WHAT IS CLAIMED IS:

1. A method of making a compound of Formula 1,

$$R^{5}Z$$
 II
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 $R^{5}Z$
 II
 R^{6}
 R^{1}
 R^{1}
 R^{6}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 $R^{5}Z$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 $R^{5}Z$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 $R^{5}Z$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 $R^{5}Z$
 R^{1}
 $R^{5}Z$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 $R^{5}Z$
 $R^{5}Z$

or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, in which

1

R¹, R² and R³ are independently hydrogen, halogen, NO₂, CN, CF₃, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl, C₃₋₈ heterocyclyl, carboxy, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbamoyl, aryl-(CH₂)_m, heteroaryl-(CH₂)_m, heterocyclyl-(CH₂)_m, (CH₂)_mCO₂R⁸, (CH₂)_mS(O)_nR⁸, (CH₂)_mSO₂NR⁸R⁹, OR⁸, SR⁸, (CH₂)_mNR⁸R⁹, (CH₂)_mN(O)R⁸R⁹, (CH₂)_mP(O)(OR⁸)(OR⁹), (CH₂)_mCOR⁸, (CH₂)_mCO₂R⁸, (CH₂)_mC(O)NR⁸R⁹, (CH₂)_mC(O)NR⁸SO₂R⁸, (CH₂)_mNR⁸SO₂R⁹, (CH₂)_mC(O)NR⁸OR⁹, (CH₂)_mS(O)_nR⁸, or (CH₂)_mSO₂NR⁸R⁹, wherein aryl-(CH₂)_m includes phenylalkyl or substituted phenylalkyl having from one to three substituents that are independently NO₂, CN, CF₃, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, or monocyclic heteroaryl, and each C₁₋₆ alkyl is optionally substituted with OH, NH₂ or -N(A)B:

 R^4 and R^6 are independently hydrogen, hydroxy, halogen, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkoxy, $C_{1\text{-}4}$ alkylamino, $C_{1\text{-}4}$ alkyldiamino, $C_{1\text{-}4}$ alkylthio, $C_{1\text{-}4}$ alkylsulfinyl, $C_{1\text{-}4}$ alkylsulfonyl, $C_{1\text{-}4}$ alkylcarbonyl, $C_{1\text{-}4}$ alkylcarbamoyl, dicarbamoyl, carbamyl, $C_{1\text{-}4}$ alkoxycarbonyl, cyano, nitro, or trifluoromethyl;

 R^5 is phenyl, pyridyl, furyl, thiazolyl, imidazolyl or thienyl, each optionally having one or two substituents that are independently halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, amino, cyano, C_{1-6} alkyl-NH or $(C_{1-6}$ alkyl)₂N;

W is SR⁷, OR⁷ or NHR⁷; and

Z is hydrogen, halogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy, C₃₋₈ cycloalkoxy, nitro, C₁₋₆ haloalkyl, hydroxy, C₁₋₆ acyloxy, NH₂, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, C₃₋₈ cycloalkyl-NH, (C₃₋₈ cycloalkyl)₂N, hydroxymethyl, C₁₋₆ alkylcarbonyl, cyano, azido, C₁₋₆ thioalkyl, C₁₋₆ sulfinylalkyl, C₁₋₆ sulfinylalkyl, C₁₋₆ sulfinylalkyl, C₃₋₈ thiocycloalkyl, C₃₋₈ sulfinylcycloalkyl, C₃₋₈ sulfinylcycloalkyl, C₃₋₈ sulfonylcycloalkyl, mercapto, C₁₋₆ alkoxycarbonyl, C₃₋₈ cycloalkoxycarbonyl, C₂₋₄ alkenyl, C₄₋₈ cycloalkenyl, or C₂₋₄ alkynyl, provided that when Z is monovalent, R⁵ is absent;

wherein, R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, imidazol-1-yl- $(CH_2)_m$, morpholin-4-yl- $(CH_2)_m$, thiomorpholin-4-yl- $(CH_2)_m$, or hexahydroazepin-1-yl- $(CH_2)_m$, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;

 R^8 and R^9 are each independently hydrogen, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, arylalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or heteroarylalkyl;

A and B are independently hydrogen, C_{1-6} alkyl, $(CH_2)_mOH$, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and

n and m are, respectively, integers from zero to two, inclusive, and from zero to four, inclusive;

the method comprising:

removing a protecting group, G, from a compound of Formula 10,

10

to yield the compound of Formula 1; and

optionally converting the compound of Formula 1 to a pharmaceutically acceptable salt, ester, amide or prodrug thereof.

