Programming Assignment 2 Grading Rubric

The rubric below will be applied to each of the programs your submit for Programming Assignment 2. Each program will be assigned a score between 0 and 100. The overall score for programming assignment 2 will be the average of the three program scores.

Criteria	Notes	MaxPts	Earned Pts
Author Comments	no author comments	6	6
Informational Comment	Need to comment classes	6	4
Program Formatting	formatting ok	6	6
Program Meets Assignment Input and Output Specification	Accepts appropriate inputs and produces required output	12	12

Program Produce Correct Answers	Should not report true with neg values for positivemarkove In fixedpoint the goal is to not use floating point.	40	35
Program Compilation	Compiles ok.	30	30
Total Points per program		100	93

```
package progassgn2;
//Author: Raja Pragnesh Reddy Nandyala
//Assignment: Programming Assignment 2
//Instructor: Prof Dave Pitts
//Date: <due 2/21/2016
import java.util.Scanner;
public class PositiveMarkov {
        static int j = 0;
        static float total = 0;
        static float[] result = new float[7];
        public static void main(String[] args) {
                int noOfRows = 0;
                Scanner input = new Scanner(System.in);
                do {
                        System.out.println("Enter matrix input between 2 & 7");
                        noOfRows = input.nextInt();
                } while (!(noOfRows \geq 2 && noOfRows < 8));
                System.out.println("You have choosen " + noOfRows + "*" + noOfRows + "
matrix. Begin entering numbers.");
                float[][] matrix = new float[noOfRows][noOfRows];
                // reading a matrix one at a time
                for (int i = 0; i < matrix.length; i++) {
                        for (int j = 0; j < matrix[i].length; j++) {
                                System.out.print("Enter next number:" + " ");
                                matrix[i][j] = input.nextFloat();
                        }
                }
                // out of a read matrix
                for (int i = 0; i < matrix.length; i++) {
                        for (int j = 0; j < matrix[i].length; <math>j++) {
                                if (i == 0 && j == 0) {
                                        System.out.println("The matrix entered was ");
                                System.out.print(matrix[i][j] + " ");
                        System.out.println();
                }
                boolean returnValue = Validate(matrix);
                if (returnValue == true)
                        System.out.println("Positive Markov");
                else
                        System.out.println("Negetive Markov");
                input.close();
                                                       can't have nues
// calling a method to check condition
        static boolean Validate(float[][] matrix) {
// loop to add row values
                for (int row = 0; row < matrix.length; row++) {</pre>
                        float total = 0;
                        for (int column = 0; column < matrix.length; column++)</pre>
                               total = total + matrix[row][column];
                        // when sum is not equal to 1 then return false
                        if (total != 1.0)
```

}

```
package progassgn2;
//Author: Raja Pragnesh Reddy Nandyala
//Assignment: Programming Assignment 2
//Instructor: Prof Dave Pitts
//Date: <due 2/21/2016
import java.util.Scanner;
public class SelectColumn {
        static int select = 0;
        public static void main(String[] args) {
                Scanner input = new Scanner(System.in);
                System.out.print("Enter number of rows: ");
                int rows = input.nextInt();
                System.out.print("Enter number of columns: ");
                int columns = input.nextInt();
                // creating two dimensional array from give rows and columns
                int[][] twoDimArray = new int[rows][columns];
                // reading one after other
                for (int row = 0; row < twoDimArray.length; row++) {</pre>
                        for (int column = 0; column < twoDimArray[row].length; column++
) {
                                 System.out.print("Enter values in a matrix row " + row
+ " " + "Enter column " + column + " : ");
                                twoDimArray[row][column] = input.nextInt();
                        }
                System.out.println("Selectort column? ");
                int a = input.nextInt();
                int[] returnColumns = SelectColumns(twoDimArray, a);
// validating entered or selected column
                if (returnColumns == null) {
                        System.out.println("The column selector was invalid");
                } else {
                        System.out.println("The select column was");
                        for (int i = 0; i < returnColumns.length; i++)</pre>
                                System.out.println(returnColumns[i]);
                input.close();
        }
        static int[] SelectColumns(int[][] tempArray, int columnNumber) {
                int[] column = new int[tempArray.length];
                int index = 0;
                System.out.println("The array was");
                // getting out the given input array
                for (int row = 0; row < tempArray.length; row++) {</pre>
                        for (int columns = 0; columns < tempArray[row].length; columns+
+) {
                                 System.out.print(tempArray[row][columns] + " ");
                                 if (columns == columnNumber) {
                                         column[index++] = tempArray[row][columns];
                        System.out.println();
                }
```

```
4
```

```
if (index == 0)
                      return null;
               else
                     return column;
       }
}
```

```
package progassgn2;
import java.math.BigDecimal;
import java.text.DecimalFormat;
public class FixedPointDecimal {
        public static void main(String[] args) {
                 FixedPoint f1 = \text{new FixedPoint}(2, 44, 30);
                 System.out.println("value is: " + f1.value);
                 FixedPoint f2 = new FixedPoint(2, "71.56");
                 System.out.println("value is: " + f2.value);// printing second value of
                 // a constructor
                 System.out.println("value is: " + f1.add(f2));// adding f2 to f1
        }
}
class FixedPoint {
        int d;
        int w;
        int f;
        String floatString;
        double value;
        // using constructor converting into a required float value
        public FixedPoint(int d, int w, int f) {
                 this.d = d;
                 this.w = w;
                 String m;
                 // using decimal format to set max & minimum decimal points
                 DecimalFormat df = new DecimalFormat();
                 df.setMaximumFractionDigits(d);
                 df.setMinimumFractionDigits(d);
                 m = (String) (w + "." + f);
                 // converting and formating the string value to big decimal
                 BigDecimal tempValue = new BigDecimal(m);
                 this.value = Double.parseDouble(df.format(tempValue));

SixedPoint(int d, String f) {

this.d = d;

DecimalFormat df = new DecimalFormat();

Toaking Point

Toaking Point
        }
        public FixedPoint(int d, String f) {
                 df.setMaximumFractionDigits(d);
                 df.setMinimumFractionDigits(d);
                 BigDecimal tempValue = new BigDecimal(f);
                 this.value = Double.parseDouble(df.format(tempValue));
        public FixedPoint add(FixedPoint f) {
                 // checking two constructor decimal values
                 if (this.d == f.d) {
                          double floatTotal = this.value + f.value;
                          FixedPoint sumF = new FixedPoint(this.d, String.valueOf(floatTo
tal));
                          return sumF;
                 } else {
                          return null;
```