Decision Trees

Instructor: Alan Ritter

Many slides from Luke Zettlemoyer

Supervised Learning: find *f*

- Given: Training set $\{(x_i, y_i) \mid i = 1 \dots n\}$
- Find: A good approximation to $f: X \rightarrow Y$

Examples: what are *X* and *Y*?

- Spam Detection
 - Map email to {Spam,Ham}
- Digit recognition
 - Map pixels to {0,1,2,3,4,5,6,7,8,9}
- Stock Prediction
 - Map new, historic prices, etc. to \Re (the real numbers)

A Supervised Learning Problem

 Consider a simple, Boolean dataset:

-
$$f: X \rightarrow Y$$

- $X = \{0,1\}^4$
- $Y = \{0,1\}$

- Question 1: How should we pick the *hypothesis* space, the set of possible functions f?
- Question 2: How do we find the best f in the hypothesis space?

Dataset:

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Most General Hypothesis Space

Consider all possible boolean functions over four

input features!

- 2¹⁶ possible hypotheses
- 2⁹ are consistent with our dataset
- How do we choose the best one?

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0 ? ?
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1 ? ?
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	?
1	1	1	0	0 ? ?
_1	1	1	1	?

Dataset:

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

A Restricted Hypothesis Space

Consider all conjunctive boolean functions.

- 16 possible hypotheses
- None are consistent with our dataset
- How do we choose the best one?

Rule	Counterexample
$\Rightarrow y$	1
$x_1 \Rightarrow y$	3
$x_2 \Rightarrow y$	2
$x_3 \Rightarrow y$	1
$x_4 \Rightarrow y$	7
$x_1 \wedge x_2 \Rightarrow y$	3
$x_1 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \Rightarrow y$	3
$x_2 \wedge x_4 \Rightarrow y$	3
$x_3 \wedge x_4 \Rightarrow y$	4
$x_1 \wedge x_2 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3

Dataset:

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

A learning problem: predict fuel efficiency

- 40 Records
- Discrete data (for now)
- Predict MPG
- Need to find:

$$f: X \rightarrow Y$$

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4		low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

From the UCI repository (thanks to Ross Quinlan)

How to Represent our Function?

Conjunctions in Propositional Logic?

maker=asia \(\text{weight=low} \)

Need to find "Hypothesis": $f: X \rightarrow Y$

$$f: X \rightarrow Y$$

Restricted Hypothesis Space

- Many possible representations
- Natural choice: conjunction of attribute constraints
- For each attribute:
 - Constrain to a specific value: eg maker=asia
 - Don't care: ?
- For example

```
maker cyl displace weight accel ....
asia ? low ?
```

Represents maker=asia \(\text{weight=low} \)

Consistency

 Say an "example is consistent with a hypothesis" when the example logically satisfies the hypothesis

Hypothesis: maker=asia ∧ weight=low
 maker cyl displace weight accel
 asia ? ? low ?

• Examples:

asia	5	low	low	low	
usa	4	low	low	low	

Ordering on Hypothesis Space

X ₁	asia	5	low	low	low
x ₂	usa	4	med	med	med

h1: maker=asia ∧ accel=low

h2: maker=asia

h3: maker=asia ∧ weight=low

Hypotheses: decision trees $f: X \rightarrow Y$

- Each internal node tests an attribute x_i
- Each branch assigns an attribute value x_i=v
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y

Hypothesis space

- How many possible hypotheses?
- What functions can be represented?

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad		medium	medium	medium	medium	70to74	america
bad		medium	medium	medium	low	75to78	europe
bad		high	high	high	low	70to74	america
bad		medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

What functions can be represented?

- Decision trees can represent any boolean function!
- But, could require exponentially many nodes...

cyl=3 v (cyl=4 ^ (maker=asia v maker=europe)) v ...

Hypothesis space

- How many possible hypotheses?
- What functions can be represented?
- How many will be consistent with a given dataset?
- How will we choose the best one?
 - Lets first look at how to split nodes, then consider how to find the best tree

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good		low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

What is the Simplest Tree?

predict mpg=bad

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	1:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	1:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Is this a good tree?

Means:

correct on 22 examples incorrect on 18 examples

A Decision Stump

Recursive Step

Recursive Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!

- e.g.,
$$\phi$$
 = (A \wedge B) \vee (¬A \wedge C) -- ((A and B) or (not A and C))

- Which tree do we prefer?
 - Smaller tree has more examples at each leaf!

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Splitting: choosing a good attribute

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad
 - What about distributions in between?

