

Stuc	lont	Num	hor
ouu	ıenı	nun	wei.

Teacher:

St George Girls High School

Mathematics Extension 1 2020 Trial HSC Examination

General

Instructions

- Reading time 10 minutes
- Working Time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- For questions in **Section I**, use the multiple-choice answer sheet provided
- For questions in **Section II**:
 - Answer the questions in the writing booklets provided
 - Extra writing booklets are provided if needed
 - Start each question in a new writing booklet
 - Show relevant mathematical reasoning and/or calculations
 - Marks may not be awarded for incomplete or poorly presented solutions, or where multiple solutions are provided

Total marks: 70

Section I – 10 marks (pages 3 – 7)

- Attempt Questions 1 10
- · Allow about 15 minutes for this section

Section II - 60 marks (pages 8 - 14)

- Attempt Questions 11-16
- Allow about 1 hour and 45 minutes for this section

Q1 - Q10	/10
Q11	/10
Q12	/10
Q13	/10
Q14	/10
Q15	/10
Q16	/10
Total	/70
	%

Section I - Multiple Choice

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet provided for Questions 1 - 10.

- 1. Consider the vectors $\underline{a} = 2\underline{i} + 3\underline{j}$, $\underline{b} = -3\underline{i} + 2\underline{j}$ and $\underline{c} = 2\underline{i} \underline{j}$. Which of the following vectors is parallel to $\underline{a} + \underline{b} + \underline{c}$?
 - (A) -2i 6j
 - (B) 2i 8j
 - (C) 2i 6j
 - (D) 2i + 8j
- 2. Which of the following is the coefficient of x^4 in the expansion $\left(x + \frac{3}{x}\right)^8$?
 - (A) 28
 - (B) 56
 - (C) 84
 - (D) 252
- 3. What is the derivative of $\cos^{-1} 3x$?
 - (A) $-\frac{1}{\sqrt{1-9x^2}}$
 - (B) $-\frac{3}{\sqrt{1-9x^2}}$
 - (C) $-\frac{1}{\sqrt{1-3x^2}}$
 - (D) $-\frac{3}{\sqrt{1-3x^2}}$

4.

Which of the parametric equations below represents the parabola above?

(A)
$$x = 12t, y = 9t$$

(B)
$$x = 12t$$
, $y = 9 - t^2$

(C)
$$x = 6 - 2t$$
, $y = 9 - t^2$

(C)
$$x = 6 - 2t$$
, $y = 9 - t^2$ (D) $x = 2t - 6$, $y = 9t - t^2$

5. Forces of magnitude 8 N and 5 N act on a particle P. The angle between the directions of the two forces is 60° as shown in the diagram.

Which of the following is the correct magnitude and direction of the resultant force acting on *P*?

- 11.36 N, 22°25′ to the horizontal (A)
- 11.36 N, 67°35′ to the horizontal (B)
- $12.58 \text{ N}, 22^{\circ}25'$ to the horizontal (C)
- (D) 12.58 N, 67°35′ to the horizontal

6.

Not to scale

The graph above shows $y = \frac{1}{f(x)}$.

Which of the equations below best represents y = f(x)?

- (A) $f(x) = x^2 1$
- (B) $f(x) = x(x^2 1)$
- (C) $f(x) = x^2(x^2 1)$
- (D) $f(x) = x^2(x^2 1)^2$

7. Which of the following is the primitive of $\frac{3}{\sqrt{4-9x^2}} dx$?

(A)
$$\frac{1}{2}\sin^{-1}3x + c$$

(B)
$$\frac{3}{2}\sin^{-1}\frac{3x}{2} + c$$

(C)
$$\sin^{-1}\frac{3x}{2} + c$$

$$(D) \quad \sin^{-1}\frac{2x}{3} + c$$

- 8. Which expression is equivalent to $\cos 5x \cos 2x \sin 6x \sin 3x$?
 - (A) $\cos 7x \sin 9x$
 - (B) $\cos 3x \sin 3x$
 - (C) $\sin 8x \sin x$
 - (D) $\cos 8x \cos x$
- 9. The position vectors of the points A and B are a and b respectively.

Point C is the midpoint of OB and point D is such that ABDC is a parallelogram.

O is the origin.

Not to scale

Which of the following is the position vector of D?

(A)
$$\frac{3}{2}b + a$$

(B)
$$\frac{3}{2}b - a$$

(C)
$$\frac{1}{2}b - \frac{1}{2}a$$

(D)
$$\frac{1}{2}b - a$$

10. The graph of the function $y = \tan^{-1} \frac{1}{2}(x-2)$ is to be transformed by a translation left by 1 unit, then a horizontal dilation with a scale factor of 2.

The equation of the transformed graph is:

- (A) $y = \tan^{-1}\left(\frac{x-3}{4}\right)$
- (B) $y = \tan^{-1}\left(\frac{x-2}{4}\right)$
- (C) $y = \tan^{-1}(x 2)$
- (D) $y = \tan^{-1}(x \frac{1}{2})$

END OF SECTION I

Section II

60 marks

Attempt Questions 11 – 16

Allow about 1 hour and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra writing booklets are available. In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (10 marks) Start a NEW Writing Booklet.

Marks

- (a) The polynomial $2x^3 4x^2 + 3x 6 = 0$ has roots α , β and γ .
 - Calculate the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

2

(b) Solve $\frac{1}{x+1} \le -1$.

3

- (c) Consider the word STATISTICS.
 - (i) How many arrangements of the letters are there?

1

(ii) How many arrangements of the letters are there where the A and C are next to each other?

2

(d) In a barrel there are 50 marbles of various colours. Of these, 5 are green, 17 are blue, 12 are yellow, 12 are purple and 4 are orange.

What is the least number of marbles that can be selected from the barrel to ensure that 7 of the selected marbles are of the same colour?

Question 12 (10 marks) Start a NEW Writing Booklet.

