

FACULTY OF ENGINEERING

Identifying a Trial Population for Clinical Studies on Diabetes Drug Testing with Neural Networks

Tim Löhr

Supervisor: Philipp Schlieper
Machine Learning and Data Analytics for Industry 4.0
Final Presentation
Machine Learning and Data Analytics (MaD) Lab
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
July 15, 2020

Motivation

Use more Machine Learning in Medicine.

To save more lifes.

Figure 1. Al https://www.hhmglobal.com/industry-updates/press-releases/artificial-intelligence-ai-medicine-in-a-block-chain-device

Pave the way

The new **Electronic Patient File** coming into force on 1.1.2021

Jens Spahn German Minister of Health

Figure 2. EHR

https://de.cleanpng.com/png-chs524/download-png.html Figure 3. Jens Spahn https://www.jens-spahn.de/hubfs/Jens Spahn 08 breit.jpeg

Electronic Health Records

Central storage of healthcare encounters

Why?

- (1) Discover novel disease treatments
- (2) Improve patients diagnosis
- (3) Improve personalized healthcare

Problem Statement

Find a suitable target group of people for a clinical trial test of novel Diabetes drugs or treatments

7 Million cases of **Diabetes** in Germany alone [1]

Figure 7. Diabetes https://www.vectorstock.com/royalty-free-vector/concept-of-diabetes-sugar-vector-18519211

Figure 8. Population https://freesvg.org/vector-image-of-population-icon

[1] https://www.diabetesde.org/ueber diabetes/was ist diabetes /diabetes in zahlen

Related Work

Overview of artificial intelligence in medicine

Amisha¹, Paras Malik¹, Monika Pathania¹, Vyas Kumar Rathaur²

¹Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, ²Department of Paediatrics, Government Doon Medical College, Dehradun, Uttarakhand, India

Evaluating predictive modeling algorithms to assess patient eligibility for clinical trials from routine data

Felix Köpcke^{1*}, Dorota Lubgan², Rainer Fietkau², Axel Scholler³, Carla Nau³, Michael Stürzl⁴, Roland Croner⁵, Hans-Ulrich Prokosch¹ and Dennis Toddenroth¹

Artificial Intelligence Applications in Type 2 Diabetes Mellitus Care: Focus on Machine Learning Methods

Shahabeddin Abhari¹, Sharareh R. Niakan Kalhori¹, Mehdi Ebrahimi^{2,3}, Hajar Hasannejadasl¹, Ali Garavand⁴

- [2] AI in Medicine https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691444/ 2019
- [3] Patient Selection https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029400/pdf/1472-6947-13-134.pdf 2013
- [4] Al against Diabetes https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859270/pdf/hir-25-248.pdf 2020

Research Question

Can Machine Learning be safely applied in the real clinical environment if it just provides enough explainability for its predictions?

- (1) How many metrics are enough?
- (2) Does a combination of metrics improve the overall explainability?

Figure 9. EKG https://wtig.org/wissensdatenbank/ki/explainable-artificial-intelligence-xai-wenn-sich-ki-selbst-erklaeren-muss/

Methods

- (1) Model a Neural Network with TensorFlow
- (2) Explain the model (*why*) with Uncertainty Estimation and Metrics
- (3) Explain the predictions (*how*) with SHAP and LIME

Dataset

From UCI Machine Learning Repository [5]

- Collected 1999-2008 in the USA
- Originally 101766 Samples and 50 Features

Medication codes from the official FDA website [6]:

- Different company, same drug

where NDC Code: 71619-388-60 = Glipzide

and NDC Code: 71619-388-73 = Glipzide

Diagnosis codes from the official ICD website [7]:

- 250.83 stands for type 1 Diabetes

^[5] https://archive.ics.uci.edu/ml/datasets/diabetes

^[6] https://www.accessdata.fda.gov

^[7] https://icdcodelookup.com/icd-10/

Dataset Distribution

Evaluation – Model

- (1) Aleatoric Uncertainty natural
- (2) Epistemic Uncertainty provide more features

