This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS.
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-23069

(43)公開日 平成6年(1994)2月1日

(51)Int.Cl.⁵

識別配号

庁内整理番号

FΙ

技術表示箇所

A 6 3 B 37/00

L. 7012-2C

請求項の数5(全 13 頁) 審査請求 有

(21)出願番号

特願平3-153959

(22)出願日

平成3年(1991)5月28日

(31)優先権主張番号 8095/90

(32)優先日

1990年6月1日

(33)優先権主張国

韓国 (KR)

(71)出願人 591139194

イルヤ カンパニー, リミテッド

ILYA COMPANY LIMITE

大韓民国、ソウル、カンナムーク、サムス

ンードン 145-20

(72)発明者 ムーン キュ キム

大韓民国、ソウル、カンナム・ク、アブグ

ユン・ドン 73-704、フインダイ アバ

ートメント 193 - 3

(74)代理人 弁理士 新実 健郎 (外1名)

最終頁に続く

(54)【発明の名称】 固体状スリーピースゴルフボール

(57)【要約】

【目的】 適度なスピン性を維持しながら、反発特性及 び飛距離が改良された固体状スリーピースゴルフボール を提供する。

【構成】 内部コア1及び外層2及びカバー3から構成 されたコア組立体より成るものであって、

- a) 上記内部コア1が、23~35mmの範囲の直径、 及び30~62の範囲の硬度(ショアーD)を有するこ と、
- b) 上記外層2が、36~41mmの範囲の直径、及び 30~56の範囲の硬度(ショアーD)を有すること、 及び
- c) ボールの中心から11.5~17.5 mm離れた位 置に当たる、上記内部コア1の外側の位置における硬度 (ショアーD) が46~62の範囲であり、しかも、こ の位置から両側に向かって硬度が低くなっていることを 特徴とする。

【特許請求の範囲】

【請求項1】 内部コア1及び外層2及びカバー3から 構成されたコア組立体より成るものであって、

- a) 上記内部コア1が、23~35mmの範囲の直径、 及び30~62の範囲の硬度(ショアーD)を有するこ と、
- b) 上記外層2が、36~41 mmの範囲の直径、及び 30~56の範囲の硬度(ショアーD)を有すること、 及び
- c) 上記内部コア1と上記外層2との境界面にあたる、 上記内部コア1の外側の位置における最大硬度(ショア -D) が、46~62の範囲であり、しかも、この位置 から両側に向かって硬度が低くなっていることを特徴と する、固体状スリーピースゴルフボール。

【請求項2】 上記内部コア1の比重及び上記外層2の 比重が、それぞれ1.15~1.50、1.00~1. 20の範囲であることを特徴とする、請求項1記載の固 体状スリーピースゴルフボール。

【請求項3】 上記内部コア1の比重及び上記外層2の 比重が、それぞれ1.00~1.20、1.15~1. 80の範囲であることを特徴とする、請求項1記載の固 体状スリーピースゴルフボール。

【請求項4】 最大硬度の位置が、ボールの中心から1 1. 5~17. 5 mmの位置にあることを特徴とする、 請求項1~3いずれか1項に記載の固体状スリーピース ゴルフボール。

上記内部コア1の外側と、上記外層2の 【請求項5】 内側との間の最小硬度 (ショアーD) の差が、3である ことを特徴とする、請求項1~4いずれか1項に記載の 固体状スリーピースゴルフボール。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、適度なスピン性を維持 しながら、反発特性及び飛距離が改良された固体状スリ ーピースゴルフボールに関するものである。尚、これら の特性は、内部コアと外層の大きさ、及び比重と硬度を 制御することによって得られる。

[0002]

【従来の技術】ゴルフボールの飛距離及びスピン性は、 競技を行う際に非常に重要である。一般的に、固体状ツ ーピースポールは、良好な反発特性と飛距離を有する が、コアが硬過ぎるために良好なスピン性が得られな い。一方、糸巻きゴルフボールは、一般的には良好なス ピン性を有しているが、長時間ボールを使用しているう ちに、巻かれた糸が緩み、反発特性及び飛距離が低下す る。

