Cours de mathématiques de 5ème

Année 2021 - 2022

Sommaire

Chapitre 1 - Enchainements d'opérations	3
Partie I - Vocabulaire des opérations	
a) Addition	
b) Soustraction	
c) Multiplication	3
d) Quotient	
Partie II - Priorités opératoires	
a) Calculs sans parenthèses	
b) Calculs avec parenthèses	4
Exercices	6
Faits en classe	6
Co-animation séance n°1	7
Chapitre 2 - Constructions de triangles. Médiatrices et hauteurs.	8
Partie I - Construction de triangles	8
a) Construction avec les longueurs des 3 côtés	8
b) Construction avec une longueur et deux angles	
Partie II - Médiatrices et hauteurs	
a) Médiatrices	
b) Hauteurs	
Exercices	
Faits en classe	
Co-animation séance n°2	
Co-animation séance n°4	
Chapitre 3 - Fractions	16
Partie I - Concept	16
Partie II - Égalité de fractions	
Exercices	
Faits en classe	
Chapitre 4 - Les solides de l'espace	20
Chapitre 5 - Proportionnalité	21
Chapitre 6 - Divisibilité, nombres premiers	22
Chapitre 7 - Symétrie centrale	23
Chapitre 8 - Calcul littéral	24
Chapitre 9 - Parallélogramme	25
Chapitre 10 - Comparaison de nombres relatifs et repérage	26
Chapitre 11 - Caractérisation angulaire du parallélisme.	27
Chapitre 12 - Addition et soustraction de nombres relatifs	28
Chapitre 13 - Horaires et durées	29
Chapitre 14 - Statistiques	30
Chapter 11 Statistiques	90

Chapitre 15 - Probabilités	31
Chapitre 16 - Périmètre et aires	32
Chapitre 17 - Tableaux, diagrammes et graphiques	33
Chapitre 18 - Volume et contenance	34

Chapitre 1 Enchaînements d'opérations

I - Vocabulaire des opérations

a) Addition

En additionnant deux nombres, on obtient la somme de deux termes. L'opération « 17+4=21 » se lit « la somme de 17 et 4 est 21 ».

$$17 + 4 = 21$$
termes somme

b) Soustraction

En soustrayant un nombre à un autre, on obtient la différence entre ces deux termes. L'opération « 17-4=13 » se lit « la différence entre 17 et 4 est de 13 ».

$$17 - 4 = 13$$
 termes différence

c) Multiplication

En multipliant deux nombre entre eux, on obtient le produit entre ces deux facteurs. L'opération « 17×4 » se lit « le produit de 17 par 4 vaut 68 ».

$$17 \times 4 = 68$$
facteurs produit

d) Quotient

En divisant un nombre par un autre, on obtient le quotient de la dividende par le diviseur. L'opération « $16 \div 2 = 8$ » se lit « le quotient de 16 par 2 vaut 8 ».

$$16 \div 2 = 8$$
 dividende diviseur quotient

II - Priorités opératoires

a) Calculs sans parenthèses

Propriété:

Lorsqu'un calcul ne comporte que des additions, elles peuvent s'effectuer dans l'ordre que l'on souhaite.

Exemples:

• 12 + 29 + 8 + 11 = 12 + 8 + 29 + 11 = 20 + 40 = 60

Dans cet exemple, 12 + 29 n'est pas forcément évident de tête, alors on regroupe le 12 avec le 8 pour obtenir un nombre plus simple à manipuler.

• 3 + 25 + 14 + 2 = 28 + 14 + 2 = 42 + 2 = 44

Quand aucun regroupement ne permet de simplifier le calcul, on effectue les additions de gauche à droite.

Propriété:

Lorsqu'un calcul ne comporte que des multiplications, elles peuvent s'effectuer dans l'ordre que l'on souhaite.