Metrics

- (1) Brier score
- (2) AUC score
- (3) F1 score
- (4) Precision score
- (5) Recall Score

Figure 10. Metric SVG https://www.flaticon.com/free-icon/statistics 2004886?term=metrics&page=1&position=24

Evaluation – Predictions

Figure 11. XAI https://codete.com/blog/explainable-ai/

Results – Model Accuracy

(1) Brier Score: 0.335

(2) AUC Score: 0.667

(3) F1 Score: 0.661

(4) Precision Score 0.664

(5) Recall Score: 0.664

Results – Model Accuracy

(1) Brier Score: 0.594

(2) AUC Score: 0.635

(3) F1 Score: 0.577

(4) Precision Score 0.405

(5) Recall Score: 0.405

Results – With different boundaries

Ethnicity FPR

1 week

5 days

3 days

FPR DISPARITY (ETHNICITY)

FPR DISPARITY (ETHNICITY)

Not labeled above: A: Hispanic, 0.87

Not labeled above: A: Hispanic, 0.80

Not labeled above: A: Hispanic, 0.80

Results – Uncertainty Estimation

Gender Disparity

TPR DISPARITY (GENDER)

Not labeled above: A: Unknown/Invalid, -1.71

FPR DISPARITY (GENDER)

Not labeled above: A: Unknown/Invalid, 0.00

TNR DISPARITY (GENDER)

Not labeled above: A: Unknown/Invalid, 1.28

Results – Uncertainty Estimation

Ethnicity Disparity

FPR DISPARITY (RACE)

Not labeled above: A: Hispanic, 0.58

TNR DISPARITY (RACE)

Not labeled above: A: Hispanic, 1.14

TPR DISPARITY (RACE)

Not labeled above: A: Hispanic, 0.89

Results – Uncertainty Estimation

Results – LIME

Real Label: 7

Feature	Value
discharge_disposition_id_1	0.00
admission_source_id_5	0.00
admission_source_id_4	0.00
max_glu_serum_>300	0.00
drug_name_Miglitol	0.00
discharge_disposition_id_15	0.00
admission_source_id_10	0.00
drug_name_Metformin Rosiglitazone	0.00
discharge_disposition_id_27	0.00

Discharge Disposition ID
 discharge_disposition_id_1: Discharged to home discharge_disposition_id_15: 'Discharged/transferred within this institution to Medicare approved swing bed' discharge_disposition_id_27: NaN discharge_disposition_id_6: Discharged/transferred to home with home health service
Admission Source ID
 admission_source_id_5: Transfer from a Skilled Nursing Facility (SNF) admission_source_id_4: Transfer from a hospital admission_source_id_10: Transfer from critial access hospital
admission_source_id_17: NaN
Admission Type ID
admission_type_id_1: Emergency

race_Caucasian	1
gender_Female	1
age_[70-80)	1
admission_type_id_1	1
discharge_disposition_id_6	1
admission_source_id_17	1
max_glu_serum_>300	1
change_Ch	1
readmitted_NO	1
drug_name_Rosiglitazone	1

Results – Shapely

Results – Shapely

Discussion

With just enough explainability, can Machine Learning be applied in the Industry 4.0?

Pros: Cons:

- (1) Support for doctor's decision
- (1) Unstructured data
- (2) Patient selection saves a lot of time
- (2) Can it also be applied for other EHR data?

(3) Possible new insights

(3) Necessary needed data amount unclear

Conclusion

(1) Apply it without additional doctor's approval?

For sure not. What if only one person dies because of a false decision of the Machine Learning model?

(2) Apply it as a support technology?

Sure if a doctor validates the result it can be used to support the clinical trials.

Future Work

- (1) Try different XAI methods
- (2) Try different classifiers:
 Use GPU to train XGBoost -> better results?
- (3) Epistemic Uncertainty:
 Different Neural Network Layers:

 tfp.layers.DenseVariational

FACULTY OF ENGINEERING

Thanks for listening

