Getting Started with pandas

pandas will be the primary library of interest throughout much of the rest of the book. It contains high-level data structures and manipulation tools designed to make data analysis fast and easy in Python. pandas is built on top of NumPy and makes it easy to use in NumPy-centric applications.

As a bit of background, I started building pandas in early 2008 during my tenure at AQR, a quantitative investment management firm. At the time, I had a distinct set of requirements that were not well-addressed by any single tool at my disposal:

- Data structures with labeled axes supporting automatic or explicit data alignment.
 This prevents common errors resulting from misaligned data and working with differently-indexed data coming from different sources.
- Integrated time series functionality.
- The same data structures handle both time series data and non-time series data.
- Arithmetic operations and reductions (like summing across an axis) would pass on the metadata (axis labels).
- Flexible handling of missing data.
- Merge and other relational operations found in popular database databases (SQL-based, for example).

I wanted to be able to do all of these things in one place, preferably in a language well-suited to general purpose software development. Python was a good candidate language for this, but at that time there was not an integrated set of data structures and tools providing this functionality.

Over the last four years, pandas has matured into a quite large library capable of solving a much broader set of data handling problems than I ever anticipated, but it has expanded in its scope without compromising the simplicity and ease-of-use that I desired from the very beginning. I hope that after reading this book, you will find it to be just as much of an indispensable tool as I do.

Throughout the rest of the book, I use the following import conventions for pandas:

```
In [1]: from pandas import Series, DataFrame
In [2]: import pandas as pd
```

Thus, whenever you see pd. in code, it's referring to pandas. Series and DataFrame are used so much that I find it easier to import them into the local namespace.

Introduction to pandas Data Structures

To get started with pandas, you will need to get comfortable with its two workhorse data structures: Series and DataFrame. While they are not a universal solution for every problem, they provide a solid, easy-to-use basis for most applications.

Series

A Series is a one-dimensional array-like object containing an array of data (of any NumPy data type) and an associated array of data labels, called its *index*. The simplest Series is formed from only an array of data:

```
In [4]: obj = Series([4, 7, -5, 3])
In [5]: obj
Out[5]:
1
    7
   -5
```

The string representation of a Series displayed interactively shows the index on the left and the values on the right. Since we did not specify an index for the data, a default one consisting of the integers 0 through N - 1 (where N is the length of the data) is created. You can get the array representation and index object of the Series via its values and index attributes, respectively:

```
In [6]: obj.values
Out[6]: array([ 4, 7, -5, 3])
In [7]: obj.index
Out[7]: Int64Index([0, 1, 2, 3])
```

Often it will be desirable to create a Series with an index identifying each data point:

```
In [8]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [9]: obj2
Out[9]:
b 7
a -5
c 3
```

```
In [10]: obj2.index
Out[10]: Index([d, b, a, c], dtype=object)
```

Compared with a regular NumPy array, you can use values in the index when selecting single values or a set of values:

```
In [11]: obj2['a']
Out[11]: -5
In [12]: obj2['d'] = 6
In [13]: obj2[['c', 'a', 'd']]
Out[13]:
c 3
a
   -5
d
    6
```

NumPy array operations, such as filtering with a boolean array, scalar multiplication, or applying math functions, will preserve the index-value link:

```
In [14]: obj2
Out[14]:
d
    6
b
    7
а
  -5
    3
In [15]: obj2[obj2 > 0]
                          In [16]: obj2 * 2
                                               In [17]: np.exp(obj2)
Out[15]:
                          Out[16]:
                                               Out[17]:
d
    6
                          d
                             12
                                               d 403.428793
b
    7
                          h
                              14
                                               b
                                                   1096.633158
c
                              -10
                                                      0.006738
    3
                          a
                                               a
                               6
                                               C
                                                     20.085537
```

Another way to think about a Series is as a fixed-length, ordered dict, as it is a mapping of index values to data values. It can be substituted into many functions that expect a dict:

```
In [18]: 'b' in obj2
Out[18]: True
In [19]: 'e' in obj2
Out[19]: False
```

Should you have data contained in a Python dict, you can create a Series from it by passing the dict:

```
In [20]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [21]: obj3 = Series(sdata)
In [22]: obj3
Out[22]:
Ohio
         35000
Oregon
         16000
```

```
Texas
          71000
Utah
           5000
```

When only passing a dict, the index in the resulting Series will have the dict's keys in sorted order.

```
In [23]: states = ['California', 'Ohio', 'Oregon', 'Texas']
In [24]: obj4 = Series(sdata, index=states)
In [25]: obj4
Out[25]:
California
                NaN
Ohio
              35000
Oregon
              16000
              71000
Texas
```

In this case, 3 values found in sdata were placed in the appropriate locations, but since no value for 'California' was found, it appears as NaN (not a number) which is considered in pandas to mark missing or NA values. I will use the terms "missing" or "NA" to refer to missing data. The isnull and notnull functions in pandas should be used to detect missing data:

```
In [26]: pd.isnull(obj4)
                               In [27]: pd.notnull(obj4)
Out[26]:
                               Out[27]:
California
               True
                               California
                                              False
Ohio
              False
                               Ohio
                                              True
Oregon
              False
                               Oregon
                                               True
Texas
              False
                               Texas
                                               True
```

Series also has these as instance methods:

```
In [28]: obj4.isnull()
Out[28]:
California
               True
              False
Ohio
              False
Oregon
Texas
              False
```

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differentlyindexed data in arithmetic operations:

```
In [29]: obj3
                        In [30]: obj4
Out[29]:
                        Out[30]:
Ohio 
          35000
                        California
                                         NaN
Oregon
          16000
                        Ohio
                                       35000
          71000
                                       16000
Texas
                        Oregon
Utah
           5000
                        Texas
                                       71000
In [31]: obj3 + obj4
Out[31]:
California
                 NaN
Ohio
               70000
Oregon
               32000
```

Texas 142000 Utah NaN

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with other key areas of pandas functionality:

```
In [32]: obj4.name = 'population'
In [33]: obj4.index.name = 'state'
In [34]: obj4
Out[34]:
state
California
                NaN
Ohio
              35000
Oregon
              16000
              71000
Texas
Name: population
```

A Series's index can be altered in place by assignment:

```
In [35]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [36]: obj
Out[36]:
Bob
Steve
         7
Jeff
        -5
Ryan
```

DataFrame

A DataFrame represents a tabular, spreadsheet-like data structure containing an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.). The DataFrame has both a row and column index; it can be thought of as a dict of Series (one for all sharing the same index). Compared with other such DataFrame-like structures you may have used before (like R's data.frame), roworiented and column-oriented operations in DataFrame are treated roughly symmetrically. Under the hood, the data is stored as one or more two-dimensional blocks rather than a list, dict, or some other collection of one-dimensional arrays. The exact details of DataFrame's internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional format, you can easily represent much higher-dimensional data in a tabular format using hierarchical indexing, a subject of a later section and a key ingredient in many of the more advanced data-handling features in pandas.

There are numerous ways to construct a DataFrame, though one of the most common is from a dict of equal-length lists or NumPy arrays

The resulting DataFrame will have its index assigned automatically as with Series, and the columns are placed in sorted order:

```
In [38]: frame
Out[38]:
    pop    state    year
0  1.5    Ohio    2000
1  1.7    Ohio    2001
2  3.6    Ohio    2002
3  2.4    Nevada    2001
4  2.9    Nevada    2002
```

If you specify a sequence of columns, the DataFrame's columns will be exactly what you pass:

```
In [39]: DataFrame(data, columns=['year', 'state', 'pop'])
Out[39]:
    year    state    pop
0    2000    Ohio    1.5
1    2001    Ohio    1.7
2    2002    Ohio    3.6
3    2001    Nevada    2.4
4    2002    Nevada    2.9
```

As with Series, if you pass a column that isn't contained in data, it will appear with NA values in the result:

```
In [41]: frame2
Out[41]:
    year state pop debt
one
    2000 Ohio 1.5 NaN
two
          Ohio 1.7
    2001
                  NaN
three 2002
        Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
In [42]: frame2.columns
Out[42]: Index([year, state, pop, debt], dtype=object)
```

A column in a DataFrame can be retrieved as a Series either by dict-like notation or by attribute:

www.it-ebooks.info

```
Ohio
two
                                 two
                                           2001
three
           Ohio
                                 three
                                           2002
four
         Nevada
                                 four
                                           2001
five
         Nevada
                                 five
                                           2002
Name: state
                                 Name: vear
```

Note that the returned Series have the same index as the DataFrame, and their name attribute has been appropriately set.

Rows can also be retrieved by position or name by a couple of methods, such as the ix indexing field (much more on this later):

```
In [45]: frame2.ix['three']
Out[45]:
year
         2002
         Ohio 
state
pop
          3.6
debt
          NaN
Name: three
```

Columns can be modified by assignment. For example, the empty 'debt' column could be assigned a scalar value or an array of values:

```
In [46]: frame2['debt'] = 16.5
In [47]: frame2
Out[47]:
             state pop debt
      year
one
      2000
              Ohio 1.5 16.5
      2001
              Ohio 1.7 16.5
two
three 2002
              Ohio 3.6 16.5
      2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
In [48]: frame2['debt'] = np.arange(5.)
In [49]: frame2
Out[49]:
      year
             state pop debt
one
      2000
              Ohio 1.5
two
      2001
              Ohio 1.7
                           1
three 2002
              Ohio 3.6
                           2
four
      2001 Nevada 2.4
      2002 Nevada 2.9
```

When assigning lists or arrays to a column, the value's length must match the length of the DataFrame. If you assign a Series, it will be instead conformed exactly to the DataFrame's index, inserting missing values in any holes:

```
In [50]: val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
In [51]: frame2['debt'] = val
In [52]: frame2
Out[52]:
      year
             state pop debt
```

```
one
     2000
            Ohio 1.5
                     NaN
two
     2001
            Ohio 1.7 -1.2
three 2002
            Ohio 3.6 NaN
     2001 Nevada 2.4 -1.5
four
five 2002 Nevada 2.9 -1.7
```

Assigning a column that doesn't exist will create a new column. The del keyword will delete columns as with a dict:

```
In [53]: frame2['eastern'] = frame2.state == 'Ohio'
In [54]: frame2
Out[54]:
      year
             state pop debt eastern
one
      2000
              Ohio 1.5 NaN
two
      2001
              Ohio 1.7 -1.2
                                True
                              True
three 2002
              Ohio 3.6 NaN
four
      2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
In [55]: del frame2['eastern']
In [56]: frame2.columns
Out[56]: Index([year, state, pop, debt], dtype=object)
```


The column returned when indexing a DataFrame is a view on the underlying data, not a copy. Thus, any in-place modifications to the Series will be reflected in the DataFrame. The column can be explicitly copied using the Series's **copy** method.

Another common form of data is a nested dict of dicts format:

```
In [57]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
                'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
```

If passed to DataFrame, it will interpret the outer dict keys as the columns and the inner keys as the row indices:

```
In [58]: frame3 = DataFrame(pop)
In [59]: frame3
Out[59]:
     Nevada Ohio
2000
        NaN 1.5
2001
        2.4 1.7
2002
        2.9 3.6
```

Of course you can always transpose the result:

```
In [60]: frame3.T
Out[60]:
      2000 2001 2002
Nevada NaN 2.4 2.9
Ohio 
       1.5 1.7
                 3.6
```

The keys in the inner dicts are unioned and sorted to form the index in the result. This isn't true if an explicit index is specified:

```
In [61]: DataFrame(pop, index=[2001, 2002, 2003])
Out[61]:
     Nevada Ohio
2001
        2.4 1.7
2002
        2.9 3.6
        NaN NaN
2003
```

Dicts of Series are treated much in the same way:

```
In [62]: pdata = {'Ohio': frame3['Ohio'][:-1],
                  'Nevada': frame3['Nevada'][:2]}
In [63]: DataFrame(pdata)
Out[63]:
     Nevada Ohio
        NaN 1.5
2000
2001
        2.4 1.7
```

For a complete list of things you can pass the DataFrame constructor, see Table 5-1.

If a DataFrame's index and columns have their name attributes set, these will also be displayed:

```
In [64]: frame3.index.name = 'year'; frame3.columns.name = 'state'
In [65]: frame3
Out[65]:
state Nevada Ohio
vear
2000
         NaN 1.5
         2.4 1.7
2001
2002
         2.9 3.6
```

Like Series, the values attribute returns the data contained in the DataFrame as a 2D ndarray:

```
In [66]: frame3.values
Out[66]:
array([[ nan, 1.5],
      [2.4, 1.7],
      [2.9, 3.6]
```

If the DataFrame's columns are different dtypes, the dtype of the values array will be chosen to accomodate all of the columns:

```
In [67]: frame2.values
Out[67]:
array([[2000, Ohio, 1.5, nan],
       [2001, Ohio, 1.7, -1.2],
       [2002, Ohio, 3.6, nan],
       [2001, Nevada, 2.4, -1.5],
       [2002, Nevada, 2.9, -1.7]], dtype=object)
```

Table 5-1. Possible data inputs to DataFrame constructor

Туре	Notes
2D ndarray	A matrix of data, passing optional row and column labels
dict of arrays, lists, or tuples	$\label{lem:continuous} Each sequence becomes a column in the Data Frame. All sequences must be the same length.$
NumPy structured/record array	Treated as the "dict of arrays" case
dict of Series	Each value becomes a column. Indexes from each Series are unioned together to form the result's row index if no explicit index is passed.
dict of dicts	Each inner dict becomes a column. Keys are unioned to form the row index as in the "dict of Series" case.
list of dicts or Series	Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the DataFrame's column labels
List of lists or tuples	Treated as the "2D ndarray" case
Another DataFrame	The DataFrame's indexes are used unless different ones are passed
NumPy MaskedArray	$Like the \ "2D \ ndarray" \ case \ except \ masked \ values \ become \ NA/missing \ in \ the \ Data Frame \ result$

Index Objects

pandas's Index objects are responsible for holding the axis labels and other metadata (like the axis name or names). Any array or other sequence of labels used when constructing a Series or DataFrame is internally converted to an Index:

```
In [68]: obj = Series(range(3), index=['a', 'b', 'c'])
In [69]: index = obj.index
In [70]: index
Out[70]: Index([a, b, c], dtype=object)
In [71]: index[1:]
Out[71]: Index([b, c], dtype=object)
```

Index objects are immutable and thus can't be modified by the user:

```
In [72]: index[1] = 'd'
                                             Traceback (most recent call last)
<ipython-input-72-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/Users/wesm/code/pandas/pandas/core/index.pyc in __setitem__(self, key, value)
            def __setitem__(self, key, value):
    """Disable the setting of values."""
    303
                 raise Exception(str(self.__class__) + ' object is immutable')
--> 304
    305
             def getitem (self, key):
Exception: <class 'pandas.core.index.Index'> object is immutable
```

Immutability is important so that Index objects can be safely shared among data structures:

```
In [73]: index = pd.Index(np.arange(3))
In [74]: obj2 = Series([1.5, -2.5, 0], index=index)
In [75]: obj2.index is index
Out[75]: True
```

Table 5-2 has a list of built-in Index classes in the library. With some development effort, Index can even be subclassed to implement specialized axis indexing functionality.

Many users will not need to know much about Index objects, but they're nonetheless an important part of pandas's data model.

Table 5-2. Main Index objects in pandas

Class	Description
Index	The most general Index object, representing axis labels in a NumPy array of Python objects.
Int64Index	Specialized Index for integer values.
MultiIndex	"Hierarchical" index object representing multiple levels of indexing on a single axis. Can be thought of as similar to an array of tuples.
DatetimeIndex	Stores nanosecond timestamps (represented using NumPy's datetime64 dtype).
PeriodIndex	Specialized Index for Period data (timespans).

In addition to being array-like, an Index also functions as a fixed-size set:

```
In [76]: frame3
Out[76]:
state Nevada Ohio
vear
2000
         NaN 1.5
2001
         2.4
               1.7
2002
         2.9
In [77]: 'Ohio' in frame3.columns
Out[77]: True
In [78]: 2003 in frame3.index
Out[78]: False
```

Each Index has a number of methods and properties for set logic and answering other common questions about the data it contains. These are summarized in Table 5-3.

Table 5-3. Index methods and properties

Method	Description
append	Concatenate with additional Index objects, producing a new Index
diff	Compute set difference as an Index
intersection	Compute set intersection
union	Compute set union
isin	Compute boolean array indicating whether each value is contained in the passed collection
delete	Compute new Index with element at index i deleted
drop	Compute new index by deleting passed values
insert	Compute new Index by inserting element at index i
is_monotonic	Returns True if each element is greater than or equal to the previous element
is_unique	Returns True if the Index has no duplicate values
unique	Compute the array of unique values in the Index

Essential Functionality

In this section, I'll walk you through the fundamental mechanics of interacting with the data contained in a Series or DataFrame. Upcoming chapters will delve more deeply into data analysis and manipulation topics using pandas. This book is not intended to serve as exhaustive documentation for the pandas library; I instead focus on the most important features, leaving the less common (that is, more esoteric) things for you to explore on your own.

