

Formes quadratiques

On se place sur un \mathbb{R} -espace vectoriel E de **dimension finie** n.

1. Formes bilinéaires symétriques et formes quadratiques

1.1. Formes bilinéaires symétriques

Définition 1 – Une forme bilinéaire sur E est une application $\varphi: E \times E \to \mathbb{R}$ linéaire par rapport à chacune de ses variables.

Elle est dite symétrique si elle vérifie de plus : $\forall (x,y) \in E \times E, \, \varphi(x,y) = \varphi(y,x)$.

Remarque - Si φ est une forme bilinéaire sur E, alors, pour tout $x \in E$, $\varphi(0,x) = \varphi(x,0) = 0$.

Exemple - Soient f et g deux formes linéaires sur E. L'application φ de $E \times E$ dans \mathbb{R} définie par $\varphi(x,y) = f(x)g(y)$ est une forme bilinéaire définie sur E.

Proposition 2 – L'ensemble des formes bilinéaires (respectivement bilinéaires symétriques) sur un \mathbb{R} -espace vectoriel E est un \mathbb{R} -espace vectoriel.

1.2. Formes quadratiques

Définition 3 — Une forme quadratique q sur E est une application $q:E\to\mathbb{R}$ vérifiant les deux conditions suivantes :

- 1) $\forall x \in E, \forall \lambda \in \mathbb{R}, \quad q(\lambda x) = \lambda^2 q(x)$
- 2) L'application $(x,y) \mapsto \frac{1}{2} [q(x+y) q(x) q(y)]$ est bilinéaire symétrique.

Proposition 4 – L'ensemble des formes quadratiques sur un \mathbb{R} -espace vectoriel E est un \mathbb{R} -espace vectoriel.

Théorème 5 – Il existe un isomorphisme canonique entre l'espace vectoriel des formes quadratiques et l'espace vectoriel des formes bilinéaires symétriques.

Démonstration : notons Q(E) l'ensemble des formes quadratiques définies sur E et B(E) l'ensemble des formes bilinéaires symétriques.

Soit $q \in Q(E)$. Posons $\sigma(q) = \varphi$ avec $\varphi(x,y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$. $\sigma(q) \in B(E)$, ainsi définie, est bien une forme bilinéaire symétrique.

Soit $\varphi \in B(E)$. Définissons $\sigma'(\varphi)$ par $\sigma'(\varphi)(x) = \varphi(x,x)$ pour tout $x \in E$. Un calcul montre que $\sigma'(\varphi) \in Q(E)$.

Montrons que σ est inversible et que son inverse est σ' . Soit $\varphi \in B(E)$. On a $\sigma \circ \sigma'(\varphi) = \sigma(q)$ avec $q(x) = \varphi(x, x)$. Or $\sigma(q) = \varphi'$ avec

$$\varphi'(x,y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$$

$$= \frac{1}{2} [\varphi(x+y,x+y) - \varphi(x,x) - \varphi(y,y)]$$

$$= \varphi(x,y)$$

par bilinéarité de φ . On a donc $\sigma \circ \sigma' = Id_{B(E)}$. On montre de même que $\sigma' \circ \sigma = Id_{Q(E)}$. L'application σ est donc bijective et $\sigma^{-1} = \sigma'$. Elle est linéaire par construction, d'où le résultat.

Définition 6 – Soit q une forme quadratique. L'unique forme bilinéaire symétrique φ telle que $\varphi(x,x)=q(x)$ pour tout $x\in E$ s'appelle la forme bilinéaire symétrique associée à q.

1.3. Écriture matricielle

Soit (e_1, \ldots, e_n) une base de E.

Soient x et y deux vecteurs de E de coordonnées respectives $(x_i)_{1 \le i \le n}$ et $(y_j)_{1 \le j \le n}$ dans la base (e_1, \ldots, e_n) .

Soit φ une forme bilinéaire symétrique définie sur E. On a alors par bilinéarité de φ :

$$\varphi(x,y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right)$$
$$= \sum_{1 \le i, j \le n} x_i y_j \, \varphi(e_i, e_j)$$

Réciproquement, soit $(a_{ij})_{1 \leq i,j \leq n}$ une famille de réels telle que $a_{ij} = a_{ji}$ pour $1 \leq i,j \leq n$; alors l'application $(x,y) \mapsto \sum_{1 \leq i,j \leq n} a_{ij} \, x_i y_j$ est bilinéaire symétrique.

Définition 7 – Soit φ une forme bilinéaire symétrique définie sur E et soit (e_1, \ldots, e_n) une base de E. La matrice M de $\mathscr{M}_n(\mathbb{R})$ définie par $M_{ij} = \varphi(e_i, e_j)$ s'appelle la matrice de φ dans la base (e_1, \ldots, e_n) .

