Gun Violence in the US. Application of Unsupervised Learning Methods for Trend Exploration

by Sumaira Afzal, Viraja Ketkar, Murlidhar Loka, Vadim Spirkov

Abstract To do

Background

Objective

The objective of this research is to ...

Data Analysis

The data set used for this research contains 260k of gun violence incidents in the US between January 2013 and March 2018. The data has been soursed from Kaggle.

Originally the data set was uploaded to Kaggle from Gun Violence Archive (GVA) Web site gunviolencearchive.org. This is a not for profit corporation formed in 2013 to provide free online public access to accurate information about gun-related violence in the United States. GVA will collect and check for accuracy, comprehensive information about gun-related violence in the U.S. and then post and disseminate it online.

Data Dictionary

Column Name	Column Description
incident_id	Incident ID
date	Date of crime
state	State
city_or_countyCity	City/county of crime
address	Address of the location of the crime
n_killed	Number of people killed
n_injured	Number of people injured
incident_url	URL regarding the incident
source_url	Reference to the reporting source
incident_url_fields_missing	TRUE if the incident_url is present,
-	FALSE otherwise
congressional_district	Congressional district id
gun_stolen	Status of guns involved in the crime
	(i.e. Unknown, Stolen, etc)
gun_type	Typification of guns used in the crime
incident_characteristics	Characteristics of the incidence
latitude	Location of the incident
location_description	Description of the location
longitude	Location of the incident
n_guns_involved	Number of guns involved in incident
notes	Additional information of the crime
participant_age	Age of participant(s) at the time of
	crime (victicms nad suspects)
participant_age_group	Age group of participant(s) at the time
	crime
participant_gender	Gender of participant(s)
participant_name	Name of participant(s) involved in
	crime
participant_relationship	Relationship of participant to other
	participant(s)

Column Name	Column Description
participant_status participant_type sources state_house_district state_senate_district	Extent of harm done to the participant Type of participant (victim or suspect) Participants source Voting house district Territorial district from which a senator to a state legislature is elected.

Data Exploration

Firstly we are going to load and examine content and statistics of the data set

Data Frame Summary

data

Dimensions: 5000 x 29

Duplicates: 0

Table 2: Gun Violence Dataset Summary

No	Variable	Stats / Values	Freqs (% of Valid)	Missing
1	incident_id	Mean (sd) : 559918.8	5000 distinct	0
	[integer]	(293493.9)	values	(0%)
		min < med < max:		
		92119 < 549418.5 < 1083435		
		IQR (CV): 515148.2 (0.5)		
2	date	1. 2013-04-14	1 (0.0%)	0
	[factor]	2. 2014-01-01	4 (0.1%)	(0%)
		3. 2014-01-02	3 (0.1%)	
		4. 2014-01-03	4 (0.1%)	
		[1475 others]	4988 (99.8%)	
3	state	1. Alabama	95 (1.9%)	0
	[factor]	2. Alaska	31 (0.6%)	(0%)
		3. Arizona	50 (1.0%)	
		4. Arkansas	62 (1.2%)	
		[47 others]	4762 (95.2%)	
4	city_or_county	1. Abbeville	1 (0.0%)	0
	[factor]	2. Aberdeen	2 (0.0%)	(0%)
		3. Abilene	3 (0.1%)	
		4. Abingdon	1 (0.0%)	
		[1621 others]	4993 (99.9%)	
5	address	1. 200 West Henry Street	1 (0.0%)	365
	[factor]	2. 2100 block of East 12th	1 (0.0%)	(7.3%)
		3. 2100 block of Pauger Str	1 (0.0%)	
		4. 5404 S.E. 14th St	1 (0.0%)	
		[4571 others]	4631 (99.9%)	_
6	n_killed	Mean (sd): 0.2 (0.5)	5 distinct values	0
	[integer]	min < med < max:		(0%)
		0 < 0 < 4		
_		IQR (CV): 0 (2)		
7	n_injured	Mean (sd): 0.5 (0.7)	10 distinct values	0
	[integer]	min < med < max:		(0%)
		0<0<9		
		IQR (CV) : 1 (1.5)		

