36. (Qual Spring 2007 #5) Let $F_k \subset [0,1]$ for all $k \in \mathbb{N}$ be measurable sets, such that there exists $\delta > 0$ with $m(F_k) \geq \delta$ for all k. Assume the sequence $a_k \geq 0$ satisfies

$$\sum_{k=1}^{\infty} a_k \chi_{F_k}(x) < \infty$$

for almost every $x \in [0, 1]$. Show that $\sum_{k=1}^{\infty} a_k < \infty$.

We have:

$$\sum_{k=1}^{\infty} a_k \chi_{F_k} = \lim_{\Lambda \to \infty} \sum_{k=0}^{\Lambda} a_k \chi_{F_k}$$

$$\Rightarrow \int_{0}^{\infty} \sum_{k=1}^{\infty} a_k \chi_{F_k}(x) = \int_{0}^{1} \lim_{\Lambda \to \infty} \sum_{k=1}^{\Lambda} a_k \chi_{F_k}(x)$$

$$= \lim_{\Lambda \to \infty} \sum_{k=1}^{\Lambda} a_k \chi_{F_k}(x)$$

$$\Rightarrow \lim_{\Lambda \to \infty} \sum_{k=1}^{\Lambda} a_k \chi_{F_k}(x)$$

and the LHS is finite, so the RHS is also finite. Thus

$$\frac{1}{\delta} \sum_{k=1}^{\infty} a_k \delta = \sum_{k=1}^{\infty} a_k \langle \infty \rangle$$