Shortest route in a grid with obstacles

Shortest route in a grid

From a cell in the grid, we can move to any of its <u>neighboring</u> cell in one <u>step</u>.

Problem: From top left corner, find shortest route to each cell avoiding obstacles.

Input: a Boolean matrix **G** representing the grid such that

G[i,j] = 0 if (i,j) is an obstacle, and 1 otherwise.

Step 1:

Realizing the nontriviality of the problem

Shortest route in a grid

nontriviality of the problem

Definition: Distance of a cell c from another cell c'

is the length (number of steps) of the shortest route between c and c'.

We shall design algorithm for computing distance of each cell from the start-cell.

As an exercise, you should extend it to a data structure for retrieving shortest

Get inspiration from nature

Shortest route in a grid

nontriviality of the problem

How to find the shortest route to ★ in the grid?

Create a ripple at the start cell and trace the path it takes to ★

propagation of a ripple from the start cell

ripple reaches cells at distance 1 in step 1

ripple reaches cells at distance 2 in step 2

ripple reaches cells at distance 3 in step 3

ripple reaches cells at distance 8 in step 8

ripple reaches cells at distance 9 in step 9

ripple reaches cells at distance 10 in step 10

ripple reaches cells at distance 11 in step 11

ripple reaches cells at distance 12 in step 12

ripple reaches cells at distance 13 in step 13

ripple reaches cells at distance 14 in step 14

ripple reaches cells at distance 15 in step 15

Think for a few more minutes with a free mind .

Step 2: Designing algorithm for distances in grid

(using an insight into propagation of ripple)

A snapshot of ripple after *i* steps

A snapshot of ripple after *i* steps

 L_i : the cells of the grid at distance i from the starting cell.

A snapshot of the ripple after i + 1 steps

All the hardwork on the animation was done just to make you realize <u>this important</u> **Observation**. If you have got it, feel free to erase the animation from your mind ③.

Observation: Each cell of L_{i+1} is a neighbor of a cell in L_i .

Distance from the start cell

It is worth spending some time on this matrix.

Does the matrix give some idea to answer the question?

How can we generate L_{i+1} from L_i ?

Observation: Each cell of L_{i+1} is a neighbor of a cell in L_i .

Suppose all cells of L_{i-1} get visited first. Then all cells of L_i are visited, and

Suppose all cells of L_{i-1} get visited first. Then all cells of L_i are visited, and then all cells of L_{i+1} are visited.

So by the time all cells of L_i are visited, if a cell neighboring to a cell of L_i is unvisited, it must be a cell of L_{i+1} .

So the algorithm should be:

Initialize the distance of all cells except start cell as ∞

First compute L_1 .

Then using L_1 compute L_2

Then using L_2 compute L_3

•••

Algorithm to compute L_{i+1} if we know L_i

```
Compute-next-layer(G, L_i)
  CreateEmptyList(L_{i+1});
  For each cell c in L_i
       For each neighbor b of c which is <u>not</u> an obstacle
             if (Distance[b] = \infty)
                   Insert(b, L_{i+1});
                   Distance[b] \leftarrow i + 1;
  return L_{i+1};
```

The first (not so elegant) algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(G, c_0) { L_0 \leftarrow \{c_0\}; For(i = 0 to ??) L_{i+1} \leftarrow Compute-next-layer(G, L_i); }
```

It can be as high as $O(n^2)$

The algorithm is not elegant because of

So many temporary lists that get created.

Towards an elegant algorithm ...

Key points we observed:

- We can compute cells at distance i + 1 if we know all cells up to distance i.
- Therefore, we need a mechanism
 to enumerate the cells in non-decreasing order of distances from the start cell.

Keep a queue Q

Spend some time to see how seamlessly the queue ensured the requirement of visiting cells of the grid in non-decreasing order of distance.

An elegant algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(\mathbf{G}, \mathbf{c}_0)
  CreateEmptyQueue(Q);
  Distance(\mathbf{c}_0) \leftarrow 0;
  Enqueue(\mathbf{c}_0,Q);
  While(
              Not IsEmptyQueue(Q)
            c ← Dequeue(Q);
            For each neighbor b of c which is not an obstacle
                   if (Distance(b) = \infty)
                           Distance(b) ←
                                                   Distance(c) +1
                            Enqueue(b, Q);
```

Proof of correctness of algorithm

Question: What is to be proved?

Answer: At the end of the algorithm,

Distance[c]= the distance of cell c from the starting cell in the grid.

Question: How to prove?

Answer: By the principle of mathematical induction on

the distance from the starting cell.

Inductive assertion:

P(i):

The algorithm correctly computes distance to all cells at distance *i* from the starting cell.

As an exercise, try to prove P(i) by induction on i.