1	A martial a D mayor with constant accoleration (2: 2:) m s ⁻²	
1.	A particle P moves with constant acceleration $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$	
	At time $t = 0$, P is moving with velocity $4i \mathrm{m}\mathrm{s}^{-1}$	
	(a) Find the velocity of P at time $t = 2$ seconds.	(2)
	At time $t = 0$, the position vector of P relative to a fixed origin O is $(\mathbf{i} + \mathbf{j})$ m.	()
	(b) Find the position vector of P relative to O at time $t = 3$ seconds.	
	(b) Find the position vector of T relative to O at time $t = 3$ seconds.	(2)

2.	A particle P moves with acceleration $(4\mathbf{i} - 5\mathbf{j}) \mathrm{m}\mathrm{s}^{-2}$	
	At time $t = 0$, P is moving with velocity $(-2\mathbf{i} + 2\mathbf{j}) \mathrm{m}\mathrm{s}^{-1}$	
	(a) Find the velocity of P at time $t = 2$ seconds.	
		(2)
	At time $t = 0$, P passes through the origin O .	
	At time $t = T$ seconds, where $T > 0$, the particle P passes through the point A .	
	The position vector of A is $(\lambda \mathbf{i} - 4.5\mathbf{j})$ m relative to O, where λ is a constant.	
	(b) Find the value of <i>T</i> .	
		(4)
	(c) Hence find the value of λ	(2)
		(2)

3.	[In this question, \mathbf{i} and \mathbf{j} are horizontal unit vectors.]	
	A particle P of mass 4 kg is at rest at the point A on a smooth horizontal plane.	
	At time $t = 0$, two forces, $\mathbf{F}_1 = (4\mathbf{i} - \mathbf{j})\mathbf{N}$ and $\mathbf{F}_2 = (\lambda \mathbf{i} + \mu \mathbf{j})\mathbf{N}$, where λ and μ are constants, are applied to P	
	Given that P moves in the direction of the vector $(3\mathbf{i} + \mathbf{j})$	
	(a) show that	
	$\lambda - 3\mu + 7 = 0$	(4)
	At time $t = 4$ seconds, P passes through the point B .	
	Given that $\lambda = 2$	
	(b) find the length of AB .	(5)

4.	[In this question, \mathbf{i} and \mathbf{j} are horizontal unit vectors and position vectors are given relative to a fixed origin O]	
	A particle <i>P</i> is moving on a smooth horizontal plane.	
	The particle has constant acceleration $(2.4\mathbf{i} + \mathbf{j}) \mathrm{m s}^{-2}$	
	At time $t = 0$, P passes through the point A .	
	At time $t = 5 \text{ s}$, P passes through the point B .	
	The velocity of P as it passes through A is $(-16\mathbf{i} - 3\mathbf{j}) \mathrm{m s}^{-1}$	
	(a) Find the speed of P as it passes through B .	
		(4)
	The position vector of A is $(44\mathbf{i} - 10\mathbf{j})$ m.	
	At time $t = T$ seconds, where $T > 5$, P passes through the point C .	
	The position vector of C is $(4\mathbf{i} + c\mathbf{j})$ m.	
	(b) Find the value of T .	(2)
		(3)
	(c) Find the value of c .	(3)

5.		
	A particle, P , moves with constant acceleration $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m}\mathrm{s}^{-2}$	
	At time $t = 0$, the particle is at the point A and is moving with velocity $(-\mathbf{i} + 4\mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$	
	At time $t = T$ seconds, P is moving in the direction of vector $(3\mathbf{i} - 4\mathbf{j})$	
	(a) Find the value of T.	
		(4)
	At time $t = 4$ seconds, P is at the point B .	
	(b) Find the distance AB.	(4)
_		
-		
-		
-		
-		
-		
-		
-		
-		
-		
_		
-		
-		
-		
-		
-		
_		
-		
_		
-		
_		

distance of P from the origin at time	t=2 s.
(5)	t-25.

