Tidy Survival Analysis: Applying R's Tidyverse to Survival Data

Module 4. Semiparametric Regression Analysis

Lu Mao

lmao@biostat.wisc.edu

Department of Biostatistics & Medical Informatics

University of Wisconsin-Madison

Aug 3, 2025

Table of contents

- Presenting Regression Results
- Cox Model Prediction and Diagnostics
- Competing Risks Regression
- Summary

Presenting Regression Results

Cox PH Regression

Model specification

$$\lambda(t\mid Z) = \lambda_0(t) \exp(eta_1 Z_1 + eta_2 Z_2 + \ldots + eta_p Z_p)$$

- $\lambda_0(t)$: baseline hazard function
- $\exp(\beta_j)$: hazard ratio for covariate Z_j

GBC data: relapse-free survival

```
1 library(tidyverse) # Load tidyverse packages
2 gbc <- read.table("data/gbc.txt", header = TRUE) # Load GBC dataset</pre>
```

GBC Data: a Running Example

Reformat the data

```
df <- gbc |> # calculate time to first event (relapse or death)
group_by(id) |> # group by id
arrange(time) |> # sort rows by time
slice(1) |> # get the first row within each id
ungroup() |> # remove grouping
mutate(
age40 = ifelse(age >= 40, 1, 0), # create binary variable for age >= 40
grade = factor(grade), # convert grade to factor
prog = prog / 100, # rescale progesterone receptor
estrg = estrg / 100 # rescale estrogen receptor
)
```

Analysis in Base R

Model fitting: survival::coxph()

```
1 library(survival) # Load survival package
  2 cox fit <- coxph(Surv(time, status) ~ hormone + meno + age40 + grade + size + prog + estrg,</pre>
                   data = df
  4 summary(cox fit) # Print model summary
Call:
coxph(formula = Surv(time, status) ~ hormone + meno + age40 +
   grade + size + prog + estrg, data = df)
 n= 686, number of events= 299
           coef exp(coef) se(coef) z Pr(>|z|)
hormone -0.37432    0.68776    0.12917 -2.898    0.003758 **
        0.28450 1.32909 0.13973 2.036 0.041748 *
meno
       -0.55127   0.57622   0.20243   -2.723   0.006463 **
age40
                 2.04514 0.24854 2.879 0.003993 **
grade2
       0.71547
grade3 0.77465 2.16982 0.26970 2.872 0.004075 **
size
      0.01606 1.01619 0.00368 4.365 1.27e-05 ***
     prog
     0.01204
                 1.01212 0.04680 0.257 0.796895
estrg
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Tidy coxph() Output

2 meno 0.284

6 size 0.0161

-0.551

0.715

0.775

-0.224

0.0120

3 age40

4 grade2

5 grade3

7 prog

8 estrg

• Using broom package: broom::tidy()

0.140 2.04 0.0417

0.249 2.88 0.00399

0.270 2.87 0.00408

0.00368 4.37 0.0000127

-2.72 0.00646

-3.88 0.000105

0.257 0.797

0.202

0.0578

0.0468

Provides a tidy data frame for easy manipulation and visualization

Tabulating Results with gtsummary (I)

- Using gtsummary package: tbl_regression()
 - Automatically formats regression results into a publication-ready table