2. The method of claim 1, further comprising reacting a compound of Formula 7,

$$R^{5}Z$$
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

with a compound of Formula 8,

7

or with a compound of Formula 9,

to yield the compound of Formula 10, wherein G, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , W, and Z are as defined in claim 1, X^3 is a leaving group, and provided that when G is Boc, W is not alkoxy.

3. The method of claim 2, further comprising reacting a compound of Formula 6,

$$R^{5}Z$$
 II R^{6} N G $Q_{2}N$ N N

with hydrogen in the presence of a catalyst or with a reducing agent to yield the compound of claim 7, wherein G, R⁴, R⁵, R⁶, W, and Z are as defined in claim 1.

4. The method of claim 3, further comprising installing the protecting group, G, on a compound of Formula 5,

$$R^5Z$$
 NH
 O_2N
 N
 N

6

to yield the compound of Formula 6, wherein G, R⁴, R⁵, R⁶, W, and Z are as defined in claim 1.

5. The method of claim 3, further comprising displacing a leaving group, X^2 , of Formula 12,

$$R^5Z$$
 R^6
 Q_2N
 N
 N
 N
 N
 N
 N

with W to yield the compound of Formula 6, wherein G, R^4 , R^5 , R^6 , W, and Z are as defined in claim 1, and provided that when G is Boc, X^2 is not halogen.

6. The method of claim 5, further comprising reacting a compound of Formula 2,

$$X^1$$
 X^2
 X^2
 X^3
 X^2
 X^3
 X^4
 X^2
 X^3
 X^4
 X^2
 X^3
 X^4
 X^2
 X^4
 X^2
 X^4
 X^4
 X^4
 X^4
 X^4

with a compound of Formula 11,

to yield the compound of Formula 12, wherein G, R^4 , R^5 , R^6 , and Z are as defined in claim 1, X^2 is as defined in claim 5, and X^1 is a leaving group.

- 7. The method of claim 1, wherein G is acetyl.
- 8. The method of claim 1, wherein G is dimethoxy benzyl.
- 9. The method of claim 1, wherein R^1 , R^2 , R^3 and Z are each hydrogen, and R^4 and R^6 are each halogen.
 - 10. The method of claim 1, wherein W is morpholin-4-yl-alkoxy.
- 11. The method of claim 1, wherein the compound of Formula 1 is *N*-[4-(3-chloro-4-fluoro-phenylamino)-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide.
 - 12. A method of making a compound of Formula 23,

23

or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, in which R^4 and R^6 are independently hydrogen, hydroxy, halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkylamino, C_{1-4} alkyldiamino, C_{1-4} alkylthio, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbonyl, dicarbamoyl, carbamyl, C_{1-4} alkoxycarbonyl, cyano, nitro, or trifluoromethyl;

 R^5 is phenyl, pyridyl, furyl, thiazolyl, imidazolyl or thienyl, each optionally having one or two substituents that are independently halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, amino, cyano, C_{1-6} alkyl-NH or $(C_{1-6}$ alkyl)₂N;

W is SR⁷, OR⁷ or NHR⁷; and

Z is hydrogen, halogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy, C₃₋₈ cycloalkoxy, nitro, C₁₋₆ haloalkyl, hydroxy, C₁₋₆ acyloxy, NH₂, C₁₋₆ alkyl-NH,

(C₁₋₆ alkyl)₂N, C₃₋₈ cycloalkyl-NH, (C₃₋₈ cycloalkyl)₂N, hydroxymethyl,

C₁₋₆ alkylcarbonyl, cyano, azido, C₁₋₆ thioalkyl, C₁₋₆ sulfinylalkyl,

C₁₋₆ sulfonylalkyl, C₃₋₈ thiocycloalkyl, C₃₋₈ sulfinylcycloalkyl,

C₃₋₈ sulfonylcycloalkyl, mercapto, C₁₋₆ alkoxycarbonyl,

C₃₋₈ cycloalkoxycarbonyl, C₂₋₄ alkenyl, C₄₋₈ cycloalkenyl, or C₂₋₄ alkynyl, provided that when Z is monovalent, R⁵ is absent;

wherein, R⁷ is hydrogen, C₁₋₆ alkyl, piperidin-1-yl-(CH₂)_m, piperazin-1-yl-(CH₂)_m, 4-C₁₋₆ alkyl-piperazin-1-yl-(CH₂)_m, pyrrolidin-1-yl-(CH₂)_m, pyridinyl-(CH₂)_m, imidazolyl-(CH₂)_m, imidazol-1-yl-(CH₂)_m, morpholin-4-yl-(CH₂)_m, thiomorpholin-4-yl-(CH₂)_m, or hexahydroazepin-1-yl-(CH₂)_m, wherein each C₁₋₆ alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;

