Δύο όμοια εκκερείως το καθένα αποτεθούμενο από μα μίσα η εβαρείμενη από μια ράθο αμεθητέτει μάβας μάνους λ, κρεμονται από ένα βαρονώνη μάβας Μ Το βαχονώνη βρίσκεται πώνω δε οριβόντια σιδηροτροχιά και μπορεί νε κινηθεί χωρίς τριβές. (a) Να γράψετε τη λαρταιομίας του συσαίματος (b) Να βρεθούν οι ιδιοσυχνότητες. (χ) Να βρεθούν οι φυρικό τρόποι τα Ισίτων, 1.

H raxing to the fall of the form
$$X_1 = x + l \sin \theta_1$$
 $Y_2 = -l \cos \theta$
 $X_2 = x + l \sin \theta_1$ $Y_3 = -l \cos \theta$
 $X_4 = x + l \sin \theta_1$ $Y_4 = -l \cos \theta_1$
 $X_5 = x + l \cos \theta_1$ $U_5 = + l \cos \theta_2$

Availaga: $U_2 = x + l \cos \theta_2$ $U_3 = + l \cos \theta_2$

Endievos n kuneum evépyera da civa: T= = 1 1 x2+ 1 m(vx+vz+2)+ 1 m(vx+vz+2)

$$\Rightarrow T = \frac{1}{2} \text{M} \times^2 + \frac{1}{2} m \left[\dot{x}^2 + \dot{l} \dot{\theta}_1^2 \cos \theta_1 + 2 \dot{x} \dot{l} \dot{\theta}_1 \cos \theta_1 + \dot{l} \dot{\theta}_1^2 \sin^2 \theta_1 + \dot{x}^2 + \dot{l} \dot{\theta}_2^2 \cos \theta_2 + 2 \dot{\theta}_1^2 \sin^2 \theta_2 \right] \Rightarrow$$

$$\Rightarrow T = \frac{1}{2} \times \dot{x}^{2} + \frac{1}{2} \times \left[2 \dot{x}^{2} + l^{2} \dot{\theta}_{1}^{2} + l^{2} \dot{\theta}_{2}^{2} + 2 \dot{x} l \dot{\theta}_{1} \cos \theta_{1} + \dot{\theta}_{2} \cos \theta_{2} \right]$$

Two purpos yeuries Θ_1 was Θ_2 exorpse $\cos\Theta_i \simeq 1 - \frac{\Theta_i}{2}$

Ο τε λευτοίος όρος στην κινητική ενέρχεια περιέχει ήδη χινόμενο ταχυτήτων, $\dot{x}\theta$; και εποφένως αναπτώσσοντας τος θ ί πρειόβεται να πρατήσουμε μόνο το \dot{x} όρο ναι όχι θ ί/2 αφού τότε το αποτέλεσμα δο είναι $\dot{x}\theta$.

Enopierus n unyaný eripjem zpádetan:

$$T = \frac{1}{2} (M + 2m) \dot{x}^{2} + \frac{\ell^{2}}{2} m (\mathring{\Theta}_{1}^{2} + \mathring{\Theta}_{2}^{2} + 2 \frac{1}{\ell} (\dot{x} \mathring{\Theta}_{1} + \dot{x} \mathring{\Theta}_{2}))$$

H Swaterni evéppera repoépperar fiaro anó en Swaternis evippera baporques

$$V = mgl(1-cos\theta_1) + mgl(1-cos\theta_2) = lmgl - mgl(cos\theta_1+cos\theta_2)$$

Avanzi George: $U = 2mgl - mgl\left[1 - \frac{\Theta_1^2}{2} + 1 - \frac{\Theta_2^2}{2}\right] \Rightarrow U = mgl\left(\frac{\Theta_1^2}{2} + \frac{\Theta_2^2}{2}\right)$

Emolières , Lagrangian que lunpès anomiser and en Décn reopponies $\int_{-\frac{1}{9}}^{2} (N+2m) \dot{x}^{2} + \frac{m}{2} \left(\ell^{2} (\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2}) + 9 \ell \dot{x} (\dot{\theta}_{1} + \dot{\theta}_{2}) \right) - \frac{mq\ell}{\Omega_{9}} \left(\theta_{1}^{2} + \theta_{2}^{2} \right)$ (b) Trava bpoûtre as Sucurvourres maxuoutre as lieus ans eficuens: det }[K] - [M] w2 = 0 Evi Enopievos a eficuer da papei pe en poppis: > \(\omega^2 \left(N + m) \left(\omega^2 - mgl \right)^2 - 2 \(\omega^2 m l \right)^2 \left(\omega^2 m l^2 - mgl \right) = 0 > ⇒ ω2 (ω2l-q)) Hw2l- (M+2m) g {m2l2 = 0. O_{L} 3 iSw Eugvo eners enotions de eiver: $\omega_{1}=0$, $\omega_{2}=\sqrt{\frac{9}{6}}$ y $\omega_{3}=\sqrt{\frac{442m}{100}}$

-	(x) Ano en estemen zon woodenvertaient proposite va bposite en exècn
1 8	e Su sugvorgiren mon be maple:
	$ \begin{cases} $
	Έχουμε επομένως: $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	$(1) \omega^{2} = \omega_{1}^{2} = 0 \Rightarrow \begin{cases} 0 & \text{mgl-mlw} - \text{mlw} \\ -\text{mlw}^{2} - \text{mlw}^{2} - (M+m)\omega^{2} \end{cases} = 0 \text{mgl} 0 $
	Enopières a 1=0, a 1=0 evé a 31 riepre à nova color com Apa funopoire va pparate co opono calaremens va (0)
	bayovàxi extelei fieta dopius ringon. (2) $\omega^2 = \omega_2^2 = \frac{9}{\ell}$ \Rightarrow $mgl = m\ell^2 \frac{9}{\ell}$ $0 - m\ell^2 \frac{9}{$
	-ml 8/2 -(2m+M) 3 / 39)
	$\Rightarrow \begin{pmatrix} 0 & 0 & -mq \\ 0 & 0 & -mq \\ -mq & -(2m+M)\frac{3}{6} \end{pmatrix} \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} \Rightarrow \begin{pmatrix} a_{32} = 0 \\ a_{22} = -a_{12} \\ a_{32} \end{pmatrix} \Rightarrow \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} \Rightarrow \begin{pmatrix} a_{13} \\ a_{22} \\ a_{33} = 0 \end{pmatrix}$
	Ta 2 exupefir unoiver se aveiler paso evi co bajoran siva aningo.
	(3) $\omega^{2} = \omega_{3}^{2} = \frac{\mu + 2m}{\mu \ell} g$ $mg\ell - m\ell^{2} \frac{(\mu + 2m)}{\mu \ell} g$
	M & CMIM) ME &

$$\left(mgl - ml \frac{(M+2m)}{M}\right) \alpha_{13} - \frac{m}{M} \frac{(M+2m)}{M}g \alpha_{33} = 0 \Rightarrow$$

$$\Rightarrow \alpha_{33} = \frac{M}{M(M+2m)g} \left(\frac{M-M-2m}{M}\right) \alpha_{13} \Rightarrow$$

$$\Rightarrow \alpha_{33} = \frac{Ml}{(M+2m)} \left(\frac{M-M-2m}{M}\right) \alpha_{13} \Rightarrow \alpha_{33} = \frac{-2Mnl}{M+2m} \alpha_{13}$$

$$\Rightarrow -\frac{m}{\mu} a_{13} - \frac{m}{\mu} a_{23} + \frac{2m}{\mu} a_{13} = 0 \Rightarrow -a_{13} - a_{23} + 2a_{13} = 0 \Rightarrow$$

Enopievous da éxorpe :
$$\begin{pmatrix} 1 \\ 1 \\ -\frac{2ml}{M+2m} \end{pmatrix}$$
 kan za 2 excepting caracterises

6ε φάση ενώ το βαγονανι με αντίθετη φάση. Το αποτελεσμα είναι ότι το κέντρο μάβας του συσώματος παραμένει ανίνητο.