Exemples:

• $8 \times 5 \times 3 \times 2 = 5 \times 2 \times 8 \times 3 = 10 \times 24 = 240$

Dans cet exemple, on veut regrouper le 5 et le 2 ensemble pour former 10 qui est un nombre très facile à multiplier. (Rappel : multiplier un nombre entier par 10 revient à ajouter un O, c'est pour cela que $24 \times 10 = 240$)

• $3 \times 5 \times 7 = 15 \times 7 = 105$

Ici, aucun regroupement ne permet de simplifier le calcul, par convention on effectue les multiplications de gauche à droite.

Propriété:

Dans un calcul comportant plusieurs types d'opérations, on les effectue dans l'ordre suivant :

- d'abord, les multiplications et les divisions (de gauche à droite)
- ensuite, les additions et les soustractions (de gauche à droite)

b) Calculs avec parenthèses

Propriété :

Dans un calcul, ce qui est entre parenthèses est prioritaire sur les autres opérations.

Exemple:

$$A = \underline{(7+5)} \times 3$$
$$A = \underline{12 \times 3}$$
$$A = 36$$

Sans les parenthèses, cela aurait donné:

$$B = 7 + \underline{5 \times 3}$$
$$B = \underline{7 + 15}$$
$$B = 22$$

Pour résumer :

Lorsqu'un calcul comporte plusieurs types d'opérations différents :

• D'abord, on effectue les opérations entre parenthèses

- Puis, une fois qu'il n'y a plus de parenthèses, les multiplications et les divisions (de gauche à droite)
- Enfin, <u>les additions et les soustractions</u> (de gauche à droite)

Remarque:

Dans une fraction, le numérateur et le dénominateur doivent être calculés avant d'effectuer la division symbolisée par le trait de fraction.

Exemple:

$$\frac{2+7}{4+12} = (2+7) \div (4+12)$$

Exercice 1:

Calcule en détaillant les étapes

- (a) $A = (18 4) \times 5 2$
- (b) $B = 7 + 2 \times (8 2)$
- (c) $C = 14 4 \div (10 5)$
- (d) $D = 21 + 8 \times 3 [2 + (14 9) \times 2] (10 7)$
- (e) $E = 77 \div 7 (11 7) \times 3 \times [17 4 \times 3]$

Exercice 2:

Les calculs suivants sont faux. Recopie puis rajoute des parenthèses pour que cela devienne vrai

- (a) $7 5 \times 7 \times 5 \div 5 = 14$
- (b) $3 + 9 \times 8 \div 2 = 1100$
- (c) $7 + 2 \times 3 12 \div 3 = 5$

Exercice 3:

LE COMPTE EST BON

Basé sur le célèbre jeu *Des chiffres et des lettres*, il faut retrouver le nombre demandé en utilisant les 4 opérations, et en utilisant qu'une seule fois les nombres donnés.

Par exemple, on demande le nombre 440 et on donne les nombres suivants 1, 5, 10 et 50.

On commence par 50 - 5 = 45. À ce stade, on ne pourra plus utiliser ni le 5, ni le 50, mais on pourra utiliser une fois le résultat intermédiaire 45.

Puis 45 - 1 = 44.

Enfin $44 \times 10 = 440$, c'est le nombre que l'on recherchait.

L'expression finale du calcul est donc $(50-5-1) \times 10 = 440$. On peut d'ailleurs vérifier à la calculatrice que cela fonctionne.

De la même façon, écrire les expressions permettant de calculer les nombres demandés avec les nombres donnés.

- (a) On demande 75 avec les nombres donnés suivants 2, 5, 7 et 10
- (b) On demande 261 avec les nombres donnés suivants 1, 5, 10 et 50
- (c) On demande 2500 avec les nombres donnés suivants 1, 5, 10 et 50

Exercice 4:

Vrai ou Faux (justifier chaque réponse)

- (a) $8 \times 2 7$ est un produit
- (b) $(6+2) \times (5+7)$ est un produit
- (c) La multiplication est toujours prioritaire sur les autres opérations
- (d) Quand dans un produit l'un des facteurs est nul, alors le produit est nul

Exercice 5:

CALCUL GAUSSIEN

- (a) Quelle est la somme des 6 premiers nombres positifs?
- (b) Lors du calcul Z = 1 + 2 + 3 + 4 + 5 + 5 + 4 + 3 + 2 + 1, un élève remarque que cela reviendrait à 5×6 . Pourquoi ?
- (c) Quel lien y a-t-il entre les résultats des calculs des deux questions précédentes ?

