Maths: 14/15

(Tot: 19/2)

a) Gram-Schmidt process.

hell olone!

Let the vectors in the basis for U be $w_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $w_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$, and $w_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$. Then find vectors

 $v_1, v_2, v_3 \in U$ by the Gram-Schmidt process:

$$v_{1} = w_{1} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix},$$

$$v_{2} = w_{2} - \left(\frac{w_{2} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix},$$

$$v_{3} = w_{3} - \left(\frac{w_{3} \cdot v_{1}}{v_{1} \cdot v_{1}}\right) v_{1} - \left(\frac{w_{3} \cdot v_{2}}{v_{2} \cdot v_{2}}\right) v_{2} = \begin{pmatrix} 1 \\ -1/2 \\ 1/2 \\ 1 \end{pmatrix}.$$

Thus, an orthogonal basis for U consists of the vectors $\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\-1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1/2\\1/2\\1 \end{pmatrix}$. To check that they

are orthogonal, calculate dot products between all vectors:

$$v_{1} \cdot v_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix} = 1 - 1 = 0,$$

$$v_{1} \cdot v_{3} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1/2 \\ 1/2 \\ 1 \end{pmatrix} = -\frac{1}{2} + \frac{1}{2} = 0,$$

$$v_{2} \cdot v_{3} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1/2 \\ 1/2 \\ 1 \end{pmatrix} = -\frac{1}{2} - \frac{1}{2} + 1 = 0.$$

Therefore, the vectors $v_1, v_2, v_3 \in U$ are orthogonal.

- b) 2×2 matrix A.
 - i) Diagonalisation.

Since the characteristic polynomial of A is $p_A(\lambda)=(\lambda-2)(\lambda-1)$, the eigenspaces E_2,E_1 can be found from eigenvalues $\lambda_2=2,\lambda_1=1$, respectively. When $\lambda=2$,

$$A - 2I_2 = \begin{bmatrix} -1 & 0 \\ 4 & 0 \end{bmatrix}.$$

Then

$$E_2 = \text{null}(A - 2I_2) = \left\{ \begin{pmatrix} 0 \\ t \end{pmatrix} : t \in \mathbb{R} \right\} = \text{span}\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

When $\lambda = 1$,

$$A - 1I_2 = \begin{bmatrix} 0 & 0 \\ 4 & 1 \end{bmatrix}.$$

Then

$$E_1 = \operatorname{null}(A - 1I_2) = \left\{ \begin{pmatrix} t \\ -4t \end{pmatrix} : t \in \mathbb{R} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -4 \end{pmatrix} \right\}.$$

Let $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $v_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$. Since A is a 2 × 2 matrix with 2 linearly independent eigenvectors $m{v_1},m{v_2}$, A is diagonalisable. Furthermore, let P be the matrix $P=[m{v_2},m{v_1}]$ and let D be the matrix $D = \operatorname{diag}(\lambda_2, \lambda_1)$. Then the equation $P^{-1}AP = D$ is satisfied by the diagonalisation of A and the fact that $det(P) = -1 \neq 0$, which means that it is invertible.

 A^4 . ii)

First, find
$$P^{-1}$$
 to be $\begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix}$. A^4 can then be expressed as
$$A^4 = PD^4P^{-1} \Rightarrow \begin{bmatrix} 0 & 1 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 2^4 & 0 \\ 0 & 1^4 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 60 & 16 \end{bmatrix}.$$

c) Proof about $A^2 = I_n$.

To prove that A is symmetric if and only if A is orthogonal, one needs to prove it as an implication that holds both ways. By a property of invertibility, given that $A^2 = I_n$, $A = A^{-1}$. Firstly, assuming A is symmetric, $A = A^T$. Thus, $A^T = A^{-1}$, which is true if and only if A is orthogonal. Secondly, assuming A is orthogonal, $A^{-1} = A^T$. Thus, from the given identity, $A = A^T$, which is the definition of symmetry. Therefore, A is symmetric if and only if A is orthogonal, as required.

"If you want to type your answers try using La Tex!