BUNDESREPUBLIK DEUTSCHLAND

REC'D 2 2 JUL 2004 WIPO

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 28 671.3

Anmeldetag:

26. Juni 2003

Anmelder/inhaber:

DaimlerChrysler AG, 70567 Stuttgart/DE

Bezeichnung:

Umlenkkammer zur Wasserabscheidung

in einer Frischluftzuführung eines Kraftfahrzeugs

IPC:

B 60 H 1/28

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 01. Juli 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Remus

BEST AVAILABLE COPY

PRIORITY SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

15

20

25

DaimlerChrysler AG

Giez

18.06.2003

Umlenkkammer zur Wasserabscheidung in einer Frischluftzuführung eines Kraftfahrzeugs

Die Erfindung betrifft eine Umlenkkammer zur Wasserabscheidung in einer Frischluftzuführung eines Kraftfahrzeugs nach dem Oberbegriff des Anspruchs 1.

Aus der DE 199 23 195 C1 ist eine Umlenkkammer einer Frischluftzuführeinrichtung bekannt, die aus einer Wassertröpfchen führenden Frischluft das flüssige Wasser abscheidet. Die Frischluft gelangt über einen in Einbaulage oberen Einlaß in die Umlenkkammer und wird in Richtung der seitlich liegenden Auslaßöffnung umgelenkt. Durch die Richtungsänderung des Luftstromes und ihre Trägheit werden die Wassertröpfchen, unterstützt durch die Wirkung der Schwerkraft, aus dem Luftstrom abgesondert und prallen im Bereich der in Einbaulage unter der Einlaßöffnung liegenden Wasserablaufwände an den dortigen Gehäuseboden. Das Wasser wird am Gehäuseboden und den umliegenden Gehäusewänden der Umlenkkammer gesammelt und tritt an einer in Einbaulage unteren Ablauföffnung aus dem Gehäuse der Umlenkkammer. Oberhalb des Wasserablaufbodens sind zur Verringerung von Luftströmungsgeschwindigkeiten im Bereich des Wasserablaufs in Einbaulage senkrecht stehende Lamellen angeordnet. Die Wassertropfen der Frischluft fallen in den Zwischenraum zwischen den Lamellen und können durch den Aufprall am

20

Wasserablaufboden zerplatzen. Dabei bildet sich ein Nebel kleinster Wassertropfen, der in die Luftströmung zurückgelangen und von ihr mitgenommen werden kann.

- Aufgabe der Erfindung ist es, eine kompakte Umlenkkammer zu schaffen, die Wassertropfen aus der Luftströmung abscheidet, ohne dass diese beim Auftreffen auf Boden oder Wände zerplatzen.
- 10 Die Aufgabe wird durch eine Frischluftzuführeinrichtung mit den Merkmalen des Anspruchs 1 gelöst.

Es sind in der Umlenkkammer Auffangelemente vorgesehen, welche steil abfallende Wände bilden, an deren Oberfläche die Tropfen im spitzen Winkel auftreffen und ablaufen können. Durch den spitzen Auftreffwinkel auf die Oberfläche der Auffangelemente wird ein Aufplatzen der Tropfen verhindert. Die Auffangelemente können als Lamellen ausgebildet sein, die nebeneinander angeordnet sind und sich im Bereich der Kanten gegenseitig in Einfallrichtung überdecken. Zum Sammeln und Ableiten des aufgefangenen Wassers ist eine Ablaufwand oder sind mehrere Ablaufwände vorgesehen. Der unter oder hinter den Auffangelementen angeordnete flache Bereiche der Ablaufwand bzw. der Ablaufwände wird durch die Lamellen vollständig übergedeckt. Einfallende Wassertropfen können somit nicht auf die flachen Ablaufwände treffen sondern laufen an den Auffangelementen ohne zu zerplatzen ab.

