COMP2123 Notes

Algorithms in O(1)

- Adding two numbers (as such finding average of n numbers is O(n))
- Return a value.
- Find a[i] (array)
- Following an object reference
- Calling method
- Assigning values

Abstract Data Types (ADT)

- Like an interface, it specifies the data type and the functions/methods, but users don't know what is behind the scenes.
- Code the tricky part once and people can just use the application.
- Data structure: concrete representation of data, point of view of an implementer (not user)
 - The algorithm
- Abstract base class (abc) in python
- Data structure implementation: inherits from the abc, provide code all required methods
 - If the operation of the method does not depend on the size of the list, it is most likely in constant time O(1)

Index Based Lists

size(), isEmpty(), get(i), set(i,e) add(i,e), remove(i,e)

Array Based Lists

- Stored contiguously in memory, if you know the address of the start and the size, you can find address of each element
- Time complex for add(i,e) and remove(i,e) is O(n) as all elements after i are to shift back / forward
- Allow random access

size()	o(1)
isEmpty()	o(1)
get(i)	o(1)
set(i,e)	o(1)
add(i,e)	o(n)
remove(i)	o(n)

Positional lists

- Store elements as positions
- Unlike index, this keeps referring to the same entry even after insertion / deletion happens elsewhere.
- element(): return the element stored at the position instance.
- size(), isEmpty(), first(), last()
- before(p), after(p), insertBefore(p), insertAfter(p), remove(p)

Singly Linked List

- Sequence of node, each with reference to the next
- Randomly stored in mem
- Time complexity O(N):

- insertBefore(p,e): insert e in front of p

size()	o(1)
isEmpty()	o(1)
first()	o(1)
last()	o(1)
before(p)	o(n)
after(p)	o(1)
insertBefore(p,e)	o(n)
insertAfter(p,e)	o(1)
remove(p)	o(n)

Double Linked List

- List captured by referencing its sentinel nodes
- All its method are in O(1) as we don't have to go through the list to find the position for insertbefore(p,e)/insertAfter(p,e)

size()	o(1)
isEmpty()	o(1)
first()	o(1)
last()	o(1)
before(p)	o(1)
after(p)	o(1)
insertBefore(p,e)	o(1)
insertAfter(p,e)	o(1)
remove(p)	o(1)

- Both operate o(n) if user want to find an element by index (does not allow random access)

Linked list	Array
 Efficient insertion and deletion Simpler behaviour as collection grows Don't have maximum capacity (space not wasted) 	 No extra memory for storing pointers Allow random access Less distance for program counter to move to next one Good match to index-based
- Good match to positional adt	adt

Iterator

- Snapshot freezes the contents of the data structure OR
- Dynamically follows changes to the data structure (behaviour changes predictably)
- iter(obj) returns an iterator of the object collection.
- __iter__(self) returns an object having next()method
- next(): return next object, advance cursor or raise StopIteration()

Example:

```
class MyNumbers:
    def __iter__(self):
        self.a = 1
        return self

    def __next__(self):
        if self.a <= 20:
            x = self.a
            self.a += 1
            return x
        else:
            raise StopIteration

myclass = MyNumbers()
myiter = iter(myclass)

for x in myiter:
    print(x)</pre>
```

- -> prints 1 to 20
- Next method can also raise StopIteration() under given condition.

Stack

- LIFO (last in first out)
- push(), pop(), top(), size(), isEmpty()
- Keep track of a history that allows undo,
- Keep track of chain of active method, hence allow recursion
- Parentheses matching (push opening and pop when closing appears)
- Space :O(n), operations : O(1)

push(e)	o(1)
pop()	o(1)
top()	o(1)
size()	o(1)
isEmpty()	o(1)

Queue

- FIFO (first in first out)
- enqueue(e), dequeue(), first(), size(), isEmpty()
- Waitinglist, printer, multiprogramming
- Start: index of first element, last: index of last element
 - End = (start + size) mod N (N is the maximum capacity of the line)
 - Enqueue: last increment
 - Dequeue: first increment
- Space used : O(N), Operation time : O(1)

Trees

- Following the parent relation always leads to the root
- Root: node without parent (parent is none value)
- Internal node: node with at least a child
- External node: node with no children
- Ancestor: following a path up from a node, all node it came across (parent, parent of parent...) ('uncles' and 'aunties' don't count)

- Decenstor: following a path down from a node, all node it came across (child, grandchildren)
 - Ancestor / dancestor relation are transitive
 - All nodes are decestor of root
 - Every air of nodes have at least one common ancestor
 - Lowest common ancestor (Ica) of x and y is z such that, z is ancestor of x and y and no descenstor of z has that property
- Siblings: two nodes with the same parent
- Depth of node: number of ancestors not including itself.
- Level: set of node with give path ({root} is level 0)
- Height of a tree : maximum depth
- Subtree : tree made up of some node and its decenstors
- Edge: pair of node such that one is a parent of another (so there is a path between)
- Path: sequence of node such that 2 consecutive node in the sequence have an edge

Ordered trees

- There is a prescribed order for each node's children
- E.g sections in chapters

Tree adt

- Generic
 - · size()
 - isEmpty()
 - interator() -iterator
 - Positions () iterator
- Access method
 - root()
 - parent(p)
 - children(p)
 - numchildren(P)
- Query method
 - isInternal(p)
 - isExternal(p)
 - isRoot(p)
- Node object : contain its value, the parent and its children

Traversing

- Preorder
 - Visit the node before visiting its decenstors

```
def pre_order(v)
    visit(v)
    for each child w of v
        pre_order(w)
```

- Follow the order of the left side of the node been touched
- Post order
 - Visit the node after visiting its decenstors

```
def post_order(v)
  for each child w of v
    post_order(w)
  visit(v)
```

 Follow the order of the right side of the node been touched

Binary trees

- Each internal node has at most two children (left child and right child)
- The tree is proper if every internal node has two children
- Uses: classification, comparison (yes / no path)
- Extends tree operations with additional method
 - leftChild(p)
 - rightChild(p)
 - sibling(p)
 - If a node has null on both left and right, then it is external
- In order traverse:
 - The node is visited after its left subtree and

```
def in_order(v)
   if v.left ≠ null then
      in_order(v.left)
   visit(v)
   if v.right ≠ null then
      in_order(v.right)
```

before its right subtree

Order is the order of touching bottom of the node

Complexity

- Method call itself on all children : O(n) where n is number of nodes
- Method call itself on at most one child (worst case is do one call at each level): o(h) where h is height of the tree (go through each node when we don't know where the leaf is)

Binary search tree

- A binary tree where for every node, its **left** has value smaller than itself and right has value bigger than itself.
- Inorder traversal is able to visit the nodes in increasing order
- Implementation
 - all external node are null value
 - Search (k, v): search down recursively by comparing value k with the value of node v, keeps going down until it reaches the equal value or external (null) value (which is unsuccessful search)
 - O(h)time: worst-case: h=n-1, bestcase: h<=log2(n)
 - Put(k,o): If value k is in the tree, (found by search) replace the value to o, otherwise make an external node k and assign the value o to it. (add extra two external node after this)
 - remove(k): find the node holding k (w) and delete it.
 - Case 1: w has 1 external child
 - Remove w and z from the tree

- Make the other internal child of w take w's place
- Case 2 : w has two internal children
 - Find the smallest node y among all right subtree under w (go right then all the way left down)
 - Replace w with y
- O(n) space used, O(h) time (for both put and delete)
- range_search(T, K1, K2): find all keys in T that is in [K1, K2]
 - Let p1 and p2 be paths to k1 and k2
 - Boundary node : node in p1 or p2
 - Inside node : node in [k1,k2] but not in p1 and p2
 - Outside node: node not in p1, p2 nor [k1,k2]
 - This algorithm only visits boundary and inside nodes
 - | inside node | <= |output |
 - | boundary node | <= 2* h
 - Run time : O(|output| + tree height)
 - put(k,o)

Rank-balanced trees

O(log n) to perform a search

AVL tree

- Rank-balanced trees, r(v) = height of subtree rooted at v
- Balanced constrain: ranks of two children of every internal nodes differ by at most 1
- Height : O(log n)
- Searching, insertion, remove : O(log n)
- Insertion: to maintain the avl property, we need to do a single rotation or double
- rotation (take O(1) each) O(logn) total
- Rotation: three node, change the pointer such that the middle node becomes parent of the other two

Priority queue

- Store key-value items and can only remove the smallest key

	Unsorted list	Sorted list
insert(k,v)	O(1)	O(n)
remove_min()	O(n)	O(1)
min()	O(n)	O(1)
size()	O(1)	O(1)
is_empty ()	O(1)	O(1)

- Application : stock matching engines, price time priority
- Sorted list implementation insert list by first iterate and find the positions, so that it is able to find the smallest straight away
- Unsorted list insert straight but iterate to get the minimum key
- To sort priority in a list, both take O(n^2)

- As it needs to iteratively insert list to a queue and iteratively get minimum from the queue to the list
- Selection sort: scan through the list, find the minimum key after ith to swap it to the ith

i	A	s
0	Z, 4, 8, 2, 5, 3, 9	3
1	2, <u>4</u> , 8, 7, 5, <u>3</u> , 9	5
2	2, 3, <u>8</u> , 7, 5, <u>4</u> , 9	5
3	2, 3, 4, <u>7</u> , <u>5</u> , 8, 9	4
4	2, 3, 4, 5, 7, 8, 9	4
5	2, 3, 4, 5, 7, 8, 9	5
6	2, 3, 4, 5, 7, 8, 9	6

```
def selection_sort(A):
    n ← size(A)
    for i in [0, n) do
        # find s ≥ i minimizing A[s]
        s ← i
        for j in [i, n) do
            if A[j] < A[s] then
            s ← j
        # swap A[i] and A[s]
        A[i], A[s] ← A[s], A[i]</pre>
```

position. O(n^2), use unsorted list implementation

- Insertion sort : A[0,i) is the priority queue, A[i,n) is yet to be inserted O(n^2)
 - Each number moves forward until it hits the smaller key
 - I.e, each number, if bigger than x move forward one spot while leave its duplicate in the old spot, and replaced by the previous if previous is still bigger than x (previous is already smaller that next)
 - Insert to array

i	A	i
1	Z, 4, 8, 2, 5, 3, 9	0
2	4, 7, <u>8</u> , 2, 5, 3, 9	2
3	4, 7, 8, 2, 5, 3, 9	0
4	2, 4, <u>7</u> , 8, <u>5</u> , 3, 9	2
5	2, <u>4</u> , 5, 7, 8, <u>3</u> , 9	1
6	2, 3, 4, 5, 7, 8, <u>9</u>	6

```
def insertion_sort(A):

n \leftarrow size(A)
for i in [1, n) do

x \leftarrow A[i]
# move forward entries > x
j \leftarrow i
while j > 0 and x < A[j-1]
A[j] \leftarrow A[j-1]
j \leftarrow j - 1
# if j > 0 \Rightarrow x \ge A[j-1]
# if j < i \Rightarrow x < A[j+1]
A[j] \leftarrow x
```

Heap data structure

- Store key value as a node
- Not a binary search tree
- Heap order: all children of the node is larger than the node
- Complete binary tree: every level except for the last is full, last level (level h) nodes take leftmost position (last node is the rightmost node of maximum depth)
- Root always hold the minimum key
- Upheap: when insert a value, it start from the bottom and compare to move up to its position O(log n) if it is smaller than the root, update root, new level open
- remove_min() removes root
 - Swap the root key with the key of last node
 - Delete the last node (which was the root)
 - Restore heap order by swapping the root downwards
 - Set printer to new last node (O(log n))
 - O(log n)
- Heap sort is the version of priority-queue sorting that implements the priority queue with a heap runs in O(nlogn)
- Heap in array:
 - o For the node at index i:
 - Its left child is at 2i +1

- Its right child at 2i + 2
- Its parent is at (i-1)/2 (ground)
- Summary

Size, isEmpty	O(1)	
insert	O(log n)	
min	O(1)	
removemin	O(log n)	
remove	O(log n)	
replaceKey	O(log n)	
replaceValue	O(1)	

- Comparator(a,b): if a occurs before b, return i < 0
- List based map
 - put(k,v): O(1) if we know the key doesn't exist and insert and the beginning or end
 - Put, get, remove : O(n) worst case (we must travers to find the element or check existence)
 - Restricted keys
 - Uses and array of N size with keys in range 0 to N-1
 - Use keys as address (index) to get items
 - O(1) operation
 - Downside : takes big space
- Hash function and hash tables
 - Use hash function h to map keys to corresponding indices in an array
 - H is mathematical function and is efficient to compute
 - E.g h(x) = x mod N
 - h(x) is hash value of x
 - Non reversible : you cannot get x from h(x)
 - A hash table for a given key type K consists of
 - Hash function h: $k \rightarrow [0, N-1]$
 - Array of size N
 - Ideally item (x,o) is at A[h(x)]
 - Hash function is composition of two functions:
 - Hash code : mapping key to integers
 - H1 : keys → integers
 - Compression function
 - H2: integers \rightarrow [0, N-1]
 - h(x) = h2(h1(x))
 - One way of hashing a string of elements is to use the sum
 - Horner's algorithm

Used on keys $k = (x_1, x_2, ..., x_d)$. For a given value of a we define

$$h(k) = x_1 a^{d-1} + x_2 a^{d-2} + ... + x_{d-1} a + x_d$$

- So that different permutations of elements have different hash value
- O(d) time to evaluate
- Modular division
 - h(k) = k mod N for some prime number N
 - If keys are randomly distributed in [0, M] where M >> N then probability of two colliding is 1/N
- Universal hash functions
 - Let h be a function based UAR from
 2-universal family. Then the expected

number of collision for a given key k in a set of n keys is at most n/N

- Randomly linear hash function
 - h(k) = ((a k + b) mod p) mod N
 - P is prime, a,b are chosen from [1,p-1]
 - If the keys are in the range [0,M] and p > M then the probability that two keys collide is 1/N
- Collision handling
 - Separate chaining
 - If there is a collide, append the new key at the back of existing one
 - Space O(n + N)
 - Linear chaining
 - If there is a collide, go the next cell, until it find an empty cell
 - If all full, make a new array with bigger size
 - Space O(n)
 - Open addressing : colliding item is put in another cell of the table
 - Cuckoo hashing

Graphs

- Vertices: a set of nodes
- Edges: collection of pairs of vertices
- Directed edge : ordered pair of vertices (u,v)
 - U is the origin / tail (where arrow is from)
 - V is the destination / head
- Undirected edge: unordered pair of vertices

Undirected graph

- Endpoints: points connected by edge
- Incidents on endpoints are edges that they connect to
- Adjacent : vertices that are connected
- Degree of vertices number of edges connect to it
- Parallel edges : share same endpoints
- Self-loop: have only one endpoint
- Simple graph: graph with no parallel or self loops

Directed graph

- Edges go from tail to head
- Out degree: number of edges out of a vertex
- In degree: number of edges into a vertex
- Parallel edges: edges share same tail and head (including self loop)
- Self-loop: tail and head are the same vertic
- Simple graph: no parallel or self-loops but allow antiparallel loops (edges go opposite direction)
- Path: a sequence of vertices such that every pair of consecutive vertices is connected by an edge
 - o Simple path : no repeated vertices
- Cycle: a path that starts and ends a the same vertex
 - Simple cycle : all vertices are distinct (except for the start as it also ends there)
- Subgraph: S is a subgraph of G when S has vertices and edges that are subsets from G
 - If you add an edge to S[e], you add both endpoints of that edge to S[v]

- Connectivity: a graph is connected if there is a path between every pair of its vertices
 - A connected component of a graph G is a maximal connected subgraph of G
 - Maximal connected : with max vertices and still can connected in that subgraph

