Derivadas

Superficies parametrizadas

Sea $\bar{\sigma}: D_{uv} \subset \mathbb{R}^2 \to \mathbb{R}^3/\bar{\sigma}(u,v) = (x(u,v),y(u,v),z(u,v))$ con D_{uv} conexo y $\bar{\sigma}$ continua entonces:

$$Im(\bar{\sigma}) = S$$

Ej:

Sea
$$\bar{\sigma}: D_{uv} \subset \mathbb{R}^2 \to \mathbb{R}^3/\bar{\sigma}(u,v) = (u\cos v, u\sin v, u)$$
 y

$$D_{uv} = \{(u, v) \in \mathbb{R}^2 : 0 \le u \le 2, 0 \le v \le 2\pi\}$$

Escribimos la parametrización con ecuaciones cartesianas

$$\begin{cases} x = u \cos v & (1) \\ y = u \sin v & (2) \\ z = u & (3) \end{cases}$$

De(1)
$$x^{2} = u^{2} \cos^{2} v$$
De(2)
$$y^{2} = u^{2} \sin^{2} v$$

$$x^{2} + y^{2} = u^{2} \quad \text{como} \quad u \ge 0$$

$$u = \sqrt{x^{2} + y^{2}}$$

$$z = \sqrt{x^{2} + y^{2}}, z \le 2$$

Derivadas - Jupyter Notebook

Derivabilidad

Derivada de una función vectorial

Sea $\bar{f}:D\subset\mathbb{R}\to\mathbb{R}^n$, $t_0\in D$ Si existe con norma finita $\bar{f}(t_0+h)-\bar{f}(t_0)$

$$\lim_{h \to 0} \frac{\bar{f}(t_0 + h) - \bar{f}(t_0)}{h}$$

diremos que \bar{f} es derivable en t_0

$$\bar{f}'(t_0) = \lim_{h \to 0} \frac{\bar{f}(t_0 + h) - \bar{f}(t_0)}{h}$$

O bien,

$$\bar{f}'(t_0) = \lim_{t \to t_0} \frac{\bar{f}(t) - \bar{f}(t_0)}{t - t_0}$$

Una función vectorial es derivble en un punto t_0 si y solo si las componentes son derivalbes en ese punto.

Eg1:
$$f:\mathbb{R} \to \mathbb{R}^2/f(t) = (\text{sent}, t^2 + i)$$
 $f'(t) = (\text{cost}, 2t)$
 $f(\pi) = (-1, 2\pi)$

Eg2: $f:\mathbb{R} \to \mathbb{R}^2/f(t) = (t, |t|)$ | Hallen $f'(o)$, so exists

 $f_1(t) = t$ is derivative $f_2(t) = |t|$ no as derivative in $t = 0$

$$f_2(t) = |t|$$
 no as derivative in $t = 0$

$$f_3(t) = |t|$$
 no as derivative in $t = 0$

INTERPRETACIÓN GEOMÉTRICA DE
$$f'(to)$$
 $f:DCR_R^m$

D'UNILLA

 $C=Im(f)$
 $C=\{x\in R^m \mid x=f(t) \mid x \in D\}$

FUNTE NUA

 $f'(to)=\lim_{t\to t} \frac{f'(to+h)-f(to)}{f(to+h)-f(to)}$

Cuando $h=0$ il rector

 $f(to+h)=f(to)$ se afro una

 $f'(to)=\lim_{x\to \infty} \frac{f'(to+h)-f(to)}{f(to+h)-f(to)}$

SI $f'(to)=\lim_{x\to \infty} \frac{f'(to+h)-f(to)}{f(to+h)-f(to)}$

SE LO DENOMINA VECTOR

Si $\bar{f}(t)$ representa la posición de una particula en cada instante t:

Vector velocidad: $\bar{v}(t) = \bar{f}'(t)$

Rapidez : $s(t) = ||\bar{f}'(t)||$

Vector aceleración: $\bar{a}(t) = \bar{v}'(t) = \bar{f}''(t)$

Ej:

Sea $\bar{f}:D\subset [0,4]\to \mathbb{R}^2/\bar{f}(t)=\left(\sqrt{t},2-t\right)$

 $C = Im(\bar{f})$

Primero encontremos los limites de x y despues escribamos y en función de x

$$0 \le t \le 4$$

$$0 \le \sqrt{t} \le \sqrt{4}$$

$$0 \le \sqrt{t} \le 2$$

$$0 \le x \le 2$$

$$\begin{cases} x = \sqrt{t} \to x^2 = t \\ y = 2 - t \to y = 2 - x^2, 0 \le x \le 2 \end{cases}$$

3 de 13

Graficamos y hallamos el vector tangente.

