Triangle Radii MCQs for Entry Test - Exercise 12.8

Introduction 1

This document contains 20 multiple-choice questions based on Exercise 12.8 of the Application of Trigonometry chapter, designed for entry test preparation. Questions test proving identities involving inradius (r), circumradius (R), and exradii (r_1, r_2, r_3) , numerical calculations, and equilateral triangle properties. Solutions provide detailed explanations. Notation: In $\triangle ABC$, angles α, β, γ are opposite sides a, b, c. Semi-perimeter $S = \frac{a+b+c}{2}$, area $\Delta = \sqrt{S(S-a)(S-b)(S-c)}$. Numerical results are exact or to three decimal places.

2 Multiple-Choice Questions

- 1. Which identity correctly expresses the inradius r in terms of circumradius R?
 - A) $r = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$
 - B) $r = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
 - C) $r = 2R \sin \alpha \sin \beta \sin \gamma$
 - D) $r = R \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- 2. Which identity relates the semi-perimeter S to circumradius R?
 - A) $S = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$
 - B) $S = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
 - C) $S = 2R\cos\alpha\cos\beta\cos\gamma$
 - D) $S = R \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$
- 3. Which expression is equivalent to inradius r?
 - A) $r = a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2}$
 - B) $r = a \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \csc \frac{\alpha}{2}$
 - C) $r = a \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
 - D) $r = a \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$
- 4. What is the correct expression for exadius r_1 ?
 - A) $r_1 = 4R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
 - B) $r_1 = 4R\cos\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}$

- C) $r_1 = 2R \sin \alpha \cos \beta \cos \gamma$
- D) $r_1 = R \tan \alpha$
- 5. Which identity holds for exadius r_1 ?
 - A) $r_1 = S \tan \frac{\alpha}{2}$
 - B) $r_1 = S \cot \frac{\alpha}{2}$
 - C) $r_1 = S \sin \frac{\alpha}{2}$
 - D) $r_1 = S \cos \frac{\alpha}{2}$
- 6. Which relation is true for the radii in $\triangle ABC$?
 - A) $r_1r_2 + r_2r_3 + r_3r_1 = S^2$
 - B) $r_1r_2 + r_2r_3 + r_3r_1 = \Delta^2$
 - C) $r_1r_2 + r_2r_3 + r_3r_1 = 4R^2$
 - D) $r_1r_2 + r_2r_3 + r_3r_1 = r^2$
- 7. What is the product $r_1r_2r_3$?
 - A) Δ^2
 - B) S^2
 - C) $4R^2$
 - D) r^2
- 8. Which identity relates the sum of exadii and inradius?
 - A) $r_1 + r_2 + r_3 r = 4R$
 - B) $r_1 + r_2 + r_3 r = 2R$
 - C) $r_1 + r_2 + r_3 r = S$
 - D) $r_1 + r_2 + r_3 r = \Delta$
- 9. In $\triangle ABC$ with a=13,b=14,c=15, what is the circumradius R?
 - A) 4.000
 - B) 8.125
 - C) 10.500
 - D) 12.000
- 10. In $\triangle ABC$ with a = 13, b = 14, c = 15, what is the inradius r?
 - A) 4
 - B) 7
 - C) 8
 - D) 21
- 11. In $\triangle ABC$ with a=13,b=14,c=15, what is exadius r_1 ?

R?
s?

A) 6

D)
$$\Delta = r^2 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$

18. Which identity relates r, R, and reciprocal products?

A)
$$\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$$

B)
$$\frac{1}{2rR} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

C)
$$\frac{1}{2rR} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$$

D)
$$\frac{1}{2rR} = \frac{1}{\Delta} + \frac{1}{S}$$

19. Which identity involves the inradius and half-angles?

A)
$$r = \frac{a \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\cos \frac{\alpha}{2}}$$

B)
$$r = \frac{a\cos\frac{\beta}{2}\cos\frac{\gamma}{2}}{\sin\frac{\alpha}{2}}$$

C)
$$r = \frac{a \tan \frac{\beta}{2} \tan \frac{\gamma}{2}}{\cot \frac{\alpha}{2}}$$

D)
$$r = \frac{a \cot \frac{\beta}{2} \cot \frac{\gamma}{2}}{\tan \frac{\alpha}{2}}$$

20. Which identity relates exadii and side c?

A)
$$(r_1 + r_2) \tan \frac{\gamma}{2} = c$$

B)
$$(r_1 + r_2) \cot \frac{\gamma}{2} = c$$

C)
$$(r_1 + r_2) \sin \frac{\gamma}{2} = c$$

D)
$$(r_1 + r_2)\cos\frac{\gamma}{2} = c$$

3 Solutions and Explanations

1. Question 1:

$$r = 4R\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2} = 4\cdot\frac{abc}{4\Delta}\cdot\sqrt{\frac{(S-b)(S-c)}{bc}}\cdot\sqrt{\frac{(S-a)(S-c)}{ac}}\cdot\sqrt{\frac{(S-a)(S-b)}{ab}} = \frac{\Delta}{S} = r.$$

Answer: A)

2. Question 2:

$$S = 4R\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2} = 4 \cdot \frac{abc}{4\Delta} \cdot \sqrt{\frac{S(S-a)}{bc}} \cdot \sqrt{\frac{S(S-b)}{ac}} \cdot \sqrt{\frac{S(S-c)}{ab}} = S.$$

Answer: B)