Der Grundgedanke der Erfindung liegt darin, die durch die 30 Einlaßöffnung in die Umlenkkammer gelangten Wassertropfen nicht auf eine quer zu ihrer Bewegung gerichtete Wand auftreffen zu lassen, sondern die Umlenkkammer derart zu gestalten, dass die Wassertropfen im spitzen Winkel auf eine Wand treffen. In diesem Fall fehlt beim Auftreffen des

20

30

Wassertropfens der notwendige Impuls zum Zerplatzen, so daß dieser stattdessen die Wand benetzt und an ihr herabläuft. Idealerweise sind Auftreffwinkel, also der Winkel zwischen Tropfenbahn und Auftreffoberfläche von mehr als 40° zu vermeiden.

Die Gestaltung der Umlenkkammer nimmt mit ihrer Geometrie
Bezug auf die Einfallrichtung der Wassertropfen in der
Einlaßöffnung und im Weiteren auch auf die Ausströmrichtung
der Luft durch die Auslaßöffnung. Mit diesen Einfalls- und
Ausströmrichtungen sind Hauptrichtungen der fallenden
Wassertropfen bzw. des Luftstromes gemeint, was nicht
ausschließt, dass die Strömungsrichtungen in Randbereichen
oder nahe an vor- oder nachgelagerten strömungsführenden
Bauteilen davon abweichen. Weiterhin kann die
Einströmrichtung des die Einlaßöffnung durchsetzenden
Luftstromes von der Einfallrichtung der Wassertropfen in
diesem Bereich abweichen.

Eine Ausführungsform der Umlenkkammer weist eine obenliegende Einlaßöffnung auf, die beispielsweise einem Motorhaubengitter oder einem Ansaugschlitz hinter der Haube zugewendet ist. Die Auslaßöffnung ist in einer seitlichen Wand der Umlenkkammer angeordnet und gibt die Luft beispielsweise an den Ansaugtrakt der Fahrzeugkabine. Dabei treffen die Wassertropfen besonders auf der Einlaßöffnung gegenüberliegenden und im Bereich darunter angeordneten Ablaufwänden. In dieser Ausführungsform wird der Luftstrom in Summe der Umlenkwinkel um mindestens 90° umgelenkt, wodurch eine besonders effektive Wasserabscheidung möglich ist. Die genaue Position und Lage der Elemente ist jedoch meistens durch Bauraumvorgaben eingeschränkt oder vorgegeben. So kann die Einströmrichtung der Luft auch weitestgehend horizontal gerichtet sein und die Umlenkung des Luftstromes auch mehr als 180° betragen.

30

Eine besondere Ausgestaltung der Umlenkkammer weist Lamellen als Auffangelemente auf. Unter Lamellen sind dabei weitestgehend freistehende wandartige Einbauten zu verstehen, die einteilig mit dem Gehäuse der Umlenkkammer, als Einsatzteile oder auch als Gitter ausgebildet sein können. Die Lamellen sind eine sehr einfache Ausführung der Auffangelemente.

Um zu vermeiden, dass schräg zur Einfallrichtung fallende Wassertropfen entlang des Spaltes zwischen zwei Lamellen bis auf den flachen Ablaufboden fallen, werden die Lamellen entlang der Einfallrichtung, also entlang ihrer Höhe geknickt oder gekrümmt ausgeführt. Sie weisen somit einen über die Höhe unterschiedlichen Winkel zur Einfallrichtung auf und bilden einen Hinterschnitt der den Ablaufboden im freien Spaltquerschnitt ihres oberen Endes in allen Richtungen überdecken kann. Bei dieser Ausführungsform kann der obere Bereich der Lamelle durchaus auch in Einfallrichtung ausgerichtet sein und den spitzen Winkel zur Einfallsrichtung etwas tiefer ausbilden.

Um zu einer sehr kompakten Bauweise zu gelangen, können die Auffangelemente als Keilprofile ausgeführt sein. Die unteren Enden nebeneinander angeordneter Keilprofile können dabei verbunden sein und Ablaufrinnen bilden.

