Приложение А

Числовой пример оптимального размещения базовых станций сети с линейной топологией в виде экстреальной задачи в комбинаторной форме

Дано:

- линейный участок L = 300 метров;
- множество точек размещения |A| = 8;
- множество БС |S| = 8;
- протокол IEEE 802.11n;
- ограничение на суммарную стоимость T = 0.001с;
- интенсивность входящих пакетов $\lambda = 1000 \text{ 1/c}$;
- средний размер входящих пакетов w=1500 байт;
- отклонение от оптимального решения, $\varepsilon = 0.5$

Рассмотрим пример задачи размещения базовых станций вдоль линейного участка для организации БШС. В данном приложении будет представлен пример решения задачи для БШС на базе протокола IEEE 802.11n.

Задан линейный участок L=300 метров. На данном участке в ходе обследования местности были выбраны восемь возможных точек размещения базовых станций, |A|=8. Координаты l_i точек размещения представлены в таблице 1.

Точки размещения, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
Координаты, l_i	43	72	98	150	178	201	269	280

Таблица 1 — Координаты точек размещения

На рынке представлен широкий спетр технических устройств от компаний Cisco, Mikrotik и т.д. позволяющий организовывать сеть в открытой местности и учитывающий климатические сложности на нефтегазовых месторождениях, такие как предельные температуры, сила ветра и т.д. Под БС в нашей задаче будем понимать точку доступа с антеннами для покрытия заданной области и антеннами для обеспечения связи с соседними станциями БШС.

В ходе этапа выбора комплекса технических средств были выбраны восемь БС. Множество станций |S|=8. Каждой БС преписаны паспортные характе-

ристики антенн, пропускная способность точки доступа и итоговая стоимость станции. Стоимость взята условная, чтобы не указывать реальные цены производителя на время написания диссертации и курс валют. Будем рассматривать БШС для задачи мониторинга, то есть с каналом передачи на верхний уровень, UpLink. Рабочая частота 2,4 ГГц. Для каждой БС будем использовать пропускную способность для модуляции и схемы кодирования МСS7. В таблице 2 представлены параметры БС.

S	P_{tr}^{R}	G_{tr}^R	P_{recv}^R	L	P_{recv}^r	G_{recv}^r	p	c
$N_{\overline{0}}$	дБм	дБ	дБм	дБ	дБм	дБ	Мбит/с	y.e.
1	20	4	-77	1	-77	3	72,2	24
2	19	4	-77	1	-73	4	72,2	20
3	19	4	-77	1	-77	5	72,2	24
4	18	4	-77	1	-77	3	72,2	24
5	19	4	-77	1	-77	4	72,2	28
6	19	4	-77	1	-74	4	72,2	24
7	20	4	-77	1	-73	4	72,2	20
8	19	4	-77	1	-77	4	72,2	20

Таблица 2 — Параметры базовых станций. P_{tr}^R — мощность направленной антенны, G_{tr}^R — усиление направленной антенны, P_{recv}^R — чувствительность направленной антенны, L — потери в антенном кабеле и разъемах, передающего тракта, P_{recv}^r — чувствительность всенаправленной антенны, G_{recv}^r — усиление всенаправленной антенны, p — пропускная способность, c — стоимость

На концах участка размещены шлюзы s_0 и s_{m+1} с параметрами (таблица 3):

Шлюз	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	L
Nº	дБ	дБ	дБ	дБ
s_0	20	5	-77	1
s_{m+1}	20	5	-77	1

Таблица 3 — Параметры шлюзов

Для расчета области покрытия необходимо задаться характеристиками устройств, с которых будет собираться информация (таблица 4).

Итоговое размещение БС должно удовлетворять заданным ограничениям:

Устройство	$P_{tr}^{u}d$	$G^u_{tr}d$	L
	дБ	дБ	дБ
	9	1	0

Таблица 4 — Параметры устройств

- на стоимость C = 76;
- на межконцевую задержку сети $T=0.001~\mathrm{c}.$

Для расчета времени межкоцневой задержки, будем считать, что на каждую БС поступает трафик с интенсивностью $\lambda=1000~1/\mathrm{c}$. Средний размер поступающих пакетов $w=1500~\mathrm{faйr}$.

