- 13 The following deals with G_{δ} and F_{σ} sets.
 - a. Show that a closed set is a G_{δ} and an open set an F_{σ} .

[Hint: If F is closed, consider $\mathcal{O}_n = \{x \mid d(x, F) < 1/n\}.$]

b. Give an example of an F_{σ} set which is not a G_{δ} .

[Hint: This is more difficult; let F be a denumerable set that is dense.]

- c. Give an example of a Borel set which is not a G_{δ} nor an F_{σ} .
- **Solution** a. Let F be a closed set. Then $\mathcal{O}_n = \{x \mid d(x, F) < 1/n\}$, which is open.

Indeed, let $y \in \mathcal{O}_n \implies d(y, F) < 1/n$, and let r = d(y, F)/2. Then $B_r(y) \subseteq \mathcal{O}_n$. Otherwise, there exists $z \in B_r(y) \cap F$, but since $d(x, F) = \inf\{d(x, z) \mid z \in F\}$, this means

$$d(y,F) \le d(y,z) < r = \frac{d(y,F)}{2},$$

which is a contradiction. Hence, each \mathcal{O}_n is open.

We claim that $F = \bigcap_{n \ge 1} \mathcal{O}_n$.

If d(x, F) = 0, then $x \in F$, since F is closed. If that were not the case, then we can construct a sequence $\{x_k\}_{k \geq 1} \subseteq F$ such that $d(x, x_k) < 1/k$ for all $k \geq 1$. This means that $x_k \xrightarrow{k \to \infty} x \notin F$, which is a contradiction, since closed subsets of \mathbb{R}^d are complete. Hence,

$$x \in F \iff d(x,F) = 0 \iff d(x,F) < \frac{1}{n} \ \forall n \ge 1 \iff x \in \bigcap_{n \ge 1} \mathcal{O}_n.$$

Hence, F is G_{δ} .

Let U be an open set. For all $x \in U$, there exists $r_x > 0$ such that $B_{r_x}(x) \subseteq U$. Then the closed ball $K_{r_x/2}(x) \subseteq U$. Hence, since $x \in B_{r_x}(x)$,

$$U = \bigcup_{x \in U} K_{r_x/2}(x),$$

so U is F_{σ} .

b. Consider \mathbb{Q} , which is F_{σ} . Indeed, since \mathbb{Q} is countable, we can enumerate it via $\mathbb{Q} = \{r_1, r_2, \ldots\}$. Then since singleton sets $\{x\}$ are closed in \mathbb{R} ,

$$\mathbb{Q} = \bigcup_{n \ge 1} \{r_n\},\,$$

so \mathbb{Q} is F_{σ} .

 \mathbb{Q} is not G_{δ} . Suppose otherwise, and that there exists open sets $\{U_n\}_{n\geq 1}$ such that

$$\mathbb{Q} = \bigcap_{n \ge 1} U_n.$$

Then each U_n must be dense in \mathbb{R} , since \mathbb{Q} is dense in \mathbb{R} . If not, then there exists U_i such that $\overline{U_i} \subseteq \mathbb{R}$, but this implies that $\overline{\mathbb{Q}} \subseteq \overline{U_i} \subseteq \mathbb{R}$, which is a contradiction.

Note that we can write $\mathbb{R} \setminus \mathbb{Q} = \bigcap_{n \geq 1} {}^{c}\{r_n\}$. Indeed, x is irrational if and only if it is not any rational number. Since the irrationals are dense in \mathbb{R} and each ${}^{c}\{r_n\}$ is open, it follows that ${}^{c}\{r_n\}$ is dense.

By the Baire Category Theorem, since \mathbb{R} is a complete metric space, a countable intersection of open, dense sets in \mathbb{R} is also dense. Hence,

$$\mathbb{R} = \overline{\bigcap_{n \geq 1} U_n \cap \bigcap_{n \geq 1} {}^{c}\{r_n\}} = \overline{\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q})} = \emptyset,$$

which is a contradiction. So, \mathbb{Q} is an F_{σ} set which is not G_{δ} .

