厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§4.6 **不变子空间**

习题

1. 设 V 是 4 维线性空间, φ 在基 $\xi_1, \xi_2, \xi_3, \xi_4$ 下的矩阵为

$$\begin{pmatrix}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -2 \\
2 & -1 & 0 & 1 \\
2 & -1 & -1 & 2
\end{pmatrix}.$$

求证: $U = \langle \xi_1 + 2\xi_2, \xi_2 + \xi_3 + 2\xi_4 \rangle$ 是 φ - 子空间.

证明 直接计算得 $\varphi(\xi_1+2\xi_2)=\xi_1+2\xi_3+2\xi_4+2\xi_2-2\xi_3-2\xi_4=\xi_1+2\xi_2\in U,$ $\xi_2+\xi_3+2\xi_4=\xi_2-\xi_3-\xi_4+2\xi_1+4\xi_2-\xi_4-2\xi_1-4\xi_2+2\xi_3+4\xi_4=\xi_2+\xi_3+2\xi_4\in U,$ 所以 U 是 $\varphi-$ 子空间. \square

2. 设 φ , ψ 是 n 维线性空间 V 的线性变换,且满足 $\varphi\psi=\psi\varphi$, 则 $\mathrm{Ker}\varphi$ 是 $\psi-$ 子空间, $\mathrm{Im}\varphi$ 是 $\psi-$ 子空间.

证明: (法一) 对任意 $\alpha \in \text{Ker}\varphi$, $\varphi(\alpha) = 0$. 因 ψ 是线性变换且 $\varphi\psi = \psi\varphi$, 所 以 $\varphi(\psi(\alpha)) = \psi(\varphi(\alpha)) = \psi(0) = 0$, 即 $\psi(\alpha) \in \text{Ker}\varphi$, 因此 $\text{Ker}\varphi$ 是 ψ — 子空间.

对任意 $\beta \in \operatorname{Im}\varphi$, 存在 $\alpha \in V$, 使得 $\varphi(\alpha) = \beta$. 因 ψ 是 V 的线性变换,所以 $\psi(\alpha) \in V$. 又因为 $\varphi\psi = \psi\varphi$, 所以 $\psi(\beta) = \psi(\varphi(\alpha)) = \varphi(\psi(\alpha)) \in \operatorname{Im}\varphi$. 这就证明了 $\operatorname{Im}\varphi$ 是 ψ — 子空间.

(法二) U 是 $\mathrm{Ker}\varphi$ 子空间的充要条件是 $\varphi(U)=0$. 显然 $\varphi(\mathrm{Ker}\varphi)=0$, 所以由 $\varphi\psi=\psi\varphi$ 及 ψ 是线性变换知 $\varphi(\psi(\mathrm{Ker}\varphi))=\psi(\varphi(\mathrm{Ker}\varphi))=\psi(0)=0$, 这就证明了 $\mathrm{Ker}\varphi$ 是 $\psi-$ 子空间.

因为 ψ 是 V 的线性变换,因此 $\psi(V) \subseteq V$. 又因为 $\varphi \psi = \psi \varphi$,所以 $\psi(\operatorname{Im} \varphi) = \psi(\varphi(V)) = \varphi(\psi(V)) \subseteq \varphi(V) = \operatorname{Im} \varphi$. 故 $\operatorname{Im} \varphi$ 是 $\psi -$ 子空间. \square

- 3. 设 φ 是 n 维线性空间 V 的线性变换, U 是 V 的 φ 子空间. 若 φ 可逆. 求证:
 - $(1) \varphi|_U$ 可逆;
 - (2) U 是 φ^{-1} 子空间,且 $(\varphi|_U)^{-1} = (\varphi^{-1})|_U$.

证明: (法一) 因 U 是 V 的 φ — 子空间,所以 $\varphi|_U: U \to U$, $\alpha \mapsto \varphi(\alpha)$. 若 $\alpha \in U$, 使得 $0 = \varphi|_U(\alpha) = \varphi(\alpha)$. 因 φ 可逆,所以 $\alpha = 0$. 因此 $\varphi|_U$ 是单射,又其 为线性变换,所以是满设,因此 $\varphi|_U$ 可逆.

因 $\varphi|_U$ 是 U 的可逆变换,所以对任意的 $\beta \in U$,存在唯一的 $\alpha \in U$,使得 $\beta = \varphi|_U(\alpha)$. 又因为 $\varphi|_U$ 是 φ 在 U 上的限制,所以 $\beta = \varphi|_U(\alpha) = \varphi(\alpha)$. 而 $\varphi|_U$ 和 φ 均可逆,因此 $(\varphi|_U)^{-1}(\beta) = \alpha = \varphi^{-1}(\beta)$,这就证明了 U 是 φ^{-1} — 子空间且 $(\varphi|_U)^{-1} = (\varphi^{-1})|_U$.

