Aufgabe 1

Für eine Menge $M\subseteq \mathbb{R}^n$ bezeichnet

$$d(X) := \sup_{x,y \in M} ||x - y||_2$$

den Durchmesser von M. Zeigen Sie, dass der Durchmesser einer Box X mit ihrer Boxweite übereinstimmt.

Beweis: Sei $N := \{1, \dots, n\}$. Es gilt für die Boxweite w:

$$w(X) = \|\overline{x} - \underline{x}\|_2.$$

Da $Z := \{\overline{x}, \underline{x}\} \subseteq X$, gilt damit

$$d(X) = \sup_{x,y \in X} ||x - y||_2 \ge \sup_{x,y \in Z} ||x - y||_2 = w(X),$$

d.h. um die Behauptung zu zeigen bleibt $w(X) \geq d(X)$ offen. Angenommen dies gilt nicht, d.h.

$$w(X) < d(X). \tag{*}$$

Da die Box X aufgrund der Definition abgeschlossen ist, existieren $\tilde{x}, \tilde{y} \in X$, sodass

$$d(X) = \sup_{x,y \in M} ||x - y||_2 = ||\tilde{x} - \tilde{y}||_2$$

Damit folgt aus (*):

$$\|\overline{x} - \underline{x}\|_2 < \|\tilde{x} - \tilde{y}\|_2,$$

was äquivalent ist zu

$$\sum_{i \in N} |\overline{x}_i - \underline{x}_i|^2 < \sum_{i \in N} |\tilde{x}_i - \tilde{y}_i|^2.$$

Damit diese Ungleichung erfüllt ist, muss mindestens für einen Summanden j

$$|\overline{x}_j - \underline{x}_j| < |\tilde{x}_j - \tilde{y}_j| \tag{**}$$

gelten. Sei nun $d_j := |\overline{x}_j - \underline{x}_j|$ die Breite und $m_j := \frac{1}{2} (\overline{x}_j - \underline{x}_j)$ die Mitte dieses eindimensionalen Intervalls $I_j = [\underline{x}_j, \overline{x}_j]$. Nach Konstruktion gilt $\tilde{x}, \tilde{y} \in X$, was insbesondere

 $\tilde{x}_j, \tilde{y}_j \in I_j$ impliziert. Nach (**) folgt mit der Abgeschlossenheit von I_j damit

$$\begin{split} d_j &= \left| \overline{x}_j - \underline{x}_j \right| \\ &< \left| \tilde{x}_j - \tilde{y}_j \right| \\ &\leq \left| \tilde{x}_j - m_j \right| + \left| m_j - \tilde{y}_j \right| \\ &\leq \sup_{\overline{z} \in I_j} \left| \overline{z} - m_j \right| + \sup_{\underline{z} \in I_j} \left| m_j - \underline{z} \right| \\ &= \frac{1}{2} d_j + \frac{1}{2} d_j, \end{split}$$

was einen Widerspruch darstellt, und somit gilt $w(\boldsymbol{X}) = d(\boldsymbol{X})$.

Aufgabe 2

a)	Implementieren Sie eine Funktion $interval_hull(A)$, die einer beschränkten Menge reeller Zahlen $A := [a_1,, a_n]$ die Intervallhülle $[\inf A, \sup A]$ zuordnet.
	Beweis: todo \Box
b)	Implementieren Sie die Intervall-Grundrechenarten (vgl. Skript S. 126 - 129) für die Addition, Subtraktion und Multiplikation zweier Intervalle $X,Y\in\mathbb{IR}$ in den Funktionen $interval_add(X,Y), interval_subtract(X,Y)$ und $interval_multiply(X,Y)$.
	Beweis: todo \Box
c)	Implementieren Sie eine Funktion, die den Durchmesser einer eindimensionalen Box $X \in \mathbb{IR}$ berechnet.
	Beweis:
d)	Implementieren Sie eine Funktion, die den Boxmittelpunkt einer eindimensionalen Box $X \in \mathbb{IR}$ berechnet.

