

CUx-Daemon Wireless M-Bus Dokumentation

Version 2.5

Inhaltsverzeichnis

1	Wireless M-Bus Geräte (WMOD)	3
	1.1 (25) 1. Fast Forward EnergyCam / Sensus iPEARL usw	
	1.1.1 Darstellung der Messwerte	7
	1.2 (25) 2. Letrika SMI 260 Solar Wechselrichter	
2	128 Bit AES Verschlüsselung	12
3	Verbindungsparameter	13

1 Wireless M-Bus Geräte {WMOD}

Der CUxD ist eine universelle Schnittstelle zwischen der CCU-Logikschicht (ReGa HSS) und externen Geräten. Als Ergänzung zur ausführlichen CUxD-Dokumentation geht es im folgenden nur um die Anbindung von Wireless M-Bus Geräten an den CUxD.

Für die Einbindung von Wireless M-Bus Geräten ist ein IMST <u>iM871A-USB</u> Stick und eine Nutzungslizenz für die Implementation des Wireless M-Bus Protokolls im CUxD erforderlich. (https://www.piotek.de/)

Die Nutzungslizenz besteht aus einem **KEY** der separat erworben werden muss und dann im CUxD-Setup als Parameter hinzugefügt wird.

Mit jedem empfangenen Wireless M-Bus Datentelegramm wird zusätzlich auch die Empfangsfeldstärke in dBm (Kanal: **0**, Datenpunkt: **RSSI_PEER**) zurückgeliefert.

Die Adressen der empfangenen Wireless M-Bus-Geräte findet man zeitlich sortiert auf der CUxD-Statusseite. Von dort können sie über die Zwischenablage in das CODE-Feld des Gerätes kopiert werden. Weiterhin ist auch ein automatisches Anlernen von Wireless M-Bus Geräten über den LEARN-Parameter möglich.

1.1 (25) 1. Fast Forward EnergyCam / Sensus iPEARL usw.

Die Fast Forward <u>EnergyCam</u> (Kennung: *FFD*) ermöglicht das automatische Ablesen mechanischer Zählwerke für Gas, Wasser und Strom. Beim Sensus <u>iPEARL</u> (Kennung: *SEN*) handelt es sich um einen Wasserzähler.

Auch das Itron-Modul (https://www.itron.com/de/solutions/product-catalog/equascan-wmiu-rf) (Kennung: ITW) und kompatible Module werden unterstützt.

Es ist sowohl eine unverschlüsselte als auch eine 128 Bit AES verschlüsselte Daten übertragung möglich.

Für die Verschlüsselung muss die EnergyCam zuvor mittels USB-Adapter (als Zubehör erhältlich) nach Anleitung konfiguriert werden. Beim iPEARL und anderen Modulen ist es ggf. anders. Für den Datenempfang muss der vollständige 128 Bit AES Schlüssel bekannt sein.

Konfigurationsparameter:

	Parameter
DEVICE	
CODE	03601721
Zyklische Statusmeldung	
RESET	
SUM_RESET	
LEARN	

DEVICE - USB-ID oder TTY oder leer

CODE - Adresse des Gerätes

CYCLIC INFO MSG -[x] zyklische Statusmeldung des Sensors überwachen. Wenn

der Sensor sich nicht mindestens einmal innerhalb von 60 Minuten meldet, erfolgt eine **UNREACH**-Servicemeldung auf

der CCU.

RESET - SUM_24H und SUM_LAST_DAY Verbrauchsstatistik

zurücksetzen

SUM_RESET - **SUM** Verbrauchszähler zurücksetzen und aktuellen Zeitstempel

im Datenpunkt **SUM DATE** speichern.

LEARN - [x] das Anlernen der Geräteadresse erfolgt beim nächsten

asynchronen Datentelegramm (z.B. auslösen der Zähler-

ablesung durch Tastendruck an der EnergyCam)

METER

- hier kann der angezeigte Zählerstand an den abgelesenen Wert des mechanischen Zählwerkes angepasst werden. Intern wird

dann automatisch eine Differenz errechnet.

MAXMETER

 Maximalwert des <u>elektronischen</u> Zählersensors vor dem Überlauf, damit der Zählerstand nach einem Zählerüberlauf

richtig berechnet wird.

Kanaltypen:

Kanaltyp	Kanalnummer
SENSOR	1

Kanaltyp SENSOR:

DP-Name	Тур	Zugriff	Beschreibung
INFO	string	lesend	empfangenen Zählertyp anzeigen
COUNTER	integer	lesend	Nummer des empfangenen Datensatzes (0255) aus dem Wireless M-Bus Protokoll
METER	float	lesend	aktueller Verbrauchswert des Zählwerkes. Die Einheit wird aus dem Datentelegramm bestimmt.
SUM_24H	float	lesend	Verbrauch der letzten 24 Stunden (die Aktualisierung erfolgt mit dem Wechsel der aktuellen Stunde)
SUM_LAST_DAY	float	lesend	Verbrauch des letzten Tages. (die Aktualisierung erfolgt beim Tageswechsel)
SUM	float	lesend	Aktueller Verbrauch seit der Initialisierung des Zählers mittels SUM_RESET
SUM_DATE	string	lesend	Zeitstempel der Initialisierung des SUM -Zählers
SUM_DATE_ISO	string	lesend	Zeitstempel im ISO-Format: "YYYY-MM-DDThh:mm:ss"
SUM_RESET	action	schreibend	SUM Verbrauchszähler zurücksetzen und aktuellen Zeitstempel im Datenpunkt SUM_DATE speichern

