

PCT/JP03/04884

日本国特許庁 JAPAN PATENT OFFICE

17.04.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2002年 4月17日

出願番号 Application Number:

特願2002-115529

[ST.10/C]:

[JP2002-115529]

出 願 人 Applicant(s):

大正製薬株式会社

REC'D 13 JUN 2003

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 5月27日

特 許 庁 長 官 Commissioner, Japan Patent Office 人司信-第

出証番号 出証特2003-3038850

【書類名】 特許顧

【整理番号】 00TS-P3320

【あて先】

特許庁長官殿

【発明者】

【住所又は居所】 東京都豊島区高田3丁目24番1号 大正製薬株式会社

内

【氏名】 池田 明子

【発明者】

【住所又は居所】 東京都豊島区高田3丁目24番1号 大正製薬株式会社

内

【発明者】

【住所又は居所】 東京都豊島区高田3丁目24番1号 大正製薬株式会社

内

【氏名】 藤本 奈津子

【発明者】

【住所又は居所】 東京都豊島区高田3丁目24番1号 大正製薬株式会社

内

【氏名】 葛西 陽子

【特許出願人】

【識別番号】 000002819

【氏名又は名称】 大正製薬株式会社

【代表者】 上原 明

【代理人】

【識別番号】 100074114

【弁理士】

【氏名又は名称】 北川 富造

【電話番号】 03-3985-1111

【手数料の表示】

【予納台帳番号】 003551

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9703058

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】育毛剤

【特許請求の範囲】

【請求項1】WNT-5Aの機能阻害活性を有する化合物を含有する毛乳頭細胞増殖促進剤。

【請求項2】WNT-5Aの機能を阻害する化合物がWNT-5A産生抑制剤である、請求項1に記載の毛乳頭細胞増殖促進剤。

【請求項3】式(I)

【化1】

(式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、Xは水素原子又はハロゲン原子を示し、 R^{3a} 及び R^{3b} は水素原子又は水酸基を示し、 R^{3a} が水素原子の場合 R^{3b} は水酸基であり、 R^{3a} が水酸基の場合 R^{3b} は水素原子であり、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子、 C_{2-6} アルカノイルオキシ基を示すか、又は降り合う基が一緒になってパイ結合又はエーテル結合を形成するか、又は R^5 と R^8 もしくは R^5 と R^9 が一緒になってエーテル結合を形成する。)で表される化合物。

【請求項4】式(II)

【化2】

$$R^{2}O$$
 R^{3c}
 R^{3d}
 R^{4}
 R^{6}
 R^{7}
 R^{3d}
 R^{4}
 R^{6}
 R^{7}

(式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、Xは水素原子又はハロゲン原子を示し、 R^{3c} 及び R^{3d} は同一又は異なって水素原子、水酸基又は C_{1-6} アルコキシ基を示すか、又は R^{3c} 及び R^{3d} が一緒になってオキソ基、ヒドロキシイミノ基又は C_{1-6} アルコキシイミノ基を形成し、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子、 C_{2-6} アルカノイルオキシ基を示すか、又は降り合う基が一緒になってパイ結合又はエーテル結合を形成するか、又は R^5 と R^8 もしくは R^5 と R^9 が一緒になってエーテル結合を形成する。)で表される化合物を含有する毛乳頭細胞増殖促進剤。

【請求項5】請求項1、2又は4に記載の毛乳頭細胞増殖促進剤を有効成分とする発毛剤又は育毛剤。

【請求項6】WNT-5Aの機能を阻害する化合物を選択することを特徴とする、 毛乳頭細胞増殖促進剤のスクリーニング方法。

【請求項7】下記(a)乃至(c)の工程を含むことを特徴とする請求項6記載の方法。

- (a)ヒトWNT-5A発現細胞を化合物を添加した培地を用いて培養する工程:
- (b)工程(a)で培養したヒトWNT-5A発現細胞を溶解してRNAを抽出し、WNT-5A mR NA量を測定する工程:及び
- (c)工程(b)で測定したWNT-5A mRNA量を比較する工程。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、毛乳頭細胞増殖促進剤、発毛剤及び育毛剤に関するものである。具体的には、GNT-5Aの機能阻害物質を有効成分とする毛乳頭細胞増殖促進剤、発毛剤及び育毛剤に関するものである。また、GNT-5A機能阻害作用に基づく毛乳頭細胞増殖促進剤のスクリーニング方法に関するものである。

[0002]

【従来の技術】

ヒト毛髪毛包は、角化細胞、毛乳頭細胞、繊維芽細胞、及び脂腺細胞等の様々な上皮系及び真皮間様系の細胞から構成されており、これらの細胞間相互作用を介して、毛髪の成長サイクル(毛周期)が調節されている。毛の本体は、毛包角化細胞の増殖/分化(角化)により形成されるが、この毛包角化細胞の増殖、分化、及びアポトーシスを制御し、毛周期調節の中心的な役割を担っているのは、毛乳頭である。したがって、発毛剤/育毛剤を開発する上で毛乳頭細胞に対する作用を研究することは重要と考えられる。しかし、これまでに毛乳頭細胞の増殖能及び毛周期調節能を制御する分子機構についてはほとんど明らかにされていない。

[0003]

一方、WNT-5AはWNTファミリーに属する分泌性糖蛋白質である。WNTファミリーには、約20種類の分子が存在し、各分子は線虫から哺乳類まで広く保存されている。これらWNTsは、胎生期の体軸形成や器官形成を制御している重要な細胞間シグナル分子であることが知られている(Annu. Rev. Cell Dev. Biol. 14,59-88 (1998)、Genes&Dev. 11,3286-3305 (1997))。WNTsの受容体は、7回膜質通型のFrizzledで、ヒトでは10種類が存在する(Annu. Rev. Cell Dev. Biol. 14,59-88 (1998)、Genes&Dev. 11,3286-3305 (1997))。WNTとFrizzledの結合の組み合わせに依存して、3種類のシグナル伝達経路(WNT/βーカテニン経路、PCP経路、WNT/Ca²⁺経路)が存在する(Annu. Rev. Cell Dev. Biol. 14,59-88 (1998))。

[0004]

アフリカツメガエルWNT-5A mRNA をヒトFrizzled5 mRNAとともにアフリカツメガエル初期胚に注入すると、2次体軸が誘導される。一方で逆にWNT-1やWNT-8

mRNAの注入により誘導される二次体軸形成をWNT-5Aが抑制することも報告されている(J.Cell Biol.133,1123-1137(1996))。また、アフリカツメガエルWNT-5 Aは、ラットFrizzled2と結合し、Ca²⁺経路を介してCamKII(Ca²⁺/calmodulin-d ependent protein kinase II)とPKC(protein kinase II)が活性化されることが示されているが(Dev. Biol. 182, 114-120 (1997)、Curr. Biol. 9, 695-698 (1999))、生理的な意味が解明されておらず、WNT-5Aと発毛/育毛との関連性については何ら報告はない。

[0005]

【発明が解決しようとする課題】

本発明は、毛乳頭細胞の増殖を制御する分子を用いたスクリーニング方法、毛乳頭細胞増殖促進剤並びに新規な作用に基づく発毛剤又は育毛剤を提供することを目的とする。

[0006]

【課題を解決するための手段】

本発明者らは鋭意研究の結果、毛乳頭細胞にWNT-5Aが高発現していること、WNT-5A が毛乳頭細胞の増殖能に関与することを発見した。さらにこの知見に基づき検討を重ねた結果、WNT-5Aの機能を阻害することにより毛乳頭細胞の増殖を顕著に促進することを見出し、本発明を完成するに至った。

[0007]

すなわち、本発明は、WNT-5Aの機能阻害活性を有する化合物を含有する毛乳頭細胞増殖促進剤である。

また、本発明は、WNT-5A産生抑制作用を有する化合物を含有する毛乳頭細胞増殖促進剤である。

また、本発明は、式 (I)

[0008]

【化3】

[0009]

(式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、Xは水素原子又はハロゲン原子を示し、 R^{3a} 及び R^{3b} は水素原子又は水酸基を示し、 R^{3a} が水素原子の場合 R^{3b} は水酸基であり、 R^{3a} が水酸基の場合 R^{3b} は水素原子であり、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子、 C_{2-6} アルカノイルオキシ基を示すか、又は降り合う基が一緒になってパイ結合又はエーテル結合を形成するか、又は R^5 と R^8 もしくは R^5 と R^9 が一緒になってエーテル結合を形成する。)で表される化合物である。

[0010]

また、本発明は、式 (II)

[0011]

【化4】

[0012]

(式中、 R^1 及び R^2 は 同一又は異なって水素原子、 C_{1-6} アルキル基又は C_{2-6} アルカノイル基を示し、Xは水素原子又はハロゲン原子を示し、 R^{3a} 及び R^{3b} は

同一又は異なって水素原子、水酸基又は C_{1-6} アルコキシ基を示すか、又は R^{3c} 及び R^{3d} が一緒になってオキソ基、ヒドロキシイミノ基又は C_{1-6} アルコキシイミノ基を形成し、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 及び R^9 は同一又は異なって水素原子、水酸基、ハロゲン原子、 C_{2-6} アルカノイルオキシ基を示すか、又は隣り合う基が一緒になってパイ結合又はエーテル結合を形成するか、又は R^5 と R^8 もしくは R^5 と R^9 が一緒になってエーテル結合を形成する。)で表される化合物を含有する毛乳頭細胞増殖促進剤である。

また、本発明は、上記毛乳頭細胞増殖促進剤を有効成分とする発毛剤である。 また、本発明は、WNT-5Aの機能を阻害する物質を選択することを特徴とする、 毛乳頭細胞増殖促進剤のスクリーニング方法である。

また、本発明は、WNT-5Aの機能を阻害する物質を選択する方法であって、下記(a)乃至(c)の工程を含むことを特徴とする毛乳頭細胞増殖促進剤のスクリーニング方法である。

- (a)ヒトWNT-5A発現細胞を化合物を添加した培地を用いて培養する工程:
- (b)工程(a)で培養したヒトWNT-5A発現細胞を溶解してRNAを抽出し、WNT-5A mR NA量を測定する工程:及び
- (c)工程(b)で測定したWNT-5A mRNA量を比較する工程。

[0013]

【発明の実施の形態】

以下、本発明を更に具体的に説明する。

[0014]

<WNT-5Aの機能を阻害する化合物>

本発明において「WNT-5Aの機能を阻害する化合物」(以下、「WNT-5A機能阻害剤」ということがある。)とは、WNT-5AとWNT-5A受容体の結合を阻害する化合物、又は、WNT-5Aの産生を抑制する化合物を意味し、好ましくはWNT-5Aの産生を抑制する化合物である。

[0015]

WNT-5Aは、ヒト、マウス、ラット、アフリカツメガエル等でその発現が確認されているWNTファミリーに属する分泌性糖蛋白質であるが、医薬品として使用す

る点からヒトのWNT-5A(配列番号1)機能を阻害する化合物が好ましい。

[0016]

WNT-5AとWNT-5A受容体の結合を阻害する化合物とは、WNT-5A又はWNT-5A受容体に作用することによりWNT-5AとWNT-5A受容体の結合を阻害し、WNT-5Aによるシグナル伝達を抑制するものを意味し、好ましくはCa²⁺経路を介したシグナル伝達を抑制する化合物であり、例えば、WNT-5A受容体アンタゴニストを挙げることができる。WNT-5A受容体としては、具体的には例えば、ヒトFrizzled5(配列番号4)、ラットFrizzled2(配列番号6)を挙げることができる。当該化合物は、ペプチド性でも非ペプチド性でもよいが、作用時間が長い利点がある非ペプチド性の阻害剤が好ましい。また、当該化合物は、標識したWNT-5A及びWNT-5A受容体を用いたスクリーニング系により選択することができ、好ましくはIC50が10μg/ml以下のものである。

[0017]

WNT-5A産生を抑制する化合物とは、WNT-5A遺伝子の発現を抑制する化合物を意味する。当該化合物は、ペプチド性でも非ペプチド性でもよいが、作用時間が長い利点がある非ペプチド性の阻害剤が好ましい。また、当該化合物は、WNT-5A蛋白質量(配列番号 1)又は指標WNT-5AmRNA量(配列番号 2)の減少を指標として選択することができ、好ましくはHartleyらの方法(DRUG METABOLISM AND DISPOSITION 28(5),608-616 (2000))に準じた核酸プローブアッセイ方法によりIC50が10 μ g/ml以下のものである。更に好ましくは、式(II)で表される化合物である。

[0018]

式(II)で表される化合物において C_{1-6} アルキル基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルキル基を意味し、具体的には、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t e r t ーブチル基、ペンチル基、2 -エチルプロピル基、ヘキシル基等が挙げられる。

[0019]

