

Credit Card Approval Prediction By using Classification Method

Zhengyuan Liu, Ruike Xu, Steven Ge

MATH 509

Professor: Jay Newby

Outline

- Introduction of background and Dataset
- 2. Data cleaning
- 3. Feature selection
- 4. Modeling Assumptions
- 5. Modeling
 - 1. Logistic regression
 - 2. Decision Tree
 - 3. RandomForest
 - 4. Neural network
 - 5. SVM
- 6. Conclusion and Discussion

Introduction

- The credit score is an essential determination of personal credit evaluation.
- When proceeding with credit card applications, credit companies employ the applicant's personal information and credit history to evaluate future defaults and overdue payments.
- Our objective is to classify whether the applicant is a good credit holder that would repay on time

Data Acquisition

- The dataset we used contains transactions made by credit cards in September 2013 by European cardholders.
- Variables includes marriage status, property ownership, number of family member, number of children, annual income, etc.

Data Cleaning and Feature Selection

- Adjust credit status of applicants to binary categorical variable using scoring system
- Convert categorical predictors using one-hot encoding, adjust employment, births, and work age ratio

- 0.8

- 0.6

-0.4

- 0.2

- 0.0

Data Cleaning and Feature Selection

- Conduct feature selection by using correlation
- Split data randomly into training 80% and testing 20%

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Modeling Assumption

- Classification methods need to have discrete response variable
- Confounding effect
- Independent observations
- Logistic regression assumptions
 - Appropriate outcome structure
 - Linearity of independent variables and log odds
 - Lack of strongly influential outliers
 - > Absence of multicollinearity
 - Assumption of a large sample size

Modeling

NO ALBERTA A

Logistic Regression:

Logistic regression is a type of generalized linear regression often used as a classification model to predict binary variables.

Formula:
$$P(y=1) = \frac{1}{1+e^{-(\beta 0+\beta 1X1+\beta 2x2+.....+\beta nXn)}}$$

Decision Tree:

Decision tree is a tree-like model, which is a decision-making process based on multiple decisions.

Random forest is a supervised learning model based on a series of decision trees. The random forest combines different decision trees, and produces the outcome by voting the majority of all decision trees.

Confusion matrix (training):

Confusion matrix (testing):

Neural network:

Neural network is a computational learning system that uses a network of functions to understand and translate a data input of one form into the desired output. (Hidden layers 200, 150, 100, 50)

SVM:

Support vector machine algorithm is to find a hyperplane in an N-dimensional space that distinctly classifies the data points

Confusion matrix (training):

Confusion matrix (testing):

Conclusion

- Random forest has the best performance
 - Accuracy Score: 0.66421

р	precision			recall		f1-score		support	
0		0.67		0.66		0.66		2513	
1		0.66		0.67		0.67		2514	
accuracy						0.66		5027	
macro avg		0.66		0.66		0.66		5027	
weighted avg		0.66		0.66		0.66		5027	
FLAG_WORK_PHON FLAG_OWN_CAI FLAG_OWN_REALT AMT_INCOME_TOTA	R Y								
ANT_INCOME_TOTAL				÷					
WORK_AGE_RATION	0								
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	

Discussion

- Optimize data sources by using better sampling methods.
- Use some ways to avoid overfitting problem, like cross-validation.
- Find more relative data from other countries
- Using more recent data may improve the utility of our model on current society

Thank You for Listening