No	Variable	Stats / Values	Freqs (% of Valid)	Missing
8	incident_url [factor]	<pre>1. http: //www.gunviolencearc/ 2. http: //www.gunviolencearc/ 3. http: //www.gunviolencearc/ 4. http: //www.gunviolencearc/ [</pre>	1 (0.0%) 1 (0.0%) 1 (0.0%) 1 (0.0%) 4996 (99.9%)	0 (0%)
9	source_url [factor]	4996 others] 1. /%20http%3A//ktla.com/201 2. /%20http%3A//www.nola.com 3. /%20http%3A//www.pressand 4. /blog.tsa.gov/2014/04/tsa	4990 (99.9%)	6 (0.12%)
10	incident_url_fields_missing	[4863 others] 1. False	5000 (100.0%)	0 (0%)
11	[factor] congressional_district [integer]	Mean (sd): 8 (8.6) min < med < max: 0 < 5 < 53 IQR (CV): 8.2 (1.1)	53 distinct values	268 (5.36%)
12	gun_stolen [factor]	1. 0::Not-stolen 2. 0::Not-stolen 1::Stolen 3. 0::Stolen 4. 0::Stolen 1::Stolen	30 (1.0%) 2 (0.1%) 89 (3.0%) 20 (0.7%)	2057 (41.14%)
13	gun_type [factor]	[53 others] 1. 0::10mm 2. 0::12 gauge 3. 0::12 gauge 1::12 gauge 4. 0::20 gauge	2802 (95.2%) 2 (0.1%) 3 (0.1%) 1 (0.0%) 3 (0.1%)	2056 (41.12%)
14	incident_characteristics [factor]	[167 others] 1. Accidental Shooting Acci 2. Accidental Shooting Acci 3. Accidental Shooting Acci 4. Accidental Shooting Acci	2935 (99.7%) 2 (0.0%) 1 (0.0%) 1 (0.0%) 1 (0.0%) 4984 (99.9%)	11 (0.22%)
15	latitude [numeric]	[1179 others] Mean (sd): 37.6 (5.3) min < med < max: 19.5 < 38.7 < 71.3 IQR (CV): 7.5 (0.1)	4602 distinct values	191 (3.82%)
16	location_description [factor]	1. "The Grove" business dist 2. (Blacklick) 3. (Brownsville) 4. (Burnside) [788 others]	1 (0.1%) 1 (0.1%) 1 (0.1%) 1 (0.1%) 862 (99.5%)	4134 (82.68%)
17	longitude [numeric]	Mean (sd): -89.7 (14.8) min < med < max: -159.4 < -86.5 < -68.1 IQR (CV): 14.6 (-0.2)	4590 distinct values	191 (3.82%)
18	n_guns_involved [integer]	Mean (sd): 14.6 (-0.2) Mean (sd): 1.6 (8.4) min < med < max: 1 < 1 < 400 IQR (CV): 0 (5.2)	32 distinct values	2056 (41.12%)

No	Variable	Stats / Values	Freqs (% of Valid)	Missing
19	notes	1. 'heard shots, felt pain.'	1 (0.0%)	1700
	[factor]	2. Man attempted to shoot i	1 (0.0%)	(34%)
		3. Mike's Food Store	1 (0.0%)	
		4. "shot himself in the t	1 (0.0%)	
20		[3127 others]	3296 (99.9%)	1000
20	participant_age	1. 0::0 1::19	1 (0.0%)	1902
	[factor]	2. 0::1 3. 0::1 1::19 2::20	1 (0.0%)	(38.04%)
		4. 0::1 1::22	1 (0.0%)	
		[1045 others]	1 (0.0%) 3094 (99.9%)	
21	participant_age_group	1. 0::Adult 18+	1962 (47.6%)	874
21	[factor]	2. 0::Adult 18+ 1::Adult 18	1036 (25.1%)	(17.48%)
	[ideto1]	3. 0::Adult 18+ 1::Adult 18	264 (6.4%)	(17.1070)
		4. 0::Adult 18+ 1::Adult 18	99 (2.4%)	
		[104 others]	765 (18.5%)	
22	participant_gender	1. 0::Female	151 (3.6%)	777
	[factor]	2. 0::Female 1::Female	13 (0.3%)	(15.54%)
	-	3. 0::Female 1::Female 2::	2 (0.0%)	,
		4. 0::Female 1::Female 2::	2 (0.0%)	
		[108 others]	4055 (96.0%)	
23	participant_name	1. 0::A.J. Hagner 1::Wayne	1 (0.0%)	2540
	[factor]	2. 0::Aaron Parkinson	1 (0.0%)	(50.8%)
		3. 0::Aaron Roberts 12::Gary	1 (0.0%)	
		4. 0::Aaron T Vincent 1::Gr	1 (0.0%)	
		[2449 others]	2456 (99.8%)	
24	participant_relationship	1. 0::Aquaintance	1 (0.3%)	4683
	[factor]	2. 0::Armed Robbery	11 (3.5%)	(93.66%)
		3. 0::Armed	3 (0.9%)	
		Robbery 1::Arme	1 (0.3%)	
		4. 0::Armed	301 (95.0%)	
		Robbery 1::Arme		
25	marki simant, skakus	[44 others]	EO (1 20/)	580
25	participant_status [factor]	1. 0::Arrested 2. 0::Arrested 1::Arrested	59 (1.3%) 11 (0.2%)	(11.6%)
	[lactor]	3. 0::Arrested 1::Arrested	5 (0.1%)	(11.070)
		4. 0::Arrested 1::Arrested	1 (0.0%)	
		[261 others]	4344 (98.3%)	
26	participant_type	1. 0::Subject-Suspect	913 (20.4%)	529
	[factor]	2. 0::Subject-Suspect 1::Su	190 (4.2%)	(10.58%)
	[]	3. 0::Subject-Suspect 1::Su	68 (1.5%)	(,
		4. 0::Subject-Suspect 1::Su	18 (0.4%)	
		[67 others]	3282 (73.4%)	
27	sources	1. http:	1 (0.0%)	19
	[factor]	//13wham.com/news/lo/ 2.	1 (0.0%)	(0.38%)
		http:	1 (0.0%)	
		//13wham.com/news/to/3.	1 (0.0%)	
		http:	4977 (99.9%)	
		//44news.wevv.com/gu/4.		
		http:		
		//44news.wevv.com/te/[
20	.r.r. 1	4860 others]	100 1:	052
28	state_house_district	Mean (sd): 55.1 (40.5)	183 distinct values	853
	[integer]	min < med < max:		(17.06%)
		1 < 46 < 209		
20	state consta district	IQR (CV): 64 (0.7)	65 dictinct values	717
29	state_senate_district	Mean (sd) : 20.3 (14.4) min < med < max:	65 distinct values	
	[integer]	min < med < max: 1 < 18 < 67		(14.34%)
		IQR (CV) : 22 (0.7)		

