Finančna matematika 1 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Janeza Bernika

2020/21

Kazalo

1	FINANČNI INŠTRUMENTI	3
2	ENODOBNI MODEL TRGA	7
3	VEČOBDOBNI MODEL TRGA	11
4	BINOMSKI MODEL	15

1 FINANČNI INŠTRUMENTI

Definicija 1.1 (Obresti). Naj bo *T časovni horizont* in *R obrestna mera*.

- Navadne obresti:
 - Obrestovalni faktor:

$$A(0,T) = 1 + RT$$

- Diskontni faktor:

$$D(0,T) = \frac{1}{1+RT}$$

• Diskretno obrestovanje (kapitalizacija)

$$A(0,1) = \left(1 + \frac{R_k}{k}\right)^k$$

• Zvezno obrestovanje:

$$A(0,1) = \lim_{k \to \infty} \left(1 + \frac{R_k}{k} \right)^k = e^{Y \cdot 1}$$

- Efektivna obrestna mera:
 - Diskretno obrestovanje:

$$Re = \left(1 + \frac{R_k}{k}\right)^k - 1$$

- Zvezno obrestovanje:

$$Re = e^Y - 1$$

Vrednost 1 (Kuponska obveznica).

$$P = \sum_{i=1}^{n-1} C_i \cdot D(0, t_i) + (C_n + N)D(0, t)$$

Vrednost 2 (Donos do dospetje (Yield to maturity)).

$$P = \sum_{i=1}^{n-1} \frac{C_i}{(1+y)^i} + \frac{C_n + N}{(1+y)^n}$$

Definicija 1.2 (Časovna struktura obrestnih mer).

$$D(0,t) = \frac{1}{1 + L(0,t) \cdot t}$$
$$D(0,t) = e^{-Y_t \cdot t}$$

Vse inštrumente s fiksnim denarnim tokom lahko vrednostimo po zakonu ene cene.

Definicija 1.3 (Forward rate agreement). Dogovor danes (v času 0) o obrestni meri za obdobje (t_1, t_2) , $0 < t_1 < t_2$, z diskontnimi faktorji

$$D(0,t_2) = D(0,t_1) \cdot D(0,t_1,t_2)$$

Definicija 1.4 (Terminski posel). Dogovorimo se v času 0 o ceni finančnega inštrumenta v času t>0 (FRA je terminski posel za nekuponske obveznice). Terminska cena (Forward price):

$$S_0 = F(t_1) \cdot D(0, t_1) \implies F(t_1) = \frac{S_0}{D(0, t_1)}$$

Arbitraža obstaja, ko ta enakost ne velja ($Cash \ \mathcal{E} \ carry \ (>)$ ter $Inverse \ cash \ \mathcal{E} \ carry \ (<)$).

Vrednost 3 (Convenience yield).

$$F_T = \frac{S_0 \cdot D_{dollar}(0, T)}{D_{euro}(0, T)} = S_0 \cdot e^{-\left(Y_{euro}^{(t)} - Y_{dollar}^{(t)}\right) \cdot t}$$

Definicija 1.5 (Zamenjave SWAP). Pri zamenjavi obrestnih mer tipično dolga stran zamenja tokove s fiksno obrestno mero za denarne tokove s spremenljivo obrestno mero. Obrestna mera $R_{\rm SWAP}$ je določena tako, da je vrednost zamenjave V_0 v čaus t=0 enaka 0. Neto denarni tok za dolgo pozicijo v času t_i je enak

$$N \cdot (t_i - t_{i-1}) \cdot (R(t_{i-1}, t_i) - R_{\text{SWAP}}).$$

V času tje vrednost zamenjave V_t enaka vsoti vrednosti $\mathrm{FRA}_i,$ za katere $t_i > t$:

$$V_t = \sum_{t_i > t} V_t^{\text{FRA}_i} = N\Delta \sum_{t_i > t} (R(t, t_{i-1}, t_i) - R_{\text{SWAP}}) \cdot D(t, t_i);$$

za t = 0 more biti $V_0 = 0$, zato je

$$R_{\text{SWAP}} = \frac{\sum_{i=1}^{n} R(0, t_{i-1}, t_i) \cdot D(0, t_i)}{\sum_{i=1}^{n} D(0, t_i)}.$$

Definicija 1.6 (Opcija).

