Algeberska topologija Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Algeberska topologija v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1	Uvodna motivacija	3
2	Kategorije	3
3	Funktorii	4

1 Uvodna motivacija

Tekom matematične izobrazbe se spoznamo z mnogimi t. i. strukturami, ki tipično zavzamejo obliko »množica + nekaj«. Med njimi imamo tipično tudi preslikave, ki jim pogosto damo posebno ime. Naštejmo nekaj primerov. Prej

Ime	Oznaka	ime preslikav
Množice	M	preslikave oz. funkcije
Grupe	(G, \circ)	homomorfizmi grup
Abelove grupe	(G,+)	homomorfizmi Ab. grup
Polja	$(F,+,\cdot)$	homomorfizmi polj
Vektorski prostori nad poljem F	$(V,+,\cdot)$	linearne preslikave
Delno urejene množice	(P, \leq)	naraščajoče funkcije
Linearno urejene množice	(L, \leq)	naraščajoče funkcije
Metrični prostori	(X,d)	zvezne funkcije
Topološki prostori	(X,\mathcal{T})	zvezne funkcije

omenjene preslikave (na neki strukturi) lahko seveda tudi komponiramo. Za komponiranje velja, da obstajata leva in desna enota ter da je asociativno za preslikave, ki se ustrezno ujemajo z domenami in kodomenami (npr. za preslikave f, g in h mora, če želimo formirati $h \circ (g \circ f)$ veljati, da je kodomena f hkrati domena g ter da je kodomena g hkrati domena g. Posplošena obravnava lastnosti skupin določenih struktur nas privede do t. .i teorije kategorij.

2 Kategorije

Definicija 1: Razred C z delno binarno operacijo \circ je kategorija, če velja:

- C je unija disjunktnih razredov Ob(C) in Mor(C). Elementom Ob(C) pravimo objekti, elementom Mor(C) pa morfizmi.
- Za vsak $f \in \mathcal{M}or(\mathcal{C})$ sta enolično določena »začetek« in »konec«, ki sta oba objekta kategorije \mathcal{C} . Pišemo $f: X \to Y$.
- Za poljubna objekta $X, Y \in \mathcal{O}b(\mathcal{C})$ je $\mathcal{M}or_{\mathcal{C}}((X,Y)) = \{ f \in \mathcal{M}or(\mathcal{C}); f : X \to Y \}$ množica (ne samo razred).
- Za poljubna morfizma $f:X\to Y$ in $g:Y\to Z$ je enolično definiran morfizem $g\circ f:X\to Z$ in velja:
 - 1. Za poljubne morfizme $f:X\to Y, g:Y\to Z$ in $h:Z\to W$ je $(h\circ g)\circ f=h\circ (g\circ f).$
 - 2. Za vsak $X \in \mathcal{O}b(\mathcal{C})$ obstaja enolično določen morfizem $1_X \in \mathcal{M}or_{\mathcal{C}}((X,X))$, z lastnostjo: $\forall f: X \to Y \land \forall g: Z \to X$ je $f \circ 1_X = f$ in $1_X \circ g = g$ (Za poljubna $Y, Z \in \mathcal{O}b(\mathcal{C})$).

Zgled 1:

Naj bo (G, ∘) poljubna grupa in Ob(C) = {*}, Mor(C) = G. ∘ v C je kar ∘ v G. Očitno je (ker je to edina možnost), da vsak morfizem a ∈ Mor(C) slika objekt * v samega vase. Dodatno: e = 1*.

• Naj bo (L, \leq) poljubna linearno urejena množica in naj bo $\mathcal{O}b(\mathcal{C}) = L$. Morfizme določimo na naslednji način:

$$\forall x,y \in L: |\mathcal{M}or_{\mathcal{C}}((x,y))| = \begin{cases} 1; & x \leq y \\ 0; & \neg(x \leq y) \end{cases}$$
 Tranzitivnost linearne urejenosti nam zagotovi enoličnost kompozituma in posledično tudi njegovo asociativnost.

Definicija 2: Pravimo, da je kategorija \mathcal{C} majhna, če je $\mathcal{O}b(\mathcal{C})$ množica.