```
library(gtsummary) # Load gtsummary package
   cox tbl <- cox fit |> tbl regression( # Create a regression table
                    exponentiate = TRUE, # Exponentiate coefficients to get hazard ratios
                    label = list(hormone ~ "Hormone Therapy", # Custom labels
                                 meno ~ "Menopausal",
                                 age40 ~ "Older than 40",
 6
                                 grade ~ "Tumor Grade",
                                 size ~ "Tumor Size (mm)",
 8
                                 prog ~ "Progesterone Receptor (100 fmol/ml)",
 9
                                 estrg ~ "Estrogen Receptor (100 fmol/ml)")
10
                   ) |>
11
              add global p() # Add global p-value for categorical variables
12
   cox tbl # Display the regression table
```

Tabulating Results with gtsummary (II)

Result

Characteristic	HR ¹	95% CI ⁷	p-value	
Hormone Therapy	0.69	0.53, 0.89	0.003	
Menopausal	1.33	1.01, 1.75	0.039	
Older than 40	0.58	0.39, 0.86	0.009	
Tumor Grade			0.004	
1				
2	2.05	1.26, 3.33		
3	2.17	1.28, 3.68		
Tumor Size (mm)	1.02	1.01, 1.02	<0.001	
Progesterone Receptor (100 fmol/ ml)	0.80	0.71, 0.90	<0.001	
Estrogen Receptor (100 fmol/ml)	1.01	0.92, 1.11	0.8	
¹ HR = Hazard Ratio, CI = Confidence Interval				

Further Customization

Styling functions

- modify_header(): update column headers
- modify_footnote_header(): update column header footnote
- modify_footnote_body(): update table body footnote
- modify_caption(): update table caption/title
- bold_labels(): bold variable labels
- bold_levels(): bold variable levels
- italicize_labels(): italicize variable labels
- italicize_levels(): italicize variable levels
- bold_p(): bold significant p-values
- More about tbl_regression()
 - gtsummary documentation

Table Customization Exercise

- Task: Customize the regression table
 - Add a caption: "Cox regression analysis of the German breast cancer study"
 - Bold significant p-values
 - Italicize tumor grade levels
- ► Solution

Other Regression Models

Accelerated failure time (AFT) models

$$\log T = \beta_1 Z_1 + \beta_2 Z_2 + \ldots + \beta_p Z_p + \epsilon$$

- ullet $\epsilon \sim$ Weibull, lognormal, etc. (parametric models)
- $\exp(\beta_j)$: acceleration factor for covariate Z_j
- Model fitting: survival::survreg()

```
1 # Fit a Weibull AFT model
2 aft_fit <- survreg(Surv(time, status) ~ hormone + meno + age + grade + size + prog + estrg,
3 data = df, dist = "weibull") # specify the Weibull model</pre>
```

Exercise

- Tidy up the survreg object aft_fit using broom::tidy()
- Create a regression table using gtsummary::tbl_regression()

Visualizing Hazard Ratios (I)

Forest plot: Visualize hazard ratios and confidence intervals

```
1 # Tidy with exponentiated coeffs (HR) and CI
 2 tidy cox <- tidy(cox fit, exponentiate = TRUE, conf.int = TRUE)</pre>
                                          # Relabel the variables
   tidy cox$term <- recode(tidy cox$term,
                   hormone = "Hormone Therapy",
 4
                   meno = "Menopausal",
 5
                   age40 = "Older than 40",
 6
                   grade2 = "Tumor Grade II vs I",
                   grade3 = "Tumor Grade III vs I",
                   size = "Tumor Size (mm)",
 9
                   prog = "Progesterone (100 fmol/ml)",
10
                   estrg = "Estrogen (100 fmol/ml)")
11
12
   tidy cox |> # plot of hazard ratios and 95% CIs
13
14
     ggplot(aes(y=term, x=estimate, xmin=conf.low, xmax=conf.high)) +
     geom pointrange() + # plots center point (x) and range (xmin, xmax)
15
     geom vline(xintercept=1, linetype = 2) + # vertical line at HR=1
16
     scale x log10("Hazard ratio (95% CI)") + # log scale for x-axis
17
     theme classic() + # classic theme for clean look
18
     theme(
19
20
       axis.line.y = element blank(),  # remove y-axis line
      axis.ticks.y = element blank(),  # remove y-axis ticks
21
       axis.text.y = element_text(size = 11),  # set variable label size
22
```

Visualizing Hazard Ratios (II)

• Result

Forest Plot Exercise

- Task: customize the forest plot
 - Use square rather than default circle for point estimates
 - Set x-axis ticks at 0.5, 1, 2.0, and 4.0
 - Add a title: "Cox Regression Results for GBC Data"
- ► Solution

Cox Model Prediction and Diagnostics

Model-Based Prediction

Predicted survival function

$$\hat{S}(t\mid z) = \exp\Bigl\{-\exp(\hat{eta}^{
m T}z)\hat{\Lambda}_0(t)\Bigr\}$$

- Prepare new data for prediction
 - A post-menpausal woman older than 40, undergoing hormone therapy, with tumor grade II, tumor size 20 mm, and progesterone and estrogen receptor levels both 100 fmol/ml.

