Network Embedding: from Theoretical Understanding to System Design

Jiezhong Qiu

Tsinghua University

August 13, 2021

About Me

- A 6th year PhD student at Department of Computer Science and Technology of Tsinghua University, under the supervision of Prof. Jie Tang.
- My research interests include algorithm design for large-scale information networks and representation learning for graph-structured data.
- Nomination Award of the 2018 MSRA Fellowship and Nomination Award of the 2020 WAIC Youth Outstanding Paper.
- Google Scholar Citation 1,290.

What is Graph Representation Learning and Network Embedding?

• Network Embedding (NE)

Graph Neural Networks (GNN)

History of Graph Representation Learning

About Today's Talk

Three Questions

- 1 Theory of Network Embedding.
- Sample complexity of Network embedding algorithms?
- 3 Design better and scalable network embedding system.
- Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec (WSDM'18 most cited, Nomination Award of the 2020 WAIC Youth Outstanding Paper)
- A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices (NeurIPS'20)
- NetSMF: Large-Scale Network Embedding As Sparse Matrix Factorization (WWW '19); LightNE: A Lightweight Graph Processing System for Network Embedding (SIGMOD'21)

Contents

- Network Embedding (NE)
 - Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
 - A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices
 - NetSMF: Network Embedding as Sparse Matrix Factorization
 - LightNE: A Lightweight Graph Processing System for Network Embedding

Motivation and Problem Formulation

Problem Formulation

Give a network G=(V,E), aim to learn a function $f:V\to\mathbb{R}^p$ to capture neighborhood similarity and community membership.

Applications:

- link prediction
- community detection
- label classification

(a) Input: Karate Graph

(b) Output: Representation

DeepWalk and Three Questions We Want to Answer

Questions

- Theory behind DeepWalk.
- Sample complexity of DeepWalk?
- 3 Design better and more scalable network embedding systems.

Notations

Consider an undirected weighted graph G=(V,E) , where $\vert V \vert = n$ and $\vert E \vert = m.$

• Adjacency matrix $m{A} \in \mathbb{R}^{n \times n}_+$:

$$\mathbf{A}_{i,j} = \begin{cases} a_{i,j} > 0 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}.$$

- Degree matrix $D = \operatorname{diag}(d_1, \dots, d_n)$, where d_i is the generalized degree of vertex i.
- Volume of the graph G: $vol(G) = \sum_{i} \sum_{j} A_{i,j}$.

Assumption

G=(V,E) is connected, undirected, and not bipartite, which makes $P(w)=\frac{d_w}{{\rm vol}(G)}$ a unique stationary distribution.

DeepWalk: Random Walk on Graph + Skip-gram

The objective of skip-gram model:

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}) = |\mathcal{D}| \sum_{w} \sum_{c} \left(\frac{\#(\boldsymbol{w}, \boldsymbol{c})}{|\mathcal{D}|} \log g(\boldsymbol{x}_{w}^{\top} \boldsymbol{y}_{c}) + b \frac{\#(\boldsymbol{w})}{|\mathcal{D}|} \frac{\#(\boldsymbol{c})}{|\mathcal{D}|} \log g(-\boldsymbol{x}_{w}^{\top} \boldsymbol{y}_{c}) \right).$$

#(w,c) indicates the number of times the pair (w,c) appears in a size-T sliding window.

