BASE DE DATOS RELACIONALES

Normalización Parte 3

Eric Gustavo Coronel Castillo www.desarrollasoftware.com

gcoronelc@gmail.com

Temas

- Forma Normal Boyce-Codd (FNBC)
- Cuarta Forma Normal 4FN
- Dependencia Multivaluada
- Cuarta Forma Normal 4FN
- Dependencia de Combinación
- **Quinta Forma Normal**
- Desnormalización

- La definición original de 3FN es inadecuada y no satisface relaciones:
 - Que tenía múltiples claves candidatas
 - Donde las múltiples claves candidatas son compuestas
 - Donde se traslapan las múltiples claves candidatas
- La Forma Normal de Boyce-Codd (FNBC) se presentó para normalizar las tablas que estaban las condiciones citadas en el párrafo anterior.
- Una relación está en FNBC únicamente si cada determinante es clave candidata.
- Lineamientos para convertir una relación en FNBC:
 - Encuentre y elimine las claves candidatas que se traslapan.
 Coloque la parte de la clave candidata y el atributo del que depende funcionalmente en otra tabla.
 - Agrupe los demás ítems en una tabla.

Ejemplo 1

Consideramos la siguiente relación:

ARTICULO(cod_artículo, título, revista, número, pagina)

Consideremos que los títulos de las revistas no pueden repetirse, aunque un mismo artículo se puede publicar en distintas revistas.

Se presentan las siguientes dependencias funcionales:

- cod artículo ↔ titulo
- cod_artículo, revista, numero → pagina
- título, revista, número → pagina
- pagina, revista, número → cod_artículo, título

Qué tendría tres claves candidatas formales:

- •
- cod_artículo, revista, número
- · título, revista, número
- · pagina, revista, número

Siempre que se suponga que dos artículos no pueden comenzar en la misma página.

Ejemplo 1

ARTICULO(cod_artículo, título, revista, número, pagina)

Esta relación está en 3FN (todos sus atributos son principales).

Tiene anomalías de inserción, ya que podemos insertar un articulo que tuviera el mismo título de uno ya existente, lo que atentaría contra la dependencia cod_artículo ↔ título.

Por lo tanto la relación ARTICULO no se encuentra en FNBC, ya que tanto cod_artículo como título son determinantes, pero no son claves candidatas en la relación.

Si una relación cuyas claves no están solapadas se encuentra en 3FN, entonces también se encuentra en FNBC.

Ejemplo 1

ARTICULO(cod_artículo, título, revista, número, pagina)

Por lo tanto las relaciones resultantes son:

cod_artículo → título
cod_artículo, revista, número → pagina

Dependencia Multivaluada

De acuerdo con la definición de Fagin (1977), una dependencia multivaluada es una sentencia:

$$X \rightarrow \rightarrow Y$$

Que leemos X multidetermina a Y, donde X e Y son descriptores tales que un cierto valor de X implica un conjunto bien definido de valores de Y, con independencia de los demás atributos de la relación.

Dependencia Multivaluada

Ejemplo 2

Autores

Autor	Materia	Institución	
Date	Lenguaje SQL	Relational Inst.	
Date	Lenguaje SQL	Codd & Date Cons.	
Date	Diseño de BD	Relational Inst.	
Date	Diseño de BD	Codd & Date Cons	
Ullman	Diseño de BD	Stanford Univ.	
Ullman	Bases Conoc.	Stanford Univ.	

Autor \rightarrow \rightarrow Materia

Autor → → Institución

Cuarta Forma Normal - 4FN

Diremos que una relación se encuentra en 4FN si, y solo si, las únicas dependencias multivaluadas no triviales son aquellas en las cuales una clave multidetermina un atributo, es decir, toda dependencia multivaluada viene determinada por una clave candidata.

Cuarta Forma Normal - 4FN

Ejemplo 3

Autores

Autor	Materia	Institución
Date	Lenguaje SQL	Relational Inst.
Date	Lenguaje SQL	Codd & Date Cons.
Date	Diseño de BD	Relational Inst.
Date	Diseño de BD	Codd & Date Cons
Ullman	Diseño de BD	Stanford Univ.
Ullman	Bases Conoc.	Stanford Univ.