 C_{2-6} アルカノイル基とは、炭素数 $2\sim 6$ の直鎖又は分枝鎖状のアルカノイル基を意味し、具体的には、例えばアセチル基、プロピオニル基、ブチリル基、 t

[0020]

 C_{1-6} アルコキシ基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルコキシ基を意味し、具体的には、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチロキシ基、イソペンチロキシ基、ネオペンチロキシ基、tert-ペンチロキシ基、1- メチルブトキシ基、2- メチルブトキシ基、1 、2- ジメチルプロポキシ基、ヘキシロキシ基、イソヘキシロキシ基等が挙げられる。

[0021]

 C_{1-6} アルコキシイミノ基とは、炭素数 $1\sim 6$ の直鎖又は分枝鎖状のアルコキシイミノ基を意味し、具体的には、例えばN-メトキシイミノ基、N-エトキシイミノ基、N-プロポキシイミノ基、N-プロポキシイミノ基、N-プレポキシイミノ基、N-プレポキシイミノ基、N- ルーベンチルオキシイミノ基、N- ルーベンチルオキシイミノ基、N- ルーベンチルオキシイミノ基(N- ルーベンチルオキシイミノ

[0022]

 C_{2-6} アルカノイルオキシ基とは、炭素数 $2\sim 6$ の直鎖又は分枝鎖状のアルカノイルオキシ基を意味し、具体的には、例えばアセトキシ基、プロピオニルオキシ基、ピバロイルオキシ基等が挙げられる。

[0023]

エーテル結合とは、-O-、式 $-(CH_2)m-O-(CH_2)n-$ (式中、m及びnはそれぞれ $1\sim3$ の整数を表し、式中のアルキレン基はアルキル基で置換されていてもよい。)又は、式 $-O-(CH_2)m-O-$ (式中、mは $1\sim3$ の整数を表し、式中のアルキレン基はアルキル基で置換されていてもよい。)を意味する。

[0024]

パイ結合又はエーテル結合を形成する隣り合う基の組み合わせとしては、(R 4 と 5)、(5 と 6)、(6 と 7)、(7 と 8)及び(8 と 9)を挙げることができる。

式 (II) で表される化合物の中でより好ましくは式 (I) で表される化合物であり、更に好ましくは \mathbf{R}^{3a} が水素原子であり、 \mathbf{R}^{3b} は水酸基である化合物である。

また、式(IIa) 、式(IIb) 、式(IIc) で表される化合物が好ましい。 【0025】

【化5】

[0026]

.【化6】

[0027]

【化7】

[0028]

(式中、 R^1 、 R^2 、 R^{3c} 、 R^{3d} 、 R^8 、 R^9 及びXは前記と同意義である。) 式(II)で表される化合物は、例えば、以下の製法を組み合わせることにより製造することができる。

【化8】反応式1

[0030]

(式中、 R^1 、 R^2 、 R^{3c} 、 R^{3d} 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 及びXは前記と同意義である。)

式 (III) の化合物をパラジウム炭素などの触媒存在下、有機溶媒 (例えば、酢酸エチル、テトラヒドロフラン、ジエチルエーテル、エチルアルコール、メチルアルコールなど) 中、水素添加反応を行い、式 (IV) あるいは式 (IV') の化合物、もしくはこれらの混合物を得る。これらの式 (IV) 及び式 (IV') の化合物はカラムクロマトグラフィーなど通常用いられる分離法にて分離精製することができる。

[0031]

【化9】反応式2

(式中、 R^1 、 R^2 、 R^{3c} 、 R^{3d} 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 及びXは前記と同意義である。)

式(V)の化合物を水素化ホウ素カリウム、水素化ホウ素ナトリウム、水素化ホウ素リチウムなどの還元剤と、必要に応じてLiCl、NgCl₂、CeCl₃、CaCl₂、NiCl等の塩類の共存下有機溶媒(例えば、テトラヒドロフラン、ジエチルエーテル、エチルアルコール、メチルアルコールなど)中、-20~100℃、好ましくは0~20℃で反応させ、式(VI)の化合物を得る。式(VI)の化合物はカラムクロマトグラフィーなど通常用いられる分離法にて分離精製することができる。

[0033]

【化10】反応式3

[0034]

(式中、 R^1 、 R^2 、 R^{3c} 、 R^{3d} 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 及びXは前記と同意義である。)

式(VII)の化合物を適当な有機溶媒(例えば、テトラヒドロフラン、ジエチルエーテル、エチルアルコール、メチルアルコールなど)中、酸又は塩基で処理することにより、式(VIII)の化合物を得る。

[0035]

<毛乳頭細胞増殖促進剤>

本発明において「毛乳頭細胞増殖促進剤」とは、毛乳頭細胞の数を増加させる 作用をもつ医薬又は試薬を意味する。

[0036]

本発明の毛乳頭細胞増殖促進剤は、WNT-5A機能の阻害作用に基づくことを特徴とする。WNT-5Aは、WNT/β-catenin経路が活性化するWNT-1 classのWNTs(1、8

など)の機能を抑制することから、WNT-5Aの機能の調整あるいはWNT-5Aの発現を 調整することにより毛乳頭細胞の増殖を制御する。したがって、優れたWNT-5A 機能の阻害作用を有すれば、全く構造の異なる化合物(例えば、化合物7や化合 物24など)であっても、優れた毛乳頭細胞増殖促進作用を有する。

[0037]

【化11】

化合物 7

化合物24

[0038]

細胞の増殖は、当業者に公知の方法により測定することができ、例えば適当な発色基質を用いた生細胞数計測、[3H]-チミジン取り込み法等を挙げることができる。発色基質としては、MTT、MTS、XTT等のテトラゾリウム塩を用いることが好ましい。

[0039]

<発毛剤/育毛剤>

本発明において「発毛剤又は育毛剤」とは、発毛誘導、毛成長促進、脱毛予防などの目的で使用される医薬品又は医薬部外品を意味する。本発明の発毛剤/育毛剤を医薬として用いる場合、適用対象としては、例えば円形脱毛症や脱毛症の改善あるいは予防などを挙げることができる。

[0040]

また、本発明の発毛剤/育毛剤の効果は、WNT-5A機能の抑制に基づく毛乳頭細胞増殖促進作用による。かかる作用機序により脱毛部毛乳頭において低下している細胞増殖能を亢進し、発達した毛乳頭組織を形成するため、これまでの育毛剤

/発毛剤では効果がえられなかった症状にも有効であることが予想される。

[0041]

本発明の発毛剤/育毛剤は、それぞれの化合物に基づき、種々の投与量及び投与形態で投与することができる。

[0042]

投与量は、育毛剤の種類、投与形態により異なるが、例えば、式(II)で表される化合物を塗布投与(ローション剤、軟膏剤、ゲル剤等)する場合、0.0001~10重量%で投与することができ、好ましくは0.001~5重量%、更に好ましくは0.001~1重量%である。また、式(II)で表される化合物を成人男性に経口投与(散剤、錠剤またはカプセル剤)する場合は、1~100mg/kg/日とすることが好ましい。

[0043]

本発明の発毛剤/育毛剤の投与形態は特に限定されるものではないが、外用での使用では、WNT-5A産生抑制剤、例えば式(II)で表される化合物を有効成分とする発毛剤/育毛剤は水溶性組成物の形態で提供されることが好ましい。このような水溶性組成物の製造には、本発明の効果を損なわない限り医薬品、医薬部外品又は化粧品の製造に用いられる各種の添加物を配合することができる。本発明の発毛剤/育毛剤は、例えばヘアトニック、ヘアオイル、ヘアムース、ゲルなどの調髪用組成物、シャンプー、リンスなどの洗髪用組成物、或いは軟膏などとして提供することが可能である。

[0044]

また、経口での使用では、WNT-5A産生抑制剤、例えば式(II)で表される化合物を製剤上許容しうる担体(賦形剤、結合剤、崩壊剤、矯味剤、矯臭剤、乳化剤など)、希釈剤、溶解補助剤などと配合して得られる医薬組成物を通常の方法に従って製剤して得られる錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、懸濁剤、溶液剤などの形態で提供されることが望ましい。

なお、これらの製剤化は、通常の製剤化技術を使用することができる

<スクリーニング方法>

本発明はまた、WNT-5Aの機能を阻害する化合物を選択することを特徴とする

、毛乳頭細胞増殖促進剤のスクリーニング方法である。

[0045]

WNT-5Aの機能を阻害する化合物(以下、「WNT-5A機能阻害剤」ということがある。)を選択するとは、例えば、WNT-5A産生抑制剤を選択、即ちスクリーニングすることでもよく、また、WNT-5A受容体アンタゴニストを選択することでもよい。

[0046] .

本発明のスクリーニング方法に供される被験物質としては、任意の物質を使用することができる。被験物質の種類は特に限定されず、個々の低分子化合物でよいし、天然物抽出物中に存在する化合物でもよく、合成ペプチドでもよい。また、化合物ライブラリー、コンビナトリアルライブラリーであってもよい。化合物ライブラリーの構築は当業者に公知であり、また市販の化合物ライブラリーを使用することもできる。スクリーニングの対象とする化合物は、医薬品として用いる観点から分子量3000以下であることが好ましく、塗布/経口投与を可能とする観点から、分子量600以下の低分子化合物であることが好ましい。

[0047]

①WNT-5A受容体アンタゴニストのスクリーニング方法

WNT-5A受容体アンタゴニストのスクリーニング方法において、標識したWNT-5A蛋白質及びWNT-5A受容体を用いて、該標識を検出又は測定することにより、WNT-5A蛋白質とWNT-5A受容体の結合の形成の有無を調べてもよい。標識としては、放射性同位元素(32P、33P、131 I、125 I、3H、14C、35 S等)、酵素(アルカリフォスファターゼ、ホースラディシュパーオキシターゼ等)、蛍光物質(フルオロセインイソチオシアネート等)等を挙げることができる。これらは市販のものを入手することができ、公知の方法によって標識される。

[0048]

in vitroのアッセイ系の1つの具体例は、非細胞系において行われる。具体的にはWNT-5A蛋白質又はWNT-5A受容体のいずれか一方を支持体に結合させ、ここにもう一方と被検物質を加え、インキュベートした後洗浄して支持体に結合した蛋白質に対するもう一方の蛋白質の結合を検出又は測定すればよい。

[0049]

蛋白質を結合させる支持体としては、例えば不溶性の多糖類、例えば、アガロース、デキストラン、セルロース、合成樹脂、例えばポリスチレン、ポリアクリルアミド、シリコン等が挙げられる。より具体的にはそれらを原料として製造される市販のビーズ、プレートが用いられる。

[0050]

②WNT-5A産生抑制化合物のスクリーニング方法

WNT-5A産生抑制化合物のスクリーニングは、WNT-5A mRNA量又はWNT-5A蛋白質量を指標として行うことができる。また、WNT-5A遺伝子のプロモーター領域にレポーター遺伝子を連結して発現量を検出することもできる。WNT-5A遺伝子のプロモーターとしては、配列番号3を使用することが好ましい。

[0051]

レポーター遺伝子としては、例えば、GFP遺伝子 (Green Fluorescent Protein)、GUS遺伝子 (β-Glucuronidase)、LUC遺伝子 (Luciferase)、CAT (Chloram phenical acetyltransferase) 遺伝子 を挙げることができる。

WNT-5A mRNA量を指標とした場合としては、例えば、ヒトWNT-5A発現細胞を用い、薬剤を添加し、37℃、5%CO₂-95%airのインキュベータ内で数時間培養後、細胞を溶解してRNAを抽出し、RT-PCRなどを用いてWNT-5A mRNA量を測定することにより、WNT-5A mRNA量を減少させる活性を有する物質を探索することができる。PCRに用いるプライマーとしては、WNT-5A mRNAに特異的なものであれば特に制限はなく、WNT-5A mRNAの配列から設計することができるが、好ましくは、Forward Primer AATGTCTTCCAAGTTCTTCCTAGTGGC(配列番号8)及び Reverse Primer GATGTCGGAATTGATACTGGCA(配列番号9)である。

[0052]

WNT-5A 蛋白質量を指標とした場合としては、例えば、ヒトWNT-5A発現細胞を用い、薬剤を添加し、37℃、5%CO₂-95%airのインキュベータ内で数時間培養後、培養培地を用いて又は細胞を溶解して蛋白質を抽出し、ELISAなどを用いてWNT-5A 蛋白質量を測定することにより、WNT-5A 蛋白質発現量を減少させる活性を有する物質を探索することができる。

[0053]

以下、実験例基づき本発明を更に説明するが、本発明はこれらにより何ら限定されるものではない。

[0054]

【実施例】

実施例1(化合物3、4)

