PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-017046

(43) Date of publication of application: 17.01.2003

(51)Int.Cl.

HO1M 4/32 CO1G 51/00 H01M 4/52 H01M 10/30

(21)Application number: 2001-197909

(71)Applicant: YUASA CORP

(22)Date of filing:

29.06.2001

(72)Inventor: HATSUSHIRO KAORI

KODAMA MITSUHIRO **FURUKAWA KENGO**

KUROKUZUHARA MINORU WATADA MASAHARU OSHITANI MASAHIKO

(54) NICKEL ELECTRODE ACTIVE MATERIAL FOR ALKALINE STORAGE BATTERY, NICKEL ELECTRODE FOR ALKALINE STORAGE BATTERY, AND ALKALINE STORAGE BATTERY (57)Abstract:

PROBLEM TO BE SOLVED: To improve high rate discharge characteristics of an alkaline storage battery and charge efficiency thereof in the high temperature condition, and to achieve high capacity, miniaturizing the alkaline storage battery.

SOLUTION: The nickel electrode active material for an alkaline storage battery contains nickel hydroxide, a cobalt compound having bivalent or more number of oxidization of cobalt, at least one element selected among an element group formed of ytterbium, erbium, ruthenium and thulium, and a rare earth group element compound having a diffraction peak at points satisfying each formula $d=0.885\pm0.008$ nm, $d=0.838\pm0.01$ nm, and $d=0.759\pm0.007$ nm in an X-ray diffraction diagram by Ka beam of cobalt.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A nickel electrode active material for alkaline batteries characterized by comprising the following.

Nickel hydroxide.

A cobalt compound with the bigger oxidation number of cobalt than divalent, and an ytterbium, At least one element chosen from an element group which consists of erbium, lutetium, and a thulium is included, A rare earth element compound which has a diffraction peak in an X diffraction figure by K alpha rays of cobalt in d= 0.885**0.008 nm, d= 0.838**0.01 nm, and d= 0.759**0.007 nm.

[Claim 2] The nickel electrode active material for alkaline batteries according to claim 1 whose oxidation numbers of said nickel hydroxide are 2.04-2.40.

[Claim 3] The nickel electrode active material for alkaline batteries according to claim 1 or 2 in which said nickel hydroxide contains said rare earth element compound 0.5 to 8% of the weight. [Claim 4] A nickel electrode for alkaline batteries characterized by comprising the following. A charge collector.

Having an active material arranged at said charge collector, said active material is nickel hydroxide.

A cobalt compound with the bigger oxidation number of cobalt than divalent.

In an X diffraction figure by K alpha rays of cobalt, including at least one element chosen from an element group which consists of an ytterbium, erbium, lutetium, and a thulium d= 0.885**0.008 nm, A rare earth element compound which has a diffraction peak in d= 0.838**0.01 nm and d= 0.759**0.007 nm.

[Claim 5]Nickel hydroxide and a cobalt compound with the bigger oxidation number of cobalt than divalent, In an X diffraction figure by K alpha rays of cobalt, including at least one element chosen from an element group which consists of an ytterbium, erbium, lutetium, and a thulium d= 0.885**0.008 nm, An alkaline battery provided with an alkali electrolyte arranged between an anode which has an active material which contains in d= 0.838**0.01 nm and d= 0.759**0.007 nm a rare earth element compound which has a diffraction peak, a negative electrode, and said anode and said negative electrode.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] This invention relates to the nickel electrode active material for a nickel electrode active material, a nickel electrode and a storage battery, especially alkaline batteries, the nickel electrode for alkaline batteries, and an alkaline battery. [0002]

[Description of the Prior Art]As a power supply for charges and discharges used for the device which needs the high current of a power tool, a hybrid electric vehicle (HEV), etc., alkaline batteries, such as a nickel hydrogen storage battery, a Ni-Cd battery, and a zinc nickel oxide battery, are used, and the demand has grown rapidly.

[0003] The nickel electrode is used for the anode of such an alkaline battery. Although the sintering type electrode which deposited nickel hydroxide has so far been used for the polar plate which sintered powder, such as nickel, mainly as a nickel electrode, The above high currents with the demand rapid growth under the purpose of use to need these days, Compared with a sintering type electrode, it is easy to raise capacity and many non-sintering electrodes which applied or filled up electrodes, such as a pierced steel plank and a foaming board, with the slurry which moreover mixed and prepared additive agents, such as a thickener, from manufacture being easy to high-density spherical nickel hydroxide powder (active material) come to use. [0004] However, greatly [the distance of an electrode and an active material], since a nonsintering electrode has insufficient contact of active materials, its conductivity is small and a high rate discharging characteristic is inferior in it compared with a sintering type electrode. For this reason, what added cobalt or a cobalt compound to nickel hydroxide is variously proposed as an active material for non-sintering electrodes (for example, JP,S62-256366,A). In an alkali electrolyte in the non-sintering electrode using such an active material, cobalt ion is eluted in an alkali electrolyte from cobalt or a cobalt compound, and this cobalt ion deposits as cobalt hydroxide. And it oxidizes at the time of initial charging, and becomes oxy cobalt hydroxide, this forms the precise network which improves the conductivity between nickel hydroxide powder particles, and this cobalt hydroxide improves the conductivity of an electrode. As a result, the high rate discharging characteristic of this non-sintering electrode will increase in a sintering type electrode grade.

[0005] By the way, since the reaction which oxy cobalt hydroxide generates from cobalt or a cobalt compound is an irreversible reaction when the above non-sintering electrodes are used for a nickel hydrogen storage battery, Initial charging quantity of electricity which this reaction took will be stored in the negative-electrode side as potential discharge quantity of electricity (discharge reserve). When it overcharges, oxygen gas generates such a nickel hydrogen storage battery in the anode side. This oxygen gas may cause the internal pressure rise of a nickel hydrogen storage battery, may start liquid leakage, and may shorten a battery life. So, in the nickel hydrogen storage battery, the capacity (charge reserve) which does not participate in actual charge and discharge and which can be charged was provided in the negative-electrode side, and the oxygen gas emitted in the anode side was absorbed or consumed by charge reserve of the negative electrode, it changed into water, and the rise of internal pressure is controlled. As for the nickel hydrogen storage battery, from such a situation, the capacity of the negative electrode is greatly set up compared with the capacity of an anode.

It is set up so that charge-and-discharge capacity may be regulated by the capacity of an anode. Therefore, since it is necessary to raise the capacity of an anode and in order to raise the capacity

of a nickel hydrogen storage battery, and it is necessary to also raise the capacity of a negative electrode in consideration of the charge reserve and discharge reserve accompanying it, a cell will be enlarged. If it puts in another way, a nickel hydrogen storage battery is difficult to attain high capacity-ization, attaining a miniaturization.

[0006] Although battery temperature increases at the time of charge and discharge, the alkaline battery provided with the non-sintering electrode cannot but shift to the following charge-anddischarge process in the state with still insufficient cooling in many cases, when charge and discharge are especially repeated by a high current. That is, as for this alkaline battery, the frequency in use in hot environments will increase. However, since the difference of the oxidation potential of nickel hydroxide and the oxygen evolution potential of a charging end term becomes small when an alkaline battery is charged under hot environments, oxidation reaction and an oxygen evolution reaction compete and charging efficiency falls. Like a hybrid electric vehicle, in the case of the device using the cell group which combined the alkaline battery, it becomes difficult to fix the temperature of each alkaline battery, and charging efficiency falls especially easily. In order to improve this point, it adds to above-mentioned cobalt or cobalt compound to the active material for non-sintering electrodes. Adding further the compound of the element which has the effect of shifting the oxygen evolution potential of the charging end term of the anode under an elevated temperature to ** is proposed. (For example, refer to JP,H5-28992,A, JP,H6-150925,A, JP,H8-195198,A, and JP,H9-92279,A). [0007]however, bars a deposit of above-mentioned cobalt hydroxide in an alkali electrolyte, and some elements which have the effect of shifting the oxygen evolution potential of an anode to ** bar formation of the conductive network by oxy cobalt hydroxide as a result For this reason, although the charging efficiency [electrode / containing such an element] under an elevated temperature increases, a high rate discharging characteristic will fall extremely. In order to solve this, increase the quantity of cobalt or the cobalt compound contained in an active material, and it is also considered that the conductive network between nickel hydroxide is easy to be formed, but. Since discharge reserve will increase when it is made such, it becomes difficulty more to attain high capacity-ization, attaining the miniaturization of an alkaline battery.

[0008] The purpose of this invention is to attain high capacity-ization, raising simultaneously a high rate discharging characteristic and the charging efficiency under an elevated temperature, and attaining a miniaturization further about an alkaline battery.

[0009]

[Means for Solving the Problem]A nickel electrode active material for alkaline batteries of this invention, Nickel hydroxide and a cobalt compound with the bigger oxidation number of cobalt than divalent, In an X diffraction figure by K alpha rays of cobalt, including at least one element chosen from an element group which consists of an ytterbium, erbium, lutetium, and a thulium d= 0.885**0.008 nm, A rare earth element compound which has a diffraction peak is included in d= 0.838**0.01 nm and d= 0.759**0.007 nm.

[0010]Here, the oxidation numbers of nickel hydroxide are 2.04-2.40, for example. this nickel electrode active material for alkaline batteries -- a rare earth element compound -- 0.5- of nickel hydroxide -- it contains 8% of the weight.

[0011]A nickel electrode for alkaline batteries of this invention is provided with the following. Charge collector.

An active material arranged at a charge collector.

A cobalt compound whose nickel hydroxide and oxidation number of an active material are bigger than divalent, In an X diffraction figure by K alpha rays of cobalt, including at least one

element chosen from an element group which consists of an ytterbium, erbium, lutetium, and a thulium d= 0.885**0.008 nm, A rare earth element compound which has a diffraction peak is included in d= 0.838**0.01 nm and d= 0.759**0.007 nm.

[0012]An alkaline battery of this invention is provided with an alkali electrolyte arranged between an anode, a negative electrode and an anode, and a negative electrode, and an anode, Nickel hydroxide, a cobalt compound with the bigger oxidation number than divalent, and an ytterbium, In an X diffraction figure by K alpha rays of cobalt, including at least one element chosen from an element group which consists of erbium, lutetium, and a thulium d= 0.885**0.008 nm, It has an active material which contains in d= 0.838**0.01 nm and d= 0.759**0.007 nm a rare earth element compound which has a diffraction peak.

[Embodiment of the Invention] The nickel electrode active material for alkaline batteries of this invention contains nickel hydroxide, the cobalt compound, and the rare earth element compound. The nickel hydroxide used by this invention is not limited especially if used as an active material for nickel electrodes of an alkaline battery, but is a particle-like thing and is usually spherical high-density nickel hydroxide, for example. In order that this nickel hydroxide may control generation of gamma type nickel oxyhydroxide used as the cause of reducing the charge-anddischarge cycle life of an alkaline battery, 2B group elements, such as 2A group elements, such as magnesium and calcium, zinc, and cadmium, and at least one element in cobalt may be contained in the state of dissolution. That is, as for this nickel hydroxide, some nickel elements may be replaced by 2A group element, 2B group element, and at least one element in cobalt. [0014] As for this nickel hydroxide, it is preferred that some nickel which is that composing element has oxidized. Such nickel hydroxide can be prepared, for example, if nickel hydroxide is oxidized suitably. In this case, it is preferred to be set up so that the oxidation number of nickel hydroxide may be set to 2.04-2.40. When this oxidation number is less than 2.04, in the negative electrode of the alkaline battery which used the nickel electrode active material of this invention, discharge reserve may become is hard to be reduced, and it may become difficult to secure charge reserve sufficient as a result. As a result, at the time of overcharge of the alkaline battery concerned, it may become difficult to absorb the oxygen gas emitted in the nickel electrode side in a charge reserve portion, and it may become difficult to control the internal pressure rise of an alkaline battery. On the contrary, when the oxidation number exceeds 2.40, in the same alkaline battery, cell capacity may become negative-electrode regulation, service capacity may fall, and, as a result, the cycle life of an alkaline battery may be spoiled.

