Machine Learning

Part 1: Gradient Descent

Zengchang Qin (PhD)

First Machine Learning Problem

Housing Price in Portland

In **Andrew Ng's** Lecture, there is a dataset giving the living areas and prices of 47 houses from Portland, Oregon. We are looking for a function gives the pattern of inputs-outputs.

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	÷

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multi-dimensional Attributes (Features)

A pair $(x^{(i)}, y^{(i)})$ is called a **training** example, $x \in \mathbb{R}^d$ is called the **feature** and y is called the target or label of the example.

To perform **supervised learning**, we must decide how we're going to represent functions/hypotheses h.

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
÷	:	:

Machine Learning Problem

Given a database D={(x(1), y(1)), (x(2), y(2)), ... (x(4), y(4))} Where x(i) is a vector in n-dimensional space and y(i) is a scalar i.e.: Xi E R", yie R we hope to learn f(x(i)) -> y(i). This is a typical machine learning problem

If our hypothesis of relation function is a linear model.

$$y = ax + b$$

 $y = \theta_1 x + \theta_0$
if we set $x_0 = 1$
 $y = \theta_1 x_1 + \theta_0 x_0$
 $y = \theta_1 x_2 + \theta_0 x_0$

$$\theta^{T} = (\theta_{0}, \theta_{1})$$

$$X = \begin{pmatrix} X_{0} \\ X_{1} \end{pmatrix}$$
In general form
$$Y = \theta^{T} \times \begin{cases} \theta \in \mathbb{R}^{h+1} \\ X \in \mathbb{R}^{n+1} \end{cases}$$

Notation

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Multi-dimensional Linear Regression

From one dimension to 2 dimensional case:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Error Function

