Б.И. Положинцев

Теория вероятностей и математическая статистика

Введение в математическую статистику

Санкт-Петербург 2016 Положинцев Б.И. Теория вероятностей и математическая статистика. Введение в математическую статистику: Учебное пособие. – СПб.: 2016.– 95 с.

Изложены основные понятия и методы статистической обработки экспериментальных данных: точечное и интервальное оценивание параметров распределений, проверка статистических гипотез о параметрах распределений (критерии значимости), а также о виде (критерии согласия). распределений В пособии рассмотрены спецификой направлений прикладные аспекты, связанные co обучения «Радиотехнические студентов кафедры И телекоммуникационные системы» СПбПУ.

СОДЕРЖАНИЕ

1. Определение случайной выборки	5
2. Закон распределения порядковых статистик	6
3. Эмпирическая функция распределения	8
4. Группирование выборочных данных, гистограмма	11
5. Определение и свойства точечных оценок параметров	
распределения: состоятельность, несмещенность,	
эффективность	13
6. Оценки основных числовых характеристик распределения и	
их свойства	16
7. Выборочные квантили	21
8. Нахождение оценок параметров распределений методом	
максимального правдоподобия	23
9. Примеры нахождения оценок максимального правдоподобия	
(МП- оценок) параметров распределений	25
10. Понятие доверительного интервала	28
11. Основные этапы процедуры построения доверительных	
интервалов	29
12. Доверительный интервал для математического ожидания	
нормального распределения при известной дисперсии.	
Пример 1_ди	31
13. Распределение χ^2 , распределение Стьюдента, лемма Фишера	34
14. Доверительный интервал для математического ожидания	
нормального распределения при неизвестной дисперсии	
Пример 2 ди и Пример 3 ди	36
15. Доверительный интервал для дисперсии нормального	
распределения	40
16. Приближенная интервальная оценка для математического	
ожидания произвольного распределения по выборке	
большого объема	42
17. Приближенная интервальная оценка вероятности р в схеме	
Бернулли по выборке большого объема. Пример 4 ди	43
18. Постановка задачи проверки статистических гипотез.	
Пример 1_кз	46
19. Критерии значимости: гипотезы, критическая область,	
решения, ошибки	48

20. Основные этапы процедуры проверки статистических	5 2
гипотез	53
21. Подход к проверке статистических гипотез о параметрах	
распределений, основанный на доверительных интервалах	~ ~
Пример 1_кди	53
22. Примеры проверки гипотез о параметрах распределений:	
Пример 2_кз_кди; Пример 3_кз_кди (левосторонний	
критерий); Пример 4_кз (правосторонний критерий);	
Пример 5_кз_кди (двусторонний критерий)	55
23. Распределение Фишера, свойство квантилей	66
24. Проверка гипотезы о равенстве дисперсий двух нормальных	
распределений (критерий Фишера). Пример 6_кз	67
25. Проверка гипотезы о равенстве математических ожиданий	
двух нормальных распределений (критерий Стьюдента).	
Пример 7_кз	68
26. Теорема Пирсона, проверка простой статистической	
гипотезы	72
27. Проверка гипотезы о виде распределения – метод χ^2 для	
простой гипотезы	75
28. Проверка гипотезы о виде распределения – метод χ^2 для	
сложной гипотезы	77
29. Пример 1_кс (нормальное распределение)	79
30. Пример 2_кс (распределение Пуассона)	81
31. Проверка гипотезы о равенстве параметров p_1 и p_2	
(вероятностей) двух биномиальных распределений по	
выборкам большого объема	85
32. Понятие <i>p</i> – значения	87
Приложение 1. Предельные теоремы теории вероятностей	87
Приложение 2. Получение выборки из заданного распределения	93
Литература	95

В пособии рассматриваются основные понятия и методы анализа данных, полученных в результате опыта — наблюдений (измерений, регистраций) величин, случайных по своей природе. При этом принципиально осуществимой предполагается возможность неограниченного числа таких наблюдений в одних и тех же условиях.

В большинстве случаев далее считается, что статистические данные представляют собой результат серии независимых опытов, в каждом из которых зарегистрировано значение исследуемой одномерной случайной величины.

1. Определение случайной выборки

Пусть X — исследуемая случайная величина, $F_X(x) = P(X < x)$ — ее функция распределения (вообще говоря, неизвестная). В ряде случаев может быть известен вид распределения случайной величины, а неизвестными являются один или несколько параметров, от которых зависит функция распределения. Ради краткости в записи $F_X(x)$ индекс может в дальнейшем опускаться. Условимся также указывать, непрерывной или дискретной является исследуемая случайная величина.

Пусть проводится серия n независимых наблюдений (измерений) случайной величины X в одних и тех же условиях (эксперимент). В результате эксперимента получают n чисел— значений x_1, x_2, \ldots, x_n , которые случайная величина X последовательно принимала в данной серии наблюдений. Эти числа будем считать значениями n одинаково распределенных независимых случайных величин X_1, \ldots, X_n , каждая из которых имеет функцию распределения $F_X(x)$ —ту же, что исследуемая случайная величина X.

Конечную последовательность n независимых одинаково распределенных случайных величин будем называть *случайной* выборкой X_1, \ldots, X_n (короче – выборкой) из распределения $F_X(x)$, а указанные числа x_1, x_2, \ldots, x_n , полученные в данном эксперименте – реализацией выборки. Отметим, что множество всех возможных

значений исследуемой случайной величины называют генеральной совокупностью.

На основе выборок строят *оценки* параметров распределения исследуемой случайной величины X, таких как математическое ожидание, стандартное отклонение и других, а также судят о виде функции распределения $F_X(x)$.

Понятно, что числа x_1, x_2, \ldots, x_n можно также рассматривать как значение n - мерной случайной величины (X_1, \ldots, X_n) , компоненты которой X_1, \ldots, X_n независимы и одинаково распределены.

Всякую функцию выборки $\phi(X_1, ..., X_n)$ называют статистикой. Статистика $\phi(X_1, ..., X_n)$ – случайная величина, распределение которой зависит от распределения $F_X(x)$, из которого извлечена выборка, и от объема выборки n.

2. Закон распределения порядковых статистик

Пусть $X_1, ..., X_n$ — выборка объема n из распределения $F_X(x)$; $x_1, x_2, ..., x_n$ — некоторая ее реализация.

Упорядочим числа $x_1, x_2, ..., x_n$ по возрастанию и обозначим их следующим образом: $x_{(1)}, x_{(2)}, ..., x_{(n)}$, где $x_{(1)} = \min$ $(x_1, x_2, ..., x_n)$, $x_{(n)} = \max(x_1, x_2, ..., x_n)$, $x_{(1)} \le x_{(2)} \le \le x_{(n)}$.

Представим, что упорядочены все возможные реализации выборки $X_1, ..., X_n$ и введем новую случайную величину $X_{(k)}$ — порядковую статистику порядка k (k = 1, 2, ..., n).

Множество возможных значений случайной величины $X_{(k)}$ определим так: оно состоит из тех и только тех чисел $x^i_{(k)}$, которые оказываются на k-м месте при упорядочении любой реализации $x_1, x_2, ..., x_n$ выборки $X_1, ..., X_n$ (индекс i = 1, 2, ... номер реализации).

Таким образом, по выборке $X_1, ..., X_n$ построена последовательность $X_{(1)}, ..., X_{(k)}, ..., X_{(n)}$, называемая вариационным

рядом. Элементы вариационного ряда — порядковые статистики удовлетворяют соотношениям: $X_{(1)} \le ... \le X_{(k)} \le ... \le X_{(n)}$, при этом в любой реализации вариационного ряда числа $x_{(1)}^i, ..., x_{(k)}^i, ..., x_{(n)}^i$ связаны неравенствами $x_{(1)}^i \le ... \le x_{(k)}^i \le ... \le x_{(n)}^i$ (верхний индекс i номер реализации, i = 1, 2, ...).

$$x^{1}_{(1)}, \ldots x^{1}_{(k)} \ldots x^{1}_{(n)}$$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $x^{i}_{(1)} \ldots x^{i}_{(k)} \ldots x^{i}_{(n)}$
 $\vdots \qquad \vdots \qquad \vdots$
 $X_{(1)} \ldots X_{(k)} \ldots X_{(n)}$

Найдем функцию распределения k-й порядковой статистики

$$X_{(k)}$$
: $F_{X_{(k)}}(x) = P(X_{(k)} < x) \quad (k = 1, 2, ..., n).$

Эмпирической частотой $N_n(x)$ назовем случайную величину, равную числу элементов выборки X_1, \dots, X_n , меньших x (иначе — числу элементов вариационного ряда $X_{(1)}, \dots, X_{(n)}$, меньших x). Ясно, что возможные значения эмпирической частоты $N_n(x)$ — число осуществлений события (X < x) на выборке X_1, \dots, X_n объема n — это числа $m = 0, 1, \dots, n$. Действительно,

$$(N_n(x) = 0) = (x \le X_{(1)});$$

 $(N_n(x) = m) = (X_{(m)} < x \le X_{(m+1)}) \quad \forall m = 1, ..., n-1;$
 $(N_n(x) = n) = (x > X_{(n)}).$

$$X_{(1)}$$
 $X_{(m)}$ $X_{(m+1)}$ $X_{(n)}$

Извлечение выборки из распределения $F_X(x)$ представляет собой серию n независимых испытаний — n наблюдений (регистраций значений) исследуемой случайной величины X. Для каждого из указанных испытаний вероятность события (X < x) равна $P(X < x) = F_X(x)$.

Отсюда следует, что случайная величина $N_n(x)$ подчиняется биномиальному распределению:

$$P(N_n(x) = m) = C_n^m (F_X(x))^m (1 - F_X(x))^{n-m} \quad (m = 0, 1, ..., n).$$

Заметим, что события $(X_{(k)} < x)$ и $(N_n(x) \ge k)$ равносильны,

$$X_{(k)} \ X_{(k+1)} \ x$$
 то есть $(X_{(k)} < x) = (N_n(x) \ge k) = \sum_{m=k}^n (N_n(x) = m)$.

Таким образом, получаем:

$$P(X_{(k)} < x) = F_{X_{(k)}}(x) = \sum_{m=k}^{n} C_n^m (F_X(x))^m (1 - F_X(x))^{n-m}, \forall k = 1, ..., n -$$

- закон распределения порядковых статистик.

При k = 1 и k = n имеем распределения экстремальных порядковых статистик:

минимальной
$$X_{(1)}$$
: $F_{X_{(1)}}(x) = 1 - (1 - F_X(x))^n$ и

максимальной
$$X_{(n)}$$
: $F_{X_{(n)}}(x) = (F_X(x))^n$.

3. Эмпирическая функция распределения

Пусть X_1, \dots, X_n – выборка из распределения $F_X(x)$, $X_{(1)}, \dots X_{(k)}, \dots, X_{(n)}$ – вариационный ряд, $N_n(x)$ – эмпирическая частота. Случайная величина $F_n(x) = N_n(x)/n$, называемая эмпирической

функцией распределения — относительная частота числа элементов выборки $X_1, ..., X_n$, удовлетворяющих условию $X_i < x$.

Ясно, что множество возможных значений эмпирической функции распределения есть: 0, 1/n, ..., m/n, ..., n/n.

События $(F_n(x) = m/n)$ и $(N_n(x) = m)$ — равносильны, эмпирическая частота $N_n(x)$ распределена по биномиальному закону, поэтому

$$P(F_n(x) = m/n) = C_n^m (F_X(x))^m (1 - F_X(x))^{n-m} \qquad (m = 0, 1, ..., n) - 1$$

- закон распределения эмпирической функции распределения $F_n(x)$.

С помощью функции единичного скачка (функции Хевисайда) эмпирическая функция распределения может быть записана в виде:

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n e(x - X_{(k)}),$$

где
$$e(x) = \begin{cases} 0, & x \le 0 \\ 1, & x > 0 \end{cases}$$
 – функция Хевисайда.

Заметим, что для каждой реализации выборки эмпирическая функция распределения обладает всеми свойствами функции распределения. Действительно, пусть $x_1, x_2, ..., x_n$ — некоторая реализация выборки, $x_{(1)}, x_{(2)}, ..., x_{(n)}$ — соответствующая реализация вариационного ряда, где $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$.

Среди чисел $x_1, x_2, ..., x_n$ выберем только различные, упорядочим их и обозначим через $x_{i_1}, x_{i_2}, ..., x_{i_k}$, тогда

$$x_{(1)} = x_{i_1} < ... < x_{i_k} = x_{(n)}$$
 $(k \le n)$

x_{i_1}	•••	x_{i_m}	• •	x_{i_k}
n_1	• • •	n_m	• • •	n_k
n_1/n	• • •	n_m/n	• • •	n_k/n

Здесь n_m – абсолютная, n_m/n – относительная частота элемента x_{i_m} , при этом, очевидно: $\sum_{m=1}^k n_m = n$; $\sum_{m=1}^k \frac{n_m}{n} = 1$.

Введем случайную величину X^* , заданную рядом распределения

X*			x_{i_m}		
$P(X^* = x_{i_m})$	n_1/n	• • •	n_m/n	• • •	n_k/n

Заметим, что таким образом каждому элементу реализации выборки $x_1, x_2, ..., x_n$ приписана вероятность 1/n.

Обозначим через $F_n^*(x)$ реализацию случайной величины $F_n(x)$, отвечающую данной реализации выборки, тогда

$$F_n^*(x) = P(X^* < x) = \sum_{m: x_{i_m} < x} \frac{n_m}{n}.$$

 $F_n^*(x)$ — кусочно-постоянная (ступенчатая) функция, принимающая свои значения на отрезке [0;1]. В каждой точке x, кроме точек x_{i_m} , функция $F_n^*(x)$ непрерывна; в точках x_{i_m} — она непрерывна слева, величина скачка справа равна n_m/n (m=1,2,...,k).

График эмпирической функции распределения для некоторой реализации выборки приведен ниже:

Эмпирическая функция распределения $F_n(x)$ как относительная частота числа осуществлений на выборке события (X < x) при любом x сходится по вероятности к вероятности этого события

 $P(X < x) = F_X(x)$, — к теоретической функции распределения, вообще говоря, неизвестной: $\forall x \ F_n(x) \overset{P}{\underset{n \to +\infty}{\to}} F_X(x)$, поэтому, если объем выборки n достаточно велик, то значение эмпирической функции распределения $F_n(x)$ в каждой точке x оказывается близким к соответствующему значению теоретической функции распределения $F_X(x)$.

Доказано (*теорема Гливенко*), что отклонение эмпирической функции распределения $F_n(x)$ — случайной величины — от *теоретической* функции распределения $F_X(x)$ с вероятностью 1 сколь угодно мало при достаточно большом объеме выборки n:

$$\forall \varepsilon > 0 \ P(\sup_{x} |F_{n}(x) - F_{X}(x)| \le \varepsilon) \xrightarrow[n \to +\infty]{} 1,$$

при этом $F_n(x)$ служит равномерным приближением $F_X(x)$ на всей числовой оси. Заметим, что разность $(F_n(x) - F_X(x))$ асимптотически нормальна с нулевым математическим ожиданием.

4. Группирование выборочных данных, гистограмма

Эмпирическая функция распределения является характеристикой выборки, позволяющей наглядно представлять статистические данные и выдвигать предположения о виде неизвестной функции распределения исследуемой (наблюдаемой) случайной величины.

Другой способ представления статистического материала — это построение группированного статистического ряда и гистограммы.

Пусть исследуемая случайная величина X-непрерывна. Если выборка достаточно большая (обычно в статистике большими считают выборки объемом $n \ge 100$), то ее реализацию $(x_1, x_2, ..., x_n)$ подвергают группировке следующим образом.

Отрезок $[x_{(1)};x_{(n)}]$, где $x_{(1)}=\min(x_1,x_2,...,x_n)$, $x_{(n)}=\max(x_1,x_2,...,x_n)$, содержащий все элементы выборки, разбивают на k равных интервалов Δ_i (обычно $5 \le k \le 15$):

$$lpha_{(0)} = x_{(1)} \; , \; lpha_{(k)} = x_{(n)} \; , \; \; \Delta_i = (lpha_{i-1} \; ; lpha_i) \; \; (i=1,\ldots,k) \; ;$$
 $|\Delta_i| = rac{x_{(n)} - x_{(1)}}{k} = h \; - \; ext{шаг разбиения}.$
 $x_{(1)} \qquad \Delta_i \qquad x_{(n)}$
 $\alpha_0 \quad \alpha_1 \qquad \alpha_{i-1} \; \alpha_i \qquad \alpha_k$

Число n_i – частота, $\frac{n_i}{n}$ – относительная частота числа элементов реализации выборки, попавших в i - й интервал $(\sum_{i=1}^k n_i = n, \sum_{i=1}^k \frac{n_i}{n} = 1)$.

Группированный статистический ряд — это совокупность интервалов $\Delta_1, \ldots, \Delta_k$ и соответствующих им частот n_1, \ldots, n_k (или относительных частот $\frac{n_1}{n}, \ldots, \frac{n_k}{n}$).

Наглядное графическое представление группированного статистического ряда дает гистограмма. Гистограммой называют ступенчатую фигуру, построенную следующим образом: на каждом интервале $\Delta_i = (\alpha_{i-1}; \alpha_i)$, как на основании длиной $h = |\Delta_i|$, строят прямоугольник с высотой, равной $\frac{n_i}{nh}$, так что площадь S_i каждого такого прямоугольника оказывается равной относительной частоте $\frac{n_i}{n}$ числа элементов выборки, попавших в интервал Δ_i $(i=1,\ldots,k)$.

Относительная частота событ ия по вероятности сходится к события, поэтому если вероятности ЭТОГО длина разбиения h достаточно мала, то $\frac{n_i}{n}\cong f_{\mathrm{X}}(x)\,h\ \forall\,x\!\in\Delta_i$. При больших nгистограммы (ступенчатый график) контур верхний служит приближением графика плотности вероятности $f_{\rm X}(x)$ (вообще говоря, неизвестной). Таким образом, разумно построенная гистограмма позволяет выдвинуть гипотезу о виде распределения исследуемой случайной величины Х. Заметим, что слишком малое или слишком большое число интервалов разбиения k при построении гистограммы может привести к ее недостаточной информативности.

Число интервалов k при разбиении отрезка $[x_{(1)};x_{(n)}]$ обычно определяют по формуле $k=1+3,32 \lg n$ (формула Старджесса), либо по формуле $k=1,72 \, n^{1/3}$.

5. Определение и свойства точечных оценок параметров распределения: состоятельность, несмещенность, эффективность

Пусть θ — некоторый параметр распределения $F_X(x,\theta)$. Информация, необходимая для нахождения оценки $\hat{\theta}$ неизвестного параметра θ , содержится в выборке $X_1, ..., X_n$ из данного распределения. Таким образом, возникает задача построения оценки $\hat{\theta}$ параметра распределения как функции случайной выборки: $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$.

Заметим, что оценка параметра распределения является случайной величиной (статистикой). В результате проведения эксперимента (серии n независимых наблюдений) получают реализацию выборки — числа $x_1, x_2, ..., x_n$. При этом оценка $\hat{\theta}$ принимает соответствующее числовое значение $\hat{\theta}_e = \hat{\theta}(x_1, x_2, ..., x_n)$, которое является приближенным значением неизвестного параметра θ . Оценки указанного типа называют точечными, их применение целесообразно

при достаточно больших выборках. При малых объемах выборок используют интервальные оценки, которые будут рассмотрены далее.

Ниже определяются свойства точечных оценок: состоятельность, несмещенность, эффективность, каждое из которых определенным образом характеризует меру близости оценки $\hat{\theta}$ (случайной величины) к истинному значению (неслучайной величине) неизвестного параметра θ распределения $F_X(x,\theta)$. Понятно, что вопрос обладает ли данная оценка каким-либо (или всеми) из указанных свойств требует специального рассмотрения.

 $\begin{subarray}{c} $Cocmonmenshocms. $$ Оценка $\hat{\theta}$ называется состоятельной оценкой параметра θ, если оценка $\hat{\theta}$ по вероятности сходится к оцениваемому параметру: $$ $\forall $\epsilon > 0$ $P(|\hat{\theta} - \theta| \ge \epsilon)_{n \to +\infty} 0 (символически это принято записывать так: $$\hat{\theta}$ $$ $$ $\frac{P}{n \to +\infty} θ)$. Иными словами, состоятельная оценка обладает свойством: c увеличением объема выборки n уменьшается вероятность того, что абсолютная величина отклонения оценки от оцениваемого параметра θ превзойдет любое наперед заданное $$ > 0. $$$ $$$ $$$ Несмещенность. Оценка $$\hat{\theta}$$ называется несмещенной оценкой параметра θ, если ее математическое ожидание равно оцениваемому параметру: $$$ $$M$ $\hat{\theta}$ = θ.$

Если $M\hat{\theta}\neq \theta$, то имеет место систематическая ошибка, величину $|M\hat{\theta}-\theta|$ называют смещением.

Оценка $\hat{\theta}$ называется асимптотически несмещенной, если

$$M\hat{\theta} \xrightarrow[n \to +\infty]{} \theta$$

В качестве упражнения докажем следующее утверждение:

Пусть $\hat{\theta}$ — несмещенная оценка параметра распределения θ , причем $D[\hat{\theta}] \underset{n \to +\infty}{\longrightarrow} 0$, тогда $\hat{\theta}$ — состоятельна.

Запишем неравенство Чебышева: $\forall \epsilon > 0 \quad 0 \leq P(|\hat{\theta} - M\hat{\theta}| \geq \epsilon) \leq \frac{D[\hat{\theta}]}{\epsilon^2}$.

Учтем, что по условию $\hat{\theta}$ — несмещенная оценка ($M\hat{\theta} = \theta$), тогда, переходя к пределу при $n \to +\infty$, по теореме о сжатой переменной имеем:

$$\forall \varepsilon > 0 \ P(|\hat{\theta} - \theta| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$$
, то есть $\hat{\theta}$ – состоятельна: $\hat{\theta} \xrightarrow[n \to +\infty]{} \theta$.

Рассмотрим в качестве примера свойства относительной частоты как оценки вероятности в схеме Бернулли.

Пусть случайная величина X подчиняется биномиальному распределению с параметрами n и p.

Относительная частота $\frac{X}{n} = \hat{p}$ как оценка вероятности p обладает следующими свойствами:

1) \hat{p} — состоятельная, что следует из закона больших чисел:

$$\hat{p} = \frac{X}{n} \xrightarrow[n \to +\infty]{P} p$$
.

2) \hat{p} – несмещенная, так как:

$$M[\hat{p}] = M[\frac{1}{n} X] = \frac{1}{n} M[X] = \frac{1}{n} np = p$$

3) Дисперсия \hat{p} – бесконечно малая при $n \to +\infty$:

$$D[\hat{p}] = D[\frac{X}{n}] = \frac{1}{n^2} npq = (1/n) pq \xrightarrow[n \to +\infty]{} 0.$$

4) Согласно теореме Муара-Лапласа эта оценка является асимптотически нормальной: $\hat{p} = \frac{X}{n} \sum_{n \to +\infty} N(p; \sqrt{\frac{pq}{n}})$.

6. Оценки основных числовых характеристик распределения и их свойства

Функция распределения $F_X(x)$, полностью определяющая свойства случайной величины X, в большинстве случаев неизвестна. Однако информацию о распределении, достаточную во многих случаях для практических целей, могут дать оценки основных числовых характеристик распределения.

Итак, пусть $(X_1, ..., X_n)$ – выборка из распределения $F_X(x)$ исследуемой одномерной случайной величины, $(x_1, x_2, ..., x_n)$ – реализация выборки.

Числовая характеристика случайной величины X $\alpha_k = M[X^k] - $ начальный момент	Оценка числовой характеристики— — функция выборки (X_1, \dots, X_n) $\hat{\alpha}_k = \frac{1}{n} \sum_{i=1}^n X_i^k -$	Реализация оценки — — значение оценки в точке $ (x_1, x_2,, x_n) $ $ \hat{\alpha}_{ke} = \frac{1}{n} \sum_{i=1}^n x_i^k = a_k - $
k-го порядка	выборочный начальный момент k -го порядка	выборочный начальный момент k -го порядка
$MX = m_X = m = \alpha_1 - $ математическое ожидание	$\overline{X} = \hat{m} = \frac{1}{n} \sum_{i=1}^{n} X_i = \hat{\alpha}_1 -$ выборочное среднее	$\bar{x} = \hat{m}_e = \frac{1}{n} \sum_{i=1}^n x_i = \hat{\alpha}_{1e} -$ выборочное среднее
$\mu_k = M[(X - MX)^k]$	$\hat{\mu}_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{k} -$	$\hat{\mu}_{ke} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k = m_k - m_k$
- центральный момент k -го порядка	выборочный центральный момент k -го порядка	выборочный центральный момент k -го порядка
$DX=M[(X-MX)^2]$	$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \hat{\mu}_{2} = \hat{\sigma}^{2}$	$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \hat{\mu}_{2e} = \hat{\sigma}_{e}^{2}$
$=\sigma^2=\mu_2$ -дисперсия	– выборочная дисперсия	— выборочная дисперсия *2 1 <i>n</i>
$\sigma_X = \sigma$ – стандартное	$S^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 -$	$s^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 -$
отклонение	исправленная (несмещенная)	исправленная (несмещенная)
	выборочная дисперсия	выборочная дисперсия

Подчеркнем еще раз, что числовая характеристика случайной величины – неслучайная величина, ее оценка (функция выборки) – случайная величина, реализация оценки (значение оценки, которое она принимает в точке $(x_1, x_2, ..., x_n)$) – неслучайная величина (число).

<u>Доказательство</u> Поскольку $MX_i = MX$ и $MX_i^k = MX^k$, имеем: $M[\hat{\alpha}_k] = M[\frac{1}{n}\sum_{i=1}^n X_i^k] = \frac{1}{n}(nM[X^k]) = \alpha_k$ — несмещенность. Далее, $D[\hat{\alpha}_k] = D[\frac{1}{n}\sum_{i=1}^n X_i^k] = (\frac{1}{n})^2\sum_{i=1}^n D[X_i^k] = (\frac{1}{n})^2 nD[X^k] = \frac{1}{n}(M[X^{2k}] - (M[X^k])^2) = \frac{\alpha_{2k} - \alpha_k^2}{n} \xrightarrow[n \to +\infty]{} 0.$

Таким образом $\hat{\alpha}_k$ – несмещенная оценка, ее дисперсия – бесконечно малая при $n \to +\infty$, откуда следует состоятельность $\hat{\alpha}_k$ (см. утверждение о несмещенной оценке, дисперсия которой – бесконечно малая при $n \to +\infty$, доказанное в п. 5):

$$\hat{\alpha}_k \xrightarrow[n \to +\infty]{P} \alpha_k$$
.

Заметим, что выборочные центральные моменты $\hat{\mu}_k$ — также являются состоятельными оценками центральных моментов μ_k случайной величины X.

Докажем теперь, что $\hat{\alpha}_k$ – асимптотически нормальная оценка начального момента α_k .

Действительно, выборочный начальный момент $\hat{\alpha}_k$ есть сумма одинаково распределенных независимых случайных величин, имеющих конечное математическое ожидание и дисперсию.

Согласно центральной предельной теореме:

$$\frac{\hat{\alpha}_k - M[\hat{\alpha}_k]}{\sqrt{D[\hat{\alpha}_k]}} = \frac{\hat{\alpha}_k - \alpha_k}{\sqrt{\frac{\alpha_{2k} - \alpha_k^2}{n}}} \underset{n \to +\infty}{\sim} N(0;1).$$

Таким образом, $\hat{\alpha}_k$ — асимптотически нормальная случайная величина с математическим ожиданием и стандартным отклонением, равными, соответственно: α_k и $\sqrt{\frac{\alpha_{2k}-\alpha_k^2}{n}}$. Символически это можно записать так: $\hat{\alpha}_k$ $\underset{n \to +\infty}{\sim} N(\alpha_k; \sqrt{\frac{\alpha_{2k}-\alpha_k^2}{n}})$.

<u>Следствие</u> Выборочное среднее $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \hat{\alpha}_{l}$ является несмещенной, состоятельной, асимптотически нормальной оценкой математического ожидания МХ случайной величины X.

<u>Теорема</u>. Выборочная дисперсия $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 - \text{состоятельная}$, асимптотически несмещенная оценка дисперсии DX случайной величины X.

<u>Доказательство</u>

Запишем следующее очевидное равенство: $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 =$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2X_i \bar{X} + \bar{X}^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2 = \hat{\alpha}_2 - \hat{\alpha}_1^2.$$

В предыдущей теореме доказана состоятельность оценки $\hat{\alpha}_k$ k-го начального момента α_k :

$$\hat{\alpha}_k \xrightarrow[n \to +\infty]{P} \alpha_k$$
.

Известные теоремы о пределе суммы и произведения функций справедливы и для сходимости по вероятности, поэтому имеем:

$$S^2 = (\hat{\alpha}_2 - \hat{\alpha}_1^2) \xrightarrow[n \to +\infty]{P} (\alpha_2 - \alpha_1^2) = M[X^2] - (MX)^2 = DX.$$

Таким образом, S^2 – состоятельная оценка дисперсии DX:

$$S^2 \xrightarrow{P} DX = \sigma_X^2$$
.

Докажем теперь, что выборочная дисперсия S^2 является асимптотически несмещенной оценкой дисперсии DX.

Поскольку
$$S^2 = \hat{\alpha}_2 - \hat{\alpha}_1^2$$
, имеем: $M[S^2] = M \hat{\alpha}_2 - M(\hat{\alpha}_1^2)$.

Как было доказано, выборочные начальные моменты $\hat{\alpha}_k$ — несмещенные оценки соответствующих начальных моментов α_k , поэтому $M[\hat{\alpha}_2] = \alpha_2 = M(X^2)$.

Далее запишем:

$$M(\hat{\alpha}_1^2) = M(\bar{X}^2) = D\bar{X} + (M\bar{X})^2 = \frac{1}{n}DX + (M\bar{X})^2 = \frac{1}{n}DX + (MX)^2$$

(здесь использованы очевидные равенства $M\bar{X} = MX$, $D\bar{X} = \frac{1}{n}DX$).

В итоге получаем:

$$MS^2 = M\hat{\alpha}_2 - M(\hat{\alpha}_1^2) = M(X^2) - \frac{1}{n}DX - (MX)^2 = DX - \frac{1}{n}DX = \frac{n-1}{n}DX,$$

выборочная дисперсия S^2 не является несмещенной; однако, эта оценка — acumnmomuvecku несмещенная, поскольку

$$MS^2 = \frac{n-1}{n} DX \xrightarrow[n \to +\infty]{} DX.$$

Наряду с выборочной дисперсией S^2 в качестве оценки дисперсии DX используют также *исправленную* выборочную дисперсию $S^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{n}{n-1} \ S^2$ — несмещенную состоятельную оценку дисперсии DX.

Действительно:
$$MS^{*2} = \frac{n}{n-1} (\frac{n-1}{n} DX) = DX$$
 и $S^{*2} = (\frac{n}{n-1} S^2) \xrightarrow{P} DX$.

<u>Замечание</u>

Коэффициент асимметрии (асимметрия) $\gamma_3 = \mu_3/\sigma^3$ и коэффициент эксцесса (эксцесс) $\gamma_4 = \mu_4/\sigma^4 - 3$ характеризуют асимметрию и "островершинность" распределения, соответственно. Используют также обозначение sk (skewness) для асимметрии и ku (kurtosis) — для эксцесса. Указанные числовые характеристики определены для распределений, у которых существуют конечные центральные моменты до четвертого включительно.

Для симметричных распределений (в частности – для нормального распределения) коэффициент асимметрии $\gamma_3 = 0$.

Нормальное распределение имеет эксцесс равный нулю, $\gamma_4 = 0$.

Оценками указанных числовых характеристик служат выборочная асимметрия $\hat{\gamma}_3 = \hat{\mu}_3 / S^3$ и выборочный эксцесс $\hat{\gamma}_4 = \hat{\mu}_4 / S^4 - 3$.

Реализации этих оценок:
$$\hat{\gamma}_{3e} = \hat{\mu}_{3e}/s^3$$
, $\hat{\gamma}_{4e} = \hat{\mu}_{4e}/s^4 - 3$

Выборочные коэффициенты эксцесса и асимметрии можно использовать для грубой проверки выборки "на нормальность" (а именно – отклонения гипотезы о нормальности распределения): если

отличие от нуля значения эксцесса $(\hat{\gamma}_{3e})$ или асимметрия $(\hat{\gamma}_{4e})$ оказывается существенным, то гипотезу о нормальности распределения следует отвергнуть.

Заметим, что в ряде статистических модулей прикладных программ (в частности, в Excel) реализованы *несмещенные* выборочные оценки числовых характеристик распределений, в том числе, асимметрии и эксцесса.

7. Выборочные квантили

Напомним: *квантилью порядка р* одномерного распределения называется корень x_p уравнения F(x) = p , где F(x) — функция распределения.

Вообще функция распределения F(x) – неубывающая. Если она строго монотонна, то уравнение F(x) = p имеет единственный корень x_p ; в противном случае при некоторых значениях p это уравнение может иметь более одного решения, тогда в качестве квантили x_p берут наименьшее из них. Заметим, что порядок p квантили x_p – это вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность того, что случайная величина x_p примет значение x_p вероятность x_p вероятность x_p примет значение x_p вероятность x_p вероят

Выборочной квантилью $Z_{n,p}$ порядка p называется следующая статистика:

$$Z_{n,p} = egin{cases} X_{([np]+1)}, \text{ если } np$$
 - дробное $X_{(np)}, \text{ если } np$ - целое здесь $[np]$ – целая часть np .

Напомним: целой частью данного числа называют наибольшее целое число, не превосходящее данное; $X_{(k)}$ – k-я порядковая статистика (элемент вариационного ряда).

Из определения следует, что $Z_{n,p}$ — это максимальная из порядковых статистик, обладающая свойством: *левее* нее располагаются члены вариационного ряда, доля которых $\frac{[np]}{n}$ не *превосходит p*.

Таким образом, выборочная квантиль является статистическим аналогом квантили x_p исследуемой случайной величины X.

Частные случаи.

Значению p = 1/2 отвечает выборочная медиана

$$\mathbf{Z}_{n,1/2} \!\!=\!\! Med = \!\! egin{cases} \mathbf{X}_{([n\!/\!_2]\!+1)}, \operatorname{если} n\!/\!_2 \text{- дробное} \ \mathbf{X}_{(n\!/\!_2)}, & \operatorname{если} n\!/\!_2 \text{- целое} \end{cases}.$$

Выборочная медиана Med — оценка медианы MeX распределения случайной величины X (напомним: P(X < MeX) = P(X > MeX) = 1/2). Реализацию med выборочной медианы Med вычисляют по реализации вариационного ряда $x_{(1)}, x_{(2)}, ..., x_{(n)}$.

б) Значениям p=1/4 и p=3/4 отвечают выборочные *квартили* $Z_{n,1/4}$ и $Z_{n,3/4}$ (оценки нижней и верхней квартилей $x_{1/4}$ и $x_{3/4}$), их реализации обозначают $z_{n,1/4}$ и $z_{n,3/4}$, соответственно.

Замечание При наличии выбросов при измерениях или в случае "зашумленных" выборок в качестве оценок математического ожидания МХ и дисперсии DX симметричных распределений, целесообразным оказывается использование также оценок, перечисленных ниже.

<u>Оценки МХ</u> (положение центра распределения):

Med – выборочная медиана,

 $\hat{\theta}_R = \frac{1}{2}(X_{(1)} + X_{(n)})$ — среднее арифметическое экстремальных статистик.

 $\hat{\theta}_{\mathcal{Q}} = \frac{1}{2} \; (Z_{n,1/4} + Z_{n,3/4}) -$ среднее арифметическое выборочных квартилей.

<u>Оценки DX</u> (мера рассеяния распределения):

$$\mathcal{D} = \frac{1}{n} \sum_{i=1}^{n} |X_i - Med|$$
 — среднее абсолютное отклонение,

$$R = X_{(n)} - X_{(1)} -$$
размах,

 $Q = Z_{n, 3/4} - Z_{n, 1/4}$ – интерквартильная широта.

8. Нахождение оценок параметров распределений методом максимального правдоподобия

Пусть $X_1, ..., X_n$ —выборка из распределения $F_X(x, \theta)$, зависящего от одного неизвестного параметра θ и стоит задача построить оценку этого параметра. Один из методов нахождения оценок параметров непрерывных и дискретных распределений—метод максимального правдоподобия.

а) пусть X-непрерывная исследуемая случайная величина, X_1, \dots, X_n ,—выборка из распределения с плотностью вероятности $f_X(x,\theta)$, зависящей от неизвестного параметра, причем вид функции f известен, и x_1, x_2, \dots, x_n — некоторая реализация выборки.

Функция
$$L(x_1, x_2, ..., x_n, \theta) = f_X(x_1, \theta) ... f_X(x_n, \theta) = \prod_{i=1}^n f_X(x_i, \theta)$$
,

рассматриваемая в фиксированной точке $(x_1, x_2, ..., x_n)$ как функция параметра θ , называется функцией правдоподобия.

Вероятностный смысл этой функции – значение плотности вероятности n-мерной случайной величины $X_1, ..., X_n$, вычисленное в данной точке $x_1, x_2, ..., x_n$ и зависящее от параметра θ (говорят– апостериорное значение плотности вероятности).

б) пусть теперь $x_1, x_2, ..., x_n$ – некоторая реализация выборки $X_1, ..., X_n$ из распределения дискретной случайной величины,

множество возможных значений которой $\{x_i\}$ i=1,2,..., причем распределение $P(X=x_i)=p_i$ (θ) зависит от параметра θ .

Пусть в данной реализации $x_1, x_2, ..., x_n$ значение x_m встречается n_m раз (здесь m = 1, 2, ..., k; причем $n_1 + ... + n_k = n$).

В случае дискретного распределения функцию правдоподобия определяют так:

$$L(x_1, x_2,...,x_n, \theta) = p_1^{n_1}(\theta) ... p_k^{n_k}(\theta) = \prod_{m=1}^k p_m^{n_m}(\theta)$$

Вероятностный смысл функции правдоподобия для случая дискретного распределения состоит в следующем: это вероятность того, что случайная выборка $X_1, ..., X_n$ примет значение, равное именно данной реализации выборки $x_1, x_2, ..., x_n$.

Понятно, что чем ближе значение переменной θ к истинному (неизвестному) значению параметра распределения $F_X(x,\theta)$, тем выше вероятность при проведении эксперимента получить данную реализацию выборки $x_1, x_2, ..., x_n$.

Оценкой максимального правдоподобия $\hat{\theta}_{\text{МП}}$ неизвестного параметра θ (точнее – значением оценки, отвечающим данной конкретной реализации выборки $x_1, x_2, ..., x_n$) называется такое значение переменной θ , которое доставляет максимум функции правдоподобия $L(x_1, x_2, ..., x_n, \theta)$.

Функция правдоподобия L, определенная выше, представляет собой произведение ряда сомножителей, поэтому при поиске точки максимума L целесообразно перейти к $\ln L$ (очевидно, что $\ln L$ и L имеют максимум в одной и той же точке) и оценку максимального правдоподобия $\hat{\theta}_{M\Pi}$ параметра θ находить из уравнения правдоподобия $\frac{\partial}{\partial \theta}(\ln L) = 0$.

В случае, когда неизвестными являются m параметров $\theta_1, ..., \theta_m$, оценки $\hat{\theta}_{1\text{MII}}, ..., \hat{\theta}_{m\text{MII}}$ находят из соответствующей системы m уравнений.

Заметим, что метод максимального правдоподобия всегда приводит к состоятельным оценкам, распределенным асимптотически нормально, имеющим наименьшую возможную дисперсию среди других асимптотически нормальных оценок. Однако на практике он может осложняться трудностями, связанными с решением систем уравнений правдоподобия.

9. Примеры нахождения оценок максимального правдоподобия (МП- оценок) параметров распределений

Пример 1_мп (нормальное распределение).

Пусть имеется выборка $X_1, ..., X_n$ из нормального распределения $N(m;\sigma)$ и $x_1, x_2, ..., x_n$ — некоторая реализация выборки. Найдем оценки максимального правдоподобия $\hat{m}_{\text{МП}}$ и $\hat{\sigma}_{\text{МП}}$ параметров распределения m и σ .

Функция правдоподобия в точке $(x_1, x_2, ..., x_n)$ равна

$$L(x_1,x_2,...,x_n,m,\sigma) = \prod_{i=1}^n f_X(x_i,m,\sigma) = \prod_{i=1}^n \left(\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x_i-m)^2}{2\sigma^2}}\right),$$

ее логарифм
$$\ln \mathbf{L} = (-\frac{n}{2}) \ln 2\pi - n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - m)^2$$
.

Решая систему уравнений правдоподобия

$$\frac{\partial \ln L}{\partial m} = 0, \quad \frac{\partial \ln L}{\partial \sigma} = 0$$
 относительно неизвестных m и σ ,

получаем:
$$m = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$
; $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 = s^2$.

