# CYENG 312/GECE 594: Trusted Operating System (OS)

Lecture 02: Booting and Management Programs

**Instructor**: Shayan (Sean) Taheri, Ph.D.

Assistant Professor

The Department of Electrical and Cyber Engineering (ECE)

The Institute for Health and Cyber Knowledge (I-HACK)

The Gannon University (GU)





#### NNON Personal Information

- □ Name: Shayan (Sean) Taheri.
- □ <u>Date of Birth</u>: July/28/1991.
- □ Past Position: Postdoctoral Fellow at University of Florida.
- □ Ph.D. Degree: Electrical Engineering from the University of Central Florida.
- <u>M.S. Degree</u>: Computer Engineering from the Utah State University.
- <u>University Profile</u>: https://www.gannon.edu/FacultyProfiles.aspx?profile=taher i001



#### Operating System Services

- ➤ One set of operating-system services provides functions that are helpful to the user:
  - □ User interface Almost all operating systems have a user interface (UI)
    - Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch
  - □ Program execution The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error)
  - □ I/O operations A running program may require I/O, which may involve a file or an I/O device
  - □ File-system manipulation The file system is of particular interest. Obviously, programs need to read and write files and directories, create and delete them, search them, list file Information, permission management.



# A View of Operating System Services

| user and other system programs |                 |                  |          |             |                        |                     |  |
|--------------------------------|-----------------|------------------|----------|-------------|------------------------|---------------------|--|
|                                |                 | GUI              | batch    | command lin | ne                     |                     |  |
|                                | user interfaces |                  |          |             |                        |                     |  |
| system calls                   |                 |                  |          |             |                        |                     |  |
| program<br>execution           | I/O<br>operatio | ns file<br>syste | · comr   | nunication  | resource<br>allocation | accounting          |  |
| error<br>detection             |                 |                  | services |             |                        | ction<br>d<br>irity |  |
| operating system               |                 |                  |          |             |                        |                     |  |
| hardware                       |                 |                  |          |             |                        |                     |  |



#### Operating System Services (Contd.)

- ➤ One set of operating-system services provides functions that are helpful to the user (Cont):
  - □ Communications Processes may exchange information, on the same computer or between computers over a network
    - Communications may be via shared memory or through message passing (packets moved by the OS)
  - □ Error detection OS needs to be constantly aware of possible errors
    - May occur in the CPU and memory hardware, in I/O devices, in user program
    - For each type of error, OS should take the appropriate action to ensure correct and consistent computing
    - Debugging facilities can greatly enhance the user's and programmer's abilities to efficiently use the system



# Operating System Services (Contd.)

- > Another set of OS functions exists for ensuring the efficient operation of the system itself via resource sharing
  - □ **Resource allocation** When multiple users or multiple jobs running concurrently, resources must be allocated to each of them
    - Many types of resources Some (such as CPU cycles, main memory, and file storage) may have special allocation code, others (such as I/O devices) may have general request and release code
  - □ **Accounting** To keep track of which users use how much and what kinds of computer resources
  - □ **Protection and security -** The owners of information stored in a multiuser or networked computer system may want to control use of that information, concurrent processes should not interfere with each other
    - **Protection** involves ensuring that all access to system resources is controlled
    - Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid access attempts
    - If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as strong as its weakest link.



- ➤ When power initialized on system, execution starts at a fixed memory location
  - □ Firmware ROM used to hold initial boot code
- > Operating system must be made available to hardware so hardware can start it
  - □ Small piece of code bootstrap loader, stored in ROM or EEPROM locates the kernel, loads it into memory, and starts it
  - □ Sometimes two-step process where boot block at fixed location loaded by ROM code, which loads bootstrap loader from disk
- Common bootstrap loader, GRUB, allows selection of kernel from multiple disks, versions, kernel options
- > Kernel loads and system is then running



#### **The Boot Process**

**Step 1:** The basic input/output system (BIOS) is activated.

**Step 2:** A Power-on self-test (POST) checks attached hardware.

**Step 3:** The operating system loads into memory.

**Step 4:** Configuration and customization settings are checked.





#### Handling Errors in the Boot Process

- ➤ Non-system disk or disk error
  - □ Remove the floppy from the drive and press any key
- > POST errors
  - □ Single beep: Everything is loading properly
  - □ Series of beeps: Hardware problem
- > Safe mode
  - Windows does not boot properly
  - □ Uninstall any new devices or software



- > Programming interface to the services provided by the OS
- ➤ Typically written in a high-level language (C or C++)
- ➤ Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct system call use
- ➤ Three most common APIs are: Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)
- ➤ Why use APIs rather than system calls?



