Package 'MARX'

April 20, 2018
Title Simulation, Estimation and Selection of MARX Models
Version 0.2
Date 2018-04-20
Author Sean Telg [aut, cre, cph], Alain Hecq [ctb], Lenard Lieb [ctb]
Maintainer Sean Telg <j.telg@maastrichtuniversity.nl></j.telg@maastrichtuniversity.nl>
Description Simulate, estimate (by t-MLE), select and forecast mixed causal-noncausal autoregressive models with possibly exogenous regressors, using methods proposed in Lanne and Saikko nen (2011) <doi:10.2202 1941-1928.1080=""> and Hecq et al. (2016) <doi:10.15609 annaeconstat2009.123-124.0307="">.</doi:10.15609></doi:10.2202>
Imports matlab, fBasics, tseries, stabledist, metRology
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
R topics documented:

Index

aic	2
arx.ls	2
pic	3
commodity	4
companion.form	5
compute.MA	5
Forecast.marx	6
19	7
•	7
nference	
	8
	9
marx.t	10
mixed	11
oseudo	12
regressor.matrix	13
selection.lag	13
selection.lag.lead	14
sim.marx	15
	16

2 arx.Is

aic

The Akaike information criterion (AIC) function

Description

This function allows you to calculate the Akaike information criteria (AIC) for ARX models.

Usage

```
aic(y, x, p_max)
```

Arguments

y Data vector of time series observations.

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p_max Maximum number of autoregressive terms to be included.

Value

p Lag order chosen by AIC.

values Vector containing values AIC for p = 0 up to p_max .

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
 aic(data\$y, data\$x,8)
```

arx.ls

The ARX estimation by OLS function

Description

This function allows you to estimate ARX models by ordinary least squares (OLS).

Usage

```
arx.ls(y, x, p)
```

Arguments

y Data vector of time series observations.

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p Number of autoregressive terms to be included.

bic 3

Value

coefficients Vector of estimated coefficients.

coef.auto Vector of estimated autoregressive parameters.
coef.exo Vector of estimated exogenous parameters.

mse Mean squared error.

residuals Residuals.

loglikelihood Value of the loglikelihood.

fitted.values Fitted values.

df Degrees of freedom.

vcov Variance-covariance matrix of residuals.

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',3,1),c('t',1,1),100,0.5,0.4,0.3)
 arx.ls(data\$y,data\$x,2)
```

bic

The Bayesian/Schwarz information criterion (BIC) function

Description

This function allows you to calculate the Bayesian/Schwarz information criteria (BIC) for ARX models.

Usage

```
bic(y, x, p_max)
```

Arguments

y Data vector of time series observations.

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p_max Maximum number of autoregressive terms to be included.

Value

p Lag order chosen by BIC.

values Vector containing values BIc for p = 0 up to p_max .

Author(s)

Sean Telg

4 commodity

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
bic(data$y, data$x,8)
```

commodity

Data: Monthly growth rates of commodity prices, exchange rate and industrial production index.

Description

Monthly growth rates of commodity prices, exchange rate and industrial production index from February 1980 until October 2010. Levels of these series can be downloaded from IMF and Federal Reserve Bank of St. Louis.

Usage

```
data("commodity")
```

Format

A data frame with 441 observations on the following 8 variables.

X_date_ a vector with dates

dlnbev a numeric vector

dlnind a numeric vector

dlnrawm a numeric vector

dlnmeta a numeric vector

dlnoil a numeric vector

dlnipi a numeric vector

dlnex a numeric vector

Source

IMF Primary Commodity Prices (http://www.imf.org/external/np/res/commod/index.aspx) and Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org).

Examples

```
data(dataset)
```

companion.form 5

companion.form

Companion form function

Description

This function allows you to compute a companion form matrix in order to check the stability of causal and noncausal part of the ARX model.

Usage

```
companion.form(pol)
```

Arguments

pol

Coefficient vector. If polynomial is 1 - ax - bx^2, coefficient vector is c(a, b).

Value

С

Companion matrix C.

Author(s)

Sean Telg

Examples

```
pol <- c(0.3,0.4)
C <- companion.form(pol)</pre>
```

compute.MA

Coefficients of the moving average representation function

Description

This function allows you to invert a polynomial (either the causal or the noncausal one) and output the corresponding coefficients of the moving average representation.

Usage

```
compute.MA(pol, M)
```

Arguments

М

Coefficient vector. If polynomial is 1 - ax - bx^2 , coefficient vector is c(a, b).

Truncation value M (how many MA coefficients should be computed?).

Value

psi Vector containing coefficients of the moving average representation.

6 forecast.marx

Author(s)

Sean Telg

Examples

```
pol <- c(0.3,0.4)
psi <- companion.form(pol)</pre>
```

forecast.marx

Forecasting function for the MARX model

Description

This function allows you to forecast with the mixed causal-noncausal model with possibly exogenous regressors.

Usage

```
forecast.marx(y, X, p_C, p_NC, X.for, h, M)
```

Arguments

У	Data vector y.
Χ	(optional) Matrix with data (column represent a series).
p_C	Number of lags (causal order).
p_NC	Number of leads (noncausal order).
X.for	(optional) Matrix with forecasted values for X (column represents series).
h	Forecast horizon h.
М	(optional) Truncation value M. Default value is set to 50.

Value

y. for Vector containing forecasted values for y.

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',2,2), c('t',3,1), 100, c(0.3,0.4), 0.2, 0.5)

x.for <- forecast.marx(y=data$x, p_C=1, p_NC=0,h=30) ## One has to identify model for X

y.for <- forecast.marx(y=data$y, X=data$x, p_C=2, p_NC=1, X.for=x.for, h=8)
```

hq 7

hq

The Hannan-Quinn (HQ) information criterion function

Description

This function allows you to calculate the Hannan-Quinn (HQ) information criteria for ARX models.

Usage

```
hq(y, x, p_max)
```

Arguments

y Data vector of time series observations.

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p_max Maximum number of autoregressive terms to be included.

Value

p Lag order chosen by HQ.

values Vector containing values HQ for p = 0 up to p_max .

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
hq(data$y, data$x,8)
```

inference

Asymptotic inference for the MARX function

Description

This function allows you to calculate standard errors and confidence intervals for parameters of the MARX model.

Usage

```
inference(y, x, B_C, B_NC, B_x, IC, sig, df, sig_level)
```

8 *II.max*

Arguments	A	rgi	um	en	ts
-----------	---	-----	----	----	----

У	Data vector of time series observations.
х	Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
B_C	Estimated causal parameters of the MARX.
B_NC	Estimated noncausal parameters of the MARX.
B_x	Estimated parameters of the exogenous variables in the MARX.
IC	Estimated intercept.
sig	Estimated scale parameter of the assumed underlying Student-t distribution of the residuals.
df	Estimated degrees of freedom of the assumed underlying Student-t distribution of the residuals.
sig_level	Significance level for the construction of inference.

Value

CI.c	Confidence intervals for causal parameters.
CI.nc	Confidence intervals for noncausal parameters.
CI.exo	Confidence intervals for exogenous parameters.
CI.int	Confidence interval for intercept.
se.c	Standard errors of causal parameters.
se.nc	Standard errors of noncausal parameters.
se.exo	Standard errors of exogenous parameters.
se.int	Standard error of intercept.

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
y <- data$y
x <- data$x
res <- marx.t(y,x,1,1)
inference(y,x,res$coef.c,res$coef.exo,res$coef.int,res$scale,res$df,0.05)</pre>
```

11.max

The value of the t-log-likelihood for MARX function

Description

This function allows you to determine the value of the t-log-likelihood for the MARX model.

Usage

```
11.max(params, y, x, p_C, p_NC)
```

marx 9

Arguments

params	List of parameters.
У	Data vector of time series observations.
X	Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
p_C	Number of lags.
p_NC	Number of leads.

Value

```
neg.loglikelihood
```

Minus the loglikelihood.

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
y <- data$y
x <- data$x
p_C <- 1
p_NC <- 1
params <- c(0.5,0.4,0.3,0,1,1)
ll.max(params,y,x,p_C,p_NC)</pre>
```

marx

The MARX function

Description

This interface-based function allows you to perform model selection for MARX models based on information criteria.

Usage

```
marx(y, x, p_max, sig_level, p_C, p_NC)
```

Arguments

У	Data vector of time series observations.
х	Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
p_max	Maximum number of autoregressive parameters (leads + lags) to be included.
sig_level	Significance level for the construction of inference.
p_C	Number of lags (if not specified by the user a model selection procedure is used to determine the number of lags).
p_NC	Number of leads (if not specified by the user a model selection procedure is used to determine the number of leads).

10 marx.t

Details

Mixed causal-noncausal autoregressions with exogenous regressors.

Value

The function returns the values of the information criteria for the pseudo-causal models. The user is asked to choose a value for "p". Extensive output for the MARX(r,s,q) model (with p=r+s) which maximizes the log-likelihood is reported.

Author(s)

Sean Telg

Examples

