

Dominik "Domino" Domański jest naukowcem, który prowadzi badania z zakresu fizyki kwantowej. Przedmiotem jego badań jest pewien bardzo interesujący efekt, który objawia się podczas interakcji pomiędzy kwantowymi obiektami.

W jego kolejnym eksperymencie ustawił on na stole \mathbf{n} nieskończenie cienkich kresek, każdą pionowo, w jednej linii. Kreski mają różne wysokości i są w różnych odległościach od siebie. (Kreski te są nazywane przez Dominika "kostkami domina"). Patrząc od przodu, wyglądają one jak \mathbf{n} odcinków stojących pionowo na osi X układu współrzędnych.

Kostki domina można popychać. Kostka domina o wysokości ${\bf h}$ powali wszystkie kostki odległe od niej o co najwyżej ${\bf h}$ na osi X. Dokładniej, jeżeli kostka stoi na pozycji ${\bf x}$ i popchniemy ją w prawo, powali ona kostki na pozycjach ${\bf x}+1, {\bf x}+2, \ldots, {\bf x}+{\bf h}$. Kostki możemy też popychać w lewo - taka kostka powali wtedy kostki na pozycjach ${\bf x}-1, {\bf x}-2, \ldots, {\bf x}-{\bf h}$.

Bardzo interesującym fenomenem zaobserwowanym przez Dominika jest coś, co nazwał on "efektem Domina" – otóż popchnięcie jednej kostki domina może przewrócić inne kostki, które z kolei mogą spowodować przewrócenie innych kostek. Dominik zastanawia się, jak najlepiej wykorzystać efekt Domina, i przewrócić wszystkie kostki z układu przy użyciu minimalnej liczby popchnięć.

Wejście

W pierwszej linii wejścia znajduje się liczba naturalna **t**, oznaczająca liczbę przypadków testowych. Potem następują przypadki testowe.

W pierwszej linii przypadku testowego znajduje się liczba naturalna \mathbf{n} $(1 \leq \mathbf{n} \leq 10000)$ – liczba kostek domina w układzie. W następnej linii znajduje się \mathbf{n} liczb naturalnych \mathbf{h}_i – wysokości kolejnych kostek domina, podane od lewej do prawej. W kolejnej linii znajduje się \mathbf{n} -1 liczb naturalnych \mathbf{d}_i – odległości pomiędzy kolejnymi kostkami domina. $(1 \leq \mathbf{h}_i, \mathbf{d}_i \leq 10^6)$.

Wyjście

Dla każdego przypadku testowego należy znaleźć sekwencję popchnięć, która przewraca wszystkie kostki domina w minimalnej liczbie ruchów. Najpierw należy podać liczbę naturalną \mathbf{k} $(1 \leqslant \mathbf{k} \leqslant \mathbf{n})$ – liczbę ruchów. Potem należy wypisać kolejne ruchy. Opis jednego ruchu składa się z jednej liczby naturalnej $\mathbf{x}_i (1 \leqslant \mathbf{x}_i \leqslant \mathbf{n})$ oraz litery L albo P. Oznacza on, że w **i**–tym ruchu popychamy domino numer \mathbf{x}_i (licząc od lewej) odpowiednio w lewo lub w prawo.

Przykład

Wejście	Wyjście
1	2
6	2 P
15111	1 L
2 1 2 1 1	

Objaśnienie przykładu

Popchnięcie domina numer 2 (o wysokości 5) w prawo przewróci wszystkie kostki domina na prawo od niego – jedyne co wtedy pozostanie, to strącić pierwszą kostkę.

zadanie: Efekt Domina 1/1