M-SQL: Multi-Task Representation Learning for Single-Table Text2sql Generation

亮点:

- (1) 论文是国内第一届Text2SQL比赛中的冠军方案
- (2) TableQA数据集比传统的WikiSQL数据集更复杂,现有的模型无法很好地解决 TableQA,而M-SQL可以。
- (3) 论文把任务分成8个子任务,使用了基于预训练的BERT来建模,是一个多任务学习模型。

处理Text2SQL的两种方案

- Seq2seq, 比如
 - Seq2SQL: 把任务视为一个文本转SQL的翻译任务。encoder用来编码文本信息获取语义表示,decoder用来解码文本的语义表示来生成SQL。没有考虑SQL的语法结构,准确率低
- Sketch-based
 - SQL有固定的结构,只需要预测关键部分填入模板即可。
 - SQLNet: 把任务分成6个子任务,每个子任务预测模板的一部分。条件值的预测是seq2seq模型,其它部分是分类模型
 - SQLova and X-SQL也用了类似的任务分解,并引入了预训练BERT。基本上能够解决WikiSQL数据集。

```
SELECT $AGG $COLUMN
WHERE $COLUMN $OP $VALUE
(AND $COLUMN $OP $VALUE) *
```

WikiSQL相比现实应用场景有很多简化的地方

- 假设select的列只能是1个
- 多条件的样本很少
- 假设where条件之间的关系只能是AND,不考虑OR
- 假设数据库的内容一定会出现在query中。

Table

Player	No.	Nationality	Position	Years in Toronto	School/Club Team
Antonio Lang	21	United States	Guard-Forward	1999-2000	Duke
Voshon Lenard	2	United States	Guard	2002-03	Minnesota
Martin Lewis	32, 44	United States	Guard-Forward	1996-97	Butler CC(KS)
Brad Lohaus	33	United States	Guard-Center	1996	lowa
Art Long	42	United States	Guard-Center	2002-03	Cincinnati

Situation 1:

WikiSQL: Who is the player that wears number 42?

ComplexSQL: Who is the player that wears number 42, and which country?

Situation 2:

WikiSQL: Who was born in 1996?

ComplexSQL: Who was born in 1996 and played for the Duke?

Situation 3:

WikiSQL: Who was born in 1996 and played for the Duke?

ComplexSQL: Who was born in 1996 or played for the Duke?

Situation 4:

WikiSQL: Which player's nationality is United States?

ComplexSQL: Who is the American player?

追一科技的Text2SQL比赛数据集TableQA中有更复杂的情况,包括了上述四种。

Data 1:

Query_en: The average daily volume of ChangSha in 2011 was 3.17, so what is the volume in the past week?

Query_zh: 长沙 2011 年平均每天成交量是 3.17, 那么近一周的成交量是多少

SQL_en: SELECT 'Seven days trading' WHERE 'City' == ChangSha AND 'Daily trading' == 3.17

SQL_zh: SELECT '七日成交' WHERE '城市' == 长沙 AND '每日成交' == 3.17

Data 2:

Query en: Please check the situation of the weekly fluctuations of SouFang and RenRen

Query_zh: 请查一查搜房网和人人网的周涨跌幅的情况

SQL_en: SELECT 'Weekly Fluctuation' WHERE 'Name == SouFang Or 'Name' == RenRen

SQL_zh: SELECT '周涨跌幅' WHERE '名称' == 搜房网 AND '名称' == 人人网

FIGURE 3. TableQA data samples.

SQLova and X-SQL不能很好地处理TableQA数据集

- TableQA需要两个额外的子任务: 预测select的列数量, 预测where条件之间的关系
- 现有的模型是基于column representation抽取值的,如果query中有多个值,且这些值属于不同的列,模型就不能准确地抽取值了。M-SQL把这个任务分成两个部分: value extraction和value-column matching.
- TableQA的query形式更加随意,且数据库的内容不一定出现在query中。

提出M-SQL,有8个子模型:S-num,S-col, S-col-agg,W-num-op,W-col,W-col-op,W-col-val and W-cal-match

问题定义

- SQL模板如图所示
- 假设每个SQL都有SELECT和WHERE条件
- \$WOP是条件列之间的关系, ["", "AND", "OR"], 空值表示没有关系
- \$COLUMN是数据库的列名,这里分为selected column和conditional column
- \$AGG表示selected column的操作, ["", "AVG", "MAX", "MIN", "COUNT", "SUM"]
- \$OP是条件列的操作符, [">", "<", "==", "! ="]
- \$VALUE是条件列对应的值,如果是字符串类型的话,必须存在于数据库中
- *代表数量,这里假设select的列的数量可以是[1,2],条件列的数量可以是[1,2,3]

```
SELECT ($AGG $COLUMN)*
WHERE $WOP ($COLUMN $OP $VALUE)*
```

