KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060

CONTINUOUS ASSESSMENT TEST 1

(Regulations 2022)

Month and Year : AUGUST and 2024	Roll Number:		
Programme : B.E	Date : 31.08.2024		
Branch : CSE	Time : 9.15 to 10.45am		
Semester : VI			
Course Code : 22CST51	Duration : 1 ½ Hours		
Course Name: Internet of Things and Cloud Computing	Max. Marks : 50		

		PART - A (10 × 2 = ANSWER ALL THE				
1.	Why should IoT incorporate interoperable communication protocols and self-adapting capabilities? • Enabling seamless communication with other devices and infrastructure.(1 M) • Adjusting modes and settings based on environmental conditions and contextual changes to optimize performance. (1 M)					
2.	Differentiate between IoT and M2M communication in terms of their key characteristics and use cases. (Any 2)					
	CRITERIA	(Machine-to-Machine)	IoT (Internet of Things)			
	Communicat ion	Focus below network layer	Focus above network layer			
	Machines		Heterogeneous			
	H/W vs S/W	Hardware	Software			
	Storage	Point solutions, often in on-premises storage	Data is collected in the cloud			
3.	Determines how	C	mmunication between IoT devices? over the network physical layer or lio wave)	[CO1]	[K2]	
	Scope of the link layer is the local network connection to which host is attached					

4.	Identify any four Websocket architectural constraints(An	v 4)	[CO1]	[K2]	
1.	• Stateful	<i>y</i> 1)		[112]	
	Bidirectional				
	Exclusive Pair model				
	Involves TCP connection for all requests				
	 Does not involve overhead of headers 				
	Only vertical is easier				
5.	Outline the components of the IoT functional block.		[CO1]	[K2]	
	Device				
	Communication				
	• Services				
	Management				
	Security				
	Application				
	Or				
	IoT Functional block diagram				
6.	In a home automation system where a single node ma		[CO1]	[K4]	
	lights and appliances using electronic relay switches and				
	device in a local database, analyze the appropriate abst	craction level for this scenario			
	and draw the corresponding diagram.				
	Level 1 (1 Mark)				
	Diagram (1 Mark)				
	loT Level-1				
	Local Cloud				
	App				
	REST/WebSocket Communication				
	REST/WebSocket Services				
	Database				
	Controller Service				
	□				
	Resource				
	Device				
	Monitoring Node performs analysis, stores data				
7.	How IoT sensors can be used to monitor indoor air quality	y?	[CO1]	[K2]	
	Harmful and toxic gases can cause serious health	problem.			
	• Can identify the hazardous zones so that corre	ective measures can taken to			
	ensure proper ventilation.				
8.					
	[CO2]	[K2]			
	 Various types of smart services, which are offered 	· · · · · · · · · · · · · · · · · · ·			
_	9. Differentiate Fully functional and Reduced functional devices. (Any 2)				
9.			[CO2]		

	FFDs can act as personal area network (PAN) coordinator or as just a normal node. The coordinator has the capability to create, control, and maintain the network. Supports Star, Peer-to-peer & Cluster-tree	RFDs are very simple nodes, and they have constrained resources. They can only communicate with a coordinator node Supports Star topology			
10.	Sketch the DODAG graph for the given continuous in the correct order without forming cyclic DAG. Identify the root node and the final (i) Task A must be completed by (ii) Task B must be completed by • A□B□C (1 Mark) • Root Node A and Leaf Node C (1 Mark)	les, in alignment with the acyclic nature leaf node: efore Task B before Task C.	_	CO2]	[K3]
		B (3 × 10 = 40 Marks) ANY FOUR QUESTIONS			
11.	monitoring system using IoT. The sycameras and sensors, optimize traffic conditions, provide automated guidar offer real-time updates to manage suitable IoT level for the above scenarious Level Identification (2 marks) Level 4 Level 5 Level 6 Justification (3 marks) For the real-time traffic monitoring are most suitable. It supports advange processing, and localized decision-mulight optimization, automated driver congestion management.	ing a prototype for a real-time traffic ystem needs to collect data from traffic clight timings based on real-time traffic nee to drivers through a mobile app and congestion in urban areas. Analyse a rio and justify your chosen level. system Level 4 or Level 5 or Level 6 need sensor integration, real-time data naking. This allows for dynamic traffic guidance via mobile apps, and effective (Level 4 Level 5 Level 6) using (5	(10)	CO1]	[K4]

12. Consider the Smart Agriculture system that monitors soil moisture, (10) [CO1] [K3]

temperature and humidity in real-time to optimize irrigation and farming practices. The system can trigger irrigation based on real-time data, improving water efficiency. Components include soil moisture sensors, temperature sensors, actuators for irrigation control, a wireless communication module and a cloud platform for data analytics. For the above system, design the following:

1) Purpose and requirement specification

- 2) Process specification
- 3) Domain mode specification
- 4) Information model Specification
- 5) Service Specification

Smart Agriculture System Design

1) Purpose and Requirement Specification (2 marks)

Purpose: The Smart Agriculture System aims to enhance farming practices by optimizing irrigation based on real-time monitoring of soil moisture, temperature, and humidity. This helps in improving water efficiency, reducing wastage, and increasing crop yield.

Requirements:

- Sensors:.
- Actuators:
- Communication Module:
- Data Analytics Platform:
- User Interface:

Real-Time Alerts:

2) Process Specification (2 marks)

Routing Protocols – RPL (Any 2 points 2 marks)

- A **Distance Vector Routing Protocol** that creates a tree-like routing topology called the Destination Oriented Directed Acyclic Graph (DODAG)
- support **minimal routing needs** by building a highly robust topology over lossy networks
- support various types of traffic models:
 - o multipoint-to-point, point-to-multipoint, and point-to-point
- Devices are connected to each other in such a way that **no cycles are present in the connection**
 - o Done using a node called **destination oriented directed acyclic graph (DODAG)**, which is routed at a single destination

Defines two modes for each node: (2 marks)

- Storing mode: All nodes contain the entire routing table of the RPL domain. Every node knows how to reach every other node directly.
- Non-Storing mode: Only the border router(s) of the RPL domain contain(s) the full routing table. All other nodes in the domain maintain their list of parents only

RPL: DODAG(4 marks)

- Used by RPL to maintain routing topology and update routing information.
- A parent node can have multiple child nodes
- A child node can have multiple parent nodes
- Each node knows its parent node but does not have any information about its child nodes
- Maintains at least a single path from each node to the root and the preferred parent

1	1	DODAG information object (DIO)	This message is used to keep the current rank (level) of the node, determine the
		,	distance of each node to the root based on some specific metrics, and choose the preferred parent path.
2	2	Destination advertisement object (DAO)	This message is used to unicast destination information toward selected parents of a node. This control message helps RPL to maintain upward and downward traffic.
33	3	DODAG information solicitation (DIS)	This message is used by a specific node in order to acquire DIO messages from another reachable adjacent node.
4	4	DAO acknowledgment (DAO-ACk)	This message is used as a response to a DAO message and is sent by a DAO recipient node like a DAO parent or DODAG root.

Bloom's Taxonomy Lo	evel Remem	U	erstanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentag	е	-	43.33	36.67	20		