Package 'HUM'

October 12, 2022

Type Package
Title Compute HUM Value and Visualize ROC Curves
Version 2.0
Date 2022-06-18
Author Natalia Novoselova, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn
Maintainer Natalia Novoselova <novos65@mail.ru></novos65@mail.ru>
Description Tools for computing HUM (Hypervolume Under the Manifold) value to estimate features ability to discriminate the class labels, visualizing the ROC curve for two or three class labels (Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonr (2014) <doi:10.1093 bioinformatics="" btu086="">).</doi:10.1093>
License GPL (>= 3)
Imports rgl
Depends R (>= 2.13.0),gtools,Rcpp (>= 0.12.1)
LinkingTo Rcpp
LazyLoad yes
<pre>URL https://public.ostfalia.de/~klawonn/HUM.htm</pre>
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-06-21 13:40:02 UTC
R topics documented:
HUM-package 2 CalcGene 2 CalcROC 5 Calculate3D 8 CalculateHUM_Ex 9 CalculateHUM_Plot 11 CalculateHUM_ROC 12

2 HUM-package

dataset	HUM-p	package		i	ΗU	M	c	ılc	ul	ati	ion	ı											
	Index																						17
CalculateHUM_seq		dataset															 						 15

Description

Functions to calculate AUC (area under curve) value for two classes and HUM (hypervolume under manifold) for more class labels in order to estimate the informativity of features to outcome. Tools for visualizing ROC curve in 2D- and 3D-space.

Details

Package: HUM
Type: Package
Version: 1.0

Date: 2013-10-25 License: GPL (>= 3)

The basic unit of the HUM package is the CalculateHUM_seq function. It will calculate the AUC in case of two class labels and HUM for more than two class labels for the input features. Function CalculateHUM_Ex is the extension of main function and provides the possibility to calculate all the combinations of amountL from all the class labels. Function CalculateHUM_ROC calculates the point coordinates in order to plot the 2D- and 3D-ROC curve, accuracy and the optimal threshold for the classifier (feature). The Functions CalcGene and CalcROC are the auxiliar function to perform the calculation. Function CalcROC calculates the point coordinates of a single feature for two-class or three-class problem, the optimal threshold for the 2-D and 3-D ROC curve and the corresponding feature values, the accuracy of the classifier (feature) for the optimal threshold.

Functions

CalculateHUM_seq	Calculate a maximal HUM value amd the corresponding permutation of class labels
CalculateHUM_Ex	Calculate the HUM values with exaustive serach for specified number of class labels
CalculateHUM_ROC	Function to construct and plot the 2D- or 3d-ROC curve
CalcGene	Compute the HUM value for one feature
CalcROC	Compute the point coordinates to plot the 2D- or 3D-ROC curve
CalculateHUM_Plot	Plot the 2D-ROC curve
Calculate3D	Plot the 3D-ROC curve

HUM-package 3

Dataset

This package comes with one simulated dataset and a real dataset of 92 patients with 11 features with disease.

Installing and using

To install this package, make sure you are connected to the internet and issue the following command in the R prompt:

```
install.packages("HUM")
```

To load the package in R:

```
library(HUM)
```

Author(s)

Natalia Novoselova, Frank Pessler

Maintainer: Natalia Novoselova <novos65@mail.ru>

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

CRAN packages **pROC**, or Bioconductor's **roc** for ROC curves.

CRAN packages Rcpp, gtools, rgl employed in this package.

```
data(sim)

# Compute the HUM value with all possible class label permutation
indexF=c(3,4);
indexClass=2;
label=unique(sim[,indexClass])
indexLabel=label[1:3]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
# Compute the HUM value with exaustive search of all class label combinations
## Not run: data(sim)
indexF=c(3,4);
indexClass=2;
labels=unique(sim[,indexClass])
amountL=4;
out=CalculateHUM_Ex(sim,indexF,indexClass,labels,amountL)
```

4 CalcGene

```
## End(Not run)
# Calculate the coordinates for 2D- or 3D- ROC curve and the optimal threshold point
## Not run: data(sim)
indexF=names(sim[,c(3),drop = FALSE])
indexClass=2
label=unique(sim[,indexClass])
indexLabel=label[1:3]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(sim,indexF,indexClass,indexLabel,seq)
## End(Not run)</pre>
```

CalcGene

Calculate HUM value

Description

This is the auxiliary function of the HUM package. It computes a HUM value for individual feature and returns a "List" object, consisting of HUM value and the best permutation of class labels in "seq" vector. This "seq" vector can be passed to the function CalculateHUM_ROC.