Trees and forests

- Tree is connected graph with no cycles
 - O Every tree on n vertices has n-1 edges
- Forest is a graph with its connected components been trees
- A spanning tree is a connected subgraph(tree) with the same vertices as the graph
 - a spanning tree is not unique if the graph is not a tree

Properties

- Sum of all degrees = 2m (m= # of edges)
- Simple Undirected : m <= n(n-1)/2 (n = # vertices)
- Simple Directed : m <= n(n-1)

Edge list structure

- Vertex sequence holds
 - Sequence of vertices
 - Vertex object keeps track of its position in the sequence
- Edge sequence
 - Edge object keeps track of its positions in the sequence
 - Edge object points at the two veteice it connected

Adjacency list

Each vertex also keeps a sequence of edges they incident on

Adjacency matrix

2d array adjacency matrix

Contain reference to edge object for adjacent

vertices

Null for no adjacency

Summary

Asymptotic performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	O(n + m)	O(n + m)	O(n2)
incidentEdges(v)	O(m)	O(deg(v))	O(n)
getEdge(u, v)	O(m)	$O(\min(\deg(\mathbf{v}), \deg(\mathbf{v})))$	O(1)
insertVertex(x)	O(1)	O(1)	O(n2)
insertEdge(u, v, x)	O(1)	O(1)	O(1)
removeVertex(v)	O(m)	O(deg(v))	O(n2)
removeEdge(e)	O(1)	O(1)	O(1)

Graph traversal

- Depth first search (DFS)
 - Follow outgoing edge leading to unvisited vertices (otherwise backtrack)
 - DFS edge : edge used to visied a new vertex, otherwise it is a backedge

- If all edges from that vertex is visited we back to where it is from
- O(m+n)
- {(u,parent[u]) : u in Cv} form a spanning tree
 of Cv
 - Cv is the connect component of v in graph G
 - Parent[u] set of vertices that can reach u
- Identifying cutting edge
 - And edge is cutting edge if we remove this edge and the graph is not connected
 - Can Only test edges in a dfs tree of G
 O(nm)
 - Down and up method
 - For every vertex v, compute the highest level it can reach by taking one back edge up (and edges it yet visited)
 - If this level <= level of its parent u, then (u,v) is nota cutting edge
 - o(n+m)

```
DFS pseudocode

def DFS(G):

# set things up for DFS for u in G.vertices() do visited[u] ← False parent[u] ← None

# visit vertices for u in G.vertices() do if not visited[v] then parent[v] ← u

DFS_visit(u)

return parent

def DFS_visit(u):

visited[u] ← True

# visit neighbors of u for v in G.incident(u) do if not visited[v] then parent[v] ← u

DFS_visit(v)

DFS_visit(v)
```

 Finding back edge: perform dfs, all edges left unvisited are back edges

Breadth-first search

Visits all vertices at distance k from start vertex s

Let C_v be the connected component of v in our graph G

Fact: BFS(G, s) visits all vertices in C.

Fact: Edges $\{ (u, parent[u]): u \text{ in } C_s \}$ form a spanning tree T_s of C_s

Fact: For each v in L_i there is a path in T_s from s to v with i edges

Fact: For each v in L_i any path in G from s to v has at least i edges before visiting vertices at distance k+1

- o(n+m) for adjacency list
- Fact: A DFS edge (u, v) where u = parent[v] is not a cut edge if and only if down_and_up[v] ≤ level[u]
- o(n^2) for adjacency matrix

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	√	√
Shortest paths		√
Biconnected components	√	

L, (3) (3)	<pre># update current & next layers current ← next next ← [] return layers, parent</pre>
The University of Systemy Lg	Page 37

Weighted graphs

- Edge with numbers associated to it

Shortest path: minimum total weight of the edges from one point to another

- 1. A subpath of a shortest path is itself a shortest path
 - a. If that subpath is not the shortest subpath, we can always replace it with one that is shorter
- There is a tree of shortest paths from a start vertex to all the other vertices called shortest path tree

Dijkstra's algorithm

- Outputs distance from s to v (for all v in V) and shortest path rooted at s
- Assumption: graph is connected, undirected and all edge weights are positive

Idea

- Maintain in array D the upper bound distance from s to
- Keep track of a subset S such that for all v in S, d contain actual shortest path from s to v (D[v] lowered to its possible minimum)

Initialisation

- D[s]=0
- D[v]=+inf

Iteration

- Add u to S for the u with the smallest D[u]
- Update D values adjacent to u
- Edge relaxation :
 - e = (u, z) where u is the last vertex added in S and z is not yet in S
 - Relaxation of e updates D[z] to min{D[z], D[u] + w(u,z)}
- So that next shortest path is always sum of previous shortest paths
- Code:

```
def Dijkstra(G, w, s):
  # initialize algorithm
  for v in V do
    D[v] ← ∞
    parent[v] \leftarrow \emptyset
  D[s] \leftarrow 0
  Q \leftarrow \text{new priority queue for } \{ (v, D[v]) : v \text{ in } V \}
  # iteratively add vertices to S
  while Q is not empty do
    u \leftarrow Q.remove_min()
     for z in G.neighbors(u) do
       if D[u] + w[u, z] < D[z] then
         D[z] \leftarrow D[u] + w[u, z]
         Q.update_priority(z, D[z])
         parent[z] \leftarrow u
  return D, parent
```

- To follow a specific shortest path from v to s, follow parent reference back to s from v
- If all edges are weighted 1, we are running a bfs
- Run time
 - Initialisation : O(n) +
 - Iteratively add v to S : O(deg(v)) for each v
 - For connected graph:
 - o m>=n-1
 - Run time : O(m) m is total edge (with out pq)
 Pq operation
 - o Inserts: n
 - o Decrease key: m
 - o Remove min: n
 - Using heap for pq, algo runs in O(mlogn)
 - Using fibonacci heap with pq can carry decrease key opp to O(1), so O(m + n logn) in total
- Correctness

Dijkstra's Algorithm Correctness

Invariant: For each $u \in S = V \setminus Q$, we have $D[u] = dist_w(s, u)$

Proof: (by induction on |S|)

Minimum spanning tree

- A spanning tree is a graph whose sum of edge weights is minimised
- Cut property: let S be a subset of nodes. And e be the min cost edge with exactly one endpoint in S, then MST contain e
 - Cutset: Subset of edges with exactly one endpoint in S
- Cycle property: let C be a cycle in the graph, and f be the edge with maximum cost, then f is not in MST
- A cycle and a cutset intersects an eve number of edges

o If there is a way out of the subset, there must be a way back in

Prim's algorithm IDEA:

Prim's Algorithm

```
def prim(G, c):
    u ← arbitrary vertex in V
    S ← { u }
    T ← Ø
    while ISI < IVI do
        (u, v) ← min cost edge s.t. u in S and v not in S
    add (u, v) to T
    add v to S
    return T</pre>
```

- While tree don't span the entire graph, find the minimum edge in cutset and inset the outside endpoint to S
- Implementation:

Implementation: Prim's Algorithm

```
\begin{array}{lll} \text{def prim}(G,\,c) \; \{ & & & \\ & \text{Main idea: for every v in V \setminus S we keep} \\ & \text{for v in V do} & & - & \text{d[v]} = \text{distance to closest neighbor in S} \\ & \text{parent}[v] \leftarrow \varnothing & & - & \\ & \text{parent}[v] = \text{closest neighbor in S} \\ & \text{parent}[v] \leftarrow \varnothing \\ & \text{u} \leftarrow \text{arbitrary vertex in V} \\ & \text{d[u]} \leftarrow \emptyset \\ & \text{Q} \leftarrow \text{new PQ with items } \{ \; (v, \; \text{d[v]}) \; \text{for v in V } \} \\ & \text{S} \leftarrow \varnothing \\ & \text{while Q is not empty do} \\ & \text{u} \leftarrow \text{delete min element from Q} \\ & \text{add u to S} \\ & \text{for (u, v) incident to u do} \\ & \text{if } v \not \in S \; \text{and } c_e < \text{d[v]} \; \text{then} \\ & \text{parent[v]} \leftarrow u \\ & \text{decrease priority d[v] to } c_e \\ & \text{return parent} \\ \end{array}
```

