Álgebra I Práctica 2 - Números Naturales e Inducción

Sumatoria

i) Reescribir cada una de las siguientes sumas usando el símbolo de sumatoria:

(a)
$$1+2+3+4+\ldots+100$$

(d)
$$1+9+25+49+\ldots+441$$

(b)
$$1+2+4+8+16+\ldots+1024$$

(e)
$$1+3+5+\ldots+(2n+1)$$

(b)
$$1+2+4+8+16+\ldots+1024$$
 (e) $1+3+5+\ldots+(2n+1)$ (c) $1+(-4)+9+(-16)+25+\ldots+(-144)$ (f) $n+2n+3n+\ldots+n^2$

(f)
$$n+2n+3n+\ldots+n^2$$

ii) Reescribir cada uno de los siguientes productos usando el símbolo de productoria y/o de factorial:

(a)
$$5 \cdot 6 \cdot \ldots \cdot 99 \cdot 100$$

(b)
$$1 \cdot 2 \cdot 4 \cdot 8 \cdot \ldots \cdot 1024$$
 (c) $n \cdot 2n \cdot 3n \cdot \ldots \cdot n^2$

(c)
$$n \cdot 2n \cdot 3n \cdot \ldots \cdot n$$

2. Escribir los dos primeros y los dos últimos términos de cada una de las siguientes expresiones:

i)
$$\sum_{i=0}^{n} 2(i-5)$$

i)
$$\sum_{i=6}^{n} 2(i-5)$$
 ii) $\sum_{i=n}^{2n} \frac{1}{i(i+1)}$ iii) $\sum_{i=1}^{n} \frac{n+i}{2i}$ iv) $\sum_{i=1}^{n^2} \frac{n}{i}$ v) $\prod_{i=1}^{n} \frac{n+i}{2i-3}$

iii)
$$\sum_{i=1}^{n} \frac{n+i}{2i}$$

iv)
$$\sum_{i=1}^{n^2} \frac{n}{i}$$

$$v) \prod_{i=1}^{n} \frac{n+i}{2i-3}$$

i) Probar que para todo $n \in \mathbb{N}$ se tiene $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ contando de dos maneras la cantidad de cuadraditos sombreados del siguiente diagrama:

- ii) Deducir que, para todo $n \in \mathbb{N}, \ 2+4+6+\cdots+2n=n(n+1).$
- 4. Calcular (en función de n) las siguientes sumas:

i)
$$\sum_{i=1}^{n} (4i+1)$$

ii)
$$\sum_{i=6}^{n} 2(i-5)$$

<u>Inducción</u>

- 5. Probar que para todo $n \in \mathbb{N}$ se tiene $\sum_{i=1}^{n} (2i-1) = n^2$:
 - i) contando de dos maneras la cantidad total de cuadraditos del diagrama

1

- ii) usando el ejercicio 3,
- iii) usando el principio de inducción.
- **6**. (Suma de cuadrados y de cubos) Probar que para todo $n \in \mathbb{N}$ se tiene

i)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
,

ii)
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$
.

- 7. Sean $a, b \in \mathbb{R}$. Probar que para todo $n \in \mathbb{N}$, $a^n b^n = (a b) \left(\sum_{i=1}^n a^{i-1} b^{n-i} \right)$. Deducir la fórmula de la suma geométrica: para todo $a \neq 1$, $\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$.
- 8. Sea $q \in \mathbb{R}$, $q \neq 1$. Calcular las siguientes sumas:

$$i) \sum_{i=1}^{n} q^{i}$$

ii)
$$\sum_{i=0}^{n} q^{2i}$$

iii)
$$\sum_{i=n}^{2n} q^i$$

i)
$$\sum_{i=1}^{n} q^i$$
 ii) $\sum_{i=0}^{n} q^{2i}$ iii) $\sum_{i=n}^{n} q^i$ iv) $\sum_{i=0}^{n} (n-i)q^i$

9. Probar que para todo $n \in \mathbb{N}$ se tiene

i)
$$\sum_{i=1}^{n} (-1)^{i+1} i^2 = \frac{(-1)^{n+1} n(n+1)}{2}$$
, iv) $\sum_{i=1}^{n} \frac{i \, 2^i}{(i+1)(i+2)} = \frac{2^{n+1}}{n+2} - 1$,

iv)
$$\sum_{i=1}^{n} \frac{i \, 2^{i}}{(i+1)(i+2)} = \frac{2^{n+1}}{n+2} - 1,$$

ii)
$$\sum_{i=0}^{n} \frac{-1}{4i^2 - 1} = \frac{n+1}{2n+1},$$

v)
$$\prod_{i=1}^{n} \frac{n+i}{2i-3} = 2^{n}(1-2n).$$

iii)
$$\sum_{i=1}^{n} (2i+1) 3^{i-1} = n 3^{n},$$

- i) Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Probar que $\sum_{i=1}^{n} (a_{i+1} a_i) = a_{n+1} a_1$.
 - ii) Calcular $\sum_{i=1}^{n} \frac{1}{i(i+1)}$. (Sugerencia: $\frac{1}{i(i+1)} = \frac{1}{i} \frac{1}{i+1}$)
 - iii) Calcular $\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)}$. (Sugerencia: calcular $\frac{1}{2i-1} \frac{1}{2i+1}$)
 - iv) Calcular $\sum_{i=1}^{n} \frac{i}{(i+1)!}$.

11. Probar que las siguientes desigualdades son verdaderas para todo $n \in \mathbb{N}$:

i)
$$n < 2^n$$

v)
$$n! \ge \frac{3^{n-1}}{2}$$

ii)
$$3^n + 5^n > 2^{n+2}$$

vi)
$$\sum_{i=1}^{n} \frac{1}{i!} \le 2 - \frac{1}{2^{n-1}}$$

iii)
$$\sum_{i=n}^{2n} \frac{i}{2^i} \le n$$

vii)
$$\binom{2n}{n} < 4^n$$

iv)
$$\sum_{i=1}^{2^n} \frac{1}{2i-1} > \frac{n+3}{4}$$

viii)
$$\binom{2n}{n} \ge \frac{2^{2n}}{2n}$$

12. Sea $a \in \mathbb{R}$, $a \ge -1$. Probar que, $\forall n \in \mathbb{N}$, $(1+a)^n \ge 1 + na$. ¿En qué paso de la demostración se usa que $a \ge -1$?

13. Probar que

i)
$$n! \ge 3^{n-1}, \ \forall n \ge 5,$$

iii)
$$\sum_{i=1}^{n} \frac{3^{i}}{1!} < 6n - 5, \ \forall n \ge 3,$$

$$\begin{array}{ll} \text{i)} & n! \geq 3^{n-1}, \ \, \forall \, n \geq 5, \\ \text{ii)} & 3^n - 2^n > n^3, \ \, \forall \, n \geq 4, \end{array} \qquad \text{iii)} \ \sum_{i=1}^n \frac{3^i}{i!} < 6n - 5, \ \, \forall \, n \geq 3, \qquad \text{iv)} \ \, \binom{2n}{n} > n \, 2^n, \ \, \forall \, n \geq 4. \end{array}$$

14. Probar que para todo $n \ge 3$ se tiene que

- i) la cantidad de diagonales de un polígono convexo de n lados es $\frac{n(n-3)}{2}$,
- ii) la suma de los ángulos interiores de un polígono convexo de n lados es $(n-2)\pi$.

Recurrencia

i) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión de números reales definida recursivamente por **15**.

$$a_1 = 5, a_{n+1} = 3a_n - 2^n, \quad \forall n \in \mathbb{N}.$$

Probar que $a_n = 2^n + 3^n$.

ii) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión de números reales definida recursivamente por

$$a_1 = 2,$$
 $a_{n+1} = 2 n a_n + 2^{n+1} n!, \quad \forall n \in \mathbb{N}.$

Probar que $a_n = 2^n n!$.

iii) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión de números reales definida recursivamente por

$$a_1 = 0,$$
 $a_{n+1} = a_n + n(3n+1), \forall n \in \mathbb{N}.$

Probar que $a_n = n^2(n-1)$.

iv) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión de números reales definida recursivamente por

$$a_1 = 2,$$
 $a_{n+1} = 4a_n - 2\frac{(2n)!}{(n+1)! \, n!}, \quad \forall \, n \in \mathbb{N}.$

Probar que $a_n = \binom{2n}{n}$.

16. Hallar una fórmula para el término general de las sucesiones $(a_n)_{n\in\mathbb{N}}$ definidas a continuación y probar su validez.

i)
$$a_1 = 1$$
, $a_{n+1} = (1 + \sqrt{a_n})^2$, $\forall n \in \mathbb{N}$. iii) $a_1 = 1$, $a_{n+1} = n \, a_n$, $\forall n \in \mathbb{N}$.

iii)
$$a_1 = 1$$
, $a_{n+1} = n a_n$, $\forall n \in \mathbb{N}$

ii)
$$a_1 = 3$$
, $a_{n+1} = 2a_n + 3^n$, $\forall n \in \mathbb{N}$.

ii)
$$a_1 = 3$$
, $a_{n+1} = 2a_n + 3^n$, $\forall n \in \mathbb{N}$. iv) $a_1 = 2$, $a_{n+1} = 2 - \frac{1}{a_n}$, $\forall n \in \mathbb{N}$.

