Logic and Hybrid Systems

Manasvi Saxena

Formal Systems Lab, UIUC

Hybrid Systems

- Dynamical Systems exhibiting both discrete (jump) and continuous (flow) behaviors.
- Serve as models of physical systems, from thermostats to trains.
- Continuous dynamics specified using Differential Equations.

Main focus - Differential Dynamic Logic for Hybrid Systems (Andre Platzer).

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.
- Dynamic Logic for Hybrid Programs, a generalization of Dynamic Logic.

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.
- Dynamic Logic for Hybrid Programs, a generalization of Dynamic Logic.
- Suited for automation.

Hybrid Automata

- Commonly used to model Hybrid Systems, via Graphs.
- Nodes specify continuous dynamics. Edges describe discrete transitions.
- Intuitive, but not suitable for deductive verification.

Hybrid Automata

- Commonly used to model Hybrid Systems, via Graphs.
- Nodes specify continuous dynamics. Edges describe discrete transitions.
- Intuitive, but not suitable for deductive verification.

Figure: Hybrid Automata (simplified) of a Train Control System

Differential Dynamic Logic Motivations

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.
- Dynamic Logic (DL) Combines operational system models with operators for reasoning.
 - ▶ Provides parameterized modal operators, $[\alpha]$, $\langle \alpha \rangle$ that refer to states reachable by system α .
 - $[\alpha]\phi$ expresses all states reachable by α satisfy ϕ , allowing reasoning about discrete systems.
 - Say (b > 0) → [a := -b](a < 0) expresses a discrete transition. Using DL's calculus, we get (b > 0) ⊢ (a < 0)[b/a]. Convenient for reasoning about discrete behavior.</p>

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.
- Dynamic Logic (DL) Combines operational system models with operators for reasoning.
 - ▶ Provides parameterized modal operators, $[\alpha]$, $\langle \alpha \rangle$ that refer to states reachable by system α .
 - $[\alpha]\phi$ expresses all states reachable by α satisfy ϕ , allowing reasoning about discrete systems.
 - Say (b > 0) → [a := -b](a < 0) expresses a discrete transition. Using DL's calculus, we get (b > 0) ⊢ (a < 0)[b/a]. Convenient for reasoning about discrete behavior.</p>
 - No built in notion for describing or reasoning about continuous dynamics.

Motivations

- ▶ Generalize DL so operational models α can be used in modal formulas like $[\alpha]\phi$. dL refers to generalized models as "Hybrid Programs".
- ▶ A compositional calculus for verification. Decompose $[\alpha]\phi$ into an equivalent formula $[\alpha_1]\phi_1 \wedge [\alpha_2]\phi_2$.
- ▶ Prove subsystems and subproperties $[\alpha_i]\phi_i$ independently and combine results conjuntively.
- Complete relative to handling of differential equations.

Syntax and Semantics

dL formulas built over V, set of real-valued logical variables and signature Σ containing functions, predicate symbols over reals, like $0,1,+,\geq$. Σ also contains *System State Variables*. Unlike rigid symbols, like 1,2, their interpretation can change from state to state.