CSE 142: Machine Learning

Yang Liu (yangliu@ucsc.edu)

Projects (expected to form groups of 3-4)

- You will be given a list of competitions for the project
- Two major kinds of projects:
 - 1 baseline project & 5 challenging projects (with bonus)
- Evaluation:
 - Independent merits (25% out of 35%): project progress (5%) +
 final report and code (20%)
 - Competition (10% out of 35% + 2% extra bonus for the best):
 - Scores = $10 \times 0.9^{\text{rank}-1}$

# Groups in a project	10	8	6	4	2	1
Score of the last ranking	3.87	4.78	5.90	7.29	9	10+ 2

Baseline Project

- Description: The labeled dataset consists of 50000 IMDB movie reviews, especially selected for sentiment analysis.
- Category: Classification (Sentiment Analysis)
- Goal: Implement machine learning algorithms to predict the sentiment of reviews
- Dataset is here:

 https://www.keagle.com/e/word?wee.plp.tuteriel/date
 - https://www.kaggle.com/c/word2vec-nlp-tutorial/data
- Reminder: If you choose this project, your max project score is
 25% out of 35%

What is Sentiment Analysis?

: the movie is pretty nice!!!

: the movie is just so so...

: the movie is &\$!@#%.....

- What does the dataset looks like?
 - Labeled Train Data
 - Id, sentiment, review
 - Unlabeled Train Data
 - Do not have to use this (but you are encouraged to do)
 - Test Data
 - Sample Submission

	sentiment	review
0	1	With all this stuff going down at the moment w
1	1	\The Classic War of the Worlds\" by Timothy Hi
2	0	The film starts with a manager (Nicholas Bell)
3	0	It must be assumed that those who praised this
4	1	Superbly trashy and wondrously unpretentious 8

- Major things you might encounter with:
 - Data Cleaning & Data Preprocessing
 - How to deal with the text data preprocessing (word embedding)
 - Models, Training & Evaluation Metric
 - Model selection, hyper-parameters tuning...
 - Submit to Kaggle
 - Provide sentiment predictions for test movie reviews

Why there are bonus for challenge project?

- There are many existed codes for the baseline project, you can
 not learn much from referring or re-running codes
- For Project 2-6, we provide both a mini-project and a challenge one for each. You may skip the mini-project for 2,3 without penalty
- Challenging projects focus on some interesting problems existed in the current research fields of machine learning
- Challenging projects might be helpful for your application to internships or motivate you to explore more in this area for further study

- Mini (baseline) project: Learning with Synthetic Noise Data
- You are provided with 2 versions of the training dataset
 - Version 1: 20% noise data, 70% clean data, 10% test data
 - Version 2: 40% noise data, 50% clean data, 10% test data
 - 2 classes, 1000 samples (include the test data)

What is the synthetic noise dataset?

- For this mini-project, we aim to:
 - Provide you an intuition, since dataset is pretty small
 - Help you get started
 - You can skip this mini project and work on the challenge part directly (without penalty)

- Challenge Project: Learning with Noise Data (Image data)
- You are given 10,000 training images in CIFAR-10
 - Labels for these images are provided by students at UCSC
 - They are not experts in labeling images
 - They may have provided wrong labels for images
 - A secret test dataset consists of 1,000 images for final evaluation
 - Leaderboard Score = test accuracy (determines the rank)

What does the original dataset look like?

- CIFAR-10 is an established computer-vision dataset used for object recognition. It consists of 32*32 color images in 10 different classes
- Images can be represented as a function of two variables, X and Y (pixels), which define a two dimensional area.

- Major things you might encounter with:
 - Data Preprocessing
 - How to load Image data (may cover in Section if needed)
 - Models, Training & Evaluation Metric
 - How to improve the model performance when trained on the data with noise label (Modify loss functions? Estimate how noise label is transformed? ...)
 - Provide label predictions for test image data

What is Semi-supervised Learning?

- Mini Project: SSL on Abalone dataset
 - Predicting the age of abalone from physical measurements
- You are provided with 2 versions of the training dataset
 - Version 1: 30% labeled data, 60% unlabeled data, 10% test data
 - Version 2: 60% labeled data, 30% unlabeled data, 10% test data
- The age of abalone is determined by cutting the shell through the cone and counting the number of rings through a microscope

What does the original dataset look like?

• Attribute description:

Attribute	Domain				
Sex	{M, F, I}				
Length	[0.075, 0.815]				
Diameter	[0.055, 0.65]				
Height	[0.0, 1.13]				
Whole_weight	[0.0020, 2.8255]				
Shucked_weight	[0.0010, 1.488]				
Viscera_weight	[0.0005, 0.76]				
Shell_weight	[0.0015, 1.005]				
Rings	{15, 7, 9, 10, 8, 20, 16, 19, 14, 11, 12, 18, 13, 5, 4, 6, 21, 17, 22, 1, 3, 26, 23, 29, 2, 27, 25, 24}				

- Major things you might encounter with:
 - Data Preprocessing
 - How is "Ring" related to "Age"
 - Exploratory Data Analysis of these variables
 - Models, Training & Evaluation Metric
 - How to make use of the unlabeled data (most important)
- You may skip this mini-project (without penalty)

- Challenge Project: SSL on CIFAR-10 image dataset
 - Image Classification
- You are provided with 3 versions of the training dataset
 - Version 1: 2000 labeled training images, 8000 unlabeled training images
 - Version 2: 3000 labeled training images, 7000 unlabeled training images
 - Version 3: 4000 labeled training images, 6000 unlabeled training images
 - 1000 test images will be used to compare performances
 - Leaderboard Score = 0.4 * test accuracy (version1) + 0.32 * test accuracy (version2) + 0.28 * test accuracy (version3)

- Major things you might encounter with:
 - Data Preprocessing
 - How to load Image data (may cover in Section if needed)
 - Models, Training & Evaluation Metric
 - How to make use of the unlabeled data (Generate labels for unlabeled ones? More efficient use of labeled ones? ...)
 - Submit to Kaggle
 - Provide Image category predictions for test data

- Topic: Image classification when no labels are given
- Comparison:
 - Supervised Learning:

Semi-Supervised Learning:

Unsupervised Learning:

Topic: Image classification when no labels are given

Feature extraction + Clustering

- Dataset: MNIST (basic)
 - Digits from 0 to 9
 - No label provided (you cannot add any information)

```
000000000000000
/ 1 | 1 / 1 / 1 / 1 / 1 / / / /
2222222222222
444444444444
555555555555555
66666666666666
ファチリマフフフフフフフンノ
9999999999999
```

- Dataset: CIFAR10 (advanced)
 - 10 classes of images
 - No label provided (you cannot add any information)

- Dataset: MNIST (basic), CIFAR10 (advanced)
 - Start from MNIST, validate your method with CIFAR10
 - A validation dataset for finding the best one-to-one permutation mapping will be provided
 - Two leaderboards, two scores
- Evaluation: (70%) score_MINIST + (30%) score_CIFAR10.
- Others suggestions:
 - Test different methods, find efficient solutions
 - Find efficient methods to extract features

Project 5: Learning from Crowds

- Topic: Image classification when multiple labels are given
- Comparison:
 - Supervised Learning:

Learning From Crowds:

Project 5: Learning from Crowds

- Topic: Image classification when multiple labels are given
- Dataset: 20 classes of CIFAR100 (10k images)
 - No ground-truth labels are provided
 - Each group needs to manually annotate 3 labels per image
 - Labels may not be true
 - Labels can be shared among groups
- Evaluation: Annotation (50%) + Test accuracy (50%)
- Other Suggestions:
 - Think about how to use multiple labels efficiently
 - Use GPU

Project 6: Training Models to Generate Images

Topic: Generate some interesting images using machine learning
 Generative Adversarial Network (GAN)

Project 6: Training Models to Generate Images

- Topic: Generate some interesting images using machine learning
- Dataset: MNIST (basic) or any other interesting dataset (advanced).
- Evaluation:
 - No unique criterion, just have fun with it!
 - Scores come from classmates

Dogs generated by machine learning:

More About Projects

- Project is really important
- Scores are based on the ranking of your group (it's a game!)
- DO NOT choose the same project it will hurt your grades
- Extra bonus (2 points!) for the best group in each advanced project

# Groups in a project	10	8	6	4	2	1
Score of the last ranking	3.87	4.78	5.90	7.29	9	10+ <mark>2</mark>

More About Projects

- DO NOT simply re-run codes from Github (especially PJ6)
- Use report to show your understanding toward the project
 - Recall: final report and code -- 20%
 - A: Rank-1 at competition -- 12%
 - B: Cannot explain since you simply run Github codes -- 10% (even lower)
 - A+B = 22% < 23.87% = Rank-10 (3.87%) + Perfect explanation (20%)
- Change project before progress report (only one opportunity)
- Talk with project advisors about your crazy ideas
- All data and requirements will be uploaded on Kaggle

About Forming Teams

- Online team formation: Find your teammates using Google sheet
 - https://docs.google.com/spreadsheets/d/130Ehe4mHSwk2j01xbEVWBWpgTXs0mNkg7XVewQ-2Ejc/edit#gid=0
- Find teammates:
 - Show your information in the Team Formation sheet
 - Name, major, level, email address, intended project, strengths, others
- Choose project in sheets: PJ1, PJ2, ..., PJ6
- 3~4 members per term
- Due: 4/12/2020
- Plan earlier!

- Some Python libraries you might use:
 - Numpy
 - Pandas
 - Matplotlib (or seaborn)
 - Sci-kit learn
 - (For deep learning) Tensorflow, Keras, Pytorch...

- A sample workflow of a machine learning project
 - Gathering the data & data pre-processing
 - Exploratory data analysis (help with selecting suitable models)
 - Training and validation
 - Testing
 - Evaluation and conclusion

- Kaggle (<u>https://www.kaggle.com/</u>)
 - An online community of data scientists and machine learning practitioners
 - Many projects for getting started, and many Python notebooks on how to deal with real problems step by step

- Scikit-learn (<u>https://scikit-learn.org/stable/</u>)
 - A free software machine learning library for Python
 - Provide simple and efficient tools for predictive data analysis
 - Many tutorials about Classification, Regression, Clustering,
 Dimension reduction, Model selection, preprocessing

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition.

Algorithms: SVM, nearest neighbors, random forest, and more...

Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency **Algorithms:** k-Means, feature selection, nonnegative matrix factorization, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms:** SVR, nearest neighbors, random forest, and more...

Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Group-

ing experiment outcomes

Algorithms: k-Means, spectral clusteri

Algorithms: k-Means, spectral clustering, mean-shift, and more...

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms. **Algorithms:** preprocessing, feature extraction, and more...

Examples

Computing Resources for Projects

CPU or GPU?

- CPUs are best at handling single, more complex calculations sequentially
- GPUs are better at handling multiple but simpler calculations in parallel
- GPU computer instances will typically cost 2-3X that of CPU computer instances, use CPUs unless you are seeing 2-3X performance gains in your training models

Computing Resources for Projects

- Google Colab (GPU or CPU)
 - A Jupyter-notebook based system integrated with Google Drive. When you connect to a GPU-based VM runtime, you are given 12 hours at a time on the VM
 - Tutorial:

https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e 113627b9f5d

 You do not have to know Pytorch, Keras or Tensorflow if you do not use deep learning techniques

Computing Resources for Projects

- Kaggle Kernels (GPU or CPU)
 - A tutorial guide for Kaggle Kernels
 https://towardsdatascience.com/kaggle-kernels-for-beginners-a-step-by-step-guide-3db6b1cd7606
 - Our datasets for each project will be also launched on Kaggle