

## ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international



#### DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

|  | (51) Classification internationale des brevets <sup>6</sup> : G02B 5/04 |        | A1      | (11) Numéro de publication internationale: WO 99/44081 |                       |  |  |  |
|--|-------------------------------------------------------------------------|--------|---------|--------------------------------------------------------|-----------------------|--|--|--|
|  |                                                                         |        |         | (43) Date de publication internationale: 2 septe       | embre 1999 (02.09.99) |  |  |  |
|  | (21) Numéro de la demande internationale:                               | PCT/FR | 99/0040 | 3 (81) Etats désignés: JP, US, brevet europée          | on (AT, BE, CH, CY,   |  |  |  |

FR

.

(22) Date de dépôt international: 23 février 1999 (23.02.99)

(30) Données relatives à la priorité:

24 février 1998 (24.02.98)

(71) Déposant (pour tous les Etats désignés sauf US): COMMIS-SARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75015 Paris (FR).

(72) Inventeurs; et

98/02198

- (75) Inventeurs/Déposants (US seulement): RABAROT, Marc [FR/FR]; 57, rue de l'Industrie, F-38170 Seyssinet (FR). MARTY, Vincent [FR/FR]; Bastide la Noria, Route de Mirabeau, F-84240 La Tour d'Aigues (FR).
- (74) Mandataire: BREVATOME; 25, rue de Ponthieu, F-75008 Paris (FR).

(81) Etats désignés: JP, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale.

(54) Title: METHOD FOR COLLECTIVELY PRODUCING MICRORELIEFS, AND IN PARTICULAR MICROPRISMS, BY MICROMACHINING, AND TOOLS FOR IMPLEMENTING SAID METHOD

(54) Titre: PROCEDE DE FABRICATION COLLECTIVE DE MICRORELIEFS, ET NOTAMMENT DE MICROPRISMES, PAR MICRO-USINAGE, ET OUTILS POUR LA MISE EN OEUVRE DU PROCEDE



#### (57) Abstract

The invention concerns a method for making microcomponents with microreliefs, in a substrate (62), comprising: a first step for producing the desired microrelief (70, 72, 74) by mechanical machining of the substrate; and simultaneously with the first step, or subsequent to it, a second step for cutting out microcomponents in the substrate.

#### (57) Abrégé

L'invention concerne un procédé de fabrication de microcomposants présentant des microreliefs, dans un substrat (62) comportant: une première étape de réalisation du microrelief désiré (70, 72, 74) par usinage mécanique du substrat, et simultanément à la première étape, ou après celle-ci, une deuxième étape de découpe des microcomposants dans le substrat.

#### UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

| AL | Albanie                                 | ES | Espagne               | LS | Lesotho                  | SI | Slovénie              |
|----|-----------------------------------------|----|-----------------------|----|--------------------------|----|-----------------------|
| AM | Arménie                                 | FI | Finlande              | LT | Lituanie                 | SK | Slovaquie             |
| AT | Autriche                                | FR | France                | LU | Luxembourg               | SN | Sénégal               |
| ΑÜ | Australie                               | GA | Gabon                 | LV | Lettonie                 | SZ | Swaziland             |
| ΑZ | Azerbaïdjan                             | GB | Royaume-Uni           | MC | Monaco                   | TD | Tchad                 |
| BA | Bosnie-Herzégovine                      | GE | Géorgie               | MD | République de Moldova    | TG | Togo                  |
| BB | Barbade                                 | GH | Ghana                 | MG | Madagascar               | TJ | Tadjikistan           |
| BE | Belgique                                | GN | Guinée                | MK | Ex-République yougoslave | TM | Turkménistan          |
| BF | Burkina Faso                            | GR | Grèce                 |    | de Macédoine             | TR | Turquie               |
| BG | Bulgarie                                | HU | Hongrie               | ML | Mali                     | TT | Trinité-et-Tobago     |
| BJ | Bénin                                   | IE | Irlande               | MN | Mongolie                 | UA | Ukraine               |
| BR | Brésil                                  | IL | Israël                | MR | Mauritanie               | UG | Ouganda               |
| BY | Bélarus                                 | IS | Islande               | MW | Malawi                   | US | Etats-Unis d'Amérique |
| CA | Canada                                  | IT | Italie                | MX | Mexique                  | UZ | Ouzbékistan           |
| CF | République centrafricaine               | JP | Japon                 | NE | Niger                    | VN | Viet Nam              |
| CG | Congo                                   | KE | Kenya                 | NL | Pays-Bas                 | YU | Yougoslavie           |
| СН | Suisse                                  | KG | Kirghizistan          | NO | Norvège                  | ZW | Zimbabwe              |
| CI | Côte d'Ivoire                           | KP | République populaire  | NZ | Nouvelle-Zélande         |    |                       |
| CM | Cameroun                                |    | démocratique de Corée | PL | Pologne                  |    |                       |
| CN | Chine                                   | KR | République de Corée   | PT | Portugal                 |    |                       |
| CU | Cuba                                    | KZ | Kazakstan             | RO | Roumanie                 |    |                       |
| CZ | République tchèque                      | LC | Sainte-Lucie          | RU | Fédération de Russie     |    |                       |
| DE | Allemagne                               | LI | Liechtenstein         | SD | Soudan                   |    |                       |
|    | _ · · · · · · · · · · · · · · · · · · · |    |                       |    |                          |    |                       |

SE SG

Suède

Singapour

LK LR

Sri Lanka

Libéria

DK EE

Danemark

Estonie

1

PROCEDE DE FABRICATION COLLECTIVE DE MICRORELIEFS, ET NOTAMMENT DE MICROPRISMES, PAR MICRO-USINAGE, ET OUTILS POUR LA MISE EN OEUVRE DU PROCEDE.

