(1) Min
$$4x + \sqrt{2} x_2 - .35x_3$$

S.t. $-0.01 x_1 + 200x_2 - x_4 = 7\sqrt{261}$ $\begin{cases} stack & g \\ 5.t. & -0.01 x_1 + 200x_2 - x_4 \\ 7.07x_2 - 2.62x_3 + x_5 = 4 \end{cases}$

But x_1 is still unbounded, so:

 $m_1 m_1 + x_2 + \sqrt{2} x_2 - \sqrt{2} x_3 - x_4 = \sqrt{2} x_3 + \sqrt{2} x_1 + \sqrt{2} x_2 - \sqrt{2} x_3 + \sqrt{2} x_3 + \sqrt{2} x_4 + \sqrt{2} x_2 - \sqrt{2} x_3 + \sqrt{2} x_3 + \sqrt{2} x_4 + \sqrt{2} x_4 - \sqrt{2} x_3 + \sqrt{2} x_3 + \sqrt{2} x_4 + \sqrt{2} x_4 + \sqrt{2} x_3 + \sqrt{2} x_3 + \sqrt{2} x_3 + \sqrt{2} x_4 + \sqrt{2} x_5 = 4 \end{cases}$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$
 $x_2, x_3, x_4, x_5 \ge 0$

(a)
$$x_{1} = x_{1} + 20$$
; $x_{2} = x_{3} - 15$
(b) $x_{1} = x_{1} + 20$; $x_{2} = x_{3} = x_{3}$
 $x_{1} = x_{2} + 20$
 $x_{2} = x_{3} + x_{4} = x_{4}$
 $x_{1} = x_{2} + x_{3} = x_{3} + x_{4} = x_{4}$

(-) Minimize
$$x_1' - X_1' + 3x_1 + 2x_2' + 2x$$

1.2 (1)
$$m'_1 n'_1 r_2 e$$
 $2x_1' - 2x_1' + 6x_2 + 8x_3$

5.4 $x_1' - 4x_2' + 6x_2 + 2x_3 = 5$
 $4x_1' - 4x_2' + 6x_2 + 2x_3 = 12$
 $x_1' x_1' x_2' x_3 > 0$
 $x_1' x_1' x_2 e$ $10 - 4x_2 - 2x_3 + 6x_2 + 8x_3$
 $x_1' x_2 e$ $10 - 4x_2 - 2x_3 + 6x_2 + 8x_3$
 $x_1' x_2 = 10 - 4x_2 - 2x_3 + 6x_2 + 8x_3$
 $x_1' x_2 > 0$
 $x_2' x_3 > 0$
 $x_1' x_3 > 0$
 $x_2' x_3 > 0$
 $x_1' x_3 > 0$
 $x_2' x_3 > 0$
 $x_1' x_3 > 0$
 $x_2' x_3 > 0$
 $x_2' x_3 > 0$
 $x_1' x_3 > 0$
 $x_2' x_3 > 0$
 $x_2' x_3 > 0$
 $x_1' x_3 > 0$
 $x_2' x_3 > 0$
 $x_2' x_3 > 0$
 $x_1' x_3 > 0$
 $x_2' x_3 > 0$
 $x_2' x_3 > 0$
 $x_1' x_2 > 0$
 $x_2' x_3 > 0$
 $x_3' x_3 > 0$
 $x_2' x_3 > 0$
 $x_2' x_3 > 0$
 $x_3' x_3 > 0$

Cistine for person; to finish project X= { 1 it is lassigned to i : 5k: 11ed labor = 100 Constraints: unskilled labortho J= Person A. 60. Z Z X,C, where i= projects 1aw material Maximize revenue= 15x, + 25x2 for each 3X, + 4X, ≤ 100 2X, + 3X, ≤ 70 X, + 2X, < 30 X, 20, X, 3 Chip type= X, X2 S. t. & X. :- 1 s.t. resource M.M.Mize

So each project/is assigned exactly minimum cost, for example, Xy, + Xy, + Xy, + Xy, + Xy = and XA, + Xy, + Xy, + Xy, + Xy, = 5 X; = 1 for each i one person at