

© Andrzej M. Borzyszkowski

Bazy Danych

© Andrzej M. Borzyszkowski

Danych

Bazy Danych

Andrzej M. Borzyszkowski Instytut Informatyki

Uniwersytetu Gdańskiego

materiały dostępne elektronicznie http://inf.ug.edu.pl/~amb

Dwie metodologie

- Relacyjna baza danych:
 - dane przechowywane w tabelach
 - w tabeli klucz główny plus inne atrybuty
- Diagramy encji i związków
 - encje odpowiadają realnym bytom, które modelujemy
 - naturalny podział na tabele
 - techniczne szczegóły: tabele dla związków wieloznacznych
- Inne podejście: normalizacja
 - zaczynamy od jednej tabeli dla wszystkich danych
 - tzn. integracja danych

wydzielamy tabele dla fragmentów danych

Projekt bazy danych – normalizacja

2/36

Sazy Danych

Formalne zasady projektowe

- Diagramy związków i encji
 - jedynie intuicyjny podział danych na tabele
 - jasna semantyka atrybutów i łączenia zestawów atrybutów w tabele
- Normalizacja
 - precyzyjna definicja warunków koniecznych/pożądanych
 - identyfikacja anomalii
 - pojęcie determinowania (atrybutów przez inne atrybuty)
 - warunki na możliwość/konieczność podziału danych pomiędzy tabelami

3/36

Pierwsza postać normalna

- 1 postać normalna: komórki tabeli są atomowymi wartościami
 - atrybut wielowartościowy zostaje zamieniony na powtórzenie krotek
 - atrybut złożony zostaje zamieniony na kilka atrybutów
- Przykład: w relacji (klient K JOIN zamowienie Z JOIN pozycja JOIN towar T) [K.nr, nazwisko, Z.nr, koszt wysylki, T.nr, opis, ilość]
 - atrybuty towar.nr i opis odpowiadają jednemu towarowi
 - w jednym zamówieniu może być wiele towarów, w tabeli będą powtórzenia wierszy
 - uwaga: jeśli krotność powtórzeń atrybutu wielokrotnego jest ograniczona i niewielka, można zaproponować kilka odrębnych atrybutów (np. pierwsze i drugie imię), dopuszczając wartość NULL

Tabela w 1NF

• Fragment ogólnej tabeli:

k_nr	nazwisko	z_nr	koszt	t_nr	opis	ilosc
3	Szczęsna	1	2,99	4	Linux CD	1
3	Szczęsna	1	2,99	7	wentylator	5
3	Szczęsna	12	0,99	19	zegarek	1
4	Łukowski	9	6,99	7	wentylator	5
4	Łukowski	10	0,99	7	wentylator	1
8	Kołak	2	0	4	Linux CD	2
8	Kołak	5	0	3	kostka Rubika	4
13	Soroczyński	8	5,99	13	nożyczki	3

Trzy anomalie przy zmianie zawartości tabeli: wstawianiu, usuwaniu, aktualizacji

6/36

Anomalia wstawiania

- Chcemy wprowadzić do systemu nowego klienta
 - nie ma tej możliwości bez jednoczesnego zamówienia
 - a jeśli z zamówieniem, to może dojść do wstawienia niedokładnej kopii istniejącego towaru
 - a jeśli dopuszczamy wartości NULL dla danych o zamówieniu i towarze, to konieczność ta zniknie po dalszych wstawieniach
- Teraz wprowadzamy nowy towar
 - znowu wymaga to istnienia zamówienia przez pewnego klienta
 - a jeśli dopuścimy możliwość NULL dla tych danych, to nie będzie w ogóle klucza głównego
 - bedzie możliwość wstawienia całkowicie pustej krotki

Anomalie usuwania i aktualizacji

- Anomalia usuwania
 - usuwamy dane o nożyczkach zniknie informacja o Soroczyńskim
 - usuwamy dane o Kołak zniknie informacja o kostce Rubika
 - rozwiązaniem może być wstawianie NULL przy usuwaniu ostatniej krotki
 - dopuszcza to możliwość krotki całej równej NULL
- Anomalia aktualizacji
 - poprawiamy literówkę w nazwisku "Szczęsna"
 - albo zmieniamy miejsce jej zamieszkania
 - może się okazać, że nie wszystkie wystąpienia zostaną zaktualizowane

