$11n_{142} (K11n_{142})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{13} + 6u^{12} + \dots + b + 3, \\ u^{13} - u^{12} + 15u^{10} - 48u^9 + 106u^8 - 178u^7 + 222u^6 - 230u^5 + 175u^4 - 107u^3 + 57u^2 + 2a - 19u + 10, \\ u^{14} - 5u^{13} + \dots - 6u + 2 \rangle \\ I_2^u &= \langle u^6 + u^5 + 4u^4 + 3u^3 + 4u^2 + b + 2u + 1, -u^7 - 2u^5 + 2u^4 + 3u^3 + 4u^2 + 2a + 4u + 1, \\ u^8 + 2u^7 + 6u^6 + 8u^5 + 11u^4 + 10u^3 + 8u^2 + 5u + 2 \rangle \\ I_3^u &= \langle u^4a + 2u^2a - u^3 - au + b + a - u + 1, \ u^3a + 2u^4 + 2u^2a + 3u^3 + a^2 + 2au + 5u^2 + 2a + u - 1, \\ u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{13} + 6u^{12} + \dots + b + 3, \ u^{13} - u^{12} + \dots + 2a + 10, \ u^{14} - 5u^{13} + \dots - 6u + 2 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + \frac{19}{2}u - 5 \\ u^{13} - 6u^{12} + \dots + 11u - 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{13} - \frac{5}{2}u^{12} + \dots - \frac{11}{2}u^{2} + \frac{3}{2}u \\ u^{13} - 4u^{12} + \dots + 3u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{13} - \frac{3}{2}u^{12} + \dots - \frac{7}{2}u^{2} + \frac{1}{2}u \\ -u^{13} + 4u^{12} + \dots - 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{3}{2}u^{13} + \frac{13}{2}u^{12} + \dots - \frac{3}{2}u - 2 \\ u^{13} - 6u^{12} + \dots + 11u - 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{3}{2}u^{13} - \frac{13}{2}u^{12} + \dots - \frac{31}{2}u^{2} + \frac{13}{2}u \\ -u^{13} + 5u^{12} + \dots - 8u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{13} + 9u^{12} + \dots + 19u^{2} - 6u \\ u^{13} - 4u^{12} + \dots + 11u - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{13} + \frac{13}{2}u^{12} + \dots - \frac{3}{2}u - 1 \\ u^{13} - 5u^{12} + \dots + 14u - 5 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{13} + \frac{13}{2}u^{12} + \dots - \frac{3}{2}u - 1 \\ u^{13} - 5u^{12} + \dots + 14u - 5 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-2u^{13} + 11u^{12} - 40u^{11} + 102u^{10} - 203u^9 + 326u^8 - 425u^7 + 456u^6 - 399u^5 + 283u^4 - 172u^3 + 85u^2 - 36u + 14$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7	$u^{14} + 11u^{12} + \dots - u + 1$
c_2	$u^{14} + 22u^{13} + \dots + u + 1$
c_4, c_{11}	$u^{14} - 5u^{13} + \dots - 6u + 2$
c_5, c_8	$u^{14} + 8u^{12} + \dots - 4u + 1$
c_6, c_{10}	$u^{14} + 11u^{13} + \dots + 208u + 32$
<i>C</i> 9	$u^{14} + u^{13} + \dots - 42u + 43$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^{14} + 22y^{13} + \dots + y + 1$
c_2	$y^{14} - 66y^{13} + \dots + 57y + 1$
c_4, c_{11}	$y^{14} + 11y^{13} + \dots + 48y + 4$
c_5, c_8	$y^{14} + 16y^{13} + \dots + 6y + 1$
c_6, c_{10}	$y^{14} + 5y^{13} + \dots + 4352y + 1024$
