Kähler reduction with momentum

Shing Tak Lam

August 22, 2023

In this note, we will generalise the Kähler quotient construction to more general $\mu^{-1}(\xi)$, for $\xi \in \mathfrak{su}(n)$. We will assume the Kähler reduction construction, and that (co)adjoint orbits of $\mathfrak{su}(n)$ are Kähler manifolds.

Let X be a Kähler manifold, where SU(n) acts on X preserving the Kähler structure, and with a moment map $\mu_X : X \to \mathfrak{su}(n)$. Note that we use the minus the Killing form

$$\langle \xi, \eta \rangle = -\kappa(\xi, \eta) = -\operatorname{tr}(\xi \eta)$$

to define an inner product on $\mathfrak{su}(n)$, and hence an isomorphism $\mathfrak{su}(n) \cong \mathfrak{su}(n)^*$.

Let H be a subgroup of SU(n) preserving $\mu_X^{-1}(\xi)$. Since μ_X is equivariant with respect to the SU(n) action and the adjoint action, preserving $\mu_X^{-1}(\xi)$ is equivalent to

$$Ad_h(\xi) = \xi$$
 for all $h \in H$

Assuming H, acting via the adjoint action, fixes ξ , we would like to make $\mu_X^{-1}(\xi)/H$ into a Kähler manifold.

Lemma 0.1. Suppose X, Y are Kähler manifolds, SU(n) acts on X and Y preserving the Kähler structure, and we have moment maps $\mu_X: X \to \mathfrak{su}(n)$ and $\mu_Y: Y \to \mathfrak{su}(n)$. Then the map

$$\mu(x, y) = \mu_X(x) + \mu_Y(y)$$

defines a moment map for the action

$$g \cdot (x, y) = (g \cdot x, g \cdot y)$$

of SU(n) on $X \times Y$.

Note that the product of complex manifolds is a complex manifold, with the natural choice of coordinate charts. If we consider the decomposition

$$\mathsf{T}_{(x,y)}(X\times Y)\cong \mathsf{T}_xX\oplus \mathsf{T}_yY$$

induced by projection maps, then the Riemannian metric is defined by

$$q((x_1, y_1), (x_2, y_2)) = q_X(x_1, x_2) + q_Y(y_1, y_2)$$

where g_X , g_Y are the Riemannian metrics on X, Y respectively. Similarly, the symplectic form is defined by

$$\omega((x_1, y_1), (x_2, y_2)) = \omega_X(x_1, x_2) + \omega_Y(y_1, y_2)$$

Proof. Equivariance follows immediately from the equivariance of μ_X and μ_Y .

$$\mu(q \cdot (x, y)) = \mu(q \cdot x, q \cdot y) = \mu_X(q \cdot x) + \mu_Y(q \cdot y) = Ad_q \mu_X(x) + Ad_q \mu_Y(y) = Ad_q(\mu_X(x) + \mu_Y(y)) = Ad_q(\mu_X(x, y))$$

Hamiltonian function

Next, fix $\eta \in \mathfrak{su}(n)$. Let U^n be the vector field on X generated by η , and Y^n the vector field on V generated by η . Define $\mu_X^n(p) = \langle \mu_X(p), \eta \rangle$. Then we have that for any $W \in T_pX$,

$$(\mathrm{d}\mu_X^\eta)_p(W) = \omega_X(U_p^\eta, W)$$

and a similar statement holds for μ_Y . If we now define

$$\mu^{\eta}(x,y) = \langle \mu_X(x) + \mu_Y(y), \eta \rangle = \mu_X^{\eta}(x) + \mu_Y^{\eta}(y)$$

Then

$$(d\mu^{\eta})_{(x,y)}(u,v) = (d\mu_{X}^{\eta})_{x}(u) + (d\mu_{Y}^{\eta})_{y}(v)$$

= $\omega_{X}(U_{x}^{\eta}, u) + \omega_{Y}(V_{y}^{\eta}, v)$
= $\omega((U^{\eta}, V^{\eta})_{(x,y)}, (u, v))$

But the vector field on $X \times Y$ generated by η is precisely (U^{η}, V^{η}) .

Lemma 0.2. Let $\xi \in \mathfrak{su}(n)$, and M be its adjoint orbit, with the symplectic structure given by the Kirillov-Kostant-Souriau form

$$\omega_{\xi}([\xi, \eta], [\xi, \zeta]) = -\langle \xi, [\eta, \zeta] \rangle$$

Then SU(n) acts on M via the adjoint action preserving the Kähler structure, and with moment map $\mu(\xi) = -\xi$.

Proof. We will omit the proof that the adjoint action preserves the Kähler structure. It is clear that $\mu(\xi) = -\xi$ is equivariant, since both the actions are the adjoint action.

Fix $\eta \in \mathfrak{su}(n)$. The vector field on M generated by η is precisely $U_{\xi}^{\eta} = [\xi, \eta]$. Set $\mu^{\eta}(\xi) = \langle \mu(\xi), \eta \rangle = -\langle \xi, \eta \rangle$. This extends to a linear map on $\mathfrak{su}(n)$, and so we have that

$$(\mathrm{d}\mu^{\eta})_{\xi}([\xi,\zeta]) = -\langle [\xi,\zeta],\eta\rangle = -\langle \xi,[\zeta,\eta]\rangle = \omega_{\xi}([\xi,\zeta],[\xi,\eta])$$

as required.

