Selection Sort

Ascending		
Size	Time	
55000	2.89028	
60000	3.63503	
70000	4.81375	
75000	5.57712	
80000	6.34395	
85000	7.08844	
90000	7.64713	
95000	8.88171	
Descending		
Size	Time	
55000	2.96865	
60000	3.63307	
70000	4.69902	
75000	5.62315	
80000	6.14584	
85000	6.99502	
90000	7.78712	
95000	8.68231	
Random		
Size	Time	
55000	2.97459	
60000	3.52	
70000	4.61238	
75000	5.47753	
80000	6.23217	
85000	6.91068	
90000	7.88286	
95000	8.46241	

Ascending: O(n²)

Prediction: 994.8 s.

Descending: O(n²)

Prediction: 995.1 s.

Random: O(n²)

Prediction: 995.1 s.

If you add these prediction points to each graph, it will look like an $O(n^2)$ line. As seen in the data, Time rises too much as the input data grows in all of them.

^{**}Note that there is an error since arrays are different and the time complexity for all does vary

Ascending Size Time 550000 0.002455 0.002698 600000 700000 0.003131 0.003357 750000 800000 0.003659 0.003925 850000 900000 0.004212 0.004435 950000 Descending Size Time 3.68798 55000 60000 4.53492 70000 6.12165 75000 7.04316

80000 8.24347 85000 9.76839 90000 10.5835 95000 11.828 Random Size Time 55000 1.97923 60000 2.23464 3.08171 70000 75000 3.30119 4.02948 80000 85000 4.24856 90000 5.04435

Insertion Sort

Ascending: O(n) Time grows linearly as data grows.

5.94276

Prediction: 0.0498 s. If added to the graph it will still behave like an O(n) graph

Descending: O(n²)

95000

Prediction: 1992.1171 s.

Random: O(n²)

Prediction: 996.1535 s.

For both random and descending each point grows a lot for each data size, this, making the graph n² Both predictions if added to the graph still behaves like a n² graph.

^{**}Note that there is an error since arrays are different and the time complexity for all does vary

Bubble Sort

Ascending	
Size	Time
550000	0.001656
600000	0.001721
700000	0.00196
750000	0.002121
800000	0.002485
850000	0.00268
900000	0.002733
950000	0.00291
Descending	
Size	Time
55000	12.4239
60000	14.9258
70000	20.4532
75000	23.3208
80000	26.6905
85000	28.8372
90000	33.4748
95000	37.7396
Random	
Size	Time
55000	13.4382
60000	14.7141
70000	20.8251
75000	22.9511
80000	28.4963
85000	31.2212
90000	35.5083
95000	40.3142

Ascending: O(n). Time grows linearly as data grows.

Prediction: 0.0297 s. If this is plotted onto the graph, it fits the linear graph, making this prediction close to being right.

Descending: O(n²).

Prediction: 5977.649 s.

Random: $O(n^2)$.

Prediction: 6974.239 s.

For both random and descending each point grows a lot for each data size, this, making the graph n^2 Both predictions if added to the graph still behaves like a n^2 graph.

^{**}Note that there is an error since arrays are different and the time complexity for all does vary

Ascending Size Time 550000 0.068934 600000 0.07471 700000 0.082902 750000 0.087427 800000 0.092063 850000 0.095754 900000 0.103916 950000 0.10845 Descending Size Time 550000 0.064995 600000 0.068479 0.078996 700000 750000 0.085634 800000 0.093978 850000 0.09731 900000 0.100324 950000 0.108203 Random Size Time 550000 0.120834 600000 0.12893 700000 0.153066 750000 0.163133 0.17068 800000 0.18753 850000 900000 0.194689 950000 0.206015

Merge Sort

Ascending: O(nlogn). Since every time the list need to get divided and then merged back together it demonstrates an O(N*log(N)) growth.

Prediction: 1.02 s. If this point is added to the ascending graph it will fit similar to a linear graph. **Descending:** O(nlogn) Since every time the list need to get divided and then merged back together it demonstrates an O(N*log(N)) growth.

Prediction: 1.003 s. If this point is added to the descending graph it will fit similar to a linear graph.

Random: O(nlogn) Since every time the list need to get divided and then merged back together it demonstrates an O(N*log(N)) growth.

Prediction: 2.001 s. Higher than ascending or descending since the time to calculate greater or lower values is greater than when pre-sorted.

**Note that there is an error since arrays are different and the time complexity for all does vary

Quick Sort

Ascending	
Size	Time
550000	0.000015
600000	0.000016
700000	0.000021
750000	0.000023
800000	0.000024
850000	0.000025
900000	0.000026
950000	0.000027
Descending	
Size	Time
550000	0.000001
600000	0.000002
700000	0.000002
750000	0.000003
800000	0.000003
850000	0.000003
900000	0.000003
950000	0.000003
Random	
Size	Time
550000	0.000001
600000	0.000002
700000	0.000002
750000	0.000003
800000	0.000003
850000	1.80E-06
900000	0.000003
950000	0.000002

Ascending: O(nlogn)

Prediction: 0.000298 s.

Descending: O(n²)

Prediction: 0.00049 s.

Random: O(nlogn)

Prediction: 0.0000303 s.

Ascending and descending behave very similar to a linear line which is why they are both quicker than random. Random behaves like an n^2 line. If the prediction points are added to the graph it will look more like it.

^{**}Note that there is an error since arrays are different and the time complexity for all does vary

