病害抵抗性遺伝子の機能解析~実験技術編~

栽培植物起原学 後期学生実習3日目

「実験実習の日程」

病害抵抗性遺伝子の機能解析

アグロバクテリウムの感染様式

Recent Patents on Biotechnology 2008, 2, 198-208

アグロバクテリウム感染の鍵:Tiプラスミド

Tiプラスミド

- 大型の環状DNA。
- vir領域とT-DNA領域。
- T-DNAの両端には、25bpの繰り返し配列<u>LB</u>および<u>RB</u> がある。
- T-DNAにはオーキシンとサイトカイニン合成酵素遺伝子が含まれている。
- ・栄養源であるオパインを合成する酵素遺伝子も含まれる。

この領域が植物染色体に組み込まれる

アグロバクテリウムのバイオテクノロジーへの利用

アグロバクテリウム

<バイナリーベクター系>

• T-DNA: LBとRBさえあれば、間の配列は何でもいい。

• vir領域: T-DNAと同じプラスミド上でなくてもいい。

改変Tiプラスミド

• 野生型のTiプラスミドからT-DNAを除いた。

<u>バイナリーベクター</u>

- 大腸菌でも増殖できるような複製開始点。
- 薬剤耐性マーカーなどで選抜。

アグロバクテリウムへのプラスミドDNAの形質転換

Microbiol. Cult. Coll. Dec. 2006. p. 117-121

「実験実習の日程」

病害抵抗性遺伝子の機能解析

ウエスタンブロット解析のデータ作成例

来週の研究発表に向けての準備

- I. 各実験結果のデータ解釈および考察(全班共通)
 - 1. アグロバクテリウムの形質転換実験
 - 2. NLRーAVR発現時の細胞死応答評価
 - 3. NLRタンパク質の発現評価

II. 実験技術の紹介

A班:バクテリア(大腸菌・アグロバクテリウム)形質転換法

B班:植物の形質転換法

C班:エピトープタグ・蛍光タンパク質タグ

D班:ウエスタンブロット検出手法