

Calidad de Servicio

Segunda parte

Equipo docente:

Fernando Lorge (florge@unlu.edu.ar)
Santiago Ricci (sricci@unlu.edu.ar)
Alejandro Iglesias (aaiglesias@unlu.edu.ar)
Mauro Meloni (maurom@unlu.edu.ar)
Marcelo Fernandez (fernandezm@unlu.edu.ar)

Repasando QoS

QoS capacidad de la red para garantizar los recursos necesarios para un servicio. (Delay, pérdida, jitter, preservación del flujo, tasa de transferencia)

- Clasificar los flujos/streams/clases del tráfico
 - Implícita, simple, compleja, inspección profunda de paquetes.
- Acondicionar el tráfico
 - Aplicar controles y acciones sobre los flujos de datos.
 - Para limitar la tasa de transferencia:
 - Policing (y marcado): descartar paquetes. *Token Bucket, Three Color Marker...*
 - Shaping: demorar paquetes, *Token Bucket, Leaky Bucket...*
 - Encolamiento y planificadores: FIFO, SPQ, WBS, WFQ, DRR...
 - Técnicas para descartar paquetes: Tail Drop, RED, WRED.

Retomando...

En la red de una organización tendremos flujos de tráfico con diferentes requerimientos en cuanto a delay, pérdidas, jitter.

¿Cómo tratarlos?

- Aplicar prioridades según requerimiento.
 - Sobre todo ante congestión. Y así hasta crear las restantes clases...
- Asegurar nivel de performance.
- Establecer Acuerdos de Nivel de Servicio (SLA)

Service Level Agreements

Service Level Agreements (SLA)

- Son contratos / acuerdos formales por la prestación de un servicio:
 - de conectividad hacia Internet,
 - de transporte de datos extremo a extremo (ej, casa central a sucursal),
 - o de ambos a la vez.
- Especifica el servicio de reenvío o "transporte" que prestará el proveedor y las condiciones del mismo (capacidad, disponibilidad, pérdidas).
- Especifica cómo se controlará ese servicio y qué penalidades se aplican cuando el proveedor no cumple con lo pactado.
- ¿Cómo se definen los requerimientos?
 Analizando las características del tráfico vistas previamente...

Características del tráfico IP

- Delay: retraso de tiempo de entrega del paquete (one-way delay)
 o de la recepción de la respuesta (RTT).
- Jitter: variación del delay entre dos o más paq. consecutivos.
- Pérdida de paquetes.
- Tasa de transferencia.
- **Disponibilidad** (de la **red** o del **servicio**).
- Preservación de la secuencia del flujo: que los paquetes lleguen en orden.
- Calidad de la experiencia Se evalúa la percepción del usuario.
 - Subjetiva: Mean Opinion Score (MOS), Recomendación ITU-T P.800
 - Objetiva: Infieren MOS, Recomendación ITU-T P.862
 Ambas son usualmente utilizadas como evaluación de VoIP

Service Level Agreements (SLA)

Ejemplos de Acuerdos de Nivel de Servicio

¿Cómo se hace QoS en grandes redes?

QoS a distintos niveles

Link-level:

- ATM (parte integral)
- Ethernet 802.1p (Class of Service CoS)
- MPLS (Entre nivel 2 y 3)

Network-level:

- ToS (Original IPV4)
- Integrated Services (IntServ) RSVP
- Differentiated Services (DiffServ)

IP Type of Service (ToS) Octet

Definido en las RFC 791 y 1349: "Type of Service in the Internet Protocol Suite"

Analizando el valor del campo **Precedence** en cada paquete IP, un router puede determinar en qué cola incorporarlo (si hubiera múltiples).

Analizando el valor del campo **Type of Service**, un router puede determinar por qué ruta enviarlo (si hubiera múltiples).

La RFC 2474 (DiffServ, que veremos luego) modifica su interpretación.

Arquitecturas para QoS en IP

Mejor esfuerzo

• Por defecto, en IP no hay calidad de servicio definida ni entrega garantizada.

Integrated Services o IntServ

- Diseñado para dar servicio a aplicaciones de tiempo real (VoIP, video, etc).
- Se crean caminos virtuales y se mantiene información de estado en los routers (reserva de buffers y capacidad del canal, mantenimiento del orden de paquetes, delay estable y jitter mínimo). Requiere de un protocolo para la reserva de recursos (RSVP).

Differentiated Services o DiffServ

- Define el campo DS (antes ToS del header IPv4 y "Traffic Class" de IPv6).
- Los routers de ingreso utilizan clasificación simple o compleja y "marcan" los paquetes de acuerdo a la clase a la que pertenece según los requerimientos o el SLA; los routers intermedios utilizan clasificación simple (campo DS) para dar el tratamiento requerido.

