WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

A1 (43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE).

(30) Priority Data:

95113021.0 18 August 1995 (18.08.95) EP (34) Countries for which the regional or

international application was filed:

DE et al.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Database of human lg gene segments Translation in amino acid sequences Alignment of protein sequences Rearranged Germline sequences sequences Computation of Assignment to families germline counterpart Assignment to Database of used families germline families Computation of Analysis of consensus sequences canonical structures Structural Analysis Design of CDRs Gene Design Synthetic combinatorial antibody library

,,,,

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JР	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

1 F.

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

¢

.

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3k2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

PCT/EP96/03647 WO 97/08320

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for Human Combinatorial Antibody Library. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecukle or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

PCT/EP96/03647 WO 97/08320

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ
 (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sub-libraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softwagments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified softwagments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-B, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vκ CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

Table 1B: Human lambda germline gene segments

Used Name	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humiv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	. 1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigne	d VLAMBDA N.2
gVLX-4.4	6	10	

48
SUBSTITUTE SHEET (RULE 26)

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	· 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	I-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1 -	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	- 18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49
SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	. 3	CO2 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3.	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

50

Table 1C: (continued)

Used Name'	Reference	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3 ,	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	H8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
_	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	- H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11 .	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	. 8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	80	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A2 0	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	3 1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	3 1	L12(2)	3	3,2%	125
CHEB	108	3 İ	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
			02	9	9,5%	73

WO 97/08320

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	. 1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	1	L8	8	8,4%	70
RF-KL1	97 ·	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1	· A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	. 1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	·L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108		L8	3	3,2%	72
KUE	108		L12(2)	11	11,6%	. 32
LUNm01	108		L12(2)	10	10,5%	6
HIV-b1	106		A20	4	4,3%	8
HIV-54	103		02	2	2,2%	8
· · · · · · · · · · · · · · · · · · ·			54			

54

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CAR	107	1	L12(2)	11	11,7%	79
	107	1	L12(2)	11	11,6%	50
BR. CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
	108	1	L12(2)	12	12,6%	30
KING	95	1	L24	0	0,0%	46
V13 CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
	88	. 1	012	1	1,1%	122
CLL PATIENT 9	106	1	A20	9	9,7%	8
HIV-B2	106	1	A20	9	9,7%	8
HIV-b2	88	1	A20	1	1,1%	122
CLL PATIENT 5	88	. '	L8	2	2,3%	122
CLL PATIENT 1	88	1	L8	0	0,0%	122
CLL PATIENT 2 CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
	105	1	L5	11	12,0%	8
HIV-b5 CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108		L12(2)	20	21,1%	68
1B11	108		L12(2)	20	21,1%	68
	108		L12(2)	21	22,1%	68
1H1	108		L12(2)	21	22,1%	68
2A12 CUR	109		A27	0	0,0%	66
GLO	109		A27	0	0,0%	16
RF-TS1	96		A27	Ò	0,0%	121
	109		A27	0	0,0%	67
GAR'	10:		A27	0	0,0%	66
FLO	10		A27	0	0,0%	91
PIE	10		A27	1	1,0%	51
HAH 14.1	10		A27	1	1,0%	51
HAH 14.2	,,,					

55

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	. 1	1.0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2.1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	. 3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	. 3	A27	0	0,0%	94
ROB	106	3	· A27	. 0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
HAH	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	. 3	A27	6	6,3%	87
JH'	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 .

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL,	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	. 108	3	L6	1,	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	. 99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107		L6	2	2,1%	99
LS2S3-8c	107		L6	2	2.1%	99
LS5	108		L6	1	1,1%	109
LS2S3-5	107		L6	3	3,2%	99
LUNm03	109		A27	13	13,5%	6
IARC/BL41	108		A27	13	13,7%	55
slkv22	99		A27	3	3,5%	13
71V4FF	30	3 3	L6	4	4,2%	111

5**7**

WO 97/08320

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
sikv12	101	. 3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3 -	3,2%	121
11-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3	L6	10	10,5%	121
GER	109	3	L2/L16	. 7 .	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	. 1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101		L6	4	4,7%	13
slkv15	99		L6	2	2,3%	13
bkv6	100		L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	Ĺ6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0.0%	54

59

WO 97/08320 .

Table 2A: (continued)

Name ¹	.aa²	Computed family ³	Germline gene ⁴	Diff. to germlines	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	. 3	A27	1	1,3%	54
M3.4N	91	3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
Bi	108	1	08	14	14,7%	14
AND	107		02	13	13,7%	69
2A4	109		02	12	12,6%	23
KA	108		08	19	20,0%	107
MEV	109		02	14	14,7%	29
DEE	106		02	13	14,0%	76
OU(IOC)	108		02	18	18,9%	60
HuRSV19VK	111		08	21	21,0%	115
SP2	108		02	17	17,9%	93
BJ26	99		08	21	24,1%	1
NI	112		08	24	24,2%	106
BMA 0310EUCIV2	106		L12(1)	21	22,3%	105

WO 97/08320

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A 3	0	0,0%	58
R5A3K	· 114	2	A 3	1	1,0%	125
R1C8K	114	2	A 3	1	1,0%	125
VK2.R149	113	2	A3	2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A 3	6	6,0%	92
NIM	113	2	А3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	. 2	А3	6	6,4%	96
CUM	114	2	01	7	6.9%	44
HRF1	71	2	А3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	А3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A 3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110		A27	0	0,0%	119
1-187-29	110		A27	0	0,0%	119
П117	110		A27	9	9,4%	63
HIV-loop8	108		A27	16	16,8%	8
rsv23L	108		A27	16	16,8%	7
HIV-b7	107		A27	14	14,9%	8
HIV-611	107		A27	15	16,0%	8
HIV-LC1	107		A27	19	20,2%	8
HIV-LC7	107		A27	20	21,3%	8
HIV-LC22	107		A27	21	22,3%	8
HIV-LC22	10:		A27	- 21	22,3%	8
LIIA-CC 12	.0.		61			

WO 97/08320

Table 2A: (continued)

				Diff to	% diff. to	Reference
Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	germline ⁶	Veterence
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
Π125	108	ì	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1 ,	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	. 8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	. 2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5,0%	45
FK-001	113	4	В3	0	0.0%	81
CD5+.28	101		В3	1	1,0%	27
LEN	114		В3	1	1,0%	104
UC	114		В3	1	1,0%	111
CD5+.5	101		В3	1	1,0%	27
			62			
			O :-2			

WO 97/08320

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	B3	1	1,0%	27
CD5+.12	101	4	В3	2	2.0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	B3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B 3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	B 3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	В3	0	0,0%	54
MD4.4	92	4	B 3	0	0,0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	B3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	. 1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	4	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	· 1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0 %	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112		DPL11	8	8%	84
FOG1-A3	, 111		DPL11	9	9%	27
AL NOV	112		DPL11 ≪4	7	7%	28

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
LIDACT 1	110	2	DPL11	4	4%	82
HMST-1	108	2	DPL12	9	9%	52
HBW4-1	110	2	DPL11	11	11%	34
WH	110	2	DPL11	7	7%	82
11-50	110	2	DPL12	8	8%	3
HBp2	113	2	DPL11	12	11%	73
NIG-84	112	2	DPL11	9	9%	58
VIL	111	2	DPL12	10	10%	61
TRO	108	2	DPL11	15	15%	76
ES492	89	2	DPL12	1	1%	7
mAb216	109	3	DPL16	0	0%	49
BSA3	110	3	DPL16	0	0%	27
THY-29	108	3	DPL16	0	0%	55
PR-TS2	107	3	DPL16	1	1%	13
E29.1 LAMBDA	109	3	DPL16	2	2%	29
mAb63	110	. 3	DPL16	6	6%	49
TEL14	108	3	DPL16	7	7%	39
6H-3C4	109	3	DPL16	7	7%	70
SH	109		DPL16	8	8%	23
AL GIL	108		DPL16	8	8%	83
H6-3C4	111		DPL11	3	3%	15
V-lambda-2.DS	110		DPL11	3	3%	81
8.12 ID	111		DPL11	3	3%	56
DSC	110		DPL11	1	1%	56
PV11	110		DPL11	4	40/0	81
33.H11	111		DPL11	7	7%	56
AS17	110		DPL11	7	7%	56
SD6	110		DPL11	9	9%	56
KS3	110		DPL12	5	5%	. 56
PV6	111		DPL11	7	7%	56
NGD9	11		DPL11	11	10%	27
MUC1-1	11		DPL10	6	6%	56
A30c			DPL12		6%	56
KS6 TEL13	11		DPL11 65	11	10%	49

WO 97/08320

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
•	110	2	DPL12	13	12%	77
U266L PR-SJ2	110	2	DPL12	14	13%	55
	112	2	DPL12	11	10%	37
BOH	111	2	DPL11	19	18%	53
TOG	111	2	DPL11	19	18%	49
TEL16	110	2	DPL10	14	13%	52
No.13	112	2	DPL12	18	17%	80
BO	112	2	DPL12	17	16%	11
WIN	104	2	DPL12	15	15%	46
BUR NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	0 %	54
HA	113	1	DPL3	14	13%	63
LA1L1	111	. 1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1	· DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106		DPL23	14	13%	4
COX	112		DPL2	13	12%	84
HiH10	106		DPL23	13	12%	3
VOR	112		DPL2	16	15%	16
AL POL	113	. 1	DPL2 ·	16	15%	57
CD4-74	111		DPL2	19	18%	27
AMYLOID MOL	102		DPL23	15	15%	30
OST577	108		Humlv318	10	10%	4
NIG-48	113		DPL3	42	40%	66
CARR	108		DPL23	18	17%	19
CAIN			66			

WO 97/08320

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	DPL23	14	13%	29
	99	3	DPL23	25	26%	32
NIG-68	107	3	DPL23	26	25%	59
KERN	106	3	DPL23	17	16%	19
ANT	110	3	DPL23	18	17%	85
LEE	94	3	DPL23	17	17%	19
CLE	98	8	DPL21	0	0%	81
VL8	110	3	Humlv318	23	22%	38
MOT	108	3	DPL23	26	25%	33
GAR	98	8	DPL21	5	5%	81
32.B9	108	3	Humlv318	24	23%	19
PUG	115	8	HUMLV801	52	50%	6
T1	96	7	DPL18	4	4%	60
RF-TS7	116	8	HUMLV801	51	49%	75
YM-1	112	8	HUMLV801	20	19%	44
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801		18%	44
K4B8	112	8	HUMLV801		16%	44
K6F5	108		DPL23	22	21%	47
HIL			DPL23	20	19%	19
KIR	109		DPL23	19	18%	84
CAP	109		DPL23	22	21%	- 43
1B8	110		DPL23	19	18%	19
SHO	108		DPL23	20	19%	. 19
HAN	108		DPL23	3	3%	12
cML23			DPL23	7	7%	55
PR-SJ1	96		DPL23	9	9%	5
BAU	107		DPL23	8	8%	19
TEX	99		DPL23	9	9%	51
X(PET)	107		DPL23	9	9%	19
DOY	100		DPL23	13	12%	19
COT	10				5%	31
Pag-1	11	1 3	Humiv31	გ პ	J-10	J ,
			67			

6 z.

WO 97/08320

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	. 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humiv318	12	11%	52
DEL	108	3	Humiv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	. 14
SUT	112	2	DPL12	37	35%	65

WO 97/08320 .

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
	98	1	VH1-13-12	10	10,2%	75
gF1 VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
	98	1	VH1-13-6	0	0,0%	81
HV1L1 RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7.1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	- 1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	. 125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125		VH1-12-7	6	6,1%	113
LS8	125		VH1-12-7	7	7.1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122		VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
NEI	127	1	VH1-12-1	0	0.0%	55
AND	127		VH1-12-1	0	0,0%	55
L7	127		VH1-12-1	0	0,0%	54
L22	124		VH1-12-1	0	0,0%	54
L24	127		VH1-12-1	0	0,0%	54

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41 .	120	1	VH1-12-1	. 0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	. 1	1,0%	54
TNF-E7	116	1 .	VH1-12-1	2	2,0%	42
mÁb111	122	1	VH1-12-1	7 ·	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7.1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1	· VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122		VH1-12-1	11	11,2%	71
EU	117		VH1-12-1	11	11,2%	28
H210	127		VH1-12-1	12	12,2%	66
TRANSGENE	104		VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1	VH1-12-7	0	0,0%	30
CLL3-1	91	. 1	VH1-12-7	1	1,0%	30
ALL56-1	85		VH1-13-8	0	0,0%	30
ALLS6-1 ALL1-1	87		VH1-13-6		1,0%	30
	94		VH1-13-8		0,0%	30
ALL4-1	34	•	7 (1)		-	
				-		

WO 97/08320 .

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	VH1-13-8	5	5.1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	, 1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	. 1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26 .
SP2	119	1	VH1-13-6	. 15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20.4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	ĭ	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124	. 1	VH1-12-7	20	20,4%	73
	. = .	•	≯ 1			

WO 97/08320 .

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	. 4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
0U	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2.0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	2 2	22,0%	131
MTFC8	125	3	VH3-14-4	2 3	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	. 9	9.0%	85
N51P8	126	3	VH3-14-1	9	9,0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119		VH3-11 - 3	13	13.4%	19
NIE	119		VH3-13-7	15	15,3%	87
3D6	126		VH3-13-26	5	5,1%	35
ZM1-1	112		VH3-11-3	8	8,2%	5
E55 3.15	110		VH3-13-26		0,0%	26
	108		VH3-13-8	15	15,3%	75
gF9	120		VH3-13-26		3,1%	42
THY-32	100		VH3-13-26		5,1%	96
RF-KL5	122		VH3-13-20		6,1%	5
OST577	122	. J	VIIJ-13-13 ア <u>2</u>	•	·	

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
во	113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-		_				
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	7 7
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	. 3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0 .	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	12 5
L285	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100		VH3-13-13	0	0,0%	46
ss1	102		VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0	0,0%	46
DOB	120		VH3-13-26	21	21,4%	116
THY-33	115		VH3-13-15	20	20,4%	42
NOV	118		VH3-13-19	14	14,3%	38
rsv13H	120		VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	• 46
L2E8	99	3	VH3-13-19	0	0,0%	46
L2D10	101		VH3-13-10	1	1,0%	46
L2E7	98		VH3-13-10	1	1,0%	46

WO 97/08320

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0.0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8	112	3	VH3-13-1	6	6,1%	118
23	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125		VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108		· VH3-13-10	0	0,0%	44
M43	119		VH3-13-10	0	0,0%	103
1/17	125		VH3-13-10	0	0,0%	31
18/17	125		VH3-13-10	0	0,0%	31.
E54 3.4	109		VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111		VH3-13-10	1	1,0%	26
GL16	106		VH3-13-10	1	1,0%	44
4G12	125		VH3-13-10	1	1,0%	56
A73	106		VH3-13-10	2	2,0%	44
AL1.3	111		VH3-13-10	3	3,1%	117
3.A290	118		VH3-13-10	2	2,0%	108
Ab18	127		VH3-13-8	2	2,0%	100
E54 3.3	109		VH3-13-10	3	3,1%	26
35G6	12		VH3-13-10		3.1%	57

タ4 SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name¹	aa² (Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
	107	3	VH3-13-10	5	5,1%	44
A95	107	3	VH3-13-10	5	5,1%	100
Ab25	128	3	VH3-13-10	4	4,1%	77
N87	126	3	VH3-13-10	6	6,1%	2
ED8.4	99	3	VH3-13-10	6	6,1%	82
RF-KL1	122	3	VH3-13-10	2	2,0%	117
AL1.1	112	3	VH3-13-10	1	1,0%	117
AL3.11	102	3	VH3-13-8	6	6,1%	129—
32.B9	127	3	VH3-13-10	2	2,0%	117
TK1	109	3	VH3-13-10	8	8,2%	115
POP	123	3	VH3-13-10	9	9,2%	127
9F2H	127	3	VH3-13-10	9	9,2%	10
VD	115	3	VH3-13-10	8	8,2%	74
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10		8,2%	74
Vh38Cl.8	121	3	VH3-11-8	0	0,0%	104
63P1	120	3	VH3-11-8	0	0.0%	104
60P2	117	3	VH3-13-10	· 2	2,0%	117
AL3.5	90	3	VH3-13-10		10,2%	39
GF4/1.1	123		VH3-13-10	_	12,2%	100
Ab21	126		VH3-13-17	_	2,0%	16
TD d Vp	118		VH3-13-10	_	8,2%	74
Vh38Cl.4	119		VH3-13-10	_	8,2%	74
Vh38Cl.5	119		VH3-13-10		1,0%	117
AL3.4	104		VH3-13-11	_	2,0%	42.
FOG1-A3	115		VH3-13-2		1,0%	81
HA3D1	117		VH3-13-2		0,0%	26
E54 3.2	112		VH3-13-2	_	2,0%	51
mAb52	128	_	VH3-13-1		2,0%	51
mAb53	128		VH3-13-1	_	2,0%	
mAb56	12	_	VH3-13-1	-	2,0%	
mAb57	12		VH3-13-		2,0%	
mAb58	12		VH3-13-	_	2,0%	
mAb59	12		VH3-13-		2,0%	_
mAb105	12		VH3-13-		2,0%	
mAb107	12		VH3-13- VH3-13-		0,0%	_
E55 3.14	11	10 3	AU2-12-	,,,	-	

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
	106	3	VH3-13-19	1	1,0%	94
F13-28		3	VH3-13-18	4	4,1%	51
mAb55	127	3	VH3-13-24	6	6,1%	. 72
YSE	117	3	VH3-13-19	2	2,0%	26
E55 3.23	106 101	3	VH3-13-1	3	3,1%	85
RF-TS5	124	3	VH3-13-2	7	7,1%	77
N42P5		3	VH3-13-16	7	7,1%	42
FOG1-H6	110	3	VH3-13-19	11	11,2%	47
0-81	115	3	VH3-13-12	11	11,2%	. 12
HIV-s8	122	3	VH3-13-19	12	12,2%	71
mAb114	125	3	VH3-13-2	4	4,1%	129
33.F12	116	3	VH3-1X-3	0	0,0%	101
484	119	3	VH3-1X-3	0	0,0%	103
M26	123	3	VH3-1X-3	0	0,0%	26
VHGL 3.1	100	3	VH3-1X-3	1	1,0%	26
E55 3.13	113	3	VH3-1X-6	3	3,0%	2
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101		VH3-1X-3	5	5,0%	112
82-D V-D	106	3	VH3-1X-3	5	5,0%	72
MAL	129	3	VH3-1X-6	5	5,0%	72
LOC	123	3	VH3-1X-6	11	11,0%	2
LSF2	101	3 3	· VH3-1X-6	11	11,0%	1
HIB RC3	100		VH3-13-7	0	0,0%	104
56P1	119		VH3-13-7	0	0,0%	103
M72	122		VH3-13-7	0	0,0%	103
M74	121		VH3-13-7	0	0,0%	26
E54 3.5	105		VH3-13-7	0	0,0%	63
2E7	123		VH3-13-7	0	0,0%	104
2P1	117		VH3-13-7		1,0%	83
RF-SJ2	127		VH3-13-7		1,0%	85
PR-TS1	114		VH3-13-13		0,0%	18
KIM46H	12		VH3-13-7	_	2,0%	26
E55 3.6	10		VH3-13-1		1,0%	
E55 3.10	10			•	1,0%	
3.B6	11		VH3-13-13	•	1,0%	
E54 3.6	11		VH3-13-1	•	1,0%	
FL2-2	11	4 3	VH3-13-1	3 1	1,090	30

76

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ²
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
	126	3	VH3-13-14	3	3,1%	129
19.E7	119	3	VH3-13-13	6	6,1%	130
11-50	120	3	VH3-13-15	2	2,0%	25
E29.1	108	3	VH3-13-7	6	6,1%	26
E55 3.16	117	3	VH3-13-7	7	7,1%	42
TNF-E1	127	3	VH3-13-13	6	6,1%	83
RF-SJ1	116	3	VH3-13-7	8	8,2%	42
FOG1-A4 TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
	124	3	VH3-13-13	10	10,2%	33
HN.14	121	3	VH3-13-7	12	12,2%	65
CAM' HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-bo	125	3	VH3-13-7	9	9,2%	12
	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125		VH3-13-7	9	9,2%	12
HIV-B26	125		VH3-13-7	10	10,2%	12
HIV-B35	125		VH3-13-7	10	10.2%	12
HIV-b18	125	•	VH3-13-7	11	11,2%	.12
HIV-b22	125		VH3-13-7	12	12,2%	12
HIV-b13	117		VH3-14-4	24	24,0%	24
333	120		VH3-14-4	24	24,0%	24
1H1	120		VH3-14-4	23	23,0%	24
1811	86		VH3-13-19) 1	1,0%	29
CLL30 2-3	110		VH3-13-7	19	19,4%	36
GA	99		VH3-13-14		3,1%	7
JeB CA1	110		VH3-13-19	_	10,2%	126
GAL	11		VH3-1X-6	· _	18,0%	60
K6H6	11		VH3-1X-6	_	18,0%	60
K4B8			VH3-1X-6		18,0%	
K5B8	11	. 5	7110 17	•	•	

WO 97/08320

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
K5C7	119	3	VH3-1X-6	19	19,0%	6 0
	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	98	3	VH3-13-10	1	1,0%	117
AL3.16	98	3	VH3-13-10	3	3,1%	77
N86P2	95	3	VH3-13-16	· 7	7,1%	77
N54P6	126	4	VH4-11-2	0	0,0%	3
LAMBDA HT112-1	121	4	VH4-11-2	0	0,0%	43-
HY18		4	VH4-11-2	0	0,0%	45
mAb63	126 105	4	VH4-11-2	0	0,0%	86
FS-3	111	4	VH4-11-2	0	0,0%	86
FS-5	107	4	VH4-11-2	0	0.0%	86
FS-7	110	4	VH4-11-2	0	0,0%	86
FS-8	105	4	VH4-11-2	0	0,0%	85
PR-TS2		4	VH4-11-2	0	0,0%	85
RF-TMC	102 122	4	VH4-11-2	1	1,0%	15
mAb216	122	4	VH4-11-2	1	1,0%	52
mAb410.7.F91	124	4	VH4-11-2	1	1,0%	15
mAbA6H4C5	127	4	VH4-11-2	2	2,1%	100
Ab44		4	VH4-11-2	3	3,1%	59
6H-3C4	124	4	VH4-11-2	6	6,2%	86
FS-6	108	4	VH4-11-2	6	6,2%	84
FS-2	114	4	VH4-11-2	7	7,2%	62
HIG1	126	4	VH4-11-2	8	8,2%	86
FS-4	105	4	VH4-11-2	9	9,3%	125
SA-4A	123		VH4-11-2	10	10,3%	9 9
LES-C	119		VH4-11-9	16	16,5%	58
DI	78	4	VH4-11-9	8	8,1%	100
Ab26	126		VH4-31-12		15,2%	110
TS2	124		VH4-11-7	16	16,5%	5
265-695	115				19,2%	93
WAH	129		VH4-31-13	22	22,7%	6
268-D	122		VH4-11-8	0	0,0%	104
58P2	118		VH4-11-8		1,0%	45
mAb67	128		VH4-21-4	_	2,1%	108
4.L39	115		VH4-11-8		3,0%	75
mF7	11	4	VH4-31-13	, ა	3,0-70	, 3

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
22.00	122	4	VH4-21-5	7	7,1%	129
33.C9	124	4	VH4-11-16	5	5,2%	50
Pag-1	123	4	VH4-21-3	8	8,2%	53
B3	120	4	VH4-11-8	6	6,2%	70
IC4	127	4	VH4-31-12	4	4,0%	48
C6B2	118	4	VH4-11-9	11	11,3%	7 7
N78	109	4	VH4-11-8	12	12,4%	53
B2 WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	- 1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	4	4,1%	52
E54 4.2	108	. 4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110		VH4-11-7	0	0,0%	26
E55 4.A1	108		VH4-11-7	0	0,0%	26
PR-SJ1	103		VH4-11-7	1	1,0%	85
E54 4.23	111		VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	. 5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98		VH5-12-1	0	0,0%	17
••••						

Zq

WO 97/08320

Table 2C: (continued)

98 98 98 98 98 98 98 127 122 98 98 119 98 98	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 0 0 0 0 0 0 1 1 1	0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%	17 17 17 17 17 17 17 17 125 97 17 17 49 17 17
98 98 98 98 98 98 127 122 98 98 119 98 98 98	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 0 0 0 0 1 1	0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 1,0% 1	17 17 17 17 17 17 125 97 17 17 49 17
98 98 98 98 98 98 127 122 98 98 98 98 98	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 0 0 0 1 1 1	0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 1,0% 1	17 17 17 17 17 125 97 17 17 49 17
98 98 98 98 98 127 122 98 98 119 98 98 98 98	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 0 0 1 1	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.0%	17 17 17 17 125 97 17 17 49 17
98 98 98 98 127 122 98 98 119 98 98 98	5 5 5 5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 0 1 1 1	0,0% 0,0% 0,0% 0,0% 0,0% 1,0% 1,0% 1,0%	17 17 17 125 97 17 17 49 17 17
98 98 98 127 122 98 98 119 98 98 98	5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 0 1 1	0,0% 0,0% 0,0% 0,0% 1,0% 1,0% 1,0% 1,0%	17 17 125 97 17 17 49 17
98 127 122 98 98 119 98 98 98	5 5 5 5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 0 1 1 1	0,0% 0,0% 0,0% 1,0% 1,0% 1,0% 1,0%	17 125 97 17 17 49 17 17
127 122 98 98 119 98 98 98 98	5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 0 1 1 1	0,0% 0,0% 0,0% 1,0% 1,0% 1,0% 1,0%	125 97 17 17 49 17 17
127 122 98 98 119 98 98 98 98	5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 0 1 1 1 1	0,0% 0,0% 1,0% 1,0% 1,0% 1,0%	97 17 17 49 17 17
98 98 119 98 98 98 98	5 5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	0 1 1 1 1	0.0% 1,0% 1,0% 1,0% 1,0%	17 17 49 17 17
98 98 119 98 98 98 98	5 5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	1 1 1 1	1,0% 1,0% 1,0% 1,0% 1,0%	17 49 17 17 17
98 119 98 98 98 98	5 5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	1 1 1	1,0% 1,0% 1,0% 1,0%	49 17 17 17
119 98 98 98 98 98	5 5 5 5	VH5-12-1 VH5-12-1 VH5-12-1 VH5-12-1	1 1 1	1,0% 1,0% 1,0%	17 17 17
98 98 98 98 98	5 5 5	VH5-12-1 VH5-12-1 VH5-12-1	1	1,0% 1,0%	17 17
98 98 98 98	5 5 5	VH5-12-1 VH5-12-1	1	1,0%	17
98 98 98	. 5	VH5-12-1	-		
98 98			1	1.0%	17
	5	in		.,0 ,0	•
	J	VH5-12-1	2	2,0%	17
98	5	VH5-12-1	2	2,0%	17
98	5	VH5-12-1	, 2	2,0%	17
98	5	VH5-12-1	. 2	2,0%	17
98	5	VH5-12-1	2	2,0%	17
98	5	VH5-12-1	3	3,1%	17
98	5	VH5-12-1	. 3	3,1%	17
98	.5	VH5-12-1	3	3,1%	17
98	5	VH5-12-1	3	3,1%	17
119	5	VH5-12-1	3	3,1%	97
98	. 5	VH5-12-1	3	3,1%	17
98	5	VH5-12-1	3	3,1%	17
98	5	VH5-12-1	3	3,1%	17
	5	VH5-12-1	0	0,0%	17
		VH5-12-1	4	4,1%	17
		VH5-12-1	4	4,1%	17
		VH5-12-1	4	4,1%	17
		VH5-12-1	.4	4,1%	17
98	•			5.1%	17
	98 94 98 98 98	98 5 94 5 98 5 98 5 98 5 98 5	98 5 VH5-12-1 94 5 VH5-12-1 98 5 VH5-12-1 98 5 VH5-12-1 98 5 VH5-12-1 98 5 VH5-12-1	98 5 VH5-12-1 3 94 5 VH5-12-1 0 98 5 VH5-12-1 4 98 5 VH5-12-1 4 98 5 VH5-12-1 4 98 5 VH5-12-1 4	98 5 VH5-12-1 3 3,1% 94 5 VH5-12-1 0 0,0% 98 5 VH5-12-1 4 4,1% 98 5 VH5-12-1 4 4,1% 98 5 VH5-12-1 4 4,1%

WO 97/08320

Table 2C: (continued)

Name¹	aa² (Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
·		5	VH5-12-1	0	0,0%	103
83P2	119	5	VH5-12-1	6	6,1%	17
VERG9	98	5	VH5-12-1	6	6,1%	17
Crre	98	5	VH5-12-1	7	7,1%	17
PBL8	98	5	VH5-12-1	3	3,1%	100
Ab2022	120	5	VH5-12-4	0	0.0%	97
CAV	127	5 5	VH5-12-4	0	0,0%	97
HOM,	120	5 5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	107
5.M13	118	5 5	VH5-12-4	1	1,0%	49
Au2.1	118		VH5-12-1	9	9,2%	110
WS1	126	5	VH5-12-4	1	1,0%	16
TD Vn	98	5 5	VH5-12-1	9	9,2%	73
TEL13	116	5 5	VH5-12-4	2	2,0%	26
E55 5.237	112	5 5	VH5-12-1	10	10,2%	17
VERG1	98	5	VH5-12-1	10	10,2%	42
CD4-74	117	, 5 5	VH5-12-1	11	11,2%	6
257-D	125	5	VH5-12-1	11	11,2%	17
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98		VH5-12-1	12	12,2%	120
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-2		11,2%	17
CLL3	98		VH5-12-1	_	12,2%	49
Au59.1	122		VH5-12-1		12,2%	73
TEL16	117		VH5-12-1		0,0%	103
M61	104		VH5-12-1		5,1%	49
Tu0	99		VH5-12-1		13,3%	121
P2-51	12:		VH5-12-1		11,2%	121
P2-54	12		VH5-12-		9,2%	121
P1-56	11	-	VH5-12-		10,2%	o 121
P2-53	12		VH5-12-		19,4%	6 12
P1-51	12		VH5-12-	_	3,1%	12
P1-54	12	_	VH5-12-		4,1%	₀ 12
P3-69 P3-9	12 11	27 5 19 5	VH5-12-	•	4,1%	_
		•	81			

WO 97/08320

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	. 46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6	· VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0.0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0.0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0.0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,00%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

Table 2C: (c

(continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline⁵	% diff. to germline ⁶	Reference ²
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	- 6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	. 6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	.4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

Table 2C:

(continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	_ 8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 . PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	Vki-i	28	
1	Vk1-2	0	
ł	Vk1-3	1	
1	Vk1-4	0	
i	Vk1-5	7	•
i	Vk1-6	0	
i	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	
1	Vk1-10	0	
I	Vk1-11	1	
1	Vk1-12	7	
1	Vk1-13	1	
i	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
1	Vk1-17	16	
1	Vk1-18	1	
1	Vk1-19	33	
1	Vk1-20	i	
1	Vk1-21	1	
1	Vk1-22	0	
i	Vk1-23	0 .	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1 .	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I	ı	
3	Vk3-2	0	

WO 97/08320

Table 3A: (continued)

Sum	Rearranged ²	Name	Family 1
	35	Vk3-3	3
	115	Vk3-4	3
	0	Vk3-5	3
	0	Vk3-6	. 3
	1	Vk3-7	. 3
192 entries	40	Vk3-8	3
33 entries	33	Vk4-1	4
1 entry	1	Vk5-1	5
	0	Vk6-1	6
0 entries	0	Vk6-2	6
0 entries	0	Vk7-1	7

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	•
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	•
1	DPL5	13	
1	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	qVLX-4.4	0	0 entries

WO 97/08320 . PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	. 0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	. 1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	•
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	

8₽

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 -	VH3-11-7	0	
3	VH3-11-8	5	e .
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1 2	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

WO 97/08320

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	•
3	VH3-14-3	0	
3	VH3-1X-1	0	•
3	VH3-1X-2	0	
3	VH3-1X-3	6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
4	VH4-11 -1 5	0	
4	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	. 0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4 .	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320 PCT/EP96/03647

	W () 9 // 00320				_
Table	4A: Analysis	of V	kappa	subgroup	1

Analysis of V	,											Fram	ewor	kΙ		
amino acid'	_	7	က	4	S.	ဖ	_	&	6	10	=	12	<u>.</u>	14	15	16
А		1							1				102		1	
В			1			1	<u></u>	<u> </u>								
С														1		
D	64															··
E	8		14												1	
F									1	6				1		
G																105
Н										,						
.		65													4	•••••
К		<u></u>	1								ļ					
L		6		21							96		1			
М	1			66							<u> </u>					
N											<u></u>					·····
P			<u> </u>					103		1	<u>.</u>	2			1	
Q		<u> </u>	62			88				<u></u>	1					
R																
S		<u> </u>		ļ			8 9		102	:	· 	103		103		
T	<u> </u>	1			88				<u></u>	18	·÷·····	<u>.</u>		<u></u>		
V		1	9)						<u> </u>	8		2		9 8	
W					ļ	<u> </u>	<u> </u>		<u> </u>	ļ	<u>.</u>	<u> </u>	<u>:</u>	<u> </u>		
X	1				<u> </u>	ļ	ļ		<u> </u>	ļ			<u> </u>		<u></u>	
Y	_	<u></u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	┷	 _		<u> </u>	<u> </u>	<u></u>
	_		-		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	-	<u> </u>	
unknown (?)		_	_	<u>.</u>		<u> </u>	-		-		-		<u> </u>	-	<u></u>	<u></u>
not sequenced	d 3	1 3	1 1	B 18	17	16	16	2			-			- 405	100	10
sum of seq²	7	4 7	4 8	7 87	88	89	89	103	104	1 10	5 10	5 105	10:	105	105	
oomcaa3	6	****					•	1		•		5 103				10
mcaa¹	[<u> M</u>	:	•	•	•	·	5	L	S	Α	S	V	9
rel. oomcaas	-/05/	000%	55%	76%	100%	%066	100%	100%	%00°0	30.75	0.00	%86	970%	980%	93%	
pos occupied			•		2		2		1	3	4	3 2	2	3 3	3 5	5

52 SUBSTITUTE SHEET (RULE 26)

amino acid' .	17	18	19	20	21	22	23	24	25	26	27	⋖	—	، ن	<u> </u>
А			1	1		1			103						
В											1				
. C							105								
D	101														
E	2							1	1		2				
F					2										
G										1					
Н											1				
ı		<u></u>	6	4	101	1									
К								2			1				
L								1	*******						
М															•••••
N ·										1					
Р															
Q								20			100				
R	,	94						81							
S		5		1						102					
Т		6		99		103			1	1					
V			98		2				ļ						
W									<u></u>						
X	1								ļ						
Υ	1									_					_
-	ļ					ļ				ļ		105	105	105	10
unknown (?)						ļ	ļ	ļ	ļ						
not sequenced	<u> </u>						<u> </u>	<u> </u>	 	<u> </u>					
sum of seq²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	10
oomcaa3	101	94	98	99	101	1.03		i	:	:	100	105	105	105	10
mcaa*	D	R	٧	Ţ	1_	T	C	R	Α	S	Q	-	-		
rel. oomcaas	%96	%06	93%	94%	%96	98%	100%	770/0	080v	97%	95%	100%	100%	100%	,000
pos occupied		1 3	•	·	-	•					5	1	1	1	

Table 4A: Analysis of V kappa subgroup 1

4A. Allalysis of	CDRI	·								·					
amino acid'	ш	ட	28	29	30	31	32	33	34	35	36	37	38	33	40
А					1	1		1	42						
В												1	1		
. C							1								
D	1		25		1	5	7					1			
E							1					2			
F				1	1		7				6				
G			25		7	3			4						
Н					1	2	2		1			2			
1				98	1	4			1						
K						7								95	
L					2	1		101							
M										-	-				
N			6		16	42			50						
Р															102
Q												98	103	2	····i
R					16	3	2							3	1
S			41	2	57	32	3	1	1						1
T			7			4			4					1	
V			1	4	1			1							
W						•	21			104					
X									1						
Y					1		60				98				
-	105	105													
unknown (?)				······			·							3	
not sequenced						1			:						
sum of seq2	105	105	105	105	105	104	:		•	104			104	104	104
oomcaa,	105	105	41	98	57	42	60	·····	50	104			103	••••	102
mcaa*		-	S	1	S	·N	Y	L	N	W	Υ	Q	Q	K	Р
rel. oomcaa'	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	%86
pos occupied6	1	1	6	4	12	11	9	:	Ĭ.	1	2	5	2	4	3

Table 4A: Analysis of V kappa subgroup 1

-	Framework II										CDR II						
amino acidi	41	42	43	44	45	46	47	48	49		کر ح	ខ	52	53	54	55	
А			94							_	50	95					
В										_							
. C																	
D			•							<u>.</u>	21	1	1	1			
E	1	3			1	1					1		1			33	
F						1			ļ	3			1				
G	100		1					ļ	<u> </u>		9	2					
Н										2						1	
1		1				1		100	-					1			
К		95			86						16			2		5	
L		1				89	103	·:····							101		
M								1 2					•••••				
N					10			ļ	ļ		2		1	25			
Р		ļ		104			<u> </u>	-	<u>.</u>		1			<u></u>		1	
Q		1			1		<u></u>		<u>.</u>							62	
R					3	3	ļ		-					1			
S	ļ				1		ļ		-	5	1	1	ļ	·:	-		
T		3			1		<u> </u>		-		1	4	··········	· [· · · · · · · · · · · · · · · · · ·			
V	ļ		9		<u></u>	9	<u> </u>					1	ļ	1			
W			ļ	ļ	<u></u>		<u> </u>						<u> </u>		<u></u>		
X	<u> </u>			ļ	1	ļ											
Y	_	-		<u> </u>	<u> </u>	-	+-	-	+	92				-			
	ļ					-			-				 	<u></u>			
unknown (?)		3							2	2	2	1		1	1 1	1	
not sequence								2 10	3	3					- -		
sum of seq ²															4 104 1 101		
oomcaa,	10			1 104		•						Α		•••••	L	Q	
mcaa ⁴	G	K	Α	••••••			·			••••				••••			
rel. oomcaa ^s	800	30%0 0.10%	0/61 G	100%	9000	0,50	0/-09	0001	%86 0	%06	49%	910%		•••••••••	33%0	••••••••	
pos occupied	6	2	6	3	1	8	6	1	2	4	1()	6	6	9	3	

Table 4A: Analysis of V kappa subgroup 1

amino acid'		57	58	59	8	61	62	83	64	65	99	67	89	69	2
			 			T	T				2	1	1	1	
<u>A</u>	3			1		-									
B															
C															67
<u>D</u>	1												1		30
E	ļ						103					3			
F	ļ	405	1				103		105	4	101		102		
G	2	105													3
<u>H</u>	. .						1	3							
	3		4			1									<u></u> 1
<u>K</u>	1		-					1							
L	<u></u>		ļ											1	
M	-														
<u>N</u>	6											••••••			
Р				101	2					1					
Q						100		1		1	1			2	
R						103				96		100			
<u>S</u>	68				103			98	:	30			<u></u>	101	
T	19	9		1		1		2	ļ <u>.</u>						
V			99				1	*********						ļ	
W			<u> </u>	<u></u>					<u></u>	<u> </u>	1		1	<u></u>	
X			1	<u></u>								1			
Y		-	-			-		-		-		<u>'</u>		_	_
				ļ	ļ	-			<u> </u>			<u> </u>	<u> </u>	<u> </u>	
unknown (?) [ļ				ļ	<u></u>			ļ			
not sequence	ed	<u> </u>	-	<u> </u>	<u> </u>	 	<u> </u>				405	40	100	100	10
sum of seq	' 10	5 10	5 105	105	105	105	105	105	10	5 105	105	10:	10:	10:)
oomcaaı	6	8 10	5 99	101	•	:	:	•	10	5 96	101	100	102	10	1 : t
mcaa*	S	G	V	P	S	R	F	S	G	<u>.</u> S	G	<u> </u>	G	T]
rel. oomcaa	3, 5	65%0	100% 940/n	%S)6	0,80%	%86 86%	%86	%8≿ b	1000	91%	%96	0000	0.5°	050	2
pos occupie					***********			}	5	1 !	5 4	1	4	4	4

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

·	Fr	ame	wo	rk III				·										
amino acid¹	11	72	7.3	?	74	75	92	77	í	∞ 	£ 79	8	8	6	70	83 	84	82
Α		3					1					2		-			101	1
В						1					3		2					
. С			ļ															
D							1						<u>.</u>	1	01			
E													83	}				
F	102	1	<u> </u>	21										-		73		••••••
G									4					<u> </u>			2	*********
Н	Į						····	ļ										
	<u> </u>		ļ			99	. 5	ļ					<u> </u>	-		17		
<u>K</u>	ļ		-					ļ						-		1		
L	ļ			81				ļ		103	1		ļ			1	••••••	1
M		ļ						<u> </u>										1
N	ļ						7	<u>.</u>	4									1
P	ļ		_					-				97	-					
Q	ļ	ļ	-					-			97	·		-		••••••		
R	ļ						<u>:</u>	_	1		2	·}				1		ļ
<u>S</u>			2		1		86		94				1	-		1		9:
T	ļ	9	8		102		<u> </u>	2	1			ļ				1 1		<u> </u>
<u> </u>	ļ	<u> </u>	_	2		4		-		1		ļ	-			11		·
W	ļ						<u> </u>	-				<u></u>		1	2		<u></u>	
X					1		ļ	-				-						
ΥΥ		1	4				_	+	_		_	+	$\dot{\dagger}$	+			\vdash	\dagger
	-		-					-			ļ		-				<u> </u>	
unknown (?)	8								1	1		2	2	2	2		. ?	2
not sequence		1	1			<u> </u>		1	104					_				=
sum of seq ²	:		:			i								83	101	7	10	1 9
oomcaa ³	· · · · · · · · · · · · · · · · · · ·		••••••		102		8 8			103		!		E	• • • • • • • • • • • • • • • • • • • •	F		
mcaa'	F		T	L		†******			<u>S</u>	L	<u>u</u>					 		
rel. oomcaa	5	0/086	940%	78%	9/086	000	0.50	83%	9006	%ნნ	7070	34%	9400	81%	%86	710%	2	38%
pos occupie		3	••••			}	3	7	5		2	4	3	5	2	<u> </u>	5	2

ን⊁

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

4A. Allalysis of									·	CDR	11					
amino acid'	98	87	88	83	90	91	92	93	94	95	<	8	ں	۵	w	<u></u>
А					1	7	1		5	1		<u> </u>	<u> </u>		<u> </u>	ļ
В		<u>.</u>		2	3		ļ 	<u></u>			<u></u>	<u> </u>	<u> </u>	ļ	ļ	<u></u>
. C		<u>.</u>	102							· · · · · · · · · · · · · · · · · · ·				ļ	ļ	<u></u>
D							23	5	1			<u> </u>	<u> </u>			<u></u>
E		: : : :					1	1		1	1	<u></u>	<u> </u>			
F		7				3			13			<u></u>	<u> </u>			
G						1		1	2	1		1				<u> </u>
Н		1		4	6	7	3	1								
							4	1	2	1						
K	1				7		1									
L				7		6	2		18	2						
М																
N						6	31	19	1							
Р				*******					1	82	6					
Q				90	86	1	2									
R				***********		1		2	2							
S	1					27	3	58	5	10						
T						3	1	15	25							
V							*****		5							
W									1							
X																
Y	101	93				42	32	1	23							
										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa'	Υ	Υ	С	Q	Q	Υ	Υ	S	Т	Р	-	-	-	-	-	-
rel. oomcaas	%86	91%	100%	87%	83%	40%	31%	9,995	24%	81%	92%	%66	100%	100%	100%	100%
pos occupied ⁶	3		1	4		:		10	14	8	3			1	1	1

్రో

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

									ork	_					
amino acid¹	96	97	86	66	90 F.	101	102	103	104	105	106	⋖	107	108	SU
Α	1														6
В			<u></u>		1					1			<u></u>		
C															2
D	1									15					4
E					2					65					2
F	6		86								2				4
G				87	29	87								2	8
Н	2	1													
1	5								1		72				6
K	1	1						77					79		4
L	18	1	1						22	4	2				7
М		1									5	<u> </u>			
N	1										1		2		1
Р	6				7									1	•
Q	1				48					1					1
R	6							6	•••••				2	70	4
<u>S</u>	2	2													11
T	2	82					87	3					2		10
V	2	ļ						1	63		3				
W	15														
X	ļ														
Y	16					<u> </u>			<u> </u>		<u> </u>				
	4	1				<u> </u>					ļ	85	<u> </u>	1	1
unknown (?)			ļ			<u></u>		<u></u>					ļ		
not sequence															
sum of seq ²	:	••;•••••			•		•	:	:	:	:	:	•	: :	
oomcaa,	18	82	86	87	48		-	1	1	1	1	1	:	70	
mcaa'		Ţ		G	÷	G	T	K		· · · · · ·	<u> </u>	Ť	÷	R	
rel. oomcaa	200%	92%	%66	100%	55%	100%	100%	89%	73%	760%	85%	100%	430%	95%	
pos occupie	••••••			:	•	•	:			•	•	:	:	4 4	

Table 4B: Analysis of V kappa subgroup 2

											Fra	me	wor	k I							
amino acid'	-	~	۳ ا	. 4	. r	မ	7	- &	0	9	=	12		7	15	16	17	18	6	20	21
А									T									T	2:	2	
В										-	-										
. C																-					
D	14	l l			Ī			Ī		-			<u> </u>		<u> </u>	<u>†</u>		Ī	Ī		1
E	3															1	15		Ī		1
F									1	1											
G																22					
Н		<u> </u>												Ì							
		8	3																		22
K																		-			
L		3		1					17		18		Ī		6						
M		<u> </u>		15																	
N		<u> </u>														<u></u>				<u> </u>	
Р		<u></u>						18				18			15			22			
Q	<u> </u>					18											7				
R			<u></u>	<u> </u>																	
5							18			17										22	
Ţ					17									21					······································		
V		6	17	1									18								
W		-																			
X																					
Y							*******														
-																					
unknown (?)					1				•												
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
_	14										••••••				······		:				
mcaa*	D	١	٧	М	Ţ	Q	S	Р	L	S	L	Р	٧	Т	Р	G	Ε	Р	Α	S	1
rel. oomcaa'	82%	47%	100%	988%	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	68%	100%	100%	100%	100%
pos occupied ⁶	2	:	:	;	:	:	;	:		:	••••••	:		:	2		<u>-</u>	····· <u> </u>	•		1

Table 4B: Analysis of V kappa subgroup 2

	•		\perp									CD	RI								_	T	
amino acid'		77	23	24	52	97	77	∢	8	ပ	۵	ш	ш	- د	70	87	<u></u>	31	32	33	34	35	?
Α																	T	T	_				Ī
В														•						•••••			-
. C			22					1			•••••			İ				7	 				
D											1			- 	9		1	1			11	 	-
E											•••••			1									<u>.</u>
F		<u></u>												<u> </u>			2						Ť
G	_							Ī				1		<u> </u>	2	···†····	<u> </u>		 -		••••		-
Н											16			Ť					1		1	ļ	<u>.</u>
								1					•••••	<u>.</u>									
K	1			1						<u>†</u> -			******	†				1			••••	-	<u></u>
L							1	2	2 1	13			•••••	İ						22		•••••	<u> </u>
М										1			•••••	<u> </u>	<u> </u>	-					•••••	••••	
N								<u> </u>		Ī	- -		******	10)		7 1	 2			9		
Р								1		<u>†</u>	Ť						1	<u>- </u>	 		<u>.</u>		
Q	1					2	 I	-					•••••		<u> </u>	ļ	•						
R			2	1				<u> </u>		Ī	Ť	2			·	 	<u> </u>			-		·	
S	21			22	22	2	2:	2		<u> </u>	-	19		1	<u></u>	<u></u>	· †	- -					••••
Ţ													•	••••••			{	 }					
V								-		8	Ī					<u> </u>	† <u>-</u>						••••
W					1			1			1			•••••			<u> </u>		<u> </u>			22	••••
X								1						1	•••••	1			·		1		
Y								1			4			1		11	÷·····	21	-	1	-		15
_													22						<u> </u>	İ	Ť	Ť	-
unknown (?)						ļ.		1			· 				•••••				·		-		••••
ot sequenced															•••••	••••••	•		·	!			••••
sum of seq ⁷	22	22	22	22	22	22	22	22	2 22	2 2	2 2	2 :	22	22	22	22	22	22	2:	2 2	2	22	22
				22																			
mcaa¹				S				:	:	:	:				:	Υ			L	1		W.	••••
el. oomcaaʻ	95%	100%	95%	100%	100%	95%	:					0000	- -			%05			-	·:			
os occupied"	2	1	:		1			 .	·:····	1	7		·····	······ ː	******		•••••	<u>.</u> 5	÷•••••	<u> </u>		1	••••

Table 4B: Analysis of V kappa subgroup 2

					ram		_										DR I				
amino acid'	37	38	33	9	4	42	43	44	45	46	47	48	49	20	5	25	23	54	52	26	57
Α																			14		
В																					
- C																					
D																			7		
E									1												
F																					
G					22										12				1		2
Н													,								
ı										1		22									
K			15											5							
L	16									14	21		,	14	1						, .
М																					
N																	18				
Р				22				21													
Q	6	22				22			12					1							
R			7						8	7				1				22			
5							21								2	22	2			22	
T																	1				
V											1				6						ļ
W					·						<u></u>										ļ
Χ																				<u>.</u>	
Y													21				1				
-																					ļ
unknown (?)										ļ	<u></u>										ļ
not sequenced			<u> </u>				1	1	1				1	1	1						
sum of seq ²	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	1
oomcaa'	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	2
mcaa¹	L	Q	Κ	Р	G	Q	S	Р	Q	L	L	1	Υ	ι	G	S	Ν	R	Α	S	
rel. oomcaas	73%	100%	68%	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	67%	57%	100%	82%	100%	64%	100%	
pos occupied		·÷·····	••••••	••••••	·	·····	·····	:	:	:	:	•	÷	·:	:	;	:	:	7		

Table 4B: Analysis of V kappa subgroup 2

															mev						
amino acid'	28	23	09	61	62	63	64	65	99	29	89	69	2	71	72	73	74	75	92	77	78
Α																					
В																					••••
. С																					
D			22				1				1		22								
E																					
F					21							<u></u>		22							•••
G	<u> </u>						21		22		21										
Н																					
1																	1	21			
K																	19				
L																21	1				
M																					···•
N																					
Р		22														•••••					
Q																					
R			<u></u>	20				1												20	
S			<u></u>	1		22		21		22									2 0	1	
T		<u>.</u>	ļ	1								22			21				1		
V	22		<u>.</u>		1											<u></u>					2
W	1													•••••							
Χ																					
Υ																					_
-											<u> </u>										
unknown (?)						<u>.</u>	<u></u>			<u></u>	<u></u>				1						<u>.</u>
not sequence	d				<u>. </u>				<u> </u>							1	1	1	1	1	_
sum of seq ²	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	
oomcaa³	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	
mcaa'	į. 	Р		- -	· • · · · · · · ·	S	· į.	÷	· <u> </u>	S	÷	· ! ······	D	·····	· [· · · · · · ·	÷	Κ	!	-	:	÷
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	
pos occupied						•	•	:	:	:	:	:	:	:		•				•	•

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

e 46. Allalysis Ul				- 5													С	DR	111		
amino acid'	79	80	.81	82	83	84	82	98	87	88	83	06	91	92	93	94	95	4	8	ပ	۵
A		20											14			1					
В												1			1						
· C										21											
D			1	21																	
Е	19		20																		
F .																					
G	1					21							6			1		2			
Н													1		7						
							1									1					
К																					
L							1							12			2				
М											21										
N																					
Р		1														2	16	1			
Q	1											20			13						
R														1							
5																3	2				
T														8		7					
V					21		19														
W																6					
X																					
Υ								21	21												
_																		14	17	17	17
unknown (?)																					
not sequenced	_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa ³	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa*	Ε	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	Q	Α	L	Q	T	Ρ	-	-	-	-
rel. oomcaa ^s	%06	95%	95%	100%	100%	100%	% 06	100%	100%	100%	100%	95%	67%	27%	62%	33%	%08	82%	100%	100%	100%
pos occupied ^a								:		:	:	:									

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

iaiysis oi v kapj			-					-	Fra	mev	vorl	(IV					
amino acid'	ш	щ	96	97	86	66	001	101	102	103	104	105	106	V	107	108	sum
Α																	7
В												1				1	3
С																	43
D																	112
E												13					71
. F			1		17												72
G						17	2	16				1					233
Н																	26
l			3										14				94
K		·								12					13	·	66
L			2								11						219
М																	37
N																	56
Р			1														159
Q			1				14										159
R										4						12	126
S																	325
T				17					16								140
V											5					ì	146
W			2														3
Х																	;
Υ			7														123
-	17	17												13			134
unknown (?)																	:
not sequenced	5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	21
sum of seq ²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa¹	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa*	-	-	Υ	T	F	G	Q	G	T	K	L	Ε	1	-	Κ	R	
rel. oomcaas	100%	100%	41%	100%	100%	100%	98%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	·····	:	<u> </u>	:	:	-	:	<u>:</u>	<u>:</u>	:	:						

105

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

											Fram	ewo	rk I			
amino acid'	-	2	က	4	ស	9	7	∞	6	2	=	7	<u></u>		15	16
Α		5					2		27						1	
В	1															
С			į		<u> </u>							2				
D	2								14							
E	76		27													
F .		1							. .				···	1		
G	1								82						1	152
Н								<u></u>		1						
		75											<u> </u>	·		
K	3															
L		4	1	104			1				150		129		1	•••••
·M	5			13								<u>-</u>				
N									···					5		····
Р								124							147	
Q						123										
R		<u> </u>			1	-										
<u> </u>							119		3		!i	150	1	141		
T		2			117					147	•			5	:	
V		1	89	1			1		<u> </u>	ļ	1		22	<u></u>	1	
W		<u></u>							ļ	ļ				ļ	<u></u>	
X		<u> </u>							ļ	ļ						<u> </u>
Υ		<u> </u>							<u> </u>							<u>! </u>
_	<u> </u>		ļ	<u></u>		<u></u>			<u> </u>		<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
unknown (?)	<u> </u>		<u> </u>	<u> </u>	ļ	<u>.</u>	<u> </u>		ļ			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
not sequenced		<u> </u>							<u> </u>	 					<u> </u>	
sum of seq'	88										151					
oomcaa	76	75	89	104	117		•	:	•	•	150	:	1 .	•	:	:
mcaa*	E	1	V	L	T	Q	S	Р	G	T	L	S	L	S	Р	(
rel. oomcaa ^s	86%	85%	76%	9/088	%66	100%	97%	100%	65%	%6b	%66	%66	85%	93%	<i>9</i> 026	
pos occupied		1	1	;	Ī	•	4	Ī	1 4	1 :	3 2	2	2 :	3 4	1 (5

