DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Deterministiske og stokastiske tilstandsmaskiner, grammatikker og regulære udtryk – del II

Kim Steenstrup Pedersen

- Tilstandsmaskiner
 - Deterministiske endelige automata (DFA)
 - Som generel programstruktur
- Kontekstfri grammatikker og beregningsudtryk
- Regulære udtryk
- Stokastiske tilstandsmaskiner
 - Fra DFA til stokastiske tilstandsmaskiner
 - Markov kæder
 - Lidt sandsynlighedsregning

Regulære udtryk

- Regulære udtryk er et simpelt programmeringssprog til at finde mønstre i strenge.
- Et mønster er angivet med en streng som kan indeholde bogstaver, tal etc. (terminaler) og specialtegn og -notation (nonterminaler).
- Eksempel:

Mønster: hat

Streng og match: Katten med hatten

Avanceret eksempel:

Mønster: [abt]+

Streng og begge match: Katten med hatten

- Python har et standard modul til regulære udtryk kaldet re
- Virker både med ASCII (str) og unicode strenge
- Der er både en funktionsgrænseflade i re og et mønster objekt

```
import re
# Mønster objekt
patt = re.compile(r'hat')
mobj = patt.search('Katten med hatten')
print mobj.group(0), 'at', mobj.span()
# Funktionskald
findlist = re.findall(r'[abt]+', 'Katten med hatten')
```

Regulære udtryk – re syntaks

- Et regulært mønster udtryk kan skrives ved hjælp af
 - Tegn som ikke er specialtegn matches som de er.
 - Tegn indenfor [] angiver en mængde af tegn som skal matches.
 [abc1-6]
 - Parenteser () gruppere mønstre. (hat)
 - + betyder match 1 eller flere gange efter hinanden. (hat)+
 - * betyder match 0 eller flere gange efter hinanden. (hat) *
 - ? betyder match 0 eller 1 gang efter hinanden. (hat)?
 - Punktum . betyder match alle tegn undtaget linjeskift. . *
 - | kan bruges som 'eller' tegn. (hat) | (kat)
 - Prædefineret tegn mængder \n, \s, \w
 - Mønsterstrenge bør angives som raw strenge (med r foran) ellers skal \n skrives som \\n. r'hej\w' ekvivalent med 'hej\\w'
- Og der er mere læs re manualen.

Regulære udtryk i Python – re modulet

Find et match i starten af strengen

```
mobj=re.match(r'Hello[ \t]*(.*)', 'Hello World!')
```

• Find det første match et sted i strengen

```
mobj = re.search(r'[abt]+', 'Katten med hatten')
```

Find alle matches

```
dkstreng = u'En å på Ærø'
findlist = re.findall(ur'[rÆøå]+', dkstreng)
```

Split strengen i delstrenge ved match

```
Splitlist = re.split(r'[ ]', 'Katten med hatten')
```

Automata igen DFA kan simulerer nogle regulære udtryk, men ikke alle

Maskinen læser tegn fra input streng og skifter tilstande ud fra det sidst læste tegn.

- Lad os droppe input strengen! Tegn = Tilstande
- Hvad nu hvis tilstandsovergangene bliver valgt tilfældigt
 - lad os sige vi slår plat-og-krone om det?

 Nu kan vi generere nye tilfældige tegnsekvenser ved at slå plat-og-krone for hver tilstandsovergang i sekvensen.

- Hvad nu hvis tilstandsovergangene bliver valgt tilfældigt
 lad os sige vi slår plat-og-krone om det?
- Nu kan vi generere nye tilfældige tilstands-/ tegnsekvenser ved at slå plat-og-krone for hver ny tilstandsovergang.
- Eksempel: Vores plat-og-krone gav
 Generede tilstande / streng: 00120123
- Denne model er dog ikke så interessant vi vil gerne kunne vælge tilstandsovergange, således at der er forskellige sandsynligheder for de efterfølgende tilstande.
- Vi skal bruge lidt sandsynlighedsregning!

Sandsynlighedsregning

- I sandsynlighedsregning arbejder vi med stokastiske variable X som tager værdier fra en mængde Ω
- Stokastiske variable er ikke som andre variable hver gang vi læser fra den antager den en ny værdi
- Intuitiv analogi: Variablen X er en skuffe
- Kig i skuffen for at læse variablens værdi $\omega \in \Omega$
- Hver gang vi kigger, får vi en ny værdi
- De forskellige værdier forekommer med en vis sandsynlighed $p(X = \omega)$

Sandsynlighedsregning

- Vi er kun interesseret i diskrete stokastiske variable, dvs. som tager værdier fra tællelige mængder Ω
- Eksempler: $\Omega = \{1, 2, 3, 4, 5, 6\}$ $\Omega = \{a, b, c\}$
- Sandsynlighederne for alle værdier i Ω er en funktion som kaldes sandsynlighedsmassefunktionen p(X)
- Sandsynlighedsmassefunktionen har disse egenskaber $\sum_{\omega \in \Omega} p(X = \omega) = 1 \quad \text{(normaliseret over alle værdier i mængden)}$

$$p(X = \omega) \ge 0$$
 , $\forall \omega \in \Omega$ (ikke-negativ for alle værdier i mængden)

Eksempel: Terningekast

 Med en fair 6-sidet terning er der lige stor sandsynlighed for at slå 1 som at slå 6 (eller en af de andre sider)

$$p(X=1) = \frac{1}{6} \qquad p(X=2) = \frac{1}{6} \qquad p(X=3) = \frac{1}{6}$$
$$p(X=4) = \frac{1}{6} \qquad p(X=5) = \frac{1}{6} \qquad p(X=6) = \frac{1}{6}$$

• Vi kan skrive sandsynlighedsmassefunktionen kompakt som en vektor eller tabel $p(X) = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$

p(X)	X=1	X=2	X=3	X=4	X=5	X=6
	1/6	1/6	1/6	1/6	1/6	1/6

 Vi ser at denne funktion summer til 1 (er normaliseret) og er ikke-negativ for alle værdier af X.

- Sandsynlighedsmassefunktioner vises oftest grafisk som histogrammer (pinde diagrammer)
- Her er to eksempler:

Tilbage til eksemplet

• Den nuværende tilstand er en stokastisk variabel $X \in \{0,1,2,3\}$

- Når vi bevæger os rundt mellem tilstande så kan vi tænke på det som en kæde af stokastiske variable X_t
- Vores skridt indekseres med t
- Hvis vi tager 2 skridt fra start-tilstanden så er vores kæde 3 stokastiske variable lang $\{X_0, X_1, X_2\}$
- Til næste skridt $\{X_0, X_1, X_2, X_3\}$
- Dvs. Kæden vokser for hvert skridt

Lidt mere sandsynlighedsregning

- Hvis to stokastiske variable X og Y afhænger af hinanden kan deres relation bl.a. udtrykkes ved betingede sandsynligheder $p(Y = \omega_y \mid X = \omega_x)$
- Skal læses som sandsynligheden for Y's værdi givet X's værdi
- Vi kan også tale om den betingede sandsynlighedsmassefunktion $p(Y \mid X = \omega_x)$
- I vores tilstandsmaskine afhænger den nye tilstand af den forrige tilstand

Tilbage til eksemplet

 Sandsynligheden for tilstandsovergangene afhænger af forrige tilstand i kæden

$$p(X_{t} = 0 \mid X_{t-1} = 0) = \frac{1}{2} \quad p(X_{t} = 1 \mid X_{t-1} = 0) = \frac{1}{2}$$

$$p(X_{t} = 0 \mid X_{t-1} = 1) = \frac{1}{2} \quad p(X_{t} = 2 \mid X_{t-1} = 1) = \frac{1}{2}$$

• OSV.

