

Vari modi di specificare l'indirizzo degli operandi

- Immediato
- Diretto
- Indiretto
- Registro
- Registro indiretto
- Spiazzamento
- Pila

Indirizzamento immediato

- L'operando è parte dell'istruzione (campo indirizzo)
- Vantaggio: nessun accesso in M per prendere l'operando
- Svantaggio: valore limitato dalla dimensione del campo indirizzo

Indirizzamento immediato

Istruzione

Cod.Op. Operando

Indirizzamento diretto

- Campo indirizzo = indirizzo dell'operando
- Esempio: ADD A
 - □ Somma il contenuto della cella A all'accumulatore
 - □ Bisogna andare in M all'indirizzo A per trovare l'operando
- Un singolo accesso in M per prendere l'operando
- Spazio di indirizzamento limitato

Indirizzamento indiretto

- Il campo indirizzo contiene l'indirizzo di una cella di M, che contiene l'indirizzo dell'operando
- Vantaggio: parole di lunghezza N permettono di indirizzare 2^N entità diverse
 - □ In realtà 2^K, dove K è la lunghezza del campo indirizzo
- Svantaggio: due accessi in M per ottenere l'operando
- Esempio: ADD A
 - □ Somma il contenuto della cella puntata dal contenuto di A all'accumulatore

Indirizzamento registro

- L'operando è in un registro indicato nel campo indirizzo
- Numero limitato di registri
- Pochi bit necessari per il campo indirizzo
 - □ Istruzioni più corte
 - □ Fase di fetch più veloce (nessun accesso in M per prendere l'operando)

Indirizzamento registro indiretto

- Stesso principio dell'indirizzamento indiretto
- L'operando è in una cella di M puntata dal contenuto del registro R
- Grande spazio di indirizzamento (2ⁿ)
- Un accesso in meno in M rispetto all'indirizzamento indiretto

Indirizzamento con spiazzamento

- Combinazione di indirizzamento diretto e indirizzamento registro indiretto
- Il campo indirizzo ha due sottocampi
 - $\Box A$ = valore di base (diretto)
 - □ R = registro che contiene l'indirizzo di un valore da sommare ad A per ottenere l'indirizzo
 - □ o viceversa (R base e A spiazzamento)

Indirizzamento relativo

- Una versione dell'indirizzamento con spiazzamento
- R = registro PC (program counter)
- Indirizzo dell'operando = A + (PC)
 - □ A celle dalla cella di M puntata da PC

Indirizzamento registro-base

- A contiene lo spiazzamento
- R contiene il puntatore all'indirizzo base
 - □R può essere esplicito o implicito

Indicizzazione

- A = base
- R = spiazzamento
- Esempio: elenco di dati memorizzati in M a partire da un indirizzo A
 - □ Per accedere a tutti, la sequenza di indirizzi è A, A+1, A+2, ...
 - □ A viene messo nel campo indirizzo e il registro (indice) contiene 0 all'inizio e viene incrementato di 1 dopo ogni accesso

Indirizzamento a pila

- Pila: sequenza lineare di locazioni riservate di M
- Puntatore (nel registro SP, stack pointer) con l'indirizzo della cima della pila
- L'operando è sulla cima della pila
- Quindi è un esempio di indirizzamento a registro indiretto

Modi di indirizzamento del Pentium

- 12 modi di indirizzamento
 - □ Immediato
 - □ Registro
 - □ Spiazzamento
 - □ Base
 - □ Base con spiazzamento
 - ☐ Indice scalato con spiazzamento
 - ☐ Indice scalato con base e spiazzamento
 - □ Relativo

Formato delle istruzioni

- Struttura dei campi dell'istruzione
- Include il codice operativo
- Include (in modo implicito o esplicito) uno o più operandi
- Di solito più di un formato per un linguaggio macchina

Lunghezza delle istruzioni

- Condiziona ed è condizionata da:
 - □ Dimensione della M
 - □ Organizzazione della M
 - □ Struttura del bus
 - □ Complessità della CPU
 - □ Velocità della CPU
- Compromesso tra repertorio di istruzioni potente e necessità di risparmiare spazio

Allocazione dei bit

- Vari modi di indirizzamento
- Vari numeri di operandi (di solito 1 o 2)
- Registri verso M (di solito almeno 32 registri)
- Banchi di registri (esempio: Pentium ha due banchi)
 - □ Due banchi da 8 registri ciascuno → solo 3 bit per indicare un registro (il codice operativo indica il banco)
- Intervallo di indirizzi
- Granularità degli indirizzi (es.: byte o parola)
 - L'indirizzamento di byte richiede più bit ma è utile (es. per manipolare caratteri)

Formato a lunghezza variabile

- Fino ad ora abbiamo visto esempi di formati a lunghezza fissa
- Alcune architetture utilizzano formati a lunghezza variabile o ibrida

Formato delle istruzioni del PowerPC (2)

Ld/St Indirect	Dest Register	Base Register	Displacement				
Ld/St Indirect	Dest Register	Base Register	Index Register	Size, Sign, Update		/ XO	
Ld/St Indhrect	Dest Register	Base Register	Displacement X		XO	1	

(c) Load/store instructions

								_		
A rith metic	Dest Register	Src Register	Src Register	o	Add, Sub, etc.			R		
Add, Sub, etc.	Dest Register	Src Register	Signed Immediate Value							
Logical	Src Register	Dest Register	Src Register	A	DD, OR,	XOR, etc.		R		
AND, OR, etc.	Src Register	Dest Register	Unsigned Immediate Value							
Rotate	Src Register	Dest Register	Shift Amt	М	ask Begin	Mask En	d	R		
Rotate or Shift	Src Register	Dest Register	Src Register	5	Shift Type or Mask R					
Rotate	Src Register	Dest Register	Shift Amt	Г	Mask	xo	s	R		
Rotate	Src Register	Dest Register	Src Register	Г	Mask	XO		R		
Shift	Src Register	Dest Register	Shift Type or Mask S					R		

(d) Integer arithmetic, logical, and shift/rotate instructions

Fit sgl/dbl Dest Register | Src Register | Src Register | Src Register | Fadd, etc. | R

(e) Floating-point arithmetic instructions

A = Absolute or PC relative L = Link or subroutine

O = Record overflow in XER R = Record condition in CR1

 $egin{aligned} \mathbf{XO} &= \mathbf{Opcode} \ \mathbf{extension} \\ \mathbf{S} &= \mathbf{Part} \ \mathbf{of} \ \mathbf{shift} \ \mathbf{amount} \ \mathbf{field} \end{aligned}$

* = 64-bit implementation only