Skip-gram as PMI Matrix Factorization

PMI Matrix of Random Walks on a Graph

- Number of negative samples
- #(w,c) Co-occurrence of w and c #(w) Occurrence of word w
 - D | Total number of word-context pairs #(c) Occurrence of context c

Our Results

Denote $P=D^{-1}A$, which is the transition probability matrix. Also note that we want to analyze $\frac{\#(w,c)|\mathcal{D}|}{\#(w)\cdot\#(c)}=\frac{\frac{\#(w,c)}{|\mathcal{D}|}}{\frac{\#(w)}{|\mathcal{D}|}\cdot\frac{\#(c)}{|\mathcal{D}|}}$

Theorem

When the length of random walk $L \to \infty$, we have

$$\frac{\#(w,c)}{|\mathcal{D}|} \xrightarrow{p} \frac{1}{2T} \sum_{r=1}^{T} \left(\frac{d_w}{\operatorname{vol}(G)} \left(\mathbf{P}^r \right)_{w,c} + \frac{d_c}{\operatorname{vol}(G)} \left(\mathbf{P}^r \right)_{c,w} \right).$$

Consequently, $\frac{\#(w)}{|\mathcal{D}|} \stackrel{\mathcal{P}}{\to} \frac{d_w}{\operatorname{vol}(G)}$ and $\frac{\#(c)}{|\mathcal{D}|} \stackrel{\mathcal{P}}{\to} \frac{d_c}{\operatorname{vol}(G)}$, as $L \to \infty$.

Theorem

For DeepWalk, when the length of random walk $L \to \infty$,

$$\frac{\#(w,c)\left|\mathcal{D}\right|}{\#(w)\cdot\#(c)}\overset{p}{\to}\frac{\operatorname{vol}(G)}{2T}\left(\frac{1}{d_{c}}\sum_{r=1}^{T}\left(\boldsymbol{P}^{r}\right)_{w,c}+\frac{1}{d_{w}}\sum_{r=1}^{T}\left(\boldsymbol{P}^{r}\right)_{c,w}\right).$$

Our Results

Theorem

DeepWalk is asymptotically and implicitly factorizing

$$\log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^{r} \right) \boldsymbol{D}^{-1} \right).$$

DeepWalk as Matrix Factorization

A Adjacency matrix

 $vol(G) = \sum_{i} \sum_{j} \mathbf{A}_{i,j}$

D Degree matrix

b Number of negative samples

Summary

Table 1: The matrices that are implicitly approximated and factorized by DeepWalk, LINE, PTE, and node2vec.

Algorithm	Matrix
DeepWalk	$\log^{\circ} \left(\operatorname{vol}(G) \left(\frac{1}{T} \sum_{r=1}^{T} (\boldsymbol{D}^{-1} \boldsymbol{A})^{r} \right) \boldsymbol{D}^{-1} \right) - \log b$
LINE	$\log^{\circ} \left(\operatorname{vol}(G) \boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D}^{-1} \right) - \log b$
PTE	$ \left \log^{\circ} \left(\begin{bmatrix} \alpha \operatorname{vol}(G_{ww}) (\boldsymbol{D}_{row}^{ww})^{-1} \boldsymbol{A}_{ww} (\boldsymbol{D}_{col}^{ww})^{-1} \\ \beta \operatorname{vol}(G_{dw}) (\boldsymbol{D}_{row}^{dw})^{-1} \boldsymbol{A}_{dw} (\boldsymbol{D}_{col}^{dw})^{-1} \\ \gamma \operatorname{vol}(G_{lw}) (\boldsymbol{D}_{row}^{lw})^{-1} \boldsymbol{A}_{lw} (\boldsymbol{D}_{col}^{lw})^{-1} \end{bmatrix} \right) - \log b $
node2vec	$ \log^{\circ} \left(\frac{\frac{1}{2T} \sum_{r=1}^{T} \left(\sum_{u} \mathbf{X}_{w,u} \underline{\mathbf{P}}_{c,w,u}^{r} + \sum_{u} \mathbf{X}_{c,u} \underline{\mathbf{P}}_{w,c,u}^{r} \right)}{\left(\sum_{u} \mathbf{X}_{w,u} \right) \left(\sum_{u} \mathbf{X}_{c,u} \right)} \right) - \log b $

Contents

- Network Embedding (NE)
 - Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
 - A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices
 - NetSMF: Network Embedding as Sparse Matrix Factorization
 - LightNE: A Lightweight Graph Processing System for Network Embedding

Q2: Sample Complexity of DeepWalk

Question

- NetMF studies the convergence of co-occurrence matrices of random walk on graphs in the limit $(L \to \infty)$.
- How about the convergence rate?

