Chemistry Reference Tables

Name	Value
Avogadro's number	$6.022{ imes}10^{23}$ particles/mole
Gas constant (R)	$0.0821 \frac{\text{L atm}}{\text{mole K}}$ $62.4 \frac{\text{L mmHg}}{\text{mole K}}$ $8.314 \frac{\text{L kPa}}{\text{mole K}}$
Standard pressure	1.00 atm = 101.3 kPa = 760. mmHg = 760. torr
Standard temperature	0°C or 273K
Volume of 1 mole of any gas at STP	22.4 L

Thermodynamic Constants	Symbol	Value
Heat of fusion of water	H_f (water)	334 J/g
Heat of vaporization of water	H_v (water)	2,260 J/g
Specific heat of water	$C_{\scriptscriptstyle p}$ (water)	$2.05 \ \frac{J}{g^{\circ}C}$ for ice, $2.02 \ \frac{J}{g^{\circ}C}$ for steam, $4.18 \ \frac{J}{g^{\circ}C}$ for liquid

Metal	Specific Heat $\frac{J}{g^{\circ}C}$	Density (g/cm ³)	Melting Point (°C)	
Aluminum	0.897	2.702	660	
Copper	0.385	8.92	1083	
Gold	0.129	19.31	1064	
Iron	0.449	7.86	1535	
Lead	0.129	11.3437	328	
Magnesium	1.023	1.74	649	
Mercury	0.140	13.5939	_39	
Nickel	0.444	8.90	1455	
Titanium	0.523	4.5	1660	
Zinc	0.388	7.14	420	

	Organic Substances						
Name	Density	Melting Point (°C)	Boiling Point (°C)				
Ethanol (CH ₃ CH ₂ OH)	$0.7893~\mathrm{g/cm^3}$	-119	79				
$\begin{array}{c} \text{Glucose} \\ (\text{C}_6\text{H}_{12}\text{O}_6) \end{array}$	1.54 g/cm^3 86		Decompose				
$egin{array}{c} ext{Hexane} \ (ext{C}_6 ext{H}_{14}) \end{array}$	$0.6603~\mathrm{g/cm^3}$	-95	69				
$\begin{array}{c} {\rm Methane} \\ {\rm (CH_4)} \end{array}$	0.716 g/L	-182	-164				
$\begin{array}{c} \text{Methanol} \\ (\text{CH}_3\text{OH}) \end{array}$	$0.7914~\mathrm{g/cm^3}$	-94	65				
$\begin{array}{c} \text{Sucrose} \\ (\text{C}_{12}\text{H}_{22}\text{O}_{11}) \end{array}$	$1.27~\mathrm{g/cm^3}$	86	Decompose				

Inorganic Substances					
Name	*Density @ STP	Melting Point (°C)	Boiling Point (°C)		
Chlorine	$3.21~\mathrm{g/L}$	-101	-35		
Hydrogen	$0.0899~\mathrm{g/L}$	-259	-253		
Hydrogen chloride	$1.640~\mathrm{g/L}$	-115	-85		
Hydrogen sulfide	1.54 g/L	-85	-61		
Nitrogen	$1.25~\mathrm{g/L}$	-210	-196		
Nitrogen monoxide	1.34 g/L	-164	-152		
Oxygen	1.43 g/L	-218	-183		
Sodium carbonate	$2.532~\mathrm{g/cm^3}$	851	Decomposes		
Sodium chloride	$2.165~\mathrm{g/cm^3}$	801	1413		
Sulfur dioxide	2.92 g/L	-73	-10		
*Water (at 4°C)	$1.00~\mathrm{g/cm^3}$	0	100		

Formulas

$$D = \frac{m}{V}$$

$$D = density$$

$$K = {}^{\circ}C + 273$$

$$m = mass$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$V = \text{volume}$$

$$P_t = P_1 + P_2 + P_3 + \dots$$

$$K = Kelvin$$

$$M_1V_1 = M_2V_2$$

$$P = pressure$$

$$PV = nRT$$

$$R = gas constant$$

$$M = \frac{\text{moles of solute}}{\text{liters of solution}}$$

$$T = temperature$$

$$q = mC_{p}\Delta T$$

$$M = molarity$$

$$q = mH_v$$

$$n = \text{number of moles}$$

$$q = mH_f$$

$$q =$$
quantity of heat energy

$$pH + pOH = 14$$

$$C_p$$
 = specific heat

$$pH = -\log[H^+]$$

$$H_v$$
 = heat of vaporization

$$pOH = -\log[OH^{-}]$$

$$H_f$$
 = heat of fusion

$$K_w = [H^+][OH^-] = 1 \times 10^{-14}$$

 K_w = equilibrium constant for the ionization of water

$$[H^{\scriptscriptstyle +}] = 10^{-{\rm pH}}$$

$$[\mathrm{OH^-}] = 10^{-\mathrm{pOH}}$$

PERIODIC TABLE

1 IA								
1 H Hydrogen 1.008	2 IIA							
3 Li Lithium 6.941	4 Be Beryllium 9.012							
11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.88	$egin{array}{c} 23 \ \mathbf{V} \ ext{Vanadium} \ 50.94 \ \end{array}$	24 Cr Chromium 51.99	25 Mn Manganese 54.94	26 Fe _{Iron} 55.85	27 Co Cobalt 58.93
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91
55 Cs Cesium 132.91	56 Ba Barium 137.38	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)
		58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25
		90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.04	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)

