Week 3 Coding: Clustering and Topic Modeling

Joseph Denby

Computational Content Analysis

January 19, 2018

Joseph Denby Week 3 Coding January 19, 2018 1 / 20

Corpus

Montag, J. L., Jones, M. N., & Smith, L. B. (2015). The Words Children Hear. Psychological Science, 26(9), 14891496. http://doi.org/10.1177/0956797615594361

Alexander and the Terrible, Horrible, No Good, Very Bad Day by Judith Viorst

Angelina Ice Skates by Katharine Holabird

Are You My Mother? by P. D. Eastman Arnie the Doughnut by Laurie Keller

Arthur Writes a Story by Marc Brown

A Bad Case of Stripes by David Shannon

Bark, George by Jules Feiffer

Bear Wants More by Karma Wilson

The Berenstain Bears and the Green-Eved Monster by Stan Berenstain and Jan Berenstain

The Berenstain Bears Forget Their Manners by Stan Berenstain and Ian Berenstain

Blueberries for Sal by Robert McCloskey

Bread and Jam for Frances by Russell Hoban

Brown Bear, Brown Bear, What Do You See? by Bill Martin, Ir.

Bunny Party by Rosemary Wells

Caps for Sale by Esphyr Slobodkina

The Carrot Seed by Ruth Krauss

The Cat in the Hat by Dr. Seuss

Charlie and the New Baby by Ree Drummond

Chicka Chicka 1-2-3 by Bill Martin, Jr., Michael Sampson, and Lois Ehlert

How Do Dinosaurs Say Good Night? by Jane Yolen and Mark Teague

How to Train a Train by Jason Carter Eaton If You Give a Moose a Muffin by Laura Joffe Numeroff

If You Give a Mouse a Cookie by Laura Joffe Numeroff I'm a Big Sister by Joanna Cole

The Keeping Ouilt by Patricia Polacco

Knuffle Bunny by Mo Willems Ladybug Girl at the Beach by David Soman and Jacky Davis

Lilly's Purple Plastic Purse by Kevin Henkes

Little Blue Truck Leads the Way by Alice Schertle The Little Engine That Could by Watty Piper

The Little House by Virginia Lee Burton

Llama Llama Home With Mama by Anna Dewdney Llama Llama Red Pajama by Anna Dewdney

The Lorax by Dr. Seuss

Love You Forever by Sheila McGraw Madeline by Ludwig Bemelmans

Maisy Goes Camping by Lucy Cousins

Maisy Goes to the Library by Lucy Cousins

Make Way for Ducklings by Robert McCloskey

Mike Mulligan and His Steam Shovel by Virginia Lee Burton Miss Rumphius by Barbara Cooney

Preliminaries

Term Frequency-Inverse Document Frequency (tf-idf)

- Word frequency scaled by the inverse of document frequency
- Used to assess informativeness of word frequency in a document

Joseph Denby Week 3 Coding January 19, 2018 3 / 20

Preliminaries

Term Frequency-Inverse Document Frequency (tf-idf)

- Word frequency scaled by the inverse of document frequency
- Used to assess informativeness of word frequency in a document

```
[('george', 0.8173804012841295),
 ('mother', 0.0799363521813551),
 ('said', 0.05453320198192945),
('bark', 0.300642324953546),
('went', 0.09932712262216196),
 ('meow', 0.07340212851243166),
('no', 0.027564566896050743),
('cats', 0.023353725750975128),
 ('go', 0.052801431061004864),
 ('dogs', 0.06478954728663815),
 ('arf', 0.12025692998141839),
 ('now', 0.028488687043473303),
('quack', 0.14680425702486333),
('ducks', 0.025830374128783657),
('oink', 0.07749112238635097),
('pigs', 0.025830374128783657),
('moo', 0.05517516823509214),
('took', 0.013322725363559183),
('to', 0.02592901090972215),
('the', 0.08722467419426641)1
```

PCA

Principle Components Analysis

- Reduce variance in n_{docs} by n_{words} matrix to 2 dimensions
- Much easier to visualize

5 / 20

Joseph Denby Week 3 Coding January 19, 2018

PCA

Principle Components Analysis

- Reduce variance in n_{docs} by n_{words} matrix to 2 dimensions
- Much easier to visualize

Flat Clustering

- Algorithmically group documents according to their tf-idf vectors
- Clusters are documents that use similar words similarly

Joseph Denby Week 3 Coding January 19, 2018 7 / 20

Flat Clustering

```
Top terms per cluster:
Cluster 0:
 11
 ask
 train
 biq
 little
 like
 baby
 bus
 eat
 just
Cluster 1:
 said
 george
 mother
 little
 good
 dog
 night
 went
 came
 house
Cluster 2:
 mama
 llama
 train
 papa
 fence
 sister
 said
 bike
 brother
```

Silhouette

Allows us to determine the optimal number of clusters

Silhouette analysis for KMeans clustering on sample data with n clusters = 3

For n_clusters = 3, The average silhouette_score is: 0.006

Joseph Denby Week 3 Coding January 19, 2018 9 / 20

Silhouette

For n_clusters = 6, The average silhouette_score is : 0.021

No obvious clustering to the books Hard to determine given outliers

Joseph Denby Week 3 Coding January 19, 2018 10 / 20

Hierarchical Clustering

A different approach that creates clusters at various points of resolution

11 / 20

Hierarchical Clustering

A different approach that creates clusters at various points of resolution

Assign words to topics based on frequency and co-occurence

	title	topics	topic_0	topic_1	topic_2	topic_3	topic_4	topic_5	topic_6	topic_7
0	Bark, George	[(4, 0.7254582), (7, 0.26434156)]	0.000000	0.000000	0.000000	0.0	0.725458	0.000000	0.0	0.264342
10	Caps for Sale	[(0, 0.994875)]	0.994875	0.000000	0.000000	0.0	0.000000	0.000000	0.0	0.000000
20	Stellaluna	[(5, 0.9977239)]	0.000000	0.000000	0.000000	0.0	0.000000	0.997724	0.0	0.000000
30	Don't Let the Pigeon Drive the Bus	[(1, 0.9742126)]	0.000000	0.974213	0.000000	0.0	0.000000	0.000000	0.0	0.000000
40	Little Blue Truck Leads the Way	[(1, 0.55645955), (2, 0.0349048), (4, 0.401254	0.000000	0.556460	0.034905	0.0	0.401255	0.000000	0.0	0.000000

Joseph Denby Week 3 Coding January 19, 2018 13 / 20

Each topic is a probability distribution of all words in the corpus.

	Topic_0	Topic_1	Topic_2	Topic_3	Topic_4	Topic_5	Topic_6	Topic_7
0	said	said	train	llama	said	said	said	said
1	look	dragon	like	like	big	look	like	look
2	mother	look	big	mama	went	day	mother	good
3	cap	good	said	said	look	mother	day	llama
4	thing	like	look	long	day	want	chrysanthemum	time
5	like	love	love	day	like	stellaluna	want	ask
6	want	train	time	mother	time	big	look	duck
7	cat	dog	think	come	tree	like	tree	like
8	dog	bear	say	good	mother	thing	boy	night
9	ask	come	thing	place	sister	friend	ladybug	mother

Joseph Denby

Each document is a probability distribution of all topics.

Each document is a probability distribution of all topics.

Can adjust the topic modeling algorithm parameters as well

- ullet α sparsity of document-topic loadings
- \bullet η sparsity of topic-word loadings

Joseph Denby Week 3 Coding January 19, 2018 17 / 20