Co-animation séance n°1

Exercice 6:

Calculer les expressions suivantes

(a)
$$A = 125 - 3 \times 9 + 7$$

(b)
$$B = 14 + 3 \times (70 - 2 \times 4) \div 2$$

(c)
$$C = 51 - 32 + 23 + 17 - 4 \times 3$$

Exercice 7:

ÉCRIRE UNE EXPRESSION

On donne les deux programmes de calculs suivants. **Pour chaque programme**, écrire une expression qui permet de calculer le résultat lorsqu'on choisi le nombre 7, **puis** calculer le résultat.

Programme 1:

- ⋆ Choisir un nombre
- ★ Le multiplier par 10
- \star Soustraire 4 au résultat

Programme 2:

- ★ Choisir un nombre
- \star Ajouter 15 à ce nombre
- \star Diviser par 2 le résultat

Exercice 8:

Une station de ski propose à ses clients trois formules pour la saison d'hiver :

- Formule A : on paie $36,50 \in \text{par journ\'ee}$ de ski.
- Formule B : on paie 90 € pour un abonnement « SkiPlus » pour la saison, puis 18,50 € par journée de ski.
- Formule C : on paie 448,50 € pour un abonnement « SkiTotal » qui permet ensuite un accès gratuit à la station pendant toute la saison

Compléter le tableau suivant, d'abord en écrivant l'expression correspondant au nombre de jours, puis en la calculant.

Nombre de journées de ski	2 journées	6 journées	10 journées	
Formule A				
Formule B				
Formule C				

Exercice 9:

Voici les tarifs proposés pour louer des films.

- Après l'achat d'un abonnement annuel à 17,90€ la location d'un film coûte 1,50€.
- Sans l'achat de l'abonnement annuel, la location d'un film coûte 2,30€.

L'année dernière, Chloé était abonnée et elle a dépensé $52,40 \in \text{au}$ total. Chloé a-t-elle intérêt à s'abonner à nouveau cette année ? Justifier.

Chapitre 2

Constructions de triangles. Médiatrices et hauteurs.

Intérêts de la notion

- Le triangle est le polygone le plus basique (3 côtés)
- Tout polygone peut être décomposé en triangles
- Le triangle modélise de nombreux phénomènes physiques (exemple : l'architecture)

I - Construction de triangles

Définition:

Un triangle est un polygone qui est formé de 3 côtés, de trois angles.

a) Construction avec les longueurs des 3 côtés

Protocole de construction

Donnée(s) : Les longueurs des trois côtés

- On identifie le côté ayant la plus grande longueur, et on le trace.
- On identifie un deuxième côté, et le point en commun avec le segment déjà tracé.
- On règle l'écart du compas sur cette deuxième longueur, et on trace un arc de cercle dont le centre est le point en commun.
- Idem pour le troisième côté.
- Le point d'intersection des deux arcs de cercle est le troisième point de mon triangle, je relie ce point aux deux autres.

Exemple:

Si $AB = 6 \ cm$, $AC = 5 \ cm$ et $BC = 5 \ cm$:

Propriété : L'inégalité triangulaire

Dans un triangle, la longueur d'un côté est toujours inférieure ou égale à la somme des longueurs des deux autres côtés.

Exemple:

Corollaire:

Pour qu'un triangle puisse être construit, il faut que la longueur du plus grand côté soit inférieure ou égale à la somme des deux autres longueurs.