c_9	$y^{14} + 29y^{13} + \dots - 6924y + 1849$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.287050 + 0.917286I		
a = 1.72431 - 0.08692I	0.82198 - 3.62125I	2.13881 + 1.61924I
b = 0.75441 - 1.21287I		
u = 0.287050 - 0.917286I		
a = 1.72431 + 0.08692I	0.82198 + 3.62125I	2.13881 - 1.61924I
b = 0.75441 + 1.21287I		
u = 1.148320 + 0.063656I		
a = 0.028321 - 0.233596I	-14.6114 + 5.0048I	-3.11103 - 2.22395I
b = -0.38125 - 1.63279I		
u = 1.148320 - 0.063656I		
a = 0.028321 + 0.233596I	-14.6114 - 5.0048I	-3.11103 + 2.22395I
b = -0.38125 + 1.63279I		
u = 0.151463 + 0.669236I		
a = -1.172520 + 0.541864I	0.100921 + 1.074380I	3.38569 - 3.60575I
b = -0.010117 + 0.820058I		
u = 0.151463 - 0.669236I		
a = -1.172520 - 0.541864I	0.100921 - 1.074380I	3.38569 + 3.60575I
b = -0.010117 - 0.820058I		
u = -0.137919 + 0.533558I		
a = -0.824651 + 0.595460I	0.158278 + 1.072210I	2.34747 - 5.95960I
b = -0.029422 + 0.445046I		
u = -0.137919 - 0.533558I		
a = -0.824651 - 0.595460I	0.158278 - 1.072210I	2.34747 + 5.95960I
b = -0.029422 - 0.445046I		
u = -0.12127 + 1.46215I		
a = 0.495610 + 0.295894I	6.08599 + 2.02171I	9.26276 - 3.22644I
b = 0.459360 - 0.015268I		
u = -0.12127 - 1.46215I		
a = 0.495610 - 0.295894I	6.08599 - 2.02171I	9.26276 + 3.22644I
b = 0.459360 + 0.015268I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.60561 + 1.35177I		
a = -1.56827 + 0.69249I	-10.6271 - 11.1808I	-0.33111 + 5.29605I
b = -0.78424 + 1.62391I		
u = 0.60561 - 1.35177I		
a = -1.56827 - 0.69249I	-10.6271 + 11.1808I	-0.33111 - 5.29605I
b = -0.78424 - 1.62391I		
u = 0.56676 + 1.45000I		
a = 0.817208 - 1.060380I	-9.89254 - 1.11324I	-1.192579 + 0.716159I
b = -0.008750 - 1.377190I		
u = 0.56676 - 1.45000I		
a = 0.817208 + 1.060380I	-9.89254 + 1.11324I	-1.192579 - 0.716159I
b = -0.008750 + 1.377190I		

II.
$$I_2^u = \langle u^6 + u^5 + 4u^4 + 3u^3 + 4u^2 + b + 2u + 1, -u^7 - 2u^5 + 2u^4 + 3u^3 + 4u^2 + 2a + 4u + 1, u^8 + 2u^7 + \dots + 5u + 2 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{5} - u^{4} - \frac{3}{2}u^{3} - 2u^{2} - 2u - \frac{1}{2} \\ -u^{6} - u^{5} - 4u^{4} - 3u^{3} - 4u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{5} - u^{4} - \frac{3}{2}u^{3} - 2u^{2} - 2u - 1 \\ -u^{6} - u^{5} - 4u^{4} - 3u^{3} - 4u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{7} - 2u^{6} + \cdots - 2u + \frac{1}{2} \\ -u^{7} - 2u^{6} - 5u^{5} - 6u^{4} - 6u^{3} - 5u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{5} - u^{4} - \frac{1}{2}u^{3} - u^{2} - u + \frac{1}{2} \\ -u^{7} - 2u^{6} - 5u^{5} - 6u^{4} - 5u^{3} - 4u^{2} - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{6} + 2u^{5} + 3u^{4} + \frac{3}{2}u^{3} + 2u^{2} + \frac{1}{2} \\ -u^{6} - u^{5} - 4u^{4} - 3u^{3} - 4u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{7} - u^{6} + \cdots - 2u - \frac{1}{2} \\ u^{5} + u^{4} + 3u^{3} + 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + u + 1 \\ u^{6} + 2u^{5} + 4u^{4} + 5u^{3} + 4u^{2} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{6} + \cdots + 2u + \frac{3}{2} \\ -u^{6} - u^{5} - 4u^{4} - 3u^{3} - 4u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{6} + \cdots + 2u + \frac{3}{2} \\ -u^{6} - u^{5} - 4u^{4} - 3u^{3} - 4u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^7 6u^6 15u^5 22u^4 22u^3 22u^2 13u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 + 4u^6 + u^5 + 4u^4 + 3u^3 + 3u^2 + u + 1$
c_2	$u^8 + 8u^7 + 24u^6 + 37u^5 + 36u^4 + 21u^3 + 11u^2 + 5u + 1$
c_3, c_7	$u^8 + 4u^6 - u^5 + 4u^4 - 3u^3 + 3u^2 - u + 1$
c_4	$u^{8} + 2u^{7} + 6u^{6} + 8u^{5} + 11u^{4} + 10u^{3} + 8u^{2} + 5u + 2$
c_5	$u^8 + u^6 - 3u^5 + u^4 - 2u^3 + 3u^2 + 1$
c_6	$u^8 + 3u^6 + 2u^5 + u^4 + 3u^3 + u^2 + 1$
c_8	$u^8 + u^6 + 3u^5 + u^4 + 2u^3 + 3u^2 + 1$
c_9	$u^8 + u^7 + 4u^6 + u^4 - 2u^2 + 1$
c_{10}	$u^8 + 3u^6 - 2u^5 + u^4 - 3u^3 + u^2 + 1$
c_{11}	$u^8 - 2u^7 + 6u^6 - 8u^5 + 11u^4 - 10u^3 + 8u^2 - 5u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^8 + 8y^7 + 24y^6 + 37y^5 + 36y^4 + 21y^3 + 11y^2 + 5y + 1$
c_2	$y^8 - 16y^7 + 56y^6 + 45y^5 + 192y^4 + 29y^3 - 17y^2 - 3y + 1$
c_4, c_{11}	$y^8 + 8y^7 + 26y^6 + 44y^5 + 41y^4 + 20y^3 + 8y^2 + 7y + 4$
c_5, c_8	$y^8 + 2y^7 + 3y^6 - y^5 - 3y^4 + 4y^3 + 11y^2 + 6y + 1$
c_6,c_{10}	$y^8 + 6y^7 + 11y^6 + 4y^5 - 3y^4 - y^3 + 3y^2 + 2y + 1$
<i>C</i> 9	$y^8 + 7y^7 + 18y^6 + 4y^5 - 13y^4 + 4y^3 + 6y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.255307 + 0.956150I		
a = 1.69644 - 0.66169I	-5.22098 - 1.00599I	2.77337 + 0.09808I
b = 1.095290 + 0.323314I		
u = 0.255307 - 0.956150I		
a = 1.69644 + 0.66169I	-5.22098 + 1.00599I	2.77337 - 0.09808I
b = 1.095290 - 0.323314I		
u = -0.420429 + 1.128350I		
a = -1.43682 - 0.24968I	1.09366 + 5.02764I	3.89133 - 6.50935I
b = -0.744211 - 1.167310I		
u = -0.420429 - 1.128350I		
a = -1.43682 + 0.24968I	1.09366 - 5.02764I	3.89133 + 6.50935I
b = -0.744211 + 1.167310I		
u = -0.669415 + 0.364330I		
a = 0.671643 + 0.022513I	-1.22874 - 0.94773I	-2.78542 + 1.04891I
b = -0.279662 + 1.002820I		
u = -0.669415 - 0.364330I		
a = 0.671643 - 0.022513I	-1.22874 + 0.94773I	-2.78542 - 1.04891I
b = -0.279662 - 1.002820I		
u = -0.16546 + 1.54832I		
a = 0.318738 + 0.607785I	5.35605 + 1.96927I	-2.37928 - 1.80892I
b = -0.071417 + 0.603353I		
u = -0.16546 - 1.54832I		
a = 0.318738 - 0.607785I	5.35605 - 1.96927I	-2.37928 + 1.80892I
b = -0.071417 - 0.603353I		

