```
In [76]: # import libaries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [144]: x=pd.read_csv(r"C:\Users\user\Downloads\\4_drug200 - 4_drug200.csv")

Out[144]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [145]: x=x.head(10)

Out[145]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	М	LOW	HIGH	11.037	drugC
8	60	М	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY

Untitled20 - Jupyter Notebook

```
In [146]:
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 10 entries, 0 to 9
           Data columns (total 6 columns):
            #
                Column
                              Non-Null Count Dtype
            0
                              10 non-null
                                               int64
                Age
            1
                                               object
                Sex
                              10 non-null
            2
                BP
                                               object
                              10 non-null
            3
                Cholesterol 10 non-null
                                               object
            4
                Na_to_K
                              10 non-null
                                               float64
            5
                Drug
                              10 non-null
                                               object
           dtypes: float64(1), int64(1), object(4)
           memory usage: 608.0+ bytes
In [147]:
Out[147]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
In [148]: d=x[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]
Out[148]:
                                Cholesterol Na_to_K
              Age
                  Sex
                            BP
                                                    Drug
            0
                23
                     F
                           HIGH
                                             25.355 drugY
                                     HIGH
            1
                47
                           LOW
                                     HIGH
                                             13.093 drugC
                     M
            2
                47
                           LOW
                                             10.114 drugC
                     M
                                     HIGH
            3
                28
                     F NORMAL
                                     HIGH
                                              7.798 drugX
            4
                61
                     F
                           LOW
                                     HIGH
                                             18.043 drugY
            5
                22
                     F NORMAL
                                     HIGH
                                              8.607 drugX
                49
                     F NORMAL
            6
                                     HIGH
                                             16.275 drugY
            7
                41
                           LOW
                                             11.037 drugC
                     Μ
                                     HIGH
            8
                60
                     М
                       NORMAL
                                     HIGH
                                             15.171 drugY
            9
                43
                           LOW
                                   NORMAL
                                             19.368 drugY
                     Μ
```

In [149]:

Out[149]:

	Age	Na_to_K
count	10.000000	10.000000
mean	42.100000	14.486100
std	13.916018	5.482634
min	22.000000	7.798000
25%	31.250000	10.344750
50%	45.000000	14.132000
75%	48.500000	17.601000
max	61.000000	25.355000

In [150]:

Out[150]: <seaborn.axisgrid.PairGrid at 0x190c2987880>

3 of 7

```
In [151]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[151]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [153]:

In [154]:

Out[154]: <AxesSubplot:>

In [155]: x=x1[['Age']]

```
In [156]: # to split my dataset into traning and test date
          from sklearn.model_selection import train_test_split
In [157]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[157]: LinearRegression()
In [158]:
          0.0
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [159]:
Out[159]:
                Co-efficient
                       1.0
           Age
In [160]: prediction=lr.predict(x_test)
Out[160]: <matplotlib.collections.PathCollection at 0x190c779d0d0>
           60
           58
           56
           54
           52
           50
           48
                  48
                        50
                              52
                                    54
                                          56
                                                58
In [161]: -
Out[161]: 1.0
In [162]:
Out[162]: 1.0
In [163]:
```

```
In [164]: rr=Ridge(alpha=10)
     rr.fit(x_train,y_train)
Out[164]: 0.999650455066024
In [165]: la=Lasso(alpha=10)
Out[165]: Lasso(alpha=10)
In [166]:
Out[166]: 0.982590365493147
In [167]: | from sklearn.linear_model import ElasticNet
     en=ElasticNet()
Out[167]: ElasticNet()
In [168]:
Out[168]: array([0.99427871])
In [169]:
Out[169]: array([46.94850838, 46.94850838, 60.8684103 ])
In [170]:
Out[170]: 0.21740907233346718
In [171]:
Out[171]: 0.9998268982861678
In [172]:
In [173]:
     Mean Absolute Error 0.0
In [174]:
     Mean Squared Error 0.0
In [175]:
     Root Mean Squared Error 0.0
 In [ ]:
```

7 of 7