• Nakupna opcija:

$$C_T = (S_T - K)^+ = \max\{S_T - K, 0\}$$

• Prodajna opcija:

$$P_T = (K - S_T)^+ = \max\{K - S_T, 0\}$$

Tržne cene ameriških opcij:

$$c_t \geq C_t$$
$$p_t \geq P_t$$

Časovna vrednost opcije:

$$c_t - C_t$$
$$p_t - C_t$$

Trditev 1.1.

$$\max \left\{ S_t - D(t, T) \cdot K, 0 \right\} \leq c_t^e \leq c_t^a \leq S_t$$

Trditev 1.2. Če ni dividend na osnovno premoženje a [t,T], je

$$p_t^e + S_t = c_t^e + K \cdot D(t, T)$$

Za ameriške opcije velja:

$$c_t^a + D(t,T) \cdot K \leq p_t^a + S_t \leq c_t^a + K$$

po predpostavki, da do Tni dividend. Velja le, čeD(t,T)<1in jeD(t,S),0 $\leq S \leq T,$ padajoča funkcija.

2 ENODOBNI MODEL TRGA

Definicija 2.1 (Matrika izplačil). $K \times N$ matrika, i-ti stolpec je vektor izplačil v času t_1 za A_i

$$M = \begin{bmatrix} S_1(\omega_1) & \cdots & S_i(\omega_1) & \cdots & S_N(\omega_1) \\ \vdots & & & \vdots \\ S_1(\omega_k) & \cdots & S_i(\omega_k) & \cdots & S_N(\omega_k) \end{bmatrix}$$

Definicija 2.2. Vrednostni papir A_i :

- Netvegan, če je $S_i(\omega_j) = S_i(\omega_l) \ \forall j, l = 1, ..., K$. Izplačilo je konstantno, ne glede na stanje ekonomije v času t_1
- Tvegan, če obstajata stanji ω_i in ω_l , da je $S_i(\omega_i) \neq S_i(\omega_l)$

Vrednost 4.

• V času t_0 :

$$V_0 = \sum_{i=1}^{N} c_i \cdot \vartheta_i = \langle c, \vartheta \rangle$$

• V času t_1 (slučajna spremenljivka):

$$V_1 = \sum_{i=1}^{N} \vartheta \cdot S_i = M \cdot \vartheta = \begin{bmatrix} V_1(\omega_1) \\ \vdots \\ V_1(\omega_k) \end{bmatrix}$$

Definicija 2.3 (Arbitražni portfelj). Portfelj ϑ je arbitražni, če je $V_0(\vartheta) \leq 0$ in je $V_1(\vartheta)$ pozitiven vektor, ki ima vsaj eno komponentno strogo pozitivno.

Na trgu ne obstaja arbitražna priložnost, če ne obstaja arbitražni portfelj.

Definicija 2.4 (Pogojna terjatev). Pogojna terjatev je slučajna spremen-

ljivka
$$X: \Omega \to \mathbb{R}$$
, ki jo lahko podamo z vektorjem
$$\begin{bmatrix} X(\omega_1) \\ \vdots \\ X(\omega_k) \end{bmatrix}$$

Če obstaja portfelj ϑ tak, da je

$$X = V_0(\vartheta)$$
 oz. $X(\omega_i) = V_1(\vartheta)(\omega_i) \ \forall j$

je X dosegljiva pogojna terjatev. V tem primeru je ϑ izvedbeni portfelj.

Definicija 2.5 (Popoln model trga). Trg, ki zadošča našim predpostavkam (ni trenj, vsi enako informirani,...) in v katerem ne obstaja arbitražni portfelj, imenujemo popoln model trga.

Definicija 2.6 (Zakon ene cene). Na našem modela velja zakon ene cene, če za dva izvedbena portfelja ϑ_1,ϑ_2 za pogojno terjatev X nujno velja

$$V_0(\vartheta_1) = V_0(\vartheta_2).$$

Trditev 2.1. Trg je popoln. \Longrightarrow Velja zakon ene cene.

Definicija 2.7. Trg je *poln*, če je vsaka pogojna terjatev dosegljiva.

Definicija 2.8 (Cenovni funkcional). Denimo, da na našem modelu trga velja *zakon ene cene*. potem lahko definiramo linearni funkcional $\pi_0 : \mathcal{M} \to \mathbb{R}$, s predpisom

$$\pi_o(x) = V_0(\vartheta),$$

kjer je ϑ izvedbeni portfelj za X.

Trditev 2.2. Za dani model trga (vse predpostavke razen popolnosti) so ekvivalentne naslednje trditve:

- Ne obstaja arbitražni portfelj (popoln trg).
- Za vsak portfelj ϑ tak, da je $V_1(\vartheta) \geq 0$ in $V_i(\vartheta) \neq 0$ je $V_0(\vartheta) > 0$.
- Ne obstaja pozitivna dosegljiva pogojna terjatev X z izvedbenim portfeljem ϑ , da je $V_0(\vartheta) = 0$.
- \bullet Cenovni funkcional Π je krepko pozitiven.

