

再生能源建置決策支援

— 透過太陽能日容量因子預測與建置<mark>區域辨識</mark>

r08725059 張煜柔

r09722016 劉庭安

r09725006 劉心鈺

r10725014 莊芯瑜

Agenda

Recognition

02 Research Process 05 System

06 Conclusion

Background & Motivation

需求:

企業的綠電需求

供給:

家戶可以賣綠電

Background & Motivation

研究問題:

假設有一公司欲收購某位置附近的房子屋頂以建置太陽能板,使企業每年皆可達到使用 P 度太陽能源的永續目標。本研究參考該位置過去一年的天氣狀況,幫助公司了解需設多大的裝置容量,以及收購多少面積、多大範圍的屋頂。

Background & Motivation

名詞解釋:

- 裝置容量:設備出廠時,所設計滿載(百分之百全力發電)時的最大值,可視為發電廠的 Capacity
- 1 瓩裝置容量的太陽光電系統約需 10 平方公尺(約3坪)的設置面積
- 容量因子(Capacity factor):可視為發電效率 容量因子 = 設備全日總發電量÷(裝置容量×日時數)
- 台灣太陽能發電平均容量因子為 14 %

為方便理解,以下統稱容量因子為「發電效率」

Research Process

Capacity Factor Prediction

Capacity Factor Prediction / Data integration

預測值

太陽能日發電效率

- 總共 44 座太陽能發電廠
- 2017/01/01 2021/09/30每
 日發電量
- 透過發電廠裝置容量・將日發電量轉換成日發電效率

地理資料

- Google Earth API 爬取 發電廠與天氣測站經緯度
- 計算發電廠與最近的天氣 測站距離

特徵值

天氣數值

- 資料來源:觀測資料查詢平台
- 爬取離發電廠最近的天氣測站 之相對應時間區段天氣資料
- 天氣欄位包含氣溫、降水量、 日照、氣壓等共 36 個欄位

Capacity Factor Prediction / Preprocessing

1. 類別變數處理

○ 針對類別變數進行 get dummy

2. 缺失值處理

- 刪除過多空值欄位
- KNN 補值:以中央氣象站的滿欄位資料為補值對象,將其餘有缺值氣象測站資料補齊

3. 檢視是否有重複性高的特徵值

- 為降低共線性問題
- 找出相關係數高於 0.9 或低於 -0.9 的自變數組合,並從各組合中各挑出一個變數

Capacity Factor Prediction / Model

- 1. 8:2 隨機切分成 <u>training</u> dataset 與 <u>testing</u> dataset
- 2. 以 training dataset 資料分布對 training dataset 與 testing dataset 的特徵值做<u>標準化</u>
- 3. 使用 training dataset 做 cross validation tune hyperparameters

Linear models

- OLS regression
- LASSO regression
- Ridge regression
- Elastic Net

Tree-based models

- CART regression tree (tune depth)
- Random Forest (tune depth)
- Gradient Boosting Decision Tree (tune the number of boosting stages)

Capacity Factor Prediction / Model

Tree-based models – tunning results

Capacity Factor Prediction / Result

- Tree-based models 預測結果優於 linear models
- Linear models 中有考慮 regularization term,預測結果較好
- Random Forest 預測結果最好,取 random forest 作為系統預測使用

	MAE	MSE
Random Forest (max_depth = 8)	0.0314	0.0018
GBDT (n_estimator = 1000)	0.0323	0.0018
CART regression tree (depth = 8)	0.0367	0.0024
OLS_平方項	0.0369	0.0024
Ridge	0.0369	0.0024
LASSO	0.037	0.0024
Elastic Net	0.037	0.0024
OLS	0.0381	0.0025

Capacity Factor Prediction / Result

● 最好模型 Random Forest 重要變數

Roof Area Recognition

Roof Area Recognition

04 Roof Area Recognition / Result

我們計算出屋頂面積

屋頂面積為 5863.65 m²

人工計算的屋頂面積

屋頂面積為 5661.74 m²

Roof Area Recognition / Result

我們計算出屋頂面積

屋頂面積為 4315.88 m²

人工計算的屋頂面積

屋頂面積為 4303.71 m²

05 System

05 System

05 System

太陽能預測與建廠選址

06 Conclusion

Capacity Factor Prediction

- o Tree-based models 的預測結果比 linear models 好
- Random Forest 預測效果最佳

Roof Area Recognition

○ 使用 Google Road Map 辨識與計算屋頂面積

Building our system

建立人性化介面,協助公司做屋頂購買決策

感謝聆聽 (๑´ㅂ`๑)