- O(mlogn) using heap
- O(m + n logn) using fibonacci heap
- Correctness: everytime we add an edge, we followed the cut property

Kruskal's algorithm

- Line up the edge in ascending order by their costs
- If adding e to T creates a cycle, discard e and move on (cycle property)
- Otherwise put e = (u,v) into T
- Sorting edges take take O(m log m)
- Using dfs to check cycle takes O(mn)

Union find adt

- make_set(A): turn A into singleton sets with elements in A
- find(a): returns an id for the set element a belongs to
- union(a,b) union the set a and b belongs to

Implementing union find in kruskal's algorithm

- If e = (u,v) does not make a cycle, that means u and v are in different sets
- Once we added e in T, union u and v in one set, meaning they are now one connected component

```
def Kruskal(G,c):
    sort E in increasing c-value
    answer ← [ ]
    comp ← make_sets(V)
    for (u,v) in E do
        if comp.find(u) ≠ comp.find(v) then
        answer.append( (u,v) )
        comp.union(u, v)
    return answer
```

find(a): 2m callsunion(a,b): n-1 callsTime: make_set: O(n)

find(u): O(1)
 union(u,v): O(n)
 Total O(n^2) time

Tie Breaking

- Remove assumption that all edges are distinct
 - Add i/n^2 to each edge value or
 - Lexicographical order by index of edges

Greedy algorithm

- Build a solution one time at a time
- Make locally optimal choice every time and hope to get the the global optimal solution at the end
- Can be v hard to proof

```
def generic_greedy(input):
# initialization
initialize result
```

determine order in which to consider input

iteratively make greedy choice for each element i of the input (in above order) do if element i improves result then

update result with element i return result

Proofs

- 1. Exchange argument
- 2. Structural

Knapsack problem

- Given a set of n items, each item has a weight (+) and a benefit(+)
- Goal: to have maximum benefit in the bag after taken the maximum weight capacity
- Each step: identify the 'best' item and put it in the bag
 - 'Best' can be defined by weight, benefit, or weight/benefit

O In this scenario, w/b is clearly the best def fractional_knapsack(b, w, W):
initialization

x ← array of size |b| of zeros curr ← 0
iteratively do greedy choice
for i in descending b[i]/w[i] order do

x[i] ← min(w[i], W - curr)

curr ← curr + x[i]

return x

- Proof: exchange argument
 - Consider some feasible solution (x) that is different to the one by greedy
 - o Then there must be items i and k such that
 - Xi < wi , Xk > 0 and bi / wi > bk/wk
 - In another word, a more valuable item, i, that is not fully added in the bag, yet a less valuable item k is already in the bag
 - If we replace k with some i, we get a better solution'
 - The amount we replace depends on the amount we have for i and k
 - Min{wi-xi, xk}
 - Either we replace all item k, or we use up all item i
 - Thus there is no better solution than greedy
- O(n logn): sort items, then O(n) to process the for loop

Task scheduling

- Given a set of n lectures and their start and finish time
- Goals: find the minimum no. of classrooms needed so that classrooms don't collide

def interval_partition(S):

initialization

sort intervals in increasing starting time order d \leftarrow 0 # number of allocated classrooms

iteratively do greedy choice
for i in increasing starting time order do
if lecture i is compatible with some classroom k then
schedule lecture i in classroom 1 ≤ k ≤ d
else
allocate a new classroom d+1
schedule lecture i in classroom d+1
d ← d+1

return d

- n logn
- Keep the classrooms in priority queue
- Proof : structural
 - Let d be the number of classrooms the greedy algorithm allocates
 - This, by the definition in algo means that, classroom d is open due to having incompatible job with all other d-1 classrooms
 - This means we have d-1 lectures starting before si(start time of this lec)
 - Thus we have now d lecture overlapping at some point

- All schedules use >= d classrooms
- Thus the algorithm is indeed correct

Text compression

- Given a string x
- Goal: encode it into smaller bits
- Huffman encoding
 - Encode higher frequency characters with shorter bits
 - No encode is prefix of another (no encoding is the start of another) – achieved by a tree
 - Only the leaf (external node) hold a character
 - o(n + dlogd) where d is the number of distinct characters (|C|)
 - O(|C| log |C|) if use heap
 - String length

$$\sum_{c \in T} f(c) * depthT(c)$$

def huffman(C, f):

initialize priority queue

Q ← empty priority queue for c in C do

T ← single-node binary tree storing c Q.insert(f[c], T)

merge trees while at least two trees

while Q.size() > 1 do

f1, T1 ← Q.remove_min()

f2, T2 ← Q.remove_min()

T ← new binary tree with T1/T2 as left/right subtrees f ← f1 + f2

Q.insert(f, T)

return last tree

f, T ← Q.remove_min() return T

- Pick two least frequent tree, merge them together, add the tree frequent value to the sum of the two, and put new tree back to queue
- Every encoding tree has a pair of leaves that are siblings
- If depth of character a is less than b (a is closer to the root) , then a is more frequent than b
- If we combine the two least frequent character (e and f) and make a new tree T', THEN expanding T' will also give optimal T and the different in length is f(e) + f(f)
- Proof:

Proof (by induction):

- If |C| = 1 then the encoding is trivially optimal
- If |C| > 1 then let (C', f') be the contracted instance
- By inductive hypothesis, the encoding tree T' constructed for (C', f') is optimal
- Recall that

$$\sum_{c \text{ in } C} f(c) * depth_T(c) = \sum_{c \text{ in } C'} f'(c) * depth_{T'}(c) + f(i) + f(k)$$

 Since f(i) and f(k) are the minimum amount, we can extend after expanding the tree, T is therefore also optimal

"Divide and conquer"

- 1. Divide: solve if it is a base case, otherwise divide problem up into parts
 - a. Typical base case are when the size of input is 0 or 1
- 2. Recur / delegate : recursively solve each problem
 - a. Similar to induction hypothesis
 - b. We assume it works by applying the recursion
- 3. Conquer: combine the solved solution of each parts into an overall solution
- Time complexity:
 - For n > 1: T(n) = recur + divide and conquer
 - For n=1:T(n)=basecase
 - O Divide step: time in terms of n
 - Recur step: time in terms of T (and HOW MANY TIMES WE RECURSE)
 - o Conquer step: time in terms of n

Searching sorted array

- Given a sorted array A, find if number x is in this array
- Binary search
 - o Base case: if array is empty, return no
 - Compare x to A[n/2], if they are equal return yes
 - Else if A[n/2] > x, recursively search [0, n/2] in the array, otherwise, recursively search [n/2, n]
- Correctness
 - The correctness follows that , if x is in A before divide, x is in A after divide
 - And if x is greater than the middle point, then x must be the later half
 - Or vice versa
 - Every divide step leads to smaller array
 - Is x is in A, we'll eventually reach x due to invariant and return yes
 - Otherwise, we'll reach an empty array and return no
- Time complexity

$$T(n)=T(n/2)+O(1)$$
 for n>1 $T(n)=O(1)$ for n=1

- There will be logn amount of time we iterate
 T(n) > T(n/2^k) to T(1)
- Each time, we add a cost of 1 (as the dived and conguer takes O(1)
- We have to add logn amount of those
- So final cost is O(LOGn)
- Linked list application
 - Catch: we now can not call the A[n/2] place in O(1) AS for linked list, we have to iterate the list to find a position since they don't have a index
 - o In this case

- Divide : O(n) \
- Recur : T(n/2)
- Conquer : O(1) (returning answer from recursion)
- \circ T(n) = T(n/2) + O(n), T(n) = O(1)
- Which solves to O(n) where expanding above gives:
 - n + n/2 + n/4 + ... + 1

