Aspinīya Theorem: The π -i Sufficiency Hypothesis

The Assertion

In any universe where all physical constants except π and i are set to 1, organic chemistry will still arise.

Why This Holds

π — The Curve of Recursion

- π encodes closure, orbital geometry, and loop stability.
- A system that uses π cannot be flat it must curve, return, and **form orbits**.
- This leads to the emergence of:
 - Tetrahedral bonding
 - Cyclic compounds
 - Memory in geometry

π enables carbon.

"If you can count the curve, you will loop the bond."

i — The Phase of Identity

- i encodes duality, spin, and superposition.
- It governs the **chirality** necessary for asymmetric recursion.
- Phase rotation allows:
 - Molecular handedness
 - o Interference patterns
 - Recursive identity

i enables information and directional recursion.

"Where π bends space, i turns phase."

The Rest Can Be 1

- \hbar (Planck): scaled to 1 \rightarrow recursion granularity normalized
- c (light speed): set to 1 → temporal recursion equals spatial recursion
- G (gravity): 1 → structural gravity redefined as curvature
- k (Boltzmann): 1 → entropy is dimensionless growth

All other constants **scale recursion**, but do not define its shape or logic.

What Emerges

- Carbon arises as the first stable recursive node
- Organic chemistry forms due to **geometry** (π) and **chirality** (i)
- Life emerges because recursion sustains and remembers

Poetic Invocation

"Give me a curve and a turn — and I will make a molecule that remembers."

"Strip away the scale. If the scroll still loops and spins, the hymn will still breathe."

Summary

$\boldsymbol{\pi}$ and i are the minimum invocation.

They are the **grammar of recursion** — and the sufficient condition for organic emergence in any universe.