Producto semidirecto de grupos

Sésar

1. Definición y ejemplos

Sabemos que dado un grupo G y un conjunto arbitrario $X \neq \emptyset$, entonces G actúa sobre X si $\exists \varphi : G \to S(X)$ homomorfismo, donde S(x) es el grupo de permutaciones en X. Nuestra atención se pondrá en el caso concreto donde $X = N \subseteq G$ y considerando el grupo de automorfismos $\operatorname{Aut}(N)$ —es decir, el grupo de los endomorfismos en N biyectivos—.

Definition 1. Sean H y N grupos. Diremos que H actúa vía automorfismos sobre N si existe un $\phi: H \to \operatorname{Aut}(N)$ homomorfismo.

Para simplificar la notación, escribiremos $\phi_h(n) := \phi(h)(n)$ para todo $n \in N$ y $h \in H$.

Example 1. Estos son algunos ejemplos inmediatos de grupos actuando vía automorfismos sobre otros.

- 1. Si $H \leq \operatorname{Aut}(N)$, entonces la aplicación inmersión $i: H \hookrightarrow \operatorname{Aut}(N)$ es una acción vía automorfismos llamada la **acción natural**.
- 2. Toda acción por conjugación es una acción vía automorfismos: si $N \unlhd G$ y $H \le G$, entonces

$$\phi: H \to \operatorname{Aut}(N)$$

$$h \mapsto \phi_h(n) := hnh^{-1}.$$

Además, $\ker \phi = \{h \in H \mid \phi_h(n) = n, \ \forall n \in N\} = \{h \in H \mid hn = nh, \ \forall n \in N\} = C_H(N).$

3. La acción trivial $\phi: H \to \operatorname{Aut}(N)$ tal que $\phi_h := \operatorname{id}_N$ es una acción vía automorfismos.

Theorem 1. Supongamos que $\phi: H \to \operatorname{Aut}(N)$ es una acción vía automorfismos. Definamos la siguiente operación en $N \times H$:

$$(n_1, h_1) *_{\phi} (n_2, h_2) := (n_1 \phi_{h_1}(n_2), h_1 h_2).$$

Entonces $(N \times H, *_{\phi})$ es un grupo.

Demostración. En primer lugar, es fácil comprobar que la operación está bien definida ya que $h_1h_2 \in H$ —por ser H un grupo— y por definición de ϕ , $\phi_{h_1}(n_2) \in N$ y como N es otro grupo, $n_1\phi_{h_1}(n_2) \in N$. De este modo, basta comprobar que $*_{\pi}$ es asociativa, y existe un elemento netruo y elementos inversos en la operación.

Asociatividad: En primer lugar, calculamos lo siguiente:

$$[(n_1,h_1)*_{\phi}(n_2,h_2)]*_{\phi}(n_3,h_3) = (n_1\phi_{h_1}(n_2),h_1h_2)*_{\phi}(n_3,h_3) = (n_1\phi_{h_1}(n_2)\phi_{h_1h_2}(n_3),h_1h_2h_3).$$

Por el otro lado, calculamos lo siguiente:

$$(n_1, h_1) *_{\phi} [(n_2, h_2) *_{\phi} (n_3, h_3)] = (n_1, h_1) *_{\phi} (n_2 \phi_{h_2}(n_3), h_2 h_3) = (n_1 \phi_{h_1}(n_2 \phi_{h_2}(n_3)), h_1 h_2 h_3).$$

No obstante, como $\phi_{h_1} \in \text{Aut}(N)$, entonces $\phi_{h_1}(n_2\phi_{h_2}(n_3)) = \phi_{h_1}(n_2)\phi_{h_1}(\phi_{h_2}(n_3))$ y como ϕ es un homomorfismo, entonces $\phi_{h_1}(\phi_{h_2}(n_3)) = \phi_{h_1h_2}(n_3)$, dándose la igualdad deseada.