A and B are independently hydrogen, C₁₋₆ alkyl, (CH₂)_mOH, piperidin-1-yl-(CH₂)_m, piperazin-1-yl-(CH₂)_m, 4-C₁₋₆ alkyl-piperazin-1-yl-(CH₂)_m, pyrrolidin-1-

yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and

m is an integer from zero to four, inclusive;

the method comprising:

eliminating SR¹² from a compound of Formula 22,

$$R^{5}Z$$
 N
 N
 N
 N
 N
 N

22

to yield the compound of Formula 23; and

optionally converting the compound of Formula 23 to a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, wherein R^{12} is $C_{1.6}$ alkyl or aryl.

13. The method of claim 12, further comprising reacting a compound of Formula 21,

$$R^{12}S$$
 N
 N
 N
 N

21

with a compound of Formula 3,

$$R^{5}Z$$
 NH_{2}

3

to yield the compound of Formula 22, wherein R⁴, R⁵, R⁶, R¹², W, and Z are as defined in claim 12, and X¹ is a leaving group.

14. The method of claim 13, further comprising reacting a compound of Formula 18,

$$H_2N$$
 N
 N
 N
 N

with a compound of Formula 19,

or with a compound of Formula 20,

$$R^{12}S$$
 CI CO

to yield the compound of Formula 21, wherein R^{12} and W are as defined in claim 12, and X^1 is as defined in claim 13.

- 15. The method of claim 12, wherein Z is hydrogen, and R^4 and R^6 are each halogen.
 - 16. The method of claim 12, wherein W is morpholin-4-yl-alkoxy.
- 17. The method of claim 12, wherein the compound of Formula 23 is *N*-[4-(3-chloro-4-fluoro-phenylamino)-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide.
 - 18. A method of making a compound of Formula 29,

29

- or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, in which R^4 and R^6 are independently hydrogen, hydroxy, halogen, $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ alkylamino, $C_{1.4}$ alkyldiamino, $C_{1.4}$ alkylthio, $C_{1.4}$ alkylsulfinyl, $C_{1.4}$ alkylsulfonyl, $C_{1.4}$ alkylcarbonyl, $C_{1.4}$ alkylcarbamoyl, dicarbamoyl, carbamyl, $C_{1.4}$ alkoxycarbonyl, cyano, nitro, or trifluoromethyl;
- R^5 is phenyl, pyridyl, furyl, thiazolyl, imidazolyl or thienyl, each optionally having one or two substituents that are independently halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, amino, cyano, C_{1-6} alkyl-NH or $(C_{1-6}$ alkyl)₂N;

W is SR⁷, OR⁷ or NHR⁷;

- Z is hydrogen, halogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy, C₃₋₈ cycloalkoxy, nitro, C₁₋₆ haloalkyl, hydroxy, C₁₋₆ acyloxy, NH₂, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, C₃₋₈ cycloalkyl-NH, (C₃₋₈ cycloalkyl)₂N, hydroxymethyl, C₁₋₆ alkylcarbonyl, cyano, azido, C₁₋₆ thioalkyl, C₁₋₆ sulfinylalkyl, C₁₋₆ sulfinylalkyl, C₁₋₆ sulfonylalkyl, C₃₋₈ thiocycloalkyl, C₃₋₈ sulfinylcycloalkyl, C₃₋₈ sulfonylcycloalkyl, mercapto, C₁₋₆ alkoxycarbonyl, C₃₋₈ cycloalkoxycarbonyl, C₂₋₄ alkenyl, C₄₋₈ cycloalkenyl, or C₂₋₄ alkynyl, provided that when Z is monovalent, R⁵ is absent; and
- R^{14} is hydrogen, halogen, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{2-6} alkenyl or C_{2-6} alkynyl substituted with hydroxy, alkoxy, amino or alkylamino;
- wherein, R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, imidazol-1-yl- $(CH_2)_m$, morpholin-4-yl- $(CH_2)_m$, thiomorpholin-4-yl- $(CH_2)_m$, or hexahydroazepin-1-yl- $(CH_2)_m$, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;
- A and B are independently hydrogen, C_{1-6} alkyl, $(CH_2)_mOH$, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and
- m is an integer from zero to four, inclusive;

the method comprising:

removing [1,3,4]oxadiazole from a compound of Formula 28,

$$R^4$$
 ZR^5
 R^6
 R^6
 R^{14}
 R^{14}
 R^{14}

to yield the compound of Formula 29; and

optionally converting the compound of Formula 29 to a pharmaceutically acceptable salt, ester, amide, or prodrug thereof.