Si X et Y désignent respectivement les matrices-colonnes des coordonnées de x et de y dans la base (e_1, \ldots, e_n) , alors on a

$$\varphi(x,y) = {}^{t}XMY = {}^{t}YMX$$

Proposition 8 – Soit φ une forme bilinéaire symétrique définie sur E. Si M est la matrice de φ dans la base (e_1,\ldots,e_n) , alors la matrice M' de φ dans la base (e'_1,\ldots,e'_n) est $M'={}^t\!PAP$, où P est la matrice de passage de la base (e_1,\ldots,e_n) à la base (e'_1,\ldots,e'_n) .

Démonstration : soient x et y des vecteurs de E. Notons X et Y (respectivement X' et Y') les matrices-colonnes de leurs coordonnées respectives dans la base (e_1,\ldots,e_n) (respectivement (e'_1,\ldots,e'_n)). On a X=PX' et Y=PY'. On en déduit que $\varphi(x,y)={}^tXMY={}^t(PX')M(PY')={}^tX'({}^tPMP)Y'$.

$$D'où M' = {}^{t}PMP.$$

Définition 9 – Soit q une forme quadratique. La matrice de la forme bilinéaire symétrique associée à q dans une base \mathscr{B} s'appelle la matrice de q dans la base \mathscr{B} .

Définition 10 – Deux matrices M et M' de $\mathscr{M}_n(\mathbb{K})$ sont dites congruentes s'il existe une matrice $P \in \mathsf{GL}_n(\mathbb{K})$ telle que $M' = {}^t\!PMP$.

Deux matrices sont donc congruentes si elles représentent la même forme bilinéaire dans deux bases différentes de E.

Proposition 11 – La congruence est une relation d'équivalence.

Démonstration : c'est une relation réflexive car, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $M = {}^tI_nMI_n$. Elle est symétrique car, si $M' = {}^tPMP$, alors $M = {}^tP^{-1}MP^{-1}$. Enfin c'est une relation transitive car si $M'' = {}^tP'M'P'$ et $M' = {}^tPMP$, alors $M'' = {}^tP'({}^tPMP)P' = {}^t(PP')M(PP')$ et PP' est bien une matrice inversible.

1.4. Recherche de la forme bilinéaire associée à une forme quadratique

Soit (e_1, \ldots, e_n) une base de E. Une forme bilinéaire symétrique φ est une application de $E \times E$ dans \mathbb{R} définie par $\varphi(x,y) = {}^t X M Y = \sum_{i,j} m_{ij} x_i y_j$ où M est la matrice symétrique réelle définie par $m_{ij} = \varphi(e_i, e_j)$.

Une forme quadratique s'écrit donc sous la forme :

$$q(x) = \sum_{1 \le i,j \le n} m_{ij} x_i x_j = \sum_{i=1}^n m_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} m_{ij} x_i x_j.$$

Réciproquement, si on se donne une forme quadratique q, on a alors

$$q(x) = \sum_{i=1}^{n} m_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} m_{ij} x_i x_j.$$

Pour retrouver la forme bilinéaire associée φ à q, on utilise la règle du dédoublement des

- on remplace les termes x_i^2 par x_iy_i
- on remplace le terme $x_i x_j$ par $\frac{1}{2}(x_i y_j + x_j y_i)$

On vérifie que, pour φ ainsi construite, on a bien $\varphi(x,y) = \frac{1}{2} [q(x+y) - q(x) - q(y)].$

2. Rang d'une forme bilinéaire

Soient φ une forme bilinéaire définie sur un espace vectoriel E de dimension finie et x et ydeux vecteurs de E.

On définit deux formes linéaires φ_x et φ^y de E par

$$\forall y \in E, \quad \varphi_x(y) = \varphi(x, y)$$

 $\forall x \in E, \quad \varphi^y(x) = \varphi(x, y)$

Notons E^* le dual de E (c'est-à-dire l'ensemble des formes linéaires définies sur E). Les deux applications de E dans E^* définies par $x\mapsto \varphi_x$ et $y\mapsto \varphi^y$ sont linéaires de Edans E^* .

Soient (e_1, \ldots, e_n) une base de E, M la matrice de φ dans cette base et (e_1^*, \ldots, e_n^*) la base duale. On a, pour tout $1 \leq i, j \leq n$, $m_{ij} = \varphi(e_i, e_j)$ donc la matrice ${}^t\!M$ (respectivement M) représente l'endomorphisme $x\mapsto \varphi_x$ (respectivement $x\mapsto \varphi^y$) de la base (e_1,\ldots,e_n) dans la base (e_1^*, \ldots, e_n^*) .

En effet, la jème colonne de la matrice représentant l'endomorphisme $x\mapsto \varphi_x$ dans les bases définies précédemment est la matrice-colonne des coordonnées de $\varphi_{e_{i}}$ dans la base

$$(e_1^*,\ldots,e_n^*)$$
. Posons $\varphi_{e_j}=\sum_{i=1}^n\lambda_ie_i^*$. Comme $\varphi_{e_j}(e_k)=\sum_{i=1}^n\lambda_ie_i^*(e_k)=\lambda_k=\varphi(e_j,e_k)$, la matrice représentant l'endomorphisme $x\mapsto \varphi_x$ de la base (e_1,\ldots,e_n) dans la base

 (e_1^*,\ldots,e_n^*) est donc bien ${}^t\!M$. De même, pour $y\mapsto \varphi^y$.

