Equations différentielles ordinaires

Luca Nenna

12 septembre 2022

Table des matières

Table des matières		1
1	Les notions de base et le théorème de Cauchy-Peano-Arzela	2
	1.1 Équations du premier ordre	2

Chapitre 1

Les notions de base et le théorème de Cauchy-Peano-Arzela

Contents

1.1 Équations du premier ordre

Nous allons aborder dans ce premier chapitre les équations différentielles ordinaires (EDO) linéaires du premier ordre.

Définition 1 (équation différentielle ordinaire). Une équation différentielle ordinaire (EDO) est une équation qui a pour inconnue une fonction, elle s'écrit de la forme suivante :

$$y'(t) = f(t, y(t)), \in I,$$
 (1.1)

où I est une intervalle ouvert de \mathbb{R} et la fonction f continue sur $I \times U$, avec U intervalle ouvert de \mathbb{R} , à valeurs dans \mathbb{R} .

Définition 2 (Solution locale et globale). On dit que le couple (J, y), constitué d'un intervalle $J \subset I$ et d'une fonction $y: I \to \mathbb{R}$ de classe \mathcal{C}^1 , est une solution de (1.1) lorsque

- pour tout $t \in J$, on a $y(t) \in U$;
- pour tout $t \in J$, on a y'(t) = f(t, y(t)).

On dit que (J, y) est une solution globale de (1.1) lorsque J = I.

En pratique, on est souvent intéressé par une équation différentielle avec condition initiale, qu'on appelle alors **problème de Cauchy**, qui s'écrit :

$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = y_0, \end{cases}$$
 (1.2)

où $t_0 \in I$ et $y_0 \in \mathbb{R}$. Résoudre le problème de Cauchy en t_0 (1.2) c'est trouver toutes les solutions (J, y) de l'équation différentielle y'(t) = f(t, y(t)) telles que $t_0 \in J$ et $y(t_0) = y_0$. Se posent alors les questions naturelles suivantes :

- 1. Existence des solutions : locale, globale?
- 2. Unicité de la solution?
- 3. Stabilité de la solution?

1.1.1 Équations linéaires

On s'intéresse ici au cas **linéaire** : on choisit f(t,y(t)) = a(t)y(t) + b(t) où les fonctions a et b sont des fonctions continues sur un intervalle $I \subset \mathbb{R}$; à t donné, la fonction $y \mapsto f(t,y(t))$ est donc linéaire. L'équation devient alors :

$$y'(t) = a(t)y(t) + b(t), \quad t \in I.$$
 (1.3)

Dans un premier temps nous allons résoudre **l'equation homogène** associée à (1.3), c.à.d. l'équation (1.3) avec b(t) = 0 pour tout t. Soit l'équation homogène associée à (1.3)

$$y'(t) = a(t)y(t). (1.4)$$

On considère d'abord le cas où a(t) est une fonction constante sur l'intervalle I: on doit trouver toutes les fonctions $y \in \mathcal{C}^1(I)$ telles que

$$\forall t \in I, \ y'(t) - a(t)y(t) = 0.$$

Remarque 1 (Équation autonome). Si la fonction f ne dépend pas de t, on dit que l'équation (1.1) est autonome.

Il se trouve que lorsque $y \in \mathcal{C}^1(I)$.

$$(e^{-at}y(t))' = e^{-at}(-ay(t) + y'(t)).$$

Donc (1.4) équivaut à

$$\forall t \in I, \quad (e^{-at}y(t))' = 0.$$

D'où

$$(1.4) \iff \exists C \in \mathbb{R}, \ e^{-at}y(t) = C \iff \exists C \in \mathbb{R}, \ y(t) = Ce^{at}.$$

Autrement dit on a prouvé que l'ensemble S des solutions de l'équation y'(t) = ay, où $a \in \mathbb{R}$, sur l'intervalle ouvert I est

$$\mathcal{S} := \{ t \mapsto Ce^{at}, \ C \in \mathbb{R} \}.$$

Passons au cas général où a(t) n'est pas forcément constante sur I. On procède de la même manière, c.à.d. trouver une fonction A(t) telle que

$$\forall t \in I, \ y'(t) - a(t)y(t) = 0 \iff \forall t \in I, \ (e^{-A(t)}y(t))' = 0.$$

On voit qu'il suffit de prendre pour A n'importe quelle primitive de la fonction a (puisque a est continue sur I elle admet des primitives sur cet intervalle).