Для поиска последовательности топологий задано отклонение $\varepsilon=0.5\%$ от найденного оптимального значения.

А.0.1 Расчет радиуса связи и радиуса покрытия станций

По формуле (5) рассчитаем радиус покрытия для каждой станции (таблица 5) и радиусы связи между станциями и со шлюзами (таблица 6 и таблица 7).

Станция	S_1	S_2	S_3	S_4	S_5	S_{m+1}
r_j , M	48	43	38	43	43	0

Таблица 5 — Рассчитанные радиусы покрытия

R_{jq} , м	S_1	S_2	S_3	S_4	S_5	S_0	S_{m+1}
S_1	_	76	96	96	76	76	76
S_2	85						68
S_3	76	60	_	76	60	60	60
S_4	85	68	85	_	68	68	
S_5	85	68	85	85	_	68	68

Таблица 6 — Рассчитанные радиусы связи базовых станций

В таблице 8 представлены результаты решения размещения станций. Для заданной $\varepsilon=1\%$, т.е. d=2 был получены последовательности расстановок для задач 2, 3 u 4 расчета оценок с помощью задачи ЦЛП, задачи «О ранце» и

R_{jq} , M	S_1	S_2	S_3	S_4	S_5
S_0	96	85	76	85	85
S_{m+1}	96	85	76	85	85

Таблица 7 — Рассчитанные радиусы связи шлюзов

ЛП. В таблице представлены рекорды «недопокрытия», стоимости и задержки сети, а также размещения станций, число пройденных узлов дерева а и время счета. Задача ЦЛП и задача о ранце решались с помощью Optimization Toolbox Matlab, а задача ЛП решалась с помощью библиотеки с исходным кодом Scipy Python. Как видно из результатов оценка, полученная с помощью задачи ЛП менее точная, приходится обходить большее количество узлов для нахождения рекордов по сравнению с методом оценки «недопокрытия» с помощью задач 2 и 3. В итоге возрастает итоговое количество пройденых узлов. В свою очередь метод ЛП имеет свое преимущество, так как время счета меньше.