Applications of Co-occurrence Matrices

Recommendation System (Pin2Vec, Item2vec)

(DeepWalk, node2vec, metapath2vec)

Reinforcement Learning (Act2Vec)

Hidden Markov Models (Emission Co-occurrence)

Question:

What is the #samples required to estimate a good co-occurrence matrix?

Chernoff Bound

Theorem

If X_1, \cdots, X_k are k independent zero-mean scalar-valued random variables with $|X_i| \leq 1$. Then for $\epsilon \in (0,1)$:

$$\mathbb{P}\left[\left|\frac{1}{k}\sum_{i=1}^{k}X_{i}\right| \geq \epsilon\right] \leq 2\exp\left(-k\epsilon^{2}/4\right).$$

Our Matrix Chernoff Bound for Markov Chains

Independence
Markov Dependence

Scalar-valued
Random Variables
Matrix-valued
Random Variables

$$f(X_1) \quad f(X_2)$$

Sample Mean Matrix

$$\frac{1}{2}(f(X_1) + f(X_2))$$

Our Matrix Chernoff Bound for Markov Chains

Independence Markov Dependence

Scalar-valued
Random Variables
Matrix-valued
Random Variables

 $f(X_1)$

 $f(X_2)$ $f(X_3)$

Sample Mean Matrix

$$\frac{1}{3}(f(X_1) + f(X_2) + f(X_3))$$

Our Matrix Chernoff Bound for Markov Chains

 $P(X_2|X_1) \quad P(X_3|X_2) \quad P(X_4|X_3)$ $X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow \cdots$

Scalar-valued
Random Variables
Matrix-valued
Random Variables

Sample Mean Matrix

Comparison to Previous Results

We want bound the tail probability of extreme eigenvalues:

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{i=1}^k f(X_i)\right)\right] \text{ and } \mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{i=1}^k f(X_i)\right)\right].$$

Comparison	X	f	Tail Prob.
Chernoff'52	i.i.d scalars	identity	$\exp(-\Omega(k\epsilon^2))$
Tropp'12	i.i.d $d \times d$ matrices	identity	$d\exp(-\Omega(k\epsilon^2))$
CLLM'12	random walk on a regular Markov chain with spectral expansion λ	$[N] o oldsymbol{C}$	$\exp(-\Omega(k(1-\lambda)\epsilon^2))$
GLSS'18	random walk on an undirected regular graph with 2nd eigenvalue λ	$[N] o oldsymbol{C}^{d imes d}$	$d\exp(-\Omega(k(1-\lambda)\epsilon^2))$
Ours	random walk on a regular Markov chain with spectral expansion λ	$[N] o oldsymbol{C}^{d imes d}$	$d\exp(-\Omega(k(1-\lambda)\epsilon^2))$

Matrix Chernoff Bound for Ergodic Markov Chains

Theorem

Let P be an ergodic Markov chain with state space [N], stationary distribution π and spectral norm λ . Let $f:[N] \to \mathbb{R}^{d \times d}$ be a function such that $(1) \ \forall v \in [N]$, f(v) is symmetric and $\|f(v)\|_2 \le 1$; $(2) \sum_{v \in [N]} \pi_v f(v) = 0$. Let (v_1, \cdots, v_k) denote a k-step random walk on P starting from a distribution ϕ on [N]. Then given $\epsilon \in (0,1)$,

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \geq \epsilon\right] \leq \|\phi\|_{\pi} d^{2} \exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right)$$

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{j=1}^{k}f(v_{j})\right) \leq -\epsilon\right] \leq \|\phi\|_{\pi} d^{2} \exp\left(-(\epsilon^{2}(1-\lambda)k/72)\right).$$

