LÖSUNGSVORSCHLÄGE ZU DEN ABGABEAUFGABEN, BLATT 6

Aufgabe 1.1: Klar ist $||x||_{\infty} \ge 0$, sowie $||x||_1 \ge 0$. Da $|x_j| \le ||x||_{\infty}$ and $|x_j| \le ||x||_1$, so sehen wir, dass $||x||_{\infty} = 0$ genau dann, wenn x = 0, und $||x||_1 = 0$ genau dann, wenn x = 0. Weiter ist

$$\|\lambda x\|_{\infty} = \max_{1 \le j \le n} |\lambda x_j| = \max_{1 \le j \le n} |\lambda| |x_j| = |\lambda| \max_{1 \le j \le n} |x_j| = |\lambda| \|x\|_{\infty},$$

sowie

$$\|\lambda x\|_1 = \sum_{j=1}^n |\lambda x_j| = \sum_{j=1}^n |\lambda| |x_j| = |\lambda| \sum_{j=1}^n |x_j| = |\lambda| \|x\|_1.$$

Da die Dreiecksungleichung bereits für den Betrag $|\cdot|$ in $\mathbb R$ gilt, so folgt außerdem

$$||x + y||_{\infty} = \max_{1 \le j \le n} |x_j + y_j| \le \max_{1 \le j \le n} |x_j| + |y_j|$$

$$\le \max_{1 \le j \le n} |x_j| + \max_{1 \le j \le n} |y_j| = ||x||_{\infty} + ||y||_{\infty},$$

und

$$||x+y||_1 = \sum_{j=1}^n |x_j + y_j| \le \sum_{j=1}^n |x_j| + |y_j|$$
$$= \sum_{j=1}^n |x_j| + \sum_{j=1}^n |y_j| = ||x||_1 + ||y||_1.$$

Aufgabe 1.1: Die offenen Einheitskugeln (d.h. ohne 'Rand') der Normen $\|\cdot\|_1$, $\|\cdot\|_{\infty}$ und (was nicht gefordert war) $\|\cdot\|_2$ für n=2 sehen wie folgt aus:

Aufgabe 2: Ist d'(x,y)=0, so ist d(x,y)=0, und damit x=y. Wenn x=y, dann d'(x,y)=0, da schon d(x,y)=0, weil d eine Metrik ist. Die Symmetry von d' folgt unmittelbar aus der Symmetry von d. Zur Dreiecksungleichung bemerke, dass die Funktion

$$f \colon [0, \infty) \mapsto \mathbb{R}, \ x \mapsto \frac{x}{1+x}$$

monoton steigend ist. Gilt also $d(x,y) \leq d(x,z) + d(z,y)$, so auch

$$d'(x,y) = f(d(x,y)) \le f(d(x,z) + d(z,y)).$$

Dabei ist

$$\begin{split} f(d(x,z)+d(z,y)) &= \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} \\ &= \frac{d(x,z)}{1+d(x,z)+d(z,y)} + \frac{d(z,y)}{1+d(x,z)+d(z,y)} \\ &\leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} \\ &= d'(x,y) + d'(z,y), \end{split}$$

und die Dreiecksungleichung für d' ist gezeigt.

- **Aufgabe 3.1:** Für jedes $x \in M$ und $\varepsilon > 0$ ist $M^c \cap B_{\varepsilon}(x) \neq \emptyset$. Daher ist $M^\circ = \emptyset$. Da $\frac{n-1}{n} = 1 \frac{1}{n}$ gegen 1 konvergiert für $n \to \infty$, so ist $1 \in \overline{M}$, also $M \cup \{1\} \subset \overline{M}$. Wegen $0 \le \frac{n-1}{n} \le 1$ gilt $\overline{M} \subset [0,1]$. Sei nun $a \in [0,1) \setminus M$. Sei $\delta := \frac{1-a}{2} > 0$. Dann gibt es nur endlich viele Elemente von M in $[0, a + \delta]$. Daher existiert ein r > 0, sodass $|a x| \ge r$ für alle $x \in M \cap [0, a + \delta]$. Also $|a x| \ge \min\{r, \delta\} > 0$ für alle $x \in M$. Damit kann keine Folge (x_n) aus M gegen a konvergieren. Folglich $\overline{M} = M \cup \{1\}$ und somit $\partial M = \overline{M} \setminus M^\circ = \overline{M}$.
- **Aufgabe 3.2:** Eigentlich $M = \{x \in \mathbb{Q} \mid 0 \le x < \sqrt{2}\}$, da $\sqrt{2} \notin \mathbb{Q}$. Die Kugel $K_{\varepsilon}(0)$ enthält für jedes $\varepsilon > 0$ Punkte aus M und M^c . Daher $0 \in \partial M$. Sei nun $0 \ne x \in M$. Dann ist $0 < x < \sqrt{2}$ and es existiert ein $\varepsilon > 0$ sodass $x \varepsilon > 0$ und $x + \varepsilon < \sqrt{2}$. Also ist $K_{\varepsilon}(x) \cap \mathbb{Q} \subset M$, d.h $x \in M^{\circ}$. Das zeigt $M^{\circ} = M \setminus \{0\}$. Wir berechnen nun \overline{M} . Wegen $0 \le x \le \sqrt{2}$ für alle $x \in M$, so ist $\overline{M} \subset [0, \sqrt{2}]$. Also

$$\overline{M} \subset \mathbb{Q} \cap [0, \sqrt{2}] = M.$$

Da per Definition $M \subset \overline{M}$, erhalten wir $M = \overline{M}$, d.h M ist abgeschlossen in $(\mathbb{Q}, |\cdot|)$.

- **Aufgabe 4.1:** Ist $p \in M'$, so ist $p \in M_{\alpha}$ für ein α . Da M_{α} offen ist, so existiert ein r > 0, sodass $K_r(p) \subset M_{\alpha}$. Da $M_{\alpha} \subset M'$, so ist $K_r(p) \subset M'$ und damit M' offen.
- **Aufgabe 4.2:** Ist $p \in M''$, so ist $p \in M_{\alpha}$ für alle (endlich vielen!) $\alpha \in A$. Da M_{α} offen ist, so existiert ein $r_{\alpha} > 0$ so dass

$$K_{r_{\alpha}}(p) \subset M_{\alpha}$$
.

Mit

$$r:=\min_{\alpha\in A}r_\alpha$$

erhalten wir für all $\alpha \in A$

$$K_r(p) \subset M_{\alpha},$$

und somit

$$K_r(p) \subset M''$$
.

Aufgabe 4.3: Es gilt

$$(N')^c = \bigcap_{\alpha \in A} N_{\alpha}^c \text{ und } (N'')^c = \bigcup_{\alpha \in A} N_{\alpha}^c.$$

4 LÖSUNGSVORSCHLÄGE ZU DEN ABGABEAUFGABEN, BLATT 6

Nach Aufgabe 4.1 ist also N'' abgeschlossen, da alle N^c_α offen sind. Falls A endlich ist, so ist nach Aufgabe 4.2 die Menge N' abgeschlossen.