ΦΥΣΙΚΗ ΙΙΙ ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ2019 — 2020

Ηλεκτρική δυναμική ενέργεια

Το έργο που απαιτείται για να φέρει δύο φορτία σε απόσταση (αισθητής) αλληλεπίδρασης παράγεται από κάποια δύναμη αντίθετη στη δύναμη Coulomb:

Για την προσθήκη τρίτου φορτίου στο σύστημα:

$$W_3 = -\int_{\infty}^{P_3} \mathbf{F}_3 \cdot d\mathbf{s} = -\int_{\infty}^{P_3} \mathbf{F}_{31} \cdot d\mathbf{s} - \int_{\infty}^{P_3} \mathbf{F}_{32} \cdot d\mathbf{s} = \frac{q_1 q_3}{4\pi \varepsilon_0 r_{31}} + \frac{q_2 q_3}{4\pi \varepsilon_0 r_{32}}$$

Συνολικό έργο:
$$U = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

Ηλεκτρικό δυναμικό

Όπως το ηλεκτρικό πεδίο ορίζεται από τη δύναμη ανά μονάδα φορτίου που ασκείται σε δοκιμαστικό φορτίο από τη δράση κάποιου φορτίου-πηγής, έτσι και το ηλεκτρικό δυναμικό ορίζεται από τη δυναμική ενέργεια ανά μονάδα φορτίου που έχει δοκιμαστικό φορτίο σε κάποιο σημείο του ηλεκτρικού πεδίου.

$$V = \frac{U}{q} = \frac{Qq}{4\pi\varepsilon_0 r} \cdot \frac{1}{q} \implies V(r) = \frac{Q}{4\pi\varepsilon_0 r}$$

Με άλλα λόγια, το δυναμικό είναι το έργο που παράγει το πεδίο για να απομακρύνει το δοκιμαστικό φορτίο στο άπειρο, κανονικοποιημένο στο δοκιμαστικό φορτίο:

$$V = \frac{W_{\infty}}{q}$$

Mονάδα SI:
$$Volt = 1 V = \frac{1 J}{1 C} = \frac{N \cdot m}{C} \implies 1 \frac{N}{C} = 1 \frac{V}{m}$$

Παράγωγη βασική μονάδα ενέργειας: $\boxed{1 \text{ eV}} = e \cdot 1 \text{ V} = 1.6 \times 10^{-19} \text{ C} \cdot 1 \text{ J/C} = 1.6 \times 10^{-19} \text{ J}$

Διαφορά δυναμικού

Ο ορισμός του δυναμικού με αναφορά στην άπειρη απόσταση φορτίου και πηγής εισάγει μια απροσδιόριστη σταθερή (όπως σε όλες τις μορφές δυναμικής ενέργειας): το φορτίο μπορεί να έχει μια ανεξάρτητη της απόστασης δυναμική ενέργεια στο άπειρο, την οποία δεν μπορούμε να μετρήσουμε.

Το ενδιαφέρον εστιάζεται στη διαφορά του δυναμικού ή τάση μεταξύ δύο σημείων του ηλεκτρικού πεδίου, δηλαδή στη μεταβολή της δυναμικής ενέργειας φορτίου κατά τη μετακίνησή του ανάμεσα στα δύο σημεία, από την οποία η απροσδιόριστη σταθερή απαλείφεται:

$$\Delta V_{fi} = V_f - V_i = -\frac{W_{i \to f}}{q}$$

όπου $W_{i\to f}$ το έργο που παράγει το πεδίο για να μετακινήσει το φορτίο q από τη θέση i στη θέση f.

