Chapter 4

Understanding Interest Rates

Present Value

- Concept
 - a dollar today is (in general) more valuable than a dollar tomorrow – you can invest this dollar (e.g., deposit it in a bank) so that tomorrow you have more than \$1
- Example: Simple loan of \$1 at 10% interest

Year
$$\frac{1}{1.10}$$
 $\frac{2}{1.33}$ $\frac{3}{1.10}$ $\frac{1}{1.33}$ $\frac{1}{1.33}$

PV of future
$$$x = \frac{x}{(1+i)^n}$$

This is called discounting the future

Present Value – Example 2

- suppose you won the lottery and are promised \$20 million in payments of \$1 million over the next 20 years
- what you get is actually less than \$20million, because the present value of these payments is

$$\mathsf{PV} = \frac{\$1mil}{(1+i)} + \frac{\$1mil}{(1+i)^2} + \dots + \frac{\$1mil}{(1+i)^{20}}$$

■ if we assume that i = 10%, the present value of your lottery prize is actually \$9.4 million!

4_3

Credit Instruments

Loans

- simple loan = the borrower must repay the funds loaned at maturity date, along with an additional payment for the interest (e.g., commercial loans to businesses)
- fixed-payment (fully amortized) loan = the borrower makes the same payment every period (principal plus interest) for a set number of years (e.g., auto loans, mortgages)

Credit Instruments (cont.)

■ Bonds

- coupon bond = the owner (i.e., lender) receives a fixed interest payment (called coupon payment) every period until maturity, when the final amount (called face value or par value) is repaid (e.g., Treasury bonds, corporate bonds)
- discount (zero coupon) bond = bought at a price below its face value, while the face value is repaid at maturity (no interest payments)

4-5

Yield to Maturity

- *yield to maturity* (*i*) = interest rate that equates today's value with present value of all future payments
- Loans:
 - simple loan, \$100 for 1 year, 10% interest rate:

$$$100 = \frac{$110}{(1+i)} \implies i = \frac{$110 - $100}{$100} = 10\% = \text{interest rate}$$

■ fixed-payment loan – more complicated:

Loan value =
$$\frac{FP}{(1+i)} + \frac{FP}{(1+i)^2} + ... + \frac{FP}{(1+i)^n}$$

Yield to Maturity

- Coupon bond:
 - same strategy as fixed-payment loan, using price *P* as value of loan

$$P = \frac{C}{(1+i)} + \frac{C}{(1+i)^2} + \dots + \frac{C}{(1+i)^n} + \frac{F}{(1+i)^n}$$

where F is the face value of the bond and $C = r \times F$ is the yearly coupon payment (r is the coupon rate)

■ for a *consol* (*perpetuity*), i.e. a coupon bond with no maturity date and no payment of principal,

$$P = \frac{C}{i} \implies i = \frac{C}{P}$$

4_7

Yield to Maturity (cont.)

- Discount bond:
 - same strategy as simple loan, using price as value of loan

$$P = \frac{F}{(1+i)^n}$$

■ for a one-year discount bond,

$$P = \frac{F}{1+i} \implies i = \frac{F-P}{P}$$

Yield to Maturity (cont.)

- note that in the case of bonds, the yield to maturity is not necessarily equal to coupon rate
- also, for both consols and discount bonds, the yield to maturity is negatively related to price
- it can be shown that this relationship holds also for general coupon bonds
- hence, current bond prices and interest rates are negatively related
- when the bond is at par (i.e., price = face value), the yield to maturity and coupon rate are equal

4_9

Relationship Between Price and Yield to Maturity

Table 1 Yields to Maturity on a 10%-Coupon-Rate Bond Maturing in Ten Years (Face Value = \$1,000)

Price of Bond (\$)	Yield to Maturity (%)
1,200	7.13
1,100	8.48
1,000	10.00
900	11.75
800	13.81

Three Interesting Facts in Table 1

- 1. When bond is at par, yield equals coupon rate
- 2. Price and yield are negatively related
- 3. Yield greater than coupon rate when bond price is below par value

Current Yield

- yield to maturity is the most accurate measure of interest rates (and it is what economists mean by "interest rates")
- yield to maturity is difficult to calculate other useful approximations are easier
- current yield is calculated for coupon bonds:

 C
 .

 $i_c = \frac{C}{P} \implies$ negatively related to price

- it is a better approximation to yield to maturity, the nearer price is to par and the longer is the maturity of the bond
- the change in current yield always signals change in same direction as yield to maturity

4-11

Yield on a Discount Basis

■ is calculated for discount bonds:

$$i_{db} = \frac{F - P}{F} \times \frac{360}{\text{days to maturity}}$$

- again this is negatively related to price
- it understates yield to maturity the longer the maturity, the greater is the understatement
- the change in discount yield always signals a change in the same direction for the yield to maturity

Distinction Between Interest Rates and Returns

- the interest rate (yield to maturity) is not the same as the rate of return from buying the bond
- rate of return = total net benefit from investment (payments to the owner plus change in value) divided by the initial cost
- the rate of return for a bond held from t to t + 1 is

$$R = \frac{P_{t+1} - P_t + C}{P_t} = \frac{P_{t+1} - P_t}{P_t} + \frac{C}{P_t} = g + i_c$$

where g is the rate of capital gain

4-13

Table 2 Analysis

- table 2 looks at the one-year return on several 10%-coupon-rate bonds purchased at par
- the interest rate (yield to maturity) changes from 10% to 20% during the year
- the "price next year" is calculated using the formula of the yield to maturity for coupon bonds
- Conclusions:
 - prices and returns are more volatile for longterm bonds because they have higher interestrate risk
 - there is no interest-rate risk for any bond whose maturity equals holding period

Key Facts about the Relationship between Interest Rates and Returns

Bonds When Interest Rates Rise from 10% to 20%							
(1)							
Years to	(2)		(4)	(5)	(6)		
Maturity	Initial	(3)	Price	Rate of	Rate of		
When	Current	Initial	Next	Capital	Return		
Bond Is	Yield	Price	Year*	Gain	(2 + 5)		
Purchased	(%)	(\$)	(\$)	(%)	(%)		
30	10	1,000	503	-49.7	-39.7		
20	10	1,000	516	-48.4	-38.4		
10	10	1,000	597	-40.3	-30.3		
5	10	1,000	741	-25.9	-15.9		
2	10	1,000	917	-8.3	+1.7		
1	10	1,000	1,000	0.0	+10.0		

Key Findings from Table 2

- the only bond whose return equals the yield is the one with maturity equal to the holding period
- for bonds with maturity longer than the holding period, $i \uparrow$, $P \downarrow$, implying a capital loss
- the longer is maturity, the greater is the percentage price change associated with the interest rate change
- the longer is maturity, the more return changes with change in the interest rate
- a bond with high initial interest rate can still have a negative return if $i \uparrow \uparrow$

Real Interest Rate

■ real interest rate = interest rate that is adjusted for expected changes in the price level (i.e., expected inflation, π^e)

$$i_r = i - \pi^e$$

- the real interest rate reflects more accurately the true cost of borrowing
- when the real rate is low, there are greater incentives to borrow and less to lend
- it can be (and sometimes is) negative, if expected inflation is higher than the nominal interest rate

4-17

U.S. Real and Nominal Interest Rates

