

Aprendizado Não-Supervisionado

Advanced Institute for Artificial Intelligence

https://advancedinstitute.ai

Aprendizado Não-Supervisionado (Clustering): Definição

Agrupamento (Clustering): O que é?

- Em alguns domínios, gostaríamos de "classificar" exemplos em grupos semelhantes
- Porém, não possuímos rótulos de classes na base de treinamento

Exemplos

- Agrupar consumidores de uma plataforma web
- Agrupar documentos de acordo com seu tipo, tópico, etc
- Identificar anomalias e fraudes

Conceitos (Everitt, 1974)

- Um grupo (*cluster*) é um conjunto de entidades semelhantes entre si, enquanto entidades pertencentes a grupos diferentes não são semelhantes entre si
- A distância (diferença) entre quaisquer 2 instâncias em um mesmo grupo é menor que a distância entre qualquer dupla de instâncias pertencentes a grupos distintos

Mais Formalmente.....

Agrupamento em partições rígidas

- ullet Agrupar objetos, designando instâncias $m{X}$ em grupos $m{C} = \{C_1, \dots, C_k\}$, tal que:
- $C_1 \cup \cdots \cup C_k = X$: Todos as instâncias devem ser designadas a um grupo
- $C_i \neq :$ Todos os grupos possuem pelo menos 1 instância
- ullet $C_i\cap C_j=:$ Cada instância possue apenas um rótulo
- **Objetivo:** Encontrar mapeamento f:

$$f: \mathbf{X} \to \{1, \ldots, k\},\$$

atribuindo cada instância a um grupo

• Enumerar e avaliar todas as partições possíveis é inviável para qualquer aplicação não-trivial

Como definir que instâncias são similares o suficiente para serem colocadas no mesmo grupo?

Diferenças podem ser subjetivas

• Assim como na *classificação*, algoritmos de agrupamento se baseiam nos atributos para tentar formar agrupamentos bem definidos

Avaliar qual seria o melhor agrupamento pode ser desafiador

• Assim como para classificação, cada algoritmo de agrupamento segue alguma estratégia e suposições para definir um agrupamento adequado

Algoritmo K-Médias (*K-Means*)

K-Means

Separa os dados de treinamento em K grupos

Algoritmo amplamente utilizado na prática

- Simples
- Fácil de se interpretar
- É eficiente computacionalmente

Algoritmo K-Means

Partindo de um número conhecido de grupos K:

- Selecione K centróides (instâncias que representarão cada grupo)
- Atribua cada instância ao cluster que tiver o centróide mais próximo
- Recomputa o centróide de acordo com a nova separação
- Repita os 2 passos acima até a convergência

Exemplo Ilustrativo

Com K=3, iniciamos definindo 3 centróides

Rotular todos os exemplos de acordo com o centróide mais próximo

Atualizar todos os centróides

Atualizar grupos, e repetir até convergência

Exemplo com K=2

Parâmetros

- \bullet K
- Métrica de distância
- Inicialização dos centróides

Métricas de distância

Distância Euclidiana

$$d_{euc}(\boldsymbol{a}, \boldsymbol{b}) = \sqrt{\sum_{m=1}^{M} (a_m - b_m)^2}$$
(1)

• Distância "comum" entre dois pontos

Exemplo Distância Euclidiana

Exemplo Distância Euclidiana

Distância Manhattan

$$d_{man}(\boldsymbol{a}, \boldsymbol{b}) = \sum_{m=1}^{M} |a_m - b_m|$$
 (2)

• Na analogia com distâncias espaciais, seria como "percorrer as ruas"

Exemplo Distância Manhattan

Comparação entre as distâncias

Inicialização dos centróides

- A inicialização dos centróides afeta no resultado final a na velocidade de convergência
- Portanto, a estratégia de inicialização afeta na efetividade do algoritmo

Como inicializar os centróides?

- Executar múltiplas vezes e selecionar os melhores clusters
- Seleção informada de centróides distantes entre si

Limitações do KMeans

Grupos de tamanhos diferentes

Limitações do KMeans

Grupos de densidades diferentes

Limitações do KMeans

Formas não globulares

Aliviando esses problemas aumentando o parâmetro K

(h) Mais grupos

Pré e Pós-processamentos para o KMeans

Pré-processamento

- Normalização
- Eliminação de outliers

Pós-processamento

- Eliminar pequenos clusters
- Dividir grupos com instâncias muito distantes entre si
- Unir grupos com instâncias muito próximas

DBSCAN

DBSCAN

- O KMeans é um algoritmo baseado em protótipos
- Algoritmos baseados em densidade definem clusteres separando regiões com alta concentração de instâncias
- O DBSCAN é um dos algoritmos mais utilizados dentre os baseados em densidade

Separa as instâncias da base em 3 tipos

- Core Pontos que estão no centro de uma concentração de instâncias (semelhante à ideia de centróide)
- Border Pontos que fazem parte de um grupo mas não estão no centro dele, formando a "borda".
- Noise Pontos isolados das outras instâncias

Algoritmo

- Percorre e base de treinamento e rotula cada exemplo como core, border, ou noise.
- Elimina todos os exemplos rotulados como noise
- Insere uma aresta entre cada par de exemplos core próximos uns dos outros
- Cada componente conexo resulta em um cluster
- **6** Cada **border** é atribuido ao **core** correspondente

Como exatamente rotular cada instância? DBSCAN possui 2 parâmetros: eps e minSamples

- Todos as instâncias que possuem no mínimo minSamples pontos a uma distância máxima de eps (vizinhança) são **core**
- ullet Se um ponto possui menos que minSamples vizinhos mas está na vizinhança de algum ponto core, ele é **border**
- Todos os pontos não classificados como core ou border são noise

Exemplo definição de pontos

Original

Pontos: core, border e noise

Exemplo grupos

Vantagens do DBSCAN

- Resistente a ruído
- Consegue lidar com grupos de diferentes tamanhos e formas

Desvantagens do DBSCAN

• Não consegue capturar grupos com diferentes densidades