Definicija 2.9 (Numerar). *Numerar* je tak vrednostni papir A_i , da je $S_i(\omega_j) > 0, \forall j = 1, ..., K$.

Definiramo:

• Relativne cene:

$$\tilde{C}_k = \frac{C_k}{C_i}$$

• Relativne donose:

$$\tilde{S}_k(\omega_j) = \frac{S_k(\omega_j)}{S_i(\omega_j)}$$

Vrednost portfelja:

$$\tilde{V}_0(\vartheta) = \langle \tilde{C}, \vartheta \rangle$$

$$\tilde{V}_1(\vartheta) = \langle \tilde{S}, \vartheta \rangle$$

 $(\tilde{V}_0(\vartheta),\tilde{V}_1(\vartheta))$ je diskontiranivrednostni proces za ϑ glede na $A_i.$

Definicija 2.10 (Martingal). Diskontirani vrednostni proces $(\tilde{V}_0(\vartheta), \tilde{V}_1(\vartheta))$ je martingal glede na neko verjetnost Q na Ω , če velja

$$\mathbb{E}_Q(\tilde{V}_1(\vartheta)) = \tilde{V}_0(\vartheta).$$

Izrek 2.1 (1. osnovni izrek vrednotenja premoženja). Naj bo dan enodobni model trga (z vsemi predpostavkami razen neobstoja arbitraže). A_1 naj bo numerar. Potem je trg brez arbitraže (popoln) natanko tedaj, ko na Ω obstaja ekvivalentna verjetnost Q taka, da je diskontiran osnovni proces za vsak A_i , $1 \le i \le N$, martingal glede na Q.

$$\tilde{C}_i = \mathbb{E}_Q(\tilde{S}_i), \ i = 1, \dots, N \implies \tilde{V}_0(\vartheta) = \tilde{V}_1(\vartheta) \ \forall \vartheta.$$

Izrek 2.2 (2. osnovni izrek vrednotenja premoženja). Če je trg popoln, torej za dan A_1 obstaja ekvivalentna martingalska verjetnost Q, je ta enolična natanko tedaj, ko je trg poln.

3 VEČOBDOBNI MODEL TRGA

Definicija 3.1. Če je \mathcal{F}_0 generirana z atomi (najmanjša neprazna množica, ki je še v \mathcal{F}_t) $A_1^t, \ldots, A_{k_t}^t$, je \mathcal{F}_t merljiva natanko tedaj, ko je konstantna na vsakem od atomov A_j^t , $1 \leq j \leq k_t$. (\mathcal{F}_t merljiva \iff poznana v času t)

Definicija 3.2. Zaporedje $V = (V_0, V_1, \ldots, V_T)$ je prilagojen proces filtraciji $(\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_T)$, če je V_t merljiva glede na \mathcal{F}_t , za $0 \le t \le T$. V posebnem primeru, ker je $\mathcal{F}_0 = \{\emptyset, \Omega\}$, je potem V_0 konstantna.

Definicija 3.3. Proces (V_0, \ldots, V_T) je *napovedljiv*, če je V_t merljiva glede na \mathcal{F}_{t-1} , $t = 1, \ldots, T$, V_0 pa konstantna. To pomeni: če je proces *napovedljiv*, vem v času t - 1, kaj bo v času t.

Trditev 3.1. Za vsak dinamični portfelj imamo:

 \bullet Likvidacijsko vrednost v času t:

$$V_t^L(\vartheta) = \sum_{j=1}^N \vartheta_t^j \cdot S_t^j \quad (V_t^L)_{t=0}^S$$
 je prilagojen

ullet Nabavno vrednost v času t:

$$V_t^A(\vartheta) = \sum_{j=1}^N \vartheta_{t+1}^j \cdot S_t^j \quad (V_t^A)_{t=1}^{N-1}$$
 je prilagojen

Definicija 3.4 (Strategija samofinanciranje). Strategija samofinanciranja je taka trgovalna strategija $(\vartheta_1, \ldots, \vartheta_S)$, $S \leq T$, za katero je

$$V_t^L(\vartheta) \ = \ V_t^A(\vartheta), \quad 1 \le t \le S-1.$$

To pomeni, da v vmesnem času od 0 do S ni vmesnih denarnih tokov, ne pozitivnih, ne negativnih. Tedaj govorimo kar o $(V_t(\vartheta))_{t=0}^T$ kot vrednostnem procesu strategije samofinanciranja.

