FINAL PROJECT REPORT MACHINE LEARNING

Objective:

To build a suitable Machine Learning model for various data sets.

Problem Statement 1:

CPI	discounts	offers	Sales
2600	3	20	550000
3000	4	15	565000
3200	5	18	610000
3600	3	30	595000
4000	5	8	760000
4100	6	8	810000

Given below information find out the Sales that has 5000 cpi, 3 percentage discounts, 20 rewards offers 4000 cpi, 8 percentage discounts, 19 rewards offers

Solution:

For the above problem and data set the Linear Regression model is suitable. Because these data points have a good linear relationship between variables and this data set have an one dependent variable and three independent variables.

Regression: Relationship between dependent variables and independent variables

Regression model equation

$$Y=mx+c$$

Correlation Checking:

	CPI	discounts	offers	Sales
CPI	1.000000	0.664772	-0.445300	0.901476
discounts	0.664772	1.000000	-0.816902	0.829877
offers	-0.445300	-0.816902	1.000000	-0.734167
Sales	0.901476	0.829877	-0.734167	1.000000

Linear Regression model Summary:

OLS Regress	sion Re	sults							
Dep. Va	ariable	:	Sal	es	R-sq	uared:	0.	952	
	Model	:	Ol	S Ac	lj. R-sq	uared:	0.	879	
N	/lethod	: L	east Squar	es	F-sta	atistic:	13	3.14	
	Date	: Tue	30 Jan 20	24 Prok	(F-sta	tistic):	0.0	716	
	Time	:	19:43:	31 Lo	g-Likel	ihood:	-68.	476	
No. Observ	ations	:		6		AIC:	14	15.0	
Df Res	iduals	:		2		BIC:	14	14.1	
Df	Model	:		3					
Covarianc	e Type	:	nonrobu	ıst					
		coef	std err	t	P> t	ro	0.025	0	.975]
Intercept	2.648	Be+05	1.64e+05	_	0.248	-4.41			e+05
CPI		.4351	39.639		0.083		2.120	298	8.990
discounts	5913	.5196	2.99e+04	0.198	0.861	-1.23	e+05	1.34	e+05
offers	-4902	.5460	3641.815	-1.346	0.311	-2.06	e+04	1.08	e+04
Omn	ibus:	nan	Durbir	ı-Watson	:	2.185			
Prob(Omni	bus):	nan	Jarque-E	Bera (JB)):	0.238			
S	kew:	-0.031	I	Prob(JB)):	0.888			
Kurt									

From above result we can know about the R-Square, Adjacent R-Square, correlation values.

Linear Regression Model Building:

- 1. Collect the data
- 2. Preprocessing the data
- 3. Analyze the data
- 4. Select and split the dependent variable and independent variables
- 5. Make the data to X train,X test,y train,y test split
- 6. Fit the model.
- 7. Train and test the model
- 8. Evaluate and predict the model

New Data Points:

5000 cpi, 3 percentage discounts, 20 rewards offers

Solution: array ([826645.34838222])

4000 cpi, 8 percentage discounts, 19 rewards offers

Solution: array([732680.36486005])

By providing the 5000 cpi, 3 percentage discounts and 20 rewards offers is a good Result in Sales, but it slightly reduces the sales while providing 4000 cpi, 8 percentage And 19 rewards offers.

Problem Statement 2:

					Cybill		
Cutomer id	Cards	Debit card	Insurance	Age	Score	Loan offer	
5	0	1	0	50	34.94		0
3	1	0	0	18	0.891		1
66	0	1	0	5	0.33		1
70	0	1	1	31	0.037		0
96	0	1	0	30	0.038		1

Solution:

For the above problem and data set the Logistic Regression model is suitable. Because dependent variables have an BINOMIAL data 0 and 1. This type of data or Categorical like yes or no predictions is suitable for Logistic Regression.

Correlation Checking:

df.corr().style.background_gradient(cmap="Reds")									
	Cutomer id	Cards	Debit card	Insurance	Age	Cibil Score	Loan offer		
Cutomer id	1.000000	0.028151	0.046044	-0.010003	-0.002512	-0.049590	0.011717		
Cards	0.028151	1.000000	0.066413	-0.015024	-0.023195	-0.027611	0.079674		
Debit card	0.046044	0.066413	1.000000	0.021154	0.049493	0.005821	0.079439		
Insurance	-0.010003	-0.015024	0.021154	1.000000	-0.027992	0.111189	-0.057189		
Age	-0.002512	-0.02318	0.049493	-0.027992	1.000000	0.064612	0.010680		
Cibil Score	-0.049590	-0.027611	0.005821	0.111189	0.064612	1.000000	-0.219715		
Loan offer	0.011717	0.079674	0.079439	-0.057189	0.010680	-0.219715	1.000000		

Logistic Regression Model building:

- Analyze the problem
- Collect the data
- Preprocessing the data
- Feature Selecting
- Train, test data splitting
- Fit, Train, Test and Evaluate the model4

Logistic Regression Model Summary:

Accuracy of Model: 0.7388059

Confusion Matrix: array ([[85, 43],

[27, 113]], dtype=int64)

Classification Report:

	precision	recall f1-score	support
0	0.76	0.66 0.71	128
1	0.72	0.81 0.76	140
accuracy		0.74	268
macro avg	0.74	0.74 0.74	268
weighted avg	0.74	0.74 0.74	268

Optimization terminated successfully. Current function value: 0.610149

Iterations 7

Logit Regression Results								
Dep. Variable:	Loan offer	No. Observations:	1340					
Model:	Logit	Df Residuals:	1334					
Method:	MLE	Df Model:	5					
Date:	Wed, 31 Jan 2024	Pseudo R-squ.:	0.1194					
Time:	10:26:52	Log-Likelihood:	-817.60					
converged:	True	LL-Null:	-928.48					
Covariance Type:	nonrobust	LLR p-value:	6.224e-46					

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0744	0.223	-0.334	0.738	-0.511	0.362
Cards	0.3150	0.120	2.633	0.008	0.081	0.549
Debit card	0.5419	0.210	2.583	0.010	0.131	0.953
Insurance	-0.6924	0.523	-1.324	0.186	-1.717	0.333
Age	0.0037	0.003	1.240	0.215	-0.002	0.010
Cibil Score	-0.3204	0.029	-10.884	0.000	-0.378	-0.263

Problem Statement 3:

age	work clas	fnlwgt	educatio	educatio	marital s	occupati	relations	race	sex
	s		n	n-num	tatus	on	hip		
39	State-gov	77516	Bachelor	13	Never m	Adm-cler	Not-in-fa	White	Male
			S		arried	ical	mily		
50	Self-emp	83311	Bachelor	13	Married-	Exec-ma	Husband	White	Male
	-not-inc		S		civ-spous	nagerial			
					е				
38	Private	215646	HS-grad	9	Divorced	Handlers	Not-in-fa	White	Male
						-cleaners	mily		
53	Private	234721	11th	7	Married-	Handlers	Husband	Black	Male
					civ-spous	-cleaners			
					е				

Note: This is some sample from data set, the data set contains 48842 rows and 15 columns.

Solution:

For the above data sets I used the KNN, K-Means, Decision Tree, Random Forest and SVM machine learning model. When the relationship between features and the target variable is complex and non-linear, the above-mentioned algorithms are used over Logistic Regression. So, we train and test the above data by each Machine Learning algorithm above mentioned.

Then the next important thing in this data sets are data preprocessing because these Data are non-linear and complex one, so we use some complex techniques to fill NAN values, Encoding the values in the datasets, I used **bfill** technique due to the NAN values in the categorical columns and encoding techniques **One-Hot Encoding and Label Encoding** are used.

KNN Model

Accuracy Score: 0.7920974511 (**79%**)

Confusion Matrix: array ([[7155, 206],

[1825, 583]], dtype=int64)

K-Means

Accuracy Score: 0.404467466 (**40%**)

Support Vector Machine (SVM)

Accuracy Score: 0.79363292 (**79%**)

Confusion Matrix: array ([[7341, 20],

[1996, 412]], dtype=int64)

Decision Tree

Accuracy Score: 0.82239737 (**82%**)

Confusion Matrix: array ([[6892, 469],

[1266, 1142]], dtype=int64)

Random Forest

Accuracy Score: 0.848397993 (**84%**)

Confusion Matrix: array ([[6795, 566],

[915, 1493]], dtype=int64)