Izrek 1. V majhni kategoriji je $\mathcal{M}or(\mathcal{C})$ množica (in posledično tudi $\mathcal{O}b(\mathcal{C}) \cup \mathcal{M}or(\mathcal{C})$)

Dokaz. Velja:

$$\mathcal{M}or(\mathcal{C}) = \bigcup_{(X,Y) \in \mathcal{O}b(\mathcal{C}) \times \mathcal{O}b(\mathcal{C})} \mathcal{M}or_{\mathcal{C}}((X,Y))$$

Unija družine množic je tudi sama množica.

Zgled 2: Naj bo $\mathcal{O}b(\mathcal{C}) = \mathbb{N}$ in F izbrano polje. Naj bo $\mathcal{M}or(\mathcal{C}) = \bigcup_{(n,m)\in\mathbb{N}^2} M_{n\times m}(F) = \text{množica vseh matrik z elementi iz } F$. Dodatno, omenimo, da je $M_{n\times m}(F) = \mathcal{M}or_{\mathcal{C}}((m,n))$. Za \circ vzamemo množenje matrik.

3 Funktorji

Definicija 3: Naj bosta \mathcal{C} in \mathcal{D} poljubni kategoriji. $F:\mathcal{C}\to\mathcal{D}$ je kovariantni funktor, če:

- F slika $\mathcal{O}b(\mathcal{C})$ v $\mathcal{O}b(\mathcal{D})$ in $\mathcal{M}or(\mathcal{C})$ v $\mathcal{M}or(\mathcal{D})$.
- $\forall X, Y \in \mathcal{O}b(\mathcal{C}), \ \forall f: X \to Y \text{ je } F(f): F(X) \to F(Y)$
- $\forall f, g \in \mathcal{M}or(\mathcal{C})$: če $\exists g \circ f$, potem je $F(g \circ f) = F(g) \circ F(f)$
- $\forall X \in \mathcal{O}b(\mathcal{C}) : F(1_X) = 1_{F(X)}$

Pravimo, da je $F:\mathcal{C}\to\mathcal{D}$ je kontravariantni funktor, če:

- F slika $\mathcal{O}b(\mathcal{C})$ v $\mathcal{O}b(\mathcal{D})$ in $\mathcal{M}or(\mathcal{C})$ v $\mathcal{M}or(\mathcal{D})$.
- $\forall X, Y \in \mathcal{O}b(\mathcal{C}), \ \forall f: X \to Y \text{ je } F(f): F(Y) \to F(X)$
- $\forall f,g \in \mathcal{M}or(\mathcal{C})$: če $\exists g \circ f$, potem je $F(g \circ f) = F(f) \circ F(g)$
- $\forall X \in \mathcal{O}b(\mathcal{C}) : F(1_X) = 1_{F(X)}$

Definicija 4: Naj bo \mathcal{C} poljubna kategorija in $f: X \to Y$ element $\mathcal{M}or(\mathcal{C})$. Pravimo, da je f izomorfizem, če $\exists g: Y \to X$, da je $g \circ f = 1_X$ in $f \circ g = 1_Y$.

Izrek 2. Naj bo $F: \mathcal{C} \to \mathcal{D}$ poljubni funktor poljubnih kategorij \mathcal{C} in \mathcal{D} . Naj bosta $X,Y \in \mathcal{O}b(\mathcal{C})$ in $f: X \to Y$ izomorfizem $v \mathcal{C}$. Potem je F(f) izomorfizem $v \mathcal{D}$.

Dokaz. Denimo, da je F kovariantni funktor. Naj bo $g:Y\to X$ takšen, da je $g\circ f=1_X$ in $f\circ g=1_Y$. Potem je $1_{F(X)}=F(1_X)=F(g\circ f)=F(g)\circ F(f)$ in $1_{F(Y)}=F(1_Y)=F(f\circ g)=F(f)\circ F(g)$, torej je F(f) izomorfizem. Še več, če označimo $g=f^{-1}$ je $F(f^{-1})=(F(f))^{-1}$. Če je F kontravariantni funktor poteka dokaz na enak način, zato ga opustimo.

Definicija 5: V poljubni kategoriji \mathcal{C} za poljubna objekta $X,Y\in\mathcal{O}b(\mathcal{C})$ definiramo relacijo:

$$X \approx Y \iff \exists f: X \to Y, \ ki \ je \ izomorfizem$$

Izrek 3. Relacija \approx je ekvivalenčna relacija na $\mathcal{O}b(\mathcal{C})$.

