

1.2 Regular Expressions

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

How Can I Find Occurrences Of...

- Different word forms referring to the same thing:
 - Woodchuck, woodchucks, or Woodchucks?
 - Barack Obama, Obama, or 44th President of the US?
 - Happy, joyful, cheerful, or delighted?

How Can I Find Occurrences Of...

- Phrases within a particular expression:
 - The movie was very ... (e.g., enjoyable/boring)
 - The patient's symptoms are ...

Regular Expressions (REs)

- A formal language for describing text strings
- Used in:
 - Unix tools like grep, emacs
 - Search
 - Computer languages
 - Parsing
 - Various NLP tasks and pipeline steps

Regular Expressions (REs)

- Used to search for phrases that match a pattern
 - Information extraction without machine learning!
 - Define text features for a classifier
- ...and to replace occurrences of a pattern
 - Error correction
 - Preprocessing: use a more convenient form for downstream methods
 - E.g., so that Woodchuck, woodchuck, woodchucks, and Woodchucks are all replaced by a single form so they can be treated the same by a classifier

Regular Expressions (RegExps)

- RegExp: defines a set of strings
- RegExp search function: returns all occurrences of strings within that set from a corpus of text
- https://www.whatsmyip.org/regular-expressiontester/
- To search for "woodchuck": /woodchuck/

Building Blocks for REs: Disjunctions

- Use disjunctions match with alternative characters
- E.g., /[Ww]oodchuck/

Pattern	What does it match?
[Ww]	W or w
[A-Z]	Any upper-case letter
[a-z]	Any lower-case leter
[0-9]	Any single digit

Building Blocks: Wildcards, Negation, Repetition

Pattern	Role	Example	What does it match?
^ inside []	Negation	[^A-Z]	any char not an upper-case letter
-	Any character	password.	password1, passwordx,
?	Optional	woodchucks?	woodchuck, woodchucks
*	Repeat 0 or more times	Woodchucks*	Woodchuck, Woodchucks, Woodchuckssss,
+	Repeat 1 or more times	Woo+dchucks	Woodchucks, Wooodchucks, Wooodchucks

Building Blocks: Combining Patterns

Pattern	Role	Example	What does it match?
I	Disjunction (logical OR)	groundhog woodchuck	groundhog, woodchuck
()	Sub- expression	wood(chuck louse)	woodlouse, woodchuck

Building Blocks: Start and End

Pattern	Role	Example	What does it match?
\b	Word boundary	\bround	round but not ground
^ outside []	Start of sentence	^[Rr]	R in Round or r in round
\$	End of sentence	.\$! in ground!, . in round.

- Test it out at https://www.whatsmyip.org/regular-expression-tester/
- You can also try to write and RE for:
 - All strings with two consecutive repeated words, e.g., "the the"
 - All integers

The word "the"

/the/

- /the/
- /[tT]he/ -- match capitalised/uncapitalised

- /the/
- /[tT]he/
- ^\b[tT]he\b/ -- match only whole words

- /the/
- /[tT]he/
- \b[tT]he\b/
- /[^a-zA-Z][tT]he[^a-zA-Z]/ -- match when "the" is preceded or followed by non-letter tokens like '_' or space

The word "the"

- /the/
- /[tT]he/
- \b[tT]he\b/
- /[^a-zA-Z][tT]he[^a-zA-Z]/
- /(^|[^a-zA-Z])[tT]he([^a-zA-Z]|\$)/ -- Also match when the word occurs at the start or end of a line

False Positives and Negatives

- Each line tries to reduce false +ves and –ves
 - False positive (FP) = a match that was incorrect
 - False negative (FN) = incorrectly did not match

```
True label = +ve True label = -ve

Prediction = +ve True positive (TP) False positive (FP)

Prediction = -ve False negative (FN) True negative (TN)
```

NLP systems make a trade-off between these apparently opposing metrics

Summary

- REs encode text patterns that we want to find and replace
- Wide ranging uses in feature extraction and preprocessing
- Often used to implement a baseline model for many text mining tasks
- Referring to the introduction: REs are a tool for hard-coding knowledge
- For more complicated tasks, we will need to use machine learning

Reading

- Dan Jurafsky and James H. Martin. Speech and language processing (3rd edition draft). Chapter 2.
- https://web.stanford.edu/~jurafsky/slp3/