HOMEWORK 5 – MATH 441 May 5, 2018

ALEX THIES athies@uoregon.edu

Assignment: 3.B - 6, 16, 21; 3.C - 4, 10, 14; 3.D - TBA;

Section 3.B

Problem 6. Prove that there does not exist a linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that range T = null T.

Proof. Let $T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^5)$, i.e., $T : \mathbb{R}^5 \to \mathbb{R}^5$. By the Fundamental Theoreom for Linear Maps (FTLM) we have $\dim \mathbb{R}^5 = \dim \operatorname{null} T + \dim \operatorname{range} T$. Suppose by way of contradiction that range $T = \operatorname{null} T$, then $\dim \operatorname{null} T = \dim \operatorname{range} T$, so the FTLM states $5 = 2\dim \operatorname{null} T$. Since $\dim \operatorname{null} T \in \mathbb{Z}^+$, the FTLM is asserting that 5 = 2n, i.e., 5 is even \not Hence, there does not exist a linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that range $T = \operatorname{null} T$, as we aimed to show.

Problem 16. Suppose there exists a linear map on V whose null space and range are both finite-dimensional. Prove that V is finite-dimensional.

Proof. Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ such that dim null T = m and dim range T = n for $m, n \in \mathbb{Z}^+$. By the FTLM we have dim $\mathbf{V} = m + n$, hence V is finite-dimensional.

Problem 21. Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.

Proof. Let **V** be a finite-dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ for some vector space W; let dim $\mathbf{V} = n$ for $n \in \mathbb{Z}^+$.

 \Rightarrow) Assume T is surjective. Then range $T = \mathbf{W}$, and by the FTLM dim $\mathbf{V} \geq$ dim \mathbf{W} , hence \mathbf{W} is finite-dimensional; let dim $\mathbf{W} = m$ for $m \in \mathbb{Z}^+$. Let $\mathcal{B}_V = \vec{\mathbf{v}}_1, \ldots, \vec{\mathbf{v}}_n$, and $\mathcal{B}_W = \vec{\mathbf{w}}_1, \ldots, \vec{\mathbf{w}}_m$ be bases for \mathbf{V} and \mathbf{W} , respectively. Since T is surjective, for each $\vec{\mathbf{w}}_i \in \mathcal{B}_W$ there exists a $\vec{\mathbf{v}}_j \in \mathcal{B}_V$ such that $T\vec{\mathbf{v}}_j = \vec{\mathbf{w}}_i$. Let's define a function that reverses that process.

Define $S \in \mathcal{L}(\mathbf{W}, \mathbf{V})$ such that $\vec{\mathbf{w}}_i \mapsto \vec{\mathbf{v}}_j$, we will show that TS acts as the identity map from \mathbf{W} . Apply S to Span \mathcal{C} , and go from there

$$S(a_1\vec{\mathbf{w}}_1 + \dots + a_m\vec{\mathbf{w}}_m) = a_1S\vec{\mathbf{w}}_1 + \dots + a_mS\vec{\mathbf{w}}_m,$$

$$= a_1\vec{\mathbf{v}}_1 + \dots + a_m\vec{\mathbf{v}}_m,$$

$$TS(a_1\vec{\mathbf{w}}_1 + \dots + a_m\vec{\mathbf{w}}_m) = T(a_1\vec{\mathbf{v}}_1 + \dots + a_m\vec{\mathbf{v}}_m),$$

$$= a_1T\vec{\mathbf{v}}_1 + \dots + a_mT\vec{\mathbf{v}}_m,$$

$$= a_1\vec{\mathbf{w}}_1 + \dots + a_m\vec{\mathbf{w}}_m.$$

Hence, $TS\vec{\mathbf{w}} = \vec{\mathbf{w}}$, so TS acts as the identity map from \mathbf{W} , as we aimed to show; it remains to prove the converse.

 \Leftarrow) Assume there exists $S \in \mathcal{L}(\mathbf{W}, \mathbf{V})$ such that TS is the identity map on \mathbf{W} , we will show that T is surjective, which is equivalent to proving range $T = \mathbf{W}$. Let $\vec{\mathbf{w}} \in \mathbf{W}$, notice that $S\vec{\mathbf{w}} \in \mathbf{V}$, so we can write $\vec{\mathbf{v}} = S\vec{\mathbf{w}}$. Because $TS = I_W$, we have $\vec{\mathbf{w}} = TS\vec{\mathbf{w}} = T\vec{\mathbf{v}}$, so $\vec{\mathbf{w}} \in \mathbf{W}$ and $\vec{\mathbf{w}} \in \text{range } T$. It follows that range T = W, which is equivalent to T being surjective, as we aimed to prove. Thus, for a finite-dimensional vector space \mathbf{V} , T is surjective if and only if there exists $S \in \mathcal{L}(\mathbf{W}, \mathbf{V})$ such that TS is the identity map on \mathbf{W} .

Section 3.C

Problem 4. Suppose v_1, \ldots, v_m is a basis of V and W is finite-dimensional. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis w_1, \ldots, w_m of W such that all the entries in the first column of $\mathcal{M}(T)$ (with respect to the bases v_1, \ldots, v_m and w_1, \ldots, w_m) are 0 except for possibly a 1 in the first row, first column.

Problem 10. Suppose A is an m-by-n matrix and C is an n-by-p matrix. Prove that $(AC)_{i}$.

In other words, show that row j of AC equals (row j of A) times C.

Problem 14. Prove that matrix multiplication is associative. In other words, suppose A, B, and C are matrices whose sizes are such that (AB)C makes sense. Prove that A(BC) makes sense and that (AB)C = A(BC).

Section 3.D