Преобразования систем координат

Немеш Н. Т.

1 Системы координат и трансформы

В этой заметке обсудим преобразования между системами координат. Мы будем использовать только трехмерное пространство \mathbb{R}^3 . Строго говоря, мы рассматриваем \mathbb{R}^3 как аффинное пространство.

Определение 1.1 Система координат A – это выделенная точка в пространстве $O_A \in \mathbb{R}^3$ называемая началом координат и некоторый ортонормированный базис \mathcal{B}_A с началом в точке O_A . Обозначение: $A = (O_A, \mathcal{B}_A)$.

Замечание 1.2 В определении выше мы намеренно ограничились ортонормированными базисами, потому что другие нам не понадобятся.

Определение 1.3 Пусть $A = (O_A, \mathcal{B}_A)$ и $B = (O_B, \mathcal{B}_B)$ – две системы координат. Пусть Q_A^B – матрица перехода из базиса \mathcal{B}_B в базис \mathcal{B}_A , пусть p_A^B – координаты точки $\overrightarrow{p} := \overrightarrow{O_BO_A}$ в базисе \mathcal{B}_B . Тогда трасформом из A в B называется преобразование

$$T_A^B: \mathbb{R}^3 \to \mathbb{R}^3: x^A \mapsto Q_A^B x^A + p_A^B,$$

где Q_A^B – матрица вращения размера 3×3 и p_A^B – трехмерный вектор. Обозначение: $T_A^B = (Q_A^B, p_A^B)$.

Замечание 1.4 Трансформы позволяют найти координаты вектора в одной системе координат по координатам вектора в другой системе коодинат. Действительно, если T_A^B — трансформ из системы координат A в систему координат B, а \overrightarrow{x} — произвольный вектор в \mathbb{R}^3 , то

$$x^B = T_A^B(x^A)$$

 Πpu этом, чтобы задать трансформ из A в B надо знать матрицу перехода из B в A.

Предложение 1.5 Пусть A, B и C – три системы координат и нам даны трансформ $T_A^B = (Q_A^B, p_A^B)$ из A и B и трансформ $T_B^C = (Q_B^C, p_B^C)$ из B в C. Тогда, трансформ из A в C дается формулой

$$T_A^C = (Q_A^C, p_A^C) = (Q_B^C Q_A^B, p_B^C + Q_B^C p_A^B) \label{eq:tau_def}$$

 \triangleleft Пусть $\overrightarrow{x} \in \mathbb{R}^3$ – произвольный вектор. Тогда с одной стороны

$$T_A^C(x^A) = Q_A^C x^A + p_A^C$$

и с другой

$$T_A^C(x^A) = T_B^C(T_A^B(x^A))$$

Находим

$$T_A^C(x^A) = T_B^C(T_A^B(x^A)) = T_B^C(Q_A^Bx^A + p_A^B) = Q_B^C(Q_A^Bx^A + p_A^B) + p_B^C = Q_B^CQ_A^Bx^A + Q_B^Cp_A^B + p_B^C = Q_B^CQ_A^Bx^A + Q_B^Cp_A^C + p_A^C + q_A^C + q_A^C$$

Поскольку равенство

$$T_A^C(x^A) = Q_A^C x^A + p_A^C = Q_B^C Q_A^B x^A + Q_B^C p_A^B + p_B^C$$

верно для любого $\vec{x} \in \mathbb{R}^3$, то

$$Q_A^C = Q_B^C Q_A^B, \qquad p_A^C = p_B^C + Q_B^C p_A^B$$

 \triangleright

Следствие 1.6 Пусть $A\ u\ B$ – две системы координат $u\ T_A^B$ – трансформ из $A\ s\ B$. Тогда трансформ из $B\ s\ A$ имеет sud

$$T_B^A = ((Q_A^B)^T, -Q_A^B p_A^B)$$

 \triangleleft Полагая, C=A в предыдущем предложении получим, что

$$Q_A^A = Q_B^A Q_A^B, \qquad p_A^A = p_B^A + Q_B^A p_A^B$$

Поскольку $Q_A^A = E, p_A^A = 0$, то

$$Q_B^A = (Q_A^B)^{-1} = (Q_A^B)^T$$
 $p_B^A = -Q_B^A p_A^B$

 \triangleright

2 Справочные материалы

Определение 2.1 Базис \mathcal{B} это упорядоченный набор из трех линейно независимых векторов \overrightarrow{e}_1 , \overrightarrow{e}_2 , \overrightarrow{e}_3 . Обозначение $\mathcal{B} = (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$.

Определение 2.2 Базис назваются ортонормированным если все его векторы имеют длину 1 и попарно перпендикулярны.

Замечание 2.3 Основное свойство базиса – любой вектор $\vec{x} \in \mathbb{R}^3$ может быть однозначно представлен в виде линейной комбинации

$$\overrightarrow{x} = x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + x_3 \overrightarrow{e_3}.$$

Упорядоченная тройка чисел (x_1, x_2, x_3) назвается координатами вектора \vec{x} в базисе \mathcal{B} . Обозначение:

$$x^A := \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Определение 2.4 Пусть \mathcal{B}_A и \mathcal{B}_B – два базиса. Матрицей перехода от базиса \mathcal{B}_A к \mathcal{B}_B называется матрица в которой по столбцам выписаны координаты векторов базиса \mathcal{B}_B в базисе \mathcal{B}_A . Будем обозначать такую матрицу через C_B^A .

Пример 2.5 Пусть базис $\mathcal{B}_A = (\vec{a}_1, \vec{a}_2, \vec{a}_3)$ состоит из единичных векторов направленных вдоль координатных осей X, Y, Z. Тогда

$$a_1^A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, a_2^A = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, a_3^A = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

Пусть базис $\mathcal{B}_B=(\overrightarrow{b}_1,\overrightarrow{b}_2,\overrightarrow{b}_3)$ получен из базиса \mathcal{B}_A поворотом вокруг оси Z на угол α против часовой стрелки. Тогда

$$b_1^A = \begin{bmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{bmatrix}, b_2^A = \begin{bmatrix} -\sin \alpha \\ \cos \alpha \\ 0 \end{bmatrix}, b_3^A = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 $Ka\kappa$ следствие, матрица перехода C_B^A будет

$$C_B^A = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Замечание 2.6 C помощью матрицы перехода можно находить координаты вектора в разных базисах. Пусть \mathcal{B}_A , \mathcal{B}_B — два базиса и $\overrightarrow{x} \in \mathbb{R}^3$ — произвольный вектор. Тогда,

$$x^A = C_B^A x^B$$

Замечание 2.7 Если базисы \mathcal{B}_A и \mathcal{B}_B ортонормированы, то чтобы акцентировать на этом внимание для матрицы перехода C_B^A мы будем использовать обозначение

$$Q_B^A := C_B^A$$

Замечание 2.8 Матрицы перехода Q между ортонормированными базисами обладают свойством

$$Q^T Q = Q Q^T = E$$

Такие матрицы называются ортогональными. Если Q ортогональная матрица, то Q^T тоже ортогональная. У ортогональных матриц легко находить обратную

$$Q^{-1} = Q^T$$

Более того $det(Q) = \pm 1$.

Замечание 2.9 Всякое ортональное преобразование сохраняет скалярное произведение. Ортогональные матрицы с определителем равным 1 вдобавок к этому сохраняют ориентацию пространства. Любое вращение трехмерного пространства и только оно задается ортогональной матрицей с определителем 1.

Определение 2.10 Ортогональные матрицы с определителем 1 мы будем обозначать буквой R и будем называть их матрицами вращения.