

HV Enclosure: Design Goals and Highlights

Design Goals:

Accessibility

- Easy removal from car
- Segments & peripherals

Packaging

 Reduce exterior HV wiring, consolidate electrical systems

Low CG goal

- Pack as many components as allowed by rules inside
- Place low to the ground & near the COM

Safety

- Tab mount analysis
- Secure battery casings

von Mises (N/mm^2 (MF

2.314e+02

Tractive System

- 72s8p Li-Ion battery pack
 - Max. Voltage: 302V
 - Nominal Voltage:259V
- Team-designed BMS
- 110A slow-blow fuse
- Cascadia PM100DX inverter
- Emrax 208 PMSM

HV Electronics

Four distinct chambers

- Battery Pack
- AIRs + HV Fuse
- PCB Stack
- Inverter

Motor

- Emrax 208 Motor
- 302V Max, 259V Nominal Voltage
- 448 Nm Max Torque
- 350 A Current Rating

Energy Consumption Simulations

Simulation Goals:

- Verify accumulator capacity
- Ideally enough power to last the endurance race (22km)
- Determine maximum speed to complete the race

Process:

- Use OptimumLap software
- Input vehicle parameters
 - Mass, aero, motor curves
- Simulate energy consumption at different speeds

Result:

Speed limit: 91 kph (ideal), 76 kph (realistic)

Accumulator & Battery Management System

Design & Build:

- 6 Segments, each < 60V
- Blind mate connectors on the back side (BMS and HV Path)
- Team-designed BMS with separate monitoring boards in each segment, on top of batteries

Integration & Testing:

- All data on the CAN bus, logged and analyzed
- Thermal experiments completed to justify no cooling

BMS Board Design:

Drivetrain Design Goals and Highlights

The drivetrain system includes an Emrax 208 motor, 2 fixed chain-driven gears, as well as a Drexler Salisbury differential.

Design Goals:

- Accessibility
- Manufacturability
 - In house production
 - Simplicity of mounting
- Structural Rigidity
 - Limit deflection of rotating components

Drivetrain Specs:

- 3.7 Drive Ratio (32t driven, 10t driving)
- 10.5° Max Half Shaft Angle
- 65 mph Max Velocity
- **Drexler Salisbury Differential**
- 1/4" 7075 Aluminum Driven Sprocket
- 520 Motorcycle Chain
- 7075 Aluminum Chain Tensioning Guide

Cooling System

Loops Specifications:

- Operating Temp = **50 deg C** (122 deg F)
- Flow Rate = 6-8 LPM
- Heat Input at peak power
 - Motor (95% efficiency) = 3.5kW
 - Inverter (97% efficiency) = 2kW
- Radiator -> Triple bypass for maximum cooling performance
- Sensor Data on Test Bench
 - Flow Rate = 6.34 7.29 LPM
 - Temp Increase while Spinning Motor
 (No load) = 26→31 deg C
 - Pressure = Pending data collection

