Entanglement Complexity and Frustration

Author: Patrizio Spada Supervisors: prof. Saverio Pascazio, Università degli Studi di Bari Aldo Moro prof. Angelo Mariano, Enea Bari

> Università degli Studi di Bari Aldo Moro Dipartimento Interateneo di Fisica

Complexity and frustration

- Global property of an object: relations between the parts of an object
- Frustration: originally a biology term
- Focus on qubits ensembles as complex systems
- Entanglement in qubits ensemble.
- Frustration in Physics.

Entangled states and purity of a subsystem

Entanglement and purity

- Generic pure state of $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
- $|\psi\rangle_{AB}$ is entangled if and only if the number of terms in the Schmidt decomposition is greater than 1
- Purity of the subsystem *A*

$$\pi_A(\psi) = \operatorname{tr}_A \rho_A^2$$
 where $\rho_A = \operatorname{tr}_B |\psi\rangle_{ABAB} \langle \psi|$

Purity of a subsystem of a qubits ensemble

- Hilbert space $\mathcal{H} = \mathfrak{H}^{\otimes n}$ where $\mathfrak{H} = \mathbb{C}^2$ and n is the number of qubits, the system size
- Bipartition of the system: (A, \bar{A}) , $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$
- Purity of the subsystem *A*

$$\pi_A = \pi_{\bar{A}} = \operatorname{tr}_A \rho_A^2$$

Entangled states and separable states

Purity bounds for a bipartition (A, \bar{A}) $\frac{1}{N_A} \le \pi_A(\psi) \le 1$ where $N_A = \dim \mathcal{H}_A$ A. Lower bound, maximal mixedness of each of the two subsets

$$\pi_A = \frac{1}{N_A} \iff \rho_A = \frac{1}{N_A} \mathbb{1}$$

B. Higher bound, separable states $\pi_A = 1 \iff \rho_A$ and $\rho_{\bar{A}}$ are projectors.

- Frustration: the lower bound cannot be reached for every balanced bipartition
- Potential of multipartite entanglement (PME) $\pi_{ME}(\psi) = \sum_{|A|=n} \pi_A(\psi)$ with $n_A = |n/2|$

A maximally multipartite entangled state (MMES) is a minimizer of π_{ME} . A state for which the lower bound $1/N_A$ is saturated for every

bipartition is a perfect MMES.

n	perfect MMES existence		
2,3	Yes		
4	No (is frustrated)		
5,6	Yes		
> 7	No (is frustrated)		

Probability density function estimates

Continuous states

all the states

Discrete states

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{j \in \mathbb{Z}_2^n} k_j |j\rangle \text{ with } k_j = \begin{cases} 1 \text{ if } j = 0 \\ \pm 1 \text{ if } j \neq 0 \end{cases}$$

π_{ME} PDF estimates (n=8 case)

Difference between the two PDF estimates

$$\Delta p(\pi_{ME}) = |p_c(\pi_{ME}) - p_d(\pi_{ME})|$$

number of bins: $n_b = 7127$

Distance between continuous and discrete π_{ME} PDF estimates

$$0 \leq L_1 \leq 2$$
, $L_1 = \int \Delta p(\pi_{ME}) \mathrm{d}\pi_{ME} = \int |p_c(\pi_{ME}) - p_d(\pi_{ME})| \mathrm{d}\pi_{ME}$

Case n = 4, a frustrated ensemble

Probability density function of the minima (continuous states)

$$min(\psi) \equiv \min_{(A,\bar{A}) \in BB_n} \pi_A(\psi)$$
 where BB_n is the set of all balanced bipartitions

Theoretical prediction: For n=4, the minimum of the π_{ME} among all states is $\pi_{ME}=\frac{1}{3}>\frac{1}{4}=B_{4,5}$

Distance of the minimum from the lower bound, continuous states

$$\alpha = 0.5275, \ \beta = 0.2784 \qquad \alpha = 0.2333, \ \beta = 0.2387$$

$$y = \alpha \exp(-\beta x)$$

$$\delta(min) = \langle min \rangle - \frac{1}{N_A}$$

$$\delta(min) = \frac{\langle min \rangle - 1/N_A}{1/N_A}$$

$$\delta(min) = \frac{\langle min \rangle - 1/N_A}{1/N_A}$$

n

n

Distance of the minimum from the lower bound, discrete states

$$\alpha = 0.4404, \ \beta = 0.2794 \qquad \alpha = 0.2092, \ \beta = 0.2752$$

$$y = \alpha \exp(-\beta x)$$

$$\delta(min) = \langle min \rangle - \frac{1}{N_A}$$

$$\delta(min) = \frac{\langle min \rangle - 1/N_A}{1/N_A}$$

$$\delta(min) = \frac{\langle min \rangle - 1/N_A}{1/N_A}$$

n

п

Thank you

Thank you for your attention.

Choice of the number of bins (n=5 case)

$$0 \leq L_1 \leq$$
 2, $L_1 = \int \Delta p(\pi_{ME}) \mathrm{d}\pi_{ME} = \int |p_c(\pi_{ME}) - p_d(\pi_{ME})| \mathrm{d}\pi_{ME}$

Choice of the number of bins for each quantum system

$$0 \leq L_1 \leq 2$$
, $L_1 = \int \Delta p(\pi_{ME}) \mathrm{d}\pi_{ME} = \int |p_c(\pi_{ME}) - p_d(\pi_{ME})| \mathrm{d}\pi_{ME}$

n	interval of n_b	L_1 minimum	L_1 average	L_1 maximum	\bar{n}_b
5	(60, 200)	0.693268	0.7496023	0.787808	95
6	(250, 1000)	0.791318	0.8094594	0.821168	291
7	(1500, 10000)	0.90642	0.911284	0.92022	3 399
8	(3500,8000)	0.99703	0.9988859	1.000162	7 127
9	(15000, 20000)	1.121678	1.1219677	1.122212	18 639