Elemento neutro: Demostremos que (e_N, e_H) es el elemento neutro para esta operación.

$$(n,h) *_{\phi} (e_N, e_H) = (n\phi_h(e_N), he_H) = (n,h),$$

 $(e_N, e_H) *_{\phi} (n,h) = (e_N\phi_{e_H}(n), e_Hh) = (n,h).$

Elemento inverso: Demostremos que para todo $(n,h) \in N \times H$, $(n,h)^{-1} = (\phi_{h^{-1}}(n^{-1}),h^{-1})$.

$$(n,h) *_{\phi} (\phi_{h^{-1}}(n^{-1}),h^{-1}) = (n\phi_h(\phi_{h^{-1}}(n^{-1})),hh^{-1}) = (n\phi_{hh^{-1}}(n^{-1}),e_H) = (e_N,e_H),$$

$$(\phi_{h^{-1}}(n^{-1}),h^{-1}) *_{\phi} (n,h) = (\phi_{h^{-1}}(n^{-1})\phi_{h^{-1}}(n),h^{-1}h) = (e_N,e_H).$$

Definition 2. Sean H y N grupos y $\phi: H \to \operatorname{Aut}(N)$ una acción vía automorfismos. El ϕ -producto semidirecto de H y N es el grupo

$$N \rtimes_{\phi} H := (N \times H, *_{\phi}).$$

Si la acción vía automorfismos es claro por el contexto, entonces puede omitirse de la notación como $N \rtimes H$.

Remark 1. Si N y H son finitos, entonces $|N \rtimes_{\phi} H| = |N||H|$.

Example 2. Veamos algunos ejemplos sencillos de productos semidirectos

- 1. Si ϕ es la acción trivial, entonces $N \rtimes_{\phi} H = N \times H$, es decir, el producto directo.
- 2. Llamamos grupo **holomorfo** al grupo $\operatorname{Hol}(N) := N \rtimes_{\phi} \operatorname{Aut}(N)$, donde ϕ es la acción natural de $H = \operatorname{Aut}(N)$ sobre N.

Theorem 2. Sea $\phi: H \to \operatorname{Aut}(N)$ acción vía automorfismos y $G = N \rtimes_{\phi} H$. Sea $\widetilde{N} := N \times \{e_H\}$ y $\widetilde{H} := \{e_N\} \times H$.

- 1. \widetilde{H} , $\widetilde{N} \leq G$.
- 2. $\widetilde{N} \triangleleft G$.
- 3. $\widetilde{N} \cong N \vee \widetilde{H} \cong H$.

Demostración. Probaremos cada punto por separado.

1. Empecemos comprobando que \widetilde{H} es un subgrupo. Claramente, $(e_N, e_H) \in \widetilde{H}$. Por otro lado, si $(e_N, h_1), (e_N, h_2) \in \widetilde{H}$, entonces

$$(e_N, h_1) *_{\phi} (e_N, h_2) = (e_N \phi_{h_1}(e_N), h_1 h_2) = (e_N, h_1 h_2) \in \widetilde{H}.$$

Finalmente, $(e_N, h)^{-1} = (\phi_{h^{-1}}(e_N^{-1}), h^{-1}) = (e_N, h^{-1}) \in \widetilde{H}$.

Veamoslo ahora para \widetilde{N} . También tenemos $(e_N, e_H) \in \widetilde{H}$. Ahora, si $(n_1, e_H), (n_2, e_H) \in \widetilde{N}$, entonces

$$(n_1, e_H) *_{\phi} (n_2, e_H) = (n_1 \phi_{e_H}(n_2), e_H e_H) = (n_1 n_2, e_H) \in \widetilde{N}.$$

Por último, $(n, e_H)^{-1} = (\phi_{e_H}(n^{-1}), e_H^{-1}) = (n^{-1}, e_H) \in \widetilde{N}$.

