FICHE TD TRANFERTS THERMIQUES

Exercice 1

On s'intéresse aux échanges thermiques à travers les parois d'un bâtiment. On rappelle que tout échange thermique est caractérisé par le vecteur densité de flux thermique \vec{j} défini par la puissance thermique traversant une surface orientée S est : $P = \iint_{S} \vec{j} . d\vec{S}$.

- 1) On considère pour l'instant le phénomène de conduction thermique, à l'intérieur d'un mur de conductivité λ_1 telle que $\dot{j} = -\lambda_1 \overline{\text{grad}} T$, T désignant la température. Le mur est d'épaisseur e_1 . Soit x la normale à ce mur, S_1 sa surface. On supposera que la température ne dépend que de x. On note T_1 et T_2 les température du mur respectivement x = 0 et $x = e_1$.
- 1-a) Calculer la puissance thermique traversant la section S_1 du mur d'abscisse x, P(x), en fonction de j(x) et S(x).
 - 1-b) Montrer qu'en régime permanent, P est indépendant de x.
 - 1-c) En déduire T(x) et P, en fonction de T_1 , T_2 , λ_1 , e_1 et S_1 .
 - 1-d) Calculer la résistance thermique R_1
 - 1-e) Justifier l'analogie électrique permettant de définir R_1 comme une « résistance ».
- 2) A la surface du mur en contact avec l'air, il y a également des phénomènes de convection, caractérisés par un coefficient conducto-convectif h telle que la densité de flux entre un solide de température T_S et de l'air de température T_a est : $\vec{j} = -h(T_S T_a)\vec{u}_z$ où \vec{u}_z est le vecteur orthogonal à la surface de contact, dirigé de l'air vers le solide. Le mur de surface S_1 sépare un bâtiment de température T_0 de l'extérieur de température T_3 avec $T_0 > T_3$.
- 2 a) Calculer les résistances thermiques R_2 et R_3 , associées à la convection sur les deux surfaces du mur respectivement intérieure et extérieure.
- 2-b) Montrer que dans ce cas les résistances thermiques s'ajoutent, comme pour les résistances électriques en série.
- 2-c) En déduire la puissance thermique P traversant le mur en fonction des résistances thermiques de T_0 et T_3 .
- 2-d) Calculer les températures des surfaces du mur en fonction des résistances thermiques, de T_0 et T_3 .

Exercice 2

A- Résistance thermique dans le cas d'un transfert unidimensionnel On suppose que S_1 et S_2 sont deux surfaces planes parallèles de même aire S et séparées par une distance L. Si L est petite devant les dimensions des deux surfaces (ce qui n'est pas respecté sur la figure pour une raison de clarté), on peut négliger les effets de bord. La température dans le matériau conducteur ne dépend alors que de la coordonnée x le long d'un axe perpendiculaire à S_1 et S_2 .

En régime stationnaire et en l'absence de sources

- 1- Etablir la loi de répartition de la température dans le matériau
- 2- Calculer le flux à travers le mur

- 3- Déterminer la résistance thermique du matériau
- 4- Calculer la résistance thermique d'une vitre d'épaisseur e = 5,0 mm de surface S = 1,0 m^2 et $\lambda_{verre} = 0,78W \cdot m^{-1} \cdot K^{-1}$.
- 5- Autre méthode de calcul.

B- Résistance thermique entre deux cylindres coaxiaux

On suppose que S_1 et S_2 sont deux surfaces cylindriques de même axe (Oz), de même hauteur H et de rayons respectifs R_1 et $R_2 > R_1$. Si $R_2 - R_1$ est petit devant H on peut négliger les effets de bord. La température dans le matériau conducteur ne dépend alors que de la distance r à l'axe (Oz). En régime stationnaire et en l'absence de sources,

- 1- Etablir la loi de répartition de la température dans le matériau
- 2- Calculer le flux à travers le mur
- 3- Déterminer la résistance thermique du matériau

C- Résistance thermique entre deux sphères concentriques

On suppose que S_1 et S_2 sont deux sphères de même centre O et de rayons respectifs R_1 et $R_2 > R_1$. Par symétrie, la température dans le matériau conducteur ne dépend que de la distance r au point O.

En régime stationnaire et en l'absence de sources,

- 1- Etablir la loi de répartition de la température dans le matériau
- 2- Calculer le flux à travers le mur
- 3- Déterminer la résistance thermique du matériau

D- Résistance thermique d'une interface solide-fluide

Une paroi plane de surface S, d'épaisseur L et de conductivité thermique λ sépare deux fluides de températures T_1 et T_2 . Les coefficients de transferts au niveau des deux parois sont h_1 et h_2 . Quel est le flux thermique passant d'un liquide à l'autre ?

E- Double vitrage

1. Une fenêtre simple vitrage est constituée d'une plaque de verre de surface S et d'épaisseur e. La conductivité thermique du verre est $lv = 1,0W \cdot m^{-1} \cdot K^{-1}$. Les pertes dues au cadre de la fenêtre sont négligées.

Exprimer la puissance thermique perdue à travers la fenêtre, P_f , en fonction de lv, e, S, Ti température à l'intérieur de la maison et Te température à l'extérieur.

2. Un fenêtre double vitrage est composée de deux vitres identiques d'épaisseur e et de surface S, séparées par une épaisseur 2e d'air (voir figure). La conductivité thermique de l'air est $\lambda a = 2,0.10^{-2} \, \mathrm{W \, m^{-1} K^{-1}}$.

On appelle A, B, C et D les quatre surfaces indiquées sur la figure. Les températures des surfaces A et D sont T(A) = Te et T(D) = Ti.

a. Exprimer les résistances thermiques $R_{th,AB}$, $R_{th,BC}$ et $R_{th,CD}$ en fonction de e, lv, la et S.

- **b.** Exprimer la résistance thermique totale $R_{th,AD}$.
- c. Montrer que la puissance thermique perdue à travers la fenêtre double vitrage P'f est telle que $\frac{P'_f}{P_f} = \frac{\lambda_a}{2\lambda_V}$ Conclure.

F- Le paradoxe de l'isolant

Un tuyau d'eau chaude est entouré par une gaine isolante de conductivité thermique λ , de rayon intérieur r_1 (égal au rayon extérieur du tuyau) et de rayon extérieur r_2 . La gaine est en contact avec l'air ambiant avec lequel elle a un échange thermique suivant la loi de Newton, avec un coefficient d'échange h.

- 1. Pour une longueur l de tuyau exprimer les résistances thermiques et de la gaine isolante et de l'interface gaine isolante/air.
- 2. Étudier les variations de la résistance thermique équivalente avec r₂. Quel résultat paradoxal trouvet-on ?