COMPUTER NETWORKS LABORATORY

By: Nitish S PES2201800368 5 'A'

WEEK – 1 – Learn and Understand Network Tools Date: 31/08/2020

Study and understand the basic networking tools - Wireshark, Tcpdump, Ping, Traceroute and Netcat.

Learn and Understand Network Tools			
1. Wireshark			
	Perform and analyze Ping PDU capture Examine HTTP packet capture Analyze HTTP packet capture using filter		
2. Neto	cat		
	Establish communication between client and server Transfer files		
3. Tcpdump			
•	Capture packets		
4. Ping			
•	Test the connectivity between 2 systems		
5. Traceroute			
•	Perform traceroute checks		
6. Nm	ар		
•	Explore an entire network		

TASK 1: LINUX INTERFACE CONFIGURATION (IFCONFIG / IP

COMMAND)

Step 1: To display status of all active network interfaces.

ifconfig (or) ip addr show

ip address table:

Interface name	IP address (IPv4 / IPv6)	MAC address	
enp0s3	10.0.2.15	08:00:27:89:68:38	
lo	127.0.0.1	00:00:00:00:00	

Step 2: To assign an IP address to an interface, use the following command.

sudo ifconfig enp0s3 10.0.1.32

Step 3: To activate / deactivate a network interface, type.

Command given: sudo ifconfig 10.0.1.32 down

sudo ifconfig 10.0.1.32 up

Step 4: To show the current neighbor table in kernel, type

ip neigh

TASK 2: PING PDU (PACKET DATA UNITS OR PACKETS)

CAPTURE

In terminal: **ping 10.0.1.32**

TTL: 64

Protocol Used By Ping: ICMP

Time: Two packets are arriving per second

Observations made in Wireshark:

Details	First Echo Request	First Echo Reply
Frame Number	1	2
Source IP address	10.0.1.32	10.0.1.32
Destination IP address	10.0.1.32	10.0.1.32
ICMP Type Value	8	0
ICMP Code Value	0	0
Source Ethernet Address	PcsCompu_89:68:38 (08:00:27:89:68:38)	RealtekU_12:35:02 52:54:00:12:35:02)
Destination Ethernet Address	RealtekU_12:35:02 52:54:00:12:35:02)	PcsCompu_89:68:38 (08:00:27:89:68:38)
Internet Protocol Version	4	4
Time To Live (TTL) Value	64	112

TASK 3: HTTP PDU CAPTURE

Using Wireshark's Filter feature

Step 1: Launch Wireshark and select 'enp0s3' interface. On the Filter toolbar, type-in 'http' and press enter

Step 2: Open Firefox browser, and browse www.flipkart.com

Observations made:

Details	First Echo Request	First Echo Reply
Frame Number	6	16
Source Port	48608	80
Destination Port	80	48608
Source IP address	10.0.1.32	49.44.112.206
Destination IP address	49.44.112.206	10.0.1.32
Source Ethernet Address	PcsCompu_89:68:38 (08:00:27:89:68:38)	RealtekU_12:35:02 52:54:00:12:35:02)
Destination Ethernet Address	RealtekU_12:35:02 52:54:00:12:35:02)	PcsCompu_89:68:38 (08:00:27:89:68:38)

Analyzing the HTTP request and response:

HTTP Request		HTTP Response	
Get	GET /success.txt HTTP/1.1\r\n	Server	AmazonS3\r\n
Host	$detectportal.firefox.com \ \ \ \ \\$	Content-Type	text/plain\r\n
User-Agent	Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:80.0) Gecko/20100101 Firefox/80.0\r\n	Date	Wed, 02 Sep 2020 13:48:48 GMT\r\n
Accept-Language	en-US,en;q=0.5\r\n	Location	
Accept-Encoding	gzip, deflate\r\n	Content-Length	8\r\n
Connection	keep-alive\r\n	Connection	keep-alive\r\n

LOCATION FIELD NOT SHOWN

Using Wireshark's Follow TCP Stream

TASK 4: CAPTURING PACKETS WITH TCPDUMP

Step 1: Use the command **tcpdump -D** to see which interfaces are available for capture.

sudo tcpdump -D

Step 2: Capture all packets in any interface by running this command:

sudo tcpdump -i any

Note: Perform some pinging operation while giving above command. Also type www.google.com in browser.