1.1.1 Darstellung der Messwerte

Beispieldarstellung des aufgezeichneten **Strom-** und **Gasverbrauchs** mit <u>CUxD HighCharts</u> direkt auf der CCU (m³ bzw. kWh):

1.2 (25) 2. Letrika SMI 260 Solar Wechselrichter

Mit diesem Gerät können Letrika <u>SMI260</u> Solar Wechselrichter per wireless MBus Protokoll (Kennung: *LET*) abgefragt werden. Die Abfrage erfolgt periodisch im konfigurierbaren Intervall (**POLL INTERVALL**) durch den CUxD.

Da die Datenabfrage des Wechselrichters im Gegensatz zur EnergyCam per wMBus Protokoll im **S2-Mode** erfolgt, muss der iM871A-USB Stick zuvor dafür konfiguriert werden. Per Default initialisiert der CUxD den iM871A-USB Stick immer im **T2-Mode** und schaltet für jede SMI260 Datenabfrage kurzzeitig in den **S2-Mode**. So ist ein gleichzeitiger Betrieb beider Geräte über einen iM871A-USB Stick möglich. Dadurch können aber unter Umständen einige (zur gleichen Zeit gesendete) Datenpakete der EnergyCam verlorengehen.

Der CUxD kann mehrere iM871A-USB Sticks mit unterschiedlichen Protokollen verwalten. So kann ein weiterer iM871A-USB Stick ausschließlich für den Betrieb mit SMI260 Solar Wechselrichtern konfiguriert werden. Die feste Initialisierung des iM871A-USB Sticks mit dem wMBus Protokoll im **S2-Mode** erfolgt mit folgendem Konfigurationsparameter im CUxD Setup (hier z.B. für *ttyUSB0*):

TTYINIT=ttyUSB0:0103|00030002F80001000000

Konfigurationsparameter:

Parameter						
DEVICE	DEVICE					
MASTER	00000000					
CODE	00003F7D	ID				
POLL_INTERVAL	5	min (1-1440)				
Zyklische Statusmeldung						
RESET						
SUM_RESET						

DEVICE - USB-ID oder TTY oder leer

MASTER - Adresse des Masters (Default: 0, sollte auf 0 stehen bleiben!)

CODE - Adresse des Wechselrichters (*Aufkleber oder eingraviert auf SMI260 Gerät, z.B. ID: 00001F7D von Hexadezimal- in Dezimal-Zahl wandeln: 00008061 und diese eintragen*) Der

Wert sollte den letzten 6 Stellen der **S/N** entsprechen.

POLL INTERVAL - Abfrageintervall des Wechselrichters in Minuten

CYCLIC INFO MSG - [x] zyklische Statusmeldung des Gerätes überwachen. Wenn

das Gerät sich nicht mindestens einmal innerhalb der durch **POLL_TIMEOUT * POLL_INTERVAL** konfigurierten Zeit meldet, dann erfolgt eine **UNREACH-**Servicemeldung auf der

CCU.

RESET - SUM 24H und SUM LAST DAY Verbrauchsstatistik

zurücksetzen

SUM RESET - **SUM** Verbrauchszähler zurücksetzen und aktuellen Zeitstempel

im Datenpunkt **SUM_DATE** speichern.

Ch.: 3	SWITCH POLL_TIMEOUT	4	(1-8)

POLL_TIMEOUT

 wenn der Sensor sich nicht mindestens einmal innerhalb der durch POLL_TIMEOUT * POLL_INTERVAL festgelegten Zeit meldet, dann wird STATE in Kanal 3 auf AUS geschaltet.

Kanaltypen:

Kanaltyp	Kanalnummer
POWERMETER	1
POWERMETER	2
SWITCH	3

Kanaltyp POWERMETER (1):

DP-Name	Тур	Zugriff	Beschreibung
POWER	float	lesend	aktuelle Leistung in W
ENERGY_COUNTER	float	lesend	aufsummierter Energiezähler in kWh
SUM_24H	float	lesend	Verbrauch der letzten 24 Stunden (die Aktualisierung erfolgt mit dem Wechsel der aktuellen Stunde)
SUM_LAST_DAY	float	lesend	Verbrauch des letzten Tages. (die Aktualisierung erfolgt beim Tageswechsel)
SUM	float	lesend	Aktueller Verbrauch seit der Initialisierung des Zählers mittels SUM_RESET
SUM_DATE	string	lesend	Zeitstempel der Initialisierung des SUM -Zählers
SUM_DATE_ISO	string	lesend	Zeitstempel im ISO-Format: "YYYY-MM-DDThh:mm:ss"
SUM_RESET	action	schreibend	SUM Verbrauchszähler zurücksetzen und aktuellen Zeitstempel im Datenpunkt SUM_DATE speichern

