Batch: SY-IT(B3) Experiment Number: 1

Roll Number: 16010423076 Name:Ritesh Jha

## **Aim of the Experiment:**

To interpret given problem statement and identify test cases for given problem statement

### **Program/ Steps:**

#### Task 1:

Identify the following from the given information:

- 1. Input values
  - N: Size of the array.
  - A: An array of N non-negative integers.
- 2. Constraints on input values

$$1 \le N \le 105$$

$$0 \le A[i] \le 105$$

3. Output values

A single string:

"Yes" if the number formed by the last digits of the array is divisible by 10.

"No" otherwise.

4. Constraints on output values

Only one string (Yes or No) is expected as output.

5. Specified format for input values

First line: Integer N (the size of the array).

Second line: N space-separated integers representing the array A.

6. Specified format for output values

Single string output: either "Yes" or "No".

**Task 2:**Identify general and special test cases for given problem statements. List down in all 10 - 12 test cases in table format as shown:

| Sr.<br>No. | Sample Input        | Sample<br>Output | Description                                                                   | Test Case Type<br>(general/special |  |
|------------|---------------------|------------------|-------------------------------------------------------------------------------|------------------------------------|--|
| 1          | 5<br>45 23 65 22 74 | No               | array with 5 integer numbers                                                  | General                            |  |
| 2          | 4 40 20 30 10       | Yes              | Array with 4 integers where the last digit forms a number divisible by 10.    | General                            |  |
| 3          | 1<br>50             | Yes              | Single-element<br>array<br>where the last<br>digit is<br>divisible by 10.     | Edge Case                          |  |
| 4          | 1<br>7              | No               | Single-element<br>array<br>where the last<br>digit is not<br>divisible by 10. | Edge Case                          |  |
| 5          | 3<br>12 34 50       | Yes              | Array where the last digit of the last number ensures divisibility by 10.     | General                            |  |
| 6          | 6                   | No               | Array where                                                                   | General                            |  |

|    | 11 22 33 44 55<br>61                                           |     | none of the<br>numbers<br>contribute to a<br>divisible-by-10<br>number.                           |                      |
|----|----------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------|----------------------|
| 7  | 10<br>0 0 0 0 0 0 0 0 0 0<br>0                                 | Yes | Array where none of the numbers contribute to a divisible-by-10 number.                           | Special              |
| 8  | 2<br>100000 500001                                             | No  | Array with large<br>numbers that<br>form a<br>non-divisible<br>number.                            | Special              |
| 9  | 3<br>100001 100002<br>100000                                   | Yes | Array with larger numbers where the last digit of the last number ensures divisibility by 10.     | Special              |
| 10 | 100000<br>(100000<br>repeated<br>99999 times<br>followed by 0) | Yes | Maximum array<br>size<br>N=105N =<br>10^5N=105<br>with the last<br>digit 000,<br>divisible by 10. | Special(Max<br>Size) |

```
/*
// Sample code to perform I/O:
```

```
#include <iostream>
using namespace std;
int main() {
   int num;
   cin >> num;
                                               // Reading
input from STDIN
   output to STDOUT
// Warning: Printing unwanted or ill-formatted data to output
will cause the test cases to fail
*/
#include <iostream>
using namespace std;
int main() {
   int N = 0;
   cin>>N;
   long data[N];
   for (auto i=0; i<N; i++)</pre>
       cin>>data[i];
       int ld = data[N-1] % 10;
       string ans = (ld == 0) ? "Yes" : "No";
```

```
// write your code here
// ans =

cout<<ans;
return 0;
}</pre>
```

