Отчёт по лабораторной работе №7

Эффективность рекламы

Желдакова Виктория Алексеевна

Содержание

1	Цель работы	5	
2	Задание 2.1 Вариант 16	6	
3	Теоретическое введение	7	
4	Выполнение лабораторной работы	9	
	4.1 Решение с помощью языков программирования	9	
	4.1.1 Julia	9	
	4.1.2 OpenModelica	13	
	4.2 Анализ	16	
5	Выводы	17	
Сп	Список литературы		

Список иллюстраций

4.1	График эффективности распространения рекламы для первого	
	уравнения	10
4.2	График эффективности распространения рекламы для второго	
	уравнения	12
4.3	График эффективности распространения рекламы для третьего	
	уравнения	13
4.4	График эффективности распространения рекламы для первого	
	уравнения	14
4.5	График эффективности распространения рекламы для второго	
	уравнения	15
4.6	График эффективности распространения рекламы для третьего	
	vравнения	16

Список таблиц

1 Цель работы

Ознакомиться с моделью эффективности рекламы и построить графики распространения рекламы с помощью языков OpenModelica и Julia.

2 Задание

2.1 Вариант 16

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.7 + 0.00002n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.00008 + 0.9n(t))(N - n(t))$$

$$\begin{aligned} &2. \ \ \frac{dn}{dt} = (0.00008 + 0.9n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.9cos(t) + 0.9cos(t)n(t))(N-n(t)) \end{aligned}$$

При этом объем аудитории N=1111, в начальный момент о товаре знает 11 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, $\mathbf{n}(t)$ - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампа-

нии (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\tfrac{dn}{dt} = (a_1(t) + a_2(t)n(t))(N-n(t))$$

При $a_1(t)>a_2(t)$ получается модель типа модели Мальтуса. В обратном случае, получаем уравнение логистической кривой.

4 Выполнение лабораторной работы

4.1 Решение с помощью языков программирования

4.1.1 Julia

plt = plot(dpi = 600, title = "Эффективность распространения рекламы (1)", legend = f plot!(plt, T, n, color=:red)

savefig(plt, "lab07_1.png")

В результате работы программы получаем следующий график: (рис. 4.1).

Рис. 4.1: График эффективности распространения рекламы для первого уравнения

Код программы для второго уравнения:

using Plots
using DifferentialEquations

$$N = 1111$$

 $n0 = 11$

function ode_fn(du, u, p, t) (n) = u du[1] = (0.00008 + 0.9*u[1])*(N - u[1])

end

```
v0 = [n0]
tspan = (0.0, 0.1)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
n = [u[1] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
max_dn = 0;
\max_{dn_t = 0;
\max_{n} = 0;
for (i, t) in enumerate(T)
    if sol(t, Val{1})[1] > max_dn
        global max_dn = sol(t, Val{1})[1]
        global max_dn_t = t
        global max_dn_n = n[i]
    end
end
plt = plot(dpi = 600, title = "Эффективность распространения рекламы (2)", legend = f
plot!(plt, T, n, color=:red)
plot!(plt, [max_dn_t], [max_dn_n], seriestype=:scatter, color=:red)
savefig(plt, "lab07_2.png")
```


Рис. 4.2: График эффективности распространения рекламы для второго уравнения

Код программы для третьего уравнения:

```
T = [t for t in sol.t]
```

```
plt = plot(dpi = 600, title = "Эффективность распространения рекламы (3)", legend = f plot!(plt, T, n, color=:red)
```

```
savefig(plt, "lab07_3.png")
```

В результате работы программы получаем следующий график: (рис. 4.3).

Рис. 4.3: График эффективности распространения рекламы для третьего уравнения

4.1.2 OpenModelica

Код программы для первого уравнения [1]:

```
model lab07_1
Real N = 1111;
Real n;
initial equation
n = 11;
equation
```

```
der(n) = (0.7 + 0.00002*n)*(N-n);
end lab07_1;
```

В результате работы программы получаем следующий график: (рис. 4.4).

Рис. 4.4: График эффективности распространения рекламы для первого уравнения

Код программы для второго уравнения:

```
model lab07_2
Real N = 1111;
Real n;
initial equation
n = 11;
equation
der(n) = (0.00008 + 0.9*n)*(N-n);
end lab07_2;
```

В результате работы программы получаем следующий график: (рис. 4.5).

Рис. 4.5: График эффективности распространения рекламы для второго уравнения

Код программы для третьего уравнения:

```
model lab07_3
Real N = 1111;
Real n;
initial equation
n = 11;
equation
der(n) = (0.9*cos(time) + 0.9*cos(time)*n)*(N-n);
end lab07_3;
```

В результате работы программы получаем следующий график: (рис. 4.6).

Рис. 4.6: График эффективности распространения рекламы для третьего уравнения

4.2 Анализ

Графики в OpenModelica получились идентичными с графиками, полученными с помощью Julia.

5 Выводы

Ознакомиться с моделью эффективность рекламы и построить графики распространения рекламы с помощью языков OpenModelica и Julia.

Список литературы

- [1] Документация по OpenModelica: https://openmodelica.org/
- [2] Документация по Julia: https://docs.julialang.org/en/v1/