Assignment 1

R-1.2 Algorithm A uses $10n \log n$ operations, while algorithm B uses n^2 operations. Determine the value of n_0 such that A is better than B for $n \ge n_0$

Solution:

$$10n \log n \le Cn^2$$

$$10 \log n \le Cn$$
 Let $c = 10$
$$10 \log n \le 10n$$

This statement is true for value of $n_o = 1$

So it is true for any value of $n \ge 1$

R-1.6 Order the following list of functions by the big-O notation.

Solution from:

$$\frac{1}{n}, \quad \log \log n, \quad \sqrt{n}, \quad 5n, \quad n \log n, \quad 2n \log^2 n, \quad 4n^{3/2}, \qquad 4^{\log n},$$

$$n^2 \log n, \quad n^3, \quad 2^n, \quad 4^n,$$

$$4^{\log n} = (2^2)^{\log n} = n^2$$

R-1.10 Give a big-O characterization, in terms of n, of the running time of the Loop1 method below:

Algorithm Loop1(n)		
<i>s</i> ← 0	1	
$for i \leftarrow to n do$	n	
$s \leftarrow s + i$	n	
<i>s</i> ← 0	1	
O(n)		

R-1.14 Perform a similar analysis for method Loop5 below:

Algorithm Loop5(n)	
$s \leftarrow 0$	1
for $i \leftarrow to n^2 do$	n^2
for j ← to i do	n^4
$s \leftarrow s + i$	n^4
	$O(n^4)$

Prove:

$$\log_b x^a = a \log_b x$$

Suppose:

$$x = b^y$$
 than $y = \log_b x$

Let rise both side with the same constant a

$$x^a = (b^y)^a$$

Take the logarithm both side

$$\log_b x^a = \log_b (b^y)^a$$

$$=(ya) \log_b b$$
, but $\log_b b = 1$

$$=ya$$
, but we supposed $y = \log_b x$

$$= a \log_b x$$

$$\log_b x^a = a \log_b x$$