[12.8] Let $\alpha = \sum_{r=1}^n \alpha_r dx^r$, ..., $\gamma = \sum_{u=1}^n \gamma_u dx^u$, $\lambda = \sum_{j=1}^n \lambda_j dx^j$, ..., $v = \sum_{m=1}^n v_m dx^m$ be independent 1-forms in \Re^n . Let $\phi = \alpha \wedge \dots \wedge \gamma$ be a p-form and $\chi = \lambda \wedge \dots \wedge v$ be a q-form. Show that $\phi \wedge \chi = \alpha \wedge \dots \wedge \gamma \wedge \lambda \wedge \dots \wedge v$.

Proof: I adopt Juergen Beckmann's excellent mathematical notation for the antisymmetrization concepts per his solution to this same problem.

Notation. Let M = $\{1, 2, ..., n\}$, $\mathcal{P}_{r...u}$ = set of permutations of the *p*-tuple (r, ..., u) and $\mathcal{P}_{j...m}$ = set of permutations of the *q*-tuple (j, ..., m). Then

$$\phi = \alpha \wedge \dots \wedge \gamma = \sum_{(r, \dots, u) \in M^p} \alpha_{[r} \dots \gamma_{u]} \, dx^r \wedge \dots \wedge dx^u$$
(1)

where

$$\alpha_{\mathbf{r}} \cdots \gamma_{u\mathbf{l}} = \frac{1}{p!} \sum_{\pi \in \mathcal{P}_{r \cdots u}} \mathbf{sign}(\pi) \, \alpha_{\pi(r)} \wedge \cdots \wedge \gamma_{\pi(u)}$$

and

$$\chi = \lambda \wedge \dots \wedge \upsilon = \sum_{(j,\dots,m) \in M^q} \lambda_{[j} \dots \upsilon_{m]} \, dx^j \wedge \dots \wedge dx^m$$
 (2)

where

$$\lambda_{ij}\cdots v_{mi} = \frac{1}{q!} \sum_{\pi \in \mathcal{P}_{i\cdots m}} sign(\pi) \alpha_{\pi(j)} \cdots \gamma_{\pi(m)}.$$

Thus

$$\phi \wedge \chi = \sum_{(r,\cdots,u)\in M^p} \sum_{(j,\cdots,m)\in M^q} \alpha_{[r}\cdots \gamma_{u]} \lambda_{[j}\cdots \upsilon_{m]} dx^r \wedge \cdots \wedge dx^u \wedge dx^j \wedge \cdots \wedge dx^m,$$
 (3)

where the brackets inside a bracket [[r ... u][j ... m]] means to antisymmetrize the two antisymmetrizations or, as Juergen states in his proof of this problem, to take the "average" of the two "averages".

On the other hand,

$$\alpha \wedge \cdots \wedge \gamma \wedge \lambda \wedge \cdots \wedge v$$

$$= \sum_{(r,\cdots,u,j,\cdots,m)\in M^{p+q}} \alpha_{[r} \cdots \gamma_u \lambda_j \cdots \upsilon_{m]} dx^r \wedge \cdots \wedge dx^u \wedge dx^j \wedge \cdots \wedge dx^m.$$
 (4)

So the gist of this problem is to show that

$$\sum_{(r,\cdots,u)\in M^{\rho}}\sum_{(j,\cdots,m)\in M^{q}}\alpha_{[r}\cdots\gamma_{u]}\lambda_{j}\cdots\upsilon_{m]}=\sum_{(r,\cdots,u,j,\cdots,m)\in M^{\rho+q}}\alpha_{[r}\cdots\gamma_{u}\lambda_{j}\cdots\upsilon_{m]},$$

that the average of all the terms equals the average of the two sub-averages.

Lemma. The sum of the antisymmetrized quantities $\alpha_{[r}\cdots\delta_{u]}$ equals the sum of the original quantities $\alpha_r\cdots\delta_u$. That is,

$$\sum_{(r,\dots,u)\in M^p} \alpha_{[r} \cdots \gamma_{u]} = \sum_{(r,\dots,u)\in M^p} \alpha_{r} \cdots \gamma_{u}$$
(5)