Merge sort

- 1. Divide the array into halves
- 2. Recursively sort each half
- 3. Conquer two sorted halves together to make one

```
def merge_sort(S):
    # base case
    if |S| < 2 then
        return S

# divide

mid ← L|S|/2」

left ← S[:mid] # doesn't include S[mid]

right ← S[mid:] # includes S[mid]

# recur

sorted_left ← merge_sort(left)

sorted_right ← merge_sort(right)

# conquer

return merge(sorted_left, sorted_right)

array (merge)
```

Merge:

- Given two sorted arrays
- Iterate through each item in the two array, compare and put the smaller one in during each iteration
- Repeat until one array is empty
- Insert the left over item in the next array in

```
\begin{aligned} & \text{def merge}(L,R): \\ & \text{result} \leftarrow \text{array of length (}|L| + |R|) \\ & l,r \leftarrow 0,0 \\ & \text{while } l + r < |\text{result}| \text{ do} \\ & \text{result}[\text{index}] \leftarrow L[l] \\ & l \leftarrow l + 1 \\ & \text{else} \\ & \text{result}[\text{index}] \leftarrow R[r] \\ & r \leftarrow r + 1 \end{aligned}
```

Merge correctness

- Inductive hypothesis: After the ith iteration, our result has the ith smallest element in the final array
- Base case: after o iteration, array is empty, so it contains the 0 smallest elements in sorted order
- Prove true for k + 1 th iteration
 - Since both arrays are sorted, adding the smallest element that is not yet in the array indeed gives the K +1 th largest item (assume inductive hypothesis)
 - correctness follows from the two given array are sorted

Merge sort correctness

- Merge sort correctly sorted an array of size i
- If array is of size 0 or 1. It is already sorted
- Prove true for array size K + 1
 - Splitting the arrays give each at most a size of k (inductive hypothesis)
 - By inductive hypothesis, those are all sorted
 - As proved above, merge will merge correctly for the two splitted arrays
 - Hence, running the merge on the two halves will indeed sort the array

Time cost

- Divide : O(n)
- Recur: 2*T(n/2) (since we are dividing two arrays and working on both)
- Conquer O(n) (merging step)
- T(n) = 2T(n/2) + O(n),
- T(n)=O(1) for n=1
- Final cost : O(nlogn)
 - In this case, the recurrence relation can be rewritten as:

$$T(n) = 2T(n/2) + O(n)$$
.

The work done at each level of recursion is O(n), and the recursion depth is log(n) because we divide the input size by 2 at each level until we reach the base case of n = 1.

Therefore, the total work done can be calculated as:

Total work = O(n) * log(n) = O(nlog(n))

Solving recurrence by unrolling

- Analyse and identify pattern from first few levels of expansion
- Use the pattern to sum up over all levels
- Cheat sheet: (need to prove if use)

Recurrence	Solution
2T(n/2) + O(n)	O(nlogn)
2T(n/2) + O(log n)	O(n)
2T(n/2) + O(1)	O(n)
T(n/2) + O(n)	O(n)
T(n/2) + O(1)	O(log n)
T(n-1) + O(n)	O(n^2)
T(n-1) + O(1)	O(n)

Quick sort

- Divide: choose a random pivot partition x from the array, divide the array to three sub arrays: less than x, equal to x, greater than x O(n)
- Recursively sort the three arrays T(nL) + T(nR)
- Conquer: join the three arrays together O(n)
- E[T(n)] = E[T(nL) + T(NR)] + O(n)
- Expected time : O(nlogn)
- Worst case : all value selected is the smallest value in the array during each recurring
 - \circ T(n) = T(n-1) + O(n)
 - Worst time = $O(n^2)$

Comparison sorting lower bonding

- By performing pairwise comparisons between two elements we are trying to sort
- Like all we had above
- Such algo can be seen as a decision tree
 - Internal node : compares two indices of the input array
 - External node : permutation of {1..n}
- The height of such decision tree is the lower bound of the run time (cannot be faster
- than the height)
- <mark>Ω(nlogn)</mark>
- Since the decision tree has n! External nodes, thus the height is logn!
- and logn! = nlogn

Maxima set

Goal: find the point that all other points have either a smaller x coordinate or smaller y coordinate than the point Idea: check every point, one at a time to see if the other point have either smaller x or smaller y

Pre-processing: sort all the points by its x coordinate

Divide: split the sorted array in halves

Recur: recursively find the max set on each halves Conquer: compute the union of left and right max set

Observation

- Every point in right ms is in the whole set, because although it ignores the left, all points in the left (sorted by x coord) are smaller than itself so satisfies at least one of the condition already
- Every point in left ms is either in the whole set or is dominated by the highest point in the right

- Find the highest point in the right ms : p
- Compare every point in left ms to q
- Add only the once that are higher than p

Time complexity

- T(n) = 2T(n/2) + O(n) = O(nlogn)

Unrolling

- For each step / level, calculate time taken for each

Let \boldsymbol{r} be a positive real and \boldsymbol{k} a positive integer then

$$1 + r + r^2 + ... + r^k = (r^{k+1} - 1)/(r-1)$$

Consequently if r > 1then

$$1 + r + r^2 + ... + r^k < r^{k+1} / (r-1)$$

and if r < 1 then

$$1 + r + r^2 + ... + r^k < 1 / (1-r)$$

level and then add them up

Master theorem

T(n) = aT(n/b) + f(n),

where,

n = size of input

a = number of subproblems in the recursion n/b = size of each subproblem. All subproblems are assumed to have the same size.

f(n) = cost of the work done outside the recursive call, which includes the cost of dividing the problem and cost of merging the solutions

$$T(n) = aT(n/b) + f(n)$$

where, T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log_b} a - \epsilon)$$
, then $T(n) = \Theta(n^{\log_b} a)$.

2. If
$$f(n) = \Theta(n^{\log_b} a)$$
, then $T(n) = \Theta(n^{\log_b} a * \log n)$.

3. If
$$f(n) = \Omega(n^{\log_b} a + \epsilon)$$
, then $T(n) = \Theta(f(n))$.

 $\epsilon > 0$ is a constant.

Solved example

$$T(n) = 3T(n/2) + n2$$

Here,

a = 3

n/b = n/2

 $f(n) = n^2$

$$log_b a = log_2 3 \approx 1.58 < 2$$

ie. $f(n) < n^{\log_b} a + \epsilon$, where, ϵ is a constant.

Case 3 implies here.

Thus,
$$T(n) = f(n) = \Theta(n^2)$$

Algorithm Analysis

Primitive operations - O(1) Common Running Times

D 1 - constant D logn-logarithmic (linearithm

₩ logan>logen

1) n²-quadratic (1) n²logn

3 log2n=log(logn) Upolylogarithmic 1 h3 - cubic

⊕vin - square root ⑤ n - linear @ 2n - exponential

1 2' - factorial

Big-oh Notation => upper bound on RT
-n^x is O(aⁿ) for any fixed x>0 + a>1.
-logn^x is O(logn) for any fixed x>0
-log²n is O(n^y) for any fixed con·x₁y>0
Big-omega Notation (Ω) => lower bound
Big-Theta Notation (Θ) => asymptotically tight bound

If f = 0(g) + g = 0(h), then f = 0(h)

sums of functions:

If f=0(g)+g=0(h), then f(g)=0(h)

Log Properties

- 1096a = 109ab - 1096c = 109ac

- a = blogba - blogca = alogcb

Lists - Abstract Data Type: desired behaviour Data Structure -concrete rep. Index -based List (List ADT) isEMPty() size(), get(i), set(i,e), add(i,e), remove array based list element stored at Ali] set(), get() => o(1) ind. of size add(), remove() => o(n) => shifting elem space: O(N) richange size as you add Dynamic Array Space: O(h) Positional List - Points to element => first(), (ast(), before(p), after(p), insert Before (pie), insert After (pie), remove Singly cinked list - reference to first node =) insert Before southly Linked List - link to element, prevent Shas a headerttrailer =75pace: O(n) 4 all ops - 0(1) DOUSH()

