Thesis Title

by Student Name

Professor SuperProf, Advisor

A thesis submitted in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Honors in Physics

WILLIAMS COLLEGE Williamstown, Massachusetts 8 de noviembre de 2021

Abstract

Your abstract will summarize your thesis in one or two paragraphs. This brief summary should emphasize methods and results, not introductory material.

Executive Summary

Your executive summary will give a detailed summary of your thesis, hitting the high points and perhaps including a figure or two. This should have all of the important take-home messages; though details will of course be left for the thesis itself, here you should give enough detail for a reader to have a good idea of the content of the full document. Importantly, this summary should be able to stand alone, separate from the rest of the document, so although you will be emphasizing the key results of your work, you will probably also want to include a sentence or two of introduction and context for the work you have done.

Acknowledgments

The acknowledgment section is optional, but most theses will include one. Feel free to thank anyone who contributed to your effort if the mood strikes you. Inside jokes and small pieces of humor are fairly common here . . .

Índice general

A	bstra	ct		1
Εź	cecut	ive Su	mmary	11
A	cknov	wledgn	nents	111
1.	Intr	\mathbf{coduct}	ion	1
2.	Mai	rco Te	órico	2
	2.1.	Plante	eamiento del Problema	2
	2.2.	Estima	ación de Pose en Humanos	2
		2.2.1.	Taxonomía de Estimación de Pose 2D y 3D	4
		2.2.2.	Modelado del Cuerpo Humano	7
		2.2.3.	Tipos de datos	8
	2.3.	Detec	ción de Patologías en Pulmones Mediante Imágenes de Rayos-X	12
		2.3.1.	Datos	15
		2.3.2.	Métricas	16
	2.4.	De RN	NN's a Transformers	16
		2.4.1.	Redes Neuronales Recurrentes más comunes	17
		2.4.2.	Compuertas LSTM y GRU	21

/	
INDICE GENERAL	V

		2.4.3. Mecanismos de Atención	24
	2.5.	El modelo Transformer	30
		2.5.1. El Codificador y Decodificador	31
		2.5.2. Multi-Head Self-Attention	32
		2.5.3. Información Posicional	34
		2.5.4. Problemas típicos en el entrenamiento de Transformers	35
3.	Tra	nsformers en Estimación de Pose en Humanos	43
	3.1.	Estimación de Pose 2D y 3D	43
	3.2.	Datos y Procesamiento	43
	3.3.	Arquitecturas de Estimación 2D y 3D	43
	3.4.	Modificación a transformers - Usando cabezas de Atención flexibles	43
	3.5.	Evaluación y comparativas con otros modelos	43
4.	Visi X	on Transformers en Detección de Patologías en Pulmones con Rayos	44
	4.1.	Detección de Patologías en Pulmones con Rayos X	44
	4.2.	Arquitecturas usadas	47
		4.2.1. Vision Transformers	47
		4.2.2. ViT con cabezas de atención Flexibles	47
	4.3.	Alternativa: CNN y Transfer Learning	47
5.	Con	clusiones y Trabajo Futuro	54
Α.	An	appendix	55
	A.1.	About the bibliography	55

Índice de figuras

2.1.	OpenPifPaf: Escena del mundo real desde la perspectiva de un carro autónomo. Todos los actores son detectados y seguidos, esto incluye a las personas, el carro y el perro. [59]	3
2.2.	M1 caption for diagram	4
2.3.	OpenPose: Trabaja bajo un marco Bottom-Pp. Primero predice los mapas de confianza para cada parte del cuerpo b) y codifican la orientación y ubicación de las extremidades a través b) y c) y finalmente asocian cada miembro identificado y reconstruyen la pose del cuerpo d) y e) [12]	6
2.4.	AlphaPose (RMPE): Trabaja bajo un marco Up-Down. Consiste en 3 principales componentes; El primero, Symmetric Spatial Transformer Network (SSTN) recibe los imágenes de las poses a procesar y genera propuestas de poses el Parametric Pose Non-Maximum-Suppression(NMS) se encarga de eliminar las redundancias e inconsistencias y finalmente el Pose-Guided Proposals Generator (PGPG) es usado como un modelo de aumentación de datos [31]	6
2.5.	Representaciones de la arquitectura del cuerpo humano. Imagen obtenida de Fang et al	7
2.6.	RNN - Grafo Computacional	17
2.7.	RNN - CFG	18
2.8.	RNN - Image Captioning	19
2.9.	Computo del estado oculto y salida de una Red Neuronal Recurrente	21
2.10.	Descripción	23
2.11.	Descripción	24
2.12.	Descripción	25

$2.13.$ Modelo seq 2 seq propuesto por Bahdanau et al. con $Additive/Concat\ Attention$	27
2.14. Modelo Transformer generalizado como modelo Secuencia a Secuencia	31
2.15. Etapa Codificadora del Modelo Transformer. Pseudocódigo	31
2.16. Etapa Decodificadora del Modelo Transformer. Pseudocódigo	32
2.17. Esquema de entrenamiento e inferencia del modelo Transformer en un problema de Machine Translation	33
$2.18.\ 2000$ Vectores de Positional Encoding con dimensiones de embedding=500	35
2.19. Noam-Warmup con $warmup_steps = 4000 \text{ y } d_m = 512 \dots \dots \dots$	36
2.20. Learning rate sobre X 18000 iteraciones usando RAdam y lineal, exponencial warmup con Adam	37
2.21. Histograma de gradientes del Algoritmo Adam con y sin etapa de $Warm Up$ y usando inicialización T - $Fixup$. Imagen original de Huang et al	38
2.22. Visualización de 8 cabezas de atención sobre una tarea de Machine-Translation. Las matrices de atención tienden a ser ralas al tener carencia de relaciones relevantes entre diversas representaciones a distancias lejanas	39
2.23. Transformer-XL. Para tratar con secuencias largas divide el proceso en secuencias más cortas creando estados ocultos intermedios y usandolos en el cálculo de las próximas secuencias. Figura obtenida de [27]	40
2.24. Fast-Former. Remplaza la atención tradicional del transformer por una iterativa. En cada paso crea una consulta y clave global usando atención sobre estos mismos. Figura obtenida de [139]	42
4.1. Scheme of the extension of the 15 pathology detector including a new branch for Tuberculosis detection	52

Capítulo 1

Introduction

Capítulo 2

Marco Teórico

2.1. Planteamiento del Problema

Aquí Especificar brevemente los problemas y cómo se piensan resolver

2.2. Estimación de Pose en Humanos

La tarea de Estimación de Pose en Humanos (HPE por sis siglas en inglés) ha sido uno de los tópicos de gran importancia en el campo de Visión por Computadora. Debido a la búsqueda de automatización y entendimiento de diversas actividades humanas, sus utilidades causan impacto directo en las implementaciones tecnológicas del mundo real, tales como, la predicción de intención (vigilancia), sistemas de autónomos y de asistencia en la conducción automóviles, animación, simulaciones, interacción Humano-Computadora (HCI), realidad virtual aumentada (VR y AR), videojuegos, salud o asistencia médica o hasta análisis de movimiento en deportes. La tarea de Estimación de Pose no solo se limita a el cuerpo humano, también, puede ser empleado en objetos como carros o animales, vease la imagen 2.1.

Con el crecimiento acelerado de *Aprendizaje Profundo* en los últimos años gracias a las capacidades actuales de potencia de cómputo los métodos basados bajo este enfoque han sobrepasado a las métodos tradicionales, sin embargo aún existen distintos problemas y retos que siguen presentes como la oclusión y la ambiguedad de los datos o la dificultad de su obtención para realizar entrenamientos.

El problema de *Estimación de Pose Humanos* consiste en predecir las partes del cuerpo o las posiciones de las articulaciones de una persona a través de una imagen, video. Este

Figura 2.1: OpenPifPaf: Escena del mundo real desde la perspectiva de un carro autónomo. Todos los actores son detectados y seguidos, esto incluye a las personas, el carro y el perro. [59]

problema ha sido cuidadosamente estudiado a lo largo de los años y diversas recopilaciones de investigaciones han sido escritas. En la tabla 2.1 se resumen algunas de las más recientes y que describen dos formas generales de abordar el problema. La primera de ellas la "Tradicionalista", cuyos métodos usan enfoques clásicos de visión por computadora o la segunda basada en técnicas de aprendizaje profundo que involucran comúnmente modelos convolucionales. El trabajo realizado en esta tesis está basado en el segundo método, usando técnicas de aprendizaje profundo y modelos actuales capaces de capturar información temporal, específicamente enfocado en modelos *Transformers* [128].

Título	Año	Métodos cubiertos	Descripción
A survey of computer vision-based motion capture [82]	2001	Tradicionales	Investigacion general sobre métodos de captura de movimientos basados en visión en humanos. Incluye estimación de pose, seguimiento y reconocimiento de acciones.
A survey of advances in vision-based human motion capture and analysis [83]	2006	Tradicionales	Incluye una revisión de los métodos de captura de movimiento del año 2001 al 2006.
Vision-based human motion analysis: An overview. [96]	2007	Tradicionales	Investigacion general sobre métodos de captura de movimientos usando datos sin marcadores de dispositivos de captura.
Advances in view-invariant human motion analysis: A review [55]	2010	Tradicionales	Estudio de métodos de estimación de pose en 3D, comportamiento y reconocimiento/representación de acciones.
Human pose estimation and activity recognition from multi-view videos: Comparative explorations of recent developments [44]	2012	Tradicionales	Métodos de estimación de pose 3D y reconocimiento de acción usando datos multi-vista
A survey of human pose estimation: the body parts parsing based methods [70]	2015	Tradicionales	Estudios de estimación de pose enfocados principalmente a las técnicas de localización de las distintas partes del cuerpo.
Human pose estimation from monocular images: A comprehensive survey [35]	2016	Ambos	Enfocado en la estimación de pose usando datos monoculares incluyendo las metodologías usadas en procesos tradicionales y basados en aprendizaje profundo.
3D human pose estimation: A review of the literature and analysis of covariates [107]	2016	Deep-Learning	Revisión general del estado del arte de estimación de pose 3D usando imágenes y videos RGB.
Monocular human pose estimation: a survey of deep learning-based methods [18]	2020	Deep-Learning	Revisión y clasificación general de los métodos de estimación de pose basados en aprendizaje profundo desde el 2014 usando solo datos monoculares.
The progress of human pose estimation: a survey and taxonomy [84] of models applied in 2D human pose estimation	2020	Deep-Learning	Revisión de los métodos basados en aprendizaje profundo para estimación de pose 2D
Deep Learning-Based Human Pose Estimation: A Survey [147]	2020	Deep-Learning	Estudio general del estado del arte de estimación de pose 2D y 3D.

Cuadro 2.1: Listado de diversas investigaciones de *Estimación de Pose en Humanos* que abarcan tanto enfoques tradicionales como basados en aprendizaje profundo. Tabla basada en el trabajo de Zheng et al..

Figura 2.2: M1 caption for diagram

2.2.1. Taxonomía de Estimación de Pose 2D y 3D

Estimación de Pose en 2 y 3 dimensiones

Existen dos grandes grupos que dividen las metodologías seguidas para la Estimación de Pose en Humanos; estimación de pose en 2 y 3 dimensiones. Cómo el nombre lo sugiere, la Estimación de Pose 2D (2D HPE por sus siglas en inglés) consiste en localizar articulaciones o partes del cuerpo directamente en imágenes, por tanto, el marco de referencia de las posiciones de cada articulación es la propia imagen. En la Estimación de Pose 3D (3D HPE) las elementos detectados pasan a estar en 3D y se busca un marco de referencia que mejor se ajuste las dimensiones espaciales de las articulaciones y personas. Comúnmente se usa un cubo unitario cuyo centro corresponde a la articulación que indica la cadera o hip como se encuentra en la literatura, véase la figura 2.2.

Por otro lado, en muchos escenarios las imágenes contienen más de una persona o se necesita hacer seguimiento de multiples individuos. Por lo regular cuando aparecen más de un persona en una imagen (MPPE, Multiple Person Pose Estimation) se opta por identificar cada cuerpo en la imagen y posteriormente resolver individualmente la estimación de pose para cada una de las entidades identificadas (SPPE, Single Pose Estimation). La detección de los cuerpos se realiza en etapas previas usando modelos de detección de objetos y entrenados para detectar cuerpos humanos tales como *MobileNet* [100] [46] [105] o *YOLO* (You Only Look Once) [99] [10].

Además, el proceso de estimación de pose puede ser realizado en multiples etapas. Es decir, un modelo end-to-end puede realizar la tarea completamente o en caso contrario, dividir la tarea en multiples etapas y usar modelos especializados para resolver cada etapa. Por ejemplo en estimación de pose 3D es común predecir la pose 2 dimensiones usando una red entrenada para esta tarea y posteriormente pasar a 3 dimensiones usando la información previa [77].

Estimación de Pose 2D Single

Para la estimación de pose en 2D dónde solo es involucrada una sola personas se usan dos enfoques, los métodos basado en regresión (Regresion-Based) y los métodos basados en detección de partes del cuerpo humano ((Detection-Based o Body Part Detection)). Los métodos basados en regresión estiman las posiciones relacionando directamente la imagen con las coordenadas de las articulaciones del modelo de cuerpo humano usado. En cambio, los métodos basados de detección identifican primeramente las partes del cuerpo ya sea a través de marcas como recuadros de las posiciones o usando mapas de calor que indican las posiciones de las articulaciones.

Estimación de Pose 3D Single

Existen dos métodos generales para la estimación de pose 3D en una sola personas, los Generativos y los Discriminativos. Los métodos Generativos también conocidos como (model-based, basado en modelos) usan alguna representación de modelos del cuerpo humano en conjunto con información apriori como los movimientos y el contexto en el que se ejecutan. Las poses son predecidas usando la imágen un conjunto de representaciones obtenidos de establecer un función de probabilidad usando información tal como descriptores de la imagen, la estructura del cuerpo humano, los parámetros de las cámaras y y un conjunto de restricciones derivadas del contexto. Los modelos Discriminativos simplemente aprenden a predecir directamente la pose usando la datos de entrada sin usar información de modelos humanos.

Estimación de Pose 2D-3D Multiple

Bottom-Up: En este enfoque se inicia localizando entidades semánticas y luego agrupandolas para formar una persona [140] [17] [50]. Claramente, usando este procedimiento el problema de rendimiento de usar un estimador de pose por cada persona desaparece, pues todas las entidades de los cuerpos son detectados a la vez y posteriormente agrupados para formar cada persona, véase la figura 2.3. Sin embargo, el modelo generado tiende a presentar problemas cuando existen personas ocluyéndose unas a otras. Uno de los trabajos más conocidos que siguen este marco es OpenPose [12], el cual se ha convertido en una completa herramienta de referencia para la estimación de pose logrando realizar tareas como seguimiento en tiempo real y detección de articulaciones en 3D en formato single-person con opción de triangularizar desde distintas vistas de cámaras, también es posible detectar en tiempo real la pose en 2 dimensiones tanto el cuerpo humano como gestos con manos y rostros.

Top-Down: El procesamiento se realiza primero detectando los personas individualmente

Figura 2.3: OpenPose: Trabaja bajo un marco Bottom-Pp. Primero predice los mapas de confianza para cada parte del cuerpo b) y codifican la orientación y ubicación de las extremidades a través b) y c) y finalmente asocian cada miembro identificado y reconstruyen la pose del cuerpo d) y e) [12].

en la imagen usando un bounding-box proporcionado por algun detector de objetos [85] [136], véase la figura 2.5. El principal problema de este enfoque es que si la detección de la persona falla ya no hay nada más que hacer, y el costo computacional depende de la cantidad de personas en la imagen, puesto que para cada persona detectada es necesario correr un estimador de pose entrenado para detectar una sola persona. En contraparte a Openpose, Alpha-Pose [31] sigue el un marco top-down a través de 3 componentes esenciales; Symmetric Spatial Transformer Network (SSTN), Parametric Pose Non-Maximum-Suppression(NMS) y Pose-Guided Proposals Generator (PGPG) que les permiten minimizar el problema de la detección incorrecta o redundante de bounding-boxes de las personas.

Figura 2.4: AlphaPose (RMPE): Trabaja bajo un marco Up-Down. Consiste en 3 principales componentes; El primero, Symmetric Spatial Transformer Network (SSTN) recibe los imágenes de las poses a procesar y genera propuestas de poses el Parametric Pose Non-Maximum-Suppression(NMS) se encarga de eliminar las redundancias e inconsistencias y finalmente el Pose-Guided Proposals Generator (PGPG) es usado como un modelo de aumentación de datos [31].

La estimación de pose en 3d también puede ser realizado en dos marcos, monocular cuando solo se tiene una imagen de reference del sujeto de prueba en un tiempo y pose exacta [77] [93] [16] [45] [19] y multi-vista cuando se tienen imágenes desde diferentes perspectivas del sujeto de prueba en misma la pose y tiempo exacto [52] [29] [124]. La ventaja de usar técnicas que puedan aprovechar la información contenida en diferentes perspectivas es que

ayuda a reducir en gran medida la ambigüedad ocasionada por las oclusiones, una parte puede no ser visible desde un ángulo pero desde otro si. Sin embargo, la cantidad de conjunto de datos existentes para estimación de pose multi-vista es reducida.

2.2.2. Modelado del Cuerpo Humano

En la solución de los problemas de Estimación de Pose se plantea una arquitectura base para el cuerpo humano a partir de la cual se adecuarán las estimaciones. Los modelos usados para la representación del cuerpo humano son 3: kinematic model, Planar Model y Volumetric Model. véase la figura

Figura 2.5: Representaciones de la arquitectura del cuerpo humano. Imagen obtenida de Fang et al.

Skeleton base model, stick figure o kinematic model: Es uno de los modelos más simples y mayormente usados. Consiste en grafo de nodos que representan las articulaciones del cuerpo humano, comúnmente entre 10 y 30 nodos [32]. Así, un hueso es representado como una conexión entre dos articulaciones. Al ser solo una representación de la estructura del cuerpo carece de demás información como texturas o formas.

Contour-base model o Planar Model: Es uno de los primeros modelos usados para problemas de Estimación de Pose. Los miembros y torso del cuerpo humano son representados como un conjunto de rectángulos que proveen información tanto de los límites de cada miembros como sus longitudes y anchor [56] [26].