IntServ

Se encuentra definido en la RFC 1633, y su objetivo es brindar calidad de servicio para flujos de datos a través de redes IP reservando recursos en **todos** los nodos intervinientes.

- Se basa en flujos de datos (y así se organizan las colas)
- Gestión y manejo de los recursos en todos los routers de la red.
- Control de admisión, debe haber suficientes recursos para el flujo.
- Requiere del protocolo RSVP (RFC 2205) para señalización de extremo a extremo.
- Todos los routers deben soportarlo y es difícil de escalar en redes medianas y grandes.

IntServ

Con la combinación IntServ-RSVP (RFC 2210) se pueden especificar tres tipos de reserva de extremo a extremo.

Servicio Garantizado

Aplicaciones no elásticas baja latencia, jitter, pérdida, tasa de transferencia

Ej Aplicaciones de tiempo real: VoiP, VC (SIP, H323, RTP)

Carga Controlada

Aplicaciones elásticas con requerimientos de tasa de transferencia.

Ej: Aplicaciones elásticas: ráfagas interactivas (Telnet, NFS, HTTP), trasnferencias interactivas masivas (FTP, HTTP), transferencias masivas asíncronas (SMTP)

Best effort

Para aquellos flujos sin QoS

Se encuentra definido en la RFC 2475, y su objetivo es brindar calidad de servicio, sin reserva de recursos, donde se aplica clasificación de paquetes (compleja y simple). Escala fácilmente a diferencia de IntServ.

- Clasificación y acondicionamiento (según SLA y TCA: Traffic Conditioning Agreements)
- Utilización del campo DS de IP (IPv4 e IPv6) para el marcado y la clasificación.
- Existen dominios de Diffserv, donde los routers de borde tienen un comportamiento diferente a los routers internos, y los códigos DSCP definen el tratamiento a aplicar al tráfico.
- Cada nodo es independiente y tiene su propio comportamiento, que respeta los TCA, en distintos perfiles de Per-hop Behavior (PHB), según el valor DSCP.

Per Hop Behaviors

Caracteriza de manera abstracta el comportamiento de forwarding visible externamente a cada nodo del dominio:

- Expedited Forwarding (EF) DSCP 46
 low loss, low latency, low-jitter, assured bandwith
- Assured Forwarding: AF1x-AF4x:
 4 clases, donde x representa preferencia de descarte: 1 Low, 2 medium, 3 High.
- Default (También llamado Best-effort) DSCP 0
- Class Selector. CS1-CS7
 (3 primeros bits, como IP precedence)

Codepoint	DSCP		
Default/CS0	000000		
EF PHB	101110		
CS1	001000		
CS2	010000		
CS3		011000	
CS4		100000	
CS5	101000		
CS6	110000		
CS7	111000		
AF PHB Group	Drop Precedence		
AF Class	Low (AFx1)	Medium (AFx2)	High (AFx3)
AF1x	AF11 = 001001	AF12 = 001010	AF13 = 001011
AF2x	AF21 = 010001	AF22 = 010010	AF23 = 010011
AF3x	AF31 = 011001	AF32 = 011010	AF33 = 011011
AF4x	AF41 = 100001	AF42 = 100010	AF43 = 100011

ECN Field		Meaning
0	0	Not ECT
0	1	ECT(0): not defined in [RFC 2481]
1	0	ECT(1)
1	1	CE

Ethernet 802.1p VLAN Tags

802.3ac VLAN Tagged Header

TPID (2 bytes) = Tag Protocol Identifier (always = 0x8100)

TCI (2 bytes) = Tag Control Information:

Priority 3 bits

CFI 1 bit (always = 0)

VLAN ID 12 bits

Ethernet 802.1p VLAN Tags

CFI

VLAN ID

1 bit (always = 0)

12 bits

Prioridad de la trama según IEEE 802.1p

CFI redefinido como DEI:

Drop Elegible Indicator → Tramas que pueden descartarse si hay congestión

IEEE 802.1p Class of Service (CoS)

Prioridad	Tipo de tráfico	
0 (default)	Best Effort	
1	Background	
2	Excellent effort	
3	Critical Applications	
4	Video (< 100ms latency and jitter)	
5	Voice (<10 ms latency and jitter)	
6	Internetwork Control	
7	Network Control	

El estándar no especifica la forma de tratar el tráfico clasificado. Eso queda para el implementador.

Bibliografía

- EVANS, J., FILSFILS, C., 2007, Deploying IP and MPLS QoS for Multiservice Networks: Theory & Practice. Morgan Kaufmann.
 - Capítulo 1. "QOS Requirements and Service Level Agreements"
 - Capítulo 2. "Introduction to QOS Mechanics and Architectures"
- .MEDHI, D., RAMASAMY, K., 2007, Network Routing Algorithms Protocols and Architectures.
 Morgan Kaufmann
 - Capítulo 23. "Traffic Conditioning"