

Description

Image

Caption

PHB containers. © Kumar and Minocha, Trangenic Plant Research, Harwood Publishers

The material

Polyhydroxyalkanoates (PHAs) are linear polyesters produced in nature by bacterial fermentation of sugar or lipids derived from soybean oil, corn oil or palm oil. They are fully biodegradable. More than 100 different monomers can be combined within this family to give materials with a wide range of properties, from stiff and brittle thermoplastics to flexible elastomers. The most common type of PHAs is PHB (poly-3-hydroxybutyrate) with properties similar to those of PP, though it is stiffer and more brittle. A copolymer of PHB, polyhydroxybutyrate-valerate (PBV) is less stiff and tougher. It is used as a packaging material. The data below are for PHB.

Compositional summary

(CH(CH3)-CH2-CO-O)n

General properties

Density	76.8	-	78	lb/ft^3
Price	* 2.72	-	3.18	USD/lb
Date first used	1982			

Mechanical properties

Young's modulus	0.116	-	0.58	10^6 psi
Shear modulus	* 0.319	-	0.363	10^6 psi
Bulk modulus	* 0.841	-	0.986	10^6 psi
Poisson's ratio	* 0.38	-	0.4	
Yield strength (elastic limit)	5.08	-	5.8	ksi
Tensile strength	5.08	-	5.8	ksi
Compressive strength	* 5.8	-	6.53	ksi
Elongation	6	-	25	% strain
Hardness - Vickers	* 11	-	13	HV
Fatigue strength at 10^7 cycles	* 1.74	-	2.47	ksi

Fracture toughness	* 0.637	-	1.09	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.03	-	0.15	

Thermal properties

•				
Melting point	239	-	347	°F
Glass temperature	39.2	-	59	°F
Maximum service temperature	* 140	-	176	°F
Minimum service temperature	* -94	-	-76	°F
Thermal conductor or insulator?	Good in	nsula	tor	
Thermal conductivity	* 0.0751	-	0.133	BTU.ft/h.ft^2.F
Specific heat capacity	* 0.334	-	0.382	BTU/lb.°F
Thermal expansion coefficient				μstrain/°F

Electrical properties

Electrical conductor or insulator?	Good insulator			
Electrical resistivity	* 1e16	-	1e18	µohm.cm
Dielectric constant (relative permittivity)	* 3	-	5	
Dissipation factor (dielectric loss tangent)	* 0.05	-	0.15	
Dielectric strength (dielectric breakdown)	* 305	-	406	V/mil

Optical properties

Transparency	Transparent

Processability

Moldability	4	-	5
Machinability	4	-	5
Weldability	3	-	4

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Unacceptable
Soils, alkaline (clay)	Unacceptable
Wine	Excellent

Durability: acids

Acetic acid (10%)	Unacceptable
Acetic acid (glacial)	Unacceptable
Citric acid (10%)	Excellent
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Unacceptable
Hydrofluoric acid (40%)	

Hydrofluoric acid (40%)

	Unacceptable
Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Acceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Unacceptable
Sodium hydroxide (60%)	Unacceptable

Durability: fuels, oils and solvents

Amyl acetate	Unacceptable
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Unacceptable
Crude oil	Unacceptable
Diesel oil	Limited use
Lubricating oil	Limited use
Paraffin oil (kerosene)	Acceptable
Petrol (gasoline)	Acceptable
Silicone fluids	Excellent
Toluene	Unacceptable
Turpentine	Excellent
Vegetable oils (general)	Acceptable
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Unacceptable
Acetone	Unacceptable
Ethyl alcohol (ethanol)	Limited use
Ethylene glycol	Limited use
Formaldehyde (40%)	Unacceptable
Glycerol	Limited use
Methyl alcohol (methanol)	Unacceptable

Durability: halogens and gases

Chlorine gas (dry)	Unacceptable
Fluorine (gas)	Unacceptable
O2 (oxygen gas)	Unacceptable