3. Question 3:

$$r = a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2} = a \cdot \sqrt{\frac{(S-a)(S-c)}{ac}} \cdot \sqrt{\frac{(S-a)(S-b)}{ab}} \cdot \sqrt{\frac{bc}{S(S-a)}} = \frac{\Delta}{S} = r.$$

Answer: A)

4. Question 4:

$$r_1 = 4R\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2} = 4\cdot\frac{abc}{4\Delta}\cdot\sqrt{\frac{(S-b)(S-c)}{bc}}\cdot\sqrt{\frac{S(S-b)}{ac}}\cdot\sqrt{\frac{S(S-c)}{ab}} = \frac{\Delta}{S-a} = r_1.$$

Answer: A)

5. Question 5:

$$r_1 = S \tan \frac{\alpha}{2} = S \cdot \sqrt{\frac{(S-b)(S-c)}{S(S-a)}} = \frac{\Delta}{S-a} = r_1.$$

Answer: A)

6. Question 6:

$$r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{\Delta}{S-a} \cdot \frac{\Delta}{S-b} + \frac{\Delta}{S-b} \cdot \frac{\Delta}{S-c} + \frac{\Delta}{S-c} \cdot \frac{\Delta}{S-a} = \Delta^2 \cdot \frac{3S - (a+b+c)}{(S-a)(S-b)(S-c)} = S^2.$$

Answer: A)

7. Question 7:

$$r_1r_2r_3 = \frac{\Delta}{S-a} \cdot \frac{\Delta}{S-b} \cdot \frac{\Delta}{S-c} = \frac{\Delta^3}{(S-a)(S-b)(S-c)} = \Delta^2.$$

Answer: A)

8. Question 8:

$$r_1 + r_2 + r_3 - r = \frac{\Delta}{S - a} + \frac{\Delta}{S - b} + \frac{\Delta}{S - c} - \frac{\Delta}{S} = \Delta \cdot \frac{S(2S - (a + b + c))}{S(S - a)(S - b)(S - c)} = \frac{abc}{\Delta} = 4R.$$

Answer: A)

9. Question 9:

$$S = \frac{13 + 14 + 15}{2} = 21, \quad \Delta = \sqrt{21 \cdot 8 \cdot 7 \cdot 6} = 84, \quad R = \frac{13 \cdot 14 \cdot 15}{4 \cdot 84} = \frac{2730}{336} = 8.125.$$

Answer: B)

10. **Question 10:**

$$r = \frac{\Delta}{S} = \frac{84}{21} = 4.$$

Answer: A)

11. **Question 11:**

$$r_1 = \frac{\Delta}{S - a} = \frac{84}{21 - 13} = \frac{84}{8} = 10.5.$$

Answer: B)

12. **Question 12:**

$$S = \frac{34 + 20 + 42}{2} = 48, \quad \Delta = \sqrt{48 \cdot (48 - 34) \cdot (48 - 20) \cdot (48 - 42)} = \sqrt{48 \cdot 14 \cdot 28 \cdot 6} = 336.$$

Answer: B)

13. **Question 13:**

$$R = \frac{34 \cdot 20 \cdot 42}{4 \cdot 336} = \frac{28560}{1344} = 21.250.$$

Answer: C)

14. **Question 14:**

$$r_3 = \frac{\Delta}{S - c} = \frac{336}{48 - 42} = \frac{336}{6} = 56.$$

Answer: D)

15. Question 15: In an equilateral triangle, $r = \frac{\sqrt{3}a}{6}$, $R = \frac{a}{\sqrt{3}}$, $r_1 = \frac{\sqrt{3}a}{2}$, so $r : R : r_1 = \frac{\sqrt{3}a}{6} : \frac{a}{\sqrt{3}} : \frac{\sqrt{3}a}{2} = 1 : 2 : 3$. Answer: A)

16. **Question 16:** Since
$$r_1 = r_2 = r_3$$
, the ratio is $r : R : r_1 : r_2 : r_3 = 1 : 2 : 3 : 3 : 3$. Answer: A)

17. **Question 17:**

$$\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2} = \left(\frac{\Delta}{S}\right)^2 \cdot \sqrt{\frac{S(S-a)}{(S-b)(S-c)}} \cdot \sqrt{\frac{S(S-b)}{(S-a)(S-c)}} \cdot \sqrt{\frac{S(S-c)}{(S-a)(S-b)}} = \Delta.$$

Answer: A)

18. **Question 18:**

$$\frac{1}{2rR} = \frac{1}{2 \cdot \frac{\Delta}{S} \cdot \frac{abc}{4\Delta}} = \frac{2S}{abc} = \frac{a+b+c}{abc} = \frac{1}{bc} + \frac{1}{ac} + \frac{1}{ab}.$$

Answer: A)

19. **Question 19:**

$$r = \frac{a\sin\frac{\beta}{2}\sin\frac{\gamma}{2}}{\cos\frac{\alpha}{2}} = a \cdot \sqrt{\frac{(S-a)(S-c)}{ac}} \cdot \sqrt{\frac{(S-a)(S-b)}{ab}} \cdot \sqrt{\frac{bc}{S(S-a)}} = \frac{\Delta}{S} = r.$$

Answer: A)

20. **Question 20:**

$$(r_1 + r_2) \tan \frac{\gamma}{2} = \left(\frac{\Delta}{S - a} + \frac{\Delta}{S - b}\right) \cdot \sqrt{\frac{(S - a)(S - b)}{S(S - c)}} = \frac{\Delta^2 (2S - a - b)}{\Delta^2} = c.$$

Answer: A)