

Al Risk Prediction for Bariatric Surgery

Group Bariatric Surgery G1

What is bariatric surgery?

The problem with bariatric surgeries

The problem with bariatric surgeries

South Africa: 23% overweight; 27% obese

The problem with bariatric surgeries

Not all patients benefit equally from the procedure

Some are more likely to receive future complications

The solution

The solution

Which patients face a high risk of post-operative complications

Which patients are most likely to benefit

Team members:

Robin

Wout

Tobias

Al Model

Al Model

Why?

Avoids unnecessary surgeries for high-risk patients

Saves operating room time

Saves staff effort

Lowers Equipment use

Fewer ICU stays

Fewer reoperations

Fewer extended hospitalizations

Lowers costs for **patients** while improving **hospital** efficiency

The current solution

The solution

The solution

AI-model

Interface

AI-model

Logistic Regression

Simple classifier

```
Optimal threshold (0.702):
Sensitivity = 85.7%, Specificity = 91.9%, F1 = 0.667
Confusion Matrix (optimal threshold):
[[57 5]
[ 1 6]]
```

XgBoost

Advanced classifier

```
Confusion Matrix:
[[247 63]
[ 2 32]]
Classification Report:
                         recall f1-score support
             precision
                           0.80
                                    0.88
                                               310
                  0.99
                 0.34
                           0.94
                                    0.50
                                                34
                                    0.81
                                               344
   accuracy
                  0.66
                           0.87
                                    0.69
                                               344
  macro avg
                           0.81
                                    0.85
                                               344
weighted avg
                  0.93
```


Interface

Demo

1st client meeting

Dr. Breytenbach

General introduction to project

Access to historical surgery dataset

Overview of expectations

Try tradition methods first and compare

Web-based interface to predict patient's risk

2nd client meeting

Review of dataset

Removal of unnecessary data

Explanations of data types

Selection of most important features

Ready for model building

Burndown Chart Spint 3

Time Management

Retrospective

Retrospective

Team

Trello could've been more organized sooner

Distribute tasks for every team member earlier

Project

Too little data

Unbalanced data

Miscorrelations between features

Looking Forward

Split data into minor/major complication classification

Try to cluster patients together and review if certain clusters/characteristics have higher risks

Thank you for listening!