M-SQL包括三个部分: encoder, column representation和几个sub-models。

- encoder用了BERT-wwm-ext treats the Chinese word as a masking unit (而不是 character)
- use the ``CONTENT REINFORCING LAYER" in X-SQL as the column semantic representation
- 8个子模型: S-num(二类分类, [1, 2]), S-col(单分类,是否选择), S-col-agg (预测select列的聚合函数), W-num-op(预测条件列之间的关系和条件列的数量,7类分类), W-col(预测条件列,单分类,是否选择), W-col-op(预测条件列的操作符), W-col-val(从query中抽取条件列的值) and W-cal-match(match条件列和抽取的值)

Encoder

• 输入[XLS], T1, T2, ..., TL, [SEP], H11, H12, ..., [SEP], ..., [SEP], Hn1, Hn2, ..., [SEP]

COLUMN REPRESENTATION

• 用全局信息xls来加强每列的语义表示 (attention)

The attention weights about the global information $h_{[XLS]}$ and the t-th column are as follows:

$$s_{ti} = dot(Uh_{[XLS]}, Vh_{cti})$$
 (2)

$$a_{ti} = \frac{s_{ti}}{\sum_{j=1}^{n_t} s_{tj}} \tag{3}$$

Both $U, V \in \mathbb{R}^{d \times d}$, dot is the dot product. n_t is the number of tokens in the t-th column. s_{ti} is the similarity between $h_{[XLS]}$ and the i-th token in the t-th column. a_{ti} is the attention weight of the i-th token in the t-th column.

The representation of the *t*-th column is:

$$\overline{r}_{ct} = \sum_{i=1}^{n_t} a_{ti} h_{cti} \tag{4}$$

$$r_{ct} = \overline{r}_{ct} + h_{[XLS]} \tag{5}$$

where n_t is the length of the t-th column. The final column representation r_{ct} is obtained by adding \overline{r}_{ct} and $h_{[XLS]}$.

因为h[XLS]是S-num and W-num-op这两个子任务的输入,这里加上h[XLS]可以在子任务 之间建立关联,提高多任务学习的能力

SUB-TASK OUTPUT

```
S-num (预测Select的列,二类分类, [1, 2] )
```

W-num-op(预测条件列之间的关系和条件列的数量,7类分类,["null-1","OR-1",

```
"AND-1", "OR-2", "AND-2", "OR-3", "AND-3"].)
```

```
p_1 = sigmoid(W_1 h_{[XLS]}) \tag{6}
```

$$p_2 = softmax(W_2h_{[XLS]}) \tag{7}$$

S-col (单分类,是否选择) and W-col (预测条件列,单分类,是否选择)。The probability that the i-th column belong to the target column is as follows.

$$p_3 = sigmoid(W_3 r_{ci}) \tag{8}$$

$$p_4 = sigmoid(W_4 r_{ci}) \tag{9}$$

```
S-col-agg(预测select列的聚合函数, ["", "AVG", "MAX", "MIN", "COUNT", "SUM"] ) W-col-op(预测条件列的操作符, [">", "<", "==", "! ="] ) p_5 = softmax(W_5r_{ci}) (10) p_6 = softmax(W_6r_{ci}) (11)
```

W-col-val(从query中抽取条件列的值,是否抽取query中的第i个token,此时不考虑 column representation)

$$p_7 = sigmoid(W_7 h_{qi}) \tag{12}$$

W-val-match (match条件列和抽取的值,如果是匹配的value和column,则标签是1,否则是0,s和e代表抽取的值v的起始位置和结束位置)

$$h_{v} = \frac{\sum_{i=s}^{e} h_{qi}}{l} \tag{13}$$

$$match_i = sigmoid(u \cdot tanh(W_8h_v + W_9rc_i))$$
 (14)

where h_v is the value representation. $match_i$ is the match score about the extracted value and the i-th conditional column. W_8 , W_9 and u are learnable parameters. W_8 and $W_9 \in R^{d \times d}$. $u \in R^{1 \times d}$. l represents the length of the extracted value span.

用execution-guided decoding strategy删掉那些不合理的SQL。

the highest probability as the output. There are some restrictions on the construction of SQL statements, such as stringtype column cannot have numeric operations(<, >). So we use the execution-guided decoding strategy [17] to remove unreasonable SQL statements from the candidate SQLs in the SQL generation stage. In **select** clause, we assume that when the selected column is string-type, the aggregation operator cannot be the numeric operator, such as SUM, MIN, MAX. Similarly, in where clause, we assume that, when the conditional column is string-type, the aggregation operator cannot be the numeric operator(>, <). Through data analysis, we find that the selected columns and conditional columns are not coincident. We view this discovery as a filtering rule. We filter the SQL candidates which do not meet the above rules, and select the SQL statement with the highest join probability as the final output.

