2015 Specialist Maths Trial Exam 2 Solutions © Copyright itute.com

Section 1

1	2	3	4	5	6	7	8	9	10	11
D	В	Α	D	C	C	D	Е	C	A	C
12	13	14	15	16	17	18	19	20	21	22
A	В	В	D	D	D	С	A	С	D	A

Q1
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, gradient of asymptote = $\pm \frac{b}{a}$

(1,1) is on
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $\frac{1}{a^2} - \frac{1}{b^2} = 1$,

$$\therefore \frac{b}{a} = \pm \frac{1}{\sqrt{1 - a^2}} \text{ or } \pm \sqrt{1 + b^2}$$

Q2
$$\cos^{-1}(ax) - \frac{\pi}{2} = \pm \frac{\pi}{4}$$
, $\cos^{-1}(ax) = \frac{\pi}{2} \pm \frac{\pi}{4}$

$$\cos^{-1}(ax) = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}, \ \ ax = \frac{1}{\sqrt{2}} \text{ or } -\frac{1}{\sqrt{2}},$$

$$\therefore x = \frac{1}{\sqrt{2}a} \text{ or } -\frac{1}{\sqrt{2}a}, \therefore \text{ the domain of } f \text{ is } \left[-\frac{1}{\sqrt{2}a}, \frac{1}{\sqrt{2}a} \right]$$
 B

Q3 For $b \in R^+$, $\{z : |z - ib\sqrt{3}| = |z - b|\}$ is a perpendicular bisector of the line joining $z = ib\sqrt{3}$ and z = b.

The midpoint is
$$z = \frac{b}{2} + \frac{ib\sqrt{3}}{2}$$
 and $Arg(z) = tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$.

$$\therefore \left\{ z : \operatorname{Arg}(z) = \frac{\pi}{3} \right\} \cap \left\{ z : |z - ib\sqrt{3}| = |z - b| \right\} \text{ is } \left\{ \frac{b}{2} + \frac{ib\sqrt{3}}{2} \right\}$$

Q4
$$z^5 + i = z^5 + i^5 = (z+i)(z^4 - iz^3 + i^2z^2 - i^3z + i^4)$$

= $(z+i)(z^4 - iz^3 - z^2 + iz + 1)$

Q5

Q6
$$\frac{d}{dx} \left[\cot^2 \left(\frac{a+2x}{b\sqrt{x}+1} \right) - \csc^2 \left(\frac{a+2x}{b\sqrt{x}+1} \right) \right] = \frac{d}{dx} [1] = 0$$
 C

Q7
$$\frac{z+1}{z+i} = i$$
, $z+1 = iz-1$, $2 = (i-1)z$, $z = \frac{2}{-1+i} = -1-i$
 $\therefore \operatorname{Arg}(z) = -\frac{3\pi}{4}$

Q8
$$\left(\sin x + 1\right)\left(\tan x + \frac{3}{2}\right) = 0$$
, $\tan x$ is undefined when

$$\sin x = -1$$
, :: $\sin x + 1 \neq 0$ and $\tan x + \frac{3}{2} = 0$, :: $x = \tan^{-1} \left(-\frac{3}{2} \right)$

Q9 Area = (2a)(2b) = 4ab

Q10
$$y = \tan^{-1} x - \frac{\pi}{4}$$
, $\frac{dy}{dx} = \frac{1}{1 + x^2}$

$$y = mx$$
, $m = \frac{y}{x} = \frac{\tan^{-1} x - \frac{\pi}{4}}{x}$. Let $\frac{dy}{dx} = \frac{\tan^{-1} x - \frac{\pi}{4}}{x}$

$$\therefore \frac{1}{1+x^2} = \frac{\tan^{-1} x - \frac{\pi}{4}}{x}, \text{ by CAS}, \ x \approx 0.066$$

Q11

D

C

$$\cos\theta = \pm \frac{1}{\sqrt{3}}$$
, .: $\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ or $\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)$