ラディシコール(化合物 1:10.8g)を酢酸エチル(140ml)に溶解し、5%パラジウム炭素(ウェットタイプ)(255mg)を加え、水素置換(1 気圧)し室温で 3 時間撹拌した。パラジウム炭素を濾過後、濾液を減圧留去した。得られた残渣をシリカゲルクロマトグラフィーにて精製し、n-ヘキサン:酢酸エチル=2:1で溶出させることで、目的化合物 4(3.43g)を得、n-ヘキサン:酢酸エチル=3:2で溶出させることで、目的化合物 3(4.14g)を得た。

[0055]

実施例2(化合物7、8)

化合物 3 (602.5mg)をメタノール(13ml)に溶解し、塩化セリウム (III) 7水和物(2.14g)を加え、室温で30分間撹拌した。この溶液に水素化ホウ素ナトリウム(180mg)を氷冷しながら徐々に加えた後、室温で5分間撹拌した。反応液に飽和リン酸水素二ナトリウム(40ml)を加え水(40ml)で希釈した後、有機溶媒を減圧留去した。残った水層を酢酸エチル(300ml×2)で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。残渣をシリカゲル分取薄層クロマトグラフィー (20cm×20cm, 1.0mm厚、クロロホルム:メタノール=93:7で展開、酢酸エチルで溶出)により粗精製した。得られた粗精製物を高速液体クロマトグラフィー (20φ×250mm, YMC-Pack Pro C18, 水(酢酸添加、pH3.5):アセトニトリル=65:35で溶出)により精製し、目的化合物(化合物7:14.9mg、化合物8:13.8mg)を得た。

[0056]

実施例3 (化合物9,10)

化合物4(26.5mg)をメタノール(5ml)に溶解し、塩化セリウム(III) 7水和物(100mg)を加え、室温で30分間撹拌した。この溶液に水素化ホウ素ナトリウム(60

mg)を氷冷しながら徐々に加えた後、室温で30分間撹拌した。反応液に飽和リン酸水素二ナトリウム(12ml)を加え水(20ml)で希釈した後、有機溶媒を減圧留去した。残った水層を酢酸エチル(30ml×2)で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm,0.25mm厚、クロロホルム:メタノール=94:6で展開、酢酸エチルで溶出)により精製し、目的化合物(化合物9:5.7mg、化合物10:8.8mg)を得た。

[0057]

実施例4 (化合物5)

ラディシコール(91.5mg)をメタノール(5ml)に溶解し、塩化セリウム(III) 7水和物(88mg)を加え、室温で10分間撹拌した。この溶液に水素化ホウ素ナトリウム(60mg)を氷冷しながら徐々に加えた後、室温で30分間撹拌した。反応液に飽和リン酸水素二ナトリウム(20ml)を加え水(20ml)で希釈した後、有機溶媒を減圧留去した。残った水層を酢酸エチル(50ml×3)で抽出し、得られた酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm,0.5mm厚、クロロホルム:メタノール=9:1で展開、酢酸エチルで溶出)により精製し、目的化合物5(27.2mg)を得た。

[0058]

実施例5(化合物2)

ラディシコール(15.3mg)をピリジン(1.5ml)に溶解し、無水酢酸(4ml)を加え室温で6.5時間撹拌した後、反応液に氷水(20ml)を加え酢酸エチル(20ml)で抽出した。酢酸エチル層を水(20ml×2)で洗浄し、無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm, 0.5mm厚、クロロホルム:メタノール=95:5で展開、酢酸エチルで溶出)により精製し、目的化合物 2 (18.5mg)を得た。

[0059]

実施例6 (化合物11)

ラディシコール(19.0mg)をジメチルスルホキシド(1ml)に溶解し、炭酸カリウ

ム(3mg)とヨウ化メチル(4ml)を加え室温で6.5時間撹拌した。反応液に水(20ml)を加え酢酸エチル(20ml)で抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm,0.5mm厚、クロロホルム:メタノール=95:5で展開、酢酸エチルで溶出)により精製し、目的化合物11(15.3mg)を得た。

[0060]

実施例7(化合物16、17、19、23)

ラディシコール(930mg)を1,4-ジオキサン(14ml)に溶解し、1 規定塩酸(12ml)を加え室温で2時間撹拌した後、水(40ml)で希釈し酢酸エチル(100ml)で抽出した。酢酸エチルを無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm, 1.0mm厚、クロロホルム:メタノール:n-ヘキサン=5:1:5で展開、酢酸エチルで溶出)により粗精製した。得られた粗精製物を高速液体クロマトグラフィー(20φ×250mm, YMC-Pack Pro C18,水(酢酸添加、pH3.5):アセトニトリル=70:30~40:60、グラジエントで溶出)により精製し、目的化合物(化合物16:11.4mg、化合物17:19.4mg、化合物19:32.6mg、化合物23:103.7mg)を得た。

[0061]

実施例8 (化合物12、13)

ラディシコール (232.6 ng) を1,4-ジオキサン (4 ml) に溶解し、1 規定塩酸 (1 ml) を加え室温で30分間撹拌した後、1 規定水酸化ナトリウムで中和した。溶媒を減圧濃縮後メタノールを20 ml 加えて溶解させ、綿栓濾過後メタノールを減圧留去した。得られた残渣を高速液体クロマトグラフィー $(20 \text{ ϕ} \times 250 \text{nm}, \text{ YMC-Pack Pro}$ C18, 水 (酢酸添加、p H3.5): アセトニトリル=65:35で溶出)により精製し、目的化合物 (化合物12:42.6 mg、化合物13:10.4 mg) を得た。

[0062]

実施例9 (化合物18)

5 mlのジメチルホルムアミドに 1 mlのオキシ塩化リンを氷冷しながら滴下した後、室温で30分間撹拌した。この溶液をラディシコール(98.5mg)のジメチルホルムアミド溶液(4ml)に氷冷しながら徐々に加えた後、室温で24時間撹拌した。反

応被を酢酸エチル(100ml)で希釈した後、水(100ml×3)で洗浄し、酢酸エチル層を無水硫酸ナトリウムで乾燥後、酢酸エチルを減圧留去した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(20cm×20cm, 0.5mm厚、クロロホルム:メタノール=94:6で展開、酢酸エチルで溶出)により精製し、目的化合物(化合物18)(61.8mg)を得た。

[0063]

実施例10 (化合物14、15)

ラディシコール(378mg)を1,4-ジオキサン(4ml)に溶解し、1 規定塩酸(1ml)を加え室温で20分間撹拌した後、1 規定水酸化ナトリウムで中和した。溶媒を減圧 濃縮後メタノールを20ml加えて溶解させ、綿栓濾過後メタノールを減圧留去した。得られた残渣を高速液体クロマトグラフィー ($20\phi \times 250$ mm, YMC-Pack Pro C1 8,水(酢酸添加、pH3.5): アセトニトリル=70:30で溶出)により精製し、目的化合物(化合物14:10.7mg、化合物15:9.9mg)を得、同時に化合物12(40.6mg)も得られた。

[0064]

実施例11(化合物20、21、22)

化合物 3 (96.3mg) ϵ 1,4-ジオキサン(2ml)に溶解し、1 規定塩酸(2.5ml)を加え 室温で16時間撹拌した後、1 規定水酸化ナトリウムで中和した。溶媒を減圧濃縮 後メタノールを20ml加えて溶解させ、綿栓濾過後メタノールを減圧留去した。得 られた残渣を高速液体クロマトグラフィー($20\phi \times 250$ mm, YMC-Pack Pro C18, 水 (酢酸添加、pH3.5):アセトニトリル=45:55で溶出)により精製し、目的化 合物(化合物20:9.3mg、化合物21:22.0mg、化合物22:26.2mg)を得た。

上記実施例にて合成した化合物及びそのデータを表1及び表2に示す。 (表1中の化合物は式(I)又は(II)で表される。)

[0065]

~	22222222
84 84 84	-0- -0- H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0 H0
	医医耳及医医医医尿管 結構結構 結構結構 计设计 人名马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马
R P R S	化化化化化化化化化化合金化钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴钴合合合合合合合合
(R3c R3d)	
8 3	н ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж ж
	н н н н н н е
るる	

- U - (| 1) | J - U - : 安森 -

[0066]

【表2】表1のつづき

	•		
~	333333	~	[]
<u>~</u>		25	H O
<u>مح</u>	1 1 1 1 1	~	∢¤
R 7		e	14年
<u></u>	# # H H H H H		ı
~	诺诺诺诺	5 ×	0
25	нняяя	 -	
 	H O H O H	3 d) B	·
~ ~	H 0 H 0 H 0	(R 3 c R)
~	-	64	Ħ
<u>~</u>	=====	&	H
化合物	600000	令 中	23

[0067]

【表3】表1のつづき

~	13	مح ا	15	l
حد <u>صحا</u>	2222	~	H 0	
<u>~</u>	作日日日	æ æ	存	
* €	E H H	R	11	
~	1 1 1 1		선디	
<u>&</u>	1111	25 22	22	
~	=====		CI	ı
(R3c R3d)	0000	(R3c R3d)	0 ==	
~	***	6-4 6-4 ,	==	
~	ЖЖЖЖ	~	H	
化合物	19 20 21 22	化 哈 物	16	

[0068]

化合物番号	1H-NMR	13C-NMR
-	(CDC/3/CD3OD,500MHz) δppm: 1.48(d,J=6.7Hz,3H), 1.83(ddd,J=15.3,9.6,3.7Hz,1H), 2.33(dt,J=15.3,3.7Hz,1H), 2.94(dt,J=9.6,3.0Hz,1H), 3.18(s,1H), 3.86(d,J=16.5Hz,1H), 4.51(d,J=16.5Hz,1H), 5.41(sxt,J=3.7Hz,1H), 5.78(dd,J=9.8,3.0Hz,1H), 6.05(d,J=15.9Hz,1H), 6.16(t,J=9.8Hz,1H), 6.45(s,1H), 7.48(dd,J=15.9,9.8Hz,1H)	(CDCi3/CD3OD,125MHz) δppm: 18.5(q), 38.3(t), 48.3(t), 55.8(d), 56.1(d), 71.2(d), 103.4(d), 108.0(s), 116.1(s), 130.1(d), 130.5(d), 135.0(d), 135.7(s), 139.6(d), 158.2(s), 161.2(s), 168.9(s), 199.1(s)
2	(CDCI3,500MHz) δppm: 1.51(d,J=6,7Hz,3H), 1.54(ddd,J=14.6,8.5,3.7Hz,1H), 2.24(s,3H), 2.31(s,3H), 2.38(dt,J=14.6,3.7Hz,1H), 2.99(dt,J=8.5,3.7Hz,1H), 3.49(qui,J=1 8Hz,1H), 3.91(d,J=15.9Hz,1H), 4.04(d,J=15.9Hz,1H), 5.37(dq,J=6.5Hz,1H), 5.74(dd,J=11.0,3.7Hz,1H), 6.03(d,J=16.5Hz,1H), 6.12(t,J=11.0Hz,1H), 7.02(s,1H), 7.45(dd,J=18.5,11.0Hz,1H)	(CDCI3,125MHz) δρρπ: 18.6(q), 20.6(q), 20.7(q), 37.1(t), 45.1(t), 55.0(d), 55.4(d), 70.8(d), 117.8(d), 126.3(s), 126.5(s), 126.9(d), 130.6(d), 133.8(s), 136.1(d), 139.1(d), 146.6(s), 148.7(s), 163.8(s), 167.5(s), 168.1(s), 195.8(s)
ო .), 3.7Hz,1H), b), z,1H), 6.48(s,1H),	(CDCl3/CD3OD,125MHz) &ppm: 17.8(q), 29.2(t), 30.9(t), 36.4(t), 45.1(t), 56.0(d), 57.8(d), 72.1(d), 103.5(d), 106.3(s), 116.3(s), 130.1(d), 136.1(s), 148.0(d), 158.8(s), 163.4(s), 170.3(s), 197.0(s)
4	(CDCi3/CD3OD,500MHz) δppin: 1.02(m,1H), 1.32(d,J=6.4Hz,3H), 1.36(m,1H), 1.41(m,2H), 1.64(m,1H), 1.77(ddd,J=15.5.6.4.2.7Hz,1H), 1.92(ddd,J=14.0,7.0,3.0Hz,1H), 2.04(ddd,J=15.5.5.4.3Hz,1H), 2.34(m,2H), 2.53(dt,J=8.8,3.0Hz,1H), 2.68(m,1H), 4.02(d,J=18.3Hz,1H), 4.25(d,J=18.3Hz,1H), 5.15(d'qui,J=6.42.7Hz,1H), 6.37(s,1H)	(CDCi3/CD3OD,126MHz) Sppm: 18.6(q), 22.1(t), 23.2(t), 30.8(t), 36.1(t), 40.3(t), 46.5(t), 54.8(d), 57.6(d), 70.8(d), 103.1(d), 105.4(s), 115.6(s), 135.6(s), 158.2(s), 162.2(s), 169.6(s), 208.0(s)
ه ۱	(CD3OD,500MHz) 8ppm: 1.41(d,J=6.7Hz,3H), 1.95(dd,J=16.1,5.5Hz,1H), 2.50(ddd,J=16.1,7.6,30Hz,1H), 2.97(qui,J=3.0Hz,1H), 3.18(dd,J=12.8,4.0Hz,1H), 3.28(m,1H), 3.73(dd,J=12.8,10.4Hz,1H), 4.52(sep,J=4.0Hz,1H), 5.21(m,1H), 5.31(dd,J=11.3,5.5Hz,1H), 5.78~5.90(m,3H), 6.35(s,1H)	(CD3OD,125MHz) δρρπ: 20.1(q), 36.0(t), 40.0(t), 56.0(d), 57.2(d), 70.3(d), 103.5(d), 108.6(s), 116.9(s), 127.4(d), 129.3(d), 130.7(d), 139.0(s), 139.1(d), 159.0(s), 162.8(s), 171.2(s)
		-