#### 5 Domaine technique et art antérieur

10

15

20

25

L'invention concerne l'usinage de composants miniaturisés, par exemple de composants micro-optiques.

Elle concerne en particulier un procédé et un dispositif pour la fabrication collective de microreliefs, et notamment de microprismes, par microusinage.

L'invention se rapporte ainsi aux domaines des micro-composants, des composants de micro-optique, des microlasers ou des amplificateurs guides d'onde solides pompés par diodes. Elle se rapporte à la micro-technologie en général.

Les composants de micro-optique sont utilisés pour des applications en optique ou en optronique militaire et civile (télécommunications, industrie de grande consommation : "compact disc", vidéo...), qui nécessitent une miniaturisation des composants et des systèmes, et ceci pour des raisons économiques et/ou technologiques. Ces composants peuvent être obtenus collectivement par des techniques de lithographie et/ou de gravure de matériaux optiques ou optroniques, dopés la silice, ou d'autres matériaux non, comme ou cristallins comme le niobate ou le tantalate de lithium (LiNbO<sub>3</sub> ou LiTaO<sub>3</sub>) ou encore des polymères ou des nouveaux matériaux organiques.

d'ondes sont des lasers solides monolithiques de petites dimensions pompés par diode laser. Leur avantage principal est leur structure, qui consiste en

2

un empilement de multicouches qui permet de mettre en oeuvre des procédés de fabrication collective du type de ceux utilisés en micro-électronique. Ainsi, on peut réaliser des composants fiables, à l'aide d'une technologie de production de masse, potentiellement à très faible coût (comme en micro-électronique).

Des microlasers sont par exemple décrits dans l'article de N. Mermilliod et al. Paru dans Applied Physics Letters, vol. 59, n° 27, p. 3519 (1991).

10 D'autres microlasers sont décrits dans le document EP-653 824.

5

15

20

25

Pour certains microlasers, ou dans amplificateurs quide d'onde, le faisceau laser n'est pas émis perpendiculairement au plan du substrat, mais parallèlement à celui-ci (parallèlement au le laser optique). Pour que ou l'amplificateur fonctionne bien, on cherche donc à usiner les faces latérales de façon à obtenir un très bon parallélisme entre elles, et une faible rugosité (un état poli) sur chacune d'elles. Dans certains cas, il peut intéressant de renvoyer le faisceau verticalement ou perpendiculairement au plan du substrat, comme dans le lasers à cavités verticales (VCSEL). Une solution technologique consiste alors, comme illustré sur la figure 1, à positionner un micromiroir 2 à 45° en face du faisceau de sortie 4 du laser ou du guide 6. De même, il peut être intéressant de positionner un micro-miroir en entrée d'un dispositif microlaser.

Par ailleurs, il peut être utile, pour certains

30 types de cavités microlasers, de fabriquer
collectivement des structures de micro-prismes
directement dans un matériau laser ou électro-optique;
c'est le cas d'une cavité de microlaser impulsionnel à

3

déclenchement actif par micro-modulateur, tel que décrit dans la demande EP-751 594.

Enfin, la fabrication de micro-prismes dans un matériau laser peut s'avérer nécessaire pour la réalisation de minilasers à pompage transverse, dont le principe de fonctionnement est rappelé sur la figure 2 : un faisceau de pompage 8 entre dans la cavité microlaser ou laser par un miroir d'entrée 10, et le pompage du milieu actif laser 12 donne naissance à une oscillation laser 14 dont il résultera une faisceau laser 16 émis à travers un miroir de sortie 18. Le faisceau oscille dans la cavité ente le miroir de sortie 18 et un microprisme 20 en fond de cavité.

5

10

25

30

Pour tous ces composants, se pose le problème 15 de la réalisation des microprismes.

On connaît deux techniques de réalisation de microprismes de géométrie quelconque.

La première technique est décrite dans le document WO 96/05525. Il s'agit d'une méthode que l'on peut qualifier de "pseudo-collective", puisqu'elle permet de traiter collectivement, au cours des étapes de fabrication, des composants dont les ébauches sont préalablement assemblées une à une.

Les étapes de cette technique sont résumées sur les figures 3A à 3D. Une plaquette 22 de matériau pour microprismes (par exemple : de la silice) est découpée en barrettes 24, 26 de puces qui sont ensuite montées en blocs pour l'ébauche et le polissage des faces inclinées. Ce montage (figure 3C) est réalisé sur un support 30, incliné à l'angle  $\alpha$  du prisme désiré, une cale 28 de collage et un support 32 de collage. Après collage, le support 32 et la cale 28 sont enlevés.

