SECTION 2.1 - 2.b

```
TITERATION: 0 a=-1.25 \mid b=2.5 \mid p_0 = 0.625 \mid F(p_0) = -0.228515625

ITERATION: 1 a=0.625 \mid b=2.5 \mid p_1 = 1.5625 \mid F(p_1) = 4.594482421875

ITERATION: 2 a=0.625 \mid b=1.5625 \mid p_2 = 1.09375 \mid F(p_2) = 0.3496398925781

ITERATION: 3 a=0.625 \mid b=1.09375 \mid p_3 = 0.859375 \mid F(p_3) = -0.281902313232
```

SECTION 2.1 - 18

$$egin{aligned} ext{TOL} &= 10^{-3} \ f(x) &= x^3 + x - 4 \ [a,b] &= [1,4] \end{aligned}$$

We know the upper bound for error:

$$|p-p_0|<\frac{b-a}{2^n}$$

Upper bound required
$$TOL=10^{-3}=rac{4-1}{2^n}$$

$$\frac{3}{2^n} \leq 10^{-3}$$

$$\frac{2^n}{3} \ge 1000$$

$$2^n \ge 3000$$

$$n \geq \log_2 3000 pprox 11.55$$

$$\implies n \ge 12$$

Theoretically the bisection method will require 12 iterations to conform 10^{-3} units within the actual root. The real iteration count may be less.

$$g(x) = 2^{-x}$$

 $g'(x) = -l_n 2 \cdot 2^{-x}$
 $g''(x) = (l_n 2)^2 \cdot 2^{-x}$

Observe that $\forall x \in \mathbb{R}$ $g^{(1)}(x) > 0$, thus $g^{(2)}(x)$ contains no inflection points.

Observe that $\forall x \in \mathbb{R} \ g^{1}(x) < 0$.

$$g'(\frac{1}{3}) = .550...$$
 $g(\frac{1}{3}) = .793...$
 $g'(1) = -0.3466...$ $g(1) = 0.5$

This meas that for x = [\frac{1}{3}, 1] , |9'(x)| = 9'(\frac{1}{3}) < 1

Since g is monotonic decreasing, $\forall x \in [\frac{1}{3}, 1]$, $g(\frac{1}{4}) \leq g(x) \leq g(\frac{1}{3})$

$$\Rightarrow g: \begin{bmatrix} \frac{1}{3}, 1 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{4} & 1 \end{bmatrix}$$

This combined with the first that $2^{-x} \in C^{\infty}(\mathbb{R})$ satisfies theorem 23.

2 -x has awayer fixed part in [1,1]

2.210.6

$$g(x) = \lambda^{-x}$$
 $P_0 = 1$
 $P_1 = g(P_0) = 1/2$

K= 0.5508

$$n = \frac{2n(.00964)}{2n(.5508)}$$

20

Since x = f(x) exists:

$$x = 2x - Ax^2$$

Zero is a trual fixel pont.

Hour 1-Ax=0 is also a fixed pont:

1-Ax=0 (=\ Ax= ((=\) x= 1/A

Since I is a fixed point if A = Rt, lim Pn = p = 1/A

$$g(x) = 2x - Ax^{2}$$

 $g'(x) = 2 - 2Ax$

if $\exists K \in (0,1)$'s.t $\forall x \in I$, $|g'(x)| \angle K$ the $\forall p \in I$, the sequence $p_{-}^{*}g(p_{n-1})$ will converge.

$$|g'(x)| \le 1$$
 $|2-2Ax| \le 1$
 $|2-2Ax| \le 1$
 $|2-2Ax| \le 1$
 $|2Ax| \le 2$
 $|2Ax| \le 3$
 $|2Ax| \le$

Since 05 cos2(x) < 1, 65cos2x +657

The interval [6, 1] continue the fixel part for $\cos^2 x + 6$.

Additional 2

if is suppose that $\sqrt{2} \in [1,2]$ is an employ the bisection algorithm for:

$$f(x) = x^4 - 4$$

Addition 3

$$g(x) = x$$

$$\frac{8+2x}{2+x^2} = x \quad \stackrel{*}{\Rightarrow} \quad 8+2x = 2x + x^3$$

$$\frac{8=x^3}{2=x}$$

Additional 4
$$(1) \quad \chi^3 + e^{\chi} = \chi$$

(a)
$$x^3 - x + e^x = 0$$

 $x - e^x = x^3$
 $3\sqrt{x - e^x} = x$