Quantum Mechanics

22 ottobre 2022

Indice

1	La crisi della fisica classica	2
2	Interferenza e diffrazione delle onde elettromagnetiche 2.1 Doppia fenditura	
Ι	Introduzione alla meccanica quantistica	8
3	L'equazione di Schrödinger 3.1 Costruzione	8 12 13
4	Considerazioni sugli operatori – parte prima 4.1 Trasformata di Fourier	14 16 17
5	Potenziali indipendenti dal tempo e stati stazionari 5.1 Discussione qualitativa delle soluzioni dell'equazione degli stati stazionari in una dimensione	20 21 21 22 24 27 28 30 32 33 37 40
II	I postulati	40
6	Considerazioni sugli operatori – parte seconda 6.1 Postulati della meccanica quantistica	40

7	Ric	hiami sugli spazi di Hilbert	43
	7.1	Notazione di Dirac	44
	7.2	Basi continue	45
	7.3	Richiami sugli operatori	46
	7.4	Operazioni sugli operatori	47
	7.5	Operatori auto-aggiunti, hermitiani	49
	7.6	Ricerca degli autovalori ed autovettori – diagonalizzazione	51
		7.6.1 Spazi finiti	51
		7.6.2 Rappresentazione sulla base della posizione e sulla base dei momenti	52
8	Osc	illatore armonico	54
	8.1	Stati stazionari	55
	8.2	Rappresentazione della matrice degli operatori creatore, distruttore, posizione e	
		momento	60
	8.3	Valori medi e deviazioni standard della posizione e del momento	62
9	Osc	illatore armonico in tre dimensioni	63

Lezione 1

 $\begin{array}{cccc} \text{mar} & 27 & \text{set} \\ 2022 & 13:30 \end{array}$

La meccanica quantistica non ha evidenze nella vita di tutti i giorni. Essa è descritta da equazioni differenziali complesse.

1 La crisi della fisica classica

I principi della meccanica quantistica sono contrari all'intuizione comune. Si osserva da cosa è nata la meccanica quantistica. Tra la fine del XIX secolo e l'inizio del XX si osservano concetti incompatibili con la fisica classica:

- meccanica newtoniana
- termodinamica e fisica statistica classica
- elettromagnetismo
- relatività ristretta

La crisi della fisica classica è il fallimento non spiegabile all'interno della relatività né della fisica classica.

Corpo nero. La prima osservazione è la radiazione di corpo nero. Su basi termodinamiche, Kirchhoff dimostra l'universalità della radiazione di corpo nero. Ogni corpo che si comporta come un corpo nero ha lo stesso spettro di emissione. Il problema è spiegare l'universalità da principi primi. Nel 1900, Planck fitta il grafico della radiazione con una funzione (errata):

$$\rho(\nu, T) = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{\frac{h\nu}{k_B T}} - 1}$$

Dove $h \approx 6.6 \times 10^{-34}\,\mathrm{J}\,\mathrm{s}$ è un parametro del fit. Esso è la costante di Planck.

Effetto fotoelettrico. Nel 1905, Einstein propone che l'energia di una radiazione a frequenza ν sia un multiplo intero di $h\nu$. Questo spiega l'effetto fotoelettrico. In un grafico, ν vs E_{\min} si ha una retta di pendenza $\frac{h}{e}$ con e carica elementare. Millikan misura esattamente tale pendenza. L'energia viene portata da quanti di radiazione.

Effetto Compton, 1922-23. L'elettromagnetismo si comporta in modo continuo, ma si pensa ancora che solamente nell'interazione con la materia, l'energia viene scambiata in modo discreto. Lo scetticismo riguardo la realtà fisica dei quanti scompare con l'effetto Compton.

Dei raggi X sono inviati ad un materiale. Essi hanno un'energia molto maggiore di quella di legame degli elettroni, i quali si comportano come fossero liberi. Infatti, dal quadri-momento si ha

$$E^2 - p^2 c^2 = m^2 c^4$$

Per una velocità v=c si ha m=0 e $E=pc=h\nu$. Il momento trasportato da un fotone è

$$p = \frac{h\nu}{c}$$

Una radiazione incide contro un elettrone statico. L'elettrone si muove ad un angolo e si misura una deviazione del fotone uscente dall'urto. Si ottiene una lunghezza d'onda in uscita

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

con angolo θ rispetto la direzione di incidenza. La formula è ottenuta trattando il fotone come una particella. Diventa fisico il fatto che la radiazione elettromagnetica si possa trattare come una particella, come un fotone. Nel 1926, Lews dà il nome di fotone a tali quanti di energia. La lunghezza d'onda di Compton per l'elettrone è la quantità

$$\frac{h}{m_e c} = 2.4 \times 10^{-12} \,\mathrm{m}$$

Spettri atomici. Si osserva lo spettro solare e si notano delle lunghezze d'onda particolari. La luce prodotta dal Sole, passa attraverso la fotosfera che assorbe e diffonde nuovamente la luce, diminuendone l'intensità, da cui le righe nello spettro. L'elio venne scoperto in tal modo.

Nel 1897 si scopre l'elettrone. Seguono i modelli atomici. I primi modelli non riescono a spiegare gli spettri atomici. Bohr ipotizza che l'energia sia quantizzata e dunque la frequenza emessa dipende dal salto energetico di un elettrone. La costante di Planck non solo ha dimensioni di energia per tempo, ma anche di momento angolare. Bohr suppone che il momento angolare dell'elettrone è

$$m_e vr = n\hbar$$

In origine, \hbar è un numero dell'ordine di h. Modernamente è diventato

$$\hbar = \frac{h}{2\pi}$$

Bohr non spiega, ma descrive. Tramite Schrödinger si ha una spiegazione ed una predizione, sebbene la sua equazione non è in sé dimostrabile.

2 Interferenza e diffrazione delle onde elettromagnetiche

2.1 Doppia fenditura

La luce è descritta da un fenomeno ondulatorio nell'interferenza e nella diffrazione. Nell'esperimento della doppia fenditura, sullo schermo si osserva un'intensità con un picco centrale e altri picchi minori ai lati. Esso non corrisponde a ciò che si riscontra da un comportamento corpuscolare. L'elettromagnetismo spiega tale discrepanza. L'intensità dell'onda è

$$I = |\vec{E}_1 + \vec{E}_2|^2$$

Essa è diversa dalla somma dei moduli (cioè come accadrebbe nel comportamento corpuscolare, oppure come considerando una fenditura alla volta e sommare a posteriori le due intensità). Infatti, si considerino due fenditure e due raggi che incidono su uno stesso punto sullo schermo.

I raggi sono (quasi) paralleli con un angolo θ rispetto la perpendicolare allo schermo a distanza molto maggiore della lunghezza d'onda. La differenza di fase dei due fasci è

$$d\sin\theta$$

dove d è la distanza tra le due fenditure. Si ha interferenza distruttiva per

$$d\sin\theta = n\frac{\lambda}{2}$$

con n numero intero dispari. Il primo luogo buio si ha per

$$\theta \approx \frac{1}{2}n\frac{\lambda}{d}$$

Esempio. Si consideri una lampadina da $100\,\mathrm{W}$ che emette una radiazione monocromatica a $580\,\mathrm{nm}$. Il numero di fotoni in un secondo ha ordine di grandezza 10^{20} .

La doppia fenditura è ben descritta tramite le equazioni di Maxwell, cioè tramite una descrizione ondulatoria. D'altra parte, si può fare l'esperimento un fotone alla volta. Nel 1981, tramite strumenti sviluppati da Hamamatsu Photonics, sovrapponendo i luoghi di impatto, si osserva una figura di interferenza simile alla trattazione tramite le onde. Rifacendo l'esperimento, i luoghi particolari di impatto cambiano, ma la figura finale di sovrapposizione è la stessa. Tuttavia, bisogna capire con cosa interferisce il fotone e da che fenditura passa. La trattazione dei fenomeni deve avvenire in modo probabilistico: non si può prevedere in modo deterministico il comportamento di un sistema.

Chiudendo una fenditura, la figura di interferenza svanisce, sebbene si usi ancora un fotone alla volta. Ogni tentativo di capire da quale fenditura passa il fotone distrugge la figura di interferenza. La misura su di un sistema microscopico lo disturba in modo significativo. Se la figura svanisce cercando di capire da quale fenditura passa l'elettrone, allora significa che il fotone risente di entrambe le fenditure.

Lezione 2

mer 28 set 2022 13:30

Questo non è un esperimento di concetto (gedanken experiment). Nessuno si sarebbe aspettato il risultato ottenuto:

- il fotone colpisce lo schermo in un punto preciso depositando tutta l'energia $h\nu;$
- con pochi eventi, lo schermo sembra riempito in modo casuale, ma con il passare del tempo emerge una figura di interferenza (come in un laser, 10²⁰ fotoni alla volta).

Non si può più dire con certezza il luogo di impatto. Bisogna parlare di probabilità.

Inoltre, chiudendo una fenditura, scompare la figura di interferenza. Ogni tentativo di capire da quale fessura è passato il fotone distrugge la figura di interferenza.

La misura di un sistema microscopico lo disturba in modo significativo.

Per lunghezze d'onda molto minori della distanza tra le fenditure, i fotoni hanno comunque bisogno di entrambe le fenditure per costruire la figura di interferenza. Inoltre, cade l'idea classica del determinismo: date delle condizioni iniziali, non si può più completamente determinare il moto di una particella. Infatti, i fotoni colpiscono lo schermo in luoghi diversi, sebbene abbiano tutti le stesse condizioni iniziali. Pertanto, si interpreta il risultato: ogni fotone ha una certa probabilità (che corrisponde all'intensità I(x)) di colpire una certa zona dello schermo. Questo esperimento evidenzia il dualismo onda-particella: in alcuni casi è più facile usare una trattazione ondulatoria, in altri si usa la trattazione corpuscolare. La "vera" natura è l'elettrodinamica quantistica.

Dunque,

- la radiazione elettromagnetica si comporta come un flusso di particelle;
- le previsioni sul comportamento sono probabilistiche;
- l'informazione di un fotone in un punto \vec{r} dello schermo all'istante t è portata dal campo elettrico $\vec{E}(\vec{r},t)$ soluzione delle equazioni di Maxwell. Quando la sorgente è debole, il campo elettrico va interpretato come un'ampiezza di probabilità. Mentre la densità di probabilità corrispondente è $|\vec{E}(\vec{r},t)|^2$.
- Le equazioni di Maxwell sono equazioni lineari nel campo elettrico: questo implica valere il principio di sovrapposizione. Se \vec{E}_1 e \vec{E}_2 sono soluzioni delle equazioni di Maxwell, allora pure $\vec{E} = \lambda_1 \vec{E}_1 + \lambda_2 \vec{E}_2$ è soluzione. Tale principio permette di spiegare la figura di interferenza.

Il fisico Paul Dirac disse che ogni fotone interferisce con se stesso.

2.2 Polarizzazione

La luce è polarizzata. Si consideri un sistema di riferimento ed fascio di luce viaggiante in z positivo. Si posiziona un filtro polarizzante nel piano xy con direzione polarizzata denotata dal versore $\vec{\varepsilon}_p$. Oltre il filtro passa un'intensità I_0 . Successivamente, si pone un altro filtro parallelo al primo con direzione lungo \vec{e}_x . Si ha una intensità finale $I = I_0 \cos^2 \theta$, dove θ è l'angolo di $\vec{\varepsilon}_p$ con l'asse \vec{e}_x .

Si vede l'interpretazione classica. Si consideri un'onda piana

$$\vec{E}(\vec{r},t) = E_0 \vec{\varepsilon}_p e^{i(kz - \omega t)}, \quad k = \frac{2\pi}{\lambda}, \quad \omega = 2\pi\nu, \quad \lambda\nu = c$$

Essa è la soluzione senza alle equazioni di Maxwell senza cariche. Dunque, $\nabla \cdot \vec{E} = 0$. Questo implica che

$$\vec{k} \cdot \vec{\varepsilon_p} = 0$$

cioè onde trasverse, perpendicolari alla direzione di propagazione. In questo caso, $\vec{k} \parallel \vec{z}$. Quindi, il vettore di polarizzazione appartiene ad un piano perpendicolare alla direzione di propagazione. Inoltre, l'intensità dopo il primo polarizzatore è $I_0 = |E_0|^2$. Il campo elettrico dopo il secondo polarizzatore è

$$\vec{E}'(\vec{r},t) = E'_0 \vec{e}_x e^{i(kz - \omega t)}, \quad E'_0 = E_0 \cos \theta$$

L'intensità corrispondente è

$$I = I_0 \cos^2 \theta$$

Ora si utilizza una sorgente che emette un fotone alla volta. Le conseguenze sono

- un rivelatore posto oltre il secondo polarizzatore, o misura il fotone oppure non lo misura;
- tutta l'energia del fotone è misurata;
- il fotone arriva al rilevatore in base all'angolo θ ; se $\theta=0$, allora il fotone passa sempre; se $\theta=\frac{\pi}{2}$ allora il fotone non passa mai; se θ è arbitrario, allora la probabilità di rilevare il fotone è $\cos^2\theta$. Il numero di fotoni dopo un certo periodo è $N_{\rm ph}=N_0\cos^2\theta$. Si può intendere il fotone come una miscela di due stati. Un fotone nel primo stato ψ_x ha probabilità di passare pari all'unità. Un fotone nell'altro stato ψ_y ha probabilità di passare pari a zero.
- Lo stato del fotone dopo il primo polarizzatore è

$$\psi_p = \psi_x \cos \theta + \psi_y \sin \theta$$

Inoltre, il fotone nello stato ψ_x passa con probabilità $|\cos \theta|^2 = \cos^2 \theta$; il fotone nello stato ψ_y non passa con probabilità $|\sin \theta|^2 = \sin^2 \theta$. Infatti, la probabilità totale è $\cos^2 \theta + \sin^2 \theta = 1$. Questo è il *principio di decomposizione spettrale*: si proietta lo stato di un sistema su altri stati di cui è noto il comportamento.

• Il secondo polarizzatore compie una misura perché sceglie fotoni con una certa caratteristica. Infatti, ponendo un altro polarizzatore orientato lungo l'asse delle x, esso non blocca altri fotoni: il secondo polarizzatore ha precipitato lo stato del fotone ad essere solo ψ_x . La misura ha disturbato in maniera irreversibile il sistema: essa ha precipitato lo stato da ψ_p a ψ_x .

2.3 de Broglie

Successivamente a Maxwell, la radiazione elettromagnetica è descritta tramite le onde, ma con Einstein e Compton si evidenzia un comportamento corpuscolare. Nel 1923, nella sua tesi di dottorato, De Broglie si chiede se pure la materia, fin'ora intesa come corpuscoli, si possa descrivere come onde osservando una particella alla volta (in particolare gli elettroni). L'onda ha comportamento

$$\exp(i\vec{k}\cdot\vec{x}-i\omega t)$$

ed è invariante per trasformazioni di Lorentz: per cui \vec{k} e ω costituiscono un tetra-vettore perché legati rispettivamente alla quantità di moto ed all'energia. Dunque, per un fotone, vale

$$|\vec{p}| = \frac{E}{c} = \frac{h\nu}{c} = \frac{h}{\lambda} = \hbar |\vec{k}| \implies \lambda = \frac{h}{|\vec{p}|}$$

Pertanto, a qualunque particella è associato un vettore d'onda ed una lunghezza d'onda

$$\vec{k} = \frac{\vec{p}}{\hbar}, \quad \lambda = \frac{h}{|\vec{p}|}$$

Esempio. Si vede la lunghezza d'onda di de Broglie per l'elettrone. Esso ha massa $m_e = 511 \,\mathrm{keV}$ (in unità naturali). Si ha $1 \,\mathrm{eV} = 1.6 \times 10^{-19} \,\mathrm{V\,C}$. Si consideri un elettrone non relativistico. Vale

$$E = \frac{p^2}{2m_e} \implies \lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_e E}} = \frac{1}{\sqrt{V}} 12.3 \, \text{Å}$$

con V in volt. Un elettrone ha lunghezza d'onda confrontabile con $\lambda \approx 1$ Å, cioè quella dei raggi X e le distanze tra atomi in un cristallo.

Esempio. Si considerino dei neutroni termici, cioè a basse energie cinetiche. Si ha

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_n E}} = \frac{h}{\sqrt{2m_n \frac{3}{2}k_B T}} = \frac{1}{\sqrt{T}} 30 \text{ Å}$$

dove la temperatura T è in kelvin.

Esempio. Si consideri un granello di polvere. La sua massa è circa 10^{-10} kg ed ha dimensioni $1 \,\mu\text{m}$. Esso si muove a basse velocità, $1 \,\text{mm s}^{-1}$. La lunghezza d'onda corrispondente è

$$\lambda = 6.6 \times 10^{-11} \,\text{Å}$$

Non si ha speranza di osservare l'oscillazione per oggetti macroscopici.

L'evidenza sperimentale della lunghezza d'onda di de Broglie è ottenuta tramite l'esperimento di Davisson-Germer (1927). Un fascio di elettroni incide su di un cristallo di nickel. Gli atomi nella struttura cristallina si comportano come delle sorgenti di onde quando sono colpiti. Si ottiene una figura di interferenza.

2.4 Doppia fenditura con elettroni

Negli anni '50, si esegue l'esperimento della doppia fenditura. Lo stesso esperimento, ma con un singolo elettrone, si compie nel 1974 a Bologna da Merli, Missiroli e Pozzi. Si osserva:

- l'elettrone arriva nella sua completezza e la carica non si diffonde sullo schermo;
- il grande numero di elettroni genera la figura di interferenza;
- l'arrivo sullo schermo è casuale per l'elettrone particolare;
- si interpreta la figura di interferenza come la distribuzione di probabilità degli elettroni;
- chiudendo una fenditura, non si ha più interferenza (l'elettrone interagisce con se stesso);
- cade il concetto di traiettoria, il determinismo.

Lezione 3

gio 29 set 2022 13:30

Per ora, si segue un ragionamento qualitativo. Si consideri l'esperimento della doppia fenditura con gli elettroni. [immagine] Un elettrone ha momento lineare iniziale p_x . Osservando lo schermo, si nota che l'elettrone ha deviato di un angolo θ rispetto la direzione iniziale: ha acquisito un momento verticale

$$p_y = p_x \sin \theta \approx p_x \theta = p_x \frac{\lambda}{d} \approx \frac{h}{d}$$

Il primo zero della figura di diffrazione si ha ad un angolo $\frac{\lambda}{d}$. Per de Broglie vale $\lambda = \frac{h}{p_x}$. Il trasferimento di momento è dato dall'interazione con lo schermo. Non si discutono gli esperimenti che cercano di determinare da quale fessura sia passato l'elettrone.

2.5 Principio di indeterminazione

Si ragiona sul concetto di traiettoria, cioè della posizione e della velocità di una particella. Si considera una ben precisa procedura di misura. Per misurare la traiettoria, si pone uno schermo di fronte una sola fenditura. Si osserva ancora una figura di diffrazione su tale schermo. La posizione del primo minimo si ha ad un angolo

$$\theta = \frac{\lambda}{\Delta u}$$

dove Δy è la dimensione della fenditura. La particella ha acquisito una quantità di moto verticale Δp_y . Il momento acquisito ha ordine di grandezza pari a

$$\Delta p_y \approx p\theta = p \frac{\lambda}{\Delta y} = \frac{h}{\Delta y}$$

con p momento lineare iniziale. Da ciò risulta

$$\Delta y \, \Delta p_y \approx h$$

Si è limitati nella precisione della misura. Questa è l'essenza del principio di indeterminazione di Heisenberg. Questa relazione incorpora l'effetto della perturbazione causata dallo strumento di misura (lo schermo). La perturbazione ha un ruolo essenziale in meccanica quantistica perché ha ordine di grandezza dei fenomeni misurati.

In tanti testi, l'indeterminazione è sulla precisione della posizione y e del momento p_y nello stesso momento. In questo caso, prima si è misurato il momento, poi la posizione, però la distanza temporale è trascurabile. Il principio di indeterminazione che si ottiene dagli operatori della meccanica quantistica non è la stessa cosa: bisogna prestare attenzione.

Ripetendo l'esperimento, con lo stesso momento iniziale, si hanno posizioni finali diverse: non si riesce più a predire la traiettoria perché lo strumento disturba in modo sostanziale la particella.

Osservazione. Si osserva:

- L'ultimo esperimento svolto sulla doppia fenditura è dell'aprile 2003 da Zeilinger ("Quantum interference experiments with large molecules", cfr. pagina Oleari) utilizzando un fullerene C_{60} a forma di icosaedro troncato, una palla da calcio. Si osserva una figura di diffrazione.
- Per i fotoni sono stati introdotti due stati di polarizzazione, sebbene questa sia una visione classica. L'interpretazione corretta è considerare un momento angolare associato al fotone. Similmente, gli elettroni hanno un momento magnetico intrinseco: lo spin, quantizzato in $\pm \frac{\hbar}{2}$ lungo una certa direzione. Tanti libri (Sakurai, Feynman) presentano la meccanica quantistica partendo dalla quantizzazione del momento magnetico intrinseco dell'elettrone.

Parte I

Introduzione alla meccanica quantistica

3 L'equazione di Schrödinger

Essa descrivere fenomeni quantistici, ma non relativistici. Si ricava l'equazione in modo diverso da come ha fatto Schrödinger. Si utilizzano delle ipotesi plausibili. La nuova teoria deve contenere

- il principio di indeterminazione di Heisenberg, l'incapacità operativa di determinare la posizione e la velocità (la traiettoria) di una particella in un certo istante;
- un corretto limite classico, il principio di corrispondenza;
- un'equazione lineare per far valere il principio di sovrapposizione (come per il campo elettrico), si vuole produrre la figura di interferenza tramite un algoritmo, bisogna avere una somma coerente di due oggetti (l'intensità totale non è la somma delle intensità singole); il quadrato del modulo dell'oggetto che si vuole studiare si intende come densità di probabilità;
- parlando di somma coerente, deve comparire una lunghezza d'onda, così da ritrovare? l'ipotesi di de Broglie;
- per il rasoio di Occam, la somma coerente non è di campi vettoriali, ma campi scalari complessi; infatti, vale ancora che il modulo quadro della somma non è la somma dei moduli quadri. Un singolo campo complesso non è sufficiente per considerare anche lo spin, infatti, Dirac utilizza quattro campi complessi per unificare la meccanica quantistica con la relatività speciale.

3.1 Costruzione

Si vede la costruzione in una dimensione. Si consideri un campo scalare complesso f(x). La probabilità infinitesima di trovare la particella tra $x \in x + dx$ è

$$\mathrm{d}P = \left| f(x) \right|^2 \mathrm{d}x$$

Dunque $\left|f(x)\right|^2$ è una densità di probabilità. Si applica il vincolo

$$\int_{\mathbb{R}} dP = 1 \implies \int_{\mathbb{R}} |f(x)|^2 dx = 1$$

La funzione f(x) è detta ampiezza di probabilità (poi funzione d'onda, soluzione all'equazione di Schrödinger, funzione di stato, etc). Tale vincolo corrisponde al fatto che una particella, quando cercata su tutto l'asse reale, ha probabilità unitaria di essere presente: questo vale solo nella trattazione non relativistica, la materia non diventa energia.

Una particella si rappresenta come un pacchetto di onde localizzato cioè una combinazione lineare di più onde piane. La trasformata di Fourier risulta naturale per la trattazione.

