МЕТОД ФОРМИРОВАНИЯ ИНЖЕНЕРНЫХ РАСЧЕТОВ НА ПОРТАЛАХ ЗНАНИЙ

д.т.н., проф. Глоба Л. С., Новогрудская Р. Л.

Введение в проблему

Характерные особенности инженерных расчетных задач:

- декомпозиция общей задачи на подзадачи,
- иерархическая вложенность подзадач,
- использование одинаковых подзадач в разных общих задачах,
- зависимость этапов расчетной задачи от тематик, параметров или характеристик расчета,
- различная направленность расчетных задач.

Введение в проблему

Необходимо:

- •Определить <u>логику связности</u> подрасчетов в общие расчеты.
- •Задать <u>способ соотнесения одинаковых</u> <u>подрасчетов</u>к разным общим расчетам.
- •Задать формальные описания элементов расчетов, на основании которых будет осуществляться процесс соединения расчетов.
- •Выделить специфические объекты предметной области, которые станут базовыми элементами связности расчетов.

Введение в проблему

На портале **2 вида объектов**:

- Информационные элементы E^{i} статические объекты не несущее функциональной нагрузки, которые сами по себе не являются процессом и не содержат последовательности взаимосвязанных работ.
- <u>Вычислительные элементы Ф</u>³_— динамически изменяемые, являющиеся процессом сами по себе.

Основные определения

IMHФЖесство <u>сложиных Ф</u>[®]::

$$\Phi^{\mathfrak{I}\mathfrak{I}\mathfrak{I}} \ni \varphi_k^{\mathfrak{I}\mathfrak{I}\mathfrak{I}}, \varphi_k^{\mathfrak{I}\mathfrak{I}\mathfrak{I}} = \langle T_k^{\mathfrak{I}\mathfrak{I}}, p_{ki}^{\mathfrak{I}\mathfrak{I}} \rangle,$$

TOTALE P

TOB;

 Φ_{k}° й фйнахнун. Раз мизожнеежее төөлөкчүү үйх их ин кыл. Эл.;

 $T_{\text{называние}}^{\circ}$ в труфицинул элз из из из вжеже в тель из из из из в тель в т

म्युं- मं मंस्रेव्यक्षिक्षिक्ष मिर्दे क्रिक्सिय्म अने अने अस्टिस्डिय है विस्त्रिप्त क्रिक्सियम अने अस्टिस्डिय है विस्त्रिप्त क्रिक्सियम अने अस्टिस्डिय है विस्त्रिप्त क्रिक्सियम अने अस्टिस्डिय है विस्त्रिप्त क्रिक्सिय क्रिक्स

МНОЭМОЕСТВЕО <u>ЧЕСОППИЧННЫ М</u>

$$\Phi^{\mathfrak{I}^{\mathsf{Y}}}\ni \varphi_{l}^{\mathfrak{I}^{\mathsf{Y}}}, \varphi_{l}^{\mathfrak{I}^{\mathsf{Y}}}=\langle T_{l}^{\mathsf{Y}}, p_{lq}^{\mathsf{Y}}\rangle,$$

- -ФРАТНОМООТИВОСТИНОТНИХНОРУКНОВУНИКЦАЮНВЫКНОЛОВИТОВ;ТОВ;
- -фРй-фунфунжд. ив.мизожносжватнае пининфунфунфунфид.;эл.;
- $-T_{l}$ на зваение ине d-фоуфкуцикал элз менкоже все вастинжь фуфкуцикалал.;
- $-p_{Q_f}^2$ -й файрамиениентро функцивил. элэ мя ожее ват ва сначания круфхункал. эл.

Метод формирования сложного «київський політехнічний інститут» инженерного расчета

Необходимо:

- обеспечить формирование общего Ф³ из частичных на базе сравнения значений параметров Ф³,
- дать возможность устанавливать порядок проведения вычислений общих Ф³ «на лету».

Множество сложных и частичных Ф^э

Метод формирования сложного «київський політехнічний інститут» инженерного расчета

Процесс формирования сложного Ф^э представим с помощью дерева, что упростит процедуру модификации Ф^э.

Полученное дерево – упорядоченное (дерево с корневым узлом и заданным порядком прохождения дочерних узлов)

 $\downarrow \downarrow \downarrow$

определить последовательность выполнения частичных расчетов динамически.

Дерево формирования сложного расчета

Метод формирования сложного «київський політехнічний інститут» Инженерного расчета

Метод формирования сложного инженерного расчета

Метод формирования сложного «київський політехнічний інститут» Инженерного расчета

Этапы метода::

<u>Эпал 1</u>. На первом этапе происходит отбрасывание из множества Φ ехехастичных хффукцирнальных элементов, в колорых ни один p равражетост ня каксамуму p_{ki}° .

Этап 2. На этам этапвеприлихоходим срававнавивначаний уйд функциональных элементов отоечения подмиожества функциональных элементов, которые имеют общие параметры, но множества их значений не пересекаются.

<u>Этал З.</u> На этале 3 проводитея упрощение формуль частинного Ф³.

