

Cleavage sites of endoproteases on the α -chain of GPIb

COPY OF PAPERS
ORIGINALLY FILED

FIG. 1

**COPY OF PAPERS
ORIGINALLY FILED**

FIG. 2

Binding of Y1 and Y17 to platelets in reduced and non-reduced conditions

**Characterization of Optimal Determinants
for Binding of Y1 to It's Ligands**

COPY OF PAPERS
ORIGINALLY FILED

FIG. 3

	Platelets/GC	KG1/RP-HPLC #4
Rec: GP1b 1-340	-	
GP1b 1-480	-	
Glycanase: N	+	+++
N+O	+	+++
Proteases: Mocarhagin	++ (~40kD)	-
O-Sialo Peptidase	++ (~40kD)	-
Ficin	-	-
Trypsine	++ (~40kD)	-
Elastase	++ (~40kD)	++
Sulfatase (Aryl)		-/+

COPY F PAPERS
ORIGINALLY FILED

FIG. 4

**Cleavage of platelets GPIb by O-Sialoglycoprotein
abolishes binding of both Y1 and Y17**

COPY F PAPERS
ORIGINALLY FILED

FIG. 5

Y1 and Y17 binds similar gly cocalycin fragments after cleavage by O-Sialoglycoprotein Endoprotease

COPY F PAPERS
ORIGINALLY FILED

Specific GPIIb Proteolysis Abolishes Y1 Binding to Platelets

FIG. 6

O P E JC-108
SEP 09 2002
PATENT & TRADEMARK OFFICE

COPY OF PAPERS
ORIGINALLY FILED

**Y1 binds N-terminal (His-1 - Glu 282) fragment of
platelet GPIb after cleavage by mocardagin**

FIG. 7

COPY OF PAPERS
ORIGINALLY FILED

FIG. 8

**Binding of Y1 and Y17 to glycocalyxin after
cleavage by molarhagin**

COPY OF PAPERS
ORIGINALLY FILED

FIG. 9

Binding of Y1 and Y17 to platelets

104—

81—

47—

35—

28—

COPY OF PAPERS
ORIGINALLY FILED

FIG. 10

γ_1 and γ_{17} bind glycocalyxin similar after cleavage by Ficin

**COPY F PAPERS
ORIGINALLY FILED**

FIG. 11

COPY OF PAPERS
ORIGINALLY FILED

FIG. 12

Y1 and Y17 reacts with larger cathepsin G cleaved platelets GPIb fragment

COPY OF PAPERS
ORIGINALLY FILED

FIG. 13

COPY OF PAPERS
ORIGINALLY FILED

Cleavage of washed platelets by mocarhagin and cathepsin G

FIG. 14

O I P E JC106
SP 09 2002
PATENTS & TRADEMARK OFFICE

COPY OF PAPERS
ORIGINALLY FILED

FIG. 15

Influence of Y1-scFv on platelets agglutination in
washed platelets

O I P E JC109
SEP 09 2002
PATENT & TRADEMARK OFFICE

COPY OF PAPERS
ORIGINALLY FILED

FIG. 16

FIG. 17

Induction of platelet agglutination by Y1-IgG in washed platelets

COPY OF PAPERS
ORIGINALLY FILED

FIG. 18

Induction of platelet aggregation by Y1-IgG in PRP

COPY OF PAPERS
ORIGINALLY FILED

FIG. 19

**Specificity of Binding of Y1
and α -CD42 (N1-19)
to their Ligands**

FIG. 20

181-B

Y1-B

α -CD42

FIG. 21

**Y1-Ligand from KG1 membranes following
Immuno-Precipitation with Y1:
Purification on RP-HPLC**

COPY OF PAPERS
ORIGINALLY FILED

FIG. 22

Effect of O-Sialo-Glycoprotein Endopeptidase on Y1 Binding

COPY OF PAPERS
ORIGINALLY FILED

FIG. 23

**Effect of Aryl-Sulfatase on Binding of Y1:
RP-HPLC(KG1) & H-B(Heparin-BSA)**

COPY OF PAPERS
ORIGINALLY FILED

Specificity of Y1 Binding: Analysis by Immune Precipitation with Y1 and anti-PsGL-1

