ภาคผนวก

- LS TTL Logic •
- CMOS Logic •

LS	TTL Logic
1.	74LS00
2.	74LS01
3.	74LS02
4.	74LS04
5.	74LS05
6.	74LS08
7.	74LS13
8.	74LS14
9.	74LS32
10.	74LS42
11.	74LS47
12.	74LS48
13.	74LS74A
14.	74LS75
15.	74LS77

LS TTL Logic					
16.	74LS76A				
17.	74LS83A				
18.	74LS85				
19.	74LS90				
20.	74LS92				
21.	74LS93				
22.	74LS122				
23.	74LS123				
24.	74LS125A				
25.	74LS126A				
26.	74LS147				
27.	74LS148				
28.	74LS748				
29.	74LS153				
30.	74LS155				
31.	74LS156				

C	CMOS Logic				
1.	4001B				
2.	4002B				
3.	4025B				
4.	4078B				
5.	4009UB				
6.	4010B				
7.	4011B				
8.	4012B				
9.	4023B				
10.	4068B				
11.	4011UB				
12.	4049UB				
13.	4050B				
14.	4070B				
15.	4071B				
16.	4072B				
17.	4075B				

หมายเหตุ ข้อมูลจากผลิตภัณฑ์ของ MOTOROLA

QUAD 2-INPUT NAND GATE

SN54/74LS00

QUAD 2-INPUT NAND GATE LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

Symbol	Parameter		Min	Тур	Max	Unit
vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

QUAD 2-INPUT NAND GATE

SN54/74LS01

QUAD 2-INPUT NAND GATE LOW POWER SCHOTTKY

Symbol	Parameter		Min	Тур	Max	Unit
v _{CC}	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	v
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
VOH	Output Voltage — High	54, 74			5.5	V
lor	Output Current — Low	54 74			4.0 8.0	mA

QUAD 2-INPUT NOR GATE

SN54/74LS02

QUAD 2-INPUT NOR GATE
LOW POWER SCHOTTKY

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	· · ·
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current High	54, 74			-0.4	, mA
¹ OL	Output Current — Low	54 74			4.0 8.0	mA

HEX INVERTER

SN54/74LS04

HEX INVERTER
LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

Symbol	Parameter		Min	Тур	Max	Unit
vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°℃
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current Low	54 74			4.0 8.0	mA

HEX INVERTER

SN54/74LS05

HEX INVERTER LOW POWER SCHOTTKY

Symbol	Parameter		Min	Тур	Max	Unit
vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
[™] A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	~℃
VOH	Output Voltage High	54, 74			5.5	v
lor	Output Current — Low	54 74			4.0 8.0	mA

QUAD 2-INPUT AND GATE

SN54/74LS08

QUAD 2-INPUT AND GATE

LOW POWER SCHOTTKY

Symbol	Parameter		Min	Тур	Max	Unit
vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
OL	Output Current — Low	54 74			4.0 8.0	mA

SCHMITT TRIGGERS DUAL GATE/HEX INVERTER

SN54/74LS13 SN54/74LS14

LOGIC AND CONNECTION DIAGRAMS

SCHMITT TRIGGERS DUAL GATE/HEX INVERTER LOW POWER SCHOTTKY

Symbol	Parameter	T	Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
Юн	Output Current High	54, 74			-0.4	mA
OL	Output Current — Low	54 74			4.0 8.0	mA

QUAD 2-INPUT OR GATE

SN54/74LS32

QUAD 2-INPUT OR GATE LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ SN74LSXXN SN74LSXXD SOIC

Cerámic Plastic

Symbol	Parameter		Min	Тур	Max	Unit
vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	v
T _A	Operating Ambient Temperature Range	. 54 . 74	~55 . 0	25 25	125 70	°C
Юн	Output Current — High	54, 74			-0.4	mA
lor	Output Current — Low	54 74			4.0 8.0	mA

ONE-OF-TEN DECODER

The LSTTL/MSI SN54/74LS42 is a Multipurpose Decoder designed to accept four BCD inputs and provide ten mutually exclusive outputs. The LS42 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Multifunction Capability
- · Mutually Exclusive Outputs
- Demultiplexing Capability
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

	LOADING (Note a)			
	HIGH	LOW		
Address Inputs Outputs, Active LOW (Note b)	0.5 U.L. 10 U.L.	0.25 U.L. 5(2.5) U.L.		

