

WE CLAIM:

-1-

A transgenic plant which degrades lignocellulose when the transgenic plant is ground to
5 produce a plant material comprising:

10 (a) at least one DNA encoding a cellulase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the cellulase to an organelle of the transgenic plant; and

15 (b) at least one DNA encoding a ligninase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the ligninase to the organelle of the transgenic plant,

wherein the transgenic plant degrades the lignocellulose when ground to produce the plant material.

-2-

The transgenic plant of Claim 1 wherein the DNA encoding the cellulase is from an organism selected from the group consisting of *Trichoderma reesei*, *Acidothermus cellulolyticus*, *Streptococcus salivarius*,
5 *Actinomyces naeslundi*, and *Thermomonospora fusca*.

-62-

-3-

The transgenic plant of Claim 1 wherein the DNA encoding the cellulase is selected from the group consisting of an *e1* gene from *Acidothermus cellulolyticus*, a *cbh1* gene from *Trichoderma reesei*, a dextranase gene from *Streptococcus salivarius*, and a beta-glucosidase gene from *Actinomyces naeslundi*.
5

-4-

The transgenic plant of Claim 3 wherein the *e1* gene comprises the nucleotide sequence set forth in SEQ ID NO:4, the *cbh1* gene comprises the nucleotide sequence set forth in SEQ ID NO:10, the dextranase gene comprises the nucleotide sequence set forth in SEQ ID NO:8, and the beta-glucosidase gene comprises the nucleotide sequence set forth in SEQ ID NO:6.
5

-5-

The transgenic plant of Claim 1 wherein the DNA encoding the ligninase is from *Phanerochaete chrysosporium*.

-6-

The transgenic plant of Claim 5 wherein the ligninase is *ckg4* comprising the nucleotide sequence set forth in SEQ ID NO:11 or *ckg5* comprising the nucleotide sequence set forth in SEQ ID NO:13.

-7-

The transgenic plant of Claim 1 wherein the DNA encoding the cellulase and the DNA encoding the ligninase are each operably linked to a leaf-specific promoter.

-63-

-8-

The transgenic plant of Claim 7 wherein the leaf-specific promoter is a promoter for *rbcS*.

-9-

The transgenic plant of Claim 1 wherein the nucleotide sequence encoding the signal peptide encodes a signal peptide of *rbcS*.

-10-

The transgenic plant of Claim 8 or 9 wherein the *rbcS* comprises the nucleotide sequence set forth in SEQ ID NO:1.

-11-

The transgenic plant of Claim 1 selected from the group consisting of maize, wheat, barley, rye, hops, hemp, rice, potato, soybean, sorghum, sugarcane, clover, tobacco, alfalfa, *arabidopsis*, coniferous tree, and deciduous tree.

5

-12-

The transgenic plant of Claim 1 wherein the DNA encoding the cellulase and the DNA encoding the ligninase are stably integrated into nuclear or plastid DNA of the transgenic plant.

-13-

The transgenic plant of Claim 1 wherein transgenic plant further includes a DNA encoding a selectable marker operably linked to a constitutive promoter.

- 64 -

-14-

The transgenic plant of Claim 13 wherein the DNA encoding the selectable marker provides the transgenic plant with resistance to an antibiotic, an herbicide, or to environmental stress.

-15-

The transgenic plant of Claim 14 wherein the DNA encoding resistance to the herbicide is a DNA encoding phosphinothricin acetyl transferase which confers resistance to the herbicide phosphinothricin.

- 16 -

The transgenic plant of Claim 1 wherein the organelle of the transgenic plant is selected from the group consisting of nucleus, microbody, endoplasmic reticulum, endosome, vacuole, mitochondria, chloroplast, or plastid.

5

- 17 -

The transgenic plant of Claim 16 wherein the organelle of the transgenic plant is the chloroplast.

-18-

A transgenic plant which degrades lignins when the transgenic plant is ground to produce a plant material comprising:

at least one DNA encoding a ligninase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the ligninase to an organelle of the transgenic plant wherein the transgenic plant degrades the lignins when ground to produce the plant material.

5

-65-

-19-

The transgenic plant of Claim 18 wherein the DNA encoding the ligninase is from *Phanerochaete chrysosporium*.