Полученное решение — значение реализаций оценок параметров m и σ , соответствующее данной реализации выборки, однако все

приведенные рассуждения справедливы для любой реализации выборки, поэтому искомые оценки равны, соответственно:

$$\hat{m}_{\text{MII}} = \bar{X}; \hat{\sigma}_{\text{MII}} = S^2.$$

Пример 2_мп (распределение Пуассона)

Найдем оценку максимального правдоподобия $\hat{a}_{\text{МП}}$ параметра a распределения Пуассона $P(X=i)=p_i=\frac{a^i}{i!}e^{-a}~(i=0,\,1,2,...).$

Пусть $x_1, x_2, ..., x_n$ — некоторая реализация выборки $X_1, ..., X_n$ из распределения Пуассона, так что числа $x_1, x_2, ..., x_n$ — целые неотрицательные. Обозначим через k наибольшее из них и подсчитаем число раз, которое каждое из чисел 0,1,...,k встретилось в данной реализации выборки:

$$0-n_0$$
 раз, $1-n_1$ раз,..., $m-n_m$ раз,..., $k-n_k$ раз, при этом $\sum_{m=0}^k n_m = n$, $\sum_{m=0}^k m n_m = \sum_{i=1}^n x_i$. Далее, $L(x_1,x_2,...,x_n,a) = \prod_{m=0}^k p_m^{n_m}(a)$, $\ln L = \sum_{m=0}^k n_m \ln p_m(a)$, $\frac{\partial \ln L}{\partial a} = \sum_{m=0}^k n_m (\frac{m}{a}-1) = 0$, $\frac{1}{a} \sum_{m=0}^k m n_m - \sum_{m=0}^k n_m = 0$, $\frac{1}{a} \sum_{i=1}^n x_i = n$, откуда $a = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}$.

Таким образом, оценка максимального правдоподобия параметра a распределения Пуассона равна $\hat{a}_{\text{мп}} = \bar{X}$. Заметим, что эта оценка несмещенная состоятельная асимптотически нормальная.

Пример 3_мп (равномерное распределение).

Пусть $x_1, x_2, ..., x_n$ — некоторая реализация выборки $X_1, ..., X_n$ из равномерного распределения с параметрами a и b, а $x_{(1)} \le ... \le x_{(n)}$ —

соответствующая реализация вариационного ряда. Найдем оценки максимального правдоподобия параметров a и b.

Функция правдоподобия в точке $(x_1, x_2, ..., x_n)$ равна:

-
$$L(x_1, x_2, ..., x_n; a, b) = \left(\frac{1}{b-a}\right)^n$$
, если $\forall i \ x_i \in [a; b]$

$$a \qquad b$$

$$x_{(1)} \qquad x_{(n)}$$

- $L(x_1, x_2,...,x_n; a, b) = 0$, если хотя бы одно число из $x_1, x_2,...,x_n$ лежит вне [a;b].

Ясно, что функция правдоподобия $L(x_1, x_2,...,x_n; a,b) = (\frac{1}{b-a})^n$ максимальна (как функция параметров a и b) при условии, что величина разности b-a минимальна. Таким образом, поскольку $a \le x_{(1)}, \ b \ge x_{(n)}, \$ то значения параметров, доставляющие максимум функции правдоподобия $a = x_{(1)}, \ b = x_{(n)}, \$ а искомые оценки $\hat{a}_{\text{МП}} = X_{(1)}, \ \hat{b}_{\text{МП}} = X_{(n)}.$

Пример 4_мп (распределение Бернулли)

Найдем оценку максимального правдоподобия вероятности p (вероятности успеха) в каждом испытании при проведении n независимых испытаний по схеме Бернулли. Индикатор X_i появления успеха в i-м испытании — случайная величина, принимающая два возможных значения 1 или 0, а именно, $P(X_i=1)=p$, если в результате i - го испытания осуществился успех и $P(X_i=0)=1-p=q$ если результат i - го испытании — неуспех (распределение Бернулли):

X_i	0	1
P	q	p

Пусть в результате данной серии n испытаний получена реализация выборки из распределения Бернулли, в которой значение 1 встретилось точно m раз, а значение 0 соответственно n-m раз (ровно m успехов в n испытаниях). Функция правдоподобия имеет вид: $L(x_1, x_2, ..., x_n, p) = p^m q^{n-m} = p^m (1-p)^{n-m}$.

$$\frac{\partial \ln \mathcal{L}}{\partial p} = \frac{m}{p} - \frac{n-m}{1-p} = 0$$
, откуда $p = \frac{m}{n}$.

Таким образом, искомой оценкой максимального правдоподобия вероятности p является относительная частота $\hat{p}_{\text{МП}} = \frac{X}{n}$ числа успехов при проведении n независимых испытаний.

10. Понятие доверительного интервала

Пусть θ – некоторый неизвестный параметр распределения. По выборке X_1, \ldots, X_n из данного распределения построим интервальную оценку параметра θ распределения, то есть найдем такой интервал, внутри которого с заданной (высокой) вероятностью $1-\alpha$ находится истинное значение неизвестного параметра θ . Указанную вероятность $1-\alpha$ называют доверительной вероятностью, а величину α – уровнем значимости.

В качестве значений доверительной вероятности обычно выбирают величины 0,9, 0,95, 0,99, достаточно близкие к 1. В каждом конкретном случае выбор величины доверительной вероятности определяется спецификой решаемой практической задачи.

Итак, пусть $X_1, ..., X_n$ – выборка из данного распределения и задана величина доверительной вероятности $1-\alpha$. Интервал $(\vartheta_1; \vartheta_2)$ называют доверительным интервалом для параметра θ , отвечающим доверительной вероятности $1-\alpha$, если его границы $\vartheta_1 = \vartheta_1(X_1, ..., X_n)$

и
$$\vartheta_2 = \vartheta_2(X_1, ..., X_n)$$
 – две статистики такие, что верно равенство:
$$P(\vartheta_1 < \theta < \vartheta_2) = 1 - \alpha.$$

Заметим, что границы доверительного интервала ϑ_1 и ϑ_2 – случайные величины (функции выборки $X_1,...,X_n$), параметр θ – неслучайная величина, так что интервал $(\vartheta_1;\vartheta_2)$ "накрывает" величину θ с вероятностью $1-\alpha$ (соответственно, "не накрывает" с вероятностью α).

Длина интервала $9_2 - 9_1$ характеризует точность, а доверительная вероятность $1-\alpha$ — надежность интервальной оценки. Очевидно, что точность и надежность взаимосвязаны: увеличение надежности приводит к уменьшению точности — увеличению длины интервала $(9_2 - 9_1)$. Выбирая величину доверительной вероятности $1-\alpha$, принимают соглашение: считать события, вероятность которых $P \ge 1-\alpha$, — практически достоверными, а события, вероятность которых $P \le \alpha$ — практически невозможными.

Практически достоверно
$$\theta \in (\vartheta_1; \vartheta_2)$$
 $\theta \notin (\vartheta_1; \vartheta_2)$ $\theta \notin (\vartheta_1; \vartheta_2)$ (вероятность $1-\alpha$) (вероятность α) θ

11. Основные этапы процедуры построения доверительных интервалов

Напомним, что границы доверительного интервала $\vartheta_1(X_1,...,X_n)$ и $\vartheta_2(X_1,...,X_n)$ — случайные величины (функции выборки $X_1,...,X_n$). Результатом эксперимента (серии n независимых измерений данной случайной величины) является реализация выборки $x_1,x_2,...,x_n$. Соответственно, значения статистик ϑ_1 и ϑ_2 в точке $(x_1,x_2,...,x_n)$ — это $uucna \ \vartheta_{1e} = \vartheta_1(x_1,x_2,...,x_n)$ и $\vartheta_{2e} = \vartheta_2(x_1,x_2,...,x_n)$.

Таким образом, будем различать, идет ли речь о *доверительном интервале*, границы которого по смыслу — случайные величины, или о *реализации доверительного интервала*, границами которого являются конкретные числа.

Для построения реализации доверительного интервала на основе данной реализации выборки $x_1, x_2, ..., x_n$ выполняют следующие действия:

- (1) формулируют предположения о распределении и о выборке $X_1, ..., X_n$ (допущения, принимаемые при построении априорной теоретической модели).
- (2) строят доверительный интервал, для чего:
 - а) выбирают значение доверительной вероятности $1-\alpha$ (или уровня значимости α), то есть принимают соглашение:
 - вероятность практически достоверного события = $1-\alpha$;
 - вероятность практически невозможного события = α.
 - б) записывают вероятностное равенство:

$$P(\delta_1 < g(\theta; \hat{\theta}) < \delta_2) = \int_{\delta_1}^{\delta_2} f_g(x) dx = 1 - \alpha,$$

где статистика g имеет известную (табулированную) плотность вероятности $f_g(x)$, θ – оцениваемый параметр, $\hat{\theta} = \hat{\theta} (X_1, \dots, X_n)$ – некоторая его оценка.

Существует бесконечное множество значений величин δ_1 и δ_2 , обеспечивающих справедливость указанного равенства, однако, если использовать дополнительное условие

 $P(g(\theta; \hat{\theta}) < \delta_1) = P(g(\theta; \hat{\theta}) > \delta_2) = \alpha/2$, то решение $(\delta_1; \delta_2)$ будет единственным:

- в) преобразуют неравенство $\delta_1 < g(\theta; \hat{\theta}) < \delta_2$ к виду $\vartheta_1 < \theta < \vartheta_2$, где $\vartheta_1 = \vartheta_1(X_1, \dots, X_n), \quad \vartheta_2 = \vartheta_2(X_1, \dots, X_n) \varphi$ ункции выборки, тогда $P(\vartheta_1 < \theta < \vartheta_2) \equiv 1 \alpha.$
- (3) проводят эксперимент получают конкретную реализацию выборки x_1, x_2, \dots, x_n .
- (4) вычисляют значения $\theta_{1e} = \theta_1(x_1, x_2, \dots, x_n)$ и $\theta_{2e} = \theta_2(x_1, x_2, \dots, x_n)$.

В результате перечисленных действий (1)-(4) получают реализацию доверительного интервала — числовой интервал $(\theta_{1e};\theta_{2e})$.

Степень уверенности в том, что полученный интервал $(\vartheta_{1e}; \vartheta_{2e})$ в действительности содержит неизвестный параметр θ выражается выбранной априори величиной доверительной вероятности $1-\alpha$ (вероятностью практически достоверного события). Иными словами, ЧТО утверждение "данная априори допускается, $(\vartheta_{1e};\vartheta_{2e})$ доверительного интервала содержит оцениваемый параметр во может оказаться ошибочным, однако, число таких случаев мало и может наблюдаться лишь в $\alpha \cdot 100\%$ общего числа случаев; при этом приемлемая доля указанных ошибок выражается уровнем значимости α – вероятностью практически невозможного события.

12. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии Пример 1 ди

Пусть $X_1, ..., X_n$ — выборка из нормального распределения $N(m;\sigma)$. Предполагается, что параметр σ известен: $\sigma = \sigma_o$ (например, этот параметр определен в результате специальных многократных измерений).

При указанных предположениях справедливо: $\overline{X} \sim N(m; \sigma_o / \sqrt{n})$ или иначе, $\frac{\overline{X} - m}{\sigma_o / \sqrt{n}} \sim N(0; 1)$.

Построим доверительный интервал для математического ожидания m. Зададим величину доверительной вероятности $1-\alpha$ и запишем вероятностное равенство $P(\left|\frac{\overline{X}-m}{\sigma_o}\right| < u) = 1-\alpha$, откуда имеем: $u = u_{1-\alpha/2}$ — квантиль порядка $1-\alpha/2$ (см. рисунок ниже, где $\phi(u)$ — плотность вероятности стандартного нормального распределения).

Далее,
$$P(|\frac{\bar{X}-m}{\sigma_{0}/\sqrt{n}}| < u_{1-\alpha/2}) \equiv 1-\alpha$$
, откуда

$$P\left(\overline{X} - \frac{\sigma_o}{\sqrt{n}} u_{1-\alpha/2} < m < \overline{X} + \frac{\sigma_o}{\sqrt{n}} u_{1-\alpha/2}\right) \equiv 1 - \alpha.$$

Таким образом, искомый доверительный интервал, отвечающий доверительной вероятности $1-\alpha$ имеет вид:

$$(\bar{\mathbf{X}} - \frac{\sigma_{\mathrm{o}}}{\sqrt{n}} u_{1-\alpha/2}; \bar{\mathbf{X}} + \frac{\sigma_{\mathrm{o}}}{\sqrt{n}} u_{1-\alpha/2})$$

Заметим, что для данной величины $1-\alpha$ доверительной вероятности длина этого интервала равна $d=2\,\frac{\sigma_{_{\rm O}}}{\sqrt{n}}\,u_{\,1-\alpha/2}\,.$

При данном объеме выборки n длина d постоянна, от выборки к выборке меняется только положение центра интервала \overline{X} .

Замечание

Проиллюстрируем связь точности и надежности интервальной оценки при фиксированных значениях n и $\sigma_{\rm o}$:

$$1-\alpha=0.9 \qquad u_{1-\alpha/2}=u_{0.95}=1.65 \qquad d=3.3\frac{\sigma_{o}}{\sqrt{n}};$$

$$1-\alpha=0.95 \qquad u_{1-\alpha/2}=u_{0.975}=1.96 \qquad d=3.92\frac{\sigma_{o}}{\sqrt{n}};$$

$$1-\alpha=0.99 \qquad u_{1-\alpha/2}=u_{0.995}=2.58 \qquad d=5.16\frac{\sigma_{o}}{\sqrt{n}}.$$

Видим, что при данном объеме выборки n с ростом надежности оценки $1-\alpha$ ее точность убывает (длина d соответствующего интервала растет). Таким образом, как уже упоминалось, плата за повышение надежности — уменьшение точности интервальной оценки.

Пусть заданы $\varepsilon > 0$ и $1-\alpha$ — величины, характеризующие соответственно точность и надежность оценки. Найдем объем выборки, достаточный для обеспечения одновременно заданных значений точности и надежности оценки. Из условия $d \le 2\varepsilon$ получаем:

$$n \geq \left(\frac{\sigma_0}{\varepsilon} u_{1-\alpha/2}\right)^2$$
.

Пример 1_ди (доверительный интервал для m при известном σ , $1-\alpha=0.95$)

Точность прибора известна (в паспорте прибора указано $\sigma_o = 0,02$). С помощью этого прибора проведено n независимых повторных измерений (n=25) некоторой физической величины. По результатам измерений $x_1, x_2, ..., x_{25}$ вычислено среднее выборочное, оказавшееся равным $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 2,42$. Считая числа $x_1, x_2, ..., x_{25}$ реализацией выборки из нормального распределения $N(m; \sigma_o)$, где $\sigma_o = 0,02$, найти

реализацию доверительного интервала для математического ожидания m; доверительная вероятность $1-\alpha=0.95$.

Решение

Выражение для реализации доверительного интервала для математического ожидания m нормального распределения (при $\sigma = \sigma_{\rm o}$), отвечающего доверительной вероятности $1-\alpha$, имеет вид:

$$(\bar{x}-\frac{\sigma_{o}}{\sqrt{n}}u_{1-\alpha/2};\bar{x}+\frac{\sigma_{o}}{\sqrt{n}}u_{1-\alpha/2}).$$

По таблице квантилей стандартного нормального распределения находим квантиль порядка $1-\alpha/2$: $u_{1-\alpha/2}=u_{0,975}=1,96$. Подставляя $\overline{x}=2,42$, $\sigma_{\rm o}=0,02$, n=25 в выражение для реализации доверительного интервала, получаем:

$$(2,420 - 0,008; 2,420 + 0,008) = (2,412; 2,428).$$

13. Распределение χ^2 , распределение Стьюдента, лемма Фишера

$\underline{Pacnpedeлeнue \chi^2}$

Сумма квадратов n независимых стандартных нормальных случайных величин $\sum_{i=1}^n X_i^2 = \chi_n^2$ называется случайной величиной χ_n^2 (с n степенями свободы). Плотность вероятности распределения χ_n^2 табулирована, ее график имеет вид, представленный на рисунке:

Для распределения χ_n^2 имеют место следующие соотношения: $M[\chi_n^2] = n$, $D[\chi_n^2] = 2n$, $Mo[\chi_n^2] = n-2$. Заметим, что с ростом n кривая

 $f_{\chi^2_n}(x)$ становится более симметричной, а ее максимум смещается вправо.

Заметим также, что в силу центральной предельной теоремы центрированная и нормированная случайная величина $\frac{\chi_n^2-n}{\sqrt{2n}} \underset{n\to +\infty}{\sim} N(0;1) \ \text{асимптотически нормальна, поэтому в таблицах}$ для распределения χ_n^2 приводятся квантили только для $n \leq 30$.

Распределение Стьюдента

Пусть случайные величины $X \sim N(0; 1)$ и χ_n^2 — независимы.

Случайная величина $T_n = \frac{X}{\sqrt{\frac{\chi_n^2}{n}}}$ называется отношением Стьюдента

(t-отношением). Плотность вероятности распределения Стьюдента табулирована, ее график имеет вид, представленный на рисунке:

Распределение $f_{T_n}(x)$ симметрично, $M[T_n]=0$ и имеет место асимптотическое свойство: $T_n \sim N(0;1)$.

При малых значениях n распределение Стьюдента заметно отличается от стандартного нормального распределения, однако при n > 30 эти распределения близки.

<u>Лемма Фишера</u> (о совместном распределении \bar{X} и S^2 для выборки из нормального распределения)

Пусть $X_1, ..., X_n$ — выборка из нормального распределения $N(m;\sigma)$ тогда:

- выборочное среднее \overline{X} и выборочная дисперсия S^2 (или исправленная выборочная дисперсия S^{*2}) взаимно независимы;
- выборочное среднее \overline{X} подчиняется нормальному распределению: $\overline{X} \sim N(m; \sigma / \sqrt{n})$;
- случайная величина $\frac{nS^2}{\sigma^2}$ (или $\frac{(n-1)\,S^{*2}}{\sigma^2}$) распределена по закону χ^2_{n-1} (с n-1 степенью свободы).

Заметим, что из леммы Фишера следует независимость \bar{X} и $\frac{nS^2}{\sigma^2}$, а также \bar{X} и $\frac{(n-1)\,S^{*2}}{\sigma^2}$.

14. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии Примеры 2 ди и 3 ди

Пусть $X_1, ..., X_n$ — выборка из нормального распределения $N(m; \sigma)$, параметры которого m и σ неизвестны. Найдем интервальную оценку параметра m, отвечающую заданной величине доверительной вероятности $1-\alpha$.

Согласно лемме Фишера статистики $U = \frac{\overline{X} - m}{\sigma / \sqrt{n}} \sim N(0; 1)$ и $\frac{(n-1) \, S^{*2}}{\sigma^2} = \chi_{n-1}^2 - \text{независимы. Составим отношение}$ $T_{n-1} = \frac{U}{\sqrt{\frac{\chi_{n-1}^2}{n-1}}} = \frac{\overline{X} - m}{S^* / \sqrt{n}} - \text{отношение Стьюдента.}$

Из вероятностного равенства $P\left(\left|T_{n-1}\right| < t\right) = 1 - \alpha$ имеем $t = t_{n-1;1-\alpha/2}$ – квантиль порядка $1 - \alpha/2$ распределения Стьюдента.

Далее,
$$P(\left|\frac{\overline{X}-m}{S^*/\sqrt{n}}\right| < t_{n-1; 1-\alpha/2}) = 1-\alpha$$
, откуда

$$P(\bar{X} - \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2} < m < \bar{X} + \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2}) \equiv 1 - \alpha.$$

$$P(\bar{X} - \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2} < m < \bar{X} + \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2}) \equiv 1 - \alpha.$$

Таким образом, искомый доверительный интервал, отвечающий доверительной вероятности $1-\alpha$ имеет вид:

$$(\bar{X} - \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2}; \bar{X} + \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2})$$

Заметим, что положение центра этого интервала, как и его длина – случайные величины.

Пример 2_ди (доверительный интервал для m при неизвестном σ, 1-α=0,6827)

По результатам пяти измерений вычислено выборочное среднее \overline{x} и исправленная выборочная дисперсия s^{*2} , соответственно:

$$\overline{x} = \frac{1}{5} \sum_{i=1}^{5} x_i = 4$$
 и $S^{*2} = \frac{1}{4} \sum_{i=1}^{5} (x_i - \overline{x})^2 = 10/4$.