Usage

```
CalcGene(s_data, seqAll, prodValue)
```

Arguments

s_data a list, which contains the vectors of sorted feature values for individual class

labels.

seqAll a numeric matrix of all the permutations of the class labels, where each row

corresponds to individual permutation vector.

prodValue a numeric value, which is the product of the sizes of feature vectors, correspond-

ing to analized class labels.

Details

This function's main job is to compute the maximal HUM value between the all possible permutations of class labels for individual feature, selected for analysis. See the "Value" section to this page for more details.

Value

The data must be provided without missing values in order to process. A returned list consists of the following fields:

HUM a list of HUM values for the specified number of analyzed features seq a list of vectors, each containing the sequence of class labels

CalcROC 5

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error is triggered with message "Values are missing".

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

CalculateHUM_Ex, CalculateHUM_ROC

Examples

```
data(sim)
# Basic example
indexF=3;
indexClass=2;
indexLabel=c("Normal","OrthArthr")
s_data=NULL;
prodValue=1;
for(i in 1:length(indexLabel))
{
   index=which(sim[,indexClass]==indexLabel[i])
   vrem=sort(sim[index,indexF])
   s_data=c(s_data,list(vrem))
   prodValue=prodValue*length(index)
}
len=length(indexLabel)
seqAll=permutations(len,len,1:len)
out=CalcGene(s_data, seqAll, prodValue)
```

CalcROC

Calculate ROC points

Description

This is the auxiliary function of the HUM package. It computes a point coordinates for plotting ROC curve and returns a "List" object, consisting of sensitivity and specificity values for 2D-ROC curve and 3D-points for 3D-ROC curve, the optimal threshold values with the corresponding feature values and the accuracy of the classifier (feature).

Usage

```
CalcROC(s_data, seq, thresholds)
```

6 CalcROC

Arguments

s_data a list, which contains the vectors of sorted feature values for individual class

labels.

seq a numeric vector, containing the particular permutation of class labels.

thresholds a numeric vector, containing the values of thresholds for calculating ROC curve

coordinates.

Details

This function's main job is to compute the point coordinates to plot the 2D- or 3D-ROC curve, the optimal threshold values and the accuracy of classifier. See the "Value" section to this page for more details. The optimal threshold for two-class problem is the pair of sensitivity and specificity values for the selected feature. The optimal threshold for three-class problem is the 3D-point with the coordinates presenting the fraction of the correctly classified data objects for each class. The calculation of the optimal threshold is described in section "Threshold".

Value

The data must be provided without missing values in order to process. A returned list consists of the following fields:

Sn	a specificity values for 2D-ROC construction and the first coordinate for 3D-ROC construction
Sp	a sensitivity values for 2D-ROC construction and the second coordinate for 3D-ROC construction
S3	the third coordinate for 3D-ROC construction
optSn	the optimal specificity value for 2D-ROC construction and the first coordinate of the op-timal threshold for 3D-ROC construction
optSp	the optimal sensitivity value for 2D-ROC construction and the second coordinate of the optimal threshold for 3D-ROC construction $$
optS3	the third coordinate of the optimal threshold for 3D-ROC construction
optThre	the feature value according to the optimal threshold (optSn,optSp) for two-class problem
optThre1	the first feature value according to the optimal threshold (optSn,optSp,optS3) for three-class problem
optThre2	the second feature value according to the optimal threshold (optSn,optSp,optS3) for three-class problem
accuracy	the accuracy of classifier (feature) for the optimal threshold

