DEF: Seja ∑ um alfabeto. Os conjuntos regulares sobre ∑ são definidos por:

 R_1 : BASE: \emptyset , $\{\epsilon\}$ e $\{a\}$, " \forall a; $a \in \Sigma$, são conjuntos regulares (cr) sobre Σ .

 R_2 : PASSO RECURSIVO: Seja X e Y conjuntos regulares sobre Σ .

Então

- **a)** X U Y;
- **b)** XY;
- c) X*;

São conjuntos regulares (\mathbf{cr}) sobre Σ .

 R_3 : Só serão considerados conjuntos regulares sobre \sum , aqueles obtidos a partir de R_1 por um número finito de aplicações de R_2

Ex1: O conjunto de todos os strings contendo o substring "bb". {a,b}*{bb}{a,b}*

{a,b}*{bb}{a,b}*	
CONJUNTOS	JUSTIFICATIVA
1-{a}	base
2-{b}	base
3-{a} U {b}={a,b}	1,2,R ₂ a
4-{a,b}*	3, R ₂ c
5-{b}{b}={bb}	2,R ₂ b
6-{a,b}*{bb}	4,5,R ₂ b
7-{a,b}*{bb}{a,b}*	6,4,R ₂ b

Fx2: O conjunto de todos os strings contendo ao menos uma

ocorrência de "b" e que iniciam e terminam com "a". {a}{a,b}*{b}{a,b}*{a}				
CONJUNTOS 1-{a} 2-{b}	JUSTIFICATIVA base base			

1-{a}	base	
2-{b}	base	
3-{a} U {b}={a,b}	1,2,R ₂ a	
1_∫a h}*	3 B C	

	′ ′ 2
-{a,b}*	3, R ₂ c
-{a}{a,b}*	1,4,R ₂ b

9-{aa,bb,ab} **U** {ba}={aa,bb,ab,ba}

10-{aa,bb,ab,ba}*

Ex3: O conjunto de todos os strings sobre {a,b} de comprimento par. {aa,bb,ab,ba}* **CONJUNTOS JUSTIFICATIVA** 1-{a} base $2-\{a\}\{a\}=\{aa\}$ 1,R₂b 3-{b} base $4-\{b\}\{b\}=\{bb\}$ 3, R₂b $5-{a}{b}={ab}$ 1,3,R₂b $6-\{b\}\{a\}=\{ba\}$ 3,1,R₂b 7-{aa} U {bb}={aa,bb} 2,4,R₂a 8-{aa,bb} U {ab}={aa,bb,ab} 7,5,R₂a

8,6,R₂a

9,R₂c

DEF: Seja ∑ um conjunto (alfabeto). As **expressões regulares** sobre ∑ são : definidos por:

 R_1 : BASE: \emptyset , ε e a, \forall a; a \in Σ , são expressões regulares (er) sobre Σ . R_2 : PASSO RECURSIVO: Seja X e Y expressões regulares sobre Σ .

Então

a) (X U Y)b) XYc) (X)* São expressões regulares (er) sobre Σ .

 R_3 : Só serão considerados expressões regulares sobre Σ , aquelas obtidos a partir de R_1 por um número finito de aplicações de R_2

OBS : {b} ≡ b {a,b}	} = {a} ∪ {b} ≡ a ∪ b	{a}{b} ≡ ab
EXPRESSÃO REGULAR	LINGUAGEM	
0	{0}	
0 U1	{0,1}	
0*	$\{0\}^* = \{0^n/n \ge 0\}$	
01	{01}={0}{1}	
(0*)*	{0}*	
ba(a∪b)*	{ba}{a,b}*	
(a∪b)*	{a,b}*	
ba	{b}{a}	

EX: O conjunto dos strings sobre {a,b} que contém os substrings aa ou bb.

