

Documento de Casos de Uso Core-MUSA

Universidade Estadual de Feira de Santana

Build 1

Histórico de Revisões

Date	Descrição	Autor(s)
	Concepção do documento	• bezourokq;
08/10/2014		wsbittencourt;
		• fmbboaventura;

SUMÁRIO

1	Introdução		
	1.1	Objetivo	3
	1.2	Visão Geral do Documento	3
	1.3	Representação Simbólica	3
	1.4	Definições, Acrônimos e Abreviações	4
2	Ato	Sistema 4	
3	Cas	os de Usos	4
	3.1	[UC 001] Execução de instruções	4
		3.1.1 Fluxo Principal de Eventos	5
	3.2	[UC 002] Instruções Lógicas e Aritméticas	5
		3.2.1 Fluxo Principal de Eventos	6

1. Introdução

1.1. Objetivo

1.2. Visão Geral do Documento

- Sessão 2: lista todos os possíveis atores do sistema.
- Sessão 3: relata a lista dos casos de uso do projeto.

1.3. Representação Simbólica

A Figura ?? ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 ilustra as duas simbologias utilizadas para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, displays, etc).

Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados que outrora deveriam utilizar a mesma simbologia, utiliza-se a representação ilustrada nas Figuras 2b e 2c, definida por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP-cores de terceiros incorporados ao mesmo. Esta simbologia ainda foi divida, tendo em vista representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.

Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de interpretar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.

1.4. Definições, Acrônimos e Abreviações

Termo	Descrição
UC	Caso de Uso
SB	Sub-fluxo
FS	Fluxo Secundário
NFR	Requisito Não Funcional
FR	Requisito Funcional
ВТ	Botão Direcional

2. Atores do Sistema

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

3. Casos de Usos

Esta sessão apresenta o conjunto de UC realizados para a implementação do projeto *Core MUSA* (Núcleo de processamento de instruções do processador de propósito geral MUSA). As sessões a seguir foram divididas e nomeada utilizando a nomenclatura abreviada [UC (NÚMERO DO UC)] seguido de uma breve descrição em forma de título.

3.1. [UC 001] Execução de instruções

O controlador é responsável por decodificar instrução, solicitar operações na ALU e por fim garantir o armazenamento dos resultados de operações no banco registradores.

Atores

Controlador – Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender aos requisitos funcionais [FR01 e FR02];
- Leitura do PC;
- Realizar operações lógicas e aritméticas na ALU;

Pós-condições

· Os resultados devem ser expressos nos registradores.

Diagrama de Caso de Uso

3.1.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Acesso aos respectivos registradores;
- P4. Executa operações;
- P5. Atualiza registradores;
- P6. Atualiza valor do PC;

3.2. [UC 002] Instruções Lógicas e Aritméticas.

O controlador é responsável por decodificar instrução, solicitar operações na ALU e por fim garantir o armazenamento dos resultados de operações no banco registradores.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender aos requisitos funcionais [FR03 a FR10];
- · Leitura do PC;
- Realizar operações lógicas e aritméticas na ALU;

Pós-condições

• Os resultados devem ser expressos nos registradores.

Diagrama de Caso de Uso

3.2.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Acesso aos respectivos registradores;
- P4. Controlador direciona os dados dos registradoes para a entrada da ULA;
- P5. Controlador envia o function para ativar a operação desejada na ULA;
- P6. ULA realiza as operações;
- P7. Dispara flags, se for o caso;
- P8. Envia o resultado para o registrador de destino;