Definition: Category

Category

A **category** is a mathematical structure consisting of objects and morphisms (arrows) between them, with a composition operation satisfying certain axioms.

Formal Definition

A category \mathcal{C} consists of:

- 1. A collection of **objects**, denoted $Ob(\mathcal{C})$
- 2. For each pair of objects A, B, a Set of **morphisms** (or arrows) from A to B, denoted $\operatorname{Hom}_{\mathcal{C}}(A,B)$
- 3. For each triple of objects A, B, C, a composition operation:

$$\circ : \operatorname{Hom}(B, C) \times \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, C)$$

satisfying:

Axioms

- 1. **Identity**: For each object A, there exists an identity morphism $\mathrm{id}_A \in \mathrm{Hom}(A,A)$ such that:
 - $f \circ id_A = f$ for all $f : A \to B$
 - $\operatorname{id}_A \circ g = g$ for all $g: B \to A$
- 2. Associativity: For morphisms $f: A \to B$, $g: B \to C$, $h: C \to D$:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Examples

- **Set**: Objects are sets, morphisms are functions
- Grp: Objects are groups, morphisms are group homomorphisms
- Top: Objects are topological spaces, morphisms are continuous functions
- Vect: Objects are vector spaces, morphisms are linear transformations

Dependency Graph

Local dependency graph