MA 181102

Roll No. of candidate

2021

B.Tech. 1st Semester End-Term Examination

MATHEMATICS-I

New Regulation (w.e.f 2017-18)

New Syllabus - Group A (w.e.f. 2018-19)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Choose the appropriate answer:

 $(10\times 1=10)$

- (i) The value of $\int_{0}^{\frac{\pi}{2}} \cos^{6} x \, dx$ is equal to
 - (a) $\frac{15}{96}\pi$

(b) $\frac{96}{15}\pi$

(c) $\frac{1}{96}\pi$

- (d) 15n
- (ii) The total volume of the solid of revolution generated by the curve y = f(x) bounded between $x = x_0$ and $x = x_1$ is
 - (a) $\int_{x_0}^{x_1} x^2 dx$

(b) $\int_{x_0}^{x_1} x^2 \, dy$

(c) $\int_{x_0}^{x_1} y^2 dx$

- (d) $\pi \int_{x_0}^{x_1} y^2 dx$
- (iii) $\beta\left(\frac{1}{2},\frac{1}{2}\right)$ is equal to
 - (a) $\frac{\pi}{2}$

(b)

(c) -π

(d) 0

[Turn over

- (iv) If $y = \log x$ then n^{th} derivative of y is
 - (a) $\frac{(-1)^n n!}{r^n}$

(b) $\frac{(-1)^{n-1}(n-1)!}{r^n}$

- None of these
- (c) $\frac{(-1)^n (n-1)!}{x^{n-1}}$ (d) None of these (v) $f(x,y) = \frac{x+y}{\sqrt{x}+\sqrt{y}}$ is a homogeneous function of degree

1/2 (b)

- (d) None of the above
- (vi) If f(x,y)=0 then $\frac{dy}{dx}$ is equal to
 - (a) $\frac{\partial f}{\partial x}$

(b) $-\frac{\partial f}{\partial x}/\partial f$

(c) $\frac{\partial f}{\partial y} / \frac{\partial f}{\partial y}$

- (d) $-\frac{\partial f}{\partial y}/\underline{\partial f}$
- (vii) $\iiint_{a}^{b} dz dy dx$ is equal to
 - (a) a+b+c+d+e+f
- (b) (b-a)(d-c)(f-e)

(c) abcdef

- (d) (a+b)(c+d)(e+f)
- (viii) If A is a non-singular $n \times n$ matrix then
 - (a) $\rho(A) = 0$

 $\rho(A) = n$ (b)

 $\rho(A) = -n$

- (d) None of these
- (ix) If λ be an eigen value of a matrix A then λ^{-1} is an eigen value of
 - (a) A

 A^{-1} (c)

- (d) $\frac{\lambda}{|A|}$
- A system of homogeneous linear equation AX = 0 is always
 - (a) Consistent

- (b) Inconsistent
- Has a unique solution (c)
- Has an infinite number of solutions (d)

- 2. (a) Find the reduction formula for $\int \sin^n x \, dx$. (5)
 - (b) If the cardioide $r = a(1 \cos \theta)$ is rotated about the initial line, find the area of the solid of revolution generated. (5)
 - (c) Evaluate $\int_{1+x^2}^{\infty} \frac{dx}{1+x^2}$. (5)
- 3. (a) Find y_n if $y = x^2 e^{ax}$. (3)
 - (6) If $y = \cos(\log x)$ prove that $x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2-1)y_n = 0$. (5)
 - (c) Evaluate any one (3)
 - (i) $\lim_{x \to 0} \frac{\tan x x}{x \sin x}$
 - (ii) $\lim_{x\to 0} \left(\frac{1}{x^2}\right)^{\tan x}.$
 - (d) Find the radius of curvature of the cycloid $x = a(\theta + \sin \theta)$ $y = a(1 \cos \theta)$ at the point θ .
- 4. (a) Find the Fourier series for the function $f(x) = x^2, -\pi \le x \le \pi$. Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$ (6+2=8)
 - (b) Discuss the convergence of the series $\sum_{n=0}^{\infty} \left(1 + \frac{1}{n}\right)^{-n^2}$ (3)
 - (c) If $u = x^y$, show that $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y \partial z}$. (4)
- 5. (a) If u = f(r), where $r = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$. (5)
 - (b) If u = f(y z, z x, x y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. (5)
 - (c) Expand f(x) = x in a half range sine series in 0 < x < 2. (3)
 - (d) If A is an orthogonal matrix prove $|A| = \pm 1$. (2)

- 6. (a) Prove that the inverse of an orthogonal matrix is orthogonal and its transpose is also orthogonal. (2+2=4)
 - (b) Find the inverse of $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ by using elementary row transformations.
 - (c) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$. (4)

(4)

- (d) If $u = x\varphi(\frac{1}{2}x) + \psi(\frac{1}{2}x)$ show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = x\varphi(\frac{1}{2}x)$. (3)
- 7. (a) Examine for minimum and maximum values: $\sin x + \sin y + \sin(x + y)$. (5)
 - (b) Evaluate $\iint_R y dx dy$, where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$. (5)
 - (c) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. (5)