Examen HAE301E

Partie F. Martinez

Aucun document autorisé/ Calculatrice non autorisée

Tous les résultats doivent être encadrés. L'homogénéité des résultats doit être vérifiée.

La caractéristique idéalisée de la diode est donnée par la figure 1.

Figure 1

- 1. En utilisant le modèle proposé, quelles(s) relation(s) vérifient I_D et V_D:
 - a. Si la diode est bloquée ?
 - b. Si la diode est passante?

Soit le montage donné par la figure 2. On donne $E_1=10$ V et $E_2=15$ V. Les diodes sont modélisées suivant la figure 1. La tension e(t) est variable, elle peut être positive ou négative.

Figure 2

Pour les questions 2,3 et 4, on synthétisera les réponses sous la forme d'un tableau :

D1 OFF / D2 OFF	<e(t)<< th=""><th>$\mathrm{u}(\mathrm{t}) {=}$</th></e(t)<<>	$\mathrm{u}(\mathrm{t}) {=}$
D1 ON / D2 OFF	e(t)>	$\mathrm{u}(\mathrm{t}){=}$
D1 OFF / D2 ON	e(t)<	$\mathrm{u}(\mathrm{t}) {=}$

- 2. Pour quelle gamme de tension e(t) les diodes sont-elles bloquées ? Quelle est l'expression de u(t) dans ce cas ?
- 3. Pour quelle gamme de tension e(t) la diode D1 est passante et D2 est bloquée ? Quelle est l'expression de u(t) dans ce cas ?
- 4. Pour quelle gamme de tension e(t) la diode D2 est passante et D1 est bloquée ? Quelle est l'expression de u(t) dans ce cas ?

La tension e(t) dépend du temps et s'exprime $e(t)=20 \sin(2\pi 50t)$.

5. Représenter sur un même graphe la tension e(t) et u(t) sur une période de la tension e(t).