Definicija 3.5. Atom za \mathcal{F}_k je najmanjša podmnožica Ω , za katero lahko v času k povemo, ali se je zgodila ali ne.

Definicija 3.6. Če imamo dano filtracijo $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_T$ je $(X_i)_{i=0}^T$ prilagojen tej filtraciji, če je X_i \mathcal{F}_i -merljiva, $\forall i \in \{0,\ldots,T\}$ (torej je X_i konstantna na atomih, ki generirajo \mathcal{F}_i). $(S_i)_{i=0}^T$ je prilagojen $\forall j = 1,\ldots,K$.

Definicija 3.7. $(Y_i)_{i=0}^T$ je predvidljiv, če je Y_i \mathcal{F}_i -merljiv za $\forall i > 1$ in Y_0 konstantna.

Trditev 3.2.

Zakon ene cene velja za dospelost $T \iff$ velja za vse dospelosti $1 \le S \le T$.

Definicija 3.8 (Arbitražni portfelj). Strategija samofinanciranja ϑ z dospelostjo S je arbitražna strategija, če

$$V_0^A(\vartheta) = V_0(\vartheta) \le 0, \quad V_i(\vartheta) \ge 0, \ 1 \le i \le S \quad \text{in} \quad V_S(\vartheta) \ne 0.$$

Trditev 3.3. Ne obstaja arbitražna strategija z dospelostjo $T \iff$ ne obstaja za dospelost $S, 1 \leq S \leq T$.

Trditev 3.4. Trg je popol $n \Longrightarrow \text{velja } zakon \ ene \ cene.$

Izrek 3.1. Na trgu ni arbitraže (z dospelostjo S) $\iff \pi_S$ strogo ($X_S \in \mathcal{M}_S$, $X_S \ge 0$ in $X_S \ne 0 \implies \pi_S(X_S) > 0$).

 $\pi_S: \mathcal{M}_S \to \mathbb{R}, \quad \pi_S(X_S) \ = \ V_0(\vartheta); \quad \vartheta$ izvedbena strategija za $X_S.$

Trditev 3.5. Trg je poln za dospelost $T \iff poln$ je za vse ostale dospelosti.

Izrek 3.2. Denimo, da velja zakon ene cene. Potem na trgu ni arbitraže \iff cenovni funkcional π_S ima krepko pozitivno rešitev $\tilde{\pi}_S$ na $\mathcal{L}_S(\Omega)$ (ni enolična, če trg ni poln).

Definicija 3.9 (Martingal). Filtriran verjetnostni prostor. Prilagojen proces $(X_i)_{i=1}^T$ je martingal glede na \mathcal{F}_i in P, če je

$$X_i = \mathbb{E}(X_{i+1} \mid \mathcal{F}_i), \quad i = 0, \dots, T-1 \quad (\mathcal{F}_0 \subseteq \dots \subseteq \mathcal{F}_t).$$

Trditev 3.6 (Stolpna lastnost). $\mathcal{F}_i \subseteq \mathcal{F}_j$:

$$\mathbb{E}(\mathbb{E}(X_T \mid \mathcal{F}_i) \mid \mathcal{F}_i) = \mathbb{E}(X_T \mid \mathcal{F}_i)$$

Definicija 3.10 (Submartingal). Prilagojen proces $(X_i)_{i=1}^T$ je podmartingal (submartingal), če velja

$$X_i \leq \mathbb{E}(X_{i+1} \mid \mathcal{F}_i), \quad i = 0, \dots, T-1.$$

Definicija 3.11 (Supermartingal). Prilagojen proces $(X_i)_{i=1}^T$ je nadmartingal (supermartingal), če velja

$$X_i > \mathbb{E}(X_{i+1} | \mathcal{F}_i), \quad i = 0, \dots, T-1.$$

Trditev 3.7 (Doobova dekompozicija). Naj bo $(X_n)_{n=0}^T$ prilagojen proces glede na $(\mathcal{F}_n)_{n=0}^T$. Potem obstaja martingal $(M_n)_{n=0}^T$ in predvidljiv proces $(A_n)_{n=0}^T$, taka da je

$$X_n = M_n + A_n, \quad m = 0, \dots, T.$$

Če zahtevamo še $A_0=0$, potem je ta dekompozicija enolična.

Trditev 3.8. Q je ekvivalentna martingalska verjetnost \iff diskontirani vrednostni procesi samofinancirajočih strategij so martingali.

Izrek 3.3 (1. osnovni izrek vrednotenja premoženja). Obstoj ekvivalentne martingalske verjetnosti pri vsakem numerarju je ekvivalenten pogoju, da je trg brez arbitraže.

