Argomenti

- (1): Introduzione a Matlab
- (2): Scripts Funzioni Operatori
- (3): Input-Output dei dati
- (4): Grafici e visualizzazione dei dati
- (5): Analisi dei dati
- (6): Analisi nonlineare ed approssimazioni di funzioni e di dati
- (7): Differenziazione ed integrazione numerica calcolo simbolico
- (8): Sistemi lineari
- (9): Soluzioni *ODEs*
- (10): Cenni a soluzioni PDEs

Grafici e Visualizzazioni dei dati

- Plots
 - Plot semplici Subplots
 - Mesh plots Surface Plots Contour Plots
- Animazioni

Grafici 2-D (>>help graph2d)

X, **Y** vettori di dimensione *n*;

plot(x,y) apre una finestra grafica dove traccia una spezzata che unisce tutte le coppie

riscala automaticamente gli assi

L'istruzione plot usa la finestra grafica aperta o ne apre una e la rende corrente

```
figure apre una nuova finestra senza cancellare le precedenti
(ricordare: clf, close, close all, figure(n))
```

hold on è l'istruzione per tracciare più figure nella stessa finestra (hold off di default)

Gli argomenti della funzione plot possono anche essere matrici

Grafici 2-D: plot (>>help plot)

Sintassi del comando plot:

plot(vettore1, vettore2, opzioni)

opzioni contiene al più 3 elementi, per i quali l'ordine non importa 'y:*' ':y*' etc sono equivalenti

Colore	Linea	Simbolo
y giallo	- Linea continua	. Punto
m magenta	: linea punteggiata	o circoletto
c ciano	Linea punto	x per
r rosso	linea tratteggiata	+ più
g verde		* asterisco
b blu		s quadratino
w bianco		d diamante
k nero		v triangolo

Grafici 2-D: plot

```
x=linspace(0,2*pi);
y=sin(x);
plot(x,y);
title('Grafico della
funzione sin(x)')
xlabel('asse x')
ylabel('asse y')
axis([0 2*pi -1 1])
```


Grafici 2-D: plot

```
>>
x=linspace(0,2*pi);
y=sin(x);
plot(x,y,'ro--');
title('Grafico della
funzione sin(x)')
xlabel('asse x')
ylabel('asse y')
axis([0 2*pi -1 1])
```


Grafici 2-D: plot

Altri argomenti della funzione plot:

```
LineWidth (0.5 valore di default)
FontSize (10 " )
FontAngle ( normal " )
MarkerSize (6 " )
MarkerEdgeColor (auto " )
MarkerFaceColor (none " )
```

Grafici 2-D: plot

Grafici 2-D: loglog

```
%un esempio con loglog per evidenziare una legge di potenza
h=10.^[0:-1:-4];
taylorerr=abs((1+h+h.^2/2)-exp(h));
loglog(h,taylorerr,'-', h,h.^3,'--')
xlabel('h')
ylabel('Absolute value of error')
title('Error in quadratic taylor series approximation to
exp(h)')
box off
```


Grafici 2-D: loglog

```
%un esempio con loglog per evidenziare una legge di potenza
h=10.^[0:-1:-4];
taylorerr=abs((1+h+h.^2/2)-exp(h));
axes('FontSize',16)
loglog(h,taylorerr,'-', h,h.^3,'--','LineWidth',2)
xlabel('h','FontSize',16)
ylabel('Absolute value of error','FontSize',16)
title('Error in quadratic taylor series approximation to exp(h)','FontSize',14)
box off
```


Grafici 2-D: plot

Funzioni correlate ai grafici assi e annotazioni:

```
axis([xmin xmax ymin ymax]) (>>help axis):
xlim([xmin xmax])
ylim([ymin ymax])
axis('equal'),
axis square
axis tight
axis auto (default)
grid (on - off)
title('stringa')
xlabel('stringa')
ylabel('stringa')
zlabel('stringa')
gtext('stringa')
text(x,y,'stringa') (>>doc text props)
```

Grafici 2-D: plot

```
%Grafici sovrapposti:
x = linspace(0,2*pi);
y1 = cos(x);
y2 = sin(x);
plot(x,y1,'-')
hold on
plot(x,y2,'--r')
plot([1 5]*pi/4, [1 -1]/sqrt(2),'og')
legend('Coseno', 'Seno', 'Intersezione')
hold off
```


Grafici 2-D: plot

```
% Epicycloid
a=12; b=5;
t=0:0.05:10*pi;
x=(a+b)*cos(t)-b*cos((a/b+1)*t);
y=(a+b)*sin(t)-b*sin((a/b+1)*t);
plot(x,y)
axis equal
axis([-25 25 -25 25])
grid on
title('Epicycloid: a=12, b=5')
xlabel('x(t)'), ylabel('y(t)')
```


Grafici 2-D: plot

Sintassi del comando subplot:

```
subplot(righe, colonne, sottofinestre)
```

Esempio: subplot(2,3,1)

1	2	3
4	5	6

Grafici 2-D: subplot

```
subplot(2,2,1)
fplot('sin(x)',[0 2*pi])
subplot(2,2,2)
fplot('cos(x)',[0 2*pi])
subplot(2,2,3)
fplot('sin(x)/(1+x)',[-2*pi 2*pi])
subplot(2,2,4)
fplot('exp(x)',[-5 5])
```


Grafici 2-D: lista di funzioni

loglog
semilogx
semilogy
plotyy
polar
fplot
ezplot
ezpolar
fill

area bar barh hist pie errorbar comet quiver scatter stairs

Grafici 2-D: polar(teta,r)


```
t = 0:.01:2*pi;
polar(t,sin(2*t).*cos(2*t),'--r')
```

Grafici 2-D: hist(x,nbin)

Esempio:

x=randn(1,100000); >> hist(x,100)

Grafici 2-D: errorbar(x,y,e)


```
x=linspace(0,2,21);
y=erf(x);
e=rand(size(x))/10;
errorbar(x,y,e)
title('errorbar plot')
```

Grafici 2-D:

function ploterr(x,y,xerr,yerr)

Grafici 3D: linea

```
plot3(x1,y1,z1,opzioni1,x2,y2,z2,opzioni2,...)
```

```
t=linspace(0,20*pi,2000);
plot3(sin(t),cos(t),t)
xlabel(('sin(t)')),
ylabel(('cos(t)')),zlabel(('t'))
grid on
title('Elica')
```


Grafici 3D: linee

Esempio:

```
t=linspace(0,2*pi,200);
z1=sin(t);
z2=sin(2*t);
z3=sin(3*t);
y1=zeros(size(t));
y3=ones(size(t));
y2=y3/2;
grid on
plot3(t,y1,z1,t,y2,z2,t,y3,z3)
xlabel(('t-Axis'),'FontSize',14),ylabel(('y-Axis'),...
'FontSize',14),zlabel(('z-Axis'),'FontSize',14)
```

sin(t), sin(2t), sin(3t)

Grafici 3D: linee (cheb3plot.m)

Grafici 3D: superfici

Rappresentazione di funzione scalare di 2 variabili:

$$z=f(x,y)$$

Dati i vettori x e y, z e' una matrice data da:

$$z(i,:) = f(x,y(i)) e z(:,j) = f(x(j),:)$$

Grafici 3D: superfici (meshgrid)

```
z(i,j) = f(x(j),y(i))
Esempio: Z=X+Y
>> x=-2:2
χ =
  -2 -1
         0 1 2
>> y=-4:4
>> [X,Y]=meshgrid(x,y)
                                                                       >> Z=X+Y
X =
                                                                       Z =
                                   Y =
                                                                                       -2
                                                                                    -2 -1
                                                -3
                                                                            -3 -2 -1 0
                                                -2
```

Grafici 3D: superfici (contour)

```
x=-2:0.1:2;
y=-1:0.1:1;
[X,Y]=meshgrid(x,y);
Z=sin(3*Y-X.^2+1)+cos(2*Y.^2-2*X);
contour(x,y,Z,20)
```


Grafici 3D: superfici (contour - mesh)


```
[X,Y]=meshgrid(-3:0.5:3,-1.5:0.025:1.5);

Z=4*X.^2-2.1*X.^4+X.^6/3+X.*Y-4*Y.^2+4*Y.^4;

cvals=[-2:.5:2 2.3 3:5 6:2:10];

[C,h]=contour(X,Y,Z,cvals);

clabel(C,h,cvals([1:2:9 10 11 14 16]))

xlabel('x'), ylabel('y')
```



```
[X,Y]=meshgrid(-3:0.5:3,-1.5:0.025:1.5);
Z=4*X.^2-2.1*X.^4+X.^6/3+X.*Y-4*Y.^2+4*Y.^4;
mesh(Z)
xlabel('x'), ylabel('y')
```

Grafici 3D: superfici (mesh-meshc)

Esempi:

```
x=0:.1:pi; y=0:.1:pi;
[X,Y]=meshgrid(x,y);
Z=sin(Y.^2+X) -
cos(Y-X.^2);
```

subplot(2,2,1) mesh(Z)

subplot(2,2,2) meshc(Z)

subplot(2,2,3) mesh(x,y,Z) axis([0 pi 0 pi -5 5])

subplot(2,2,4) mesh(Z) hidden off

Grafici 3D: superfici (surf-surfc-waterfall)

Esempi:

Z=membrane;

subplot(2,2,1)surf(Z)

subplot(2,2,2) surfc(Z) colorbar

subplot(2,2,3) surf(Z) shading flat

subplot(2,2,4) waterfall(Z)

