Chapitre 10

Alternatives non paramétriques aux tests statistiques sur deux moyennes

Tests paramétriques et non paramétriques

Tests paramétriques:

- Estimation de paramètres. Ex: μ, σ²
- Condition d'application: normalité

Tests non paramétriques:

- Pas de condition d'application
- Moins puissants

Tester la condition de normalité

Tests statistiques:

- Test W de Shapiro et Wilk (1965)
- Test K² de D'Agostino et Pearson (1971)

Description des données:

- Tendance centrale?
- Forme bimodale ?
- Effet plafond ou plancher

Le test de la somme des rangs de Wilcoxon

Equivalent non paramétrique du test t sur deux moyennes indépendantes

Transformer les données en rangs

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

Les patients cardiaques vivent-ils plus d'événements stressants dans les années qui précèdent un malaise cardiaque.

Deux groupes: patients cardiaques et contrôles

Patients cardiaques: 32 8 7 29 5 0

Patients contrôles: 1 2 2 3 6 1

H₀: Les deux échantillons proviennent d'une population identique

H_A: Les deux échantillons proviennent de populations différentes

Transformer les données en rangs :

```
    32
    8
    7
    29
    5
    0
    1
    2
    2
    3
    6
    1

    0
    1
    1
    2
    2
    3
    5
    6
    7
    8
    29
    32

    1
    2,5
    2,5
    4,5
    4,5
    6
    7
    8
    9
    10
    11
    12
```

Pour les ex-aequo:

Attribuer le rang moyen

0 1 1 2 2 3 5 6 7 8 29 32

1 2,5 2,5 4,5 4,5 6 7 8 9 10 11 12

Ex: Rang moyen = (2 + 3)/2 = 2,5

Vérification des calculs:

- 1. Rang le plus élevé = N (sauf si ex-aequo)
- 2. Somme totale des rangs = N(N+1)/2

$$N(N+1)/2 = 12 \times 13 /2 = 78 = 50 + 28$$

Logique du test de Wilcoxon

Si deux groupes équivalents: Sommes des rangs similaires

Si deux groupes différents:

Un groupe contient une somme importante et l'autre une somme très petite

Effectifs égaux / inégaux

Test de la somme des rangs de Wilcoxon pour effectifs égaux

Calculer W_s

Test bilatéral

W_s = la plus petite des deux sommes de rangs

Test unilatéral

 W_S = somme des rangs qui serait la plus petite selon H_A

Calculer W_s

H₀: Patients contrôles = patients cardiaques

H_A: Patients contrôles < patients cardiaques

 $W_S = 28$

La table W_s

La table W_s contient les plus petites valeurs qu'on s'attend à trouver avec leur probabilité indiquée en haut du tableau

	$N_1 = 6$					
N_2	.001	.005	.010	.025	.05	.10
6		23	24	26	28	30
7	21	24	25	27	29	32
8	22	25	27	29	31	34
9	23	26	28	31	33	36
10	24	27	29	32	35	38
11	25	28	30	34	37	40
12	25	30	32	35	38	42
13	26	31	33	37	40	44

	$N_1 = 6$					
N_2	.001	.005	.010	.025	.05	.10
6		23	24	26	28	30
7	21	24	25	27	29	32
8	22	25	27	29	31	34
9	23	26	28	31	33	36
10	24	27	29	32	35	38
11	25	28	30	34	37	40
12	25	30	32	35	38	42
13	26	31	33	37	40	44

H₀: Patients contrôles = patients cardiaques

H_A: Patients contrôles < patients cardiaques

$$W_s = 28$$
 $W_{s 0,05} = 28$

Rejeter H₀ si W_s <u>inférieure ou égale</u> à valeur critique

$$W_s = 28 \le W_{s \ 0.05} = 28$$

Rejeter H₀

Les patients cardiaques subissent plus d'événements stressants

Test de la somme des rangs de Wilcoxon pour effectifs inégaux

W_s = La plus petite des deux sommes

Problème: En cas d'inégalité des N, la somme dépend aussi du N de chaque groupe

2) <u>Contrôles (N = 5)</u>

48 55

57891012345

R 6 7

∑ rangs = 15

$$\sum$$
 rangs = 13

$$W_s = 13$$

48 55

R 2 1

$$\sum$$
 rangs = 3

5 7 8 9 10

7 6 5 4 3

 \sum rangs = 25

$$W_s = 3$$

 W_s = Somme des rangs du plus petit groupe (N le plus petit)

$$W_s' = n_1(n_1 + n_2 + 1) - W_s$$

$$W_s' = 2(2 + 5 + 1) - 13 = 16 - 13 = 3$$

 W_s = Somme des rangs du plus petit groupe (N le plus petit)

$$W_s' = n_1(n_1 + n_2 + 1) - W_s$$

Attention: n₁ toujours le plus petit

Faut-il utiliser W_s ou W_s'