Exemples:

- AB = 2 cm, AC = 3 cm et BC = 4,5 cm D'après l'inégalité triangulaire, ABC peut être construit car BC \leq AB + AC en effet, $4.5 \leq 2+3$
- DE = 3 cm, DF = 4 cm et EF = 9 cm D'après l'inégalité triangulaire, DEF ne peut pas être construit car EF > DE + DF en effet, 9 > 3 + 4

b) Construction avec une longueur et deux angles

Protocole de construction

Donnée(s) : La longueur d'un côté du triangle et les 2 angles adjacents à ce côté

- À la règle, on trace le côté dont la longueur est donnée.
- Avec le rapporteur, on trace deux demi-droites d'origine les extrémités du premier côté, et formant les deux angles donnés.
- Le point d'intersection des deux demi-droites est le troisième sommet du triangle.

Exemple:

Si AB = 6 cm, $\widehat{ABC} = 70^{\circ}$ et $\widehat{BAC} = 30^{\circ}$:

Propriété:

Dans un triangle, la somme des mesures des angles intérieurs est égale à 180°.

Illustration:

II - Médiatrices et hauteurs

a) Médiatrices

<u>Définition</u>:

La médiatrice d'un segment est la droite composée de l'ensemble des points à équidistance des extrémités du segment.

Protocole de construction

Donnée(s) : Un segment

- on règle le compas sur une distance fixée (au moins supérieure à la moitié de la longueur du segment)
- à partir de chaque extrémité du segment, on trace deux arcs de cercle de chaque côté du segment
- on relie les deux points d'intersection ainsi obtenus pour former une droite

<u>Définition</u>:

Dans un triangle, les médiatrices des trois côtés concourent en un point appelé le centre du cercle circonscrit.

Propriété:

Soient un segment [AB] et un point M.

 $M \in \text{m\'e}$ diatrice de [AB] est équivalent à MA = MB.

Propriété:

La médiatrice d'un segment le coupe perpendiculairement en son milieu.

b) Hauteurs

Définition:

Dans un triangle, la hauteur d'un côté est la droite passant par le sommet opposé à ce côté et qui coupe ce côté perpendiculairement.

<u>Vocabulaire</u>:

Dans un triangle ABC, la hauteur du côté [BC] peut également être décrite comme la hauteur issue de A. Dans un triangle, le pied de la hauteur d'un côté est le point d'intersection entre le côté et sa hauteur.

- (h) est la hauteur de [AC] $(\operatorname{car} B \in (h) \operatorname{et} (h) \perp [AC])$
- (h) est la hauteur issue de B.

H est le pied de la hauteur (h).

Propriété :

Les trois hauteurs d'un triangle concourent en un point appelé orthocentre.

Exercice 1:

Pour chaque triangle, dire s'il est possible de le construire, et si oui réaliser la construction.

- (a) $AB = 18 \ cm$, $BC = 10 \ cm$ et $AC = 2 \ cm$
- (b) DE = 6.5 cm, EF = 7 cm et DF = 5 cm
- (c) $XY = 2.3 \ cm$, $YZ = 6 \ cm$ et $XZ = 2.3 \ cm$

Exercice 2:

Dans chacun des cas ci-dessous, dire si les points U, V et W sont alignés. Si tel est le cas, quel point se situe entre les deux autres ?

- (a) UV = 7 cm, VW = 5 cm et UW = 12 cm
- (b) $UV = 3.2 \ cm$, $VW = 5.9 \ cm$ et $UW = 9 \ cm$
- (c) UV = 3 m, VW = 700 cm et UW = 4000 mm

Exercice 3:

Décrire par une phrase ce que pourraient représenter les droites (d) et (d') sur la figure ci-dessous.

Exercice 4:

- (a) Construire un triangle ABC isocèle en A.
- (b) Construire la médiatrice (d) du segment [BC].
- (c) Que représente aussi la droite (d) dans le triangle ABC ? Expliquer.

Co-animation séance n°2

Exercice 5:

- (a) Construire les triangles suivants
 - i. Le triangle ABC tel que AB = 1.2 cm, BC = 3.5 cm et AC = 3.7 cm.
 - ii. Le triangle DEF tel que DE = EF = 3 cm et DF = 5 cm.
- (b) Donner et justifier la nature des deux triangles ABC et DEF.

Exercice 6:

Tu dois expliquer à Léa, au téléphone, comment tracer les deux figures ci-contre. En utilisant un vocabulaire mathématique, rédige ce que tu pourrais lui dire.

