

(12) United States Patent

Cho et al.

(10) Patent No.:

US 6,678,767 B1

(45) Date of Patent:

Jan. 13, 2004

(54) BUS SAMPLING ON ONE EDGE OF A **CLOCK SIGNAL AND DRIVING ON** ANOTHER EDGE

(75) Inventors: James Y. Cho, Los Gatos, CA (US); Joseph B. Rowlands, Santa Clara, CA

(73) Assignee: Broadcom Corp, Irvine, CA (US)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 503 days.

(21) Appl. No.: 09/680,523

(22)	Filed:	Oct.	6,	2000
\ /			•	

(51)	Int. Cl. ⁷	G06F 13/00
(52)	U.S. Cl	
(58)	Field of Search	710/100, 305,
		710/25, 124, 125

(56)References Cited

U.S. PATENT DOCUMENTS

5,919,265	Α		7/1999	Nishtala et al.	
6,078,546	Α		6/2000	Lee	
6,173,349	B 1	+	1/2001	Qureshi et al	710/110
6,378,017	B 1	*	4/2002	Girzon et al	710/306
6,418,491	B 1	*	7/2002	Martin San Juan	710/100
6,442,642	B 1	*	8/2002	Brooks	710/305
6,442,644	$\mathbf{B}1$	*	8/2002	Gustavson et al	711/105
2001/0034802	A1	*	10/2001	Peng et al	710/126
2002/0147875	A1	*	10/2002	Singh et al	710/305

OTHER PUBLICATIONS

Pentium Pro Family Developer's Manual, vol. 1: Specifications, Chapter 3, pp. 1-25, 1996.*

"PowerPC 601; RISC Microprocessor User's Manual," IBM Microelectronics, Power PC, Motorola, Rev. 1, 1993, 8

SiByte, "Target Applications," http://sibyte.com/mercurian/ applications.htm, Jan. 15, 2001, 2 pages.

SiByte, "SiByte Technology," http://sibyte.com/mercurian/ technology.htm, Jan. 15, 2001, 3 pages.

SiByte, "The Mercurian Processor," http://sibyte.com/mercurian, Jan. 15, 2001, 2 pages.

SiByte, "Fact Sheet," SB-1 CPU, Oct. 2000, rev. 0.1, 1

SiByte, "Fact Sheet," SB-1250, Oct. 2000, rev. 0.2, 10 pages.

Stepanian, SiByte, SiByte SB-1 MIPS64 CPU Core, Embedded Processor Forum 2000, Jun. 13, 2000, 15 pages.

(List continued on next page.)

Primary Examiner-Mark H. Rinehart Assistant Examiner-Kim T. Huynh

(74) Attorney, Agent, or Firm-Lawrence J. Merkel

ABSTRACT

An agent may be coupled to receive a clock signal associated with the bus, and may be configured to drive a signal responsive to a first edge (rising or falling) of the clock signal and to sample signals responsive to the second edge. The sampled signals may be evaluated to allow for the driving of a signal on the next occurring first edge of the clock signal. By using the first edge to drive signals and the second edge to sample signals, the amount of time dedicated for signal propagation may be one half clock cycle. Bandwidth and/or latency may be positively influenced. In some embodiments, protocols which may require multiple clock cycles on other buses may be completed in fewer clock cycles. For example, certain protocols which may require two clock cycles may be completed in one clock cycle. In one specific implementation, for example, arbitration may be completed in one clock cycle. Request signals may be driven responsive to the first edge of the clock signal and sampled responsive to the second edge. The sampled signals may be evaluated to determine an arbitration winner, which may drive the bus responsive to the next occurrence of the first edge.

35 Claims, 6 Drawing Sheets

03/21/2004, EAST Version: 1.4.1

US 6,678,767 B1

Page 2

OTHER PUBLICATIONS

Jim Keller, "The Mercurian Processor: A High Performance, Power-Efficient CMP for Networking," Oct. 10, 2000, 22 pages.

Tom R. Halfhill, "SiByte Reveals 64-Bit Core For NPUs; Independent MIPS64 Design Combines Low Power, High Performance," Microdesign Resources, Jun. 2000, Micro-

processor Report, 4 pages.
Halfhill, "SiByte Reveals 64-Bit Core for NPUs," Microprocessor Report, Jun. 2000, pp. 45-48.

Pentium® Pro Family Developer's Manual, vol. 1: Speci-

fications, Chapter 3, pp. 1-25, 1996.

* cited by examiner

03/21/2004, EAST Version: 1.4.1

Fig. 1

Jan. 13, 2004

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

BUS SAMPLING ON ONE EDGE OF A CLOCK SIGNAL AND DRIVING ON ANOTHER EDGE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention is related to digital systems and, more particularly, to buses within digital systems.

2. Description of the Related Art

A bus is frequently used in digital systems to interconnect a variety of devices included in the digital system. Generally, one or more devices are connected to the bus, and use the bus to communicate with other devices connected to the bus. 15 As used herein, the term "agent" refers to a device-which is capable of communicating on the bus. The agent may be a requesting agent if the agent is capable of initiating transactions on the bus and may be a responding agent if the agent is capable of responding to a transaction initiated by a 20 requesting agent. A given agent may be capable of being both a requesting agent and a responding agent. Additionally, a "transaction" is a communication on the bus. The transaction may include an address transfer and optionally a data transfer. Transactions may be read transactions 25 (transfers of data from the responding agent to the requesting agent) and write transactions (transfers of data from the requesting agent to the responding agent). Transactions may further include various coherency commands which may or may not involve a transfer of data.

