Table of Contents

Rur	nning an EEG Experiment:	2
1. P	reparing the data:	4
2. C	onvertToHTK	6
3. N	leuralFindEvent	7
4. N	euralGenOut	8
5.	Final Structure	9
6.	Upload to Server	10

Running an EEG Experiment:

Before starting the experiment:

Caps and Electrodes:

- Make sure that the cap is not folded and it is stretched.
- Cz should be at the middle of the head, approximately 20 Cm from A1 and 20 cm from A2. (Shown on the picture)

- Add gel and check the Impedance (open g.recorder/tools/impedancecheck), put gel in the ground and channel 1 at first. If you could not get green impedances for all the channels, save a snapshot of the impedance check.
- If you couldn't get green impedance, lift the electrode a little and put gel under it, then fix the electrode.
- Connect the references to the ears. References should have gel too.

To Subject:

It should be clarified for the subject that: 1. He shouldn't move. 2. He should keep the eyes open during the experiment. 3. He should try to blink between the sentences.

Hiamp Configuration:

- Add 60Hz Notchfilter, 0 to 200 Hz bandpass.
- Add channel 64 as reference.

During the Experiment:

- Open g. Scope block in Simulink model.
- Check the analog channels.
- Check the eye-blinking effect on EEG, check the alpha power increase when the subject closes the eyes or when he is tired.

Between the Experiments:

- Make sure the subject is still concentrated.
- Check the impedances again.

After the Experiment:

- Wash each electrode of the cap separately without separating it from the cap. All the electrodes, wires and the cap are washable.
- Fill out the readme file, remove the unnecessary recorded data, and put all of them on the server.

A simple simulink model

1. Preparing the data:

- 1. Create a folder named "CUEEGxx", xx is the subject ID.
- 2. Put "CUEEGxx.xls" (information file) in the generated folder.
- 3. The name of the raw data should be "Bxx_ ...", xx is the block number.
- 4. Create a subfolder "original", put the raw data and stimulus order in "original" folder.

* "stimorder" and "data" in the name of the .mat files are the cues of finding the data and stimorder, so remember to mention them in the name of your .mat files.

• Stimorder is a cell array containing the sounds names in the order that were played.

■ Variables – StimOrder					
StimOrder					
StimOrder <1x220 cell>					
	1	2	3		
1	ms1_common75_16k.wav	ms1_common32_16k.wav	ms1_common62_16k		
2					

- Raw data (for example: B1_data_12_12_2014_13_04_10_0000.mat) contains variable y(channel*time)
 - o y(2:63,:) EEG data
 - o y(64:65,:) references
 - o y(66,:) analog channel -> recorded audio using hiamp

2. ConvertToHTK

Go to "CUEEGxx" folder and run ConvertToHTK(fs). The default Sampling rate is 2400Hz.

Or specify the original and destination folder:

3. NeuralFindEvent

```
evnt 1x259 struct

>> evnt(1)

ans =

name: 'fs1_hankThree1_16K.wav'
    confidence: 0.6646
    syncPosition: 32608
        startTime: 13.5867
        stopTime: 21.4654
        subject: 'CUEEG2'
        block: 'B1'
        trial: 1
        DataPath: './Processed/'
        StimPath: '~/Documents/Lab/EEG Data/Task_S...'
```

4. NeuralGenOut

```
1 -
       DataPath = './';
2 -
       Subject = 'CUEEG2';
3 -
       cond = {'htkraw'};
       load(['evnt_' Subject '.mat']);
5 -
       elects = 1:62;
6 -
       befaft = [0.5 \ 0.5];
7 -
       dataf = 100;
8 -
       specflag = 'Auditory';
9 -
       datatype = 'EEG';
10
11 -
       out = NeuralGenOut(evnt,DataPath,cond,elects,befaft,dataf,specflag,datatype);
12 -
       save(['out_' Subject '_' cond{1} '.mat'], 'out')
13
```

Generated Out:

■ out(1, 1) <1x1 <u>struct</u> >				
Field ▲	Value			
🔤 name	'fs1_common10_16k'			
B sound	<114785x1 double>			
a soundf	16000			
⊞ dataf	100			
duration	7.1742			
🔠 befaft	[0.5000,0.5000]			
🔤 type	'EEG'			
⊞ resp	<62x717x60 double>			
aud aud	<128x717 double>			
🚻 trial	<1x60 double>			

aud is the auditory spectrogram
resp is channel*time*trial
trial contains the corresponding indices of trials in evnt
befaft is the added silence before and after the sound

• sound doesn't contain the silence, resp and aud does.

5. Final Structure

6. Upload to Server

Upload the subject file containing the above structure (Original, Processed, evnt, and out) to the server in the appropriate task folder:

q/nimalab/h1/data/EEG/taskfolder/CUEEGxx