Exercice 7:

- (a) Construire un losange ABCD dont les diagonales sont perpendiculaires, mesurent 12 cm et 20 cm et se coupent en leur milieu O.
- (b) Placer sur [AD] les point E, F, G tels que $AE = 2 \ cm$, $EF = 1.5 \ cm$ et $FG = 1 \ cm$
- (c) Placer sur [AD] les point I, J, K tels que DI = 2 cm, IJ = 1,5 cm, JK = 1 cm
- (d) Tracer la demi-droite d'origine E passant par O. Le point d'intersection avec [BC] sera nommé E'.
- (e) Répéter l'étape 4 en remplaçant le point E par F, G, I, J et K.
- (f) Tracer les cercles de centre O et de rayon 2 cm, 3 cm et 4 cm.

Exercice 8:

Un jardinier un peu excentrique veut planter trois arbres : un peuplier, un chêne et un noisetier. Mais il a des exigences : Le noisetier doit se situer à 5,6~m du chêne. Le peuplier doit se trouver à 11,3~m du noisetier. Le peuplier et le chêne doivent être distants de 6,4~m. Pourra-t-il mettre en pratique son plan ? Si oui, tracer le résultat en précisant l'échelle

Co-animation séance n°4

Exercice 9 : (*)
Recopier et compléter le tableau suivant

Consigne	Figure
Tracer le carré EFGH de 5 cm de côté.	
	$\begin{array}{c} C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Tracer [XY] tel que XY = 6 cm puis tracer (m) sa médiatrice.	
Tracer IJK isocèle en I tel que IJ = 2 cm et JK = 3 cm et placer O son orthocentre.	
	4 cm 5 cm T U S 3 cm

Exercice $10: (\star)(\star)$

Amélie a reçue une rosace de son amie. Elle a bien reçue la figure mais n'a pas les instructions lui permettant de faire la construction. On sait juste que AB = 4 cm et que Z est le point d'intersection de [AD], [EB] et [FC].

- (a) Les instructions commencent par : « Construire un ABCDEF tel que tous ses côtés aient une longueur de $4\ cm$.». Complète cette phrase, puis termine les instructions de construction de la rosace.
- (b) Ayant maintenant les instructions, construis la rosace sur ton cahier.

Exercice 11: **

- (a) Trace un triangle ABC quelconque. Explique comment tracer un cercle passant par les trois points du triangle, puis effectue la construction.
- (b) Donne les instructions de construction d'une étoile à 5 branches, puis trace-là.

Chapitre 3 Fractions

I - Concept

<u>Définition</u>:

Soient deux nombres entiers a et b, $b \neq 0$.

Le quotient de a par b est le nombre qui, multiplié par b, est égal à a.

Notation:

On le note $\frac{a}{b}$.

Exemples:

$$\bullet \boxed{\frac{7}{3}}: \frac{7}{3} \times 3 = \frac{7}{\cancel{3}} \times \cancel{3} = 7$$

$$\bullet \boxed{\frac{17}{6}} : \frac{17}{6} \times 6 = \frac{17}{\cancel{6}} \times \cancel{6} = 17$$

Vocabulaire:

On dit qu'un nombre est rationnel lorsqu'il peut s'écrire sous forme de fraction.

Exemples:

- $\frac{3}{4}$ est un nombre rationnel car c'est une fraction.
- 1,5 est un nombre rationnel car il peut s'écrire comme une fraction $1,5=\frac{3}{2}$
- 1,333... est un nombre rationnel car il peut s'écrire sous forme de fraction 1,333... $=\frac{4}{3}$
- \bullet π n'est pas un nombre rationnel, il n'est pas possible de l'écrire sous forme de fraction.

Définition:

Soient k et n deux nombres entiers (n non nul).

Coupons un ensemble en n parts égales et sélectionnons k morceaux partageant une caractéristique commune.

La proportion (aussi appelé la fréquence) de cette caractéristique dans cet ensemble sera de $\frac{k}{n}$.