[0015]The above-mentioned oxidation number is the value measured by the ferrous sulfate method. Specifically, the amount of active oxygen contained in nickel hydroxide is calculated first. Here, weighing of 0.1 g of powder (sample powder) and the ferrous ammonium sulfate 1g of nickel hydroxide is carried out, and this is added to the acetic acid solution of the 20 volume % concentration set as 5 **. And after stirring for about 3 to 10 hours and making it dissolve thoroughly, this solution is titrated using the potassium permanganate solution of the 1-/decanormal (0.02 mol/l), and the amount of active oxygen is computed from the following formula (i).

[0016] [Equation 1]

活性酸素量(mg/100mg試料)

=
$$8 \times \left(\frac{X F e}{392.14} - \frac{0.1 \times f \times V}{1000}\right) \times \left(\frac{100}{X s p}\right)$$

· - • (i)

[0017]As for the amount of weighing of ferrous ammonium sulfate (g), and V, the factor of a potassium permanganate solution and Xsp of the titration value (ml) of a potassium permanganate solution and f are [formula (i) Naka and XFe] the amounts of weighing of sample powder (g).

[0018]Next, the quantitative analysis of the nickel amount (% of the weight) contained in sample powder is carried out by methods, such as ICP emission spectrometry and an original atomic absorption method, and the oxidation number of nickel in nickel hydroxide is computed from the following formula (ii).

[0019]

[Equation 2]

酸化数 =
$$\left\{1 + \frac{(活性酸素量/16000)}{(ニッケル量/58690)}\right\} \times 2$$

· · · (i i)

[0020] The cobalt compound used by this invention has the oxidation number of the cobalt which constitutes it bigger than divalent, for example, is oxy cobalt hydroxide. In cobalt or the alkali solution used as an electrolysis solution of an alkaline battery, such a cobalt compound The cobalt compound which can be eluted in cobalt ion, For example, if alpha type cobalt hydroxide, beta type cobalt hydroxide, or 1 cobalt oxide (henceforth a cobalt compound precursor for convenience) is oxidized, it can prepare.

[0021]Oxidation treatment here prepares an alkaline aqueous solution first, and usually throws in a cobalt compound precursor in this alkaline aqueous solution. Although an available alkaline aqueous solution in particular is not limited, it is preferred here that temperature is set as not less than 60 ** from a viewpoint [at least one of a potassium hydrate and sodium hydroxide is usually included, and] of promoting oxidation treatment.

[0022]Next, an oxidizer is added in an above-mentioned alkaline aqueous solution, and a cobalt compound precursor contained in the solution concerned is oxidized. Thereby, a cobalt compound precursor is converted into a cobalt compound (for example, oxy cobalt hydroxide) with the bigger oxidation number of cobalt than divalent.

[0023] Although an oxidizer in particular used here is not limited and are various kinds of publicly known things, Oxidizing power in that it is large and a cobalt compound precursor can be oxidized efficiently, Potassium peroxodisulfate ($K_2S_2O_8$), peroxydisulfuric-acid NATORIMU ($Na_2S_2O_8$), It is preferred to use at least one chosen from a group which consists of ammonium peroxodisulfate (NH_4) ($_2S_2O_8$) and sodium hypochlorite (NaClO).

[0024]Since an addition of an oxidizer changes with the kinds of oxidizer, it cannot generally be specified, but it is preferred to set a cobalt compound precursor as sufficient quantity for converting into a necessary cobalt compound.

[0025] In a nickel electrode active material for alkaline batteries of this invention, an above-

mentioned cobalt compound may be contained, where the surface of an above-mentioned nickel hydroxide particle is covered. Nickel hydroxide with which such a cobalt compound was covered, For example, a group of a nickel hydroxide particle by which a cobalt compound precursor was covered by publicly known method (for example, refer to JP,S62-234867,A). It can manufacture, if it manufactures (it is hereafter called cobalt covering nickel hydroxide for convenience) and this cobalt covering nickel hydroxide is oxidized.

[0026] Here, as well as oxidation treatment of an above-mentioned cobalt compound precursor, oxidation treatment of cobalt covering nickel hydroxide can usually be carried out, if cobalt covering nickel hydroxide is processed using an oxidizer in an alkaline aqueous solution. That is, first, an alkaline aqueous solution is prepared and cobalt covering nickel hydroxide is thrown in in this alkaline aqueous solution. Although an available alkaline aqueous solution in particular is not limited, it usually contains at least one of a potassium hydrate and sodium hydroxide here. Especially when sodium hydroxide solution is used, in an oxidation treatment process, it can control that nickel hydroxide by the side of a core layer of cobalt covering nickel hydroxide changes into gamma-NiOOH. As for an alkaline aqueous solution, it is preferred that temperature is set as not less than 60 ** from a viewpoint of promoting oxidation treatment. [0027]Next, an oxidizer is added in an above-mentioned alkaline aqueous solution, and cobalt covering nickel hydroxide contained in the solution concerned is oxidized. A cobalt compound precursor (surface layer) which covers nickel hydroxide of a core layer in the above-mentioned cobalt covering nickel hydroxide oxidizes by this, and this cobalt compound precursor is converted into a cobalt compound (for example, oxy cobalt hydroxide) with the bigger oxidation number of cobalt than divalent.

[0028]An oxidizer used here is the same as that of an above-mentioned thing. Since an addition of an oxidizer changes with the kinds of oxidizer, cannot generally specify it, but. It is preferred to set it as a range which it is converted into a necessary cobalt compound, a surface layer, i.e., a cobalt compound precursor, of cobalt covering nickel hydroxide, and moreover stops at the range of above-mentioned [the oxidation number of nickel hydroxide by the side of a core layer]. [0029]A rare earth element compound used by this invention An ytterbium, erbium, At least one element chosen from an element group which consists of lutetium and a thulium is included, In an X diffraction figure by K alpha rays of cobalt, it has a diffraction peak in d= 0.885**0.008 nm, d= 0.838**0.01 nm, and d= 0.759**0.007 nm, and is usually the powder of such a compound. As an example, an X diffraction figure of a rare earth element compound containing an ytterbium is shown in drawing 1. This rare earth element compound is presumed to be a compound containing crystal water shown by Ln(OH) 3-H₂O, or LnOOH and 2H₂O (Ln shows a rare earth element among a chemical formula).

[0030]Oxidation treatment of a compound (raw material compound) containing at least one element chosen from an element group which consists of an ytterbium, erbium, lutetium, and a thulium, for example will obtain such a rare earth element compound.

[0031]A raw material compound used here is an oxide and hydroxide which usually contain at least one element chosen from the above-mentioned element group. That is, a raw material compound is usually an oxide of one element chosen from the above-mentioned element group, hydroxide, or two multiple oxides and compound hydroxide or more of an element that were chosen from the above-mentioned element group. As for such a raw material compound, two or more sorts of things may be suitably used together.

[0032]Oxidation treatment of an above-mentioned raw material compound will obtain the target rare earth element compound. Here, when a raw material compound is an above-mentioned

oxide or hydroxide, oxidation treatment can usually be attained, if a raw material compound is immersed into alkali-metal-hydroxide solution, for example, solution of sodium hydroxide or a potassium hydrate, and is neglected. As for concentration of alkali-metal-hydroxide solution, it is usually preferred to set up to 25 % of the weight - 40% of the weight. In this oxidation treatment, alkali-metal-hydroxide solution may be suitably heated, in order to promote oxidation treatment. For example, if an above-mentioned oxide and hydroxide are immersed and neglected in the 6.8-N potassium hydroxide solution heated by 60 **, the target rare earth element compound will usually be obtained from several hours in several days.

[0033]In the above oxidation treatment methods, into solution of alkali metal hydroxide, an oxidizer like sodium hypochlorite (NaClO) may be added, for example, or air (oxygen) may also be blown. In this case, oxidation treatment of a raw material compound is promoted and an oxidation treatment compound made into the purpose can be prepared more promptly. [0034]Incidentally, when the above oxidation treatments are performed about oxides and hydroxide of a rare earth element other than an ytterbium, erbium, lutetium, and a thulium, hydroxide which has a hexagonal (P63/m) crystal structure equivalent to Ln(OH) 3 is obtained, but. This hydroxide does not show the above diffraction peaks.

[0035]As for an above-mentioned rare earth element compound, two or more sorts of things may be suitably used together.

[0036]A nickel electrode active material for alkaline batteries of this invention, It may change to an above-mentioned rare earth element compound, or at least one of a strontium compound, a bismuth compound, and yttrium compounds (henceforth an add-in-material compound for convenience) may be included with an above-mentioned rare earth element compound. [0037]2 theta of an according [a strontium compound used here] to K alpha rays of cobalt X diffraction figure = in the range of 5-85 degrees, it has a diffraction peak of the 1st intensity, and a diffraction peak of the 2nd intensity, respectively in d= 0.354**0.002 nm and d= 0.248**0.001 nm. For example, as shown in drawing 2, this strontium compound, In an X diffraction figure of strontium hydroxide, a d= 0.585 nm (2 theta = 17.6 degrees) characteristic diffraction peak disappears, It has a diffraction peak of the 1st intensity, and a diffraction peak of the 2nd intensity, respectively in d= 0.354 nm (2 theta = 29.3 degrees) and d= 0.248 nm (2 theta = 42.3 degrees).

[0038]2 theta of an according [a bismuth compound used here] to K alpha rays of cobalt X diffraction figure = In the range of 5-85 degrees, To d= 0.326**0.002 nm, d= 0.269**0.001 nm, and d= 0.256**0.001 nm, respectively A diffraction peak of the 1st intensity, It has a diffraction peak of the 2nd intensity, and a diffraction peak of the 3rd intensity, and a diffraction peak with an intensity [2nd] of d = 0.269**0.001 nm is a thing of intensity of 1/2 or more of a diffraction peak of the 1st intensity that is d= 0.326**0.002 nm. For example, as shown in drawing 3, this bismuth compound, In an X diffraction figure of bismuth oxide, a d= 0.295 nm (2 theta = 35.3 degrees) characteristic diffraction peak disappears, To d= 0.326 nm (2 theta = 31.9 degrees), d= 0.269 nm (2 theta = 38.8 degrees), and d= 0.256 nm (2 theta = 40.9 degrees), respectively A diffraction peak of the 1st intensity, It has a diffraction peak of the 2nd intensity, and a diffraction peak of the 3rd intensity, and a diffraction peak with an intensity [2nd] of d= 0.269 nm is the intensity of 1/2 or more of a diffraction peak of the 1st intensity that is d = 0.326 nm. [0039] An yttrium compound used here, 2 theta of an X diffraction figure by K alpha rays of cobalt = in the range of 5-85 degrees, it has a diffraction peak in d= 0.544**0.006 nm and d= 0.313**0.002 nm, and a d= 0.544**0.006-nm diffraction peak is a thing of a strongest peak in the range concerned. For example, as shown in drawing 4, this yttrium compound, It has a

diffraction peak in d= 0.544 nm (2 theta = 18.9 degrees) which is not seen in an X diffraction figure of yttrium oxide or hydroxylation yttrium, and d= 0.313 nm (2 theta = 33.2 degrees), 2 theta = in the range of 5-85 degrees, a d= 0.544-nm diffraction peak is a strongest peak. [0040]An above-mentioned add-in-material compound can be prepared like a case of an above-mentioned rare earth element compound. That is, these compounds can be prepared if a raw material compound (for example, an oxide and hydroxide) containing strontium, bismuth, or yttrium is oxidized by above methods.