-20-

The transgenic plant of Claim 19 wherein the ligninase is *ckg4* comprising the nucleotide sequence set forth in SEQ ID NO:11 or *ckg5* comprising the nucleotide sequence set forth in SEQ ID NO:13.

-21-

The transgenic plant of Claim 18 wherein the DNA encoding the ligninase is operably linked to a leaf-specific promoter.

-22-

The transgenic plant of Claim 21 wherein the leaf-specific promoter is a promoter for *rbcS*.

-23-

The transgenic plant of Claim 18 wherein the nucleotide sequence encoding the signal peptide encodes a signal peptide of *rbcS*.

-24-

The transgenic plant of Claim 22 or 23 wherein the *rbcS* comprises the nucleotide sequence set forth in SEQ ID NO:1.

-66-

-25-

5

The transgenic plant of Claim 18 selected from the group consisting of maize, wheat, barley, rye, hops, hemp, rice, potato, soybean, sorghum, sugarcane, clover, tobacco, alfalfa, arabidopsis, coniferous tree, and deciduous tree.

-26-

The transgenic plant of Claim 18 wherein the DNA is stably integrated into nuclear or plastid DNA of the transgenic plant.

-27-

The transgenic plant of Claim 18 wherein the transgenic plant further includes a DNA encoding a selectable marker operably linked to a constitutive promoter.

-28-

The transgenic plant of Claim 27 wherein the DNA encoding the selectable marker provides the transgenic plant with resistance to an antibiotic, an herbicide, or to environmental stress.

-29-

The transgenic plant of Claim 28 wherein the DNA encoding resistance to the herbicide is a DNA encoding phosphinothricin acetyl transferase which confers resistance to the herbicide phosphinothricin.

-67-

-30-

The transgenic plant of Claim 18 wherein the organelle of the plant is selected from the group consisting of nucleus, microbody, endoplasmic reticulum, endosome, vacuole, mitochondria, chloroplast, or
5 plastid.

-31-

The transgenic plant of Claim 18 wherein the organelle of the plant is the chloroplast.

-32-

A transgenic plant which degrades cellulose when the transgenic plant is ground to produce a plant material comprising:

5 at least one DNA encoding a cellulase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the cellulase to an organelle of the transgenic plant wherein the transgenic plant degrades the cellulose when ground to produce the plant material.

-33-

The transgenic plant of Claim 32 wherein the DNA encoding the cellulase is from an organism selected from the group consisting of *Trichoderma reesei*, *Acidothermus cellulolyticus*, *Streptococcus salivarius*,
5 *Actinomyces naeslundi*, and *Thermomonospora fusca*.

- 68 -

- 34 -

The transgenic plant of Claim 32 wherein the DNA encoding the cellulase is selected from the group consisting of an *el* gene from *Acidothermus cellulolyticus*, a *cbh1* gene from *Trichoderma reesei*, a dextranase gene from *Streptococcus salivarius*, and a beta-glucosidase gene from *Actinomyces naeslundii*.
5

- 35 -

The transgenic plant of Claim 34 wherein the *el* gene comprises the nucleotide sequence set forth in SEQ ID NO:4, the *cbh1* gene comprises the nucleotide sequence set forth in SEQ ID NO:10, the dextranase gene comprises the nucleotide sequence set forth in SEQ ID NO:8, and the beta-glucosidase gene comprises the nucleotide sequence set forth in SEQ ID NO:6.
5

- 36 -

The transgenic plant of Claim 32 wherein DNA encoding the cellulase is operably linked to a leaf-specific promoter.

- 37 -

The transgenic plant of Claim 36 wherein the leaf-specific promoter is a promoter for *rbcS*.

- 38 -

The transgenic plant of Claim 32 wherein the nucleotide sequence encoding the signal peptide encodes a signal peptide of *rbcS*.

- 39 -

The transgenic plant of Claim 37 or 38 wherein the *rbcS* comprises the nucleotide sequence set forth in SEQ ID NO:1.

5 -69-

-40-

The transgenic plant of Claim 32 selected from the group consisting of maize, wheat, barley, rye, hops, hemp, rice, potato, soybean, sorghum, sugarcane, clover, tobacco, alfalfa, arabidopsis, coniferous tree, and deciduous tree.

-41-

The transgenic plant of Claim 32 wherein the DNA is stably integrated into nuclear or plastid DNA of the transgenic plant.