NOTES:

A0 - A3 0 to 9

a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8 O = PIN NUMBERS

SN54/74LS42

ONE-OF-TEN DECODER LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

BCD TO 7-SEGMENT DECODER/DRIVER

The SN54/74LS47 are Low Power Schottky BCD to 7-Segment Decoder/Drivers consisting of NAND gates, input buffers and seven AND-OR-IN-VERT gates. They offer active LOW, high sink current outputs for driving indicators directly. Seven NAND gates and one driver are connected in pairs to make BCD data and its complement available to the seven decoding AND-OR-INVERT gates. The remaining NAND gate and three input buffers provide lamp test, blanking input/ripple-blanking output and ripple-blanking input.

The circuits accept 4-bit binary-coded-decimal (BCD) and, depending on the state of the auxiliary inputs, decodes this data to drive a 7-segment display indicator. The relative positive-logic output levels, as well as conditions required at the auxiliary inputs, are shown in the truth tables. Output configurations of the SN54/74LS47 are designed to withstand the relatively high voltages required for 7-segment indicators.

These outputs will withstand 15 V with a maximum reverse current of 250 µA. Indicator segments requiring up to 24 mA of current may be driven directly from the SN74LS47 high performance output transistors. Display patterns for BCD input counts above nine are unique symbols to authenticate input conditions.

The SN54/74LS47 incorporates automatic leading and/or trailing-edge zero-blanking control (RBI and RBO). Lamp test (LT) may be performed at any time which the BI/RBO node is a HIGH level. This device also contains an overriding blanking input (BI) which can be used to control the lamp intensity by varying the frequency and duty cycle of the BI input signal or to inhibit the outputs.

- Lamp Intensity Modulation Capability (Bl/RBO)
- · Open Collector Outputs
- Lamp Test Provision
- · Leading/Trailing Zero Suppression
- Input Clamp Diodes Limit High-Speed Termination Effects

PIN	NAMES

		HIGH	LOW
A, B, C, D	BCD inputs	0.5 U.L.	0.25 U.L.
RBI	Ripple-Blanking Input	0.5 U.L.	0.25 U.L.
LT .	Lamp-Test Input	0.5 U.L.	0.25 U.L.
BI/RBO	Blanking Input or	0.5 U.L.	0.75 U.L.
	Ripple-Blanking Output	1.2 U.L.	2 C U.L.
a, to g	Outputs	Open-Collector	15 (7.5) U.L.

LOADING (Note a)

NOTES a) 1 Unit Load (U.L.) = 40 μΑ HIGH, 1.6 mA LOW

b) Output current measured at VOUT = 0.5 V The Output LOW drive factor is 7.5 U.L. for Mildary (54) and 15 U.L. for Commercial iT4. Temperature Ranges

SN54/74LS47

BCD TO 7-SEGMENT DECODER/DRIVER

LOW POWER SCHOTTKY

SN54/74LS47

NUMERICAL DESIGNATIONS -- RESULTANT DISPLAYS

TRUTH TABLE

OUTPUTS															
DECIMAL OR PUNCTION	ΕŦ	RBI	D	c	в	^	BURBO	ē	ō	ē	ā	٠	ì	ĕ	NOTE
0	н	н	L	L	L	L	н	L	Ĺ	L	L	L	L	н	
1	н	×	L	L	L	н	н	н	L	L	н	н	н	н	٨
. 2	н	×	L	L	н	L	н	L	L	Н	L	L	н	L	
3	н	×	L	L	н	н	н	L	L	L	L	н	н	L	
4	н	×	L	н	L	L	н	н	L	L	н	н	L	L	
5	н :	X	i.	н	L	н	н	L	н	L	L	н	L	L	
6	н	X	L	н	н	L	н	н	н	L	L	L	L	_	
	н	×	Ł	н	н	н	н	L	L	L	н	н	н	н	
6	н	X.	н	L	L	L	н	L	L	L	L	L	L	L	
9	H	X	н	L	L	н	н	L	L	L	н	н	L	L	
10	н	X	н	L	н	L	н	н	н	н	L	L	н	L	
11	н	X	н	L	н	н	н	н	н	L	L	н	н	L	
12	н	X	н	н	L	£	н	н	L	н	н	н	L	L	
13	н	X	н	н	L	н	н	L	н	н	L	н	L	L	
14	н	х	н	н	н	L	Н	н	н	Н	L	L	L	Ĺ	
15	н	X	н	н	н	н	Н	н	н	н	н	н	Н	н	
81	×	X	X	X	X	×	L	н	H	н	н	н	н	н	В
PBI	н	L	L	L	L	Ļ	Ĺ	н	н	н	н	Н	н	H	С
נד	L	x	X	×	х	X	H.	L	L	i,	L	L	L	L	D

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

- (A) BI/RBO is wire-AND logic serving as blanking Input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking of a decimal 0 is not desired. X = input may be HIGH or LOW.
- (B) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level regardless of the state of any other input condition.
- (C) When ripple-blanking input (RBI) and inputs A, B, C, and D are at LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).

