Maximum Likelihood Estimate

Dr. Arabin Kumar Dey

August 11, 2014

1 Concept of Likelihood

2 EM algorithm

Suppose X_1, X_2, \dots, X_n is a sample from $f(X, \theta)$. The joint p.d.f. of the sample X_1, X_2, \dots, X_n can be written as

$$L(X_1,\dots,X_n;\theta)=\prod_{i=1}^n f(X_i;\theta)$$

- Key Idea : probability of observing the given sample if true value is θ .
- lacksquare A good intuitive rule might be to select the value of heta which makes the sample most likely.

Definition: In continuous case

Let X_i^n be a sample from $f(x;\theta)$. The quantity $L(X_1,\dots,X_n;\theta)=\prod_{i=1}^n f(X_i;\theta)$ which is regarded as function of θ given the observation X_1,X_2,\dots,X_n is called the likelihood of the sample.

Definition: Maximum Likelihood Estimate

Let X_i^n be a sample from $f(X_i;\theta)$, $\theta \in \Omega$ (where Ω is the parameter space or the set of all possible values of θ). Suppose, $\tilde{\theta} \in \Omega$ is such that $L(\tilde{\theta}) = Max_{\theta \in \Omega}L(\theta)$, then $\tilde{\theta}$ is said to be the maximum likelihood estimator (MLE) of θ .

Few Mathematics

Necessary Condition

If θ is an interior point of Θ and a local maximum of g, then $g^{'}(\theta)=0$. If θ is an interior point of Θ and a local maximum of g, then $g^{''}(\theta)\leq 0$.

Sufficient Condition

If $g^{'}(\theta)=0$, then we say θ is a stationary point of g. If $g^{'}(\theta)=0$ and $g^{''}(\theta)<0$, then θ is a local maximum of g.

Concavity Conditions

If g is continuous on Θ and $g''(\theta) < 0$ for all θ that are interior points of Θ , then we say g is a strictly concave function. In this case, any stationary point of g is the unique global maximum of g.

necessary Condition

If θ is an interior point of Θ and a local maximum of g, then $\nabla g(\theta) = 0$. If θ is an interior point of Θ and a local maximum of g, then $\nabla^2 g()$ negative semi-definite matrix.

necessary Condition

If $\nabla g=0$ then we say θ is a stationary point of g. If $\nabla g=0$ and $\nabla^2 g(\theta)$ is a negative definite matrix, then θ is a local maximum of g.

Concavity Conditions

If g is continuous on θ and $\nabla^2 g(\theta)$ is a negative definite matrix for all θ that are interior points of Θ , then we say g is a strictly concave function.

In this case, any stationary point of g is the unique global maximum of g.

Examples

- Let X_i^n be a random sample from $N(\mu, 1)$. Find out the maximum likelihood estimate of μ .
- Let X_i^n be a random sample from $N(\mu, \sigma^2)$. Find out the maximum Likelihood estimate of μ and σ^2 .
- Let X_1, X_2, \dots, X_n be a random sample from Weibull(β, θ). Find out the maximum likelihood estimate of β, θ .

Example - continued

Let X_1, X_2, \dots, X_n be a random sample from the p.d.f.

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} & 0 \le X \le \theta \\ 0, & \text{o.w.} \end{cases}$$

Find out the maximum likelihood estimate of θ .

Example

Let X_1, X_2, \dots, X_n be a random sample from the p.d.f.

$$f(x; \theta) = \begin{cases} 1 & \theta \le X \le \theta + 1 \\ 0, & \text{o.w.} \end{cases}$$

Find out the maximum likelihood estimate of θ .

Discrete Case: Example 1

Let $X \sim b(n,p)$. One observation on X is available, and it is known that n is either 2 or 3 and $p=\frac{1}{2}$ or $\frac{1}{3}$. Our object is to find an estimate of the pair (n,p). The following table gives the probability that X=x for each possible pair (n,p).

