Greedy Algorithms, Independence Systems, and Matroids.

Endre Boros 26:711:653: Discrete Optimization

```
(M0) \emptyset \in \mathcal{F}
(M1) If X \subseteq Y \in \mathcal{F} then X \in \mathcal{F}
```

- ▶ Sets in \mathcal{F} are called **independent**, while those in $2^E \setminus \mathcal{F}$ are called **dependent**.
- ▶ Maximal independent sets are called **bases**. The set of bases of \mathcal{F} is denoted by $\mathcal{B} \subseteq \mathcal{F}$.

▶ A hypergraph (E, \mathcal{F}) , $\mathcal{F} \subseteq 2^E$ is called an **independence system** if it satisfies the following two axioms:

```
(M0) \ \emptyset \in \mathcal{F}
```

(M1) If $X \subseteq Y \in \mathcal{F}$ then $X \in \mathcal{F}$.

- ▶ Sets in \mathcal{F} are called **independent**, while those in $2^E \setminus \mathcal{F}$ are called **dependent**.
- ▶ Maximal independent sets are called **bases**. The set of bases of \mathcal{F} is denoted by $\mathcal{B} \subseteq \mathcal{F}$.

```
(M0) \emptyset \in \mathcal{F}
(M1) If X \subseteq Y \in \mathcal{F} then X \in \mathcal{F}.
```

- ▶ Sets in \mathcal{F} are called **independent**, while those in $2^E \setminus \mathcal{F}$ are called **dependent**.
- ▶ Maximal independent sets are called **bases**. The set of bases of \mathcal{F} is denoted by $\mathcal{B} \subseteq \mathcal{F}$.

```
(M0) \emptyset \in \mathcal{F}
(M1) If X \subseteq Y \in \mathcal{F} then X \in \mathcal{F}.
```

- ▶ Sets in \mathcal{F} are called **independent**, while those in $2^E \setminus \mathcal{F}$ are called **dependent**.
- ▶ Maximal independent sets are called **bases**. The set of bases of \mathcal{F} is denoted by $\mathcal{B} \subseteq \mathcal{F}$.

```
(M0) \emptyset \in \mathcal{F}
(M1) If X \subseteq Y \in \mathcal{F} then X \in \mathcal{F}.
```

- ▶ Sets in \mathcal{F} are called **independent**, while those in $2^E \setminus \mathcal{F}$ are called **dependent**.
- ▶ Maximal independent sets are called **bases**. The set of bases of \mathcal{F} is denoted by $\mathcal{B} \subseteq \mathcal{F}$.

- \blacktriangleright $\{a,b\}$ is a maximal hyperedge edge
 - $lackbox{b} \{b,c,d\}$ is another maximal edge
 - $\{d, e\}$ is third
- $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- a e
- $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases

- $E = \{a, b, c, d, e\}$
- $ightharpoonup \{a,b\}$ is a maximal hyperedge edge
- \blacktriangleright $\{b, c, d\}$ is another maximal edge
- \blacktriangleright $\{d, e\}$ is third maximal edge
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- $\triangleright \mathcal{B} = \{ab, bcd, de\}$ is the set of bases

- $E = \{a, b, c, d, e\}$
- $\blacktriangleright~\{a,b\}$ is a maximal hyperedge edge
- $ightharpoonup \{b,c,d\}$ is another maximal edge
- $\{d, e\}$ is third maximal edge
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- $\triangleright \mathcal{B} = \{ab, bcd, de\}$ is the set of bases

- $E = \{a, b, c, d, e\}$
- $ightharpoonup \{a,b\}$ is a maximal hyperedge edge
- $ightharpoonup \{b,c,d\}$ is another maximal edge
- $ightharpoonup \{d,e\}$ is third maximal edge
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- $\triangleright \mathcal{B} = \{ab, bcd, de\}$ is the set of bases

- $E = \{a, b, c, d, e\}$
- $ightharpoonup \{a,b\}$ is a maximal hyperedge edge
- $ightharpoonup \{b,c,d\}$ is another maximal edge
- \blacktriangleright $\{d, e\}$ is third maximal edge
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases

- $E = \{a, b, c, d, e\}$
- $ightharpoonup \{a,b\}$ is a maximal hyperedge edge
- $ightharpoonup \{b,c,d\}$ is another maximal edge
- $ightharpoonup \{d, e\}$ is third maximal edge
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases

Maximum Weight Independent Set Problem

▶ Given an independence system (E, \mathcal{F}) $(\mathcal{F} \subseteq 2^E)$ and nonnegative real weights $c : \mathcal{F} \mapsto \mathbb{R}_+$, find an independent set (a hyperedge) $F \in \mathcal{F}$ such that

$$c(F) = \sum_{e \in F} c(e)$$

is as large as possible.

