

## **Healthcare Clinic**

Consider a walk-in healthcare clinic with the following stations/offices:

| STATIONS/    | <b>CAPACIT</b> | SERVICE TIMES                                                |
|--------------|----------------|--------------------------------------------------------------|
| OFFICES      | $\mathbf{Y}$   | (MINUTES)                                                    |
| REGISTRATION | 1              | Random.Triangular(1,2,3)                                     |
| TRIAGE       | 1              | Random.Triangular(3,5,7)                                     |
| TREATMENT    | 2              | Random.Triangular(7, 10.5,                                   |
|              |                | 14)                                                          |
| LAB          | 4              | Random.Triangular(6,10, 14)                                  |
| XRAY A COLOT | mont L         | Random Triangular(8,10,12) 1<br>Random Triangular(8,10,12) 1 |
| MRI ASSIGI   | mient i        | Random Triangular (14,18,22)                                 |
| EKG          | 1              | Random.Triangular(20, 25, 30)                                |
| ACCOUNTING   | 4//20          | Random.Triangular(2,5,8) WCOGET.COM                          |
| M            | .tps://pc      | owcoder.com                                                  |

The arrival rate of patients is 40 patients per hour. The clinic has distinct types of

patients:

| Add We   | Chat powc | coder |
|----------|-----------|-------|
| PATIENT  | (%)       |       |
| WALK-IN  | 23        |       |
| LAB-ONLY | 47        |       |
| EKG      | 4         |       |
| XRAY     | 12        |       |
| MRI      | 14        |       |

The patient routing sequence is given in the following table:

## PATIENT ROUTING SEQUENCE

|              |     | LUIII | 71 1 1/C | <i>,</i> 0 1 1 | 110 91 | LQUE | 11 <b>C</b> E |     |
|--------------|-----|-------|----------|----------------|--------|------|---------------|-----|
|              | Reg | Triag | Trea     | La             | Xra    | MR   | EK            | Acc |
|              | •   | e     | t.       | b              | y      | I    | G             | t   |
| Walk-in      | 1   | 2     | 3        |                |        |      |               | 4   |
| Lab-<br>only |     |       |          | 1              |        |      |               | 2   |
| XRay         | 1   |       |          |                | 2      |      |               | 3   |

| MRI | 1 |  | 2 |   | 3 |  |
|-----|---|--|---|---|---|--|
| EKG | 1 |  |   | 2 | 3 |  |

Assume that the healthcare clinic works 24 hours. Your model should include the following characteristics/features:

- a) Entities should move from station to station instantaneously (0 simulated time)
- b) Name the object instances in your model
- c) Use Google 3D Warehouse or/and Simio symbols to find appropriate symbols for the model. Develop an interesting animation for your model
- d) Create a status plot that displays (1) the instantaneous number of patients in the system and (2) the average number of patients in the system.
- e) Create pie charts to show the utilization of each server.
- f) Create an experiment with 20 replications, 500 hours of run-length, and 100 hours of summent Project Exam Help
- g) Compare your simulation results to steady-state queueing theoretic results to confirm that the simulation model is representing the system to be studied (baseline model) (ba
- h) Suppose the patient **arrival rate** increases by 5%. Can the current system handle the increase? What about 7%? 10%? Compare the expected time patients spending the system by patients properwaiting these at each station, and the number of patients in the system for the baseline, +5%, +7%, and +10% scenarios. (Use **referenced Property** to set up the four scenarios with different interarrival times)
- i) Add an additional patient type "Treat-Lab" (sequence: registration, lab, treatment, account, depart) such that proportions now become Walk-In 22%, Lab 43%, Xray 11%, MRI 13%, EKG 4% and Treat-Lab 7%. The new arrival rate is as follows:

| Time Period    | Average Number of patients |
|----------------|----------------------------|
|                | Arriving in Time period    |
| 0:00 to 4:00   | 160                        |
| 4:00 to 8:00   | 172                        |
| 8:00 to 12:00  | 184                        |
| 12:00 to 16:00 | 184                        |
| 16:00 to 20:00 | 172                        |
| 20:00 to 24:00 | 160                        |

Can the system handle these new patients? If not, what is your recommendation (be specific)?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder