Dynamic Programming: Knapsack

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Algorithmic Design and Techniques Algorithms and Data Structures

Outline

- 1 Problem Overview
- 2 Knapsack with Repetitions
- 3 Knapsack without Repetitions
- 4 Final Remarks

TV commercial placement

available time slot.

Select a set of TV commercials (each commercial has duration and cost) so that the total revenue is maximal while the total length does not exceed the length of the

Optimizing data center performance

Purchase computers for a data center to achieve the maximal performance under limited budget.

Knapsack Problem

(knapsack is another word for backpack)

Goal

Maximize
value (\$)
while limiting
total
weight (kg)

knapsack

Example				
\$30	\$14	\$16	\$9	
6	3	4	2	
5	4 ² / ₃	4	$4\frac{1}{2}$	
	\$30			
	6			

Outline

- 1 Problem Overview
- 2 Knapsack with Repetitions
- 3 Knapsack without Repetitions
- 4 Final Remarks

With repetitions: unlimited quantities

Without repetitions: one of each item

Without repetitions: one of each item

Knapsack with repetitions problem

Input: Weights w_1, \ldots, w_n and values v_1, \ldots, v_n of n items; total weight W (v_i 's, w_i 's, and W are

non-negative integers).

Output: The maximum value of items whose weight does not exceed W. Each item can be used any number of times.

Consider an optimal solution and an item in it:

W_i	W

Consider an optimal solution and an item in it:

 W_i

If we take this item out then we get an optimal solution for a knapsack of total weight $W - w_i$.

Let value(w) be the maximum value of knapsack of weight w.

Let value(w) be the maximum value of knapsack of weight w.

$$value(w) = \max_{i: w_i \le w} \{value(w - w_i) + v_i\}$$

Knapsack(W)

```
value(0) \leftarrow 0
for w from 1 to W:
  value(w) \leftarrow 0
  for i from 1 to n:
```

if $w_i \leq w$:

return *value(W)*

 $val \leftarrow value(w - w_i) + v_i$

if val > value(w):

 $value(w) \leftarrow val$

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 9 0 0 0 0 0 0 0 0

0 9 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9
6 7 8
5
4
3
2
1
0

Example: W = 10

_			3	-	_	_	-	_	_	_
0	0	9	14	18	23	30	32	39	44	48

Outline

- 1 Problem Overview
- 2 Knapsack with Repetitions
- **3** Knapsack without Repetitions
- 4 Final Remarks

With repetitions: unlimited quantities

Without repetitions: one of each item

With repetitions: unlimited quantities

Knapsack without repetitions problem

Input: Weights w_1, \ldots, w_n and values v_1, \ldots, v_n of n items; total weight W (v_i 's, w_i 's, and W are

non-negative integers).

Output: The maximum value of items whose weight does not exceed W. Each item can be used at most once.

 W_n W

■ If the *n*-th item is taken into an optimal solution:

then what is left is an optimal solution for a knapsack of total weight $W - w_n$ using items 1, 2, ..., n - 1.

■ If the *n*-th item is taken into an optimal solution:

then what is left is an optimal solution for a knapsack of total weight $W-w_n$ using items 1, 2, ..., n-1.

If the n-th item is not used, then the whole knapsack must be filled in optimally with items 1, 2, ..., n-1.

For $0 \le w \le W$ and $0 \le i \le n$, value(w, i) is the maximum value achievable using a knapsack of weight w and items $1, \ldots, i$.

For $0 \le w \le W$ and $0 \le i \le n$, value(w, i) is the maximum value achievable using a knapsack of weight w and items $1, \ldots, i$.

The *i*-th item is either used or not: value(w, i) is equal to

 $\max\{value(w-w_i, i-1)+v_i, value(w, i-1)\}$

Knapsack(W)

for i from 1 to n:

initialize all $value(0, j) \leftarrow 0$

if $w_i \leq w$:

return value(W, n)

initialize all
$$value(0,j) \leftarrow 0$$

initialize all $value(w,0) \leftarrow 0$

for W from 1 to W:

if value(w, i) < val $value(w, i) \leftarrow val$

$$(0) \leftarrow 0$$

Optimal solution: $\begin{array}{c|c}
1 & 2 & 3 & 4 \\
\hline
& 0 & 1 & 0
\end{array}$

Optimal solution: $\begin{array}{c|c}
1 & 2 & 3 & 4 \\
\hline
& 0 & 1 & 0
\end{array}$

Example: reconstructing a solution \$30 \$14 \$16 \$9

Optimal solution: $\begin{array}{c|c}
1 & 2 & 3 & 4 \\
\hline
1 & 0 & 1 & 0
\end{array}$

Outline

- 1 Problem Overview
- 2 Knapsack with Repetitions
- 3 Knapsack without Repetitions
- 4 Final Remarks

Memoization

Knapsack(w)

```
if w is in hash table:
  return value(w)
value(w) \leftarrow 0
for i from 1 to n:
  if w_i \leq w:
     val \leftarrow \text{Knapsack}(w - w_i) + v_i
     if val > value(w):
        value(w) \leftarrow val
insert value(w) into hash table with key
W
return value(w)
```

What Is Faster?

If all subproblems must be solved then an iterative algorithm is usually faster since it has no recursion overhead.

What Is Faster?

- If all subproblems must be solved then an iterative algorithm is usually faster since it has no recursion overhead.
- There are cases however when one does not need to solve all subproblems: assume that *W* and all *w_i*'s are multiples of 100; then *value(w)* is not needed if *w* is not divisible by 100.

■ The running time O(nW) is not polynomial since the input size is proportional to log W, but not W.

- The running time O(nW) is not polynomial since the input size is proportional to log W, but not W.
- In other words, the running time is $O(n2^{\log W})$.

- The running time O(nW) is not polynomial since the input size is proportional to log W, but not W.
- In other words, the running time is $O(n2^{\log W})$.
- E.g., for

$$W = 71345970345617824751$$

(twent digits only!) the algorithm needs roughly 10²⁰ basic operations.

■ The running time O(nW) is not

```
later, we'll learn why solving this problem in polynomial time costs $1M!
```

(twent digits only!) the algorithm needs roughly 10²⁰ basic operations.