2005

H 17

金沢大学大学院自然科学研究科 入 学 試 驐	問 題
2 7 4	2 2
数、学	电子情報工学事攻,機能機械科学事攻 人間·機械科学事攻,社会基础工学事攻

2006年8月30日(火) 10:45-11:45

[注案] 1. 問題 1,2,3,40 のうち、2 輝を選択して解答すること。 2. 解答は各題ごとに分けて、/1 題を1 枚の答案用紙の表に答くこと。

- | 1 次の微分方程式を解け、
- $\bigvee (1) \frac{dy}{dx} \frac{1}{x} y = x \log x.$
 - $(2)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = 0.$
 - $\sqrt{(3)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y} = \cos 2x.$

/ 2 ベクトル場 A=(-y+z,2z+z,z+y) について、次の間に答えた。

- (1) 点 (2,0,0), (0,3,0), (0,0,5) を類に緯ぶ折れ線 C に拾って線積分 $\int_C A\cdot dr$ の値を求めよ.
- (2) 平面 S:3x+2y+z=6 ($z\geq 0$, $y\geq 0$, $z\geq 0$) 上の $\cot A$ の面積分 $\int_S \cot A \cdot n dS$ を求め上、ただし、 n は原点を含まない例を向く S の単位法線ベクトルとする.
- $\sqrt{3}$ 複楽関数 $f(z) = \frac{1}{(z^2+1)(z-3)^2}$ について、次の側に答えよ、
 - (1) f(s) の各特異点における留数を求めよ.
 - (A) ハミ ションロット (A) とする。 曲線 G: |対ニュ に対して、 ∫ f(z)dz の値を求めよ。
 - 4 区間 $[0,\infty)$ で定義された興数を f(t), その π 回幕関数を $f^{(n)}(t)$ とする。このとき,次の間に答えよ。
 - (1) ラブラス変換の微分法則
 - (i) L(f'(t)) = sF(s) f(0)

一般に

(ii) $\mathcal{L}(f^{(n)}(t)) = s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$

をラブラス変換の定義に基づいて監明せよ。ただし、 $\lim_{n\to\infty} f^{(k)}(t)e^{-nt}=0$ $(0 \le k < n)$ は仮定する。

 $-(ii) L(t^n) = \frac{n!}{s^{n+1}}$

をラブラス変換の微分性別を用いて示せ、ただし、 L(1) = 1 は用いてよい。