Таблица 8 — Сравнения оценок «недопокрытия» для задачи ЦЛП и ЛП

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	№	Рекорд, м	Cmovn roomy vvo	Задержка, сек			P	азмещение	e				
2 1 65 0,03244 S ₁ - S ₅ S ₄ - S ₅ S ₁ S ₁ - S ₅ S ₁ - S ₅ - S ₁ S ₁ - S ₁ - S ₅ - S ₁ S ₁ - S ₁ - S ₂ - S ₁ S ₁ - S ₁ - S ₂ - S ₁ S ₁ - S ₁ - S ₂ - S ₁ S ₁ - S ₂ - S ₁ S ₁ - S ₂ - S ₁ S ₂ - S ₁ S ₁ - S ₂ - S ₃ S ₄ S ₅ - S ₄ S ₅ S ₄ - S ₅ S ₅ -	J\ <u>×</u>	гекорд, м	Стоимость, у.е.	задержка, сек		a_2		a_4	a_5		a_7		
3 1 65 0,03244 S4 - S1 - S5 - S1 4 0 65 0,03244 S4 - S5 - S1 - S4 - S5 - S4 - S5 - S4 - S5 - S4 - S5 - S4 - S4 - S5 - S5 - S4 - S5 - S4 - S4 - S5 - S4 - S5 - S5 - S4 - S5 - S5 - S5 - S5 - S1 - S5 - S5 - S1 - S1 - S5		1	l .	0,03244		-		-	-		-		
4 0 65 0,03244 S4 - S5 - S1 - S4 - 5 1 65 0,03244 S5 - S1 - S4 - 6 0 65 0,03244 S5 - S4 - S1 - S4 - 7 1 65 0,03244 - S1 S5 - S4 - S2 - S4 - S2 - S4 - S2 - S4 - S4 - S5 - S4 - S5 - S4 - S5 - S5 - S5 - S4 - S4 - S4 - S4 - S4 - S4 - S5 - S4 - S5 - S1 - S4 - S4 - S4 - S1 - S4 - S1 - S4 - S1 - S4 - S1 - S4		1	65	0,03244		-	S_5	-	-	S_4	-		
5 1 65 0,03244 S5 - S1 - S4 - S1 6 0 65 0,03244 S5 - S4 - S1 - S2	3	1	65	0,03244	S_4	-		-	-	S_5	-		
6 0 65 0,03244 S5 - S4 - S1 - S1 - S1 - S5 - S6 - S6 - S1 S5 - S4 - S5 - S5 - S6 - S4 - S5 - S5 - S5 - S5 - S5 - S1 - S1 - S5 - S1 - S1 - S2 - S	4	0		0,03244		-	S_5	-	-	S_1	-		
7 1 65 0,03244 - S ₁ S ₄ S ₅ - S ₄ S ₅ - 8 1 65 0,03244 - S ₁ S ₅ S ₄ - S ₅ - 10 65 0,03244 - S ₁ - S ₁ - S ₄ - S ₅ - 10 0 0 65 0,03244 - S ₁ - S ₄ S ₅ - S ₅ - S ₅ - 12 0 65 0,03244 - S ₄ S ₁ - S ₄ - S ₅ - S ₅ - 12 0 65 0,03244 - S ₄ S ₅ S ₁ - S ₅ - 12 0 65 0,03244 - S ₄ S ₅ S ₁ - S ₁ - S ₅ - 13 1 65 0,03244 - S ₄ - S ₁ - S ₁ - S ₅ - 14 0 65 0,03244 - S ₄ - S ₁ - S ₅ - S ₅ - 14 0 65 0,03244 - S ₄ - S ₁ - S ₅ - S ₅ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₅ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₄ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₄ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₄ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₁ - S ₁ - S ₂ - S ₁ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₁ - S ₂ - S ₁ S ₁ - S ₂ - S ₁ S ₁ - S ₂ - S ₃ S ₄ - 16 0 65 0,03244 - S ₅ S ₁ S ₁ - S ₄ S ₁ S ₁ - S ₂ - S ₃ S ₄ S ₁ - S ₃ S ₄ S ₁ - S ₄ S ₁ S ₁ S ₂ S ₁ S ₁	5	1	65	0,03244		-		-	-	S_4	-		
8 1 65 0,03244 - S1 S5 - - S4 - 9 1 65 0,03244 - S1 - S4 - S5 - 10 0 65 0,03244 - S1 - S4 - - S5 - 11 1 65 0,03244 - S4 S1 - - S5 - 12 0 65 0,03244 - S4 S5 - - S1 - - S5 - - S1 - - S5 - - S1 - - S2 - - S1 - - S1 - - S2 S2 S4	6	0	65	0,03244	S_5			-	-	S_1	-		
