B.Sc. (Honours) Examination, 2019

Semester-V (CBCS)

Computer Science Course : CC-12

(Theory of Computation)

Time: 3 Hours

Full Marks: 60

Questions are of value as indicated in the margin Answer Question No. 1 and any five from the rest

1. Answer **any four** from the following:

 $5 \times 4 = 20$

a) Distinguish between Moore machine and Mealy machine. Convert the following Mealy machine into its equivalent Moore machine.

Next State

Present	a = 0		a = 1	
State	State	output	State	output
$\rightarrow q_1$	q_2	\mathbf{z}_1	q_3	\mathbf{z}_1
q_2	q_2	\mathbf{Z}_2	q_3	\mathbf{z}_1
q_3	q_2	z_1	q_3	\mathbf{z}_2

- b) State and prove Arden's Theorem.
- c) Write the algorithm to remove variables from a context free grammar that do not derive any terminal strings.
- d) Show that the set $L = \{a^{i^2} \mid i \ge 1\}$ is not regular.
- e) Define the following:
 - i) Yield of a derivation tree.
 - ii) ID of a push down automata.
 - iii) IID of a Turing machine.
 - iv) Regular grammar.
 - v) Chomsky Normal form.
- 2. a) Find whether the two DFA's M_1 and M_2 are equivalent or not.

b) Consider $\sum = \{a, b, c, d, e\}$. What is the number of strings in Σ^* of length 4 such that no symbol is used more than once?

3. a) Find the NFA after removing the Λ -moves from the following NFA:

b) Write a PDA which accepts the language

$$L = \{a^n b^n; n > 0\}$$

4. a) Consider the transition table of NFA, M as follows.

4+4=8

M	а	b
State		
$\rightarrow q_0$		q_1,q_2
q_1		q_0
\rightarrow q_2	q_0, q_1	

Find the equivalent DFA.

b) Draw the transition diagram for both the NFA and the DFA obtained above.

5. a) Construct a DFA with reduced states equivalent to (a+bb)a*b+ba. 5+3=8

b) Construct a regular grammar generating the regular set represented by P = 0*1 (0+1)*.

6. a) What do you mean by an ambiguous grammar? Give a suitable example. 4+4=8

b) Reduce the following grammar into Chomsky Normal form:

$$S \rightarrow 0A1B \ A \rightarrow 0A \mid 0 \ B \rightarrow 1B \mid 1$$

7. a) Consider the following productions:

$$S \rightarrow aB \mid bA \mid A \rightarrow aS \mid bAA \mid a \mid B \rightarrow bS \mid aBB \mid b$$

6+2=8

Find left most derivation, right most derivation and parse tree for the string aaabbabbba.

- b) Can you conclude whether the above grammar is ambiguous or not?
- 8. a) Design a Turing machine, M, to recognize the language $\{1^n 2^n 3^n \mid n \ge 1\}$. 5+3=8
 - b) Draw the transition systems recognizing

i)
$$R = \Lambda$$
 ii) $R = \phi$ iii) $R = a$