Exemples:

• Dans le drapeau de la République Française, il y a 3 morceaux. Parmi ces morceaux, 1 seul est bleu. La proportion de bleu dans le drapeau tricolore est donc de $\frac{1}{3}$.

- Dans une classe de 35 élèves, il y a 17 filles. Donc la proportion de filles dans la classe est de $\frac{17}{35}$.
- 100 personnes sont interrogés pour un sondage. 26 veulent voter pour le candidat A à la prochaine élection. La proportion d'électeurs potentiels du candidat A est de $\frac{26}{100} = 26 \%$.

II - Égalité de fractions

Définition:

Deux fractions sont égales lorsque les divisions qu'elles représentent ont le même quotient.

Exemple:

 $\frac{3}{4}$ et $\frac{6}{8}$ sont égales car $3 \div 4 = 0.75$ et $6 \div 8 = 0.75$.

Propriété:

Soient a, b, c, d et k des nombres entiers. (b et d non nuls, a < c et b < d).

 $\frac{a}{b} = \frac{c}{d}$ si et seulement s'il existe k tel que $a \times k = c$ et $b \times k = d$.

Exemple:

 $\frac{3}{4} = \frac{6}{8}$ car je peux multiplier en haut et en bas par 2.

Propriété :

Multiplier (ou diviser) le numérateur et le dénominateur d'une fraction par le même nombre permet d'obtenir une fraction égale à celle d'origine.

Définition :

Simplifier une fraction signifie trouver une autre fraction égale à la première possédant un numérateur et un dénominateur plus petits.

Exemple:

Je peux simplifier $\frac{9}{12}$ en $\frac{3}{4}$, en divisant le numérateur et le dénominateur par 3.

$$\frac{9}{12} = \frac{3 \times 3}{4 \times 3} = \frac{3 \times \cancel{3}}{4 \times \cancel{3}} = \frac{3}{4}$$

Ici, nous pouvons dire que nous avons simplifié par 3.

Exercice 1: *

Inspiré de l'exercice 55 p.67

Dans une boîte, il y a 12 boules vertes et 6 boules bleues.

- (a) Écrire sous forme de fraction la proportion de boules vertes dans la boîte.
- (b) Écrire sous forme de fraction la proportion de boules bleues dans la boîte.
- (c) On ajoute 2 boules rouges et 3 boules vertes
 - i. Quelle est la nouvelle proportion de boules rouges?
 - ii. Quelle est la nouvelle proportion de boules bleues?

Exercice $2: (\star)$

Inspiré de l'exercice 56 p.67

Sur son téléphone, Cléa a téléchargé 240 chansons au format MP3.

Parmi elles, 84 sont des chansons françaises.

Quelle est la proportion de chansons françaises sur son téléphone portable? L'exprimer sous forme de fraction.

Exercice $3: (\star)(\star)$

Inspiré de l'exercice 57 p.67

Voici les loisirs préférés de 8 élèves de cinquième.

Élève	Rachel	Clara	Thomas	Mariama	Clémence	Mehdi	Jérémy	Léo
Loisir préféré	Volley-ball	Harpe	Football	Guitare	Basket-ball	Athlétisme	Clarinette	Danse

Exprimer sous forme de fraction la proportion d'élèves qui préfèrent...

- (a) faire du sport?
- (b) un sport collectif?
- (c) jouer d'un instrument?
- (d) jouer d'un instrument à cordes?

Exercice 4: (*)(*)

LE PAQUET DE CARTE

Dans cet exercice, on suppose que l'on possède un paquet de 52 cartes classique, que l'on pourrait utiliser pour jouer au Poker ou à la bataille par exemple. Dans ce paquet, il y a donc par exemple 4 as (les as de pique, de trèfle, de carreau et de cœur), ce qui signifie que la proportion d'as dans le paquet est de $\frac{4}{52}$.

- (a) Quel est la proportion de rois dans le paquet?
- (b) Quel est la proportion de figures (rois, dames et valets) dans le paquet ?
- (c) Quel est la proportion de trèfles dans le paquet ?
- (d) Quel est la proportion de trèfles qui sont également des figures ?
- (e) Quel lien y a-t-il entre les réponses des questions (b), (c) et (d)?