Zwei übereinander und quer zur länglichen Erstreckung der Lamellen oder Keilprofile gegeneinander versetzt angeordnete Gitter von annähernd parallel stehenden Auffangelementen bewirken bei einer besonders in der Bauhöhe kompakten Bauweise, dass keine Wassertropfen auf den Ablaufboden zwischen den unteren Lamellen oder Keilprofilen treffen.

10

25

Bei einer Ausführungsform der Frischluftzuführeinrichtung sind die Lamellen im wesentlichen quer zur Abströmrichtung aus der Kammer ausgerichtet. Der Luftstrom streicht somit quer über die Oberkanten der Lamellen, wobei die Lamellen in Richtung Auslaßöffnung oder auch entgegengesetzt von der Auslaßöffnung weg schräg angestellt sein können. Durch die Anordnung der Lamellen quer zur Abströmung ist ein besonders hoher Abscheidegrad der Wasserabscheidung erreichbar, der bei einer Schrägstellung der Lamellen zur Auslaßöffnung hin bei geringerem Druckabfall etwas niedriger ist und bei Schrägstellung der Lamellen von der Auslaßrichtung weg höher ist.

Bei einer weiteren Ausführungsform werden zur Verringerung des Druckabfalls der durchströmten Umlenkkammer die Lamellen mindestens mit ihrem oberen Rand in Abströmrichtung angeordnet. Die Lamellen können somit in die Luftströmung einragen oder sogar bis zur Einlaßöffnung verlängert sein.

20 Um zu vermeiden, dass an den zur Auslaßöffnung hin gerichteten Kanten der Lamellen Wassertropfen mitgerissen werden, sind bei einer Ausführungsform der Frischluftansaugvorrichtung an den Wänden der Lamellen Ablaufrippen angeordnet, an denen das Wasser schräg nach unten abläuft.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Zeichnungen und deren Beschreibung.

Verschiedene Ausführungsformen der Frischluftansaug-30 einrichtung sind in den Zeichnungen dargestellt. Dabei zeigen:

Fig. 1 eine Schnittdarstellung der Umlenkkammer durch die Einlaß und Auslaßöffnung,

- Fig. 2 eine Schnittdarstellung entsprechend Fig.1 mit gekrümmten Lamellen in der Umlenkkammer,
- Fig. 3 eine Schnittdarstellung entsprechend Fig.1 mit zu Keilprofilen aufgestellten Lamellen,
- 5 Fig. 4 eine Schnittdarstellung quer zum Schnitt der Fig.1, durch die Einlaßöffnung mit Blickrichtung auf die Auslaßöffnung mit Lamellen entlang der Ausströmrichtung und
- Fig. 5 eine Schnittdarstellung entsprechend Fig.1 mit
 Lamellen entlang der Ausströmrichtung.
- In Fig. 1 ist eine erfindungsgemäße Umlenkkammer 1 einer Frischluftzuführeinrichtung eines Kraftfahrzeugs in einer Schnittdarstellung gezeigt. Der Schnitt verläuft ungefähr in der Mitte einer Einlaßöffnung 2 und einer Auslaßöffnung 3, in etwa parallel zu einer Einfallrichtung A der durch die Einlaßöffnung 2 fallenden Wassertropfen und zur Ausströmrichtung B des die Auslaßöffnung 3 durchsetzenden Luftstromes. Eine Einströmrichtung eines die Einlaßöffnung durchsetzenden Luftstromes kann von der Einfallrichtung A der Wassertropfen abweichen.
- Die Umlenkkammer 1 ist in ihrer Einbaulage dargestellt, wobei die Einfallrichtung A im wesentlichen senkrecht nach unten und eine Ausströmrichtung B im wesentlichen rechtwinklig dazu horizontal erfolgt. Entsprechend ist die Einlaßöffnung 2 in Einbaulage oben an der Umlenkkammer horizontal angeordnet und die Auslaßöffnung 3 seitlich an der Umlenkkammer in weitestgehend vertikaler Ausrichtung. Gegenüber der Einlaßöffnung 2 ist in Einbaulage unten in der Umlenkkammer ein Ablaufboden 4 vorgesehen, der flach ausgebildet und
- Einlaßöffnung 2 ist in Einbaulage unten in der Umlenkkammer ein Ablaufboden 4 vorgesehen, der flach ausgebildet und weitestgehend rechtwinklig zur Einfallrichtung A angeordnet ist. Im Ablaufboden 4 ist eine Ablauföffnung 4.1 vorgesehen. In Einbaulage über dem Ablaufboden 4 sind in der Umlenkkammer

