EE4R Automatic Spoken Language Processing, February 2015

Question sheet 2

1. A Hidden Markov Model (HMM) M has four emitting states: s_1 , s_2 , s_3 , and s_4 each of which can emit the symbol a, b or c. The state output probabilities for these states are given by:

$$p(a \mid s_1) = 0.6$$
 $p(b \mid s_1) = 0.2$ $p(c \mid s_1) = 0.2$
 $p(a \mid s_2) = 0.2$ $p(b \mid s_2) = 0.7$ $p(c \mid s_2) = 0.1$
 $p(a \mid s_3) = 0.2$ $p(b \mid s_3) = 0.4$ $p(c \mid s_3) = 0.4$
 $p(a \mid s_4) = 0.1$ $p(b \mid s_4) = 0.1$ $p(c \mid s_4) = 0.8$

The initial state probability vector is given by $\pi = (1,0,0,0)$ and the state transition probability matrix A is given by:

$$A = \begin{bmatrix} 0.5 & 0.2 & 0.3 & 0 \\ 0 & 0.6 & 0.4 & 0 \\ 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Let y be the observation sequence ababbcc

- a. Draw the state-time trellis which relates the model *M* to the observation sequence *y*.
- b. Use the Viterbi algorithm to calculate the probability $P(y, \hat{s} | M)$ and the optimal state sequence \hat{s} .
- 2. Consider a 2 class classification problem, where each class is modelled using a 3 component multivariate (3-dimensional) GMM with the parameters (means, variances and weights) as below:

Class
$$C_1$$
: Component 1: $\mu_1 = (0,0,0), \ \sigma_1^2 = (1,2,1)$

Component 2:
$$\mu_2 = (1,0,0), \ \sigma_2^2 = (1,1,1)$$

Component 3:
$$\mu_3 = (1,1,1), \ \sigma_3^2 = (2,2,1)$$

Weights:
$$w_1=0.5$$
; $w_2=0.3$; $w_3=0.2$

Class
$$C_2$$
: Component 1: $\mu_1 = (0,-1,0)$, $\sigma_1^2 = (1,1,1)$

Component 2:
$$\mu_2 = (1,-1,0), \ \sigma_2^2 = (1,1,2)$$

Component 3:
$$\mu_3 = (0,-1,-1)$$
, $\sigma_3^2 = (2,2,1)$

Weights:
$$w_1=0.4$$
; $w_2=0.3$; $w_3=0.3$

Calculate to which class does the sequence of feature vectors $Y=y_1,...,y_T$ given below corresponds to (i.e., you should calculate $P(Y|C_1)$ and $P(Y|C_2)$).

$$Y = y_1, y_2, \dots, y_5 = \begin{pmatrix} 0 & 0.5 & 0.5 & 0 & 1 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -2 & 0 \end{pmatrix}$$

3. Consider modelling of 1-dimensional data using a Gaussian Mixture Model (GMM) with 2 mixture components. The parameters of the GMM components at the current iteration of the E-M training procedure are:

Gaussian component 1: $\mu_1 = 6$, $\sigma_1^2 = 1$, $w_1 = 0.5$ and

Gaussian component 2: $\mu_2 = 8$, $\sigma_2^2 = 1$, $w_2 = 0.5$.

Consider the sequence of data y=(7, 5, 10, 9, 4). Calculate the new values for the means and variances of the GMM components after one iteration of the E-M training procedure.