19. The method of claim 18, further comprising removing ester moieties, $R^{13}O_2C$, from a compound of Formula 27,

$$R^{13}O_2C$$
 $R^{13}O_2C$
 R^{14}
 R^{14}

28

to yield the compound of Formula 28, wherein R^4 , R^5 , R^6 , R^{14} , W, and Z are as defined in claim 18, and R^{13} is $C_{1\cdot4}$ alkyl, $C_{1\cdot4}$ haloalkyl, $C_{2\cdot4}$ alkenyl, TMS-(CH₂)_m or aryl-(CH₂)_m.

-62-

20. The method of claim 19, further comprising reacting a compound of Formula 26,

with a compound of Formula 3,

$$R^5Z$$
 II NH_2 R^6

to yield the compound of Formula 27, wherein R^4 , R^5 , R^6 , R^{14} , W, and Z are as defined in claim 18, R^{13} is as defined in claim 19, and X^1 is a leaving group.

21. The method of claim 20, further comprising reacting a compound of Formula 18,

$$H_2N$$
 N
 N
 N
 N

with a compound of Formula 24

or with a compound of Formula 25

$$R^{13}O_2C$$
 $R^{13}O_2C-N$
 X^4
 R^{14}
25

to yield the compound of Formula 26, wherein R^{14} and W are as defined in claim 18, R^{13} is as defined in claim 19, X^{1} is as defined in claim 20, and X^{4} is a leaving group.

22. The method of claim 19, further comprising reacting a compound of Formula 36,

with a compound of Formula 3,

$$R^{5}Z$$
 R^{6}
 NH_{2}

to yield the compound of Formula 27, wherein R^4 , R^5 , R^6 , R^{14} , W, and Z are as defined in claim 18, R^{13} is as defined in claim 19, and R^{16} is $C_{1\cdot6}$ alkyl, phenyl, or phenoxy.

23. The method of claim 22, further comprising reacting a compound of Formula 34

with $(R^{16})_3P(X^5)_2$ to yield the compound of 36, wherein R^{14} and W are as defined in claim 18, R^{13} is as defined in claim 19, R^{16} is as defined in claim 22, and X^5 is hydrogen, halogen or absent.

24. The method of claim 19, further comprising reacting a compound of Formula 34,

with a compound of Formula 37,

$$R^{5}Z \xrightarrow{\text{II}} N$$

$$R^{6} \qquad \qquad N$$

$$P(R^{17})_{3} \qquad \qquad 37$$

to yield the compound of Formula 27, wherein R^4 , R^5 , R^6 , R^{14} , W, and Z are as defined in claim 18, R^{13} is as defined in claim 19, and R^{17} is C_{1-6} alkyl, phenyl or phenoxy.

25. The method of claim 24, further comprising reacting a compound of Formula 33,

$$H_2N$$
 NH
 NH
 NH

with a compound of Formula 24,

or with a compound of Formula 25,

$$R^{13}O_2C$$
 $R^{13}O_2C-N$
 X^4
 R^{14}
 X^4

to yield the compound of Formula 34, wherein R^{14} and W are as defined in claim 18, R^{13} is as defined in claim 19, and X^4 is a leaving group.

26. The method of claim 19, further comprising reacting a compound of Formula 38,

$$R^{13}O_2C$$
 $R^{18}HN$
 $R^{13}O_2C$
 R^{14}
 R^{14}

with a compound of Formula 39,

$$R^5Z$$
 I X^6 X^6

in the presence of a catalyst to yield a compound of Formula 40,

$$R^{13}O_2C$$
 $R^{18}N$
 $R^{13}O_2C$
 R^{14}
 R^{14}

wherein R⁴, R⁵, R⁶, R¹⁴, W, and Z are as defined in claim 18, R¹³ is as defined in claim 19, X⁶ is halogen, and R¹⁸ is hydrogen or a group that facilitates coupling of the compounds of Formula 38 and Formula 39; and

optionally reacting the compound of Formula 40 with an acid to yield the compound of Formula 27 when R¹⁸ is non-hydrogen.

- 27. The method of claim 18, wherein Z and R^{14} are each hydrogen, and R^4 and R^6 are each halogen.
 - 28. The method of claim 18, wherein W is morpholin-4-yl-alkoxy.
- 29. The method of claim 18, wherein the compound of Formula 29 is *N*-[4-(3-chloro-4-fluoro-phenylamino)-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide.