Punto regular de una curva

Un puto $P_0=\bar{f}(t_0)$ es un punto regular de $C=Im(\bar{f})$ si y solo si $\exists \bar{f}'(t_0) \land \bar{f}'(t_0) \neq 0$

En el ejemplo, $P_0=(1,1)=ar{f}(1)$ es un punto regular

Punto simple

Un punto $P_0=\bar{f}(t_0)$ es un punto simple de la curva C cuando es imágen de un solo punto del dominio.

Recta tangente y plano normal

Recta tangente

$$\bar{x} = P_0 + \lambda \cdot \bar{f}'(t_0), \quad \lambda \in \mathbb{R}$$

Plano normal

$$\bar{f}'(t_0)\cdot(\bar{x}-P_0)=0$$

Derivadas de campos esclares

Sea
$$f:D\subset\mathbb{R}^2\to\mathbb{R}/z=f(x,y)$$
 y $P_0=(x_0,y_0)\in D$

Derivada parcial de f en el punto P_0 se denota por: $f_x(P_0)$,

$$f_x'(P_0)$$
,

$$\frac{\partial f}{\partial x}(P_0),$$

$$D_1 f(P_0)$$

Si el limite existe entonces:

$$f_x(P_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

Analogamente:

$$f_{y}(P_{0}) = \lim_{h \to 0} \frac{f(x_{0}, y_{0} + h) - f(x_{0}, y_{0})}{h}$$

Interpretación geometrica de las derivadas parciales

Derivada direccional de un campo escalar

Sea
$$f:D\subset\mathbb{R}^n\to\mathbb{R}/z=f(x,y)$$
 , $P_0\in D$ y $\bar{v}\in\mathbb{R}^n$

Si el limite existe la derivada en dirección de \bar{v} se define:

$$f'(P_0, \bar{v}) = \lim_{h \to 0} \frac{f(P_0 + h\bar{v}) - f(P_0)}{h}$$

Caso particular $\bar{v}=\bar{0}$, la derivada en dirección del vector nulo siempre existe y vale 0.

 $\bar{x} = P_0 + h \cdot \bar{v}, h \in \mathbb{R}$ son puntos de una recta.

Cuando $||\bar{v}|| = 1$ la derivada recibe el nombre de **derivada direccional**

En este caso las derivadas parciales son un caso particular cuando se deriva en la dirección de los versores canónicos.

Propiedad de homogeneidad

$$f'(P_0, k\bar{v}) = kf'(P_0, \bar{v})$$

Utilidad

$$f'(P_0, \check{v}) = \frac{1}{||\bar{v}||} \cdot f'(P_0, \bar{v})$$

Derivada direccional de un campo vectorial

Sea
$$\bar{f}: D \subset \mathbb{R}^n \to \mathbb{R}^m$$
, $P_0 \in D$, $\check{v} \in \mathbb{R}^m$ /|| \check{v} || = 1

$$\bar{f}'(P_0, \bar{v}) = \lim_{h \to 0} \frac{\bar{f}(P_0 + h\bar{v}) - \bar{f}(P_0)}{h}$$

Este limite existe si y solo si existen los limites de todas las componentes.

Derivadas parciales sucesivas

Teorema de Schwarz

Sea $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$ y el punto $P_0=(x_0,y_0)$ interior a D_f ,si existen f_x,f_y y f_{xy} en un entorno de P_0 y f_{xy} es continua en P_0 , entonces existe y $f_{yx}(P_0)$ resultando $f_{yx}(P_0)=f_{xy}(P_0)$

Diferenciabilidad

Sea
$$f: D \subset \mathbb{R}^2 \to \mathbb{R}$$
 / $z = f(x, y)$ y $P_0 = (x_0, y_0) \in D$

f es diferenciable en P_0 si $f_x(P_0)$ y $f_y(P_0)$ existen y:

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-[f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)]}{||(x,y)-(x_0,y_0)||}=0$$

Plano tangente

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Gradiente

Sea
$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$
, $P_0 = (x_0, y_0)$

El vector cuyas componentes son las n derivadas parciales de f en P_0 se llama gradiente de la función en P_0 y se denota:

$$\bar{\nabla} f(P_0) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n}\right) = grad(f)$$

Para que exista el vector gradiente en un punto deben existir las n derivadas parciales en ese punto.

Caso general

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ / z=f(x,y) y $P_0=(x_0,y_0)\in D$ tal que existen las n derivadas parciales en P_0 entonces f es diferenciable en P_0 si:

$$\lim_{\bar{x} \to P_0} \frac{f(\bar{x}) - f(P_0) - \nabla f(P_0) \cdot (\bar{x} - P_0)}{||\bar{x} - P_0||} = 0$$

Si f es diferenciable en P_0 entonces f es continua en P_0 .

