10. HAFTA

BLM327

BİLGİSAYAR BİLİMİNE GİRİŞ

Öğr. Gör. Dursun EKMEKCİ

dekmekci@karabuk.edu.tr

KBUZEM

Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi

Mamdani Bulanık Netice Ve Bulanık Çıkarma

Hızlı Gaz Konsantrasyon Tespiti için Örnek uygulama

- Bilindiği gibi endüstride sıkça kullanılan çeşitli çözücü maddeler ortamda ki zararlı uçucu gazların artmasına sebep olmaktadır.
- Bu tür uçucu gazlara uzun süre aşırı maruz kalmak çeşitli sağlık problemlerine sebep olmaktadır.
- Dolayısı ile bu gazların ortamdaki miktarının bilinmesi önemlidir.
- Bu amaçla çeşitli tip sensörler ve veri işleme metotları kullanılmaktadır.
- Aşağıdaki örnekte QCM sensörleri kullanılarak ölçülen frekans bilgileri kullanılarak Mamdani çıkarım metodu ile gerçekleştirilen bir hızlı konsantrasyon tesbiti anlatılmıştır.
- Bu çalışmada ortamdaki Toluene, Chloroform ve Acetone gazları ayrı ayrı tesbit edilmeye çalışılmıştır (farklı FIS ler ile).
- Aşağıda Toluen için örnek gaz ölçümü verilmiştir;

- Normalde gaz algılama çalışmalarında kararlı durum cevabı kullanılır. Bu da sensör cevap süresi boyunca beklemeyi gerektirir.
- Bu çalışmada ise tahmin süresini geçici cevap kısmı da kullanılmıştır.
- Bu amaç ile geçici yanıt kısmından aşağıdaki şekilde eğim bilgisi hesaplanmıştır;

$$S\Delta f(t) = \frac{\Delta f(t) - \Delta f(t - n * t_s)}{n * t_s}$$

SLOPE CALCULATION

Yıkama ölçümleri çıkarıldıktan sonraki Toluene için örnek frekans cevabı ve eğim bilgisi;

Mamdani çıkarım metodunun kullanımı;

Chloroform gazı için örnek üyelik fonksiyonları;

Örnek kurallar ve berraklaştırma metodu (CAO) aşağıdaki şekildedir;

Kural 1: Eger Δf A_i ve $S\Delta f$ B_i ise PPM C_i dir.

$$\mu_{\Delta fi} = A_i(\Delta f), \quad \mu_{S\Delta fi} = B_i(S\Delta f), \quad \mu_{PPMk} = C_i(PPM)$$

$$PPM = rac{\displaystyle \sum_{k=1}^{99} \mu_{PPMk} * PPMk}{\displaystyle \sum_{k=1}^{99} \mu_{PPMk}}$$

Grafiksel olarak örnek kural işleyişi aşağıdaki gibidir;

Matlabda oluşturulmuş örnek FIS ın kullanımı ve performans hesabı;

g=importdata('gt.txt')

t=importdata('tt.txt')

gfis=readfis('ftrans.fis')

c=evalfis([g],gfis)

fark=abs(t-c)

for i=1:66

fark(i)=fark(i)/500

end

for i=67:131

fark(i)=fark(i)/1000

end

for i=132:197

fark(i)=fark(i)/3000

end

$$E(RAE) = \frac{1}{n_{test}} \sum_{tetset} \left(\frac{\left| \frac{\left(PPM_{predicted} - PPM_{true} \right)}{PPM_{true}} \right|}{PPM_{true}} \right) \forall PPM_{true} \neq 0$$

for i=198:263

fark(i)=fark(i)/5000

end

for i=264:330

fark(i)=fark(i)/8000

end

s=100*sum(fark)/330

m=100*max(fark)

Konsantrasyon tahmin sonuçları;

Gaz	PPM _{true}	PPMpredicted	E(RAE) (%)
Toluene	500	434,,599	
	1000	926,,1121	
	3000	2941,,3072	3.59
	5000	4932,,5051	
	8000	7941,,8057	
Chloroform	500	452,,581	
	1000	931,,1104	
	3000	2944,,3063	3.06
	5000	4953,,5031	
	8000	7971,,8042	
Acetone	500	451,,575	
	1000	935,,1109	
	3000	2938,,3061	2.93
	5000	4963,,5042	
	8000	7975,,8035	

Giriş uzayının bölünmesi (input space partitioning)

Grid partitioning

Tree partitioning

Scatter partitioning

Grid partitioning

Tree Partitioning

Kaynakça

Dr. F. Temurtaş Ders Notları