Perfectly elastic head on collision

Let two bodies of masses m_1 and m_2 moving with initial velocities u_1 and u_2 in the same direction and they collide such that after collision their final velocities are v_1 and v_2 respectively.

According to law of conservation of momentum

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

 $\Rightarrow m_1 (u_1 - v_1) = m_2 (v_2 - u_2)$ -(eq-1)

According to law of conservation of kinetic energy

$$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$

$$\Rightarrow m_1(u_1^2 - v_1^2) = m_2(v_2^2 - u_2^2)$$
 -(eq-2)

Dividing equation 2 with equation 1, we will get

$$v_1 + u_1 = v_2 + u_2$$

$$\Rightarrow u_1 - u_2 = v_2 - v_1$$

(Speed of separation after impact is equal to speed of approach before impact)

Substituting this value of v_2 in equation (i) and rearranging

we get,
$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)u_1 + \frac{2m_2u_2}{m_1 + m_2}$$
 and $v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)u_2 + \frac{2m_1u_1}{m_1 + m_2}$

Relative velocity of separation is equal to relative velocity of approach.

If projectile and target are of same mass *i.e.* $m_1 = m_2$

Since
$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \frac{2m_2}{m_1 + m_2} u_2$$
 and $v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) u_2 + \frac{2m_1 u_1}{m_1 + m_2}$

Substituting $m_1 = m_2$ we get

$$v_1 = u_2$$
 and $v_2 = u_1$

It means when two bodies of equal masses undergo head on elastic collision, their velocities get interchanged.

(ii) If massive projectile collides with a light target i.e. $m_1 >> m_2$

Since
$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \frac{2m_2 u_2}{m_1 + m_2}$$
 and $v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) u_2 + \frac{2m_1 u_1}{m_1 + m_2}$

Substituting $m_2 = 0$, we get

$$v_1 = u_1$$
 and $v_2 = 2u_1 - u_2$

(iii) If light projectile collides with a very heavy target i.e. $m_1 \ll m_2$

Since
$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)u_1 + \frac{2m_2u_2}{m_1 + m_2}$$
 and $v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)u_2 + \frac{2m_1u_1}{m_1 + m_2}$

Substituting $m_1 = 0$, we get $v_1 = -u_1 + 2u_2$ and $v_2 = u_2$