MC KA1 Zusammenfassung

Themen

- Zahlensysteme
 - Dual
 - o Hexadezimal
 - o Dezimal
- Logische Verknüpfungen
 - Und
 - Oder
 - Nicht
 - Nand
 - o Xor
 - o Nor
- Wahrheitstabellen
- Disjunktive Normalform (DNF)
- Impulsdiagramme
- KV-Diagramme
- DeMorganische Gesetz
 - o Umwandlung einer Nor oder Nand Schaltung
- 2er Komplement
- Multiplexer
- Addition von Dualzahlen
- RS-FlipFlop

Zahlensysteme

Dual

Basiszahl: 2

Ziffern: (0,1)

Beispiel:

10010 = 18

Umrechnen von Dualzahlen ins Dezimalsystem

16, 8, 4, 2, 1

16+2=18

-> 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 (10010)

== 18

Umrechnen von Dezimalzahlen in Dualzahlen

Bsp. 18

 $18/2 = 9 \text{ Rest } 0 \rightarrow 0$

9/2 = 4 Rest 1 -> 1

4/2 = 2 Rest 0 -> 0

2/2 = 1 Rest 0 -> 0

1/2 = 0 Rest 1 -> 1

== 10010

Hexadezimal

Basis: 16 Ziffern: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

-> 119 -> 1*16^2 + 1*16^1 + 9*16^0

Umwandlung von Dual in Hexadezimal

{ 1001 0001 1101 } -> ToDo!

Logische Verknüpfungen

And

Funktionsgleichung

 $Q = A^B$

Wahrheitstabelle

Α	В	Q	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Or

Funktionsgleichung

$$Q = A \vee B$$

Wahrheitstabelle

_A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Not

Funktionsgleichung

$$Q=\overline{A}$$

Wahrheitstabelle

Nand

Funktionsgleichung

$$Q=\overline{A\wedge B}$$

$$\overline{Q} = A \wedge B$$

Wahrheitstabelle

Α	В	Q	
0	0 1		
0	1	1	
1	0	1	
1	1	0	

Nor

Funktionsgleichung

$$Q = \overline{A \vee B}$$

$$\overline{Q} = A \vee B$$

Wahrheitstabelle

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Xor

Funktionsgleichung

$$Q = \left(\overline{A} \wedge B\right) \vee \left(A \wedge \overline{B}\right)$$

Wahrheitstabelle

A B Q

Α	В	Q	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Wahrheitstabellen

Bsp mit 1 Variablen

Α	Q
0	Х
 1	Х

Bsp mit 2 Variablen

Α	В	Q	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Bsp mit 3 Variablen

Α	В	С	Q
0	0	0	х
0	0	1	Х
0	1	0	Х
0	1	1	Х
1	0	0	Х
1	0	1	Х
1	1	0	Х
1	1	1	Х

Disjunktive Normalform

• **Vollkonjunktion:** Ist die UND-Verknüpftung in der alle vorhandenen Eingangssignale einmal vorkommen (negiert oder nicht)

• Disjunktive Normalform: Besteht aus mehreren oder Verknüpften Vollkonjunktionen

$$_{\mathsf{Bsp.}}\left(A\wedge B\right)\vee\left(A\wedge B\wedge C\right)\vee\left(B\wedge C\right)\vee D$$

Impulsdiagramm

KV-Diagramm

1/27/2021 Zusammenfassung.md

Schritt 1: Funktionstabelle

	D	С	В	Α	Z
	0	0	0	0	1
4	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
s	0	1	0	1	0
٤	0	1	1	0	0
3	0	1	1	1	0
,	1	0	0	0	1
3	1	0	0	1	1
40	1	0	1	0	1_
м	1	0	1	1	1
42	1	1	0	0	0
B	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

Schritt 5: Schaltung

Schritt 2: KV-Diagramm

Schritt 4: Funktionsgleichung

KV - Diagromm Bep:

Besonderheiten:

2 oder 4 Blöcke

DeMorgan Gesetze

Regel 1

Regel 2

2er Komplement

Negative Zahlen im Dualsystem darstellen

Das Bit mit der größten Wertigkeit wird Negativ gewertet. Die restlichen Bits werden auf Addiert.

Bsp1.

= -1

Bsp2.

= -1

Schritt 1: Alle Stellen Invertieren

Aus 0010 wird 1101

Schritt 2: Mit 1 Addieren

1101 + 0001 = 1110

Rechnung

0101(5) + 1110(-2) = 0011(3)

Im Zahlenbereich bei 4-Bit. Von [-8] bis [7] kein Übertrag bei der Addition.

Multiplexer

Ein **Multiplexer** (MUX) wählt aus einer Anzahl von Dateneingängen (im Bild: E1, E2, E3 und E4) entsprechend der anliegenden Adresse (Steuerleitungen) einen Eingang aus, der zum Datenausgang durchgeschaltet wird.

Ein **Demultiplexer** (DMUX) wählt aus einer Anzahl von Datenausgängen entsprechend der anliegenden Adresse (Steuerleitungen) einen Ausgang aus, auf den der Dateneingang durchgeschaltet wird.

RS-Flip Flop

Funktionsplan eines RS-Flip Flops ohne Taktsteuerung

Taktsteuerung

Taktzustand Gesteuert

Taktflanken Gesteuert