4

Ensuite, à l'aide d'un support 34 de polissage, on ébauche, puis on polit les barrettes 24, 26 sur une face, et éventuellement sur l'autre face (figure 3D).

Ces opérations sont essentiellement manuelles, et nécessitent de nombreuses sous-étapes de montage et de démontage qui s'avèrent généralement coûteuses.

5

10

15

De plus, ce procédé peut se révéler peu fiable car le contrôle des angles d'une pièce à l'autre dépend de nombreux paramètres eux-mêmes mal contrôlés, comme par exemple l'épaisseur du film de colle nécessaire à la fixation sur le support 30.

Et, surtout, cette méthode ne permet pas de traiter globalement un substrat comme une plaquette de microprismes, en vue d'une intégration dans un véritable microsystème avec, par exemple, une structure complémentaire, dont les motifs unitaires seraient auto-alignés collectivement (plaque à plaque).

La seconde technique est basée 20 technologie de type micro-électronique, et est décrite dans le document JP-59 139002. Dans ce cas, on réalise des matrices pour la réplication, et des microprismes lithographie par et gravure d'une structure multicouche. Pratiquement, il s'agit de déposer au moins deux couches de silice par une technique "CVD" 25 (dépôt chimique en phase vapeur), et de contrôler leur vitesse de gravure respectives par la température d'un recuit pour chaque couche (de 700 à 1000°C). La vitesse de gravure de la (ou des) couche(s) supérieure(s) doit 30 être plus élevée que celle de la (ou des) couches(s) inférieure(s). On obtient ainsi, par gravure chimique réactive (RIE) à travers les orifices du

5

supérieur, des structures pyramidales dont l'angle peut être contrôlé pour réaliser des microprismes.

Cette technique est collective puisque l'on procède à une lithographie par masquage. Par contre, est relativement "lourde" (elle nécessite plusieurs niveaux de recuits et gravure), coûteuse. De plus, elle est "indirecte", car nécessite d'abord la fabrication de matrices et ensuite la réplication des structures. Enfin, l'épaisseur des structures, donc les dimensions verticales des zones optiquement utilisées, semble relativement limitée par les performances accessibles des procédés actuels de dépôt et de gravure (quelques μm à quelques 10 μm).

5

10

20

25

30

Dans le domaine des guides d'onde, en optique intégrée, que l'on souhaite coupler avec une fibre optique, se pose le problème de la qualité du couplage entre l'entrée, ou la sortie, du guide, et la fibre.

Pour obtenir de faibles pertes optiques, on cherche à avoir une faible rugosité des surfaces à mettre en contact. En général les procédés classiques micro-découpe ne permettent pas directement la rugosité adéquate en bout de guide. Dans le cas, par exemple, de l'optique intégrée silicium, la solution actuellement la plus performante consiste à cliver le substrat, la couche active de silice se "casse" dans le prolongement du clivage, et l'état de surface de la silice obtenu en bout de quide est excellent. Le problème est que l'on ne contrôle pas bien la position du clivage par rapport au dispositif intégré sur la puce, ce qui réduit le rendement de fabrication des composants, et donc augmente le coût de fabrication.

6

Le document EP-532 229 décrit un procédé de découpe alignée suivie, dans la même opération que la découpe, d'un polissage de l'extrémité des guides à l'aide d'une lame de scie diamantée. Cette technique permet, à la fois de s'affranchir du problème de positionnement et d'obtenir un bon état de surface avec un faible coût.

Plus récemment, il a été décrit par H. Yokosuka et al. (1996, Electronic Components and Technology Conference, p. 487-493), une variante de ce procédé, utilisant un abrasif séparé de celui de la lame de scie, pendant la découpe. Cette approche permet d'améliorer considérablement l'état de finition de polissage des extrémités des guides ainsi découpés, et donc les performances des guides.

Les exemples ci-dessus montrent les problèmes techniques qui se posent de façon générique lors de la fabrication, collective ou automatisée, de microreliefs "optiques" miniaturisés, assemblés ou non en microsystèmes.

20

25

30

Les techniques d'obtention de surfaces polies micro-composants lasers et de surfaces optiques usinées, comme par exemple l'usinage et le polissage des faces d'un microprisme à 45° en silice ou en matériau laser (pour réaliser un miroir de renvoi "vertical" des faces d'entrée et/ou de sortie d'un microlaser ou d'un amplificateur guide d'onde), appel à une succession d'étapes d'ébauche, de découpe, de rodage et de polissage qui nécessitent un nombre important de sous étapes de préparation échantillons à traiter. De plus, l'enchaînement des étapes ne peut être considéré comme une technique

. 7

véritablement collective, puisqu'au mieux on ne peut traiter les différents micro-composants que par barrettes qu'il faut rapporter sur un support pour réaliser une étape donnée. Or, dans certains cas, il est même nécessaire de traiter la fabrication des composants par plaquettes, de façon à rapporter en un bloc l'ensemble des composants sur un autre substrat contenant des éléments complémentaires du système ou du dispositif miniaturisé.