Step 3: Understand the output format.

Step 4: To filter packets based on protocol, specifying the protocol in the command line. For example, capture ICMP packets only by using this command:

sudo tcpdump -i any -c5 icmp

Step 5: Check the packet content. For example, inspect the HTTP content of a web request like this:

sudo tcpdump -i any -c10 -nn -A port 80

Step 6: To save packets to a file instead of displaying them on screen, use the option -w:

sudo tcpdump -i any -c10 -nn -w webserver1.pcap port 80

TASK 5: PERFORM TRACEROUTE CHECKS

Step 1: sudo traceroute www.google.com

Step 2: Analyze destination address of google.com and no. of hops

Destination Address of google.com = 172.217.163.164 and no of hops: 30

Step 3: The -I option is necessary so that the traceroute uses ICMP.

sudo traceroute -I www.google.com

Step 4: To speed up the process, you can disable the mapping of IP addresses with hostnames by using the -*n* option : **sudo traceroute -I -n** www.google.com

Step 5: By default, traceroute uses icmp (ping) packets. If you'd rather test a TCP connection to gather data more relevant to web server, you can use the -T flag.

sudo traceroute -T www.google.com

Step 1: You can scan a host using its host name or IP address, for instance. **nmap** www.pes.edu

Step 2: Alternatively, use an IP address to scan. nmap 163.53.78.128

Step 3: Scan multiple websites or ip addresses

nmap www.google.com www.flipkart.com

TASK 7 A): NETCAT AS CHAT TOOL

a) Intra system communication (Using 2 terminals in the same system)

SERVER TERMINAL:

CLIENT TERMINAL:

TASK 7 B): USE NETCAT TO TRANSFER FILES

7 C) OTHER COMMANDS:-

1) To test if a particular TCP port of a remote host is open.

2) Netcat exchanging file via Terminal:

QUESTIONS ON THE ABOVE OBSERVATIONS:-

1) Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the server?

Ans:- Both the browser and server are running HTTP version 1.1

2) When was the HTML file that you are retrieving last modified at the server?

Ans:- Using Wireshark, we can check the Packet TCP Stream Request and then we can see the timestamp values in the Stream.

The below screenshot shows the last modified date:

3) How to tell ping to exit after a specified number of ECHO_REQUEST packets?

Ans:- The below command pings 5 Packets and displays the route the packet traverses and then stops. Ping -R -c 5 www.google.com

- 4) How will you identify remote host apps and OS? Ans:-
- nmap -O -v IPADDRESS :- Gives the Remote Host Os That it is currently running on'
- nmap -sV IPADDRESS :- Get the Service/Deamons that are running in the remote Host IP.

EXERCISES:

1) Capture and Analyze IPv4 / IPv6 packets.

GET	GET /success.txt HTTP/1.1\r\n
HOST	detectportal.firefox.com\r\n
USER-AGENT	Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:80.0) Gecko/20100101 Firefox/80.0\r\n
ACCEPT-LANGUAGE	en-US,en;q= $0.5\r\n$
CACHE-CONTROL	no-cache\r\n
PRAGMA	no-cache\r\n
CONNECTION	keep-alive\r\n

 $2) \ Explore \ various \ other \ network \ configuration, trouble shooting \ and \ debugging \ tools \ such \ as \ Route, \\ Netstat, \ etc.$

Ans:-

1) **NETSTAT:-** The **netstat** command generates displays that show **network** status and protocol statistics. You can display the status of TCP and UDP endpoints in table format, routing table information, and interface information. **netstat** displays various types of **network** data depending on the command line option selected.

Eg: netstat -a

Displays all active connections and the TCP and UDP ports on which the computer is listening.

2) **ROUTE**:- This utility is used to display the current status of the routing table on a host.

