COMP603: MIDTERM I

NAME: _____

Complete within 120 minute. No calculators, phones, or lap	tes. Read each question carefully. Write legibly and check your work. stops are allowed. Good luck!
	1. Short Definitions
Correctly define 8 of the fo	llowing terms for full credit. Correctly define all for extra credit.
(1) String	a sequence of character
(2) Language	set of strings
(3) Compiler	transform source language into a target language
(4) Interpreter	accepts code and runtime data and runs with it. We're not generating code.
(5) Bootstrapping	a compiler written in the language it compiles
making a compile	er "self hosting"
(6) Visitor	visit (traverse) nodes in a tree to do some computation, without mixing computation into the nodes themselves
(7) Nondeterminism	having more than one option about which static to
(8) Ambiguity	
(9) First set	the set of terminals (excluding empty string) that can appear first in any derivation of a nonterminal.
-	1

(10) Follow set	the set of terminals (excluding empty string) that can appear after derivation of a nonterminal.	first
	2. Lists	
Complete 3 of the follow	wing lists for full credit. Complete all for extra credit.	
(1) Compiler phases, in	n order. Briefly describe what each phase does.	
such as ide	enize / Lexical analysis: Split source code into small chunks (toker entifiers, reserved words, literals, operators, etc. ck the syntax of the source code	ns)
(c) Translate:	Translate low level syntax into high-level abstract syntax tree	
(d) Optimize:In	mprove performance or structure	
(e) Generate	code: Traverse the AST to generate code.	
(2) Primitive regular e	expressions. Briefly describe what each regular expression matches.	
(a) Empty Set:	: Reject everything.	
(b) Empty Strii	ng:Match the empty string.	
(c) Symbol: M	Natch a single character.	
(d) Sequence	e: Match regex a followed by regex b.	
(e) Alternatio	on: Match regex a or match regex b, but not both.	

(f) Kleene Star:Match regex a zero or more times {"",a,aa,aaa,...}

(3) Finite automaton elements. Describe each.
(a)
(b)
(b)
(c)
(d)
(e)
(4) For a grammar to be $LL(1)$, it must be:
(a)
(b)
(c)
(d)
3. FILL IN THE BLANK
Complete the following statements for full credit.
(1) A pushdown automaton is a finite automaton with
(2) A Turing machine is a finite automation with
(2) It is
(3) It is possible to define an NFA which cannot be converte into a DFA.

 $^{^{1}\}mathrm{Left\text{-}right},$ Leftmost derivation, 1 token lookahead

4. Regular languages

Refer to the Figure below. Answer 3 of the following questions. Answer all for extra credit.

- (1) What is the initial state of the DFA using subset construction?
- (2) Draw the equivalent DFA using subset construction.

(3) Write the equivalent regular expression.

(4) IPv4 addresses are written as four integers, separated by dots (e.g., 173.203.204.223). Each integer ranges from 0 to 255. Write a regular expression to match precisely these addresses.

5

5. Context-free languages

Refer to the context-free grammar below. S is the start symbol. Answer 4 of the following questions. Answer all for extra credit.

$$\begin{array}{ll} S \rightarrow T & T \rightarrow \mathbf{x} \\ S \rightarrow S + T & T \rightarrow \mathbf{y} \\ S \rightarrow S - T & T \rightarrow \mathbf{z} \\ S \rightarrow S * T & T \rightarrow (S) \\ S \rightarrow S / T & \end{array}$$

- (1) Is the grammar above ambiguous? Why or why not?
- (2) Explain why the grammar above is not LL(1).
- (3) What is First(T)?
- (4) What is Follow(S)?
- (5) Perform a leftmost derivation of the following string: $\mathbf{x} * (\mathbf{y} + \mathbf{z})$

NAME	

6. Extra credit

Complete any of the following for extra credit.

6

(1) List all possible Sentences that can be matched by the grammar below.

 $Sentence \rightarrow NounPhrase \ VerbPhrase \\ NounPhrase \rightarrow Article \ Noun \\ VerbPhrase \rightarrow Verb \ NounPhrase \\ Verb \rightarrow \mathbf{kicked}$

 $Article \rightarrow \mathbf{the}$

(2) Rewrite the grammar on the previous page to be LL(1).