MATH 7310 Homework 4

James Harbour

February 20, 2022

Problem 1

- (i): Let $(X, \Sigma), (Y, \mathcal{F})$ be two measurable spaces and let $\phi : X \to Y$ be measurable. Given a measure ν on Σ , define $\phi_*(\nu) : \mathcal{F} \to [0, +\infty]$ by $\phi_*(\nu)(E) = \nu(\phi^{-1}(E))$. Prove that $\phi_*(\nu)$ is a measure.
- (ii): If $x \in [0,1]$, a binary expansion for x is a sequence $(a_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$ so that $x = \sum_{n=1}^{\infty} a_n 2^{-n}$. Let N be the set of $x \in [0,1]$ whose binary expansion is not unique. Show that N is a Borel set of measure 0.

Proof. The set of all points in [0,1] with nonunique binary expansion is precisely the set of all points of the form 2^{-n} for $n \in \mathbb{N} \cup \{0\}$. Thus, $N = \bigcup_{n=0}^{\infty} \{2^{-n}\}$ which is borel as singletons are borel. As N is a countable set, it follows that m(N) = 0.

(iii): Let $C \subseteq [0,1]$ be the middle thirds Cantor set. For $k \in \mathbb{N}$, define

$$\phi_k, \phi : [0,1] \setminus N \to \mathbb{R}$$

by $\phi_k(\sum_{n=1}^{\infty} a_n 2^{-n}) = \sum_{n=1}^{k} 2a_n 3^{-n}$ and $\phi(\sum_{n=1}^{\infty} a_n 2^{-n}) = \sum_{n=1}^{\infty} 2a_n 3^{-n}$ for all $(a_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$. Show that ϕ_k , ϕ are Borel and that $\phi_k([0,1] \setminus N)$ and $\phi([0,1] \setminus N)$ are subsets of C.

- (iv): Set $\mu = \phi_*(m)$, where m is the Lebesgue measure on [0,1]. Show that $\mu(C^c) = 0$ and that there is a unique, increasing continuous function $f:[0,1] \to [0,1]$ so that f(0) = 0 and $\mu([a,b]) = f(b) f(a)$ for all $0 \le a < b \le 1$. (In particular, f(1) = 1).
- (v): Show that $f(2\sum_{n=1}^k a_n 3^{-n}) = \sum_{n=1}^k a_n 2^{-n}$ for all $k \in \mathbb{N}$ and all $(a_n)_{n=1}^k \in \{0,1\}^k$. If (a,b) is an open interval disjoint from C, show that f(b) = f(a).

Problem 2

Let $f:[0,1]\to[0,1]$ be the Cantor function, and let g(x)=f(x)+x.

- (a): Prove that g is a bijection from [0,1] to [0,2] and $h=g^{-1}$ is a continuous map from [0,2] to [0,1].
- (b): If C is any Cantor set, m(g(C)) = 1.
- (c): By exercise 29 of chapter 1, g(C) contains a Lebesgue nonmeasurable set A. Let $B = g^{-1}(A)$. Then B is Lebesgue measurable but not Borel.
- (d): There exist a Lebesgue measurable function F and a continuous function G on \mathbb{R} such that $F \circ G$ is not Lebesge measurable.

Problem 3

Prove that the following hold if and only if the measure μ is complete:

- (a): If f is measurable and $f = g \mu$ -a.e., then g is measurable.
- (b): If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f$ μ -a.e., then f is measurable.

Problem 4

If $f \in L^+$ and $\int f d\mu < +\infty$, show that $\{x : f(x) = \infty\}$ is a null set and that $\{x : f(x) > 0\}$ is σ -finite.

Proof. Suppose, for the sake of contradiction, that $\mathcal{N} := \{x : f(x) = \infty\} = f^{-1}(\{\infty\}) \in \Sigma$ has positive measure. Let $\{\phi_n\}_{n\in\mathbb{N}}$ be a sequence of simple functions (valued in $[0, +\infty]$) with $0 \le \phi_1 \le \phi_2 \le \cdots \le f$ such that $\phi_n \to f$ pointwise. For $n \in \mathbb{N}$, define a new simple function ϕ'_n by

$$\phi_n' = \phi_n \mathbb{1}_{X \setminus \mathcal{N}} + n \cdot \mathbb{1}_{\mathcal{N}}.$$

Note that, as $\phi_n \equiv \phi'_n$ on $X \setminus \mathcal{N}$ and $\phi'_n \leq f$ on \mathcal{N} , it follows that $0 \leq \phi'_1 \leq \phi'_2 \leq \cdots \leq f$ as well. Moreover, for $n \in \mathbb{N}$, as $\phi'_n \geq n \cdot \mathbb{1}_{\mathcal{N}}$, we have that

$$\int f \, d\mu \ge \int \phi'_n \, d\mu \ge \int n \cdot \mathbb{1}_{\mathcal{N}} \, d\mu = n \cdot \mu(\mathcal{N}) \to \infty \text{ as } n \to \infty.$$

Thus, $\int f d\mu = +\infty$, contradicting the assumption.

Let $X = \{x : f(x) > 0\}$ and consider the sets $\{A_n\}_{n=0}^{\infty}$ given by $A_0 = f^{-1}(\{\infty\}), A_n = f^{-1}([\frac{1}{n}, \frac{1}{n-1}))$ for $n \ge 1$. Then

$$X = \bigsqcup_{n=0}^{\infty} A_n$$

Suppose, for the sake of contradiction, that X is not σ -finite. Then, as $\mu(A_0) = 0$, some A_k for $k \ge 1$ must have infinite measure. As $f \ge f \cdot \mathbb{1}_{A_k} \ge \frac{1}{n} \mathbb{1}_{A_k}$, it follows that

$$\int f \, d\mu \ge \int f \cdot \mathbb{1}_{A_k} \, d\mu \ge \int \frac{1}{n} \mathbb{1}_{A_k} \, d\mu = \frac{1}{n} \mu(A_k) = \infty,$$

contradicting the assumption that $\int f d\mu < \infty$.

Problem 5

If $f \in L^+$, let $\lambda(E) = \int_E f d\mu$ for $E \in \Sigma$. Prove that λ is a measure on Σ , and that for any $g \in L^+$, $\int g d\lambda = \int f g d\mu$.

Problem 6

If $f \in L^+$ and $\int f d\mu < \infty$, show that for every $\varepsilon > 0$ there exists an $E \in \Sigma$ such that $\mu(E) < \infty$ and $\int_E f d\mu > (\int f d\mu) - \varepsilon$.

Proof. Let $\varepsilon > 0$. By definition, there exists a simple ϕ with $0 \le \phi \le f$ such that $\int \phi \, d\mu > (\int f \, d\mu) - \varepsilon$. Write ϕ as $\phi = \sum_{i=1}^n c_i \mathbbm{1}_{E_i}$ for some $E_i \in \Sigma$ and $c_i \in [0, \infty)$. Note that, as $\sum_{i=1}^n c_i \mu(E_i) = \int \phi \, d\mu \le \int f \, d\mu < \infty$, we have that $\mu(E_i) < \infty$ for all i. Set $E = \bigcup_{i=1}^n E_i$.

Noting that $\phi = \phi \mathbb{1}_E \leq f \mathbb{1}_E$, it follows that

$$\int_{E} f \, d\mu \ge \int f \mathbb{1}_{E} \, d\mu \ge \int \phi \, d\mu > (\int f \, d\mu) - \varepsilon$$

with
$$\mu(E) \leq \sum_{i=1}^{n} \mu(E_i) < \infty$$
 as desired.