Lógica I Aula 14

Professor: José Eurípedes F. de Jesus Filho

Contato: jeferreirajf@gmail.com

Nesta aula

• Formas normais.

• Exercícios.

Introdução

• Seja qualquer fórmula H da lógica proposicional. É fato que existe uma fórmula G equivalente a H na forma normal.

- Existem duas formas normais:
 - Forma Normal Disjuntiva (fnd)
 - Forma Normal Conjuntiva (fnc)

• Mas antes de entendermos as formas normais, é necessário entender o conceito de literal.

Literal

• A definição de **literal** é muito simples:

➤Um literal na lógica proposicional é um símbolo proposicional ou sua negação.

✓ Exemplos: A, ¬B, H, ¬G, S, etc...

• Uma fórmula H está na **fnd** se é uma <u>disjunção de conjunção de</u> literais.

```
>Sejam P, H, G e E fórmulas na lógica proposicional e P := (H \Lambda \neg E) V (E \Lambda \neg G) V (H \Lambda G). Dizemos que P está na fnd.
```

• Uma fórmula H está na **fnc** se é uma <u>conjunção de disjunções de</u> literais.

```
    Sejam P, H, G e E fórmulas na lógica proposicional e P := (H V ¬Ε) Λ
    (E V ¬G) Λ (H V G). Dizemos que P está na fnc.
```

- Seja H uma fórmula qualquer da lógica proposicional.
 - Existe uma fórmula H_{fnd} na <u>forma normal disjuntiva</u> equivalente a H.
 - Existe uma fórmula H_{fnc} na <u>forma normal conjuntiva</u> equivalente a H.

• Seja a fórmula $H := (P \rightarrow Q) \land R$ e sua tabela verdade, abaixo:

Р	Q	R	$(P \rightarrow Q) \land R$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

- Para encontrarmos a H_{fnd} equivalente, devemos:
 - 1. Construir a tabela verdade de H.
 - 2. Extrair todas as linhas da tabela que interpretam H como T, gerando a tabela S.
 - 3. Escrever cada linha de **S** como uma <u>conjunção</u> de **interpretações** <u>verdadeiras</u>.
 - 4. Escrever a H_{fnd} como sendo a <u>disjunção</u> de cada fórmula gerada no **Passo 3**.

• Para encontrarmos a H_{fnd} equivalente, devemos:

1. Construir a tabela verdade de H.

P	Q	R	$(P \rightarrow Q) \land R$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	T
F	Т	F	F
F	F	Т	Т
F	F	F	F

• Para encontrarmos a H_{fnd} equivalente, devemos:

2. Extrair todas as linhas da tabela que interpretam H como T, gerando a tabela S.

Р	Q	R	$(P \rightarrow Q) \land R$
Т	Т	Т	T
F	Т	Т	Т
F	F	Т	Т

- Para encontrarmos a H_{fnd} equivalente, devemos:
 - 3. Escrever cada linha de **S** como uma <u>conjunção</u> de **interpretações** <u>verdadeiras</u>.

P	Q	R	$(P \rightarrow Q) \wedge R$
Т	Т	Т	T I[P]=T, I[Q]=T, I[R]=T => P Λ Q Λ R
F	Т	Т	T $I[\neg P]=T$, $I[Q]=T$, $I[R]=T$ => $\neg P$ \wedge Q \wedge R
F	F	Т	T $I[\neg P]=T$, $I[\neg Q]=T$, $I[R]=T$ => $\neg P$ Λ $\neg Q$ Λ R

- Para encontrarmos a H_{fnd} equivalente, devemos:
 - 4. Escrever a H_{fnd} como sendo a <u>disjunção</u> de cada fórmula gerada no **Passo 3**.

I[P]=T, I[Q]=T, I[R]=T => P
$$\Lambda$$
 Q Λ R

I[¬P]=T, I[Q]=T, I[R]=T => ¬P Λ Q Λ R

I[¬P]=T, I[¬Q]=T, I[R]=T => ¬P Λ ¬Q Λ R

(¬P Λ ¬Q Λ R)

- Para encontrarmos a H_{fnc} equivalente, devemos:
 - 1. Construir a tabela verdade de H.
 - 2. Extrair todas as linhas da tabela que interpretam H como F, gerando a tabela S.
 - 3. Escrever cada linha de **S** como uma <u>disjunção</u> de **interpretações falsas**.
 - 4. Escrever a H_{fnc} como sendo a <u>conjunção</u> de cada fórmula gerada no **Passo 3**.

• Para encontrarmos a H_{fnc} equivalente, devemos:

1. Construir a tabela verdade de H.

P	Q	R	$(P \rightarrow Q) \wedge R$
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

- Para encontrarmos a H_{fnc} equivalente, devemos:
 - 2. Extrair todas as linhas da tabela que interpretam H como F, gerando a tabela S.

P	Q	R	$(P \rightarrow Q) \wedge R$
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	F	F
F	F	F	F

- Para encontrarmos a H_{fnc} equivalente, devemos:
 - 3. Escrever cada linha de **S** como uma <u>disjunção</u> de **interpretações falsas**.

Р	Q	R	$(P \rightarrow Q) \land R$
Т	Т	F	F I[¬P]=F, I[¬Q]=F, I[R]=F => ¬P V ¬Q V R
Т	F	Т	F I[¬P]=F, I[Q]=F, I[¬R]=F => ¬P V Q V ¬R
Т	F	F	F
F	Т	F	F I[P]=F, I[¬Q]=F, I[R]=F => P V ¬Q V R
F	F	F	F I[P]=F, I[Q]=F, I[R]=F => P V Q V R

- Para encontrarmos a H_{fnc} equivalente, devemos:
 - 4. Escrever a H_{fnc} como sendo a <u>conjunção</u> de cada fórmula gerada no **Passo 3**.

Exercícios

• Escreva as H_{fnd} e H_{fnc} para as seguintes definições de H:

```
> H := P \leftrightarrow (Q V \negP)
> H := \negP V (\negR \land S)
> H := (P \rightarrow (R \land S)) V Q
```