Si f no es continua en P_0 entonces f no es diferenciable en P_0

Si f es diferenciable en P_0 entonces existe $f'(P_0, \bar{v}) \ \forall \bar{v}$ y:

$$f'(P_0, \bar{v}) = \bar{\nabla} f(P_0) \cdot \bar{v}$$

Las funciones polinomicas son diferenciables en \mathbb{R}^n

Propiedades de la matriz jacobiana

Si $\bar{f}:D\subset\mathbb{R}^n\to\mathbb{R}^n$ y $P_0\in D$ es tal que existen todas las derivadas parciales de \bar{f} en P_0 y son continuas en un $E(P_0)$ entonces $D\bar{f}(P_0)$ es continua y \bar{f} es diferenciable en P_0

Componentes de un vector normal al plano tangente

$$\bar{N} = (f_x(x_0, y_0), f_y(x_0, y_0), -1)$$

Ecuación del plano tangente

Ecuación vectorial de la recta normal

En el punto $(x_0, y_0, f(x, y))$

Derivada direccional maxima, minima y nula

Cuando
$$\nabla f(P_0, \vec{v}_{MAX}) = ||\nabla f(P_0)|| \vec{v}_{MAX} = \frac{\nabla f(P_0)}{||\vec{v}_f(P_0)||}$$
Derivada di recional ma'teme

Derivada dieccional mi'ni ma
$$f'(P_0, \vec{v}_{min}) = - || \nabla f(P_0) || \qquad \vec{v}_{min} = - \frac{\nabla f(P_0)}{|| \nabla f(P_0) ||}$$

Por stree parte se obtine duri rada direccional mula
$$\forall \vec{v} \perp \nabla f(R)$$
 $\nabla^{f(R)} = \nabla^{f(R)} = \nabla^{f$

Formula de aproximacion lineal de campos escalares

FORMULA DE |
$$f(P_0+H) \cong f(P_0) + \nabla f(P_0) H$$

APROXIMACIÓN

USANDO DIFERENCIA L

En superficies parametrizadas

Mo =
$$\nabla_{\mu}(u_0, v_0) \times \nabla_{\mu}(u_0, v_0)$$

Equation del plans toungente

o him en forma rectorial

 $X = P_0 + \mu \nabla_{\mu}(u_0, v_0) + t \nabla_{\mu}(u_0, v_0)$, $\mu, t \in \mathbb{R}$

Equation dela recta normal a 5 en \mathbb{R}
 $X = P_0 + \lambda m_0 \in \mathbb{R}$

Teorema de composición de funciones

Caso particular

See g: ICR >R" y f: DxcR" IR

Apliación de la regla de la cadena

Sea
$$f:DCR^2 \rightarrow \mathbb{R}$$
 differencieble $f:P_0 \in D$ /
 $\nabla f(P_0) \neq \delta$, considerants la corra de mi re que para por P_0 , $C(f) = \{(x, y) \in D: f(x, y) = f(P_0)\}$
 $k = f(P_0)$

Jesse $g: TcR \rightarrow \mathbb{R}^2/\overline{g}(t) = (x(t), y(t))$ una parametrización regular de C $g(t_0) = P_0$, $g'(t_0) \neq \delta$ $g = dif$

$$h(t) = (f \circ \overline{g})(t) = k$$

$$\forall t \in I: h'(t) = 0 \quad \text{afslicanus le regle de la}$$

$$\text{coodena} \quad \nabla f(\overline{g}(t)). \quad \overline{g}'(t) = 0 \quad \text{on } \nabla f(\overline{g}(t)) \perp \overline{g}'(t)$$

$$\neq \overline{g}(t)$$

$$\uparrow \overline{g}(t)$$

$$\downarrow \overline{$$

Si f: DCR3_)R, fEC'(D) Dahito, PED

C(f)=[XED: f(X)=k, keR], conjunto DE NIVEL:

QUE PASA POR PO: f(X)=f(PO), ES UNA SUPERFICIE

LLAMADA SUPERFICIE DE NIVEL 5, VF(PO) L S EN EL

PUNTO PO

Flano tare gente

If: D = R² = R/2=f(x, y).

Defeno une fune of P: D = R³ = R/P(x, z, z) = f(x, y) - z

PEC'(D_q) , C(q) = {(x, z, z) ∈ D_q, f(x, y) - z = o}

C(q) = Gr(f) = S , Po e Co(q) , VP(P_q) IS

\[
\frac{\text{VP}(x, z, z) = (f_x(x, y), f_y(x, y), -1)}{\text{VP}(x, z, z) = (f_x(x, y), f_y(x, y), -1)}
\]