Test bilatéral

Prendre la plus petite valeur de W_s ou W_s ' et comparer à la valeur critique de la table

Attention: diviser α par 2

Faut-il utiliser W_s ou W_s'

Test unilatéral

Statistique à sélectionner dépend de H_A

- ➤ Si échantillon avec n inférieur est supposé plus petit: prendre W_s
- ➤ Si échantillon avec n inférieur est supposé plus grand: prendre W_s'

Faut-il utiliser W_s ou W_s'

Rejeter H_0 si la statistique sélectionnée $(W_s \text{ ou } W_s')$ est <u>inférieure ou égale</u> à valeur critique

H₀: Patients contrôles = patients cardiaques

H_A: Patients contrôles ≠ patients cardiaques

$$W_s = 21$$

$$W_s' = n_1(n_1 + n_2 + 1) - W_s$$

 $W_s' = 5 (6 + 5 + 1) - 21 = 39$

Test bilatéral : sélectionner la plus petite :

$$W_s = 21$$

	$N_1 = 5$					
N_2	.001	.005	.010	.025	.05	.10
5		15	16	17	19	20
6		16	17	18	20	22
7		16	18	20	21	23
8	15	17	19	21	23	25
9	16	18	20	22	24	27
10	16	19	21	23	26	28
11	17	20	22	24	27	30
12	17	21	23	26	28	32

	$N_1 = 5$					
N_2	.001	.005	.010	.025	.05	.10
5		15	16	17	19	20
6		16	17	18	20	22
7		16	18	20	21	23
8	15	17	19	21	23	25
9	16	18	20	22	24	27
10	16	19	21	23	26	28
11	17	20	22	24	27	30
12	17	21	23	26	28	32

Puisque $W_s = 21 > 18$, ne pas rejeter H_0

Pas de preuves suffisantes pour affirmer que les patients cardiaques subissent plus d'événements stressants

Test des rangs pour échantillons pairés de Wilcoxon

Le test des rangs pour échantillons pairés de Wilcoxon

Equivalent non paramétrique du test t pour échantillons pairés

Transformer les scores de différence en rangs

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

Un entraînement sportif de six mois permet-il de modifier la tension artérielle ?

8 sujets: tension artérielle avant et après entraînement sportif

H₀: La tension artérielle est la même avant et après l'entraînement

H_A: La tension artérielle est différente avant et après l'entraînement

Avant	130	170	125	170	130	130	145	160	
Après	120	163	120	135	143	136	144	120	
Différence	10	7	5	35	-13	-6	1	40	
Rangs D	5	4	2	7	6	3	1	8	
Rangs signe	5	4	2	7	-6	-3	1	8	
$T_{+} = \sum (rangs positifs) = 27$									
	$T_{} = \sum (rangs \ n\'egatifs) = 9$								

Remarques

1. Scores de différence égaux

Donner des rangs ex-æquo

2. Scores de différence = zéro

Ignorer ces données et réduire N

Logique du test

Si les deux ensembles de données sont identiques:

Somme rangs positifs

Somme rangs négatifs

La statistique T

Test bilatéral

T = La plus petite des deux sommes de rangs

Test unilatéral

T = Somme des rangs qui devait être la plus petite selon H_A

```
T_{+} = \sum (rangs positifs) = 27
```

$$T_{\perp} = \sum (rangs négatifs) = 9$$

$$T_{obs} = 9$$
 (test bilatéral)

n	α:	0.25	0.10	0.05	0.025	0.01
5		4	2	0		
6		6	3	2	0	
7		9	5	3	2	0
8		12	8	5	3	1
9		16	10	8	5	3
10		20	14	10	8	5
11		24	17	13	10	7
•••	•••	•••	•••	•••	•••	•••

n	α:	0.25	0.10	0.05	0.025	0.01
5		4	2	0		
6		6	3	2	0	
7		9	5	3	2	0
8		12	8	5	3	1
9		16	10	8	5	3
10		20	14	10	8	5
11		24	17	13	10	7
•••	•••	•••	•••	•••	•••	•••

$$T_{obs} = 9$$
 (test bilatéral)

$$n = 8$$

$$\alpha = 0.05$$

$$T_{0.025} = 3$$

Rejeter H_0 si $T_{obs} \le T_{0,025}$

Puisque 9 > 3, ne pas rejeter H_0 .

Nous n'avons pas suffisamment de preuves pour affirmer qu'un entraînement sportif de 6 mois réduit la tension artérielle.

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