Volumen base model: Es usado para representar el cuerpo humano y su volumen, es decir es una representación 3D del cuerpo conseguida a través de un mallado de figuras geométricas y capturados por escaner 3D [113].

2.2.3. Tipos de datos

En los últimos años, debido a la masificación de dispositivos inteligentes, el acceso a una cámara digital no resulta un problema mayor para la muchas de las personas, así, la mayoría de los trabajos realizados sobre Estimación de Pose usan Imágenes RGB gracias a su fácil captura y acceso. Sin embargo, esto solo es cierto en el contexto de la Estimación de Pose 2D, puesto que el etiquetado de datos usando las coordenadas de la imagen como referencia no representa demasiado problema. En la Estimación de Pose 3D, la complejidad de la obtención de los datos se incrementa. Para llevar a cabo el proceso de obtención de los datos es necesario usar equipo especializado y costoso para la captura de movimiento en acompañamiento de las cámaras de video [51]. Hay dos mecanismos de captura de movimiento, los ópticos y los no ópticos. Generalmente, en los primeros el sujeto de prueba no necesita de aditamentos complejos como el uso de trajes (exoesqueleto) y solo un software con ayuda de cámaras, sensores y marcadores se encargan de registrar e interpretar el movimiento a un modelo digital. Si bien aventajan en una reducción de coste su precisión es menor que los no ópticos. El Kinect, fabricado por Microsoft es uno de los dispositivos más usados para generar imágenes de infrarrojos (IR-image) siendo de fácil encontrarlo y adquirirlo gracias a su bajo conste. [122] [53].

Por otra parte, existen dispositivos basados en tecnologías como LIDAR cuya función es generar imágenes de profundad. Al igual que el Kinect, cada vez son de más fácil acceso debido a su comercialización en dispositivos inteligentes en el último año por compañías como Apple [149]. El segundo tipo se puede dividir en dos clases; los mecánicos los cuales usan giroscopios y acelerómetros para registrar el movimiento y los electromagnéticos, cuyo funcionamiento es a través de la generación un campo electromagnético y para posteriormente capturar las alteraciones en este que realiza el sujeto al moverse [102].

Conjuntos de Datos más usados para estimación de pose 2D y 3D

MPII Human Pose Dataset: Es un dataset para estimación de pose en modalidades de single-person o multi-person en 2 dimensiones [4]. Incluye al rededor de 25 mil imágenes conteniendo 40 mil de ellas de personas con anotaciones de las articulaciones del cuerpo realizando diversas actividades. En total se agrupan en en 410 actividades recolectadas de videos de YouTube.

Microsoft COCO Dataset: Es un dataset publicado por Microsoft para tareas de

detección de objetos, segmentación y subtitulado de imágenes (image captioning), su última version disponible corresponde a la del año 2017 [62]. Contiene al rededor de 80 categorías de imágenes y de estas 66,808 mil son de personas con un aproximado de 250 mil con total de aproximado de 273,469 anotaciones de cuerpos humanos. Sin embargo, No todas las imágenes contienen anotaciones de las 17 articulaciones, por lo que los modelos tienen que predecir cuales y cuántas articulaciones están presentes. Ambas modalidades single-person y multi-person en 2 dimensiones están disponibles en las imágenes.

HumanEva Dataset: Dataset usado para estimación de pose en 3 dimensiones en modalidad de single-person. Contiene diversos secuencias de videos grabadas con cámaras en formato RGB y escala de grises. Está compuesto de dos sub-datasets *HumanEva I y HumanEva II* la principal diferencia es el sistema de captura, el primero fue a través de software marcadores con 6 cámaras y el segundo a través de hardware con 8 cámaras, ambos dentro de un ambiente controlado.

Human3.6M Dataset: Contiene aproximadamente 3.6 millones de imágenes de poses humanas correspondientes a la cantidad de frames de secuencias de videos sobre 11 diferentes actores, 6 hombres y 3 mujeres realizando 17 distintas actividades [51]. Cada video fue realizado a usando un total de 10 cámaras de motion capture en un ambiente controlado interno.

TotalCapture Dataset: Similar a Human3.6M, contiene contiene aproximadamente 1.9 millones de frames en videos en modalidad single-person y multi-vista calibrado a través de 8 cámaras.

Conjuntos de Datos Sinteticos

SURREAL (Synthetic hUmans for REAL tasks) (2017): Es un dataset en modalidad single-person para estimación de pose 2D y 3D. Los datos originales son tomados del dataset Human3.6M y aleatoreamente muestreados (pose de la persona, apariencia, luz ambiental, posición de la cámara, tipos de fondos en las imágenes, texturas, etc.) para crear sintéticamente personas y escenas [126].

JTA Dataset (2018): Dataset sumamente grande creado a partir de simulaciones de Grand Theft Auto V desarrollado por Rockstar North [30] para estimación de poses 2D y 3D. Contiene al rededor de 500 mil frames y 10 millones de poses de poses en escenarios urbanos todos ellos con anotaciones completas de posiciones en 3D.

A pesar de que los datasets sintéticos son mucho grandes que los otros, actualmente no son tan aceptados en la comunidad y su uso benchmark como benchmark no es visto principalmente dado que son datos sintéticos. Sin embargo puesto que en los datos sintéticos se tiene mucho mayor control del ambiente puede solventar varias de las debilidades de los otros datasets como oclusiones, cambios de luz, tipos y colores de ropa, distintos contextos

de fondos de imagen llevando modelos más robustos y con mejor generalización. La mayoría de la bases de datos son obtenidas a través de algunos pocos sujetos de prueba y la estructura fisiológica de individuos no es perfecta. Esta variación es causada por diversos diversos factores como el sexo, la raza, edad, lugar de nacimiento y desarrollo, enfermedades, factores genéticos, entre otros, además de que los movimientos recreados entre sujetos no siempre son hechos de la misma manera aunque las circunstancias o ambiente esté controlado.

Con los datos son obtenidos bajo un ambiente controlado es posible obtener imágenes fieles para el entrenamiento. Aún así, los modelos al ser desplegados en ambientes reales se enfrentan a imprevistos de los que no se puede tener control; oclusiones de diversas partes del cuerpo que no fueron provistas durante el entrenamiento ya sea por el mismo sujeto o algún objeto extraño en la captura, movimientos extraños o rápidos como correr o dar una patada donde el modelo no puede los puede identificar o el equipo de captura no pueda obtener que se ven como fotogramas borrosos.

Métricas de Evaluación

Percentage of Correct Parts (PCP): Mide la tasa de detección de extremidades. Una extremidad o parte de un cuerpo es considerada detectada si el promedio de la distancia de las posiciones entre dos articulaciones predichas y la distancia de las posiciones de las articulaciones de la extremidad real es menor que cierto umbral [33]. El umbral comúnmente tomado corresponde al 50 % de la distancia de la longitud de la extremidad real en cuestion:

$$\frac{||c_s^{(n)} - \hat{c}_s^{(n)}|| + ||c_e^{(n)} - \hat{c}_e^{(n)}||}{2} \le \alpha ||c_s^{(n)} - c_e^{(n)}||$$
(2.1)

 $||c_s^{(n)}|$ y $||c_e^{(n)}|$ representan las coordenadas de las dos articulaciones (inicial y final respectivamente) de la n-ésima extremidad. $||\hat{c}_s^{(n)}|$ y $||\hat{c}_e^{(n)}|$ son las coordenadas inicial y final de las dos articulaciones predichas de la n-ésima extremidad. α funciona como el umbral de error. Actualmente, ya no se usa esta métrica debido a que penaliza mayormente las partes del cuerpo más pequeñas. Mientras mayor es su PCP mejor es el modelo.

Percentage of Detected Joints (PDJ): Esta métrica fue propuesta para sobrellevar la limitante antes mencionada de *PCP*. Mide la tasa de detección de articulaciones del cuerpo. Una articulación es correctamente detectada si la distancia entre la posición de la articulación detectada y la posición real de la articulación está dentro de cierta fracción del diámetro del torso, es decir la distancia entre la cadera derecha (right hip) y el hombro izquierdo (left shoulder) [106] [123]:

$$||c^{(i)} - \hat{c}^{(i)}|| \le \alpha ||c_{rh} - c_{ls}||$$
 (2.2)

 $c^{(i)}$ es la coordenada de la i-ésima articulación y $\hat{c}^{(i)}$ es la coordenada de la articulación predicha correspondiente. c_{rh} es la coordenada de la cadera derecha y c_{ls} es la coordenada del hombro izquierdo. El problema con esta métrica es que cuando la persona se es capturada de lado en una imagen 2D el diámetro del torso tiende a ser cero así como la distancia entre la cadera derecha e izquierda.

Percentage of Correct Key-points (PCK): Es similar a la métrica *PDJ* pero en vez de tomar el diámetro del torso se toma la distancia de la diagonal del rectangulo externo que rodea todas las articulaciones del cuerpo [145].

$$||c^{(i)} - \hat{c}^{(i)}|| \le \alpha \ diag_{bbox} \tag{2.3}$$

La ecuación 2.3 correspondiente al cálculo de la detección correcta de articulación para la métrica de PCK es similar a PDJ. Una tercer variación es considerando una proporción de la longitud del segmente de la cabeza como umbral [3], head-normalized probability of the correct keypoint o PCKh, con la finalidad de tener un umbral independiente de las distancias de las articulaciones y una posible elección es usar el tamaño de la cabeza del sujeto a prueba.

Average Precision (AP) y Average Recall (AR): Inicialmente introducido como Average Precision of Keypoints (APK) [145] mide la exactitud y rendimiento de la detección de las articulaciones de acuerdo a la proporción de verdaderos positivos sobre el total de positivos detectados (precision) $\frac{TP}{TP+FP}$ y la proporción de verdaderos positivos sobre el total de positivos (recall) $\frac{TP}{TP+FN}$ penalizando tanto detecciones no encontradas como falsas detecciones. Al igual que los anteriores hay variantes como Mean Average Precision (mAP) que es la media de la precisión del modelo para todas las clase. Todos basados en alguna medida de similaridad como la propuesta en Object Key-points Similarity (OKS) que mide el promedio de cercania de las articulaciones predichas y las reales. Definen una similaridad entre articulaciones (Keypoint Similarity) [62] como la distancia entre las articulaciones predichas normalizadas por la escala del área que forma la persona y una constante de regularización determinada para cada articulación:

$$KS = \exp\left(-\frac{||c^{(n)} - \hat{c}^{(n)}||^2}{2s^2k_n^2}\right)$$
 (2.4)

s y k_n corresponden al factor de escala equivalente a la raíz cuadrada del área segmentada del objeto y a la constante de regularización por cada tipo de articulación cuya su función conjunta es regular la importancia de cada articulación.

Mean Per Joint Position Error (MPJPE): Calcula el error en milímetros determinado por la distancia euclidiana entre los articulaciones predichas y las reales sobre cada tipo de articulación de la imagen o imágenes en caso de videos. Para distintos datasets de

predicción de pose en 3D existen más de un pre-procesamiento antes calcular el error MPJ-PE conocidos como protocolos. Por ejemplo para Human3.6M el Protocolo #1 consiste en alinear las coordenadas de las articulaciones con respecto a la raíz, generalmente la que corresponde al centro de la cadera (hip). El Protocolo #2 calcula el error después de realizar un alineamiento mediante una transformación rígida usando $Procrustes\ Analysis\ [37]$, también abreviado como P-MPJPE.

$$MPJPE = \frac{1}{M} \sum_{i=1}^{M} ||c^{(i)} - \hat{c}^{(i)}||$$
 (2.5)

M corresponde a el total de articulaciones. Generalmente el error es calculado por tipo, clase o acción representado en los videos.

Al igual que en estimación de pose 2D la métrica de PCK o 3DPKC es usada para estimación de pose en 3D, al igual que su area bajo la Curva (AUC) considerando típicamente un umbral de 150mm que se aproxima a la mitad del tamaño de la cabeza [81]. Por otro lado, datasets usados para estimación de pose 3D son basados en secuencias de videos y una variante a MPJPE es introducida [93] para considerar la suavidad de las transiciones entre poses midiendo la velocidad de las articulaciones (en milímetros por segundo), Mean Per Join Velocity Error (MPJVE), que corresponde al error MPJPE primer derivada de las secuencias de pose 3D.

Mean Joint Angle Error (MJAE): Es similar al error *MPJPE* pero usando los ángulos de cada articulación. Mide el error como promedio sobre todos los ángulos de la diferencia absoluta entre la articulación estimada y la real de acuerdo a su posición angular:

$$MPJPE = \frac{1}{M} \sum_{i=1}^{M} |(c^{(i)} - \hat{c}^{(i)}) \mod \pm 180^{\circ}|$$
 (2.6)

2.3. Detección de Patologías en Pulmones Mediante Imágenes de Rayos-X

A pesar de diversos esfuerzos para desarrollar métodos basados en aprendizaje máquina basados en análisis de imágenes de Rayos-X y Tomografías Computarizadas aún no están listos para uso clínico. Limitaciones como sesgos debido a bases de datos pequeñas o recopilaciones de diversas fuentes sin un tratamiento o normalización entre estos, así como enfoques de detección en enfermedades específicas dejando de lado la posible contribución a los modelos la inclusión de otras enfermedades. Por ello el trabajo presentado en este escrito

se concentra en desarrollar un modelo basado en aprendizaje profundo atacando estás problemas. El modelo desarrollado es entrenado para la detección de 15 patologías de pulmones, incluyendo *COVID-19*.

El padecimiento por COVID-19 es una enfermedad contagiosa causada por el Síndrome Respiratorio Agudo Severo Coronavirus 2 o SARS-CoV-2 por sus siglas en inglés (Severe Acute Respiratory Syndrome Coronavirus 2) reportada por primera vez en diciembre del año 2019 como un nuevo tipo de pneumonia viral [47]. Pocos meses después, en marzo del 2020 el COVID-19 fue declarado como pandemia a nivel mundial por la Organización Mundial de la Salud (WHO) [89]. Los métodos más eficaces de detección de COVID-19 son la prueba clínica de Reacción en Cadena de Polimerasa con Transcripción Inversa (RT-PCR) también llamada genéricamente molecular photocopying test pues es usada para amplificar-copiar pequeños segmente de DNA y detectar material genético de un organismo en específico como el virus SARS-CoV-2 y mediante la búsqueda de anticuerpos desarrollados por el organismo como respuesta a la enfermedad con la Prueba Rápida de Anticuerpos (RAT) [41, 5, 108, 65]. Puesto que los anticuerpos tardan en generarse entre los 10 y 20 días después de la infección [72, 90, 125], la pruebas tipo PCR es preferida como método de detección temprana. En la ausencia de prueba PCR, los pacientes con sintomatología similar a la provocada por COVID-19 solo pueden ser diagnosticados con pneumonia atípica como padecimiento. Por ello, diversos métodos de análisis de imágenes basados en técnicas de Inteligencia Artificial han sido desarrollados para la detección de COVID-19 usando imágenes de Rayos X y Tomografías Computarizadas. Reportes clínicos indican que imagenes de Rayos X y Tomografías Computarizadas de pecho pueden mostrar efectos de afectaciones por COVID-19. Dichos efectos pueden ser apreciados en los pulmones incluso en casos donde la prueba PCR resulta en Falso Negativo [2, 138]. Así, la principal motivación es desarrollar métodos alternativos que ayuden a la detección de COVID-19 dada la limitada disponibilidad, creciente demanda, costo asociado y la obtención de resultados inmediatos de la aplicación de técnicas como PCR en todo el mundo.

Un práctico y exitoso enfoque en la implementación de Redes Neuronales Profundas (DNNs) de dominio específico [67] basados en técnicas de clasificación es usar Transferencia de Conocimiento (Deep Transfer Learning, DTL) [71, 88, 119]. Esta técnica fue inicialmente desarrollada para implementar modelos de dominio en específico en situaciones en las que se cuenta con una cantidad de datos limitada, pero también se ha visto que usar técnicas de DTL resulta en un método efectivo para entrenar modelos de dominio en específico aún cuando se tiene suficientes datos. Particularmente, en problemas de clasificación, la Transferencia de Conocimiento consiste en reusar modelos de Aprendizaje Profundo entrenados en problemas de dominio general en donde los conjuntos de datos son lo suficientemente grandes. Dado que la tarea de clasificación contiene un gran número de clases y datos, los modelos entrenados pueden generalizar y extraer mejores características de bajo nivel. Por lo que, el uso de Transferencia de Conocimiento también ha sido efectivo en el desarrollo de modelos específicos para el análisis de imágenes médicas [28, 63, 117], tales como la detección de COVID-19 a partir de imágenes de Rayos X, problema atacado ampliamente por

la comunidad usando Transferencia de Conocimiento en Modelos basados en Aprendizaje Profundo [1, 2, 117].

Un popular método par la detección de COVID-19 es CoroNet [130], un modelo con arquitectura basado en redes neuronales profundas. CoroNet clasifica imagenes de radiografías de Rayos X en 4 clases: COVID-19, neumonía bacterial, neumonía viral e imágenes sin ninguno de los tres padecimientos anteriores. Bressem et al. presenta un estudio sobre cuales arquitecturas usadas como configuración inicial de la red backbone encargada de tareas principalmente de extracción de características es más adecuada para desarrollar modelos de clasificación con imágenes radiográficas. Limitan el estudio a la detección de solo 5 patologías: cardiomegalia, edema, consolidación, atelectasia y derrame pleural encontrado que es mucho más importante el tamaño de lote que la red usada como backbone, es decir, la mejoria de los modelos dependían mucho más del proceso de entrenamiento que de los datos y la arquitectura. En [148] se reporta un ejemplo de clasificador de COVID-19, neumonía y no COVID-19. Otro reciente estudio compara redes neuronales para la clasificación de radiografías de pecho entre COVID-19 y neumonía [110]. Para ello construyen clasificadores binarios usando redes pre-entrenadas con la base de datos ImageNet, considerando los modelos VGG16 y VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, ResNet50 y Xception. Con base a los resultados los modelos basados en DenseNet121 121 tuvieron el mejor accuracy (99,48 %) seguidos muy creca por ResNet50 y VGG19 con 99,32 % y 99,18 % respectivamente. Los resultados anteriores son muy cercanos a los reportados por InstaCovNet-19, un clasificador binario de COVID-19 y no COVID-19 [40]. Por otro lado, Bassi and Attux proponen una estrategia de Transferencia de Conocimiento que tomas los modelos DenseNet121 y DenseNet201 (los sufijos 121, y 201 hacen referencia a el número de capas del modelo DenseNet) como backbone, posteriormente reemplazan las neuronas correspondientes a la capa de salida para clasificar radiografías de Rayos X entre COVID-19, neumonía, y sin ninguna de las patologías anteriores. De acuerdo a Shoeibi et al. la mayoria de los modelos de redes neuronales basados en aprendizaje profundo tienen un accuracy dentro del 90 % al 100 % para clasificación binaria entre COVID-19 y no COVID-19.