Définition 12 – On appelle rang d'une forme bilinéaire φ définie sur un espace vectoriel Ede dimension finie le rang commun de ces deux applications.

On dit que φ est non dégénérée si son rang est égal à la dimension de E. Elle est dite dégénérée sinon.

Proposition 13 - Une forme bilinéaire est non dégénérée si et seulement si la matrice qui la représente dans une base donnée de E est inversible. Elle est dégénérée si et seulement s'il existe $x \neq 0$ tel que, pour tout $y \in E$, $\varphi(x, y) = 0$.

Définition 14 – On appelle noyau de la forme quadratique q, et on note Ker q, l'ensemble $\{y \in E : \varphi(x,y) = 0\}.$

Proposition 15 – Ker q est un sous-espace vectoriel de E.

Corollaire 16 – Une forme bilinéaire φ est non dégénérée si et seulement si Ker $q=\{0\}$, où q est la forme quadratique associée à φ .

Définition 17 – On dit qu'une forme quadratique q est définie si on a, pour tout $x \in E$, $(x \neq 0 \Longrightarrow q(x) \neq 0)$.

Proposition 18 – Si q est une forme quadratique définie, alors sa forme bilinéaire associée est non dégénérée.

Démonstration : montrons la contraposée. Soit φ une forme bilinéaire dégénérée, alors il existe $x \neq 0$ tel que, pour tout $y \in E$, $\varphi(x,y) = 0$. En particulier $q(x) = \varphi(x,x) = 0$. Donc q est non définie.

Remarque - La réciproque est fausse. Il existe des formes bilinéaires non dégénérées ayant une forme quadratique non définie. Par exemple, si $E = \mathbb{R}^2$, $\varphi(x,y) = x_1y_1 - x_2y_2$ est non dégénérée et $q(x) = x_1^2 - x_2^2$ est non définie car q(1,1) = 0.

3. Formes quadratiques positives

Définition 19 – Une forme quadratique q de E est dite positive si, pour tout $x \in E$, $q(x) \ge 0$.

Théorème 20 – (Cauchy-Schwarz)

Soit q une forme quadratique positive et φ sa forme bilinéaire symétrique associée. On a alors, pour tout $(x,y) \in E \times E$

$$\left[\varphi(x,y)\right]^2 \le q(x)q(y)$$

De plus, si q est définie, l'égalité n'est réalisée que si x et y sont proportionnels.

Démonstration : pour tout $t \in \mathbb{R}$, $q(x+ty) \geq 0$.

En développant, on obtient $t^2q(y) + 2t\varphi(x,y) + q(x) \ge 0$.

Si q(y) = 0, alors nécessairement $\varphi(x,y) = 0$ et l'inégalité est vérifiée.

Si $q(y) \neq 0$, alors nécessairement le discrimant du trinôme est négatif ou nul, ce qui donne l'inégalité.

Supposons de plus q définie avec $\varphi(x,y)^2 = q(x)q(y)$.

Si q(y) = 0, alors y = 0 et x et y sont proportionnels.

Si $q(y) \neq 0$, alors le discriminant du trinôme s'annule et donc le trinôme s'annule aussi. Il existe donc $t \in \mathbb{R}$ tel que q(x+ty)=0. Or q est définie donc x+ty=0.

Remarque - L'inégalité de Cauchy-Schwarz permet de montrer qu'une forme bilinéaire symétrique associée à une forme quadratique positive est continue.

Théorème 21 – (Minkowski)

Soit q une forme quadratique positive sur E. Alors, pour tout $(x,y) \in E^2$,

$$\sqrt{q(x+y)} \le \sqrt{q(x)} + \sqrt{q(y)}$$

De plus, si q est définie, l'égalité n'est vérifiée que s'il existe $\lambda \geq 0$ tel que $y=\lambda x$ ou si x=0.

Démonstration : $q(x+y) = q(x) + 2\varphi(x,y) + q(y) \le q(x) + 2\sqrt{q(x)}q(y) + q(y)$ d'après l'inégaltié de Cauchy-Schwarz donc $q(x+y) \le \left(\sqrt{q(x)} + \sqrt{q(y)}\right)^2$.

Supposons q définie et l'égalité vérifiée. L'inégalité de Cauchy-Schwarz est alors également vérifiée. Donc on a soit x=0 soit il existe $\lambda \in \mathbb{R}$ tel que $y=\lambda x$.

Or $\varphi(x, \lambda x) = \sqrt{q(x)}\sqrt{q(\lambda x)} \ge 0$ donc $\lambda q(x) \ge 0$, i.e. $\lambda \ge 0$. La réciproque est évidente.