(法二) 设 $\xi_1, \xi_2, \dots, \xi_r$ 是 U 的一个基,因 φ 可逆,所以 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_r)$ 线性无关.又因 U 是 φ — 子空间,所以 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_r) \in U$,从而也是 U 的一个基.

若 $0 = \varphi|_U(\alpha)$, 即 $0 = \varphi(\alpha)$, 因 φ 可逆, 因此 $\alpha = 0$. 另一方面, 对任意 $\beta \in U$, $\beta = \sum_{i=1}^r a_i \varphi(\xi_i)$, 令 $\alpha = \sum_{i=1}^r a_i \xi_i$, 则 $\alpha \in U$ 且 $\beta = \varphi(\alpha) = \varphi|_U(\alpha)$. 从而 $\varphi|_U$ 可逆. 且 $\varphi|_U$ 和 φ 均可逆, 所以对 β , $(\varphi|_U)^{-1}(\beta) = \alpha = \varphi^{-1}(\beta)$. 注意到 $\alpha \in U$, 说 明 U 是 φ^{-1} — 子空间且 $(\varphi|_U)^{-1} = (\varphi^{-1})|_U$.

(法三) 将 U 的基 $\xi_1, \xi_2, \dots, \xi_r$ 扩为 V 的一个基 $\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n$. 因 U 是 φ — 子空间,所以

$$\varphi(\xi_1,\dots,\xi_r,\xi_{r+1},\dots,\xi_n) = (\xi_1,\dots,\xi_r,\xi_{r+1},\dots,\xi_n) \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix},$$

其中 A_{11} 为 r 阶方阵. 且 $\varphi|_U(\xi_1,\dots,\xi_r)=(\xi_1,\dots,\xi_r)A_{11}$. 又 φ 是可逆变换,则

$$\varphi^{-1}(\xi_1,\dots,\xi_r,\xi_{r+1},\dots,\xi_n) = (\xi_1,\dots,\xi_r,\xi_{r+1},\dots,\xi_n) \begin{pmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{pmatrix}.$$

$$(\varphi|_U)^{-1}(\xi_1,\dots,\xi_r) = (\xi_1,\dots,\xi_r)A_{11}^{-1},$$

说明 $\varphi|_U$ 可逆, U 是 φ^{-1} — 子空间,且 $(\varphi|_U)^{-1} = \varphi^{-1}|_U$. \square

4. 设 φ 是 n 维线性空间 V 的线性变换, U 是 V 的 φ - 子空间. 证明

$$\dim(\mathrm{Ker}\varphi|_U) + \dim\varphi(U) = \dim U.$$

证明 (法一) 因 $U \neq V$ 的 φ 子空间, 所以 $\varphi|_U \neq U$ 的线性变换, 且

$$\operatorname{Im}\varphi|_{U} = \{\varphi|_{U}(\alpha)|\alpha \in U\} = \{\varphi(\alpha)|\alpha \in U\} = \varphi(U),$$

对 $\varphi|_U$ 用维数公式, 得

 $\dim U = \dim(\operatorname{Ker}\varphi|_U) + \dim(\operatorname{Im}\varphi|_U) = \dim(\operatorname{Ker}\varphi|_U) + \dim\varphi(U).$

(法二) 设 $\xi_1, \xi_2, \cdots, \xi_r$ 是 $\operatorname{Ker} \varphi|_U$ 的一个基,它们是 U 中线性无关向量,可扩为 U 的一个基 $\xi_1, \cdots, \xi_r, \xi_{r+1}, \cdots, \xi_s$. 则只要证明 $\varphi(\xi_{r+1}), \cdots, \varphi(\xi_s)$ 是 $\varphi(U)$ 的一个基,命题即得证. 事实上,若 $a_{r+1}\varphi(\xi_{r+1})+\cdots+a_s\varphi(\xi_s)=0$,则因为 φ 是线性变换,所以 $\varphi(a_{r+1}\xi_{r+1}+\cdots+a_s\xi_s)=0$. 注意到 $\varphi|_U$ 的定义有 $\varphi|_U(a_{r+1}\xi_{r+1}+\cdots+a_s\xi_s)=0$. 该式说明 $a_{r+1}\xi_{r+1}+\cdots+a_s\xi_s\in \operatorname{Ker} \varphi|_U$,故 $a_{r+1}\xi_{r+1}+\cdots+a_s\xi_s=a_1\xi_1+\cdots+a_r\xi_r$,而 $\xi_1, \cdots, \xi_r, \xi_{r+1}, \cdots, \xi_s$ 线性无关,因此 $a_i=0$, $(i=1,2,\cdots,s)$. 此外,对任意 $\beta\in\varphi(U)$,存在 $\alpha=\sum_{i=1}^s a_i\xi_i\in U$,使得 $\beta=\varphi(\alpha)=\sum_{i=r+1}^s a_i\varphi(\xi_i)$. 这就证明了 $\varphi(\xi_{r+1}), \cdots, \varphi(\xi_s)$ 是 $\varphi(U)$ 的一个基. \square

(林鹭解答)