10

15

20

25

5

#### Exposé de l'invention

L'invention apporte une solution originale à ces problèmes puisqu'elle permet de réaliser, avant la découpe, l'usinage de la structure, et éventuellement le polissage de la ou des surfaces actives, en une ou plusieurs étapes enchaînées sans montage et démontage des micro-composants ou de barrettes. Ces opérations être réalisées à l'aide d'une peuvent machine automatique, et la mise en oeuvre de cette technique d'abaisser le coût de fabrication, d'accroître les possibilités d'intégration, d'améliorer la fiabilité globale des composants.

L'invention a pour objet un procédé de fabrication, dans un substrat, de microcomposants présentant des microreliefs, comportant :

- une première étape de réalisation du micro-relief désiré par usinage mécanique du substrat, et
- simultanément à la première étape, ou après celle-ci,
   une deuxième étape de découpe des microcomposants
   dans le substrat.

L'invention concerne donc une fabrication de microreliefs avant découpe des composants. Les composants unitaires sont découpés dans la plaquette

WO 99/44081

5

20

25

30

8

lors d'une étape postérieure à la (ou aux) opération(s) d'usinage et de finition à l'aide d'un outil de

PCT/FR99/00403

découpe, par exemple un outil classique comme une lame de scie diamantée.

On entend par micro-relief toute structure géométrique en trois dimensions obtenue par l'usinage rectiligne d'un substrat, ou d'une ou plusieurs couches déposées sur ce substrat.

L'usinage, dit rectiligne, est réalisé dans ce 10 cas par l'usinage dans une seule direction située dans le plan du substrat.

La première étape d'usinage peut comporter deux sous-étapes : une sous-étape d'ébauche et une sous-étape de finition.

Le micro-relief peut être réalisé avec un seul outil déplacé à la surface du substrat, ou avec plusieurs outils travaillant simultanément ou successivement.

Les dimensions verticales des microreliefs sont, par exemple, de l'ordre de quelques dizaines de micromètres (par exemple : 10 $\mu$ m ou 20  $\mu$ m ou 50  $\mu$ m) à quelques centaines de micromètres (par exemple : 200  $\mu$ m ou 400  $\mu$ m ou 600 $\mu$ m).

Un micro-relief peut être, par exemple, une structure de microprisme ou de micromiroir dont l'état de surface requis après usinage est dit poli "optique" (de faible rugosité: environ 1µm PV ("Peak to Valley"), soit 100 nm RMS (moyenne quadratique)). Cet état de surface peut être obtenu dans la même opération que l'usinage d'ébauche, ou dans une seconde étape de finition, associée à la première étape.

L'invention concerne donc en particulier un procédé de fabrication collective (ou automatisé), qui

9

permet d'usiner collectivement, dans un substrat ou une ou plusieurs couches déposées sur un substrat, des microreliefs (par exemple des microprismes ou des micromiroirs) avec un état de surface poli "optique" (de faible rugosité), dans la même opération que l'usinage du composant ou de la structure, ou dans une seconde étape de finition associée à une première étape d'ébauche.

La réalisation d'un microprisme met en oeuvre, 10 par exemple, une lame abrasive à profil en "V".

On peut définir un microprisme comme un microrelief à structure prismatique (avec une ou plusieurs
faces inclinées), par exemple pour des applications
optiques; il est alors utilisé, dans ce cas, pour les
propriétés de réflexion (miroir) ou de transmission
(dioptre) sur les faces usinées, avec une qualité de
polissage "optique".

Cette qualité de surface sous-entend qualitativement une faible rugosité définie visuellement soit par un état de poli miroir qui permet une "bonne" réflexion de la lumière (avec un taux de pertes optiques relativement faible), soit par un état de transparence (relativement faible taux de pertes optiques par transmission).

25

15

20

5

#### Brève description des figures

De toute façon, les caractéristiques et avantages de l'invention apparaîtront mieux la description qui va suivre. lumière de la les exemples de réalisation, description porte sur donnés à titre explicatif et non limitatif, en référant à des dessins annexés sur lesquels :

20

WO 99/44081 PCT/FR99/00403

- La figure 1 représente une structure de microlaser associée à un micromiroir.

10

- La figure 2 représente une structure de minilaser à pompage transverse.
- 5 Les figures 3A à 3D représentent des étapes d'un procédé de réalisation de microprismes.
  - La figure 4 représente une structure de microlaser déclenché activement;
- Les figures 5A à 5E représentent un mode de 10 réalisation d'un procédé selon l'invention pour la fabrication de microlasers déclenchés activement.
  - Les figures 6A à 6C sont diverses formes de tranchées réalisables dans le cadre d'un procédé selon l'invention.
- La figure 7 est un exemple de réalisation de microprismes ou de micro-miroirs, selon l'invention.
  - Les figures 8A et 8B représentent la réalisation, selon l'invention, de microcomposants comportant chacun un microlaser et un micromiroir de renvoi.

## Description détaillée de modes de réalisation de l'invention

Un premier exemple de réalisation de 25 l'invention va être donné : il concerne la réalisation de microlasers à déclenchement actif.