[0041] A nickel electrode active material of this invention can be prepared if above-mentioned nickel hydroxide, a cobalt compound, and a rare earth compound are mixed. Here, as for content of a cobalt compound, it is usually preferred to be set to 2 to 10% of the weight of nickel hydroxide, and it is more preferred to be set up to 3 to 7% of the weight. When this content is less than 2 % of the weight, a necessary conductive network may become is hard to be formed to nickel hydroxide, and the discharge characteristic of an alkaline battery, especially a high rate discharging characteristic may fall. On the contrary, it becomes difficult to raise that capacity, maintaining a miniaturization of an alkaline battery, since the amount of nickel hydroxide in an active material decreases relatively when this content exceeds 10 % of the weight. [0042] As for content of a rare earth element compound, it is usually preferred to set to 0.5 to 8% of the weight of nickel hydroxide, and it is more preferred to set up to 2 to 8% of the weight. When this content is less than 0.5 % of the weight, an effect of shifting oxygen evolution potential of a nickel electrode in the **** direction may be scarce, and it may become difficult to raise charging efficiency of an alkaline battery under hot environments. On the contrary, it becomes difficult to raise that capacity, maintaining a miniaturization of an alkaline battery, since an effect proportional to it cannot be attained but the amount of nickel hydroxide in being not only uneconomical but a nickel electrode active material decreases relatively, when this content exceeds 8 % of the weight.

[0043] In an active material of this invention, as for the content in an active material of this invention, when changing to an above-mentioned rare earth element compound and using an above-mentioned add-in-material compound, it is preferred to set up like a case of a rare earth element compound. In an active material of this invention, as for content of an add-in-material compound, when using an above-mentioned add-in-material compound with an above-mentioned rare earth element compound, it is preferred to set up so that the total quantity with a rare earth element compound may become the range of above-mentioned content about a rare earth element compound.

[0044]A nickel electrode for alkaline batteries of this invention is provided with the following. Charge collector.

It is arranged at this charge collector and is a nickel electrode active material of **** this invention

Especially if a charge collector used for this nickel electrode is available in a nickel electrode for alkaline batteries, it is not limited, but they are a pierced steel plank, a foaming board, etc., for example.

[0045]When manufacturing this nickel electrode, an above-mentioned active material concerning this invention is prepared first. And binders, such as carboxymethyl cellulose, are added to this active material, a slurry or a paste is prepared, and it arranges by being applied or filled up with this slurry or paste to a charge collector.

[0046] An alkaline battery of this invention is mainly provided with a separator arranged between a battery case, and the above nickel electrodes accommodated in the battery case concerned, i.e.,

an anode, a negative electrode and an anode and a negative electrode, and an electrolysis solution poured in into a battery case.

[0047]A negative electrode used here is not limited especially if used in an alkaline battery which uses a nickel electrode as an anode, and it is usually a hydrogen storing metal alloy electrode, a cadmium electrode, or a zinc electrode. An alloy incidentally shown with the presentation of MmNi_{3.55}Co_{0.75}Mn_{0.4}aluminum_{0.3} which has CaCu₅ mold structure as a hydrogen storing metal alloy when using a hydrogen storing metal alloy electrode as a negative electrode, A multi element system alloy, a TiNi system alloy, a TiFe system alloy, etc. which replaced some nickel of a MmNi₅ alloy by at least one of aluminum, manganese, cobalt, titanium, copper, and zinc can be used. Mm means a mixture (usually mixture of a lantern, cerium, praseodymium, and neodium) of a rare earth element.

[0048]A separator is for preventing a short circuit of an anode and a negative electrode, and holding an electrolysis solution, Especially if available in an alkaline battery, it is not limited, but it is the nonwoven fabric formed using polyolefin resin textiles, such as polypropylene resin textiles, or polyamide resin textiles, for example. The graft polymerization of sulfonation treatment, the acrylic acid, etc. is carried out to polyolefin resin textiles and polyamide resin textiles for forming such a nonwoven fabric if needed, and hydrophilic nature may be given to them.

[0049]An electrolysis solution is not limited especially if similarly used in an alkaline battery, and they are alkali-metal-hydroxide solution, such as a potassium hydroxide solution, sodium hydroxide solution, or lithium hydroxide solution, for example. Two or more sorts of things are mixed, and alkali-metal-hydroxide solution may be used.

[0050]Since a nickel electrode of this invention, i.e., a nickel electrode active material of this invention, is used for a nickel electrode used for an anode of an alkaline battery of this invention, it can reduce discharge reserve formed in a negative electrode in an initial charging process. That is, a cobalt compound contained in a nickel electrode active material used here, It is not what is converted into a conductive cobalt compound which can give a conductive network to a nickel electrode active material in an initial charging process, It is a cobalt compound with the bigger oxidation number of cobalt than divalent, and since it had conductivity and it has given a conductive network from before an initial charging process from the initial charging process forward to a nickel electrode active material, in an initial charging process, it is hard to form discharge reserve in a negative electrode. For this reason, since the alkaline battery of this invention using such a nickel electrode active material can raise capacity of an anode, without making capacity of a negative electrode increase, it can attain high capacity-ization, attaining a miniaturization.

[0051] In a nickel electrode active material of an anode, since a conductive network by a cobalt compound is formed from before an initial charging process as mentioned above, this alkaline battery has a good high rate discharging characteristic. Since a nickel electrode active material contains the above rare earth element compounds, it can shift oxygen evolution potential of an anode to ** at the time of charge under an elevated temperature. For this reason, when this alkaline battery is charged under hot environments, in an anode, a difference of oxidation potential of nickel hydroxide and oxygen evolution potential becomes large, and charging efficiency under an elevated temperature increases. It is also the same as when this point and a nickel electrode active material contain the above add-in-material compounds.

[Example]Ytterbium oxide (Yb₂O₃) was supplied in the 40-% of the weight potassium hydroxide

solution set as 160 ** of examples of manufacture, and it was neglected for 72 hours. Thereby, ytterbium oxide was oxidized and the rare earth element compound was obtained. When the X diffraction by K alpha rays of cobalt was carried out about this rare earth element compound, the X diffraction figure of drawing 1 which has a diffraction peak in d= 0.885 nm (2 theta = 11.6 degrees), d= 0.836 nm (2 theta = 12.3 degrees), and d= 0.758 nm (2 theta = 13.6 degrees) was obtained.

[0053]It changed to the example diacid-ized ytterbium of manufacture, and was operated like the case of the example 1 of manufacture except for the point using erbium oxide (Er₂O₃), and when the X diffraction by K alpha rays of cobalt was carried out, the rare earth element compound of the example 1 of manufacture and the rare earth element compound which has three same diffraction peaks were obtained.

[0054]It changed to example of manufacture 3 ytterbium oxide, and was operated like the case of the example 1 of manufacture except for the point using thulium oxide (Tm₂O₃), and when the X diffraction by K alpha rays of cobalt was carried out, the rare earth element compound of the example 1 of manufacture and the rare earth element compound which has three same diffraction peaks were obtained.

[0055]It changed to example of manufacture 4 ytterbium oxide, and was operated like the case of the example 1 of manufacture except for the point using lutetium oxide (Lu₂O₃), and when the X diffraction by K alpha rays of cobalt was carried out, the rare earth element compound of the example 1 of manufacture and the rare earth element compound which has three same diffraction peaks were obtained.

[0056] Change to example of manufacture 5 ytterbium oxide, and 25 % of the weight of thulium oxide (Tm₂O₃), Except for the point using the mixture containing 50 % of the weight of ytterbium oxide (Yb₂O₃), and 25 % of the weight of lutetium oxide (Lu₂O₃), it is operated like the case of the example 1 of manufacture, When the X diffraction by K alpha rays of cobalt was carried out, the rare earth element compound of the example 1 of manufacture and the rare earth element compound which has three same diffraction peaks were obtained.

[0057]Change to example of manufacture 6 ytterbium oxide, and a thulium 1.0atm.%, An ytterbium is operated like the case of the example 1 of manufacture except for the point using the multiple oxide 9.0atm.% Containing 90.0atm.% and lutetium, When the X diffraction by K alpha rays of cobalt was carried out, the rare earth element compound of the example 1 of manufacture and the rare earth element compound which has three same diffraction peaks were obtained. [0058]Ammonium sulfate and sodium hydroxide solution were added in the solution which dissolved working example 1 - 6 nickel sulfate, sulfate of zinc, and cobalt sulfate by the predetermined ratio, and it was made to generate an ammine complex. And sodium hydroxide solution was dropped further, stirring this system of reaction violently, and pH of the system of reaction was controlled in the range of 10 to 13. This obtained the group of the spherical high-density nickel hydroxide particle.

[0059]Next, the group of the obtained high-density nickel hydroxide particle was supplied in the alkaline aqueous solution which controlled pH by sodium hydroxide from 10 to 13. And the solution containing cobalt sulfate and ammonia of prescribed concentration was dropped, stirring this solution. In the meantime, sodium hydroxide solution was dropped suitably and pH of the system of reaction was held in the range of 10 to 13 for about 1 hour. The group of the high-density nickel hydroxide particle (cobalt covering nickel hydroxide) in which the surface layer which consists of cobalt hydroxide (cobalt compound precursor) was formed by this was obtained. In this high-density nickel hydroxide particle, the rate of the surface layer was 8.2% of

the weight of high-density nickel hydroxide which constitutes a core layer.

[0060]The obtained cobalt covering nickel hydroxide 50g was thrown in in 110 ** 30-% of the weight sodium hydroxide solution, and was fully stirred. Then, the superfluous oxidizer (K₂S₂O₈) was added in sodium hydroxide solution to the equivalent of the cobalt compound precursor which forms the surface layer of cobalt covering nickel hydroxide. And after checking that oxygen gas is emitted from the surface of cobalt covering nickel hydroxide, cobalt covering nickel hydroxide was filtered and rinsed and it dried. Thus, the cobalt compound precursor which forms the surface layer oxidized, and the cobalt covering nickel hydroxide by which oxidation treatment was carried out was converted into the cobalt compound (oxy cobalt hydroxide) with the bigger oxidation number of cobalt than divalent. The oxidation number of nickel hydroxide of a core layer was 2.05, and the average oxidation value of nickel of a core layer and cobalt of a surface layer was 2.15.

