Orthogonal filterbanks

Recall that a perfect reconstruction filterbank can be designed by first constructing $G_0(z)$ and $G_1(z)$ satisfying

$$G_0(z)G_1(-z) - G_1(z)G_0(-z) = 2z^{-m}$$
. (No distortion)

Once we have such a $G_0(z)$ and $G_1(z)$, we can then define the filters

$$H_0(z) = G_1(-z)$$
 and $H_1(z) = -G_0(-z)$,

and automatically form a perfect reconstruction filterbank.

Thus our central challenge is to construct $G_0(z)$ and $G_1(z)$ satisfying the no distortion condition. Here we will discuss one possible solution which satisfies some particularly nice properties. Suppose that $G_0(z)$ is given. Then the **alternating flip** construction is to set

$$G_1(z) = -z^{-m}G_0(-z^{-1}),$$

where m is odd and will correspond to the total delay of the system. What does $G_1(z)$ look like in this case? Suppose that

$$G_0(z) = \alpha_0 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \alpha_3 z^{-3}.$$

Then for m = 3 we have

$$G_0(z^{-1}) = \alpha_0 + \alpha_1 z + \alpha_2 z^2 + \alpha_3 z^3$$

$$G_0(-z^{-1}) = \alpha_0 - \alpha_1 z + \alpha_2 z^2 - \alpha_3 z^3$$

$$-G_0(-z^{-1}) = -\alpha_0 + \alpha_1 z - \alpha_2 z^2 + \alpha_3 z^3$$

$$G_1(z) = \alpha_3 - \alpha_2 z^{-1} + \alpha_1 z^{-2} - \alpha_0 z^{-3}.$$

Note that with this construction (when m is odd), $G_1(-z) = z^{-m}G_0(z^{-1})$, and thus the no distortion condition reduces to

$$z^{-m} \left[G_0(z)G_0(z^{-1}) + G_0(-z)G_0(-z^{-1}) \right] = 2z^{-m}.$$

Alternatively, if we set $P(z) = G_0(z)G_0(z^{-1})$, then this simply reduces to

$$P(z) + P(-z) = 2.$$
 (No distortion (v2))

Recalling that

$$P(z) = \sum_{n=-\infty}^{\infty} p[n]z^{-n},$$

we can see that the above condition on P(z) reduces to

$$p[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0, n \text{ even} \\ \text{anything} & n \text{ odd.} \end{cases}$$

But what exactly is p[n], and what does it tell us about $g_0[n]$? Using the fact that $P(z) = G_0(z)G_0(z^{-1})$, we have

$$\sum_{n=-\infty}^{\infty} p[n]z^{-n} = \left(\sum_{k=-\infty}^{\infty} g_0[k]z^{-k}\right) \left(\sum_{m=-\infty}^{\infty} g_0[m]z^m\right)$$

$$= \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} g_0[k]g_0[m]z^{m-k}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} g_0[k]g_0[k-n]z^{-n}.$$

Thus, we can conclude that

$$p[n] = \sum_{k=-\infty}^{\infty} g_0[k]g_0[k-n],$$

i.e. p[n] is just the autocorrelation function of $g_0[n]$, and the perfect reconstruction condition reduces to a simple constraint on this function.

To summarize, the procedure we have described to design a filterbank consists of designing $g_0[n]$ so that the autocorrelation function p[n] is zero for all even n except n = 0, and then using the "alternating flip" construction of $g_1[n]$, which together dictate $h_0[n]$ and $h_1[n]$. In this context, the constraint on p[n] has significant consequences. Specifically, for any filterbank designed in this way, the filterbank architecture

can be thought of as computing a representation of x[n] in an orthogonal basis.

Specifically, note that here

$$s_{J-1}[n] = \sum_{k=-\infty}^{\infty} x[k]h_0[2n-k]$$
$$w_{J-1}[n] = \sum_{k=-\infty}^{\infty} x[k]h_1[2n-k].$$

If we define $\mathbf{u}_n = h_0[2n-k]$ and $\mathbf{v}_n = h_1[2n-k]$, then we can interpret this as

$$s_{J-1}[n] = \langle \boldsymbol{u}_n, \boldsymbol{x} \rangle$$
 and $w_{J-1}[n] = \langle \boldsymbol{v}_n, \boldsymbol{x} \rangle$.