FIG. 24

O I P E JC108
SE 09 2002
PATENT & TRADEMARK OFFICE

FIG. 25

α -CD162 and Y1:
Comparison between cells
from AML patient and normal
blood

COPY OF PAPERS
ORIGINALLY FILED

FIG. 26

Key	Name	Parameter	Date
■	221/001-nR.006	N01-B	
■	221/001-nR.007	P01-B	
■	221/001-nR.008	+PL1	
■	221/001-nR.009	+PL1	
■	221/001-nR.010	+PL2	

COPY OF PAPERS
ORIGINALLY FILED

FIG. 27

Specificity of Y1 Binding: Analysis by FACS

Raji

KG-1

- Binding of
 - α PSGL1
(αCD162/KPL1);
 - competition
 - with Y1-IgG

COPY OF PAPERS
ORIGINALLY FILED

FIG. 28

Specificity of Y1 Binding: Analysis by FACS

- Binding of Y1-IgG;
competition with α PSGL-1
(CD162 /KPL1)

COMPETITION

KG-1

Key Name Parameter Gate

Higg B 50ng
Y1 IgG B 50ng

G1 G1

+ SAV PE 1:100

COPY OF PAPERS
ORIGINALLY FILED

FIG. 29

COPY OF PAPERS
ORIGINALLY FILED

FIG. 30

COPY OF PAPERS
ORIGINALLY FILED

FIG. 31

*Ns were: 9 for DOX, 8 for CONY1, 7 for Y1-DOX 6 for MOLT and 5 for PBS.

COPY OF PAPERS
ORIGINALLY FILED

FIG. 32

**Ns were: 4 for DOX, 2 for Y1-DOX, 3 for MOLT and 3 for PBS.

OPIE JC109
SEP 09 2002
PATENT & TRADEMARK OFFICE

COPY OF PAPERS
ORIGINALLY FILED

FIG. 33

COPY OF PAPERS
ORIGINALLY FILED

FIG. 34

COPY OF PAPERS
ORIGINALLY FILED

FIG. 35

COPY OF PAPERS
ORIGINALLY FILED

FIG. 36

***Ns were: 8 for PBS, 9 for KG1, 8 for CONY1, 11 for CONY1-DOX, 9 for DOX, 8 for 181 in vitro, 9 for Y1 in vitro and 9 for Mylotarg.

COPY OF PAPERS
ORIGINALLY FILED

FIG. 37

In vivo KG1 - Blood

****Ns were: 8 for PBS, 9 for KG1, 8 for CONY1, 9 for CONY1-DOX, 11 for DOX (including one mice injected with 5mg/kg DOX), 7 for 181 in vitro, 8 for Y1 in vitro and 7 for Mylotarg.

COPY OF PAPERS
ORIGINALLY FILED

FIG. 38

COPY OF PAPERS
ORIGINALLY FILED

FIG. 39

**COPY OF PAPERS
ORIGINALLY FILED**

FIG. 40

COPY OF PAPERS
ORIGINALLY FILED

FIG. 41

Distribution of Radioactivity in Body organs after
Injection of ^{125}I -CONY1 to Mice

COPY OF PAPERS
ORIGINALLY FILED

FIG. 42

COPY OF PAPERS
ORIGINALLY FILED

FIG. 43

COPY OF PAPERS
ORIGINALLY FILED

FIG. 44

COPY OF PAPERS
ORIGINALLY FILED

FIG. 45

Epitopes of anti-GPI $\beta\alpha$ antibodies

COPY OF PAPERS
ORIGINALLY FILED

FIG. 46

COPY OF PAPERS
ORIGINALLY FILED

FIG. 47

**COPY OF PAPERS
ORIGINALLY FILED**

FIG. 48A: The ORF and Amino Acid Sequence of Y1-HC

SEQ ID NO: 205 (nucleic acid sequence): SEQ ID NO: 206 (amino acid sequence)