Marks

Express $2\sqrt{3}\sin x - 2\cos x$ in the form $R\cos(x+a)$, where R>0 and $[0,2\pi]$. (a)

3

A proposed plan for a garden is shown in the diagram. The curved boundary of the (b) garden is modelled by the function $f(x) = 6 \sin^2 \left(\frac{\pi x}{8}\right)$, where $0 \le x \le 8$.

Not to scale

Use the identity $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ (i) to show that $\sin^2\left(\frac{\pi x}{8}\right) = \frac{1}{2}\left(1 - \cos\frac{\pi x}{4}\right)$.

3

2

Use the result from part (i) to find the area A of the garden. (ii)

Question 12 continues on page 10

Question 12 (continued)

(c) Consider the statement P(n):

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n-1} = 2^{n} - 1$$
 for integers $n \ge 1$.

An attempted proof of this statement by induction is given below.

Proof:

Assume the statement is true for n = k + 1.

That is,
$$2^0 + 2^1 + 2^2 + \dots + 2^{k-1} + 2^k = 2^{k+1} - 1$$
 (1)

Next, we shall show it is true for n = k by noting that if

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k-1} + 2^{k} = 2^{k+1} - 1$$

is true, then

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k-1} + 2^{k} = 2 \times 2^{k} - 1$$

 $2^{0} + 2^{1} + 2^{2} + \dots + 2^{k-1} + 2^{k} = 2^{k} + 2^{k} - 1$

Now subtracting 2^k from both sides of this equation, we have

$$2^0 + 2^1 + 2^2 + \dots + 2^{k-1} = 2^k - 1$$

Which is true by statement (1). Therefore, by the principle of induction, the statement P(n) is true.

Give two reasons why the given proof is incorrect and does not prove P(n).

2

End of Question 12

Question 13 (10 marks) Start a NEW Writing Booklet.

Marks

3

(a) Find
$$\int_0^{\ln 2} \frac{e^{2x}}{1 + e^{4x}} dx$$
 by using the substitution $u = e^{2x}$, to two decimal places.

- (b) Use the *t*-formulae to solve the equation $\cos x \sin x = 1$ where $0 \le x \le 2\pi$.
- (c) The function $f(x) = 1 + \ln x$ is defined in the domain (0,1].
 - (i) Show that $\frac{d}{dx}(x \ln x) = 1 + \ln x$.
 - (ii) The diagram shows the graphs of the function y = f(x) and the inverse function $y = f^{-1}(x)$.

Find in simplest exact form the area of the region in the first quadrant bounded by the curves y = f(x), $y = f^{-1}(x)$ and the coordinate axes.

Question 14 (10 marks) Start a NEW Writing Booklet.

Marks

1

- (a) Use mathematical induction to prove that $3^{3n} + 2^{n+2}$ is divisible by 5 for all positive integers $n \ge 1$.
- (b) Consider the points P(a, 2a), Q(-a, 5a), R(3a, 4a) and S(9a, 12a), where a is a positive real number.
 - (i) Express \overrightarrow{PQ} in component form.
 - (ii) Given the length of the projection of \overrightarrow{PQ} onto \overrightarrow{RS} is 12, find the value of a.
- (c) In the diagram, the region bounded by the curve $y = 2^x 2$ and the x-axis between x = -1 and x = 2 is rotated through one revolution about the x-axis. Find the volume of the solid formed, correct to two decimal places.

Question 15 (10 marks) Start a NEW Writing Booklet.

Marks

1

(a) Find
$$\int_0^{0.125} \frac{2}{\sqrt{1-4x^2}} dx$$
. Write your answer correct to 3 significant figures. 2

(b) (i) Show that
$$2 \sin x \cos(2k+1)x = \sin 2(k+1)x - \sin 2kx$$
.

(ii) Using the result from part (i), prove by mathematical induction that 3

$$\cos x + \cos 3x + \cos 5x + \dots + \cos(2n-1)x = \frac{\sin 2nx}{2\sin x}$$

for all integers n, $n \ge 1$.

(c) An acute-angled triangle *XYZ* has an area of 40 square units.

The vector
$$\overrightarrow{YX} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$
 and $\overrightarrow{YZ} = \begin{bmatrix} p \\ q \end{bmatrix}$. Given $|\overrightarrow{YZ}| = 8\sqrt{5}$, find the possible values of p and q .

Question 16 (10 marks) Start a NEW Writing Booklet.

Marks

Prove the trigonometric identity $\sin 3A = 3 \sin A - 4 \sin^3 A$. (a) (i)

3

Hence, show that the equation $6x - 8x^3 = 1$ has the roots (ii)

3

 $\sin\frac{\pi}{18}$, $\sin\frac{5\pi}{18}$ and $\sin\frac{25\pi}{18}$. Hint: Let $x = \sin A$.

Hence show that $\sin \frac{\pi}{18} \times \sin \frac{5\pi}{18} \times \sin \frac{25\pi}{18} = -\frac{1}{8}$.

1

For the **unit circle, centre 0,** $\overrightarrow{OP} = p$, $\overrightarrow{OQ} = q$, $\angle POR = \alpha$ and $\angle QOR = \beta$. (b)

Not to scale

(i) Show that $p \cdot q = \cos(\alpha + \beta)$. 1

By expressing p and q as vectors in component form, and using your (ii) result in (i), derive the expansion of $cos(\alpha + \beta)$.