30. A method of making a compound of Formula 46,

$$R^2$$
 R^3
 N
 N
 N
 N
 N

46

or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, in which

R¹, R² and R³ are independently hydrogen, halogen, NO₂, CN, CF₃, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl, C₃₋₈ heterocyclyl, carboxy, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbamoyl, aryl-(CH₂)_m, heteroaryl-(CH₂)_m, heterocyclyl-(CH₂)_m, (CH₂)_mCO₂R⁸, (CH₂)_mS(O)_nR⁸, (CH₂)_mSO₂NR⁸R⁹, OR⁸, SR⁸, (CH₂)_mNR⁸R⁹, (CH₂)_mN(O)R⁸R⁹, (CH₂)_mP(O)(OR⁸)(OR⁹), (CH₂)_mCOR⁸, (CH₂)_mCO₂R⁸, (CH₂)_mC(O)NR⁸R⁹, (CH₂)_mC(O)NR⁸SO₂R⁸, (CH₂)_mNR⁸SO₂R⁹, (CH₂)_mC(O)NR⁸OR⁹, (CH₂)_mS(O)_nR⁸, or (CH₂)_mSO₂NR⁸R⁹, wherein aryl-(CH₂)_m includes phenylalkyl or substituted phenylalkyl having from one to three substituents that are independently NO₂, CN, CF₃, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, or monocyclic heteroaryl, and each C₁₋₆ alkyl is optionally substituted with OH, NH₂ or -N(A)B; and

W is SR⁷, OR⁷ or NHR⁷;

wherein, R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, imidazol-1-yl- $(CH_2)_m$, morpholin-4-yl- $(CH_2)_m$, thiomorpholin-4-yl- $(CH_2)_m$, or hexahydroazepin-1-yl- $(CH_2)_m$, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;

 R^8 and R^9 are each independently hydrogen, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, arylalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or heteroarylalkyl;

A and B are independently hydrogen, C_{1-6} alkyl, $(CH_2)_mOH$, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, $4-C_{1-6}$ alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and

n and m are, respectively, integers from zero to two, inclusive, and from zero to four, inclusive;

the method comprising:

treating a compound of Formula 45,

45

with an acid to yield the compound of Formula 46, wherein R^{19} is C_{1-4} alkyl, C_{1-4} alkoxy or aryl; and

optionally converting the compound of Formula 46 to a pharmaceutically acceptable salt, ester, amide, or prodrug thereof.

- 31. The method of claim 30, wherein R^1 , R^2 and R^3 are each hydrogen.
- 32. The method of claim 30, wherein W is morpholin-4-yl-alkoxy.
- 33. The method of claim 30, wherein the compound of Formula 46 is *N*-[4-(3-chloro-4-fluoro-phenylamino)-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide.

34. A compound of Formula 47,

$$R^{5}Z$$
 R^{6}
 R^{20}
 R^{21}
 R^{6}
 R^{20}

47

or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, in which R⁴ and R⁶ are independently hydrogen, hydroxy, halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy,

 C_{1-4} alkylamino, C_{1-4} alkyldiamino, C_{1-4} alkylthio, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbamoyl, dicarbamoyl, carbamyl, C_{1-4} alkoxycarbonyl, cyano, nitro, or trifluoromethyl;

 R^5 is phenyl, pyridyl, furyl, thiazolyl, imidazolyl or thienyl, each optionally having one or two substituents that are independently halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, amino, cyano, C_{1-6} alkyl-NH or $(C_{1-6}$ alkyl)₂N;

R²⁰ is NH₂, NO₂, or

$$R^2$$
 R^3
 N

R²¹ is SR⁷, OR⁷, NHR⁷ or a leaving group;

Z is hydrogen, halogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy, C₃₋₈ cycloalkoxy, nitro, C₁₋₆ haloalkyl, hydroxy, C₁₋₆ acyloxy, NH₂, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, C₃₋₈ cycloalkyl-NH, (C₃₋₈ cycloalkyl)₂N, hydroxymethyl, C₁₋₆ alkylcarbonyl, cyano, azido, C₁₋₆ thioalkyl, C₁₋₆ sulfinylalkyl, C₁₋₆ sulfonylalkyl, C₃₋₈ thiocycloalkyl, C₃₋₈ sulfinylcycloalkyl, C₃₋₈ sulfonylcycloalkyl, mercapto, C₁₋₆ alkoxycarbonyl, C₃₋₈ cycloalkoxycarbonyl, C₂₋₄ alkenyl, C₄₋₈ cycloalkenyl, or C₂₋₄ alkynyl, provided that when Z is monovalent, R⁵ is absent; and

