## Chap 22. Sequences and series of functions

### 22.1 Pointwise and uniform convergence

Basic questions for two popular series

for power series:

Let 
$$\sum_{n=0}^{\infty} a_n x^n = f(x)$$
 or assume  $f(x)$   $\stackrel{\text{can be expressed as}}{=} \sum_{n=0}^{\infty} a_n x^n$  on  $(-R, R)$ 

Are the following statements true?

$$f'(x) = \sum_{1}^{\infty} n a_n x^{n-1} \quad \text{on } (-R, R)$$

$$\int_0^x f(t) dt = \sum_{n=0}^{\infty} \int_0^x a_n t^n dt \quad \text{on} \quad |x| < R$$

for "Fourier series" (= trigonometric series ):

Let 
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 on  $[-\pi, \pi]$ 

(periodic functions are usually represented not by power series but by trigonometric series)

On 
$$[-\pi, \pi]$$
,  $f'(x) = ?$   
$$\int_{-\pi}^{\pi} f(x) dx = ?$$

Generally we should study the series of the form  $\sum_{0}^{\infty} u_n(x)$ , where each  $u_n(x)$  is a function of some unspecified type.

- Three standard questions about  $\sum_{n=0}^{\infty} u_n(x)$ .
  - 1. If every  $u_n(x)$  is conti on an interval I, on I is  $\sum_{n=0}^{\infty} u_n(x)$  conti?
  - 2. If every  $u_n(x)$  is diff on an interval I, on I is  $\sum_{n=0}^{\infty} u_n(x)$  diff?

If so, does 
$$\left(\sum_{n=0}^{\infty} u_n(x)\right)' = \sum_{n=0}^{\infty} u_n'(x)$$
 on  $I$ ?

3. If every  $u_n(x)$  is integrable on a compact interval [a,b], on [a,b] is  $\sum_{0}^{\infty} u_n(x)$  integrable?

If so, does 
$$\int_a^b \sum_{0}^{\infty} u_n(x) \, dx = \sum_{0}^{\infty} \int_a^b u_n(x) \, dx \, ?$$

(Equivalent) reformulations for these problems are as follows:

Let 
$$f_n(x) = \sum_{k=0}^n u_k(x)$$
. Then we may write  $\sum_{k=0}^\infty u_k(x) = \lim_{k \to \infty} f_n(x)$ .

So,

Question 1 is equivalent to:

Is 
$$\lim_{n\to\infty} f_n(x)$$
 conti on  $I$  whenever each  $f_n(x)$  is conti on  $I$ ?

Question 2 is equivalent to:

Is 
$$\lim_{n\to\infty} f_n(x)$$
 diff on  $I$  whenever each  $f_n(x)$  is diff on  $I$ ?

Moreover, if so, does

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f_n'(x) \text{ for } x\in I?$$

Question 3 is equivalent to:

Is  $\lim_{n\to\infty} f_n(x)$  integrable on [a,b] whenever each  $f_n(x)$  is integrable on [a,b]?

Moreover, if so, does

$$\int_a^b \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx \text{ for } x \in I?$$

- Each answer of these questions is no in general.
- 1. Let  $f_n(x) = x^n$ . Then each  $f_n(x)$  is conti on [0, 1]. However,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \underbrace{\begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}}_{\text{disconti at } x = 1}$$

2. Let  $f_n(x) = \frac{1-x}{1+x^n}$ . Then each  $f_n(x)$  is diff on [0,2]. However,

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 1 - x, & 0 \le x \le 1\\ 0, & 1 < x \le 2 \end{cases}$$
not diff at x=1



**Another example**: each  $f_n(x) := |x|^{1+1/n}$   $(n \ge 1)$  is easily seen to be diff on [-1,1]. (Draw)

But 
$$f(x) := \lim_{n \to \infty} f_n(x) = |x|$$
 is clearly not diff at  $x = 0$ .

More sophisticated example: 
$$f_n(x) \equiv \frac{\sin(nx)}{n} (n \ge 1) \rightarrow \text{each } f_n(x) \text{ is diff on } (-\infty, \infty)$$

Moreover, 
$$f_n'(x) = \cos nx$$
 ...  $f_n'(0) = 1$   $\forall n$ , so  $\lim_{n \to \infty} f_n'(0) = 1$ 

But clearly, 
$$\lim_{n\to\infty} f_n(x) = 0$$
  $\forall x\in(-\infty,\infty)$   $\therefore$   $\left(\lim_{n\to\infty} f_n(x)\right)' = 0$   $\forall x\in(-\infty,\infty)$ 

Thus 
$$\lim_{n\to\infty} f_n'(0) = 1 \neq 0 = \left(\lim_{n\to\infty} f_n(x)\right)'\Big|_{x=0}$$

3. Let  $f_n(x)(n \ge 2)$  be defined by

$$f_n(x) = \begin{cases} n^2 x, & 0 \le x \le 1/n \\ 2n - n^2 x, & 1/n \le x \le 2/n \\ 0, & 2/n \le x \le 1 \end{cases}$$



Then each  $f_n(x)$  is conti on [0,1]. So each  $f_n(x)$  is integrable on [0,1].

Obviously,

$$\int_0^1 f_n(x) dx = \text{area of the corresponding triangle} = 1 \text{ for each } n.$$

$$\therefore \lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 1$$

Claim:  $\lim_{n\to\infty} f_n(x) = 0$  for each  $x \in [0, 1]$ 

Pf of claim: Clearly, 
$$f_n(0) = 0$$
 for every  $n$   $\therefore \lim_{n \to \infty} f_n(0) = 0$ .

For each fixed  $x \in (0,1], \ \exists \ \mbox{a natural number} \ N \ \mbox{ such that } \frac{2}{N} < x \, .$ 

Hence 
$$f_n(x) = 0$$
 for all  $n > N \left( > \frac{2}{x} \right)$   
 $\therefore \lim_{n \to \infty} f_n(x) = 0$ 

Consequently,  $\lim_{n\to\infty} f_n(x) = 0$  for each  $x \in [0,1]$ .

