This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
Please do not report the images to the
Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number. 07135208 A

(43) Date of publication of application: 23.05.95

(51) Int CI

H01L 21/318 H01L 21/31 H01L 29/78

(21) Application number: 05281029

(71) Applicant

SONY CORP

(22) Date of filing: 10.11.93

(72) Inventor.

KATAOKA TOYOTAKA

(54) INSULATING FILM FORMING METHOD

(57) Abstract

PURPOSE: To form an insulating film with which the stress generated by a rapid heat treatment (RTA), conducted after formation of an insulating film on a substrate, can be alleviated.

CONSTITUTION: A gate insulating film 3 is formed as an SiON insulating film on an Si substrate 1 by conducting a CVD method in an atmosphere containing Si. O and N. Besides, the compositional ratio of Si, O and N is controlled by the CVD method in such a manner that the gate insulating film 3 has the thermal expansion coefficient almost equal to that of the Si substrate 1, After formation of a film by the CVD method, a heat treatment is conducted in the atmosphere containing O and N, and the H and H₂O contained in the gate electrode film 3 are removed. As a result, an RTA is conducted after formation of the gate insulating film 3, no interfacial level is generated, and the deterioration of hot electron resistance can be prevented.

COPYRIGHT: (C)1995,JPO

mimosa

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平7-135208

(43)公開日/平成7年(1995) 5月23日

(51) Int CL*

鐵別配号 庁内整理書号 FI

技術表示箇所

HO1L 21/318 21/31

C 7352-4M

29/78

H01L 21/31

7514-4M

29/ 78

301 G

審査競求 未請求 請求項の数6 OL (全 8 頁)

(21)出職番号

(22)出版日

特膜平5-281029

平成5年(1992)11月10日

(71)出票人 000002185

ソニー株式会社

東京都品川区北岛川6丁目7書35号

(72)発明者 片岡 豊▲たか▼

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 小池 晃 (外2名)

(54) 【発明の名称】 絶縁頭の形成方法

(57) 【要約】

【目的】 基板上に絶縁膜を成膜後、急速熱処理(RT A) を行っても、発生する応力を緩和できる絶縁膜とし て形成する。

【構成】 Si, O, Nを含むガス雰囲気中で<u>CVDを</u> 行うことによって、Si基板1上にゲート絶縁膜3をS i ON系絶縁膜として成膜する。なお、上記CVDで は、上記ゲート絶縁膜3が、Si基板1と同程度の熱膨 張係数を有するように、Si. O. Nの組成比が制御さ れる。そして、上記CVDによる成膜後、O、Nを含む ガス雰囲気中で熱処理をして、上記ゲート絶縁膜3中に 含有されるHやH1 Oを除去する。

【効果】 上述のようにしてゲート絶縁膜3を成膜した 後、RTAを行っても、界面準位が発生することがな く、ホテトエレクトロン耐性の劣化が防がれた。

【特許請求の範囲】

【請求項1】 少なくともSi、O、及びNを含むガス 雰囲気中でCVDを行うことにより基板上にSiON系 絶縁膜を成膜することを特徴とする絶縁膜の形成方法。

【請求項2】 前記SiON系絶縁膜を成膜後、この成膜時よりも高い温度にて該SiON系絶縁膜の熱処理を行うことを特徴とする請求項1記載の絶縁膜の形成方法。

【請求項3】 前記無処理は、O及び/又はNを含むガス雰囲気中で行うことを特徴とする請求項2記載の絶縁 10 膜の形成方法。

【請求項4】 前記SiON系絶縁膜はゲート絶縁膜であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の絶縁膜の形成方法。

【請求項5】 前記SiON系絶縁膜は層間絶縁膜であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の絶縁膜の形成方法。

【請求項6】 前記基板がSi基板であることを特徴と する請求項1ないし請求項5のいずれか1項に記載の絶 縁膜の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば半導体装置に用いられる絶縁膜の形成方法に関し、特にSi基板上に成膜されるゲート絶縁膜あるいは層間絶縁膜について、後工程の急速熱処理(RTA: Rapid Thermal Anneal)時に発生する応力を緩和する方法に関する。

[0002]

【従来の技術】従来より、半導体装置においては、Si 30 Oz が絶縁膜材料として一般に用いられており、例えば、MOS-FETにおいては、ゲート絶縁膜や層間絶縁膜がSiOzよりなる。

【0003】このMOS-FETの製造工程を図1~図 8を用いて簡単に説明する。先ず、素子分離領域2が形 成されたSi基板1(図1参照)を酸素雰囲気中にて熱 処理し、このSi基板1を酸化させることによって、S iO1 よりなるゲート絶縁膜9を形成する(図2巻 照)。その後、ポリサイドよりなるゲート電極4を形成 し (図3巻照)、例えばSi基板1がP型であれば、N 40 型の不純物をイオン注入して、ソース/ドレイン領域5 を形成する(図4参照)。そして、さらに熱処理を行う ことによって、イオン注入された不純物を活性化する。 【0004】次に、例えばCVDによってSiO: を全 面に亘って成膜することによって層間絶縁膜10を形成 ----- する (図5参照) ~~ その後、コンタクト・ホール 7 を開 け(図6参照)、コンタクト形成用イオン注入を行い、 ここで注入された不純物を熱処理によって活性化させ る。そして、A1系配線層8を形成し(図7参照)、所

ナようなMOS-FETが得られる。

【0005】上述のMOS-FETにおけるソース/ドレイン領域5においては、半導体装置の高集積化にともなう微細化のため、浅い接合が必要とされるようになってきている。例えば、0.35μmのデザイン・ルールの下では、接合深さは0.1μm程度に浅くなる。したがって、不純物の活性化のために行われる熱処理には、従来用いられてきた電気炉アニールに代わって、インコヒーレント光を用いたRTAが用いられるようになってきている。

【0006】上記RTAは、光をウェハに照射してウェハを直接加熱し、高温短時間に熱処理を行うことができるため、不純物拡散層を浅く保つことができる熱処理方法である。例えば、N型の不純物拡散層の形成には、ドース量5×10¹⁵個/cm²、イオン加速エネルギー60keVにてAs・を注入した後、1000℃以上でRTAを行うことによって、シート抵抗50~700/□、深さ0、15μm程度の接合を得ることが可能である。

20 [0007]

【発明が解決しようとする課題】しかしながら、上記R TAは高温短時間に熱処理を行うことができ、半導体装置の高集積化を図るためには有効である反面、急速な昇降温がなされるがゆえの問題も有している。熱膨張係数の大きく異なる材料同士が接している界面では、急速な応力変化が起こるからである。

【0008】例えば、上述したMOS-FETにおいて、SiOz よりなるゲート絶縁膜9と、Si基板1とは、熱膨張係数が大きく異なる。したがって、例えば不純物の活性化のために、ゲート絶縁膜9を介してRTAを行ったとき、急速な昇降温によって、Si基板1とゲート絶縁膜9との界面に急激な応力変化が起こる。そして、これにより、Si基板1とゲート絶縁膜9との界面に、界面準位が発生してしまい、ホットエレクトロン耐性の低下を招くこととなる。

【0009】そこで、Si基板1を酸素雰囲気中で熱処理してSiOtとした後、Nt O雰囲気中で熱処理して窒化を行うか、或いは、Si基板1の表面に対してそのままNt. Oによる熱酸窒化を行うことによって、ゲート絶縁膜9をSiの酸窒化物とし、ゲート絶縁膜9とSi基板1との熱膨張係数の違いを緩和することが行われている。これは、SiOt. とSiI Nt の中間的な組成を有するSiOt Nt は、そのx、yを最適化することによって、Siに近い熱膨張係数を持ち得るものと考えられるからである。

3

の表層部のSi原子に対してO原子やN原子が共有結合 を生成しながら成膜が進むため、Si基板1との界面が 荒れてしまうといった問題も残されている。

【0011】同様の応力の問題は層面絶縁膜10についても起こる。即ち、層間絶縁膜10も通常、SiOzよりなるので、例えば、不純物拡散領域に対してコンタクト形成用イオン注入を行った後、この不純物の活性化のためにRTAを行うに際して、Si基板1との熱膨張係数の違いが問題となる。この層間絶縁膜10は、通常、ゲート絶縁膜9に比して数十倍の厚みを有しているため、Si基板1との熱膨張係数の違いが、ウェハ自体に反りを生じさせることにもなり、種々のデバイス特性を劣化させるからである。

【0012】そこで本発明はかかる従来の実情に鑑みて 提案されたものであり、ゲート絶縁膜あるいは層間絶縁 膜といった絶縁膜について、後工程の急速熱処理(RTA)時、基板との間に発生する応力が緩和される絶縁膜 の形成方法を提供することを目的とする。

[0013]

【課題を解決するための手段】Si、SiOi、Sii Niの熱膨張係数はそれぞれ下記のような値であるため、SiOiとSii Niの中間的な組成を有するSi OiNiにおいて、x. yを最適化することによって、 Siに近い熱膨張係数を有するSiON系絶縁膜となり 得る。