## **Output/Result:**



| Submission ID: 10         | 05702874          |              |               |            |            |                           |           |
|---------------------------|-------------------|--------------|---------------|------------|------------|---------------------------|-----------|
| RESULT: <b>⊘</b> Accepted |                   |              |               |            |            | ② Refer judge environment |           |
| Score<br>0                | <b>Time</b> (     |              | Memory<br>912 | (KiB)      | Lar<br>C++ | nguage<br>+14             |           |
| Input                     | Result            | Time (sec) N | Memory (KiE   | 3) Score Y | our output | Correct out               | tput Diff |
| Input #1                  | <b>⊘</b> Accepted | 0.025729     | 872           | 10         | <b></b>    | ক                         |           |
| Input #2                  | ØAccepted         | 0.02508      | 912           | 10         | Ø.         | क                         |           |
| Input #3                  | ØAccepted         | 0.009414     | 2             | 10         | d)         | ক                         |           |
| Input #4                  | Accepted          | 0.017239     | 2             | 10         | Ø          | B                         |           |
| Input #5                  | ⊘Accepted         | 0.026156     | 828           | 10         | Φ          | Φ                         |           |
| Input #6                  | ⊘Accepted         | 0.01779      | 2             | 10         | Φ          | φ                         |           |
| Input #7                  | ⊘Accepted         | 0.017412     | 2             | 10         | Φ          | φ                         |           |
| Input #8                  | ⊘Accepted         | 0.017944     | 2             | 10         | Ø          | Ø                         |           |
| Input #9                  | ⊘Accepted         | 0.017053     | 2             | 10         | Ø          | Ø                         |           |
| Input #10                 | <b>⊘</b> Accepted | 0.0172       | 2             | 10         | Ø          | Ø                         |           |

## **Post Lab Question-Answers:**

### Task 1:

Identify the following from the given information:

1. Input values

A single positive integer N.

2. Constraints on input values

$$1 \le N \le 12$$

3. Output values

The factorial of the input integer N.

## 4. Constraints on output values

The output must be a single number representing N! within the range of a 64-bit integer.

## 5. Specified format for input values

A single integer N on one line.

# 6. Specified format for output values

A single integer (the factorial of N) on one line.

Task 2:

Identify general and special test cases for given problem statements. List down in all 6-8 test cases in table format (refer activity section for table format of test cases)

| Sr.<br>No. | Sample Input | Sample<br>Output | Description                                                         | Test Case Type<br>(general/special<br>) |
|------------|--------------|------------------|---------------------------------------------------------------------|-----------------------------------------|
| 1          | 1            | 1                | Minimum value<br>of N.<br>Tests edge case<br>at the<br>lower bound. | Special                                 |
| 2          | 12           | 479001600        | Maximum value of N. Tests edge case at the upper bound.             | Special                                 |
| 3          | 2            | 2                | Small valid input, testing correctness of low factorial values.     | Special                                 |

| 4 | 6 | 720 | Mid-range input | General |
|---|---|-----|-----------------|---------|
|   |   |     | to<br>verify    |         |
|   |   |     | correctness of  |         |
|   |   |     | the             |         |
|   |   |     | loop.           |         |

### Code:

```
#include <iostream>
using namespace std;
int main() {
  int N;
  cout <<"Enter number : ";
  cin >> N;
  int factorial = 1;
  for (int i = 1; i <= N; ++i) {
  factorial = factorial * i;
  }
  cout << "Factorial : "<< factorial << endl;
  return 0;
}</pre>
```

# Output:



Outcomes: CO1. Inculcate the best practices that are essential for competitive programming

#### Conclusion (based on the Results and outcomes achieved):

From this experiment, I learned how to approach competitive programming problems by carefully interpreting the problem statement, identifying input/output values, and recognizing constraints. I gained an understanding of how to break down problems into general and special test cases to ensure that all edge cases are covered. Additionally, I practiced writing code to implement solutions efficiently, focusing on handling different scenarios such as small and large inputs.

#### **References:**

- 1. Antti Laaksonen, "Guide to Competitive Programming", Springer, 2018
- 2. Gayle Laakmann McDowell," Cracking the Coding Interview", CareerCup LLC, 2015
- 3. Steven S. Skiena Miguel A. Revilla,"Programming challenges, The Programming Contest Training Manual", Springer, 2006
- 4. Antti Laaksonen, "Competitive Programmer's Handbook", Hand book, 2018

5. Steven Halim and Felix Halim, "Competitive Programming 3: The Lower Bounds of Programming Contests", Handbook for ACM ICPC