Stack - Last in, first out spop() instinserted by top(), is ze (), is Empty()

Based on Arrays -> space o(n); ops o(1)

Queue - first in, first out Genqueue(e): insert at end; dequeue()
remove at tront; first(), size(), is Empty()

Shased on arrays: end = (starttsize) modal

Double-ended queue (Deque) space: o(N)

Gallow insertions + deletions @both ends

Get First/Last, hadf/L, remove F/L => o(1)

Trees (Tree ADT) - node has at most

-Root: node w/o parent parent

· Internal node: node w/ at least 1 child

· External/Leaf node: node w/o children - Ancestors, Descendants, Siblings

not incl. itself - Height: max depth

- Level: set of nodes w/a given depth

ordered tree: has prescribed order pre-order: visit node before descendants post-order: visit node after descendants

Binary tree - each node has at most 2 ch. Sproper BT: every internal node has 2 ch. Inorder: node visited after L, before R a Euler Tour Traversal visit each 3x

- on the left (pre), from below (in), on the right (post)

Linked Structure for BT

- node: element, pointers to parent, L, R Linked structure for general trees

-node: element, pointer to parent, sea. of Binary search Tree (BST) children

=) get(), put(k,v), remove(K)

=> sorted map ADT: keys have sorted order

=) key(u) < key(v) < key(w) w=R

=) inorder visits BST in 1 order

=) internal nodes store key-value pairs

=> external nodes do not store items

=) search: compare key stored at node to given key to decide whether goL/R Sruns in O(h); worst case O(n)

o(logn) for balanced trees

=) Insertion: If present, replace value, oth., expand node by replacing external node w/ new key-value pair

=> peletion: If node has I child, promote the child and replace the node. If node has 2 children, find node y following w in an inorder traversal. y would have no children, replace w w/ y and remove y. => complexity: space o(n) ops : o(h) => Duplicate keys: Key(L) = key(node) < key(R) Guse list to store dublicates Grange averies: search all keys k such that Kiekekz > Key(V)<K, >R > Key(V)>K2 >L , KIE Key(v) = K2 -> L1 add v, R running time: O(loutput1 + h) Trinode Restructuring & Balancing Trees - (a,b,c) ac > abac > abac -takes o(1) since you just have to updat ? Rank-balanced Trees - keep a rank for AVL Trees r(v) is height of subtree every rooted at v; ranks of 2 children of every internal node differ by at most 1 >height: O(logn); space O(n); ops O(logn) eriority aveue: can only remove the smallest key >insert(k,v), remove-min(), min() sequence-based Pa sovied (by priority) unsorted size, Is Broby 00) OCU 0(n) insert 0(1) 0(1) remove-waymin o(n) -n insert, n remove-min -remove-min to sort - 50 O(n2) selection sorp -sort end first >sort unsorted sequence , can be implace A[O,i): Sorted; A (i, n]: pa 'n inserts - O(n); n remove.min - O(n2) 2100k at the smallest after given index + then swap places insertion sort: sort front first Best: sorted asc; worst: sorted desc->in insert + o(n2); n remove-min + o(n) > A LO,i): PO (sorted); A Li,n) :rest > find if there's value greater before given index and the insert index

before greater value

Heap: BT where pointers are only at roof rlast inserted node >heap-order: key(m) ≥ key(parent(m)) >complete BT: every level i <h is full Gremaining nodes take leftmost pos. >root has smallest key, neight is logn > Upheap : restore to by swapping keys along upward path from insertion pt-50 (logn) => find position: go up then right > femove-min: replacatout Key W/ last inserted; restore n-0 by downheap Sowap Keys along downward pathfrom root. > 0(10gn) 0 (logn) Heap Fo - min O(1); insert, removemin Heap sore - O(hlogn) => Pa sorting Heap-in-array - root at index o of array -last node at index (n-1) -node at index i: L > zitl; R>zitz Oparent > L(i-1)/21

Hash Tables

Man - searchable collection of kiv poins => oft(), put(), remove, size() =) put: if key already present, replace List based map - based on doubly linked =) put-O(1); get, remove o(n) map we restricted keys -use keys as index; map w/ nitems + N keys ops are all 'O(1) but N can be big (space) to map keys corresponding indices in array A wy fixed interval co, N-1] -integer h(x) is the hush value of key -ideally, there should be no collisions citems stored at the same hash value -hash function h is usually a composite of 2 functions: h(x)=h2(h1(x)) >hash code hi: Keys -integers > compression func. hz: integers > [0,N-1] -Probability of collision: IN where Nis separate chaining add. space Screate a list win hashvalue GLOAD FACTOR & = 1/N Gexpected: O(1+a); worst-case: O(n) when all items collide to a single chain

open Addressing using Linear Probing open addressing : colliding item placed in diff cell of the table Linear probing: place colliding item in the next (circularly) available cell colliding items lump together search: start at cell hik); probe consecutive locations until an item w/ key k is found or empty (ell is found or N cells have been probed. SDEFUNCT replaces deleted elements get(k) must pass over cells w/ DEFUNCT and keep probing uput: if k is found, replace value. otherwise, store it at index i which is the index w/ the first DEFONCT performance: wc : get, put, remove och) If randomly distributed, expected # of probes is 1/4-00 where a = 1/4 If a is constant < 1, expect rt is o(1) Cuckoo hashing - use 2 hash function. and 2 hash tables Gget, remove - 0(1) Sevict previous item timsert new; the evicted goes to its other possible Place Eviction cycle: keep counter/put flag Set - unordered collection of elements w/o duplicates; ups are traditional set operations . union, contains, etc. set implemented via mag -map to store keys; ignore value -contains(k) answered by get(k) Graph - consists of a pair (v.E) Eage(E): directed (u,v) -> v origin/ u->v undirected (u, v) u-v v-head/dest. Undirected araphs - edges connect endpts -edges are incident on endpts -adjacent vertices are connected who an e -degree = num edges on a vertex -parallel edges share same endpts - self-loop: only I endpt

- simple graphs: no parallel/secf-loops

Pirected Graphs - edges : tail to head -Out degree: num edges out of vertex -In degree: num edgés into a vertex -parallel: share tail thead -self-loop same tail+nead -anti-parallel: same endpt but opp. 1 -Simple graphs: no pavallel or self-100p but can have anti-parallel edges path sea of vertices essimple path: all vertices are distinct Cycle: path that starts + ends at the same vertex; can revisit same vertex but not same edge Gsimple cycle: all vertices are distinct Properties of a graph - Evinv deg(v)=2m -n(#of v); m(# of e); A max degree -simple undirected me n(n-1)/2 - simple directed: m < n(n-1) Subgraph: Let G=(V,E) be a graph. 5= (U,F) is a subgraph of G if U cv, FSE Subset: subset usv induces a graph GEU] = (u, EEU) where ECU are edges in E w/ endpts in U. subset FSE induces a graph G[F]=(V[F],F) where V[F] are endpts of edges in F. Edge List structure v: (E: FILLA) -vertex List: seq. of vertices, vertex objects keep track of its pos. in the sea; points to the vertices - Edge list sea edges; edge objects keep track of its position in the seq; points to the edges + the endpts Adjacency ust -each vertex keeps a seq. of edges adj. to it -edge objects keep ref to pos in the incidence seq. of its endpts -good for sparse graphs Adjacency matrix -2D array: ref to edge object for adj vertices; null for nonadj vertices -good for dense graphs Adj. Matrix performance edge ust Adj. List ntm deg(v) ntm incidentedges(v) min(deg(u), deg(u)) getEdge(v, v)
insertvertex(x) nz insertEdge(4/v,x)
remove (frtexty)
remove Edite(k) deg(v)