Trasformata di Fourier. Non si considerano i coefficienti moltiplicativi. La trasformata è

$$f(x) = \int_{\mathbb{R}} g(k)e^{ikx} dk = \int_{\mathbb{R}} dk g(k)e^{ikx}$$

Si consideri una gaussiana

$$q(k) = e^{-\alpha(k-k_0)^2}$$

La larghezza ha ordine di grandezza di $\alpha^{-\frac{1}{2}}$. La trasformata è

$$f(x) = \sqrt{\frac{\pi}{\alpha}} e^{ik_0 x} e^{-\frac{x^2}{4\alpha}}, \quad |f(x)|^2 = \frac{\pi}{\alpha} e^{-\frac{x^2}{2\alpha}}$$

la cui larghezza è $\sqrt{\alpha}$. Infatti

$$f(x) = \int_{\mathbb{R}} e^{-\alpha(k-k_0)^2} e^{ikx} \, dk = \int_{\mathbb{R}} e^{-\alpha t^2} e^{itx} e^{ik_0 x} \, dt, \quad k - k_0 \equiv t, \quad dk = dt$$

$$= e^{ik_0 x} \int_{\mathbb{R}} e^{-\left(\sqrt{\alpha}t - \frac{1}{2\sqrt{\alpha}}ix\right)^2} e^{-\frac{x^2}{4\alpha}} \, dt, \quad \sqrt{\alpha}t - \frac{1}{2\sqrt{\alpha}}ix \equiv \eta, \quad \sqrt{\alpha} \, dt = d\eta$$

$$= e^{ik_0 x} e^{-\frac{x^2}{4\alpha}} \int_{\mathbb{R}} e^{-\eta^2} \frac{d\eta}{\sqrt{\alpha}} = \sqrt{\frac{\pi}{\alpha}} e^{ik_0 x} e^{-\frac{x^2}{4\alpha}}$$

Inoltre

$$\langle x \rangle = \int_{\mathbb{R}} x f(x) \, dx, \quad (\Delta x)^2 = \int_{\mathbb{R}} (x - \langle x \rangle)^2 f(x) \, dx$$

Per la gaussiana si ha

$$\Delta x = \sqrt{\alpha}, \quad \Delta k = \frac{1}{\sqrt{2\alpha}} \implies \Delta x \, \Delta k = \frac{1}{\sqrt{2}}$$

dove Δx è riferito a $|f(x)|^2$. Il valore particolare di $\frac{1}{\sqrt{2}}$ non è importante. Tutti i pacchetti gaussiani hanno tale valore. Per qualunque funzione e la sua trasformata vale

$$\Delta x \, \Delta k \ge \frac{1}{2}$$

Caso limite. Si considera la delta di Dirac

$$f(x) = \delta(x - x_0)$$

La sua trasformata è un'onda piana

$$q(k) = e^{ikx_0} \implies |q(k)|^2 = 1 \implies \Delta k \to \infty$$

La relazione tra Δx e Δk suggerisce già un principio di indeterminazione qualora si interpreta k come una quantità di moto. Affinché sia valida l'ipotesi di de Broglie, risulta

$$\hbar k = p \implies \Delta x \, \Delta p > \hbar$$

La trasformata di Fourier fornisce informazioni sul momento di una particella.

Tempo. Finora, non si è menzionata un'evoluzione temporale. Si ha una descrizione di una particella libera in un certo istante. Si inserisce il tempo con la condizione che il baricentro del pacchetto di onde soddisfi l'equazione di Newton.

Per un'onda piana

$$e^{i(kx-\omega(k)t)}$$

elettromagnetica nel vuoto vale la relazione di dispersione

$$\omega(k) = 2\pi\nu = 2\pi \frac{c}{\lambda} = kc$$

Dunque, l'onda piana diventa

$$e^{ik(x-ct)}$$

e si muove con una velocità pari a c. Infatti, la soluzione all'equazione di Maxwell nel vuoto è la soluzione all'equazione delle onde

$$f(x,t) = f(x - ct)$$

Il pacchetto di onde diventa

$$f(x,t) = \int_{\mathbb{R}} g(k)e^{i(kx-\omega(k)t)} dk$$

Si consideri la funzione g(k) piccata intorno ad un numero d'onda k_0 centrale. La maggior parte dei valori di $\omega(k)$ che contribuiscono sono intorno a $\omega(k_0)$. Si espande in serie di Taylor

$$\omega(k) = \omega(k_0) + (k - k_0) d_k \omega(k_0) + \frac{1}{2} (k - k_0)^2 d_k^2 \omega(k_0) + \cdots$$

Posto $k' = k - k_0$, si ha

$$f(x,t) = e^{i[k_0 x - \omega(k_0)t]} \int_{\mathbb{R}} g(k') e^{ik'(x - v_g t)} e^{-i\beta t(k')^2 + \dots} dk'$$

dove

$$v_g \equiv \mathrm{d}_k \omega(k_0), \quad \beta \equiv \frac{1}{2} \, \mathrm{d}_k^2 \omega(k_0)$$

Il centro del pacchetto si propaga con la velocità di gruppo v_g (che è sempre minore della velocità della luce).

I momenti della particella sono centrati attorno

$$p_0 = \hbar k_0$$

Si impone che il pacchetto si muove secondo l'equazione di Newton. La velocità di gruppo è

$$v_g = d_k \omega(k_0) = \frac{p_0}{m} = \frac{\hbar k_0}{m} \implies \omega = \frac{\hbar}{m} \frac{k^2}{2}$$

cioè si ha la relazione di dispersione della particella libera. Segue

$$\omega = \frac{1}{2m\hbar}p^2$$

Dunque

$$f(x,t) = \int_{\mathbb{R}} g(k)e^{i\left(kx - \frac{\hbar}{2m}k^2t\right)} dk = \frac{1}{\hbar} \int_{\mathbb{R}} g(p)e^{\frac{i}{\hbar}\left(px - \frac{p^2}{2m}t\right)} dp$$

Si noti che, nell'ultimo termine, il coefficiente del tempo è l'energia cinetica per una particella libera non relativistica. Quindi

$$f(x,t) = \frac{1}{\hbar} \int_{\mathbb{R}} g(p)e^{\frac{i}{\hbar}(px-Et)} dp, \quad E = \frac{p^2}{2m}$$

Da ora si utilizza il nome di funzione d'onda

$$\Psi(x,t) = \int_{\mathbb{R}} \phi(p) e^{\frac{i}{\hbar}(px - Et)} \, \mathrm{d}p$$

con la condizione

$$\int_{\mathbb{R}^n} |\Psi(\vec{x}, t)|^2 d^n x = 1$$

Si cerca l'equazione più semplice soddisfatta dalla funzione d'onda. Si ha

$$\partial_t \Psi = \int_{\mathbb{R}} \phi(p) \left(-\frac{i}{\hbar} \frac{p^2}{2m} \right) e^{\frac{i}{\hbar}(px - Et)} dp$$

$$\partial_x \Psi = \int_{\mathbb{R}} \phi(p) \frac{i}{\hbar} p e^{\frac{i}{\hbar}(px - Et)} dp, \quad \partial_x^2 \Psi = \int_{\mathbb{R}} \phi(p) \left(\frac{i}{\hbar} \right)^2 p^2 e^{\frac{i}{\hbar}(px - Et)} dp$$

Dalla prima equazione si ha

$$i\hbar \,\partial_t \Psi = \frac{1}{2m} \int_{\mathbb{R}} \phi(p) p^2 e^{\frac{i}{\hbar}(px - Et)} \,\mathrm{d}p = -\frac{\hbar^2}{2m} \,\partial_x^2 \Psi$$

Pertanto, l'equazione di Schrödinger è

$$i\hbar \,\partial_t \Psi = -\frac{\hbar^2}{2m} \,\partial_x^2 \Psi$$

Lezione 4

lun 03 ott

Si omette il dominio di integrazione di molti integrali riguardo la funzione d'onda: si intende \mathbb{R} . 2022 13:30 Questa è l'equazione per una particella libera con energia

$$E = \frac{p^2}{2m}$$

Si sta sviluppando una teoria diversa dalle precedenti e si è interessati alle sue previsioni.

Osservazione. Si osserva:

- l'equazione è lineare in Ψ :
- essa è un'equazione del secondo ordine nelle derivate spaziali, mentre del primo ordine nella derivata temporale; essa non è un'equazione relativistica, perché il tempo e lo spazio non hanno lo stesso peso;
- essa è un'equazione diversa da quelle reali viste (trasporto, onde, calore, Laplace) perché compare l'unità immaginaria.

Esercizio. Particella libera. La funzione d'onda con i fattori moltiplicativi è

$$\Psi(x,t) = \frac{\sqrt{\alpha}}{(2\pi)^{\frac{3}{4}}} \int_{\mathbb{R}} e^{-\frac{\alpha^2}{4}(k-k_0)^2} e^{i[kx-\omega(k)t]} \, dk, \quad \text{Re}\left(\alpha^2\right) > 0$$

Svolgere esplicitamente l'integrale. Il risultato è

$$|\Psi(x,t)|^{2} = \sqrt{\frac{2}{\pi\alpha^{2}}} \frac{1}{\sqrt{1 + \frac{4\hbar^{2}t^{2}}{m^{2}\alpha^{4}}}} \exp\left[-\frac{2\alpha^{2} \left(x - \frac{\hbar k_{0}}{m}t\right)^{2}}{\alpha^{4} + \frac{4\hbar^{2}t^{2}}{m^{2}}}\right]$$

Si verifichi che

$$\int \left|\Psi(x,t)\right|^2 \mathrm{d}x = 1$$

Osservazione. Si fanno alcuni commenti sui risultati dell'esercizio.

• La particella libera è una gaussiana il cui centro (massimo) si trova in

$$x = \frac{\hbar k_0}{m} t$$

La velocità con cui si sposta è la velocità di gruppo

$$v_g = \frac{\hbar k_0}{m}$$

• La larghezza (intesa come deviazione standard) è

$$\Delta x = \frac{\alpha}{2} \sqrt{1 + \left[\frac{2\hbar t}{\alpha^2 m}\right]^2}$$

Essa aumenta con il tempo. Dunque, il picco si abbassa per conservare l'integrale totale di $|\Psi|^2$. Con il passare del tempo, risulta sempre meno chiaro dove si trovi la particella.

• La distribuzione dei momenti non cambia. Questo implica che, nell'espressione della funzione d'onda, il termine

$$e^{-\frac{\alpha^2}{4}(k-k_0)}$$

rimane lo stesso, compreso il valore centrale del momento $p = \hbar k_0$. Questo perché la particella è libera e non è influenzata da qualcosa che possa cambiarle il momento, cioè sia presente una forza. Il momento lineare è conservato.

• L'allargamento Δx della particella libera non è una caratteristica del solo pacchetto gaussiano. Per ogni distribuzione iniziale, facendo passare un tempo sufficientemente lungo (che dipende dalla forma del pacchetto), la larghezza del pacchetto inizia a crescere. Per la particella libera, a tempo negativo il pacchetto è più largo di t=0: la gaussiana si stringe (t=0) poi si allarga t>0.

3.2 L'equazione di Schrödinger per un potenziale arbitrario

Si studia l'equazione di Schrödinger per un potenziale arbitrario V(x). Si utilizza un'ipotesi plausibile. Il pacchettino per una particella libera soddisfa

$$i\hbar \,\partial_t \Psi = \int \phi(p) E e^{\frac{i}{\hbar}(px - Et)} \,\mathrm{d}p$$

così come

$$-\frac{\hbar^2}{2m}\,\partial_x^2\Psi = \int \phi(p) \frac{p^2}{2m} e^{\frac{i}{\hbar}(px-Et)}\,\mathrm{d}p$$

in quanto l'energia della particella libera è

$$E = \frac{p^2}{2m}$$

Ora la particella è vincolata ad un certo potenziale. La forma generale è

$$E = \frac{p^2}{2m} + V(x)$$

In meccanica quantistica, V è l'energia potenziale, non il potenziale vero è proprio. Si moltiplica la relazione precedente per

$$\phi(p)e^{\frac{i}{\hbar}(px-Et)}$$

e poi si integra in dp da entrambi i lati. Pertanto, l'equazione sopra diventa

$$i\hbar \,\partial_t \Psi = \left[-\frac{\hbar^2}{2m} \,\partial_x^2 + V(x) \right] \Psi$$

Questa è l'equazione completa per un potenziale scalare. In tre dimensioni si ha

$$i\hbar \, \partial_t \Psi(\vec{x},t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{x},t) \right] \Psi(\vec{x},t)$$

La funzione d'onda deve soddisfare la normalizzazione della probabilità

$$\int_{V} |\Psi(\vec{x}, t)|^2 d^3 x \equiv 1, \quad \forall t$$

questo perché

$$dP = |\Psi(\vec{x}, t)|^2 d^3x$$

è la probabilità infinitesima di trovare la particella in un volume d^3x all'istante t.

3.3 Conservazione locale della probabilità ed equazione di continuità

Risolvendo l'equazione di Schrödinger in un certo istante, non si è assicurati che la soluzione soddisfi l'integrale di normalizzazione anche all'istante successivo. Si consideri l'equazione di Schrödinger per un potenziale scalare

$$i\hbar \, \partial_t \Psi = -rac{\hbar^2}{2m}
abla^2 \Psi + V \Psi$$

Il suo complesso coniugato è

$$-i\hbar \,\partial_t \Psi^* = -\frac{\hbar^2}{2m} \nabla^2 \Psi^* + V \Psi^*$$

Si nota che V è una funzione reale. Sapendo $|\Psi|^2 = \Psi \Psi^*$, segue

$$\begin{split} \partial_t |\Psi|^2 &= (\partial_t \Psi) \Psi^* + \Psi(\partial_t \Psi^*) = \frac{1}{i\hbar} \left[-\frac{\hbar^2}{2m} \Psi^* \nabla^2 \Psi + \Psi^* V \Psi + \frac{\hbar^2}{2m} \Psi \nabla^2 \Psi^* - \Psi V \Psi^* \right] \\ &= -\frac{\hbar}{2mi} \left[\Psi^* \nabla^2 \Psi - \Psi \nabla^2 \Psi^* \right] \end{split}$$

Si definisce il vettore

$$\vec{J} = \frac{\hbar}{2mi} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right)$$

La sua divergenza è

$$\nabla \cdot \vec{J} = \nabla \cdot \frac{\hbar}{2mi} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*) = \frac{\hbar}{2mi} (\nabla \Psi^* \cdot \nabla \Psi + \Psi^* \nabla^2 \Psi - \nabla \Psi \cdot \nabla \Psi^* - \Psi \nabla^2 \Psi^*)$$
$$= \frac{\hbar}{2mi} (\Psi^* \nabla^2 \Psi - \Psi \nabla^2 \Psi^*)$$

Posto $\rho = \left| \Psi(\vec{x},t) \right|^2$ si ha

$$\partial_t \rho + \nabla \cdot \vec{J} = 0$$

Dunque, ρ è la densità di probabilità, mentre \vec{J} è la densità di corrente di probabilità.

Osservazione. Si osserva:

- la corrente \vec{J} è una quantità reale, $\vec{J} = \vec{J}^*$;
- l'equazione precedente è molto simile all'equazione di continuità della carica elettrica;
 l'equazione di continuità rappresenta la conservazione locale, ma non globale: se varia la carica, allora c'è un flusso; nulla sparisce, ma le cose fluiscono. Si consideri un volume arbitrario Ω, allora

$$\partial_t \int_{\Omega} \rho(\vec{x}, t) d^3 x = -\int_{\Omega} \nabla \cdot \vec{J}(\vec{x}, t) d^3 x = -\int_{\partial\Omega} \vec{J}(\vec{x}, t) \cdot d\vec{s}$$

dove si è applicato il teorema della divergenza all'ultima equazione. Se Ω è tutto lo spazio, allora, affinché il termine

$$\int_{\Omega} \rho(\vec{x}, t) d^3x = \int_{\mathbb{R}^3} |\Psi(\vec{x}, t)|^2 d^3x$$

sia finito (quindi la derivata temporale sia nulla), allora la corrente deve annullarsi al bordo di Ω cioè ad infinito. Pertanto, l'integrale sopra dev'essere una costante, in particolare l'unità così che $|\Psi|^2$ si possa interpretare come una densità di probabilità.

4 Considerazioni sugli operatori – parte prima

Si studia il legame tra la funzione d'onda ed il limite classico, si studia il principio di corrispondenza.

Si consideri la misura della posizione di una particella. Classicamente, la posizione è, ragionevolmente, la media pesata delle posizioni misurate:

$$x_{\rm cl} \equiv \int x P(x) \, \mathrm{d}x = \int x |\Psi(x,t)|^2 \, \mathrm{d}x$$

dove P(x) è la distribuzione di probabilità delle posizioni. La posizione classica è il valor di aspettazione della posizione

$$x_{\rm cl} \equiv \langle x \rangle = \int \Psi^*(x,t) x \Psi(x,t) \, \mathrm{d}x$$

L'uso delle parentesi angolate è per ricordare il prodotto scalare tra due quantità (Ψ e $x\Psi$). Infatti, la funzione d'onda e la densità di probabilità $|\Psi|^2 = \langle \Psi, \Psi \rangle = \Psi^* \Psi$ associata contengono informazioni sul sistema quantistico. Si applicano gli operatori per estrapolare quelle desiderate. Per il momento si ha

$$\langle p \rangle = mv = m \, d_t \langle x \rangle = m \int (\partial_t \Psi^*) x \Psi + \Psi^* x (\partial_t \Psi) \, dx$$

Dall'equazione di Schrödinger per la particella libera si ottiene la derivata $\partial_t \Psi$:

$$\begin{split} \langle p \rangle &= \frac{\hbar}{2i} \int (\partial_x^2 \Psi^*) x \Psi - \Psi^* x (\partial_x^2 \Psi) \, \mathrm{d}x \\ &= \frac{\hbar}{2i} \int -\partial_x \Psi^* \, \partial_x (x \Psi) + \partial_x (\Psi^* x) \, \partial_x \Psi \, \mathrm{d}x \\ &= \frac{\hbar}{2i} \int (-\partial_x \Psi^*) \Psi - (\partial_x \Psi^*) x \, \partial_x \Psi + (\partial_x \Psi^*) x \, \partial_x \Psi + \Psi^* \, \partial_x \Psi \, \mathrm{d}x \\ &= \frac{\hbar}{2i} \int \Psi^* \, \partial_x \Psi - (\partial_x \Psi^*) \Psi \, \mathrm{d}x \\ &= \frac{\hbar}{i} \int \Psi^* \, \partial_x \Psi \, \mathrm{d}x = \int \Psi^* (x, t) (-i\hbar \, \partial_x) \Psi (x, t) \, \mathrm{d}x \end{split}$$

Alla seconda e quinta uguaglianze si integra per parti ricordando che i termini sul bordo svaniscono. Questa espressione suggerisce di definire l'operatore quantità di moto come

$$\hat{p}_x \equiv -i\hbar \,\partial_x \qquad \hat{p} = -i\hbar \,\nabla$$

Si noti che questa espressione è la derivata che si è applicata all'onda piana

$$e^{\frac{i}{\hbar}(px-Et)}$$

In quest'espressione, p è un numero, non l'operatore. Nella derivata scende il momento a moltiplicare l'onda stessa:

$$\hat{p}_x e^{\frac{i}{\hbar}(px - Et)} = p e^{\frac{i}{\hbar}(px - Et)}$$

Similmente, il termine cinetico classico di partenza è

$$K = \frac{p^2}{2m}$$

In meccanica quantistica, esso diventa un operatore

$$\frac{1}{2m}\hat{p}^2 = -\frac{\hbar^2}{2m}\,\partial_x^2$$

cioè il termine cinetico dell'equazione di Schrödinger.

In generale, classicamente il valore di aspettazione di una qualunque funzione di x è

$$\langle f(x,t)\rangle = \int P(x,t)f(x,t)\,\mathrm{d}x = \int \Psi^*(x,t)f(x,t)\Psi(x,t)\,\mathrm{d}x$$

La seconda uguaglianza è la traduzione in meccanica quantistica. Per una funzione dei momenti si ha

$$\langle g(p)\rangle = \int \Psi^*(x,t)g(-i\hbar \,\partial_x)\Psi(x,t)\,\mathrm{d}x$$

La quantità

$$\hat{g}(\hat{p}) = g(-i\hbar \,\partial_x)$$

è diventato un operatore. Per una funzione che dipende sia dalla posizione che dal momento si ha

$$\langle A(x,p)\rangle = \int \Psi^*(x,t)\hat{A}(x,\hat{p})\Psi(x,t)\,\mathrm{d}x$$

Un esempio è il momento angolare. Tutto quanto riguarda il momento angolare in meccanica quantistica sfrutta la relatività ristretta, ma lo stesso non vale per altre trattazioni. Propriamente, anche la posizione x è un operatore

$$\hat{x} = x$$

In fisica classica, qualunque grandezza fisica è funzione di x e p (si ricordi la meccanica lagrangiana). Si ha un modo per passare alla versione quantistica. Per una funzione qualunque si ha

$$A(x,p) \to \hat{A}(\hat{x},\hat{p})$$

Lezione 5

Ci si chiede se i valor medi sono il modo univoco di rappresentare gli operatori.

4.1 Trasformata di Fourier

Le trasformate di Fourier della funzione d'onda sono

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \Phi(p,t) e^{i\frac{px}{\hbar}} dp, \quad \Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi(x,t) e^{-i\frac{px}{\hbar}} dx$$

Sia Ψ che Φ contengono le stesse informazioni perché si può ricavare l'una dall'altra. Si mostra che tali scritture sono corrette. Infatti

$$\begin{split} \Psi(x,t) &= \frac{1}{\sqrt{2\pi\hbar}} \int \frac{1}{\sqrt{2\pi\hbar}} \int \Psi(x',t) e^{-i\frac{px'}{\hbar}} e^{i\frac{px}{\hbar}} \, \mathrm{d}x' \, \mathrm{d}p \\ &= \frac{1}{2\pi\hbar} \int \Psi(x',t) \int e^{-\frac{i}{\hbar}p(x'-x)} \, \mathrm{d}p \, \mathrm{d}x', \quad k \equiv \frac{p}{\hbar} \\ &= \frac{1}{2\pi\hbar} \int \Psi(x',t) \hbar \int e^{-ik(x'-x)} \, \mathrm{d}k \, \mathrm{d}x' \\ &= \int \Psi(x',t) \delta(x'-x) \, \mathrm{d}x' = \Psi(x,t) \end{split}$$

nell'ultima uguaglianza si utilizza

$$\int_{\mathbb{R}} e^{ikx} \, \mathrm{d}k = 2\pi \delta(x)$$

Teorema. di Plancherel-Parseval. La tilde denota la trasformata della funzione su cui è presente. Vale

$$\int \widetilde{\varphi}^*(p)\widetilde{\xi}(p) \, \mathrm{d}p = \int \widetilde{\varphi}^*(p) \int \xi(x) e^{-i\frac{px}{\hbar}} \frac{1}{\sqrt{2\pi\hbar}} \, \mathrm{d}x \, \mathrm{d}p$$
$$= \int \xi(x) \int \widetilde{\varphi}^*(p) e^{-i\frac{px}{\hbar}} \frac{1}{\sqrt{2\pi\hbar}} \, \mathrm{d}p \, \mathrm{d}x$$
$$= \int \varphi^*(x)\xi(x) \, \mathrm{d}x$$

L'integrale nello spazio delle posizioni è identico all'integrale nello spazio dei momenti. Qualora $\xi(x) = \varphi(x)$ allora vale

$$\int \widetilde{\varphi}^*(p)\widetilde{\varphi}(p) \, \mathrm{d}p = \int \varphi^*(x)\varphi(x) \, \mathrm{d}x \iff \int |\widetilde{\varphi}(p)|^2 \, \mathrm{d}p = \int |\varphi(x)|^2 \, \mathrm{d}x$$

Pertanto, riprendendo la scrittura della trasformata di Fourier per Ψ e Φ , si ha

$$\int |\Phi(p,t)|^2 dp = \int |\Psi(x,t)|^2 dx \equiv 1$$

Omettendo il tempo, il momento è

$$\begin{split} \langle p \rangle &= \int \Psi^*(x) (-i\hbar \, \partial_x) \Psi(x) \, \mathrm{d}x = \int \Psi^*(x) (-i\hbar \, \partial_x) \frac{1}{\sqrt{2\pi\hbar}} \int \Phi(p) e^{i\frac{px}{\hbar}} \, \mathrm{d}p \, \mathrm{d}x \\ &= \int \Phi(p) p \frac{1}{\sqrt{2\pi\hbar}} \int \Psi^*(x) e^{i\frac{px}{\hbar}} \, \mathrm{d}x \, \mathrm{d}p = \int \Phi^*(p) p \Phi(p) \, \mathrm{d}p \\ &= \int p |\Phi(p)|^2 \, \mathrm{d}p \end{split}$$

cioè la stessa cosa vista per x con Ψ . Combinando questo con la relazione sopra, la trasformata $\Phi(p)$ è la funzione d'onda nello spazio dei momenti. Dunque, $|\Phi(p,t)|^2$ è una densità di probabilità e $|\Phi(p,t)|^2$ dp è la probabilità infinitesima di trovare la particella con momento tra p e $p+\mathrm{d}p$.

