Technology module

Flex Cam _____

Reference Manual

Contents

1.1	About this documentation Document history						
1.2	Conventions used						
1.3	Definition of the notes used						
2	Safety instructions						
3	"Flex Cam" - functional description						
3.1	Overview of the functions Important notes on how to operate the technology module						
3.2	Important notes on how to operate the technology module						
3.3	Function block L_TT1P_FlexCam[Base/State]						
	3.3.1 Inputs and outputs						
	3.3.2 Inputs						
	3.3.3 Outputs						
	3.3.4 Parameters						
3.4	State machine						
3.5	Signal flow diagrams						
2.5	3.5.1 Structure of the signal flow						
3.6	Manual Jog (Jogging)						
3.7	HomingCam formats (cam handling)						
3.8 3.9	Cam formats (cam nandling)						
	Executing the cam cyclically						
3.10 3.11	Executing the cam onceExecuting the master axis with cams of variable cycle lengths						
3.12	Executing the flaster axis with cams of variable cycle lengths						
3.12	Change of cam						
3.14							
J.17	Clutching in to the cam 3.14.1 Clutching-in with "absolute" coupling mode						
	3.14.2 Clutching-in with "relative" coupling mode						
	3.14.3 Clutching-in with "ramp_pos" coupling mode						
	3.14.4 Clutching-in with "ramp_time" coupling mode						
	3.14.5 Clutching-in with "ramp_VelAcc" coupling mode						
3.15							
	3.15.1 Declutching in the "absolute"/"relative" coupling mode						
	3.15.2 Declutching in the "ramp" pos" coupling mode						
	3.15.3 Declutching in the "ramp time" coupling mode						
	3.15.4 Declutching in the "ramp_velAcc" coupling mode						
3.16	Positive opening operation / Emergency opening operation						
3.17							
	Scaling of the cam						
	3.17.2 Arithmetic examples: absolute and relative scaling factors on the part of the slave axis _						
	3.17.3 Scaling of the position via the ramp generator						
3.18	Offset for the master and slave axis						
3.19	Calculation of extreme values of a cam (Base Version)						
3.20	Path-based clutch-in of the slave axis with or without reversing						
3.21	Path-based declutching of the slave axis with or without reversing						
3.22	Scaling of the cam with or without reversing Offset for the marter and clave axis with or without reversing						
3.23	Offset for the master and slave axis with or without reversing						
3.24	Switching sequence for cams Calculation of extreme values of a cam (State version) Control of the state of						
3.25	Calculation of extreme values of a cam (State version)						
3.26	CPU utilisation (example Controller 3231 C)						
	Index						
	Your opinion is important to us						

1 About this documentation

This documentation ...

- contains detailed information on the functionalities of the "Register Control" technology module;
- is part of the "Controller-based Automation" manual collection. It consists of the following sets of documentation:

Documentation type	Subject
Product catalogue	Controller-based Automation (system overview, sample topologies) Lenze Controller (product information, technical data)
System manuals	Visualisation (system overview/sample topologies)
Communication manuals Online helps	Bus systems • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Reference manuals Online helps	Lenze Controllers: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500
Software manuals Online helps	Lenze Engineering Tools: • »PLC Designer« (programming) • »Engineer« (parameter setting, configuration, diagnostics) • »VisiWinNET® Smart« (visualisation) • »Backup & Restore« (data backup, recovery, update)

More technical documentation for Lenze components

Further information on Lenze products which can be used in conjunction with Controller-based Automation can be found in the following sets of documentation:

Pla	nning / configuration / technical data
	 Product catalogues Controller-based Automation Controllers Inverter Drives/Servo Drives
Мо	ounting and wiring
	Mounting instructions
	Hardware manuals • Inverter Drives/Servo Drives
Par	rameter setting / configuration / commissioning
	Online help/reference manuals
	Online help/communication manuals • Bus systems • Communication modules
Sar	mple applications and templates
	Online help / software and reference manuals i 700 application sample Application Samples 8400/9400 FAST Application Template Lenze/PackML

- Printed documentation
- ☐ PDF file / online help in the Lenze engineering tool

Current documentation and software updates with regard to Lenze products can be found in the download area at:

www.lenze.com

Target group

This documentation is intended for all persons who plan, program and commission a Lenze automation system on the basis of the Lenze FAST Application Software.

1.1 Document history

1.1 Document history

Version	1		Description
3.2	05/2017	TD17	Content structure has been changed. General revisions
3.1	04/2016	TD17	General revisions
3.0	10/2015	TD17	Corrections and additions Content structure has been changed.
2.1	05/2015	TD17	General revisions
2.0	01/2015	TD17	General editorial revision Modularisation of the contents for the »PLC Designer« online help
1.0	04/2014	TD00	First edition

1.2 Conventions used

1.2 Conventions used

This documentation uses the following conventions to distinguish between different types of information:

Type of information	Highlighting	Examples/notes
Spelling of numbers		
Decimal separator	Point	The decimal point is always used. For example: 1234.56
Text		
Program name	» «	»PLC Designer«
Variable names	italics	By setting <i>bEnable</i> to TRUE
Function blocks	bold	The L_MC1P_AxisBasicControl function block
Function libraries		The L_TT1P_TechnologyModules function library
Source code	Font "Courier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>
Icons		
Page reference	(🕮 6)	Reference to further information: Page number in PDF file.

Variable names

The conventions used by Lenze for the variable names of Lenze system blocks, function blocks, and functions are based on the "Hungarian Notation". This notation makes it possible to identify the most important properties (e.g. the data type) of the corresponding variable by means of its name, e.g. xAxisEnabled.

1.3 Definition of the notes used

1.3 Definition of the notes used

The following signal words and symbols are used in this documentation to indicate dangers and important information:

Safety instructions

Layout of the safety instructions:

Pictograph and signal word!

(characterise the type and severity of danger)

Note

(describes the danger and gives information about how to prevent dangerous situations)

Pictograph	Signal word	Meaning
A	Danger!	Danger of personal injury through dangerous electrical voltage Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
\triangle	Danger!	Danger of personal injury through a general source of danger Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
STOP	Stop!	Danger of property damage Reference to a possible danger that may result in property damage if the corresponding measures are not taken.

Application notes

Pictograph	Signal word	Meaning
i	Note!	Important note to ensure trouble-free operation
	Tip!	Useful tip for easy handling
(Reference to another document

2 Safety instructions

2 Safety instructions

Please observe the safety instructions in this documentation when you want to commission an automation system or a plant with a Lenze Controller.

The device documentation contains safety instructions which must be observed!

Read the documentation supplied with the components of the automation system carefully before you start commissioning the Controller and the connected devices.

Danger!

High electrical voltage

Injury to persons caused by dangerous electrical voltage

Possible consequences

Death or severe injuries

Protective measures

Switch off the voltage supply before working on the components of the automation system.

After switching off the voltage supply, do not touch live device parts and power terminals immediately because capacitors may be charged.

Observe the corresponding information plates on the device.

Danger!

Injury to persons

Risk of injury is caused by ...

- unpredictable motor movements (e.g. unintended direction of rotation, too high velocities or jerky movement);
- impermissible operating states during the parameterisation while there is an active online connection to the device.

Possible consequences

Death or severe injuries

Protective measures

- If required, provide systems with installed inverters with additional monitoring and protective devices according to the safety regulations valid in each case (e.g. law on technical equipment, regulations for the prevention of accidents).
- During commissioning, maintain an adequate safety distance to the motor or the machine parts driven by the motor.

2 Safety instructions

._____

Stop!

Damage or destruction of machine parts

Damage or destruction of machine parts can be caused by ...

- Short circuit or static discharges (ESD);
- unpredictable motor movements (e.g. unintended direction of rotation, too high velocities or jerky movement);
- impermissible operating states during the parameterisation while there is an active online connection to the device.

Protective measures

- Always switch off the voltage supply before working on the components of the automation system.
- Do not touch electronic components and contacts unless ESD measures were taken beforehand.
- If required, provide systems with installed inverters with additional monitoring and protective devices according to the safety regulations valid in each case (e.g. law on technical equipment, regulations for the prevention of accidents).

3 "Flex Cam" - functional description

[3-1] Typical mechanics of the technology module

The "Flex Cam" technology module is a generally admitted application for the implementation of cams.