Reindexing

A critical method on pandas objects is reindex, which means to create a new object with the data *conformed* to a new index. Consider a simple example from above:

```
In [79]: obj = Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
In [80]: obj
Out[80]:
d 4.5
   7.2
a -5.3
    3.6
```

Calling reindex on this Series rearranges the data according to the new index, introducing missing values if any index values were not already present:

```
In [81]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
In [82]: obj2
Out[82]:
a -5.3
```

```
b
     7.2
c
     3.6
     4.5
In [83]: obj.reindex(['a', 'b', 'c', 'd', 'e'], fill value=0)
Out[83]:
    -5.3
b
     7.2
c
     3.6
d
     4.5
     0.0
```

For ordered data like time series, it may be desirable to do some interpolation or filling of values when reindexing. The method option allows us to do this, using a method such as ffill which forward fills the values:

```
In [84]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
In [85]: obj3.reindex(range(6), method='ffill')
Out[85]:
0
       blue
       blue
1
     purple
2
     purple
3
     yellow
     yellow
```

Table 5-4 lists available method options. At this time, interpolation more sophisticated than forward- and backfilling would need to be applied after the fact.

Table 5-4. reindex method (interpolation) options

Argument	Description
ffill or pad	Fill (or carry) values forward
bfill or backfill	Fill (or carry) values backward

With DataFrame, reindex can alter either the (row) index, columns, or both. When passed just a sequence, the rows are reindexed in the result:

```
In [86]: frame = DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'],
                          columns=['Ohio', 'Texas', 'California'])
In [87]: frame
Out[87]:
  Ohio Texas California
     0
           1
                        2
     3
                         5
C
            4
                         8
In [88]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])
In [89]: frame2
Out[89]:
```

	Ohio	Texas	California
a	0	1	2
b	NaN	NaN	NaN
c	3	4	5
d	6	7	8

The columns can be reindexed using the columns keyword:

```
In [90]: states = ['Texas', 'Utah', 'California']
In [91]: frame.reindex(columns=states)
Out[91]:
  Texas Utah California
a
      1
          NaN
          NaN
      7
          NaN
```

Both can be reindexed in one shot, though interpolation will only apply row-wise (axis 0):

```
In [92]: frame.reindex(index=['a', 'b', 'c', 'd'], method='ffill',
  ...:
                      columns=states)
Out[92]:
  Texas Utah California
      1 NaN
                        2
b
          NaN
       1
C
          NaN
                         5
          NaN
                         8
       7
```

As you'll see soon, reindexing can be done more succinctly by label-indexing with ix:

```
In [93]: frame.ix[['a', 'b', 'c', 'd'], states]
Out[93]:
   Texas
          Utah California
а
           NaN
     NaN
                       NaN
b
           NaN
           NaN
                         5
c
                         8
       7
           NaN
```

Table 5-5. reindex function arguments

Argument	Description
index	New sequence to use as index. Can be Index instance or any other sequence-like Python data structure. An Index will be used exactly as is without any copying
method	Interpolation (fill) method, see Table 5-4 for options.
fill_value	Substitute value to use when introducing missing data by reindexing
limit	When forward- or backfilling, maximum size gap to fill
level	Match simple Index on level of MultiIndex, otherwise select subset of
сору	Do not copy underlying data if new index is equivalent to old index. True by default (i.e. always copy data).

Dropping entries from an axis

Dropping one or more entries from an axis is easy if you have an index array or list without those entries. As that can require a bit of munging and set logic, the drop method will return a new object with the indicated value or values deleted from an axis:

```
In [94]: obj = Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
In [95]: new obj = obj.drop('c')
In [96]: new obj
Out[96]:
а
     0
b
     1
d
     3
In [97]: obj.drop(['d', 'c'])
Out[97]:
a
     0
b
     1
     4
e
```

With DataFrame, index values can be deleted from either axis:

```
In [98]: data = DataFrame(np.arange(16).reshape((4, 4)),
                            index=['Ohio', 'Colorado', 'Utah', 'New York'],
columns=['one', 'two', 'three', 'four'])
   ...:
In [99]: data.drop(['Colorado', 'Ohio'])
Out[99]:
          one two three four
Utah
            8
                 9
                         10
                               11
New York
           12
                 13
In [100]: data.drop('two', axis=1)
                                           In [101]: data.drop(['two', 'four'], axis=1)
Out[100]:
                                           Out[101]:
          one three four
                                                      one three
Ohio
                                           Ohio
            0
                    2
                           3
                                                        0
                                                                2
Colorado
                    6
                           7
                                           Colorado
                                                                6
            4
                                                        4
Utah
            8
                   10
                                           Utah
                                                        8
                                                               10
                          11
New York
                                           New York
           12
                   14
                          15
                                                       12
                                                               14
```

Indexing, selection, and filtering

Series indexing (obj[...]) works analogously to NumPy array indexing, except you can use the Series's index values instead of only integers. Here are some examples this:

```
In [102]: obj = Series(np.arange(4.), index=['a', 'b', 'c', 'd'])
In [103]: obj['b']
                            In [104]: obj[1]
Out[103]: 1.0
                            Out[104]: 1.0
                            In [106]: obj[['b', 'a', 'd']]
In [105]: obj[2:4]
Out[105]:
                            Out[106]:
```

Slicing with labels behaves differently than normal Python slicing in that the endpoint is inclusive:

```
In [109]: obj['b':'c']
Out[109]:
b    1
c    2
```

Setting using these methods works just as you would expect:

```
In [110]: obj['b':'c'] = 5
In [111]: obj
Out[111]:
a     0
b     5
c     5
d     3
```

As you've seen above, indexing into a DataFrame is for retrieving one or more columns either with a single value or sequence:

```
In [112]: data = DataFrame(np.arange(16).reshape((4, 4)),
                          index=['Ohio', 'Colorado', 'Utah', 'New York'],
                          columns=['one', 'two', 'three', 'four'])
  . . . . :
In [113]: data
Out[113]:
         one two three four
Ohio
           0 1
                   2
                            3
Colorado
                5
                            7
           4
Utah
           8
                9
                      10
                            11
New York 12
              13
                      14
In [114]: data['two']
                            In [115]: data[['three', 'one']]
Out[114]:
                            Out[115]:
Ohio
                                     three one
            1
                            Ohio
Colorado
            5
                                         2
                                              0
Utah
            9
                            Colorado
                                         6
                                              4
New York
                            Utah
                                              8
           13
                                        10
Name: two
                            New York
                                        14
                                             12
```

Indexing like this has a few special cases. First selecting rows by slicing or a boolean array:

```
Ohio
                               3
                                         Colorado
                                                           5
                                                                  6
                                                                        7
                 1
Colorado
                                         Utah
                                                      8
                                                                  10
                                                                        11
                                         New York
                                                     12
                                                          13
                                                                        15
                                                                  14
```

This might seem inconsistent to some readers, but this syntax arose out of practicality and nothing more. Another use case is in indexing with a boolean DataFrame, such as one produced by a scalar comparison:

```
In [118]: data < 5
Out[118]:
                  two three
                              four
           one
Ohio
          True
                True
                      True
                              True
Colorado
          True False False False
         False False False
New York False False False
In [119]: data[data < 5] = 0
In [120]: data
Out[120]:
                        four
              two three
         one
Ohio
           0
               0
                      0
                            0
Colorado
                      6
           0
                5
                            7
Utah
           8
                9
                     10
                           11
New York
          12
               13
                     14
                           15
```

This is intended to make DataFrame syntactically more like an ndarray in this case.

For DataFrame label-indexing on the rows, I introduce the special indexing field ix. It enables you to select a subset of the rows and columns from a DataFrame with NumPylike notation plus axis labels. As I mentioned earlier, this is also a less verbose way to do reindexing:

```
In [121]: data.ix['Colorado', ['two', 'three']]
Out[121]:
two
three
Name: Colorado
In [122]: data.ix[['Colorado', 'Utah'], [3, 0, 1]]
Out[122]:
          four one
                    two
Colorado
             7
                  0
                       5
Utah
            11
In [123]: data.ix[2]
                             In [124]: data.ix[:'Utah', 'two']
Out[123]:
                             Out[124]:
one
          8
                             Ohio
                                         0
two
          9
                            Colorado
                                         5
three
         10
                            Utah
                                         9
four
                            Name: two
Name: Utah
In [125]: data.ix[data.three > 5, :3]
Out[125]:
```

	one	two	three
Colorado	0	5	6
Utah	8	9	10
New York	12	13	14

So there are many ways to select and rearrange the data contained in a pandas object. For DataFrame, there is a short summary of many of them in Table 5-6. You have a number of additional options when working with hierarchical indexes as you'll later see.

