Part 7

Important notes

- Please mute your microphone
- If you have any questions please use the **Chat** feature of zoom , no microphones.
- Please make sure zoom is showing your full name
- No Recording of my lectures
- No make up of Quizzes or classwork
- You need to be **in class** for quiz or classwork
- Tests/Exams/Quizzes answers from PPT and class notes, no outside sources.
- For Homework and Research Paper you can use outside sources

Netiquette

- Keep messages short and to the point.
- Never post a message that is in all capital letters it comes across to the reader as SHOUTING
- Keep in mind that chat messages are meant to be constructive
- Be respectful and treat everyone as you would want to be treated yourself.
- Be on Time
- If you came late don't disturb the class, join us quietly, no need to apologize
- I don't read emails during the lecture
- You will be removed from zoom if you disrupt the class

Top programming languages on GitHub

RANKED BY COUNT OF DISTINCT USERS CONTRIBUTING TO PROJECTS OF EACH LANGUAGE.

Windows 1.0 Released 20th November 1985

Microsoft_® Windows

Operating Environment

MICR@SOFT.

Setup Disk

For IBM_® and COMPAQ_® Personal Computers

■ Disk 1 of 4

050050.101

MICR SOFT.

The High Performance Software

The Central Processing Unit (CPU)

Trouble-free computing since 1984.

Up to

24GB

LPDDR5 memory

Second-generation 5 nm technology

encode and decode

6K external display support

Over

20 billion

transistors

High-performance media engine

40% Faster Neural Engine

Industry-leading performance per watt

50% More memory bandwidth 15.8 trillion
operations per second

16-core Neural Engine

8-core CPU

10-core GPU

18%

Faster CPU

35%

Faster GPU

100GB/s
Memory bandwidth

Thunderbolt 4

Up to

20%

faster CPU

Up to

30%

faster GPU

Industry-leading performance per watt

Up to

32GB

LPDDR5 memory

Over 40 billion

transistors

16-core

Neural **Engine**

15.8 trillion ops/s

40%

Faster Neural Engine

PRO

Second-generation

5 nm technology

12-core CPU

Up to 19-core GPU

200GB/s

Memory bandwidth

High-performance media engine with ProRes 4

Thunderbolt 4

Up to

20%

faster CPU

Up to

30%

faster GPU

Industry-leading performance per watt

Up to

96GB

LPDDR5 memory

Over

67 billion

transistors

16-core

Neural Engine

15.8 trillion ops/s

40%

Faster Neural Engine

MAX

Second-generation

5 nm technology

12-core

Up to 38-core GPU

400GB/s

Memory bandwidth

High-performance media engine with ProRes

Understanding CPUs

- ☐ The **system architecture** of the computer is built **around** the CPU
 - Includes the number and type of CPUs in the hardware, and the communications routes (buses)
 between CPUs and other hardware components
- □ **CPU** chip that performs the actual computational and logic work
- □ Core section of the processor that actually does the reading and execution of instructions
 - Multicore processor has two or more cores
- Multiprocessor computers have multiple physical CPU chips

- Most CPUs are composed of the following elements:
 - Control unit provides timing and coordination between other parts of the CPU
 - □ **Arithmetic logic unit (ALU)** performs the primary task of executing instructions
 - Register temporary holding location where data must be placed before the CPU can use it
 - System bus series of lanes used to communicate between the CPU and other major parts of the computer

- ☐ There are three types of buses:
 - Control bus carries status signals between the CPU and other devices
 - Address bus carries address signals to indicate where data should be read or written to in the system's memory
 - □ **Data bus** carries the actual data that is being read from or written to system memory

CPUs can be **classified** by hardware elements:

- Design type
- Speed
- Cache
- Address bus
- Data bus
- Control bus
- CPU scheduling

Design Type

- Two general CPU designs are used today:
 - Complex Instruction Set Computing (CISC)
 - Reduced Instruction Set Computing (RISC)
- Main difference between the two design types is the number of different instructions the chip can process
- CPUs can process as many as 20 million (low-end) to several billion (high-end) operations per second
- □ Instruction set list of commands the CPU can understand and carry out