Si ha un'interpretazione alla trasformata di Fourier all'interno della meccanica quantistica. Inoltre, rappresentare p come una derivata rispetto lo spazio non è univoco. Si hanno modi diversi per rappresentare le stesse cose usando le stesse informazioni, ma alcune rappresentazioni sono più semplici di altre.

Nella rappresentazione dei momenti, l'operatore momento è

$$\hat{p} = r$$

Mentre la posizione è

$$\begin{split} \langle x \rangle &= \int \Psi^*(x) x \Psi(x) \, \mathrm{d}x = \frac{1}{2\pi\hbar} \iint \Phi^*(p) e^{-i\frac{px}{\hbar}} \, \mathrm{d}p \int \Phi(p') e^{i\frac{p'x}{\hbar}} x \, \mathrm{d}p' \, \mathrm{d}x \\ &= \frac{1}{2\pi\hbar} \iint \Phi^*(p) e^{-i\frac{px}{\hbar}} \, \mathrm{d}p \int \Phi(p') (-i\hbar \, \partial_{p'}) e^{i\frac{p'x}{\hbar}} \, \mathrm{d}p' \, \mathrm{d}x \\ &= \frac{i}{2\pi} \int \Phi^*(p) \int \partial_{p'} \Phi(p') \int e^{-i\frac{x}{\hbar}(p-p')} \, \mathrm{d}x \, \mathrm{d}p' \, \mathrm{d}p \\ &= i\hbar \int \Phi^*(p) \int \partial_{p'} \Phi(p') \delta(p-p') \, \mathrm{d}p' \, \mathrm{d}p \\ &= \int \Phi^*(p) (i\hbar \, \partial_p) \Phi(p) \, \mathrm{d}p \end{split}$$

nella terza uguaglianza si è integrato per parti in dp' ricordando che i termini di bordo sono nulli; inoltre, l'ultimo integrale nella terza riga è la delta di Dirac: $2\pi\delta(p-p')\hbar$. Dunque, l'operatore posizione nello spazio dei momenti è

$$\hat{x} = i\hbar \, \partial_n$$

4.2 Commutatore

Il commutatore $[\hat{x},\hat{p}]$ non cambia quando si passa da uno spazio all'altro. Il commutatore di due operatori è

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

Si ricorda che l'ordine degli operatori è importante. Il commutatore è un operatore. Dunque, nella rappresentazione delle posizioni, si ha

$$[\hat{x}, \hat{p}]\Psi(x) = -xi\hbar \partial_x \Psi + i\hbar \partial_x (x\Psi) = -i\hbar (x \partial_x \Psi - \Psi - x \partial_x \Psi) = i\hbar \Psi$$

da cui il commutatore è

$$\hat{[\hat{x},\hat{p}]} = i\hbar$$

Questo commutatore è indipendente dalla rappresentazione. Infatti, nella rappresentazione dei momenti si ha

$$[\hat{x},\hat{p}]\Phi(p)=i\hbar\,\partial_p(p\Phi)-pi\hbar\,\partial_p\Phi=i\hbar\Phi(p) \implies [\hat{x},\hat{p}]=i\hbar$$

Osservazione. Studio della realtà della media del momento #. Il valor medio della posizione è

$$\langle x \rangle = \int |\Psi|^2 x \, \mathrm{d}x$$

Dunque

$$\langle p \rangle - \langle p \rangle^* = \int \Psi^*(-i\hbar) \,\partial_x \Psi \,\mathrm{d}x - \int \Psi(i\hbar) \,\partial_x \Psi^* \,\mathrm{d}x$$
$$= -i\hbar \int \Psi^* \,\partial_x \Psi + \Psi \,\partial_x \Psi^* \,\mathrm{d}x = -i\hbar \int \partial_x (\Psi^* \Psi) \,\mathrm{d}x = 0$$

Vale zero per il teorema della divergenza in quanto agli estremi la densità di probabilità si annulla. Il valor medio del momento è una quantità reale.

Osservazione. Commento sugli operatori posizione e momento \sharp . Gli operatori posizione e momento sono hermitiani, auto-aggiunti. L'operatore aggiunto \hat{A}^{\dagger} di un operatore A è tale per cui

$$\int \Psi^* \hat{A} \Phi \, \mathrm{d}x = \int (\hat{A}^\dagger \Psi)^* \Phi \, \mathrm{d}x$$

L'operatore auto-aggiunto è tale per cui $\hat{A} = \hat{A}^{\dagger}$.

Nello spazio delle coordinate si ha

$$\int \Psi^* \hat{x} \Phi \, \mathrm{d}x = \int \Psi^* x \Phi \, \mathrm{d}x = \int (x \Psi)^* \Phi \, \mathrm{d}x \equiv \int (\hat{x}^\dagger \Psi)^* \Phi \, \mathrm{d}x$$

da cui l'operatore aggiunto è

$$\hat{x}^{\dagger} = \hat{x}$$

pertanto è hermitiano. Per il momento si ha

$$\int \Psi^*(-i\hbar \,\partial_x)\Phi \,\mathrm{d}x = -(-i\hbar) \int (\partial_x \Psi^*)\Phi \,\mathrm{d}x = \int (-i\hbar \,\partial_x \Psi)^*\Phi \,\mathrm{d}x$$

alla prima uguaglianza si è integrato per parti. Segue

$$\hat{p}^{\dagger} = -i\hbar \, \partial_x = \hat{p}$$

Gli operatori auto-aggiunti hanno autovalori reali che sono fondamentali per descrivere osservabili reali.

5 Potenziali indipendenti dal tempo e stati stazionari

Si considera il caso in cui l'energia potenziale non dipende dal tempo

$$V(\vec{x},t) = V(\vec{x})$$

Questo non implica che la funzione d'onda non dipenda dal tempo. Se il tempo è un fattore di fase, allora $|\Psi|$ è indipendente dal tempo. Una soluzione all'equazione di Schrödinger si cerca tra le funzioni a variabili separabili

$$\Psi(\vec{x},t) = \varphi(\vec{x})T(t)$$

L'equazione diventa

$$i\hbar\varphi(\vec{x}) d_t T = -\frac{\hbar^2}{2m} T(t) \nabla^2 \varphi(x) + V(\vec{x}) T(t) \varphi(\vec{x})$$
$$\frac{i\hbar}{T} d_t T = \frac{1}{\varphi} \left[-\frac{\hbar^2}{2m} \nabla^2 \varphi + V \varphi \right] = E = \text{cost.}$$

Alla seconda riga, il primo membro dipende solo dal tempo, mentre il secondo dipende solo dalla posizione, dunque sono uguali quando sono pari alla stessa costante. Per il primo membro si ha

$$i\hbar \frac{\mathrm{d}T}{T} = E \,\mathrm{d}t \implies i\hbar \int_{T_i}^{T_f} \frac{\mathrm{d}T}{T} = E \int_{t_i}^{t_f} \mathrm{d}t \implies \ln T \Big|_{T_i}^{T_f} = \frac{Et}{i\hbar} \Big|_{t_i}^{t_f}$$

Scegliendo $t_i = 0$ e $t_f = t$ si ha

$$T(t) = T(0)e^{-i\frac{Et}{\hbar}}$$

cioè solamente un fattore di fase. Questo succede anche per l'onda piana $(e^{-i\omega t})$ che è soluzione per V=0. Nelle onde piane si ha

$$\hbar\omega = E$$

cioè l'energia della particella. Similmente, in questo caso si interpreta E come l'energia totale del sistema. Essa è costante. Come in meccanica classica, l'energia totale è costante se pure costante è il potenziale.

Stati stazionari. Le soluzioni a variabili separabili costituiscono gli stati stazionari che dipendono dal tempo solamente per una fase

$$\Psi(\vec{x},t) = \varphi(\vec{x})e^{-i\frac{Et}{\hbar}} \implies |\Psi(\vec{x},t)| = |\varphi(\vec{x})|$$

Il modulo non dipende dal tempo.

Il secondo membro dell'equazione di Schrödinger si deve risolvere conoscendo il potenziale particolare. La soluzione deve soddisfare

$$\boxed{ -\frac{\hbar^2}{2m} \nabla^2 \varphi(\vec{x}) + V(\vec{x}) \varphi(\vec{x}) = E \varphi(\vec{x})}$$

cioè l'equazione di Schrödinger per gli stati stazionari. Da questa equazione, si può giustamente interpretare E come l'energia potenziale, infatti l'equazione corrisponde a

$$\frac{\hat{p}^2}{2m} + V(\vec{x}) = E$$

cioè la somma tra l'energia cinetica e l'energia potenziale detta hamiltoniana del sistema.

Hamiltoniana. Si introduce l'operatore hamiltoniano

$$\left| \hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \right| = -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{x})$$

Esso è hermitiano perché pure \hat{p} e \hat{x} lo sono.

L'equazione di Schrödinger per gli stati stazionari diventa

$$\hat{H}\varphi = E\varphi$$

Questa è un'equazione agli autovalori:

$$\hat{A}f = af$$

L'operatore \hat{A} è lineare, la funzione f è un'auto-funzione (o autovettore) di \hat{A} , il numero a è l'autovalore associato. L'operatore hamiltoniano seleziona particolari funzioni φ e valori di E. Lo spettro è l'insieme degli autovalori.

Osservazione. Continuità della funzione d'onda \sharp . Si studiano le proprietà di φ . In una dimensione si ha

$$\mathrm{d}_x^2 \varphi = \frac{2m}{\hbar^2} (V - E) \varphi$$

La derivata seconda della funzione d'onda ha la stessa classe di continuità del potenziale V(x). Se $V \to \infty$ allora l'equazione è soddisfatta per $\varphi \equiv 0$.

Si studia la derivata prima quando V(x) non è una funzione continua. Sia x_0 un punto singolare: $V(x_0)$ è un salto oppure una delta. Dunque

$$\int_{x_0 - \varepsilon}^{x_0 + \varepsilon} d_x^2 \varphi \, dx = \frac{2m}{\hbar^2} \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} (V - E) \varphi \, dx$$
$$\varphi'(x_0 + \varepsilon) - \varphi'(x_0 - \varepsilon) = \frac{2m}{\hbar^2} \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} (V - E) \varphi(x) \, dx$$

Lezione 6 mer 05 ott Se V fosse una funzione continua, allora l'integrale tenderebbe a zero e la derivata di φ sarebbe 2022 13:30

Se V fosse una funzione continua, allora l'integrale tenderebbe a zero e la derivata di φ sarebbe continua. Se $V(x_0)$ è un salto finito, allora l'integrale tende a zero e $\varphi \in C^1$. La funzione d'onda non ha salti anche se il potenziale ne ha.

Sia $V = V_0 \delta(x - x_0)$ una delta. L'integrale diventa

$$\varphi'(x_0 + \varepsilon) - \varphi'(x_0 - \varepsilon) = \frac{2m}{\hbar^2} V_0 \varphi(x_0)$$

Eccetto il caso in cui $\varphi(x_0) = 0$, in generale, la derivata prima ha una discontinuità di salto e dunque una cuspide nella funzione d'onda la quale è continua.

5.1 Discussione qualitativa delle soluzioni dell'equazione degli stati stazionari in una dimensione

Si vuole studiare l'equazione degli stati stazionari

$$d_x^2 \psi(x) + \frac{2m}{\hbar^2} [E - V(x)] \psi(x) = 0$$

Sia

$$\alpha^2 \equiv \frac{2m}{\hbar^2} [E - V(x)]$$

quindi

$$\mathrm{d}_x^2\psi + \alpha^2\psi = 0$$

Nell'intorno di un punto x_0 della soluzione (escluso il caso della delta), la funzione α ha un certo valore approssimabile a costante: o perché V è costante oppure proprio perché si è all'interno di un piccolo intorno. Si studiano i due casi $\alpha^2 > 0$ e $\alpha^2 < 0$ che corrispondono a E > V e E < V.

Primo caso. Si studia il caso $\alpha^2 > 0$. Intorno al punto x_0 , la soluzione è quella dell'oscillatore armonico

$$\psi \sim c_1 \sin(\alpha x) + c_2 \cos(\alpha x)$$

si hanno soluzioni oscillatorie. Il valore di α cambia in base alla posizione, ma la soluzione è sempre costituita da sinusoidi, sebbene cambi la pulsazione. La frequenza delle oscillazioni è data dall'energia cinetica classica

$$E - V(x) = K$$

La concavità della soluzione segue da

$$\psi'' = -\alpha^2 \psi$$

cioè dal segno della soluzione. Se $\psi > 0$ allora $\psi'' < 0$, cioè la funzione è concava, e viceversa.

Secondo caso. Si studia il caso $\alpha^2 = -\beta^2 < 0$ con $\beta^2 > 0$. La soluzione va come

$$\psi \sim c_1 e^{\beta x} + c_2 e^{-\beta x}$$

Le soluzioni dei due casi fanno parte della stessa famiglia (esponenziali), ma fisicamente hanno significati diversi. La convessità si ricava dall'equazione differenziale

$$\psi'' = \beta^2 \psi$$

Se $\psi > 0$ allora $\psi'' > 0$ e la funzione è convessa, e viceversa. Nella regione in cui E - V(x) < 0 la soluzione è esponenziale e si allontana dall'asse x. Questo implica che l'energia cinetica sia negativa. Sono regioni in cui la particella classica non potrebbe entrare, ma quella quantistica può.

La regione in cui $\alpha^2>0$ è detta regione classicamente permessa. Quella per cui $\alpha^2<0$ si dice regione classicamente proibita.

5.1.1 Due punti classici di inversione del moto

Si consideri un potenziale monodimensionale con una forma convessa (come una parabola, Figura 1). Si consideri un'energia totale positiva. Sono presenti tre regioni. Sinistra, dentro e

Figura 1: Due punti di inversione.

destra rispetto il potenziale.

Nella prima regione e nella terza si ha E-V(x)<0 e $\alpha^2<0$. Nella seconda regione si ha $\alpha^2>0$. I punti di intersezione del potenziale con l'energia totale sono i punti classici di inversione del moto.

Si studia la funzione d'onda per questo problema. I punti critici, di inversione sono A e B. Per x < A, la funzione d'onda è, localmente, un esponenziale (reale), ma non deve essere presente il termine $e^{-\beta x}$, in quanto per $x \to -\infty$ si ha $e^{-\beta x} \to \infty$ che non ha senso fisico perché ψ deve tendere a zero per essere quadrato integrabile. Similmente, per x > B, non deve essere presente il termine $e^{\beta x}$.

Per la seconda regione, A < x < B, la soluzione ha derivata continua ed essa stessa è continua in A, ma deve cambiare concavità: la soluzione è oscillatoria in tale regione. Più aumenta la differenza in energia, più aumenta la frequenza di oscillazione. In B, la soluzione si deve ancora raccordare con la terza regione. Come arriva la soluzione in B dipende dalla differenza E - V(x). Questo implica che solo alcuni valori di energia sono permessi per ottenere il raccordo: i livelli energetici sono quantizzati, lo spettro di energia è discreto.

Potenziale simmetrico pari. Si utilizza un potenziale simmetrico (Figura 1) per sfruttare la parità, ma il discorso è generale. Esiste un livello più piccolo di energia permesso (stato fondamentale). Tale stato dev'essere quello per cui si ha il numero minore di oscillazioni: una sola. Con una sola oscillazione, E-V dev'essere la minore, portando allo stato fondamentale, livello 0. Al livello successivo, l'energia E aumenta, così pure α^2 : si hanno più oscillazioni, due anse e un nodo. Si ricorda che il significato fisico è dato dal modulo quadro. Per un potenziale simmetrico, si hanno soluzioni ψ pari e dispari, ma $|\psi|^2$ è comunque pari.

Al livello 2, si hanno tre anse con due nodi. La soluzione ritorna ad essere pari. Al livello 3, si hanno quattro anse con tre nodi. La soluzione è dispari.

5.1.2 Uno e zero punti di inversione del moto

Si consideri un potenziale simile ad un gradino, ma continuo. Il caso con un punto di inversione del moto è quello per cui l'energia totale è minore del gradino. Il caso con zero punti di inversione è quello con l'energia maggiore del gradino.

Un punto di inversione. Si hanno due regioni, prima e dopo il punto. Nella seconda regione, quella classicamente proibita, la funzione d'onda è localmente un esponenziale senza il termine $e^{\beta x}$. Nella prima regione, quella permessa, la funzione d'onda è oscillatoria, ma si deve raccordare solamente con la seconda regione. Qualunque valore di energia è permesso, lo spettro energetico è continuo.

Figura 2: Livelli energetici.

Figura 3: Energie necessarie per un punto di inversione e per nessun punto.

Zero punti di inversione. La funzione d'onda è costituita da sinusoidi. Non si hanno raccordi e qualunque livello energetico è permesso.

Questi ultimi due casi implicano una funzione d'onda non quadrato integrabile. Tali seni e coseni (cioè onde piane) diventano gli strumenti per costruire i pacchetti di onde, le particelle (in quanto costituiscono un sistema ortonormale completo, la base di Fourier) tramite loro combinazioni lineari. [r]

Esempio. Per un potenziale generico, si possono avere regioni con spettro continuo ed altre con spettro discreto.

5.1.3 Commenti

Primo commento. In fisica classica, lo stato fondamentale è quello ad energia nulla, in fondo alla buca di potenziale senza energia cinetica. In meccanica quantistica, questo non è possibile, bisogna che la funzione d'onda si raccordi. Inoltre, bisogna rispettare il principio di indeterminazione di Heisenberg: nel caso classico si ha posizione e momento definiti.

Si confini una particella all'interno di una buca rettangolare di lunghezza a. Si ha

$$\Delta p \, \Delta x \sim \hbar \implies \Delta p \sim \frac{\hbar}{a}$$

Il suo momento è

$$|p| = \frac{\hbar}{2a}$$

perché il momento a destra ed a sinistra è lo stesso ed implicano $\Delta p = \frac{\hbar}{a}$. L'energia cinetica è

$$K \approx \frac{p^2}{2m} = \frac{(\Delta p)^2}{8m} = \frac{\hbar^2}{8ma^2} \implies K \approx \frac{\hbar^2}{ma^2} \propto \frac{1}{a^2}$$

Una particella acquista energia quando si diminuisce la regione in cui è confinata. Ad un certo punto, l'energia per confinare la particella è uguale all'energia della particella stessa e non si può procedere oltre. Questa è la reazione al confinamento.

In meccanica quantistica, l'energia dello stato fondamentale è anche detta energia di punto zero. Questo è anche il motivo per cui l'elettrone non cade sul nucleo. Il potenziale elettrico va come $\frac{1}{r}$ mentre la reazione di resistenza va come $\frac{1}{r^2}$.

Esercizio. [r] Per descrivere questo problema partendo dall'equazione di Schrödinger si ha bisogno delle grandezze a, m e \hbar . La lunghezza è ricavata dalla lunghezza caratteristica del potenziale, cioè lo spazio in cui si ha E > V. Dimensionalmente, si vuole costruire un'energia tramite queste quantità

$$[E] = a^{\alpha} m^{\beta} \hbar^{\gamma}$$

Tramite l'analisi dimensionale si costruiscono le grandezze necessarie. Tuttavia, manca il coefficiente numerico. La differenza con la meccanica classica è costituita dalla presenza della costante di Planck, \hbar .

Secondo commento. In meccanica quantistica, esistono regioni di energia cinetica negativa (intesa in senso classico), ma la particella può comunque essere presente, sebbene la probabilità decade esponenzialmente. Quando si trova la particella, la si trova tutta intera con una certa velocità.

Terzo commento. Esistono dei punti nella regione classica (i nodi della funzione d'onda) in cui una particella non è mai presente. Questo non succede in meccanica classica dove si ha un continuo di possibili posizioni.

Teorema. L'energia dev'essere $E > V_{\min}$.

Dimostrazione. Dall'equazione di Schrödinger si ha

$$E\varphi = -\frac{\hbar^2}{2m}\varphi'' + V\varphi$$

$$E = -\frac{\hbar^2}{2m}\int \varphi^*\varphi'' \,dx + \int V|\varphi|^2 \,dx$$

$$= \frac{\hbar^2}{2m}\int |\varphi'|^2 \,dx + \int V|\varphi|^2 \,dx > \int V|\varphi|^2 \,dx$$

$$\geq \int V_{\min}|\varphi|^2 \,dx = V_{\min}\int |\varphi|^2 \,dx = V_{\min}$$

alla seconda riga si è moltiplicato per φ^* e integrato in dx; alla terza riga si è integrato per parti il primo integrale.

Figura 4: Effetto tunnel.

Quarto commento. Effetto tunnel. Si consideri un potenziale con profilo sinusoidale che si approssima ad un'onda quadra. Si consideri una particella di energia E minore del potenziale massimo.

Nelle regioni E-V<0 si ha soluzione ad esponenziale reale e si hanno entrambi i termini $e^{\pm\beta x}$. Al di fuori si ha una sinusoide pura. Alla salita del potenziale, esiste una probabilità di essere all'interno ed una probabilità di trovarsi al di là.

Inviando una particella contro una barriera, oltre di essa, la funzione d'onda è minore di quella incidente, ma non nulla.

Lezione 7

Sfruttando l'effetto tunnel si costruiscono

gio 06 ott 2022 13:30

- microscopio ad effetto tunnel, binning;
- maser tramite ammoniaca; il maser è un laser ma con microonde;
- diodo ad effetto tunnel;

tutti e tre premi nobel.

5.2 Buche e barriere di potenziale

Particella in una scatola con potenziale infinito. Si confina una particella in una regione di spazio tramite dei potenziali infiniti. Si ha

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & \text{altrove} \end{cases}$$

L'unica soluzione per $V(x)=\infty$ è $\varphi\equiv 0$ all'equazione di Schrödinger

$$-\frac{\hbar^2}{2m} \, \mathrm{d}_x^2 \varphi = (E - V) \varphi$$

Mentre per 0 < x < a si ha

$$\varphi'' + \frac{2mE}{\hbar^2}\varphi = 0$$

In questa regione, non si ha alcun livello energetico minore del potenziale: pertanto E > 0. La derivata prima della funzione d'onda è discontinua (perché si ha un infinito nel potenziale), ma la funzione d'onda stessa è continua. Pertanto, ai bordi, la soluzione si deve raccordare:

$$\varphi(0) = \varphi(a) = 0$$

Sia

$$\frac{2mE}{\hbar^2} \equiv k^2 > 0$$

pertanto

$$\varphi'' + k^2 \varphi = 0 \implies \varphi(x) = A \sin(kx) + B \cos(kx)$$

La soluzione deve soddisfare le condizioni al bordo, ma anche la normalizzazione. Dunque

$$\varphi(0) = B = 0, \quad \varphi(a) = A\sin(ka) = 0$$

pertanto

$$A \neq 0, \quad k = \frac{n\pi}{a}, \quad n \in \mathbb{Z}$$

da cui

$$E_n = \frac{\hbar^2}{2m}k^2 = n^2 \frac{\pi^2 \hbar^2}{2ma^2}, \quad n \in \mathbb{N} \setminus \{0\}$$

L'energia è quantizzata, si hanno valori discreti.

Osservazione. Si osserva:

- l'energia minima è maggiore di zero;
- $\bullet\,$ si è già trovata la dipendenza $E \propto \frac{1}{a^2},$ ma ora si sa anche il coefficiente numerico;

Gli auto-stati (le auto-funzioni) dell'equazione degli stati stazionari sono

$$\varphi_n(x) = A \sin\left(\frac{n\pi}{a}x\right)$$

Per trovare la costante A si deve applicare la normalizzazione

$$\int \varphi_n^*(x)\varphi_n(x)\,\mathrm{d}x = 1$$

da cui le auto-funzioni sono

$$\varphi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

I livelli energetici crescono come n^2 .