Q12 A possible vector on the plane defined by \tilde{a} and \tilde{b} is given by $\tilde{p} = m\tilde{a} + n\tilde{b}$ where $m, n \in R$.

$$\therefore \ \widetilde{p} = \left(m - \sqrt{2}n\right)\widetilde{i} + \left(\sqrt{2}m + 2n\right)\widetilde{j} + \left(-m + \sqrt{2}n\right)\widetilde{k}$$
Let $m = \frac{\sqrt{2}}{9}$ and $n = \frac{1}{9}$, $\widetilde{p} = \frac{1}{2}\widetilde{j}$

Q13
$$|\overrightarrow{AB}| = \sqrt{32}$$
, $|\overrightarrow{AC}| = \sqrt{145}$, $|\overrightarrow{AB}| = |\overrightarrow{AB}| ||\overrightarrow{AC}| \cos \theta$
 $\cos \theta = \frac{4}{\sqrt{32}\sqrt{145}} \approx 0.0587$, .: $\sin \theta = \sqrt{1 - \cos^2 \theta} \approx 0.9983$

Shortest distance =
$$\sqrt{145} \sin \theta \approx 12.02$$

C

A

Area of the required region A

$$= \frac{\pi}{4} \times a - \int_{0}^{\frac{\pi}{4}} x dy = \frac{a\pi}{4} - \int_{0}^{\frac{\pi}{4}} a \tan y dy = a \left(\frac{\pi}{4} - \int_{0}^{\frac{\pi}{4}} \tan x dx \right)$$

Q15
$$V = \int_{0}^{4} \pi \left(\sin^{-1} \frac{x}{x^2 + 1} \right)^2 dx \approx 1.8 \text{ by CAS}$$

Q16
$$\int_{0}^{2} f'(x)dx = \int_{0}^{2} \log_{e} \sqrt{x^{2} + 1} dx = f(2) - f(0)$$

:: 0.7166 \approx 2 - f(0), f(0) \approx 1.3

Q17
$$f'(x) = \frac{-1}{\sqrt{1 - x^2 \cos^{-1} x}},$$

 $f'(\frac{1}{2}) = \frac{-1}{\sqrt{1 - \frac{1}{4} \cos^{-1}(\frac{1}{2})}} = -\frac{2\sqrt{3}}{\pi}$

Q18
$$\widetilde{r}(2) - \widetilde{r}(1) = \widetilde{s} = \int_{1}^{2} (2t \, \widetilde{i} - \widetilde{j}) dt = \left[t^{2} \, \widetilde{i} - t \, \widetilde{j} \, \right]_{1}^{2} = 3 \, \widetilde{i} - \widetilde{j}$$

 $|\widetilde{s}| = \sqrt{10}$

Q19
$$\tilde{v} = 4.9(\tilde{i} + (\sqrt{3} - 2t)\tilde{j}), |\tilde{v}| = 4.9\sqrt{1 + (\sqrt{3} - 2t)^2}$$

 $|\tilde{v}| = 4.9$ is the minimum when $(\sqrt{3} - 2t)^2 = 0$.

Q20 The particle moves in a straight line under constant acceleration.

$$s = \frac{1}{2}(u+v)t$$
, $t = \frac{2s}{u+v} = \frac{2(7.5)}{10-5} = 3$

Total distance = shaded area = $\frac{1}{2} (10 \times 2 + 5 \times 1) = 12.5$

Q21 $|F_3| \sin 50^\circ = |F_2| \sin 70^\circ$

D

B Q22
$$F = 0.5 \times 9.8 = 4.9$$
 A

Section 2

Q1a Solve
$$x^2 + 4y^2 = 4$$
 and $4\left(x - \frac{3}{2}\right)^2 - 8y^2 = 1$
simultaneously.

D
$$4\left(x-\frac{3}{2}\right)^2 - 2\left(4-x^2\right) = 1$$
, $x = 0$ or 2, .: $y = \pm 1$ or 0

The intersecting points are (0, -1), (0, 1) and (2, 0)

Q1b

D

 \mathbf{C}

C

In the graph above, $f(x) = \frac{1}{\sqrt{2}} \left(x - \frac{3}{2} \right)$.

