Logik

Äquival	Bezeichnung		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \vee A$	Kommutany	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \lor (B \lor C)$	$(A \lor B) \lor C$	ASSOZIATIV	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \vee A$	A	idempotenz	
$\neg \neg A$	A	Involution	
$\neg (A \land B)$	$\neg A \lor \neg B$	De-Morgan	
$\neg(A \lor B)$	$\neg A \wedge \neg B$	DE-WORGAN	
$A \wedge (\mathbf{A} \vee B)$	A	Absorption	
$A \vee (\mathbf{A} \wedge B)$	A		
$A \Rightarrow B$	$\neg \mathbf{A} \lor B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch; "-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$ "Nicht" (!, ~, \rightarrow)

Konjunkt. $A \wedge B$ "und" (&&, \Box)

Disjunkt. $A \vee B$ "oder" (\square , \Longrightarrow)

Implikat. $A \Rightarrow B$ "Wenn, dann" ",zwingt" (\rightarrow, if)

Äquiv. $\mathcal{A} \Leftrightarrow \mathcal{B}$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \implies)$

Wahrheitswertetabelle mit 2ⁿ Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	\mathcal{B}	$\neg A$	$\mathcal{A} \wedge \mathcal{B}$	$A \lor B$	$A \Rightarrow B$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Axiomatik

Axiome als wahr angenommene Aussagen; an Nützlichkeit gemessen. Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Ouantoren Innerhalb eines Universums:

Existenza. ∃ "Mind. eines"

Individuum ∃! "Genau eines"

Allq. ∀ "Für alle"

Ouantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\bot = \forall x \neg F(x)$

Klassische Tautologien	Bezeichnung
$A \vee \neg A$	Ausgeschlossenes Drittes
$A \wedge (A \Rightarrow B) \Rightarrow B$	Modus ponens
$(A \land B) \Rightarrow A$	A lala
$A \Rightarrow (A \lor B)$	Abschwächung

Negation (DE-MORGAN)

$$\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$$
$$\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$$

Häufige Fehler

- $U = \emptyset^{\complement}$ nicht notwendig
- $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$
- $\neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Beweistechniken

Achtung: Aus falschen Aussagen können wahre und falsche Aussagen folgen.

Direkt $A \Rightarrow B$ Angenommen A, zeige B. Oder: Angenommen $\neg B$, zeige (Kontraposition).

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Fallunters. Aufteilen, lösen, zusammenführen. O.B.d.A = "Ohne Beschränkung der Allgemeinheit"

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$ Angenommen $A \wedge \neg \mathbf{B}$, zeige Kontradiktion. (Reductio ad absurdum)

Ring (Transitivität der Implikation)

$$A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$$
$$\equiv A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow \mathbf{A}$$

Induktion $F(n) \quad \forall n \geq n_0 \in \mathbb{N}$

2. Schritt: Angenommen F(n) (Hypothese), zeige F(n+1) (Behauptung).

Starke Induktion:

Angenommen $F(k) \quad \forall n_0 \leq k \leq$ $n \in \mathbb{N}$.

Häufige Fehler

- · Nicht voraussetzen, was zu beweisen ist
- Äquival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

Naive Mengenlehre

Mengen Zusammenfassung versch. Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum U

Einschränkung $\{x \mid F(x)\}$

Relationen

Teilmenge $N \subseteq M$ $\Leftrightarrow \forall n \in N : n \in M$

Gleichheit M = N $\Leftrightarrow M \subseteq N \land N \subseteq M$

Mächtigkeit

= n endlich $> \infty$ unendlich $= |N| \Leftrightarrow \exists f_{\text{bijekt.}} : M \to N$ **Abzählbar** $\exists f_{\text{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{Q}
- $M_{abz.} \wedge N_{abz.} \Rightarrow (M \cup N)_{abz.}$ $(=\{m_1,n_1,m_2,n_2,\dots\})$
- $M_{abz} \wedge N \subseteq M \Rightarrow N_{abz}$

 $f(1) = 0, \mathbf{r_{11}} r_{12} r_{13} r_{14} \dots$ $f(2) = 0, r_{21} \mathbf{r_{22}} r_{23} r_{24} \dots$

 $f(3) = 0, r_{31}r_{32} \mathbf{r_{33}} r_{34} \dots$

 $f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r_{44}} \dots$

(CANTORS Diagonalargumente)

Operationen

Vereinig. $M \cup N$ $\Leftrightarrow \{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in A\}$ N (= \emptyset ,,disjunkt")

Diff. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$ \bigcirc

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M : \emptyset \subseteq M$, nicht $\forall M : \emptyset \in M$

1. **Anfang:** Zeige $F(n_0)$.

Ouantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

$$\bigcup_{i \in I} M_i := \{x \mid \exists i \in I : x \in M_i\}$$
$$\bigcap_{i \in I} M_i := \{x \mid \forall i \in I : x \in M_i\}$$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\begin{split} \mathcal{P}(M) := & \{ N \mid N \subseteq M \} \\ |\mathcal{P}(M)| = & 2^{|M|} \quad (\in / \notin \text{bin\"ar}) \end{split}$$

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

$$\mathbf{f}:X\to Y$$

Graph $gr(f) := \{(x, f(x)) | x \in X\}$

Identität

$$id_A : A \to A$$

 $id_A(a) := a \quad \forall a \in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X :$$

 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv
$$\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$$

Bijektiv wenn injektiv und surjektiv

Verkettung $f \circ g : A \to C$

$$(f\circ g)(a)=f(g(a))$$

(der Reihenfolge nach)

$$A \xrightarrow{f \land g} C$$

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

$$\equiv$$
 Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow \mathrm{id}_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow \mathrm{id}_M \cap R = \emptyset$

$$\equiv$$
 Sym. $\forall (x, y) \in R : (y, x) \in R$
 $\Leftrightarrow R \subseteq R^{-1}$

Antis.
$$\forall x, y : ((x, y) \in R \land (y, x) \in R) \Rightarrow x = y \Leftrightarrow R \cap R' \subseteq \mathrm{id}_M$$

Vollst.
$$\forall \mathbf{x}, \mathbf{y} \in M : (x, y) \in R \vee \mathbf{Reelle\ Zahlen\ }\mathbb{R}$$

 $(y, x) \in R$
 $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

Inverse Relation
$$R^{-1}$$
 mit $R \in M \times N := \{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p)\in M\times P\mid \exists n\in N:$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation ∅

Identität $id_M := \{(m, m) \mid m \in M\}$

Allrelation $M \times M$

 $\ddot{\mathbf{A}}$ quivalenzrelation \equiv reflexiv, sym- Multiplikation $(\mathbb{R},*)$ metrisch und transitiv. (Gleichheit***)

Äquivalenzklasse $[m]_{=}$ auf M, Vertreter $m \in M$.

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

$$\Leftrightarrow [m]_{=} = [x]_{=}$$

Zerlegung $\mathcal{N} \subset \mathcal{P}(M)$ von M.

- ∅ ∉ N
- *M* = ∪*N*
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

Analysis

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{O})

Körperaxiome $(\mathbb{R},+,*)$ $a,b,c\in\mathbb{R}$

Addition $(\mathbb{R}, +)$

Assoziativität a + (b + c) = (a + b) + c

Kommutativität a+b=b+a **Neutrales Element Null** $a+0=a \quad 0 \in \mathbb{R}$

Inverses "Negativ" $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Assoziativität a * (b * c) = (a *b) * c

Kommutativität a * b = b * a

Neutrales Element Eins $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert" $a*(a^{-1})=1$ $a \neq \mathbf{0}, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

 $a < b \land b < c \Rightarrow a < c$

Trichotomie Entweder a < b oder a = b oder b < a \Rightarrow Irreflexivität ($a < b \Rightarrow a \neq b$)

Addition $a < b \Rightarrow a + c < b + c$

Multiplikation

 $a < b \Rightarrow a * c < b * c \quad 0 < c$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

ARCHIMEDES Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

 $a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$ $(\Rightarrow \sqrt{2} \notin \mathbb{Q}$, da mit $\frac{a}{\lambda} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$
- $\frac{a}{b} \stackrel{*d}{=} \frac{a*d}{b*d}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- $\frac{a}{b} + \frac{c}{d} = \frac{a*d+c*b}{b*d}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- $\sqrt[n]{\mathbf{a} * \mathbf{b}} = \sqrt[n]{\mathbf{a}} * \sqrt[n]{\mathbf{b}}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $a^{\mathbf{x}} * b^{\mathbf{x}} = (a * b)^{\mathbf{x}}$
- $\bullet \ a^x * a^y = a^{x+y}$
- \bullet $(a^x)^y = a^{x*y}$

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

("Ecken sind mit enthalten")

Offen $(a; b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

Minimum $min(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a_0} \le a$

Maximum $max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$ $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{a} \leq s$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{s} \leq a$

Vollständigkeit

Infimum (klein) $\inf(A)$

 $:= \max\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{s} < a\}$

Supremum (groß) sup(A)

$$:= \min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$$

Vollständigkeitsaxiom $\exists \sup(A)$.