4

On a alors que l'ensemble S des solutions de l'équation y'(t) = a(t)y(t), où $a: I \to \mathbb{R}$ est une fonction continue, sur l'intervalle ouvert I est

$$\mathcal{S} := \{ t \mapsto Ce^{A(t)}, \ C \in \mathbb{R} \},\$$

où $A: I \to \mathbb{R}$ est une primitive de a sur I. On revient maintenant à l'équation (1.3)

$$y'(t) = a(t)y(t) + b(t),$$

où a et b sont deux fonctions continues sur l'intervalle $I = (\alpha, \beta)$. On a la proposition suivante

Proposition 1. L'ensemble des solutions de l'équation (1.3) sur I est

$$\mathcal{S} := \Big\{ t \mapsto e^{A(t)} \Big(C + \int_{\alpha}^{t} e^{-A(s)} b(s) ds \Big), \ C \in \mathbb{R} \Big\},$$

Démonstration. Soit A une primitive de a sur I et supposons que $y: I \to \mathbb{R}$ soit une solution de (1.3). On pose, pour tout $t \in I$, $w(t) = e^{-A(t)}y(t)$ on a

$$\begin{split} w'(t) &= -a(t)e^{-A(t)}y(t) + e^{-A(t)}y'(t) \\ &= -a(t)e^{-A(t)}y(t) + e^{-A(t)}(a(t)y(t) + b(t)) \\ &= e^{-A(t)}b(t). \end{split}$$

Donc il existe une constante $C \in \mathbb{R}$ telle que

$$w(t) = \int_{\alpha}^{t} e^{-A(s)}b(s)ds + C,$$

Et

$$y(t) = e^{A(t)}w(t) = e^{A(t)} \Big(\int_{C}^{t} e^{-A(s)}b(s)ds + C \Big).$$

Réciproquement, on vérifie que toutes les fonctions $y: t \mapsto e^{A(t)} \left(\int_{\alpha}^{t} e^{-A(s)} b(s) ds + C \right)$ sont des solutions de (1.3) sur I.

1.1.1.1 Résolution par la méthode de variation de la constante

On donne ici un autre preuve de la proposition 1 en utilisant un procédé bien connu pour les équations linéaires d'ordre 1 : la méthode de variation de la constante. On verra plus tard que cette méthode marche aussi pour les équations d'ordre 2 et les systèmes linéaires.

On considère l'équation

$$y'(t) = a(t)y(t) + b(t),$$

où $a, b: I \to \mathbb{R}$ sont continues.

Remarque 2. On peut noter que une équation linéaire d'ordre 1 peut s'écrire aussi sous la forme

$$p(t)y'(t) + q(t)y(t) = g(t),$$

où $p,q,g:I\to\mathbb{R}$ sont continues et on assume que $p(t)\neq 0$ sur un intervalle $J\subset I$ telle qu'on peut réécrire l'edo sous la forme (1.3). On cherchera alors une solution sur l'intervalle J.

On sait que les solutions de l'équation homogène associée

$$y'(t) = a(t)y(t)$$

Sont les fonctions de la forme $y_h(t) = Ce^{A(t)}$, où A(t) est une primitive de a(t) sur I. L'idée est la suivante : on cherche une solution **particulière** y_p de l'équation sous la forme

$$y_p(t) = c(t)e^{A(t)},$$

où c(t) est une fonction C^1 à déterminer. On dit que l'on fait varier la constante c qui apparait dans l'expression de la solution de l'équation homogène. Pour que y_p soit une solution, il faut et il suffit que

$$c'(t)e^{A(t)} + a(t)c(t)e^{A(t)} = y'_p(t) = a(t)y_p(t) + b(t) = a(t)c(t)e^{A(t)} + b(t),$$