[0069]

【表5】表2のつづき

化合物番号	1H-NMR	13C-NMR
7	(CD30D,500MHz) δppm: 1.19(m.1H), 1.35(d,J=6.7Hz,3H), 1.85(ddd,J=15.5,5.5.24Hz,1H), 1.85(m.1H), 2.01(m.1H), 2.27(ddd,J=15.5,6.7,3.0Hz,1H), 2.50(dt,J=9.1,3.0Hz,1H), 2.85(qui,J=3.0Hz,1H), 3.33(dd,J=12.5,5.6Hz,1H), 3.83(dd,J=12.5,5.6Hz,1H), 3.83(dd,J=12.5,5.6Hz,1H), 3.83(dd,J=12.5,5.4Hz,1H), 6.28(dd,J=15.5,5.5Hz,1H), 5.38(ddd,J=15.5,5.5,1H), 6.32(s,1H)	(CD3OD,125MHz) δερπ. 20.2(q), 29.5(t), 31.3(t), 37.0(t), 40.2(t), 58.3(d), 59.6(d), 70.9(d), 71.8(d), 103.4(d), 109.3(d), 115.9(d), 129.1(d), 133.2(d), 140.0(d), 159.2(s), 163.0(s), 171.8(s)
œ	(CD30D,500Mit.) 8ppm: 1.27(m,1H), 1.35(d,J=8.1Hz,3H), 2.02(m,1H), 2.03(m,1H), 2.03(m,1H), 2.20(m,1H), 2.20(m,1H), 2.86(dd,J=5.8,3.0Hz,1H), 2.92(dt,J=8.5,3.0Hz,1H), 3.30(dd,J=12.8,3.0Hz,1H), 4.93(m,1H), 4.93(d'sxt,J=6.11,8Hz,1H), 4.93(d'sxt,J=6.11,8Hz,1H), 6.41(s,1H), 5.84(dt,J=15.5,6.1Hz,1H), 6.41(s,1H)	(CD30D,125MHz) δρρπ: 20.4(q), 28.8(t), 31.2(t), 38.8(t), 39.7(t), 56.8(d), 67.6(d), 69.5(d), 70.8(d), 103.3(d), 114.7(s), 114.8(s), 129.7(d), 133.4(d), 138.5(s), 157.3(s), 158.2(s), 188.5(s)
· 66 /	(GD30D,500MHz, 8ppm: 1.11(m,1H), 1.43(m,1H), 1.45(d,J=6.4Hz,8H), 1.48(m,1H), 1.52(m,1H), 1.57(m,1H), 1.74(ddd,J=15.5,7.3.2.4Hz,1H), 2.09(dqui,J=14.3.2.4Hz,1H), 2.36(ddd,J=15.5,7.3.2.4Hz,1H), 2.71(dt,J=9.4,2.4Hz,1H), 3.03(dt,J=7.3.2.4Hz,1H), 3.21(dd,J=7.3.1.8Hz,2H), 3.88(m,1H), 5.20(dqui,J=6.4.2.4Hz,1H), 6.38(s,1H)	(CD30D,126MHz) δρρπ. 20.0(q), 25.2(t), 25.8(t), 32.2(t), 38.8(t), 38.0(t), 39.9(t), 68.2(d), 60.5(d), 71.4(d), 72.8(d), 103.0(d), 112.3(s), 115.3(s), 139.7(s), 158.0(s), 160.1(s), 171.1(s)
10	(CD3OD,600MHz) bppm: 1.29(m,1H), 1.35(m,2H), 1.38(m,2H), 1.40(d,J=6.1Hz,3H), 1.50(m,1H), 1.57(m,1H), 1.94(m,1H), 2.37(m,1H), 2.81(dt,J=7.3,2.4Hz,1H), 2.88(dt,J=7.3,2.4Hz,1H), 2.88(dt,J=7.3,2.4Hz,1H), 2.88(dt,J=1.3,4.2Hz,1H), 3.15(dt,J=1.3,4.2Hz,1H), 3.15(dt,J=1.3,4.2Hz,1H), 3.82(qui,J=8.1Hz,1H), 6.12(dt,J=8.1,2.4Hz,1H), 6.38(s,1H)	(CD30D,125MHz) δρρπ: 20.5(d), 23.5(t), 24.6(t), 30.2(t). 35.1(t), 37.8(t), 39.2(t), 67.1(d), 59.1(d), 72.2(d), 72.3(d). 102.9(d), 114.6(s), 115.9(s), 138.5(s), 156.6(s), 156.8(s). 169.8(s)
11	(CDCi3,500MHz) δρρπ: 1,50(d,J=6,7Hz,3H), 1,81(ddd,J=14,8,8,6,3.7Hz,1H), 2,40(dt,J=14,6,3.7Hz,1H), 3,02(dt,J=8,6,1.8Hz,1H), 3,40(br,t,J=1,8Hz,1H), 3,75(d,J=15,9Hz,1H), 3,83(s,3H), 3,89(s,3H), 3,95(d,J=15,9Hz,1H), 5,35(q,J=8,7,3.7Hz,1H), 5,89(dd,J=10,4,3Hz,1H), 6,07(d,J=15,9Hz,1H), 6,12(t,J=10,4Hz,1H), 6,45(s,1H), 7,48(dd,J=15,9,10,4Hz,1H)	(CDCI3,125MHz) бррт: 18.6(q), 37.3(t), 45.2(t), 55.5(d). 55.6(d), 56.3(q), 56.4(q), 70.2(d), 95.5(d), 115.5(s), 117.9(s), 130.2(d), 131.0(d), 132.4(s), 135.8(d), 138.8(d), 156.3(s), 156.8(s), 166.0(s), 196.4(s)

[0070]

【表6】表2のつづき

化合物番号	1H-NMR	13C-NMR
12	(CD3OD,500MHz) 6ppm: 1,42(d,J=6,4Hz,3H), 1.89(ddd,J=15.2,8.1,3.6Hz,1H), 2.03(dd,J=15.2,7.0Hz,1H), 3.66(d,J=16.2Hz,1H), 3.99(dd,J=9.1,5.8Hz,1H), 4.21(d,J=16.2Hz,1H), 5.12(dd,J=10.0,5.8Hz,1H), 5.38(dq,J=6.4,3.6Hz,1H), 5.75(t,J=10.0Hz,1H), 5.95(d,J=16.1Hz,1H), 6.17(t,J=11.0Hz,1H), 6.46(s,1H), 7.21(dd,J=16.1,11.0Hz,1H),	(CD3OD,125MHz) &ppm: 19.3(q), 38.2(t), 45.7(t), 60.6(d), 70.3(d), 72.6(d), 103.9(d), 114.3(s), 116.3(s), 130.8(d), 132.6(d), 134.6(s), 138.1(d), 141.1(d), 156.9(s), 157.0(s), 168.1(s), 199.8(s)
13	(CD3OD,125MHz) δρρπ: 146(d,J=6.1Hz,3H), 1.96(ddd,J=14.0,104,3.0Hz,1H), 2.12(ddd,J=14.0,9.8,3.0Hz,1H), 1.96(ddd,J=14.0,104,3.0Hz,1H), 2.12(ddd,J=14.0,9.8,3.0Hz,1H), 1.06(d,J=15.3Hz,1H), 3.88(dt,J=9.8,3.0Hz,1H), 1.06(d,J=15.3Hz,1H), 5.00(dd,J=9.8,3.0Hz,1H), 1.06(d,J=15.9Hz,1H), 6.02(t,J=9.8Hz,1H), 1.06(d,J=15.9Hz,1H), 6.14(t,J=9.8Hz,1H), 1.06(d,J=15.9Hz,1H), 1.06(d,J=15.9,8Hz,1H), 1.06(d,J=15.9,8Hz,1H), 1.07(d,J=15.9Hz,1H), 1.0	(CD3OD,125MHz) δppm: 20.8(q), 40.6(t), 44.5(t), 60.4(d), 71.0(d), 72.1(d), 104.1(d), 113.8(s), 115.7(s), 127.6(d), 131.7(d), 135.4(s), 138.6(d), 139.1(d), 157.8(s), 158.6(s), 168.5(s), 168.5(s), 198.7(s)
14	(CD3OD,500MHz) bppm: 1.42(d,J=6.7Hz,3H), 1.87(ddd,J=15.39.2,3.7Hz,1H), 1.95(dd,J=15.36.7Hz,1H), 3.63(d,J=15.9Hz,1H), 3.80(m,1H), 4.18(d,J=15.9Hz,1H), 4.78(dd,J=8.5.6.1Hz,1H), 5.40(m,1H), 5.73(dd,J=11.0,8.5Hz,1H), 5.90(d,J=15.9Hz,1H), 6.14(t,J=11.0Hz,1H), 6.41(s,1H), 7.30(dd,J=15.9,11.0Hz,1H)	(CD3OD,125MHz) δppm: 19.4(q), 37.8(t), 45.8(t), 71.2(d), 71.9(d), 71.9(d), 103.8(d), 114.3(s), 116.6(s), 130.0(d), 131.5(d), 134.7(s), 142.4(d), 142.9(d), 156.7(s), 156.9(s), 168.4(s), 200.2(s)
15	(CD30D,500MHz) δppm: 1.44(d,J=6.1Hz,3H), 1.83(ddd,J=14.6,9.8,3.0Hz,1H), 2.10(ddd,J=14.6,9.8,3.0Hz,1H), 3.64(dt,J=9.8,3.0Hz,1H), 3.87(d,J=15.9Hz,1H), 4.53(d,J=15.9Hz,1H), 4.56(m,1H), 5.45(m,1H), 5.94(dd,J=10.4,7.3Hz,1H), 5.96(d,J=15.9Hz,1H), 6.12(t,J=10.4Hz,1H), 6.44(s,1H), 7.36(dd,J=15.9,10.4Hz,1H)	(OD3OD, 125MHz) δppm; 21.0(q), 39.3(t), 44.5(t), 69.5(d), 71.2(d), 72.7(d), 104.0(d), 113.0(s), 115.9(s), 127.2(d), 131.3(d), 135.8(s), 140.6(d), 143.7(d), 158.2(s), 158.3(s), 168.7(s), 199.5(s)
9.	(CD3OD,S00MHz) &ppm: 1.29(d,J=8.1Hz,3H), 1.70(ddd,J=11.6,104,2.4Hz,1H), 2.17(dt,J=11.6,6.1Hz,1H), 4.01(d,J=18.9Hz,1H), 4.05(m,1H), 4.34(d,J=18.9Hz,1H), 5.01(m,1H), 5.46(d,J=9.8Hz,1H), 5.82(dd,J=15.3,9.8Hz,1H), 6.02(t,J=11.0Hz,1H), 6.10(dd,J=15.3,11.0Hz,1H), 6.30(t,J=11.0Hz,1H), 6.45(s,1H)	(OD3OD,125MHz) δppm: 20.6(q), 42.3(t), 42.4(t), 62.9(d), 70.4(d), 71.5(d), 103.8(d), 115.0(s), 116.4(s), 126.2(d), 127.8(d), 133.4(s), 134.8(d), 140.8(d), 156.5(s), 156.6(s), 169.4(s), 201.0(s)

[0071]

