Diodo 1N4007 da VISHAY no LTspice

Beleza pessoal! Vamos continuar nossa série aprendendo eletrônica com o LTspice. Nesse post vamos trabalhar com o Diodo 1N4007 da VISHAY e o intuito é também aprendermos sobre Datasheet e Spice model.

Atualmente é muito comum pesquisarmos tudo no Google para obter o que desejamos. Dessa vez não será diferente, então, pesquise 'Datasheet 1n4007 spice model'.

Resultado da Pesquisa no Google

Um dos links da pesquisa foi a pagina do fabricante de semicondutores chamado VISHAY. Nessa página encontremos um link para baixar o datasheet e o modelo spice.

Download do Datasheet e do Modelo Spice do 1N4007 da VISHAY

Salvei o Datasheet numa pasta de trabalho com o seguinte nome '1N4001_7.pdf'. Salvei o modelo spice numa pasta de trabalho com o seguinte nome '1N4007.lib'. Segue o conteúdo do modelo spice desse diodo:

```
.model 1n4007 d is = 1.43733E-008 n = 1.80829 rs = 0.0414712 + eg = 1.11 xti = 3 tnom = 27 + cjo = 2.8119E-011 vj = 0.700053 m = 0.346714 fc = 0.5 + tt = 4.10886E-006 bv = 1100 ibv = 10 af = 1 kf = 0
```

O Esquemático

Monte o circuito a seguir. Se necessário consulte o artigo anterior para entender o básico de como montar circuitos no LTspice.

Somente relembrando, na barra de ferramentas, clicando no botão [SPICE Directive] foi adicionado um comando '.LIB', para incluir o modelo spice do diodo salvo no path mostrado, portanto, o esquemático utilizará esse modelo da VISHAY para simular o diodo 1N4007.

Outro detalhe é que estou usando o tipo de simulação [DC sweep] com os seguintes parâmetros. Observe que o LTspice adiciona automaticamente esse comando no esquemático.

Interpretar as Informações do Datasheet

No Datasheet vamos analisar as características primárias mais relevantes desse diodo.

I_{F(AV)} – Corrente média máxima quando polarizado diretamente (conduzindo)

V_F – Tensão máxima quando polarizado diretamente (conduzindo)

I_R – Corrente Reversa máxima quando polarizado reversamente (cortado)

V_{RRM} – Tensão Reversa Repetitiva máxima (cortado)

T_{Jmáx.} – Temperatura máxima na junção

PRIMARY CHARACTERISTICS					
I _{F(AV)}	1.0 A				
V _{RRM}	50 V to 1000 V				
I _{FSM} (8.3 ms sine-wave)	30 A				
I _{FSM} (square wave t _p = 1 ms)	45 A				
V _F	1.1 V				
I _R	5.0 μA				
T _J max.	150 °C				

Nosso foco será na região de condução

O circuito que montamos no LTspice tem como objetivo obter a curva característica desse diodo na região de condução. Quero destacar nesse artigo que qualquer componente se comporta conforme sua curva característica, então, vamos provar esse fato.

Vamos simular esse circuito e observar a forma de onda de corrente no diodo

Essa curva determina o comportamento desse diodo na região de polarização direta, conduzindo. Podemos para cada valor de corrente obter a queda de tensão sobre o mesmo.

Por exemplo, podemos ver que se circular uma corrente de 350mA no diodo, a queda de tensão sobre o componente será 810mV. Vamos montar outro circuito para comprovar?

Segundo sua curva caracteristica 350mA corresponde uma queda de 810mV

Observe os valores de tensão na escala da esquerda e valores de corrente na escala da direita, então, realmente ~350mA passando pelo diodo provoca uma queda de tensão de ~810mV.

Outro Analise Interessante – Temperatura máxima na junção do diodo

Já foi postado como analisar dissipação de calor, então, aqui vamos conferir se a máxima potencia dissipada pelo 1N4007 não causará danos ao mesmo. Considerar uma temperatura ambiente de 35°C.

$$(P_D * \theta_{JA}) + T_A = T_J$$

No Datasheet do 1N4007 encontramos a seguinte informação de Resistencia Térmica $R_{\Theta JA} = 50$ [°C/W] (junção para o ambiente).

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)									
PARAMETER	SYMBOL	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	UNIT
Typical thermal resistance	R _{eJA} (1)	50						°C/W	
Typical thermal resistance	R _{eJL} (1)	25							-C/W

$$(P_D * \theta_{JA}) + T_A = T_J$$

Pelo Datasheet sabemos a máxima corrente suportada e pela curva característica obtemos com maior precisão a queda de tensão sobre o diodo, nas região de condução.

$$P_{D_M\acute{a}x} = V_{D_M\acute{a}x} * I_{D_M\acute{a}x}$$

$$P_{D \text{ Máx}} = 880 \text{ [mV]} * 1 \text{ [A]} = 0.88 \text{ [W]}$$

 $T_J = (0.88 [W] * 50 [°C/W]) + 35 [°C] = 79 [°C]$

PRIMARY CHARACTERISTICS				
T _J max.	150 °C			

 $T_J \ll T_{J_M\acute{a}x}$ Portanto: 79 [°C] \ll 150 [°C]

É Isso Pessoal!

Estamos reforçando conceitos e ao mesmo tempo brincando com o LTspice.

Gostou? Se sim, compartilhe e de seu feedback! Caso tenha dúvidas comente aqui embaixo.

Ismael Lopes