1 ATGGCCCTGGGCTCTGCTGCCCTAACCTCCTCACTCAGGACACAGGGCCTGGCCGAT
1 M A W A L L L L T L L T Q D T G S W A D
61 ATCCAGCTGGTGGAGTCTGGGGAGGTGTGGTACGGCCTGGGGGTCCTGAGACTCTCC
21 I Q L V E S G G G V V R P G G S L R L S
121 TGTCAGCCTCTGGATTCACCTTGATGATTATGGCATGAGCTGGTCCGCCAAGCTCCA
41 C A A S G F T F D D Y G M S W V R Q A P
181 GGGAAAGGGCTGGAGTGGTCTGGTATTAAATTGGAATGGTGGTAGCACAGGTTATGCA
61 G K G L E W V S G I N W N G G S T G Y A
241 GACTCTGTGAAGGGCGATTCACCATCTCTAGAGACAACGCCAAGAACCTCCCTGTATCTG
81 D S V K G R F T I S R D N A K N S L Y L
301 - 301 - CAAATGAACAGTCTGAGAGCCGAGGGACACGGCGTGTATTACTGTGCAAGAACATGAGGGCT
101 Q M N S L R A E D T A V Y Y C A R M R A
361 CCTGTGATTTGGGCCAAGGTACCCCTGGTCACCGTCTCGAGTGTGCTTCCACCAAGGGCCA
121 P V I W G Q G T L V T V S S A S T K G P
421 TCGGTCTCCCCCTGGCACCCCTCCAAGAGCACCTCTGGGGCACAGCGGCCCTGGC
141 S V F P L A P S S K S T S G G T A A L G
481 TGCCTGGTCAAGGACTACTTCCCCGAACCGGTACGGTGTGGAACTCAGGCCCTG
161 C L V K D Y F P E P V T V S W N S G A L
541 ACCAGCGCGTGCACACCTTCCCCGTGCTCACAGTCCTCAGGACTCTACTCCCTCAGC
181 T S G V H T F P A V L Q S S G L Y S L S
601 AGCGTGGTGACCGTGGCCCTCCAGCAGCTGGGACCCAGACCTACATCTGCAACGTGAAT
201 S V V T V P S S S L G T Q T Y I C N V N
661 CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCAAATCTTGTGACAAA
221 H K P S N T K V D K R V E P K S C D K T
721 CACACATGCCACCCTGCCCCAGCACCTGAACCTCTGGGGGACTGTCAGTCCTCOTCTTC
241 H T C P P C P A P E L L G G P S V F L F
781 CCCCCAAAACCCAAGGACACCCCTCATGATCTCCGGACCCCTGAGGTACATGCGTGGT
261 P P K P K D T L M I S R T P E V T C V V
841 GTGGACGTGAGCCACCGAAGACCCCTGAGGTCAAGTCACTGGTACGTGGACGGCGTGGAG
281 V D V S H E D P E V K F N W Y V D G V E
901 GTGCATAATGCCAAGACAAAGCCGGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTC
301 V H N A K T K P R E E Q Y N S T Y R V V
961 AGCGTCCTACCGTCTGCCAGCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTC
321 S V L T V L H Q D W L N G K E Y K C K V
1021 TCCAACAAAGCCCTCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCC
341 S N K A L P A P I E K T I S K A K G Q P
1081 OGAGAACACAGGTGTACACCCCTGGCCCCATCCCGGAGGGAGATGACCAAGAACAGGTC
361 R E P Q V Y T L P P S R E E M T K N Q V
1141 AGCCTGACCTGGCTCAAAGGCTTCTATCCAGCGACATGCCGTGGAGTGGAGAG
381 S L T C L V K G F Y P S D I A V E W E S
1201 AATGGGCAGCCGGAGAACAACTACAAGACCACTGGCTCCCGTGTGGACTCCGACGGCTCC
401 N G Q P E N N Y K T T S P V L D S D G S
1261 TTCTTCCTCTATAGCAAGCTACCGTGCACAGGAGCAGGTGGCAGCAGGGAAACGTCTTC
421 F F L Y S K L T V D K S R W Q Q G N V F
1321 TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACCGCAGAAGAGCCTCTCCCTG
441 S C S V M H E A L H N H Y T Q K S L S L
1381 TCTCTGGTAAATGA
461 S L G K *

**COPY OF PAPERS
ORIGINALLY FILED**

FIG. 48B: The ORF and Amino Acid Sequence of Y1-LC

SEQ ID NO: 207 (nucleic acid sequence); SEQ ID NO: 208 (amino acid sequence)