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇН "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

расчета

Структура описания общего расчета - «Расчет на прочность силовых элементов магнитных систем ИТЕР»

```
_{,}\phi_{1}^{30} \pm,\phi_{1i}^{7}\lambda\phi_{1i}^{30}\lambda, j = 1,n, где
    T_1^{\leftarrow} \stackrel{\mathsf{CP}}{=} \mathbb{R}^{\mathsf{NP}} = \mathbb{R}^{\mathsf{NP}} =
  WARHUTHBIX CUCTEM WITEPS,
    poat-atarpaksykenheebabashehue,
   р° - Убредуенца в Навру жа рузка,
     <del>ро _ базов вазы</del>вая жарузка,
p_{13} - p_{13} - p_{13} — радиус обмотки, p_{14}^{0} - p_{14} — радиус обмотки, p_{15}^{0} - p_{14} — радиус обмотки, p_{15}^{0} - p_{15} — с — длина связи корпуса с обмоткой, p_{15}^{0} - p_{15}^{0} — критическая длина, притическая длина...
   р<sub>16</sub> – Критическая длина
максимальный нагруженный диаметр,
  p_{17}^{\circ} допус максимальный нагруженный диаметр,
    p_{18}^{\circ}-кылтичеккымыный лениез,
    p_{19}^{o}-максиймай в ное долуети и давление,
    p_1^{\rm o} у — дриниа акбимаки, ное допустимое давление,
    p_1^{\circ}ф, —пречинальная обимольки,
    p_{112}^{o} — КФНСТГРЬЧТА ОХОРОВЬЮ МОТАКТИ, ЧНОСТИ,
    p_{113}^{\circ} =  усреднения обывая мембранцая, нагрузка.
    p_{114}^{
m o} – М – усредненная общая мембранная
     нагрузка.
```

Расчет на прочность силовых элементов магнитных систем ИТЕР

$$a_1 = 10$$

$$E_1 = 52$$

$$E_2 = 48$$

$$S_1 = 5$$

$$c = 10$$

$$E^{T}=15$$

$$D_m = <10, ..., 12>$$

$$\eta = 20$$

$$\phi = 5$$

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇН "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

расчета

<u>11-й элап:</u> анализируем множество частичных Фэ, выбираем из них те, параметры которых совпадают с параметрами фотораризулу:

$$P_1^3 = \bigcup_{i}^{m} P_i^{\mathbf{q}}$$

Спруктура расчета основных параметров:

 $, dj_{1}^{\Pi \Pi} = \pm, r(T_{1}^{\Pi \Pi}, p_{1j}^{\Pi \Pi}), j = 1,n$

 $p_1^{\Pi}d-d$, $p_1^{\Pi} e - e$ $p_1^{\Pi}M-M$.

Расчет основных параметров

D=44

E=6

M = 12

Структура поверочного расчета:

小型 $\sharp_{\mathbf{r}}(T_2^{\Pi \mathbf{q}}, p_{2i}^{\Pi \mathbf{q}}), j = 1, n,$

т. Понтарьный расратует»,

 $p_2^{\Pi} p_{1r} a_1$ $p_{22}^{\Pi 4} - E_2$ $p_{23}^{\Pi^{\rm H}} - E_1$

 $p_{24}^{\Pi^{4}} - S_{1}$ $E_1 = 52$

 $p_2^{\Pi C}$, -C, $p_{26}^{\Pi \Psi} - E^T$

 $p_{27}^{\Pi^{\mathrm{H}}}-D_m$,

 $p_{28}^{\Pi \Psi} - \xi$,

 $p_{29}^{\Pi 4} - \eta$

 $p_{210}^{\Pi 4} - \phi$

 $p_2^{\Pi H} - V$.

Поверочный расчет

 $a_1 = 10$

 $E_2 = 48$

 $S_1 = 5$

c = 10

 $E^{T}=15$

 $D_m = <10, ..., 12>$

ξ=18

 $\eta = 20$

 $\phi = 5$

V=28

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇН "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

Пример формирования общего расчета

Структура расчета на стойкость:

$$, \Phi_1^{\mathrm{q}} = \langle T_1^{\mathrm{q}}, p_1^{\mathrm{q}} \rangle,$$

Ti «Pale action in the properties and the properties of the proper

$$p_{1}^{\mathsf{H}} \mathbf{A}_{17}$$
 a_{1} , $p_{12}^{\mathsf{H}} - E_{2}$, $p_{13}^{\mathsf{H}} - E_{1}$, $p_{14}^{\mathsf{H}} - S_{1}$, $p_{16}^{\mathsf{H}} - E^{T}$, $p_{17}^{\mathsf{H}} - D_{m}$, $p_{18}^{\mathsf{H}} - \xi$. $p_{18}^{\mathsf{H}} - \xi$.

Структура расчёта на криптическую постоянную:

$$, \Phi_2^{\mathrm{q}} = \langle T_2^{\mathrm{q}}, p_2^{\mathrm{q}} \rangle,$$

Т, «Равистинго вероку по стоотно уче »,

2
p_{2}^{4} a ₁ , a ₁ ,
$p_{22}^{4}-E_{2}$,
$p_{23}^{\text{\tiny q}} - E_1$,
$p_{24}^{4} - S_{1}$,
p_2^{q} , c,
$p_{26}^{\text{H}} - E^{T}$,
$p_{27}^{\mathbf{q'}}-D_m,$
$p_{28}^{4} - \xi$.

Расчет на критическую		
постоянную		
a ₁ =10 E ₁ =52		
E ₂ =48		
S ₁ =5		
c=10		
E ^T =15		
$D_{\rm m} = <15,, 52>$		
ξ=18		

Структура расчета на статическую прочность:

$$, \varphi_3^{\scriptscriptstyle \mathrm{q}} = \langle T_3^{\scriptscriptstyle \mathrm{q}}, p_3^{\scriptscriptstyle \mathrm{q}} \rangle,$$

 T_3^{H} «Pale representation of a content of the party of the properties of the party of t

$$p_3^3 P_i - P_i$$

$$\underline{p}_{32}^3 - \eta$$

$$\begin{array}{l}
 p_{33}^3 - \eta, \\
 p_{33}^3 - \phi, \\
 p_{34}^3 - v.
 \end{array}$$

$$\underline{p}_{3}^{3}$$
, - V.

національний технічний університет україни "київський політехнічний інститут" расчета

Дерево общего Фэ:

ф Рассетнапрочность видения видение видения видений в Рассет в прочность в про

 $\Phi_1^{\Pi^{\mathrm{H}}}$ Рабаленео соловонных мараримелеровов.

 $\Phi_2^{\Pi^{\mathbf{q}}}$ П $\overline{\mathbf{0}}$ верерочный разменет.

фт Равсетнастойй вось.

 Φ_Z^{q} Разветнах врилическую поотояную.

ф Рассетна астатическуюю прочность.

національний технічний університет україни "київський політехнічний інститут" расчета

22-й этап: сравниваем значения тех параметров частичных Φ_{39} , которые совпадают:

$$Mn(p_{ik}^3) < \mathcal{O}Mn(p_{ip}^4) \mathcal{O} > Mn(p_{ip}^4),$$

прри усслювии, что $p_{ik}^3 = p_{it}^4 = p_{lp}^4$.

Префаментр В разона фарта разона фарта разона р

- ДДЛЯ РОЗСЧЕТОВ НАВ ПРОЧНОСТЬ СИЛОВЫХ ЭЛЕМЕНТОВ МОЛНИТНЫХ СИСТЕМ ИПТЕР $D_m = <10, ..., 12>$,
- ullet ддля поверочного расчета $D_m = <10, ..., 12>,$
- ддля расчета на стойкость $D_m = <0,...,15>$,
- ддля режинета на критическую постоянную $D_m = <15, ..., 52>$.

національний технічний університет україни "київський політехнічний інститут" расчета

Сравнение:

$$Mn(p_{17}^{0}) \iff M(n(p_{27}^{q})) \iff M(p_{17}^{q}) \iff Mn(p_{27}^{q}).$$

$$Mn(p_{17}^{0}) = Mn(p_{27}^{\Pi 4}), Mn(p_{27}^{\Pi 4}), An(p_{17}^{\Pi 4}), Mn(p_{17}^{\Pi 4}), Mn(p_{27}^{\Pi 4}) \neq Mn(p_{27}^{\Pi 4}).$$

Исключение из подмножества частичных функциональных элементов (которая сформирована на 1ом этапе) функционального элемента «Расчет на критическую постоянную».

Дерево общего Фэ:

національний технічний університет україни фективность использования

***ки**ївський політехнічний інститут* МЕТОДа

№	Название общего расчета	Общее количество
		частичных расчетов
1	Расчета на прочность силовых элементов магнитных систем ИТЕР	56
2	Расчет на прочность оборудования и трубопроводов атомных	28
	энергетических установок	
3	ITER Structural Design Criteria for magnetic components	33
4	Magnet DDD 1.1-1.3. Magnet System Design Criteria	48
5	Расчет на прочность элементов оборудования и трубопроводов	18
	корабельных атомных паропроизводящих установок с водяными	
	реакторами	

Общее время на проектирование расчетов тестовой группы при *статическом способе соединения* – 1004 ч.

Общее время на проектирование расчетов тестовой группы при с использованием *метода формирования сложного инженерного расчета* – 897 ч.

національний технічний університет україни фективность использования

київський політехнічний інститут МЕТОДа

Время на проектирование расчетов тестовой группы

Использование метода формирования сложного инженерного расчета позволило сократить время на проектирование расчетной задачи на **11%.**

Разработан метод формирования сложного инженерного расчета в процессе его выполнения, который позволяет сочетать частичные расчетные задачи портала инженерных знаний в общую расчетную задачу, которая решается по запросу конечного пользователя.

Предложен способ представления процесса формирования общего функционального элемента в виде дерева, который дает возможность устанавливать структуру общих функциональных элементов и повышает эффективность процесса их выполнения за счет параллельной обработки независимых друг от друга ветвей дерева общего функционального элемента.

Спасибо за внимание!