The bus is a shared resource among the agents, and thus may affect the performance of the agents to the extent that the bus may limit the amount of communication by each agent and the latency of that communication. Generally, a bus may be characterized by latency and bandwidth. The latency may be affected by the amount of time used to arbitrate for the bus and to perform a transaction on the bus. The bandwidth may be affected by the amount of information (e.g. bits or bytes) that may be transmitted per cycle, as well as the amount of time used to perform the transfer. Both latency and bandwidth may be affected by the physical constraints of the bus and the protocol employed by the bus.

For example, many bus protocols require two clock cycles for arbitration: the transmission of the requests for the bus during the first clock cycle and the determination of the grant 45 (and transmittal of the grant, in a central arbitration scheme) during the second clock cycle. The transaction may be initiated by the agent receiving the grant during the third clock cycle. The clock cycles may each be a period of a clock signal associated with the bus. Similarly, most bus 50 protocols are limited in the number of bytes of data which may be transferred per clock cycle (e.g. 8 bytes is typical). Accordingly, transferring a cache block of data (which tends to dominate the transfers performed in modern digital systems) requires multiple clock cycles (e.g. 4 clock cycles 55 for a 32 byte cache block on an 8 byte bus).

SUMMARY OF THE INVENTION

The problems outlined above are in large part solved by a system including one or more agents coupled to a bus. The 60 agent may be coupled to receive a clock signal associated with the bus, and may be configured to drive a signal responsive to a first edge (rising or falling) of the clock signal and to sample signals responsive to the second edge. The sampled signals may be evaluated to allow for the 65 driving of a signal on the next occurring first edge of the clock signal.

By using the first edge to drive signals and the second edge to sample signals, the amount of time dedicated for signal propagation may be one half clock cycle. Bandwidth and/or latency may be positively influenced. In some embodiments, protocols which may require multiple clock cycles on other buses may be completed in fewer clock cycles. For example, certain protocols which may require two clock cycles may be completed in one clock cycle. In one specific implementation, for example, arbitration may be completed in one clock cycle. Request signals may be driven responsive to the first edge of the clock signal and sampled responsive to the second edge. The sampled signals may be evaluated to determine an arbitration winner, which may drive the bus responsive to the next occurrence of the first edge.

In one specific implementation, the data bus may be sized to allow for a single cycle data transfer for even the largest sized data that may be transferred in one transaction. For example, the data bus may be sized to transfer a cache block per clock cycle. In one implementation, the bus and agents may be integrated onto a single integrated circuit. Since the bus is internal to the integrated circuit, it may not be limited by the number of pins which may be available on the integrated circuit. Such an implementation may be particularly suited to a data bus sized to allow single cycle data transfer. Additionally, differential pairs may be used for each signal or a subset of the bus signals. Differential signal may further enhance the frequency at which the bus may operate.

In one particular implementation, the bus may support coherency and out of order data transfers (with respect to the order of the address transfers). The bus may support tagging of address and data phases, for example, to match address and corresponding data phases.

Broadly speaking, a system is contemplated comprising a bus and an agent coupled to the bus and to receive a clock signal for the bus. The clock signal has a rising edge and a falling edge during use. The agent is configured to drive one or more signals on the bus responsive to a first edge of the rising edge or the falling edge, and is further configured to sample a value on the bus responsive to a second edge of the rising edge or the falling edge.

Additionally, a method is contemplated. A value is driven on a bus responsive to first edge of a rising edge or a falling edge of a clock signal for the bus. A value is sampled from the bus responsive to a second edge of the rising edge or the falling edge.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:

FIG. 1 is a block diagram of one embodiment of a system. FIG. 2 is a timing diagram illustrating transmission of signals on one embodiment of a bus within the system shown in FIG. 1.

FIG. 3 is a timing diagram illustrating several exemplary bus transactions.

FIG. 4 is a block diagram illustrating exemplary signals which may be included in one embodiment of an arbitration portion of a bus.

FIG. 5 is a block diagram illustrating exemplary signals which may be included in one embodiment of an address bus.

FIG. 6 is a block diagram illustrating exemplary signals which may be included in one embodiment of an response portion of a bus.

FIG. 7 is a block diagram illustrating exemplary signals which may be included in one embodiment of a data bus.

FIG. 8 is a block diagram illustrating differential pairs of signals which may be used in one embodiment of a bus.

FIG. 9 is a block diagram of a carrier medium.

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning now to FIG. 1, a block diagram of one embodiment of a system 10 is shown. Other embodiments are possible and contemplated. In the embodiment of FIG. 1, system 10 includes processors 12A-12B, an L2 cache 14, a memory controller 16, a pair of input/output (I/O) bridges 20A-20B, and I/O interfaces 22A-22D. System 10 may include a bus 24 for interconnecting the various components of system 10. More particularly, as illustrated in FIG. 1, bus 24 may include arbitration lines 28, an address bus 30, response lines 32, a data bus 34, and a clock line or lines 36. As illustrated in FIG. 1, each of processors 12A-12B, L2 cache 14, memory controller 16, and I/O bridges 20A-20B are coupled to bus 24. Thus, each of processors 12A-12B, L2 cache 14, memory controller 16, and I/O bridges 20A-20B may be an agent on bus 24 for the illustrated embodiment. More particularly, each agent may be coupled to clock line(s) 36 and to the conductors within bus 24 that carry signals which that agent may sample and/or drive. I/O bridge 20A is coupled to I/O interfaces 22A-22B, and I/O bridge 20B is coupled to I/O interfaces 22C-22D. L2 cache coupled to a memory 26.