gekennzeichnet.

5

10

Lamellen 5 als Auffangelemente angeordnet. Die Lamellen 5 sind im Winkel α zur Einfallrichtung A ausgerichtet und weisen quer zur Einfallrichtung A eine Teilung d auf. Der Winkel α ist dabei ein spitzer Winkel von weniger als 40°. Die Erstreckung jeder einzelnen Lamelle quer zur Einfallrichtung A, die sich aus dem Winkel α und der Höhe der Lamelle ergibt, ist größer als die Teilung d, so dass sich benachbarte Lamellen in Einfallrichtung A gegenseitig überdecken. Weiterhin überdecken die Lamellen 5 den gesamten Ablaufboden 4 in Einfallrichtung A unter der Einlaßöffnung 2. Die seitliche Begrenzung dieses Bereiches in Richtung der Auslaßöffnung ist durch eine strichlierte Linie

Die Lamellen 5 verlaufen in ihrer Breite rechtwinklig zur 15 Schnittebene der Zeichnung. Die umgelenkte Luftströmung streicht somit quer über die Oberkanten der Lamellen 5. Durch die Ausrichtung quer zum Luftstrom bildet sich zwischen den Lamellen nur sehr geringe Strömungen aus. Die Versperrung durch die Lamellen erfordert jedoch die Ausbildung eines 20 entsprechend den Anforderungen an den Druckabfall der Umlenkkammer gestalteten Strömungsfreiraumes oberhalb der Lamellen 5. Das abgeschiedene Wasser läuft somit ungehindert durch die Schwerkraft an den Lamellen 5 nach unten ab. Die Lamellen 5 sind zur Auslaßöffnung 3 hin schräg gestellt, so 25 daß die Luft mit geringerem Widerstand über die Lamellen 5 streicht.

In der gezeigten Umlenkkammer 1 tritt eine mit Wassertropfen 30 beladene Luftströmung in Einbaulage im wesentlichen in senkrechter Richtung, d.h. parallel zur Einfallrichtung A an der Einlaßöffnung 2 ein. Ist der Einlaßöffnung beispielsweise ein mit Lamellen besetztes Einlaßgitters oder ein Zuführkanal vorgeordnet kann die Einströmrichtung der Luft auch von der senkrechten Richtung abweichen. Die von der Luft mitgetragenen Wassertropfen fallen in Einfallrichtung A in die Umlenkkammer. Durch den Ablaufboden 4 und die darüber angeordneten Lamellen 5 wird der Luftstrom aus der senkrechten Richtung in eine horizontale Richtung zur seitlich gelegenen Auslaßöffnung 3 hin umgelenkt und tritt dort in Auslaßrichtung B aus. Durch die Trägheit der Wassertropfen werden diese beim Umlenken der Luftströmung, unterstützt von der Schwerkraft aus dieser abgesondert und treffen in Einfallrichtung A auf die Lamellen 5. Die Lamellen 5 sind zu dieser Richtung im spitzen Winkel angeordnet. Durch den spitzen Auftreffwinkel läuft der Wassertropfen ohne zu Zerplatzen an der Wand der Lamelle entlang zur unteren Kante und tropft von da zum Ablaufboden 4 ab.