【表7】表2のつづき

化合物番号	IH-NMR	13C-NMR
17	(CD30D,500MHz, 3bpm; 1.38(a,3H), 1.39(a,3H), 1.46(d,J=6.4Hz,3H), 1.87(dd,J=16.1,9.1Hz,1H), 2.08(dd,J=16.1,5.8,1.8Hz,1H), 3.73(dd,J=9.1,5.8Hz,1H), 3.85(d,J=16.4Hz,1H), 4.71(t,J=9.1Hz,1H), 6.65(m,1H), 5.78(dd,J=11.3,9.1Hz,1H), 6.03(d,J=16.1Hz,1H), 6.32(t,J=11.3Hz,1H), 6.32(t,J=11.3Hz,1H), 6.47(a,1H), 7.83(dd,J=16.1,11.3Hz,1H)	(CD3OD,125NHz) bppm; 21.8(q), 27.2(q), 27.3(q), 34.5(t), 45.9(t), 70.3(d), 78.9(d), 78.9(d), 103.8(d), 110.1(s), 111.0(o), 116.2(s), 130.3(d), 131.3(d), 136.6(s), 138.7(d), 142.2(d), 138.8(s), 169.1(s), 200.4(s)
81	(CDCt3/CD30D,500MHz) &ppm: 1.52(d,J=6.4Hz,3H), 2.02(ddd,J=14.9.9.1,4.0Hz,1H), 2.09(dd,J=14.9,6.4Hz,1H), 3.79(d,J=16.1Hz,1H), 4.20(d,J=16.1Hz,1H), 5.23(dd,J=10.0,5.8Hz,1H), 5.34(dt,J=6.4,4.0Hz,1H), 5.36(d,J=16.18,2.1H), 5.73(t,J=10.0Hz,1H), 8.00(d,J=16.1Hz,1H), 6.16(t,J=11.0Hz,1H), 6.48(e,1H), 7.18(dd,J=16.1,11.0Hz,1H), 8.02(e,1H)	(CDCI3/CD3OD,125MHz) bppm: 19.0(d), 35.4(t), 45.4(t), 56.8(d), 70.0(d), 73.3(d), 103.6(d), 114.0(s), 115.1(s), 130.8(d), 131.8(d), 135.6(d), 139.2(d), 156.3(s), 156.4(s), 160.6(d), 167.3(s), 198.8(s)
19	CMSO-dδ,600MHz) δppm: 1.25(d,J=6.1Hz,3H). 1.74(ddd,J=15.3.10.4,7.9Hz,1H). 2.01(d,J=15.3Hz,1H). 2.48(dd,J=14.8.3.0Hz,1H), 3.11(dd,J=14.6.12.2Hz,1H). 3.81(t,J=7.9Hz,1H), 3.92(d,J=17.7Hz,1H), 3.97(d,J=7.7.7Hz,1H), 4.39(dd,J=7.8.11,Hz,1H), 4.39(dd,J=7.8.11(m,1H), 6.83(dt,J=10.4.18Hz,1H), 6.91(dt,J=10.4.18Hz,1H), 6.97(br.s.1H), 1.0.35(br.s.1H), 1.	(DMSO-da,126MHz) Appur. 20.8(q), 37.8(t), 43.3(t), 46.0(t), 56.1(d), 69.2(d), 72.1(d), 72.8(d), 102.2(d), 112.3(s), 116.0(s), 126.8(s), 131.8(s), 154.0(s), 154.7(s), 167.2(s), 202.8(s)
20	ć	(CDCI3,128MHz) &ppm: 20.8(q), 27.2(t), 28.7(t), 42.5(t), 45.3(t), 50.4(t), 58.6(d), 72.3(d), 78.1(d), 81.3(d), 103.8(d), 107.4(e), 114.5(e), 135.8(e), 156.3(e), 164.1(e), 170.3(e), 208.1(e)
2	k.3H),), 2.22(m,1H), 7.7tz,1H),),	(CDCI3/CD3OD,125MHz) åppm: 20.8(q), 32.4(c), 34.1(t), 37.8(t), 47.3(t), 47.9(t), 57.5(d), 74.4(d), 76.2(d), 81.7(d), 102.8(d), 107.6(s), 115.0(s), 134.7(s), 157.3(s), 181.3(s), 170.5(s), 207.0(s)

[0072]

【表8】表2のつづき

化合物番号	1H-NMR	13C-NMR
22	(CDCI3/CD3OD,500MHz) &ppm: 1.30(d,J=6.1Hz,3H), 1.75(dd,J=11.6,5.5Hz,1H), 1.80(d,J=14.6Hz,1H), 1.99(m,1H), 2.18(m,2H), 2.54(br.s,2H), 2.85(br.s,2H), 3.82(m,1H), 3.91(br.s,1H), 4.42(br.s,1H), 5.15(m,1H), 6.43(s,1H)	(CDCi3/CD3OD,125MHz) δρρπ: 21.4(q), 27.0(t), 28.7(t), 35.8(t), 46.9(t), 46.9(t), 68.6(d), 68.2(d), 74.1(d), 77.0(d), 103.2(d), 107.0(s), 115.5(s), 134.8(s), 158.0(s), 162.1(s), 170.9(s), 205.0(s)
23	(DMSO-d6,500MHz) &ppm: 1.26(d,J=6.7Hz,3H), 1.44(ddd,J=14.6,7.9,3.0Hz,1H), 2.16(d,J=12.8Hz,1H), 2.37(dd,J=14.6,5.Bz,1H), 2.76(dd,J=14.6,4.9Hz,1H), 3.20(m,1H), 3.71(d,J=18.3Hz,1H), 3.90(d,J=18.3Hz,1H), 4.21(dt,J=9.8.1.8Hz,1H), 4.88(d,J=6.7Hz,1H), 5.01(br.s,1H), 5.20(sep,J=3.7Hz,1H), 5.89(dt,J=6.1,1.8Hz,1H), 6.00(dt,J=6.1,1.8Hz,1H), 6.50(s,1H), 9.97(s,1H), 10.47(br.s,1H)	(DMSO-d6,125MHz) δppm: 19.2(q), 37.6(t), 45.1(t), 48.3(t), 69.7(d), 70.3(d), 83.3(d), 88.4(d), 102.4(d), 111.7(s), 115.3(s), 129.3(d), 130.0(d), 130.2(s), 154.4(s), 154.7(s), 186.4(g), 203.8(s)

[0073]

実験例12 毛乳頭細胞におけるWNT mRNAの発現

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM (ギブコ)を用いて培養した。ヒト毛包角化細胞は、荒瀬らの方法 (J.Dermatol.Sci.2,66-70(1991)) に従って、抜毛髪から分離しKGM-2 (三光純薬)を用いて培養した。

[0074]

継代5回目の毛乳頭細胞及び継代2回目の毛包角化細胞を、2×10⁶cells/wellとなるように10cmシャーレに播種し、二晩培養した。培地を除去し、細胞をPBS(一)で洗浄後、TRIzol試薬(インビトロジェン)を用いてtotal RNAを抽出した。各total RNA 50ng、WNT-5A又は glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 特異的なプライマー (WNT-5A forward: AATGTCTTCCAAGTTCTTC CTAGTGGC (配列番号8)、WNT-5A reverse: GATGTCGGAATTGATACTGGCA (配列番号9)、GAPDH forward: ACCACAGTCCATGCCATCAC (配列番号10)、GAPDH reverse: TCCACCACCCTGTTGCTGTA (配列番号11)) 各0.4 μ M、及びSUPERSCRIPT One—Step RT-PCR with PLATINUM Taq (インビトロジェン)を用いて、SUPERSCRIPT One—Step RT-PCR with PLATINUM Taq添付のプロトコールに従い、全量25 μ l の反応系で、50℃で30分間first strand合成を行った後、94℃で2分間加熱、その後、94℃で30秒、55℃で30秒、72℃で30秒を23または20サイクル繰り返し、各cDNA断片を増幅した。

[0075]

この反応液を、1.5%アガロースゲルを用いて電気泳動し、エチジウムブロマイドにて染色した。結果を図1に示す。

[0076]

毛乳頭細胞 (DPC) 由来のRNAを用いた場合は、WNT-5A特異的なプライマーを 用いた23サイクルのPCRにおいて、顕著なcDNA断片の増幅が認められた。一方、 毛包角化細胞 (HFC) 由来のRNAを用いた場合は、同条件において、増幅産物は認 められなかった。

[0077]

実験例13 WNT-5A mRNA量減少活性の測定

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM (ギブコ) を用

いて培養した。

[0078]

継代5回目の毛乳頭細胞を、1. 6×10⁵cells/wellとなるように12穴プレートに播種し、一晩培養した。化合物無添加培地、または化合物1、2、3、4、5、7、9又は24添加培地と交換し、更に24時間、培養を行った。培養終了時、培地を除去し、細胞をPBS(一)で洗浄後、TRIzol試薬(インビトロジェン)を用いてtotal RNAを抽出した。各total RNA 50ng、WNT-5A又はGAPDH特異的なプライマー(WNT-5A forward:AATGTCTTCCAAGTTCTTCCTAGTGGC(配列番号8)、WNT-5A reverse:GATGTCGGAATTGATACTGGCA(配列番号9)、GAPDH forward:ACC ACAGTCCATGCCATCAC(配列番号10)、GAPDH reverse:TCCACCACCCTGTTGCTGTA(配列番号11))各0. 4μM、及びSUPERSCRIPT One-Step RT-PCR with PLATINUM Taq添付のプロトコールに従い、全量25μlの反応系で、50℃で30分間first strand合成を行った後、94℃で2分間加熱、その後、94℃で30秒,55℃で30秒,72℃で30秒を23または20サイクル繰り返し、WNT-5AまたはGAPDHのcDNA断片を増幅した。

[0079]

この反応液を、1.5%アガロースゲルを用いて電気泳動し、エチジウムブロマイドにて染色した。結果を図2に示す。

[0080]

WNT-5A特異的なプライマーを用いた23サイクルのPCRにおいて、化合物無添加で培養した場合と比較して、化合物を添加した培養では、WNT-5A cDNA断片の増幅が顕著に減少した。

[0081]

一方、GAPDH特異的なプライマーを用いた20サイクルのPCRにおいて、GAPDH c DNA断片の増幅は、化合物の添加の有無に関わらず、変動が認められなかった。

[0082]

実験例14 毛乳頭細胞増殖促進活性試験

ヒト毛乳頭細胞は、東洋紡から購入し、12%FBSを添加したMEM(ギブコ)を用

いて培養した。

[0083]

総代5回目の毛乳頭細胞を、1.5×10⁴cells/wellとなるようにスフェロイド 培養用96穴プレートに播種し、一晩培養した。化合物無添加培地、または化合物 1、2、3、4、5、7、9又は24添加培地と交換し、更に72時間培養を行った。培養終了時の細胞数をCell counting kit (和光純薬)を用いて測定した。即ち、培養終了5時間前に培地の1/10量のWST-1試薬を培地に添加し、培養終了時、培地の吸光度(0.D.450nm/620nm)を測定した。細胞数と吸光度は、細胞数0.25~4×10⁴cells/wellの範囲で正の相関関係が認められた。

[0084]

その結果、WNT-5A mRNA量減少活性を有する化合物が、毛乳頭細胞の増殖を促進する活性を有することが明らかになった(図3)。図中の値は、対照群 6 well、化合物添加群 3 wellの平均値である。対照群と化合物添加群との比較にはスチューデントの t 検定を用いた。

*: P<0. 05, **: P<0. 01, ***: P<0. 001

上記実験例により、WNT-5Aがヒト毛乳頭細胞に発現していること、ヒト毛乳頭細胞のWNT-5AmRNA量が本発明に係る化合物により減少すること、更に、WNT-5AmRNA量減少活性を有する化合物が、毛乳頭細胞の増殖を促進する活性を有することが示された。

[0085]

【発明の効果】

WNT-5A機能阻害剤、例えば、WNT-5A mRNA量を減少させる活性を有する化合物又はその医薬上許容される塩は、毛乳頭細胞増殖活性を有し、新規な作用機序による発毛剤/育毛剤として有用である。

[00.86]

本発明は、WNT-5Aの機能を阻害する化合物が、脱毛症の改善剤もしくは予防剤になるという、今までにない全く新しい概念を提供するものであり、WNT-5Aの機能を阻害する化合物をスクリーニングは、新規な発毛剤/育毛剤の開発に有用である。

【図面の簡単な説明】

- 【図1】毛乳頭細胞にWNT-5A mRNAが発現していることを示す図である。
- 【図2】被験化合物が毛乳頭細胞においてWNT-5A mRNA量を減少させることを示す図である。
- 【図3】被験化合物が毛乳頭細胞の増殖促進活性を有することを示すグラフである。

【配列表】

SEQUENCE LISTING

<110>TAISHO PHARMACEUTICAL CO., LTD.