A pesar de los esfuerzos en desarrollar diversos métodos de aprendizaje máquina para la detección de COVID-19 basados en Rayos X y Tomografías Computarizadas, los resultados obtenidos y reportados hasta el momento aún no están listos para uso clínico [101]. Shuja et al. presenta una relación de los conjuntos de datos abiertos de COVID-19 categorizándolos por tipo (imágenes biomédicas, datos textuales y de audio), aplicaciones y métodos aplicados de IA, $Big\ Data$ y estadísticos. Sin embargo, las imagenes en los datasets mencionados son reducidos y limitados a regiones específicas alrededor del mundo. Por otro lado, Greenspan et al. mencionan que la mayoria de los modelos reportados fueron probados en bajo en esquema de diagnóstico bastante estrecho, puesto que los modelos deberían ser capaces de detectar COVID-19 en conjunto con una amplia variedad de patologías. De acuerdo a Roberts et al. los fallos comunes son, entre otros, el sesgo en datasets pequeños o datasets no normalizados recolectados de una larga variedad de fuentes. Roberts et al. también argumenta la importancia de desarrollar modelos no solo para la clasificación binaria de COVID-19, sino además

poder distinguirlo de otros tipos de neumonías virales y bacteriales. El trabajo descrito a continuación se centra en atacar el problema en los términos anteriores, no solamente haciendo la distinción entre *COVID-19* y otros tipos de neumonías sino a través de diversas enfermedades en afán de ayudar a clínicos en el diagnóstico de otras patologías mas allá de neumonía.

2.3.1. Datos

CXR8 Dataset

El dataset es extraído de las bases de datos del hospital clínico de investigación NIH Clinical Center perteneciente al instituto National Institutes of Health. Está formado por alrededor del 60 por ciento de imágenes de Rayos X frontales de pecho capturas en dicho hospital y es considerado como uno de los conjuntos de datos más representativos. Contiene 112,120 imágenes de Rayos X frontales (frontal-view) de un total de 30,805 pacientes únicos. Cada imágen contiene etiquetas correspondientes a 14 enfermedades (más de una etiqueta puede estar asociada a una imágen) extraídas usando técnicas de Procesamiento de Lenguaje Natural (NLP) de los reportes médicos realizados por radiólogos asociados con un accuracy mayor al 90 por ciento [134]. Las 14 patologías incluídas son las siguientes: Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural-thickening, Cardiomegaly, Nodule, Mass y Hernia.

COVIDx Dataset

Es una base de datos de uso público construida a través de las contribuciones de la comunidad científica con la finalidad de construir método que ayuden a combatir el padecimiento y propagación de COVID-19 [129]. Contiene 13,975 imágenes de Rayos X de un total de 13,870 casos de pacientes (las cifras pueden variar dado a su constante actualización) recopiladas a través de 5 repositorios de datos; COVID-19 Image Data Collection [25], Figure 1 COVID-19 Chest X-ray Dataset Initiative [132], ActualMed COVID-19 Chest X-ray Dataset Initiative [131], RSNA Pneumonia Detection Challenge dataset [87], COVID-19 radiography database y [86]. Los conjuntos de datos contienen casos de pacientes con y sin padecimientos de pulmonia causada por COVID-19.

SIIM-FISABIO-RSNA COVID-19 Detection Dataset

Es un conjunto de datos creado, organizado y liberado por la Society for Imaging Informatics in Medicine (SIIM) en conjunto con la Foundation for the Promotion of Health

and Biomedical Research of Valencia Region (FISABIO), Medical Imaging Databank of the Valencia Region (BIMCV), y Radiological Society of North America (RSNA) [114] a través de un concurso en la plataforma de Kaggle. Esta competición está enfocada en localizar e identificar anormalidades en radiografías de pecho y clasificarlas en cuatro casos de neumonía causada por COVID-19 [64]:

- Typical appearance: Contiene observaciones típicas a neumonía causada por COVID-19. Sin embargo, estas pueden presentarse en conjunto con otros infecciones, reacciones a medicamentos, u otras causas de lesiones agudas en los pulmones.
- Indeterminate appearance: Presenta observaciones indeterminadas a neumonía causada por COVID-19 y que pueden ocurrir en conjunto con a una variedad de condiciones infecciosas y no infecciosas.
- Atypical appearance: Observaciones atípicas a las reportadas a neumonía causada por COVID-19 y otros diagnósticos alternativos deben ser considerados.
- Negative for pneumonia: No se encuentran observaciones de neumonía causada por COVID-19. Sin embargo, las radiografías pueden no presentar aún elementos visibles en etapas tempranas de neumonía por COVID-19.

Tuberculosis X-ray (TBX11K) dataset

Es uno de los datasets más grandes actualmente con imágenes de Rayos X con Tuberculosis. Este dataset contiene 11200 imágenes de Rayos X con anotaciones marcando los bounding boxes de las áreas donde con observaciones de este padecimiento. Se clasifican en 4 distintas categorías; saludable, Tuberculosis activa (active TB), Tuberculosis latente (latent TB), con padecimientos otros a Tuberculosis (unhealthy but non-TB). Las imágenes son de calidad mucho mayor a la mayoría de los datasets anteriores con una resolución de 3000x3000 pixeles, Liu et al. mencionan que usar una resolución de 500x500 es suficiente para entrenar modelos de aprendizaje profundo de detección y clasificación de Tuberculosis.

2.3.2. Métricas

2.4. De RNN's a Transformers

Las Redes Neuronales Recurrentes o RNN (por sus siglas en Inglés) basadas en el trabajo de Rumelhart et al. datan del año 1986. Este tipo de redes están especializadas en el procesamiento de datos que contienen información temporal, mejorando los resultados obtenidos por otros tipos de redes como Redes FeedForward o Redes Convolucionales.

La idea principal detrás de estos modelos de redes es el concepto de Parameter Sharing. Usando Parameter Sharing un modelo puede generalizar mejor cuando la información está contenida en diferentes partes de una secuencia. Así, el modelo no necesita aprender independientemente todas las reglas que forman la secuencias, sino que ahora, la salida para cada elemento perteneciente a un tiempo t está determinada por la salida del elemento anterior t-1. Resultando en una recurrencia con las mismas reglas de actualización aplicadas a cada elemento en el tiempo. La ecuación 2.7 representa este proceso; $h^{(t)}$ es el estado de la recurrencia definida por una función f sobre un elemento $x^{(t)}t$ de la secuencia X en el tiempo t y θ son los parámetros compartidos.

$$h^{(t)} = f(x^{(t)}, h^{(t-1)}; \theta)$$
(2.7)

En una RNN vista como un gráfo computacional dirigído y acíclico, cada nodo representa un estado en la recurrencia y procesa la información de la secuencia X con los mismos parámetros θ en cada paso, observe la figura 2.6.

Figura 2.6: Grafo computacional generado por una RNN al "desenrollar" la recurrencia. Usando los parámetros compartidos en cada nodo y con cada elemento $x^{(t)}$ de la secuencia genera un nuevo estado oculto $h^{(t)}$ para retroalimentar nuevamente la entrada del siguiente nodo.

2.4.1. Redes Neuronales Recurrentes más comunes

Existen diversas formas como construir $Redes\ Neuronales\ Recurrentes$, estas pueden producir una salida en cada paso de tiempo o tener solo una al final de la recurrencia o tener conexiones entre unidades ocultas. La manera más común de implementar una RNN está ilustrada en la figura 2.7a. En esta figura, cada etapa de la recurrencia es retroalimentada por la activación del estado oculto previo. Así, $h^{(t)}$ contiene información codificada de elementos previos de la secuencia que puede ser usada en el futuro para obtener una salida $O^{(t+1)}$. En la figura 2.7b se cambia la retroalimentación de $h^{(t)}$ por $o^{(t)}$. Nótese que en este caso, la red es entrenada para obtener un valor en específico $o^{(t)}$ lo que provocaría que gran parte de

la información de los estados ocultos pasados $h^{(t-1)}, h^{(t-2)}, \dots$ no se transmita. La diferencia entre los dos esquemas anteriores es que la red 2.7a es entrenada para decidir que información debe transmitir en el futuro a través de los estados ocultos, en cambio, en la figura 2.7b cada estado esta conectado con el pasado a través de la predicción del paso anterior, perdiendo así gran parte de la información codificada en cada estado oculto $h^{(t)}$. Este no sería un problema si la salida $O^{(t-1)}$ fuese lo suficientemente enriquecedora y en altas dimensiones.

(a) Las activaciones de las capas ocultas $h^{(t)}$ alimentan al nodo siguiente, cada etapa de la recurrencia genera una salida $o^{(t)}$.

0(4)

(c) Al final de la recurrencia solo tiene una salida $o^{(T)}$, puede ser usada para resumir/predecir un valor de una secuencia.

(d) Teacher Forcing. En modo de entrenamiento cada nodo en el tiempo t es retroalimentado por la salida correcta $y^{(t-1)}$, en modo evaluación es retroalimentado por las salidas del modelo $O^{(t-1)}$.

Figura 2.7: Distintos tipos de RNNs.

Por otro lado, la RNN representada en la figura 2.7c tiene una sola salida al final de la recurrencia. Al contrario de las anteriores, este tipo de redes pueden ser usadas para resumir información contenida en la secuencia para finalmente predecir un único valor final. El Análisis de Sentimiento en textos es una tarea común que puede ser representada con este esquema de red. En la figura 2.7d vemos un modelo de RNN entrenado mediante el proceso de Teacher Forcing; durante el entrenamiento la red es retroalimentada con las salidas esperadas del modelo $y^{(t)}$ en el tiempo t+1. La ventaja de esta red es que al ser eliminadas las conexiones entre estados ocultos, las funciones de pérdida basadas en comparar la predicción en el tiempo t con el valor objetivo $y^{(t)}$ pueden ser desacopladas. Por tanto, el entrenamiento puede ser paralelizado al calcular el gradiente para cada tiempo t por separado, puesto que ya tenemos el valor ideal para esta salida.

Finalmente, en la figura 2.8 la $Red\ Neuronal\ Recurrente$ es modificada para esta vez no procesar una secuencia, sino, procesar un solo vector en cada paso. El estado oculto previo $h^{(t-1)}$ retroalimenta al siguiente paso t así como la predicción esperada $y^{(t)}$, que a su vez, es usada para calcular la función de costo del paso anterior $L^{(t-1)}$. Esta estructura de red puede ser implementada en tareas como $Image\ Captioning$, en donde la entrada es una imagen y la salida una secuencia de palabras que describen esta misma.

Figura 2.8: Modelo usado para tareas de *Image Captioning*, la entrada es una sola imagen y la red predice una secuencia de palabras que describen dicha imagen La salida esperada $y^{(t)}$ sirve como objetivo para la función de costo del paso anterior y como entrada en cada paso.

Los modelos ejemplificados anteriormente son construidos de forma causal, es decir, la secuencia es procesada en un solo sentido en donde la información pasada es transmitida hacia estados futuros. Sin embargo, este flujo de información puede ser insuficiente para resolver todas las tareas. En Modelo de Lenguaje se aprende la estructura estadística del lenguaje con el que fue entrenado y su meta es predecir la siguiente palabra, n-grama o letra dado un contexto antes visto. En otros términos, dada una secuencia de texto de longitud T $x^{(1)}, x^{(2)}, ..., x^{(T)}$ con $x \in \mathcal{R}^{1 \times d}$ donde d es la dimensión de la codificación de las palabras, la meta es predecir la probabilidad conjunta de la secuencia:

$$P(x^{(1)}, x^{(2)}, ..., x^{(T)}) = \prod_{t=1}^{T} P(x^{(t)} | x^{(t)}, ..., x^{(t-1)})$$
(2.8)

Con ello, un modelo de lenguaje basado en Redes Neuronales Recurrentes es capaz de

predecir un siguiente elemento $\hat{x}^{(t)}$ simplemente obteniéndolo de la secuencia mediante:

$$\hat{x}^{(t)} \approx P(x^{(t)}|x^{(t-1)}, \dots, x^{(1)}) \approx P(x^{(t)}|h^{(t-1)})$$
(2.9)

donde $h^{(t-1)}$ es el estado oculto que almacena la información pasada hasta el tiempo t tal y como se definió en 2.7.

Sin embargo, la información previa de la secuencia codificada en $h^{(t)}$ no siempre contiene los elementos necesarios para que el modelo pueda predecir correctamente el siguiente elemento, observe la siguiente oración:

« Ella estaba muy ____, después de que Alejandra vió el amanecer en la playa »

En la oración anterior, el espacio en blanco puede ser completado con algún adjetivo calificativo; contenta, enojada, maravillada, etc. Gracias a la información provista por la parte final de la oración, podemos deducir que de las 3 opciones la menos probable de elegir es enojada. Es decir, usamos información del futuro que no pudo haber sido vista por una red (que procesa la información en forma causal) para tomar la mejor elección. Una ligera modificación fácilmente aplicable a estos modelos es que las secuencias sean procesadas en ambas direcciones, las **Redes Neuronales Recurrentes Bidireccionales** [109].

Una RNN Bidireccional procesa la secuencia en ambos sentidos (una RNN en un sentido y otra en el otro), capturando información del pasado en el estado oculto $\overrightarrow{h}^{(t)}$ cuando la recurrencia es del inicio al final de la secuencia e información del futuro en $\overleftarrow{h}^{(t)}$ cuando la recurrencia es del final al inicio de la secuencia. Finalmente, el estado oculto $h^{(t)}$ es una concatenación de ambos estados $\overrightarrow{h}^{(t)}$ y $\overleftarrow{h}^{(t)}$, vea la ecuación 2.10. Por lo cual, la salida $o^{(t)}$ ahora puede ser calculada con información tanto del futuro como del pasado 2.11.

$$\overrightarrow{h}^{(t)} = f(x^{(t)}, \overrightarrow{h}^{(t-1)}; \theta_f)
\overleftarrow{h}^{(t)} = f(x^{(t)}, \overleftarrow{h}^{(t+1)}; \theta_b)
h^{(t)} = Concat(\overrightarrow{h}^{(t)}, \overleftarrow{h}^{(t)})$$
(2.10)

$$o^{(t)} = g(h^{(t)}; \theta_{out}) \tag{2.11}$$

Figura 2.9: Computo del estado oculto y salida de una Red Neuronal Recurrente.

2.4.2. Compuertas LSTM y GRU

Hasta el momento, se ha hecho mención de las salidas $o^{(t)}$ y estados ocultos $h^{(t)}$ solo como el resultado de operaciones aplicadas por dos funciones; g y f respectivamente. Existen varias alternativas de construir una RNN, una de las maneras más comunes es usando 2.12 y 2.13:

$$h^{(t)} = \phi(x^{(t)}W_x + h^{(t-1)}W_h + b)$$
(2.12)

$$o^{(t)} = x^{(t)}W_{out} + b (2.13)$$

Donde los parámetros compartidos de la red ahora son descritos por las matrices $W_x \in \mathbb{R}^{d \times k}$, $W_h \in \mathbb{R}^{k \times k}$ y $W_{out} \in \mathbb{R}^{k \times q}$ con k como la dimensión del estado oculto, q la dimensión de las salidas $o^{(t)}$, $b \in \mathbb{R}^{1 \times q}$ el parámetro de sesgo y ϕ es la función de activación. De esta manera, los pesos de los parámetros aprendidos en la matriz W_h determinan cómo será usada la información del pasado, codificada en $h^{(t-1)}$. Posteriormente, es incluida a la codificación de la información del tiempo actual t calculada por W_x . La figura 2.9 representa gráficamente la lógica usada para calcular los estados ocultos y las salidas de la red.

Sin embargo el cálculo de los estados ocultos mediante 2.12 presenta algunos problemas. La interacción entre la información del pasado y la actual siempre es "plana", es decir, la información fluye a través del tiempo de la misma manera sin forma de dar prioridad o ignorar parte de esta. Por lo que resulta una tarea un poco más complicada preservar información relevante a en cada paso o desechar información que ya no es util para la red. También, causado por este mismo flujo de los datos, la información del pasado poco a poco es opacada por nueva información, impidiendo que se puedan encontrar dependencias de información en secuencias largas en tiempos distantes; comúnmente se hace referencia a este problema como The Short-term Memory Problem en inglés [9]. Aunado a problemas como el Desvanecimiento

o Explosión del Gradiente [58] [92], y acentuándose aun más debido a las matrices de pesos compartidos en la recurrencia. Dichas multiplicaciones en la recurrencia tienen similitud al método de potencia, en donde cualquier componente en la matriz inicial que no esté alineada con el vector propio asociado al mayor valor propio son eventualmente descartados [36, pp. 390-392]), por ende, los resultados de este producto tendrán a ser cercanos a cero (desvanecerse) o explotar dependiendo de la magnitud de la matriz de pesos.

Una manera de solventar los problemas anteriores son las **Redes Neuronales con Com- puertas**, creadas con la idea de crear conexiones a través del tiempo de tal manera de tener gradientes que no se desvanezcan o exploten, convirtiéndose además en un mecanismo para olvidar información pasada y decidiendo automáticamente cuándo y cuánto de la información debe prevalecer.

LSTM

Long Short-Term Memory, LSTM por sus siglas en inglés, fue propuesta en 1997 por Hochreiter and Schmidhuber, como un método de preservar dependencias de información relevante distantes a corto plazo. Las LSTM introducen un nuevo componente la Celda de Memoria cuya función es guardar información a través del tiempo y es controlada por distintas compuertas. Las compuertas aprenden a distinguir que información es relevante y cual no. Hay 3 de ellas, la Compuerta de Entrada, la Compuerta de Olvido y la Compuerta de Salida. La Compuerta de Entrada $I^{(t)}$ (véase la figura 2.10) determina cuanta información actual debe ser contemplada a través de la Memoria Candidata $\tilde{C}^{(t)}$ para actualizar la Celda de Memoria $C^{(t)}$. La Compuerta de Olvido indica qué información del pasado debe ser desechada de la Celda de Memoria $C^{(t-1)}$ y la Compuerta de Salida ayuda a determinar el nuevo estado $h^{(t)}$ via la Celda de Memoria actual $C^{(t)}$.

