Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική

Βασίλης Διονύσης Μουστάκας Πανεπιστήμιο Κρήτης

Παραδείγματα ομάδων, δράσεων και αναπαραστάσεων

Έστω D_{2n} η ομάδα συμμετρίας ενός κανονικού n-γώνου, η οποία ονομάζεται διεδρική ομάδα, και έχει τάξη 2n. Για n=3 και n=4 έχουμε τις εξής συμμετρίες:

Αν συμβολίσουμε με r την στροφή κατά την φορά του ρολογιού κατά $2\pi/n$, και s την ανάκλαση ως προς την ευθεία που περνάει από την βαρύκεντρο και μια κορυφή του κανονικού n-γώνου, την οποία έχουμε σταθεροποιήσει 1 , τότε παρατηρούμε ότι

- τα $\epsilon, r, r^2, \ldots, r^{n-1}$ είναι διαφορετικά
- $sr^i \neq sr^j$, για κάθε $1 \leq i \neq j \leq n-1$
- $r^n = s^2 = \epsilon$
- rsr = s.

Για παράδειγμα, για n=4 οι συμμετρίες sr, sr^2 και sr^3 σχηματικά δίνονται από:

Ημερομηνία: 8 Οκτωβρίου 2025.

 $^{^1}$ Αν ο n είναι περιττός, τότε αυτή περνάει από το μέσο της απέναντι πλευράς, ενώ αν ο n είναι άρτιος, τότε περνάει από την απέναντι κορυφή (γιατί;).

Με άλλα λόγια, βρήκαμε 2n συμμετρίες του κανονικού n-γώνου. Αποδεικνύεται ότι αυτές είναι όλες. Συνεπώς,

$$D_{2n} = \{\epsilon, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\} = \langle r, s \mid r^n = s^2 = \epsilon, rsr = s \rangle.$$

Το δεξί μέλος ονομάζεται παράσταση της D_{2n} με γεννήτορες και σχέσεις.

Αν γνωρίζουμε την παράσταση μιας ομάδας

$$G = \langle S | R \rangle$$

με γεννήτορες στο σύνολο S και σχέσεις στο σύνολο R, τότε για να δείξουμε ότι ένα ζεύγος (ρ,V) είναι αναπαράσταση της G, τότε αρκεί να δείξουμε ότι η γραμμική απεικόνιση $\rho(s)$ ικανοποιεί τις σχέσεις στο R, για κάθε $s\in S$. Με άλλα λόγια, δε χρειάζεται να ελέγξουμε ένα-ένα τα στοιχεία της ομάδας.

Όμως, χρειάζεται προσοχή όταν έχουμε να κάνουμε με παραστάσεις ομάδων, καθώς μια (αυθαίρετη) ομάδα μπορεί να έχει πολλές διαφορετικές παραστάσεις. Επίσης, δοθείσης μιας παράστασης,

- δεν είναι σαφές ποιά είναι η τάξη της ομάδας
- μπορεί να "κρύβονται" και άλλες σχέσεις μεταξύ των γεννητόρων.

Παρόλα αυτά, οι παραστάσεις χρησιμεύουν ιδιαίτερα όταν έχουμε να κάνουμε με ομάδες μικρής τάξης.

Μια ακόμα οικογένεια ομάδων είναι η κυκλική ομάδα τάξης n, με παράσταση

$$C_n := \{\epsilon, g, g^2, \dots, g^{n-1}\} = \langle g \mid g^n = \epsilon \rangle.$$

Οι κυκλικές ομάδες εμφανίζονται και αυτές ως συμμετρίες κάποιων γεωμετρικών αντικειμένων. Για παράδειγμα, η διεδρική ομάδα περιέχει

• μια υποομάδα ισόμορφη με την C_n :

$$\langle r \rangle = \{\epsilon, r, r^2, \dots, r^{n-1}\},\$$

• διάφορες υποομάδες ισόμορφες με την C2:

$$\langle s \rangle = \{\epsilon, s\}, \langle sr \rangle = \{\epsilon, sr\}, \cdots, \langle sr^{n-1} \rangle = \{\epsilon, sr^{n-1}\}.$$

Ας δούμε μερικά παραδείγματα δράσεων ομάδων μικρής τάξης.

Παράδειγμα. (C_3 -πρότυπα) Η C_3 δρα στο $[3] = \{1, 2, 3\}$, το οποίο σκεφτόμαστε ως το σύνολο κορυφών ενός ισοπλεύρου τριγώνου, όπου το g δρα ως στροφή κατά την φορά του ρολογιού κατά $2\pi/3$:

Με άλλα λόγια, το g δρα σαν την μετάθεση $(1\ 2\ 3)$ (γιατί;) και γι' αυτό έχει πίνακα

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Η δράση αυτή είναι πιστή (γιατί;) και γι' αυτό η C_3 είναι ισόμορφη με την ακόλουθη υποομάδα της $GL_3(\mathbb{C})$:

$$\left\langle \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right\rangle \ = \ \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \right\}.$$

Ποιός είναι ο πίνακας του στοιχείου g στην κανονική αναπαράσταση της C_3 ως προς την βάση $\{\epsilon, g, g^2\}$; Τι παρατηρείτε;