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

. 40.71101/3/3 07																CDRI
amino acid'	17	82	19	20	21	22	23	24	25	56	27	4	8	U	٥	ш
Α			178	2					166	1						
В				 !							••••••••••••••••••••••••••••••••••••••					
- C							181			1		: :				
D	6															
E	146	1									1					
F					7	1										
G	1	1							7	1		1				į
Н											17					
1		1		5	2											
K		1						5								
L					173						1	1				
·M																
N												9				
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
T		1		174					7	2		1				
V		1	4	1					1			1				
W								1								
X																
Y						1					1					
-												72	182	182	182	182
unknown (?)											1					
not sequenced																
sum of seq ⁷	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa¹	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa*	Ε	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaa ^s	95%	97%	%86	%96	95%	%66	100%	92%	91%	97%	. 0/088	48%	100%	100%	100%	100%
pos occupied ^a				:		3	1	3			6	8	1	1	1	1

WO 97/08320 ·

Table 4C: Analysis of V kappa subgroup 3

· ·															Fran	new
amino acid'	ш	28	29	30	31	32	33	34	35	36	37	38	39	40	4	42
Α				1	1			181								
В																
С																
D			1	1	2	1										
E						1							1			
F .		1				7	·			1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
1		24	4	1	1											
K				1	1								153			
L		8	1			1	176					3				
·M																
N			3	12	25	3 2										
Р					1									170		
Q	,				1	1					183	167	1			18
R			10	3	18	16		1			1		27	5		
S		72	86	151	118	4								5		
Ţ		1	1	3	8	1							1			
V		76	68		1		7					3		2		
W			5						185							
Χ																
Y				1	1	115				183						
-	182															
unknown (?)											1					
not sequenced																
sum of seq?	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	18
oomcaa'	182	76	86	151	118	115	176	181	185	183	183	167	153	170	184	18
mcaa¹	-	٧	S	S	S	Υ	L	Α	W	Y	Q	Q	K	Р	G	Q
rel. oomcaas	%001	42%	47%	83%	65%	63%	%96	98%	100%	%66	%66	%06	83%	92%.	%001	7000
pos occupied ⁶	1		11			12									1	

Table 4C: Analysis of V kappa subgroup 3

, 4C. Marysis of	rk II		3							(CDR	1				
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	55	26	57	28
Α	176							4	147				176	1		
В																
. c									1							
D								43					2		4	
E																
F				1		1	4									
G								125					2	10	179	
Н							9		1							
1						178								1		168
K			1								7	1				
L		1		179	174	1										
- M						3					1					
N			1					1			53			2		
Р	5	184		·						2			2	2		
Q							1									
R			182					1			4	180				
S							3	6	4	179	74	1		5		
T	3								11	2	44	••••		164		2
V				3	9			3	19		·		3			15
W							1					1				
X						• • • • • • • • • • • • • • • • • • • •										
Y							165						-		2	
-																
unknown (?)			1													
not sequenced											, ,					
·	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	ŀ	Υ	G	Α	S	S	R	Α	Ţ.	G	1
rel. oomcaa'	%96	%66	%86	98%	95%	97%	% 06	68%	%08	%86	40%	%86	95%	%68	97%	910%
pos occupied [«]	3	2	3	3				1	1				5	7	3	3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

													F	rame	work	Ш
amino acid'	59	9	61	62	63	64	65	99	29	89	69	70	71	72	73	74
A		68						3		5	3	1		3		
В									•				<u> </u>			
. с			1	1	1		•		İ	<u> </u>		1	<u> </u>	<u> </u>	<u> </u>	
D		112				1			Ī			152			ļ	
Е		Ī		<u> </u>				1		1		30				
F.				183									183		2	
G						184	3	178	_	177						
Н		1														
1		<u> </u>	<u> </u>	1	<u> </u>	<u> </u>		<u> </u>			<u> </u>			1		3
K		<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>									
L		<u> </u>		1	<u>.</u>										182	
. M								1								
N		1												1		
Р	177															
Q												1				
R			182		2		1				2					
S	7				180		179		185		3			7		2
T	1		2		3		2				177			172		179
V		3						1		1						
W										1						
X																
Υ													1			
_																
unknown (?)								1								
not sequenced																
sum of seq²	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	184
oomcaa³	177	112	182	183	180	184	179	178	185	177	177	152	183	172	182	179
mcaa'	Р	D	R	F	S	G	5	G	S	G	T	D	F	T	ι	T
rel. oomcaas	%96	61%	%86	%66	92%	%66	97%	%96	100%	%96	%96	83%	%66	93%	%66	97%
pos occupied ⁶	3	5	:	:			4		1					:	2	3

WO 97/08320

amino acid'	75	9/	77	78	79	80	81	82	83	84	82	98	87	88	68	90
Α							3			174						
В					1											
· C									2				1	182		
D			1				3	182								
Ε					149		175									2
F		1							178		2	1	4			
G			3					1		2						
Н			•••••								1				1	
	178							1	1		9					
K							1									
L				178		1			1		7		1			
М										1	5					
N	1	5														
Р						149										
Ω					34									1	181	15
R		1	111							3						
S		169	65			34			1				2			·
T		8	4							1						
V	4			6					1	3	159					
W																
Χ					•											•••••
Υ	1										1	183	176		1	
-																····
unknown (?)																
not sequenced				,												
sum of seq²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	18.
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	15
mcaa'	1	S	R	L	E	Р	Ε	D	F	Α	٧	Υ	Υ	С	О	Q
rel. oomcaa ^s	97%	92%	%09	97%	81%	81%	%96	%66	97%	95%	%98	%66	%96	%66	%66	250%
pos occupied ⁶								3	6							

Table 4C: Analysis of V kappa subgroup 3

C 4C. Allaly313 U		рро	3009	Toup	-	CDR	Ш							T		
amino acid'	91	92	93	94	95	<	8	U	٥	ш	ц,	96	97	86	66	100
Α			1 1	3 :	3 3	3			Ī	Ī				T	Ī	1
В								-								
· C	2	2		1	1					İ			2			
D		8	3 5	5					Ī		<u> </u>	Ī		1		<u> </u>
Ε		2	2		Ī						1	<u> </u>	1	1	•	
F.	5		2	2									7	166		
G	1	104	15		1	1	2	2				1	I		166	41
Н	4	1										2	2			
1	<u> </u>	<u> </u>	1			1						4	l l			<u> </u>
K			2	<u> </u>	<u> </u>	1						1				1
L		<u></u>		2	7	5						42				
·M		1	<u></u>	<u>.</u>	1	2										
N		28	71	<u> </u>		<u> </u>						1				
Р		<u></u>	<u></u>	1	139	24						7	2			9
Q	1	<u></u>	1	<u> </u>	3	1						3				114
R	34	2	3	<u> </u>	2	2	<u> </u>	<u> </u>	<u> </u>			19				
S	2	33	58	102	15	2	<u> </u>		<u>.</u>			1	8			·
T		2	13	1	1	2						1	154			
V					3	· 1						2				
W				69								24				
X														·		
Υ	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq ²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa¹	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa'	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	Ţ	F	G	Q
rel. oomcaa ^s	73%	57%	39%	26%	76%	75%	99%	100%	100%	100%	100%	25%	93%	%66	%66	0/089
pos occupied ⁶	8	11	13	8	11	12	·····	1	1	1	1	:		······	2	6

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

_		F	rame	work	: IV					1
amino acid'	101	102	103	104	105	106	⋖	107	108	- . sum
А										134
В									<u> </u>] :
С						-	-			37!
D		Ī			23					564
E			3		141					759
F						6				769
G	166								1	1804
Н					1					64
l l						143				803
K			152					157		489
L				54		1			2	1596
М						3				36
N		1						3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11				646
W										287
X										
Υ			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)				************						4
not sequenced	16	16	15	16	16	16	17	17	45	337
sum of seq'	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa¹	G	T	K	V	Ε	1	-	Κ	R	
rel. oomcaa'	%66	92%	% 06	%99	84%	%98	100%	95%	97%	
pos occupied ^a	2	5	7		5 1-3	7	1	5	4	

Table 4D: Analysis of V kappa subgroup 4

C 4D. Allalysis of V											Fra	mew	ork	ı				
amino acid'	-	2	က	4	2	9	7	8	6	10	==	12	13	14	15	16	17	8
А												24					1	
В																		
· C										1						1		
D	25								26									
E																	25	
F		<u> </u>	<u> </u>												<u> </u>			<u> </u>
G			<u>.</u>		<u></u>						<u> </u>	1		<u> </u>		24		<u>. </u>
Н			<u>.</u>											<u>.</u>				
		26																
K						1								<u>.</u>	<u></u>			
L	<u> </u>			1							26			<u>.</u>	26			
. М		<u></u>		24														
N	1													<u> </u>				
Р	ļ			••••				26				1						
Q	ļ		1			25				••••••								
R										*******								26
S							26			25		•••••		26		1		
Т				••••	26								**********					
V			25	1									26					
W													•••••					
X																		
Y																		
-																		
unknown (?)																		
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa ¹	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa*	D		٧	М	Ţ	Q	S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaas	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ⁶	2	1	2		1	· · · · · · · · ·	1	1	1	:	1	•••••	1	1	1			1

Table 4D: Analysis of V kappa subgroup 4

		a suc											(DRI				
amino acid'	19	20	21	22	23	24	25	26	27	∢	മ	U	۵	w	u.	78	29	30
Α	26						1				1							
В																		
С					33													••••
D											1		1			1		
E																		
F.																		
G																		
Н																		
			26								1							
K						33										2		3
L											2	_31						
· M									<u></u>									
N				26			<u> </u>		<u> </u>		<u></u>					30	31	
Р	<u> </u>						1		ļ	ļ					1			
Q	<u></u>					ļ	<u> </u>	<u> </u>	32	<u></u>	ļ							
R	<u></u>					<u></u>	<u> </u>	ļ	1	<u></u>	<u></u>						1	
<u>S</u>				·	ļ		31	33		33	<u>.</u>	ļ		32	32		1	ļ
T	ļ	26			<u> </u>		<u> </u>	ļ	ļ	<u></u>		<u> </u>		1	ļ		<u> </u>	<u> </u>
<u>V</u>	<u> </u>	<u> </u>		ļ	<u> </u>		ļ	<u></u>	<u></u>	ļ	28	2					<u></u>	<u> </u>
W	<u> </u>	ļ		ļ	ļ		ļ		ļ	ļ		ļ				ļ	ļ	ļ
X	<u>.</u>	ļ	ļ		ļ		ļ	ļ	ļ	ļ	<u>.</u>	<u>.</u>		ļ <u>.</u>		ļ		ļ
Υ					L	L	_	_		_	_	_	32	_		_	_	L
		ļ			ļ									ļ	ļ	ļ	<u> </u>	ļ
unknown (?)			<u> </u>		<u>.</u>	ļ						ļ		<u> </u>				-
not sequenced			-	7					L	<u> </u>	ļ	—	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
sum of seq?			*******	• • • • • • • • • • • • • • • • • • • •		*********					•	33	:	:	:	:		
oomcaa ³	26	26	26	26	3	3	3 3	3	3 32	2 33	3 28	3 31	32	32	32	:		•
mcaa*	Α	Ţ	1	N	С	K	S	S	0	S	۷	L	Y	S	S	N	N	<u>.</u>
rel. oomcaas	100%	100%	100%	100%	100%	100%	940%	100%	97%	100%	820%	94%	97%	970%	%26	910%	940%	
pos occupied ⁶		1 1		ı	1	::				1	1		2 2	2	2 2	2	3	3

Table 4D: Analysis of V kappa subgroup 4

40. Alialysis of V			- 3								Fran	new	ork I	ı				
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Α				32						2								
В																		
· C																		
D																		
· E											1							
F																		
G											32							
Н						2												
l l																		32
K									33						32			
L			33													29	33	
M																		
N	33																	
Р										31			31	33				
Q							32	33				32						
R							1					1			1			
S													2					
T				1														
V				·												4		····
W					33					`								
X																		
Y		3 3				31												
-																		
unknown (?)																		
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ³	33	33	33	32	33	31	32	33	33	31	32	32	31	3 3	32	29	33	32
mcaa'	N	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Р	K	L	Ĺ	1
rel. oomcaa ^s	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	98%	100%	0/0/6
pos occupied ⁶	1	1	1	2	1		2				:	2	:	1	2	2	1	2

Table 4D: Analysis of V kappa subgroup 4

					CI	OR I	1			丄						··					
amino acid'	49	50	3 1	5	25	23	54	7.	3 2	00 (ેડ	28	ů	3 8	3 2	5 6	79	<u>.</u>	64	65	99
Α			3	0																	
В	1												ļ			<u></u>					•••••
С		<u> </u>			<u> </u>								<u> </u>								
D														:	33						
E		ļ						3	2												
F ·		ļ						. <u> </u>					<u>.</u>	_			33				
G		<u>.</u>									33							1	33		33
Н								_													
		<u> </u>				1		<u> </u>													····
K		<u>.</u>					ļ	<u></u>													
L		ļ																			
М							ļ	_					-								<u></u>
N		<u>.</u>				2			_			<u></u>								ļ	<u> </u>
Р		ļ			1						 .			3 3		1				<u></u>	
Q		<u> </u>	<u></u>				ļ					ļ	_							<u></u>	
R		<u>.</u>					3	3				<u> </u>				32			ļ		ļ
S				1	31	1				33		-						32		33	<u> </u>
T		_		2	1	29)														<u> </u>
<u>V</u>		_				<u> </u>	-		1			3	3						<u> </u>		ļ
W		_	33			ļ													<u> </u>	-	
X						ļ						-					•••••		-	-	-
Y	3	3	_		_	Ļ	_	4	_		_	╄	\dashv	_	-			_	-	-	_
-						ļ	-				<u> </u>	-							<u> </u>		
unknown (?)		_			<u> </u>	ļ					ļ									<u>.</u>	-
not sequence	₫┖	4	_		<u> </u>	 	┿	_		_	<u> </u>	┿	_				_	 		2 2	2 7
sum of seq²	3	33	33	33	33	3 3	3	33	33	33	3	3 :	33	33	33	33	33	3.	3 3	3 3	3 3
oomcaa,		33	33	30	31		•	:		:	:	•	•							3 3	
mcaa'	ļ	Y	W	Α	S	1	•••••	·····	E	S	:	••••	٧	P			1		Ī		••••
rel. oomcaa		100%	100%	910%	040%		88/0	100%	97%	100%	1000%	2001	100%	100%	100%	97%	100%	0.70%	06/6	0,000	0 000-
pos occupied	le	1	1			3	4	1	2			1	1	1	1	2	2	1	2	1	1

117

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

					Fr	ame	worl	cIII										
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	8	82	83	84
А														33				3
В																		
. C																		
D				32												33		
E															33			
F.	L				32													
G		33		1														
Н																		
	ļ								33									
K		<u></u>																
<u> </u>							33					32	••••••					
· M												1						••••
N										2	1							
Р	ļ										• • • • • • • • • • • • • • • • • • • •							
Q													32					*****
R													1					
S	33						***************************************			30	32							
Ţ			33			33		33		1								
V					1	,											33	
W																		
X																		
Υ																		
-																		
unknown (?)																		
not sequenced																		
sum of seq ⁷	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa,	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	3
mcaa*	S	G	Ţ	D	F	T	L	Ţ	1	S	5	L	Q	Α	Ε	D	٧	Α
rel. oomcaa ^s	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	020v
pos occupied ⁶	1	1	1	2		1	1	*********	1		2		:	1	1	1	1	

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

											С	DR II	II.					
amino acid'	82	98	87	88	68	96	91	92	93	94	95	∢	മ	U	۵	w	u_	96
Α										1								
В																		
· C				33							<u></u>		<u> </u>					
D								1	1									
E																		
F			1					1										
G									2	-								••••
Н			1		3													
										2								
K																		
L						1		2		1	3							
M																		
N									4	4								
Р										1	29	1						
Q					30	32					1							
R									1			1						
5							2		23	2								
T .									2	22								
V	33																	
W																		
X																		
Y		33	31				31	29										
_												13	15	15	15	15	15	
unknown (?)																		
not sequenced										_		18	18	18	18	18	18	1
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	1
oomcaa³	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	ļ
mcaa¹	٧	Υ	Υ	С	Q	Q	Υ	Υ	S	Ţ	Р	-	-	-	_	-	-	F
rel. oomcaas	100%	100%	94%	100%	910%	97%	94%	88%	70%	67%	88%	87%	100%	100%	100%	100%	100%	ò
pos occupied"	1	1		1	:	:	2		:	•	;			1	1	1	1	

SUBSTITUTE SHEET (RULE 26)

Table 4D: Analysis of V kappa subgroup 4

			******			Fra	ımeı	vork	IV				
amino acid'	97	86	66	9	101	102	103	104	105	106	A.	107	108
Α													
В						·							
С													
D													
E									14				
F		15											
G			15	4	15								
Н													
										14			
K							14					13	
L								4					
M	1												
N												1	
Р						1							
Q				11				1					
R							1		1			1	11
S	2									1			
T	12					14							
V								9					
W							-	1					
X													
Υ													
											15		
unknown (?)												••••••	
ot sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22
sum of seq ²	15	15	15	15	15	15	15	15	15	15	15	15	11
oomcaa ³	12	15	15	11	15	14	14	9	14	14	15	13	11
mcaa*	T	F	G	Q	G	T	K	٧	Ε	1	-	K	R
el. oomcaaʻ	80%	100%	100%	73%	100%	93%	93%	900	93%	93%	100%	87%	100%
os occupied ^a	3	1	1	2	1	2	2	4	2	2	1	3	1

Table 5A: Analysis of V lambda subgroup 1

												F	ram	ewo	rk l						
amino acid	-	7	1 (η,	4	2	9	7	8	c	ñ ,	0	=	12	5	4	15	91	17	2	19
Α													19		18	20					
В																					
· c										<u>.</u>											
D										<u>.</u>											
E		ļ		<u></u>						-ļ										1	
F.		ļ						********		_											
G		<u></u>		<u>.</u>						<u> </u>					22			42			
Н	2	<u> </u>							ļ												
		ļ		1									1								
K									<u> </u>											14	
L		ļ		1	41				ļ				1								
M	ļ								ļ	_											
N	ļ	ļ							ļ												
Р		<u>.</u>						41	4	1						1	41				ļ
Q	22	ļ		1			41		<u> </u>	-									42	!	<u> </u>
R	<u> </u>	<u> </u>						<u></u>	ļ										<u></u>	25	·
5] 3	39					<u></u>	<u> </u>	-	41			41			1		<u> </u>	1	·
T	 	ļ	ļ			41			-							19			<u> </u>	1	·÷
V	<u> </u>	ļ	1	38					<u> </u>				20		1	1					4
W	<u> </u>							ļ	ļ	_										<u></u>	-
X								ļ	ļ						<u> </u>					<u></u>	-
Y		_	_					ļ		_					<u> </u>		<u> </u>		<u>.</u>	<u></u>	-
Z	16	3	_	_				<u> </u>	<u> </u>	4				_	<u>!</u>	_	<u> </u>	_	_	<u> </u>	÷
-		-					ļ		<u> </u>			41	<u></u>		<u> </u>	<u> </u>	ļ	<u></u>			
unknown (?)		_			-		<u> </u>		-	_					ļ		ļ	ļ	<u> </u>	<u> </u>	
not sequence		2	2						1						1					1 4	<u> </u>
sum of seq ²															41						
oowcaa,			•••••••••••••••••••••••••••••••••••••••	*****	:			:				•			22	:		G G			
mcaa'	0	<u> </u>	S	V	L	T	Q			P		-	٧	··••·····	G		*	,			···{····
rel. oomcaa ^s	2000	0200	%86	93%	100%	100%	100%		2	100%	100%	100%	490%	100%	540%	490%	98%	100%	800		2
pos occupied		3	<u></u> 2	:	:	1		1	1	1		•	4	:		3	:	2	1	1	5

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

											CE	RI							
amino acid¹	20	21	22	23	24	25	56	27	۵	ш	28	29	30	31	4	32	33	34	35
Α	2			,				1				2	2			1			
В																			
С				42															
D										3			3	1		3		1	
E													1						
F					1				1			i			1	1			·
G						42	3	1			2	39	4	2					
Н														2		2		2	
	1	41								1	37							1	
K										1			1						
L		1									1								:
М											1								
N								2	1	37			13	31	2		1	9	
Р																1			
Q																1			
R							1	1					5						
S	1		42		38		34	34	38				13	1	1	3		19	
T	38				3		4	3	. 2			1		1		7		2	
V											1					2	40		
W																			4:
X																			
Y														4	1	20		7	
Z											1,2								
_				= 1											36				
unknown (?)																			
not sequenced															1	1	1	1	
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	4
oomcaa,	P					F				,	7	39							•
mcaa*	Ţ	ı	S	С	S		S	S	S		١	G	N	N	-	Υ	٧	•	N
rel. oomcaas	%06	98%	100%	100%	%06	100%	81%	81%	% 06	%88	88%	93%	31%	74%	%88	49%	%86	46%	100%
pos occupied ⁶			:	 !	:					:	:	: :			i	10			:

122

WO 97/08320 PCT/EP96/03647

Table 5A: Analysis of V lambda subgroup 1

						Frar	new	ork I	ſ						Π				
amino acid'	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
А							4	40									1		
В													<u> </u>						
C												ļ	<u> </u>	<u> </u>					
D						1					*·······			ļ	13	10	8		
E							7			2			•		5			1	
F	1			4		• · · · · · · · · · · · · · · · · · · ·			•••••		······			1					
G						39									1				
Н	1	1	6	1					•••••					1				1	
1									•	••••••			40		1			•••••	
K							1			35					1	1		18	•••••
L			1	31							41	40						1	1
М							1				•		1					1	
N									•••••	1	•				3	28	30	2	*********
. Р					42	1			42										,
Q		39	34										••••				i	15	
R		2		1	-	1				4					7			2	40
S								1							9	2	3	1	********
T							36	1							1				.,.,.
V			1	5							1	2	1						********
W																			1
Χ																			
Y	40													40	1	1			
Z																			
-																			
unknown (?)																			
not sequenced																			
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa¹	40	39	34	31	42	39	36	40	42	35	41	40	40	40	13	28	30	18	40
mcaa¹	Υ	Q	Q	L	Р	G	T	Α	Ρ	Κ	L	L	1	Υ	D	N	N	Κ	R
rel. oomcaa ^s	95%	93%	81%	74%	100%	93%	%98	95%	100%	83%	%86	95%	%56	95%	31%	9/0/9	71%	43%	95%
pos occupied ^a				;			4			4					10	:		9	

WO 97/08320 ·

PCT/EP96/03647

Table 5A: Analysis of V lambda subgroup 1

	CI	OR II			-			Τ	_										
amino acid'	55	56	∢	8	ပ	0	ш	57	58	59	99	61	62	63	64	65	99	٧	æ
Α	1														5				
В	<u> </u>	<u>.</u>	<u> </u>																
· c	1																		
D											38								
E	<u> </u>		<u>.</u>	<u>.</u>															
F .	<u> </u>	<u>.</u>		<u> </u>	<u> </u>	<u> </u>							38						
G			<u>!</u>	<u> </u>				41			2				36				
Н	<u> </u>	<u> </u>									1								
1									17				3						
K																	38		
L		1								1									
M																			
N	.			<u></u>	ļ														
Р	38		<u> </u>							38									
Q			<u> </u>																
R												42					4		
S	2	40	<u> </u>							2				42		42			
T			<u> </u>												1				
V									24				1						
W			ļ				,												
X												į							
Y																			
Z																			
_			41	41	41	41	42											42	42
unknown (?)					<u> </u>												:		
not sequenced	1	1						1	1	1	1					·			
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa ³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa'	Р	5	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	-
rel. oomçaa⁵	93%	%86	100%	100%	100%	100%	100%	100%	29%	93%	93%	100%	%06	100%	96%	100%	%06	100%	100%
pos occupied [©]	3	2	1								3					1		·····	1

Table 5A: Analysis of V lambda subgroup 1

				Fr	ame	wor	k III												
amino acid'	29	89	69	20	71	72	73	74	75	9/	77	78	79	8	81	82	83	84	2
Α		1	3		41			24						2				38	
В	<u> </u>		<u> </u>																
· C																			
D		1													1	41			3
Е										······································	· · · · · · · · · · · · · · · · · · ·		1		24		42		
F.								•			<u></u>	ļ				••••••			
G		40		<u></u>				17		1	42		<u> </u>		15				•••••
Н				<u> </u>		•••••							1			•••••			••••
· 1									41				<u>.</u>						*****
K						•••••••••	••••									••••••			•••••
L			•••••••••••				42		••••••			41				•••••	•••••	•••••	•••••
М			•••••			•••••			•••••••	••••		•••••							•••••
N						•••••••	••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••		•••••			1			
Р			•••••••			•••••••••••••••••••••••••••••••••••••••			*********			•••		2					••••
Q			•			•••••			•••••				31	•••••••••••••••••••••••••••••••••••••••					*****
R									•••••				8	····-÷					
S	42		1	42		24				20				20				1	•
T			38		••••••	18				21				17		أ		3	•••••
V					1			1	1			1		1	•••••				•••••
W													1	••••••	2				
Χ																			•••••
Y														•••••					••••
Z					••••••														•••••
_															-			_	-
unknown (?)			-																••••
ot sequenced												·····		••••••					•••••
sum of seq'	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa,	:			•		:		***********					••••••	20	······································	••••••			
mcaa'	S	:	:					Α	7.	•••••••••••••••••••••••••••••••••••••••	G	L		20 S	·······:	D	E	З о А	•••••
rel. oomcaa'	100%	95%	%06	100% ר	0/86			•••••••••••••••••••••••••••••••••••••••	••••••		•••••••••••••••••••••••••••••••••••••••	••••••	•••••••	48% L	57%	86% د	ا00% ا	2 %06	88%
pos occupied [«]		<u>ი</u>	7	•••••••••••••••••••••••••••••••••••••••	ි 2	<u>در</u> 2			6 2		= 1	ි 2	:	:	<u>'S</u>	<u>66</u> 2	<u>≃</u> 1	3	88

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

		-								CDF	R 111								
amino acid'	98	87	88	83	8	91	92	93	94	95	⋖	8	ပ	٥	u ·	ഥ	96	97	86
Α			,	22	15			1				16					4	1	
В																			
С			42														_		
D							39	17			7								
E			·					,,				1					1		
F		2								1									31
G				14				1				-17	1	<u> </u>		<u>.</u>	5	1	
Н		1											1						
1											1							1	
K									ļ		1								
L				1					ļ	37			1					1	
М							ļ		ļ									1	
N				ļ		<u></u>	2	2			9	1							
Р				<u> </u>	<u>.</u>	<u> </u>	ļ			1	ļ						6		
Q			<u> </u>	3	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u></u>								
R		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	5	1	2						2		
S		<u> </u>	<u> </u>	<u> </u>	4	<u> </u>	<u> </u>	17	35	ļ	18		1				1		<u> </u>
T		<u> </u>	<u> </u>	<u> </u>	22	<u> </u>	<u> </u>	1	1	ļ	1	ļ							<u> </u>
V	<u> </u>	<u> </u>	<u> </u>	1	ļ	<u> </u>	<u> </u>	1	<u> </u>	1	ļ	2					**********	34	
W		ļ			ļ	38	<u> </u>	<u> </u>	-	ļ		ļ					7		
X	1	ļ		<u>.</u>	ļ	ļ	<u> </u>	<u> </u>	ļ	<u></u>		ļ							-
Y	42	39		<u> </u>	<u>.</u>	3		1	<u> </u>	-	ļ						3		-
Z		_		<u> </u>	_	L	L	Ļ	L	_	_	-			_		-	_	-
_				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	2	4	35	39	38	38	1		-
unknown (?)		ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ							-
not sequence	d		<u> </u>			_ i			1			1							÷
sum of seq ²	42	42	4	2 4	4	4	1 4	4	1 4	41	41	41	39	39	38	38	39	39	
oomcaa³	42	39	4	2 22	2 2	2 3	3 39	1	7 3	37		17	35	39	38	38	ļ	34	
mcaa*	Υ	Υ	С	Α	Ţ	N	D	D	S	L	5	G		-		-	٧	V	
rel. oomcaa ^s	100%	930 ₀	100%	5.40%	5.40%	930%	9200	410%	νου α α το ν	%U6	440%	41%	%06	100%	100%	100%	23%	87%	
pos occupied		1		1				1		3 !			•	:	1	1	10) (3

Table 5A: Analysis of V lambda subgroup 1

			•		Fran	iewo	ork I	v					
	amino acid'	66	901	101	102	103	104	105	106	∢	107	108	- sum
	Α												285
	В		<u></u>				<u> </u>		<u> </u>				
i	С												84
	D] [***********			224
1	Е		1		•••••	***********							81
	F												87
	G	36	31	36							26		559
	Н												25
	1												188
	K					30							141
	L						25			34			344
	M										• -		5
	N					1							176
	P											1	296
	Q					3				1		18	251
	R					1					2		156
	S		1								2		720
	T		3		36	1		36					359
	V						11		36	1			282
	W										1		92
	Х												
	Y												202
	Z												16
	-												524
	unknown (?)										<u> </u>		
	not sequenced	4	6	6	6	6	6	6	6	6	10	22	141
	sum of seq'	36	36	36	36	36	36	36	36	36	31	19	
	oomcaa,	36	31	36	36	30	25	36	36	34	26	18	
	mcaa'	G	G	G	T	Κ	L	T	٧	L	G	Q	
	rel. oomcaa⁵	100%	%98	100%	100%	83%	%69	100%	100%	94%	84%	95%	
	pos occupied ⁶	1	4	1	1	5	2	1	1	3	4	2	

Table 5B: Analysis of V lambda subgroup 2

											Fra	mev	ork	1	`				
amino acid'	-	7	က	4	2	9	7	8	တ	9	=	12	13	14	15	16	17	18	19
Α			35					30			6		1	1					
В				<u>.</u>															
· C			<u> </u>																
D		<u></u>	<u>.</u>													1			
E	1	<u> </u>	<u> </u>																
F .	<u> </u>	<u> </u>	<u> </u>	<u> </u>															
G	<u> </u>		<u></u>	ļ		<u> </u>		<u> </u>					42			42			
НН	2		<u> </u>	<u>.</u>	<u></u>	<u> </u>	<u></u>	ļ	<u></u>	<u> </u>	<u></u>	<u></u>	<u>.</u>	<u> </u>	<u> </u>	<u></u>	1		
1	 	<u> </u>	1	<u> </u>		<u> </u>		<u>.</u>		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u></u>		<u>.</u>	28
K	<u> </u>	<u></u>	<u> </u>			<u>.</u>		<u> </u>	<u> </u>	<u> </u>		<u>.</u>	<u>.</u>	<u></u>	<u> </u>				
L		<u></u>	<u> </u>	40	<u></u>	<u></u>		<u></u>		<u> </u>				<u> </u>	3				1
M	 	<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>		<u> </u>											
N				<u></u>		<u> </u>		<u> </u>		ļ				*****					
Р	 	ļ					42	6		ļ					40				
Q	22		4			41											42		
R								6	1										
S		41							40			42		42				43	
<u> </u>					42				1										
V		1	2								36								14
W							•												
X					••••••		*****												
Y												<u> </u>							
Z	16																		_
-										42									
unknown (?)						1	*******					<u>‡</u>							
not sequenced	-					_						1	_	_					
sum of seq ²		;	······	•••••••		•••••••••••••••••••••••••••••••••••••••			••••••••••••	••••••••••	42	••••••	······································	•••••••		····÷	••••••	! -	•
oomcaa ¹			35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa¹	Q	S	Α	L	Ţ	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	1
rel. oomcaa⁵	55%	98%	83%	100%	100%	%86	100%	71%	95%	100%	%98	100%	%86	%86	93%	%86	%86	100%	65%
pos occupied ⁶	3	2	4	1	1	1		3	3	1	2	1	2	2	2	2	2	1	3

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

			F	ram	ewo	rk IV						
amino acid'	66	9	101	102	103	104	105	106	Υ	107	108	sum
А		1										280
В												
С												9 9
D												188
E												107
F												113
G	42	33	42		<u> </u>					19		567
Н												48
							1					184
К					36							189
L						28			40			264
М			<u> </u>									29
N			ļ		1							146
Р			ļ									238
Q			<u> </u>		1						14	250
R		1	<u></u>		2					4		121
S		<u></u>	<u>.</u>				1			2		831
T		7	<u> </u>	41			40					398
V			<u> </u>	<u>.</u>	ļ	14	ļ	42	1			327
W		<u></u>	<u>.</u>	<u> </u>	<u> </u>		ļ				,	48
X		ļ	<u> </u>	<u> </u>	<u> </u>	ļ	<u></u>					
Y		<u>.</u>		<u> </u>	1	<u></u>	ļ					285
Z			<u> </u>	<u> </u>								16
-			<u>.</u>	<u> </u>		<u></u>					ļ	555
unknown (?)		<u>.</u>	<u> </u>	<u>.</u>	ļ	<u> </u>	<u></u>	ļ			<u> </u>	8
not sequence	d 1	1	1 1	2	2	1	1	1	2	15	28	80
sum of seq ²	42	42	2 42	41	41	42	42	42	41	25	14	
oomcaa3	42	33	3 42	2 41	36	28	40	42	40	19	14	<u>L</u>
mcaa ⁴	G	G	G	Ţ	K	L	T	٧	L	G	0	_
rel. oomcaa ^s	100%	%6 2	100%	100%	88%	67%	95%	100%	%86	76%	100%	
pos occupied	le .	1	4	1 1		5 2	2 3	1	2	3		<u>.</u>

134

WO 97/08320 ·

Table 5C: Analysis of V lambda subgroup 3

													Fr	ame	wor	k I							
amino acid'		2	,	·	4		9	7	. (20	6	1	: =	. :	7 5	2 ;	4	15	16	1			<u>-</u>
Α			I			1			1	2		7			<u> </u>		20	1		<u> </u>	-		27
В									<u>ļ.</u>					_					<u> </u>	-	-	-	
C												-									-		
D				5			<u> </u>	1	0			<u>.</u>							-	-			
E				20					_			_				1			┿	1			
F	1	ļ	1				<u> </u>		_			_			1			1	·	_	_		
G		<u></u>		1			ļ												3	7			
Н		<u></u>					ļ		_		ļ	_		_					-	-			
ļ		<u> </u>					ļ				<u> </u>								<u> </u>				
K		<u> </u>				·	<u> </u>				<u> </u>								ļ	-	2		
L	ļ				37		<u> </u>				<u> </u>			4		1)				
M		<u> </u>					ļ				<u> </u>												
N		<u> </u>					ļ.,				-												1
Р							ļ		26	35	<u> </u>	1					•••••	27	<u> </u>				
Q	4	١		4				38			-						•••••	ļ		_	36		
R							<u>.</u>				-							ļ		-			
5	1:	3	14				1		1		·	28			37		18	<u> </u>				38	
T	<u> </u>					3	6				1							<u> </u>	-			30	1(
V				8	1			_			-	2		34		36	•••• • •	 					
W	ļ	-			<u> </u>	<u> </u>				<u> </u>	-							 					
X					ļ	ļ	_			<u> </u>	-						·••••	╫	-				
Υ			23		ļ					-								+				••••	
Z		4			<u> </u>	Ļ		_	_=	<u> </u>	+	_						<u> </u>	\dotplus	-			<u></u>
	2	0			ļ				• • • • • • • • • • • • • • • • • • •	<u> </u>			38						-	<u>.</u>			
unknown (?)	-			ļ	ļ					<u> </u>	-						ļ						-
not sequence	d	_			<u> </u>	\dotplus	_			_	_	-		20	20	20	2	<u>.</u>	20	20	38	36	<u> </u>
sum of seq ²	3	8	38	38	3 3	3 3	38	38	38	3 3	8	38	38	38	38	38	3	n: '	30 27	30	35 20	36	2
oomcaa,		20	**********				•		•	:					37 c		2	<u> </u>	۷/ D	3/ G	Q	T	
mcaa ⁴	ļ	-	Υ	E	L		Ţ		Р			S		V	S	V		<u> </u>				<u> </u>	
rel. oomcaa		53%	61%	10°C	2000	06/6	95%	100%	280%	2	95%	74%	100%	%68	97%	95%	•		71%		92%	1	
pos occupied	Ţ	4	:	i		2	3	1		4	3	4	1	2	? 2	! ;	3	2	4	2	2	<u> </u>	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

•												С	DRI	_								
amino acid'	20	21	22	3	24	, ,	67	97	27	۵	ш	28	29	3 6	3 5	ว์ <	₹ ;	32	ئ بى	34	35	 -
A				1					5			<u> </u>			1	1	_		21	3		••-
В			Ī									<u> </u>		_	_							•••
. C				3	8							<u> </u>			_	_	_			5	 	
D								30	1			<u> </u>		_	10			3		1		
E								2	2					1	3	6					<u></u>	
F .														_		1		2			-	•••
G						9	38		1					23	4						ļ	•••
Н								1			ļ	<u> </u>						2		9	-	
i		3	8								ļ	<u>. </u>	9			1				<u> </u>	<u> </u>	
K									7		<u> </u>	<u>.</u>			2	13				<u> </u>	<u> </u>	
L										<u> </u>	ļ	2	8							<u> </u>	1	
М										ļ	ļ					1						•••
N				2				4	9	<u> </u>	ļ	-	1		2			1		- 4	2	•••
Р				1						ļ		-		3						-		
Q						10								_		4				-	-	
R	2	5							2		ļ		_	10	1				1	-		
5		9		1		19			10)					11	2		8		1	4	
T		3		33					1	<u> </u>				1	4					<u> </u>	-	
V									ļ	ऻ॑									15) 		 ၁
W									ļ	ļ										-		3
X									<u> </u>	<u> </u>										-	_	
Y								1	ļ	-						8		20		1	4	•••
Z									Ļ	Ļ	4	\dotplus	_			-			_	+		=
-									ļ	3	8 :	38					37	ļ	<u> </u>		-	
unknown (?)						ļ	<u> </u>	<u> </u>								-		<u> </u>	<u> </u>		
not sequence	ed						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	_				1				<u> </u>	=
sum of seq	7	38	38	38	38	38	38	31	3 3	8 3	8	38	38	38	38	37	37	37	3	8	88	
oomcaa	3	25	38	33	38	19	:	•	•	•	:	•				13		20	2	1	14 C	
mcaa ⁴	ļ	R	1	T	С	S	G	D		5		-	L	G	S	K	-	Υ	†		S	•
rel. oomcaa	95	999	100%	87%	100%	50%	100%	7007	200	0/.97	100%	100%	74%	61%	29%	35%	100%	54%		55%	37%	
pos occupie	-		1	•	•	•	•		5	9	1	1	3	5	9	9) 1	1 7	7		7	

Table 5C: Analysis of V lambda subgroup 3

•						ĺ	ran	new	ork	11							<u> </u>				4
amino acid'	36	37	38	3	£	6	41	42	43	7	-	45	46	47	48	49	- S	51		-	=
Α									2	3	_	·····	ļ	ļ	ļ			1	<u> </u>	1	
В				1				<u> </u>	<u> </u>	_	_		ļ	<u> </u>	<u> </u>	-	 	<u> </u>		<u> </u>	
С			<u> </u>				<u> </u>	<u> </u>	ļ	_ _	_		<u> </u>	-	 	-	<u> </u>	22	2	8	
D			<u> </u>				ļ		-	_			-	-	-	-		· 		·•••	
E				1			<u> </u>	-	_	_			-	-	-		2			1	
F	3		_			ļ	<u> </u>	-		_			-	-	-			9 :	2		
G			_			ļ	3	6				<u> </u>	-	-	_	_	<u></u>	3		-	1
Н	_	ļ	_			<u> </u>	<u> </u>	-	1				-	-	2		<u> </u>		1-	1	
	<u></u>		_ -			<u> </u>	ļ	_				-	1	-		_	+	2	6	1 1	3
K					32	<u> </u>	-	_		-		<u> </u>	6 3	7	1				<u> </u>		
L	1_		_	2			<u>.</u>					 	- -	1		1					
M	1					-	-	_	\dashv			+	┪	-	+	-	1		1 1	9	9
N .					ļ		-	-	-		31		-	-		1					
P		_			<u> </u>	_	6	-	1 36				-	-	-			9			1
<u>Q</u>	_		···	35		1		2	30				+	_				1	1		1 3
R			1		-	4	2	-		14	<u> </u>	┪								10	1
<u>S</u>		-			<u> </u>	1	<u> </u>			•	-	-	1	_	1				2	4	
T	-	-			-	-				1	1	1	31	4	37	9					
<u>V</u>				<u> </u>	<u>-</u>			-			T	丁									
W				-	+		-	-		 	1										
X		35		-	-					 							35				
Y 7		35		<u> </u>	-												_			4	_
Z		-		Ť	Ť	T				T										_	
unknown (7)			†	1																
not sequen		.,		†	1																
sum of se	;	38	3	8	38	38	38	38	3	8 3	8	38	38	38	38	38	38	38	38	38	38 13
oomcaa ¹		35	3	7	35	32	36	36	3	6 2	23	38	31	33	3/	20	- 33				<u> </u>
wcaa,		Υ	(1	Q	K	Р	G	C)	A	<u>P</u>	V	L	<u> </u>	<u> </u>				-	
rel. oomc						84%		950	•	95%		_	82%	87%	97%	74%	92%	24%	58%	50%	1 :
pos occup		:	:	•				2		3				:	3 2		3		1	3 7	9

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

•	CDI							┸											′0		
amino acid'	22	26		C 0	ه د	ء ر	، د	u ¦	2	28	23	9	2	<u> </u>	3 8	3 3	<u> </u>	56 	<u> </u>	∢	<u>~</u>
А			1										<u> </u>								
В		,	<u> </u>										<u> </u>		_						
С													<u> </u>	-	_						
D		ļ	<u>.</u>				_		_			9	 -	-	-		-				
E												27	<u> </u>	_	_	-	_				
F		ļ						_							38						
G		<u> </u>							38			ļ	-				38				
Н												<u> </u>	<u>.</u>								
· I		<u> </u>								37		ļ			_ -		_				
K		<u> </u>								*******		<u> </u>	-								<u></u>
L				<u> </u>								<u> </u>									<u> </u>
М		<u>.</u>										<u> </u>									<u> </u>
N		<u> </u>									<u> </u>	ļ	_						21		<u> </u>
Р	37		1								36	<u> </u>	_	_							
Q											ļ		_	_					ļ		<u> </u>
R											ļ	<u> </u>		38							-
S		1	36							<u> </u>	ļ	<u> </u>	_			38		38	12	Ť	
Т			<u></u>								<u> </u>	<u> </u>	_		_				5		ļ
٧										<u> </u>		<u>.ļ</u>	_						<u> </u>	<u> </u>	╬.
W										ļ	ļ	<u> </u>	_					<u></u>	ļ	<u> </u>	
X										<u> </u>		<u>.</u>							ļ	ļ	
Υ													_					ļ		<u> </u>	-
Z									_	L	Ļ	4	4	_	_			_	-	<u> </u>	_
-				38	38	38	38	38	<u></u>	<u> </u>		_	_					ļ	-	3	8 :
unknown (?)									<u> </u>	<u>.</u>			1					<u>.</u>		ļ	
not sequence	d								<u> </u>			1	1	_			_	<u> </u>	╪	┿	<u> </u>
sum of seq ²	3	8	38	38	38	38	38	38	38	3 3	7 3	7	37	38	38	38	38	3	8 3	8 3	8
oomcaa3	3	7	36	38	38	38	38	38	3	3 3	7 3	6	27	38	38	38	38	3	8 2	1 3	8
mcaa ⁴	?	•••••	S	-	-	-	-	_	G	•			Ε	R	F	S	G	S	N	٠.	-
rel. oomcaa	5	9/0/6	95%	%00	%00	100%	%000	%UU	80001		200	o₀/6	73%	100%	100%	100%	100%	8000	2000	0,600	0/2001
pos occupie		<u>.</u>	<u></u>											4	1	1		1	1	3	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

-					rame							_		-6	0	=	82	33	84	85	
mino acid'	67	88	69	70	7	72	73	74	75	<u> </u>	,	` - 		1		7	- 6			· ·	=
Α					1 36	1	_	_	1		<u> </u>		11	1	34	}	-	-	38	<u></u>	
В				<u> </u>		<u> </u>	_		-	<u> </u>				<u></u>	<u> </u>	- 				-	
С			<u> </u>	<u> </u>		<u> </u>			-		-				-		-			3	7
D				<u> </u>			<u> </u>	_	_						-	-	3		<u> </u>	†	
E				<u>.</u>		<u>.</u>	_							10)	1	4	38	1	-]
F				<u>.</u>				_	_					<u> </u>	-		_		-	<u> </u>	-
G		37	7									28		ļ	-	1	0		-	-	-
Н				1		_		_						<u>.</u>	-			-	-	-	
1		<u> </u>				<u> </u>	1		1 3	17	1			<u>.</u>	-		1		-	+-	••
K		<u> </u>		1				_	_					<u> </u>					-	<u> </u>	,**
L	ļ						3	38						-			2		-	-	••
М		<u> </u>												-			0		-	-	••
N			2	8							1		ļ	-	_						
P																			-	-	
Q			1										ļ	2	5						••
R								_			1	10	1	_	1				-	-	••
S	3	7		2			11			_	23		-	-		1			+		•••
T		1		6	37		25		36		12			3		2			-		
٧						2				1			_ 1	4	1	1	1	-	-		
W															_	<u> </u> -					,
X												ļ	_						-		-
Y												ļ	-						_		
Z					<u> </u>	_		_	_		_	<u> </u>	÷	\dotplus	+	-	+	+	\dashv	\dashv	=
_												ļ							-		
unknown (?)											ļ	-			<u> </u>			-		-
not sequence	ed											<u> </u>	-	_					20	20	=
sum of seq	,	38	38	38	38	38	38	38	38	38	38	3 3	8	38	38	38	38	38	38	ან: 	
oomcaa,		37	37	28	37	36	25	38	36	37	2:	3 2	28	14	25	34	14	30	30	30	
mcaa'		S	G	N	T	Α	T	L	T	1	S	(3	٧	a	Α	Ε		E	Α_	1
rel. oomcaa	a ⁵	2%	2%	4%	92/6	2%	6%	100%	95%	92%	10%	2	74%	37%	%99	%68	37%	100%	100%	100%	
pos occupio									6	:	:	•	:	3		•	Ī		1		

130

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

												CDF										
amino acid'	98	87	ä	3	83	90	16	92	93	3	9.4 4	95	4	80	د	, ,	ı د	. L	ш. ———	96	97	98
Α						13	3	2				1	2							4		
В				İ												_	_					
· C			3	8						ļ.,					ļ	_ _						
D							*******	32	1	1	1		6		<u> </u>		_					
E			<u> </u>		1					<u> </u>				2		_				2		
F .		2	2						1	2			, 		ļ	_						35
G							·		<u> </u>		3	14	3		ļ	-	1			3	1	
Н	<u></u>		Ļ						ļ					12	_	1		_				
1		<u> </u>	<u>.</u>						<u> </u>					ļ	<u> </u>	_					4	
K		<u> </u>						<u> </u>	<u> </u>	_			1	ļ	<u>.</u>							
L		<u> </u>	<u> </u>		1				<u> </u>	1		1		1	-	1				4		
M		<u></u>							<u> </u>	┇.	1				<u>.</u>	-				1	1	
N		ļ			10			2		1	2		10	1	<u> </u>	_						
Р	1						<u></u>	ļ	ļ		1			ļ	-	3	_			1		
Q	<u> </u>				25		ļ		<u> </u>			1	1	·[·····								
R	<u> </u>						10		÷	1	2			1 3	2							
S		<u> </u>			1	14	1		2	8	26	13	·	·	<u> </u>				1			
T		<u> </u>	1				1	<u> </u>	ļ	3		7	2	<u> </u>	-							
V		<u> </u>				11	<u> </u>	<u> </u>	ļ	_			ļ	ļ							28	
W		ļ					23	1	<u>.</u>	-				-						1	<u> </u>	_
X			-	_			ļ	-	-	_			<u> </u>	-								
Y	38	3	6					-	<u> </u>		1		1	<u> </u>	3	1				3	ļ	-
Z		<u> </u>	1		_		-	-	╄	4		_	_	-	÷	-	_		-	_	Η.	┝
			_						_	_		<u> </u>	10) 1	5	31	36	37	36	<u></u>	1	
unknown (?)		ļ	-				<u> </u>	-	<u>.</u>			<u></u>	-			_					-	
not sequence			4			<u> </u>	Ļ			1	_			===	1	1				1	÷	
sum of seq ²	38	3 3	8	38	38	38	3 3	3	7	37	37	37	3	6 3	7	37	37	37	37	37	37	(3
oomcaa,	38	8 3	6	38	25											31		37	36			
mcaa'	Υ		Y	С	Q	S	٧	/ C		S	S	G	N		-	-		-	-	V	V	
rel. oomcaa ^s	100%	2	95%	100%	₀ 99	370%	610%	0 0	0.00	26%	70%	38%	200%	06-07	4 1 7/0	84%	97%	100%	97%	490/0	76%	
pos occupied	10																	1	2		9 1	6

Table 5C: Analysis of V lambda subgroup 3

			F	ram	ewo	rk IV						
amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α												265
В		į										
С		i	į							1		82
D		į										225
E					2							145
F												90
G	35	31	35							24		461
Н												32
l					<u> </u>							160
K					30							110
L						28			33			233
M												17
N												126
P									1			249
Q											7	275
R					2							154
S										2		501
T		4		35			35					347
V			<u> </u>			7		35				308
W		<u> </u>										62
X		<u> </u>	<u> </u>	ļ								
Υ		<u>.</u>	<u> </u>			<u> </u>						211
Z		<u> </u>	<u> </u>	<u> </u>		<u> </u>						
<u>-</u>		<u></u>									<u> </u>	603
unknown (?)		<u> </u>	<u> </u>	<u> </u>		<u> </u>				ļ	<u> </u>	1
not sequenced	1 3	3	3	3	4	3	3	3	4	11	28	89
sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	-
oomcaa ³	35	31	35	35	30	28	35	35	33	24	7	_
mcaa*	G	G	G	Ţ	K	ι	Ţ	٧	L	G	Q	
rel. oomcaa ^s	100%	%68	100%	100%	88%	80%	100%	100%	926	89%	100%	
pos occupied	s	2	2 1	:	:	•	•	1	2	:		

141

Table 6A: Analysis of V heavy chain subgroup 1A

														Fra	me	wor	(
amino acid		7	~ ·	4 r	n (م	^	∞	6	2	Ξ	12	<u></u>	4	. 5	16	17	28	<u>.</u>	20
A					1	14			60							24	1			······
В																				
· c																				
D																				
E	1				2	1		2		64										•••••
F																				
G								58	1			ļ			64					
Н			2									<u></u>								
1	<u> </u>	2								ļ		<u> </u>								
K		2						.,		<u> </u>	ļ	57	64						60	<u> </u>
L			2	59					ļ	ļ	3	<u> </u>					<u></u>			<u> </u>
М		1							ļ	<u></u>			<u> </u>				<u></u>			<u> </u>
N									ļ	<u> </u>	<u></u>	6					ļ			ļ
Р										ļ	ļ	<u> </u>		63			<u> </u>	ļ		<u> </u>
Q	53		56		2	45		<u> </u>	ļ	<u> </u>	ļ	-				ļ	-	ļ		ļ
R								ļ	<u> </u>	<u> </u>	<u> </u>	1	ļ		<u></u>			<u> </u>	3	-
S	ļ	<u> </u>					60	-] 3	}	ļ	<u> </u>	<u> </u>	1		40	63	<u> </u>		-
T								<u> </u>	<u> </u>	-	-	-	<u> </u>	<u> </u>		<u> </u>	<u> </u>		1	· :
<u>V</u>	2	55		1	55			<u> </u>		<u> </u>	61	<u> </u>			-	 	-	64		6
W	<u> </u>	ļ							ļ	-	<u> </u>	<u> </u>			<u> </u>	<u> </u>	ļ	-	<u> </u>	
X								<u>.</u>	. 	<u> </u>	-	-			-	-	-	-	-	ļ
Y	ļ	ļ						-	ļ	<u> </u>	-	-	-		-	-	-		<u> </u>	
Z	3	<u> </u>					<u> </u>	÷	<u> </u>	╬	<u> </u>	<u> </u>	╬-	╄		╄	-	\dotplus	H	┿
-	ļ	ļ				ļ	-	ļ		-		-	-		-	-	-		-	
unknown (?)	 	<u> </u>	ļ			ļ	-	-	-	_	_					-	-			
not sequenced	11	10	10	10	10	10) 10) 10	0	6	6	6	6 () (o t		0	6 6		6
sum of seq ²	59	60	60	60	60	60) 60	0 6	0 6	4 6	4 6	4 6	4: 6·	1 64	4 6	1 6	4 6	4 64	+: b	4: !
oomcaa³	*******	••••••	·		55	45	6	0 5	8 6	0 6	4 6	1 5	/ 6·	4 6 P	3 6 G	4 4	0 6	3 64 5 V	4: 0 K	U: !
mcaa ⁴	Q		Q	L	ļ	······				-			K							
rel. oomcaa'	900	92%	93%	98%	92%	7.50%	1000%	2000	3/6/	94%		2000	100%	9000	100%	200	2000	36%0		3440
pos occupied	;	4 /	1 7	2 2			3	1	2	3	•			•	2	1	2	2	1	3