Las ecuaciones 2.14 rigen el comportamiento de Compuertas de Entrada, Salida y Olvido.

$$I^{(t)} = \sigma(x^{(t)}W_{xi} + h^{(t-1)}W_{hi} + b_i)$$

$$F^{(t)} = \sigma(x^{(t)}W_{xf} + h^{(t-1)}W_{hf} + b_f)$$

$$O^{(t)} = \sigma(x^{(t)}W_{xo} + h^{(t-1)}W_{ho} + b_o)$$
(2.14)

Donde $W_{xi}, W_{xf}, W_{xo} \in \mathbb{R}^{d \times k}, W_{hi}, W_{hf}, W_{ho} \in \mathbb{R}^{k \times k}$ y $b_i, b_f, b_o \in \mathbb{R}^{1xk}$

La Memoria Candidata y la Celda de memoria son actualizadas mediante:

$$\tilde{C}^{(t)} = \tanh\left(x^{(t)}W_{xi} + h^{(t)}W_{hc} + b_c\right)$$

$$C^{(t)} = F^{(t)} \odot C^{(t-1)} + I^{(t)} \odot \tilde{C}^{(t)}$$
(2.15)

Figura 2.10: Descripción.

Donde $W_{xi} \in \mathbb{R}^{d \times k}$, $W_{hc} \in \mathbb{R}^{k \times k}$ y $b_c \in \mathbb{R}^{1xk}$

Y finalmente el estado oculto $h^{(t)}$ esta dado por:

$$h^{(t)} = O^{(t)} \odot \tanh\left(C^{(t)}\right) \tag{2.16}$$

 σ y \odot denotan la función de activación sigmoide y la multiplicación uno a uno respectivamente.

GRU

Gated Recurrent Units o GRU por sus siglas en inglés, fueron propuestas en 2014 [21] como una alternativa computacionalmente más rápida y con similar rendimiento que las LSTM [24]. A diferencia de anteriores, las GRU prescinden de la Celda de Memoria y utilizan un par de compuertas (la Compuerta de Actualización y la de Olvido) para decidir que información aún es necesaria que esté codificada dentro del estado oculto, véase la ecuación 2.17. La Compuerta de Olvido permite decidir que del pasado aún debe ser transmitido a futuros estados o de otro modo ser desechada. La Compuerta de Actualización indica que información nueva es relevante y necesita ser incorporada al no estar codificada dentro del estado oculto, véase la ecuación 2.18.

$$R^{(t)} = \sigma(x^{(t)}W_{xR} + h^{(t-1)}W_{hR} + b_R)$$

$$Z^{(t)} = \sigma(x^{(t)}W_{xZ} + h^{(t-1)}W_{hZ} + b_Z)$$
(2.17)

$$\tilde{h}^{(t)} = \tanh\left(x^{(t)}W_{xh} + (R^{(t)} \odot h^{(t-1)})W_{hh} + b_h\right)$$

$$h^{(t)} = Z^{(t)} \odot h^{(t-1)} + (1 - Z^{(t)}) \odot \tilde{h}^{(t-1)}$$
(2.18)

Figura 2.11: Descripción.

2.4.3. Mecanismos de Atención

Una de las arquitecturas comunes vistas previamente es la mostrada en la figura 2.7c cuya información procesada es resumida en una sola salida. Este tipo de red es usada como parte de las soluciones en tareas de reconocimiento de voz (Speech Recognition), traducción de lenguaje (Machine Translation) o asistencia en respuestas automáticas (Question Answering), entre otros, típicamente bajo modelos Secuencia a Secuencia (Sequence to Sequence, Seq2Seq) [22]. Los modelos Seq2Seq están formados por dos redes neuronales como la mostrada en 2.12. La primera se comporta como un codificador al resumir la entrada y producir un vector de salida de tamaño fijo llamado vector de contexto. La segunda red se comporta como un decodificador, este es inicializado y condicionado con el vector de contexto para obtener una

transformación de la entrada no necesariamente del mismo tamaño de secuencia, debido a que en tareas como traducir una oración de un lenguaje a otro donde la traducción no siempre contiene las misma cantidad de palabras usadas en el idioma original.

Figura 2.12: Descripción.

Por ejemplo, en tareas de *Machine Translation* el *codificador* esta formado por una *RNN* Bidireccional que lee y procesa un conjunto de vectores $X = (x^{(1)}, x^{(2)}, \dots, x^{(T_x)})$ para obtener un vector de contexto C. La forma más común es como en 2.19:

$$h^{(t)} = f_{bi}(x^{(t)}, h^{(t-1)}; \theta_f, \theta_b)$$

$$C = q(h^{(1)}, h^{(2)}, \dots, h^{(T)})$$
(2.19)

Recordemos que $h^{(t)}$ es el estado oculto generado por la concatenación de los dos estados ocultos generados por la RNN Bidireccional, f_{bi} y q son funciones no lineales, ya sea, una LSTM para f_{bi} y $q(h^{(1)}, h^{(2)}, \ldots, h^{(T)}) = h^{(T)}$, equivalente a tomar solo el ultimo estado oculto como vector de contexto C. El decodificador es entrenado para predecir la siguiente palabra $y^{(t')}$ dado el vector de contexto C y todas las palabras previas predichas. En otras palabras, el decodificador define la probabilidad conjunta modelada por una RNN:

$$p(Y) = \prod_{t=1}^{T_y} p(y^{(t)} | \{y^{(1)}, \dots, y^{(t-1)}\}, C)$$
 (2.20)

$$p(y^{(t)}|\{y^{(1)},\dots,y^{(t-1)}\},C) = g(y^{(t-1)},s^{(t)},C;\theta_g)$$
(2.21)

donde g es una función no lineal que emite la probabilidad de $y^{(t)}$ y $s^{(t)}$ es el estado oculto del decodificador~2.22.

$$s^{(t)} = f(s^{(t)}, y^{(t-1)}, C; \theta_s)$$
(2.22)

Sin embargo, cuando las secuencias son bastante largas el *vector de contexto* emitido por el *codificador* no es lo suficientemente grande como para resumir correctamente la secuencia y por tanto, la información inicial de la entrada es olvidada, teniendo escasa presencia en estados ocultos más lejanos. En 2015 Bahdanau et al. observaron estos efectos y propusieron una forma de minimizarlos, los **Mecanismos de Atención**.

La función principal de los **Mecanismos de Atención** es permitir que el *decodificador* pueda acceder al historial completo de los estados ocultos del *codificador*, así, ahora podrá contar con un mecanismo para selectivamente centrarse en las distintas partes de la secuencia que tienen mayor influencia sobre una la salida esperada a cierto tiempo.

Por tanto, las palabras predichas no son calculadas por un único vector de contexto generado por el codificador, sino que para cada objetivo $y^{(t)}$ se calcula un nuevo vector de contexto $c^{(t)}$:

$$p(y^{(t)}|\{y^{(1)},\dots,y^{(t-1)}\},c^{(t)}) = g(y^{(t-1)},s^{(t)},c^{(t)};\theta_g)$$
(2.23)

$$s^{(t)} = f(s^{(t)}, y^{(t-1)}, c^{(t)}; \theta_s)$$
(2.24)

Dado que cada estado oculto $h^{(t)}$ contiene mucho mejor la información que se encuentran alrededor del t-ésimo término, se puede generar cada vector de contexto como una suma pesada de sobre los estados ocultos del *codificador*. Estos pesos nos ayudan a determinar que tan importante es la información codificada por cada estado oculto y al momento de obtener la salida del t-ésimo valor "prestar atención" a aquellos que son más relevantes para esta predicción:

$$c^{(t)} = \sum_{i=1}^{T_x} \alpha_{t,i} h^{(i)}$$
 (2.25)

aquí cada peso $\alpha_{t,i}$ indica que tan bien se "alinean" los términos $y^{(t)}$ y $x^{(i)}$, y son calculados por una función de alineamiento que denota que tan importante es el estado oculto del codificador $h^{(t)}$ para el estado oculto del decodificador $s^{(i)}$.

$$\alpha_{t,i} = align(y^{(t)}, x^{(i)}) = \frac{\exp(score(s^{(t-1)}, h^{(i)}))}{\sum_{k=1}^{T_x} \exp(score(s^{(t-1)}, h^{(k)}))}$$
(2.26)

Bahdanau propone aprender esta alineación usando una Red feed-forward con una sola capa oculta y la función tanh como activación:

$$score(s^{(t)}, h^{(i)}) = v_a^{\top} \tanh(W_a[s^{(t)}; h^{(i)}])$$
 (2.27)

con v_a y W_a como matrices de pesos a aprender durante el entrenamiento, $[s^{(t)}; h^{(i)}]$ representa una concatenación de los estados ocultos del *codificador* y decodificador. En la figura 2.13 podemos ver gráficamente el modelo usado por *Bahdanau*.

Figura 2.13: Modelo seq2seq propuesto por Bahdanau et al. con Additive/Concat Attention

Los modelos de atención pueden ser vistos de manera más general como un mapeo de una secuencia de llaves k hacia una distribución de atención α de acuerdo a una consulta q aplicándose a un conjunto de valores V para selectivamente propagar la información contenida en V. Si bien, los términos de consulta, llaves y valores (query, keys, values) son en ámbitos de los $Sistemas\ de\ Recuperación\ de\ Información\ su\ relación\ en\ términos\ de\ la\ atención\ aplicada\ por\ Bahdanau\ es\ muy\ similar; las llaves\ son\ los\ estados\ ocultos\ del\ <math>codificador\ y\ la\ consulta\ es\ el\ estado\ oculto\ del\ decodificador\ en\ cuestión,\ en\ este\ caso\ el\ mapeo\ de\ entre\ llaves\ y\ valores\ es\ la\ misma:$

$$A(q, K, V) = \sum_{i} p(a(K - i, q)) * v_{i}$$
(2.28)

En la ecuación 2.28, p es una función de distribución que mapea los puntajes de la función de alineación a a pesos de atención. Comúnmente se usan las funciones softmax o logistic sigmoid puesto que nos aseguran que los pesos de atención producidos estarán dentro del rango [0,1] y la suma de ellos es igual a 1, por lo que los pesos pueden ser interpretados como una probabilidad que indica que tan relevante es cierto elemento. Algunas variaciones en donde se consideran solo los términos relevantes como sparsemax Martins and Astudillo o sparse ent-max Martins et al. permiten trabajar y enfocarse en solo algunas relaciones de alineamiento.

Tay et al. proponen una función de distribución de pesos $M = \tanh(E) \odot sigmoid(N)$ con E como una matrix en donde cada entrada representa la similaridad entre estados ocultos y N una medida negativa (disimilaridad), por lo que podemos usar sigmoid(N) como información para "de-atender" los alineamientos de E.

Las funciones de alineamiento se encargan de comparar y extraer la relación entre las representaciones de las llaves (keys) y consultas (queries), por ejemplo usando el producto punto y el coseno como función de similaridad. Bahdanau calcula esta relación a través de una red neuronal 2.26, lo que evita asumir que ambas representaciones están en el mismo espacio, como lo hace las funciones de alineación como el producto punto o la similaridad coseno. La tabla 2.2 muestra una recopilación de funciones de alineamiento.

De acuerdo a como es aplicado los distintos tipos de atención Chaudhari et al. los dividen en 4 grandes grupos; por número de secuencias, por nivel de abstracción, por número de posiciones y por número de representaciones. Estos grupos no son mutualmente excluyentes por tanto una aplicación de atención puede pertenecer a más de una.

En la categoría por número de secuencias se identifican 3 tipos, el primero de ellos, Distintivos (Distinctive) es cuando la clave (key) y valor (value) pertenecen a distintas secuencias de entrada y salida respectivamente, como es el caso del modelo propuesto por Bahdanau et al.. El segundo tipo, Co-Atención (co-attention) utiliza distintos secuencias al mismo tiempo para conocer los pesos de atención entre estas entradas. Por ejemplo, en tareas en donde se necesita trabajar con datos multi-modales como procesar imágenes y texto simultáneamente. En tareas como Visual Question Answering se puede aplicar un mecanismo de atención conjunto tanto para las imágenes y el texto para identificar las regiones de la imagen y los palabras del texto que son más relevantes. El tercer tipo es auto-atención (Self Attention), fue propuesto por Yang et al. y es uno de los puntos claves para los modelos Transformers [127]. Es comúnmente usada en tareas que solo requieren una salida resumen y no una secuencia como Clasificación de texto. La clave (key) y valor (value) pasan a ser las mismas y la atención es calculada sobre los mismos elementos pertenecientes a la secuencia de entrada, buscando así, encontrar las relaciones entre las palabras de la misma oración.

La segunda Categoría agrupa la atención por el nivel de abstracción en la que es aplicada, a un solo nivel o en múltiples niveles. La información a procesar muchas veces puede ser representada en distintos niveles de abstracción, es decir, en texto, podemos separar los datos a nivel de letras, n-gramas, palabras, oraciones, párrafos, etc., por tanto, es posible atender de manera jerárquica a las palabras que forman una oración para posteriormente prestar atención a las oraciones que conformar un texto más largo. Yang et al. utiliza este procedimiento para generar un vector de características usado posteriormente en un etapa de clasificación.

En la tercer categoría la atención es realizada en diversas partes de la secuencia; la suma pesada sobre todos los puntajes de las entradas usada por Bahdanau et al. se le denomina **Atención suave** (Soft-Attention). Una alternativa es la **Atención dura** (Hard-

Nombre	Función de Alineación	Cita
Similarity / Content-Base	$a(k_i, q) = sim(k_i, q)$	Graves et al.
Dot Product ¹	$a(k_i, q) = q^\top k_i$	Luong et al.
Scaled Dot Product	$a(k_i, q) = \frac{q^{\top} k_i}{\sqrt{d_k}}$	Vaswani et al.
General	$a(k_i, q) = q^{\top} W k_i$	Luong et al.
Biased General	$a(k_i, q) = k_i(Wq + b)$	Sordoni et al.
Activated General	$a(k_i, q) = act(q^{\top}Wk_i + b)$	Ma et al.
Generalized Kernel	$a(k_i, q) = \phi(q)^{\top} \phi(k_i)$	Choromanski et al.
Additive\Concat 2	$a(k_i, q) = v^{\top} act(W[q; k_i] + b)$	Bahdanau et al., Luong et al.
Deep	$a(k_i, q) = v^{\top} E^{(L-1)} + b^{L}$ $E(l) = act(W_l E^{(l-1)} + b^{l})$ $E(1) = act(W_0 k_i + W_1 q + b^{l})$	Pavlopoulos et al.
Location-based	$a(k_i, q) = act(Wq)$	Luong et al.
Feature-based	$a(k_i, q) = v^{\top} act(W_0 \phi(K) + W_1 \phi(K) + b)$	Li et al.

Cuadro 2.2: Distintos tipos de funciones de alineación. (Tabla basada en [13] y [137]). $a(k_i, q)$ representa la función de alineación entre k_i y q y act es una función de activación. sim es una función de similaridad, Graves et al. propone la función coseno. Los parámetros v, W, W_1, W_2 son parámetros aprendidos por la red neuronal.

Attention) [144] que calcula la atención no sobre todas los puntajes de alineamiento sino en una parte de estos, para ello se usa una distribución multinoulli parametrizada por los pesos de la atención. A pesar de que es más eficiente que la atención suave resulta difícil de entrenar al no ser completamente diferenciable. Otra opción a la atención dura es la Atención Local (Local Attention) cuya idea es aplicar atención sobre una ventana elegida ya sea centrada con respecto a la tiempo actual (alineamiento monotónico) o predicha por una función (alineamiento predictivo). La atención local fue propuesta por Luong et al. así

 $^{^1}$ El factor de escala $\frac{1}{\sqrt{d_k}}$ ayuda a estabilizar cuando el gradiente es muy pequeño. d_k es el tamaño de la cabeza de atención.

 $^{^2}$ La función de activación propuesta por Bahdanau et al. es la función \tanh como se ve en 2.27

como la Atención Global la cual es similar a la atención suave.

La última categoría divide los modelos de atención por las formas de representación de las entradas sobre las que la atención es aplicada. Distintos modelos pueden beneficiarse de procesar los datos creando vectores de características distintos, cada uno de ellos deriva de algún tipo de representación de la entrada. por tanto, es posible atendera a diferentes representaciones y formar un vector final usando una combinación pesada de estos a través de dichos pesos de atención. Chaudhari et al. llama a este tipo de modelos de atención como **multi-representational AM**. En la segunda categoría, **milti-dimensional attention**, la atención no es aplicada sobre los diversas vectores de características sino a un nivel más interno, sobre sus dimensiones. Pesando cada característica de un vector de características permite seleccionar aquellas que mejor lo describen para un contexto dado. EN *NLP*, resulta bastante útil cuando se trata con *polisemia*, en donde una palabra o frase puede tener más de un significado.

2.5. El modelo Transformer

A finales del año 2017 se presentó un nuevo modelo que vino a revolucionar el área de Procesamiento de Lenguaje Natural, El Transformer [128]. Una de sus principales características es la capacidad de procesar la información de alguna secuencia de forma paralela, caso contrario a las Redes Neuronales Recurrentes, donde la información se procesa recurrentemente. Gracias a ello, la capacidad de recuerdo no se ve afectado por el problema de El desvanecimiento del Gradiente específicamente cuando el problema es trabajar con secuencias bastante largas.

El Transformer puede ser visto como otro modelo seq2seq (Secuencia a Secuencia) 2.14, formado en por dos etapas, la primera encargada de codificar la información de entrada y la segunda de decodificarla, pero su principal característica es que aplica mecanismos de Self-Attention para capturar las dependencias globales entre la entrada y la salida. Dada una secuencia de entrada $X = (x_1, x_2, \ldots, x_n)$ con n como el tamaño de la secuencia, el codificador produce una representación intermedia $Z = (z_1, z_2, \ldots, z_n)$ al igual que los modelos seq2seq. El decodificador usa la secuencia Z para generar la secuencia de salida $Y = (y_1, y_2, \ldots, y_m)$ uno a la vez (en modo inferencia), con m como el tamaño de la secuencia de salida. Nótese, que el generar una salida a la vez el decodificador tiene que ser auto-regresivo. Usa la salida anterior y_{i-1} como entrada adicional para generar la siguiente salida y_i . Por ello, durante entrenamiento el modelo es alimentado con entradas y salidas desfasadas en un tiempo.

