

Aproximação de contornos por NURBS e Evolução Diferencial

Diego Buchinger diego.buchinger@outlook.com

Computação Natural Prof. Rafael Stubs Parpinelli

(Qual é o problema?)

- Representação compacta de curvas
 - Engenharia Reversa
 - Útil para compactar, reduzir memória,
 reconhecimento de padrões, casamento
 de formas e rastreamento em vídeo
 - Possui dois objetivos:
 - Minimizar o número de pontos utilizado (#-min)
 - Minimizar o erro entre o contorno e a nova representação (e-min)
 - Atacado visando apenas um objetivo
 - Possui duas versões:
 - Problema discreto
 - Problema contínuo (polígono / curvas)

(Justificativa)

- É um problema combinatorial:
 - Versão discreta: algoritmo ótimo O(n⁴) [Yin, 2004]
 - Versão contínua: maior espaço de busca => mais complexo
- Por que usar Evolução Diferencial?
- Por que usar Non-Uniform Rational B-Splines (NURBS)?
 - Prós: representação mais poderosa do que outros modelos uma única curva pode representar um contorno completo
 - Contras: contêm mais elementos (posição CPs, peso, vetor de nós)

$$C(u) = \frac{\sum_{i=1}^{k} N_{i,n} w_i \mathbf{P}_i}{\sum_{i=1}^{k} N_{i,n} w_i} \quad N_{i,0}(u) = \begin{cases} 1 & \text{if } u_i \leq u < u_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

(Justificativa e Medidas)

Medidas utilizadas:

- ISE: Integral Squared Error

- CR: Compress Ratio

- FOM: Figure of Merit

 Outras medidas baseadas na comparação com a solução ótima

$$ISE(V,C) = \sum_{i=1}^{M} e_i^2$$

$$CR = \frac{N}{N_{DP}}$$

$$FOM = \frac{CR}{ISE}$$

- OBS: problema discreto sendo analisado por uma característica contínua da solução?!?
 - Medida discreta sugerida:
 distância de pixels em relação a imagem discreta gerada
- OBS₂: como calcular distância entre pontos e NURBS

(Justificativa e Medidas)

Abordagens / Métodos de Resolução

- Trabalhos Relacionados
- Abordagem proposta (NDE)
 - Representação da Solução $[(x_0,y_0,w_0), (x_1,y_1,w_1), ..., (x_n,y_n,w_n)] \text{ sendo } x,y \text{ e w reais}$
 - Função de Avaliação

$$ISE(V,C) = \sum_{i=1}^{M} e_i^2$$

Onde e_i é a menor distância entre um ponto do contorno e as amostras da curva (possibilidade de erros introduzida)

Exemplo = slide anterior

Abordagens / Métodos de Resolução

- Dados escolhidos previamente
 - Quantidade de pontos de controle (dominant points)
 - Grau da curva (usado = 3)
- Solução inicial é gerada com base nos pontos do contorno e um possível erro introduzido em cada ponto.

$$x_j = x_j^{lb} + rand_j[0, 1] \times (x_j^{ub} - x_j^{lb})$$

- Utilizada versão canônica e adaptativa [Qin e Suganthan, 2005]
 - Adaptativa: probabilidade de crossover (CR), peso diferencial (F)
 e estratégia de mutação

Protocolo de Experimentos

• Arquitetura utilizada:

Processador intel® CoreTM i7-4770 @ 3.40GHz (8 núcleos lógicos) 16,0 GB de Memória RAM

• Parâmetros:

- População: min(20D, 100) [Price, 1999]
- CR = 0.8 / adaptativo
- F = 0.5 / adaptativo
- Estratégia: DE/rand/1/bin / (+ DE/current to best/2/bin)
 [Qin e Suganthan, 2005]

Critério de Parada: 500 iterações (teste) / 200 iterações

Protocolo de Experimentos

 Medidas de Desempenho: comparação com outros métodos usando ISE, CR e FOM

Protocolo de Experimentos

Benchmark:

Teste de escalabilidade:

- Comparação com:
 - Heurística DCPA [Liu et al., 2012]
 - iPSO [Wang et al., 2014]

Ambas atacando versão discreta

• Teste estatístico de Wilcoxon

O que foi Implementado

• Gerador, leitor e interpretador de chain-codes

```
00007 00777 77766 76666 66665 76766
56454 43436 66656 55454 44434 33232
22254 54434 23221 21322 22222 21221
11111 00100 00
```

micircle (b) Leaf

10056 65655 00110 66565 65555 56667

(a) Semicircle

• Versão com algoritmos canônico e adaptativo implementados com multithreading

• Interface gráfica para ajustes de opções e parâmetros além de visualização parcial dos resultados.

Benchmark	Algorit.	N _{DP}	ISE	FOM
Chromosome (60p)	DCPA	12	4.93	1.013
	NDE	12	7.60	0.658
	NDEa	12	4.62	1.082
Leaf (120p)	iPSO	16	26.8	0.280
	NDE	16	71.41	0.105
	NDEa	16	37.61	0.199
Semicircle (102p)	DCPA	24	5.71	0.744
	NDE	24	8.76	0.485
	NDEa	24	6.35	0.669

Benchmark	Algorit.	N _{DP}	ISE	FOM
Arlington (133 p)	DCPA	33	9.88	0.408
	NDE	33	18,43	0.219
	NDEa	33	13,43	0.300
Como (124p)	iPSO	24	9.78	0.528
	NDE	24	21,41	0.241
	NDEa	24	16,62	0.311
Managua (120p)	iPSO	24	9.23	0.520
	NDE	24	16.03	0,312
	NDEa	24	13,03	0,384
Simcoe (134p)	iPSO	31	9.72	0.445
	NDE	31	19,51	0,222
	NDEa	31	17,61	0,245

Benchmark	Algorit.	N _{DP}	ISE	FOM
Laguna Seca (1463p)	NDE	38	2748.26	0.014
	NDE	144	398.64	0.025
Nürburgring (1887p)	NDE	43	8193.54	0,005
	NDE	135	868.47	0,016
Silverstone (1955p)	NDE	44	13179.29	0,003
	NDE	138	672.17	0,021

Escolha de N_{DP} - $n^{0.5}$ & $n^{0.65}$

Fitness / Gerações

Instância: Arlington [30 execuções]

• Diversidade / Gerações

Instância: Arlington [30 execuções]

• Box-Plot

Instância: Arlington [30 execuções]

Considerações e Trabalhos Futuros

Análise Geral:

- resultados obtidos foram promissores
- parece ser robusto para objetos com contorno curvilíneo e constituído por muitos pontos

• Limitações da proposta:

- não parece ser muito interessante para objetos de superfícies lisas (contorno com muitas retas)
- ISE implementado pode ser enganoso

Considerações e Trabalhos Futuros

• Trabalhos Futuros:

- separa o contorno em segmentes e resolver cada segmento por vez deve ser mais eficiente em termos de velocidade e resultado
- Comparar resultados com uma técnica mais básica como simulated annealing

Referências

- P.Y. Yin, "A discrete particle swarm algorithm for optimal polygonal approximation of digital curves," Journal of Visual Communication & Image Representation, vol. 15, pp. 241–260, 2004.
- A.K. Qin, P.N. Sunganthan, "Self-adaptive Differential Evolution Algorithm for Numerical Optimization". In the 2005 IEEE Congress of Evolutionary Computation, 2005.
- K. Price, "An introduction to differential evolution," in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. Berkshire: McGraw-Hill, 1999, ch. 10, pp. 77–108.
- H. Liu, X. Zhang, and A. Rockwood, "A direction change-based algorithm for polygonal approximation," in International Conference on Pattern Recognition (ICPR 2012), vol. 21, nov. 2012, pp. 3586–3589.