Grafici 3D: superfici (Caso terne di valori sperimentali)

Esempio:

```
A=[
             152
2
             89
             100
             100
             100
             103
             0
             100
             100
             100
             89
             13
             100
             100
             100
             115
             100
             187
             200
             111
             100
             85
             111
             97
5
             48];
```

X=transp(reshape(A(:,1),5,5)) Y=transp(reshape(A(:,2),5,5)) Z=transp(reshape(A(:,3),5,5)) mesh(X,Y,Z)

Grafici 3-D: lista funzioni

plot3

contour

contour3

contourf

mesh

meshc

surf

surfc

waterfall

meshz

comet3

bar3

bar3h

pie

fil13

scatter3

stem3

Handle graphics

Le funzioni grafiche in Matlab sono parte di un sistema grafico object-oriented noto come handle graphics.

Un grafico è un oggetto composto da altri oggetti più elementari, in relazione gerarchica:

Root

Figure

Axes UI Objects

Image Light Line Patch Rectangle Surface Text

Handle graphics

Ogni oggetto ha un indentificatore unico (handle), che e' un floating-point number:

Una volta creati gli oggetti grafici, questi possono essere modificati, facendo riferimento ai loro handles, per mezzo delle funzioni get e set

Handle graphics: get - set

Words with most meanings in the Oxford English Dictionary:

(Russel Ash. The top ten of everything), citato in Higham-Higham, Matlab guide

Handle graphics

```
>> plot(sin(0:pi/2:2*pi))
                                  >> get(h, 'Type')
>> h=findobj
                                  ans =
h =
                                    'root'
                                    'figure'
                                    'axes'
                                    'line'
  1.0000
 160.0016
 161.0021
```

Handle graphics

Per avere la lista delle proprieta' associate all'handle, usiamo set:

```
ActivePositionProperty: [position | {outerposition}]
ALim
ALimMode: [ {auto} | manual ]
AmbientLightColor
Box: [ on | {off} ]
CameraPosition
CameraPositionMode: [ {auto} | manual ]
CameraTarget
CameraTargetMode: [ {auto} | manual ]
CameraUpVector
CameraUpVectorMode: [ {auto} | manual ]
CameraViewAngle
CameraViewAngleMode: [ {auto} | manual ]
CLim
CLimMode: [ {auto} | manual ]
```

```
>> set(h(4))
Color: {}
EraseMode: {4x1 cell}
LineStyle: {5x1 cell}
LineWidth: {}
Marker: {14x1 cell}
MarkerSize: {}
MarkerEdgeColor: {2x1 cell}
MarkerFaceColor: {2x1 cell}
XData: {}
YData: {}
ZData: {}
ButtonDownFcn: {}
Children: {}
Clipping: {2x1 cell}
CreateFcn: {}
DeleteFcn: {}
BusyAction: {2x1 cell}
HandleVisibility: {3x1 cell}
```

Handle graphics

```
Esempi:
>> x=get(h(4) 'XData') v=get(h(4)
```

```
>> x=get(h(4),'XData'), y=get(h(4),'YData')
x =
      2 3 4 5
y =
        1.0000
                 0.0000 -1.0000 -2.0000
>> set(h(4),'Marker')
[ + | o | * | . | x | square | diamond | v | ^ | > | < | pentagram | hexagram | {none} ]
>> get(h(4),'Marker')
ans =
None
>> set(h(4),'Marker','s','MarkerSize',18)
>> set(h(3),'XScale')
[ {linear} | log ]
>> set(h(3),'Xscale','log')
```

Animazioni

Esistono due tipi di animazioni in Matlab:

- 1) Salvare una sequenza di figure, eseguendola con movie;
- 2) Animare un plot, agendo sulle proprieta'

Xdata

Ydata

Zdata

dell'oggetto.

Animazioni: movie

```
Z = peaks;
surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
% Record the movie
for j = 1:20
   surf(sin(2*pi*j/20)*Z,Z)
   F(j) = getframe;
end
movie(F,10) % Play the movie ten times
```

Animazioni: comet

```
x=linspace(-2,2,50000);

y=exp(x).*sin(1./x);

comet(x,y)
```

Animazioni: comet (Epicycloid.m)

```
% Epicycloid
a=12; b=5;
t=0:0.05:10*pi;
x=(a+b)*cos(t)-b*cos((a/b+1)*t);
y=(a+b)*sin(t)-b*sin((a/b+1)*t);
figure
axis equal
axis([-25 25 -25 25])
grid on
title('Epicycloid: a=12, b=5','FontSize', 16)
xlabel('x(t)', 'FontSize', 16), ylabel('y(t)','FontSize', 16)
comet(x,y)
```