Bus 24 may be a split transaction bus in the illustrated embodiment. A split transaction bus splits the address and data portions of each transaction and allows the address portion (referred to as the address phase) and the data portion (referred to as the data phase) to proceed independently. In the illustrated embodiment, the address bus 30 and data bus 34 are independently arbitrated for (using signals on arbitration lines 28). Each transaction including both bus 30, an address phase on the address bus 30, an arbitration for the data bus 34, and a data phase on the data bus 34. Additionally, coherent transactions may include a response phase on response lines 32 for communicating coherency information after the address phase. Additional details regarding one embodiment of bus 24 are provided further below. The bus clock signal CLK on clock line(s) 36 defines the clock cycle for bus 24.

Bus 24 may be pipelined. Bus 24 may employ any embodiment, differential signalling may be used for high speed signal transmission. Other embodiments may employ any other signalling technique (e.g. TTL, CMOS, GTL, HSTL, etc.).

Processors 12A-12B may be designed to any instruction 65 set architecture, and may execute programs written to that instruction set architecture. Exemplary instruction set archi-

tectures may include the MIPS instruction set architecture (including the MIPS-3D and MIPS MDMX application specific extensions), the IA-32 or IA-64 instruction set architectures developed by Intel Corp., the PowerPC instruction set architecture, the Alpha instruction set architecture, the ARM instruction set architecture, or any other instruction set architecture.

L2 cache 14 is a high speed cache memory. L2 cache 14 is referred to as "L2" since processors 12A-12B may employ internal level 1 ("L1") caches. If L1 caches are not included in processors 12A-12B, L2 cache 14 may be an L1 cache. Furthermore, if multiple levels of caching are included in processors 12A-12B, L2 cache 14 may be an outer level cache than L2. L2 cache 14 may employ any 15 organization, including direct mapped, set associative, and fully associative organizations. In one particular implementation, L2 cache 14 may be a 512 kilobyte, 4 way set associative cache having 32 byte cache lines. A set associative cache is a cache arranged into multiple sets, each 20 set comprising two or more entries. A portion of the address (the "index") is used to select one of the sets (i.e. each encoding of the index selects a different set). The entries in the selected set are eligible to store the cache line accessed by the address. Each of the entries within the set is referred to as a "way" of the set. The portion of the address remaining after removing the index (and the offset within the cache line) is referred to as the "tag", and is stored in each entry to identify the cache line in that entry. The stored tags are compared to the corresponding tag portion of the address of a memory transaction to determine if the memory transaction hits or misses in the cache, and is used to select the way in which the hit is detected (if a hit is detected).

Memory controller 16 is configured to access memory 26 in response to memory transactions received on bus 24. Memory controller 16 receives a hit signal from L2 cache 14, and if a hit is detected in L2 cache 14 for a memory transaction, memory controller 16 does not respond to that memory transaction. If a miss is detected by L2 cache 14, or the memory transaction is non-cacheable, memory control-14 is coupled to memory controller 16, which is further 40 ler 16 may access memory 26 to perform the read-or-write operation. Memory controller 16 may be designed to access any of a variety of types of memory. For example, memory controller 16 may be designed for synchronous dynamic random access memory (SDRAM), and more particularly double data rate (DDR) SDRAM. Alternatively, memory controller 16 may be designed for DRAM, Rambus DRAM (RDRAM), SRAM, or any other suitable memory device.

I/O bridges 20A-20B link one or more I/O interfaces (e.g. I/O interfaces 22A-22B for I/O bridge 20A and I/O interaddress and data thus includes an arbitration for the address 50 faces 22C-22D for I/O bridge 20B) to bus 24. I/O bridges 20A-20B may serve to reduce the electrical loading on bus 24 if more than one I/O interface 22A-22B is bridged by that I/O bridge. Generally, I/O bridge 20A performs transactions on bus 24 on behalf of I/O interfaces 22A-22B and relays transactions targeted at an I/O interface 22A-22B from bus 24 to that I/O interface 22A-22B. Similarly, I/O bridge 20B generally performs transactions on bus 24 on behalf of I/O interfaces 22C-22D and relays transactions targeted at an I/O interface 22C-22D from bus 24 to that I/O interface suitable signalling technique. For example, in one 60 22C-22D. In one implementation, I/O bridge 20A may be a bridge to a PCI interface (e.g. I/O interface 22A) and to a Lightning Data Transport (LDT) I/O fabric developed by Advanced Micro Devices, Inc (e.g. I/O interface 22B). Other I/O interfaces may be bridged by I/O bridge 20B. Other implementations may bridge any combination of I/O interfaces using any combination of I/O bridges. I/O interfaces 22A-22D may include one or more serial interfaces, Per-

6

sonal Computer Memory Card International Association (PCMCIA) interfaces, Ethernet interfaces (e.g. media access control level interfaces), Peripheral Component Interconnect (PCI) interfaces, LDT interfaces, etc.