Des structures de microlaser à déclenchement actif sont rappelées et décrites dans le document EP-724 316.

L'une de ces structures est illustrée sur la figure 4 ci-jointe, sur laquelle la référence 42 désigne le milieu actif laser et la référence 44 un

11

matériau déclencheur, par exemple un matériau électrooptique tel que  $LiTaO_3$ .

Le milieu actif 42 du laser forme, avec un miroir d'entrée 46 et un miroir intermédiaire 48 une première cavité Fabry-Pérot. Le matériau déclencheur forme, avec le miroir intermédiaire 48 et le miroir de sortie 50, une deuxième cavité Fabry-Pérot. Le matériau déclencheur 44 peut être par exemple collé à la surface du miroir intermédiaire 48. Les deux cavités sont couplées. Le déclenchement se fait en modifiant la longueur optique du matériau déclencheur 44 par une action externe. Si l'on appelle  $L_1$ ,  $n_1$ ,  $\lambda_1$  ( $L_2$ ,  $n_2$ ,  $\lambda_2$ ) les longueurs, indices optiques et longueurs d'onde optique de résonance de la première cavité (de la deuxième cavité), il existe la relation :  $m_1\lambda_1=2n_1L$  et  $m_2\lambda_2=2n_2L_2$  avec  $m_1$  et  $m_2$  nombres entiers.

10

15

20

25

30

le matériau 44 est un matériau électrooptique, des électrodes de déclenchement 52, 54 sont placées perpendiculairement à l'axe du faisceau laser 56 de part et d'autre du matériau déclencheur 44. Si une tension V est appliquée entre ces électrodes, un champ électrique E=V/e, où e est la distance entre les électrodes (ce qui correspond à l'épaisseur du matériau électro-optique) en résulte. L'indice optique n2 et par conséquent la longueur optique n<sub>2</sub>L<sub>2</sub>, du électro-optique est modifié par l'action du champ E. Ceci affecte le couplage des deux cavités et modifie la réflectivité du miroir intermédiaire 48 vu par milieu laser. En effet, si les longueurs d'onde de résonance des deux cavités coïncident  $(\lambda_1 = \lambda_1)$ ou  $n_1L_1/n_2L_2=m_1/m_2$ ) la réflectivité de la deuxième cavité (électro-optique) vue par la première cavité (matériau laser) sera minimum, et il n'y aura pas d'action laser.

12

Ainsi, en agissant sur le champ E, on peut modifier les conditions de résonance du microlaser, dont la réflectivité de la deuxième cavité, et ainsi on peut réaliser le déclenchement actif.

Les étapes d'un procédé de réalisation selon l'invention sont illustrées sur les figures 5A à 5E.

5

10

15

25

30

La figure 5A représente l'assemblage d'une plaquette 60 de matériau actif laser (des exemples de tels matériaux sont donnés dans le document EP-653 824) et d'une plaquette 62 de matériau électro-optique (par exemple LiTaO<sub>3</sub>).

Puis (figure 5B) la plaquette est fixée sur un film plastique autocollant 64, dont on peut choisir l'épaisseur et ajuster les propriétés d'adhérence de la colle par une insolation au rayonnement UV. L'ensemble est ensuite fixé sur un cadre métallique 66 qui permet les manipulations. Ce cadre est fixé sur une machine de découpe, par exemple par l'intermédiaire d'un support aspirant rectifié.

Cette machine comporte en outre une lame ou un disque 68 abrasif ainsi que des moyens 70 pour entraîner celui-ci en rotation.

La lame choisie ici est à faces planes et parallèles, pour usiner des tranchées verticales 70, 72, 74. Cette lame peut être une scie diamantée, utilisée comme meule pour l'ébauche et le polissage des structures.

Ce sont ensuite les paramètres de la machine qui sont ajustés (vitesse de rotation de la lame, vitesse d'avance dans le matériau, profondeur de coupe) en fonction du type de lame utilisé (type de la matrice dans laquelle sont noyés les grains d'abrasif (diamant

13

ou autre), granulométrie et densité de cet abrasif, ...).

Dans certains cas (surtout pour les matériaux les plus durs), on divise le procédé en deux étapes au moins :

5

20

25

30

- une première étape d'ébauche, suivie (dans l'alignement des traits) :
- d'au moins une étape de finition ou de polissage, en général avec des grains d'abrasif plus fins.

Le procédé en deux étapes peut être effectué en une seule passe à l'aide d'une machine à double broche, la première montée avec la lame d'ébauche, et la seconde avec la lame de finition. Pour affiner l'état de surface et les défauts induits dans le matériau par l'usinage, il est possible d'utiliser un lubrifiant de coupe, mélangé à l'eau de refroidissement de la lame ou distribué séparément. Sur la figure 5B, un conduit 75 permet d'amener un fluide de refroidissement de la lame, par exemple de l'eau, avec ou sans lubrifiant.

Après cette étape, on obtient une structure usinée représentée en vue de dessus sur la figure 5C.