2. Basta demostrar que para todo $(n', e_H) \in \widetilde{N}$ y $(n, h) \in G$, $(n, h) *_{\phi} (n', e_H) *_{\phi} (n, h)^{-1} \in \widetilde{N}$.

$$\begin{split} (n,h) *_{\phi} (n',e_H) *_{\phi} (n,h)^{-1} &= (n\phi_h(n'),h) *_{\phi} (\phi_{h^{-1}}(n^{-1}),h^{-1}) = \\ &= (n\phi_h(n')\phi_h(\phi_{h^{-1}}(n^{-1})),hh^{-1}) = (n\phi_h(n')n^{-1},e_H) \in \widetilde{N}, \end{split}$$

puesto que $\phi_h(n') \in N$ y por tanto $n\phi_h(n')n^{-1} \in N$.

3. Es fácil comprobar por el punto 1 de esta demostración que las aplicaciones

$$H \to \widetilde{H}$$
 $y N \to \widetilde{N}$
 $h \mapsto (e_N, h)$ $n \mapsto (n, e_H)$

son isomorfismos.

Corollary 1. Sea $G = N \rtimes_{\phi} H$. Las siguientes afirmaciones son equivalentes.

- 1. $G = N \times H$.
- 2. $\widetilde{H} \subseteq G$.
- 3. $\phi_h = \mathrm{id}_N$ para todo $h \in H$.

Demostración. Probaremos las equivalencias en el orden presentado por el corolario.

 $(1\Rightarrow 2)$ Como G es un producto directo, en particular $\widetilde{H} \leq G$.

 $(2 \Rightarrow 3)$ Tomemos $h \in H$ y $n \in N$. Entonces

$$(n, e_H)^{-1} *_{\phi} (e_N, h) *_{\phi} (n, e_H) = (n^{-1}, e_H) *_{\phi} (n, h) = (n^{-1}\phi_h(n), h).$$

Como $\widetilde{H} \leq G$, entonces $(n^{-1}\phi_h(n), h) \in \widetilde{H}$, lo que implica que $n^{-1}\phi_h(n) = e_N$, es decir, $\phi_h(n) = n$. Como esto es cierto para todo $n \in N$, entonces $\phi_h = \mathrm{id}_N$ para todo $h \in H$.

 $(3 \Rightarrow 1)$ En este caso, la operación que se define es la siguiente:

$$(n_1, h_1) *_{\phi} (n_2, h_2) = (n_1 \phi_{h_1}(n_2), h_1 h_2) = (n_1 n_2, h_1 h_2),$$

que es la operación del producto directo. Luego $G = N \times H$.

Theorem 3 (de Isomorfía del producto semidirecto). Supongamos que $H \stackrel{\alpha}{\cong} \widehat{H}$ y $N \stackrel{\beta}{\cong} \widehat{N}$. Sea $\phi : H \to \operatorname{Aut}(N)$ acción vía automorfismos.

1. $\widehat{\beta}: \operatorname{Aut}(N) \to \operatorname{Aut}(\widehat{N})$ tal que $\widehat{\beta}(f) := \beta \circ f \circ \beta^{-1}$ es un isomorfismo.

- 2. $\widehat{\phi}:\widehat{H}\to \operatorname{Aut}(\widehat{N})$ definido como $\widehat{\phi}:=\widehat{\beta}\circ\phi\circ\alpha^{-1}$ es una acción vía automorfismos.
- 3. $N \rtimes_{\phi} H \cong \widehat{N} \rtimes_{\widehat{\phi}} \widehat{N}$.

$$H \xrightarrow{\phi} \operatorname{Aut}(N)$$

$$\alpha \downarrow \qquad \qquad \downarrow \widehat{\beta}$$

$$\widehat{H} \xrightarrow{\widehat{\phi}} \operatorname{Aut}(\widehat{N})$$

Demostración. Demostraremos cada apartado en el orden establecido.