[0014] SiO₂ : 0. 52×10^{-4} /K Si : 3. 33×10^{-4} /K

 $S \text{ is } N_i = 5.38 \times 10^{-1} / \text{K}$

【0015】本発明者等は、上述の考えと従来の実情を鑑みて鋭意検討を行った結果、CVDにてSi、O、N 30の比率を制御しながら成膜を行えば、Siに近い熱膨張係数を有するSiON系絶縁膜が成膜できることを見い出し、本発明を完成するに至った。

【0016】即ち、本発明に係る絶縁膜の形成方法は、 少なくともSi、O、及びNを含むガス雰囲気中でCV Dを行うことにより基板上にSiON系絶縁膜を成膜す るものである。

【0017】そして、前記SiON系絶縁膜を成膜後、この成膜時よりも高い温度にて該SiON系絶縁膜の熱処理を行うことが好ましく、この熱処理は、O及び/又 40はNを含むガス雰囲気中で行うことが好ましい。

【0018】なお、本発明によって形成されるSiON 系絶縁膜は、ゲート絶縁膜であっても、層間絶縁膜であ ってもよいが、Si基板との熱膨張係数の差が小さくな るように、その絶縁膜を構成するSi、O、Nの比率が 制御されたものであることが好ましい。

[0019]

 【作用】本発明のように、CVDを用いてSiON系統
 一ト絶縁膜

 縁膜を成膜すれば、成膜時に原料ガス (Si、O、Nを
 【0027

 それぞれ含むガス) の流量比を調整することによって、 50 方式 :

SiON系絶縁膜の組成を制御することができる。したがって、所望の無膨張係数を有するような組成のSiON系絶縁膜を成膜することができる。

【0020】また、CVDによるSiON系絶縁膜の成 膜は、Si基板の表層部のSi原子をO原子やN原子と 共有結合させてSiON系絶縁膜とする方法とは異な り、Si基板上に原料ガスからSi、O、Nを供給して SiON系絶縁膜を堆積させるため、Si基板との界面 を荒らすことがない。

10 【0021】上述したように、CVDによりSiON系 絶縁膜を成膜し、熱態張係数を調整すれば、特定の材料 層の熱態張係数に近づけることができる。したがって、 例えば、Si基板上に、Si基板に近い熱態張係数を有 するSiON系絶縁膜をゲート絶縁膜として形成した場合、RTAで急速昇降湿しても、湿度変化による体積変 化が両材料間で同程度であるため、Si基板とゲート絶 縁膜との間に応力は発生しない。このため、この応力に 起因するホットエレクトロン耐性の劣化が防止できる。 また、同様に、Si基板に近い熱態張係数を有するSi ON系絶縁膜を層間絶縁膜として形成した場合にも、Si基板との熱膨張係数の差が殆どないため、ウェハに反 りを生じさせることがなく、デバイス特性の劣化を防止 できる。

【0022】なお、上記SiON系絶縁膜をCVDによって成膜した後、成膜時よりも高い温度にて熱処理を行うのは、CVDによって成膜されたSiON系絶縁膜には、原料ガスに含有されるHがHやHzOとして取り込まれているため、これを除去して、絶縁膜としての信頼性に優れたものとするためである。

0 【0023】また、このとき上記熱処理を、少なくとも O及び/又はNを含むガス雰囲気にて行うと、膜中を拡 散していったO及び/又はNが、HやHz Oが抜けたこ とによって発生した膜中の欠陥及び歪を終端し、応力の 緩和を図ることができる。例えば、上記SiON系絶縁 膜がゲート絶縁膜である場合、Si基板との界面の欠陥 及び歪をも終端し、これにより、Si基板からスムーズ な連続性を持ち、欠陥の少ないゲート絶縁膜とすること ができる。

[0024]

7 【実施例】以下、本発明に係る絶縁膜の形成方法を適用 した具体的な実施例について説明する。

【0025】実施例1

本実施例では、SiON系絶縁膜を、Nチャネル型MO S-FETにおけるゲート絶縁膜として形成した。

【0026】具体的には、図1に示されるような素子分離領域2が形成されたP型のSi基板1に対して、下記の条件(A)のCVDを行って、図2に示すように、ゲート絶縁膜3を形成した。

【0027】CVD条件(A)

50 方式 : LP CVD (熱CVD)

導入ガス : SiHz Clz

NHı N₂ O 100 s c c m

ガス圧 :

