Comparativa de Estrategias de IA para Clasificación de Tumores Cerebrales en MRI

Juan Camilo Salazar

Brayan Steven Ortega

Andrés Camilo Romero

Introducción

Diagnóstico Temprano de Tumores Cerebrales

El diagnóstico preciso y temprano es crucial para el tratamiento y pronóstico de los tumores cerebrales. La detección a tiempo puede marcar una diferencia significativa en la vida del paciente.

Objetivo del Trabajo

Implementar y comparar tres enfoques de IA de la literatura reciente, adaptándolos para hacerlos viables computacionalmente en nuestro entorno.

Metodología: Tres Enfoques Implementados

1

CNN Personalizada Reducida

Original: CNN Profunda (8 capas

conv.) + Autoencoder

Nuestra Adaptación: CNN

Personalizada (4 capas conv.) con menos filtros.

2

SVM con HOG + LBP + PCA

Original: SVM + HOG + LBP + PCA

Nuestra Adaptación: Uso de subconjunto de imágenes por tiempo y recursos.

3

VGG16 con Transfer Learning

Original: Ensamble CNNs (VGG16,

DenseNet, Inception-ResNet) +

XAI

Nuestra Adaptación: Solo VGG16

por limitaciones

computacionales.

Dataset y Preprocesamiento: Fuente: "Brain Tumor MRI Dataset" de Kaggle. Más de 7.000 imágenes

Preprocesamiento Aplicado

Redimensionamiento

Imágenes a 224x224 píxeles para uniformidad.

Normalización

Valores de píxeles escalados para mejor desempeño del modelo.

Data Augmentation

Rotaciones y flips para modelos de Deep Learning (VGG16 y CNN Personalizada) para aumentar el tamaño del dataset y mejorar la generalización.

Escala de Grises

Conversión de imágenes a escala de grises para todos los modelos, reduciendo la complejidad.

Implementación Técnica y Dificultades

CNN Personalizada

Arquitectura: $[Conv2D(8) \rightarrow Conv2D(16) \rightarrow MaxPooling] \times 2 \rightarrow Flatten \rightarrow Dense.$

Dificultad: Modelo original, muy pesado en recursos y tiempo.

Solución: Reducción de capas y canales, manteniendo la esencia.

SVM con HOG/LBP/PCA

Pipeline: Extracción HOG + LBP →
Normalización → PCA → SVM (kernel RBF).

Dificultad: Extracción de características lenta para dataset completo.

Solución: Submuestreo balanceado (300 imágenes/clase).

VGG16 con Transfer Learning

Estrategia: Fine-tuning parcial (capas superiores entrenables, base congelada).

Dificultad: Ensemble completo prohibitivo computacionalmente.

Solución: Implementación individual de VGG16 con hiperparámetros ajustados.

Resultados y Comparativa de Performance

Conclusiones y Recomendaciones

1 CNN personalizada

computacional.

Ofrece el mejor balance entre precisión y viabilidad

2 Enfoque clásico (SVM + características)

Más eficiente en recursos y suficientemente preciso para ciertos entornos. Además de ser expliable Transfer Learning con VGG16

Requirió más ajuste pero tiene un gran potencial con más recursos.

Limitaciones Enfrentadas

- Recursos Limitados
- Tiempos de Entrenamiento
- Costo Computacional

Mejoras Potenciales

Fine-tuning Agresivo

Probar ajuste más profundo en VGG16.

Ensemble Completo

Implementar el ensemble original con recursos adecuados.

Explainable AI (XAI)

Explorar Grad-CAM para mayor interpretabilidad.

Datasets

Probar con datasets más grandes y balanceados.

Referencias

Sánchez-Moreno et al. (2025). Computers in Biology and Medicine.

Saeedi et al. (2023). BMC Medical Informatics and Decision Making.

Bashikodi et al. (2024). Scientific Reports.

Dataset: "Brain Tumor MRI Dataset" de Kaggle.

Todos los modelos se implementaron en Python usando TensorFlow/Keras para CNN y scikit-learn/OpenCV para SVM.