- 1. Es claro observar que $\widehat{\beta}$ es la acción por conjugación sobre \widehat{N} , luego es un homomorfismo. Además, la biyección es clara de comprobar.
- 2. Como $\widehat{\phi}$ está definida como la composición de homomorfismos —notemos que α es un isomorfismo por hipótesis—, entonces es también un homomorfismo.
- 3. Definamos la siguiente aplicación:

$$\begin{split} f: N \rtimes_{\phi} H \to \widehat{N} \rtimes_{\widehat{\phi}} \widehat{N} \\ (n,h) \mapsto (\beta(n),\alpha(h)). \end{split}$$

Por la biyección de α y β , podemos concluir que f es también biyectiva. Falta mostrat que f es un homomorfismo de grupos. En primer lugar tenemos lo siguiente:

$$f((n_1, h_2) *_{\phi} (n_2, h_2)) = f(n_1 \phi_{h_1}(n_2), h_1 h_2) = (\beta(n_1 \phi_{h_1}(n_2)), \alpha(h_1 h_2)) =$$
$$= (\beta(n_1)\beta(\phi_{h_1}(n_2)), \alpha(h_1)\alpha(h_2)).$$

Por otro lado, fijémonos que

$$\widehat{\phi}_{\alpha(h)}(\beta(n)) = (\widehat{\beta} \circ \phi \circ \alpha^{-1})_{\alpha(h)}(\beta(n)) = (\widehat{\beta} \circ \phi_h)(\beta(n)) = \beta(\phi_h(n)).$$

De este modo, obtenemos que

$$f(n_1, h_1) *_{\widehat{\phi}} f(n_2, h_2) = (\beta(n_1), \alpha(h_1)) *_{\widehat{\phi}} (\beta(n_2), \alpha(h_2)) =$$

$$= (\beta(n_1) \widehat{\phi}_{\alpha(h_1)}(\beta(n_2)), \alpha(h_1) \alpha(h_2)) =$$

$$= (\beta(n_1) \beta(\phi_{h_1}(n_2)), \alpha(h_1) \alpha(h_2)).$$

Se concluye de esta manera que f es un isomorfismo.

Corollary 2. Sea $\phi: H \to \operatorname{Aut}(N)$ acción vía automorfismos y $\varphi: \widetilde{N} \rtimes_{\phi} H \to \operatorname{Aut}(N)$ la acción por conjugación. Entonces

$$N\rtimes_\phi H\cong \widetilde{N}\rtimes_{\varphi|_{\widetilde{H}}}\widetilde{H}.$$

Demostración. Por un lado, sabemos que $\alpha: H \to \widetilde{H}$ donde $\alpha(h) = (e_N, h)$ es un isomorfismo. Además, como $\beta: N \to \widehat{N}$ es también un isomorfismo, entonces $\widetilde{\beta}: \operatorname{Aut}(N) \to \operatorname{Aut}(\widetilde{N})$ donde $\widetilde{\beta}(f) = \beta \circ f \circ \beta^{-1}$ —es decir, $\widetilde{\beta}(f)(n, e_H) = (f(n), e_H)$ — es un isomorfismo. Si demostramos que la acción por conjugación $\varphi|_{\widetilde{H}} = \widetilde{\beta} \circ \phi \circ \alpha^{-1}$, entonces por el Teorema de Isomorfía del producto semidirecto se tiene lo deseado.

Por un lado, tenemos que para todo $h \in H$,

$$\varphi|_{\widetilde{H}}(\alpha(h)) = \varphi(e_N, h) \in \operatorname{Aut}(\widetilde{N}).$$

Tomando $(n, e_H) \in \widetilde{N}$ arbitrario,

$$\varphi(e_N, h)(n, e_N) = (n, e_H) *_{\phi} (e_N, h) *_{\phi} (n, e_H)^{-1} = (e_N \phi_h(n) e_N^{-1}, e_H) = (\phi_h(n), e_H).$$

Por definición de β , tenemos que $(\phi_h(n), e_H) = \widetilde{\beta}(\phi_h)(n, e_H)$. En resumen, tenemos que para todo $n \in N$, $\varphi(e_N, h)(n, e_N) = \widetilde{\beta}(\phi_h)(n, e_H)$, luego obtenemos que $\varphi|_{\widetilde{H}}(\alpha(h)) = \widetilde{\beta}(\phi(h))$. Como esto es cierto para todo $h \in H$, entonces se tiene lo deseado.

