Vv156 Lecture 1

Dr Jing Liu

UM-SJTU Joint Institute

September 20, 2016

- To warm up we will go over some elementary notions in mathematics.

Definition

Let $\mathcal{S} \subset \mathbb{R}$ be a set of real numbers.

A real number $M \in \mathbb{R}$ is said to be an upper bound of S if

$$x \leq M$$
 for every $x \in \mathcal{S}$

A real number $m \in \mathbb{R}$ is said to be a lower bound of S if

$$x \ge m$$
 for every $x \in \mathcal{S}$

- A set is said to be bounded from above if it has an upper bound, bounded from below if it has a lower bound, and bounded if it has both.
- For example, the set of natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

is bounded from below by any $m \leq 1$.

- However, the set $\mathbb N$ is clearly not bounded from above, so $\mathbb N$ is unbounded.
- Q: Is the set of reciprocals of the natural numbers bounded?

$$S = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$$

- Q: Can you think of an equivalent condition for a set S to be bounded?
 - A set \mathcal{S} is bounded if there exists $W \in \mathbb{R}$ such that

$$|x| < W$$
 for every $x \in \mathcal{S}$.

Let $\mathcal{S} \subset \mathbb{R}$ be a set of real numbers.

If $M \in \mathbb{R}$ is an upper bound of $\mathcal S$ such that

 $M \leq M^*$ for every upper bound M^* of S,

then M is called the supremum or least upper bound of S, denoted

$$M = \sup (S)$$

If $m \in \mathbb{R}$ is a lower bound of S such that

 $m \geq m^*$ for every lower bound m^* of S,

then m is called the infimum or greatest lower bound of S, denoted

$$m = \inf(S)$$

Q: Find the supremum and infimum of the following set S, do they belong to S?

$$S = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$$

Q: Find the supremum of the set of real numbers

$$\mathcal{S} = \{ x \in \mathbb{R} \mid x \le \sqrt{2} \}$$

Q: Find the supremum of the set of rational numbers

$$\mathcal{S} = \{ x \in \mathbb{Q} \mid x \le \sqrt{2} \}$$

- I will assume everyone is familiar with open, closed and half-closed intervals

$$(a,b),$$
 $[a,b],$ $(a,b],$ and $[a,b)$

Definition

A set $\mathcal{V} \subset \mathbb{R}$ is a neighbourbood of a point $x \in \mathbb{R}$ if there exists some $\delta > 0$

$$(x - \delta, x + \delta) \subset \mathcal{V}$$

The open interval $(x - \delta, x + \delta)$ is called a δ -neighbourhood of x.

- Q: Can a closed interval be a neighbourhood?
 - For example, suppose

then the closed interval

$$\mathcal{V} = [a, b]$$
 is a neighbourhood of x

since $\mathcal V$ contains the interval $(x-\delta,x+\delta)$ for sufficiently small $\delta>0$.

A set $S \subset \mathbb{R}$ is open in \mathbb{R} if for every $x \in S$ there exists a $\delta > 0$ such that

$$(x - \delta, x + \delta) \subset S$$

A set $S \subset \mathbb{R}$ is open if every $x \in S$ has a neighbourhood V such that $V \subset S$.

- Q: Are rational numbers an open set in \mathbb{R} ?
- Q: Is an arbitrary union of open sets open?
- Q: Is an intersection of open sets open?
 - For example, the interval

$$\mathcal{I}_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$

is open for every $n \in \mathbb{N}$, but

$$\bigcap_{n=1}^{\infty} \mathcal{I}_n = \{0\}$$

is clearly not open.

- Another way to state the definition of open set is in terms of interior points.

Definition

Let $\mathcal{S} \subset \mathbb{R}$ be a set of real numbers. A point $x \in \mathcal{S}$ is an interior point of \mathcal{S} if

there is a
$$\delta > 0$$
 such that $(x - \delta, x + \delta) \subset \mathcal{S}$

A point $x \in \mathbb{R}$ is a boundary point of S if every neighbourhood

$$(x - \delta, x + \delta)$$

contains at least one point in $\mathcal S$ and at least one point not in $\mathcal S$.

- Therefore a set is open if and only if every point in the set is an interior point.
- Q: Find the interior point/s of a set of irrational numbers.
- Q: Find the boundary point/s of S = [1, 2).
- Q: Is \mathbb{R} open in \mathbb{R} ? Is the empty set \emptyset open in \mathbb{R} ?

- Closed sets are complements of open sets.

Definition

A set $S \subset \mathbb{R}$ is closed if $S^{\complement} = \{x \in \mathbb{R} \mid x \notin S\}$ is open.

- Q: Is the interval $[a, \infty)$ closed?
- Q: Is an arbitrary intersection of closed sets closed?
- Q: Is an arbitrary union of closed sets closed?
 - For example, suppose

$$\mathcal{I}_n = \left[\frac{1}{n}, 1 - \frac{1}{n}\right]$$

then the union of the \mathcal{I}_n is an open interval

$$\bigcup_{n=1}^{\infty} \mathcal{I}_n = (0,1)$$

Q: Is \mathbb{R} closed in \mathbb{R} ? Is the empty set \emptyset closed in \mathbb{R} ?

A point $x \in \mathbb{R}$ is a limit point of $S \subset \mathbb{R}$ if for every neighbourhood $(x - \delta, x + \delta)$ contains a point in S other than x itself.

- A limit point of a set ${\cal S}$ is a point in ${\Bbb R}$ that has points in ${\cal S}$ arbitrarily close to it.
- Q: Is every point of every open set $\mathcal{S} \subset \mathbb{R}$ a limit point of \mathcal{S} ?
- Q: Is every limit point an interior point?
 - For example, consider the closed set

$$\mathcal{S} = [0, 1]$$

points 0 and 1 are limit points but not interior points of S.

- Q: Is the point 0 a boundary point of $\{0\}$? Is the point 0 a limit point of $\{0\}$?
- Q: Is the point 0 a boundary point of $\mathcal{I} = [-1, 1]$? Is it a limit point of \mathcal{I} ?
 - A limit point of a set is either an interior point or a boundary point of the set.
- Q: Find the limit point/s of the set $\mathbb N$ of natural numbers.

Let $\mathcal{S} \subset \mathbb{R}$. A point $x \in \mathbb{R}$ is an isolated point of \mathcal{S} if there exists $\delta > 0$ such that x is the only point belonging to \mathcal{S} in the neighbourhood $(x - \delta, x + \delta)$.

- An isolated point of a set is a point in the set that does not have other points in the set arbitrarily close to it.

- Unlike limit points, isolated points are required to belong to the set.
- Every point $x \in \mathcal{S}$ is either a limit point or an isolated point.
- Clearly the set of natural numbers $\mathbb N$ contains only isolated points.
- Q: Is it true that every interval has no isolated points?
- Q: Find the isolated points for

$$\mathcal{S} = \{0\} \cup \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \right\}$$

Definition

A subset of \mathbb{R} is compact if and only if it is closed and bounded.