The constraint on p[n] turns out to be exactly what we need to ensure that $\mathcal{B} = \{u_n\}_n \cup \{v_n\}$ are orthonormal. This together with the perfect reconstruction property of the filterbank implies that \mathcal{B} forms an orthonormal basis for ℓ_2 .

Continuous-time orthonormal wavelet bases

We began our discussion of wavelets by considering the Haar wavelet basis for decomposing continuous-time signals $x(t) \in L_2(\mathbb{R})$, giving us a decomposition of the form

$$x(t) = \sum_{n = -\infty}^{\infty} s_{0,n} \phi_{0,n}(t) + \sum_{j=0}^{\infty} \sum_{n = -\infty}^{\infty} w_{j,n} \psi_{j,n}(t).$$

Recall that the (orthonormal) basis functions are **scaled and shifted** versions of the two template functions $\phi_0(t)$ and $\psi_0(t)$. Moreover, these two functions were linear combinations of shifts of a *contracted* version of $\phi_0(t)$:

$$\phi_0(t) = \phi_0(2t) + \phi_0(2t-1), \qquad \psi_0(t) = \phi_0(2t) - \phi_0(2t-1).$$

This gave us the very nice interpretation of the wavelet coefficients $w_{j,n}$ capturing the **differences** between piecewise-constant approximations of x(t) at different dyadic scales:

$$x(t) = \underbrace{\boldsymbol{P}_{\mathcal{V}_0}[x(t)] + \boldsymbol{P}_{\mathcal{W}_0}[x(t)]}_{=\boldsymbol{P}_{\mathcal{V}_1}[x(t)]} + \boldsymbol{P}_{\mathcal{W}_1}[x(t)] + \boldsymbol{P}_{\mathcal{W}_2}[x(t)] + \cdots .$$

$$= P_{\mathcal{V}_2}[x(t)]$$

$$= P_{\mathcal{V}_3}[x(t)]$$

Along with this interpretation, we also developed an efficient filter-bank implementation for computing this decomposition from some initial approximation $\hat{x}_J(t) = \mathbf{P}_{\mathcal{V}_J}[x(t)]$.

Now that we have seen how to generalize this filterbank structure, it is natural to ask whether these new filterbanks have a similar correspondence to other types of approximation spaces \mathcal{V}_j built using scaling functions $\phi_0(t)$ other than just piecewise-constant functions. Indeed we can, and it leads to a very rich family of **orthonormal** wavelet bases.

As in the Haar case, we will see that essentially all of the properties of any orthonormal wavelet basis will follow from properties of the scaling function $\phi_0(t)$. Before discussing these more general wavelet bases, we will first review some of the key properties of $\phi_0(t)$ that allowed us to interpret the Haar wavelet transform as providing a multiscale approximation.

Multiscale approximation: Scaling spaces

For a given $\phi_0(t)$, the first approximation space \mathcal{V}_0 is set of signals we can build up from different linear combinations¹ of the integer shifts of $\phi_0(t)$:

$$\mathcal{V}_0 = \overline{\operatorname{Span}}(\{\phi_0(t-n)\}_{n\in\mathbb{Z}}).$$

The first thing we want is for $\{\phi_0(t-n)\}_{n\in\mathbb{Z}}$ to be an orthobasis, so we ask that

(P1)
$$\langle \phi_0(t-k), \phi_0(t-n) \rangle = \begin{cases} 1, & k=n, \\ 0, & k \neq n. \end{cases}$$

¹Technically, this is the set of signals we can approximate arbitrarily well from different linear combinations — this is the closure of the span, which we will denote by Span.

Now set

$$\phi_{j,n}(t) = 2^{j/2}\phi_0(2^j t - n),$$

so the function $\phi_0(2^jt-n)$ is formed by **contracting** $\phi_0(t)$ by a factor of 2^j , then shifting the result on a grid with spacing 2^{-j} . For a fixed scale j, define

$$\mathcal{V}_j = \overline{\operatorname{Span}}(\{\phi_{j,n}(t)\}_{n\in\mathbb{Z}}).$$

Following the Haar case, there are two more key properties we ask of this sequence of approximation spaces; we would like these spaces to be nested,

(P2)
$$\mathcal{V}_j \subset \mathcal{V}_{j+1}, \text{ so } x(t) \in \mathcal{V}_j \Rightarrow x(t) \in \mathcal{V}_{j+1},$$

and we also want these approximation spaces to cover all of $L_2(\mathbb{R})$ in their limit:

