Brownian motion 1

Definition 1.1. A \mathbb{R}^1 -valued process $(B(t), 0 \le t < \infty)$ is (standard) Brownian motion (Wiener process) if B(0) = 0 and

- (a) ("independent increments") $B(t_0)$, $B(t_1) B(t_0)$, ..., $B(t_n) B(t_{n-1})$ are independent dent, any $0 \le t_0 < t_1 < \cdots < t_n$
- (b) $B(t) B(s) \sim N(0, \underbrace{t-s}_{\text{variance}})$ distribution
- (c) Sample path $t \mapsto B(t)$ are continuous.

Need proof of existence.

Proof. Write $Q_2 = \text{dyadic rationals} = \{2^{-j}i : i, j \ge 0\}$. Suffices to consider time interval [0,1]. Enumerate Q_2 as q_1,q_2,\ldots For each n, items (a) and (b) specify specify a joint distribution of $(B(q_1), B(q_2), \dots, B(q_n))$. These are *consistent* as *n* increases.

TODO: Fig 26.1 Check
$$N(0, s - t_1) \stackrel{\text{ind}}{+} (0, t_2 - s) = N(0, t_2 - t_1)$$

TODO: Fig 26.1 Check $N(0,s-t_1) \stackrel{\text{ind}}{+} (0,t_2-s) = N(0,t_2-t_1)$ Use Kolmogorov extension theorem to show there exists a process $(B(q),q\in Q_2\cap$ [0,1]).

For $f: Q_2 \cap [0,1] \to \mathbb{R}$, and $\delta > 0$, define

$$w(f,\delta) = \sup_{\substack{0 \le q_1 < q_2 \le 1\\ q_2 \in Q_2\\ q_2 - q_1 \le \delta}} |f(q_1) - f(q_2)| \tag{1.1}$$

Lemma 1.2. (exists continuous extension from Q_2 to all of \mathbb{R})

If
$$w(f, \delta) \to 0$$
 as $\delta \to 0$, then \exists cts \tilde{f} : $[0, 1] \to \mathbb{R}$ such that $\tilde{f}(q) = f(q) \ \forall q \in Q_2 \cap [0, 1]$.

Proof. Define $\tilde{f}(t) = \limsup_{q \downarrow t} f(q)$ (lim sup guaranteed well-defined). If $|t - s| < \delta$,

then
$$|\tilde{f}(t) - \tilde{f}(s)| \leq w(f, \delta)$$
. The lemma premise implies f is continuous.

It is sufficient to show $P(w(B(\cdot),\delta) \geq \varepsilon) \to 0$ as $\delta \downarrow 0$, $\varepsilon > 0$ fixed, because then $w(B(\cdot),\delta) \to 0$ a.s. as $\delta \downarrow 0$ and by lemma 1.2 $\exists \tilde{B}$ such that $t \mapsto \tilde{B}(\omega,t)$ is continuous a.s (item (c)). Easy to check (using property of normals) items (a) and (b) remains true for $t \in \mathbb{R}$. Redefine $B(t, \omega) \equiv 0 \ \forall t$ on null set.

Define

$$\bar{w}(f, 2^{-m}) = \max_{0 \le j \le 2^m - 1} \sup_{2^{-m} j \le q \le 2^{-m}(j+1)} |f(q) - f(2^{-m})|$$
(1.2)

Consider $0 \le q_1 < q_2 \le 1$ with $q_2 - q_1 \le 2^{-m}$.

TODO: Fig 26.2 They must be in either the same or adjacent intervals, so by the triangle inequality (see TODO: Fig 26.2 ref)

$$|f(q_2) - f(q_1)| \le 3\bar{w}(f, 2^{-m}) \tag{1.3}$$

So it suffices to show $P(\bar{w}(B(\cdot), 2^{-m}) \ge \varepsilon) \to 0$ as $m \to \infty$.

Define $S_m = \sup_{0 \le q \le 2^{-m}} |B(q)|$. $\bar{w}(B(\cdot), 2^{-m})$ is the max of 2^m identically distributed RVs, so $P(\bar{w}(B(\cdot), 2^{-m}) \ge \varepsilon) \le 2^m P(S_m \ge \varepsilon)$.