MATHEMATICS EXTENSION 1 - 2020 Trial HSC Examination SOLUTIONS

SECTION I – MULTIPLE CHOICE SOLUTIONS

①
$$a + b + c$$

= $ai + 3j - 3i + 2j + 2i - j$
= $i + 4j$

$$2i + 8j$$

= $2(i + 4j)$
= $2(2 + 2 + 2)$ -'. D

(2)
$$T_{K+1} = {8 \choose k} \times {8 \choose \frac{3}{k}}^{k}$$

= ${8 \choose k} \times {8 \choose \frac{3}{k}}^{k} \times {8 \choose \frac{3}{k}}^{k}$
= ${8 \choose k} \times {3 \choose k} \times {8 \choose 2}^{k}$

$$ie 8-2k = 4$$
 $2k = 4$
 $k = 2$
 $8c_2 3^2 = 252 : D$

(3)
$$y = \cos^{-1} 3x$$
 $f(x) = 3x$
 $\frac{dy}{dx} = -3$ $f'(x) = 3$
 $= -3$... B

(4)
$$+ \cos t (0,0) \neq (12,0)$$
 in each one .: (C)

OR $y = k(x-6)^2 + 9$

Substitute $(0,0)$: $0 = k(0-6)^2 + 9$
 $0 = 36k + 9$
 $36k = -9$
 $k = -\frac{1}{4}$
 $y = -\frac{1}{4}(x-6)^2 + 9$
 $-4(y-9) = (x-6)^2$

of the form

 $49(y-9) = (x-6)^2$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $49 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 = -4$
 $40 =$

y= 5 sin 60° +0

```
Magnitude = 1x2+y2
               = \ (5 cos 60°+8) + (5 sin 60°)2
               = 11-35781669
                = 11-36 N
Direction: tan 0 = 4
                                        · this step is not
                 = 55in 60°
                                        necessary as 0
                                        must be less
           .; 0 = 22° 24' 39.28"
                                      than 60°, but you
                = 22° 25'
                                        can use it as
                                         a check!
-'. (A)
   Asymptotes at x=-1
                           x = 0
                           x=1
   f(x) = \alpha(x+1)(x-1)
             = x(x^2 - i)
                        = \frac{3}{3} \int_{\left(\frac{2}{3}\right)^2 - \chi^2}^{1} dx
                         = \sin^{-1}\left(\frac{x}{\frac{2}{3}}\right) + C
                         = \sin^{-1}\left(\frac{3x}{2}\right) + C
```

```
(8) 65 5 x 65 2 x - 5 in 6 x 5 in 3 x
 =\frac{1}{2}\left[ \cos(5x-2x) + \cos(5x+2x) \right]
             - I [ ws (6x-3x) - ws (6x+3x)
=\frac{1}{2} \int 653x + 657x - 653x + 659x
 = 1 [ ws 7x + ws 9x]
                                       A-B=7x
                                       A+B=95
 = 605 800 005 00
                                        B = 9x-A
                                    A - (9x-A) = 7x
                                         2A = 16x
                                           B=92-82
                                        -: B = X
9成=元十五
        = b + AB
         = & + AO + OB
         = = = = = + =
                               _'. (B)
         = 36 - 2
(10) y= +an-1 \frac{1}{2} (x-2)
x> x+1: y= +an-1 \frac{1}{2} (x+1-2) | Summary:
              = +an^{-1} \pm (\alpha - 1) \parallel 1. D 6. B
x \to \pm x: y = +an^{-1} \pm (\pm x - 1) = 2. D 7. C
              = +an^{-1}(\pm x - \frac{1}{2}) 3. B 8. D
               = +an^{-1} \left( \frac{x-2}{+} \right) + . c
                                              9. B
                                              lo. B
 NOTE: Use your Reference Sheet!!!
```

MATHEMATICS EXTENSION 1 – QUESTIO	N /1	TRIA	4 2020
SUGGESTED SOLUTIONS		MARKS	MARKER'S COMMENTS
$a) \frac{1}{2} + \frac{1}{\beta} + \frac{1}{2}$	a=2		Well done by most. Some
	b=-4		students need
= 2p8 + 2p8 + 2p8	c=3	•	to revise theory.
	d =-6		
= 2 p + p 8 + 82 2 p 8		1	1 MARK.
$2+\beta+8=-\frac{5}{a}=2$		1) I MARK
dp+p8+8d================================			((all reed
$\Delta \beta \gamma = -\frac{d}{d} = 3$) last 2)
$\frac{1}{2} + \frac{1}{3} + \frac{1}{3} = \frac{3}{2}$			Some stracts believe
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 + 1 = (2+p+)]
,			WHICH IS WRONG.
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{2} \leq -1 \left(\frac{1}{2} + \frac{1}{2} \right)^{2}$	-		Can also be
$x+1 \leq -\left(x+1\right)^{2}$			don wing
$(x+1)^2 + (n+1) \leq 0$			(1) critical values
$(\chi+1)(\chi+1+1)\leq 0$			2) graphing
$(x+1)(n+2) \neq 0$		I	y= 1, ad y=1

$-2 \le x \le -1 \text{but} x \ne -1 \text{i} \text{the}$	y stridents w small idy graph t led to er y did not
$-2 \le x \le -1 \text{but} x \ne -1 1 \text{the}$ $-2 \le x \le -1 \text{but} x \ne -1 1 \text{the}$ 0Man 0Man $0 \text{letters} 3 \text{S} 3 \text{T} \text{T} $	dy graph. I led to en
Man i2 \le n \le -1 ment c) STATISTICS 10 letters 3 S. 3T; 2T 101	
c) STATISTICS 0 letters 3 S; 3T; 2I	x = 1
0 letters 3 S; 3T; 2I	
0 letters 3 S; 3T; 2I	
1) $\frac{10!}{3! \ 3! \ 2!} = 50400$	
11) Block the A and C Logetter 1	llso con use
his can be done 2! ways 1 90	1/50 can use , x 2! x 8! 3:3:2!
So you have Re	
2! 9!	·

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
.1		·
d) 54; 178; 124; 12P; 40.		
: 50 mablu.	***************************************	
Need 7 of one about		
: this can not be green or or	a~12_	
To NOT have 7 of any colour		
To NOT have 7 of any colour the maximum (worst case) is		
56;68;67;61;40		
27 nables		
The 28th marble (e. ther By, P)	1 2	r + 1 ·
gives 7 of a colour.		
So it you select 2t	1 Ma	the correct arrange
marbles you ensure 7 of	1 1 5	
a colour.		
As only B, Y, P can give 7		
leave out and D [: 41 marble		
$\frac{2}{3} > 6$ $\times > 18$		
19+5+4=28		

: 28 marbles.