c'est-à-dire

$$c'(t) = b(t)e^{-A(t)}$$

et il suffit donc de prendre pour c(t) une primitive de $b(t)e^{-A(t)}$

$$c(t) = \int_{t_0}^t b(s)e^{-A(s)}ds,$$

où $t_0 \in I$ est un point quelconque. La solution de l'équation est enfin donnée par

$$y(t) = y_h(t) + y_p(t)$$

et on retrouve bien l'ensemble des solutions introduite dans la proposition 1

1.1.2 Stabilité

On considère maintenant le problème de Cauchy où l'EDO est linéaire, homogène et $a \in \mathbb{R}$. On peut par exemple se poser la question de la stabilité par rapport à la condition initiale : on ajoute un petit terme ε , qu'on appelle **perturbation**, à celle-ci et on se demande quel est le comportement de la solution lorsque ε tend vers 0. La solution sera dite stable par rapport à la donnée initiale, si elle tends (en un sens à définir) vers la solution du problème sans perturbation. Soit $t_0 \in I = \mathbb{R}$, le problème de Cauchy s'écrit

$$\begin{cases} y'(t) = ay(t), \\ y(t_0) = y_0. \end{cases}$$
 (1.5)

6

Le problème de Cauchy avec donnée initiale perturbée s'écrit, pour $\varepsilon > 0$,

$$\begin{cases} y'(t) = ay(t), \\ y(t_0) = y_0 + \varepsilon. \end{cases}$$
 (1.6)

Les solution respectives de (1.5) et (1.6) sont

$$y(t) = y_0 e^{a(t-t_0)}$$
 et $y_{\varepsilon}(t) = (y_0 + \varepsilon) e^{a(t-t_0)}$.

On a donc

$$y_{\varepsilon}(t) - y(t) = \varepsilon e^{a(t-t_0)}$$
.

La solution est donc stable par rapport à la donnée initiale car

$$\forall t \in I, \lim_{\varepsilon \to 0} y_{\varepsilon}(t) - y(t) = 0.$$

Par contre, si a > 0 la solution n'est pas **uniformément stable** car

$$\forall \varepsilon > 0 \sup_{t \in I} |y_{\varepsilon}(t) - y(t)| = +\infty.$$

Si $a \le 0$, la solution est **uniformément stable**, c'est-à-dire que

$$\lim_{\varepsilon \to 0} \sup_{t \in I} |y_{\varepsilon}(t) - y(t)| = 0.$$

1.1.3 Équations non linéaires

On considère le cas où $f \in \mathcal{C}(I \times U, \mathbb{R})$ est non linéaire et on essaye de comprendre mieux la notion de solution.

Remarque 3 (Méthode des variables séparables). Dans certains cas on peut résoudre les équations différentielles en utilisant la méthode des variables séparables. Cette méthodes consiste à mettre l'équation (1.1) sous la forme

$$h(y)y'(t) = g(t),$$

où h et g sont deux fonctions continues. En prenant une primitive de h, notée H, cette équation est équivalente à

$$(H(y))'(t) = q(t).$$

En notant G une primitive de g, ceci donne l'existence de $C \in \mathbb{R}$ tel que H(y(t)) = G(t) + C pour tout $t \in I$.

Exemple 1 (Existence locale et globale). On considère l'edo avec $f(t,x) = -x^2$ et $I = \mathbb{R}$. On cherche d'abord des solutions constantes de l'edo, c.à.d. des solutions telles que f(t,y) = 0. Dans ce cas on trouve que la seule solution constante est $y(t) = 0 \ \forall t \in I$ d'où on a que la fonction

nulle est une **solution globale** de l'edo. Si on applique la méthode des variables séparables en supposant que $y(t) \neq 0 \ \forall t$ on obtient

$$\begin{cases} y_{+}: (C, +\infty) \to \mathbb{R} \\ t \mapsto \frac{1}{t - C} \end{cases} \text{ et } \begin{cases} y_{-}: (-\infty, C) \to \mathbb{R} \\ t \mapsto \frac{1}{t - C} \end{cases}.$$

On voit que y_+ est une solution sur $(C, +\infty)$ et y_- est une solution sur $(-\infty, C)$ alors que l'équation a un sens pour tout t dans \mathbb{R} ! On dit que y_+ et y_- sont solutions locales de l'edo.

