ALGEBRA

Chapter 18

2do
SECONDARY

f(x)

RACIONALIZACIÓN SESIÓN I

MOTIVATING STRATEGY

HISTORIA DEL SÍMBOLO DE LA RAÍZ

El signo raíz cuadrada se representa como √ v su historia se remonta al año 1525, cuando Christoph Rudolff utilizó una variante caligráfica de la letra r minúscula, dándole un toque distintivo con la línea horizontal alargada que se encuentra en su parte superior. Esto se debe a que ya se conocía a esta operación como la radicación, así que usó la letra inicial para representarla de forma gráfica en las operaciones matemáticas.

RACIONALIZACIÓN

DEFINICIÓN

Procedimiento por el cual el denominador de una fracción que tiene raíz se transforma en una expresión racional.

EJEMPLO
$$\frac{2}{\sqrt{3}} \longrightarrow \frac{2\sqrt{3}}{3}$$

PROCEDIMIENTO

Multiplicar al denominador y numerador por el factor racionalizante.

Denominador	Factor Racionalizante	Producto
$ \sqrt[n]{A^m} $	$\sqrt[n]{A^{n-m}}$	A
$(\sqrt{A} \pm \sqrt{B})$	$(\sqrt{A} \pm \sqrt{B})$	A - B

Caso 1

$$\frac{A}{\sqrt[n]{x^m}} \mapsto \frac{A}{\sqrt[n]{x^m}} \times \frac{\sqrt[n]{x^{n-m}}}{\sqrt[n]{x^{n-m}}} = \frac{A \cdot \sqrt[n]{x^{n-m}}}{x}$$

Ejemplo 1: Racionalice $\frac{5}{\sqrt{3}}$

Resolución:

$$\frac{5}{\sqrt{3}} = \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$=\frac{5.\sqrt{3}}{3}$$

Ejemplo 2: Racionalice $\frac{4}{\sqrt[5]{7^2}}$

Resolución:

$$\frac{4}{\sqrt[5]{7^2}} = \frac{4}{\sqrt[5]{7^2}} \times \frac{\sqrt[5]{7^3}}{\sqrt[5]{7^3}}$$

$$= \frac{4?\sqrt[5]{7^3}}{^27}$$

Caso 2

$$\frac{N}{\sqrt{a} \pm \sqrt{b}}$$

$\frac{N}{\sqrt{a}-\sqrt{b}}\times\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{N(\sqrt{a}+\sqrt{b})}{a-b}$

$$\frac{N}{\sqrt{a} + \sqrt{b}} \times \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{N(\sqrt{a} - \sqrt{b})}{a - b}$$

Resolución:

$$\frac{7}{\sqrt{5}-\sqrt{3}}$$

$$\frac{7}{\sqrt{5}-\sqrt{3}}\times\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$$

$$=\frac{7\left(\sqrt{5}+\sqrt{3}\right)}{}$$

$$5-3$$

$$=\frac{7\left(\sqrt{5}+\sqrt{3}\right)}{5-2}$$

Ejemplo 2: Racionalice

Resolución:

$$\sqrt{7} + \sqrt{2}$$

$$\sqrt{7} - \sqrt{2}$$

$$\frac{1}{\sqrt{7} + \sqrt{2}} = \frac{1}{\sqrt{7} + \sqrt{2}} \times \frac{\sqrt{7} - \sqrt{2}}{\sqrt{7} - \sqrt{2}}$$

$$=\frac{\sqrt{7}-\sqrt{2}}{}$$

$$=\frac{7\sqrt{7}-\sqrt{2}}{5\sqrt{2}}$$

Racionalice

$$M = \frac{1}{\sqrt{7}} + \frac{2}{\sqrt{2}} - \sqrt{2}$$

Resolución

$$M = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} + \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} - \sqrt{2}$$

$$M = \frac{\sqrt{7}}{7} + \frac{2\sqrt{2}}{2} - \sqrt{2}$$

$$M = \frac{\sqrt{7}}{7} + \sqrt{2} - \sqrt{2}$$

$$\therefore M = \frac{\sqrt{7}}{7}$$

$$Q = \left(\frac{6}{\sqrt{3}} + \frac{4}{\sqrt{2}} - 2\sqrt{2}\right)^2$$

$$\frac{Resolución}{Q = \left(\frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} - 2\sqrt{2}\right)^2}$$

$$Q = \left(\frac{6\sqrt{3}}{3} + \frac{4\sqrt{2}}{2} - 2\sqrt{2}\right)^2$$

$$Q = (2\sqrt{3} + 2\sqrt{2} - 2\sqrt{2})^2$$

$$Q = (2\sqrt{3})^2$$
 $Q = 4(3)$

Luego de racionalizar

$$K = \frac{3}{\sqrt[3]{3}} + \frac{4}{\sqrt[5]{2^3}}$$

Indique el resultado

$$K = \frac{3}{\sqrt[3]{3}} \times \frac{\sqrt[3]{3^2}}{\sqrt[3]{3^2}} + \frac{4}{\sqrt[5]{2^3}} \times \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^2}}$$