9 1 65 0,03244 - S ₁ - S ₄ - S ₅ - 10 0 0 65 0,03244 - S ₁ - S ₁ - S ₄ - S ₅ - 11 1 1 65 0,03244 - S ₄ S ₁ - S ₅ - 12 0 65 0,03244 - S ₄ S ₅ - S ₁ - S ₂ - 12 0 65 0,03244 - S ₄ S ₅ - S ₁ - S ₁ - S ₅ - 13 1 65 0,03244 - S ₄ - S ₁ - S ₅ - S ₁ - S ₅ - 14 0 65 0,03244 - S ₄ - S ₁ - S ₅ - S ₅ - S ₁ 1 - S ₅ - 14 0 0 65 0,03244 - S ₄ - S ₁ - S ₅ - S ₁ - S ₅ - S ₁ 1		1	65	0,03244	-	S_1		-	-	S_5	-		
10 0 65 0,03244 - S1 - S4 - - S5 - - S1 - - S5 - - S4 - S1 - - S6 - - S4 - S1 - - S1 - - S1 - - S2 S4 - -	8	1	65	0,03244	-	S_1	S_5	-	-	S_4	-		
11 1 65 0,03244 - S ₄ S ₁ - - S ₅ - 12 0 65 0,03244 - S ₄ S ₅ - - S ₁ - 13 1 65 0,03244 - S ₄ - S ₁ - S ₅ - 14 0 65 0,03244 - S ₅ S ₁ - - S ₄ - S ₅ S ₁ - - S ₄ - S ₅ S ₁ - - S ₄ - S ₅ S ₁ - - S ₂ - - S ₂ - - S ₂ -		1			-	S_1			-	S_5			
12 0 65 0,03244 - S4 S5 S1 - S1 - S5 - S1 - S5 - S1 - S5 - S5	10	0	65	0,03244	-			S_4	-	-	S_5		
13 1 65 0,03244 - S4 - S1 - S5 - 14 0 65 0,03244 - S4 - S1 - - S8 - - S8 - - S4 - - S4 - - S4 - - S8 - - S4 - - S8 - - S4 - - S1 - - S4 - - S1 - - S1 - - S1 - - S1 - - S2 - - S1 - - S1 - - S1 - - S1 - - S2 - - S1 - - S1 - - S2 - - S1 - - S2 - - S2 - - S2 <td>11</td> <td>1</td> <td>65</td> <td>0,03244</td> <td>-</td> <td></td> <td>S_1</td> <td>-</td> <td>-</td> <td>S_5</td> <td>-</td>	11	1	65	0,03244	-		S_1	-	-	S_5	-		
14 0 65 0,03244 - S4 - S1 - - S5 1 - - S4 - - S5 S1 - - S4 - - S1 - - S2 - - S1 - - S1 - - S2 - - S2 -	12	0	65	0,03244	-		S_5	-	-		-		
15 1 65 0,03244 - S5 S1 - - S4 - Метод оценки «недопокрытия» справа ЦЛП Задача «О ранце» ЛП Число пройденных узлов 934 934 1590 Время счета, 5,412 5,136 3,613	13	1	65	0,03244	-	S_4	-	S_1	-	S_5			
16 0 65 0,03244 - S ₅ S ₄ - - - S ₁ - S ₁ - S ₁ - - S ₁ - <td>14</td> <td>0</td> <td>65</td> <td>0,03244</td> <td>-</td> <td></td> <td></td> <td>S_1</td> <td>-</td> <td>-</td> <td>S_5</td>	14	0	65	0,03244	-			S_1	-	-	S_5		
Метод оценки «недопокрытия» справа Число пройденных узлов Время счета, 5,412 ДЛП Задача «О ранце» ЛП 3адача «О ранце» ЛП 590 5136			65	0,03244	-			-	-		-		
«недопокрытия» справа ЦЛП Задача «О ранце» ЛП Число пройденных узлов 934 934 1590 Время счета, 5,412 5,136 3,613	16	0	65	0,03244	-	S_5	S_4	-	-	S_1	-		
справа Число пройденных 934 934 1590 Время счета, 5,412 5,136 3,613	Μ	етод оценки											
справа Число пройденных 934 934 1590 узлов Время счета, 5,412 5,136 3,613	«не	попокрытия»	,		Зал	ача. «О) ранце»		ЛП				
Число пройденных узлов 934 934 1590 Время счета, 5,412 5,136 3,613	WIIC	•					, a 1a	о ранце»					
пройденных 934 934 1590 узлов		справа											
узлов Время счета, 5,412 5,136 3,613		Число											
узлов Время счета, 5,412 5,136 3,613	п	ройленных		934		93	34		1590				
Время счета, 5,412 5,136 3,613		•						-					
счета, 5,412 5,136 3,613		узлов											
		Время											
		счета.		5.412			5 136				3.613		
CEK		ŕ	`	~, -			٠,٠	3,013					
		сек											

