Statytics FOR

DATA SCIENCE

UNIT-2

feedback/corrections: vibha @ pesu.pes.edu

Vibha Masti

NUMBER GENERATION

Inverse transform technique

Direct transformation for the Normal Distribution

Convolution Method

Acceptance / Rejection Method

· All assume that uniformly distributed numbers in Co, 1] exists

Inverse transform technique

- · cdf is F(x) where x is the random variable
- · Set FCX) = R where R is a uniformly distributed random variable in [0,1]
- · Solve F(x) = R for x in terms of R (in range of x)
- · Generate uniform random numbers R1, R2, R3... and compute Xi by

 $X_i = F^{-1}(R_i)$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x < b \\ 1, & x \geq b \end{cases}$$

$$R = \frac{x-a}{b-a}$$

$$R(b-a) + a = X$$
 where $R \in [0,1]$
 $Xi = a + Ri(b-a)$

the probability of getting x = 1 is p

$$P(X=1) = P$$

- · Generate U from U(0,1)
- If $U \le p$, X = 1; else X = 0

$$P(X=i) = \binom{n}{i} p^{i} (1-p)^{n-i}$$

i number of events in a unit

· If
$$Y_i = 1$$
, number of successes out of n increases

· Set X = Y1 + Y2 + ... + Yn (sum of n Bernoulli RVs)

· Total no. of successes =
$$\sum_{i=1}^{n} Y_i$$

$$P(x=i) = \frac{\lambda^{i}}{i!} e^{-\lambda}$$

Method 1

- · Generate exponential inter-event times Y, Y2... with mean 1
 - · Let I be the smallest index such that

$$\sum_{i=1}^{I+1} Y_i > \lambda$$

· Set X = I

Method 2

Steps

- · Generate U(0,17) RVs U1, U2...
- · Let N be the smallest index such that

1. Set i=0, P=1

- 2. Generate U_{i+1} from $U(o_{i})$ and replace P with P· U_{i+1} 3. If P $\langle e^{-\lambda}$, accept N=i and go to step 1.
- Else, reject N=i and increment i and return to step 2.

Upon completion of step 3, $P = \prod_{i=1}^{N+1} U_i$

• If N=n, then n+1 RVs are requested. So, the average number is given by $E(N+1) = \lambda + 1$

Q26. Generate 3 Poisson variates with mean
$$\lambda=0.2$$
 for the random numbers $R=0.4357$, 0.4146, 0.8353, 0.9952, 0.8004

$$e^{-\lambda} = e^{-0.2} = 0.8187$$
1. For X_1

(b) Accept
$$N=0$$

(c) $\chi_2=0$

(d) Accept N=2

Poisson numbers: 0,0,2

(e) $x_2 = 2$

$$i=0$$
, $P=1$, $R=0.8353$, $R_2=0.9952$, $R_3=0.8004$
(a) $P=1\times0.8353=0.8353>0.8187\times i=0$

(c)
$$\chi_2 = 0$$

3. For χ_3

(b) $P = 0.8353 \times 0.9952 = 0.8313 > 0.8187 \times i=1$ (c) $P = 0.8313 \times 0.8004 = 0.6654 < 0.8187 \checkmark i = 2$

Cheneration of Normal RVs

Acceptance / Rejection Technique

· If X~N(0,12), the pdf of X is

· total area

$$c = \int t(x) dx \ge \int f(x) dx = 1$$

- · However, t(x) is a density
- · Let $g(x) = \frac{t(x)}{c}$ =) t(x) = c g(x)
- · If X~N(0,12), the pdf of [X] is

$$f(x) = 2 e^{-x^2/2}$$

g(x)

f(x)

• let
$$g(x) = \sqrt{\frac{2e}{\pi}} e^{-x}$$

Steps

- 1. Generate exponential Y with mean 1
- 2. Generate U from $U(0_1)$ 3. If $U \le e^{(Y-1)^2/2}$, accept Y $\frac{f(Y)}{g(Y)} \le C$

Else, go to step 1

4. Return X=Y or X=-Y with probability 0.5

Box-Muller Method

- · Box-Muller Transform transforms from a two-dimensional uniform distribution to a two-dimensional bivariate normal distribution)
- · If U, and U2 are independent RVs from U(0,1)

$$z_1 = \sqrt{-2 \text{ Im } U_1} \cos(2\pi U_2)$$
 = for single -variable normal distribution
$$z_2 = \sqrt{-2 \text{ In } U_1} \sin(2\pi U_2)$$

 $\frac{Z_1}{Z_1} = \tan(2\pi V_2)$

· By solving for U1 and U2

 $-lm U_1 = \frac{21^2 + 22^2}{2}$

$$z_1^2 + z_1^2 = -2 \ln U_1$$

· Taking the Jacobian
$$\frac{\partial(U_1, U_2)}{\partial(z_1, z_2)}$$

Q27. Suppose the height of adult males in a certain area is normally distributed with a mean of 168 cm and a standard deviation of 8 cm. Simulate the height of 4 adults.

$$X \sim N(168, 8^2)$$
 $x = 168$
 $x = 8$
 $x = 168$
 $x = 8$
 $x = 168$

· We first generate random 2 values

$$X_1$$
Let $U_1 = 0.2432$, $U_2 = 0.5214$

$$z_1 = \sqrt{-2lm(0.2432)}$$
 cos($2\pi \times 0.5214$)
 $z_1 = -1.666$

$$x_1 = z_1 \times \sigma + \mu = -1.666 \times 8 + 168$$

$$x_1 = 164.67$$
 cm

$$X_2$$
 Let $U_1 = 0.8921$, $U_2 = 0.6232$

$$z_2 = \sqrt{-2 \ln(0.8921)}$$
 (as $(2\pi \times 0.6232)$
 $z_1 = -0.3417$

$$x_2 = 165.27 \text{ cm}$$

Let
$$U_1 = 0.4421$$
, $U_2 = 0.0012$
 $2_2 = \sqrt{-2 \ln(0.4421)}$ CAL(271 K 0.0012)

 $2_3 = 1.2776$

K₃ = 178.72 cm

K₄

Let $U_1 = 0.4921$, $U_2 = 0.7324$
 $2_4 = \sqrt{-2 \ln(0.9921)}$ COS(271X0.7314)

 $2_4 = -0.0139$

X₄ = 167.89 cm

Cas. suppose the na of shipments, α , on the loading dock of a company is either 0, 1 or 2. Generate RVs given $U = 0.23$, 0.52, 0.81, 0.34

 α R(x) F(x) Caiscrete RVs inverse)

0 0.5 0.5

1 0.3 0.8

2 0.2 1.0

Let $U \sim U(0_1)$
 $U_1 = 0.23 \Rightarrow U < 0.5 \Rightarrow X_1 = 0$
 $U_2 = 0.23 \Rightarrow U < 0.5 \Rightarrow X_2 = 0$
 $2 = \begin{cases} 0 & U \le 0.5 \\ 1 & 0.5 < U \le 0.8 \end{cases}$
 $2 = \begin{cases} 1 & 0.5 < U \le 0.8 \\ 2 & 0.2 & 0.94 \Rightarrow U > 0.8 \Rightarrow X_2 = 0 \end{cases}$
 $2 = \begin{cases} 1 & 0.5 < U \le 0.8 \\ 2 & 0.2 & 0.94 \Rightarrow U > 0.8 \Rightarrow X_2 = 0 \end{cases}$
 $2 = \begin{cases} 1 & 0.5 < U \le 0.8 \\ 2 & 0.9 & 0.94 \Rightarrow U > 0.8 \Rightarrow X_2 = 0 \end{cases}$