Elemente de programare liniară

Mihai-Sorin Stupariu

Sem. I, 2018-2019

► Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.
 - Obiectele: poliedrale.

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.
 - ► Obiectele: **poliedrale**.
 - Matrițele: formate dintr-o singură piesă; fiecărui obiect $\mathcal P$ îi este asociată o matriță $\mathcal M_{\mathcal P}$

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate în matrițe; există obiecte pentru care nu există o matriță adecvată; extragerea obiectului depinde de poziția matriței.
- Problema studiată. Dat un obiect, există o matriță din care să poată fi extras?
- Convenţii.
 - ► Obiectele: poliedrale.
 - Matrițele: formate dintr-o singură piesă; fiecărui obiect $\mathcal P$ îi este asociată o matriță $\mathcal M_{\mathcal P}$
 - Obiectul: extras printr-o singură translație (sau o succesiune de translații)

► Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.

- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.
- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.

- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.
- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.
- ▶ Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): direcție admisibilă.

- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.
- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.
- Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): direcție admisibilă.
- ► Convenții: Matrița este paralelipipedică și are o cavitate corespunzătoare obiectului; fața superioară a obiectului (și a matriței) este perpendiculară cu planul *Oxy*.

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translatia în directia \vec{d}
- **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.
- ▶ Analitic toate fețele: Fie 𝒯 un poliedru; fața superioară fixată, paralelă cu planul 𝒪xy. Considerăm matrița asociată și toate fețele matriței (i.e. toate fețele standard ale poliedrului). A determina o direcție admisibilă revine la a determina o direcție care verifică toate inegalitățile de tip (*), deci un sistem de inecuații.

- ▶ Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.
- ▶ Analitic toate fețele: Fie P un poliedru; fața superioară fixată, paralelă cu planul Oxy. Considerăm matrița asociată și toate fețele matriței (i.e. toate fețele standard ale poliedrului). A determina o direcție admisibilă revine la a determina o direcție care verifică toate inegalitățile de tip (*), deci un sistem de inecuații.
- Concluzie: Pentru a stabili dacă există o direcție admisibilă, trebuie stabilit dacă o intersecție de semiplane este nevidă.

Exemple

1. Intersecția semiplanelor

$$-x + y + 1 \le 0$$
; $-y - 3 \le 0$; $2x + 3y - 5 \le 0$.

2 (a). Normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,-1,1), (0,1,1), (0,1,0), (0,0,-1), (0,-1,0).$$

2 (b). Normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,1,0), (0,1,-1), (0,0,-1), (0,-1,-1), (0,-1,0).$$

Probleme studiate:

 (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- ► Rezultate: (descrise în detaliu ulterior)

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)
 - (i) Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)
 - (i) Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.
 - (ii) Se poate stabili cu complexitate-timp medie O(n) dacă o intersecție de semiplane este nevidă.
 - (ii)' Fie P un poliedru cu n fețe. Se poate decide dacă P reprezintă un obiect care poate fi turnat cu complexitate-timp medie O(n²) și folosind O(n) spațiu. În caz afirmativ, o matriță și o direcție admisibilă în care poate fi extras P este determinată cu aceeași complexitate-timp.

(i) Caracterizare explicită - Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y \leq c_i$$

(i) Caracterizare explicită - Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y \leq c_i$$

▶ Intersecția $H_1 \cap H_2 \cap \ldots \cap H_n$ este dată de un sistem de inecuații; este o mulțime poligonală convexă, mărginită de cel mult n muchii (poate fi vidă, mărginită, nemărginită,...)

▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $C = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$
- 2. then $C \leftarrow H \in \mathcal{H}$

- **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$
- 2. then $\mathcal{C} \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente

Algoritm IntersectiiSemiplane (\mathcal{H})

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ Output. Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. if $\operatorname{card}(\mathcal{H}) = 1$
- 2. then $C \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente
- 4. $C_1 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_1)$

Algoritm IntersectiiSemiplane (\mathcal{H})

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. **if** $card(\mathcal{H}) = 1$
- 2. then $\mathcal{C} \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente
- 4. $C_1 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_1)$
- 5. $C_2 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_2)$

Algoritm IntersectiiSemiplane (\mathcal{H})

