

Machine Learning Advanced

- Redes Neuronales -

Docente: Manuel Montoya

Agenda

- 1. Clasificación con Perceptrón
- 2. Redes Neuronales
- 3. Feedforward y Backpropagation

Perceptrón

Clasificación: Admisión a universidad

Clasificación: Admisión a universidad

$$2 * notas + 1 * ensayo - 18 = 0$$

Clasificación: Admisión a universidad

Clasificación: Perceptrón

Step function

$$u(t) = egin{cases} 0 & t < 0 \ 1 & t > 0 \end{cases}$$

Clasificación: Perceptrón

Predicción de probabilidades

Predicción de probabilidades

Función Sigmoidal

Predicción de probabilidades

Arquitectura de redes neuronales

Arquitectura de redes neuronales

Feedforward y Backpropagation

Backpropagation

Backpropagation

Feedforward y backpropagation

Arquitectura Fully Connected

⇔ CURSOS **⇔ ∧N∧LYTICS**

Implementación en PyTorch

Son ecuaciones matemáticas que se aplican a las capas de las redes neuronales para modificar los valores de salida y contribuir a un mejor entrenamiento y convergencia.

La elección de la función de activación depende del caso de uso y de si la capa es intermedia o final.

tanh

tanh(x)

ReLU $\max(0,x)$

Leaky ReLU

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoidal

Recibe valores reales y devuelve valores continuos entre 0 y 1. Se suele utilizar en capas finales para targets binarios

Los valores negativos se convierten en valores cercanos a 0

Los valores positivos se convierten en valores cercanos a 1

ReLU (Rectified Linear Units)

Una de las funciones de activación más utilizadas en capas intermedias

Los valores negativos se convierten en 0

Los valores positivos mantienen su valor

Softmax

Se utiliza usualmente en la última capa de una red para obtener las probabilidades de cada clase

Los valores obtenidos son las probabilidades para cada clase y suman 1

Se elige como predicción la clase de mayor probabilidad

2.0

0.65

$$\mathbf{1.0} \longrightarrow \sigma(\vec{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \longrightarrow \mathbf{0.24}$$

0.1

0.10

Imagen de 28x28 píxeles

Ejemplo: MNIST

Imagen de 28x28 píxeles

Ejemplo: MNIST

Feedforward

Imagen de

28x28 píxeles

Hidden Layer 2

Ejemplo: MNIST

Input Layer

Hidden Layer 1

Cálculo de función de costo

Imagen de

28x28 píxeles

Ejemplo: MNIST

?o Predicción	nline Jil
p	У
P(0)	0
P(1)	0
P(2)	0
P(3)	1
P(4)	0
P(5)	0
P(6)	0
P(7)	0
P(8)	0
P(9)	0

Cálculo de función de costo

Función de costo: Cross Entropy

Gradiente descendiente

Epochs:

Una época equivale a una iteración de feedforward y backpropagation de un dataset COMPLETO

Cada iteración implica un ajuste de los pesos de la red para minimizar la función de costo

Más épocas -> Más ajuste (Cuidado con el overfitting)

Feedforward

Backpropagation

Batch size:

No se puede utilizar todo el dataset en cada iteración porque implicaría muchos recursos

El dataset se divide en grupos o **batches** de un tamaño específico y este número de registros se utiliza en cada época

Batch size

Feedforward

Backpropagation

Por ejemplo, si tenemos un dataset de 2000 registros:

Para que se cumpla una época estos 2000 registros deben pasar por un feedforward y backpropagartion

Si elegimos un batch size de 100, para poder completar una época es necesario que se realicen 20 iteraciones.

Batch size

Feedforward

Backpropagation

Learning Rate

En cada iteración se ajustan los pesos de la red para reducir la función de costo.

El learning rate nos permite controlar la intensidad de este ajuste y varía de acuerdo al caso de uso

Dropout

Las redes neuronales pueden aprender patrones muy complejos entre los inputs y outputs, lo cual las hace muy susceptibles a overfitting.

Una forma de reducir este efecto es desactivar aleatoriamente algunas neuronas durante el entrenamiento

La elección de qué neuronas desactivar se rige por un parámetro de probabilidad llamado **dropout**

(a) Standard Neural Net

(b) After applying dropout.

Recursos complementarios

MIT Introduction to deep learning

https://www.youtube.com/watch?v=njKP3FqW3Sk&list=PLtBw6njQRU-rwp5 7C0olVt26ZgjG9Nl&index=1

Why are deep neural networks hard to train?

http://neuralnetworksanddeeplearning.com/chap5.html

Dropout: A Simple Way to Prevent Neural Networks from Overfitting https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Neural Networks & The Backpropagation Algorithm, Explained

https://ayearofai.com/rohan-lenny-1-neural-networks-the-backpropagation-algorithm-explained-abf4609d4f9d

¡Gracias!