Therefore,

$$\int_0^1 \lim_{n \to \infty} f_n(x) \, dx = \int_0^1 0 \, dx = 0 \neq 1 = \lim_{n \to \infty} \int_0^1 f_n(x) \, dx \, .$$

### More sophisticated example:

Let  $\{r_n\}_1^{\infty}$  be an enumeration of the rational numbers in [0,1].

Define 
$$f_n(x)$$
  $(n = 1, 2, \cdots)$  on  $[0, 1]$  by

$$f_n(x) = \begin{cases} 0 & \text{if } x \neq r_1, r_2, \dots, r_n \\ 1 & \text{if } x = r_1, r_2, \dots, r_n \end{cases}$$

It is clear that  $f_n(x) \to f(x) := \begin{cases} 0 & \text{if } x \text{ is any irrational number in } [0,1] \\ 1 & \text{if } x \text{ is any rational number in } [0,1] \end{cases}$ 

Note that each  $f_n(x)$  is integrable on [0,1], since it has finitely many discontinuity points on [0,1].

But we have already seen that f(x) is **not** integrable on [0, 1].

## Def A. (Pointwise convergence of a sequence of functions: 점별수렴)

Let  $f_n(x)$   $(n=0,1,2,\cdots)$  be a sequence of functions, defined on an interval I. We say that  $\{f_n(x)\}$  converges pointwise to f(x) on I (as  $n\to\infty$ ) provided that

for each (fixed) 
$$x \in I$$
,  $f_n(x) \to f(x)$  as  $n \to \infty$ .

(특징: 구간
$$I$$
에서 임의로 점 $x$ 를 택해 고정한 후 수렴성 조사)

Remark. We say that  $\{f_n(x)\}$  converges pointwise on I if  $\exists$  a function  $f:I\to\mathbb{R}$  such that  $f_n\to f$  pointwise on I.

Notation.  $\{f_n(x)\}$  converges pointwise to f(x) on I:

Ex A. Let 
$$f_n(x) = x^n$$
.  $\lim_{n \to \infty} f_n(x) = ?$  on  $[0, 1]$ 

Sol. For each  $x \in [0, 1]$ ,

$$f_n(x) = x^n$$
  $\xrightarrow{n \to \infty}$  
$$\begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases} \equiv f(x)$$

$$\therefore \lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$$

Ex B. Let 
$$f_n(x) = \frac{n}{1 + nx}$$
.  $\lim_{n \to \infty} f_n(x) = ?$  on  $(0, \infty)$ 

Sol. For each x > 0,

$$\frac{n}{1+nx} = \frac{1}{1/n+x} \quad \xrightarrow{n\to\infty} \quad \frac{1}{x}$$

$$\therefore \lim_{n \to \infty} \frac{n}{1 + nr} = \frac{1}{r} \text{ on } (0, \infty)$$

$$\text{Remark.} \qquad \lim_{n \to \infty} f_n(x) = f(x) \ \text{ on } I \quad \text{(i.e., } \boxed{f(x_0) = \lim_{n \to \infty} f_n(x_0), \quad \forall \, (\text{fixed}) \, \, x_0 \in I} \quad \text{)}$$

i.e. 
$$\Leftrightarrow \text{ given } \varepsilon > 0, \quad f_n(x_0) \underset{\varepsilon}{\approx} f(x_0) \quad \text{ for } n \geq N = N(\varepsilon, x_0) \quad \underbrace{\text{ whenever } x_0 \in I}_{x_0}.$$

$$\Leftrightarrow \mbox{ for each (fixed) } x_0 \in I, \mbox{ and for every } \varepsilon > 0, \ \exists \ N = N(\varepsilon, x_0) \mbox{ s.t.} \\ n \geq N \quad \Rightarrow \quad \left| f_n(x_0) - f(x_0) \right| < \varepsilon$$

## ※ Def B (Uniform convergence: 고른 수렴 = 균등수렴 = 균일수렴 = 평등수렴)

Notation (standard): For a function g(x) defined on an interval I, we write

$$\|g\|_I \stackrel{\text{write}}{=} \sup_{x \in I} |g(x)|$$

Let  $f_n(x)$   $(n=0,1,2,\cdots)$  be a sequence of functions, defined on an interval I. We say that

 $\{f_n(x)\}$  converges "uniformly" on I to f(x) if

$$\lim_{n \to \infty} \|f_n - f\|_I = 0 \quad \text{i.e., } \lim_{n \to \infty} \sup_{\substack{x \in I \\ \text{It is a function of } n \text{ alone}}} |f_n(x) - f(x)| = 0$$

Notation.  $\{f_n(x)\}$  converges uniformly on I to f(x):

$$f_n(x) \rightrightarrows f(x)$$
 on  $I$  or  $f_n \rightrightarrows f$  on  $I$ 

Note that 
$$\sup_{x \in I} |f_n(x) - f(x)| \le \varepsilon \iff |f_n(x) - f(x)| \le \varepsilon$$
, for all  $x \in I$ 

Hence

$$f_n(x) \Longrightarrow f(x)$$
 on  $I$ 

given 
$$\varepsilon > 0$$
,  $\exists N = N(\varepsilon)$  (depends on  $\varepsilon$ , but not on  $x$ ) such that  $n \ge N \implies |f_n(x) - f(x)| < \varepsilon \text{ (or } \le \varepsilon) \text{ for all } x \in I$ 

given 
$$\varepsilon > 0$$
,  $\exists N = N(\varepsilon)$  such that 
$$n \ge N \implies \sup_{x \in I} |f_n(x) - f(x)| \le \varepsilon \text{ (or } < \varepsilon)$$

Remark (obvious)

$$f_n(x) \Longrightarrow f(x)$$
 on  $I \Longrightarrow f_n \to f$  on  $I$ 

Pf. Follows from  $|f_n(x) - f(x)| \le ||f_n - f||_I \quad \forall x \in I$ 

"Remember"

$$f_n(x) \rightrightarrows f(x) \text{ on } I \quad \Leftrightarrow \quad \sup_{\substack{x \in I \\ \text{maximum error on } I \\ \text{it is (just) a ft of } n \text{ alone}}} \left| f_n(x) - f(x) \right| \left( = \mid \mid f_n - f \mid \mid_I \right) \to 0 \text{ as } n \to \infty$$

This means "in geometric sense" that



i.e., all  $f_n(x)$   $(n=0,1,2,\cdots)$  lie in the (curved) band  $(f(x)-\varepsilon, f(x)+\varepsilon)$  on I, for  $n\gg 1$  (the band is a neighborhood of f in some sense)

Summary:

- (i) pointwise convergence: "vertical" test (i.e., x-test) on I
- (ii) uniform convergence: "band" test (i.e., y-test) on I

Ex C. Show, as  $n \to \infty$ ,

$$f_n(x) = \frac{nx}{1 + n^2 x^2} \to 0 \text{ on } [0, 1] \text{ but } \not\equiv 0 \text{ on } [0, 1]$$

Pf. 
$$x = 0$$
:  $f_n(0) = 0$  for every  $n$   $\therefore$   $f_n(0) \to 0$  as  $n \to \infty$ 

$$0 < \underbrace{x}_{\text{fix}} \le 1: \quad 0 \le f_n(x) = \frac{nx}{1 + n^2 x^2} < \frac{nx}{n^2 x^2} = \frac{1}{nx} \to 0 \cdot \frac{1}{x} = 0$$

$$f_n(x) \to 0$$
 (pointwise) on [0, 1]

But 
$$\sup_{x \in [0, 1]} |f_n(x) - 0| \ge |f_n(1/n)| = \frac{n \cdot 1/n}{1 + n^2(1/n)^2} = 1/2 \quad \text{(1)}$$

$$\therefore$$
  $f_n(x) \not \equiv 0$  on  $[0,1]$ 

Note: 
$$f_n'(x) = \frac{n(1+n^2x^2) - nx(2n^2x)}{(1+n^2x^2)^2} = \frac{n(1-n^2x^2)}{(1+n^2x^2)^2} = 0 \Leftrightarrow x = \frac{1}{n}$$

$$f_n: \nearrow \max \searrow$$
 $f'_n: + 0 x: 0 \frac{1}{n} 1$ 

$$\therefore \sup_{x \in [0, 1]} |f_n(x) - 0| = \sup_{f_n \ge 0} f_n(x) = \max_{x \in [0, 1]} f_n(x) = \max_{f_n \in C[0, 1]} f_n(x) = f_n(1/n)$$

Ex D. Does 
$$\frac{n}{1+nx} \Rightarrow \frac{1}{x}$$
 on  $(0, \infty)$ ?

(Seen, in Ex B, that 
$$\frac{n}{1+nx} \to \frac{1}{x}$$
 pointwise on  $(0, \infty)$ )

Sol. We need to estimate

$$\sup_{x\in(0,\;\infty)}\left|\frac{n}{1+nx}-\frac{1}{x}\right| \quad = \quad \sup_{x\in(0,\;\infty)}\frac{1}{(1+nx)x}$$

$$g_n(x) \stackrel{\text{let}}{=} \frac{1}{(1+nx)x} \rightarrow g'_n(x) = \frac{-(1+2nx)}{(1+nx)^2 x^2} < 0 \text{ on } (0,\infty) \quad \therefore g_n(x) \text{ is strictly } \downarrow \text{ for } x > 0$$

Hence we must investigate the behavior of  $g_n(x)$  at  $x \approx 0^+$ 

$$\sup_{x \in (0, \infty)} \frac{1}{(1+nx)x} \underset{\text{take } x=1/n}{\geq} \frac{n}{2} \to \infty$$

$$\therefore \quad \frac{n}{1+nx} \not \preceq \frac{1}{x} \quad \text{on } (0,\infty)$$

Remark. Does  $\frac{n}{1+nx} \Rightarrow \frac{1}{x}$  on  $[1, \infty)$ ?

Sol.  $g'_n(x) < 0$  for  $x \ge 1$   $g_n(x)$  is strictly  $\downarrow$  for  $x \ge 1$ 

 $g_n(x)$  has its max at x=1

$$\therefore \sup_{x \in [1, \infty)} \frac{1}{(1+nx)x} = \underbrace{\frac{1}{1+n}}_{x=1} \rightarrow 0$$

$$\therefore \quad \frac{n}{1+nx} \rightrightarrows \frac{1}{x} \quad \text{on } [1,\infty)$$

Ex E. Show that  $f_n(x) := x^n \to 0$  pointwise on [0,1) (obvious) but  $x^n \not\equiv 0$  on [0,1)

Pf. For any  $n \ge 1$ ,  $x^n \to 1$  as  $x \to 1^-$ 

$$\therefore x^n > 1/2 \text{ for } x \approx 1^-$$

$$\therefore |x^n - 0| > 1/2 \quad \text{for } x \approx 1^-$$

$$\therefore$$
  $x^n \not\equiv 0$  on  $[0,1)$ 

Alternative easy pf.

$$\sup_{x \in [0,1)} |f_n(x) - f(x)| = \sup_{x \in [0,1)} |x^n - 0| = \sup_{x \in [0,1)} x^n \ge \left(1/\sqrt[n]{2}\right)^n = 1/2$$

$$\begin{array}{cccc}
\operatorname{stap}_{x\in[0,1)} |_{x\in[0,1)} |_{x\in[0,1]} |$$

$$\therefore$$
  $x^n \not\equiv 0$  on  $[0,1)$ 

Remark. Indeed, we can see that  $\sup_{x \in [0, 1)} x^n = 1$ 

(: Clearly 1 is an upper bound for the set  $\{x^n : 0 \le x < 1\}$ 

Let  $0 < \varepsilon < 1$ . Then  $\exists \ y \ (\text{depend on } n)$  such that  $\sqrt[n]{1-\varepsilon} < y < 1 \ \ (\leftarrow \sqrt[n]{1-\varepsilon} < 1)$ 

i.e.,  $\forall \varepsilon \in (0,1), \exists y \in (0,1)$  such that  $1-\varepsilon < y^n < 1$  for some n