OF THE ELEMENTS

								18 VIIIA
			13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	$\begin{array}{c} 2 \\ \mathbf{He} \\ {}_{\mathrm{Helium}} \\ 4.003 \end{array}$
			5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
10 VIIIB	11 IB	12 IIB	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
28 Ni ^{Nickel} 58.69	29 Cu ^{Copper} 63.55	30 Zn ^{Zinc} 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 I Iodine 126.90	54 Xe Xenon 131.29
78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 Tl Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
110 Ds Darmstadtium (271)	111 Rg Roentgenium (272)	112 Uub Ununbium (277)				_		
65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.04	71 Lu Lutetium 174.97		
97	98	99	100	101	102	103		

 $\mathbf{E}\mathbf{s}$

Einsteinium

(252)

Fm

Fermium

(257)

Md

Mendelevium

(258)

No

Nobelium

(254)

 \mathbf{Lr}

Lawrencium

(262)

Cf

Californium

(251)

 $\mathbf{B}\mathbf{k}$

Berkelium

(247)

SOLUBILITY RULES

Soluble:

- All Nitrates, Acetates, Ammonium, and Group 1 (IA) salts
- All Chlorides, Bromides, and Iodides, except Silver, Lead, and Mercury(I)
- All Fluorides except Group 2 (IIA), Lead(II), and Iron(III)
- All Sulfates except Calcium, Strontium, Barium, Mercury, Lead(II), and Silver

Insoluble (0.10 M or greater):

- All Carbonates and Phosphates except Group 1 (IA) and Ammonium
- All Hydroxides except Group 1 (IA), Strontium, Barium, and Ammonium
- All Sulfides except Group 1 (IA), 2 (IIA), and Ammonium
- All Oxides except Group 1 (IA)

Guidelines for Predicting the Products of Selected Types of Chemical Reaction

Key: $\mathbf{M} = \text{Metal}$ $\mathbf{NM} = \text{Nonmetal}$

1. **SYNTHESIS:**

- a. Formation of binary compound: $A + B \rightarrow AB$
- b. Metal oxide-water reactions: $MO + H_2O \rightarrow base$
- c. Nonmetal oxide-water reactions: (NM)O + $H_2O \rightarrow acid$

2. **DECOMPOSITION:**

- a. Binary compounds: $AB \rightarrow A + B$
- b. Metallic carbonates: $MCO_3 \rightarrow MO + CO_2$
- c. Metallic hydrogen carbonates: $MHCO_3 \rightarrow MO + H_2O_{(1)} + CO_{2(g)}$
- d. Metallic hydroxides: $MOH \rightarrow MO + H_2O$
- e. Metallic chlorates: $MClO_3 \rightarrow MCl + O_2$
- f. Oxyacids decompose to nonmetal oxides and water: $\mathbf{acid} \to (\mathbf{NM})\mathbf{O} + \mathbf{H_2O}$

3. SINGLE REPLACEMENT:

- a. Metal-metal replacement: $\mathbf{A} + \mathbf{BC} \to \mathbf{AC} + \mathbf{B}$
- b. Active metal replaces H from water: $\mathbf{M} + \mathbf{H_2O} \rightarrow \mathbf{MOH} + \mathbf{H_2}$
- c. Active metal replaces H from acid: \mathbf{M} + \mathbf{HX} \rightarrow \mathbf{MX} + \mathbf{H}_2
- d. Halide-Halide replacement: $\mathbf{D} + \mathbf{BC} \to \mathbf{BD} + \mathbf{C}$

4. DOUBLE REPLACEMENT: $AB + CD \rightarrow AD + CB$

- a. Formation of a precipitate from solution
- b. Acid-Base neutralization reaction

5. COMBUSTION REACTION

 $Hydrocarbon + oxygen \rightarrow carbon dioxide + water$

ACTIVITY SERIES of Halogens:

 $egin{array}{c} \mathbf{F}_2 & & & & \\ \mathbf{Cl}_2 & & & & \\ \mathbf{Br}_2 & & & & \\ \mathbf{I}_2 & & & & & \end{array}$

ACTIVITY SERIES of Metals

Polyatomic Ions			
NH_4^+	Ammonium		
BrO_3^-	Bromate		
CN ⁻	Cyanide		
$\begin{array}{c} \textbf{C}_2\textbf{H}_3\textbf{O}_2^-\\ \textbf{(CH}_3\textbf{COO}^-) \end{array}$	Acetate		
ClO_4^-	Perchlorate		
ClO_3^-	Chlorate		
ClO ₂	Chlorite		
ClO-	Hypochlorite		
IO_3^-	Iodate		
MnO_{4}^{-}	Permanganate		
NO_3^-	Nitrate		
NO_2^-	Nitrite		
OH-	Hydroxide		
HCO_3^-	Hydrogen carbonate		
HSO_4^-	Hydrogen sulfate		
SCN-	Thiocyanate		
CO_3^{2-}	Carbonate		
$\mathrm{Cr_2O_7^{2-}}$	Dichromate		
CrO_4^{2-}	Chromate		
SO_4^{2-}	Sulfate		
SO_3^{2-}	Sulfite		
PO_4^{3-}	Phosphate		

Electromagnetic Spectrum (measurement in meters)

