Deep Semantic Segmentation

Mennatullah Siam PhD Student at University of Alberta - Canada

Tutors:

Hager Radi Mai Mohammed Zahran Omar Abdeltawab

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

What is Classification?

What is Classification?

What Other Computer Vision tasks?

Semantic Segmentation

Object Detection

Instance Segmentation

Road, Cars, Trees, Sky

No objects, just pixels

Multiple Object

What Other Computer Vision tasks?

Semantic Segmentation

Object Detection

Instance Segmentation

Road, Cars, Trees, Sky

Pixel-wise classification

Multiple Objects

What is semantic segmentation?

 One way to classify every pixel is to have a patchwise classification network.

 Another idea would be to get rid of the fully connected layers and instead use a fully convolutional network [1].

What is semantic segmentation?

 One way to classify every pixel is to have a patchwise classification network.

 Another idea would be to get rid of the fully connected layers and instead use a fully convolutional network [1].

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

What is semantic segmentation?

 One way to classify every pixel is to have a patchwise classification network.

 Another idea would be to get rid of the fully connected layers and instead use a fully convolutional network [1].

[1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

- Fully connected layers are equivalent to 1x1 convolutions.
- FC W: 256x21.
- 1x1 Conv W: 21x256x1x1.
- Output is heatmap from your network.
- What other uses for 1x1 convolution?

- Fully connected layers are equivalent to 1x1 convolutions.
- FC W: 256x21.
- 1x1 Conv W: 21x256x1x1.
- Output is heatmap from your network.
- What other uses for 1x1 convolution?

- Fully connected layers are equivalent to 1x1 convolutions.
- FC W: 256x21.
- 1x1 Conv W: 21x256x1x1.
- Output is heatmap from your network.
- What other uses for 1x1 convolution?

- Fully connected layers are equivalent to 1x1 convolutions.
- FC W: 256x21.
- 1x1 Conv W: 21x256x1x1.
- Output is heatmap from your network.
- What other uses for 1x1 convolution?

- Fully connected layers are equivalent to 1x1 convolutions.
- FC W: 256x21.
- 1x1 Conv W: 21x256x1x1.
- Output is heatmap from your network.
- What other uses for 1x1 convolution?

- Fully connected layers are equivalent to 1x1 convolutions.
- FC W: 256x21.
- 1x1 Conv W: 21x256x1x1.
- Output is heatmap from your network.
- What other uses for 1x1 convolution?

Pixel-wise Cross Entropy

$$L = -rac{1}{N} \sum_i y_i \log p_i$$
 y(fox) = 0 y(horse) = 0

Label

Higher Loss Output 1

Lower Loss Output 2

```
p(dog) = 0.98
p(fox) = 0.01
p(eagle) = 0
p(\text{squirrel}) = 0.01
```

Weighted Cross Entropy [1] (Higher weight to less occurring classes)

[1] Paszke, Adam, et al. "Enet: A deep neural network architecture for real-time semantic segmentation." arXiv preprint arXiv:1606.02147 (2016).

Pixel-wise Cross Entropy

$$L = -rac{1}{N} \sum_i y_i \log p_i$$

Label y(dog) = 1

Higher Loss Output 1

Lower Loss Output 2

p(dog) = 0.98p(fox) = 0.01

p(horse) = 0p(eagle) = 0

p(squirrel) = 0.01

Weighted Cross Entropy [1] (Higher weight to less occurring classes)

[1] Paszke, Adam, et al. "Enet: A deep neural network architecture for real-time semantic segmentation." arXiv preprint arXiv:1606.02147 (2016).

Pixel-wise Cross Entropy

$$L = -\frac{1}{N} \sum_{i} y_i \log p_i \quad \begin{array}{c} y_i(\log) & 1 \\ y_i(\log) & 1 \end{array} \quad \begin{array}{c} p_i(\log) & 1 \\ y_i(\log) & 1 \end{array} \quad \begin{array}{c} p_i(\log) & 1 \\ p_i(\log) & 2 \end{array} \quad \begin{array}{c} p_i(\log) &$$

Label Output 1 y(dog) = 1 p(dog) = 0.4 y(fox) = 0 p(fox) = 0.3

Higher Loss

$$p(dog) = 0.4$$
 $p(dog) = 0.98$
 $p(fox) = 0.3$ $p(fox) = 0.01$
 $p(horse) = 0.05$ $p(horse) = 0$
 $p(eagle) = 0.05$ $p(eagle) = 0$
 $p(squirrel) = 0.2$ $p(squirrel) = 0.01$

Lower Loss

Output 2

Weighted Cross Entropy [1] (Higher weight to less occurring classes)

[1] Paszke, Adam, et al. "Enet: A deep neural network architecture for real-time semantic segmentation." *arXiv preprint arXiv:1606.02147* (2016).

y(eagle) = 0

y(squirrel) = 0

- Pixel-wise Cross Entropy
- Weighted Cross Entropy (Higher weight to less occurring classes)

Boot-strapped Cross Entropy [1]

Hardest Pixels
$$L = -rac{\sum_i^N \sum_j^K (1\{y_i = j ext{ and } p_{ij} < t\} \log p_{ij}}{\sum_i^N \sum_j^K 1\{y_i = j ext{ and } p_{ij} < t\}}$$

[1] Wu, Zifeng, Chunhua Shen, and Anton van den Hengel. "Bridging category-level and instance-level semantic image segmentation." *arXiv preprint arXiv:1605.06885* (2016).