🛭 Andrzej M. Borzyszkowski

Sazy Danych

7/36

5/36

Andrzej M. Borzyszkowski

Bazy Danych

Wartości NULL

- Semantyka NULL jest niejednoznaczna
 - nieznajomość danych
 - dane jeszcze nie wprowadzone
 - dane nie mają sensu w kontekście
- Problemy z NULL
 - wydajność zajmują miejsce w tabeli
 - nieoczywista semantyka dla funkcji agregujących
 - nieoczywista semantyka dla wartości NULL klucza obcego
 - klucz główny nie może mieć wartości NULL
- Zasada projektowa: unikać, o ile to możliwe, dopuszczania wartości NULL

th © Andrzej M. Borzyszkowski

Bazy Danych

9/36

Redundancja, przykład

Relacja
 (klient K JOIN zamowienie Z JOIN pozycja JOIN towar T)
 [K.nr, nazwisko, Z.nr, koszt_wysylki, T.nr, opis, ilość]
 spełnia zależności:

niektóre ze strzałek wychodzą z podzbioru klucza
 inne wychodzą z innych (zbiorów) atrybutów

Zależności atrybutów

Pojęcie funkcyjnej zależności (determinowania)

 X funkcyjnie determinuje Y (oznaczenie X→Y):
 wszystkie krotki o pewnych wartościach atrybutów X mają te same wartości atrybutów Y

- w szczególności: klucz funkcyjnie determinuje wszystkie pozostałe atrybuty
- np. numer indeksu studenta identyfikuje studenta
- imię i nazwisko nie identyfikuje studenta
- ale samo imię determinuje płeć
- a kod pocztowy determinuje województwo/powiat/gminę?
- Redundancja
 - gdy w relacji R występuje zależność funkcyjna X→Y oraz X nie jest kluczem kandydującym

10/36

🗈 Andrzej M. Borzyszkowski

Redundancja, przykład

- niepotrzebnie powtarzamy koszt zamówienia dla różnych towarów z tego samego zamówienie
- niepotrzebnie powtarzamy nazwisko klienta dla różnych towarów z tego samego zamówienie
- niepotrzebnie powtarzamy opis tego samego towaru
- nie możemy zapisać nazwiska klienta, który nie złożył zamówienia
- nie możemy zapisać opisu towaru niezamówionego

Bazy Danych © Andrzej M. Borzyszkowski

11/36

12/36

© Andrzej M. Borzyszkowski

Bazy Danych

można formalnie wywnioskować te zależności pochodne

Reguły wnioskowania dla zależności funkcyjnych (Armstrong)

zwrotność: X→X

uzupełnienie: X→Y pociąga XZ→Y

rzut: X→YZ pociąga X→Y

- suma: X→Y oraz X→Z pociąga X→YZ

– przechodniość: X→Y oraz Y→Z pociąga X→Z

• Zależności trywialne i nietrywialne

zawsze X⊇Y pociąga X→Y

inne zależności trzeba postulować

13/36

Andrzej M. Borzyszkowski

Bazy Danych

Andrzej M. Borzyszkowski

Rozkłady, przykład

 Fragment tabeli klient [nr, nazwisko, miasto]

nr nazwisko miasto
13 Soroczyński Tczew
5 Soroczyński Gdańsk
14 Lutomska Gdańsk

 rozkłady nieodwracalne (z utratą informacji)

nr miasto
13 Tczew
5 Gdańsk
14 Gdańsk
Lutomska
C nazwisko miasto
Soroczyński Tczew
Lutomska Gdańsk

 rozkład odwracalny (bez utraty informacji)

nr	nazwisko
13	Soroczyński
5	Soroczyński
14	Lutomska

13	Tczew
5	Gdańsk
14	Gdańsk

nr miasto

nr nazwisko nazwisko miasto nazwisko miasto nazwisko miasto nazwisko miasto nazwisko miasto nazwisko n

Rozkład odwracalny (bezstratny)

- Relacje R1,...,Rn nazywamy rozkładem odwracalnym relacji R wtedy i tylko wtedy, gdy złączenie naturalne relacji R1,...,Rn jest równe wyjściowej relacji R
 - uwaga: oczywiście relacje R1,...,Rn są wówczas rzutami relacji R
 - oraz w sumie obejmują wszystkie atrybuty relacji R
 - prawo zachowania atrybutów
- Założenie: R1 i R2 są rzutami pewnej relacji R oraz obejmują wszystkie atrybuty R
 - oczywiście złączenie naturalne R1 i R2 będzie zawierać R
 - · dlaczego?
 - pytanie: jakie warunki gwarantują, że złączenie naturalne R1 i R2 będzie równe wyjściowej relacji R, tzn nie będzie większe?