 $(a \cup b)^*aa(a \cup b)^* \cup (a \cup b)^*bb(a \cup b)^*$

Ex:
$$G_1 = (\{S,A,B\},\{a,b\},P,S)$$

P= 1-S \rightarrow AB
2-A \rightarrow aA
3-A \rightarrow a
4-B \rightarrow bB
5-B \rightarrow ϵ
L(G) = a^+b^*

Ex:
$$G_2 = (\{S,B\},\{a,b\},P,S)$$

 $P = 1-S \rightarrow aS$
 $2-S \rightarrow aB$
 $3-B \rightarrow bB$
 $4-B \rightarrow \varepsilon$
 $L(G_1) = L(G_2) = a^+b^*$

Ex:
$$G_3$$
=({S,B},{a,b},P,S) G_4 =({S,B},{a,b},P,S)

Ex:
$$G_3$$
=({S,B},{a,b},P,S)
P= 1-S \rightarrow AbAbA
2-A \rightarrow aA
3-A \rightarrow bA
4-A \rightarrow ϵ
L(G)= (a U b)*b (a U b)*b(a U b)*

Exercícios: As expressões regulares abaixo representam que conjuntos?

- 1. a*ba*b(a∪b)*
- 2. (a U b)*ba*ba*
- 3. (a U b)*b(a U b)*b(a U b)*

GRAMÁTICAS

exercício-18:
$$G=<\{S, A,B\},\{a,b\},P, S> \text{ onde, } P=\{1. S\rightarrow aB;$$
 6. $B\rightarrow bS$ **2**. $S\rightarrow bA;$ **7**. $B\rightarrow aBB$

- **3.** A→aS
- **4**. A→bAA

8. B→b }

5. A→a

$$S \stackrel{1}{\Rightarrow} aB \stackrel{6}{\Rightarrow} abS \stackrel{1}{\Rightarrow} ababS \stackrel{1}{\Rightarrow} ababab$$

$$S \stackrel{?}{\Rightarrow} bA \stackrel{3}{\Rightarrow} baS \stackrel{?}{\Rightarrow} babbAA \stackrel{4}{\Rightarrow} babbaAA \stackrel{3}{\Rightarrow} babbaAA \stackrel{1}{\Rightarrow} babbaABA \stackrel{8}{\Rightarrow} babbaabA \stackrel{5}{\Rightarrow} babbaabA$$

$$S \stackrel{7}{\Rightarrow} aB \stackrel{8}{\Rightarrow} aabB \stackrel{6}{\Rightarrow} aabbS \stackrel{2}{\Rightarrow} aabbbA \stackrel{4}{\Rightarrow} aabbbbAA \stackrel{5}{\Rightarrow} aabbbbaA \stackrel{5}{\Rightarrow} aabbbbaa$$

$$S \stackrel{7}{\Rightarrow} aBB \stackrel{7}{\Rightarrow} aaaBBB \stackrel{8}{\Rightarrow} aaabBBB \stackrel{8}{\Rightarrow} aaabBBb \stackrel{8}{\Rightarrow} aaabbBBb \stackrel{8}{\Rightarrow} aaabbB$$

GRAMÁTICAS

exercício-18:
$$G=<\{S, A, B\}, \{a, b\}, P, S> \text{ onde, } P=\{1. S\rightarrow aB; \\ 2. S\rightarrow bA; \\ 3. A\rightarrow aS \\ 4. A\rightarrow bAA$$

5. $A\rightarrow a$
6. $B\rightarrow bS$
7. $B\rightarrow aBB$
4. $A\rightarrow bAA$
8. $B\rightarrow b$

$$L(G) = \{w \in \{a,b\}^{+}/ n_w(a) = n_w(b)\}$$

Resultado: Para qualquer que seja $w \in V_T^+$, tem-se: a. $S \stackrel{*}{\Rightarrow} w \leftrightarrow n$ (a) = n (b) b. $A \stackrel{*}{\Rightarrow} w \leftrightarrow n$ (a)-1 = n (b)

c.
$$B \stackrel{*}{\Longrightarrow} W \leftrightarrow n_{w}(b)-1 = n_{w}(a)$$