2^{eme} semestre, année 2020/2021 3^{eme} année licence Maths Module: Probabilités Avancées

T.D. N°2

Exercice n⁰ 01:

- 1. Calculer les fonctions génératrices des lois suivantes :
 - **a.** Géométrique de paramètre $p \in [0, 1[$.
 - **b.** Poisson de paramètre $\lambda > 0$.
- 2. Calculer les fonctions génératrices des moments pour les lois suivantes :
 - **a.** Bernoulli de paramètre $p \in [0, 1[$.
 - **b.** Uniforme sur [0,1].
 - **c.** Loi normale $\mathcal{N}(0,1)$.

Exercice n⁰ 02: Une boîte contient 9 boules numérotées 0, 0, 0, 0, 1, 1, 1, 1, 2. On effectue n tirages avec remise. Soit S_n la somme des numéros tirés.

Déterminer la loi de probabilité de la v.a. S_n .

Exercice n 0 **03:** Donner la fonction caractéristique de X et calculer $E\left(X\right)$ et $V\left(X\right)$:

- 1. Si X suit une loi de Bernoulli de paramètre p.
- 2. Si X suit une loi Binomiale $\mathfrak{B}(n,p)$.
- 3. Si X suit une loi exponentielle symétrique de paramètre $\lambda>0,$ c'est-à-dire si X a pour densité

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x|}.$$

Exercice n⁰ 04 (Devoir):

- 1. Calculer les fonctions génératrices des moments pour les lois Hypergéométrique, Binomiale négative.
- 2. Donner la fonction caractéristique de X qui suit une loi de Cauchy de paramètre $\lambda,$ c'est-à-dire si X a pour densité

$$f(x) = \frac{\lambda}{\pi \left(\lambda^2 + x^2\right)}.$$

Exercice n⁰ **05:** Soit $X \hookrightarrow \mathcal{N}(0, \sigma^2)$ et $\Phi(t)$ sa fonction caractéristique.

- 1. Montrer que $\Phi'(t) = -t\sigma^2\Phi(t)$, pour tout $t \in \mathbb{R}$.
- 2. En déduire $\Phi(t)$ pour tout $t \in \mathbb{R}$.

Exercice \mathbf{n}^0 06: Montrer, en utilisant la fonction caractéristique, que la somme de deux v.a. de Poisson indépendantes est une v.a. de Poisson.