SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Jataí Bacharelado em Ciência da Computação

Teoria da Computação Esdras Lins Bispo Jr.

14 de junho de 2016

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- $\bullet\,$ A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.E$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- -P é a pontuação obtida na prova, e
- E é a pontuação total dos exercícios.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (2) Modelos de Computação e (3) Problemas Decidíveis.

Nome:	
Assinatura:	

Segundo Teste

1. (5,0 pt) Seja $A = \{\langle M \rangle \mid \text{em que } M \text{ \'e uma expressão regular que não gera cadeias contendo um número par de 0s}\}$. Mostre que A é decidível.

R - Primeiro será criado um AFD S de forma que L(S) seja formada por todas as cadeias que contém um número par de 0s. Admita que $\Gamma = \Sigma \setminus \{0\}$ e que zero é um número par. É possível construir S, pois $L(S) = (\Gamma^*0\Gamma^*0\Gamma^*)^*$ é regular (Definição 1.16).

Ora, é necessário que $L(M) \cap L(S) = \emptyset$, pois M não gera cadeias contendo um par de 0s. Sabe-se também que $L(M) \cap L(S)$ é regular, pois L(M) e L(S) são regulares (Teorema 1.54 e Definição 1.16) e a classe de linguagens regulares é fechada sob intersecção. Logo, é possível construir o AFD T de forma que $L(T) = L(M) \cap L(S)$ (Definição 1.16).

Diante disto, será construído a seguir um decisor M_A para A:

 M_A = "Sobre a entrada $\langle M \rangle$, em que M é uma expressão regular, faça:

- (a) Construa o AFD T conforme descrito anteriormente;
- (b) Construa a MT U que decide V_{AFD} (Teorema 4.4);
- (c) Rode U sobre $\langle T \rangle$;
 - i. Se *U* aceita, aceite;
 - ii. Caso contrário, rejeite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6)

- 2. (5,0 pt) Seja $A = \{\langle M \rangle \mid M \text{ \'e um AFN e } L(M) = 01 \cup 10\}$. Mostre que A \'e decidível.
 - R Primeiro será criado um AFD S de forma que $L(S)=01\cup 10$. É possível construir S, pois L(S) é regular (Definição 1.16). Ora, é necessário que L(M)=L(S) para que $\langle M\rangle\in A$. Diante disto, será construído a seguir um decisor M_A para A:

 M_A = "Sobre a entrada $\langle M \rangle$, em que M é um AFN, faça:

- (a) Construa o AFD S conforme descrito anteriormente;
- (b) Converta o AFN M no AFD N (Teorema 1.39);
- (c) Construa a MT T que decide EQ_{AFD} (Teorema 4.5);
- (d) Rode T sobre $\langle S, N \rangle$;
 - i. Se T aceita, aceite;
 - ii. Caso contrário, rejeite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6)

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.