► MWISP:

$$\max_{F \in \mathcal{F}} c(F)$$

Maximum Weight Independent Set Problem

▶ Given an independence system (E, \mathcal{F}) $(\mathcal{F} \subseteq 2^E)$ and nonnegative real weights $c : \mathcal{F} \mapsto \mathbb{R}_+$, find an independent set (a hyperedge) $F \in \mathcal{F}$ such that

$$c(F) = \sum_{e \in F} c(e)$$

is as large as possible.

► MWISP:

$$\max_{F \in \mathcal{F}} c(F)$$

- $E = \{a, b, c, d, e\}$
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases
- $c(\{b,c,d\}) = c(b)+c(c)+c(d) = 6+2+3 = 11$
- $c({a,b}) = c(a) + c(b) = 6 + 6 = 12.$
- ▶ $F = \{a, b\} \in \mathcal{F}$ is the maximum weight independent set.

- $\blacktriangleright E = \{a, b, c, d, e\}$
- $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- $\triangleright \mathcal{B} = \{ab, bcd, de\}$ is the set of bases
- $c(\{b,c,d\}) = c(b)+c(c)+c(d) = 6+2+3 = 1$
- $c({a,b}) = c(a) + c(b) = 6 + 6 = 12.$
- ▶ $F = \{a, b\} \in \mathcal{F}$ is the maximum weight independent set.

- $E = \{a, b, c, d, e\}$
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases
- $c({b, c, d}) = c(b) + c(c) + c(d) = 6 + 2 + 3 = 13$
- $c({a,b}) = c(a) + c(b) = 6 + 6 = 12.$
- ▶ $F = \{a, b\} \in \mathcal{F}$ is the maximum weight independent set.

- $E = \{a, b, c, d, e\}$
- $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases
- $c(\{b,c,d\}) = c(b)+c(c)+c(d) = 6+2+3 = 11$
- $c({a,b}) = c(a) + c(b) = 6 + 6 = 12.$
- ▶ $F = \{a, b\} \in \mathcal{F}$ is the maximum weight independent set.

- $E = \{a, b, c, d, e\}$
- $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases
- $c({b, c, d}) = c(b) + c(c) + c(d) = 6 + 2 + 3 = 11$
- $c({a,b}) = c(a) + c(b) = 6 + 6 = 12.$
- ▶ $F = \{a, b\} \in \mathcal{F}$ is the maximum weight independent set.

- $E = \{a, b, c, d, e\}$
- ▶ $\mathcal{F} = \{\emptyset, a, b, c, d, e, bc, bd, cd, ab, bcd, de\}$ is an independence system
- \triangleright $\mathcal{B} = \{ab, bcd, de\}$ is the set of bases
- $c({b, c, d}) = c(b) + c(c) + c(d) = 6 + 2 + 3 = 11$
- $c({a,b}) = c(a) + c(b) = 6 + 6 = 12.$
- ▶ $F = \{a, b\} \in \mathcal{F}$ is the maximum weight independent set.

Maximum Weight Independent Set Problem

▶ Given an independence system (E, \mathcal{F}) $(\mathcal{F} \subseteq 2^E)$ and nonnegative real weights $c : \mathcal{F} \mapsto \mathbb{R}_+$, find an independent set (a hyperedge) $F \in \mathcal{F}$ such that

$$c(F) = \sum_{e \in F} c(e)$$

is as large as possible.

▶ MWISP:

$$\max_{F \in \mathcal{F}} c(F)$$

▶ Independence systems are typically not given explicitly, but via an independence **oracle**: for a given $S \subseteq E$ such an oracle tells if $S \in \mathcal{F}$ or not.