-42-

The transgenic plant of Claim 32 wherein the transgenic plant further includes a DNA encoding a selectable marker operably linked to a constitutive promoter.

-43-

The transgenic plant of Claim 42 wherein the DNA encoding the selectable marker provides the transgenic plant with resistance to an antibiotic, an herbicide, or to environmental stress.

-44-

The transgenic plant of Claim 43 wherein the DNA encoding resistance to the herbicide is a DNA encoding phosphinothricin acetyl transferase which confers resistance to the herbicide phosphinothricin.

532515
-70-

-45-

The transgenic plant of Claim 32 wherein the organelle of the transgenic plant is selected from the group consisting of nucleus, microbody, endoplasmic reticulum, endosome, vacuole, mitochondria, chloroplast, or plastid.

5 -46-

The transgenic plant of Claim 45 wherein the organelle of the transgenic plant is the chloroplast.

-47-

A method for producing a transgenic plant which degrades lignocellulose when the transgenic plant is ground to produce a plant material comprising:

5 (a) providing a first transgenic plant which includes a DNA encoding a cellulase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the cellulase to an organelle of the transgenic plant and a second transgenic plant which includes a DNA encoding a ligninase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the ligninase to the organelle of the transgenic plant; and

15 (b) mating by sexual fertilization the first and the second transgenic plants to produce a third transgenic plant which includes the first DNA encoding the cellulase and the second DNA encoding the ligninase,

20 wherein the transgenic plant degrades the lignocellulose when ground to produce the plant material.

The method of Claim 47 wherein the DNA encoding the cellulase is from an organism selected from the group consisting of *Trichoderma reesei*, *Acidothermus cellulolyticus*, *Streptococcus salivarius*, *Actinomyces naeslundi*, and *Thermomonospora fusca*.

The method of Claim 47 wherein the DNA encoding the cellulase is selected from the group consisting of an *e1* gene from *Acidothermus cellulolyticus*, a *cbh1* gene from *Trichoderma reesei*, a dextranase gene from *Streptococcus salivarius*, and a beta-glucosidase gene from *Actinomyces naeslundi*.

The method of Claim 49 wherein the *e1* gene comprises the nucleotide sequence set forth in SEQ ID NO:4, the *cbh1* gene comprises the nucleotide sequence set forth in SEQ ID NO:10, the dextranase gene comprises the nucleotide sequence set forth in SEQ ID NO:8, and the beta-glucosidase gene comprises the nucleotide sequence set forth in SEQ ID NO:6.

The method of Claim 47 wherein the DNA encoding the ligninase is from *Phanerochaete chrysosporium*.

The method of Claim 51 wherein the ligninase is *ckg4* comprising the nucleotide sequence set forth in SEQ ID NO:11 or *ckg5* comprising the nucleotide sequence set forth in SEQ ID NO:13.

-72-

-53-

The method of Claim 47 wherein the DNA encoding the cellulase and the DNA encoding the ligninase are each operably linked to a leaf-specific promoter such as a promoter for *rbcS*.

-54-

The method of Claim 53 wherein the leaf-specific promoter is a promoter for *rbcS*.

-55-

The method of Claim 47 wherein the nucleotide sequence encoding the signal peptide encodes a signal peptide of *rbcS*.

-56-

The method of Claim 54 or 55 wherein the *rbcS* comprises the nucleotide sequence set forth in SEQ ID NO:1.

-57-

The method of Claim 47 selected from the group consisting of maize, wheat, barley, rye, hops, hemp, rice, potato, soybean, sorghum, sugarcane, clover, tobacco, alfalfa, *arabidopsis*, coniferous tree, and deciduous tree.

-58-

The method of Claim 47 wherein the DNA encoding the cellulase and the DNA encoding the ligninase are stably integrated into nuclear or plastid DNA of the transgenic plant.

-73-

-59-

The method of Claim 47 wherein the first, second, or both transgenic plants further includes a DNA encoding a selectable marker operably linked to a constitutive promoter.

-60-

The method of Claim 59 wherein the DNA encoding the selectable marker provides the transgenic plant with resistance to an antibiotic, an herbicide, or to environmental stress.

-61-

The method of Claim 60 wherein the DNA encoding resistance to the herbicide is a DNA encoding phosphinothricin acetyl transferase which confers resistance to the herbicide phosphinothricin.

