1. a)
$$R_{t}(k) = \frac{90}{100} * \frac{105}{90} - 1$$

 $R_{t}(k) = 20.05$
b) $R_{t+1} = \frac{90}{100} - 1 = 0.9 - 1 = -0.1$

b)
$$R_{44} = \frac{90}{100} - 1 = 0.9 - 1 = -0.1$$

 $R_{4+2} = \frac{10s}{90} - 1 = .167$

c) The multiparied simple return is equal to the product at the single period simple returns, added to one.

d)
$$105 = 100 * e^{(a+e)}$$
 e) $90 = 100 * e^{(a+e)}$ $105 = 90 * e^{a}$
 $1.05 = e^{a}$ $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 $1.67 = e^{a}$
 1.67

e) The multiperiod simple return is equal to the sum of the single period continued compounding returns.