 $\therefore$  1 -  $\varepsilon$  is not an upper bound for the set  $\{x^n : 0 \le x < 1\}$ 

Therefore, 1 is the least upper bound for the set  $\{x^n : 0 \le x < 1\}$ 

Basic Theorem for uniform convergence [an equivalent characterization for uniform convergence]:

$$f_n(x) \rightrightarrows f(x) \text{ on } I \Leftrightarrow \begin{cases} \exists \text{ a (nonnegative) real sequence } (\varepsilon_n) \text{ such that} \\ (i) \quad |f_n(x) - f(x)| \leq \varepsilon_n \quad \text{ for all } x \in I \quad (\therefore \varepsilon_n \text{ is indep of } x \in I) \\ (ii) \quad \varepsilon_n \to 0 \text{ as } n \to \infty \end{cases}$$

Pf. Already seen that 
$$f_n(x) \rightrightarrows f(x)$$
 on  $I \Leftrightarrow \lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$ 

$$\Rightarrow$$
: Letting  $\varepsilon_n = \sup_{x \in I} |f_n(x) - f(x)| \Rightarrow$  (i) & (ii) are clearly satisfied.

$$\Leftarrow: \qquad 0 \leq \sup_{x \in I} |f_n(x) - f(x)| \leq \underbrace{\varepsilon_n \to 0}_{\text{(ii)}} \quad \text{as } n \to \infty$$

$$\therefore \quad \lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$$

Ex F. Show 
$$\frac{x+n}{1+nx} \Rightarrow \frac{1}{x}$$
 on  $[1, a]$   $(a > 1)$ 

Pf. For  $x \ge 1$ ,

$$\left| \frac{x+n}{1+nx} - \frac{1}{x} \right| = \frac{x^2 - 1}{x(1+nx)} \le \frac{a^2 - 1}{1+n} \equiv \underbrace{\varepsilon_n}_{\text{indep of } x} \to 0$$

Ex G. Show 
$$e^{\frac{x}{n}} \implies 1$$
 on  $[0, 1]$ 

Pf. 
$$\left| e^{\frac{x}{n}} - 1 \right| = \left| e^{\frac{x}{n}} - e^{0} \right|$$
  $\stackrel{\text{MVT}}{=}$   $e^{c} \cdot \frac{x}{n}$ , where  $0 < c < \frac{x}{n} (< 1)$   $< \frac{e}{n} \rightarrow 0$  indep of  $x \in [0, 1]$ 

### Def. (Pointwise and Uniform convergence of series)

Let  $u_k(x)$   $(k = 0, 1, 2, \cdots)$  be defined on I, and let

$$S_n(x) = u_0(x) + u_1(x) + \dots + u_n(x)$$
 (the nth partial sum of the series)

We say that  $\sum_{0}^{\infty} u_k(x)$  converges pointwise (uniformly) on I if the sequence  $\{S_n(x)\}_0^{\infty}$  converges pointwise (uniformly) on I. If the series converges, its sum(= its limit) is the function f(x) defined by

$$f(x) = \lim_{n \to \infty} S_n(x) = \sum_{k=0}^{\infty} u_k(x), \quad x \in I$$

$$\bullet \quad f(x) = \sum_{0}^{\infty} u_k(x) \text{ on } I \quad \stackrel{\text{means}}{\Leftrightarrow} \quad f(x) = \sum_{0}^{\infty} u_k(x) \text{ converges (pointwise) for every } x \in I$$

**※** Ex A.

(a) 
$$\sum_{k=0}^{n} \frac{x^{k}}{k!} \left( = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} \right) \quad \Rightarrow \quad e^{x} \quad \text{on any interval } [-R, R], \quad \text{where } R > 0$$

(b) (i) 
$$\sum_{0}^{n} \frac{x^{k}}{k!} \rightarrow e^{x} \text{ on } (-\infty, \infty) \text{ i.e., } \sum_{0}^{\infty} \frac{x^{k}}{k!} = e^{x} \text{ (pointwise) on } (-\infty, \infty) \text{ (} \Leftarrow \text{ (a))}$$

(ii) 
$$\sum_{0}^{n} \frac{x^{k}}{k!} \not \simeq e^{x}$$
 on  $(-\infty, \infty)$  i.e.,  $\sum_{0}^{\infty} \frac{x^{k}}{k!} \not \simeq e^{x}$  uniformly on  $(-\infty, \infty)$ 

Pf. (a) Given any  $x \in [-R, R]$ 

$$e^{x} \stackrel{\text{Taylor' theorem}}{=} 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{c}x^{n+1}}{(n+1)!}, \quad 0 < c < x \quad \text{or} \quad x < c < 0$$

$$\therefore \left| e^{x} - \left[ 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} \right] \right| = \frac{e^{c} |x|^{n+1}}{(n+1)!} \le \frac{e^{R}R^{n+1}}{(n+1)!}$$

Remains to show: (\*):  $\lim_{n\to\infty} \frac{e^R R^{n+1}}{(n+1)!} = 0 \text{ (note that } R \text{ is fixed)}$ 

To prove (\*), choose N so large that  $R < \frac{N+1}{2}$  ---( $\blacktriangle$ )

Thus if n > N, then

$$\frac{e^R R^{n+1}}{(n+1)!} = e^R \cdot \frac{R^{N+1}}{(N+1)!} \cdot \frac{R}{(N+2)} \cdots \frac{R}{(n+1)}$$

$$< e^R \cdot \frac{R^{N+1}}{(N+1)!} \cdot \frac{1}{2} \cdots \frac{1}{2} \quad \text{(by } (\blacktriangle))$$

$$= e^R \cdot \frac{R^{N+1}}{(N+1)!} \left(\frac{1}{2}\right)^{n-N} \quad \to \quad 0 \text{ as } n \to \infty$$
fixed number

$$\therefore \quad \sum_{0}^{n} \frac{x^{k}}{k!} \quad \Rightarrow \quad e^{x} \quad \text{on any interval } [-R, R]$$

Another way of showing (\*): Set  $a_n = \frac{e^R R^{n+1}}{(n+1)!}$  (R is fixed).