[0061]One of the rare earth element compounds obtained in the examples 1-6 of manufacture to the cobalt covering nickel hydroxide by which oxidation treatment was carried out as mentioned above was added 5% of the weight, it mixed, the solution of carboxymethyl cellulose was added further, and the paste was prepared. The nickel metal perforated plate whose surface density is 450g/m^2 and whose porosity is about 95% was uniformly filled up with the specified quantity of this paste, after drying a paste, it pressurized, and the nickel electrode (anode) was created. The capacity of this nickel electrode was 1,600mAh.

[0062]The cobalt covering nickel hydroxide by which oxidation treatment was carried out was manufactured like the case of seven to working example 12 working example 1-6. On the other hand, 0.2% of the weight of the amount of high-density nickel hydroxide (working example 7) excluding the surface layer in the rare earth element compound obtained in the example 1 of manufacture. 0.5 % of the weight (working example 8), 2 % of the weight (working example 9), 8 % of the weight (working example 10), and 15 % of the weight (working example 11) -- and it added 20% of the weight (working example 12), and mixed, the solution of carboxymethyl cellulose was added further, and the paste was prepared. And the same nickel electrode (anode: capacity =1,600mAh) as working example 1-6 was created using this paste.

[0063] The solution of carboxymethyl cellulose was added to cobalt covering nickel hydroxide before oxidation treatment obtained in <u>comparative example 1</u> working example 1-6, and the paste was prepared. And the same nickel electrode (anode: capacity =1,600mAh) as working example 1-6 was created using this paste.

[0064] The rare earth element compound obtained in the example 1 of manufacture was added 5% of the weight to cobalt covering nickel hydroxide before oxidation treatment obtained in comparative example 2 working example 1-6, it mixed to it, the solution of carboxymethyl cellulose was added further, and the paste was prepared. And the same nickel electrode (anode: capacity =1,600mAh) as working example 1-6 was created using this paste.

[0065] The cobalt covering nickel hydroxide by which oxidation treatment was carried out was manufactured like the case of <u>comparative example 3</u> working example 1-6. And the solution of carboxymethyl cellulose was added to this and the paste was prepared. The same nickel electrode (anode: capacity =1,600mAh) as working example 1-6 was created using this paste.

[0066]the hydrogen storing metal alloy (Mm -- lantern 45%.) shown with the presentation of MmNi_{3.55}Co_{0.75}Mn_{0.4}aluminum_{0.3} which has <u>evaluation</u> CaCu₅ mold structure Cerium 30%, the thickener was added to the powder of praseodymium 3% and neodymium 22% of the mixture, and the paste was prepared, and this paste was applied to the pierced steel plank, and it dried. And it cut, after pressurizing this, and the hydrogen storing metal alloy electrode (negative

electrode: capacity =2,640mAh) was created.

[0067]The nickel electrode (anode) obtained by working example 1-12 and the comparative examples 1-3 and the above-mentioned hydrogen storing metal alloy electrode (negative electrode) were involved in cylindrical on both sides of the nonwoven fabric which consists of polypropylene resin textiles which carried out the graft polymerization of the acrylic acid, and the electrode group was created. And 1.9mL pouring was carried out and the electrolysis solution which accommodates this electrode group in a cylindrical case (battery case), and consists of a 6.8-N potassium hydroxide solution in a case was sealed. Thereby, capacity obtained 1,600mAh and the N/P ratio obtained the encapsulated type alkaline battery of the cylindrical AA size of 1.65. It is neglected for 2 hours, after pouring in an electrolysis solution and sealing the obtained alkaline battery.

Then, constant current charge (initial charging) was carried out by 0.1CmA for 15 hours, and constant current discharge (initial discharge) was carried out to 1.0V by 0.2CmA. After service capacity was stabilized, each of following examinations were carried out. [0068](Evaluation test of charging efficiency) The temperature of the alkaline battery using the anode of working example 1-6 and the comparative examples 1-3 was set as 20 **, 40 **, 50 **, and 60 **, and charge and discharge were repeated until service capacity became fixed on the same conditions as above-mentioned initial charging and initial discharge. And service capacity at the time of discharging by 0.2CmA in 20 ** was made into 100%, and it asked for the service capacity ratio (charging efficiency) in each temperature about each alkaline battery. A result is shown in Table 1.

[0069] [Table 1]

表 1

			充電效	率 (%)	
		20℃	40℃	50℃	60℃
	1	100	100	9 6	8 0
実	2	100	94	9 1	76
施	3	100	97	9 4	7 8
	4	100	98	9 5	7 9
例	5	100	98	9 4	7 8
	6	100	98	9 5	7 8
比	1	100	8 9	7 2	4 2
較例	2	100	98	9 5	78
נייער	3	100	9 2	7 3	5 3

[0070] Table 1 shows that the alkaline battery using the anode of working example 1-6 shows high charging efficiency to an anode also in an elevated temperature compared with the alkaline battery of the comparative examples 1 and 3 which do not contain a rare earth element compound. Generating of the oxygen gas produced at a charging end term since the anode contains the rare earth element compound is controlled, and since charge acceptance nature has been improved, the alkaline battery with which the anode of working example 1-6 was used for this is considered

[0071] About the alkaline battery using the anode of working example 1, working example 7-12, and the comparative example 3, battery temperature is set as 50 ** and the result of having searched for charging efficiency by the same method as **** is shown in drawing 5. Drawing 5 shows that charging efficiency of the alkaline battery using the anode of working example 1 and working example 7-12 is improving compared with the alkaline battery of the comparative example 3 which does not contain a rare earth element compound in an anode. However, according to drawing 5, even if the content of the rare earth element compound in an anode exceeds 8 % of the weight, an improvement effect remarkable about charging efficiency is not seen. From this, the content of the rare earth element compound in the nickel electrode active material of an anode is understood that it is preferred to set up to at least 0.5% of the weight (preferably 2 % of the weight), and it is preferred to set up a maximum to 8 or less % of the weight.

[0072](Evaluation test of discharge reserve) About the alkaline battery using the anode of working example 1 and the comparative examples 1 and 2, after repeating the charge and discharge of ten cycles at 20 **, it dissolved in the state of the discharge last stage, the negative electrode was taken out, and the amount of hydrogen gas contained in a negative electrode was measured. Here, the negative electrode was first put in in the Erlenmeyer flask filled with distilled water, and the Erlenmeyer flask was sealed with the plug made of silicone rubber. And the hydrogen gas emitted [in the center of a plug / a pipe] from a negative electrode through through and this pipe was caught by the measuring cylinder with the aquatic substitution method. Under the present circumstances, the Erlenmeyer flask was heated and the hydrogen gas contained in a negative electrode was made to emit thoroughly.

[0073] The amount of hydrogen gas caught by the measuring cylinder was measured, and discharge reserve of the negative electrode was evaluated based on it. Here, according to the following reaction formula, 1 mol (22.4L) of hydrogen gas hit, it thought that 2 electronic (namely, 2 C) consumption was carried out, the amount of hydrogen gas caught according to following formula (iii) was converted into the Electrochemistry Sub-Division capacity, and it asked for the rule of thumb of discharge reserve.

[0074]

$$MH \xrightarrow{\text{[Formula 1]}} M + 1/2 H_2$$

$$H_2 \longrightarrow 2H^+ + 2 e^-$$

[0075]

[Equation 3]

[0076]A result is shown in <u>drawing 6</u>. In <u>drawing 6</u>, the ratio (theoretical capacity of the whole amount of discharge reserve / negative electrode) (x100) to the theoretical capacity (2.64Ah) of the whole negative electrode shows the amount of discharge reserve (Ah) calculated from the yield of hydrogen gas, and let this be a discharge reserve rate. According to <u>drawing 6</u>, the alkaline battery using the anode of working example 1 is 10% or less in discharge reserve rate. It turns out that discharge reserve is reduced compared with the alkaline battery using the anode

of the comparative examples 1 and 2.

Therefore, the alkaline battery using the anode of working example 1 can raise capacity, maintaining a miniaturization.

[0077](Evaluation test of a high rate discharging characteristic) The alkaline battery using the anode of working example 1 and the alkaline battery using the anode of the comparative example 2 were discharged with the discharge rate of 0.2 - 3CmA in 20 **. Under the present circumstances, the charge condition was set up similarly to above-mentioned initial charging. A result is shown in drawing 7. The alkaline battery using the anode of working example 1 has the large capacity at the time of high rate discharge compared with the alkaline battery which used the anode of the comparative example 2 so that clearly from drawing 7. This is considered because the conductive network by a cobalt compound is formed from initial charging before in the anode of working example 1.

[0078]

[Effect of the Invention] The nickel electrode active material for alkaline batteries of this invention, Since nickel hydroxide, the cobalt compound with the bigger oxidation number of cobalt than divalent, and the rare earth element compound in which a characteristic diffraction peak is shown in an X diffraction figure are included, High capacity-ization can be attained, raising simultaneously a high rate discharging characteristic and the charging efficiency under an elevated temperature, and attaining a miniaturization further about an alkaline battery. [0079] Since the nickel electrode for alkaline batteries of this invention is provided with the nickel electrode active material of this invention, it can attain high capacity-ization, raising simultaneously a high rate discharging characteristic and the charging efficiency under an elevated temperature, and attaining a miniaturization further about an alkaline battery. [0080] Since it has the nickel electrode of this invention, a high rate discharging characteristic and the charging efficiency under an elevated temperature are raised simultaneously, and the alkaline battery of this invention can be high-capacity-ized, attaining a miniaturization further.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The X diffraction figure of the rare earth element compound containing an ytterbium.

[Drawing 2] The X diffraction figure of the add-in-material compound containing strontium.

[Drawing 3] The X diffraction figure of the add-in-material compound containing bismuth.

[Drawing 4] The X diffraction figure of the add-in-material compound containing yttrium.

[<u>Drawing 5</u>]The figure showing the evaluation test result of the charging efficiency in working example.

[Drawing 6] The figure showing the evaluation test result of the discharge reserve rate in working example.