- In the "Base" version, cams can be calculated and executed between the interpolation points with a polynomial of the fifth degree or by means of linear interpolation. Setting an offset and a scaling factor (in X and Y direction of the cam) for the master and slave axis can be carried out anytime within a cam using a ramp generator (continuous adjustment) or without the use of a ramp generator (abrupt adjustment). Furthermore it is possible to clutch in to the cam or declutch from the cam without step changes via various coupling modes.
- The "State" version provides an extended function range of the "Base" version:
 Here, a coupling mode without reversing is additionally provided. Furthermore the ramp
 generator can be executed for offset values and scaling factors on the master axis without
 reversing. Another function provided by the State version is that several cams can be executed
 in a specified sequence.
- ▶ Overview of the functions (□ 11)

3.1 Overview of the functions

3.1 Overview of the functions

In addition to the basic functions for operating the **L_MC1P_AxisBasicControl** function block, the **stop function** and the **holding function**, the technology module offers the following functionalities which are assigned to the "Base" and "State" versions:

Functionality	Vers	sions
	Base	State
Manual jog (jogging) (32)	•	•
Homing (III 33)	•	•
Cam formats (cam handling) (34)	•	•
Executing the cam cyclically (35)	•	•
Executing the cam once (36)	•	•
Executing the master axis with cams of variable cycle lengths (\$\square\$ 37)	•	•
Executing the slave axis with cams of variable cycle lengths (38)	•	•
Change of cam (39)	•	•
Clutching in to the cam (40)	•	•
Declutching from the cam (□ 50)	•	•
Positive opening operation / Emergency opening operation (🕮 56)	•	•
Scaling of the cam (11 57)	•	•
Offset for the master and slave axis (62)	•	•
Calculation of extreme values of a cam (Base version) (64)	•	•
Path-based clutch-in of the slave axis with or without reversing (65)		•
Path-based declutching of the slave axis with or without reversing (67)		•
Scaling of the cam with or without reversing (69)		•
Offset for the master and slave axis with or without reversing (70)		•
Switching sequence for cams (71)		•
Calculation of extreme values of a cam (State version) (72)		•

»PLC Designer« Online help

Here you will find detailed information on the **L_MC1P_AxisBasicControl** function block, the **stop function** and the **holding function**.

Important notes on how to operate the technology module 3.2

3.2 Important notes on how to operate the technology module

Setting of the operating mode

The operating mode for the slave axis has to be set to "cyclically synchronous position" (csp) because the slave axis is led via the master position value resulting from the cam.

Controlled start of the axes

Motion commands that are set in the inhibited axis state (xAxisEnabled = FALSE) after enable (xRegulatorOn = TRUE) must be activated again by a FALSE → TRUE edge.

In this way it is prevented that the drive starts in an uncontrolled manner after controller enable.

Example Manual jog (jogging) (32):

- 1. In the inhibited axis state (xAxisEnabled = FALSE), xJogPos is set to TRUE.
 - xRegulatorOn = FALSE (axis is inhibited.) ==> "READY" state (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (manual jog is to be executed.)
- 2. Enable axis.
 - xRegulatorOn = TRUE ==> "READY" state (xAxisEnabled = TRUE)
- 3. Execute manual jog.
 - xJoaPos = FALSE7TRUE ==> "JOGPOS" state

3.3 Function block L_TT1P_FlexCam[Base/State]

3.3 Function block L_TT1P_FlexCam[Base/State]

The figure shows the relation of the inputs and outputs to the "Base" and "State" versions. The additional inputs and outputs of the "State" version are shaded.

3.3 Function block L_TT1P_FlexCam[Base/State]

3.3.1 Inputs and outputs

Designator Data type		Description		ible in sion
			Base	State
MasterAxis		Reference to the master axis (master axis)	•	•
A	XIS_REF			
SlaveAxis		Reference to the slave axis	•	•
A	XIS_REF			

Inputs 3.3.2

Designator Data type	Description		Available in version	
			Base	State
xEnableInternalControl BOOL	TRUE	In the visualisation, the internal control of the axis can be selected via the "Internal Control" axis.	•	•
xEnable	Executio	n of the function block	•	•
BOOL	TRUE	The function block is executed.		
	FALSE	The function block is not executed.		
scCtrlABC scCtrl_ABC	• scCtr • If the • The s	ructure for the L_MC1P_AxisBasicControl function block IABC can be used in "Ready" state. re is a request, the state changes to "Service". tate change from "Service" back to "Ready" takes place if are no more requests.	•	•
xResetError BOOL	TRUE	Reset axis error or software error.	•	•
xRegulatorOn BOOL	TRUE	Activate controller enable of the axis (via the MC_Power function block).	•	•
xStop BOOL	TRUE	Cancel the active movement and brake the axis to a standstill with the deceleration defined via the IrStopDec parameter. • The state changes to "Stop". • The technology module remains in the "Stop" state as long as xStop is set to TRUE (or xHalt = TRUE). • The input is also active with "Internal Control".	•	•
xHalt BOOL	TRUE	Cancel the active movement and brake the axis to a standstill with the deceleration defined via the IrHaltDec parameter. • The state changes to "Stop". • The technology module remains in the "Stop" state as long as xStop is set to TRUE (or xHalt = TRUE).	•	•
scPar L_TT1P_scPar_FlexCam[Base_/State]	module.	imeter structure contains the parameters of the technology type depends on the version used (Base/State).	•	•
xJogPos BOOL	TRUE	Traverse axis in positive direction (manual jog). If xJogNeg is also TRUE, the traversing direction selected first remains set.	•	•
xJogNeg BOOL	TRUE	Traverse axis in negative direction (manual jog). If xJogPos is also TRUE, the traversing direction selected first remains set.	•	•
xHomeExecute	The inpu	it is edge-controlled and evaluates the rising edge.	•	•
BOOL	FALSE7 TRUE	Start homing. The function is aborted via the xStop input.		
xHomeAbsSwitch BOOL	TRUE	Connection for reference switch: For homing modes with a reference switch, connect this input to the digital signal which maps the state of the reference switch.	•	•
xEnableHWLimit BOOL	TRUE	The evaluation of the travel range limit switch (hardware limit switch) is activated.	•	•

3

Designator [Designator Description Data type		ion		able in sion
				Base	State
xHWLimitPos	BOOL	Connect	hardware limit switch this input to the corresponding digital input that is ed to the limit switch.	•	•
		TRUE	The positive hardware limit switch has been reached or approached. • The xHwLimitSwitchPos output is also set to TRUE. • The axis is brought to a standstill with the deceleration in the alrStopDec parameter. • The state changes to "ERROR" with the error message '20500' (HWLimitPos).		
xHWLimitNeg	BOOL	Connect	e hardware limit switch this input to the corresponding digital input that is ed to the limit switch.	•	•
		TRUE	 The negative hardware limit switch has been reached or approached. The xHwLimitSwitchNeg output is also set to TRUE. The axis is brought to a standstill with the deceleration in the alrStopDec parameter. The state changes to "ERROR" with the error message '20501' (HWLimitNeg). 		
xSyncCam	BOOL	TRUE	Clutch in to the cam, according to the coupling mode in the "eSyncMode" parameter. • The xSyncOutInstant input is executed with a higher priority. • As long as the input xSyncOutInstant is set to TRUE, clutch-in to the cam is not possible.	•	•
		FALSE	Declutch from the cam, according to the coupling mode in the "eSyncMode" parameter.		
xSyncOutInstant	BOOL	TRUE	Immediate declutching from the cam • The slave axis is brought to a standstill with the deceleration from the IrSyncOutInstantDec parameter. • The coupling mode in the "eSyncMode" parameter has no impact here.	•	•
xCamChangeInstant	t BOOL	currently	rising edge (FALSE TRUE), a change-over from the y used cam to the newly created cam takes place in the clock cycle.	•	•
IrSetOffsetMaster	LREAL	The resu master a • Unit:	osition offset of the master axis he resulting X position of the cam is produced by addition of the haster axis position to the "IrSetOffsetMaster" offset. • Unit: units • Initial value: 0		•
IrSetOffsetSlave	LREAL	The resu Y positio • Unit:	osition offset of the slave axis the resulting position of the slave axis is produced by addition of the position and the "IrSetOffsetSlave" offset. Unit: units Initial value: 0		•
IrSetScalingMaster	LREAL	The resu the mass factor. Negative	actor of the master axis Iting X position of the cam is produced by multiplication of ter axis position with the "IrSetScalingMaster" X scaling e values are not permitted. I value: 1	•	•

Designator Data type	Description		Available in version	
			Base	State
IrSetScalingSlave LREAL	The resu by multi scaling for Negative	actor of the slave axis Iting extended/compressed Y setpoint position is produced plication of the Y cam value with the "IrSetScalingSlave" Y actor. e values are not permitted. I value: 1	•	•
CamTable1 MC_CAM_REF	Reference	e to the cam 1	•	•
CamTable2 MC_CAM_REF	Referenc	e to the cam 2		•
CamTable3 MC_CAM_REF	Referenc	e to the cam 3		•
CamTable4 MC_CAM_REF	Referenc	e to the cam 4		•
eSetCamTable L_TT1P_CamTable		n of a cam lue: 1 (cam 1)		•
	1	Cam 1		
	2	Cam 2		
	3	Cam 3		
	4	Cam 4		
xCamSequencer BOOL	TRUE	Activate switching sequence for cams. Cams are executed according to the switching sequence in the eCamSequenceMode parameter.		•