(P3)
$$\lim_{j\to\infty} \mathcal{V}_j = L_2(\mathbb{R}), \text{ so } \lim_{j\to\infty} \boldsymbol{P}_{\mathcal{V}_j}[x(t)] = x(t) \text{ for all } x(t) \in L_2(\mathbb{R}).$$

Now the question is: What properties does $\phi_0(t)$ have to have to ensure (**P1**)–(**P3**) hold? While the answer is not straightforward, this question was answered completely in the late 1980s/early 1990s. The conditions on $\phi_0(t)$ are actually most easily expressed in terms of the inter-scale relationships between the $\{\phi_{j,n}\}_{n\in\mathbb{Z}}$ and $\{\phi_{j+1,n}\}_{n\in\mathbb{Z}}$, which you may recall is exactly what gave rise to the filterbank structure for computing the Haar wavelet transform.

Specifically, given a $\phi_0(t)$, define the sequence of numbers $g_0[n]$

$$g_0[n] = \langle \phi_0(t), \sqrt{2}\phi_0(2t - n) \rangle. \tag{1}$$

It turns out that whether properties (**P1**)–(**P3**) hold depends entirely on properties of this sequence of numbers. Let $G_0(e^{j\omega})$ be the discrete-time Fourier transform of $g_0[n]$. Then we have following major result:

If $g_0[n]$ obeys the following three properties, then the approximation spaces $\{\mathcal{V}_j\}_{j\geq 0}$ obey properties $(\mathbf{P1})$ – $(\mathbf{P3})$:

$$|G_0(e^{j\omega})|^2 + |G_0(e^{j(\omega+\pi)})|^2 = 2$$
, for all $-\pi \le \omega \le \pi$

(G2)
$$G_0(e^{j0}) = \sum_n g_0[n] = \sqrt{2},$$

$$|G_0(e^{j\omega})| > 0 \quad \text{for all} \quad |\omega| \le \frac{\pi}{2}.$$

The proof of this result is long and complicated. Note, however, that Condition (**G1**) is somewhat familiar. Specifically, using the orthogonal filterbank construction described above, (**G1**) is simply what we obtain by plugging $z = e^{j\omega}$ into v2 of the "No distortion" filterbank condition. The remaining conditions are more technical requirements that allow us to construct $\phi_0(t)$ from knowledge of $g_0[n]$ (see Technical Details at end of notes.)

²There are a few good references here. I will recommend Chapter 7 of A Wavelet Tour of Signal Processing, by S. Mallat, and Daubechies' book *Ten Lectures on Wavelets*.

Multiscale approximation: Wavelet spaces

The complementary wavelet spaces and wavelet basis functions can also be generated from the coefficient sequence $g_0[n]$. This is detailed as our second major result:

Suppose $\phi_0(t)$ with corresponding $g_0[n]$ obeys (**G1**)–(**G3**). Set

$$g_1[n] = (-1)^{1-n}g_0[1-n],$$

and

$$\psi_0(t) = \sum_{n=-\infty}^{\infty} g_1[n]\sqrt{2}\,\phi_0(2t-n).$$

Then, along with integer shifts of the scaling function $\phi_{0,n}(t) = \phi_0(t-n)$, the set of all dyadic shifts and contractions of $\psi_0(t)$,

$$\psi_{j,n}(t) = 2^{j/2}\psi_0(2^j t - n), \quad n \in \mathbb{Z}, \quad j = 0, 1, 2, \dots,$$

form an orthobasis for $L_2(\mathbb{R})$. That is,

$$x(t) = \sum_{n=-\infty}^{\infty} \langle \boldsymbol{x}, \boldsymbol{\phi}_{0,n} \rangle \phi_{0,n}(t) + \sum_{j=0}^{\infty} \sum_{n=-\infty}^{\infty} \langle \boldsymbol{x}, \boldsymbol{\psi}_{j,n} \rangle \psi_{j,n}(t)$$

for all $x(t) \in L_2(\mathbb{R})$.

aNote that the choice of $g_1[n]$ here is precisely the "alternating flip" construction we described in the context of filterbanks.

As with the Haar case, the wavelet coefficients at scale j represent the difference between the approximation of a signal in \mathcal{V}_j and the approximation in \mathcal{V}_{j+1} . That is, if we set

$$W_j = \overline{\operatorname{Span}} \left(\{ \psi_{j,n}(t) \}_{n \in \mathbb{Z}} \right)$$

then

- 1. For fixed j, $\langle \psi_{j,n}, \psi_{j,\ell} \rangle = 0$ for $n \neq \ell$. That is, the $\{\psi_{j,n}(t)\}_{n \in \mathbb{Z}}$ are orthobasis for \mathcal{W}_j .
- 2. $W_j \perp V_{j'}$ for all $j' \leq j$. Notice that since $W_j \subset V_{j+1}$, it follows that the sequence of spaces V_0, W_0, W_1, \ldots are all mutually orthogonal.
- 3. $\mathcal{V}_{j+1} = \mathcal{V}_j \oplus \mathcal{W}_j$. That is, every $v(t) \in \mathcal{V}_{j+1}$ can be written as $v(t) = \mathbf{P}_{\mathcal{V}_j}[v(t)] + \mathbf{P}_{\mathcal{W}_j}[v(t)].$

As the previous property states, these two components are orthogonal to one another.

In summary, this means we can break $L_2(\mathbb{R})$ into orthogonal parts,

$$L_2(\mathbb{R}) = \mathcal{V}_0 \oplus \mathcal{W}_0 \oplus \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \cdots$$

and we have an orthobases for each of these.

Vanishing moments and support size

In addition to forming an orthobasis with a certain multiscale form, there are other desirable properties that wavelet systems often have.

Vanishing moments. We say that $\psi_0(t)$ has p vanishing moments if

$$\int_{-\infty}^{\infty} t^{q} \psi_{0}(t) dt = 0, \quad \text{for } q = 0, 1, \dots, p - 1.$$

This means that $\psi_0(t)$ is **orthogonal** to all **polynomials** of degree p-1 or smaller. Since shifting a polynomial just gives you another polynomial of the same order, $\psi_0(t-n)$ is also orthogonal to these polynomials. This means that polynomials that have degree at most p-1 are completely contained in the scaling space \mathcal{V}_0 — all of the wavelet coefficients of a polynomial are zero.

Compact support. The support of $\psi_0(t)$ is the size of the interval on which it is non-zero. If $\psi_0(t)$ is supported on [0, L], then $\psi_{0,n}(t) = \psi_0(t-n)$ is supported on [n, n+L], and

$$w_{0,n} = \langle \boldsymbol{x}, \boldsymbol{\psi}_{0,n} \rangle = \int_{n}^{n+L} x(t) \psi_{0,n}(t) dt.$$

This means that $w_{0,n}$ only depends on what x(t) is doing on [n, n+L] — the wavelet coefficients are recording **local** information about the behavior of x(t).

These two properties make wavelets very good for representing signals which are smooth except at a few singularities.

Daubechies Wavelets

In the late 1980s, Ingrid Daubechies presented a systematic framework for designing wavelets with vanishing moments and compact support. For any integer p, there is a method for solving for the $g_0[n]$ that corresponds to a wavelet with p vanishing moments and has support size 2p-1.

Here are the filter coefficients for $p=2,\ldots,10$. (p=1 gives you Haar wavelets.):