Untere Schranken	n	nin A max	1	Obere Schranken	
	inf	V V V V	sup		\mathbb{R}

Folgen

Folge $(\mathbf{a_n})_{\mathbf{n} \in \mathbb{N}}$ in A ist eine Abb. f: $\mathbb{N} \to A \text{ mit } a_n = f(n).$

Arithmetische Folge $a_{n+1} = a_n + d$ $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

Geometrische Folge $a_{n+1} = a_n * q$ $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1,\ldots,p_n\in\mathbb{P}:n=\mathbf{p_1}*\cdots*\mathbf{p_n}$$

Summen und Produkte

Summe $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$

Produkt $\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$

Fakultät $n! = \prod^n i \ (0! = 1)$

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

BERNOULLI Unglei. $n \in \mathbb{N}_0, x \geq -1$

$$(1+x)^n > 1+n*x$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k! * (n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\binom{n}{0} = \binom{n}{n} = 1$
- \bullet $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} * b^k$$

Grenzwerte

$$\mathbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \le x \\ - & x & x < 0 \end{array} \right.$$

Lemma |x * y| = |x| * |y|

Dreiecksungleichung $|x+y| \le |x| + |y|$

Umgekehrte Dreiecksungleichung $||x| - |y|| \le |x - y|$

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 :$$

$$|\mathbf{a_n} - \mathbf{a}| \le \epsilon$$

$$(a - \epsilon \le a_n \le a + \epsilon)$$

• $a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$

Beschränkt + monoton ⇒ konver- **Grenzwertsätze** gent:

$$\lim_{n o \infty} a_n = egin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\mathit{fall.}} \ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\mathit{steig.}} \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = \mathbf{0}$

- $\lim_{n\to\infty}\frac{1}{k}=\mathbf{0}$ $k\in\mathbb{N}$
- $\lim_{n\to\infty} n*q^n = \mathbf{0}$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n \ge n_0 \in \mathbb{N} : a_n \le R$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1;1) \\ = 1 & = 1 \\ \ge \infty & > 1 \\ \text{div.} & \le -1 \end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

 $\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a_n}| \leq \mathbf{k}$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b$ (Max. einen Grenzw.)
- $a = \mathbf{0} \wedge (b_n)_{beschr}$ $\Leftrightarrow \lim_{n\to\infty} a_n * b_n = \mathbf{0}$
- $a_n \le b_n \Leftrightarrow a \le b$ (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n\in\mathbb{N}}$ $\operatorname{mit}(n_k)_{k\in\mathbb{N}}$, sodass $b_k = \mathbf{a_{nk}} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}}\exists (a_{n\,k})_{k\in\mathbb{N}_{mnt}}$$

(nicht streng!)

Häufungspunkt *h* mit einer Teilfolge

$$\lim_{n \to \infty} a_{nk} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists! : h = a$

BOLZANO-WEIERSTRASS

$$(a_n)_{n \in \mathbb{N}_{beschr.}} \Rightarrow \exists h_{H\ddot{a}uf.}$$

(Teilfolge + (beschr.) $\Rightarrow \exists$ Häuf.)

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

$$|a_n - a_m| \le \epsilon$$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von \mathbb{R}

$$(a_n)_{n\in\mathbb{N}_{Cauchy}} \Leftrightarrow \exists \lim_{n\to\infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{Cauchy}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Reihen

Reihe $(s_n)_{n\in\mathbb{N}} = \sum_{k=1}^{\infty} a_k$ mit Gliedern $(a_k)_{k\in\mathbb{N}}$.

nte Partialsumme $s_n = \sum_{k=1}^n a_k$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n konvergiert

Spezielle Reihen

Geom.
$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$
 $q \in (-1;1)$

Harmon. $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert für $\alpha > 1$

Lemma

- $\sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k$ konvergent $-\sum_{\substack{k=1\\k=1}}^{\infty} a_k + \sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} b_k$ $-c * \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} c * a_k$
- $\exists N \in \mathbb{N}: (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ (Es reicht spätere Glieder zu betrachten)
- $\bullet \ (\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \\ \Rightarrow \forall N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0$

Konvergenzkriterien

Chauchy

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$$

$$\Leftrightarrow (\sum_{k=1}^{n} a_k)_{n \in \mathbb{N}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > m > n_0 :$$

$$|\sum_{k=m+1}^{n} a_k| \le \epsilon$$

Notwendige

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{div.}}$$

Hinreichende

Lemma $a_k \geq 0 \ (\Rightarrow \text{mnt.}) \ \forall k \in \mathbb{N}$

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \Leftrightarrow (\sum_{k=1}^{\infty} a_k)_{\text{beschr.}}$$

$$(\sum_{k=1}^{\infty} b_k)_{\text{konv.}} \Leftrightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$$