Outputs 3.3.3

Designator Data type	Descript	ion		able in sion
			Base	State
xInternalControlActive BOOL	TRUE	The internal control of the axis is activated via the visualisation. (xEnableInternalControl input = TRUE)	•	•
eTMState L TT1P States		state of the technology module machine (27)	•	•
scStatusABC scStatus_ABC	Structur	e of the status data of the L_MC1P_AxisBasicControl block	•	•
xError BOOL	TRUE	There is an error in the technology module.	•	•
xWarning BOOL	TRUE	There is a warning in the technology module.	•	•
eErrorID L_IE1P_Error		error or warning message if xError = TRUE or g = TRUE.	•	•
		chnology modules" reference manual: u can find information on error or warning messages.		
scErrorInfo L_TT1P_scErrorInfo		ormation structure for a more detailed analysis of the error	•	•
scSignalFlow L_TT1P_scSF_FlexCam[Base/ State]	The data	e of the signal flow a type depends on the version used (Base/State). flow diagrams (🕮 28)	•	•
xAxisEnabled BOOL	TRUE	The axis is enabled.	•	•
xDone BOOL	TRUE	The request/action has been completed successfully.	•	•
xBusy BOOL	TRUE	The request/action is currently being executed.	•	•
xIsHomed BOOL	TRUE	The axis has been referenced (reference known).	•	•
IrSetOffsetMasterOut LREAL			•	•
IrSetOffsetSlaveOut LREAL	Position • Unit:	offset between the Y position and the slave axis position units	•	•
xHwLimitSwitchPos BOOL	TRUE	The positive hardware limit switch has been reached or approached. • The xHwLimitPos input has to be connected to the digital input that is connected to the limit switch. • The xHWLimitPos input is also set to TRUE. • The drive is brought to a standstill with the deceleration set in the IrStopDec parameter. • The state changes to "ERROR" with the error message '20500' (HWLimitPos).	•	•
xHwLimitSwitchNeg BOOL	TRUE	The negative hardware limit switch has been reached or approached. • The xHwLimitNeg input has to be connected to the digital input that is connected to the limit switch. • The xHWLimitNeg input is also set to TRUE. • The drive is brought to a standstill with the deceleration set in the IrStopDec parameter. • The state changes to "ERROR" with the error message '20501' (HWLimitNeg).	•	•

Designator Data type		Description		Available in version		
				Base	State	
xSwLimitEnabled	BOOL	TRUE	Activate the monitoring of the software limit positions.	•	•	
xSwLimitSwitchActive	BOOL	TRUE	A software limit position has been reached or exceeded. • The drive is brought to a standstill with the deceleration set in the IrStopDec parameter. • The state changes to "ERROR" with error message '20306' (SWLimitPos) or '20307' (SWLimitNeg).	•	•	
xCamSynchronised	BOOL	TRUE	The Y axis is synchronised with the cam.	•	•	
xAccDecSync	BOOL	TRUE	The synchronisation function is active. The axis is synchronised or desynchronised (clutch opens or closes).	•	•	
xEndOfProfile	BOOL	TRUE	Last cycle in the current cam profile The current values are extrapolated for detection. The signal is applied for one clock cycle.	•	•	
IrSetXPosOut	LREAL		of the X axis from the cam units	•	•	
IrSetXVelOut	LREAL		of the X axis from the cam units/s	•	•	
IrSetXAccOut	LREAL		tion of the X axis from the cam units/s ²	•	•	
IrSetYPosOut	LREAL		osition of the Y axis from the cam Unit: units			
IrSetYVelOut	LREAL		peed of the Y axis from the cam Unit: units/s			
IrSetYAccOut	LREAL		celeration of the Y axis from the cam Unit: units/s ²			
IrActSlavePos	LREAL		rrent position of the slave axis Unit: units			
IrActSlaveVel	LREAL	I	rrent velocity of the slave axis Unit: units/s		•	
IrSlaveMaxPos	LREAL	The calc to TRUE.	aximum position of the slave axis e calculation is carried out when the xCamBounds input is set		•	
IrSlaveMinPos	LREAL			•	•	
IrSlaveMaxVel	LREAL	This valuer IrMaster The calcuto TRUE.	aximum velocity of the slave axis is value will be reached if the master axis is executed in the MasterVelMax parameter with maximum speed. e calculation is carried out when the xCamBounds input is set			
IrSlaveMaxAcc	LREAL	This valu IrMaster accelera carried c	m acceleration of the slave axis we will be reached if the master axis is executed in the VelMax parameter with maximum speed and maximum tion in the IrMasterAccMax parameter. The calculation is out when the xCamBounds input is set to TRUE. units/s ²	•	•	

Designator Data type	Descript	Description		
			Base	State
eSetCamTableOut	Currentl	y switched cam		•
L_TT1P_CamTable	1	Cam 1		
	2	Cam 2		
	3	Cam 3		
	4	Cam 4		
xCamSequencerActive BOOL	TRUE	Switching sequence for cams is active. Cams are executed according to the switching sequence in the eCamSequenceMode parameter.		•

Function block L_TT1P_FlexCam[Base/State]

3.3.4 Parameters

L_TT1P_scPar_FlexCam[Base/State]

The **L_TT1P_scPar_FlexCam[Base/State]** structure contains the parameters of the technology module.

Designator Data type		Description	Available in version	
			Base	State
IrStopDec L	LREAL	Deceleration for the stop function and when hardware/software limit switches and the following error monitoring function are triggered • Unit: units/s² • Initial value: 10000	•	•
IrStopJerk L	LREAL	Jerk for the stop function and for the triggering of the hardware limit switches, software limit positions, and the following error monitoring function • Unit: units/s³ • Initial value: 100000	•	•
IrHaltDec L	LREAL	Deceleration for the holding function Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s² • Initial value: 3600 • Only positive values are permissible.	•	•
IrJerk L	LREAL	Jerk for compensation in the case of an offset value, clutch or holding function • Unit: units/s³ • Initial value: 100000	•	•
lrJogJerk L	LREAL	Jerk for manual jog • Unit: units/s³ • Initial value: 10000	•	•
lrJogVel L	LREAL	Maximum speed to be used for manual jog. • Unit: units/s • Initial value: 10	•	•
IrJogAcc L	LREAL	Acceleration for manual jog Specification of the maximum speed variation which is to be used for acceleration. • Unit: units/s ² • Initial value: 100	•	•
IrJogDec L	LREAL	Deceleration for manual jog Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s ² • Initial value: 100	•	•
IrHomePosition L	LREAL	Home position for a reference run (homing) • Unit: units • Initial value: 0	•	•
xUseHomeExtParameter BOOL		Selection of the homing parameters to be used • Initial value: FALSE	•	•
		FALSE The homing parameters defined in the axis data are used. TRUE The scHomeExtParameter homing parameters from the application are used.		
scHomeExtParameter L_MC1P_HomeParan	neter	Homing parameters from the application		

3 3.3

Designator Data type	Description		ible in sion
		Base	State
scHomeExtTP MC_TRIGGER_REF	Transfer of an external touch probe event Only relevant for "external encoder" touch probe configuration. For describing the MC_TRIGGER_REF structure, see the MC_TouchProbe function block.	•	•
eSyncMode L_TT1P_ClutchMode	Mode for the clutch-in/declutch process • Initial value: 0 (absolute)	•	•
	0 absolute: Immediate coupling; the slave position is set to the Y position.		
	relative: Immediate coupling; the slave position is set to the Y position with a relative reference.		
	2 ramp_pos: Path-based coupling to the cam		
	3 ramp_time: Time-based coupling within a time slot		
	4 ramp_VelAcc: Profile-based coupling via parameters IrSyncVel, IrSyncAcc, IrSyncDec, IrSyncJerk		
eSyncDirection L_TT1P_ClutchDirection	Clutch-in direction relating to the movement of the master axis The coupling process is started when the master axis rotates in the valid direction. Initial value: 0 (mcCurrentDirection)	•	•
	-1 mcNegativeDirection: Clutch-in in negative direction of the master axis		
	0 mcCurrentDirection: Clutch-in in both directions of the master axis		
	1 mcPositiveDirection: Clutch-in in positive direction of the master axis		
lrMasterSyncInDist LREAL	Distance of the clutch-in movement of the master axis in the path- based coupling mode (parameter eSyncMode = 2) • Unit: units • Initial value: 100	•	•
IrMasterSyncInPos LREAL	The master setpoint position in the path-based coupling mode (parameter eSyncMode = 2) from which the clutch is fully closed. • Unit: units • Initial value: 0	•	•
IrMasterSyncOutDist LREAL	Distance of the declutch movement of the master axis in the path- based coupling mode (parameter eSyncMode = 2) • Unit: units • Initial value: 100	•	•
IrSlaveSyncOutPos LREAL	Declutch setpoint position of the slave axis in the • path-based coupling mode (parameter eSyncMode = 2) • time-controlled coupling mode (eSyncMode = 3) • profile-based coupling mode (eSyncMode = 4) In this position, the slave axis is stopped when the declutch process has been completed. • Unit: units • Initial value: 0	•	•
lrSyncInTime LREAL	Duration of the clutch-in process in the time-based coupling mode (parameter eSyncMode = 3) • Unit: s • Initial value: 5	•	•

