Spectral Clustering Toolbox

Deepak Verma deepak@cs.washington.edu

Marina Meila mmp@stat.washington.edu

December 23, 2003

1 Introduction

This toolbox contains the code written to perform various spectral clustering algorithms. The details related to the code and some experiments is available in [VM03]. This document is very short and the reader is encourage to look at the directories to see other code.

2 Using the toolbox

2.1 Quick Start

To get up and cranking:

- 1. Set SPECTRAL_HOME to be the directory where you unpacked the library.
- 2. Start matlab.
- 3. Call init_spectral. (sets up the path and global options).
- 4. assignment=cluster_algo(similarity,number_of_clusters): Gives you the desired clustering.
- 5. Remember that all the vectors that you see would be column vectors.

2.2 Data Input/Output

Reading a data file (see data directory for some examples). :

[similarity,cluster_assignments,points]=read_from_data_file(filePrefix,directory)

Reads the data file directory/filePrefix (default dir=data) and assigns the similarity, the points and true cluster_assignments. If either of the above is not defined empty matrix is returned.

2.3 Spectral Algorithms

The algorithms are present in the algos and algos/allalgos directory. The latter just contains files which act convenient shortcut names to popular algorithms. Algorithm njw is described in [NJW02] and mcut is described in [MS00]. For the details and comparison of all the algorithms see [VM03].

3 Experimental Framework

3.1 Running Experiments

To run a bunch of experiments together use:

run_single_experiment(dataFile,cluster_algo_list,k_range,sigma,iterations,outdir,plot_points)
This runs the experiments on dataFile for the algorithms cluster_algo_list, varying the input number of clusters in the list k_range. The iterations is the *list* of iterations indices and are useful when there is a random

element in the algorithm. sigma is the σ used for affinity matrix ([NJW02] in case the points (see section 2.2 are present in dataFile. The results of each algorithm is written a file in the outdir (with a default value used). If plot_points is 1 then the results are displayed after each iteration for 2D points. (default 0).

3.2 Plotting graphs

To the plot the graphs on the experiments ran using run_single_experiment use:

plot_metric_save(dataFile,cluster_algo_list,k_range,iterations,metric,plot_stdev,outdir)

The arguments mean the same as above. metric is used specify the metric to be used to compare clustering produced w.r.t. true clustering. The metrics available are

- vi : Variation of Information ([Mei02]).
- ce : Clustering Error (see [VM03] for details).
- wi : One sided Wallace Index ([Wal83], also see [VM03]).

4 Datasets

4.1 Artificial

Some artificial datasets are provided in the data directory. All of them are 2D points which offers various levels of difficulty to the spectral algorithms. They are modelled after [NJW02]. To see these (or any other 2D) plots use plot2Dpoints_with_clusters.

An interesting dataset (not in 2D) called block-stochastic ([MS00]) is also provided. It is a similarity matrix designed ([VM03]) to illustrate the case when spectral methods work and linkage based methods fail.

4.2 Real Datasets

Coming soon....

5 Demo

Run spectral_demo in the demo directory for seeing typical use of the library functions.

References

- [Mei02] Marina Meila. Comparing clusterings. Technical Report 418, UW Statistics Department, 2002.
- [MS00] Marina Meila and Jianbo Shi. Learning segmentation by random walks. In NIPS, pages 873–879, 2000.
- [NJW02] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 849–856, Cambridge, MA, 2002. MIT Press.
- [VM03] Deepak Verma and Marina Meila. A comparison of spectral methods. Technical Report UW-CSE-03-05-01, Dept. of Computer Science and Engineering, University of Washington, 2003.
- [Wal83] David L. Wallace. Comment. J. Amer. Statist. Assoc., pages 269 576, 1983.