Threshold

The optimal threshold value is calculated for two-class problem as the pair "(optSn, optSp)" corresponding to the maximal value of "Sn+Sp". According to "(optSn, optSp)" the corresponding feature threshold value "optThre" is calculated. The optimal threshold value is calculated for three-class problem as the pair "(optSn, optSp,optS3)" corresponding to the maximal value of

CalcROC 7

"Sn+Sp+S3". According to "(optSn, optSp,optS3)" the corresponding feature threshold values "optThre1,optThre2" are calculated. The accuracy of the classifier is the mean value of dQuote(optSn, optSp) for two-class problem and the mean value of "(optSn, optSp,optS3)" for three-class problem.

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error is triggered with message "Values are missing".

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

CalculateHUM_Ex, CalculateHUM_ROC

```
data(sim)
indexF=names(sim[,c(3,4),drop = FALSE])
indexClass=2
label=unique(sim[,indexClass])
indexLabel=label[1:3]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
indexL=NULL
for(i in 1:length(indexLabel))
  indexL=c(indexL,which(label==indexLabel[i]))
indexEach=NULL
indexUnion=NULL
for(i in 1:length(label))
  vrem=which(sim[,indexClass]==label[i])
  indexEach=c(indexEach,list(vrem))
  if(length(intersect(label[i],indexLabel))==1)
    indexUnion=union(indexUnion,vrem)
}
s_data=NULL
dataV=sim[,indexF[1]] #single feature
prodValue=1
for (j in 1:length(indexLabel))
  vrem=sort(dataV[indexEach[[indexL[j]]]])
```

8 Calculate3D

```
s_data=c(s_data,list(vrem))
prodValue = prodValue*length(vrem)
}
#calculate the threshold values for plot of 2D ROC and 3D ROC
thresholds <- sort(unique(dataV[indexUnion]))
thresholds=(c(-Inf, thresholds) + c(thresholds, +Inf))/2
out=CalcROC(s_data,seq[,indexF[1]], thresholds)</pre>
```

Calculate3D

Plot the 3D-ROC curve

Description

This is the main function of the HUM package. It plots the 3D-ROC curve using the point coordinates, computed by the function CalculateHUM_ROC. Optionally visualizes the optimal threshold point, which gives the maximal accuracy of the classifier(feature) (see CalcROC).

Usage

Calculate 3D (sel, Sn, Sp, S3, opt Sn, opt Sp, opt S3, thresholds, HUM, name, print.opt im = TRUE)

Arguments

sel	a character value, which is the name of the selected feature.
Sn	a numeric vector of the x-coordinates of the ROC curve
Sp	a numeric vector of the y-coordinates of the ROC curve.
S3	a numeric vector of the z-coordinates of the ROC curve.
optSn	the first coordinate of the optimal threshold
optSp	the second coordinate of the optimal threshold
optS3	the third coordinate of the optimal threshold
thresholds	a numeric vector with threshold values to calculate point coordinates.
HUM	a numeric vector of HUM values, calculated using function.
name	a character vector of class labels.
print.optim	a boolean parameter to plot the optimal threshold point on the graph. The default value is TRUE.

Details

This function's main job is to plot the 3D-ROC curve according to the given point coordinates.

Value

The function doesn't return any value.

CalculateHUM_Ex 9

Errors

If there exists NA values for specificity or sensitivity values, or HUM values the plotting fails and an error is triggered with message "Values are missing"

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

CalculateHUM_seq, CalculateHUM_ROC

Examples

```
data(sim)
indexF=names(sim[,c(3),drop = FALSE])
indexClass=2
label=unique(sim[,indexClass])
indexLabel=label[1:3]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(sim,indexF,indexClass,indexLabel,seq)
Calculate3D(indexF,out$Sn,out$Sp,out$optSn,out$optSp,out$optS3,out$thresholds,HUM,indexLabel[seq])</pre>
```

CalculateHUM_Ex

Calculate HUM value

Description

This is the main function of the HUM package. It computes a HUM value and returns a "List" object, consisting of HUM value and the best permutation of class labels in "seq" vector. This "seq" vector can be passed to the function CalculateHUM_ROC.

