Linear Combination

Definition 1

If **w** is a vector in a vector space V, then **w** is said to be a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ in V if **w** can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r \tag{1}$$

where $k_1, k_2, ..., k_r$ are scalars. These scalars are called the **coefficients** of the linear combination.

Theorem 4.3.1

If $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$ is a nonempty set of vectors in a vector space V, then:

- (a) The set W of all possible linear combinations of the vectors in S is a subspace of V.
- (b) The set W in part (a) is the "smallest" subspace of V that contains all of the vectors in S in the sense that any other subspace that contains those vectors contains W.

EXAMPLE 4 | Linear Combinations

Consider the vectors $\mathbf{u} = (1, 2, -1)$ and $\mathbf{v} = (6, 4, 2)$ in \mathbb{R}^3 . Show that $\mathbf{w} = (9, 2, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w}' = (4, -1, 8)$ is *not* a linear combination of \mathbf{u} and \mathbf{v} .

Solution In order for **w** to be a linear combination of **u** and **v**, there must be scalars k_1 and k_2 such that $\mathbf{w} = k_1 \mathbf{u} + k_2 \mathbf{v}$; that is,

$$(9,2,7) = k_1(1,2,-1) + k_2(6,4,2) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2)$$

Equating corresponding components gives

$$k_1 + 6k_2 = 9$$

$$2k_1 + 4k_2 = 2$$

$$-k_1 + 2k_2 = 7$$

Solving this system using Gaussian elimination yields $k_1 = -3$, $k_2 = 2$, so

$$\mathbf{w} = -3\mathbf{u} + 2\mathbf{v}$$

Similarly, for \mathbf{w}' to be a linear combination of \mathbf{u} and \mathbf{v} , there must be scalars k_1 and k_2 such that $\mathbf{w}' = k_1\mathbf{u} + k_2\mathbf{v}$; that is,

$$(4,-1,8) = k_1(1,2,-1) + k_2(6,4,2) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2)$$

Equating corresponding components gives

$$k_1 + 6k_2 = 4$$

$$2k_1 + 4k_2 = -1$$

$$-k_1 + 2k_2 = 8$$

This system of equations is inconsistent (verify), so no such scalars k_1 and k_2 exist. Consequently, \mathbf{w}' is not a linear combination of \mathbf{u} and \mathbf{v} .

Question:

2. Express the following as linear combinations of $\mathbf{u} = (2, 1, 4)$, $\mathbf{v} = (1, -1, 3)$, and $\mathbf{w} = (3, 2, 5)$.

a.
$$(-9, -7, -15)$$
 b. $(6, 11, 6)$

$$\mathbf{c}.\ (0,0,0)$$

Solution:

(a) For (-9,-7,-15) to be a linear combination of the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} , there must exist scalars a, b, and c such that

$$a(2,1,4)+b(1,-1,3)+c(3,2,5)=(-9,-7,-15)$$

Equating corresponding components on both sides yields the linear system

$$2a + 1b + 3c = -9$$

$$1a - 1b + 2c = -7$$

$$4a + 3b + 5c = -15$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$. There is only one 0 0 1 -2

solution to this system, a=-2, b=1, c=-2, therefore $(-9,-7,-15)=-2\mathbf{u}+1\mathbf{v}-2\mathbf{w}$.

(b) For (6,11,6) to be a linear combination of the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} , there must exist scalars a, b, and c such that

$$a(2,1,4)+b(1,-1,3)+c(3,2,5)=(6,11,6)$$

Equating corresponding components on both sides yields the linear system

$$2a + 1b + 3c = 6$$

$$1a - 1b + 2c = 11$$

$$4a + 3b + 5c = 6$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 0 & 1 & 0 & -5 \end{bmatrix}$. There is only one

solution to this system, a=4, b=-5, c=1, therefore $(6,11,6)=4\mathbf{u}-5\mathbf{v}+1\mathbf{w}$.

(c) For (0,0,0) to be a linear combination of the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} , there must exist scalars a, b, and c such that

$$a(2,1,4)+b(1,-1,3)+c(3,2,5)=(0,0,0)$$

Equating corresponding components on both sides yields the linear system

$$2a + 1b + 3c = 0$$

$$1a - 1b + 2c = 0$$

$$4a + 3b + 5c = 0$$

 $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$ whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$. There is only one 0 0 1 0

solution to this system, a=0, b=0, c=0, therefore $(0,0,0)=0\mathbf{u}+0\mathbf{v}+0\mathbf{w}$.