X	$(2,\frac{1}{2})$	$(2,\frac{1}{2})$	$(3, \frac{1}{2})$	$(3,\frac{1}{3})$	Maximum Probability
0	$\frac{1}{4}$	4 9	<u>1</u> 8	<u>8</u> 27	$\frac{4}{9}$
1	$\frac{1}{2}$	$\frac{4}{9}$	<u>3</u> 8	$\frac{12}{27}$	$\frac{1}{2}$
2	$\frac{1}{4}$	$\frac{1}{9}$	<u>3</u>	<u>6</u> 27	38
3	0	0	<u>1</u> 8	$\frac{1}{27}$	$\frac{1}{8}$

What is value of parameters which maximizes the probability of a particular observed value ?

$$(\hat{n}, \hat{p})(x) = \begin{cases} (2, \frac{1}{3}) & x = 0 \\ (2, \frac{1}{2}) & x = 1 \\ (3, \frac{1}{2}) & x = 2 \\ (3, \frac{1}{2}) & x = 3 \end{cases}$$

- The Expectation Maximization (EM) algorithm is one of the most widely used algorithms in statistics.
- The basic idea of EM is actually quite simple: when direct maximization of $p(X|\theta)$ is complicated we can augment the data X by introducing some hidden variable Z such that

$$p(X, Z|\theta)$$

can be computed easily (for example when you observe both X and Z it can be easily maximized with respect to θ).

- Suppose we have a guess of the parameter value $\theta^{(t)}$ and want to find θ such that $p(X|\theta) > p(X|\theta^{(t)})$.
- This can be done by considering the difference between observed-data log-likelihood

$$\Delta L = L(\theta) - L(\theta^{(t)}) = \log(\frac{p(X|\theta)}{p(X|\theta^{(t)})}).$$

Now we introduce the hidden variable Z such that $p(X, Z|\theta)$ is easy to compute (usually in a product form so that $\log(p(X, Z|\theta))$ can be factorized).

We have

$$L(\theta) - L(\theta^{(t)}) = \log \frac{\int p(x, z|\theta) dz}{p(x|\theta^{(t)})}$$

$$= \log \left[\int \frac{p(z|\theta^{(t)}, x)p(x, z|\theta)}{p(z|\theta^{(t)}, x)p(x|\theta^{(t)})} \right] dz$$

$$\geq \int \left[p(z|\theta^{(t)}, x) \log \frac{p(x, z|\theta)}{p(z|\theta^{(t)}, x)p(x|\theta^{(t)})} \right] dz$$

$$= \Delta L(\theta; \theta^{(t)})$$

where the last inequality is due to Jensen's inequality and the fact that $\log(\cdot)$ is concave.

- We have $L(\theta) \ge L(\theta^{(t)}) + \Delta L(\theta; \theta^{(t)})$, which says that $L(\theta^{(t)}) + \Delta L(\theta; \theta^{(t)})$ is a global lower bound of $L(\theta)$ for any θ .
- Consequently we can maximize $L(\theta; \theta^{(t)})$ wrt θ to obtain $\theta^{(t+1)}$, and as long as $\Delta L(\theta^{(t+1)}; \theta^{(t)}) \geq 0$.
- We have $L(\theta^{(t+1)}) \ge L(\theta^{(t)})$ (and verify that $\Delta L(\theta^{(t)}; \theta^{(t)}) = 0$).

Now back to the problem of maximizing $L(\theta; \theta^{(t)})$ wrt θ :

$$\begin{array}{ll} \theta^{(t+1)} & = & argmax_{\theta}\Delta L(\theta;\theta^{(t)}) \\ & = & argmax_{\theta}\int p(z|\theta^{(t)},x)\log\left(\frac{p(x,z|\theta)}{p(z|\theta^{(t)},x)p(x|\theta^{(t)})}\right)dz \\ & = & argmax_{\theta}\int p(z|\theta^{(t)},x)\log(p(x,z|\theta))dz \end{array}$$

Define,

$$Q(\theta; \theta^{(t)}) = \int p(z|\theta^{(t)}, x) \log(p(x, z|\theta)) dz$$
$$= E_{Z|\theta^{(t)}, X}(\log(X, Z|\theta))$$

- E-step: compute $Q(\theta; \theta^{(t)})$, which is the expectation of complete-data log-likelihood $\log p(X, Z|\theta^{(t)})$ and the expectation is wrt $p(Z|\theta^{(t)}, X)$.
- M-step: maximize $Q(\theta; \theta^{(t)})$ wrt θ to obtain $\theta^{(t+1)}$.