17. Hallar una fórmula para el término general de las sucesiones $(a_n)_{n\in\mathbb{N}}$ definidas a continuación y probar su validez.

i)
$$a_1 = 1$$
, $a_{n+1} = a_n + (n+1)^3$, $\forall n \in \mathbb{N}$.

ii)
$$a_1 = 1$$
, $a_{n+1} = a_n + (-1)^{n+1} n^2$, $\forall n \in \mathbb{N}$.

iii)
$$a_1 = 3$$
, $a_{n+1} = a_n + (2n+1)3^{n-1}$, $\forall n \in \mathbb{N}$.

(Sugerencia: usar los Ejercicios 10(i), 6 y 9.)

18. i) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 1$$
, $a_{n+1} = a_n + n \cdot n!$, $\forall n \in \mathbb{N}$.

Probar que $a_n = n!$, y, aplicando el Ej. 10(i), calcular $\sum_{i=1}^{n} i \cdot i!$.

ii) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 1$$
, $a_{n+1} = a_n + 3n^2 + 3n + 1$, $\forall n \in \mathbb{N}$.

Probar que $a_n = n^3$, y, aplicando el Ej. 10(i), calcular de otra manera $\sum_{i=1}^n i^2$ (c.f. Ej. 6).

19. Hallar una fórmula para el término general de las sucesiones $(a_n)_{n\in\mathbb{N}}$ definidas a continuación y probar su validez.

i)
$$a_1 = 1$$
, $a_2 = 2$, $a_{n+2} = n a_{n+1} + 2(n+1)a_n$, $\forall n \in \mathbb{N}$.

ii)
$$a_1 = 1$$
, $a_2 = 4$, $a_{n+2} = 4\sqrt{a_{n+1}} + a_n$, $\forall n \in \mathbb{N}$.

iii)
$$a_1 = 1$$
, $a_2 = 3$, $2a_{n+2} = a_{n+1} + a_n + 3n + 5$, $\forall n \in \mathbb{N}$.

iv)
$$a_1 = -3$$
, $a_2 = 6$, $a_{n+2} = \begin{cases} -a_{n+1} - 3 & \text{si } n \text{ es impar,} \\ a_{n+1} + 2a_n + 9 & \text{si } n \text{ es par.} \end{cases}$

20. Hallar una fórmula para el término general de las sucesiones $(a_n)_{n\in\mathbb{N}_0}$ definidas a continuación y probar su validez.

i)
$$a_0 = 1$$
, $a_1 = 3$, $a_{n+2} = 4 a_{n+1} - 3 a_n$, $\forall n \in \mathbb{N}_0$.

ii)
$$a_0 = 1$$
, $a_1 = 1$, $a_{n+2} = 4a_{n+1} - 3a_n$, $\forall n \in \mathbb{N}_0$.

iii)
$$a_0 = 2$$
, $a_1 = 4$, $a_{n+2} = 4 a_{n+1} - 3 a_n$, $\forall n \in \mathbb{N}_0$.

iv)
$$a_0 = 1$$
, $a_1 = 3$, $a_{n+2} = 6 a_{n+1} - 9 a_n$, $\forall n \in \mathbb{N}_0$.

v)
$$a_0 = 0$$
, $a_1 = 3$, $a_{n+2} = 6 a_{n+1} - 9 a_n$, $\forall n \in \mathbb{N}_0$.

vi)
$$a_0 = 1$$
, $a_1 = 0$, $a_{n+2} = 6 a_{n+1} - 9 a_n$, $\forall n \in \mathbb{N}_0$.

21. i) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 1, \quad a_2 = 3, \qquad a_{n+2} = a_{n+1} + 5a_n, \quad \forall n \in \mathbb{N}.$$

Probar que $a_n < 1 + 3^{n-1}$ para todo $n \in \mathbb{N}$.

ii) Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 1$$
, $a_2 = \frac{3}{2}$, $a_{n+2} = a_{n+1} + \frac{2n+1}{n+2} a_n$, $\forall n \in \mathbb{N}$.

Probar que $a_n > n + \frac{1}{3}$ para todo $n \ge 4$.

