Принцип действия

Если воздух под постоянным давлением H проходит через отверстие f_1 в камеру (рис, 92, и), а из нее через отверстие f_2 наружу, то давление между двумя отверстиями в камере зависит от соотношения размеров площадей поперечных сечений этих двух отверстий. Калиброванное отверстие f_1 называют входным соплом, второе калиброванное отверстие f_2 – измерительным (или выходным) соплом, а зазор s – измерительным зазором.

Рис. 92. Схемы пневматических измерений.

Если против выходного сопла расположить поверхность контролируемой детали, то давление h в камере будет возрастать при приближении этой поверхности к отверстию, а при удалении – уменьшаться, т. е. величина давления h является функцией линейного размера s.

Для теоретического обоснования пневматического метода используется формула Сен-Венана — Вантцеля, которая в результате целого ряда

преобразований и упрощений приводится к виду [14]:

$$\mathbf{h} = \frac{\mathbf{H}}{1 + \left[\frac{\mathbf{f}_2}{\mathbf{f}_1}\right]^2}.$$
(146)

Выходным сечением f_2 для воздуха является цилиндрическая поверхность с диаметром, равным диаметру отверстия измерительного сопла, и высотой, соответствующей измерительному зазору s, т. е. $f_2 = d_2 s$; эта площадь должна быть меньше площади проходного сечения отверстия измерительного сопла

$$\frac{\pi \mathbf{d}_2^2}{4} > \pi \mathbf{d}_2 \mathbf{s} \tag{147}$$

$$_{
m oткудa} \ {
m s} < {
m d}_2 \over 4 \ .$$

Таким образом, измерительный зазор должен быть меньше одной четвертой части диаметра измерительного сопла.

Площадь f_1 сечения входного сопла равна $\frac{\pi d_1^2}{4}$, где d_1 – диаметр отверстия входного сопла.

Подставляя в формулу (146) значения f_1 и f_2 получим (148)

$$h = \frac{H}{1 + 16\frac{d_2^2}{d_1^4}s^2}.$$
(148)

Производная от выражения (148) по s определяет один из основных параметров системы — передаточное отношение К т. е. чувствительность системы, которая характеризует изменение измерительного давления при изменении контролируемого размера. Наибольшее передаточное

 $\frac{4d_2 \, s}{d_1^2} = 0,58$ отношение получается при и h=0,75H:

$$K_{max} = \frac{dh}{ds} \approx 2,6H \frac{d^2}{d_1^2}.$$
 (149)

Из формулы (149) следует, что изменение передаточного отношения осуществляется путем подбора диаметров сопел, зазоров и величины рабочего давления, что придает универсальность пневматическим системам.

На рис. 92, б представлена графически зависимость h=f(s). Эта кривая называется характеристикой пневматической измерительной системы. Первый участок от зазора s=0 до $s=s_1$ близок по форме к параболе; он не пригоден для измерений ввиду малого и непостоянного передаточного отношения. Производная на этом участке изменяется от 0 в точке в s=0 до максимума в точке s_m . Как правило, для работы пневматических измерительных систем используют второй участок s_1-s_2 . Обладающий максимальным и практически постоянным передаточным отношением. На участке s_2-s_3 передаточное отношение уменьшается, достигая минимума в точке s_3 , после которой оно снова становится постоянным. Однако величина его намного меньше, чем на первом прямолинейном участке s_1-s_2 вследствие чего он практически не используется. На участке $s>s_4$ кривая асимптотически приближается к измерительному давле- нию, соответствующему истечению воздуха из измерительного сопла в атмосферу.

Часть характеристики, используемая для работы пневматической измерительной системы, называется рабочим участком. При конструировании измерительной системы стремятся использовать весь прямолинейный участок, обеспечив максимально возможное при данном пределе измерения передаточное отношение. Разность Δs наибольшего $s_{\text{макс}}$ и наименьшего $s_{\text{мин}}$ измерительных зазоров по краям прямолинейного рабочего участка характеризует предел измерения системы. С увеличением диаметра измерительного сопла предел измерения уменьшается и наоборот.

В пневматических измерительных системах дифференциального типа (рис. 92, в) чувствительный элемент — дифференциальный манометр — реагирует на разность давлений Δh в двух ветвях системы h_{Π} и h_{u} , определяя алгебраическую сумму двух размеров s_{Π} и s_{u} . При этом передаточные отношения обеих

ветвей должны быть равны. Для осуществления этого условия на практике диаметры входных и измерительных сопел делают соответственно равными.

В измерительных пневматических устройствах часто применяется еще так называемая компенсационная система, принципиальная схема которой

изображена на рис. 92,г; она иногда называется пневматическим

самобалансирующимся мостом. При изменении измерительного зазора s в измерительной (нижней) камере 1 соответствующим образом меняется измерительное давление. Появившаяся в результате этого разность давлений в измерительной камере и камере противодавления (верхней) 2 называет перемещение мембраны 3 и закрепленного на ней конуса 4. Перемещение продолжается до тех пор, пока давление в камерах не уравновесится. Характеристика этой системы прямолинейна на всем протяжении.

Давление воздуха, подводимого к пневматическому измерительному устройству, должно быть постоянным. В противном случае показания устройства будут зависеть не только от величины зазора, т. е. размера контролируемой детали, но и от колебания давления подводимого воздуха. Отсюда следует, что перед пневматическими измерительными устройствами обязательно следует ставить стабилизатор давления.

Все пневматические измерительные устройства можно разделить на две основные группы: реагирующие на изменение давления (манометрические) и реагирующие на изменение скорости воздушного потока (ротаметрические). Следует отметить, что наибольшее распространение получили устройства первого типа. В зависимости от величины рабочего давления они делятся на устройства низкого давления ($H = 500 \div 1000$ мм вод. ст.) и устройства высокого давления (свыше $0.5 \text{ к}\Gamma/\text{см}^2$).