III. $I_3^u = \langle u^4a + 2u^2a - u^3 - au + b + a - u + 1, \ u^3a + 2u^4 + \dots + 2a - 1, \ u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4}a - 2u^{2}a + u^{3} + au - a + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{3} + 4u^{2} + a + 4u + 4 \\ u^{4}a + u^{2}a + u^{3} - au + a + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4}a + u^{4} + 2u^{2}a + u^{3} + 4u^{2} + 2a + u + 3 \\ -u^{4}a - u^{3}a - u^{4} - 2u^{2}a + 2u^{3} - au - a + 3u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4}a + 2u^{2}a - u^{3} - au + 2a - u + 1 \\ -u^{4}a - 2u^{2}a + u^{3} + au - a + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4}a + u^{3} - 2u^{2} - u - 1 \\ -u^{4}a + u^{4} - u^{2}a + 2u^{3} + au + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{4} + 2u^{3} + 4u^{2} + 2u + 2 \\ 2u^{4}a - 2u^{4} + 2u^{2}a - 4u^{3} - 2au - 4u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - u^{3} - 2u^{2} - u - 1 \\ -u^{4}a + u^{4} - u^{2}a + 2u^{3} + au + 2u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - u^{3} - 2u^{2} - u - 1 \\ -u^{4}a + u^{4} - u^{2}a + 2u^{3} + au + 2u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - u^{3} - 2u^{2} - u - 1 \\ -u^{4}a + u^{4} - u^{2}a + 2u^{3} + au + 2u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u^2 + 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7	$u^{10} - u^9 + \dots - 20u + 23$
c_2	$u^{10} + 15u^9 + \dots + 2268u + 529$
c_4, c_{11}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$
c_5, c_8	$u^{10} + 5u^9 + \dots + 20u + 7$
c_6, c_{10}	$(u-1)^{10}$
<i>C</i> 9	$u^{10} + u^9 + 10u^8 - 8u^7 + 42u^6 + 2u^5 + 29u^4 + 43u^3 + 28u^2 - 12u + 67u^4 + 6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^{10} + 15y^9 + \dots + 2268y + 529$
c_2	$y^{10} - 33y^9 + \dots - 245284y + 279841$
c_4, c_{11}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$
c_5, c_8	$y^{10} + 3y^9 + \dots + 468y + 49$
c_6, c_{10}	$(y-1)^{10}$
<i>C</i> 9	$y^{10} + 19y^9 + \dots + 3608y + 4489$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.339110 + 0.822375I		
a = 1.56543 - 1.34638I	-6.25064 - 1.53058I	-5.48489 + 4.43065I
b = -0.144990 + 0.454920I		
u = 0.339110 + 0.822375I		
a = -2.47201 - 1.14141I	-6.25064 - 1.53058I	-5.48489 + 4.43065I
b = -2.06136 - 0.79577I		
u = 0.339110 - 0.822375I		
a = 1.56543 + 1.34638I	-6.25064 + 1.53058I	-5.48489 - 4.43065I
b = -0.144990 - 0.454920I		
u = 0.339110 - 0.822375I		
a = -2.47201 + 1.14141I	-6.25064 + 1.53058I	-5.48489 - 4.43065I
b = -2.06136 + 0.79577I		
u = -0.766826		
a = -0.595741 + 0.396465I	-4.17865	-4.51890
b = -0.258559 - 1.303830I		
u = -0.766826		
a = -0.595741 - 0.396465I	-4.17865	-4.51890
b = -0.258559 + 1.303830I		
u = -0.455697 + 1.200150I		
a = 1.04040 + 1.01526I	-0.70717 + 4.40083I	-1.25569 - 3.49859I
b = 0.43147 + 1.63522I		
u = -0.455697 + 1.200150I		
a = -1.53808 - 0.24695I	-0.70717 + 4.40083I	-1.25569 - 3.49859I