Q1c By implicit differentiation, $8\left(x - \frac{3}{2}\right) - 16y\frac{dy}{dx} = 0$

$$\therefore \frac{dy}{dx} = \frac{x - \frac{3}{2}}{2y}$$

At
$$(0, -1)$$
, $\frac{dy}{dx} = \frac{3}{4}$, .: the tangent is $y = \frac{3}{4}x - 1$

At
$$(0,1)$$
, $\frac{dy}{dx} = -\frac{3}{4}$, .: the tangent is $y = -\frac{3}{4}x + 1$

Q1d The tangents cut the x-axis at $x = \frac{4}{3}$

Volume of the cone formed by the tangents $=\frac{1}{3}\pi(1^2)\frac{4}{3}=\frac{4\pi}{9}$

The curve
$$4\left(x-\frac{3}{2}\right)^2-8y^2=1$$
, .: $y^2=\frac{1}{2}\left(x-\frac{3}{2}\right)^2-\frac{1}{8}$

Volume of the solid = $\frac{4\pi}{9} - \int_{0}^{1} \pi y^2 dx = \frac{\pi}{36}$

2

Q2a The volume is at its maximum when $\cos^{-1}\left(h - \frac{\sqrt{3}}{2}\right)$. $\therefore V_{\text{max}} = \frac{5\pi}{6} \text{ when } h - \frac{\sqrt{3}}{2} = 1, \text{ i.e. } h = 1 + \frac{\sqrt{3}}{2}$

Q2b

In the graph above, the left endpoint is (0,0), the point of inflection is $\left(\frac{\sqrt{3}}{2},\frac{\pi}{3}\right)$ and the right endpoint is $\left(1+\frac{\sqrt{3}}{2},\frac{5\pi}{6}\right)$.

Q2c 50 litres = $0.05 \,\text{m}^3$, $\frac{dV}{dt} = 0.05 \,\text{m}^3$ per minute

:
$$V = 0.05t$$
, :: $\frac{5\pi}{6} - \cos^{-1}\left(h - \frac{\sqrt{3}}{2}\right) = 0.05t$

$$h = \cos\left(\frac{5\pi}{6} - \frac{t}{20}\right) + \frac{\sqrt{3}}{2}$$

Q2d $\frac{dV}{dt} = 0.05 \,\text{m}^3$ per minute is a constant rate

.: time required to fill the tank = $\frac{5\pi}{6} \div 0.05 = \frac{50\pi}{3}$ minutes

Q2e
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$
, $0.05 = \frac{dV}{dh} \times \frac{dh}{dt}$

$$\therefore \frac{dh}{dt} = \frac{0.05}{\frac{dV}{dh}} \text{ where } \frac{dV}{dh} = \frac{1}{\sqrt{1 - \left(h - \frac{\sqrt{3}}{2}\right)^2}}$$

When $h = \sqrt{3}$, $\frac{dV}{dh} = 2$, .: $\frac{dh}{dt} = \frac{0.05}{2} = 0.025$ m per minute

Q3a
$$x = 10 - 100\cos\frac{\pi t}{15}$$
 and $y = 160 + 150\sin\frac{\pi t}{15}$
 $\cos\frac{\pi t}{15} = \frac{10 - x}{100}$ and $\sin\frac{\pi t}{15} = \frac{y - 160}{150}$