Table 6A: Analysis of V heavy chain subgroup 1A

															DRI						
amino acid¹	21	22	23	24	25	26	27	28	29	30	31	<	<u> </u>	32	33	34	35	36	37	~ ~	; —
A				62	-			1	•		ļ		_	ļ	41		ļ				
В								<u> </u>	ļ	ļ	ļ			-	-	-	<u> </u>		-	-	
. С		6	3		<u> </u>		<u> </u>		ļ	<u> </u>	<u> </u>		_	-	_	-	<u>.</u>				
D								<u> </u>	<u> </u>	<u>.</u>				-	-	-	-				
E		<u> </u>	<u> </u>	_		ļ	ļ							-	_		_ _			-	
F .					_			-	6		-				3		3		_		
G		<u> </u>	_		1	69	3 4	1		1	.	_			2	3		1	-		
Н	_			_	_		_	-			1				1			1		1	••••
<u> </u>	_	<u> </u>	_		-	_			1	-					- -						-
K		<u> </u>	6	3			-				1	1				1	2				
L	_	<u> </u>	_														4			-	•••••
M	_	_										5					<u> </u>	4		_	••••
N	_		_						-	_	2) 				1	-		_		
P	_	_			-	_										-					
<u> </u>			_							-		1					-				7(
<u>R</u>			1	1				_		-		60			2			60			
5	- 16	3			- -	68		1			<u>†</u> -	3		-	-	3	1	4	-		
T	-	1			2		-		68		23				-	1			-	69	
V	_															1			70		••••
<u> </u>												-									
X					-			27							64						
Y		-	_					27													
Z		4		+	-	\dashv	+	\dashv	\dashv	1	-		70	70	寸						
unknown (6	5	2	1														
not sequence sum of se	ceo	6	6	CA	CE	50	60	70	70	70	70	70	70	70	70	70	70	70	70	70	
		64	64	04 C2	62	00	60	, υ Δ1	۶۶. 68	69	40	60	70	70	64	41	61	60	70	69)
oomcaa,	' !	63 S	•	63 К	62 A	5		G			5	S	-	-	Υ	Α	1	S	W	٧	
mcaa'											<u></u>	·	Q.	<u>چ</u>		_			%	ء ا	
rel. oomca	-	%86	%86	%86	95%	100%	1000%	29%	97%	%66	57%	%98	•	:	ļ 	: .	:		1		1
pos occupi	ed ⁶	2	2	2	3	1	1	4	3	2	(3 5	1	1	4	6		! !	5	1	2

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

					Fra	me	wor	k II															
amino acid'	33	40	; ;	-	42	43	44	45	46		}	48	49	20	5	2	\	٠ -	<u>م</u>	<u> </u>	23	5	55
Α		7	0										1	ļ		<u> </u>	-	5					
В		<u> </u>					<u>.</u>	<u></u>					<u></u>	<u> </u>	<u> </u>								
. С	ļ	ļ							_	<u>.</u>				ļ	ļ								
D								ļ		1			<u>.</u>		ļ		-						
E		ļ				ļ	ļ	ļ	6	9			ļ		ļ	-						20	<u> </u>
F .		<u>.</u>					ļ		_				ļ	ļ	·•••••	2						39	<u> </u>
G		<u>.</u>		1	68		69)			1		69	39)		-	1					68
Н				1		<u></u>	<u> </u>						ļ	ļ		_							-
1		<u> </u>				<u> </u>	<u> </u>						<u> </u>	ļ	6	5 3	8				34	ļ	-
K		<u> </u>				<u> </u>	<u> </u>	<u>.</u>					ļ	<u> </u>		<u>.</u>						!	<u> </u>
L					1	<u>.</u>	<u>.</u>	6	8			1	<u> </u>	<u>.</u>	<u> </u>						2		
М						<u>.</u>						67	<u>'</u>	ļ	-		2				4	÷	
N		<u> </u>				<u></u>							ļ		-		4				3	22	<u> </u>
Р				68		<u> </u>			1					ļ	-			44				-	-
Q	6	9				6	9					<u>.</u>									<u></u>	·‡	
R		1	<u> </u>		1	<u> </u>		1				ļ		_	4	_					1 1	-	<u>.</u>
S						<u> </u>	1				1	ļ	1	ļ			22				<u> </u>	- †	1
T			<u> </u>		<u> </u>							<u> </u>		<u>.</u>	-	1	2	******	i	<u> </u>		÷	3
٧					<u> </u>							<u> </u>	1	_		2	2	16	ļ		-	<u> </u>	<u> </u>
W									1		67	ļ		2	6				<u> </u>	<u> </u>	<u> </u>		
X					<u> </u>							ļ		_					<u> </u>	<u> </u>	ļ	<u>.</u>	
Y					<u> </u>						1	ļ							ļ	ļ	20)	
Z					L	<u> </u>		4	_			Ļ		4	4	\dashv				-	Ļ	┿	+
_					<u>.</u>														70	70)		
unknown (?))				<u> </u>						ļ	<u> </u>			-				-	-	-		
not sequence	d										<u> </u>			_	4	4			<u> </u>	 	+	\dotplus	+
sum of seq	7	0	70	7() 7	0	70	70	70	70	70) 7	0	0	70	70	70	70	70	7() 7	0 7	0
oomcaa,	(39	70	68	3 6	8	69	69	68	69	6	7 6	57 (9 :	39	65	38	44	70) 7	0 3	4 3	9
mcaa'	****		Α	, ,,,,,,,			Q	G	L	Ε	٧	/ 1	Λ	G	G	1	1	Р	-	-	_		F
rei. oomcaa	5	%66	%001	0/0/ 0	2	<u>چ</u>	%6(%66	%2(%6(360%	0.00	96%	%66	26%	93%	54%	630%	100%	30001		49%	26%
pos occupie		*****		<u></u>) (<u> </u>	<u></u>	ري.	رن.	<u> </u>		<u>'</u> '	<u>~_i</u>	7 .		٠	 د		5	•		····	<u>-</u> -

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

•		:DR	11											┸				_		_	, ,		4	2	-
amino acid	26	57	ď	3 6	S S	8	61	62	S	3	64	65	99	7	} -	89 ===	69	<u>۲</u>			; ; ;	: -		7	=
A	1	34	4			69			<u>.ļ.</u>				ļ					ļ	4	3	<u>ļ.</u> .				
В		<u> </u>	<u>.</u>					ļ				<u> </u>	<u> </u>	-	-			ļ	-						
. С		<u> </u>								_		<u> </u>	<u> </u>		-		ļ	<u> </u>	-						•••
D	15	ļ	<u>.</u>	1			 .	_				2	-				<u> </u>	-			0	33			
E		<u> </u>		ļ.			ļ			<u> </u>	1	ļ	 -	-					-	_		33		-	
F	<u>.</u>	ļ			1				j	48		<u> </u>	-		3			ļ		_				<u> </u>	
G	1	ļ	_				ļ	-	3			67	<u> </u>	-			.		-					-	•••
H		<u> </u>	<u>ļ</u>	1			ļ		-			ļ	-									1	•••••	<u> </u>	•••
<u> </u>		<u> </u>					-					 		-	•••••		44	*	-			8		<u> </u>	
K		<u> </u>		2	1		-		17			1		1						3				╁-	
L		<u> </u>	1				-			22		-			2	<u> </u>		1		3				 -	
M		<u>.</u>				<u> </u>						<u> </u>				<u> </u>	2	-						-	•••
N		9		59		<u> </u>	-	_	18						•••••	<u> </u>							ļ	<u>.</u>	•••
P		1	7			<u> </u>	-				_	_					-					•••••		<u> </u>	•••
Q		1	1			-		0	_		6	******	-			╁						1			
R		2	_			<u> </u>			2		 	1		69		┼			5				7(0	
<u>S</u>		<u>.</u>	1		i	 	1				<u> </u>				••••		6		65 65	24		27	 		6
T	3	4	26	4	<u> </u>	-	-				<u> </u>	3	<u>.</u>		65	·· ;	3		-	- :			+		
V					<u> </u>	-					 		1				-						 		
W					<u> </u>			}			╬					+						ļ	1		
X					-	<u>.</u>	-			ļ <u>.</u>	-					-			-		******	<u> </u>	<u> </u>	_	•••
Υ				1	6	3				ļ	-						-						<u> </u>		•••
Z		\dashv	_	_	H	┿	\dotplus	+	_	-	t	\dashv	\dashv	-		Ť	Ť	Ť			-	T	Ī	T	=
-				<u> </u>	ļ					 	-			••••	ļ					******		İ	-		• • •
unknown (<u> </u>											ļ	_						Ť	<u> </u>	Ī	•••
not sequenc	ed	_			1	_		70	70	<u> </u>	_	70	70	70	7	n	70	70	70	70	70) 7	0	70	=
sum of sec	7' [70	70	7(J: 7	U	/0	/0	/(//	U:	70	/U	70		5	66	44	65	43	7() 3	3	70	
oomcaa,					٠.		- :				8	64 Q	G G	פס R	١	V	T	77	T	Α	D	1	E	S	-
mcaa'	ļ		Α		l	<u>:</u>	Α.				;	<u>‡</u>			.ļ						ي	-	_	્ટ	-
rel. oomca	ıa ^s	%6	% 6	308	2	0/0/	%6	% 00	70%	2	2 2 3	31%	%96	%bt		93%	94%	63%	93%	61%	100%	3	4 / 2/0	100%	
pos occupi	•		:	:	7	<u>5</u>	<u></u>		2	<u> </u>	<u>ب</u>	ر	<u></u> 2	. ا	,	2	٠ <u>-</u>	<u>.</u>	2		•=••••	1	5	1	

Table 6A: Analysis of V heavy chain subgroup 1A

					_			rk II	_										_		~
amino acid'	92	77	10	0	79	8	8	82	⋖	8	ပ	83	84	82	98	8	88	& 	<u>မ</u>	6	6
Α .			(34			1						3			1	70				
В			<u>.</u>																		
· C	.		<u>ļ</u>																		70
D	<u> </u>	ļ					2								70						
E	<u> </u>		<u></u>				64							44							
F	<u></u>	ļ		_														1	1	2	
G	ļ	ļ						******		1				ļ							
Н	ļ	<u> </u>			1				1					<u></u>			······				
	<u></u>	<u> </u>	1					3	1	1				<u> </u>				2			
K	<u></u>											3	<u> </u>				•••••				<u></u>
L		<u> </u>				3	•••	63		<u> </u>	70			<u> </u>				2			
M		<u> </u>				67			<u> </u>				<u> </u>	<u></u>		1		1			<u></u>
N	4	ļ							1	16		ļ	<u> </u>	-	ļ			<u> </u>			<u></u>
Р		ļ						ļ	ļ	ļ	ļ		ļ	ļ	ļ			ļ			<u></u>
Q		ļ			1		3		ļ	ļ	ļ	ļ	ļ		<u> </u>			ļ	ļ	ļ	-
R	3	<u> </u>						<u> </u>	23	1	ļ	62	· !	<u> </u>	ļ				<u> </u>	<u></u>	
<u>S</u>	62	<u>.</u>	ļ.	1			ļ	<u> </u>	· <u>i</u>	49	†	ļ	67	<u>'</u>	ļ	1	!	<u> </u>	<u> </u>	<u> </u>	-
Ţ	1	E	59	2			<u> </u>	-	3	2	<u> </u>	4	†	<u> </u>	<u> </u>	67	<u> </u>	-	<u> </u>		<u> </u>
<u>V</u>		<u>.</u>		3			ļ	4	<u></u>	<u> </u>	<u> </u>	1	ļ	-	<u> </u>	<u> </u>	<u> </u>	64	<u> </u>	<u> </u>	ļ
W		_	<u></u>			ļ	<u> </u>	ļ		<u> </u>	ļ	ļ	-		 	<u> </u>	ļ	ļ	<u> </u>	 	-
X		<u>.</u>				ļ		-		ļ	ļ	ļ	-		<u> </u>		ļ	ļ			ļ
Υ					68	ļ		ļ		-	-	-		<u> </u>		ļ	-		Ь	68	5:
Z		ļ	4			L	<u> </u>	-	Ļ	-	-	_	╄	-	⊨			-	+	H	÷
		<u>.</u>					ļ			-	<u> </u>	ļ		-	-			. 	ļ	-	-
unknown (?)							ļ	ļ	-	-	<u> </u>	-	-	-		ļ		<u> </u>	<u>.</u>	<u> </u>	<u>. </u>
not sequence	d_	<u> </u>					<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	╄	┿	┿	<u> </u>	-	<u> </u>		<u> </u>	<u> </u>	+
sum of seq'	7	0	70	70	70	70) 7() 7(7() 7() 70) 70	7	0 70	70	70) 7(); 7(-); 7(); 7()
oomcaa¹	******	***	*******	*********											1 70	67	7 70) 6	4: 69	3: 68 V	3
mcaa*	S	. i	.		<u>.</u>		E				‡		5		D			V	∳	- 	
rel. oomcaa	9000	0/-00	%66	91%	97%	96%	910%	9000	700%	2006	100%	9000	2000	20%	100%	%9 6	100%	0100	9000	97.00	
pos occupied	4e <u>-</u>	4	2	4	-	1	2	4	3	6	6	1	4	2	2	1 4	1	1	5	2	2

Table 6A: Analysis of V heavy chain subgroup 1A

											CI	OR	111										_
amino acid'	93	94	ŭ	2	96	97	98	66	9	⋖	8	٠ د	ر	٥	ш	<u>. </u>	ပ	I	_	_	×	10	·
Α	66	7	2 1	16		1	1	1	4	1		2	2	1	1		1	1	1	2	ļ	<u> </u>	1
В											<u> </u>	<u>. ļ.</u> .				_					<u> </u>	<u> </u>	
· C						1	1	16	2		<u> </u>	1	1	7	2	1						<u> </u>	•••
D			1	16	5	3		3	5	4	ļ	3	4			1	1	14			<u> </u>	5	
E				9				2			ļ	1			1	_		1			<u> </u>	-	
F						1	3		2		<u> </u>	3	1	2		2	1				28	}	
G			2	14	13	20	10	14	5	20	1	5	16	3	3	4	15	1	1	7	ļ	<u>.</u>	
Н											<u> </u>	1	1	1		1					ļ	ļ	
					2	5	2	2		2		2	1	1			1				<u> </u>	<u>.</u>	••
K			5			2	1		<u></u>	1	<u> </u>									<u> </u>	<u> </u>	-	
L			1	4	4	2	5	2	1	1			4	2		1			1	<u>.</u>	÷	1	
М				1		2		1	<u></u>	1		<u>.</u>		1	1					ļ	1()	••
N		Ī			2	2	1	2	1	2	2	2	2	2			1	1	4	<u>.</u>	ļ	-	
P		1			20	3		1	3	1	2	2	2	4	2	1	4	1	ļ	1		-	•
0					1			1	ļ		1	1	1					ļ	<u> </u>	<u>.</u>	-		•
R		5	5	1	5	7	8	1	4	<u> </u>		2		1		16		ļ	ļ	<u> </u>	ļ	<u> </u>	
S			1	1	5	5	5	5	21	!	5	11	8	4	3		2	1	<u> </u>	1 :	2		
Ţ	1		3	3	5	4	1	3	4		2	5	2		1			1	1	<u> </u>	<u> </u>		
V	3	3	Ī	3	2	4		3	3		4	2	2	2	1	2	1	ļ	<u> </u>	<u> </u>	<u> </u>	_	-
W		Ī	Ī		1	1	;	} 1	1				2		3			ļ	1		5	1	
X		Ī								<u> </u>				<u> </u>	ļ	ļ	<u> </u>	-	ļ		-	_	••
Υ			1		2	3	3 20) !	5 4	١ <u> </u>	9	1	2	11	20	10	E	9	1()	7	1	
Z									L					L_		_	<u> </u>		Ļ	Ļ	Ļ	4	=
					1	1	2	2 :	3 (3 1	1	11	14	23	26	26	31	34	4	3	9 2	1	
unknown (?)										<u> </u>				<u> </u>	1		1	<u>'</u>	<u> </u>	<u> </u>	2	3	
not sequence	d						2		<u> </u>		4	5	_				$\dot{-}$	5 !		==	÷	5	
sum of seq ²	7	0	70	68	68	3 6	8 6	6 6	6 6	6 6	6	65	65	65	65	65	6	5 6	5 6	5 6	5 6	35	
oomcaa,	6	6	55	16	20) 2	0 2	0 1	6 2	1 2	20	15	16	23	3 26	26	3	1 3	4 4	6 3	9 2	28	
mcaa'	ļ	••••	R	Α		•••••••	;	′ (:		-	_		-	-	-		-		-	F	
rel. oomcaa	5 2	0/04	%6.	40%	700	2 6	0,60	20.00	0/047	22.00	30%	23%	750%	250%	40%	40%	480%	10.70 E 20%	7.70	0/-1/	900 900	43%	
pos occupie		ה.	7	2		7	7		7 - 5				1	7 1		2 1	1 1	1 1	0	ρ.	7	<u>-</u>	ï

14 X
SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

or v neavy chair		<u> </u>				Frai	me	w	ork	١٧							
amino acid¹	102	103	104	105		<u>9</u>	107	00,	2 2	109		2	11	112		<u> </u>	sum
Α					T			I							-		670
В			<u>.</u>	<u> </u>				1			_						
С		.,	<u>.</u>					- -			<u>.</u>				+		165
D		1	1		_			1			_			ļ	_		308
E	1				_												297
F	2		ļ		_			-			_						226
G		ļ	5	3		59		1	1	ļ	_						928
Н			ļ		1					ļ				ļ.,			14
	3		<u> </u>		_		ļ	4		ļ		4		_	-		286
K	ļ	<u> </u>	<u>.</u>		3		<u> </u>	1	••••	<u> </u>				ļ.	-		325
L	3		<u> </u>	_	1		<u> </u>		40	÷	1			 			386
M	1	ļ	_	-			-	_	3	1				-			189 176
N	ļ			_	1		-			<u> </u>				╀			238
P		5	_				-			-				╀			494
<u>Q</u>	ļ	.ļ			52		-			-							351
R	1		_	_	1		-						ļ	+		51	1
S		<u>.</u>	_		 -		-			<u>.</u>			<u> </u>	+	53 1		736
T	_							54		-†"		51		_			1
V	1	· †		1		<u> </u>	-		<u> </u>	<u>] </u>	54	 -	5	4:			243
W		!	59	_	1	-	-		<u> </u>	+			-	-		<u> </u>	1275
X						-	-		<u> </u>	-			╬-	+		-	542
Y	3	4		1		-	-		 				-			-	
Z	-	 	-	_		╧	+		╄	<u> </u>			÷	÷		÷	578
		1					-		+			<u></u>	╬	-		-	
unknown (?)		_	_				_		١.,		 1 A	1	5 1	6	16	1	{
not sequence	<u>=}=</u>	5	9			_	===	_	_	_							-
sum of seq			61														<u> </u>
oowcaa,			59				59 G			L L	54 V			V	. 5. S		
mcaa.	,	.	W			·				•		-					
rei. oomcaa	,	52%	92%	92%	0.70%	06/0	100%	0,000	2	71%	960%	7000	25.0	100%	%080	0.00	0/09 G
pos occupie	7	•				•		•	•		:	•	2	1	<u>.</u>	2	3

148

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

Γ															ran	ewo	ork	1			
mino acid ⁱ	·	۰ ،	າ າ	4	2	9	7	æ	6	10	=	12	13	14	. 7.	. 4	. !	-	28	19	20
A	T	T	T				Ī	T	32							3	4			ļ	ļ
В						-	<u> </u>	1	1				<u> </u>							<u> </u>	<u> </u>
C	<u>-</u>					-	-													ļ	<u> </u>
D							Ť	1		Ì										<u> </u>	ļ
E		1			5	;	1			3!	5									ļ	
F .						1	<u> </u>			1										<u>.</u>	
G						<u> </u>		2	7							35				ļ., <u>.</u>	
Н			1			-									1				<u> </u>	<u>.</u>	<u> </u>
t					-	-													ļ		
V		3	1	<u> </u>	<u> </u>	_	-					3	4 :	33					<u> </u>	3	3
<u>K</u> L		<u>.</u>	3	26	3	1													ļ		
M	ļ <u>.</u>			1	- 	1													<u> </u>	<u>.</u>	
N				 									_						ļ		_
P				<u> </u>						1					33				ļ <u>-</u>		
Q	21		20)		:	26												<u>.</u>	_	_
R	1												1	2				<u>.</u>			
5	-							27						_			1	3	4	-	
				- 						1	<u> </u>				1			<u> </u>	<u> </u>	_	2
V	3	21		-	2	20					·	35						<u>.</u>	13	35	
W	1		<u> </u>	<u> </u>				·										ļ			
X	1	<u> </u>	<u> </u>	Ī																_	
Y	1		1	-														<u>.</u>			
Z	-	<u> </u>															<u> </u>	╧	4	-	_
																	ļ				
unknown (?)					·												ļ	-	_ .		
not cequence	d 1	1	5 1	5	13	13	13	13	13	6	5	5	5				_			5	==
sum of seq	ີ່ລ	2 2	5 5	25	27	27	27	27	27	34	35	35	35	35	35	35	3	5	35	35	35
oomcaa ³	2	1 2	1 2	20	26	20	26	27	27	32	35	35	34	33	33	35	3	4:	34	35	
mcaa*	C	١١	,	Q	L	٧	σ	S	G	Α	E	V	K	K	Р			`	3		
rel. oomcaa	5 0406	2	4.0	% 0	%9	40%	%9t	%001	100%	34%	100%	100%	97%	94%	940%	100%	2	0/n/6	92%	100%	94%
pos occupie		0	<u>: 0</u>	ω :	<u>റ</u>			<u> </u>		<u> </u>	1	1		,)	3	1	2	2	1	1

Table 6B: Analysis of V heavy chain subgroup 1B

																CDF					<u> </u>		_
amino acid'	21	22	23	2 5	75	7.0	97	27	28	59	30		7	< 0	ع د	32	33	34	32	36	37	2	ว =
Α				3	30						<u> </u>	ļ.,	2		_	-	6			<u> </u>	-	-	
В						_				<u> </u>	<u> </u>					_				ļ		-	
. С	<u> </u>	3	15			_			ļ	<u> </u>	<u> </u>									<u> </u>	╬		1
D		1_							ļ	ļ	 		1				5		1	<u> </u>	-	-	
E	_			3					ļ	ļ	-	_	1							<u> </u>	-	-	
F		<u> </u>				_		2	ļ	39)					2	2			-	-	-	
G					1	_	40		<u> </u>			1	14				1			-	_	_	
Н									<u> </u>	<u> </u>	<u>.</u>	<u> </u>				3	1	·	34	1		-	
l									1	<u> </u>	<u>.</u>	1	_					9	<u> </u>	-		-	
K				28					<u> </u>	<u> </u>	<u> </u>								ļ	 	-		
L	L							<u> </u>	<u> </u>	<u> </u>	1		1					5	 -		_	2	
M						_		<u> </u>	ļ	ļ	<u>.</u>						•••••	23	†····	<u> </u>	-	-	
N	_							1	ļ	-		1	3					1		3	-		
Р								<u> </u>	ļ	-		_					1	 	-	_	-	-	
Q	_			2				<u> </u>	-			_	1				1		ļ	1			····
R			ļ.	2				<u> </u>	-	2		_				1			-	-		-	3
S	3	5				40		ļ	<u> </u>	5		†	15			2		†	 	-		-	
Ţ		<u>.</u>			3			<u> </u>	3	2		34						1	<u> </u>		_		
V					1			<u> </u>	1		<u></u>	1	1				2	2 2	<u>}</u>	-		38	
W								ļ	_	_									-		10		
X							ļ		_	_				<u> </u>			ļ		-	-			
Υ							ļ	3	6	_			1	ļ		32	19	9	-	1			
Z							<u> </u>	Ļ	_	+	4			_		-	<u> </u>	_	÷	÷	\dashv	_	=
-														40	•40		ļ	-					-
unknown (?)						<u> </u>		_ _		_		<u> </u>	ļ			<u> </u>	_	- -	-	_		
not sequence	ed	5	5	5	5		<u> </u>			<u> </u>	_			<u> </u>			<u> </u>	\dotplus	\perp	_			_
sum of seq	,	35	35	35	35	40	4	0 4	0 4	10	40	40	40	40	40	40	4	0 4	0 4	40	40	40	-
oomcaa3														40	40	32	1	9 2	3 :	34	40	38	
mcaa'	i			<u></u>	Α			j	′		F		S			ļ		<u> </u>		n	VV		<u>.</u>
rel. oomcaa	35	%001	%001	30%	36%	100%	7000	000	90%	%08 80%	%86	85%	380%	100%	100%	80%	7007	4840	28%	85%	100%	92%	
pos occupie	. ا		1	<u>يد.</u> م	<u></u>		 1	1	1	Λ	7		1/	n 1	1		5 1	1	5	5	1	2	!

Table 6B: Analysis of V heavy chain subgroup 1B

				F	ame	wor	k II					_	<u> </u>							- I:	_
amino acid'	33	40	14	42	43	44	45	46	47	48	49	20	2	52	<u>ح</u>	<u> </u>	<i>ں</i> —	53		, i	:: ==_
Α		36				1		<u> </u>		<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	7	<u> </u>	ऻ	1	1		
В						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	╬-		+		
. C									<u> </u>	<u>.</u>	<u> </u>	<u> </u>		-	-	-	-		-	-	
D							<u> </u>	_	_	-	ļ	<u> </u>			1	-	-			1	
E					1		<u> </u>	3	9	_		-	-	-	-		-		1	1	
F .								2	<u>.</u>	<u>.</u>		-	-	<u> </u>	-				1		20
G				3	9	2	3		<u>.</u>		39)	1	_		1	-		9	1	39
Н								_	ļ.	_		-	_	-	-		-		2		
			<u> </u>								3	_	3	4	-		╬-		+		
K						1						_		_			-			1	
L				1			3	7	_					1	-				+		
M										3	7	-	2	4	_					12	1
N					_		_			_		-		3	5				20	12	
Р			1 3	34				1			_				_	1					
Q	3	9				39			1			_	_			-			3	1	
R		1					0	_ -	_	_		_	4		_					20	
5		<u>.</u>		1			1								2					3	÷
T				4			_		_			-	-		1	-					<u> </u>
V										 		_			1	1					
W										40		-	33							<u> </u>	<u> </u>
X						_		_											2		
Υ																					-
Z		_		_	_	4	4	_	_	_	\dashv	\dashv	\dashv	\dashv	+	-	40	40	-		Ť
_														-			70	70		<u></u>	-
unknown (?)																			<u> </u>	
not sequenc	ed						_						40	40	40	40	ΔD	<u>⊿</u> ∩	Δſ	<u>-</u> ۱ ۵	<u></u>
sum of sec	ı' [40	40	40	40	40	40	40	40	40	40	40	40	4U	4U	4U 21	40	40	21	1 7 1 2	0 0
oowcaa,		*****		,		39	28	37	39	40	37	39	33	34 I	35 N	اد P	+0	-	N) 2	5
mcaa'			Α	:	:	Ω		i		<u></u>	М								.		
rel. oomca	ıa ^s	90/8	9%8	15%	98%	38%	30% 70%	93%	986%	100%	93%	%86	83%	85%	88%	78%	100%	100%	200	200	20%
pos occupi									2		2	2	4	4	5	4	1	1		9	8

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

	C	DR	II																	
amino acid'	26	22	28	59	09	61	62	63	64	65	99	67	89	69	0/	71	72	73	74	75
Α	1	2			27	2				1		1				2				12
В																				
С																				
D	1									4							35			
E	2		2			1				1						1				
F .				4				39						3						
G	15		6		1					34										
Н			1	1													1			
I		1	1									1	1	13						22
. к	2	2	8				36		1							1				
L						1		1						1						
M														23				1		1
N	17		18				1										4			
Р																			3	
Q						36			37											
R			2				1		2		37					34		1		
S	1			2	11		1									1			37	
Т		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X																				
Y				33																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	22
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	M	T		D	T	S	1
rel. oomcaas	43%	88%	45%	83%	9689	%06	%06	%86	93%	85%	93%	95%	98%	28%	100%	85%	88%	95%	93%	55%
pos occupied ^a	•	:	:		i	į	•	į	3	i	2			4		_	;		2	4

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

							ewo	_														_
amino acid'	92	77	: :	8/	79	80	8	82	4	8	(؛ ر	83	84	82	98	87	88	68	<u>ေ</u>	<u>.</u>	92
Α				35						<u> </u>				1	2			40	<u> </u>		_	
В										<u></u>												****
· C										<u> </u>												37
D	1						4		<u> </u>						19	40			1			****
E							35		<u> </u>	ļ					19					<u>i</u>		
F				1						ļ	_		_	2							2	1
G		<u>.</u>					1		1	ļ	2											
Н		_						ļ	ļ	ļ	<u>.</u>											
1		<u> </u>	1					<u> </u>	<u></u>	<u>.</u>	<u>.</u>								1			
K	L	<u>!</u>					<u></u>	<u> </u>	<u> </u>	ļ			1									
L						2	<u> </u>	39	<u> </u>			39							2	······		1
М						37	<u> </u>	1	<u> </u>	ļ									2			
N		7	_				ļ	ļ	1	<u> </u>	2						.					
Р								ļ	ļ	ļ				1	ļ	ļ					1	
Q	_					ļ	ļ			<u> </u>	<u></u>				ļ	ļ			<u></u>			
R		4				ļ. <u></u>	ļ	<u> </u>		2 1	6		37		ļ	ļ			<u></u>			
5	2	7			1	<u> </u>			3	5 2	20		1	36	ļ	ļ	<u> </u>	ļ	<u> </u>	1	1	
T		1	39		<u> </u>	<u> </u>	ļ			<u> </u>			1	<u></u>		<u> </u>	40	<u> </u>				
V				4	<u> </u>	1	<u> </u>		ļ	<u>.</u>		1			ļ	-	ļ	<u> </u>	33	<u> </u>		
W	_	_			ļ	<u> </u>	ļ	<u> </u> -		-				ļ	<u> </u>	ļ	ļ	-	-	-		
X	_	<u>.</u>			<u> </u>	ļ								<u></u>	ļ		ļ	 				
Y	_				39)		-		-				ļ	-	-	-	-	ļ	38	35	
Z		1			<u> </u>	Ļ	Ļ		Ļ	+		-		-	╄	÷	-	┝	-	 	_	H
_	_				ļ		<u> </u>	_	_				<u> </u>	ļ				<u>.</u>	<u> </u>		<u></u>	<u> </u>
unknown (?				<u> </u>	<u> </u>	<u> </u>	_	-	-				ļ	ļ	-		-	<u> </u>	-	ļ,	1	<u> </u>
not sequence	d	_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	\dotplus	÷	\dotplus			_		+		_			1 1		÷
sum of seq		10	40	40) 4() 4	0 4	0 4	0 4	0	40	40	40) 4() 4 د	U 40) 4(J 40	J 3	39	35	
oomcaa,															6 1 C) 41 A) 3 V	3 38 Y	3 t	
mcaa'				. .	-		/1 E		<u>;</u>		S	;	R		 				<u></u> j			
rel. oomcaa	5	%89	98%	280%	%080 080%	2000	32%0	8870	0/086	0/188	20%	%86	930%	9000	300%	100%	2001		2020	97%	%OO6	
pos occupie	d°	5	2	2	3	2	3	3	2	5	4	2	2	4	4	3	1	1	1	5 2	2	4

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

										CDF	RHI									
amino acid'	93	94	92	96	97	86	66	5	∢	ω	ပ	۵	ш	ഥ	ပ	I	_	_	×	10
Α	37	1	6		1	1		2	3	1	3		1					5		
В																				
· C		1				3				2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1					
F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2		į	1	1									
		1		1	1	3	1	1	1	1	1	1							1	
K		1			1				1	1		1		1			1			
L			2	4	4	4	3			1	2	1	1	2		1			2	
M				2		1	1		İ						1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Υ			<u> </u>	5	5	4	2	3	·	4	3	3	2	1	2	· 5	6	2		
Z																				
_				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)	1	<u></u>																<u></u>	3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq²		39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ³	,		····	********	·					7	*	20	:		:	•	•	•	•	•
mcaa*	Α	******	D		:····	G	:		-	-	-	-	-	-	-	-	_	<u> </u>		D
rel. oomcaas	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%1	%	% (%;	,0%
	6											, 56%								
pos occupied	3	8	10	12	18	13	13	12	12	17		13	10	9	8	7	8	8	5	

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

					F	ram	ew	or	k IV	·					
amino acid'	102	103	104	105	106	5	2	108	109	110	11.	1	1 2	? s	um
Α	Г		T		I				Ī						340
В							_		<u> </u>						
С									<u> </u>			_		_	79
D	2						_		<u> </u>	_	_		_		179
E		<u> </u>			1	_			<u> </u>	_					159
F	1								<u> </u>	_					130
G		<u>.</u>	2	7		26						1		_	450
Н									<u>.</u>					_	51
1		7]							1		3				113
K		<u> </u>			2					<u></u>	<u></u>				194
L								1	2			1			204
М								<u>.</u>	2						144
N		1					••••••	ļ	_						138
Р		1			1			<u> </u>							128
Q					23			ļ							253
R								ļ	1	_					24
S		3						<u> </u>			1		18	18	1
T							21	<u> </u>	6		16		1		39
V		6						<u>.</u>		21		18			34
W		_	29		•			<u>.</u>							15
X															
Y		11					ļ								29
Z						_	<u>_</u>	4							
-		3				ļ	<u> </u>								39
unknown (?)					ļ	<u> </u>								١.,
not sequenc			11												
sum of sec			29												
oomcaa ³			29	********	••••••								18	18	3
mcaa'		Y	W	G	Q	G		T	L	٧	Τ	V	S	S	
rel. oomca	a³	31%	100%	100%	850%	100%		100%	57%	100%	80%	% 06	950%	100%	2
pos occupi	ed ⁶		ī			4	1	1	4	. 1	1 3	3 :	3	2	1

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

																ewo				_
ımino acid'	-	7	က	4	S	9	7	8	თ	2	Ξ	12		4	75	9	17	18	<u> </u>	70
Α									ļ	3	<u> </u>	<u>.</u>	<u> </u>	<u> </u>		-	<u> </u>	-	<u> </u>	-
В				_		<u> </u>	ļ		ļ	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	<u> </u>	 -		<u> </u>
C			<u>]_</u>		<u> </u>	<u> </u>	<u>.</u>		ļ		ļ	-	-	-	-	<u>. </u>	<u> </u>			╁-
D			ļ		_	ļ		<u> </u>			<u> </u>	-		-	-	╁-,		-		╁
E	1		_			. 6	<u> </u>			<u>.</u>	-		-	-			2	1	 	+
F									<u>.</u>	<u>.</u>	-		-	-			 	-	-	-
G	<u> </u>	ļ <u>.</u>							6	_	-							- 	 	-
Н	<u> </u>	ļ		<u>.</u>							-			-					<u> </u>	
1		ļ	1	_							<u>.</u>								 	
K		<u> </u>			_	3						_		6		1	-		<u> </u> 6	
L		<u> </u>			6			_				6		-				- <u>†</u> '		
M		ļ							_	<u></u>										+
N		ļ						1				_		_		-		 1	-	+
Р		ļ					_	1		6			_		6		4		+-	-
Q		2	_	_			_										-	-	-	
R	_	ļ		_		2								-					_	
<u>S</u>	_	<u> </u>	.	<u></u>				4		<u>!</u>						5		5	-	6
T		<u>.</u>		6		1	_				2						_	<u> </u>		-
V		<u>.</u>	5	_							1		6							
W																			 -	
X																				
Y																	-			<u>-</u>
Z	-	3	<u> </u>	_	-	-	\dashv	-	+	\dashv	\dashv	\dashv	-	\dashv		十	Ť	十	Ť	
****	_																			
unknown (?	H									1	1	1	1	1	1	1	1	1	1	1
not sequenc	- ;	1	_1	_=		1	1	-	1			-	6	6	6	6	6	6	6	6
sum of seq	'	6	6			6	6	6	6		6	6	6	6	6	5	4	5	6	6
oomcaa3	• • • • • • • • • • • • • • • • • • • •	3	5			3	6	4	6 G		3 A	6	V	K	Р	T	Q	T	L	T
mcaa'	ļ	Z	٧	T	L	K	Ε	S											ۅ	۔۔۔۔۔
rel. oomca	a ^s	20%	83%	100%	100%	20%	100%	9029	100%	100%	20%	100%	100%	100%	100%	83%		1	100%	100%
pos occupio	ed"	3	2	1	1	3	1	3	1	1	3	1	1	1	1	2	2	2	1	1

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

																CD					<u> </u>	
amino acid'	21	22	23	7,	t 7 C	72	56	27	28	ç	53	8	31	⋖	ω	32	33	34	35	36	37	38
Α										١				1			1					
В								******	<u> </u>	<u>.</u>												
C		7							<u> </u>								2				ļ	
D									<u> </u>	<u>.</u>	<u>.</u>			1							ļ	
Ε									ļ												ļ	
F					3			6	<u> </u>		1										ļ	.
G							7		<u>.</u>						4		3		3		ļ	<u></u>
Н																					ļ	
											<u></u>	<u> </u>			1						7	ļ
K												<u></u>								ļ	<u> </u>	<u> </u>
L				Ī	2			1			6								<u></u>	ļ	<u> </u>	<u> </u>
M			Ī	Ī												5			<u> </u>	ļ	ļ	<u> </u>
N		<u> </u>	Ī	Ī	Ī								2						<u>.</u>		<u> </u>	ļ
P		<u> </u>	1																ļ		<u>.</u>	ļ
Q		<u> </u>																	ļ	ļ	<u>.</u>	ļ
R			-												2		1		ļ	<u>.</u>	<u> </u>	<u>.</u>
S	1	1		1		6				6		6	2	4					4		<u>.</u>	<u></u>
T	6			6								1	3	1				<u> </u>		<u> </u>	<u>.</u>	<u> </u>
V	1	1	Ī	Ī	2											2		7		<u> </u>	<u>.</u>	<u> </u>
W		İ	1																<u> </u>		7	<u>.</u>
Χ		ĺ	1	Ī			••••••												<u> </u>	<u>.</u>		<u>.</u>
Υ	1	1			Ī	1											ļ	<u>.</u>	ļ	<u> </u>		
Z																241			L	<u> </u>		L
		T	Ī	T				Ī	T											ļ		
unknown (?)		1	Ī	Ī											<u></u>				<u> </u>		<u> </u>	ļ
not sequence	B	1																	L	Ļ		
sum of seq ²			7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	,	7	7	7	7
oomcaa ₃	:	-†	7	6	3	6		7	6	6	6	6	3	4	4	5	3	3		4		7
mcaa*	T		···÷···	÷	F	S	G	F		S	L	S	T	S	G	М	G	٧	S	۷	۱ ۷	
rel. oomcaa ^s	%OO.	2 2	9 ₂ 001	96%	43%	%98	100%	2000	0,00	%98	%98	%98	43%	57%	57%	71%	430%	200	2007	2000	100%	2
pos occupied			·÷···	•		•								•	•	•	2			•	1	1

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

					me															
amino acid'	33	40	4	42	43	44	45	46	47	48	49	တ္သ	2	25	⋖	8	U	53	54	55
Α						6					7									
В																				
. С																				
D														2					3	(
Ε								7												
F														2						
G		1		7		1														
Н												2								
1													6							
K					6															
L							7			7		2	1	1						
M																				
N																			3	
Р		5	7																	
Q	6	•••••																		
R	1				1	••••••						2								
S		1																2		
T																				
V																				
W									7			1						4		
Χ														1				1	1	
Υ	1													1	1					
Z										- ,										
-															6	7	7			
unknown (?)																				<u> </u>
not sequenced																				_
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	<u> </u>
oomcaa ³	6	5	7	7	6	6	7	7	7	7	7	2	6	2	6	7	7	4	3	<u> </u>
mcaa'	Q	÷	Р	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	-	W	D	C
rel. oomcaas	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	86%	29%	%98	100%	100%	57%	43%	7000
pos occupied	:	:		Ī	· · · · · · · · · · · · · · · · · · ·	•	·		1	Ť	1	:						:	•	

Table 6C: Analysis of V heavy chain subgroup 2

		DR																		_
amino acid'	26	22	58	59	09	61	62	63	64	65	99	29	89	69	2	7	72	73	74	75
А																				
В																				
. C																				
D	5																6	1		
E	1								1											
F		1		1																
G																				
Н				1																
														6						
K	1	6							4	<u></u>						6				6
L								7				7								
M.																				
N																	1			
. P						2														
Ω																				
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	
Т						4				3			6		2			6		
V														1				•••••		
W				1																
X					1															
Y			3	4																
Z																				
_																				
unknown (?)																			<u></u>	
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ₃	5	.	÷		6	•••••		7					************		**********	*********	,	·····	÷	÷
mcaa ⁴	D	K	Υ	Υ	S	T	S	L	K	S	R	L	T	ı	S	K	D	T	S	K
rel. oomcaa⁵	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied ⁶	3	2	3		2		1		*******	2	1	1	2	2	2	2	2	2	1	2

Table 6C: Analysis of V heavy chain subgroup 2

				ſ	ram	ewo	rk l	11												
amino acid'	76	77	78	79	80	81	82	∢	8	Ų	83	84	85	98	87	88	83	90	91	92
Α						-							1			5				
В																				
· C																				7
D											6			7						
E																				
F .					1															
G																2				
Н																				
ı				1		2		1			·									
K																				
L					6															
М							7			5										
N	5								6		1									
Р												7								
Q		7																		
R																				
S	2																			
T						5		5							7		7			
V			7	7						1			6							
W																				
X																				,
Υ																		7	7	
Z																				
_								1	1	1										
unknown (?)																			<u></u>	
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	- 7	7	7	7	7	7	7	7	7
oomcaa¹	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa'	N	Q	٧	٧	L	T	М	T	N	М	D	Р	٧	D	Τ	Α	T	Υ	Υ	С
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	%98	100%	%98	100%	100%	71%	100%	100%	100%	100%
pos occupied ^r	2	1	1	1		2			:	:	2		2	1	1	2	1	1	1	1
·	·········				••••••				6											

Table 6C: Analysis of V heavy chain subgroup 2

												RII										لـ
amino acid'	93	94	95	96	20	5 8	8	66 ———	<u>8</u>	∢	80	U	_	<u> </u>	1 11	. c) I	: -	. <u>-</u>	· ×	_=	<u>:</u>
Α	5								1	2	1	<u>.</u>			_		_		-		-	
В			<u> </u>	<u>.</u>						<u></u>	<u> </u>	ļ			_	_			_		-	 -
. С			<u> </u>							<u> </u>	<u> </u>	<u> </u>						-	_		-	
D										<u> </u>	ļ		_								- -	6
E									2	<u></u>	<u>.</u>	_	1					<u> </u>				
F										ļ	<u> </u>					_			_	_	3	
G			Ī				1	1		1	1	2	1	1	1	1			_			 .
Н		1			1					<u>.</u>	<u>.</u>	<u>.</u>						-			-	
				3			2					<u>.</u>										
K								1		<u>.</u>											<u>.</u>	
L		1							1			1	<u></u>					-		-	1	
M.		1							1												2	
N					1	2				ļ	<u>.</u>					_		_	1		_	
Р					1	1		1	ļ	<u>.</u>	1	_								_	_	
Q				1				,	<u></u>	<u>.</u>								_			_	
R			6	1			1		<u> </u>	<u>.</u>	1		_									
S					1		1	1	<u> </u>	<u>.</u>			<u>ļ</u>			_				_		
T					1			1	<u> </u>	<u>.</u>	1					_		_				
V		2	Ī	1	1	1		1		1			1					_				
W	1		1				1										1			1		
X	1	1	Ī															_				
Y	1	1			·	2							1	2	1	1	1			2		
Z			1														_		_	_	4	_
· -	T	Ť	Ť						T			2	2	3	4	4	4	6	5	3		
unknown (?)		1	Ī																			
not sequence		<u> </u>		1	1	1	1		1	1	1	1	1	1	1	1	1	_1	1	1	1	_
sum of seq	=;-	7	7	6	6	6	E	;	6	6	6	6	6	6	6	6	6	6	6	6	6	
oomcaa ³		···÷···	6	3	1	2	2)	1	2	2	2	2	3	4	4	4	6	5	3	3	
mcaa'	-	٩	÷	1	Н	N	١	G	;	E	Α	-	-	-	-	-	-	-	-	-	F	-
rel. oomcaa	5	0/1/	%98	20%	17%	33%	330%	170%	06/	33%	33%	33%	33%	20%	%/9	67%	67%	100%	83%	20%	20%	1
pos occupie	;	•			:	1	:	- 1			5						3	1	2	3	3	_

Table 6C: Analysis of V heavy chain subgroup 2

								rk (\						
amino acid'	102	103	104	105	106	107	108	6	110	Ξ	112	113	- - - -	um
Α						I				1	<u> </u>		_	35
В				<u> </u>				<u> </u>	_	_	-		_	
С			<u> </u>							-	_	<u> </u>	_	16
D		<u> </u>					_ _	_	_	_	_	-		43
E							_	_		_	_		_	21
F		<u> </u>						_		_	-		-	18
G		<u> </u>		6		6		_					-	55
Н	<u></u>	<u> </u>					<u></u>	_		-	_		-	6
1		ļ						- -			_			29
K		<u> </u>			1			1	-	_	_			42
L		1						3		-	_			78
М		<u> </u>				_		_						20
N		<u> </u>					_							23
Р		1	_			_	_	1	_		-			41
Q	_				3		_	_		-				23
R			_		2			_		_				41
S	_		_	_			_					6	3	82
T	_			_			6	1	_	5	_			102
V		3	_						6	\dashv	6			68
W		_	6											29
X														4
Υ		1	_							_	-			35 3
Z				_				_	<u> </u>	_	-			i
-														56
unknown (?		_										1	4	54
not sequence	ed	1	1	1	1		_						=	4)
sum of seq	,	6	6	6				<u>:</u>	Ī				•	1
oomcaa,		3	6		*****		·····		6 V	5 T		6 S	S	
mcaa ⁴		<u>.</u>		G	•••••			1	 	1			-	
rel. oomcaa	a ⁵	20%	100%	100%	20%	100%	100%	50%	100%	83%	100%	100%	100%	
pos occupie	- 1					1	1	4	1	2	1	1		1
	•				•	1	6:	2_				•		

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

Γ																Fi	ame
amino acid'	-	2	က	4	2	9	7	8		ກ	9	Ξ		7	<u>ლ</u>	-	15
A					1		1				12			1		3	1
В			1			1									1		
C								<u> </u>					_				
D	1					1		<u></u>			16		_				
E	110		9		15	166				9			-		8		2
F								ļ					4				
G								18	81	193	174		_	1			202
Н			5										- -		4		
1									_					9			
К		5	3									ļ	-		26		
L		1	5	176	43			-				14	0			1	
М		12		1				_									
N								-			1	-	-			404	
Р			······									-				194	
Q	41	ļ <u>.</u>	138	1	3	12		-			<u> </u>				162		ļ
R			6			<u></u>					<u> </u>				4	8	ļ
5				ļ		ļ	17	8			- 4	2					
T	ļ <u></u> .	<u></u>		<u> </u>		<u> </u>	<u> </u>	1				-			*****		
V	5	147	<u> </u>	1	118	<u> </u>	<u> </u>				<u> </u>		62	195			
W	<u> </u>				ļ	<u> </u>		_			<u> </u>	_		**********		<u> </u>	
X	·				<u> </u>						-	-					-
Υ	<u> </u>			_	ļ		-	-			-					ļ	
Z		3			<u> </u>	<u> </u>	<u> </u>	4			 	\dotplus	_		<u> </u>	 	+-
***************************************						_									<u> </u>		-
unknown (?)					<u> </u>	_	_	_				_					6
not sequence	4	7 4	7 4	5 3	3 3	2 3	2 :	32	31				6		تستخ		
sum of seq²	16	5 16	5 16	7 179	18	0 18	0 1	80	181	20	2 20)5 2	206	206	200	2 10	4 21
oomcaa ₃	***************************************	;		8 17	:						3 17	4	140	19: V	0 Q	2 19 P	4 20
mcaa*	E	٧	0	L	V	E		S	G	·ļ		;	L	v	-		
rel. oomcaas	701-3	06/0	83%	83%	0.000	0600	0/n76	%66	100%	ò	2000	85%	968%	950	700%	26	94%
pos occupied			:		:	5	4	3			2	5	3		4	7	4

163

Table 6D: Analysis of V heavy chain subgroup 3

•	work	ı													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A								183	192		1				
В															
· C						1	209								
D															7
E	8							8			3		1		
F		1	1			1						201		201	
G	134								2		207				3
Н															1
ı								2				3	17	1	
К				15											4
L			205		201							6		3	.,
М			1										1		
N													10		10
Р								1					2		
Q			1												
R	62			191											11
S		206				207		4	2	209			15		174
Т	4	1		2				4	4			1	163		
٧					8			7	9				1	6	
W															
X															
Y															
Z															
-															
unknown (?)			٠												
not sequenced					_	;						-	2		2
•					***********	:						:	210		:
oomcaa,	134	206	205	191	201	207			•			•	163	:	:
mcaa*	G	S	L	R	Ĺ	S	С	Α	Α	S	G	F	T	F	S
rel. oomcaas	64%	%66	%66	92%	%96	%66	100%	88%	92%	100%	%86	95%	78%	95%	83%
pos occupied ⁶				•	:	:	:	:	5	:	3	4	8	4	1

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

				CDI	31									Fr	ame
amino acid'	31	∀	8	32	33	34	35	36	37	38	39	9	4	42	43
Α	1			17	80		1			1		187		1	
В															J
· C												1		1	
D	26			3	7		2								
E	1				10									1	1
F				5											
G	13				31		1					2		209	·
Н				4			88								
l	1			1	i	15			12						
K	7										1				202
L	3					3			2	3	1	2	1		
M						193				-	-				
N	35			8	3		34								
Р				1			1					4	191		
Q											209		1		.,
R	7									207		7			
S	103			17	8		72					3	14		
T	9				15		10					4	5		
V	2			·	7	1			197			2			
W					30			212							
Х	1														
Y	1			154	19		3								
Z	1														
-		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1				<u> </u>
sum of seq ²		210	210	210	210	212	212	212	211	211	211	212	212	212	21
oomcaa,	:	210			•			212							
mcaa*	S	-	-	Υ	Α	М	Н	W	٧	R	Q	Α	Р	G	K
rel. oomcaa ^s	49%	%001	0001	73%	38%	91%	42%	100%	93%	%86	%66	88%	%06	%66	
pos occupied	ļ		<u> </u>		Ţ		1 9				;	:	:		ļ.