Figura 2.14: Modelo Transformer generalizado como modelo Secuencia a Secuencia

2.5.1. El Codificador y Decodificador

El Modelo Transformer está formado por multiples codificadores y decodificadores apilados e inter-conectados, Como observamos en la figura 2.14. El codificador consta de dos capas, la primera de ellas aplica Self-Attention múltiples veces sobre la misma entrada (Multi-HeadSelf Attention) y la segunda capa representada solo por una red Feed-Forward cuya entrada es la salida de la capa anterior. Véase la figura 2.15.

Figura 2.15: Etapa Codificadora del Modelo Transformer. Pseudocódigo

El decodificador tiene una estructura similar al codificador con una etapa adicional intermedia de *Multi-Head Attention* aplicada sobre la salida de la pila de codificadores. También, la primer capa de atención sufre un ligero cambio un su forma de operación, necesitando enmáscarar (al momento en que se realiza el entrenamiento) la atención prestada del pasado al futuro. Esto es debido a que el decodificador se encarga de generar una secuencia (en modo

inferencia) uno a la vez usando solamente la salida anterior y por tanto no tiene conocimiento de salidas futuras, observe la figura 2.17.

$$\begin{split} mha_1 &= MHA(X,X,X)\\ norm_1 &= Norm(mha_1 + X)\\ mha_2 &= MHA(enc_{out},enc_{out},norm_1)\\ norm_2 &= Norm(mha_2 + X)\\ f &= FeedForward(norm_2)\\ decoder(X) &= Norm(f + norm_2) \end{split}$$

Figura 2.16: Etapa Decodificadora del Modelo Transformer. Pseudocódigo

2.5.2. Multi-Head Self-Attention

En la sección 2.4.3 se detalla una generalización de la atención y diversas variantes usadas a lo largo de la literatura. El modelo original que introdujo a los Transformers usa en especial la variante *Scaled Dot-Product Attention*[128]:

$$Attention(q, k, v) = softmax(\frac{qk^{\top}}{\sqrt{d_k}})v$$
 (2.29)

El Transformer está basado en la idea de de aplicar atención multiples veces, al usar varias cabezas de atención, Multihead-Self-Attention (MHA), permite al modelo conjuntamente atender a información en distintas posiciones desde h diferentes subespacios de representación. 2.30

$$mha(Q, K, V) = Concat(head_1, head_2, head_3, ..., head_h)W^O$$
(2.30)

(a) Transformer modo entrenamiento. Las entrapalabra de la oración gracias a que fue entredas en el decodificador son recorridas un elemennado con un desplazamiento hacia el futuro. En to en el futuro, con el fin de que aprende a prede- la siguiente iteración el nuevo token predicho es cir la siguiente palabra dado un contexto previo agregado como entrada al decodificador. El dey las salidas actuales en el momento de la eva- codificador termina su predicción en el momento luación.

que el token < end > es obtenido.

(b) Transformer modo inferencia. El decodificador funciona como un modelo auto-regresivo, usa sus predicciones hasta el tiempo t para obtener el siguiente valor. En la primer iteración el decoder solo recibe el token de inicio de oración < start > por lo que podrá predecir la primer palabra de la oración gracias a que fue entrenado con un desplazamiento hacia el futuro. En la siguiente iteración el nuevo token predicho es agregado como entrada al decodificador. El decodificador termina su predicción en el momento que el token < end > es obtenido.

Figura 2.17: Esquema de entrenamiento e inferencia del modelo Transformer en un problema de Machine Translation.

Todas las cabezas de atención son concatenadas y resumidas para ser devueltas a las dimensiones del espacio de entrada original, principalmente para mantener consistencia en las dimensiones de usadas en cada etapa de codificación y decodificación del modelo a través de $W^O \in \mathbb{R}^{hd_v \times d_m}$. W^O es entrenado conjuntamente para aprender a resumir la información capturada por cada cabeza de atención. $Q, K \in \mathbb{R}^{n \times d_m}$ y $V \in \mathbb{R}^{n \times d_v}$ es la representación consulta, clave y valor de los embeddings de entrada de cada capa de atención del codificador y decodificador como se observa en las figuras 2.15 2.16. n es el tamaño de la secuencia, d_m y d_v son los tamaño del embedding y h el número de cabezas de atención.

En el caso del modelo transformer tenemos un conjunto embeddings sobre las cuales se aplica atención, si bien, no representan necesariamente las consultas, llaves, y valores utilizados para la atención generalizada, podemos obtener estas representaciones transportándolos a sus espacios respectivos a través de alguna transformación aprendida conjuntamente con el entrenamiento del modelo.

Por tanto, para el conjunto de Embeddings $E_Q \in \mathbb{R}^{n \times d_m}$, $E_K \in \mathbb{R}^{n \times d_m}$ y $E_V \in \mathbb{R}^{n \times d_v}$ donde n es el número embeddings, d_m y d_v son las dimensiones de cada uno, la atención en cada cabeza i se calcula como:

$$Q_i = E_Q W_i^Q$$

$$K_i = E_K W_i^K$$

$$V_i = E_V W_i^V$$
(2.31)

$$head_i = Attention(Q_i, K_i, V_i) = softmax\left(\frac{Q_i K_i^T}{\sqrt{d_k}}\right) V_i$$
 (2.32)

donde
$$W_i^Q$$
, $W_i^K \in \mathbb{R}^{d_m \times d_k}$, $W_i^V \in \mathbb{R}^{d_m \times d_v}$ y $d_k = d_v = d_m/h$.

el término de escalamiento $\sqrt{d_k}$ ayuda a evitar que la magnitud de los productos puntos calculados entre cada consulta y llave crezcan demasiado, y que la función softmax pueda ser más estable al evitar regiones donde los gradientes son muy pequeños[128].

2.5.3. Información Posicional

En los modelos basados en *Redes Recurrentes* la información se procesan uno a uno en cada paso de tiempo. Los modelos basados en *Transformers* procesan la información en conjunto, perdiendo la noción de la temporalidad de los datos. Una solución es agregar dicha información perdida a través de vectores que codifiquen el tiempo/posición de los datos sumándolos con los vectores de embeddings. Estos vectores llamados *Positional Encodings* [34] siguen un patrón en específico que el modelo aprende a identificar y lo ayuda a determinar la posición de cada elemento de la secuencia y por tanto calcular a qué distancia se encuentra cada uno de los demás.

Por lo regular se usa una onda senoidal y cosenoidal para lugares pares e impares, formando una progresión geométrica desde 2π hasta $10000 \cdot 2\pi$ 2.33:

$$PE(pos, 2i) = \sin(pos/10000^{2i/d_m})$$

$$PE(pos, 2i + 1) = \cos(pos/10000^{2i/d_m})$$
(2.33)

Poner una figura completa de todo el esquema del Transformer

Figura 2.18: 2000 Vectores de Positional Encoding con dimensiones de embedding=500.

2.5.4. Problemas típicos en el entrenamiento de Transformers

Learning Rate WarmUp y Layer Normalization

A pesar de que la arquitectura del modelo Transformer no es tan compleja, puesto que tanto el codificador como el decodificador están formados por pilas de capas de atención y MLP, el entrenamiento de este tipo de modelos muchas veces no resulta tan trivial. Regularmente requiere de una combinación de técnicas para lograr su convergencia a valores aceptables y en conjunto con una gran cantidad de datos, tamaños de lotes de procesamiento grandes y una gran cantidad de tiempo de procesamiento en gpu [95].

Learning Rate WarmUp es una de las primeras técnicas usadas y descritas en el proceso de entrenamiento por Vaswani et al.. Usando el algoritmo Adam como optimizador se varía el factor de aprendizaje de acuerdo a la fórmula:

$$lrate = d_m^{-0.5} \cdot \min\left(step_num^{-0.5}, step_num \cdot warmup_steps^{-0.5}\right)$$
 (2.34)

En el esquema anterior, más conocido como Noam-Warmup, el modelo original es entrenado incrementando linealmente el factor de aprendizaje en los primeros $warmup_steps = 4000$ pasos. Posteriormente, decrementa propocionalmente al inverso del la raíz cuadrada del paso $step_num$ actual, véase la figura 2.19.

Si bien, la razón por la que funciona este tipo de técnica no está del todo claro, se presume que usar *Learning Rate WarmUp* ayuda a reducir la varianza del factor de aprendizaje adaptativo durante las primeras etapas del entrenamiento del modelo. Liu et al. demostraron que el segundo momento del algoritmo de Adam durante etapas tempranas de optimización es proporcional a una integral divergente, lo que provoca las actualizaciones inestables, llevando

Figura 2.19: Noam-Warmup con $warmup_steps = 4000 \text{ y } d_m = 512$

al modelo fuera de las regiones donde un mejor mínimo existe. Con esto en mente Liu et al. proponen el algoritmo de optimización RAdam (Rectified Adam) como una alternativa a usar $Learning\ Rate\ WarmUp\ y$ mitigar este efecto durante la fase inicial del entrenamiento de los modelos.

El Learning Rate Warm Up comúnmente es usado en conjunto con algoritmos de optimización estocásticos como RMSprop o Adam. En vez configurar el factor de aprendizaje α con un decremento constante, la estrategia de Learning Rate Warm Up configura este factor con valores muy pequeños en los primeros pasos de entrenamiento. Durante las primeras etapas del entrenamiento el factor de aprendizaje es incrementado hasta un límite que es ligeramente superior o inferior al valor inicial de α del optimizador usado y posteriormente es decrementado progresivamente hasta la convergencia del modelo.

Así, en cada paso del algoritmo de optimización el cuál está parametrizado por el factor de aprendizaje α , puede ser aplicado un factor de $warmup \ \omega \in [0,1]$ que sirve para reducir α y a la vez el paso de optimización en cada tiempo, replazando $\alpha_t = \alpha \omega_t$. La forma mas sencilla es usar un factor **linear warmup** parametrizado por un periodo de "calentamiento" τ .

$$\omega_t^{linear,\tau} = \min\left(1, \frac{t}{\tau}\right) \tag{2.35}$$

Ma and Yarats proponen 3 formas de aplicar la técnica de warmup:

Exponential warmup aplica un decaimiento exponencial

$$\omega_t^{expo,\tau} = 1 - \exp\left(-\frac{1}{\tau}t\right) \tag{2.36}$$

recomienda elegir $\tau = (1 - \beta_2)^{-1}$ tal que no se tan diferente del segundo momento de corrección de bias del algoritmo de $Adam \beta_2$.

$$\omega_t^{expo,untuned} = 1 - \exp(-(1 - \beta_2)t) \tag{2.37}$$

Similar al decaimiento exponencial proponen usar linear warmup sobre $\tau = 2(1 - \beta_2)^{-1}$ iteraciones para preservar un efecto similar de des-aceleración con el paso del tiempo.

$$\omega_t^{linear,untuned} = \min\left(1, \frac{1-\beta_2}{2}t\right) \tag{2.38}$$

Figura 2.20: Learning rate sobre X 18000 iteraciones usando RAdam y lineal, exponencial warmup con Adam

Por otro lado, Huang et al. mencionan que usar la técnica de Learning Rate WarmUp para mitigar la varianza del optimizador Adam no es del todo la solución y que el problema radica precisamente en la arquitectura del modelo Transformer, principalmente en las capas de normalización [15] [143]. En particular Xiong et al. encuentran que para un modelo Transformer de cualquier tamaño con capas de normalización entre bloques residuales (Post-LN Transformer), la escala de la norma del gradiente que incide en la última capa de normalización permanecen igual al no depender de la cantidad de bloques del transformer. Por el contrario, si la capa de normalización es colocada justo antes de la conexión residual (Pre-LN Transformer) la magnitud de la norma del gradiente decrece conforme el tamaño del modelo incrementa, guiando así, al problema de desvanecimiento de gradiente. Huang et al. proponen eliminar las capas de normalización del modelo Transformer que en conjunto con la inestabilidad del algoritmo de optimización de Adam provocan la dificultad de entrenamiento durante desde las primeras etapas. Para ello, estandarizan la siguiente inicialización (T-Fixup) de pesos del modelo, permitiendo evitar la etapa de WarmUp y las capas de normalización en el Transformer. La figura 2.21 muestra una comparativa de los histogramas usando la inicialización T-Fixup e usar el algoritmo de Adam con y sin etapa de Warmup:

- Aplicar initialization tipo Xavier para todos los pesos del modelo. Excepto el proceso de generación de embedding adecuados al tamaño del modelo d_m .
- Usar una inicialización tipo Gaussiana con $\mathbb{N}(0, d_m^{\frac{1}{2}})$ para los pesos de generación de embeddings.
- Escalar las matrices W_i^V y W^O en cada bloque de atención en el decodificador, los pesos en de cada capa MLP del decodificador y los pesos de generación de embeddings tanto del codificador como decodificador por $9N^{-\frac{1}{4}}$ donde N es el número de bloques del Transformer.
- Escalar las matrices W_i^V y W^O de cada bloque de atención del codificador y los pesos de cada capa de MLP del codificador por $0.67N^{-\frac{1}{4}}$

Figura 2.21: Histograma de gradientes del Algoritmo Adam con y sin etapa de WarmUp y usando inicialización T-Fixup. Imagen original de Huang et al.

Cálculo de la Atención

Además de lo específico y delicado del entrenamiento del Modelo Transformer su costo en tiempo computacional y de memoria también representa un serio problema a la hora

de optimizar e inferir. Debido principalmente a que en el proceso de atención debe focalizar cada token con respecto a todos los demás, lo que lleva a que su complejidad crezca cuadráticamente con respecto a el tamaño de la secuencia.

Varías técnicas han sido propuestas para reducir este problema, muchas de ellas involucran en reducir la atención a vecindades de representaciones, aproximar la matriz de atención con otras matrices de transformaciones a través de kernels o sustituir completamente la operación softmax por otra función.

Atención de vecindades:

Parmar et al. particionan la información de las representaciones de las consultas asignándolos a diferentes bloques de memoria, restringiéndose a vecindarios locales alrededor de cada consulta. Principalmente basados en cómo las redes convolucionales trabajar. Sin embargo esta solucion es parcial y solo aplicable a secuencias de datos con relaciones cortas, cómo imágenes.

Child et al. factorizan la matriz de atención para reducir su complejidad de $O(n^2)$ a $O(n\sqrt(n))$ por medio de matrices ralas, separando la atención a través de diferentes pasos al parametrizar la atención por una conectividad de distintos patrones elegidos previamente bajo el supuesto de que las matrices de atención son ralas, puesto que no contienen dependencias de relevancia sobre representaciones distantes como se observa en la imagen 2.22.

Figura 2.22: Visualización de 8 cabezas de atención sobre una tarea de Machine-Translation. Las matrices de atención tienden a ser ralas al tener carencia de relaciones relevantes entre diversas representaciones a distancias lejanas.

Sukhbaatar et al. proponen reducir el ancho de la atención basándose en que cada representación no necesita prestar atención sobre todas las demás sino que debería ser adaptativo. Así, para cada cabeza de atención se agrega una función de enmascaramiento que controla la flexibilidad del ancho una ventana. La ventana formada cambia dinámicamente de tamaño dependiendo de la representación en cuestión. Beltagy et al. siguen un estrategia similar,

implementado atención local con ventanas dilatadas distintas para cada cabeza, permitiendo atender contextos menos locales en cada ocasión y atención global sobre preseleccionados localizaciones. Dada la dificultad de su implementación sin usar ciclos para iterar sobre los elementos seleccionados a atender, implementan su propio kernel en CUDA con las operaciones optimizadas para realizar esta tarea.

Dai et al. mencionan que si el problema es el procesamiento de grandes secuencias por qué no dividirlas en secuencias más pequeñas y procesarlas individualmente y así evitar usar grandes cantidades de memoria en su procesamiento. El principal problema de este enfoque es que cada secuencia es procesada individualmente y la información de previas secuencias es ignorada evitando que esta fluya a través de las próximas secuencias. Para solucionar este inconveniente introducen un mecanismo de recurrencia en la arquitectura del transformer. Durante el entrenamiento (véase la figura 2.23) un estado oculto es calculado de las secuencias previas y guardado en memoria para extender el contexto al momento de procesar la siguiente secuencia. Durante el proceso de evaluación, el resultado de las operaciones del transformer pueden ser reusado y no calculado nuevamente desde cero, permitiendo reducir considerablemente el tiempo de evaluación.

Figura 2.23: Transformer-XL. Para tratar con secuencias largas divide el proceso en secuencias más cortas creando estados ocultos intermedios y usandolos en el cálculo de las próximas secuencias. Figura obtenida de [27].

Kitaev et al. reducen el problema de realizar la operación de softmax sobre toda la matriz $Q_iK_i^{\mathsf{T}}$ a calcularlo individualmente por cada consulta q_j , guardando solo una vez en memoria este valor en cada iteración y recalculándolo cuando se necesite de nuevo al utilizar Back-Propagation usando de capas reversibles. Si bien, computacionalmente es más costoso permite usar mucho menos memoria que la solución original. Por otro lado, dado que el resultado de la función softmax depende en mucho mayor medida en los elementos dominantes de la matriz, solo es necesario fijarse en las llaves más cercanas a la consulta en cuestión. LSH (Local Sensitive Hashing) resuelve este problema permitiendo encontrar rápidamente los vecinos más cercanos en espacios de altas dimensiones, con la restricción de que $W_i^Q = W_i^K$ dado que se necesita conservar la similaridad entre consultas y llaves, algo que sería más dificil si sus matrices de proyección W_i^Q y W_i^K fuesen muy distintas.

Aproximaciones a la Atención original:

También Xiao et al. proponen un modelo para compartir pesos de capas adyacentes (Shared Attention Network - SAN). Cada π capas continuas en el codificador comparten la

misma matriz de atención y en el decodificador se comparte la proyección de los pesos de atención sobre la representación de los valores V_i , en otras palabras se comparte directamente la cabeza de atención $head_i$. Dado que no es tan fácil conocer que capas deben compartir pesos, establecen un proceso iterativo de entrenamiento basados en calcular que tan diferentes son las capas del transformer usando la $Divergencia\ de\ Jensen-Shannon$. Si la similaridad entre dos capas es mayor a cierto umbral se indica que dichas capas deben compartir pesos. Se repite un nuevo entrenamiento y se calcula nuevamente la similaridad entre capas, y así sucesivamente hasta convergencia. Podemos notar que este proceso de entrenamiento y ajuste de pesos es muy costoso, un nuevo entrenamiento es requerido por cada ajuste de compartición de pesos, pero el modelo resultante es menos complejo y el tiempo en modo de evaluación o inferencia se ve reducido considerablemente.