[Drawing 7] The figure showing the evaluation test result of the high rate discharging characteristic in working example.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-17046 (P2003-17046A)

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int.Cl. ⁷		識別記号	FΙ				テーマコ	I *(参考)
H01M	4/32		H01M	4/	32		4	G 0 4 8
C 0 1 G 51/00		ZHV	C 0 1 G	51/	00	O ZHVA 5H02		H028
H 0 1 M 4/52			H 0 1 M	4/	'52	5 H 0		H050
	10/30			10/30		Z		
			審査請	求	未請求	請求項の数5	OL	(全 11 頁)
(21)出願番号	}	特願2001-197909(P2001-197909)	(71)出願		0000066		1 2 4)	- > /
(22)出願日		平成13年6月29日(2001.6.29)			株式会社ユアサコーボレーション 大阪府高槻市古曽部町二丁目3番21号			
		1 7710-7- 0 7120 21 (2001: 0. 207	(72)発明	-				
			(12/309)	大阪府高槻市古曽部町二丁目3番21号 式会社ユアサコーポレーション内				
			(72)発明			充浩 高槻市古曽部町: ユアサコーポレ・	• •	

(74)代理人 100099841

弁理士 市川 恒彦

最終頁に続く

(54) 【発明の名称】 アルカリ蓄電池用ニッケル電極活物質、アルカリ蓄電池用ニッケル電極およびアルカリ蓄電池

(57)【要約】

【課題】 アルカリ蓄電池について、高率放電特性と高温下での充電効率とを同時に高め、さらに小型化を図りながら高容量化を達成する。

【解決手段】 アルカリ蓄電池用ニッケル電極活物質は、水酸化ニッケルと、コバルトの酸化数が 2 価より大きなコバルト化合物と、イッテルビウム、エルビウム、ルテチウムおよびツリウムからなる元素群から選ばれた少なくとも1つの元素を含みかつコバルトのK α 線による X線回折図において d=0. 885 ± 0 . 008n m、 d=0. 838 ± 0 . 01nm および d=0. 759 ± 0 . 007nm に回折ピークを有する希土類元素化合物とを含んでいる。

10

1

【特許請求の範囲】

【請求項1】水酸化ニッケルと、

【請求項2】前記水酸化ニッケルは、酸化数が2.04~2.40である、請求項1に記載のアルカリ蓄電池用ニッケル電極活物質。

【請求項3】前記希土類元素化合物を、前記水酸化ニッケルの0.5~8重量%含んでいる、請求項1または2に記載のアルカリ蓄電池用ニッケル電極活物質。

【請求項4】集電体と、

前記集電体に配置された活物質とを備え、

前記活物質は、水酸化ニッケルと、コバルトの酸化数が 2価より大きなコバルト化合物と、イッテルビウム、エルビウム、ルテチウムおよびツリウムからなる元素群から選ばれた少なくとも1つの元素を含みかつコバルトの $K\alpha$ 線によるX線回折図においてd=0. 885 ± 0 . 008nm, d=0. 838 ± 0 . 01nm およびd=0. 759 ± 0 . 007nm に回折ピークを有する希土 類元素化合物とを含む、アルカリ蓄電池用ニッケル電極。

【請求項5】水酸化ニッケルと、コバルトの酸化数が2個より大きなコバルト化合物と、イッテルビウム、エルビウム、ルテチウムおよびツリウムからなる元素群から選ばれた少なくとも1つの元素を含みかつコバルトのK α 線によるX線回折図においてd=0. 885 ± 0 . 08nm, d=0. 838 ± 0 . 01nm およびd=0. 759 ± 0 . 007nm に回折ピークを有する希土類元素化合物とを含む活物質を有する正極と、負極と、

前記正極と前記負極との間に配置されたアルカリ電解液と、を備えたアルカリ蓄電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ニッケル電極活物質、ニッケル電極および蓄電池、特に、アルカリ蓄電池用ニッケル電極活物質、アルカリ蓄電池用ニッケル電極およびアルカリ蓄電池に関する。

[0002]

【従来の技術とその課題】電動工具やハイブリッド電気 容量を高めるためには、正極の容量を高め、 自動車 (HEV)等の大電流を必要とする装置に用いら に伴う充電リザーブおよび放電リザーブを れる充放電用電源として、ニッケル水素蓄電池、ニッケ の容量も高める必要があるため、電池が大型 かカドミウム蓄電池およびニッケル亜鉛蓄電池などのア う。換言すると、ニッケル水素蓄電池は、パルカリ蓄電池が使用されており、その需要が急伸してい 50 ながら高容量化を達成するのは困難である。

ろ.

【0003】このようなアルカリ蓄電池の正極には、ニッケル電極が用いられている。ニッケル電極としては、これまで、ニッケル等の粉末を焼結した極板に水酸化ニッケルを析出させた焼結式電極が主として用いられてきたが、上述のような大電流を必要とする使用目的下での需要急伸に伴い、最近では、焼結式電極に比べ、容量を高め易く、しかも製造が容易なことから、高密度の球状水酸化ニッケル粉末(活物質)に増粘剤等の添加剤を混合して調製したスラリーを穿孔鋼板や発泡基板などの電極に塗布または充填した非焼結式電極が多く用いられるようになりつつある。

【0004】しかし、非焼結式電極は、電極と活物質と の距離が大きく、また、活物質同士の接触が不十分なた め、導電性が小さく、焼結式電極に比べて高率放電特性 が劣る。このため、非焼結式電極用の活物質として、水 酸化ニッケルにコバルトまたはコバルト化合物を添加し たものが種々提案されている(例えば、特開昭62-2 56366号公報)。このような活物質を用いた非焼結 式電極は、アルカリ電解液中において、コバルトまたは コバルト化合物からアルカリ電解液中にコバルトイオン が溶出し、このコバルトイオンが水酸化コバルトとして 析出する。そして、この水酸化コバルトは、初期充電時 に酸化されてオキシ水酸化コバルトとなり、これが水酸 化ニッケル粉末粒子間の導電性を高める緻密なネットワ ークを形成して電極の導電性を高める。この結果、この 非焼結式電極の高率放電特性は、焼結式電極程度に高ま ることになる。

【0005】ところで、上述のような非焼結式電極をニ ッケル水素蓄電池に使用した場合、コバルトまたはコバ ルト化合物からオキシ水酸化コバルトが生成する反応は 不可逆反応であるため、この反応に要した初期充電電気 量は、潜在的な放電電気量(放電リザーブ)として負極 側に蓄えられることになる。また、このようなニッケル 水素蓄電池は、過充電された場合、正極側で酸素ガスが 発生する。この酸素ガスはニッケル水素蓄電池の内圧上 昇を招き、液漏れを起こして電池寿命を短縮する可能性 がある。そこで、ニッケル水素蓄電池では、負極側に実 際の充放電に関与しない充電可能な容量(充電リザー ブ)を設け、正極側で発生した酸素ガスを負極の充電リ ザーブで吸収または消費して水に変換し、内圧の上昇を 抑制している。このような事情から、ニッケル水素蓄電 池は、正極の容量に比べて負極の容量が大きく設定され ており、充放電容量が正極の容量により規制されるよう に設定されている。したがって、ニッケル水素蓄電池の 容量を高めるためには、正極の容量を高め、また、それ に伴う充電リザーブおよび放電リザーブを考慮して負極 の容量も高める必要があるため、電池が大型化してしま う。換言すると、ニッケル水素蓄電池は、小型化を図り

【0006】また、非焼結式電極を備えたアルカリ蓄電 池は、充放電時に電池温度が高まるが、特に、充放電を 大電流で繰り返した場合、冷却が不十分なままの状態で 次の充放電過程へ移行せざるを得ない場合が多い。つま り、このアルカリ蓄電池は、高温環境での使用頻度が高 まることになる。ところが、アルカリ蓄電池は、高温環 境下で充電した場合、水酸化ニッケルの酸化電位と充電 末期における酸素発生電位との差が小さくなるため、酸 化反応と酸素発生反応とが競合し、充電効率が低下す る。特に、ハイブリッド電気自動車のように、アルカリ 蓄電池を組合せた組電池を用いる装置の場合、各アルカ リ蓄電池の温度が一定しにくくなり、充電効率が低下し やすい。この点を改善するため、非焼結式電極用の活物 質に対し、上述のコバルトまたはコバルト化合物に加 え、高温下における正極の充電末期の酸素発生電位を貴 にシフトさせる効果を有する元素の化合物をさらに添加 することが提案されている(例えば、特開平5-289 92号公報、特開平6-150925号公報、特開平8 -195198号公報および特開平9-92279号公 報参照)。

【0007】ところが、正極の酸素発生電位を貴にシフ トさせる効果を有する元素の中には、アルカリ電解液中 における上述の水酸化コバルトの析出を妨げ、結果的に オキシ水酸化コバルトによる導電性ネットワークの形成 を妨げるものがある。このため、そのような元素を含む 電極は、高温下における充電効率が高まるものの、高率 放電特性が極端に低下してしまう。これを解決するため に、活物質中に含まれるコバルトまたはコバルト化合物 を増量し、水酸化ニッケル間の導電性ネットワークが形 成され易いようにすることも考えられるが、そのように すると放電リザーブが増大することになるので、アルカ リ蓄電池の小型化を図りながら高容量化を達成するのが より困難になる。

【0008】本発明の目的は、アルカリ蓄電池につい て、高率放電特性と高温下での充電効率とを同時に高 め、さらに小型化を図りながら高容量化を達成すること にある。

[0009]

【課題を解決するための手段】本発明のアルカリ蓄電池 用ニッケル電極活物質は、水酸化ニッケルと、コバルト の酸化数が2価より大きなコバルト化合物と、イッテル ビウム、エルビウム、ルテチウムおよびツリウムからな る元素群から選ばれた少なくとも1つの元素を含みかつ コバルトのKα線によるX線回折図においてd=0. 8 85 ± 0.008 nm, $d=0.838\pm0.01$ nm およびd=0. 759±0. 007nmに回折ピークを 有する希土類元素化合物とを含んでいる。

【0010】ここで、水酸化ニッケルは、例えば、酸化 数が2.04~2.40である。また、このアルカリ蓄 物を、水酸化ニッケルの0.5~8重量%含んでいる。 【0011】本発明のアルカリ蓄電池用ニッケル電極 は、集電体と、集電体に配置された活物質とを備えてい る。活物質は、水酸化ニッケルと、酸化数が2価より大 きなコバルト化合物と、イッテルビウム、エルビウム、 ルテチウムおよびツリウムからなる元素群から選ばれた 少なくとも1つの元素を含みかつコバルトのΚα線によ るX線回折図においてd=0. 885 ± 0 . 008n $m, d=0.838\pm0.01$ nm t=0.759±0.007nmに回折ピークを有する希土類元素化 合物とを含んでいる。

【0012】本発明のアルカリ蓄電池は、正極、負極お よび正極と負極との間に配置されたアルカリ電解液とを 備えており、正極は、水酸化ニッケルと、酸化数が2価 より大きなコバルト化合物と、イッテルビウム、エルビ ウム、ルテチウムおよびツリウムからなる元素群から選 ばれた少なくとも1つの元素を含みかつコバルトのKα 線によるX線回折図においてd=0. 885 ± 0 . 00 $8 \text{ nm}, d=0.838\pm0.01 \text{ nm}$ \$\$\text{nm}, \d=0. 759±0.007nmに回折ピークを有する希土類元 素化合物とを含む活物質を有している。

【発明の実施の形態】本発明のアルカリ蓄電池用ニッケ

[0013]

20

ル電極活物質は、水酸化ニッケル、コバルト化合物およ び希土類元素化合物を含んでいる。本発明で用いられる 水酸化ニッケルは、通常、微粒子状のものであり、アル カリ蓄電池のニッケル電極用活物質として用いられるも のであれば特に限定されるものではないが、例えば、球 状の高密度水酸化ニッケルである。この水酸化ニッケル は、アルカリ蓄電池の充放電サイクル寿命を低下させる ために、マグネシウムやカルシウム等の2A族元素、亜 鉛やカドミウム等の2B族元素およびコバルトのうちの 少なくとも1つの元素を固溶状態で含有していてもよ い。すなわち、この水酸化ニッケルは、ニッケル元素の 一部が、2A族元素、2B族元素およびコバルトのうち の少なくとも1つの元素により置換されていてもよい。 【0014】また、この水酸化ニッケルは、その構成元 素であるニッケルの一部が酸化されているのが好まし い。このような水酸化ニッケルは、例えば、水酸化ニッ ケルを適宜酸化処理すると調製することができる。この 場合、水酸化ニッケルの酸化数が2.04~2.40に なるよう設定されているのが好ましい。この酸化数が 2.04未満の場合は、本発明のニッケル電極活物質を 用いたアルカリ蓄電池の負極において、放電リザーブが 削減されにくくなり、結果的に十分な充電リザーブを確 保するのが困難になる可能性がある。その結果、当該ア ルカリ蓄電池の過充電時において、ニッケル電極側で発 生する酸素ガスを充電リザーブ部分で吸収するのが困難 電池用ニッケル電極活物質は、例えば、希土類元素化合 50 になり、アルカリ蓄電池の内圧上昇を抑制するのが困難