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

	work	II													
amino acid'	44	45	46	47	48	49	20	51	52	∢	8	U	53	54	25
Α	1					77	42		1	2		14		7	
В			3							1					
. с	·								;				1		
D		•••••	1							7			94	8	3
E			198						3	2	1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
l l					3		3	191		1					1
K								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	11	1
Р		1								1			1		
Q			7				7			10	-				
R	1						24	1	17	5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
Т							3	5	4	2		13	12	3	3
V			3		204		49	2		1		6			
W				210			1		8	6					
X													4		3
Y				1			22		5	58					8
Z															
_										14	178	178	2	1	1
unknown (?)			٠												
not sequenced								_							
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³	207	211	198	210	204	102	49	1 91	118	58	178	178	94	163	85
mcaa'	G	L	E	W	·V	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	%86	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied ⁶			5				15			19	5	5	12	9	12
							16	8							

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

	(CDR	H														_		_
amino acid'	26	57	S	20	23	9	61	<u></u>	70 (<u>ء</u>	4	65	, U	3	<u> </u>	89	8	7	·
Α	9		1	2		174	3	3								1		-	
В	1		2														<u> </u>	-	
. С										_			_			*****	<u> </u>	-	
D	11	<u> </u>		17			16	0									ļ	-	
E	8		3	2				1			2		_					-	
F	1	ļ		3	2		ļ								207		<u> </u>	-	
G	5		1	5		4		5				21	2	_1				-	
Н	1	<u>.</u>		4			<u></u>				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-						
1	3	:	37	2			<u> </u>			8		<u> </u>				14	20	8	
K	1	(61					_			199			8			 	-	
L	1		1	1		1		_				ļ			1		╁	1	
М	8	3		2		1						<u> </u>	_				-	-	
N	51			4				2			. 2	·!				ļ	-	-	
Р		ı	1			(3	8	18		1				······································		_		
Ω		3	2								2	··•		2		ļ	-		
R		5	4				5					<u> </u>		201					
S	4	8		11	.		4	_	193			-			2	·:	7		21
Ţ	4	2	97	5		ļ	7					-				18	9	_	
V			2			1	0	2		204		_			1			3	
W				2		ļ	-					_							
X		4		1			_	1				_					_		
Υ		9		151	210)			1			-				1	1		•
Z		_				<u> </u>	\downarrow	_			_	÷	-		-	┿	+		_
_							_				-				 -	-			
unknown ()				ļ						-	_			<u> </u>				
not sequenc	ed				<u> </u>	<u> </u>	 	-			-	_			-	<u> </u>		12	2
sum of seq	' 2	12	212	212	21	2 2	12	212	212	212	2 21	2	212	212	21	2 2	12: 2	00	2
oomcaa,		51	97	151	••;•••		:				1 19)9	212	201	20 F	/ !	89: 2 T	UB	
mcaa'	1	4	Ţ	Y	Y		Δ .	D	S	٧	K		G	R	r		<u>.</u>		
rel. oomca	a ^s	24%	46%	71%		0/166	82%	75%	91%	9050	2	94%	100%	9500	2 3	0/26	%68	%86	
pos occupio		•••••	12	1!	5	2	9	8	:	3	2	6	1		4	5	5	3	

WO 97/08320 ·

Table 6D: Analysis of V heavy chain subgroup 3

•										Fram	ewor	k III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	8	82	⋖	es -	ပ —
Α				57			1	8						1	
В											2				
C							·								
D		199	38		2	2			1				10		
E		6			4						5				
F									13						
G													1	4	
Н						1			1		2		2		
l			1				2	2				3	1	1	
K					186	6							3		
L								188		209		3	1		212
М	1				2		10	3		2		205			
N		5	170		2	188					3		181	10	
Р							1								
Q					7						199				
R	211				1	1							2		
S				1 5 3	8	10	56		3					186	
T							142				1		4	2	
V				1				11		1		1			
W															
X		2	2			4							1		<u>:</u>
Y									194						
Z															_
_											************				
unknown (?)			· · · · · · · · · · · · · · · · · · ·												
not sequenced			1												
sum of seq'	**********	•	••••••		;	·····	·	,	212		•	:	:		
oomcaa3	·····	;	:		; •••••	;·····	·····	·······	194	:					
mcaa*	R	D	N	S	K	N	T	L	Υ	<u> </u>	Q	М	N	<u>S</u>	L
rel. oomcaa'	100%	94%	81%	73%	%88	968	67%	%68	92%	%66	94%	92%	85%	988%	100%
pos occupied ^a	2	4	4	3	8	7	6 16 8	***************************************	:	:	6	4	11	7	1

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

,															
amino acid'	83	84	82	98	87	88	68	06	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В			************						•••••						
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F							1		15			1		9	6
G	1	1	6			4	1				2	8	34	26	35
Н		1							1					3	11
		8					2						4	15	10
К	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	29	10
Q				1								5	3	9	2
R	177											103	9	30	19
S		1			1							3	9	8	11
T	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
<u> w</u>			•••••							1			3	4	3
X				1											
Y						•••••		211	194				12	9	8
Z															
-													1	3	4
unknown (?)															
not sequenced					1										
sum of seq ²			***************************************	212			***************************************							200	199
oomcaa,			*********	209		**********		************	***************************************	***************************************					
mcaa ⁴	R	Α	E	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaa ^s	83%	. %02	%06	%66	%86	%86	%68	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	5			4	4	2	7	1	4	2	5	14	18	20	21

160

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

•					CDF	111	-						·		
amino acid'	86	66	100	٧	ക	ပ	٥	ш	u.	9	Ξ	_	_	×	<u></u>
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1								1
F	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2				2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2		1	1	1
T	6	12	9	17	17	1	2	5	1	9	3				
V	13	7	15	4	3	6	2	12		1	1		1		
W	6	5	6	7	2	4				1		6	10		
X				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z								-		- 1					
-	12	21	35	54	73	87	102	110	126	135	134	120		***********	••••••
unknown (?)							3						3		
not sequenced	14			-	-										
sum of seq ²	198	198	198	197	196	:	:			188					
oomcaa ₃	34			54	73	87	102	:	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-	<u>-</u>	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19	20				14 20	14	12	12	13	12	8	11

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork	V					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sui
Α	1		1			2							17
В				1									
С													4
D	2												11:
E					1								8
·F	2												8
G			140		130		1						27
Н	4												1
l	15								1	1			6
K				13									9
L	10			1			91					2	18
. М							6						4
N	1					1							8
Р	17					1	1						5
Q				111									9
R				8									14
S	7	1									118	110	30
T .						123	27		122			1	14
V	34		1			1		125		119			18
W		158											6
Χ													
Υ	82												15
Z													
-	9	2	2	2	2	2	2	2	2	2	1	1	20
unknown (?)													
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	16
sum of seq'	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa ³	82	158	140	111	130	123	91	125	122	119	118	110	
mcaa⁴	Y	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaas	45%	%86	97%	82%	%86	95%	71%	%86	%86	%86	%66	%96	
pos occupied"	12			6			6	2	3	3	2	4	

Table 6E: Analysis of V heavy chain subgroup 4

														F	ram	ewo	rk I			
amino acid'	-	7	က	4	_r	9	7	æ	တ	10	=	12	13	14	5	16	17	18	19	20
А									19					1			1		1	
В				<u> </u>						ļ	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>
· c				<u> </u>						<u> </u>					<u> </u>		<u> </u>	<u> </u>	1	<u> </u>
D										<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		-	<u> </u>
Ε .						32										44		<u> </u>	<u> </u>	
F																		Ī		
G								54	1	53		-				2	-			
Н			4		2												<u></u>	············		
K												1	54						1	
L		7		54							53	19		1				53		50
M																				
N	<u> </u>																			
Р	ļ								33					51	1					2
Q	52		50		51	20										7				
R	1																			
S							33								52				52	
T									1								52			
V		47				1						34			********					1
W							20													
X																				
Y																				
Z	1																			
-	ļ																			
unknown (?)	ļ <u>i</u>																			
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq ²	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	5 3
oomcaa¹			<u>-</u>	54			••••••			·÷	53	34	•••••••••••••••••••••••••••••••••••••••	*******		44	52	53	52	50
mcaa'	Q	٧	Q	L	Q	E	S	G	Р	G	L	٧	K	Р	S	Е	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	98%	83%	%86	100%	%96	94%
pos occupied ⁶			•	•	:	3				1		3		3	2	3	2	1	<u>-</u>	3

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

														CE	RI					
amino acid'	21	22	23	24	25	56	27	28	29	3	31	⋖	8	32	33	34	35	36	37	38
Α			22											1						
В																				
. С		53													1					
D			1								4	1	1	1			1			
È																				
F .					1	********			22					1	1				1	
G						53	53				21	3	4				8			
Н							1							2						
1			1					1	32										51	
K																				
L																			1	
M																				
N										1	1		2	2			1			
Р				•••••••	********	********		3												
Q											1					.,				
R						1				3	2		1							5
S			2		35			51	1	52	25	5	9	1			44		1	
T	53		29								2	1					3			
V				55		1			1										3	
W												1			2	56		57		
X																				
Y					19		1							48	52					
Z																				
-												45	39							
unknown (?)																				
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1				_
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa ³	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	57	51	5
mcaa'	T	С	T	٧	S	G	G	S	ı	S	S	-	-	Υ	Υ	W	S	W	1	F
rel. oomcaa'	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	80 _%	%0 <i>L</i>	%98	93%	100%	77%	100%	%68	700
pos occupied ⁶			:		:			3								1	5	1	<u> </u>	

173

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	me	wor	k II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	∢	ю	ပ	53	54	55
Α			8	1							1									
В																				
· C																				
D														1				1		
E				1				56				22								
F .												1		1						
G				55		55					56	1						1		5
Н		2																24		
ı										54		1	54							
K					54															
L		1					55			2										
M																				
N														21						
Р		50	49				2													
Q	56							1				1								
R					3	2						9		1						
S		3										7		1					52	
T	1	1																8	5	
V										1			3							
W									56											
Χ																				
Y									1			15		32				23		
Z																				
-															57	57	57			
unknown (?)																				
not sequenced																				
sum of seq²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	5
oomcaa,	56	50	49	55	54	55	55	56	56	54	56	22	54	32	57	57	57	24	52	5
mcaa*	Q	Ρ	Р	G	Κ	G	L	Ε	W	ı	G	E	ı	Υ	-	-	-	Н	S	(
rel. oomcaas	%86	38%	%98	%9 6	92%	%9E	%96	%86	98%	95%	%86	39%	95%	26%	100%	100%	100%	42%	91%	,000
pos occupied ⁶	:																			

174

Table 6E: Analysis of V heavy chain subgroup 4

		CDR	11									Γ								
amino acid'	26	22	28	59	99	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α		1									1		1			1				1
В		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>														
. C		<u> </u>		<u> </u>																
D		<u> </u>	2									1					55			
E	<u> </u>	ļ	ļ	<u> </u>	ļ			<u> </u>	<u> </u>								1			
F .	<u> </u>	<u>.</u>	<u> </u>	3	ļ		ļ											1		
G	1	ļ	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u></u>	<u></u>	1	<u> </u>	<u> </u>								
Н	<u> </u>	ļ	2	ļ	ļ		<u></u>		ļ	<u> </u>	<u> </u>				<u>.</u>					
1	1	1	<u> </u>	<u> </u>	ļ		<u></u>	<u> </u>	<u> </u>		<u> </u>	1	1	48	<u> </u>	3				
K					1				53	<u></u>					<u> </u>			1		51
L						1		55				1				3				1
M														7				2		
N	2		40		53								2							1
P						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2	********	56			56			1		56			1	57	
T	1	54	1			1			1				51	*****	1			52		
V	1	1										53		2		50				1
W							٠													
X																				
Y			11	54																,
Z																				
_																				
unknown (?)													į							
not sequenced					1	1	1	1				1	1							
sum of seq?	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa³	49	54	40	54	53	54	56	55	53	56	56	53	51	48	56	50	55	52	57	51
mcaa•	S	T	N	Υ	N	Р	S	L	K	S	R	٧	T	ı	S	٧	D	T	S	K
rel. oomcaas	96%	95%	70%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	%86	%88	%96	91%	100%	%68
pos occupied ⁶	7	4	6	2	3	3		:		:	2		:	•	•	••••••		5	1	:

Table 6E: Analysis of V heavy chain subgroup 4

					Fran	new	ork	111												
amino acid'	9/	77	78	79	8	81	82	۷	æ	υ	83	84	85	98	87	88	83	90	91	92
А										Ī		55	57	,		57				
В																		Ī		
. C		<u> </u>																		57
D		<u> </u>			1									57	,					
E	<u> </u>	<u> </u>				1														
F			54						1											
G		<u> </u>						1												
Н		<u> </u>	<u>.</u>																	-
	<u> </u>		1	<u> </u>	<u> </u>	<u> </u>		1			3									
K	3		<u></u>	<u></u>	<u> </u>	46		2												
L		3	1	<u></u>	5 5		53			2							1			
<u>M</u> .					<u> </u>	1	1			1							1			
N.	54					3		3	1											
Р																				
Q		54			1	1														
R					<u> </u>	2		2				1								
S			1	57		2	1	44	55		1				2				1	
T						1		4			5 3				55					
V				••••••			2			54		1					55			
W																				
X																·				
Υ																		57	56	
Z ·																				
-																				
unknown (?)																				
not sequenced																				
sum of seq?	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
	:	:	•		:	46		•	•••••••		······	***********			••••••	•••••••	••••••			
mcaa'	N	0	F	5	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaa ^s	95%		•••••	100%	····T	81%	93%	77%	%96	92%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶	2	2	4	1	3	8	4	7		3 ¥6	***********	3	1	1	2	1	3	1	2	1

WO 97/08320 .

Table 6E: Analysis of V heavy chain subgroup 4

•										CDI	RIII									
amino acid'	93	94	95	96	97	86	66	901	۷	8	ပ	۵	ш	Ľ.	9	I		_	×	101
А	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
· C					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			- 6	1	1	2	1			1	3	1	2	1						
F.				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1			1				2
1				1		2	4	1	3	2	3		1						1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
M				1	4		3	1		2	1								9	
N				3					2	1	1	5	1	1			2			
P				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Т		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
w			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X					•••••															
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
_						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa'		·	25			•	·····			9	11	16	23	27	29	34	31	14		
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	%86	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	%29	%68
pos occupied ⁶	······			: :		: ······		:			18							:		4

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	me	vori	٠IV					
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	
Α						1			1				
В													
С													
D													
E													
F													
G			41		40	1							
Н	1								1			10	
ı	9					1							
K				3									
Ĺ	4						19						
М							9						
N						1							
P	3			2								2	
Q				29									
R	1			4			1						
S	1			1							36	33	
Ţ				1		33	8		34				
V	12							36		36			
W		46											
Χ													
Y	16												
Z													
-													
unknown (?)													
ot sequenced	10	11	16	17	17	20	20	21	21	21	21	22	•
sum of seq ²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa¹	16	*********		••••••••			•••••	••••••••			••••••		
mcaa*	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	100%	89%	51%	100%	94%	100%	100%	94%	
os occupied						·····							

Table 6F: Analysis of V heavy chain subgroup 5

															Fra	mev	vorl	<u>(</u>			_
amino acid'	-	2	~	2	4	2	9	7	8	6	10	11	12	13	14	15	9	17	28	19	20
Α .						1			1	89		1			1						
В			Ī																		
· C								1													
D											2										
E	88	1				2				4	93		<u> </u>				92				••••
F .																		1			
G	1								92							94					
Н			<u> </u>							<u></u>											
l			1										<u> </u>								9
K			Ĺ							<u></u>	<u> </u>		94	94						77	
L		1			91		2		<u></u>	<u></u>	ļ	ļ	<u> </u>						95		<u> </u>
М										ļ		3								1	ļ
N											<u> </u>										<u> </u>
Р					1		.,		<u>.</u>	1	<u> </u>				94			ļ			
Q	. 3			92		1	90		<u>.</u>	<u> </u>							3	ļ	ļ	1	<u> </u>
R		<u> </u>					1	<u></u>	<u>.</u>				1	1		1		ļ	ļ	17	
S		<u> </u>	<u>.</u>	<u></u>				92		<u>.</u>	<u> </u>	<u>.</u>	<u> </u>					94	ļ	ļ	<u> </u>
Ţ									<u> </u>	<u> </u>		<u> </u>	<u> </u>					ļ	<u> </u>	ļ	<u> </u>
٧		9(0			89				1		91						ļ	<u> </u>	<u> </u>	<u> </u>
W									<u></u>	<u> </u>	<u>.</u>	<u></u>	<u> </u>					<u> </u>	ļ	ļ	-
Χ								<u> </u>		<u> </u>	ļ					*******		ļ	ļ	ļ	ļ
Υ								<u>.</u>	<u>.</u>					ļ				ļ		ļ	
Z								<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>				Ļ	<u> </u>	<u> </u>	Ļ
_							<u></u>		ļ		ļ	ļ	ļ	<u> </u>			ļ	ļ	ļ	ļ	
unknown (?)		<u>.</u>			·			ļ	<u>.</u>	<u>.</u>	. .	<u> </u>		<u></u>	ļ		<u> </u>	. 	<u> </u>	<u>.</u>	-
not sequence	d :		5	5									2		•		-	_	$\Rightarrow =$	-	1
sum of seq'	92	2 9	2	92	92	93	93	9	3 9	3 9	5 9	5 9	5 9	5 95	95	95	95	9	95	9	3 9
oomcaa ³	88	3 9	0	92										4 94		94	92	9	1 9	5 7	7 : 5
mcaa'	E	١	/	Q	L	٧	Q	S		A	E	V	' K	K	Р	G	Ε	S			
rel. oomcaa ^s	9090	200	9840	100%	%66	%96	970%	9000	2 60	0.000	0.46	30-00	2000	%66	%66	%66	420%	9000	100%	%00a	2
pos occupied	1	7	····•		1	2	:	:	:	•				2 2					2	1	4

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

														CE	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	٧	8	32	33	34	35	36	37	38
Α				3	2					4							8		1	
В														٠						
· c		96						1			1									
D								2			2						1			
E						2					1									
F .					3		6		97					2	**********					
G				92		93					1			····			72			
H									•••••		1			4						1
										4						93				
K			89					1												
L															1				2	
M			1										_			1			1	
N			1					2		4	14			2		••••				
Р					1															1
Q			4													·····				
R			1			1		2			i-				1					95
S	94			1	90			84		10	61			2	2		15			
T	2							5		75	16					2	1			
V																1			93	
W															93			97		
X																				
Y							90							87						
Z																				
-												97	97			.,,				
unknown (?)						,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
not sequenced			_					_												
sum of seq ²			********										•••••	•••••	**********			*******		
oomcaa¹						•••••				•••••				••••••						
mcaa'	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Υ	W	ı	G	W	٧	R
rel. oomcaa'	%86	100%	93%	% 96	94%	97%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	%96	%86
pos occupied ^a																			4	

Table 6F: Analysis of V heavy chain subgroup 5

				Fr	ame	wor	k II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	⋖	8	ပ	53	54	52
Α			1			1									1			2	1	
В				<u>.</u>				<u></u>									<u> </u>	<u> </u>		
· c														1				1		
D														14			<u>.</u>	8	93	
E					3			97									<u>.</u>		2	
F												1		2						•••••
G				97		96					95							69	1	
Н						•••••								3	1					
1										1		75	92							
K		1			94															
Ł							94			2		2	1		••••					
M		92								89			1							
N																				
Р			96				2							1	93					1
Q	97						1													
R		1									1	14						1		
S												1			1			16		96
T		1										3	1		1					
V		2								5	1	1	2							
W									94											
X																				
Y									3					76						
Z																				
-																97	97			
unknown (?)																				
not sequenced																				
sum of seq?	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oowcaa,	********			•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••				······ •			·······	76	93	97	97	69	93	96
mcaa'	Q	М	Р	G	K	G	L	Е	W	М	G	1	1	Υ	Р	-	-	G	D	S
rel. oomcaa ^s	100%	95%	%66	100%	926	966	97%	100%	97%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	%66
pos occupied ^a	1	5	2	:	:	:	:	:	:		:					1	1	6	:	2

Table 6F: Analysis of V heavy chain subgroup 5

	<u>C</u>	DR	11																	
amino acid'	99	23	28	23	8	5	62	83	64	65	99	67	89	69 ——	2	7	72	73	74	75
Α		6					1									88				••••
В											<u> </u>									
C					1					1										
D	77			<u> </u>						2							97			
E	3				<u></u>				2									2		
F				2	<u> </u>		ļ 	91				1		3						
G	1									94										·
Н											15									
<u></u>		4	1					1	<u> </u>			3		88						91
K			2															93		
L						1		4							2					
M									<u>.</u>					3						
N	2		14	2						<u> </u>								ļ		
Р						95	1		1									ļ	1	
Q									91	ļ	81							1		
R			78			<u> </u>	<u> </u>		3		1	ļ		1				1	<u> </u>	
S	2	2		<u></u>	95	1	95	1		<u></u>	<u> </u>	ļ	1		95		<u> </u>	ļ	96	
Т		85	2		1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		96				<u> </u>	ļ		ļ
V				1		<u>.</u>	<u> </u>			<u> </u>	<u> </u>	93		2		9	<u> </u>	<u> </u>	ļ	
W							<u> </u>	<u> </u>		<u> </u>							<u> </u>	<u> </u>	<u> </u>	ļ
X									<u>.</u>	<u> </u>	<u> </u>	ļ					ļ	ļ		ļ
Y	12			92	2				ļ	<u> </u>	<u> </u>						ļ			
Z									L	_	<u> </u>	<u> </u>					_	L	L	
_																			ļ	
unknown (?)			Ī									<u> </u>				ļ	<u> </u>	<u>!</u>	<u> </u>	<u> </u>
not sequence	d											_						<u> </u>	<u>_</u>	Ļ
sum of seq ²	97											97								
oomcaa ¹												93			95	88	97	93	96	
mcaa*	D	T	R	Y	S	Р	S	F	0	G	Q	٧	Ţ	1	S	Α	D	K	S	ļ
rel. oomcaa	29%	980%	9000	9000	%086	9000	9080	9000	940%	92.6	84%	%96	%66	91%	%86	910%	100%	%96	% 65	
pos occupie		•	٠.	:	:	:	:	:	•	•		3 3	:	•	<u> </u>		2	1 4	4 2	2

Table 6F: Analysis of V heavy chain subgroup 5

						mev		_															
amino acid'	9/	77	78	79	2	2	5 6	70	∢	æ	ر	, ;	<u>8</u>	84	85	98	2		2 G	5 	6 	9	92
Α			1 9	1							<u> </u>		1	96					93				
В											<u> </u>	_							_				
. С		<u> </u>						1			ļ	<u>.</u>							_				95
D		<u> </u>			1			_			_	_				9	6		-				-
E							1				_	_	1		<u> </u>				_				ļ
F		<u>.</u>			1					ļ_	_	_			ļ						2	6	<u> </u>
G		<u>.</u>					_	_	3	ļ	1	_		ļ	ļ				4			ļ	ļ
Н		<u>.</u>					3			ļ	<u> </u>			ļ	-	_						<u> </u>	<u> </u>
1		<u> </u>								ļ		_		ļ	-			2		9		<u> </u>	
K		<u> </u>								<u> </u>	-	_	91	<u> </u>	ļ					1	•••••	ļ	
L			<u></u>			96				<u>ļ</u>	_	97		<u> </u>	-					2		 	
M							_			-	_		******	<u> </u>	-					84			-
N		7							2	<u> </u>	2			<u> </u>	-			2				ļ	
Р				1			_			-	_			-	-							 	
Q						_	93			-	_			-	-							 	
R	_	1		_				1		<u> </u>	3			3	-						<u> </u>	ļ	-
S	₽	7	2	1	1) !	91					96		5		1	<u> </u>		
T		2	94	2					_	1				1	1	1		88			 	-	-
V				2		1						·······	<u> </u>		-		1				 		-
W	_							95	<u> </u>				<u> </u>						<u> </u>	<u></u>	 -		
X									ļ	-			<u> </u>		-					<u> </u>		4 8	ω
Y					94				-				-									4 6	
Z	_	4						_	-	4		_	-	\dotplus	÷	\dashv		_		-	Ť	\dagger	Ť
							•••••	ļ	-										-				
unknown (?)								 				-		-				-	ļ	+	1	2
not sequenc	 :-	_						<u> </u>	<u> </u>	_		_			27	07	0.7	0.7	, 0	<u>.</u>	7. 0	_	_==
sum of seq		97			97	97	97	97	7)7 	97	9	/ 5	1/	3/	9/	3/	9/	3 0	7 D	Δ.	14	89
oowcas,	***	87		91	÷	96	•••••••••••••••••••••••••••••••••••••••			30 S		9 L			A	95 ۲	. D	T	э. А	, N	1	Υ	Υ
mcaa ⁴		5	ſ	Α	Υ	L	u	٨	<u> </u>				÷					-					
rel. oomca	a ^s	%06	97%	94%	97%	%66	960%	9000	0.00	93%	94%	1000%	2	94%	%66	%66	%66	910%	9090	0,00	ο _ν /α	%86	94%
pos occupio	**		:	Ŧ					•		4		1	5	2	2	2	2	4	2	5	2	2

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

													III										_ -
amino acid'	93	94		n n	96	97	86	66	100		((۵	ပ	٥	u	, u	۔ رہ	, ,	= - - ;-		- -	<u> </u>	_
Α	92			1	1	2			3	4	3	2		1	1			1		_	4		2
В			<u>.</u>					<u>.</u>						<u> </u>									
. C				<u> </u>			1		1	1			2	ļ	╀-	1						_	
D					3	3	3	1	3	1	2	1	1		2		2	1	1	2			37
E				1	1	1	2	2		_ _	1	1		ļ			1			1			••••
F .						1	ļ		3	_		3		· <u></u>	-	1						26	
G		ļ		1	9	11	12	2 1	2	5	2	4	3	1	0	2	1				5		••••
Н		<u> </u>		10	1	ļ		2			1	1			1								••••
		<u>.</u>			3	<u> </u>		2	2	1	1	4	1	<u> </u>	1		1	1					
K		<u>.</u>	1	1	1	<u> </u>		1	3	1			<u> </u>	-	_				2		<u>i</u> .		
L	_	<u>.</u>		11	2	1	3	1	1	2	5		:	<u> </u>		1		1				10	••••
М							2	1	1		1	1	Ť	1	1							10:	
N					1		_	2		1	1	2	-		_	1					2		••••
Р				5	1	_	4	3	1	2			-	_	1	1	1	1					
Q		<u>.</u>	1	3	2	2		1	1	4	2		·÷	2									
R		1	92	7	Ç			2		2	1		· <u>†</u>	2	-	_				1		1	• • • • •
<u>S</u>		_	1	1		3	2	6	4	4	5			5		2				!			
Ţ		1		1	<u> </u>	3	2	1	2	6	••••			6	1		1						
V		2		2	1	4	4		1		1		2			1				1	1		••••
W				1	<u>.</u>		2	1						1		2		1			1		
X					ļ									_							10		
Y					ļ	1	6	3	6	9	8		7	2	-1	2	ь	8	9	9	10		
Z				_	Ļ	Ļ	4	4			-		÷	\dotplus		-	-	21	22	30	22	7	
_				ļ	.ļ			1	1	2	8	1	0	16	23			31	i		•	:	<u> </u>
unknown (?)			<u> </u>								<u> </u>	_		<u></u>	1		5 2	52	i		÷	<u>.</u>
not sequenc	ed	2	2	5	2 5	2	52	52	52	52	54	5	<u> </u>	15	3Z	32	45	15	15	52	15	44	_
sum of sec	'	95	95	4	5 4	5	45	45	45	45	45	, 4	5	45	45	45	45	40	. 40	45 30	73	75	
oomcaa'		92								:	<u> </u>	3 1	U	ιb	23	3U -	30	. JI -	. 32	30		F	
mcaa'		Α	<u>.</u>	. .	· 		G		•	ļ <u>-</u>	, T	<u>.</u>	-						<u> </u>	<u> </u>	<u> </u>		
rel. oomca	a ^s	9/0/6	%/t	7070	0/547	20%	24%	27%	27%	20%	180%		0/nZZ	36%	51%	9/2/9	67%	%69	71%	9029	49%	59%	
pos occupio	۰۹۰	<u></u> د		1 1	3	16	14	18	16	15	5 1	6	15	14	11	11	9) 8	3 4	1 6	6	3	4

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

	Γ				F	ram	ew	orl	٠IV]	
amino acid'	102	103	104	105							111	112	113	_ _ s	um
Α					T	T	T								611
В	 	-		1										_	
С	1	<u> </u>		1	1		Ī	••••							205
D	1	<u> </u>		-			Ī	•••••							458
E	-	1			1	-	Ī								404
F	2	2				_									256
G			4	1	4	11									1065
Н	1														44
1	ç)									2				588
K	1			···	3										650
L		2						2	5	1					549
М									8				<u> </u>		303
N															64
P		2					1						1		414
Q					34			<u></u>							612
R					3			<u> </u>						_	351
S		2					.,	<u>.</u>					40	39	1545
Т		1					40)	8		39				604
V	1	1						<u>.</u>	ļ.	40		41			594
W			43					<u> </u>							432
X								_							
Y		13													738
Z							<u> </u>	_							
-		2					ļ	<u>.</u>							635
unknown (?)						<u> </u>	<u>.</u>							4
not sequenc	:ed	52	54	56	56	56	5	6	56	56	56	56	56	57	1678
sum of sec	7	45	43	41	41	41	4	1	41	41	41	41	41	40).
oomcaa ₃				*******	•	÷			25	40	39	41	40	36)
mcaa*		Υ	W	G	Q	G	1	Γ.	L	V	T	V	3	>	
rel. oomca	ıa'	29%	100%	100%	83%	100%		0/086	61%	980%	95%	100%	%86	980%	2
pos occupi	eď	10	1	1	4	1	1	2	3	2	2 2	1	2		2
•	•	••••••					æ	5							

Table 6G: Analysis of V heavy chain subgroup 6

•																	Fra	mev		K I				_
mino acid'		2	، ر) '<	+ L	ი	9	7	ω	σ	, ;	2	Ξ	12	13		<u> </u>	<u>-</u>	9	17	<u>۳</u>	2 2	2 :	20
Α												_		1	-	_					-	-		
В		<u> </u>			_ _	_			ļ			_		<u> </u>	<u>.</u>	-	-				╬-			
· C	<u> </u>	<u> </u>		_					-						<u> </u>	-					 -			
D		<u> </u>		<u>.</u>	_					_				<u> </u>	-									•••••
<u>E</u>	<u> </u>	ļ		_		_			-				••••	<u> </u>	-		-				1		1	
F	.	ļ		_		_		ļ	-	_	-			<u> </u>	-					<u> </u>				*****
G	<u></u>	<u>.</u>	_	_				-	5	2	_	67		.					••••••	ļ				••••
Н		<u>.</u>						ļ	_					 						ļ <u>-</u>	-			
	_	<u> </u>						-						<u> </u>		8				<u> </u>				
K								-	-					 						 		67	1	68
L		<u>.</u>			52			<u> </u>					68	<u> </u>	1					<u> </u>				•••••
M	_							-					ļ							╁┈				••••
N			_					-	-			******	ļ				67	•••••	ļ !	-			1	
Р	_							-			68		<u> </u>						68					
Q	5	2		52			5	2									•••••			-		-		ļ
<u>R</u>	_ -		_			1		_				1	 				1	68					66	
<u>S</u>							 	:	52			• • • • • •	 						ļ		<u>.</u> 88			<u> </u>
T							ऻ	-					 		36			ļ	 			1		<u> </u>
<u>V</u>	_		52				-		-				╁		20			<u> </u>	 -	1				-
W		_		•••			-	_									•••••		╁┈					Ť
X	_						.							-					-					<u> </u>
Υ						ļ							-					-	+					
Z	_	_				<u> </u>	┿	÷	+			<u> </u>	÷	÷				-	Ť	Ť	-			
					<u> </u>	<u> </u>		-									ļ	<u>.</u>						<u> </u>
unknown (?)							_	22	22		<u> </u>			6	6	(3	6	6	6	6		6
not sequenc	ed	22	22	22	22	2	2 4	2	22	52			0 1	0	_					-		=	==	_
sum of sec	ł'	52	52	52	52 52	2: 5 	2 !	2	52	52	00	0	7	00	66	68	6	7 6	8 (38	68	67	6	6. (
oomcaa3						2 5			52 S		P	(' '	L	V	K	Р	9	5	Q	T	L	9	5
mcaa*	ŀ		٧	÷	 -			•••••••••••••••••••••••••••••••••••••••			.	- -		-		 !	·					<u> </u>		
rel. oomca		100%								100%								0.66			100%	÷		0/n/6
pos occupio	- d6		1		1	1	2	1	1	1		1	2	1	3		١١	2	1	1	1		2	3

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

•														Ci	ORI				<u></u>		
mino acid'	21	22	23	24	25	26	27	28	29	30	31	4		32	33	34	35	36	37	38	=
A	1		67								ļ	ļ		66	67	<u> </u>	-	-	-	<u> </u>	-
В						<u> </u>			<u> </u>	<u>.</u>	<u> </u>	ļ	_		ļ	ļ	-	-	-	-	-
C		68				<u>.</u>	<u> </u>	<u> </u>	<u> </u>		ļ	<u> </u>	_			<u> </u>	-		-	┼	
D				<u> </u>			68	ļ	ļ	<u>.</u>		<u> </u>			-	-	_	<u> </u>	-	-	
E							<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ				-	-	-	-	-	-	₩.
F							<u> </u>	ļ			2	_				1	-		-	<u> </u>	•••
G				1		69)			<u> </u>				3	1	2	-			-	
Н										<u>.</u>	<u> </u>					-	<u>.</u>	1		_	
				6	4							_ -	2		_			1	. 7	U:	•••
K											<u>.</u>	_	3		-	_				<u>.</u>	, ••• •
L L								<u> </u>			<u></u>										••••
M										<u> </u>	_										••••
N								1			_	2	66					0		-	
P																		_			
Q									_							_					
R											_ _	2			_						7
<u>S</u>		1			1	69		(69		8	66	·	67		3		1			
T	1	67									┩.	2	1	4		1					•••
٧				1	4					70	_				6					2	•••
W			1					·									74		74		••••
Χ																					•••
Υ													1			_				1	
Z															4	_	=	-	\dashv	-	=
_													ļ								
unknown (?)											1	<u> </u>								
not sequenc	-ed	5	5	5	5	5	5	5	5	4			<u> </u>					7.	7.4	7.4	_
sum of se	~?	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	/4	74	74	74	-
oomcaa,	1	67	68	67	64	69	69	68	69	70	68	66	66	67	66	67	14	/U	/4 W	/U 1	1
mcaa'		T	С	Α	١	S	G	D	S	٧	5	5	N	2	A	А		14			
rel. oomca	aa°	92%	%66	97%	93%	100%	100%	%66	100%	100%	97%	290%	89%	910%	%68	91%			100%	i	:
pos occup	ied ^r	٦	2	3	3	1	1	2	1	1	2		5 (3	4	5	1	5	1		1

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

				1	ran	new	ork																
amino acid'	39	40	41		7 5	÷ ;	44	45	46	47	48	49	2	3 5	. ·	25	⋖	മ	ں ا	53	54	1	3
Α				i	1										1	_	_			1	<u> </u>	ļ	
В																					<u> </u>	ļ	
· C															_						<u> </u>		
D			Ī								.,	<u></u>	<u> </u>	_		_	<u> </u>				ļ	<u> </u>	
E									74			ļ			_	_				ļ	<u> </u>	-	
F .												ļ		_		2	1			1	†		
G							74					7	4	1					ļ	ļ		1	••••
Н												ļ	_				1		<u></u>	<u> </u>	ļ	<u> </u>	
l												<u> </u>							<u> </u>	<u> </u>	-	_	
K	1		<u> </u>			1				<u> </u>	<u></u>	<u> </u>	<u>.</u>					1	<u> </u>	ļ	6	6	
L	1	<u> </u>	<u>.</u>					74		ļ	74	ļ	_						<u> </u>	<u></u>	 	-	
М		<u></u>	ļ						<u> </u>	ļ	<u> </u>	ļ	_						<u> </u>	<u> </u>	-	-	•
N										<u></u>	<u> </u>	<u> </u>	_							<u> </u>	<u>.</u>	1	••••
Р			-	73					ļ	ļ	ļ	-							ļ	ļ	-		
Q	72									ļ	ļ							ļ	ļ	ļ	-	_	
R		<u> </u>	<u>.</u>			73			<u> </u>	<u> </u>	<u> </u>	<u>.</u>	_	73				72	†	<u></u>		1	
S	<u>.</u>	74	4	1	73			ļ	ļ	ļ	<u> </u>	<u>.</u>						1	1	7	2	_	••••
Т		<u> </u>	<u>.</u>					<u> </u>	<u> </u>	ļ	ļ	.ļ	_		73			ļ	<u> </u>	<u> </u>		5	
V		<u> </u>	<u>.</u>				*******	ļ	ļ	<u> </u>	ļ	<u>.</u>						<u> </u>	 	<u> </u>			
W								ļ	-	74	<u> </u>	-				•••••		<u> </u>					7.
X	_							ļ	-	ļ	-							-	-				
Υ				_						-						72	72	!	-	<u>.</u>			
Z	L	_	_					<u>_</u>	Ļ	<u> </u>	\dotplus	┿	\dashv	-		_	-	+	+	+	÷	+	_
_								ļ											7	4			
unknown (?)							<u> </u>	ļ	<u>.</u>			<u></u>				<u> </u>	ļ						••••
not sequence	d	_	╛				<u> </u>	 	누	<u> </u>	┿	4	4	_		<u> </u>	<u> </u>			-	_	7.4	_
sum of seq'	7	4 7	4	74	74	74	74	7	4 7	4 7	4 7	4	74	74	74	74	74	4 7 -	4 /	4 /	4	/4 cc	
oomcaa,	*****			*******	*****		• • • • • • • • • • • • • • • • • • • •			:					_				2 7 ≀ ·	4 7	S .	bb Κ	/ V
mcaa ⁴	C	1	5	Р	S	i	G	i			<u>ė</u>	∔	G	R	1	Υ	Y						
rel. oomcaa	5 70	0/0/6	000 1000 1	%66	%66	%66	100%	2000	200		200	0/00 00 00 1	100%	%66	%66	9026	970%	2 6	0/6/6	200	•••••	%68	
pos occupied			1	2	2	•			1	1	•	•	:		2		2		•	1	3	5	<u>.</u>

Table 6G: Analysis of V heavy chain subgroup 6

		DR										<u>-</u>			<u>~</u>	6	0		2	<u>ب</u>	4	Ī.	,
amino acid'	26	57	25	2	<u> </u>		5 5	7 5	3 5	<u>~</u>	9	<u>8</u>	ند	3 3 -	_		_	-	Ţ.	•	. i		` -
Α					7	3	1	_ _	_			ļ	<u> </u>		2				<u> </u>			-	-
В						_							-			••••		 	<u> </u>	-	╬		-
. С		<u> </u>	<u> </u>	_	1	_		_	-			<u> </u>	<u> </u>	_			<u> </u>	<u> </u>		_	-	-	
D		<u> </u>	6	8		_	1		_			<u> </u>	<u>.</u>					2	7	3	+		2
E	1	ļ		3		_ _	7			1		<u> </u>						-		-	-	-	. <u></u> .
F	7	ļ	_	_		_ _						-								-		-	
G		ļ	_	1				1			8	3				ļ	ļ	-		1	-	-	
Н		ļ				_			_			ļ							-		1		
	1	<u>.</u>		_			1					<u> </u>	(65	2	71	1			<u></u>			 70
K		ļ	1	_			_			67		-					-	1			1		
L		<u> </u>					5		2	•••••	<u> </u>	-		4		<u></u>					<u>.!:</u>		•••••
M		<u>.</u>									<u> </u>			1	- -		_					+	
N		2 6	35	1			_		_	1	<u> </u>	-				-	<u> </u>	9	36				
Р						1	1				-	-	_			-			00			-	
Q				_						2	•••••	_	1		ļ	-	-	-					
R			1			_				3		***	'3			.	-	2	1			73	
S		2	2	1	1			73			- 6	6			6	1	,				71	1	
T		<u>.</u>	4								-			<u></u> 4	÷		1 2		1				
<u>V</u>							58		72	ļ	-				<u> </u>								****
W		<u></u>								<u> </u>	-				 								
X		<u>.</u>								-	╬				-		-						•••••
Y		0	1		72					<u> </u>	-				-								
Z		_		-			_	<u> </u>	-	╄	÷	$\dot{ o}$		_	÷	Ť	Ť	寸	寸	寸			
										<u>.</u>	-				<u>.</u>								<u></u>
unknown (?)								ऻ	┪	-		•••••	<u> </u>					<u>i</u>				-
not sequenc	ed	_		_	 	_			<u> </u>	<u> </u>		74	7.4	7	<u>.</u>	7.4	74	74	74	74	74	74	7
sum of sec	q'	74	74	74	74	74	74	74	74	4 /	4	14	/4 	· /	-	20	71	60	66	73	<u></u> 71	73	7
oomcaa,					72				3 7: V	۷ ()/ K	ς 90	ر R	0	5 (T	1	N	Р	D	T	S	
mcaa¹		Y	N	U	Y	·····			-				•••••	-			•					ļ	-
rel. oomca	ıa ^s	81%	980%	0/0Cb	97%	0,066	700%	9000	0.70%	27.20	91%	%68	%66	2	0/ ₂ 88	93%	₀ 96	93%	9068	%66		%656)
pos occupi	,,,						,	7	2	2	5	2		2	4	4	3	4	4	2	4		2

Table 6G: Analysis of V heavy chain subgroup 6

•								rk l	_															Ţ
amino acid'	9/	77	78	70	2	2	8	82	۷	~	٠ د	; ر	8	84	82	86	07	3 8	8 8	68 	6	91	-6]· ==
Α										<u> </u>					1	-			/4				<u> </u>	-
В			<u>.</u>						<u> </u>	<u> </u>	_	<u>.</u>				-	-						<u> </u>	_
· C						_			ļ	<u> </u>						-		-					7	3
D			<u> </u>						3	<u> </u>	_				ļ	7	3	_					-	-
E	ļ	<u> </u>		_					ļ	ļ.,	_				73	3	_						+	-
F	<u> </u>	ļ	7	1					ļ	ļ	1				ļ								3	
G		ļ			.				ļ								1					<u> </u>	‡	
Н		ļ	<u>.</u>				2	ļ	<u> </u>	<u> </u>					ļ	-						ļ	-	
1		<u> </u>		1				<u> </u>	<u> </u>	-					<u> </u>	-	-			2		<u> </u>	-	
K		<u> </u>	<u>.</u>							4					<u> </u>		-					<u> </u>	-	
L		<u> </u>	1			74		72	<u> </u>						<u> </u>		_					<u> </u>	-	
М		<u> </u>	<u>.</u>					1		<u>.</u>		1			-					2		-	-	
N	74	<u> </u>						ļ	6	3					-							 	1	••••
Р		<u> </u>	_						-					70)	_						-	-	
Q	_	7	2		_		71		-					<u> </u>		-						-	-	 1
R		<u> </u>	1	_			1	ļ		1					-	-		-				-		
S		<u>.</u>			74					1	73		1	·	3	-					<u> </u>	.		•••
Т		<u> </u>	ļ.				<u> </u>	_	-	1			73	<u> </u>	-	-		74			 	<u> </u>		
V	<u> </u>	<u> </u>		2			<u> </u>	<u> </u>	1	-	<u> </u>	73		<u> </u>						70	<u> </u>	-		
W							<u> </u>			_				<u> </u>							<u> </u>			••••
X		<u>.</u>		į		,	ļ	_		_				ļ	_						<u> </u>		_	
Y							ļ			_			<u> </u>								17	3 7	0	
Z	L					_	Ļ	╇	Ļ	4		_	_	Ļ	+	4	-		_	_	Ļ	÷	\dashv	_
-							ļ			_			<u> </u>	<u>.</u>						ļ	ļ			
unknown (?)						ļ						<u> </u>							ļ	-		<u></u> ¦	
not sequence	d		_				Ļ	╧	_	_		_	<u> </u>	<u> </u>	1	 		7.40		<u> </u>	_	+	-	_
sum of seq	7	4	74	74	74	74	1 7	4 7	4	74	74	74	7	4 7	3	74	74	74	74	74	1 7	4	/4	7
oomcaa,	*****		*****		74	74						:					73	74	74	7() 7	3	70	
mcaa'	1	١	Q	F	S	L				N		ļ				E	D		 .	V		<u> </u>		
rel. oomcaa	5	%001	97%	%96	100%	100%	2	96%	9,26	85%	%66	% 65	%000	93%	0/096	%66	%66	100%	100%	0.50%		0/n66	95%	9000
pos occupie	d" [1	3	3	1		1	3	3	7	2	.0	2	2	2	2	2	1	İ	1	3	2	3	

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

											CI	OR	Ш							<u> </u>			_	j
amino acid'	93	94	95	96	0.7	6	86	66	9	⋖	80	•	ر	۵	ш	u.	ی	I	: - -	- -		×	_	=
A	69		1		1	3	12	4	3	3	2	5		8	ļ	<u> </u>			- -		10	1		
В									<u> </u>	<u> </u>	<u> </u>	-		<u> </u>		<u> </u>	-	_		-				
· C					<u> </u>	1		1	ļ		_	1		1	1	<u> </u>	-							
D			19	9	4	3	7	4		3	1	6	1	1	<u> </u>					_			62	-
E			1	0	4	2	1	2		2	1	2		ļ			-			1		20		
F .	1			1	1	1		1		2	3	_	2	•	ļ		1					38	4	4
G	1		1	6	4	15	15	11		8	6	2	5	5		В	6	1	_		17	<u> </u>		
Н					1		1	<u> </u>	<u> </u>		1	1		<u> </u>	<u> </u>				1	1	1		ļ	•
1			_		1	2			2		5	1						-				<u> </u>	<u> </u>	
K		<u> </u>	1	1	1	1	1	ļ	1	1	<u>ļ.</u>				1							8	<u> </u>	••
L				1	8	4	2		3	2	1					-	1	5				· † -	·‡····	**
М					1		<u> </u>	<u>.</u>		1				5								11	+-	
N				1	3	1	-	2	1	1	1	3	ļ		2		1		1	3	ļ	+	-	
P					10	4			5	3		5	ļ	1		1					<u> </u>	-	-	
Q				1	1	1	<u></u>	1						1							ļ	-	+	
R		6	9	1	7	8		1	8	8	3	•••••	<u> </u>	1	1	5					 	-	-	,,
S			3	5	5	5	5	7	6	7	3	4	_	2		_			1	1	 		-	••
T				1	1	4	<u> </u>	3	4	4	6	3		1			1				 		_	
V		3	1	4	5		1	9			4			9	5	1	1					-†	2	••
W				1	6	{	8		3	2	4					_					1	4	-	
X									_				-			-				_			-	•
Y					6		4	2	2	2	6	(6	2	4	2	1	8	8	1	2 1	2	_	
Z						L	╧	4	_		_	_	+	4	4	_		_		-		10	12	=
					2	2	3	7	14	23	25	3	3	41	47	53					<u> </u>	28	12	
unknown (?)	_			<u> </u>	<u>. </u>						ļ	<u></u>				6	 -	1	•••••		1	1	
not sequence	ed				<u> </u>	<u> </u>	2	2	1	1	1	Ļ	1	1	1	<u> </u>	1	1	_	_	_	_	=	
sum of seq	7	74	74	73	7	2 7	'1	71	72	72	72	7	2	72	72	72	72	12	<u> </u>	<i>ا ا</i>	Z .	72 29	7 Q	
oomcaa,									14	23	25	3	3	41	47	53	54	57	/ 5	b: t	SU:	28 -	30 F	-
mcaa*	į			D	. <u>.</u>			••••••	-	-	-	-	-	-	-	-				-				
rel. oomcaa	a'	3%	3%	9/09	404	4.00	31%	21%	19%	32%	350%	2	46%	57%	65%	74%	75%	700%	100/2	0/0/0/	%69	39%	53%	
pos occupie		<u>o</u>	. 6		!		10	15	17	1 10	3 1	G	13	13	11		1 8	3	4	5	7	6	6	,

Table 6G: Analysis of V heavy chain subgroup 6

						Frai										•
amino acid'	102	103	104	105	2 9	901	107	108	3	109	110	=	: :	7	=======================================	sum
A								-	2							494
В								<u> </u>	_							
С					1			<u>.</u>	_			_	-		_	147
D								<u> </u>	_	1				_		403
E								_	_							186
F	2							ļ	_		ļ			2		150
G		<u>.</u>	4	9	_	50		ļ	_		ļ					57
Н	2							ļ			<u> </u>					11
1	9						3	3	_	1	<u> </u>	_				30
K		<u> </u>			1			ļ	1		<u> </u>		_			29
L	5								26		ļ			_		63
М				<u>.</u>				_	8		<u> </u>					3
N								_			ļ		_			43
Р	1	1			6		<u> </u>	-			-		_		_1	38
Q					40		<u> </u>	_								53
R					2		<u> </u>	_			-					49
S		4		1			<u> </u>	1		ļ				43	46	1
T		<u> </u>					4	5	4		- †	45				64
V	2	1				ļ	<u> </u>	_		4(6		48			64
W			65			<u> </u>	ļ	-	5	<u> </u>	-					39
X						ļ	-	_		 	4				<u></u>	
ΥΥ	1	9			.,	ļ	-	_		-	-					5
Z		_	_			<u> </u>	ļ	_		╇	4					╢
		2				<u> </u>	-	_		-	_				<u> </u>	5
unknown (?	')	·				ļ	-			-	-				<u> </u>]_
not sequenc	ed	5										28				
sum of seq	' (8	65	50	49	5	0 4	19	48	3 4	8	45	48	45	47	/ <u></u>
oomcaa3				• • • • • • • • • • • • • • • • • • • •	·····	- 7	÷		•			45				
mcaa ⁴		۷	W	G	Q		}	Τ	<u> </u>	١	٧ 		V		S	_
rel. oomca	a ^s	31%	100%	%86	820%	1000	နိုင်ငံ ၁၁	92%	2/0/2	2 1	96%	100%	100%	%96	9000	2
pos occupie	d"	9	1	2		4	1	.3		7	3	1	1	:	2	2

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas lii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011–5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- 25 Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 40 Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155–3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249-5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G. Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992)
 Immunological Reviews, 130, 69–85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651–1654; (1975)
 Z.Physiol.Chem., 356, 167–191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Poliock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. Et Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur J. Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. &t Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

- 24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.
- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006–9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718–1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione, B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl.Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Coniey, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529-1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011–5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- 27 Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3–24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991)
 Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- 45 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- 55 Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991)

 J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) BiochemJ., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83-103.
- Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247–251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980)
 Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. & Rabbitts, T.H. (1980)
 Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526-1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- 105 Schroeder, H.W., Jr., Hillson, J.L. &t Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. &t Carson, D.A. (1989) Arthritis &t Rheumatism, 32, 72-76.
- 106 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.lmmunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821–1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc.Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501-2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993).

 (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858–2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993). Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.lmmunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

- 1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:
 - deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
 - (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
 - (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
 - (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
 - (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

 The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes: Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims1 to 28.
- A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of;
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
 - 41. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- 42. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

- carry cleavage sites, each of which: (b)
 - lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- The collection of genes according to claim 45 in which said species is human. 46.
- The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the 47. immunoglobulin superfamily, preferably of the immunoglobulin family.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, 48. and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, 49. and/or CDR regions 1, 2, and 3 of antibody light chains.
- A collection of vectors comprising a collection of gene sequences according 50. to any of claims 43 to 49.