1 ATGGCCTGGGCTCTGCTGCTCCCTACCCCTCCACTCAGGACACAGGGCTGGGCCGAT
1 M A W A L L L T L L T Q D T G S W A D

61 GCAGAGCTGACTCAGGACCCCTGCTGTGTCTGTGGCCTGGACAGACAGTCAGGATCACA
21 A E L T Q D P A V S V A L G Q T V R I T

1212 TGCCAAGGAGACAGCCTCAGAAGCTATTATGCAAGCTGGTACCAGCAGAACGCCAGGACAG
41 C Q G D S L R S Y Y A S W Y Q Q K P G Q

181 GCCCCCTGTACTTGTCATCTATGGAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTG
161 A P V L V I Y G K N N R P S G I P D R F

241 TCTGGCTCCAGCTCAGGAAACACAGCTTCCCTGACCATCACTGGGGCTCAGGCCGAAGAT
81 S G S S S G N T A S L T I T G A Q A E D

301 GAGGCTGACTATTACTGTAACCTCCGGGACAGCAGTGGTAACCATGTGGTATTCCGGGA
101 E A D Y Y C N S R D S S G N H V V F G G

361 GGGACCAAGCTGACCGTCCCTAGGTCAAGCCAAGGCCACACTGGTGTCTCATAGTGACTTC
121 G T K L T V L G Q P K A A P S V T L F P

421 CCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTCTCATAGTGACTTC
141 P S S E E L Q A N K A T L V C L I S D F

481 TACCCGGGAGCCGTGACAGTGGCTGGAAAGGCAGATAGCAGCCCGTCAAGGCCGGAGTG
161 Y P G A V T V A W K A D S S P V K A G V

541 GAGACCACACACCCCTCAAACAAAGCAACAACAAGTACGCCAGCAGCTACCTGAGC
181 E T T T P S K Q S N N K Y A A S S Y L S

601 CTGACGCCCTGAGCAGTGGAAAGTCCCACAAAAGCTACAGCTGCCAGGTACGCATGAAGGG
201 L T P E Q W K S H K S Y S C Q V T H E G

661 AGCACCGTGGAGAAGACAGTGGCCCTACAGAATGTTCATGA
221 S T V E K T V A P T E C S *

FIG. 49

	11	21	31	41	51	
1						
61	EVQLVESGGG LVQPGGSLRL SCAASGFTFS SYAMSWVRQA PGKGLEWVA ISGSGGSTYY 60					
121	ADSVKGRFTI SRDNSKNTLY LQMNLSRAED TAVYYCARVA KTLMRQYSIW GQGTLVTVSR 120					
181	GGGGSGGGGS GGGGSSELTQ DPAVSVALGQ TVRITCQGDS LRSYYASWYQ QKPGQAPVLV 180					
241	IYGKNVRPSG IPDRFSGSSS GNTASLTITG AQAEDeadYY CNSRDSSGNH VVFGGGTKL 240					
	VLGAAAEEQKL ISEEDLNAA					