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
R		
aByrocByrocByrocByrocByp		Or similar
BYP BYP BYP		Or sin, lor diagran
28 12		J
28		
Worst Case		
		77.7
5a; 6B; 64; 6P; 40		
has no 7 of any colour.		
,		
So the next marke of BYP will give 7 of a colour		
will give 7 of a colour		
2		
: 27+1=28	1	41 11 1 mark
28 mables		

MATHEMATICS EXTENSION 1 TRIAL HSC 2020 – QUESTION 12 (10 marks)		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(a) Students should learn the	proce	ess
for Auxiliary angles and no	euí +	it quote
the formulas. So many she	dents	got
R wrong & & in the wrong	qua	drant.
Show working, so you can	be a	warded some
marks! Use your Reference	Shee	t wrong
formula no marks!		
253 sinx - 2 ws x = R ws (x+		
= R ws x w	sd -	Rosinasina
Equating wefficients:		
$2\sqrt{3} = -R\sin\alpha$	2 ws a	1
$2\sqrt{3} = -R\sin\alpha$ $-2 = R\sin\alpha$ $-2 = $	= -=	e Dmark
$\sin \alpha = \frac{-2\sqrt{3}}{R}$		
S A	5 1	A
XT C XS A	eT	C
**T C*		
"d" is in the 3	RD	DUADRANT
-2		
$R = \sqrt{(-2)^2}$	+ (-2	13)
$R = \sqrt{4+1}$	2	where R70
= 116	-(1)	mark

MATHEMATICS EXTENSION 1 TRIAL HSC 2020 – QUESTION 12 (10 marks)		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
or R (sin 2 x + 105 x) = (-2)2+	(-253)2
$R^2 = 4 + 12$	-	
$R^2 = 16$		
R = 4 (wh	rere f	270)
From triangle in 3rd quadr		
trig ratio to find &, once R	is	calculated.
or Rsina = $-2\sqrt{3}$ Rwsa -2		
$+an \propto = \sqrt{3}$	-	
X = 60°	7	
= 3	\(\frac{1}{2}\)) mark for
= 1.047197551		related angle
d = 180°+60°		
= 240°		
$=4\pi$	ck G	r wrect
$= \frac{4\pi}{3}$ = 4.188790205	angl	e in radians.
$\therefore 2\sqrt{3}\sin x - 2\cos x = 4\cos x$ $= 4\cos x$	(x+	4T) (£)
= 4 65	(x +	I .
(-1) mark for each error.		form.

Γ

MATHEMATICS EXTENSION 1 TRIAL HSC 2020 – QUESTION 12 (10 marks) SUGGESTED SOLUTIONS **MARKS MARKER'S COMMENTS** Answers 95 · 4 ws (x+II) or 4 ws (x+4II) received (21) marks with correct working. · Note, there is only one whreat answer not both !!! · From 3rd guadrant: $\sin \alpha = -1\sqrt{3}$ wsx = -2 $\tan \alpha = -2\sqrt{3}$ $\alpha = -60^{\circ}$ $\omega s \alpha = -\frac{1}{2}$ tan x = 13 d= 60° = -11 = 41 二工 . all 3 will need to be converted to an ansle in the 3rd quadrant) TI+ 87. ie TT+60° = TT+ II for any ratio used · noting 60° = II is the related angle in the 1st quadrant for all 3 ratios.

MATHEMATICS EXTENSION 1 TRIAL HSC 2020 – QUESTION 12 (10 marks)

		,
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(b) (i) using sin Asin B = 1	-	
NOTE	: A=1	$B = \frac{\pi \alpha}{8}$
$LHS = \sin^2\left(\frac{\pi x}{8}\right)$		8
= Sin(TX) Sin(TX) - (1)		
$= \frac{1}{2} \left[\cos \left(\frac{\pi x}{8} - \frac{\pi x}{8} \right) + \cos \left(\frac{\pi}{8} \right) \right]$	x + 7	8 - 1
$=\frac{1}{2}\left[\cos 0 - \cos \left(\frac{2\pi x}{8}\right)\right]$		1
= \(\frac{1}{4} \) -	(<u>I</u>)	
= RHS		

Areas for students to improve include: avoiding the omission of too many steps of the proof, and communicating clearly about how they went from one step to the next.

In a 'show' question it must be clear how one line is obtained from another.

- · You cannot work on both sides at the same time
- · (-1) mark for every line that was missing.
- · SHOW ALL STEPS!

MATHEMATICS EXTENSION 1 TRIAL HSC 2020 – QUESTION 12 (10 marks) SUGGESTED SOLUTIONS **MARKS** MARKER'S COMMENTS (b) Students should show all relevant working in responses involving calculations. This ensures that marks can be allocated for working (ii) even if the student's final answer is incorrect. $A = \int_{8}^{8} 6 \sin^{2}\left(\frac{\pi x}{8}\right) dx$ = 6 × 1 (8) - 65 (TX). dx $\int x - \sin(\pi x)$ = 3 \(\alpha - \frac{4}{11} \) sin (\frac{17\lambda}{7}) \(\frac{8}{4} \) - Of for correct integration =3 8-4 sin (\$\frac{\sqrt{1}}{4}\) - (o-|sino) [8-4 sin 2TT -0 8 - ± x0 $=3\times8$ = 24 square units · Many students broat the b in the original question (21) marks were awarded if 4 square units was obtained with all correct steps of working

MATHEMATICS EXTENSION 1 TRIAL HSC 2020 – QU	JESTION	12 (10 marks)
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
. the students that assumed		
ws(ITX) = X ws II		
= 1 x and conti	nued	
were not awarded any ma	rks.	
were not awarded any ma no need for absolute value sig the X-axis.	n, ar	ca is above
(c)	_	

Paying attention to the mark value of the question and using it as a guide to the complexity of solution required.

MATHEMATICS EXTENSION 1 – QUESTION 13		
a) SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$\int_{0}^{\ln 2} \frac{e^{2x}}{1 + e^{4x}} dx$ $u = e^{2x}$ $u = e^{2x}$ $u = e^{2x}$ $0 = \ln 2$ $2 \ln 2$	1/3	
$\int_{0}^{\infty} \frac{1 + e^{4x}}{1 + e^{4x}} = u = e^{2x} \qquad u = e^{2x} = u = e^{2\ln 2}$ $\frac{du}{du} = 2e^{2\ln 2} \qquad u = e^{2\ln 2}$		1/2 if they
$\frac{du}{dx} = 2e^{2x} \qquad u = e^{2\ln x}$ $du = 2e^{2x} \qquad u = 4$		did one of these
x = 0		
$=\frac{1}{2}\int_{0}^{\ln 2}\frac{2e^{2\pi}}{1+e^{4\pi}}dx$		
$= \frac{1}{2} \int_{1}^{4} \frac{1}{1+u^{2}} du$		
$=\frac{1}{2}\left[+an^{-1}u\right]_{1}^{4}$		
$=\frac{1}{2}\left[\tan^{-1}4-\tan^{-1}1\right]$	(kg)	Calculator must
= 0 · 27020 · · ·		be in radians.
= 0.27 (to 2dp)	(1/2)	Many students
		olid not realise
		this.
	. , , , , , , , , , , , , , , , , , , ,	
,		

MATHEMATICS EXTENSION 1 – QUESTION 13		
b) SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$\cos \alpha - \sin \alpha = 1 \qquad t = \tan \frac{2c}{2} $		
$0 = 3c = 2\pi$ $0 \leq \frac{3}{2} \leq \pi$		
$\frac{1-t^2}{1+t^2} - \frac{2t}{+t^2} = 1$	>	
$1-t^2-2t=1+t^2$		
$2t^2 + 2t = 0$		
2t(t+1) = 0		
t=0 or $t=-1$	(1)	I mark for t-value
$tan\frac{x}{2} = 0 \qquad tan\frac{x}{2} = 0$		
$\frac{2}{2} = 0, T \qquad \frac{2}{2} = \frac{3T}{4}$		Some 1/2 marks
		if solutions were
$\therefore \frac{x}{2} = 0, \frac{3\pi}{4}, \pi$		missing.
$\alpha = 0, \frac{3\pi}{2}, 2\pi$		
Please don't forget to test $x = \Pi$ -	-	-1/2 mark if
$LHS = \cos x - \sin x$		missing 2TT
$= \cos T - \sin T$	/ -	in the solution.
= -1 -0	N feels in	nanci studenti
= -1	Not	checked. No
‡ RHJ :. not a solution	mark was	not a solution.
$\therefore \alpha = 0, \frac{3\pi}{2}, 2\pi$		

MATHEMATICS EXTENSION 1 – QUESTION 13		
c) SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$f(c) = 1 + \ln x$ (i) LHS = $\frac{d}{dx} \left(c + \ln x \right)$ $u = x v = \ln x$	> h	ot obythis.
$= \frac{d}{dx}(uv)$ $= \frac{1}{x}$ $= vu' + uv'$ $= x n n n n n n n n n $	5	Students need to improve setting out of
$= \ln x + 1$		a "show that" question. They
(ii')		needed to
$y = 1 + \ln x$ $0 = 1 + \ln x$ $\ln x = -1$ $x = e^{-1}$		applied the product rule. It was not
from (i) $y = \infty \ln x$		enough just to do the differentiation at the side
Diff dy at 1 + In x	grah's	

MATHEMATICS EXTENSION 1 – QUESTION 13		
method SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$A = \left[\frac{1}{2}bh - \int_{1/2}^{1/2} (1+\ln x) dx\right] \times 2$		
$= \left[\frac{1}{2} \times 1 \times 1 - \left[x \ln x\right]\right] \times 2$	U	
	4	
$= \left[\frac{1}{2} - \left(\frac{1}{\ln 1} - \frac{1}{e} \ln \frac{1}{e}\right)\right] \times 2$,	
	-	
$= \left(\frac{1}{2} - \left(0 + \frac{1}{e}\right)\right) \times 2$	-	
$= \left(1 - \frac{2}{\epsilon}\right) u^2$	1	
,		
		Each method:
		Most papers
		Airst step I seconds
		but with no scinoc.
•		2) correct fic.
		Stephseon
		Sinstead of
		1) If correct
		method but
		no oclase or le.

MATHEMATICS EXTENSION 1 – QUESTION 13		
method 2 SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
y = 1 + 10x		
interchange of and y		
oc = 1 + Ing		
lny = x - 1 $x - 1$		
$y = e^{x-1}$		
$A = \int_{0}^{1} e^{x-1} dx - \int_{1/2}^{1} (1 + \ln x) dx$		
$= \left[e^{x-1} \right]_{0}^{1} - \left[\frac{1}{x} \right]_{1/e}^{1}$		
$= e^{\circ} - \frac{1}{e} - \left[\left \ln \left - \frac{1}{e} \right \right \right]$		
$=1-\frac{1}{e}-(0-\frac{1}{e}\ln e^{-1})$		·
$=1-\dot{e}-\dot{e}$		
$=\left(1-\frac{2}{e}\right)u^{2}$		

MATHEMATICS EXTENSION 1 – QUESTION 13		
METHOD 3 SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$A = \times - 2 \int_{e}^{1/e} (1+ n) dx$ $= 1 - 2 \left[\frac{1}{e} \right]_{e}^{1/e}$	(<u>-</u>) (<u>-</u>)	
$= 1 - 2 \left(o - \frac{1}{e} \ln e^{-1}\right)$ $= 1 - 2 \left(\frac{1}{e}\right)$		
$=\left(1-\frac{2}{e}\right) u^2$		
	, , , , , ,	

MATHEMATICS EXTENSION 1 – QUESTION		O .
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a)=tapl - [First case or base co	عد	
Prove that the statement is true	12 mk	Generally
for n=1		mell done
LHs.		
$3^{(1)} + 2^{(1+2)}$		
27 + B		
z 35		
= 5 (7) which is divisible by 5.		
true for n=1		
Step 2 [Assumption]		A feu
Assume the statement is true	歩った	=tudents
for n=k.		wrote down
That is,		Prove the
$3^{3k} + 2^{k+2} = M$, for		statement is
5 some integer		true for n= k
33k + 2k+2 = 5M		Also, this
- 2 k+2 = 5 M - 3 k		statement
		applies to
		any integer
		only positive
		integers.