Initial observation of the data shows that there is a number of features which do not present any analytical value (Figure: ??). They are:

- incident_id
- incident_url
- source url
- state_house_district
- state_senate_district
- congressional_district
- sources
- incident_url_fields_missing

We also going to drop *participant_age* feature in favour of the *participant_age_group*. The age group is more suatable for categorization and has much less missing data (16% vs 39%).

The reamining features could be groupd as follows.

Participant Features This group describes suspects and victims found on the crime scene. The content of the features of this group is structured as follows: [idx1::value1 | idx2::value2] (see Figure ??). This is not quite acceptable for the analytics, thus the particiapnt related features would have to be parsed to extract valuable information about the crime.

It is feasible. *utils.R* script contains *parseFeature* function, which parses [*idx1::value1* | | *idx2::value2*] structure and returnes a named vector object. For example a *participent_type* could be structured as follows:

0	1	2	3
Victim	Victim	Subject-Suspect	Subject-Suspect

Unforunatley *participant_relationship* feature missing **93**% of values. It is not possible to impute the missing data thus we will drop it. For obvious reasons we are aslo going to get rid of *participant_name*. The rest of the participant-related features will be parsed and replaced wit the new categorical attributes. In order to do so we have to understand what possible values each participant-related feature can have. for this we will employ text mining technique.

We begin with *participant_type* feature

As we can see the *participan type* may have two values *vitim* and *subject-suspect*. If the *participant type* is missing we will consider it as **unknown**. Thus we will be employing *participant type* feature as a basis to impute all other participant stats.

Let's find the possible values of parctipant_age_group feature (the coded is ommitted).

```
[1] "adult" "child" "teen"
```

Further examination of the feature data shows that there the age group values are:

- Adult 18+
- Teen 12-17
- Child 0-11

Thus using <code>participant_age_group</code> feature data we will create two ne ones: <code>vicitm_age_group</code> and <code>suspect_age_group</code>. These new categorical features will be coded as follows:

- 0 no info
- 1 all adults
- 2 children/ teens
- 3 adults and children/ teens . Adults make majority
- 4 adults and children/ teens. Chlidren/ teens make majority

participant_gender could also be parsed and replaced with the coded categorical features as descrived below.

As a result we will be adding two new features:

victim_gender - gender of the victims suspect_gender - gender of the suspects

Gender Codes

- 0 no info
- 1 male
- 2 female
- 3 male dominated group
- 4 femail dominated goup

The last feature of the group is *participant_status*. It maintains the outcome of the incident. Let's review the content of the attribute.

```
[1] "arrested" "injured" "injured," "killed" "unharmed" "unharmed,"
```

Based on our findings we will be creating three new numerical features:

- n_victim_killed number of victims killed
- n_victim_injured number of victims injured
- n_arrested number of suspects arrested

Gun Related Features There are three attributes that describe gun types: gun_stolen , gun_type and $n_guns_invoved$ (Figure: ??) gun_type and gun_stolen have similar to the participant-related faetures encoding ($[idx1::value1 \mid idx2::value2]$). Thus they also could be parsed and substituded with the categorical features. We begin with the gun type.