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family F of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
- $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subset 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- \triangleright $S = \{2, 4\}$ is an independent set
- \triangleright $S = \{2,4\}$ is a maximal independent set
- ▶ $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ► The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- The hypergraph (V, H) serves as an independence oracle for F:
 - Siven S ⊆ V, one need to check for all H ∈ H if H ⊆ S or not.
- ► Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subseteq 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- \triangleright $S = \{2, 4\}$ is an independent set
- \triangleright $S = \{2,4\}$ is a maximal independent set
- ▶ $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- ► Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subset 2^V$
- \triangleright $S = \{2\}$ is an independent set
- \triangleright $S = \{2,4\}$ is an independent set
- \triangleright $S = \{2, 4\}$ is a maximal independent set
- ▶ $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- ► Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subseteq 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- \triangleright $S = \{2, 4\}$ is an independent set
- \triangleright $S = \{2,4\}$ is a maximal independent set
- ▶ $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subseteq 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- $ightharpoonup S = \{2,4\}$ is an independent set
- \triangleright $S = \{2,4\}$ is a maximal independent set
- ▶ $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subseteq 2^V$
- \triangleright $S = \{2\}$ is an independent set
- \triangleright $S = \{2,4\}$ is an independent set
- $ightharpoonup S = \{2,4\}$ is a maximal independent set
- ▶ $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subseteq 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- \triangleright $S = \{2,4\}$ is an independent set
- $ightharpoonup S = \{2,4\}$ is a maximal independent set
- $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- ▶ $|\mathcal{B}|$ can be exponentially large in |V| and $|\mathcal{H}|!$

- Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- \triangleright The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- ightharpoonup Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subset 2^V$
- \triangleright $S = \{2\}$ is an independent set
- \triangleright $S = \{2,4\}$ is an independent set
- \triangleright $S = \{2,4\}$ is a maximal independent set
- $|\mathcal{B}| \text{ can be exponentially large in } |V| \text{ and } |\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subseteq 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- \triangleright $S = \{2,4\}$ is an independent set
- $ightharpoonup S = \{2,4\}$ is a maximal independent set
- $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- $|\mathcal{B}| \text{ can be exponentially large in } |V| \text{ and } |\mathcal{H}|!$

- ▶ Given a hypergraph $\mathcal{H} \subseteq 2^V$, a subset $S \subseteq V$ is called **independent** (stable) if $H \not\subseteq S$ for all $H \in \mathcal{H}$.
- ▶ The family \mathcal{F} of all stable sets form an independence system. (WHY?)
- ▶ The hypergraph (V, \mathcal{H}) serves as an independence oracle for \mathcal{F} :
 - ▶ Given $S \subseteq V$, one need to check for all $H \in \mathcal{H}$ if $H \subseteq S$ or not.
- Consider $V = \{1, 2, 3, 4, 5\}$ and $\mathcal{H} = \{12, 234, 45\} \subset 2^V$
- $ightharpoonup S = \{2\}$ is an independent set
- \triangleright $S = \{2, 4\}$ is an independent set
- $ightharpoonup S = \{2,4\}$ is a maximal independent set
- $\mathcal{B} = \{134, 135, 235, 24\}$ is the family of maximal independent sets of \mathcal{H} (bases of \mathcal{F}).
- $\blacktriangleright \ |\mathcal{B}| \text{ can be exponentially large in } |V| \text{ and } |\mathcal{H}|!$

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ▶ Maximum weight spanning tree
- Shortest path
- Generalized knapsack
- Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- ► The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ► Maximum weight spanning tree
- Shortest path
- Generalized knapsack
- Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ► Maximum weight spanning tree
- ► Shortest path
- Generalized knapsack
- Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- ► The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ▶ Maximum weight spanning tree
- ► Shortest path
- Generalized knapsack
- Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- ► The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ► Maximum weight spanning tree
- ► Shortest path
- Generalized knapsack
- Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- ► The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ▶ Maximum weight spanning tree
- ▶ Shortest path
- Generalized knapsack
- Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ▶ Maximum weight spanning tree
- ▶ Shortest path
- Generalized knapsack
- ► Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ► Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ▶ Maximum weight spanning tree
- ► Shortest path
- Generalized knapsack
- ► Set covering
- ▶ Some of the above are easy (polynomial), while others are hard (NP-hard).
- The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

- ▶ Maximum weight (cardinality) stable set
- ▶ Maximum weight matching
- ▶ Minimum weight perfect matching
- ▶ Maximum weight spanning tree
- Shortest path
- Generalized knapsack
- Set covering
- ► Some of the above are easy (polynomial), while others are hard (NP-hard).
- ► The simple and fast HEURISTICS (BEST-in-GREEDY) will provide a feasible solution for all (with some guarantees).

Input: An independence system (E, \mathcal{F}) , and weights $c: E \longrightarrow \mathbb{R}$.

