Diszkrét matematika II. feladatok

Negyedik alkalom (2024.09.30-10.04.)

Bemelegítő feladatok

- 1. Oldja meg az alábbi kongruenciákat a *bővített euklideszi algoritmus* segítségével:
 - a) $3x \equiv 1 \mod 7$;
- b) $3x \equiv 1 \mod 8$;
- c) $2x \equiv 1 \mod 8$;
- d) $4x \equiv 2 \mod 8$

- e) $31x \equiv 4 \mod 17$; f) $31x \equiv 4 \mod 117$; g) $5x \equiv 10 \mod 15$; h) $17x \equiv 4 \mod 2024$
- 2. Számolja ki az a lehetséges hatványait modulo m, ha

- a) a = 2, m = 4; b) a = 3, m = 5; c) a = 2, m = 7; c) a = 3, m = 7; e) a = 7, m = 8

- 3. Számolja ki a $\varphi(m)$ értékeket $1 \le m \le 16$ esetén!
- 4. Határozza meg a következő értékeket az Euler-Fermat tétel segítségével
 - - b) $2^7 \mod 7$;
- c) $2^8 \mod 7$;
- e) $2^{12} \mod 13$; f) $2^{13} \mod 13$; g) $2^{13} \mod 11$; h) $2^{10} \mod 9$

Gyakorló feladatok

- 5. Határozza meg azt a két legkisebb pozitív egész számot, mely
 - a) 13-szorosát felírva 7-es számrendszerben az utolsó előtti jegy 4, az utolsó jegy pedig 3;
 - b) 12-szorosát felírva 8-as számrendszerben az utolsó előtti jegy 2, az utolsó jegy pedig 1;
 - c) 14-szorosát felírva 16-os számrendszerben az utolsó előtti jegy 3, az utolsó jegy pedig 4!
- 6. Számolja ki az következő értékeket

- a) $3^{10} \mod 7$; b) $3^{15} \mod 7$; c) $3^{115} \mod 7$; d) 3^{1155} e) $2^{3^{12}} \mod 11$; f) $2^{7^{122}} \mod 11$; g) $2^{5^{11}} \mod 13$; h) $2^{3^{1111}}$

Érdekes feladatok

- 7. Egy a egész esetén legyen $a^{-1} \mod m$ az a multiplikatív inverze modulo m, azaz az az elem, hogy $a^{-1} \cdot a \equiv 1 \mod m$. Döntse el, hogy az alábbiak közül melyek léteznek, és azokat számolja

 - a) $3^{-1} \mod 7$; b) $3^{-1} \mod 8$; c) $0^{-1} \mod 8$; d) $2^{-1} \mod 8$

- e) $2^{-1} \mod 7$; f) $1^{-1} \mod 7$; g) $2^{-1} \mod 3$; h) $31^{-1} \mod 17$
- 8. Határozza meg az utolsó két számjegyét a 7³⁴⁷ hatványnak!

Szorgalmi feladatok

8. Írjon programot, mely egy adott n esetén kiszámolja a $\varphi(n)$ értékét. Írjon tesztet, hogy ha egy véletlen k bites n számot választ, akkor várhatóan mennyi idő alatt számolja ki $\varphi(n)$ et: minden k = 50, 100, 150, 200, 250, 300, 350, 400 esetén válasszon 10 darab k bites számot, számolja ki φ értéket minden esetben és átlagolja az időket.