Review of last lecture (2 lectures): $E_{f} - E_{f} = \hbar \omega_{g}$ $\hbar \vec{k} = \vec{k}_{f} - \vec{k}_{i} = \pm \vec{G}$ atoms - i translati molecules - vibrati solid _ { electronic madel for n, K D = & E + P = & (HX) E

Polanizate 2 dipole moment per unit volume Conduct election J=5E $\nabla X\vec{B} = \frac{\vec{D}\vec{P}}{\vec{D}t} + \vec{\vec{J}} \Rightarrow$ $\nabla XB = \frac{2}{24} \left[\mathcal{E}_{0} (1+\chi - \frac{5}{i\omega}) \vec{E} \right]$ dipole free electronfree electron $m \frac{d^2 \chi}{dt^2} = -\beta \frac{d\chi}{dt} + E_0 e^{-i\omega t} - K(\chi - \chi_0)$ $\Delta x = x_0 e^{-i\omega t} x_0 = \frac{E_0/m}{+\omega^2 x_0 + i x_0} e^{-i\omega t} e^{-i\omega t}$

P=Nexoe-int=XE

 $\mathcal{E}_{i}=1+\chi=1+\frac{Ne^{2}/m}{(\omega^{2}-\omega^{2})+i\kappa\omega}$

 $=1+\frac{\omega_p^2}{(\omega^2\omega_o^2)+i\omega}$ $=\mathcal{E}_r+i\mathcal{E}_i$

free election.

- WEEDIM W2+irw

 $\vec{J} = -e \vec{v} N = +i\omega^2 \frac{e^2 N/m}{\omega^2 + i\sigma \omega} = \frac{Ee^{-i\omega t}}{E}$

free electron only

 $\mathcal{E}_r = 1 - \frac{5}{i\omega} = 1 - \frac{\omega_p^2}{\omega^2 + i\hbar\omega}$ Drude model.

 $\omega_p^2 = \frac{e^2N}{m}$

 $\sqrt{\epsilon_r} = n + i\kappa$

Combination of oscillators & free election

 $\mathcal{E}_{\gamma} = 1 + \sum_{n=1}^{\infty} \frac{\omega_{jn}^{2}}{\omega^{2} - \omega_{j}^{2} + i \delta_{j}^{2} \omega} = \frac{\omega_{p}^{2}}{\mathcal{W}^{2} + i \delta_{j}^{2} \omega}$

Thom frequency

Local field correction

0 > -0 > III Placed Eext Emd

End = P/3E.

Eex = (8-8) = P

⇒ E foral = (2+26) = Ex

 $\frac{\mathcal{E}_r - 1}{\mathcal{E}_r + 2} = \frac{1}{3} \sum_{\gamma} \frac{\omega_{\rho_{\gamma}}}{\omega_{\gamma}^2 - \omega^2 - i f_{\gamma}^2 \omega}$

= 9. constant (w << 000)

Clausius - Mossotti relation (Lorentz - lorenz relati)

(H)