<120>HAIR GROWTH PREPARATION

<130>00TS-P3320

<160>11

<210>1

<211>365

<212>PROTEIN

<213>HOMO SAPIENS

<400>1

Met Ala Gly Ser Ala Met Ser Ser Lys Phe Phe Leu Val Ala Leu

10

15

Ala Ile Phe Phe Ser Phe Ala Gln Val Val Ile Glu Ala Asn Ser

20

25

30

Trp Trp Ser Leu Gly Met Asn Asn Pro Val Gln Met Ser Glu Val

35

40

45

Tyr Ile Ile Gly Ala Gln Pro Leu Cys Ser Gln Leu Ala Gly Leu

50

55

60

Ser Gln Gly Gln Lys Lys Leu Cys His Leu Tyr Gln Asp His Met

65

70

75

Gln Tyr Ile Gly Glu Gly Ala Lys Thr Gly Ile Lys Glu Cys Gln

80

85

90

Ty:	r Gl	n Pl	ne	Arg	Hi	s Ar	g Ar	g Tr	P Ası	n Cys	s Se	r Th	r Va	l As	p Asn
					9	5				100)				105
Th	r Sei	r Va	a l	Phe	GI	y Ar	g Val	Me	t Gli	n Ile	e G1:	y Se	r Arg	g Glu	ı Thr
					110					115					120
Ala	2 Phe	e Th	ır	Tyr	Ala	a Va	l Ser	Ala	Ala	Gly	√Va!	l Va	l Ası	1 Ala	Met
					125	5				130)				135
Ser	Arg	g Al	а	Cys	Arg	g Gli	1 G13	/ Glu	l Let	ı Ser	Thi	Су	s Gly	/ Cys	Ser
					140)				145	;				150
Arg	Ala	ı Al	а	Arg	Pro	Lys	s Asp	Leu	Pro	Arg	Asp	Tr	Leu	Trp	Gly
					155	j				160					165
Gly	Cys	Gl	У	Asp	Asr	ı Ile	Asp	Tyr	Gly	Tyr	Arg	Phe	e Ala	Lys	Glu
					170)				175					180
Phe	Val	As	P	Ala	Arg	Glu	Arg	Glu	Arg	Ile	His	Ala	Lys	Gly	Ser
					185	i		•		190					195
Tyr	Glu	Se	r	Ala	Arg	Ile	Leu	Met	Asn	Leu	His	Asn	Asn	Glu	Ala
•					200					205			•		210
Gly	Arg	Ar	g :	[hr	Val	Tyr	Asn	Leu	Ala	Asp	Val	Ala	Cys	Lys	Cys
					215					220					225
His	Gly	Va.	1 5	Ser	Gly	Ser	Cys	Ser	Leu	Lys	Thr	Cys	Trp	Leu	Gln
					230					235					240
Leu	Ala	Asj	F	he	Arg	Lys	Val	Gly	Asp	Ala	Leu	Lys	Glu	Lys	Tyr
					245					250					255
Asp	Ser	Ala	a A	lla	Ala	Met	Arg	Leu	Asn	Ser	Arg	Gly	Lys	Leu	Va l
					260					265					270
Gln	Val	Asn	S	er	Arg	Phe	Asn	Ser	Pro	Thr	Thr	Gln	Asp	Leu	Val
					275		ē			280					285
Tyr	Ile	Asp	P	ro	Ser	Pro	Asp	Tyr	Cys	Val	Arg	Asn	Glu	Ser	Thr
					290					295					300
Gly	Ser	Leu	G	l y	Thr	Gln	G1 v	Arg	Len	Cvs	Asn	Lve	Thr	Cor	C1 ₁₁

305	310	315	
Gly Net Asp Gly Cys Glu	Leu Met Cys Cys Gl	y Arg Gly Tyr Asp	
320	325	330	
Gln Phe Lys Thr Val Gln	Thr Glu Arg Cys His	s Cys Lys Phe His	
335	340	 345	
Trp Cys Cys Tyr Val Lys	Cys Lys Lys Cys Thi	r Glu Ile Val Asp	
350	355	360	
Gln Phe Val Cys Lys			
365			•
<210>2			
<211>4428	•		
<212>DNA			
<213>HOMO SAPIENS			
<400>2			
ttaaggaaat ccgggctgct ct	tccccatc tggaagtggc	tttccccaca tcggctcgta	60
aactgattat gaaacatacg at	gttaattc ggagctgcat	ttcccagctg ggcactctcg	120
cgcgctggtc cccggggcct cg	cccccac cccctgccct	tccctcccgc gtcctgcccc	180
catectecae ecceegeget gge	ccaccccg cctccttggc	agcctctggc ggcagcgcgc	240
tccactcgcc tcccgtgctc ctc	ctcgccca tggaattaat	tctggctcca cttgttgctc	300
ggcccaggtt ggggagagga cgg	agggtgg ccgcagcggg	ttcctgagtg aattacccag	360
gagggactga gcacagcacc aad	tagagag gggtcagggg	gtgcgggact cgagcgagca	420
ggaaggaggc agcgcctggc acc	agggett tgactcaaca	gaattgagac acgtttgtaa	480
tegetggegt geeeegegea cag	gatecca gegaaaatea	gatttcctgg tgaggttgcg	540
tgggtggatt aatttggaaa aag	aaactgc ctatatcttg	ccatcaaaaa actcacggag	600
gagaagcgca gtcaatcaac agt	aaactta agagaccccc	gatgctcccc tggtttaact	660
tgtatgcttg aaaattatct gag	agggaat aaacatcttt	tccttcttcc ctctccagaa	720
gtccattgga atattaagcc cag	gagttgc tttggggatg	gctggaagtg caatgtcttc	780
caagttcttc ctagtggctt tgg	ccatatt tttctccttc	gcccaggttg taattgaagc	840
caattettgg tggtcgctag gta	tgaataa ccctgttcag	atgtcagaag tatatattat	900

aggagcacag cetetetgea gecaactgge aggaetttet caaggacaga agaaactgtg 960 ccacttgtat caggaccaca tgcagtacat cggagaaggc gcgaagacag gcatcaaaga 1020 atgccagtat caattccgac atcgacggtg gaactgcagc actgtggata acacctctgt 1080 ttttggcagg gtgatgcaga taggcagccg cgagacggcc ttcacatacg ccgtgagcgc 1140 agcaggggtg gtgaacgcca tgagccgggc gtgccgcgag ggcgagctgt ccacctgcgg 1200 ctgcagccgc gccgcgccc ccaaggacct gccgcgggac tggctctggg gcggctgcgg 1260 cgacaacatc gactatggct accgctttgc caaggagttc gtggacgccc gcgagcggga 1320 gcgcatccac gccaagggct cctacgagag tgctcgcatc ctcatgaacc tgcacaacaa 1380 cgaggccggc cgcaggacgg tgtacaacct ggctgatgtg gcctgcaagt gccatggggt 1440 gtccggctca tgtagcctga agacatgctg gctgcagctg gcagacttcc gcaaggtggg 1500 tgatgccctg aaggagaagt acgacagcgc ggcggccatg cggctcaaca gccggggcaa 1560 gttggtacag gtcaacagcc gcttcaactc gcccaccaca caagacctgg tctacatcga 1620 ecceageeet gaetaetgeg tgegeaatga gageaeegge tegetgggea egeagggeeg 1680 cctgtgcaac aagacgtcgg agggcatgga tggctgcgag ctcatgtgct gcggccgtgg 1740 gtacgaccag ttcaagaccg tgcagacgga gcgctgccac tgcaagttcc actggtgctg 1800 ctacgtcaag tgcaagaagt gcacggagat cgtggaccag tttgtgtgca agtagtgggt 1860 gecacecage acteagecee geteecagga eccgettatt tatagaaagt acagtgatte 1920 tggtttttgg tttttagaaa tatttttat ttttccccaa gaattgcaac cggaaccatt 1980 ttttttcctg ttaccatcta agaactctgt ggtttattat taatattata attattattt 2040 ggcaataatg ggggtgggaa ccacgaaaaa tatttatttt gtggatcttt gaaaaggtaa 2100 tacaagactt cttttggata gtatagaatg aagggggaaa taacacatac cctaacttag 2160 ctgtgtggga catggtacac atccagaagg taaagaaata cattttcttt ttctcaaata 2220 tgccatcata tgggatgggt aggttccagt tgaaagaggg tggtagaaat ctattcacaa 2280 ttcagcttct atgaccaaaa tgagttgtaa attctctggt gcaagataaa aggtcttggg 2340 aaaacaaaac aaaacaaaac aaacctccct tccccagcag ggctgctagc ttgctttctg 2400 cattttcaaa atgataattt acaatggaag gacaagaatg tcatattctc aaggaaaaaa 2460 ggtatateae atgteteatt etecteaaat atteeatttg cagacagace gteatattet 2520 aatageteat gaaattiggg cageagggag gaaagteece agaaattaaa aaatttaaaa 2580 ctcttatgtc aagatgttga tttgaagctg ttataagaat tgggattcca gatttgtaaa 2640

aagaccccca atgattctgg acactagatt ttttgtttgg ggaggttggc ttgaacataa 2700 atgaaatatc ctgtattttc ttagggatac ttggttagta aattataata gtagaaataa 2760 tacatgaatc ccattcacag gtttctcagc ccaagcaaca aggtaattgc gtgccattca 2820 gcactgcacc agagcagaca acctatttga ggaaaaacag tgaaatccac cttcctcttc 2880 acactgagec ctetetgatt etectegtgtt gtgatgtgat getggeeacg tttecaaacg 2940 gcagetecae tgggteceet ttggttgtag gacaggaaat gaaacattag gagetetget 3000 tggaaaacag ttcactactt agggattttt gtttcctaaa acttttattt tgaggagcag 3060 tagttttcta tgttttaatg acagaacttg gctaatggaa ttcacagagg tgttgcagcg 3120 tatcactgtt atgatcctgt gtttagatta tccactcatg cttctcctat tgtactgcag 3180 gtgtacctta aaactgttcc cagtgtactt gaacagttgc atttataagg ggggaaatgt 3240 ggtttaatgg tgcctgatat ctcaaagtct tttgtacata acatatatat atatatacat 3300 atatataaat ataaatataa atatatetea ttgeageeag tgatttagat ttacagetta 3360 ctctggggtt atctctctgt ctagagcatt gttgtccttc actgcagtcc agttgggatt 3420 attecaaaag tittitgagt ettgagettg ggetgtggee eegetgtgat cataceetga 3480 gcacgacgaa gcaacctcgt ttctgaggaa gaagcttgag ttctgactca ctgaaatgcg 3540 tgttgggttg aagatatett tttttetttt etgeeteace eetttgtete caacetecat 3600 ttctgttcac tttgtggaga gggcattact tgttcgttat agacatggac gttaagagat 3660 attcaaaact cagaagcatc agcaatgttt ctcttttctt agttcattct gcagaatgga 3720 aacccatgcc tattagaaat gacagtactt attaattgag teectaagga atatteagee 3780 cactacatag atagcttttt tttttttttt tttttttaa taaggacacc tctttccaaa 3840 caggecatea aatatgttet tateteagae ttaegttgtt ttaaaagttt ggaaagatae 3900 acatetttte ataccecce ttaggaggtt gggettteat ateaceteag ceaactgtgg 3960 ctcttaattt attgcataat gatatccaca tcagccaact gtggctcttt aatttattgc 4020 ataatgatat tcacatcccc tcagttgcag tgaattgtga gcaaaagatc ttgaaagcaa 4080 aaagcactaa ttagtttaaa atgtcacttt tttggttttt attatacaaa aaccatgaag 4140 tacttttttt atttgctaaa tcagattgtt cctttttagt gactcatgtt tatgaagaga 4200 gttgagttta acaatcctag cttttaaaag aaactattta atgtaaaata ttctacatgt 4260 cattcagata ttatgtatat cttctagcct ttattctgta cttttaatgt acatatttct 4320 gtcttgcgtg atttgtatat ttcactggtt taaaaaacaa acatcgaaag gcttattcca 4380

aatggaagat agaatataaa ataaaacgtt acttgtaaaa aaaaaaaa

4428

<210>3

<211>2460

<212>DNA

<213>HONO SAPIENS

<400>3

cgtggcacg	c gcggaagatt	tctcagtgtcc	ttacagagto	atcttccctg	gagccccgga	a 60	
gtgttggaa	a acatttagco	ccttctttgg	gaaactcagt	ttctgatcag	aatttttgt:	120	
ttaccctggg	g gttgacagto	tcgccagagg	tctcatttca	tactgtcttt	teggatetga	180	
tcctcttgg	t aaacaggcgg	ggatgtttta	ccctacagag	ccgatgtatg	tgtgagttcg	240	
ctgtgagtto	tttgagtgtc	tcaaacttgt	ggggcctttt	ctcggttgca	ctgggattga	300	
agagggaaga	a ggcccaaggt	gtttccgggc	aagcggcggg	gttaagtgga	gatgcgacto	360	
gtgaggctct	cctttccgat	cccctttgg	gacaccctct	gcctacctct	accctggagc	420	
cagggagaco	caagtcttgg	tgaccggatg	ggcccgctct	cagttggcct	gggctctggg	480	
aactggtgga	ctctccctgg	gggcttcggg	ctgggagtgg	gttcggtttg	tgtggcttcg	540	
gctctaacaa	agagatccgc	tgtaatccgc	cgaatctgtt	atcaatttct	ctgctgcttg	600	
agccccgccc	cacgcgcccc	gcccgccgcg	aagcttggaa	agtgcacgcg	gccagcacca	660	
atctgggccg	ctgactcgga	aacatgtcgc	agcgtgtgtg	tctatggacg	cgtgtgagtg	720	
tgtaaatgtg	cacgagtgtg	aatgtgtatg	atgtgtgtgc	acgcggcatc	ggctgccctt	780	
ggggagagtt	gactttgcag	cctgggctgc	gcgagaagca	gactttgcag	cccactccct	840	
cccctggagg	aaatttgaca	cttagggcgg	gggtggggag	atagccggag	ccttctctct	900	
cctagctggg	gaaaccccag	atttccattc	tccaggatgc	gcccccagc	tttgcagcgt	960	
cttggggaca	actggcctgg	tgttggagcc	ctgcttagca	ggcgctgggg	accacataag	1020	
cattcctctt	tggagaagcc	ccgaagcgtc	caggccaaag	ggggcggttc	acggaagaaa	1080	
aaccttgcac	gcccttgagc	gcatagcttt	accagggctg	cctaggtccc	gcctcttgcc	1140	
cttttacggc	acaggttcca	agccaggctc	ttcccaccgc	cttaaagagg	ctcacctttc	1200	
ttttcttttc	tgtggaaggg	gctccttcag	gggctatggg	cgatgcagtg	cggcagggtt	1260	
agacttacgt	gtaaggggat	ttttaaaacc	cgctcctccc	acccgcaccc	gccacctact	1320	

