

11.5 Line Integrals of Vector Fields over Parametrized Curves

FRY Defn IV.2.4.1, Line integral of vector field \mathbf{F} over path \mathcal{C}

Definition 11.21. Let **F** be a vector field and \mathcal{C} be a parametric curve (path) with parametrization $\mathbf{r}(t)$ where $t_0 \leq t \leq t_1$. Then the line integral^b of the vector field **F** over the parametric curve \mathcal{C} is

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.$$

If \mathcal{C} is a closed path^c, we also use the notation

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

^aAssume that the vector field **F** is continuous (i.e., all of its component functions are continuous). Also assume that the component functions of $\mathbf{r}(t)$ have continuous derivatives. (We call such a curve or path a C^1 curve or path.)

^bLine integrals are also called path integrals.

^cA closed path is one in which the end point is the same as the start point.

If **F** is a vector field from \mathbb{R}^2 to \mathbb{R}^2 , i.e., $\mathbf{F}(x,y) = \langle F_1(x,y), F_2(x,y) \rangle$ for some scalar-valued functions F_1 and F_2 , then we sometimes write the line integral as

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} (\mathbf{F}_1 dx + \mathbf{F}_2 dy).$$

If **F** is a vector field from \mathbb{R}^3 to \mathbb{R}^3 , i.e., $\mathbf{F}(x,y,z) = \langle F_1(x,y,z), F_2(x,y,z), F_3(x,y,z) \rangle$ for some scalar-valued functions F_1 , F_2 , and F_3 , then we sometimes write the line integral as

Since
$$\mathbf{r}'(t)$$
 is tangent to the curve and $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$

¹Here, we are assuming that $\mathbf{r}'(t)$ is nonzero for all t in the interval that we are working over.

and
$$ds = ||\mathbf{r}'(t)|| dt$$
, the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is also sometimes written as
$$\int_{\mathcal{C}} \mathbf{F} \cdot \hat{\mathbf{T}} ds.$$

Example 11.22. Let $\mathbf{F}(x,y) = -y\hat{\imath} + x\hat{\jmath} = \langle -y, x \rangle$. Let \mathcal{C} be the curve $y = x^3$ where $0 \le x \le 1$. Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

Given
$$\vec{F}(x,y) = \langle -y,x \rangle$$
 Goal: Evaluate $\int \vec{F} \cdot d\vec{r}$
 $\begin{cases} 1 & \text{formetrize } G \\ \vec{r}(t) = \langle x,f(x) \rangle, a \leq x \leq b \end{cases}$

Ans: (1) Parametrize G
 $\vec{F}(t) = \langle t,t^3 \rangle$, where $o \leq t \leq 1$
 $\vec{F}(t,t^3)$

(2) $\int \vec{F} \cdot d\vec{r} = \int \vec{F}(\vec{r}(t)) \cdot \vec{r}(t) dt$
 $\vec{F}(t,t^3)$

(3) $\vec{F}(t) = \langle t,t^3 \rangle$, where $o \leq t \leq 1$
 $\vec{F}(t,t^3)$

(4) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(5) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(6) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(7) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(8) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(9) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(10) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(11) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(12) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(13) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(14) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(15) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

(16) $\vec{F}(t) = \int (-t^3 + 3t^3) dt$

Example 11.23. Let $\mathbf{F}(x, y, z) = (x - y^2)\hat{\imath} + (y - z^2)\hat{\jmath} + (z - x^2)\hat{k}$. Let $P_0 = (0, 0, 0)$ and $P_1 = (2, 3, 4)$ be two points in \mathbb{R}^3 . Let \mathcal{C} be the union of paths \mathcal{C}_1 and \mathcal{C}_2 , where \mathcal{C}_1 is the straight line path from P_1 to (2, 3, 0) and \mathcal{C}_2 is the straight line path from (2, 3, 0) to P_1 . Evaluate the line integral:

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1 \cup \mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}.$$

If C_3 was the straight line segment from $P_0 = (0, 0, 0)$ to $P_1 = (2, 3, 4)$, would $\int_{C_3} \mathbf{F} \cdot d\mathbf{r}$ give the same result?

Given: $\vec{F}(x,y,z) = (x-y^2, y-z^2, z-x^2)$ $C = C_1 U C_2$ Union $P_0(0,0,0)$ $P_1(2,3,4)$

Goal SF.d?

1) Parametrize 6, and 62

 $\int \vec{F} \cdot d\vec{r} = \int \vec{F} \cdot d\vec{r} + \int \vec{F} \cdot d\vec{r}$

 $f_i: \vec{r}_i(t) = \langle 0,0,0 \rangle + t \langle 2,3,0 \rangle, 0 \le t \le 1$ = $\langle 2t,3t,0 \rangle, 0 \le t \le 1$

Ti(t)= (2,3,0), oet=1

 C_2 : $\vec{r}_2(t) = \langle 2,3,0 \rangle + t \langle 0,0,4 \rangle$, $0 \le t \le 1$ = $\langle 2,3,4t \rangle$, $0 \le t \le 1$

 $\vec{r}_{2}(t) = \langle 0, 0, 4 \rangle, 0 \le t \le 1$

P₀(0,0,0) P₁(2,3,4)
P₂(2,3,4)
P₃(2,3,6)

$$= \int_{0}^{1} \vec{F}(\vec{r}_{1}(t)) \cdot \vec{r}_{1}(t) dt + \int_{0}^{1} \vec{F}(\vec{r}_{2}(t)) \cdot \vec{r}_{2}(t) dt$$

$$= \int_{0}^{1} (2t - 9t^{2}, 3t, -4t^{2}) \cdot (2, 3, 0) dt + \int_{0}^{1} (2 - 9, 3 - 16t^{2}, 4t - 4) \cdot (0, 0, 4) dt$$

$$= \int_{0}^{1} (4t - 18t^{2} + 9t) dt + \int_{0}^{1} (16t - 16) dt$$

$$= \left[\frac{13}{2}t^{2} - 6t^{3} \right]_{0}^{1} + \left[8t^{2} - 16t \right]_{0}^{1}$$

$$= \frac{13}{2} - 6 + 8 - 16$$

$$= \frac{13}{2} - 14$$

$$= -\frac{15}{2}$$