Roadmaps

Robots in Context

Leon Bodenhagen lebo@mmmi.sdu.dk

Associate Professor

SDU Robotics, Maersk Mc-Kinney Moller Institute

Content

- Roadmaps
- Visibility Roadmaps
- Generalized Voronoi Map
- Canny's Roadmap Algorithm
- Graph search

Roadmaps

Basic idea: Capture the connectivity of the free space by a graph.

Roadmap Definition 1

General

 A roadmap is graph where nodes correspond to configurations and edges correspond to collision free paths between configurations.

Roadmap Definition 2

- A union of one-dimensional curves is a roadmap, RM, if for all q_{start} and q_{goal} in Q_{free} that can be connected the following holds
 - Accessibility: There exists a path from q_{start} to some q_{start} ' in RM
 - Departability: There exists a path from q_{goal} to some q_{goal} ' in RM
 - Connectivity: There exists a path in RM between q_{start} ' and q_{end} '

Path Planning using a Roadmap

- Build the Roadmap
- Connect q_{start} and q_{goal} to q_{start} and q_{end} both belonging to the roadmap.
- Find a path between q_{start}' and q_{end}'

- What is the hard part here?
- Given a roadmap according to definition 2, what are the properties of the planner?

Building a Roadmap

- Grid sampling
- Visibility Graph
- Voronoi Diagram
- Cannys roadmap method
- Probabilistic roadmaps (to be discussed later in the course)

Building a Roadmap

- Grid sampling
- Visibility Graph
- Voronoi Diagram
- Cannys roadmap method

Grid Samling

- Divide the space into a grid.
- Create a node for each collision free cell.
- Connect all neighboring collision free cells (either as 4 or 8 connected)

Grid Samling

- Divide the space into a grid.
- Create a node for each collision free cell.
- Connect all neighboring collision free cells (either as 4 or 8 connected)

Pros and cons?

Building a Roadmap

- Grid sampling
- Visibility Graph
- Voronoi Diagram
- Cannys roadmap method

- Assumes all obstacles are polygons
- Nodes in the graph are verticies of the obstacles.
- Nodes are connected if
 - They are already
 connected by an edge on
 the obstacle.
 - The line segment joining them is collision free.

 We may include the initial and goal configurations in the same way.

• The algorithm for constructing the roadmap can be done in $O(N^3)$

N is the total number of verticies

Each have O(N) neighbor candidates.

Checking each candidate is O(N)
 because there are O(N) edges on the polygon to check collision against.

Discuss properties and pros and cons.

Discuss properties and pros and cons.

Pros

- Gives the shortest possible path.
- Small number of nodes (for simple obstacles)
- Complete roadmap

Cons

- Goes close to obstacles
- Requires polygons as obstacles.
- May have many points
- Many redundant edges

Reduced Visibility Graph

- Define supporting and seperating lines.
 - Supporting: Tangent to two obstacles both on the same side of the line.
 - Separating: Tangent to two obstacle on either side of the line.
- Only use those edges which corresponds to either a separating or supporting line

Reduced Visibility Graph - Exercise

- Define supporting and seperating lines.
- Only use those edges which corresponds to either a separating or supporting line
- Use the principle to update the visibility roadmap

Building a Roadmap

- Grid sampling
- Visibility Graph
- Voronoi Diagram
- Cannys roadmap method

Voronoi Diagram

Basic Definitions

Point to Obstacle Distance

$$d_i^x(q) = \min_{c \in QO_i} d(q, c)$$

Gradient

$$\nabla d_i^x(\mathbf{q}) = \frac{q - c}{d(q, c)}$$

Basic Definitions

Points within line of sight

$$C_i(\mathbf{x}) = \{ \mathbf{c} \in QO_i \colon \forall t \in [0,1], x(1-t) + c \ t \in Q_{free} \}$$

Visible distance function:

$$d_i(x) = \begin{cases} \min_{c \in QO_i} d(x, c) & \text{if } c \in C_i(x) \\ \infty & \text{otherwise} \end{cases}$$

Multiple objects

$$D(x) = \min_{i} d_i(x)$$

Equidistant for Two Objects

- Equidistant surface
- $S_{ij} = \{ q \in Q_{free} | d_i(q) d_j(q) = 0 \}$

Equidistant for with Multiple Objects

- In case of multiple obstacles
- $F_{ij} = \{q \in S_{ij} | d_i(q) \le d_k(q) \forall k\}$

Generalized Voronoi Diagram

Definition of Generalized Voronoi Diagram

$$GVD = \bigcup_{i} \bigcup_{j} F_{ij}$$

Roadmaps with Generalized Voronoi Diagrams

 How to interpret a Voronoi Diagram as a roadmap?

Roadmaps with Generalized Voronoi Diagrams

- Will the roadmap satisfy the requirements of
 - Accessibility
 - Departability
 - Connectivity

Relation between the Brushfire Algorithm and the Voronoi Diagram

1	1		1	1	1		
1	1		1	1	1		
1	1		1	1	1		
1	1						
1	1				1	1	
1	1				1	1	
							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Relation between the Brushfire Algorithm and the Voronoi Diagram

2	2	2	3	2	2	2	2	2	3
1	1	2	3	2	1	1	1	2	3
1	1	2	3	2	1	1	1	2	3
1	1	2	3	2	1	1	1	2	3
1	1	2	3	2	2	2	2	2	2
1	1	2	3	3	3	2	1	1	2
1	1	2	3	4	3	2	1	1	2
2	2	2	3	4	3	2	2	2	2
3	3	3	3	4	3	3	3	3	3

Building a Roadmap

- Grid sampling
- Visibility Graph
- Voronoi Diagram
- Cannys roadmap method

Silhouette Methods

- Canny's Roadmap Algorithm
 - Works for obstacles defined a polynomials

Define a direction for a sweeping slice

Mark all points where the number of contours intersecting changed

Mark all points where the number of contours intersecting changed

Mark all points where the number of contours intersecting changed

 Mark all "critical points" where the number of contours intersecting changed

 Create connections to the outer boundary through the critical points.

- Keep the lines which
 - Are not colliding with obstacles (only tangent to)

The inner part of lines going through obstacles

 To plan add the start and goal configurations and add lines for these

Search the roadmap for a path from start to goal

Pros and Cons

- Quite fast to compute roadmap
- Long detours
- Follows many obstacles/boundaries
- Obstacles as polynomials
- Works in higher dimensions

Summary

- Roadmaps
 - Nodes correspond to collision-free configurations
 - Edges correspond to collision-free paths
 - Requirements
 - Accessibility
 - Connectivity
 - Departability