15

20

25

10

5

Fig.2 zeigt die Umlenkkammer 1 in gleichem Aufbau und in gleicher Anordnung von Einlaßöffnung 2, Auslaßöffnung 3, Ablaufboden 4, Ablauföffnung 4.1 und Anordnung der Lamellen über dem Ablaufboden wie in Fig.1. Ebenso entspricht die Einfallrichtung A der Wassertropfen und die Ausströmrichtung B des Luftstromes der Fig.1. Die hier dargestellten Lamellen 6 der Umlenkkammer sind entlang ihrer Höhe gekrümmt. Die strichlierten Linien deuten an, dass durch die Krümmung der Lamellen 6 der Ablaufboden der Umlenkkammer nicht nur in Einfallrichtung der Wassertropfen, sondern auch in der Flucht des zwischen den Lamellen liegenden freien Schachtes vollständig durch die Wände der Lamellen 6 verdeckt wird. Zusätzlich weisen die Lamellen 6 in der Tiefe, also nahe am Ablaufboden einen geringeren Abstand voneinander auf als an der der Einlaßöffnung zugewandten Kante. Dadurch wird eine Durchströmung des freien Querschnitts zwischen und unter den Lamellen 6 verringert und der Ablauf des Wassers an den Lamellen 6 und am Ablaufboden verbessert.

10

15

20

30

Fig. 3 zeigt die Umlenkkammer 1, die in Anordnung von Einlaßöffnung, Auslaßöffnung, Einfallrichtung A der Wassertropfen, Ausströmrichtung B des Luftstromes und Anordnung der Lamellen über dem Ablaufboden der Fig.1 entspricht. Als Auffangelemente sind in dieser Ausführung Keilprofile 7 und 8 vorgesehen. Die Keilprofile 7 und 8 weisen weils in entgegengesetztem spitzen Winkel zur Einfallrichtung A angeordnete Auffangwände auf. Quer zur Erstreckung des Keilprofils 7 sind in Einbaulage seitlich versetzt parallele Keilprofile zu einem Gitter 10 angeordnet. Im in Einbaulage unteren Bereich sind die nebeneinander angeordneten Keilprofile des Gitters 10 jeweils zu ein Ablaufrinnen 4.2 verbunden, so daß kein seperater Ablaufboden notwendig ist. Der Wasserablauf erfolgt im Weiteren mittels eines nicht weiter dargestellten Sammelkanals und eine Ablauföffnung oder durch einzelne Ablauföffnungen.

In Einbaulage oberhalb des Gitters 10 sind parallel zu den Keilprofilen des Gitters 10 weitere Keilprofile 8 zu einem Gitter 11 angeordnet. Die parallelen Keilprofile des Gitters 11 sind im unteren Bereich voneinander beabstandet. Die Keilprofile des Gitters 10 und die des Gitters 11 sind zueinander parallel ausgerichtet und weisen untereinander den gleichen Abstand auf. Weiterhin ist Gitter 11 gegenüber dem in Einbaulage darunter angeordneten Gitter 10 um eine halbe Teilung versetzt, so dass die Keilprofile des Gitters 11 die Ablaufrinnen 4.2 zwischen den Keilprofilen des Gitters 10 in Einfallrichtung A abdecken. Die beiden übereinander und gegeneinander versetzten Gitter 10 und 11 aus parallelen und zu Keilprofilen verbundenen Lamellen ermöglichen in Einfallrichtung A eine Abdeckung des Ablaufbodens, bzw. der entsprechenden Ablaufrinnen 4.2 auf der gesamten Fläche unter

der Einlaßöffnung 2, so daß Wassertropfen ausschließlich im spitzen Winkel auf schräge Wände der Lamellen treffen können.