When designing pandas, I felt that having to type frame[:, col] to select a column was too verbose (and error-prone), since column selection is one of the most common operations. Thus I made the design trade-off to push all of the rich label-indexing into ix.

Table 5-6. Indexing options with DataFrame

Туре	Notes
obj[val]	Select single column or sequence of columns from the DataFrame. Special case conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set values based on some criterion).
obj.ix[val]	Selects single row of subset of rows from the DataFrame.
obj.ix[:, val]	Selects single column of subset of columns.
obj.ix[val1, val2]	Select both rows and columns.
reindex method	Conform one or more axes to new indexes.
xs method	Select single row or column as a Series by label.
icol, irow methods	Select single column or row, respectively, as a Series by integer location.
<pre>get_value, set_value methods</pre>	Select single value by row and column label.

Arithmetic and data alignment

One of the most important pandas features is the behavior of arithmetic between objects with different indexes. When adding together objects, if any index pairs are not the same, the respective index in the result will be the union of the index pairs. Let's look at a simple example:

```
In [126]: s1 = Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
In [127]: s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])
In [128]: s1
                   In [129]: s2
Out[128]:
                   Out[129]:
                  a -2.1
  7.3
c -2.5
                       3.6
                   e -1.5
```

```
1.5
                 4.0
                 3.1
```

Adding these together yields:

```
In [130]: s1 + s2
Out[130]:
     5.2
a
C
     1.1
d
     NaN
e
     0.0
f
     NaN
     NaN
g
```

The internal data alignment introduces NA values in the indices that don't overlap. Missing values propagate in arithmetic computations.

In the case of DataFrame, alignment is performed on both the rows and the columns:

```
In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
                         index=['Ohio', 'Texas', 'Colorado'])
In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
                         index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [133]: df1
                         In [134]: df2
Out[133]:
                         Out[134]:
         b c d
                                    d
                                        e
Ohio
         0 1 2
                        Utah
                                0
                                    1
                                        2
Texas
         3 4 5
                        Ohio
                                3
                                    4
                                        5
Colorado 6 7 8
                        Texas
                                6
                                    7
                                        8
                        Oregon 9 10 11
```

Adding these together returns a DataFrame whose index and columns are the unions of the ones in each DataFrame:

```
In [135]: df1 + df2
Out[135]:
          b c d
Colorado NaN NaN NaN NaN
Ohio
          3 NaN 6 NaN
Oregon
        NaN NaN NaN NaN
Texas
          9 NaN 12 NaN
Utah
        NaN NaN NaN NaN
```

Arithmetic methods with fill values

In arithmetic operations between differently-indexed objects, you might want to fill with a special value, like 0, when an axis label is found in one object but not the other:

```
In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))
In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))
In [138]: df1
                      In [139]: df2
Out[138]:
                      Out[139]:
  a b c d
```

```
0 0 1 2 3
             0 0 1 2 3 4
1 4 5 6 7
              1 5 6 7 8 9
2 8 9 10 11
              2 10 11 12 13 14
              3 15 16 17 18 19
```

Adding these together results in NA values in the locations that don't overlap:

```
In [140]: df1 + df2
Out[140]:
   a b
        c d e
 0
     2 4 6 NaN
1 9 11 13 15 NaN
2 18 20 22 24 NaN
3 NaN NaN NaN NaN NaN
```

Using the add method on df1, I pass df2 and an argument to fill_value:

```
In [141]: df1.add(df2, fill value=0)
Out[141]:
  a b
        С
           d
               е
  0 2
        4 6 4
 9 11 13 15 9
2 18 20 22 24 14
3 15 16 17 18 19
```

Relatedly, when reindexing a Series or DataFrame, you can also specify a different fill value:

```
In [142]: df1.reindex(columns=df2.columns, fill value=0)
Out[142]:
  a b c
           d e
0 0 1 2 3 0
1 4 5 6 7 0
2 8 9 10 11 0
```

Table 5-7. Flexible arithmetic methods

Method	Description
add	Method for addition (+)
sub	Method for subtraction (-)
div	Method for division (/)
mul	Method for multiplication (*)

Operations between DataFrame and Series

As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First, as a motivating example, consider the difference between a 2D array and one of its rows:

```
In [143]: arr = np.arange(12.).reshape((3, 4))
In [144]: arr
Out[144]:
array([[ 0.,
               1.,
                     2.,
                           3.],
      [ 4.,
               5.,
                     6.,
                           7.],
```

```
[ 8., 9., 10., 11.]])
In [145]: arr[0]
Out[145]: array([ 0., 1., 2., 3.])
In [146]: arr - arr[0]
Out[146]:
array([[ 0., 0., 0., 0.],
      [ 4., 4., 4., 4.],
      [8., 8., 8., 8.]])
```

This is referred to as broadcasting and is explained in more detail in Chapter 12. Operations between a DataFrame and a Series are similar:

```
In [147]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
                           index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [148]: series = frame.ix[0]
In [149]: frame
                        In [150]: series
Out[149]:
                        Out[150]:
       b
          d e
                            0
Utah
       0 1 2
                            1
Ohio 
       3
               5
                        е
                            2
           7 8
                        Name: Utah
Texas
       6
Oregon 9 10 11
```

By default, arithmetic between DataFrame and Series matches the index of the Series on the DataFrame's columns, broadcasting down the rows:

```
In [151]: frame - series
Out[151]:
       b d e
       0 0 0
Utah
Ohio
       3 3 3
Texas
       6 6 6
Oregon 9 9 9
```

If an index value is not found in either the DataFrame's columns or the Series's index, the objects will be reindexed to form the union:

```
In [152]: series2 = Series(range(3), index=['b', 'e', 'f'])
In [153]: frame + series2
Out[153]:
             e f
       b d
Utah
       o NaN
             3 NaN
Ohio
       3 NaN 6 NaN
Texas 6 NaN
             9 NaN
Oregon 9 NaN 12 NaN
```

If you want to instead broadcast over the columns, matching on the rows, you have to use one of the arithmetic methods. For example:

```
In [154]: series3 = frame['d']
In [155]: frame
                     In [156]: series3
```

```
Out[155]:
                Out[156]:
     b d e Utah
                        1
Utah
      0 1 2 Ohio
                        4
Ohio
      3 4 5 Texas
                        7
Texas 6 7 8 Oregon
                        10
Oregon 9 10 11 Name: d
In [157]: frame.sub(series3, axis=0)
Out[157]:
     b d e
Utah
     -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1
```

The axis number that you pass is the axis to match on. In this case we mean to match on the DataFrame's row index and broadcast across.

Function application and mapping

NumPy ufuncs (element-wise array methods) work fine with pandas objects:

```
In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
                                                       index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [159]: frame
                                                                                  In [160]: np.abs(frame)
Out[159]:
                                                                                  Out[160]:
                                      d
                                                                                                                                  d
                                                                             Utah
Utah -0.204708 0.478943 -0.519439
                                                                                                  0.204708 0.478943 0.519439

        Ohio
        -0.555730
        1.965781
        1.393406
        Ohio
        0.555730
        1.965781
        1.393406

        Texas
        0.092908
        0.281746
        0.769023
        Texas
        0.092908
        0.281746
        0.769023

        Oregon
        1.246435
        1.007189
        -1.296221
        Oregon
        1.246435
        1.007189
        1.296221
```

Another frequent operation is applying a function on 1D arrays to each column or row. DataFrame's apply method does exactly this:

```
In [161]: f = lambda x: x.max() - x.min()
In [162]: frame.apply(f)
                              In [163]: frame.apply(f, axis=1)
Out[162]:
                             Out[163]:
b 1.802165
                             Utah
                                       0.998382
d 1.684034
                             Ohio
                                       2.521511
    2.689627
                              Texas
                                       0.676115
                              Oregon
                                       2.542656
```

Many of the most common array statistics (like sum and mean) are DataFrame methods, so using **apply** is not necessary.