Считая числа $x_1, x_2, ..., x_5$ реализацией выборки из нормального распределения $N(m;\sigma)$, где σ неизвестно, записать реализацию доверительного интервала для математического ожидания m, приняв величину доверительной вероятности равной $1-\alpha=0,6827$.

Решение

Реализация доверительного интервала, отвечающего доверительной вероятности $1-\alpha$, для математического ожидания m нормального распределения имеет вид:

$$(\bar{x} - \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2}; \bar{x} + \frac{S^*}{\sqrt{n}} t_{n-1;1-\alpha/2})$$

Здесь $\frac{s^*}{\sqrt{n}}$ — стандартная ошибка, $\frac{s^*}{\sqrt{n}} t_{n-1;1-\alpha/2}$ — погрешность.

Правило записи реализации доверительного интервала (для $1-\alpha=0.6827$):

- 1) округление значения погрешности округляемая цифра отбрасывается, если она < 5 , если она ≥ 5 то в предыдущий разряд добавляется единица;
- 2)в погрешности оставляют одну значащую цифру, если она ≥4 и две, если первая из них <4;
- 3) в значении \bar{x} оставляют последнюю значащую цифру в том же разряде, что и в погрешности;
- 4) общий множитель вида 10^k выносят за скобки.

Находим (по таблицам) значение квантили $t_{n-1;1-\alpha/2}=t_{4;0,84135}=1,22$, вычисляем значение погрешности $\frac{S^*}{\sqrt{5}}t_{4;\;0,84135}=0,9$ и получаем искомую реализацию доверительного интервала: (4,0-0,9;4,0+0,9)=(3,1;4,9).

Пример 3_ди (доверительный интервал для m при неизвестном σ , $1-\alpha=0.95$)

Произведено n=19 измерений $x_1, x_2, ..., x_{19}$ некоторой физической величины с помощью прибора, измеряющего с точностью до 0,1.

Вычислено выборочное среднее $\bar{x} = \frac{1}{19} \sum_{i=1}^{19} x_i = 7,07$ и исправленная

выборочная дисперсия $s^{*2} = \frac{1}{18} \sum_{i=1}^{19} (x_i - \overline{x})^2 = 0,041.$

Считая, что $x_1, x_2, ..., x_{19}$ — реализация выборки из нормального распределения $N(m;\sigma)$, где σ неизвестно, записать реализацию доверительного интервала для математического ожидания m при доверительной вероятности $1-\alpha=0.95$.

Решение

Правило записи реализации доверительного интервала для $1-\alpha=0.95$:

- 1) выборочное среднее \bar{x} вычисляется с точностью на порядок большей, чем точность измерений;
- 2) выборочное стандартное отклонение S^* (исправленное) с точностью, на порядок большей, чем точность вычисления среднего;
- 3) правило округления: если округляемая цифра < 5, то она отбрасывается, если она $\ge 5 в$ предыдущий разряд добавляется единица.

Реализация доверительного интервала, отвечающего доверительной вероятности $1-\alpha$, для математического ожидания m при неизвестном σ имеет вид:

$$(\bar{x} - \frac{s^*}{\sqrt{n}} t_{n-1;1-\alpha/2}; \bar{x} + \frac{s^*}{\sqrt{n}} t_{n-1;1-\alpha/2})$$

Находим по таблицам значение квантили $t_{n-1:1-\alpha/2} = t_{18:\ 0.975} = 2,10,$ вычисляем значение погрешности

 $\frac{s^*}{\sqrt{19}}t_{18;\;0,975}=0,098$ и получаем искомую реализацию доверительного интервала для m:

$$(7,07 - 0,098; 7,07 + 0,098) = (6,972; 7,168).$$

15. Доверительный интервал для дисперсии нормального распределения

Пусть $X_1, ..., X_n$ — выборка из нормального распределения $N(m; \sigma)$. Параметры распределения m и σ неизвестны. Найдем интервальную оценку дисперсии распределения σ^2 , отвечающую заданной величине доверительной вероятности $1-\alpha$.

Известно (п. 13), что статистика $\frac{(n-1) S^{*2}}{\sigma^2}$ распределена по закону χ^2_{n-1} (хи-квадрат с n-1 степенью свободы):

$$\frac{(n-1) S^{*2}}{\sigma^2} = \chi_{n-1}^2$$

Запишем равенство:

$$P(\chi^{2}_{(1)} < (n-1)S^{*2}/\sigma^{2} < \chi^{2}_{(2)}) = 1 - \alpha,$$

здесь $\chi^2_{(1)}$ и $\chi^2_{(2)}$ — границы доверительного интервала, подлежащие определению. С учетом дополнительного условия $P(\chi^2_{n-1} < \chi^2_{(1)}) = P(\chi^2_{n-1} > \chi^2_{(2)}) = \alpha/2$ эти границы определяются единственным образом. Действительно $\chi^2_{(1)} = \chi^2_{n-1;\alpha/2}$ и $\chi^2_{(2)} = \chi^2_{n-1;1-\alpha/2}$ — квантили распределения случайной величины χ^2_{n-1} порядка $\alpha/2$ и $1-\alpha/2$, соответственно. В итоге получаем:

$$P\left(\frac{(n-1)S^{*2}}{\chi^{2}_{(2)}} < \sigma^{2} < \frac{(n-1)S^{*2}}{\chi^{2}_{(1)}}\right) \equiv 1 - \alpha.$$

Замечание

В случае выборки большого объема из произвольного распределения может быть построен приближенный доверительный интервал для стандартного отклонения σ. При этом предполагается, что у распределения, из которого извлечена выборка, существуют конечные первые четыре момента.

В выборочной дисперсии $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ не все слагаемые являются независимыми, так как $\sum_{i=1}^n (X_i - \bar{X}) = 0$. Если объем выборки n достаточно велик, то этой связью можно пренебречь и считать, что все слагаемые независимы. При этом, согласно центральной предельной теореме, центрированная и нормированная случайная величина $\frac{S^2 - MS^2}{DS^2}$ будет распределена асимптотически нормально.

Таким образом примем, что при данном объеме выборки справедливо:

$$\frac{S^2 - MS^2}{\sqrt{D(S^2)}} \sim N(0; 1).$$

Полагая, что выполнены все указанные условия, приведем без доказательства формулу для асимптотического доверительного интервала:

$$S(1+u_{1-\alpha/2}\sqrt{(\hat{\gamma}_4+2)/n})^{-1/2} < \sigma < S(1-u_{1-\alpha/2}\sqrt{(\hat{\gamma}_4+2)/n})^{-1/2}.$$

Здесь $u=u_{1-\alpha/2}$ — квантиль порядка $1-\alpha/2$ стандартного нормального распределения, $\hat{\gamma}_4=\hat{\mu}_4$ / S^4 — 3 — выборочный эксцесс.

16. Приближенная интервальная оценка для математического ожидания произвольного распределения по выборке большого объема

Пусть $X_1, ..., X_n$ — выборка из некоторого (произвольного) распределения, причем объем выборки n достаточно велик.

Введем обозначения: $MX_i = m$, $DX_i = \sigma^2$ (i = 1,...,n), тогда $M\bar{X} = m$, $D\bar{X} = (\sigma/\sqrt{n})^2$.

Согласно центральной предельной теореме имеем: $\frac{\overline{X}-m}{\sigma/\sqrt{n}} \sim N(0;1)$ при $n \to +\infty$. По условию n- велико, поэтому примем допущение, что указанная нормальность $\frac{\overline{X}-m}{\sigma/\sqrt{n}} \sim N(0;1)$ имеет место при данном объеме выборки n.

Зададимся величиной доверительной вероятности $1-\alpha$ и запишем: $P(|\frac{\overline{X}-m}{\sigma/\sqrt{n}}| < u) = 1-\alpha$, откуда $u = u_{1-\alpha/2}$ – квантиль порядка $1-\alpha/2$ стандартного нормального распределения.

Таким образом,
$$P\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{1-\alpha/2} < m < \overline{X} + \frac{\sigma}{\sqrt{n}} u_{1-\alpha/2}\right) \equiv 1-\alpha.$$

Заменяя в последнем равенстве неизвестную величину σ ее несмещенной состоятельной оценкой S^* , получаем *приближенную* интервальную оценку для математического ожидания m, отвечающую доверительной вероятности $1-\alpha$ при большом объеме выборки:

$$(\bar{X} - \frac{S^*}{\sqrt{n}} u_{1-\alpha/2} < m < \bar{X} + \frac{S^*}{\sqrt{n}} u_{1-\alpha/2}).$$

17. Приближенная интервальная оценка вероятности *р* в схеме Бернулли по выборке большого объема. Пример 4 ди

Пусть проводится n независимых испытаний, p — вероятность успеха в каждом испытании и $X_1, ..., X_n$ — выборка из соответствующего распределения Бернулли, причем объем выборки n достаточно велик. Каждый элемент выборки — индикатор X_i появления успеха в i-м испытании. Случайная величина $X = \sum_{i=1}^n X_i$ — число успехов — подчиняется биномиальному распределению:

$$P(X = m) = C_n^m (p)^m (1-p)^{n-m} \quad (m = 0,1,...,n).$$

Согласно теореме Муавра-Лапласа, центрированная и нормированная случайная величина $\frac{X-np}{\sqrt{npq}} = \frac{X/n-p}{\sqrt{pq/n}}$ является асимптотически нормальной, что можно символически записать так: $\frac{\hat{p}-p}{\sqrt{pq/n}} \sim N(0;1)$ при $n \to +\infty$. Здесь относительная частота $\hat{p} = \frac{X}{n}$ оценка максимального правдоподобия вероятности p (несмещенная состоятельная асимптотически эффективная и асимптотически нормальная точечная оценка), q=1-p.

Это означает, что при достаточно больших значениях n распределение статистики $\frac{\hat{p}-p}{\sqrt{pq/n}}$ близко к стандартному нормальному. Будем считать, что нормальность распределения имеет место при данном (достаточно большом) объеме выборки n.

Зададимся величиной доверительной вероятности $1-\alpha$ и запишем: $P(|\frac{\hat{p}-p}{\sqrt{pq/n}}| < u) = 1-\alpha$, откуда $u = u_{1-\alpha/2}$ — квантиль порядка $1-\alpha/2$ стандартного нормального распределения.

Таким образом,
$$P(|\frac{\hat{p}-p}{\sqrt{pq/n}}| < u_{1-\alpha/2}) \equiv 1-\alpha,$$

$$P(\hat{p}-u_{1-\alpha/2}\sqrt{p(1-p)/n}$$

Заменив в последнем тождестве неизвестную величину p ее оценкой \hat{p} , получим выражение для приближенного (асимптотического) доверительного интервала, отвечающего доверительной вероятности $1-\alpha$:

$$(\hat{p}-u_{1-\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n};\hat{p}+u_{1-\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n})$$

Отметим еще раз, что полученное выражение используют для нахождения npuближенной интервальной оценки вероятности p при достаточно больший значениях n.

Пример 4 ди

Приемное устройство (3) охранной системы находится в режиме ожидания (дежурном режиме) и может получать сообщения (пакеты) фиксированной длительности $\Delta \tau$ от датчика (1) по радиоканалу (2). Если в каком-либо интервале времени $\Delta \tau$ от датчика поступает сообщение, то на исполнительное устройство (4) передается извещение "тревога".

Под *пожной тревогой* понимают ошибочное формирование извещения "тревога" при условии, что сообщение от датчика отсутствует; ложная тревога обусловлена только наличием собственного шума в системе, в частности – в радиоканале.

Для оценки вероятности ложной тревоги осуществили наблюдение за работой системы в течение интервала времени, равного $10^4 \Delta \tau$. Подсчитали частоту события "ложная тревога" (число интервалов $\Delta \tau$,

таких, в которых было ошибочно сформировано извещение "тревога") и его относительную частоту, оказавшуюся равной 0,006.

Найдем приближенную интервальную оценку вероятности ложной тревоги при доверительной вероятности $1-\alpha=0.95$.

Указание: Принять допущение, что вероятностной моделью эксперимента по оценке вероятности p ложной тревоги служит последовательность независимых испытаний (схема Бернулли), то есть, что выборка объема $n=10^4$ извлечена из распределения Бернулли с параметром p.

Решение

Выражение для реализации приближенного доверительного интервала для неизвестного параметра p, отвечающего доверительной вероятности $1-\alpha$, имеет вид:

$$(\hat{p}_e - u_{1-\alpha/2}\sqrt{\hat{p}_e(1-\hat{p}_e)/n}; \hat{p}_e + u_{1-\alpha/2}\sqrt{\hat{p}_e(1-\hat{p}_e)/n}),$$

где \hat{p}_e- значение оценки $\hat{p}=X/n$, вычисленное по реализации выборки (по результатам эксперимента); по условию задачи $\hat{p}_e=0{,}006$.

По таблицам квантилей стандартного нормального распределения находим квантиль $u_{1-\alpha/2}=u_{0.975}=1,96$. Вычисляем

$$u_{1-\alpha/2}\sqrt{\hat{p}_e(1-\hat{p}_e)/n} = 1,96 \sqrt{0,006(1-0,006)/10000} = 0,0015,$$

$$\hat{p}_e - u_{1-\alpha/2}\sqrt{\hat{p}_e(1-\hat{p}_e)/n} = 0,006 - 0,0015 = 0,0045,$$

$$\hat{p}_e + u_{1-\alpha/2}\sqrt{\hat{p}_e(1-\hat{p}_e)/n} = 0,006 + 0,0015 = 0,0075.$$

В итоге получаем искомую реализацию приближенного доверительного интервала: (0,0045;0,0075), соответствующего доверительной вероятности $1-\alpha=0,95$.

18. Постановка задачи проверки статистических гипотез Пример 1_кз

Задачу проверки статистических гипотез рассмотрим на примере. **Пример 1** кз (двусторонний критерий).

В результате многократных измерений некоторого параметра эталонного образца получено значение 2,40 (условных единиц). Точность прибора по паспорту $\sigma_0 = 0,02$. Периодически настройку прибора проверяют и при необходимости корректируют. Прибором некоторое время пользовались, а затем произвели n = 25 контрольных независимых измерений $x_1, x_2, ..., x_{25}$ указанного параметра того же эталонного образца и получили $\overline{x} = 2,42$.

Допустим, что полученные числа $x_1, x_2, ..., x_{25}$ — реализация выборки $X_1, ..., X_{25}$ из нормального распределения $N(m; \sigma)$, один из параметров которого известен: $\sigma = \sigma_0 = 0.02$ и проверим, является ли обоснованным предположение: контрольная выборка извлечена из нормального распределения с математическим ожиданием $m = m_0 = 2.40$, а отличие выборочного среднего от математического ожидания естественно объясняется случайностью выборки?

Иными словами, проверим гипотезу H_0 : $m = m_0 = 2,40$ о значении математического ожидания нормального распределения $N(m; \sigma_0)$, из которого извлечена выборка. Гипотезу H_1 : $m \neq m_0$ рассмотрим как альтернативную к гипотезе H_0 .

При справедливости гипотезы H_0 имеем:

$$\frac{\overline{X} - m_0}{\sigma_0 / \sqrt{n}} = U \sim N(0;1).$$

Статистику U назовем *статистикой критерия*. Зададим уровень значимости $\alpha = 0.05$. Всякое событие, вероятность которого $P \le \alpha$ будем считать практически невозможным при справедливости гипотезы H_0 , а событие, вероятность которого $P \ge 1 - \alpha$ — практически достоверным при справедливости гипотезы H_0 .

При выбранном уровне значимости α так называемое критическое число $u_{\rm kp}$ определяется условиями $P(|U| \ge u_{\rm kp}) = \alpha$, $P(|U| < u_{\rm kp}) = 1 - \alpha$, так что при справедливости гипотезы H_0 событие $(|U| \ge u_{\rm kp})$ – практически невозможное, а событие $(|U| < u_{\rm kp})$ – практически достоверное. Таким образом, множество значений статистики критерия U разбивается на интервалы, соответствующие практически невозможному событию (критическая область), либо практически достоверному событию (область принятия H_0). Указанное разбиение позволяет сформулировать следующее правило принятия решения об отклонении или принятии гипотезы H_0 :

при ($|U| \ge u_{\text{кр}}$) гипотеза H_0 отвергается, при ($|U| < u_{\text{кр}}$) гипотеза H_0 принимается.

При
$$\alpha = 0.05$$
 имеем $u_{\text{кp}} = u_{1-\alpha/2} = u_{0.975} = 1.96$.

Обозначим через u_e значение, которое статистика U приняла в результате контрольных измерений $x_1, x_2, ..., x_{25}$, тогда

$$u_e = U(x_1, x_2, ..., x_{25}) = \frac{\overline{x} - m_0}{\sigma_0 / \sqrt{n}} = \frac{2,42 - 2,40}{0,02 / \sqrt{25}} = 5 > u_{\text{kp}} = 1,96.$$

Попадание значения u_e в критическую область означает, что произошло событие, практически невозможное при справедливости гипотезы H_0 . Данные измерений $x_1, x_2, ..., x_{25}$ не согласуются с гипотезой H_0 , а напротив, опровергают ее, поэтому гипотезу H_0 : $m = m_0$ следует отклонить (соответственно — принять альтернативную к ней гипотезу H_1 : $m \neq m_0$). Практически это означает, что прибор следует настроить заново.

19. Критерии значимости: гипотезы, критическая область, решения, ошибки

Пусть X — исследуемая случайная величина, $F_X(x) = P(X < x)$ — ее функция распределения, зависящая от одного или нескольких параметров, и пусть о параметре распределения или о виде распределения выдвинута и подлежит проверке некоторая гипотеза H_0 (нуль-гипотеза) и указана альтернативная к ней гипотеза H_1 .

Поставим задачу: на основе опытных данных либо отвергнуть гипотезу H_0 , если опытные данные и гипотеза противоречат друг другу, либо принять H_0 , то есть сделать вывод о том, что эта гипотеза согласуется с опытными данными. Таким образом, решение об отклонении гипотезы H_0 или ее принятии будет строиться на основе выборки X_1, \dots, X_n из распределения $F_X(x)$.

Гипотезу называют простой, если она полностью определяет распределение и сложной – в противном случае.

В рассмотренном в п.18 примере вид распределения предполагался известным (нормальное распределение $N(m;\sigma)$), один из параметров которого $\sigma = \sigma_0$ – известен, поэтому нуль-гипотеза H_0 : $m = m_0$ о значении другого параметра распределения – *простая*, так как она полностью определяет распределение, в то время как альтернативная к ней гипотеза H_1 : $m \neq m_0 - cложная$.

Правило принятия решения, согласно которому принимается или отвергается гипотеза H_0 , называют *статистическим критерием*.

Пусть $\mathfrak{X}=\{(X_1,\ldots,X_n)\}$ – множество всех возможных значений случайной выборки и задана вероятность α практически невозможного события при справедливости гипотезы H_0 (эту вероятность называют *уровнем значимости* α). При этом множество \mathfrak{X} разбивается на два подмножества $\mathfrak{X}_{\mathsf{кр}}$ – *критическая область* и

 $\mathfrak{X} \setminus \mathfrak{X}_{\mathrm{кр}} - \mathit{область}$ принятия гипотезы H_0 следующим образом: $\mathfrak{X}_{\mathrm{кр}}$ – подмножество \mathfrak{X} такое, что любое событие $((X_1, \dots, X_n) \in \mathfrak{X}_{\mathrm{кр}})$, вероятность которого $P((X_1, \dots, X_n) \in \mathfrak{X}_{\mathrm{кp}} | H_0) = \alpha$ – это практически невозможное события при справедливости гипотезы H_0 . Соответственно, $P((X_1, \dots, X_n) \in \mathfrak{X} \setminus \mathfrak{X}_{\mathrm{кp}} | H_0) = 1 - \alpha$ — вероятность практически достоверного события. Если в результате опыта происходит событие $((X_1, \dots, X_n) \in \mathfrak{X}_{\mathrm{кp}})$, то гипотезу H_0 отвергают; если же происходит событие $((X_1, \dots, X_n) \in \mathfrak{X} \setminus \mathfrak{X}_{\mathrm{kp}})$, то H_0 принимают.

Критерий (правило принятия решения об отклонении или принятии гипотезы H_0) строится на основе соответствующей случайной величины—*статистики критерия* $T(X_1,...,X_n)$. При этом предполагается, что распределение статистики критерия $f_{\mathrm{T}}(t\,|\,\mathrm{H}_0)$ известно при справедливости гипотезы H_0 . Статистика критерия отображает множество $\mathfrak{X} = \{(X_1, ..., X_n)\}$ на числовую прямую. По распределению статистики критерия $f_{\mathrm{T}}(t\,|\,\mathrm{H}_{\scriptscriptstyle{0}})_{\,\mathrm{H}}$ заданному уровню значимости α находят так называемые критические числа, которые разбивают все множество значений статистики критерия на интервалы, соответствующие либо принятию гипотезы H_0 , либо ее отклонению. Понятно, что отклонение H_0 означает принятие альтернативной гипотезы H_1 при данном уровне значимости а.

