Übersicht über die Vorlesung

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
 - 3.1 Quantenmechanische Probleme in drei Dimensionen
 - 3.2 Das Wasserstoffatom
 - 3.3 Das Periodensystem der Elemente
 - 3.4 Chemische Bindungen
- 4. Elektronen in Kristallen
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Halbleiter im Nichtgleichgewicht
- 9. Der pn-Übergang

Festkörperelektronik SS 2016 6. Foliensatz 02.06.2016

Vom Atom zum Material

Das allereinfachste Molekül: Das Wasserstoffmolekülion H₂⁺

...und wieder mal die S-Glg:
$$\left(\frac{-\hbar^2}{2m_0} \nabla^2 + V(\vec{r}) \right) \vec{\Psi(\vec{r})} = E \vec{\Psi(\vec{r})}$$

(...in der Atom- und Festkörperphysik wird die Energie typischerweise als E statt W bezeichnet)

... und wieder mal verdammt kompliziert, da 3 Teilchen und ein kompliziertes Potential

Zwei unendlich entfernte Potentialtöpfe

2 unendlich voneinander entfernte Potentialtöpfe haben dieselben Energiezustände (ihre Energien sind entartet).

Zwei 0,5 nm entfernte Potentialtöpfe

Werden die Potentialtöpfe einander näher gebracht, wechselwirken sie und die Energieentartung wird aufgehoben.

Zwei 0,3 nm entfernte Potentialtöpfe

Die Eigenfunktionen verändern sich ebenfalls.

$$E_1 = 0.216 \text{ eV}$$

$$E_2 = 0.24$$
 eV

$$E_3 = 0.836 \text{ eV}$$

$$E_4 = 0.942$$
 eV

Zwei 0,15 nm entfernte Potentialtöpfe

Je näher sich die Potentialtöpfe kommen, desto weiter spalten sich die Energieniveaus.

$$\mathrm{E}_1 = 0.19 \qquad \text{eV}$$

$$E_2 = 0.257$$
 eV

$$E_3=0.774 \quad \text{eV}$$

$$\mathrm{E}_4 = 1.007 \quad \text{eV}$$

Aufspalten der Energiezustände

Trägt man die Energiezustände als Funktion des Abstandes zwischen den zwei Potentialtöpfen auf, erhält man den folgenen Graphen:

Quelle: Martina Gerken

Wieder Born-Oppenheimer Näherung: "Kerne an einer Position festhalten"

$$H = \frac{-\hbar^2}{2m_0} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r_a} - \frac{e^2}{4\pi\varepsilon_0 r_b}$$

Gesamt-Coulombpotential

$$\psi_{ extit{bindend}} = \mathcal{A}(arphi_{lpha} + arphi_{b})$$

Gesamt-Coulombpotential

Es ergibt sich für den bindenden Zustand eine Absenkung der Energie, da das Elektron stärker delokalisiert ist.

bindender Zustand

Variation des Kernabstandes:

Gebundener Zustand beim Energieminimum

Energiegewinn pro Atom bei Si: 4.64 eV

Übersicht über die Vorlesung

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
- 4. Elektronen in Kristallen
 - 4.1 Von 2 zu 10²³
 - 4.2 Atome in Festkörpern
 - 4.3 Elektronen in periodischen Potentialen
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Halbleiter im Nichtgleichgewicht
- 9. Der pn-Übergang

4.1 Vom Atom zum Molekül zum Festkörper (Von 1 zu 2 zu 10²³)

Verallgemeinerung von zwei auf 10²³ Atome

4.1 Vom Atom zum Molekül zum Festkörper (Von 1 zu 2 zu 10²³)

Verallgemeinerung von zwei auf 10²³ Atome

Energiezustände von Elektronen im Gitter

Aufspaltung der Energiezustände

Für N Atome Aufspaltung in N Energiezustände

Diese energetisch nahe zusammenliegenden Zustände bilden "Bänder" von erlaubten Zuständen.

Komplexes Verhalten durch Überkreuzungen

Abb.: Schema der Energieniveaus, wenn (fiktiv) aus unabhängigen Si-Atomen durch Verringerung des atomaren Abstandes ein Kristall gemacht wird.