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property.
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51.
 - (e) optionally, repeating steps (a) to (c).
 - 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Figure 2A: VL kappa consensus sequences

^
ַיִּ
≃
Ξ.
ž
≍
Š
<u>ა</u>
Ψ;
죠
_
e
onsensus
Ĕ
9
_
G
d
₫.
kappe
پ
>
٠:
Z
7
e 2A: VL I
Ξ
⊃
igur
iΞ
_

framework 3 6 5 6 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
--

Figure 2B: VL lambda consensus sequences

□ 28 □	72 0 0 0
] Z O '	95 2 2
	99 0 0 0
CDRI S S S	= 75 ~ ~ ~
97 N H D	S S S S S S S S S S S S S S S S S S S
97 5 5 5	1 1031-
1 1 2 N H N	
CS 0 0 0	05 0 0
\sigma \sigma	67 > >
12	
0Z - C	-
61 > - <	
81 & 2 C	1 1 2 4
71 a a a	framework 2 P G T A A A P G K A P G C A P A P A P A P A P A P A P A P A P A
91 0 0 0	S 24 ⊢ × 0
	E 17 0 0 0
	10 P P P P
S S S S S S S S S S	36 □ エ ⊻
E	85 0 0 0
fra 10 La	\[\(\(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
6 N N N	98 > >
8 4 4	 ≤ ≤ 32
	N N N N
9 0 0	> < < 33
g ⊢	
	CDRI X X X
E > < 3	1827
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CDRI G S N - A 32 G G Y N - 32 G D K - Y S
M1 0 S V L T 0 M2 0 S A L T 0 M3 S Y E L T 0	CDRI 29 30 A 32 32 G G Y N Y V 33 G D K - Y A
4 5 5	\$ \$ \$

Figure 2B: VL lambda consensus sequences

framework 3 \(\text{Assign 5} \) \(\text{Assign 6} \) \(\text{Cs 6} \) \(Cs
--

eduences
onsensus s
y chain (
C: V heav
Figure 2C

us sequences framework 3	63 64 65 66 66 66 67 77 73 74 79 79 89 88 88 88 88 88 88 88 88 88 88 88 88	work3 CDRIII framework 4 91 92 93 45 69 78 99 10 A B C 10 10 10 10 10 10 10 10 11 11 11 11 11
Figure 2C: V heavy chain consens	8	frame, 88
Figure 2C:	VH1A VH1B N VH1B VH1B VH3 VH3 VH4 N VH5 N VH5 N VH5 N VH5 N VH5 N VH6 N	VH1A WH1B WH2 WH2 WH3 WH5 WH5 WH6

~ ~ ~ ~

CGCACCCACT Ω GATATCCAGA TGACCCAGAG CCCGTCTAGC CTGAGCGCGA GCGTGGGTGA ᠐ > ഗ Ø ഗ Н S ഗ Д ~~~~~~ BanII ഗ O Figure 3A: V kappa 1 (Vk1) gene sequence Õ EcoRV ~~~~~

Н ഗ CTATAGGTCT ACTGGGTCTC GGGCAGATCG GACTCGCGCT ഗ Н G Ø ഗ Ø 召 PstI ပ ⊱ HЕ > K

TCGTGTGACC ATTACCTGCA. GAGCGAGCCA GGGCATTAGC AGCTATCTGG TCGATAGACC AGCACACTGG TAATGGACGT CTCGCTCGGT CCCGTAATCG ~~~~~~

Н ~~~~~~ AseI ᆸ Н X Д Ø × ~~~~~~ ധ SexAI Д 又 Ø O Y W ~ ~ ~ ~ ~ ~ KpnI Ø

GCTTTGATAA TTAAATACGT CGAAACTATT AATTTATGCA CGTGGTACCA GCAGAAACCA GGTAAAGCAC CGICTITGGI CCATITCGIG GCACCATGGT

BamHI Ŋ ഗ G ഗ ĮΤί ĸ ഗ Д SanDI > U ഗ Ø Ц ഗ ഗ Ø

GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTGGATC

~~~~~~~

CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG Figure 3A: V kappa 1 (Vk1) gene sequence (continued)

H Eco57I H Д Ø Ц ഗ ഗ H딘 Ä Е 'n Н G

GAAGACTTTG CTTCTGAAAC ~ ~ ~ ~ ~ ~ BbsI GGTAATCGTC GGACGTTGGA CCATTAGCAG CCTGCAACCT CGGCACTGAT TTTACCCTGA AAATGGGACT

BamHI

ഗ استا Н Д Д ₽  $\succ$ 二 Ø O Ö GCCGTGACTA  $\succ$  $\succ$ Н

GAAACCGGTC CTTTGGCCAG ~~~~~ MscI CCCCCCCGAC GGGCGGCTG CATTATACCA GTAATATGGT CGACCTATTA TTGCCAGCAG GCTGGATAAT AACGGTCGTC

BSiWI ~~~~ ĸ X Н 团 > 又 ⊱ G

TGCATGC ACGTACG GGTACGAAAG TTGAAATTAA CCATGCTTTC AACTTTAATT

Ø

ш

CGGATCGTTT GCCTAGCAAA

TCACCCCAGG AGTGGGGTCC

CAACCGTGCC

CTATTAATTT ATCTGGGCAG

GTTGGCACGG

TAGACCCGTC

GATAATTAAA

Figure 3B: V kappa 2 (VK2) gene sequence

CTCCGGGCGA 团 O Д Н CTGCCAGTGA > Д Ы TGACCCAGAG CCCACTGAGC Ø Ц Д ~~~~~ BanII W Ø Н  $\mathbf{z}$ GATATCGTGA > ECORV 1 2 2 2 2 2

Z S 工 GACGGTCACT Ц Н Ŋ GGGTGACTCG Ø Ŋ Ŋ 召 ACTGGGTCTC PstI U S CTATAGCACT Ŋ Ø Д

GAGGCCCGCT

CATAGCAACG GTATCGTTGC GAAGCAGCCA AAGCCTGCTG CTTCGTCGGT TTCGGACGAC TAATCGACGT ATTAGCTGCA GCCTGCGAGC CGGACGCTCG

S Ø 111111 Ŋ SexAI Д K Ø Ц × KpnI 3 Д Ц × Z  $\succ$ 

Ø

Д

TTCGGGCGTC AACCAGGTCA AAGCCCGCAG TTGGTCCAGT GCTATAACTA TCTGGATTGG TACCTTCAAA ATGGAAGTTT CGATATTGAT AGACCTAACC

召 Д Д SanDI ک د S Ø ĸ Z Ŋ Ç Ц × Н AseI 口 П

ტ

Figure 38: V kappa 2 (Vk2) gene sequence (continued)

AGCCGTGTGG  $\gt$ ĸ വ CCTGAAAATT Н × Ц CCGATTTTAC Н ഥ Ω Н GGATCCGGCA Ö BamHI ~~~~~ W Ö TAGCGGCTCT S G Ø

TCGCCACACC Д H Е GGACTTTTAA × 田 Ø Ø GGCTAAAATG Ö × CCTAGGCCGT > Ö > ATCGCCGAGA Ω Eco57I 口 Ø 回

ATGGTGGGGC TACCACCCCG AGCAGCATTA TCGTCGTAAT TATTATTGCC ATAATAACGG GCACCCGCAC AAGCTGAAGA CGTGGGCGTG TTCGACTTCT BbsI

BsiWI 12222 RT 又 团  $\gt$ × 딘 ტ Ø MscI ტ لترا Н Д

ပ္ပ TAATTTGCAT GAAAGTTGAA ATTAAACGTA CTTTCAACTT CCGACCTTTG GCCAGGGTAC CGGTCCCATG GGCTGGAAAC

回 CTGAGCCTGT CTCCGGGCGA GACTCGGACA GAGGCCCGCT ᠐ Д ഗ Н ഗ 口 CTATAGCACG ACTGGGTCTC GGGCCGCTGG TGACCCAGAG CCCGGCGACC H Ø Ы Banll ഗ Figure 3C: V kappa 3 (Vk3) gene sequence O Е П GATATCGTGC ECORV ~~~~~

ഗ ഗ S > ഗ Ø ഗ Ø ĸ PstI ပ ഗ П ⊱ Ø  $\alpha$ 

ACGTGCGACC CTGAGCTGCA.GAGCGAGCCA GAGCGTGAGC AGCAGCTATC TCGTCGATAG TGCACGCTGG GACTCGACGT CTCGCTCGGT CTCGCACTCG

~~~~~ AseI Н Н 凶 Д Ø Ø ტ SexAI Д × Ø Ø KpnI X M Ø П

TAATTAAATA ATTAATTAT GTGGCGCAGA CACCGCGTCT ACCGCACCAT GGTCGTCTTT GGTCCAGTTC TGGCGTGGTA CCAGCAGAAA CCAGGTCAAG

G BamHI ഗ ڻ ഗ 区 Ø Д SanDI ک 5 Е Ø X ഗ ഗ Ø Ģ

GECECEAGCA GCCGTGCAAC TGGGGTCCCG GCGCGTTTTA GCGGCTCTGG

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC

Ω Eco57I ~~~~~ 团 ρι 口 口 ഗ ഗ Н 딘 Н H ш H

G

ഗ

BamHI

CCTGAAGACT ~~~~~ BbsI

GGACTTCTGA
 Co
 Į۲ı Н TAGGCCGTGC CTAAAATGGG ACTGGTAATC GTCGGACCTT ATCCGGCACG GATTTTACCC TGACCATTAG CAGCCTGGAA Д

Д H E \succ 田 Ø Ø Ö \succ × > Ø

MscI

GACCTTTGGC CTGGAAACCG GGTGGGGCGG TIGCGGIGIA TIAITGCCAG CAGCATIAIA CCACCCGCC GTCGTAATAT AACGCCACAT AATAACGGTC

Q G T K V E I K R T BsiWI MscI CAGGGTACGA AAGTTGAAAT TAAACGTACG GTCCCATGCT TTCAACTTTA ATTTGCATGC

SUBSTITUTE SHEET (RULE 26)

۲ı

Figure 3D: V kappa 4 (Vĸ4) gene sequence

CGGACCCGCT CTGGCGGTGA GCCTGGGCGA 回 Ö Ц S GACCGCCACT > Ø Ц GGGCCTATCG TGACCCAGAG CCCGGATAGC ഗ Ω Д BanII ACTGGGTCTC ഗ Ø Н Σ CTATAGCACT GATATCGTGA > EcoRV ~ ~ ~ ~ ~ ~ ~ ~ ~

ഗ \succ ᆸ > W Ø Ŋ W. ĸ PstI ပ Z Н Е ď

区

S

ATTAACTGCA GAAGCAGCCA GAGCGTGCTG TATAGCAGCA ATATCGTCGT Д TAATTGACGT CTTCGTCGGT CTCGCACGAC TGCACGCTGG ACGTGCGACC

Д Ø Ü SexAI Д × Ø Ø ~~~~~~ KpnI X M Ø ᆸ × Z X Z Z

TGGTACCAGC AGAAACCAGG TCAGCCGCCG TCTTTGGTCC AGTCGGCGGC ACCATGGTCG TGTTGTTTT GATAGACCGC ACAACAAAA CTATCTGGCG

又 Ω ሲ SanDI > U ഗ 口 召 Н S Ø 3 × Н AseI 口 口 ×

GAAAGCGGGG TCCCGGATCG CTTTCGCCCC AGGGCCTAGC ATCCACCCGT TAGGTGGGCA TTTGATAATT AAATAACCCG AAACTATTAA TTTATTGGGC

Figure 3D: V kappa 4 (VK4) gene sequence (continued)

ہتا

TAAAGCAGGG ATTTCGTCCC Ŋ ഗ Н GCACTGATTT TACCCTGACC Н Ц H Ľ Ω H O TCTGGATCCG BamHI 1 2 2 2 2 2 ഗ ტ Ŋ G S

Н Н × CGTGACTAAA ATGGGACTGG H AAAATCGCCG AGACCTAGGC TTTTAGCGGC

Ø Ø Ö × × > Ø \triangleright Ω BbsI 222222 Eco57I 团 Ø Ø

口

AATATGGTGG TTATACCACC CGGTCGTCGT GCCAGCAGCA GTGTATTATT CACATAATAA TGCAAGCTGA AGACGTGGCG ACGITCGACI TCIGCACCGC

BsiWI 22222 公 X Н 回 > K E ტ Ø 11111 MscI Ċ щ H Д

Д

CTTTAATTTG CATGC GAAATTAAAC GTACG TACGAAAGTT ATGCTTTCAA GGCGGCTGGA AACCGGTCCC CCGCCGACCT TTGGCCAGGG

X GCGGCTTTGA CGACTAAATA CGCCGAAACT GCTGATTTAT TGTGACCATC TCGTGTAGCG GCAGCAGCAG CAACATTGGC AGCAACTATG AGTGGCGCAC CAGGTCAGCG GTCCAGTCGC × 又 ~~~~~ BamHI ഗ Ø Н ტ Z Ö 口 SexAI Ŋ S CGTCGTCGTC GTTGTAACCG 口 Д TCACCGCGTG ſι Ü X Ø 区 Н Д 111111 C Ω Z BbeI S Ø CCCGGGACGG GGGCCCTGCC Д Ŋ CGGAAGTCAC GCCTTCAGTG 드 > Eco57I 2222 > Ø 22222 P G XmaI S G Ŋ Д Bsu36I ACTCGACCAT GGTCGTCAAC ഗ CCAGCAGTTG Ç ACACTGGTAG AGCACATCGC GTCTCGCACG ACTGGGTCGG TGACCCAGCC Ц Д Д ഗ Ø Ø Figure 4A: V lambda 1 (VA.1) gene sequence BSSSI 区 U Q ۲ Ŋ Ø KpnI TGAGCTGGTA X M 口 CAGAGCGTGC Z Н > Z 듼 W Ω > >

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

| GATAACAACC AGCGTCCCTC AGGCGTGCCG GATCGTTTTA GCGGATCCAA
CTATTGTTGG TCGCAGGGAG TCCGCACGGC CTAGCAAAAT CGCCTAGGTT |
|--|
| GATCGTTTTA
CTAGCAAAAT |
| AGGCGTGCCG
TCCGCACGGC |
| AGCGTCCCTC
TCGCAGGGAG |
| GATAACAACC
CTATTGTTGG |

12222 BbsI 口 Ŋ Ø 口 G 듼 Н ø 口 ഗ Ø ഗ H Ċ S

GGTGGGGGG ACACAAACCG CCACCCGGC TGTGTTTGGC AGCGAAGACG TCGCTTCTGC V ਜ TICGCCGIGG ICGCGCTCGG AACGCTAAIG CCCGGACGIT ЪЪ TTGCGATTAC GGGCCTGCAA ۲ ۲ CAGCATTATA о н у E A D Y Y C Q AAGCGGATTA TTATTGCCAG AAGCGGCACC AGCGCGAGCC

GTCGTAATAT

TTCGCCTAAT AATAACGGTC

MscI L G 1 1 1 > 드 HpaI Ч × 딘 Ċ

AGTTAACCGT TCTTGGC TCAATTGGCA AGAACCG CCGCCGTGCT GGCGCCACGA

G

| ζ | Ω | |
|--------------------------|------------|---------------------------------------|
| (| X | |
| (| PI G | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| (| P
SexAI | \
\
\ |
| (| വ | ľ |
| • | U | |
| | Ŋ | |
| | > | |
| | ഗ | |
| | Ø | |
| | Д | |
| JCe | Ø | |
| 2 (Vλ2) gene sequence | H | |
| (VX2) ger | ᄓ | |
| bda 2 | Ø | |
| :Vlam | W | |
| Figure 4B: V lambda 2 (V | Q | |

GTCCAGTCTC CAGGTCAGAG AGCGGCTCAC TCGCCGAGTG AGCTTCAGTG TCGAAGTCAC Eco57I TGACCCAGCC ACTGGGTCGG GTCTCGCGTG CAGAGCGCAC

22222

Z × Ç Ç \gt Д Ø S H G ۲ C BSSSI ഗ Н Н Н

GGCTATAACT CCGATATTGA GCTACACCCG CGATGTGGGC CATGATCGTC GTACTAGCAG CATTACCATC TCGTGTACGG AGCACATGCC 122222 GTAATGGTAG

Н Ξ Ц 又 Д BbeI Ø × ~~~~~ Ŋ XmaI Д 耳 Ø Ø KpnI × 3 S > ⋈

ACTGATGATT TGACTACTAA AGGCGCCGAA TCCGCGGCTT CATCCCGGGA GTAGGGCCCT ATGTGAGCTG GTACCAGCAG TACACTCGAC CATGGTCGTC S BamHI ~~~~ ග ß Ľ 召 Z S > G Bsu36I S Д 凶 Z S > Ω ×

TTAGCGGATC AATCGCCTAG AGCAACCGTT TCGTTGGCAA TATGATGTGA GCAACCGTCC CTCAGGCGTG CGTTGGCAGG GAGTCCGCAC ATACTACACT

Figure 4B: V lambda 2 (VA.2) gene sequence (continued)

| E
BbsI | CAAGCGGAAG
GTTCGCCTTC | [Ti | GCCTGTGTTT
CGGACACAAA | |
|-----------|--|----------------|--|--|
| E AB | CAAGCGGAAG
GTTCGCCTTC | ٧
ټ | GAC | |
| Q A | AGC | Д | CTC | |
| Ø | CA | | | |
| S
G | TG | Д | ATACCACCCC
TATGGTGGGG | |
| ڻ
ن | GCCTGACCAT TAGCGGCCTG
CGGACTGGTA ATCGCCGGAC | T.
T | ACC
FTGC | |
| 0 | 0
0
0
0 | H | ACC | |
| 01 | TA(
AT(| | AT
TA | |
| Н | AT
TA | х н о о | CAGCAGCATT
GTCGTCGTAA | V L G MscI ~~~~ CGTTCTTGGC GCAAGAACCG |
| L T | ACC
TGG | II | GC? | V L G Msc ~~~ GTTCTTGG |
| H | SAC | O ¹ | GCA | V
TTC |
| | 000 | Ø | CA | |
| N T A S | GA | | ည္သ | K L T
HpaI
~~~~~~
CGAAGTTAAC
GCTTCAATTG |
| A | Ü Ü | 54 | ATT
TAA | K L T
HpaI
~~~~~~
\AGTTAAC |
| E | ACC | | \TT.
FAA | K
AAG
TTC |
| Z | AACACCGCGA GCCTGACCAT
TTGTGGCGCT CGGACTGGTA | р ү ү с | TTZ
AA | ე
ე |
| ζħ | | Ω | GA | G T |
| G. | 3000 | Ø | 252
202 | 9999 |
| S | H.L
AAG
TTC | ыř | ACGAAGCGGA TTATTATTGC
TGCTTCGCCT AATAATAACG | G G G T K L T HpaI GGCGGCGCA CGAAGTTAAC CCGCCGCCGT GCTTCAATTG |
| X | Bamhl
~
CAAAAGCGGC
GTTTTCGCCG | D E
BbsI | ACG
TGC | 9
0
0
0
0 |
| ! | | | | |

Figure 4C: V lambda 3 (VA.3) gene sequence

| E | ~~~~~
CAGGTCAGAC
GTCCAGTCTG | ഗ | TACGCGAGCT
ATGCGCTCGA | Ω | TTATGATGAT
AATACTACTA |
|----------------------|------------------------------------|--------------|--|-----------------------|------------------------------------|
| Q | CAC | | GA | Z
Z | SAT |
| ט | ~ CA
CA
CA | Ø | 0
0
0
0
0 | ⊱ | ATC
TAC |
| xA] | CAC | X
A | TA | · | TT |
| S V A P G Q
SexAI | AC CAGGT
TG GTCCA | | AA
TT | | AT |
| A | , GCZ
, GGZ | | ATA
PAT | > | GTG |
| > | GTT | G
D
K | CG2
GC1 | ᆸ | TG |
| ഗ | AGCGTTGCAC
TCGCAACGTG | Ŋ | GGGCGATAAA
CCCGCTATTT | Q A P V L V I
Bbel | TTCTGGTGAT
AAGACCACTA |
| | | н | | > | |
| > | GTGT
CACA(
` ⊥ | M | 300
300 | дн | ~~
GCA
GGT |
| w | CTTCAG'
GAAGTC
ECO57I | 7 | TGC | A
BbeI |
 |
| D S d | GCCTTCAGTG
CGGAAGTCAC
Eco57I | D A L | GCGATGCGCT
CGCTACGCGA | щ
О | CAGGCGCCAG
GTCCGCGGTC |
| | | | | | |
| വ |)
(0
(0
(0 | Ω
Ω | 300 | a
L | 0000 |
| A
O
E | TGACCCAGCC
ACTGGGTCGG | | TCGTGTAGCG
AGCACATCGC | Q K P G
XmaI | GAAACCCGGG
CTTTGGGCCC |
| H | \CC | S C
BssSI | C TCGTG | × | AAC
TTC |
| , L | TG2
AC1 | SB | TC. | | GA |
| Ъ | AC
IIG | н | TC
AG | 0 | CA |
| 团 | GAZ | | STA | Q | ZAG
GTC |
| \Rightarrow | rat
Ata | K | 000 | v Y
KpnI | AC(|
| Ω | AGCTATGAAC
TCGATACTTG | A | CGCGCGTATC TCGTGTAGCG
GCGCGCATAG AGCACATCGC | W Y
Kpnl | ~~~~~~
GGTACCAGCA
CCATGGTCGT |
| | A H | | 00 | - | |

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

O CCAACAGCGG GGTTGTCGCC Ŋ Z BamHI Ŋ TTTAGCGGAT AAATCGCCTA G S Ĺ GGGCCTTGCG CCCGGAACGC 只 ഠ Д GGAGTCCGTA CCTCAGGCAT Н G Bsu36I S Д AGACTGGCAG TCTGACCGTC 召 Д S

4 团 Ω BbsI 团 Ø Ö Н Ö S Н Н Н Н Ø Н Z

TTAGCGGCAC

CAACACCGCG ACCCTGACCA

TCAGGCGGAA GACGAAGCGG

ATATGGTGGG GCGGACACAA ACCGCCGCCG AATCGCCGTG AGTCCGCCTT CTGCTTCGCC TGGCGGCGGC ტ ტ TATACCACCC CGCCTGTGTT ሷ ρι H E GGTCGTCGTA Q Q H CCAGCAGCAT TGGGACTGGT ATTATTAG TAATAATAAC GTTGTGGCGC U

MscI Ŋ ᆸ > Е 口 × Н

G GGCAAGAACC CCGTTCTTGG TGCTTCAATT ACGAAGTTAA

Щ

Σ

GCCCGTCGTC CGGGCAGCAG S S G Д CACTTTTTG GTGAAAAAAC 又 又 > GICCACGITA ACCAAGICAG ACCGCGCTI TGGCGCGGAA ഠ Ø O CAGGTGCAAT TGGTTCAGTC Ŋ Figure 5A: V heavy chain 1A (VH1A) gene sequence O > Q L MfeI > Q

Ŋ Ŋ L E ტ BspEI 12222 G ഗ Ø K C S > × >

TCGATACGCT AGCTATGCGA CCTCCGGAGG CACTTTTAGC GTGAAAATCG TCGACGTTTC GGAGGCCTCC AGCTGCAAAG CGTGAAAGTG GCACTTTCAC

~~~~~ O Ø U Д BstXI O 吆 >

Ç

. ص

Σ

3

口口 XhoI

CAGAGCTCAC CTACCCGCCG GATGGGCGGC GTCTCGAGTG AATCGACCCA CGCGGTTCGG GGACCCGTCC GCGCCAAGCC CCTGGGCAGG TTAGCTGGGT

GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC A. Q. K ATTATTCCGA TTTTTGGCAC GGCGAACTAC TAATAAGGCT AAAAACCGTG CCGCTTGATG A N Y F C L Д

× Ø ۲ ഗ Н S 团 Д Ø Н Н BSTEII >

3

S

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

| CACCGCGTAT ATGGAACTGA<br>GTGGCGCATA TACCTTGACT | R W G                                      | GCGTTGGGGC<br>CGCAACCCCG                            |
|------------------------------------------------|--------------------------------------------|-----------------------------------------------------|
| CACCGCGTAT<br>GTGGCGCATA                       | 7 C A<br>BSSHII                            | ACGCCCTGT ATTATTGCGC GC<br>TGCCGGCACA TAATAACGCG CG |
| AAAGCACCAG<br>TTTCGTGGTC                       | R S E D T A V Y Y C A R W G<br>Eagl BssHII |                                                     |
| ACCGCGGATG<br>TGGCGCCTAC                       | S<br>E                                     | GCAGCCTGCG TAGCGAAGAT<br>CGTCGGACGC ATCGCTTCTA      |
| GGTGACCATT ACCGCGGATG<br>CCACTGGTAA TGGCGCCTAC | S S L R                                    | GCAGCCTGCG<br>CGTCGGACGC                            |
|                                                |                                            |                                                     |

| CCCTGGT THE CCCTGGTTATTGG GGCCAAGGCA CCCTGGTGAC | GATGGCT LITATICOTA CCTAATAACC CCGGTTCCGT GGGACCACTG |
|-------------------------------------------------|-----------------------------------------------------|
| GGCCAAGGCA                                      | CCGGTTCCGT                                          |
| GGATTATTGG                                      | CCTAATAACC                                          |
| $\mathbb{L}^{2}$                                | AAATACGCTA                                          |
|                                                 | GGCGATGGCT                                          |

۲

>

H

G

O

3

 $\succ$ 

Ω

Σ

Ø

ſτι

G

Ω

G

V S S V BlpI

GGTTAGCTCA G CCAATCGAGT C

Figure 5B: V heavy chain 1B (VH1B) gene sequence

| Ø                                  | CGGGCGCGAG<br>GCCCGCGCTC   | <b>≻</b> ⊦           |
|------------------------------------|----------------------------|----------------------|
| K.                                 | S<br>S<br>S<br>S<br>S<br>S |                      |
| U <sub>2</sub>                     | 360                        | H                    |
|                                    | 000                        | Ø                    |
| д                                  | AC<br>IG                   | H                    |
| ×                                  | AAZ                        | _                    |
| ×                                  | AAA<br>ITT                 | щ                    |
| L V Q S G A E V K K P G A S<br>EeI | GTGAAAAAAC<br>CACTTTTTTG   | G Y T F T S Y Y Spei |
| (v)                                | AA                         | ×                    |
|                                    | CGGCGCGGAA<br>GCCGCGCCTT   | S G<br>BSPEI         |
| Ø                                  | 0<br>0<br>0<br>0<br>0      | S<br>Bsi             |
| O                                  | 900                        |                      |
| ß                                  |                            | A                    |
| <b>~</b>                           | AGA<br>ICT                 | ×                    |
| . •                                | TCZ<br>AG:                 | U                    |
| >                                  | TGGTTCAGAG<br>ACCAAGTCTC   | S C K A              |
| e I                                | E. A.                      |                      |
| M<br>M<br>F<br>e                   | caa<br>GIT                 | >                    |
| >                                  | TG                         | ><br>X               |
| ∧<br>Ø                             | CAGGTGCAAT GTCCACGTTA      | >                    |
|                                    |                            |                      |

CCTCCGGATA TACCTTTACC AGCTATTATA TCGATAATAT 3 G Σ TCGACGTTTC GGAGGCCTAT ATGGAAATGG 3 111111 回 XhoI ტ Ø U ρι BstXI AGCTGCAAAG Ö K CGTGAAAGTG GCACTTTCAC  $\gt$ 3 田 Σ

GICTCGAGIG GAIGGGCIGG CAGAGCTCAC CTACCCGACC ACGIGACCCA GGCGGIICGG GGACCCGICC CCGCCAAGCC CCTGGGCAGG TGCACTGGGT

A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC CACGAACTAC GTGCTTGATG Z E ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC S G G Д Z

GGTTAGCTCA G CCAATCGAGT C

S S BlpI

| Figure 5B:V heavy chain 1B (VH1B) gene sequence (continued) V T M T R D T S I S T A Y M E L BStEII | ACCCGTGATA CCAGCATTAG CACCGCGTAT ATGGAACTGA<br>TGGGCACTAT GGTCGTAATC GTGGCGCATA TACCTTGACT | S E D T A V Y Y C A R W G EagI BSSHII | A H                                            | Y A M D Y W G Q G T L V T Styl | TITATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC<br>AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|
| Figure 5B:V heavy chain 1B (V T M BSTEII                                                           | GGTGACCATG                                                                                 | S S L                                 | GCAGCCTGCG TAGCGAAGAT<br>CGTCGGACGC ATCGCTTCTA | G G F                          | GGCGATGGCT<br>CCGCTACCGA                                                                   |

Е Ø 터 Ы × > 口 Ø Д G ഗ Figure 5C: V heavy chain 2 (VH2) gene sequence 口 Ы MfeI > Ø

GICCACGITA ACTITCTITC GCCGGCCGG GACCACTITG GCTGGGTTTG CAGGIGCAAT IGAAAGAAAG CGGCCCGGCC CIGGIGAAAC CGACCCAAAC C

ഗ Е ഗ Ц ഗ 'n BSPEI ~~~~~ ᠐ ഗ ĮΉ ₽ ပ ₽. ᆸ ₽ 口

CCTGACCCTG ACCTGTACCT TTTCCGGATT TAGCCTGTCC ACGTCTGGCG TGGACATGGA AAAGGCCTAA ATCGGACAGG TGCAGACCGC GGACTGGGAC

~~~~~~ XhoI ᆸ Ø 又 ~~~~~~~~~~~ ပ М BstXI Д O K Н 3 ഗ > ᠐

Н

3

团

AACCGCACCC GACCTAAGCG GTCGGCGGAC CCTTTCGGGA GCTCACCGAC TIGGCGIGGG CIGGATICGC CAGCCGCCIG GGAAAGCCCT CGAGIGGCIG

MluI 又 口 ഗ Н ഗ \succ \succ 又 Ω Ω 3 Ω ᆸ Ø

CGGACTTTTG TGATAAGTAT TATAGCACCA GCCTGAAAAC ACTATTCATA ATATCGTGGT GCTCTGATTG ATTGGGATGA TAACCCTACT CGAGACTAAC

>

Н

Н

>

> Ø Z × NspVល ЕН Figure 5C: V heavy chain 2 (VH2) gene sequence (continued) Ω ¥ ഗ Н H Ц MluI 24

ATACTTCGAA AAATCAGGTG GTGCTGACTA CACGACTGAT TTTAGTCCAC TATGAAGCTT ATTAGCAAAG TAATCGTTTC GCGTCTGACC CGCAGACTGG 1111

3 召 BSSHII ø Ö × × Н Ø Н Ω > Д Ω Σ Z Н \mathbf{z}

CCTATTATTG CGCGCGTTGG GGATAATAAC GCGCGCAACC GATACGGCCA CTATGCCGGT GGACCCGGTG ACTGGTTGTA CCTGGGCCAC TGACCAACAT

ACCCCGGTTC CGTGGGACCA TGGGGCCAAG GCACCCTGGT StyI Ö GGCGGCGATG GCTTTTATGC GATGGATTAT \succ Ω Σ K \succ ſΞι O Ω O G

CTACCTAATA

CGAAAATACG

CCGCCGCTAC

>

Н

Н

O

O

3

22222 BlpI ഗ > E

TCAG AGTC GACGGTTAGC CTGCCAATCG

Figure 5D: V heavy chain 3 (VH3) gene sequence

团

CGGCCGCCAG GCCGCCGTC ഗ Ü U М CTGGTGCAAC GACCACGTTG O > ᆸ ეყეეყეენე U U G GAAGTGCAAT TGGTGGAAAG S 回 > MfeI Õ >

Ø × ഗ S ш Н CITCACGITA ACCACCITIC GCCGCCGCG Įщ BSPEI U ഗ Ø Ø ပ ഗ Н 召 Н

CCTCCGGATT TACCTTTAGC AGCTATGCGA TCGATACGCT TCGACGCGCC GGAGGCCTAA ATGGAAATCG CCIGCGICIG AGCIGCGCGG GGACGCAGAC

111111 ഠ Xhol O K Ċ Д BstXI Ø O ø > 3 ഗ

Ø

ഗ

>

3

ACTCGACCCA CGCGGTTCGG GGACCCTTCC CAGAGCTCAC CCACTCGCGC TGAGCTGGGT GCGCCAAGCC CCTGGGAAGG GTCTCGAGTG GGTGAGCGCG

CGCCTATCGC ACTITCCGGC GCGGATAGCG TGAAAGGCCG K G R > ഗ A D ATTAGCGGTA GCGGCGGCAG CACCTATTAT TAATCGCCAT CGCCGCCGTC GTGGATAATA ¥ ⊟ ტ ტ ა U ഗ

SUBSTITUTE SHEET (RULE 26)

Σ

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

| Σ | | |
|-----|------|-----------|
| O1 | | |
| Н | | |
| × | | |
| H | | |
| EH | | |
| z | | |
| X | > | 1 |
| လ | NspV | 22222 |
| z | | • |
| Q | | 1 |
| ĸ | PmlI | 2 2 2 2 2 |
| ഗ | Д | 1 |
| ⊬⊣ | | |
| Ħ | | |
| Į۲۰ | | |
| | | |

GACGTTTACT CACCCTGTAT CTGCAAATGA GTGGGACATA TAAGCTTTTT ATTCGAAAAA TCACGTGATA AAAATGGTAA AGTGCACTAT TTTACCATT

| ប | | |
|----------|----------|---|
| 3 | | (|
| rk | ? | |
| AsHII | 11111 | |
| င
Bs | ł | (|
| × | | |
| × | | 1 |
| > | 1 | |
| A
agI | 1 | |
| 티 | ì | |
| Ω | | |
| 臼 | | |
| Ø | | |
| 딵 | | |
| ы | | |
| ß | | |
| z | | |

TAATAACGCG CGCAACCCCG ACAGCCTGCG TGCGGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC TGTCGGACGC ACGCCTTCTA TGCCGGCACA

Н

Ы

GGCCAAGGCA CCCTGGTGAC GGGACCACTG CCGGTTCCGT GGCGATGGCT TTTATGCGAT GGATTATTGG CCTAATAACC CCGCTACCGA AAATACGCTA

V S S BlpI

GGTTAGCTCA G CCAATCGAGT C

Figure 5E: V heavy chain 4 (VH4) gene sequence

| H |
|---------|
| 巨 |
| ω |
| Д |
| × |
| > |
| H |
| ტ |
| Д |
| Q |
| ω |
| ы |
| Q |
| L
eI |
| ME |
| > |
| ŏ |

CGAGCGAAAC GCTCGCTTTG CTGGTGAAAC GACCACTTTG TGGTCCGGGC ACCAGGCCCG CAGGTGCAAT TGCAAGAAAG GICCACGITA ACGITCITIC

| × | | |
|---|------|---|
| × | | |
| တ | | |
| S | | |
| н | | |
| ß | | |
| Ŋ | | |
| Ö | ;pel | 1 |
| Ø | U | 111111111111111111111111111111111111111 |
| > | | |
| ₽ | | |
| ບ | | |
| Н | | |
| Ц | | |
| ഗ | | |
| Ц | | |

AGCTATTATT TCGATAATAA CAGCATTAGC AAAGGCCTCC GTCGTAATCG TTTCCGGAGG TGGACGTGGC ACCTGCACCG CCTGAGCCTG GGACTCGGAC

×

GATTGGCTAT CTAACCGATA CAGAGCTCAC GTCTCGAGTG CCTGGGAAGG GGACCCTTCC TCGCCAGCCG CCTCGACCTA AGCGGTCGGC GGAGCTGGAT

> BStEII R ഗ × Н ഗ Д Z \succ Z H S G വ \succ ⋈ Н

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGGCAGCAC CGCCGTCGTG ATTTATTATA TAAATAATAT

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

| | | CA | ტ |
|-------------------|---------|--------------------------|--------------------------------------|
| ഗ | | AACTGAGC.
TTGACTCG' | ניז |
| Н | | CT(
GA(| J |
| × | | AAACTGAG
TTTGACTC | A R W G G |
| П | | CTG | RII |
| လ | |)
(GC | A |
| K N Q F S L K L S | | GTTTAGCCTG
CAAATCGGAC | A A D T A V Y Y C A
EagI BssHII |
| Q | | d: FI | × |
| - | | \CC
PGG | ≯ |
| ~ | | AAA
TTT | > |
| i | ^ ~ ~ · | CGAAAAACC)
GCTTTTTGG | A H |
| യ | Nspv | | Eac |
| EH | T į | CT | E-1 |
| ۵ | | ATA
TAT | Ω |
| S V D T S | | GTTGATACTT
CAACTATGAA | Æ |
| | | | ≰ |
| S | | ragc
ATCG | ₽ |
| Н | H | CCATTA | ξ. |
| EH | t
E | 5 5 5 | > |
| | Bs | GA(
CT(| ഗ |

| SCGTGACGGC GGCGGATACG GCCGTGTATT ATTGCGCGCG TTGGGGCGGC
CGCACTGCCG CCGCCTATGC CGGCACATAA TAACGCGCGC AACCCCGCCG
D G F Y A M D Y W G Q G T L V T V |
|---|
|---|

TGGTGACGGT TTATTGGGGC CAAGGCACCC AATAACCCCG GTTCCGTGGG ATGCGATGGA TACGCTACCT CTACCGAAAA GATGGCTTTT

S S BlpI TAGCTCAG

ഗ

团 C Д 又 × > 띠 Ø Ŋ Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø > Q L MfeI 口

CTICACGITA ACCAAGICIC GCCGCGCCTI CACTITITIG GCCCGCTIIC CGGGCGAAAG CGGCGCGGAA GTGAAAAAAC GAAGTGCAAT TGGTTCAGAG

 \succ ഗ H ſτι ഗ × BSPEI G ഗ G 又 C S Н × Н

3

TICCTITACG AGCIATIGGA CAAGGCCTAT AAGGAAATGC TCGATAACCT GTTCCGGATA TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

G Σ 3 ~~~~~ L E XhoI G × G ~~~~~~~~~~~~ Д BstXI Σ O ĸ > 3 G

H

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG CCTGGGAAGG GGACCCTTCC CGCGGTCTAC GCGCCAGATG TTGGCTGGGT AACCGACCCA

Ø TTCAGGGCCA ATGGGCAATA AGAGGCTCGA AAGTCCCGGT ტ ഥ TCTCCGAGCT ഗ Д TACCCGTTAT Н TAAATAGGCC CGCTATCGCT ATTTATCCGG GCGATAGCGA Ω ഗ Ω ŋ Д

Н

3

Figure 5F: V heavy chain 5 (VH5) gene sequence (continued)

Ø П Ø Е S ഗ X Ω Ø ഗ V T BstEII

~~~~~~

CTTCAATGGA GAAGTTACCT TCGCGCCTAT TTTCGTAATC GTGGCGCATA AGCGCGGATA AAAGCATTAG CACCGCGTAT GGTGACCATT CCACTGGTAA

G 3 K BSSHII Ø ပ  $\succ$ Σ Ø ⊱ Ω ഗ Þ  $\times$ 口 ഗ

S

TAATAACGCG CGCAACCCCG GCAGCCTGAA AGCGAGCGAT ACGGCCATGT ATTATTGCGC GCGTTGGGGC CGTCGGACTT TCGCTCGCTA TGCCGGTACA

⊱ Ц H ᠐ StyI Ø G 3  $\succ$ Ω Σ K  $\succ$ لتا G G

~~~~~

CCCTGGTGAC GGGACCACTG GGCCAAGGCA CCGGTTCCGT CCTAATAACC GGCGATGGCT TTTATGCGAT GGATTATTGG CCGCTACCGA AAATACGCTA

V S S BlpI

GGTTAGCTCA G CCAATCGAGT C

Figure 5G: V heavy chain 6 (VH6) gene sequence

Ħ O ഗ Д X > Ц G Д ᠐ ഗ Ø Ø ~~~~~~ Н MfeI > Ø

CAGGTGCAAT TGCAACAGTC TGGTCCGGGC CTGGTGAAAC CGAGCCAAAC GCTCGGTTTG GACCACTTTG GICCACGITA ACGITGICAG ACCAGGCCCG

ഗ Z ഗ ഗ > ഗ BSPEI ~~~~~ G ഗ Н Ø Ö . ⊱⊣ П ഗ Д

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC AAAGGCCTCT ATCGCACTCG TTTCCGGAGA TGGACACGCT ACCTGTGCGA GGACTCGGAC CCTGAGCCTG

Н 3 团 XhoI G ĸ G Д BstXI ഗ Ø ĸ 3 \mathbf{Z} 3 Ø Ą

GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC GTCAGAGGAC CAGTCTCCTG CTGGATTCGC GACCTAAGCG CGGCGTGGAA GCCCCACCTT

> AACGATTATG CGGTGAGCGT TIGCTAATAC GCCACTCGCA ഗ > H Ω CAAATGGTAT GTTTACCATA **>**-3 × GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC ഗ ĸ \succ T

S L Ø Z × ~~~~~ NspV ഗ Е Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) Д Z ~~~~~~~~~ BsaBI 公 ഗ ×

CAGTTTAGCC GTCAAATCGG CTTTTCGGCC TAATGGTAGT TGGGCCTATG AAGCTTTTTG TTCGAAAAAC GAAAAGCCGG ATTACCATCA ACCCGGATAC

BSSHII × × > EagI Ø Н Ω ᄓ Д Н > ഗ Z 口 Ö

Ы

CGGCCGTGTA TTATTGCGCG ACGITGACIT GICGCACIGG GGCCIICIAI GCCGGCACAI AAIAACGCGC TGCAACTGAA CAGCGTGACC CCGGAAGATA

~~~~~ Q ( StyI G Z  $\succ$ Ω Σ Ø  $\succ$ Ŀı G Ω . ෆ ပ BSSHII

⊱

 O