```
hormone meno age40 grade size prog estrg
1 2 2 1 2 20 1 1
```

Tidy Survival Prediction

- Use survival::survfit() to predict survival probabilities
 - newdata: new data for prediction
 - times: time points for prediction
 - broom::tidy() to tidy the output

```
1 # Predict survival probabilities for `newdata`
  pred surv <- survfit(cox fit, newdata = new data[1, ])</pre>
  3 tidy pred surv <- tidy(pred surv) # Tidy the survival prediction output</pre>
  4 head(tidy pred surv) # Display the first few rows of the tidy output
# A tibble: 6 × 8
   time n.risk n.event n.censor estimate std.error conf.high conf.low
  <dbl> <dbl>
                 <dbl>
                          <dbl>
                                   <dbl>
                                             <dbl>
                                                       <dbl>
                                                                 <dbl>
1 0.262
           686
2 0.492
          685
3 0.525
         684
4 0.557
         683
5 0.590
          681
                                       1
6 0.951
                              1
           680
                                       1
                                                                     1
```

Visualizing Predicted Survival (I)

- Using ggsurvfit package: ggsurvfit()
 - Pass survfit object to ggsurvfit()
 - Similar customization to KM curves

```
library(ggsurvfit) # Load ggsurvfit package
pred_fig <- pred_surv |> # Pass the survfit object

ggsurvfit() + # Main function

add_confidence_interval() + # Add confidence interval

scale_x_continuous("Time (months)", breaks = seq(0, 84, by = 12)) + # x-axis format

scale_y_continuous("Relapse-free survival probability", limits = c(0, 1)) + # y-axis format

ggtitle("Predicted Relapse-Free Survival for a GBC Patient") + # Add title

theme_classic() # Classic theme for clean look
```

Visualizing Predicted Survival (II)

Result

1 pred_fig # print figure

Prediction Graphics Exercise

• Task: Add horizontal grid lines

► Solution

Cox Model Diagnostics

PH assumptions: Schoenfeld residuals

- Difference between observed and expected covariate values at each event time
- Use cox.zph() to test PH assumption
- Use survminer::ggcoxzph() on cox.zph object to visualize Schoenfeld residuals

Functional form of covariates

- Plot martingale residuals against (quantitative) covariates
- Use residuals(cox_fit, type = "martingale") to get martingale residuals

Other aspects

- Appropriateness of exponential link function
- Influential points/outliers
- survminer::ggcoxdiagnostics()

Schoenfeld Residuals

Check proportionality

■ Focus on graphics; use *p*-value only as guideline

```
library(survminer) # Load survminer package
ph_test <- cox.zph(cox_fit) # Test proportional hazards assumption
ggcoxzph(ph_test) # Visualize Schoenfeld residuals</pre>
```


Exponential Link Function

• Martingale vs. $\hat{eta}^{\mathrm{T}} Z_i$

```
# Martingale residuals vs linear predictor
ggcoxdiagnostics(cox_fit, type = "martingale",  # martingale on y-axi
ox.scale = "linear.predictions") # linear predictor on x-axis
```


Influential Points

• Deviance residuals

