SERIE 4

Exercice 1

Soient $X_1, ..., X_n$ des variables aléatoires discrètes. On suppose que

$$\forall n \geq 1 \ X_n \hookrightarrow \mathcal{B}\left(\frac{1}{n^2}\right)$$

Montrer que

$$P\left(\sum_{n\geq 1} X_n < \infty\right) = 1$$

Exercice 2

Soient $X_1, ..., X_n$ des variables aléatoires i.i.d.On pose

$$U_n = \max_{1 \le i \le n} X_i \qquad L_n = \min_{1 \le i \le n} X_i$$

- a) Déterminer F_{U_n} la fonction de répartition de U_n en fonction de celle de X, soit F_X .
- **b**) Déterminer F_{L_n} .
- c) On suppose que $X_1 \hookrightarrow \mathcal{U}_{[0,1]}$. Montrer que pour tout $x \in \mathbb{R}$, $P(nL_n \leq x)$ converge vers une limite que l'on précisera.

Exercice 3

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes telles que pour tout n

$$P(X_n = -1) = 1 - \frac{1}{(n+1)^2}$$
 $P(X_n = n^2 - 1) = \frac{1}{(n+1)^2}$

- 1) Montrer que la suite $(X_n)_{n\geq 1}$ converge vers -1 en probabilité.
- **2**) Montrer que la suite $(X_n)_{n\geq 1}^-$ converge p.s. vers -1.
- 3) Cette convergence a-t-elle lieu dans L^1 ?

Exercice 4

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d de même loi de

Poisson
$$\mathcal{P}(1)$$
. Soit $S_n = \sum_{k=1}^n X_k$

- 1) Rappeler la loi de S_n . Déterminer $P(S_n \leq n)$.
- 2) En utilisant le Théorème Central Limite, calculer la limite de la suite

$$\left(e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!}\right)_{n>1}$$

1