$$K = \frac{3\sqrt[3]{9}}{3} + \frac{4\sqrt[5]{4}}{2}$$

$$K = \sqrt[3]{9} + 2\sqrt[5]{4}$$

$$\therefore K = \sqrt[3]{9} + 2\sqrt[5]{4}$$

Racionalice

$$B = \frac{5}{\sqrt[5]{125}} + \frac{3}{\sqrt[3]{9}}$$

Resolución

$$B = \frac{5}{\sqrt[5]{5^3}} \times \frac{\sqrt[5]{5^2}}{\sqrt[5]{5^2}} + \frac{3}{\sqrt[3]{3^2}} \times \frac{\sqrt[3]{3}}{\sqrt[3]{3}}$$

$$B = \frac{5\sqrt[5]{25}}{5} + \frac{3\sqrt[3]{3}}{3}$$

$$B = \sqrt[5]{25} + \sqrt[3]{3}$$

$$\therefore B = \sqrt[5]{25} + \sqrt[3]{3}$$

Cambie a fracción racional lo siguiente

$$A = \frac{5}{\sqrt{5} - \sqrt{2}}$$

Resolución

$$A = \frac{5}{\left(\sqrt{5} - \sqrt{2}\right)} \times \frac{\left(\sqrt{5} + \sqrt{2}\right)}{\left(\sqrt{5} + \sqrt{2}\right)}$$

$$A = \frac{5\left(\sqrt{5} + \sqrt{2}\right)}{5 - 2}$$

$$A = \frac{5\left(\sqrt{5} + \sqrt{2}\right)}{2}$$

$$\therefore A = \frac{5(\sqrt{5} + \sqrt{2})}{3}$$

Racionalice $E=\frac{8}{\sqrt{5}+\sqrt{3}}+4\sqrt{3}$ y multiplícalo por $16\sqrt{5}$, el resultado será el dinero que Frank y su

esposa tiene para realizar compras de uniforme para sus 2 hijos. Si luego de la compra, que ascendió al valor de s/ 260, la pareja decide irse a comer un pollito a la brasa de 1/4 kg cada uno, por lo que al final del día el dinero sobrante fue de s/ 34, ¿ cuál es el precio de 1/4 de pollo a la brasa?

<u>Resolución</u>

$$E = \frac{8}{\left(\sqrt{5} + \sqrt{3}\right)} \times \frac{\left(\sqrt{5} - \sqrt{3}\right)}{\left(\sqrt{5} - \sqrt{3}\right)} + 4\sqrt{3}$$

$$E = \frac{8\left(\sqrt{5} - \sqrt{3}\right)}{5 - 3} + 4\sqrt{3}$$

$$E = \frac{4}{2}(\sqrt{5} - \sqrt{3}) + 4\sqrt{3} = 4\sqrt{5} - 4\sqrt{3} + 4\sqrt{3}$$

$$E = 4\sqrt{5}$$

$$E = 4\sqrt{5} \times 16\sqrt{5}$$

$$E = 64 \times 5$$

$$E = 320$$

Uniformes:
$$s/320 - s/260 = s/60$$

Pollito a la brasa:
$$s/60 - s/34$$

Por dos
$$1/4$$
 de pollo: $s/26$

$$\therefore 1/4 de pollo = s/13$$

$$T = \frac{12}{3 - \sqrt{3}} + \frac{6}{2 + \sqrt{3}}$$

Y luego súmele $4\sqrt{3}$, esto indicará la edad de Pamela. Su tía, quien se casó 5 años después del nacimiento de Pamela, tuvo a su primer y único hijo al año siguiente de su boda, si Pamela nació en el año 2000; Cuál es la edad de su primo de Pamela?

Resolución

$$T = \frac{12}{\sqrt{9} - \sqrt{3}} \times \frac{(\sqrt{9} + \sqrt{3})}{(\sqrt{9} + \sqrt{3})} + \frac{6}{\sqrt{4} + \sqrt{3}} \times \frac{(\sqrt{4} - \sqrt{3})}{(\sqrt{4} - \sqrt{3})}$$

$$T = \frac{12(3+\sqrt{3})}{9-3} + \frac{6(2-\sqrt{3})}{4-3}$$

$$T = \frac{12(3 + \sqrt{3})}{6(1)} + \frac{6(2 - \sqrt{3})}{1}$$

$$T = 2(3 + \sqrt{3}) + 6(2 - \sqrt{3})$$

$$T = 6 + 2\sqrt{3} + 12 - 6\sqrt{3}$$

$$T = 18 - 4\sqrt{3} + 4\sqrt{3}$$

$$T = 18$$

Pamela tiene: 18 años

Edad Primo: $18 - 5 - 1 = 12 a \tilde{n} o s$