Osservazione. Si nota:

- i livelli energetici E_n sono reali;
- vale

$$\int_0^a \varphi_n^*(x)\varphi_m(x) \, \mathrm{d}x = \delta_{mn}$$

cioè le φ_n sono funzioni ortonormali;

- le funzioni d'onda $\varphi_n(x)$ sono funzioni reali;
- per ogni valore di E_n , esiste una sola funzione d'onda φ_n ; l'indice identifica univocamente l'energia e la funzione d'onda corrispondente: non c'è degenerazione. Si ha degenerazione quando ad uno stesso livello energetico corrispondono funzioni d'onda con caratteristiche diverse.

• Le funzioni d'onda φ_n sono un sistema ortonormale completo, cioè la base di Fourier, nell'intervallo [0, a] per funzioni con condizioni al bordo f(0) = f(a) = 0. Infatti

$$f(x) = \sum_{n=1}^{\infty} c_n \varphi_n(x)$$

i coefficienti si trovano come

$$\int_0^a \varphi_m^*(x) f(x) \, \mathrm{d}x = \sum_{n=1}^\infty c_n \int_0^a \varphi_m^*(x) \varphi_n(x) \, \mathrm{d}x = \sum_{n=1}^\infty c_n \delta_{mn} = c_m$$

Al tempo t=0, si supponga di inserire nella buca una particella con funzione d'onda $f(x)=\psi(x,0)$ arbitraria consentita. Si ha

$$f(x) = \sum_{n=1}^{\infty} c_n \varphi_n(x)$$

Si studia il comportamento della base. Ogni elemento $\varphi_n(x)$ è soluzione dell'equazione degli stati stazionari. Dunque, la loro evoluzione temporale è data da un puro fattore di fase

$$\psi_n(x,t) = \varphi_n(x)e^{-i\frac{E_n t}{\hbar}}$$

Pertanto, l'evoluzione temporale della funzione d'onda arbitraria è

$$\psi(x,t) = \sum_{n=1}^{\infty} c_n \varphi_n(x) e^{-i\frac{E_n t}{\hbar}}$$

che non è più uno stato stazionario (perché il modulo dipende dal tempo). Essa è la soluzione generale (non solo per la buca, ma ogni qual volta è presente un potenziale indipendente dal tempo e quindi si può separare la funzione d'onda la quale presenta stati stazionari). Si verifica che quanto scritto sia giusto. Infatti

$$\psi(x,0) = \sum_{n=1}^{\infty} c_n \varphi_n(x) = f(x)$$

Inoltre, essa soddisfa l'equazione di Schrödinger. La parte temporale è

$$i\hbar \,\partial_t \psi = \sum_{n=1}^{\infty} c_n i\hbar \left(-i \frac{E_n}{\hbar} \right) e^{-i \frac{E_n t}{\hbar}} \varphi_n(x) = \sum_{n=1}^{\infty} c_n E_n e^{-i \frac{E_n t}{\hbar}} \varphi_n(x)$$

la parte spaziale è

$$\hat{H}\psi \equiv -\frac{\hbar^2}{2m}\,\partial_x^2\psi = \sum_{n=1}^{\infty} c_n e^{-i\frac{E_n t}{\hbar}} \hat{H}\varphi_n(x) = \sum_{n=1}^{\infty} c_n e^{-i\frac{E_n t}{\hbar}} E_n \varphi_n(x)$$

in quanto

$$\hat{H}\varphi_n(x) = E_n\varphi_n(x)$$

Le due espressioni sono identiche.

Osservazione. Si consideri una particella nell'auto-stato $\varphi_n(x)$. Si trova il valor di aspettazione dell'hamiltoniana, dell'energia:

$$\left\langle \hat{H} \right\rangle_n = \int \varphi_n^*(x) \hat{H} \varphi_n(x) \, \mathrm{d}x = \int \varphi_n^*(x) E_n \varphi_n(x) \, \mathrm{d}x = E_n, \quad \hat{H} = -\frac{\hbar^2}{2m} \, \mathrm{d}_x^2$$

come ci si aspetta, perché lo stato ha energia definita. Ogni volta che si fa una misura, si trova uno dei valori energetici permessi. Si vuole trovare l'energia per una particella con funzione d'onda arbitraria. Allora

$$\left\langle \hat{H} \right\rangle_{\psi}(t) = \int \psi^*(x,t) \hat{H} \psi(x,t) \, \mathrm{d}x$$

Si nota che

$$\hat{H}\psi(x,t) = \hat{H}\sum_{n=1}^{\infty} c_n \varphi_n(x) e^{-i\frac{E_n t}{\hbar}} = \sum_{n=1}^{\infty} c_n E_n \varphi_n(x) e^{-i\frac{E_n t}{\hbar}}$$

Pertanto

$$\left\langle \hat{H} \right\rangle_{\psi}(t) = \int \sum_{k=1}^{\infty} c_k^* \varphi_k^*(x) e^{i\frac{E_k t}{\hbar}} \sum_{n=1}^{\infty} c_n E_n \varphi_n(x) e^{-i\frac{E_n t}{\hbar}} dx = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

ricordando che $\int \varphi_k^* \varphi_n \, \mathrm{d}x = \delta_{kn}$. Bisogna misurare più volte l'energia ripartendo sempre dallo stato iniziale: non si può misurare più volte conseguentemente perché la misura disturba il sistema quantistico. Pertanto, il valore di aspettazione dell'hamiltoniana è una media pesata da $|c_n|^2$ degli stati energetici.

Osservazione. Si è già dimostrato che l'evoluzione temporale della funzione d'onda non ne cambia il modulo quadro. I coefficienti $|c_n|^2$ si interpretano come probabilità degli stati E_n . Infatti:

$$1 = \int \psi^*(x,t)\psi(x,t) \, \mathrm{d}x = \int \sum_{k=1}^{\infty} c_k^* \varphi_k^*(x) e^{i\frac{E_k t}{\hbar}} \sum_{n=1}^{\infty} c_n \varphi_n(x) e^{-i\frac{E_n t}{\hbar}} \, \mathrm{d}x = \sum_{n=1}^{\infty} |c_n|^2$$

5.3 Equazione di Schrödinger in tre dimensioni con potenziale separabile

L'equazione di Schrödinger diventa

$$-\frac{\hbar^2}{2m}\nabla^2\varphi + V(x,y,z)\varphi = E\varphi$$

Il potenziale è ancora stazionario. Se il potenziale si può scrivere come

$$V(x, y, z) = W(x) + U(y) + S(z)$$

allora esso è detto separabile. Si cercano soluzioni come

$$\varphi(x, y, z) = X(x)Y(y)Z(z)(x, y, z) = X(x)Y(y)Z(z)$$

L'equazione di Schrödinger diventa

$$-\frac{\hbar^2}{2m}(X''YZ + XY''Z + XYZ'') + [W(x) + U(y) + S(z)]XYZ = EXYZ$$

$$\left[-\frac{\hbar^2}{2m}\frac{X''(x)}{X(x)} + W(x) \right] + \left[-\frac{\hbar^2}{2m}\frac{Y''(y)}{Y(y)} + U(y) \right] + \left[-\frac{\hbar^2}{2m}\frac{Z''(z)}{Z(z)} + S(z) \right] = E$$

alla seconda riga si è diviso per XYZ. Inoltre, affinché la somma di tre termini dipendenti da variabili diverse sia una costante, si necessita ogni addendo essere una costante. Dunque

$$\begin{cases} -\frac{\hbar^2}{2m}X'' + WX = E_1X \\ -\frac{\hbar^2}{2m}Y'' + UY = E_2Y \\ -\frac{\hbar^2}{2m}Z'' + SZ = E_3Z \end{cases}$$

Si è semplificato il problema tridimensionale in tre problemi monodimensionale.

Buca tridimensionale con parenti a potenziale infinito. Il potenziale è nullo nella regione

$$[0,a]\times[0,b]\times[0,c]$$

e infinito altrove. L'energia di una particella in tale buca è

$$E_{n_1 n_2 n_3} = E_1 + E_2 + E_3 = n_1^2 \frac{\pi^2 \hbar^2}{2ma^2} + n_2^2 \frac{\pi^2 \hbar^2}{2mb^2} + n_3^2 \frac{\pi^2 \hbar^2}{2mc^2}$$

e dipende da tre indici, ciascuno dal problema monodimensionale associato. La funzione d'onda soluzione è

$$\varphi_{n_1 n_2 n_3}(x, y, z) = \sqrt{\frac{8}{abc}} \sin\left(\frac{n_1 \pi}{a}x\right) \sin\left(\frac{n_2 \pi}{b}x\right) \sin\left(\frac{n_3 \pi}{c}x\right)$$

Gli indici n_i sono detti numeri quantici.

Se a, b e c sono incommensurabili, cioè numeri reali con rapporti irrazionali, allora si hanno dei problemi perché non si hanno simmetrie (questo dovuto al quadrato nell'energia, perché se sono commensurabili, allora, ad esempio, un termine in b può bilanciare un termine in a: si può porre b = 2a, $n_2 = 2n_1$). Si sfruttano le simmetrie affinché si possano avere delle leggi di conservazioni. Si impone

$$a = b = c$$

L'energia diventa

$$E_{n_1 n_2 n_3} = \frac{\pi^2 \hbar^2}{2ma^2} (n_1^2 + n_2^2 + n_3^2)$$

L'energia e la funzione d'onda dello stato fondamentale sono

$$E_{111} = 3\frac{\pi^2\hbar^2}{2ma^2}, \quad \varphi_{111} = \sqrt{\frac{8}{a^3}}\sin^3\left(\frac{\pi x}{a}\right)$$

Il primo stato eccitato in questo caso deve essere 112 o 121 o 211. In ogni caso, l'energia è

$$E = 6\frac{\pi^2 \hbar^2}{2ma^2}$$

Ma si ha degenerazione dei livelli energetici. In particolare, tale stato è tre volte degenere perché esistono tre auto-funzioni corrispondenti.

5.4 Equazione di continuità degli stati stazionari

Si ritorna in una dimensione. Lo stato stazionario è del tipo

$$\psi(x,t) = \varphi(x)e^{-i\frac{E}{\hbar}t}$$

L'equazione di continuità è

$$\partial_t |\psi(x,t)|^2 + \nabla \cdot \vec{J} = 0$$

Per stati stazionari, essa diventa

$$\partial_t |\psi(x,t)|^2 = \partial_t |\varphi(x)|^2 = 0 = -\partial_x \vec{J} \implies J_x(x) = \cos t$$

Dunque, la corrente di densità di probabilità è costante. Essa è

$$J_x(x) = \frac{\hbar}{2mi} \left[\psi^* \left(\partial_x \psi \right) - \left(\partial_x \psi^* \right) \psi \right] = \frac{\hbar}{2mi} \left[\varphi^* \partial_x \varphi - \left(\partial_x \varphi^* \right) \varphi \right]$$

Lezione 8 lun 10 ot Per una particella libera si ha V(x) = 0. L'equazione di Schrödinger corrispondente per gli stati 2022 13:30

Per una particella libera si ha V(x) = 0. L'equazione di Schrödinger corrispondente per gli stati stazionari è

$$-\frac{\hbar^2}{2m}\varphi'' = E\varphi$$

Non si hanno soluzioni per energia negativa, E < 0. Dunque, l'equazione diventa

$$\varphi'' + k^2 \varphi = 0, \quad k^2 = \frac{2mE}{\hbar^2}$$

Le soluzioni sono

$$\varphi_p(x) = Ae^{ikx} + Be^{-ikx} = A\varphi_{p_+} + B\varphi_{p_-}$$

Inoltre si ha

$$p = \hbar k, \quad E = \frac{p^2}{2m}$$

L'indice k è continuo: non ci sono i due punti di inversione del moto che vincolano i valori dell'energia. Si ha uno spettro continuo.

Osservazione. Vale

$$\hat{p}\varphi_{p_{+}}(x) = \hat{p}e^{ikx} = -(i\hbar\,\partial_{x})e^{ikx} = \hbar k\varphi_{p_{+}}(x) = p\varphi_{p_{+}}(x)$$

Lo stesso per φ_{p_-} . Applicare l'operatore momento significa moltiplicare per il momento della funzione.

Si ha un problema per lo spettro continuo. La funzione non è normalizzabile. Infatti

$$\int_{\mathbb{R}} \left| \varphi_{p_+} \right|^2 \mathrm{d}x \to \infty$$

essa diverge. Questo perché gli addendi di φ_p sono delle onde piane, ma esse non esistono in natura. Ciò che esiste sono le combinazioni lineare che rimangono quadrato-integrabili. Si definisce la funzione

$$u_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{i\frac{p}{\hbar}} x$$

Il fattore di normalizzazione è motivato dall'integrale

$$\int u_{p'}^*(x)u_p(x) dx = \delta(p - p')$$

Le funzioni u_p sono ortonormali e riguardano il continuo: al discreto l'integrale presenta una delta di Kronecker. Le funzioni u_p costituiscono una base per $L^2(\mathbb{R})$:

$$\Psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int \Phi(p) e^{i\frac{p}{\hbar}x} dp = \int \Phi(p) u_p dp$$

ed equivalentemente

$$\Phi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi(x) \left(e^{i\frac{p}{\hbar}x} \right)^* dx = \int \Psi(x) u_p^* dx$$

La funzione $\Phi(p)$ descrive quanto momento p si trova in $\Psi(x)$.

Si studia cosa φ_p descrive. Si consideri $A\varphi_{p_+}$. La densità di probabilità e la sua corrente sono

$$\rho = |A|^2, \quad J(x) = \frac{p}{m}|A|^2 = v\rho(x)$$

Questo è identico a considerare un fluido oppure delle cariche elettriche: un insieme di particelle, non una singola. [r] In un intervallo Δt , tutte le particelle in un cilindro alto $v\Delta t$ passano

attraverso un'area A perpendicolare alla direzione del moto. La φ_p descrive due flussi di particelle: un flusso verso destra, φ_{p_+} , ed un flusso verso sinistra, φ_{p_-} . Entrambe le onde hanno energia

$$E = \frac{p^2}{2m}$$

Dunque, si hanno due soluzioni indipendenti con medesima energia. Nel caso monodimensionale della buca, si è vista una energia con una funzione; nel caso tridimensionale, si ha un valore di energia e più funzioni d'onda. In questo caso, si ha un'energia e due funzioni d'onda: si ha ancora degenerazione perché lo spettro è continuo e non discreto.

5.5 Barriera di potenziale

Si consideri un potenziale a gradino. Sia $x_0 = 0$ il punto di salto e $V_0 > 0$ il salto medesimo. Il potenziale è

$$V(x) = \begin{cases} 0, & x < 0 \\ V_0, & x > 0 \end{cases}$$

Si stanno sempre considerando gli stati stazionari. L'equazione di Schrödinger per gli stati stazionari è

$$-\frac{\hbar^2}{2m}\varphi'' + V(x)\varphi = E\varphi \implies \varphi'' + \frac{2m}{\hbar}[E - V(x)]\varphi = 0$$

Si hanno due casi di energia: $E > V_0$ e $V_0 > E > 0$. Inoltre, E > 0 per il teorema riguardo l'energia e il minimo del potenziale. Si conosce già l'andamento qualitativo. Si consideri una particella ad energia $V_0 > E > 0$. Classicamente, una particella che arriva da sinistra urta in modo elastico contro la parete di potenziale e torna indietro. Per $E > V_0$, classicamente, la particelle rallenta al gradino.

Si studia la descrizione quantistica. Siano

$$k^2 = \frac{2mE}{\hbar^2}, \quad q^2 = \frac{2m(E - V_0)}{\hbar^2}$$

Primo caso. Sia $E > V_0$. Si ha $q^2 > 0$. Il problema è diviso in due regioni: x < 0 e x > 0. Si consideri la regione x < 0. La soluzione all'equazione è

$$\varphi_I = Ae^{ikx} + Be^{-ikx}$$

Si consideri la regione x > 0. La soluzione è

$$\varphi_{II} = Ce^{iqx} + De^{-iqx}$$

Tali soluzioni non si possono normalizzare. Si studia a cosa esse corrispondono. Si studia il flusso. Per x < 0 si ha

$$J_I = \frac{\hbar k}{m} |A|^2 - \frac{\hbar k}{m} |B|^2 = J_{\text{onda incidente}} - J_{\text{onda riflessa}}$$

Per x > 0 si ha

$$J_{II} = \frac{\hbar q}{m} |C|^2 - \frac{\hbar q}{m} |D|^2 = J_{\text{onda trasmessa}} - J_{\text{onda da } + \infty}$$

In quanto si vuole che il problema descriva la fisica, non deve comparire la corrente da $+\infty$. Dunque D=0. Questo perché si vuole descrivere un flusso che si sta inviando da sinistra. Si determinano gli altri tre coefficienti. La funzione d'onda attraversa un gradino di potenziale finito: la derivata prima è continua e pure la funzione d'onda stessa. Quindi

$$\varphi_I' = ik(Ae^{ikx} - Be^{ikx}), \quad \varphi_{II}' = iqCe^{iqx}$$

Nel punto di discontinuità $x_0 = 0$ si ha

$$\varphi_I(0^-) = \varphi_{II}(0^+), \quad \varphi_I'(0^-) = \varphi_{II}'(0^+)$$

Da esse risulta

$$A + B = C$$
, $ik(A - B) = iqC$

Da questo punto è solamente matematica. La condizione è data in $x_0 = 0$ perché conveniente, per farlo in un altro punto basta traslare

$$\varphi_I = Ae^{ik(x-x_0)} + Be^{ik(x-x_0)}$$

Le due equazioni precedenti presentano tre incognite, la terza equazione è la normalizzazione, ma in questo caso non è possibile, dunque tali due equazioni si scrivono in termini di A:

$$B = \frac{k-q}{k+q}A, \quad C = \frac{2k}{k+q}A$$

Si ritorna al problema fisico. Per J_I si ha un'onda incidente, ma anche un'onda riflessa, sebbene si abbia più energia di quella del salto. Esiste una possibilità non nulla di tornare indietro: non si ha alcun corrispettivo classico. Si definiscono i coefficienti di trasmissione e di riflessione:

$$T \equiv \left| \frac{J_{\text{onda trasmessa}}}{J_{\text{onda incidente}}} \right|, \quad R \equiv \left| \frac{J_{\text{onda riflessa}}}{J_{\text{onda incidente}}} \right|$$

Normalizzare rispetto $J_{\text{incidente}}$ porta a numeri finiti. Dunque

$$T = \frac{q|C|^2}{k|A|^2} = \frac{4kq}{(k+q)^2}, \quad R = \frac{|B|^2}{|A|^2} = \frac{(k-q)^2}{(k+q)^2}$$

Vale

$$T + R = 1$$

Nel complemento J_I del Cohen c'è la derivazione completa di una gaussiana ad un salto di potenziale. [immagine] L'equazione del campo elettrico tra due materiali dielettrici è identica a questo caso.

Osservazione. I coefficienti

$$\frac{B}{A}$$
, $\frac{C}{A}$

sono reali. Quando essi diventano complessi, si hanno dei ritardi tra l'onda riflessa e l'onda trasmessa.

L'unico modo per controllare che tali formule abbiano senso è considerare i casi limite. Per $E\gg V_0$ si ha $k\approx q$ per cui R=0.

Secondo caso. Sia $V_0 > E > 0$. Si ha $q^2 = -\rho^2 < 0$ e $q = i\rho$. L'equazione diventa

$$\varphi'' - \rho^2 \varphi = 0$$

Le soluzioni sono

$$\varphi_I = Ae^{ikx} + Be^{-ikx}, \quad \varphi_{II} = Ee^{-\rho x}$$

La corrente nella seconda regione è $J_{II}=0$ in quanto φ_{II} è reale. Non si ha flusso trasmesso. Infatti

$$R = \left| \frac{k - q}{k + q} \right|^2 = \left| \frac{k - i\rho}{k + i\rho} \right|^2 = 1$$

Si ha riflessione totale. L'onda nella seconda regione è detta evanescente perché decade esponenzialmente con larghezza di $\frac{1}{\rho}$. Esiste una probabilità non nulla di trovare la particella in una regione in cui, classicamente, avrebbe energia cinetica negativa. Prima o poi, la barriera riflette completamente la particella, però esiste un tempo τ in cui la particella si trova all'interno della barriera stessa. Il coefficiente

$$\frac{B}{A}$$

è un numero complesso, sebbene abbia modulo unitario.

Analogia ottica. L'effetto di riflessione totale è lo stesso che si ha nell'elettromagnetismo oltre un certo angolo. Si ha un'onda evanescente oltre la barriera di riflessione.

5.5.1 Barriera finita – effetto tunnel

La particella ha una probabilità di trovarsi al di là della barriera. Lo stesso avviene anche per le onde elettromagnetiche. [immagine] Si hanno tre regioni.

Primo caso. Sia $E > V_0$. Questo caso vale anche per una buca di potenziale finita ad energia $-V_0 < 0$. Siano

$$k^2 = \frac{2mE}{\hbar^2}, \quad q^2 = \frac{2m(E - V_0)}{\hbar^2}$$

Le soluzioni sono

$$\varphi_I = Ae^{ikx} + Be^{-ikx}, \quad \varphi_{II}(x) = Ce^{iqx} + De^{-iqx}, \quad \varphi_{III} = Ee^{ikx} + Fe^{-ikx}$$

Ancora per ragioni fisiche si ha F = 0. Si impongono le condizioni di continuità della funzione e della derivata nei punti di salto del potenziale:

$$\begin{cases} \varphi_I(0) = \varphi_{II}(0) \\ \varphi'_I(0) = \varphi'_{II}(0) \end{cases}, \quad \begin{cases} \varphi_{II}(l) = \varphi_{III}(l) \\ \varphi'_{II}(l) = \varphi'_{III}(l) \end{cases}$$

I coefficienti di riflessione e trasmissione sono

$$R = \left| \frac{B}{A} \right|^2 = \frac{(k^2 - q^2)^2 \sin^2(ql)}{4k^2 q^2 + (k^2 - q^2)^2 \sin^2(ql)}, \quad T = \left| \frac{E}{A} \right|^2 = \frac{4k^2 q^2}{4k^2 q^2 + (k^2 - q^2)^2 \sin^2(ql)}$$

sempre con R + T = 1. Si ha ancora un flusso riflesso. Il coefficiente di riflessione dipende dal seno di ql. Pertanto, esistono valori particolari per cui non si ha riflessione:

$$\sin(ql) = 0 \implies ql = n\pi, \quad R = 0, \quad T = 1$$

Si parla di scattering (diffusione) in risonanza. Per certi valori dell'energia (che si trova nel termine q) si hanno valori grandi del coefficiente di trasmissione. Sapendo l'energia q delle particelle, si può misurare la dimensione l. Ciò è stato confermando nell'esperimento di Ramsauser-Townsend.

Si invia un pacchetto gaussiano. Alla barriera, una parte viene riflessa ed un'altra continua all'interno del gradino. Quella che continua risente del gradino in discesa. Una parte è trasmessa ed un'altra è riflessa. Quella riflessa urta contro la discontinuità iniziale e l'onda si divide, e così via. Bisogna immaginare il fenomeno con un flusso continuo, non con una sola particella. La riflessione sparisce nel momento in cui tutti i pacchetti che tornano indietro interferiscono in modo distruttivo.