MATHEMATICS EXTENSION 1 – QUESTION 14	:	2
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Step 3 - [Inductive Step]		
Prove the statement is true		students lepit
for n= k+!		on making
3(k+1) $(k+1)+2$ $+ 2$		mistakes
= 3 ^k +3 + 2 ^{k+3}		3(k+1)
$= 3^3 \cdot 3^{k} + 2^{k+2} \cdot 2^{l}$		= 33k +(1) instead
$= 3^3 3^{2k} + 2(5M - 3^{2k})$	tonk	A few of 3
(from our	for	: =tudents
===umption)	=wbs f	tution attempted
= 27.33k + 10M-2.33k	of to	e phion to
= 27.33k - 2.33k +10 M		substitute
= 25.33k + 10M		+h.e_
$= 5\left(5.3^{3k} + 2M\right)$	y ₂₁	< ssumption
= 5 N, where N = (5.32k,	2M) for	, twice trus
True for any integer N. Therefore divisible by 5.	goranos.	ateresulting in
,	عربر احاسي	weird
•	·	answers"
		פרישומיהו
,	•	fractions.
,		You substitute
		the essumption
	٠.	essumption once only

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
00		
OR		
From the assumption		
$3^{3k} = 5M - 2^{k+2}$		
Step (3): Prove the statement	 	
i= true for n= k+1		,
= 3 3 (k+1) + 2 k+1+2		
= 3 · 3 + 2 · 2 k+2		
$= 3^{5} \int 5M - 2^{(+2)} + 2.2^{k+2}$	1-12	
(using our essump	for us	<u> </u>
$= 27.5 \text{ m} - 27.2^{k+2} + 2.2^{k}$		
= 27.5 M - 25.2 k+2		
$= 5 \left(27 M - 5.2^{k+2}\right)$	1/2 mk	
Which is divisible by 5.	2000	priate
		Fration
Concluding statement Berefore true for n= k+1 when	.: 1/2	
it is true for n= k,		
Since. It is true for n=1		
Hen it is also true for n= 1+1:	2,	
= 2+1=3 and so on . Therefore,		
+ in true for all integers in		
induction.	heel	

MATHEMATICS EXTENSION 1 – QUESTION 14		**
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) () Pd = (-a-a) : + (5a-2a);	1/2	Not attempted
= -2ai + 3aj or (=2a, 3a)	1/2	rice 11.
Method (easiest will), Scaler projection of podo	she she	rtest method)
= pa · rs	nto RS	- Hempted.
PE		· M
RS = (9a - 13a) = +(12a - 4a)	ان	
2 6 9 C + 8 9 j	1/2_	-
		, , , , , , , , , , , , , , , , , , , ,
Dot product of Por · RS		k '- ', ;;
(-2a, 3a) ps (6a, 8a)	Corre	
PQ . RS = -2 = x G q + 3 = x 8 a	- subs	totion !
$= -12a^{2} + 24a^{2}$ $ \vec{RS} = \sqrt{(6a)^{2} + (8a)^{2}}$	Por	
$= \sqrt{36q^2 + 64q^2}$	05 2	Alexant
= d 100 a 2	coule	have
$\frac{1-p\alpha \cdot R\vec{s}}{ R\vec{s} } = -12a^2 + 24a^2 = \frac{1}{ R\vec{s} }$	12 -> str.	used.
	reque	red
$ 2a^{2} = 2$ $ 0a $ $ 6a = 2$	a11+	attais be
6a = 12	for	1 m/k
2-4=10	The t	~=the.; ~~3 wer.

MATHEMATICS EXTENSION 1 – QUESTION 14		G
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Martha 1 2 Chander		
Method 2 CHarder	Tethod	
Vector projection of pa 6-	to RS	
<u> 京京 ・ 京京 </u>		
Vector PS	1/2 (ee previous
$ \overrightarrow{PS} ^{2}$ $= \begin{pmatrix} -2a \\ 3a \end{pmatrix} \begin{pmatrix} 6a \\ 8a \end{pmatrix} \begin{pmatrix} 6ai + 1 \\ 2ai \end{pmatrix}$	-8aj) ½	Morking
(6a)2 + (8a)2	Y	
= -12a2 + 24a2 (Gais	+8=1)	12 mk for
36a2+64a2		appropriate
		appropriete substitution
$= \frac{12a^2}{100a^2} \left(6ai + 8aj \right)$		into a
100=2		note a
$= \frac{3}{25} \left(6 + 8 \right)$		
= 18a i + 24a j	lmk	- strictly
25 25 ~		required this stateme
Length of this projection re	ctor = 1	10K1
or the scalar projection		
		me thod)
$\sqrt{\frac{(18a)^2}{25} + (\frac{24a}{25})^2} = 12$		
(25) (25)		•
900q ² = 12		
V 625		
1 625		
309 = 12		
$\frac{69}{5} = 12$		
Ge = 60		
6a = 60 -:- a = 10	Ink	

MATHEMATICS EXTENSION 1 – QUESTION /本		(£)
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Method 3		
•		
Could have used the formu	4	TO CO. (The Company of Desired Company) of Marketon and American September 1.
PQ. PS		
[PE]		
(similar working to methe	<u> </u>	
Meltond 4		
		· · · · · · · · · · · · · · · · · · ·
Could have used the form	4 (2	
FOR . RS		
as in method 3		
1 PS 1 is the unit rector		
1 PS 1 0 -> 1		
for PS or RS		
In this question, students		
·	·	
failed to realise that the		
question was actually teal	<u>-</u>	
with seeler projection		
'		*-
and 12 represented this.		
A number of students		
used the vector projection		
A 1 57	[
termula but did not kn what to do afterwards) +	<u>وم.</u>	

is, equate the magnitude of this vector to 12.

