1

(2023-Apr)

(2023-Apr)

d) 69

EE24BTECH11049

MCQ 1) If the coefficients of x and x^2 in $(1 + x)^p$ $(1 - x)^q$ are 4 and -5 respectively, then

c) 66

2) let $A = \{2, 3, 4\}$ and $B = \{8, 9, 12\}$. Then the number of elements in the relation $R = \{((a_1, b_1), (a_2, b_2)) \in (A \times B, A \times B) : a_1 \text{ divides } b_2 \text{ and } a_2 \text{ divides } b_1\}$ is

2p + 3q is equal to

b) 63

a) 60

a) 18	b) 24	c) 12	d) 36				
3) Let time image of the point $\mathbf{P}(1,2,6)$ n the plane passing through the points $\mathbf{A}(1,2,0)$, $\mathbf{B}(1,4,1)$ and $\mathbf{C}(0,5,1)$ be $\mathbf{Q}(\alpha,\beta,\gamma)$. Then $(\alpha^2 + \beta^2 + \gamma^2)$ is equal to (2023-Apr)							
a) 70	b) 76	c) 62	d) 65				
4) The statement $\sim [p \lor (\sim (p \land q))]$ is equivalent to (2023-Apr)							
a) $(\sim (p \land q)) \land$	$(q b) \sim (p \lor q)$	c) $\sim (p \wedge q)$	d) $(p \wedge q) \wedge ($	~)			
5) let							
$S = \left\{ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) : 9^{1 - \tan^2 x} + 9^{\tan^2 x} = 10 \right\} \text{ and } b = \sum_{x \in S} \tan^2 \left(\frac{x}{3} \right),$							
then $\frac{1}{6} (\beta - 14)^{6}$	² is equal to		(20	23-Apr)			
a) 16	b) 32	c) 8	d) 64				
	$P = \frac{Q}{PB} + \frac{Q}{PC}$ are respective $P = \frac{Q}{PC}$ is equal to			tre of a			

- a) $2\overline{\mathbf{QP}}$
- b) $\overline{\mathbf{QP}}$
- c) $2\overline{PQ}$
- d) \overline{PQ}

7) Let **A** be the point (1,2) and **B** be any point on the curve $x^2 + y^2 = 16$. **f** the centre of the locus of the point **P**, which divides the line segment **AB** in the ratio 3:2 is the point $C(\alpha,\beta)$ then the length of the line segment **AC** is

(2023-Apr)

- a) $\frac{6\sqrt{5}}{5}$
- b) $\frac{2\sqrt{5}}{5}$
- c) $\frac{3\sqrt{5}}{5}$
- d) $\frac{4\sqrt{5}}{5}$

8) Let m be the mean and σ be the standard deviation of the distribution

	x_i	0	1	2	3	4	5
ĺ	f_i	k + 2	2 <i>k</i>	$k^2 - 1$	$k^2 - 1$	$k^2 + 1$	k – 3

where $\sum f_i = 62$. If [x] denotes the greatest integer $\leq x$, then $\left[\mu^2 + \sigma^2\right]$ is equal to (2023-Apr)

a) 8

b) 7

c) 6

- d) 9
- 9) If $S_n = 4 + 11 + 21 + 34 + 50 + \dots$ to *n* terms, then $\frac{1}{60} (S_{29} S_9)$

(2023-Apr)

(2023-Apr)

d) 223

d) 1680

ther	$\left \operatorname{adj} \left(\operatorname{adj} \left(2A \right) \right) \right $	is equal to					
					(2023-Apr)		
a) 2	16	b) 2 ⁸	c) 2 ¹²	d) 2 ²⁰			
12) Let the number $(22)^{2022} + (2022)^{22}$ leave the remainder α when divided by 3 and β when divided by 7. Then $(\alpha^2 + \beta^2)$ is equal to							
WIIC	in divided by 7.		iaur to		(2023-Apr)		
a) 1	3	b) 20	c) 10	d) 5			
13) let							
$g(x) = f(x) + f(1 - x)$ and $f^{n}(x) > 0, x \in (0, 1)$.							
If g	is decreasing in	n the interval $(0, \alpha)$ a	nd increasing in the	interval (α	, 1), then		
$\tan^{-1}(2\alpha) + \tan^{-1}\left(\frac{\alpha+1}{\alpha}\right)$							
is e	qual to				(2023-Apr)		
a) $\frac{5}{2}$	$\frac{\pi}{4}$	b) π	c) $\frac{3\pi}{4}$	d) $\frac{3\pi}{2}$			
14) For $\alpha, \beta, \gamma, \delta \in \mathbb{N}$, if							
	$\int \left(\left(\frac{x}{e} \right)^{2x} + \left(\right)^{2x} \right) dx$	$\left(\frac{e}{x}\right)^{2x} \log_e x dx = \frac{1}{\alpha} \left(\frac{e}{a}\right)^{2x}$	$\left(\frac{x}{e}\right)^{\beta x} - \frac{1}{\gamma} \left(\frac{e}{x}\right)^{\delta x} + C,$	where $e = \frac{1}{2}$	$\sum_{n=0}^{\infty} \frac{1}{n!}$		
and	C is constant of	of integration, then α	$+2\beta + 3\gamma - 4\delta$ is equ	ıal to	(2023-Apr)		

a) 220

a) 1120

11) If

b) 227

b) 560

which they can be transported, is

c) 226

c) 3360

 $A = \frac{1}{5!6!7!} \begin{pmatrix} 5! & 6! & 7! \\ 6! & 7! & 8! \\ 7! & 8! & 9! \end{pmatrix},$

10) Eight persons are to be transported from city A to city B in three cars different makes. If each car can accommodate at most three persons, then the number of ways, in

a) 4

- b) -4 c) -8

d) 1

15) Let f be a continuous function satisfying

$$\int_{0}^{t^{2}} \left(f(x) + x^{2} \right) dx = \frac{4}{3} t^{3}, \forall t > 0.$$

Then $f\left(\frac{\pi^2}{4}\right)$ is equal to

(2023-Apr)

- a) $-\pi^2 \left(1 + \frac{\pi^2}{16}\right)$ b) $\pi \left(1 \frac{\pi^3}{16}\right)$ c) $-\pi \left(1 + \frac{\pi^3}{16}\right)$ d) $\pi^2 \left(1 \frac{\pi^3}{16}\right)$