Autores1

<u>Autor</u>	Materia
Date	Lenguaje SQL
Date	Diseño de BD
Ullman	Diseño de BD
Ullman	Bases Conoc.

Autores2

<u>Autor</u>	Institución
Date	Relational Inst.
Date	Codd & Date Cons.
Ullman	Stanford Univ.

Dependencia de Combinación

Ejemplo 4

Edita

Editorial	Idioma	Tema
Addison Wesley	Inglés	Base de Datos
Addison Wesley	Español	Case
Prentice Hall	Español	Base de Datos
Addison Wesley	Español	Base de Datos

Edita1

Editorial	Idioma
Addison Wesley	Inglés
Addison Wesley	Español
Prentice Hall	Español

Edita2

Idioma	Tema	
Inglés	Base de Datos	
Español	Case	
Español	Base de Datos	

Edita1 * Edita2 → Tupla Espúrea

Dependencia de Combinación

Ejemplo 4

Edita1

Editorial	Idioma
Addison Wesley	Inglés
Addison Wesley	Español
Prentice Hall	Español

Edita2

Idioma	Tema	
Inglés	Base de Datos	
Español	Case	
Español	Base de Datos	

Edita3

Editorial	Tema	
Addison Wesley	Base de Datos	
Addison Wesley	Case	
Prentice Hall	Base de Datos	

Edita1 * Edita2 * Edita3 → Edita

Quinta Forma Normal - 5FN

Decimos que una relación esta en 5FN si, y solo si, está en todas las anteriores formas normales y toda dependencia de combinación está implicada por una clave candidata.

Otra forma de definir la 5FN es:

Una relación esta en 5FN si, y sólo si, toda dependencia (funcional, multivaluada o de combinación) es consecuencia de las claves candidatas.

Desnormalización

- La introducción intencional de redundancia en una tabla para mejorar su desempeño, se conoce como desnormalización.
- La decisión de desnormalizar resulta en un equilibrio entre el desempeño y la consistencia de datos.
- En una consulta, a medida que el número de tablas combinadas crece, el tiempo de ejecución de la consulta aumenta considerablemente.
- Por este motivo, el uso de una base de datos normalizada no es siempre la mejor alternativa.
- Una base de datos con la medida justa de desnormalización reduce el número de tablas que deben combinarse sin dificultar en exceso el proceso de actualización. Suele ser la solución más acertada.

Desnormalización

- Por ejemplo, consideremos las siguientes tablas, las cuales contienen detalle de los productos y los pedidos realizados.
- Si tenemos que calcular el costo total de cada pedido, el costo del producto más un impuesto de 10% del costo del producto, la consulta para calcular el total de las ventas es:

```
SELECT SUM( (cost*qty) + (0.10*cost*qty) )
FROM Orders
INNER JOIN Products
ON Orders.ProductID = Products.ProductID
```

- Si hay muchas filas, el servidor puede tomará mucho tiempo para procesar la consulta y devolver el resultads, pues hay una combinación y un cálculo implicados.
- Para acelerar el procesamiento de la consulta, se debe almacenar el costo y el impuesto en el mismo pedido.

Orders

OrderNo	ProductID	Qty
101	P1	2
102	P3	1
103	P1	1
104	P2	3
105	P2	2

Products

ProductID	Desc	Cost
P1	XXX	20
P2	YYY	10
P3	ZZZ	12

Desnormalización

El resultado es el siguiente:

Orders

OrderNo	ProductID	Qty	ProductCost	Tax	OrderCost
101	P1	2	20	4	44
102	P3	1	12	1.2	13.2
103	P1	1	20	2	22
104	P2	3	10	4	33
105	P2	2	10	2	22

Ahora para encontrar las ventas totales se tiene que hacer una consulta simple:

```
SELECT sum (OrderCost) FROM Orders
```

 La estructura de esta tabla simplifica la consulta y acelera el proceso de la consulta. Al agregar columnas extras, se introduce redundancia en la tabla, pero mejora el desempeño de las consultas.

BASE DE DATOS RELACIONALES

Gracias

Eric Gustavo Coronel Castillo

www.desarrollasoftware.com gcoronelc@gmail.com