Secondo caso. Sia $E < V_0$. Si vede l'effetto tunnel. La soluzione nelle due regioni estreme è come precedentemente. Nella seconda regione si definisce

$$\rho^2 = -q^2, \quad q = i\rho$$

[immagine] Nella prima regione, la funzione d'onda è una sinusoide. Nella terza regione, si ha ancora una sinusoide con stessa frequenza, ma l'ampiezza è minore. Nella seconda regione, si ha un esponenziale (che si può immaginare come seno e coseno iperbolici). In tale regione, la soluzione è

$$\varphi_{II}(x) = Ce^{-\rho x} + De^{\rho x}$$

Bisogna raccordare le funzioni d'onda. I coefficienti diventano

$$T = \frac{4k^2\rho^2}{4k^2\rho^2 + (k^2 + \rho^2)^2 \sinh^2(\rho l)}, \quad R = 1 - T$$

Questo è l'effetto tunnel: esiste una probabilità di oltrepassare una barriera sebbene non si abbia energia sufficiente. Il coefficiente di trasmissione dipende dal reciproco del seno iperbolico, cioè dal reciproco di un esponenziale. Se $\rho l \gg 1$ allora si ha una decrescita esponenziale

$$T = \frac{16E(V_0 - E)}{V_0^2} e^{-2\rho l} = \frac{16E(V_0 - E)}{V_0^2} e^{-2\frac{l}{\hbar}\sqrt{2m(V_0 - E)}}$$

Nota: si disegnano i grafici V(x) vs x sovrapposti a quelli Ψ vs x e si prende l'energia E 2022 13:30 (rappresentata nel grafico V vs x) come asse x per Ψ .

5.5.2 Buca finita

Si consideri una buca di profondità finita $-V_0$ tra -a e a. Il caso per E > 0 è lo stesso per il primo caso della barriera finita. Sia $-V_0 < E < 0$. Nella buca si ha una sinusoide. All'esterno della buca si hanno esponenziali reali che decadono (Figura 5). Il livello energetico successivo a

Figura 5: Buca finita e stato fondamentale.

quello fondamentale potrebbe non essere presente perché la buca potrebbe non essere profonda abbastanza.

L'equazione degli stati stazionari è

$$\varphi'' + \frac{2m}{\hbar^2} [E - V] \varphi = 0$$

Al di fuori della buca, si pone

$$-k^2 = \frac{2mE}{\hbar^2} < 0, \quad k^2 > 0$$

All'interno

$$q^2 = \frac{2m}{\hbar^2}(V_0 - |E|) > 0$$

Si divide lo spazio in tre regioni. Nella prima regione, la soluzione è

$$\varphi_I(x) = Ae^{-kx} + Be^{kx}$$

Nella seconda regione si ha

$$\varphi_{II}(x) = C'e^{iqx} + D'e^{-iqx} = C\cos(qx) + D\sin(qx), \quad -a < x < a$$

Nella terza regione si ha

$$\varphi_{III}(x) = Ee^{-kx} + Fe^{kx}$$

Tali soluzioni devono essere quadrato-integrabili $\varphi \in L^2(\mathbb{R})$, per cui A = F = 0. Si ha

$$\begin{cases} \varphi_I(x) = Be^{kx} \\ \varphi_{II}(x) = C\cos(qx) + D\sin(qx) \\ \varphi_{III}(x) = Ee^{-kx} \end{cases}, \quad \begin{cases} \varphi_I' = Bke^{kx} \\ \varphi_{II}' = -Cq\sin(qx) + Dq\cos(qx) \\ \varphi_{III}' = -Eke^{-kx} \end{cases}$$

In x = -a le condizioni di continuità implicano

$$\begin{cases} Be^{-ka} = C\cos(qa) - D\sin(qa) \\ Bke^{-ka} = Cq\sin(qa) + Dq\cos(qa) \end{cases}$$

In x = a, esse implicano

$$\begin{cases} C\cos(qa) + D\sin(qa) = Ee^{-ka} \\ -Cq\sin(qa) + Dq\cos(qa) = -Eke^{-ka} \end{cases}$$

Ci sono cinque incognite in quattro equazioni. Si noti che, non solo i parametri, ma pure l'energia (contenuta in k e q) è un'incognita. Ora inizia la matematica. Dividendo la terza equazione per la prima si ha

$$k = q \frac{C\sin(qa) + D\cos(qa)}{C\cos(qa) - D\sin(qa)}$$

Dividendo la quarta per la seconda si ha

$$k = -q \frac{-C\sin(qa) + D\cos(qa)}{C\cos(qa) + D\sin(qa)}$$

Da queste due si ha

$$(C\sin(qa) + D\cos(qa))(C\cos(qa) + D\sin(qa)) = (C\cos(qa) - D\sin(qa))(C\sin(qa) - D\cos(qa))$$

che implicano

$$CD = 0$$

Si hanno due casi: C=0 o D=0. In base al coefficiente si seleziona la classe di funzioni pari o dispari, perché si seleziona il coseno od il seno nella soluzione φ_{II} . Sia C=0. Dalle equazioni per k si ha

$$k = -\frac{q}{\tan(qa)}$$

Per D=0 si ottiene

$$k = q \tan(qa)$$

Queste due equazioni danno i valori di energia. Quindi

$$q^2 = \frac{2m}{\hbar^2} V_0 - k^2 \iff q^2 a^2 = \frac{2ma^2}{\hbar^2} V_0 - k^2 a^2 \iff y^2 = \lambda - k^2 a^2$$

Si ottiene

$$ka = \sqrt{\lambda - y^2} > 0$$

Soluzioni pari. Si vedono le soluzioni pari, D=0. Dalla relazione per k si ottiene

$$\tan y = \frac{1}{y}\sqrt{\lambda - y^2} > 0$$

Questa equazione si risolve numericamente per y (Figura 6). Per $\sqrt{\lambda}$ crescente si hanno sempre più soluzioni.

Figura 6: Soluzione grafica all'equazione.

Osservazione.

- Per qualunque valore di λ , si ha almeno una intersezione, soluzione: esiste sempre lo stato fondamentale.
- Il parametro λ è connesso con la profondità V_0 della buca. Nel caso limite si ha la buca infinita di potenziale. Più λ cresce e il numero di soluzioni cresce.
- Per $\lambda \to \infty$, le intersezioni si avvicinano a $y = (n + \frac{1}{2})\pi$ con $n \in \mathbb{N} \cup \{0\}$. Sostituendo questi valori nell'equazione sopra $(ka = \sqrt{\lambda y^2} = y$ accorgendosi di rimuovere l'infinito portato da λ) si trovano i livelli energetici della buca infinita (fare attenzione che quelli calcolati in precedenza sono per una buca infinita in 0 < x < a, mentre in questo caso si sono calcolati i valori per -a < x < a).

Soluzioni dispari. Sia C = 0. L'espressione per k diventa

$$\frac{\sqrt{\lambda-y^2}}{y} = -\frac{1}{\tan y} = -\frac{\cos y}{\sin y} = -\frac{\sin\left(\frac{\pi}{2}+y\right)}{-\cos\left(\frac{\pi}{2}+y\right)} = \tan\left(\frac{\pi}{2}+y\right)$$

Essa si risolve ancora numericamente (Figura 7). Per $\sqrt{\lambda}$ piccolo non si hanno soluzioni.

Figura 7: Soluzione grafica all'equazione.

Osservazione.

• Non si ha alcuna soluzione dispari qualora $\sqrt{\lambda} < \frac{\pi}{2}$. Questo significa che non esistono soluzioni dispari per

$$V_0 < \frac{\hbar^2}{2ma^2} \left(\frac{\pi}{2}\right)^2$$

• Per $\lambda \to \infty$, le intersezioni si hanno per $n\pi$ con $n \in \mathbb{N} \setminus \{0\}$. Questi valori sono i livelli di energia della buca infinita.

Per procedere oltre, si considera y che soddisfi l'equazione della tangente e si ricavano le costanti B, C, D ed E in funzione di B che si ottiene normalizzando la funzione d'onda. Le soluzioni sono uno spettro discreto e si alterno tra pari e dispari. La parità (parity) è definita

Figura 8: I primi quattro stati stazionari: due pari e due dispari.

quando le funzioni o sono pari o sono dispari. La parità è un numero quantico che descrive le funzioni d'onda. Essa si conserva nel tempo.

Osservazione. Il potenziale dell'atomo di idrogeno si può schematizzare come quello in figura. Questo problema ha le stesse equazioni del precedente, ma cambia solamente che $\varphi(0) = 0$. Le

Figura 9: Schema del potenziale dell'atomo di idrogeno.

soluzioni dispari per x>0 sono le soluzioni del potenziale dell'atomo di idrogeno.

Evoluto temporale. Si trova l'evoluto temporale $\Psi(x,t)$ dalla funzione iniziale $\Psi(x,0)$. Si sa risolvere l'equazione per gli auto-stati

$$\hat{H}\varphi = E\varphi$$

da cui si ottiene $\Psi(x,0)$. Gli auto-stati formano una base di $L^2(\mathbb{R})$: essi sono auto-funzioni dell'operatore hermitiano \hat{H} . Pertanto, si può scomporre una funzione su tale base

$$\Psi(x,0) = \sum_{n=0}^{\infty} c_n \varphi_n^{\text{discr}}(x) + \int c(k) \varphi_k^{\text{cont}}(x) \, dk$$

L'energia E_n è discreta, quella E_k è continua. Al continuo si ha l'integrale, per un segmento (al discreto) si ha la serie.

Si supponga che la base sia ortonormale:

$$\int \varphi_n^*(x)\varphi_m(x) dx = \delta_{nm}, \text{ discreto}$$
$$\int \varphi_k^*(x)\varphi_{k'}(x) dx = \delta(k - k'), \text{ continuo}$$

I coefficienti sono

$$c_n = \int \varphi_n^* \Psi(x, 0) dx, \quad c_k = \int \varphi_k^*(x) \Psi(x, 0) dx$$

Si afferma che l'evoluto temporale, che non è uno stato stazionario, è

$$\Psi(x,t) = \sum_{n=0}^{\infty} c_n \varphi_n(x) e^{-i\frac{E_n}{\hbar}t} + \int c(k) \varphi_k(x) e^{-i\frac{E_k}{\hbar}t} dk$$

ed essa è la soluzione generale all'equazione di Schrödinger. Si verifica:

$$i\hbar \,\partial_t \Psi = i\hbar \left[\sum_{n=0}^{\infty} c_n \varphi_n \left(-i \frac{E_n}{\hbar} \right) e^{-i \frac{E_n}{\hbar} t} + \int c(k) \left(-i \frac{E_k}{\hbar} \right) \varphi_k(x) e^{-i \frac{E_k}{\hbar} t} \, \mathrm{d}k \right]$$

$$= \sum_{n=0}^{\infty} c_n \hat{H} \varphi_n e^{-i \frac{E_n}{\hbar} t} + \int c(k) \hat{H} \varphi_k e^{-i \frac{E_k}{\hbar} t} \, \mathrm{d}k$$

$$= \hat{H} \left[\sum_{n=0}^{\infty} c_n \varphi_n e^{-i \frac{E_n}{\hbar} t} + \int c(k) \varphi_k e^{-i \frac{E_k}{\hbar} t} \, \mathrm{d}k \right]$$

$$= \hat{H} \Psi(x, t)$$

cioè l'equazione di Schrödinger generale.

5.6 Proprietà delle soluzioni in una dimensione

Gli stati stazionari soddisfano

$$\hat{H}\varphi = E\varphi \iff -\frac{\hbar^2}{2m} \,\mathrm{d}_x^2 \varphi(x) + V(x)\varphi(x) = E\varphi(x), \quad \varphi(x) \in L^2(\mathbb{R})$$

L'hamiltoniana è un operatore auto-aggiunto. Il prodotto scalare di L^2 è

$$(g,f) = \int_{\mathbb{R}} g^* f \, \mathrm{d}x$$

5.6.1 Proprietà dello spettro discreto

Proposizione. I valori di energia E_n sono reali.

Dimostrazione. Infatti

$$E\varphi = -\frac{\hbar^2}{2m}\varphi'' + V\varphi, \quad E^*\varphi^* = -\frac{\hbar^2}{2m}(\varphi^*)'' + V\varphi^*$$

Si fa la differenza tra le due e si integra

$$(E - E^*) \int |\varphi|^2 dx = -\frac{\hbar^2}{2m} \int (\varphi'' \varphi^* - (\varphi^*)'' \varphi) dx$$
$$(E - E^*) = \frac{\hbar^2}{2m} \int (\varphi'(\varphi^*)' - (\varphi^*)' \varphi') dx = 0$$

alla seconda riga si è integrato per parti, ricordando che l'integrando si annulla ad infinito. Questa dimostrazione vale anche per lo spettro continuo con alcuni caveat sul bordo.

Proposizione. Le auto-funzioni corrispondenti ad autovalori di energia diversi tra loro sono ortogonali:

$$\varphi_1, \varphi_2, \quad E_1 \neq E_2 \implies \int \varphi_1^* \varphi_2 \, \mathrm{d}x = 0$$

Dimostrazione. Le auto-funzioni soddisfano

$$E\varphi_i = -\frac{\hbar^2}{2m}\varphi_i'' + V\varphi_i, \quad i = 1, 2$$

Si moltiplichi la prima per φ_2^* e la seconda coniugata per φ_1 . Ne si fa la differenza, poi si integra:

$$(E_1 - E_2) \int \varphi_1^* \varphi_2 \, dx = -\frac{\hbar^2}{2m} \int (\varphi_2^* \varphi_1'' - (\varphi_2^*)'' \varphi_1) \, dx = 0$$

In quanto $E_1 \neq E_2$ si ha

$$\int \varphi_1^* \varphi_2 \, \mathrm{d}x = 0$$

La dimostrazione vale anche per lo spettro continuo.

Proposizione. L'equazione

$$\hat{H}\varphi = E\varphi$$

ha un'unica soluzione per ogni valore permesso di E. Gli stati dello spettro discreto non sono degeneri.

Dimostrazione. Si considerino due soluzioni φ_1 e φ_2 corrispondenti allo stesso autovalore E. Allora, le soluzioni soddisfano

$$\varphi_i'' = \frac{2m}{\hbar^2} (V - E)\varphi_i \implies \frac{\varphi_i''}{\varphi_i} = \frac{2m}{\hbar^2} (V - E)$$

Pertanto

$$\frac{\varphi_1''}{\varphi_1} = \frac{\varphi_2''}{\varphi_2} \implies \varphi_1''\varphi_2 - \varphi_1\varphi_2'' = 0 \implies d_x(\varphi_1'\varphi_2 - \varphi_1\varphi_2') = 0 \implies \varphi_1'\varphi_2 - \varphi_1\varphi_2' = \cos t = 0$$

In quanto sia φ che φ' sono quadrato-integrabili, allora esse devono decrescere velocemente, per cui la costante è nulla. Pertanto

$$\varphi_1'\varphi_2 = \varphi_1\varphi_2' \implies \frac{\varphi_1'}{\varphi_1} = \frac{\varphi_2'}{\varphi_2} \implies d_x(\ln\varphi_1) = d_x(\ln\varphi_2) \implies d_x\ln\frac{\varphi_1}{\varphi_2} = 0$$

Dunque

$$\ln \frac{\varphi_1}{\varphi_2} = \cos t \implies \frac{\varphi_1}{\varphi_2} = c \implies \varphi_1 = c\varphi_2$$

Grazie alla normalizzazione si ha c=1. Le due funzioni sono identiche.

Lezione 10

Proposizione. Le auto-funzioni φ_n dello spazio discreto sono funzioni reali.

mer 12 ot 2022 13:30

Dimostrazione. L'equazione di partenza è

$$-\frac{\hbar^2}{2m}\varphi_n'' + V\varphi_n = E_n\varphi_n$$

Prendendo il complesso coniugato delle due espressioni si nota che il complesso coniugato della soluzione è ancora soluzione. Tuttavia, in una dimensione, la soluzione dev'essere unica per ogni valore di energia. Allora

$$\varphi_n^* = \lambda \varphi_n$$

Dunque

$$(\varphi_n^*)^* = \lambda^* \varphi_n^* \implies \varphi_n = \lambda^* \lambda \varphi_n = |\lambda|^2 \varphi_n \implies |\lambda|^2 = 1$$

dunque λ è un fattore di fase, ma la fisica è nel modulo quadro.

Proposizione. L'auto-funzione φ_n corrispondente al livello energetico n si azzera per n punti finiti di x $(n \in \mathbb{N} \cup \{0\}, \text{ dove } E_0 \text{ è lo stato fondamentale}).$

Proposizione. Se V(x) è una funzione pari (V(-x) = V(x)), allora gli stati stazionari $\varphi_n(x)$ sono o funzioni pari o funzioni dispari. Se esiste una simmetria, allora esiste un'altra caratteristica delle soluzioni.

Dimostrazione. Sia φ_n soluzione di

$$\left[-\frac{\hbar^2}{2m} d_x^2 + V(x) \right] \varphi_n(x) = E_n \varphi_n(x)$$

Si cambia parità $x \to -x$:

$$\left[-\frac{\hbar^2}{2m} d_x^2 + V(-x) \right] \varphi_n(-x) = E_n \varphi_n(-x)$$

dove $d_{-x}^2 = d_x^2$. Pertanto

$$\left[-\frac{\hbar^2}{2m} d_x^2 + V(x) \right] \varphi_n(-x) = E_n \varphi_n(-x)$$

cioè pure $\varphi(-x)$ è soluzione della stessa equazione di Schrödinger con la stessa energia E_n . Per unicità, segue

$$\varphi_n(-x) = c\varphi_n(x)$$

trasformando ancora $x \to -x$ si ha

$$\varphi_n(x) = c\varphi_n(-x)$$

Combinando queste due equazioni si ha

$$\varphi_n(-x) = c\varphi_n(x) = c^2\varphi_n(-x) \implies c = \pm 1 \implies \varphi_n(-x) = \pm \varphi_n(x)$$

cioè gli auto-stati sono funzioni o pari o dispari.

Lezione 11

gio 13 ott 2022 13:30

5.6.2 Proprietà dello spettro continuo

Le auto-funzioni non sono quadrato-integrabili, ma possono costituire soluzioni fisiche tramite combinazioni lineari. Tali auto-funzioni soddisfano

$$\hat{H}\varphi_E = E\varphi_E$$

ed i pacchetti che si costruiscono, che sono una loro combinazione lineare, sono quadrato-integrabili

$$\int_{E-\Delta E}^{E+\Delta E} c(E)\varphi_E(x) \, \mathrm{d}x \in L^2(\mathbb{R})$$

dove c(E) è una funzione limitata (e quadrato-integrabile?).

Parte II

I postulati

6 Considerazioni sugli operatori – parte seconda

Finora si sono visti due operatori: posizione e momento. Si consideri l'osservabile classica $A(\vec{x}, \vec{p})$. Si promuove un'osservabile ad un oggetto quantistico per mezzo degli operatori: $\hat{A}(\hat{x}, \hat{p})$. Tuttavia, i due operatori posizione e momento non commutano:

$$[\hat{x}, \hat{p}] = i\hbar \neq 0$$

Si ha un problema. Sia A tale che contenga un termine come xp. Se a livello classico vale non si ha preferenza nell'ordine di x e p, allora, per promuovere tale osservabile ad operatore, bisogna scrivere

$$\frac{xp + px}{2} \to \frac{\hat{x}\hat{p} + \hat{p}\hat{x}}{2}$$

Il primo termine equivale a xp a livello classico. Si è interessati ad operatori hermitiani, ma $\hat{x}\hat{p}$ non è hermitiano:

$$(\hat{x}\hat{p})^{\dagger} = \hat{p}^{\dagger}\hat{x}^{\dagger} = \hat{p}\hat{x} \neq \hat{x}\hat{p}$$

Invece, utilizzando la definizione sopra si ha

$$\left(\frac{\hat{x}\hat{p}+\hat{p}\hat{x}}{2}\right)^{\dagger} = \frac{\hat{p}^{\dagger}\hat{x}^{\dagger}+\hat{x}^{\dagger}\hat{p}^{\dagger}}{2} = \frac{\hat{p}\hat{x}+\hat{x}\hat{p}}{2} = \frac{\hat{x}\hat{p}+\hat{p}\hat{x}}{2}$$

Si è costruito anche l'operatore hamiltoniano

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

Si supponga di misurare $\hat{A}(\hat{x},\hat{p})$ di un certo sistema. L'ipotesi della meccanica quantistica è che ogni sistema si può descrivere per mezzo di una funzione d'onda. Si conosce $\psi(\vec{x})$ e la sua trasformata $\widetilde{\psi}(\vec{p})$.

Si considerino tanti sistemi nel medesimo stato $\psi(\vec{x})$. Si misura \hat{A} . Non si ha la stessa misura a per ogni sistema a prescindere dagli errori di misura (perché i valori di misura sono molto più distanti rispetto la grandezza degli errori). Il valore di aspettazione della misura è

$$\langle \hat{A} \rangle = \int \psi^*(x) \hat{A}(\hat{x}, \hat{p}) \psi(x) dx$$

Ci si aspetta che il valor medio classico corrisponda a

$$\frac{1}{N} \sum_{n=1}^{N} a_n \sim \langle \hat{A} \rangle$$

Un'altra quantità importante è la varianza

$$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle \implies (\Delta \hat{A})^2 = (\hat{A} - \langle \hat{A} \rangle)^2$$

L'equivalente quantistico dello scarto quadratico medio risulta essere

$$SQM = \int \psi^* (\hat{A} - \langle \hat{A} \rangle) (\hat{A} - \langle \hat{A} \rangle) \psi \, dx$$

Ci si chiede se esistono dei casi particolari in cui uno stato ψ fornisce sempre la stessa misura. Questo significa che lo scarto quadratico medio è nullo SQM = 0. Affinché l'integrale sopra sia nullo, escludendo casi patologici, allora è sufficiente che

$$\hat{A} = \langle \hat{A} \rangle$$

Formalmente si avrebbe che \hat{A} è hermitiano e allora si ha

$$SQM = \int |(\hat{A} - \langle \hat{A} \rangle)\psi|^2 dx = 0 \implies |(\hat{A} - \langle \hat{A} \rangle)\psi| = 0$$

Per tali stati particolari $\overline{\psi}$ si ha

$$(\hat{A} - \langle \hat{A} \rangle)\overline{\psi} = 0$$

Se esistono tali stati, allora

$$\hat{A}\overline{\psi} = \langle \hat{A} \rangle \overline{\psi}, \quad \langle \hat{A} \rangle = a$$

La misura a di \hat{A} è sempre la stessa. Lo stato particolare soddisfa un'equazione agli autovalori

$$\hat{A}\psi_a = a\psi_a$$

Non si è detto che i valori possibili di a siano gli unici valori dati dalla misura.

Esempio. Se l'energia potenziale non dipende dal tempo, allora classicamente si conserva l'energia. Similmente, in meccanica quantistica, esistono degli stati φ_E che soddisfano

$$\hat{H}\varphi_E = E\varphi_E$$

Si consideri uno stato generico ψ . Si compie una misura due volte sullo stesso sistema in rapida successione. Si compie la prima misura a t e la seconda a $t+\Delta t$ con Δt piccolo. Ci si aspetta di ottenere due volte lo stesso risultato perché il sistema non ha abbastanza tempo per evolvere (questo fenomeno è detto "riproducibilità in piccolo"). Questa è una ipotesi ragionevole. Si supponga che la misura su di uno stato ψ sia a_j . All'istante successivo, ci si aspetta di misurare ancora lo stesso a_j . Questo significa che, dopo la prima misura, lo stato è diventato ψ_{a_j} per cui la misura su tale oggetto fornisce sempre a_j . Questo implica che la prima misura deve trasformare il sistema proiettandolo su uno degli auto-stati ψ_a (si noti che la proiezione avviene immediatamente perché non si considera la relatività). Quindi, gli unici risultati possibili di una misura sono gli autovalori dell'osservabile misurata.

Osservazione. Se ψ è un'auto-funzione di A ($\psi = \psi_{a_j}$) allora la prima misura dà a_j . Se ψ non è un'auto-funzione di A, allora essa deve precipitare su ψ_{a_j} dopo la prima misura.

Osservazione. Le osservabili sono rappresentate da operatori i cui autovalori sono soli e tutti i valori di una misura dell'osservabile. All'atto della misura, si precipita la funzione d'onda sull'auto-funzione corrispondente all'autovalore misurato.