14/36

Rozkład odwracalny, tw. Heatha

- Tw. Heatha: Niech R będzie relacją, zaś A, B i C zbiorami atrybutów. Jeżeli R spełnia zależność funkcyjną A→B, wówczas relacja R jest równa złączeniu naturalnemu swoich rzutów na { A,B } i { A,C }
- Twierdzenie jest zasadniczo używane gdy A→C
 - wówczas w R występuje redundancja i rozkład jest uzasadniony
- Teza twierdzenia nie zachodzi, gdy żadna z zależności funkcyjnych nie jest spełniona:

{ MIASTO } +> { NR } oraz { MIASTO } +> { NAZWISKO }

rozkład nieodwracalny

© Andrzej M. Borz

Razy Danych

Rozkład odwracalny, tw. Heatha, c.d.

- Tw. Heatha: Niech R będzie relacją, zaś A, B i C zbiorami atrybutów. Jeżeli R spełnia zależność funkcyjną A→B, wówczas relacja R jest równa złączeniu naturalnemu swoich rzutów na { A,B } i { A,C }
- Twierdzenie jest prawdziwe gdy również A→C
 - wówczas A zawiera klucz relacji R
 - rozkład nie jest konieczny, prowadzi do związku 1-1, relacje mogły być scalone
- { NR }→{ MIASTO } oraz { NR }→{ NAZWISKO }
 - rozkład nie jest konieczny, mogła być jedna relacja, NR jest kluczem

17/36

Andrzej M. Borzyszkowski

Bazy Danych

Druga postać normalna

Relacja R jest w drugiej
 postaci normalnej wtedy
 i tylko wtedy, gdy jest w 1NF
 i wszystkie atrybuty
 nienależące do klucza zależą
 od całego klucza, a nie od
 jego części

18/36

Druga postać normalna, c.d.

- Anomalia aktualizacji
 - dane o towarach występują tylko jeden raz
 - nie ma problemu z nieprawidłową aktualizacją
 - dane klienta z wieloma zamówieniami nadal są powtarzane
- Anomalia usuwania
 - dane o kliencie związane są z jakimś zamówieniem
 - anomalia usuwania nadal jest obecna
- Anomalia wstawiania
 - analogicznie do anomalii usuwania obecna

Trzecia postać normalna

 Relacja R jest w trzeciej postaci normalnej wtedy i tylko wtedy, gdy jest w 2NF i wszystkie atrybuty nienależące do klucza zależą bezpośrednio od klucza

 innymi słowy: krotka składa się z klucza głównego i pewnej liczby atrybutów niezależnych; atrybuty te można aktualizować niezależnie od siebie

Razy Danych

© Andrzej M. Borzyszkowski

Trzecia postać normalna, c.d.

- Anomalia aktualizacji
 - dane o klientach występują tylko jeden raz
 - nie ma problemu z nieprawidłową aktualizacją
- Anomalia usuwania
 - dane o kliencie są niezależne od zamówień, można usunąć zamówienia pozostawiając dane klienta
- Anomalia wstawiania
 - również nie ma przeszkód w niezależnym wstawianiu danych o klientach czy towarach

Postaci normalne, druga i trzecia

- Każdy projekt można doprowadzić do 3 postaci normalnej
 - i powinno się doprowadzić
- W zaawansowanych zastosowaniach są powody by robić inaczej
 - kopiowane danych, by ułatwić dostęp
 - utrzymywanie danych zbiorczych (też pewien sposób kopiowania)
 - są narzędzia by uniknąć anomalii (procedury wyzwalane, reguły Postgresa)