~~~~

~ ~ ~ ~ ~ ~

GCCAAGGCAC

GATTATTGGG

CTAATAACCC CGGTTCCGTG

CGCTACCGAA AATACGCTAC

GCAACCCCGC

CGTTGGGGCG GCGATGGCTT TTATGCGATG

s s BlpI ഗ E > Ц

~~~~~

GTTAGCTCAG CAATCGAGTC CCTGGTGACG GGACCACTGC

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **04K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **04K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAACTATCTGGCGTGGTACCAG -3'
- **04K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **04K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- O1L3 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'

- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- O2L2 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- O2L3 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **02L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- O3L1 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH2 5 '- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3 '

Figure 6: (continued)

- O1AH3 5 ' GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3 '
- O1AH4 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGCATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCC TGCG 3 '
- O1ABH6 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- O1BH2 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- O1BH3 5'- GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAG GGTC -3'
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- O2H3 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGC CTGGGAAAG -3'
- O2H4 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGG CGGCTGG -3'

Figure 6: (continued)

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT
- O2H6 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCCCAGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- O3H5 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- O3H6 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- O4H2 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **04H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTTG -3'
- O4H6 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

Figure 6: (continued)

**O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'

- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGC
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTT
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG-3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK15'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3'
  SUBSTITUTE SHEET (RULE 26)
  41/204

Figure 6: (continued)

- OCLK2 5'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGGTGCCTGCTG -3'
- OCLK4 5' CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- OCLK6 5' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3'
- OCLK7 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

Q 口 Δ S ρι Д ᄺ Н ہتا > S Д K Ø

BsiWI

CGCTACTIGT TTTCCGCCGA GCGATGAACA AAAGGCGGCT CGTGTTTATT GCACAAATAA GACGAGGCTC CTGCTCCGAG GCATGCCACC CGTACGGTGG

TTGAAAATAG AACTTTTATC Z CCGTGCCGCT CGCACCACAC GGACGACTTG GGCACGGCGA GCGTGTGTG CCTGCTGAAC Z I I \ \ \ \ \ ഗ T ACTGAAAAGC TGACTTTTCG P R E A K V Q W K V D N A L Q S G CGCGTGAAGC GAAAGTTCAG TGGAAAGTAG ACAACGCGCT GCAAAGCGGC ACCTITCATC TGTTGCGCGA CGTTTCGCCG GCGCACTTCG CTTTCAAGTC

GCACCTATTC TCGTTTCTAT CGTGGATAAG ഗ AGCAAAGATA X U CGAACAGGAT TIGICGGICC TITCGCACIG GCTIGICCIA Ø 回 AACAGCCAGG AAAGCGTGAC Н s S ഠ Ø ഗ

TTTGTATTTC AAACATAAAG 田 CCTAATACTT GGATTATGAA Ω. TGAGCAAAGC TGGGACTGGG ACTCGTTTCG K A ល ACCCTGACCC ⊱ H TCTGAGCAGC AGACTCGTCG ഗ

Figure 7A: sequence of the synthetic Ck gene segment (continued)

GTAGTTCCAG ACTCGTCGGG TGAGCAGCCC H Q G I CATCAAGGTC GCTTCACTGG E V T CGAAGTGACC ACATACGCAC

S F N R G E A \* SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 78: sequence of the synthetic CH1 gene segment

ഗ ഗ ш Ø Ы Д لتا > S Д G × Е A

BlpI Sall

CGAGTCGCAG CTGGTTTCCA GGTTCGCACA AAGGCGACCG AGGCTCGTCG TICCGCIGGC ICCGAGCAGC CCAAGCGTGT GCTCAGCGTC GACCAAAGGT

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT X > GCL TTTTCGTGGT CGCCGCGTG CCGACGGGAC AAAAGCACCA GCGGCGCAC GGCTGCCCTG A A L SGGT S

GACTGGTCGC CTGACCAGCG L CCAGTCACCG TGAGCTGGAA CAGCGGGGCG GGTCAGTGGC ACTCGACCTT GTCGCCCCGC S G N M S P V T V AAAGGGCCTT TTTCCCGGAA 口

CACGACGITT CGTCGCCGGA CATATCGGAC GTATAGCCTG GIGCIGCAAA GCAGCGGCCI SGL ഗ O I V GCGTGCATAC CTTTCCGGCG CGCACGTATG GAAAGGCCGC ρι V H T G

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA O H ഗ CTCGTCGTCG GAGCAGCAGC ഗ ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG T V > S

Figure 78; sequence of the synthetic CH1 gene segment (continued)

TIGGIATITG GCICGITGIG GITTCACCIA TITTITACCC AAAAAAGTGG N H K P S N T K V D AACCATAAAC CGAGCAACAC CAAAGTGGAT AACGTTGCAC TTGCAACGTG z

E P K S E F \* EcoRI HindIII

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

~ ~ ~ ~ ~

Figure 7C: functional map and sequence of module 24 comprising the synthetic CX gene segment (huCL lambda)



Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

| CCCCGCCTGT<br>GGGGCGGACA                                             | Dralll<br>~~~<br>AAAGCCGCAC<br>TTTCGGCGTG                                    | GGCGAACAAA                                                           | CCGTGACAGT<br>GGCACTGTCA | GAGACCACCA                                     |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|------------------------------------------------|
| CATTATACCA<br>GTAATATGGT                                             | MscI<br>~~~~~~<br>TGGCCAGCCG<br>ACCGGTCGGC                                   | GCTGTTTCCG CCGAGCAGCG AAGAATTGCA<br>CGACAAAGGC GGCTCGTCGC TTCTTAACGT | TATCCGGGAG<br>ATAGGCCCTC | GCCCCGTCAA GGCGGGAGTG<br>CGGGGCAGTT CCGCCCTCAC |
| TTGCCAGCAG                                                           | Hpal<br>~~~~~~<br>GT TAACCGTTCT<br>CA ATTGGCAAGA                             | CCGAGCAGCG                                                           | TAGCGACTTT<br>ATCGCTGAAA |                                                |
| CGGATTATTA TIGCCAGCAG CATTATACCA<br>GCCTAATAAT AACGGTCGTC GTAATATGGT | HpaI<br>~~~~~~<br>GGCACGAAGT TAACCGTTCT<br>CCGTGCTTCA ATTGGCAAGA             |                                                                      | TGTGCCTGAT<br>ACACGGACTA | GCAGATAGCA                                     |
| CTTCTGCTTC                                                           | HpaI<br>CATTGGCGGC GGCACGAAGT TAACCGTTCT<br>CAAACCGCCG CCGTGCTTCA ATTGGCAAGA | Dralll<br>ccagrereac<br>ccrcacacre                                   | GCGACCCTGG               | GGCCTGGAAG                                     |
| Н                                                                    | 51                                                                           | 101                                                                  | 151                      | 201                                            |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

| ECCAGCAG AACAAGTACG CGGCCAGCAG CTATCTGAGC | GATAGACTCG | GAGGTT TGTTTCGTTG TTGTTCATGC GCCCCTCCTC |
|-------------------------------------------|------------|-----------------------------------------|
| CGGCCAGCAG                                |            |                                         |
| AACAAGTACG                                |            |                                         |
| ACABAGGAAC                                |            | TGTTTCG1"1'G                            |
|                                           |            | GTGGGAGGTT                              |
|                                           | 251        |                                         |

CTGACGCCTG AGCAGTGGAA GTCCCACAGA AGCTACAGCT GCCAGGTCAC TCGATGTCGA CGGTCCAGTG GACTGCGGAC TCGTCACCTT CAGGGTGTCT 301

RleAI

CGTACTCCCC TCGTGGCACC TTTTTTGGCA ACGCGGCTGA CTCCGGACTA GCATGAGGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT GAGGCCTGAT ~~~~~ 351

StuI

SphI ~~~~~ 401 AAGCATGC TTCGTACG

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTATATACCACCCCGCCTGTGTTTGGCGGCG-

GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTATCCGGGAGCCGTGACA

M24-D: 16TTTGGAGGGTGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

**GCCACTGTCACGGCTCCCGG** 

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

50 / 204

Д H Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 Sapi Н Ø ᆸ Ø S O<sub>i</sub> ×

CGTGATAACG TGACCGTGAG AATGGCAACG AGAAGTGGGG TTACCGTTGC TCTTCACCCC GCACTATIGC ACTGGCACIC ATGAAACAAA TACTTTGTTT

C ß 回 > 111111 Q L MfeI > 团 Ω × × Ω Ø × 딘 >

CTTTCGCCGC GCAATTGGTG GAAAGCGGCG ഗ Ø Ø CGTTAACCAC TTCTACTTCA GCCGACTACA AAGATGAAGT CGGCTGATGT ACAATGGTTT TGTTACCAAA

LVQPGSLRLSC

BSPEI

CGCCGGACCA CGTTGGCCCG CCGTCGGACG CAGACTCGAC GCGCCGGAGG GCGGCCTGGT GCAACCGGGC GGCAGCCTGC GTCTGAGCTG CGCGGCCTCC

BstXI Ø Ø ĸ > 3 ഗ Σ Ø × ഗ ഗ ы Н BspEI щ

U

GGATITACCI TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG

CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC

G

G

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) ഗ C S Ø S > U

CCGTCGTGGA GGCAGCACCT CGCGCTAATC GCCATCGCCG GCGCGATTAG CGGTAGCGGC GAAGGGTCTC GAGTGGGTGA CTCACCCACT . . . . . . . XhoI CTTCCCAGAG

NspV 1111 z Д ~~~~~ PmlI ഗ H لترا  $\alpha$ U X > ഗ Ω Ø ×

×

GGTAAAGTGC ACTATTAAGC CCATITCACG IGATAATICG CCGGCAAAAT GGCCGTTTTA TAATACGCCT ATCGCACTTT ATTATGCGGA TAGCGTGAAA

回 Ø ĸ Н S Z Σ O Н × Н Н Z NspV

EagI

ဌ

Ω

111

CIGCGIGCGG AAGAIACGGC TTCTATGCCG GACGCACGCC AAAAACACCC TGTATCTGCA AATGAACAGC TTACTTGTCG ACATAGACGT TTTTTGTGGG

Ω Σ K ⋈ ſτι U Ω G U 3 K Ø  $\succ$ 

BSSHII

EagI

GCGATGGATT TGCGCGCGTT GGGGGGGGA TGGCTTTTAT CGTGTATTAT

CAACGGCTAT GTTGCCGATA

CTGCAGAAGC AGCCAAAGCC TGCTGCATAG

TCGGTTTCGG ACGACGTATC

GACGTCTTCG

CGAGCATTAG GCTCGTAATC

PstI

CCGCTCGGAC GGCGAGCCTG ECORV GTTCCGATAT CAAGGCTATA Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GCTCAGCGGG TGGCGGTTCT CGAGTCGCCC ACCGCCAAGA 1111 GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAAATA CGCTACCTAA Д Ω G 回 ഗ Z U Ü CAGAGCCCAC TGAGCCTGCC AGTGACTCCG GICTCGGGTG ACTCGGACGG TCACTGAGGC GGAGCGGTGG CGGTGGTTCT GGCGGTGGTG CCTCGCCACC GCCACCAAGA CCGCCACCAC S Д r 田 Н G Н S BlpI > C П ഗ щ ATTGGGGCCA AGGCACCCTG GTGACGGTTA CACTGCCAAT S ഗ V T V Н O G വ U ഗ Н TAACCCCGGT TCCGTGGGAC U S щ BanII U လ 又 ပ ഗ ტ Ø Styl GCACTACTGG G CGTGATGACC CCGCCGCCAC GGCGCCGGTG വ Н G Н U Σ ECORV Ċ > ഗ Ċ Ø

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) AseI CGCAGCTATT GGTCAAAGCC S Ø U SexAI Oi KpnI Ω Z

GCGTCGATAA CCAGTTTCGG TAACCATGGA AGTTTTTGGT ATTGGTACCT TCAAAAACCA AACTATCTGG TTGATAGACC

S ſΞ K . Д Д Eco01091 U ഗ Ø K Z ഗ G Ц  $\bowtie$ Asel Н

CGTTTTAGCG GCAAAATCGC GGCAGCAACC GIGCCAGIGG GGICCCGGAI CACGGTCACC CCAGGGCCTA CCGTCGTTGG TTAAATAGAC AATTTATCTG

团 吆 ഗ × Н H ſτι Ω H O BamHI ഗ ტ S G

d

TTTAATCGGC ACACCTTCGA TTTACCCTGA AAATTAGCCG TGTGGAAGCT AAATGGGACT CGAGACCTAG GCCGTGGCTA GCTCTGGATC CGGCACCGAT

Н Д Д H H × 田 Ø O<sup>i</sup> U > Ċ > Ω BbsI

GGGGGGGCTG CCCGCCGAC GTAATATGGT CATTATACCA TTGCCAGCAG AACGGTCGTC GCGTGTATTA CGCACATAAT GAAGACGTGG CTTCTGCACC

111111

|  |  | in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |  |
|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

|                           | Frequency   |  |  |  |  |  |
|---------------------------|-------------|--|--|--|--|--|
|                           | 103         |  |  |  |  |  |
|                           | 102         |  |  |  |  |  |
|                           | 101<br>100E |  |  |  |  |  |
|                           |             |  |  |  |  |  |
|                           | 0001        |  |  |  |  |  |
|                           | J001        |  |  |  |  |  |
|                           | 1008        |  |  |  |  |  |
|                           | A001        |  |  |  |  |  |
|                           | 100         |  |  |  |  |  |
|                           | 66          |  |  |  |  |  |
|                           | 86          |  |  |  |  |  |
| ٥                         | <b>Z</b> 6  |  |  |  |  |  |
| nalysis of BSA binders    | 96          |  |  |  |  |  |
| BSA                       | <b>9</b> 6  |  |  |  |  |  |
| ysis of                   | <b>7</b> 6  |  |  |  |  |  |
| e anal                    | 83<br>76    |  |  |  |  |  |
| guenc                     | <b>Z</b> 6  |  |  |  |  |  |
| Figure 24: Sequence analy |             |  |  |  |  |  |

| 4 .      | 4         | 7            | <del>,</del> | <del>-</del> | 7        | <del>-</del>   | 13           | ക.            | <del>,</del> | <del></del>   | <del>-</del> |   |
|----------|-----------|--------------|--------------|--------------|----------|----------------|--------------|---------------|--------------|---------------|--------------|---|
| ≥ :      | >         | ≥            | 3            | >            | 3        | ≥              | 3            | 3             | 3            | 3             | 3            |   |
| > :      | >         | >            | >-           | >            | >        | >-             | >            | >             | >            | >-            | >            |   |
|          | Ω         | Ω            | 0            |              |          | 0              | Ω            |               |              |               | ۵            |   |
| 1 1      | ட         | Σ            | Σ            | ≥            | ≥        | u_             | ட            | Σ             | ட            | 1             | Σ            |   |
| ı        | $\propto$ | a            |              | O            | 0        | $\checkmark$   | $\checkmark$ | 8             | u.           | 1             | _            |   |
| 1        | ı         | ı            | 1            | œ            | 1        | ŧ              | 1            | ı             | i            | 1             | 1            |   |
| i        | œ         | 8            | œ            | œ            | _        | ~              | ~            | ≥             | 8            | 1             | œ            |   |
| i        | >         | S            | _            | م            | _        | >              | œ            |               | ¥            | 1             | œ            |   |
| 1        | ட         | $\checkmark$ | Ø            | 3            | Σ        | 3              | -            | エ             | S            |               | O            |   |
| ш        | S         | · 🗸          | 9            | S            |          | <u>~</u>       | <b>×</b>     | : <b>&gt;</b> | ×            | : ш           | $\checkmark$ |   |
| <b>—</b> |           | S            | · >-         | < <          | : >      | · <del> </del> | · 🗸          | <b>&gt;</b>   | · <b>-</b>   | - ш           | <u> </u>     |   |
| LL.      | للا       | ı u          | ı            | ــــا. ا     | ≥ ب      | : ш            | ı            | , C           | ) ц          | · <b>&gt;</b> | ш            |   |
| 9        | _         | <u> </u>     | <u> </u>     | , <u>т</u>   | . u      | √ د            | ) <b>~</b>   | - ا           | - 🗠          | : -           | . W          | J |
| ட        | ц         | _            | ے ر          | ב ל          | : z      | · >            | <u> </u>     |               | 4 ≥          | <b>&gt;</b>   | - LL-        |   |
| 9        |           | <b>5</b> –   | - u          | 2 د          | <u> </u> | ے د            | d C          | צ ל           | ۷ ۲          | = _           |              | j |
| ~        | . α       | <u> </u>     | < a          | _ α          | 2 م      | < a            | <u> </u>     | <u> </u>      | _ α          | < a           | <u> </u>     | : |
| <        | : <       | ( <          | ζ <          | ( <          | < ح      | ζ <            | < <          | < <           | < <          | < <           | < 4          | : |
|          | ر ر       | ر            | <br>ر        | ر ر          | ر ز      | ر ر            | ر ر          | ر ر           | ر ر          | ر ر           | ے ر          | J |

Figure 24: Sequence analysis of BSA binders

| Frequency  | 2        | <b>,</b>     | _        | _          | _    | <b>~</b>     |
|------------|----------|--------------|----------|------------|------|--------------|
| 103        | ≥        | ≥            | ≷        | ≥          | ≥    | <u>≥</u> ,   |
| 105        | >-       | >            | >        | >-         | >    | >            |
| 101        |          | Ω            | ۵        | ۵          |      | ۵            |
| 300ℓ       | ⋝        | ட            | Σ        | Σ          | Σ    | ட            |
| 100D       | >        | æ            | œ        | O          | >    | u_           |
| J001       | >        | ட            | >        | S          | ≥    | I            |
| 1008       | Q        | >-           | >        | ≥          | Z    | <b>—</b>     |
| A001       |          | Z            | ш        | S          | ٩    | _            |
| 001        | Ø        | >            | Σ        | لسد        | V    | ۵.           |
| <b>6</b> 6 | >        | ≥            | d        | ~          | ≥    | $\checkmark$ |
| 86         | ய        | >            | ய        | >-         | œ    | ட            |
| ۷6         | 9        | <del>-</del> | ب ب      | ш          | S    | Ð            |
| 96         | 0        | u            | . 4      | · <b>×</b> | ے    | 9            |
| 96         |          | >            | · >      | س ،        | · >- | Ω            |
| <b>7</b> 6 | $\alpha$ | : α          | <u> </u> | · œ        | · œ  | <u>~</u>     |
| 63         | ⋖        | < ⊲          | < 4      | ∶ ⋖        | < <  | ∶ ∢          |
| 76         |          | ) C          | ے ر      | ر ر        | ر ر  | ر<br>ر       |

Figure 25: modular pCAL vector system



WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                     |
|-------------------------|-----------------------------------|
| Aatll                   |                                   |
| AfIII                   | Bfrl, BspTl, Bst98l               |
| Ascl                    |                                   |
| Asel                    | Vspl, Asnl, PshBl                 |
| BamHI                   | Bstl                              |
| Bbel                    | Ehel, Kasl, Narl                  |
| Bbsl                    | BpuAl, Bpil                       |
| BgIII                   |                                   |
| Blpl                    | Bpu1102I,CellI, Blpl              |
| BsaBl                   | Maml, Bsh1365l, BsrBRI            |
| BsiWl                   | Pfl23II, SpII, Sunl               |
| BspEl                   | Accill, BseAl, BsiMl, Kpn2l, Mrol |
| BsrGl                   | Bsp1407I, SspBI                   |
| BssHII                  | Paul                              |
| BstEll                  | BstPl, Eco91l, Eco0651            |
| BstXI                   | 1                                 |
| Bsu36l                  | Aocl, Cvnl, Eco81                 |
| Dralll                  |                                   |
| DsmAl                   | D. 171 Folyl FooF21 Ymall         |
| Eagl                    | BstZl, EclXl, Eco52l, Xmalll      |
| Eco571                  | Drall                             |
| Eco01091                | Dian /                            |
| EcoRI                   | Eco32I                            |
| EcoRV                   | LCOSZI                            |
| Fsel                    |                                   |
| HindIII                 | 1                                 |
| Hpal                    | Acc65l, Asp718l                   |
| Kpnl                    | Accosi, Aspirior                  |
| Mlul                    | Ball, MluNl                       |
| Mscl                    | Dan, Milary                       |

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | lsoschizomers                      |
|-------------------------|------------------------------------|
| Munl                    | Mfel                               |
| Nhel                    |                                    |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp1191, BstBl, Csp451, Lspl, Sful |
| Pacl                    | ·                                  |
| Pmel                    |                                    |
| Pmil                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMI                              |
| Pstl                    |                                    |
| Rsrll                   | (Rsril), Cpol, Cspl                |
| SanDI                   |                                    |
| Sapl                    |                                    |
| SexAl                   |                                    |
| Spel                    |                                    |
| Sfil                    |                                    |
| Sphl                    | Bbul, Pael, Nspl                   |
| Stul                    | Aatl, Eco147l                      |
| Styl                    | Eco130l, EcoT14l                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR7I                             |
| Xmal                    | Aval, Smal, Cfr91, PspAl           |

| e26: I      | Figure 26: list of pCAL vector modules | modules                                                                     |                        |                         |                  |                                                                                                                                     |
|-------------|----------------------------------------|-----------------------------------------------------------------------------|------------------------|-------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <del></del> | module/flan-<br>king<br>restriction    | functional element                                                          | sites to be<br>removed | sites to be<br>inserted | template         | reference                                                                                                                           |
| n <         | sites<br>Aatll-lacp/o-<br>Xbal         | lac<br>promotor/operator                                                    | 2x Vspl<br>(Asel)      | Aatll                   | vector<br>pASK30 | Skerra et al. (1991)<br>Bio/Technology 9,<br>273-278                                                                                |
|             | BgIII-lox-<br>Aatii                    | Cre/lox<br>recombination site                                               | 2x Vspl<br>(Asel)      | lox, BgIII              | (synthetic)      | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287-2300                                                                              |
|             | Xbal-lox'-<br>Sphl                     | Cre/lox' recombination site                                                 | none                   | lox', Sphl              | (synthetic)      | see M2                                                                                                                              |
|             | EcoRI-<br>gIIIlong-<br>HindIII         | glllp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon | Sphl,<br>BamHl         | none                    | vector<br>plG10  | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229–266 |
|             |                                        |                                                                             |                        |                         |                  |                                                                                                                                     |

SUBSTITUTE SHEET (FIULE 26) 76 / 204

| es         |
|------------|
| $\supset$  |
| module     |
| =          |
| ೭          |
| vector     |
| ۶          |
| ب          |
| ⋖          |
| of pCAL    |
| Ξ          |
| 0          |
|            |
| list       |
|            |
| 9          |
| 2          |
| _ <u>≃</u> |
| gure 26    |
| _          |

| ***                                    | U 97/08320                                                                    |                                                                          |                            | <del></del>    | <del></del>                  | 1                                         | j                                         |
|----------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|----------------|------------------------------|-------------------------------------------|-------------------------------------------|
|                                        | see M7-I                                                                      | see M7-1                                                                 | see M3                     | see M1         | see M1                       | see M1                                    | see M1                                    |
|                                        | vector<br>plG10                                                               | vector<br>plG10                                                          | (synthetic)                | (synthetic)    | pASK30                       | pASK30                                    | pASK30                                    |
|                                        |                                                                               |                                                                          | vol                        | Pacl, Fsel     | Pacl, Fsel,<br>BsrGl         | BsrGI, Nhel                               | BsrGl, Nhel                               |
|                                        | Sphl                                                                          | Sphl, Bbsl                                                               | none                       | none           | Vspl,<br>Eco571,<br>BssSl    | Dralll<br>(Banll not<br>removed)          | Dralll,<br>Banll                          |
| nodules                                | truncated glllp of<br>filamentous phage<br>with N-terminal Gly-<br>Ser linker | truncated gillp of filamentous phage with N-terminal myctail/amber codon | Cre/lox recombination site | lpp-terminator | beta-lactamase/bla<br>(ampR) | origin of single-<br>stranded replication | origin of single-<br>stranded replication |
| Figure 26: list of pCAL vector modules | EcoRI-gIIIss-<br>HindIII                                                      | M7-III EcoRI-gillss-<br>Hindill                                          | Sphl-lox-<br>HindIII       | 1              | Pac                          | BsrGI-f1 ori-<br>Nhel                     | BsrGI-f1 ori-<br>Nhel                     |
| Figure 26                              | M7-11                                                                         | M7-III                                                                   | M8                         | M9-II          | M10-                         | M11-                                      | M11-                                      |

| S            |
|--------------|
| ᆿ            |
| ₹            |
| mpom         |
| ĭ            |
| _            |
| -            |
| vecto        |
| 7            |
| ŭ            |
| >            |
|              |
| 7            |
| 7            |
| PCAL,        |
|              |
| 5            |
|              |
| ↹            |
| <u>is</u>    |
|              |
| 9            |
| 7            |
| ىە           |
| Figure 26: 1 |
| ≓            |
| .≃           |
| ŭ.           |
|              |

| WO 97/0832                                         | U                             |                                                |                                                                             |                                  |                                                             |
|----------------------------------------------------|-------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
| Rose, R.E. (1988)<br>Nucleic Acids Res.<br>16, 355 | see M3                        | Yanisch-Peron, C.<br>(1985) Gene<br>33,103–119 | Cardoso, M. &<br>Schwarz,S. (1992)<br>J. Appl.<br>Bacteriol.72, 289-<br>293 | see M1                           | Knappik, A & Plückthun, A. (1994) BioTechniques 17, 754-761 |
| pACYC184                                           | (synthetic)                   | pUC19                                          | pACYC184                                                                    | (synthetic)                      | (synthetic)                                                 |
| Nhel, Bgill pACYC184                               | BgIII, lox,<br>Xmnl           | BgIII, Nhel                                    |                                                                             |                                  |                                                             |
| BssSI, VspI,<br>NspV                               | none                          | Eco571<br>(BssS1 not<br>removed)               | BspEI, MscI,<br>Styl/Ncol                                                   | (synthetic)                      | (synthetic)                                                 |
| origin of double-<br>stranded replication          | Cre/lox<br>recombination site | origin of double-<br>stranded replication      | chloramphenicol-<br>acetyltransferase/<br>cat (camR)                        | signal sequence of phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag |
| M12 Nhel-p15A-<br>BgIII                            | BgIII-lox-<br>BgIII           | BgIII-ColEI-<br>Nhel                           | Aatil-cat-<br>Bgill                                                         | Xbal-phoA-<br>EcoRl              | Xbal-phoA-<br>FLAG-EcoRl                                    |
| M12                                                | M13                           | M14-<br>Ext2                                   | M17                                                                         | M19                              | M20                                                         |

| S      |
|--------|
| 킂      |
| mode   |
|        |
| vector |
| ۶      |
| pCAL   |
|        |
| 0      |
| list   |
| e26:   |
| ٠.     |

| V                                      | VO 97/08320                                                  |                                                                  |                                                                               |
|----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| (1000)                                 | Lee et al. (1963)<br>Infect. Immunol.<br>264-268             | see M1                                                           | Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-56 |
|                                        | (synthetic)                                                  | pASK30                                                           | (synthetic)                                                                   |
|                                        |                                                              |                                                                  |                                                                               |
|                                        | (synthetic)                                                  | BstXI,<br>Mlul,BbsI,<br>Banll,<br>BstEII,<br>HpaI, BbeI,<br>Vspl | (synthetic)                                                                   |
| liodaics                               | heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | lac-repressor                                                    | poly-histidine tail                                                           |
| Figure 26: list of pual vector modules | Xbal-stll-                                                   | Afill-laci-<br>Nhel                                              | EcoRI-Histail-<br>HindIII                                                     |
| Figure 26                              | M21                                                          | M41                                                              | M42                                                                           |

Figure 27: functional map and sequence of MCS module



SUBSTITUTE SHEET (RULE 26) 80 / 204

Figure 27: functional map and sequence of MCS module (continued)

| ישלוי בי | וואחור ביי ומווריוסוותו ווואל ביים ברא- |                                                                     | 1                                       |                                                          | 1                                       |
|----------|-----------------------------------------|---------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------|
|          | HindIII                                 | II                                                                  | PacI                                    |                                                          | BsrGI                                   |
|          | ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | 2                                                                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                          | ~~~~~                                   |
| Н        | ACATGTAAGC<br>TGTACATTCG                | ACATGTAAGC TTCCCCCCC CCTTAATTAA<br>TGTACATTCG AAGGGGGGGG GGAATTAATT |                                         | CCCCCCCCC TGTACACCCC GGGGGGGGG ACATGTGGGGG               | TGTACACCCC<br>ACATGTGGGG                |
|          | NheI                                    |                                                                     | Bglii                                   | Aa                                                       | Aatii Xbai                              |
|          | 1 1 1 1                                 | 2 2                                                                 | ~ ~ ~ ~ ~ ~                             | 2 2                                                      | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ |
| 51       | CCCCCGCTA                               | ၁၁၁၁၁၁၁၁၁                                                           | CCAGATCTCC                              | CCCCCGCTA GCCCCCCC CCAGATCTCC CCCCCCGA CGTCCCCCT         | CGTCCCCCT                               |
|          | GGGGGGCGAT                              | 555555555                                                           | GGTCTAGAGG                              | gggggggggat cggggggggg ggtctagagg gggggggggctt gcaggggga | GCAGGGGGA                               |
|          | X F & T                                 | Sphi                                                                |                                         | EcoRI AatII                                              | II:                                     |
|          | *                                       | ~~~~~                                                               |                                         | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                  | ~ ~ .                                   |
| 101      | CTAGACCCCC                              | CTAGACCCCC CCCCGCATG CCCCCCCCC                                      | ccccccccc                               | CGAATTCGAC GTC                                           | GTC                                     |
| !<br>•   | GATCTGGGGG                              | GGGGCGTAC                                                           | 9999999999                              | GATCTGGGGG GGGGGGGGGGGGGG GCTTAAGCTG CAG                 | CAG                                     |

WO 97/08320 PCT/EP96/03647

Figure 28: functional map and sequence of pMCS cloning vector



TTGTTTTTT CTTGGGGATA AACAAATAAA GAACCCCTAT CAGGTGCCAC TTTTCGGGGA AATGTGCGCG GTCCACCGTG AAAAGCCCCT TTACACGCGC Figure 28: functional map and sequence of pMCS cloning vector (continued)

TTGGGACTAT AACCCTGATA CATAGGCGAG TACTCTGTTA ATGAGACAAT GTATCCGCTC TAAGTTTATA TTCTAAATAC ATTCAAATAT AAGATTTATG 51

ATTATAACTT TTTCCTTCTC ATACTCATAA GTTGTAAAGG TATGAGTATT CAACATTTCC TAATATTGAA AAAGGAAGAG TTACGAAGTT AATGCTTCAA 101

GIGICGCCCT TATTCCCTTT TTTGCGCCAT TTTGCCTTCC TGTTTTTGCT CACAGCGGGA ATAAGGGAAA AAACGCCGTA AAACGGAAGG ACAAAAACGA Eco57I 151

TCAACCCACG BSSSI GCTGAAGATC AGTTGGGTGC CGACTTCTAG GCGACCACTT TCATTTTCTA CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GTGGGTCTTT 201

ATCCTTGAGA TAGGAACTCT CAGCGGTAAG GTCGCCATTC ACGAGTGGGT TACATCGAAC TGGATCTCAA ACCTAGAGTT ATGTAGCTTG TGCTCACCCA BssSI 251

Figure 28: functional map and sequence of pMCS cloning vector (continued)

## XmnI

| 301 | GTTTTCGCCC | CGAAGAACGT               | TTTCCAATGA               | TGAGCACTTT               | TAAAGTTCTG               |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
|     | CAAAAGCGGG | GCTTCTTGCA               | AAAGGTTACT               | ACTCGTGAAA               | ATTTCAAGAC               |
| 351 | CTATGTGGCG | CGGTATTATC               | CCGTATTGAC               | GCCGGGCAAG               | AGCAACTCGG               |
|     | GATACACCGC | GCCATAATAG               | GGCATAACTG               | CGGCCCGTTC               | TCGTTGAGCC               |
| 401 | TCGCCGCATA | CACTATTCTC<br>GTGATAAGAG | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA<br>AGTGGTCAGT |
| 451 | CAGAAAAGCA | TCTTACGGAT               | GGCATGACAG               | TAAGAGAATT               | ATGCAGTGCT               |
|     | GTCTTTTCGT | AGAATGCCTA               | CCGTACTGTC               | ATTCTCTTAA               | TACGTCACGA               |
| 501 | GCCATAACCA | TGAGTGATAA               | CACTGCGGCC               | AACTTACTTC               | TGACAACGAT               |
|     | CGGTATTGGT | ACTCACTATT               | GTGACGCCGG               | TTGAATGAAG               | ACTGTTGCTA               |
| 551 | CGGAGGACCG | AAGGAGCTAA               | CCGCTTTTTT               | GCACAACATG               | GGGGATCATG               |
|     | GCCTCCTGGC | TTCCTCGATT               | GGCGAAAAAA               | CGTGTTGTAC               | CCCCTAGTAC               |
| 601 | TAACTCGCCT | TGATCGTTGG               | GAACCGGAGC               | TGAATGAAGC               | CATACCAAAC               |
|     | ATTGAGCGGA | ACTAGCAACC               | CTTGGCCTCG               | ACTTACTTCG               | GTATGGTTTG               |
| 651 | GACGAGCGTG | ACACCACGAT               | GCCTGTAGCA               | ATGGCAACAA               | CGTTGCGCAA               |

CATTTTAAT GTAAAAATTA

AAATTTTGAA TTTAAAACTT

AAATCTAACT

AGTATATATG

GGTTCAAATG

CCAAGTTTAC

1001

TCATATATAC

TTTAGATTGA

AACTGTCAGA TTGACAGTCT

AAGCATTGGT TTCGTAACCA

GAGTGACTAA

TCTATCCACG

GTCTAGCGAC

CTCACTGATT

CAGATCGCTG AGATAGGTGC

951

GATACCTACT TGCTTTATCT

TCAGTCCGTT

GTGCTGCCC

ATCAATAGAT

CTGCTCGCAC TGTGGTGCTA CGGACATCGT TACCGTTGTT GCAACGCGTT Figure 28: functional map and sequence of pMCS cloning vector (continued)

AseI

| 701 751 751 801 851                                                                                                                            | ACTATTAACT GGC TGATAATTGA CCG ACTGGATGGA GGC TGACCTACCT CCG CCGGCTGGCT GGT GGCCGACCGA CCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GAACTAC<br>SCTTGATG<br>GGATAAA<br>SCCTATTT<br>TTATTGC<br>AAATAACG                                                                                         | TTACTCTAGC AATGAGATCG GTTGCAGGAC CAACGTCCTG TGATAAATCT ACTATTTAGA TGGGGCCAGA | TTCCCGGCAA CAATTAATAG AAGGGCCGTT GTTAATTATC CACTTCTGCG CTCGGCCCTT GTGAAGACGC GAGCCGGGAA GGAGCCGGTG AGCGTGGGTC CCTCGGCCAC TCGCACCCAG TGGTAAGCCC TCCCGTATCG ACCATTCGGG AGGGCATAGC |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGCGAACTAC TTACTCTAGC CCGCTTGATG AATGAGATCG GGCGGATAAA GTTGCAGGAC CCGCCTATTT CAACGTCCTG CCAAATAACG ACTATTTAGA ATTGCAGCAC TAACGTCGTG ACCCCGGTCT | GAACTAC TTACTCTAGC TTCCCGGCAA CTTGATG AATGAGATCG AAGGGCCGTT GGATAAA GTTGCAGGAC CACTTCTGCG AATAAATCT GGAGCCGGTG AAATAACG ACTATTTAGA CCTCGGCCAC ACGCCCAGA TGGTAAGCCC ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCGGTCT ACGTCGTG ACCCCCGGTCT ACGTCGTG ACCCCCGGTCT ACGTCGTG ACCCCCGGTCT ACGTCGTG ACCCCCGGTCT ACGTCGTG ACCCCCGGTCT ACGTCGTG ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCCGGTCT ACCCCCGGTCT ACCCCCGGTCT ACCCCCCGGTCT ACCCCCCGGTCT ACCCCCCGGTCT ACCCCCCGGTCT ACCCCCCCGGTCT ACCCCCCGGTCT ACCCCCCCGGTCT ACCCCCCCCGGTCT ACCCCCCCCCC | TTACTCTAGC TTCCCGGCAA AATGAGATCG AAGGGCCGTT GTTGCAGGAC CACTTCTGCG CAACGTCCTG GTGAAGACGC ACTATTTAGA CCTCGGCCAC TGGGGCCAGA TGGTAAGCCC ACCCCGGTCT ACCATTCGGG | TTCCCGGCAA AAGGGCCGTT CACTTCTGCG GTGAAGACGC CCTCGGCCAC TGGTAAGCCC            |                                                                                                                                                                                 |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

|                          |                          |                          |                          |                                        |                  |                          | •                        |
|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------|------------------|--------------------------|--------------------------|
| GACCAAAATC<br>CTGGTTTTAG | TAGAAAAGAT<br>ATCTTTTCTA | TGCTGCTTGC<br>ACGACGAACG | GGATCAAGAG<br>CCTAGTTCTC | CGCAGATACC<br>GCGTCTATGG               |                  | TTCAAGAACT<br>AAGTTCTTGA | ACCAGTGGCT<br>TGGTCACCGA |
| ATAATCTCAT<br>TATTAGAGTA | TCAGACCCCG<br>AGTCTGGGGC | GCGCGTAATC<br>CGCGCATTAG | TTTGTTTGCC<br>AAACAAACGG | C TTCAGCAGAG<br>G AAGTCGTCTC<br>Eco57I | ?<br>?<br>?<br>? | AGGCCACCAC<br>TCCGGTGGTG | TAATCCTGTT<br>ATTAGGACAA |
| ATCCTTTTTG<br>TAGGAAAAAC | CCACTGAGCG               | CTTTTTTCT<br>GAAAAAAAGA  | CCAGCGGTGG               | GGTAACTGGC<br>CCATTGACCG<br>Ec         | ì                | AGCCGTAGTT<br>TCGGCATCAA | CTCGCTCTGC<br>GAGCGAGACG |
| CTAGGTGAAG<br>GATCCACTTC | AGTTTTCGTT<br>TCAAAAGCAA | TCTTGAGATC<br>AGAACTCTAG | ACCACCGCTA<br>TGGTGGCGAT | TTTTTCCGAA<br>AAAAAGGCTT               |                  | CTTCTAGTGT<br>GAAGATCACA | GCCTACATAC<br>CGGATGTATG |
| TTAAAAGGAT<br>AATTTTCCTA | CCTTAACGTG<br>GGAATTGCAC | CAAAGGATCT<br>GTTTCCTAGA | AAACAAAAA<br>TTTGTTTTT   | CTACCAACTC<br>GATGGTTGAG               | 1                | AAATACTGTC<br>TTTATGACAG | CTGTAGCACC<br>GACATCGTGG |
| 1051                     | 1101                     | 1151                     | 1201                     | 1251                                   |                  | 1301                     | 1351                     |

ire 28: functional map and sequence of pMCS cloning vector (continued)

| \TA<br>FAT                                                                                                                                  | CAC                      | CGT                      | GTA                      | CAG                               | TGA                      | GAA                      | CTT        |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------|--------------------------|------------|
| CAAGACGATA<br>GTTCTGCTAT                                                                                                                    | TCGTGCACAC<br>AGCACGTGTG | CCTACAGCGT<br>GGATGTCGCA | CGGACAGGTA<br>GCCTGTCCAT | GAGCTTCCAG<br>CTCGAAGGTC          | CCACCTCTGA               | GCCTATGGAA<br>CGGATACCTT | TGCTGGCCTT |
| GGGTTGGACT<br>CCCAACCTGA                                                                                                                    | AACGGGGGGT<br>TTGCCCCCCA | AACTGAGATA<br>TTGACTCTAT | GGGAGAAAGG<br>CCCTCTTTCC | GCGCACGAGG<br>CGCGTGCTCC<br>BSSSI | TCGGGTTTCG<br>AGCCCAAAGC | GGGGGCGGA                | CCTGGCCTTT |
| TTACC                                                                                                                                       | GGTCGGGCTG               | ACCTACACCG<br>TGGATGTGGC | GCTTCCCGAA               | GAACAGGAGA<br>CTTGTCCTCT          | TATAGTCCTG               | ATGCTCGTCA<br>TACGAGCAGT | TTTTACGGTT |
| GCGATAAGTC CGCTATTCAG                                                                                                                       | AAGGCGCAGC<br>TTCCGCGTCG | GGAGCGAACG               | AAAGCGCCAC<br>TTTCGCGGTG | GGCAGGGTCG<br>CCGTCCCAGC          | CTGGTATCTT<br>GACCATAGAA | GATTTTTGTG<br>CTAAAAACAC | AACGCGGCCT |
| Figure 28: functional map and sequence of places clothing sector (Commissed)  1401 GCTGCCAGTG GCGATAAGTC GTGTC  CGACGGTCAC CGCTATTCAG CACAC | GTTACCGGAT               | AGCCCAGCTT<br>TCGGGTCGAA | GAGCTATGAG               | TCCGGTAAGC<br>AGGCCATTCG          | GGGGAAACGC<br>CCCCTTTGCG | CTTGAGCGTC<br>GAACTCGCAG | AAACGCCAGC |
| Figure 28: fun<br>1401                                                                                                                      | 1451                     | 1501                     | 1551                     | 1601                              | 1651                     | 1701                     | 1751       |
|                                                                                                                                             |                          |                          | SHEST                    | TITTE SHEET (RUL                  | E 26)                    |                          |            |

TTTGCGGTCG TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA Figure 28: functional map and sequence of pMCS cloning vector (continued)

| BsrGI<br>~~~~<br>CCCCCTGTA<br>GGGGGACAT      | Aatii<br>CCCCGACGTC<br>GGGGCTGCAG                                               | RI<br>TTCACGT<br>AAGTGCA                                       |
|----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| PacI<br>                                     | Bglii Aatii CCCCCCCCAG ATCTCCCCCC CCCCGACGTC GGGGGGGGTC TAGAGGGGGG GGGGCTGCAG   | ECORI<br>CCCCCCGAA TTCACGT<br>GGGGGGCTT AAGTGCA                |
| HindIII                                      | Bglii Aatii CCCCCCCCCCAG ATCTCCCCCC CCCCGACGTC GGGGGGGGTC TAGAGGGGGG GGGGCTGCAG | xbal Sphl cccccccc ccareccc GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG |
| HindIII<br>~~~~~<br>GTAAGCTTCC<br>CATTCGAAGG | Nhel<br>~~~~~~<br>ccgcTAGCCC<br>GGCGATCGGG                                      | ACCCCCCCCC                                                     |
| TTGCTCACAT                                   | BsrGI<br>~~<br>CACCCCCCC<br>GTGGGGGGGG                                          | XbaI<br>CCCCCTCTAG A<br>GGGGAGATC I                            |
| 1801                                         | 1851                                                                            | 0 6 T                                                          |
|                                              | SUBSTIT                                                                         | UTE SHEET (RULE 20                                             |

Figure 29: functional map and sequence of pCAL module M1



SUBSTITUTE SHEET (RULE 28)

Figure 29: functional map and sequence of pCAL module M1

AatII

CCGAAATGTG GGCTTTACAC CTCACTCATT AGGCACCCCA TCCGTGGGGT GAGTGAGTAA CTGCAGAATT ACACTCAATC TGTGAGTTAG GACGTCTTAA

XbaI

GATAACAATT

CTATTGTTAA CGGCTCGTAT GTTGTGGGA ATTGTGAGCG CAACACACT TAACACTCGC AAATACGAAG GCCGAGCATA TTTATGCTTC 51

~~~~~

AGTGTGTCCT TTGTCGATAC TGGTACTAAT GCTTAAAGAT CT GA TCACACAGGA AACAGCTATG ACCATGATTA CGAATTTCTA

SUBSTITUTE SMEET (RULE 26)

101

Figure 30: functional map and sequence of pCAL module M7-II (continued)

| ! | AT CTCTGAGGAG GATCTGTAGG GTGGTGGCTC | CACCACCAC |
|-------|-------------------------------------|--------------------|
| | GATCTGTAGG | CTAGACATOO |
| | rctgagga(| AGACTCCT |
| | AGAAGCTGAT | SCTCG TCTTCGACTA G |
| EcoRI | CANAUTICAGE AGAAGETGAT C | CTTAAGCTCG |
| | ٢ | -1 |

| TGGTTCCGGT GATTTTGATT ATGAAAGAT GGCAAACGCT AATAAGGGGG
ACCAAGGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA TTATTCCCCC | CGCTAAAGGC |
|---|----------------------------------|
| T GGCAAACGCT A
A CCGTTTGCGA I | CAST CAST CASASCECC TACAGTCTGA C |
| ATGAAAAGAT
TACTTTTCTA | GAAAACGCGC |
| TGGTTCCGGT GATTTTGATT ATGAAAGAT GACCAAGGCCA CTAAAACTAA TACTTTTCTA C | |
| TGGTTCCGGT
ACCAAGGCCA | |
| 51 | |

| CCGA AAATGCCGAT GAAAACGCG ATGTCAGACT GCGATTTCCG | AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG ATGGTTTCAT
TTTGAACTAA GACAGCGATG ACTAATGCCA CGACGATAGC TACCAAAGTA |
|---|--|
| ATGTCAGACT | GCTGCTATCG
CGACGATAGC |
| TATGACCGA AAATGCCGAT GAAAACCCCC | TGATTACGGT
ACTAATGCCA |
| AAATGCCGAT
TTTACGGCTA | CTGTCGCTAC
GACAGCGATG |
| CTATGACCGA
GATACTGGCT | AAACTTGATT
TTTGAACTAA |
| 101 | 151 |

XmnI

TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA TTAGCCAACT AATTACTTAT TAAAGGCAGT TATAAATGGA AGGGAGGGAG 301

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

| SAAAATATA | ACTGCGTAA | T.G.A.C.G.C.A.L. |
|--|--|--|
| TACASCOCIA TOTA TOTA TOTA TOTAL TOTA | TAACACTGTT TTATTTGAAT AAGGCTGACG TTTGCTAACA TACTGCGTAA | CACCT TTATGTATGT ALLITCTIC AAACGATTGT ALGACGCALT |
| TTCCGTGGTG | AAGGCTTC TO TO TO TO TO TO TO TO TO TO TO TO TO | TAAAAGATGC |
| AATAAACTTA | TTATTTGAAT | TTATGTATG'I
AATACATACA |
| TACACCA | TAACACTGTT TTATTTGAAT AAGGCTG | GTTGCCACCT |
| | 407 | 451 |

TAAGGAGTCT TGATAAGCTT ATTCCTCAGA ACTATTCGAA 501

Figure 31: functional map and sequence of pCAL module M9-II

Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

| SACOCO A A COMPRACT OF TOTICA BAAATGCCGC AGATTGTGCG | TOTAPOORC | CCCCCC TTCGAACTGG ACACTTCACI IIIIACCCCC TTCGAACTGG |
|---|----------------|--|
| AAAATGGCGC | | |
| TGTGAAGTGA | | ACACITICACI |
| | DOLLO LI CONTR | TTCGAACTGG |
| | りりりりりりりりりり | |
| | | |

CCCCCCCCC CGGCCGGACC gegegege ecceectree FseI TTAATTAAAG ~~~~~~ PacI ACATTTTTT TGTCTGCCGT 51

TGTAAAAA ACAGACGGCA AATTAATTTC

BSrGI

101 GGGGGGTGT ACAGGGGGG GGG

CCCCCCACA TGTCCCCCCC CCC

SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

| | TGTGGTGGTT
ACACCACCAA | CCGCTCCTTT
GGCGAGGAAA | CCCCGTCAAG
GGGGCAGTTC | TTTACGGCAC
AAATGCCGTG | GTGGGCCATC
CACCCGGTAG | ACGTTCTTTA
TGCAAGAAAT | TATCTCGGTC
ATAGAGCCAG | ATTGGTTAAA |
|------|--------------------------------|--------------------------------|--------------------------|----------------------------|------------------------------|---------------------------|------------------------------|--------------|
| | GCGCGGCGGG TC
CGCGCCGCCC AC | GCCCTAGCGC CC
CGGGATCGCG GC | CGCCGGCTTT COGGCGGAAA GO | GATTTAGTGC TO CTAAATCACG A | GGTTCTCGTA G
CCAAGAGCAT C | GTTGGAGTCC A | CACTCAACCC 1
GTGAGTTGGG 1 | ATTTCGGCCT 1 |
| | GGCGCATTAA G
CCGCGTAATT C | ACTTGCCAGC C
TGAACGGTCG (| TCGCCACGTT (AGCGGTGCAA | TTAGGGTTCC | TTAGGGTGAT
AATCCCACTA | GCCCTTTGAC
CGGGAAACTG` | ACTGGAACAA
TGACCTTGTT | GATTTTGCCG |
| | GCCCTGTAGC (CGGGACATCG) | TGACCGCTAC A | CCTTCCTTTC | GGGCATCCCT
CCCGTAGGGA | AAAAACTTGA
TTTTTGAACT | ACGGTTTTTC
TGCCAAAAAG | CTTGTTCCAA
GAACAAGGTT | ATTTATAAGG |
| Nhel | GCTAGCACGC (CGATCGTGCG) | ACGCGCAGCG TGCGCT | CGCTTTCTTC
GCGAAAGAAG | CTCTAAATCG
GAGATTTAGC | CTCGACCCCA
GAGCTGGGGT | GCCCTGATAG
CGGGACTATC | ATAGTGGACT
TATCACCTGA | TATTCTTTTG |
| | € | 51 | 101 | 151 | 201 | 251 | 301 | 351 |

Figure 32: functional map and sequence of pCAL module M11-III (continued)

CTAAAACGGC TAAAGCCGGA TAACCAATTT TAAATATTCC ATAAGAAAAC

TTTATATT AAAATATTAA CTTAAAATTG GAATTTTAAC TTAAATTGCG AATTTAACGC TAAATTGTTT ATTTAACAAA AAATGAGCTG TTTACTCGAC 401

BsrGI

451 CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

Figure 33: functional map and sequence of pCAL module M14-Ext2

TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG

351

module M14-Ext2 (continued)

| pCAL module ivi i | |
|--|-------|
| Figure 33: functional map and sequence of pCAL module in 14-EXCE (Solutions) | Bglii |
| Figure 33: functional | Bg |

| TGAGCGTCAG | TTTTCTGCGC | CGGTGGTTTG | ACTGGCTACA | GTAGTTAGGC | CTCTGCTAAT | CTTACCGGGT |
|--------------|------------|--------------------------|--------------------------|------------|--------------------------|--------------------------|
| ACTCGCAGTC | AAAAGACGCG | GCCACCAAAC | TGACCGATGT | | GAGACGATTA | A GAATGGCCCA |
| TTCGTTCCAC | GAGATCCTTT | CCGCTACCAG | TCCGAAGGTA | TAGTGTAGCC | ACATACCTCG | TAAGTCGTGT |
| AAGCAAGGTG | CTCTAGGAAA | GGCGATGGTC | AGGCTTCCAT | ATCACATCGG | TGTATGGAGC | |
| AACGTGAGTT | GGATCTTCTT | AAAAAAACCA | CAACTCTTTT | ACTGTTCTTC | AGCACCGCCT | CCAGTGGCGA |
| TTGCACTCAA | CCTAGAAGAA | TTTTTTGGT | GTTGAGAAAA | TGACAAGAAG | TCGTGGCGGA | GGTCACCGCT |
| AAAATCCCTT I | AAAGATCAAA | GCTTGCAAAC | CAAGAGCTAC | GATACCAAAT | AGAACTCTGT | GTGGCTGCTG |
| | TTTCTAGTTT | CGAACGTTTG | GTTCTCGATG | CTATGGTTTA | TCTTGAGACA | CACCGACGAC |
| AGATCTGACC I | • | GTAATCTGCT
CATTAGACGA | TTTGCCGGAT
AAACGGCCTA | GCAGAGCGCA | CACCACTTCA
GTGGTGAAGT | CCTGTTACCA
GGACAATGGT |
| ← | 51 | 101 | 151 | 201 | 251 | 301 |
| | | SUE | STITUTE S | IEET (RULE | 26) | |

ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CCCGACTTGC Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT GCTTGCTGGA TGTGGCTTGA CCCCCAAGCA CGTGTGTCGG GTCGAACCTC GGGGGTTCGT 401

GGGCTTCCCT CCCGAAGGGA GCGGTGCGAA CGCCACGCTT GTCGCACTCG ATACTCTTTC CAGCGTGAGC TATGAGAAAG CTCTATGGAT GAGATACCTA

TCCTCTCGCG BSSSI AGGAGAGCGC CATTCGCCGT CCCAGCCTTG GTAAGCGGCA GGGTCGGAAC CTTTCCGCCT GTCCATAGGC GAAAGGCGGA CAGGTATCCG

501

451

CAGGACAGCC GTCCTGTCGG AAACGCCTGG TATCTTTATA AAGGTCCCCC TTTGCGGACC ATAGAAATAT TTCCAGGGG TGCTCCCTCG ACGAGGGAGC 551

BSSSI

? ? ? ?

CTCTGACTTG AGCGTCGATT TTTGTGATGC TCGTCAGGGG AGCAGTCCCC AAACACTACG GAGACTGAAC TCGCAGCTAA CAAAGCGGTG GTTTCGCCAC 601

GGCGGAGCCT ATGGAAAAC GCCAGCAACG CGGCCTTTTT ACGGTTCCTG GCCGGAAAA TGCCAAGGAC CCGCCTCGGA TACCTTTTG CGGTCGTTGC 651

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG 701

SUBSTITUTE SHEET (RULE 26) 103 / 204

Figure 34; functional map and sequence of pCAL module M17 (continued)

AatII

| TAT TTTTTGAGTT ATCGAGATTT TCAGGAGCTA AGGAAGCTAA | GATATACCAC CGTTGATATA TCCCAATGGC |
|---|--|
| ATA AAAAACTCAA TAGCTCTAAA AGTCCTCGAT TCCTTCGATT | CTATATGGTG GCAACTATAT AGGGTTACCG |
| TAT TTTTTGAGTT ATCGAGATTT TCAGGAGCTA | CGTTGATATA |
| ATA AAAAACTCAA TAGCTCTAAA AGTCCTCGAT | GCAACTATAT |
| ATCGAGATTT | GATATACCAC |
| TAGCTCTAAA | CTATATGGTG |
| TTTTGAGTT | AAAATCACTG |
| AAAAACTCAA | TTTTAGTGAC |
| CCGGGCGTAT | AATGGAGAAA AAAATCACTG G
TTACCTCTTT TTTTAGTGAC |
| 51 | 101 |

| GTACCTAI |
|---|
| STAAAGA ACATTTTGAG GCATTTCAGT CAGTTGCTCA ATGTACCTAT
CATTTCT TGTAAACTC CGTAAAGTCA GTCAACGAGT TACATGGATA |
| GCATTTCAGT
CGTAAAGTCA |
| ACATTTTGAG
TGTAAAACTC |
| ATCGTAAAGA
TAGCATTTCT |
| 151 |
| STITUTE S |

| GACCG TTCAGCTGGA TATTACGGCC TTTTTAAAGA CCGTAAAGAA | |
|---|------|
| TTTTTAAAGA
AAAAATTTCT | |
| TATTACGGCC
ATAATGCCGG | |
| TTCAGCTGGA
AAGTCGACCT | |
| AACCAGACCG
TTGGTCTGGC | |
| 201 | |
| NUTET (D' !! 5 | : 00 |

| AAATAAGCAC AAGTTTTATC CGGCCTTTAT TCACATTCTT GCCCGCTGA | TGAATGCTCA CCCGGAGTTC CGTATGGCAA TGAAAGACGG TGAGCTGGTG |
|--|--|
| TTTATTCGTG TTCAAAATAG GCCGGAAATA AGTGTAAGAA CGGGCGGACT | ACTTACGAGT GGGCCTCAAG GCATACCGTT ACTTTCTGCC ACTCGACCAC |
| TCACAI"ICI"I | TGAAAGACGG |
| AGTGTAAGAA | ACTTTCTGCC |
| CGGCCTTTAT | CGTATGGCAA |
| GCCGGAAATA | GCATACCGTT |
| AAGTTTTATC | CCCGGAGTTC |
| TTCAAAATAG | GGGCCTCAAG |
| AAATAAGCAC AAGTTTTATC CGGCCTTTAT TCACAI"ICTT GCCCGCGGACT | TGAATGCTCA |
| TTTATTCGTG TTCAAAATAG GCCGGAAATA AGTGTAAGAA CGGGCGGACT | ACTTACGAGT |
| 251 | 301 |

| AGCAAACTGA |
|-----------------------------------|
| CCC TTGTTACACC GTTTTCCATG AGCAAAC |
| TTGTTACACC |
| GTGTTCACCC |
| ATATGGGATA |
| 351 |

CAAAAGGTAC TCGTTTGACT Figure 34: functional map and sequence of pCAL module M17 (continued)

| TAT CACAAGTGGG AACAATGTGG CAAAAGGIAC 10011101 | TCA TCGCTCTGGA GTGAATACCA CGACGATTTC CGGCAGTTTC
AGT AGCGAGACCT CACTTATGGT GCTGCTAAAG GCCGTCAAAG |
|---|--|
| CARAGGIAC | CGACGATTTC
GCTGCTAAAG |
| AACAA'I'G'I'GG | GTGAATACCA
CACTTATGGT |
| CACAAGTGGG | TCGCTCTGGA
AGCGAGACCT |
| TATACCCTAT | AACGTTTTCA |
| | 401 |

| CCTGGCCTAT
GGACCGGATA | CCAATCCCTG |
|--|--|
| ACGGTGAAAA
TGCCACTTTT | CCTAAAG GGTTTATTGA GAATATGTTT TTCGTCTCAG |
| GTGGCGTGTT
CACCGCACAA | GAATATGTTT |
| CATATA TTCGCAAGAT G
GTATAT AAGCGTTCTA C | GGTTTATTGA |
| TACACATATA
ATGTGTATAT | TTCCCTAAAG |
| 451 | 501 |
| | |

| | GGTGAGTTTC ACCAGTTTTG ATTTAAACGT AGCCAATATG GACAACTTCT
CCACTCAAAG TGGTCAAAAC TAAATTTGCA TCGGTTATAC CTGTTGAAGA | 1 1 1 1 |
|-------------------------------|--|---------|
| | AGCCAAT
TCGGTTA | |
| | ATTTAAACGT
TAAATTTGCA | |
| T'I'I'C CCAAAIAACI CIIMIICIEE | ACCAGTTTTG
TGGTCAAAAC | |
| AAGGGAT'I'I'C | GGTGAGTTTC | |
| - | 551 | |
| CUR | STITUTE SE | |

| GGCAAATATT ATACGCAAGG CGACAAGGTG CCGTTTATAA TATGCGTTCC GCTGTTCCAC | SCGC TGGCGATTCA GGTTCATCAT GCCGTTTGTG ATGGCTTCCA
GGCG ACCGCTAAGT CCAAGTAGTA CGGCAAACAC TACCGAAGGT |
|---|--|
| SCGT TITCACTATG GGCAAATATT ATACGCAAGG CGACAAGGTG | GCCGTTTGTG |
| GGCAAATATT
CCGTTTATAA | GGTTCATCAT
CCAAGTAGTA |
| SCGT TTTCACTATG | TGGCGATTCA
ACCGCTAAGT |
| TCGCCCCCGT | CTGATGCCGC
GACTACGGCG |
| 601 | 651 |
| KEET (BULE | 26) |

GCGGGGCGTA ATTTTTTAA GGCAGTTATT GGGTGCCCTT AAACGCCTGG 751

CGCCCCGCAT TAAAAAAYYT CCGTCAATAA CCCACGGGAA TTTGCGGACC Figure 34: functional map and sequence of pCAL module M17 (continued)

BglII

801 TGCTAGATCT TCC ACGATCTAGA AGG

gill supershort Kmn1 (310) ECORI (1) pCAL4 Sph1 (2749) Figure 35: functional map and sequence of modular vector pCAL4 **KPal (2739)** Hatii (2608) lac p/o cat

Hind111 (515)

Pac! (579)

functional ssori Bsr61 (612) Fsel (599) GenII-Nick Ban11 (919) Nhel (1876) replication start 2755 bp BssS1 (1254) Colel Ext2 origin Bg111 (1803)

SUBSTITUTE SHEET (NULE 28)

107 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| ECORI
~~~~~
1 AATTCGAGCA GAAGCTGATC TCTGAGGAGG ATCTGTAGGG TGGTGGCTCT
1 TAAAGCTCGT CTTCGACTAG AGACTCCTCC TAGACATCCC ACCACCGAGA | | GGTGGCTCT
CCACCGAGA | |
|--|-------|------------------------------|-----|
| ECORI ATTCGAGCA GAAGCTGATC TCTGAGGAGG THAAGCTCGT CTTCGACTAG AGACTCCTCC | | ATCTGTAGGG T
TAGACATCCC A | |
| ECORI ANTICGAGCA GAAGCTGATC THAAGCTCGT CTTCGACTAG | | TCTGAGGAGG
AGACTCCTCC | |
| ECORI ~~~~~ 1 AATTCGAGCA TTAAGCTCGT | ٠ | GAAGCTGATC | |
| \leftarrow | ECORI | AATTCGAGCA | 1)) |
| | | \leftarrow | |

| 25555 | 90000 |) | |
|---|--|-----------------|---------|
| ATAAG | TATTC |)
 | |
| CONTROL ANTICATOR TGARAGATG GCAAACGCTA ATAAGGGGGC | THE PROPERTY OF THE PROPERTY O | | |
| TGAAAAGATG | | ACT"I"I"I AC | |
| A THTTTC A THA | WITT TOTAL | AC TAAAACTAA'I' | |
| | ין דיין | CCAAGGCCAC | 1 1 1 1 |
| | 5 T | | |

| CCGAA AATGCCGATG AAAACGCGCT ACAGTCTGAC GCTAAAGGCA
GCCTT TTACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT |
|--|
| ACAGTCTGAC
TGTCAGACTG |
| AAAACGCGCT
TTTTGCGCGA |
| AATGCCGATG
TTACGGCTAC |
| TATGACCGAA
ATACTGGCTT |
| 101 |

| TAA | TGC |
|--|--|
| TGGTTTC
ACCAAAG | GTGATTT |
| CTGCTATCGA
GACGATAGCT | GGTGCTACTG |
| GATTACGGTG
CTAATGCCAC | CTTGC TAATGGTAAT GGTGCTACTG GTGATTTTGC |
| NTTC TGTCGCTACT GATTACGGTG CTGCTATCGA TGGTTTCATT
PAAG ACAGCGATGA CTAATGCCAC GACGATAGCT ACCAAAGTAA | STIT CCGGCCTIGC TAATGGTAAT GGTGCTACTG GTGATTTTGC |
| AACTTGATTC
TTGAACTAAG | GGTGACGTTT |
| 151 | 201 |

| GTGATTTTGC | CTCAAGTCGG TGACGGTGAT AATTCACCTT |
|---|---|
| CACTAAAACG | GAGTTCAGCC ACTGCCACTA TTAAGTGGAA |
| TIT CCGGCCTIGC TAATGGTAAT GGTGCTACTG GTGATTTTGC | LAT TCCCAAATGG CTCAAGTCGG TGACGGTGAT AATTCACCTT |
| TAATGGTAAT | CTCAAGTCGG |
| ATTACCATTA | GAGTTCAGCC |
| CCGGCCTTGC
GGCCGGAACG | AT TCCCAAATGG |
| GGTGACGTTT | TGGCTCTAAT |
| CCACTGCAAA | ACCGAGATTA |
| 201 | 251 |

XmnI

CCCTCCTCA ATCGGTTGAA TAGCCAACTT GGGAGGGAGT TTTCCGTCAA TATTTACCTT ATAAATGGAA AAAGGCAGTT ATTACTTATT TAATGAATAA 301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGTATAC'I"I'A AAAGATAACI | CTTTGCGTTT CTTTTATATG
GAAACGCAAA GAAAATATAC | TTGCTAACAT ACTGCGTAAT
AACGATTGTA TGACGCATTA | TGAAAAATGG CGCAGATTGT
ACTTTTTACC GCGTCTAACA | HSGI
TSST | AAGGGGGGG GGGGCCGGCCGGTTLCCCCCCCCCCCCCCCCC | | TTAATATTTT GTTAAAATTC
AATTATAAAA CAATTTTAAG |
|--------------------------|--|--|--|--------------|--|-------|--|
| CCATATGAAT
GGTATACTTA | CTTT
GAAA | TTG | TGA | ? | | | - |
| CGCTGGTAAA
GCGACCATTT | TCCGTGGTGT
AGGCACCACA | TTTTCTACGT
AAAAGATGCA | ACCTGTGAAG
TGGACACTTC | PacI | CGTTTAATTA
GCAAATTAAT | | ATTGTAAACG
TAACATTTGC |
| TTGTCTTTGG (AACAGAACC) | ATAAACTTAT
TATTTGAATA | TATGTATGTA
ATACATACAT | HindIII
~~~~~
GATAAGCTTG
CTATTCGAAC | | TTTTGTCTGC
AAAACAGACG | BsrGI | TGGGGGGG TGTACATGAA |
| TGTCGCCCTT 7 | TTGTGACAAA AACACTGTTT | TTGCCACCTT | AAGGAGTCTT
TTCCTCAGAA | | GCGACATTTT
CGCTGTAAAA | | TGGGGGGGGG |
| 351 | 401 | 451 | 501 | | 551 | | 601 |
| | | | | | | | |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 1 | AAAT
TTTA | SAGTG | CCAAC | GAACC
CTTGG | GCACTAAATC
CGTGATTTAG | {
{ | AAAGCCGGCG
TTTCGGCCGC | GCGCTAGGGC
CGCGATCCCG |
|---|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|-----------|--------------------------|--------------------------|
| | AGGCCGAAAT
TCCGGCTTTA | GGGTTGAGTG
CCCAACTCAC | GGACTCCAAC
CCTGAGGTTG | TACGAGAACC
ATGCTCTTGG | GCACT
CGTGA | | | _ |
| | TTTAACCAAT
AAATTGGTTA | GACCGAGATA
CTGGCTCTAT | TAAAGAACGT
ATTTCTTGCA | GATGGCCCAC
CTACCGGGTG | GTGCCGTAAA
CACGGCATTT | | CTTGACGGGG
GAACTGCCCC | AAAGGAGCGG
TTTCCTCGCC |
| | CAGCTCATTT G
GTCGAGTAAA | CAAAAGAATA
GTTTTCTTAT | AGTCCACTAT
TCAGGTGATA | CTATCAGGGC
GATAGTCCCG | TGGGGTCGAG
ACCCCAGCTC | | CGATTTAGAG
GCTAAATCTC | GAAGAAAGCG
CTTCTTTCGC |
| | TTTGTTAAAT OAAACAATTA | CCTTATAAAT (
GGAATATTTA (| TTGGAACAAG AACATTC | GAAAAACCGT
CTTTTTGGCA | TCAAGTTTTT
AGTTCAAAAA | BanII | AGGGAGCCCC
TCCCTCGGGG | GAAAGGAAGG
CTTTCCTTCC |
| | GCGTTAAATT 1
CGCAATTTAA 1 | _ | GT | GTCAAAGGGC | ATCACCCTAA
TAGTGGGATT | | GGAACCCTAA
CCTTGGGATT | AACGTGGCGA |
| | 651 | 701 | 751 | 801 | 851 | | 901 | 951 |
| | | | | | OUEST (D) | III E 261 | | |

SUBSTITUTE SHEET (RULE 26)

TATGGACAGG

CGGAAAGAGG GAAGCCCTTC GCACCGCGAA AGAGTATCGA GTGCGACATC GCCTTTCTCC CTTCGGGAAG CGTGGCGCTT TCTCATAGCT CACGCTGTAG

CTCTCCTGTT CCGACCCTGC CGCTTACCGG ATACCTGTCC

GAGAGGACAA GGCTGGGACG GCGAATGGCC

1251

1301

9090090099 252522522 GCGACGCGCA TTGGTGGTGT CGCTGCGCGT AACCACCACA Figure 35: functional map and sequence of modular vector pCAL4 (continued) GCTGGCAAGT GTAGCGGTCA CGACCGTTCA CATCGCCAGT

NheI

~ ~ ~ ~ ~ ~

| AAAGGCCAGC | TTTCCATAGG | GTCAGAGGTG | GCGAAACCCG ACAGGACTAT AAAGATACCA GGCGTTTCCC CCTGGAAGCT |
|--|--|---|--|
| TTTCCGGTCG | AAAGGTATCC | CAGTCTCCAC | CGCTTTGGGC TGTCCTGATA TTTCTATGGT CCGCAAAGGG GGACCTTCGA |
| GCGTGCTAGC CATGTGAGCA | AAAAGGCCAG GAACCGTAAA AAGGCCGCGT TGCTGGCGTT TTTCCATAGG | CTCCGCCCCC CTGACGAGCA TCACAAAAT CGACGCTCAA GTCAGAGGTG | GGCGTTTCCC |
| CGCACGATCG GTACACTCGT | TTTTCCGGTC CTTGGCATTT TTCCGGCGCA ACGACCGCAA AAAGGTATCC | | CCGCAAAGGG |
| GCGTGCTAGC | AAGGCCGCGT | CTCCGCCCC CTGACGAGCA TCACAAAAT | AAAGATACCA |
| | TTCCGGCGCA | GAGGCGGGG GACTGCTCGT AGTGTTTTTA | TTTCTATGGT |
| GCTACAGGGC | GAACCGTAAA | CTGACGAGCA | ACAGGACTAT |
| CGATGTCCCG | CTTGGCATTT | | TGTCCTGATA |
| TTAATGCGCC GCTACAGGGC GCGTGCTAGC CATGTGAGCA AAAGGCCAGC | AAAAGGCCAG GAACCGTAAA
TTTTCCGGTC CTTGGCATTT | CTCCGCCCCC | GCGAAACCCG
CGCTTTGGGC |
| 1051 | 1101 | 1151 | 1201 |

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| でしていて出て出て日 | ACACACGTGC | CTATCGTCTT
GATAGCAGAA | CAGCCACTGG
GTCGGTGACC | GAGTTCTTGA
CTCAAGAACT | TGGTATCTGC
ACCATAGACG | GCTCTTGATC
CGAGAACTAG | TGCAAGCAGC
ACGTTCGTCG | GATCTTTTCT
CTAGAAAAGA |
|------------|---|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | CAAGCTGGGC 1
GTTCGACCCG A | TATCCGGTAA C
ATAGGCCATT G | CCACTGGCAG C | CGGTGCTACA C | GAACAGTATT C | AGAGTTGGTA
TCTCAACCAT | TTTTTTGTT
AAAAAAACAA | AAGATCCTTT
TTCTAGGAAA |
| | TCGTTCGCTC CAGCAGCAGCAGCAGCAGCAGCAAGCGAAGCG | CGCTGCGCCT | CGACTTATCG | GGTATGTAGG
CCATACATCC | TACACTAGAA
ATGTGATCTT | CTTCGGAAAA
GAAGCCTTTT | GTAGCGGTGG
CATCGCCACC | GGATCTCAAG
CCTAGAGTTC |
| | TCGGTGTAGG 1
AGCCACATCC 1 | TCAGCCCGAC (AGTCGGGCTG) | CGGTAAGACA
GCCATTCTGT | AGCAGAGCGA
TCGTCTCGCT | TAACTACGGC
ATTGATGCCG | AGCCAGTTAC
TCGGTCAATG | ACCACCGCTG
TGGTGGCGAC | CAGAAAAAA
GTCTTTTTT |
| | GTATCTCAGT T | _ | | | AGTGGTGGCC
TCACCACCGG | GCTCTGCTGT
CGAGACGACA | CGGCAAACAA
GCCGTTTGTT | AGATTACGCG
TCTAATGCGC |
| | 1351 | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 | 1701 |
| | | | | SUBSTITU | JTE SHEET (| (RULE 26) | | |

UBSTITUTE SHEET (RULE 26) 112 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT
CCTAAAACCA | TTAAAAAAT
AATTTTTTA | CATTAAGCAT
GTAATTCGTA | TGAATCGCCA
ACTTAGCGGT | CATAGTGAAA
GTATCACTTT | CAAAACTGGT
GTTTTGACCA | TCAATAAACC
AGTTATTTGG |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GGAT
CCTA | TTA?
AATT | CAT | TGA | | _ | |
| TCACGTTAAG
AGTGCAATTC | AATAACTGCC
TTATTGACGG | TGTTGTAATT
ACAACATTAA | ATGATGAACC
TACTACTTGG | AATATTTGCC
TTATAAACGG | ACGTTTAAAT
TGCAAATTTA | AAACATATTC
TTTGTATAAG |
| GAACGAAAAC
CTTGCTTTTG | TAAGGGCACC
ATTCCCGTGG | ATCGCAGTAC
TAGCGTCATG | CACAAACGGC
GTGTTTGCCG | CCTTGCGTAT
GGAACGCATA | CATATTGGCT
GTATAACCGA | CTGAGACGAA
GACTCTGCTT |
| ACGCTCAGTG (
TGCGAGTCAC | ACCAGGCGTT ' | CCTGCCACTC
GGACGGTGAG | TGGAAGCCAT | CACCTTGTCG
GTGGAACAGC | AGAAGTTGTC
TCTTCAACAG | CAGGGATTGG
GTCCCTAACC |
| ACGGGGTCTG A | BglII
CAGATCTAGC | TACGCCCCGC | TCTGCCGACA
AGACGGCTGT | GCGCCATCAG | ACGGGGGCGA
TGCCCCCGCT | GAAACTCACC
CTTTGAGTGG |
| 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |
| | | SUBST | TTUTE SHEE | T (RULE 26) |) | |

