

## SEQUENCE LISTING



<110> Vrjic, Marina  
Eggeling, Lothar  
Sahm, Harmann

<120> PROCESS FOR THE MICROBIAL PRODUCTION OF AMINO ACIDS BY  
BOOSTED ACTIVITY OF EXPORT CARRIERS

<130> fj122 oct99

<140> 09/105,117  
<141> 1998-06-17

<150> PCT/DE96/02485  
<151> 1996-12-18

<150> 195 48 222.0  
<151> 1995-12-22

<160> 3

<170> PatentIn Ver. 2.1

<210> 1  
<211> 290  
<212> PRT  
<213> Corynebacterium glutamicum

<400> 1  
Met Ala Pro Ile Gln Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly  
1 5 10 15

Ser Phe Glu Gly Ala Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val  
20 25 30

Ser Gln Arg Val Lys Ala Leu Glu His His Val Gly Arg Val Leu Val  
35 40 45

Ser Arg Thr Gln Pro Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val  
50 55 60

Gln Ala Ala Arg Lys Met Val Leu Leu Gln Ala Glu Thr Lys Ala Gln  
65 70 75 80

Leu Ser Gly Arg Leu Ala Glu Ile Pro Leu Thr Ile Ala Ile Ala Ala  
85 90 95

RECEIVED  
OCT 18 1999  
TECHNOLOGY CENTER 3700

Asp Ser Leu Ser Thr Trp Phe Pro Pro Val Phe Ala Glu Val Ala Ser  
100 105 110

Trp Gly Gly Ala Thr Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr  
115 120 125

Leu Ser Leu Leu Arg Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu  
130 135 140

Ala Ala Pro Val Ala Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg  
145 150 155 160

His Leu Ala Ile Ala Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp  
165 170 175

Gly Lys Leu Asp Trp Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys  
180 185 190

Asp Val Leu Gln Asp Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val  
195 200 205

Gly Arg Arg Arg Val Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu  
210 215 220

Ala Ile Arg Arg Gly Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala  
225 230 235 240

Ala Pro Met Leu Lys Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro  
245 250 255

Ile Asp Thr Pro Met Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser  
260 265 270

Leu Ala Arg Leu Thr Asp Ala Val Val Asp Ala Ala Ile Glu Gly Leu  
275 280 285

Arg Pro  
290

<210> 2  
<211> 2990  
<212> DNA  
<213> Corynebacterium glutamicum

<400> 2  
ggtaaacgac ttccacaatg agacggaccg ggttaaggac gccccgttct tcacttttg 60  
ysgggacttg gaaaagtctt cattgattcc ggcgttaggg agctaacgac gtatgtctg 120