Приложение Б

Численный пример оптимального размещения базовых станций для обслуживания заданного множества рассредоточенных объектов

Рассмотрим пример для оптимизационной задачи выбора набора размещаемых станций и определения мест их размещения. Задано множество рассредоточенных объектов A_1 , $|A_1|=4$ и шлюз (таблица 9).

Задано множество A_2 возможных мест расположения станций, $|A_2|=4$. Все вершины представлены на рисунке Б.1.

Задано ограничение по мощности для кадого объекта (таблица 10).

Задано множество типов станций (таблица 11).

Необходимо разместить станции таким образом, чтобы минимизировать их суммарную общую стоимость. Построим граф сети H для данного набора типов станции. Матрица смежности представлена на рисункке B.2

Таблица 9 — Координаты размещения

0	(7,4)	Координаты шлюза
1	(1, 5)	Координаты объектов
2	(4.5, 4)	
3	(6, 3)	
4	(3.5, 5)	
5	(2, 4)	Координаты размещения станций
6	(5, 5)	
7	(2, 6)	
8	(6, 5.5)	

Таблица 10 — Координаты размещения

Объекты	1	2	3	4
Мощность	10	15	17	18

Рисунок Б.1 — Координаты размещения

Таблица 11 — Множество типов станций

Тип	Мощность, ϑ_j	Радиус покрытия, r_j	Радиус связи, R_j	Стоимость, c_j
1	80	1	6	70
2	100	2	5	75
3	100	2	5	75

На основе матрицы смежности полученного графа запишем систему равенств и неравенств(3.5) — (3.10) и решим задачу частично целочисленного ЛП. В ходе решения мы получили следующее размещение станции (рис. $\overline{\text{B.3}}$)

Из графика видно, что были размещены на точках 7 и 8 две станции типа 2 и 3, соответственно. Решением задачи является суммарная стоимость равная: f=160.

Алгоритмы построения графов H были запрограммированы на языке Python. Задачи, сформулированные на основании графов H в виде соответствующих задач математического программирования, были решены пакетом

	a_0	a_1	a_2	a_3	a_4	a_5s_1	a_6s_1	a_7s_1	a_8s_1	a_5s_2	a_6s_2	a_7s_2	a_8s_2	a_5s_3	a_6s_3	a_7s_3	a_8s_3
a_0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>a</i> ₁	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
a_2	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	1
<i>a</i> ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
a_4	1	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1
a_5s_1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
a_6s_1	1	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1
a_7s_1	1	0	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1
a_8s_1	0	0	0	0	0	1	1	1	0	1	1	1	1	1	1	1	1
a_5s_2	1	0	0	0	0	1	1	1	1	0	1	1	1	1	1	1	1
a_6s_2	0	0	0	0	0	1	1	1	1	1	0	1	1	1	1	1	1
a_7s_2	1	0	0	0	0	1	1	1	1	1	1	0	1	1	1	1	1
a_8s_2	1	0	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1
a_5s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1
a_6s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	1
a_7s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	1
a_8s_3	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0

Рисунок Б.2 — Координаты размещения

Таблица 12 — Множество типов станций

Количество	Количество мест	Среднее время
объектов, n_1	размещения станций, $n-n_1$	счета, сек.
4	3	12,34
4	4	12,42
4	5	12,31
6	6	11,20
8	7	11,27
10	7	12,32
12	10	12,51
14	7	12,42
17	8	12,18
21	8	12,53
25	8	14,22

Optimization Toolbox MATLAB. В таблице 4 представлены результаты времени счета задач частично целочисленного ЛП для различных случаев числа мест размещения станций и числа объектов. Для каждого случая было проведено по 10 примеров.

Рисунок Б.3 — Координаты размещения

Приложение В

Численный пример оптимального размещения базовых станций сети с линейной топологией в виде задачи ЦЛП

В этой секции представлен численный пример решения данной задачи.