3 3.3

Designator Data type		Description		Available in version		
				Base	State	
IrSyncOutTime	LREAL	(parame • Unit:	Ouration of the declutch process in the time-based coupling mode (parameter eSyncMode = 3) • Unit: s • Initial value: 5			
IrSyncOutInstantDec	LREAL	xSyncOu • Unit:	ccleration for declutching from the cam when the yncOutInstant input is set to TRUE. Unit: units/s ² Initial value: 10000			
IrSyncVel	LREAL	eSyncMo • Unit:	aximum speed at which the clutch-in/declutch process in mode yncMode = 4 (ramp_VelAc) is to be carried out. Unit: units/s Initial value: 100			
IrSyncAcc	LREAL	eSyncMo Specifica accelera • Unit:	celeration for the clutch-in/declutch process in mode yncMode = 4 (ramp_VelAc) ecification of the maximum speed variation which is to be used for celeration. Unit: units/s ² Initial value: 1000			
IrSyncDec	LREAL	eSyncMo Specifica decelera • Unit:	celeration for the clutch-in/declutch process in mode yncMode = 4 (ramp_VelAc) ecification of the maximum speed variation which is to be used for celeration to standstill. Unit: units/s ² Initial value: 1000			
lrSyncJerk	LREAL	(ramp_V • Unit:	rk for the clutch-in/declutch process in mode eSyncMode = 4 amp_VelAc) • Unit: units/s ³ • Initial value: 1000000			
xCamCyclic		TRUE	The cam is executed cyclically. (Initial value)	•	•	
	REAL	FALSE	The cam is executed once.			
xMasterAbsolute	BOOL		e to the position of the master axis I value: TRUE	•	•	
		TRUE	Absolute reference between the position of the master axis and the cam			
		FALSE	Relative reference between the position of the master axis and the cam			
xSlaveAbsolute	REAL	I	te to the position of the slave axis	•	•	
		TRUE	Absolute reference between the position of the slave axis and the cam			
		FALSE	Relative reference between the position of the slave axis and the cam (initial value)			
eOffsetModeMaster L_TT1P_OffsetMode		IrSetOffs	r accepting the offset for the master axis (input setMaster) I value: 0 (x_zero)	•	•	
		0	x_zero: Acceptance of the offset in the "zero crossing" of the cam			
		1	direct: Immediate acceptance of the offset			
			ramp_in: Acceptance of the offset via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk			

3

Designator Data type	Descript	ion	Available in version		
			Base	State	
eOffsetModeSlave L_TT1P_OffsetMode	IrSetOffs	r accepting the offset for the slave axis (input setSlave) I value: 0 (x_zero)	•	•	
	0	x_zero: Acceptance of the offset in the "zero crossing" of the cam			
	1	direct: Immediate acceptance of the offset			
	2	ramp_in: Acceptance of the offset via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk			
IrOffsetScalingMasterVel LREAL	change • Unit:	on of the speed for compensating an offset and scaling units/s I value: 100	•	•	
IrOffsetScalingMasterAcc LREAL	scaling o	mitation of the acceleration for compensating an offset and caling change • Unit: units/s ² • Initial value: 1000			
IrOffsetScalingMasterDec LREAL	scaling o	imitation of the deceleration for compensating an offset and caling change • Unit: units/s ² • Initial value: 1000			
eScalingModeMaster L_TT1P_ScalingMode	IrSetScal	r accepting the scaling factor for the master axis (input ingMaster) I value: 0 (x_zero)	•	•	
	0	x_zero: Scaling in the "zero crossing" of the cam			
	1	absolute: Absolute scaling of the position			
	2	relative: Relative scaling of the position, absolute scaling of the speed			
	3	ramp_absolute: Absolute scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk			
	4	ramp_relative: Relative scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk			

3

Designator Data type	Description		able in sion
			State
eScalingModeSlave L_TT1P_ScalingMode	Mode for accepting the scaling factor for the slave axis (input IrSetScalingSlave) • Initial value: 0 (x_zero)	•	•
	0 x_zero: Scaling in the "zero crossing" of the cam		
	1 absolute: Absolute scaling of the position		
	2 relative: Relative scaling of the position, absolute scaling of the speed		
	ramp_absolute: Absolute scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk		
	4 ramp_relative: Relative scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk		
IrOffsetScalingSlaveVel LREAL	mitation of the speed for compensating an offset and scaling nange • Unit: units/s • Initial value: 100		•
IrOffsetScalingSlaveAcc LREAL	nitation of the acceleration for compensating an offset and ling change Unit: units/s ² Initial value: 1000		•
IrOffsetScalingSlaveDec LREAL	Limitation of the deceleration for compensating an offset and scaling change • Unit: units/s ² • Initial value: 1000	•	•
xCalcCamBounds BOOL	TRUE Extreme values of the slave axis (IrSlaveMaxPos, IrSlaveMinPos, IrSlaveMaxVel, IrSlaveMaxAcc) are calculated as a function of the parameters IrMasterMaxVel and IrMasterMaxAcc.	•	•
lrMasterMaxVel LREAL	Maximum speed of the master axis for checking the cams • Unit: unit/s • Initial value: 100	•	•
IrMasterMaxAcc LREAL	Maximum acceleration of the master axis for checking the cams • Unit: units/s² • Initial value: 1000	•	•
ePosCtrlDirection L_TT1P_Direction	Direction select for the ramp generator of the X axis and the clutch to the position • Initial value: 0 (both)		•
	0 Both: The slave axis may travel in positive and negative direction. Reversing of the X axis is permissible.		
	1 Master direction: The slave axis may only travel in the same direction as the master axis.		

Designator Data type	Descript	Description		ible in sion
			Base	State
eCamSequenceMode L_TT1P_CamSequenceMode	The swit	g sequence of the cams ching sequence is enabled via the xCamSequencer input I value: 0 (execute cam 1 cyclically)		•
	0	Execute cam 1 cyclically		
	1	Execute cam 3 cyclically		
	2	 • xCamSequncer = TRUE: cam 1 → execute cam 3 cyclically • xCamSequncer = FALSE: cam 3 → cam 1 		
	3	 • xCamSequncer = TRUE: cam 1 → cam 2 → execute cam 3 cyclically • xCamSequncer = FALSE: cam 3 → cam 4 → cam 1 		

3.4 State machine

3.4 State machine

- [3-2] State machine of the technology module
 - (*1 In the "Ready" state, xRegulatorOn has to be set to TRUE.
 - (*2 In the "ERROR" state, xResetError has to be set to TRUE in order to acknowledge and reset the errors.

3.5 Signal flow diagrams

3.5 Signal flow diagrams

The illustrations show the main signal flow of the functions implemented.

The signal flow of the additional functions such as "manual jog" is not displayed here.

[3-3] Signal flow: Flex Cam

[3-4] Signal flow: conversion from the master axis position to the X position

3.5 Signal flow diagrams

._____

[3-5] Signal flow: conversion from the Y position to the slave axis position

3.5 Signal flow diagrams

3.5.1 Structure of the signal flow

L_TT1P_scSF_FlexCam[Base/State]

The contents of the **L_TT1P_scSF_FlexCam[Base/State]** structure are read-only and offer a practical diagnostics option within the signal flow (<u>Signal flow diagrams</u> (<u>Q1 28</u>)).

Designator Data type	Description			able in sion
			Base	State
IP01_IrSetScalingMaster LREAL	The resu the mass factor. Negative	Scaling factor of the master axis The resulting X position of the cam is produced by multiplication of the master axis position with the "IrSetScalingMaster" X scaling factor. Negative values are not permitted. Initial value: 1		
IP02_eScalingModeMaster L_TT1P_ScalingMode	IrSetScal	r accepting the scaling factor for the master axis (input lingMaster) I value: 0	•	•
	0	x_zero: Scaling in the "zero crossing" of the cam		
	1	absolute: Absolute scaling of the position		
	2	relative: Relative scaling of the position, absolute scaling of the speed		
	3	ramp_absolute: Absolute scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk	_	
	4	ramp_relative: Relative scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk		
IP03_IrSetOffsetMaster LREAL	The resu master a • Unit:	offset of the master axis Iting X position of the cam is produced by addition of the axis position to the "IrSetOffsetMaster" offset. units I value: 0	•	•
IP04_IrSetOffsetSlave LREAL	The resu Y positio • Unit:	offset of the slave axis Iting position of the slave axis is produced by addition of the on and the "IrSetOffsetSlave" offset. units I value: 0	•	•
IP05_eOffsetModeSlave L_TT1P_OffsetMode	IrSetOffs	r accepting the offset for the slave axis (input setSlave) I value: 0	•	•
	0	x_zero: Acceptance of the offset in the "zero crossing" of the cam		
	1	direct: Immediate acceptance of the offset		
	2	ramp_in: Acceptance of the offset via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk		