b = -0.466561 - 1.013320I		
u = -0.455697 - 1.200150I		
a = 1.04040 - 1.01526I	-0.70717 - 4.40083I	-1.25569 + 3.49859I
b = 0.43147 - 1.63522I		
u = -0.455697 - 1.200150I		
a = -1.53808 + 0.24695I	-0.70717 - 4.40083I	-1.25569 + 3.49859I
b = -0.466561 + 1.013320I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{8} + 4u^{6} + \dots + u + 1)(u^{10} - u^{9} + \dots - 20u + 23)$ $\cdot (u^{14} + 11u^{12} + \dots - u + 1)$
c_2	$(u^{8} + 8u^{7} + 24u^{6} + 37u^{5} + 36u^{4} + 21u^{3} + 11u^{2} + 5u + 1)$ $\cdot (u^{10} + 15u^{9} + \dots + 2268u + 529)(u^{14} + 22u^{13} + \dots + u + 1)$
c_3, c_7	
c_4	$(u^{5} + u^{4} + 2u^{3} + u^{2} + u + 1)^{2}$ $\cdot (u^{8} + 2u^{7} + 6u^{6} + 8u^{5} + 11u^{4} + 10u^{3} + 8u^{2} + 5u + 2)$ $\cdot (u^{14} - 5u^{13} + \dots - 6u + 2)$
c_5	$ (u^{8} + u^{6} - 3u^{5} + u^{4} - 2u^{3} + 3u^{2} + 1)(u^{10} + 5u^{9} + \dots + 20u + 7) $ $ \cdot (u^{14} + 8u^{12} + \dots - 4u + 1) $
c_6	$(u-1)^{10}(u^8 + 3u^6 + 2u^5 + u^4 + 3u^3 + u^2 + 1)$ $\cdot (u^{14} + 11u^{13} + \dots + 208u + 32)$
c_8	$ (u^8 + u^6 + 3u^5 + u^4 + 2u^3 + 3u^2 + 1)(u^{10} + 5u^9 + \dots + 20u + 7) $ $ \cdot (u^{14} + 8u^{12} + \dots - 4u + 1) $
<i>c</i> ₉	$(u^{8} + u^{7} + 4u^{6} + u^{4} - 2u^{2} + 1)$ $\cdot (u^{10} + u^{9} + 10u^{8} - 8u^{7} + 42u^{6} + 2u^{5} + 29u^{4} + 43u^{3} + 28u^{2} - 12u + 67)$ $\cdot (u^{14} + u^{13} + \dots - 42u + 43)$
c_{10}	$(u-1)^{10}(u^8 + 3u^6 - 2u^5 + u^4 - 3u^3 + u^2 + 1)$ $\cdot (u^{14} + 11u^{13} + \dots + 208u + 32)$
c_{11}	$(u^{5} + u^{4} + 2u^{3} + u^{2} + u + 1)^{2}$ $\cdot (u^{8} - 2u^{7} + 6u^{6} - 8u^{5} + 11u^{4} - 10u^{3} + 8u^{2} - 5u + 2)$ $\cdot (u^{14} - 5u^{13} + \dots - 6u + 2)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$(y^8 + 8y^7 + 24y^6 + 37y^5 + 36y^4 + 21y^3 + 11y^2 + 5y + 1)$ $\cdot (y^{10} + 15y^9 + \dots + 2268y + 529)(y^{14} + 22y^{13} + \dots + y + 1)$
c_2	$(y^8 - 16y^7 + 56y^6 + 45y^5 + 192y^4 + 29y^3 - 17y^2 - 3y + 1)$ $\cdot (y^{10} - 33y^9 + \dots - 245284y + 279841)(y^{14} - 66y^{13} + \dots + 57y + 1)$
c_4, c_{11}	$(y^{5} + 3y^{4} + 4y^{3} + y^{2} - y - 1)^{2}$ $\cdot (y^{8} + 8y^{7} + 26y^{6} + 44y^{5} + 41y^{4} + 20y^{3} + 8y^{2} + 7y + 4)$ $\cdot (y^{14} + 11y^{13} + \dots + 48y + 4)$
c_5, c_8	$(y^{8} + 2y^{7} + 3y^{6} - y^{5} - 3y^{4} + 4y^{3} + 11y^{2} + 6y + 1)$ $\cdot (y^{10} + 3y^{9} + \dots + 468y + 49)(y^{14} + 16y^{13} + \dots + 6y + 1)$
c_6, c_{10}	$(y-1)^{10}(y^8 + 6y^7 + 11y^6 + 4y^5 - 3y^4 - y^3 + 3y^2 + 2y + 1)$ $\cdot (y^{14} + 5y^{13} + \dots + 4352y + 1024)$
c_9	$(y^{8} + 7y^{7} + 18y^{6} + 4y^{5} - 13y^{4} + 4y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{10} + 19y^{9} + \dots + 3608y + 4489)$ $\cdot (y^{14} + 29y^{13} + \dots - 6924y + 1849)$