Задан линейный участок L с длиной 300 с количеством n=7 точек размещения. Координаты точек размещения представлены в таблице 13. Задан бюджет размещения C=130. Центарльная частота $f=2437~{\rm M}\Gamma$ ц.

a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7
Координата	29	40	95	139	181	230	273

Таблица 13 — Точки размещения участка с длиной L=300.

Задано множества базовых станций m=8 с параметрами представленными в таблице 14. Также в таблице представлены параметры шлюзов и контролируемых объектов. Параметры объектов необходимы для расчета радиусов покрытия станций.

BS	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	P_{recv}^r	G^r_{recv}	c
	дБм	дБ	Дбм	дБм	дБ	y.e.
1	20	5	-69	-67	5	40
2	19	5	-67	-67	5	28
3	18	5	-69	-67	5	45
4	19	5	-69	-67	6	22
5	19	5	-67	-67	5	21
6	20	5	-69	-67	5	40
7	19	5	-67	-67	5	28
8	18	5	-69	-67	5	45
	G_{recv}^R	P_{recv}^R			P_{tr}^r	G_{tr}^{r}
Шлюз	дБ	дБм		Объект	дБм	дБ
	5	-69			15	2

Таблица 14 — Параметры базовых станций, шлюзов и объектов.

Расчет радиса связи между станциями Базовые станции оснащены направленной антенной с высоким коэффициентом усиления для связи с соседними станциями. Для расчета потерь между станциями j и q воспользуемся формулой (1.4):

$$L_{fs}^{jq} = P_{tr}^{R}(j) - L_{tr} + G_{tr}^{R}(j) + G_{tr}^{R}(q) - L_{recv} - SOM - P_{recv}^{R}(q).$$

Потери на кабелях приемникп L_{recv} и передатчике L_{tr} примем равным 1 дБ и запас на замирания сигнала SOM=10 дБ.

Let us carry out an example of the calculation communication link between stations s_1 and s_2 : Для примера расчетаем радиус связи между станциями s_1 и s_2 :

$$L_{fs}^{12} = P_{tr}^{R}(1) - L_{tr} + G_{tr}^{R}(1) + G_{tr}^{R}(2) - L_{recv} - SOM - P_{recv}^{R}(2) =$$

$$= 20 - 1 + 5 + 5 - 1 - 10 - (-69) = 87(dB).$$
(B.1)

Для расчета канала связи необходимо использовать формулу (1.5). Несущая частота $f=2437~\mathrm{M}\Gamma$ ц и коэффициент для расчета потерь K=-27,55:

$$R_{jq} = 10^{\left(\frac{L_{fs}^{jq} - 20 \lg F - K}{20}\right)} = 10^{\left(\frac{87 - 20 \lg 2437 - (-27.55)}{20}\right)} = 174(m).$$
(B.2)

В таблице 15 приведены расчеты максимальных радиусов связи между всеми станциями $s_j,\ j=1,...,m$ и шлюзом $s_{m+1}.$

$R_{jq},(m)$	s_1	s_2	s_3	S_4	s_5	s_6	S_7	s_8	s_{m+1}
s_1	_	174	219	219	174	219	174	219	219
s_2	195	_	195	195	155	195	155	195	195
s_3	174	138	_	174	138	174	138	174	174
s_4	195	155	195	_	155	195	155	195	195
s_5	195	155	195	195	_	195	155	195	195
s_6	219	174	219	219	174	_	174	219	219
s_7	195	155	195	195	155	195	_	195	195
s_8	174	138	174	174	138	174	138	_	174