cgctccgccg ccgcctacag gtggagaagt caccagtggg gaggaacggc agcggaagct 1380 tecaaggeca acteetacee etgaaattet teaggaaggg aacettegee getgggggge 1440 tetttggcet ggaategatg egeceagetg eggeteggaa gecagegeet etggeeegt 1500 ctggactcat ctgcaagggc tctggcctcg ccccgcaccc ccacctttcg ggactgaccg 1560 aaccaagtet gagttggget ggagaggeta gactggagge agggtggeag agttceaacg 1620 acaggetege agtgeegega atggeaaagt.gggeeacaac eecagateag gaceeagaga 1680 aactggagtc tetetetggg ceteceatet eeteeetee tggcaactae caggttgtgg 1740 ggtgggaggg agagtgaaaa atcaagaatt tgggagaaag ctgtggggag ggcagggaag 1800 ggatccttct ccccggggaa gcgagaccca gactcccttc tttcctctag ggttccatcc 1860 ctteteteag teegtggaag aggeeacagg egacgeggee gagggtggea etettteea 1920 gtttccttgg ttgggagacc cgacctctct ctccattatc ccctagggcc cccatctcct 1980 tctcccctcc ctagtctggc tgaagaacgt ccttaaggaa atccgggctg ctcttcccca 2040 tctggaagtg gctttcccca catcggctcg taaactgatt atgaaacata cgatgttaat 2100 teggagetge attteccage tgggeactet egegegetgg teecegggge etegeecee 2160 acccctgcc cttccctccc gcgtcctgcc cccatcctcc acccccgcg ctggccaccc 2220 egecteettg geagectetg geggeagege getecaeteg cetecegtge teetetegee 2280 catggaatta attctggctc cacttgttgc tcggcccagg ttggtgagag gacggagggt 2340 gcccacagcg ggttcctgag tgaattaccc aggagggact gagcacagca ccaactagag 2400 gggggccagg gggtgcggga ctcgagcgag caggaaggag gcagcgcctg gcaccagggc 2460 <210>4

<211>585

<212>PROTEIN

<213>HOMO SAPIENS

<400>4

Met Ala Arg Pro Asp Pro Ser Ala Pro Pro Ser Leu Leu Leu

5 10 15

Leu Leu Ala Gln Leu Val Gly Arg Ala Ala Ala Ser Lys Ala

20 25 30

Pro Val Cys Gln Glu Ile Thr Val Pro Met Cys Arg Gly Ile Gly

	-													
_				. 38					4(45
Tyı	r As	n Le	u Thi	r His	s Me	t Pro	A S	n Gli	n Phe	Asn	His	s Ası	Thi	Gln
				50					55					60
Ası	Gli	u Al:	a Gly	y Let	ı Glı	u Val	His	s Glr	Phe	Trp	Pro	Let	ı Val	Glu
				65					70					75
Πŧ	Glı	n Cy:	s Ser	Pro	As _l) Leu	Arg	? Phe	Phe	Leu	Cys	Thr	Net	Tyr
				80					85					90
Thr	Pro	lle	e Cys	Leu	Pro	Asp	Tyr	His	Lys	Pro	Leu	Pro	Pro	Cys
				95					100					105
Arg	Ser	Ya]	Cys	Glu	Arg	Ala	Lys	Ala	Gly	Cys	Ser	Pro	Leu	Met
				110					115					120
Arg	Gln	Туг	Gly	Phe	Ala	Trp	Pro	Glu	Arg	Met	Ser	Cys	Asp	Arg
				125					130					135
Leu	Pro	Val	Leu	Gly	Arg	Asp	Ala	Glu	Val	Leu	Cys	Met	Asp	Tyr
				140					145					150
Asn	Arg	Ser	Glu	Ala	Thr	Thr	Ala	Pro	Pro	Arg	Pro	Phe	Pro	Ala
				155			-		160					165
Lys	Pro	Thr	Leu	Pro	Gly	Pro	Pro	Gly	Ala	Pro	Ala	Ser	Gly	Gly
				170					175					180
Glu	Cys	Pro	Ala	Gly	Gly	Pro	Phe	Val	Cys	Lys	Cys	Arg	Glu	Pro
				185					190					195
Phe	Val	Pro	Ile	Leu	Lys	Glu	Ser	His	Pro	Leu	Tyr	Asn	Lys	Val
				200					205					210
Arg	Thr	Gly	Gln	Val	Pro	Asn	Cys	Ala	Val	Pro	Cys	Tyr	Gln	Pro
				215					220					225
Ser	Phe	Ser	Ala	Asp	Glu	Arg	Thr	Phe	Ala	Thr	Phe	Trp	Ile	G1y
				230					235				•	240
Leu	Trp	Ser	Va l	Leu	Cys	Phe	Ile	Ser	Thr	Ser	Thr	Thr	Val	Ala
				245					250					255

Th	r Ph	e Lei	ı Ile	e As	р Ме	t Ası	7hı	r Pho	e Ar	g Ty	r Pro	Glu	Arg	, Pro
				26					265					270
·He	e Ile	e Phe	e Lei	ı Sei	r Ala	a Cys	5 Tyr	: Lei	ı Cys	s Vai	l Ser	Leu	G1v	
				275					280				- ,	285
Let	ı Val	Arg	, Lei	ı Val	l Val	l Glz	/ His	. Ala	ı Ser	· Val	Ala	Cvs	Ser	
				290					295			-5		300
Glu	ı His	Asn	His	Ile	His	Tyr	Glu	Thr	Thr	· G13	, Pro	Ala	Leu	
·				305					310					315
Thr	· Ile	. Val	Phe	Leu	. Leu	ı Val	Tyr	Phe			Met	Ala	Ser	
				320					325					330
Ile	Trp	Trp	Val	Ile	Leu	Ser	Leu	Thr			Leu	Ala	Ala	
				335					340					345
Met	Lys	Trp	Gly	Asn	Glu	Ala	Ile	Ala			Gly	Gln	Tvr	
				350					355	•			-,	360
His	Leu	Ala	Ala	Trp	Leu	Ιle	Pro	Ser	Val	Lys	Ser	Ile	Thr	
				365					370					375
Leu	Ala	Leu	Ser	Ser	Val	Asp	Gly	Asp	Pro	Val	Ala	Gly	Fle	
:				380			•		385					390
Tyr	Va 1	Gly	Asn	Gln	Asn	Leu	Asn	Ser	Leu	Arg	Arg	Phe	Val	
				395					400					405
Gly	Pro	Leu	Val	Leu	Tyr	Leu	Leu	Val	Gly	Thr	Leu	Phe	Leu	
•				410					415					420
Ala	Gly	Phe	Val	Ser	Leu	Phe	Arg	Ιlε	Arg	Ser	Val	Ile	Lys	Gln
				425					430					435
Gly	Gly	Thr	Lys	Thr	Asp	Lys	Leu	Glu	Lys	Leu	Met	Ile .	Arg	Ile
				440					445					450
Gly	Ile	Phe	Thr	Leu	Leu	Tyr	Thr	Val	Pro	Ala	Ser	Ile '		
				455					460					465
Ala	Cys	Tyr	Leu	Tvr	GIn	Gln	Hie	Tur	Ara	C1	Sor '	Twn /	71	41.

470 475 480	
Ala Leu Thr Cys Ala Cys Pro Gly His Asp Thr Gly Gln Pro Arg	
485 490 495	
Ala Lys Pro Glu Tyr Trp Val Leu Met Leu Lys Tyr Phe Met Cys	
500 505 . 510	
Leu Val Val Gly Ile Thr Ser Gly Val Trp Ile Trp Ser Gly Lys	
515 520 525	
Thr Val Glu Ser Trp Arg Arg Phe Thr Ser Arg Cys Cys Arg	
530 535 540	
Pro Arg Arg Gly His Lys Ser Gly Gly Ala Met Ala Ala Gly Asp	
545 550 555	
Tyr Pro Glu Ala Ser Ala Ala Leu Thr Gly Arg Thr Gly Pro Pro	
560 565 570	
Gly Pro Ala Ala Thr Tyr His Lys Gln Val Ser Leu Ser His Val	
575 580 585	
<210>5	
<211>2334 · · ·	
<212>DNA	
<213>HOMO SAPIENS	
<400>5	
acccagggac ggaggaccca ggctggcttg gggactgtct gctcttctcg gcgggagccg	60
tggagagtcc tttccctgga atccgagccc taaccgtctc tccccagccc tatccggcga	120
ggagcggagc gctgccagcg gaggcagcgc cttcccgaag cagtttatct ttggacggtt	180
ttctttaaag gaaaaacgaa ccaacaggtt gccagccccg gcgccacaca cgagacgccg	240
gagggagaag ccccggcccg gattcctctg cctgtgtgcg tccctcgcgg gctgctggag	300
gcgaggggag ggaggggcg atggctcggc ctgacccatc cgcgccgccc tcgctgttgc	360
tgctgctcct ggcgcagctg gtgggccggg cggccgccgc gtccaaggcc ccggtgtgcc	420
aggaaatcac ggtgcccatg tgccgcggca tcggctacaa cctgacgcac atgcccaacc	480

agttcaacca cgacacgcag gacgaggcgg gcctggaggt gcaccagttc tggccgctgg 540

+						
	a atgctcgcc					
	a ctaccacaa					
ccggctgct	c gccgctgat	g cgccagtac	g gcttcgccti	g gcccgagcg	c atgagetges	720
accgcctcc	c ggtgctggg	cgcgacgccg	g aggtcctct _i	g catggatta	aaccgcagcg	780
aggccacca	c ggcgccccc	aggeettte	cagccaagc	caccettee	g ggcccgccág	840
gggcgccgg	c ctcgggggg	gaatgccccg	ctgggggcc	gttcgtgtg	aagtgtcgcg	900
agcccttcg	t gcccattctg	g aaggagtcad	accegeteta	caacaaggt	cggacgggco	960
aggtgcccaa	a ctgcgcggta	ccctgctaco	agccgtcctf	cagtgccgad	gagcgcacgt	. 1020
tcgccaccti	t ctggataggo	ctgtggtcgg	tgctgtgctt	catctccace	tccaccacag	1080
tggccaccti	cctcatcgac	atggacacgt	tccgctatcc	tgagcgcccc	atcatcttcc	1140
tgtcagcctg	ctacctgtgc	gtgtcgctgg	gcttcctggt	gcgtctggtc	gtgggccatg	1200
ccagcgtggc	ctgcagccgc	gagcacaacc	acatccacta	cgagaccacg	ggccctgcac	1260
tgtgcaccat	cgtcttcctc	ctggtctact	tcttcggcat	ggccagctcc	atctggtggg	1320
tcatcctgtc	gctcacctgg	ttcctggccg	ccgcgatgaa	gtggggcaac	gaggccàtcg	1380
cgggctacgg	ccagtacttc	cacctggctg	cgtggctcat	ccccagcgtc	aagtccatca	1440
cggcactggc	gctgagctcc	gtggacgggg	acccagtggc	cggcatctgc	tacgtgggca	1500
accagaacct	gaactcgctg	cggcgcttcg	tgctgggccc	gctggtgctc	tacctgctgg	1560
tgggcacgct	cttcctgctg	gcgggcttcg	tgtcgctctt	ccgcatccgc	agcgtcatca	1620
agcagggcgg	caccaagacg	gacaagctgg	agaagctcat	gatccgcatc	ggcatcttca	1680
cgctgctcta	cacggtcccc	gccagcattg	tggtggcctg	ctacctgtac	gagcagcact	1740
accgcgagag	ctgggaggcg	gcgctcacct	gcgcctgccc	gggccacgac	accggccagc	1800
cgcgcgccaa	gcccgagtac	tgggtgctca	tgctcaagta	cttcatgtgc	ctggtggtgg	1860
gcatcacgtc	gggcgtctgg	atctggtcgg	gcaagacggt	ggagtcgtgġ	cggcgtttca	1920
ccagccgctg	ctgctgccgc	ccgcggcgcg	gccacaagag	cgggggcgcc	atggccgcag	1980
gggactaccc	cgaggcgagc	gccgcgctca	caggcaggac	cgggccgccg	ggccccgccg	2040
ccacctacca	caagcaggtg	tccctgtcgc	acgtgtagga	ggctgccgcc	gagggactcg	2100
	tgaggggagg					
	ggtgctgttg					
	gaacctgtcc					