Une étape ultérieure de découpe selon une direction perpendiculaire à la direction des tranchées 70, 72, 74 (figure 5D) permet d'isoler des puces individuelles 76 de microlaser déclenché activement (figure 5E). Chaque puce peut avoir par exemple une forme en "T" qui permet à la fois de définir la largeur active de la cavité électro-optique et de permettre le dépôt et la prise des contacts électriques sur chacune des faces actives 77, 79.

Les paramètres du procédé, qui dépendent de la machine, de la lame et des conditions opératoires sont déterminés spécifiquement pour chaque type

14

d'application (dimensions des microreliefs) et selon la nature du matériau constituant les prismes ou les faces réfléchissantes à usiner.

A titre d'exemple pour du "polisciage" de structures en LTO pour réaliser des microlasers déclenchés par une tension de commande externe (comme décrit ci-dessus), on a sélectionné les paramètres suivants:

- 10 vitesse de rotation de la lame : 20 000 tr/mn.
  - Vitesse d'avance de la lame : 0,5 à 1 mm/s.
  - Profondeur de passe maximale :0,1 mm.
  - Type de lame : matrice résinoïde Ref. Thermocarbon : 2,25-6A-3XQ-3
- 15 Refroidissement de la lame : eau déionisée (sans lubrifiant).

L'aspect observé des flancs des motifs découpés est brillant et transparent, ce qui correspond à un état communément nommé poli "optique". La rugosité mesurée à l'aide d'un microscope interférométrique de marque Micromap, sur un champ d'environ 100x100 µm² avec une résolution spatiale d'environ 0,5 µm, est de l'ordre de 1 nm RMS (moyenne quadratique) et de 100 nm P-V (Peak to Valley : écart maximum d'amplitude).

Dans ces conditions de procédé, l'état de surface obtenu sur le matériau électro-optique est de type poli "optique", c'est-à-dire que les flancs usinés du matériau présentent un spectre transparent et brillant avec une rugosité d'environ 15 Å RMS.

30

20

Le procédé décrit ci-dessus peut être adapté à d'autres formes de découpes et à d'autres matériaux. En particulier, les lames de scie peuvent être soit à

15

faces planes et parallèles, par exemple pour usiner des tranchées verticales (figure 6A), soit avec une ou deux faces inclinées avec un angle prédéfini pour usiner des tranchées inclinées dont le profil est illustré en figure 6B. La combinaison de ces deux types de lames permet par exemple d'obtenir des tranchées biseautées dont le profil est illustré en figure 6C. De même, en combinant des traits (ou tranchées) orthogonaux ou d'un angle quelconque, on peut réaliser des reliefs de différentes structures, pyramidales par exemple.

En particulier, pour la réalisation de microprismes, on utilisera des lames de scies diamantées ayant un profil en "V", comme meules pour l'ébauche et le polissage des structures.

Par cette technique, à l'aide de lames de scies diamantées qui possèdent un biseau d'angle contrôlé en bout de lame, on peut réaliser l'ébauche de structures de microprismes à 90° dans des substrats de silice massive. On a pu vérifier à l'aide d'un projecteur de profil, que le contrôle de l'angle est possible à au moins 0,1° près.

La figure 7, sur laquelle des références identiques à celles des figures 5A-5B y désignent des éléments identiques ou correspondants, est un exemple de polisciage de structures de microprismes 80 ou de micro-miroirs 82 sur un substrat 84. La lame 78 utilisée a un profil en "V" tronqué, présentant une surface plane 86.

30

5

10

15

20

25

La figure 8A, sur laquelle des références identiques à celles des figures 5A-5B y désignent des éléments identiques ou correspondants, représente le

16

principe de fabrication, selon l'invention, de microprismes pour la fabrication collective de puces de microlaser guide d'onde associé avec un micromiroir de renvoi du faisceau.

D'une plaque de matériau actif laser 92, associée à un substrat 90, est usinée à l'aide de deux lames 88, 98 fonctionnant par exemple en parallèle. La première définit un micromiroir de renvoi 100, face à chaque émetteur laser 102, tandis que la deuxième lame sépare chaque composant microlaser (avec son micromiroir de renvoi) des composants voisins (chacun associé à son propre miroir de renvoi). Chaque composant individuel peut ensuite émettre un faisceau 104 comme illustré sur la figure 8B.

15

20

25

30

Une variante du procédé décrit ci-dessus consiste à réaliser une ébauche, comme décrit précédemment et, à fin de finition (ou de polissage), à utiliser une lame ou meule, sans grains d'abrasifs liés dans la matrice, mais en utilisant cette lame comme vecteur d'un abrasif de polissage séparé et réparti le long du trait d'ébauche. Dans ce cas, la lame sans matrice diamantée fait office de support de polissage en entraînant par sa rotation les grains d'abrasif sur chacun de ses flancs. La largeur de la lame est ajustée en fonction de la largeur du trait d'ébauche et de la granulométrie de l'abrasif utilisé (la largeur de lame de finition est choisie plus faible que la largeur du trait d'ébauche). La structure de la lame peut être évidée, ou non.