Usage

```
CalculateHUM_Ex(data,indexF,indexClass,allLabel,amountL)
```

Arguments

data a dataset, a matrix of feature values for several cases, the additional column with

class labels is provided. Class labels could be numerical or character values. The maximal number of classes is ten. The indexClass determines the column with

class labels.

indexF a numeric or character vector, containing the column numbers or column names

of the analyzed features.

10 CalculateHUM_Ex

indexClass a numeric or character value, containing the column number or column name of

the class labels.

allLabel a character vector, containing the column names of the class labels, selected for

the analysis.

amountL a character vector, containing the column names of the class labels, selected for

the analysis.

Details

This function's main job is to compute the maximal HUM value between the all possible permutations of class labels, selected for analysis. See the "Value" section to this page for more details. Before returning, it will call the CalcGene function to calculate the HUM value for each case (object).

Data can be provided in matrix form, where the rows correspond to cases with feature values and class label. The columns contain the values of individual features and the separate column contains class labels. The maximal number of class labels equals 10. The computational efficiency of the function descrease in the case of more than 1000 cases with more than 6 class labels..

Value

The data must be provided without missing values in order to process. A returned list consists of th the following fields:

HUM a list of HUM values for the specified number of analyzed features seg a list of vectors, each containing the sequence of class labels

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error is triggered with message "Values are missing".

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

```
CalculateHUM_seq, CalculateHUM_ROC
```

```
data(sim)
# Basic example
indexF=c(3,4);
indexClass=2;
allLabel=c("Normal","OrthArthr","OA","Early")
amountL=2
out=CalculateHUM_Ex(sim,indexF,indexClass,allLabel,amountL)
```

CalculateHUM_Plot 11

ve	
----	--

Description

This is the main function of the HUM package. It plots the 2D-ROC curve using the point coordinates, computed by the function CalculateHUM_ROC.Optionally visualizes the optimal threshold point, which gives the maximal accuracy of the classifier(feature) (see CalcROC).

Usage

CalculateHUM_Plot(sel,Sn,Sp,optSn,optSp,HUM,print.optim=TRUE)

Arguments

sel	a character value, which is the name of the selected feature.
Sn	a numeric vector of the x-coordinates of the ROC curve, which is the specificity values of the standard ROC analysis
Sp	a numeric vector of the y-coordinates of the ROC curve, which is the sensitivity values of the standard ROC analysis
optSn	the optimal specificity value for 2D-ROC construction
optSp	the optimal sensitivity value for 2D-ROC construction
HUM	a numeric vector of HUM values, calculated using function <code>CalculateHUM_seq</code> or <code>CalculateHUM_Ex</code> .
print.optim	a boolean parameter to plot the optimal threshold point on the graph. The default value is TRUE.

Details

This function's main job is to plot the 2D-ROC curve according to the given point coordinates.

Value

The function doesn't return any value.

Errors

If there exists NA values for specificity or sensitivity values, or HUM values the plotting fails and an error is triggered with message "Values are missing".

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

CalculateHUM_ROC

See Also

CalculateHUM_seq, CalculateHUM_ROC

Examples

```
data(sim)
# Basic example
indexF=names(sim[,c(3),drop = FALSE])
indexClass=2
label=unique(sim[,indexClass])
indexLabel=label[1:2]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(sim,indexF,indexClass,indexLabel,seq)
CalculateHUM_Plot(indexF,out$Sn,out$Sp,out$optSn,out$optSp,HUM)</pre>
```

CalculateHUM_ROC

Calculate HUM value

Description

This is the function of the HUM package for computing th enpoints for ROC curve. It returns a "List" object, consisting of sensitivity and specificity values for 2D-ROC curve and 3D-points for 3D-ROC curve. Also the optimal threshold values are returned.

