ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕН ПРЕПОДАВАТЕЛЬ	ІКОЙ					
доц., канд. техн. в должность, уч. степс		подпись, дата	О.О. Жаринов инициалы, фамилия			
	ОТЧЕТ О ЛАЕ	БОРАТОРНОЙ РАБО	OTE № 4			
РАЗРАБОТКА СЧЁТЧИКА С ЗАДАННЫМ ОСНОВАНИЕМ СЧЁТА НА JK- TPИГГЕРАХ В СРЕДЕ QUARTUS						
	по курсу	у: CXEMOTEXНИКА				
РАБОТУ ВЫПОЛНИ	ІЛ					
СТУДЕНТ ГР. №	4143	подпись, дата	Е.Д.Тегай инициалы, фамилия			

Цель работы

Разработать проект счетчика с заданным основанием счета на JKтриггерах в среде программирования Quartus, попутно изучив элементы методологии работы с не полностью определенными таблицами истинности.

Вариант задания

Соответствующий вариант задания выделен для удобства жёлтым цветом на рисунке 1.

гаолица вариантов задании															
Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
M	15	17	18	19	20	21	22	23	24	14	3	5	6	7	9
Bap.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
M	10	11	12	13	25	26	27	28	29	30	31	33	34	35	36

Рисунок 1 – Индивидуальный вариант

Описание концепции разработки схемы

Схема разрабатывается с помощью таблицы истинности и получившимся по ней логическим выражениям (минимизированным).

Рассмотрим подробнее процесс составления схемы. Опираясь на индивидуальное задание, выясняется, что $\mathbf{M}=34$. Это значит, что счётчик, досчитав до числа 33, следующим импульсом, то бишь 34-ым, должен быть сброшен обратно в 0.

Представим в двоичной системе счисления:

$$33_{10} = 100001_2, 34_{10} = 100010_2$$

Нужно сделать так, чтобы из 100001_2 получилось 000000_2 . Для начала, основываясь на количестве разрядов, выясняется, что количество Т-триггеров должно быть равно 6.

Рассмотрим рисунок 2. Первой строкой является двоичная запись числа 33. Соответственно, вторая — числа 34. Зеленым написано желаемый результат. Сверху прописаны выходы соответствующих Т-триггеров.

Рисунок 2 – Вспомогательный рисунок

Красным квадратом выделена та область (те разряды), которые так и так приведут к желаемому виду.

Больше всего интересуют области, выделенные синим и сиреневым цветами. Рассмотрим разряд Q5. Триггер этого разряда нужно «заставить» переключиться, так как он и «хочет» остаться в состоянии 1. Рассмотрим и разряд Q1. Триггеру этого разряда нужно, наоборот, «запретить» переключаться на 1.

Таблица истинности

Искомая таблица истинности, необходимая для реализации счётчика, изображена на рисунке 3. При заполнении таблицы из рисунка 3 использовалась вспомогательная таблица, изображённая на рисунке 4.

Рисунок 3 – Неполная таблица истинности

переход	J	K
из 0 в 0	0	Х
из 0 в 1	1	Х
из 1 в 0	х	1
из 1 в 1	х	0

Рисунок 4 – Вспомогательная таблица

Логические выражения

При составлении логических выражений использовался интуитивный подход в силу неполноценности таблицы истинности. Рассмотрим, например, J_0 . Везде известные значения равны 1. Для наглядности эти значения выделены оранжевым на рисунке 5. Поэтому за место х можно предположить, что там также находятся единицы, и итоговое логическое выражение будет выглядеть как:

 $J_0 = 1$

Рисунок $5 - J_0$

По тому же принципу выясняется, что логическое выражение для K_0 :

$$K_0 = 1$$

Далее рассмотрим K_5 . Значения совпадают со значениями в Q_0 . Поэтому можно приравнять другие значения у Q_0 с неизвестными значениями у K_5 . Это наглядно продемонстрировано на рисунке 6. Итоговое логическое выражение будет выглядеть как:

$$K_5 = Q_0$$

Аналогично получаем:

Рисунок 6 - К5

Далее рассмотрим J_5 . Для удобства восприятия для начала воспользуемся рисунком 7. Следует отметить, что зелёным (как и на последующих рисунках) будут отмечаться те триггеры, которые уже были рассмотрены, а оранжевым — необходимые значения.

