# **Artificial neural networks (ANNs)**

### **SUMMARY**

| 1. | Artificial neural networks (ANNs)    | . 1 |
|----|--------------------------------------|-----|
|    | Types of NNs for supervised learning |     |
|    | Deep Neural Networks (DNNs)          |     |
|    | Convolutional Neural Networks (CNNs) |     |
|    | Classical NN architectures           |     |
| 6. | Other ANNs related research topics.  | 15  |

### **Supervised leaning**

- **Predictive** modelling
  - o prediction
  - o detection
  - o forecasting

# 1. Artificial neural networks (ANNs)

- Biological inspirations
  - o Properties of the brain
    - it can **learn**, reorganize itself from experience
    - it adapts to changing conditions
    - it is robust and fault tolerant
- **Robustness** in ML?
  - o the degree that a model's performance changes when using new data
    - noise
  - o ideally, performance should not deviate significantly
  - o how to test it?
    - CV, CIs
- Two types of learning in NNs
  - o supervised
    - FFNNs, RBFNs, RNNs, DNNs, CNNs, ...
  - o unsupervised
    - self-organizing maps (SOM)
    - Hebbian learning
    - autoencoders
      - self-supervised learning
      - encoding part

- Characteristics of supervised NN learning models
  - o represent (complex) non-linear functions
  - o **eager** inductive learning models
  - o appropriate for offline and online learning
  - o used for classification and regression
  - o black-box models
    - human readability is unimportant
  - o are robust to noisy data
  - o NNs are used as statistical tools
    - adjust nonlinear functions to fulfill a task
    - need of multiple and representative examples
  - NNs enable to model complex static phenomena (Feed-forward neural networks FFNNs) as well as dynamic ones (Recurrent neural networks RNNs)
    - **static** phenomena
      - time has no role
    - **dynamic** phenomena
      - temporal events
      - image and video recognition, time series, handwritten recognition, motion detection, signal processing, stock market prediction, speech recognition, aso

### o NNs require

- a good representation of the data
- training vectors must be statistically representative of the entire input space
- the use of NNs needs a good comprehension of the problem
- NNs require good data preprocessing (e.g. data normalization, for numerical data)
  - the range of all features should be normalized
    - o comparable range for the features
    - o transpose the input variables into the range of the activation function codomain (i.e. for *logistic* [0, 1], for *tanh* [-1, 1])
  - speeds up learning, faster convergence
- o Research domain: **NAS** (*Neural Architecture Search*)
  - subfield of automated machine learning (AutoML)
    - process of automating the tasks of applying ML to real-world problems
  - technique for automating the design of ANNs (both classical and deep)
    - search space defines the type(s) of ANN that can be designed and optimized
    - search strategy defines the approach used to explore the search space.
    - **performance estimation strategy** evaluates the performance of a possible ANN from its design (without constructing and training it).
  - RL, Hill climbing, Evolutionary algorithms, PSO, Multi-objective optimization,...

## 2. Types of NNs for supervised learning

### 1. Feed-forward neural networks (FFNNs)

- an ANN where connections between the units do not form a directed cycle
- the first and simplest form of ANN
- the information moves in only one direction, forward, from the input nodes through the hidden nodes and the output nodes
- there are no cycles or loops in the network (time has no role)



### (a) Feedforward network

[1]

## • types of FFNNs

### • Multilayer perceptron (MLP)

o consists of multiple layers of nodes in a directed graph, with each layer fully connected to the next one



- o except for the input nodes, each node is a *neuron* (processing element) with a *nonlinear* activation function
- o utilizes a supervised learning technique called *backpropagation* for training the network
- o MLP is a modification of the standard linear perceptron and can distinguish data that are not linearly separable

## • <u>Time delay neural networks (TDNNs)</u>

- o theory
- o an alternative to a NN architecture whose purpose is to work on continuous data
- o learning a **temporal** sequence of events
- o maps a finite time sequence  $\{X(t), X(t-\Delta), X(t-2\cdot\Delta) ... X(t-m\cdot\Delta)\}$  into a single output y (this can be generalized for the case when x and/or y are vectors)



- o Pytorch
- helpful in many applications like:
  - time series predictions
  - online spell check
  - speech recognition (generation)
  - image analysis
  - aso
- o Deep TDNN

## • Radial basis function networks (RBFNs)

- o specific feed-forward architecture
- o 1 hidden layer
- o Gaussian activation function at the hidden layer