Wang et al. bajo la hipótesis de que la matriz de atención tienen rango mucho menor que n proponen obtener los valores de cada cabeza haciendo una aproximación a ella. Para ello, se hace uso de dos matrices entrenables conjuntamente con el modelo, E y $F \in \mathbb{R}^{n \times k}$ con k << n/, tal que, $head_i = softmax(\frac{Q_i(E_iK_i)}{\sqrt{d_m}})F_iV_i$. Con ello la dimensión correspondiente al tamaño de las secuencias se ve reducido bajo el supuesto que podemos representar la información secuencial en un espacio más pequeño sin gran pérdida de información.

Choromanski et al. por el contrario descomponen la operación de atención sobre los valores $head = softmax(\frac{QK^{\top}}{\sqrt{d_k}V})$ en una multiplicación matricial más simple $head = Q'k'^{\top}V$ con Q' y $k'^{\top} \in \mathbb{R}^{n \times r}$ y r <= n. Para ello construyen Q' y k' como dos matrices usando kernels tal que su producto forma una aproximación a la función softmax aplicada al producto de Q y K. Notemos que con ello podemos reducir el costo computacional y en memoria simplemente reduciendo el producto $Q'(k'^{\top}V)$ de derecha a izquierda.

Finalmente autores como Lee-Thorp et al. remplazan completamente el bloque de *Multihead Attention* con bloques que aplican operaciones de Transformada de Fourier o lo largo de la dimensión de los embeddings y de las secuencias. Probando que el usar *FFT* (Fast Fourier Transform) es suficiente para abstraer y modelar las relaciones. Y como Wu et al. que cambian la atención entre todas las consultas y llaves por una sola con todas las llaves. Para esto, a través de atención sumarizan todos las consultas en una consulta global. Este proceso es repetido con las llaves y valores como se observa en la figura 2.24

Figura 2.24: Fast-Former. Remplaza la atención tradicional del transformer por una iterativa. En cada paso crea una consulta y clave global usando atención sobre estos mismos. Figura obtenida de [139]

Capítulo 3

Transformers en Estimación de Pose en Humanos

- 3.1. Estimación de Pose 2D y 3D
- 3.2. Datos y Procesamiento
- 3.3. Arquitecturas de Estimación 2D y 3D
- 3.4. Modificación a transformers Usando cabezas de Atención flexibles
- 3.5. Evaluación y comparativas con otros modelos

Capítulo 4

Vision Transformers en Detección de Patologías en Pulmones con Rayos X

4.1. Detección de Patologías en Pulmones con Rayos X

Diferentes trabajos se han limitado a clasificar *COVID-2019* y *no COVID-2019* (o neumonía), es por ello que durante este trabajo desarrollamos un sistemas más completo para distinguir 15 diferentes enfermedades pulmonares.

We experimentally evaluated the proposed model for diagnosis of the 15 lung diseases, obtaining competitive results, in particular for COVID-19. We compare it with several recent works that classify 14 pathologies (excluding COVID-19); the results in terms of Area Under Curve of the Receiver Operator Characteristic show a competitive performance of the proposed method for the ChestX-Ray14 pathologies and a remarkable performance in detecting pneumonia from COVID-19.

In this work we developed a deep learning method that uses as BKN the ResNet50 network, a wildly used network by the community for implementing different image analysis methods. We extend the ChestX-Ray14 dataset by including radiographs of Normal and COVID-19 infected patients. Our training consists of three stages, DTL from the ResNet50 pretrained in ImageNet by replacing the classification stage by a 15 pathologies classifier, a fine-tuning stage to adjust the last convolutional layers, and a full-tuning stage that adjusts the weights of the entire network. We demonstrate with experiments that our proposal is able to preserve the performance of the state of the art 14 pathologies classifiers, and at the same time achieve the state of the art performance of binaries classifiers for COVID-19. Additionally, in order to demonstrate that the proposed model can be easily extended for

other pathologies, we implemented a binary classifier for Tuberculosis, a particular bacterial pneumonia [116], with performance comparable to *ad hoc* deep learning models [97].

in our work we also use the ChestX database [135] and include X-rays of COVID-19 and healthy (images of persons without known lung diseases) classes. The ChestX-ray14 contains 112,120 frontal-view (both postero-anterior and antero-posterior) chest radiographs of 30,805 unique patients. Each image is annotated with 14 thoracic pathology labels. We enriched such a dataset with COVID-19, pneumonia, and healthy chest radiographs. Table 4.1 summarizes the composition of the dataset used in our work.

Class	Disease	Source	Train	Test
1	Cardiomegaly	1	5897	1069
2	Emphysema	1	3496	1093
3	Effusion	1	13737	4658
4	Hernia	1	4470	86
5	Infiltration	1	17122	6112
6	Mass	1	7862	1748
7	Nodule	1	9250	1623
8	Atelectasis	1	13762	3279
9	Pneumothorax	1	6303	2665
10	Pleural-Thick.	1	8022	1143
11	Pneumonia	1	6031	555
12	Fibrosis	1	9072	435
13	Edema	1	6953	925
14	Consolidation	1	9796	1815
	Healthy	1	35645	9861
11	Pneumonia	2	5475	594
15	COVID-19	2	2873	1904
	Healthy	2	8661	1926

Cuadro 4.1: Number of chest radiography's per case in the dataset. Sources (DS): (1) ChestX-ray14, (2) Internet datasets compilation. Pleural-Thick. means Pleural-Thickening.

Data Relabelling

In order to train our model, we use the relabelled version of the ChestX-ray14 database proposed by the authors of CheXNet [98]. According to [98], the relabelled data allows to improve the training process significantly. Such relabelling consists of training multiple times a neural network with the original training data set and keeping those models with the best accuracy on the original validation set. Then, the predictions of the individual models are averaged, and a binary detector of each pathology is computed by using a threshold that

maximizes the F1-score in all the pathologies (see Section ?? for the F1-score definition). Finally, each training and test datum is relabeled as positive for pathology, if it was initially labeled as positive or the ensemble prediction is positive. However, we define the train, validation, and test data sets according to the original problem; *i.e.*, for the original list and only use the new labels in the training stage. Thus, we report two results: the first one on the original test dataset and, just for reference, with the updated labels in the Appendix.

Data Preprocessing

We keep as simple as possible the preprocessing of the radiography, we only perform a histogram equalization and resize the data to 1024×1024 pixels.

La datos de entrada son imágenes de 1024 columnas y 1024 filas con 3 canales idénticos. Siguiente la propuesta de *CheXNet*, se hace uso de multiples funciones de perdida tipo *Binary Cross-Entropy* con distintos pesos para solventar el desbalanceamiento de clases.

$$L(\hat{y}, y) = \sum_{c=0}^{15} \left[w_c^{(p)} y_c \log \hat{y}_c + w_c^{(n)} (1 - y_c) \log(1 - \hat{y}_c) \right], \tag{4.1}$$

donde y es el vector de etiquetas reales, \hat{y} es el vector de etiquetas predichas, $w_c^{(p)}$ y $w_c^{(n)}$ son los pesos para los casos positivos y negativos de cada clase c respectivamente. Dichos pesos son calculados como sigue:

$$w_c^{(n)} = \frac{n_c}{N}$$
 and $w_c^{(p)} = 1 - w_c^{(n)};$ (4.2)

donde N es el tamaño del conjunto de datos, y n_c el número de imágenes radiográficas con etiquetas c (el número elementos del vector de la c-ésima clase iguales a 1). Nótese que los pesos son inversamente proporcional al número de casos en la clase.

4.2. Arquitecturas usadas

4.2.1. Vision Transformers

4.2.2. ViT con cabezas de atención Flexibles

4.3. Alternativa: CNN y Transfer Learning

El modelo desarrollado es construido tomando *CheXNet* como referencia [98], el cual clasifica entre 14 enfermedades usando el conjunto de datos *ChestX-Ray14* [135]. El modelo propuesto es construido desde cero y extiende la propuesta de *CheXNet* para incluir la clasificación de imágenes con *COVID-19*.

CheXNet es un modelo basado en redes neuronales para detectar la presencia de 14 diferentes enfermedades de pulmón. CheXNet Usas imagenes de Rayos X de vista frontal como entrada y un modelo convolucional pre-entrenado como backbone [98]. El modelo backbone usado por CheXNet es la red DenseNet121 [48] que contiene 121 capas convolucionales entrenadas con la base de datos de ImageNet [104]. Las imágenes analizadas por el modelo pueden corresponder a vistas anterior-posterior o posterior-anterior. La implementación de Transferencia de Conocimiento es lograda removiendo la etapa de clasificación (formada por capas densas) mientras que la etapa convolucional previa permanece intacta funcionando como un extractor de características. Posteriormente, una nueva etapa de clasificación construida para la detección de 14 enfermedades es colocada en su lugar. Finalmente, la nueva red compuesta es entrenada usando la base de datos ChestX-Ray14 manteniendo fijos los pesos correspondientes a la etapa convolucional de la red.

Así como en CheXNet, un modelo usado como backbone y entrenado con la base de datos de ImageNet define la red entrenada para detectar patologías toráxicas. Motivados por Bressem et al., Shazia et al. que muestran que una red backbone en particular no es un elemento definitivo en el rendimiento de detección del modelo, sino el proceso de entrenamiento. Adicionalmente Huang et al., Luo et al. presentan comparaciones de modelos evaluados en la clasificación de ImageNet donde ResNet50 y DenseNet201 obtienen un accuracy de 76 % y 74 % respectivamente. Por ello, se realiza la elección del modelo ResNet50 como backbone en la implementación de la red convolucional. ResNet50 fue propuesta por He et al. y es una opción popular en la implementación de sistemas de reconocimiento generales dado su eficiencia computacional y relativamente sencillez de entrenamiento (por su grafo de gradientes con poco caminos) en comparación del candidato natural DenseNet121 usando en CheXNet, aque versiones alternativas de CheXNet estan disponibles [142]. A pesar de lo anterior, no se descarta el uso e investigación en un futuro de otros modelos como backbone ya sea inclusive DenseNet o efficientNet [120]. Sabiendo que este mismo procedimiento puede guiarnos a

incluir nuevas patologias tales como Tuberculosis Pulmonar [116]; un tipo de neumonia bacterial mayormente común en países en vías de desarrollo y también frecuentemente reportado en pacientes con sindrome de inmunodeficiencia adquirida (AIDS) [80].

En la red detectora, la etapa clasificadora del modelo ResNet50 es remplazada con dos capas densas y una operación de Dropout intermedia con probabilidad de 25 %. La tabla 4.2 resume la arquitectura de la red.

	Input	Output	
Layer	dimension	dimension	Parameters
ResNet50	3,1000,1000	2048,1,1	24,036,431
Flatten	2048	2048	_
Dense	2048	256	524,544
ReLU	256	256	_
Drop-0.25	256	256	_
Dense	256	15	3,855
Sigmoid	15	15	_

Cuadro 4.2: Deep neural network architecture used in the proposed model. The Dense layers include the bias term. Drop-0.25 means a Dropout layer with a probability of 0.25.

Proceso de Entrenamiento

- 1. Entrenamiento inicial. Una vez seleccionada la red convolucional pre-entrenada con la base de datos de ImageNet, se reemplaza la etapa de clasificacion con por una nueva compuesta por dos capas densas. En la tabla 4.2 se presentan los detalles de la red ResNet50 usada en este modelo. De esta forma, la red convolucional ResNet50 funciona como un extractor de características; se transforma los datos originales (las imágenes de radiografías) en una nueva representación que contiene las características que permiten distinguir entre las distintas patologías. El clasificador es implementado agregando dos capas densas a esta red base. En la etapa de entrenamiento la red se comporta como como una red Perceptrón Multicapa (Multilayer Perceptron, MLP) donde la entrada es el tensor de características calculados por la red base o backbone. Para entrenar el clasificador, los pesos que corresponden a la red base son congelados y solamente son actualizados los pesos que pertenecen a la etapa de clasificación (las capas densas descritas en la tabla 4.2). El entrenamiento se realiza durante 35 épocas conservando el mejor modelo de acuerdo al accuracy obtenido usando el conjunto de validación.
- 2. **Fine-tuning**. Hasta este punto, el enfoque usado es un *aprendizaje superficial* y la etapa de extracción de características está completamente desasociado de la etapa de clasificación. La ventaja de implementar el sistema a través de dos redes neuronales (la red backbone y la red MLP) es que podemos mejorar la extracción de características

en términos de la tarea de interés. Para ello, se procede a descongelar las últimas capas convolucionales de la red backbone y continuar el entrenamiento en conjunto con las capas densas de la etapa clasificadora. Las capas a descongelar corresponden al último bloque construido de de la 5° etapa convolucional (layer conv5_3) [42]. Así, permitimos que el tensor obtenido a la salida de la red backbone sea particularizado a la tarea de clasificación actual. El procedimiento de Fine-tuning es realizado por 25 épocas más.

3. Full-tuning. Las razones por las cuales solamente son reentrenadas las últimas capas convolucionales son que tenemos que lidiar con el problema del desvanecimiento del gradiente y el sistema completo puede terminar sobre ajustando sus parámetros a la base de datos de entrenamiento. El primer problema no es tan relevante en este punto, el rendimiento obtenido por el modelo es satisfactorio y si no fuese posible mejorar las mejorar los parámetros de las capas convolucionales tampoco sufren un deterioro. El segundo problema es de importancia si la muestra de imágenes radiográficas son suficientemente representativas de las patologías de interés. Puesto que el sistema es suficientemente general para predecir el conjunto de imágenes de prueba correctamente. En este trabajo consideramos que tenemos suficientes datos y por lo tanto, como etapa final del entrenamiento se realiza una afinación completa del modelo. Esto es, entrenando completamente la red, la etapa de extracción de características (backbone) y la etapa de clasificación (MLP). Para evitar el over-fitting, el entrenamiento es continuado solamente por 10 épocas conservando el mejor modelo de acuerdo al accuracy obtenido en el conjunto de validación.

Similar a Rajpurkar et al., usamos, al inicio de cada etapa de entrenamiento, las imágenes de entrenamiento son volteadas horizontalmente con 0.5 de probabilidad como técnica de augmentation de datos.

La salida de la red es un vector de tamaño igual a el número de patologias detectadas, 15. Cada elemento del vector $\tilde{y}_i \in [0,1]$ puede ser interpretado como la probabilidad que la i-ésima patología esta presente en la imagen analizada. El vector \tilde{y} no necesariamente tiene que sumar 1, puesto que varias patologias pueden estar presentes en la radiografía. Una patologias detectada como positiva ocurre si $\tilde{y} > \theta$, donde θ es el umbral. El valor típico para este umbral es de 0,5 y puede ser modificado dependiendo del análisis de la curva del Receiver Operator Characteristic, o Curva ROC. Como algoritmo de entrenamiento se usa Adam [?] con un factor de aprendizaje (LR) de 1×10^{-4} , parámetros de inercia $\beta_1 = 0.9$ y $\beta_2 = 0.999$ con un descaimiento (LR-decay) de 0,1 si después de 10 iteraciones no se detecta una reducción en el valor de la función de pérdida mayor a 1×10^{-4} (plateau escape).

Transfer Learning para la detección de Neumonía por Tuberculosis

El propósito de esta sección es demostrar que el backbone (el modelo ResNet50) del modelo propuesto y entrenado con las 15 patologías mencionadas anteriormente, puede ser

la base para desarrollar detectores para otras enfermedades de pulmón. La idea en esta etapa es no repetir el proceso completo de entrenamiento sino usar en vez una simple estrategia de Transfer Learning. Así, se procede a extender el modelo para detectar (junto con las otras enfermedades) neumonía causada por Tuberculosis [116], un tipo de neumonía bacterial común en paises en estado vias de desarrollo y también frecuentemente reportado en pacientes con sindrome de inmunodeficiencia adquirida (AIDS) [80]. El dataset considerado incluye casos de *Tuberculosis* y no *Tuberculosis* pero es importante aclarar que la condición en particular de los casos de no *Tuberculosis* no es especificada por completo, es decir, incluyen tanto pacientes saludables como pacientes con otras afecciones.

Class	Disease	Source	Train	Test
16	Tuberculosis	3	888	488
	Non-Tuberculosis	3	6000	1600

Cuadro 4.3: Number of chest radiography's from patients with and without Tuberculosis.

La base de datos (indicada proveniente de la fuente 3 en la tabla 4.3) está compuesta por radiografías provenientes de: TBX11K dataset [69], India (DA and DB) dataset [14], Montgomery County dataset [54], y Shenzhen Hospital dataset [54]. En este trabajo se usa las listas originales para el entrenamiento y Evaluación definidos para este dataset.

Para poder detectar Tuberculosis, se realiza la implementación de un clasificador binario usando como backbone la red ResNet50 entrenada previamente para la detección de las 15 patologías anteriores. La nueva rama de clasificación incluye dos nuevas capas densas (con sus respectivas funciones de activación). Conservamos los parámetros correspondientes al backbone no entrenables y solo se entrena las nuevas capas densas usando la estrategia mencionada en la subsección de **Initial Training** 4.3 con el optimizador, factor de aprendizaje y otros parámetros sin cambios y Weighted Binary Cross-Entropy como función de pérdida similar a (4.1). Este modelo extendido aún detecta las 15 enfermedades comentadas previamente con una salida binaria extra para Tuberculosis. La arquitectura extendida incluyendo la nueva rama está descrita en la tabla 4.4.