> System call sequence to copy the contents of one file to another file





#### Example of Standard API

- Consider the ReadFile() function in the
- ➤ Win32 API—a function for reading from a file



- ➤ A description of the parameters passed to ReadFile()
  - □ *HANDLE file—the file to be read*
  - □ *LPVOID* buffer—a buffer where the data will be read into and written from
  - □ DWORD bytesToRead—the number of bytes to be read into the buffer
  - □ LPDWORD bytesRead—the number of bytes read during the last read
  - □ LPOVERLAPPED ovl—indicates if overlapped I/O is being used



# System Call Implementation

- > Typically, a number associated with each system call
  - □ System-call interface maintains a table indexed according to these numbers
- > The system call interface invokes intended system call in OS kernel and returns status of the system call and any return values
- > The caller need know nothing about how the system call is implemented
  - □ Just needs to obey API and understand what OS will do as a result call
  - □ *Most details of OS interface hidden from programmer by API* 
    - Managed by run-time support library (set of functions built into libraries included with compiler)



# API – System Call – OS Relationship





#### **Types of System Calls**

#### System calls can be grouped roughly into six major categories:

- ➤ 1- Process control
  - □ create process, terminate process
  - **□** *end*, *abort*
  - □ load, execute
  - □ get process attributes, set process attributes
  - □ wait for time
  - □ wait event, signal event
  - □ *allocate and free memory*
  - □ Dump memory if error
  - □ Debugger for determining bugs, single step execution
  - □ Locks for managing access to shared data between processes



### **Types of System Calls (Contd.)**

- > 2- File management
  - □ *create file, delete file*
  - □ open, close file
  - □ read, write, reposition
  - □ *get and set file attributes*
- > 3- Device management
  - □ request device, release device
  - □ read, write, reposition
  - □ get device attributes, set device attributes
  - □ logically attach or detach devices
- ➤ 4- Information maintenance
  - □ get time or date, set time or date
  - □ get system data, set system data
  - □ get and set process, file, or device attributes



#### **Types of System Calls (Contd.)**

- > 5- Communications
  - □ create, delete communication connection
  - □ send, receive messages if message passing model to host name or process name
    - From client to server
  - □ Shared-memory model create and gain access to memory regions
  - □ transfer status information
  - □ attach and detach remote devices
- ▶ 6- Protection
  - □ Control access to resources
  - □ Get and set permissions
  - □ *Allow and deny user access*



- > System programs provide a convenient environment for program development and execution. They can be divided into:
  - □ *File manipulation and modification*
  - □ Status information sometimes stored in a File modification
  - □ Programming language support
  - □ Program loading and execution
  - □ Communications
  - □ Background services
  - Application programs
- Most users' view of the operation system is defined by system programs, not the actual system calls



#### **System Programs (Contd.)**

- > Provide a convenient environment for program development and execution
  - □ Some of them are simply user interfaces to system calls; others are considerably more complex
- ➤ **File management** Create, delete, copy, rename, print, dump, list, and generally manipulate files and directories

#### > Status information

- □ Some ask the system for info date, time, amount of available memory, disk space, number of users
- □ Others provide detailed performance, logging, and debugging information
- □ Typically, these programs format and print the output to the terminal or other output devices
- □ Some systems implement a registry used to store and retrieve configuration information



#### System Programs (Contd.)

#### > File modification

- > Text editors to create and modify files
- > Special commands to search contents of files or perform transformations of the text
- ➤ **Programming-language support** Compilers, assemblers, debuggers and interpreters sometimes provided
- ➤ **Program loading and execution** Absolute loaders, relocatable loaders, linkage editors, and overlay-loaders, debugging systems for higher-level and machine language
- ➤ Communications Provide the mechanism for creating virtual connections among processes, users, and computer systems
  - Allow users to send messages to one another's screens, browse web pages, send electronic-mail messages, log in remotely, transfer files from one machine to another



#### **▶** Background Services

- □ Launch at boot time
  - Some for system startup, then terminate
  - Some from system boot to shutdown
- □ Provide facilities like disk checking, process scheduling, error logging, printing
- □ Run in user context not kernel context
- □ Known as services, subsystems, daemons

#### > Application programs

- □ Don't pertain to system
- □ Run by users
- □ Not typically considered part of OS
- □ Launched by command line, mouse click, finger poke



#### Process/Task/Application Management

- A process is a program in execution. Program is a *passive entity*, process is an *active entity*.
- > Process needs resources to accomplish its task
  - □ *CPU* time
- > Representation of process
  - □ Process has one program counter specifying location of next instruction to execute
  - □ Data structure (stores information of a process)
- ➤ Many processes may be associated with the same program
- > Typically system has many processes
  - □ some user processes,
  - □ some operating system processes
- Life cycle of a process
  - **□** States
  - □ Arrival, Computation, I/O, I/O completion, termination