- connected to the Instance based learning (IBL) literature, but eager instead of lazy
  - computes a global approximation to the target function *f*, in terms of linear combination of local approximations ("**kernel**" functions)
  - is a different kind of two layer neural network
    - i. the hidden units compute the values of kernel functions (local approximations)
    - ii. the output unit computes f as a linear combination of kernel functions

- o applications
  - fault diagnosis
  - forecasting
  - image classification
  - image reconstruction
  - aso

### 2. Recurrent neural networks (RNNs)

- **sequential** or time series data
  - o RNNs are a variant of the conventional FFNNs that can deal with sequential data and can be trained to hold knowledge about the past.
    - a mechanism is required to retain past or historical information to forecast future values.
- connections between units form a directed cycle
  - o this creates an internal state of the network which allows to exhibit **dynamic temporal behavior**
  - o can model systems with internal state (dynamic ones)



(b) Recurrent network

[1]

- unlike FFNNs, RNNs can use their internal memory to process arbitrary sequences of inputs
- appropriate for time series data
  - o learning is **sequential**
- applications:
  - o handwritten recognition
  - o motion detection
  - o signal processing
  - o text generation
  - o time series prediction
  - o stock market forecasting
  - o aso
- the vanishing gradient problem of RNNs cause the network not to learn much → specialised versions of RNN
  - o LSTM
  - o GRU (Gated Recurrent Unit)

### **Long-Short Term Memory networks (LSTMs)**

- o a type of RNN
- o this model is an attempt to allow the unit activations to retain important information over a much longer period of time
- o applications:
  - o language learning
  - o robot control
  - o music composition
  - o speech and handwriting recognition
  - o video processing
  - 0 ...
- other architectures: DeepLSTM, ConvLSTM, BiLSTM (Bidirectional LSTM), ensemble of LSTMs

# 3. <u>Deep Neural Networks (DNNs)</u>

- multiple hidden layers
- can express easier complex functions
- a layer may be viewed as a "feature hierarchy"
- <u>Classes of DNNs</u> [4]
  - o DNNs for supervised learning
  - o DNNs for unsupervised or generative learning
    - *generative models* can learn and mimic any distribution of data
      - Bolzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Deep Bolzmann Machines
      - *Generative adversarial networks* (GANs) [3]
        - two nets competing one against the other (generator/discriminator)
          - learn to generate new data
          - generating images, face, photographies
        - o bidirectional GAN
        - generative adversarial exploration for <u>reinforcement</u> learning
    - Generative models in reinforcement learning
    - **research**: solving unsupervised learning problems with DNNs (e.g. ICA independent component analysis, feature analysis, aso)
  - o Hybrid DNNs, ensemble of DNNs, fuzzy DNNs

## 4. Convolutional Neural Networks (CNNs)

- inspired by the organization of the visual cortex (biological inspiration)
- applications:
  - o computer vision [3]
  - o natural language processing
    - e.g., <u>sentence classification</u>
  - video processing
  - o object detection and recognition
- are deep FFNNs

- o convolution
  - from a dimension of an input, a filter is applied to it to take some of the interesting features from that dimension
- GCN graph convolutional networks
  - o graph structured data
  - o handle higher dimensional (non-grid) data
  - o applications
    - semi-supervised learning
    - supervised learning (<u>text classification</u>)
    - unsupervised learning
- MobileNets efficient CNN architecture for mobile devices
- low resource devices
  - o distillation
    - compressing the knowledge from a large network into a smaller one
  - o distilling the knowledge in a NN (Hinton, 2015), distilling knowledge from GCN
- Ensemble of CNNs

# 5. Classical NN architectures

- Artificial neuron
  - o non-linear, parameterized function with restricted output range





- $\circ$  the output of the neuron is obtained by applying an (non-linear) **activation function** f on the linear combination of the neuron inputs
- Activation functions
  - Signum output range: -1, +1
    - does not have a derivative, undifferentiable in 0
    - perceptron

- *Identity* output range:  $(-\infty, +\infty)$
- Hyperbolic output range: (-1, +1)
  - smooth approximation for the perceptron function
  - learning smoother than the perceptron
- Sigmoid (logistic) output range: (0, +1)
  - e.g. predict a probability

Signum 
$$f(x) = \begin{cases} +1 & x > 0 \end{cases}$$

Identify  $f(x) = x$ 

Signoid  $f(x) = x$ 

$$f(x) = \frac{1}{1+e^{-x}}$$

Hyperbolic  $f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$ 

- *Gaussian* output range: (0, 1)
- ReLU (Rectified Linear Unit) output range:  $(0, \infty)$ 
  - undifferentiable in 0
  - deep architectures
- Soft plus output range:  $(0, \infty)$



- eLU (Exponential Linear Unit) output range:  $(0, \infty)$ 
  - common in CNNs
  - can produce negative values
- PReLU (Parametric Rectified Linear Unit) output range:  $(-\infty, \infty)$ 
  - undifferentiable in 0
  - deep learning
  - solves the problem with activation functions like sigmoid, where gradients would often vanish.

