Epreuve écrite

Examen	de	fin	ď	études	secondaires	2013

Section: B

Branche: Mathématiques II

Numéro d'ordre du candidat	

Question 1 (4+6+6 = 16 points)

Résolvez, en donnant des valeurs exactes, dans $\mathbb R$, l'équation et les inéquations suivantes :

a)
$$\frac{4^{x} - 3 \cdot 2^{x} + 2}{\left(\frac{1}{2}\right)^{x} - 1} = \frac{1}{2}$$

b)
$$\ln(x+1) - \frac{\ln|x^2-1|}{2} \le \ln(\sqrt{2})$$

c)
$$\left[2e^{x}\ln(3x)\right]^{2} + 4 < 16e^{2x} + \ln^{2}(3x)$$

Question 2(6+4=10 points)

Soit f la fonction définie par $f(x) = \ln(3x) - 2x^2 + 3x + 2$ et C_f sa courbe représentative dans un R.o.n.

- a) Étudiez la fonction f: dom f, limites aux bornes de dom f, f'(x), tableau des variations (valeurs exactes des extremums éventuels) et déduisez-en le nombre de solutions de l'équation f(x) = 0.
- b) Montrez que C_f admet une seule tangente parallèle à la droite d'équation y = x et déterminez la valeur arrondie à 0,001 près de l'ordonnée du point d'intersection de cette tangente avec (Oy).

Question 3 (8+7 = 15 points)

Soit f la fonction définie par $f(x) = \ln\left(\frac{x+1}{x^2+1}\right)$ et C_f sa courbe représentative dans un R.o.n.

- a) Étudiez la fonction f: dom f, limites aux bornes de dom f, asymptotes horizontales, verticales, obliques et branches paraboliques éventuelles, f'(x), tableau des variations (valeurs exactes des extremums éventuels) et représentation graphique (unité 3 cm).
- b) Résolvez l'équation f(x) = 0 et déterminez la valeur exacte de l'aire de la surface délimitée par C_f et (Ox).

[Indication : Déterminer
$$a,b,c \in \mathbb{R}$$
 tels que $\frac{x^2-2x-1}{(x+1)(x^2+1)} = \frac{a}{x+1} + \frac{bx+c}{x^2+1}$]

Question 4 (4+7 = 11 points)

La parabole P de sommet $S\left(\frac{14}{3}; \frac{166}{9}\right)$ passant par le point A(0;13) coupe le demi-cercle c de centre O(0;0) de rayon 13 situé dans le demi-plan d'équation $y \ge 0$ au point B.

- a) Montrez que P: $y = -\frac{1}{4}x^2 + \frac{7}{3}x + 13$ et vérifiez à l'aide de calculs que B(12;5) appartient à P et à c.
- b) Calculez la valeur exacte de l'aire de la surface délimitée par la parabole P et l'arc \widehat{AB} du demicercle c (voir figure ci-dessous).

Question 5 (8 points)

Un flotteur (Schwimmer) a la forme d'un solide de révolution engendré par la rotation autour de (Ox) de la surface délimitée par (Ox) et la représentation graphique de la fonction f définie sur $[0;\pi]$ par

$$f(x) = \sin^2\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}x\right)$$
. (voir figure ci-dessous)

Déterminez la valeur exacte du volume du flotteur en cm^3 sachant que l'unité est le cm.