# Process/Task/Application Management Activities

The operating system is responsible for the following activities in connection with process management:

- > Creating and deleting both user and system processes
- > Suspending and resuming processes
- > Process scheduling
- > Providing mechanisms for process synchronization
- ➤ Providing mechanisms for process communication
- ➤ Providing mechanisms for deadlock handling



## Managing Processor Tasks

- > Controls the timing of events the processor works on
  - □ Interrupts
  - □ *Interrupt handler*
  - □ *Interrupt table*
  - **□** Stack



➤ The operating system allocates space in RAM for instructions and data











#### Managing Software Tasks

- > Device drivers:
  - □ Programs that enable the operating system to communicate with peripheral devices
  - □ Provided by the manufacturer of the device
- ➤ Plug and Play:
  - □ Hardware and software standard
  - □ Facilitates the installation of new hardware





- > Application programming interfaces (APIs):
  - □ Blocks of code contained in the operating system
  - □ Coordinates the operating system with software applications
    - Similar toolbars and menus
  - □ *Microsoft Direct X*



#### File Management

- > OS provides uniform, logical view of information storage
  - □ Abstracts physical properties to logical storage unit File
  - □ *File* => *Collection of related information defined by the creator*
  - □ Each medium is controlled by device (i.e., disk drive, tape drive)
    - Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random)





- > OS provides uniform, logical view of information storage
  - □ Abstracts physical properties to logical storage unit file
  - □ Each medium is controlled by device (i.e., disk drive, tape drive)
    - Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random)
- ➤ OS implements the abstract concept of file by managing mass storage media (disk etc) and devices that control them

- > Files usually organized into directories
- > Access control on most systems to determine who can access what
- > File-System management
  - □ Creating and deleting files and directories
  - □ *Primitives to manipulate files and dirs*
  - □ *Mapping files onto secondary storage*



- > The operating system provides an organizational structure to the computer's contents
- > Hierarchical structure of directories:
  - □ Drives
    - Folders
      - Subfolders
        - Files





- > Viewing and Sorting Files and Folders: Windows Explorer and Views
- Naming Files
  - □ Name assigned plus filename extension
  - □ only characters not legal in filenames are:

- □ *all others are allowed*
- $\rightarrow$  File Path: Location of the file  $\rightarrow$  Drive, Primary Folder, Subfolders, and File Name.

C:\My Documents\Tech in Action\TIA Pics\dotmatrix.gif



- > Filename extensions:
  - □ *Used by programs*

| Extension        | Type of Document            | Application                          |
|------------------|-----------------------------|--------------------------------------|
| .doc             | Word processing document    | Microsoft Word;<br>Corel WordPerfect |
| .xls             | Workbook                    | Microsoft Excel                      |
| .ppt             | PowerPoint presentation     | Microsoft<br>PowerPoint              |
| .mdb             | Database                    | Microsoft Access                     |
| .bmp             | Bitmap image                | Windows                              |
| .zip             | Compressed file             | WinZip                               |
| .pdf             | Portable Document<br>Format | Adobe Acrobat                        |
| .htm or<br>.html | Web page                    | Hypertext Markup<br>Language         |



- > File management actions:
  - **□** Open
  - □ Copy
  - $\square$  Move
  - **□** Rename
  - □ Delete
- > Recycle bin



**Saving files** 

- ➤ Caution: the above commands do not prompt for confirmation

  □ easy to overwrite/delete a file; this setting can be overridden (how?)
- > Exercise: Given several albums of .mp3 files all in one folder, move them into separate folders by artist.
- Exercise: Modify a .java file based on a certain date and time.

| command | description                                                     |
|---------|-----------------------------------------------------------------|
| ср      | copy a file                                                     |
| mv      | move or rename a file                                           |
| rm      | delete a file                                                   |
| touch   | create a new empty file, or update its last-modified time stamp |



- ➤ Usually disks used to store data that does not fit in main memory or data that must be kept for a "long" period of time
  - Most of the programs are stored on disk
- > Proper management is of central importance
- ➤ Entire speed of computer operation depends on disk subsystem and its algorithms
- ➤ OS activities
  - □ Storage allocation (logical blocks)
  - □ Free-space management
  - □ Disk scheduling



## Multiuser Operating Systems

- > Known as network operating systems
- ➤ Allow access to the computer system by more than one user
- ➤ Manage user requests
- > Systems include:
  - □ UNIX
  - □ *Linux*
  - □ *Novell Netware*
  - □ Windows Server 2003





#### The User Interface

- ➤ Enables you to interact with the computer
- > Types of interfaces:
  - □ Command-driven interface
  - ■*Menu-driven interface*
  - □ Graphical user interface

Command-driven



Menu-driven



Graphical





Questions?