FLU
$$f(x) = \begin{cases} x(e^{x}-1) & x < 0 \\ x & x > 0 \end{cases}$$

$$f(x) = \begin{cases} x(x) & x < 0 \\ x & x > 0 \end{cases}$$

### • Perceptron

o represents a hyperplane decision surface in the high dimensional space of instances



o binary classification (outputs: -1, +1)



- (a) **linearly separable** data set (i..e, data set can be separated by a straight line)
- (b) the classes are **not** linearly separable
- o linear classifier
- o appropriate for online learning



$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

### Learning task

- training examples  $D = \{(x_d, t_d)\}_{d=1,s} \ x_d = (x_{1d}, x_{2d}, \dots x_{nd}) \in \Re^n, t_d \in \{-1,+1\}$
- goal
  - learn the separating hyperplane
  - hypothesis:  $w=(w_0, w_1, \dots w_n) \in \Re^{n+1}$
- error function
  - online learning

$$E_d(\vec{w}) = t_d - o_d$$

• offline learning

$$E(\vec{w}) = \frac{\sum_{d=1}^{s} |t_d - o_d|}{s}$$

- weights initialization
  - small random values (or 0)
- Training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$  is target value
- $\bullet$  o is perceptron output
- $\eta$  is small constant (e.g., .1) called learning rate
- Linear classifier

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

- o <u>Example</u> perceptron
- o The perceptron is able represent some useful boolean function: AND, OR, AND, OR

- $\circ$  converges only if training data is linearly separable and the learning rate is sufficiently small (e.g., 0.1)
  - Perceptron convergence theorem Rosenblatt
    - for a finite set of linearly separable labeled examples, after a finite number of iterations, the algorithm yields a vector w that classifies perfectly all the examples.
  - XOR function is not representable using a perceptron ⇒ we need multilayered networks



**XOR** function

#### • Linear unit

o consider a *linear unit*, whose output o is  $o = w_0 + w_1x_1 + \cdots + w_nx_n$ 



## **Learning task**

- o training examples  $D = \{(x_d, t_d)\}\ x_d = (x_{1d}, x_{2d}, \dots x_{nd}) \in \mathbb{R}^n, t_d \in \mathbb{R}$ 
  - $t_d$  represents the output of the neuron for the input instance d
- o goal
  - learn the weights that minimize the squared error (e.g., using the *gradient descent optimization algorithm*)
    - batch mode gradient descent
      - o over the training samples D  $E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d o_d)^2$
    - incremental (stochastic) gradient descent
      - o for each training sample  $d \in D$   $\forall \{ (\sqrt{w}) = \frac{1}{2} (+d {}^{\circ}d)^2 \}$

### Gradient descent

 the gradient of a function is a vector of first derivatives taken with respect to its constituent variables

$$abla f(p) = egin{bmatrix} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_n}(p) \end{bmatrix}$$

- the gradient specifies the direction that produces the steepest increase in E  $\circ$   $\nabla E[\vec{w}]$  the direction of steepest descent
- e.g., the **gradient** (*slope*) of a line shows how steep it is



Gradient

$$\nabla E[\vec{w}] \equiv \left[ \frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) \\ \frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d) (-x_{i,d}) \end{split}$$

[1]

- Training rule for
  - o batch mode gradient descent

o **stochastic gradient descent** (Delta rule)

- o linear unit training rule using gradient descent is guaranteed to converge
  - to hypothesis H with minimum squared error
  - given a small learning rate
  - even when training data contains noise
  - even when training data not separable by H

### Multilayer network

- o also known as Multilayer perceptron (MLP [3])
- o can express a rich variety of non-linear decision surfaces



[1]

- o NN learning
  - learning model *network*
  - *hypothesis* the vector of weights
- Example of two 2-layer perceptron network for representing the XOR function
- o *Gradient descent* (GD) training rule over a multilayer network is the *backpropagation* training algorithm
  - idea
    - For each training example
      - o propagate the input forward through the network
      - o propagate the errors backward through the network
    - derive gradient descent rules for training
      - o one network unit (e.g. *sigmoid*)
      - o multilayer network of units  $\rightarrow$  backpropagation [1]
  - batch mode GD
    - The learning rule is applied after all training instances are provided
  - stochastic GD
    - The learning rule is applied incrementally, after each training instance
- o Optimization algorithms [3] used in NN learning
  - GD
  - stochastic GD
    - extension: **Adam** (Adaptive moment estimation)
      - o a learning rate is maintained for each network weight (parameter) and separately adapted