Then  $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{R}{n+2}=0$ , and thus  $\sum a_n$  is convergent; so  $a_n\to 0$  as  $n\to\infty$ 

(b) (i) Fix any 
$$x_0 \in (-\infty, \infty)$$
. Then  $\exists R > 0$  s.t.  $x_0 \in [-R, R]$ .

From the result (a), 
$$\sum_{0}^{n} \frac{x^{k}}{k!} \implies e^{x}$$
 on  $[-R, R]$ 

obviously

$$\Rightarrow \sum_{0}^{n} \frac{x^{k}}{k!} \rightarrow e^{x}$$
 on  $[-R, R]$ 

In particular, we see that

$$\sum_{0}^{n} \frac{x_0^{\ k}}{k\,!} \quad \rightarrow \quad e^{x_0} \quad \text{ since } x_0 \in [-R, R]$$

Since  $x_0 \in (-\infty, \infty)$  was an arbitrary point,

$$\sum_{0}^{n} \frac{x_{0}^{k}}{k!} \quad \rightarrow \quad e^{x_{0}} \quad \forall x_{0} \in (-\infty, \infty) \qquad \text{i.e., } \sum_{0}^{n} \frac{x^{k}}{k!} \quad \rightarrow \quad e^{x} \quad \text{ on } (-\infty, \infty)$$

Alternative way of showing (b)-(i):

Given any fixed  $x \in (-\infty, \infty)$ 

$$e^{x} \stackrel{\text{Taylor' theorem}}{=} 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{c}x^{n+1}}{(n+1)!}, \quad 0 < c < x \quad \text{or} \quad x < c < 0$$

$$\therefore \left| e^{x} - \left( 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} \right) \right| = \frac{e^{c} |x|^{n+1}}{(n+1)!} \le \frac{e^{|x|} |x|^{n+1}}{(n+1)!}$$

Remains to show:

$$(\spadesuit): \quad \lim_{n \to \infty} \frac{e^{|x|} |x|^{n+1}}{(n+1)!} = 0 \quad \text{(note that } x \text{ is fixed } \& e^{|x|} \text{ is indep of } n)$$

To prove  $(\spadesuit)$ , we may assume x > 0 and we let  $A_n = \frac{1}{n!}x^n$ . Then

$$\frac{A_{n+1}}{A} = \frac{x}{n+1} < 1/2$$
 if  $n > 2x - 1$ 

Choose N so that N > 2x - 1. Then

$$A_{N+1} < \frac{1}{2} A_N$$

$$A_{N+2} < \frac{1}{2} A_{N+1} < \frac{1}{2^2} A_N$$

$$\vdots$$

$$A_{N+p}<rac{1}{2^p}A_N$$

Thus 
$$\lim_{n \to \infty} A_n = 0$$
  $\therefore \lim_{n \to \infty} \frac{e^{|x|} |x|^{n+1}}{(n+1)!} = 0$ 

$$\therefore \sum_{0}^{n} \frac{x^{k}}{k!} \rightarrow e^{x} \quad \text{i.e.,} \quad \sum_{0}^{\infty} \frac{x^{k}}{k!} = e^{x} \quad \text{on } (-\infty, \infty)$$

**Another way** of showing  $(\spadesuit)$ : Set  $a_n = \frac{e^{|x|} \mid x \mid^{n+1}}{(n+1)!}$  (x is fixed).

Then 
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{\mid x\mid}{n+2}=0$$
, and thus  $\sum a_n$  is convergent; so  $a_n\to 0$  as  $n\to \infty$ 

### (ii) An indirect pf (in our text)

Suppose 
$$\sum_{0}^{n} \frac{x^k}{k!}$$
  $\Rightarrow$   $e^x$  on  $(-\infty, \infty)$ . Then

given 
$$\varepsilon > 0$$
,  $e^x \approx 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ ,  $\forall x \in \mathbb{R}$ , for  $n \gg 1$ 

i.e., given 
$$\varepsilon > 0$$
,  $\left| e^x - \left( 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right| < \varepsilon$ ,  $\forall x \in \mathbb{R}$ , for  $n \gg 1$ 

In particular, 
$$\left|\frac{e^x}{x^n} - \frac{(1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!})}{x^n}\right| < \frac{\varepsilon}{\mid x\mid^n} < \varepsilon, \quad \forall x>1, \ \text{for} \ n\gg 1$$

$$\text{i.e.,} \quad (\bigstar) \colon \quad \frac{e^x}{x^n} \; \approx \; \frac{1}{x^n} + \frac{1}{x^{n-1}} + \frac{1}{2! \, x^{n-2}} + \dots + \frac{1}{n!} \quad \forall x > 1, \; \text{for} \; n \gg 1$$

For any fixed such n (with  $n \gg 1$ ), let  $x \to \infty$   $\Rightarrow$ 

LHS of  $(\bigstar) \to \infty$  by L'Hospital's rule, but RHS of  $(\bigstar) \to \frac{1}{n!}$ 

Contradiction!!

$$\therefore \quad \sum_{0}^{n} \frac{x^{k}}{k!} \quad \not \simeq \quad e^{x} \quad \text{on } (-\infty, \infty)$$