- En stokastisk tilstandsmaskine er beskrevet ved
 - En mængde af tilstande $\, \Omega \,$
 - En kæde af stokastiske variable der beskriver tilstanden i et givet skridt $X_t \in \Omega$ for $t \ge 0$
 - En sandsynlighedsmassefunktion for start-tilstanden i kæden $q(X_0)$
 - En samling af betingede sandsynlighedsmassefunktioner der beskriver sandsynligheder for de forskellige tilstandsovergange $p(X_t \mid X_{t-1} = \omega)$ for alle $\omega \in \Omega$

- Antag at overgangssandsynlighedsmassefunktionerne ikke afhænger af indekset t, så $p(X_t \mid X_{t-1} = \omega)$ for alle $\omega \in \Omega$ og alle $t \ge 0$
- Så afhænger næste tilstand kun af den foregående tilstand og ikke hvor i kæden af tilstande vi er nået til.
- Denne type af stokastiske tilstandsmaskiner kaldes for en Markov kæde.

0

2/4

Eksempel på en Markov kæde model

- Tilstande: $\Omega = \{a, b, c\}$ og $X_t \in \Omega$
- Start-tilstandssandsynligheder:

$$q(X_0 = a) = \frac{1}{6}$$
 $q(X_0 = b) = \frac{3}{6}$ $q(X_0 = c) = \frac{2}{6}$

- eller på kort form $q(X_0) = (1/6, 3/6, 2/6)$
- Overgangssandsynligheder på tabelform:

$p(\boldsymbol{X}_{t} \boldsymbol{X}_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

3/4 1/6 3/6 b 1/4 c

Rækkerne er sandsynligheder for X_t

0

2/4

1/4

Eksempel på en Markov kæde model

- Tilstande: $\Omega = \{a, b, c\}$ og $X_t \in \Omega$
- Start-tilstandssandsynligheder:

$$q(X_0 = a) = \frac{1}{6}$$
 $q(X_0 = b) = \frac{3}{6}$ $q(X_0 = c) = \frac{2}{6}$

- eller på kort form $q(X_0) = (1/6, 3/6, 2/6)$
- Overgangssandsynligheder på matrixform:

$$p(X_t \mid X_{t-1}) = \begin{bmatrix} 0 & 3/4 & 1/4 \\ 1/6 & 3/6 & 2/6 \\ 1/4 & 2/4 & 1/4 \end{bmatrix}_{3/6}^{1/6} \xrightarrow{3/4}_{1/4}$$

Rækkerne er sandsynligheder for X_t

Vores model fra før er en Markov kæde. (Det er faktisk muligt at formulere en DFA som en Markov kæde model)

$p(\boldsymbol{X}_{t} \boldsymbol{X}_{t-1})$	$X_t=0$	$X_t=1$	$X_t=2$	$X_t=3$
$X_{t-1} = 0$	1/2	1/2	0	0
X _{t-1} =1	1/2	0	1/2	0
X _{t-1} =2	1/2	0	0	1/2
<i>X_{t-1}</i> =3	1/2	1/2	0	0

- Vi kan estimere sandsynlighederne i modellen fra data dette kaldes indenfor machine learning for at lære en model.
- Vi kan simulere Markov modellen ved at generere nye tilfældige sekvenser af tilstande som efterligner data.
- Med den indlærte model kan vi også genkende mønstre i data ved at estimere den mest sandsynlige sekvens af tilstande som Markov modellen skal gennemgå for at generere data.
- (Hvordan genkendelsen foretages er avanceret stof og er udenfor dette kursus)

Simulering af en Markov kæde – et eksempel

• Udtræk en tilfældig start-tilstand (sampling) fra sandsynlighedsmassefunktionen $q(X_0)$

$q(X_0)$	X_0 =a	X_0 =b	<i>X</i> ₀ =c
	1/6	3/6	2/6

Resultat:

Simulering af en Markov kæde – et eksempel

• Udtræk en tilfældig start tilstand (sampling) fra sandsynlighedsmassefunktionen $q(X_0)$

$q(X_0)$	X_0 =a	X_0 =b	$X_0 = c$
	1/6	3/6	2/6

Resultat:

b

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_1 \mid X_0 = \mathbf{b})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_1 X_0)$	X_1 =a	$X_1=b$	$X_1=c$
$X_0 = b$	1/6	3/6	2/6

