API Documentation

HoeffdingOptTree

class HoeffdingOptTree(max_option_path=5, grace_period=200, split_confidence=1e-07, secondary_split_confidence=0.1, tie_threshold=0.05, binary_split=False, remove_poor_atts=False, leaf_prediction='nba', nominal_attributes=None)

Parameters

- max option path int (default=5) number of options reachable by a single example
- grace_period (int (default=200)) Number of instances a leaf should observe between split attempts.
- split_confidence (float (default=0.0000001)) Allowed error in split decision, a value closer to 0 takes longer to decide.
- secondary_split_confidence (float (default=0.1)) Allowed error in secondary split decision
- tie_threshold (float (default=0.05)) Threshold below which a split will be forced to break ties.
- binary split (boolean (default=False)) If True, only allow binary splits.
- remove poor atts (boolean (default=False)) If True, disable poor attributes.
- leaf_prediction (string (default='nba')) Prediction mechanism used at leafs.

'mc' - Majority Class

'nb' - Naive Bayes

'nba' - Naive Bayes Adaptive

• nominal_attributes (list, optional) – List of Nominal attributes. If emtpy, then assume that all attributes are numerical.

Methods

- __init__([max_path_option, ...]) HoeffdingOptTree class constructor.
- _attempt_to_split(node: ActiveLearningNode, parent: SplitNode, parent_idx: int) –
 Attempt to split a node.
- **compute_hoeffding_bound**(range_val, confidence, n) Compute the Hoeffding bound, used to decide how many samples are necessary at each node.
- deactivate_all_leaves() Deactivate all leaves.
- get_model_measurements() Return the parameters of our tree.
- get_model_description() Walk the tree and return its structure in a buffer.
- get_votes_for_instance(X) Get class votes for a single instance.
- measure_tree_dept() Calculate the depth of the tree.
- _new_learning_node([initial_class_observations=None]) Create a new learning node.
- new_split_node(split_test, class_observations) Create a new split node.
- partial_fit(X, y, [classes, sample_weight]) Incrementally trains the model.
- predict(X) Predicts the label of the X instance(s).
- **predict proba**(X) Predicts probabilities of all label of the X instance(s).
- reset() Reset the Hoeffding Option Tree to default values.