Sliding Window 1

$$X_1 = (1,2,3)$$

$$\mathbf{C} = \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Sliding Window 2

$$X_2 = (2,3,2)$$

$$C = \frac{1}{2} \begin{bmatrix} \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$

Sliding Window 3

$$\mathbf{C} = \frac{1}{3} \begin{bmatrix} \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \end{bmatrix}$$

Sliding Window 4

$$C = \frac{1}{4} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix}$$
$$= \frac{1}{4} (f(X_1) + f(X_2) + f(X_3) + f(X_4))$$

Observations

- Co-occurrence matrix can be written as sample mean $C = \frac{1}{k} \sum_{i=1}^k f(X_i)$.
- If the input sequence is a Markov Chain, then sliding window X_i is also a Markov Chain.

Convergence Rate of Co-occurrence Matrices

Theorem (Convergence Rate of Co-occurrence Matrices)

Let P be a regular Markov chain with state space [n], stationary distribution π and mixing time τ . Let (v_1,\cdots,v_L) denote a L-step random walk on P starting from a distribution ϕ on [n]. Given step weight coefficients $(\alpha_1,\cdots,\alpha_T)$ s.t. $\sum_{r=1}^T |\alpha_r| = 1$, and $\epsilon \in (0,1)$, the probability that the co-occurrence matrix C deviates from its asymptotic expectation $\mathbb{AE}[C]$ (in 2-norm) is bounded by:

$$\mathbb{P}\left[\left\|\boldsymbol{C} - \mathbb{AE}[\boldsymbol{C}]\right\|_{2} \ge \epsilon\right] \le 2\left(\tau + T\right) \left\|\boldsymbol{\phi}\right\|_{\boldsymbol{\pi}} n^{2} \exp\left(-\frac{\epsilon^{2}(L - T)}{576\left(\tau + T\right)}\right).$$

Roughly, one needs $L = O\left(\tau(\log n + \log \tau)/\epsilon^2\right)$ samples to guarantee good estimation to the co-occurrence matrix.

Contents

- Network Embedding (NE)
 - Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
 - A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices
 - NetSMF: Network Embedding as Sparse Matrix Factorization
 - LightNE: A Lightweight Graph Processing System for Network Embedding

Q3: How to Design Better NE Systems

- A Adjacency matrix
- $\operatorname{vol}(G) = \sum_{i} \sum_{j} \boldsymbol{A}_{i,j}$
- **D** Degree matrix
- b Number of negative samples
- \bullet DeepWalk: SGD on O(|V|d) parameters.
- NetMF: the matrix is dense.

Random-walk Matrix Polynomial Sparsification

Theorem ([CCL+15])

For random-walk matrix polynomial $L = D - \sum_{r=1}^{T} \alpha_r D \left(D^{-1}A\right)^r$, where $\sum_{r=1}^{T} \alpha_r = 1$ and α_r non-negative, one can construct, in time $O(T^2m\epsilon^{-2}\log^2 n)$, a $(1+\epsilon)$ -spectral sparsifier, \widetilde{L} , with $O(n\log n\epsilon^{-2})$ non-zeros. For unweighted graphs, the time complexity can be reduced to $O(T^2m\epsilon^{-2}\log n)$.

Definition

Suppose $G=(V,E,{m A})$ and $\widetilde{G}=(V,\widetilde{E},\widetilde{{m A}})$ are two weighted undirected networks. Let ${m L}={m D}_G-{m A}$ and $\widetilde{{m L}}={m D}_{\widetilde{G}}-\widetilde{{m A}}$ be their Laplacian matrices, respectively. We define G and \widetilde{G} are $(1+\epsilon)$ -spectrally similar if

$$\forall \boldsymbol{x} \in \mathbb{R}^n, (1 - \epsilon) \cdot \boldsymbol{x}^{\top} \widetilde{\boldsymbol{L}} \boldsymbol{x} \leq \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} \leq (1 + \epsilon) \cdot \boldsymbol{x}^{\top} \widetilde{\boldsymbol{L}} \boldsymbol{x}.$$