Proof: Fix a *p*-tuple $(r_0, ..., u_0)$ and consider the RHS term $\alpha_{r_0} \cdots \gamma_{u_0}$. Where does it appear in the LHS? One place is in the term

$$\alpha_{\mathbf{l}r_0}\cdots\gamma_{u_0\mathbf{l}} = \frac{1}{\rho\mathbf{!}}\sum_{\pi\in\mathcal{P}_{r_0\cdots u_0}} \mathit{sign}(\pi) \ \alpha_{\pi(r_0)}\wedge\cdots\wedge\gamma_{\pi(u_0)} \ \text{ where it appears precisely once as}$$

 $\frac{1}{p!}\alpha_{r_0}\cdots\gamma_{u_0}$. In fact, there are p! permutations of $\alpha_{\mathbf{l}r_0}\cdots\gamma_{u_0\mathbf{l}}$ and it appears as $\frac{1}{p!}\alpha_{r_0}\cdots\gamma_{u_0}$ precisely once in each such permutation, and nowhere else. (Careful examination shows that it always appears as $\mathbf{+}\frac{1}{p!}\alpha_{r_0}\cdots\gamma_{u_0}$, whether π is even or odd.) Thus the term $\alpha_{r_0}\cdots\gamma_{u_0}$ appears precisely once on both sides of the equation. This proves that the terms on the RHS are precisely matched by the terms on the LHS, which proves the lemma. \checkmark

An example is helpful to clarify the notation in (1 - 4) and the lemma (5).

Example. Let $\alpha = \alpha_1 dx^1 + \alpha_2 dx^2$ and $\alpha = \beta_1 dx^1 + \beta_2 dx^2$ be 1-forms in \Re^2 . Then p = 2, $M = \{1, 2\}$, so $M^p = \{1, 2\}^2 = \{1, 2\} \times \{1, 2\} = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$. So,

$$\begin{split} \phi &= \alpha \wedge \beta = \sum_{(r\,s) \in \mathit{M}^2} \alpha_{[r}\,\beta_{s]}\, \mathit{dx}^r \wedge \mathit{dx}^s \\ &= \alpha_{[1}\,\beta_{1]}\, \mathit{dx}^1 \wedge \mathit{dx}^1 + \alpha_{[1}\,\beta_{2]}\, \mathit{dx}^1 \wedge \mathit{dx}^2 + \alpha_{[2}\,\beta_{1]}\, \mathit{dx}^2 \wedge \mathit{dx}^1 + \alpha_{[2}\,\beta_{2]}\, \mathit{dx}^2 \wedge \mathit{dx}^2 \\ &= \alpha_{[1}\,\beta_{2]}\, \mathit{dx}^1 \wedge \mathit{dx}^2 + \alpha_{[2}\,\beta_{1]}\, \mathit{dx}^2 \wedge \mathit{dx}^1 \\ &= \frac{1}{2} \Big(\alpha_1\,\beta_2 - \alpha_2\,\beta_1\Big)\, \mathit{dx}^1 \wedge \mathit{dx}^2 + \frac{1}{2} \Big(\alpha_2\,\beta_1 - \alpha_1\,\beta_2\Big)\, \mathit{dx}^2 \wedge \mathit{dx}^1 \\ &= \Big[\frac{1}{2} \Big(\alpha_1\,\beta_2 - \alpha_2\,\beta_1\Big) - \frac{1}{2} \Big(\alpha_2\,\beta_1 - \alpha_1\,\beta_2\Big)\Big]\, \mathit{dx}^1 \wedge \mathit{dx}^2 \\ &= \Big[\frac{1}{2} \Big(\alpha_1\,\beta_2 - \alpha_2\,\beta_1\Big) + \frac{1}{2} \Big(\alpha_1\,\beta_2 - \alpha_2\,\beta_1\Big)\Big]\, \mathit{dx}^1 \wedge \mathit{dx}^2 \end{split}$$