 (D) When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to tamp test input.
- all segment outputs go to a LOW level.

BCD TO 7-SEGMENT DECODER

The SN54/74LS48 is a BCD to 7-Segment Decoder consisting of NAND gates, input buffers and seven AND-OR-INVERT gates. Seven NAND gates and one driver are connected in pairs to make BCD data and its complement available to the seven decoding AND-OR-INVERT gates. The remaining NAND gate and three input buffers provide lamp test, blanking input/ripple-blanking input for the LS48.

The circuit accepts 4-bit binary-coded-decimal (BCD) and, depending on the state of the auxiliary inputs, decodes this data to drive other components. The relative positive logic output levels, as well as conditions required at the auxiliary inputs, are shown in the truth tables.

The LS48 circuit incorporates automatic leading and/or traiting edge zero-blanking control (RBI and RBO). Lamp Test (LT) may be activated any time when the BI/RBO node is HIGH. Both devices contain an overriding blanking input (BI) which can be used to control the lamp intensity by varying the frequency and duty cycle of the BI input signal or to inhibit the outputs.

- · Lamp Intensity Modulation Capability (BI/RBO)
- Internal Pull-Ups Eliminate Need for External Resistors
- Input Clamp Diodes Eliminate High-Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW) 15 14 13 12 10 2 3 4 5 7 8 6 LOGIC DIAGRAM INPUT CUTPUT BLANKING INPUT OR RIPPLE BLANKING OUTPUT RIPPLE-BLANKING INPUT LAMP-TEST

SN54/74LS48

BCD TO 7-SEGMENT DECODER

LOW POWER SCHOTTKY

SN54/74LS48

PIN NAMES		LOADING (Note a)				
		HIGH	LOW			
A, B, C, D	BCD Inputs	0.5 U.L.	0.25 U.L.			
RBI	Ripple-Blanking (Active Low) Input	0.5 U.L.	0.25 U.L.			
LT	Lamp-Test (Active Low) Input	0.5 U.L.	0.25 U.L.			
BI/RBO	Blanking Input or Ripple-	0.5 U.L.	0.75 U.L.			
_	Blanking Output (Active Low)	1.2 U.L.	2(1) U.L.			
BI	Blanking (Active Low) Input	0.5 U.L.	0.25 U.L.			
		Open-Collector	3.75 (1.25) U.L. (48)			

NOTES:

- a) Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW

b) Outut current measured at VOUT = 0.5 V
Output LOW drive factor is SN54LS/74LS48: 1.25 U.L. for Military (54), 3.75 U.L. for Commercial (74).

NUMERICAL DESIGNATIONS -- RESULTANT DISPLAYS

TRUTH TABLE SN54/74LS48

INPUTS OUTPUTS															
DECIMAL OR FUNCTION	CT	RBI	D	С	В	A	BITREO	•	ь	c	d	•	1		NOTE
0	н	н	L	L	Ĺ	L	н	н	н	н	н	н	н	L	1
1	н	x	L	L	ι	н	н	L	н	н	L	L	L	L	1
2	н	x	L	L	н	L	Н	н	н	L	н	H	Ĺ	н	
3	н	X :	L	L	н	н	н	н	н	н	н	L	t,	н	
4	н	X	L	н	Ĺ	L	H	L	н	н	L	L	н	н	
5	н	x	L	н	L	н	н	н	L	н	н	L	н	н	
6	н	x	ı	н	н	L	н	L	L	н	н	н	н	н	
7	н	X	L	н	н	н	н	н	н	н	L	٤	L	L	
8	н	X	н	L	L	L	н	н	н	н	н	н	н	н	
9	н	X	H	L	L	н	н	н	н	н	Ĺ	٤	н	н	
10	н	х	н	L	н	L	н	L	L	L	н	н	Ł	н	
- 11	H	x	н	Ľ.	н	Н	н	Ł	L	н	Ħ	L	L	н	
12	н	х	н	н	L	L	н	Ĺ	н	Ļ	L	l,	н	н	
13	н	×	н	н	L	н	н	н	L	Ĺ	I	L	н	н	
14	н	×	н	н	н	L	н	L	L	L	н	н	н	н	
15	н	×	н	н	н	н	н	Ĺ	L	Ŀ	L	Ĺ	ï	L	
Đì	х	×	х	х	X	х	L	L	L	ι	L	ι	L	٤	2
ABI	н	L	L	L	L	L	L	L	L	L	L	L	L	L	3
TT.	L	X	X	х	x	х	н	н	н	н	н	н	н	н	4