```
# Deviance residuals vs linear predictor
ggcoxdiagnostics(cox_fit, type = "deviance", # deviance on y-axis
ox.scale = "observation.id", # observation ID on x-axis
sline = FALSE) # no smoothed line
```


General Residual Graphics

- Basic arguments of ggcoxdiagnostics()
 - coxph object
 - type: Residual type ("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", and "scaledsch")
 - ox.scale: Scale for x-axis ("linear.predictions", "observation.id", "time")
 - point.col: Color of points
 - point.size: Size of points
 - etc.
- More about survminer
 - survminer website

Competing Risks Regression

Sub-Distribution Hazard

Definition

$$\Lambda_k(t\mid Z) = -\log\{1 - F_k(t\mid Z)\}$$

- $F_k(t \mid Z)$: cumulative incidence function (CIF) of the k-th cause
- $\lambda_k(t\mid Z)=\Lambda_k'(t\mid Z)$: risk of the k-th cause in presence of other competing events in the whole population

Different from cause-specific hazard

Cause-specific hazard

$$\lambda_k^{\mathrm{c}}(t \mid Z) = \Pr(t \leq T < t + \mathrm{d}t, \Delta = k \mid T \geq t, Z) / \mathrm{d}t$$

• Risk of the k-th cause in survivors

Fine-Gray Model

2 Drug B 9 1.11 T2

3 Drug A 31 0.277 T1

5 Drug A 51 2.77 T4

6 Drug B 39 0.613 T4

NA 2.07 T3

4 Drug A

Proportional sub-distribution hazards

II

III

III

$$\lambda_k(t\mid Z) = \lambda_0(t) \exp(eta_1 Z_1 + eta_2 Z_2 + \ldots + eta_p Z_p)$$

- $\lambda_0(t)$: baseline sub-distribution hazard function
- $\exp(\beta_i)$: sub-distribution hazard ratio for covariate Z_i

```
1 library(tidycmprsk) # Load tidycmprsk package
  2 data("trial", package = "tidycmprsk") # Load trial data from tidycmprsk package
  3 head(trial) # Display the first few rows of the data
# A tibble: 6 \times 9
 trt
           age marker stage grade response death death cr
                                                                    ttdeath
  <chr> <dbl> <dbl> <fct> <fct> <int> <int> <fct>
                                                                      <dbl>
           23 0.16 T1
1 Drug A
                            ΙI
```

24

24

24

17.6

16.4

15.6

0 censor

0 censor

1 1 death other causes

0 1 death from cancer

1 1 death other causes

0 0 censor

Fitting Fine-Gray Model

- Using cmprsk::crr()
 - formula: Surv(time, status) ~ covariates
 - status: a factor with first level indicating censoring and subsequent levels the competing risks
 - failcode: event code for the cause of interest

```
1 fg_fit <- crr(Surv(ttdeath, death_cr) ~ trt + age + marker + stage, # fit FG model
2 failcode = "death from cancer", trial) # for death from cancer</pre>
```

21 cases omitted due to missing values

```
1 fg_fit # print the Fine-Gray model fit summary
```

```
Variable
           Coef
                    SE
                           HR
                                  95% CI
                                               p-value
trtDrug B
                                  0.85, 2.59
           0.396
                    0.283
                           1.49
                                              0.16
           0.009
                    0.011
                           1.01
                                  0.99, 1.03
                                              0.42
age
marker
          -0.002
                   0.159
                           1.00
                                 0.73, 1.36
                                             0.99
         0.140
                   0.475
                           1.15
                                 0.45, 2.92
                                             0.77
stageT2
stageT3
          0.500
                   0.460
                           1.65
                                 0.67, 4.06
                                             0.28
stageT4
           0.959
                    0.418
                           2.61
                                  1.15, 5.91
                                              0.022
```

Parameter Estimates and Variance

• Extracting $\hat{\beta}$ and $\hat{\text{var}}(\hat{\beta})$

```
1 coef(fg fit) # Extract coefficients
                                                   stageT3
  trtDrug B
                   age
                            marker
                                       stageT2
                                                               stageT4
1 vcov(fg fit) |> head() # Extract variance-covariance matrix
            [,1]
                         [,2]
                                     [,3]
                                                 [,4]
                                                              [,5]
[1,] 0.0800665101 0.0001535045 -0.0051801922 0.011605373
                                                      0.0094601803
[2,]
     0.0001535045  0.0001239790  -0.0005094795  0.001111245  -0.0009368412
[3,] -0.0051801922 -0.0005094795 0.0251827414 -0.028697647 -0.0037297926
[4,]
     0.0116053732  0.0011112447  -0.0286976466
                                           0.225187822 0.1101888313
[5,] 0.0094601803 -0.0009368412 -0.0037297926
                                           0.110188831 0.2111942725
[6,] 0.0219362509
                0.0010459739 -0.0176113331 0.124589145 0.1064088264
           [,6]
[1,]
     0.021936251
[2,]
     0.001045974
[3,] -0.017611333
    0.124589145
[5,] 0.106408826
[6,] 0.174446817
```

Tidy Fine-Gray Model Output

• Using broom package: broom::tidy()

0.0111

0.159 0.475

0.460

0.418

0.804

-0.0126

2.30

1.09 0.670

0.296

1.01

0.998

1.15

1.65

2.61

2 age

3 marker

4 stageT2

5 stageT3

6 stageT4

Provides a tidy data frame for easy manipulation and visualization

0.987

0.731

0.454

1.15

```
1 tidy fg <- tidy(fg fit, exponentiate = TRUE, conf.int = TRUE) # Tidy model output
  2 tidy fg # Display the tidy output
# A tibble: 6 \times 7
            estimate std.error statistic conf.low conf.high p.value
 term
  <chr>
               <dbl>
                         <dbl>
                                   <dbl>
                                            <dbl>
                                                       <dbl>
                                                               <dbl>
                                                               0.16
1 trtDrug B
               1.49
                        0.283
                                  1.40
                                            0.854
                                                        2.59
```

1.03

1.36

2.92

4.06

5.91

0.42

0.99

0.77

0.28

0.022

Forest Plot Exercise

- Task: Visualize sub-distribution hazard ratios and confidence intervals
- ► Solution

FG Regression Table (I)

- Using gtsummary package: tbl_regression()
 - Similarly to tabulating fitted coxph object

```
1 library(gtsummary) # Load gtsummary package
2 fg_tbl <- fg_fit |> tbl_regression(exponentiate = TRUE) |> # Create a regression table
3 add_global_p() # Add global p-value for categorical variables
```

FG Regression Table (II)

• Result

Characteristic	HR ⁷	95% CI ⁷	p-value
Chemotherapy Treatment			0.2
Drug A	_	_	
Drug B	1.49	0.85, 2.59	
Age	1.01	0.99, 1.03	0.4
Marker Level (ng/mL)	1.00	0.73, 1.36	>0.9
T Stage			0.058
T1	_		
T2	1.15	0.45, 2.92	
T3	1.65	0.67, 4.06	
T4	2.61	1.15, 5.91	
¹ HR = Hazard Ratio, CI = Confide	nce Interval		

Model-Based Prediction

Predicted cumulative incidence function (CIF)

$$\hat{F}_k(t\mid z) = 1 - \exp\Bigl\{-\hat{\Lambda}_k(t\mid z)\Bigr\}$$

Summary

Key Takeaways

- Cox proportional hazards regression
 - Tidy output with broom and gtsummary
 - Visualize hazard ratios with forest plots with ggplot2
 - Model-based prediction with survival::survfit() and ggsurvfit()
 - Model diagnostics with survminer
- Fine-Gray model for competing risks regression
 - Fit with cmprsk::crr()
 - Tidy output with broom and gtsummary
 - Visualize sub-distribution hazard ratios with forest plots

Next Steps

- Machine learning: build best predictive model with many predictors
 - Regularized Cox regression
 - Parametric AFT models
 - Survival trees
 - tidymodels packages (censored)