Setul 1

Problema 1 Pentru funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos \frac{\pi}{2} x$ și diviziunea $\Delta: x_1 = -1 < x_2 = 0 < x_3 = 1$, determinați spline-ul natural de interpolare.

Problema 2 Fie a>0. Pornind de la o ecuație convenabilă și folosind metoda lui Newton, deduceți o metodă pentru aproximarea lui $\frac{1}{\sqrt{a}}$ fără împărțiri. Cum se alege valoarea de pornire? Care este criteriul de oprire? Deduceți de aici o metodă pentru calculul lui \sqrt{a} fără împărțiri.

Setul 2

Problema 3 Pentru funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin \frac{\pi}{2} x$ și diviziunea $\Delta: x_1 = -1 < x_2 = 0 < x_3 = 1$, determinați spline-ul complet de interpolare.

Problema 4 Fie a > 0. Pornind de la o ecuație convenabilă și folosind metoda lui Newton, deduceți o metodă pentru aproximarea lui $\frac{1}{a}$ fără împărțiri. Cum se alege valoarea de pornire? Care este criteriul de oprire? Cum veți proceda pentru o implementare eficientă în virgulă flotantă?

Setul 3

Problema 5 Se consideră ecuația $f(x) = xe^x - 1 = 0$. Dorim să o rezolvăm aplicând metoda aproximațiilor succesive, rezolvând problema de punct fix x = F(x) în două moduri

- (a) $F(x) = e^{-x}$
- (b) $F(x) = \frac{1+x}{1+e^x}$.

Arătați că în ambele cazuri iterațiile $x_k = F(x_k)$ sunt convergente, determinați ordinul de convergență și numărul de iterații necesare pentru a obține precizia $\varepsilon = 10^{-10}$.

Problema 6 Fie $f \in C^4[-1,1]$. Determinați un polinom de interpolare P de grad minim care verifică condițiile

$$P(-1) = f(-1), P'(-1) = f'(-1), P(0) = f(0), P(1) = f(1)$$

și determinați expresia restului.

Setul 4

Problema 7 Pentru a rezolva ecuația f(x) = 0 se aplică metoda lui Newton funcției $g(x) = \frac{f(x)}{\sqrt{f'(x)}}$.

- (a) Scrieți formula iterativă care se obține și determinați ordinul de convergență.
- (b) Aplicați metoda de la punctul (a) pentru a aproxima \sqrt{a} , a > 0.

Problema 8 Fie $f \in C^4[-1,1]$. Determinați un polinom de interpolare P de grad minim care verifică condițiile

$$P(-1) = f(-1), P(0) = f(0), P(1) = f(1), P'(1) = f'(1).$$

şi determinaţi expresia restului.