HYPERTORIC MANIFOLDS

GENERAL NOTES

ABSTRACT

Notes on toric hyperkähler manifolds.

1 Cotangent Spaces to Extended Core Components

Let $M_{\lambda}=\left(\mu_{\mathbb{R}}^{-1}(\lambda)\cap\mu_{\mathbb{C}}^{-1}(0)\right)/K$ be a toric hyperkähler manifold. Define

$$\mathbb{C}_A := \{ (z_i, w_i) \in \mathbb{C}^{2n} \mid w_i = 0 \text{ if } i \in A, \text{ and } z_i = 0 \text{ if } i \notin A \} \cong \mathbb{C}^n \subset \mathbb{H}^n.$$

Lemma 1.1 ([1]). Let M_{λ} be a toric hyperkähler manifold. If \mathcal{E}_A is non-empty, then its holomorphic cotangent bundle $T^*\mathcal{E}_A$ is contained in M_{λ} as an open subset.

Fix a subset $A \subset \{1, \dots, n\}$, and define

$$(x_i^{(A)},y_i^{(A)}) := \begin{cases} (z_i,w_i), & \text{if } i \in A, \\ (w_i,-z_i), & \text{if } i \not\in A. \end{cases}$$

Then $x^{(A)}=(x_1^{(A)},\ldots,x_n^{(A)})$ is a point in the vector space \mathbb{C}_A^n , and $y^{(A)}=(y_1^{(A)},\ldots,y_n^{(A)})$ is a point in the dual space $(\mathbb{C}_A^n)^*$. That is, we identify the cotangent bundle $T^*\mathbb{C}_A^n$ with \mathbb{H}^n as above.

1.1 The Legendre Transform

In [1], Konno states that the proof of this lemma goes by an argument in [2], which itself is based on properties of the Legendre transform.

Lemma 1.2 (Section A1.3 of [2]). Consider a smooth function of one variable

$$f = f(x), \quad -\infty < x < \infty.$$

Suppose that f is strictly convex (f''(x) > 0 for all x). Then the four conditions are equivalent:

- 1. $f'(x_0) = 0$ at some point x_0 .
- 2. f has a local minimum at some point x_0 .
- 3. f has a unique local minimum.
- 4. f(x) tends to $+\infty$ as x tends to $\pm\infty$.

If f has any one (and hence all four) of the above properties, we will say that f is stable.

2 Symplectic Cutting

2.1 Compactifying the Extended Core

Let S_A^1 denote the residual S^1 -action on M restricted to the extended core component $\mathcal{E}_A=\{\,[z_1:\ldots z_n;w_1,\ldots,w_n]\mid w_0=0\ \text{if}\ i\in A,\ \text{and}\ z_i=0\ \text{if}\ i\not\in A\,\}$. Recall that the global S^1 -action acts on M by rotating its cotangent fibres, that is

$$\tau \cdot [z; w] = [z; \tau w] = [z_1 : \dots : z_n; \tau w_1 : \dots : \tau w_n] = [\tau_1 z_1 : \dots : \tau_n z_n; \tau_1^{-1} w_1 : \dots : \tau_n^{-1} w_n],$$

where

$$\tau_i := \begin{cases} \tau^{-1}, & \text{if } i \in A, \\ 1, & \text{if } i \notin A, \end{cases}$$

which shows that the S^1 -action, when restricted to each individual \mathcal{E}_A , acts as a subtorus of the original torus T^n .

Denote by S_A^1 the image of S^1 in T^n when considered as a subtorus when restricted to each individual \mathcal{E}_A , and let $j_A:S^1\hookrightarrow T^n$ denote the respective inclusion homomorphism.

On the Lie algebra level, we have that

$$j_{A,*}: \operatorname{Lie}(S_A^1) \longrightarrow \mathfrak{t}^n; \qquad \xi \longmapsto (\xi_1, \dots, \xi_n),$$

where analogously

$$\xi_i := \begin{cases} -1, & \text{if } i \in A, \\ 0, & \text{if } i \notin A. \end{cases}$$

[TODO: S_A^1 and $S_{A'}^1$ -action (say) on adjacent Δ_A 's coincide along the common hyperplane H_i ; formalise this!]

References

- [1] Hiroshi Konno. The topology of toric hyperKähler manifolds. In *Minimal surfaces, geometric analysis and symplectic geometry (Baltimore, MD, 1999)*, volume 34 of *Adv. Stud. Pure Math.*, pages 173–184. Math. Soc. Japan, Tokyo, 2002.
- [2] Victor Guillemin. *Moment maps and combinatorial invariants of Hamiltonian* T^n -spaces, volume 122 of *Progress in Mathematics*. Birkhäuser Boston, Inc., Boston, MA, 1994.