Métricas de Evaluación

Considerando un problema de clasificación binario donde cada radiografia tiene una etiqueta $y = \{1,0\}$ con 1 indicando la presencia del padecimiento en el paciente y 0 significando que se encuentra sano, el detector puede tener dos posibles resultados: una detección positiva (P) para la enfermedad o una detección negativa (N). La tabla 4.5 muestra la caracterización de la etiqueta predicha de acuerdo a los valores reales (Ground Truth, GT). Si un paciente enfermo es correctamente detectado, tenemos un *Verdadero Positivo* (True Positive, TP) y si la predicción falla, es una *Falso Positivo* (False Negativo, FN). Por otro lado, si una etiqueta positiva es erroneamente predicha en un paciente saludable entonces tenemos un

	Input	Output	
Layer	dimension	dimension	Parameters
Initial Backbone			
ResNet50	3,1000,1000	2048,1,1	24,036,431
Flatten	2048	2048	_
Dense	2048	256	524,544
ReLU	256	256	_
Drop-0.25	256	256	_
Additional Branch			
Dense*	256	128	38,896
ReLU	128	128	_
Drop-0.20	128	128	_
Dense*	128	1	129
Sigmoid	1	1	_

Cuadro 4.4: Deep neural network architecture used in the extended model with the Tuberculosis branch. Dense layers include the bias term and * indicates trainable layers.

Falso Positivo (False Positive, FP), y si el paciente saludable es correctamente predicho es un Verdadero Negativo (True Negative, TN). La tabla 4.5 muestra la Matiz de Confusión con el conteo de cada tipo de predicción en el conjunto de prueba.

		Pre		
		Positive	Negative	
GT	Disease	ТР	FN	$\longrightarrow R = \frac{TP}{TP + FN}$
O1	No-Disease	FP	TN	$\longrightarrow S = \frac{TN}{FP + TN}$
		$P = \frac{\downarrow}{\frac{TP}{FP + FP}}$	$NPV = \frac{TN}{FN+TN}$	

Cuadro 4.5: Interpretation of the test results (prediction) according to the ground truth (GT). Metrics are calculated as the ratio between the diagonal element and the sum per row or column, as the case may be. R, recall or sensitivity; S, specificity; P, precision; NPV, negative prediction value

Para este trabajo asumimos que una patología en particular es correctamente detectada si su correspondiente puntaje en el vector de predicho es más significante que cierto umbral. En particular, asumimos un umbral igual para todas las patologías de 0,5. Usando la Matriz

CAPÍTULO 4. VISION TRANSFORMERS EN DETECCIÓN DE PATOLOGÍAS EN PULMONES CON

Figura 4.1: Scheme of the extension of the 15 pathology detector including a new branch for Tuberculosis detection.

de Confusión podemos definir varias métricas de rendimiento.

1. Accuracy (A). Esta métrica es quizás la más obvia. Corresponde al razón de los datos predichos correctamente sobre el total.

$$A = \frac{TP + TN}{TP + TN + FP + FN}. (4.3)$$

- 2. Recall o Sensibility (R). Es la fracción de pacientes con enfermedades conrectamente detectados. Esta metrica también es conocida como Tasa de Verdaderos Positivos (True Positive Rate, TPR), la tasa de detecciones correctas.
- 3. Specificity (S). It is the fraction of patients without the disease that are correctly detected.
- 4. False Positive Rate (FPR). The rate of false detections of the disease can be calculated with

$$FPR = 1 - S, (4.4)$$

where S is the Specificity.

- 5. Precision (P). This is the fraction of the predicted as positives that really have the disease, also known as the True Positive Rate (TPR).
- 6. F_1 -score (F_1) . The Recall metric can be bypassed if all the data tested are predicted positive regardless of the evidence. In such a case, FN = 0 and it result in R = 1; see

CAPÍTULO 4. VISION TRANSFORMERS EN DETECCIÓN DE PATOLOGÍAS EN PULMONES CON

the formula for Precision in Table 4.5. Similarly, the Precision metric is mocked if all the tested data are predicted as negative. In this other case we will have FPs = 0, which implies P = 1. Since it is unfeasible to simultaneously cheat both metrics, then an imbalance between them indicates a bias in any of the ways described above. Therefore, it is more informative as a performance measure to use the geometric mean of both metrics.

$$F_1 = \frac{2PR}{P+R}. (4.5)$$

7. Area Under Curve of Receiver Operator Characteristic (AUC-ROC). The receiver operator characteristic curve is a graph showing the diagnostic capabilities of binary classifiers. We have said that a particular pathology is positively detected if its predicted score is more significant than a given threshold. Then, adjusting such a threshold down allows, in general, to increase the TPR, although the FPR may also be increased. The ROC results of plotting values of TPR vs. FPR by varying the threshold in the interval [0, 1]. The AUC corresponds to the area under this ROC curve.

Capítulo 5

Conclusiones y Trabajo Futuro

Apéndice A

An appendix

Appendices are a good idea for almost any thesis. Your main thesis body will likely contain perhaps 40-60 pages of text and figures. You may well write a larger document than this, but chances are that some of the information contained therein, while important, does *not* merit a place in the main body of the document. This sort of content - peripheral clarifying details, computer code, information of use to future students but not critical to understanding your work . . . - should be allocated to one or several appendices.

A.1. About the bibliography

What follows this is the bibliography. This has its own separate environment and syntax; check out the comments in the .tex files for details. Worth nothing, though, is that you may find it helpful to use automated bibliography management tools. BibTeX will automatically generate a bibliography from you if you create a database of references. Other software - for example JabRef on a pc - can be used to make managing the reference database easy. Regardless, once you've created a .bib file you can cite it in the body of your thesis using the \cite tag. For example, one might wish to cite a reference by Bermudez [?]. If you use BibTeX, you can put the relevant information into a referencedatabase (called bibliography.bib here), and then BibTeX will compile the references into a .bbl file ordered appropriately for your thesis based on when the citations appear in the main document.

Bibliografía

- [1] Tarun Agrawal and Prakash Choudhary. Focuscovid: automated covid-19 detection using deep learning with chest x-ray images. *Evolving Systems*, pages 1–15, 2021.
- [2] Tao Ai, Zhenlu Yang, Hongyan Hou, Chenao Zhan, Chong Chen, Wenzhi Lv, Qian Tao, Ziyong Sun, and Liming Xia. Correlation of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. *Radiology*, 296(2):E32–E40, 2020.
- [3] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 3686–3693, 2014. doi: 10.1109/CVPR.2014.471.
- [4] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2014.
- [5] Caroline Apra, Charlotte Caucheteux, Arthur Mensch, Jenny Mansour, Mélodie Bernaux, Agnès Dechartres, Erwan Debuc, Xavier Lescure, Aurélien Dinh, Youri Yordanov, Patrick Jourdain, Nicolas Paris, Alexandre Gramfort, Amélie Aime-Eusebi, Alexandre Bleibtreu, Laurène Deconinck, Christine Katlama, Josselin Lebel, François-Xavier Lescure, Yves Artigou, Amélie Banzet, Elodie Boucheron, Christiane Boudier, Edouard Buzenac, Marie-Claire Chapron, Dalhia Chekaoui, Laurent De Bastard, Alexandre Grenier, Pierre-Etienne Haas, Julien Hody, Michèle Jarraya, Louis Lacaille, Aurélie Le Guern, Jeremy Leclert, Fanny Male, Jerôme Marchand-Arvier, Emmanuel Martin-Blondet, Apolinne Nassour, Oussama Ourahou, Thomas Penn, Ambre Ribardiere, Nicolas Robin, Camille Rouge, Nicolas Schmidt, Pascaline Villie, The AP-HP/Universities/Inserm COVID-19 Research Collaboration, Writing Committee, Data Science Committee, Scientific Committee, and Covidom Regional Center Steering Committee. Predictive usefulness of rt-pcr testing in different patterns of covid-19 symptomatology: analysis of a french cohort of 12,810 outpatients. Scientific Reports, 11(1):21233, Oct 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-99991-6. URL https://doi.org/10.1038/s41598-021-99991-6.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate, 2016.

- [7] Pedro RAS Bassi and Romis Attux. A deep convolutional neural network for covid-19 detection using chest x-rays. Research on Biomedical Engineering, pages 1–10, 2021.
- [8] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.
- [9] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. *IEEE Transactions on Neural Networks*, 5(2):157–166, 1994. doi: 10.1109/72.279181.
- [10] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. *CoRR*, abs/2004.10934, 2020. URL https://arxiv.org/abs/2004.10934.
- [11] Keno K Bressem, Lisa C Adams, Christoph Erxleben, Bernd Hamm, Stefan M Niehues, and Janis L Vahldiek. Comparing different deep learning architectures for classification of chest radiographs. *Scientific reports*, 10(1):1–16, 2020.
- [12] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: Realtime multi-person 2d pose estimation using part affinity fields. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(1):172–186, 2021. doi: 10.1109/TPAMI.2019.2929257.
- [13] Sneha Chaudhari, Gungor Polatkan, Rohan Ramanath, and Varun Mithal. An attentive survey of attention models. *CoRR*, abs/1904.02874, 2019. URL http://arxiv.org/abs/1904.02874.
- [14] Arun Chauhan, Devesh Chauhan, and Chittaranjan Rout. Role of gist and phog features in computer-aided diagnosis of tuberculosis without segmentation. *PloS one*, 9(11):e112980, 2014.
- [15] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George F. Foster, Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both worlds: Combining recent advances in neural machine translation. CoRR, abs/1804.09849, 2018. URL http://arxiv.org/abs/1804.09849.
- [16] Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu, Zhili Chen, and Jiebo Luo. Anatomy-aware 3d human pose estimation in videos. CoRR, abs/2002.10322, 2020. URL https://arxiv.org/abs/2002.10322.

[17] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network for multi-person pose estimation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7103–7112, 2018. doi: 10.1109/CVPR.2018.00742.

- [18] Yucheng Chen, Yingli Tian, and Mingyi He. Monocular human pose estimation: A survey of deep learning-based methods. *Computer Vision and Image Understanding*, 192: 102897, 2020. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2019.102897. URL https://www.sciencedirect.com/science/article/pii/S1077314219301778.
- [19] Yu Cheng, Bo Yang, Bo Wang, and Robby T. Tan. 3d human pose estimation using spatio-temporal networks with explicit occlusion training. CoRR, abs/2004.11822, 2020. URL https://arxiv.org/abs/2004.11822.
- [20] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers. CoRR, abs/1904.10509, 2019. URL http://arxiv.org/abs/ 1904.10509.
- [21] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches. *CoRR*, abs/1409.1259, 2014. URL http://arxiv.org/abs/1409.1259.
- [22] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *CoRR*, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.
- [23] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamás Sarlós, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. CoRR, abs/2009.14794, 2020. URL https://arxiv.org/abs/2009.14794.
- [24] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL http://arxiv.org/abs/1412.3555.
- [25] Joseph Paul Cohen, Paul Morrison, and Lan Dao. Covid-19 image data collection, 2020.
- [26] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models-their training and application. *Computer Vision and Image Understanding*, 61(1):38-59, 1995. ISSN 1077-3142. doi: https://doi.org/10.1006/cviu.1995.1004. URL https://www.sciencedirect.com/science/article/pii/S1077314285710041.

[27] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. *CoRR*, abs/1901.02860, 2019. URL http://arxiv.org/abs/1901.02860.

- [28] Erkan Deniz, Abdulkadir Şengür, Zehra Kadiroğlu, Yanhui Guo, Varun Bajaj, and Ümit Budak. Transfer learning based histopathologic image classification for breast cancer detection. *Health information science and systems*, 6(1):1–7, 2018.
- [29] Junting Dong, Wen Jiang, Qixing Huang, Hujun Bao, and Xiaowei Zhou. Fast and robust multi-person 3d pose estimation from multiple views. CoRR, abs/1901.04111, 2019. URL http://arxiv.org/abs/1901.04111.
- [30] Matteo Fabbri, Fabio Lanzi, Simone Calderara, Andrea Palazzi, Roberto Vezzani, and Rita Cucchiara. Learning to detect and track visible and occluded body joints in a virtual world. In *European Conference on Computer Vision (ECCV)*, 2018.
- [31] Haoshu Fang, Shuqin Xie, and Cewu Lu. RMPE: regional multi-person pose estimation. CoRR, abs/1612.00137, 2016. URL http://arxiv.org/abs/1612.00137.
- [32] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for object recognition. *International Journal of Computer Vision*, 61(1):55–79, Jan 2005. ISSN 1573-1405. doi: 10.1023/B:VISI.0000042934.15159.49. URL https://doi.org/10.1023/B:VISI.0000042934.15159.49.
- [33] Vittorio Ferrari, Manuel Marin-Jimenez, and Andrew Zisserman. Progressive search space reduction for human pose estimation. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008. doi: 10.1109/CVPR.2008.4587468.
- [34] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional sequence to sequence learning. *CoRR*, abs/1705.03122, 2017. URL http://arxiv.org/abs/1705.03122.
- [35] Wenjuan Gong, Xuena Zhang, Jordi Gonzàlez, Andrews Sobral, Thierry Bouwmans, Changhe Tu, and El-Hadi Zahzah. Human pose estimation from monocular images: A comprehensive survey. Sensors (Basel, Switzerland), 16(12):1966, Nov 2016. ISSN 1424-8220. doi: 10.3390/s16121966. URL https://pubmed.ncbi.nlm.nih.gov/27898003. 27898003[pmid].
- [36] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, Cambridge, MA, 2017. http://www.deeplearningbook.org.
- [37] J. C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33-51, Mar 1975. ISSN 1860-0980. doi: 10.1007/BF02291478. URL https://doi.org/10.1007/ BF02291478.

[38] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. *CoRR*, abs/1410.5401, 2014. URL http://arxiv.org/abs/1410.5401.

- [39] Hayit Greenspan, Raúl San José Estépar, Wiro J Niessen, Eliot Siegel, and Mads Nielsen. Position paper on covid-19 imaging and ai: From the clinical needs and technological challenges to initial ai solutions at the lab and national level towards a new era for ai in healthcare. *Medical image analysis*, 66:101800, 2020.
- [40] Anunay Gupta, Shreyansh Gupta, Rahul Katarya, et al. Instacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-ray. Applied Soft Computing, 99:106859, 2021.
- [41] Niharika Gupta, Shine Augustine, Tarun Narayan, Alan O'Riordan, Asmita Das, D. Kumar, John H. T. Luong, and Bansi D. Malhotra. Point-of-care pcr assays for covid-19 detection. *Biosensors*, 11(5):141, May 2021. ISSN 2079-6374. doi: 10.3390/bios11050141. URL https://pubmed.ncbi.nlm.nih.gov/34062874. 34062874[pmid].
- [42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [43] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.
- [44] Michael B. Holte, Cuong Tran, Mohan M. Trivedi, and Thomas B. Moeslund. Human pose estimation and activity recognition from multi-view videos: Comparative explorations of recent developments. *IEEE Journal of Selected Topics in Signal Processing*, 6(5):538–552, 2012. doi: 10.1109/JSTSP.2012.2196975.
- [45] Mir Rayat Imtiaz Hossain and James J. Little. Exploiting temporal information for 3d pose estimation. CoRR, abs/1711.08585, 2017. URL http://arxiv.org/abs/1711.08585.
- [46] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *CoRR*, abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.
- [47] Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. *The Lancet*, 395(10223):497–506, 2020.
- [48] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4700–4708, 2017.

[49] Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization through better initialization. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 4475–4483. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/huang20f.html.

- [50] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and Bernt Schiele. Deepercut: A deeper, stronger, and faster multi-person pose estimation model. CoRR, abs/1605.03170, 2016. URL http://arxiv.org/abs/1605.03170.
- [51] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(7): 1325–1339, 2014. doi: 10.1109/TPAMI.2013.248.
- [52] Karim Iskakov, Egor Burkov, Victor S. Lempitsky, and Yury Malkov. Learnable triangulation of human pose. CoRR, abs/1905.05754, 2019. URL http://arxiv.org/abs/1905.05754.
- [53] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and Andrew Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In *In Proc. UIST*, pages 559–568, 2011.
- [54] Stefan Jaeger, Sema Candemir, Sameer Antani, Yì-Xiáng J Wáng, Pu-Xuan Lu, and George Thoma. Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. *Quantitative imaging in medicine and surgery*, 4(6):475, 2014.
- [55] Xiaofei Ji and Honghai Liu. Advances in view-invariant human motion analysis: A review. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 40(1):13–24, 2010. doi: 10.1109/TSMCC.2009.2027608.
- [56] S.X. Ju, M.J. Black, and Y. Yacoob. Cardboard people: a parameterized model of articulated image motion. In *Proceedings of the Second International Conference on Automatic Face and Gesture Recognition*, pages 38–44, 1996. doi: 10.1109/AFGR.1996. 557241.
- [57] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. CoRR, abs/2001.04451, 2020. URL https://arxiv.org/abs/2001.04451.
- [58] John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies, pages 237–243. 2001. doi: 10.1109/9780470544037.ch14.

[59] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Openpifpaf: Composite fields for semantic keypoint detection and spatio-temporal association. CoRR, abs/2103.02440, 2021. URL https://arxiv.org/abs/2103.02440.

- [60] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. Fnet: Mixing tokens with fourier transforms. CoRR, abs/2105.03824, 2021. URL https://arxiv. org/abs/2105.03824.
- [61] Yang Li, Lukasz Kaiser, Samy Bengio, and Si Si. Area attention. CoRR, abs/1810.10126, 2018. URL http://arxiv.org/abs/1810.10126.
- [62] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/1405.0312.
- [63] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60–88, 2017.
- [64] Diana E. Litmanovich, Michael Chung, Rachael R. Kirkbride, Gregory Kicska, and Jeffrey P. Kanne. Review of chest radiograph findings of covid-19 pneumonia and suggested reporting language. *Journal of Thoracic Imaging*, 35(6), 2020. ISSN 0883-5993. URL https://journals.lww.com/thoracicimaging/Fulltext/2020/11000/Review of Chest Radiograph_Findings_of_COVID_19.4.aspx.
- [65] Dan Liu, Chenhui Ju, Chao Han, Rui Shi, Xuehui Chen, Demin Duan, Jinghua Yan, and Xiyun Yan. Nanozyme chemiluminescence paper test for rapid and sensitive detection of sars-cov-2 antigen. *Biosensors and Bioelectronics*, 173:112817, 2021. ISSN 0956-5663. doi: https://doi.org/10.1016/j.bios.2020.112817. URL https://www.sciencedirect.com/science/article/pii/S0956566320308034.
- [66] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. *CoRR*, abs/1908.03265, 2019. URL http://arxiv.org/abs/1908.03265.
- [67] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. A survey of deep neural network architectures and their applications. *Neurocomputing*, 234:11–26, 2017.
- [68] Yun Liu, Yu-Huan Wu, Yunfeng Ban, Huifang Wang, and Ming-Ming Cheng. Rethinking computer-aided tuberculosis diagnosis. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2643–2652, 2020. doi: 10.1109/CVPR42600.2020.00272.

