# TUTORIAL SOBRE ANÁLISE DE REGRESSÃO

```
I. - No R:
### Exemplo dados dos alunos: altura x peso
### x = altura e y = peso
# Entrada de Dados
x \leftarrow c(1.61, 1.57, 1.77, 1.75, 1.83, 1.69, 1.91, 1.75, 1.72, 1.68, 1.92, 1.58, 1.77)
y \leftarrow c(54.5, 43.0, 72.0, 77.0, 76.0, 83.0, 78.0, 90.0, 59.0, 75.4, 120.0, 43.0, 88.0)
a) Calculando as expressões na "raça":
plot(x,y, pch=19, col="red3")
                                          # gráfico peso x altura
n <- length(x)</pre>
                                          # tamanho da amostra
xbar <- mean(x)</pre>
                                          # média das alturas
ybar <- mean(y)</pre>
                                          # média dos pesos
s2x \leftarrow var(x)
                                          # variância das alturas
s2y \leftarrow var(y)
                                          # variância dos pesos
sxy <- (sum(x*y)-n*xbar*ybar)/(n-1)
                                          # covariância entre peso e altura
rxy \leftarrow cor(x,y)
                                          # correlação entre peso e altura
## Ajuste de mínimos quadrados
## estimativas dos coeficientes
beta1 <- sxy/s2x
beta0 <- ybar-xbar*beta1</pre>
c(beta0,beta1)
## Coeficiente de determinação
R2 < - (sxy^2)/(s2y*s2x)
R2
(rxy)^2
                                 # relação de R2 com rxy
beta1*sxy/s2y
                                 # relação de R2 com beta1
## Valores ajustados e resíduos
ych <- beta0 + beta1*x
                                 # valores ajustados
ei <- y - ych
                                 # resíduos
## plotando a reta ajustada
plot(x,y, pch=19, col="red3", main="Gráfico de pontos", xlab="Altura",
   ylab="peso")
lines(x[order(x)], ych[order(x)],col="blue3", lwd=2)
## Análise gráfica para verificação das suposições
## do modelo (normalidade e igualdade de variâncias)
# histograma
hist(ei,
         col="bisque", main="Histograma dos resíduos", xlab="Resíduos",
   ylab="Frequência", cex.main=1.25)
# normal qq-plot dos resíduos
qqnorm(ei)
qqline(ei)
# resíduos x valores ajustados
plot(ych,ei, main="Resíduos x Ajustados", pch=19, col="red3")
# resíduos x ordem (timeplot)
plot(ei, main="Resíduos x ordem", pch=19, col="red3")
lines(ei, lwd=2, col="blue3")
```

#### b) Explorando os recursos do R:

```
# Usando o comando - lm
reta <- lm(y\sim x)
                             # guardando os resultados do ajuste
reta
summary(reta)
                             # sumário do ajuste
## O commando summary fornece:
   i) descritivas dos resíduos;
## ii) coeficientes estimados com respectivos testes de siginificância;
## iii) erro padrão dos resíduos (estimativa do desvio padrão sigma);
## iv) coef. de determinação R2 e R2-ajustado;
   v) teste F da tabela ANOVA, para testar Ho:beta1=0.
                             # somas de quadrado dos resíduos e do modelo
aov(reta)
res <- reta$residuals
                            # resíduos
sdres <- rstandard(reta)</pre>
                            # resíduos padronizados
ajus <- reta$fitted
                           # valores ajustados
# traçando a reta de regressão
plot(x,y, pch=19, col="red3", main="Gráfico de pontos", xlab="Altura",
   ylab="peso")
abline(coef(reta), col="blue3", lwd=2)
# verificação das suposições do modelo:
# teste de normalidade de Kolmogorov-Smirnov
ks.test(sdres,pnorm,0,1)
## Análise gráfica para verificação das suposições
## do modelo (normalidade e igualdade de variâncias)
## gráfico 4x1
par(mfrow = c(2,2)) # esse comando divide a janela gráfica numa matriz 2x2
# histograma dos resíduos
hist(sdres, col = "bisque", xlab="Resíduos padronizados", ylab=" ",
   main="Histograma dos Resíduos", cex.main=1)
# gráfico normal qq-plot dos resíduos
                                                                ylab="Quantis
qqnorm(sdres, pch=19, col="red",
                                     xlab="Quantis teóricos",
   amostrais", main="Normal Q-Q plot dos Resíduos", cex.main=1)
qqline(sdres, col="blue3")
# gráfico resíduos x valores ajustados
plot(ajus,sdres,pch=19,col="red", xlab="Valores ajustados", ylab="Resíduos
   padronizados", main="Resíduos x Ajustados", cex.main=1)
lines(c(0,max(ajus)),c(0,0),lty=2)
# resíduos x ordem (timeplot)
plot(sdres, main="Resíduos x ordem", ylab="Resíduos padronizados", pch=19,
   col="red3", cex.main=1)
lines(sdres, col="blue3")
lines(c(0,max(ajus)),c(0,0),lty=2)
par(mfrow = c(1,1))
```

#### II. - No SAS:

a) Na janela *Editor* do SAS digitar (ou colar) os comandos abaixo;

Comando

- b) Marcar as linhas conforme os 3 blocos de comandos: 1a. parte; 2a. parte e 3a. parte;
- c) Clicar no botão *submit*, (ver figura) para cada bloco de comandos marcado;
- d) Observar as saídas (quando houver) na janela Output.



