

Institute for Operations Research ETH Zurich HG G21-22

Stephan Artmann stephan.artmann@ifor.math.ethz.ch Christoph Glanzer christoph.glanzer@ifor.math.ethz.ch

Mathematical Optimization — Assignment 4 - Hints

https://moodle-app2.let.ethz.ch/course/view.php?id=3610

- Exercise 1: The easiest way is to reformulate the programs such that they are in canonical form or standard form. There's also a way to directly formulate a Dual program, which we will cover in the exercise class on Friday.
- Exercise 2: The problem given in Exercise 2 is of the form $\max\{c^{\mathrm{T}}x \colon Ax \leq b, \ x \geq 0\}$ and the corresponding Dual is therefore $\min\{y^{\mathrm{T}}b \colon y^{\mathrm{T}}A \geq c^{\mathrm{T}}, \ y \geq 0\}$ (we will derive this in the next exercise class). In this case, the (strong) complementary slackness conditions are formed by two sets of equalities, namely $x \in P$ and $y \in D$ are optimal if and only if

$$x_i(y^{\mathrm{T}}A_{\cdot,i} - c_i) = 0, \ \forall i \in \{1, \dots, n\},\ y_i(A_{i,\cdot}x - b_i) = 0, \ \forall j \in \{1, \dots, m\}.$$

If you apply these conditions, you don't need to reformulate the problem as a problem in canonical form :-)

- Exercise 3: For b), one trick is to choose a symmetric constraint matrix A, i.e. $A^{T} = A$.
- Exercise 4: Start by choosing a point $x \in C$ such that $c^T x > 0$. Try to rewrite x as a sum.