MATHEMATICS EXTENSION 1 – QUESTION 14		7
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Some students forgot to		,
wie Ris when very		
3 (c=i+8=j) when		- · · · · · · · · · · · · · · · · · · ·
ueine the vector projection		71.77 · 1707.5 · 11 ·
formula, thereby felling		*** ** *****
As a result, their working	. }	
did not make sensa (as		
the magnitude of this		
vector had to be equated	1 1	
fo 12). A number of stud Pailed to include as is and Lack of substitution into	ents	is their relevan
_	~ "	DA FILLS
the appropriate formula		
was heavily penalised.		
At this stage, we expect students to understand		
the different formulae		
and how they could		
be used in vector		
problems?		

MATHEMATICS EXTENSION 1 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(c) $V = \pi \int_{-1}^{2} (2^{n} - 2)^{2} dx$	1/2	-> =1-blish.'-
· · · · · · · · · · · · · · · · · · ·		74:3
$= \stackrel{\sim}{\pi} \int_{-1}^{2} \left(2^{\varkappa} - 2\right) \left(2^{\varkappa} - 2\right)$	dx	with the
J ,		included:
$= \gamma_1 \int_{-\infty}^{\infty} \left(2^{2x} - 2 \cdot 2^{x} - 2 \cdot 2^{x}\right)$	+ 4)d.	e
	,	
$= \pi \left(\frac{2}{2} \left(\frac{2}{2} \right)^{2} - 4 \cdot \frac{2}{2} \right)^{2} +$	4) dx	- 1/2 m/c
$= \pi \int_{-1}^{2} \left(2^{2x} - 4 \cdot 2^{x} + \frac{2^{x}}{2^{x}}\right)^{-1}$		fr correct
$= \pi \int_{-1}^{2} (e^{2\pi l_{32}} - 4 \cdot e^{2l_{32}})$	+4)	exp====================================
$= \pi \left[\frac{e^{2x \ln 2} - 4e^2}{2 \ln 2} \right]$	kln2 +	450 2
- 2 ln2 ln	2	J-1
www.		د.
dx)	plus	Az -lok
$= \pi \int_{-2\pi}^{2\pi} - 4 \cdot 2^{2\pi}$	۶¢ +	4x 2 displaying
L 2/12 ln2		-1-dardel= 1-
$= \gamma_1 \int_{-2}^{4} -4.2^2 + 4(2)^7$		integration skills without
L2/m2 ln2		テーターテック
$-\left(\frac{2^{-2}}{2} - 4 \cdot 2^{-1} + 4\right)$	(-1)	the got shi
2/72	1	
= 9.938405974		_
= 9-94(2 dp)	Imk	final

SUGGESTED SOLUTIONS This question was poorly a Hempted Students need to re-visit expansion skills. Some students used absolute value which was not required as when you squere something, it is always positive enjoying the integration into 2 parte. V= xi	MATHEMATICS EXTENSION 1 – QUESTION 14		
attempted. Students need to re-visit expansion skills. some students used absolute value which was not required as when you squere something, it is always positive anyway. others made the question harder by splitting up the integration into 2 parte. V= x \int 0 y^2 da + \int 2 y dx This is a valid nettered	SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
some students used absolute value which was not required as when you squere something, it is always positive mywayi. others made the question hander by splitting up the integration indo	This question was poorly		The state of the s
Some students used absolute value which was not required as when your squere something, it is always positive anyway: others made the question harder by splitting up the integration into 2 parts. V= x \int 0 y^2 da + \int 2 y' dx This is a valid method	attempted. Students need to		ma (tota) Alder and Editor and Charge and Employee and Employee (total and Employee)
required as when you square something, it is always possitive enjoyments others made the question hander by splitting up the integration into 2 parts. V= x \int y^2 dx + \int y^2 dx This is a valid method	re-visit expensión skills.		THE STATE OF THE PARTY AND THE PARTY OF THE
required as when you squere something, it is always positive anyway. others made the question hander by splitting up the integration into 2 parts: V= xi \int 0 y^2 dx + \int 2 y' dx This is a valid method	Some students used absolu	1-	
squere something, it is always positive anyways. others made the question hander by splitting up the integration indo 2 parts: V= x \int 0 y^2 dx + \int 2 y dx This is a valid method	ratue which was not		
others made the question hander by splitting up the integration into 2 parts: V= xi \int 0 y^2 dx + \int 2 y dx This is a valid method	required as when you		
harder by splitting up the integration into 2 parts. V= xi \int 0 y^2 dx + \int 2 y^2 dx This is - valid netted	squere something, it		
harder by splitting up the integration indo 2 parts: $V = x \int_{-1}^{0} y^{2} dx + \int_{0}^{2} y^{2} dx$ This is a valid method	is always positive anywa	70	
the integration inds 2 parts. V = xi \int y^2 dx + \int y^2 dx This is a valid method	<u> </u>	موم	
$V = x \int_{-1}^{0} y^{2} dx + \int_{0}^{2} y^{2} dx$ This is a valid method	hander by splitting up		
V= x \int y^2 dx + \int y^2 dx This is - valid method	the integration into		h.
This is a valid method			
	$V = \gamma \left(\int_{-1}^{2} y^{2} dx + \int_{0}^{2} y^{2} dx \right)$	-dx	
but very long tespecially the calculations at the end.	This is - valid method		
the calculations at the	but very long + tedious		
end:	the calculationic at the		
	end:		
·	,		

This is a show question; don't leave anything out!