The function passed to apply need not return a scalar value, it can also return a Series with multiple values:

```
In [164]: def f(x):
             return Series([x.min(), x.max()], index=['min', 'max'])
In [165]: frame.apply(f)
```

```
Out[165]:
min -0.555730 0.281746 -1.296221
max 1.246435 1.965781 1.393406
```

Element-wise Python functions can be used, too. Suppose you wanted to compute a formatted string from each floating point value in frame. You can do this with applymap:

```
In [166]: format = lambda x: '%.2f' % x
In [167]: frame.applymap(format)
Out[167]:
                 d
Utah
       -0.20 0.48 -0.52
Ohio 
       -0.56 1.97
                    1.39
Texas
        0.09 0.28
                   0.77
Oregon 1.25 1.01 -1.30
```

The reason for the name applymap is that Series has a map method for applying an element-wise function:

```
In [168]: frame['e'].map(format)
Out[168]:
Utah
          -0.52
Ohio
           1.39
Texas
           0.77
Oregon
          -1.30
Name: e
```

Sorting and ranking

Sorting a data set by some criterion is another important built-in operation. To sort lexicographically by row or column index, use the sort index method, which returns a new, sorted object:

```
In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])
In [170]: obj.sort index()
Out[170]:
a
    1
b
    2
c
    3
    0
```

With a DataFrame, you can sort by index on either axis:

```
In [171]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
                          columns=['d', 'a', 'b', 'c'])
In [172]: frame.sort_index()
                                 In [173]: frame.sort_index(axis=1)
Out[172]:
                                 Out[173]:
                                        a b c d
      d a b c
one
      4 5 6 7
                                 three 1 2 3 0
three 0 1 2 3
                                 one
                                        5 6 7 4
```

The data is sorted in ascending order by default, but can be sorted in descending order, too:

```
In [174]: frame.sort index(axis=1, ascending=False)
Out[174]:
      d c b a
three 0 3 2 1
one 4 7 6 5
```

To sort a Series by its values, use its **order** method:

```
In [175]: obj = Series([4, 7, -3, 2])
In [176]: obj.order()
Out[176]:
2 -3
3
    2
0
    4
```

Any missing values are sorted to the end of the Series by default:

```
In [177]: obj = Series([4, np.nan, 7, np.nan, -3, 2])
In [178]: obj.order()
Out[178]:
4
   -3
5
    2
0
    4
2
     7
1 NaN
3 NaN
```

On DataFrame, you may want to sort by the values in one or more columns. To do so, pass one or more column names to the by option:

```
In [179]: frame = DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})
                  In [181]: frame.sort index(by='b')
In [180]: frame
Out[180]:
                  Out[181]:
a b
                  a b
                 2 0 -3
0 0 4
1 1 7
                  3 1 2
                  0 0 4
2 0 -3
3 1 2
                  1 1 7
```

To sort by multiple columns, pass a list of names:

```
In [182]: frame.sort index(by=['a', 'b'])
Out[182]:
  a b
2 0 -3
0 0 4
3 1 2
1 1 7
```

Ranking is closely related to sorting, assigning ranks from one through the number of valid data points in an array. It is similar to the indirect sort indices produced by numpy.argsort, except that ties are broken according to a rule. The rank methods for Series and DataFrame are the place to look; by default rank breaks ties by assigning each group the mean rank:

```
In [183]: obj = Series([7, -5, 7, 4, 2, 0, 4])
In [184]: obj.rank()
Out[184]:
    6.5
1
    1.0
2
    6.5
    4.5
3
4
    3.0
5
    2.0
     4.5
```

Ranks can also be assigned according to the order they're observed in the data:

```
In [185]: obj.rank(method='first')
Out[185]:
0
    6
1
2
    7
3
    4
4
    3
5
    2
```

Naturally, you can rank in descending order, too:

```
In [186]: obj.rank(ascending=False, method='max')
Out[186]:
0
1
     7
2
    2
3
    4
4
    5
5
```

See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks over the rows or the columns:

```
In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
                         'c': [-2, 5, 8, -2.5]})
  ....:
In [188]: frame
                    In [189]: frame.rank(axis=1)
Out[188]:
                    Out[189]:
  a b c
                    a b c
0 0 4.3 -2.0
                   0 2 3 1
1 1 7.0 5.0
                   1 1 3 2
2 0 -3.0 8.0
                   2 2 1 3
3 1 2.0 -2.5
                   3 2 3 1
```

Table 5-8. Tie-breaking methods with rank

Method	Description
'average'	Default: assign the average rank to each entry in the equal group.
'min'	Use the minimum rank for the whole group.
'max'	Use the maximum rank for the whole group.
'first'	Assign ranks in the order the values appear in the data.

Axis indexes with duplicate values

Up until now all of the examples I've showed you have had unique axis labels (index values). While many pandas functions (like reindex) require that the labels be unique, it's not mandatory. Let's consider a small Series with duplicate indices:

```
In [190]: obj = Series(range(5), index=['a', 'a', 'b', 'b', 'c'])
In [191]: obj
Out[191]:
    1
b
    2
    3
```

The index's is unique property can tell you whether its values are unique or not:

```
In [192]: obj.index.is unique
Out[192]: False
```

Data selection is one of the main things that behaves differently with duplicates. Indexing a value with multiple entries returns a Series while single entries return a scalar value:

```
In [193]: obj['a']
                 In [194]: obj['c']
Out[193]:
                   Out[194]: 4
a
  0
    1
```

The same logic extends to indexing rows in a DataFrame:

```
In [195]: df = DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 'b'])
In [196]: df
Out[196]:
a 0.274992 0.228913 1.352917
a 0.886429 -2.001637 -0.371843
b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228
In [197]: df.ix['b']
Out[197]:
                             2
```

```
b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228
```

Summarizing and Computing Descriptive Statistics

pandas objects are equipped with a set of common mathematical and statistical methods. Most of these fall into the category of reductions or summary statistics, methods that extract a single value (like the sum or mean) from a Series or a Series of values from the rows or columns of a DataFrame. Compared with the equivalent methods of vanilla NumPy arrays, they are all built from the ground up to exclude missing data. Consider a small DataFrame:

```
In [198]: df = DataFrame([[1.4, np.nan], [7.1, -4.5],
                             [np.nan, np.nan], [0.75, -1.3]],
                            index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
   . . . . . :
   . . . . . :
In [199]: df
Out[199]:
    one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
```

Calling DataFrame's sum method returns a Series containing column sums:

```
In [200]: df.sum()
Out[200]:
one 9.25
two -5.80
```

Passing axis=1 sums over the rows instead:

```
In [201]: df.sum(axis=1)
Out[201]:
a 1.40
b
    2.60
С
    NaN
d
   -0.55
```

NA values are excluded unless the entire slice (row or column in this case) is NA. This can be disabled using the **skipna** option:

```
In [202]: df.mean(axis=1, skipna=False)
Out[202]:
    1.300
b
     NaN
c
```

See Table 5-9 for a list of common options for each reduction method options.

Table 5-9. Options for reduction methods

Method	Description
axis	Axis to reduce over. 0 for DataFrame's rows and 1 for columns.
skipna	Exclude missing values, True by default.
level	Reduce grouped by level if the axis is hierarchically-indexed (MultiIndex).

Some methods, like idxmin and idxmax, return indirect statistics like the index value where the minimum or maximum values are attained:

```
In [203]: df.idxmax()
Out[203]:
one b
two
      d
```

Other methods are accumulations:

```
In [204]: df.cumsum()
Out[204]:
   one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8
```

Another type of method is neither a reduction nor an accumulation. describe is one such example, producing multiple summary statistics in one shot:

```
In [205]: df.describe()
Out[205]:
            one
                       two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
       7.100000 -1.300000
```

On non-numeric data, describe produces alternate summary statistics:

```
In [206]: obj = Series(['a', 'a', 'b', 'c'] * 4)
In [207]: obj.describe()
Out[207]:
count
          16
unique
top
           8
frea
```

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method	Description
count	Number of non-NA values
describe	Compute set of summary statistics for Series or each DataFrame column
min, max	Compute minimum and maximum values
argmin, argmax	Compute index locations (integers) at which minimum or maximum value obtained, respectively
idxmin, idxmax	Compute index values at which minimum or maximum value obtained, respectively
quantile	Compute sample quantile ranging from 0 to 1
sum	Sum of values
mean	Mean of values
median	Arithmetic median (50% quantile) of values
mad	Mean absolute deviation from mean value
var	Sample variance of values
std	Sample standard deviation of values
skew	Sample skewness (3rd moment) of values
kurt	Sample kurtosis (4th moment) of values
cumsum	Cumulative sum of values
cummin, cummax	Cumulative minimum or maximum of values, respectively
cumprod	Cumulative product of values
diff	Compute 1st arithmetic difference (useful for time series)
pct_change	Compute percent changes

