课程内容

- 数制与码制(第一章)
- 逻辑代数基础(第二章)
- 组合逻辑电路(第四章)
- 半导体存储电路(第五章)
- 集成门电路(第三章)

CLK O D T

问题1: 低电平---0; 高电平---1

几伏为高电平? 几伏为低电平?

问题2:输出跟着输入变化,能变多快?

1MHz? 500MHz?1GHz?

问题3: 理想情况,一个门能驱动无数个 负载,实际上不能,为什么?

第三章 集成门电路

概述

半导体二极管门电路

TTL门电路(Transistor-Transistor Logic)

CMOS门电路

设V_{cc} = 5V

二极管导通时

A	В	Y
OV	OV	0.7
OV	3V	0-7
3V	OV	0.7
3V	3V	3.7

规定3V以上为1

0.7V以下为0

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

二极管或门

设 V_{CC} = 5V,加到A、B端 V_{IH} =3V, V_{IL} =0V 二极管导通时 V_{D} =0.7V

Α	В	Υ
0V	0V	0 V
0V	3V	2.3V
3V	0V	2.3V
3V	3V	2.3V

规定2.3V以上 ——>为1 ——>为1 0V以下为 0

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

二极管或门

设 V_{CC} = 5V,加到A、B端 V_{IH} =3V, V_{IL} =0V 二极管导通时 V_{D} =0.7V

Α	В	Υ
0V	0V	0 V
0V	3V	2.3V
3V	0V	2.3V
3V	3V	2.3V

规定2.3V以上 →为1 0V以下为 0

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

二极管门电路的缺点

缺点1. 电平有偏移

缺点2. 功耗大

A=B=L, Y=L; 消耗在电阻R上的功耗 =V_{CC}·I=V_{CC}(V_{CC}-0.7)/R=V_{CC}²/R

怎样降低门电路的功耗? 互补开关电路

Y=H时; 电路功耗=1. 32/R

TTL非门

TTL非门

理想开关 功耗为0

三极管开关 尽可能接近 理想开关

二极管的伏安特性

$$_+$$
 正偏 V_D \uparrow \to I_D \uparrow $,V_D$ $pprox$ $0.7V$ 时,导通,电阻小

$$_{-}$$
 反偏, $I_{D}\rightarrow 0$,截止,电阻大

BE结正偏, V_{BE} = 0.7V时,BE结导通, I_B , I_E 产生 V_{BC} = 0.7V – 5V = -4.3V,BC结反偏, $I_C \rightarrow 0$,截止?

三极管 ≠二极管 + 二极管

电场

放大:

BE正偏,

BC反偏

$$V_{BC} = -4.3V$$

放大倍数

$$I_{C} \in \beta I_{B}$$

$$I_E = I_B + I_C$$

门电路 饱和 截止 放**大**→ 逻辑错误, 不高不低

$$I_{\rm C} \approx I_{\rm CS} = \frac{V_{\rm CC} - V_{\rm CE(sat)}}{R_{\rm C}} \approx \frac{V_{\rm CC}}{R_{\rm C}}$$

$$I_{\rm BS} = \frac{I_{\rm CS}}{\beta} \approx \frac{V_{\rm CC}}{\beta R_{\rm C}}$$

 V_{BE} 和 R_{c} 取值合适,三极管进入饱和 V_{BE} 取值多大合适呢?

$$V_{CE} = V_{CE(sat)} = V_{CC} - I_{CS}R_{C}$$

三极管工作于开关状态的条件

截止条件

$$V_{\rm BE} < 0.7 {\rm V} \longrightarrow {\rm I_E} \rightarrow 0$$

可靠截止条件BE反偏

饱和条件

三极管工作于开关状态

 V_{BE} <0.7v,或 V_{BE} 反偏,三极管截止, $I_{E} \rightarrow 0$,截止时,BC结一定反偏吗?Ic 一定 $\rightarrow 0$ 吗?