3 3.5

Designator Data type	Description		able in sion
		Base	State
IPO6_IrSetScalingSlave LREAL The resulting extended/compressed Y setpoint position is produce by multiplication of the Y cam value with the "IrSetScalingSlave" Y scaling factor. Negative values are not permitted. Initial value: 1		•	•
IP07_eScalingModeSlave L_TT1P_ScalingMode	Mode for accepting the scaling factor for the slave axis (input rSetScalingSlave) • Initial value: 0		•
	0 x_zero: Scaling in the "zero crossing" of the cam		
	absolute: Absolute scaling of the position		
	2 relative: Relative scaling of the position, absolute scaling of the speed		
	ramp_absolute: Absolute scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk		
	4 ramp_relative: Relative scaling of the position via the ramp generator with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk		
IP08_CamTable1 MC_CAM_REF	Reference to the cam 1	•	•
IP09_CamTable2 MC_CAM_REF	Reference to the cam 2		•
IP10_CamTable3 MC_CAM_REF	Reference to the cam 3		•
IP11_CamTable4 MC_CAM_REF	Reference to the cam 4		•
MP01_IrSetMasterPos	Set position of the master axis • Unit: units	•	•
MP02_lrSetSlavePos LREAL	Set position of the slave axis • Unit: units	•	•
MP03_IrConvertMasterTo XPos LREAL	Calculated position of the X axis • Unit: units	•	•
MP04_IrCamProfilerPosOut LREAL	Y position from the cam generator • Unit: units	•	•
MP05_IrSetYPos	Resulting position of the Y axis • Unit: units	•	•
MP06_IrConvertYToSlavePos LREAL	Calculated position of the slave axis • Unit: units	•	•
OP01_IrSetXPosOut	osOut Position of the X axis from the cam		•
OP02_IrSetYPosOut LREAL	Position of the Y axis from the cam • Unit: units	•	•

3.6 Manual jog (jogging)

3.6 Manual jog (jogging)

Precondition

- The technology module is in the "Ready" state.
- The slave axis is enabled (xRegulatorOn = TRUE).

Execution

For manual jog of the axis, the manual jog speed IrJogVel is used.

If the *xJogPos* input is TRUE, the axis is traversed in positive direction and if the *xJogNeg* input is TRUE, the axis is traversed in negative direction. The axis is executed for as long as the input remains set to TRUE.

The current travel command cannot be replaced by another jog command. Only if both inputs have been reset, the State machine (27) changes to the "Ready" state again.

Parameters to be set

The parameters for the manual jog are located in the <u>L_TT1P_scPar_FlexCam[Base/State]</u> (<u>LL_21</u>) parameter structure.

The parameter values can be changed during operation. They are accepted when the xJogPos or xJogNeg input is set to TRUE again.

3.7 Homing

3.7 Homing

Precondition

- The technology module is in the "Ready" state.
- The slave axis is enabled (xRegulatorOn = TRUE).

Execution

Homing is started with a rising edge (FALSE TRUE) at the *xHomeExecute* input. The axis will be travelling until the home position is reached. After successful homing, the <u>State machine</u> (27) changes back again to the "Ready" state.

The homing process is <u>not</u> interrupted if the *xHomeExecute* input is set to FALSE too early. The function is aborted via the *xStop* input.

Parameters to be set

The parameters for homing are located in the <u>L_TT1P_scPar_FlexCam[Base/State]</u> (\square 21) parameter structure.

```
xUseHomeExtParameter : BOOL := FALSE;
lrHomePosition : LREAL := 0.0;
scHomeExtParameter : L_MC1P_HomeParameter;
scHomeExtTP : MC_TRIGGER_REF;
```

3.8 Cam formats (cam handling)

3.8 Cam formats (cam handling)

The input format for the cam is defined in the MC_CAM_REF function block. This facilitates handling the cam data. An additional use of the MC_CamTableSelect function block is <u>not</u> required.

Cams from the »Cam Editor« are supported.

- Data model: segments or point table
- Law of motion: line (linear), polynomial of the fifth degree

Note!

During the travel process of a cam, the interpolation points within the structure must not be changed.

The cam data, basic conditions, or interpolation points are not copied internally, but are directly used for motion control by the technology module. Changing the data has a direct impact on the currently active cam.

3.9 Executing the cam cyclically

With the parameter *xCamCyclic* = TRUE, the cams are executed cyclically in succession.

If the position of the master axis is outside the defined range of the X axis, it is included in the calculation of the cam, i.e. from the 2nd cam onwards the reference to the master position is relative.

In this way, cam-dependent cycle lengths can be implemented without having to adapt the "external" modulo cycle length of the master axis. However, in this case, the absolute assignment between the master pulse and the profile pulse gets lost.

[3-6] Characteristic: Executing the cam cyclically

3.10 Executing the cam once

With the parameter *xCamCyclic* = FALSE, the cam is executed once.

If the master position is outside the cam defined, the last valid value is output.

[3-7] Characteristic: Executing the cam once

3.11 Executing the master axis with cams of variable cycle lengths

3.11 Executing the master axis with cams of variable cycle lengths

The master axis has a constant cycle length. In order to be able to execute cams with variable cycle lengths, a technology module-internal X axis with variable cycle lengths is used.

The X axis is coupled with the master axis via the parameters speed, acceleration and jerk. In order to establish the reference of the position between the X axis and the master axis, the xMasterAbsolute parameter is used. This always refers to the first start/cycle of the currently active cam:

xMasterAbsolute = FALSE

The X position of the cam is executed in a way that is relative with regard to the master position. For this purpose, the starting point of the X axis is set to the start of the cam when the cam is activated. In this way, cam-dependent cycle lengths can be implemented without having to adapt the "external" modulo cycle length of the master axis. However, the absolute assignment of the master cycle and the cam X cycle gets lost.

• xMasterAbsolute = TRUE

The master position is included directly in the cam calculation.

For this purpose, the X position is directly set to the master position when the cam is activated. The cycle assignment between the master cycle and the cam X cycle is always maintained if the X cycle length of the modulo cycle length corresponds to the master axis.

If the X cycle length is set so that it does not equal the modulo cycle length of the master axis, the relative reference to the master axis is set automatically after the first cam cycle (see above, xMasterAbsolute = FALSE).

3.12 Executing the slave axis with cams of variable cycle lengths

3.12 Executing the slave axis with cams of variable cycle lengths

The slave axis has a constant cycle length. In order to be able to execute cams with variable cycle lengths, a technology module-internal Y axis with variable cycle lengths is used.

The slave axis is coupled with the Y axis via the parameters speed, acceleration and jerk. In order to establish the reference of the position between the Y axis and the slave axis, the xSlaveAbsolute parameter is used. This always refers to the first start/cycle of the currently active cam:

xSlaveAbsolute = FALSE

When the cam is activated for the first time, an internal offset is set between the current slave position and the Y starting position. This activates the cam without any step changes of the slave axis. Cam-dependent cycle lengths can be implemented without having to adapt the "external" modulo cycle length of the slave axis. However, in this case, the absolute assignment between the slave cycle and the Y cycle of the cam gets lost.

xSlaveAbsolute = TRUE

The position of the slave axis is set to the Y position from the cam.

During the second cam cycle, the position of the slave axis is calculated in a manner that is relative to the Y axis. The cycle assignment between the cam Y cycle and the slave axis modulo cycle is always maintained if the Y cycle length corresponds to the modulo cycle length of the slave axis.

If the Y cycle length is set so that it does not equal the modulo cycle length of the slave axis, the relative reference to the slave axis is set automatically after the first cam cycle (see above, xMasterAbsolute = FALSE).

3.13 Change of cam

3.13 Change of cam

Note!

During the travel process of a cam, the interpolation points within the structure must not be changed.

The cam data, basic conditions, or interpolation points are not copied internally, but are directly used for motion control by the technology module. Changing the data has a direct impact on the currently active cam.

If the cam is changed at the *CamTable1* input during operation, this change is only accepted at the cam end of the slave axis after the *xEndOfProfile* output has been set to TRUE. The cam end is the end point of the cam at which the Y-side end point ends in the representation. Therefore it is ensured that the cam is always switched over at the Y-side cam end, even with an X offset available.

A plausibility check as to whether the cams are fitting together is not carried out and must be ensured by the user.

Via input xCamChangeInstant = TRUE, an immediate cam change can be forced. When a change-over is active, the data of the new cam are accepted immediately. A repeated coupling process does not take place.

3.14 Clutching in to the cam

3.14 Clutching in to the cam

The clutch-in process of the slave axis to the position of the cam (resulting Y position of the cam including the Y offset and Y scaling) is carried out by input xSyncCam = TRUE.

Changes in the Y offset or the Y scaling factor during the clutch-in process are not accepted. These parameters are internally "frozen" at the start of the clutch-in process and are only re-enabled when the slave axis is successfully coupled to the Y position of the cam.

