CS/ECE 374 Spring 2023

William Cheng (shihuac2@illinois.edu)

Homework I Problem I

Solution: (a) Claim: For $a \ge max(\frac{\gamma}{1 - (c_1^2 + c_2^2 + c_3^2)}, 1)^1$ and b = 0, and for all $n \ge 1$, $T(n) \le an^2 + b$.

Proof. Base case: For $1 \le n \le \frac{1}{c_1}$, $T(n) = 1 \le an^2 + b$ for $a \ge 1$ by definition. Inductive hypothesis: Let $n > \frac{1}{c_1}$. Assume $T(k) \le ak^2 + b$ for all $1 \le k < n$. Inductive step:

$$T(n) = T(\lfloor c_1 n \rfloor) + T(\lfloor c_2 n \rfloor) + T(\lfloor c_3 n \rfloor) + \gamma n^2$$

$$\leq a(\lfloor c_1 n \rfloor)^2 + a(\lfloor c_2 n \rfloor)^2 + a(\lfloor c_3 n \rfloor)^2 + 3b + \gamma n^2 \qquad \text{by induction}$$

$$\leq a(c_1 n)^2 + a(c_2 n)^2 + a(c_3 n)^2 + 3b + \gamma n^2 \qquad \text{by definition of floor operation}$$

$$\leq ((c_1^2 + c_2^2 + c_3^2)a + \gamma)n^2 + 3b \leq an^2 + b$$

provided that

$$\begin{split} &((c_1^2+c_2^2+c_3^2)a+\gamma)\leq a\iff a\geq \frac{\gamma}{1-(c_1^2+c_2^2+c_3^2)}\\ &3b\leq b\iff b=0 \end{split} \qquad \text{since }b\geq 0$$

Hence, $T(n) \le an^2 + b$ for any $a \ge max(\frac{\gamma}{1 - (c_1^2 + c_2^2 + c_3^2)}, 1)$ and b = 0 for all $n \ge 1$. Thus, $T(n) = O(n^2)$ for all $n \ge 1$.

- (b) The asymptotic upper bound is determined by the rightmost leaf node of the recursion tree. The value of the node is $c_3^k n$ where k is the depth. $c_3^k n = 1$ since it's the leaf node, which gives $k = \log_{\frac{1}{c_3}} n$. Hence, the upper bound of the tree depth is $\log_{\frac{1}{c_3}} n$.
- (c) $a \ge max(\frac{\gamma}{1-\sum_{i=1}^k c_i^2},1)$ The upper bound of the depth of the recursion tree is $\log_{\frac{1}{c_i}} n$

¹For the induction step, the condition $a \ge \frac{\gamma}{1-(c_1^2+c_2^2+c_3^2)}$ is sufficient, but $a \ge 1$ is necessary for the base case where n=1.

CS/ECE 374 Spring 2023

William Cheng (shihuac2@illinois.edu)

Homework I Problem 2

Solution: (a) Claim: For any $w \in L_1$ with $n = |w| \ge 0$, $w \in L_{ee}$.

Proof. Base case: For n=|w|=0, $w=\epsilon$. $\#(0,\epsilon)=0$ and $\#(1,\epsilon)=0$. Since 0 is an even number, $w\in L_{ee}$.

Inductive hypothesis: Let n > 0. Assume that all strings $x \in L_1$ with $0 \le |x| < n$ are in L_{ee} .

Inductive step: Let w be a string of length n in L_1 . By the last property of L_1 , w can only be generated from a string $z \in L_1$. Consider the case where w is generated by inserting a 00 or 11 into some string $z \in L_1$. Then |z| = n - 2, which implies $z \in L_{ee}$ by induction. Then z has even number of 0's and even number of 1's by definition of L_{ee} . Adding exactly two ones or zeros would still make an even number of 0's and 1's, therefore $w \in L_2$ by definition. Consider the other case where w is generated by concatenating some string $x \in L_1$ with 0101 or 1010. Then |x| = n - 4, which implies $x \in L_{ee}$. Then #(0,x) and #(1,x) are even. #(0,w) = #(0,x) + 2 and #(1,w) = #(1,x) + 2 are also even, therefore $w \in L_{ee}$. Since $w \in L_1$ implies $w \in L_{ee}$, $L_1 \subseteq L_{ee}$.

(b) Claim: For any $w \in L_{ee}$ with $n = |w| \ge 0$, $w \in L_1$.

Proof. Base case: For n=|w|=0, $w=\epsilon$, #(0,w)=#(1,w)=0. Since 0 is an even number, $w\in L_{ee}$. By definition, $\epsilon\in L_1$, therefore $w\in L_1$.

Inductive hypothesis: Let n > 0. Assume that all strings $x \in L_{ee}$ with $0 \le |x| < n$ are in L_1 .

Inductive step: Let w be a string of length n in L_{ee} . By definition, the number of 1's and the number of 0's in w are even. Consider the case where w contains at least two consecutive 1's or 0's. Then w can be written as x11y or x00y. $xy \in L_{ee}$ because taking exactly 2 ones or zeros out of w would still make an even number of ones and zeros. Then $xy \in L_1$ by induction. By definition of L_1 , $xy \in L_1$ implies $x00y \in L_1$ and $x11y \in L_1$, thus $w \in L_1$. Then consider the case where w does not contain two consecutive 1's or 0's. In this case w must be alternating 0's and 1's, and $|w| \ge 4$ to ensure even number of 0's and 1's. Thus, w is in the form z0101 or z1010 where |z| = |w| - 4. Since #(0,z) = #(0,w) - 2 and #(1,z) = #(1,w) - 2, z must have even number of 1's and even number of 0's, therefore $z \in L_{ee}$, which implies $z \in L_1$ by induction. By definition of L_1 , $z \in L_1$ implies $z0101 \in L_1$ and $z1010 \in L_1$, therefore $w \in L_1$. Since $w \in L_{ee}$ implies $w \in L_1$ in all cases, $L_{ee} \subseteq L_1$.

- (c) A string in $L_{eo} L_2$: 010
 - $L' = 010(1010)^*$.

Proof. $L' \subseteq L_{eo}$: For any $w \in L'$, #(0,w) = 2 + 2n which is even and #(1,w) = 1 + 2n which is odd, where n is the number of 1010's after 010 in w, therefore $w \in L_{eo}$. $L' \cap L_2 = \emptyset$: Let w be an arbitrary string in L'. Assume $w \in L_2$. Then 010 must be in L_2 since w can only be obtained by concatenating 010 with some number of 1010's by definition of L_2 . However, 010 cannot be in L_2 since it is not in the form x00y or x11y or x1010 or x0101. Hence, $w \in L'$ implies $w \notin L_2$.