Practical 1.1: Build your first FCN

https://bit.ly/2DNmoYm

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

Upsampling Within Network

- The output heatmaps as you saw is a downsampled version due to multiple pooling layers (5 pooling layers in VGG-16).
- Upsample using bilinear interpolation
- A better way is to learn the upsampling within the network using a layer called Transposed Convolution[1] (deconvolution or back-strided convolution)

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Convolution

Transposed Convolution

Figure from: https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

Figure from:

Convolution → Matrix Multiplication 4x16, and flatten the input 4x4 into 16x1 Figure from :

https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

- Why is it considered the backpropagation of convolution?
- Let's first visualize Conv.

- Why is it considered the backpropagation of convolution?
- Backward Pass is still performing Convolution.

$$egin{align} rac{\partial J}{\partial w_i} &= rac{\partial J}{\partial y} rac{\partial y}{\partial w_i} \ \sum_{n=1}^{x-|w|+1} rac{\partial J}{\partial y_n} rac{\partial y_n}{\partial w_i} \ oldsymbol{\delta}^y * oldsymbol{x} \end{aligned}$$

Figure from: https://www.slideshare.net/kuwajima/cnnpp

Checkerboard Effect

• Uneven Overlap (Kernel size! divisible by stride) - 1D Case

Figures from : https://distill.pub/2016/deconv-checkerboard/

Checkerboard Effect

• Uneven Overlap (Kernel size! divisible by stride) - 2D Case

Figures from: https://distill.pub/2016/deconv-checkerboard/

Encoder-Decoder

 Separating Encoding (Feature Extraction) from Decoding (Upsampling-Projecting to labels) method help analyze effect of different design choices

Feature Extraction Module

Decoding Method

Skip Connections

- Pooling layers:
 - Increases the receptive field which is important for better segmentation.
 - It hurts the resolution which can degrade the accuracy.
- One way is to use skip Connections either in the:
 - Label Space (FCN8s) Computationally efficient
 - Feature Space (UNet) Better accuracy.

Fully Convolutional Networks

- [1] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.
- [2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015.

Practical 1.2: Skip Connections and Transposed Convolution

https://bit.ly/2DNmoYm

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

Dilated Convolution

- How about Increasing receptive field without pooling.
- Perform Convolution with holes (Atrous Convolution - Dilated Convolution) [1]

Atrous Spatial Pyramid Pooling Multiple Dilated Convolution in parallel with different dilation factor. **Atrous Spatial Pyramid Pooling [2]** DeepLab architecture. Used conditional random fields as post processing.

[1] Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." *IEEE transactions on pattern analysis and machine intelligence* 40.4 (2018): 834-848.

Practical 1.3: Deeplab

https://bit.ly/2DNmoYm

Guide for Training Neural Networks

• The invisible sword ^_^: https://karpathy.github.io/2019/04/25/recipe/

Semantic Segmentation Datasets

PASCAL VOC - PASCAL parts - MS COCO

ADE20K - NYU RGBD

Cityscapes - BDD - Mapillary

Synthia - GTA - Virtual KITTI

Semantic Segmentation for Robotics

 Why do we need semantic segmentation? Why not end-to-end methods?

Semantic segmentation can act as an auxiliary Loss. [1]

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

Instance Segmentation

 Interested in segmenting each instance of a car on its own, not in just segmenting all cars

Faster R-CNN

Mask R-CNN - MultiTask Loss

- Detection Head: Regression to refine bounding boxes
- Classification Head: Cross Entropy.
- Seg. Head: Pixel-wise Binary CE.

[1] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.