22/36

© Andrzej M. Borzyszkowski

Trzecia postać normalna – 3NF, przykład

• [Z.nr, K.nr, nazwisko] nie jest w 3NF, ma rozkład ma dwie relacje w 3NF

Nazwisko

K_nr

z_nr	k_nr	nazwisko
12	3	Szczęsna
9	4	Łukowski

k_nr	nazwisko
3	Szczęsna
4	Łukowski

Bazy Danych © Andrzej

23/36

Andrzej M. Borzyszkowski

21/36

Trzecia postać normalna – kontrprzykład

• [Z.nr, K.nr, nazwisko] ma też inny rozkład na dwie relacje w 3NF:

każda relacja [Z.nr, K.nr, nazwisko] jest złożeniem swoich rzutów

h © Andrzej M. Borzyszkowski

Bazy Danych

- Nie jest to pożyteczny rozkład
 - nie każde złożenie relacji
 [Z_nr, K_nr] oraz
 [Z_nr, nazwisko] spełnia
 zależność funkcyjną
 K nr → nazwisko
- Każdy projekt można doprowadzić do 3 postaci normalnej bez utraty zależności

z_nr	k_nr
10	4
9	4

z_nr	nazwisko
10	Szczęsna
9	Łukowski

z_nr	k_nr	nazwisko
10	4	Szczęsna
9	4	Łukowski

25/36

Andrzej M. Borzyszkowski

Normalizacja

Rozkład do 2NF
 R (A, B, C, D)
 PRIMARY KEY (A, B)
 B → C

(C zależy od części klucza) rozkładamy następująco:

R1 (B, C)
PRIMARY KEY (B)

R2 (A, B, D)
PRIMARY KEY (A, B)
FOREIGN KEY (B)
REFERENCES R1

Rozkład do 3NF

R (A, B, C, D)
PRIMARY KEY (A)
B → C

(zależność tranzytywna A \rightarrow B \rightarrow C) rozkładamy następująco:

R1 (B, C)

PRIMARY KEY (B)

R2 (A, B, D)

PRIMARY KEY (A)

FOREIGN KEY (B)

REFERENCES R1

26/36

© Andrzej M. Borzyszkowski

Normalizacja – przykład konkretny

```
    Rozkład do 2NF
```

R (z_nr, t_nr, opis, ilość)
PRIMARY KEY (z_nr, t_nr)
t_nr → opis

rozkładamy następująco:

towar (t_nr, opis)
PRIMARY KEY (t_nr)
pozycja (z_nr, t_nr, ilość)
PRIMARY KEY (z_nr, t_nr)

FOREIGN KEY (t nr)

REFERENCES towar

Rozkład do 3NF

R (z_nr, k_nr, nazwisko, koszt) $_{x}$ PRIMARY KEY (z_nr) $_{x}$ k_nr \rightarrow nazwisko

rozkładamy następująco:

klient (k_nr, nazwisko)
PRIMARY KEY (k nr)

zamowienie (z_nr, k_nr, koszt)
PRIMARY KEY (z nr)

FOREIGN KEY (k_nr)

REFERENCES klient Skylent Skylent

Postać normalna Boyce'a-Codda – BCNF

- Relacja R jest w postaci normalnej Boyce'a/Codda (BCNF) gdy elementem determinującym każdej nietrywialnej zależności funkcyjnej jest klucz kandydujący
 - tzn. relacja R jest w BCNF gdy na diagramie zależności funkcyjnych jedynymi strzałkami wychodzącymi są strzałki wychodzące z kluczy kandydujących
 - dla 3NF nakłada się warunek jedynie dla atrybutów niebędących częścią klucza
- Okazuje się, że nie każdą relację można rozłożyć na relacje w postaci Boyce'a-Codda nie tracąc zależności funkcyjnych
 - ale można zdefiniować procedurę wyzwalaną zapewniającą zachowanie brakującej zależności funkcyjnej

SZKOŁA (STUDENT, JĘZYK, LEKTOR) UNIQUE (STUDENT, JEZYK) UNIQUE (STUDENT, LEKTOR)

- załóżmy dodatkowo, że każdy lektor prowadzi tylko jeden język
- tzn. diagram zależności funkcyjnych wygląda następująco:
- SZKOŁA nie jest w BCNF

Czwarta postać normalna

- Pojecie determinowania wielowartościowego
 - 1NF wymusza powtórzenia wierszy, gdy wartością atrybutu ma być zbiór wartości atomowych
 - X determinuje Y wielowartościowo: dla każdych dwóch krotek t1 i t2 takich, że t1[X]=t2[X] istnieją krotki t3 i t4 takie, że
 - t3[X]=t4[X]=t1[X]
 - t3[Y]=t1[Y], t4[Y]=t2[Y]
 - dla pozostałych atrybutów Z zachodzi
 - t3[Z]=t2[Z], t4[Z]=t1[Z]
 - oznaczenie: X>>Y
 - ponieważ Z gra tę samą rolę, można pisać X→Y|Z
 - fakt: jeśli X→Y, to X>>Y (dlaczego?)