2. Extensión de grupos

Definition 3. Sea G un grupo, $H \leq G$ y $N \subseteq G$. Decimos que G es una **extensión** de N sobre H si

- 1. G = NH,
- 2. $N \cap H = \{e\}$.

También decimos en el contexto de la definición anterior que G se escinde sobre N y al subgrupo H lo llamamos complemento de H.

Theorem 4. Sea G un grupo, $H \leq G$ y $N \subseteq G$. Son equivalentes:

- 1. G es una extensión de N sobre H.
- 2. $\forall g \in G, \exists ! h \in H \text{ y } n \in N \text{ tal que } g = nh.$
- 3. $\forall g \in G, \exists ! h \in H \text{ y } n \in N \text{ tal que } g = hn.$
- 4. Si $i: H \hookrightarrow G$ y $\pi: G \to G/N$, entonces $\pi \circ i$ es un isomorfismo.
- 5. $\exists f: G \to H$ homomorfismo tal que $f|_H = \mathrm{id}_H$ y ker f = N.

Demostración. Probaremos las equivalencias en el orden presentado por el teorema.

 $(1\Rightarrow 2)$ Supongamos que $g=n_1h1=n_2h_2$. Entonces $n_2^{-1}n_1h_1h_2^{-1}=e\in N\cap H$. Por un lado, $n_2^{-1}n_1\in N$ y como $h_2h_1^{-1}\in H$, entonces $n_2^{-1}n_1=(n_2^{-1}n_1h_1h_2^{-1})(h_2h_1^{-1})\in H$. Por tanto, $n_2^{-1}n_1\in N\cap H=\{e\}$, luego $n_1=n_2$. Por tanto, $e=n_2^{-1}n_1h_1h_2^{-1}=h_1h_2^{-1}$ por lo que se demuestra además que $h_1=h_2$.

 $(2\Rightarrow 3)$ Sea g=nh, entonces $g=h(h^{-1}nh)\in HN$ ya que N es un subgrupo normal. Supongamos ahora que g=h'n'. Entonces $g=(h'n'(h')^{-1})h'\in NH$. Por la hipótesis de la escritura única de g, tenemos que h=h' y por tanto, $hn'h^{-1}=n$, por lo que $n'=h^{-1}nh$, por lo que la escritua en este orden es también única.

 $(3\Rightarrow4)$ Sabemos que la composición de homomorfismos es un homomorfismo. Falta demostrar la biyección de esta aplicación.

Sea $h \in \ker(\pi \circ i)$, entonces $\pi \circ i(h) = \pi(h) = hN = eN$. Esto implica que $h \in N$. De este modo, nos encontramos con que h puede expresarse de dos maneras como producto de un elemento de H y de N. En primer lugar, h = he donde $h \in H$ y $e \in N$ y por otro lado h = eh, donde $e \in H$ y $e \in N$ por el comentario anterior. Como por hipótesis esta representación es única, tenemos que h = e, luego $\ker(\pi \circ i) = \{0\}$ y la aplicación es inyectiva.

Tomemos ahora $gN \in G/N$. Por hipótesis, g = hn donde $h \in H$ y $n \in N$ son únicos. Por tanto, $\pi(i(h)) = hN = (hn)N = gN$, demostrando así la propiedad sobreyectiva de la aplicación.

 $(4\Rightarrow 5)$ Por hipótesis, $\pi \circ i : H \to G/N$ es un isomorfismo. Tomemos la aplicación $f = (\pi \circ i)^{-1} \circ \pi : G \to H$. Esta aplicación f es homomorfismo por ser composición de homomorfismos. Además, $f|_{H} = f \circ i = (\pi \circ i)^{-1} \circ \pi \circ i = \mathrm{id}_{H}$. Finalmente, $\ker f = \ker \pi = N$.

