7 Принцип максимуму Понтрягіна для задачі з вільними правим кінцем

7.1 Лекція

7.1.1 Постановка задачі і формулювання принципу максимуму

Розглянемо задачу Больца з вільним правим кінцем

$$\mathcal{J}(u,x) = \int_{t_0}^T f_0(x(s), u(s), s) ds + \Phi(x(T))$$

$$(7.1)$$

за умов

$$\dot{x} = f(x, u, t), t \in [t_0, T], \tag{7.2}$$

$$x(t_0) = x_0. (7.3)$$

Тут $x = (x_1, x_2, \dots, x_n)^*$ – фазові координати, $u = (u_1, u_2, \dots, u_m)^*$ – кусково-неперервне керування таке. що $u(t) \in \mathcal{U}, t \in [t_0, T]$, де $\mathcal{U} \subseteq \mathbb{R}^m$, не залежить від часу.

 $f_0(x, u, t) \to \mathbb{R}, f(x, u, t) \to \mathbb{R}^n$ є неперервними за сукупністю змінних, разом зі своїми градієнтами за $x, \Phi(x)$ – неперервно диференційовна, $(x, u, t) \in \mathbb{R}^n \times \mathcal{U} \times [t_0, T], x_0 \in \mathbb{R}^n$.

За цих умов справджується теорема про існування та єдиність (кусково-гладкого) розв'язку задачі Коші для системи (7.2) для довільного керування.

Моменти часу t_0 і T фіксовані, а обмеження на фазові координати відсутні.

Якщо існує оптимальне керування задачі (7.1)-(7.3), тобто допустиме $u_* = u_*(\cdot)$ і відповідний йому розв'язок $x_* = x_*(\cdot)$ задачі Коші (7.2)-(7.3) такі, що

$$\inf \mathcal{J}(u,x) = \mathcal{J}(u_*,x_*),$$

то будемо говорити про розв'язок задачі як про пару $(u_*(\cdot), x_*(\cdot))$.

Функція вигляду

$$\mathcal{H}(x, u, \psi, t) = -f_0(x, u, t) + \langle \psi, f(x, u, t) \rangle, \tag{7.4}$$

де $\psi = (\psi_1, \psi_2, \dots, \psi_n)^*$ – нові, спряжені змінні, називається функцією Гамільтона-Понтрягіна.

Для кожної пари $(u(\cdot), x(\cdot))$, де $u(\cdot)$ – допустиме керування, а $x(\cdot)$ – відповідний йому розв'язок задачі Коші (7.2)-(7.3), розглянемо систему звичайних диференціальних рівнянь

$$\dot{\psi} = -\nabla_x \mathcal{H}(x, u, \psi, t), t \in [t_0, T], \tag{7.5}$$

$$8\psi(T) = -\nabla_x \Phi(x(T)). \tag{7.6}$$

Ця система називається спряженою системою, яка відповідає парі $(u(\cdot), x(\cdot))$.

Теорема 7.1 (принцип максимуму Понтрягіна). Для розв'язку $(u_*(\cdot), x_*(\cdot))$ задачі Больца (7.1), (7.3) існує $\psi_*(\cdot)$ яка задовольняє спряженій системі яка відповідає парі $(u_*(\cdot), x_*(\cdot))$, причому майже для кожного $t \in [t_0, T]$ функція Гамільтона-Понтрягіна досягає свого максимуму при $u(t) = u_*(t)$, а саме

$$\sup_{u \in \mathcal{U}} \mathcal{H}(x_*, u, \psi, t) = \mathcal{H}(x_*, u_*, \psi_*, t)$$

Приклад 7.1. Розглянемо задачу

$$\mathcal{J}(u) = \frac{1}{2} \int_{0}^{T} u^{2}(s) ds + \frac{x^{2}(T)}{2}$$

за умови

$$\dot{x} = ax + y, x(t_0) = x_0,$$

де $x(\cdot): \mathbb{R} \to \mathbb{R}, \ u(\cdot): \mathbb{R} \to \mathbb{R}, \ a$ — сталий параметр, x_0 — фіксована точка.

Функція Гамільтона-Понтрягіна має вигляд

$$\mathcal{H}(x, u, \psi, t) = -\frac{u^2}{2} + \psi(ax + u).$$

Спряжена система записується так:

$$\dot{\psi} = -\nabla_x \mathcal{H} = -a\psi, \psi(T) = -x(T).$$

Її розв'язок

$$\psi(t) = -x(T) \cdot e^{a(T-t)}.$$

Згідно принципу максимуму, функція Гамільтона-Понтрягіна на оптимальному керуванні досягає свого максимуму, тобто, за відсутності обмежень на керування

$$\frac{\partial \mathcal{H}(x, u, \psi, t)}{\partial u} = 0.$$

Звідси $-u_* + \psi = 0$ і $u_*(t) = \psi(t) = -x(T) \cdot e^{a(T-t)}$.

Підставляємо знайдене керування у рівняння

$$\dot{x} = ax + u, x(t_0) = x_0.$$

Формула Коші для загального розв'язку лінійного рівняння першого порядку має вигляд

$$x(t) = e^{at}x_0 + \int_0^t e^{a(t-s)} \cdot u(s) ds = e^{at}x_0 - \int_0^t e^{a(t-s)} \cdot x(T) \cdot e^{a(T-s)} ds =$$

$$= e^{at}x_0 - e^{at+aT}x(T) \int_0^t e^{-2as} ds = e^{at}x_0 - \frac{e^{aT} \cdot x(T) \cdot (e^{at} - e^{-at})}{2a},$$

звідки, при t = T:

$$x(T) = e^{aT} \left(x_0 - \frac{x(T) \cdot \left(e^{aT} - e^{-aT} \right)}{2a} \right),$$

звідки

$$x(T) = \frac{e^{aT}x_0}{1 - \frac{e^{aT}}{2a} \cdot (e^{aT} - e^{-aT})}.$$

Підсумовуючи все вищесказане,

$$u_*(t) = -\frac{e^{a(2T-t)}x_0}{1 - \frac{e^{aT}}{2a} \cdot (e^{aT} - e^{-aT})},$$

причому

$$x_*(t) = e^{at}x_0 - \frac{e^{2aT}x_0 \cdot (e^{at} - e^{-at})}{2a - e^{2aT} - 1}.$$

7.2 Аудиторне заняття

Задача 7.1.

Задача 7.2.

Задача 7.3.

Задача 7.4.

Задача 7.5.

Задача 7.6.

7.3 Домашне завдання

Задача 7.7.

Задача 7.8.

Задача 7.9.

Задача 7.10.

Задача 7.11.

Задача 7.12.