ROI Pooling

• Region Size: 7x5

• Output: 2x2

		P	Jonnig	Sectio	113		
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

nooling sections

Fix misalignment from ROI Pool Bilinearly Interpolate features

0.1	0.3	0.2	0.3	0.2	0.6	0.8	0.9
0.4	0.5	0.1	0.4	0.7	0.1	0.4	0.3
0.2	0.1	0.3	0.8	0.6	0.2	0.1	0.1
0.4	0.6	0.2	0.1	0.3	0.6	0.1	0.2
0.1	0.8	0.3	0.3	0.5	0.3	0.3	0.3
0.2	0.9	0.4	0.5	0.1	0.1	0.1	0.2
0.3	0.1	0.8	0.6	0.3	0.3	0.6	0.5
0.5	0.5	0.2	0.1	0.1	0.2	0.1	0.2

0.8	0.6
0.9	0.6

0.1	0.3	0.2	0.3	0.2	0.6	0.8	0.9
0.4	0.5	0.1	0.4	0.7	0.1	0.4	0.3
0.2	0.1	0.3	0.8	0.6	02	0.1	0.1
0.4	0.6	0.2	0.	0.3	0.6	0.1	0.2
0.1	0.8	0.3	0.3	0.5	0.3	0.3	0.3
0.2	0.9	0.4	0.5	0.1	0.1	0.1	0.2
0.3	0.1	0.8	0.6	0.3	0.3	0.6	0.5
0.5	0.5	0.2	0.	0.1	0.2	0.1	0.2

https://medium.com/@jonathan_hui/image-seg mentation-with-mask-r-cnn-ebe6d793272

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

Few-Shot Segmentation

- K-shot N-way formulation
- Support set, Query Image

Metric Learning Relation to Softmax

NCA (Neighbourhood Component Analysis) [1]: learns distance metric with a softmax-like loss.

$$L_{NCA}(x,y,Z) = -\lograc{\exp(-d(x,y))}{\sum_{z\in Z}\exp\left(-d(x,z)
ight)}$$

NCA with Proxies [2]:
$$L_{proxy} = -\log \tfrac{\exp -d(x,p(x))}{\sum_{p(z) \in p(Z)} \exp(-d(x,p(z))}$$

[1] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R.Salakhutdinov. Neighbourhood components analysis. InAdvances in Neural Information Processing Systems, pages513-520, 2005.

[2] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh. No fuss distance metric learning using proxies. In Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition, pages 360–368, 2017

Metric Learning Relation to Softmax

ullet Normalized Vectors $\min d(x,p(x)) = \max x^T p(x)$

$$L_{proxy} = -\lograc{\exp{-d(x,p(x))}}{\sum_{p(z)\in p(Z)}\exp(-d(x,p(z))}$$
 Rethink of the

Weights as Proxies.

Proxies.
$$L_{softmax} = -\log rac{\exp{(x^T W_{q(x)})}}{\sum_{c \in C} \exp{(x^T W_c)}}$$

Adaptive Masked Proxies

Normalized Masked Average Pooling Layer

$$egin{aligned} P_l^r &= rac{1}{k} \sum_{i=1}^k rac{1}{N} \sum_{x \in X} F^{ri}(x) Y_l^i(x) \ \hat{P}_l^r &= rac{P_l^r}{||P_l^r||_2} \end{aligned}$$

ullet Adaptation of proxies based on update rate ${oldsymbol{\mathcal{C}}}$

$$\hat{W}_l^r = lpha \hat{P}_l^r + (1-lpha) W_l^r$$

[1] Siam, Mennatullah, and Boris Oreshkin. "Adaptive Masked Weight Imprinting for Few-Shot Segmentation." *arXiv preprint arXiv:1902.11123* (2019).

Practical 1.4: AdapProxy Few-shot Segmentation

https://bit.lv/2DNmoYm

Agenda

- Introduction
- Fully Convolutional Networks
- FCN8s Architecture
- DeepLab Architecture
- Instance Segmentation [Mask R-CNN]
- Few-shot Segmentation
- Video Object Segmentation

Video Object Segmentation

- Recurrent Networks
- Optical Flow

FlowNet 2.0

Video Object Segmentation

- Semi-supervised: Initialize with first frame mask.
- Unsupervised: No first frame initialization.
- Interactive: Scribbles from user.

DAVIS: Densely Annotated VIdeo Segmentation

In-depth analysis of the state-of-the-art in video object segmentation

Unsupervised Video Object Segmentation

FusionSeg CVPR'17[1]

[1] Jain, Suyog Dutt, Bo Xiong, and Kristen Grauman. "Fusionseg: Learning to combine motion and appearance for fully automatic segmentation of generic objects in videos." *Proc. CVPR*. Vol. 1. No. 2. 2017.

Unsupervised Video Object Segmentation

LVO ICCV'17 [2]

[2]Tokmakov, Pavel, Karteek Alahari, and Cordelia Schmid. "Learning video object segmentation with visual memory." *arXiv preprint arXiv:1704.05737* 3 (2017).

Practical 1.5: Two-stream FCN

https://bit.ly/2DNmoYm

Semi-supervised Video Object Segmentation

OSVOS CVPR'17

Semi-supervised Video Object Segmentation

OnaVOS BMVC'17

[1] Voigtlaender, Paul, and Bastian Leibe. "Online adaptation of convolutional neural networks for video object segmentation." *arXiv* preprint arXiv:1706.09364 (2017).

Thanks