Correlation and Covariance

Some summary statistics, like correlation and covariance, are computed from pairs of arguments. Let's consider some DataFrames of stock prices and volumes obtained from Yahoo! Finance:

```
import pandas.io.data as web
    all data = {}
    for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
        all data[ticker] = web.get data yahoo(ticker, '1/1/2000', '1/1/2010')
    price = DataFrame({tic: data['Adj Close']
                       for tic, data in all data.iteritems()})
    volume = DataFrame({tic: data['Volume']
                        for tic, data in all data.iteritems()})
I now compute percent changes of the prices:
    In [209]: returns = price.pct_change()
    In [210]: returns.tail()
```

```
Out[210]:
              AAPL
                       GOOG IBM
                                          MSFT
Date
2009-12-24 0.034339 0.011117 0.004420 0.002747
2009-12-28 0.012294 0.007098 0.013282 0.005479
2009-12-29 -0.011861 -0.005571 -0.003474 0.006812
2009-12-30 0.012147 0.005376 0.005468 -0.013532
2009-12-31 -0.004300 -0.004416 -0.012609 -0.015432
```

The corr method of Series computes the correlation of the overlapping, non-NA, aligned-by-index values in two Series. Relatedly, cov computes the covariance:

```
In [211]: returns.MSFT.corr(returns.IBM)
Out[211]: 0.49609291822168838
In [212]: returns.MSFT.cov(returns.IBM)
Out[212]: 0.00021600332437329015
```

DataFrame's corr and cov methods, on the other hand, return a full correlation or covariance matrix as a DataFrame, respectively:

```
In [213]: returns.corr()
Out[213]:
         AAPL
                  GOOG
                             IBM
                                     MSFT
AAPL 1.000000 0.470660 0.410648 0.424550
GOOG 0.470660 1.000000 0.390692 0.443334
IBM 0.410648 0.390692 1.000000 0.496093
MSFT 0.424550 0.443334 0.496093 1.000000
In [214]: returns.cov()
Out[214]:
         AAPL
                  GOOG
                             IBM
                                     MSFT
AAPL 0.001028 0.000303 0.000252 0.000309
GOOG 0.000303 0.000580 0.000142 0.000205
IBM 0.000252 0.000142 0.000367 0.000216
MSFT 0.000309 0.000205 0.000216 0.000516
```

Using DataFrame's corrwith method, you can compute pairwise correlations between a DataFrame's columns or rows with another Series or DataFrame. Passing a Series returns a Series with the correlation value computed for each column:

```
In [215]: returns.corrwith(returns.IBM)
Out[215]:
AAPL
       0.410648
G00G
       0.390692
IBM
       1.000000
MSFT
       0.496093
```

Passing a DataFrame computes the correlations of matching column names. Here I compute correlations of percent changes with volume:

```
In [216]: returns.corrwith(volume)
Out[216]:
AAPL -0.057461
GOOG
       0.062644
```

```
IBM
      -0.007900
MSFT -0.014175
```

Passing axis=1 does things row-wise instead. In all cases, the data points are aligned by label before computing the correlation.

Unique Values, Value Counts, and Membership

Another class of related methods extracts information about the values contained in a one-dimensional Series. To illustrate these, consider this example:

```
In [217]: obj = Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])
```

The first function is unique, which gives you an array of the unique values in a Series:

```
In [218]: uniques = obj.unique()
In [219]: uniques
Out[219]: array([c, a, d, b], dtype=object)
```

The unique values are not necessarily returned in sorted order, but could be sorted after the fact if needed (uniques.sort()). Relatedly, value counts computes a Series containing value frequencies:

```
In [220]: obj.value counts()
Out[220]:
C
    3
b
    2
```

The Series is sorted by value in descending order as a convenience. value counts is also available as a top-level pandas method that can be used with any array or sequence:

```
In [221]: pd.value counts(obj.values, sort=False)
Out[221]:
a
  3
b
    2
C
    3
```

Lastly, isin is responsible for vectorized set membership and can be very useful in filtering a data set down to a subset of values in a Series or column in a DataFrame:

```
In [222]: mask = obj.isin(['b', 'c'])
In [223]: mask
                  In [224]: obj[mask]
Out[223]:
                  Out[224]:
0
   True
                 5 b
1 False
2 False
3 False4 False
                  7 c
5
    True
    True
```

```
7
      True
      True
```

See Table 5-11 for a reference on these methods.

Table 5-11. Unique, value counts, and binning methods

Method	Description
isin	$Compute \ boolean\ array\ indicating\ whether\ each\ Series\ value\ is\ contained\ in\ the\ passed\ sequence\ of\ values.$
unique	Compute array of unique values in a Series, returned in the order observed.
value_counts	Return a Series containing unique values as its index and frequencies as its values, ordered count in descending order.

In some cases, you may want to compute a histogram on multiple related columns in a DataFrame. Here's an example:

```
In [225]: data = DataFrame({'Qu1': [1, 3, 4, 3, 4],
                           'Qu2': [2, 3, 1, 2, 3],
   . . . . . :
                           'Qu3': [1, 5, 2, 4, 4]})
In [226]: data
Out[226]:
  Qu1 Qu2 Qu3
  1
       3
1
    3
            5
2
       1
            2
    3
         2
4
         3
```

Passing pandas.value counts to this DataFrame's apply function gives:

```
In [227]: result = data.apply(pd.value counts).fillna(0)
In [228]: result
Out[228]:
  Qu1 Qu2 Qu3
  1
      1
          1
2
   0
       2
            1
3 2 2 0
  2 0 2
```

Handling Missing Data

Missing data is common in most data analysis applications. One of the goals in designing pandas was to make working with missing data as painless as possible. For example, all of the descriptive statistics on pandas objects exclude missing data as you've seen earlier in the chapter.

pandas uses the floating point value NaN (Not a Number) to represent missing data in both floating as well as in non-floating point arrays. It is just used as a sentinel that can be easily detected:

```
In [229]: string data = Series(['aardvark', 'artichoke', np.nan, 'avocado'])
In [230]: string data
                            In [231]: string data.isnull()
Out[230]:
                            Out[231]:
0
     aardvark
                                 False
1
    artichoke
                            1
                                 False
                                  True
2
          NaN
                            2
      avocado
                                 False
```

The built-in Python None value is also treated as NA in object arrays:

```
In [232]: string_data[0] = None
In [233]: string data.isnull()
Out[233]:
0
      True
     False
1
2
     True
3
     False
```

I do not claim that pandas's NA representation is optimal, but it is simple and reasonably consistent. It's the best solution, with good all-around performance characteristics and a simple API, that I could concoct in the absence of a true NA data type or bit pattern in NumPy's data types. Ongoing development work in NumPy may change this in the future.

Table 5-12. NA handling methods

Argument	Description
dropna	Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much missing data to tolerate.
fillna	$Fill in missing \ data \ with some \ value \ or \ using \ an \ interpolation \ method \ such \ as \ 'ffill' \ or \ 'bfill'.$
isnull	Return like-type object containing boolean values indicating which values are missing / NA.
notnull	Negation of isnull.

Filtering Out Missing Data

You have a number of options for filtering out missing data. While doing it by hand is always an option, dropna can be very helpful. On a Series, it returns the Series with only the non-null data and index values:

```
In [234]: from numpy import nan as NA
In [235]: data = Series([1, NA, 3.5, NA, 7])
In [236]: data.dropna()
Out[236]:
```

```
0
  1.0
    3.5
    7.0
```

Naturally, you could have computed this yourself by boolean indexing:

```
In [237]: data[data.notnull()]
Out[237]:
0
    1.0
2
    3.5
4
    7.0
```

With DataFrame objects, these are a bit more complex. You may want to drop rows or columns which are all NA or just those containing any NAs. dropna by default drops any row containing a missing value:

```
In [238]: data = DataFrame([[1., 6.5, 3.], [1., NA, NA],
                        [NA, NA, NA], [NA, 6.5, 3.]])
In [239]: cleaned = data.dropna()
In [240]: data
                   In [241]: cleaned
                  Out[241]:
Out[240]:
  0 1 2
                  0 1 2
                 0 1 6.5 3
0 1 6.5 3
1 1 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3
```

Passing how='all' will only drop rows that are all NA:

```
In [242]: data.dropna(how='all')
Out[242]:
  0 1
0 1 6.5 3
1 1 NaN NaN
3 NaN 6.5 3
```

Dropping columns in the same way is only a matter of passing axis=1:

```
In [243]: data[4] = NA
                  In [245]: data.dropna(axis=1, how='all')
In [244]: data
Out[244]:
                  Out[245]:
0 1 2
1 1 NaN NaN NaN
                 1 1 NaN NaN
2 NaN NaN NaN NaN
                 2 NaN NaN NaN
3 NaN 6.5 3 NaN
                  3 NaN 6.5
```