[0003] 米国特許第4,781,383号には、図4に示さ れるような固体状スリーピースボールが開示されてお り、このゴルフボールは、内部コアと外層の大きさ及び 硬度を制御することにより得られたものである。このゴ 50

ルフボールは、固体状ツーピースボールによって得られ るのと同様の飛距離を有し、しかも、これまでの糸巻き ボールと同様の打球感覚を有する。しかしながら、この ボールは、柔らかい内部コアと硬い外層を有するので、 十分な飛距離とスピン性が得られない。

2

【0004】ゴルフボールにおける全体の飛距離には、 空行距離(carry distance)と、転がる距離(run distanc e)とが含まれる。しかし、ボールが転がる距離というの は、地面が平坦でないことによって正確なものにならな いので、空行距離が非常に重要である。そして、このゴ ルフボールの空行距離には、ボールの反発特性が、直接 影響する。又、全く同じ反発特性で、全く同じ空気力学 条件(ボールのディンプル特性)の下では、スピン速度 が増加すると、ボールが上方向へ飛ぶ性能が向上する。 そのため、ボールをドライバーで打った際には、スピン 速度が増加し、スピン速度は約2500~3000RP Mに達するまで増加するので、弾道の最高点が高くな り、これによって、空行距離の増加が得られる。

[0005]

【発明が解決しようとする課題】本発明は、適度なスピ ン速度を維持しながら、優れた反発特性及び空行距離を 有する固体状スリーピースゴルフボールを提供すること を課題とする。そして、これらの効果は、固体状スリー ピースゴルフボールの各部分の大きさ、比重及び硬度を 制御することにより達成される。

[0006]

30

【課題を解決するための手段】本発明の固体状スリーピ ースゴルフボールは、内部コア1及び外層2及びカバー 3から構成されたコア組立体より成るものであって、

- a) 上記内部コア1が、23~35mmの範囲の直径、 及び30~62の範囲の硬度(ショアーD)を有するこ
 - b) 上記外層2が、36~41 mmの範囲の直径、及び 30~56の範囲の硬度(ショアーD)を有すること、
- c) 上記内部コア1と上記外層2との境界面にあたる、 上記内部コア1の外側の位置における最大硬度(ショア -D) が、46~62の範囲であり、しかも、この位置 から両側に向かって硬度が低くなっていることを特徴と 40 する。

【0007】まず、本発明の固体状スリーピースゴルフ ボールの具体例を、図1~3に示し、本発明を詳細に説 明する。図1は、本発明の固体状スリーピースゴルフボ ールの断面図であって、図1に示されるように、本発明 の固体状スリーピースゴルフボールは、内部コア1、こ の内部コア1を覆う外層2、及び、この外層2を保護す るためのカバー3から構成されている。

【0008】もし、固体状ツービースボールの内部コア の表面が柔らかい場合には、内部コアの弾性率と、カバ **一の弾性率との差が大きくなる。一般的には、このよう**

な場合には、ボールの反発係数が減少する傾向がある。 【0009】しかし、図1に示される如く、ゴルフボールの内部コア1と外層2との間の境界面に位置する、内部コア1の外側の位置において、最大硬度を有するようにし、しかも、硬度が、この位置から外層2の外側表面に向かって減少し、かつ内部コア1の中心に向かっても減少するように、外層2と内部コア1の硬度分布を制御することにより、固体状スリーピースゴルフボールの反発係数が改良できることがわかった。又、コア組立体の硬度分布を、このようにすることによって、硬度が最大である境界面の位置に、大きなエネルギーを蓄積できることもわかった。

【0010】そのため、本発明の固体状スリーピースゴルフボールをクラブで打った時には、クラブフェースのエネルギーが、最大硬度を有する領域に効率的に伝達され、エネルギーの損失を起こすことなく、内部コアの方向に移行し、この結果、高い反発係数が得られる。しかしながら、硬度(ショアーD)の差が2以内である場合には、本発明のゴルフボールにおける、エネルギーの効率的な移行やスピン性が悪い影響を受けることも観察さ 20れた。

【0011】本発明のゴルフボールにおいては、外層が 内部コアよりも柔らかいために、最適な弾道が得られる ような適度なスピン性を示し、その結果、空行距離が増 加することがわかった。更に、本発明のゴルフボールに は、パットを行う間、ゴルフボールの遅延発進をもたら すという利点がある。