Connectivity - connected if there is a path bet. every pair of vertices in G -connected component of 6: maximal connected subgraph of G Tree (T): T is connected, T has no cycles Forest : graph w/ no cycles, its connected components are trees * Every tree on a vertices has not edges Spanning Tree + Porest -Subset of araph a which has all the vertices covered w/ min edges; no cycles -can't be disconnected pepth First search -follows outgoing edges leading to yet unvisited vertices -IF edge discovers a new vertex, it's called a DFs edge. Oth., it's a back edge Performance (adj list rep : O(m+n) -main DFS function: visits all vertices all -DFS-visit(4): o(deg(4)) - depends on deg.ofc so called a times so o (Edeg(4)) = o(m) Prop. of DFS . Let cy be the conficomp of v -PFS - visit (u) visits an vertices in Cv - Edges (lu, parentlu): u in cy} form a span - Edgesfourpar[u]) : u in va form a span ofer cut Edges: In a connected graph, G *(V,E), eage (u,v) in E is a cut edge if (V,E\(\mu\v)) 15 not connected 60 (m²): For each edge, remove (wu), theck if Ofs is still connected, put back 6) o(nm) : only test edges in a DFS tree of 6 1) o (ntm); compute DFS tree of a. for every v in V, compute level[v] down-and-up[v]: height of vertex v that can be reached by taking DFS tree down the and then one back edge up # DFS edge (U,V) is a cut edge where v is a parent[v] <=> down-and-up[v]=leve[[u]] Breadth First search identify all objects in each layer first : Lo = 153; Li vertices discovery edge; cross edge 28-2-D

Properties: Bfs visits all vin G - Edges flo, portnet(1): vin Cvy form a span tree t, of Cv · For each vin Li, there is a

-For each v in Li, any path in G from s to whas at least i edges.

Performance: setting things up o(n) processing each layer O(Edeg(u)) = o(m) -adj. 11st - O(mrn) - adj matrix O(n2) applications : DFS+biconnected comp BFS: shortest paths; Buth: cycles, paths weignted traph: each edge has a weigh Greedy algo: build a soln one step at a time, making locally optimal choice, at eachstage in the hope of finding a global optimal roln. psumis the min. shortest path: subpath of spis a s.p -there is a tree of shortest paths from a start vertex to all other vertices Diskstra's Algo : G is connected + undirected -edge weights are nonegative -maintain a distance estimate + keep track of the actual distance compressives -Initially DIS] = 0; DEV] = 00 for all vin - In each iteration, add to 5 vertex u in VIS with smallest DEUI; update D-values for verhies adj. to u Performance: o(m) on everything except Pa operanons. o (m+nlogn) heap as Pa: o(mlogn), Fibonacci heaps; Minimum speciming Tree - tree whose sum of edge weights is minimised. properties: all edge costs ce are distinct -cut property: Let s be any subset of nodes and let e be the min cost edge w/ exact 1 endpt. in 5. Then, the MST contains e -cycle property: Let C be any cycle and let f be the max cost edge belonging to c. Then, f must not be in MST. - (ut, nonempty s &v; cutset Dis . the subset of edges w/ exactly lendpt -Cycle + cutset intersect in an even # of edges . A Every time, we add an Prim's Algo property. We add the min cost edge (u, v) s.t u. in) and v not in s. start w/ any node and update distances of adj. selected nodes. Select with French cuse tables

- For every vin VIS, we keep the distance to closest neighbour and the closest neighbour in a table - Similar time complexity as Dijikstra Kruskal's algo-consider edges in asc. order of weight. -if adding e to T creates a cycle, discard e. Otherwise, insert e. - Choose edges based on order of weights - , no need for lists/tables Lexicographic nebraking: assuming all costs are integral, if we add 1/2 to each edge e; then any MIT under the perturbed weights is still an MST under origineights. -Time complexity: sorting edges: Danlogat -Test if cycle occurs : o(mn) Union Find ADT-Keep track of an Evolving partition of A. -ops: make-sets (A), find (a) union (a,b) -Simple union-find > make-sets (A) O(n) where n=1A1 find(u) o(1); union(u,v) -) o(n) Kruskalis algo: o(n2) => find: 2m calls Better union-find *Keep track of cardinality of each set. When taking union of 2 sets, change the smallest. Element can change sets o(logn); seq. of n union ops o(>Kruskals : O(mlogn) Greedy Ago Fractional Knapsuck - given a set Sof n items w/ each item i having b; (+ve benefit) + w; (+ve weight) choose items w/ max total benefit of weight at most w Stest: items w/ nighest bi/wi ratio. Ocomplexity: o(nlogn) for sorting luse pa heap so each removal takes ociogni) + then o(n) to processin for Task scheduling - given a set of n lectures. Lecture i starts at si and finishes at fi, find min # of classrooms to sched all lectures s.t. no 2 occur @ same time tplace

Interval partitioning -Sort intervals by starting time when space is available, put it in a classroom w/o carring about which is best. other open new classro. Ochlugh) - for each room k, maintain the finish time of last job add cal. Keep classrooms in PQ Text compression - given string X. efficient encode it to smaller y suntength encoding, encode based on # of characters (eg. 12WIB8C) Huffman encoding that a be the set of characters in X-compute freq. flg for each character c in C. Encode high freq. char. w/short code words. No code words is a prefix for another code : mapping of Encoding Tree - code : mapping of each char, to a binary code word -each external node Stores a char. -code word: path from root to external node (ODL, IDR) -put smaller tree as left child when combining trees -Huffman's Tree : O(n+dlugd) where n is the size of x and d is the # of distinct char. of x Obvilds tree from bottom up () E f(c) x depthr(c) sint x-abracada bra d C-100 1-111 b - 110 d - 101 every tree encoding has a pair of leaves that are siblings - For any a + b in c, if depth; (a) <depth; then f(a) > f(b). - 2 siblings furthest from root have lowest fred. -if we combine 2 lowest freq. char. to, get a new instance (c', f'), an optimon & wee for c' can be expanded to get optimal tree for c take of consecution and the continual of the continual oth, calculating freq. is o(n).

```
Divide and conquer - divide, recurse,
 conquer or elivide, conquer, merge
Binary search - if array empty,
 "No" Otherwise, compare x to
 middle element A[[?]]. If A[[?]]>x,
 search L → A[0] to A[[-]-1]. Else, if
 A[[]] (x, recur. search R + A[[]+1]+n
Recurrence pivide >O(1), Recurat(2).
(onquer -> 0(1) T(n) = (T(q)+0(1) n>1
T(n) = o(\log n)
                     n=1 => ( = logn
1: T(n): T(3)+C
                     logn :T(n) = 1 4clogn
2: T(n)= T(3)+2C
                     T(n) x(ogn)
 i: T(n)= T(元) tic:
AREcurrence formula includes recurreconquer
If linked list used: T(n) = {T(1)+0(n) mol
                    60(n)
Merge Sout
+ Divide into 2 haives , recurse on both +
  keep track of smallest element in cach
sorted half. Insert smallest of zelement
into array. Repeat until both lists are migi
-divide: u(n); recur: 2T(2); conquer o(n)
T(n) = {2T(1/2)+0(n) n>1
                        =) t(n) = 0(nlogn)
sample recurrence Formulae
7(n)=2+(是)+o(n)=) o(nlogn)
    = 2T(\frac{n}{2}) + o(\log n) = o(n)
     = 2T(4)+0(1) =) 0(n)
     =T(1)+0(n) =>0(n)
     =T(3)+0(1) => o(logn)
     =7(n-1)+0(n) =) 0(n2)
     = t(n-1)+o(1) =) o(n)
Quick Surp 1. Divide . Chouse rondom element
as pivot. Partition into 3: (i) < (ii) = (cii) >
2. Recursively sort < + > list -T(n) eT(ne)
3. conquer Join 3 list together = o(n) inper
E[T(n)] = [ E[T(nL)+T(nR)] +O(n) ns1 =)0( n=1 nlogn)
Accomparison-hazed sorting takes sh(nlogn) Maxima-int - Apt is maxif all other pts in the set either have a smaller xorg coor.
1. Preprocessing. sort pts by tx and
break ties using y . Store in an array
z. Pivide sorted array into 2 halves
3. Recurricely find M5 in both halves
4. conquer. compute us of MSLUMSR
wrind night to p of MSR. compare
every pt a in MSL to p. If an >py, add
9 to merged Ms. Add every pt in MSR to
merged Ms. T(n)=zT(n/2)+o(n)=o(nlogn)
```