/\* la. parte - entrada dos dados \*/ data exemplo1; input altura peso; cards; 1.61 54.5 1.57 43.0 1.77 72.0 1.75 77.0 1.83 76.0 1.69 83.0 1.91 78.0 1.75 90.0 1.72 59.0 1.68 75.4 1.92 120.0 1.58 43.0 1.77 88.0 proc corr data=exemplo1 noprob; run; /\* 2a. parte - ajuste da regressao \*/ title1 'Analise Grafica do Ajuste'; symbol v=dot h=1 c=green; proc reg data=exemplo1; model peso=altura; output out=saida p=ajus r=res student=sdres; title2 'Grafico de pontos'; plot peso\*altura /lline=1 cline=red; proc print data=saida; run;

⇒ O comando data é usado para criar o conjunto de dados, que no

caso, recebeu o nome de exemplo1.

Descrição

O conjunto de dados exemplo1 tem duas variáveis contínuas: altura e peso.

⇒ O comando **proc corr** calcula o coeficiente de correlação linear entre as variáveis

- ⇒ As definições title1 e symbol são fixadas para os gráficos.
- ⇒ O comando para o ajuste e análise da regressão é o **proc reg**, que utiliza os dados em exemplo1.
  O modelo ajustado é definido pela opção model peso=altura, que define o modelo de regressão linear simples para peso e altura.
  A opção output define o arquivo saida com os valores ajustados (ajus); resíduos (res) e resíduos padronizados (sdres).
  A opção plot constrói o gráfico de pontos peso\*altura, com a reta ajustada.
- ⇒ Como saídas do **proc reg** o SAS fornece a tabela análise de variâncias (tabela ANOVA); o coeficiente de determinação R2 e os testes individuais para os parâmetros do modelo.

```
/* 3a. parte - avaliação das suposições do
modelo */
title2 'Residuos x Valores Ajustados';
plot r.*p. /nostat;
run;
title2 'Residuos x Ordem';
plot r.*obs. /nostat;
run;
title2 'Normal QQ-plot dos Residuos';
plot student.*nqq. /noline nostat;
run;
quit;
```

⇒ O comando plot é usado para a construção dos gráficos que servirão para a avaliação das suposições de normalidade e igualdade de variância. Cada gráfico é identificado pelo seu subtítulo, dado pela opção title2.

### III. - No Minitab:

a) Digitar os dados na planilha do Minitab (*Worksheet*) conforme figura. Pode ser copiado e colado direto do *Exce*/se preferir;



b) No menu <u>S</u>tat, selecionar <u>B</u>asic Statistics e em seguida <u>C</u>orrelation;



c) Na próxima janela, selecionar as variáveis para o coeficiente de correlação linear e clicar OK;



d) No menu Stat, selecionar a opção Regression e na sequência, selecionar Regression novamente;



e) Na janela que vai abrir, selecionar as variáveis resposta e preditora, conforme abaixo;



f) Ainda na janela <u>Regression</u>, selecionar a opção <u>Graphs</u> e marcar os gráficos desejados, individualmente (Figura da esquerda) ou todos os 4 gráficos na opção quatro em um "Four in one" (Figura da direita). Na opção Residuals for Plots, marcar Standardized.





g) Observar a saída no janela Session e o gráfico gerado na janela independente.

# Correlations: altura; peso

Pearson correlation of altura and peso = 0.797

# Regression Analysis: peso versus altura

The regression equation is peso = - 185 + 149 altura

| Predictor | Coef    | SE Coef | T     | P     |
|-----------|---------|---------|-------|-------|
| Constant  | -184.87 | 59.18   | -3.12 | 0.010 |
| altura    | 149.10  | 34.05   | 4.38  | 0.001 |

$$S = 13.1420$$
 R-Sq = 63.5% R-Sq(adj) = 60.2%

Analysis of Variance

| Source         | DF | SS     | MS     | F     | P     |
|----------------|----|--------|--------|-------|-------|
| Regression     | 1  | 3310.6 | 3310.6 | 19.17 | 0.001 |
| Residual Error | 11 | 1899.8 | 172.7  |       |       |
| Total          | 12 | 5210.5 |        |       |       |



### Exemplo:

Medidas feitas em um grupo de homens envolvidos em um curso de fitness na N.C. State University. As variáveis coletadas foram: *Idade* (anos); *peso* (kg); *taxa de consumo de oxigênio* (ml por kg de peso por minuto); *tempo gasto para correr 1.5 milhas* (minutos); *frequência cardíaca em repous* (pulso); *frequência cardíaca durante a corrida* (medida ao mesmo tempo que a taxa de consumo de oxigênio) e *frequência cardíaca máxima registrada na corrida*. Abaixo são apresentadas apenas as variáveis *tempo de corrida* e *taxa de consumo de oxigênio*.

Avalie se o modelo de regressão linear simples pode ser ajustado para as variáveis *tempo de corrida* e *taxa de consumo de oxigênio*.

| tempo | oxigenio |
|-------|----------|
| 11.37 | 44.609   |
| 10.07 | 45.313   |
| 8.65  | 54.297   |
| 8.17  | 59.571   |
| 9.22  | 49.874   |
| 11.63 | 44.811   |
| 11.95 | 45.681   |
| 10.85 | 49.091   |
| 13.08 | 39.442   |
| 8.63  | 60.055   |
| 10.13 | 50.541   |
| 14.03 | 37.388   |
| 11.12 | 44.754   |
| 10.60 | 47.273   |
| 10.33 | 51.855   |
| 8.95  | 49.156   |
| 10.95 | 40.836   |
| 10.00 | 46.672   |
| 10.25 | 46.774   |
| 10.08 | 50.388   |
| 12.63 | 39.407   |
| 11.17 | 46.080   |
| 9.63  | 45.441   |
| 8.92  | 54.625   |
| 11.08 | 45.118   |
| 12.88 | 39.203   |
| 10.47 | 45.790   |
| 9.93  | 50.545   |
| 9.40  | 48.673   |
| 11.50 | 47.920   |
| 10.50 | 47.467   |
|       |          |