-62-

The method of Claim 47 wherein the organelle of the transgenic plant is selected from the group consisting of nucleus, microbody, endoplasmic reticulum, endosome, vacuole, mitochondria, chloroplast, or plastid.

-63-

The method of Claim 62 wherein the organelle of the transgenic plant is the chloroplast.

The method of Claim 47 wherein progeny of the third transgenic plant are mated by sexual fertilization to a transgenic plant selected from the group consisting of the first, second, and third transgenic plants to produce a transgenic plant comprising multiples of genes encoding cellulases and ligninases.

the *Journal of the Royal Statistical Society* (1907), and the *Journal of the Royal Society of Medicine* (1910).

A method for converting lignocellulose in a plant material to fermentable sugars comprising:

(a) providing a transgenic plant which includes at least one DNA encoding a cellulase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the cellulase to an organelle of the transgenic plant and a at least one DNA encoding a ligninase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the ligninase to the organelle of the transgenic plant;

(b) growing the transgenic plant for a time sufficient for the transgenic plant to accumulate a sufficient amount of the cellulase and the ligninase in the organelle of the transgenic plant;

(c) harvesting the transgenic plant which has accumulated the cellulase and ligninase in the organelle of the transgenic plant;

(d) grinding the transgenic plant for a time sufficient to produce the plant material wherein the cellulase and ligninase produced by the transgenic plant are released from the organelle of the transgenic plant;

(e) incubating the plant material for a time sufficient for the cellulase and ligninase in the plant material to produce the fermentable sugars from the lignocellulose in the plant material; and

(f) extracting the fermentable sugars produced from the lignocellulose by the cellulase and the ligninase from the plant material.

-76-

-66-

The method of Claim 65 wherein the DNA encoding the cellulase is from an organism selected from the group consisting of *Trichoderma reesei*, *Acidothermus cellulolyticus*, *Streptococcus salivarius*, *Actinomyces naeslundi*, and *Thermomonospora fusca*.

-67-

The method of Claim 65 wherein the DNA encoding the cellulase is selected from the group consisting of an *el* gene from *Acidothermus cellulolyticus*, a *cbh1* gene from *Trichoderma reesei*, a dextranase gene from *Streptococcus salivarius*, and a beta-glucosidase gene from *Actinomyces naeslundi*.

-68-

The method of Claim 67 wherein the *el* gene comprises the nucleotide sequence set forth in SEQ ID NO:4, the *cbh1* gene comprises the nucleotide sequence set forth in SEQ ID NO:10, the dextranase gene comprises the nucleotide sequence set forth in SEQ ID NO:8, and the beta-glucosidase gene comprises the nucleotide sequence set forth in SEQ ID NO:6.

-69-

The method of Claim 65 wherein the DNA encoding the ligninase is from *Phanerochaete chrysosporium*.

-70-

The method of Claim 69 wherein the ligninase is *ckg4* comprising the nucleotide sequence set forth in SEQ ID NO:11 or *ckg5* comprising the nucleotide sequence set forth in SEQ ID NO:13.

-77-

-71-

The method of Claim 65 wherein DNA encoding the cellulase and the DNA encoding the ligninase are each operably linked to a leaf-specific promoter.

-72-

The transgenic plant of Claim 71 wherein the leaf-specific promoter is a promoter for *rbcS*.

-73-

The method of Claim 65 wherein the nucleotide sequence encoding the signal peptide encodes a signal peptide of *rbcS*.

-74-

The method of Claim 72 or 73 wherein the *rbcS* comprises the nucleotide sequence set forth in SEQ ID NO:1.

-75-

The method of Claim 65 selected from the group consisting of maize, wheat, barley, rye, hops, hemp, rice, potato, soybean, sorghum, sugarcane, clover, tobacco, alfalfa, *arabidopsis*, coniferous tree, and deciduous tree.

5

-76-

The method of Claim 65 wherein the first and second DNAs are stably integrated into nuclear or plastid DNA of the transgenic plant.

-78-

-77-

The method of Claim 65 wherein transgenic plant further includes a DNA encoding a selectable marker operably linked to a constitutive promoter.

-78-

The method of Claim 77 wherein the DNA encoding the selectable marker provides the transgenic plant with resistance to an antibiotic, an herbicide, or to environmental stress.