7.	[In this question, \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]	v
	A ship <i>S</i> is moving along a straight line with constant velocity. At time <i>t</i> hours the position vector of <i>S</i> is s km. When $t = 0$, $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j}$. When $t = 4$, $\mathbf{s} = 21\mathbf{i} + 10\mathbf{j}$. Find	n
	(a) the speed of S , (4))
	(b) the direction in which S is moving, giving your answer as a bearing. (2))
	(c) Show that $\mathbf{s} = (3t+9)\mathbf{i} + (4t-6)\mathbf{j}$.)
	A lighthouse L is located at the point with position vector $(18\mathbf{i} + 6\mathbf{j})$ km. When $t = T$, the ship S is 10 km from L .	e
	(d) Find the possible values of <i>T</i> .)
		_
		-
		_
		-
		-
		-
		-
		_
		-
		-
		_

8.	[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively and position vectors are given relative to the fixed point O .]	
	A particle P moves with constant acceleration. At time $t = 0$, the particle is at O and is moving with velocity $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$ At time $t = 2$ seconds, P is at the point A with position vector $(7\mathbf{i} - 10\mathbf{j}) \mathrm{m}$.	
	(a) Show that the magnitude of the acceleration of P is $2.5 \mathrm{m s^{-2}}$	
	(a) Show that the magnitude of the acceleration of 1 is 2.3 ms	(4)
	At the instant when P leaves the point A , the acceleration of P changes so that P now moves with constant acceleration $(4\mathbf{i} + 8.8\mathbf{j})\mathrm{ms^{-2}}$	
	At the instant when P reaches the point B , the direction of motion of P is north east.	
	(b) Find the time it takes for <i>P</i> to travel from <i>A</i> to <i>B</i> .	
		(4)

A p	particle P of mass 2 kg is moving under the action of a constant force \mathbf{F} new ocity of P is $(2\mathbf{i} - 5\mathbf{j})$ m s ⁻¹ at time $t = 0$, and $(7\mathbf{i} + 10\mathbf{j})$ m s ⁻¹ at time $t = 5$ s.	tons. The
Fin	d	
(a)	the speed of P at $t = 0$,	(2)
(b)	the vector \mathbf{F} in the form $a\mathbf{i} + b\mathbf{j}$,	(5)
(c)	the value of t when P is moving parallel to \mathbf{i} .	(4)

[In this question, the unit vectors ${f i}$ and ${f j}$ are due east and due north respectively. Powectors are relative to a fixed origin O.]	sition
A boat P is moving with constant velocity $(-4\mathbf{i} + 8\mathbf{j})$ km h ⁻¹ .	
(a) Calculate the speed of <i>P</i> .	(2)
When $t = 0$, the boat P has position vector $(2\mathbf{i} - 8\mathbf{j})$ km. At time t hours, the position of P is \mathbf{p} km.	vector
(b) Write down \mathbf{p} in terms of t .	(1)
A second boat Q is also moving with constant velocity. At time t hours, the position of Q is \mathbf{q} km, where	vector
$\mathbf{q} = 18\mathbf{i} + 12\mathbf{j} - t(6\mathbf{i} + 8\mathbf{j})$	
Find	
(c) the value of t when P is due west of Q ,	(3)
(d) the distance between P and Q when P is due west of Q .	(3)

11	•
	[In this question ${\bf i}$ and ${\bf j}$ are horizontal unit vectors due east and due north respectively]
	A radio controlled model boat is placed on the surface of a large pond.
	The boat is modelled as a particle.
	At time $t = 0$, the boat is at the fixed point O and is moving due north with speed 0.6 m s ⁻¹ .
	Relative to O , the position vector of the boat at time t seconds is \mathbf{r} metres.
	At time $t = 15$, the velocity of the boat is $(10.5\mathbf{i} - 0.9\mathbf{j})$ m s ⁻¹ .
	The acceleration of the boat is constant.
	(a) Show that the acceleration of the boat is $(0.7\mathbf{i} - 0.1\mathbf{j})$ m s ⁻² .
	(2)
	(b) Find \mathbf{r} in terms of t .
	(c) Find the value of t when the boat is north-east of O.
	(3)
	(d) Find the value of t when the boat is moving in a north-east direction.
	(3)

