CSE 237C: CORDIC Report

Harish Vasanth, Kaleigh Edusada, Shaurya Raswan

 $\textbf{Link to GitHub:} \ \underline{\textbf{kmogatas/cordic_powerpuffgurls}}$

1a.

# of Rotations	10	12	14	16	18	20
BRAM	0	0	0	0	0	0
DSP	24	24	24	24	24	24
FF	2551	2551	2551	2551	2552	2552
LUT	3870	3870	3870	3870	3874	3874
Throughput MHZ	0.82061449254	0.6956478185 5	0.6037119835	0.5332397675	0.477500419	0.4323111049
Latency min/max	166/166	196/196	226/226	256/256	286/286	316/316
RMSE(R)	0.0000012674 48283	0.000000062 731871	0.000000108 794012	0.000000108 794012	0.000000108 794012	0.000000108 794012
RMSE(theta)	0.0013737719 27319	0.000275082 624285	0.000081053 738541	0.000016586 955098	0.000004756 748240	0.000000624 625841

1b.

BRAM, DSP, FF and LUT

RMSE(R) and RMSE(theta) in LOG

Number of Rotations

RMSE(R)

RMSE(theta)

Throughput MHZ

1c.At around 14, the RMSE of radius does not change. The 12th rotation is relatively good for both radius and theta, however, theta keeps decreasing in RMSE even at 20 rotations. The 12th rotation RMSE for the radius is actually lower than the RMSE 14th rotation, most likely some coincidental overfitting with our testbench which just uses the 4 original tests.

2a.

These are the values we used x:ap_fixed<32,3> y:ap_fixed<32,3> r: ap_fixed<32, 2> theta:ap_fixed<32,3> Kvalues:ap_fixed<32,3> angles:ap_fixed<32, 3>

2b.

# of bits	8	12	16	20	24	32
BRAM	0	0	0	0	0	0
DSP	0	3	3	3	6	12
FF	131	199	283	351	419	1056
LUT	516	384	527	619	768	938
Throughput MHZ	3.072763	2.986144	3.4047189	3.3098554	3.005132767	1.6822782084
Latency min/max	44/44	45/45	45/45	45/45	45/45	85/85
RMSE(R)	0.0279665 58933258	0.00395276 0249376	0.000465443 590656	0.00003722 5690903	0.000002989 221457	0.00000038 199925
RMSE(theta)	0.0479234 38251019	0.00435548 8345027	0.000755102 431867	0.00003646 9918996	0.000003077 624797	0.000000617 218518

# of bits	4	8	12	16	20	32
BRAM	0	0	0	0	0	0
DSP	1	3	3	3	3	5
FF	241	253	269	285	301	632
LUT	492	511	516	527	547	688
Throughput MHZ	3.114488600 97	3.40471894 045	3.404718940 45	3.4047189 4045	3.3940874995 8	2.1920594837 3
Latency min/max	45/45	45/45	45/45	45/45	45/45	65/65
RMSE(R)	0.012287558 987737	0.00007836 2456406	0.000250837 998465	0.0004394 79161287	0.0005720601 76637	0.0005720601 76637
RMSE(theta)	0.402131795 883179	0.02474035 8814597	0.003011132 590473	0.0007551 02431867	0.0018743299 87913	0.0022392920 21841

3a.

# of bits	8	12	16	20	24	32
BRAM	0	0	0	0	0	0
DSP	0	1	1	1	2	4
FF	113	161	210	258	306	568
LUT	439	403	568	671	794	1008
Throughput MHZ	3.14183829	3.611020835 59	3.3461826748	3.33537903 247	3.28523746	3.10366232
Latency min/max	44/44	44/44	43/43	43/43	43/43	44/44
RMSE(R)	0.0193353537 47010	0.002185192 424804	0.0000802803 47902	0.00000920 9812561	0.00000069772 9604	0.00000003391 8731
RMSE(theta)	0.0247685536 74221	0.003023126 861081	0.0005593606 03802	0.00001060 9828678	0.000001133646 720	0.00000061721 8518

3b.

We can see that the DSP for 3a constantly stays below that of the baseline 2b. 2b starts at 0, remains at 3 until 20 bits, and then doubles for the final two intervals. In comparison, 3a consistently uses a third of the DSPs of 2b.

For 3a, we see that the total FFs remains consistently below that of the baseline. For the baseline it starts at 131 for 8 bits, and keeps increasing as the number of bits increases and has a huge jump from 24 bits to 32 bits. In comparison, the implementation from 3a scales much better, not witnessing as big of a jump for the higher number of bits leading to greater savings.

We can see that for 3a, the amount of LUTs generally tends to be marginally higher than the LUTs for 2b. For 8 bits, it is slightly lower but it begins to be slightly over for the rest. It is possible that because we are using shifts, we end up using more from the LUTs to handle the processing rather than the DSPs since we no longer are in need of multiplications. We save on the DSP resources and slightly increase our utilization of LUTs.

4a.

The input data type determines how big the LUT needs to be to contain its data, as larger input data sizes mean larger LUT, and smaller input means smaller LUT. If the total number of bits in for each value in the entry is W, then the size of the LUT must be $2^{(2*W)}$. The output data type does not affect the size of LUT in any way, since the rotations only actively take place over the input. However, the output affects the final level of precision for the result.

4b.

# of bits	4	5	6	7	8
BRAM	1	2	4	13	60
DSP	0	0	0	0	0
FF	5	2	2	2	2
LUT	54	44	46	48	50
Throughput MHZ	95.129375951	91.79364788	92.250922509	95.693779904	91.240875912
Latency min/max	1/1	1/1	1/1	1/1	1/1
RMSE(R)	0.289403885602 951	0.16336093842 9832	0.08629830926656 7	0.045045133680 105	0.0230940841138 36
RMSE(theta)	0.595246791839 600	0.31752219796 1807	0.17088145017623 9	0.094583891332 150	0.0510457344353 20

BRAM, DSP, FF and LUT

4c.

Number of Bits

4d.

RMSE(R) and RMSE(theta) in LOG

4e.

The LUT-based implementation struggles more with scale, as when you increase the number of bits on the input, you need a far bigger table in order to store the polar coordinates for every x and y pair. The LUT size directly corresponds with the input size W: 2^(2*W). It grows exponentially, meaning it is much worse from a resource utilization perspective in how it needs to store all these values in BRAM. However, for smaller numbers of bits, it can run far quicker than traditional CORDIC (much higher throughput) as it is just directly indexing into a table and grabbing the correct values. The initialization cost is there, but during runtime there can be bigger savings.

In conclusion, the LUT-based implementation has the advantage of higher throughput by utilizing simple value lookups rather than computation but this comes with a serious disadvantage of exponential scaling with resource utilization. CORDIC has much better scaling and resource utilization by taking advantage of rotations to compute the final values instead of having to store values in tables, but at the cost of much, much lower throughput.