Dopo la misura, si precipita in maniera imprevedibile su di un auto-stato. A priori non si sa su quale auto-stato si precipita. Si può soltanto ottenere un valore a_j . Tuttavia, si può prevedere con quale probabilità si può misurare un certo auto-valore. Si considerino tanti sistemi nello stesso stato ψ . Si costruisce una distribuzione dei valori misurati. Risolvendo l'equazione agli autovalori, si conoscono a priori gli auto-stati. Se lo stato ψ coincide con ψ_{a_j} allora la probabilità di ottenere a_j è 1. Se $\psi \approx \psi_{a_j}$, allora non si ottiene a_j con certezza, ma altri a_k hanno probabilità ε_k .

Proposizione. Sembra ragionevole congetturare che le probabilità di misurare gli autovalori sono proporzionali ai coefficienti dello sviluppo in serie di Fourier della ψ sugli auto-stati. Deve valere il principio di sovrapposizione delle ampiezze scrivendo

$$\psi = \sum_{n=1}^{N} c_n \psi_{a_n}$$

Si mantiene l'interpretazione probabilistica

$$\int \psi^* \psi \, \mathrm{d}x = 1$$

Se gli autovettori sono ortogonali, allora

$$\int \psi^* \psi \, \mathrm{d}x = \sum_i \sum_j \int c_i^* \psi_{a_i}^* c_j \psi_{a_j} \, \mathrm{d}x = \sum_i \sum_j c_i^* c_j \delta_{a_i a_j} = \sum_i |c_i|^2 = 1$$

Allora si interpretano $|c_i|^2$ come le probabilità di ottenere l'autovalore a_i .

Si consideri uno stato generico

$$\psi = \sum_{i} c_i \psi_{a_i}$$

Allora

$$\int \psi_{a_j}^* \psi \, \mathrm{d}x = \int \sum_i c_i \psi_{a_j}^* \psi_{a_i} \, \mathrm{d}x = c_j$$

Proposizione. Gli autovalori a_i devono essere reali. Gli autovettori corrispondenti sono ortogonali. Pertanto

$$\sum_{i} |c_i|^2 = 1$$

Per questo, si utilizzano operatori auto-aggiunti in spazi di Hilbert.

6.1 Postulati della meccanica quantistica

Le congetture fatte finora sono talvolta presentate come postulati.

Proposizione. Primo postulato. Lo stato di un sistema quantistico è definito da un vettore di stato (ket) $|\psi\rangle$ in spazi di Hilbert.

Osservazione. Il prodotto scalare in uno spazio di Hilbert è lineare ed induce una norma.

Proposizione. Secondo postulato. Ad ogni quantità misurabile A è associato un operatore \hat{A} che agisce nello spazio di Hilbert. Tale operatore è auto-aggiunto ed è chiamato osservabile.

Proposizione. Terzo postulato. I soli possibili risultati di una misura della quantità fisica A sono gli autovalori dell'osservabile \hat{A} .

Proposizione. Quarto postulato. Si consideri uno spettro discreto e non degenere. Quando si misura l'osservabile A di un sistema in uno stato normalizzato $|\psi\rangle$, la probabilità di ottenere a_n è

$$P(a_n) = |\langle \psi_{a_n} | \psi \rangle|^2 = \int \psi_{a_n}^* \psi \, \mathrm{d}x$$

dove $|\psi_{a_n}\rangle$ è l'autovettore normalizzato associato all'autovalore a_n dell'operatore \hat{A} .

Proposizione. Quinto postulato. Se la misura di una osservabile A di uno stato $|\psi\rangle$ dà risultato a_n , allora lo stato del sistema subito dopo la misura è lo stato $|\psi_{a_n}\rangle$ corrispondente all'autovalore a_n .

Proposizione. Sesto postulato. Lo stato $|\psi(t)\rangle$ soddisfa

$$i\hbar \,\partial_t \,|\psi(t)\rangle = \hat{H}(t) \,|\psi(t)\rangle$$

dove l'operatore hamiltoniano $\hat{H}(t)$ è l'osservabile associato all'energia totale del sistema.

Lezione 12

lun 17 ott 2022 13:30

7 Richiami sugli spazi di Hilbert

Uno spazio di Hilbert \mathcal{H} è uno spazio vettoriale normato e completo. La norma è indotta dal prodotto scalare. Si utilizzano gli spazi di Hilbert per vari motivi:

• per linearità affinché le sovrapposizioni lineari di funzioni d'onda siano ancora funzioni d'onda

$$\psi_1, \psi_2 \in \mathcal{H} \implies \lambda_1 \psi_1 + \lambda_2 \psi_2 \in \mathcal{H}, \quad \lambda_1, \lambda_2 \in \mathbb{C}$$

• risulti definito un prodotto scalare

$$(\varphi, \psi) = \langle \varphi | \psi \rangle = \int \varphi^*(\vec{x}) \psi(\vec{x}) d^3 x \in \mathbb{C}$$

si è interessati all'insieme $L^2(\mathbb{R})$ delle funzioni complesse quadrato-integrabili:

$$\psi \in L^2(\mathbb{R}) \iff \int_{\mathbb{R}} |\psi(\vec{x})|^2 d^3x < \infty$$

Le proprietà del prodotto scalare sono

♦ simmetria coniugata

$$\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^*$$

♦ linearità del secondo argomento

$$\langle \varphi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle = \lambda_1 \langle \varphi | \psi_1 \rangle + \lambda_2 \langle \varphi | \psi_2 \rangle$$

♦ anti-linearità del primo argomento

$$\langle \lambda_1 \varphi_1 + \lambda_2 \varphi_2 | \psi \rangle = \lambda_1^* \langle \varphi_1 | \psi \rangle + \lambda_2^* \langle \varphi_2 | \psi \rangle$$

 $\diamond\,$ la norma indotta è

$$\langle \psi | \psi \rangle = \int |\psi(\vec{x})|^2 d^3 x = \|\psi\|^2 \in \mathbb{R}_0^+$$

inoltre

$$\|\psi\| = 0 \iff \psi \equiv 0$$

- Si possono definire delle basi ortonormali
 - \diamond Se i vettori della base sono numerabili allora si indicano come $|n\rangle, n \in \mathbb{N}$ per cui $\langle n|m\rangle = \delta_{nm};$
- La completezza garantisce

$$|\psi\rangle = \sum_{n=1}^{\infty} \psi_n |n\rangle, \quad \psi_n = \langle n|\psi\rangle \in \mathbb{C}$$

Un generico elemento di tale spazio è

$$|\varphi\rangle = \sum_{n=1}^{\infty} \psi_n |n\rangle$$

Il prodotto scalare diventa

$$\langle \psi | \varphi \rangle = \sum_{n,m} \psi_n^* \varphi_m \langle n | m \rangle = \sum_{n=1}^{\infty} \psi_n^* \varphi_n$$

7.1 Notazione di Dirac

Si ha bisogno di una notazione astratta per descrivere lo stato di una particella. Lo spin di una particella non ha a che fare con i gradi di libertà delle coordinate spaziali, ma è una proprietà intrinseca della particella: lo spin non è un momento angolare orbitale. Il vettore ψ esiste indipendentemente dal sistema di coordinate con cui lo si sta descrivendo: cambiano le coordinate, ma il vettore è il medesimo. Bisogna identificare tale vettore.

La funzione d'onda e la sua trasformata di Fourier portano le stesse informazioni. Esse appartengono allo spazio delle coordinate spaziali ed allo spazio delle coordinate dei momenti rispettivamente. Con la notazione $|\psi\rangle$ (ket) si indica il vettore ψ senza riferimento alla base e alle coordinate particolari, essa indica uno stato della funzione d'onda.

Allo spazio dei ket si associa uno spazio duale costituito dai bra $\langle \varphi |$. Essi sono i funzionali lineari nello spazio di Hilbert in quanto permettono l'associazione

$$\langle \varphi | : \mathcal{H} \to \mathbb{C}, \quad |\psi\rangle \mapsto \langle \varphi | \psi \rangle$$

Il prodotto scalare è detto bracket (bra + ket) perché scritto tra parentesi.

Duale. Si vede come passare al duale

$$|\lambda_1\psi_1 + \lambda_2\psi_2\rangle = \lambda_1 |\psi_1\rangle + \lambda_2 |\psi_2\rangle$$

I duali corrispondi ai due membri sono

$$\langle \lambda_1 \psi + \lambda_2 \psi_2 | = \lambda_1^* \langle \psi_1 | + \lambda_2^* \langle \psi_2 |$$

Infatti

$$\langle \lambda_1 \psi + \lambda_2 \psi_2 | \varphi \rangle = (\langle \varphi | \lambda_1 \psi + \lambda_2 \psi_2 \rangle)^* = (\lambda_1 \langle \varphi | \psi_1 \rangle + \lambda_2 \langle \varphi | \psi_2 \rangle)^* = \lambda_1^* \langle \varphi | \psi_1 \rangle^* + \lambda_2^* \langle \varphi | \psi_2 \rangle^*$$

$$= \lambda_1^* \langle \psi_1 | \varphi \rangle + \lambda_2^* \langle \psi_2 | \varphi \rangle = (\lambda_1^* \langle \psi_1 | + \lambda_2^* \langle \psi_2 |) | \psi \rangle$$

Dunque, il bra è anti-lineare.

Si considerino due vettori

$$|\varphi\rangle = \sum_{n} \varphi_{n} |n\rangle , \quad |\psi\rangle = \sum_{n} \psi_{n} |n\rangle ,$$

Allora il loro prodotto scalare è

$$\langle \psi | \varphi \rangle = \sum_{n} \psi_{n}^{*} \varphi_{n} = \begin{pmatrix} \psi_{1}^{*} & \psi_{2}^{*} & \ldots \end{pmatrix} \begin{pmatrix} \varphi_{1} \\ \varphi_{2} \\ \vdots \end{pmatrix}$$

Pertanto, data una base, si può rappresentare il ket $|\varphi\rangle$ tramite i suoi coefficienti ed essi si scrivono in un vettore colonna. Similmente per il bra $\langle\psi|$, si scrivono i suoi coefficienti in un vettore riga. Dunque, per passare dal ket al bra bisogna trasporre e coniugare

$$|\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \end{pmatrix}, \quad \langle \psi | = \begin{pmatrix} \psi_1^* & \psi_2^* & \ldots \end{pmatrix}$$

e viceversa. Successivamente, si vede come questa procedura sia l'aggiunzione degli operatori.

Operatore identità. Si consideri

$$|\varphi\rangle = \sum_{n} \varphi_n |n\rangle, \quad \varphi_n = \langle n|\varphi\rangle \in \mathbb{C}$$

Segue

$$\left|\varphi\right\rangle = \sum_{n} \left\langle n |\varphi\rangle \left| n \right\rangle = \sum_{n} \left| n \right\rangle \left\langle n |\varphi\rangle \right|$$

Da ciò, si ricava la relazione di completezza (o chiusura)

$$I = \sum_{n} |n\rangle\!\langle n|$$

Si noti che esso non è un numero, ma l'operatore identità.

7.2 Basi continue

Le basi continue non appartengono a $L^2(\mathbb{R})$ (come la base di Fourier, anche se, con le dovute considerazioni, è utile). Una funzione si può scrivere come

$$\varphi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int \widetilde{\varphi}(p) e^{i\frac{px}{\hbar}} dp$$

Si definisce la base

$$|p\rangle \leftrightarrow \frac{1}{\sqrt{2\pi\hbar}}e^{i\frac{px}{\hbar}}$$

Dunque, l'espressione precedente diventa

$$|\varphi\rangle = \int \widetilde{\varphi}(p) |p\rangle dp$$

Osservazione. Si osserva:

• Si studia il prodotto scalare tra due elementi della base:

$$\langle p'|p\rangle = \int \frac{1}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}p'x} \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}px} dx = \frac{1}{2\pi\hbar} \int e^{-\frac{i}{\hbar}(p-p')x} dx = \delta(p-p')$$

con un indice continuo, il prodotto scalare tra due elementi della base è la delta di Dirac.

• La trasformata della funzione è

$$\widetilde{\varphi}(p) = \int \frac{1}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}px} \varphi(x) \, \mathrm{d}x \equiv \langle p|\varphi\rangle$$

essa deriva dall'espressione $\langle p'|\varphi\rangle$ utilizzando $|\varphi\rangle$ come scritto prima delle osservazioni.

• La base $|p\rangle$ non è costituita da elementi di $L^2(\mathbb{R})$. Tuttavia, vale

$$\int c(p) |p\rangle dp \in L^2(\mathbb{R})$$

con c(p) limitati. Pertanto, l'insieme dei ket $|p\rangle$ è una base continua (o generalizzata). Una base generalizzata è un insieme di funzioni (o funzionali) $|\lambda\rangle$ con indice continuo che non appartengono allo spazio di Hilbert, ma le cui funzioni sono normalizzate:

$$\langle \lambda | \lambda' \rangle = \delta(\lambda - \lambda')$$

Su tale base si possono scrivere funzioni $L^2(\mathbb{R})$:

$$|\varphi\rangle = \int \varphi(\lambda) |\lambda\rangle d\lambda$$

La cui rappresentazione su tale base è

$$\langle \lambda | \varphi \rangle = \int \varphi(\lambda') \langle \lambda | \lambda' \rangle d\lambda' = \int \varphi(\lambda') \delta(\lambda - \lambda') d\lambda' = \varphi(\lambda)$$

7.3 Richiami sugli operatori

Operatori lineari. Un operatore lineare

$$\hat{A}: \mathcal{H} \to \mathcal{H}, \quad |\psi\rangle \mapsto |\psi'\rangle \equiv \hat{A} |\psi\rangle \equiv |\hat{A}\psi\rangle$$

è tale per cui

$$\hat{A}(\lambda_1 | \psi_1 \rangle + \lambda_2 | \psi_2 \rangle) = \lambda_1 \hat{A} | \psi_1 \rangle + \lambda_2 \hat{A} | \psi_2 \rangle$$

Esempio. Si sono visti vari operatori lineari. La posizione

$$\hat{x}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \psi(x) \mapsto x\psi(x)$$

Il momento

$$\hat{p}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \psi(x) \mapsto -i\hbar \, \partial_x \psi(x)$$

L'hamiltoniana

$$\hat{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \psi(x) \mapsto -\frac{\hbar^2}{2m} \nabla^2 \psi(x) + V\psi$$

Definizione. Il prodotto tra due operatori lineari \hat{A} e \hat{B} è

$$\hat{A}\hat{B}|\psi\rangle = \hat{A}(\hat{B}|\psi\rangle) = \hat{A}|\psi'\rangle$$

Definizione. Dati due ket $|\varphi\rangle$ e $|\psi\rangle$, l'elemento di matrice di \hat{A} tra i due ket è

$$\langle \varphi | \hat{A} | \psi \rangle \in \mathbb{C}$$

Esso dipende linearmente da $|\psi\rangle$ e anti-linearmente da $\langle\varphi|$.

Rappresentazione. Data una base $|n\rangle$, il ket $|\psi\rangle$ è rappresentato da un vettore colonna. Si cerca una rappresentazione simile per un operatore. Si utilizza la relazione di completezza

$$\hat{A} = \sum_{n} |n\rangle \langle n| \, \hat{A} \sum_{n} |m\rangle \langle m| = \sum_{n,m} |n\rangle \, \, \langle n| \hat{A} |m\rangle \, \langle m| = \sum_{n,m} \, \langle n| \hat{A} |m\rangle \, |n\rangle \langle m|$$

La rappresentazione dell'operatore \hat{A} sulla base $|n\rangle$ risulta essere una matrice

$$\hat{A} \doteq (A_{nm}) = \langle n | \hat{A} | m \rangle$$

Il simbolo \doteq indica che l'uguaglianza vale scegliendo una base (come fatto da Sakurai). Similmente, per un ket, si ha

$$|\varphi\rangle = \sum_{n} |n\rangle \langle n|\varphi\rangle \doteq \begin{pmatrix} \langle 1|\varphi\rangle \\ \langle 2|\varphi\rangle \\ \vdots \end{pmatrix}$$

Dunque, la rappresentazione è un vettore colonna (ma il ket non è il vettore colonna). Un vettore non è le proprie coordinate. Per un bra si ha

$$\langle \psi | = \sum_{n} \langle \psi | n \rangle \langle n | = \sum_{n} \langle n | \psi \rangle^* \langle n | \doteq (\langle 1 | \psi \rangle^* \quad \langle 2 | \psi \rangle^* \quad \cdots)$$

la sua rappresentazione è un vettore riga. In questo modo, il prodotto scalare diventa un prodotto righe per colonne. Infatti

$$\langle \psi | \varphi \rangle = \langle \psi | \sum_{n} |n\rangle \langle n| |\varphi\rangle = \sum_{n} \langle \psi | n\rangle \langle n| \varphi\rangle$$

$$= \sum_{n} \langle n|\psi\rangle^{*} \langle n|\varphi\rangle = (\langle 1|\psi\rangle^{*} \quad \langle 2|\psi\rangle^{*} \quad \cdots) \begin{pmatrix} \langle 1|\varphi\rangle \\ \langle 2|\varphi\rangle \\ \vdots \end{pmatrix}$$

Si consideri il vettore $|\psi\rangle = \hat{A}|\varphi\rangle$. Le sue componenti sono

$$\langle m|\psi\rangle = \langle m|\hat{A}|\varphi\rangle = \sum_{n} \langle m|\hat{A}|n\rangle \, \langle n|\varphi\rangle = \sum_{n} A_{mn} \varphi_n$$

cioè il prodotto matrice-vettore colonna:

$$\begin{pmatrix} \langle 1|\psi\rangle \\ \langle 2|\psi\rangle \\ \vdots \end{pmatrix} = \begin{pmatrix} \langle 1|\hat{A}|1\rangle & \langle 1|\hat{A}|2\rangle & \cdots \\ \langle 2|\hat{A}|1\rangle & \langle 2|\hat{A}|2\rangle & \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} \langle 1|\varphi\rangle \\ \langle 2|\varphi\rangle \\ \vdots \end{pmatrix}$$

7.4 Operazioni sugli operatori

Somma. La somma è

$$(\hat{A}_1 + \hat{A}_2) |\psi\rangle = \hat{A}_1 |\psi\rangle + \hat{A}_2 |\psi\rangle$$

Moltiplicazione. La moltiplicazione è

$$\hat{A}_1\hat{A}_2|\psi\rangle = \hat{A}_1(\hat{A}_2|\psi\rangle) = \hat{A}_1|\psi'\rangle$$

Costruire delle funzioni. Si vogliono costruire delle funzioni di operatori. Tali funzioni devono avere espansioni in serie di Taylor: questo perché le uniche operazioni che si sanno fare sono l'addizione e la moltiplicazione. Si può fare l'esponenziale con una matrice, ma non si può fare la radice quadrata.

Commutatore. Gli operatori non commutano

$$\hat{x}\hat{p} \neq \hat{p}\hat{x}$$

Si può definire il commutatore

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

Per la posizione ed il momento si ha

$$[\hat{x}, \hat{p}] = i\hbar$$

Proposizione. Si vedono alcune proprietà. Vale

$$[AC, B] = ACB - BAC = ACB - ABC + ABC - BAC = A[C, B] + [A, B]C$$

Similmente

$$[A, BC] = -[BC, A] = [A, B]C + B[A, C]$$

Esempio. Si vedono alcuni esempi:

$$[\hat{x}^2, \hat{p}] = \hat{x}[\hat{x}, \hat{p}] + [\hat{x}, \hat{p}]\hat{x} = 2i\hbar\hat{x}$$

Così come

$$[\hat{x}^3, \hat{p}] = \hat{x}[\hat{x}^2, p] + [\hat{x}, \hat{p}]\hat{x}^2 = 3i\hbar\hat{x}^2$$

Dunque

$$[\hat{x}^n, \hat{p}] = i\hbar n\hat{x}^{n-1}$$

Per una funzione con espansione in serie di potenze

$$f(\hat{x}) = \sum_{n} f_n \hat{x}^n, \quad f'(\hat{x}) = \sum_{n} f_n n \hat{x}^{n-1}$$

il suo commutatore è

$$[f(\hat{x}), \hat{p}] = \sum_{n} f_n[\hat{x}^n, \hat{p}] = \sum_{n} f_n(i\hbar \hat{x}^{n-1}) = i\hbar f'(\hat{x})$$

Aggiunzione. Si consideri

$$|\psi'\rangle = \hat{A} |\psi\rangle = |\hat{A}\psi\rangle$$

Il suo duale è

$$\langle \psi' | = \langle \psi \hat{A} | \equiv \langle \psi | \hat{A}^{\dagger}$$

Osservazione. Per il prodotto scalare vale

$$\langle \psi' | \varphi \rangle = \langle \varphi | \psi' \rangle^* \iff \langle \psi | \hat{A}^{\dagger} | \varphi \rangle = \langle \varphi | \hat{A} | \psi \rangle^*$$

Pertanto, in forma matriciale si ha

$$(A^{\dagger}) = (A^{\top})^*$$

Proposizione. Vale

$$(\hat{A}^{\dagger})^{\dagger} = \hat{A}$$

Dimostrazione. Infatti

$$\langle \psi | (\hat{A}^{\dagger})^{\dagger} | \varphi \rangle = \langle \varphi | \hat{A}^{\dagger} | \psi \rangle^* = \left(\langle \psi | \hat{A} | \varphi \rangle^* \right)^* = \langle \psi | \hat{A} | \varphi \rangle$$

Proposizione. Vale

$$(\lambda \hat{A})^{\dagger} = \lambda^* \hat{A}^{\dagger}$$

Dimostrazione. Infatti

$$\langle \psi | (\lambda \hat{A})^{\dagger} | \varphi \rangle = \langle \varphi | \lambda \hat{A} | \psi \rangle^* = \lambda^* \langle \varphi | \hat{A} | \psi \rangle^* = \lambda^* \langle \varphi | \hat{A}^{\dagger} | \psi \rangle$$

Proposizione. Vale

$$(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$$

Dimostrazione. Infatti

$$\langle \psi | (\hat{A}\hat{B})^{\dagger} | \varphi \rangle = \langle \varphi | \hat{A}\hat{B} | \psi \rangle^* = \langle \psi | \hat{B}^{\dagger} | \varphi' \rangle = \langle \psi | \hat{B}^{\dagger} \hat{A}^{\dagger} | \varphi \rangle$$

dove $\langle \varphi' | \equiv \langle \varphi | \hat{A}$.

Proposizione. La rappresentazione matriciale dell'operatore \hat{A}^{\dagger} è

$$\hat{A}^{\dagger} = (A^{\top})^*$$

Dimostrazione. Infatti

$$A_{mn}^{\dagger} = \langle m|A^{\dagger}|n\rangle = \langle n|A|m\rangle^* = A_{nm}^*$$

Lezione 13

7.5 Operatori auto-aggiunti, hermitiani

Un operatore auto-aggiunto è un operatore tale per cui

$$\hat{A}^{\dagger} = \hat{A}, \quad \langle \psi | \hat{A} | \varphi \rangle = \langle \varphi | \hat{A} | \psi \rangle^*$$

 $\begin{array}{ccc} \mathrm{mar} & 18 & \mathrm{ott} \\ 2022 & 13{:}30 \end{array}$

La rappresentazione matriciale è

$$A_{nm} = \langle n|\hat{A}|m\rangle = \langle m|\hat{A}|n\rangle^* = A_{mn}^*$$

Osservazione. Da questo si nota:

- gli elementi della diagonale devono essere reali $A_{nn} = A_{nn}^*$;
- gli elementi del triangolo superiore sono i complessi coniugati degli elementi del triangolo inferiore riflessi rispetto la diagonale principale.