It is noted that system 10 (and more particularly processors 12A-12B, L2 cache 14, memory controller 16, I/O interfaces 22A-22D, I/O bridges 20A-20B and bus 24) may be integrated onto a single integrated circuit as a system on a chip configuration. In another configuration, memory 26 may be integrated as well. Alternatively, one or more of the components may be implemented as separate integrated circuits, or all components may be separate integrated circuits, as desired. Any level of integration may be used.

It is noted that, while the illustrated embodiment employs a split transaction bus with separate arbitration for the address and data buses, other embodiments may employ non-split transaction buses arbitrated with a single arbitration for address and data and/or a split transaction bus in which the data bus is not explicitly arbitrated. Either a central arbitration scheme or a distributed arbitration scheme may be used, according to design choice.

It is noted that, while FIG. 1 illustrates I/O interfaces 22A-22D coupled through I/O bridges 20A-20B to bus 24, other embodiments may include one or more I/O interfaces directly coupled to bus 24, if desired.

Turning next to FIG. 2, a timing diagram is shown illustrating transmission and sampling of signals according to one embodiment of system 10 and bus 24. Other embodiments are possible and contemplated. The clock signal on clock line(s) 36 is illustrated (CLK) in FIG. 2. The high and low portions of the clock signal CLK are delimited with vertical dashed lines.

Generally, the clock signal CLK may have a rising edge (the transition from a low value to a high value) and a falling edge (the transition from a high value to a low value). The signals on bus 24 may be driven responsive to one of the edges and sampled responsive to the other edge. For example, in the illustrated embodiment, signals may be driven responsive to the rising edge and sampled responsive to the falling edge. Thus, signals propagate on bus 24 during the time between the rising edge and the falling edge of the clock signal, and sampled signals may be evaluated between the falling edge and the rising edge of the clock signal. One or more signals on the bus may be driven with a value, and that value may be sampled by an arent receiving the signals.

More particularly, as illustrated by arrow 40, an agent which has determined that it will drive a signal or signals during a clock-cycle-may activate its driver for each such signal responsive to the rising edge of the clock signal. For example, an agent may logically AND the clock signal CLK with an internally generated signal indicating that a signal is to be driven to produce an enable signal for a driver on the signal (if the enable signal is asserted high). Other embodiments may employ other logic circuits to produce the enable, depending on whether the enable is asserted high or low and so whether the internally generated signal is asserted high or low. Furthermore, the clock signal CLK may be logically ORed with a delayed version of the clock signal CLK to add hold time to avoid race conditions with the sampling of the signal at the falling edge of the clock signal CLK, as desired.

As illustrated by arrow 42, agents may sample signals responsive to the falling edge of the clock signal. For example, agents may employ a senseamp (e.g. for differential signalling), flip flop, register, latch, or other clocked device which receives the clock signal CLK and captures the signal on the line responsive to the falling edge of the clock signal, reference that the agent should determine the signals again numeral 68).

As used it is agent that the agent should determine the signals again numeral 68.

In one embodiment, bus 24 may employ differential pairs of lines for each signal. Each line may be precharged, and then one of the lines may be driven to indicate the bit of information transmitted on that line. For such embodiments, 5 the signals may be precharged between the falling edge of the clock signal CLK and the next rising edge of the clock signal CLK (illustrated by arrow 44). Thus, the agent driving the signal may disable its drivers responsive to the falling edge of the clock signal CLK. In one specific implementation, the agent driving the signal may disable its driver after a predetermined delay to avoid a race condition with the sampling of the signals. One of the agents may be defined to perform the precharge, or a separate circuit (not shown) may perform the precharge. Alternatively, the agent driving the signal may perform the precharge.

Since signals are driven responsive to one edge of the clock signal and sampled responsive to the other edge, the latency for performing a transaction may be reduced. Generally, the clock cycle may be divided into a drive phase and an evaluate phase. During the drive phase, signals are driven. Those driven signals are sampled at the end of the drive phase and, during the evaluate phase, those driven signals are evaluated to determine if the sampling agent is to perform an action with respect to the information transmitted.

For example, arbitration may be completed in one clock cycle, according to one embodiment. The request signals for each agent requesting the bus may be driven responsive to the rising edge, and sampled on the falling edge. During the remaining portion of the clock cycle, the request signals may be evaluated to determine a winner of the arbitration. The winner may drive the bus-on-the-next-rising-edge. As illustrated in FIG. 2, address arbitration request signals may be driven (reference numeral 46) and evaluated (reference numeral 48) in the first illustrated clock cycle. The winning agent may drive an address portion of a transaction during the subsequent clock cycle (reference numeral 50). Other arbitrating agents may determine that they did not win, and thus may drive request signals again during the subsequent clock cycle (reference numeral 52).

clock signal, and sampled signals may be evaluated between the falling edge and the rising edge of the clock signal. One or more signals on the bus may be driven with a value, and that value may be sampled by an agent receiving the signals.

More particularly, as illustrated by arrow 40, an agent which has determined that it will drive a signal or signals during a clock-cycle-may activate its driver for each such signal responsive to the rising edge of the clock signal. For example, an agent may logically AND the clock signal CLK for each such signal responsive to the rising edge of the clock signal. One driven by the winning agent (reference numeral 54). During the evaluate phase, the agents may determine if the transaction is a coherent transaction, and thus that the agents are to snoop the address. Additionally, the evaluate phase and the subsequent clock cycle may be used to determine the snoop result, which may be driven in the response phase (reference numeral 56) and evaluated by the agent driving the address (reference numeral 58).

Data bus arbitration may be similar, as illustrated by reference numerals 60-70. More particularly, data arbitration request signals may be driven (reference numeral 60) and evaluated (reference numeral 62) in the first illustrated clock cycle. The winning agent may drive a data portion of a transaction during the subsequent clock cycle (reference numeral 64). Agents which receive data may sample the data, and may evaluate the data (reference numeral 70). For example, in embodiments which provide tagging to allow for out of order data transfers, the tags may be compared to tags that the agent is awaiting data for to determine if the agent should capture the data. Other arbitrating agents may determine that they did not win, and thus may drive request signals again during the subsequent clock cycle (reference numeral 68).

As used herein, the term "drive", when referring to a signal, refers to activating circuitry which changes the Sno of

voltage on the line carrying the signal, to thereby transmit a bit of information. The term "sample", when referring to a signal, refers to sensing the voltage on the line carrying the signal to determine the bit of information conveyed on the signal. The term "precharge" refers to setting the voltage on a line to a predetermined value prior to the time that the line may be driven. The predetermined value may be a supply (high) voltage or a ground (low) voltage, for example.

While the above discussion illustrated an example in which signals are driven responsive to the rising edge of the clock signal CLK and sampled responsive to the falling edge, an alternative embodiment is contemplated in which signals may be driven responsive to the falling edge and sampled responsive to the rising edge.

Turning next to FIG. 3, a timing diagram is shown illustrating several exemplary transactions which may be performed on one embodiment of bus 24. Other embodiments are possible and contemplated. In FIG. 3, clock cycles are delimited by vertical dashed lines and labeled (CLK 0, CLK 1, etc.) at the top.

FIG. 3 illustrates pipelining on the bus according to one embodiment of the bus. During clock cycle CLK 0, the address phase of a first transaction (T1) is occurring on the address bus (reference numeral 80). The response phase for the first transaction occurs in clock cycle CLK 2 (reference numeral 82). In parallel with the address phase of the first transaction, during clock cycle CLK 0, arbitration for the address bus is occurring and an agent wins the arbitration to perform a second transaction (T2) (reference numeral 84). The corresponding address phase occurs in clock cycle CLK 30 1 (reference numeral 86) and the response phase occurs in clock cycle CLK 3 (reference numeral 88). In parallel with the address phase of the second transaction during clock cycle CLK 1, arbitration for the address bus is occurring and an agent wins the arbitration to perform a third transaction (T3) (reference numeral 90). The corresponding address phase occurs in clock cycle CLK 2 (reference numeral 92) and the response phase occurs in clock cycle CLK 4 (reference numeral 94).

Data phases for the transactions are illustrated in clock 40 cycles CLK N, CLK N+1, and CLK N+2. More particularly, the data phase for the second transaction is occurring during clock cycle CLK N (reference numeral 96). In parallel during clock cycle CLK N, an arbitration for the data bus is occurring and an agent wins to perform the data phase of the 45 first transaction (reference numeral 98). The corresponding data phase occurs in clock cycle CLK N+1 (reference numeral 100). In parallel during clock cycle CLK N+1, an arbitration for the data bus is occurring and an agent wins to perform the data phase of the third transaction (reference 50 possible and contemplated. In the embodiment of FIG. 4, a numeral 102). The corresponding data phase occurs in clock cycle CLK N+2 (reference numeral 104).

Thus, the address arbitration, address phase, response phase, data arbitration, and data phase of various transactions may be pipelined. Accordingly, a new transaction may 55 be initiated each clock cycle, providing high bandwidth. Furthermore, in one embodiment, the data bus width is as wide as the largest data transfer which may occur in response to a single transaction (e.g. a cache-block-wide, in one embodiment). Therefore, data transfers may occur in a single clock cycle in such an embodiment, again allowing for high bandwidth of one new transaction each clock cycle. Other embodiments may employ a narrower data bus, and may allow address transfers to last more than one clock cycle.

It is noted that, while the data phases of the transactions in FIG. 3 are illustrated at a later time than the address

phases, the data phases may overlap with the address phases. In one embodiment, the data phase of a given transaction may begin at any time after the address phase.

FIG. 3 also illustrates the out of order features of one embodiment of bus 24. While the address phases of the three transactions occur in a first order (T1, then T2, then T3), the data phases occur in a different order (T2, then T1, then T3 in this example). By allowing out of order data phases with respect to the order of the corresponding address phases, bandwidth utilization may be high. Each responding agent may arbitrate for the data bus once it has determined that the data is ready to be transferred. Accordingly, other agents (e.g. lower latency agents) may transfer data for later transactions out of order, utilizing bandwidth while the higher 15 latency, but earlier initiated, transaction experiences its latency. Generally, any two transactions may have their data phases performed out of order with their address phases, regardless of whether the two transactions are initiated by the same requesting agent or different requesting agents.

In one embodiment, bus 24 may include tagging for identifying corresponding address phases and data phases. The address phase includes a tag assigned by the requesting agent, and the responding agent may transmit the same tag in the data phase. Thus, the address and data phases may be linked. In one embodiment, the tag assigned to a given transaction may be freed upon transmission of the data, so that the tag may be rapidly reused for subsequent_transaction. Queues in the agents receiving data from bus 24 may be designed to capture data using a given tag once per queue entry, to ensure that a reused tag does not overwrite valid data from a previous transaction.