- o adaptive learning rates
- deep learning
- minibatch GD
  - performs an update for every batch with *n* training examples
- **first order** optimization algorithms
- second order optimization algorithms
  - use the second derivative (the **Hessian**)
- characteristics of backpropagation
  - GD over the entire network weight vector
  - training is slow (eager model)
    - using network after training is fast
  - will find a local error minimum (the error surface may contain many different local minima)
    - practice: run multiple times
    - weights initialization
      - Xavier initialization (using a Gaussian distribution)
  - momentum
    - speed up the convergence of the network
    - o avoid convergence to a local minimum
- o **optimize** the NN architecture
  - number of hidden layers, number of hidden neurons/layer, learning rate, momentum, etc
  - genetic algorithms
- Problems with gradient-based learning methods and backpropagation (the weights receive an update proportional to the partial derivative of the error function with respect to the weight)
  - vanishing gradient
    - in some cases, the gradient will be vanishingly small ⇒ preventing the weights in changing their values
      - $\circ$  classical activation functions such as **sigmoid** or **hyperbolic tangent** have gradients in (0,1)
    - solutions to prevent the vanishing gradient problem
      - o use other activations functions (whose derivative has a larger domain): ReLU, eLU, PReLU
      - o use residual networks (ResNet)
      - o use batch normalization layers, normalize the input

## exploding gradient

- the gradient is too large
- the model became **unstable** and unable to learn from the training data
- solutions to prevent the exploding gradient problem
  - o fewer layers in the network
  - o clipping
    - thresholding the value of the gradient
    - before performing the GD, assign a clip value if the gradient exceeds a threshold
  - weight regularization (L1, L2)
- loss functions
  - Mean Squared Error (MSE) L2 loss

- Sensitive to outliers
- Mean of Absolute Errors (MAE) L1 loss
- Cross-entropy
  - o for classification
- o *overfitting* in ANNs
  - may be due to
    - too many neurons (complex networks)
    - insufficient training data
    - not appropriate network architecture
      - o it is not close enough to the problem context
  - reducing overfitting
    - use a **validation** set during training
    - weight decay
      - o decrease weights with a small factor during each iteration
    - **regularization** techniques (L1, L2)
      - o penalize large weights
      - o add to the error function a regularization term
    - dropout
      - o randomly drop up neurons (with their connections) during training
      - o deep networks
- o *underfitting* in ANNs
  - the model is too simple, it cannot capture the essence of the data
  - insufficient training, simplicity of the model, insufficient neurons
- o Expressive capabilities of classical/traditional ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

### Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

[1]

# 6. Other ANNs related research topics

- Boosted ANNs
  - o using a boosting algorithm for improving the performance of ANNs
- Ensemble of ANNs (LSTMs, Deep LSTMs)
- Fuzzy ANNs, Fuzzy Deep Neural Networks

- Lazy ANNs
- Hybrid models
  - $\circ$  ANN + DT
  - ANN + SVM (Support Vector Machines)
  - o ANN for function approximation in Reinforcement Learning (RL)
- Parallel/Distributed ANNs
- Deep Residual Networks (ResNets), Progressive Neural Networks, Attention mechanism [3]
- GANs
- ....

### [SLIDES]

Artificial neural networks (T. Mitchell) [1]

## [READING]

- Artificial neural networks (T. Mitchell) [1]
- Modern practical Deep networks (Goodfellow et al.) [2]
- CNNs and CNN architectures (Zhang et al.) [3]
- RNNs and Moderns RNNs (Zhang et al.) [3]

### **Bibliography**

- [1] Mitchell, T., *Machine Learning*, McGraw Hill, 1997 (available at <a href="www.cs.ubbcluj.ro/~gabis/ml-books">www.cs.ubbcluj.ro/~gabis/ml-books</a>)
- [2] Ian Goodfellow, Yoshua Bengio, Aaron Courville, *Deep Learning*, MIT Press, 2016 (online edition at <a href="http://www.deeplearningbook.org/">http://www.deeplearningbook.org/</a>)
- [3] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, *Dive into Deep Learning*, 2020 (http://d2l.ai/)
- [4] Li Deng and Dong Yu, *Deep Learning. Methods and Applications*, Foundations and Trends® in Signal Processing, Volume 7 Issues 3-4, 2014 (<a href="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf">https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf</a>)