c. Note that since \mathbb{Q} is not G_{δ} , then $\mathbb{R} \setminus \mathbb{Q}$ is not F_{σ} . Otherwise, there exist closed sets $\{F_n\}_{n\geq 1}$ such that

$$\mathbb{R} \setminus \mathbb{Q} = \bigcup_{n \ge 1} F_n \implies \mathbb{Q} = {}^{\mathrm{c}} \left(\bigcup_{n \ge 1} F_n \right) = \bigcap_{n \ge 1} {}^{\mathrm{c}} F_n,$$

which implies that \mathbb{Q} is G_{δ} , since ${}^{c}F_{n}$ is open. Using complements again, it follows that $\mathbb{R} \setminus \mathbb{Q}$ is G_{δ} . Then consider the following sets:

$$E_1 = (\mathbb{R} \setminus \mathbb{Q}) \cap (-\infty, 0]$$

$$E_2 = \mathbb{Q} \cap [0, \infty).$$

 E_1 is G_δ since $\mathbb{R} \setminus \mathbb{Q}$ and $(-\infty, 0)$ are both G_δ . Moreover, it's not F_σ since $\mathbb{R} \setminus \mathbb{Q}$ is not F_σ .

Similarly, E_2 is F_{σ} and not G_{δ} . Indeed, E_2 is dense in $[0, \infty)$, which is a closed subset of \mathbb{R} , so it is complete. Using the same argument as in part (b), it follows that E_2 is F_{σ} and not G_{δ} .

Note that using the same arguments, we can switch between $(-\infty, 0]$ and $[0, \infty)$ in the definitions of E_1 and E_2 to get similar sets, i.e., F_{σ} but not G_{δ} and vice versa.

Hence $E := E_1 \cup E_2$ is Borel. Indeed, every open set is a Borel set, by definition, and since the Borel sets are a σ -algebra, every closed set is Borel. Hence, by the definition of a σ -algebra, F_{σ} and G_{δ} sets are Borel, so E_1 and E_2 are Borel. Since σ -algebras are closed under unions, $E_1 \cup E_2$ is Borel.

Moreover, E is neither F_{σ} nor G_{δ} , since E_1 is not F_{σ} and E_2 is not G_{δ} .

If E were F_{σ} , then there exist closed sets $\{F_n\}_{n\geq 1}$ such that $E=\bigcup_{n\geq 1}F_n$. But

$$\mathbb{R} \setminus \mathbb{Q} = \underbrace{E_1}_{F_{\sigma}} \cup \underbrace{(\mathbb{R} \setminus \mathbb{Q}) \cap [0, \infty)}_{F_{\sigma}} \implies \mathbb{R} \setminus \mathbb{Q} \text{ is } F_{\sigma},$$

which is a contradiction.

Similarly, we can take complements to see that E is not G_{δ} .

Thus, E is a Borel set but it's neither G_{δ} nor F_{σ} .

16 Suppose $\{E_k\}_{k\geq 1}$ is a countable family of measurable subsets of \mathbb{R}^d and that

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

$$E = \{x \in \mathbb{R}^d \mid x \in E_k, \text{ for infinitely many } k\}$$
$$= \lim_{k \to \infty} \sup_{k \to \infty} E_k.$$

- a. Show that E is measurable.
- b. Prove that m(E) = 0.

[Hint: Write $E = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k$.]

Solution We'll show that $m_*(E) = 0$. Then this shows that E is measurable and m(E) = 0.

Note that $E = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k \implies E \subseteq \bigcup_{k \ge n} E_k$ for all $n \ge 1$. Then by countable subadditivity,

$$m_*(E) \le \sum_{k=n}^{\infty} m_*(E_k) = \sum_{k=1}^{\infty} m_*(E_k) - \sum_{k=1}^{n-1} m_*(E_k) \ \forall n \ge 1.$$

Since

$$\sum_{k=1}^{\infty} m_*(E_k) = \sum_{k=1}^{\infty} m(E_k) < \infty,$$

we can take $n \to \infty$ in the inequality to get

$$m_*(E) \le \sum_{k=1}^{\infty} m_*(E_k) - \sum_{k=1}^{\infty} m_*(E_k) = 0.$$

- 18 Prove the following assertion: Every measurable function is the limit a.e. of a sequence of continuous functions.
- Solution Let f be a measurable function. Then there exists a sequence of step functions which converge to f almost everywhere.

It then suffices to show that step functions can be approximated by a sequence of continuous function which converge to it almost everywhere.

Let $\varphi = \sum_{k=1}^{N} = a_k \chi_{R_k}$ be a step function in canonical form, i.e., each rectangle R_k is disjoint or almost disjoint from the others. Then consider the endpoints of each rectangle, $\{a_k, b_k\}$, with possibly $a_k = b_k$. These endpoints "separate" the steps. More precisely, for an endpoint x, there exists $\delta_x > 0$ such that φ is constant on $(x - \delta_x, x)$ and $(x, x + \delta_x)$, but it attains different constants on each interval. Then we can define $l_x = \varphi(y)$, $y \in (x - \delta_x, x)$ and $r_x = \varphi(y)$, $y \in (x, x + \delta_x)$.