Initialize: Set
$$F^G = \emptyset$$
, and sort $E = \{e_1, e_2, ..., e_m\}$ such that $c(e_1) \geq c(e_2) \geq \cdots \geq c(e_m)$.

Main Loop: **For** k = 1, ..., m **do**:

If
$$F^G \cup \{e_k\} \in \mathcal{F}$$
 then $F^G = F^G \cup \{e_k\}$.

Output: F^G

Input: An independence system (E, \mathcal{F}) , and weights $c: E \longrightarrow \mathbb{R}$.

Initialize: Set
$$F^G = \emptyset$$
, and sort $E = \{e_1, e_2, ..., e_m\}$ such that $c(e_1) \ge c(e_2) \ge \cdots \ge c(e_m)$.

Main Loop: **For** k = 1, ..., m **do**:

If
$$F^G \cup \{e_k\} \in \mathcal{F}$$
 then $F^G = F^G \cup \{e_k\}$.

Output: F^G .

Input: An independence system (E, \mathcal{F}) , and weights $c: E \longrightarrow \mathbb{R}$.

Initialize: Set
$$F^G = \emptyset$$
, and sort $E = \{e_1, e_2, ..., e_m\}$ such that $c(e_1) \ge c(e_2) \ge \cdots \ge c(e_m)$.

Main Loop: For
$$k = 1, ..., m$$
 do:

If
$$F^G \cup \{e_k\} \in \mathcal{F}$$
 then $F^G = F^G \cup \{e_k\}$.

Output: F^G .

Input: An independence system (E, \mathcal{F}) , and weights $c: E \longrightarrow \mathbb{R}$.

Initialize: Set
$$F^G = \emptyset$$
, and sort $E = \{e_1, e_2, ..., e_m\}$ such that $c(e_1) \ge c(e_2) \ge \cdots \ge c(e_m)$.

Main Loop: **For**
$$k = 1, ..., m$$
 do:

If
$$F^G \cup \{e_k\} \in \mathcal{F}$$
 then $F^G = F^G \cup \{e_k\}$.

Output: F^G .

Correctness and Running time of Best-in-Greedy

Complexity: Sorting in **Initialization** takes $O(m \log m)$ time, while **Main Loop** can be executed in O(m) time with O(m) calls to the independence oracle. Thus, the total time needed to run (Best-In) Greed is $O(m \log m + mI)$, where I is the worst case time we need to run the independence oracle.

Correctness: It is easy to verify that we have $F^G \in \mathcal{F}$ upon termination, since in the Main Loop F^G is updated only if it remains independent.

Optimality: We did not promise optimality; still it provides optimal solutions in some cases. This is ONLY a heuristics!

Correctness and Running time of Best-in-Greedy

Complexity: Sorting in **Initialization** takes $O(m \log m)$ time, while

Main Loop can be executed in O(m) time with O(m) calls to the independence oracle. Thus, the total time needed to run (Best-In) Greedy is $O(m \log m + mI)$, where I is the worst case time we need to run the independence oracle.

Correctness: It is easy to verify that we have $F^G \in \mathcal{F}$ upon termination, since in the **Main Loop** F^G is updated only if it remains independent.

Optimality: We did not promise optimality; still it provides optimal solutions in some cases. This is ONLY a heuristics!

Correctness and Running time of Best-in-Greedy

Complexity: Sorting in **Initialization** takes $O(m \log m)$ time, while

Main Loop can be executed in O(m) time with O(m) calls to the independence oracle. Thus, the total time needed to run (Best-In) Greedy is $O(m \log m + mI)$, where I is the worst case time we need to run the independence oracle.

Correctness: It is easy to verify that we have $F^G \in \mathcal{F}$ upon termination, since in the Main Loop F^G is updated only if it remains

independent.

Optimality: We did not promise optimality; still it provides optimal solutions in some cases. This is ONLY a heuristics!

- ▶ To a subset $X \subseteq E$ we associate the **induced sub-hypergraph** $\mathcal{F}_X = \{X \cap F \mid F \in \mathcal{F}\}$, and let us denote by \mathcal{B}_X the set of bases of \mathcal{F}_X .
- ▶ Let us define the **rank** of a subset $X \subseteq E$ by