MATHEMATICS EXTENSION 1 – QUESTION 15
b) <u>ii</u>
Prove true for n=1
LHS = cosx
$RHS = \frac{\sin 2(i)x}{2\sin x}$
$= \frac{\sin 2\kappa}{2\sin 3\kappa}$
= 25,'17C (OSX
25inx (1) correctly proving
= cos x true for n=1
:. the statement 15 true for n= 1
Assume true for n=k
That is $\cos x + \cos 3x + \dots + \cos (2k-1)x = \frac{\sin 2kx}{2\sin 2k}$
Prove true for n=k+1 That is
$\cos z + \cos 3x + + \cos (2k-1)x + \cos (2k+1)x = \frac{\sin 2(k+1)x}{2\sin x}$
LHS = cosx + (053x + + cos(2k-1)x + cos(2k+1)x
= sin2kz + cos(2k+1)x (by cissumption)
= sin2kz + cos(2k+1)x (by cissumption) 25inx + cos(2k+1)x (by cissumption)
= sin2kx + 2sinx cos(2k+1)x the induction 2sinx 2sinx hypothesis
25inx 25inx hypothesis

MATHEMATICS EXTENSION 1 – QUESTION 15

$= \frac{\sin 2kx}{+ 2\sin x} (\cos (2k+1)x)$

 $= \frac{\sin 2kx + \sin 2(k+1)x - \sin 2kx}{2\sin x}$ (from parti)

 $= \frac{\sin 2(k+1)x}{2\sin x}$

1) Complete solution.

= RHS

- if the statement is true for n=k+1 if it is true for n=k.

 Since it is true for n=1, it is also true for n=2 and so on.
- : The statement is true for all integers n,

The process of proof by Mathematical Induction is prescriptive, with very little Hexibility or room for "creativity". This is not the place to take short cuts or invent your own method; follow the steps exactly.

A common problem was failing to start the proof with the given LHS: if we'd wanted you to prove a different statement, we would have asked for it.

MATHEMATICS EXTENSION 1 – QUESTION 15 $|YX| = \sqrt{6^2 + 2^2}$ A= 7 x 540 x 8 55 x sin 0 40 = 45200 rsino sind= 5 0=45° (since o is acute) the angle : [6] = 540 × 855 × cos45° 6p+29 = 80√2 × 5 6p + 2q = 80

-: 9 = 40 - 3p

MATHEMATICS EXTENSION 1 – QUESTION 15

Alternative solution

$$tan x = \frac{2}{6}$$

 $d = 18.4349^{\circ}$

$$\widehat{(1)}$$

$$\begin{array}{c} z-26.56^{\circ} \\ z-26.56^{\circ} \\ p=855 (05(-26.56^{\circ})) \\ = 16 \\ q=855 \sin(-26.56^{\circ}) \end{array}$$

$$-\left[\begin{array}{c} P \\ q \end{array}\right] = \begin{bmatrix} 8 \\ 16 \end{array} \text{ or } \begin{bmatrix} 16 \\ -8 \end{bmatrix}$$

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Question 16		
Prove		3 300 0 100 0
SIN 34 = 3 SIN A + 4 SIN A	3	Well done
LHS = Sin 3A -	,	generally.
= BIN (2A +A)		1 mk.
= Sin 2A cos A + Cos 2A sin A		= = me
= 2511AcosAcosA + (1-2512A)si	ηA	some students.
= 2517A COS A + SINA - 25113 A		left out egsein'al
= 2 sinA (1- sinA) + sinA - 2sin3		
= 2 sinA - 2sin3 A + sinA - 2sin3 (+	lomark.
= 3510A - 45103A		
= RHS		
. SIN 34 = 3510 A - 45113A		
Hence show $6x^3 - 8x^3 = 1$ has roots	3	
811 T8, SIN 518 SIN 2511		
a cubic has at most 3 real solution	015	
So if we find 3 distinct solutions		only a handful
we have found them all as degree.	3)	Of students achieved
let x=sin A - 0		3 marks. Most
sub @ in @ 651n. A - 851n. A=1		received 2 as didn't show
3511A - 4511A = 2		at most 3 solutions

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
using part (a) sin34 =35118-4513A.		
$Sin3A = \frac{1}{2}$		
Sine is possitive in Q18Q2	1	many students
1		Just substituted
5 SIN # = 1		in the answers
R > 6		giser
1.3A = 16, +2n(T) or 3A = (T-6) +2n T	Γ.	7
77 201T 5TT + 20 TT		This is a
$A = \frac{11}{18} + \frac{2011}{3}$ or $A = \frac{511}{18} + \frac{2011}{3}$		hence questo
A = 18, 50 1317 1710 1910 250 18 18, -18, 18		
There will be repeats but only 3		
distinct solutions		
: the solutions are.	" " " " " " " " " " " " " " " " " "	
SIN # SINSIT and SIN 251		
From formula sheets u.v = u V/ 1000.		
:.p. q = [p]/9/coso-		
$= 1 \times 1 \times cos(2+8)$		
$p,q = \cos(2+6)$		

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMME
p. q = x, x 2 + 4, 42 is used.	2	marks
ηοω		Students were
B 70		trying to pro
B	-	COS(d+B)=cos2
70		-511
D (05(-B) 1	,	many students
COSZ		the identity to 1
		iproved in the
: p = cos x i + sin & j		which made n
9 = cos(B) i + sin(B) j		sense.
P. 9 = cos(2)cos(B) + sin(2)sin(-8)	1	If students us
= COSL COSB - SIN L SINB		the working
		from question
		(ii) in qued
	11111 1	
		(1) they nee
		to use the
		working show
		in (i) for
		the proof