Kanaltyp POWERMETER (2):

DP-Name	Тур	Zugriff	Beschreibung
VOLTAGE	float	lesend	sekundäre Gleichspannung des Wechselrichters
FREQUENCY	float	lesend	Frequenz der erzeugten Wechselspannung
AC_TEMPERATURE	float	lesend	DC-AC Temperatur
DC_TEMPERATURE	float	lesend	DC-DC Temperatur
COS_PHI	float	lesend	Kosinus φ der erzeugten Wechselspannung
MAX_POWER	float	lesend	Maximalleistung des Wechselrichters

Kanaltyp SWITCH (3):

DP-Name	Тур	Zugriff	Beschreibung
STATE	boolean	lesend	Betriebszustand des Wechselrichters (Ein/Aus)
ACTIVE	boolean	lesend schreibend	periodische Statusabfragen des Wechselrichters aktivieren (TRUE) oder deaktivieren (FALSE)
COS_PHI	float	schreibend	Kosinus φ der erzeugten Wechselspannung setzen
MAX_POWER	float	schreibend	Maximalleistung des Wechselrichters setzen

Periodische Abfrage des Wechselrichters nur am Tag aktivieren (im Zeitmodul muss • Astrofunktion tagsüber ausgewählt werden):

2 128 Bit AES Verschlüsselung

Neben dem Empfang unverschlüsselter Datentelegramme, können mit jedem IMST iM871-USB Stick auch 16 verschlüsselte Wireless M-Bus Sensoren direkt entschlüsselt werden. Dafür müssen auf dem Sensor und im Gateway (USB-Stick) jeweils die gleichen Schlüssel konfiguriert sein.

Der CUxD übernimmt bei jeder Initialisierung die Konfiguration des USB-Sticks mit den zuvor festgelegten Geräteschlüsseln über den **TTYINIT=** Parameter.

Konfiguration für 128 Bit AES Entschlüsselung:

TTYINIT=<TTY>:+0125|TT AA...A SS...S:<nächster Schlüssel>

Hinter dem TTYINIT= Parameter wird zuerst das *TTY* (an dem der USB-Stick steckt) angegeben. Dann folgt ein Doppelpunkt und das Plus-Zeichen, gefolgt vom Befehl **0125**, dem senkrechten Strich als Trenner und den Daten. Leerzeichen sind optional und dienen nur der besseren Lesbarkeit.

- Tabellenindex zum Abspeichern des Schlüssels auf dem Stick (von **00** bis **0F**)
- AA...A Sensoradresse von der CUxD-Statusseite (hinter encrypted [...])
- SS...S 16 Byte langer Schlüssel vom Sensor (32 Hex-Zeichen)

Nach einem weiteren Doppelpunkt kann der nächste Schlüssel folgen usw...

Die Sensor-Adressen von verschlüsselten Wireless M-Bus Sensoren können auf der CUxD-Statusseite gefunden werden. (siehe oben!)

Beispiel mit 2 konfigurierten Schlüsseln:

```
TTYINIT=ttyUSB0:+0125|00 C418 28136051 0103 12312311112311312312312311111111: 0125|01 C418 78563412 0102 123456789ABCDEF0123456789ABCDEF0
```

Daten erfolgreich entschlüsselt:

```
gefundene Adressen (aktuelle zuerst 17:22:34):

Letzte Status Device Gerät 'CODE'

17:22:25 [X] ttyUSB0 wM-Bus-Gas '51601328' (-74dBm secure)
```

3 Verbindungsparameter

Damit Daten erfolgreich empfangen werden können, ist im CUxD-Setup ggf. der Link Mode des Gateways entsprechend anzupassen. Hier eine Liste mit Beispielen für **TTYINIT**-Parameter. Das TTY steckt in den Beispielen an ttyUSB0.

;S1 MODE

TTYINIT=ttyUSB0:0103|00030000F80001000000

;S1-m MODE

TTYINIT=ttyUSB0:0103|00030001F80001000000

;S2 MODE (Letrika SMI 260 Solar Wechselrichter)

TTYINIT=ttyUSB0:0103|00030002F80001000000

:T1 MODE

TTYINIT=ttyUSB0:0103|00030003F80001000000

;T2 MODE (DEFAULT, EnergyCam)

TTYINIT=ttyUSB0:0103|00030004F80001000000

;R2 MODE

TTYINIT=ttyUSB0:0103|00030005F80001000000

;C1 MODE Format A

TTYINIT=ttyUSB0:0103|00030006F80001000000

;C1 MODE Format B

TTYINIT=ttyUSB0:0103|00030007F80001000000

;C2 MODE Format A

TTYINIT=ttyUSB0:0103|00030008F80001000000

;C2 MODE Format B (Itron)

TTYINIT=ttyUSB0:0103|00030009F80001000000