Fix m, take n > m. Consider $B(2^{-n}i, 0 \le i \le 2^{n-m})$. This is a martingale, so by convexity theorem $B^4(2^{-n}, i \ge 0)$ is a sub-martingale. Applying L^1 maximal inequality

$$P\left(\max_{2^{-n} \le 2^{-m}} B^4(2^{-m}) \ge \varepsilon^4\right) \le \varepsilon^{-4} \mathbb{E} B^4(2^{-m}) \tag{1.4}$$

Let $Z \sim N(0,1)$, so $B(t) \stackrel{d}{=} t^{1/2}Z$ and $P(S_m \ge \varepsilon) \le \varepsilon^{-4}2^{-2m}\mathbb{E}Z^4$.

$$P\left(\max_{2^{-n}<2^{-m}}B^4(2^{-m})\geq \varepsilon^4\right)\leq \varepsilon^4 2^{-2m}\mathbb{E}Z^4\tag{1.5}$$

Let $n \to \infty$, so

$$P(\bar{w}(B(\cdot), 2^{-m}) \ge \varepsilon) \le 2^m P(S_m \ge \varepsilon) \le 2^{-m} \varepsilon^{-4} \mathbb{E} Z^4$$
(1.6)

Taking $m \to 0$, this quantity $\to 0$ showing continuity.

Theorem 1.3. For almost all ω , the sample path $t \mapsto B(\omega, t)$ is nowhere differentiable.

Proof. From analysis: Consider $f : [0,1] \to \mathbb{R}$. Fix $C < \infty$. Suppose $\exists s$ such that f'(s) exists and $|f'(s)| \le C/2$. Then $\exists n_0$ such that for $n \ge n_0$,

$$|f(t) - f(s)| \le C|t - s|$$
 for all t such that $|t - s| \le \frac{3}{n}$ (1.7)

Rewrite: define $A_n = \{f : \text{above property holds for some } s\}$. As $n \to \infty$, $A_n \uparrow A \supset \{f : |f'(s)| \le C/2 \text{ for some } s\}$

For $0 \le K \le n - 1$, define

$$Y(f,k,n) = \max\left(|f(\frac{k+3}{n}) - f(\frac{k+2}{n})|, |f(\frac{k+2}{n}) - f(\frac{k+1}{n})|, |f(\frac{k+1}{n}) - f(\frac{k}{n})|\right)$$
(1.8)

TODO: Fig 26.3

Given $f \in A_n$, suppose the s for which the property holds satisfies $k/n \le s < (k+1)/n$. Then

$$\implies Y(f,k,n) \le \frac{sC}{n}$$
 (1.9)

$$\implies YA_n \subset D_n \stackrel{\text{def}}{=} \{ f : Y(f, k, n) \le \frac{sC}{n} \text{ for some } K \le n - 1 \}$$
 (1.10)

Computing the probability

$$P\left(\left|\underbrace{B\left(\frac{k+1}{n}\right) - B\left(\frac{k}{n}\right)}_{N(0,n^{-1}) = n^{-1/2}Z}\right| \le \frac{sC}{n}\right) = P(|Z \le sC/n^{1/2}) \le (2\pi)^{-1/2} \times 10C/n^{1/2} \quad (1.11)$$

Regard $B(\cdot)$ as random

$$P\left(Y(B,k,n) \le \frac{5C}{n}\right) = P\left(\left|B\left(\frac{k+1}{n}\right) - B\left(\frac{k}{n}\right)\right| \le \frac{sC}{n}\right)^3 \le 100C^3/n^{3/2} \tag{1.12}$$

So

$$P(B(\cdot) \in D_n) \le n \times P\left(Y(B, k, n) \le \frac{5C}{n}\right) \le 100C^3/n^{3/2}$$
 (1.13)

$$P(B(\cdot) \in A_n) \le 100C^3/n^{1/2} \tag{1.14}$$

Let
$$n \to \infty$$
, $P(B(\cdot) \in A) = 0$.