$n h_p[n]$			$h_p[n]$			$h_p[n] = h_p[n]$		
p=2	0	0.482962913145		8	-0.031582039317		2	0.604823123690
	1	0.836516303738		9	0.000553842201		3	0.657288078051
	2	0.224143868042		10	0.004777257511		4	0.133197385825
	3	-0.129409522551		11	-0.001077301085		5	-0.293273783279
p = 3	0	0.332670552950	p =7	0	0.077852054085		6	-0.096840783223
	1	0.806891509311	•	1	0.396539319482		7	0.148540749338
	2	0.459877502118		2	0.729132090846		8	0.030725681479
	3	-0.135011020010		3	0.469782287405		9	-0.067632829061
	4	-0.085441273882		4	-0.143906003929		10	0.000250947115
	5	0.035226291882		5	-0.224036184994		11	0.022361662124
p=4	0	0.230377813309		6	0.071309219267		12	-0.004723204758
	1	0.714846570553		7	0.080612609151		13	-0.004281503682
	2	0.630880767930		8	-0.038029936935		14	0.001847646883
	3	-0.027983769417		9	-0.016574541631		15	0.000230385764
	4	-0.187034811719		10	0.012550998556		16	-0.000251963189
	5	0.030841381836		11	0.000429577973		17	0.000039347320
	6	0.032883011667		12	-0.001801640704	p = 10	0	0.026670057901
	7	-0.010597401785		13	0.000353713800	r	1	0.188176800078
p = 5	0		p=8	0	0.054415842243		2	0.527201188932
	1	0.160102397974	p o	1	0.312871590914		3	0.688459039454
	2	0.603829269797		2	0.675630736297		4	0.281172343661
		0.724308528438		3	0.585354683654		5	-0.249846424327
	3 4	0.138428145901		4	-0.015829105256		6	-0.195946274377
		-0.242294887066		5	-0.284015542962		7	0.127369340336
	5 6	-0.032244869585		6	0.000472484574		8	0.093057364604
		0.077571493840		7	0.128747426620		9	-0.071394147166
	7 8	-0.006241490213		8	-0.017369301002		10	-0.029457536822
	9	-0.012580751999		9	-0.04408825393		11	0.033212674059
		0.003335725285		10	0.013981027917		12	0.003606553567
p=6	0	0.111540743350		11	0.008746094047		13	-0.010733175483
	1	0.494623890398		12	-0.004870352993		14	0.001395351747
	2	0.751133908021		13	-0.000391740373		15	0.001992405295
	3	0.315250351709		14	0.000675449406		16	-0.000685856695
	4	-0.226264693965		15	-0.000117476784		17	-0.000116466855
	5	-0.129766867567	h=0				18	0.000093588670
	6 7	0.097501605587 0.027522865530	p=9	0 1	0.038077947364 0.243834674613		19	-0.000013264203

From Mallat, A Wavelet Tour of Signal Processing

Here are pictures of some of the scaling functions (N=2p in the captions below):

Figure 6.1. Daubechies Scaling Functions, $N=4,6,8,\ldots,40$

From Burrus et al, $Introduction\ to\ Wavelets\ \dots$

Here are pictures of some of the wavelet functions (N=2p in the captions below):

Figure 6.2. Daubechies Wavelets, $N=4,6,8,\ldots,40$

From Burrus et al, Introduction to Wavelets ...

Technical Details: Constructing $\phi_0(t)$

Note that with (**P2**) established, we know that $\phi_0(t) \in \mathcal{V}_1$. This gives us an additional interpretation of the $g_0[n]$; they tell us how to build up $\phi_0(t)$ out of shifts of the contracted version $\phi_0(2t)$:

$$\phi_0(t) = \sum_{n = -\infty}^{\infty} g_0[n] \sqrt{2}\phi_0(2t - n). \tag{2}$$

Given a particular $\phi_0(t)$, we can of course generate the $g_0[n]$ using (1) – but we can also go the other way. If we design a sequence $g_0[n]$ that obeys the three properties above, it specifies a unique scaling function $\phi_0(t)$. To get $\phi_0(t)$ from $g_0[n]$, we take the continuous-time Fourier transform of both sides of (2):

$$\Phi_0(j\Omega) = \sum_{n=-\infty}^{\infty} g_0[n] \sqrt{2} \int_{-\infty}^{\infty} \phi_0(2t - n) e^{-j\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} g_0[n] \frac{1}{\sqrt{2}} e^{j\Omega n/2} \Phi_0(j\Omega/2)$$

$$= \frac{1}{\sqrt{2}} \overline{G(e^{j\Omega/2})} \Phi_0(j\Omega/2)$$

We can again expand $\Phi_0(j\Omega/2) = \frac{1}{\sqrt{2}}\overline{G(e^{j\Omega/4})}\Phi_0(j\Omega/4)$, etc. Condition (**G3**) above means that the limit exists, and we have

$$\Phi_0(j\Omega) = \left(\prod_{p=1}^{\infty} \frac{\overline{G(e^{j2^{-p}\Omega})}}{\sqrt{2}}\right) \Phi_0(j0) = \prod_{p=1}^{\infty} \frac{\overline{G(e^{j2^{-p}\Omega})}}{\sqrt{2}},$$

since $\Phi_0(j0) = 1$ (this follows from integrating both sides of (2) and applying Condition (**G2**) above). Unfortunately, except in special cases it is hard to compute $\Phi_0(j\Omega)$ past the iterative expression above. This is why wavelets are usually specified in terms of their corresponding sequences $g_0[n]$.