BILAWAL KHAN

Email: bkhan7-c@my.cityu.edu.hk • ORCID • Google Scholar • Personal Webpage

Address: B2550, Department of Materials Science and Engineering, City University of Hong Kong

RESEARCH INTEREST

Electrochemistry, Photoelectrochemistry, CO₂ Reduction, Hydrogen Production, Artificial Photosynthesis, Solar Energy Conversion, Electrolyzer Engineering, Photoelectrode Designs, Wastewater Treatment

RESEARCH EXPERTISE

Membrance Electrode Assembly Implementations, Photoelectrochemical Devices Integration under Concentrated Sunlight, Photoelectrodes Design, Materials Synthesis, Materials Characterizations, Activity Measurements (Gas-Chromotography, Ion-Chromotography, Nuclear Magnetic Resonance, High-Performance Liquid Chromatography)

WORK EXPERIENCE

Postdoctoral Fellow (Short-term)

December 2024 -to- Present

Department of Materials Science and Engineering, City University of Hong Kong

Advisor: Prof. Jr-Hau HE

EDUCATION

PhD in Materials Science and Engineering

2020 - 2024

Department of Materials Science and Engineering, City University of Hong Kong

Thesis: Integrated Photoelectrochemical CO₂ Reduction Systems for Sustainable Fuel Production

Advisor: Prof. Jr-Hau HE

Visiting PhD Scholar

August 2021 - July 2022

KAUST Catalysis Center, King Abdullah University of Science and Technology

Project: Photoelectrochemical CO₂ Reduction Systems for Liquid-Fuels. Advisor: Prof. Kuo-Wei Huang

Masters in Physics School of Physics, University of Electronic Science and Technology of China

Thesis: Synthesis of Low-dimensional Materials for Artificial Photosynthesis

TEACHING EXPERIENCE

Teaching Assistant

Department of Materials Science and Engineering, City University of Hong Kong

• MSE4178 Nanostructure and Nanotechnology (Best Teaching Assistant Award)

Fall 2023

2017 - 2019

• MSE2108 Materials Chemistry

Spring 2023

• MSE3101-MSE4101 Materials Engineer in Society

Fall 2022

SELECTED PUBLICATIONS

- B. Khan, M. B. Faheem, K. Peramaiah, J. Nie, H. Huang, Z. Li, C. Liu, K.-W. Huang and J.H. He. Unassisted Photoelectrochemical CO₂-to-liquid Fuel Splitting over 12% Solar Conversion Efficiency. *Nature Communications*, 2024, 15, 6990.
- M. B. Faheem, B. Khan, Y. Zhang, H. Li, M. Saud, H. Lin, H. Zhang, S. B. Ahmed, V. Vanshika, R. Qiao, P. Kasweaker, Y. Wang, W. Zheng, J. H. He, Q. Qiao. Synergistic Solvent and Surface Engineering to Reduce Voc Loss in Tin Halide Perovskite Solar Cells. ACS Energy Letters, 2025, 10, 33373348.
- M.S. Hassan, P. Basera, B. Khan, A.S. Portniagin, K. Vighnesh, Y. Wu, D.A. Rusanov, M. Babak, J.-H. He, M. Bajdich and A.L. Rogach. Bidentate Lewis Base Ligand-Mediated Surface Stabilization and Modulation of the Electronic Structure of CsPbBr₃ Perovskite Nanocrystals. *Journal of the American Chemical Society*, 2024, 115, 862-873.

