الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: التكنولوجيا(هندسة الطرائق) المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 7 إلى الصفحة 4 من 7)

التمرين الأول: (05 نقاط)

المرته المان (A) إلى بوليمير P كتلته المولية المتوسطة $^{-1}$ 126000 ودرجة بلمرته تساوى 3000.

1- جد الصيغة المجملة للألسان (A) واكتب صيغته نصف المفصلة.

2- اكتب معادلة تفاعل البلمرة.

3- اذكر اسم البوليمير P.

II- نجري انطلاقا من المركب (A) التفاعلات الكيميائية المتسلسلة التالية:

$$A + HCl \longrightarrow B$$

$$B + Mg \xrightarrow{\text{éther}} C$$

$$C + CH_3$$
-CH-CN \longrightarrow D
 CH_3

$$D + H_2O \longrightarrow E + MgClOH$$

$$E + H_2O \longrightarrow F + NH_3$$

$$F + H_2 \xrightarrow{Ni} G$$

$$G \xrightarrow{H_2SO_4} H + H_2O$$

$$H \xrightarrow{KMnO_4} I + J$$

. حيث المركب (J) يتفاعل مع DNPH ولا يرجع محلول فهانغ

.J $_{0}$ I $_{0}$ H $_{0}$ G $_{0}$ F $_{0}$ E $_{0}$ D $_{0}$ C $_{0}$ D $_{0}$ I $_{0}$ D $_{0}$ ا و L .

- انطلاقا من -2 انطلاقا من الكيميائية التي تسمح بالحصول على المركب (حمض-2 مثيل بروبانويك) انطلاقا من المركب (C) وكواشف أخرى.
 - . بواسطة الهيدروجين H_2 في وجود النيكل. CH_3 -CH-CN النيكل. -3 في وجود النيكل. -3

التمرين الثاني: (05 نقاط)

- I- لديك ثلاثي الببتيد A-B-C حيث:
- عند وضع الحمض الأميني A في جهاز الهجرة الكهربائية عند pH=6 يهاجر نحو القطب السالب.
 - الحمض الأميني B يعطي مع كاشف كزانثوبروتييك نتيجة إيجابية.
 - C حمض أميني كبريتي.
 - 1- ماهي الأحماض الأمينية C · B · A ؟ مع التّعليل.

$$HO -CH_2$$
-CH-COOH $-CH_2$

- A-B-C اكتب الصيغة نصف المفصلة لثلاثي الببتيد -2
 - A-B-C اذکر اسم ثلاثي الببتید -3
- 4- مثّل بإسقاط فيشر المماكبات الضوئية للحمض الأميني Asp .
- 12 من 1 إلى 12 Asp من 1 إلى 14 من 1 الميني الحمض الأميني Asp من 1 إلى 15 pKa $_R$ =3,66 ، pKa $_2$ =9,6 ، pKa $_1$ =1,88 يعطى:
- الـ يوجد حمض اللينولييك في زيت دوار الشمس، أكسدته بمحلول $KMnO_4$ في وسط حمضي تعطي حمض $C_6H_{12}O_2$ الخمضين التاليين دهني أحادي الوظيفة الكربوكسيلية صيغته المجملة $C_6H_{12}O_2$ والحمضين التاليين $C_6H_{12}O_2$ + $C_6H_{12}O_3$ + C_6H_{12}
 - 1- جد الصيغة نصف المفصلة لحمض اللينولييك.
 - 2- يدخل حمض اللينولييك في تركيب ثلاثي غليسيريد متجانس.

أ- اكتب معادلة تفاعل تشكل ثلاثي الغليسيريد.

ب- اكتب معادلة تفاعل هدرجة ثلاثي الغليسيريد.

ج- ما هي الأهمية الصناعية لتفاعل هدرجة ثلاثي الغليسيريد؟

التمرين الثالث: (05 نقاط)

 $(P_1=6 \ atm \ , V_1=6 \ L \ , \ T_1)$ من الحالة الابتدائية $m=8,5 \ g$ كتلتها $m=8,5 \ g$ كتلتها m=8,5

نعتبر غاز النشادر NH₃ غازا مثاليا.

 P_2 ما قيمة كل من P_2 ، P_2 و P_2 ?

-2 أ− احسب العمل W.

ب- هل الغاز تلقى عملا أم أنجزه ؟ علل.

ج- احسب كمية الحرارة $Q_{\rm p}$ المتبادلة خلال هذا التحول.

 $R = 8,314 \text{ J.mol}^{-1}.\text{K}^{-1}$, $Cp(NH_{3(g)}) = 33,6 \text{ J.mol}^{-1}.\text{K}^{-1}$.

$$N=14g/mol \cdot H=1g/mol \cdot 1atm = 1,013.10^5 Pa$$

II- يعتبر الأسيتون CH3COCH3 مذيبا جيدا للعديد من المركبات العضوية.

الخازي. عادلة الفاري الأسيتون الغازي. -1

$$\Delta H_f^0(CH_3COCH_{3(g)})$$
 احسب أنطالبي التشكل -2

$$\Delta H_{sub}^{0}(C_{(s)}) = 717 \text{ kJ.mol}^{-1}$$
 يعطى:

الرابطة	Н-Н	O=O	С-Н	C-C	C=O
ΔH°_{diss} (kJ.mol ⁻¹)	436	498	414	348	711

 $\Delta H_{comb}^0 = -1821,38 \; \mathrm{kJ.mol}^{-1} \colon 25^{\circ}\mathrm{C}$ يذا علمت أن أنطالبي الاحتراق للأسيتون السائل عند -3

$$\Delta H_f^0(CH_3COCH_{3(\ell)})$$
 ب- احسب أنطالبي التشكل

$$\Delta H_{vap}^{\,0}(CH_3COCH_3)$$
 ج- احسب أنطالبي التبخر

$$\Delta H_f^0(CO_{2(g)}) = -393 \text{ kJ.mol}^{-1}$$
, $\Delta H_f^0(H_2O_{(\ell)}) = -286 \text{ kJ.mol}^{-1}$ يعطى:

. $25^{\circ}\mathrm{C}$ عند الدرجة مناطاقة الداخلية ΔU لتفاعل الاحتراق عند الدرجة –4

يعطى: R=8,314 J.mol⁻¹.K⁻¹

التمرين الرابع: (05 نقاط)

: متابعة تفاعل تفكك الماء الأكسجيني ${
m H}_2{
m O}_2$ بوجود وسيط مناسب أعطت النتائج التالية

t(h)	0	2	4	6	8
$[H_2O_2]$ (mol/L)	1	0,37	0,135	0,05	0,018

- الرتبة الأولى. H_2O_2 وضِّح بيانيا أن تفكك الماء الأكسجيني H_2O_2 هو تفاعل من الرتبة الأولى.
 - 2-عيِّن بيانيا قيمة ثابت السرعة k . k
 - -استخرج عبارة زمن نصف التفاعل $t_{1/2}$ ثم احسب قيمته.
 - t=5h عند اللحظة H_2O_2 عند الحظة -4

الموضوع الثاني

يحتوي الموضوع الثاني على 03 صفحات (من الصفحة 5 من 7 إلى الصفحة 7 من 7)

التمرين الأول: (07 نقاط)

- d=1,38 ألسين (A) كثافته بالنسبة للهواء (A) ألسين
- جد الصيغة المجملة والصيغة نصف المفصلة للمركب (A).
- 2) نجري انطلاقا من الألسين (A) سلسلة التفاعلات الكيميائية الآتية :

A + H₂
$$\xrightarrow{Pd}$$
 B

B $\xrightarrow{KMnO_4}$ C + CO_2 + H_2O

C $\xrightarrow{1)LiAlH_4}$ D

D + HBr \longrightarrow E + H_2O

أ-جد الصيغ نصف المفصلة للمركبات E · D · C · B .

- ب- بلمرة المركب (B) تعطى البوليمير P-
- اكتب الصيغة العامة للبوليمير P واذكر اسمه.
- (3) يتم تحضير المركب (E) مخبريا بمزج 10~mL من المركب (D) كثافته (E) يتم تحضير المركب (3) يتم تحضير المركب (E) مخبريا بمزج (3 H_2SO_4 في وجود H_2SO_4 .
 - أ- احسب عدد مولات كل من المركب (D) و KBr.
 - $m_p = 16~g$ هي (E) بالمركب مردود التفاعل إذا علمت أن الكتلة المتحصل عليها من المركب (C=12g/mol , O=16g/mol , H=1g/mol , K=39g/mol , Br=80g/mol .
- 4) يمكن تحضير حمض بارا أمينو بنزويك + COOH انطلاقا من المركب (D) وفق ما يلي:
 - تفاعل البنزن مع المركب (D) في وسط حمضي H_2SO_4 يعطي مركبا (F).
 - تأثیر HNO $_3$ یؤدي إلى مرکب (G) في وجود H2SO $_4$ یؤدي إلى مرکب (G).
 - أكسدة المركب (G) بواسطة $KMnO_4$ في وسط حمضي H_2SO_4 يعطي مركبا (H)
 - إرجاع المركب (H) بواسطة الحديد Fe في وجود HCl يؤدي إلى حمض بارا أمينو بنزويك.
 - أ- جد الصيغ نصف المفصلة للمركبات H ، G ، F.

التمرين الثاني: (07 نقاط)

I- يدخل في تركيب ثلاثي غليسريد (A) الأحماض الدهنية التالية:

 $(C18:1\Delta^9)$ حمض الأولييك ($C16:1\Delta^9$)، حمض البالميتوأولييك ($C16:1\Delta^9$)، حمض الأولييك ($C18:1\Delta^9$)

- 1) اكتب الصيغ نصف المفصلة للأحماض الدهنية السابقة.
- 2) استتج الصيغ نصف المفصلة الممكنة لثلاثي الغليسريد (A).
- . (A) احسب قرينة التصبن $I_{\rm S}$ و قرينة اليود $I_{\rm i}$ لثلاثي الغليسريد

يعطى: أ- I=127g.mol أ-، K=39g.mol ، O=16 g.mol ، C=12 g.mol ، H=1 g.mol ويعطى التحليل المائى لثلاثى الببتيد (X) الأحماض الأمينية التالية:

HOOC-CH ₂ -CH-COOH	$H_2N-(CH_2)$ $-CH-COOH$	CH ₃ -CH-COOH
NH ₂	NH ₂	NH ₂
حمض الأسبارتيك Asp	الليزين Lys	Ala الألانين

- 1) صنف الأحماض الأمينية السابقة.
- 2) إذا علمت أن ثلاثي الببتيد (X) هو: Lys-Ala-Asp
 - أ اكتب صيغته نصف المفصلة.
 - ب أعط اسمه.
- 3) يتأيّن الليزين عند تغير اله pH وفق المخطط الآتى:

- أ اكتب الصيغ الأيونية A و B و C.
- . pKa $_{\mathrm{R}}$ و pKa $_{\mathrm{R}}$ و pKa $_{\mathrm{R}}$ و .
 - . Lys لليزين pH_i لليزين احسب قيمة ال
- 4) نضع مزيجا من الأحماض الأمينية المكونة للببتيد (X) السابق في منتصف شريط الهجرة الكهربائية في وسط ذي pH محدد، فنحصل على النتائج الموضحة في الوثيقة التالية:

أ- استنتج قيمة pH الوسط.

ب- حدّد الأحماض الأمينية المشار إليها بـ (1) و (2) مع التّعليل.

علما أن:

	pKa ₁	pKa ₂	pKa _R
Ala	2,34	9,69	/////
Asp	1,88	9,6	3,66

التمرين الثالث: (06 نقاط)

I- يحترق غاز البروبان عند الدرجة $^{\circ}$ C وفق التفاعل الآتي:

$$C_3H_{8(g)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(\ell)} \qquad \Delta H_r^{\circ} = ?$$

1) وازن معادلة التفاعل.

. احسب $\Delta H^0_f(C_3H_{8(g)})$ باستعمال مخطط تشكل غاز البروبان (2

 $\Delta H_{sub}^{0}(C(s)) = 717 \ kJ.mol^{-1}$ يعطى:

الرابطة	Н–Н	С–Н	С-С
$\Delta H_{diss}^{\circ} (kJ.mol^{-1})$	436	413	348

احسب أنطالبي احتراق البروبان $\Delta H_{\rm r}^{\circ}$ علما أن:

$$\Delta H_f^0(H_2O_{(\ell)}) = -286 \ kJ.mol^{-1}$$
, $\Delta H_f^0(CO_{2(g)}) = -393 \ kJ.mol^{-1}$

4) احسب أنطالبي احتراق البروبان عند 50°C حيث:

المركب	$C_3H_{8(g)}$	$O_{2(g)}$	$CO_{2(g)}$	H ₂ O _(ℓ)
$C_p(J.K^{-1}. mol^{-1})$	73,51	29,36	37,45	75,24

.25°C عند الفرق (ΔH - ΔU) لتفاعل احتراق البروبان عند (5

يعطى: R=8,314 J.mol⁻¹.K⁻¹

سعر حراري سعته الحرارية ($C_{cal}=100~J/K$) يحتوي على كتلة $m_1=100g$ من الماء عند درجة حرارة -II مسعر حراري سعته الحرارية ($T_2=80^{\circ}C$ من الماء عند درجة حرارة $m_2=80g$ من الماء عند درجة حرارة $T_1=25^{\circ}C$

 $c=4,18~J.g^{-1}.~K^{-1}$ احسب درجة حرارة التوازن $T_{\rm eq}$. علما أن الحرارة الكتلية للماء

انتهى الموضوع الثاني

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

العلامة		7 1 841 10-
مجموع	مجزأة	عناصر الإجابة
		التمرين الأول: (05 نقاط)
		A إيجاد الصيغة المجملة للألسان -1
1,25	0,25	$n = rac{M_{ m polymère}}{M_{ m monomère}} \; \; ; \; \; M_{ m monomère} = rac{M_{ m polymère}}{n}$
	0,25	$M_{\text{monomère}} = \frac{126000}{3000} = 42 \text{ g.mol}^{-1}$
		$M_{C_2H_{2n}} = 12n + 2n = 14n$
	0,25	$n = \frac{\mathbf{M}_{C_2 H_{2n}}}{14} = \frac{42}{14} = 3$
	0,25	${ m C_3H_6}$ ومنه الصيغة المجملة هي
	0,25	CH_3 - $CH=CH_2$: صيغته نصف المفصلة
	ŕ	2-كتابة معادلة تفاعل البلمرة :
		CH ₃ □
0,5	0,5	$n CH_3-CH=CH_2 \longrightarrow - \left[CH-CH_2 \right]_n$
0,25	0,25	3- اسم البوليمير P : بولي بروبيلين
		II- 1- الصيغ نصف المفصلة هي :
		$B: CH_3-CH-CH_3$ $C: CH_3-CH-CH_3$
		Cl MgCl
		D: $(CH_3)_2CH-C=NMgCl$ E: $(CH_3)_2CH-C=NH$
		$CH(CH_3)_2$ $CH(CH_3)_2$
2,25	9x0,25	O OH \parallel F: CH_3 -CH- CH - CH_3 G: CH_3 -CH- CH - CH_3
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\mathbf{H}: \mathbf{CH_3\text{-}CH\text{-}CH}=\mathbf{C}\cdot\mathbf{CH_3} \qquad \qquad \mathbf{J}: \mathbf{CH_3\text{-}C\text{-}CH_3} \qquad \qquad \mathbf{II} \qquad \qquad \mathbf{CH_3 \qquad CH_3} \qquad \qquad \mathbf{O}$
		I: CH ₃ -CH-COOH
		CH ₃

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

	ı	المراجع
		2- كتابة سلسلة التفاعلات الكيميائية:
		Q
0,5	0,25	CH_3 - CH - CH_3 + CO_2 \longrightarrow CH_3 - CH - C - CH - C - CH
		MgCl CH ₃
	0,25	Q CH ₃ -ÇH-C-OMgCl + H ₂ O → CH ₃ -ÇH-C-OH + MgClOH
		CH
		$ \begin{array}{c} \operatorname{CH}_{3} \\ \end{array} $: عتابة المعادلة
0.25	0.25	CH_3 -CH-CN + 2 H_2 $\xrightarrow{N_i}$ CH_3 -CH-C H_2 -N H_2
0,25	0,25	$ \overset{\circ}{\operatorname{CH}}_{3} $ $ \overset{\circ}{\operatorname{CH}}_{3} $ $ \overset{\circ}{\operatorname{CH}}_{3} $
		ر التمرين الثاني : (05 نقاط)
		\
		-I
		1- الأحماض الأمينية:
		- الحمض A : هو Lys
1,25	2x0,25	$pH_{i(Lys)}$ > pH (کاتیون) A^+ (کاتیون) الن التعلیل : یکون علی شکل
		- الحمض B : هو Tyr
	2x0,25	التعليل: لأنه عطري
	0,25	- الحمض C : هو Cys
	,	A−B−C کتابة صيغة −2
		0 0
		H ₂ N-CH-C-NH-CH-COOH
0,5	0,5	
		$(CH_2)_4$ CH_2 CH_2
		NILL SLL
		NH ₂ SH
		I ОН
0.25	0.25	3- اسم ثلاثي الببتيد: ليزيل تيروزيل سيستئين
0,25	0,25	اسم دعي البيداء البرين سيدسين

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

	T	اعتوصوع الأول
		4- تمثیل المماکبات الضوئیة له Asp حسب اسقاط فیشر:
0,5	2x0,25	COOH $H \longrightarrow NH_2 \qquad H_2N \longrightarrow H$ CH_2COOH CH_2COOH CH_2COOH
1	4x0,25	:pH عند تغير الـ Asp عند تغير الـ Asp الصيغ الأيونية لـ Asp عند تغير الـ PKa,=1,88 pH,=2,77 pKa,=3,66 pKa₂=9.6 12 H₃N⁺-CH-COO+
0,5	0,5	CH_3 - $(CH_2)_4$ - $COOH$: $C_6H_{12}O_2$ الصيغة نصف المفصلة للحمض اللينولييك ومنه الصيغة نصف المفصلة لحمض اللينولييك CH_3 - $(CH_2)_4$ - CH = CH - $COOH$ - CH - C
1,00	0,5	$\begin{array}{c} \text{CH}_2\text{-OH} \\ \text{CH-OH} + 3 \text{ CH}_3\text{-(CH}_2)_4\text{-CH=CH-CH}_2\text{-CH=CH-(CH}_2)_7\text{-COOH} \longrightarrow \\ \text{CH}_2\text{-OH} \\ \text{O} \\ \text{CH}_2\text{-O-C-(CH}_2)_7\text{-CH=CH-CH}_2\text{-CH=CH-(CH}_2)_4\text{-CH}_3 \\ \mid \text{O} \\ \mid $
		CH-O-C-(CH ₂) ₇ -CH=CH-CH ₂ -CH=CH-(CH ₂) ₄ -CH ₃ + 3 H ₂ O O CH ₂ -O-C-(CH ₂) ₇ -CH=CH-CH ₂ -CH=CH-(CH ₂) ₄ -CH ₃

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

		<u> </u>
		ب - معادلة تفاعل الهدرجة:
	0,25	CH_2 -O- $\ddot{\mathbb{C}}$ - $(CH_2)_7$ -CH=CH- CH_2 -CH=CH- $(CH_2)_4$ -CH $_3$
	,	$CH-O-C-(CH_2)_7-CH=CH-CH_2-CH=CH-(CH_2)_4-CH_3 + 6 H_2 \xrightarrow{Ni}$
		$ \begin{array}{c} \mid & \text{O} \\ \text{CH}_2\text{-O-C-}(\text{CH}_2)_7\text{-CH=CH-CH}_2\text{-CH=CH-}(\text{CH}_2)_4\text{-CH}_3 \end{array} $
		O CH ₂ -O-C-(CH ₂) ₁₆ -CH ₃
		CH-O-C-(CH ₂) ₁₆ -CH ₃
		Q
		CH ₂ -O-C-(CH ₂) ₁₆ -CH ₃
	0,25	ج- الأهمية الصناعية :تحويل الزيوت النباتية إلى دهون غذائية صلبة (مرغرين)
		التمرين الثالث: (05 نقاط)
		ا. -1 إيجاد قيمة T_1
		$M(NH_3) = 14 + 3 = 17 \text{ g/mol}$
		$n=\frac{m}{M}$
1,00	0,25	$n = \frac{8.5}{1.5} = 0.5 \text{mol}$
		17
		$\mathbf{p}_{1}\mathbf{v}_{1}=\mathbf{nRT}_{1}$
		$T_1 = \frac{p_1 v_1}{nR}$
	0,25	$T_1 = \frac{6 \times 1,013 \times 10^5 \times 6 \times 10^{-3}}{0,5 \times 8,314} = 877,3 \text{ K}$
		_
		P_2 : ایجاد P_2 : التحول تحت ضغط ثابت
	0,25	التحول لحث عصد قبت اذن P ₂ =P ₁ = 6atm
		. ₂ . ₁ Gaa Ga _i

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

		المراجع المراجع
		- إيجاد T ₂
		$\frac{\mathbf{v}_1}{\mathbf{T}_1} = \frac{\mathbf{v}_2}{\mathbf{T}_2}$
		1 2
		$T_2 = \frac{\mathbf{v}_2 \times \mathbf{T}_1}{\mathbf{v}_1}$
		•
	0,25	$T_2 = \frac{4 \times 877.3}{6} = 584.8 \text{ K}$
		$P_2V_2=nRT_2$ ملاحظة: تقبل الإجابة باستعمال العلاقة
		W العمل − أ −2
1,5	0,25	$W = -P\Delta V = -P(V_2 - V_1)$
	0,25	W= - $6 \times 1,013 \times 10^5 \times (4-6) \times 10^{-3} = 1215,6 \text{ J}$
	,	
	2x0,25	ب - الغاز تلقى عملا لأن 0 <w< th=""></w<>
		ج-حساب كمية الحرارة Q _P
	0,25	$Q_{p} = nc_{p} \Delta T = nc_{p} (T_{2} - T_{1})$
	0,25	$Q_p = 0.5 \times 33.6 \times (584.8 - 877.3) = -4914 J$
		 اا. 1 – كتابة معادلة تفاعل تشكل الأسيتون الغازي:
		O
0,25	0,25	$3 C_{(s)} + 3 H_{2 (g)} + 1/2 O_{2 (g)} \longrightarrow CH_3 - C - CH_{3 (g)}$
		2 - حساب أنطالبي تشكل الأسيتون الغازي:
		$3 C_{(s)} + 3 H_{2 (g)} + 1/2 O_{2 (g)} \xrightarrow{\Delta H_{f}^{\circ}} CH_{3} - C - CH_{3 (g)}$
0,5	0,25	-6 ΔH° _{d(C-H)}
		$3\Delta H^{\circ}_{Sub}(C_{(s)})$ $3\Delta H^{\circ}_{d(H-H)}$ $1/2\Delta H^{\circ}_{d(O=O)}$ $-2\Delta H^{\circ}_{d(C-C)}$ $-\Delta H^{\circ}_{d(C=O)}$
		——— d(C=O)
		$3 C_{(g)} + 6 H_{(g)} + O_{(g)}$
		(g) (g) (g)

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

		032, 63-3-1
		$\Delta H_{f(CH_{3}COCH_{3}(g))}^{0} = 3\Delta H_{sub}^{0}(C_{(s)}) + 3\Delta H_{d(H-H)}^{0} + \frac{1}{2}\Delta H_{d(O=O)}^{0} - 6\Delta H_{d(C-H)}^{0} - 2\Delta H_{d(C-C)}^{0} - \Delta H_{d(C-O)}^{0}$
		$\Delta H_{f(CH_3COCH_3(g))}^0 = 3 \times (717) + 3 \times (436) + \frac{1}{2} \times (498) - 6 \times (414) - 2 \times (348) - 711$
	0,25	$\Delta H_{f(CH_3COCH_3(g))}^0 = -183 \text{ kJ.mol}^{-1}$
		3- أ- كتابة معادلة الإحتراق:
1,00	0,25	$CH_3COCH_{3(1)} + 4O_{2(g)} \rightarrow 3CO_{2(g)} + 3H_2O_{(1)}$
		$\Delta H^0_{f(CH_3COCH_{3(l)})}$:
	0,25	$\Delta H_{\text{Comb}}^{0} = 3\Delta H_{\text{f}}^{0} \left(\text{CO}_{2(g)} \right) + 3\Delta H_{\text{f}}^{0} \left(\text{H}_{2} \text{O}_{(1)} \right) - \Delta H_{\text{f}}^{0} \left(\text{CH}_{3} \text{COCH}_{3(1)} \right) - 4\Delta H_{\text{f}}^{0} \left(\text{O}_{2(g)} \right)$
	3,25	Comb 1 (2(g)) 1 (2 (i)) 1 (3 3(i)) 1 (2(g))
		$\Delta H_{f}^{0}\left(CH_{3}COCH_{3(1)}\right) = 3\Delta H_{f}^{0}\left(CO_{2(g)}\right) + 3\Delta H_{f}^{0}\left(H_{2}O_{(1)}\right) - \Delta H_{Comb}^{0} - 4\Delta H_{f}^{0}\left(O_{2(g)}\right)$
		$\Delta H_f^0 \left(CH_3 COCH_{3(1)} \right) = 3(-393) + 3(-286) + 1821,38-4 \times 0$
		$\Delta \Pi_{\rm f} \left(C\Pi_{3}COC\Pi_{3(1)} \right)^{-3} \left(-393 \right)^{+3} \left(-280 \right)^{+1821,38-4\times0}$
	0,25	$\Delta H_f^0 \left(CH_3 COCH_{3(1)} \right) = -215,62 \text{ kJ.mol}^{-1}$
		$\Delta H^0_{ m vap}$: حساب
		$\Delta H_{\text{vap}}^{0} = \Delta H_{\text{f}}^{0} \left(\text{CH}_{3} \text{COCH}_{3(g)} \right) - \Delta H_{\text{f}}^{0} \left(\text{CH}_{3} \text{COCH}_{3(l)} \right)$
	0,25	$\Delta H_{\text{vap}}^0 = -183 + 215,62 = 32,62 \text{ kJ.mol}^{-1}$
		4- حساب التغير في الطاقة الداخلية عند ℃25 :
0,75	0,25	$\Delta H = \Delta U + \Delta n_{(g)} RT$
		$\Delta U = \Delta H - \Delta n_{(g)} RT$
	0,25	$\Delta n_{(g)} = 3 - 4 = -1$
		$\Delta U = -1821,38 - (-1) \times 8,314 \times 298 \times 10^{-3}$
	0.25	$\Delta U = -1818,9 \text{ kJ.mol}^{-1}$

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

		الموصوع الاول
2,25	0.25	$\ln \frac{\left[H_2O_2\right]_0}{\left[H_2O_2\right]} = f(t)$ التمرين الرابع -1 -1 -1 -1 -1 -1 -1 -1
	01	ln[H ₂ O ₂] ₀ /[H ₂ O ₂]) 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
	0,5	التفاعل من الرتبة الأولى لأن المنحنى $f(t) = f(t)$ عبارة عن مستقيم.
		$\ln[H_2O_2]=f(t)$ ملاحظة: تقبل الإجابة برسم المنحنى k : السرعة k
1,00	0,5 0,5	$tg\alpha = \frac{4-1}{8-2} = 0.5$
	0,5	$k = tg\alpha = 0.5 h^{-1}$

اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

	1	الموصوع الاول
1,00	0,25	استخراج عبارة $\frac{t}{2}$: من المعادلة الزمنية $\ln \frac{\left[H_2O_2\right]_0}{\left[H_2O_2\right]} = k t$
	0,25	$\begin{bmatrix} H_2 O_2 \end{bmatrix} = \frac{\begin{bmatrix} H_2 O_2 \end{bmatrix}_0}{2}$ الدينا $t = t_{\frac{1}{2}}$ عند $\ln \frac{\begin{bmatrix} H_2 O_2 \end{bmatrix}_0}{\begin{bmatrix} H_2 O_2 \end{bmatrix}_0} = k t_{\frac{1}{2}}$
	0,25	$\ln 2 = k t_{\frac{1}{2}} \implies t_{\frac{1}{2}} = \frac{\ln 2}{k}$
	0,25	$t_{1/2}=rac{\ln 2}{0.5}=1,38~h$ $t_{1/2}=1h~23min$ $t=5~h$ عند H_2O_2 عند H_2O_2 عند H_2O_2
0,75	0,25 0,25	$\ln\left[H_2O_2\right] = -k t + \ln\left[H_2O_2\right]_0$ $\ln\left[H_2O_2\right] = -0.5 \times 5 + \ln 1 = -2.5$ $\left[H_2O_2\right] = e^{-2.5}$
	0,25	$[H_2O_2] = 0,082 \text{ mol.1}^{-1}$

العلامة		عناصر الإجابة
مجموع	مجزأة	معاصر الإجابة
		التمرين الأول (07 نقاط):
		1) إيجاد الصيغة المجملة للمركب (A):
1,00	0,25	$M_A = d \times 29 = 1,38 \times 29 = 40,02 \text{ g/moL}$
		A: $C_nH_{2n-2} \Rightarrow M_A = 12n + 2n - 2 = 14n - 2 = 40,02g/mol$
	0,25	$n = \frac{42,02}{14} = 3$
	0,25	$A: C_3H_4$
		- الصيغة نصف المفصلة للمركب (A):
	0, 25	H ₃ C−C≡≡CH
		2) أ- إيجاد الصيغ نصف المفصلة للمركبات E,D,C,B
2,5	4×0, 5	$B: H_3C-CH=CH_2$, $C: H_3C-C$ —OH
		$D: H_3C - CH_2 - OH , E: H_3C - CH_2 - Br$
	0,25	. P بالصيغة العامة للبوليمير - H ₂ C — CH للجامة البوليمير CH - CH الصيغة العامة البوليمير
	0,25	اسم البوليمير P: بولي بروبيلين
		3) أ- حساب عدد المولات:
		: C_2H_5OH عدد مولات –
2,25	0, 25	${}^{m}C_{2}H_{5}OH = \rho \times v = 0.8 \times 10 = 8g$
	0, 25	$M_{C_2H_5OH} = 2 \times 12 + 6 + 16 = 46g/mol$
	0,25	$n_{C_2H_5OH} = \frac{m}{M} = \frac{8}{46} = 0,174 \text{ mol}$

العلامة		7.1. NI
مجموع	مجزأة	عناصر الإجابة
	0, 25 0, 25	: KBr عدد مولات $M_{\mathrm{KBr}} = 39 + 80 = 119 \mathrm{g/mol}$ $n_{\mathrm{KBr}} = \frac{\mathrm{m}}{\mathrm{M}} = \frac{25}{119} = 0,21 \; \mathrm{mol}$. الإيثانول هو المتفاعل المحد . $ P_{\mathrm{C_2H_5Br}} = 2 \times 12 + 5 + 80 = 109 \; \mathrm{g/mol} $
	0, 25 0, 25	$ \begin{array}{c} C_{2}H_{5}OH \longrightarrow C_{2}H_{5}Br \\ 46g \longrightarrow 109g \\ 8g \longrightarrow m_{T} \end{array} $ $ m_{T} = 18,95 g $ $ m_{D}$
	0,25	Re nd = $\frac{m_P}{m_T} \times 100$ Re nd = $\frac{16}{18,95} \times 100$ Re nd = 84,43%
1,25	3×0,25	. (H), (G), (F) أ- الصيغ نصف المفصلة للمركبات (4 F: CH ₂ -CH ₃ , G: O ₂ N-CH ₂ -CH ₃ , H: O ₂ N-COOH
	0,5	$\begin{array}{c} \text{Particles} & \text{Particles} &$

العلامة		7.1-2011*2
مجموع	مجزأة	عناصر الإجابة
		التمرين الثاني(07 نقاط): I
0,75		1) كتابة الصيغ نصف المفصلة للأحماض الدهنية:
	0, 25	$C12:0$ $H_3C-(CH_2)_{10}-COOH$
	0,25	$C16:1\Delta9$ $H_3C-(CH_2)_5-CH=CH-(CH_2)_7-COOH$
	0,25	${ m C18:1}\Delta^9$ ${ m H_3C-(CH_2)_7-CH=CH-(CH_2)_7-COOH}$
		2) استنتاج الصيغ نصف المفصلة لثلاثي الغليسيريد (A):
0,75	0,25	CH_2-O C' $(CH_2)_{10}-CH_3$ CH CH CH CH CH CH CH CH
		CH_2-O-C $CH_2)_7-CH$ $CH_2)_7-CH_3$
	0,25	$\begin{array}{c} O \\ CH_2-O-C-(CH_2)_{10}-CH_3 \\ \\ CH-O-C-(CH_2)_7-CH=CH-(CH_2)_7-CH_3 \\ \\ O \\ CH_2-O-C-(CH_2)_7-CH=CH-(CH_2)_5-CH_3 \\ \\ CH_2-O-C-(CH_2)_7-CH=CH-(CH_2)_5-CH_3 \\ \end{array}$
1,00	0,25	$CH_2-O-C-(CH_2)_7-CH-CH-(CH_2)_5-CH_3$ O $CH-O-C-(CH_2)_{10}-CH_3$ O $CH_2-O-C-(CH_2)_7-CH-CH-(CH_2)_7-CH_3$ $CH_2-CH-CH-(CH_2)_7-CH_3$ $CH_2-CH-CH-CH-(CH_2)_7-CH_3$ $CH_2-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-$
1,00		حساب قرينة التصبن: ۱۳۰۵/۲۲۲ (۱۳۲۲) معتدر التصبن
	0, 25	$ \begin{array}{l} 1 \text{mol}(\text{TG}) \longrightarrow 3 \text{mol}(\text{KOH}) \\ M_{\text{TG}} \longrightarrow 3 \times M_{\text{KOH}} \times 10^{3} \\ 1 \text{g} \longrightarrow I_{\text{S}} \end{array} \right\} \Rightarrow I_{\text{S}} = \frac{3 \times M_{\text{KOH}} \times 10^{3}}{M_{\text{TG}}} \\ M_{\text{KOH}} = 56 \text{g/mol} \\ M_{\text{TG}} = 774 \text{g/mol} $
	0,25	$I_{s} = \frac{3 \times 56 \times 10^{3}}{774} = 217,05$

عناصر الإجابة مجموع مجزأة مجموع	
• >0.1	
پرو-۰	حساب قرينة اا
$1 \operatorname{mol}(TG) \longrightarrow 2 \operatorname{mol}(I_2)$	
$M_{} \longrightarrow 2 \times M_{-}$ $100 \times 2 \times M_{-}$	
0, 25	
$M_{I_2} = 254g / mol$	
$I_{i} = \frac{100 \times 2 \times 254}{774} = 65,63$	
//4	(II)
اض الأمينية:	11) 1) تصنيف الأحم
ن أميني خطى بسيط	,
	-
ل أميني خطي حامضي	_
مبيغة نصف المفصلة للبيبتيد (X):	2) أ- كتابة الص
0,75 $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,5$ $0,7$	
0.75 0.5	
NH ₂ COOH	
مم البيبتيد (X): ليزيل ألانيل أسبارتيك	ب–اس
بغ الأيونية لكل من A و B و :	3) أ-كتابة الصي
+ + + + + + + + + + + + + + + + + + +	CH—COO_
2,00 3×0,25 A: H_3N —CH—COOH , B: H_3N —CH—COO , C: H_2N —C	
	CH ₂) ₄ NH -
	: 1 1
$ ho$ او pKa_R و pKa_R و pKa_R او pKa_R او pKa_R و pKa_R المحتة كل من $pKa_1 = 2,18$ و $pKa_1 = 2,18$ و $pKa_1 = 2,18$ و $pKa_1 = 2,18$ و $pKa_2 = 8,95$ و $pKa_1 = 10,53$	ب— اسس ج
$pKa_1 = 2,18$, $pKa_2 = 8,93$, $pKa_R = 10,93$: Lys مة الـ pH_i لليزين pH_i	جسان ق د
	ج حسب بي
$pH_{i} = \frac{pKa_{2} + pKa_{R}}{2} = \frac{8,95 + 10,53}{2}$	
$pH_{i} = 9,74$	

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2016 الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 016 اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي المدة: 04سا و30د

العلامة		
مجموع	مجزأة	عناصر الإجابة
		4) أ- استنتاج قيمة pH الوسط:
1,00	2×0,25	$pH = pH_i(Ala) = \frac{pKa_1 + pKa_2}{2} = \frac{2,34+9,69}{2} = 6$
		ب- تحديد الأحماض الأمينية المشار إليها به (1) و (2) مع التعليل:
		: حمض الأسبارتيك
	0,25	التعليل: بما أن pH \ pH فإن حمض الأسبارتيك يكون على شكل أيون سالب وبالتالي يهجر
		نحو القطب الموجب .
		(2) : الليزين
	0,25	التعليل: بما أن pH \(pH_i) فإن الليزين يكون على شكل أيون موجب وبالتالي يهجر نحو القطب
		السالب .
		ملاحظة: يقبل النعليل الأتى:
		بما أن : pKa _R < pH < pKa ₂ يكون أيون سالب ، يهجر نحو القطب الموجب.
		بما أن: $pKa_1 < pH < pKa_2$ فإن $pKa_1 < pH < pKa_2$ يكون أيون موجب ، يهجر نحو القطب السالب.
		التمرين الثالث (06 نقاط):
		(I
0,75	0,75	$C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(\ell)}$ موازنة معادلة التفاعل (1
		: $\Delta H_{\rm f}^0({ m C_3}{ m H_{8(g)}})$ حساب (2
		$3C_{(S)} + 4H_{2(g)} \xrightarrow{\Delta H_f^0(C_3H_{8(g)})} C_3H_{8(g)}$
1.00	0 -	$3\Delta H_{\text{sub}(C_{(s)})}^{\circ}$ $4\Delta H_{\text{d}(H-H)}^{\circ}$ $-2\Delta H_{\text{d}(C-C)}^{\circ}$
1,00	0, 5	$3\Delta H_{sub(C_{(s)})}^{\circ} \qquad 4\Delta H_{d^{(H-H)}}^{\circ} \qquad -2\Delta H_{d^{(C-C)}}^{\circ} \qquad -8\Delta H_{d^{(C-H)}}^{\circ}$
		3C _(g) + 8H _(g)

العلامة		7.1. Nt
مجموع	مجزأة	عناصر الإجابة
	0,25	$\Delta H_{f}^{0}(C_{3}H_{8(g)}) = 3\Delta H_{sub}^{0}(C_{(s)}) + 4\Delta H_{d(H-H)}^{0} - 2\Delta H_{d(C-C)}^{0} - 8\Delta H_{d(C-H)}^{0}$
		$\Delta H_f^0(C_3 H_{8(g)}) = 3 \times (717) + 4 \times (436) - 2(348) - 8(413)$
	0,25	$\Delta H_f^0(C_3 H_{8(g)}) = -105 \text{ kJ/mol}$
		$\Delta H_{ m r}^{\circ}$ حساب أنطالبي احتراق البروبان : $\Delta H_{ m r}^{\circ}$
		$\Delta H_{\mathbf{r}}^{\circ} = \sum \Delta H_{f(Réactifs)}^{0} - \sum \Delta H_{f(Produits)}^{0}$
0,5	0,25	$\Delta H_{f}^{\circ} = 4\Delta H_{f}^{\circ} (H_{2}O_{(\ell)}) + 3\Delta H_{f}^{\circ} (CO_{2(g)}) - \Delta H_{f}^{\circ} (C_{3}H_{8(g)}) - 5\Delta H_{f}^{\circ} (O_{2(g)})$
0,5		$\Delta H_{\mathbf{r}}^{\circ} = 4(-286) + 3(-393) - (-105) - 5(0)$
	0,25	$\Delta H_{\mathbf{r}}^{\circ} = -2218 \text{ kJ.mol}^{-1}$
		4) حساب أنطالبي احتراق البروبان عند 50° :
		حسب قانون كرشوف:
1,25	0,25	$\Delta H_{T}^{0} = \Delta H_{T_{0}}^{0} + \int_{T}^{T} \Delta C p dT$
	0,25	$\Delta H_{\mathrm{T}}^{0} = \Delta H_{\mathrm{T}_{0}}^{0} + \Delta \mathrm{Cp}(\mathrm{T} - \mathrm{T}_{0})$
	0,25	$\Delta Cp = 3Cp_{(CO_{2(g)})} + 4Cp_{(H_{2}O_{(g)})} - Cp_{(C_{3}H_{8(g)})} - 5Cp_{(O_{2(g)})}$
	,	Δ Cp = $(3 \times 37, 45) + (4 \times 75, 24) - 73,51 - (5 \times 29,36)$
	0,25	$\Delta Cp = 193 \text{ J/K.mol}$
		$\Delta H_{323}^0 = -2218 + 193 \times 10^{-3} \times (323 - 298)$
	0,25	$\Delta H_{323}^0 = -2213,175 \text{ kJ/mol}$
		5) حساب الفرق (ΔH-ΔU):
	0,25	$\Delta H = \Delta U + \Delta n_{(g)} RT$
0,75	,	ΔH - ΔU = $\Delta n_{(g)}RT$
	0,25	$\Delta n_{(g)} = 3 - (1+5) = -3$
		$\Delta H-\Delta U=-3\times 8,314\times 298$
	0,25	ΔH - ΔU = -7432,72 J.mol ⁻¹

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2016 الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 106 اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي المدة: 04سا و30د

العلامة		عناصر الإجابة
مجموع	مجزأة	
		II) حساب درجة حرارة التوازن T _{eq} :
1,75	0,25	$\sum Q_i = 0 \Rightarrow Q_{cal} + Q_1 + Q_2 = 0$
	0,75	$C_{cal}(T_{eq} - T_1) + m_1 c(T_{eq} - T_1) + m_2 c(T_{eq} - T_2) = 0$
		$C_{cal}T_{eq} - C_{cal}T_{l} + m_{l}cT_{eq} - m_{l}cT_{l} + m_{2}cT_{eq} - m_{2}cT_{2} = 0$
		$T_{eq}(C_{cal} + m_1c + m_2c) = C_{cal}T_1 + m_1cT_1 + m_2cT_2$
	0,25	$T_{eq} = \frac{C_{cal}T_1 + m_1cT_1 + m_2cT_2}{C_{cal} + m_1c + m_2c}$
		$T_{eq} = \frac{100 \times 298 + 100 \times 4,18 \times 298 + 80 \times 4,18 \times 353}{100 \times 100 \times 4,18 \times 298 + 80 \times 4,18 \times 353}$
		$I_{\text{eq}} = \frac{100 + 100 \times 4,18 + 80 \times 4,18}{100 + 100 \times 4,18 + 80 \times 4,18}$
	0,5	$T_{eq} = 319,57 \text{ K} = 46,57 ^{\circ}\text{C}$