NOTES:

- NOTES:

 (1) BURBO is wired-AND logic serving as blanking input (Bi) and/or ripple-blanking output (RBO). The blanking out (Bi) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking of a decimal 0 is not desired. X=input may be HIGH or LOW.
- (2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level, regardless of the state of any other input condition.
- (3) When ripple-blanking input (RBI) and inputs A, B, C, and D are at LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).
- (4) When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp-test input, all segment outputs go to a LOW level.

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

SN54/74LS74A

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

LOW POWER SCHOTTKY

LOGIC DIAGRAM (Each Flip-Flop)

MODE SELECT -- TRUTH TABLE

OPERATING MODE		INPUTS	OUTPUTS		
	S _O	SD	D	a	ā
Set	Ł	н	×	н	1
Reset (Clear)	н	L	x	ï	ĺй
*Undetermined	L	l ī	x	H	lн
Load *1* (Set)	н	н	h	H	1 ;
Load "0" (Reset)	н	Н	1 1	i	1

4-BIT D LATCH

The TTL/MSI SN54/74LS75 and SN54/74LS77 are latches used as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the Enable is HIGH and the Q output will follow the data input as long as the Enable remains HIGH. When the Enable goes LOW, the Information (that was present at the data input at the time the transition occurred) is retained at the Q output until the Enable is permitted to go HIGH.

The SN54/74LS75 features complementary Q and \overline{Q} output from a 4-bit latch and is available in the 16-pin packages. For higher component density applications the SN54/74LS77 4-bit latch is available in the 14-pin package with \overline{Q} outputs omitted.

CONNECTION DIAGRAMS DIP (TOP VIEW)

PIN			-
PIN	NA	m	E3

LOADING	(Note a)	
CONDING	(inche a)	

		HIGH	LOW
D1-D4	Data Inputs	0.5 U.L.	0.25 U.L.
E ₀₋₁	Enable Input Latches 0, 1	2.0 U.L.	1.0 U.L.
E ₂₋₃	Enable Input Latches 2, 3	2.0 U.L.	1.0 U.L.
Q1-Q4	Latch Outputs (Note b)	10 U.L.	5 (2.5) U.L.
Q1-Q4.	Complimentary Latch Outputs (Note b)	10 U.L.	5 (2.5) U.L.
NOTES:			

NOTES:

- a) 1 Unit Load (U.L.) = 40 µA HIGH.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

TRUTH TABLE (Each latch)

tn	t _{n+1}
D	a
н	н
L	L

SN54/74LS75 SN54/74LS77

4-BIT D LATCH LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ SN74LSXXN SN74LSXXD Ceramic Plastic SOIC

DUAL JK FLIP-FLOP WITH SET AND CLEAR

MODE SELECT -- TRUTH TABLE

OPERATING MODE		INP	OUTPUTS			
OPERATING MODE	ΞD	Ē _D	J	K	Q	ā
Set	L	н	×	×	н	L
Reset (Clear)	н	L	×	×	L	Н
*Undetermined	L	L L	X	X	Й	н
Toggle	н	н	h	h	ā	٩
Load "0" (Reset)	н	Н	1	h	Ĺ	H
Load "1" (Set)	н	н	h	1	н	L
Hold	н	н	1	ι	Q	ā

LOGIC DIAGRAM

SN54/74LS76A

DUAL JK FLIP-FLOP WITH SET AND CLEAR

LOW POWER SCHOTTKY

4-BIT BINARY FULL ADDER WITH FAST CARRY

The SN54/74LS83A is a high-speed 4-Bit binary Full Adder with internal carry lookahead. It accepts two 4-bit binary words $(A_1-A_4,\,B_1-B_4)$ and a Carry Input (C0). It generates the binary Sum outputs $\Sigma_1-\Sigma_4)$ and the Carry Output (C4) from the most significant bit. The LS83A operates with either active HIGH or active LOW operands (positive or negative logic). The SN54/74LS283 is recommended for new designs since it is identical in function with this device and features standard corner power pins.

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES		LOADING (Note a)				
		HIGH	LOW			
A1-A4	Operand A Inputs	1.0 U.L.	0.5 U.L.			
B1-B4	Operand B Inputs	1.0 U.L.	0.5 U.L.			
C ₀	Carry Input	0.5 U.L.	0.25 U.L.			
$\Sigma_1 - \Sigma_4$	Sum Outputs (Note b)	10 U.L.	5 (2.5) U.L.			
C ₄	Carry Output (Note b)	10 U.L.	5 (2.5) U.L.			