Esempio. L'operatore posizione \hat{x} è auto-aggiunto:

$$\langle \varphi | \hat{x} | \psi \rangle = \int \varphi(x)^* x \psi(x) \, \mathrm{d}x = \int (x \varphi)^* \psi \, \mathrm{d}x = \langle \hat{x} \varphi | \psi \rangle = \langle \varphi | \hat{x}^\dagger | \psi \rangle \implies \hat{x}^\dagger = \hat{x}$$

Esempio. L'operatore momento \hat{p} è auto-aggiunto:

$$\langle \varphi | \hat{p} | \psi \rangle = -i\hbar \int \varphi^* \, \partial_x \psi \, dx = -i\hbar \left[\varphi^* \psi \Big|_{-\infty}^{\infty} - \int \psi (\varphi^*)' \, dx \right]$$
$$= \int (-i\hbar \, \partial_x \varphi)^* \psi \, dx = \langle \varphi | \hat{p}^{\dagger} | \psi \rangle$$

si è integrato per parti. Risulta

$$\hat{p}^{\dagger} = -i\hbar \, \partial_x = \hat{p}$$

Teorema. Si consideri un operatore auto-aggiunto \hat{A} . Allora

- gli autovalori sono reali;
- gli autovettori corrispondenti ad autovalori diversi sono ortogonali.

Dimostrazione. L'equazione agli autovalori dell'operatore è

$$\hat{A} |a'\rangle = a' |a'\rangle$$

Si noti che si dà lo stesso nome sia al ket che all'autovalore corrispondente. Vale l'equazione coniugata

$$\langle a'' | \hat{A}^{\dagger} = (a'')^* \langle a'' |$$

Poiché \hat{A} è hermitiano, allora vale

$$\langle a'' | \hat{A} = (a'')^* \langle a'' |$$

Combinando la prima espressione con $\langle a'' |$ e combinando l'espressione sopra con $|a' \rangle$ si ottiene

$$\langle a''|\hat{A}|a'\rangle = a'\langle a''|a'\rangle, \quad \langle a''|\hat{A}|a'\rangle = (a'')^*\langle a''|a'\rangle$$

Facendo la differenza tra le due, si ha

$$0 = [a' - (a'')^*] \langle a'' | a' \rangle$$

Prima tesi. Sia a' = a''. Allora

$$[a' - (a')^*] \langle a'|a' \rangle = 0$$

Il vettore $|a'\rangle$ non può essere nullo (si noti che $\langle a'|a'\rangle = \|a'\|^2$) perché altrimenti non sarebbe un auto-vettore. Pertanto

$$a' = (a')^*$$

cioè gli autovalori sono reali. Seconda tesi. Sia $a' \neq a''$. Allora

$$(a'-a'')\langle a''|a'\rangle = 0 \implies \langle a''|a'\rangle = 0$$

cioè gli autovettori sono ortogonali tra loro.

Osservazione. In quanto tali vettori sono ortogonali, si possono normalizzare affinché

$$\langle a''|a'\rangle = \delta_{a'',a'}$$

Teorema. spettrale. Gli autovettori di un operatore auto-aggiunto costituiscono una base dello spazio di Hilbert. Un operatore può avere spettro discreto

$$\hat{A} |\varphi_n\rangle = a_n |\varphi_n\rangle, \quad |\varphi_n\rangle \in \mathcal{H}, \quad n \in \mathbb{N}$$

oppure spettro continuo

$$\hat{A} |\varphi_a\rangle = a |\varphi_a\rangle, \quad |\varphi_a\rangle \notin \mathcal{H}, \quad a \in \mathbb{R}$$

Proposizione. Così si ha

$$\langle \varphi_n | \varphi_m \rangle = \delta_{nm}, \quad \langle \varphi_a | \varphi_{a'} \rangle = \delta(a - a'), \quad \langle \varphi_a | \varphi_n \rangle = 0$$

Ogni vettore $|\psi\rangle \in \mathcal{H}$ si può decomporre sulla base continua e sulla base discreta

$$|\psi\rangle = \sum_{n} c_n |\varphi_n\rangle + \int c(a) |\varphi_a\rangle da$$
, $c_n = \langle \varphi_n | \psi \rangle$, $c(a) = \langle \varphi_a | \psi \rangle$

Osservazione. Gli operatori associati a delle osservabili fisiche devono essere hermitiani affinché

- le misure siano dei numeri reali;
- gli autovettori (auto-funzioni) formino una base.

Osservazione. Si scrive solamente la somma discreta, ma risulta chiaro che sommatoria ed integrale dipendono dalla natura dell'indice: discreta o continua.

Proposizione. Una funzione d'onda si scrive come

$$|\psi\rangle = \sum_{n} c_n |\varphi_n\rangle$$

In quanto si vuole interpretare la funzione d'onda come una ampiezza di probabilità, segue

$$1 = \langle \psi | \psi \rangle = \sum_{n} |c_n|^2$$

Si interpreta ogni $|c_n|^2$ come probabilità.

Osservazione. Nella meccanica quantistica, l'indeterminazione si manifesta nel fatto di non poter sapere a priori quale misura particolare si ottiene, ma si può solo sapere con quale probabilità si può ottenere.

7.6 Ricerca degli autovalori ed autovettori – diagonalizzazione

7.6.1 Spazi finiti

Si consideri l'equazione agli autovalori

$$\hat{A}|a\rangle = a|a\rangle$$

Si vogliono calcolare gli autovalori a e gli autovettori $|a\rangle$ dato l'operatore \hat{A} . Gli autovettori costituiscono una base, ma non la si conosce. Si supponga di conoscere un'altra base $|j\rangle$ con $j=1,\ldots,n$. Si vogliono trovare gli autovalori: si trasforma il problema in uno di algebra lineare. Nell'equazione sopra, si inserisce la relazione di completezza e si moltiplica per $\langle j|$:

$$\sum_{i} \langle j | \hat{A} | i \rangle \langle i | a \rangle = a \langle j | a \rangle \iff \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & & A_{2n} \\ \vdots & & & \vdots \\ A_{n1} & & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} = a \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix}$$

L'equazione da risolvere è

$$(A_M - aI)v = 0$$

dove A_M è la matrice che rappresenta \hat{A} e il vettore v ha componenti $\langle i|a\rangle$. Bisogna diagonalizzare la matrice A_M per poter trovare gli autovalori e gli autovettori. Si impone

$$\det(A_M - aI) = 0$$

In generale, si trovano n autovalori (magari non tutti distinti) e si trovano n autovettori.

7.6.2 Rappresentazione sulla base della posizione e sulla base dei momenti

La funzione d'onda è

$$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int \widetilde{\psi}(p) e^{i\frac{px}{\hbar}} \, \mathrm{d}p, \quad \psi(\vec{x}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int \widetilde{\psi}(\vec{p}) e^{i\frac{\vec{p}\cdot\vec{x}}{\hbar}} \, \mathrm{d}^3p$$

e la sua trasformata è

$$\widetilde{\psi}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int \psi(x) e^{-i\frac{px}{\hbar}} dx$$

Nello spazio delle coordinate, si studia come è fatta la funzione d'onda di una particella che si trova esattamente in \vec{x}_0 :

$$\xi_{\vec{x}_0}(\vec{x}) = \delta^3(\vec{x} - \vec{x}_0)$$

La funzione d'onda con momento esattamente $\vec{p_0}$ è

$$\mu_{\vec{p}_0}(\vec{x}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{i\frac{\vec{p}_0 \cdot \vec{x}}{\hbar}}$$

Infatti, la sua trasformata di Fourier è $\delta^3(\vec{p}-\vec{p_0})$ nello spazio dei momenti. Dalla funzione d'onda $\psi(x)$ si è passati all'oggetto astratto $|\psi\rangle$ che rappresenta lo stato (si pensi a come le componenti non siano il vettore in sé). Similmente, si costituiscono le associazioni

$$\xi_{\vec{x}_0}(\vec{x}) \to |\vec{x}_0\rangle, \quad \mu_{\vec{p}_0}(\vec{x}) \to |\vec{p}_0\rangle$$

Pertanto, associare $|\psi\rangle$ a $\psi(x)$ o $\widetilde{\psi}(p)$ non è lontano da considerare $|\vec{x}\rangle$ e $|\vec{p}\rangle$ come base. Infatti, si consideri

$$\psi(\vec{x}) = \int \delta^3(\vec{x} - \vec{x}')\psi(\vec{x}') d^3x'$$

la base è costituita dalla delta, mentre i coefficienti (le componenti dello stato $|\psi\rangle$) sono $\psi(\vec{x}')$. La stessa cosa si fa con la trasformata di Fourier:

$$\psi(\vec{x}) = \int \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{\frac{i}{\hbar}\vec{p}\cdot\vec{x}} \widetilde{\psi}(p) d^{3}p$$

i coefficienti sono $\widetilde{\psi}(p)$ e la base è costituita dagli esponenziali con il fattore numerico. Si vede l'effetto degli operatori posizione e momento sui ket $|x'\rangle$ e $|p'\rangle$. La posizione di una particella che si trova nel luogo x' è

$$\hat{x} | x' \rangle = x' | x' \rangle$$

I ket posizione sono gli auto-stati dell'operatore posizione. Similmente per il momento

$$\hat{p}|p'\rangle = p'|p'\rangle$$

Il fatto che x e p siano una base è ciò che le due espressioni sopra con gli integrali affermano. In quanto x e p sono una base, si può scrivere la relazione di ortonormalità e quella di completezza. Il prodotto scalare è

$$\langle \varphi | \psi \rangle = \int \varphi^*(x) \psi(x) \, \mathrm{d}^3 x$$

Si enuncia l'ortonormalità:

$$\langle \vec{x}' | \vec{x}'' \rangle = \int \xi_{\vec{x}'}^*(\vec{x}) \xi_{\vec{x}''}(\vec{x}) \, d^3 x = \delta^3 (\vec{x}' - \vec{x}'')$$
$$\langle \vec{p}' | \vec{p}'' \rangle = \int \mu_{\vec{p}'}^*(\vec{x}) \mu_{\vec{p}''}(\vec{x}) \, d^3 x = \delta^3 (\vec{p}' - \vec{p}'')$$

Si enuncia la completezza:

$$\int |\vec{x}\rangle\langle \vec{x}| d^3x = I, \quad \int |\vec{p}\rangle\langle \vec{p}| d^3p = I$$

Dunque

$$|\psi\rangle = I |\psi\rangle = \int |\vec{x}'\rangle \langle \vec{x}'|\psi\rangle d^3x' = \int |\vec{p}\rangle \langle \vec{p}|\psi\rangle d^3p$$

dove, moltiplicando per $|\vec{x}\rangle$, si ha

$$\langle \vec{x} | \psi \rangle = \int \xi_{\vec{x}}^*(\vec{x}') \psi(\vec{x}') \, \mathrm{d}^3 x' = \psi(\vec{x})$$

$$\langle \vec{p} | \psi \rangle = \int \mu_{\vec{p}}^*(\vec{x}') \psi(\vec{x}') \, \mathrm{d}^3 x' = \widetilde{\psi}(\vec{p})$$

cioè le funzioni d'onda: esse non sono gli oggetti fondamentali, ma sono i coefficienti dello stato $|\psi\rangle$ sulle basi $|\vec{x}\rangle$ e $|\vec{p}\rangle$. Si può anche espandere lo stato su una base di autovettori di un operatore

$$|\psi\rangle = \sum_{a} \psi_a |a\rangle$$

Rappresentazione di uno stato. Si consideri uno stato $|\psi\rangle$. Sulla base delle coordinate $|\vec{x}\rangle$, i coefficienti, le componenti sono

$$\psi(\vec{x}) \equiv \langle \vec{x} | \psi \rangle$$

dove $|\psi|^2$ è la densità di probabilità di trovare la particella in posizione \vec{x} . Sulla base dei momenti $|\vec{p}\rangle$, i coefficienti sono

$$\langle \vec{p} | \psi \rangle = \widetilde{\psi}(p)$$

dove $|\widetilde{\psi}(p)|^2$ è la densità di probabilità di trovare la particella con momento \vec{p} . Si calcola $\langle \vec{x} | \vec{p} \rangle$. Considerando la relazione di completezza

$$|\psi\rangle = \int |\vec{x}\rangle \langle \vec{x}|\psi\rangle d^3x = \int \psi(\vec{x}) |\vec{x}\rangle d^3x$$

segue

$$\psi(\vec{x}) = \langle \vec{x} | \psi \rangle = \int \langle \vec{x} | \vec{p} \rangle \langle \vec{p} | \psi \rangle d^3 p, \quad \langle \vec{p} | \psi \rangle = \widetilde{\psi}(p) = \int \langle \vec{p} | \vec{x} \rangle \psi(\vec{x}) d^3 x$$

Confrontando l'espressione con la trasformata di Fourier si ottiene

$$| \langle \vec{x} | \vec{p} \rangle = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{i\frac{\vec{p} \cdot \vec{x}}{\hbar}}$$

Riassunto. Uno stato $|\psi\rangle\in\mathcal{H}$ si può rappresentare sulla base degli autovettori di un'osservabile. Si risolve

$$\hat{A}|a\rangle = a|a\rangle$$

Gli autovettori costituiscono una base e quindi

$$|\psi\rangle = \sum c_a |a\rangle, \quad c_a = \langle a|\psi\rangle$$

Esempio. Si vedono alcuni esempi di rappresentazione di uno stato $|\psi\rangle$:

- sulla base $|a\rangle$ di un operatore si danno i coefficienti $\langle a|\psi\rangle;$
- sulla base $|\vec{x}\rangle$ si danno i coefficienti $\langle \vec{x}|\psi\rangle = \psi(\vec{x});$
- sulla base $|\vec{p}\rangle$ si danno i coefficienti $\langle \vec{p}|\psi\rangle = \widetilde{\psi}(\vec{p});$
- sulla base generica $|n\rangle$ si danno i coefficienti $\langle n|\psi\rangle$.

Esempio. In tre dimensioni, l'equazione agli autovalori della posizione è

$$\hat{x} | \vec{x} \rangle = x | \vec{x} \rangle, \quad \vec{x} = (x, y, z)$$

per il momento si ha

$$\hat{p}_x | \vec{p} \rangle = p_x | \vec{p} \rangle$$

Si studia cosa sia $\hat{x} | \psi \rangle$:

• nella rappresentazione delle coordinate si ha

$$\langle \vec{x} | \hat{x} | \psi \rangle = x \langle \vec{x} | \psi \rangle = x \psi(x, y, z)$$

• nella rappresentazione dei momenti si ha

$$\begin{split} \langle \vec{p} | \hat{x} | \psi \rangle &= \int \langle \vec{p} | \vec{x}' \rangle \ \langle \vec{x}' | \hat{x} | \psi \rangle \ \mathrm{d}^3 x' = \int \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{-i\frac{\vec{p} \cdot \vec{x}'}{\hbar}} x' \psi(\vec{x}') \ \mathrm{d}^3 x' \\ &= \frac{i\hbar}{(2\pi\hbar)^{\frac{3}{2}}} \int (\partial_{p_x} e^{-i\frac{\vec{p} \cdot \vec{x}'}{\hbar}}) \psi(\vec{x}') \ \mathrm{d}^3 x' \\ &= i\hbar \ \partial_{p_x} \int \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{-i\frac{\vec{p} \cdot \vec{x}'}{\hbar}} \psi(\vec{x}') \ \mathrm{d}^3 x' = i\hbar \ \partial_{p_x} \widetilde{\psi}(p) \end{split}$$

Si studia cosa sia $\hat{p}_x |\psi\rangle$:

• nella rappresentazione dei momenti si ha

$$\langle \vec{p}|\hat{p}_x|\psi\rangle = p_x \langle \vec{p}|\psi\rangle = p_x \widetilde{\psi}(\vec{p})$$

• nella rappresentazione delle coordinate si ha

$$\begin{split} \langle \vec{x} | \hat{p}_x | \psi \rangle &= \int \langle \vec{x} | \vec{p} \rangle \ \langle \vec{p} | \hat{p}_x | \psi \rangle \ \mathrm{d}^3 p = \int \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{i\frac{\vec{p} \cdot \vec{x}}{\hbar}} p_x \widetilde{\psi}(\vec{p}) \, \mathrm{d}^3 p \\ &= -\frac{i\hbar}{(2\pi\hbar)^{\frac{3}{2}}} \int (\partial_x e^{i\frac{\vec{p} \cdot \vec{x}}{\hbar}}) \widetilde{\psi}(\vec{p}) \, \mathrm{d}^3 p \\ &= -i\hbar \, \partial_x \int \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{i\frac{\vec{p} \cdot \vec{x}}{\hbar}} \widetilde{\psi}(\vec{p}) \, \mathrm{d}^3 p = -i\hbar \, \partial_x \psi(\vec{x}) \end{split}$$

Lezione 14

mer 19 ott 2022 13:30

8 Oscillatore armonico

L'hamiltoniana dell'oscillatore armonico è la seguente

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2, \quad m\omega^2 \equiv k$$

dove k è la costante di un'ipotetica molla. L'oscillatore armonico è importante perché è la prima approssimazione attorno ad un minimo energetico utilizzabile in vari problemi. L'approssimazione segue dall'espansione in serie di Taylor attorno ad un minimo

$$V(x) = V(x_0) + V'(x_0)(x - x_0) + \frac{1}{2}V''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

cioè il potenziale è una parabola. Molte situazioni si possono descrivere come un oscillatore armonico:

• la vibrazione degli atomi in una molecola attorno ad una posizione media;

- le oscillazione degli atomi in un reticolo cristallino attorno al punto di equilibrio, esse sono quantizzate e si ha il concetto di fononi;
- la quantizzazione del campo elettromagnetico, esso viene decomposto in tanti oscillatori e si passa all'elettrodinamica quantistica quantizzando tali oscillatori; in questo modo si ottiene il concetto di fotone;

In meccanica classica, la soluzione all'equazione del moto è data da

$$x(t) = x_M \cos(\omega t + \varphi)$$

dove ω è una pulsazione, frequenza e φ è una fase.

8.1 Stati stazionari

In meccanica quantistica, l'hamiltoniana diventa

$$H = -\frac{\hbar^2}{2m} \,\mathrm{d}_x^2 + \frac{1}{2}m\omega^2 x^2$$

L'equazione per gli stati stazionari è

$$\left[-\frac{\hbar^2}{2m} \, \mathrm{d}_x^2 + \frac{1}{2} m \omega^2 x^2 \right] \varphi(x) = E \varphi(x)$$

Il potenziale è una parabola: si sa già che lo spettro è discreto perché ci sono due punti di inversione. Il potenziale è una funzione pari: gli autovettori si distinguono in funzioni pari e funzioni dispari. Infatti, la parità viene conservata.

Si risolve il problema in due modi diversi: risolvendo l'equazione differenziale e un approccio utilizzato da Dirac.

Risoluzione dell'equazione differenziale. Si rende l'espressione adimensionale. A destra si ha un'energia. Si nota che pure $\hbar\omega$ è un'energia. Dunque, moltiplicando per $\frac{2}{\hbar\omega}$, l'equazione diventa

$$\left[-\frac{\hbar}{m\omega} d_x^2 + \frac{m\omega}{\hbar} x^2 \right] \varphi - \mathcal{E}\varphi = 0$$

dove

$$\mathcal{E} = \frac{2E}{\hbar\omega}$$

è adimensionale. Pertanto, pure gli addendi in parentesi sono adimensionali. Si pone

$$y^2 = \frac{m\omega}{\hbar} x^2 \implies d_x y = \sqrt{\frac{m\omega}{\hbar}}$$

Tramite la regola della catena, si trasforma la derivata seconda:

$$d_y = d_y x d_x \implies d_y^2 = d_y x d_x (d_y x d_x) = (d_y x)^2 d_x^2 = \frac{\hbar}{m\omega} d_x^2$$

L'equazione degli stati stazionari diventa

$$d_y^2 \varphi + (\mathcal{E} - y^2) \varphi = 0$$

Ai bordi del dominio, la funzione deve decrescere a zero: localmente è un esponenziale, ma non globalmente. Si studia il comportamento all'infinito. Per $y\to\infty$, il termine $\mathcal E$ è trascurabile e l'equazione diventa

$$\varphi'' - y^2 \varphi \sim 0$$

L'andamento della soluzione dev'essere come

$$\varphi \propto e^{-ay^2}$$

Infatti, sostituendola nell'equazione, si ottiene

$$[-2a + (4a^2 - 1)y^2]e^{-ay^2} \sim 0$$

Si sopprime il termine quadratico:

$$4a^2 - 1 = 0 \implies a = \pm \frac{1}{2}$$

Solamente a positivo è accettabile. Quindi, la soluzione e l'equazione degli stati stazionari sono

$$\varphi(y) = e^{-\frac{1}{2}y^2}h(y) \implies d_y^2h(y) - 2y d_yh(y) + (\mathcal{E} - 1)h(y) = 0$$

Si studia il comportamento della soluzione al finito $y \ll \infty$. Si cerca una soluzione del tipo

$$h(y) = \sum_{m=0}^{\infty} a_m y^m$$

Nell'equazione, il termine y^m ha coefficienti

$$(m+1)(m+2)a_{m+2} = (2m - \mathcal{E} + 1)a_m$$

Dato a_0 si ha una serie di soli termini pari. Dato a_1 si ha una serie di soli termini dispari. Questo è in accordo con quanto atteso riguardo la parità. Per studiare il comportamento della serie, si osserva il comportamento dei coefficienti per $m \to \infty$. Sia m > N, allora

$$a_{m+2} \sim \frac{2m}{m^2} a_m \sim \frac{2}{m} a_m$$

Quindi, fino ad N si ha un comportamento polinomiale. Oltre tale punto, si ha

$$h(y) = \dots + a_N y^N + a_{N+2} y^{N+2} + a_{N+4} y^{N+4} + \dots$$

= \dots + a_N y^N + \frac{2}{N} a_N y^{N+2} + \frac{2^2}{(N+2)N} a_N y^{N+4} + \dots

Si può raccogliere il termine a_N . Dunque,

$$h(y) = \dots + a_N y^2 \left(\frac{N}{2} - 1\right)! \left[\frac{(y^2)^{\frac{N}{2} - 1}}{(\frac{N}{2} - 1)!} + \frac{(y^2)^{\frac{N}{2}}}{(\frac{N}{2})!} + \frac{(y^2)^{\frac{N}{2} + 1}}{(\frac{N}{2} + 1)!} + \dots \right]$$
$$= \cot y^2 \left[e^{y^2} - P(y) \right] \sim y^2 e^{y^2} + Q(y)$$

dove P(y) è un polinomio formato dai primi $\frac{N}{2}-1$ termini dell'espansione di e^{y^2} . Pertanto

$$\varphi(y) \sim e^{-\frac{1}{2}y^2} y^2 e^{y^2} \sim y^2 e^{\frac{1}{2}y^2}$$

che diverge a $y \to \infty$. La serie diverge più velocemente dell'esponenziale che descrive il comportamento all'infinito della soluzione. Bisogna impedire alla serie di costruire un esponenziale facendo in modo che oltre un certo indice, i coefficienti siano nulli. Questo succede qualora esista un $n \in \mathbb{N}$ tale per cui

$$2n - \mathcal{E} + 1 = 0 \implies \mathcal{E} = 2n + 1$$

Infatti, fino a tale indice si hanno solamente termini polinomiali che vengono sopraffatti da $e^{-\frac{1}{2}y^2}$ per $y \to \infty$. Si ottiene la quantizzazione dell'energia

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n \in \mathbb{N} \cup \{0\}$$

Osservazione. Si osserva:

- l'energia dell'oscillatore armonico è quantizzata in termini di $\hbar\omega$;
- esiste uno stato di energia minima: $E_0 = \frac{\hbar \omega}{2}$, cioè l'energia di punto zero in accordo con il principio di Heisenberg;
- \bullet considerando l'energia quantizzata, si un'equazione per h pari a

$$d_y^2 h - 2y d_y h + 2nh = 0$$

Questa è l'equazione dei polinomi di Hermite. Dunque, φ si comporta come un polinomio al finito ed un esponenziale decrescente all'infinito.