Рисунок $7 - J_5$

В данном случае ничего упрощать и не требуется, логическое выражение строится по принципу прошлой лабораторной работы:

$$J_5 = \overline{Q_5} Q_4 Q_3 Q_2 Q_1 Q_0$$

Далее рассмотрим J_1 Рассмотрим подробнее рисунок 8.

Рисунок
$$8 - J_1$$

Некоторые значения в процессе стандартной минимизации по аналогии с прошлой лабораторной работой так и так убираются, поэтому они для удобства вообще не выделяются никаким цветом. Итого получилось выражение:

$$J_1 = \overline{Q_5 Q_1} Q_0$$

Далее рассмотрим K_2 . Рассмотрим рисунок 9 подробнее.

Рисунок $9 - K_2$

По аналогии с построением предыдущего логического выражения получаем:

$$K_2 = \overline{Q_5} Q_2 Q_1 Q_0$$

Но это выражение можно ещё сократить на Q_2 . Для этого изначально выделим все значения относительно исходных выделенных так, чтобы основная часть осталась той же, а Q_2 было инвертированным по отношению к искомым. Нужные значения выделены на рисунке 19 фиолетовым. Итого, при сложении этих выражений, убирается целых три значения и итоговое выражение принимает вид:

$$K_2 = \overline{Q_5}Q_1Q_0$$

Далее рассмотрим J_2 подробнее на рисунке 10.

Рисунок 10 - Ј2

По аналогии с построением предыдущего логического выражения получаем:

$$J_2 = \overline{Q_5 Q_2} Q_1 Q_0$$

Но и это выражение можно ещё сократить на не Q_2 . Для этого изначально выделим все значения относительно исходных выделенных так, чтобы основная часть осталась той же, а Q_2 было инвертированным по отношению к искомым. Нужные значения выделены на рисунке 10 фиолетовым. Итого, при сложении этих выражений, убирается целых три значения и итоговое выражение принимает вид:

$$J_2 = \overline{Q_5}Q_1Q_0$$

Далее рассмотрим K_3 на рисунке 11.

Рисунок 11 – **К**₃

По аналогии с построением предыдущего логического выражения получаем:

$$K_3 = \overline{Q_5}Q_3Q_2Q_1Q_0$$

Это выражение можно ещё сократить на Q_3 . Для этого изначально выделим все значения относительно исходных выделенных так, чтобы основная часть осталась той же, а Q_3 было инвертированным по отношению к искомым. Нужные значения выделены на рисунке 11 фиолетовым. Итого, при сложении этих выражений, убирается целых два значения и итоговое выражение принимает вид:

$$K_3 = \overline{Q_5} Q_2 Q_1 Q_0$$

Далее рассмотрим J_3 на рисунке 12.

Рисунок $12-J_3$

По аналогии с построением предыдущего логического выражения получаем:

$$J_3 = \overline{Q_5 Q_3} Q_2 Q_1 Q_0$$

Это выражение можно ещё сократить на не Q_3 . Для этого изначально выделим все значения относительно исходных выделенных так, чтобы основная часть осталась той же, а Q_3 было инвертированным по отношению к искомым. Нужные значения выделены на рисунке 12 фиолетовым. Итого, при сложении этих выражений, убирается целых два значения и итоговое выражение принимает вид:

$$J_3 = \overline{Q_5}Q_2Q_1Q_0$$

Далее рассмотрим **К**₄ на рисунке 13.