4. Décomposition en carrés d'une forme quadratique : méthode de Gauss

Soient E un espace vectoriel de dimension n et (e_1, \ldots, e_n) une base de E. Si $x \in E$, on note (x_1, \ldots, x_n) ses coordonnées dans la base (e_1, \ldots, e_n) .

Soit q une forme quadratique non nulle définie sur E. Pour tout $x \in E$, on a

$$q(x) = \sum_{i=1}^{n} m_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} m_{ij} x_i x_j.$$

Proposition 22 – Il existe n formes linéaires (ℓ_1, \ldots, ℓ_n) définies sur E linéairement indépendantes et n réels $\alpha_1, \ldots, \alpha_n$ tels que, pour tout $x \in E$,

$$q(x) = \sum_{i=1}^{n} \alpha_i (\ell_i(x))^2.$$

Démonstration : par récurrence sur n. Si n=1, le résultat est évident. Supposons que toute forme quadratique de n-1 variables s'écrit comme la somme de carrés de formes linéaires indépendantes.

- 1er cas : il existe $i \in \{1, ..., n\}$ tel que $m_{ii} \neq 0$. Supposons (quitte à renuméroter les variables) que i = 1; on écrit

$$q(x) = m_{11}x_1^2 + 2x_1\left(\sum_{j=2}^n m_{1j}x_1x_j\right) + R(x_2, \dots, x_n)$$

où R est une forme quadratique de n-1 variables. Posons $f(x_2,\ldots,x_n)=\sum_{j=2}^n m_{1j}x_1x_j$; f est une forme linéaire sur E. On écrit alors

$$q(x) = m_{11} \left[x_1 + \frac{f(x_2, \dots, x_n)}{m_{11}} \right]^2 - \frac{f^2(x_2, \dots, x_n)}{m_{11}} + R(x_2, \dots, x_n)$$
$$= m_{11} \left[x_1 + \frac{f(x_2, \dots, x_n)}{m_{11}} \right]^2 + S(x_2, \dots, x_n)$$

où S est une forme quadratique de n-1 variables. En utilisant l'hypothèse de récurrence, on peut alors écrire q comme la somme des carrés de n formes linéaires ; elles sont bien linéairement indépendantes d'après l'hypothèse de récurrence et le fait que l'application $(x_1,\ldots,x_n)\mapsto x_1+\frac{f(x_2,\ldots,x_n)}{m_{11}}$ est indépendante des n-1 autres qui ne contiennent pas x_1 .

- 2ème cas : pour tout $i \in \{1, ..., n\}$, $m_{ii} = 0$. Alors il existe $m_{ij} \neq 0$ avec $i \neq j$ (car la forme quadratique est non nulle). Supposons (quitte à renuméroter les variables) que $m_{12} \neq 0$; on écrit

$$q(x) = m_{12}x_1x_2 + x_1f(x_2, \dots, x_n) + x_2g(x_3, \dots, x_n) + T(x_3, \dots, x_n)$$

où f et g sont des formes linéaires et T une forme quadratique. On a alors

$$q(x) = m_{12} \left[\left(x_1 + \frac{g}{m_{12}} \right) \left(x_2 + \frac{f}{m_{12}} \right) - \frac{fg}{m_{12}^2} \right] + T$$

$$= \frac{m_{12}}{4} \left[\left(x_1 + x_2 + \frac{f+g}{m_{12}} \right)^2 - \left(x_1 - x_2 + \frac{g-f}{m_{12}} \right)^2 \right] + T - \frac{fg}{m_{12}}$$

 $T-rac{fg}{m_{12}}$ est une forme quadratique de n-1 variables ; on peut alors utiliser l'hypothèse de récurrence et on conclut comme précédemment.

On a alors prouvé le résultat par récurrence.

Remarque - La méthode de Gauss est une méthode algorithmique. On verra plus loin qu'elle permet de trouver explicitement une base de E orthogonale pour q et de déterminer la signature de q.

5. Bases orthogonales

5.1. Définition

Soit E un espace vectoriel de dimension finie n muni d'une forme bilinéaire symétrique φ . On note q la forme quadratique associée.

Définition 23 – Deux éléments x et y de E sont dits orthogonaux s'ils vérifient $\varphi(x,y)=0$.

Définition 24 – On dit que la base (e_1, \ldots, e_n) de E est orthogonale si $\varphi(e_i, e_j) = 0$ dès que $i \neq j$.

Proposition 25 – Une base de E est orthogonale pour la forme quadratique q si et seulement si la matrice de q dans cette base est diagonale.

Démonstration : la matrice Q de q dans la base (e_1, \ldots, e_n) est définie par $Q_{ij} = \varphi(e_i, e_j)$. Elle est donc diagonale si et seulement si $\varphi(e_i, e_j) = 0$ pour $i \neq j$.

Proposition 26 – Soit q une forme quadratique. Si (e_1,\ldots,e_n) est une base de E orthogonale pour q, alors les vecteurs e_i tels que $q(e_i)=0$ forment une base du noyau de q.