A related way to filter out DataFrame rows tends to concern time series data. Suppose you want to keep only rows containing a certain number of observations. You can indicate this with the thresh argument:

```
In [246]: df = DataFrame(np.random.randn(7, 3))
In [247]: df.ix[:4, 1] = NA; df.ix[:2, 2] = NA
```

```
In [248]: df
                                       In [249]: df.dropna(thresh=3)
Out[248]:
                                       Out[249]:
                    1
                              2
0 -0.577087
                  NaN
                            NaN
                                       5 0.332883 -2.359419 -0.199543
                  NaN
                            NaN
                                       6 -1.541996 -0.970736 -1.307030
1 0.523772
                  NaN
2 -0.713544
                            NaN
3 -1.860761
                  NaN 0.560145
4 -1.265934
                  NaN -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
```

Filling in Missing Data

Rather than filtering out missing data (and potentially discarding other data along with it), you may want to fill in the "holes" in any number of ways. For most purposes, the fillna method is the workhorse function to use. Calling fillna with a constant replaces missing values with that value:

```
In [250]: df.fillna(0)
Out[250]:
0 -0.577087 0.000000 0.000000
1 0.523772 0.000000 0.000000
2 -0.713544 0.000000 0.000000
3 -1.860761 0.000000 0.560145
4 -1.265934 0.000000 -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
```

Calling fillna with a dict you can use a different fill value for each column:

```
In [251]: df.fillna({1: 0.5, 3: -1})
Out[251]:
                             2
0 -0.577087 0.500000
                           NaN
                           NaN
1 0.523772 0.500000
2 -0.713544 0.500000
3 -1.860761 0.500000 0.560145
4 -1.265934 0.500000 -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
```

fillna returns a new object, but you can modify the existing object in place:

```
# always returns a reference to the filled object
In [252]: = df.fillna(0, inplace=True)
In [253]: df
Out[253]:
0 -0.577087 0.000000 0.000000
1 0.523772 0.000000 0.000000
2 -0.713544 0.000000 0.000000
3 -1.860761 0.000000 0.560145
```

```
4 -1.265934 0.000000 -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
```

The same interpolation methods available for reindexing can be used with fillna:

```
In [254]: df = DataFrame(np.random.randn(6, 3))
In [255]: df.ix[2:, 1] = NA; df.ix[4:, 2] = NA
In [256]: df
Out[256]:
                   1
                             2
0 0.286350 0.377984 -0.753887
1 0.331286 1.349742 0.069877
2 0.246674
                 NaN 1.004812
3 1.327195
                 NaN -1.549106
4 0.022185
                 NaN
5 0.862580
                 NaN
                           NaN
                                       In [258]: df.fillna(method='ffill', limit=2)
In [257]: df.fillna(method='ffill')
Out[257]:
                                       Out[258]:
0 0.286350 0.377984 -0.753887
                                       0 0.286350 0.377984 -0.753887
1 0.331286 1.349742 0.069877
                                       1 0.331286 1.349742 0.069877
2 0.246674 1.349742 1.004812
                                       2 0.246674 1.349742 1.004812
3 1.327195 1.349742 -1.549106
                                       3 1.327195 1.349742 -1.549106
4 0.022185 1.349742 -1.549106
                                       4 0.022185
                                                         NaN -1.549106
5 0.862580 1.349742 -1.549106
                                       5 0.862580
                                                        NaN -1.549106
```

With fillna you can do lots of other things with a little creativity. For example, you might pass the mean or median value of a Series:

```
In [259]: data = Series([1., NA, 3.5, NA, 7])
In [260]: data.fillna(data.mean())
Out[260]:
     1.000000
0
1
     3.833333
2
     3.500000
     3.833333
     7.000000
```

See Table 5-13 for a reference on fillna.

Table 5-13. fillna function arguments

Argument	Description
value	Scalar value or dict-like object to use to fill missing values
method	Interpolation, by default 'ffill' if function called with no other arguments
axis	Axis to fill on, default axis=0
inplace	Modify the calling object without producing a copy
limit	For forward and backward filling, maximum number of consecutive periods to fill

Hierarchical Indexing

Hierarchical indexing is an important feature of pandas enabling you to have multiple (two or more) index *levels* on an axis. Somewhat abstractly, it provides a way for you to work with higher dimensional data in a lower dimensional form. Let's start with a simple example; create a Series with a list of lists or arrays as the index:

```
In [261]: data = Series(np.random.randn(10),
                      index=[['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd'],
                             [1, 2, 3, 1, 2, 3, 1, 2, 2, 3]])
   . . . . . :
In [262]: data
Out[262]:
a 1 0.670216
  2 0.852965
  3 -0.955869
 1 -0.023493
  2 -2.304234
  3 -0.652469
c 1 -1.218302
  2 -1.332610
d 2 1.074623
     0.723642
```

What you're seeing is a prettified view of a Series with a MultiIndex as its index. The "gaps" in the index display mean "use the label directly above":

```
In [263]: data.index
Out[263]:
MultiIndex
[('a', 1) ('a', 2) ('a', 3) ('b', 1) ('b', 2) ('b', 3) ('c', 1)
('c', 2) ('d', 2) ('d', 3)]
```

With a hierarchically-indexed object, so-called *partial* indexing is possible, enabling you to concisely select subsets of the data:

```
In [264]: data['b']
Out[264]:
1 -0.023493
2 -2.304234
3 -0.652469
In [265]: data['b':'c']
                            In [266]: data.ix[['b', 'd']]
                           Out[266]:
Out[265]:
                            b 1 -0.023493
b 1 -0.023493
  2 -2.304234
                              2 -2.304234
  3 -0.652469
                              3 -0.652469
c 1 -1.218302
                            d 2 1.074623
  2 -1.332610
                                   0.723642
```

Selection is even possible in some cases from an "inner" level:

```
In [267]: data[:, 2]
Out[267]:
    0.852965
```

```
b -2.304234
c -1.332610
    1.074623
```

Hierarchical indexing plays a critical role in reshaping data and group-based operations like forming a pivot table. For example, this data could be rearranged into a DataFrame using its unstack method:

```
In [268]: data.unstack()
Out[268]:
                  2
a 0.670216 0.852965 -0.955869
b -0.023493 -2.304234 -0.652469
c -1.218302 -1.332610 NaN
       NaN 1.074623 0.723642
```

The inverse operation of unstack is stack:

```
In [269]: data.unstack().stack()
Out[269]:
a 1
      0.670216
  2
       0.852965
  3 -0.955869
b
 1 -0.023493
  2 -2.304234
  3 -0.652469
 1 -1.218302
  2 -1.332610
d
 2
       1.074623
       0.723642
```

stack and unstack will be explored in more detail in Chapter 7.

With a DataFrame, either axis can have a hierarchical index:

```
In [270]: frame = DataFrame(np.arange(12).reshape((4, 3)),
                      . . . . . :
  . . . . :
  . . . . :
In [271]: frame
Out[271]:
    Ohio
             Colorado
   Green Red
               Green
a 1
     0
         1
                   2
         4
 2
       3
                   5
b 1
       6
         7
                   8
         10
                  11
```

The hierarchical levels can have names (as strings or any Python objects). If so, these will show up in the console output (don't confuse the index names with the axis labels!):

```
In [272]: frame.index.names = ['key1', 'key2']
In [273]: frame.columns.names = ['state', 'color']
In [274]: frame
```

Out[2	274]:			
state		Ohio	Colorado	
color		Green Red		Green
key1	key2			
a	1	0	1	2
	2	3	4	5
b	1	6	7	8
	2	9	10	11

With partial column indexing you can similarly select groups of columns:

```
In [275]: frame['Ohio']
Out[275]:
          Green Red
color
key1 key2
    1
              0
                   1
    2
              3
                   4
    1
              6
                   7
```

A MultiIndex can be created by itself and then reused; the columns in the above Data-Frame with level names could be created like this:

```
MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']],
                       names=['state', 'color'])
```

Reordering and Sorting Levels

At times you will need to rearrange the order of the levels on an axis or sort the data by the values in one specific level. The swaplevel takes two level numbers or names and returns a new object with the levels interchanged (but the data is otherwise unaltered):

```
In [276]: frame.swaplevel('key1', 'key2')
Out[276]:
                     Colorado
state
           Ohio
color
          Green Red
                       Green
key2 key1
                            2
  а
             0
                  1
                            5
                  7
2
    b
              9
                 10
                           11
```

sortlevel, on the other hand, sorts the data (stably) using only the values in a single level. When swapping levels, it's not uncommon to also use sortlevel so that the result is lexicographically sorted:

<pre>In [277]: frame.sortlevel(1) Out[277]:</pre>					<pre>In [278]: frame.swaplevel(0, 1).sortlevel(0) Out[278]:</pre>				
stat	-	0hio		Colorado	sta		Ohio		Colorado
colo		Green	Green Red Green color			Green	Red	Green	
key1	key1 key2		key	key2 key1					
a	1	0	1	2	1	a	0	1	2
b	1	6	7	8		b	6	7	8
a	2	3	4	5	2	a	3	4	5
b	2	9	10	11		b	9	10	11

Data selection performance is much better on hierarchically indexed objects if the index is lexicographically sorted starting with the outermost level, that is, the result of calling sortlevel(0) or sort_index().