【0012】本発明のゴルフボールの内部コアの直径は、23~35mmである。もし、内部コアの直径が23mmよりも小さい場合には、柔らかい外層の直径が大30きくなって、反発特性が悪い影響を受ける。一方、もし、内部コアの直径が35mmよりも大きい場合には、外層の直径が小さくなって、内部コアが硬いために、ボールを打った時の感覚が悪い影響を受ける。

【0013】又、内部コアの硬度(ショアーD)は、30~62の範囲であることが好ましい。30よりも小さい硬度(ショアーD)を有する内部コアの場合には、柔らか過ぎるために、U.S.G.A.及びR.&A.により要求されている、初期速度の限界値250フィート/秒(+2%公差)近くにまで達するのに必要な反発特40性を得ることができない。逆に、62よりも大きい硬度(ショアーD)の場合には、ボールを打った時の感覚が悪い影響を受けることになる。

【0014】一方、外層の直径は、36~41mmの範囲である。もし、外層の直径が36mmよりも小さい場合には、カバーの厚みが大きくなるので、空行距離が減少する。反対に、もし、外層の直径が41mmよりも大きい場合には、カバーの厚みが小さくなることによって、ボールの耐久性が悪い影響を受ける。

【0015】又、外層の硬度(ショアーD)は30~5 50

6であって、もし、外層が30よりも小さな硬度(ショアーD)を有する場合には、柔らか過ぎて、初期速度の 限界値250フィート/秒(+2%公差)近くにまで達 するのに必要な反発特性を得ることができなくなる。逆

に、もし、外層の硬度が56よりも大きい場合には、適 度なスピン性を得ることが困難になる。

【0016】更に、内部コアと外層との境界面にあたる、内部コアの外側の位置における硬度(ショアーD)は、46~62であり、もし、この硬度(ショアーD)が46よりも小さい場合には、大きなエネルギーを蓄積することができなくなり、逆に、この硬度(ショアーD)が62よりも大きい場合には、ボールを打った時の感覚が悪い影響を受ける。

【0017】次に、図2において、本発明のゴルフボールの一実施例(タイプ①)における断面図を示すが、このゴルフボールは、下記の仕様を有する。

内部コア 直 怪 (mm): 23~35

比 重 :1.15~1.5

硬皮 (ショアーD) : 30~62

外層 直径 (mm): 36~41

比 重 : 1.0~1.2 硬度(ショアーD): 30~56

内部コアの外側の位置

硬度 (ショアーD): 46~62

【0018】このタイプの固体状スリーピースボールにあっては、ボールをクラブで打った際、最適な弾道と優れたボールの空行距離が得られるような適度なスピン性をもたらす外層2 aが、柔らかくて、しかも、内部コア1 aの比重が外層2 aの比重よりも大きいために、たとえカバー3 aが硬い樹脂でできていても、優れた空行距離が得られる。又、このタイプのゴルフボールでは、特に、ボールをショートアイアンで打った際、鋭いバックスピンが得られる。

【0019】更に、図3において、本発明のゴルフボールの別の実施例(タイプ②)における断面図を示すが、 このゴルフボールは、下記の仕様を有する。

内部コア 直 径 (mm): 23~35

硬度 (ショアーD): 30~62

外層 弦 径 (mm): 36~41 比 章 :1.15~1.8

硬度 (シェアーD): 30~56

内部コアの外側の位置

硬度 (ショアーD): 46~62

[0020] 一般的に、外層の比重が内部コアの比重よりも大きい場合には、空行距離が小さくなる。しかし、

上記の仕様を有する固体状スリーピースボールの場合には、外層2bが柔らかく、適度なスピン性によって最適な弾道を生み出されるので、たとえカバー3bが硬い樹脂でできていても、優れた空行距離が得られる。そして、このタイプのゴルフボールでは、特に、風の影響の少ない弾道が得られる。

【0021】上記の2種類の固体状スリーピースゴルフボールはそれぞれ、独自の特性を有しているので、ゴルファーは、自分のスイングの特色、例えば、クラブヘッド速度、スピンをかける能力、ボールの発射角度等によって、どのようなタイプのゴルフボールをも選ぶことができる。

