HW 7 Com 5 330 a) Prove by MI 5'65 Base: k=1, 5'=565 by the base dofinition Inductive: Assume 5 for tEN, we need to he know 565 from the base case and 5th from our inductive hypothesis. We can form 5th=5th.5 ES.) We know SES and 5 is a power of 5. This means 5 EA. Industive: Let abes. Using 14. assume $a,b \in A$ We also know abes. We need to prove a.b EA. Since $a,b \in A$, $\alpha = 5^{\times}$ and $b = 5^{\vee}$ \pm , $y \in \mathbb{Z}^{+}$. So, $\alpha \cdot b = 5^{\times} \cdot 5^{\vee} = 5^{\times + 1}$. Since \pm , γ are integers, this pieces a, b eA. So SCA.

Bit strings are strings over the alphabet $\Sigma = \{0,1\}$ Base: $\{0,1\}$ Base: $\{0,1\}$ Inductive: If w is a palindrome $\{0,1\}$ $\{0,$

a) base: $(0,0) \in L'$ Recersive: if $(x,y) \in L'$. then (a-1,b-1), (a+1,b+1)(a,b+3), $(a,b-3) \in L'$ b) Every ordered pair (a,6) by the ind. def.
of L'holds the property a-b is divisible
by 3.

Bose O-O=3(0)
We can make:
a-b=3k
(a-1,b-1), (a+1,b+1), (a,b+3), (a,b-3)
(a-1)-(b-1) and (a+1)-(b+1) both = a-b which
is divisible by 3.
a-(b+3)=3k-3=3(k-1), divisible by 3.
a-(b-3)=3k+3=3(k+1), divisible by 3.
Each case, the recosive step produces
or dered pairs that satisfy L.

c) Let (a,b) & L and a-b=3k. Let b=-3k+a