Calculus review

Mithun Nallana

IIIT Hyderabad

mithun.babu@research.iiit.ac.in

May 11, 2019

Overview

- Goals and Introduction
- @ Gradient and Hessian
- Model and Error
- 4 Linear and Non-Linear systems
- Taylor series
- 6 Methods
- Constrained optimization
- References

Why?

Goals:

- Review important material before diving-in.
- Collect all notations at one place.
- Able to read books and seminal papers and actively participate in projects.

Spend some time after class to connect the dots.

[&]quot;Before a man studies Zen, to him mountains are mountains and waters are waters; after he gets an insight into the truth of Zen through the instruction of a good master, mountains to him are not mountains and waters are not waters; but after this when he really attains to the abode of rest, mountains are once more mountains and waters are waters." - D.T.Suzuki

Gradient

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

We can now extend this definition to multi-variate functions $f: {\rm I\!R}^n o {\rm I\!R}$,

$$\frac{\partial f(x_1, x_2, \dots x_n)}{\partial x_1} = \lim_{h_1 \to 0} \frac{f(x_1 + h_1, x_2, x_3, \dots x_n) - f(x_1, x_2, \dots x_n)}{h_1}$$

Similarly we have,

$$\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}$$

Mithun Nallana (IIITH)

Gradient

We stack them together in a vector,

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Hessian

Hessian of a $f: \mathbb{R}^n \to \mathbb{R}$.

$$\nabla^{2} f = H = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Notice that this is a symmetric matrix.

Mithun Nallana (IIITH)

Examples

$$f(x, y, z) = 3x^2yz$$

Find gradient and hessian.

Model and Error

We have a model f(P) to estimate a measurement X

$$X = f(P)$$

Here P are the parameters for model and X can be an property of environment that can be measured through sensors directly.

Our goal is to find a \hat{P} such that,

$$||\epsilon||_2 = ||f(\hat{P}) - X||_2$$

is minimized.

Notice that $f(\hat{p})$ can be either linear or non-linear.

Model and Error

Few pressure sensors, inertial sensors can be represented as linear models in working range.

$$f(P) = AP$$

We have measured some reading from the sensor, b.

Now there are many possible cases. In few cases finding the parameters will be easy and few others it is not.

Linear equations

$$AP = b$$

 $A \in \rm I\!R^{m imes n}$ and $P \in \rm I\!R^n$

Exact solution:

- If m < n, we have many solutions. They form a vector space.
- If m = n, we have either a unique solution or no solution.
- If m > n, we have either a unique solution or no solution.

Linear equations

No solution case:

- This case occurs when b doesn't lie in the column space of A.
- One way is to find a nearest vector in column space of A that is close to b.
- We have to find AP b which is orthogonal to column space of A.

$$A^{T}(AP - b) = 0$$
$$A^{T}AP = A^{T}b$$

- This system will have a solution as both right and left side are in column space of A^T .
- These are normal equations and $(A^TA)^{-1}A^T$ is called pseudo inverse.

Non-Linear

Sometimes we can have a highly non-linear sensor model.

However, we have some estimate of what \hat{P}_0 through another inaccurate sensor.

Our goal is to find the best value of \hat{P} that fits the measurement data well.

So, there is a need of iterative optimization techniques.

Taylor series

For a ∞ differentiable real valued function, Taylor series can be written as,

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

Taylor series

This has been generalized to multivariate functions,

$$f(x) = f(a) + \frac{\nabla f(a)^T (x-a)}{1!} + \frac{(x-a)^T \nabla^2 f(a)(x-a)}{2!} + \dots$$

Mithun Nallana (IIITH)

Example

Taylor series expansion of cos(x) at x = 0

$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Let's estimate,

$$cos(0) = 1$$

 $cos(0.2) = 0.9800665$
 $cos(0.2) \approx 1$
 $cos(0.2) \approx 0.98$
 $cos(0.2) \approx 0.9800666$
 $cos(0.2) \approx 0.9800665$

Cost function

Our goal is to minimize,

$$||\epsilon||_2 = ||f(P) - X||_2$$

Let our cost/error function be g(P)

We have an initial estimate of $P = P_0$

Using taylor series (2^{nd} order) , we can approximate cost function as,

$$g(P_0 + \delta P) = g(P_0) + \nabla g^T(\delta P) + \delta P^T(\nabla^2 g)\delta P$$

Mithun Nallana (IIITH)

First-order method

If we look until 1^{st} order approximation,

$$g(P_0 + \delta P) = g(P_0) + \nabla g^T(\delta P)$$

The best possible choice of δP is $-\lambda \nabla g$

$$g(P_0) - \lambda * \nabla g^T \nabla g$$

This method is called as gradient descent.

