Tutorial 13

PHY-101

- Q1. A Carnot engine whose low temperature reservoir is at 280 K has an efficiency of 40 %. It is desired to increase this to 50 %. By how many degrees must the temperature of the low temperature reservoir be decreased if that of the high temperature reservoir remains constant.
- **Q2.** Calculate the increase in entropy when 50g ice at -10°C is converted to steam at 100°C. Given that specific heat capacity of ice is 2090 $Jkg^{-1}K^{-1}$, specific heat capacity of water is 4180 $Jkg^{-1}K^{-1}$ and latent heat of steam is 2.26 x 10^6 Jkg^{-1} .
- **Q3.** A 1.5m^3 of insulated rigid tank contains 2.7 kg of CO_2 at 100kPa. Paddle work is done on the system until the pressure rises to 150 kPa. What is the entropy change of CO_2 in this process. $Cv=0.657 \text{ KJKg}^{-1}\text{K}^{-1}$
- **Q4.** An innovative way of power generation involves the utilization of geothermal energy, the energy of hot water that exists naturally underground (hot springs), as the heat source. If a supply of hot water at 140°C is discovered at a location where the environmental temperature is 20°C, determine the maximum thermal efficiency a geothermal plant built at that location can have. If the power output of the plant is to be 5 MW, what is the minimum mass flow rate of hot water needed? $C_p=4.197 \text{Jkg}^{-1} \text{K}^{-1}$