FIG. 3 further illustrates the coherency features of one embodiment of bus 24. Coherency may be maintained using signals transmitted during the response phase of each transaction. The response phase may be fixed in time with respect to the corresponding address phase, and may be the point at which ownership of the data affected by the transaction is transferred. Accordingly, even though the data phases may be performed out of order (even if the transactions are to the same address), the coherency may be established based on the order of the address phases. In the illustrated embodiment, the response phase is two clock cycles of the CLK clock after the corresponding address phase. However, other embodiments may make the fixed interval longer or shorter.

Turning next to FIG. 4, a block diagram is shown illustrating exemplary signals which may be included on one embodiment of arbitration lines 28. Other embodiments are set of address request signals (A_Req[7:0]) and a set of data request signals (D_Req[7:0]) are included. Additionally, a set of block signals (Block[7:0]) may be included.

The address request signals may be used by each requesting agent to arbitrate for the address bus. Each requesting agent may be assigned one of the address request signals. and that requesting agent may assert its address request signal to arbitrate for the address bus. In the illustrated embodiment, bus 24 may include a distributed arbitration scheme in which each requesting agent may include or be coupled to an arbiter circuit. The arbiter circuit may receive the address request signals, determine if the requesting agent wins the arbitration based on any suitable arbitration scheme, and indicate a grant or lack thereof to the requesting 65 agent. In one embodiment, each arbiter circuit may track the relative priority of other agents to the requesting agent, and may update the priority based on the winning agent (as

En a contract

indicated by an agent identifier portion of the tag transmitted during the address phase).

The data request signals may be used by each responding agent to arbitrate-for the data bus. Each responding agent may be assigned one of the data request signals, and that responding agent may assert its data request signal to arbitrate for the data bus. In the illustrated embodiment, bus 24 may include a distributed arbitration scheme in which each responding agent may include or be coupled to an arbiter circuit. The arbiter circuit may receive the data 10 request signals, determine if the responding agent wins the arbitration based on any suitable arbitration scheme, and indicate a grant or lack thereof to the responding agent. In one embodiment, each arbiter circuit may track the relative priority of other agents to the responding agent, and may 15 update the priority based on the winning agent (as indicated by an agent identifier transmitted during the data phase).

The block signals may be used by agents to indicate a lack of ability to participate in any new transactions (e.g. due to queue fullness within that agent). If an agent cannot accept 20 new transactions, it may assert its block signal. Requesting agents may receive the block signals, and may inhibit initiating a transaction in which that agent participates responsive to the block signal. A transaction in which that agent does not participate may be initiated.

Other embodiments may employ a centralized arbitration scheme. Such an embodiment may include address grant signals for each requesting agent and data grant signals for each responding agent, to be asserted by the central arbiter to the winning agent to indicate grant of the bus to that requesting or responding agent.

Turning next to FIG. 5, a block diagram illustrating exemplary signals which may be included on address bus 30 is shown. Other embodiments are possible and contemplated. In the illustrated embodiment, address bus 30 includes address lines used to provide the address of the transaction (Addr[39:5]) and a set of byte enables (A_BYEN[31:0]) indicating which bytes on the data bus 34 are being read or written during the transaction, a command 40 (A_CMD[2:0]) used to indicate the transaction to be performed (read, write, etc.), a transaction ID (A_ID[9:0]) used to identify the transaction, and a set of attributes (A_ATTR [n:0]).

data phases of the transaction. More particularly, the responding agent may use the value provided on the transaction ID as the transaction ID for the data phase. Accordingly, the transaction ID may be a tag for the transaction. A portion of the transaction ID is an agent identifier 50 identifying the requesting agent. For example, the agent identifier may be bits 9:6 of the transaction ID. Each agent is assigned a different agent identifier.

The set of attributes may include any set of additional attributes that it may be desirable to transmit in the address 55 phase. For example, the attributes may include a cacheability indicator indicating whether or not the transaction is cacheable within the requesting agent, a coherency indicator indicating whether or not the transaction is to be performed Other embodiments may employ more, fewer, or other attributes, as desired.

Turning next to FIG. 6, a block diagram illustrating exemplary signals which may be employed on one embodiment of response lines 32 is shown. Other embodiments are 65 possible and contemplated. In the embodiment of FIG. 6, response lines 32 include a set of shared signals (R_SHD

[5:0]) and a set of exclusive signals (R_EXC[5:0]). Each agent which participates in coherency may be assigned a corresponding one-of the set of shared signals and a corresponding one of the set of exclusive signals. The agent may report shared ownership of the data affected by a transaction by asserting its shared signal. The agent may report exclusive ownership of the data affected by a transaction by asserting its exclusive signal. The agent may report no ownership of the data by not asserting other signal. In the illustrated embodiment, modified ownership is treated as exclusive. Other embodiments may employ a modified signal (or an encoding of signals) to indicate modified.