L'abrasif peut être distribué, soit le long du trait d'ébauche, par projection à la place de l'eau de refroidissement de la lame, sous forme d'une solution

17

liquide, soit recouvrir par exemple la plaquette ébauchée sous forme d'un liquide, d'un gel ou d'une pâte plus compacte. La nature de cet abrasif (alumine, oxyde de cérium, diamant, carbures de silicium ou de bore, ...), dépend de la dureté et de l'état de surface requis pour une application donnée et un type de matériau à usiner.

5

20

Une seconde variante du procédé peut être mise en oeuvre après la première étape d'usinage d'ébauche, 10 et à la place ou en complément de l'étape de finition de la surface, en procédant à une attaque chimique superficielle ou à un dépôt planarisant (par exemple : couche métallique ou des multicouches fonction des 15 diélectriques), en caractéristiques technologiques et des spécifications du dispositif.

Une troisième variante du procédé consiste à utiliser une lame en "U" dont l'extrémité est liée de grains d'abrasif, et la partie latérale (faces parallèles) est liée d'abrasif de plus faible granulométrie. Ce type de lame permet une ébauche plus rapide (du fait du fort grain) et une finition dans le même trait, sur les faces latérales actives.

18

#### REVENDICATIONS

- 1. Procédé de fabrication de microcomposants (76, 102) présentant des microreliefs de qualité optique, dans un substrat (62, 82, 92) comportant :
- 5 une première étape de réalisation du micro-relief désiré (70, 72, 74; 80, 82; 100) par usinage mécanique du substrat, et

10

20

- simultanément à la première étape, ou après celle-ci, une deuxième étape de découpe des microcomposants dans le substrat.
- 2. Procédé selon la revendication 1, la première étape d'usinage mécanique comportant au moins deux sous-étapes : une première sous-étape d'ébauche et une deuxième sous-étape de finition.
- 3. Procédé selon la revendication 1 ou 2, la première étape comportant en outre une étape pour obtenir une qualité optique du micro-relief.
  - 4. Procédé selon l'une des revendications 1 à 3, le micro-relief étant réalisé avec un seul outil (68, 78) déplacé à la surface du substrat.
    - 5. Procédé selon l'une des revendications 1 à 3, le micro-relief étant réalisé par plusieurs outils (88, 98) travaillant simultanément et/ou successivement.
- 6. Procédé selon l'une des revendications 1 à 5, le micro-relief étant réalisé avec une scie déplacée suivant une direction à la fois.
- 7. Procédé selon l'une des revendications 1 à 5, les microcomposants étant des microprismes (80, 30 100).
  - 8. Procédé selon la revendication 7, les microprismes étant réalisés à l'aide d'une lame abrasive à profil en "V" (78).

9. Procédé selon la revendication 6, la scie ayant une lame à faces planes et parallèles, ou ayant au moins une face inclinée.

19

PCT/FR99/00403

- 10. Procédé selon l'une des revendications 5 précédentes, la première étape comportant le passage d'une lame sans grain d'abrasif dans sa matrice, cette lame étant utilisée comme vecteur d'un abrasif de polissage séparé et réparti dans les microreliefs.
- 11. Procédé selon l'une des revendications 10 précédentes, la première étape comportant en outre une attaque chimique superficielle du substrat.
  - 12. Procédé selon l'une des revendications l à 10, la première étape comportant en outre la formation d'un dépôt planarisant sur le substrat.
- 13. Procédé selon l'une des revendications l à 7, comportant l'utilisation d'une lame en "U" dont les parties latérales comportent des premiers grains d'abrasifs, et dont l'extrémité comporte des seconds grains abrasifs de plus forte granulométrie que les premiers.