Sulfur dioxide (gas)	Unacceptable		
Durability: built environments			
Industrial atmosphere	Acceptable		
Rural atmosphere	Acceptable		
Marine atmosphere	Acceptable		
UV radiation (sunlight)	Good		
Durability: flammability			
Flammability	Highly flammable		
Durability: thermal environments			
Tolerance to cryogenic temperatures	Unacceptable		
Tolerance up to 150 C (302 F)	Acceptable		
Tolerance up to 250 C (482 F)	Unacceptable		
Tolerance up to 450 C (842 F)	Unacceptable		
Tolerance up to 850 C (1562 F)	Unacceptable		
Tolerance above 850 C (1562 F)	Unacceptable		
Primary material production: energy, CO2 a			
Embodied energy, primary production	* 8.8e3 - 9.73e3 kcal/lb		
CO2 footprint, primary production	* 4.14 - 4.58 lb/lb		
Water usage	* 12 - 35.9 gal(US)/lb		
Material processing: energy			
Polymer extrusion energy	* 623 - 688 kcal/lb		
Polymer molding energy	* 1.8e3 - 1.99e3 kcal/lb		
Coarse machining energy (per unit wt removed)	* 86.7 - 95.8 kcal/lb		
Fine machining energy (per unit wt removed)	* 404 - 446 kcal/lb		
Grinding energy (per unit wt removed)	* 756 - 835 kcal/lb		
Material processing: CO2 footprint			
Polymer extrusion CO2	* 0.431 - 0.476 lb/lb		
Polymer molding CO2	* 1.25 - 1.38 lb/lb		
Coarse machining CO2 (per unit wt removed)	* 0.06 - 0.0663 lb/lb		
Fine machining CO2 (per unit wt removed)	* 0.279 - 0.309 lb/lb		
Grinding CO2 (per unit wt removed)	* 0.523 - 0.578 lb/lb		
	3.3.3		
Material recycling: energy, CO2 and recycle	fraction		
Recycle	✓		
Embodied energy, recycling	* 3.99e3 - 4.41e3 kcal/lb		
CO2 footprint, recycling	* 2.89 - 3.2 lb/lb		

Recycle fraction in current supply		0.5	-	1	%
Downcycle		✓			
Combust for energy recovery		✓			
Heat of combustion (net)	*	2.48e3	-	2.61e3	kcal/lb
Combustion CO2	*	2	-	2.1	lb/lb
Landfill		✓			
Biodegrade		✓			
Toxicity rating		Non-toxi	С		
A renewable resource?		✓			

Environmental notes

PHAs are bio-polyesters made from renewable resources and are biodegradable -- both excellent eco-qualifications. If combusted, the CO2 footprint rises to 3.6 kg/kg. Embodied energy and CO2 footprint are from Doi, Y. (2007) Riken Institute, Japan.

Recycle mark

Supporting information

Design guidelines

The physical properties of PHA biopolymers resemble those of synthetic plastics. Their biodegradability makes them an attractive alternative, meeting the growing problems of pollution by plastic waste. The drawback of PHAs is their high costs, making them substantially more expensive than synthetic plastic.

PHB is insoluble in water, and has good oxygen permeability and UV resistance. It is soluble in chloroform and other chlorinated hydrocarbons, which can be used to bond it. It is non-toxic and biocompatible. It can blow-molded, injection molded or extruded.

Technical notes

Polyhydroxyalkanoates (PHAs) are a family of polyesters produced in bacteria as a carbon and energy reserve. Bacterial PHAs are classified into two groups according to the number of carbon atoms in the monomer units: short-chain-length (SCL) PHAs consist of 3-5 carbon chains, and medium-chain-length (MCL) PHAs consist of 6-14 carbon chains. The physical properties of PHAs are dependent upon their monomer units. The most commonly used PHA is Poly-3-hydroxybutyrate (PHB).

Typical uses

Packaging, containers, bottles

Tradenames

Biopol, Biomer

Further reading

- 1. Biopol http://members.rediff.com/jogsn/BP6.htm
- 2. Biomer http://www.biomer.de/MechDatE.html#mechanical
- 3. Price, Embodied energy and CO2 footprint are from Doi, Y. (2007) Riken Institute,

Links	
Reference	
ProcessUniverse	