-79-

The method of Claim 78 wherein the DNA encoding resistance to the herbicide is a DNA encoding phosphinothricin acetyl transferase which confers resistance to the herbicide phosphinothricin.

-80-

The method of Claim 65 wherein the organelle of the transgenic plant is selected from the group consisting of nucleus, microbody, endoplasmic reticulum, endosome, vacuole, mitochondria, chloroplast, or plastid.

5

-81-

The method of Claim 80 wherein the organelle of the transgenic plant is the chloroplast.

-82-

The method of Claim 65 wherein the plant material further includes a plant material made from a non-transgenic plant.

A method for converting lignocellulose in a plant material to fermentable sugars comprising:

5 (a) providing a transgenic plant which includes at least one DNA encoding a cellulase which is operably linked to a nucleotide sequence encoding a signal peptide wherein the signal peptide directs the cellulase to an organelle of the transgenic plant;

10 (b) growing the transgenic plant for a time sufficient for the transgenic plant to accumulate a sufficient amount of the cellulase in the organelle of the transgenic plant;

15 (c) harvesting the transgenic plant which has accumulated the cellulase in the organelle of the transgenic plant;

(d) grinding the transgenic plant for a time sufficient to produce a plant material wherein the cellulase is released from the organelle in the transgenic plant;

20 (e) mixing the plant material with a fungus that produces a ligninase;

25 (f) incubating the transgenic plant material with the fungus for a time sufficient for the cellulase released from the transgenic plant and the ligninase provided by the fungus to degrade the lignocellulose in the plant material to produce the fermentable sugars; and

(g) extracting the fermentable sugars produced from the lignocellulose in the plant material.

-80-

-84-

The method of Claim 83 wherein the DNA encoding the cellulase is from an organism selected from the group consisting of *Trichoderma reesei*, *Acidothermus cellulolyticus*, *Streptococcus salivarius*, *Actinomyces naeslundi*, and *Thermomonospora fusca*.

5

-85-

The method of Claim 83 wherein the DNA encoding the cellulase is selected from the group consisting of an *e1* gene from *Acidothermus cellulolyticus*, a *cbh1* gene from *Trichoderma reesei*, a dextranase gene from *Streptococcus salivarius*, and a beta-glucosidase gene from *Actinomyces naeslundi*.

5

-86-

The method of Claim 85 wherein the *e1* gene comprises the nucleotide sequence set forth in SEQ ID NO:4, the *cbh1* gene comprises the nucleotide sequence set forth in SEQ ID NO:10, the dextranase gene comprises the nucleotide sequence set forth in SEQ ID NO:8, and the beta-glucosidase gene comprises the nucleotide sequence set forth in SEQ ID NO:6.

5

-87-

The method of Claim 83 wherein the DNA encoding the cellulase is operably linked to a leaf-specific promoter.

-88-

The method of Claim 87 wherein the leaf-specific promoter is a promoter for *rbcS*.

-81-

-89-

The method of Claim 83 wherein the nucleotide sequence encoding the signal peptide encodes a signal peptide of *rbcS*.

-90-

The method of Claim 88 or 89 wherein the *rbcS* comprises the nucleotide sequence set forth in SEQ ID NO:1.

-91-

The method of Claim 83 selected from the group consisting of maize, wheat, barley, rye, hops, hemp, rice, potato, soybean, sorghum, sugarcane, clover, tobacco, alfalfa, *arabidopsis*, coniferous tree, and deciduous tree.

5

-92-

The method of Claim 83 wherein the DNA is stably integrated into nuclear or plastid DNA of the transgenic plant.

-93-

The method of Claim 83 wherein the transgenic plant further includes a DNA encoding a selectable marker operably linked to a constitutive promoter.

-94-

The method of Claim 93 wherein the DNA encoding the selectable marker provides the transgenic plant with resistance to an antibiotic, an herbicide, or to environmental stress.

-82-

-95-

The method of Claim 94 wherein the DNA encoding resistance to the herbicide is a DNA encoding phosphinothrinicin acetyl transferase which confers resistance to the herbicide phosphinothrinicin.

-96-

The method of Claim 83 wherein the organelle of the transgenic plant is selected from the group consisting of nucleus, microbody, endoplasmic reticulum, endosome, vacuole, mitochondria, chloroplast, or plastid.