Aufgabe 3

Gegeben seien die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) := x - x^2 = x - x \cdot x = x \cdot (1 - x)$ und die intervallwertigen Funktionen

$$F_1: \mathbb{IR} \to \mathbb{IR}, \ F_1(X) = X - XX, \quad F_2: \mathbb{IR} \to \mathbb{IR}, \ F_2(X) = X(1 - X)$$

a) Zeigen Sie, dass sowohl F_1 , als auch F_2 eine natürliche Intervallerweiterung von f ist.

Beweis:

- Zunächst gilt, dass f(x) als Komposition von Grundrechenarten nach Definition 3.3.2 eine faktorisierbare Funktion ist. Mit $F_1(X) = X XX = X X^2 = f(x)$ gilt nach Definition 3.3.4, F_1 ist natürliche Intervallerweiterung von f.
- Zunächst gilt, dass f(x) als Komposition von Grundrechenarten nach Definition 3.3.2 eine faktorisierbare Funktion ist. Mit $F_2(X) = X(1-X) = X XX = X X^2 = f(X)$ gilt nach Definition 3.3.4, F_2 ist natürliche Intervallerweiterung von f.

b) Bestimmen Sie durch geschickte Fallunterscheidung

$$F_3: \mathbb{IR} \to \mathbb{IR}, \ F_3(X) = \text{bild}(f, X)$$

für ein beliebiges Intervall $X \subseteq \mathbb{IR}$ explizit. Zeigen Sie, dass die von Ihnen definierte intervallwertige Funktion F_3 für ein beliebiges Intervall tatsächlich die Bildmenge bild(f,X) liefert.

Beweis: Die Funktion f(x) ist nach Definition stetig und differenzierbar. Außerdem ist wegen

$$f'(x) = 1 - 2x$$

die Funktion f monoton steigend für $x < \frac{1}{2}$ und monoton fallend für x > 1/2. Somit sind für die Intervalle innerhalb dieser Bereichen entsprechend die Funktionswerte der Grenzen des Intervalls X auch den Grenzen der Bildmenge bild(f,X)

für xoben < 1/2 ist dabei $bild(f,X) = [f(\underline{x}),f(x)]$ für $\underline{x} > 1/2$ ist dabei $bild(f,X) = [f(x),f(\underline{x})]$ für $1/2 \in X$ ist f(1/2) = 1/4 die Obergrenze der Bildmenge. Die Untergrenze

für $1/2 \in X$ ist f(1/2) = 1/4 die Obergrenze der Bildmenge. Die Untergrenze ergibt sich aus der Vereinigung der Bildmenge des Intervalls links von 1/2 und der Bildmenge rechts von 1/2, se ist also $min\{\underline{x} - \underline{x}^2, x\}$

c) Implementieren Sie die intervallwertigen Funktionen F_1 , F_2 und F_3 .

Beweis: todo

d) todo

Beweis: todo \Box

e) todo

Beweis: Verhalten der Boxweite:

- für e <10.5: Untergrenze bleibt konst. bei f(-10), Obergrenze steigt degressiv mit Funktionsgraph f(-10+e) bis Max=1/4 => Boxweite zeichnet degressiven Verlauf
- für 10.5<=e<=21 bleiben Untergrenze und Obergrenze von F3(X(e)) konstant und damit auch die Boxweite
- für e>21 Obergrenze konst. (=1/4) und Untergrenze sinkt mit Funktionsgraph und damit steigt die Boxweite weiter degressiv an bis e=30

Verhalten des Boxmittelpunktes:

- für e <10.5 : Untergrenze bleibt konst. bei f(-10), Obergrenze steigt degressiv mit Funktionsgraph f(-10+e) bis Max=1/4 => Boxmittelpunkt zeichnet degressiv steigenden Verlauf
- für 10.5 < = e < = 21 bleiben Untergrenze und Obergrenze von F3(X(e)) konstant und damit auch der Boxmittelpunkt

• für e>21 Obergrenze konst. (=1/4) und Untergrenze sinkt mit Funktionsgraph => der Boxmittelpunkt verschiebt sich wieder nach unten bis e=30

F2(X) approximiert die Bildmenge bild(f,X) am besten, da sie sie im Sinne des Abhängigketseffektes am wenigsten verzerrt. Ihre Funktionsvorschrift F2(X)=X(1-X) enthält offensichtlich nur 2 mal das Intervall X, F3(X)=X-XX dagegen 3 mal \Box