Another direct proof of showing (b)-(ii):

$$\sup_{x \in (-\infty, \infty)} \left| e^x - \left( 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right|$$

$$\geq \sup_{x \in (0, \infty)} \left| e^x - \left( 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right|$$

$$\text{Note: } h(x) \stackrel{\text{let}}{=} e^x - \left( 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) = \frac{e^c x^{n+1}}{(n+1)!} > 0 \text{ for } x > 0 \text{ (by Taylor theorem)}$$

$$h'(x) = e^x - \left( 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} \right) \stackrel{\text{Taylor theorem again}}{=} \frac{e^c x^n}{\frac{n!}{n!}}, \quad 0 < c < x$$

$$\therefore h(x) \text{ is strictly } \uparrow \text{ on } (0, \infty) - - (*)$$

$$\overset{\text{take } x = n}{\geq} \frac{(-(*))}{e^n} e^n - \left( 1 + n + \frac{n^2}{2!} + \dots + \frac{n^n}{n!} \right) \stackrel{\text{magner theorem}}{=} \frac{e^c n^{n+1}}{(n+1)!}, \quad 0 < c < n$$

$$> \frac{n^{n+1}}{(n+1)!} = \frac{n}{n+1} \cdot \frac{n}{n} \cdot \frac{n}{n-1} \cdot \dots \cdot \frac{n}{1} > \frac{1}{2} \cdot 1 \cdot \frac{n}{n-1} \cdot \dots \cdot \frac{n}{1} > \frac{n}{2} \to \infty$$

$$\therefore \sup_{x \in (-\infty, \infty)} \left| e^x - \left( 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right| \not \bowtie 0$$

$$\therefore \sum_{0}^{n} \frac{x^k}{k!} \not \bowtie e^x \text{ on } (-\infty, \infty)$$

# 22.2 Criteria for uniform convergence

Recall the notation: 
$$\|u_n\|_I \stackrel{\text{write}}{=} \sup_{x \in I} |u_n(x)|$$

Thm A (A necessary condition for uniform convergence)

Suppose  $\sum_{0}^{\infty} u_k(x)$  converges uniformly on I. Then

$$\|u_n\|_{I} \to 0 \text{ as } n \to \infty$$

Pf. Let 
$$S_n(x) = \sum_{0}^{n} u_k(x)$$
 and  $S(x) = \sum_{0}^{\infty} u_k(x)$ . Then hypo says 
$$S_n(x) \rightrightarrows S(x) \text{ on } I. \qquad \text{i.e., } \|S_n - S\|_I \to 0 \text{ as } n \to \infty \quad \text{---}(\bullet)$$
 
$$u_n(x) = S_n(x) - S_{n-1}(x) \quad (n \ge 1)$$
 
$$= S_n(x) - S(x) + S(x) - S_{n-1}(x)$$
 
$$|u_n(x)| \le |S_n(x) - S(x)| + |S(x) - S_{n-1}(x)| \quad \forall x \in I$$
 
$$\le \|S_n - S\|_I + \|S_{n-1} - S\|_I$$
 
$$\therefore \|u_n\|_I \le \|S_n - S\|_I + \|S_{n-1} - S\|_I \stackrel{\text{as } n \to \infty}{\to} 0 + 0 = 0 \quad \text{by } \bullet$$
 
$$\therefore \|u_n\|_I \to 0 \quad \text{as } n \to \infty.$$

Ex. An easy way of proving: 
$$\sum_{k=0}^{\infty} \frac{x^k}{k!} \neq e^x$$
 uniformly on  $(-\infty, \infty)$ 

Sol. 
$$u_n(x) = \frac{x^n}{n!}$$
 
$$\|u_n\|_{(-\infty,\infty)} = \sup_{x \in (-\infty,\infty)} \frac{|x|^n}{n!} \geq \frac{n^n}{n!} = \frac{n}{n} \cdot \frac{n}{n-1} \cdots \frac{n}{1} > n \to \infty$$

$$\therefore \|u_n\|_{(-\infty,\infty)} \not \to 0 \text{ as } n \to \infty$$

$$\therefore \sum_{n=0}^{\infty} \frac{x^k}{k!} \neq e^x \text{ uniformly on } (-\infty,\infty) \text{ by Thm A}$$

\* Thm B (Weierstrass M-test) [Here M means majorant]

Suppose that for  $k \geq 0$ ,  $|u_k(x)| \leq M_k$  on I, and  $\sum_{k=0}^{\infty} M_k$  converges.

Then  $\sum_{k=0}^{\infty} u_k(x)$  converges uniformly on I.

Pf. For each  $x_0 \in I$ ,

$$\sum_{0}^{\infty}u_{k}(x_{0}) \ \ \text{is absolutely convergent by Comparison test.} \qquad \therefore \qquad \sum_{0}^{\infty}u_{k}(x_{0}) \ \ \text{converges.}$$

Thus, we can write:  $\sum_{0}^{\infty}u_{k}(x)=f(x), \quad x\in I.$ 

i.e.,  $\sum_{k=0}^{\infty} u_k(x)$  converges pointwise to its sum f(x) on I.

Let  $S_n(x) = \sum_{i=0}^{n} u_k(x)$ . Then

$$|f(x) - S_n(x)| = \left| \sum_{n+1}^{\infty} u_k(x) \right| \leq \sum_{n+1}^{\infty} |u_k(x)| \leq \sum_{n+1}^{\infty} M_k \equiv \underbrace{\varepsilon_n}_{\text{indep of } x \in I}$$

(\*) follows from: Ex.  $\sum a_n$ : (abso.) conv  $\Rightarrow$   $\left|\sum a_n\right| \leq \sum |a_n|$  We will show  $\varepsilon_n \to 0$ .

$$\varepsilon_n = \sum_{n+1}^{\infty} M_k = \sum_{0}^{\infty} M_k - \sum_{0}^{n} M_k \xrightarrow{\sum_{0}^{\infty} M_k : \text{ converges}} \sum_{0}^{\infty} M_k - \sum_{0}^{\infty} M_k = 0$$

Therefore

$$\sum_{k=0}^{\infty} u_k(x)$$
 converges uniformly on  $I$  (by **Basic Theorem for uniform convergence**)

Equivalent form of M-test:  $\sum_{k=0}^{\infty} u_k(x)$  converges uniformly on I if  $\sum_{k=0}^{\infty} \|u_k\|_I$  converges.

