Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Final den 26 februari 1967 $^{\rm 1}$

1. Om x är ett reellt tal så låter vi $\{x\}$ beteckna skillnaden mellan x och det största heltalet $\leq x$. Låt x_n och y_n vara två följder av reella tal sådana att $\{x_n\} \to 0$ och $\{y_n\} \to 0$ då $n \to \infty$. Undersök vilka av följande slutsatser som är sanna och motivera Dina påståenden

a)
$$\{x_n + y_n\} \to 0 \text{ då } n \to \infty$$

b)
$$\{x_n - y_n\} \to 0 \text{ då } n \to \infty$$

c)
$$\{x_ny_n\} \to 0$$
 då $n \to \infty$.

- 2. De reella talen a_1, a_2, \ldots, a_n , som inte alla är lika med noll, har summan noll. Vidare finns det ett heltal k sådant att $a_j \leq 0$ för $1 \leq j \leq k$ och $a_j \geq 0$ för $k < j \leq n$. Visa, att $a_1 + 2a_2 + \cdots + na_n > 0$.
- 3. Visa, att det inte finns fyra heltal x, y, z och k sådana att $x^2 + y^2 + z^2 = 8k + 7$.
- 4. Lös ekvationen

$$x = 1 + \frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \frac{2}{x}}}}.$$

Antalet bråkstreck i högra ledet är n.

- 5. De punkter (x, y) i xy-planet för vilka både x och y är hela tal kallas gitterpunkter. Låt A(R) beteckna antalet gitterpunkter i det inre av en cirkel med radien R och medelpunkten i origo.
 - a) Visa, att $\lim_{R \to \infty} A(R)/R^2$ existerar och beräkna gränsvärdet.
 - b) Låt k vara gränsvärdet i a). Bilda $B(R)=A(R)-kR^2$. Enligt a) vet man att om a=2 så går $B(R)/R^a$ mot noll då R går mot oändligheten. Är detta sant även för något mindre värde på a? (Ju mindre a, desto högre poäng, vid korrekt bevis.)

¹På grund av skolkonflikten hösten 1966 uppsköts tävlingen till vårterminen 1967