Рассмотрим примеры.

Односторонний (правосторонний) критерий

В случае правостороннего критерия критическое число $t_{\rm kp}$ определяется соотношениями:

$$P(T(X_1,...,X_n) \ge t_{kp} | H_0) = \alpha,$$

 $P(T(X_1,...,X_n) < t_{kp} | H_0) = 1 - \alpha.$

Пусть x_1, x_2, \dots, x_n – реализация выборки X_1, \dots, X_n . Обозначим через t_e значение статистики критерия в точке (x_1, x_2, \dots, x_n) : $t_e = T(x_1, x_2, \dots, x_n)$.

Правило принятия решения в случае правостороннего критерия формулируют так:

если $t_e < t_{\rm Kp}$, то гипотезу ${
m H}_0$ принимают, если $t_e \ge t_{\rm Kp}$, то гипотезу ${
m H}_0$ отвергают.

Аналогично строятся левосторонний и двусторонний критерии.

Односторонний (левосторонний) критерий

Двусторонний критерий

Описанные критерии называют *критериями значимости*. Если в результате опыта наблюдается значение статистики критерия, попадающее в критическую область, то такой результат можно

рассматривать как значимое опровержение гипотетического согласия между результатами наблюдений и проверяемой гипотезой.

Замечания

- 1. Из гипотезы H_0 логически следует, что при проведении эксперимента (извлечении реализации выборки x_1, x_2, \dots, x_n) значение t_e практически неизбежно должно попадать в область принятия H_0 . Если же в результате эксперимента произошло событие, практически невозможное при справедливости H_0 (значение t_e попало в критическую область), то гипотеза H_0 должна быть отвергнута.
- 2. Таким образом, проверка гипотезы H_0 осуществляется косвенно. Доказать справедливость гипотезы H_0 косвенным образом нельзя, так как правильное заключение может следовать и из неверной посылки, однако отвергнуть H_0 можно.
- 3. Принятие H_0 не означает, что гипотеза H_0 единственно верное утверждение, это означает лишь, что гипотеза H_0 не противоречит имеющимся экспериментальным данным.

Решения и ошибки (случай *простых* гипотез H_0 u H_1)

Пусть гипотеза H_0 (нуль-гипотеза) и альтернативная к ней гипотеза H_1 — обе простые и рассматривается правосторонний критерий; при этом $f_{\rm T}(t\,|\,{\rm H}_0)$ и $f_{\rm T}(t\,|\,{\rm H}_1)$ — распределения статистики критерия T при справедливости гипотез H_0 и H_1 , соответственно:

Ошибки, допускаемые при этом, классифицируют следующим образом:

Ошибка 1-го рода – отклонить H_0 , когда верна H_0 .

Ошибка 2-го рода — принять H_0 , когда верна H_1 .

Вероятность ошибки 1-го рода равна уровню значимости:

$$P(T(X_1,\ldots,X_n)\geq t_{KP}|H_0)=\alpha$$

Вероятность ошибки 2-го рода обозначают через β, она равна

$$P(T(X_1,...,X_n) < t_{KP} | H_1) = \beta.$$

Заметим, что при фиксированном α величина β зависит от гипотезы H_1 и от вида критической области:

Обычно критерий стараются выбрать так, чтобы при данном уровне значимости α величина ошибки второго рода β была минимальной (чтобы максимальной была так называемая мощность критерия $1-\beta$).

20. Основные этапы процедуры проверки статистических гипотез

Процедура проверки состоит из двух этапов

На первом этапе

- формулируют предположения о распределении и о выборке X_1, \dots, X_n из этого распределения;
- выдвигают нуль-гипотезу H_0 и альтернативную гипотезу H_1 ;
- задают уровень значимости α;
- выбирают статистику критерия $T(X_1, ..., X_n)$;
- находят критические числа (границы критической области и области принятия гипотезы H₀);
- формулируют правило принятия решения.

<u>На втором этапе</u>

- проводят эксперимент получают реализацию выборки x_1, x_2, \dots, x_n ;
- вычисляют $T(x_1, x_2, \dots, x_n) = t_e$;
- сопоставляют t_e с критическими числами;
- формулируют вывод об отклонении гипотезы H_0 на уровне значимости α или о ее принятии.

21. Подход к проверке статистических гипотез о параметрах распределений, основанный на доверительных интервалах

Пример 1_кди

Пусть проверяется гипотеза H_0 : $\theta = \theta_0$ о параметре распределения против альтернативы H_1 : $\theta \neq \theta_0$ (или H_1 : $\theta < \theta_0$, или H_1 : $\theta > \theta_0$) при заданном уровне значимости α .

Для проверки гипотезы указанного типа (параметрической гипотезы) можно воспользоваться подходом, основанном на доверительном интервале для параметра θ .

Пусть $(\vartheta_1; \vartheta_2)$ — доверительный интервал для параметра θ , соответствующий данному уровню значимости α : $P(\vartheta_1 < \theta < \vartheta_2) \equiv 1$ — α , где $\vartheta_1 = \vartheta_1(X_1, ..., X_n)$, $\vartheta_2 = \vartheta_2(X_1, ..., X_n)$ — функции выборки. Правило принятия решения формулируют так: если интервал $(\vartheta_1 < \theta < \vartheta_2)$ накрывает θ_0 , то гипотезу H_0 принимают при данном уровне значимости α , в противном случае — отвергают.

По реализации выборки x_1, x_2, \dots, x_n вычисляют границы реализации доверительного интервала $\vartheta_{1e} = \vartheta_1(x_1, x_2, \dots, x_n)$, $\vartheta_{2e} = \vartheta_2(x_1, x_2, \dots, x_n)$. Если $\theta_0 \in (\vartheta_{1e}; \vartheta_{2e})$, то гипотезу H_0 принимают, в противном случае $\vartheta_0 \notin (\vartheta_{1e}; \vartheta_{2e})$ – гипотезу H_0 отвергают (соответственно, принимают H_1) на заданном уровне значимости α .

Замечание

Отыскание критической области и доверительного интервала приводит к одинаковым результатам, однако их истолкование различно:

- критическая область определяет критические числа, между которыми заключено $(1-\alpha)\%$ числа наблюдаемых значений *статистики критерия*;
- доверительный интервал определяет границы (концы доверительного интервала), между которыми в $(1-\alpha)$ % опытов заключено *истинное значение* оцениваемого параметра θ распределения.

Пример 1_кди

Проиллюстрируем описанный подход на примере проверки гипотезы о математическом ожидании нормального распределения в случае, когда стандартное отклонение известно. Конкретное содержание задачи приведено в п. 18 и п. 12 (Пример 1_кз и Пример 1 ди).

Допустим, что выборка $X_1, ..., X_{25}$ извлечена из нормального распределения $N(m;\sigma)$, стандартное отклонение которого известно: $\sigma = \sigma_0 = 0.02$. Проверке подлежит гипотеза о математическом ожидании m этого распределения: H_0 : $m = m_0 = 2.40$ против альтернативы H_1 : $m \neq m_0$ на уровне значимости $\alpha = 0.05$.

В п. 12 по реализации выборки $x_1, x_2, ..., x_{25}$ получена реализация доверительного интервала (2,412; 2,428) для m, отвечающего доверительной вероятности $1-\alpha=0.95$.

Поскольку $m_0 = 2,40 \notin (2,412; 2,428)$, делаем вывод, что статистические данные не согласуются с гипотезой H_0 , эта гипотеза должна быть отклонена на уровне значимости $\alpha = 0,05$.

22. Примеры проверки гипотез о параметрах распределений Пример 2 кз кди

По результатам многократных проверок установлено, что вероятность ложной тревоги для охранной системы, функционирующей в штатном режиме, составляет 0,005 (описание системы приведено в п. 17). При очередной плановой проверке исправности системы относительная частота события "ложная тревога", вычисленная по реализации контрольной выборки объема $n=10^4$, оказалась равной 0,006.

Необходимо выяснить, позволяет ли результат проверки считать, что система работает исправно, а отличие относительной частоты \hat{p}_e = 0,006 от вероятности p = 0,005 объясняется случайными факторами. Уровень значимости принять равным α = 0,05.

Решение

а) двусторонний критерий значимости

Допустим, что выполнены условия применимости схемы Бернулли: проведено *п независимых* испытаний, p — вероятность успеха *в каждом испытании*. Индикатор "успеха" в i-м испытании; X_i подчиняется распределению Бернулли, а случайная величина $X = X_1 + \ldots + X_n$ — биномиальному распределению (см. п. 17)

Проверке подлежит гипотеза H_0 : $p=p_0=0{,}005$ о вероятности p в схеме Бернулли против альтернативы H_1 : $p\neq p_0$ при заданном уровне значимости α .

Относительная частота числа успехов в n испытаниях:

$$\hat{p} = \frac{X}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Согласно теореме Муавра-Лапласа, центрированная и нормированная случайная величина $U = \frac{\hat{p} - p}{\sqrt{pq/n}}$ распределена асимптотически нормально при $n \to +\infty$. Объем выборки $n = 10^4$,

поэтому примем допущение, что статистика U при данном (большом) объеме выборки и при справедливости гипотезы H_0 подчиняется стандартному нормальному распределению:

$$U = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/n}} \sim N(0;1)$$
 — статистика критерия.

Правило принятия решения имеет вид:

при (
$$|U| \ge u_{\rm kp}$$
) гипотеза ${\rm H}_0$ отвергается, при ($|U| < u_{\rm kp}$) гипотеза ${\rm H}_0$ принимается.

При
$$\alpha = 0.05$$
 имеем: $u_{\kappa p} = u_{1-\alpha/2} = u_{0.975} = 1.96$.

Обозначим через u_e значение, которое статистика U приняла в результате $n=10^4$ указанных контрольных измерений, тогда:

$$|u_e| = \left|\frac{\hat{p}_e - p_0}{\sqrt{p_0 q_0/n}}\right| = \left|\frac{0,006 - 0,005}{\sqrt{0,005(1 - 0,005)/10000}}\right| = 1,42 < u_{\text{kp}} = 1,96.$$

Статистические данные не противоречат проверяемой гипотезе о параметре p биномиального распределения, а именно, H_0 : $p = p_0 = 0{,}005$. Таким образом, эта гипотеза принимается на уровне значимости $\alpha = 0{,}05$.

Практический вывод — результат проверки не дает оснований считать, что *вероятность* ложной тревоги отличается от значения p=0,005, характерного для функционирования системы в штатном режиме.

б) критерий, основанный на доверительном интервале

В п. 17 для вероятности p ложной тревоги при относительной частоте $\hat{p}_e = 0{,}006$ и объеме выборки $n = 10^4$ была найдена реализация

доверительного интервала (0,0045;0,0075), соответствующего доверительной вероятности $1-\alpha=0,95$.

Проверим гипотезу о параметре p биномиального распределения H_0 : $p = p_o = 0.005$ против альтернативы H_1 : $p \neq p_o$ при заданном уровне значимости $\alpha = 0.05$ с помощью указанного доверительного интервала.

Поскольку $p = p_0 = 0.005 \in (0.0045; 0.0075)$, гипотеза H_0 принимается на уровне значимости $\alpha = 0.05$.

Пример 3_кз_кди (левосторонний критерий)

Стандартное содержание нежелательной примеси в выпускаемом продукте равно 2%. Контроль осуществляется с помощью прибора, точность которого указана в его паспорте и характеризуется параметром $\sigma_0 = 0.4$ %. После усовершенствования технологии тем же прибором провели n=16 повторных независимых измерений содержания примеси $x_1, x_2, ..., x_{16}$ и получили $\overline{x} = 1.8$ %. Необходимо выяснить, объясняется ли уменьшение содержания примеси случайными факторами или физическими причинами — новой технологией. Уровень значимости принять равным $\alpha = 0.05$. Указание: считать, что контрольная выборка извлечена из нормального распределения.

Какой вывод об успешности новой технологии при величине $\overline{x}=1,8\%$, полученной по серии контрольных измерений, можно сделать в случаях:

(1) при уровне значимости $\alpha = 0.01$ при том же объеме контрольной выборки n = 16; (2) при $\alpha = 0.01$ и объеме выборки n = 25.

Решение

Допустим, что $x_1, x_2, ..., x_{16}$ – реализация выборки $X_1, ..., X_{16}$ – из нормального распределения $N(m; \sigma)$, один параметр которого σ известен: $\sigma = \sigma_o$. Проверке подлежит гипотеза H_0 : $m = m_0 = 2\%$ о

математическом ожидании распределения, из которого (после изменения технологии) извлечена выборка, против альтернативы H_1 : $m < m_0$ (левосторонняя альтернатива) при уровне значимости $\alpha = 0.05$.

(а) односторонний (левосторонний) критерий значимости

При указанных предположениях о распределении, из которого извлечена выборка, и справедливости гипотезы H_0 статистика

критерия $\frac{\overline{X} - m_o}{\sigma_o / \sqrt{n}} = U$ подчиняется стандартному нормальному распределению: $U \sim N(0; 1)$.

Правило принятия решения, основанное на данной статистике критерия U:

при $(U \le u_{\text{кр}})$ гипотеза H_0 отвергается, при $(U > u_{\text{кр}})$ гипотеза H_0 принимается.

Критическое число $u_{\rm kp}$ является квантилью порядка α стандартного нормального распределения:

$$u_{\rm kp} = u_{\alpha} = -u_{1-\alpha} = u_{0.05} = -u_{0.95} = -1.65.$$

Вычислим значение u_e статистики критерия и сравним его с критическим числом $u_{\rm kp}$:

$$u_e = \frac{\overline{x} - m_0}{\sigma_0} \sqrt{n} = \frac{0.018 - 0.020}{0.004} \sqrt{16} = -\frac{0.002}{0.004} \cdot 4 = -2 < -1.65 = u_{\text{kp}}.$$

Таким образом, гипотеза H_0 : $m = m_0 = 2\%$ противоречит результату контрольных измерений $x_1, x_2, ..., x_{16}$, поэтому ее следует отвергнуть и принять альтернативную гипотезу H_1 : $m < m_0$.

Практический вывод: можно считать, что изменение технологии привело к цели – уменьшению содержания нежелательной примеси в

выпускаемом продукте. Заметим, что этот вывод справедлив при уровне значимости $\alpha = 0.05$.

Ответим теперь на поставленные в задаче дополнительные вопросы (1) и (2).

(1) При $\alpha = 0.01$ и объеме выборки n = 16 имеем:

$$u_{\text{kp}} = u_{\alpha} = -u_{1-\alpha} = u_{0,01} = -u_{0,99} = -2.33 < -2 = u_e$$

В соответствие с указанным правилом принятия решения обнаруживаем, что нулевая гипотеза H_0 : $m = m_0 = 2\%$ согласуется со статистическими данными при уровне значимости $\alpha = 0.01$.

Практический вывод в этом случае: контрольные измерения не дают оснований считать, что содержание примеси в выпускаемом продукте уменьшилось.

(2) Заметим, что величина $|u_e|$ растет с увеличением объема

выборки
$$n$$
: $u_e = \frac{\overline{x} - m_0}{\sigma_0} \sqrt{n} = \frac{0.018 - 0.020}{0.004} \sqrt{n} = -\frac{\sqrt{n}}{2}$.

Отклонению нулевой гипотезы H_0 соответствует выполнение условия $u_e \le u_{\rm kp}: -\frac{\sqrt{n}}{2} \le -2,33,$ откуда $n \ge 22.$

Если бы результат контрольных измерений $\overline{x}=1,8\%$ был получен при $n \ge 22$, то гипотезу H_0 : $m=m_0=2\%$ при уровне значимости $\alpha=0,01$ следовало бы отвергнуть, а альтернативную гипотезу H_1 : $m < m_0 -$ принять. Таким образом, результат $\overline{x}=1,8\%$ при n=25 свидетельствует против гипотезы H_0 .

Обычно, для обоснованного отклонения нулевой гипотезы H_0 выбирают $\alpha = 0.01$. Если же речь идет о принятии H_0 , то уровень значимости α выбирают равным 0.05.

(б) критерий, основанный на одностороннем (левостороннем) доверительном интервале

Как и в предыдущем пункте (a), допустим, что $x_1, x_2, ..., x_{16}$ — реализация выборки $X_1, ..., X_{16}$ — из нормального распределения $N(m;\sigma)$, один параметр которого σ известен $\sigma = \sigma_0$, таким образом, полагаем $X_i \sim N(m;\sigma_0)$ i=1,...,16. При указанных предположениях и справедливости гипотезы H_0 статистика $U = \frac{\overline{X} - m}{\sigma_0 / \sqrt{n}}$ подчиняется стандартному нормальному распределению N(0;1).

Построим левосторонний доверительный интервал для математического ожидания m. Зададим величину доверительной вероятности $1-\alpha$ и запишем равенство $P(\frac{\overline{X}-m}{\sigma_o/\sqrt{n}}>u)=1-\alpha$, откуда $u=u_\alpha$ – квантиль порядка α (см. рисунок ниже, где $\phi(u)$ – плотность вероятности стандартного нормального распределения).

Правую границу этого интервала $\bar{X} - u_{\alpha} \frac{\sigma_{o}}{\sqrt{n}}$ — функцию выборки обозначим через $\tilde{m}_{_{\it cp}} \, (X_1, \dots, X_n)$.

Правило принятия решения при проверке гипотезы H_0 : $m=m_0$: если $m_0 \in (-\infty; \tilde{m}_{_{\it 2p}})$, то гипотезу H_0 принимают;

если $m_0 \notin (-\infty; \tilde{m}_{_{\mathcal{I}\!\!P}})$ – гипотезу H_0 отвергают (соответственно, принимают альтернативную гипотезу H_1) на заданном уровне значимости α .

По реализации выборки $(x_1, x_2, ..., x_{16})$ построим реализацию левостороннего доверительного интервала.

При
$$\alpha = 0.05$$
 $u_{\alpha} = -u_{1-\alpha} = u_{0.05} = -u_{0.95} = -1.65$.

Вычислим значение правой границы интервала $\tilde{m}_{_{\it zp}\,\it e}$ в точке

$$(x_1, x_2, ..., x_{16})$$
: $\tilde{m}_{epe} = \bar{x} - u_{0,05} \frac{\sigma_o}{\sqrt{n}} = 0.018 + 1.65 \frac{0.004}{4} = 0.01965$

Видим, что $m_0 = 0.02 \notin (-\infty; 0.01965)$, поэтому гипотезу H_0 следует отвергнуть при $\alpha = 0.05$.

При
$$\alpha$$
 = 0,01 и объеме выборки n = 16 имеем: u_{α} = $-u_{1-\alpha}$ = $u_{0,01}$ = $-u_{0,99}$ = $-2,33$; тогда $\tilde{m}_{zp\,e}$ = 0,018 + 2,33 $\frac{0,004}{4}$ = 0,02033.

Гипотеза H_0 не противоречит статистическим данным, полученным в результате контрольных измерений, поскольку $m_0 = 0.02 \in (-\infty; 0.02033)$. Таким образом, гипотеза H_0 принимается на уровне значимости $\alpha = 0.01$.

Пример 4_кз (правосторонний критерий)

Средний срок службы до первого отказа для приборов, выпускаемых по стандартной технологии, равен 1000 час. Для надежности выпускаемой продукции повышения технологию усовершенствовали. С целью контроля эффективности новой технологии отобрали и испытали опытную партию из n = 10 приборов. По этой выборке вычислили выборочное среднее и выборочное (исправленное) срока стандартное отклонение соответственно, $\bar{x} = 1100$ час. и $s^* = 100$ час. Можно ли считать, что новая технология увеличила срок службы приборов? Принять уровень

значимости равным $\alpha = 0.01$. *Указание*: считать, что контрольная выборка извлечена из нормального распределения.

Решение

Положим, что контрольная выборка $x_1, x_2, ..., x_{10}$ – реализация выборки $X_1, ..., X_{10}$ из нормального распределения $X \sim N(m; \sigma)$ с неизвестными параметрами m и σ .

Проверим гипотезу H_0 : $m = m_0 = 1000$ о математическом ожидании распределения, из которого (после изменения технологии) извлечена выборка, против альтернативы H_1 : $m > m_0$ (правосторонняя альтернатива) при уровне значимости $\alpha = 0.01$. Согласно лемме

Фишера (п. 13)
$$U = \frac{\overline{X} - m_0}{\sigma / \sqrt{n}} \sim N(0; 1)$$
 и $\frac{(n-1) S^{*2}}{\sigma^2} = \chi_{n-1}^2$ независимые статистики.