22. Hallar una fórmula para el término general de las sucesiones $(a_n)_{n\in\mathbb{N}}$ definidas a continuación y probar su validez.

i)
$$a_1 = 1$$
, $a_{n+1} = 1 + \sum_{i=1}^{n} i a_i$, $\forall n \in \mathbb{N}$.

ii)
$$a_1 = \frac{1}{2}$$
, $a_{n+1} = \frac{1}{2} \left(1 - \sum_{i=1}^{n} a_i \right)$, $\forall n \in \mathbb{N}$.

iii)
$$a_1 = 1$$
, $a_{n+1} = \sum_{i=1}^{n} a_i + (n+1)$, $\forall n \in \mathbb{N}$.

23. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 1,$$
 $a_{n+1} = \frac{2n+1}{n+1} a_n, \quad \forall n \in \mathbb{N}.$

- i) Probar que $a_n \leq \frac{1}{2n} \binom{2n}{n}$ para todo $n \in \mathbb{N}$.
- ii) Probar que $a_n > \frac{1}{3^{n-1}} \binom{2n}{n}$ para todo $n \geq 3$.
- **24**. Sea $(F_n)_{n\in\mathbb{N}_0}$ la sucesión de Fibonacci, definida por

$$F_0 = 0, \quad F_1 = 1, \qquad F_{n+1} = F_n + F_{n-1}, \quad \forall n \in \mathbb{N}.$$

Probar que para todo $n \in \mathbb{N}$ se tiene

$$\text{iv) } \sum_{i=0}^{n-1} F_{2i+1} = F_{2n}, \\ \text{iv) } \begin{cases} F_{2n-1} = F_n^2 + F_{n-1}^2 \\ F_{2n} = F_n(F_n + 2F_{n-1}), \end{cases} \\ \text{v) } F_{n+m} = F_{m+1}F_n + F_{n-1}F_m \quad \forall m \geq 0, \\ \text{vi) } F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

- **25**. Para cada $n \in \mathbb{N}$, hallar la cantidad de maneras de cubrir un tablero de $2 \times n$ usando n fichas de dominó, cada una de las cuales cubre exactamente dos casillas del tablero. (Las fichas se pueden colocar en posición horizontal o vertical.)
- **26**. Probar que todo número natural n se puede escribir como suma de potencias de 2 distintas, incluyendo $2^0 = 1$. (Sugerencia: considerar la mayor potencia de 2 menor o igual que n.) Probar además, que dicha escritura es única.
- 27. Sea $(F_n)_{n\in\mathbb{N}_0}$ la sucesión de Fibonacci. Probar que todo número natural m se puede escribir como suma de k números de Fibonacci

$$m = F_{n_1} + \ldots + F_{n_k}$$

para cierto $k \in \mathbb{N}$, con subíndices n_1, \ldots, n_k mayores que 1 y $n_i + 1 < n_{i+1}$, $\forall i < k$. Es decir, todo número natural puede escribirse como suma de distintos términos no nulos de la sucesión de Fibonacci sin usar dos consecutivos. Probar además, que dicha escritura es única.

Problemas surtidos

- **28**. Probar que para todo $n \ge 6$ es posible dividir un cuadrado en n cuadrados más pequeños. Sugerencia: Probar que si vale para n, vale para n + 3.
- **29**. Probar que las siguientes desigualdades son verdaderas para todo $n \in \mathbb{N}$:

i)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} < 2$$

ii)
$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{3n}}$$

Sugerencia: Intentar probar una desigualdad más fuerte por inducción.

30. Definimos la media aritmética de n números reales positivos a_1, \ldots, a_n como

$$MA_n(a_1,\ldots,a_n) = \frac{a_1+\ldots+a_n}{n}$$

y la media geométrica como

$$MG_n(a_1,\ldots,a_n) = \sqrt[n]{a_1\ldots a_n}$$

El objetivo de este ejercicio es demostrar la desigualdad aritmético-geométrica que afirma que

$$MG_n(a_1,\ldots,a_n) \leq MA_n(a_1,\ldots,a_n)$$

y la igualdad sólo se da cuando $a_1 = a_2 = \ldots = a_n$.

- i) Probarla para n=2, es decir $\sqrt{a_1a_2} \le \frac{a_1+a_2}{2}$ y si $\sqrt{a_1a_2} = \frac{a_1+a_2}{2}$ entonces $a_1=a_2$.
- ii) Probar que si vale para n, también vale para 2n.
- iii) Probar que si vale para n, también vale para n-1.
- iv) Concluir que vale para todo $n \in \mathbb{N}$.
- **31**. Sean A_1, \ldots, A_n conjuntos finitos. Probar el principio de inclusión-exclusión, que afirma que

$$\#\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\emptyset \neq I \subset \{1,\dots,n\}} (-1)^{\#I+1} \#\left(\bigcap_{i \in I} A_{i}\right)$$

donde la suma recorre todos los subconjuntos no vacíos de $1, \ldots, n$.