BCNF, próba rozkładu

- Istnieje rozkład odwracalny relacji SZKOŁA na dwie relacje Lektor (LEKTOR, JEZYK) PRIMARY KEY (LEKTOR) **Zapis (STUDENT, LEKTOR)**
 - jedyna zależność funkcyjna to { LEKTOR }→{ JEZYK }
 - brakuje zależności { STUDENT, JĘZYK }→{ LEKTOR }
 - istnieje możliwość zapisu studenta do dwóch grup językowych tego samego języka
 - nie można aktualizować obu relacji i gwarantować zachowanie brakującej zależności funkcyjnej
- Wniosek: nie zawsze jest możliwy rozkład odwracalny na relacje spełniające BCNF z zachowanie zależności funkcyjnych ale można zdefiniować procedurę wyzwalaną zapewniającą zachowanie brakującej zależności funkcyjnej 30/36

Czwarta postać normalna, przykład

- Chcemy zapisywać dane o studentach, zapisach na lektoraty i zapisach na fakultety
 - lektoraty i fakultety są niezależne
 - typowa tabelka

•				
		nazwisko	lektorat	fakultet
	t1	Szczęsna	angielski	logika
	t2	Szczęsna	niemiecki	kryptografia
		Szczęsna	francuski	logika
	t3	Szczęsna	angielski	kryptografia
	t4	Szczęsna	niemiecki	logika
		Szczęsna	francuski	kryptografia

każda wartość lektoratu musi być skombinowana z każdą wartościa fakultetu

31/36

Andrzej M. Borzyszkowski

Czwarta postać normalna,c.d.

- Anomalie
 - wstawianie, usuwanie, aktualizacja:
 - można naruszyć warunek, że każda wartość jest do pary z każdą, można niejednolicie aktualizować wartości
 - w tym przykładzie 3NF i wcześniejsze nie są naruszone
 - bo nie ma w ogóle zależności funkcyjnych
- Rozwiązanie
 - jeśli X▶Y|Z, gdzie X,Y i Z są rozłącznymi zbiorami atrybutów, to relację R(X,Y,Z) należy podzielić na R1(X,Y) oraz R2(X,Z)
- Innymi słowy: zależność wielowartościowa (nietrywialna) oznacza, że relacja musi być złączeniem naturalnym dwóch relacii
 - 4NF: nie ma potrzeby podziału na złączenie dwóch relacji

Przykłady, gdy normalizacja nie wystarcza

- Dane zagregowane:
 - jest to pewien rodzaj kopiowania danych
 - zaleca się (w zasadzie) nie zapisywać atrybutów wynikowych
 - teoria normalizacji nie wypowiada się na ten temat
- Determinowanie bezwarunkowe
 - np. pesel determinuje date urodzenia
 - a więc nie warto w ogóle zapisywać daty urodzenia, gdy zapisuje się pesel
 - teoria normalizacji mówi jedynie o determinowaniu atrybutów zapisanych w tabeli

Piąta postać normalna

- Tabela jest w 5NF, jeśli nie jest złączeniem innych tabel
 - praktyczne znaczenie 5NF jest bliskie zera
 - jeśli wiemy z góry, że tabela jest złączeniem, to otrzymujemy rade, by ja potraktować jako złączenie

34/36

© Andrzej M. Borzyszkowski

Przykłady c.d.

- Tabele słownikowe
 - czasami problem z powtarzalnością ma charakter pragmatyczny
 - np. zapisujemy dane studentów razem z nazwą wydziału, nazwa może być długa, wielokrotne powtarzanie nazwy grozi błędami
 - jeśli zaplanujemy kolumny: album, nazwa, skrót gdzie nazwa i skrót nazwy determinują się wzajemnie, to teoria normalizacji wskaże rozkład z odrębną tabela [nazwa, skrót nazwy]

ale nie wymusi by kluczem obcym był właśnie skrót nazwy

© Andrzej M. Borzyszkowski

Bazy Danych

35/36

© Andrzej M. Borzyszkowski

Bazy Danych

© Andrzej M. Borzyszkowski