NOTES: a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS83A

4-BIT BINARY FULL ADDER WITH FAST CARRY

LOW POWER SCHOTTKY

4-BIT MAGNITUDE COMPARATOR

CONNECTION DIAGRAM DIP (TOP VIEW)

SN54/74LS85

4-BIT MAGNITUDE COMPARATOR

LOW POWER SCHOTTKY

PIN NAMES		LOADING (Note a)		
		HIGH	LOW	
A ₀ -A ₃ , B ₀ -B ₃	Parallel inputs	1.5 U.L.	0.75 U.L.	
IA=B	A = B Expander Inputs	1.5 U.L.	0.75 U.L.	
A <b ia="">B	A < B, A > B, Expander Inputs	0.5 U.L.	0.25 U.L.	
O _{A>B}	A Greater Than B Output (Note b)	10 U.L.	5 (2.5) U.L.	
OA <b< td=""><td>B Greater Than A Output (Note b)</td><td>10 U.L.</td><td>5 (2.5) U.L.</td></b<>	B Greater Than A Output (Note b)	10 U.L.	5 (2.5) U.L.	
9A≠B	A Equal to B Output (Note b)	10 U.L.	5 (2.5) U.L.	
NOTES:				
	L.) = 40 μA HIGH/1.6 mA LOW.			
NOTES: e) 1 TTL Unit Load (U		•		

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS85

LOGIC DIAGRAM

TRUTH TABLE

COMPARING INPUTS		CASCADING INPUTS			ОШТРИТЪ				
A ₃ ,B ₃	A2,B2	A1,B1	A ₀ ,B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	IA=B	O _{A>B}	O _{A<b< sub=""></b<>}	O _{A=B}
A3>B3	X	x	X	×	×	х	н	L	L
A3 <b3< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>L.</td><td>н</td><td>L</td></b3<>	×	×	×	×	×	×	L.	н	L
A3=B3	A2>B2	x	×	×	X	x	н	L	L
A3=B3	A2 <b2< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>x</td><td>L</td><td>н</td><td>L</td></b2<>	×	×	×	×	x	L	н	L
A3=B3	A2=B2	A1>B1	X	×	×	x	н	L	L
A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>×</td><td>×</td><td>×</td><td>L</td><td>н</td><td>Ĺ.</td></b1<>	X	×	×	×	L	н	Ĺ.
A3≃B3	A2=B2	A1=B1	$A_0>B_0$	×	X	X	н	Ĺ	Ĺ
A3=B3	A2=B2	A1=B1	A ₀ <b<sub>0</b<sub>	×	x	x	L	н	L
A3=B3	A2=B2	A1=B1	A0=B0	н	L	L	н	L,	L
A3=B3	A2=B2	A1=B1	A0=B0	L	н	L	L	н	L
A3=B3	A2=82	A1=B1	A ₀ =B ₀	×	×	н	Ł	L	н
A3=B3	A2=B2	A1=B1	A ₀ =B ₀	н	н	L	L	L	L
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	L	Ł	L	н	H	L

Symbol	Parameter		Min	Тур	Max	Unit
v _{CC}	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 - 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
OL	Output Current — Low	54 74			4.0 8.0	mA

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to \overline{CP}) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

- Low Power Consumption . . . Typically 45 mW
- · High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- . Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES LOADING (Note a) HIGH LOW CP₀ Clock (Active LOW going edge) Input to 0.5 U.L. 1.5 U.L. +2 Section CP₁ Clock (Active LOW going edge) Input to 0.5 U.L. 2.0 U.L. +5 Section (LS90), +6 Section (LS92) CP € Clock (Active LOW going edge) Input to 0.5 U.L. 1.0 U.L. +8 Section (LS93) MR₁, MR₂ Master Reset (Clear) Inputs 0.5 U.L. 0.25 U.L Master Set (Preset-9, LS90) Inputs MS₁, MS₂ 0.5 U.L. 0.25 U.L. Q_0 Output from +2 Section (Notes b & c) 10 U.L. 5 (2.5) U.L. Q₁, Q₂, Q₃ Outputs from +5 (LS90), +6 (LS92), 10 U.L. 5 (2.5) U.L. +8 (LS93) Sections (Note b)

NOTES:

- a. 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
- The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74)
 Temperature Ranges.
- c. The Q_0 Outputs are guaranteed to drive the full fan-out plus the \overline{CP}_1 input of the device.
- d. To insure proper operation the rise (tr) and fall time (tr) of the clock must be less than 100 ns.

