Лабораторная работа № 3.

Симплекс-метод линейного программирования

Цель: решить предложенную задачу при помощи симплекс метода.

Постановка задачи

Для изготовления п видов изделий И1, И2, ..., Ип необходимы ресурсы m видов: трудовые, материальные, финансовые и др. Известно необходимое количество отдельного i-то ресурса для изготовления каждого j-то изделия. Назовем эту величину нормой расхода. Пусть определено количество каждого вида ресурса, которым предприятие располагает в данный момент. Известна прибыль Пј, получаемая предприятием от изготовления каждого j-то изделия. Требуется определить, какие изделия и в каком количестве должно изготавливать предприятие, чтобы обеспечить получение максимальной прибыли. Необходимая исходная информация представлена в таблице 3.1.

Таблица 3.1

I domination					
Используемые	Изгота	Наличие			
ресурсы	И1	И2	И3	И4	ресурсов
Трудовые	3	5	2	7	15
Материальные	4	3	3	5	9
Финансовые	5	6	4	8	30
Прибыль Пј	40	50	30	20	

Решение

1) Составим математическую модель задачи:

Обозначим через X_1 , X_2 , X_3 , X_4 количество единиц соответствующих изделий: И1, И2, И3, И4. Тогда экономико-математическая модель задачи будет следующая:

$$F = 40x_1 + 50x_2 + 30x_3 + 20x_4 \rightarrow max$$

Система ограничений:

$$\begin{cases} 3x_1 + 5x_2 + 2x_3 + 7x_4 \le 15 \\ 4x_1 + 3x_2 + 3x_3 + 5x_4 \le 9 \\ 5x_1 + 6x_2 + 4x_3 + 8x_4 \le 30 \\ x_j \ge 0, (j = 1, 2, 3, 4) \end{cases}$$

Вместо системы неравенств сделаем систему уравнений, добавив Х5, Х6, Х7:

$$\begin{cases} 3x_1 + 5x_2 + 2x_3 + 7x_4 + x_5 = 15 \\ 4x_1 + 3x_2 + 3x_3 + 5x_4 + x_6 = 9 \\ 5x_1 + 6x_2 + 4x_3 + 8x_4 + x_7 = 30 \\ x_j \ge 0, (j = 1, 2, ..., 7) \end{cases}$$

Желтым цветом будет выделен разрешающий столбец и строка

Базисные переменные	Свобод. члены	X 5	X 6	X 7	X 1	X 2	X 3	X 4	Δ
X 5	15	1	0	0	3	5	2	7	15/5=3
X 6	9	0	1	0	4	3	3	5	9/3=3
X 7	30	0	0	1	5	6	4	8	30/6=5
F	0	0	0	0	-40	-50	-30	-20	

Заменяем X_5 на X_2 в строке, делим на разрешающий элемент, а в столбце под X_2 кроме разрешающего элемента пишем нули.

Воспользуемся правилом прямоугольника для пересчета симплекс-таблицы.

Формула правила прямоугольника:

 $H \ni = C \ni - (A*B)/P \ni$, $H \ni —$ новый элемент, $C \ni —$ старый элемент, A и B — числа диагонали, $P \ni —$ разрешающий элемент.

Базисные переменные	Свобод. члены	X 5	X 6	X 7	X 1	X 2	X 3	X 4	Δ
X 2	3	1/5	0	0	3/5	1	2/5	7/5	3*5/2=7,5
X 6	0	-3/5	1	0	11/5	0	9/5	4/5	0*5/9=0
X 7	12	-6/5	0	1	7/5	0	8/5	-2/5	12*5/8=7,5
F	150	10	0	0	-10	0	-10	50	

Так как в нижней строке остались отрицательные числа, то это неоптимальное решение, пересчитаем таблицу еще раз.

Выполняем аналогичные действия.

Базисные переменные	Свобод. члены	X 5	X 6	X 7	X 1	X 2	X 3	X 4
X 2	3	1/3	-2/9	0	1/9	1	0	11/9
Х3	0	-1/3	5/9	0	11/9	0	1	4/9
X 7	12	-2/3	-8/9	1	-5/9	0	0	-10/9
F	150	20/3	50/9	0	20/9	0	0	490/9

В результате пересчета симплекс-таблицы мы получили оптимальное решение.

$$И1 = 0$$
, $I2 = 3$, $I3 = 0$, $I4 = 0 => Прибыль = 150$

Ответ: 150

Вывод: В ходе лабораторной работы мы познакомились с алгоритмом решения линейных задач программирования при помощи симплекс метода, а также решили заданную задачу с его помощью.