100 sccm

湿度

20 Pa 760℃

【0028】上述のCVDによって、ゲート絶縁膜3 は、Si基板1に近い熱膨張係数を有するものとして成

膜された。

【0029】次いで、上述のようにして成膜されたゲー ト絶縁膜3から、HやH1 Oを除去するために、N1 O 10 N1 O 雰囲気中、ゲート絶縁膜3の成膜時より高温にてRTN (Rapid Thermal Nitridatio

n)を行った。以下にこのRTNの条件を示す。

【0030】RTN条件

導入ガス : Ni O 25slm

湿度 :

1100℃

時間 :

60秒

【0031】このようにゲート絶縁膜3の成膜時より高一 温にてRTNを行ったことによって、ゲート絶縁膜3内 に含有されたHやH1 Oが除去された。また、このRT 20 NはNi O雰囲気中にて行われたため、NやOが膜中に 入り込み、HやHIOが抜けたことによる欠陥、Si基 板1との界面の欠陥及び歪を終端し、Si基板1からス ムーズな連続性を持ち、欠陥の少ないゲート絶縁膜とす ることができた。

【0032】そして、図3に示すように、下層がポリシ リコン、上層が高融点金属シリサイドであるポリサイド ゲート電極4を形成した後、N型不純物としてA'sの イオン注入を行って、図4に示すように、ソース/ドレ イン領域5を形成した。さらに、上記不純物の活性化を 30 行うために、1000℃以上にてRTAによる高温短時 間熱処理を行った。

【0033】その後、S.iOz よりなる層間絶縁膜10 の成膜、コンタクト・ホール7の閉口、コンタクト形成 用のイオン注入、不純物活性化のためのRTA、アルミ _二クム配線の成膜及びパターニングといったMOS-F ETプロセスを常法に従って行い、トランジスタを製造 した。

【0034】以上ようにして製造されたトランジスタ は、いずれも、しきい値電圧Viiが安定しており、チャ 40 ネルコンダクタンスgo 、相互コンダクタンスgm も低 下せず、良好な特性を有していた。

【0035】これは、CVDにより、Si基板1に近い 熱膨張係数を有するゲート絶縁膜3が形成されたため に、RTAによる急速な昇降温が行われても、ゲート絶 縁膜3とSi基板1との界面に応力が発生することがな く、したがって、界面準位が発生しなかったためである と考えられる。また、ゲート絶縁膜3の形成時にSi基 板1との界面が荒れることがなかったこと、ゲート絶縁 膜3が信頼性の高い絶縁膜となっていたこと等も、上述 50 のようなデバイス特性の安定化に寄与していたと考えら

【0036】なお、<u>ゲート絶縁膜3成膜時のCVD条件</u> は、上述のCVD条件(A)の代わりに下記の(B)~ (D) に示すものであってもよい。

【0037】CVD条件(B)

方式 : LP CVD (熱CVD)

導入ガス : "SiHr Clr.

NH 100 sccm 100sccmガス圧 : 66. 5Pa

温度 850℃

【0038】CVD条件(C)

方式 : LP CVD (熱CVD)

導入ガス : SiHe 5 s c c m

NHı 100 s c c m Oι 100sccmガス圧 : 66. 5Pa

温度 850℃ :

【0039】CVD条件(D)

方式 : LP CVD (熱CVD)

導入ガス : Si (OC: H:) + 5 s c c m

NHı 100sccm

ガス圧 : 66. 5Pa 温度 : 700℃

【0040】また、CVDによるゲート絶縁膜成膜後、 RTNに代わりに、下記の酸窒化を拡散炉にて行うこと によって、熱処理してもよい。

【0041】酸窒化条件

導入ガス : Ni O 15slm

温度 : 950℃ 時間 : 10分 【0042】 実施例2

本実施例においては、SiON系絶縁膜を、Nチャネル 型MOS-FETにおける層間絶縁膜として形成した。 【0043】具体的には、P型のSi基板1に素子分離

領域2、SiOi からなるゲート絶縁膜9、ポリサイド ゲート電極4、ソース/ドレイン領域5を形成し、この ソース/ドレイン領域5へ注入された不純物の活性化ま でが従来法にて行われたウェハに対し、前述のCVD条 件(A)にて、層間絶縁膜6の成膜を行った。

【0044】これにより、「図5に示すように、SiON 系の層間絶縁膜6が形成された。この後、コンタクト・ ホール7を開口し、コンタクト形成用イオン注入を行っ た後、この不純物を活性化させるためにRTAにて熱処 理を行った。そして、図7に示すように、A1系配線層 8をスパッタによって堆積させた後、図8に示すよう に、ドライエッチングにて所望の配線パターンに形成 し、Nチャネル型MOS-FFTを完成した。