Συναρτήσει της δυναμικής ενέργειας:

$$\Delta V_{fi} = \frac{U_f}{q} - \frac{U_i}{q} = \frac{\Delta U_{fi}}{q}$$

Σχέση του ηλεκτρικού δυναμικού με το ηλεκτρικό πεδίο

Το διαφορά ηλεκτρικού δυναμικού είναι το επικαμπύλιο ολοκλήρωμα του ηλεκτρικού πεδίου:

$$\Delta V_{fi} = -\frac{W_{i \to f}}{q} = -\int_{i}^{f} \frac{\mathbf{F}}{q} \cdot d\mathbf{s} \quad \Longrightarrow \quad \Delta V_{fi} = -\int_{i}^{f} \mathbf{E} \cdot d\mathbf{s}$$

Το επικαμπύλιο ολοκλήρωμα του του πεδίου είναι ανεξάρτητο της διαδρομής μεταξύ των ορίων του, επειδή το πεδίο είναι κεντρικό:

$$\mathbf{E} \cdot d\mathbf{s} = \mathbf{E}(r)\hat{\mathbf{r}} \cdot d\mathbf{s} = E(r)dr = \frac{q}{4\pi\varepsilon_0} \cdot \frac{dr}{r^2}$$

$$\implies -\int_{\text{Path A}} \mathbf{E} \cdot d\mathbf{s} = -\int_{\text{Path B}} \mathbf{E} \cdot d\mathbf{s}$$

$$=\frac{q}{4\pi\varepsilon_{0}}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=-\int_{P_{1}}^{P_{2}}\mathbf{E}_{1}\cdot d\mathbf{s}-\int_{P_{1}}^{P_{2}}\mathbf{E}_{2}\cdot d\mathbf{s}-\cdots$$

$$\sum_{P_{1}}^{P_{2}}\mathbf{E}_{1}\cdot d\mathbf{s}-\int_{P_{1}}^{P_{2}}\mathbf{E}_{2}\cdot d\mathbf{s}-\cdots$$

$$\sum_{P_{1}}^{P_{2}}\mathbf{E}_{1}\cdot d\mathbf{s}-\int_{P_{1}}^{P_{2}}\mathbf{E}_{2}\cdot d\mathbf{s}-\cdots$$

Άρα, για κλειστή διαδρομή ($r_1=r_2$), ισχύει ο νόμος της κυκλοφορίας του στατικού ηλεκτρικού πεδίου:

Σχέση του ηλεκτρικού πεδίου με το ηλεκτρικό δυναμικό

Σε διαφορική μορφή:

$$dV = -\mathbf{E} \cdot d\mathbf{s} = -(E_x dx + E_y dy + E_z dz)$$

Γενική μορφή απειροστής μεταβολής μιας βαθμωτής συνάρτησης στο χώρο:

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz = \nabla V \cdot d\mathbf{s}$$

Άρα:

$$\mathbf{E} = -\nabla V \qquad \Longrightarrow \quad \nabla \times \mathbf{E} = -\nabla \times \nabla V \equiv \mathbf{0}$$

Το ηλεκτροστατικό πεδίο είναι <u>αστρόβιλο</u>.

- Το επικαμπύλιο ολοκλήρωμα του πεδίου δίνει τη διαφορά δυναμικού ανάμεσα στα όρια του ολοκληρώματος.
- Η βαθμίδα του του δυναμικού δίνει το πεδίο (αντίστροφες πράξεις).
- Η απροσδιοριστία μιας προσθετικής σταθερής στη συνάρτηση δυναμικού γίνεται τώρα σαφής: προσθέτοντας μια αυθαίρετη σταθερή στο δυναμικό, η βαθμίδα του (επομένως και το πεδίο) δεν αλλάζει.

Ο νόμος της κυκλοφορίας ηλεκτροστατικού πεδίου

Το επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου κατά μήκος μιας κλειστής καμπύλης ορίζει την κυκλοφορία του πεδίου γύρω από την καμπύλη. Για το ηλεκτρικό πεδίο (στατικό ή αργά μεταβαλλόμενο) είναι πάντα 0.