Fig. 4 zeigt eine Schnittdarstellung durch eine Ausführungsform der Umlenkkammer 1 quer zur Schnittebene der 5 Fig.1-3. Die Schnittebene der Fig.4 erstreckt sich durch die Einlaßöffnung mit Blickrichtung in Auslaßrichtung B der Fig.1-3. Die Umlenkkammer 1 ist wiederum in Einbaulage dargestellt. Im oberen Bereich weist sie die Einlaßöffnung 2 auf, durch welche die Frischluft in annähernd senkrechter 10 Einströmrichtung in die Umlenkkammer 1 gelangt. In der Kammer sind Lamellen 9 angeordnet, die sich in ihrer Breite in Blickrichtung, also in Ausströmrichtung B erstrecken. Die Luft strömt durch den freien Querschnitt zwischen den Lamellen 9 hindurch und an den Wänden der Lamellen 9 entlang. 15 Die Lamellen 9 sind im spitzen Winkel zur Einfallrichtung A schräg nach unten verlaufend parallel nebeneinander angeordnet und verdecken in Einfallrichtung A den Ablaufboden 4. Die durch die Einlaßöffnung 2 mit der einströmenden Luft in die Umlenkkammer gelangten Wassertropfen bewegen sich beim 20 Eintritt in die Umlenkkammer in Einfallrichtung A. Die einströmende Luft wird aus der nach unten gerichteten Bewegung vorwiegend durch den Ablaufboden 4 in Blickrichtung der Darstellung zur dortigen Auslaßöffnung 3 umgelenkt. Die Wassertropfen treffen in ihrer nach unten gerichteten Bewegung auf die im spitzen Winkel schräg angeordneten Lamellen 9 und laufen an diesen nach unten zum Ablaufboden 4 ab.

Fig. 5 zeigt die in Fig. 4 gezeigte Ausführungsform der Umlenkkammer 1 in einem Schnitt entsprechend der Fig.1. Die Anordnung von Einlaßöffnung 2, Auslaßöffnung 3, Ablaufboden 4, Ablauföffnung 4.1, Einfallrichtung A und Ausströmrichtung B entsprechen denen der Fig.1. In der Darstellung dieser

Ausführungsform sind die in der Umlenkkammer 1 angeordneten Lamellen 9 in einer seitlichen Draufsicht zu sehen. Durch die senkrechte Ausrichtung der Schnittebene und die schräge Ausrichtung der Lamellen sind mehrere Lamellen geschnitten.

- Die Umlenkung der Luftströmung erfolgt im Gegensatz zur Lamellenanordnung entsprechend Fig.1 nur im minimalen Maß durch die Lamellen 9. Die Luft strömt in den freien Querschnitten zwischen den Lamellen 9 aus einer weitestgehend senkrechten Einströmrichtung, umgelenkt in eine weitestgehend
- horizontale Ausströmrichtung an den Lamellen 9 entlang. Die Umlenkung erfolgt im wesentlichen durch die Seitenwände und den Ablaufboden 4 der Umlenkkammer. Dadurch, daß die Lamellen 9 den Strömungsquerschnitt nicht versperren, kann in dieser Anordnung weiterer Bauraum gespart werden, weil oberhalb der
- Lamellen 9 kein freier Strömungsquerschnitt freigehalten werden muß. Im Kantenbereich der Lamellen 9 ist auf deren Wandfläche ein Ablaufprofil 12 aufgesetzt. Dies kann beispielsweise als kleine vorstehende Wand von der Lamelle abragen. Am Ablaufprofil 12 können sich Tropfen, die durch
- die an der Lamelle entlangstreifende Luft mitgenommen wurden, vor dem Mitreissen an der der Auslaßöffnung 3 zugewandten Kante der Lamelle nach unten ablaufen.

Die in den Figuren dargestellten Ausführungsbeispiele können 25 auch kombiniert in einem Bauraum umgesetzt sein.

1.