5

-97-

The method of Claim 96 wherein the organelle of the transgenic plant is the chloroplast.

-98-

The method of Claim 83 wherein the fungus is *Phanerochaete chrysosporium*.

-99-

The method of Claim 83 wherein the plant material further includes a plant material made from a non-transgenic plant.

-100-

The transgenic plant of Claim 1 wherein the lignocellulose is degrade to fermentable sugars.

-101-

The transgenic plant of Claim 32 wherein the cellulose is degraded to fermentable sugars.

-83-

-102-

The method of Claim 47 wherein the lignocellulose is degraded to fermentable sugars.

-103-

The method of Claim 65 wherein the fermentable sugars are fermented to ethanol.

-104-

The method of Claim 83 wherein the fermentable sugars are fermented to ethanol.

1000
999
998
997
996
995
994
993
992
991
990
989
988
987
986
985
984
983
982
981
980
979
978
977
976
975
974
973
972
971
970
969
968
967
966
965
964
963
962
961
960
959
958
957
956
955
954
953
952
951
950
949
948
947
946
945
944
943
942
941
940
939
938
937
936
935
934
933
932
931
930
929
928
927
926
925
924
923
922
921
920
919
918
917
916
915
914
913
912
911
910
909
908
907
906
905
904
903
902
901
900
899
898
897
896
895
894
893
892
891
890
889
888
887
886
885
884
883
882
881
880
879
878
877
876
875
874
873
872
871
870
869
868
867
866
865
864
863
862
861
860
859
858
857
856
855
854
853
852
851
850
849
848
847
846
845
844
843
842
841
840
839
838
837
836
835
834
833
832
831
830
829
828
827
826
825
824
823
822
821
820
819
818
817
816
815
814
813
812
811
810
809
808
807
806
805
804
803
802
801
800
799
798
797
796
795
794
793
792
791
790
789
788
787
786
785
784
783
782
781
780
779
778
777
776
775
774
773
772
771
770
769
768
767
766
765
764
763
762
761
760
759
758
757
756
755
754
753
752
751
750
749
748
747
746
745
744
743
742
741
740
739
738
737
736
735
734
733
732
731
730
729
728
727
726
725
724
723
722
721
720
719
718
717
716
715
714
713
712
711
710
709
708
707
706
705
704
703
702
701
700
699
698
697
696
695
694
693
692
691
690
689
688
687
686
685
684
683
682
681
680
679
678
677
676
675
674
673
672
671
670
669
668
667
666
665
664
663
662
661
660
659
658
657
656
655
654
653
652
651
650
649
648
647
646
645
644
643
642
641
640
639
638
637
636
635
634
633
632
631
630
629
628
627
626
625
624
623
622
621
620
619
618
617
616
615
614
613
612
611
610
609
608
607
606
605
604
603
602
601
600
599
598
597
596
595
594
593
592
591
590
589
588
587
586
585
584
583
582
581
580
579
578
577
576
575
574
573
572
571
570
569
568
567
566
565
564
563
562
561
560
559
558
557
556
555
554
553
552
551
550
549
548
547
546
545
544
543
542
541
540
539
538
537
536
535
534
533
532
531
530
529
528
527
526
525
524
523
522
521
520
519
518
517
516
515
514
513
512
511
510
509
508
507
506
505
504
503
502
501
500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482
481
480
479
478
477
476
475
474
473
472
471
470
469
468
467
466
465
464
463
462
461
460
459
458
457
456
455
454
453
452
451
450
449
448
447
446
445
444
443
442
441
440
439
438
437
436
435
434
433
432
431
430
429
428
427
426
425
424
423
422
421
420
419
418
417
416
415
414
413
412
411
410
409
408
407
406
405
404
403
402
401
400
399
398
397
396
395
394
393
392
391
390
389
388
387
386
385
384
383
382
381
380
379
378
377
376
375
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
350
349
348
347
346
345
344
343
342
341
340
339
338
337
336
335
334
333
332
331
330
329
328
327
326
325
324
323
322
321
320
319
318
317
316
315
314
313
312
311
310
309
308
307
306
305
304
303
302
301
300
299
298
297
296
295
294
293
292
291
290
289
288
287
286
285
284
283
282
281
280
279
278
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
256
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1