

MITx: 14.310x Data Analysis for Social Scientists

Heli

- Module 1: The Basics of R and Introduction to the Course
- ▶ Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 6: Special Distributions, the Sample Mean, the Central Limit Theorem, and Estimation > The Sample Mean, Central Limit Theorem, and Estimation > Understanding Estimation - Quiz

Understanding Estimation - Quiz

☐ Bookmark this page

Question 1

1/1 point (graded)

For all families of distributions, estimation is trying to determine the specific _____ of a distribution.

- a. Mean
- b. Variance
- c. Parameter
- d. Maximum

Explanation

Estimation is trying to determine the specific parameter of a distribution, because this will give us a lot information about the shape of the distribution. For example, for normal distributions, estimation will typically try to determine the mean and variance.

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 <u>Distributions, the</u>

 <u>Sample Mean, the</u>
 <u>Central Limit Theorem,</u>
 and Estimation

<u>Human Subjects and Special</u> Distributions

Finger Exercises due Nov 07, 2016 at 05:00 IST

The Sample Mean, Central Limit Theorem, and Estimation

Finger Exercises due Nov 07, 2016 at 05:00 IST

Module 6: Homework

► Exit Survey

Question 3 1/1 point (graded) $\hat{m{ heta}}$ is used to stand for: (Select all that apply)
a. The parameter
b. The sample mean
c. The variance
☑ d. The estimator ✓
✓ e. The estimate
✓
Explanation The estimator and the estimate could both be represented by $\hat{\pmb{\theta}}$. The parameter they are estimating could be represented by $\pmb{\theta}$. The estimator and estimate are $\hat{\pmb{\theta}}$, because they are estimating the parameter.
Submit You have used 1 of 2 attempts
✓ Correct (1/1 point)

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

