9 Protokoly pro správu adres (ARP, RARP, BootP, DHCP, NAT, PAT)

- ARP (Address Resolution Protocol)
 - Linková vrstva
 - Složí k získání fyzické adrese rozhrání pomocí známé IP adresy
 - Užíván IPv4 IPv6 užívá NDP (Neighbor Discovery Protocol)
 - o Nepřekračuje hranice podsítě není předáván routerem
 - o ARP poskytuje v ethernetové síti 2 základní funkce
 - Nalezení vazby mezi MAC adresou a IP adresou
 - Zachování mapování v paměti cache na určitou dobu typicky 2 min
 - Možno vypsat příkazem "arp -a"
- RARP (Reverse Address Resolution Protocol)
 - Linková vrstva
 - Slouží k získání IP adresy pomocí vlastní MAC adresy
 - IP adresa je uložena v paměti síťové karty
 - Umožňuje centrální zprávu IP adres
 - o Princip
 - RARP dotaz odeslán na MAC broadcast fyzické sítě
 - Zde by se měl nacházet RARP server opatřený tabulkou obsahující IP adresy jednotlivých MAC adres
 - Pokud server nalezne MAC adresu tazatele odešle odpověď zpět tazateli s IP adresou, kterou s i má nastavit
 - o RARP má 2 zásadní nedostatky
 - RARP dotaz nemůže překročit hranice podsít -> nelze užít ve sítích složených z více podsítí s jedním společným RARP serverem
 - RARP odpověď poskytuje pouze IP adresu. Stanice však potřebuje k fungování masku podsítě, implicitní bránu a adresu DNS serveru
 - Kvůli jeho nedostatkům se RARP nepoužívá a je nahrazen protokoly DHCP a BOOTP
- BOOTP (Bootstrap Protocol)
 - Aplikační vrstva
 - Princip podobný RARP
 - Na rozdíl od RARP posíla nejen IP adresu, ale i masku sítě, bránu a adresu DNS serveru
- DHCP (Dynamic Host Configuration Protocol)
 - Aplikační vrstva
 - Slouží k přidělení IP adresy a síťové konfigurace
 - Adresy pouze propůjčuje, po určité době je adresa volná pro další zařízení
 - Parametry poskytované DHCP:
 - IP adresa
 - Maska podsítě
 - Implicitní brána
 - Doména
 - Adresa DNS serveru
 - Vlastnosti DHCP:
 - Přesnější správa adres
 - Automatická konfigurace
 - Podpora přesunů a změn zařízení

- Umožnění klientům žádat o specifické parametry konfigurace
- Způsoby přidělování adres:
 - Manuální
 - IP Adresa je přidělena staticky
 - DHCP využíván pouze pro směrování
 - Automatické
 - Adresa přidělená na stálo
 - Dynamické
 - IP Adresa přidělena na určitou dobu (lease time)
 - Po uplynutí dané doby dochází k pokusu o obnovení adresy
 - V případě neobnovení nebo zamítnutí pokusu musí zařízení přestat přidělenou IP adresu používat
- NAT overloading
 - Umožňuje komunikaci mezi zařízeními v lokální sítí a veřejnou sítí pomocí nahrazení privátní privátní adresy a portu za adresu veřejnou s příslušným portem
 - NAT (Network address translation)
 - Síťová vrstva
 - Slouží k přeložení interní privátní adresy na externí veřejnou adresu
 - Kocepty
 - Endpoint
 - o Kombinace IP adresy a čísla portu
 - NAT mapping
 - Překládání privátní adresy na veřejnou adresu při komunikaci interního hosta na externího hosta
 - NAT filering
 - o Filtruje packety pocházející ze externího endpointu
 - Tím zabraňuje neoprávněné komunikaci
 - Fukce:
 - Překlad privátní adresy na veřejnou adresu
 - Skrytí interních adres
 - o PAT (Port Address Translation) / Overload
 - Transportní vrstva
 - Pat je druh remízy v šachách.
 - Umožňuje více zařízením sdílet stejnou veřejnou adresu pomocí přiřazování rozdílných čísel portu
 - o Princip:
 - Zařízení v lokální síti vyšle packet se zdrojovou adresou daného zařízení a přiřazeným portem a cílovou adresou a portem protokolu. Tento aby opustil lokální síť prochází routerem, nebo jiným zařízením které umožňuje NAT overloading. Zde packet změní zdrojovou adresu na jednotnou veřejnou adresu pro všechny zařízení v lokální sítě, ale port zůstává stejný. Podle tohoto portu dokáže router komunikace odesílat zpátky na dané zařízení