Architecture de Ordinateurs Module 7

Processeurs « spéciaux »

Dr. Yannick HERVE V 1.1

Plans

- Microcontrôleurs
- DSP: Digital Signal Processing
- GPU: Graphical Processing unit
- Processeurs asynchrones
- Processeurs synthétisés : SoftCore
- Architectures parallèles (taxonomie)

Microcontrôleurs

Microcontrôleurs (μC/MCU)

- Système intégrant mémoire et périphériques
 - Objectifs : compacité, simplicité, consommation
- Invention: 1971, Texas Instrument
 - TMS 1000 : MCU 4 bits avec RAM et ROM
 - 1976: Intel 8048, 1980: Intel 8051 (toujours vendu)
- Tendances actuelles
 - Systèmes embarqués, Systèmes connectés (IoT)
 - System On Chip (avec capteur « analogiques »)
 - Avec FPGA locale intégrée, programmation JTAG

Contenu (exemple)

- CPU de 4 bits ... 32 ou 64 bits, mode veille efficace
- RAM : données et variables
- ROM (Flash): programme
- Oscillateur → horloge (RC ou Quartz)
- Périphériques
 - CAN/CNA
 - Générateurs PWM/MLI (Pulse Width Modulation)
 - Timers, compteurs d'impulsions, chiens de garde
 - Contrôleurs de bus : UART, I²C, SSP, CAN, USB ...
 - Pile Ethernet

— ...

Et en plus

- Le CPU peut être (issu d')un CPU classique
- Récent : multi-core

- C'est la famille de processeur la plus répandue
 - Objet moderne → au moins un MCU
 - +20% par an en volume (≈40-80 par voiture standard)
 - 35 milliards d'unité en 2019 (utilisation≈100/pers/jour)
 - 45 milliards par an en 2022 (prévision)
 - +10% en valeur

Quels périphériques/tailles mem?

- Compromis délicat
 - → Constructeur: Familles et sous familles

- Utilisateur
 - → Choix complexe
 - besoins de l'application
 - besoins de l'évolution potentielle/prévue

Exemple: PIC

- Architecture RISC/Harvard
- 1MIPS/MHz
- Horloge : entre 20 et 64 MHz

Prix bas / outils gratuits

Trois sous-familles (taille instruction)

Baseline: 12 bits

MidRange: 14 bits

HighEnd: 16 bits

PIC16F84

• DIP18

Farnell (3/8/19) 4,13€HT/unité 3,91€HT/100

PIC16F84: architecture

Détails (1)

- Deux bancs/bus instructions/mémoire
 - 1K*14bits flash programme / 256*8bits données
 - 0h : vecteur reset, 4h : vecteur d'interruption
 - 8 niveaux de pile interne
- ALU simple, registre de travail
- Ressources
 - Ports d'I/O, Temporisateurs, Interruptions
 - Chien de garde, Mode sommeil
- Une instruction = 4 cycles d'horloge
 - Horloge externe divisée par 4 en interne

Détails : I/O

- 2 ports: A (5 bits) et B (8 bits)
- Port A: chaque bit IN ou OUT
 - A(4) multiplexée avec horloge du timer TMR0
- Port B : chaque Bit IN ou OUT
 - B(0) permet de déclencher l'interruption INT
 - B(4)...B(7) permet de déclencher RBI

Détails : mémoire de données

- Deux espaces
 - RAM : 68 octets, volatile
 - SFR: 12 registres internes
 - Espace utilisateur
 - EEPROM: 64 octets, non volatile
 - R/W
 - Registres EEADR et EEDATA
 - Contrôle EECON1 et EECON2
- Séparée en deux banc (banques) switchables
 - 128 octets chacun (sous contrôle de RPO)

Détails: instructions

RISC: jeu très réduit

- 9 opérations sur des octets
- 10 opérations sur des bits
- 11 opérations de contrôle / sur les littéraux

Précisions

- JTAG
- MLI

Voir module 10 Spécifique ATMega328
La suite de ce cours et les applications → Abir Rezgui

DSP

DSP: Digital Signal Processor

- Objectif: temps réel (voix, vidéo ...)
- Processeur optimisé pour le traitement de signal
- Architecture Harvard modifiée
- Une (ou plus) multiplication-accumulation par cycle En général, format de données : entiers
- Bus d'I/O à haut débits : séparation entrée et sortie
- Interfaces pour ADC/DAC ou internes
- Traitements itératifs/vectoriels optimisés

DSP: Digital Signal Processor

- Utilisation (filtrage généralisé)
 - Voix
 - Vidéo (filtrage, compression ...)
 - Traitement d'image
 - Crypto
 - Radio logicielle
 - -IA
- De plus en plus remplacés par des GPU

DSP: architecture simplifiée

Famille TMS320

- Introduit par Texas Instrument le 8 avril 1983
 - TMS 32010
- Architecture Harvard modifiée
- Fast Multiply and Accumulate ALU (FPU)
- TMS320C1x: 1ère génération, 16 bits virgule fixe
- TMS320C3x: 2^{ème} génération, 32-bit floating point
- TMS320C8x, multiprocessor: a 32 bit floating "master processor" / 4 32-bit fixed-point
- Actuels : DSP multicore + miconcontrôleur