Q3b Time to complete one round = $\frac{2\pi}{\frac{\pi}{15}}$ = 30 seconds

Q3c
$$\tilde{v}_c = \frac{d\tilde{r}_c}{dt} = \frac{100\pi}{15} \sin\frac{\pi t}{15} \tilde{i} + \frac{150\pi}{15} \cos\frac{\pi t}{15} \tilde{j}$$

$$|\tilde{v}_c|^2 = \left(\frac{100\pi}{15} \sin\frac{\pi t}{15}\right)^2 + \left(\frac{150\pi}{15} \cos\frac{\pi t}{15}\right)^2$$

$$= \left(\frac{100\pi}{15}\right)^2 \left(\sin^2\frac{\pi t}{15} + 1.5^2 \cos^2\frac{\pi t}{15}\right)$$

$$= \left(\frac{100\pi}{15}\right)^2 \left(1 + 1.25 \cos^2\frac{\pi t}{15}\right) : |\tilde{v}_c| = \frac{100\pi}{15} \sqrt{1 + 1.25 \cos^2\frac{\pi t}{15}}$$

 $\left|\tilde{v}_{c}\right|$ is maximum when $\cos\frac{\pi t}{15} = 1$

.: the maximum speed is 10π m per s

Q3d i The distance to the spectator is closest when the motorcyclist is at (10,10).

It occurs when $10-100\cos\frac{\pi t}{15} = 10$ and $160+150\sin\frac{\pi t}{15} = 10$.

.: It first occurs when $\frac{\pi t}{15} = \frac{3\pi}{2}$, i.e. $t = \frac{45}{2}$

Q3d ii The closest distance = $\sqrt{10^2 + \left(\frac{40}{3}\right)^2} = \frac{50}{3}$ metres

Q3e
$$\tilde{v}_c = \frac{d\tilde{r}_c}{dt} = \frac{100\pi}{15} \sin \frac{\pi t}{15} \tilde{i} + \frac{150\pi}{15} \cos \frac{\pi t}{15} \tilde{j}$$

$$\tilde{a} = \frac{d\tilde{v}_c}{dt} = \frac{100\pi^2}{15^2} \cos \frac{\pi t}{15} \tilde{i} - \frac{150\pi^2}{15^2} \sin \frac{\pi t}{15} \tilde{j}$$

$$= -\left(\frac{\pi}{15}\right)^2 \left(-100\cos \frac{\pi t}{15} \tilde{i} + 150\sin \frac{\pi t}{15} \tilde{j}\right) = k(\tilde{r}_c - \tilde{r}_0)$$
where $k = -\left(\frac{\pi}{15}\right)^2$

Q4a
$$z - \frac{1}{z} = x + yi - \frac{1}{x + yi} = x + yi - \frac{x - yi}{x^2 + y^2}$$

$$= \left(x - \frac{x}{x^2 + y^2}\right) + \left(y + \frac{y}{x^2 + y^2}\right)i$$

$$\therefore \operatorname{Re}\left(z - \frac{1}{z}\right) = x - \frac{x}{x^2 + y^2} \text{ and } \operatorname{Im}\left(z - \frac{1}{z}\right) = y + \frac{y}{x^2 + y^2}$$
Q4b i $2yi = \left(x - \frac{x}{x^2 + y^2}\right) + \left(y + \frac{y}{x^2 + y^2}\right)i$

$$\therefore -x\left(1 - \frac{1}{x^2 + y^2}\right) + y\left(1 - \frac{1}{x^2 + y^2}\right)i = 0$$

$$\therefore -\left(1 - \frac{1}{x^2 + y^2}\right)(x - yi) = 0$$
Since $z - \frac{1}{z} \Rightarrow z \neq 0 \Rightarrow \overline{z} \neq 0$, i.e. $x - yi \neq 0$

$$\therefore 1 - \frac{1}{x^2 + y^2} = 0$$
, i.e. $x^2 + y^2 = 1$

Q4b ii
$$\left| i 2 \operatorname{Im}(z) - \left(z - \frac{1}{z} \right) \right| > 0$$
,
 $\left| -x \left(1 - \frac{1}{x^2 + y^2} \right) + y \left(1 - \frac{1}{x^2 + y^2} \right) i \right| > 0$
 $\sqrt{x^2 \left(1 - \frac{1}{x^2 + y^2} \right)^2 + y^2 \left(1 - \frac{1}{x^2 + y^2} \right)^2} > 0$
 $\sqrt{(x^2 + y^2) \left(1 - \frac{1}{x^2 + y^2} \right)^2} > 0$ which is true for $x, y \in R$ and

 $x^2 + y^2 \ne 1$ and $x = y \ne 0$, .: the required region is the shaded region not including the dotted circle and the origin.