G is a protecting group, provided that when G is Boc and R²⁰ is NH₂ or NO₂, R²¹ is not halogen or alkoxy;

- wherein R¹, R² and R³ are independently hydrogen, halogen, NO₂, CN, CF₃,

 C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl,

 C₃₋₈ heterocyclyl, carboxy, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbamoyl,
 aryl-(CH₂)_m, heteroaryl-(CH₂)_m, heterocyclyl-(CH₂)_m, (CH₂)_mCO₂R⁸,

 (CH₂)_mS(O)_nR⁸, (CH₂)_mSO₂NR⁸R⁹, OR⁸, SR⁸, (CH₂)_mNR⁸R⁹,

 (CH₂)_mN(O)R⁸R⁹, (CH₂)_mP(O)(OR⁸)(OR⁹), (CH₂)_mCOR⁸, (CH₂)_mCO₂R⁸,

 (CH₂)_mC(O)NR⁸R⁹, (CH₂)_mC(O)NR⁸SO₂R⁸, (CH₂)_mNR⁸SO₂R⁹,

 (CH₂)_mC(O)NR⁸OR⁹, (CH₂)_mS(O)_nR⁸, or (CH₂)_mSO₂NR⁸R⁹, wherein
 aryl-(CH₂)_m includes phenylalkyl or substituted phenylalkyl having from one to three substituents that are independently NO₂, CN, CF₃, C₁₋₆ alkyl-NH,

 (C₁₋₆ alkyl)₂N, or monocyclic heteroaryl, and each C₁₋₆ alkyl is optionally substituted with OH, NH₂ or -N(A)B;
- R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl-(CH_2)_m, piperazin-1-yl-(CH_2)_m, 4- C_{1-6} alkyl-piperazin-1-yl-(CH_2)_m, pyrrolidin-1-yl-(CH_2)_m, pyridinyl-(CH_2)_m, imidazolyl-(CH_2)_m, imidazol-1-yl-(CH_2)_m, morpholin-4-yl-(CH_2)_m, thiomorpholin-4-yl-(CH_2)_m, or hexahydroazepin-1-yl-(CH_2)_m, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;
- R^8 and R^9 are each independently hydrogen, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, arylalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or heteroarylalkyl;
- A and B are independently hydrogen, C_{1-6} alkyl, $(CH_2)_mOH$, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and
- n and m are, respectively, integers from zero to two, inclusive, and from zero to four, inclusive.
 - 35. The compound of claim 34, wherein G is acetyl.
 - 36. The compound of claim 34, wherein G is dimethoxy benzyl.
 - 37. The compound of claim 34, wherein R^{20} is NH_2 .

- 38. The compound of claim 37, wherein R^{21} is SR^7 , OR^7 or NHR^7 .
- 39. The compound of claim 34, wherein R^{20} is NO_2 .
- 40. The compound of claim 39, wherein R²¹ is SR⁷, OR⁷ or NHR⁷.
- 41. The compound of claim 34, wherein R^{20} is

$$R^2$$
 R^3
 R^3
 R^3

- 42. The compound of claim 41, wherein R^1 , R^2 , R^3 and Z are each hydrogen, and R^4 and R^6 are each halogen.
 - 43. The compound of claim 34, wherein R²¹ is morpholin-4-yl-alkoxy.
 - 44. A compound selected from:

(3-chloro-4-fluoro-phenyl)-(3,4-dimethoxy-benzyl)-(7-fluoro-6-nitro-quinazolin-4-yl)-amine;

(3-chloro-4-fluoro-phenyl)-(3,4-dimethoxy-benzyl)-[7-(3-morpholin-4-yl-propoxy)-6-nitro-quinazolin-4-yl]-amine;

*N*4-(3-chloro-4-fluoro-phenyl)-*N*4-(3,4-dimethoxy-benzyl)-7-(3-morpholin-4-yl-propoxy)-quinazoline-4,6-diamine;

N-[4-[(3-chloro-4-fluoro-phenyl)-(3,4-dimethoxy-benzyl)-amino]-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide;

N-(3-chloro-4-fluoro-phenyl)-N-[7-(3-morpholin-4-yl-propoxy)-6-nitro-quinazolin-4-yl]-acetamide;

N-[6-amino-7-(3-morpholin-4-yl-propoxy)-quinazolin-4-yl]-N-(3-chloro-4-fluoro-phenyl)-acetamide; and

N-[4-[acetyl-(3-chloro-4-fluoro-phenyl)-amino]-7-(3-morpholin-4-yl-propoxy)-quinazolin-6-yl]-acrylamide;

or a pharmaceutically acceptable salt thereof.