В качестве статистики критерия проверки гипотезы H_0 возьмем отношение $T_{n-1} = \frac{U}{\sqrt{\frac{\chi^2_{n-1}}{n-1}}} = \frac{\bar{X} - m_0}{\frac{S^*}{\sqrt{n}}}$, подчиняющееся распределению

Стьюдента при справедливости H_0 .

Сформулируем правило принятия решения, основанное на распределении статистики критерия T_{n-1} при справедливости H_0 :

при $(T_{n-1} \ge t_{\text{кp}})$ гипотеза H_0 отвергается, при $(T_{n-1} < t_{\text{кp}})$ гипотеза H_0 принимается.

Критическое число $t_{\rm kp}$ — это квантиль порядка 1— α распределения Стьюдента с n-1 степенью свободы: $t_{\rm kp} = t_{n-1;\; 1-\alpha} = t_{9;\, 0,99} = 2,82\,$ при $\alpha = 0,01$. Вычислим значение статистики критерия t_e , отвечающее контрольной выборке x_1, x_2, \ldots, x_{10} и сравним с значением $t_{\rm kp}$:

$$t_e = \frac{\overline{x} - m_0}{S^*} \sqrt{n} = \frac{1100 - 1000}{100} \sqrt{10} = 3,16 > 2,82 = t_{\text{Kp}}$$

Таким образом, гипотеза H_0 не согласуется с экспериментальными данными (значение t_e попадает в критическую область), поэтому гипотезу H_0 следует отвергнуть на уровне значимости $\alpha = 0{,}01$ и принять альтернативную гипотезу H_1 : $m > m_0 = 1000$ (правостороннюю).

Практический вывод, который можно сделать в результате исследования опытной партии — применение новой технологии привело к увеличению срока службы выпускаемых приборов.

Пример 5_кз_кди (двусторонний критерий)

По результатам предварительных исследований установлено, что разброс значений изделий, контролируемого параметра автоматической произведенных на линии, характеризуется стандартным отклонением, равным $\sigma_0 = 20$ (условных единиц). Для проверки стабильности работы линии извлекли контрольную выборку из n=25 изделий и получили выборочное стандартное отклонение (исправленное) $s^* = 24,3$ единицы. Считая, что контрольная выборка извлечена из нормального распределения, проверить обоснованность предположения о стабильности работы линии. Уровень значимости принять равным $\alpha = 0.05$.

<u>Решение</u>

По условию выборочное стандартное отклонение $s^* = 24,3$ вычислено по реализации выборки из нормального распределения $N(m;\sigma)$.

Необходимо проверить гипотезу H_0 : $\sigma = \sigma_0 = 20$ о стандартном отклонении распределения, из которого извлечена выборка, против альтернативы H_1 : $\sigma \neq \sigma_0$ (двусторонний критерий) на уровне значимости $\alpha = 0.05$.

(а) двусторонний критерий значимости

При справедливости гипотезы H_0 имеем: $\frac{(n-1)\,S^{*2}}{\sigma_0^{\,2}} = \chi_{n-1}^2$ (п. 13 – лемма Фишера).

Находим критические числа $\chi^2_{(1)} = \chi^2_{n-1:\alpha/2} = \chi^2_{24:0.025} = 12,40$

и
$$\chi^2_{(2)} = \chi^2_{n-1;1-\alpha/2} = \chi^2_{24;0,975} = 39,36$$

Значение статистики критерия (вычисленное по контрольной

выборке)
$$\chi_e^2 = \frac{(n-1) s^{*2}}{\sigma_0^2} = \frac{24 \cdot (24,3)^2}{(20)^2} = 35,43$$
 принадлежит области

принятия гипотезы. Вывод: гипотеза H_0 не противоречит результату контрольных измерений и может быть принята на уровне значимости $\alpha = 0.05$. Таким образом, предположение о стабильности работы линии можно считать обоснованным.

(б) критерий, основанный на доверительном интервале

Доверительный интервал для квадрата стандартного отклонения σ^2 нормального распределения, отвечающий доверительной вероятности $1-\alpha$, имеет вид (п. 15):

$$\binom{(n-1)S^{*2}}{\chi^2_{(2)}}; \binom{(n-1)S^{*2}}{\chi^2_{(1)}} = (\vartheta_1; \vartheta_2).$$

Для проверки гипотезы Н₀ необходимо установить, накрывает ли реализация этого интервала (θ_{1e} ; θ_{2e}) значение $\sigma_0^2 = 400$.

Вычислим границы этой реализации

$$\theta_{1e} = \theta_1(x_1, x_2, \dots, x_{20}) = \frac{(n-1) s^{*2}}{\chi^2_{(2)}} = \frac{24 \cdot 590, 49}{39,36} \approx 360;$$

$$\vartheta_{2e} = \vartheta_2(x_1, x_2, \dots, x_{20}) = \frac{(n-1) s^{*2}}{\chi^2_{(1)}} = \frac{24 \cdot 590, 49}{12,40} \cong 1143.$$

Поскольку $\sigma_0^2 = 400 \in (360; 1143)$, гипотезу H_0 принимаем на уровне значимости $\alpha = 0.05$.

23. Распределение Фишера, свойство квантилей

Пусть случайные величины $\chi^2_{m_1}$ и $\chi^2_{m_2}$ – независимы. Случайная

величина
$$F_{m_1m_2} = \frac{\chi_{m_1}^2/m_1}{\chi_{m_2}^2/m_2}$$
 — отношение Фишера (F— отношение)

подчиняется распределению Фишера с m_1 и m_2 степенями свободы; плотность вероятности $f_{F_{m_1m_2}}(x)$ – известна (табулирована).

Докажем следующее свойство квантилей распределения Фишера:

$$F_{m_2 m_1; \alpha/2} = \frac{1}{F_{m_1 m_2; 1-\alpha/2}}$$

Учтем очевидное соотношение $\frac{1}{F_{m_1 m_2}} = F_{m_2 m_1}$ и определение

квантили соответствующего порядка и запишем:

$$P(F_{m_1m_2} > F_{m_1m_2;1-\alpha/2}) = P(\frac{1}{F_{m_1m_2}} < \frac{1}{F_{m_1m_2;1-\alpha/2}}) =$$

$$= P(F_{m_2m_1} < \frac{1}{F_{m_1m_2; 1-\alpha/2}}) = \alpha/2 \implies \frac{1}{F_{m_1m_2; 1-\alpha/2}} = F_{m_2m_1; \alpha/2}.$$

В таблицах квантилей распределения Фишера приведены только "правые" квантили, так как "левые" могут быть легко получены из указанного соотношения. Заметим также, что правые квантили обладают свойством: $F_{m_1m_2;1-\alpha/2}>1$.

24. Проверка гипотезы о равенстве дисперсий двух нормальных распределений (критерий Фишера). Пример 6 кз

Имеем две независимые выборки $X_1, ..., X_{n_1}$ и $Y_1, ..., Y_{n_2}$ объема n_1 и n_2 из нормальных распределений $X{\sim}N(m_X;\sigma_X), \ Y{\sim}N(m_Y;\sigma_Y)$ (элементы внутри каждой из выборок— взаимно независимы по определению случайной выборки).

Проверяется гипотеза H_0 : $\sigma_X = \sigma_Y$ против альтернативной гипотезы H_1 : $\sigma_X \neq \sigma_Y$ при уровне значимости α .

Статистика критерия:

Исправленные выборочные дисперсии для указанных независимых выборок $S_{\rm X}^{*2}$ и $S_{\rm Y}^{*2}-$ независимы, кроме того, известно:

$$(n_1 - 1) S_X^{*2} / \sigma_X^2 = \chi_{n_1 - 1}^2, \quad (n_2 - 1) S_Y^{*2} / \sigma_Y^2 = \chi_{n_2 - 1}^2$$
 (ii. 13), поэтому

статистика
$$\frac{S_{\rm X}^{*2}/\sigma^2_{\rm X}}{S_{\rm Y}^{*2}/\sigma^2_{\rm Y}} = \frac{\chi_{n_{\rm l}-1}^2/(n_{\rm l}-1)}{\chi_{n_{\rm s}-1}^2/(n_{\rm l}-1)} \quad \text{подчиняется распределению}$$

Фишера с n_1-1 и n_2-1 степенями свободы.

При справедливости гипотезы H_0 имеем $\sigma_X = \sigma_Y$, откуда отношение $\frac{S_X^{*2}}{S_Y^{*2}} = F_{n_1-1,\,n_2-1} -$ статистика критерия $\frac{S_X^{*2}}{S_Y^{*2}}$ подчиняется распределению Фишера.

Примем соглашение: обозначать бо́льшую из выборочных дисперсий через S_X^{*2} , меньшую – через S_Y^{*2} , тогда $\frac{S_X^{*2}}{S_Y^{*2}} > 1$.

Таким образом, приходим к правостороннему критерию: проверке подлежит гипотеза H_0 : $\sigma_X = \sigma_Y$ против альтернативы H_1 : $\sigma_X > \sigma_Y$.

Решение об отклонении или принятии гипотезы Н₀ принимают,

сопоставляя значение статистики критерия $\frac{S_X^{*2}}{S_Y^{*2}} = F_e$, полученное в

эксперименте, с критическим числом — квантилью порядка $1-\alpha$ распределения Фишера $F_{n_1-1,\,n_2-1;\,1-\alpha}$.

Пример 6_кз (правосторонний критерий)

Выяснить, значимо ли варьирует от одного дня к другому величина контролируемого параметра — изменчивости температуры в термостатируемом помещении, если в первый день по выборке объема n_1 =16 получена выборочная дисперсия S_1^{*2} = 1,23, а во второй — по выборке объема n_2 = 20 получена S_2^{*2} = 0,97, соответственно.

Принять уровень значимости $\alpha = 0.05$. *Указание*: принять допущение, что выборки извлечены из нормальных распределений.

Решение

Следуя описанной выше процедуре, проверим гипотезу о равенстве дисперсий двух нормальных распределений, из которых извлечены выборки:

$$H_0$$
: $\sigma_X = \sigma_Y$ против альтернативы H_1 : $\sigma_X > \sigma_Y$.

Найдем критическое число
$$F_{n_1-1, n_2-1; 1-\alpha} = F_{15;19;0,95} = 2,23$$

(по таблице квантилей распределения Фишера) и сравним его с

значением статистики критерия
$$F_e = \frac{s_X^{*2}}{s_Y^{*2}} = \frac{1,23}{0,97} = 1,268 < 2,23$$

Вывод: на уровне значимости α = 0,05 гипотеза H_0 : σ_X = σ_Y и данные опыта не противоречат друг другу. Это означает, что отличие значений контролируемого параметра — изменчивости температуры в термостатируемом помещении, измеренных в первый и второй день, может быть объяснено случайными факторами (незначимо на уровне значимости α = 0,05).

25. Проверка гипотезы о равенстве математических ожиданий двух нормальных распределений (критерий Стьюдента)

Пример 7_кз

Пусть $X_1, ..., X_{n_1}$ и $Y_1, ..., Y_{n_2}$ – две независимые выборки объема n_1 и n_2 , соответственно, из нормальных распределений $N(m_X; \sigma_X)$ и $N(m_Y; \sigma_Y)$. Элементы внутри каждой из выборок – взаимно независимы по определению случайной выборки.

Проверяется гипотеза $H_0: m_X = m_Y$ против альтернативной гипотезы $H_1: m_X \neq m_Y$ при уровне значимости α .

Статистика критерия:

а) Если стандартные отклонения σ_X и σ_Y известны (вообще говоря, $\sigma_X \neq \sigma_Y$), то при сделанных предположениях имеем:

$$\overline{\mathbf{X}} \sim N(m_{\mathbf{X}}; \sigma_{\mathbf{X}} / \sqrt{n_1}), \ \overline{\mathbf{Y}} \sim N(m_{\mathbf{Y}}; \sigma_{\mathbf{Y}} / \sqrt{n_2}).$$

Статистики \overline{X} и \overline{Y} независимы, как функции независимых выборок, а их разность $\overline{X} - \overline{Y}$ (композиция нормальных распределений) распределена по нормальному закону с параметрами

$$M(\overline{X} - \overline{Y}) = m_X - m_Y$$
 $M(\overline{X} - \overline{Y}) = \frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}$.

При справедливости гипотезы H_0 : $m_X - m_Y = 0$ имеем:

$$U=(\overline{X}-\overline{Y})/\sqrt{\frac{\sigma_X^2}{n_1}+\frac{\sigma_Y^2}{n_2}}\sim N(0;1).$$

Правило принятия решения относительно гипотезы H_0 имеет вид:

при $|U| < u_{\kappa p} = u_{1-\alpha/2}$ гипотеза H_0 принимается;

при $|U| \ge u_{\rm kp} = u_{1-\alpha/2}$ гипотеза ${\rm H}_0$ отклоняется.

б) Рассмотрим теперь задачу проверки гипотезы H_0 при неизвестных σ_X и σ_Y , причем $\sigma_X = \sigma_Y = \sigma$ (допущение о равенстве дисперсий может быть проверено с помощью критерия Фишера).

Имеем: $(n_1-1)\,S_X^{*2}/\sigma^2=\chi_{n_1-1}^2$, $(n_2-1)\,S_Y^{*2}/\sigma^2=\chi_{n_2-1}^2$ (лемма Фишера п. 13), при этом $\chi_{n_1-1}^2$ и $\chi_{n_2-1}^2$ независимы, так как выборочные дисперсии S_X^{*2} и S_Y^{*2} – функции независимых выборок.

Отсюда, по определению случайной величины χ_n^2 , получаем:

$$\chi_{n_1-1}^2 + \chi_{n_2-1}^2 = \chi_{n_1+n_2-2}^2 = \frac{(n_1-1)S_X^{*2} + (n_2-1)S_Y^{*2}}{\sigma^2}.$$

Далее, при справедливости гипотезы H_0 : $m_X = m_Y$, имеем: $U \sim N(0;1)$ – стандартное нормальное распределение.

При $\sigma_{\rm X}=\sigma_{\rm Y}=\sigma$ и справедливости гипотезы ${\rm H}_0:m_{\rm X}=m_{\rm Y}$ статистики $U=(\overline{\rm X}-\overline{\rm Y}\,)/\sqrt{\frac{\sigma^2}{n_1}+\frac{\sigma^2}{n_2}}$ и $\chi^2_{n_1+n_2-2}$ — независимы, поэтому $\frac{U}{\sqrt{\chi^2_{n_1+n_2-2}/n_1+n_2-2}}={\rm T}_{n_1+n_2-2}$ — отношение Стьюдента.

Таким образом, получаем выражение для статистики критерия:

$$T_{n_1+n_2-2} = (\overline{X} - \overline{Y}) \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \sqrt{\frac{n_1 + n_2 - 2}{(n_1 - 1)S_X^{*2} + (n_2 - 1)S_Y^{*2}}}.$$

Решения о принятии или отклонении гипотезы H_0 принимают на основе указанной статистики критерия (критерий Стьюдента):

при
$$|T_{n_1+n_2-2}| < t_{\kappa p} = t_{n_1+n_2-2;1-\alpha/2}$$
 гипотеза H_0 принимается; при $|T_{n_1+n_2-2}| \ge t_{\kappa p}$ гипотеза H_0 отвергается.

При $n_1 = n_2 = n$ выражение для статистики критерия имеет вид:

$$T_{2(n-1)} = \frac{\bar{X} - \bar{Y}}{\sqrt{S_X^{*2} + S_Y^{*2}}} \sqrt{n}$$

Замечание

В случае, когда дисперсии неизвестны и их равенство не предполагается, используют статистику критерия, аналогичную рассмотренной в настоящем параграфе для случая, когда дисперсии считались известными, но не равными.

Пример 7_кз (двусторонний критерий)

Проверить гипотезу о равенстве математических ожиданий двух нормальных распределений $N(m_1;\sigma_1)$ и $N(m_2;\sigma_2)$ на основе двух независимых выборок одинакового объема $n_1=n_2=n=15$ из этих распределений. При обработке реализации первой выборки получено: $\overline{\mathcal{X}}_1=18,80, \quad S_1^{*2}=24,03$ (выборочное среднее и исправленная

выборочная дисперсия); второй: $\overline{X}_2 = 16,13$; $S_2^{*2} = 15,43$. Уровень значимости принять равным $\alpha = 0,05$.

 $\it Указание$: Предварительно с помощью критерия Фишера (см. п.24) проверить на уровне значимости α = 0,05 справедливость гипотезы о равенстве стандартных отклонений σ_1 = σ_2 = σ распределений, из которых извлечены выборки.

Решение

1) Применим критерий Фишера для проверки гипотезы H_0 : $\sigma_1 = \sigma_2$ против альтернативы H_1 : $\sigma_1 > \sigma_2$ при уровне значимости $\alpha = 0.05$. Найдем критическое число $F_{n_1-1,\,n_2-1;\,1-\alpha} = F_{14;14;0.95} = 2.40$ (по таблице квантилей распределения Фишера) и сравним его с значением статистики критерия $F_e = \frac{S_1^{*2}}{S_2^{*2}} = \frac{24.03}{15.43} = 1.56$.

Значение статистики критерия F_e принадлежит области принятия гипотезы, на уровне значимости $\alpha = 0.05$ гипотеза $H_0: \sigma_1 = \sigma_2 = \sigma$ принимается, поэтому будем считать, что стандартные отклонения распределений, из которых извлечены выборки, равны.

2) Полагая $\sigma_1 = \sigma_2 = \sigma$ (σ — неизвестно), с помощью критерия Стьюдента проверим теперь гипотезу о равенстве математических ожиданий указанных распределений $H_0: m_1 = m_2$ против

альтернативной гипотезы H_1 : $m_1 \neq m_2$ на уровне значимости $\alpha = 0.05$.

Вычислим значение статистики критерия

$${\rm T}_{2(n-1)} = \ {{{\overline X} - {\overline Y}} \over {\sqrt {S_X^{*2} + S_Y^{*2}}}} \sqrt n \ ,$$
 отвечающее данным выборкам:

$$t_e = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s_1^{*2} + s_2^{*2}}} \sqrt{n} = \frac{18,80 - 16,13}{\sqrt{24,03 + 15,43}} \sqrt{15} = 1,646.$$

По таблицам квантилей распределения Стьюдента найдем критическое число $t_{\rm kp}=t_{2(n-1);\;1-\alpha/2}=t_{28;\;0,975}=2,048.$

Таким образом, значение t_e статистики критерия принадлежит области принятия гипотезы; гипотеза H_0 : $m_1 = m_2$ о равенстве математических ожиданий распределений не противоречит опытным данным и может быть принята на уровне значимости $\alpha = 0.05$.

26. Теорема Пирсона, проверка гипотезы о вероятностях в обобщенной схеме Бернулли

1. Рассмотрим последовательность n независимых испытаний с числом k ($k \ge 2$) исходов в каждом испытании (обобщенная схема Бернулли).

<u>Теорема К. Пирсона.</u> Пусть n – число независимых испытаний, результатом каждого испытания является один из k исходов $A_1, ..., A_k$ (k≥2). Вероятности исходов $A_1, ..., A_k$ равны, соответственно: $p_1, ..., p_k$ и не зависят от номера испытания; все $p_i \neq 0$ и $p_1 + ... + p_k = 1$.

Пусть в результате проведения n испытаний исход A_1 наблюдался N_1 раз; ... A_i-N_i раз; ... A_k-N_k раз, при этом $N_1+...+N_k=n$.

Заметим, что N_i (i=1,...,k) – случайные величины, подчиняющиеся биномиальному распределению с параметрами n и p_i , при этом $M(N_i) = np_i$, $D(N_i) = np_i (1-p_i)$.

Примем без доказательства утверждение (*теорема Пирсона*): случайная величина (хи–квадрат) $X^2 = \sum_{i=1}^k \frac{(N_i - np_i)^2}{np_i}$ при $n \to +\infty$

распределена как χ^2_{k-1} (хи-квадрат с k-1 степенью свободы):

$$\forall x \ \mathrm{P}(\mathbb{X}^2 < x) \underset{n \to +\infty}{\longrightarrow} \mathrm{P}(\chi_{k-1}^2 < x).$$

Величины N_i называют *наблюдаемыми* частотами, а np_i – *ожидаемыми* частотами.

2. Пусть относительно вероятностей $p_1, ..., p_k$ выдвинута *простая* гипотеза о вероятностях $H_0: p_1 = p_1^{\ 0}, ..., p_k = p_k^{\ 0}$ (альтернативная гипотеза $H_1: \exists i \ (i=1,...,k) \ p_i \neq p_i^{\ 0}$ и задан уровень значимости α .