2.	
_	In this question, ${f i}$ and ${f j}$ are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]
	A ship sets sail at 9 am from a port P and moves with constant velocity. The position vector $\mathbf{f} P$ is $(4\mathbf{i} - 8\mathbf{j})$ km. At 9.30 am the ship is at the point with position vector $(\mathbf{i} - 4\mathbf{j})$ km.
(8	a) Find the speed of the ship in km h^{-1} . (4)
(1	b) Show that the position vector \mathbf{r} km of the ship, t hours after 9 am, is given by
	$\mathbf{r} = (4 - 6t)\mathbf{i} + (8t - 8)\mathbf{j}.$ (2)
	at 10 am, a passenger on the ship observes that a lighthouse L is due west of the ship. At 10.30 am, the passenger observes that L is now south-west of the ship.
(0	c) Find the position vector of L .
	(5)

(a) Find the initial position vector of <i>P</i> . (b) Find the value of <i>T</i> . (c) Find the speed of <i>P</i> . (d)	$\mathbf{r} = (2t - 3)\mathbf{i} + (4 - 5t)\mathbf{j}$	
The particle <i>P</i> passes through the point with position vector (3.4 i – 12 j) m at time <i>T</i> seconds. (b) Find the value of <i>T</i> . (3)	(a) Find the initial position vector of <i>P</i> .	
time T seconds. (b) Find the value of T . (c) Find the speed of P .	•	(1)
(c) Find the speed of <i>P</i> .		2 j) m at
	(b) Find the value of <i>T</i> .	(3)
	(c) Find the speed of P.	
	. / 1	(4)

14.	
[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due not position vectors are given relative to a fixed origin O .]	orth respectively and
Two cars P and Q are moving on straight horizontal roads with consvelocity of P is $(15\mathbf{i} + 20\mathbf{j})$ m s ⁻¹ and the velocity of Q is $(20\mathbf{i} - 5\mathbf{j})$ m	
(a) Find the direction of motion of <i>Q</i> , giving your answer as a beddegree.	earing to the nearest
	(3)
At time $t = 0$, the position vector of P is 400 i metres and the pos 800 j metres. At time t seconds, the position vectors of P and Q are p respectively.	
(b) Find an expression for	
(i) \mathbf{p} in terms of t ,	
(ii) \mathbf{q} in terms of t .	(3)
(c) Find the position vector of Q when Q is due west of P .	(4)

Two forces \mathbf{F}_1 and \mathbf{F}_2 act on a particle P .	
The force \mathbf{F}_1 is given by $\mathbf{F}_1 = (-\mathbf{i} + 2\mathbf{j})$ N and \mathbf{F}_2 acts in the direction	of the vector $(i + j)$.
Given that the resultant of \mathbf{F}_1 and \mathbf{F}_2 acts in the direction of the vector	tor $(\mathbf{i} + 3\mathbf{j})$,
(a) find \mathbf{F}_2	
	(7)
The acceleration of P is $(3\mathbf{i} + 9\mathbf{j})$ m s ⁻² . At time $t = 0$, the velocity of	of <i>P</i> is $(3i - 22j)$ m s ⁻¹
(b) Find the speed of P when $t = 3$ seconds.	(4)
	(4)

6.	[In this question \mathbf{i} and \mathbf{j} are unit vectors due east and due north respectively. Position vectors are given relative to a fixed origin O .]
	Two ships P and Q are moving with constant velocities. Ship P moves with velocity $(2\mathbf{i} - 3\mathbf{j}) \text{ km h}^{-1}$ and ship Q moves with velocity $(3\mathbf{i} + 4\mathbf{j}) \text{ km h}^{-1}$.
((a) Find, to the nearest degree, the bearing on which Q is moving. (2)
	At 2 pm, ship P is at the point with position vector $(\mathbf{i} + \mathbf{j})$ km and ship Q is at the point with position vector $(-2\mathbf{j})$ km.
	At time t hours after 2 pm, the position vector of P is \mathbf{p} km and the position vector of Q is \mathbf{q} km.
((b) Write down expressions, in terms of t , for
	(i) p ,
	(ii) q,
	(iii) \overrightarrow{PQ} .
((c) Find the time when
	(i) Q is due north of P ,
	(ii) Q is north-west of P . (4)