GTCACTAAAA

ATATAGTTGC CACCATATAG

TCTTTACGAT GCCATTGGGA TATATCAACG GTGGTATATC

AGAAATGCTA CGGTAACCCT

2451

CAGTGATTTT TATCCATGTA ACTCGTTGAC TGACTTTACG GAGTTTTACA CGGTCTGGTT ATAGGTACAT TGAGCAACTG ACTGAAATGC CTCAAAATGT GTGCTTATTT TICTTTACGG TCTTTAAAAA GGCCGTAATA TCCAGCTGAA AGGTCGACTT ATAGGGTATA GTGGTCGAGT GGCAGAAAGT AACGGTATGC CTTGAGGCCC CTATTTTGAA GATAAAACTT GAACTCCGGG CCCACTTGTG ACCATAAGTG AGGTCTCGCT GGTGTAACAA GGGTGAACAC TCCAGAGCGA TAGAACGCTT CITIAGGGAA ATAGGCCAGG TITICACCGI AACACGCCAC ATCITGCGAA CACGAATAAA AAGAAATGCC AGAAATTTTT CCGGCATTAT ACTCGTAAGT AGTCCGCCCG TTCTTACACT TATTTCCGGC TGAGCATTCA TCAGGCGGGC AAGAATGTGA ATAAAGGCCG TATCCCATAT CACCAGCTCA CCGTCTTTCA TTGCCATACG CCACATTGTT GAAATCGTCG TGGTATTCAC TATCCGGTCC AAAGTGGCA TTGTGCGGTG ACTTTTGCAA AGTCAAACGA GTACCTTTTG CTTTGACGGC CTTTAGCAGC TGAAAACGTT TCAGTTTGCT CATGGAAAAC Figure 35: functional map and sequence of modular vector pCAL4 (continued) GAAACTGCCG GCCAGACCAA ATATACACAT GAAATCCCTT TATATGTGTA 2401 2351 2301 2251 2151 2201 SUBSTITUTE SHEET (RULE 26)

| d sequence of modular vector pCAL4 (continued) SATT TTAGCTTCT TAGCTCCTGA AAATCTCGAT AACTCAAAAA STAA AATCGAAGGA ATCGAGGACT TTTAGAGCTA TTGAGTTTTT | SCGG TAGTGATCTT ATTTCATTAT GGTGAAAGTT GGAACCTCAC
SGCC ATCACTAGAA TAAAGTAATA CCACTTTCAA CCTTGGAGTG |
|---|--|
| AAATCTCGAT
TTTAGAGCTA | GGTGAAAGTT
CCACTTTCAA |
| 4 (continued)
TAGCTCCTGA
ATCGAGGACT | ATTTCATTAT
TAAAGTAATA |
| d sequence of modular vector pCAL4 (continued) CATT TTAGCTTCCT TAGCTC STAA AATCGAAGGA ATCGAG | TAGTGATCTT
ATCACTAGAA |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2501 TTTCTCCATT TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACTCAAAAA AAAGAGGTAA AATCGAAGGA ATCGAGGACT TTTAGAGCTA TTGAGTTTTT | ATACGCCCGG
TATGCGGGCC |
| Figure 35: fu
2501 | 2551 |

| | ACCCC AGGCTTTACA |
|-------|-------------------------------|
| | STTA GCTCACTCAT TAGGCACCCC AG |
| | GCTCACTCAT |
| | ATGTGAC |
| AatII | な出し出してくてい |
| | 0 |

| AGGCTTTACA
TCCGAAATGT | GGATAACAAT
CCTATTGTTA | Inds |
|--|--|------|
| ATGTGAGTTA GCTCACTCAT TAGGCACCCC AGGCTTTACA
TACACTCAAT CGAGTGAGTA ATCCGTGGGG TCCGAAATGT | CTT CCGGCTCGTA TGTTGTGTGG AATTGTGAGC
GAA GGCCGAGCAT ACAACACACC TTAACACTCG | XbaI |
| GCTCACTCAT TAGGCACCCC
CGAGTGAGTA ATCCGTGGGG | TGTTGTGGG
ACAACACACC | |
| CTA ATGTGAGTTA
SAT TACACTCAAT | CTTTATGCTT CCGGCTCGTA
GAAATACGAA GGCCGAGCAT | |
| CCGACGTCTA A | CTTTATGCTT
GAAATACGAA | |
| 2601 | 2651 | |
| SU | BSTITUTE S | HEET |

| ACAGG AAACAGCTAT GACCATGATT ACGAATTTCT AGAGCATGCG
TGTCC TTTGTCGATA CTGGTACTAA TGCTTAAAGA TCTCGTACGC |
|--|
| ACGAATTTCT
TGCTTAAAGA |
| GACCATGATT
CTGGTACTAA |
| AAACAGCTAT
TTTGTCGATA |
| TTCACACAGG
AAGTGTGTCC |
| 2701 |

EcoRI

22222 20022 2751

T (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. 2 .. AatII

GACGICITAA IGIGAGITAG CICACICAIT AGGCACCCCA GGCITTACAC CCGAAATGTG TCCGTGGGGT GAGTGAGTAA ACACTCAATC CTGCAGAATT

CTATTGTTAA GATAACAATT CAACACACCT TAACACTCGC GTTGTGTGGA ATTGTGAGCG CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

CATATTACAT GTATAATGTA AACAGCTATG ACCATGTCTA GAATAACTTC TIGICGATAC IGGIACAGAI CITATIGAAG AGTGTGTCCT TCACACAGGA

SphI

151 CGCTATACGA AGTTATCGCA TGC GCGATATGCT TCAATAGCGT ACG

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M3 47 bp

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Z

BglII

11111

AGATCTCATA ACTTCGTATA ATGTATGCTA TACGAAGTTA TGACGTC TCTAGAGTAT TGAAGCATAT TACATACGAT ATGCTTCAAT ACTGCAG TCTAGAGTAT

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

(long) 7-IΣ

ECORI

| AAAGTTGTTT | AAAGACGACA |
|----------------------------------|---|
| TTTCAACAAA | TTTCTGCTGT |
| TGCGTGCGCT GAAACGGTTG AAAGTTGTTT | CATACAGAAA ATTCATTTAC TAACGTCTGG AAAGACGACA |
| ACGCACGCGA CTTTGCCAAC TTTCAACAAA | GTATGTCTTT TAAGTAAATG ATTGCAGACC TTTCTGCTGT |
| TGCGTGCGCT | ATTCATTTAC |
| ACGCACGCGA | TAAGTAAATG |
| GTGGTGGATC | CATACAGAAA
GTATGTCTTT |
| GAATTCGGTG | AGCAAAATCC |
| CTTAAGCCAC | TCGTTTTAGG |
| Н | 51 |

| GAATGCTACA | |
|------------|---------------------|
| GCTGTCTGTG | じないないないない |
| AACTATGAGG | CACACACA CONCREASED |
| TCGTTACGCT | |
| AAACTTTAGA | (|
| 101 | • |
| SUB | ST |

| GAATGCTACA
CTTACGATGT | GTACATGGGT
CATGTACCCA |
|------------------------------|--------------------------|
| GCTGTCTGTG
CGACAGACAC | CAGTGTTACG
GTCACAATGC |
| AACTATGAGG
TTGATACTCC | TGACGAAACT
ACTGCTTTGA |
| A TCGTTACGCT
F AGCAATGCGA | TTGTACTGG
AACATGACC |
| AAACTTTAGA
TTTGAAATCT | GGCGTTGTAG T |
| 101 | 151 |
| | E SHEET (R
1 / 204 |
| | |

| TCTGAGGGTG
AGACTCCCAC | ACCTCCTGAG
TGGAGGACTC |
|--------------------------|--------------------------|
| GGGTGGTGGC | GCGGTACTAA
CGCCATGATT |
| CTGAAAATGA
GACTTTTACT | TCTGAGGGTG
AGACTCCCAC |
| CTTGCTATCC
GAACGATAGG | GGGTGGCGGT |
| TCCTATTGGG
AGGATAACCC | GCGGTTCTGA |
| 201 | 251 |
| LE 26) | |

| GGGCTATACT TATATCAACC CTCTCGACGG | GAGAGCTGCC |
|----------------------------------|-----------------------|
| TATATCAACC | CCCGATATGA ATATAGTTGG |
| GGGCTATACT | CCCGATATGA |
| CACCTATTCC | GTGGATAAGG (|
| TACGGTGATA | ATGCCACTAT |
| 301 | |

RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | AATCCTTCTC
TTAGGAAGAG | TAATAGGTTC
ATTATCCAAG | TTACTCAAGG
AATGAGTTCC | TCATCAAAAG
AGTAGTTTTC | CGCTTTCCAT
GCGAAAGGTA | GCCAATCGTC
CGGTTAGCAG | GGTGGTGGTT
CCACCACCAA | TTCTGAGGGT
AAGACTCCCA |
|---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|
| | CGCTAATCCT A
GCGATTAGGA T | TGTTTCAGAA T
ACAAAGTCTT A | ACGGGCACTG I
TGCCCGTGAC A | CACTCCTGTA I
GTGAGGACAT A | TCAGAGACTG C
AGTCTCTGAC G | GAATATCAAG C | CGCCGCCTCT C | AGGGTGGCGG T |
| | AGCAAAACCC (
TCGTTTTGGG (| AATACTTTCA
TTATGAAAGT | AACTGTTTAT
TTGACAAATA | ATTACCAGTA
TAATGGTCAT | AACGGTAAAT
TTGCCATTTA | ATTTGTTTGT
TAAACAAACA | TCAATGCTGG
AGTTACGACC | GGTGGCTCTG |
| • | CCTGGTACTG | TCAGCCTCTT | AGGGGGCATT
TCCCCCGTAA | GTTAAAACTT
CAATTTTGAA | CGCTTACTGG
GCGAATGACC | ATGAGGATTT
TACTCCTAAA | CAACCTCCTG
GTTGGAGGAC | CTCTGAGGGT
GAGACTCCCA |
| | CACTTATCCG (GTGAATAGGC | TTGAGGAGTC AACTCCTCAG | CGAAATAGGC | CACTGACCCC
GTGACTGGGG | CCATGTATGA
GGTACATACT | TCTGGCTTTA
AGACCGAAAT | TGACCTGCCT
ACTGGACGGA | CTGGTGGCGG |
| | 351 | 401 | 451 | 501 | 551 | 601 | 651 | 701 |
| | | | | ei ipetiti it | E CHEET (RI | U F 26) | | |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| H & | <u> </u> | ပ <u>ပ</u> | ຫຼ່ ບ | ပ္ ဖု | Ì | ပ္ ပ | T; |
|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------|--------------------------|--------------------------|
| GATT
CTAA | AAAT
TTTA | CTGT | TCCG | TTCC | XmnI | ATTI | TTTG |
| CCGGTGATTT
GGCCACTAAA | ACCGAAAATG
TGGCTTTTAC | TGATTCTGTC
ACTAAGACAG | ACGTTTCCGG
TGCAAAGGCC | TCTAATTCCC
AGATTAAGGG | μX
 | GAATAATTTC
CTTATTAAAG | GCCCTTTTGT
CGGGAAAACA |
| _ | | | | - | • | | |
| GGCTCTGGTT
CCGAGACCAA | GGGGCTATG
CCCCCGATAC | AAGGCAAACT
TTCCGTTTGA | TTCATTGGTG
AAGTAACCAC | TTTTGCTGGC
AAAACGACCG | | CACCTTTAAT
GTGGAAATTA | GTTGAATGTC
CAACTTACAG |
| 000 | 999 | AA(
TT(| TT(
AA(| TT | | CA | |
| TGGT | ATAA
LTATT | CGCTA | ATGGT | SGTGA | | TAATT
ATTAA | CCCTCAATCG
GGGAGTTAGC |
| TTCCGGTGGT
AAGGCCACCA | ACGCTAATAA
TGCGATTATT | TCTGACGCTA
AGACTGCGAT | TATCGATGGT
ATAGCTACCA | CTACTGGTGA
GATGACCACT | - | GGTGATAATT
CCACTATTAA | CCCTC |
| | • | | | GTG | | GAA | CAT |
| AGGGAGGCGG
TCCCTCCGCC | AAGATGGCAA
TTCTACCGTT | CGCGCTACAG
GCGCGATGTC | ACGGTGCTGC
TGCCACGACG | GGTAATGGTG
CCATTACCAC | | AGTCGGTGAA
TCAGCCACTT | TACCTTCCAT
ATGGAAGGTA |
| AGG | AAG | ອນອ
ວອວ | ACG
TGC | GGT | | AGT | TAC |
| CTG | GAA | AAA
TTT | ATT | AAT | | TCA | ratt
ataa |
| GGCGGCTCTG
CCGCCGAGAC | TGATTATGAA
ACTAATACTT | CCGATGAAAA
GGCTACTTTT | GCTACTGATT
CGATGACTAA | CCTTGCTAAT
GGAACGATTA | | AAATGGCTC.
TTTACCGAG | CGTCAATAT'
GCAGTTATA |
|)
9
9
9
9
9
9 | TGA:
ACT | 000
000 | GCT | CCT | | AAA
TTT | CGT |
| 751 | 801 | 851 | 901 | 951 | | 1001 | 1051 |
| | | | | TE SHEET (F | RULE 26) | | |
| | | | 1 | 23 / 204 | | | |

| | 5 |
|--------------------|---|
| ontinued) | E |
| .L vectors (c | |
| ules and pCA | |
| L vector mod | 1 |
| ditional pCAI | |
| equences of ad | |
| I maps and sequent | |
| re 35a: Functiona | |
| Figur | |
| | |

| K K E K K K K C K C | GACAAAATAA | サーター・サージョン | AAACCGCGA CCATTTGGGA TACTTAAAAG ALAACTAACA CIGIIIIIII |
|--|-----------------|-------------------|---|
| | TALTEALTE | よいえるまでする。 | AIRACIRACA |
| | ATGAATTTTC | C 4 4 4 E E C 4 E | TACITIAAAAG |
| | GGTAAACCCT | | CCATTTGGGA |
| ב שמיי ליווי ויווי וויוי וויוי שליי ייי שליי ויויי שליי יייי שליייי ויוייי שלייייי וייייי שליייייי ויייייייייי | 正し じしじし 日 日 日 日 | 100001110 | GAAACCGCGA |
| C 334. I dilectoria | 1101 | T O T T | |

| CACCTTTTATG
GTGGAAATAC | HindIII | ł |
|---------------------------|---------|---|
| TATATGTTGC
ATATACAACG | | |
| GCGTTTCTTT
CGCAAAGAAA | | |
| TGGTGTCTTT
ACCACAGAAA | | |
| ACTTATTCCG
TGAATAAGGC | | |
| 1151 | | |

| ATGTATITI CTACGTTIGC TAACATACIG CGTAATAAGG AGICTIGATA | TCAGAACTAT |
|---|-------------|
| CGTAATAAGG | GCATTATTCC |
| TAACATACTG | ATTGTATGAC |
| CTACGTTTGC | GATGCAAACG |
| TATGTATTT | ATACATAAAA |
| 1201 | 1
)
1 |

Hindi ----Hindi -----HISSI AGCTT TCGAA

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 25) 125 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-II (SS-TAG):

ECORI

GTGATTTTGA CACTAAAACT AGACCAAGGC TCTGGTTCCG GCCACCACCG CGGTGGTGGC GAGGCGGTTC CTCCGCCAAG CGGGAATTCG GCCCTTAAGC 22222

GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC GATTATTCCC CTAATAAGGG ATGGCAAACG TACCGTTTGC TTATGAAAAG AATACTTTTC 51

TTCTGTCGCT AAGACAGCGA CGTTTGAACT GCAAACTTGA GACGCTAAAG CTGCGATTTC CGATGTCAGA GCTACAGTCT TACTTTGCG ATGAAAACGC 101

TTTCCGGCCT AAAGGCCGGA TAACCACTGC ATTGGTGACG GCTACCAAAG CGATGGTTTC CACGACGATA GTGCTGCTAT TGACTAATGC ACTGATTACG 151

AATTCCCAAA TTAAGGGTTT CTGGTGATTT TGCTGGCTCT GACCACTAAA ACGACCGAGA TTACCACGAT AATGGTGCTA ACGATTACCA TGCTAATGGT 201

XmnI

TAATTTCCGT ATTAAAGGCA CTTTAATGAA GAAATTACTT CGGTGACGGT GATAATTCAC CTATTAAGTG GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 26)

GAATGTCGCC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAAAACAGAA CTTTTGTCTT CTTACAGCGG AGTTAGCCAA TCAATCGGTT CTTCCCTCCC GAAGGGAGGG CAATATTTAC 301

AAAATAAACT TGATTGTGAC AATTTTCTAT TGGCGCTGGT AAACCATATG GTTATAAATG

CTTTATGTAT TTTTATTGA ACTAACACTG ATGTTGCCAC TTTCTTTAT TTAAAAGATA TTTGGTATAC ACCGCGACCA 351

GAAATACATA HindIII TACAACGGTG AAAGAAAATA ACAGAAACGC TGTCTTTGCG ATAAGGCACC TATTCCGTGG

401

CTTGATAAGC AATAAGGAGT CATACTGCGT CGTTTGCTAA

GAACTATTCG TTATTCCTCA GTATGACGCA GCAAACGATT CATAAAAGAT GTATTTTCTA 451

ΗÌ

501 TT AA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

X8

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ∞ Σ SphI

11111

TAAGCTT ATTCGAA ATGCTTCAAT TACGAAGTTA GCATGCCATA ACTTCGTATA ATGTACGCTA CGTACGGTAT TGAAGCATAT TACATGCGAT

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

BsrGI

22222

| AACCCTGATA | ACATG TAAGTTTATA CATAGGCGAG TACTCTGTTA TTGGGACTAT | |
|------------|---|--|
| ATGAGACAAT | TACTCTGTTA | |
| GTATCCGCTC | CATAGGCGAG | |
| ATTCAAATAT | TAAGTTTATA | |
| GGGGGTGTAC | CCCC | |
| - | I | |

| 51 | AATGCTTCAA | TAATATTGAA | AAAGGAAGAG | | CAACATTTCC |
|--------|------------|------------|------------|------------|------------|
|)
) | TTACGAAGTT | ATTATAACTT | | ATACTCATAA | GTTGTAAAGG |
| • | | | | | |

| TGTTTTTGCT | ACAAAAACGA |
|------------|--------------|
| TTTGCCTTCC | AAACGGAAGG |
| TTTGCGGCAT | AAACGCCGTA 1 |
| TATTCCCTTT | ATAAGGGAAA |
| ТG | 000 |
| 101 | |
| JBST | ITU |

| AGTJ | TCAACCCACG |
|------------|------------|
| GCTGAGGATC | CGACTCCTAG |
| | TCATTTTCTA |
| CGCTGGTGAA | GCGACCACTT |
| ACCCAGAAA | GGGTCTTT |
| 151 | ì |
| SHEE | T (A! |

GCGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA CGCTCACCCCA ATGTAGCTTG ACCTAGAGTT GTCGCCATTC TAGGAACTCT 201

XmnI

| TAAAGTTCTG | ATTTCAAGAC |
|---------------------------------------|----------------|
| SCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT | ACTCGTGAAA |
| TTTCCAATGA | AAAGGTTACT |
| CGAAGAACGT | G GCTTCTTGCA A |
| GTTTTCGCCC C | AAAAGCGG |
| 51 | |

~

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | AGCAACTCGG | CACCGC GCCATAATAG GGCATAACTG CGGCCCGTTC TCGTTGAGCC |
|---|-------------|--|
| • | GCCGGGCCAAG | CGGCCCGTIC |
| | CCGTATTGAC | GGCATAACTG |
| | CGGTATTATC | GCCATAATAG |
| 59; runctional maps and sequences of co | CTATGTGGCG | GATACACCGC |
| 5a; runctional | 201 | H
D
D |

| TCACCAGTCA
BAGTGGTCAGT | |
|---------------------------|--|
| GGTTGAGTAC
CCAACTCATG | |
| AGAATGACTT
TCTTACTGAA | |
| CACTATTCTC
GTGATAAGAG | |
| TCGCCGCATA
AGCGGCGTAT | |
| 351 | |

| ATGCAGTGCT | |
|------------|---------------|
| AGAGAATT | WIICICI IW |
| GGCATGACAG | CCGIACIGIC AI |
| TCTTACGGAT | AGAATGCCTA |
| CAGAAAAGCA | GTCTTTTCGT |
| 401 | |

| • | |
|--|--|
| TGACAACGAT
ACTGTTGCTA | |
| AACTTACTTC
TTGAATGAAG | |
| CACTGCGGCC
GTGACGCCGG | |
| CA TGAGTGATAA CACTGCGGCC AACTTACTTC
GT ACTCACTATT GTGACGCCGG TTGAATGAAG | |
| GCCATAACCA
CGGTATTGGT | |
| 451 | |
| SUBS | |

| GACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG GGGGATCATG
CTGGC TTCCTCGATT GGCGAAAAA CGTGTTGTAC CCCCTAGTAC |
|---|
| GCACAACATG
CGTGTTGTAC |
| CCGCTTTTTT
GGCGAAAAAA |
| CCG AAGGAGCTAA |
| CGGAGGACCG
GCCTCCTGGC |
| TUTE 845 |

| A CAGTTAATAG | r GTCAATTATC |
|---------------------------|------------------------|
| TTCCCGGCAA | ATGAGATCG AAGGGCCGTT (|
| C TTACTCTAGC TTCCCGGCAA C | AATGAGATCG |
| GGCGAACTAC 1 | TAATTGA CCGCTTGATG AA |
| ACTATTAACT | TGATAATTGA |
| 651 | i
)
) |

SUBSTITUTE SHEET (RULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTCGGCCCTT
GAGCCGGGAA | AGCGTGGGTC
TCGCACCCAG | TCCCGTATCG
AGGGCATAGC | ACGAAATAGA
TGCTTTATCT | TAACTGTCAG
ATTGACAGTC | TCATTTTTAA
AGTAAAAATT | TGACCAAAAT
ACTGGTTTTA | GTAGAAAAGA
CATCTTTTCT |
|---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CACTTCTGCG
GTGAAGACGC | GGAGCCGGTG
CCTCGGCCAC | TGGTAAGCCC
ACCATTCGGG | CTATGGATGA
GATACCTACT | AAGCATTGGG
TTCGTAACCC | ATTTAAAACT
TAAATTTTGA | GATAATCTCA
CTATTAGAGT | GTCAGACCCC
CAGTCTGGGG |
| GTTGCAGGAC
CAACGTCCTG | TGATAAATCT
ACTATTTAGA | TGGGGCCAGA
ACCCCGGTCT | AGTCAGGCAA
TCAGTCCGTT | CTCACTGATT
GAGTGACTAA | CTTTAGATTG
GAAATCTAAC | GATCCTTTTT
CTAGGAAAAA | TCCACTGAGC
AGGTGACTCG |
| GGCGGATAAA (| GGTTTATTGC CCAAATAACG | ATTGCAGCAC
TAACGTCGTG | CACGACGGGG
GTGCTGCCCC | AGATAGGTGC
TCTATCCACG | CTCATATATA
GAGTATATAT | TCTAGGTGAA
AGATCCACTT | GAGTTTTCGT
CTCAAAAGCA |
| ure 35a: Functional maps and sequences of auc
701 ACTGGATGGA
TGACCTACCT | CCGGCTGGCT | TCGCGGTATC
AGCGCCATAG | TAGTTATCTA
ATCAATAGAT | CAGATCGCTG
GTCTAGCGAC | ACCAAGTTTA
TGGTTCAAAT | TTTAAAAGGA
AAATTTTCCT | CCCTTAACGT
GGGAATTGCA |
| re 35a: Functional
701 | 751 | 801 | 85 1 2 1 | O 1 | EET (RULE: | 1001 | 1051 |
| 5 | | | | | | | |

PacI

FseI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TCAAAGGATC TTCTTGAGAT CCTTTTTGAT AATGGCCGGC CCCCCCCTT AGTTTCCTAG AAGAACTCTA GGAAAAACTA TTACCGGCCG GGGGGGGAA 1101

PacI -----

1151 AATTAAGGGG GGG TTAATTCCCC CCC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II:

| | TGTGGTGGTT
ACACCACCAA | CCGCTCCTTT
GGCGAGGAAA | CCCCGTCAAG
GGGGCAGTTC | | TTTACGGCAC
AAATGCCGTG | GTGGGCCATC
CACCCGGTAG | ACGTTCTTTA
TGCAAGAAAT |
|------|--------------------------|--------------------------|--------------------------------|---------|--------------------------------|--------------------------------|--------------------------|
| | GCGCGCGGG TG | GCCCTAGCGC CC | CGCCGGCTTT CC
GCGGCCGAAA GG | | GATTTAGTGC TT
CTAAATCACG AA | GGTTCTCGTA GT
CCAAGAGCAT CA | GTTGGAGTCC AC |
| | GGCGCATTAA (| ACTTGCCAGC (TGAACGGTCG | TCGCCACGTT | | TTAGGGTTCC
AATCCCAAGG | TTAGGGTGAT
AATCCCACTA | GCCCTTTGAC
CGGGAAACTG |
| | GCCCTGTAGC
CGGGACATCG | TGACCGCTAC
ACTGGCGATG | CCTTCCTTTC
GGAAGGAAAG | BanII | GGGGCTCCCT | AAAAACTTGA
TTTTTGAACT | ACGGTTTTTC
TGCCAAAAAG |
| NheI | GCTAGCACGC | ACGCGCAGCG
TGCGCGTCGC | CGCTTTCTTC
GCGAAAGAAG | | CTCTAAATCG
GAGATTTAGC | CTCGACCCCA | GCCCTGATAG
CGGGACTATC |
| | H | 51 | 101 | | 151 | 201 | 251 |
| | | | SUBSTITUT | E SHEET | (PULE 26) | | |

CACTCAACCC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TATCTCGGTC ATAGAGCCAG GTGAGTTGGG TATCACCTGA GAACAAGGTT TGACCTTGTT CTTGTTCCAA ACTGGAACAA ATAGTGGACT 301

CTAAAACGGC TAAAGCCGGA TAACCAATTT ATTGGTTAAA GATITIGCCG ATTICGGCCT TATTCTTTTG ATTTATAAGG TAAATATTCC ATAAGAAAAC

CITAAAATIG IITIATAATI AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTTTAAC TTAAATTGCG

401

351

AAAATATTAA

TAAATTGTTT TTTACTCGAC

TTCATGTACA CGTTTACAAT

BsrGI

GCAAATGTTA AAGTACATGT

SUBSTITUTE SHEET (RULE 26) 137 / 204

451

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | E 6 | CGCGTAATCT
GCGCATTAGA | TTCGTAGGTT
AAGCATCCAA | GAGGAGCGCA
CTCCTCGCGT | CATGACTTCA
GTACTGAAGT | GTGGTGCTTT
CACCACGAAA | GATAAGGCGC
CTATTCCGCG | CTTGGAGCGA
GAACCTCGCT |
|-------|-------|--------------------------------|--------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | | TTTTGGTCTG CC
AAAACCAGAC GC | AGGGCGGTTT T'
TCCCGCCAAA A | AACTGGCTTG G
TTGACCGAAC C | TTAACCGGCG C | GCTGCTGCCA C | ATAGTTACCG
TATCAATGGC | TACAGTCCAG
ATGTCAGGTC |
| | | CTTGAGATCG 7
GAACTCTAGC 7 | ACCGCCTTGC TGGC TGGC TGGCGAACG | GAACCGAGGT
CTTGGCTCCA | CAGTTTAGCC
GTCAAATCGG | ATTACCAGTG
TAATGGTCAC | ACTCAAGACG
TGAGTTCTGC | GGTTCGTGCA |
| | | AGATGATCTT C
TCTACTAGAA (| AAACGAAAAA i | CCAACTCTTT | CTTGTCCTTT
GAACAGGAAA | CTCTAAATCA
GAGATTTAGT | TCCGGGTTGG
AGGCCCAACC | CTGAACGGGG
GACTTGCCCC |
| •• | Bglii | AATA
TTAT | GA | TA
AT | GTCACTAAAA
CAGTGATTTT | AGACTAACTC
TCTGATTGAG | TGCATGTCTT
ACGTACAGAA | AGCGGTCGGA
TCGCCAGCCT |
| M 12: | | ·
~ | 51 | 101 | 151 | 201 | 251 | 301 |
| • | | | | SUBS | STITUTE SHE | ET (RULE 20 | 3) | |

TTTGCGCCGG AAACGCGGCC GGAATGAGAC CCTTACTCTG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) ACTGCCTACC CGGAACTGAG TGTCAGGCGT TGACGGATGG GCCTTGACTC ACAGTCCGCA 351

AgeI

~ ~ ~ ~ ~ ~ ~ ~ ~

| AGGAGAGCGC
TCCTCTCGCG | GTCCTGTCGG
CAGGACAGCC | TTGTCAGGGG
AACAGTCCCC | ACTTCCCTGT
TGAAGGGACA | TTCGTAAGCC
AAGCATTCGG | CAGTGAGCGA
GTCACTCGCT |
|--------------------------------|--------------------------------|--------------------------|---|---------------------------|--|
| AGGCAGGAAC AG
TCCGTCCTTG TC | TATCTTTATA G1
ATAGAAATAT C1 | TTCGTGATGC T. | CGCCCTCTC AGGCCCCGGGAGAG TG | CTCCGCCCCG TI | CGTAGCGAGT C
GCATCGCTCA G |
| GTAAACCGAA Z | AAACGCCTGG TTTGCGGACC | AGCGTCAGAT | GGCTTTGCCG
CCGAAACGGC | TCCAGGAAAT.
AGGTCCTTTA | AACGACCGAG
TTGCTGGCTC |
| AATGACACCG
TTACTGTGGC | CGCCAGGGGG | CACTGATTTG
GTGACTAAAC | ATGGAAAAAC
TACCTTTTTG | CCTGGCATCT
GGACCGTAGA | GCCGCAGTCG AACGACCGAG
CGGCGTCAGC TTGCTGGCTC |
| ATAACAGCGG
TATTGTCGCC | AGGAGGGAGC
TCCTCCCTCG | GTTTCGCCAC
CAAAGCGGTG | GGCGGAGCCT ATGGAAAAAC
CCGCCTCGGA TACCTTTTG | TAAGTATCTT
ATTCATAGAA | ATTTCCGCTC
TAAAGGCGAG |
| 401 | 451 | 501 | 551 | 601 | 651 |
| | | | | 201 | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AgeI | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ACCGGTGCAG
TGGCCACGTC |
|----------|---|--------------------------|
| | | CTGCTGACGC
GACGACTGCG |
| | | ATCACATATT
TAGTGTATAA |
| | | TATATCCTGT
ATATAGGACA |
| \ | | GGAAGCGGAA |
| | | 701 |

XmnI

| FTTCT CCTGCCACAT GAAGCACTTC ACTGACACCC TCATCAGTGC
AAAGA GGACGGTGTA CTTCGTGAAG TGACTGTGGG AGTAGTCACG | |
|--|---|
| ACTGACACCC
TGACTGTGGG | |
| GAAGCACTTC
CTTCGTGAAG | |
| CCTGCCACAT
GGACGGTGTA | |
| CCTTTTTTCT
GGAAAAAAGA | |
| 751 | , |

| NheI | 1 | CACTCCGCTA GC
GTGAGGCGAT CG |
|------|---|--------------------------------|
| | - | AGCCAGTATA
TCGGTCATAT |
| | | CAACATAGTA
GTTGTATCAT |
| | | 801 |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BgllI

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13: Σ BglII

22222

Н

ATGCTTCAAT AAGTCTAGA TACGAAGTTA TTCAGATCT AGATCTCATA ACTTCGTATA ATGTATGCTA TCTAGAGTAT TGAAGCATAT TACATACGAT TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

| | GATAGCGCCC
CTATCGCGGG | ACGTTATACG
TGCAATATGC | CCGCGTGGTG
GGCGCACCAC | TGGAAGCGGC
ACCTTCGCCG | CAACTGGCGG
GTTGACCGCC | GGCCCTGCAC
CCGGGACGTG | ATCAACTGGG
TAGTTGACCC | | |
|------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--|
| | GGTATGGCAT
CCATACCGTA | GAAACCAGTA
CTTTGGTCAT | AGACCGTTTC
TCTGGCAAAG | CGGGAAAAAG
GCCCTTTTTC | CGTGGCACAA
GCACCGTGTT | CCTCCAGTCT
GGAGGTCAGA | TCTCGCGCCG | | |
| | AACCTTTCGC
TTGGAAAGCG | TGGTGAATGT
ACCACTTACA | GTCTCTTATC
CAGAGAATAG | TGCGAAAACG
ACGCTTTTGC | TTCCTAACCG
AAGGATTGGC | GGCGTTGCCA
CCGCAACGGT | GGCGATTAAA
CCGCTAATTT | | |
| | AATGGCGCAA I | CAATTCAGGG | GTATGCCGGT
CATACGGCCA | GCCACGTTTC
CGGTGCAAAG | CTGAATTACA
GACTTAATGT | GTTGCTGATT
CAACGACTAA | AAATTGTCGC
TTTAACAGCG | | |
| NheI | GCTAGCATCG Z | | ATGTCGCAGA
TACAGCGTCT | AACCAGGCCA
TTGGTCCGGT | GATGGCGGAG | GCAAACAGTC
CGTTTGTCAG | GCGCCGTCGC | | |
| | Н | 51 | 101 | 151 | 201 | 251 | 301 | | |
| | SUBSTITUTE SHEET (RULE 26) | | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GAAGCCTGTA
CTTCGGACAT | GCTGATTATT
CGACTAATAA | CTGCCTGCAC
GACGGACGTG | CCCATCAACA
GGGTAGTTGT | GGAGCATCTG
CCTCGTAGAC | CATTAAGTTC
GTAATTCAAG | CTCACTCGCA
GAGTGAGCGT | TGCCATGTCC
ACGGTACAGG |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|
| AAGCGGCGTC (
TTCGCCGCAG | GTGTCAGTGG
CACAGTCACC | GCTGTGGAAG
CGACACCTTC | TGACCAGACA
ACTGGTCTGT | GACTGGGCGT
CTGACCCGCA | TTAGCTGGCC
AATCGACCGG | GCATAAATAT
CGTATTTATA | GCGACTGGAG
CGCTGACCTC |
| TGGTAGAACG A | CTCGCGCAAC | GGATGCTATT
CCTACGATAA | TTGATGTCTC
AACTACAGAG | GACGGTACGC
CTGCCATGCG | _
AATCGCGCTG
TTAGCGCGAC | TGGCTGGCTG | GAACGGGAAG
CTTGCCCTTC |
| GTCGTGTCGA C | GCACAATCTT
CGTGTTAGAA | TGGATGACCA
ACCTACTGGT | GCGTTATTTC
CGCAATAAAG | CTCCCATGAG
GAGGGTACTC | GCCACCAGCA
CGGTGGTCGT | CGTCTGCGTC
GCAGACGCAG | GCCGATAGCG
CGGCTATCGC |
| TGCCAGCGTG (ACGGTCGC) | AAGCGGCGGT (TTCGCCGCCA) | AACTATCCGC
TTGATAGGCG | TAATGTTCCG
ATTACAAGGC | GTATTATTTT
CATAATAAAA | GTCGCATTGG
CAGCGTAACC | TGTCTCGGCG
ACAGAGCCGC | ATCAAATTCA
TAGTTTAAGT |
| 351 | 401 | 451 | 501 | 551 | 601 | 651 | 701 |
| | | | SUBSTIT | UTE SHEET | (F.ULE 26) | | |
| | | | | 152 / 204 | | ٠, | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| רו לף | A H | ე ტ · | 4 F | T. K | r
S
S | ບູ່ຕູ | AA
TT |
|------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ACTG | CGTGCCATTA
GCACGGTAAT | GGGATACGAC
CCCTATGCTG | CCATCAAACA
GGTAGTTTGT | CTGCAACTCT
GACGTTGAGA | CTCACTGGTG
GAGTGACCAC | CTCCCGCGC
GAGGGGCGCG | CGACTGGAAA
GCTGACCTTT |
| TTCCCACTGC
AAGGGTGACG | CGTGC | GGGA | CCAT | CTGC | | | _ |
| GAGGGCATCG | GGGCGCAATG
CCCGCGTTAC | TCTCGGTAGT
AGAGCCATCA | CCGCTGACCA
GGCGACTGGT | GGACCGCTTG
CCTGGCGAAC | TGTTGCCCGT
ACAACGGGCA | CAAACCGCCT
GTTTGGCGGA | ACAGGTTTCC
TGTCCAAAGG |
| AATGCTGAAT C
TTACGACTTA C | AGATGGCGCT (
TCTACCGCGA | GGTGCGGACA | TTATATCCCG
AATATAGGGC | AAACCAGCGT
TTTGGTCGCA | GGCAATCAGC
CCGTTAGTCG | TCCCAATACG
AGGGTTATGC | AGCTGGCACG
TCGACCGTGC |
| AAACCATGCA A
TTTGGTACGT I | | GCTGCGCGTT (| ACAGCTCATG ' | CTGCTGGGGC
GACGACCCCG | GGCGGTGAAG
CCGCCACTTC | CCACCCTGGC | TCACTGATGC
AGTGACTACG |
| GGTTTTCAAC A | | | | GGATTTTCGC | CTCAGGGCCA | AAAAGAAAAA
TTTTCTTTTT | GTTGGCCGAT |
| 751 | 801 | 851 | 901 | 951 | 1001 | 1051 | 1101 |
| الر ع). الر | | | SUZGTI | TUTE SHEE | T (RULE 26) | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCTCCGGCAA GGAGGCCGTT GCGGGCAGTG AGGCTACCCG ATAAAAGCGG CTTCCTGACA 1151

Aflii

111111

TTGTTTTGCA GCCCACTTAA 1201

ပ ပ CGGGTGAATT AACAAAACGT

> SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | TIT |
|---------|--------|
| | \neg |
| pCAL0-1 | Bd |

TTTTTAAT AAAAAATTA AGGGCACCAA TAACTGCCTT ATTGACGGAA TCCCGTGGTT GTCCGCAAAT CAGGCGTTTA CTAGATCGTG GATCTAGCAC 2 2 2 2 2

AATTCGTAAG TTAAGCATTC AACATTAAGT TTGTAATTCA TGCCACTCAT CGCAGTACTG GCGTCATGAC GCGGGGGGG ACGGTGAGTA ეეენეეეეენე 51

TATTTGCCCA TAGTGAAAAC TTAGCGGTCG AATCGCCAGC CTACTTGGAC GATGAACCTG GTTTGCCGTA GAAGCCATCA CAAACGGCAT CTTCGGTAGT ACGGCTGTAC TGCCGACATG 101

ATAAACGGGT ATCACTTTTG GGCATCAGCA CCTTGTCGCC TTGCGTATAA GGAACAGCGG AACGCATATT CCGTAGTCGT

TTCAACAGGT ATAACCGATG CAAATTTAGT GTTTAAATCA AAGTTGTCCA TATTGGCTAC GGGGCGAAG CCCCCCTTC 201

AAACTGGTGA TTTGACCACT GAGACGAAAA ACATATTCTC AATAAACCCT TTATTTGGGA CCCTAACCGA CTCTGCTTTT TGTATAAGAG GGGATTGGCT AACTCACCCA TTGAGTGGGT 251

AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTGCGAATA GAACGCTTAT TCCGGTCCAA AAGTGGCATT GTGCGGTGTA AATCCCTTTA TTAGGGAAAT 301

SUBSTITUTE SHEET (RULE 26)

151

TATGIGIAGA AACTGCCGGA AATCGTCGTG GTATTCACTC CAGAGCGATG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CATAAGTGAG ATACACATCT TTGACGGCCT TTAGCAGCAC 351

GTGAACACTA CACTTGTGAT TTTTGCAAAG TCAAACGAGT ACCTTTTGCC ACATTGTTCC TGGAAAACGG TGTAACAAGG AGTTTGCTCA AAAACGTTTC 401

ACTCCGGGTG TGAGGCCCAC GCCATACGGA CGGTATGCCT CAGAAAGTAA CCAGCTCACC GTCTTTCATT AGGGTATAGT GGTCGAGTGG TCCCATATCA

AAAGGCCGGA TAAAACTTGT TTTCCGGCCT ATTTTGAACA CTTACACTTA GAATGTGAAT AGCATTCATC AGGCGGGCAA TCGTAAGTAG TCCGCCCGTT

GTCGACTTGC CAGCTGAACG AAATTTTTCC GGCATTATAG CCGTAATATC TTTAAAAAGG GAAATGCCAG GCTTATTTT CTTTACGGTC

TCCATGTAAC TCGTTGACTG ACTTTACGGA GTTTTACAAG GTCTGGTTAT AGGTACATTG AGCAACTGAC TGAAATGCCT CAAAATGTTC CAGACCAATA CGAATAAAA 601

CATTGGGATA TATCAACGGT GGTATATCCA GTGATTTTT CACTAAAAA AAATGCTACG GTAACCCTAT ATAGTTGCCA CCATATAGGT TTTACGATGC 651

CTCAAAAAAT GAGTTTTTA TCTCCATTTT AGCTTCCTTA GCTCCTGAAA ATCTCGATAA CGAGGACTTT TAGAGCTATT AGAGGTAAAA TCGAAGGAAT 701

SUBSTITUTE SHEET (RULE 26)

551

501

451

TTGGAGTGGG AACCTCACCC GTGATCTTAT TTCATTATGG TGAAAGTTGG AAGTAATACC ACTTTCAACC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CACTAGAATA TGCGGGCCAT ACGCCCGGTA 751

AatII

CGAAATGTGA GCTTTACACT CCGTGGGGTC GGCACCCCAG AGTGAGTAAT TCACTCATTA CACTCAATCG GACGTCTAAT GTGAGTTAGC CTGCAGATTA 1 2 2 2 2 2 801