Übersicht über die Vorlesung

- 1. Grundlagen der Quantenmechanik
- 2. Elektronische Zustände
- 3. Vom Wasserstoffatom zum Periodensystem der Elemente
- 4. Elektronen in Kristallen
 - 4.1 Von 2 zu 10²³
 - 4.2 Atome in Festkörpern
 - 4.3 Elektronen in periodischen Potentialen
- 5. Halbleiter
- 6. Quantenstatistik für Ladungsträger
- 7. Dotierte Halbleiter
- 8. Halbleiter im Nichtgleichgewicht
- 9. Der pn-Übergang

4.2 Atome in Festkörpern

- chemische und physikalische Eigenschaften der Elemente sind durch ihre Elektronenkonfiguration im Grundzustand sowie durch naheliegende angeregte Zustände bestimmt
- z.B. Germanium Ge (32 Elektronen) und Silizium Si (14 Elektronen):
- jeweils vier Elektronen in der äußersten Schale

Atome in Festkörpern

- Elektronen in der äußersten Schale gehen Verbindungen mit anderen Atomen ein (kovalente Bindung, teilweise ionisch bei unterschiedlichen Atomen, z.B. GaAs)
- Anordnung der Atome erfolgt so, dass die Gesamtenergie minimal wird

Dies ist oft gegeben, wenn eine Unterschale gefüllt wird.

Jedes Si- oder Ge-Atom geht Verbindungen mit vier weiteren Atomen ein.

Ordnung in Festkörpern

Je nach Art der Herstellung können sich die Atome verschieden geordnet zu Festkörpern zusammenschliessen.

- ⇒ Kristalle: Die Atome sind periodisch angeordnet.
- ⇒ Polykristalline Festkörper: Kristalline Bereiche, aber keine Fernordnung
- ⇒ Amorphe Festkörper: nur Nahordnung, keine Periodizität, keine Fernordnung.
- Halbleitermikroelektronik wird dominiert durch kristalline Siliziumchips
- Halbleiteroptoelektronik wird dominiert durch Verbindungshalbleiter (mehr als ein Element)
- polykristalline und amorphe Halbleiter bei großflächiger und kostengünstiger Elektronik

Quelle: Physical Properties of Semiconductors, C.M. Wolfe, N. Holonyak, G. E. Stillman

Ordnung in Festkörpern

Kristalliner Wafer

→ Si-Mikroelektronik

Polykristalline Si-Solarzelle

Amorphe Dünnfilmtransistoren

3D-Kristallgitter

In 3D wird die Anordnung durch drei Gittervektoren a₁, a₂ und a₃ eindeutig beschrieben.

In 3D gibt es 14 verschiedene Kristallgitter.

Die Grundeinheit

muss nicht ein einzelnes Atom sein.

Sie kann auch eine kompliziertere Einheit Atomen sein.

aus mehreren

body-centered cubic (bcc)

face-centered cubic kubisch raumzentriert kubisch flächenzentriert (fcc)

Quelle: B. Van Zeghbroeck

Verbindungshalbleiter

Verbindungshalbleiter bilden sich ebenfalls nach der Regel, möglichst die Unterschalen zu füllen.

Dadurch entstehen IV-IV, III-V und II-VI Halbleiter.

Halbleiter aus zwei Elementen nennt man binäre Halbleiter.

Element-HL	Verbindungs-HL		
	IV-IV-Verbindungen	III-V-Verbindungen	II-VI-Verbindungen
С,	SiC	AlP, AlAs, GaN, GaP	ZnS, ZnO, ZnSe, ZnTe
Si, Ge	SiGe	AlSb, GaAs, InP,	CdS, CdSe, HgS,
		GaSb, InAs, InSb	CdTe, HgSe, HgTe

Halbleiter aus drei Elementen nennt man ternäre Halbleiter.

Halbleiter aus vier Elementen nennt man quarternäre Halbleiter.

$$\Rightarrow$$
 z.B. $In_{1-x}Ga_xAs_{1-y}P_y$

Kristallstruktur von Si und Ge

Si und Ge bilden Diamantgitter

Die Diamantstruktur hat ein fcc-Gitter mit einer Einheitszelle, die aus zwei Atomen bei (0,0,0) und (1/4,1/4,1/4)a besteht. a ist die Länge der Einheitszelle.

Einkristallwachstum: Czochralski-Verfahren

-für gute Transporteigenschaften ist einkristallines Material erforderlich

Bruchstücke von poly-Si werden unter Schutzgas aufgeschmolzen (T_S=1415 °C)

Eintauchen eines einkristallinen Keims

einkristallines Wachstum unter Zieh- und Drehbewegungen

Wachstum von einkristallinen Stäben

Einkristallwachstum: Czochralski-Verfahren

-für gute Transporteigenschaften ist einkristallines Material erforderlich

Bruchstücke von poly-Si werden unter Schutzgas aufgeschmolzen (T_S=1415 °C)

Eintauchen eines einkristallinen Keims

einkristallines Wachstum unter Zieh- und Drehbewegungen

Wachstum von einkristallinen Stäben

(Foto: Wacker Siltronic Burghausen)

Methoden der Epitaxie: MBE

Molekularstrahlepitaxie (molecular beam epitaxy, MBE)

Verdampfung der Elemente aus fester Quelle im Ultrahochvakuum (10-10 mbar)

- ist für Verbindungshalbleiter interessant
- Methode für die Erforschung neuer Materialien