になる可能性がある。逆に、酸化数が2.40を超える 場合は、同様のアルカリ蓄電池において、電池容量が負 極規制になって放電容量が低下する可能性があり、その 結果、アルカリ蓄電池のサイクル寿命が損なわれる可能 性がある。

【0015】なお、上述の酸化数は、硫酸第一鉄法によ り測定した値である。具体的には、先ず、水酸化ニッケ ルに含まれる活性酸素量を求める。ここでは、水酸化ニ ッケルの粉末(試料粉末)0.1gと硫酸第一鉄アンモ*

活性酸素量(mg/100mg試料)

 $(\frac{X \text{ F e}}{392.14} - \frac{0.1 \times f \times V}{1000}) \times (\frac{100}{X \text{ s p}})$

する。

[0016]

【数1】

· · · (i)

【0017】式(i)中、XFeは硫酸第一鉄アンモニ ウムの秤量量(g)、Vは過マンガン酸カリウム溶液の 滴定量(ml)、fは過マンガン酸カリウム溶液のファ クター、Xspは試料粉末の秤量量(g)である。

【0018】次に、試料粉末中に含まれるニッケル量 ※20

【数2】 酸化数 = {1+(活性酸素量/16000)

※ (重量%) を、ICP発光分析法や原原子吸光分析法な どの方法により定量分析し、次の式(ii)から水酸化 ニッケル中のニッケルの酸化数を算出する。

*ニウム1gとを秤量し、これを5℃に設定された20体

積%濃度の酢酸水溶液に添加する。そして、約3~10

時間攪拌して完全に溶解させた後、この溶液を1/10

規定(0.02mo1/1)の過マンガン酸カリウム溶 液を用いて滴定し、次の式(i)から活性酸素量を算出

[0019]

· · · (i i)

【0020】本発明で用いられるコバルト化合物は、そ れを構成するコバルトの酸化数が2価より大きなもので あり、例えばオキシ水酸化コバルトである。このような コバルト化合物は、コバルト、またはアルカリ蓄電池の 電解液として用いられるアルカリ溶液中においてコバル 30 トイオンを溶出可能なコバルト化合物、例えばα型水酸 化コバルト、β型水酸化コバルト若しくは一酸化コバル ト(以下、便宜上、コバルト化合物前駆体という)を酸 化処理すると調製することができる。

【〇〇21】ここでの酸化処理は、通常、先ずアルカリ 水溶液を調製し、このアルカリ水溶液中にコバルト化合 物前駆体を投入する。ここで利用可能なアルカリ水溶液 は、特に限定されるものではないが、通常は水酸化カリ ウムおよび水酸化ナトリウムのうちの少なくとも1つを 含むものであり、酸化処理を促進する観点から、温度が 40 60℃以上に設定されているのが好ましい。

【0022】次に、上述のアルカリ水溶液中に酸化剤を 添加し、当該水溶液中に含まれるコバルト化合物前駆体 を酸化処理する。これにより、コバルト化合物前駆体 は、コバルトの酸化数が2価より大きなコバルト化合物 (例えば、オキシ水酸化コバルト) に転換される。

【0023】なお、ここで用いられる酸化剤は、特に限 定されるものではなく、公知の各種のものであるが、酸 化力が大きく、コバルト化合物前駆体を効率的に酸化処 理することができる点で、ペルオキソ二硫酸カリウム

(K₂ S₂ O₈)、ペルオキソニ硫酸ナトリム(N a₂ S₂ O₈)、ペルオキソニ硫酸アンモニウム((NH₄)₂ S₂ Os) および次亜塩素酸ナトリウム(NaClO)から なる群から選択された少なくとも1つを用いるのが好ま しい。

【0024】なお、酸化剤の添加量は、酸化剤の種類に より変化するため一概に特定できるものではないが、コ バルト化合物前駆体を所要のコバルト化合物に転換する ための十分な量に設定するのが好ましい。

【0025】本発明のアルカリ蓄電池用ニッケル電極活 物質において、上述のコバルト化合物は、上述の水酸化 ニッケル粒子の表面を被覆した状態で含まれていてもよ い。このようなコバルト化合物が被覆された水酸化ニッ ケルは、例えば、公知の方法(例えば、特開昭62-2 34867号公報参照)によりコバルト化合物前駆体が 被覆された水酸化ニッケル粒子の群(以下、便宜上、コ バルト被覆水酸化ニッケルという)を製造し、このコバ ルト被覆水酸化ニッケルを酸化処理すると製造すること ができる。

【0026】ここで、コバルト被覆水酸化ニッケルの酸 化処理は、通常、上述のコバルト化合物前駆体の酸化処 理と同じく、コバルト被覆水酸化ニッケルをアルカリ水 溶液中において酸化剤を用いて処理すると実施すること ができる。すなわち、先ず、アルカリ水溶液を調製し、 50 このアルカリ水溶液中にコバルト被覆水酸化ニッケルを

40

投入する。ここで利用可能なアルカリ水溶液は、特に限定されるものではないが、通常は水酸化カリウムおよび水酸化ナトリウムのうちの少なくとも1つを含むものである。特に、水酸化ナトリウム水溶液を用いた場合は、酸化処理工程において、コバルト被覆水酸化ニッケルの芯層側の水酸化ニッケルがγーNiOOHに変換するのを抑制することができる。また、アルカリ水溶液は、酸化処理を促進する観点から、温度が60℃以上に設定されているのが好ましい。

【0027】次に、上述のアルカリ水溶液中に酸化剤を添加し、当該水溶液中に含まれるコバルト被覆水酸化ニッケルを酸化処理する。これにより、上記コバルト被覆水酸化ニッケルにおいて芯層の水酸化ニッケルを被覆するコバルト化合物前駆体(表面層)が酸化され、このコバルト化合物前駆体はコバルトの酸化数が2価より大きなコバルト化合物(例えば、オキシ水酸化コバルト)に転換される。

【0028】なお、ここで用いられる酸化剤は、上述のものと同様である。また、酸化剤の添加量は、酸化剤の種類により変化するため一概に特定できるものではない 20が、コバルト被覆水酸化ニッケルの表面層、すなわちコバルト化合物前駆体が所要のコバルト化合物に転換され、しかも芯層側の水酸化ニッケルの酸化数が上述の範囲に止まる範囲に設定するのが好ましい。

【0029】本発明で用いられる希土類元素化合物は、イッテルビウム、エルビウム、ルテチウムおよびツリウムからなる元素群から選ばれた少なくとも1つの元素を含み、コバルトの $K\alpha$ 線によるX線回折図においてd=0. 885 ± 0 . 008 nm、d=0. 838 ± 0 . 01 nmおよびd=0. 10 nmおよびd=0. 10 nmに回折ピークを有するものであり、通常、そのような化合物の粉末である。一例として、イッテルビウムを含む希土類元素化合物のX線回折図を図1に示す。なお、この希土類元素化合物は、10 nmに回折り、10 nmに回折回を図1 に示す。なお、この希土類元素化合物は、10 nmに回折回を図1 に示す。なお、この希土類元素化合物は、10 nmに回折回を図1 にいるにない。

【0030】このような希土類元素化合物は、例えば、イッテルビウム、エルビウム、ルテチウムおよびツリウムからなる元素群から選択された少なくとも1つの元素を含む化合物(原料化合物)を酸化処理すると得られる。

【0031】ここで用いられる原料化合物は、通常、上記元素群から選ばれた少なくとも1つの元素を含む酸化物や水酸化物である。すなわち、原料化合物は、通常、上記元素群から選ばれた1つの元素の酸化物や水酸化物、または上記元素群から選ばれた2つ以上の元素の複合酸化物や複合水酸化物である。なお、このような原料化合物は、2種以上のものが適宜併用されてもよい。

物が上述の酸化物若しくは水酸化物の場合、酸化処理は、通常、原料化合物をアルカリ金属水酸化物水溶液中、例えば、水酸化ナトリウムや水酸化カリウムの水溶液中に浸漬して放置すると達成することができる。アルカリ金属水酸化物水溶液の濃度は、通常、25重量%~40重量%に設定するのが好ましい。この酸化処理において、アルカリ金属水酸化物水溶液は、酸化処理を促進するために、適宜加熱してもよい。例えば、60℃に加熱された6.8規定の水酸化カリウム水溶液中に上述の酸化物や水酸化物を浸漬して放置すると、通常、数時間から数日で目的とする希土類元素化合物が得られる。

8

【0033】上述のような酸化処理方法において、アルカリ金属水酸化物の水溶液中には、例えば、次亜塩素酸ナトリウム(NaClO)のような酸化剤を添加したり、空気(酸素)を吹き込んでもよい。この場合、原料化合物の酸化処理が促進され、目的とする酸化処理化合物をより速やかに調製することができる。

【0034】因みに、イッテルビウム、エルビウム、ルテチウムおよびツリウム以外の希土類元素の酸化物や水酸化物について上述のような酸化処理を施した場合、Ln(OH)。に相当する六方晶(P63/m)の結晶構造を有する水酸化物が得られるが、この水酸化物は上述のような回折ピークを示さない。

【0035】なお、上述の希土類元素化合物は、2種以上のものが適宜併用されてもよい。

【0036】また、本発明のアルカリ蓄電池用ニッケル電極活物質は、上述の希土類元素化合物に替えて、または上述の希土類元素化合物と共に、ストロンチウム化合物、ビスマス化合物およびイットリウム化合物のうちの少なくとも1つ(以下、便宜上、添加材化合物という)を含んでいてもよい。

【0037】ここで用いられるストロンチウム化合物は、コバルトの $K\alpha$ 線によるX線回折図の $2\theta=5\sim85^\circ$ の範囲において、 $d=0.354\pm0.002$ nm および $d=0.248\pm0.001$ nmにそれぞれ第1強度の回折ピークおよび第2強度の回折ピークを有するものである。例えば、図2に示すように、このストロンチウム化合物は、水酸化ストロンチウムのX線回折図において特有のd=0.585 nm $(2\theta=17.6^\circ)$ の回折ピークが消失し、d=0.354 nm $(2\theta=29.3^\circ)$ およびd=0.248 nm $(2\theta=42.3^\circ)$ にそれぞれ第1強度の回折ピークおよび第2強度の回折ピークを有している。

【0038】また、ここで用いられるビスマス化合物は、コバルトの $K\alpha$ 線によるX線回折図の $2\theta=5\sim85^\circ$ の範囲において、d=0. 326 ± 0 . 002nm、d=0. 269 ± 0 . 001nmおよびd=0. 269 ± 0 . 001nmおよびd=0. 269 ± 0 . 001nmの第2強度の回折ピークを有し、d=0. 269 ± 0 . 001nmの第2強度の

回折ピークがd=0. 326±0. 002nmの第1強 度の回折ピークの1/2以上の強度のものである。例え ば、図3に示すように、このビスマス化合物は、酸化ビ スマスのX線回折図において特有の d = 0. 295 nm $(2\theta = 35.3^{\circ})$ の回折ピークが消失し、d = 0. $326 \text{ nm} (2\theta = 31.9^{\circ}), d = 0.269 \text{ nm}$ $(2\theta = 38.8^{\circ})$ およびd=0.256nm (2 θ = 40.9°) にそれぞれ第1強度の回折ピーク、第2 強度の回折ピークおよび第3強度の回折ピークを有し、 d=0. 269 n m の 第2 強度の 回折 ピーク が d=0. 326 nmの第1強度の回折ピークの1/2以上の強度 である。