Usage

```
CalculateHUM_ROC(data,indexF,indexClass,indexLabel,seq)
```

Arguments

data	a dataset, a matrix of feature values for several cases, the additional column with class labels is provided. Class labels could be numerical or character values. The maximal number of classes is ten. The indexClass determines the column with class labels.
indexF	a numeric or character vector, containing the column numbers or column names of the analyzed features.
indexClass	a numeric or character value, containing the column number or column name of the class labels.
indexLabel	a character vector, containing the column names of the class labels, selected for the analysis.
seq	a numeric matrix, containing the permutation of the class labels for all features.

CalculateHUM_ROC 13

Details

This function's main job is to compute the point coordinates to plot the 2D- or 3D-ROC curve and the optimal threshold values. See the "Value" section to this page for more details. The function calls the CalcROC to calculate the point coordinates, optimal thresholds and accuracy of classifier (feature) in the threshold.

Data can be provided in matrix form, where the rows correspond to cases with feature values and class label. The columns contain the values of individual features and the separate column contains class labels. The maximal number of class labels equals 10.

Value

The data must be provided without missing values in order to process. A returned list consists of th the following fields:

Sn	a specificity values for 2D-ROC construction and the first coordinate for 3D-ROC construction
Sp	a sensitivity values for 2D-ROC construction and the second coordinate for 3D-ROC construction $$
S3	the third coordinate for 3D-ROC construction
optSn	the optimal specificity value for 2D-ROC construction and the first coordinate of the op-timal threshold for 3D-ROC construction
optSp	the optimal sensitivity value for 2D-ROC construction and the second coordinate of the optimal threshold for 3D-ROC construction $$
optS3	the third coordinate of the optimal threshold for 3D-ROC construction

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error is triggered with message "Values are missing".

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

```
CalculateHUM_Ex, CalculateHUM_seq
```

```
data(sim)
# Basic example
indexF=names(sim[,c(3),drop = FALSE])
indexClass=2
label=unique(sim[,indexClass])
indexLabel=label[1:2]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
```

14 CalculateHUM_seq

```
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(sim,indexF,indexClass,indexLabel,seq)</pre>
```

Calculate HUM value

Description

This is the main function of the HUM package. It computes a HUM value and returns a "List" object, consisting of HUM value and the best permutation of class labels in "seq" vector. This "seq" vector can be passed to the function CalculateHUM_ROC.

Usage

CalculateHUM_seq(data,indexF,indexClass,indexLabel)

Arguments

data a dataset, a matrix of feature values for several cases, the additional column with

class labels is provided. Class labels could be numerical or character values. The maximal number of classes is ten. The indexClass determines the column with

class labels.

indexF a numeric or character vector, containing the column numbers or column names

of the analyzed features.

indexClass a numeric or character value, containing the column number or column name of

the class labels.

indexLabel a character vector, containing the column names of the class labels, selected for

the analysis.

Details

This function's main job is to compute the maximal HUM value between the all possible permutations of class labels, selected for analysis. See the "Value" section to this page for more details. Before returning, it will call the CalcGene function to calculate the HUM value for each feature (object).

Data can be provided in matrix form, where the rows correspond to cases with feature values and class label. The columns contain the values of individual features and the separate column contains class labels. The maximal number of class labels equals 10. The computational efficiency of the function descrease in the case of more than 1000 cases with more than 6 class labels..

Value

The data must be provided without missing values in order to process. A returned list consists of th the following fields:

HUM a list of HUM values for the specified number of analyzed features seq a list of vectors, each containing the sequence of class labels

dataset 15

Errors

If there exists NA values for features or class labels no HUM value can be calculated and an error is triggered with message "Values are missing".

References

Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies. *Biostatistics*. 9 (3): 566-576.

See Also

```
CalculateHUM_Ex, CalculateHUM_ROC
```

Examples

```
data(sim)
# Basic example
indexF=names(sim[,c(3,4)])
indexClass=2
label=unique(sim[,indexClass])
indexLabel=label[1:3]
out=CalculateHUM_seq(sim,indexF,indexClass,indexLabel)
```

dataset

simulated data

Description

This data file consists of six simulated predictors or variables with three class categories. For each class category the values are independently generated from the normal distribution with the mean $\mu 1$, $\mu 2$ and $\mu 3$ and the variances held at unity. The means are varied such that the problems range from near-separable problems, to near-random.