- ▶ **Input.** O mulțime \mathcal{H} de semiplane din planul \mathbb{R}^2
- ▶ **Output.** Regiunea poligonală convexă $\mathcal{C} = \cap_{H \in \mathcal{H}} H$
- 1. 1. **if** $card(\mathcal{H}) = 1$
- 2. then $\mathcal{C} \leftarrow H \in \mathcal{H}$
- 3. **else** descompune \mathcal{H} în două mulțimi \mathcal{H}_1 , \mathcal{H}_2 având fiecare [n/2] elemente
- 4. $C_1 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_1)$
- 5. $C_2 \leftarrow \text{IntersectiiSemiplane}(\mathcal{H}_2)$
- 6. $C \leftarrow \text{IntersecteazaRegiuniConvexe} (C_1, C_2)$

▶ În algoritm, \mathcal{C}_1 și \mathcal{C}_2 sunt regiuni poligonale convexe cu cel mult n vârfuri; numărul lor de muchii este cel mult n, întrucât fiecare are cel mult $\left[\frac{n}{2}\right]+1$ muchii, iar $\mathcal{C}_1\cap\mathcal{C}_2$ are cel mult n fețe, deci $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_1\cap\mathcal{C}_2$ au complexitate O(n).

- ▶ În algoritm, \mathcal{C}_1 și \mathcal{C}_2 sunt regiuni poligonale convexe cu cel mult n vârfuri; numărul lor de muchii este cel mult n, întrucât fiecare are cel mult $\left[\frac{n}{2}\right]+1$ muchii, iar $\mathcal{C}_1\cap\mathcal{C}_2$ are cel mult n fețe, deci $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_1\cap\mathcal{C}_2$ au complexitate O(n).
- ▶ **Propoziție.** Adaptând algoritmii de overlay, intersecția dintre două regiuni convexe (IntersecteazaRegiuniConvexe) poate fi calculată cu complexitate-timp O(n log n).

- ▶ În algoritm, \mathcal{C}_1 și \mathcal{C}_2 sunt regiuni poligonale convexe cu cel mult n vârfuri; numărul lor de muchii este cel mult n, întrucât fiecare are cel mult $\left[\frac{n}{2}\right]+1$ muchii, iar $\mathcal{C}_1\cap\mathcal{C}_2$ are cel mult n fețe, deci $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_1\cap\mathcal{C}_2$ au complexitate O(n).
- ▶ **Propoziție.** Adaptând algoritmii de overlay, intersecția dintre două regiuni convexe (IntersecteazaRegiuniConvexe) poate fi calculată cu complexitate-timp O(n log n).
- Notând cu T(n) complexitatea-timp pentru a determina intersecţia dintre n semiplane, relaţia de recurenţă este

$$T(n) = \left\{ \begin{array}{ll} O(1), & n=1 \\ O(n\log n) + 2T(\frac{n}{2}), & n>1. \end{array} \right.$$

- ▶ În algoritm, \mathcal{C}_1 și \mathcal{C}_2 sunt regiuni poligonale convexe cu cel mult n vârfuri; numărul lor de muchii este cel mult n, întrucât fiecare are cel mult $\left[\frac{n}{2}\right]+1$ muchii, iar $\mathcal{C}_1\cap\mathcal{C}_2$ are cel mult n fețe, deci $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_1\cap\mathcal{C}_2$ au complexitate O(n).
- ▶ **Propoziție.** Adaptând algoritmii de overlay, intersecția dintre două regiuni convexe (IntersecteazaRegiuniConvexe) poate fi calculată cu complexitate-timp O(n log n).
- Notând cu T(n) complexitatea-timp pentru a determina intersecţia dintre n semiplane, relaţia de recurenţă este

$$T(n) = \begin{cases} O(1), & n = 1 \\ O(n \log n) + 2T(\frac{n}{2}), & n > 1. \end{cases}$$

▶ **Teoremă.** Algoritmul IntersectiiSemiplane are complexitate $O(n \log^2 n)$.

- ▶ În algoritm, \mathcal{C}_1 și \mathcal{C}_2 sunt regiuni poligonale convexe cu cel mult n vârfuri; numărul lor de muchii este cel mult n, întrucât fiecare are cel mult $\left[\frac{n}{2}\right]+1$ muchii, iar $\mathcal{C}_1\cap\mathcal{C}_2$ are cel mult n fețe, deci $\mathcal{C}_1,\mathcal{C}_2,\mathcal{C}_1\cap\mathcal{C}_2$ au complexitate O(n).
- ▶ **Propoziție.** Adaptând algoritmii de overlay, intersecția dintre două regiuni convexe (IntersecteazaRegiuniConvexe) poate fi calculată cu complexitate-timp O(n log n).
- Notând cu T(n) complexitatea-timp pentru a determina intersecția dintre n semiplane, relația de recurență este

$$T(n) = \begin{cases} O(1), & n = 1 \\ O(n \log n) + 2T(\frac{n}{2}), & n > 1. \end{cases}$$

- ▶ **Teoremă.** Algoritmul IntersectiiSemiplane are complexitate $O(n \log^2 n)$.
- ► **Teoremă.** Algoritmul IntersecteazaRegiuniConvexe poate fi îmbunătățit, astfel încât complexitatea-timp să fie liniară.
- ▶ **Teoremă.** Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp O(n log n) și folosind O(n) memorie.