【0039】さらに、ここで用いられるイットリウム化 合物は、コバルトの $K\alpha$ 線によるX線回折図の $2\theta=5$ ~85°の範囲において、d=0.544±0.006 nmおよび d = 0. 313 ± 0 . 002 nm に回折ピー クを有しており、 $d=0.544\pm0.006$ nmの回 折ピークが当該範囲における最強ピークのものである。 例えば、図4に示すように、このイットリウム化合物 は、酸化イットリウムや水酸化イットリウムのX線回折 20 図において見られないd=0, 544nm($2\theta=1$ 8. 9°) およびd = 0. 313 nm (2 $\theta = 33$. 2 °)に回折ピークを有しており、 $2\theta = 5 \sim 85$ °の範 囲において、d=0.544nmの回折ピークが最強ピ 一クである。

【0040】なお、上述の添加材化合物は、上述の希土 類元素化合物の場合と同様にして調製することができ る。すなわち、これらの化合物は、ストロンチウム、ビ スマスまたはイットリウムを含む原料化合物(例えば酸 化物や水酸化物)を上述のような方法で酸化処理すると 30 調製することができる。

【0041】本発明のニッケル電極活物質は、上述の水 酸化ニッケル、コバルト化合物および希土類化合物を混 合すると調製することができる。ここで、コバルト化合 物の含有量は、通常、水酸化ニッケルの2~10重量% に設定されているのが好ましく、3~7重量%に設定さ れているのがより好ましい。この含有量が2重量%未満 の場合は、水酸化ニッケルに対して所要の導電性ネット ワークが形成されにくくなり、アルカリ蓄電池の放電特 性、特に高率放電特性が低下する可能性がある。逆に、 この含有量が10重量%を超える場合は、活物質中の水 酸化ニッケル量が相対的に少なくなるため、アルカリ蓄 電池の小型化を維持しつつ、その容量を高めるのが困難 になる。

【0042】また、希土類元素化合物の含有量は、通 常、水酸化ニッケルの0.5~8重量%に設定するのが 好ましく、2~8重量%に設定するのがより好ましい。 この含有量が 0. 5重量%未満の場合は、ニッケル電極 の酸素発生電位を貴な方向にシフトさせる効果が乏し く、高温環境下におけるアルカリ蓄電池の充電効率を高 50 どのポリオレフィン樹脂繊維またはポリアミド樹脂繊維

めるのが困難になる可能性がある。逆に、この含有量が 8 重量%を超える場合は、それに比例した効果を達成で きず不経済であるばかりか、ニッケル電極活物質中にお ける水酸化ニッケル量が相対的に少なくなるため、アル カリ蓄電池の小型化を維持しつつ、その容量を高めるの が困難になる。

【0043】なお、本発明の活物質において、上述の希 土類元素化合物に替えて上述の添加材化合物を用いる場 合、本発明の活物質中におけるその含有量は、希土類元 素化合物の場合と同様に設定するのが好ましい。また、 10 本発明の活物質において、上述の希土類元素化合物と共 に、上述の添加材化合物を用いる場合、添加材化合物の 含有量は、希土類元素化合物との合計量が希土類元素化 合物に関する上述の含有量の範囲になるよう設定するの が好ましい。

【0044】本発明のアルカリ蓄電池用ニッケル電極 は、集電体と、この集電体に配置されれた本発明のニッ ケル電極活物質とを備えている。このニッケル電極に用 いられる集電体は、アルカリ蓄電池用のニッケル電極に おいて利用可能なものであれば特に限定されるものでは ないが、例えば、穿孔鋼板や発泡基板などである。

【0045】このニッケル電極を製造する場合は、先 ず、本発明に係る上述の活物質を調製する。そして、こ の活物質にカルボキシメチルセルロース等のバインダー を加えてスラリーまたはペーストを調製し、このスラリ 一またはペーストを集電体に対して塗布または充填する ことにより配置する。

【0046】本発明のアルカリ蓄電池は、電槽と、当該 電槽内に収容された上述のようなニッケル電極、すなわ ち正極、負極および正極と負極との間に配置されたセパ レータと、電槽内に注入された電解液とを主に備えてい

【0047】ここで用いられる負極は、ニッケル電極を 正極とするアルカリ蓄電池において用いられるものであ れば特に限定されるものではなく、通常、水素吸蔵合金 電極、カドミウム電極または亜鉛電極である。因みに、 負極として水素吸蔵合金電極を用いる場合、水素吸蔵合 金としてはCaCus型構造を有するMmNi3.55 Co 0.75 Mno.4 Alo.3 の組成で示される合金、MmNis 合金のニッケルの一部をアルミニウム、マンガン、コバ ルト、チタン、銅および亜鉛のうちの少なくとも1つで 置換した多元素系合金、TiNi系合金およびTiFe 系合金等を用いることができる。なお、Mmは希土類元 素の混合物(通常はランタン、セリウム、プラセオジム およびネオジウムの混合物)を意味している。

【0048】セパレータは、正極と負極との短絡を防止 すると共に電解液を保持するためのものであり、アルカ リ蓄電池において利用可能なものであれば特に限定され るものではないが、例えば、ポリプロピレン樹脂繊維な

を用いて形成された不織布である。なお、このような不 織布を形成するためのポリオレフィン樹脂繊維やポリア ミド樹脂繊維には、必要に応じてスルホン化処理やアク リル酸などをグラフト重合して親水性が付与されていて もよい。

【0049】電解液は、同じくアルカリ蓄電池において 用いられるものであれば特に限定されるものではなく、 例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶 液または水酸化リチウム水溶液などのアルカリ金属水酸 化物水溶液である。アルカリ金属水酸化物水溶液は、2 10 種以上のものが混合して用いられてもよい。

【0050】本発明のアルカリ蓄電池の正極に用いられ るニッケル電極は、本発明のニッケル電極、すなわち、 本発明のニッケル電極活物質を用いたものであるため、 初期充電工程において負極に形成される放電リザーブを 削減することができる。つまり、ここで用いられるニッ ケル電極活物質に含まれるコバルト化合物は、初期充電 工程においてニッケル電極活物質に対して導電性ネット ワークを付与可能な導電性コバルト化合物に転換するも のではなく、コバルトの酸化数が2価より大きなコバル 20 ト化合物であって初期充電工程前より導電性を有し、そ れが初期充電工程前からニッケル電極活物質に対して導 電性ネットワークを付与しているため、初期充電工程に おいて負極に放電リザーブを形成しにくい。このため、 このようなニッケル電極活物質を用いた本発明のアルカ リ蓄電池は、負極の容量を増加させずに正極の容量を高 めることができるので、小型化を図りながら高容量化を 達成することができる。

【0051】また、このアルカリ蓄電池は、正極のニッ ケル電極活物質において、上述のように初期充電工程前 30 からコバルト化合物による導電性ネットワークが形成さ れているため、高率放電特性が良好である。さらに、ニ ッケル電極活物質は、上述のような希土類元素化合物を 含んでいるため、高温下での充電時において正極の酸素 発生電位を貴にシフトさせることができる。このため、 このアルカリ蓄電池は、高温環境下で充電した場合、正 極において水酸化ニッケルの酸化電位と酸素発生電位と の差が大きくなり、高温下での充電効率が高まる。この 点、ニッケル電極活物質が上述のような添加材化合物を 含んでいる場合も同様である。

[0052]

【実施例】製造例1

60℃に設定された40重量%水酸化カリウム水溶液中 に酸化イッテルビウム (Yb2O3) を投入し、72時間 放置した。これにより、酸化イッテルビウムを酸化処理 し、希土類元素化合物を得た。この希土類元素化合物に ついて、コバルトのΚα線によるX線回折を実施したと ころ、d=0.885 n m $(2\theta=11.6^{\circ})$ 、d=0. 836 nm (2 θ = 12. 3°) およびd = 0. 7 1のX線回折図が得られた。

【0053】製造例2

酸化イッテルビウムに替えて酸化エルビウム(Er 2O3) を用いた点を除いて製造例1の場合と同様に操作 し、コバルトの $K\alpha$ 線によるX線回折を実施した場合に 製造例1の希土類元素化合物と同様の3つの回折ピーク を有する希土類元素化合物を得た。

12

【0054】製造例3

酸化イッテルビウムに替えて酸化ツリウム(Tm2O3) を用いた点を除いて製造例1の場合と同様に操作し、コ バルトのΚα線によるX線回折を実施した場合に製造例 1の希土類元素化合物と同様の3つの回折ピークを有す る希土類元素化合物を得た。

【0055】製造例4

酸化イッテルビウムに替えて酸化ルテチウム(Lu 2O3) を用いた点を除いて製造例1の場合と同様に操作 し、コバルトのKα線によるX線回折を実施した場合に 製造例1の希土類元素化合物と同様の3つの回折ピーク を有する希土類元素化合物を得た。

【0056】製造例5

酸化イッテルビウムに替えて、酸化ツリウム(Tm 2 O3) 25重量%、酸化イッテルビウム (Yb2O3) 5 ○重量%および酸化ルテチウム(Lu₂O₂)25重量% を含む混合物を用いた点を除いて製造例1の場合と同様 に操作し、コバルトのΚα線によるX線回折を実施した 場合に製造例1の希土類元素化合物と同様の3つの回折 ピークを有する希土類元素化合物を得た。

【0057】製造例6

酸化イッテルビウムに替えて、ツリウムを1.0 a t m. %、イッテルビウムを90.0atm.%およびル テチウムを9. Oatm. %含む複合酸化物を用いた点 を除いて製造例1の場合と同様に操作し、コバルトのK α線によるX線回折を実施した場合に製造例1の希土類 元素化合物と同様の3つの回折ピークを有する希土類元 素化合物を得た。

【0058】実施例1~6

硫酸ニッケル、硫酸亜鉛および硫酸コバルトを所定比で 溶解した水溶液に硫酸アンモニウムと水酸化ナトリウム 水溶液とを添加してアンミン錯体を生成させた。そし て、この反応系を激しく攪拌しながら水酸化ナトリウム 水溶液をさらに滴下し、反応系のpHを10から13の 範囲に制御した。これにより、球状の高密度水酸化ニッ ケル粒子の群を得た。

【0059】次に、得られた高密度水酸化ニッケル粒子 の群を、水酸化ナトリウムでpHを10から13に制御 したアルカリ水溶液中に投入した。そして、この溶液を 攪拌しながら、所定濃度の硫酸コバルトおよびアンモニ アを含む水溶液を滴下した。この間、水酸化ナトリウム 水溶液を適宜滴下して反応系の p Hを 10 から 13 の範 $58 \, \mathrm{nm} \, \left(2 \, heta = 1 \, 3 \, \cdot \, 6^\circ \, \right)$ に回折ピークを有する図 50 囲に約1時間保持した。これにより、コバルト水酸化物

20

(コバルト化合物前駆体) からなる表面層が形成された 高密度水酸化ニッケル粒子 (コバルト被覆水酸化ニッケ ル)の群が得られた。この高密度水酸化ニッケル粒子に おいて、表面層の割合は、芯層を構成する高密度水酸化 ニッケルの8.2重量%であった。