Resultat:

b

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_1 \mid X_0 = \mathbf{b})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_1 X_0)$	X_1 =a	$X_1=b$	$X_1=c$
$X_0 = b$	1/6	3/6	2/6

Resultat:

bc

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_2 \mid X_1 = \mathbf{c})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_2 X_1)$	X_2 =a	X_2 =b	$X_2 = c$
$X_1=c$	1/4	2/4	1/4

Resultat:

bc

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_2 \mid X_1 = \mathbf{c})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_2 X_1)$	X_2 =a	X_2 =b	$X_2 = c$
$X_1=c$	1/4	2/4	1/4

Resultat:

bcb

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_3 \mid X_2 = \mathbf{b})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_3 X_2)$	X_3 =a	X_3 =b	X_3 =c
$X_2=b$	1/6	3/6	2/6

Resultat:

bcb

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_3 \mid X_2 = \mathbf{b})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_3 X_2)$	X_3 =a	X_3 =b	X ₃ =c
$X_2=b$	1/6	3/6	2/6

Resultat:

bcba

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_4 \mid X_3 = \mathbf{a})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t=b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_4 X_3)$	<i>X</i> ₄ =a	<i>X</i> ₄ =b	<i>X</i> ₄ =c
X_3 =a	0	3/4	1/4

Resultat:

bcba

• Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_4 \mid X_3 = \mathbf{a})$

$p(X_t X_{t-1})$	$X_t=a$	$X_t=b$	$X_t = c$
$X_{t-1}=a$	0	3/4	1/4
$X_{t-1}=b$	1/6	3/6	2/6
$X_{t-1}=c$	1/4	2/4	1/4

$p(X_4 X_3)$	<i>X</i> ₄=a	<i>X</i> ₄=b	<i>X</i> ₄=c
X_3 =a	0	3/4	1/4

Resultat:

bcbac

Simulering af en Markov kæde model Opsummering af simuleringsalgoritmen

• Markov modellen består af Tilstande: Ω sandsynlighedsmassefunktion for start tilstand: $q(X_0)$ Overgangssandsynligheder: $p(X_t \mid X_{t-1})$

- 1. Sample en tilfældig start-tilstand fra sandsynlighedsmassefunktionen $q(X_0)$
- 2. For hvert skridt i kæden:
 - Sample en tilfældig næste tilstand fra overgangssandsynlighedsmassefunktionen $p(X_t \mid X_{t-1} = \omega_{t-1})$ baseret på forrige tilstand $X_{t-1} = \omega_{t-1}$

Sampling af en tilstand fra $q(X_0)$ og $p(X_t \mid X_{t-1})$ Transformationsmetoden

Sampling fra p(X) ved at

- beregne den kumulative fordeling h(X) og læg ned på enhedsintervallet
- 2. træk et tilfældig tal fra $z \in [0,1]$
- 3. Slå op i *h* og se hvilket interval *z* falder i

$$z = 0.4 \Rightarrow \text{Rød}$$

$$z = 0.8 \Rightarrow Gul$$

$$z = 0.1 \Rightarrow Bla$$

$$z = 0.6 \Rightarrow \text{Rød}$$

- Transformationsmetoden til sampling fra p(X):
- 1. Beregn den cumulative fordeling $h(X=\omega^{(i)}) = \sum_{j=1}^{i} p(X=\omega^{(j)})$ (anvend eks. numpy.cumsum())
- 2. Sample et tilfældig tal $z \in [0,1]$ (anvend eks. numpy.random.rand())
- 3. Find ved opslag i $H = [0, h(X = \omega^{(1)}), ..., h(X = \omega^{(K-1)})]$ det mindste indeks i så $z \ge H_i$
- 4. Vi har nu trukket tilstanden $\omega^{(i)}$ tilfældig fra p(X)
- Bemærk: Værdier med sandsynlighed 0 skal fjernes inden vi sampler

 Vi kan lære en Markov model fra data ved at estimere sandsynlighederne ud fra hyppighederne af tilstandene og af alle par af tilstande i data.

Data eksempel: abbcacbbcb

Optæl hyppigheder af tilstande og par af tilstande:

$g(X_0)$	X_0 =a	X_0 =b	$X_0 = c$
	2	5	3

$$\sum_{\omega \in \Omega} g(X_t = \omega) = 10$$

$$f(X_t|X_{t-1})$$
 $X_t=a$
 $X_t=b$
 $X_t=c$
 $X_{t-1}=a$
 0
 1
 1

 $X_{t-1}=b$
 0
 2
 2

 $X_{t-1}=c$
 1
 2
 0

$$\begin{array}{ll}
X_{t} = c \\
1 & \sum_{\omega \in \Omega} f(X_{t} = \omega \mid X_{t-1} = a) = 2 \\
2 & \sum_{\omega \in \Omega} f(X_{t} = \omega \mid X_{t-1} = b) = 4 \\
0 & \sum_{\omega \in \Omega} f(X_{t} = \omega \mid X_{t-1} = c) = 3
\end{array}$$

 Vi kan lære en Markov model fra data ved at estimere sandsynlighederne ud fra hyppighederne af tilstandene og af alle par af tilstande i data.

Data eksempel: **abbcacbbcb**Sandsynligheder fra hyppigheder divideret med deres sum:

$q(X_0)$	X_0 =a	X_0 =b	$X_0 = c$
	2/10	5/10	3/10

$$\sum_{\omega \in \Omega} g(X_t = \omega) = 10$$

$p(X_t X_{t-1})$	$X_t=a$	$X_t = b$	$X_t = c$
$X_{t-1}=a$	0	1/2	1/2
$X_{t-1}=b$	0	2/4	2/4
$X_{t-1}=c$	1/3	2/3	0

$$\sum_{\omega \in \Omega} f(X_t = \omega \mid X_{t-1} = a) = 2$$

$$\sum_{\omega \in \Omega} f(X_t = \omega \mid X_{t-1} = b) = 4$$

$$\sum_{\omega \in \Omega} f(X_t = \omega \mid X_{t-1} = c) = 3$$

Bioinformatik:

- Analyse af gensekvenser
- Prædiktion af protein foldning (vigtigt for medicinal industrien)
- Processering af naturlige sprog:
 - Maskinoversættelse af naturlige sprog
 - Strukturel analyse af tekster

Tracking:

- Følg et mål over tid i radarbilleder (Eks. fiskeri overvågning, militære anvendelser)
- 3D estimering af menneskelig bevægelse over tid

Generaliseringer:

- Skjulte Markov kæder
- Gittermodeller også kendt som Markov random fields

Eksamen

- Eksamensopgaven bliver offentliggjort på mandag d. 12/1 kl. 10.00 og skal afleveres i Absalon den efterfølgende mandag d. 19/1 kl. 10.00.
- Opgaven er individuel, men i må godt tale sammen om forståelse af opgaven, men IKKE om løsning af opgaven.
- Kommunikation med undervisere og instruktorerne foregår på Absalon diskussionsforum - for at stille alle lige.
- Du kan forberede dig ved at sørge for at du har lavet alle øvelsesopgaver, udover de obligatoriske opgaver, og læse pensum (angivet på ugesedler) inklusiv slides.

Opsummering

- Regulære udtryk
- Stokastiske tilstandsmaskiner
 - Fra DEA til stokastiske tilstandsmaskiner
 - Markov kæder
 - Simulering af Markov kæder
 - Estimering af Markov kæder fra datasæt
 - Lidt sandsynlighedsregning

Læsestof

Regulære udtryk:

 https://docs.python.org/2/howto/regex.html#regex-howto
 og dokumentationen for re modulet på
 https://docs.python.org/2/library/re.html

 (Begge findes også i PDF format på
 https://docs.python.org/2/download.html)

Markov kæder: Læs ugesedlen.

Kursusevaluering

Husk at udfylde kursusevalueringen på KUnet (du har modtaget en e-mail eller besked på KUnet om dette)