Παράδειγμα. (D_6 -πρότυπα) $H D_6$ δρα στο $[3] = \{1, 2, 3\}$ με τους ακόλουθους τρεις τρόπους:

(1) Σκεπτόμαστε τα στοιχεία του [3] ως κορυφές ενός ισόπλευρου τριγώνου όπως πριν:

με πίνακα

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

και

με πίνακα

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

(2) Σκεπτόμαστε τα στοιχεία του [3] ως πλευρές ενός ισόπλευρου τριγώνου:

Ποιοί είναι οι αντίστοιχοι πίνακες; Τι παρατηρείτε;

(3) Σκεπτόμαστε τα στοιχεία του [3] ως τις διαγώνιους ενός ισόπλευρου τριγώνου:

και

και

Ποιοί είναι οι αντίστοιχοι πίνακες; Τι παρατηρείτε;

Παράδειγμα. $(V_4$ -πρότυπα) Έστω V_4 η 4-ομάδα του Klein με παράσταση

$$V_4 := \langle a, b \mid a^2 = b^2 = (ab)^2 = \epsilon \rangle \cong C_2 \times C_2.$$

Η V_4 είναι η μικρότερη μη-κυκλική ομάδα και προκύπτει ως ομάδα συμμετρίας του ρόμβου

όπου

- α είναι η ανάκλαση ως προς τον οριζόντιο άξονα, και
- b είναι η ανάκλαση ως προς τον κάθετο άξονα.

Συνεπώς, ab είναι η στροφή κατά τη φορά του ρολογιού κατά π (γιατί;). Πως επαληθεύονται σχηματικά οι σχέσεις;

Όπως και στην περίπτωση των D_6 -προτύπων η V_4 δρα στο σύνολο [4], το οποίο μπορούμε να σκεφτούμε ως τις κορυφές, τις πλευρές και τις διαγώνιους του ρόμβου. Ποιοί είναι οι αντίστοιχοι πίνακες; Ποιές είναι αντίστοιχες αναπαραστάσεις μεταθέσεων; Προκύπτουν ισόμορφα πρότυπα ή μη;

Παράδειγμα. (D_8 -πρότυπα) Όμοια με τα προηγούμενα παραδείγματα, η D_8 δρα στο $[4] = \{1, 2, 3, 4\}$ το οποίο μπορούμε να σκεφτούμε ως τις κορυφές, τις πλευρές και τις διαγώνιους του ρόμβου. Στην περίπτωση αυτή όμως, οι επαγώμενες αναπαραστάσεις μεταθέσεων δεν είναι ισόμορφες. Για παράδειγμα, η δράση της απεικονιζόμενης ανάκλασης στις κορυφές

δεν έχει σταθερά σημεία, ενώ η αντίστοιχη στις ακμές

αφήνει σταθερά τα στοιχεία $\{1,3\}$. Έχει σημασία πως θα χρωματίσουμε τα στοιχεία του [4]; Ποιά είναι η δράση του D_8 στις διαγώνιους τους τετραγώνου; Είναι πιστή; Τι παρατηρείτε;

Η D_8 έχει τέσσερις διαφορετικές αναπαραστάσεις διάστασης 1, οι οποίες προκύπτουν από τις εξείς δράσεις στους γεννήτορες:

$$\begin{array}{ll} r\mapsto 1, & s\mapsto 1 \\ r\mapsto 1, & s\mapsto -1 \\ r\mapsto -1, & s\mapsto 1 \\ r\mapsto -1, & s\mapsto -1 \end{array}$$

(γιατί;) Η D_6 , η οποία είναι ισόμορφη με την \mathfrak{S}_3 , είδαμε ότι έχει δυο, την τετριμμένη και την αναπαράσταση προσήμου:

$$r \mapsto 1, \quad s \mapsto 1$$

 $r \mapsto 1, \quad s \mapsto -1$

(γιατί;). Πως γενικεύεται αυτό για αυθαίρετο n;

Ιντερλούδιο Συνδυαστικής. Το σύνολο των διαγωνίων (ως ευθείες) του τριγώνου και του τετραγώνου στο επίπεδο είναι παράδειγμα παρατάγματος υπερεπιπέδου. Γενικότερα, παράταγμα υπερεπιπέδου (hyperplane arrangement) ονομάζεται ένα σύνολο υπερεπιπέδων στον \mathbb{R}^n , δηλαδή υπόχωρων της μορφής

$$\{v \in \mathbb{R}^n : v \cdot \alpha = 0\},\$$

όπου α είναι ένα μη-μηδενικό διάνυσμα και \cdot είναι το σύνηθες εσωτερικό γινόμενο στον \mathbb{R}^n . Δοθέντος ενός παρατάγματος επιπέδου \mathcal{A} , έχει νόημα να κοιτάξουμε το συμπλήρωμα $\mathbb{R}^n \setminus \mathcal{A}$ και να αναρωτηθούμε ποιό είναι το πλήθος των συννεκτικών συνιστοσών του. Στην περίπτωση του τριγώνου έχουμε 6 συνεκτικές συνιστώσες, όσα και τα στοιχεία της \mathfrak{S}_3 (της ομάδας συμμετρίας του τριγώνου αυτού)!

Τα παρατάγματα υπερεπιπέδων αποτελούν βασικό αντικείμενο μελέτης της απαριθμητικής και γεωμετρικής συνδυαστικής.