Dokaz. Preverimo, ali \approx zadošča vsem pogojem za ekvivalenčne relacije.

refleksivnost: Vemo, da $\forall X \in \mathcal{O}b(\mathcal{C})$ obstaja morfizem $1_X: X \to X$, ki je izomorfizem.

simetričnost: Naj bosta $X, Y \in \mathcal{O}b(\mathcal{C})$ poljubna objekta in $f: X \to Y$ izomorfizem. Po definiciji izomorfizma potem obstaja morfizem $f^{-1}: Y \to X$, ki je tudi sam izomorfizem. Če je $X \approx Y$ je potem tudi $Y \approx X$

tranzitivnost: Naj bodo $X,Y,Z\in \mathcal{O}b(\mathcal{C})$ za katere velja $X\approx Y$ in $Y\approx Z$. Potem obstajata izomorfizma $f:X\to Y$ in $g:Y\to Z$ in trdimo, da je tudi $g\circ f:X\to Z$ je izomorfizem. Vidimo namreč, da za $f^{-1}\circ g^{-1}$ velja $(g\circ f)\circ (f^{-1}\circ g^{-1})=g\circ f\circ f^{-1}\circ g^{-1}=g\circ 1_X\circ g^{-1}=g\circ g^{-1}=1_Y.$ Podobno vidimo tudi, da velja $(f^{-1}\circ g^{-1})\circ (g\circ f)=1_X.$ Sledi, da je $(g\circ f)$ izomorfizem in $(g\circ f)^{-1}=f^{-1}\circ g^{-1}.$ Posledično je \approx tranzitivna.

Posledica 1. Naj bo $F: \mathcal{C} \to \mathcal{D}$ poljuben funktor (kovariantni ali kontravariantni) poljubnih kategorij \mathcal{C} in \mathcal{D} . Potem za poljubna objekta $X,Y \in \mathcal{O}b(\mathcal{C})$ velja:

- $X \approx Y \Rightarrow F(X) \approx F(Y)$
- $F(X) \not\approx F(Y) \Rightarrow X \not\approx Y$

Omenimo še nekaj oznak za znane kategorije.

Oznaka	kategorija	
$\mathcal{S}et$	množice	
$\mathcal{G}r$	grupe	
$\mathcal{A}b$	Ab. grupe	
$\mathcal{M}et$	Vect_F vektorski prostori nad poljem F	
$Vect_F$		
$\mathcal{T}op$		

Zgled 3: Definiramo t. i. pozabljivi funktor, ki slika iz neke kategorije struktur v kategorijo množic. Na primer funktor $F: \mathcal{G}r \to \mathcal{S}et; F((G, \circ)) = G$. Vidimo tudi, da F slika homomorfizme grup v preslikave (istih množic). Funktor F je kovariantni. Če tukaj uporabimo prejšnjo posledico opazimo naslednje: Za $X,Y \in \mathcal{S}et: X \approx Y \iff |X| = |Y|$. Drugače povedano, dve grupi različnih moči ne moreta biti izomorfni.

Zgled 4: Pokažimo, da $(\mathbb{R}, \mathcal{T}_{evk}) \not\approx (\mathbb{R}^2, \dot{\mathcal{T}}_{evk})$. Denimo, da obstaja nek homeomorfizem f med \mathbb{R} in \mathbb{R}^2 . Potem bo za $\forall a \in \mathbb{R}$ tudi $f_{|\mathbb{R}\setminus \{a\}}$ homeomorfizem iz $\mathbb{R}\setminus \{a\}$ v $\mathbb{R}^2\setminus \{(a,0)\}$. Ti množici pa imata različno število povezanih komponent: $C(\mathbb{R}\setminus \{a\})=2, C(\mathbb{R}^2\setminus \{(a,0)\})=1$. Prišli smo v protislovje, saj homeomorfizmi ohranjajo število povezanih komponent. Zgoraj povedano lahko izrazimo tudi s funktorji. Naj bo $F:\mathcal{T}op\to\mathcal{S}et$ in $F((X,\mathcal{T}))=C((X,\mathcal{T}))$. Potem velja $|C((X,\mathcal{T}))|\neq |C((Y,\mathcal{T}))|\Rightarrow (X,\mathcal{T})\not\approx (Y,\mathcal{T})$