Relatedness Estimator

Zheng Sun // UID 204016261

Introduction

- How do we tell if two individuals are related, why do we care?
 - They look alike, same surname, family registry
 - Important for paternity testing, screening for diseases etc.
- What if those factors are uncertain?
- We can turn this into a computational problem and solve it algorithmically

Biological Problem

- The chromosome of an individual is a combination of parents' chromosomes
 - Siblings on average share ~50% DNA
- However, unrelated individuals can also share DNA by chance
- How can we tell if two individuals are siblings based on their DNA?

Experiment Setup

- Sample data is a set of genotypes with some related and others unrelated
 - Algorithm doesn't know which are related, its job is to figure it out
- To evaluate our algorithms, we use the following metrics:
 - 1. Correctness
 - 2. Time complexity
 - 3. Space complexity

Sample Data

- To create sample data:
 - a. generate haplotypes for parents with MAF p
 - MAF = Minor Allele Frequency
 - b. generate genotypes for children by breeding using haplotypes from each parent
 - c. to create siblings, breed two children using same pair of parents
 - d. to create unrelated individuals, breed using two different pairs of parents
 - all genotypes are stored in arrave

Baseline Method

- On average, siblings share ~50% DNA.
- We can do a naive comparison of genotypes
 - Compare each SNP between the two individuals
 - If they share > 50% similarities, then related
 - Else, the individuals are not related
- In our sample data
 - o 0 is homogenous minor, 1 is homogenous major, 2 is heterogenous

Examples

A	0	0	1	2	1	0	0	1	1	2
В	0	1	1	2	1	0	0	1	1	0

Number of SNPs = 10

Number of matches = 8

Percentage of matches = 80%

80% > 50% => **A** and **B** are related

Examples

A	0	1	1	2	1	1	0	1	0	1
В	0	0	1	1	1	0	1	1	1	2

Number of SNPs = 10

Number of matches = 4

Percentage of matches = 40%

40% > 50% => **A** and **B** are unrelated

Improved Method

- We can use the MAF to calculate the related and unrelated probabilities for all the haplotype combinations
- This leads to two different 3x3 matrices, one for unrelated probabilities and one for related

Unrelated Matrix

- To calculate unrelated probabilities, we multiply the maf based on parents' 0/1 haplotypes for 0/1/2 haplotypes
- Example
 - \circ P₁₁(0, 0) => both sets of parents passed 0's => p⁴
 - P_u => both A's parents supplied 1's and B's parents either supplied 0 and 1 or 1 and 0 => P(0, 0) = p * p * 2(p * (1-p))

Related Matrix

- To calculate the related matrix, we must consider the different possibilities of how two parents may pass down different haplotypes to children with different genotypes
- Example: P_r(0, 2)

	0	1
0	0	2
0	0	2

	0	1
0	0	2
1	2	1

	0	0
0	0	0
1	2	2

$$P_{r}(0, 2) = 0.5 * 0.5 * P_{u}(0, 1) + 0.5 * 0.5 * P_{u}(1, 0) + 0.5 * 0.25 * P_{u}(0, 2)$$

Improved Method

- Given the unrelated and related matrices, I iterate through the two genotypes
 - I instancialize a variable to keep track of the total probability for related and unrelated cases
 - For each pair of SNPs from the genotypes, I take the unrelated and related probabilities of that pair and multiply the values to my total probability
- Finally, I compare the two total probabilities
 and use the higher one as my result

Metric: Correctness

Metric: Time Complexity

- For both algorithms, we only need to traverse through the genotype a single time, therefore both are linear time algorithms
- The improved method has the negligible overhead of calculating the two matrices

Metric: Space Complexity

- Assuming the genotype arrays with pass by reference, both algorithms exhibit constant space complexity
- Baseline array only needs to keep track of the tallying sum of the same/different SNPs
- Once again, the improved method has a negligible increase because it must keep track of two 3x3 arrays in addition to the total

Conclusion

- Overall, our improved algorithm exhibits greater accuracy while still keeping linear time and constant space
- Further improvements would be to extend this algorithm more than just siblings (parents, grandparents, etc.)