

Real-time DII COE Enables Real-time

http://www.dij-af.hantcom.af.mil/infrastructure/COE/rtipt/rtipt_hm.htm

John Maurer TWG Chair 781-271-2985 johnm@mitre.org Lt Col Lucie Robillard IPT Chair 781-377-2679 robillardl@hanscom.af.mil

Outline

- EAF C2 Architecture
- C2 Weapon System Spectrum
- Data Criticality Real-time Needed?
- RT DII COE Accomplishments

EAF C2 Architecture

Shooter

EAF Key Elements - People, Processes and Systems

C2 Weapon System Spectrum Air Mission Example

Deliberate	<u>Crisis Action Planning</u>				
Planning	JFACC Combat Plan; Intel Briefs	ATO Generati on & Distro	- Tullilli	Missio n Pre- brief:	Mission Executio n

What C2 Weapon Systems:

- -Perform These Functions?
- -Contribute Data for These Functions?

Are Functions Performed in < 5 Minutes, With Accuracy, With Guarantee?

T-18 months

T-7 days?

T-24 hours

Complete @ T-12 hours

T-0 hours

T+1 hour

24 Mar 99

PEO/C2

C2 Weapon System Spectrum Air Mission Example

Is the Data You Are Providing Time Critical? Impacts of Delay: 20-30 Sec Data Latency

When Do You <u>Know</u> You *Need* Real-time (RT)?

- Game of Deadlines
 - Rule of Thumb: RT = Milliseconds --> 5 Minutes
 - What # Deadlines Feed the 'Decision Process'?
 - C2 Data Flow (Human) & C2 System Processing (Automated)
 - Is Deadline Guarantee Important?
 - What # of Misses Can Be Tolerated?
 - What are the <u>Consequences of One (or More) Misses</u>?
 - What <u>Timeframe for Next Update</u>?
- Some Sources of Deadline Misses:
 - Method of On-Board Data Processing
 - Choice of Priority Scheduling Policy
 - FIFO, Fixed, Dynamic

Design Considerations That Impact RT Data

Differences in FIFO, Fixed, and Dynamic Priority Scheduling

Key:

Track Quality: 0-7 (7 = Ideal Processed under Constraint

Association Capacity = # Tr FIFO: TBMCS FIXED: AWACS, JSTARS, R/SAOC, CN

Demonstration Display

Screen Explanation

Quality of Confidence in Track Estimate<u>All</u> Tracks NOT Updated (Perfect Track = 7)

Scheduling

Results: FIFO Scheduling

High Priority Tracks Got Dropped--Increased Operator Work

Fixed Priority Scheduling

Results: Fixed Priority Scheduling

High Priority Tracks Got Processed--BUT Decreased Situation

Dynamic Priority Scheduling

Dynamic Priority Scheduling

No Tracks Got Dropped -- Operator Workload Op

Which Scheduling Choice Today?

- Hurdles to Dynamic Priority Approach
 - Research Project! Engineering Theory Since 1973
- Fixed Priority Approach Can Be Better for Real-time
 - Detailed Analysis Required -- Its Tough!
 - Ad Hoc Approach Typical: "Always Done That Way"
 - Real-time Scheduling Disciplines Required
 - Understand Timing Behavior of Applications
 - Preserve Correct & Consistent Data
- FIFO is DII COE Approach
 - Not Good Enough for Most C2 Systems

Make Fixed Priority Scheduling a DII COE Option

Relevance to RT DII COE Activities

- Demo Showed Improvement in Mission Performance Using Real-time Technologies
 - Theoretical Basis for Improving on "The Way We've Always Done It"
- RT DII COE Provides the Real-time Foundation To Implement Real-time Technologies
 - RTOS and RT Infrastructure Supports:
 - Predictable Timelines, Priority, and RT Scheduling
 - Configurable RT Kernel
 - Make Dissemination of Future RT DII COE Segments Easier

RT DII COE Accomplishments

Technology That Enables Dynamic Scheduling

RT Common Object Request Broker (RT CORBA) for Distributed Computing

- Lockheed Martin's HARDPack as candidate initial product
 - HARDPack 1.3 or later
 - RT extensions
 - · IIOP interface to nonRT orbs Configurable PH COE RJs Kernels
- POSIX APIs for Real-time OS
 - LynxOS in reference implementation
- RT appropriate capabilities
- Selectable Kernel Services
 - Not monolithic kernel
- Configuration from RTOS up
- RT "Stickers" for mixing, matching applications to OS,

Will be in DISA Release 5.0, October 2000

PEO/C2 Round Table

RT DII COE Accomplishments Configurable RT DII COE Kernel

*Actual OS configuration depends on packaging options provided by RTOS vendor

RT Systems Are NOT One Size Fits All

RT DII COE Accomplishments RT Kernel Configuration

- Integrator specifies list of segments (required capabilities)
- Each segment requires:
 - Other segments
 - RT Kernel Services
 - POSIX.13 API's
- Each RT Kernel Service requires:
 - Other RT Kernel Services
 - POSIX.13 API's

The Process to Build RT C2 System Using RT DII (

What do C2 System SPOs Do Now?

- SPD Challenge
 - Determine Need for RT Techniques
 - Priority, Preemption, Predictability
 - If YES,
 - Identify Common Functions Among Your C2 Node Partners in Accomplishing Your Mission
 - Provide C2 Requirements to RT TWG
 - Advocate Common Capabilities Into DII COE via RT IPT

RT DII COE: Path to C2 Interoperability

Conclusion

- C2 Spectrum Being Defined
- RT Characteristics to Be Aware: Priority, Preemption, Predictability, Determinism
- Make DII COE Support Fixed Priority Scheduling
- SPD Challenges: RT and Common Functions
- RT DII COE Effort Is Making Progress
 - Become Part of the Team!

RT DII COE a Reality: Oct 2000 RTOS, Selectable RT Kernel Services, RT CORBA