

Composición de la materia orgánica es distinta de la inorgánica

Los organismos vivos están compuestos por elementos químicos.

Principalmente (>95%):

C, H, O, N

Los electrones más externos determinan cómo interactúan los átomos para formar moléculas

Enlace Químico

 El enlace químico se establece cuando dos átomos interactúan y completan sus orbitales electrónicos

Enlace químico covalente: Compartir electrones para completar los orbitales externos

Enlace Covalente No-Polar (equivalente)

$$: N ::: N : (: N \equiv N :)$$

Enlace Covalente Polar (no equivalente)

Es un tipo de enlace covalente, en el que los electrones se comparten en forma desigual entre los átomos, generando un polo negativo y otro positivo.

Alta importancia biológica, ya que crea dipolos permanentes en la superficie de las moléculas. Posibilita la interacción a través de fuerzas eléctricas.

Enlace iónico = transferencia de electrones

Atracción entre iones cargados en forma opuesta (iones positivos y negativos)

AGUA

La Molécula de H₂O como un dipolo eléctrico

Tres representaciones de la molécula

Enlace o puente de Hidrógeno

La asociación de moléculas polares se produce mediante puentes de hidrógeno

Cada átomo con una carga parcial actúa como un imán, atrayendo débilmente otro átomo polar con carga opuesta.

Este tipo de enlace mantiene las *moléculas unidas*.

Este tipo de enlace es responsable de las propiedades fundamentales del agua:

- •Alto punto de fusión
- Polaridad
- Alto punto de ebullición
- Solvente por Excelencia

Tensión Superficial

El agua se orienta dependiendo de sus cargas

Con un catión

Con un anión

La polaridad del agua diluye sales (Enlace Iónico)

Solubilidad de moléculas en el Agua

Hidrofílicas

Hidrofóbicas

La polaridad de los enlaces y los grupos funcionales determina la solubilidad en el agua

pH

Concentración de iones de hidrógeno en una solución. Medida de la acidez o alcalinidad de una solución.

Algunos valores comunes del pH	
Sustancia/Disolución	pН
Disolución de HCl 1 M	0,0
Jugo gástrico□	1,5
Jugo de limón□	2,4
Refresco de cola	2,5
Vinagre	2,9
Jugo de naranja o manzana	3,0
Cerveza	4,5
Café□	5,0
Té□	5,5
Lluvia ácida □	< 5,6
Saliva (pacientes con cáncer)	4,5 a 5,7
Orina 🗆	5,5-6,5
Leche□	6,5
Agua pura 🗆	7,0
Saliva humana	6,5 a 7,4
Sangre	7,35 a 7,45
Agua de mar	8,0
Jabón de manos□	9,0 a 10,0
Amoníaco□	11,5
Hipoclorito de sodio□	12,5
Hidróxido sódico□	13,5 a 14

Las biomoléculas

LAS MOLÉCULAS

DE LA MATERIA VIVA

Carbono Las biomoléculas son compuestos de carbono

- Puede formar 4 enlaces covalentes
- Forma enlaces muy estables C-C
- Forma una amplia diversidad de moléculas

Jerarquía de la Organización Molecular en las Células

Macromoléculas

Las macromoléculas son polímeros

Se forman por polimerización de monómeros que se van agregando uno a uno

La cadena crece en una SOLA dirección

Se remueve una molécula de agua por la adición de cada monómero

El monómero debe estar "activado"

- La reacción de activación requiere energía
- Usualmente se requiere una molécula "carrier" o chaperona en la reacción de activación

Biomoléculas tienen estructuras tridimensionales

Distrofina

DNA

Colesterol

La estructura tridimensional de las biomoléculas es importante para su función

Queratina: proteína estructural

Canal de potasio

Hemoglobina: transporte de O₂

Alfa amilasa, una enzima

Carbohidratos o Hidratos de Carbono (Azúcares)

- Son las macromoléculas orgánicas más simples
- C, H y O, en proporción (CH₂O)_n.
- Funciones: Importante fuente de energía, forman parte de estructuras de soporte, participan en señalización, reconocimiento y adhesión celular
- Los carbohidratos se dividen en:
 - Monosacáridos
 - Disacáridos
 - Oligosacáridos
 - Polisacáridos

La unión de dos monosacáridos forma un disacárido

Formación del enlace glicosídico

Disacáridos

El carbono que presenta el grupo aldehído (H-C=O) o cetona (C=O) puede reaccionar con cualquier grupo hidroxilo (OH) en el segundo monosacárido para formar un disacárido. La unión se llama enlace glicosídico.

Los disacáridos más comunes son:

Maltosa: glucosa + glucosa

Lactosa: galactosa + glucosa

Sacarosa: glucosa + fructosa

Reacción de formación de la sacarosa

Oligosacáridos y Polisacáridos

Moléculas largas lineales y ramificadas se pueden fabricar de repeticiones de subunidades de azúcares simples. Las cadenas cortas se llaman **Oligosacáridos** y las largas **Polisacáridos** como el Glicógeno. Este polisacárido está formado únicamente de glucosa.

GLICÓGENO

Funciones de Polisacáridos

- Almacenamiento de energía: Almidón, Glicógeno
- 2. Estructural: Celulosa, Quitina, Ácido hialurónico
- 3. Reconocimiento y señalización: Proteoglicanes

Lípidos

- Baja solubilidad en agua y alta solubilidad en solventes apolares
- Formas reducidas de C (C+H). Pueden generar grandes cantidades de energía al oxidarse
- Claves para el almacenamiento de energía metabólica
- Pueden ser hidrofóbicos o anfipáticos
- En la membrana actúan como barrera de moléculas polares
- También pueden ser precursores hormonales

Ácidos grasos

Forman parte de una gran variedad de lípidos y se encuentran generalmente esterificados formando triglicéridos.

Los ácidos grasos son anfipáticos

Los ácidos grasos pueden ser saturados o insaturados

Ácidos grasos saturados: fácil empaquetamiento, rígidez

Ácidos grasos insaturados: previenen empaquetamiento: flexibilidad y fluidez

Lípidos formados por ácidos grasos

CERAS

Otros lípidos

COLESTEROL

HORMONAS ESTEROIDALES

Las macromoleculas se asocian para formar complejos supramoleculares

SUBUNIDADES

enlaces covalentes

MACROMOLÉCULAS

enlaces no-covalentes

COMPLEJO SUPRAMOLECULAR

Ej.: monosacáridos, amino ácidos, nucleótidos...

Membrana lípidos + proteínas + carbohidratos

Ej: Ribosomas (proteínas + RNAs)

Virus (coronavirus) lípidos + proteínas + carbohidratos + RNA

Cromosomas DNA + proteínas

Enlaces no covalentes en la interacción entre biomoléculas