Ex. Show that  $\sum_{1}^{\infty} \frac{\cos nx}{n^2}$  converges uniformly on  $(-\infty, \infty)$ .

Pf. 
$$\left|\frac{\cos nx}{n^2}\right| \le \frac{1}{n^2} \quad \forall x \in (-\infty, \infty) \quad \text{and} \quad \sum_{1}^{\infty} \frac{1}{n^2} \quad \text{converges}$$

 $\overset{\text{Weierstrass M-test}}{\Rightarrow} \quad \sum_{1}^{\infty} \frac{\cos nx}{n^2} \ \text{converges uniformly on } \ (-\infty, \infty).$ 

Ex. Show that 
$$f(x) = \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$$
 converges uniformly on  $\mathbb{R}$ 

Pf. Note that 
$$1 + nx^2 \ge 2|x|\sqrt{n}$$
. Hence for  $x \ne 0$ 

$$\sum_{n=1}^{\infty} \left| \frac{x}{n(1+nx^2)} \right| \le \sum_{n=1}^{\infty} \frac{|x|}{n \cdot 2 |x| \sqrt{n}} \le \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} : \text{conv (This also holds for } x = 0)$$

By M-test, 
$$f(x) = \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$$
 converges uniformly on  $\mathbb{R}$ 

Ex . We know that 
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for  $0 \le x < 1$ 

(i) Show that 
$$\sum_{n=0}^{\infty} x^n$$
 converges uniformly on  $[0,t]$  when  $0 < t < 1$ .

(ii) Show that 
$$\sum_{n=0}^{\infty} x^n$$
 does not converge uniformly on  $[0,1)$ .

Pf. (i) 
$$|x^n| = x^n \le t^n \quad \forall x \in [0, t]$$
 &  $\sum_{n=0}^{\infty} t^n$ : converges since  $t < 1$ 

Then by Weierstrass M-test,  $\sum_{n=0}^{\infty} x^n$  converges uniformly on [0,t]

(ii) 
$$u_n(x) = x^n \quad \Rightarrow \quad \|u_n\|_{[0,1)} = 1 \not \sim 0$$

Thus  $\sum_{n=0}^{\infty} x^n$  is not uniformly convergent on [0,1)

Thm C (Uniform convergence of power series)

If  $\sum_{n=0}^{\infty} a_n x^n$  has the radius of convergence R > 0, then the series converges uniformly on every interval [-L, L], where  $0 \le L < R$ .



 $\mbox{Pf.} \quad \mbox{Let} \ \ x \in [-L,\,L]. \ \ \mbox{Then} \ \ \left| \, a_n x^n \, \right| \leq \left| \, \, a_n \, \mid \, L^n \, .$ 

By the definition of radius of convergence of P.S. ,  $\sum_{n=0}^{\infty} a_n x^n$  converges absolutely for  $\forall \mid x \mid < R$ .

In particular,  $\sum\limits_{0}^{\infty} \mid a_n \mid L^n$  converges (since  $0 \leq L < R$  ).

Weierstrass M-test  $\Rightarrow$   $\sum_{n=0}^{\infty} a_n x^n$  converges uniformly on [-L, L].

### Two additional theorems on uniform convergence:

Theorem D (Cauchy criterion for uniform convergence)

Let  $\{F_n\}$  be a sequence of functions defined on an interval I. Then

 $\{F_n\}$  is uniformly convergent on I

$$\Leftrightarrow \quad \forall \varepsilon > 0, \ \, \exists N \in \mathbb{N} \quad \text{such that} \ \, \left\| F_m - F_n \right\|_{\mathcal{I}} < \varepsilon \quad \text{for all} \quad m > n > N$$

Pf.  $(\Rightarrow: easy part)$ 

Suppose  $\{F_n\}$  is uniformly convergent to F on I. Then

$$\forall \varepsilon>0, \ \exists N\in\mathbb{N} \ \text{ such that } \left\|F_{n}-F\right\|_{\mathrm{L}}<\varepsilon\left/2 \ \text{ for all } \ n>N \ .$$

Thus, for all m > n > N, we have

$$\left\|F_{m}-F_{n}\right\|_{I}=\left\|F_{m}-F+F-F_{n}\right\|_{I}\leq\left\|F_{m}-F\right\|_{I}+\left\|F-F_{n}\right\|_{I}<\varepsilon$$

 $(\Leftarrow)\quad \text{Let}\ \ \varepsilon>0\quad \text{be given. Then by hypo, we can choose}\quad N\in\mathbb{N}\quad \text{such that}\\ \left\|F_{\scriptscriptstyle m}-F_{\scriptscriptstyle n}\right\|_{\scriptscriptstyle I}<\varepsilon\,/\,2\quad \text{for all}\quad m>n>N\quad ---\ (\odot)$ 

For any fixed n > N, we let  $a_m = \|F_m - F_n\|_L(m > n)$ . Then this implies that

$$a_{\scriptscriptstyle m} < \varepsilon \, / \, 2 \ \, \text{for all} \ \, m > n \, , \quad \text{and so} \ \, \lim_{\scriptscriptstyle m \to \infty} a_{\scriptscriptstyle m} \le \varepsilon \, / \, 2 \, \, \, \text{(by LLT)}$$

Now fix any  $x \in I$ . Then the number sequence  $\{F_n(x)\}$  has the property that

$$|F_m(x) - F_n(x)| < \varepsilon / 2 < \varepsilon$$
 for all  $m > n > N$  (by  $(\odot)$ )

This says the sequence  $\{F_n(x)\}$  is a Cauchy sequence. Hence  $\{F_n(x)\}$  is convergent

Thus we can let  $\lim_{n\to\infty}F_n(x)=F(x),\ x\in I$  .