▶ De câte informații (numerice) este nevoie pentru a indica un punct în plan?

- ▶ De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**

- ▶ De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **>** 2
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?

- ▶ De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**

- ▶ De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?

- ▶ De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?
- ▶ DA: dualitate

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?
- ▶ DA: dualitate
- Cum se reflectă / respectă diferite proprietăți geometrice (de exemplu incidența) prin dualitate?

Dualitate — "dicționar" concepte și configurații

Plan primal	Plan dual		
Punct p	Dreaptă neverticală <i>p</i> *		
Dreaptă neverticală d	Punct d*		
Dreaptă determinată de două puncte	Punct de intersecție a două drepte		
Punctul <i>p</i> deasupra dreptei <i>d</i>	Punctul d^* deasupra dreptei p^*		
Segment	Fascicul de drepte (wedge)		

► Sunt realizate 3 produse (notate 1, 2 și 3) pe 2 aparate (notate X și Y).

- Sunt realizate 3 produse (notate 1, 2 şi 3) pe 2 aparate (notate X şi Y).
- Ciclul de producție este săptămânal (40h de lucru). Timpul de producție (în minute) pentru produs este indicat în tabel.

	X	Y	Obs.	Nr. prod.	Spaţiu	Profit
			pe ambele	<i>X</i> ₁	$0.1 m^2$	10
2	12	19	în paralel, simultan	x_2 , respectiv y_2	$0.2m^{2}$	13
3	8	24	în paralel, simultan	x ₃ , respectiv y ₃	$0.05m^2$	9

- Sunt realizate 3 produse (notate 1, 2 şi 3) pe 2 aparate (notate X şi Y).
- Ciclul de producție este săptămânal (40h de lucru). Timpul de producție (în minute) pentru produs este indicat în tabel.

	X	Y	Obs.	Nr. prod.	Spaţiu	Profit
			pe ambele	<i>X</i> ₁	$0.1 m^2$	10
2	12	19	în paralel, simultan	x_2 , respectiv y_2	$0.2m^{2}$	13
3	8	24	în paralel, simultan	x ₃ , respectiv y ₃	$0.05 m^2$	9

► Aparatele X și Y au un interval de mentenanță de 5%, respectiv 7% din timpul de lucru. Spațiul total de depozitare este de 50m².

- Sunt realizate 3 produse (notate 1, 2 şi 3) pe 2 aparate (notate X şi Y).
- Ciclul de producție este săptămânal (40h de lucru). Timpul de producție (în minute) pentru produs este indicat în tabel.

	X	Y	Obs.	Nr. prod.	Spaţiu	Profit
			pe ambele	<i>X</i> ₁	$0.1 m^2$	10
2	12	19	în paralel, simultan	x_2 , respectiv y_2	$0.2m^{2}$	13
3	8	24	în paralel, simultan	x ₃ , respectiv y ₃	$0.05 m^2$	9

- ▶ Aparatele X și Y au un interval de mentenanță de 5%, respectiv 7% din timpul de lucru. Spațiul total de depozitare este de 50m².
- Modelul matematic:

Constrângeri:

$$0.1x_1 + 0.2(x_2 + y_2) + 0.05(x_3 + y_3) \le 50$$
 Spațiu de depozitare $10x_1 + 12x_2 + 8x_3 \le 0.95 \cdot 40 \cdot 60$ Timp aparatul X $27x_1 + 19y_2 + 24y_3 \le 0.93 \cdot 40 \cdot 60$ Timp aparatul Y

Cerința:

maximizează
$$(10x_1 + 13(x_2 + y_2) + 9(x_3 + y_3))$$

► Formulare generală (în spațiul *d*-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$

$$(1)$$

► Formulare generală (în spațiul *d*-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$
(1)

Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$
(1)

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n},\,j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$

► Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$
(1)

- ▶ date de intrare: $(a_{ij})_{i=\overline{1,n},j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$

► Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$
(1)

- ▶ date de intrare: $(a_{ij})_{i=\overline{1,n},j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$
- constrângeri: inegalitățile (1)

► Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$
(1)

- ▶ date de intrare: $(a_{ij})_{i=\overline{1,n},j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$
- constrângeri: inegalitățile (1)
- regiune realizabilă (fezabilă): intersecția semispațiilor care definesc constrângerile problemei

► Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n \end{cases}$$
(1)

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n},j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$

 - constrângeri: inegalitățile (1)
 - regiune realizabilă (fezabilă): intersecția semispațiilor care definesc constrângerile problemei
- **Exemple:** probleme de programare liniară 1-dimensională, 2-dimensională.