COPY OF PAPERS
ORIGINALLY FILED

FIG. 50

	10	20	30	40	50	60
	A t T A T T A C T C	g C G G G C C A G C	C g G C C A G C	C G A G G T G C A G	C T G G T G G A G T	C T G G G G G A G G
	L L L A A Q P A M	A F K E	V Q	L V E	S G G G	G
	70	80	90	100	110	120
1	C T I G G T A C A G	C C T G G G G G T	C C C T G A G A C T	C T C C T G T G C A	G C C T C T G G A T	T C A C C T T T A G
3	L V Q P G G S L R L	S L R L	S C A A S G	F T F S		
	130	140	150	160	170	180
1	C A G C T A T G C C	A T G A G C T G G G	T C C G C C A G G C	T C C A G G G A A G	G G G C T G G A G T	G G G T C T C A C G C
3	S Y A M S W V R Q A	P G K G L E	W V S A			
	190	200	210	220	230	240
1	T A T T A G T G G T	A G T G C T G G T A	G C A C A T A C T A	C C C A G A C T C C	G T G A A G G G C C	G G T T C A C C A T
3	I F S G S G G S T Y Y	A D S V K G	R F T I			
	250	260	270	280	290	300
1	C T C C A G A G A C	A A T T C C A A G A	A C A C G C T G T A	T C T G C A A A T G	A A C A G C C T G A	G A G C C G A G G A
3	S R D N S K N T L Y	L Q M N S L R A E D				
	310	320	330	340	350	360
1	C A C G G C O G T G	T A T T A C T G T G	C A A G A C G G G	C C A G A C T T A T T A C G G T A S T T C	G G G G C C A A G G	
3	T A V Y Y C A R T G	Q S I K R S	W G Q G			
	370	380	390	400	410	420
1	T A C C C T G G T C	A C C G I G T C G A	G A G G T G G A G G	C G G T T C A G G C	G G A g G I G G C T	C T G G G G G T G G
3	T L V T V S R G G G	G S G G G	G G G G	S G G G		
	430	440	450	460	470	480
1	C G G A T O G T C T	G A g C T G A C T C	A G G A C C C T G C	T G I G T C T G T G	G C C T T G G G A C	A g A C A G T C A G
3	G S S E L T Q D P A	V S V A L G	Q T V R			
	490	500	510	520	530	540
1	G A T C A C A T G C	C A A G G A g A C A	G C C T C A G A A G	C T A T T A T G C A	A G C T G G T A C C	A G C A G A A G C C
3	I T C Q G D S L R S	Y Y A S W Y	Q Q K P			
	550	560	570	580	590	600
1	A G G A C A G G C C	C C T G T A C T T G	T C A T C T A T G G	T A A A A C A A C	C G G C C C T C A G	G G A T C C C A G A
3	G Q A P V L V I Y G	K N N R P S G I P D				
	610	620	630	640	650	660
1	C C G A T T C T C T	g g c t c c a g c t	C A G G A A C A C A C	A G C T T C C T T G	A C C A T C A C T G	G G G C T C A G G C
3	R F S G S S S G N T	A S L T I T G A Q A				
	670	680	690	700	710	720
1	G G A A G A T G A G	G C T G A C T A T T	A C T G T A A C T C	C C G G A C A G C	A G T G G T A A C C	A T G T G G T A T T
3	E D E A D Y Y C N S	R D S S G N H V V F				
	730	740	750	760	770	780
1	C G G C G G A G G G	A C C A A G C T G A	C O G T C C T A G G	T G C G G C C G C A	G A A C A A A A C	T C A T C T C A G A
3	G G G T K L T V L G	A A A E Q K L I S E				
	790	800	810	820	830	840
1	A G A g G A T C T G	A a t G G G G C C G	C A C G A C T G	T T G A A T T T T T	T A A G T T A A C C	T
3	E D L N G A A * N C	* I F * V N				

y/16 SEQ ID NO: 210

COPY OF PAPERS
ORIGINALLY FILED

FIG. 51

Sequence of Y1-Biotag (SEQ ID NO: 211)

1 MEVQLVESGG GVVPGGSLR LSCAASGFTF DDYGMSWVRQ
41 APGKGLEWVS GINWNGGSTG YADSVKGRFT ISRDNAKNSL
81 YLQMNSLRAE DTAVYYCARM RAPVJWGQQGT LTVSRGGGG
121 SGGGGSGGGG SSELTQDPAV SVALGQTVRI TCQGDSLRSY
161 YASWYQQKPG QAPVLVIYGK NNRPSGIPDR FSGSSSGNTA
201 SLTITGAQAE DEADYYCNSR DSSGNVVFG GGTKLTVLGG
241 GGLNDIFEAQ KIEWHE

FIG. 52

Y1-cys-kak scFv (SEQ ID NO. 212)

1 MEVQLVESGG GVVRPGGSLR LSCAASGFTF DDYGMSWVRQ
APGKGLEWVS GINWNGGSTG 60

61 YADSVKGRFT ISRDNAKNSL YLQMNSLRAE DTAVYYCARM
RAPVIWGQGT LTVTSRGGGG 120

121 SGGGGSGGGG SSELTDQPAV SVALGQTVRJ TCQGDSDLRSY
YASWYQQKPG QAPVLVIYGK 180

181 NNRPSGIPDR FSGSSSGNTA SLTITGAQAE DEADYYCNSR
DSSGNHVVFV GGTKLTVLGG 240

241 GGCKAK