Lemme 2 (Retour sur la définition de solution (forme intégrale)). Une fonction $y: J \to \mathbb{R}$ est une solution du problème de Cauchy de données initiales (t_0, y_0) si est seulement si

- 1. y est continue et $\forall t \in J, y(t) \in U$;
- 2. $\forall t \in J \text{ on } a \ y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds$.

On a alors ce premier résultat d'existence d'une solution locale du problème de Cauchy

Théorème 3 (Cauchy-Peano-Arzela). Soient $f: I \times U \to \mathbb{R}$ une fonction continue, où $I = [t_0 - a, t_0 + a]$ et $U = [y_0 - r, y_0 + r]$, M un majorant de la norme de f sur $I \times U$ et $c \leq \min(a, \frac{r}{M})$. Alors le problème de Cauchy (1.2) admet au moins une solution $y: [t_0 - c, t_0 + c] \to [y_0 - r, y_0 + r]$.

Pour montrer ce théorème on aura besoin du résultat suivant que l'on admettra sans preuve

Théorème 4 (Ascoli). On suppose E, F deux sous-espaces compacts de \mathbb{R}^d . Soit $\phi_n : E \to F$ une suite d'applications L-lipschitziennes, où $L \geq 0$ est une constante donnée. Alors on peut extraire une sous-suite ϕ_{n_k} uniformément convergente et la limite est une application L-lipschitzienne.

Le preuve de 3 sera constructive et on utilisera la méthode (numérique!!) d'Euler ci-dessous

Remarque 4 (Schéma d'Euler explicite). On cherche à construire une solution approchée de (1.2) sur un intervalle $[t_0, t_0 + c]$. On se donne pour cela une subdivision

$$t_0 < t_1 < \dots < t_N = t_0 + c.$$

La largeur de l'intervalle $[t_i, t_{i+1}]$ est appelé pas de temps h est dans ce cas tous les intervalle on la même largeur. Le schéma d'Euler explicite consiste à construire une solution approchée y_h affine par morceaux comme suit

$$y_h(t) = y_i + (t - t_i) f(t_i, y_i), t \in t_i, t_{i+1},$$

où, en partant de la donnée initiale y_0 , on calcule le y_i par récurrence en posant

$$y_{i+1} = y_i + h f(t_i, y_i).$$

Démonstration. On rappelle d'abord que le module de continuité ω de f sur $C = [t_0 - c, t_0 + c] \times U$ est défini par

$$\omega(u) = \max\{\|f(t_1, y_1) - f(t_2, y_2)\| \mid |t_1 - t_2| + |y_1 - y_2| \le u\},\$$

où $u \in [0, +\infty)$. Comme C est un compact, la fonction f est uniformément continue sur C, par conséquent

$$\lim_{u \to 0+} \omega(u) = 0.$$

On commence par montrer que une solution approchée $y_h: [t_0 - c, t_0 + c] \to U$ construite par le schéma d'Euler est telle que $|y_h'(t) - f(t, y_h(t))| \le \varepsilon$ et en particulier l'erreur d'approximation ε tend vers 0 quand $h \to 0$. Remarquons que $y_h'(t) = f(t_i, y_i)$ et

$$|y_h(t) - y_i| = h|f(t_i, y_i)| \le hM.$$

Par définition de ω il vient

$$|y_h'(t) - f(t, y_h(t))| = |f(t_i, y_i) - f(t, y_h(t))| \le \omega(h(M+1)) = \varepsilon.$$

On peut aussi remarquer que la solution approchée est M-lipschitzienne et en utilisant le théorème de Ascoli on peut extraire de y_h une sous-suite uniformément convergente vers y. Il nous reste a montrer que cette limite est une solution exacte de (1.2). Comme $|y'_h(t) - f(t, y_h(t))| \le \varepsilon$, il vient après intégration

$$|y_h(t) - y_0 - \int_{t_0}^t f(s, y_h(s)) ds| \le \varepsilon |t - t_0|$$

et grâce à la convergence uniforme on a

$$y(t) - y_0 - \int_{t_0}^t f(s, y(s))ds = 0.$$

On en déduit que y est une solution exacte de (1.2), c'est-à-dire,

- $y(t_0) = y_0;$
- y est continue et $y \in U$;
- --y'(t) = f(s, y(t)).