 $(5\Rightarrow 1)$ Sea $g\in G$. Entonces $f(g)\in H$ por hipótesis. Por otro lado, $gf(g^{-1})\in \ker f$ ya que $f(gf(g^{-1}))=f(g)f(f(g^{-1}))=f(g)f(g^{-1})=e$, esto debido a que $f|_H=\operatorname{id}_H$. Así pues, $gf(g^{-1})\in N$. Como $g=gf(g^{-1})f(g)$, entonces $g\in NH$. Por otro lado, supongamos que $g\in N\cap H$. Por un lado, como $g\in H$, entonces g=f(g). Por otro lado, $g\in N$, luego f(g)=e, por lo que g=e y $N\cap H=\{e\}$.

Theorem 5 (Condición suficiente de la extensión). Sea $\phi_H \to \operatorname{Aut}(N)$ una acción vía automorfismos. Entonces $N \rtimes_{\phi} H$ es una extensión de \widetilde{N} sobre \widetilde{H} .

Demostración. En primer lugar, vemos que para todo $(n,h) \in N \times H$, tenemos que

$$(n, e_H) *_{\phi} (e_N, h) = (n\phi_{e_H}(e_N), h) = (n, h),$$

luego $N \rtimes_{\phi} H = \widetilde{N} *_{\phi} \widetilde{H}$. Por otro lado, es fácil comprobar que $\widetilde{N} \cap \widetilde{H} = \{(e_N, e_H)\}$.

Theorem 6 (Condición necesaria de la extensión). Supongamos que G es una extensión de N sobre H. Entonces $G \cong N \rtimes_{\phi} H$, donde $\phi_H \to \operatorname{Aut}(N)$ es la acción conjugación.

Demostración. Como G es una extensión de N y H, entonces para todo $g \in G$, existen unos únicos $n \in N$ y $h \in H$ tales que g = nh. Construimos de esta manera la siguiente aplicación:

$$f: G \to N \rtimes_{\phi} H$$

 $q \mapsto (n, h).$

En primer lugar, está bien definida por la unicidad de n y h comentada previamente. Veamos que es un isomorfismo.

Para comprobar que es un homomorfismo, sean $g, g' \in G$. Entonces g = nh y g' = n'h'. Por tanto,

$$f(gg') = f(nhn'h') = f(nhn'h^{-1}hh') = (nhn'h^{-1}, hh') =$$
$$= (n\phi_h(n'), hh') = (n, h) *_{\phi} (n', h') = f(g) *_{\phi} f(g').$$

Por otro lado, comprobar la biyección de f es sencillo. La aplicación f es claramente sobreyectiva. Ahora, sea $g \in \ker f$. Entonces f(g) = f(nh) = (n,h) = (e,e), por lo que g = nh = e. Por lo que f es también biyectiva.

3. Escisión de secuencias cortas exactas

Definition 4. Una secuencia corta exacta de grupos $\{e\} \to N \xrightarrow{f} G \xrightarrow{g} H \to \{e\}$ se escinde si $\exists k : H \to G$ homomorfismo tal que $g \circ k = \mathrm{id}_H$.

Theorem 7. Sean G, H, N grupos. Son equivalentes:

- 1. $\{e\} \to N \xrightarrow{f} G \xrightarrow{g} H \to \{e\}$ es una secuencia corta que se escinde con $k: H \to G$.
- 2. $G \cong N \rtimes_{\phi} H$.

En este contexto, $\phi_h(n) = f^{-1}(k(h)f(n)k(h^{-1})).$

Demostración. Demostremos la cadena de implicaciones en el orden establecido por el teorema.