Animazioni: comet3

```
t = -pi:pi/50000:pi;
comet3(sin(5*t),cos(3*t),tan(t))
```

Animazioni: drawnow

Esempio:

```
x=linspace(-pi,pi,200000);
y=cos(tan(x))-tan(sin(x));
p=plot(x(1),y(1),'.','EraseMode','none','MarkerSize', 2);
axis([min(x) max(x) min(y) max(y)])
hold on
for i=1:length(x)
set(p,'XData',x(i),'YData',y(i))
drawnow
end
hold off
```

Notare: 'EraseMode', 'none'

Animazioni: drawnow

Esempio:

```
x=linspace(-pi,pi,200000);
y=cos(tan(x))-tan(sin(x));
p=plot(x(1),y(1),'.','EraseMode', 'background','MarkerSize', 5);
axis([min(x) max(x) min(y) max(y)])
hold on
for i=1:length(x)
set(p,'XData',x(i),'YData',y(i))
drawnow
end
hold off
```

Notare: 'EraseMode', 'background': I punti vengono cancellati dopo essere stati plottati

Animazioni: drawnow

```
% Programma animate.m - Anima il moto del proiettile
% Usa le funzioni xcoord, ycoord e vertvel.
th=45*(pi/180);
q = 9.8;
v0 = 30;
tmax=2*v0*sin(th)/q;
                       %tempo totale di volo
xmax=xcoord(tmax,v0,th); %gittata
ymax= ycoord(tmax/2,v0,th,q); % altezza massima
vmax=vertvel(0,v0,th,q);
w=linspace(0,tmax,500);
subplot(2,1,1)
plot(xcoord(w,v0,th),ycoord(w,v0,th,g)), %hold
h1= plot(xcoord(w,v0,th),ycoord(w,v0,th,q), 'o','EraseMode','xor');
axis([0 xmax 0 1.1*ymax]), xlabel('x'),ylabel('y');
subplot(2,1,2)
plot(xcoord(w,v0,th),vertvel(w,v0,th,g)), %hold
h2= plot(xcoord(w,v0,th),vertvel(w,v0,th,q), 's','EraseMode','xor');
axis([0 xmax -1.1*vmax 1.1*vmax]), xlabel('x'),ylabel('Vertical Velocity');
for t=[0:0.01:tmax]
    set(h1,'Xdata',xcoord(t,v0,th),'Ydata',ycoord(t,v0,th,q))
    set(h2,'Xdata',xcoord(t,v0,th),'Ydata',vertvel(t,v0,th,g))
    drawnow
    pause(0.001)
end
hold
```

Animazioni: drawnow

```
t=[0:0.05:100];
b=1;
p = plot(t,t.*exp(-t/b),'EraseMode','xor'),axis([0 100 0 10]), xlabel('t');
for b=2:20
    set(p,'Xdata',t,'Ydata',t.*exp(-t/b)),axis([0 100 0 10]),xlabel('t');
drawnow
pause(0.1)
end
```

Ultimo esempio sulla versatilità di matlab nella grafica

```
%GARDEN
% Cols: Carrots Broccoli Green Beans Cucumbers Chard. Rows are months.
Y = [0.4 \ 0.3 \ 0.0 \ 0.0 \ 0.9]
     0.6 0.4 0.0 0.0 1.0
     0.7 0.8 0.3 0.2 1.2
     0.6 0.5 0.9 0.4 1.1
     0.4 0.4 0.7 0.6 0.9];
t = [13 15 22 24 18]; % Temperature.
b = bar(Y, 'stacked');
ylabel('Yield (kg)'), ylim([0 4])
h1 = qca; % Handle of first axis.
set(h1,'XTickLabel','May|June|July|August|September')
% Create a second axis at same location as first and plot to it.
h2 = axes('Position',get(h1,'Position'));
p = plot(t, 'Marker', 'square', 'MarkerSize', 12, 'LineStyle', '-',...
           'LineWidth', 2, 'MarkerFaceColor', [.6 .6 .6]);
ylabel('Degrees (Celsius)')
title('Fran''s vegetable garden', 'FontSize', 14)
% Align second x-axis with first and remove tick marks and tick labels.
set(h2,'Xlim',get(h1,'XLim'),'XTick',[],'XTickLabel',[])
% Locate second y-axis on right, make background transparent.
set(h2,'YAxisLocation','right','Color','none')
% Make second y-axis tick marks line up with those of first.
ylimits = get(h2,'YLim');
yinc = (ylimits(2)-ylimits(1))/4;
set(h2,'Ytick',[ylimits(1):yinc:ylimits(2)])
% Give legend the Axes handles and place top left.
legend([b,p],'Carrots','Broccoli','Green Beans','Cucumbers',...
        'Swiss Chard', 'Temperature', 'Location', 'NW')
```