SN54/74LS90 SN54/74LS92 SN54/74LS93

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

LOGIC SYMBOL

LS93

SN54/74LS90 • SN54/74LS92 • SN54/74LS93

SN54/74LS90 • SN54/74LS92 • SN54/74LS93

LS90 MODE SELECTION

RESET/SET INPUTS			(OUTP	UTS		
MR1	MR ₂	MS ₁	MS ₂	Q ₀	Q1	Q ₂	Q3
н	н	L	X	7		一	L
н	н	x	L	L	L	L	L
X	×	н	н	н	L	L	н
L	×	ι	×	ı	Cou	unt	
x	L	×	L	1	Cor	unt	
Ł	×	x	L	1	Co	unt	
X	L	L	l x l	I	Co	unt	

LS92 AND LS93 MODE SELECTION

RESET INPUTS			OUTF	PUTS	
MR ₁	MR ₂	Q ₀	Q ₁	Q ₂	Q3
н	н	L	L.	L	L
L	н	ı	Cou	unt	
H	L	Count			
L	L		Cot	unt	

LS90 BCD COUNT SEQUENCE

0011117		OUTPUT				
COUNT	Q ₀	Q ₁	Q ₂	Q_3		
0	L	L	Ľ	L		
1	н	L	L	L		
2	L	н	L	L		
3	н	н	L	L		
4	L	L	н	L		
5	н	L	н	L		
6	L	н	н	L		
7	н	н	н	L		
8	L	L	L	н		
9	н	L	L	н		

NOTE: Output Q₀ is connected to Input CP₁ for BCD count.

LS92 TRUTH TABLE

COUNT	OUTPUT			
COUNT	Q ₀	Q ₁	Q ₂	Q ₃
0	L	L	L	L
1	н	L	L	L
2	L	Н	L	
2 3 4	н	н	L	L
4	L	L	н	L
5	н	Ł	н	L
6 7	L.	L	L	н
7	н	L	L	н
8	L	н	L	н
9	н	н	L	н
10	L	L	н	н
11	н	L	н	н

NOTE: Output Q_0 is connected to input \overline{CP}_1 .

LS93 TRUTH TABLE

COUNT		OUT	PUT	
COUNT	00	Q ₁	Q ₂	Q_3
0	L	L		L
1	Н	L	L	L
2	L	н	Ĺ.	L
0 1 2 3 4 5	H	н		L
4	L	L		L
5	Н	L	н	L
6 7	Н	н	н	L
7	н	н	н	L
8	Н	L	L	
9	н	L H	L L L L H	н
10	L	н	L.	н.
11	Н	н	L	н
12	L	L	н	н
13	H	L	н	н
14	L	н	н	н
15	н	н	н	н

NOTE: Output Q_0 is connected to Input $\widetilde{\mathbb{CP}}_1$.

RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

These dc triggered multivibrators feature pulse width control by three methods. The basic pulse width is programmed by selection of external resistance and capacitance values. The LS122 has an internal timing resistor that allows the circuits to be used with only an external capacitor. Once triggered, the basic pulse width may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear.

- Overriding Clear Terminates Output Pulse
- Compensated for V_{CC} and Temperature Variations
- DC Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle
- Internal Timing Resistors on LS122

SN54/74LS123 (TOP VIEW) (SEE NOTES 1 THRU 4)

SN54/74LS122 (TOP VIEW) (SEE NOTES 1 THRU 4)

NC - NO INTERNAL CONNECTION.

SN54/74LS122 SN54/74LS123

RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

SN54/74LS122 • SN54/74LS123

LS122 FUNCTIONAL TABLE

	INPUTS				OUT	TPUTS
CLEAR	A1	A2	B1	B2	a	ā
L	×	×	×	×	L	н
×	Н	н	x	x	L	н
x	×	×	L	×	L	н
x	x	x	x	L	L	н
н	L	X	Ť	н	л	ъ
н	L	x	н	1	7	·Γ
н	×	Ĺ	1	н	7	v
н	l x	L	н	Ť	7	ឃ
н	н	1	н	н	7	v
н	ŧ	1	н	н	л.	ν.
н	ļ ţ	н	н	н	J.	v
1	L	×	н	н	1	ਪ
1	×	L	н	н	л	v