Рисунок 13 – К₄

Итого получаем выражение:

$$K_4 = \overline{Q_5} Q_4 Q_3 Q_2 Q_1 Q_0$$

Это выражение можно ещё сократить на Q₄. Для этого изначально выделим все значения относительно исходных выделенных так, чтобы основная часть осталась той же, а Q₄ было инвертированным по отношению к искомым. Нужные значения выделены на рисунке 13 фиолетовым. Итого, при сложении этих выражений, убирается одно значение и итоговое выражение принимает вид:

$$K_4 = \overline{Q_5}Q_3Q_2Q_1Q_0$$

Наконец, рассмотрим J_4 на рисунке 14.

Рисунок $14 - J_4$

Итого получаем выражение:

$$J_4 = \overline{Q_5 Q_4} Q_3 Q_2 Q_1 Q_0$$

Это выражение можно ещё сократить на не Q₄. Для этого изначально выделим все значения относительно исходных выделенных так, чтобы основная часть осталась той же, а Q₄ было инвертированным по отношению к искомым. Нужные значения выделены на рисунке 14 фиолетовым. Итого, при сложении этих выражений, убирается одно значение и итоговое выражение принимает вид:

$$J_4 = \overline{Q_5} Q_3 Q_2 Q_1 Q_0$$

В результате получились такие логические выражения:

$$J_0 = 1$$

$$K_0 = 1$$

$$J_1 = \overline{Q_5} \overline{Q_1} Q_0$$

$$K_1 = Q_0$$

$$J_2 = \overline{Q_5} Q_1 Q_0$$

$$K_2 = \overline{Q_5}Q_1Q_0$$

$$J_3 = \overline{Q_5}Q_2Q_1Q_0$$

$$K_3 = \overline{Q_5}Q_2Q_1Q_0$$

$$J_4 = \overline{Q_5}Q_3Q_2Q_1Q_0$$

$$K_4 = \overline{Q_5}Q_3Q_2Q_1Q_0$$

$$J_5 = \overline{Q_5}Q_4Q_3Q_2Q_1Q_0$$

$$K_5 = Q_0$$

Схема устройства

Искомая схема изображена на рисунке 15.

Рисунок 15 – Созданная схема

Временная диаграмма

Искомая диаграмма изображена на рисунке 16.

Рисунок 16 – Временная диаграмма

ПЛИС

Соответствующая ПЛИС изображена на рисунке 17.

Рисунок 17 – ПЛИС

Выводы

В данной лабораторной работе был разработан проект счетчика с заданным основанием счета на ЈК-триггерах в среде программирования Quartus, попутно изучены элементы методологии работы с не полностью определенными таблицами истинности.

Сравнивая схемы из этой и прошлой лабораторных работ можно сделать

вывод о том, что схема на JK-триггерах более компактная, да и в принципе счетчики получаются самыми экономичными по затратам оборудования. Это приводит к большей предельно допустимой частоте работы счётчика за счёт меньших длин цепочек логических элементов.

Список используемых источников

- 1. Проектирование встраиваемых систем на ПЛИС. / З.Наваби; перев. с англ. В.В. Соловьева. М.: ДМК Пресс, 2016. 464 с.
- 2. Проектирование цифровых устройств на ПЛИС: учеб. пособие / И.В. Ушенина. СПб: Лань, 2022. 408 с.
- 3. Цифровая схемотехника и архитектура компьютера / Д.М. Харрис, С.Л. Харрис; пер. с англ. ImaginationTechnologies. М.: ДМК Пресс, 2018. 792 с.
- 4. Логическое проектирование цифровых систем на основе программируемых логических интегральных схем / В. В. Соловьев, А. Климович. М.: Горячая линия Телеком, 2008. 376 с. [Библиотечный шифр 681.3 С 60].
- 5. Проектирование на ПЛИС. Архитектура, средства и методы: Курс молодого бойца = The design warrior's guido to FPGA's: пер. с англ. / К. Максфилд. М.: ДОДЭКА-ХХІ, 2007. 408 с. [Библиотечный шифр 004.4 М 17].
- 6. Разработка систем цифровой обработки сигналов на базе ПЛИС / Д. С. Потехин, И. Е. Тарасов. М.: Горячая линия Телеком, 2007. 248 с. [Библиотечный шифр 004 П 64]