10

Turning next to FIG. 7, a block diagram illustrating exemplary signals which may be employed on one embodiment of data bus 34 is shown. Other embodiments are possible and contemplated. In the embodiment of FIG. 7, data bus 34 includes data lines (Data[255:0]) used to transfer the data, a transaction ID (D_ID[9:0]) similar to the transaction ID of the address phase and used to match the address phase with the corresponding data phase, a responder ID (D_RSP[3:0]), a data code (D_Code[2:0]), and a modified signal (D_Mod).

The responder ID is the agent identifier of the responding agent who arbitrated for the data bus to perform the data transfer, and may be used by the data bus arbiter circuits to update arbitration priority state (i.e. the responder ID may be an indication of the data bus arbitration winner). The data code may be used to report various errors with the transaction (e.g. single or double bit error checking and correction (ECC) errors, for embodiments employing ECC, unrecognized addresses, etc.). The modified signal (D_Mod) may be used to indicate, if an agent reported exclusive status, whether or not the data was modified. In one embodiment, an agent which reports exclusive status supplies the data, and the modified indication along with the data.

It is noted that, while various bit ranges for signals are illustrated in FIGS. 4-7, the bit ranges may be varied in other embodiments. The number of request signals, the size of the agent identifier and transaction ID, the size of the address bus, the size of the data bus, etc., may all be varied according to design choice.

Turning next to FIG. 8, a block diagram is shown illustrating differential pairs of signals which may be used The transaction ID may be used to link the address and 45 according to one embodiment of bus 24. Other embodiments are possible and contemplated. Two bits of the address lines (Addr[39] and Addr[38]) are shown in FIG. 8. Each signal on bus 24 may be differential, in one embodiment. Other embodiments may use differential pairs for any subset of the signals on bus 24, or no signals may be differential pairs.

In the illustrated example, differential pair of lines 110A and 110B are used to transmit Addr [39] and differential pair of lines 112A and 112B are used to transmit Addr[38]. Lines 110A-110B will be discussed, and lines 112A-112B may be used similarly (as well as other differential pairs corresponding to other signals).

Lines 110A-110B may be precharged during the precharge time illustrated in FIG. 2. For example. Lines 110A-110B may be precharged to a high voltage. One of coherently, and a cacheability indicator for L2 cache 14. 60 lines 110A-110B may be driven low based on the value of Addr[39] desired by the driving agent. If Addr[39] is to transmit a logical one, line 110A may be driven low. If Addr[39] is to transmit a logical zero, line 110B may be driven low. Receiving agents may detect the difference between lines 110A-110B to determine the value driven on Addr[39] for the transaction. Alternatively, lines 110A-110B may be precharged to a low voltage and one of

a perpose

12

the lines 110A-110B may be driven high based on the value of Addr[39] desired by the driving agent.

Turning next to FIG. 9, a block diagram of a carrier medium 300 including a database representative of system 10 is shown. Generally speaking, a carrier medium may 5 include storage media such as magnetic or optical media, e.g., disk or CD-ROM, volatile or non-volatile memory media such as RAM (e.g. SDRAM, RDRAM, SRAM, etc.), ROM, etc., as well as transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via a communication medium such as a network and/or a wireless link.

Generally, the database of system 10 carried on carrier medium 300 may be a database which can be read by a program and used, directly or indirectly, to fabricate the hardware comprising system 10. For example, the database may be a behavioral-level description or register-transfer level (RTL) description of the hardware functionality in a high level design language (HDL) such as Verilog or VHDL. The description may be read by a synthesis tool which may synthesize the description to produce a netlist comprising a list of gates from a synthesis library. The netlist comprises a set of gates which also represent the functionality of the hardware comprising system 10. The netlist may then be placed and routed to produce a data set describing geometric shapes to be applied to masks. The masks may then be used in various semiconductor fabrication steps to produce a semiconductor circuit or circuits corresponding to system 10. Alternatively, the database on carrier medium 300 may be the netlist (with or without the synthesis library) or the 30 data set, as desired.

While carrier medium 300 carries a representation of system 10, other embodiments may carry a representation of any portion of system 10, as desired, including any set of one controller, etc.) or circuitry therein (e.g. arbiters, etc.), bus 24, etc.

Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims 40 be interpreted to embrace all such variations and modifica-

What is claimed is:

- 1. A system comprising:
- a bus; and

an agent coupled to said bus and to receive a clock signal for said bus, said clock signal having a rising edge and a falling edge during use, wherein said agent is configured to drive one or more signals on said bus responsive to a first edge, the first edge being one of 50 said rising edge or said falling edge, and wherein said agent is configured to sample a value on said bus responsive to a second edge, the second edge being the other one of said rising edge or said falling edge.

- 2. The system as recited in claim 1 wherein said first edge 55 pair to drive said first signal responsive to said value. is said rising edge and said second edge is said falling edge.
- 3. The system as recited in claim 1 wherein said first edge is said falling edge and said second edge is said rising edge.
- 4. The system as recited in claim 1 wherein said agent is responsive to said second edge.
- 5. The system as recited in claim 4 wherein said agent is configured to precharge said one or more signals during a period of time between an occurrence of said second edge and a subsequent occurrence of said first edge.
- 6. The system as recited in claim 1 wherein said agent is configured to evaluate said value to determine if said agent

is to drive said one or more signals responsive to said second edge, and wherein said agent is configured to drive said one or more signals on a next occurrence of said first edge responsive to evaluating said value.

