Писмен изпит по Дискретни структури 1 10.02.2021

Контролно 1

1. За всеки три множества x,y и z означаваме: $\langle x,y,z\rangle = \{\{x\},\{x,y\},\{x,y,z\}\}.$

- (a) (1 т.) Докажете, че ако $x \in A$, $y \in B$ и $z \in C$, то $\langle x, y, z \rangle \in \mathcal{P}(\mathcal{P}(A \cup B \cup C))$.
- (б) (2 т.) Проверете дали винаги: $x = x_1 \& y = y_1 \& z = z_1 \iff \langle x, y, z \rangle = \langle x_1, y_1, z_1 \rangle$.
- 2. (2 т.) Нека $A = \{1, 2, \dots, n\}, \ n \geq 1$. Намерете броя на всички релации $R \subseteq A \times A$, които са едновременно симетрични и антисиметрични.
- 3. (1.т) Намерете всички редици $\{{\bf a}_n\}_{n\in\mathbb{N}}$, които удовлетворяват рекурентната зависимост:

$$\mathbf{a}_{n+2} = 8\mathbf{a}_{n+1} - \mathbf{a}_n + 6.7^n,$$

и началните условия: $\mathbf{a}_0 = 0, \mathbf{a}_1 = 1.$

$$o$$
ценка = $max(2,$ тoчки $)$