Last name	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 11 Linear independence & Bases.

Concepts & Notation

- (Sec. 2.1) vector, vector space, linear combination.
- (Sec. 2.2) subspace, subspace spanned by a set of vectors, span.
- (Sec. 3.3) linearly dependent/independent set of vectors, basis.

Let \mathbb{F} be a subfield of \mathbb{C} . Let V be the set of functions from \mathbb{F} to \mathbb{F} of the form

$$f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n$$

(where $c_i \in \mathbb{F}$ and n is a non-negative integer).

- 1. What are some examples of elements of V?
- 2. Claim: V is a vector space with vector addition f + g defined by (f + g)(x) = f(x) + g(x) (for $f, g \in V$), and scalar multiplication cf defined by (cf)(x) = c(f(x)) (for $c \in \mathbb{F}$, $f \in V$).

3. Show that the vectors in V with degree at most 2 are a subspace of V.

If V is a vector space over a field \mathbb{F} and $S \subset V$, the subspace spanned by S is the intersection of all subspaces of V containing S (S spans V); if $S = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ then say it is the subspace spanned by $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Let $f_i(x) = x^i$ (for non-negative integers i). So $f_i \in V$.

4. Show: $S = \{f_i \mid i \in \mathbb{N}\}$ spans V.

5.	Claim:	S	spans	a	vector	space	V	if	and	only	if	V	is	the	set	of	all	(finite)	linear
	combina																		

6. Show:
$$S = \{f_i \mid i \in \mathbb{N}\}$$
 spans V .

Vectors $\alpha_1, \ldots, \alpha_n$ in a vector space V over a field \mathbb{F} are linearly dependent if $c_1\alpha_1 + \ldots c_n\alpha_n = 0$ where not all c_i 's are 0 ($c_i \in \mathbb{F}$). If S is not linearly dependent then it is linearly independent.

7. Show: $S = \{f_i \mid i \in \mathbb{N}\}$ is linearly independent.

A basis for V is a set of linearly independent vectors which spans V. V is finite-dimensional if it has a finite basis.

8. Show: $S = \{f_i \mid i \in \mathbb{N}\}$ is a basis for V..

9. **Claim:** if V is a vector space spanned by vectors $\beta_1, \beta_2, \ldots, \beta_m$, then any set S of n vectors (with n > m) is linearly dependent.