Supposons que l'on ait déterminé une solution (J, y) de (1.1) et que ce ne soit pas une solution globale $J \neq I$. On peut se poser la question de trouver un intervalle $J' \supset J$ sur lequel la fonction, ou plus exactement son prolongement, est encore solution de (1.1).

Définition 3 (Prolongement). Soient (J_1, y_1) et (J_2, y_2) deux solutions de (1.1). On dit que (J_2, y_2) est un prolongement de (J_1, y_1) lorsque $J_2 \supset J_1$ et y_2 coïncide avec y_1 sur J_1 :

$$\forall t \in J_1, \ y_2(t) = y_1(t).$$

Définition 4 (Solution maximale). On dit que (J, y) est une solution maximale de (1.1) lorsqu'elle n'admet pas d'autre prolongement qu'elle-même.

Soit (J, y) une solution maximale de (1.1), on appelle J l'intervalle de vie de la solution.

Théorème 5. Soit O un ouvert de $\mathbb{R} \times \mathbb{R}$ et $y : J = [t_0, b) \to \mathbb{R}$ une solution de l'équation y' = f(y, y), où f est une fonction continue sur O. Alors y(t) peut se prolonger au delà de b si et seulement si il existe un compact $K \subset U$ tel que la courbe $t \mapsto (t, y(t)), t \in [t_0, b)$ reste contenue dans K

La conséquence suivante est immédiate

Remarque 5 (Critère de maximalité). Une solution $y:(a,b)\to\mathbb{R}$ de y'=f(t,y) est maximale si et seulement $t\mapsto (t,y(t))$ s'échappe de tout compact K de O quand $t\to a^+$ ou quand $t\to b^-$. Puisque les compact sont les parties fermées bornées, ceci signifie encore que $t\mapsto (t,y(t))$ s'approche du bord de O ou tend vers ∞ , c'est-à-dire

$$|t| + |y(t)| + \frac{1}{d((t, y(t)), \partial O)} \to +\infty.$$

quand $t \to a^+$ ou $t \to b^-$.

Démonstration. La condition de prolongement est évidemment nécessaire, puisque si y(t) se prolonge à $[t_0, b]$, alors l'image du compact $[t_0, b]$ par l'application continue $t \mapsto (t, y(t))$ est un compact $K \subset O$. Inversement, supposons qu'il existe un compact K de O tel que $(t, y(t)) \in K$ pour tout $t \in [t_0, b)$. Posons $M = \sup_{(t,y)\in K} ||f(t,y)|| < +\infty$ qui est fini par continuité de f et compacité de K. Ceci entraı̂ne que $t \mapsto y(t)$ est uniformément continue et le critère de Cauchy montre que la limite $l \lim_{t\to b^-} y(t)$ existe. nous pouvons prolonger y par continuité en b en posant y(b) = l et nous avons $(b, y(b)) \in K \subset O$ puisque K est fermé. De plus, on sait que y est de classe \mathcal{C}^1 sur $[t_0, b]$. Maintenant, le théorème d'existence locale des solutions implique qu'il existe une solution locale du problème de Cauchy de donné initia ;e z(b) = l = y(b) sur un intervalle $[b - \varepsilon, b + \varepsilon]$. On obtient alors un prolongement \tilde{y} de y sur $[t_0, b + \varepsilon]$ en posant $\tilde{y}(t) = z(t)$ pour $t \in [b, b + \varepsilon]$.

On termine cette section en donnant une première version élémentaire du théorème de Cauchy-Lipschitz sur l'existence et l'unicité d'une solution maximale pour le problème (1.2).

Théorème 6 (Théorème de Cauchy-Lipschitz, version élémentaire). Soit $f: I \times U \to \mathbb{R}$ une fonction continue, où I et U sont des intervalles ouverts de \mathbb{R} . Soit aussi $t_0 \in I$ et $y_0 \in U$. Si f est de classe C^1 sur $I \times U$, alors le problème de Cauchy (1.2) admet une unique solution maximale (J, y).