Mithun Nallana (IIITH)

In case of above g(P) We have,

$$g(P_0) = f(P_0) - X$$

Assuming that sensor behaves linearly at P_0

$$f(P_1) = f(P_0 + \delta P) = f(P_0) + J^T \delta P$$

Where $J = \frac{\partial f}{\partial P}$

Our goal is to minimize,

$$g(P_1) = f(P_1) - X$$

= $f(P_0) + J^T \delta P - X$
= $g(P_0) + J^T \delta P$

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

$$||g(p_1)||_2$$

$$J^T \delta P = -g(P_0)$$

$$JJ^T \delta P = -J(g(P_0))$$

This method is known as Gauss-Newton method.

Observation,

$$f(x,y) = x^{2} + 3y^{2} - 2xy$$
$$\nabla f = \begin{bmatrix} 2x - 2y \\ 6y - 2x \end{bmatrix}$$

Contour lines:

Vector field:

Vector field:

Find a direction that has maximum increase in function.

Directional Derivative:

$$\nabla_{\vec{v}} f = \lim_{h \leftarrow 0} \frac{f(x + h\vec{v}) - f(x)}{h}$$

We can divide increment of function into components:

$$ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}, ||v||_2 = 1$$

Moving along v_1 , We have

$$p_1 = h * v_1 * \left(\frac{\partial f(x_1, x_2, \dots x_n)}{\partial x_1}\right)$$

Similarly,

$$p_2 = h * v_2 * \left(\frac{\partial f(x_1 + hv_1, x_2, \dots x_n)}{\partial x_2}\right)$$

$$p_3 = h * v_3 * \left(\frac{\partial f(x_1 + hv_1, x_2 + hv_2, \dots x_n)}{\partial x_3}\right)$$

$$\vdots$$

Final value of function is,

$$f(x_1, x_2 + ... x_n) + p_1 + p_2 + p_3 + ... + p_n$$

Mithun Nallana (IIITH) Makk radion May 11, 2019 24 / 35

Look at $p_1, p_2, \dots p_n$ closely,

$$p_{1} = h * v_{1} * \left(\frac{\partial f(x_{1}, x_{2}, \dots x_{n})}{\partial x_{1}}\right)$$

$$p_{2} = h * v_{2} * \left(\frac{\partial f(x_{1}, x_{2}, \dots x_{n})}{\partial x_{2}}\right)$$

$$\vdots$$

so, $p_1 + p_2 + ... p_n$ is

$$h * \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

$$p_1 + p_2 + \dots p_n = \nabla f^T \vec{v}$$

Our goal is to maximize the sum which is possible when \vec{v} is along ∇f .

Thus our defined gradient direction is the direction of maximum ascent.

LevenbergMarquardt

Gradient descent,

$$\delta P = -\lambda \nabla g$$

Gauss-Newton,

$$(JJ^T)\delta P = -J(g(P_i))$$

Levenberg Marquardt,

$$((JJ^T) + \lambda I)\delta P = -J(g(P_i))$$

Given

$$\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathrm{IR}^{\mathrm{n}}
\end{array}$$

minimize
$$f(x)$$
 subject to $h_i(x) = 0, \ i = 1, \dots, m.$ $x \in {\rm I\!R}^n$

$$\nabla f(x,y) = \nu \nabla h(x,y)$$
$$h(x,y) = 0$$

Written in other way:

$$\underset{x,y,\nu}{\text{minimize}} \quad f(x,y) + \nu h(x,y)$$

We have converted a constrained optimization problem to an unconstrained one.

minimize
$$f(x) + \sum_{i=1}^{m} I_0(h_i(x))$$

 $x \in \mathbb{R}^n$

Here, I_0 is the indicator function defined as,

$$I(u) = \begin{cases} 0 & u = 0 \\ \infty & \text{otherwise} \end{cases}$$

 I_0 function can be understood as high displeasure to constraint violation. As constraint gets far away from zero.

Lagrange multiplier can be seen as a smooth approximation to I_0 .

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

References

- MITOCW 18.02 course
- Muti view geometry by Hartley and Zisserman.
- Convex optimization by Stephen Boyd.
- Notes by Hal Daume
- Khan Academy Notes and Videos
- Lagrange Multipliers notes by Yan Bin jia
- Wikipedia

The End