Ecossistema HADOOP

Júlio Alcântara Tavares, MSc Instrutor

Big Data e o Processamento De Grandes Volumes De Dados

Arquitetura e Principais Módulos do Ecossistema HADOOP: Visão Geral

Arquitetura e Principais Módulos do Ecossistema HADOOP: Visão Detalhada

Hadoop Ecosystem

Ceph File System

Alluxio

Red Hat GlusterFS

Detalhamento dos Módulos

Apache ZOOKEEPER

Apache ZooKeeper is an effort to develop and maintain an open-source server which enables highly reliable distributed coordination.

Apache FLUME

- Uma outra forma de realizar o stream de dados para dentro do cluster hadoop.
- Implementado desde o início com o HADOOP em mente
 - Possui SINKs para HDFS e Hbase.
- Originalmente pensado para trabalhar com o problema da agregação de LOGs.

Anatomia de um Agente no Flume

- Componentes de um Agente
 - Source (Fonte)
 - De onde os dados estão surgindo
 - Opcionalmente, é possível ter "Channel Selectors" e "Interceptors" (possibilidade de modificar/eliminar eventos on the fly).
 - Channel (Canal)
 - Forma como os dados são transferidos
 - Memória
 - Arquivo

- Componentes de um Agente
 - Sink (Destino)
 - Para aonde os dados estão indo
 - Podem ser organizados em Sink Groups
 - Um Sink pode se conectar exclusivamente com um canal
 - O canal é notificado para deletar a mensagem logo que um "SINK" processar este dado.

- Tipos de SOURCE (Fontes Built-IN)
 - Spooling directory
 - Avro
 - Kafka
 - Exec
 - Thrift
 - Netcat
 - HTTP
 - Custom
 - E vários outros!

- Tipos de SINK (Built-IN)
 - HDFS •
 - Hive
 - HBase
 - Avro
 - Thrift
 - Elasticsearch
 - Kafka
 - Custom
 - Dentre vários outros!

Usando AVRO, os agentes podem trocar informações entre si. (Observar topologia)

Pode ser "pensado" como uma camada de buffer entre os dados e o cluster.

Exemplos de Workflow

Exemplos de Workflow

Apache STORM

"Real-time stream processing"

- Outro framework para processar stream contínuos de dados em um cluster, de forma distribuída
- Trabalha em eventos individuais e não em "micro-batches" (como é o caso do Spark), ou seja, trabalha bem próximo de real time
- Ideal se você precisa de uma latência a nível de "sub-seconds"

- Arquitetura
 - Um stream é composto por tuplas fluem através de:
 - Spouts (São fontes de stream: Kafka, Twitter, etc)
 - Bolts (Processam dados a medida que são recebidos)
 - Transformam, agregam, gravam no BD e em HDFS

• Uma topologia é um grafo de SPOUTS e BOLTS que processam seu stream

• Uma topologia é um grafo de SPOUTS e BOLTS que processam seu stream

- Storm vs Spark Streaming
 - Spark Streaming: possui mais opções de "extensão" e bibliotecas
 - Storm: Ideal para processamento realmente em tempo real (a nível de evento, com latência próxima de zero)
 - Storm: oferece o recurso "Tumbling Windows" (muito mais preciso) ao invés da "Sliding Windows" do Spark
 - Kafka + Storm e Kafka + Spark Streaming: ambos são combinações populares

Apache FLINK

Apache Flink

- Mais uma opção para Stream de Dados!
 - Em relação ao objetivo, é semelhante ao STORM
- Pode ser executado de forma STANDALONE ou em clusters com YARN e MESOS
- Altamente Escalável (1000's de Nós)
- Tolerante a Falhas
 - Mesmo em falhas garante a semântica de "exactly-one processing"
 - Usa mecanismos de LOG para isso
- Muito mais rápido que o STORM!!!

Apache Flink

- Flink vs Spark Streaming vs Storm
 - Flink é muito mais rápido que o STORM, pois sua arquitetura implementa uma camada
 muito leve quando comparado com o STORM
 - / Flink possui seu próprio ecossistema (assim como o SPARK)
 - Entretanto, o SPARK é muito mais evoluído neste quesito
 - Flink pode processar os eventos baseado no seu TIMESTAMP (e não na ordem em que os eventos foram recebidos no cluster)
 - Flink: Dentre todos, é a tecnologia mais nova (ainda em evolução, mas já bastante usado)

Flink in the Hadoop Ecosystem

Apache Flink

- Possui diversos conectores:
 - HDFS
 - Cassandra
 - Kafka
 - Elasticsearch, NiFi, Redis, RabbitMQ
 - E Muitos Outros!

Thank you