For each endpoint y, we "connect" the steps with a line as follows: Let $d_n = \min\{1/n, \min_y\{\delta_y\}\}$. Then

$$\psi_n(x) = \begin{cases} \frac{1}{2} \left(y - \frac{d_n}{2} + x \right) l_y + \frac{1}{2} \left(y - \frac{d_n}{2} - x \right) r_y & \text{if } y \text{ is an endpoint and } x \in \left[y - \frac{d_n}{2}, y + \frac{d_n}{2} \right] \\ \varphi(x) & \text{otherwise} \end{cases}.$$

This ψ_m is continuous since we "fixed" all the discontinuous of our step function φ_n .

Moreover, $\psi_n \xrightarrow{n \to \infty} \psi$ almost everywhere. The only areas where we have issues of convergence is at each endpoint y of the rectangles, since the connecting line gets more vertical as n gets large, so ψ_n still converges to φ at points arbitrarily close, but not equal to y. However, we have a finite number of these endpoints, since we have finitely many rectangles.

Hence, $\psi_n(x)$ converges to $\varphi(x)$ at all but finitely many x, so it converges almost everywhere.

22 Let $\chi_{[0,1]}$ be the characteristic function of [0,1]. Show that there is no everywhere continuous function f on \mathbb{R} such that

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere.

Solution Suppose $f = \chi_{br(0,1)}$ almost everywhere, but f is continuous. By definition,

$$m(\{f \neq \chi_{[0,1]}\}) := m(M) = 0.$$

Since f is continuous, $D := f^{-1}(\mathbb{R} \setminus \{0,1\})$ is open. Moreover, D is non-empty. Otherwise, we have three cases to consider:

 $f \equiv 0$:

Then f differs from $\chi_{[0,1]}$ on the set [0,1] which has Lebesgue measure 1, so this is a contradiction.

 $f \equiv 1$:

Then f differs from $\chi_{[0,1]}$ on $\mathbb{R} \setminus [0,1]$ which has infinite Lebesgue measure, another contradiction.

 $f(x) \in \{0,1\} \ \forall x \in \mathbb{R}$:

Since f is continuous and \mathbb{R} is connected, $f(\mathbb{R})$ must be connected, so it must be an interval. However, $f(\mathbb{R}) = \{0, 1\}$, which is not an interval. Hence, we have a contradiction.

Thus, D is open, so it has positive Lebesgue measure. It is measurable since it is open, and it has positive measure since there exists a ball of radius r > 0 contained in D, so by the subset property of Lebesgue measure, 0 < 2r < m(D).

But $D \subseteq M$, since $f(x) \notin \{0,1\} \ni \chi_{[0,1]}(x)$ for all $x \in D$, so by the subset property of Lebesgue measure, $0 < m(D) \le m(M) = 0$, which is a contradiction.

Hence, no such f exists.

29 Suppose E is a measurable subset of \mathbb{R} with m(E) > 0. Prove that the difference set of E, which is defined by

$$\{z \in \mathbb{R} \mid z = x - y \text{ for some } x, y \in E\},\$$

contains an open interval centered at the origin.

[Hint: Indeed, by Exercise 28, there exists an open interval I so that $m(E \cap I) \geq (9/10)m(I)$. If we denote $E \cap I$ by E_0 , and suppose that the difference set of E_0 does not contain an open interval around the origin, then for arbitrary small a, the sets E_0 , and E_0+a are disjoint. From the fact that $(E_0 \cup (E_0+a)) \subseteq (I \cup (I+a))$ we get a contradiction, since the left-hand side has measure $2m(E_0)$, while the right-hand side has measure only slightly larger than m(I).]

Solution Note that 0 is in the difference set, since we could take x = y.

By Exercise 28, since $m(E) = m_*(E) > 0$, then for all $0 < \alpha < 1$, there exists an open interval I such that $m_*(E \cap I) \ge \alpha m_*(I)$.

In particular, there exists an open interval I so that $m(E \cap I) \geq (9/10)m(I)$. Define $E_0 := E \cap I$.

Suppose the difference set of E_0 did not contain an open interval about the origin. Then for an arbitrary small a, E_0 and $E_0 + a$ are disjoint. Indeed, if for some M > 0, $E_0 \cap (E_0 + M) \neq \emptyset$ for all a < M, then $\{0, a\} \subseteq E_0$ for all a < M. This implies that $(0, M) \subseteq E_0$, which is a contradiction.