- 7. The system as recited in claim 1 wherein said bus comprises a differential pair of conductors for a first signal.
- 8. The system as recited in claim 7 wherein said agent is configured to drive one of said differential pair to drive said first signal responsive to a first value to be driven on said first signal.
- 9. The system as recited in claim 8 wherein said agent is configured to drive said one of said differential pair low.
- 10. The system as recited in claim 1 wherein said bus comprises an address bus, a data bus, and response lines, and wherein said response lines carry signals to maintain cache coherency with respect to transactions on said bus, and wherein a transmission of data corresponding to two or more transactions on said data bus is capable of occurring out of order with respect to a transmission of addresses corresponding to said two or more transactions on said address
- 11. The system as recited in claim 10 wherein transmission of a response corresponding to a first transaction on said response lines of said bus is fixed in time with respect to transmission of an address corresponding to said first transaction on said address bus.

12. A method comprising:

driving a value on a bus responsive to a first edge of a clock signal for said bus, said first edge being one of a rising edge or a falling edge of said clock signal; and sampling said value from said bus responsive to a second edge of said clock signal, the second edge being the other one of said rising edge or said falling edge.

- 13. The method as recited in claim 12 wherein said first or more agents (e.g. processors, L2 cache, memory 35 edge is said rising edge and said second edge is said falling
 - 14. The method as recited in claim 12 wherein said first edge is said falling edge and said second edge is said rising
 - 15. The method as recited in claim 12 further comprising terminating said driving said value responsive to said second
 - 16. The method as recited in claim 15 further comprising precharging said bus during a period of time between an 45 occurrence of said second edge and a subsequent occurrence of said first edge.
 - 17. The method as recited in claim 12 further comprising: evaluating said value responsive to said second edge; and driving a second value on a next occurrence of said first edge responsive to said evaluating said value.
 - 18. The method as recited in claim 12 wherein said bus comprises a differential pair of conductors for a first signal.
 - 19. The method as recited in claim 18 wherein said driving said value comprises driving one of said differential
 - 20. The method as recited in claim 19 wherein said driving said one of said differential pair comprises driving said one of said differential pair low.
- 21. The method as recited in claim 12 wherein said bus configured to terminate driving said one or more signals 60 comprises an address bus, a data bus, and response lines, and wherein said response lines carry signals to maintain cache coherency with respect to transactions on said bus, and wherein a transmission of data corresponding to two or more transactions on said data bus is capable of occurring out of order with respect to a transmission of addresses corresponding to said two or more transactions on said address

14

- 22. The method as recited in claim 21 wherein transmission of a response corresponding to a first transaction on said response lines of said bus is fixed in time with respect to transmission of an address corresponding to said first transaction on said address bus.
- 23. The method as recited in claim 12 wherein said first edge and said second edge are successive edges of said clock signal.
- 24. The system as recited in claim 1 further comprising a second agent coupled to said bus and to receive said clock 10 signal, wherein said second agent is configured to sample a second value driven by said agent, said agent driving said second value responsive to said first edge and said second agent sampling said second value responsive to said second edge, wherein said first edge and said second edge are 15 successive edges of said clock signal.
- 25. A carrier medium comprising a database which is operated upon by a program executable on a computer system, the program operating on the database to perform a portion of a process to fabricate an integrated circuit including circuitry described by the database, the circuitry described in the database including:
 - a bus; and
 - an agent coupled to said bus and to receive a clock signal for said bus, said clock signal having a rising edge and a falling edge during use, wherein said agent is configured to drive one or more signals on said bus responsive to a first edge, the first edge being one of said rising edge or said falling edge, and wherein said agent is configured to sample a value on said bus responsive to a second edge, the second edge being the other one of said rising edge or said falling edge.
- 26. The carrier medium as recited in claim 25 wherein said first edge is said rising edge and said second edge is said falling edge.
- 27. The carrier medium as recited in claim 25 wherein said first edge is said falling edge and said second edge is said rising edge.

- 28. The carrier medium as recited in claim 25 wherein said agent is configured to terminate driving said one or more signals responsive to said second edge.
- 29. The carrier medium as recited in claim 28 wherein said agent is configured to precharge said one or more signals during a period of time between an occurrence of said second edge and a subsequent occurrence of said first edge.
 - 30. The carrier medium as recited in claim 25 wherein said agent is configured to evaluate said value to determine if said agent is to drive said one or more signals responsive to said second edge, and wherein said agent is configured to drive said one or more signals on a next occurrence of said first edge responsive to evaluating said value.
 - 31. The carrier medium as recited in claim 25 wherein said bus comprises a differential pair of conductors for a first signal.
 - 32. The carrier medium as recited in claim 31 wherein said agent is configured to drive one of said differential pair to drive said first signal responsive to a first value to be driven on said first signal.
 - 33. The carrier medium as recited in claim 32 wherein said agent is configured to drive said one of said differential pair low.
 - 34. The carrier medium as recited in claim 25 wherein said bus comprises an address bus, a data bus, and response lines, and wherein said response lines carry signals to maintain cache coherency with respect to transactions on said bus, and wherein a transmission of data corresponding to two or more transactions on said data bus is capable of occurring out of order with respect to a transmission of addresses corresponding to said two or more transactions on said address bus.
 - 35. The carrier medium as recited in claim 34 wherein transmission of a response corresponding to a first transaction on said response lines of said bus is fixed in time with respect to transmission of an address corresponding to said first transaction on said address bus.