

Hybrid Forecasting & Fare Adjustment at Lower Load Factor

Claire Cizaire
Los Angeles
January 29-30, 2008

Objectives

☐ Previous studies showed that fare adjustment combined with hybrid forecasting yields little, if any, improvements from hybrid forecasting alone.

☐ It was observed that the base load factor was high (87%) and that fare adjustment might be more suited for a lower demand.

Hence, analyzed the incremental benefits of fare adjustment in Network S4 at a lower demand factor.

Presentation Outline

Airline 2 & 4 Using Standard Forecasting

- ☐ Different Frat5's at a demand factor of 0.8
- ☐ Different demand factors for Frat5c

Airline 2 & 4 Using Hybrid Forecasting

Simulation Set-Up: Fare Adjustment with 4 scaling factors

Simulations are run in the network S4 with Airline 1 using DAVN with different forecasters. The demand factor used to be 0.9 in previous simulations. It is now set to 0.8.

Airline 1 – DAVN with

- Standard Forecasting
- Hybrid Forecasting with different frat5's
- Hybrid Forecasting & Fare Adjustment with different frat5's & scaling factors

Airline 2 – DAVN with Standard Forecasting

Airline 3 – AT90

Airline 4 – DAVN with Standard Forecasting

Frat5a & DM 0.8 – Airline 1's Revenue

Fare adjustment does not provide any increase in revenue from hybrid forecasting alone.

Frat5a & DM 0.8 – Airline 1's Load Factor & Yield

The load factors are much lower with fare adjustment.

The yield decreases with the scaling factor, but remains higher than with hybrid alone.

Frat5c & DM 0.8 – Airline 1's Revenue

Fare adjustment performs slightly better than hybrid forecasting with a scaling factor of 0.25. The same observation was true when the demand factor was higher (0.9).

Frat5e & DM 0.8 – Airline 1's Revenue

Additional revenues are generated with the two lowest scaling factors but the increase remain modest (0.5%).

Summary of Revenue changes (DM 0.8)

- ☐ Revenue changes got worse with lower demand factor.
- ☐ The relative performance of fare adjustment increases with lower frat5's.
- ☐ The lower scaling factors yield better results.
- ☐ The best scaling factor increases with lower frat5's.

Summary of Revenue changes (DM 0.8)

Fare adjustment yields the best results with frat5c and a scaling factor of 0.25 (similar observation with DM 0.9): 0.4% increase from hybrid forecasting alone.

Presentation Outline

Airline 2 & 4 Using Standard Forecasting

- ☐ Different Frat5's at a demand factor of 0.8
- ☐ Different demand factors for Frat5c

Airline 2 & 4 Using Hybrid Forecasting

Frat5c & DM 0.7 – Airline 1's Revenue

Slight increase with a scaling factor of 0.25. The same observation was true when the demand factor was higher. The increase however decreases with demand factor.

Frat5c & DM 0.7 – Airline 1's Load Factor & Yield

The load factors are much lower with fare adjustment.

The yield decreases with the scaling factor, but remains higher than with hybrid alone.

Frat5c Summary – Airline 1's Revenue

For Frat5c, fare adjustment with a scaling factor of 0.25 always outperforms hybrid forecasting, however the increase is small (0.1-1.3%)

Frat5c Summary – Airline 1's Revenue

Fare adjustment does not perform better at a lower demand.

Frat5c Summary – Airline 1's Load Factor & Yield

Presentation Outline

Airline 2 & 4 Using Standard Forecasting

Airline 2 & 4 Using Hybrid Forecasting

Simulation Set-Up: Fare Adjustment with 4 scaling factors

Airline 2 & 4 now use hybrid forecasting. Simulations are still run in the network S4. The demand factor is 0.8

Standard Forecasting

Airline 1 – DAVN with

Hybrid Forecasting with different frat5's

Hybrid Forecasting & Fare Adjustment with different frat5's & scaling factors

Airline 2 – DAVN with *Hybrid Forecasting*

Airline 3 – AT90

Airline 4 – DAVN with *Hybrid Forecasting*

Frat5a – Airline 1's Revenue

Fare adjustment does not perform as well as hybrid forecasting alone.

Frat5a - Airline 1's Load Factor & Yield

Sharp decrease in load factor with fare adjustment.

The yield decreases with the scaling factor, but remains higher than with hybrid alone.

Frat5c – Airline 1's Revenue

Fare adjustment is still outperformed by hybrid forecasting.

Frat5e – Airline 1's Revenue

Fare adjustment still does not perform as well as hybrid forecasting alone.

Summary of Revenue changes

- ☐ The performance of fare adjustment decreases with the demand factor.
- ☐ Fare adjustment does not perform as well as hybrid forecasting alone when other airlines use hybrid forecasting.

 However, the revenue changes improve as the scaling factor decreases.

Summary of Revenue changes

Fare adjustment yields the best results with a scaling factor of 0.25.

Conclusion

The performance of fare adjustment is not better for a
lower load factor in Network S4.

- ☐ Hybrid forecasting alone still provides the greatest portion of increase in revenue.
- ☐ Fare adjustment combined with hybrid forecasting yields at most minimal improvements, even when no estimators are used.