- K. Peramaiah, P. Varadhan, V. Ramalingam, **B. Khan,** P.K Das, H. Huang, H-C Fu, X. Yang, V. Tung, K-W. Huang and J.H. He. Unassisted photoelectrochemical CO₂ reduction by employing III–V photoelectrode with 15% solar-to-fuel efficiency. *Carbon Energy*, **2024**, e669.
- H. Huang, Z. Li, Z. Li, B. Khan, K-W. Huang, Z. Lai and J.-H. He. Photoelectrochemical Lithium Extraction. *Nano Energy*, **2023**, 115, 108683.
- Z. Li, Z. Li, H. Huang, Y. Yao, **B. Khan,** Y. Zhu, K.-W. Huang, Z. Lai and J.-H. He. Green Lithium: Photoelectrochemical Extraction. *PhotoniX*, **2023**, 4, 23.
- B. Khan, F. Raziq, M. B. Faheem, M. U. Farooq, S. Hussain, F. Ali, A. Ullah, A. Mavlonov, Y. Zhao and Z. Liu, H. Tian, H. Shen, X, Zu, S. Li, H. Xiao, X. Xiang, L. Qiao. Electronic and Nanostructure Engineering of Bifunctional MoS₂ towards Exceptional Visible-light Photocatalytic CO₂ Reduction and Pollutant Degradation. *Journal of Hazardous Materials*, 2020, 381, 120972.
- M. B. Faheem, **B. Khan,** Y. Zhang, H. Li, M. Saud, H. Lin, H. Zhang, S. Ahmed, V. Vanshika, R. Qiao, P. Kaswekar, Y. Wang, W. Zheng, J. He, Q. Qiao. Integrated Perovskite/Silicon Tandem Photoelectrochemical Devices for Water-Splitting and CO₂-to-Formate Conversion. **Joule (2025): Manuscript ID: nz-2025-009169. Under Review**
- B. Khan, M. B. Faheem, Q. Qiao, J-H. He. "Photoelectrochemical CO₂ to Liquid Fuel Conversions: Device Assembly, Photoelectrode Designs, and Scalability Challenges Nature Review Clean Technology (2025): Manuscript ID: NRCT-24-120V1. Under Review
- B. Khan, M. B. Faheem, P. Karthik, J-H. He. Solar-Driven Selective CO₂ Hydrogenation over Carbon Nitride Nanocomposites with Extended Light Absorption. Nano-Micro Letters (2025): Manuscript ID: NML-2025-18724. Under Review.
- B. Khan, M. Elhousseini, S. B. Ahmed, R. Ahmad, L. Lyu, H. Chen, B. Khan, I. Gunasekaran, F. Chuhan S. Liu Z. Yang, B. L Khoo. Enhanced core-shell nano-conductive piezoelectric sensor via self-oriented beta phase nanocrystals for real-time monitoring of physiological signals. *Chemical Engineering Journal*, 2025, 513, 162384.
- B. Khan, W. Khan, M. H. Masrur, R. T. Khalid, M. Awais, B. Khan, B. L Khoo, S. Abdullah. EHybrid sensor integration in wearable devices for improved cardiovascular health monitoring. *Journal of Science: Advanced Materials and Devices*, 2025, 10, 100889.
- M. B. Faheem, B. Khan, C. Feng, W. S. Subhani, S. Mabrouk, M. H. Sayyad, A. Yildiz, W. H. Zhang and Q. Qiao. Van der Waals Epitaxial Growth for High Performance Organic-Free Perovskite Solar Cell: Experimental and Theoretical Insights. *Advanced Materials Interfaces*, 2022, 9, 2200421.
- M. B. Faheem, B. Khan, C. Feng, S. B. Ahmed, J. Jiang, M.-U. Rehman, W. Subhani, M. Farooq, J. Nie and M. Makhlouf, Q. Qiao. Synergistic Approach toward Erbium-Passivated Triple-Anion Organic-Free Perovskite Solar Cells with Excellent Performance for Agrivoltaics Application. ACS Applied Materials and Interfaces, 2022, 14, 6894-6905.
- M. B. Faheem, **B. Khan**, J. Z. Hashmi, A. Baniya, W. Subhani, R. S. Bobba, A. Yildiz and Q. Qiao, et al. Insights from Scalable Fabrication to Operational Stability and Industrial Opportunities for Perovskite Solar Cells and Modules. *Cell Report Physical Science*, **2022**, 3, 100827.
- Y. Ahmed, **B. Khan**, M. B. Faheem, K. Huang, Y. Gao and J. Yang. Organic Additives in All-inorganic Perovskite Solar Cells and Modules: from Moisture Endurance to Enhanced Efficiency and Operational Stability. *Journal of Energy Chemistry*, **2022**, 67, 361-390.
- M. B. Faheem, B. Khan, C. Feng, M. U. Farooq, F. Raziq, Y. Xiao and Y. Li. All-inorganic Perovskite Solar Cells: Energetics, Key Challenges and Strategies Towards Commercialization. ACS Energy Lett., 2020, 5, 290-320.
- F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, Q. Fu, W. Luo, H. Zeng, Z. Zheng and **B. Khan,** H. Shen, X. Zu, S. Li, L. Qiao. "Synthesis of S-Doped porous g-C₃N₄ by using Ionic Liquids and Subsequently Coupled with Au-TiO₂ for Exceptional Cocatalyst-free Visible-light Catalytic Activities. *Applied Catalysis B: Environmental*, 2018, 237, 1082-1090.
- D. Li, X. Zu, D. Ao, Q. Tang, Y. Fu, Y. Guo, **B. Khan**, M. B. Faheem, L. Li and S. Li. High Humidity Enhanced Surface Acoustic Wave (SAW) H₂S Sensors based on Sol-gel CuO Films. *Sensors and Actuators B: Chemical*, 2019, 294, 55-61.

- C. Tian, X. Xiang, J. Wu, B. Li, C. Cai, **B. Khan**, H. Chen, Y. Yuan and X. Zu. "Facile Synthesis of MoS2/CuS Nanosheet Composites as an Efficient and Ultrafast Absorbent for Water-soluble Dyes. *Journal of Chemical and Engineering Data*, **2018**, 63, 3966-3974.
- Y. Tang, D. Li, D. Ao, Y. Guo, M. B. Faheem, **B. Khan**, X. Zu and S. Li. Highly Sensitive Surface Acoustic Wave HCl Gas Sensors based on Hydroxyl-rich Sol-gel AlO_xOH_y Films. *Materials Chemistry and Physics*, **2020**, 239, 122026.

REFERENCES

- Prof. Jr-Hau HE Email: jrhauhe@cityu.edu.hk
 Department of Material Science and Engineering, City University of Hong Kong, Hong Kong
- Prof. Kuo-Wei Huang Email: kuowei.huang@kaust.edu.sa KAUST Catalysis Center, King Abdullah University of Science and Technology, Saudi Arabia
- Prof. Quinn Qiao Email: quqiao@syr.edu Mechanical and Aerospace Engineering, Syracuse University, United States