Figure 1: The Most Frequently Used Gun Types

Employing simple text mining techniques we can see that **handgun**, **rifle**, **shotgun** and **auto** make the majority. Thus we will add ane feature *gun_type_involved* to categorize the gun types as follows:

- 0 unknown
- 1 handgun
- 2 shotgun/ rifle
- 3 automatic
- 4 mix/other

gun_stolen attribute tells if the gun was stolen or aquired legally. We are going to create a new categorical feature - *gun_origin* which would maintain the folloing data:

- 0 unknown
- 1 all stolen
- 2 all acquired legally
- 3 mix of stolen and legal guns

Location Related Features To analyze geography of the crimes we will be employing *state*, *city_or_county*, *latitude* and *longitude* attribute. since we have the coordinates the *address* feature does not present much value for unsupervised learning. We will be using it though to impute missing latitude and longitude values. This activity will be covered in greater details in **Missing Data** paragraph.

Descriptive Features *notes, location_description* and *incident_characteristics* are free-text features that might provide additional insights about the crime scene. We are going to take a close look at each feature and decide if we could utilize it.

Lets' begin with the notes

Figure 2: Most Common Words in Notes

Unfortunately *notes* feature does not provide more knowlege to what the others features already supply. Thus it will be dropped.

location_description on the other hand, could be useful to classify location type. Unfortunately 82% of the data is missing. Nonetheless this feature appears to be too important to ignore. Let's see how much we can salvage.

Figure 3: Most Common Bi-gram Terms in Location Decription

As plot 3 shows we could utilize bi-gram terms if the location description is available. Thus let's add new categorical feature - *place_type*, which would have the fllowing values:

- 0 unknown
- 1 school/ university/ college
- 2 community center/ shopping center/ hospital/ church
- 3 home invasion
- 4 street/drive by
- 5 other public places

The last feature in the group is *incident_characteristics*. The feature is almost 100% populated. As with the previous two we are going to find out what info it maintains.

	word	frea
shot wounded	shot wounded	
wounded injured	wounded injured	
dead murder	dead murder	
murder accidental	murder accidental	1111
shot dead	shot dead	1111
accidental suicide	accidental suicide	1103
nonshooting incident	nonshooting incident	962
shots fired	shots fired	930
injured shot	injured shot	770
officer involved	officer involved	753
fired no	fired no	716
no injuries	no injuries	714
found commission	found commission	639
guns found	guns found	639
commission crimes	commission crimes	638
possession guns	possession guns	635
involved incident	involved incident	487
subject suspect	subject suspect	423

suspect perpetrator	suspect perpetrator	423
injury death	injury death	413
incident officer	incident officer	408
carry lost	carry lost	401
flourishing open	flourishing open	401
lost found	lost found	401
open carry	open carry	401
brandishing flourishing	brandishing flourishing	398
death evidence	death evidence	397
evidence dgu	evidence dgu	397
robbery injury	robbery injury	397
dgu found	dgu found	391
home invasion	home invasion	391
armed robbery	armed robbery	390
defensive use	defensive use	363
atf le	atf le	361
confiscation raid	confiscation raid	361
le confiscation	le confiscation	361
raid arrest	raid arrest	361
suicide shot	suicide shot	359
felon prohibited	felon prohibited	354
gun felon	gun felon	354
prohibited person	prohibited person	354
possession gun	possession gun	353
drug involvement	drug involvement	345
found shot	found shot	334
accidental shooting	accidental shooting	320
involved shooting	involved shooting	316
arrest possession	arrest possession	302
car car	car car	269
car street	car street	269
driveby car	driveby car	269

Information the feature provides proved to be useful. It can support two features: <code>place_type</code>, which was introduced above and <code>inceident_type</code>. The <code>incident_type</code> is going to be a categorical attribute with the following codes:

- 0 unknown
- 1 accidental
- 2 defensive use
- 3 armded robbery
- 4 suicide
- 5 raid/ arrest/ warrant
- 6 domestic violence
- 7 gun brandishing, flourishing, open demonstration

Missing Data

Takeaways from Data Exploration Excersize

Data Preparation

Data Imputing

Modeling and Evalutation

Feature Selection

Data Upsampling

Partitioning Clustering Approach

Hierarchical Clustering Approach

Density-based Clustering Methods

Clustering Method Evaluation

Model Deployment

Conclusion

Note from the Authors

This file was generated using *The R Journal* style article template, additional information on how to prepare articles for submission is here - Instructions for Authors. The article itself is an executable R Markdown file that could be downloaded from Github with all the necessary artifacts.

Sumaira Afzal York University School of Continuing Studies

Viraja Ketkar York University School of Continuing Studies

Murlidhar Loka York University School of Continuing Studies

Vadim Spirkov York University School of Continuing Studies