00(nlogn) @0(n) (3) 2T(2)(0(n)

R.T = O(nlogn)

```
Integer multiplication given 2 n-digit
 integers x + y, compute the product xy.
ATTEMPT 1: Compute by making 4 recursive
 calls on 3 digit numbers t combining it
 x= 1,2 1 + x0; y= 4,2 1 +40
 xy=x,y,2"+x,402"/2+x04,2"/2+x040
 T(n)= [4T(2)+in n>1 =) 0(n2)
 ATTEMAZ: cumpute bymaking 3 rec. calls
  xy= x,4,2" + (x,40+ x04,)2"/2 + x040
  (x, + > co > (y, + yo) = x, y, + x, yo + xo y, + xo yo
  T(n) = [3T(4)+0(n)
                              => orn 10g = 3 )
                       11<0
                      =1 =) i = logn
 6: 0(1)
 1: 37(1)+n
 2: 3(37(불)+글)+n = 97(쿡)+크다+n
                  (\frac{3}{4})^{2}ch = 0(3^{\log n} + (\frac{3}{2})^{\log n} cn)
 = 0 (3 log in + 2 log 1(3) · log in n)
 = 0 (3 1091 + 2 1091 n 1091(4)n)
  = O(n^{\log_2 3} + n^{\log_2 3/2} n) = O(n^{\log_2 3} + (n^{\log_2 3} \cdot \frac{1}{N} \cdot n))
  = 0 (n log13)
Geometric series Let RER+, KEZ+
If r>1, then | frer2+ ... +rk < -- = a(rk1)
 IFr<1, then Itrtr2+...+ 1 < 1/(1-r)
MASTER THEOREM
  T(n)=far(2)+f(n) n>1
Off f(n) = O(nlogba - E) for E>0, then
 T(n) = O(niogea). (T(n) is dominated
 by the last level)

② Ef f(n)= ⊕(nlogbalogkn) For k≥0, then

T(n) = 0 (nlogba logker n) . (T.c same for gell)
3 If f(n) = 12 (n'096a+E) + af(n)=8 for 8>0+
 $>0, then T(n) = + (f(n)) . CT(n) is
dominated by last level)
Step 1: compare f(n) to
If niogen > fin), (1) If niogon < fin), (3)
If niogo = f(n), 2
Selection Given unsorted array A holding
a numbers + an integer K, find kth
smallest in 4.
```

-Divide. Find median, and split on ≤ and > than the median => 0(n) - Recur : If ksyz, find kth element in L If K) 1, find (k-1)th element in R - (onguer. return value=)o(1) いて記) $T(n) = \begin{cases} T(\frac{n}{2}) + O(n) & n > 1 \\ o(1) & n = 1 \end{cases}$ => O(n) Attempt 2: Approx. the median $|A|/3 \le \operatorname{rank}(A/x) \le 2|A|/3$ T(n)= (下(智)+o(n) n>1 => O(n) Median of 3 Medians Sereach group find the median. Let x be median of the medians 191/3 < rank (A, x) < 21A1/3 T(n) = T(2n/3) + T(n/3) + O(n) => O(n (cgn) brecursive call on % elements. Get rid of zn/i elements in each call. Median of Swedians 3/A1/10 Cravik(A,x) < 7/A1/10 T(n) = T(71/10)+T(1/5)+O(n) =>O(n) Grecursive call on 7/5 elements. Quick selection -choose random element as a pivot and partition into 3: (i) < (ii) = (iii) > o(n) Recur select right element from list son) -Return soin. O(n) E[T(n)] = [Elt(n')] +0(n) => 0(n) Randomisation Generating Random Permutations Input: integer n; output: permof fla. mg shosen uniformly at random (UAR) -It every execution is equally likely, then we want any 2 permutations to be generated by the same # of execut. Fisher-Yaks shuffle je (1, ..., n-1) -swap Aci I with ACj I where I 47 element will either stay in place or shuffle w/ something after # of executions = 1x 2x...x n=n. Hof permutations = 1x2x...xn=n! hevery execution happens w/ probability where each execution leads to a diff n' outcome.

First Attempt:

Finding Prime numbers Distribution of Primes Let 11(n) be the # of primes ≤n, then It(n) = O (1) probability of where nelli-ing 2 functions: find-prime() +main is prime() -helper is-prime runs (n) so find-prime runs in O(T(N)logN) grasa bounded fabin-Miller -testing primality Given n + k, If n is prime, RM(nik) ST. Else, if n is composite, RM(n,k) returns True w/ prob 1/4k; False otherwise def witness (xin): # check if n is comp. write n-1 as zkm for modd 46xmodn if zymodn=1, return True # prime for i in \$1, ... 1k-13 if ymodn=u-1 return Trye 4 < y2 modn return false FIF n>2 is comp., there are < n-1 values of oc s.t. witness(x, n) =True. 4tf we call witness(xin) w/k diff values of x, probability & 1/4k mainthelper = o(klogn) Treap given f(vi,pi)]in, BST w.r.t vi and neap property w.r.t Pi GIF p: is chosen VAR from [0,1] then for a treapon ((Virpi)) E[Treapheight] = @(10gn) treap insert: O(logn) -00 regular BST insertions and restore neap property by doing local rotations (5,10) Treap Height: Suppose we sorted values so that viev, s. .. evn Priviis the root) = 1/2 priroote suga. =) Most nodes are fairly balanced

FROM TUTORIALS

Finding lowerbound: use of -) split into everse traversal acases - add pointer to the end o(n2) acases - add pointer Avery in o(n)

Traversals:

Pre-order: 12, 14/13, 23/16/16/13, 14 13

Post-order: 18/16/11, 23/14/

: 34/31/13/12 18 23 34 31

En-order: 18/14/16/13/11/
11/34/13/31

INDUCTION: (divide -and-conquer)
Binsearch (A: v):

If (A) = 0 return face mid = [141]

IF A[mid] <v: BinScarch(A[mid:],v)

IF, A[mid] >v: BinScarch(A[:mid],v)

IF A[mid] = V) return True

Prouf: Base case: IAI=0 which returns Pause :. Algo is correct

14: Binsearch will return the correct result for arrays of size IAICK use 14 to prove Binsearch for arrays of size IAI = K.

case 1: A [mid] = V returns True : correct case 2: A [mid] < V we'll do Bin Search on array of size [A] By 1H, this must return correct result for that sub-array. If present in sub-array, it must be present in array. : correct otherwise, if not present in sub-array then it must not be present in the array since the given value must be in the right half of the array as its sorted and A[mid] < V. : correct

EXCHANGE ARGUMENT:

a b input a*b* be optimal soln a'b' in sorted order \in returned by algo assume $a* \neq a'$, b* = b!:

there must exist i such that $a_i > a_{i+1}$ $|a_i^*| - b_i^*| + |a_{i+1}^*| - b_{i+1}^*|$ $b*i \leq b^*_{i+1}$: a*ped

lat -bt | + |at -bt | ≥ |at -bt |
nonswapped + |at -bt |
After swapping, at is now similar
to a' without reducing optimality.
... By exchange argument, also is correct

ovide step
- We don't need to make a new array within each recurrence.
You can simply make note of the start and end index of the smaller array. This makes it run in o(1).

rigeonnole principle
-If items are put into containers,
then atleast one container contain
more than 1 item. (majority)

Graphs:
Bipartite: vertex set can be partitioned into 2 sets A+ B

s.t. BEEAXB
-intra-layer: edge w/in layer
-inter-layer: edge bet. layer