TMS320C203/LC203 Block Diagram

https://speech.di.uoa.gr/dsp/manuals/E1.pdf

GPU

GPU: Graphical Processing Unit

- Architecture spécialisée pour le graphique
- Algorithmes spécifiques « câblés »
 - Evolution vers modules Super-ALU
- Capacités « généralistes » (ex : minage monnaies)
 - GPGPU : General Purpose GPU
- Module interne ou co-processeur
- Toutes les « astuces » architecturales
 - Massivement parallèle
 - VLIW, Vectoriel, Pipeline, SIMD/MIMD

GPU: définitions

Processeurs de flux (ou clusters)

- Stream Processors: calculs flottants (32 ou 64bits)
- Raster Engines : Polygones
- Texture Mapping Units (TMU): textures sur poly
- Render OutPut Units (ROP): filtrage

- Shader engine = Raster + Geometry (ou Tesselation)
- Shaders engines gérés par Setup Engine

GPU RADEON HD2000

- Puce R600
 - 320 processeurs de flux : 5 blocs de 64 unités
 - Vectoriel 5D (nom commercial) ou VLIW5
 - 5 instructions (si indépendantes)
 - Registre vectoriel de 64 bits
 - Traite 320 éléments par cycle
 - Unités de calcul MIMD (instructions différentes)
 - Opérateurs 16/32 bits entiers ou 32 bits décimaux
 - Une unité (sur 5) : calculs spéciaux trigo, log ...
 - 2,7 Tflops théorique

R600 architecture

GPU RADEON HD7970

- Puce R900 : VLIW → scalaire
 - Version max: 4,31 milliards de transistors
 - Mémoire: 3012 Ko, Bus 384 bits, GDDR5, 264GB/s
 - Cache L2 de 768 ko
 - 2048 stream processors
 - 128 TMU / 64 ROP
 - Entiers 24 bits
 - Performances (+200 watts !!!)
 - 25600 GPx/s, 89600 Gtexture/s
 - 2867 GFlops32/s716 GFlops64/s

Radeon HD7990

• Deux 7970 en parallèle

HD7000 architecture générique

GCN: Graphics Core Next

Sortie vidéo

Processeurs synthétisés

SoftCore

Processeur synthétisés sur FPGA

Softcore ou SoPC: System on Programmable Chip

- FPGA: Composant générique programmable par l'utilisateur (avec des ressources existantes à connecter)
- Modèle générique de processeur
 - Choix architecturaux (simples)
 - Choix des périphériques
 - → Synthèse logique

Exemples: MicroBlaze, NIOS, Igloo, ARM7, MIPS, Leon, LM32 ...

« Workflow »

Ou achat d'un Hard-IP (primitive)

Implémentation physique pour utilisation

Le rêve des chercheurs

- Partie numérique et partie analogique
 - Les deux « configurables »
 - Ca existe
- Reconfigurable (auto) en fonction des besoins
 - Ca existe : configuration prévues à l'avance
 - Ça n'existe pas encore
- Piloté par une intelligence artificielle
 - Qui calcule la bonne configuration
 - Pas encore

Processeurs asynchrones

Processeurs asynchrones

- Problèmes des processeurs synchrones
 - Conception de plus en plus complexe
 - Synchro, vitesse limitée par la partie la plus lente
 - Arbre d'horloge (délai, gigue)
 - Parties non utilisées consomment
- Processeur asynchrone (auto-séquencé)
 - Handshake généralisé entre modules
 - Avantage : utilisation/conso/vitesse optimales
 - Difficulté : prédiction et interfaçage, séquenceur compliqué à synthétiser automatiquement

Synchrone → auto-synchrone → asynchrone

- Synchrone
 - une seule horloge globale
- Auto-synchrone
 - Le dernier module indique la fin de son calcul et remonte une impulsion dans la chaîne
 - Calcul automatique de « l'horloge » optimale
 - Curiosité de labo
- Asynchrone (recherches continues depuis 1953)
 - Modules indépendants avec synchro locale

Principe (simplifié)

Consommation jusqu'à 4 fois moindre à même vitesse : 80C51 asynchrone Jusqu'à 4 fois la vitesse : MiniMIPS à même consommation

Vitesse automatiquement modifiée en fonction de la température Pipeline « élastique » Pollution électromagnétique minimisée

Autres notions

- Handshake (poignée de main) : échange d'accord
 - Codage sur 2 fils : REQ, ACK
 - Codage sur 1 fil : multiniveau
- Protocoles
 - Deux phases (NRZ)
 - Quatre phases (RZ)

Popularité?

- Manque d'outils dédiés
- Manque de cursus de formation
- Hégémonie des gros acteurs « synchrones »

Architectures parallèles : généralités

- Taxonomie de Flynn (1966)
 - Flux d'instruction : Multiple, Simple
 - Flux de données : Multiple, Simple

	Instruction Streams	
	one	many
Data Streams many one	SISD traditional von Neumann single	MISD May be pipelined
	CPU computer	Computers
	SIMD Vector processors fine grained data Parallel computers	MIMD Multi computers Multiprocessors

Archi // : illustration

Avec ou sans mémoire partagée