Wojciech Tyczyński Symulacja cyfrowa

Zadanie 4

07.06.2014

1. Opis generatorów liczb pseudolosowych.

W celu spełnienia założeń podanych w ćwiczeniu należało zastosować dwa rodzaje generatorów liczb losowych – o rozkładzie równomiernym oraz wykładniczym. Na cele zadania wykorzystane zostały generatory udostępnione przez prowadzącego. Umożliwiają one wygenerowanie ciągów przypominających losowe o podanych wyżej rozkładach, z wykorzystaniem zarówno seeda domyślnego (zmienna statyczna funkcji) jak i z seedem przyjmowanym jako argument funkcji. W celu otrzymania prawidłowych wyników wykorzystywana była opcja z seedem jako argument, aby zapewnić nieskorelowane ciągi dla każdego komputera oraz każdego typu wiadomości.

2. Wyznaczenie fazy początkowej.

W celu wyznaczenia fazy początkowej przeprowadzone zostały eksperymenty pilotażowe dla intensywności P1 w przedziale <20, 80> z krokiem co 10. Dla każdej wartości P1 przeprowadzonych zostało 10 niezależnych symulacji. Obserwowaną zmienną był czas dostarczenia pierwszych 1000 wiadomości drugiego typu. Z każdych 10 pętli symulacyjnych wartości czasu przesyłania zostały uśrednione, a otrzymane wartości zostały poddane średniej ruchomej.

Jak widać, czas przestaje gwałtownie narastać w okolicy 5 sekund, aczkolwiek ze względu na różne fluktuacje początkowe dla niektórych intensywności, czas stabilny został ustalony na 10 sekund.

3. Opis i wyznaczenie przedziałów ufności.

Aby sprawdzić poprawność oraz wiarygodność otrzymanych wyników, należy wyznaczyć przedziały ufności, tj. wartości, w której może się wahać otrzymany wynik. W tym celu oprócz średniej zostały

wyliczone także inne współczynniki znane z metod statystycznych, takie jak wariancja czy odchylenie standardowe.

Wartość średnia:

$$\hat{\mu}_m = \frac{1}{N} \sum_{n=1}^{N} X_{mn} \quad \hat{\mu} = \frac{1}{M} \sum_{m=1}^{M} \hat{\mu}_m$$

Odchylenie standardowe:

$$s(\hat{\mu}_m) = \sqrt{\frac{1}{M-1} \sum_{m=1}^{M} (\hat{\mu}_m - \hat{\mu})^2} = \sqrt{\frac{1}{M-1} \left(\sum_{m=1}^{M} \hat{\mu}_m^2 - M\hat{\mu}^2\right)}$$

Zmienna losowa o rozkładzie studenta:

$$t_{\mu} = \frac{\hat{\mu} - \mu}{s(\hat{\mu}_m)/\sqrt{M}}$$

Przedział ufności:

$$P\left\{t_{M-1}\left(\frac{\alpha}{2}\right) \le \frac{\hat{\mu} - \mu}{s/\sqrt{M}} \le t_{M-1}\left(1 - \frac{\alpha}{2}\right)\right\} = 1 - \alpha$$

Co po przekształceniach daje:

$$\mu \in \left[\hat{\mu} - t_{M-1} \left(1 - \frac{\alpha}{2}\right) \frac{s}{\sqrt{M}}, \hat{\mu} + t_{M-1} \left(1 - \frac{\alpha}{2}\right) \frac{s}{\sqrt{M}}\right]$$

Do rozkładu Studenta wykorzystana została funkcja zawierająca stablicowane wartości dostępne (z różną dokładnością) w praktycznie każdym podręczniku do statystyki. Przykładowa implementacja przedziałów ufności dla średniego czasu przesyłania wiadomości przedstawiona została poniżej. Faktyczna implementacja programowa różni się tym, że wszystkie liczone wartości są tablicami dwuelementowymi (osobno czas przesyłania dla wiadomości 1. i 2. typu).