实验

训练,开发,测试: 41,522, 2,198 and 2,198 respectively.

batch size is 32 and the Ir is 2e-5

评估指标: Logical-form accuracy(LX), Execution accuracy(X), Mean accuracy(MX) (前面两个的均值).

TABLE 1. The performance of various models on TableQA.

Model	Dev LX(%)	Dev X(%)	Dev MX(%)	Test LX(%)	Test X(%)	Test MX(%)
SQLNet [6]	61.28	66.20	63.74	61.42	67.24	64.33
Coarse2Fine [8]	72.98	76.89	74.94	72.61	76.71	74.66
MQAN [9]	75.66	79.21	77.44	74.84	78.75	76.80
SQLova [10]	81.39	85.26	83.33	81.71	85.76	83.74
X-SQL [11]	82.85	86.99	84.92	83.30	87.58	85.44
M-SQL(ours)	89.13	91.86	90.50	89.31	92.13	90.72
M-SQL-Ens(ours)	90.54	93.40	91.97	90.49	93.31	91.90

TABLE 2. The performance of sub-tasks on TableQA test data.

	S-num(%)	S-col(%)	S-col-agg(%)	W-num-op(%)	W-col(%)	W-col-op(%)	W-col-value(%)	Test LX(%)
M-SQL(ours)	99.50	97.82	98.91	97.45	98.50	99.10	96.95	89.31
M-SQL-Ens(ours)	99.55	98.36	98.91	97.68	99.09	99.27	97.00	90.49

ABLATION STUDY消融实验

TABLE 3. The results of ablation study.

Model	Test LX(%)	Test X(%)	Test MX(%)
M-SQL	89.31	92.13	90.72
- BERT-wwm-ext + BERT-base	88.90	91.45	90.18
- [XLS] + [CLS]	88.90	91.63	90.27
- 2-type	89.13	91.81	90.47
– 2-type + 3-type	\	\	\
- enhance	88.81	91.63	90.22
– BERT-0/1 + BERT-CRF	87.85	90.63	89.24
- BERT-0/1 + BERT-BILSTM-CRF	87.99	90.63	89.31
- BERT-0/1 + BERT-pointer	88.90	91.81	90.36
– lr + rouge-L	85.90	88.49	87.20
– lr + svr	74.75	77.02	75.89
- lr + bayes	86.35	88.67	87.51

2-type是指区分query和column的,3-type是区分query, string-type column and real-type column,没有收敛

enhance:加入数据库的内容来加强列的representation,使得区分度更强。

- 对于每一列,选择和query最相似的cell,把column和cell content concat起来作为一个新的representation
- rouge-L作为相似度计算函数,阈值为0.6
- the "region" column can be enhanced to "region, Nanning"

Chinese version

商户类型	地区	区域	商户名称	地址
百货	广西	防城港	防城港港口区家惠超市	兴港大道 95-1 号
百货	广西	南宁	青秀南城百货	民族大道 64 号
百货	广西	南宁	白沙南城百货公司	南宁市白沙大道 20 号

QUERY: 青秀南城百货有限公司在南宁的哪个位置?

SQL: SELECT 地址 WHERE 商户名称=青秀南城百货 AND 区域=Nanning

Answer: 民族大道 64 号

English version

Туре	Area	Region	Name	Address
Merchandise	Guangxi	Fangchenggang	Jiahui Supermarket in Fangchenggang Port Area	No. 95-1 Xinggang Avenue
Merchandise	Guangxi	Nanning	Qingxiu Nancheng Department Store	No. 64 Minzu Avenue
Merchandise	Guangxi	Nanning	Baisha Nancheng Department Store	No. 20 Baisha Avenue, Nanning

QUERY: Where is Qingxiu Nancheng Department Store in Nanning?

SQL: SELECT Address WHERE Name= Qingxiu Nancheng Department Store AND Region=Nanning

Answer: No. 64 Minzu Avenue

抽取value的方法

- 看做序列标注问题,用CRF,BILSTM
- 预测start和end位置, pointer
- 0/1标注

抽取的值可能和数据库中的不一致,需要矫正

- 规则匹配+rouge-L计算相似度选择最高相似度的
- 通过机器学习方法,利用统计特征从数据库里选择匹配的value
 - 统计特征: 抽取值和数据库值之间的rouge-L recall和precision。query和数据库值之间的rouge-L recall和precision,抽取值和数据库值之间的共现字符数
 - Ir, svr (支持向量) , bayes

rouge-L:分子是X和Y的最长公共子序列的长度,分母是m和n分别代表是Recall和 Precision。m,n分别表示参考摘要和自动摘要的长度(一般就是所含词的个数)