【0022】尚、本発明のゴルフボールにおける内部コア及び外層は、ゴムベース、共架橋利、充填材、重合開始剤、酸化防止剤等から構成される。ゴムベースとしては、シスー1、4ーポリブタジエンが単独で使用され、必要に応じて、天然ゴム、イソプレンゴム、及び/又はスチレンーブタジエンゴムを、任意に1、4ーポリブタジエンに添加しても良い。

【0023】又、共架橋剤は、α、β-エチレン性不飽 20 和カルボン酸類及び、これらの金属塩類から選ばれた化合物から成るものであって、トリメチロールプロパントリメタクリレートを、任意に添加しても良い。α、β-エチレン性不飽和カルボン酸類の例としては、アクリル酸及びメタクリル酸が挙げられる。又、これらの金属塩としては、亜鉛ジアクリレート、亜鉛ジメタクリレート等が挙げられる。

【0024】内部コアにおいて使用される共架橋剤の量は、ベースゴム100重量部に対して35~50重量部であり、一方、外層において使用される共架橋剤の量は、25~40重量部である。

【0025】又、使用可能な充填材には、酸化鉛、酸化 鉄のような金属酸化物、並びに、硫酸バリウム、シリ カ、炭酸カルシウム等が挙げられる。アクリル酸又はメ タクリル酸を使用する場合には、好ましい充填材は、酸 化亜鉛である。この充填材の添加量は、通常、製造され る内部コア又は外層の比重や硬度に依存するものではあ るが、限定されるものではない。このような充填材の好 ましい添加量は、ベースゴム100重量部に対して1~ 50重量部である。

【0026】重合開始剤としては、過酸化ジクミル、N-ブチルー4,4'-ビス(t-ブチルパーオキシ)バレレート(valerate)、ビス(t-ブチルパーオキシイソプロビル)ベンゼン、1-1'-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサンのような、有機過酸化物が挙げられる。この重合開始剤の添加量は、ベースゴム100重量部に対して0.2~3.0重量部である。

【0027】又、必要に応じて、N-N'-m'-フェ ネレンジマレイミド(phenelene dimaleimide) 等の補試 50 6

剤(coagent) を、任意に使用しても良い。更には、2-2'ーメチレンーピス(4ーメチルー6-tープチルフェノール)等の酸化防止剤を添加することもできる。 尚、この添加量は、ベースゴム100重量部に対して0.5~1.5重量部であることが好ましい。

【0028】内部コアを製造する際の工程は、上述の成分を、内部ミキサーや2本ロールミル等の通常の混合機を用いて混合する工程と、この混合物を用いて圧縮成形又は射出成形を行う工程とから成る。

【0029】圧縮成形又は射出成形は、内部コアの製造工程において重要な段階であり、この際、共架橋剤による架橋反応は、内部コアが所望の硬度分布を有するものとなるように、一定の温度の下で開始剤によって起こる。

[0030] 得られる硬度分布は、共架橋剤及び開始 剤、並びに、硬化に使用された温度と時間によっても影響を受ける。

【0031】それぞれの共架橋剤には、その共架橋剤に対して適した開始剤がある。架橋反応を、使用される開始剤の分解温度よりも10~50℃高い反応温度で行った場合には、硬度分布に悪い影響を及ぼすことなく、架橋剤の量を最小量とすることができる。

【0032】もし、上記の温度よりも低い温度で架橋反応が起こる場合には、本発明に適した硬度分布は得られず、逆に、上記の温度よりも高い温度の場合には、均一な硬度分布は得られない。

【0033】又、架橋剤が高い揮発性を有する場合には、比較的低い分解温度を有する開始剤を使用することが好ましい。逆に、架橋剤が高い揮発性を有するものでない場合には、もっと高い分解温度を有する開始剤を使用することが好ましい。

【0034】もし、架橋反応が高い温度で起こる場合には、激しいミクロブラウン運動と発生する酸素によって、ゴム分子が壊され、その結果、ゴムの物性、例えばゴムの弾性や耐久性等が著しく低下することになる。そのため、架橋反応は、共架橋剤であるα、β-エチレン性不飽和カルボン酸の沸点よりも0~50℃低い分解温度を有する開始剤を用いることによって行うことが必要である。

