บทที่ 1 ลิมิตและความต่อเนื่อง

2301107 Calculus I

บทที่ 1 ลิมิตและความต่อเนื่อง

1. ความหมายของลิมิต

- 2. ลิมิตทางซ้ายและลิมิตทางขวา
- 3. ทฤษฎีบทที่เกี่ยวกับลิมิต
- 4. ลิมิตเกี่ยวกับอนันต์
- 5. ความต่อเนื่อง

• พิจารณาค่าของฟังก์ชัน เมื่อ x มีค่า ใกล้ ๆ 2

\mathcal{X}	f(x)	X	f(x)
1	5	3	1

 $f(x) = x^3 - 6x^2 + 9x + 1$

• พิจารณาค่าของฟังก์ชัน เมื่อ x มีค่า ใกล้ ๆ 2

\mathcal{X}	f(x)	\mathcal{X}	f(x)
1	5	3	1
1.5	4.375	2.5	1.625

$$f(x) = x^3 - 6x^2 + 9x + 1$$

• พิจารณาค่าของฟังก์ชัน เมื่อ x มีค่า ใกล้ ๆ 2

\mathcal{X}	f(x)	\mathcal{X}	f(x)
1	5	3	1
1.5	4.375	2.5	1.625
1.9	3.299	2.1	2.701
1.95	3.150	2.05	2.850
1.99	3.030	2.01	2.970

→ x • จะได้ว่า f(x) จะมีค่าใกล้ ๆ 3

$$f(x) = x^3 - 6x^2 + 9x + 1$$

• พิจารณาค่าของฟังก์ชัน เมื่อ x มีค่า ใกล้ ๆ 2

	\mathcal{X}	f(x)	\mathcal{X}	f(x)
	1	5	3	1
	1.5	4.375	2.5	1.625
_	1.9	3.299	2.1	2.701
_	1.95	3.150	2.05	2.850
	1.99	3.030	2.01	2.970

- → X จะได้ว่า f(x) จะมีค่าใกล้ ๆ 3
 - โดยที่เราไม่สนใจค่าที่ x=2

$$f(x) = x^3 - 6x^2 + 9x + 1$$

ให้ f(x) เป็นฟังก์ชัน ซึ่งนิยามเมื่อ x มีค่าใกล้ a โดยอาจยกเว้นที่ a เราจะกล่าวว่า "f(x) มี**ลิมิต**เป็นจำนวนจริง L เมื่อ x มีค่าเข้าใกล้ a" หรือเขียนแทนด้วย

$$\lim_{x \to a} f(x) = L$$

เมื่อ "เราสามารถทำให้ค่าของf(x) เข้าใกล้ L เท่าใดก็ได้ เมื่อ x มี ค่าเข้าใกล้ a แต่ไม่เท่ากับ a"

ตัวอย่าง จงหา
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

\mathcal{X}	f(x)	
0	1	
0.5	0.67	
0.9	0.53	
0.99	0.503	

\mathcal{X}	f(x)
2	0.33
1.5	0.40
1.1	0.48
1.01	0.498

เราสามารถคาดได้ว่า
$$\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$$

ตัวอย่าง จงหา
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$

สังเกตว่า f(t) = f(-t) เราเรียกฟังก์ชันที่มีสมบัตินี้ว่า ฟังก์ชันคู่ (even function)

t	f(t)
-1	0.162
-0.5	0.1655
-0.1	0.16662
-0.01	0.16666

เราสามารถคาดได้ว่า
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} = 0.166666... = \frac{1}{6}$$

ตัวอย่าง จงหา
$$\lim_{x\to 0} \frac{\sin x}{x}$$

\mathcal{X}	f(x)	\mathcal{X}	f(x)
-1	0.841	1	0.841
-0.5	0.959	0.5	0.959
-0.1	0.998	0.1	0.998
-0.01	0.99998	0.01	0.99998
-0.001	0.9999998	0.001	0.9999998

เราสามารถคาดได้ว่า
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

ตัวอย่าง จงหา
$$\lim_{x\to 0} \sin\frac{\pi}{x}$$

\mathcal{X}	f(x)	
1	0	
0.5	0	
0.1	0	
0.01	0	
0.001	0	

$\boldsymbol{\mathcal{X}}$	f(x)	
2	1	
0.3	-0.866	
0.07	0.782	
0.009	-0.342	
0.0031	0.968	
0.00097	0.225	

ในกรณีนี้เราจะกล่าวว่า
$$\lim_{x\to 0} \sin\frac{\pi}{x}$$
 ไม่มีค่า

ตัวอย่าง จงหา
$$\lim_{x\to 0} \sin\frac{\pi}{x}$$

ในกรณีนี้เราจะกล่าวว่า
$$\lim_{x\to 0} \sin\frac{\pi}{x}$$
 ไม่มีค่า

บทนิยาม เรากล่าวว่า $a\in\mathbb{R}$ เป็นจุดลิมิต (limit point) ของ $E\subseteq\mathbb{R}$ เมื่อ สำหรับทุก $\delta>0$ จะได้ว่า $((a-\delta,a+\delta)-\{a\})\cap E\neq\varnothing$ นั่นคือ "a มีจุดใกล้ ๆ อยู่ในเซต E ด้านใดด้านหนึ่ง"

บทนิยาม ให้ $f:D o\mathbb{R}$ และ a เป็นจุดลิมิตของ D เราจะกล่าวว่า "f(x) มีลิมิตเป็นจำนวนจริง L เมื่อ x มีค่าเข้า ใกล้ a" หรือเขียนแทน ด้วย

$$\lim_{x \to a} f(x) = L$$

เมื่อ สำหรับทุก $\epsilon>0$ จะมี $\delta>0$ ที่ทำให้

$$|f(x)-L|<\epsilon$$
 สำหรับทุก $x\in D$ ซึ่ง $0<|x-a|<\delta$

\mathcal{X}	f(x)	\mathcal{X}	f(x)
1	5	3	1
1.5	4.375	2.5	1.625
1.9	3.299	2.1	2.701
1.95	3.150	2.05	2.850
1.99	3.030	2.01	2.970