Then note that $E_0 \cup (E_0 + a) \subseteq I \cup (I + a)$, for an arbitrarily small a. E_0 is measurable since E and I are measurable. $E_0 + a$ and I + a have the same measure as E_0 and I, respectively, since Lebesgue measure is translation invariant. Hence, by the subset and disjoint properties of Lebesgue measure,

$$m(E_0 \cup (E_0 + a)) = 2m(E_0) \le m(I) + a \implies m(E_0) \le \frac{1}{2}m(I) + a.$$

Since a was arbitrary, we get that $m(E_0) \leq (1/2)m(I)$. But $m(E_0) \geq (9/10)m(I)$, which is a contradiction. Hence, the difference set of E_0 must contain an open interval at the origin. Since $E_0 \subseteq E$, E must contain an open interval as well.

5 Suppose E is measurable with $m(E) < \infty$, and

$$E = E_1 \cup E_2, \qquad E_1 \cap E_2 = \emptyset.$$

If $m(E) = m_*(E_1) + m_*(E_2)$, then E_1 and E_2 are measurable.

In particular, if $E \subseteq Q$, where Q is a finite cube, then E is measurable if and only if $m(Q) = m_*(E) + m_*(Q - E)$.

Solution Consider the inner measure of E, which is

$$M_*(E) = \sup m(F)$$
, where $F \subseteq E$ closed.

where F is a closed subset of E.

Our first claim is that E is measurable if and only if $M_*(E) = m_*(E)$.

 $"\Longrightarrow"$

This is clear since by Theorem 3.4(ii), for all $\varepsilon > 0$, there exists a closed set $F \subseteq E$ with $m(E - F) \le \varepsilon$. Then

$$M_*(E) > m(F) = m(E) - m(E - F) > m(E) - \varepsilon$$
.

Since ε was arbitrary, $m(E) = m_*(E) \leq M_*(E)$.

Note that $M_*(E) \leq m_*(E)$, since any set that covers E covers a closed subset of E, so $M_*(E) = m_*(E)$ if E is measurable.

" ⇐ "

Let $M_*(E) = m_*(E)$. Let U be an open set containing E.

Then for all $n \geq 1$, there exists a closed subset of F_n and a collection of open cubes Q_n covering E such that

$$m_*(E) - \frac{1}{n} = M_*(E) - \varepsilon \le m(F_n) \le \sum |Q_n| \le m_*(E) + \frac{1}{n}.$$

Consider $F := \bigcup_n F_n$. $m(F) = m_*(E)$ by the above inequality, and F is F_{σ} . Hence, E differs from an F_{σ} set by a set of measure 0, so E is measurable.

Our next claim is that if $A \subseteq E$, then $m(E) = m_*(A) + M_*(E - A)$.

Since E is measurable, $m_*(E) = M_*(E)$. Hence, it suffices to show two inequalities:

$$M_*(E) - m_*(A) \le M_*(E - A)$$

 $m_*(E) - M_*(E - A) \ge m_*(A).$

Let $\varepsilon > 0$, F be a closed subset of E with $m(F) \ge m(E) - \varepsilon$, and let $\{Q_n\}$ be a covering of A by open cubes with $\sum |Q_n| \le m_*(A) + \varepsilon$. Then

$$F - \left(\bigcup Q_n\right) := F - Q = F \cap {}^{c}Q$$

is closed, since Q is open. Moreover, this is a closed subset of $M_*(E-A)$. Hence, $F-Q\subseteq E-A$ implies

$$M_*(E-A) \ge M_*(F-Q) = m(F-Q) = m(F) - m(Q) \ge m(E) - m_*(A) - 2\varepsilon = M_*(E) - m_*(A) - 2\varepsilon$$

Since ε was arbitrary, we have $M_*(E) - m_*(A) \leq M_*(E - A)$ as desired. The second inequality follows from a similar argument.

Thus, by the second claim and by hypothesis,

$$m(E) = m_*(E_2) + M_*(E - E_2) = m_*(E_2) + M_*(E_1) = m_*(E_2) + m_*(E_1) \implies m_*(E_1) = M_*(E_1).$$

Hence E_1 is measurable by the first claim. Moreover, $E_2 = E - E_1 = E \cap {}^{c}E_1$ is measurable, since complements of a measurable set are measurable and since measurable sets are closed under intersections.