В качестве статистики критерия для проверки гипотезы H_0 возьмем $X^2 = \sum_{i=1}^k \frac{(N_i - np_i^0)^2}{np_i^0} = n \left(\sum_{i=1}^k \frac{(\frac{N_i}{n} - p_i^0)^2}{p_i^0} \right).$

Если гипотеза H_0 верна, то согласно теореме Пирсона имеем:

$$X^2 \sim \chi^2_{k-1}$$
.

Если H_0 – неверна, то хотя бы одна из относительных частот $\frac{N_i}{n}$ сходится по вероятности к величине p_i , отличной от $p_i^{\ 0}$:

$$\underbrace{\frac{N_i}{n}} \xrightarrow{P} p_i \neq p_i^0, \text{ поэтому } \mathbb{X}^2 = n \left(\sum_{i=1}^k \frac{(\frac{N_i}{n} - p_i^0)^2}{p_i^0} \right)_{n \to +\infty} \infty.$$

Отсюда следует, что гипотеза H_0 должна быть отвергнута, если полученное в опыте значение X^2 велико:

Таким образом, приходим к правостороннему критерию:

при
$$X^2 \ge \chi_{\kappa p}^2$$
 — гипотезу H_0 отклоняют;
при $X^2 < \chi_{\kappa p}^2 - H_0$ принимают.

Пусть в данном эксперименте частоты N_i (случайные величины) приняли конкретные значения n_i , соответственно. Вычисляют $\chi_e^2 = \sum_{i=1}^k \frac{(n_i - np_i^0)^2}{np_i^0}$, и решение об отклонении или принятии гипотезы H_0 принимают, сопоставляя значение χ_e^2 с критическим числом $\chi_{\kappa p}^2 = \chi_{k-1;1-\alpha}^2$.

Не следует считать, что при справедливости гипотезы H_0 величина X^2 должна быть близкой к нулю, поскольку результаты наблюдений (измерений) – это реализация *случайной* выборки.

Также необходимо учесть, что применение непрерывного распределения χ^2_{k-1} в качестве аппроксимации распределения дискретной случайной величины X^2 порождает ряд ограничений. В частности требуется, чтобы n было достаточно велико $(n \ge 50)$, "ожидаемые" частоты np_i^0 , а также значения n_i не должны быть

малыми. Более детально практические рекомендации будут обсуждены далее.

27. Проверка гипотезы о виде распределения – метод χ2 для простой гипотезы

Пусть $X_1, ..., X_n$ — выборка из распределения $F_X(x)$ непрерывной случайной величины X, объем выборки n — достаточно велик, элементы выборки независимы и $F_{X_i}(x) = F_X(x)$, для всех i=1,...,n.

Пусть относительно распределения $F_X(x)$ проверке подлежит гипотеза H_0 : $F_X(x) = F_0(x)$, альтернативная гипотеза H_1 : $F_X(x) \neq F_0(x)$ и задан уровень значимости α .

Статистика критерия

По вариационному ряду $X_{(1)}, \ldots, X_{(n)}$ построим k промежутков аналогично тому, как это делалось при построении гистограммы, с тем отличием, что в качестве крайних промежутков возьмем полубесконечные: $\Delta_1 = (-\infty; \alpha_1], \ldots, \Delta_i = (\alpha_{i-1}; \alpha_i], \ldots, \Delta_k = (\alpha_{k-1}; +\infty)$.

Число интервалов разбиения k обычно берут таким же, как при построении гистограммы, а именно, применяют либо формулу Старджесса: $k = 1+3,32\lg n$, либо формулу: $k = 1,72\,n^{1/3}$, а сами промежутки полагают равными (за исключением крайних – полубесконечных):

$$\Delta_{i}$$
 Δ_{k}
 $X_{(1)} = \alpha_{0} \quad \alpha_{1} \quad \alpha_{i-1} \quad \alpha_{i} \quad \alpha_{k-1} \quad \alpha_{k} = X_{(n)}$

Наблюдаемые частоты N_i (случайные величины) — число элементов выборки, попавших в i-й промежуток разбиения $\Delta_i = (\alpha_{i-1}; \alpha_i]$.

Обозначим через p_i вероятность $P(X \in \Delta_i)$ для случайной величины X принять значение в промежутке Δ_i .

При справедливости гипотезы H_0 имеем:

$$P(X \in \Delta_1 | H_0) = F_0(\alpha_1) = p_1^0;$$

$$P(X \in \Delta_i | H_0) = F_0(\alpha_i) - F_0(\alpha_{i-1}) = p_i^0 \ (i=2,...,k-1);$$

$$P(X \in \Delta_k | H_0) = 1 - F_0(\alpha_{k-1}) = p_k^0.$$

Проверяемая гипотеза о распределении H_0 : $F_X(x) = F_0(x)$ равносильна гипотезе о том, что упомянутые вероятности p_i приняли определенные значения p_i^0 . Таким образом, приходим к задаче о проверке *простой гипотезы о вероятностях в обобщенной схеме* Бернулли, рассмотренной в п. 26: H_0 : $p_i = p_i^0$ (i = 1, ..., k).

Правило принятия решения об отклонении (принятии) проверяемой гипотезы H_0 о виде распределения строится на основе приближения распределения статистики критерия Пирсона $X^2 = \sum_{i=1}^k \frac{(N_i - np_i^0)^2}{np_i^0}$ распределением χ^2_{k-1} при больших объемах выборки $(n \ge 50)$.

Решение об отклонении или принятии гипотезы H_0 принимают, сопоставляя значение χ_e^2 , соответствующее данной реализации выборки, с критическим числом $\chi_{\kappa p}^2 = \chi_{k-1:1-\alpha}^2$.

28. Проверка гипотезы о виде распределения – метод χ2 для сложной гипотезы

Пусть $X_1, ..., X_n$ — выборка из распределения непрерывной случайной величины X, функция распределения которой зависит от r неизвестных параметров $F_X(x, \theta_1, \theta_2 ... \theta_r)$. В этом случае гипотеза о виде распределения H_0 : $F_X(x, \theta_1, ... \theta_r) = F_0(x, \theta_1, ... \theta_r)$ — сложная.

В функции распределения F_0 неизвестные параметры заменим оценками максимального правдоподобия $\hat{\theta}_{1\text{MII}},...,\hat{\theta}_{r\text{MII}}$ и, действуя аналогично процедуре проверки простой гипотезы, рассмотренной в п. 27, вычислим вероятности $\hat{p}_i^0 = P(X \in \Delta_i \mid H_0)$:

$$\hat{p}_{i}^{0} = \mathrm{F}_{0}(\alpha_{i}, \, \hat{\theta}_{1\mathrm{M}\Pi}, \dots \, \hat{\theta}_{r\,\mathrm{M}\Pi}) - \mathrm{F}_{0}(\alpha_{i-1}, \, \hat{\theta}_{1\mathrm{M}\Pi}, \dots \, \hat{\theta}_{r\,\mathrm{M}\Pi}), \,\, (i = 2, ..., k-1).$$
 для $\Delta_{1}: \hat{p}_{1}^{0} = \mathrm{F}_{0}(\alpha_{1}; \, \hat{\theta}_{1\mathrm{M}\Pi}, \dots \, \hat{\theta}_{r\,\mathrm{M}\Pi}),$ для $\Delta_{k}: \hat{p}_{k}^{0} = 1 - \mathrm{F}_{0}(\alpha_{k-1}; \, \hat{\theta}_{1\mathrm{M}\Pi}, \dots \, \hat{\theta}_{r\,\mathrm{M}\Pi}).$

Гипотезы H_0 и H_1 при этом формулируются следующим образом:

$$H_0: p_i = \hat{p}_i^0 \ (i = 1,...,k); \ H_1: \exists i \ (i = 1,...,k) \ p_i \neq \hat{p}_i^0.$$

Доказано (теорема Фишера) что распределение статистики $X\!\!\!\! X^2 = \! \sum_{i=1}^k \! \frac{(N_i - n \hat p_i^0)^2}{n \hat p_i^0} \quad \text{при справедливости гипотезы } \mathbf{H}_0 \quad \text{при } n \to +\infty$

стремится к распределению случайной величины χ^2_{k-r-1} (с k-r-1

степенью свободы):
$$\forall x \ P(\sum_{i=1}^k \frac{(N_i - n\hat{p}_i^0)^2}{n\hat{p}_i^0} < x) \underset{n \to +\infty}{\longrightarrow} P(\chi_{k-r-1}^2 < x),$$

где r — число параметров, оцениваемых по выборке.

В остальном проверка гипотезы H_0 совпадает с рассмотренной в п. 27 процедурой проверки для случая простой гипотезы:

по реализации выборки $(x_1, x_2, ..., x_n)$ вычисляют значение

$$\chi_e^2 = \sum_{i=1}^k \frac{(n_i - n\hat{p}_{ie}^0)^2}{n\hat{p}_{ie}^0},$$

где n_i – значения наблюдаемых частот, фактически полученные в эксперименте; $n\hat{p}_{ie}^0$ – вычисленные ожидаемые частоты. Сопоставляя значение χ_e^2 с $\chi_{\kappa p}^2 = \chi_{k-r-1;1-\alpha}^2$, принимают решения: на уровне значимости α гипотезу H_0 отвергнуть, если $\chi_e^2 \geq \chi_{\kappa p}^2$ или гипотезу H_0 принять, если $\chi_e^2 < \chi_{\kappa p}^2$.

Замечания

Применимость аппроксимации непрерывным распределением χ^2_{k-1} (в случае простой гипотезы) и χ^2_{k-r-1} (в случае сложной гипотезы) к соответствующей статистике X^2 , распределение которой дискретно, накладывает определенные ограничения на построение упомянутого разбиения. Промежутки разбиения Δ_i следует строить так, чтобы выполнялось условие: "ожидаемое" $n\hat{p}_{ie}^0 \geq 5$. При этом длины промежутков не должны быть обязательно равными. Если для какоголибо промежутка $n\hat{p}_{ie}^0 < 5$, или наблюдаемая частота $n_i < 5$, то такой промежуток объединяют с соседним.

Число промежутков k таким образом может сократиться по сравнению с первоначальным и решение об отклонении (принятии) гипотезы H_0 принимают, сравнивая χ_e^2 с $\chi_{\kappa p}^2 = \chi_{k^*-r-1;\; 1-\alpha}^2$, где k^* окончательное число промежутков после объединения.

В то же время, условие "минимальное ожидаемое $n\hat{p}_{ie}^{_0} \ge 5$ " может оказаться слишком жестким – допустимый минимум зависит от числа степеней свободы k.

В специальной литературе по прикладной статистике приводятся также следующие рекомендации. Общее количество промежутков разбиения k должно быть не меньше 8. В каждый интервал разбиения должно попасть не менее 7–10 элементов реализации выборки, причем желательно, чтобы в разные интервалы попало примерно одинаковое число точек.

29. Пример 1_кс. Проверка гипотезы о нормальном распределении

Пусть имеется реализация выборки $x_1, x_2, ..., x_{500}$ из некоторого распределения, объем выборки n = 500. Вычислены выборочное исправленное стандартное отклонение, среднее И равные $s^* = 1,015813,$ определены $\bar{x} = 0.044289$ И соответственно минимальный И максимальный выборки элементы $x_{(1)} = x_{min} = -2,769448, \quad x_{(500)} = x_{max} = 2,835368.$

На уровне значимости $\alpha = 0.05$ необходимо проверить гипотезу H_0 о нормальности распределения, для которого экспериментально получена данная реализация выборки.

Решение

Построим группированный статистический ряд. Число интервалов разбиения примем равным k=10, крайний левый и крайний правый интервалы равными, соответственно, $\Delta_1 = (-\infty; \alpha_1], \ \Delta_{10} = (\alpha_9; +\infty).$

$$\Delta_1$$
 Δ_i Δ_{10} Δ_{min} α_1 α_{i-1} α_i α_2 α_3 α_{max}

Неизвестные параметры нормального распределения m и σ заменим значениями их оценок, вычисленными по данной реализации выборки, а именно $m=\hat{m}_e=\overline{x}$, $\sigma=\hat{\sigma}_e=s^*$. Для случайной величины, подчиняющейся нормальному распределению $N(\overline{x};s^*)$, вычислим вероятности принять значение внутри соответствующих интервалов разбиения: $\hat{p}_{1e}^0=\Phi((\alpha_1-\overline{x})/s^*);$ $\hat{p}_{10e}^0=1-\Phi((\alpha_9-\overline{x})/s^*);$ $\hat{p}_{ie}^0=\Phi((\alpha_i-\overline{x})/s^*)-\Phi((\alpha_{i-1}-\overline{x})/s^*),\ i=2,...,9,\ (\Phi(x)-\varphi$ ункция Лапласа).

Группированные числовые данные и результаты расчетов приведены в таблице и представлены на графике ниже.

	Инте	рвал	"Наблюдаемые"	"Ожидаемые"	$(n n\hat{\mathbf{n}}^0)^2$	
i	$\Delta_i = (\alpha_{i-1}; \alpha_i]$		частоты	значения	$rac{(n_i - n\hat{p}_{ie}^0)^2}{n\hat{p}_{ie}^0}$	
ı	Δ_l (ω_l	,, , ~, , ,	n_i	$n\hat{p}_{ie}^{0}$	$n\hat{p}_{ie}^{0}$	
1	-∞ -2,209		4	6,635	1,047	
2	-2,209	-1,648	24	17,272	2,621	
3	-1,648	-1,088	40	42,341	0,129	
4	-1,088	-0,527	79	77,126	0,046	
5	-0,528	0,033	96	104,401	0,676	
6	0,0330	0,593	104	105,029	0,010	
7	0,593	1,154	79	78,526	0,002	
8	1,154	1,714	51	43,631	1,245	
9	1,714	2,275	17	18,013	0,057	
10	2,275 +∞		6	7,025	0,149	
					$\chi_e^2 = 5,983$	

На рисунке выше представлены экспериментальная и теоретическая гистограммы: белые прямоугольники соответствуют наблюдаемым относительным частотам n_i/n , серые — вероятностям \hat{p}_{ie}^0 попадания значений выборки в соответствующий интервал.

Найдем (по таблице) критическое число $\chi_{\kappa p}^2 = \chi_{k-r-1;\; 1-\alpha}^2$ квантиль порядка $1-\alpha=0.95$ распределения хи-квадрат с числом степеней свободы k-r-1=10-2-1=7: $\chi_{k-r-1;\; 1-\alpha}^2 = \chi_{7;\; 0.95}^2 = 14,067$.

Имеем:
$$\chi_e^2 = \sum_{i=1}^{10} \frac{(n_i - n\hat{p}_{ie}^0)^2}{n\hat{p}_{ie}^0} = 5,983 < \chi_{7;\ 0.95}^2 = 14,067.$$

Таким образом, гипотеза H_0 о нормальности распределения, из которого получена реализация выборки $x_1, x_2, ..., x_{500}$ на уровне значимости $\alpha = 0.05$ не противоречит экспериментальным данным и может быть принята.

Заметим, что по существу проверялась гипотеза о нормальности распределения с параметрами $m = \hat{m}_e = \overline{\chi}$, $\sigma = \hat{\sigma}_e = s^*$.

30. Пример 2_кс: проверка гипотезы о распределении Пуассона

Для статистического анализа процесса возникновения метеорных следов в определенной области атмосферы полное время наблюдения разбили на 2550 равных промежутков длительностью $\Delta \tau$, в каждом из которых регистрировалось число обнаруженных метеорных следов.

Результаты приведены в таблице, где наблюдаемые частоты n_i – число промежутков из 2550, в которых было зарегистрировано соответствующее число i (i=0,1,...,13) метеорных следов:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13
n_i	44	189	375	475	491	430	265	143	83	31	15	7	1	1

На уровне значимости α = 0,05 необходимо проверить гипотезу о том, что случайная величина X – число зарегистрированных метеорных следов за временной промежуток длительностью $\Delta \tau$, подчиняется распределению Пуассона:

$$P(X=i) = p_i = \frac{a^i}{i!}e^{-a}$$
 (i=0,1,2,...).

Решение

Поскольку значение n_i в последних двух столбцах исходной таблицы меньше 5, объединим три последних столбца, получим таблицу для расчетов:

			2									1
n_i	44	189	375	475	491	430	265	143	83	31	15	9

Используя данные ucxodhoй таблицы, вычислим значение \hat{a}_e оценки неизвестного параметра a распределения Пуассона (\hat{a}_e = \overline{x} , где \overline{x} -выборочное среднее):

$$\bar{x} = \frac{1}{2550} \sum_{i=1}^{13} i n_i = 10264/2550 = 4,025098 = \hat{a}_e.$$

Заменим в гипотетическом распределении Пуассона $p_i = \frac{a^i}{i!} e^{-a}$ неизвестный параметр a значением его оценки \hat{a}_e , вычисленным по экспериментальной выборке $\hat{a}_e = 4,025098$.

Таким образом, проверке подлежит гипотеза H_0 : $p_i = \hat{p}_{ie}^0 = \frac{\hat{a}_e^l}{i!} e^{-\hat{a}_e}$ i = 0,1,...11 (против альтернативы H_1 : $\exists i~(i = 1,...,k)~p_i \neq \hat{p}_{ie}^0$), на уровне значимости $\alpha = 0,05$. Заметим, что проверяемая гипотеза H_0 сложная, так как распределение содержит неизвестный параметр a, значение которого заменено значением его оценки $\hat{a}_e = \bar{x}$.

В таблице ниже приведен расчет величины $\chi_e^2 = \sum_{i=1}^{11} \frac{(n_i - n\hat{p}_{ie}^0)^2}{n\hat{p}_{ie}^0}$.

i	n_i	i n _i	\hat{p}_{ie}^0	$n\hat{p}_{ie}^{0}$	$\frac{(n_i - n\hat{p}_{ie}^0)^2}{n\hat{p}_{ie}^0}$	
0	44	0	0,017883	45,54727	0,052561	
1	189	189	0,071959	183,3322	0,175222	
2	375	750	0,144778	368,9651	0,09871	
3	475	1425	0,194192	495,0402	0,811265	
4	491	1964	0,195353	498,1463	0,10252	
5	430	2150	0,157217	401,0176	2,094627	
6	265	1590	0,105438	269,0225	0,060145	
7	143	1001	0,060611	154,6917	0,883667	
8	83	664	0,030487	77,83116	0,343268	
9	31	279	0,013631	34,80867	0,416735	
10	15	150	0,005485	14,01083	0,069836	
≥11	9	99	0,002969	7,586556	0,263337	
	2550	10261	1,0	2550	$\chi_e^2 = 5,371893$	

Заметим, что при расчете "теоретических" вероятностей в случае *целочисленной* случайной величины для крайних значений выборки следует поступать так же, как это делалось для непрерывного распределения (п. 28), когда крайние интервалы считались полубесконечными. В данном случае вероятность в строке таблицы, обозначенной ≥ 11 , равна сумме вероятностей всех значений $i \geq 11$ случайной величины, подчиняющейся распределению Пуассона:

$$\hat{p}_{\geq 11}^0 = 1 - \sum_{i=1}^{10} \hat{p}_{ie}^0$$
.

Для случая сложной гипотезы статистикой критерия служит χ^2_{k-l-1} , где l — число параметров, оцениваемых по выборке, k — общее число p азличных значений случайной величины X, зарегистрированных в данном эксперименте (аналог числа интервалов разбиения, используемого в методе χ -квадрат при проверке гипотезы о непрерывном распределении). В рассматриваемом примере k = 14.

Учтем, что три последних столбца исходной таблицы были объединены в один, поэтому $k^*=k-2=12$, а также то, что неизвестное значение параметра распределения a было заменено значением его оценки \hat{a}_e , поэтому число степеней свободы для χ -квадрат равно окончательно $k^*-l-1=12-1-1=10$.

Квантиль порядка 0,95 распределения χ^2 с числом степеней свободы равным 10, равна: $\chi^2_{\kappa p}=\chi^2_{10;\,0,95}=18,\!30704.$

Поскольку $\chi_e^2 = 5,371893 < 18,30704 = \chi_{\kappa p}^2$, — нет оснований для отклонения гипотезы H_0 .

Таким образом, гипотеза H_0 о том, что случайная величина — число метеорных следов, возникающих в выделенной области атмосферы за промежуток времени $\Delta \tau$, подчиняется распределению Пуассона с параметром, равным $\hat{a}_e = 4,025098$, не противоречит результатам наблюдений и может быть принята на уровне значимости $\alpha = 0,05$.

