Módulo 2. Uso de framework o biblioteca de aprendizaje máquina para la implementación de una solución. (Portafolio Implementación)

María del Carmen Vargas Villarreal A00828570

Machine Learning: Decision Trees

Se utilizarán 2 datasets, el primer modelo será con Iris y el segundo con Wine

Importamos librerias necesarias

```
In [1]:

from sklearn import tree
from sklearn import preprocessing
from IPython.display import Image
import pydotplus
import matplotlib.pyplot as plt

from datetime import datetime

from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import confusion_matrix

import seaborn as sns
import numpy as np
import pandas as pd
```

Leemos base de datos: Iris.csv

Out[2

2]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Separamos las variables y etiquetas

```
In [3]: # Etiqueta
Y_iris = df_iris['Species']

# Variables
X_iris = df_iris.values[:, 1:5] # 5-1
```

Dividimos en training y test set

```
In [4]: X_train_iris, X_test_iris, y_train_iris, y_test_iris = train_test_split(X_i
```

Implementación del método DecisionTreeClassifier

Predict the response for test dataset

```
In [6]: test_pred = clf_tree_iris.predict(X_test_iris)

In [7]: test_pred

Out[7]: array(['Iris-versicolor', 'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
```

Verificación de predicciones

Los siguientes valores de entrada de las predicciones fueron obtenidas fijándome en las rows del data frame:

```
In [8]: #Predicción 1
    print(clf_tree_iris.predict([[4.6, 3.1, 1.5, 0.3]]))
        ['Iris-setosa']

In [9]: #Predicción 2
    print(clf_tree_iris.predict([[6.7, 2.5, 5.5, 1.4]]))
        ['Iris-virginica']

In [10]: #Predicción 3
    print(clf_tree_iris.predict([[7.7, 4.0, 1.1, 2.1]]))
        ['Iris-setosa']
```

Para obtener las primeras 5 predicciones del set de prueba se convierten a lista el array donde se guardan las predicciones finales y el array donde se contienen los datos que se van a predecir:

```
In [16]: test_pred_list = test_pred.tolist()
    y_test_iris_list = y_test_iris.tolist()

In [24]: X_test_iris[0]

Out[24]: array([6.1, 2.8, 4.7, 1.2], dtype=object)
```


Matriz de confusión

Segunda implementación (debido a que sale un Accuracy perfecto en el dataset Iris)

Abrimos data set Wine

Out[39]:

	Classification	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	P
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	

Verificamos columna de clasificación

```
In [40]: df1['Classification']
Out[40]: 0
                 1
                 1
          1
          2
                 1
          3
                 1
                 1
          173
                 3
          174
                 3
          175
                 3
          176
                 3
          177
                 3
          Name: Classification, Length: 178, dtype: int64
          Obtenemos valores únicos de la columna de clasificación
In [41]: df1.Classification.unique()
Out[41]: array([1, 2, 3])
          Para una interpretación más sencilla se reemplazaron las clasificaciones numéricas a categóricas
In [42]: df1.Classification.replace([1,2,3], ['Cultivar 1', 'Cultivar 2', 'Cultivar
          df1.Classification
Out[42]: 0
                 Cultivar 1
                 Cultivar 1
          2
                 Cultivar 1
                 Cultivar 1
                 Cultivar 1
          173
                 Cultivar 3
          174
                 Cultivar 3
          175
                 Cultivar 3
          176
                 Cultivar 3
          177
                 Cultivar 3
          Name: Classification, Length: 178, dtype: object
In [43]: df1.Classification.unique()
Out[43]: array(['Cultivar 1', 'Cultivar 2', 'Cultivar 3'], dtype=object)
```

Separamos las variables de la variable target

Separamos entre training y test set

5.600e+02]])

```
In [67]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df_x, df_y, test_size=0)
```

Construimos el clasificador

Generar predicción

```
In [69]: test_pred_decision_tree = classifier.predict(X_test)
```

Obtenemos columna

Graficamos el árbol de decisión

Comparamos el valor actual con el predicho por el modelo

```
In [72]: test pred decision tree list = test pred decision tree.tolist()
In [73]: y_test_list = y_test.tolist()
In [80]: import numpy as np
         np.set printoptions(suppress=True) # Para que los valores no salgan como no
         #X test
In [82]: df1.columns
Out[82]: Index(['Classification', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of a
         sh',
                'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenol
         s',
                'Proanthocyanins', 'Color intensity', 'Hue',
                'OD280/OD315 of diluted wines', 'Proline',
               dtype='object')
In [95]: # Se imprimen primero los títulos de cada variables
         # Después los valores de cada variable
         # Y para cada conjunto de variables de entrada se imprime el valor esperado
         # 'Real' hace referencia a valor esperado
         # 'Pred' hace referencia al valor predicho
         print('Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Tot
                'OD280/OD315 of diluted wines', 'Proline')
         for i in range(5):
           print(i, X_test[i], 'Real: ',y_test_list[i],' | Pred: ', test_pred_decisi
         Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoi
         ds Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 o
         f diluted wines Proline
                                                 2.7
         0 [ 13.64
                     3.1
                            2.56 15.2 116.
                                                        3.03
                                                               0.17
                                                                      1.66
                                                                             5.1
                   3.36 845. | Real: Cultivar 1 | Pred: Cultivar 1
         1 [ 14.21
                       4.04
                               2.44
                                      18.9
                                             111.
                                                       2.85
                                                               2.65
                                                                       0.3
                                                                               1.2
         5
             5.24
                     0.87
                             3.33 1080. | Real: Cultivar 1 | Pred: Cultivar 1
                     2.81
                                  21.
                                         96.
                                                 1.54
                                                        0.5
                                                               0.53
         2 [ 12.93
                            2.7
                                                                      0.75
            0.77
                   2.31 600. | Real: Cultivar 3 | Pred: Cultivar 3
         3 [ 13.73
                       1.5
                               2.7
                                      22.5
                                             101.
                                                       3.
                                                               3.25
                                                                       0.29
                                                                               2.3
                                         Real: Cultivar 1 | Pred: Cultivar 1
             5.7
                     1.19
                             2.71 1285.
                                                               0.27
                            1.92 19.6
                                         78.
                                                 2.11
                                                        2.
                                                                      1.04
         4 [ 12.37
                     1.17
            1.12
                   3.48 510. | Real: Cultivar 2 | Pred: Cultivar 2
```

Obtenemos matriz de confusión

Métrica Accuracy

```
In [90]: from sklearn.metrics import accuracy_score
accuracy_score(y_test, test_pred_decision_tree)
```

Out[90]: 0.94444444444444444