Izrek 3.4 (2. osnovni izrek vrednotenja premoženja). Če je trg popoln (torej ne obstaja arbitraža), potem je pri izbranem numerarju ekvivalentna martingalska verjetnost ena sama natanko tedaj, ko je trg poln.

4 BINOMSKI MODEL

Definicija 4.1 (Binomski model). Imamo T obdobij. Na vsakem koraku imamo dva razvoja: dobrega in slabega; na vsakem koraku je pogojna verjetnost dobrega razvoja p, slabega pa q = 1 - p.

$$\Omega = \{(\omega_1, \dots, \omega_T \mid \omega_i \in \{d, s\}\}\}$$

 \mathcal{F}_k je generirana z 2^k atomi. Štejemo, kolikokrat je bil razvoj dober do časa $t\cdot$

$$D_t = \sum_{k=1}^t \mathbb{1}_{\{w_k = d\}}, \quad 1 \le t \le T$$

$$D_t \sim \operatorname{Bin}(t, p)$$

$$\mathbb{1}_{\{w_k = d\}} = Z_k, \quad k = 1, \dots, T$$

$$Z_k \sim \operatorname{Ber}(p)$$

Definicija 4.2. Ločimo:

- State dependent: pogojne terjatve, katerih vrednost v času t je odvisna le od S_t (ne pa od dejanskega razvoja).
- Path dependent: pogojne terjatve, ki so v času t odvisne od zgodovine razvoja cenovnega procesa (S_0, S_1, \ldots, S_t) .

Definicija 4.3 (Časi ustavljanja). $(\mathcal{F})_{t=0}^N$ je filtracija na $(\Omega, \mathcal{F}, \mathbb{P})$. Naj bo $T: \Omega \to \{0, 1, \dots, N\}$ slučajna spremenljivka, za katero velja $\{T = k\} \in \mathcal{F}_k$. Velja: T, S časa ustavljanja $\Longrightarrow T \land S = \min\{T, S\}, T \lor S = \min\{T, S\}$ časa ustavljanja.

$$\tau: \Omega \to \{0, \dots, T\} \cup \{\infty\}$$
 je čas ustavljanja, če je
$$\{\tau = k\} \in \mathcal{F}_k, \ \forall k = 0, \dots, T \iff \{\tau \le k\} \in \mathcal{F}_k, \ \forall k = 0, \dots, T$$
 $0 < S < t \le t$:

$$\tau_{S,t} \ = \ \{\tau; \ \tau \ \text{je čas ustavljanja}, \, S \leq \tau(\omega) \leq t \ \forall \omega \in \Omega \}$$

 σ -algebra zgodovine τ :

$$\mathcal{F}_{\tau} = \{A \in \mathcal{F}; A \cap \{T = k\} \in \mathcal{F}_k, \forall k = 0, \dots, T\}.$$

Trditev 4.1. Naj bo $(X_n)_{n=0}^T$ prilagojen proces $(\mathcal{F}_n)_{n=0}^T$, τ je čas ustavljanja glede na \mathcal{F}_n . Ustavljeni proces $(X_{n \wedge \tau})_{n=0}^T$ je tudi prilagojen, torej je $X_{n \wedge \tau}$ \mathcal{F}_n -merljiva, $n = 0, \ldots, T$.

Trditev 4.2. Naj bo $(X_n)_{n=0}^T$ martingal. Potem je $(X_{n \wedge \tau})_{n=0}^T$ tudi martingal. Enako velja za submartingale in supermartingale.

Trditev 4.3. Za dva prilagojena procesa $(X_n)_{n=0}^T$, $(Y_n)_{n=0}^T$ rečemo, da Y dominira X, če velja $Y_n(\omega) \geq X_n(\omega)$, $\forall n = 0, \ldots, T$, $\forall \omega \in \Omega$. Če Y dominira X, potem $Y_{n \wedge \tau}$ dominira $X_{n \wedge \tau}$ $\forall \tau$ (čas ustavljanja).

Definicija 4.4 (Smellova ovojnica in Bellmanov algoritem). (V_0, V_1, \ldots, V_T) je prilagojen proces. Včasu T-1 se odločamo: se bolj splača nadaljevati ali ustaviti? $\mathbb{E}(V_T \mid \mathcal{F}_{T-1})$ in V_{T-1} sta merljivi glede na \mathcal{F}_{T-1} :

$$U_{T-1} = \max\{V_{T-1}, \mathbb{E}(V_t \mid \mathcal{F}_{T-1})\}.$$