LS123 FUNCTIONAL TABLE

INPUTS			OUT	PUTS
CLEAR	A	В	a	Q
L	×	×	1	н
×	н	x	l L	н
×	×	L	lι	н
н	L	1	l T	·T
н	1	н	J.	ъ
1	L	н	л	ъ

QUAD 3-STATE BUFFERS

TRUTH TABLES

LS125A

INP	UTS	
Ē	D	OUTPUT
L	L	L
L	н	н
н	x	(Z)

LS126A

INP	urs	
E	D	OUTPUT
н	L	L
н	н	н
L	Х	(Ž)

SN54/74LS125A SN54/74LS126A

QUAD 3-STATE BUFFERS LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

Symbol	Parameter		Min	Тур	Max	Unit
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	v
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	"C
ЮН	Output Current — High	54 74			~1.0 ~2.6	mA
OL :	Output Current — Low	54 74			12 24	mA

10-LINE-TO-4-LINE AND 8-LINE-TO-3-LINE PRIORITY ENCODERS

SN54/74LS147 SN54/74LS148 SN54/74LS748

10-LINE-TO-4-LINE AND 8-LINE-TO-3-LINE PRIORITY ENCODERS

LOW POWER SCHOTTKY

SN54/74LS147 • SN54/74LS148 • SN54/74LS748

SN54/74LS147 FUNCTION TABLE

	INPUTS									OUT	PUTS	;
1	2	3	4	5	6	7	8	9	D	С	В	A
н	н	н	н	н	н	н	н	н	н	н	н	н
х	X	X	×	×	X	x	x	L	L	н	н	L
X	X	X	х	×	X	X	L	н	L	н	н	н
х	X	X	X	X	X	L	н	н	н	٤	L	L
Х	X	X	×	X	L	н	н	н	н	L	L	н
х	×	X	×	L	н	н	н	н	н	L	н	L
х	×	×	L	н	н	н	н	н	н	L	н	Н
х	X	L	н	н	н	н	н	н	Н	н	L	L
х	Ł	н	н	н	н	н	н	н	н	н	L	Н
L.	н	н	н	н	н	н	н	н	н	н	н	L

H = HIGH Logic Level, L = LOW Logic Level, X = Irrelevant

SN54/74LS148 SN54/74LS748 FUNCTION TABLE

	INPUTS									0	UTP	JTS	
ΕI	0	1	2	3	4	5	6	7	A2	A1	AO	GS	EO
н	×	х	×	x	×	×	х	х	н	н	н	Н	н
L	н	н	н	н	н	н	н	н	н	н	н	н	ι
L	×	х	×	×	×	×	×	L	L	L	L	L	н
L	×	×	×	×	×	×	L	н	L	L	н	L	н
L	×	x	×	х	X	L	н	н	L	н	L	L	н
L	×	X	×	x	L	н	н	н	L	н	н	Ł	н
L	×	x	×	L	н	н	н	н	Н	L	L	L	н
L	×	×	L	н	н	н	н	н	н	L	н	L	н
L	×	Ł	н	н	н	н	н	н	н	н	L	L	н
L	Ł	н	н	н	н	н	н	н	н	н	н	L	н

FUNCTIONAL BLOCK DIAGRAMS

SN54/74LS147

SN54/74LS148

DUAL 4-INPUT MULTIPLEXER

The LSTTL/MSI SN54/74LS153 is a very high speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the LS153 can generate any two functions of three variables. The LS153 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Multifunction Capability
- Non-Inverting Outputs
- · Separate Enable for Each Multiplexer
- · Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

DIN NAMES

	ico	EOADING (Note a)					
		HIGH	LOW				
So E	Common Select Input	0.5 U.L.	0.25 U.L.				
E	Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.				
10.11	Multiplexer Inputs	0.5 U.L.	0.25 U.L.				
Z	Multiplexer Output (Note b)	10 U.L.	5 (2.5) U.L.				

LOADING (Note a)

NOTES:

- a) 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.
 b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

SN54/74LS153

DUAL 4-INPUT MULTIPLEXER LOW POWER SCHOTTKY

DUAL 1-OF-4 DECODER/ DEMULTIPLEXER

The SN54/74LS155 and SN54/74LS156 are high speed Dual 1-of-4 Decoder/Demultiplexers. These devices have two decoders with common 2-bit Address inputs and separate gated Enable inputs. Decoder "a" has an Enable gate with one active HIGH and one active LOW input. Decoder "b" has two active LOW Enable inputs. If the Enable functions are satisfied, one output of each decoder will be LOW as selected by the address inputs. The LS156 has open collector outputs for wired-OR (DOT-AND) decoding and function generator applications.