Rezultate

▶ **Lemă.** (Pentru d = 1) Un program liniar 1-dimensional poate fi rezolvat în timp liniar.

Rezultate

- ▶ **Lemă.** (Pentru d = 1) Un program liniar 1-dimensional poate fi rezolvat în timp liniar.
- ▶ Interpretare a cerinței de maximizare: Maximizarea funcției obiectiv revine la a determina un punct al cărui vector de poziție are proiecția maximă de direcția dată de vectorul $\overrightarrow{c} = (c_1, c_2, \dots, c_d)$.

- Convenţii şi terminologie:
 - Coordonatele: x şi y

Convenţii şi terminologie:

• Coordonatele: x și y

• Funcția obiectiv: $f_{\overrightarrow{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.

- Coordonatele: x și y
- Funcția obiectiv: $f_{\overrightarrow{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.
- Constrângerile: h_1, h_2, \ldots, h_n (semiplane); se notează $H = \{h_1, h_2, \ldots, h_n\}$
- Regiunea fezabilă este $C = h_1 \cap h_2 \cap \ldots \cap h_n$.

- Coordonatele: x şi y
- Funcția obiectiv: $f_{\overrightarrow{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.
- Constrângerile: h_1, h_2, \ldots, h_n (semiplane); se notează $H = \{h_1, h_2, \ldots, h_n\}$
- Regiunea fezabilă este $C = h_1 \cap h_2 \cap \ldots \cap h_n$.
- ▶ Program liniar: (H, \overrightarrow{c}) .
- ▶ **Scop:** Se caută $p \in C$ astfel ca $f_{\stackrel{\rightarrow}{c}}(p)$ să fie maximă.

- Coordonatele: x şi y
- Funcția obiectiv: $f_{\overrightarrow{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.
- Constrângerile: h_1, h_2, \ldots, h_n (semiplane); se notează $H = \{h_1, h_2, \ldots, h_n\}$
- Regiunea fezabilă este $C = h_1 \cap h_2 \cap \ldots \cap h_n$.
- ▶ Program liniar: (H, \overrightarrow{c}) .
- ▶ **Scop:** Se caută $p \in C$ astfel ca $f_{\stackrel{\rightarrow}{c}}(p)$ să fie maximă.
- Pentru o problemă de programare liniară în plan pot fi distinse patru situații: (i) o soluție unică; (ii) toate punctele de pe o muchie sunt soluții; (iii) regiunea fezabilă este nemărginită și pot fi găsite soluții de-a lungul unei semidrepte; (iv) regiunea fezabilă este vidă.

Algoritm LPMARG2D $(H, \overrightarrow{c}, m_1, m_2)$

▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "coltul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "coltul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care }$ maximizează $f_{\overrightarrow{c}}(p)$ date constrângerile din H_i

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care}$ maximizează $f_{\stackrel{\leftarrow}{c}}(p)$ date constrângerile din H_i
- 7. **if** p nu există

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care } \\ \text{maximizează } f_{\stackrel{\leftarrow}{c}}(p) \text{ date constrângerile din } H_i$
- 7. **if** p nu există
- 8. **then** raportează "nefezabil" **end**

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care}$ $\text{maximizează } f_{\overrightarrow{c}}(p) \text{ date constrângerile din } H_i$
- 7. **if** p nu există
- 8. **then** raportează "nefezabil" **end**
- 9. return v_n

Algoritm aleatoriu

- Pasul 2. este înlocuit cu:
 - 2'. Calculează o permutare arbitrară a semiplanelor, folosind o procedură adecvată.

Algoritm aleatoriu

- Pasul 2. este înlocuit cu:
 - 2'. Calculează o permutare arbitrară a semiplanelor, folosind o procedură adecvată.
- Algoritmul incremental LPMARG2D are complexitate-timp $O(n^2)$, iar varianta bazată pe alegerea aleatorie a semiplanelor are complexitate-timp medie O(n) (n este numărul semiplanelor).