Session 18: Set Operations

- Set Operations
 - Union
 - Intersection
 - Complement
 - Difference
 - Symmetric Difference

Union

Definition: Let A and B be sets. The **union** of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x|x\in A\vee x\in B\}$$

Venn Diagram for *A* ∪ *B*

Example: $\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$

Intersection

Definition: The **intersection** of sets A and B, denoted by $A \cap B$, is $\{x | x \in A \land x \in B\}$

If the intersection is empty, then A and B are said to be disjoint.

Venn Diagram for $A \cap B$

Example:
$$\{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$$

 $\{1, 2, 3\} \cap \{4, 5, 6\} = \emptyset$

Difference

Definition: The **difference** of sets A and B, denoted by A - B, is the set containing the elements of A that are not in B.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

The difference of A and B is also called the **complement** of B with respect to A.

Example: $\{1, 2, 3\} - \{3, 4, 5\} = \{1, 2\}$

Complement

Definition: If A is a set, then the complement of the A with respect to the universe U, denoted by \bar{A} is the set

$$\bar{A} = U - A = \{x \in U \mid x \notin A\}$$

The complement of A is also denoted by A^c .

Venn Diagram for Complement

Example: If *U* is the positive integers, $\{x \mid x > 70\}^c = \{x \mid x \le 70\}$

Symmetric Difference

Definition: The **symmetric difference** of sets A and B, denoted by

A⊕B is the set

$$(A - B) \cup (B - A)$$

Venn Diagram

Example: $A = \{1, 2, 3, 4, 5\}$, $B = \{4, 5, 6, 7, 8\}$, $A \oplus B = \{1, 2, 3, 6, 7, 8\}$

Analogy Set Operations – Propositional Calculus Connectives

U corresponds to ∨

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

 \cap corresponds to \wedge

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

 \bar{A} corresponds to \neg

$$\bar{A} = \{x \in U \mid \neg x \in A\} = \{x \in U \mid x \not\in A\}$$

⊕ corresponds to ⊕

$$A \oplus B = \{x \mid x \in A \oplus x \in B\}$$

Cardinality of Set Union

Inclusion-Exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Venn Diagram for A, B, $A \cap B$, $A \cup B$

Summary

- Set Operations
- Analogy to Propositional Logic
- Inclusion-Exclusion