Design Type

- □ CISC and RISC CPUs differ in the following ways:
 - Complex versus simple instructions
 - CISC CPUs are generally more complex
 - Clock cycles
 - Pipelining
 - ▶ The ability of the CPU to perform more than one task on a single clock cycle
 - Hardware versus microcode
 - Small program inside the chip that interprets and executes each instruction

Design Type

- ☐ CISC and RISC CPUs differ in the following ways:
 - Compiler
 - A computer program that takes a high-level language and turns it into assembly code that is executed by the CPU
 - Number and usage of registers
 - ▶ CISC CPUs have **fewer registers** than a RISC CPU

Speed

- ☐ The speed of a CPU defines how fast it can perform operations
- Most obvious indicator is the internal clock speed
 - Clock provides a rigid schedule to make sure all the chips know what to expect at what time
 - The faster the clock, the faster the CPU
- As more components are needed to make a CPU, the chip uses more energy, which is converted to heat.
 - CPUs require fans to keep cool

Speed

- □ CPU must be able to communicate with other chips in the computer
 - Uses an external clock speed to communicate with the rest of the computer
 - External clock speed runs slower than the internal clock speed
 - Typically one-half, one-third, one-fourth, or one-eighth the speed of the internal CPU clock

Cache

- □ Since internal clock is **faster** than the external clock
 - ☐ The CPU would have to wait on information to arrive from other parts of the computer
- Most modern CPUs have cache memory built into the chip
- While CPU is executing program code
 - Instructions or data that are most likely to be used next are fetched from main memory and placed in cache memory

Cache

- ☐ There are different levels of cache
 - Level 1 (L1) cache is the fastest and usually runs at the same speed as the CPU
 - Level 2 (L2) cache is slower but much larger
 - Level 3 (L3) cache, until the last several years, was not part of the CPU chip, but part of motherboard
 - □ Level 4 (L4) cache will usually be found on motherboard (if it exists)
- □ Cache controller predicts what data will be needed and makes the data available in cache before it is needed

Address Bus

- Address Bus internal communications pathway that specifies the source and target addresses for memory reads and writes
 - Typically runs at the external clock speed of CPU
 - Width of the address is the number of bits that can be used to address memory
 - Wider bus means the computer can address more memory and store more data
 - Modern processors use a 64-bit address bus
 - Allows them to address 16 terabytes (TB) of memory

Data Bus

- ☐ The data bus allows computer components, such as CPU, display adapter, and main memory, to **share information**
- ☐ The number of bits in the data bus indicates how many bits of data can be transferred **from memory to**the CPU in one clock tick
 - A CPU with an external clock speed of 1 GHz and a 64-bit data bus could transfer as much 8
 GB per second
- □ A CPU with a 64-bit data bus typically can perform operations on 64 bits of data at a time

Control Bus

- Information is transported on the control bus to keep the CPU informed about the status of resources and devices connected to the computer
- Memory read and write status is transported on this bus, as well as interrupt requests
 - □ Interrupt request (IRQ) a request to the processor to "interrupt" whatever it is doing to take care of a process, which in turn might be interrupted by another process

CPU Scheduling

- □ CPU Scheduling determines which process to start given the multiple processes waiting to run
- Beginning with Windows NT, use of CPU scheduling began to evolve to allow multithreading
 - Multithreading is the ability to run two or more processes (known as threads) at the same time
 - □ A **thread** is the smallest piece of computer code that can be independently scheduled for execution
 - Hyper-Threading allows two threads to run on each CPU core simultaneously

Popular PC Processors

- Most popular CPU manufacturer today
 - 8088 CPU found in the original IBM PC
 - □ Early Intel processors were identified by model numbers: 8088, 8086, 80286, 386, 486 (sometimes preceded by an i as in i486)
 - Pentium family of chips followed 486 and are sometimes identified by a P and a number (example P4)
 - Intel Itanium and Itanium 2 are newer 64-bit processors for high-end PCs and server

- □ Intel Itanium and Itanium 2 processors are different from previous ones in two respects:
 - Built on the RISC-based EPIC architecture
 - 64-bit chips
 - In order to use the capabilities of 64-bit processing, the operating system and applications must be rewritten to use 64-bit
 - Windows XP, Windows Server 2003 Enterprise, Windows Server 2003 Datacenter, and Windows Server 2008 can run on Itanium 64-bit processors