Theorem 0.3 (Kähler reduction with momentum). Suppose X is a Kähler manifold, where SU(n) acts on X preserving the Kähler structure. Let $\xi \in \mathfrak{su}(n)$, and

$$H = \{ h \in G \mid Ad_h(\xi) = \xi \}$$

is the stabiliser for the adjoint action of SU(n). Let $\mu_X: X \to \mathfrak{su}(n)$ be a moment map for the SU(n) action on X, and suppose SU(n) acts freely on $\mu^{-1}(\xi)$. Then $\mu_X^{-1}(\xi)/H$ is a Kähler manifold.

Proof. Let M be the adjoint orbit of ξ . Combining the previous lemmas, we have that SU(n) acts on $X \times M$ preserving the Kähler structure, with moment map

$$\mu(p,\eta) = \mu_X(p) - \eta$$

Step 1: SU(n) acts freely on $\mu^{-1}(0)$. Let $(p, \eta) \in \mu^{-1}(0)$, and $g \in SU(n)$ fixing (p, η) . That is,

$$g \cdot p = p$$

Ad_a $(\eta) = \eta$

Say $\eta = \mu_X(p) = \mathrm{Ad}_h(\xi)$. Then

$$h^{-1}ah \cdot (h^{-1} \cdot p) = h^{-1} \cdot p$$

But

$$\mu_X(h^{-1} \cdot p) = \operatorname{Ad}_{h^{-1}} \mu_X(p) = \operatorname{Ad}_{h^{-1}} \operatorname{Ad}_h(\xi) = \xi$$

and as SU(n) acts freely on $\mu^{-1}(\xi)$, we must have that $h^{-1}gh = 1$. So g = 1. Using this, we can take the symplectic quotient $\mu^{-1}(0)/SU(n)$.

Step 2: Bijection $\mu^{-1}(0)/\operatorname{SU}(n) \cong \mu_X^{-1}(\xi)/H$. Define

$$F: \mu_X^{-1}(\xi) \to \mu^{-1}(0)$$

 $F(p) = (p, \xi)$

Then for $h \in H$,

$$F(h \cdot p) = (h \cdot p, \xi) = (h \cdot p, Ad_h(\xi)) = h \cdot F(p)$$

Therefore, we have a smooth map Φ making the diagram

$$\mu_X^{-1}(\xi) \xrightarrow{F} \mu^{-1}(0)$$

$$\downarrow^{\pi}$$

$$\downarrow^{\pi}$$

$$\mu_X^{-1}(\xi)/H \xrightarrow{\Phi} \mu^{-1}(0)/\operatorname{SU}(n)$$

commute, where π_X , π are the quotient maps. We would like to show that Φ is a bijection. **Injectivity.** If $\Phi([p]) = \Phi([q])$, then $\pi(p, \xi) = \pi(q, \xi)$. Therefore, there exists $g \in SU(n)$ such that

$$(p, \xi) = (g \cdot q, \operatorname{Ad}_q \xi)$$

Since $Ad_q(\xi) = \xi$, $q \in H$. Therefore, p and q are in the same H-orbit.

Surjectivity. Let $[(q, \eta)] \in \mu^{-1}(0)/SU(n)$. Then η is in the adjoint orbit M, so there exists $g \in SU(n)$ such that $\eta = Ad_q(\xi)$. In this case,

$$\mu_X(g^{-1} \cdot q) = \operatorname{Ad}_{q^{-1}} \mu(q) = \operatorname{Ad}_{q^{-1}} \operatorname{Ad}_{q}(\xi) = \xi$$

and so $g^{-1} \cdot q \in \mu_X^{-1}(\xi)$. In this case,

$$\Phi([g^{-1} \cdot q]) = [(g^{-1} \cdot q, \xi)] = [(q, \eta)]$$

and so Φ is a bijection.

Step 3: Φ **is a diffeomorphism.** Since Φ is a smooth bijection, suffices to show that it is a submersion. As π_X is a surjective submersion, suffices to show that $\pi \circ F$ is a submersion. The map

$$\widehat{\mathsf{Ad}}: \mathsf{SU}(n) \to M$$

$$q \mapsto \mathsf{Ad}_q(\xi)$$

is a submersion, therefore there exists a local right inverse σ , with $\sigma(\xi) = 1$. So $Ad_{\sigma(\eta)}(\xi) = \eta$. Then for η sufficiently close to ξ , with $\mu_X(q) = \eta$,

$$\mu_X(\sigma(\eta)^{-1} \cdot q) = \operatorname{Ad}_{\sigma(\eta)^{-1}} \mu_X(q) = \xi$$

Define the map

$$\psi(\eta) = \sigma(\eta)^{-1} \cdot q$$

Then we have that

$$\pi(F(\psi(\eta))) = [(\sigma(\eta)^{-1} \cdot q, \xi)] = [q, \operatorname{Ad}_{\sigma(\eta)} \xi] = [(q, \eta)]$$

Therefore, if α is a local right inverse for π , with $\alpha([(q, \eta)]) = \eta$, then

$$(\pi \circ F) \circ (\psi \circ \alpha)([(q, \eta)]) = \pi(F(\psi(\eta))) = [(q, \eta)]$$

Hence $\psi \circ \alpha$ is a local right inverse, and so $\pi \circ F$ is a submersion.