For the clutch-in process, the coupling mode can be defined via the *eSyncMode* parameter in the L_TT1P_scPar_FlexCam[Base/State] (\(\mathref{L}\) 21) parameter structure:

Coupling mode eSyncMode	More information
0 (absolute)	► Clutching-in with "absolute" coupling mode (□ 41)
1 (relative)	► Clutching-in with "relative" coupling mode (□ 42)
2 (ramp_pos)	► Clutching-in with "ramp_pos" coupling mode (□ 43)
3 (ramp_time)	► Clutching-in with "ramp_time" coupling mode (□ 46)
4 (ramp_VelAcc)	► Clutching-in with "ramp_VelAcc" coupling mode (□ 48)

3.14 Clutching in to the cam

3.14.1 Clutching-in with "absolute" coupling mode

The position, speed, and acceleration of the slave axis are set directly to the resulting Y position of the cam.

In order to avoid irregularities in the drive movement, the slave axis first must be traversed to the resulting Y position of the cam, or it has to be there already. If this cannot be ensured, an alternative coupling mode must be set.

[3-8] Characteristic: clutch-in process with eSyncMode = 0 (absolute)

3.14.2 Clutching-in with "relative" coupling mode

The position, speed, and acceleration of the slave axis are set directly to the resulting Y position of the cam.

In contrast to the "absolute" mode, the slave axis does not have to be located in the resulting Y position of the cam. This brings about an offset between the position of the slave axis and the resulting Y position of the cam.

In order to avoid irregularities in the drive movement, the master axis must be at a standstill during the clutch-in process.

[3-9] Characteristic: clutch-in process with eSyncMode = 1 (relative)

3.14 Clutching in to the cam

3.14.3 Clutching-in with "ramp_pos" coupling mode

The slave axis is positioned to the resulting Y position of the cam in a path-based fashion via a polynomial of the fifth degree.

In this mode, the slave axis can synchronise to a cam movement that is already running, providing the possibility that the clutch-in process takes several cam cycles, the transition to cam operation taking a bit longer.

Via the eSyncDirection parameter, the clutch-in direction relating to the direction of rotation of the master axis is set.

The *IrMasterSyncInPos* parameter determines the position of the master axis from which the slave axis is to be synchronised.

The IrMasterSyncInDist parameter is used to define the distance of the master axis over which the slave axis is traversed to the curve position. The slave axis can only be synchronised to the Y position of the cam whilst the master axis is running.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 2;
eSyncDirection : L_TT1P_SyncDirection := 0; // [mcCurrentDirection]
lrMasterSyncInPos : LREAL := 0;
lrMasterSyncInDist : LREAL := 100;
```

[3-10] Characteristic: clutch-in process with eSyncMode = 2 (ramp_pos)

[3-11] Characteristic: clutch-in process with eSyncMode = 2 (ramp_pos) and eSyncDirection = 1 (positive direction)

3.14 Clutching in to the cam

3.14.4 Clutching-in with "ramp_time" coupling mode

The slave axis clutches in to the resulting Y position of the cam from its current position via a polynomial of the fifth degree within a defined time (parameter *lrSyncInTime*). The movement is executed within the cycle of the modulo axes.

This coupling mode is irrespective of the movement of the master axis. The slave axis is also synchronised to the Y position of the cam whilst the master axis is at a standstill.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 3;
eSyncDirection : L_TT1P_SyncDirection := 0; // [mcCurrentDirection]
lrSyncInTime : LREAL := 5;
```

3

[3-12] Characteristic: clutch-in process with eSyncMode = 3 (ramp_time)

3.14 Clutching in to the cam

3.14.5 Clutching-in with "ramp_VelAcc" coupling mode

The slave-axis clutches in from its current position to the resulting Y position of the cam via the profile generator and using parameters IrSyncVel, IrSyncAcc, IrSyncDec and IrSyncJerk.

The movement is executed for the modulo axes within the cycle.

The resulting speed of the slave axis in the clutch-in phase results from the sum of the cam speed and the speed in parameter *IrSyncVel*.

The acceleration of the slave axis in the clutch-in phase also results from the sum of the cam acceleration and the acceleration and deceleration of the clutch (parameters IrSyncAcc, IrSyncDec).

This coupling mode is irrespective of the movement of the master axis. The slave axis is also synchronised to the Y position of the cam when the master axis is at standstill.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 4;
lrSyncVel : LREAL := 100;
lrSyncAcc : LREAL := 1000;
lrSyncDec : LREAL := 10000;
lrSyncJerk : LREAL := 100000;
```

[3-13] Characteristic: clutch-in process with eSyncMode = 4 (ramp_VelAcc)

3.15 Declutching from the cam

3.15 Declutching from the cam

The declutch process of the slave axis from the current position of the cam is executed using the input xSyncCam = FALSE.

Via the eSyncMode parameter, the coupling mode for the declutch process can be defined in the L_TT1P_scPar_FlexCam[Base/State] (\Pmathrm{Q} 21) parameter structure:

Coupling mode eSyncMode	More information
0 (absolute)	▶ Declutching in the "absolute"/"relative" coupling mode (☐ 50)
1 (relative)	
2 (ramp_pos)	▶ Declutching in the "ramp_pos" coupling mode (□ 50)
3 (ramp_time)	▶ Declutching in the "ramp_time" coupling mode (□ 52)
4 (ramp_VelAcc)	▶ Declutching in the "ramp_VelAcc" coupling mode (□ 54)

3.15.1 Declutching in the "absolute"/"relative" coupling mode

The coupling to the master axis is removed immediately with the input xSyncCam = FALSE.

The position of the slave axis is "frozen"; the slave speed and acceleration are set to zero.

In order to avoid step changes, the Y position of the cam or the master axis/X axis has to be at a standstill (e.g. over a resting phase in the curve progression).

3.15.2 Declutching in the "ramp_pos" coupling mode

The position-controlled declutch process at the running cam takes place with a polynomial of the fifth degree with the input xSyncCam = FALSE.

In this mode, declutching can only be executed whilst the master axis is running. The declutch process can take several cycles.

By means of the *IrMasterSyncOutDist* parameter, the braking distance of the master axis is defined, producing the position in which the slave axis releases from the cam.

The IrSlaveSyncOutPos parameter defines the position from which the slave axis is to be at standstill.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 2;
lrMasterSyncOutDist : LREAL := 0;
lrSlaveSyncOutPos : LREAL := 100;
```

[3-14] Characteristic: declutch process with eSyncMode = 2 (ramp_pos)

3.15 Declutching from the cam

3.15.3 Declutching in the "ramp_time" coupling mode

With the input xSyncCam = FALSE, the slave axis is disengaged from the current Y position of the cam within the defined time in the IrSyncOutTime parameter.

The IrSlaveSyncOutPos parameter defines the position from which the slave axis is to be at standstill.

This coupling mode is irrespective of the movement of the master axis.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 3;
lrSyncOutTime : LREAL := 5;
lrSlaveSyncOutPos : LREAL := 100;
```

[3-15] Characteristic: declutch process with eSyncMode = 3 (ramp_time)

3.15 Declutching from the cam

3.15.4 Declutching in the "ramp_VelAcc" coupling mode

With input xSyncCam = FALSE, the slave axis is declutched in a profile-controlled fashion from the current Y position of the cam, bringing the slave axis to standstill using parameters IrSyncVel, IrSyncAcc, IrSyncDec and IrSyncJerk.

The *IrSlaveSyncOutPos* parameter defines the position from which the slave axis is to be at standstill. This coupling mode is irrespective of the movement of the master axis.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 4;
lrSlaveSyncOutPos : LREAL := 100;
lrSyncVel : LREAL := 100;
lrSyncAcc : LREAL := 1000;
lrSyncDec : LREAL := 1000;
lrSyncJerk : LREAL := 100000;
```


[3-16] Characteristic: declutch process with eSyncMode = 4 (ramp_VelAcc)

3.16 Positive opening operation / Emergency opening operation

3.16 Positive opening operation / Emergency opening operation

The input xSyncOutInstant = TRUE serves to immediately declutch and stop the slave axis via the deceleration specified in the IrSyncOutInstantDec parameter at the current curve position.

The clutch remains open as long as the input xSyncOutInstant is set to TRUE. The xSyncOutInstant input has a higher priority than the xSyncCam input.

The *IrSyncOutInstantDec* parameter can be found in the <u>L_TT1P_scPar_FlexCam[Base/State]</u> (<u>LL_21</u>) parameter structure.

3.17 Scaling of the cam

3.17 Scaling of the cam

The cam is scaled by the use of scaling factors via the inputs IrSetScalingMaster and IrSetScalingSlave.

The setting of the *IrSetScalingMaster* input has the effect that the X axis is extended or compressed with regard to the master axis. Via the *IrSetScalingSlave* input, the slave axis is extended or compressed with regard to the Y axis. The scaling factors do not have any impact on the length/cycle length of the cams and the axes.