- ต้องพิจารณาทุก ๆ $\epsilon>0$
- ullet ค่าของ $\delta > 0$ จะขึ้นกับ ϵ
- ทุกค่าในช่วงเปิด $(a-\delta,a+\delta)$ (อาจยกเว้น a) จะต้องส่งไปยังค่าใน ช่วง $(L-\epsilon,L+\epsilon)$

ตัวอย่าง จงหา
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

$$x$$
 $f(x)$ $\varepsilon = 0.6$ $\delta = 1$ x $f(x)$ 0.5 0.67 0.9 0.53 0.99 0.503 0.503 0.67 0.99 0.503 0.40 0.498

เราสามารถคาดได้ว่า
$$\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$$

ตัวอย่าง จงหา
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

เราสามารถคาดได้ว่า
$$\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$$

ตัวอย่าง จงหา
$$\lim_{x\to 1} \frac{x-1}{x^2-1}$$

เราสามารถคาดได้ว่า
$$\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$$

ตัวอย่าง จงพิสูจน์ว่า
$$\lim_{x\to 1} 2x - 1 = 1$$

ให้
$$\epsilon > 0$$
 เลือก $\delta = \frac{\epsilon}{2} > 0$

ให้
$$x \in \mathbb{R}$$
 ซึ่ง $0 < |x - 1| < \delta = \frac{\epsilon}{2}$

จะได้ว่า
$$|(2x-1)-1|=|2x-2|=2|x-1|<2\cdot\frac{\epsilon}{2}=\epsilon$$

เพราะฉะนั้น
$$|(2x-1)-1|<\epsilon$$

ดังนั้น สำหรับทุกจำนวนจริง $\epsilon>0$ มี $\delta>0$ ที่ทำให้ $|(2x-1)-1|<\epsilon$ สำหรับทุก $x\in\mathbb{R}$ ซึ่ง $0<|x-1|<\delta$

นั่นคือ
$$\lim_{x\to 1} 2x - 1 = 1$$

ลิมิตทางซ้าย

ให้ f(x) เป็นฟังก์ชัน ซึ่งนิยามเมื่อ x มีค่าใกล้และน้อยกว่า a เราจะ กล่าวว่า "f(x) มีลิมิตเป็นจำนวนจริง L เมื่อ x มีค่าเข้าใกล้ a ทาง ซ้าย" หรือเขียนแทนด้วย

$$\lim_{x \to a^{-}} f(x) = L$$

เมื่อ "เราสามารถทำให้ค่าของf(x) เข้าใกล้ L เท่าใดก็ได้ เมื่อ x มีค่าเข้าใกล้และน้อยกว่า a"

\mathcal{X}	f(x)
1	5
1.5	4.375
1.9	3.299
1.95	3.150
1.99	3.030

ลิมิตทางขวา

ให้ f(x) เป็นฟังก์ชัน ซึ่งนิยามเมื่อ x มีค่าใกล้และมากกว่า a เราจะ กล่าวว่า "f(x) มีลิมิตเป็นจำนวนจริง L เมื่อ x มีค่าเข้าใกล้ a ทางขวา" หรือเขียนแทนด้วย

$$\lim_{x \to a^+} f(x) = L$$

เมื่อ "เราสามารถทำให้ค่าของf(x) เข้าใกล้ L เท่าใดก็ได้ เมื่อ x มีค่าเข้าใกล้และมากกว่า a"

\mathcal{X}	f(x)
3	1
2.5	1.625
2.1	2.701
2.05	2.850
2.01	2.970

นิยามของลิมิตทางซ้ายและลิมิตทางขวา

บทนิยาม ให้ $f:D o\mathbb{R}$ และ a เป็นจุดลิมิตของ $D\cap(-\infty,a)$ เราจะกล่าวว่า $\lim_{x o a^-}f(x)=L$

เมื่อ สำหรับทุก $\epsilon>0$ จะมี $\delta>0$ ที่ทำให้

 $|f(x) - L| < \epsilon$ สำหรับทุก $x \in D$ ซึ่ง $a - \delta < x < a$

บทนิยาม ให้ $f\colon D o\mathbb{R}$ และ a เป็นจุดลิมิตของ $D\cap(a,\infty)$ เรา จะกล่าวว่า $\lim_{x o a^+}f(x)=L$

เมื่อ สำหรับทุก $\epsilon>0$ จะมี $\delta>0$ ที่ทำให้

 $|f(x)-L|<\epsilon$ สำหรับทุก $x\in D$ ซึ่ง $a< x< a+\delta$

ลิมิตทางเดียว

ทฤษฎีบท ให้f(x) เป็นฟังก์ชัน ซึ่งนิยามเมื่อ x มีค่าใกล้ a จะได้ว่า

$$\lim_{x \to a} f(x) = L$$

ก็ต่อเมื่อ $\lim_{x \to a^-} f(x) = L$ และ $\lim_{x \to a^+} f(x) = L$

ลิมิตของฟังก์ชันจากกราฟ

ตัวอย่าง
$$H(t)=egin{cases} 0 & \mbox{เมื่อ}\ t<0 \ 1 & \mbox{เมื่อ}\ t\geq 0 \end{cases}$$

จงหา
$$\lim_{t \to 0^-} H(t)$$
, $\lim_{t \to 0^+} H(t)$ และ $\lim_{t \to 0} H(t)$