Then for all n > N and all  $x \in I$ 

$$\left|F(x)-F_{\scriptscriptstyle n}(x)\right|=\lim_{{\scriptscriptstyle m}\to\infty}\left|F_{\scriptscriptstyle m}(x)-F_{\scriptscriptstyle n}(x)\right|\leq \lim_{{\scriptscriptstyle m}\to\infty}\left\|F_{\scriptscriptstyle m}-F_{\scriptscriptstyle n}\right\|_{{\scriptscriptstyle I}}\leq \varepsilon\,/\,2$$

$$\therefore \sup_{x \in I} |F(x) - F_n(x)| \le \varepsilon / 2 \quad \text{for all} \quad n > N$$

i.e., 
$$\|F - F_n\|_I \le \varepsilon / 2 < \varepsilon$$
 for all  $n > N$   $\therefore F_n \Rightarrow F$  on  $I$ 

Corollary.

Let  $\left\{u_{n}\right\}_{0}^{\infty}$  be a sequence of functions on an interval I . Then

$$\sum_{k=0}^{\infty} u_k(x)$$
 converges uniformly on  $I$ 

$$\Leftrightarrow \ \, \forall \varepsilon > 0, \ \, \exists N \in \mathbb{N} \ \, \text{ such that } \left\| \sum_{k=n+1}^m u_k \right\|_I < \varepsilon \ \, \text{for all } \, \, m > n > N$$

[Shortly, 
$$\left\|\sum_{k=n+1}^{m} u_k\right\|_{L^{\infty}} \to 0$$
 as  $m, n \to \infty$ ]

Pf. Have only to notice that 
$$\left\|\sum_{k=n+1}^m u_k\right\|_1 = \left\|\sum_{k=0}^m u_k - \sum_{k=0}^n u_k\right\|_1$$

Theorem E (Tail convergence test for uniform convergence of series of functions)

Suppose  $\sum_{k=0}^{\infty} u_k(x)$  converges pointwise on an interval I . Then

$$\sum_{0}^{\infty}u_{k}(x) \quad \text{converges uniformly on} \quad I \quad \Leftrightarrow \qquad \lim_{n \to \infty} \left\{\sup_{x \in I} \left|\sum_{k=n}^{\infty}u_{k}(x)\right|\right\} = 0 \quad \text{i.e.,} \quad \sup_{x \in I} \left|\sum_{k=n}^{\infty}u_{k}(x)\right| \to 0$$

Follows from the simple fact that

$$\sum_{0}^{\infty}u_{k}(x) \quad \text{converges uniformly on} \quad I \quad \Leftrightarrow \quad \sup_{x \in I} \left| \sum_{0}^{\infty}u_{k}(x) - \sum_{0}^{n}u_{k}(x) \right| = \sup_{x \in I} \left| \sum_{n=1}^{\infty}u_{k}(x) \right| \rightarrow 0$$

Ex [Advanced]. Let  $S(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+x^2}$ . Prove that

- (i) S(x) converges uniformly on  $\mathbb{R} = (-\infty, \infty)$ .
- (ii) S(x) converges absolutely at no point of  $(-\infty, \infty)$  --- easy

$$\begin{array}{ll} \text{Pf of (i).} & \text{M1 [Use M-test]} \\ \text{Let} & u_n(x) = (-1)^{n+1} \frac{1}{n+x^2} \qquad \Rightarrow \qquad \sup_{x \in (-\infty,\infty)} \left| u_n(x) \right| = \frac{1}{n} \coloneqq M_n \ \ \text{and} \ \ \sum_{n=1}^\infty M_n = \infty \end{array}$$

M2 [Use n-th term test]

$$\|u_n\|_{\mathbb{R}} = \frac{1}{n} \to 0$$
 as  $n \to \infty$ ; So n-th term test also does not work.

M3 [Use Theorem E plus "Cauchy's alternating series test" (since it is alternating)]

Since 
$$\frac{1}{n+x^2}$$
 is  $\downarrow 0$  for each (fixed)  $x \in \mathbb{R}$ , we see that

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+x^2}$$
 converges (pointwise) by Alternating series test,

Now let 
$$S_n(x) = \sum_{k=1}^n (-1)^{k+1} \frac{1}{k+x^2} =: \sum_{k=1}^n u_k(x)$$
 . Then

$$\left|S_{\scriptscriptstyle n}(x)-S(x)\right| \left[=\left|\sum_{\scriptscriptstyle n+1}^{\scriptscriptstyle \infty}u_{\scriptscriptstyle k}(x)\right| = \mid \operatorname{Tail}\mid\right] \leq \mid u_{\scriptscriptstyle n+1}(x)\mid = \frac{1}{n+1+x^2} \leq \frac{1}{n+1} \quad \forall x \in \mathbb{R}$$

$$\text{So} \quad \left\|S_n - S\right\|_{\mathbb{R}} \left[ = \sup_{x \in \mathbb{R}} \left| \sum_{n=1}^{\infty} u_k(x) \right| \right] \leq \frac{1}{n+1} \quad \to \quad 0 \quad \text{as} \quad n \to \infty \; ; \qquad \therefore \quad S_n(x) \rightrightarrows S(x) \; \text{ on } \; \mathbb{R}$$

i.e., 
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+x^2}$$
 converges uniformly on  $\ \mathbb{R}$  .

Remark (cf: see the previous Ex) Assume that on an interval I,

- (i)  $u_n(x)$  is nonnegative and  $\downarrow$  &
- (ii)  $||u_n||_I \to 0$  (i.e.,  $u_n \rightrightarrows 0$  on I)

Then  $\sum_{n=0}^{\infty} (-1)^n u_n(x)$  is uniformly convergent on I.

**Homework:** ① Does  $\sum_{n=1}^{\infty} \frac{x^n}{n}$  converge uniformly on [-1,0]?

② Does 
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 converge uniformly on [0,1)?