

TALLER DE ROBÓTICA CON ARDUINO

ROBÓTICA

La robótica se refiere al diseño, análisis, construcción y aplicación de máquinas que integran el universo de la electrónica, la mecánica y la programación. En este taller vamos a trabajar la capacidad de interacción y comunicación de una máquina con los humanos a partir de sensores, actuadores y piezas mecánicas.

HABILIDADES

- Adquirir nociones de programación mediante el uso de la plataforma Arduino.
- Adquirir habilidades DIY (Do-It-Yourself), hazlo tu mismo.
- Incorporar conceptos de electrónica para diseñar circuitos básicos.
- Proyectar y diseñar dispositivos mediante el uso de microcontroladores, sensores, actuadores y piezas mecánicas.

SEGURIDAD

Antes de empezar...

COSAS QUE QUEMAN

COSAS QUE CORTAN

ELEMENTOS DE SEGURIDAD

PELIGROS ELÉCTRICOS

TRATAMIENTO DE RESIDUOS

EL ESPACIO DE TRABAJO

HERRAMIENTAS

INSTRUMENTAL

PROTOTIPADO

SOFTWARE LIBRE

El software libre es un software cuyo código fuente puede ser estudiado, modificado, y utilizado libremente con cualquier finalidad y redistribuido con cambios o mejoras sobre ellas. Su definición está asociada al nacimiento del movimiento de software libre, encabezado por el activista y experto informático estadounidense Richard Stallman y la fundación que presidía en 1985, la **Free Software Foundation**, una organización sin ánimo de lucro que pone la libertad del usuario informático como propósito ético fundamental.

»»» https://es.wikipedia.org/wiki/Software_libre

HARDWARE LIBRE

Se llama hardware libre, hardware de código abierto, electrónica libre o máquinas libres a aquellos dispositivos de hardware cuyas especificaciones y diagramas esquemáticos son de acceso público, ya sea bajo algún tipo de pago, o de forma gratuita. La filosofía del software libre es aplicable a la del hardware libre, y por eso forma parte de la cultura libre.

»»» https://es.wikipedia.org/wiki/Hardware_libre

LICENCIAS

TODAS LAS OBRAS LIBERADAS O VENCIDO SU PLAZO DE EXCLUSIVIDAD

> ANTES: 2 PERIODOS DE 14 AÑOS

AHORA: VIDA DEL AUTOR + 80 AÑOS

- OUSO CON RESTRICCIONES.
- O SISTEMA DE VALIDACIÓN.
- O PUERTAS TRASERAS.
- O TARIFAS ARBITRARIAS.
- O DEPENDENCIA.

- EL AUTOR RENUNCIA A SUS DERECHOS DE AUTOR
 - DEBE DAR CRÉDITO AL AUTOR.
 (POR DEFECTO EN TODAS LAS LICENCIAS
 - O LA OBRA SE PUEDE MODIFICAR, MIENTRAS SE PUBLIQUE CON LA MISMA LICENCIA

SE PUEDE USAR SIN MODIFICACIONES.

ARDUINO IDE

El software (IDE) de Arduino permite escribir código y subirlo a la placa. Funciona con todas las placas Arduino (y más).

»»» https://www.arduino.cc/en/software

ARDUINO IDE

Simulador de circuitos electrónicos en tiempo real. Incluye microcontroladores PIC, AVR y Arduino.

»»» https://www.simulide.com

SIMULIDE

AUTODESK TINKERCAD

Es una aplicación web gratuita y fácil de usar para diseño 3D, electrónica y programación.

»»» https://www.tinkercad.com

AUTODESK TINKERCAD

FIDOCADJ

Un editor gráfico libre para (más que) electrónica.

»»» http://darwinne.github.io/FidoCadJ

FIDOCADJ

FIDOCADJ

PENSAMIENTO COMPUTACIONAL

Arduino Blocks: http://www.arduinoblocks.com/

mBlock: https://mblock.cc

Ardublock: http://blog.ardublock.com/

```
void loop() {
 // establish variables for duration of the ping, and the distance result
 // in inches and centimeters:
  long duration, inches, cm;
 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
  pinMode(pingPin, OUTPUT);
  digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(5);
  digitalWrite(pingPin, LOW);
 // The same pin is used to read the signal from the PING))): a HIGH pulse
 // whose duration is the time (in microseconds) from the sending of the ping
 // to the reception of its echo off of an object.
 pinMode(pingPin, INPUT);
  duration = pulseIn(pingPin, HIGH);
 // convert the time into a distance
 inches = microsecondsToInches(duration):
 cm = microsecondsToCentimeters(duration);
  Serial.print(inches);
  Serial.print("in, ");
```

CRÉDITOS

Lucas Martín Treser

Imtreser@gmail.com – www.automatismos-mdq.com.ar

Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)