45. A compound of Formula 48,

$$R^{23}$$
 N
 N
 N
 N
 N
 N
 N
 N

or a pharmaceutically acceptable salt, ester, amide, or prodrug thereof, in which R^{22} is a leaving group or

$$R^{5}Z \xrightarrow{\text{II}} R^{6}$$

 R^{23} is

$$R^{13}O_2C$$

$$R^{13}O_2C$$

$$R^{13}O_2C$$

$$R^{14}$$
or
$$R^{14}$$
; and

W is SR⁷, OR⁷ or NHR⁷;

wherein R⁴ and R⁶ are independently hydrogen, hydroxy, halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ alkylamino, C₁₋₄ alkyldiamino, C₁₋₄ alkylthio, C₁₋₄ alkylsulfinyl, C₁₋₄ alkylsulfonyl, C₁₋₄ alkylcarbonyl, C₁₋₄ alkylcarbamoyl, dicarbamoyl, carbamyl, C₁₋₄ alkoxycarbonyl, cyano, nitro, or trifluoromethyl;

- R^5 is phenyl, pyridyl, furyl, thiazolyl, imidazolyl or thienyl, each optionally having one or two substituents that are independently halogen, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, amino, cyano, C_{1-6} alkyl-NH or $(C_{1-6}$ alkyl)₂N;
- Z is hydrogen, halogen, C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkoxy, C₃₋₈ cycloalkoxy, nitro, C₁₋₆ haloalkyl, hydroxy, C₁₋₆ acyloxy, NH₂, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, C₃₋₈ cycloalkyl-NH, (C₃₋₈ cycloalkyl)₂N, hydroxymethyl, C₁₋₆ alkylcarbonyl, cyano, azido, C₁₋₆ thioalkyl, C₁₋₆ sulfinylalkyl,

C₁₋₆ sulfonylalkyl, C₃₋₈ thiocycloalkyl, C₃₋₈ sulfinylcycloalkyl,
C₃₋₈ sulfonylcycloalkyl, mercapto, C₁₋₆ alkoxycarbonyl,
C₃₋₈ cycloalkoxycarbonyl, C₂₋₄ alkenyl, C₄₋₈ cycloalkenyl, or C₂₋₄ alkynyl,
provided that when Z is monovalent, R⁵ is absent;

 R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, imidazol-1-yl- $(CH_2)_m$, morpholin-4-yl- $(CH_2)_m$, thiomorpholin-4-yl- $(CH_2)_m$, or hexahydroazepin-1-yl- $(CH_2)_m$, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;

 R^{12} is C_{1-6} alkyl or aryl;

 R^{13} is $C_{1.4}$ alkyl, $C_{1.4}$ haloalkyl, $C_{2.4}$ alkenyl, TMS-(CH₂)_m or aryl-(CH₂)_m;

R¹⁴ is hydrogen, halogen, C₂₋₆ alkenyl, C₂₋₆ alkynyl, and C₂₋₆ alkenyl or C₂₋₆ alkynyl substituted with hydroxy, alkoxy, amino or alkylamino;

- R¹⁸ is hydrogen, an O-substituted carbonyldioxy radical, or an S-substituted sulfonyl radical, the O-substituted carbonyldioxy radical or the S-substituted sulfonyl radicals independently substituted with *t*-butyl, allyl, benzyl, *p*-methoxybenzyl, 2-chloroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2-nitroethyl, 2-cyanoethyl, 4-nitrobenzyl, trifluoroacetyl or Tf;
- A and B are independently hydrogen, C_{1-6} alkyl, $(CH_2)_mOH$, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and

m is an integer from zero to four, inclusive.