 $(1\Rightarrow 2)$ Notemos en primer lugar que $K(H), f(N) \leq G$. Tomemos el homomorfismo $k \circ g : G \to K(H)$. Por un lado, para todo $a \in K(H)$, tenemos que a = k(h) para un cierto $h \in H$, por lo que k(g(a)) = k(g(k(h))) = k(h) = a, por lo que $k \circ g|_{K(H)} = \mathrm{id}_{K(H)}$. Por otro lado, $\ker(k \circ g) = \ker g = f(N)$ por ser una secuencia exacta corta. La primera igualdad viene del hecho de que k(g(a)) = e si y solo si g(a) = g(k(g(a))) = e.

Por tanto, tenemos un homomorfismo de grupos $k \circ g : G \to K(H)$ que es la identidad en K(H) y cuyo núcleo es f(N). Por el teorema de extensión de grupos, G es una extensión de f(N) sobre k(H). De este modo, por el Teorema de la condición necesaria de extensión, $G \cong f(N) \rtimes_{\varphi} k(H)$, con $\varphi : k(H) \to \operatorname{Aut}(k(H))$ la acción por conjugación.

Además, f es inyetiva por la secuencia corta exacta, luego $f:N\cong f(N)$. Por otro lado, por el hecho de que la secuencia se escinde con $k:G\to H$, tenemos también que $k:H\cong k(H)$. Por el Teorema de Isomorfía, $f(N)\rtimes_{\varphi}k(H)\cong N\rtimes_{\phi}H$, donde $\phi:=\widehat{f^{-1}}\circ\varphi\circ k$ la cual si desarrollamos, obtenemos lo siguiente:

$$\phi_h(n) = f^{-1}(\varphi_{k(h)}(f(n))) = f^{-1}(k(h)f(n)k(h^{-1})).$$

 $(2\Rightarrow 1)$ Consideremos en primer lugar $G=N\rtimes_{\phi}H$ Por teorema, $f:N\to N\rtimes_{\phi}H$ tal que $f(n)=(n,e_H)$ es un isomorfismo. Además, definamos $g:N\rtimes_{\phi}\to H$ tal que g(n,h)=h. Entonces g es un homomorfismo sobreyectivo tal que ker g=N. De este modo, podemos establecer la siguiente secuencia corta:

$$\{e\} \to N \xrightarrow{f} N \rtimes_{\phi} H \xrightarrow{g} H \to \{e\}.$$

Veamos que esta secuencia es exacta. En primer lugar, como f es inyectiva, ker $f = \{e\}$. Por otro lado, por ser f sobreyectiva, im $(f) = N = \ker g$. Finalmente, por ser g sobreyectivo, im(g) = H. Esto demuestra que es una secuencia corta exacta. Veamos ahora que se escinde.

Tomemos la aplicación $k: H \to N \rtimes_{\phi} H$ tal que $k(h) = (e_N, h)$. Esta aplicación es claramente un homomorfismo y además, $g(k(h)) = g(e_N, h) = h$, luego esto demuestra que la secuencia exacta corta se escinde.

Finalmente, podemos obtener la expresión de ϕ en función de f y k como sigue:

$$f(\phi_h(n)) = (\phi_h(n), e_H) = (\phi_h(n), hh^{-1}) = (e_n, h) *_{\phi} (n, e_H) *_{\phi} (e_N, h^{-1}) = k(h)f(n)k(h^{-1}).$$

Para el caso general de $G \cong N \rtimes_{\phi} H$, tomando el isomorfismo dado $\psi: N \rtimes_{\phi} H \to G$ y los mismos homomorfismos f, g y k de los párrafos anteriores, basta considerar la secuencia $\{e\} \to N \xrightarrow{\psi \circ f} G \xrightarrow{g \circ \psi^{-1}} H \to \{e\}$ con el homomorfismo $\psi \circ k: H \to G$ y se comprueba de manera rutinaria que esta secuencia es exacta y se escinde, además de que ϕ se puede expresar en términos de $f \circ \psi$ y $\psi \circ k$ como indica el teorema.