Summary Statistics by Level

Many descriptive and summary statistics on DataFrame and Series have a level option in which you can specify the level you want to sum by on a particular axis. Consider the above DataFrame; we can sum by level on either the rows or columns like so:

```
In [279]: frame.sum(level='key2')
Out[279]:
state Ohio
                Colorado
color Green Red Green
            8
1
        6
                     10
        12 14
In [280]: frame.sum(level='color', axis=1)
Out[280]:
         Green Red
color
key1 key2
a 1
    2
            8 4
                 7
    1
           14
            20
              10
```

Under the hood, this utilizes pandas's groupby machinery which will be discussed in more detail later in the book.

Using a DataFrame's Columns

It's not unusual to want to use one or more columns from a DataFrame as the row index; alternatively, you may wish to move the row index into the DataFrame's columns. Here's an example DataFrame:

```
In [281]: frame = DataFrame({'a': range(7), 'b': range(7, 0, -1),
                          'c': ['one', 'one', 'two', 'two', 'two', 'two'],
  . . . . :
                          'd': [0, 1, 2, 0, 1, 2, 3]})
In [282]: frame
Out[282]:
  a b
         c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3
```

DataFrame's set index function will create a new DataFrame using one or more of its columns as the index:

```
In [283]: frame2 = frame.set index(['c', 'd'])
In [284]: frame2
Out[284]:
     a b
one 0 0 7
  1 1 6
  2 2 5
two 0 3 4
   1 4 3
   2 5 2
```

By default the columns are removed from the DataFrame, though you can leave them in:

```
In [285]: frame.set index(['c', 'd'], drop=False)
Out[285]:
     a b
            c d
one 0 0 7 one 0
  1 1 6 one 1
   2 2 5 one 2
two 0 3 4 two 0
   1 4 3 two 1
   2 5 2 two 2
   3 6 1 two 3
```

reset index, on the other hand, does the opposite of set index; the hierarchical index levels are are moved into the columns:

```
In [286]: frame2.reset index()
Out[286]:
   c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1
```

Other pandas Topics

Here are some additional topics that may be of use to you in your data travels.

Integer Indexing

Working with pandas objects indexed by integers is something that often trips up new users due to some differences with indexing semantics on built-in Python data

structures like lists and tuples. For example, you would not expect the following code to generate an error:

```
ser = Series(np.arange(3.))
ser[-1]
```

In this case, pandas could "fall back" on integer indexing, but there's not a safe and general way (that I know of) to do this without introducing subtle bugs. Here we have an index containing 0, 1, 2, but inferring what the user wants (label-based indexing or position-based) is difficult::

```
In [288]: ser
Out[288]:
0
1
    1
```

On the other hand, with a non-integer index, there is no potential for ambiguity:

```
In [289]: ser2 = Series(np.arange(3.), index=['a', 'b', 'c'])
In [290]: ser2[-1]
Out[290]: 2.0
```

To keep things consistent, if you have an axis index containing indexers, data selection with integers will always be label-oriented. This includes slicing with ix, too:

```
In [291]: ser.ix[:1]
Out[291]:
0
   0
    1
1
```

In cases where you need reliable position-based indexing regardless of the index type, you can use the iget_value method from Series and irow and icol methods from DataFrame:

```
In [292]: ser3 = Series(range(3), index=[-5, 1, 3])
In [293]: ser3.iget value(2)
Out[293]: 2
In [294]: frame = DataFrame(np.arange(6).reshape(3, 2)), index=[2, 0, 1])
In [295]: frame.irow(0)
Out[295]:
0 0
Name: 2
```

Panel Data

While not a major topic of this book, pandas has a Panel data structure, which you can think of as a three-dimensional analogue of DataFrame. Much of the development focus of pandas has been in tabular data manipulations as these are easier to reason about,

and hierarchical indexing makes using truly N-dimensional arrays unnecessary in a lot of cases.

To create a Panel, you can use a dict of DataFrame objects or a three-dimensional ndarray:

```
import pandas.io.data as web
pdata = pd.Panel(dict((stk, web.get_data_yahoo(stk, '1/1/2009', '6/1/2012'))
                       for stk in ['AAPL', 'GOOG', 'MSFT', 'DELL']))
```

Each item (the analogue of columns in a DataFrame) in the Panel is a DataFrame:

```
In [297]: pdata
Out[297]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 861 (major) x 6 (minor)
Items: AAPL to MSFT
Major axis: 2009-01-02 00:00:00 to 2012-06-01 00:00:00
Minor axis: Open to Adj Close
In [298]: pdata = pdata.swapaxes('items', 'minor')
In [299]: pdata['Adj Close']
Out[299]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 861 entries, 2009-01-02 00:00:00 to 2012-06-01 00:00:00
Data columns:
AAPL
       861 non-null values
       861 non-null values
DELL
GOOG
       861 non-null values
       861 non-null values
MSFT
dtypes: float64(4)
```

ix-based label indexing generalizes to three dimensions, so we can select all data at a particular date or a range of dates like so:

```
In [300]: pdata.ix[:, '6/1/2012', :]
Out[300]:
       0pen
              High
                      Low Close
                                    Volume Adi Close
AAPL 569.16 572.65 560.52 560.99 18606700
                                              560.99
DELL 12.15
            12.30 12.05 12.07 19396700
                                              12.07
GOOG 571.79 572.65 568.35 570.98
                                  3057900
                                              570.98
MSFT 28.76 28.96 28.44 28.45 56634300
                                              28.45
In [301]: pdata.ix['Adj Close', '5/22/2012':, :]
Out[301]:
            AAPL DELL
                          GOOG MSFT
Date
2012-05-22 556.97 15.08 600.80 29.76
2012-05-23 570.56 12.49 609.46 29.11
2012-05-24 565.32 12.45 603.66 29.07
2012-05-25 562.29 12.46 591.53 29.06
2012-05-29 572.27 12.66 594.34 29.56
2012-05-30 579.17 12.56 588.23 29.34
```

```
2012-05-31 577.73 12.33 580.86 29.19
2012-06-01 560.99 12.07 570.98 28.45
```

An alternate way to represent panel data, especially for fitting statistical models, is in "stacked" DataFrame form:

```
In [302]: stacked = pdata.ix[:, '5/30/2012':, :].to_frame()
In [303]: stacked
Out[303]:
                  0pen
                          High
                                       Close
                                                Volume Adj Close
                                  Low
          minor
major
2012-05-30 AAPL
                569.20 579.99 566.56 579.17 18908200
                                                           579.17
          DELL
                 12.59
                        12.70
                                12.46
                                       12.56 19787800
                                                            12.56
          GOOG
                588.16 591.90
                               583.53 588.23 1906700
                                                           588.23
          MSFT
                 29.35 29.48
                               29.12
                                       29.34 41585500
                                                           29.34
2012-05-31 AAPL
                580.74 581.50 571.46 577.73 17559800
                                                           577.73
          DELL
                 12.53
                        12.54
                                12.33
                                       12.33 19955500
                                                            12.33
          G00G
                588.72 590.00
                               579.00 580.86
                                                           580.86
                                               2968300
          MSFT
                 29.30
                        29.42
                                28.94
                                       29.19 39134000
                                                            29.19
2012-06-01 AAPL
                569.16 572.65 560.52 560.99 18606700
                                                           560.99
          DELL
                 12.15 12.30
                                12.05
                                       12.07 19396700
                                                           12.07
          GOOG
                571.79 572.65 568.35 570.98
                                                3057900
                                                           570.98
          MSFT
                 28.76 28.96
                                28.44
                                       28.45 56634300
                                                            28.45
```

DataFrame has a related to panel method, the inverse of to frame:

```
In [304]: stacked.to panel()
Out[304]:
```

<class 'pandas.core.panel.Panel'>

Dimensions: 6 (items) x 3 (major) x 4 (minor)

Items: Open to Adj Close

Major axis: 2012-05-30 00:00:00 to 2012-06-01 00:00:00

Minor axis: AAPL to MSFT