Q4c
$$2x - \left(\left(x + \frac{x}{x^2 + y^2} \right) + \left(y - \frac{y}{x^2 + y^2} \right) i \right) = 0$$

 $x \left(1 - \frac{1}{x^2 + y^2} \right) - y \left(1 - \frac{1}{x^2 + y^2} \right) i = 0, \left(1 - \frac{1}{x^2 + y^2} \right) (x - yi) = 0$
 $\therefore x^2 + y^2 = 1$

Q4d An empty set

Q4e $2\operatorname{Re}(z-1-i) = (z-1-i) + \frac{1}{(z-1-i)}$, the centre of $x^2 + y^2 = 1$ is translated to (1,1), the Cartesian equation is $(x-1)^2 + (y-1)^2 = 1$.

Q5a

Q5b
$$ma = R$$
, $1 \times \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -(9.8 + 0.01v^2)$

Q5c i
$$\frac{1}{2} \times \frac{d(v^2)}{dx} = -(9.8 + 0.01v^2), \ \frac{dx}{d(v^2)} = -\frac{1}{2} \times \frac{1}{9.8 + 0.01v^2}$$

 $x = -\frac{1}{2} \int \frac{1}{9.8 + 0.01v^2} d(v^2), \ x = -50 \log_e(9.8 + 0.01v^2) + c$
Let $v = 20$ at $x = 0$ when $t = 0$.

:
$$c = 50\log_e(13.8)$$
, : $x = 50\log_e(\frac{13.8}{9.8 + 0.01v^2})$

Q5c ii Maximum height is reached when v = 0, $x = 50 \log_e \left(\frac{13.8}{9.8}\right) \approx 17.11$, .: max height ≈ 17.11 m

Q5d
$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = 9.8 - 0.01 v^2$$

Q5e i
$$\frac{dx}{d(v^2)} = \frac{1}{2} \times \frac{1}{9.8 - 0.01v^2}, \ x = \frac{1}{2} \int \frac{1}{9.8 - 0.01v^2} d(v^2)$$

$$\therefore x = -50\log_e(9.8 - 0.01v^2) + c$$

Let v = 0 at x = 0 when t = 0...: $c = 50 \log_e 9.8$

$$\therefore x = 50 \log_e \frac{9.8}{9.8 - 0.01v^2}, \ \therefore e^{\frac{x}{50}} = \frac{9.8}{9.8 - 0.01v^2}$$
$$v^2 = \frac{9.8 \left(e^{\frac{x}{50}} - 1\right)}{0.01e^{\frac{x}{50}}} = 980 \left(1 - e^{-\frac{x}{50}}\right)$$

Since downward motion is taken as positive, $v = \sqrt{980 \left(1 - e^{-\frac{x}{50}}\right)}$

Q5e ii When
$$x = 50 \log_e \left(\frac{13.8}{9.8} \right), \ v \approx 16.85$$

Q5f
$$v = \sqrt{980 \left(1 - e^{-\frac{x}{50}}\right)}, \frac{dx}{dt} = \sqrt{980 \left(1 - e^{-\frac{x}{50}}\right)}$$

$$t = \int_{-\infty}^{17.11} \frac{1}{dt} dx \approx 1.92 \text{ by CAS}$$

$$t = \int_{0}^{1} \frac{1}{\sqrt{980(1 - e^{-\frac{x}{50}})}} dx \approx 1.92 \text{ by CAS}$$

Alternatively,
$$a = \frac{dv}{dt} = 9.8 - 0.01v^2$$
,

$$t = \int_{0}^{16.85} \frac{1}{9.8 - 0.01v^2} dv \approx 1.92 \text{ by CAS}$$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors