TRIGONOMETRY Chapter 22

Signos de las razones trigonométricas

SI TE RINDES CUANDO LAS COSAS SE EMPIEZAN A PONER DIFÍCILES, NUNCA LOGRARÁS ALGO QUE VALGA LA PENA

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Los signos de las razones trigonométricas dependen de los signo de la abscisa (x) y la ordenada (y), ya que el radio vector siempre es positivo(r).

\triangleright Si $\alpha \in IC$

$$\rightarrow$$
 0°< α < 90°

$$sen \alpha = \frac{y}{r} = \frac{(+)}{(+)} = (+)$$
 $cos \alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$

\triangleright Si $\alpha \in IIC$

$$\rightarrow$$
 90°< α < 180°

$$\cos\alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$$

\triangleright Si $\alpha \in IIIC$

$$\rightarrow$$
 180°< α < 270°

$$\tan \alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$

$$\triangleright$$
 Si $\alpha \in IVC$

$$\rightarrow$$
 270°< α < 360°

$$\csc\alpha = \frac{\mathbf{r}}{\mathbf{y}} = \frac{(+)}{(-)} = (-)$$

RESUMEN ESTRATÉGICO DE LOS SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Ejemplos:

$$sen84^{\circ} = (+)$$

$$IC$$

$$\cos 150^{\circ} = (-)$$

$$sec300^{\circ} = (+)$$

IVC

j Excelente!

Del gráfico, determine el signo de tanß

Recuerda:

Resolución:

Como $\beta \in IIIC$

Del gráfico, determine el signo de cscα y cos∅

Recuerda:

Resolución:

Como $\alpha \in IIIC$

 $csc\alpha$ es negativa

Como ∅ ∈ IIC

cosø es negativa

Del gráfico, determine el signo de: $F = \cos\theta \cdot \tan\beta \cdot \csc\alpha$

$$F = (-) (+) (-)$$

$$F = (-)(-)$$

$$\mathbf{F} = (+)$$

Recuerda:

Del gráfico, determine el signo de: $M = \frac{sec\theta}{csc\alpha}$ y $N = \frac{cot\alpha}{cos\theta}$

Resolución:

$$M = \frac{\sec \theta}{\csc \alpha} = \frac{(+)}{(+)} = (+)$$

∈ IIC

∈ IIC

$$N = \frac{\cot \alpha}{\cos \theta} = \frac{(-)}{(+)} = (-)$$

$$\in IVC$$

Recuerda:

Si $\theta \in IIc$, indique el signo de:

$$M = \sec\theta.\tan\theta$$

$$N = \cot\theta.\cos\theta.\sin\theta$$

$$P = \frac{\csc\theta}{\tan\theta}$$

Recuerda:

Resolución:

$$M = \sec\theta. \tan\theta = (-)(-) = (+)$$

$$(-) \qquad (-)$$

$$N = \cot\theta \cdot \cos\theta \cdot \sin\theta = (-)(-)(+) = (+)$$

$$(-)(-)(+)$$

$$(+)$$

$$M = \frac{\csc \theta}{\tan \theta} = \frac{(+)}{(-)} = (-)$$

$$(-)$$

iMuy bien!

Al copiar de la pizarra la expresión sen40°.tan120°; Jaime cometió un error y escribió sec240°.cot20°. Determine del signo de la razón entre lo que estaba escrito en la pizarra y lo que copió Jaime.

Recuerda:

Resolución:

$$M = \frac{\text{sen40}^{\circ}.\text{tan120}^{\circ}}{\text{sec240}^{\circ}.\text{cot20}^{\circ}.}$$

IIIC IC

$$M = \frac{(+) (-)}{(-) (+)}$$

$$M = \frac{(-)}{(-)}$$

iMuy bien!

$$M = (+)$$

Determine el signo de P, Q y R.

$$P = \cos 75^{\circ}.\sec 325^{\circ}$$

$$Q = \frac{csc140^{\circ}.tan210^{\circ}}{cos325^{\circ}}$$

R = sen295°.sec105°.cos310° Recuerda:

Resolución:

$$P = \cos 75^{\circ} \sec 325^{\circ} = (+)(+) = (+)$$

(IC) (IVC)

IIC IIIC

iMuy bien!

IVC

Determine el signo de $sec(\frac{\theta}{2})$ si se tiene el siguiente gráfico:

Resolución:

$$\theta \in IIIC$$

$$180^{\circ} < \theta < 270^{\circ}$$
 Entre

$$90^{\circ} < \frac{\theta}{2} < 135^{\circ}$$

$$\rightarrow \frac{\theta}{2} \in IIC$$

$$\therefore \sec\left(\frac{\theta}{2}\right) = (-)$$

Recuerda:

MUCHAS GRACIAS POR TUATENCIÓN

Tu curso amigo TRIGONOMETRÍA