The selection of the mode for accepting the scaling factors for the master axis is set via the eScalingModeMaster parameter, and for the slave axis via the eScalingModeSlave parameter.

Setting/mode in: eScalingModeMaster eScalingModeSlave	Description
0 (x_zero)	Standard setting: The scaling factors are accepted in the "zero crossing" of the cam. The "zero crossing" is defined as a starting point of a cam if the direction of rotation of the master is positive, or as an end point of a cam if the direction of rotation of the master is negative.
1 (absolute)	Absolute scaling of the position The scaling factors are accepted immediately after they have been selected or changed. A direct selection or change of the scaling factors causes a step change of the setpoint position even if the axes are at standstill.
2 (relative)	Relative scaling of the position, absolute scaling of the speed The scaling factors are accepted immediately after they have been selected or changed. A direct selection or change of the scaling factors causes a step change of the setpoint position even if the axes are at standstill.
3 (ramp_absolute)	Absolute Scaling of the position via the ramp generator (\$\subset\$ 60) with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk
4 (ramp_relative)	Relative <u>Scaling of the position via the ramp generator</u> (60) with the parameters IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec, and IrJerk

3.17 Scaling of the cam

3.17.1 Arithmetic examples: absolute and relative scaling factors on the part of the master axis

Clock cycle:	t = 0		t = 1		t = 2	
Scaling factor:	IrSetScalingMaster = 1		IrSetScalingMaster = 2		IrSetScalingMaster = 1	
Absolute scaling facto	rs					
Axis	Master	X axis	Master	X axis	Master	X axis
Position	100	100	101	202	102	102
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0
Relative scaling factor	S					
Axis	Master	X axis	Master	X axis	Master	X axis
Position	100	100	101	102	102	103
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0
Absolute scaling facto	rs <u>without</u> an a	bsolute assignm	nent between th	ne master and c	am cycle	
Axis	Master	X axis	Master	X axis	Master	X axis
Position	100	53	101	108	102	55
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0
Relative scaling factors <u>without</u> an absolute assignment between the master and cam cycle						
Axis	Master	X axis	Master	X axis	Master	X axis
Position	100	53	101	55	102	56
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0

3.17 Scaling of the cam

3.17.2 Arithmetic examples: absolute and relative scaling factors on the part of the slave axis

Clock cycle:	t = 0		t = 1		t = 2	
Scaling factor:	IrSetScalingSlave = 1		IrSetScalingSlave = 2		IrSetScalingSlave = 1	
Absolute scaling facto	rs					
Axis	Y axis	Slave	Y axis	Slave	Y axis	Slave
Position	100	100	101	202	102	102
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0
Relative scaling factor	s					
Axis	Y axis	Slave	Y axis	Slave	Y axis	Slave
Position	100	100	101	102	102	103
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0
Absolute scaling facto	rs <u>without</u> an a	bsolute assignm	nent between th	ne master and c	am cycle	
Axis	Y axis	Slave	Y axis	Slave	Y axis	Slave
Position	100	50	101	152	102	52
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0
Relative scaling factors without an absolute assignment between the master and cam cycle						
Axis	Y axis	Slave	Y axis	Slave	Y axis	Slave
Position	100	50	101	52	102	53
Velocity	1000	1000	1000	2000	1000	1000
Acceleration	0	0	0	0	0	0

3.17 Scaling of the cam

3.17.3 Scaling of the position via the ramp generator

In order to be able to internally change the scaling factors continuously in spite of an erratic change in value at the inputs *IrSetScalingMaster* or *IrSetScalingSlave*, ramp generators can be used: ramp modes "3 (ramp_absolute)" and "4 (ramp_relative)" in the *eScalingModeMaster* or *eScalingModeSlave* parameter.

A ramp generator carries out a compensating movement via a ramp function between the last and the new scaling factor. If the scaling factor is changed again during the compensating movement of the ramp generator, the ramp generator carries out a new compensating movement with the current value.

The adjustment profile for the scaling factor is set via parameters *IrOffsetScalingVel*, *IrOffsetScalingAcc*, *IrOffsetScalingDec* and *IrJerk*.

The *IrJerk* parameter is used to limit the maximum jerk. Usually the jerk is set to the 100-fold acceleration value. If the ramp generators are active and a change of cam is pending, the ramp generators are not aborted. The compensating movement is carried out completely to the end.

Parameters to be set

```
eScalingModeMaster : L_TT1P_ScalingMode := 0;  // [x_zero]
eScalingModeSlave : L_TT1P_ScalingMode := 0;  // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
```

3

[3-17] Characteristic: scaling of a cam (X axis/Y axis 0..180) with a scaling factor of 0.5 for the master and 2.0 for the slave

3.18 Offset for the master and slave axis

3.18 Offset for the master and slave axis

An offset is selected via the inputs IrSetOffsetMaster and IrSetOffsetSlave.

The X position (input position for the curve function) results from the sum of the master axis position and the offset *IrSetOffsetMaster*.

The slave position results from the sum of the (optionally scaled) Y position of the cam and the offset IrSetOffsetSlaves.

The selection of the mode for accepting offset values for the master axis is set via the parameter eOffsetModeMaster, and for the slave axis via the parameter eOffsetModeSlave.

Setting/mode in: eOffsetModeMaster eOffsetModeSlave	Description
0 (x_zero)	Standard setting: The offset values are accepted in the "zero crossing" of the cam. The "zero crossing" is defined as the starting point of a cam if the direction of rotation of the master is positive, or as the end point of a cam if the direction of rotation of the master is negative.
1 (direct)	The offset values are accepted immediately after they have been selected or changed. A direct selection or change of the offset values causes a step change of the setpoint position even if the axes are at standstill.
2 (ramp_in)	The ramp generator leads the current offset to the target offset via the <i>IrOffsetScalingVel</i> , <i>IrOffsetScalingAcc</i> , <i>IrOffsetScalingDec</i> and <i>IrJerk</i> profile parameters. By means of the <i>IrJerk</i> parameter, the maximum jerk is limited. Usually the jerk is set to the 100-fold value of the acceleration.

If the ramp generators are active ("2 (ramp_in)" mode) and a change of cam is pending, the ramp generators are not aborted. The compensating movement is carried out completely to the end.

Parameters to be set

```
eOffsetModeMaster : L_TT1P_OffsetMode := 0;  // [x_zero]
eOffsetModeSlave : L_TT1P_OffsetMode := 0;  // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
```

[3-18] Procedure: offset values of a cam (X axis/Y axis 0..180) with an offset value of 10 for the master and 20 for the slave

3.19 Calculation of extreme values of a cam (Base version)

3.19 Calculation of extreme values of a cam (Base version)

The technology module provides the possibility of scanning the cam for maximum values regarding the position, speed, and acceleration at the *CamTable1* input. The maximum values are calculated with the *xCalcCamBounds* parameter = TRUE.

The calculation requires the maximum speed (IrMasterMaxVel parameter) and the maximum acceleration (IrMasterMaxAcc parameter) of the master axis.

The outputs IrSlaveMaxVel and IrSlaveMaxAcc show the maximum speed and the maximum acceleration of the slave axis. The maximum and minimum positions of the slave axis are shown at the outputs IrSlaveMaxPos and IrSlaveMinPos. These values are updated automatically.

Parameters to be set

```
xCalcCamBounds : BOOL := TRUE;
lrMasterMaxVel : LREAL := 100;
lrMasterMaxAcc : LREAL := 1000;
```

3.20

Path-based clutch-in of the slave axis with or without reversing

3.20 Path-based clutch-in of the slave axis with or without reversing

The eSyncMode = 2 (ramp_pos) parameter is used to position the slave axis in a path-based manner via a polynomial of the fifth degree to the resulting Y position of the cam.

In this mode, the slave axis can synchronise to a cam movement that is already running, providing the possibility that the clutch-in process takes several cam cycles, the transition to cam operation taking a bit longer.

Via the eSyncDirection parameter, the clutch-in direction relating to the direction of rotation of the master axis is set.

The *IrMasterSyncInPos* parameter determines the position of the master axis from which the slave axis is to be synchronised.

The IrMasterSyncInDist parameter is used to define the distance of the master axis over which the slave axis is traversed to the curve position. The slave axis can only be synchronised to the Y position of the cam whilst the master axis is running.

Parameter *ePosCtrlDirection* = 0 (both) allows for reversing of the slave axis during the clutch-in process (movement in the opposite direction of the master axis). If reversing during the clutch-in process is to be inhibited, the parameter *ePosCtrlDirection* = 1 (Direction Master) must be set.

Parameters to be set

```
eSyncMode : L_TT1P_SyncMode := 2;
eSyncDirection : L_TT1P_SyncDirection := 0; // [mcCurrentDirection]
lrMasterSyncInPos : LREAL := 0;
lrMasterSyncInDist : LREAL := 100;
ePosCtrlDirection : L_TT1P_Direction := 0; // [0: both, 1: Direction Master]
```

[3-19] Characteristic: clutch-in process with eSyncMode = 2 (ramp_pos)

Path-based declutching of the slave axis with or without reversing

3.21 Path-based declutching of the slave axis with or without reversing

In coupling mode eSyncMode = 2 (ramp_pos), the position-controlled declutch process at the running cam takes place with a polynomial of a fifth degree by setting the input xSyncCam = FALSE.