【0045】上述のようにして製造されたトランジスタ

は、いずれもウェハに反りが生じていなかった。また、 デバイス特性を調べたところ、しきい値電圧Visが安定 しており、チャネルコンダクタンスgo 、相互コンダク タンスg。も低下せず、良好な特性を有していた。

【0046】これは、Si基板1に近い熱膨張係数を有 する層間絶疑膜 6 が形成されたために、RTAによる急 速な昇降温が行われても、ウェハの反りが防止され、ま た、これによって、ゲート絶縁膜9と5i基板1との界 面に外力を与えなかったためであると考えられる。

上述の(A)に代わって下記の(E)又は(F)に示す ものとしてもよい。

【0048】CVD条件(E)

方式 : プラズマCVD

導入ガス : SaitHatia 50 sccm

300sccm-N2. O Nz 300sccm

ガス圧 : 332. 5Pa

温度 : 360℃

RF電力: 190W

【0049】CVD条件(F)

方式 : プラズマCVD

導入ガス : SiHu $50 \, \text{sccm}$

Οz 100 sccm NΣ 3000 s c c m

ガス圧 : 332. 5 Pa

温度 : 360℃ RF電力: 190W

【0050】なお、上記CVD条件(E), (F)のよ うな、500℃以下といった比較的低温においてプラズ 30 マCVDにて形成された膜は、その後の熱処理によって 熱膨張係数が変化するという特性を有しているため、成 膜後、次工程に先立って熱処理を施しておくことが必要 である。このため、この条件にて層間絶縁膜6を成膜し た場合には、1秒間に数℃という穏やかな昇降温レート によって700~800℃程度の熱処理を施し、この熱 処理後の熱膨張係数がSi基板の熱膨張係数と同程度と なるようにした。

【0051】本発明に係る絶縁膜の形成方法は、上述の 実施例に限定されるものではなく、例えば、実施例2に 40 おいて、CVD条件(A)にて層間絶縁膜6を形成した 後にも次工程に先立って熱処理を施してもよい。また、 CVDによって成膜されるSiON系絶縁膜を、実施例 1ではゲート絶縁膜3として、実施例2では層間絶縁膜 6として形成したが、ゲート絶縁膜3及び層間絶縁膜6

の両方をSiON系絶縁膜としてもよい。

[0052]

【発明の効果】以上の説明から明かなように、本発明に 係る絶縁膜の形成方法を適用して、ゲート絶縁膜或いは 層間絶縁膜を形成すれば、Si基板と同程度の熱膨張係 数を有するものとすることができる。このため、本発明 を適用してゲート絶縁膜を形成した場合、その後のRT Aによる熱処理によっても、Si基板との界面に界面準 位が発生することがなく、ホットエレクトロン耐性の劣 【0047】なお、層間絶縁膜6成膜時のCVD条件を 10 化が防止される。また、本発明を適用して層間絶縁膜を 形成した場合、ウェハの反りが防止される。

> 【0053】したがって、本発明を適用して成膜された。 絶縁膜を用いた半導体装置は、デバイス特性の劣化が防 止され、信頼性及び歩留まりの高いものとなる。

【図面の簡単な説明】

【図1】MOS-FETの製造工程を示すものであり、 S;基板に素子分離領域が形成された状態を示す模式的 断面図である。

【図2】図1のSi基板にゲート絶縁膜が形成された状 20 態を示す模式的断面図である。

【図3】図2のゲート絶縁膜上にゲート常極が形成され た状態を示す模式的断面図である。

【図4】図3のSi基板に不純物の注入がなされ、ソー ス/ドレイン領域が形成された状態を示す模式的断面図 である。

【図5】図4のウェハに層間絶縁膜が形成された状態を 示す模式的断面図である。

【図6】図5の層間絶縁膜にコンタクト・ホールが形成。 された状態を示す模式的断面図である。

【図7】図6の層間絶縁膜上にA1系配線層が形成され た状態を示す模式的断面図である。

【図8】図7のA1系配線層が所望の配線パターンに形 成された状態を示す模式的断面図である。

【符号の説明】

1···S i 基板

2・・・素子分離領域

3···ゲート絶縁膜(SiON)

4・・・ポリサイドゲート電極

5・・・ソース/ドレイン領域

6···層間絶縁膜(SiON)

7・・・コンタクト・ホール

8・・・A1系配線層

9 · · · ゲート絶縁膜(S i O₂)

10···屬間絶縁膜(SiO≀)