Wyniki powyższego kodu przedstawione zostały w następnym punkcie.

4. Opis eksperymentu symulacyjnego.

Eksperyment miał na celu zoptymalizowanie wartości P1 w taki sposób, aby maksymalne opóźnienie nie przekraczało 100 ms oraz tracone było nie więcej niż 1% pakietów. Dodatkowo należało wyznaczyć średnie wartości czasu dostarczenia wiadomości 1. i 2. typu dla zoptymalizowanego parametru P1. W tabeli poniżej znajdują się wyniki symulacji.

P1	Stracone wiadomości 1. typu [%]	Przedział ufności	Stracone wiadomości 2. typu [%]	Przedział ufności	Maksymalne opóźnienie [s]	Przedział ufności
40	0.000555155	0.00180425	0	0	0.0635288	0.00536626
50	0.000441852	0.00143602	0	0	0.0769612	0.00798034
60	0.00256936	0.00310567	0	0	0.0796199	0.00858265
70	0.0138738	0.00703377	0.037092	0.040183	0.0985723	0.00510444
80	0.0811162	0.0160554	0.0667656	0.0562562	0.132661	0.0082716
90	0.140951	0.0194871	0.289318	0.121616	0.198815	0.0179948
100	0.29491	0.0155629	0.215134	0.0758171	0.216172	0.0176242
110	0.628873	0.055119	0.808605	0.158506	0.220033	0.0101611
120	1.27676	0.0528129	1.70623	0.256668	0.288313	0.0341831

Jak widać dopiero dla P1 = 120 straty wiadomości obydwu typów sięgają powyżej 1%. Dużo ważniejsze przy optymalizacji jest maksymalne opóźnienie, które już dla P1 = 80 sięga powyżej 100 ms. Nie biorąc pod uwagę przedziałów ufności, intensywność 70 wiadomości/sekundę wydawałaby się sensowna, jednakże 0.0985723 + 0.00510444 = 0.10367674, co jest już wynikiem większym od wymaganych 100 ms. Bezpiecznie można zatem założyć, że warunki zadania zostaną spełnione przy P1 = 60.

Uwagę zwracają bardzo duże przedziały ufności przy niewielkich stratach, które prawdopodobnie wynikają z przyjęcia zbyt dużej dokładności w rozkładzie Studenta dla tych parametrów. Jednak niezależnie od tego, tylko dla P1 = 120 straty sięgają 1%.

Zajętość łączy w procentach – pierwsza cyfra oznacza nr łącza, druga kierunek przepływu sygnału:

P1	00	01	10	11	20	21	30	31	40	41
40	25.0614	26.2465	25.8852	26.0116	26.152	25.9237	25.0817	26.2523	25.6422	23.3792
50	30.8841	32.2788	32.1071	31.9757	31.9792	32.0394	31.1958	32.1148	31.6163	29.3676
60	36.5817	38.389	38.1483	37.8989	38.1345	37.9243	37.2533	38.2616	37.7271	35.3527
70	42.3327	44.155	43.9597	43.8008	43.7241	43.7279	43.3884	43.8941	43.3666	41.1821
80	48.4775	50.215	49.7435	49.842	49.9018	49.7037	49.3668	49.9417	49.3586	47.1806
90	54.2081	55.9066	55.4236	55.4875	55.236	55.6008	55.3125	55.4949	55.1733	52.8425
100	60.0475	61.6483	61.3895	61.2474	60.9253	61.2867	60.9547	61.3226	60.7669	58.5765
110	65.7035	67.4884	66.8975	67.1447	66.963	66.9934	66.8329	66.9202	66.4104	64.2424
120	71.2372	73.1446	71.9592	72.8435	72.6319	72.4471	72.3038	72.2094	72.0158	69.4893
P1	50	51	60	61	70	71	80	81	90	91
P1 40	50 12.8824	51 13.3934	60 12.1789	61 12.8554	70 12.5534	71 12.8516	80 13.0807	81 13.4235	90 12.7285	91 12.8447
40	12.8824	13.3934	12.1789	12.8554	12.5534	12.8516	13.0807	13.4235	12.7285	12.8447
40 50	12.8824 15.8073	13.3934 16.3828	12.1789 15.0782	12.8554 15.8963	12.5534 15.6445	12.8516 15.9016	13.0807 16.1698	13.4235 16.3602	12.7285 15.6192	12.8447 15.8728
40 50 60	12.8824 15.8073 18.6211	13.3934 16.3828 19.4433	12.1789 15.0782 17.9616	12.8554 15.8963 18.9505	12.5534 15.6445 18.7085	12.8516 15.9016 18.8881	13.0807 16.1698 19.0093	13.4235 16.3602 19.4122	12.7285 15.6192 18.7204	12.8447 15.8728 18.9165
40 50 60 70	12.8824 15.8073 18.6211 21.4936	13.3934 16.3828 19.4433 22.2603	12.1789 15.0782 17.9616 20.8394	12.8554 15.8963 18.9505 21.8972	12.5534 15.6445 18.7085 21.5994	12.8516 15.9016 18.8881 21.9134	13.0807 16.1698 19.0093 21.9084	13.4235 16.3602 19.4122 22.2074	12.7285 15.6192 18.7204 21.5178	12.8447 15.8728 18.9165 21.8198
40 50 60 70 80	12.8824 15.8073 18.6211 21.4936 24.5538	13.3934 16.3828 19.4433 22.2603 25.3234	12.1789 15.0782 17.9616 20.8394 23.9223	12.8554 15.8963 18.9505 21.8972 24.8927	12.5534 15.6445 18.7085 21.5994 24.4916	12.8516 15.9016 18.8881 21.9134 24.8736	13.0807 16.1698 19.0093 21.9084 24.8661	13.4235 16.3602 19.4122 22.2074 25.3073	12.7285 15.6192 18.7204 21.5178 24.5946	12.8447 15.8728 18.9165 21.8198 24.8396
40 50 60 70 80 90	12.8824 15.8073 18.6211 21.4936 24.5538 27.4476	13.3934 16.3828 19.4433 22.2603 25.3234 28.067	12.1789 15.0782 17.9616 20.8394 23.9223 26.7605	12.8554 15.8963 18.9505 21.8972 24.8927 27.8403	12.5534 15.6445 18.7085 21.5994 24.4916 27.2822	12.8516 15.9016 18.8881 21.9134 24.8736 27.8105	13.0807 16.1698 19.0093 21.9084 24.8661 27.8285	13.4235 16.3602 19.4122 22.2074 25.3073 27.9931	12.7285 15.6192 18.7204 21.5178 24.5946 27.2408	12.8447 15.8728 18.9165 21.8198 24.8396 27.7763

```
C:\Users\tykus\Documents\Visual Studio 2012\Projects\I3_me_tyczynski_wojciech\Debug\I3_me_tw...
          was busy: 18.9475%
was busy: 18.6609%
                                       60 in the mean:
For SIMULATION with P1
       1
2
3
4
5
           was
           was
                  bus y:
           was
                  busy:
           was
                  bus v:
           was
           was
                                     +/- 0.00297573%
Mean max delay = 0.0778483 +/- 0.00681001
Mean of delays (0) = 0.00548804 +/- 1.06774e-005
Mean of delays (1) = 0.0129061 +/- 0.000108557
```

Zrzut ekranu symulacji z przykładowymi wynikami.

Zatem, dla P1 = 60:

Średni czas opóźnienia wiadomości 1. $typu=0.00548804\pm1.06774\cdot10^{-5}$ Średni czas opóźnienia wiadomości 2. $typu=0.0129061\pm0.000108557$