Usage

```
data(dataset)
```

Format

A data.frame containing 300 observations of six variables.

Source

Landgrebe T, Duin R (2006) A simplified extension of the Area under the ROC to the multiclass domain. In: Proceedings 17th Annual Symposium of the Pattern Recognition Association of South Africa. PRASA, pp. 241–245.

16 sim

See Also

sim

Examples

```
# load the dataset
data(dataset)
```

sim

desease data

Description

The data set corresponds to absolute (cells/mm2) or relative (percentage of the cell type in question of the entire inflammatory cell population) densities of 5 major inflammatory cell types in synovial tissue specimens from normal human joints ("Normal") and from patients with osteoarthritis ("OA"), non-inflammatory orthopedic arthropathies ("Orth.A"), early unclassified arthritis ("EA"), rheumatoid arthritis ("RA"), and chronic septic arthritis ("SeA"). An analysis of this data set with binary and multicategory ROC analysis has been published in Della Beffa PLOS One 2013, which also contains additional details about the data set. The dataset consists of 92 cases with 11 features and disease code.

Usage

```
data(sim)
```

Format

A data.frame containing 92 observations of 11 variables.

Source

Cristina Della Beffa, Elisabeth Slansky, Claudia Pommerenke, Frank Klawonn, Jialiang Li, Lie Dai, H. Ralph Schumacher Jr., Frank Pessler (2013). The Relative Composition of the Inflammatory Infiltrate as an Additional Tool for Synovial Tissue Classification. PLoS ONE. 8(8): e72494.

See Also

dataset

```
# load the dataset
data(sim)
# CD15
with(sim, by(CD15,Disease,mean))
# CD20
with(sim,tapply(CD20, Disease, FUN = mean))
with(sim, table(CD20=ifelse(CD20<=mean(CD20), "1", "2"), Disease))</pre>
```

Index

* auc	CalculateHUM_seq, 14
CalcGene, 4	HUM-package, 2
CalcROC, 5	* roc
Calculate3D, 8	CalcGene, 4
CalculateHUM_Ex, 9	CalcROC, 5
CalculateHUM_Plot, 11	Calculate3D, 8
CalculateHUM_ROC, 12	CalculateHUM_Ex, 9
CalculateHUM_seq, 14	CalculateHUM_Plot, 11
HUM-package, 2	CalculateHUM_ROC, 12
* datasets	CalculateHUM_seq, 14
dataset, 15	$HUM extsf{-}package,2$
sim, 16	
* multivariate	CalcGene, 2, 4, 10, 14
CalcGene, 4	CalcROC, 2, 5, 8, 11, 13
CalcROC, 5	Calculate3D, 2, 8
Calculate3D, 8	CalculateHUM_Ex, 2, 5, 7, 9, 11, 13, 15
CalculateHUM_Ex, 9	CalculateHUM_Plot, 2, 11
CalculateHUM_Plot, 11	CalculateHUM_ROC, 2, 4, 5, 7–12, 12, 14, 15
CalculateHUM_ROC, 12	CalculateHUM_seq, 2, 9–13, 14
CalculateHUM_seq, 14	dataset, 15, <i>16</i>
HUM-package, 2	dataset, 15, 10
* nonparametric	HUM (HUM-package), 2
CalcGene, 4	HUM-package, 2
CalcROC, 5	•
Calculate3D, 8	sim, <i>16</i> , 16
CalculateHUM_Ex, 9	
CalculateHUM_Plot, 11	
CalculateHUM_ROC, 12	
CalculateHUM_seq, 14	
HUM-package, 2	
* package	
HUM-package, 2	
* plot	
CalcGene, 4	
CalcROC, 5	
Calculate3D, 8	
CalculateHUM_Ex, 9	
CalculateHUM_Plot, 11	
CalculateHUM ROC. 12	