Meccano hexagons gallery

https://github.com/heptagons/meccano/hexa/gallery

2023/12/20

Abstract

We build rigid meccano ¹ regular pentagons from sides 4 to 24. We restrict all internal strips to remain inside the hexagons's perimeter and don't permit they overlap with others. The internal strips must not be parallel to any side of the hexagon.

1 Internal strips

We run a software program to look strips that can make rigid two consecutive internal sides of any hexagon. Figure 1 show the smaller four cases found. Consider the figure at top left, the internal hexagon angle is $\theta \equiv \angle GBC = 2\pi/3$ and the hexagon side is $s \equiv \overline{BC}$. Consider the triangle $\triangle GBC$ and define the other two sides as $b \equiv \overline{GB}$ and $c = \overline{GC}$. By the law of cosines we know that:

$$c = \sqrt{b^2 + s^2 - 2bs \cos \theta}$$

$$= \sqrt{b^2 + s^2 - 2bs \left(-\frac{1}{2}\right)}$$

$$= \sqrt{b^2 + s^2 + bs}$$
(1)

By defining $a \equiv s + b$ we get:

$$c = \sqrt{a^2 + b^2 - ab} \quad \text{where } a > b \tag{2}$$

Running the software iterating first over a and then by b and filtering c to be integer we get the first rows:

a	b	c	s
8	3	7	5
15	7	13	8
21	5	19	16
35	11	31	24
40	7	37	33
48	13	43	35

2 Hexagons of size 13

¹ Meccano mathematics by 't Hooft

Figure 1: First cases where internal strip $c=\overline{GC}$ is an integer and makes rigid two consecutive regular hexagon sides $s=\overline{AB}=\overline{BC}$. We use two numbers to identify every solution a and b where $b=\overline{GB}$ and a=s-b.