In this mode, declutching can only be executed whilst the master axis is running. The declutch process can take several cycles.

By means of the *IrMasterSyncOutDist* parameter, the braking distance of the master axis is defined, producing the position in which the slave axis releases from the cam.

The IrSlaveSyncOutPos parameter defines the position from which the slave axis is to be at standstill.

Parameter *ePosCtrlDirection* = 0 (both) allows for reversing of the slave axis during the declutch process (movement in the opposite direction of the master axis). If reversing during the declutch process is to be inhibited, the parameter *ePosCtrlDirection* = 1 (Direction Master) must be set.

Parameters to be set

3.21

```
eSyncMode : L_TT1P_SyncMode := 2;
lrMasterSyncOutDist : LREAL := 0;
lrSlaveSyncOutPos : LREAL := 100;
ePosCtrlDirection : L_TT1P_Direction := 0; // [0: both, 1: Direction Master]
```

[3-20] Characteristic: declutch process with eSyncMode = 2 (ramp_pos)

3.22 Scaling of the cam with or without reversing

3.22 Scaling of the cam with or without reversing

Scaling of the cam in the State version is carried out in the same way as in the Base version:

▶ Scaling of the cam (☐ 57)

The scaling factors can be accepted immediately or via the ramp generator:

▶ Scaling of the position via the ramp generator (☐ 60)

In the State version, however, the compensating movement of the ramp generator can be executed without reversing by the master axis.

By means of parameter ePosCtrlDirection = 0 (both), reversing during the compensating movement is permitted. If reversing during the compensating movement is to be inhibited, the parameter ePosCtrlDirection = 1 (Direction Master) must be set.

Parameters to be set

```
eScalingModeMaster : L_TT1P_ScalingMode := 0;  // [x_zero]
eScalingModeSlave : L_TT1P_ScalingMode := 0;  // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
ePosCtrlDirection : L_TT1P_Direction := 0;  // [0: both, 1: Direction Master]
```

3.23 Offset for the master and slave axis with or without reversing

3.23 Offset for the master and slave axis with or without reversing

The use of offsets for the master and slave axis in the State version is effected in the same way as in the Base version:

▶ Scaling of the cam (☐ 57)

In the State version, however, the compensating movement of the ramp generator can be executed without reversing by the master axis.

By means of parameter ePosCtrlDirection = 0 (both), reversing during the compensating movement is permitted. If reversing during the compensating movement is to be inhibited, the parameter ePosCtrlDirection = 1 (Direction Master) must be set.

Parameters to be set

3.24 Switching sequence for cams

3.24 Switching sequence for cams

A switching sequence makes it possible to execute several cams in a sequence in succession.

The switching sequence is activated with the input *xCamSequencer* = TRUE. The output *xCamSequencerActive* returns the status, showing whether the switching sequence is executed.

The eCamSequenceMode parameter in the <u>L_TT1P_scPar_FlexCam[Base/State]</u> (<u>L__21</u>) parameter structure serves to select the following switching sequences:

Setting in		Description	
eCamSequenceMode	xCamSequencer		
0	TRUE	Cam 1 is executed cyclically.	
1	TRUE	Cam 3 is executed cyclically.	
2	TRUE	Cam 1 is executed once; then cam 3 is executed cyclically.	
	FALSE	After cam 3, cam 1 is executed once.	
3	TRUE	Cams 1 and 2 are executed once in succession; then cam 3 is executed cyclically.	
	FALSE	After cam 3, cam 4 is executed once; then cam 1 is executed cyclically.	

3.25 Calculation of extreme values of a cam (State version)

3.25 Calculation of extreme values of a cam (State version)

The State version provides the possibility of scanning a cam that is selected at the input *eSetCamTable* or all cams of a cam sequence (if input *xCamSequencer* = TRUE) with regard to maximum values of the position, speed, and acceleration. The maximum values are calculated with the parameter *xCalcCamBounds* = TRUE.

The calculation requires the maximum speed (IrMasterMaxVel parameter) and the maximum acceleration (IrMasterMaxAcc parameter) of the master axis.

The outputs IrSlaveMaxVel and IrSlaveMaxAcc show the maximum speed and the maximum acceleration of the slave axis. The maximum and minimum positions of the slave axis are shown at the outputs IrSlaveMaxPos and IrSlaveMinPos. These values are updated automatically.

Parameters to be set

```
xCalcCamBounds : BOOL := TRUE;
lrMasterMaxVel : LREAL := 100;
lrMasterMaxAcc : LREAL := 1000;
```

3.26 CPU utilisation (example Controller 3231 C)

3.26 CPU utilisation (example Controller 3231 C)

The following table shows the CPU utilisation in microseconds using the example of the 3231 C controller (ATOM™ processor, 1.6 GHz).

Versions	Interconnection of the technology module	CPU utilisation		
		Average	Maximum peak	
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncCam := TRUE;	80 μs	155 μs	
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncCam := TRUE;	95 μs	166 μs	

A	I
Application notes 7	Inputs <u>15</u>
	Inputs and outputs 14
Condition of extreme values of a service (Decrement) of	L
Calculation of extreme values of a cam (Base version) 64	
Calculation of extreme values of a cam (State version) 72	L_TT1P_FlexCamBase 13
Cam formats (cam handling) <u>34</u>	L_TT1P_FlexCamState 13
Change of cam 39	L_TT1P_scPar_FlexCamBase 21
Clutch-in with/without reversing 65	L_TT1P_scPar_FlexCamState 21
Clutching in to the cam 40	L_TT1P_scSF_FlexCamBase <u>30</u>
Clutching in with coupling mode eSyncMode = 2 (ramp_pos) with/without reversing 65	L_TT1P_scSF_FlexCamState <u>30</u> Layout of the safety instructions <u>7</u>
Clutching-in with "absolute" coupling mode 41	
Clutching-in with "ramp_pos" coupling mode 43	M
Clutching-in with "ramp_time" coupling mode 46	Manual jog (jogging) <u>32</u>
Clutching-in with "ramp_VelAcc" coupling mode 48	
Clutching-in with "relative" coupling mode 42	N
Controlled start of the axes <u>12</u>	Notes on how to operate the technology module $\frac{12}{}$
Conventions used <u>6</u>	_
CPU utilisation (example Controller 3231 C) 73	0
	Offset for the master and slave axis 62
D	Offset for the master and slave axis with/without reversing 70
Declutching from the cam 50	Operating mode <u>12</u>
Declutching in the "absolute"/"relative" coupling mode 50	Outputs <u>18</u>
Declutching in the "ramp_pos" coupling mode 50	
Declutching in the "ramp_time" coupling mode 52	P
Declutching in the "ramp_VelAcc" coupling mode 54	Parameter structure L_TT1P_scPar_FlexCamBase/State 21
Declutching with coupling mode eSyncMode = 2 (ramp_pos) with/without reversing 67	Positive opening operation <u>56</u>
Declutching with/without reversing 67	R
Document history <u>5</u>	Ramp generator for scaling the position 60
E	S
E-mail to Lenze 75	Safety instructions 7, 8
Emergency opening operation <u>56</u>	Scaling of the cam <u>57</u>
Executing the cam cyclically 35	Scaling of the cam with/without reversing 69
Executing the cam once <u>36</u>	Scaling of the position via the ramp generator 60
Executing the master axis with cams of variable cycle lengths	Scaling the cam <u>57</u>
<u>37</u>	Scaling the cam with/without reversing 69
Executing the slave axis with cams of variable cycle lengths 38	Signal flow diagrams 28
Extreme values of a cam (Base version) 64	Start of the axes 12
Extreme values of a cam (State version) 72	State machine <u>27</u>
_	States 27
F	Structure of the signal flow L_TT1P_scSF_FlexCamBase/State
Feedback to Lenze <u>75</u>	30
Flex Cam (functional description) <u>10</u>	Switching sequence for cams 71
Functional description "Flex Cam" 10	
Function block L_TT1P_FlexCamBase/State 13	Т
	Target group 4
Н	Technology module functions (overview) 11
Homing 33	
	V
	Variable names 6

Your opinion is important to us

These instructions were created to the best of our knowledge and belief to give you the best possible support for handling our product.

Perhaps we have not succeeded in achieving this objective in every respect. If you have suggestions for improvement, please e-mail us to:

feedback-docu@lenze.com

 $Thank\ you\ very\ much\ for\ your\ support.$

Your Lenze documentation team

Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen GERMANY HR Hannover B 205381

[+49 5154 82-0

<u>+49 5154 82-2800</u>

@ lenze@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal GERMANY

© 008000 24 46877 (24 h helpline)

💾 +49 5154 82-1112

@ service@lenze.com