Για να βρούμε την τοπική κυκλοφορία του ηλεκτρικού πεδίου, την υπολογίζουμε αρχικά κατά μήκος ενός απειροστού ορθογώνιου παραλληλογράμμου ABCD στο επίπεδο xy με φορά αντίθετη των δεικτών του ρολογιού. Κατά μήκος των πλευρών AB και CD συνεισφέρει μόνο η συνιστώσα E_x : πάνω στην πλευρά CD διαφέρει κατά $+(\partial E_x/\partial y)dy$ από την E_x στο ίδιο σημείο x πάνω στην πλευρά AB. Επειδή οι δύο πλευρές διανύονται κατά

την αντίθετη φορά, η συνολική συνεισφορά τους στην κυκλοφορία είναι $-(\partial E_x/\partial y)dydx$. Όμοια, η συνεισφορά από τις πλευρές BC και DA είναι $(\partial E_y/\partial x)dxdy$, οπότε από το νόμο της κυκλοφορίας του ηλεκτρικού πεδίου:

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = 0 \quad \text{και με την ίδια ανάλυση στα επίπεδα } yz \text{ και } zx: \quad \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = 0, \quad \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = 0$$

$$\Longrightarrow \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) \hat{\mathbf{i}} - \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \hat{\mathbf{j}} + \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \hat{\mathbf{k}} = \mathbf{0} \qquad \Longrightarrow \quad \nabla \times \mathbf{E} \equiv \mathbf{0}$$

Οι εξισώσεις Poisson και Laplace

Αντικαθιστώντας στο νόμο του Gauss το ηλεκτρικό πεδίο με το ηλεκτρικό δυναμικό:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \quad \Longrightarrow \quad \nabla \cdot (-\nabla V) = \frac{\rho}{\varepsilon_0} \quad \Longrightarrow \quad \nabla^2 V = -\frac{\rho}{\varepsilon_0}$$
 Exiation Exiation

Στο κενό (απουσία φορτίων-πηγών $\Rightarrow \varrho = 0$):

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$
 Eξίσωση Laplace

Από τις δύο μορφές της μερικής διαφορικής εξίσωσης του δυναμικού, δηλαδή με μερικές παραγώγους χώρου, η εξίσωση Poisson χαρακτηρίζεται μη ομογενής και προσδιορίζει το δυναμικό από τις πηγές του, ενώ η εξίσωση Laplace χαρακτηρίζεται ομογενής και προσδιορίζει το δυναμικό στο κενό (μακριά από πηγές—γενικά, δεν είναι 0).

Οι εξισώσεις Poisson και Laplace είναι από τις πιο θεμελιακές της Μαθηματικής Φυσικής.

Ισοδυναμικές επιφάνειες

Οι επιφάνειες σταθερού δυναμικού λέγονται ισοδυναμικές και είναι χαρακτηριστικές για το ηλεκτρικό πεδίο, κάθετες πάντα στις δυναμικές γραμμές του.

Παραδείγματα:

Ομογενές πεδίο.

Πεδίο σημειακού φορτίου.

No work is done along this path on an equipotential surface.

No work is done along this path on an equipotential surface.

Πεδίο ηλεκτρικού διπόλου.

Το θεώρημα της μοναδικότητας

Αναζητούμε το δυναμικό V σε μια περιοχή του χώρου που περιβάλλεται από επιφάνειες πάνω στις οποίες παίρνει γνωστές αμετάβλητες τιμές. Υποθέτουμε ότι σε κάποια μέρη αυτής της περιοχής υπάρχει κατανομή φορτίου, οπότε το V ικανοποιεί την εξίσωση Poisson.

Υποθέτουμε δύο λύσεις V_1 και V_2 της εξίσωσης με αυτές τις συνθήκες, με $\nabla^2 V_1 = -\rho/\varepsilon_0$ και $\nabla^2 V_2 = -\rho/\varepsilon_0$, και τη διαφορά τους $V_3 = V_1 - V_2$. Αφαιρώντας τις δύο εξισώσεις, προκύπτει ότι το V_3 ικανοποιεί την εξίσωση Laplace $\nabla^2 V_3 = 0$ σε όλη την περιοχή. Οι V_1 και V_2 πρέπει να ταυτίζονται στις περιβάλλουσες επιφάνειες, οπότε εκεί $V_3 = 0$.

Από το νόμο του Gauss γνωρίζουμε ότι όταν μια περιοχή δεν περιέχει φορτίο και περιβάλλεται από μια ισοδυναμική επιφάνεια, τότε σε αυτή δεν υπάρχει καθόλου πεδίο και συνεπώς το δυναμικό είναι σταθερό σε όλη την περιοχή. Αυτές ακριβώς τις συνθήκες ικανοποιεί το δυναμικό V_3 : είναι λύση της εξίσωσης Laplace, δηλαδή δεν οφείλεται σε φορτία, και παίρνει σταθερή τιμή V_3 =0 σε όλο το σύνορο της περιοχής. Άρα πρέπει να παίρνει την ίδια τιμή V_3 =0 σε όλο το σύνορο αλλά και σε όλη την περιοχή. Άρα η λύση της εξίσωσης Poisson με τις δεδομένες συνθήκες είναι μοναδική.

Ένα σημαντικό πόρισμα αυτού του θεωρήματος είναι ότι και το πεδίο είναι επίσης μοναδικό, οπότε, αφού από το νόμο του Gauss η έντασή του είναι $E=\sigma/\varepsilon_0$ κοντά στην επιφάνεια οποιουδήποτε αγωγού, και η επιφανειακή πυκνότητα φορτίου σ είναι επίσης μοναδική: μόνο μία κατανομή φορτίου ικανοποιεί τις συνοριακές συνθήκες.

Δυναμικό ηλεκτρικού διπόλου

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{+q}{r_{(+)}} + \frac{-q}{r_{(-)}} \right) = \frac{q}{4\pi\varepsilon_0} \frac{r_{(-)} - r_{(+)}}{r_{(-)}r_{(+)}}$$

$$r_{(-)} - r_{(+)} \approx d \cos \theta$$

$$r_{(-)}r_{(+)}\approx r^2$$

$$\implies V(r \gg d) = \frac{qd\cos\theta}{4\pi\epsilon_0 r^2} = \frac{p\cos\theta}{4\pi\epsilon_0 r^2}$$

$$\Longrightarrow V(r) = \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{4\pi\varepsilon_0 r^2}$$

Εφόσον το δυναμικό μεταβάλλεται ως r^{-2} σε μεγάλες αποστάσεις από το δίπολο, το πεδίο μεταβάλλεται ως r^{-3} , όπως έχουμε ήδη δει.

Δυναμικό συνεχούς κατανομής φορτίου

$$V(\mathbf{r}) = \sum_{\text{All sources}} \frac{q(\mathbf{r}_i)}{4\pi\varepsilon_0 r_i} \longrightarrow V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\text{All sources}} \frac{dq(\mathbf{r})}{r}$$

Μακρύ σύρμα με ομοιόμορφη γραμμική πυκνότητα φορτίου *λ*:

$$V(r) = -\int \mathbf{E} \cdot d\mathbf{s} = -\int^{r} \frac{\lambda}{2\pi\varepsilon_{0}r'} dr'$$

$$\implies V(r) = -\frac{\lambda}{2\pi\varepsilon_0} \ln r + \text{const.}$$

$$\mathbf{E} = -\nabla V = -\frac{dV}{dr}\hat{\mathbf{r}} = \frac{\lambda \hat{\mathbf{r}}}{2\pi\varepsilon_0 r}$$

αποτέλεσμα που έχουμε ήδη βρει με απευθείας υπολογισμό του πεδίου.

Δίσκος με ομοιόμορφη επιφανειακή πυκνότητα φορτίου σ :

$$V(0,y,0) = \int \frac{dq}{4\pi\varepsilon_0 r} = \int_0^a \frac{\sigma 2\pi s ds}{4\pi\varepsilon_0 r} = \frac{\sigma}{2\varepsilon_0} \int_0^a \frac{s ds}{\sqrt{y^2 + s^2}}$$

$$u = \sqrt{y^2 + s^2} \implies du = \frac{sds}{\sqrt{y^2 + s^2}}$$

$$\implies \int_0^a \frac{sds}{\sqrt{y^2 + s^2}} = \int_{\sqrt{y^2}}^{\sqrt{y^2 + a^2}} du = \sqrt{y^2 + a^2} - |y|$$

$$\implies V(0,y,0) = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{y^2 + a^2} - |y| \right)$$