Position vectors are given with respect to a fixed origin O .] A ship S is moving with constant velocity $(3\mathbf{i} + 3\mathbf{j})$ km h^{-1} . At time $t = 0$, the position vector of S is $(-4\mathbf{i} + 2\mathbf{j})$ km. (a) Find the position vector of S at time t hours. (2) A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h^{-1} . At time $t = 0$, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P . (b) Find the value of n .	
vector of S is $(-4\mathbf{i} + 2\mathbf{j})$ km. (a) Find the position vector of S at time t hours. (2) A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h ⁻¹ . At time $t = 0$, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P . (b) Find the value of n . (5)	[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively Position vectors are given with respect to a fixed origin O .]
A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h ⁻¹ . At time $t = 0$, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P. (b) Find the value of n. (5)	A ship S is moving with constant velocity $(3\mathbf{i} + 3\mathbf{j})$ km h ⁻¹ . At time $t = 0$, the position vector of S is $(-4\mathbf{i} + 2\mathbf{j})$ km.
vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P . (b) Find the value of n . (c) Find the distance OP .	(a) Find the position vector of S at time t hours. (2)
(5) (c) Find the distance <i>OP</i> .	A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h ⁻¹ . At time $t = 0$, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P .
	(b) Find the value of n . (5)
	(c) Find the distance <i>OP</i> .

[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively position vectors are given with respect to a fixed origin.]	and
A ship S is moving with constant velocity $(-12\mathbf{i} + 7.5\mathbf{j})$ km h ⁻¹ .	
(a) Find the direction in which S is moving, giving your answer as a bearing.	(3)
At time t hours after noon, the position vector of S is s km. When $t = 0$, $s = 40i - 6j$.	
(b) Write down \mathbf{s} in terms of t .	(2)
A fixed beacon B is at the point with position vector $(7\mathbf{i} + 12.5\mathbf{j})$ km.	
(c) Find the distance of S from B when $t = 3$	(4)
(d) Find the distance of S from B when S is due north of B .	(4)

19. [In this question, the horizontal unit vectors i and j are directed due east and due respectively.]	north
The velocity, \mathbf{v} m s ⁻¹ , of a particle P at time t seconds is given by	
$\mathbf{v} = (1 - 2t)\mathbf{i} + (3t - 3)\mathbf{j}$	
(a) Find the speed of P when $t = 0$	(3)
(b) Find the bearing on which P is moving when $t = 2$	(2)
(c) Find the value of t when P is moving	
(i) parallel to \mathbf{j} ,	
(ii) parallel to $(-\mathbf{i} - 3\mathbf{j})$.	(6)

1	Λ	
L	U	

[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively and position vectors are given relative to a fixed origin O.]

Two ships, P and Q, are moving with constant velocities. The velocity of P is $(9\mathbf{i} - 2\mathbf{j})$ km h⁻¹ and the velocity of Q is $(4\mathbf{i} + 8\mathbf{j})$ km h⁻¹

(a) Find the direction of motion of P, giving your answer as a bearing to the nearest degree.

(3)

When t = 0, the position vector of P is $(9\mathbf{i} + 10\mathbf{j})$ km and the position vector of Q is $(\mathbf{i} + 4\mathbf{j})$ km. At time t hours, the position vectors of P and Q are \mathbf{p} km and \mathbf{q} km respectively.

- (b) Find an expression for
 - (i) \mathbf{p} in terms of t,
 - (ii) \mathbf{q} in terms of t.

(3)

(c) Hence show that, at time t hours,

$$\overrightarrow{QP} = (8 + 5t)\mathbf{i} + (6 - 10t)\mathbf{j}$$
(2)

(d) Find the values of t when the ships are 10km apart.

(6)