$$r(X) = \max_{F \in \mathcal{F}} |F \cap X| = \max_{B \in \mathcal{B}_X} |B|.$$

 \blacktriangleright Let the **lower rank** of X be defined by

$$\rho(X) = \min_{B \in \mathcal{B}_X} |B|.$$

$$q(E, \mathcal{F}) = \min_{X \subseteq E} \frac{\rho(X)}{r(X)}$$

- ▶ To a subset $X \subseteq E$ we associate the **induced sub-hypergraph** $\mathcal{F}_X = \{X \cap F \mid F \in \mathcal{F}\}$, and let us denote by \mathcal{B}_X the set of bases of \mathcal{F}_X .
- ▶ Let us define the **rank** of a subset $X \subseteq E$ by

$$r(X) = \max_{F \in \mathcal{F}} |F \cap X| = \max_{B \in \mathcal{B}_X} |B|.$$

 \blacktriangleright Let the **lower rank** of X be defined by

$$\rho(X) = \min_{B \in \mathcal{B}_X} |B|.$$

$$q(E, \mathcal{F}) = \min_{X \subseteq E} \frac{\rho(X)}{r(X)}$$

- ▶ To a subset $X \subseteq E$ we associate the **induced sub-hypergraph** $\mathcal{F}_X = \{X \cap F \mid F \in \mathcal{F}\}$, and let us denote by \mathcal{B}_X the set of bases of \mathcal{F}_X .
- ▶ Let us define the **rank** of a subset $X \subseteq E$ by

$$r(X) = \max_{F \in \mathcal{F}} |F \cap X| = \max_{B \in \mathcal{B}_X} |B|.$$

 \blacktriangleright Let the **lower rank** of X be defined by

$$\rho(X) = \min_{B \in \mathcal{B}_X} |B|.$$

$$q(E, \mathcal{F}) = \min_{X \subseteq E} \frac{\rho(X)}{r(X)}$$

- ▶ To a subset $X \subseteq E$ we associate the **induced sub-hypergraph** $\mathcal{F}_X = \{X \cap F \mid F \in \mathcal{F}\}$, and let us denote by \mathcal{B}_X the set of bases of \mathcal{F}_X .
- ▶ Let us define the **rank** of a subset $X \subseteq E$ by

$$r(X) = \max_{F \in \mathcal{F}} |F \cap X| = \max_{B \in \mathcal{B}_X} |B|.$$

 \blacktriangleright Let the **lower rank** of X be defined by

$$\rho(X) = \min_{B \in \mathcal{B}_X} |B|.$$

$$q(E, \mathcal{F}) = \min_{X \subseteq E} \frac{\rho(X)}{r(X)}.$$

Analysis of Best-in-Greedy cont'd

Lemma 1

We have the following relations hold for all independent sets $F \in \mathcal{F}$, subsets $X \subseteq E$, and bases $B \in \mathcal{B}_X$ of the induced independence system \mathcal{F}_X :

$$|B| \ge \rho(X) \qquad = \min_{A \in \mathcal{B}_X} |A|. \tag{1a}$$

$$\frac{\rho(X)}{r(X)} \ge q(E, \mathcal{F}) \qquad = \min_{Y \subseteq E} \frac{\rho(Y)}{r(Y)} \tag{1b}$$

$$|F \cap X| \le r(X)$$
 = $\max_{F \in \mathcal{F}} |F \cap X|$ (1c)

Analysis of Best-in-Greedy cont'd

Theorem 2 (Jenkins (1976), Korte and Hausmann (1978))

Given an independence system (E, \mathcal{F}) and weights $c : E \mapsto \mathbb{R}_+$, let F^G denote the solution obtained by the best-in-greedy procedure, and let F^{OPT} denote the optimal solution. Then we have

$$q(E,\mathcal{F}) \leq \frac{c(F^G)}{c(F^{OPT})} \leq 1.$$

Furthermore, for every independence system there exist weights such that the lower bound is attained in the above statement.

▶ Guarantee $q(E, \mathcal{F})$ does not depend on the weights $c: E \mapsto \mathbb{R}_+!!!$

Analysis of Best-in-Greedy cont'd

Theorem 2 (Jenkins (1976), Korte and Hausmann (1978))

Given an independence system (E, \mathcal{F}) and weights $c : E \mapsto \mathbb{R}_+$, let F^G denote the solution obtained by the best-in-greedy procedure, and let F^{OPT} denote the optimal solution. Then we have

$$q(E, \mathcal{F}) \le \frac{c(F^G)}{c(F^{OPT})} \le 1.$$

Furthermore, for every independence system there exist weights such that the lower bound is attained in the above statement.

▶ Guarantee $q(E, \mathcal{F})$ does not depend on the weights $c: E \mapsto \mathbb{R}_+!!!$