```
 \begin{array}{l} {\rm data} < - \sin . {\rm marx}(c('t',1,1),\ c('t',1,1),100,0.5,0.4,0.3) \\ {\rm p\_max} < - \ 8 \\ {\rm sig\_level} < - \ 0.05 \\ {\rm marx}({\rm data\$y,\ data\$x,\ p\_max,\ sig\_level,1,1}) \ \# \ p\_C \ {\rm and\ p\_NC\ chosen\ to\ be\ 1:\ MARX}(1,1,1) \ {\rm output.\ marx}({\rm data\$y,\ NULL,\ p\_max,sig\_level,1,1}) \ \# \ MAR}(1,1), \ {\rm no\ exogenous\ variable\ specified.} \\ \end{array}
```

marx.t

The estimation of the MARX model by t-MLE function

Description

This function allows you to estimate the MARX model by t-MLE.

Data and an aftime and a sharmotion

Usage

```
marx.t(y, x, p_C, p_NC, params0)
```

Arguments

У	Data vector of time series observations.
Х	Matrix of data (every column represents one time series). Specify NULL or "not" if not wanted.
p_C	Number of lags.
p_NC	Number of leads.
params0	Starting values for the parameters to be estimated (both model and distributional parameters).

Value

coef.c	Estimated causal coefficients.
coef.nc	Estimated noncausal coefficients.
coef.exo	Estimated exogenous coefficients.
coef.int	Estimated intercept.
scale	Estimated scale parameter.
df	Estimated degrees of freedom.
residuals	Residuals.
se.dist	Standard errors of the distributional parameters

mixed 11

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',3,1),c('t',3,1),100,0.5,0.4,0.3)

marx.t(data\$y,data\$x,1,1)
```

mixed

The MARX estimation function

Description

This function allows you to estimate mixed causal-noncausal MARX models by t-MLE (compatible with most functions in lm() class).

Usage

```
mixed(y, x, p_C, p_NC)
## Default S3 method:
mixed(y, x, p_C, p_NC)
## S3 method for class 'mixed'
print(x, ...)
## S3 method for class 'mixed'
summary(object, ...)
```

Arguments

NULL or

Value

An object of class "mixed" is a list containing the following components:

coefficients Vector of estimated coefficients.

se Standard errors of estimated coefficients.

df.residual Degrees of freedom residuals.

 $\begin{tabular}{ll} residuals & Residuals. \\ fitted.values & Fitted values. \\ \end{tabular}$

order Vector containing (r,s,q), i.e. causal order r, noncausal order s, number of ex-

ogenous regressors q.

12 pseudo

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)

object <- mixed(data\$y, data\$x, 1, 1)

class(object) <- "mixed"

summary(object)
```

pseudo

The pseudo-causal model function

Description

This function allows you to estimate pseudo-causal ARX models by OLS (compatible with most functions in lm() class).

Usage

```
pseudo(y, x, p)
## Default S3 method:
pseudo(y, x, p)
## S3 method for class 'pseudo'
print(x, ...)
## S3 method for class 'pseudo'
summary(object, ...)
```

Arguments

"not" if not wanted. p Number of lags to be included. Other arguments	У	Data vector of time series observations.
Other arguments	х	
	p	Number of lags to be included.
object An object of the class "pseudo"		Other arguments
	object	An object of the class "pseudo"

Value

An object of class "pseudo" is a list containing the following components:

coefficients Vector of estimated coefficients.

coef.auto Vector of estimated autoregressive parameters. coef.exo Vector of estimated exogenous parameters.

mse Mean squared error.

residuals Residuals.

loglikelihood Value of the loglikelihood.

fitted.values Fitted values.

df Degrees of freedom.

vcov Variance-covariance matrix of residuals.

regressor.matrix 13

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)

object <- pseudo(data\$y, data\$x, 2)

class(object) <- "pseudo"

summary(object)
```

regressor.matrix

The regressor matrix function

Description

This function allows you to create a regressor matrix.

