Simulação Estocástica

Prof. Daiane Aparecida Zuanetti

Lista de exercícios 2 - métodos MCMC e convergência

Exercícios dos slides e comentados em sala de aula, também fazem parte dessa lista de exercícios.

Exercício 1: Utilize o método GS para simular amostras da distribuição Normal multiva-

riada com
$$\mu=(-2,0,2)^T$$
 e $\Sigma=\begin{pmatrix}1&0.7&-0.2\\0.7&1&0.5\\-0.2&0.5&1\end{pmatrix}$. Verifique a convergência, a autocor-

relação, o valor ideal de burn in e saltos.

Exercício 2: Utilize o método GS para simular amostras da distribuição Multinomial $(n = 100, \mathbf{p} = (0.15, 0.30, 0.25, 0.30))$. Verifique a convergência, a autocorrelação, o valor ideal de burn in e saltos.

Exercício 3: Conduza a estimação Bayesiana do modelo de regressão logística, vista em aula, usando o algoritmo MH com propostas independentes. Você conseguiu resultados melhores ou piores do que os vistos em aula? Justifique. Verifique a convergência e a eficiência do método e compare com o algoritmo visto em sala.

Exercício 4: A tabela abaixo mostra a frequência observada y_i do grupo de sangue observado para uma amostra de n=435 indivíduos. Aqui os índices i=1,2,3,4 indexam, respectivamente, os grupos de sangue O, A, B, AB. As probabilidades p_i são determinadas pelas leis genéticas, com p, q e r sendo as probabilidades dos genes do tipo A, B e O, respectivamente, com p+q+r=1.

i		Dados do exerc Frequência y_i	
1	О	176	r^2
2	A	182	$p^2 + 2pr$
3	В	60	$q^2 + 2qr$
4	AB	17	2pq

- 1. Encontre a função de verossimilhança $p(\mathbf{y}|\boldsymbol{\theta})$ para $\boldsymbol{\theta}=(p,q)$ e usando p+q+r=1;
- 2. O grupo de sangue observado depende do genótipo que não pode ser diretamente observado. Siga a relação entre genótipo de grupo de sangue abaixo:

\overline{k}	Grupo de sangue	Genótipo	Probabilidade p_i
1	О	OO	r^2
2	A	AA	p^2
3	A	AO	2pr
4	В	BB	q^2
5	В	ВО	2qr
6	AB	AB	2pq

Seja $z_j=1,2,3,4,5,6$ o genótipo não observável do indivíduo j e seja $\mathbf{z}=(z_1,...,z_n)$. Escreva a função de verossimilhança aumentada desses dados, $p(\mathbf{y},\mathbf{z}|\boldsymbol{\theta})$.

3. Proponha um algoritmo GS para simular da distribuição a posteriori de (θ, \mathbf{z}) e conduzir a inferência.