Metodo algebrico. Questo metodo è dovuto a Dirac. L'hamiltoniana è

$$\label{eq:Hamiltonian} \hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega\hat{x}^2, \quad [\hat{x},\hat{p}] = i\hbar$$

Si risolve l'equazione degli stati stazionari

$$\hat{H} | \varphi \rangle = E | \varphi \rangle$$

Si costruiscono delle quantità adimensionali

$$\hat{\tilde{x}} = \sqrt{\frac{m\omega}{\hbar}}\hat{x}, \quad \hat{\tilde{p}} = \frac{1}{\sqrt{m\hbar\omega}}\hat{p}, \quad [\hat{\tilde{x}},\hat{\tilde{p}}] = i, \quad \hat{H} = \hbar\omega\hat{\tilde{H}}, \quad \hat{\tilde{H}} = \frac{1}{2}(\hat{\tilde{x}}^2 + \hat{\tilde{p}}^2)$$

Pertanto, l'hamiltoniana adimensionale è

$$\hat{\tilde{H}} = \frac{1}{2}(\hat{\tilde{x}}^2 + \hat{\tilde{p}}^2) = \frac{\hat{\tilde{x}} + i\hat{\tilde{p}}}{\sqrt{2}}\frac{\hat{\tilde{x}} - i\hat{\tilde{p}}}{\sqrt{2}} - \frac{1}{2} = \hat{a}\hat{a}^\dagger - \frac{1}{2}$$

La presenza dell'addendo $-\frac{1}{2}$ è giustificata dal fatto che gli operatori non commutano. Si introduce l'operatore distruttore e l'operatore creatore

$$\hat{a} \equiv \frac{\hat{x} + i\hat{p}}{\sqrt{2}}, \quad \hat{a}^{\dagger} \equiv \frac{\hat{x} - i\hat{p}}{\sqrt{2}}$$

Essi non sono auto-aggiunti. Si invertono le relazioni

$$\hat{\widetilde{x}} = \frac{\hat{a}^{\dagger} + \hat{a}}{\sqrt{2}}, \quad \hat{\widetilde{p}} = i\frac{\hat{a}^{\dagger} - \hat{a}}{\sqrt{2}}$$

La relazione di commutazione è

$$[\hat{a}, \hat{a}^{\dagger}] = 1$$

L'hamiltoniana risulta essere

$$\hat{\widetilde{H}} = \hat{a}\hat{a}^{\dagger} - \frac{1}{2} = \hat{a}^{\dagger}\hat{a} + \frac{1}{2}$$

Si definisce l'operatore numero

$$\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$$

Esso è auto-aggiunto

$$\hat{N}^{\dagger} = (\hat{a}^{\dagger}\hat{a})^{\dagger} = \hat{a}^{\dagger}(\hat{a}^{\dagger})^{\dagger} = \hat{a}^{\dagger}\hat{a} = \hat{N}$$

L'hamiltoniana diventa

$$\hat{\widetilde{H}} = \hat{N} + \frac{1}{2}$$

Cercare gli autovalori di \hat{H} equivale a cercare gli autovalori di \hat{N} . Si studia tale operatore. Le relazioni di commutazione sono

$$[\hat{N}, \hat{a}] = [\hat{a}^{\dagger} \hat{a}, \hat{a}] = \hat{a}^{\dagger} [\hat{a}, \hat{a}] + [\hat{a}^{\dagger}, \hat{a}] \hat{a} = -\hat{a}$$

così come

$$[\hat{N},\hat{a}^{\dagger}]=[\hat{a}^{\dagger}\hat{a},\hat{a}^{\dagger}]=\hat{a}^{\dagger}[\hat{a},\hat{a}^{\dagger}]+[\hat{a}^{\dagger},\hat{a}^{\dagger}]\hat{a}=\hat{a}^{\dagger}$$

Spettro dell'operatore numero. Tale operatore è auto-aggiunto. L'equazione agli autovalori è

$$\hat{N} | \nu \rangle = \nu | \nu \rangle$$
, $\langle \nu | \nu \rangle = 1$, $\nu \in \mathbb{R}$

Si può passare all'hamiltoniana tramite

$$\hat{\widetilde{H}} \left| \nu \right\rangle = \left(\nu + \frac{1}{2} \right) \left| \nu \right\rangle$$

Si calcola

$$\hat{N}\hat{a} |\nu\rangle = \hat{a}\hat{N} |\nu\rangle + [\hat{N}, \hat{a}] |\nu\rangle = \hat{a}\hat{N} |\nu\rangle - \hat{a} |\nu\rangle = (\nu - 1)\hat{a} |\nu\rangle$$

Pure $\hat{a} | \nu \rangle$ è un autovettore di \hat{N} con autovalore $\nu - 1$. Si calcola

$$\hat{N}\hat{a}^{\dagger} |\nu\rangle = \hat{a}^{\dagger} \hat{N} |\nu\rangle + [\hat{N}, \hat{a}^{\dagger}] |\nu\rangle = (\nu + 1)\hat{a}^{\dagger} |\nu\rangle$$

Anch'esso è un autovettore con autovalore $\nu+1$. Dall'autovalore ν si ricava l'autovalore $\nu\pm1$. Da ciò si capisce l'origine dei nomi: \hat{a}^{\dagger} aggiunge a ν , mentre \hat{a} toglie a ν .

Nello spazio di Hilbert, la norma è non negativa ed è nulla sse lo è il vettore. Dunque

$$0 \le \|\hat{a} |\nu\rangle\|^2 = \langle \nu | \hat{a}^{\dagger} a |\nu\rangle = \nu \langle \nu | \nu\rangle = \nu$$

Gli autovalori sono non negativi.

Osservazione.

• L'autovalore più piccolo è $\nu=0$ a cui corrisponde lo stato $|0\rangle$. Dunque, per la relazione precedente, si ha un vettore nullo

$$\hat{a} |0\rangle = \vec{0}$$

Questo è lo stato fondamentale. Lo stato $|0\rangle$ è annichilato dal distruttore. Si noti che $|0\rangle$ è un vettore non nullo.

• Sia $\nu > 0$. Per ora si sa che $\nu \in \mathbb{R}$. Il ket corrispondente all'autovalore ν dell'operatore \hat{N} è $|\nu\rangle$. Si applica ripetutamente l'operatore di distruzione e si finisce sul ket $|\nu'\rangle$ con numero più piccolo, come mostrato dall'operatore numero

$$\hat{N} |\nu'\rangle = \hat{N}(\hat{a} |\nu\rangle) = (\nu - 1)(\hat{a} |\nu\rangle) = (\nu - 1) |\nu'\rangle$$

Si arriva ad un punto in cui si ottiene un autovettore con numero negativo: ciò non è possibile. L'unico modo che questo non avvenga è che $\nu \in \mathbb{N}$. Gli autovalori dell'operatore numero \hat{N} sono numeri naturali.

Dunque, i possibili valori dell'energia sono

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n \in \mathbb{N}_0$$

L'indice n descrive i quanti di energia scambiati in pacchetti di $\hbar\omega$.

Costruzione degli stati. Per quanto visto riguardo l'effetto dell'operatore creazione, si ha

$$\hat{a}^{\dagger} |0\rangle \propto |1\rangle$$

Infatti, l'operatore creazione implica

$$\hat{a}^{\dagger} |n\rangle = c_n |n+1\rangle$$

Si trovano i coefficienti c_n . La norma del primo membro è

$$\left\|\hat{a}^{\dagger}\left|n\right\rangle\right\|^{2}=\left\langle n\right|\hat{a}\hat{a}^{\dagger}\left|n\right\rangle =\left\langle n\right|\left(1+\hat{a}^{\dagger}\hat{a}\right)\left|n\right\rangle =\left(n+1\right)\left\langle n\right|n\right\rangle =n+1$$

ricordando che $\hat{N} = \hat{a}^{\dagger} \hat{a}$. La norma del secondo membro è

$$\|\hat{a}^{\dagger} |n\rangle\|^2 = |c_n|^2 \langle n+1|n+1\rangle = |c_n|^2$$

Pertanto

$$|c_n|^2 = n+1 \implies c_n = \sqrt{n+1}$$

Dunque, la relazione diventa

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$

Similmente si ha

$$\left\|\hat{a}\left|n\right\rangle\right\|^{2} = \left\langle n\right|\hat{a}^{\dagger}\hat{a}\left|n\right\rangle = \left\langle n\right|\hat{N}\left|n\right\rangle = n \left\langle n|n\right\rangle = n \implies \boxed{\hat{a}\left|n\right\rangle = \sqrt{n}\left|n-1\right\rangle}$$

Mandando $n \to n-1$, l'equazione del creatore si può scrivere come

$$|n\rangle = \frac{1}{\sqrt{n}}\hat{a}^{\dagger}|n-1\rangle$$

La si applica ripetutamente:

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle$$

Lezione 15

gio 20 ott 2022 13:30

Tutta la teoria dei campi utilizza gli operatori di creazione e di distruzione: dallo stato vuoto di Fock si creano delle particelle. Il formalismo astratto intrapreso tramite notazione di Dirac permette di descrivere il momento angolare e lo spettro dell'atomo di idrogeno.

Si trova una rappresentazione degli stati $|n\rangle$. Conoscendo lo stato fondamentale, si possono costruire tutti gli altri stati. Per lo stato fondamentale vale

$$\hat{a}\left|0\right\rangle = \vec{0} \implies \frac{1}{\sqrt{2}}\left[\sqrt{\frac{m\omega}{\hbar}}\hat{x} + i\frac{1}{\sqrt{m\hbar\omega}}\hat{p}\right]\left|0\right\rangle = \vec{0}$$

Si cercano gli stati come funzioni d'onda nella rappresentazione delle coordinate. Sulla base delle coordinate si sa

$$\hat{x} | x' \rangle = x' | x' \rangle$$
, $\langle x | \hat{p} = -i\hbar \, d_x \, \langle x |$

Dunque, l'espressione sopra diventa

$$\langle x | \left[\sqrt{\frac{m\omega}{\hbar}} \hat{x} + i \frac{1}{\sqrt{m\hbar\omega}} \hat{p} \right] | 0 \rangle = 0 \implies \left[\sqrt{\frac{m\omega}{\hbar}} x + \frac{i}{\sqrt{m\hbar\omega}} (-i\hbar \, \mathrm{d}_x) \right] \langle x | 0 \rangle = 0$$

Si pone $\langle x|0\rangle \equiv \varphi_0(x)$. Pertanto, l'equazione diventa

$$\left(\frac{m\omega}{\hbar}x + \mathrm{d}_x\right)\varphi_0(x) = 0 \implies \frac{\mathrm{d}\varphi_0}{\varphi_0} = -\frac{m\omega}{\hbar}x\,\mathrm{d}x \implies \ln\varphi_0 = -\frac{m\omega}{2\hbar}x^2 + C$$

da cui la soluzione è

$$\varphi_0(x) = Ne^{-\frac{m\omega}{2\hbar}x^2}$$

La costante si calcola tramite la normalizzazione

$$1 \equiv \int |\varphi_0(x)|^2 dx = N^2 \int e^{-\frac{m\omega}{\hbar}x^2} dx = N^2 \sqrt{\frac{\pi\hbar}{m\omega}}$$

La funzione d'onda dello stato fondamentale è

$$\varphi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2}$$

Si trovano gli stati eccitati sulla base delle coordinate

$$\langle x|n\rangle \equiv \varphi_n(x) = \frac{1}{\sqrt{n!}} \frac{1}{\sqrt{2^n}} \left(\sqrt{\frac{m\omega}{\hbar}} x - \sqrt{\frac{\hbar}{m\omega}} d_x \right)^n \varphi_0(x)$$

Si costruiscono le auto-funzioni senza risolvere equazioni differenziali non banali. Si definisce una grandezza adimensionale

$$\xi \equiv \sqrt{\frac{m\omega}{\hbar}}x$$

Dunque

$$\varphi_n(\xi) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{H_n(\xi)}{\sqrt{2^n n!}} e^{-\frac{\xi^2}{2}}$$

dove $H_n(\xi)$ sono i polinomi di Hermite

$$H_n(\xi) = (-1)^n e^{\xi^2} d_{\xi}^n e^{-\xi^2}$$

I primi polinomi sono

$$H_0 = 1$$
, $H_1 = 2\xi$, $H_2 = 4\xi^2 - 2$, $H_3 = 8\xi^3 - 12\xi$

8.2 Rappresentazione della matrice degli operatori creatore, distruttore, posizione e momento

Si ricorda

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle, \quad \hat{a} | n \rangle = \sqrt{n} | n-1 \rangle$$

così come

$$\hat{x} |n\rangle = \sqrt{\frac{\hbar}{m\omega}} \frac{1}{\sqrt{2}} \left(\hat{a}^{\dagger} + \hat{a} \right) |n\rangle = \sqrt{\frac{\hbar}{2m\omega}} \left[\sqrt{n+1} |n+1\rangle + \sqrt{n} |n-1\rangle \right]$$

similmente

$$\hat{p}\left|n\right\rangle = \sqrt{m\hbar\omega}\frac{i}{\sqrt{2}}(\hat{a}^{\dagger} - \hat{a})\left|n\right\rangle = i\sqrt{\frac{m\hbar\omega}{2}}\left[\sqrt{n+1}\left|n+1\right\rangle - \sqrt{n}\left|n-1\right\rangle\right]$$

Si calcolano gli elementi matriciali:

$$\langle n'|\hat{a}|n\rangle = \sqrt{n}\delta_{n',n-1}, \quad \langle n'|\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}\delta_{n',n+1}$$

pure

$$\langle n'|\hat{x}|n\rangle = \sqrt{\frac{\hbar}{2m\omega}} \left[\sqrt{n+1}\delta_{n',n+1} + \sqrt{n}\delta_{n',n-1}\right]$$

come

$$\langle n'|\hat{p}|n\rangle = i\sqrt{\frac{m\hbar\omega}{2}}\left[\sqrt{n+1}\delta_{n',n+1} - \sqrt{n}\delta_{n',n-1}\right]$$

similmente

$$\langle n'|\hat{N}|n\rangle = n\,\langle n'|n\rangle = n\delta_{n',n}$$

Sulla base $|n\rangle$, l'operatore distruttore è rappresentato da

$$\hat{a} \doteq \begin{bmatrix} 0 & \sqrt{1} & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{2} & 0 & \cdots \\ 0 & 0 & 0 & \sqrt{3} & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Similmente, l'operatore creatore è rappresentato da

$$\hat{a}^{\dagger} \doteq \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ \sqrt{1} & 0 & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Inoltre, la rappresentazione dell'operatore numero è

$$\langle n|\hat{N}|n'\rangle = \sum_{m} \langle n|\hat{a}^{\dagger}|m\rangle \ \langle m|\hat{a}|n'\rangle = \sum_{m} \sqrt{m+1}\delta_{n,m+1}\sqrt{n'}\delta_{m,n'-1} = n\delta_{n,n'}$$

Ci si aspetta che la matrice sia diagonale in quanto $|n\rangle$ è la base dell'operatore \hat{N} . Dunque

$$\hat{N} \doteq \begin{bmatrix} 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Dalla rappresentazione per \hat{a} e \hat{a}^{\dagger} segue

$$\hat{x} \doteq \sqrt{\frac{\hbar}{2m\omega}} \begin{bmatrix} 0 & \sqrt{1} & 0 & 0 & \cdots \\ \sqrt{1} & 0 & \sqrt{2} & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

e pure

$$\hat{p} \doteq \sqrt{\frac{m\hbar\omega}{2}} \begin{bmatrix} 0 & -i\sqrt{1} & 0 & 0 & \cdots \\ i\sqrt{1} & 0 & -i\sqrt{2} & 0 & \cdots \\ 0 & i\sqrt{2} & 0 & -i\sqrt{3} & \cdots \\ 0 & 0 & i\sqrt{3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Osservazione. Si osserva

$$\begin{split} &\varphi_0(x) \propto e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}, \quad \text{pari} \\ &\varphi_1(x) \propto x e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}, \quad \text{dispari} \\ &\varphi_2(x) \propto \left(2\frac{m\omega}{\hbar}x^2 - 1\right) e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}, \quad \text{pari} \\ &\vdots \end{split}$$

L'oscillatore armonico aumenta in energia sempre dello stesso valore $\hbar\omega$ questo è contrapposto alla buca infinita dove l'energia aumenta come n^2 . Per il primo stato eccitato, esiste un punto in cui si ha probabilità nulla di trovare la particella (Figura 10). All'aumentare dell'energia si ha un aumento degli zeri della funzione d'onda.

Principio di corrispondenza. Per grandi energie, ci si aspetta il comportamento classico. L'oscillatore rimane intrinsecamente quantistico perché esistono punti in cui la densità di probabilità di trovare la particella è esattamente zero. Tuttavia, la sensibilità classica non è abbastanza per poter risolvere tali punti e si vede una media.

Figura 10: Stati stazionari dell'oscillatore armonico sovrapposti al potenziale.

La probabilità di trovare una particella nell'intorno di un certo punto è proporzionale al tempo che la particella passa nell'intorno di tale punto:

$$\Delta t \propto \frac{\Delta x}{v} \sim \frac{1}{v}$$

Per un moto armonico si ha

$$x = x_0 \cos(\omega t), \quad \dot{x} = -x_0 \omega \sin(\omega t) = -x_0 \omega \sqrt{1 - \left(\frac{x}{x_0}\right)^2}$$

Pertanto

$$\Delta t \sim \frac{1}{v} \propto \frac{1}{\sqrt{1 - \left(\frac{x}{x_0}\right)^2}}$$

Questa curva è la media delle oscillazioni della funzione d'onda. In questo senso si ritrova il principio di corrispondenza.

8.3 Valori medi e deviazioni standard della posizione e del momento

Per un operatore \hat{A} si ha

$$\langle (\Delta \hat{A})^2 \rangle = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$$

Quindi, i valor medi della posizione e del momento sono

$$\langle n|\hat{x}|n\rangle = 0, \quad \langle n|\hat{p}|n\rangle = 0$$

ricordando le rappresentazioni matriciali, cioè i valori di aspettazione per uno stato stazionario sono zero (in quanto la funzione è simmetrica). Si calcolano i valori quadratici medi. I quadrati sono

$$\begin{split} \hat{x}^2 &= \frac{\hbar}{2m\omega}(\hat{a}^\dagger + \hat{a})(\hat{a}^\dagger + \hat{a}) = \frac{\hbar}{2m\omega}\left[(\hat{a}^\dagger)^2 + \hat{a}^\dagger\hat{a} + \hat{a}\hat{a}^\dagger + \hat{a}^2\right] \\ \hat{p}^2 &= -\frac{m\hbar\omega}{2}(\hat{a}^\dagger - \hat{a})(\hat{a}^\dagger - \hat{a}) = -\frac{m\hbar\omega}{2}\left[(\hat{a}^\dagger)^2 - \hat{a}^\dagger\hat{a} - \hat{a}\hat{a}^\dagger + \hat{a}^2\right] \end{split}$$

Tramite il commutatore, si trasforma $\hat{a}\hat{a}^{\dagger}$ in $\hat{a}^{\dagger}\hat{a}=\hat{N}$. Infatti

$$\hat{a}\hat{a}^{\dagger} = \hat{a}^{\dagger}\hat{a} + 1 \implies \hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a} = 2\hat{a}^{\dagger}\hat{a} + 1$$

Si calcola

$$\langle n|\hat{x}^2|n\rangle = \langle n|(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger})|n\rangle = \langle n|(2\hat{a}^{\dagger}\hat{a} + 1)|n\rangle = 2n + 1$$

si nota che gli operatori \hat{a}^2 e $(\hat{a}^{\dagger})^2$ danno zero. Dunque

$$\langle (\Delta \hat{x})^2 \rangle = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 = \frac{\hbar}{m\omega} \left(n + \frac{1}{2} \right)$$

Similmente per \hat{p} si ha

$$\langle (\Delta \hat{p})^2 \rangle = m\hbar\omega \left(n + \frac{1}{2} \right)$$

Da cui

$$\langle (\Delta \hat{x})^2 \rangle \langle (\Delta \hat{p})^2 \rangle = \left(n + \frac{1}{2} \right)^2 \hbar^2 \implies \Delta \hat{x} \, \Delta \hat{p} = \left(n + \frac{1}{2} \right) \hbar \ge \frac{\hbar}{2}$$

ricordando che

$$\Delta \hat{x} = \sqrt{\langle (\Delta \hat{x})^2 \rangle}, \quad \Delta \hat{p} = \sqrt{\langle (\Delta \hat{p})^2 \rangle}$$

9 Oscillatore armonico in tre dimensioni

L'hamiltoniana dell'oscillatore armonico in tre dimensioni è

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m \left[\omega_1^2 x^2 + \omega_2^2 y^2 + \omega_3^2 z^2\right]$$

Nella rappresentazione delle coordinate si ha

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m \left[\omega_1^2 x^2 + \omega_2^2 y^2 + \omega_3^2 z^2 \right]$$

Si riconduce il problema a quello monodimensionale

$$\hat{H} = \hat{H}_x + \hat{H}_y + \hat{H}_z, \quad \hat{H}_i = -\frac{\hbar^2}{2m} \partial_{x_i}^2 + \frac{1}{2} m \omega_i^2 x_i^2$$

Si cercano gli stati stazionari risolvendo l'equazione associata

$$\hat{H}\varphi(x,y,z) = E\varphi(x,y,z)$$

Si ipotizzano soluzioni separabili

$$\varphi(x,y,z) = \varphi_{n_1}^{\omega_1}(x)\varphi_{n_2}^{\omega_2}(y)\varphi_{n_3}^{\omega_3}(z)$$

Nella rappresentazione $|n\rangle$, il generico stato è

$$|n_1 n_2 n_3\rangle \equiv |n_1\rangle_{\omega_1} \otimes |n_2\rangle_{\omega_2} \otimes |n_3\rangle_{\omega_3} = \frac{1}{\sqrt{n_1! n_2! n_3!}} (\hat{a}_1^{\dagger})^{n_1} (\hat{a}_2^{\dagger})^{n_2} (\hat{a}_3^{\dagger})^{n_3} |000\rangle$$

L'energia dell'oscillatore è la somma delle tre energie

$$E_{n_1 n_2 n_3} = \hbar \omega_1 \left(n_1 + \frac{1}{2} \right) + \hbar \omega_2 \left(n_2 + \frac{1}{2} \right) + \hbar \omega_3 \left(n_3 + \frac{1}{2} \right), \quad n_1, n_2, n_3 \in \mathbb{N}_0$$

Degenerazione dell'energia. Ad uno stesso valore di energia, si contano quanti stati corrispondono e pertanto il grado di degenerazione. Se ω_1 , ω_2 , ω_3 sono numeri incommensurabili, allora non esiste sequenza degli n_1 , n_2 , n_3 che possa dare alcuna combinazione di altri n_i . Dunque, si ha degenerazione per due casi: numeri ω_i commensurabili oppure si aumenta la simmetria. Si sceglie la simmetria massima

$$\omega_1 = \omega_2 = \omega_3 \equiv \omega$$

La situazione è sfero-simmetrica. L'hamiltoniana è

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{\vec{x}}^2$$

Il potenziale diventa

$$V(x,y,z) = \frac{1}{2}m\omega^2 r^2 = V(r)$$

In meccanica classica, il momento angolare ed il momento angolare proiettato lungo qualsiasi asse sono conservati. Lo sono anche in meccanica quantistica. L'energia diventa

$$E_{n_1 n_2 n_3} = \hbar \omega \left(n_1 + n_2 + n_3 + \frac{3}{2} \right)$$

Si studia la degenerazione. Per $n_1=n_2=n_3=0$ l'energia è $E=\frac{3}{2}\hbar\omega$. Per un solo indice pari all'unità si hanno tre combinazioni che corrispondono all'energia $E=\frac{5}{2}\hbar\omega$: il problema è tre volte degenere. Per i tre indici la cui somma è due si hanno sei combinazioni e quindi sei gradi di generazione. Il numero di gradi di generazione va come

$$n_{\text{deg}} = \frac{1}{2}(n+1)(n+2), \quad n = n_1 + n_2 + n_3$$

La formula generale in k dimensioni è

$$n_{\text{deg}} = \binom{n+k-1}{k-1} = \frac{(n+k-1)!}{n!(k-1)!}$$

cioè distribuire n oggetti identici in k contenitori distinti (le divisioni tra i contenitori sono k-1, dunque si possono disporre n+k-1 oggetti totali; essi possono essere disposti in (n+k-1)! modi, ma bisogna rimuovere gli eventuali scambi tra gli stessi n oggetti e le stesse k-1 divisioni).