Démonstration : soit (e_1,\ldots,e_n) une base de E orthogonale pour q et Q la matrice de q dans cette base. Q est une matrice diagonale dont les coefficients diagonaux sont $q(e_1),\ldots,q(e_n)$. Or, si $q(e_j)\neq 0$, alors e_j n'appartient pas au noyau de q et si $q(e_j)=0$, alors e_j est orthogonal à tous les vecteurs de la base (e_1,\ldots,e_n) donc à tous les vecteurs de E. On en déduit que e_j appartient au noyau de q.

Réciproquement, soit x un vecteur du noyau de q. Posons $x=x_1e_1+\cdots+x_ne_n$. On a, pour tout $i\in\{1,\ldots,n\}$, $\varphi(e_i,x)=0$. Or $\varphi(e_i,x)=x_iq(e_i)$. Donc si $q(e_i)\neq 0$, alors $x_i=0$ et on a montré que x est combinaison linéaire des vecteurs e_i tels que $q(e_i)=0$. Ces vecteurs forment alors bien une base du noyau de q.

Remarque - Si q est non dégénérée, alors son noyau est réduit au vecteur nul.

5.2. Construire une base orthogonale

Soit q une forme quadratique définie sur un espace euclidien E. On note φ la forme bilinéaire symétrique associée à q.

Théorème 27 – Soient ℓ_1,\dots,ℓ_p des formes linéaires de E dans $\mathbb R$ linéairement indépendantes et α_1,\dots,α_p des réels tous non nuls tels que $q(x) = \alpha_1 \big(\ell_1(x)\big)^2 + \dots + \alpha_p \big(\ell_p(x)\big)^2.$

$$q(x) = \alpha_1(\ell_1(x)) + \cdots + \alpha_p(\ell_p(x))$$
. Il existe une base (e_1, \dots, e_n) de E orthogonale pour q telle que $q(e_i) = \alpha_i$.

Démonstration : complétons le système (ℓ_1,\ldots,ℓ_p) en une base (ℓ_1,\ldots,ℓ_n) de E^* . On note (e_1,\ldots,e_n) la base duale. On a alors $\varphi(e_i,e_j)=\alpha_1\ell_1(e_i)\ell_1(e_j)+\cdots+\alpha_p\ell_p(e_i)\ell_p(e_j)$. Or, par construction, $\ell_k(e_i)\ell_k(e_j)=\delta_{ik}\delta_{jk}$. Donc, si $i\neq j$, alors $\ell_k(e_i)\ell_k(e_j)=0$. On en déduit que, si $i\neq j$, alors $\varphi(e_i,e_j)=0$. La base (e_1,\ldots,e_n) est donc orthogonale pour q. De plus, $q(e_i)=\alpha_i\ell_i(e_i)\ell_i(e_i)=\alpha_i$.

- **Corollaire 28** Pour toute forme quadratique q sur E, il existe des bases orthogonales de E pour q.
- **Corollaire 29** Soient $\ell_1,\dots\ell_p$ des formes linéaires de E dans $\mathbb R$ linéairement indépendantes et α_1,\dots,α_p des réels tous non nuls tels que

$$q(x) = \alpha_1(\ell_1(x))^2 + \cdots + \alpha_p(\ell_p(x))^2.$$

La forme quadratique q est positive si et seulement si les α_i sont tous positifs.

La forme quadratique q est définie positive si et seulement si p=n et les α_i sont tous positifs.

5.3. Signature d'une forme quadratique

Soit q une forme quadratique définie sur un espace euclidien E. On note φ la forme bilinéaire symétrique associée à q.

Théorème 30 – (loi d'inertie de Sylvester)

Il existe un couple (s,t) d'entiers naturels tel que, pour toute base (e_1,\ldots,e_n) de E orthogonale pour q, où s est le nombre de vecteurs e_i tels que $q(e_i) > 0$ et t est le nombre de vecteurs e_i tels que $q(e_i) < 0$.

Définition 31 – Le couple (s,t) s'appelle la signature de la forme quadratique q.

Démonstration : soient (e_1,\ldots,e_n) et (f_1,\ldots,f_n) deux bases orthogonales pour la forme quadratique q. Notons s (respectivement s') le nombre de vecteurs de la base (e_1,\ldots,e_n) (respectivement (f_1,\ldots,f_n)) tels que $q(e_i)>0$ (respectivement $q(f_i)>0$) et t (respectivement t') le nombre de vecteurs de la base (e_1,\ldots,e_n) (respectivement (f_1,\ldots,f_n)) tels que $q(e_i)<0$ (respectivement $q(f_i)<0$). Le rang de q est égal au rang de la matrice de q dans l'une des deux bases donc rang q=s+t=s'+t'.

Soit F le sous-espace vectoriel de E engendré par les e_i tels que $q(e_i)>0$. On a dim F=s. Soit G le sous-espace vectoriel de E engendré par les f_i tels que $q(f_i)\leq 0$. On a dim G=n-s'. Or $F\cap G=\{0\}$. En effet, si $x=x_1e_1+\cdots+x_ne_n$, alors $q(x)=x_1^2q(e_1)+\cdots+x_n^2q(e_n)$. Donc, si $x\in F\setminus\{0\}$, alors q(x)>0. De même, si $x=\alpha_1f_1+\cdots+\alpha_nf_n$, alors $q(x)=\alpha_1^2q(f_1)+\cdots+\alpha_n^2q(f_n)$. Donc, si $x\in G$, alors $q(x)\leq 0$.

On a alors

$$\dim(F+G) = \dim F + \dim G - \dim(F\cap G) = s+n-s' \le \dim E = n.$$

On a donc montré que $s \le s'$. Un raisonnement similaire (en échangeant le rôle des bases) permet de montrer que $s' \le s$. On en déduit que s = s', puis que t = t' par l'égalité s + t = s' + t'.

6. Produit scalaire

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

6.1. Espace euclidien

Définition 32 — On appelle produit scalaire sur E une forme bilinéaire symétrique telle que la forme quadratique associée soit définie positive.

On appelle espace euclidien un espace vectoriel de dimension finie muni d'un produit scalaire.

Proposition 33 – φ est un produit scalaire sur E si et seulement si il existe une base de E orthogonale pour q, forme quadratique associée à φ , dans laquelle la matrice de q est la matrice identité.

Démonstration : c'est une conséquence immédiate de la proposition 25.

Corollaire 34 – Si E est de dimension n, la forme bilinéaire symeétrique associée à une forme quadratique q est un produit scalaire si et seulement si la signature de q est égale à (n,0).

Proposition 35 – Soit (E, φ) un espace euclidien. L'application $x \mapsto \sqrt{\varphi(x, x)}$ est une norme sur E dite norme euclidienne. On notera $||x|| = \sqrt{\varphi(x, x)}$.

Théorème 36 – Soit (E,φ) un espace euclidien de dimension finie. L'application $x\mapsto \varphi_x$ de E dans E^* est un isomorphisme canonique où on a noté φ_x la forme linéaire de E dans $\mathbb R$ définie par $\varphi_x(y)=\varphi(x,y)$.

On déduit de ce théorème :

toute application linéaire f de E dans $\mathbb R$ peut s'écrire de manière unique sous la forme $\varphi(x,.)$, c'est-à-dire :

$$\exists ! x \in E, \forall y \in E, \ f(y) = \varphi(x, y).$$

Démonstration : il est clair que $\varphi_x \in E^*$ et que l'application qui, à $x \in E$, associe φ_x est linéaire. Vérifions qu'elle est injective. Soit $x \in E$ tel que $\varphi_x = 0$. On a alors, en particulier, $\varphi(x,x) = 0$. Or φ est un produit scalaire donc x = 0. Comme dim $E = \dim E^*$, on en déduit que l'application considérée est bien un isomorphisme.

6.2. Orthogonalité

Soit A une partie d'un espace euclidien (E, φ) .

Proposition 37 – L'ensemble $A^{\perp} = \{y \in E : \forall x \in A, \varphi(x,y) = 0\}$ est un sous-espace vectoriel de E appelé orthogonal de E. D'après le théorème 36, il s'identifie à $\{f \in E^* : \forall x \in A, f(x) = 0\}$.

Démonstration : c'est une conséquence de la linéarité à droite du produit scalaire φ . \Box

Proposition 38 – Soit H un sous-espace vectoriel de E, on a $H \oplus H^{\perp} = E$.

Démonstration : montrons que $H \cap H^{\perp} = \{0\}$.

Soit $x \in H \cap H^{\perp}$. On a donc $\varphi(x,x) = 0$; or φ est un produit scalaire donc x = 0.

Montrons ensuite que $H+H^{\perp}=E$, c'est-à-dire que tout élément a de E s'écrit comme la somme d'un élément de H et d'un élément de H^{\perp} . Soit $a\in E$ et $f:F\to \mathbb{R}$ définie, pour tout $x\in E$, par $f(x)=\varphi(a,x)$. (H,φ) est un espace eucliien et $f\in H^*$, donc, d'après le théorème 36, il existe $h\in H$ tel que $f(x)=\varphi(h,x)$ pour tout $x\in H$. Posons b=a-h. Alors, pour tout $x\in H$, on a

$$\varphi(b,x) = \varphi(a,x) - \varphi(h,x) = f(x) - \varphi(h,x) = f(x) - f(x) = 0.$$

On en déduit que $b \in H^{\perp}$. On a alors a = b + h avec $h \in H$ et $b \in H^{\perp}$. Comme $H \cap H^{\perp} = \{0\}$ et que $H + H^{\perp} = E$, on peut conclure que $E = H \oplus H^{\perp}$.