DaimlerChrysler AG

Giez

18.06.2003

Patentansprüche

- Umlenkkammer einer Frischluftzuführung eines Kraftfahrzeugs, die eine Einlaßöffnung, eine Auslaßöffnung und zumindest eine Ablaufwand zum Sammeln und Ableiten von Wasser aufweist, wobei die Einfallrichtung der Wassertropfen von der Einlaßöffnung 10 zu der Ablaufwand hin gerichtet ist, dadurch gekennzeichnet, dass im freien Querschnitt zwischen Einlaßöffnung (2) und Ablaufwand (4) Auffangelemente (5,6,9,7,8) zum Ableiten von Wasser derart angeordnet sind, dass ihre der 15 Einlaßöffnung zugewandten Oberflächen in einem spitzen
- Winkel (α) zur Einfallrichtung (A) ausgerichtet sind und dass die Auffangelemente (5,6,9,7,8) aus Sicht der Einfallrichtung die Ablaufwand (4) zumindest in dem in Einfallrichtung (A) hinter der Einlaßöffnung (2) 20 angeordneten Bereich überdecken.
- 2. Umlenkkammer nach Patentanspruch 1, dadurch gekennzeichnet, dass die Einlaßöffnung in Einbaulage obenliegend und die 25 Auslaßöffnung in einer seitlichen Wand der Umlenkkammer angeordnet sind und dass die Ablaufwand bzw. die

Ablaufwände im wesentlichen den in der Umlenkkammer der Einlaßöffnung gegenüberliegenden und / oder darunter angeordneten Wandbereich umfassen.

- 5 3. Umlenkkammer nach Patentanspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Auffangelemente als Lamellen (5;6;9) ausgebildet sind.
- 10 4. Umlenkkammer nach Patentanspruch 3,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass die Lamellen (6) entlang der Einfallrichtung
 geknickt oder gekrümmt ausgeführt sind.
- 15 5. Umlenkkammer nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass die Auffangelemente als Keilprofile (7;8) ausgebildet sind.
- Umlenkkammer nach Patentanspruch 4,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass zwei in Einbaulage übereinander angeordnete Gitter
 (10 und 11) von annähernd parallel stehenden
 Auffangelementen (7 8), derart versetzt angeordnet sind,
 dass das obere Gitter 10 die Ablaufwand bzw. die
 Ablaufwände (4.2) zwischen den Auffangelementen des
 unteren Gitters (10) überdecken.
- 7. Umlenkkammer nach einem der Patentansprüche 1 6,
 da durch gekennzeichnet,
 dass die Auffangelemente (5, 6, 7, 8) im wesentlichen
 quer zur Ausströmrichtung (B) ausgerichtet sind.

10

- 8. Umlenkkammer nach einem der Patentansprüche 1 6, dadurch gekennzeichnet, dass die Auffangelemente (9) mindestens in ihrem oberen Bereich annähernd parallel zur Ausströmrichtung (B) ausgerichtet sind.
- 9. Umlenkkammer nach Patentanspruch 8,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass jeweils beidseitig auf den Oberflächen der Lamellen
 (9), entlang der Kante, welche die jeweilige Lamelle zur
 Auslaßöffnung (2) hin begrenzt, Ablaufrippen (12) zum
 Ableiten von Wasser angeordnet sind.

Fig.2

Fig.3

Fig.4

Fig.5

DaimlerChrysler AG

Giez 18.06.2003

Zusammenfassung

Um bei einer Umlenkkammer (1) zur Wasserabscheidung in einer Frischluftzuführung eines Kraftfahrzeugs, die eine in Einbaulage obenliegende Einlaßöffnung (2), eine im wesentlichen rechtwinklig dazu angeordnete Auslaßöffnung (3) und einen in Einbaulage unter der Einlaßöffnung gelegenen Ablaufboden (4) zum Sammeln und Ableiten von Wasser aufweist, das Zerplatzen aus der Luft abgeschiedener Wassertropfen und die Bildung von Sprühnebel zu verhindern werden die steil aufragenden Lamellen der Umlenkkammer derart angeordnet, dass die Lamellen (5-9) im freien Querschnitt zwischen Einlaßöffnung (2) und Ablaufboden (4) in einem spitzen Winkel zur Einfallrichtung (A) der Wassertropfen ausgerichtet sind und den Ablaufboden (4) in Einfallrichtung (A) vollständig überdecken.

(Fig.1)

10

15

Fig.1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.