- □ Initially, processors were developed with one core
 - □ Today, many multicore Intel CPUs are available
 - Even smartphones and tablets frequently contain two or four cores
- Microarchitecture is:
 - The description of a CPU's internal circuitry
 - Defining characteristics (technology used to create the chip)
 - Supported instruction set
 - Bit size

Table 3-2 Multicore Intel CPUs

CPU	Year introduced	Cores	Speed	Bus speed	Cache
Pentium D	2005	2	2.64-3.60 GHz	533–1055 MHz	1–2 MB
Xeon	2005	2–8	1.68-3.73 GHz	667-1600 MHz	2-24 MB
Itanium	2006	2–4	1.40-1.73 GHz	400–667 MHz	8–24 MB
Intel Core Solo	2006	1	1.06-1.86 GHz	533-667 MHz	2 MB
Intel Core Duo	2006	2	1.06-2.33 GHz	533-667 MHz	2 MB
Pentium Dual-Core	2007	2	1.60-3.33 GHz	800-1066 MHz	1–2 MB
Intel Core 2 Duo	2007	2	1.86-3.33 GHz	800–1333 MHz	3–6 MB
Intel Core 2 Quad	2007	4	2.33-3.00 GHz	1066-1333 MHz	4–12 MB
Intel Core 2 Extreme	2008	2	2.00-3.20 GHz	1066-1600 MHz	6–12 MB
Atom	2008	1	800 MHz-2.13 GHz	400-533 MHz	512 KB-1 MB
Intel Core i7	2009	4–6	1.06-3.33 GHz	2.5 GT/s-4.8 GT/s	4–12 MB
Intel Core i5	2009	2-4	1.06-3.76 GHz	2.5 GT/s	3–8 MB
Intel Core i3	2010	2	1.20-3.06 GHz	2.5 GT/s	4 MB

AMD

- Advanced Micro Devices, Inc. (AMD)
 - Manufactures CPU chips that compete with Intel
- □ AMD continues to develop CPUs with names based on:
 - □ The series, such as Athlon and FX
 - And the core architecture, such as Zambezi and Vishera

AMD

Table 3-4 Multicore AMD processors

Processor	Clock speeds (MHz or GHz)	Cores	Compares to intel chip
Athlon II	1.8–3.3 GHz	2–4	Intel Core 2 Duo
Phenom II	2.5–3.5 GHz	2–6	Intel Core 2 Quad
Phenom	1.8–2.6 GHz	3–4	Intel Core 2 Quad
Athlon X2	2.3–2.8 GHz	2	Intel Core 2 Duo
Opteron 4000 Series	1.7–2.8 GHz	8–12	Itanium/Xeon
Opteron 6000 Series	1.7-2.4 GHz	6	Itanium/Xeon

Table 3-4 Multicore AMD processors

Other Processors

- Motorola 68xxx were typically found in Macintosh computers and older UNIX
- PowerPC line of chips that used different instructions sets than the Motorola 68xxx line
 - Developed jointly by Apple Computer, IBM, and Motorola (AIM)
 - □ In 2005, Apple moved to using Intel chips
- SPARC Scalable Processor Architecture
 - A RISC processor designed by Sun Microsystems
 - SPARC M7 is the current version
 - A 64-bit chip with 64-bit address and data buses

Other Processors

- □ **Alpha** CPU originally designed by Digital Equipment Corporation (DEC), which was purchased by Compaq, which was purchased by HP
 - Found in older high-end HP Compaq servers
 - Had a 64-bit data and address bus
 - Was the first chip to reach a speed of 1 GHz
 - Were found in computers conducting heavy networking, engineering, and graphics duties
 - There were many proprietary devices that ran custom OSs based on the Alpha architecture

Summary

- One of the main functions of the operating system is to provide the interface between the various application programs running on a computer and the hardware inside
- Most CPUs are composed of a control unit, arithmetic logic unit, registers, and a system bus, which is composed of a control bus, address bus, and data bus

Summary

- CPUs can be classified by several elements, including design type, speed, cache, address bus, data bus, control bus, and CPU scheduling
- The amount of cache is critical to CPU's overall speed because it is much faster than RAM

Summary

- CPU scheduling allows an operating system to schedule multiple processes or threads
- Intel processors are the most popular CPUs today, but AMD processors are frequently used
- Other processors include the Motorola, PowerPC, the SPARC, and the Alpha