【0060】得られたコバルト被覆水酸化ニッケル50 gを110℃の30重量%水酸化ナトリウム水溶液中に 投入し、十分に攪拌した。続いて、コバルト被覆水酸化 ニッケルの表面層を形成しているコバルト化合物前駆体 の当量に対して過剰の酸化剤(K2S2Os)を水酸化ナ トリウム水溶液中に添加した。そして、コバルト被覆水 酸化ニッケルの表面から酸素ガスが発生するのを確認し た後、コバルト被覆水酸化ニッケルを濾過して水洗し、 乾燥した。このようにして酸化処理されたコバルト被覆 水酸化ニッケルは、表面層を形成しているコバルト化合 物前駆体が酸化されてコバルトの酸化数が2価より大き なコバルト化合物 (オキシ水酸化コバルト) に転換され ていた。また、芯層の水酸化ニッケルの酸化数は2.0 5であり、芯層のニッケルと表面層のコバルトとの平均 酸化値は2.15であった。

【0061】上述のようにして酸化処理されたコバルト 被覆水酸化ニッケルに対して製造例1~6で得られた希 土類元素化合物の一つを5重量%添加して混合し、さら にカルボキシメチルセルロースの水溶液を加えてペース トを調製した。このペーストの所定量を面密度が450 g/m^t、多孔度が約95%のニッケル金属多孔板に均 一に充填し、ペーストを乾燥した後に加圧してニッケル 電極(正極)を作成した。このニッケル電極の容量は 1,600mAhであった。

【0062】実施例7~12

実施例1~6の場合と同様にして、酸化処理されたコバ ルト被覆水酸化ニッケルを製造した。これに対し、製造 例1で得られた希土類元素化合物を、表面層を除いた高 密度水酸化ニッケル量の0.2重量%(実施例7)、 0.5重量%(実施例8)、2重量%(実施例9)、8 重量% (実施例10)、15重量% (実施例11) およ び20重量%(実施例12)添加して混合し、さらにカ ルボキシメチルセルロースの水溶液を加えてペーストを 調製した。そして、このペーストを用い、実施例1~6 と同様のニッケル電極(正極:容量=1,600mA h)を作成した。

【0063】比較例1

実施例1~6で得られた酸化処理前のコバルト被覆水酸 化ニッケルにカルボキシメチルセルロースの水溶液を加 え、ペーストを調製した。そして、このペーストを用 い、実施例1~6と同様のニッケル電極(正極:容量= 1,600mAh) を作成した。

【0064】比較例2

実施例1~6で得られた酸化処理前のコバルト被覆水酸 化ニッケルに製造例1で得られた希土類元素化合物を5 重量%添加して混合し、さらにカルボキシメチルセルロ ースの水溶液を加えてペーストを調製した。そして、こ のペーストを用い、実施例1~6と同様のニッケル電極 (正極:容量=1,600mAh)を作成した。

14

【0065】比較例3

実施例1~6の場合と同様にして、酸化処理されたコバ ルト被覆水酸化ニッケルを製造した。そして、これに対 してカルボキシメチルセルロースの水溶液を加え、ペー ストを調製した。このペーストを用い、実施例1~6と 同様のニッケル電極(正極:容量=1,600mAh) を作成した。

【0066】評価

CaCus型構造を有するMmNi3.55 Coa75 Mna4 Alas の組成で示される水素吸蔵合金 (Mmはランタ ン45%、セリウム30%、プラセオジム3%およびネ オジム22%の混合物)の粉末に増粘剤を加えてペース トを調製し、このペーストを穿孔鋼板に塗布して乾燥し た。そして、これを加圧した後に切断し、水素吸蔵合金 電極(負極:容量=2,640mAh)を作成した。 【0067】実施例1~12および比較例1~3で得ら れたニッケル電極(正極)と上述の水素吸蔵合金電極 (負極)とを、アクリル酸をグラフト重合したポリプロ ピレン樹脂繊維からなる不織布を挟んで円筒状に巻き込 み、電極群を作成した。そして、この電極群を円筒状の ケース(電槽)内に収容し、また、ケース内に6.8規 定の水酸化カリウム水溶液からなる電解液を1.9mL 30 注入して密閉した。これにより、容量が1,600mA h、N/P比が1.65の円筒型AAサイズの密閉型ア ルカリ蓄電池を得た。得られたアルカリ蓄電池を、電解 液を注入して密閉した後に2時間放置し、その後、0. 1 CmAで15時間定電流充電(初期充電)し、また、 0. 2 CmAで1. 0 Vまで定電流放電(初期放電) し た。放電容量が安定した後、次の各試験を実施した。 【0068】 (充電効率の評価試験) 実施例1~6およ び比較例1~3の正極を用いたアルカリ蓄電池の温度を 20℃、40℃、50℃および60℃に設定し、上述の 40 初期充電および初期放電と同じ条件で、放電容量が一定 になるまで充放電を繰り返した。そして、20℃におい て0.20mΑで放電した場合の放電容量を100%と し、各アルカリ蓄電池について各温度での放電容量比 (充電効率)を求めた。結果を表1に示す。

[0069]

【表1】

表 1

		充電效率(%)			
		20℃	40℃	50℃	60℃
	1	100	100	96	80
実	2	100	9 4	9 1	76
施例	3	100	97	94	78
	4	100	98	95	79
	5	100	98	94	7 8
	6	100	98	95	78
比較例	1	100	89	7 2	4 2
	2	100	98	9 5	78
	3	100	9 2	7 3	53

【0070】表1から、実施例1~6の正極を用いたア ルカリ蓄電池は、正極に希土類元素化合物を含まない比 較例1および3のアルカリ蓄電池に比べ、高温において も高い充電効率を示すことがわかる。これは、実施例1 ~6の正極を用いたアルカリ蓄電池は、正極が希土類元 素化合物を含んでいるため、充電末期に生じる酸素ガス の発生が抑制され、充電受け入れ性が改善されたためと 考えられる。

【0071】また、実施例1、実施例7~12および比 較例3の正極を用いたアルカリ蓄電池について、電池温 度を50℃に設定し、上述と同様の方法で充電効率を求 めた結果を図5に示す。図5から、正極に希土類元素化 合物を含まない比較例3のアルカリ蓄電池に比べ、実施 例1および実施例7~12の正極を用いたアルカリ蓄電 池は充電効率が向上していることがわかる。但し、図5 によると、正極における希土類元素化合物の含有量が8 重量%を超えても充電効率について顕著な改善効果は見 30 られない。これより、正極のニッケル電極活物質におけ る希土類元素化合物の含有量は、少なくとも0.5重量 % (好ましくは2重量%) に設定するのが好ましく、上 限を8重量%以下に設定するのが好ましいことがわか

【0072】 (放電リザーブの評価試験) 実施例1およ び比較例1,2の正極を用いたアルカリ蓄電池につい *

放電リザーブの目安(Ah)=水素ガス量(mL)× (2×96,500) / (22,400×3,600)

【0076】結果を図6に示す。図6では、水素ガスの 発生量から求めた放電リザーブ量(Ah)を負極全体の 40 理論容量(2.64Ah)に対する比率((放電リザー ブ量/負極全体の理論容量)×100)で示しており、 これを放電リザーブ率とする。図6によると、実施例1 の正極を用いたアルカリ蓄電池は、放電リザーブ率が1 0%以下であり、比較例1,2の正極を用いたアルカリ 蓄電池に比べて放電リザーブが削減されていることがわ かる。したがって、実施例1の正極を用いたアルカリ蓄 電池は、小型化を維持しつつ容量を高めることができ

* て、20℃で10サイクルの充放電を繰り返した後、放 電末期の状態で解体して負極を取り出し、負極に含まれ る水素ガス量を測定した。ここでは、先ず、蒸留水で満 たした三角フラスコ内に負極を入れ、シリコンゴム製の 栓で三角フラスコを密栓した。そして、栓の中央に管を 通し、この管を通じて負極から発生する水素ガスを水上 置換法によりメスシリンダーで捕集した。この際、三角 フラスコを加熱し、負極中に含まれる水素ガスを完全に

【0073】メスシリンダーで捕集された水素ガス量を 測定し、それに基づいて負極の放電リザーブを評価し た。ここでは、下記の反応式に従って水素ガス1モル (22.4L) あたり、2電子(すなわち2クーロン) 消費されるものと考え、下記の式(iii)に従って捕集 した水素ガス量を電気化学容量に換算し、放電リザーブ の目安を求めた。

[0074]

【化1】 \rightarrow M + 1/2 H₂ MH -H. - \rightarrow 2H⁺ + 2 e⁻

[0075] 【数3】

極を用いたアルカリ蓄電池と、比較例2の正極を用いた アルカリ蓄電池とを、20℃において、0.2~3Cm Aの放電レートで放電した。この際、充電条件は、上述 の初期充電と同じに設定した。結果を図7に示す。図7 から明らかなように、実施例1の正極を用いたアルカリ 蓄電池は、比較例2の正極を用いたアルカリ蓄電池に比 べて高率放電時の容量が大きい。これは、実施例1の正 極において、コバルト化合物による導電性ネットワーク が初期充電前より形成されているためと考えられる。

[0078]

【発明の効果】本発明のアルカリ蓄電池用ニッケル電極 【0077】 (高率放電特性の評価試験) 実施例1の正 50 活物質は、水酸化ニッケルと、コバルトの酸化数が2価 より大きなコバルト化合物と、X線回折図において特有の回折ピークを示す希土類元素化合物とを含んでいるため、アルカリ蓄電池について、高率放電特性と高温下での充電効率とを同時に高め、さらに小型化を図りながら高容量化を達成することができる。

【0079】また、本発明のアルカリ蓄電池用ニッケル電極は、本発明のニッケル電極活物質を備えているため、アルカリ蓄電池について、高率放電特性と高温下での充電効率とを同時に高め、さらに小型化を図りながら高容量化を達成することができる。

【0080】さらに、本発明のアルカリ蓄電池は、本発明のニッケル電極を備えているため、高率放電特性と高温下での充電効率とが同時に高められ、さらに小型化を図りながら高容量化することができる

*【図面の簡単な説明】

【図1】イッテルビウムを含む希土類元素化合物のX線回折図。

【図2】ストロンチウムを含む添加材化合物のX線回折図。

【図3】ビスマスを含む添加材化合物のX線回折図。

【図4】イットリウムを含む添加材化合物のX線回折図

【図5】実施例における充電効率の評価試験結果を示す 10 図。

【図6】実施例における放電リザーブ率の評価試験結果を示す図。

【図7】実施例における高率放電特性の評価試験結果を 示す図

フロントページの続き

(72) 発明者 古川 健吾

大阪府高槻市古曽部町二丁目3番21号 株式会社ユアサコーポレーション内

(72)発明者 黒▲葛▼原 実

大阪府高槻市古曽部町二丁目3番21号 株式会社ユアサコーポレーション内

(72) 発明者 綿田 正治

大阪府高槻市古曽部町二丁目3番21号 株式会社ユアサコーポレーション内

(72) 発明者 押谷 政彦

大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内

F ターム(参考) 4G048 AA03 AB02 AC06 AD06 AE05 5H028 EE01 EE05 HH00 HH01 HH05 5H050 AA02 BA11 CA03 CB13 CB14 CB16 EA21 EA23 HA00 HA01 HA13