FIG. 1











FIG. 3B



FIG. 3C













FIG. 5D



FIG. 6A



FIG. 5E



FIG. 6B



FIG. 6C





FIG. 8A





| 1 0: :00:                                                                                                                                                                                                                                                                                                                                                                                                         | SICATION OF CURUEOT MATTER                                                                                                                                                      |                                              | · · · · · · · · · · · · · · · · · · · |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|--|--|--|--|--|
| A. CLASSI<br>IPC 6                                                                                                                                                                                                                                                                                                                                                                                                | FICATION OF SUBJECT MATTER G02B5/04                                                                                                                                             |                                              |                                       |  |  |  |  |  |
| According to                                                                                                                                                                                                                                                                                                                                                                                                      | o International Patent Classification (IPC) or to both national classifi                                                                                                        | cation and IPC                               |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | SEARCHED                                                                                                                                                                        |                                              |                                       |  |  |  |  |  |
| Minimum do                                                                                                                                                                                                                                                                                                                                                                                                        | ocumentation searched (classification system followed by classifica                                                                                                             | tion symbols)                                |                                       |  |  |  |  |  |
| IPC 6                                                                                                                                                                                                                                                                                                                                                                                                             | G02B B24B                                                                                                                                                                       |                                              |                                       |  |  |  |  |  |
| Documental                                                                                                                                                                                                                                                                                                                                                                                                        | tion searched other than minimum documentation to the extent that                                                                                                               | such documents are included in the fields se | arched                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
| Electronic d                                                                                                                                                                                                                                                                                                                                                                                                      | lata base consulted during the international search (name of data b                                                                                                             | ase and, where practical, search terms used  | )                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
| C. DOCUM                                                                                                                                                                                                                                                                                                                                                                                                          | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                  |                                              |                                       |  |  |  |  |  |
| Category <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                             | Citation of document, with indication, where appropriate, of the re                                                                                                             | elevant passages                             | Relevant to claim No.                 |  |  |  |  |  |
| X                                                                                                                                                                                                                                                                                                                                                                                                                 | US 5 069 003 A (HOGREGFE ROBERT<br>3 December 1991<br>see the whole document                                                                                                    | ET AL)                                       | 1-13                                  |  |  |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                 | EP 0 684 105 A (KONDRATENKO VLAD                                                                                                                                                | IMIR                                         | 1-13                                  |  |  |  |  |  |
| Andreas and                                                                                                                                                                                                                                                                                                                                                                                                       | STEPANOVI) 29 November 1995<br>see page 7, line 8 - page 12, li<br>see page 14, line 41 - page 15,<br>figures 1-4,9                                                             |                                              | ·                                     |  |  |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                 | EP 0 532 229 A (AMERICAN TELEPHOTELEGRAPH) 17 March 1993 cited in the application                                                                                               | 1-5,<br>10-12                                |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | see column 2, line 50 - column 4                                                                                                                                                | l, line 3                                    |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 | -/                                           |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
| X Furt                                                                                                                                                                                                                                                                                                                                                                                                            | ther documents are listed in the continuation of box C.                                                                                                                         | Patent family members are listed             | in annex.                             |  |  |  |  |  |
| ° Special c                                                                                                                                                                                                                                                                                                                                                                                                       | ategories of cited documents :                                                                                                                                                  | "T" later document published after the inte  |                                       |  |  |  |  |  |
| "A" document defining the general state of the art which is not considered to be of particular relevance  "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the invention                                                                                                                                                                    |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
| "E" earlier document but published on or after the international filing date  "X" document of particular relevance; the claimed invention cannot be considered to                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "Carnot be considered novel or carnot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such document of the combination being obvious to a person skilled |                                              |                                       |  |  |  |  |  |
| "P" document published prior to the international filing date but in the art. later than the priority date claimed "&" document member of the same patent family                                                                                                                                                                                                                                                  |                                                                                                                                                                                 |                                              |                                       |  |  |  |  |  |
| Date of the                                                                                                                                                                                                                                                                                                                                                                                                       | actual completion of the international search                                                                                                                                   | Date of mailing of the international sea     | arch report                           |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 May 1999                                                                                                                                                                     | 26/05/1999                                   |                                       |  |  |  |  |  |
| Name and                                                                                                                                                                                                                                                                                                                                                                                                          | mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2                                                                                                       | Authorized officer                           |                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040. Tx. 31 651 epo nl.<br>Fax: (+31-70) 340-3016                                                                                   | THEOPISTOU, P                                |                                       |  |  |  |  |  |

1



PCT/FR 99/00403

|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                         |                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Category ' | Citation of document, with indication where appropriate, of the relevant passages                                                                                  | - Relevant to claim No |
| A          | US 3 254 556 A (JOHN J. J. STAUNTON) 7 June 1966 see column 7, line 43 - column 9, line 62; figures 10-16                                                          | 1-13                   |
| A          | WO 96 05525 A (TECHNOGLAS NEUHAUS GMBH;GRAEFE GUENTER (DE)) 22 February 1996 cited in the application see page 8, paragraph 1 - page 13, paragraph 3; figures 1-17 | 1-13                   |
| A          | PATENT ABSTRACTS OF JAPAN vol. 008, no. 271 (P-320), 12 December 1984 & JP 59 139002 A (SONY KK), 9 August 1984 cited in the application see abstract              | 1,7                    |
|            | •                                                                                                                                                                  |                        |
|            |                                                                                                                                                                    |                        |
|            | <i>-</i>                                                                                                                                                           |                        |

1



| inttional | Application No |
|-----------|----------------|
| PCT/FR    | 99/00403       |

| Patent document cited in search report |   | Publication date |                      |                                                  | Publication date                                     |
|----------------------------------------|---|------------------|----------------------|--------------------------------------------------|------------------------------------------------------|
| US 5069003                             | Α | 03-12-1991       | NONE                 |                                                  |                                                      |
| EP 0684105                             | Α | 29-11-1995       | WO<br>AU<br>JP<br>US | 9417956 A<br>7107294 A<br>8506769 T<br>5759088 A | 18-08-1994<br>29-08-1994<br>23-07-1996<br>02-06-1998 |
| EP 0532229                             | Α | 17-03-1993       | JP                   | 8068913 A                                        | 12-03-1996                                           |
| US 3254556                             | Α | 07-06-1966       | NONE                 |                                                  |                                                      |
| WO 9605525                             | Α | 22-02-1996       | DE<br>EP<br>US       | 4429080 C<br>0723670 A<br>5837082 A              | 08-02-1996<br>31-07-1996<br>17-11-1998               |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

### IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

ODER WIND OF THE PARTY OF THE P