Замечание

Другой подход к проверке гипотезы H_0 о распределении Пуассона основан на известном свойстве этого распределения: MX = DX = a. Если X_1, \dots, X_n — выборка из распределения Пуассона, то $S^{*2} \xrightarrow{P} DX = a$ и $\overline{X} \xrightarrow{P} MX = a$, поэтому отношение S^{*2}/\overline{X} должно быть близким к 1 при достаточно больших значениях n. Доказано, что это отношение распределено асимптотически нормально: $S^{*2}/\overline{X} \sim N(1; \sqrt{2a^2/n})$ при $n \to +\infty$.

Если объем выборки n достаточно велик, то распределение центрированной и нормированной случайной величины $((S^{*2}/\bar{X})-1)/\sqrt{2a^2/n}$ будет близким к стандартному нормальному распределению N(0;1).

Заменим в последнем выражении неизвестный параметр a его несмещенной состоятельной асимптотически нормальной оценкой $\hat{a}=\bar{X}$, тогда статистика критерия $U=\sqrt{n}(S^{*2}-\bar{X})/(\bar{X}^2\sqrt{2})$ будет распределена приблизительно нормально при достаточно больших n. Возьмем U в качестве статистики критерия; правило принятия решения при уровне значимости α имеет вид:

при ($|U| \ge u_{1-\alpha/2}$) гипотеза H_0 отвергается, при ($|U| < u_{1-\alpha/2}$) гипотеза H_0 принимается.

31. Проверка гипотезы о равенстве параметров p_1 и p_2 двух биномиальных распределений по выборкам большого объема из соответствующих распределений Бернулли

Пусть X_1, \dots, X_{n_1} и Y_1, \dots, Y_{n_2} — две независимые выборки объема n_1 и n_2 из распределений Бернулли с параметрами p_1 и p_2 , соответственно. Таким образом, проведено n_1 независимых испытаний с вероятностью успеха p_1 в каждом испытании и n_2 испытаний с вероятностью успеха p_2 , причем величины n_1 и n_2 (объемы выборок) достаточно велики. Как обычно, будем обозначать $1-p_1=q_1$ и $1-p_2=q_2$.

Необходимо проверить гипотезу H_0 : $p_1 = p_2$ против альтернативной гипотезы H_1 : $p_1 \neq p_2$ при уровне значимости α.

Статистика критерия:

Обозначим через X число успехов при проведении n_1 испытаний по схеме Бернулли с вероятностью успеха p_1 в каждом испытании, через Y – число успехов при проведении n_2 испытаний с вероятностью p_2 . Относительные частоты $\hat{p}_1 = \frac{X}{n_1}$ и $\hat{p}_2 = \frac{Y}{n_2}$ являются асимптотически нормальными случайными величинами (см. п. 17):

$$\hat{p}_1 \sim N(p_1; \sqrt{\frac{p_1q_1}{n_1}})$$
 при $n_1 \to +\infty; \ \hat{p}_2 \sim N(p_2; \sqrt{\frac{p_2q_2}{n_2}})$ при $n_2 \to +\infty.$

Будем считать, что нормальность распределений имеет место при данных (больших) объемах выборок n_1 и n_2 . По условию \hat{p}_1 и \hat{p}_2 – независимы, поэтому их разность также подчиняется нормальному распределению (как композиция нормальных распределений):

$$\hat{p}_1 - \hat{p}_2 \sim N(p_1 - p_2; \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}).$$

Заменив в последнем отношении неизвестные параметры p_1 и p_2 их оценками \hat{p}_1 и \hat{p}_2 , получим, что при справедливости гипотезы

$$H_0\colon p_1=p_2, \qquad \text{статистика} \qquad U=\frac{\hat{p}_1-\hat{p}_2}{\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1}+\frac{\hat{p}_2\hat{q}_2}{n_2}}} \sim N(0;1) \qquad \text{подчиняется}$$

(приближенно) стандартному нормальному распределению. Возьмем U в качестве статистики критерия проверки гипотезы H_0 : $p_1 = p_2$, тогда правило принятия решения имеет вид:

при
$$(|U| \ge u_{1-\alpha/2})$$
 гипотеза H_0 отвергается, при $(|U| < u_{1-\alpha/2})$ гипотеза H_0 принимается.

Практически процедура проверки гипотезы сводится к сравнению значения статистики критерия, вычисленного по результатам конкретного эксперимента, $u_e = U(\hat{p}_{1e}; \hat{p}_{2e})$ с квантилью $u_{1-\alpha/2}$ порядка $1-\alpha/2$ стандартного нормального распределения.

<u>Замечание</u>

При данных (больших) объемах выборок n_1 и n_2 будем считать справедливым утверждение:

$$\frac{p_1 - p_2 - (\hat{p}_1 - \hat{p}_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0;1).$$
 Заменим в знаменателе этого отношения

неизвестные параметры распределений их оценками \hat{p}_1 , $1-\hat{p}_1=\hat{q}_1$ и \hat{p}_2 , $1-\hat{p}_2=\hat{q}_2$.

Действуя аналогично п. 17., построим приближенный доверительный интервал для разности $p_1 - p_2$, соответствующий доверительной вероятности $1 - \alpha$:

$$\hat{p}_1 - \hat{p}_2 - u_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} < p_1 - p_2 < \hat{p}_1 - \hat{p}_2 + u_{1-\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}.$$

Сформулируем правило принятия решения при проверке гипотезы H_0 : $p_1 - p_2 = 0$, основанное на доверительном интервале:

если
$$0 \not\in (\hat{p}_1 - \hat{p}_2 - u_{1-\alpha/2}\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}; \hat{p}_1 - \hat{p}_2 + u_{1-\alpha/2}\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}),$$

то гипотеза H_0 отвергается;

если
$$0 \in (\hat{p}_{\scriptscriptstyle 1} - \hat{p}_{\scriptscriptstyle 2} - u_{\scriptscriptstyle 1-\alpha/2}\sqrt{\frac{\hat{p}_{\scriptscriptstyle 1}\hat{q}_{\scriptscriptstyle 1}}{n_{\scriptscriptstyle 1}} + \frac{\hat{p}_{\scriptscriptstyle 2}\hat{q}_{\scriptscriptstyle 2}}{n_{\scriptscriptstyle 2}}}\,;\hat{p}_{\scriptscriptstyle 1} - \hat{p}_{\scriptscriptstyle 2} + u_{\scriptscriptstyle 1-\alpha/2}\sqrt{\frac{\hat{p}_{\scriptscriptstyle 1}\hat{q}_{\scriptscriptstyle 1}}{n_{\scriptscriptstyle 1}} + \frac{\hat{p}_{\scriptscriptstyle 2}\hat{q}_{\scriptscriptstyle 2}}{n_{\scriptscriptstyle 2}}}\,),$$

то гипотеза H_0 принимается на данном уровне значимости α .

32. Понятие р-значения

Рассмотрим односторонний (правосторонний) критерий).

При заданном уровне значимости α критическое число $t_{\text{кр}}$ определяется соотношением $P(T(X_1, ..., X_n) \ge t_{\text{кр}} | H_0) = \alpha$, а p-значение (p-value)— соотношением $P(T(X_1, ..., X_n) \ge t_e | H_0) = p\text{-}value$.

В русскоязычной литературе p-значение (p-value) называют также достигаемым уровнем значимости (пи-величиной). Чем меньше оказывается значение p-value, тем сильнее свидетельствует совокупность наблюдений x_1, x_2, \ldots, x_n против нулевой гипотезы.

Приложение 1. Предельные теоремы теории вероятностей *Теорема (неравенство Чебышева)*

Пусть непрерывная случайная величина X имеет второй начальный момент MX^2 , тогда:

$$\forall \varepsilon > 0 \ P(|X| \ge \varepsilon) \le MX^2/\varepsilon^2$$
.

 $\underline{\mathit{Cледствиe}}$ Если случайная величина X имеет конечные математическое ожидание MX и дисперсию DX= σ^2 , тогда

$$\forall \varepsilon > 0 \ P(|X - MX| \ge \varepsilon) \le DX/\varepsilon^2$$
.

При $\varepsilon = 3\sigma$ из последнего неравенства получаем " 3σ -оценку" вероятности абсолютного отклонения случайной величины от ее математического ожидания на величину, не меньшую 3σ :

$$P(|X-MX| \ge 3\sigma) \le 1/9$$
.

Заметим, что эта оценка универсальна—она справедлива для любого распределения, однако является довольно грубой: для нормального распределения имеем: $P(|X-MX| \ge 3\sigma) = 0.027 \le 1/9$; для равномерного распределения: $P(|X-MX| \ge 3\sigma) = 0 \le 1/9$.

Закон больших чисел (теорема Чебышева)

Пусть $\{X_i\}$ –последовательность независимых случайных величин и пусть каждый член последовательности X_i имеет конечные математическое ожидание $MX_i = m_i$ и дисперсию $DX_i = D_i$, причем дисперсии ограничены в совокупности ($\exists B \ 0 < B < +\infty$), тогда

$$\forall \varepsilon > 0 \ \mathrm{P}(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \frac{1}{n}\sum_{i=1}^{n}m_{i}\right| \geq \varepsilon) \xrightarrow[n \to +\infty]{} 0.$$

Приведем определение сходимости по вероятности. Последовательность случайных величин $\{S_n\}$ называют сходящейся по вероятности к случайной величине S , если

$$\forall \varepsilon > 0 \ P(|S_n - S| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$$

Для сходимости по вероятности принято обозначение: $S_n \xrightarrow{P}_{n \to +\infty} S$.

Поскольку любую неслучайную величину C (C=const) можно рассматривать как случайную величину X, принимающую свое единственное значение C вероятностью единица P(X=C)=1, то можно говорить и о сходимости по вероятности последовательности случайных величин C0 к неслучайной величине.

<u>Следствие 1 из закона больших чисел</u> – о сходимости по вероятности среднего арифметического одинаково распределенных случайных величин к их математическому ожиданию.

Пусть $\{X_i\}$ –последовательность одинаково распределенных независимых случайных величин, имеющих конечные математическое ожидание $MX_i = m$ и дисперсию $DX_i = \sigma^2$ (m и σ^2 одни и те же для всех X_i), тогда: $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} m$.

<u>Следствие 2 из закона больших чисел</u> – теорема Бернулли о сходимости по вероятности относительной частоты к вероятности.

Пусть случайная величина X — число наступлений события A (успеха) при проведении n независимых испытаний по схеме Бернулли, p=P(A) — вероятность успеха в каждом испытании, $\hat{p}=\frac{X}{n}$ — относительная частота числа успехов в n испытаниях, тогда

$$\hat{p} \xrightarrow[n \to +\infty]{P} p.$$

Центральная предельная теорема

Рассмотрим последовательность $\{X_i\}$ независимых случайных величин ($\forall n \ X_1, ..., X_n$ – независимы в совокупности) с математическими ожиданиями $\{m_i\}$ и дисперсиями $\{D_i\}$. При любом фиксированном n имеем:

$$\begin{split} \mathbf{M}(\sum_{i=1}^{n}\mathbf{X}_{i}) &= \sum_{i=1}^{n}\mathbf{M}\mathbf{X}_{i} = \sum_{i=1}^{n}m_{i}\;,\\ \mathbf{D}(\sum_{i=1}^{n}\mathbf{X}_{i}) &= \left[\mathbf{B}\text{ силу независимости }\mathbf{X}_{i}\;\right] = \sum_{i=1}^{n}\mathbf{D}\mathbf{X}_{i} = \sum_{i=1}^{n}\mathbf{D}_{i}\;. \end{split}$$

Случайная величина $Y_n = \frac{\sum_{i=1}^n X_i - \sum_{i=1}^n m_i}{\sqrt{\sum_{i=1}^n D_i}}$ является центрированной и

нормированной по определению (ее математическое ожидание $MY_n = 0$, а дисперсия $DY_n = 1$).

Термин *центральная предельная теорема* (ЦПТ) вообще означает ряд теорем, утверждающих (при каких-либо условиях) справедливость предельного равенства вида:

$$\lim_{n \to \infty} P(Y_n < x) = \lim_{n \to \infty} P(\frac{\sum_{i=1}^n X_i - \sum_{i=1}^n m_i}{\sqrt{\sum_{i=1}^n D_i}} < x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt.$$

Если указанное предельное равенство имеет место, то при достаточно больших значениях n на его основе строится следующее приближение:

$$P\left(\frac{\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} m_{i}}{\sqrt{\sum_{i=1}^{n} D_{i}}} < x\right) \approx \Phi(x).$$

В статистике принято считать, что такое приближение приемлемо уже при n > 30.

<u>Теорема</u> (ЦПТ для независимых одинаково распределенных величин)

Пусть $\{X_i\}$ – последовательность независимых одинаково распределенных случайных величин, имеющих конечные математическое ожидание m и дисперсию σ^2 , тогда

$$\forall x \lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_{i} - nm}{\sigma \sqrt{n}} < x\right) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt.$$

Символически утверждение ЦПТ записывают так:

$$\sum_{i=1}^n \mathbf{X}_i \sim N(nm; \sigma \sqrt{n})$$
. Отсюда $\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i \sim N(m; \sigma / \sqrt{n})$ — среднее

арифметическое *любых* независимых одинаково распределенных случайных величин (имеющих математическое ожидание и дисперсию) асимптотически нормально.

Заметим, что две последние символические записи удобны для применения ЦПТ в "допредельной" форме — при конечных достаточно больших значениях n.

Предельная теорема Муавра-Лапласа

Пусть X – число успехов при проведении n независимых испытаний (по схеме Бернулли) с вероятностью р успеха в каждом испытании, при этом MX = np, DX = npq, тогда для центрированной нормированной случайной величины $\frac{X-np}{\sqrt{npq}}$ справедливо И предельное равенство:

$$\forall x \lim_{n \to \infty} P(\frac{X - np}{\sqrt{npq}} < x) = \Phi(x).$$

Иными словами, теорема утверждает, что число успехов Х в схеме Бернулли – асимптотически нормально: $X \sim N(np; \sqrt{npq})$.

Действительно, пусть X_i – индикатор появления успеха i –м испытании (X_i – случайная величина, принимающая значение 1, если результатом i –го испытания является успех и значение 0 в противном случае):

$$\begin{array}{c|ccc} X_i & 0 & 1 \\ \hline P & q & p \end{array}$$

распределенных независимых случайных величин (индикаторов X_i) удовлетворяет требованиям центральной предельной теоремы, откуда и следует утверждение теоремы Муавра-Лапласа.

Замечание 1

величина Х Как известно, случайная подчиняется биномиальному распределению:

$$P(X = k) = b_k(n;p) = C_n^k p^k (1-p)^{n-k} \quad (k = 0,1,...,n).$$

При больших n и малых p непосредственные вычисления по этой формуле затруднительны, поэтому при n > 40, p < 1/10

используют приближение, основанное на теореме Пуассона:

$$b_k(n;p) \approx \frac{a^k}{k!} e^{-a}$$
, где $a = np$.

Замечание 2

На основании теоремы Муавра-Лапласа при достаточно больших значениях n имеем приближенно:

$$P(k_1 \le X \le k_2) \approx \Phi(\frac{k_2 - np}{\sqrt{npq}}) - \Phi(\frac{k_1 - np}{\sqrt{npq}})$$

Это приближение применяют при значениях p не близких к нулю, величинах k_1 и k_2 — порядка несколько десятков, а $\frac{k_1 - np}{\sqrt{npq}}$ и $\frac{k_2 - np}{\sqrt{npq}}$ порядка нескольких единиц.

Упражнение

- (а) Вычислить приближенно $P(|\frac{X}{n}-p| \le \varepsilon)$ вероятность отклонения относительной частоты $\hat{p} = \frac{X}{n}$ числа успехов от вероятности p на величину, не превосходящую по абсолютной величине ε (величины n, p и $\varepsilon > 0$ заданы) при проведении n независимых испытаний.
- (б) найти наименьшее значение числа испытаний n, при котором выполняется условие $P(|\frac{X}{n}-p| \le \epsilon) = 0.95$ при $\epsilon = 0.01$ и p = 0.5.

<u>Решение</u>

(а) Если случайная величина Y распределена по нормальному закону $N(m;\sigma)$, то верно равенство $\forall t \ P(|Y-m| \le \sigma t) = 2\Phi_o(t)$. При достаточно больших n имеем приближенно:

$$\frac{X}{n} \sim N(p; \frac{\sqrt{pq}}{\sqrt{n}})$$
, откуда $P(|\frac{X}{n} - p| \le t \frac{\sqrt{pq}}{\sqrt{n}}) \approx 2 \Phi_{o}(t)$.

Полагая
$$\varepsilon = t \frac{\sqrt{pq}}{\sqrt{n}}$$
 , $t = \varepsilon \frac{\sqrt{n}}{\sqrt{pq}}$, получаем:

$$P(|\frac{X}{n}-p| \leq \varepsilon) \approx 2 \Phi_{o}(\varepsilon \frac{\sqrt{n}}{\sqrt{pq}}).$$

(б) По условию $P(|\frac{X}{n}-p| \le \varepsilon) = 0.95$, $2\Phi_{o}(u) = 0.95$, отсюда

$$u = u_{0,975} = 1,96$$
 и $\epsilon \frac{\sqrt{n}}{\sqrt{pq}} = 1,96$. При $\epsilon = 0,01, \ p = 0,5$ имеем

$$1,96 = 0,01 \frac{\sqrt{n}}{\sqrt{0,25}}$$
, поэтому условие (б) выполняется при $n \ge (98)^2$.

Приложение 2. Получение выборки из заданного распределения

Пусть заданная функция распределения $F_{\rm o}(x)$ непрерывна и строго монотонна (так что существует обратная к ней функция $F_{\rm o}^{-1}$), а случайная величина Y равномерно распределена на отрезке [0;1]:

$$F_{Y}(y) = \begin{cases} 0, \ y < 0 \\ y, \ y \in [0;1] \\ 1, \ y > 1 \end{cases}$$

$$F_{Y}(y)$$

$$y$$

Докажем, что при этом функция распределения $F_X(x) = P(X < x)$ случайной величины X, полученной преобразованием $X = F_o^{-1}(Y)$, будет равна заданной функции распределения $F_o(x)$.

В силу монотонности $F_{o}(x)$ события (X < x) и (0 < Y < y) равносильны, $y = F_{o}(x)$ и $x = F_{o}^{-1}(y)$, поэтому:

$$F_X(x) = P(X < x) = P(0 < Y < y) = F_Y(y) - F_Y(0) = y = F_0(x).$$

Для любого значения y случайной величины Y, pавномерно pacnpedenehhoй на [0;1], число <math>x, полученное путем преобразования $x = F_o^{-1}(y)$, будет coomsemcmsyouum значением (реализацией) случайной величины X, подчиняющейся наперед заданному распределению $F_o(x)$. Таким образом, реализация выборки x_1, x_2, \ldots, x_n из распределения $F_o(x)$, может быть получена из реализации выборки y_1, y_2, \ldots, y_n из указанного равномерного распределения с помощью преобразования $x_i = F_o^{-1}(y_i)$.

Заметим, что верно также следующее утверждение.

Пусть случайная величина X имеет строго монотонную функцию распределения $F_X(x)$ и $Y=F_X(X)$, тогда Y — равномерно распределена на отрезке [0;1].

Действительно, поскольку $0 \le Y \le 1$ и $x = F_X^{-1}(y)$ (F_X — строго монотонна по условию, поэтому обратная функция F_X^{-1} существует), имеем:

$$F_Y(y) = P(0 < Y < y) = P(X < x) = F_X(x) = F_X(F_X^{-1}(y)) = y.$$

 $F_{Y}(y) = y$, $y \in [0;1]$: Y – равномерно распределена на отрезке [0;1].

Литература

- 1. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. М.: Финансы и статистика, 1983, 471 с.
- 2. Браунли К.А. Статистическая теория и методология в науке и технике. М.: Наука, 1977. 408 с., ил.
- 3. Ивченко Г.И., Медведев Ю.И. Математическая статистика: Учебное пособие для втузов. – М.: Высш. шк., 1984. – 248 с., ил.
- 4. Крамер Г. Математические методы статистики. М.: Мир, 1975, 648 c.
- 5. Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей.: Учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. СПб.: Изд-во Политехнического ун-та, 2009. 395 с.
- 6. Положинцев Б.И. Введение в математическую статистику: Учеб. пособие. СПб., Изд-во Политехнического ун-та 1994. 56с.
- 7. Тюрин Ю.Н., Макаров А.А. Статистический анализ данных на компьютере/ под ред. Фигурнова В.Э. –М.: ИНФРА М. 1998. 528 с., ил.