Quiz 10: Probability

- Q1 Suppose we have three urns with black and white balls distributed as follows:
 - Urn A has 10 black balls and 20 white balls
 - Urn B has 10 black balls and 10 white balls
 - Urn C has 10 black balls and 1 white ball.

Suppose we choose an urn (uniformly at random) and draw a ball (uniformly at random) from that urn. What is the probability that the ball is white?

Answer: Let A, B, and C be the (mutually exclusive) events that Urn A, B, C (respectively) was chosen, and let W be the event that a white ball is drawn. We have:

$$P(A) = P(B) = P(C) = \frac{1}{3}$$

and

$$P(W|A) = \frac{2}{3} \quad P(W|B) = \frac{1}{2} \quad P(W|C) = \frac{1}{11}.$$

It follows that:

$$P(W \cap A) = \frac{2}{9}$$
 $P(W \cap B) = \frac{1}{6}$ $P(W \cap C) = \frac{1}{33}$

and so

$$P(W) = P(W \cap A) + P(W \cap B) + P(W \cap C) = \frac{2}{9} + \frac{1}{6} + \frac{1}{33} = \frac{83}{198}.$$

- Q2 Suppose we roll three six-sided dice with the following numbers on them:
 - Die A: 1,1,6,6,8,8
 - Die B: 2,2,4,4,9,9
 - Die C: 3,3,5,5,7,7

Let A,B,C be the random variables denoting the numbers shown by Die A,B,C (respectively). Which of the following statements are not true:

- (a) $\frac{1}{2} < P(A < B)$
- (b) $\frac{1}{2} < P(B < C)$
- (c) $\frac{1}{2} < P(A < C)$

Answer: onsider the sample spaces when we roll dice X and Y:

(A, B)				(B,C)				(A,C)		
(1,2)	(1,4)	(1,9)	(2,3	(2,5)	(2,7)		(1,3)	(1,5)	(1,7)	
(6, 2)	(6, 4)	(6,9)	(4, 3	(4,5)	(4,7)		(6, 3)	(6, 5)	(6,7)	
(8, 2)	(8, 4)	(8,9)	(9, 3	(9, 5)	(9, 7)		(8, 3)	(8, 5)	(8,7)	

The outcomes where the second player scores higher than the first have been highlighted. From this we conclude that:

$$P(A < B) = P(B < C) = \frac{5}{9}$$
 and $P(A < C) = \frac{4}{9}$,

So (c) is the correct answer.

Comment: The dice A,B,C form a set of Non-transitive dice - a set of dice where any one die will always be beaten by at least one other with probability greater than 1/2.

Q3 Suppose we choose an n letter word at random (uniformly) from Σ^n where $\Sigma = \{a, b, c\}$. What is the probability that the letters of the word are in (increasing) alphabetical order?

Answer: There are $|\{a,b,c\}|^n=3^n$ n-letter words in Σ^n , so we just need to count the number of words that have the letters in increasing alphabetical order. Such a word is of the form $aa\ldots abb\ldots bcc\ldots c$ where we have 0 or more a's, 0 or more b's and 0 or more c's (but n letters in total). So the number of alphabetically ordered words can be seen as the same as the number of ways of distributing n indistinguishable balls into 3 distinguishable boxes (with 0 or more balls per box) – the number of balls in each box corresponds to the number of letters in the word. There are therefore $\binom{n+3-1}{3-1} = \frac{(n+2)(n+1)}{2}$ alphabetically ordered words, so the probability that the letters are alphabetically ordered is $\frac{(n+2)(n+1)}{2.3^n}$.

Q4 Suppose two normal, six-sided dice are rolled, a red die and a black die. Let

- A be the event that both dice show 4 or higher;
- B be the event that the red die shows 4 or lower; and
- C be the event that the black die shows 4.

True or false: A and $(B \cap C)$ are independent events.

Answer: There are:

- 36 outcomes in the sample space $\Omega = \{(r, b) : 1 \le r, b \le 6\}$
- 9 outcomes in $A = \{(r, b) : 4 \le r, b \le 6\},\$
- 4 outcomes in $B \cap C = \{(r,4) : 1 \le r \le 4\}$, and
- 1 outcome in $A \cap (B \cap C) = \{(4,4)\}.$

So

$$P(A).P(B \cap C) = \frac{9}{36}.\frac{4}{36}$$
$$= \frac{1}{36}$$
$$= P(A \cap (B \cap C)).$$

So A and $(B \cap C)$ are independent.

Q5 You flip a fair coin twice. What is the probability you flipped two heads given that one of your flips was a head?

Answer: The sample space is $\Omega = \{HH, HT, TH, TT\}$. Let A be the event "two heads", i.e. $A = \{HH\}$, and $P(A) = \frac{1}{4}$. Let B be the event "one flip is a head", so $B = \{HH, HT, TH\}$ and $P(B) = \frac{3}{4}$. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}.$$