Ch-8 Introduction to Trigonometry

1. The certain ratios involving the sides of a right angled triangle are called Trigonometric ratios. Here, 'b' is the base, 'h' is the hypotenuse, and 'p' is the perpendicular.

$$\sin A = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{p}{h},$$

$$\cos A = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{b}{h}, \text{ and}$$

$$\tan A = \frac{\text{Perpendicular}}{\text{Base}} = \frac{p}{b}.$$

2. Reciprocals of the ratios are –

cosec A =
$$\frac{1}{\sin A} = \frac{h}{p}$$
,
sec A = $\frac{1}{\cos A} = \frac{h}{b}$, and
cot A = $\frac{1}{\tan A} = \frac{b}{p}$.

- 3. Sin θ is a single symbol and sin cannot be detached from ' θ '. And sin $\theta \neq \sin x \theta$. This remark is true for other ratios as well.
- 4. Trigonometric Ratios of some specific angles -

Specific Angle	00	30°	45°	60°	90°
t-ratio					
Sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined
Cosec A	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
Sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined
Cot A	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

5. The value of sin A increases from 0 to 1, as A increases from 0° to 90° . The value of cos A decreases from 1 to 0, as A increases from 0° to 90° . The value of tan A increases from 0 to infinity, as A increases 0° to 90° . $[\sqrt{2} = 1.414 \text{ and } \sqrt{3} = 1.732]$.

6. Trigonometric identities

a.
$$\cos^2 A + \sin^2 A = 1$$
,

b.
$$1 + \tan^2 A = \sec^2 A$$
, and

c.
$$Cot^2 A + 1 = cosec^2 A$$
.