NetSMF

Setting $\alpha_1 = \cdots = \alpha_T = \frac{1}{T}$ in $L = D - \sum_{r=1}^T \alpha_r D \left(D^{-1}A\right)^r$, we can observe the tight connection between random walk matrix polynomial and NetMF:

$$\log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} (\boldsymbol{D}^{-1} \boldsymbol{A})^{r} \right) \boldsymbol{D}^{-1} \right)$$

$$= \log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \boldsymbol{D}^{-1} (\boldsymbol{D} - \boldsymbol{L}) \boldsymbol{D}^{-1} \right)$$

$$\approx \log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \boldsymbol{D}^{-1} (\boldsymbol{D} - \widetilde{\boldsymbol{L}}) \boldsymbol{D}^{-1} \right)$$

Idea

Rewrite the NetMF matrix in terms of random walk matrix polynomial L, and further approximate L with \widetilde{L} .

NetSMF—Algorithm

The proposed NetSMF algorithm consists of three steps:

- Construct a random walk matrix polynomial sparsifier, \widetilde{L} , by calling algorithm proposed in [CCL⁺15].
- Construct a NetMF matrix sparsifier.

trunc_log°
$$\left(\frac{\operatorname{vol}(G)}{b} \boldsymbol{D}^{-1} (\boldsymbol{D} - \widetilde{\boldsymbol{L}}) \boldsymbol{D}^{-1}\right)$$

• Truncated randomized singular value decomposition.

Detailed Algorithm

Experiments

Label Classification:

- BlogCatelog, PPI, Flickr, YouTube, OAG.
- Logistic Regression
- DeepWalk, LINE, node2vec, NetMF 1 (T=10), NetSMF 2 (T=10).

Table 2: Statistics of Datasets.

Dataset	BlogCatalog	PPI	Flickr	YouTube	OAG
V	10,312	3,890	80,513	1,138,499	67,768,244
E	333,983	76,584	5,899,882	2,990,443	895,368,962
#Labels	39	50	195	47	19

¹Qiu et al. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM'18

 $^{^2}$ Qiu et al. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW/19

Experimental Results

Figure 1: Predictive performance on varying the ratio of training data. The x-axis represents the ratio of labeled data (%), and the y-axis in the top and bottom rows denote the Micro-F1 and Macro-F1 scores respectively.

Q3: Even More Scalable?

- Scalable: Embed graphs with 1B edges within 1.5 hours.
- Lightweight: Occupy hardware costs below 100 dollars measured by cloud rent to process 1B to 100B edges.
- Accurate: Achieve the highest accuracy in downstream tasks under the same time budget and similar resources.

LightNE on Very Large Graphs!

	ClueWeb	Hyperlink2014
V	978,408,098	1,724,573,718
E	74,744,358,622	124,141,874,032

Figure 2: HITS@K (K = 1, 10, 50) of LightNE w.r.t. the number of samples.

None of the existing network embedding systems can handle such large graphs in a single machine!

Thanks.

www.jiezhongqiu.com

- Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec (WSDM'18 most cited)
- A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices (NeurIPS'20)
- NetSMF: Large-Scale Network Embedding As Sparse Matrix Factorization (WWW '19)
- LightNE: A Lightweight Graph Processing System for Network Embedding (SIGMOD '21)

Contents

- Network Embedding (NE)
 - Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
 - A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices
 - NetSMF: Network Embedding as Sparse Matrix Factorization
 - LightNE: A Lightweight Graph Processing System for Network Embedding

References I

Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng, *Spectral sparsification of random-walk matrix polynomials*, arXiv preprint arXiv:1502.03496 (2015).