In [1]: ▶

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [2]:

df=pd.read_csv(r"C:\Users\DELL\Downloads\USA_Housing.csv")
df

Out[2]:

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Apt. 674\nLaurabury, NE 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabeth Stravenue\nDanieltown, WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO AP 44820	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3

In [3]:

df.head()

Out[3]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Ad
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Fer 674\nLaurabu €
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Suite 079\ Kathleen
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Eliz Stravenue\nDanie WI 0€
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFf
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\ AE
4							•

In [4]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [6]: ▶

df.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [8]: ▶

df.columns

Out[8]:

In [9]: ▶

#Exploratory data analysis
sns.pairplot(df)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x19b12c73340>

In [11]:

sns.displot(df['Price'])

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x19b1a1b1210>

In [13]: ▶

sns.displot(df['Area Population'])

Out[13]:

<seaborn.axisgrid.FacetGrid at 0x19b1a1b08e0>

In [15]: ▶

In [16]: ▶

sns.heatmap(Housedf.corr())

Out[16]:

<Axes: >

In [17]: ▶

In [18]:

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)

Out[23]:

coeff_df

	coefficient
Avg. Area Income	7.082953e-15
Avg. Area House Age	3.168710e-11
Avg. Area Number of Rooms	4.083800e-11
Avg. Area Number of Bedrooms	-2.862339e-12
Area Population	5.245804e-15
Price	1.000000e+00

In [24]: ▶

predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)

Out[24]:

<matplotlib.collections.PathCollection at 0x19b08c9a0e0>


```
sns.displot((y_test-predictions),bins=50);
```


In [29]: ▶

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 5.7315143446127575e-11 MSE: 1.103825102430229e-20 RMSE: 1.0506308116699362e-10

In []: