Sales Forecasting for Retail Businesses

A Project Based Learning Report Submitted in partial fulfilment of the requirements for the award of the degree

of

Bachelor of Technology

in The Department of CSE

BIG DATA ANALYTICS - 22DSB3303A

Submitted by

2210030420: K. Lahari Reddy 2210030403: K. Manaswija 2210030249: S. Neha Reddy 2210030399: Shreya Singh

Under the guidance of

SHAHIN FATIMA

Department of Electronics and Communication Engineering

Koneru Lakshmaiah Education Foundation, Aziz Nagar

Aziz Nagar – 500075

FEB - 2025

1. Introduction

The methodology for this sales forecasting project is structured to ensure accuracy, efficiency, and scalability. The development process follows a systematic approach, incorporating:

- Data Collection
- Preprocessing
- Exploratory Data Analysis (EDA)
- Model Selection
- Implementation & Evaluation
- Deployment and Maintenance

The goal is to build a predictive model to forecast sales of products at various stores, helping decision-makers identify key factors that influence sales. By leveraging historical data and advanced analytical techniques, businesses can optimize inventory, pricing strategies, and marketing efforts.

2. Hypotheses

The hypotheses explore different levels that could impact sales:

- Store-Level: Location, size, foot traffic, promotional strategies, store format.
- **Product-Level**: Category, price, demand elasticity, packaging, availability.
- Customer-Level: Buying behavior, preferences, seasonal demand, loyalty programs.
- Macro-Level: Economic conditions, market trends, competitor strategies, social trends.

3. Data Collection

3.1 Sources of Data

- Datasets: Train, Test.
- **Features**: 11 independent variables and 1 target variable (*Item_Outlet_Sales*) in the train dataset.
- Dimensions:
 - o Train dataset: 8523 rows, 12 columns.
 - o Test dataset: 5681 rows, 11 columns.
 - Additional external data sources such as macroeconomic indicators, weather data, and holiday schedules.

3.2 Exploratory Data Analysis (EDA)

- Univariate Analysis: Histograms and bar plots for individual feature distributions.
- **Bivariate Analysis**: Scatter plots, violin plots, and correlation heatmaps to understand relationships.
- Time Series Analysis: Identifying seasonality and long-term trends.
- Outlier Detection: Box plots and Z-score methods to identify anomalies.
- **Key Insights**: Patterns such as right-skewed *Item_Visibility* and *Item_MRP*, seasonal variations in sales, and the impact of store formats.

df_tra	in descriptive				
	Item_Weight	<pre>Item_Visibility</pre>	<pre>Item_MRP</pre>	Outlet_Establishment_Year	\
count	7060.000000	8523.000000	8523.000000	8523.000000	
mean	12.857645	0.066132	140.992782	1997.831867	
std	4.643456	0.051598	62.275067	8.371760	
min	4.555000	0.000000	31.290000	1985.000000	
25%	8.773750	0.026989	93.826500	1987.000000	
50%	12.600000	0.053931	143.012800	1999.000000	
75%	16.850000	0.094585	185.643700	2004.000000	
max	21.350000	0.328391	266.888400	2009.000000	
	Item_Outlet_S	ales			
count	8523.00				
mean	2181.288914				
std	1706.499616				
min	33.290000				
25%	834.247400				
50%	1794.331000				
75%	3101.29	6400			
max	13086.96	4800			
df tes	t descriptive	statistics:			
_	Item Weight		Item_MRP	Outlet Establishment Year	
count	4705.000000	5681.000000	5681.000000	5681.000000	
mean	12.695633	0.065684	141.023273	1997.828903	
std	4.664849	0.051252	61.809091	8.372256	
min	4.555000	0.000000	31.990000	1985.000000	
25%	8.645000	0.027047	94.412000	1987.000000	
50%	12.500000	0.054154	141.415400	1999.000000	
75%	16.700000	0.093463	186.026600	2004.000000	
max	21.350000	0.323637	266.588400	2009.000000	

4. Data Preprocessing

4.1 Handling Missing Values

- Imputation techniques (mean, median, predictive filling, KNN imputation).
- Removal of redundant and inconsistent records.

<pre>df_train missing values: Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Identifier Outlet_Establishment_Year Outlet_Size Outlet_Location_Type Outlet_Type Item_Outlet_Sales dtype: int64</pre>	0 1463 0 0 0 0 2410 0
df_test missing values: Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Identifier Outlet_Establishment_Year Outlet_Size Outlet_Location_Type Outlet_Type dtype: int64	976 0 0 0 0 0 1606 0

4.2 Data Normalization

- Scaling numerical variables for model efficiency (Min-Max scaling, Standardization).
- One-hot encoding and label encoding for categorical variables.

4.3 Data Aggregation

• Grouping data by time intervals (daily, weekly, monthly) to extract meaningful patterns.

0.30

2010

4.4 Feature Engineering

- Created new features like *Item_Type_new*, *Item_category*, *Outlet_Years*, price per unit wt, *Item_MRP_clusters*, *Discount_Percentage*, *Weekend_Sales_Boost*.
- Used Principal Component Analysis (PCA) to reduce dimensionality.
- Created lag variables to incorporate past sales trends.

5. Model Selection and Development

5.1 Statistical Methods

• ARIMA (AutoRegressive Integrated Moving Average) – Time series forecasting.

- **Exponential Smoothing** Capturing trends and seasonality.
- Holt-Winters Method Seasonal adjustments.

5.2 Machine Learning Models

- Linear Regression Establishing relationships between features.
- **Decision Trees & Random Forests** Handling nonlinear interactions.
- XGBoost & LightGBM High-performance boosting algorithms.
- Support Vector Regression (SVR) Handling outlier sensitivity.

5.3 Deep Learning Models

- Recurrent Neural Networks (RNN) Sequential data dependencies.
- Long Short-Term Memory (LSTM) Networks Handling long-term dependencies.
- Transformer Models Enhanced forecasting using attention mechanisms.

6. Model Training and Evaluation

6.1 Training Process

- Splitting data into training, validation, and test sets.
- Hyperparameter tuning using Grid Search & Bayesian Optimization.

6.2 Evaluation Metrics

- Mean Absolute Error (MAE) Measures prediction accuracy.
- Root Mean Squared Error (RMSE) Penalizes large errors.
- Mean Absolute Percentage Error (MAPE) Percentage-based accuracy.
- **R-squared Score** Model fit assessment.

Key Findings:

- Identified *Item_MRP*, *price_per_unit_wt*, *Outlet_Years*, and *Item_MRP_Clusters* as key features.
- **XGBoost** outperformed other models with the best RMSE score.

7. Model Deployment and Maintenance

7.1 Deployment

- **Dockerized application** for easy deployment.
- **CI/CD pipelines** for automated updates.
- Cloud-Based API using Flask or FastAPI.

7.2 Maintenance

- Continuous data updates and model retraining.
- Real-time monitoring and anomaly detection.
- Model versioning for performance tracking.

8. Model Ensembling

- **Objective**: Improve overall prediction accuracy.
- Techniques: Stacking, bagging, boosting, blending.

Additional Considerations

- Explainability: Using SHAP values for feature importance analysis.
- Hyperparameter tuning: Optimized configurations using Optuna.
- Ethical Considerations: Ensuring fair and unbiased predictions.

9. Conclusion

By combining statistical, machine learning, and deep learning techniques, this project ensures robust and accurate sales forecasting. The developed application empowers retailers with data-driven insights, leading to:

- Improved inventory management.
- Cost reduction.
- Increased profitability.
- Better demand planning.

10. Future Scope

- Integration with real-time data pipelines.
- Incorporation of external economic indicators.
- Reinforcement learning for adaptive forecasting.