CEE110

Homework #6

You must show all work for full credit and submit it through the Gradescope by the deadline.

1. Suppose *X* and *Y* are the number of new and used batteries chosen with the accompanying joint probability table as follows:

		y		
		0	1	2
	0	0.125	0.075	0.05
	1	0.1	0.06	0.04
X	2	0.125	0.075	0.05
	3	0.15	0.09	0.06

- a. What is the probability that there is exactly one new battery and exactly one used battery?
- b. What is the probability that there is at most one new battery and at most one used battery?
- c. What is the probability that there is exactly one new battery? Exactly one used battery?
- d. Are *X* and *Y* independent? Explain.
- **2.** In a gas station in Westwood, X and Y denote the number of hoses being used at gasoline and diesel pumps at a particular time, respectively with the joint pmf table as follows:

		y		
		0	1	2
	0	0.09	0.08	0.03
X	1	0.07	0.18	0.05
	2	0.05	0.15	0.3

- a. Given that X = 1, determine the conditional pmf of Y.
- b. Given that two hoses are in use at the gasoline pump, what is the conditional pmf of the number of hoses in use on the diesel pump?
- c. Use the result of part (b) to calculate the conditional probability $P(Y \le 1/X = 2)$.
- d. Given that two hoses are in use at the diesel pump, what is the conditional pmf of the number in use at the gasoline pump?

- **3.** For a particular computer in Seasnet Lab, X and Y are the lifetime of the first and second memory chip, which follow an exponential distribution with parameter $\lambda=1$.
 - a. Find the joint pdf of X and Y.
 - b. Find the probability that $X \le 1$ and $Y \le 1$.
 - c. Find the probability that the total lifetime of the two memory chips is at most 2.
 - d. Find the probability that the total lifetime is between 1 and 2.
- **4.** For a student in CEE110, X and Y are the number of points earned on the midterm and final exams, respectively, with the accompanying table as follows.

		у				
			0	50	75	100
x	0	0.01	0.05	0.03	0.01	
	50	0.02	0.2	0.15	0.1	
	100	0.01	0.14	0.15	0.13	

- a. If the score recorded in the gradebook is the total number of points earned on the two exams, what is the expected recorded score E(X + Y)?
- b. If the maximum of the two scores is recorded, what is the expected recorded score?
- c. Compute the covariance for X and Y.
- d. Compute correlation coefficient for X and Y.
- 5. Each front tire on a particular vehicle is supposed to be filled to a pressure of 26 psi. Suppose that X and Y are the actual air pressure for the right tire and the left tire, respectively, with joint pdf:

$$f(x,y) = \begin{cases} K(x^2 + y^2) & 20 \le x \le 30, \ 20 \le y \le 30 \\ 0 & otherwise \end{cases}$$

- a. Determine the (marginal) distribution of air pressure in the right tire alone.
- b. Are X and Y independent?
- c. Compute the covariance between X and Y.
- d. Compute the correlation coefficient for this \boldsymbol{X} and \boldsymbol{Y} .

6. The joint probability density function of the number of hours for two mountain bike tires to be filled to a pressure of 25 psi is shown below. X is for the front tire and Y is for the rear tire

$$f(x,y) = \begin{cases} k(x+y)^2 & 0 < x < 1, & 0 < y < 1 \\ 0 & otherwise \end{cases}$$
 What is the value of k to make the join density function legitimate?

- Compute the marginal density function of the number of hours for each tire.
- Evaluate whether X and Y are independent and make a justification.
- d. Evaluate the correlation of X and Y