40 【0035】比較的低い分解温度を有する開始剤を使用する場合には、他の物性に悪い影響を与えることなく最適の硬度分布が得られるように、比較的長い時間、例えば10~40分間、分解温度よりも20~50℃高い温度で架橋反応を行うことが必要である。

【0036】反対に、比較的高い分解温度を有する開始 剤を使用する場合には、比較的短い時間、例えば5~2 5分間、分解温度よりも10~40℃高い温度で架機反 応を行うことが必要である。

[0037] 本発明では、使用される開始剤によって前 もって決定された温度と圧力を、出発混合物に対してか けた際、架橋が起こり、ゴムの硬化が進行する。熱が混合物に伝わってゴムが膨張する場合には、使用された共 架橋剤が部分的に金属酸化物又は塩の近傍に蒸発し、開 始剤によるゴムの架橋反応が進行して、ガス状になった 共架橋剤が、内部コア1の内側部分から内部コア1の外 側部分に向かって移行する。そのため、この架橋反応 は、内部コア1の中心部分よりも、内部コア1の外側部 分の近傍の方が活発となり、その結果、内部コア1の外 側表面の近傍の硬度が、内側部分の硬度よりも高いもの となる。

【0038】出発混合物が熱により膨張する場合には、 加わる圧力によって成形体に隙間が生じないようにしな ければ、成形体に隙間が生じることとなる。

【0039】アクリル酸あるいはメタクリル酸は、金属中心を有するマトリックスの形態となった、大きな分子量を有する高分子を形成する。この際、シス結合の均一性又は架橋の均一性は、出発混合物の均一性、及び熱の移行に依存する。

【0040】架橋が完結した後においても全工程が完結するまでは、混合物は、熱によって連続的に膨張する。そして、加わる圧力により成形体に隙間が生じないようにすることで、成形体のキャビティーの近傍部分、即ち内部コア1の最も外側部分に、最も密度の高い層が形成され、この結果、内部コア1の中心から内部コア1の外側部分に向かって硬度が徐々に増加し、境界面の近傍で最大の硬度となることがわかった。

【0041】大きな分子量を有する成形体の、最も密度 の高い層における分子鎖は、混合物の膨張により生じる 圧力によって、バネのように圧縮されている。そのた め、この部分に、より高いエネルギーを蓄積することが 30 可能となる。

【0042】又、外層2も、後述の実施例に記載されるような圧縮成形体であることが好ましいが、内部コア1を製造する際の方法と同様の方法によって製造できる。しかし、本発明において必要とされる好ましい硬度分布が得られるようにするためには、外層2の外側表面が、硬くなり過ぎないようにすることが重要である。

【0043】しかしながら、このようなツーピースの固体状内部コア組立体の架橋反応は、本発明に対する好ましい硬度分布を得るためには、内部コア1の架橋反応の時の温度よりも低い温度で行うことが好ましい。

【0044】固体状コアの場合と同様、外層2を製造するための出発混合物も、熱が加わった際に膨張する。この外層2における膨張は、内部コア1の場合よりも大きいものであり、この結果、外層2の内側表面と内部コア1の表面との間に位置する境界面部分の近傍に、最も密度の高い分子鎖が形成される。

【0045】更に、外層2を形成するための出発混合物中に含有される架橋剤の一部は、蒸発し、生成したガス状の成分は、内部コア1の表面に浸透して、外層2と内 50

部ゴア1との間に強固な結合を形成する。

【0046】このようにして得られた、外層2と内部コア1とから成るコア組立体は、硬度分布を有するものであって、硬度の最大となる部分が、内部コア1における外側の位置にあり、この位置は、内部コア1と外層2との間の境界面の近傍にあり、、しかも硬度が、この位置から両側に向かって徐々に小さくなっている。

【0047】本発明では、ボールを打った際、クラブフェースにより加えられたエネルギーが効率良く伝達され、このエネルギーは、硬度が最も高い位置に蓄積される。そして、蓄積されたエネルギーは、損失することなく、内部コア1の内側に向かって放出され、この結果、高い反発係数が得られる。

