课程编号: 07000131; 07000150

北京理工大学 2007-2008 学年第二学期

《数学分析 B》期末考试试卷(A 卷)

2008.6

一、填空(每小题4分,共28分)

- 2. 设 $f(x,y) = x^3 + 8y^3 3x^2 12y^2$,则 f(x,y) 取得极小值的点为______, f(x,y) 取得极大值的点为______,
- 3. 函数 $f(x, y, z) = x^2 + 3y^2 z^2$ 在 P(-2, 2, 1) 点处沿着从 P 到 O(0, 0, 0) 方向的方向导数为
- 4. 设 L 是 曲 线 弧 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ ($0 \le t \le 2$),则 曲 线 积 分 $\int_L \frac{ds}{x^2 + y^2 + z^2} = \underline{\hspace{1cm}}.$
- 5. 数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \ln \frac{n+1}{n}$ 是条件收敛、绝对收敛、还是发散?答:______.
- 6. 设 $f(x) = \begin{cases} 2 & 0 \le x < 1 \\ x^2 1 & 1 \le x < \pi \end{cases}$,又设 S(x) 是 f(x) 的以 2π 为周期的余弦级数展开式的和函数,则 S(1) =______, $S(\pi) =$ _____, $S(-2\pi) =$ _____,S(-2) =_____.
- 7. 函数 $f(x) = \frac{1}{x^2 2x 3}$ 的麦克劳林级数的展开式为______, 其收敛域为
- 二、(10 分) 设 u(x,y) 是由方程 $u^2 z^2 + 2y^2 x = 0$ 确定的可微的隐函数, 其中 $z = z(x,y) = xy^2 + y \ln y y$,且 u(x,y) > 0,求 (2,1) 点处 $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 的值.
- 三、(8 分) 计算二重积分 $I = \iint_D (y^2 x) dx dy$, 其中 D 是由抛物线 $x = y^2$ 与 $x = 3 2y^2$ 围成的有界闭区域.

四、(10 分) 在曲面 $\Sigma: z = xy$ 上求一点P,使曲面 Σ 在P 点处的法线垂直于平面 x+3y+z+9=0,并写出 Σ 在P 点处法线的标准方程.

五、(10 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(2n-1)}{2^{2n}} x^{2n-1}$ 的收敛区间及和函数.

六、(10 分) 设 Ω 是由曲面 $z = x^2 + y^2$ 和平面 z = 2x 所围成的立体,其上质量分布 是均匀的(密度为 μ),求 Ω 绕z 轴旋转的转动惯量.

七、(10 分) 计算第二类曲面积分 $I = \iint_S 2x dy dz + (z+2)^2 dx dy$, 其中 S 是曲面 $z = -\sqrt{4-x^2-y^2}$ 的上侧.

求 f(u)的表达式和常数 k 的值.

九、(6 分) 设 $u_n > 0$, $v_n > 0$, 且 $v_n \frac{u_n}{u_{n+1}} - v_{n+1} \ge a > 0$, $n = 1, 2, \cdots$, 其中a为常

数. 求证: (1) 数列 $\{u_n v_n\}$ 单调有界; (2)级数 $\sum_{n=1}^{\infty} u_n$ 收敛。