Deuxième contrôle continu - 12 décembre 2017

Durée: 1h

Exercice 1.

- (a) Énoncez le thèorème de Fubini-Tonelli.
- (b) Énoncez le théorème de convergence dominée.
- (c) Énoncez le théorème de dérivation sous le signe intégrale.

Exercice 2. Calculez la limite des suite suivantes :

(a)
$$I_n = \int_0^{+\infty} \frac{\sin(x)^n}{1+x^2} dx$$
.

(b)
$$J_n = \int_0^{+\infty} \left(1 + \frac{x}{n}\right)^n e^{-x} dx.$$

(c)
$$K_n = \sum_{k=0}^{+\infty} \frac{k}{(1+\frac{1}{n})2^{k+\frac{1}{n}}}$$
. On ne cherchera pas à calculer la valeur de la somme limite.

Exercice 3. Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n\geq 0}$ une suite de fonctions mesurables de $E \to \mathbb{R}$.

- (a) On suppose (uniquement pour cette question) que $(f_n)_{n\geq 0}$ converge μ -presque partout vers une fonction mesurable $f: E \to \mathbb{R}$ et que la suite $\left(\int_E |f_n| d\mu\right)_{n\geq 0}$ est bornée. Montrez que f est intégrable.
- (b) On suppose maintenant que

$$\sum_{n=0}^{+\infty} \int_{E} |f_n| d\mu < +\infty.$$

Montrez que $f_n \xrightarrow[n \to \infty]{} 0$, μ -presque partout.

Exercice 4. Les questions de cet exercice sont indépendantes.

(a) Déterminez la limite éventuelle de la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$u_n = \int_{\mathbb{R}_+} \frac{\sin(\pi x)}{1 + x^{n+2}} dx.$$

(b) Soient a, b > 0. Montrez que

$$\int_0^{+\infty} \frac{xe^{-ax}}{1 - e^{-bx}} dx = \sum_{n=0}^{+\infty} \frac{1}{(a + bn)^2}.$$

(c) Soient 0 < a < b. Justifiez l'existence de

$$\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt.$$

Représentez ensuite cette intégrale comme une intégrale double et déterminez sa valeur en fonction de a et b.