【0048】このコア組立体は、36~41mmの直径を有し、しかも30~62の硬度(ショアーD)を有するものであって、先に述べたような、2つのタイプのコア組立体が有効である。

【0049】このようなコア組立体は、その後、0.9 ~2.6 mmの厚さを有し、良好な耐衝撃性と耐候性を有する樹脂からなるカバー3によって覆われる。尚、この樹脂は、無機充填材、顔料などを含有したものであっても良い。

【0050】カバー3の材質としては、バラタ(balata) ゴム、イオノマー樹脂 (Du Pont 社より市販されている "サーリン(Surlyn)"等)、ポリウレタン等が使用され るが、イオノマー樹脂が好ましい。

【0051】カバー3の形成は、射出成形又は圧縮成形により行われる。そして、最終的に、このカバー3に塗装を施すことにより、本発明の固体状スリーピースゴルフボールが得られる。

【0052】上述の如く、本発明においては、コア組立体を形成するツーピースのそれぞれの大きさ、比重及び硬度を調整することにより、優れた反発特性及び空行距離、並びに高いスピン性を有した、前述のタイプ①又は②に示されるような固体状スリーピースゴルフボールが得られる。

【0053】タイプ①又は②に示される本発明の固体状スリーピースゴルフボールは、長い転がり距離を有するボールに比べて、優れた空行距離を有し、しかもボールの制球力が良好である。なぜならば、本発明のゴルフボールは、地面の状況による影響をほとんど受けないからである。又、本発明のゴルフボールは、適度なスピン性をも有している。

【0054】更に、前述の①又は②にに示されるゴルフボールの弾道は、それぞれのボールの慣性モーメントを変えることによって制御することができる。このため、ゴルファーは、自分のスイングの特徴、例えばクラブヘッド速度、スピンをかける能力、発射角度に応じて、自分に合ったボールを選択することができる。

[0055]

【実施例】

実施例1

シスー1,4ーポリブタジエンゴム(ゴムベース)、亜 鉛ジアクリレート(共架橋剤)、酸化亜鉛(充填材)、 過酸化ジクミル(開始剤)、2,2'ーメチレンービス (4ーメチルー6ーtーブチルフェノール)(酸化防止 剤)を、表1の実施例1に示される量において含有する 出発混合物を調製した。

【0056】この混合物を混合し、2本ロールミルを用いて30分間混練した後、165℃で10分間圧縮成形 10を行って、固体状内部コアを作製した。

【0057】一方、同様にして、表1の実施例1に記載される出発混合物を用いて、半球状の外層を成形した。 【0058】そして、鋳型の中で、上記の内部コアを、前もって半球状に成形した外層によって覆い、得られた成形品を150℃で20分間加熱することにより硬化させ、ツーピースの固体状コア組立体を作製した。その後、このコア組立体を、射出成形法を用いて、従来品と変わらないディンプル形状となるようにイオノマー樹脂 10

(表1の実施例1に記載される組成からなる樹脂)で**稷**い、カバーを形成させ、その後、更に**全**装を施して、本発明の固体状スリーピースゴルフボールを作製した。この実施例1により得られたゴルフボールの物性を、表2に示す。

【0059】 実施例2

表1の実施例2に記載される組成からなる出発混合物を 使用する以外は、実施例1に記載される方法と全く同様 の方法によって、本発明の固体状スリーピースゴルフボ ールを作製した。この実施例2により得られたゴルフボ ールの物性を、表2に示す。

【0060】比較例1

表1の比較例1に記載される組成からなる出発混合物を 使用して内部コアを作製した後、実施例1に記載される 方法と全く同様の方法によりカバーを形成させ、固体状 ツーピースゴルフボールを作製した。この比較例1によ り得られたゴルフボールの物性を、表2に示す。

[0061]

