consequência do fato de que o **mapeamento virtual-físico** precisa ser feito em cada referência de memória.
- Tabela proporcional ao endereçamento virtual
 - Decorre do fato de que todos os computadores modernos usam endereços virtuais de pelo menos 32 bits, com 64 bits tornando-se a norma para computadores de mesa e laptops.
 - \circ 4KB de página + 32 bits endereçamento o 1 milhão de páginas
 - Uma tabela por processo (lembre-se de que cada processo precisa da sua própria tabela de páginas. Por que?)

Acelerando Paginação

- Mapeamento deve ser rápido
 - É uma consequência do fato de que o mapeamento virtual-físico precisa ser feito em cada referência de memória.
- Tabela proporcional ao endereçamento virtual
 - Decorre do fato de que todos os computadores modernos usam endereços virtuais de pelo menos 32 bits, com 64 bits tornando-se a norma para computadores de mesa e laptops.
 - \circ 4KB de página + 32 bits endereçamento o 1 milhão de páginas
 - Uma tabela por processo (lembre-se de que cada processo precisa da sua própria tabela de páginas. (Porque ele tem seu próprio espaço de endereço virtual).)

- Vamos examinar agora esquemas amplamente implementados para acelerar a paginação e lidar com grandes espaços de endereços virtuais
- O ponto de partida da maioria das técnicas de otimização é o fato de a tabela de páginas estar na memória.
- Na memória
 - o 2x mais lento
- Sob essas condições, ninguém usaria a paginação.
- Qual a solução?

 A solução que foi concebida é equipar os computadores com um pequeno dispositivo de hardware para <u>mapear</u> endereços virtuais para endereços físicos sem ter de passar pela tabela de páginas.

Qual é o propósito do translation lookaside buffer (TLB)?

- Qual é o propósito do translation lookaside buffer (TLB)?
 - O TLB é um cache que contém as entradas da tabela de página que têm sido mais usados recentemente.
 - O objetivo é evitar que, na maioria das vezes, ter de ir para o disco para recuperar uma entrada da tabela de página

Acelerando Paginação - TLB

Valid	Virtual page	Modified	Protection	Page frame
1	140	1	RW	31
1	20	0	RX	38
1	130	1	RW	29
1	129	1	RW	62
1	19	0	RX	50
1	21	0	RX	45
1	860	1	RW	14
1	861	1	RW	75

- Vamos ver agora como a TLB funciona.
 - Quando um endereço virtual é apresentado para a MMU para tradução, o hardware primeiro confere para ver se o seu número de página virtual está presente na TLB comparando-o com todas as entradas simultaneamente (isto é, em paralelo).
 - É necessário um hardware especial para realizar isso, que todas as MMUs com TLBs têm.

Acelerando Paginação - SW TLB

- Vantagem quando a TLB é grande \rightarrow MMU mais simples
- Estratégias para melhora do desempenho:
 - o Reduzir número e custo de page miss
 - Antecipar página a serem carregadas
 - Cache maior com entradas do tipo TLB
- soft miss x hard miss