Remarque - On peut également définir l'orthogonal d'un sous-espace F d'un espace vectoriel muni d'une forme bilinéaire, mais dans ce cas F et F^{\perp} ne sont pas nécessairement supplémentaires (ils peuvent avoir un vecteur non nul en commun).

Théorème 39 – (Pythagore)

Soit
$$(x,y) \in E^2$$
. x et y sont orthogonaux si et seulement si $\|x+y\|^2 = \|x\|^2 + \|y\|^2$.

Démonstration : il suffit de développer $||x+y||^2 = \varphi(x+y,x+y)$ en utilisant la bilinéarité de φ pour prouver l'équivalence.

Proposition 40 – Il existe dans E des bases formées de vecteurs 2 à 2 orthogonaux. Plus généralement, tout système de vecteurs non nuls formé de vecteurs 2 à 2 orthogonaux est libre.

Démonstration : soit (e_1, \ldots, e_p) un système de p vecteurs non nuls de E 2 à 2 orthogonaux. Montrons qu'ils forment une famille libre. Soient $\lambda_1, \ldots, \lambda_p$ p réels tels que

$$\sum_{i=1}^{p} \lambda_i e_i = 0.$$

On a, d'une part $\varphi(e_k,\sum_{i=1}^p \lambda_i e_i)=0$ car $\varphi(x,0)=0$ pour tout $x\in E$ et, d'autre part,

 $\varphi(e_k, \sum_{i=1}^p \lambda_i e_i) = \lambda_k \varphi(e_k, e_k)$ car les vecteurs sont orthogonaux 2 à 2. Or $e_k \neq 0$ et φ est définie, donc $\lambda_k = 0$.

Définition 41 – Une base est orthonormée si elle est formée de vecteurs 2 à 2 orthogonaux et de norme 1.

6.3. Procédé d'orthonormalisation de Gram-Schmidt

Le procédé de Gram-Schmidt est un algorithme qui permet, à partir d'une base quelconque (u_1,\ldots,u_n) d'un espace vectoriel euclidien E, de construire une base orthonormée. Pour tout $p\in\{1,\ldots,n\}$, on note E_p le sous-espace vectoriel de E engendré par u_1,\ldots,u_p . On a dim $E_p=p$ car son système générateur est libre en tant que sous-famille d'une famille libre. On construit une base orthonormée (e_1,\ldots,e_n) de E de la manière suivante :

1) On pose $e_1=u_1$. On détermine un réel λ tel que le vecteur $u_2+\lambda u_1$ soit orthogonal à e_1 , c'est-à-dire tel que $\varphi(e_1,u_2+\lambda u_1)=0$. Par bilinéarité, on trouve une seule solution

$$\lambda = \frac{\varphi(e_1, u_2)}{\varphi(e_1, u_1)}.$$

 $\varphi(e_1, u_1) = \varphi(u_1, u_1)$ est bien non nul car φ est définie et $u_1 \neq 0$.

On pose alors $e_2 = u_2 + \lambda_1 u_1$, e_2 est non nul car (u_1, u_2) est un système libre. (e_1, e_2) est alors une base orthogonale de E_2 .

2) Soit p un entier compris entre 2 et n-1. Supposons que l'on ait construit une base (e_1,\ldots,e_p) de E_p formée de vecteurs 2 à 2 orthogonaux. Quels que soient les réels $\lambda_1,\ldots,\lambda_p$, le vecteur $e_{p+1}=u_{p+1}+\lambda_p e_p+\cdots+\lambda_1 e_1$ est non nul, car u_{p+1} n'appartient pas à E et n'est donc pas combinaison linéaire de e_1,\ldots,e_p . De plus

$$\varphi(e_{p+1}, e_i) = \varphi(u_{p+1}, v_i) + \lambda_i \varphi(e_i, e_i).$$

Pour tout entier $j\in\{1,\ldots,p\}$, on a $\varphi(e_i,e_i)\neq 0$ car φ est définie et $e_i\neq 0$. On peut déterminer $\lambda_1,\ldots,\lambda_p$ de manière unique en supposant que, pour tout $i\in\{1,\ldots,p\}$, $\varphi(e_{p+1},e_i)=0$. Le vecteur non nul e_{p+1} ainsi déterminé est orthogonal à chaque e_j pour $1\leq j\leq p$. Les vecteurs non nuls e_1,\ldots,e_{p+1} sont 2 à 2 orthogonaux; ils forment donc une base orthogonale de E_{p+1} .

On a ainsi construit, à partir de la base (u_1, \ldots, u_n) , une base orthogonale de E ayant de plus la propriété suivante :

pour tout entier $p \in \{1, ..., n\}$, le sous-espace vectoriel de E engendré par les vecteurs $e_1, ..., e_p$ est égal au sous-espace vectoriel engendré par $u_1, ..., u_p$.

Pour obtenir une base orthonormée, il suffit ensuite de normer chacun des vecteurs en posant $e'_i = e_i/\|e_i\|$.

On a également le résultat plus précis suivant :

Théorème 42 – Soient (E,φ) un espace euclidien de dimension n et (u_1,\ldots,u_n) une base de E. Il existe une et une seule base orthonormée (e_1,\ldots,e_n) de E telle que

$$Vect(e_1, \ldots, e_k) = Vect(u_1, \ldots, u_k)$$
 et $\varphi(e_k, u_k) > 0$

pour tout
$$k \in \{1, \ldots, n\}$$
.

Démonstration : on raisonne par récurrence sur n. Si n=1, on pose $e_1=u_1/\|u_1\|$ (où $\|u_1\|=\sqrt{\varphi(u_1,u_1)}$) Supposons $n \ge 2$ et le résultat prouvé à l'ordre n-1.

Si e_n existe, il s'écrit $e_n = \lambda u_n + \sum_{i=1}^{n-1} \alpha_i e_i$ avec $(\lambda, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^n$. Comme les vecteurs e_1, \dots, e_n doivent être orthogonaux deux à deux, on a $0 = \lambda \varphi(e_n, u_i) + \alpha_i$. Donc $e_n = \lambda y$

avec
$$y=\left(e_n-\sum_{i=1}^{n-1}\varphi(e_n,u_i)e_i\right)$$
. Or $e_n\not\in \text{Vect}(e_1,\ldots,e_{n-1})=\text{Vect}(u_1,\ldots u_{n-1})$, donc $y\neq 0$.

De plus,

$$\varphi(e_n, u_n) = \lambda ||y||^2.$$

Pour avoir $\varphi(e_n,u_n)>0$, il faut et il suffit que $\lambda>0$. Comme, de plus, $\|e_n\|=1$, on a $\lambda = ||u|^{-1}$. Le vecteur e_n est donc déterminé de manière unique. Réciproquement, on vérifie que la famille ainsi construite convient.

6.4. Changement de bases orthonormées - Matrices orthogonales

Soit (E, φ) un espace vectoriel euclidien de dimension n.

Proposition 43 – Si P est la matrice de passage de la base orthonormée (e_1,\ldots,e_n) à la base (u_1, \ldots, u_n) de E, alors (u_1, \ldots, u_n) est une base orthonormée si et seulement si ${}^{t}PP = I_{n}$.

Démonstration : le jème vecteur colonne de la matrice P représente les coordonnées du vecteur u_j dans la base (e_1, \ldots, e_n) . Le coefficient $({}^t\!PP)_{ij}$ représente donc le produit scalaire du vecteur u_i par le vecteur u_i . D'où le résultat.

Définition 44 – On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est orthogonale si l'on a ${}^t\!MM = \mathsf{I}_n$.

Corollaire 45 – Une matrice de $\mathcal{M}_n(\mathbb{R})$ est orthogonale si et seulement si ses vecteurscolonnes forment une base orthonormée de l'espace euclidien usuel \mathbb{R}^n .

Proposition 46 – Soit M une matrice orthogonale. Alors elle est inversible et $M^{-1} = {}^t\!M$. De plus, son déterminant est égal à 1 ou à -1.

Démonstration : comme ${}^t\!PP = I_n = P{}^t\!P$, la matrice P est inversible et son inverse est égal à sa transposée. De plus, $D\acute{e}t(^tPP)=D\acute{e}t(P)^2=D\acute{e}t(I_n)=1$ donc $D\acute{e}t(P)=\pm 1$. \Box

Proposition 47 – L'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$, noté O_n , est un sousgroupe du groupe $GL_n(\mathbb{R})$ des matrices inversibles ; on l'appelle groupe orthogonal. L'ensemble des matrices de \mathscr{O}_n qui sont de déterminant 1, noté SO_n , est un sous-groupe de O_n ; on l'appelle groupe spécial orthogonal.

Démonstration : on vérifie que le produit de deux matrices orthogonales est une matrice orthogonale et que l'inverse d'une matrice orthogonale est une matrice orthogonale, ce qui permet de montrer que O_n est un sous-groupe du groupe $GL_n(\mathbb{R})$ des matrices inversibles. De même pour SO_n .

FORMES QUADRATIQUES

1.	Formes bilinéaires symétriques et formes quadratiques	1
	1.1. Formes bilinéaires symétriques	1
	1.2. Formes quadratiques	1
	1.3. Écriture matricielle	2
	1.4. Recherche de la forme bilinéaire associée à une forme quadratique	2
2.	Rang d'une forme bilinéaire	3
3.	Formes quadratiques positives	4
4.	Décomposition en carrés d'une forme quadratique : méthode de Gauss	4
5.	Bases orthogonales	6
	5.1. Définition	6
	5.2. Construire une base orthogonale	6
	5.3. Signature d'une forme quadratique	7
6.	Produit scalaire	7
	6.1. Espace euclidien	7
	6.2. Orthogonalité	8
	6.3. Procédé d'orthonormalisation de Gram-Schmidt	9
	6.4. Changement de bases orthonormées - Matrices orthogonales	10