P(Y=A) = 1/2	P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8
--------------	--------------	--------------	--------------

$$P(Y=A) = 1/4$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$

Entropy

Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Entropy Example

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$P(Y=t) = 5/6$$

$$P(Y=f) = 1/6$$

$$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$

= 0.65

X_1	X_2	Y
Τ	Т	Τ
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

Example:

$$P(X_1=t) = 4/6$$

$$P(X_1=f) = 2/6$$

$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$
$$-2/6 (1/2 \log_2 1/2 + 1/2 \log_2 1/2)$$
$$= 2/6$$

X ₁	X ₂	Y
Т	Т	Η
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	Œ

Information gain

Decrease in entropy (uncertainty) after splitting

$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!

X_1	X_2	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

Suppose we want to predict MPG

Look at all the information gains...

A Decision Stump

First split looks good! But, when do we stop?

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

The problem with Base Case 3

$$y = a XOR b$$

а	b	У
О	0	О
0	1	1
1	0	1
1	1	0

The information gains:

Information gains using the training set (4 records)
y values: 0 1
Input Value Distribution Info Gain
a 0 0
1
b 0 0
1

The resulting decision tree:

If we omit Base Case 3:

y = a XOR b

а	b	У
О	0	0
0	1	1
1	О	1
1	1	0

Is it OK to omit Base Case 3?

The resulting decision tree:

Summary: Building Decision Trees

BuildTree(DataSet,Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create a non-leaf node with n_x children.
 - The i'th child should be built by calling

BuildTree(DS_i,Output)

Where DS_i contains the records in DataSet where X = ith value of X.

Decision trees will overfit!!!

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter...

Decision trees will overfit!!!

One Definition of Overfitting

- Assume:
 - Data generated from distribution D(X,Y)
 - A hypothesis space H
- Define errors for hypothesis $h \in H$
 - Training error: error_{train}(h)
 - Data (true) error: error_D(h)
- We say h **overfits** the training data if there exists an $h' \in H$ such that:

$$error_{train}(h) < error_{train}(h')$$
 and
$$error_D(h) > error_D(h')$$

Occam's Razor

- Why Favor Short Hypotheses?
- Arguments for:
 - Fewer short hypotheses than long ones
 - → A short hyp. less likely to fit data by coincidence
 - →Longer hyp. that fit data may might be coincidence
- Arguments against:
 - Argument above really uses the fact that hypothesis space is small!!!
 - What is so special about small sets based on the size of each hypothesis?

How to Build Small Trees

Two reasonable approaches:

- Optimize on the held-out (development) set
 - If growing the tree larger hurts performance, then stop growing!!!
 - Requires a larger amount of data...
- Use statistical significance testing
 - Test if the improvement for any split it likely due to noise
 - If so, don't do the split!

A Chi Square Test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 13.5%

We will not cover Chi Square tests in class. See page 93 of the original ID3 paper [Quinlan, 86], linked from the course web site.

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which $p_{chance} > MaxPchance$
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

• With MaxPchance = 0.05, you will see the following MPG decision tree:

MaxPchance

• Technical note: MaxPchance is a regularization parameter that helps us bias towards simpler models

We'll learn to choose the value of magic parameters like this one later!

Real-Valued inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree: split on attribute X at value t
 - One branch: X < t</p>
 - Other branch: X ≥ t
- Requires small change
 - Allow repeated splits on same variable
 - How does this compare to "branch on each value" approach?

The set of possible thresholds

- Binary tree, split on attribute X
 - One branch: X < t</p>
 - Other branch: X ≥ t
- Search through possible values of t
 - Seems hard!!!
- But only finite number of t's are important
 - Sort data according to X into $\{x_1,...,x_m\}$
 - Consider split points of the form $x_i + (x_{i+1} x_i)/2$

Picking the best threshold

- Suppose X is real valued with threshold t
- Want IG(Y|X:t): the information gain for Y when testing if X is greater than or less than t
- Define:
 - H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - IG(Y|X:t) = H(Y) H(Y|X:t)
 - $IG^*(Y|X) = max_t IG(Y|X:t)$
- Use: IG*(Y|X) for continuous variables

Example with MPG

Example tree for our continuous dataset

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| |  Primiparous = 1: [368+,68-] .84+ .16-
| \ | \ | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | Birth_Weight < 3349: [201+,10.6-] .95+ .
| \ | \ | \ | Birth_Weight >= 3349: [133+,36.4-] .78+
| \ | \ | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials