CHUYÊN ĐỀ III: TỨ GIÁC NỘI TIẾP

Họ tên học sinh: Lớp: 9B1/ Ngày: / ... / 20....

I. Tứ giác nội tiếp

Bài 1: Cho đường tròn tâm O và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB, AC với đường tròn (B, C) là tiếp điểm. Trên cung nhỏ BC lấy một điểm M rồi kẻ các đường vuông góc MI, MH, MK xuống các cạnh BC, CA, AB. Gọi giao điểm của BM và IK là P; giao điểm của CM, IH là Q.

- a) Chứng minh rằng các tứ giác BIMK, CIMH nội tiếp được;
- b) Chứng minh MI² = MH.MK;
- c) Chứng minh tứ giác IPMQ nội tiếp rồi suy ra $PQ \perp MI$;

Hướng dẫn giải

- a) * $BIM = BKM = 90^{\circ}$ suy ra tứ giác BIMK nội tiếp. (phương pháp 1)
 - * $CIM = CHM = 90^{\circ}$ suy ra tứ giác CIMH nội tiếp. (phương pháp 1)
- b) Tứ giác BIMK nội tiếp nên IKM = IBM; (nội tiếp cùng chắn cung MI); KIM = KBM. (nội tiếp cùng chắn cung KM) (1)

Tứ giác CIMK nội tiếp nên ICM = IHM; (cùng chắn cung MI); MIH = MCH. (cùng chắn cung MH)
(2)

Xét đường tròn tâm (O) có : KBM = BCM; (góc tạo bởi tiếp tuyến và dây cung(; MBI = MCH. (góc tạo bởi tiếp tuyến và dây cung) (3)

Từ (1), (2), (3) suy ra KIM = IHM; MKI = MIH.

Do đó $\Delta IMK \sim \Delta MHI(g.g)$

$$\Rightarrow \frac{MK}{MI} = \frac{MI}{MH} \Rightarrow MI^2 = MK.MH$$
.

c) * Ta có
$$PMQ + PIQ = BMC + PIM + QIM$$

$$= BMC + MCI + MBC = 180^{\circ}$$

Hay
$$PMQ + PIQ = 180^{\circ}$$

Suy ra tứ giác MPIQ nội tiếp. (phương pháp 1)

* Từ đó ta có
$$MPQ = MIQ \Rightarrow MPQ = MBC$$

$$\Rightarrow PQ//BC$$
 mà $MI \perp BC$ nên $MI \perp PQ$

- a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.
- b) Chứng minh MBCD là tứ giác nội tiếp (xem cách giải Bài 3)

Hướng dẫn giải

Vì MA, MC là tiếp tuyến nên: $MAO = MCO = 90^{\circ}$. Tứ giác AMCO có $MAO + MCO = 180^{\circ} \Rightarrow AMCO$ là tứ giác nội tiếp đường tròn đường kính MO.

 $ADB = 90^{\circ}$ (góc nội tiếp chắn nửa đường tròn) $\Rightarrow ADM = 90^{\circ}$ (1)

Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến).

Suy ra OM là đường trung trực của AC

 \Rightarrow AEM = $90^{\circ}(2)$.

Từ (1) và (2) suy ra $ADM = AEM = 90^{\circ}$. Tứ giác AMDE có hai đỉnh A, E kề nhau cùng nhìn cạnh MA dưới một góc không đổi. Vậy là tứ giác AMDE nội tiếp đường tròn đường kính MA.

Bài 3: Cho nữa đường tròn tâm O đường kính AB, kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia AC và AD cắt Bx lần lượt ở E, F (F ở giữa B và E)

- 1. Chứng minh: ABD = DFB.
- 2. Chứng minh rằng CEFD là tứ giác nội tiếp.

Hướng dẫn giải

1) $\triangle ADB$ có $ADB = 90^\circ$ (nội tiếp chắn nửa đường tròn) $\Rightarrow ABD + BAD = 90^\circ$ (vì tổng ba góc của một tam giác bằng 180°)(1)

 $\triangle ABF$ có $ABF = 90^{\circ}$ (BF là tiếp tuyến). $\Rightarrow AFB + BAF = 90^{\circ}$ (vì tổng ba góc của một tam giác bằng 180°) (2)

Từ (1) và (2)
$$\Rightarrow ABD = DFB$$

2) Tứ giác ACDB nội tiếp $(O) \Rightarrow ABD + ACD = 180^{\circ}$.

mà $ECD + ACD = 180^{\circ}$ (Vì là hai góc kề bù) $\Rightarrow ECD = DBA$

Theo trên ABD = DFB, $ECD = DBA \Rightarrow ECD = DFB$. Mà

 $EFD + DFB = 180^{\circ}$ (Vì là hai góc kề bù) nên $\Rightarrow ECD + AEFD = 180^{\circ}$, do đó tứ giác CEFD là tứ giác nội tiếp.

Bài 4: Cho nửa đường tròn đường kính BC = 2R. Từ điểm A trên nửa đường tròn vẽ $AH \perp BC$. Nửa đường tròn đường kính BH, CH lần lượt có tâm O_1 ; O_2 cắt AB và CA thứ tự tại D và E.

- a) Chứng minh tứ giác ADHE là hình chữ nhật, từ đó tính DE biết R = 25 và BH = 10
- b) Chứng minh tứ giác BDEC nội tiếp đường tròn.

Hướng dẫn giải

Ta có BAC = 90° (vì góc nội tiếpchắn nửa đường tròn)

Tương tự có $BDH = CEH = 90^{\circ}$

Xét tứ giác ADHE có $A = ADH = AEH = 90^{\circ}$ hay ADHE là hình chữ nhật.

Từ đó DE = AH mà $AH^2 = BH.CH$ (Hệ thức lượng trong tam giác vuông)

hay
$$AH^2 = 10.40 = 20^2 (BH = 10; CH = 2.25 - 10 = 40) \Rightarrow DE = 20$$

b) Ta có: BAH = C (góc có cạnh tương ứng vuông góc) mà DAH = ADE (1)

(Vì ADHE là hình chữ nhật) => C = ADE do $C + BDE = 180^{\circ}$ nên tứ giác BDEC nội tiếp đường tròn.

Lưu ý: Có thể hướng dẫn học sinh một cách sử dụng hệ thức lượng và tam giác đồng dạng như sau:

Tam giác AHB vuông tại H, đường cao AH. Ta có $AH^2 = AD.AB$

Tam giác AHC vuông tại H, đường cao AE. Ta có $AH^2 = AE.AC$

Ta có
$$AD$$
. $AB = AE$. $AC \Rightarrow \frac{AD}{AC} = \frac{AE}{AB}$

Xét tam giác ADE và tam giác ACB có $\frac{AD}{AC} = \frac{AE}{AB}$, $BAC = DAE = 90^{\circ}$ (góc chung)

 $\Rightarrow \triangle ADE$ " $\triangle ACB \Rightarrow ADE = ACB$ mà $ADE + EDB = 180^{\circ}$ nên $ADE + ECB = 180^{\circ}$

Tứ giác BDEC có $ADE + ECB = 180^{\circ}$ nên tứ giác BDEC nội tiếp đường tròn.

Bài 5:

Từ bài toán quen thuộc cho (O,R). Trên nửa mặt phẳng bờ AB kẻ tiếp tuyến Ax và By với (O), lấy N thuộc (O), kẻ tiếp tuyến với (O) tại N cắt Ax tại C, cắt By tại D. Gọi I và K lần lượt là giao điểm của AN và CO, MN và OD. Chứng minh NIOK là hình chữ nhật.

Ta có bài toán sau:

Cho nửa đường tròn tâm O đường kính AB. Lấy điểm M thuộc đoạn thẳng OA, điểm N thuộc nửa đường tròn O. Từ A và B vẽ các tiếp tuyến Ax và By. Đường thẳng qua N và vuông góc với NM cắt Ax, By thứ tự tại C và D.

- a) Chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn.
- b) Chứng minh $\triangle ANB$ đồng dạng với $\triangle CMD$ từ đó suy ra IMKN là tứ giác nội tiếp.

- a) Ta có tứ giác ACNM có: $MNC = 90^{\circ}$ (gt) $MAC = 90^{\circ}$ (tínhchất tiếp tuyến).
- \Rightarrow MNC + MAC = $180^{\circ}~$ ACNM là tứ giác nội tiếp đường tròn đường kính MC . Tương tự tứ giác BDNM nội tiếp đường tròn đường kính. MD
- b) ΔANB và ΔCMD có:

ABN = CDM (do tứ giác BDNM nội tiếp)

BAN = DCM (do tứ giác ACNM nội tiếp) nên $\Delta ANB \sim \Delta CMD$ (g.g)

Liên hệ: Thầy Minh – SĐT: 036 350 3879 – Facebook: Lê Minh

c) $\triangle ANB \sim \triangle CMD \Rightarrow \text{CMD} = \text{ANB} = 90^{\circ} \text{ (do ANB là góc nội tiếp chắn nửa đường tròn } (O))$

Suy ra $IMK = INK = 90^{\circ} \Rightarrow INK + IMK = 180^{\circ}$. Vậy IMKN là tứ giác nội tiếp đường tròn đường kính IK **Bài 6:** Cho tứ giác ABCD nội tiếp (O), M là điểm chính giữa của cung AB. Nối M với D, M với C cắt AB lần lươt ở E và P. Chứng minh tứ giác PEDC nôi tiếp được đường tròn.

Hướng dẫn giải

Ta có:
$$MEP = \frac{sd(AD + MB)}{2}$$
 (góc có đỉnh nằm bên trong (O))

Mà
$$DCP = \frac{sdDM}{2}$$
 (góc nội tiếp)

Hay
$$\Rightarrow DCP = \frac{sd(AD + MA)}{2}$$

Lại có:
$$AM = MB$$

Nghĩa là: Tứ giác PEDC có góc ngoài tại đỉnh E bằng góc trong tại đỉnh C. Vậy tứ giác PEDC nội tiếp được đường tròn.

Bài 7: Định lý Ptoleme.

Ta có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh: AC. BD = AB. DC + AD. BC

Hướng dẫn giải

$$\Rightarrow$$
 $\triangle DAE$ " $\triangle CAB$ (g. g)

$$\Rightarrow \frac{AD}{AC} = \frac{DE}{BC}$$

$$\Rightarrow$$
 AD. BC = AC. DE (1)

Turong tự: $\triangle BAE$ " $\triangle CAD$ (g. g)

$$\Rightarrow \frac{BE}{CD} = \frac{AB}{AC}$$

$$\Rightarrow$$
 BE. AC = CD. AB (2)

Từ (1) và (2)
$$\Rightarrow$$
 AD. BC + AB. CD = AC. DE + EB. AC
 \Rightarrow AD. BC + AB. CD = AC. DB (đpcm)

II. Chứng minh các điểm cùng thuộc đường tròn

Bài 1: Cho hình thoi ABCD có góc A bằng 60° , AB = a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng 6 điểm E, F, G, H, B, D cùng nằm trên một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo a.

Hướng dẫn giải

Gọi O là giao điểm của AC và BD ta có OB = OD

Do ABCD là hình thoi nên ta có $AC \perp BD$.

Ta có $BAD = 60^{\circ}$ nên $BAO = 30^{\circ}$ (tính chất đường chéo hình thoi)

Tam giác ABO vuông tại O có

$$OB = AB\sin BAO \Rightarrow OB = a.\sin 30^{\circ} = \frac{a}{2}$$

Xét tam giác vuông ABO có $ABO + BAO = 90^{\circ}$ (hai góc phụ nhau) mà $BAO = 30^{\circ}$ suy ra $ABO = 60^{\circ}$ hay $EBO = 60^{\circ}$

 $OE = \frac{1}{2}AB = EB = EA$ (tính chất đường trung tuyến trong tam giác vuông và E là trung điểm của AB.

Tam giác EOB là tam giác cân tại E có $EBO = 60^{\circ}$ nên tam giác EBO là tam giác đều

$$\Rightarrow OE = OB$$

Chứng minh tương tự với các tam giác vuông BOC, COD và DOA ta có:

$$OE = OB = OF = OC = OG = OD = OH$$

Vậy 6 điểm E, F, G, H, B, D cùng nằm trên một đường tròn tâm O. Bán kính $OB = \frac{a}{2}$

Bài 2: Cho tam giác ABC vuông tại A. Trên AC lấy điểm D. Hình chiếu của D lên BC là E, điểm đối xứng của E qua BD là F. Chứng minh 5 điểm A, B, E, D, F cùng nằm trên một đường tròn. Xác định tâm O của đường tròn đó.

Hướng dẫn giải

Do
$$DE \perp BC \Rightarrow DBE = 90^{\circ}$$

Vì E và F đối xứng với nhau qua BD nên BD là đường trung trực của đoạn thẳng EF

$$\Rightarrow BF = BE; DF = DE$$

$$\Delta BFD = \Delta BED \text{ (c-c-c)} \Rightarrow BFD = BED = 90^{\circ}$$

Cách 1.

Gọi O là trung điểm của BD.

Xét tam giác vuông ABD vuông tại A có AO là

trung tuyến nên
$$AO = \frac{1}{2}BD = OB = OD$$
 (1)

Tam giác vuông BDE vuông tại E có OE là trung tuyến nên $EO = \frac{1}{2}BD = OB = OD$ (2)

Tam giác vuông BFDvuông tại F có OF là trung tuyến nên $FO = \frac{1}{2}BD = OB = OD$ (3)

Từ $(1),(2),(3) \Rightarrow OA = OB = OD = OE = OF$. Vậy 5 điểm A, B, E, D, F cùng nằm trên một đường tròn tâm O với O là trung điểm của BC.

Cách 2:

① Tứ giác BADE có $BAD + DEB = 180^{\circ}$ nên tứ giác BADE là tứ giác nội tiếp.

Tâm của đường tròn này là trung điểm của BD

② Tứ giác BFDE có $BFD + DEB = 180^{\circ}$ nên tứ giác BFDE là tứ giác nội tiếp.

Tâm của đường tròn này là trung điểm của BD

Từ ① và ② suy ra 5 điểm A, B, E, D, F cùng nằm trên một đường tròn tâm O với O là trung điểm của BC.

Bài 3: Từ một điểm A ở ngoài đường tròn (O) vẽ các tiếp tuyến AB, AC. Cát tuyến ADE không đi qua tâm O (D nằm giữa A và E). Gọi I là trung điểm của DE.

Chứng minh 5 điểm O,B,A,C,I cùng thuộc một đường tròn.

Hướng dẫn giải

Do AC và AB là các tiếp tuyến nên

$$OCA = OBA = 90^{\circ}$$

Do I là trung điểm của ED nên $OI \perp ED$

(đường kính đi qua trung điểm của dây thì vuông góc với dây cung)

hay
$$OID = OIA = 90^{\circ}$$

Gọi P là trung điểm của OA

Xét tam giác vuông OCA có CP là đường trung

tuyến nên
$$CP = \frac{1}{2}AO = OP = PA$$

Xét tam giác vuông OBA có BP là đường trung tuyến nên $BP = \frac{1}{2}AO = OP = PA$

Xét tam giác vuông OIA có IP là đường trung tuyến nên $IP = \frac{1}{2}AO = OP = PA$

Vậy OP = PA = PC = PI = PB nên 5 điểm O,B,A,C,I cùng thuộc một đường tròn.

---- Hết -----