TD 05 - Chernoff's Inequality and Midterm Preparation

Exercice 1. Probabilités conditionnelles

Soit *Y* une variable aléatoire prenant des valeurs entières, positives ou nulles, et dont l'espérance est strictement positive. Le but de cet exercice est de prouver la relation suivante:

$$\frac{\mathbf{E}\left[Y\right]^{2}}{\mathbf{E}\left[Y^{2}\right]} \leq \mathbf{P}\left\{Y \neq 0\right\} \leq \mathbf{E}\left[Y\right] .$$

- **1.** On voudrait une variable aléatoire X qui corresponde informellement à $(Y|Y \neq 0)$. Comment la définir proprement (on pourra changer d'espace de probabilité)?
- **2.** Comparer $\mathbf{E}[X]^2$ et $\mathbf{E}[X^2]$.
- 3. Conclure.

Exercice 2. Suite de bits aléatoires

On se donne X_i une suite infinie de bits aléatoires non biaisés.

- **1.** Montrer que presque sûrement tout mot fini apparaît dans la suite X_i .
- **2.** En déduire que la presque sûrement tout mot fini apparaît une infinité de fois dans la suite X_i .

Exercise 3. Improving Random Algorithm Suppose you are given a randomized polynomial-time algorithm \mathcal{A} for deciding whether $x \in \{0,1\}^*$ is in the language L or not. Suppose it has the following property. If $x \in L$, then $\mathbf{P}\{\mathcal{A}(x) = 0\} \leq 1/4$ and if $x \notin L$, then $\mathbf{P}\{\mathcal{A}(x) = 1\} \leq 1/3$. Note that the probability here is taken over the randomness

1. Construct a randomized polynomial-time algorithm \mathcal{B} that is allowed to make independent calls to \mathcal{A} such that for all inputs $x \in \{0,1\}^*$, we have $\mathbf{P}\{\mathcal{B}(x) = \mathbf{1}_{x \in L}\} \ge 1 - 2^{-|x|}$. Here $\mathbf{1}_{x \in L} = 1$ if $x \in L$ and 0 otherwise, and |x| denotes the length of the bitstring x.

Exercice 4. K4

Soit G un graphe aléatoire de loi $G_{n,p}$. L'objectif de cet exercice est de montrer qu'il y a un seuil $p_0 := n^{-2/3}$ tel que pour $p = o(p_0)$, le graphe G n'a pas de clique de taille 4 avec bonne probabilité, et que pour $p = \omega(p_0)$, le graphe G a au moins une clique de taille 4 avec bonne probabilité. **Rappels / définitions:**

- Un graphe aléatoire G suit la loi $G_{n,p}$ s'il a n sommets et que chaque arrête est présente dans G avec probabilité p;
- une clique de taille 4 est un ensemble de 4 sommets tous reliés deux à deux par des arêtes;
- $p = o(p_0)$ signifie $\frac{p}{p_0} \to 0$ quand $n \to +\infty$;

used by the algorithm A and *not* over the input x.

- $p = \omega(p_0)$ signifie $\frac{p_0}{p} \to 0$ quand $n \to +\infty$.
- **1.** Pour p quelconque, calculer $\mathbf{E}[X]$, où X est le nombre de cliques du graphe G.
- **2.** Soit $p = o(p_0)$, montrer que $Pr(X \neq 0) \rightarrow 0$ quand n tend vers l'infini.

On suppose maintenant $p = \omega(p_0)$, et on veut montrer que $\mathbf{P}\{X = 0\} \to 0$ quand n tend vers l'infini.

- 3. Montrer que $\mathbf{P}\left\{X=0\right\} \leq \frac{\mathbf{Var}[X]}{\mathbf{E}[X]^2}$. Il suffira donc de montrer que $\frac{\mathbf{Var}[X]}{\mathbf{E}[X]^2} \to 0$.
- 4. Soit X_i des variables aléatoires à valeur dans 0,1 (et non indépendantes). Montrer que

$$\mathbf{Var}\left[\sum_{i}X_{i}\right] \leq \mathbf{E}\left[\sum_{i}X_{i}\right] + \sum_{i \neq j}\mathbf{E}\left[\left(X_{i} - \mathbf{E}\left[X_{i}\right]\right)\left(X_{j} - \mathbf{E}\left[X_{j}\right]\right)\right].$$

5. En déduire que $\operatorname{Var}[X] = o(\operatorname{E}[X]^2)$ et conclure.

Exercice 5.

Partie I:

- **1.** Montrer qu'il existe une constante $\gamma > 0$ rendant l'énoncé suivant vrai : si une v.a. positive X vérifie $\mathbb{E}[X] = 1$ et $\mathbb{E}[X^2] \le 3$, alors $\mathbb{P}(X \ge 1/4) \ge \gamma$.
- **2.** Soient (X_1, \ldots, X_n) des v.a. i.i.d. vérifiant $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}$. On pose $Y = \frac{1}{\sqrt{n}}(X_1 + \cdots + X_n)$. Calculer $\mathbb{E}[Y^2]$ et $\mathbb{E}[Y^4]$ et en déduire que

$$\mathbb{E}[|X_1+\cdots+X_n|]\geq \frac{\gamma}{2}\sqrt{n}.$$

Partie II:

On considère une grille $n \times n$ d'ampoules ainsi que 3 séries d'interrupteurs : des interrupteurs $a = (a_{ij})_{1 \le i,j \le n}$ associés à chaque ampoule, des interrupteurs $b = (b_i)_{1 \le i \le n}$ associés à chaque ligne et des interrupteurs $c = (c_j)_{1 \le j \le n}$ associés à chaque colonne. Chaque interrupteur prend la valeur -1 ou 1. L'ampoule en position (i,j) est allumée si et seulment si $a_{ij}b_ic_j = 1$. On considère la quantité

$$F(a,b,c) = \sum_{i,j=1}^{n} a_{ij}b_ic_j$$

qui est le nombre d'ampoules allumées moins le nombre d'ampoules éteintes. Enfin, deux joueurs jouent au jeu suivant : le joueur 1 choisit la position des interrupteurs (a_{ij}) , puis le joueur 2 choisit la position des interrupteurs (b_i) et (c_j) . Le joueur 1 veut minimiser F(a,b,c) et joueur 2 veut le maximiser. On considère donc

$$V(n) = \min_{a \in \{-1,1\}^{n \times n}} \max_{b,c \in \{-1,1\}^n} F(a,b,c).$$

- 3. Montrer que $V(n) = O(n^{3/2})$ en considérant le cas où le joueur 1 joue au hasard.
- **4.** Le joueur 2 applique la stratégie suivante : il choisit b au hasard, puis ensuite choisit c de façon à allumer le maximum de lampes. Estimer le nombre moyen de lampes allumées par cette stratégie à l'aide de la question I.2 et en déduire que $V(n) = \Omega(n^{3/2})$.