	ttg	cgt	ttct	taco	ctgc	ett d	ettta	ıtggg	ga ac	cct	cttt	t taa	attta	atat	gtat	. 2	33
	<21	0>6			٠												
	<21	1>57	70														
	<21	.2>PF	ROTE	N	٠												
	<21	3>RA	ATTUS	SP.													
	<40	0>6			•												
	Met	Arg	Ala	Arg	Ser	Ala	Leu	Pro	Arg	Ser	Ala	. Lev	ı Pro	Arg	g Leu		
			•		5	i				10	1				15		
	Leu	Leu	. Pro	Leu	Leu	Leu	Leu	Pro	Ala	Ala	Gly	, Pro	Ala	Glr	n Phe		
					20					25	i				30		
	His	Gly	Glu	Lys	Gly	Ile	Ser	Ile	Pro	Asp	His	Gly	Phe	Cys	Gln		
					35					40	!			•	45		
	Pro	Ile	Ser	Ile	Pro	Leu	Cys	Thr	Asp	Ile	Ala	Tyr	Asn	Gln	Thr		
		•			50					55					60		
	Ile	Met	Pro	Asn	Leu	Leu	Gly	His	Thr	Asn	Gln	Glu	Asp	Ala	Gly		
					65					70					75		
	Leu	Glu	Val	His	Gln	Phe	Tyr	Pro	Leu	Val	Lys	Val	Gln	Cys	Ser		
					80					85					90	•	
	Pro	Glu	Leu	Arg	Phe	Phe	Leu	Cys	Ser	Met	Tyr	Ala	Pro	Val	Cys		
					95					100					105		
	Thr	\al	Leu	Glu	Gln	Ala	Ile	Pro	Pro	Cys	Arg	Ser	Ile	Cys	Glu		
					110					115					120		
	Arg	Ala	Arg	Gln	Gly	Cys	Glu	Ala	Leu	Met	Asn	Lys	Phe	Gly	Phe		
					125					130					135		
(Gln	Trp	Pro	Glu		Leu	Arg	Cys	Glu	His	Phe	Pro	Arg	His	Gly		
					140					145				-	150		
1	\la	Glu	Gln	Ile		Val	Gly	Gln	Asn		Ser	Glu	Asp	Gly	Thr		
_	_				155					160					165		
I	ro	Ala	Leu	Leu	Thr	Thr	Ala	Pro	Pro	Ser	Gly	Leu	Gln	Pro	Gly		

				170)				175	i				180
Ala	Gly	/ G13	y Thr	Pro	Gly	y Gly	Pro	Gly	/ Gly	Gly	Gly	y Ala	Pro	Pro
				185	•				190)				195
Arg	Туг	Ala	Thr	Leu	Glu	His	Pro	Phe	His	Cys	Pro	Arg	, Val	Leu
				200					205					210
Lys	Val	Pro	Ser	Tyr	Leu	Ser	Tyr	Lys	Phe	Leu	Gly	Glu'	Arg	Asp
				215					220					225
Cys	Ala	Ala	Pro	Cys	Glu	Pro	Ala	Arg	Pro	Asp	Gly	Ser	Met	Phe
				230					235		•			240
Phe	Ser	His	His	His	Thr	Arg	Phe	Ala	Arg	Leu	Trp	Ile	Leu	Thr
				245	•				250					255
Trp	Ser	Val	Leu	Cys	Cys	Ala	Ser	Thr	Phe	Phe	Thr	Val	Thr	Thr
				260					265					270
Ser	Leu	Val	Ala	Met	Gln	Arg	Phe	Arg	Tyr	Pro	Glu	Arg	Pro	Ile
				275					280		6.1			285
Ile	Phe	Leu	Ser	Gly	Cys	Tyr	Thr	Met	Val	Ser	Val	Ala	Tyr	IÌe
				290					295					300
Ala	Gİy	Phe	Val	Leu	Gln	Glu	Arg	Val	Val	Cys	Asn	Glu	Arg	Phe
				305					310					315
Ser	Glu	Asp	Gly	Tyr	Arg	Thr	Val	Gly	Gln	Gly	Thr	Lys	Lys	Glu
				320					325					330
Gly	Cys	Thr	Ile	Leu	Phe	Met	Met	Leu	Tyr	Phe	Phe	Ser	Met	Ala
				335				•	340					345
Ser	Ser	Ile	Trp	Trp	Va l	Ile	Leu	Ser	Leu	Thr	Trp	Phe	Leu	Ala
				350					355					360
Ala	Gly	Met	Lys	Trp	Gly	His	Ala	Ala	Ile	Glu	Ala	Asn	Ser	Gln
				365					370					375
Tyr	Phe	His	Leu	Ala	Ala	Trp	Ala	Val	Pro	Ala	Val	Lys	Thr	Ile
				380					385					390

Thi	: Ile	Leu	ı Ala	ı Het	Gly	Gln	Ile	Asp	Gly	Asp	Leu	Leu	Ser	Gly
				395	ı				400)				405
`Va I	Cys	Phe	Val	Gly	Leu	Asn	Arg	Leu	Asp	Pro	Leu	Arg	Gly	Phe
				410					415	ı				420
Va l	Leu	Ala	Pro	Leu	Phe	Val	Tyr	Leu	Phe	Ile	Gly	Thr	Ser	Phe
			•	425					430					435
Leu	Leu	Ala	Gly	Phe	Val	Ser	Leu	Phe	Arg	Ile	Arg	Thr	Ile	Йеt
				440					445			٠		450
Lys	His	Asp	Gly	Thr	Lys	Thr	Glu	Pro	Leu	Glu	Arg	Leu	Met	Val
				455					460					465
Arg	Ile	Gly	Val	Phe	Ser	Val	Leu	Tyr	Thr	Val	Pro	Ala	Thr	Ile
	1			470					475					480
Val	Ile	Ala	Cys	Tyr	Phe	Tyr	Glu	Gln	Ala	Phe	Arg	Glu	His	Trp
				485					490					495
Glu	Arg	Ser	Trp	Val	Ser	Gln	His	Cys	Lys	Ser	Leu	Ala	Ile	Pro
				500					505					510
Cys	Pro	Ala	His	Tyr	Thr	Pro	Arg	Thr	Ser	Pro	Asp	Phe	Thr	Val
				515			•		520					525
Tyr	Met	Ile	Lys	Tyr	Leu	Met	Thr	Leu	Ile	Val	Gly	Ile	Thr	Ser
				530					535					540
Gly	Phe	Trp	Ile	Trp	Ser	Gly	Lys	Thr	Leu	His	Ser	Trp	Arg	Lys
				545					550					555
Phe	Tyr	Thr	Arg	Leu	Thr	Asn	Ser	Arg	His	Gly	Glu	Thr	Thr	Val
				560		•			565		·		•	570
1910	157													

<210>7

<211>1912

<212>DNA

<213>RATTUS SP.

<400>7

aggggaagg	c gcgcggtctc	tgggttgggg	g gcgggggctg	g gggggcgcc	c aggagccgag	g 60
tggggggcg	g cggccagcat	gcgggcccg	agcgccctgc	cccgcagcge	cctgccccg	: 120
ctgctgctg	cactgctgct	gctgccggct	gccgggccgg	ctcagttcc	cggggagaag	180
ggcatetee	tcccggacca	cggcttctgc	cagcccatct	ccatcccgc	gtgcacggac	240
atcgcctaca	accagaccat	catgcccaac	cttcttgggc	acacgaacca	agaggacgcg	300
ggcctggagg	tgcatcaatt	ctacccgctg	gtgaaggtgc	agtgctcgc	cgagctgcgc	360
ttcttcctgt	gctccatgta	cgctccggtg	tgcacggtgc	tggagcaggo	catcecgccg	420
tgccgctcca	tctgcgaacg	cgcgcgccaa	ggctgcgagg	cgctcatgaa	caagttcggc	480
ttccagtggc	ccgagcgcct	ccgctgcgag	catttcccgc	gtcacggcgc	ggagcagato	540
tgcgtgggcc	agaaccactc	cgaggacgga	actcctgcgc	tactcaccac	cgcgccaccg	600
tctgggctgc	agcctggcgc	tggtggcacc	ccgggcggcc	ctggcggtgg	tggcgcgccc	660
ccgcgctacg	ccactctgga	gcaccctttc	cactgtcccc	gcgtcctcaa	ggtgccgtcc	720
tatctcagct	ataagtttct	gggtgagcgc	gattgtgccg	cgccctgcga	gcctgcacgg	780
cccgacggct	ccatgttctt	ctcgcaccac	cacactcgtt	ttgcccgtct	ctggatcctc	840
acatggtcgg	tgctgtgctg	cgcttctact	ttcttcacgg	tcaccacctc	tttagtggcc	900
atgcagcgat	tccgctaccc	agagcggccc	atcatcttcc	tgtccggttg	ctacaccatg	960
gtgtcagtgg	cctacattgc	gggcttcgtg	ctccaggagc	gcgtggtgtg	caacgagege	1020
ttctctgagg	acggttatcg	cacggtgggg	cagggcacta	agaaagaagg	ctgtactata	1080
ctcttcatga	tgctctactt	cttcagtatg	gccagctcca	tctggtgggt	gattctgtcc	1140
ctcacctggt	tcctggcagc	cggtatgaag	tggggccacg	cggccatcga	ggccaattcg	1200
cagtacttcc	acctggccgc	ctgggcggtg	ccggccgtca	aaaccatcac	catcctggcc	1260
atgggccaga	tcgacggcga	cctgctgagc	ggcgtgtgct	tcgtgggcct	caacaggctg	1320
gacccgctgc	gaggcttcgt	gctggcgccg	ctcttcgtgt	acctgttcat	cggcacatcc	1380
ttcctgctgg	cgggcttcgt	gtcactcttc	cgcatccgca	ccatcatgaa	gcacgacggc	1440
accaagacgg	agccgctgga	gaggctcatg	gtgcgtatcg	gcgtcttctc	cgtgctctac	1500
accgtaccgg	ccaccatcgt	categeetge	tacttctatg	agcaggcctt	ccgcgagcac	1560
tgggagcgct	cgtgggtaag	ccagcactgc	aagagcctag	ccatcccctg	cccggcccac	1620
tacacgcccc	gcacgtcgcc	cgacttcaca	gtctacatga	tcaaatacct	catgacgctc	1680
atcgtgggca	tcacgtcggg	cttctggatc	tggtccggca	agacgctgca	ctcgtggagg	1740
-						

aagttctaca cgcgtctcac caacagccgg catggagaga ccaccgtgtg aagcggtctc 1800 gctgctgggc gccccctct cccaggtccg gactgcaacc gtgccctcct tcactcggga 1860 ggggggtgca ccctacggac tcctatttta ttttttaaa taaagaacag tg 1912 <210>8 <211>27 <212>DNA <213>Artificial Sequence <400>8 aatgtcttcc aagttcttcc tagtggc 27 <210>9 <211>22 <212>DNA <213>Artificial Sequence <400>9 gatgtcggaa ttgatactgg ca 22 <210>10 <211>20 <212>DNA <213>Artificial Sequence <400>10 accacagtcc atgccatcac 20 <210>11 <211>20 <212>DNA <213>Artificial Sequence <400>11

20

tccaccaccc tgttgctgta

【書類名】図面 【図1】

DPC HFC

WNT-5A

GAPDH

【図2】

【図3】

【書類名】要約書

【要約】

【課題】新規な作用機序による発毛剤/育毛剤を提供する。

【解決手段】WNT-5A機能を阻害する化合物を有効成分とする発毛剤/育毛剤。

【選択図】なし。

認定・付加情報

特許出願の番号

特願2002-115529

受付番号

50200563011

書類名

特許願

担当官

第四担当上席 0093

作成日

平成14年 4月18日

<認定情報・付加情報>

【提出日】

平成14年 4月17日

出願人履歴情報

識別番号

[000002819]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

東京都豊島区高田3丁目24番1号

氏 名

大正製薬株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.