The LS155 and LS156 are fabricated with the Schottky barrier diode process for high speed and are completely compatible with all Motorola TTL families.

- · Schottky Process for High Speed
- Multifunction Capability
- Common Address Inputs
- · True or Complement Data Demultiplexing
- . Input Clamp Diodes Limit High Speed Termination Effects
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

LOADING (Note a)

		HIGH	LOW
A ₀ , A ₁	Address Inputs	0.5 U.L.	0.25 U.L.
Ao. As Ea. Eb	Enable (Active LOW) Inputs	0.5 U.L.	0.25 U.L.
	Enable (Active HIGH) Input	0.5 U.L.	0.25 U.L.
Ea O0-Ō3	Active LOW Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES

a) 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. The HIGH level drive for the LS156 must be established by an external resistor.

SN54/74LS155 SN54/74LS156

DUAL 1-OF-4 DECODER/ DEMULTIPLEXER

LS156-OPEN-COLLECTOR LOW POWER SCHOTTKY

SN54/74LS155 • SN54/74LS156

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8 = PIN NUMBERS

TRUTH TABLE

ADDE	RESS	ENAB	ENABLE "a" OUTPUT "			OUTPUT "a"			LE "b"	ОИТРИТ "Ь"				
A ₀	A ₁	Ea	Ē	\overline{o}_0	Ō ₁	Ö ₂	Ō3	Ēb	Ēb	Ö ₀	Ō ₁	Ō ₂	Õ ₃	
х	×	L	×	. н	н	н	Н	н	x	н	н	н	н	
×	×	l x	н	• н	н	н	н	×	н	н	н	н	н	
i.	L	l H	L	L	н	н	н	L	L	L	н	н	н	
н	L	н	L	н	L	н	н	L	L	н	Ĺ	н	н	
L	н	∥ н	L	н	н	L	н	L /	L	н	н	L.	н	
н	н	H H	L	н	н	н	L	L	L	н	н	н	Ł	

CMOS NOR GATES

SCL4001B - Quad 2-Input NOR SCL4002B - Dual 4-Input NOR SCL4025B - Triple 3-Input NOR SCL4078B - 8-Input NOR

FUNCTION DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdd

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -40 to +85
 °C

CMOS HEX BUFFERS/CONVERTERS

SCL4009UB Inverting SCL4010B Non-Inverting

SCHEMATIC DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage $\begin{array}{c} V_{DD} \cdot V_{SS} & 3 \text{ to } 15 & \text{Vdc} \\ V_{CC} \cdot V_{SS} & 3 \text{ to } 15 & \text{Vdc} \\ V_{CC} & \leqslant V_{DD} & & & \\ \end{array}$ Operating Temperature $\begin{array}{c} T_{A} & \\ C, D, F, H \text{ Device} \\ E \text{ Device} & -40 \text{ to } +85 & \text{°C} \\ \end{array}$

LOGIC DIAGRAMS

SCL4010B
1A 0 ³ —20 1Y
2A 0 2Y
3A 07-50 3Y
4A 0 4Y
5A 0"1" 120 5Y
6A 014 150 6Y
NFO-19 Y = A VccO-1 Vss O-1 Voc O-16

CMOS NAND GATES

SCL4011B — Quad 2-Input NAND SCL4012B — Dual 4-Input NAND SCL4023B — Triple 3-Input NAND SCL4068B — 8-Input NAND

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} · V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

CMOS NAND GATE (Unbuffered)

SCL4011UB

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

CMOS HEX BUFFERS/CONVERTERS

SCL4049UB Inverting SCL4050B Non-Inverting

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{CC} - V_{SS} 3 to 15 Vdc
Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

Note: These devices contain input protection networks to VSS only. Therefore, V_{IH} (max) may exceed V_{CC} without damage (subject to absolute maximum ratings).

LOGIC DIAGRAMS

CMOS QUAD EXCLUSIVE-OR GATE

SCL4070B

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc

Operating Temperature T_A

C, D, F, H Device -55 to +125 °C

E Device -40 to +85 °C

Note: The SCL4070B is identical to the SCL4030B; the devices are fully interchangeable in all applications.

SCHEMATIC DIAGRAM (one of four gates)

FUNCTION DIAGRAM

CMOS OR GATES

SCL4071B - Quad 2-Input OR SCL4072B - Dual 4-Input OR SCL4075B - Triple 3-Input OR

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

 DC Supply Voltage
 VDD - VSS
 3 to 15
 Vdc

 Operating Temperature
 TA
 -55 to +125
 °C

 C, D, F, H Device
 -40 to +85
 °C