How to remove multicollinearity for a regression model

Before you create a regression model, check on the multicollinearity of your predictor variables. It might save you a lot of trouble!

Multicollinearity

- Multicollinearity happens when two or more predictor(independent) variables in a model are closely related to each other
- Because they give similar information, it becomes difficult to know how each one affects the result.
- This is a common problem in multiple linear regression and can make the model's results less reliable

Problems with Multicollinearity

- Unstable Coefficients: When independent variables are highly correlated, small changes in the data can cause large fluctuations in the regression coefficients
- Reduced Interpretability: Since correlated variables provide similar information, it's challenging to find the individual contribution of each predictor.
- Risk of Overfitting: The model may fit the training data too closely by capturing random noise which decrease its ability to work well on new data.

Detecting Multicollinearity

1. Variance Inflation Factor:

- It measures how much the variance of an estimated regression coefficient is increased due to the correlation among the predictors.
- VIF is a common and effective method for detecting multicollinearity.

```
VIF = 1 → no correlation
1 < VIF < 5 → moderate correlation
VIF > 5 → high correlation
```

Code snippet

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
def calc_vif(X):
  vif=pd.DataFrame()
  vif["variables"] = X.columns
  vif["VIF"] = [variance_inflation_factor(X.values,i) for i in range(X.shape[1])]
   return(vif)
calc_vif(dataset[quan])
   variables
                    VIF
      ssc_p 67.026700
      hsc_p 56.131492
2 degree_p 112.755275
             33.696391
     etest_p
     mba_p 108.585463
      salary 15.167704
```

Detecting Multicollinearity

2. Correlation Matrix:

- A correlation matrix can visually show the relationships between all pairs of independent variables.
- If the correlation between two variables is high (typically above 0.8), it may indicate the presence of multicollinearity.
- However, this method can miss multicollinearity involving three or more variables.

Code snippet

Detecting Multicollinearity

3. Scatterplot Matrix:

- A scatterplot matrix provides a visual representation of the relationships between all pairs of independent variables.
- If one of the scatterplots shows a strong linear relationship, it could indicate multicollinearity.

Solutions To Multicollinearity In Linear Regression

Remove Highly Correlated Predictors

 If two or more variables are highly correlated, consider removing one of them

Implementation example:

 Consider our dataset has ssc_p, hsc_p, degree_p,mba_p, ent_p as predictor variables for salary estimation

<pre>calc_vif(dataset[quan])</pre>				
	variables	VIF		
0	ssc_p	67.026700		
1	hsc_p	56.131492		
2	degree_p	112.755275		
3	etest_p	33.696391		
4	mba_p	108.585463		
5	salary	15.167704		

- Here, all the variables have high VIF (value
 5), so we removed all of them except ent_p and salary
- However, the VIF value for the etest_p and salary is not reduced after removing other variables, so we need to try other solutions to remove multicolinearity for our dataset

<pre>calc_vif(dataset[["etest_p","salary"]])</pre>					
	variables	VIF			
0	etest_p	11.944567			
1	salary	11.944567			

Principal Component Analysis:

- PCA reduces the dimensionality of the dataset by combining correlated predictors into a smaller number of uncorrelated components.
- This can retain most of the explanatory power while eliminating multicollinearity

Implementation Example:

 Here we are combining all the mark columns into a single component using PCA

```
from sklearn.decomposition import PCA
  Apply PCA to the highly correlated features: hsc_p,ssc_p,degree_p,mba_p
pca = PCA(n_components=1) # Combine them into 1 component
 (_combined = dataset[['ssc_p', 'hsc_p', 'degree_p','mba_p','etest_p']]
X_pca = pca.fit_transform(X_combined)
 # Add the PCA result as a new feature to the dataset
 dataset['combined pca'] = X pca
# Now, we will drop the original features and use the PCA component
dataset_reduced = dataset.drop(columns=['ssc_p', 'hsc_p', 'degree_p','mba_p','etest_p'])
corr after_pca = dataset_reduced.corr(numeric_only=True)
# Calculate VIF after PCA (for the reduced set)
print("VIF after pca")
calc_vif(dataset_reduced[["combined_pca","salary"]])
 VIF after pca
                      VIF
        variables
   combined_pca 1.00085
           salary 1.00085
```

- After implementing PCA, the VIF values of the combined_PCA and the salary were reduced to a moderate correlation
- After implementing PCA, the Correlation matrix of the dataset is as shown below

Other solutions

Below are some of the other solutions used to remove multicollinearity from the dataset

- Use Ridge(L1 Regularization) or Lasso regression(L2 Regularization)
- Increasing the sample size can reduce the variance of the coefficient estimates and improve the reliability of the regression model.
- Apply standardization, which can help reduce multicollinearity in some cases.