Exercice $5: \otimes$

Écrire chaque nombre sous forme de fraction, puis sous forme décimale.

- (a) un quart
- (c) cinq demis
- (e) sept quarts
- (g) trois dix-millièmes

- (b) deux tiers
- (d) cinq sixièmes
- (f) six dixièmes
- (h) treize neuvièmes

Exercice 6: (*)(*)(*)

LE NOMBRE D'OR

- (a) Construction du rectangle d'or
 - i. tracer un carré ABCD
 - ii. noter E le milieu de [AB]
 - iii. tracer un cercle C de centre E et de rayon [EC]
 - iv. prolonger [AB) jusqu'à ce qu'elle coupe le cercle
 - v. noter F le point d'intersection de [AB) avec C
 - vi. tracer la droite perpendiculaire à [AF] en F
 - vii. prolonger [DC) jusqu'à ce qu'il coupe la perpendiculaire
 - viii. noter G le point d'intersection
- (b) Placer H et I à l'intérieur de BCGF tel que HCGI soit un carré.
- (c) Placer J et K à l'intérieur de BHIF tel que IFJK soit un carré.

- (d) Construction de la spirale d'or
 - i. Construire l'arc de cercle AC de centre B.
 - ii. Construire l'arc de cercle CI de centre H.
 - iii. Construire l'arc de cercle IJ de centre K.
- (e) Calcul du nombre d'or
 - i. Mesurer le plus précisément possible les longueurs AF et AB puis calculer $\frac{AF}{AB}$
 - ii. Mesurer le plus précisément possible les longueurs CB et CH puis calculer $\frac{CB}{CH}$
 - iii. Mesurer le plus précisément possible les longueurs IK et IH puis calculer $\frac{IK}{IH}$

Exercice 7:

Écrire chaque fraction sous forme décimale (on tronquera au centième). (par exemple, $\frac{1}{2} = 0.5$)

- (a) $\frac{2}{5}$

- (c) $\frac{5}{15}$ (e) $\frac{13}{15}$ (g) $\frac{4}{10}$ (i) $\frac{13}{8}$ (d) $\frac{3}{7}$ (f) $\frac{7}{15}$ (h) $\frac{3}{5}$ (j) $\frac{14}{2}$

- (b) $\frac{4}{16}$

Exercice 8:

SIMPLIFICATION

Simplifier le plus possible les fractions suivantes

(a)
$$\frac{36}{8} = \frac{...}{...}$$

- (a) $\frac{36}{8} = \frac{\dots}{\dots}$ (b) $\frac{36}{21} = \frac{\dots}{\dots}$ (c) $\frac{36}{40} = \frac{\dots}{\dots}$ (d) $\frac{12}{8} = \frac{\dots}{\dots}$ (e) $\frac{12}{8} = \frac{\dots}{\dots}$ (f) $\frac{24}{16} = \frac{\dots}{\dots}$ (g) $\frac{72}{90} = \frac{\dots}{\dots}$ (i) $\frac{7}{7} = \frac{\dots}{\dots}$ (k) $\frac{9}{9} = \frac{\dots}{\dots}$ (l) $\frac{24}{21} = \frac{\dots}{\dots}$

Chapitre 4 Les solides de l'espace

Chapitre 5 Proportionnalité

Chapitre 6 Divisibilité, nombres premiers

Chapitre 7 Symétrie centrale

Chapitre 8 Calcul littéral

Chapitre 9 Parallélogramme

Chapitre 10 Comparaison de nombres relatifs et repérage

Chapitre 11 Caractérisation angulaire du parallélisme.

Chapitre 12 Addition et soustraction de nombres relatifs

Chapitre 13 Horaires et durées

Chapitre 14 Statistiques

Chapitre 15 Probabilités

Chapitre 16 Périmètre et aires

Chapitre 17 Tableaux, diagrammes et graphiques

Chapitre 18 Volume et contenance