$$\begin{split} &=\alpha_{_{1}}\beta_{_{2}}\,\mathrm{d}x^{_{1}}\wedge\mathrm{d}x^{_{2}}-\alpha_{_{2}}\,\beta_{_{1}}\,\mathrm{d}x^{_{1}}\wedge\mathrm{d}x^{_{2}}\\ &=\alpha_{_{1}}\beta_{_{2}}\,\mathrm{d}x^{_{1}}\wedge\mathrm{d}x^{_{2}}+\alpha_{_{2}}\,\beta_{_{1}}\,\mathrm{d}x^{_{2}}\wedge\mathrm{d}x^{_{1}}\\ &=\alpha_{_{1}}\beta_{_{1}}\,\mathrm{d}x^{_{1}}\wedge\mathrm{d}x^{_{1}}+\alpha_{_{1}}\beta_{_{2}}\,\mathrm{d}x^{_{1}}\wedge\mathrm{d}x^{_{2}}+\alpha_{_{2}}\,\beta_{_{1}}\,\mathrm{d}x^{_{2}}\wedge\mathrm{d}x^{_{1}}+\alpha_{_{2}}\,\beta_{_{2}}\,\mathrm{d}x^{_{2}}\wedge\mathrm{d}x^{_{2}}\\ &=\sum_{(r,s)\in M^{2}}\alpha_{_{r}}\,\beta_{_{s}}\,\mathrm{d}x^{_{r}}\wedge\mathrm{d}x^{_{s}} \end{split}$$

This illustrates both the summation notation and the lemma.

 $\mathcal{P}_{12} = \{\pi_1, \, \pi_2\}$ where

$$\pi_1\!\!:\!\!\left\{\begin{array}{l} 1\!\to\!1\\ 2\!\to\!2 \end{array}\right.,\quad \pi_2\!\!:\!\!\left\{\begin{array}{l} 1\!\to\!2\\ 2\!\to\!1 \end{array}\right.,\quad \mathit{sign}\!\left(\pi_1\right)\!=\!+1, \text{ and } \mathit{sign}\!\left(\pi_2\right)\!=\!-1.$$

So, for example,

$$\begin{split} \alpha_{\text{\tiny{I}1}}\,\beta_{\text{\tiny{2}I}} &= \frac{1}{2} \! \left(\alpha_{\text{\tiny{I}}}\,\beta_{\text{\tiny{2}}} - \alpha_{\text{\tiny{2}}}\,\beta_{\text{\tiny{I}}} \right) \! = \! \frac{1}{2!} \! \left(\text{sign} \! \left(\pi_{\text{\tiny{1}}} \right) \! \alpha_{\pi_{\text{\tiny{I}}\left(1\right)}} \! \beta_{\pi_{\text{\tiny{I}}\left(2\right)}} + \text{sign} \! \left(\pi_{\text{\tiny{2}}} \right) \! \alpha_{\pi_{\text{\tiny{2}}\left(1\right)}} \! \beta_{\pi_{\text{\tiny{2}}\left(2\right)}} \right) \\ &= \frac{1}{\rho!} \sum_{\pi = \mathbf{q}_{\text{\tiny{1}}2}} \text{sign}(\pi) \, \alpha_{\pi(1)\pi(2)}. \end{split}$$

This illustrates the permutation notation and concludes the example.

Continuing the proof, we can use the lemma (5) to rewrite equations (3) and (4):

$$\phi \wedge \chi = \sum_{(r, \dots, u) \in M^p} \sum_{(i, \dots, m) \in M^q} \alpha_r \cdots \gamma_u \lambda_j \cdots \upsilon_m \, dx^r \wedge \cdots \wedge dx^u \wedge dx^j \wedge \cdots \wedge dx^m$$
 (3')

and

$$\alpha \wedge \cdots \wedge \gamma \wedge \lambda \wedge \cdots \wedge v$$

$$=\sum_{(r,\cdots,u,j,\cdots,m)\in M^{p+q}}\alpha_r\cdots\gamma_u\lambda_j\cdots\upsilon_m\,dx^r\wedge\cdots\wedge dx^u\wedge dx^j\wedge\cdots\wedge dx^m.$$
 (4')

Observe that both expressions (3') and (4') have n^{p+q} terms that are identical. Thus $\phi \wedge \chi = \alpha \wedge \cdots \wedge \gamma \wedge \lambda \wedge \cdots \wedge v$, concluding the proof.

Note. Juergen solved this problem by showing directly that antisymmetrization of the p and q antisymmetrizations equals the single p+q antisymmetrization. He argued that the inner transpositions are self-cancelling. (Transpositions between one member of $\{r, ..., u\}$ and one member from $\{j, ..., m\}$ are "**inner transpositions**". Transpositions that involves terms only from $\{r, ..., u\}$ or only from $\{j, ..., m\}$, but not both, are "**outer transpositions**"). This perhaps is what Penrose looking for in this problem.

By collapsing the antisymmetrizations I side-stepped the very difficult issue of showing that the outer antisymmetrizations cancel, leaving just the inner antisymmetrizations.