Trabajo Fin de Máster <u>Máster Universitario en Análisis y Visuali</u>zación de Datos Masivos

Caracterización de equipos informáticos mediante clustering en una red empresarial

Octubre de 2020

Javier Artiga Garijo

Dirigido por Luis Miguel Garay Gallastegui

Introducción

INTRODUCCIÓN

- ¿Podemos clasificar en categorías relevantes las direcciones IP de una gran red empresarial, según su comportamiento de red?
- ¿Cuáles serían esas categorías?
- ¿Seremos capaces de identificar comportamientos sospechosos en base a esta clasificación?

Introducción

- ¿Podemos clasificar en categorías relevantes las direcciones IP de una gran red empresarial, según su comportamiento de red?
- ¿Cuáles serían esas categorías?
- ¿Seremos capaces de identificar comportamientos sospechosos en base a esta clasificación?
- Objetivo:

"Diseñar y probar un sistema que categorice los equipos finales de una red empresarial y detecte comportamientos anómalos."

Aprendizaje automático en clasificación de tráfico

Detección de anomalías sobre actividad de red

Clustering

- Aprendizaje automático en clasificación de tráfico
 - Enfoques basados en flujos
 - Enfoques basados en hosts
- Detección de anomalías sobre actividad de red

Clustering

- Aprendizaje automático en clasificación de tráfico
 - Enfoques basados en flujos
 - Enfoques basados en hosts
- Detección de anomalías sobre actividad de red
 - Medidas de seguridad basadas en firmas
 - Medidas de seguridad basadas en comportamientos anómalos
- Clustering

- Aprendizaje automático en clasificación de tráfico
 - Enfoques basados en flujos
 - Enfoques basados en hosts
- Detección de anomalías sobre actividad de red
 - Medidas de seguridad basadas en firmas
 - Medidas de seguridad basadas en comportamientos anómalos

Clustering

Ventajas del aprendizaje automático: autónomo, robusto, adaptable, puede hallar patrones complejos.

Alto coste de datos etiquetados a priori, convienen técnicas no supervisadas.

Numerosos trabajos demuestran la utilidad del clustering para esta tarea.

PRESENTACIÓN DEL ESCENARIO

- EXTRACCIÓN DE SESIONES
 - Se extraen unos 20M sesiones/día.
 - Cada una se representa mediante el vector de características de la sesión.
 - Para el desarrollo se hizo un muestreo del 5% (1M sesiones por día) sobre 7 días de datos.

Procesado de los logs del firewall Fortinet

- PREPROCESADO PARA EL CLUSTERING
 - Consiste en resumir todas las sesiones del día para cada IP origen, aplicando agregaciones y calculando métricas.
 - Se obtienen <u>matrices diarias</u>.

PREPROCESADO PARA EL CLUSTERING

Característica	Explicación
Número de IPs destino únicas	IPs distintas a las que se ha conectado una IP origen
Protocolos usados	2 si IP origen ha usado TCP y UDP, 1 si UDP, 0 si TCP
Número de puertos origen únicos	Puertos de nivel transporte usados por una IP origen
Número de puertos destino únicos	Puertos a los que se ha conectado una IP origen
Nivel de anomalía medio	Media de $N_{ m anomalia}$ en las sesiones de una IP origen
Nivel de amenaza medio	Media de $N_{ m amenaza}$ en las sesiones de una IP origen
Prioridad máxima	Prioridad más crítica vista en eventos de una IP origen
Número de eventos	Suma total de los eventos de una IP origen
Media de la duración de sesión	Duración media de las sesiones de una IP origen
Desv. estándar de la duración de sesión	Desv. est. de la duración de sesiones de una IP origen
Nº sesiones activas en horas nocturnas	Sesiones activas de 00:00 a 08:00
Nº sesiones activas en horas de trabajo	Sesiones activas de 08:01 a 16:00
Nº ses. activas en horas después del trabajo	Sesiones activas de 16:01 a 23:59

Tabla 1: Características con las que se resumen las sesiones en matrices diarias

SELECCIÓN DE CARACTERÍSTICAS

Característica	Explicación
Número de IPs destino únicas	IPs distintas a las que se ha conectado una IP origen
Protocolos usados	2 si IP origen ha usado TCP y UDP, 1 si UDP, 0 si TCP
Número de puertos origen únicos	Puertos de nivel transporte usados por una IP origen
Número de puertos destino únicos	Puertos a los que se ha conectado una IP origen
Nivel de anomalía medio	Media de $N_{ m anomalia}$ en las sesiones de una IP origen
Nivel de amenaza medio	Media de $N_{ m amenaza}$ en las sesiones de una IP origen
Prioridad máxima	Prioridad más crítica vista en eventos de una IP origen
Número de eventos	Suma total de los eventos de una IP origen
Media de la duración de sesión	Duración media de las sesiones de una IP origen
Desv. estándar de la duración de sesión	Desv. est. de la duración de sesiones de una IP origen
Nº sesiones activas en horas nocturnas	Sesiones activas de 00:00 a 08:00
Nº sesiones activas en horas de trabajo	Sesiones activas de 08:01 a 16:00
Nº ses. activas en horas después del trabajo	Sesiones activas de 16:01 a 23:59

Tabla 1: Características con las que se resumen las sesiones en matrices diarias

Son principalmente 6
 características las que
 influyen en la
 clasificación.

 Las características temporales no eran tan decisivas como se creía.

- EVALUACIONES EXPERIMENTALES
 - A través del método del codo y múltiples pruebas, se determina k = 5.
 - Se mide la calidad del clustering mediante:
 - Ratio de sumas de cuadrados $(SS_{between clusters}/SS_{total})$
 - Coeficiente de silueta

- COMPOSICIÓN DE LOS CLUSTERS:
 - Muchas conexiones
 - Pocas conexiones
 - Sesiones UDP
 - Conexiones largas
 - Anomalías

- COMPOSICIÓN DE LOS CLUSTERS:
 - Muchas conexiones
 - Pocas conexiones
 - Sesiones UDP
 - Conexiones largas
 - Anomalías

- Composición de los clusters:
 - Muchas conexiones
 - Pocas conexiones
 - Sesiones UDP
 - Conexiones largas
 - Anomalías

- Composición de los clusters:
 - Muchas conexiones
 - Pocas conexiones
 - Sesiones UDP
 - Conexiones largas
 - Anomalías

- COMPOSICIÓN DE LOS CLUSTERS:
 - Muchas conexiones
 - Pocas conexiones
 - Sesiones UDP
 - Conexiones largas
 - Anomalías

- Composición de los clusters:
 - Muchas conexiones
 - Pocas conexiones
 - Sesiones UDP
 - Conexiones largas
 - Anomalías

CONCLUSIONES Y LÍNEAS FUTURAS

- Podemos clasificar en categorías relevantes las direcciones IP de una gran red empresarial, según su comportamiento de red.
- La categoría "anomalías" captura comportamiento sospechosos, aunque no necesariamente malintencionados.
- Esta aportación puede tener una aplicación práctica inmediata.

CONCLUSIONES Y LÍNEAS FUTURAS

La investigación podría continuar:

- Incorporando otros firewalls como fuente de datos, e incluso correlándolos.
- Aplicando este sistema de clustering a conexiones externas.
- Incrementando la granularidad dentro de las categorías normales mediante una segunda clusterización.