Таблица 15 — Рассчитанные радиусы связи между станциями

Расчет радиуса покрытия

Расчет проводится аналогично расчета радиусу связи между станциями. Потери в свободном простанстве для канала между j-ой станции и контролируемым объектом

$$L_{fs}^{j} = P_{tr}^{r}(j) - L_{tr} - SOM - P_{RX}.$$

Пример расчечта радиуса покрытия для 1-ой станции:

$$L_{fs}^{1} = P_{tr}^{r} + G_{tr}^{r} + G_{recv}^{r}(1) - L_{recv}(1) - SOM - P_{recv}^{r}(1) =$$

$$= 15 + 2 + 5 - 1 - (-67) - 10 = 78 \text{ (дБ)}.$$
(B.3)

$$r_1 = 10^{\left(\frac{78 - 20 \lg 2437 - (-27.55)}{20}\right)} = 77 \text{ (M)}.$$

Рассчитанные радиусы покрытия для всех станций $s_j, j = \overline{1,m}$ представлены в таблице 16).

STA	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8
r_j	77	77	77	87	77	77	77	77

Таблица 16 — Рассчитанные радиусы покрытия станций

Задача ЦЛП решена с помощью Optimization Toolbox MatLab. Таблица 17 содержит все полученные целочисленные решения.

a_i		a_2	a_3	a_4	a_5	a_6	a_7	Покрытие	Цена
Координаты	29	40	95	139	181	230	273	М	y.e.
Целлочисленное решение 1	s_1	s_2	s_6	_	_	_	s_4	286	130
Целлочисленное решение 2	s_4	_	s_5	s_7	_	-	s_2	289	99
Оптимальное решение	s_4	s_2	_	_	s_1	_	s_5	300	111

Таблица 17 — Решение задачи ЦЛП.

Приложение Г

Сравнения оценок «недопокрытия» для задачи 2, 3 и 4

В таблице 18 приведены результаты вычислительного эксперимента, показывающего время решения $\underline{sadav}\ 2,\ 3,\ 4$ и относительную точность $\underline{sadavu}\ 3,\ 4$ по отношению к $\underline{sadave}\ 2$. Для непокрытого участка заданной длины $|\beta|=50$, варьируя количеством неразмещенных станций, а также количеством свободных мест размещения рассчитаем оценку недопокрытия при бюджетном ограничении C=600. Как видно из результатов расчетов, представляется целесообразным для решения задач большой размерности использовать в качестве оценки $w_2(G_{\nu})$ $\underline{sadavy}\ 3$, так как время ее расчета в виде задачи линейного программирования существенно ниже с учетом высокой точности.

Таблица 18 — Сравнения оценок «недопокрытия» для задачи ЦЛП и ЛП

Количество	Количество	цлп			Задача о ранце		ЛП			
точек размещения, т	свободных $^{ m cтанций}, \ S_{eta} $	Время расчета, с	Недопокрытие, <i>z</i>	Время расчета, с	Недопокрытие, <i>z</i>	Точность, %	Время расчета, с	Недопокрытие, <i>z</i>	Точность, %	
_		сек		сек			сек			
5	6	0,3250	436,00	0,3214	426,00	97,71	0,0047	436,00	100,00	
5	8	0,3218	431,00	0,3582	398,00	92,34	0,0045	431,00	100,00	
8	10	0,3765	395,00	0.3621	375,00	94,94	0,0094	395,00	100,00	
8	12	0,3746	390,00	0.2977	347,00	88,97	0,0094	390,00	100,00	
12	15	0,3363	339,00	0.2960	309,00	91,15	0,0114	339,00	100,00	
12	17	0,4072	336,00	0.3456	283,00	84,23	0,0136	336,00	100,00	
18	20	0,3558	265,00	0.3407	265,00	100,00	0,0121	265,00	100,00	
18	25	0,3794	260,00	0.3096	259,00	99,62	0,0169	257,60	99,08	
25	30	0,3177	246,00	0.3576	246,00	100,00	0,0222	244,33	99,32	
25	45	0,3539	229,00	0.3556	229,00	100,00	0,0494	226,40	98,86	
30	50	0,2994	225,00	0.3146	225,00	100,00	0,0570	224,13	99,61	
30	100	0,5179	223,00	0,5177	223,00	100,00	0,1513	218,75	98,09	