Question:

3. Which of the following are linear combinations of

$$A = \begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix}?$$

a.
$$\begin{bmatrix} 6 & -8 \\ -1 & -8 \end{bmatrix}$$
 b. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ **c.** $\begin{bmatrix} -1 & 5 \\ 7 & 1 \end{bmatrix}$

b.
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

c.
$$\begin{bmatrix} -1 & 5 \\ 7 & 1 \end{bmatrix}$$

Solution:

(a) For $\begin{bmatrix} 6 & -8 \\ -1 & -8 \end{bmatrix}$ to be a linear combination of A, B, and C, there must exist scalars a, b, and c such

$$a\begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix} + b\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + c\begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & -8 \\ -1 & -8 \end{bmatrix}$$

Equating corresponding entries on both sides yields the linear system

$$4a + 1b + 0c = 6$$

 $0a - 1b + 2c = -8$
 $-2a + 2b + 1c = -1$
 $-2a + 3b + 4c = -8$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$. The linear system is

consistent, therefore $\begin{bmatrix} 6 & -8 \\ -1 & -8 \end{bmatrix}$ is a linear combination of A, B, and C.

- **(b)** The zero matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is a linear combination of A, B, and C since $0A + 0B + 0C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- (c) For $\begin{bmatrix} -1 & 5 \\ 7 & 1 \end{bmatrix}$ to be a linear combination of A, B, and C, there must exist scalars a, b, and c such

$$a\begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix} + b\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + c\begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 7 & 1 \end{bmatrix}$$

Equating corresponding entries on both sides yields the linear system

$$4a + 1b + 0c = -1$$

 $0a - 1b + 2c = 5$
 $-2a + 2b + 1c = 7$
 $-2a + 3b + 4c = 1$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. The last row corresponds

to the equation 0=1 which is contradictory. We conclude that $\begin{bmatrix} -1 & 5 \\ 7 & 1 \end{bmatrix}$ is not a linear combination of A, B, and C.

3

Question:

6. In each part express the vector as a linear combination of

$$\mathbf{p}_1 = 2 + x + 4x^2$$
, $\mathbf{p}_2 = 1 - x + 3x^2$, and $\mathbf{p}_3 = 3 + 2x + 5x^2$.

a.
$$-9 - 7x - 15x^2$$

b.
$$6 + 11x + 6x^2$$

d.
$$7 + 8x + 9x^2$$

Solution:

(a) For $-9-7x-15x^2$ to be a linear combination of the vectors \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 , there must exist scalars a, b, and c such that

$$a(2+x+4x^2)+b(1-x+3x^2)+c(3+2x+5x^2)=-9-7x-15x^2$$

holds for all real x values. Grouping the terms according to the powers of x yields

$$(2a+b+3c)+(a-b+2c)x+(4a+3b+5c)x^2=-9-7x-15x^2$$

Since this equality must hold for every real value x, the coefficients associated with the like powers of x on both sides must match. This results in the linear system

$$2a + 1b + 3c = -9$$

$$1a - 1b + 2c = -7$$

$$4a + 3b + 5c = -15$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$. There is only one

solution to this system, a = -2, b = 1, c = -2, therefore

$$-9 - 7x - 15x^2 = -2\mathbf{p}_1 + 1\mathbf{p}_2 - 2\mathbf{p}_3.$$

4

(b) For $6+11x+6x^2$ to be a linear combination of the vectors \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 , there must exist scalars a, b, and c such that

$$a(2+x+4x^2)+b(1-x+3x^2)+c(3+2x+5x^2)=6+11x+6x^2$$

holds for all real x values. Grouping the terms according to the powers of x yields

$$(2a+b+3c)+(a-b+2c)x+(4a+3b+5c)x^2=6+11x+6x^2$$

Since this equality must hold for every real value x, the coefficients associated with the like powers of x on both sides must match. This results in the linear system

$$2a + 1b + 3c = 6$$

 $1a - 1b + 2c = 11$
 $4a + 3b + 5c = 6$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. There is only one

solution to this system, a=4, b=-5, c=1, therefore $6+11x+6x^2=4\mathbf{p}_1-5\mathbf{p}_2+1\mathbf{p}_3$.

- (c) By inspection, $0 = 0p_1 + 0p_2 + 0p_3$.
- (d) For $7 + 8x + 9x^2$ to be a linear combination of the vectors \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 , there must exist scalars a, b, and c such that

$$a(2+x+4x^2)+b(1-x+3x^2)+c(3+2x+5x^2)=7+8x+9x^2$$

holds for all real x values. Grouping the terms according to the powers of x yields

$$(2a+b+3c)+(a-b+2c)x+(4a+3b+5c)x^2=7+8x+9x^2$$

Since this equality must hold for every real value x, the coefficients associated with the like powers of x on both sides must match. This results in the linear system

$$2a + 1b + 3c = 7$$

 $1a - 1b + 2c = 8$
 $4a + 3b + 5c = 9$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$. There is only one

5

solution to this system, a=0, b=-2, c=3, therefore $7+8x+9x^2=0\mathbf{p}_1-2\mathbf{p}_2+3\mathbf{p}_3$.