【表1】

		実施例1	実施例 2	比較空 1
1	古女」とら込む(細細蛇)			コアの組成(重量部)
	シャー1 11・ボーブをジェンゴム	100	9	100
	アく ユ・ジェンソ・ロ・コード 指地 なかっこ フーマ	£3	\$ 3	0#
= E	はアントン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24.6	# # #	12.1
	版 17 mm 37 mm (#0%) (#0%)	<u>س</u>	က	င
ØR.	2,2'-メチレン-ピス(4-メチル -6-セ-ブチルフェノール	. 00.5	0.5	0.5
R	女面の故院(根理館)			
	シュー1.1-ボリブタジエンゴム	100	100	1
	リス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35	35	
4	数 化 斯 数	ري د	21.5	ı
 I	200	<u>س</u>	۳	1
4	2,2-メチレン-ヒス(4-メチル-6-t-ブチガフェノール	0.5	0.5	1
	(新中申) 公共・イン・			カベーの組成(重量部)
	##一コン 8940" (Du Pont学園)	5	100	100
	製化チタン	3.1	3.1	3.1

40 【表2】

[0062]

		実施例1	実施例2	比較例1
	内部27 直 後 (nm) 重 量 (8r)	29.7 16.5 1.20	29.7 15 1.09	111
\$	外 径 (mm) コア組立体の重量 (gr)	38.7 35.3	38. 7 35. 6	<u> 外側コア</u> 38.7 35.3
和	カバー 完成したボールの直径 (ロロ) 完成したボールの重量 (gr)	42.7 45.3	42.7 45.5	カバー 42.7 45.3
	硬度分布 (ショアーロ) 中 心 中心から 5 日日離れた位置 中心から 1 0 田の離れた位置 中心から 1 4 田の離れた位置 中心から 1 5 田の離れた位置 中心から 1 5 田の離れた位置 中心から 1 6 田の離れた位置	#5 54 54 61 61 55 55	#2 50 50 58 54 54	硬度分布 (ショフーD) 38 47 49 49 49 55 60
		126	122	122

【0063】上記実施例1及び2で得られた、2つのタイプの本発明の固体状スリーピースゴルフボールと、上記比較例1で得られた固体状ツーピースゴルフボールについて、それぞれのタイプのゴルフボールを24個ずつ作製した。そして、これらのゴルフボールを、米国試験機構(U.S. testing Organization)にて、同じ日にスイングロボットを用いて試験し、空行距離、全飛距離、速度及び弾道を測定した。この試験結果を、表3に示す。

【0064】 【表3】

						実施例1	実施例2	比較例 1
华	₩	行	膃	雛	(+-F)	242.80	243.23	239, 19
	₩	黑	盟	黻	(4-k)	271.61	269.38	267.47
粒	毈	度		7	(フィート/秒)	235. 76	234.78	234. 48
	惠	搏				5.54	5, 52	5. 29

【0065】他、試験に使用したクラブは、テーラーメードゴルフ(Taylor Made Golf)社製の9.5°ドライバースチールSシャフトであり、ヘッド速度は108マイル/時であった。弾道は、1インチ平方増加の範囲内で(within one inch square increments)ワイヤースクリーンを通して測定した。この範囲は0~10であり、数値は、ボールが頂点に達した位置において記録した。これらの値は、この試験において、他のボールに対しての参考のためのものに過ぎない。

10 【0066】実施例3及び4

シスー1, 4ーポリブタジエンゴム(ゴム)、亜鉛ジアクリレート(共架橋剤)、酸化亜鉛(充填材)、過酸化ジクミル、Nープチルー4, 4'ービス(tープチルパーオキシ)パレレート(開始剤)、2, 2'ーメチレンービス(4ーメチルー6ーtープチルフェノール)(酸化防止剤)を、表4の実施例3及び4に示される量において含有する出発混合物を調製した。

【0067】そして、実施例1に記載される方法により、固体状スリーピースゴルフボールを作製した。

20 【0068】このようにして作製した、表4の実施例3 及び4に記載される本発明の固体状スリーピースゴルフ ボール (2つのタイプ) を、上述の方法により試験し た。