Usage

```
regressor.matrix(y, x, p)
```

Arguments

y Data vector of time series observations.

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p Number of autoregressive terms to be included.

Value

Z Regressor matrix

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',3,1),c('t',1,1),100,0.5,0.4,0.3)
regressor.matrix(data$y, data$x, 2)
```

selection.lag

The model selection for pseudo-ARX function

Description

This function allows you to calculate AIC, BIC, HQ for pseudo-ARX models.

Usage

```
selection.lag(y, x, p_max)
```

14 selection.lag.lead

Arguments

y Data vector of time	e series observations.
-----------------------	------------------------

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p_max Maximum number of autoregressive terms to be included.

Value

bic	Vector containing values BIC for p=0 up to p_max.
aic	Vector containing values AIC for p=0 up to p_max.
hq	vector containing values HQ for p=0 up to p_max.

Author(s)

Sean Telg

Examples

```
data <- sim.marx(c('t',1,1), c('t',1,1),100,0.5,0.4,0.3)
selection.lag(data$y,data$x,8)
```

selection.lag.lead

The lag-lead model selection for MARX function

Description

This function allows you to determine the MARX model (for p = r + s) that maximizes the t-log-likelihood.

Usage

```
selection.lag.lead(y, x, p_pseudo)
```

Arguments

y Data vector of time series observations.

x Matrix of data (every column represents one time series). Specify NULL or

"not" if not wanted.

p_pseudo Number of autoregressive terms to be included in the pseudo-causal model.

Value

p.C The number of lags selected.p.NC The number of leads selected.

loglikelihood The value of the loglikelihood for all models with p = r + s.

Author(s)

Sean Telg

sim.marx 15

Examples

```
data <- sim.marx(c('t',3,1), c('t',3,1),100,0.5,0.4,0.3)
selection.lag.lead(datay,datax,2)
```

sim.marx

The simulation of MARX processes

Description

This function allows you to simulate MARX processes based on different underlying distribution.

Usage

```
sim.marx(dist.eps, dist.x, obs, c_par, nc_par, exo_par)
```

Arguments

dist.eps	vector containing the error distribution and its parameters (options: t, normal, stable).
dist.x	vector containing the distribution of x and its parameters (options: t, normal, stable). Specify NULL or "not" if not wanted.
obs	Number of observations for simulated process.
c_par	vector of causal parameters.
nc_par	vector of noncausal parameters.
exo_par	Parameter of the exogenous variable.

Value

```
y Simulated data y.
```

x Simulated data x (exogenous variable).

Author(s)

Sean Telg

Examples

```
dist.eps <- c('t',1,1) ## t-distributed errors with 1 degree of freedom and scale parameter 1 dist.x <- c('normal',0,1) ## standard normally distributed x variable obs <- 100 c_par <- c(0.2,0.4) nc_par <- 0.8 exo_par <- 0.5 sim.marx(dist.eps,dist.x,obs,c_par,nc_par,exo_par) ## Simulates a MARX(2,1,1) process
```

Index

*Topic causal-noncausal inference, 7 marx.t, 10	commodity, 4 companion.form, 5 compute.MA, 5
mixed, 11 selection.lag.lead, 14 *Topic datasets	dataset (commodity), 4
commodity, 4 *Topic estimation arx.ls, 2	forecast.marx, 6 hq, 7
marx, 9 marx.t, 10 mixed, 11	inference, 7
pseudo, 12 regressor.matrix, 13	11.max, 8 marx, 9
*Topic forecasting forecast.marx, 6 *Topic inference	marx.t, 10 mixed, 11
<pre>inference, 7 *Topic optimization 11.max, 8</pre>	<pre>print.mixed (mixed), 11 print.pseudo (pseudo), 12 pseudo, 12</pre>
*Topic pseudo-causal arx.1s, 2 pseudo, 12	regressor.matrix, 13
selection.lag, 13 *Topic selection aic, 2	selection.lag, 13 selection.lag.lead, 14 sim.marx, 15
bic, 3 hq, 7 marx, 9	summary.mixed (mixed), 11 summary.pseudo (pseudo), 12
selection.lag, 13 selection.lag.lead, 14 *Topic simulation	
*Topic Smithation sim.marx, 15 *Topic stability, companion.form, 5 compute.MA, 5	
*Topic stationarity companion.form, 5 compute.MA, 5	
aic, 2 arx.ls, 2	
bic, 3	