46. The compound of claim 44, wherein R^{22} is

47. The compound of claim 46, wherein R¹⁸ is hydrogen and R²³ is

$$SR^{12}$$
 $R^{12}S$
 SR^{12}
 $SR^{$

48. The compound of claim 46, wherein R^{18} is hydrogen and R^{23} is

- 49. The compound of claim 44, wherein R²² is a leaving group.
- 50. The compound of claim 49, wherein R¹⁸ is hydrogen and R²³ is

51. The compound of claim 49, wherein R¹⁸ is hydrogen and R²³ is

52. A compound of Formula 49,

49

or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, in which R^{13} is C_{1-4} alkyl, C_{1-4} haloalkyl, C_{2-4} alkenyl, TMS- $(CH_2)_m$ or aryl- $(CH_2)_m$; R^{14} is hydrogen, halogen, C_{2-6} alkenyl, C_{2-6} alkynyl, and C_{2-6} alkenyl or C_{2-6} alkynyl substituted with hydroxy, alkoxy, amino or alkylamino;

 R^{24} is $P^+(R^{16})_3$ or is absent;

W is SR⁷, OR⁷ or NHR⁷;

 R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl-(CH_2)_m, piperazin-1-yl-(CH_2)_m, 4- C_{1-6} alkyl-piperazin-1-yl-(CH_2)_m, pyrrolidin-1-yl-(CH_2)_m, pyridinyl-(CH_2)_m, imidazolyl-(CH_2)_m, imidazol-1-yl-(CH_2)_m, morpholin-4-yl-(CH_2)_m, thiomorpholin-4-yl-(CH_2)_m, or hexahydroazepin-1-yl-(CH_2)_m, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;

 R^{16} is C_{1-6} alkyl, phenyl, or phenoxy;

A and B are independently hydrogen, C_{1-6} alkyl, $(CH_2)_mOH$, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, or imidazol-1-yl- $(CH_2)_m$; and

m is an integer from zero to four, inclusive.

53. A compound of Formula 45,

45

or a pharmaceutically acceptable salt, ester, amide or prodrug thereof, in which R¹, R² and R³ are independently hydrogen, halogen, NO₂, CN, CF₃, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl, C₃₋₈ heterocyclyl, carboxy, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbamoyl, aryl-(CH₂)_m, heterocyclyl-(CH₂)_m, (CH₂)_mCO₂R⁸, (CH₂)_mS(O)_nR⁸, (CH₂)_mSO₂NR⁸R⁹, OR⁸, SR⁸, (CH₂)_mNR⁸R⁹, (CH₂)_mN(O)R⁸R⁹,

(CH₂)_mP(O)(OR⁸)(OR⁹), (CH₂)_mCOR⁸, (CH₂)_mCO₂R⁸, (CH₂)_mC(O)NR⁸R⁹, (CH₂)_mC(O)NR⁸SO₂R⁸, (CH₂)_mNR⁸SO₂R⁹, (CH₂)_mC(O)NR⁸OR⁹, (CH₂)_mS(O)_nR⁸, or (CH₂)_mSO₂NR⁸R⁹, wherein aryl-(CH₂)_m includes phenylalkyl or substituted phenylalkyl having from one to three substituents that are independently NO₂, CN, CF₃, C₁₋₆ alkyl-NH, (C₁₋₆ alkyl)₂N, or monocyclic heteroaryl, and each C₁₋₆ alkyl is optionally substituted with OH, NH₂ or -N(A)B;

 R^{19} is C_{1-4} alkyl, C_{1-4} alkoxy or aryl;

W is SR⁷, OR⁷ or NHR⁷; and

- wherein, R^7 is hydrogen, C_{1-6} alkyl, piperidin-1-yl- $(CH_2)_m$, piperazin-1-yl- $(CH_2)_m$, 4- C_{1-6} alkyl-piperazin-1-yl- $(CH_2)_m$, pyrrolidin-1-yl- $(CH_2)_m$, pyridinyl- $(CH_2)_m$, imidazolyl- $(CH_2)_m$, imidazol-1-yl- $(CH_2)_m$, morpholin-4-yl- $(CH_2)_m$, thiomorpholin-4-yl- $(CH_2)_m$, or hexahydroazepin-1-yl- $(CH_2)_m$, wherein each C_{1-6} alkyl optionally includes one or more substituents that are OH, NH₂ or -N(A)B;
- R^8 and R^9 are each independently hydrogen, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, arylalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, or heteroarylalkyl;
- A and B are independently hydrogen, C₁₋₆ alkyl, (CH₂)_mOH, piperidin-1-yl-(CH₂)_m, piperazin-1-yl-(CH₂)_m, 4-C₁₋₆ alkyl-piperazin-1-yl-(CH₂)_m, pyrrolidin-1-yl-(CH₂)_m, pyridinyl-(CH₂)_m, imidazolyl-(CH₂)_m, or imidazol-1-yl-(CH₂)_m; and
- n and m are, respectively, integers from zero to two, inclusive, and from zero to four, inclusive.
 - 54. The compound of claim 53, wherein R^1 , R^2 and R^3 are each hydrogen.
 - 55. The compound of claim 53, wherein W is morpholin-4-yl-alkoxy.