【0069】 【表4】

30

		実施例3	東施例 4	比較例 2	比較图3
-	「資料申」仕号・1				
	内部コノの和政へ単単四人	100	100	1	1
	シスー1,4-ポリンタントノゴカ		Ç	1	1
3	用窓ジアクリアート	8) ·		
Ξ		34.2	9	•	-
	12	3	ന	1	
鈱	A要コント 2,2' - メチレン-ビス(4-メチル -6-t-ブチルフェノール	0. R	0.5	l	ļ
1	(辞申申) 世紀ラリス				
ニ	大幅の名は、単語によった。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	001	100	1	1
	ンメース・トキンノン・ト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32	53	1	1
•	銀	<u>س</u>	24.4		
(0	及 15 引 3 18 18 N-レルグ N-レルグー1, 12 - アン(t-レルグ S-1 + + ヤン) ズファート (40%)	3.5	3.5		
Æ	2,2'-メチレン-ビス(4-メチル -6-t-ブチルフェノール	0.5	0.5	1	
	カバーの組成(画量部) *** *** *** *** **** **** **** **** *	00-	100	1	
	一キーリン・シェー・エー・エー・エー・ 数 化 ナ タ ン	3.1	3.1	l 	1

【0070】比較例2及び3

比較試験用として、市販の固体状スリーピースゴルフボール (表5の比較例2に記載される物性を有するもの) 及び、糸巻きボール (表5の比較例3に記載される物性を有するもの) についても試験を行った。上記のゴルフボールのそれぞれのタイプのものを、24個ずつ使用し、前記と同じ方法及び同じ条件にて同じ日に試験し

た

【0071】上記の実施例3、4で得られたゴルフボール及び比較例2、3のゴルフボールについての物性、並びに試験結果を、表5及び表6に示す。

[0072]

【表5】

		実施例3	実施例 4	比較例2	比較例3
·	<u>内部37</u> 直 径 (mm) 重 量 (8r) 比 重	29.7 17.1 1.25	29.7 15.2 1.11		
&	<u> </u>	38.7 35.3	38.7 35.4	<u>外側コア</u> 38.3 34.7 │	
和	<u>カバー</u> 完成したボールの直径 (mm) 完成したボールの重量 (gr)	42.7 45.3	42.7 45.3	カバー #2.8 #5.0	= #2.7 #5.5
	分布 (ショアーD) い ら 5 田 m 離れた位	38	9 t 6 E		-
	で10日日離れた内で17日日開発を入り17日日開発がから17日日開発がから11日開発がから11日間には11日間に11日間に11日間に11日間に11日間に11日間に11日間	# % # % % # # % % #	53	111	11
	中心から 1 2 日日番れたは国中心から 1 6 日日離れた位置中心から 1 8 日日離れた位置中心から 1 8 日日離れた位置	다 # # # #	3 8 8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
		108	104	122	06

【0073】 【表6】

				•	実施例3	実施例 4	比較例2	比較例3
*	粉	攤		(4-4)	223. 12	223.87	213.20	221.79
:	熈	開		(ヤード)	253.04	256. 12	248.00	251.83
軐	関		7 4 -	(フィート/秒)	235. 67	235.46	233. 41	231.23
	授				5.26	5.28	ц. 80	5. 12

[0074] 表3及び表6に示される結果から、本発明の固体状スリーピースゴルフボールは、優れた反発特性、空行距離及び適度なスピン性を有するものであることが、明確に証明された。

[0075]

【発明の効果】本発明の固体状スリーピースゴルフボールは、ボールを構成する各部分の大きさ、比重及び硬度が制御されることによって、適度なスピン性を有すると共に、優れた反発特性及び空行距離を有している。又、 10 本発明のゴルフボールでは、種々の応用例を作製することができ、これらのゴルフボールは、それぞれ独自の特性を有するので、ゴルファーは、自分のスイングの特性、例えばクラブヘッド速度、スピンをかける能力、ボールの発射角度等に合わせて、自分に合ったゴルフボー

ルを選ぶことができる。 【図面の簡単な説明】

【図1】本発明の固体状スリーピースゴルフボールの断面図である。

【図2】本発明のゴルフボールの一実施例(タイプ**①**) 20 における断面図である。

【図3】本発明のゴルフボールの別の実施例 (タイプ ②) における断面図である。

【図4】米国特許第 4,781,383号に開示される、固体状 スリーピースゴルフボールの断面図である。

【符号の説明】

1、1a、1b 内部コア

2、2a、2b 外層

3、3 a、3 b カバー

30

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(72)発明者 イン ホン ホワン 大韓民国、ソウル、カンナム - ク、ドゥン チョン - ドン312 - 907、ジュゴン アパー トメント