ccgrrgaadvv acagacactc agatcgatct ctagatctaa ggtccgcgg agcaacggtt 180  
atgttagccac adtrasrsrw rwymtcagtt acccatagag tagctccctcc tagtgaagag 240  
gacgaaaatc gtaccctcggt cgaacddvga kmaaccaaag cccttcttca ggggttggtt 300  
ccggagccgc ttaacggagt gttttggaa ggcgtgwgr raggagctgc cctgttacct 360  
atgcgcggac gcgggggtgc ctggtagctg cgccggcagg tccagsvsrv rrgvgdvrqd 420  
dtgccagaac ttctgttaga aaccctggct tcgcattctg cccgtacgtc cgggttagat 480  
crdvdkgrvm aawdaaaggg tagttggat atccgttaggg cgttactccc ccaacgttac 540  
cggttacccg cgtakgdvmy adrstaahrm ccaaggttca agatgatgaa gttagggcg 600  
gtgccctaatt cgaagtgcgc aatggcgagg tgvvcgavna rtvagatttt gtagaggtgc 660  
ggcgtcggtc ctattacaca cgcgaagtag aaggttcgcg tcgcavdgr sthadrtctc 720  
gcaacgaggt ggggttcttc gatggagcaa cttgtgcctt ccttggtac acctatctag 780  
gwsavnvwts gcttagacgc aactaccgtt accaattgcc ctaaagtctg tccgcaggc 840  
tatcaacgcg sdanatargs aaaatcaaag acgaacgtcg ttgtggtaaa aggccgcacg 900  
aacgtttcc tgaagtggc gktavmkraa vvgaaaagcca acgaaaccgg ccaacccacg 960  
cgctatggtt gtgagctggg tgcaactacga gctctakatr svvrgvhhtc gaaattgcgc 1020  
gactgagttgg cggctcccc tttaccttc ccgattcctc cgccgaagak vrvsvasssa 1080  
agtabrcgsy sgcttcgacg gaagtagtta ctaactctcg tttcacaggt caacttaccc 1140  
caagtatgcc ttcatcaatg attgagagca aagtgtccag ttgaatgggg ttcatgaago 1200  
tsgdstdnmr bsatattaaa ccatgttaag aaccaatcat tttacttaag tacttccata 1260  
ggtcacgatg gtmvysgatc atggaaatct tcattacagg tctgctttt gggccagtc 1320  
ttttactgtc catcggttgg assgaccgca gaatgtactg gtgattaaac aaggaattaa 1380  
gcgcgaagga ctcattgcgg ttctnvvkgk rgavtctcg gtgtttaatt tctgacgtct 1440  
ttttgttcat cgcggccacc ttggcggtt atctvcsdva gtgvdttgtt ccaatgccgc 1500  
gccgatcggt ctcgatatta tgccgtggg tggcatcgct tacctsnaav dmrxwgaygt 1560  
tatggtttc cgtcatggca gcgaaagacg ccatgacaaa caaggtggaa gcgcacawa 1620  
vmaakdamtn kvagatcatt gaagaaacag aaccaaccgt gcccgtatgac acgcctttgg 1680  
gcgggttcggc ggtttvddtg gsavggccac tgacacgcgc aaccgggtgc ggggtggaggt 1740  
gagcgtcgat aagcagcggg tttgatdtrn rvrvsvdkr vwggtaaagc ccatgttcat 1800  
ggcaatcggt ctgacctggt tgaaccggaa tgcgtattt gavkmavtw nnaydcgcgt 1860  
ttgtttagt cggcggtc ggccgcgaat acggcgacac cggacgttgg attttavggv 1920  
gaygdtgrwc gcccgtggc cgttcggc aagcctgtatc tggttccgc tggtgggtt 1980  
cgccgcagca agaaaswvvgg aaagcattgt cacgccccgt gtccagcccc aaggtgtggc 2040  
gctggatcaa cgtcgtcggt gcasrsskvw rwnvvvatet rtgsttrnrt kctactggcg 2100  
taaccggtag tttgactaca actaccat caaaagcgcc caaaaagttt tgatgaccgc 2160  
attggccatc aaactgtatgt ttagtgggta gtttgcgg gvvmtaakmm gycsccttagc 2220  
caccggaaacg gggtttacaa ctacggccgc agcacccttt agagtagcta gcgsdtakaw 2280  
ngadhsdaga ggttgagccg cagtctttt aggttcaaca actcacttag tttcgacaaac 2340  
aggtcgacac snnsdsndga gttgactgt tcgtggtag ttacgtgacc agtgcctatag 2400  
gcgcggcatg agaggaacvs sagastvtda gyggagcgcg tcgtgggtac gttcgcggta 2460  
gacgcgttca ctgacggcgc caaggaccgc ctarvwaama sgracagtaa ctgcacgcgc 2520  
tggtagttataacaatgt caagttgtac gggagtctgt ccctdnkrvm dnnvnmgssg 2580  
aatggggaccg accgcgcctt tggagacact taaggtact ctataaaccg gcactcgatck 2640  
gsarssgdyk dtcgggacgc gttcaccact ctgggttac tgccgttctg gtaacaaccg 2700  
tcgactgacg ttgasavgn naasgttcaa gagttggcgtt agcggccaa ggaggtgggt 2760  
tgctaattac taccttatcg aaccngddgv wrnsysgact acttagtctt cgcccggtcg 2820  
gaggaggcgg tacttgatgc ggcggaggcgc acactchcga maaatgagac ctggcatcct 2880  
tctttatggg tgcatttctc ggaaaggctc gcgtttagtac agtgcgyssg vyakgsavdr 2940  
rgttacgcattt gacccaaaga aggtttccctc atagaaymtt dtabrtgsts 2990

<210> 3  
<211> 236  
<212> PRT  
<213> Corynebacterium glutamicum

<400> 3  
Met Val Ile Met Glu Ile Phe Ile Thr Gly Leu Leu Leu Gly Ala Ser  
1 5 10 15  
  
Leu Leu Leu Ser Ile Gly Pro Gln Ala Val Leu Val Ile Lys Gln Gly  
20 25 30  
  
Ile Lys Arg Glu Gly Leu Ile Ala Val Leu Leu Val Cys Leu Ile Ser  
35 40 45  
  
Asp Val Phe Leu Phe Ile Ala Gly Thr Leu Gly Val Asp Leu Leu Ser  
50 55 60  
  
Ala Ala Ala Pro Ile Val Leu Asp Ile Met Arg Trp Gly Gly Ile Ala  
65 70 75 80  
  
Tyr Leu Leu Trp Phe Ala Val Met Ala Ala Lys Asp Ala Met Thr Asn  
85 90 95  
  
Lys Val Glu Ala Pro Gln Ile Ile Glu Glu Thr Glu Pro Thr Val Pro  
100 105 110  
  
Asp Asp Thr Pro Leu Gly Gly Ser Ala Val Ala Thr Asp Thr Arg Ala  
115 120 125  
  
Arg Val Arg Val Glu Val Ser Val Asp Lys Gln Arg Val Trp Val Lys  
130 135 140  
  
Pro Met Leu Met Ala Ile Val Leu Thr Trp Leu Ala Pro Ala Ala Tyr  
145 150 155 160  
  
Leu Asp Ala Phe Val Phe Ile Gly Gly Val Gly Ala Gln Tyr Gly Asp  
165 170 175  
  
Thr Gly Arg Trp Ile Phe Ala Ala Gly Ala Phe Ala Ala Ser Leu Ile  
180 185 190  
  
Trp Phe Pro Leu Val Gly Phe Gly Ala Ala Ala Leu Ser Arg Pro Leu  
195 200 205  
  
Ser Ser Pro Lys Val Trp Arg Trp Ile Asn Val Val Val Ala Val Val

210

215

220

Met Thr Ala Leu Ala Ile Lys Leu Met Leu Met Gly  
225                    230                    235