ATAACAATTT TATTGTTAAA AATACGAAGG CCGAGCATAC AACACCTT AACACTCGCC TTGTGTGGAA TTGTGAGCGG TTATGCTTCC GGCTCGTATG 851

XbaI

GAATTTCTAG ACCCCCCCCC 111111 CCATGATTAC CACACAGGAA ACAGCTATGA

1666666666HindIII CTTAAAGATC TGTCGATACT GGTACTAATG GTGTGTCCTT SphI 901

ATAAGCTTGA TATTCGAACT AACTTCGTAT AATGTACGCT ATACGAAGTT TATGCTTCAA TTACATGCGA TTGAAGCATA CGCATGCCAT GCGTACGGTA 951

~~~~~

AAACAGACGG CGACATTTT TTTGTCTGCC GCTGTAAAAA GCAGATTGTG CGTCTAACAC GAAAAATGGC CTTTTTACCG GGACACTTCA CCTGTGAAGT 1001

SUBSTITUTE SHEET (RULE 23)

| d pCAL vectors (continued)   | J. O. C. |
|------------------------------|----------|
| ional pCAL vector modules ar |          |
| aps and sequences of additi  |          |
| Figure 35a: Functional ma    |          |

|            | SAAA                     | AATC<br>TTAG             | AATC<br>TTAG             | AAGA<br>TTCT             | CGTC                     | TTTT                     | 111<br>7~~<br>20000           | )<br>)<br>)    |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|----------------|
| BSrGI      | GTACATGAAA<br>CATGTACTTT | TTGTTAAATC<br>AACAATTTAG | CTTATAAATC<br>GAATATTTAG | TGGAACAAGA<br>ACCTTGTTCT | AAAAACCGTC<br>TTTTTGGCAG | CAAGTTTTTT<br>GTTCAAAAAA | BanII<br>~~~~~~<br>GGGAGCCCCC | )              |
|            | GGGGGGGGT                | CGTTAAATTT<br>GCAATTTAAA | GGCAAAATCC<br>CCGTTTTAGG | TGTTCCAGTT<br>ACAAGGTCAA | TCAAAGGGCG<br>AGTTTCCCGC | TCACCCTAAT<br>AGTGGGATTA | GAACCCTAAA                    |                |
| FseI       | GGGCCGGCCT               | TTAAAATTCG<br>AATTTTAAGC | GGCCGAAATC<br>CCGGCTTTAG | GGTTGAGTGT<br>CCAACTCACA | GACTCCAACG<br>CTGAGGTTGC | ACGAGAACCA<br>TGCTCTTGGT | CACTAAATCG                    | GIGALI PAGC    |
|            | AGGGGGGGGG               | TAATATTTG<br>ATTATAAAAC  | TTAACCAATA<br>AATTGGTTAT | ACCGAGATAG<br>TGGCTCTATC | AAAGAACGTG<br>TTTCTTGCAC | ATGGCCCACT<br>TACCGGGTGA | -                             | ACGGCA'I"I"I'C |
| PacI       | GTTTAATTAA<br>CAAATTAATT | TTGTAAACGT<br>AACATTTGCA | AGCTCATTTT<br>TCGAGTAAAA | AAAAGAATAG<br>TTTTCTTATC | GTCCACTATT<br>CAGGTGATAA | TATCAGGGCG               | GGGGTCGAGG                    | CCCCAGCTCC     |
|            | 1051                     | 1101                     | 1151                     | 1201                     | 1251                     | 1301                     | 1351                          |                |
|            |                          |                          | SUI                      |                          | HEET (RULE               | 26)                      |                               |                |
| <u>2</u> 1 |                          |                          |                          | 159 /                    | 204                      |                          |                               |                |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 1401 | GATTTAGAGC<br>CTAAATCTCG                   | TTGACGGGGA A             | AAGCCGGCGA A             | ACGTGGCGAG 7             | AAAGGAAGGG<br>TTTCCTTCCC |
|------|--------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|      | AAGAAAGCGA<br>TTCTTTCGCT                   | AAGGAGCGGG               | CGCTAGGGCG               | CTGGCAAGTG GACCGTTCAC    | TAGCGGTCAC<br>ATCGCCAGTG |
|      | GCTGCGCGTA<br>CGACGCGCAT                   | ACCACCACAC<br>TGGTGGTGTG | CCGCCGCGCT               | TAATGCGCCG<br>ATTACGCGGC | CTACAGGGCG<br>GATGTCCCGC |
|      | NheI<br>~~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | GAGTGTATAC               | TGGCTTACTA               | TGTTGGCACT<br>ACAACCGTGA | GATGAGGGTG               |
|      | IcmX                                       | Ιτ                       |                          | ?                        | AgeI                     |
|      | TCAGTGAAGT GC<br>AGTCACTTCA CG             | GCTTCATGTG<br>CGAAGTACAC | GCAGGAGAAA<br>CGTCCTCTTT | AAAGGCTGCA<br>TTTCCGACGT | CCGGTGCGTC<br>GGCCACGCAG |
|      | AGCAGAATAT<br>TCGTCTTATA                   | GTGATACAGG               | ATATATTCCG<br>TATATAAGGC | CTTCCTCGCT<br>GAAGGAGCGA | CACTGACTCG<br>GTGACTGAGC |
|      | CTACGCTCGG                                 | ; TCGTTCGACT             | GCGCCGAGCG               | GAAATGGCTT               | ACGAACGGGG               |

CCGCTGCGCC TTATCCGGTA GGCGACGCGG AATAGGCCAT

GAACCCCCG TTCAGTCCGA CTTGGGGGGC AAGTCAGGCT

CTGTATGCAC GACATACGTG

2051

and sequences of additional pCAL vector modules and pCAL vectors (continued) Figu

| SAAGTGAGAG<br>STTCACTCTC | SACAAGCATC<br>CTGTTCGTAG | AGGACTATAA<br>TCCTGATATT                                                                                                                                                      | CTCCTGTTCC<br>GAGGACAAGG                                                                                                                                                                                                                                             | CGTTTGTCTC<br>GCAAACAGAG                                                                                                                                                                                                                                                                                                                                                         | CCAAGCTGGA<br>GGTTCGACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | CCGCCCCCT                |                                                                                                                                                                               | CTCCTGCGCT<br>GAGGACGCGA                                                                                                                                                                                                                                             | GTTATGGCCG                                                                                                                                                                                                                                                                                                                                                                       | GCAGTTCGCT<br>CGTCAAGCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | TCCATAGGCT<br>AGGTATCCGA | CAGTGGTGGC<br>GTCACCACCG                                                                                                                                                      | TGGCGGCTCC<br>ACCGCCGAGG                                                                                                                                                                                                                                             | TCATTCCGCT<br>AGTAAGGCGA                                                                                                                                                                                                                                                                                                                                                         | TTCCGGGTAG<br>AAGGCCCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _                        |                          | ACGCTCAAAT<br>TGCGAGTTTA                                                                                                                                                      | CGTTTCCCCC<br>GCAAAGGGGG                                                                                                                                                                                                                                             | Agel<br>~~~~~~<br>TTTACCGGTG<br>AAATGGCCAC                                                                                                                                                                                                                                                                                                                                       | TGACACTCAG<br>ACTGTGAGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | •                        | •                                                                                                                                                                             |                                                                                                                                                                                                                                                                      | TGCCTTTCGG<br>ACGGAAAGCC                                                                                                                                                                                                                                                                                                                                                         | ATTCCACGCC<br>TAAGGTGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1751                     | 1801                     | 1851                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          |                          | CGGAGATTTC CTGGAAGATG CCAGGAAGAT ACTTAACAGG GCCTCTAAAG GACCTTCTAC GGTCCTTCTA TGAATTGTCC GGCCGCGCAAAA AGCCGTTTT TCCATAGGCT CCGCCCCCT CCGCCCCCT TTCGGCAAAA AGGTATCCGA GGCGGGGGA | CGGAGATTTC CTGGAAGATG CCAGGAAGAT ACTTAACAGG CGCCTCTAACAGG GACCTTCTAC GGTCCTTCTA TGAATTGTCC GGCGGGGGGA AGCCGTTTT TCCATAGGCT CCGCCCCCT CCGCGCGGGGGA TTCGGCAAAA AGGTATCCGA GGCGGGGGGA GCGGCGCGGGGGA TTCGGCTCAAAT CAGTGGTGGC GAAACCCGAC TGCGAGTTTA GTCACCACCG CTTTGGGCTG | 1751 CGGAGATTTC CTGGAAGATG CCAGGAAGAT ACTTAACAGG GGCTCTTCTAC GGTCCTTCTA TGAATTGTCC CGGCGCGCCCTTTT TCCATAGGCT CCGCCCCCTT CCGCCCCCTT TTCGGCAAAA AGGTATCCGA GGCGGGGGA GCCGGGGGGA TTCGGCAAAA CGTATCCGA GGCGGGGGA GACCTTTAGAC TGCGAGTTTA GTCACCACCG CTTTGGGCTG TTTGGGCTC TGCGGCTCC TGCCGCCCT GTCACCCCCCT GTCACCCCCCT GTCACCCCCCT GGCGCCTC TCTATGGTCC GCAAAGGGGG ACCGCCGAGG GAGGACGCGA | CGGAGATTTC CTGGAAGATG CCAGGAAGAT ACTTAACAGG GGCCTCTTCTA TGAATTGTCC CGCCCCCCT GGCCGCGCGCAAA AGGTATCCGA GGCGGGGGA CCGGCGCCCCT GCGGCGCCCT TTCGGCAAAA AGGTATCCGA GGCGGGGGA CCGGCGCGCC TGCCGAAATTTCCCC TGCCGCTCC CTTTGGGCTG TTTGGGCTC TGCGCGCTC CTTTGGGCTG TCTTTGGGCTC TGCGCCCGAGG GAGGACGCGT TCTATGGTC TGCGCCGAGG TTTACCGGT TCATTCCGCT GTTATGGCCGA TTTACCGGTG TCATTCCGCT GTTATGGCCG ACGGAAGCCGA CAATACCGGC AGGAAGCCGA CAATACCGGC AGGAAGCCGA CAATACCGGC AGGAAGCCCA AATGGCCAC AGTAAGGCGA CAATACCGGC |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ACCACTGGCA<br>TGGTGACCGT                                             | TCATGCGCCG<br>AGTACGCGGC                                                                   | TCCTCCAAGC<br>AGGAGGTTCG                                            | ACGAAAAACC                                             |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|
| CCGGAAAGAC ATGCAAAAGC ACCACTGGCA<br>GGCCTTTCTG TACGTTTTCG TGGTGACCGT | GTAATTGATT TAGAGGAGTT AGTCTTGAAG TCATGCGCCG<br>CATTAACTAA ATCTCCTCAA TCAGAACTTC AGTACGCGGC | GTGACTGCGC TCCTCCAAGC<br>CACTGACGCG AGGAGGTTCG                      | CAGTTACCTC GGTTCAAAGA GTTGGTAGCT CAGAGAACCT ACGAAAAACC |
| CCGGAAAGAC<br>GGCCTTTCTG                                             | TAGAGGAGTT<br>ATCTCCTCAA                                                                   | GTTAAGGCTA AACTGAAAGG ACAAGTTTTA<br>CAATTCCGAT TTGACTTTCC TGTTCAAAT | GTTGGTAGCT                                             |
| T TGAGTCCAAC                                                         | GTAATTGATT<br>CATTAACTAA                                                                   | AACTGAAAGG<br>TTGACTTTCC                                            | GGTTCAAAGA                                             |
| ACTATCGTCT<br>TGATAGCAGA                                             | GCAGCCACTG                                                                                 | GTTAAGGCTA                                                          | CAGTTACCTC                                             |
| 2101                                                                 | 2151                                                                                       | 2201                                                                | 2251                                                   |
|                                                                      |                                                                                            | !                                                                   | SUBST                                                  |

BglII

ACGCGCAGAC TGCGCGTCTG

GCAAGAGATT CGTTCTCTAA

CGTTTTCAGA GCAAAAGTCT

GCGGTTTTTT

GCCCTGCAAG

CGGGACGTTC CGCCAAAAA

GTCTCTTGGA TGCTTTTTGG

CAACCATCGA

CCAAGTTTCT

GTCAATGGAG CAGTTACCTC

2251

CATCTTATTA GTAGAATAAT CAAAACGATC TCAAGAAGAT AGTTCTTCTA GTTTTGCTAG 2351

SUBSTITUTE SHEET (AULE 25) 162 / 204

2301

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2: BsrGI

CGTTAAATTT GCAATTTAAA AACATTTGCA ATTATAAAAC AATTTTAAGC TTGTAAACGT TAATATTTTG TTAAAATTCG GTACATGAAA CATGTACTTT 1111

CCGGCTTTAG CCGTTTTAGG GGCCGAAATC GGCAAAATCC TCGAGTAAA AATTGGTTAT TTAACCAATA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

CCAACTCACA ACAAGGTCAA GGTTGAGTGT TGTTCCAGTT TTTTCTTATC TGGCTCTATC AAAAGAATAG ACCGAGATAG GAATATTTAG CTTATAAATC 101

GACTCCAACG CTGAGGTTGC GTCCACTATT AAAGAACGTG TTTCTTGCAC ACCTTGTTCT CAGGTGATAA TGGAACAAGA

AGTTTCCCGC

TCAAAGGGCG

ATGGCCCACT ACGAGAACCA TCACCCTAAT TGCTCTTGGT AGTGGGATTA TACCGGGTGA ATAGTCCCGC AAAAACCGTC TATCAGGGCG TTTTGGCAG 201

GGGGTCGAGG TGCCGTAAAG CACTAAATCG GAACCCTAAA GTGATTTAGC CTTGGGATTT ACGGCATTTC CCCCAGCTCC GTTCAAAAAA CAAGTTTTTT 251

BanII

GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG

SUBSTITUTE SHEET (RULE 20)

151

|                                                                                                   | TGCACCGCTC                                                                            |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| rises and perfectors and sequences of additional pCAL vector modules and pCAL vectors (continued) | Higure 358. FUILLUST MICHOLD MICHOLD TO THAND TOTAGE AACTGCCCCT TTCGGCCGCT TGCACCGCTC |

| CECE AAGAAAGCGA AAGGAGCGGG CGCTAGGGCCG CTGGCAAGTG | て くて こうじ しょくしょくしょく                          | 011011000E   |
|---------------------------------------------------|---------------------------------------------|--------------|
| CGCTAGGGCG                                        | C CCCCEACCC R                               | C GCGAICCCGC |
| AAGGAGCGGG                                        |                                             | TTCCTCGCC    |
| AAGAAAGCGA                                        |                                             | TTCTTTCGCT   |
| ע ע ט ט ע                                         | ֚֚֚֚֡֝֟֝֟֟֝֟֝֟֝֟֝֟֟֝֟֟֝֟<br>֓֓֓֓֓֓֓֓֓֓֓֓֓֞֟ | TTTCCTTCCC   |
| נחנ                                               | 32T                                         |              |

| STCAC GCTGCGCGTA ACCACACAC CCGCCGCGCGT TAATGCGCCG | CAGTG CGACGCGCAT TGGTGTGTG GGCGGCGCGT 1111CCCCCC |
|---------------------------------------------------|--------------------------------------------------|
| CCGCCGCGCT                                        | 6666666666                                       |
| ACCACCACAC                                        | 919199199.T                                      |
| GCTGCGCGTA                                        | CGACGCGCAT                                       |
| TAGCGGTCAC                                        | ATCGCCAGTG                                       |
| 401                                               |                                                  |

NheI

|           | TGTTGGCACT<br>ACAACCGTGA | AgeI |
|-----------|--------------------------|------|
|           | тGGСТТАСТА<br>АССGААТGАТ |      |
|           | SAGTGTATAC               | ,    |
| 2 2 2 2 2 | CGTGCTAGCG (             | •    |
|           | CTACAGGGCG<br>GATGTCCCGC |      |
|           | 451                      |      |

165 / 204

| TGGCTTACTA TGTTGGCACT<br>ACCGAATGAT ACAACCGTGA | AgeI  | AAAGGCTGC                                                         |
|------------------------------------------------|-------|-------------------------------------------------------------------|
| TGGCTTACTA TGTTGGCACT<br>ACCGAATGAT ACAACCGTGA |       | GCAGGAGAAA<br>CGTCCTCTTT                                          |
| GAGTGTATAC<br>CTCACATATG                       | II    | GATGAGGGTG TCAGTGAAGT GCTTCATGTG CTACTCCCAC AGTCACTTCA CGAAGTACAC |
| CGTGCTAGCG                                     | IcumX | TCAGTGAAGT GCTTC<br>AGTCACTTCA CGAAG                              |
| CTACAGGGCG (                                   |       | GATGAGGGTG                                                        |
| 451                                            |       | 501                                                               |
| SUBSTITUTE                                     | SHEET | (RULE 26)                                                         |

|      |                                       | CTTCCTCGCT              | CAG TCGTCTTATA CACTATGTCC TATATAAGGC GAAGGAGCGA |
|------|---------------------------------------|-------------------------|-------------------------------------------------|
|      |                                       | r GTGATACAGG ATATATTCCG | TATATAAGGC                                      |
|      |                                       | GTGATACAGG              | CACTATGTCC                                      |
|      |                                       | TC AGCAGAATAT           | TCGTCTTATA                                      |
| AgeI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | CCGGTGCGTC              | GGCCACGCAG                                      |
|      |                                       | ת<br>7                  | 1                                               |

CACTGACTCG CTACGCTCGG TCGTTCGACT GCGGCGAGCG GAAATGGCTT 601

GCAGTTCGCT

TTCCGGGTAG

TGACACTCAG

CGTTTGTCTC ATTCCACGCC

901

GTGACTGAGC GATGCGAGCC AGCAAGCTGA CGCCGCTCGC CTTTACCGAA Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ACTTAACAGG TGAATTGTCC GCCTCTAAAG GACCTTCTAC GGTCCTTCTA CCAGGAAGAT CTGGAAGATG CGGAGATTTC TGCTTGCCCC ACGAACGGGG 651

GGCCGCGCA AAGCCGTTTT TCCATAGGCT CCGCCCCCT GGCGGGGGGA TTCGGCAAAA AGGTATCCGA CCGGCGCCGT CTTCACTCTC GAAGTGAGAG 701

ACGAAATCTG ACGCTCAAAT CAGTGGTGGC GAAACCCGAC CTTTGGGCTG GTCACCACCG TGCTTTAGAC TGCGAGTTTA CTGTTCGTAG GACAAGCATC 751

GCAAAGGGGG ACCGCCGAGG GAGGACGCGA CTCCTGCGCT AGGACTATAA AGATACCAGG CGTTTCCCCC TGGCGGCTCC TCCTGATATT TCTATGGTCC 801

AgeI

22222

GTTATGGCCG CAATACCGGC TCATTCCGCT AGTAAGGCGA TTTACCGGTG AAATGGCCAC CTCCTGTTCC TGCCTTTCGG ACGGAAAGCC GAGGACAAGG 851

GGCGACGCGG CCGCTGCGCC CGTCAAGCGA TTCAGTCCGA AAGGCCCATC AAGTCAGGCT GAACCCCCCG CTTGGGGGGC ACTGTGAGTC TAAGGTGCGG CTGTATGCAC GACATACGTG GCAAACAGAG CCAAGCTGGA GGTTCGACCT 951

SUBSTITUTE SHEET (RULE 26)

### INTERNATIONAL SEARCH REPORT Int onal Application No

information on patent family members

PCT/EP 96/03647

| Patent document<br>cited in search report | Publication date |                                                                      |                                                                                       | Publication<br>date                                                                          |
|-------------------------------------------|------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| EP-A-0368684                              | 16-05-90         | AU-B-<br>AU-A-<br>CA-A-<br>DE-D-<br>DE-T-<br>ES-T-<br>WO-A-<br>JP-T- | 634186<br>4520189<br>2002868<br>68913658<br>68913658<br>2052027<br>9005144<br>3502801 | 18-02-93<br>28-05-90<br>11-05-90<br>14-04-94<br>08-09-94<br>01-07-94<br>17-05-90<br>27-06-91 |
| WO-A-9511998                              | 04-05-95         | AU-A-<br>EP-A-                                                       | 8091694<br>0725838                                                                    | 22-05-95<br>14-08-96                                                                         |

#### INTERNATIONAL SEARCH REPORT

Int sonal Application No PCT/EP 96/03647

|            |                                                                                                                                                                                                                                                                                                                                                                       | PC1/EP 96/03647       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|            | nton) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                             | Relevant to claim No. |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                    |                       |
| A          | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document                                                                                                                                | 1-55                  |
| A          | WO 95 11998 A (UNITED BIOMEDICAL INC) 4<br>May 1995<br>see the whole document                                                                                                                                                                                                                                                                                         | 1-55                  |
| A          | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4                                                                                               | 1-55                  |
|            | CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994, | 1-55                  |
| ı          |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
| ]          |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |
|            |                                                                                                                                                                                                                                                                                                                                                                       |                       |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |                          |                          |                          |                          |          |                          | _                        |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------|--------------------------|--------------------------|
| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT<br>CGTTCTCTAA | Bglii    | GATCTAGCAC<br>CTAGATCGTG | ຼອອອວອອອອວອ              |
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĠGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT | <b>?</b> | CATCTTATTA<br>GTAGAATAAT | AAAAAAATTA<br>TTTTTTAAT  |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA |          | TCAAGAAGAT<br>AGTTCTTCTA | TAACTGCCTT<br>ATTGACGGAA |
| ACTATCGTCT<br>TGATAGCAGA | GCAGCCACTG               | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC |          | CAAAACGATC<br>GTTTTGCTAG | AGGGCACCAA               |
| TTATCCGGTA<br>AATAGGCCAT | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG<br>AGTACGCGGC | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG |          | ACGCGCAGAC<br>TGCGCGTCTG | CAGGCGTTTA<br>GTCCGCAAAT |
| 1001                     | 1051                     | 1101                     | 1151                     | 1201                     |          | 1251                     | 1301                     |
|                          |                          | ;                        | SUBSTITUTE               | E SHEET (RU              | LE 26)   |                          |                          |

GTGAACACTA TCCCATATCA CACTTGTGAT AGGGTATAGT

TGTAACAAGG ACATTGTTCC

TGGAAAACGG ACCTTTTGCC

AGTTTGCTCA TCAAACGAGT

1701

|                                                                       | ( |
|-----------------------------------------------------------------------|---|
| (continued)                                                           |   |
| vectors                                                               |   |
| క్ష                                                                   |   |
| Functional maps and sequences of additional pCAL vector modules and p |   |
| Figure 35a:                                                           |   |

| TGCCGACATG                                                                  | GGCATCAGCA               | GGGGCGAAG                | AACTCACCCA               | TTAGGGAAAT               | TATGTGTAGA | AAAACGTTTC                                     |
|-----------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|------------------------------------------------|
| ACGGCTGTAC                                                                  | CCGTAGTCGT               | CCCCCGCTTC               | TTGAGTGGGT               | AATCCCTTTA               | ATACACATCT | TTTTGCAAAG                                     |
| TTAAGCATTC                                                                  | AATCGCCAGC               | TAGTGAAAAC               | AAACTGGTGA               | AATAAACCCT               | CTTGCGAATA | CAGAGCGATG                                     |
| AATTCGTAAG                                                                  | TTAGCGGTCG               | ATCACTTTTG               | TTTGACCACT               | TTATTTGGGA               |            | GTCTCGCTAC                                     |
| TTGTAATTCA                                                                  | GATGAACCTG<br>CTACTTGGAC | TATTTGCCCA<br>ATAAACGGGT | GTTTAAATCA<br>CAAATTTAGT | ACATATTCTC<br>TGTATAAGAG | CACGCCACAT | AATCGTCGTG GTATTCACTC<br>TTAGCAGCAC CATAAGTGAG |
| CGCAGTACTG TTGT                                                             | CAAACGGCAT               | TTGCGTATAA               | TATTGGCTAC               | GAGACGAAAA               | TTCACCGTAA | AATCGTCGTG                                     |
|                                                                             | GTTTGCCGTA               | AACGCATATT               | ATAACCGATG               | CTCTGCTTTT               | AAGTGGCATT | TTAGCAGCAC                                     |
| Figure 35a: Functional maps and sequences of aut 1351 TGCCACTCAT ACGGTGAGTA | GAAGCCATCA               | CCTTGTCGCC               | AAGTTGTCCA               | GGGATTGGCT               | AGGCCAGGTT | AACTGCCGGA                                     |
|                                                                             | CTTCGGTAGT               | GGAACAGCGG               | TTCAACAGGT               | CCCTAACCGA               | TCCGGTCCAA | TTGACGGCCT                                     |
| re 35a: Functional<br>1351                                                  | 1401                     | 1451                     | 1501                     | 1551<br>1551             | (RULE 26)  | 1651                                           |
| Figu                                                                        |                          |                          |                          | 168 / 204                | ,          |                                                |

|              | ř                                     |
|--------------|---------------------------------------|
|              | ì                                     |
|              | Č                                     |
| _            | ζ                                     |
| <del>g</del> | E                                     |
| 2            | (                                     |
| Ξ.           | ۴                                     |
| ဥ            | _                                     |
| <u>ج</u>     | ï                                     |
| ş            | ì                                     |
| š            | (                                     |
| 7            | f                                     |
| ರ್ಷ          | t                                     |
| þ            | ,                                     |
| ä            | `                                     |
| S            | ì                                     |
| Ξ.           | •                                     |
| ŏ            | 1                                     |
| <u>-</u>     | i                                     |
| 유            | 1                                     |
| š            | 4                                     |
| 7            | C C C C C C C C C C C C C C C C C C C |
| Š            |                                       |
| =            |                                       |
| ũ            |                                       |
| ≅            |                                       |
| 용            |                                       |
| Ę            |                                       |
| 2 0          |                                       |
| 2            |                                       |
| ē            |                                       |
| 탏            |                                       |
| ×            |                                       |
| Ĕ            |                                       |
| Š            |                                       |
| Jac          | •                                     |
| =            |                                       |
| E E          |                                       |
| :2           |                                       |
| JI.          |                                       |
| Ē            |                                       |
| 5.           |                                       |
| 7            | •                                     |
| 1            | ;                                     |
| <u>.</u>     | 'n                                    |
| u.           | •                                     |

| AGCATTCATC<br>TCGTAAGTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GCTTATTTT<br>CGAATAAAAA  | GTCTGGTTAT<br>CAGACCAATA | TTTACGATGC<br>AAATGCTACG | TCTCCATTTT<br>AGAGGTAAAA | ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|------------|
| CCGGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAAAACTTGT<br>ATTTTGAACA | CAGCTGAACG<br>GTCGACTTGC | CAAAATGTTC<br>GTTTTACAAG | GTGATTTTT<br>CACTAAAAAA  | CTCAAAAAAT<br>GAGTTTTTTA | AACCTCACCC<br>TTGGAGTGGG                   | GCTTTACACT |
| GCCATACGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGGA CGGA CGGA CGGGA CGGA CGGGA CGGGA CGGGA CGGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGGA CGA C | AAAGGCCGGA<br>TTTCCGGCCT | CCGTAATATC<br>GGCATTATAG | TGAAATGCCT<br>ACTTTACGGA | GGTATATCCA<br>CCATATAGGT | ATCTCGATAA<br>TAGAGCTATT | TGAAAGTTGG                                 |            |
| GTCTTTCATT  CAGAAAGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC<br>TCGTTGACTG | TATCAACGGT<br>ATAGTTGCCA | GCTCCTGAAA<br>CGAGGACTTT | TTCATTATGG                                 | • •        |
| ure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (CONTROPT) (1751 CCAGCTCACC GTCTTTCATT GCCATACGGA ACT) (GGTCGAGTGG CAGAAAGTAA CGGTATGCCT TGA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGGCGGGCAA<br>TCCGCCCGTT | CTTTACGGTC<br>GAAATGCCAG | AGGTACATTG               | CATTGGGATA<br>GTAACCCTAT | AGCTTCCTTA<br>TCGAAGGAAT | GTGATCTTAT                                 | GTGAGTTAGC |
| ure 35a: Functional<br>1751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801                     | 1851                     | 1901                     | 1951<br>1951             | 7 0 0 7 (RULE 26)        | 2051                                       | 2101       |

CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCGAGCATAC AACACCTT AACACTCGCC TATTGTTAAA GTGTGTCCTT TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA GGCTCGTATG 2151

~~~~~ SphI XbaI

CGCATGCCAT GCGTACGGTA CTTAAAGATC TGGGGGGGGG ACAGCTATGA CCATGATTAC GAATTTCTAG ACCCCCCCC GGTACTAATG TGTCGATACT 2201

CCTGTGAAGT GGACACTTCA AACTTCGTAT AATGTACGCT ATACGAAGTT ATAAGCTTGA

HindIII

GTTTAATTAA 122222 PacI TTACATGCGA TATGCTTCAA TATTCGAACT CGACATTTT TTTGTCTGCC GAAAAATGGC GCAGATTGTG TTGAAGCATA 2301 2251

AGGAAACTAG GGGGGGGC CGGCCATTAT CAAAAGGAT CTCAAGAAGA TCCTTTGATC CAAATTAATT GAGTTCTTCT GCTGTAAAA AAACAGACGG CTTTTTACCG CGTCTAACAC FseI 2351

GTTTTTCCTA

GCCGGTAATA

500000000

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTAAGGGAT
CAATTCCCTA | СТТТТАААТТ
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC | TACCGCGAGA
ATGGCGCTCT | CCAGCCGGAA
GGTCGGCCTT | CATCCAGTCT
GTAGGTCAGA | |
|--------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| GAAAACTCAC G'
CTTTTGAGTG C | CACCTAGATC C
GTGGATCTAG G | TATATGAGTA A
ATATACTCAT I | ACCTATCTCA G
TGGATAGAGT C | CCGTCGTGTA C | GCTGCAATGA C | AATAAACCAG
TTATTTGGTC | TATCCGCCTC | |
| TCAGTGGAAC (AGTCACCTTG) | AAAGGATCTT (TTTCCTAGAA | ATCTAAAGTA '
TAGATTTCAT | TCAGTGAGGC | GCCTGACTCC
CGGACTGAGG | TGGCCCCAGT | ATTTATCAGC
TAAATAGTCG | CCTGCAACTT
GGACGTTGAA | |
| GGTCTGACGC C | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA | GCTTACCATC
CGAATGGTAG | CCGGCTCCAG
GGCCGAGGTC | CAGAAGTGGT
GTCTTCACCA | |
| TTTTCTACGG (AAAAGATGCC) | TTTGGTCATG A | AAAAATGAAG ' | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG | ATACGGGAGG
TATGCCCTCC | CCCACGCTCA
GGGTGCGAGT | GGGCCGAGCG | |
| 2401 | 2451 | 2501 | 2551 | 7 (RI | JLE 26) | 2701 | 2751 | |
| SUBSTITUTE SHEET (RULE 26) 171 / 204 | | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTAATAGTTT | CGCTCGTCGT | GCGAGTTACA | GTCCTCCGAT | GTTATGGCAG | CTTTTCTGTG | TGCGGCGACC | CCACATAGCA |
|----------------------------|------------------------|--------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| AATTATCAAA | GCGAGCAGCA | CGCTCAATGT | CAGGAGGCTA | CAATACCGTC | GAAAAGACAC | ACGCCGCTGG | GGTGTATCGT |
| AGTTCGCCAG | CGTGGTGTCA | AACGATCAAG | AGCTCCTTCG | ATCACTCATG | CCGTAAGATG | GAATAGTGTA | TAATACCGCG |
| TCAAGCGGTC | | TTGCTAGTTC | TCGAGGAAGC | TAGTGAGTAC | GGCATTCTAC | CTTATCACAT | ATTATGGCGC |
| TAGAGTAAGT | CTACAGGCAT | TCCGGTTCCC | AAAAGCGGTT | CCGCAGTGTT | GTCATGCCAT | GTCATTCTGA | CAATACGGGA |
| ATCTCATTCA | GATGTCCGTA | AGGCCAAGGG | TTTTCGCCAA | GGCGTCACAA | CAGTACGGTA | CAGTAAGACT | GTTATGCCCT |
| GCCGGGAAGC | GTTGCCATTG | TTCATTCAGC | TGTTGTGCAA | AGTAAGTTGG | TTCTCTTACT | ACTCAACCAA | TGCCCGGCGT |
| | CAACGGTAAC | AAGTAAGTCG | ACAACACGTT | TCATTCAACC | AAGAGAATGA | TGAGTTGGTT | ACGGGCCGCA |
| ATTAACTGTT (
TAATTGACAA | GCGCAACGTT (CGCGTTGCAA | TTGGTATGGC A | TGATCCCCCA
ACTAGGGGGT | CGTTGTCAGA
GCAACAGTCT | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT |
| 2801 | 2851 | 2901 | SUBSTITUTE STATES | 3001
3001 | 5 3051 | 3101 | 3151 |
| | | | | 2 / 204 | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

| GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA
CTTCGTAAAT | | |
|--------------------------------------|--------------------------|--------------------------|--------------------------|--|-------|--|
| GTTCTTCGGG C | TCGATGTAAC (AGCTACATTG (| CACCAGCGTT G | AGGGAATAAG
TCCCTTATTC | CAATATTATT
GTTATAATAA | BsrGI | ATTTGAAT
TAAACTTA |
| ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT
CTCTAGGTCA | CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA
CGGCGTTTTT | CTTCCTTTTT
GAAGGAAAAA | | GCGGATACAT
CGCCTATGTA |
| AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT
TTCCGTTTTA | AAATGTTGAA TACTCATACT
TTTACAACTT ATGAGTATGA | | TCAGGGTTAT TGTCTCATGA
AGTCCCAATA ACAGAGTACT |
| GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA | ACCCAACTGA
TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA
TTTACAACTT | | TCAGGGTTAT |
| 3201 | 3251 | 3301 | 3351 | 3401 | | 3451 |
| SUBSTITUTE SHEET (SULE 26) 173 / 204 | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (FULE 26)
174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| Aatii | GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | SphI
~~~~~~
cGCATGCCAT
GCGTACGGTA | CCTGTGAAGT
GGACACTTCA |
|------------------|--------------------------|---------------------------|--------------------------|--|---|
| · | ACGAAGTTAT
TGCTTCAATA | GCTTTACACT | ATAACAATTT
TATTGTTAAA | ACCCCCCCC
TGGGGGGGGG | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT |
| | TGTATGCTAT
ACATACGATA | GGCACCCCAG
CCGTGGGGGTC | TTGTGAGCGG | XbaI
~~~~~~
GAATTTCTAG A
CTTAAAGATC I | ATACGAAGTT
TATGCTTCAA |
| | CTTCGTATAA
GAAGCATATT | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | CCATGATTAC
GGTACTAATG | AATGTACGCT |
|)-3:
Bglii | GATCTCATAA
CTAGAGTATT | GTGAGTTAGC | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA |
| pCALO-3:
BglI | Н | 51 | 101 | 151 | 201 |

SUBSTITUTE SHEET (RULE 26)

TATITICGITC ATCCATAGIT GCCTGACTCC CCGTCGTGTA GATAACTACG ATAAAGCAAG TAGGTATCAA CGGACTGAGG GGCAGCACAT CTATTGATGC

551

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GAAAAATGGC GCAGATTGTG CGACATTTTT TTTGTCTGCC GTTTAATTAA
GAAAAATGGC GCAGATTGTG CGACATTTTTTTTTTTTAATT | |
|---|------------|
| TTTGTCTGCC | |
| CGACATITIT | |
| GCAGATTGTG | CGICIAACAC |
| GAAAAATGGC | CTTTTTACCG |
| 251 | |

FseI

| TCCTTTGATC | GTTAAGGGAT | CTTTTAAATT | AACTTGGTCT | GCGATCTGTC |
|-----------------------|-----------------------|----------------------------------|-----------------------|-----------------------|
| AGGAAACTAG | CAATTCCCTA | GAAAATTTAA | TTGAACCAGA | CGCTAGACAG |
| CTCAAGAAGA TCCTTTGAIC | | CACCTAGATC | TATATGAGTA | ACCTATCTCA |
| GAGTTCTTCT AGGAAACTAG | | GTGGATCTAG | ATATACTCAT | TGGATAGAGT |
| CAAAAAGGAT | TCAGTGGAAC GAAAACTCAC | AAAGGATCTT | ATCTAAAGTA | TCAGTGAGGC |
| GTTTTCCTA | AGTCACCTTG CTTTTGAGTG | TTTCCTAGAA | TAGATTTCAT | AGTCACTCCG |
| | GGTCTGACGC | TTTGGTCATG AGATTATCAA AAAGGATCTT | TTTTAAATCA ATCTAAAGTA | GACAGTTACC CAATGCTTAA |
| | CCAGACTGCG | AAACCAGTAC TCTAATAGTT TTTCCTAGAA | AAAATTTAGT TAGATTTCAT | CTGTCAATGG GTTACGAATT |
| GGGGGGGC CGGCCATTAT | TTTTCTACGG | TTTGGTCATG | AAAAATGAAG | GACAGTTACC |
| CCCCCCCCG GCCGGTAATA | AAAAGATGCC | AAACCAGTAC | TTTTTACTTC | CTGTCAATGG |
| 301 | 351 | 401 | 451 | 501 |

SUBSTITUTE SHEET (BULE 20)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | | | r. A | i d | | ပ စု | ပ္ပက္ဆ |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|--------------------------|--------------------------|
| ATGCAAAAGC
TACGTTTTCG | AGTCTTGAAG
TCAGAACTTC | GTGACTGCGC
CACTGACGCG | CAGAGAACCT
GTCTCTTGGA | GCAAGAGATT
CGTTCTCTAA | BglII | GATCTAGCAC
CTAGATCGTG | , ceccccecce |
| CCGGAAAGAC | TAGAGGAGTT
ATCTCCTCAA | ACAAGTTTTA
TGTTCAAAAT | GTTGGTAGCT
CAACCATCGA | CGTTTTCAGA
GCAAAAGTCT | } | CATCTTATTA
GTAGAATAAT | AAAAAAATTA
TTTTTTAAT |
| TGAGTCCAAC (ACTCAGGTTG) | GTAATTGATT ' | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTT
CGCCAAAAAA | | TCAAGAAGAT
AGTTCTTCTA | TAACTGCCTT
ATTGACGGAA |
| ACTATCGTCT 1 | | GTTAAGGCTA | CAGTTACCTC
GTCAATGGAG | GCCCTGCAAG
CGGGACGTTC | | CAAAACGATC
GTTTTGCTAG | AGGGCACCAA
TCCCGTGGTT |
| TTATCCGGTA A | | | • | ACGAAAAACC
TGCTTTTTGG | ,
, | ACGCGCAGAC | CAGGCGTTTA |
| 1001 | 1051 | 1101 | 1151 | 1201 | | 1251 | 1301 |
| rigure 334 | | | SUBSTIT | TUTE SHEET
167 / 204 | (RULE 2 | 26) | |

AAATGTTGAA TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA

GITITITGICC TICCGITITIA CGGCGITITIT ICCCTTAITC

1351

| CTTTTCTGT
GAAAAGACA |
|---|
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1001 CACTGCATAA TTCTCTTACT GTCATGCCAT CCGTAAGATG CTTTTCTGTG GTGACGTATT AAGAGAATGA CAGTACGGTA GGCATTCTAC GAAAAGACAC |

| GT ACTCAACCAA GTCATTCTGA GAATAGTGTA TGCGGCGACC | GAGTIGCICI TGCCCGGCGT CAATACGGGA TAATACCGCG CCACATAGCA
CTCAACGAGA ACGGGCCGCA GTTATGCCCT ATTATGGCGC GGTGTATCGT |
|--|--|
| GAATAGTGTA
CTTATCACAT | TAATACCGCG
ATTATGGCGC |
| GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT |
| ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA |
| ACTGGTGAGT ACTCAACCAA GTCATTCTGA GAATAGTGTA TGCGGCGACC
TGACCACTCA TGAGTTGGTT CAGTAAGACT CTTATCACAT ACGCCGCTGG | GAGTTGCTCT TGCCCGGCGT CAATACGGGA TAATACCGCG CCACATAGCA CTCAACGAGA ACGGGCCGCA GTTATGCCCT ATTATGGCGC GGTGTATCGT |
| 1051 | 11:01 |

XmnI

| | GCGTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC |
|---|--|--|--|--|
| ~ | AA AGTGCTCATC ATTGGAAAAC GTTCTTCGGG GCGAAAACTC
TT TCACGAGTAG TAACCTTTTG CAAGAAGCCC CGCTTTTGAG | TCGATGTAAC
AGCTACATTG | ACCCAACTGA TCCTCAGCAT CTTTTACTTT CACCAGCGTT TCTGGGTGAG
TGGGTTGACT AGGAGTCGTA GAAAATGAAA GTGGTCGCAA AGACCCACTC | CAAAAACAGG AAGGCAAAAT GCCGCAAAAA AGGGAATAAG GGCGACACGG |
| 222222222 | ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT
CTCTAGGTCA | CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA |
| • | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT |
| | GAACTTTAAA AGTGCTCATC ATTGGAAAAC GTTCTTCGGG
CTTGAAATTT TCACGAGTAG TAACCTTTTG CAAGAAGCCC | TCAAGGATCT TACCGCTGTT GAGATCCAGT TCGATGTAAC CCACTCGCGC
AGTTCCTAGA ATGGCGACAA CTCTAGGTCA AGCTACATTG GGTGAGCGCG | ACCCAACTGA TCCTCAGCAT
TGGGTTGACT AGGAGTCGTA | CAAAAACAGG |
| | 1151 | 1201 | 1251 | 1301 |
| SUE | | SHEET (RU! | _E 26) | |
| | 178 | 204 . | • | |

TITACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI

~~~~~

| GTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT ACATGAAATT<br>CCAATA ACAGAGTACT CGCCTATGTA TAAACTTACA TGTACTTTAA          | GTTAAATCAG                                   |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| ATTTGAATGT<br>TAAACTTACA                                                                                         | SHAPPER AND AND AND THE STANDART GITANATICAG |
| GCGGATACAT<br>CGCCTATGTA                                                                                         | AAAATTCGCG                                   |
| TGTCTCATGA<br>ACAGAGTACT                                                                                         | ል ጥ እ ጥጥጥጥ(ሩጥጥ                               |
| TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT ACATGAAATT<br>AGTCCCAATA ACAGAGTACT CGCCTATGTA TAAACTTACA TGTACTTTAA |                                              |
| 1401                                                                                                             |                                              |

| GITA AIAITITAAGCGC AATTTAAAAA CAATTTAGTC | THE AACCAATAGG CCGAAATCGG CAAAATCCCT TATAAATCAA |
|------------------------------------------|-------------------------------------------------|
| AATTTAAAAA                               | CAAAATCCCT                                      |
| TTTTAAGCGC                               | CCGAAATCGG                                      |
| TATAAAACAA                               | AACCAATAGG                                      |
| GTAAACGTTR<br>CATTTGCAAT                 |                                                 |
| 1451                                     | 7<br>C<br>L                                     |
|                                          | SUE                                             |

| rttt aaccaatagg ccgaaticg criittagga atatttagtt<br>aaaa itggitaicc ggciittagcc gittitagga atatttagtt | ATAGAC CGAGATAGGG TTGAGTGTTG TTCCAGTTTG GAACAAGAGT<br>TATCTG GCTCTATCCC AACTCACAAC AAGGTCAAAC CTTGTTCTCA |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| GTTTTAGGGA                                                                                           | TTCCAGTTTG<br>AAGGTCAAAC                                                                                 |
| GGCTTTAGCC                                                                                           | TTGAGTGTTG<br>AACTCACAAC                                                                                 |
| AACCAATAGG<br>TTGGTTATCC                                                                             | TAGAC CGAGATAGGG 1                                                                                       |
| CTCATTTTT<br>GAGTAAAAAA                                                                              | AAGAATAGAC<br>TTCTTATCTG                                                                                 |
| 1501                                                                                                 | 1551                                                                                                     |
| UBSTITU                                                                                              | JTE SHEET (                                                                                              |

| AAACCGTCTA<br>TTTGGCAGAT                                                                                     |
|--------------------------------------------------------------------------------------------------------------|
| ACTATTAA AGAACGTGGA CTCCAACGTC AAAGGGCGAA AAACCGTCTA<br>TGATAATT TCTTGCACCT GAGGTTGCAG TTTCCCGCTT TTTGGCAGAT |
| CTCCAACGTC<br>GAGGTTGCAG                                                                                     |
| AGAACGTGGA<br>TCTTGCACCT                                                                                     |
| CCACTATTAA                                                                                                   |
| 1601                                                                                                         |
| (RULE 26)                                                                                                    |

TCAGGGCGAT GGCCCACTAC GAGAACCATC ACCCTAATCA AGTTTTTTGG AGTCCCGCTA CCGGGTGATG CTCTTGGTAG TGGGATTAGT TCAAAAAACC 1651

BanII

~~~~~

SUBSTITUTE SHEET (RULE 26) 179 / 204

| ences of additional pCAL vector modules and pCAL vectors (continued) GGTG CCGTAAAGCA CTAAATCGGA ACCCTAAAGG GAGCCCCCGA CCAC GGCATTTCGT GATTTAGCCT TGGGATTTCC CTCGGGGGCT | TITAGAGCTT GACGGGGAAA GCCGGCGAAC GTGGCGAGAA AGGAAGGGAAA |
|---|---|
| ntinued)
ACCCTAAAGG
TGGGATTTCC | GTGGCGAGAA
CACCGCTCTT |
| ules and pCAL vectors fcor
CTAAATCGGA
GATTTAGCCT | GCCGGCGAAC
CGGCCGCTTG |
| Sitional pCAL vector modu
CCGTAAAGCA
GGCATTTCGT | GACGGGGAAA
CTGCCCCTTT |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1701 GGTCGAGGTG CCGTAAAGCA CTAAATCGGA ACCCTAAAGG GAGCCCCGA 1701 GGTCGAGGTG CGGTTTTCGT GATTTAGCCT TGGGATTTCC CTCGGGGGCT | TTTAGAGCTT |
| Figure 35a: Functional 1701 | 1751 |

TTTAGAGCTT GACGGGGAAA AAATCTCGAA CTGCCCCTTT

| | GCGGTCACGC
CGCCAGTGCG | ACAGGGCGCG
TGTCCCGCGC | rga TGAGGGTGTC
ACT ACTCCCACAG
AgeI | | AGGCTGCACC GGTGCGTCAG
TCCGACGTGG CCACGCAGTC | CTGACTCGCT | |
|----------------------------|-----------------------------------|--|---|------|--|--|-----|
| | GGCAAGTGTA
CCGTTCACAT | ATGCGCCGCT
TACGCGGCGA | TTGGCACTGA | AgeI | | TCCTCGCTCA | |
| | CTAGGGCGCT (GATCCCGCGA) | GCCGCGCTTA ATGCGCCGCT
CGGCGCGAAT TACGCGGCGA | GCTTACTATG
CGAATGATAC | | AGGAGAAAAA
TCCTCTTTTT | ATATTCCGCT
TATAAGGCGA | |
| | GGAGCGGGCG CCTCGCCCGC CCACCACACCC | | GTGTATACTG
CACATATGAC | | C TTCATGTGGC | CAGAATATGT GATACAGGAT
GTCTTATACA CTATGTCCTA | |
| AAATOTOTO | GAAAGCGAAA (| | NheI
~~~~~
TGCTAGCGGA
ACGATCGCCT | IrmX | AGTGAAGTGC
TCACTTCACG | CAGAATATGT
GTCTTATACA | · · |
| | 1801 | 1851 | 1901 | | 1951 | 2001 | |
| SUBSTITUTE SHEET (RULE 26) | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | | | rh r\ | <i>የ</i> ካ ፖ) | TA TA | | |
|--------------------------------------|------------------------------|--------------------------|--------------------------|---------------------------|--|--|--|
| GAACGGGGCG
CTTGCCCCGC | AGTGAGAGGG
TCACTCTCCC | CAAGCATCAC
GTTCGTAGTG | GACTATAAAG
CTGATATTTC | CCTGTTCCTG
GGACAAGGAC | TTTGTCTCAT
AAACAGAGTA
AAGCTGGACT
TTCGACCTGA | | |
| GAAC | AGTG/
TCAC' | CAAG | GACT | CCTG | | | |
| AATGGCTTAC
TTACCGAATG | TTAACAGGGA
AATTGTCCCT | GCCCCCTGA
CGGGGGGACT | AACCCGACAG
TTGGGCTGTC | CCTGCGCTCT
GGACGCGAGA | TATGGCCGCG
ATACCGGCGC
AGTTCGCTCC
TCAAGCGAGG | | |
| GGCGAGCGGA A | AGGAAGATAC
TCCTTCTATG | CATAGGCTCC
GTATCCGAGG | GTGGTGGCGA | GCGGCTCCCT
CGCCGAGGGA | ATTCCGCTGT
TAAGGCGACA
CCGGGTAGGC
GGCCCATCCG | | |
| GTTCGACTGC C | GGAAGATGCC 1
CCTTCTACGG ' | GCCGTTTTTC | GCTCAAATCA
CGAGTTTAGT | TTTCCCCCTG
AAAGGGGGGAC | AgeI TACCGGTGTC ATGGCCACAG ACACTCAGTT TGTGAGTCAA | | |
| ACGCTCGGTC (| _ | CCGCGGCAAA | GAAATCTGAC
CTTTAGACTG | ATACCAGGCG
TATGGTCCGC | CCTTTCGGTT
GGAAAGCCAA
TCCACGCCTG
AGGTGCGGAC | | |
| 2051 | 2101 | 2151 | 2201 | 2251 | 2301 | | |
| SUBSTITUTE SHEET (RULE 26) 181 / 204 | | | | | | | |

AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

2701

| (() () () () () () () () () (| ATCCGGI | \$ 6 6 6 E |
|--|--|----------------|
| Exercises and semiences of additional pCAL vector modules and pCAL vectors (continued) | Figure 35a: Functional maps and Sequence of the Second Season of the Season Sea | TISTICAL CERTS |

| ATCCGGTAAC
TAGGCCATTG | CACTGGCAGC
GTGACCGTCG | ATGCGCCGGT
TACGCGGCCA | CTCCAAGCCA
GAGGTTCGGT | GAAAAACCGC
CTTTTTGGCG | GCGCAGACCA | | |
|---|--------------------------|--------------------------|--------------------------|--------------------------|--|-------|--|
| GCTGCGCCTT
CGACGCGGAA | GCAAAAGCAC
CGTTTTCGTG | TCTTGAAGTC
AGAACTTCAG | GACTGCGCTC
CTGACGCGAG | GAGAACCTAC
CTCTTGGATG | AAGAGATTAC
TTCTCTAATG | | |
| CAGTCCGACC | GGAAAGACAT
CCTTTCTGTA | GAGGAGTTAG
CTCCTCAATC | AAGTTTTAGT
TTCAAAATCA | TGGTAGCTCA
ACCATCGAGT | TTTTCAGAGC | Bglii | |
| additional pear vector incours singly A ACCCCCCGTT CAGTO I TGGGGGGCAA GTCAO | AGTCCAACCC
TCAGGTTGGG | AATTGATTTA
TTAACTAAAT | CTGAAAGGAC
GACTTTCCTG | TTCAAAGAGT
AAGTTTCTCA | CCTGCAAGGC GGTTTTTTCG
GGACGTTCCG CCAAAAAAGC | | |
| Figure 35a: Functional maps and sequences of add 2401 GTATGCACGA CATACGTGCT | TATCGTCTTG
ATAGCAGAAC | AGCCACTGGT
TCGGTGACCA | TAAGGCTAAA
ATTCCGATTT | GTTACCTCGG | CCTGCAAGGC
GGACGTTCCG | | |
| lure 35a: Functional
2401 | 2451 | 2501 | 2551 | 2601 | | | |
| Fig | 182 / 204 | | | | | | |

PCT/EP96/03647 WO 97/08320

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26) 184 / 204

PCT/EP96/03647 WO 97/08320

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 28)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647 WO 97/08320

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| BsiwI NspV | | TCAAAAAGGA
AGTTTTTCCT | CTCAGTGGAA
GAGTCACCTT | AAAAGGATCT
TTTTCCTAGA |
|--|------------------------|--|--------------------------|---|
| · · } | 五
8
日
5
5 | CGGTACCAGG CCGGCCATTA
GCCATGGTCC GGCCGGTAAT | GGGTCTGACG
CCCAGACTGC | GAGATTATCA
CTCTAATAGT |
| BStXI Ecol109I AAGCCCTGG CCAAGGTCCC TTCGGGGACC GGTTCCAGGG | | GGATC CGGTACCAGG
CCTAG GCCATGGTCC | CTTTTCTACG | CGTTAAGGGA, TTTTGGTCAT
GCAATTCCCT AAAACCAGTA |
| bsteil
""""" | PmlI
~~~~~
BamHI | CACGTGGATC | ATCCTTTGAT
TAGGAAACTA | • |
| MluI Bsu36I
———————————————————————————————————— | NspVBsaBI | AGATTACCAT CACGTGGATC TCTAATGGTA GTGCACCTAG | TCTCAAGAAG
AGAGTTĊTTC | CGAAAACTCA
GCTTTTGAGT |
| 126 | | 176 | 226 | 276 |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of 8-lactamase-MCS module (continued)

| TGGATCTA GGAAAATITITITITITITITITITITITITITITITITI | ATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC | CTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC | CGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC TGGCCCCAGT
GCAGCACAT CTATTGATGC TATGCCCTCC CGAATGGTAG ACCGGGGTCA | CTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC
GACGTTACT ATGGCGCTCT GGGTGCGAGT GGCCGAGGTC TAAATAGTCG | ATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAACTT | ATCCGCCTC CATCCAGTCT ATTAACTGTT GCCGGGAAGC TAGAGTAAGT
ATAGGCGGAG GTAGGTCAGA TAATTGACAA CGGCCCTTCG ATCTCATTCA | AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTACAGGCAT
FCAAGCGGTC AATTATCAAA CGCGTTGCAA CAACGGTAAC GATGTCCGTA |
|---|--|--|--|--|---|---|--|
| TCACCTAGAT CCTTTTAAAAAAAAAAAAAAAAAAAAAAA | | rca
agr | | TGA | | _ | AGTTCGCCAG |
| 326 | 376 | 426 | 476 | 526 | 576 | 626 | 919 |
| | | | SUBSTITU | TE SHEET (F | RULE 26) | | |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| () () () () () () () () () () | TCCGGTTCCC
AGGCCAAGGG | AAAAGCGGTT
TTTTCGCCAA | CCGCAGTGTT
GGCGTCACAA | GTCATGCCAT
CAGTACGGTA | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT | ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT
CTCTAGGTCA |
|---|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|
| | TCCC
AGG(| AAA
TTT | 0
0
0
0
0 | GTC | _ | _ | | |
| | TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG
TCATTCAACC | TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT
ACGGGCCGCA | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
, ATGGCGACAA |
| | TTGGTATGGC SAACCATACCG | TGATCCCCCA ACTAGGGGGGT | CGTTGTCAGA
GCAACAGTCT | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA | GAACTTTAAA
CTTGAAATTT | TCAAGGATCT
AGTTCCTAGA |
| | CGCTCGTCGT T | GCGAGTTACA 1
CGCTCAATGT 1 | GTCCTCCGAT (| GTTATGGCAG
CAATACCGTC | CTTTTCTGTG
GAAAAGACAC | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT | GCGAAAACTC |
| | CGTGGTGTCA C | | _ | ATCACTCATG
TAGTGAGTAC | CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG | |
| וושמור שפי ושנו | 726 | 176 | 826 | 876 | 926 | 916 | 1026 | 1076 |
| | | | | SUBSTITU | ITE SHEET (I | RULE 26) | | |

Figure 36: functional map and sequence of ß-lactamase-MCS module (continued)

| CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA
CGGCGTTTTT | CTTCCTTTTT
GAAGGAAAAA | GCGGATACAT
CGCCTATGTA | XhoI | I BssHII | ATGGCTCGAG
TACCGAGCTC | |
|-----------------------------------|--------------------------|--------------------------|--------------------------|---------|-----------|--------------------------------------|-------------|
| TCTTCAGCAT CAGAGAGTCGTA CEco57I | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT
ATGAGTATGA | TGTCTCATGA
ACAGAGTACT | } | Bbel Asel | GGCGCCATTA
CCGCGGTAAT | rg.r |
| ACCCAACTGA
TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA
TTTACAACTT | TCAGGGTTAT
AGTCCCAATA | PstI | | ACGAGCTGCA
TGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC
GGTGAGCACG
BSSSI | TCTGGGTGAG
AGACCCACTC | GGCGACACGG | GAAGCATTTA
CTTCGTAAAT | | EagI | ACTCGGCCGC ACGAG
TGAGCCGGCG TGCTC | |
| TCGATGTAAC (
AGCTACATTG (| CACCAGCGTT ' | | CAATATTATT
GTTATAATAA | | | ATTTGAATGT
TAAACTTACA | BssHII |
| 1126 | 1176 | 1226 | 1276 | | | 1326 | |
| | | SUBST | TTUTE SHEE | T (RULE | 26) | | |
| | | | | | | | |

CATGAAATT GTACTTTAA CGCGCTTCAG CGCTTTGTCT TCCGGATGTA GCGCGAAGTC GCGAAACAGA AGGCCTACAT BC0571 Figure 36: functional map and sequence of 8-lactamase-MCS module (continued) 1 1 1 1 1 1 1376

SUBSTITUTE SHEET (RULE 26) 193 / 204 Figure 37: Oligo and primer design for Vk CDR3 libraries

O_K3L_5 5'- G C C T G C A A G C G G A A G A C Bbsl E D

Vk1 & Vk3 5'- G C C C T G C A A G C C G G A A G A C C C T G C A A G C C G G A A G A C C E D

Vk4 5'- G C C T G C A A G C C G G A A G A C C E D

Figure 37: Oligo and primer design for Vk CDR3 libraries

40 30 20 -3' Q Α C A TGCGACTTATTATTGC T C Y G CAT TATTG C TGGGCGTGTA G CAT G G C G G T G T A T T A T T G C G Α C D E F G CAT H ١ K L AT M N P CAG Q R S

> SUBSTITUTE SHEET (RULE 26) 195 / 204

T

W Y

80% Q

Figure 37: Oligo and primer design for VK CDR3 libraries

| Figure 37: Oligo and primer design for VK CDR3 Hotal | 0 |
|--|----------------|
| 20 | 8
3'- G G A |
| G | T
A C C T |
| | T
A C C T |
| G | τ Τ |
| C | ACCT |

| G | | | | | | | | | | | | | | | | | | | Α |
|---|----------|---------------------------------------|-------------|--|---------|---|-------------|-----------|---------|-----|----------|-----|----------|----------|------------|-----|---|-----|---|
| | G | С | Ťï | | | 7 | | | | G | C | ΤŢ | | | (| 3 (| | T | |
| | U | | | ,,,,,, | | - | | | | | | | | | | | | | |
| | G | A | T | G | A | T | G | A | T | G | A | T | | | : | G / | | T | |
| | G | | G | | | | | | | G | Α | G | | | | G / | | G | |
| | T | | T | | | | | | | T | T | T | | | Ī | T | T | T | |
| | G | | T | G | G | Ť | G | G | T | G | G | T | | | | G | G | T | |
| | C | ******* | T | U | | | | | | C | A | T | | | 1 | C | A | T | |
| | A | | T | | | | <u> </u> | | ******* | Α | T | T | | | | Α | T | T | |
| | A | | G | | | | | | | A | Ā | G | | ****** | | Α | A | G | |
| | C | ***** | U
T | - | | | ╁ | | | C | T | T | <u> </u> | | | C | T | T | |
| | A | | G | - | | | ╫ | | | A | T | G | | ****** | Ī | Α | T | G | |
| | • . | | | · | Λ | T | A | A | | A | A | T | | | | Α | Α | T | |
| | P | \ <u>A</u> | I | | | | | | | C | C | T | C | : C | T | С | C | T | |
| | | · · · · · · · · · · · · · · · · · · · | | - | | | | | | C | . A | G | | ******** | | С | | G | |
| | |) A | | <u> </u> | | | | ********* | | (| G | Ī | 1 | | ********* | | G | T | |
| | | , G | | 7 7 | 7 | · | T T | (| · | T 1 | (| ٦ : | - | (| T | Τ | С | T | |
| | - | i C | | ֓֞֞֜֜֞֜֜֓֓֓֓֟֜֜֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֜֝֜֓֓֓֡֜֝֡֓֡֓֡֡֜֝֡֡֜֝֡֓֡֡֡֜֝֡֡֜֜֡֡֡֡֡֝֡֡֡֡֡֡֡֡ | | | - | | | 7 | 7 (| | | **** | | Α | C | T | |
| | <u> </u> | | - | ı
T | | | | | | (| <u> </u> | | r i | | | G | T | T | |
| | - | 3 T | · | 니
그 | | | | | ••••• | | T (| 3 (| 3 | | | T | G | G | ì |
| | | | -
 | 3 | Τ | Λ | T | ••••• | | | T / | Δ | T | | ********** | T | Α | , 7 | |
| | | T | | T | 1 / | Δ | 1 | | | | | | Τ̈́ | 800 | % P | 7 | | | |
| | | 50 ⁰ | 7 /0 | 1 | | | | | | | | | ــا
 | | | | | | |

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

| 09
G (| R |
|---|---|
| GATGATGATGATGATGATGATGATGATGATGATGATGATG | |
| T G G T A T T A T T A T T A T 18 19 18 18 19 18 18 19 | Variability 3.32E+05 5.98E+06 1.08E+08 TITUTE SHEET (RULE 26) |

SUBSTITUTE SHEET (RULE 26) 200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

S E F
ACCGTTCTTGGCCAGGAATTCGAGCC-3'
3'-CCGGTCCTTAAGCTCGG-5'

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| | | | | | | , | (| |
|-----------|-------|---|-------|-------|--------------------------|---------------|--------|--|
| | 1-2 | S | Ā | К4 | 7 | 75 | ٣ | |
| % soluoie | 2 | 1 | 2 | | 1000 | 210/2 | 200% | |
| A A A A | 610% | 5,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000 | 52% | 4.2% | 0/0
0/0
0/0 | 0/10 | 200 | |
| HIA | 0/210 | | 1 | | 700 | 7000 | 7030 | |
| | 200% | 480% | 66% | 48% | 4/0/0 | 33% | 2000 | |
| H 18 | 23% | 2 | | | ,010 | 2000 | 4 50% | |
| | 70/0 | 5.70% | 46% | 49% | 3/2/0 | 30% | 10/10 | |
| HZ | 0/~/+ | 5 |) | | 200 | 710% | 020% | |
| (| 000 | 270% | 76% | 67% | 0/0
0/0
0/0
0/0 | 2/1 | 07.00 | |
| ~·. | 022/0 | | 2 | | | 2000 | 7007 | |
| | 200 | E 20% | 510% | 44% | 45% | 3340 | 47% | |
| H4 | 02/0 | 0/-70 | | | | 7007 | 707 | |
| 1 | 7007 | 490% | 460/0 | 9/0/9 | 54% | 460/0 | 0/4/4 | |
| <u>S</u> | 143% | 2,7 | 2 | | | 200 | 110% | |
|) ! | 7000 | 200% | 5.40% | 470% | 45% | 20 <u>~</u> 0 | 0/21.0 | |
| <u>u</u> | 2000 | 20.40 | 2 | | | | | |
| | | | | | | | | |

| Z | Ç | | , | 72 | , |
|---------------------|------------|---------------------------|---------------------------|---|--|
| | ž | К4 | ۲۷ | 1,1 | 3 |
| - 1 | | | 1000 | 1 500/ | 7007 |
| • | 0/0991 | 272% | 20% | 150% | 0/00/ |
| | | | 1170% | 1 500% | 1010/0 |
| | %68 | 133% | 0/2/1 | 130% | 2 |
| • | | 10.00 | 1250% | SO00 | 970/6 |
| • | 0/s207 | 10270 | 0/071 | 2 | 2 |
| | 710% | 5.40% | 7d0% | 130% | 47% |
| | 0/21/ | 2/10 | 2 | | |
| | 60% | 77% | 195% | 107% | 251% |
| | 2 | • | | 200 | 1110/2 |
| | 167% | 83% | 93% | 1.28% | 0/05 1 |
| | | | | 2150/2 | 2700% |
| | %68
83% | 109% | 0/1667 | 0/2017 | 0/2017 |
| - 1 | | | | | |
| 55%
201%
117% | | 71%
60%
167%
89% | 71%
60%
167%
89% | 71% 54% 59% 60% 77% 195% 167% 83% 93% 89% 109% 299% | 71% 54% 59% 130% 60% 77% 195% 107% 107% 167% 83% 93% 128% 89% 109% 299% 215% |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount | | ż | ۲, | 72 | 7.1 | 72 | 73 |
|------------------|------|------|------|--------|------|------|------|
| compared to H3K2 | | 2 | 2 | t
∠ | 2 | 70 | 3 |
| H1A | - | 88% | 121% | 122% | 26% | 211% | 76% |
| H18 | • | 95% | 83% | 107% | 29% | 142% | 29% |
| H2 | 126% | 204% | 139% | 130% | %99 | 20% | 10% |
| : E | 63% | ı | 81% | 49% | %69 | 143% | 61% |
| H H | 40% | 47% | 49% | 54% | 95% | 25% | 125% |
| H2 | %69 | 158% | 116% | 80% | 72% | 84% | 84% |
| H _e | 85% | 122% | 87% | 17% | 162% | 162% | 212% |
| | McPC | | | | | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | | | |
| %H3k2 soluble | %69 | | | | | | |

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C12N15/10 C12N1/21 C12N15/70 C12N15/62 G01N33/53 C07K1/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-55 EP 0 368 684 A (MEDICAL RES COUNCIL) 16 A May 1990 cited in the application see the whole document 1-55 EUROPEAN J. IMMUNOLOGY, A vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 "Cloning and S.C. WILLIAMS AND G. WINTER: sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X X T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 1. 02. 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Kornig, H

1

INTERNATIONAL SEARCH REPORT [tr (thomas) Application No

Ir inonal Application No
PCT/EP 96/03647

| | | PC1/EP 96/03847 |
|------------|--|-----------------------|
| | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | Relevant to claim No. |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages | |
| A | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET TA ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document | 1-55 |
| A | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document | 1-55 |
| A | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document | 1-55 |
| A | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document | 1-55 |
| A | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document | 1-55 |

1

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

SphI XbaI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT AGATCTCGTA TCTAGAGCAT

SapI

ECORI

11111

GAATTC CTTAAG TACCAAAGCC

51

ATGGTTTCGG CCGTTGCTCT TCACCCCTGT GGCAACGAGA AGTGGGGACA GGCACTCTTA CCGTGAGAAT

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)
146 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

CTATTGCACT GATAACGTGA TCTAGAGCAT GCGTAGGAGA AAATAAAATG AAACAAAGCA TTTGTTTCGT AGATCTCGTA CGCATCCTCT TTTATTTAC

SapI

GACTACAAAG CTGATGTTTC AGTGGGACA ATGGTTTCGG TACCAAAGCC TCACCCCTGT CCGTTGCTCT GGCAACGAGA CCGTGAGAAT GGCACTCTTA

51

MunI EcoRI

ATGAAGTGCA ATTGGAATTC
TACTTCACGT TAACCTTAAG

101

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26) 148 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 21:

XbaI

11111

TTATAGCGTA AAGAAGAACG TATGAAAAG AATATCGCAT TTCTTCTTGC CTCCACTAAA ATACTTTTTC GAGGTGATTT TCTAGAGGTT AGATCTCCAA

ECORI ~~~~~ 1111111 Nsil

GAATTC CTTAAG CAAAAAAGAT AACGATGTTT ACGTATGCGA TTGCTACAAA TGCATACGCT GTTTTTTCTA TAGATACAAG ATCTATGTTC

SUBSTITUTE SHEET (RULE 26)

51