АВС-гипотеза и ее следствия.

Дмитрий Олегович Орлов

22 июля 2021 г.

Утверждение 1 ((бинарная) гипотеза Гольдбаха, открыта). Всякое чётное число, начиная с 4, можно представить в виде суммы 2 простых чисел.

Утверждение 2 ((тернарная) гипотеза Гольдбаха, доказана). Всякое нечётное число, начиная с 7, можно представить в виде суммы 3 простых чисел.

Утверждение 3 (гипотеза близнецов, открыта). Существует бесконечно много пар простых чисел вида (p; p+2).

Утверждение 4 (открыта). Для всякого n есть простое $p \in [n^2; (n+1)^2]$.

Утверждение 5 (открыта). Существует бесконечно много простых чисел вида $n^2 + 1$.

Определение 1. Для всякого натурального числа $n = \prod_{i=1}^k p_i^{\alpha_i}$ назовём его paduкалом число

$$rad(n) := \prod_{i=1}^{k} p_i.$$

Утверждение 6 (авс-гипотеза, открыта). Для всякого $\varepsilon > 0$ существует постоянная $K(\varepsilon)$, что для всякой тройки a, b, c попарно взаимно натуральных чисел, что a+b=c, выполняется неравенство

$$c\leqslant K(\varepsilon)\cdot \operatorname{rad}(abc)^{1+\varepsilon}.$$

Пример 1. Есть бесконечно много троек, где $c \geqslant \operatorname{rad}(abc)$. Действительно, если $a = 1, b = 3^{2^k} - 1, c = 3^{2^k}$, то по лемме об уточнении показателя $\nu_2(b) = k + 2$, а значит

$$rad(abc) \leqslant \frac{3b}{2^{k+1}} \ll c.$$

Пример 2. Пусть

$$\rho(a, b, c) := \frac{\ln(c)}{\ln(\operatorname{rad}(abc))}$$

Самые известные "плохие" примеры:

$$1.\ a=2,\,b=3^{10}\cdot 109,\,c=23^5,$$

$$\rho \approx 1,62991.$$

2.
$$a = 11^2$$
, $b = 3^2 \cdot 5^6 \cdot 7^3$, $c = 2^{21} \cdot 23$,

$$\rho \approx 1.62599$$
.

Утверждение 7 (открыта). Для всякой тройки a, b, c попарно взаимно натуральных чисел, что a+b=c, выполняется неравенство

$$c \leqslant \operatorname{rad}(abc)^2$$
.

Следствие 7.1 (почти великая теорема Ферма). Уравнение

$$x^2 + y^2 = z^2$$

не имеет нетривиальных решений при n > 6.

Доказательство. Пусть $a=x^n,\,b=y^n,\,c=z^n.$ Тогда

$$z^n = c \leqslant \operatorname{rad}(abc)^2 \leqslant (xyz)^2 \leqslant z^6$$

— противоречие.

Утверждение 8 (гипотеза Морделла, доказана). Количество рациональных точек на алгебраической кривой рода $\geqslant 2$ конечно.