BC反偏, 反向二极管的 $I_C \rightarrow 0$

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \rm V$$

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \text{V}$$

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \rm V$$

$$V_{\rm O} = V_{\rm CC} - V_{\rm R2} - 0.7 - 0.7 = 3.6 - V_{\rm R2} = 3.4 \text{V}$$

TTL非门电压特性

TTL非门电压特性

TTL非门电压特性

TTL非门电压特性

TTL非门电压传输特性曲线 page117

$$0\sim0.8V$$
 $V_{IL(max)}=0.8V$

V_{III}>1.4V时,T2,T5导通 实际要求V_{III}>2.0V

$$V_{IH(min)} = 2.0V$$

TTL非门电压传输特性曲线 page117

TTL 反相器的输入端噪声容限

输入高电平噪声容限 V_{NH}

$$V_{\text{NH}} = V_{\text{OH(min)}} - V_{\text{IH(min)}}$$
2.4V 2.0V

74系列的标准参数:

$$V_{\text{OH(min)}} = 2.4 \text{V}, \quad V_{\text{OL(max)}} = 0.4 \text{V}$$

 $V_{\text{IH(min)}} = 2.0 \text{V}, \quad V_{\text{IL(max)}} = 0.8 \text{V}$

输入低电平噪声容限 $V_{\rm NL}$

$$V_{NL} = V_{IL(max)} - V_{OL(max)}$$

$$0.8V \qquad 0.4V$$

TTL门输入负载特性

输入负载特性测试电路

输入负载特性曲线

$$v_{\rm i} = \frac{R_{\rm P}}{R_{\rm 1} + R_{\rm P}} (V_{\rm CC} - v_{\rm BE1})$$

 $v_{\rm I}/{
m V}$

 $R_{\rm I} < R_{\rm OFF}$ 时,相应输入端相当于输入低电平。对 TTL 系列, $R_{\rm OFF} \approx 700~\Omega$ 。

 $R_{\rm I} > R_{\rm ON}$ 时,相应输入端相当于输入高电平。对TTL系列, $R_{\rm ON} \approx 2.5~{\rm k}\Omega$ 。

TTL门输入负载特性

输入负载特性测试电路

输入负载特性曲线

厂商参数
$$v_{i} = \frac{R_{P}}{R_{1} + R_{P}} (V_{CC} - v_{BE1})$$

 $R_{\rm I} < R_{\rm OFF}$ 时,相应输入端相当于输入低电平。对 TTL 系列, $R_{\rm OFF} \approx 700~\Omega$ 。

 $R_{\rm I} > R_{\rm ON}$ 时,相应输入端相当于输入高电平。对TTL系列, $R_{\rm ON} \approx 2.5~{\rm k}\Omega$ 。

TTL逻辑门,已知, $R_{\text{OFF}} \approx 700 \Omega$, $R_{\text{ON}} \approx 2.5 \text{ k}\Omega$

TTL门,已知 $R_{OFF} \approx 700 \Omega$, $R_{ON} \approx 2.1 \text{ k}\Omega$,问输出?

5.1K $\Omega > R_{ON}$,

相应输入端相当于输入高电平 所以**Y1=L**

 $510\Omega < R_{\rm OFF}$

相应输入端相当于输入低电平 所以Y2=L

TTL逻辑门,已知, $R_{OFF} \approx 700 \Omega$, $R_{ON} \approx 2.5 \text{ k}\Omega$

[例] 欲用下列电路实现非运算,试改错。

 $(R_{\text{OFF}} \approx 700 \ \Omega, \ R_{\text{ON}} \approx 2.1 \ \text{k}\Omega)$ 510Ω 5.1k Ω

作业

- 3.3、与非门,或非门,异或门能用作非门吗?
- 3.8 (不做,下次做,因为有三态门,0C门) 3.43 (a,b)已知内部电路,判断是什么逻辑门本门.5非,4年,至4.5次和18年
- 3.1【(1,2,3,4,5,5,7,8)逻辑门输入端连接大电阻、小电阻、悬空,输出=? 3.1】电压表,测试逻辑门,电压值=?(提醒电压表内阻很高)
- 3.14