EXAMEN FINAL

Apellidos y Nombre		
D.N.I	GRUPO	FIRMA

La primera letra del primer apellido

- **1.-** Sean $P(X) = X^4 + 5X^3 + 9X^2 + 8X + 2$, $Q(X) = X^3 + 4X^2 + 6X + 4$.
 - (a) Calcular el máximo común divisor de P y Q en el anillo $\mathbb{Q}[X]$.
 - (b) Encontrar todos los pares de polinomios $A, B \in \mathbb{Q}[X]$ tales que

$$X^{3} + 2X^{2} + 2X = A(X)P(X) + B(X)Q(X).$$

2.- Demostrar por inducción

$$(\forall x, y \in \mathbb{R})(\forall n \in \mathbb{N})$$
 $x, y \ge 0 \implies \left(\frac{x+y}{2}\right)^n \le \frac{x^n + y^n}{2}$.

3.- Sea F el conjunto de fracciones $\frac{m}{n}$ con $m, n \in \mathbb{N}$ \land m.c.d. (m, n) = 1 tales que $0 < \frac{m}{n} < 1$. Se define la relación binaria \mathcal{R} en F mediante

$$\frac{p}{q} \mathcal{R} \frac{m}{n} \Longleftrightarrow \left(\frac{p}{q} \le \frac{m}{n}\right) \land (p \le m) \land (q \le n).$$

- (a) Estudiar si \mathcal{R} es relación de orden y si es de orden total.
- (b) Si \mathcal{R} es de orden, determinar el máximo, el mínimo y los elementos maximales y los minimales.
- **4.-** Sean X, Y, Z conjuntos no vacíos. Para cada una de las afirmaciones siguientes probarla si es cierta o dar un contraejemplo si es falsa.
 - (a) Si $f: Y \to Z$ es inyectiva y $g, h: X \to Y$, entonces $(f \circ g = f \circ h) \implies g = h$;
 - (b) Si $f: X \to Y$ es inyectiva y $g, h: Y \to Z$, entonces $\Big(g \circ f = h \circ f\Big) \implies g = h$.