[69] Yun Liu, Yu-Huan Wu, Yunfeng Ban, Huifang Wang, and Ming-Ming Cheng. Rethinking computer-aided tuberculosis diagnosis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2646–2655, 2020.

- [70] Zhao Liu, Jianke Zhu, Jiajun Bu, and Chun Chen. A survey of human pose estimation: The body parts parsing based methods. Journal of Visual Communication and Image Representation, 32:10-19, 2015. ISSN 1047-3203. doi: https://doi.org/10.1016/j.jvcir.2015.06.013. URL https://www.sciencedirect.com/science/article/pii/S1047320315001121.
- [71] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with residual transfer networks. arXiv preprint arXiv:1602.04433, 2016.
- [72] Bin Lou, Ting-Dong Li, Shu-Fa Zheng, Ying-Ying Su, Zhi-Yong Li, Wei Liu, Fei Yu, Sheng-Xiang Ge, Qian-Da Zou, Quan Yuan, et al. Serology characteristics of sars-cov-2 infection after exposure and post-symptom onset. *European Respiratory Journal*, 56 (2), 2020.
- [73] Chunjie Luo, Xiwen He, Jianfeng Zhan, Lei Wang, Wanling Gao, and Jiahui Dai. Comparison and benchmarking of ai models and frameworks on mobile devices. arXiv preprint arXiv:2005.05085, 2020.
- [74] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural machine translation. CoRR, abs/1508.04025, 2015. URL http://arxiv.org/abs/1508.04025.
- [75] Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Interactive attention networks for aspect-level sentiment classification. CoRR, abs/1709.00893, 2017. URL http://arxiv.org/abs/1709.00893.
- [76] Jerry Ma and Denis Yarats. On the adequacy of untuned warmup for adaptive optimization. *CoRR*, abs/1910.04209, 2019. URL http://arxiv.org/abs/1910.04209.
- [77] Julieta Martinez, Rayat Hossain, Javier Romero, and James J. Little. A simple yet effective baseline for 3d human pose estimation. *CoRR*, abs/1705.03098, 2017. URL http://arxiv.org/abs/1705.03098.
- [78] André F. T. Martins and Ramón Fernandez Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label classification. CoRR, abs/1602.02068, 2016. URL http://arxiv.org/abs/1602.02068.
- [79] André F. T. Martins, Marcos V. Treviso, António Farinhas, Vlad Niculae, Mário A. T. Figueiredo, and Pedro M. Q. Aguiar. Sparse and continuous attention mechanisms. CoRR, abs/2006.07214, 2020. URL https://arxiv.org/abs/2006.07214.

[80] Hiroki Matsuura and Yasufumi Yamaji. Tuberculous pneumonia. QJM: An International Journal of Medicine, 111(2):131–131, 2018.

- [81] Dushyant Mehta, Helge Rhodin, Dan Casas, Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. Monocular 3d human pose estimation using transfer learning and improved CNN supervision. *CoRR*, abs/1611.09813, 2016. URL http://arxiv.org/abs/1611.09813.
- [82] Thomas B. Moeslund and Erik Granum. A survey of computer vision-based human motion capture. Computer Vision and Image Understanding, 81(3):231-268, 2001. ISSN 1077-3142. doi: https://doi.org/10.1006/cviu.2000.0897. URL https://www.sciencedirect.com/science/article/pii/S107731420090897X.
- [83] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances in vision-based human motion capture and analysis. *Computer Vision and Image Understanding*, 104(2):90–126, 2006. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2006.08.002. URL https://www.sciencedirect.com/science/article/pii/S1077314206001263. Special Issue on Modeling People: Vision-based understanding of a person's shape, appearance, movement and behaviour.
- [84] Tewodros Legesse Munea, Yalew Zelalem Jembre, Halefom Tekle Weldegebriel, Longbiao Chen, Chenxi Huang, and Chenhui Yang. The progress of human pose estimation: A survey and taxonomy of models applied in 2d human pose estimation. *IEEE Access*, 8:133330–133348, 2020. doi: 10.1109/ACCESS.2020.3010248.
- [85] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. CoRR, abs/1603.06937, 2016. URL http://arxiv.org/abs/1603.06937.
- [86] Radiological Society of North America. Covid-19 radiography database, 2019. URL https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.
- [87] Radiological Society of North America. Rsna pneumonia detection challenge., 2019. URL https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data.
- [88] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In *Proceedings* of the IEEE conference on computer vision and pattern recognition, pages 1717–1724, 2014.
- [89] World Health Organization et al. Who director-general's opening remarks at the media briefing on covid-19-11 march 2020, 2020.
- [90] Megan O'Driscoll, Gabriel Ribeiro Dos Santos, Lin Wang, Derek AT Cummings, Andrew S Azman, Juliette Paireau, Arnaud Fontanet, Simon Cauchemez, and Henrik

- Salje. Age-specific mortality and immunity patterns of sars-cov-2. *Nature*, 590(7844): 140–145, 2021.
- [91] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, and Alexander Ku. Image transformer. CoRR, abs/1802.05751, 2018. URL http://arxiv. org/abs/1802.05751.
- [92] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In Sanjoy Dasgupta and David McAllester, editors, *Proceedings of the 30th International Conference on Machine Learning*, volume 28(3) of *Proceedings of Machine Learning Research*, pages 1310–1318, Atlanta, Georgia, USA, 17–19 Jun 2013.
- [93] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3d human pose estimation in video with temporal convolutions and semi-supervised training. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 7745–7754, 2019. doi: 10.1109/CVPR.2019.00794.
- [94] John Pavlopoulos, Prodromos Malakasiotis, and Ion Androutsopoulos. Deeper attention to abusive user content moderation. pages 1125–1135, 01 2017. doi: 10.18653/v1/D17-1117.
- [95] Martin Popel and Ondrej Bojar. Training tips for the transformer model. *CoRR*, abs/1804.00247, 2018. URL http://arxiv.org/abs/1804.00247.
- [96] Ronald Poppe. Vision-based human motion analysis: An overview. Computer Vision and Image Understanding, 108(1):4–18, 2007. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2006.10.016. URL https://www.sciencedirect.com/science/article/pii/S1077314206002293. Special Issue on Vision for Human-Computer Interaction.
- [97] Murali Krishna Puttagunta and S Ravi. Detection of tuberculosis based on deep learning based methods. In *Journal of Physics: Conference Series*, volume 1767, page 012004. IOP Publishing, 2021.
- [98] Pranav Rajpurkar, Jeremy Irvin, Robyn L Ball, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis P Langlotz, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the chexnext algorithm to practicing radiologists. *PLoS Medicine*, 15(11):e1002686, 2018.
- [99] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. *CoRR*, abs/1506.02640, 2015. URL http://arxiv.org/abs/1506.02640.
- [100] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506.01497, 2015. URL http://arxiv.org/abs/1506.01497.

[101] Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and ct scans. *Nature Machine Intelligence*, 3(3):199–217, 2021.

- [102] Daniel Roetenberg, Henk Luinge, and Per Slycke. Xsens mvn: Full 6dof human motion tracking using miniature inertial sensors. *Xsens Motion Technol. BV Tech. Rep.*, 3, 01 2009.
- [103] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. *Nature*, 323(6088):533–536, Oct 1986. ISSN 1476-4687. doi: 10.1038/323533a0. URL https://doi.org/10.1038/323533a0.
- [104] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision (IJCV)*, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
- [105] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. CoRR, abs/1801.04381, 2018. URL http://arxiv.org/abs/1801.04381.
- [106] Ben Sapp and Ben Taskar. Modec: Multimodal decomposable models for human pose estimation. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 3674–3681, 2013. doi: 10.1109/CVPR.2013.471.
- [107] Nikolaos Sarafianos, Bogdan Boteanu, Bogdan Ionescu, and Ioannis A. Kakadiaris. 3d human pose estimation: A review of the literature and analysis of covariates. Computer Vision and Image Understanding, 152:1-20, 2016. ISSN 1077-3142. doi: https://doi.org/10.1016/j.cviu.2016.09.002. URL https://www.sciencedirect.com/science/article/pii/S1077314216301369.
- [108] Charles F. Schuler, Carmen Gherasim, Kelly O'Shea, David M. Manthei, Jesse Chen, Don Giacherio, Jonathan P. Troost, James L. Baldwin, and James R. Baker. Accurate point-of-care serology tests for covid-19. *PLOS ONE*, 16(3):e0248729, 2021. doi: 10.1371/journal.pone.0248729. URL https://app.dimensions.ai/details/publication/pub.1136450856andhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248729&type=printable.
- [109] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. *IEEE Transactions on Signal Processing*, 45(11):2673–2681, 1997. doi: 10.1109/78.650093.

[110] Anis Shazia, Tan Zi Xuan, Joon Huang Chuah, Juliana Usman, Pengjiang Qian, and Khin Wee Lai. A comparative study of multiple neural network for detection of covid 19 on chest x-ray. EURASIP J. Adv. Signal Process., (50), 2021.

- [111] Afshin Shoeibi, Marjane Khodatars, Roohallah Alizadehsani, Navid Ghassemi, Mahboobeh Jafari, Parisa Moridian, Ali Khadem, Delaram Sadeghi, Sadiq Hussain, Assef Zare, et al. Automated detection and forecasting of covid-19 using deep learning techniques: A review. arXiv preprint arXiv:2007.10785, 2020.
- [112] Junaid Shuja, Eisa Alanazi, Waleed Alasmary, and Abdulaziz Alashaikh. Covid-19 open source data sets: a comprehensive survey. *Applied Intelligence*, 51(3):1296–1325, 2021.
- [113] H. Sidenbladh, F. De la Torre, and M.J. Black. A framework for modeling the appearance of 3d articulated figures. In *Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)*, pages 368–375, 2000. doi: 10.1109/AFGR.2000.840661.
- [114] SIIM, FISABIO, BIMCV, and RSNA. Siim-fisabio-rsna covid-19 detection, 2021. URL https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.
- [115] Alessandro Sordoni, Philip Bachman, and Yoshua Bengio. Iterative alternating neural attention for machine reading. *CoRR*, abs/1606.02245, 2016. URL http://arxiv.org/abs/1606.02245.
- [116] Sergii Stirenko, Yuriy Kochura, Oleg Alienin, Oleksandr Rokovyi, Yuri Gordienko, Peng Gang, and Wei Zeng. Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), pages 422–428. IEEE, 2018.
- [117] Abu Sufian, Anirudha Ghosh, Ali Safaa Sadiq, and Florentin Smarandache. A survey on deep transfer learning to edge computing for mitigating the covid-19 pandemic. *Journal of Systems Architecture*, 108:101830, 2020.
- [118] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention span in transformers. *CoRR*, abs/1905.07799, 2019. URL http://arxiv.org/abs/1905.07799.
- [119] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on deep transfer learning. In *International Conference on Artificial Neural Networks*, pages 270–279. Springer, 2018.
- [120] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International Conference on Machine Learning*, pages 6105–6114. PMLR, 2019.

[121] Yi Tay, Anh Tuan Luu, Aston Zhang, Shuohang Wang, and Siu Cheung Hui. Compositional de-attention networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/16fc18d787294ad5171100e33d05d4e2-Paper.pdf.

- [122] Jing Tong, Jin Zhou, Ligang Liu, Zhigeng Pan, and Hao Yan. Scanning 3d full human bodies using kinects. *IEEE Transactions on Visualization and Computer Graphics*, 18 (4):643–650, 2012. doi: 10.1109/TVCG.2012.56.
- [123] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep neural networks. CoRR, abs/1312.4659, 2013. URL http://arxiv.org/abs/1312.4659.
- [124] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. End-to-end estimation of multi-person 3d poses from multiple cameras. CoRR, abs/2004.06239, 2020. URL https://arxiv.org/abs/2004.06239.
- [125] Nicolas Vabret, Graham J. Britton, Conor Gruber, Samarth Hegde, Joel Kim, Maria Kuksin, Rachel Levantovsky, Louise Malle, Alvaro Moreira, Matthew D. Park, Luisanna Pia, Emma Risson, Miriam Saffern, Bérengère Salomé, Myvizhi Esai Selvan, Matthew P. Spindler, Jessica Tan, Verena van der Heide, Jill K. Gregory, Konstantina Alexandropoulos, Nina Bhardwaj, Brian D. Brown, Benjamin Greenbaum, Zeynep H. Gümüş, Dirk Homann, Amir Horowitz, Alice O. Kamphorst, Maria A. Curotto de Lafaille, Saurabh Mehandru, Miriam Merad, Robert M. Samstein, Manasi Agrawal, Mark Aleynick, Meriem Belabed, Matthew Brown, Maria Casanova-Acebes, Jovani Catalan, Monica Centa, Andrew Charap, Andrew Chan, Steven T. Chen, Jonathan Chung, Cansu Cimen Bozkus, Evan Cody, Francesca Cossarini, Erica Dalla, Nicolas Fernandez, John Grout, Dan Fu Ruan, Pauline Hamon, Etienne Humblin, Divya Jha, Julia Kodysh, Andrew Leader, Matthew Lin, Katherine Lindblad, Daniel Lozano-Ojalvo, Gabrielle Lubitz, Assaf Magen, Zafar Mahmood, Gustavo Martinez-Delgado, Jaime Mateus-Tique, Elliot Meritt, Chang Moon, Justine Noel, Tim O'Donnell, Miyo Ota, Tamar Plitt, Venu Pothula, Jamie Redes, Ivan Reyes Torres, Mark Roberto, Alfonso R. Sanchez-Paulete, Joan Shang, Alessandra Soares Schanoski, Maria Suprun, Michelle Tran, Natalie Vaninov, C. Matthias Wilk, Julio Aguirre-Ghiso, Dusan Bogunovic, Judy Cho, Jeremiah Faith, Emilie Grasset, Peter Heeger, Ephraim Kenigsberg, Florian Krammer, and Uri Laserson. Immunology of covid-19: Current state of the science. *Immunity*, 52(6):910–941, 2020. doi: https://doi.org/10.1016/j.immuni.2020.05.002.
- [126] Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans. CoRR, abs/1701.01370, 2017. URL http://arxiv.org/abs/1701.01370.

[127] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

- [128] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.
- [129] Linda Wang, Zhong Qiu Lin, and Alexander Wong. Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. *Scientific Reports*, 10(1):19549, Nov 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-76550-z. URL https://doi.org/10.1038/s41598-020-76550-z.
- [130] Linda Wang, Zhong Qiu Lin, and Alexander Wong. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. *Scientific Reports*, 10(1):1–12, 2020.
- [131] Linda Wang, Alexander Wong, Zhong Qiu Lin, Paul McInnis, Audrey Chung, Hayden Gunraj, James Lee, Matt Ross, Blake VanBerlo, Ashkan Ebadi, Kim-Ann Git, and Abdul Al-Haimi. Actualmed covid-19 chest x-ray data initiative, 2020. URL https://github.com/agchung/Actualmed-COVID-chestxray-dataset.
- [132] Linda Wang, Alexander Wong, Zhong Qiu Lin, Paul McInnis, Audrey Chung, Hayden Gunraj, James Lee, Matt Ross, Blake VanBerlo, Ashkan Ebadi, Kim-Ann Git, and Abdul Al-Haimi. Figure 1 covid-19 chest x-ray data initiative, 2020. URL https://github.com/agchung/Figure1-COVID-chestxray-dataset.
- [133] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. *CoRR*, abs/2006.04768, 2020. URL https://arxiv.org/abs/2006.04768.
- [134] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M. Summers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3462–3471, 2017. doi: 10.1109/CVPR.2017.369.
- [135] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Summers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 2097–2106, 2017.
- [136] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional pose machines. CoRR, abs/1602.00134, 2016. URL http://arxiv.org/abs/1602.00134.

[137] Lilian Weng. Attention? attention! lilianweng.github.io/lil-log, 2018. URL http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html.

- [138] Ho Yuen Frank Wong, Hiu Yin Sonia Lam, Ambrose Ho-Tung Fong, Siu Ting Leung, Thomas Wing-Yan Chin, Christine Shing Yen Lo, Macy Mei-Sze Lui, Jonan Chun Yin Lee, Keith Wan-Hang Chiu, Tom Wai-Hin Chung, et al. Frequency and distribution of chest radiographic findings in patients positive for covid-19. *Radiology*, 296(2):E72–E78, 2020.
- [139] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fastformer: Additive attention can be all you need. *CoRR*, abs/2108.09084, 2021. URL https://arxiv.org/abs/2108.09084.
- [140] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking. CoRR, abs/1804.06208, 2018. URL http://arxiv.org/abs/1804.06208.
- [141] Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention weights for fast transformer. *CoRR*, abs/1906.11024, 2019. URL http://arxiv.org/abs/1906.11024.
- [142] Jingjing Tian Xinyu Weng, Nan Zhuang and Yingcheng Liu. Chexnet for classification and localization of thoracic diseases (an alternative implementation); consulted august 30, 2021. URL https://github.com/arnoweng/CheXNet.
- [143] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture. *CoRR*, abs/2002.04745, 2020. URL https://arxiv.org/abs/2002.04745.
- [144] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. *CoRR*, abs/1502.03044, 2015. URL http://arxiv.org/abs/1502.03044.
- [145] Yi Yang and Deva Ramanan. Articulated human detection with flexible mixtures of parts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(12): 2878–2890, 2013. doi: 10.1109/TPAMI.2012.261.
- [146] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical attention networks for document classification. In NAACL 2016, pages 1480-1489, June 2016. URL https://www.microsoft.com/en-us/research/publication/hierarchical-attention-networks-document-classification/.

[147] Ce Zheng, Wenhan Wu, Taojiannan Yang, Sijie Zhu, Chen Chen, Ruixu Liu, Ju Shen, Nasser Kehtarnavaz, and Mubarak Shah. Deep learning-based human pose estimation: A survey. *CoRR*, abs/2012.13392, 2020. URL https://arxiv.org/abs/2012.13392.

- [148] Aoxiao Zhong, Xiang Li, Dufan Wu, Hui Ren, Kyungsang Kim, Younggon Kim, Varun Buch, Nir Neumark, Bernardo Bizzo, Won Young Tak, et al. Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in covid-19. *Medical Image Analysis*, 70:101993, 2021.
- [149] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. CoRR, abs/1711.06396, 2017. URL http://arxiv.org/abs/1711.06396.