Approximation

- · We will use our computers to approximate "stuff"
 e.g. integrals, derivatives, solutions to differential equation
- · We say approximation because there is (almost) always some deviation from exactness

In principle:

Pac-Man Red ahost

7×1= 11

Ax is a measure of the granularity of the approximation

Ax has dimensions (typically distance)

 $N = \frac{L}{\Delta x}$ is also a measure of granularity

N has no dimensions

Approximazion	Error	Γ×
1 2 3 4	error ₁ error ₃ error ₄	$\Delta x_1 = \frac{L}{N_1}$ $\Delta x_2 = \frac{L}{N_2}$ $\Delta x_3 = \frac{L}{N_3}$ $\Delta x_5 = \frac{L}{N_3}$

error =
$$C \Delta_X^N = C \left(\frac{L}{N}\right)^N = C' N^{-N}$$

we are interested in the coefficient in is called the vate of convergence or convergence rate. How to determine in from computer simulations.

• Vary Δ_X (or N) and compute the error each time.

• C_{Q} . Δ_{X1} error:

• the relation is error = $C \Delta_X^N$ or $C_{Q} N^{-N}$.

• How to find exponent?

• How to find exponent?

• Loy (error) = $N \log_1(C\Delta_X)$ = easier.

In practice:

loy (error) = $-N \log_1(C\Delta_X)$ = easier.

• C_{Q} and C_{Q} is rate of converge trace of convergence.

Important: limit is asymptotic: need to take $\Delta x \rightarrow 0$

Definition: error = measure of the "distance" between an exact solution "target" and an appoximation

error for scalars: error = | Uapportination - Verace |
Pabsolute value of difference

error vector:
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_5 \end{bmatrix} = \begin{bmatrix} u_1 - u_1, eracc \\ u_2 - u_2, eracc \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

Vector Norms

For a vector y, we define its p-norm:

p. norm
$$|\vec{y}|_p = \left(\sum_{i}^{n} |y_i|^p\right)^{Np}$$
 $p = 1.2,3,...$ So use this equation for 3D vectors $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ for convergence studies
$$|y|_2 = \sqrt{y_1^2 + y_2^2 + y_3^2}$$

$$p = \infty \text{, infinity norm } |\vec{y}|_{\infty} = \max_{i} |y_i|$$

<u>Vector</u> norm properties:

- 1. $|\vec{y}| > 0$ when $\vec{y} \neq 0$ and $|\vec{y}| = 0$ if and only if $\vec{y} = 0$
- 2. |x+y| < |x|+|y|
- 3. $|C\vec{y}| = |C||\vec{y}|$ for any scalar C scalar

Vector Norms for CFD:error norms

Consider two vectors of N elements on a grid x_i , $i=1,\ldots,N$ with equal spacing Δx

u; is the numerical approximation

Vi is the exact solution

Important: yectori u_i and v_i are at the same location remember that $u_i = u(x_i)$ and $v_i = v(x_i)$

P-norm
$$P = \left[\Delta \times \sum_{i=1}^{N} |u_i - v_i|^p \right]^{\frac{1}{p}}$$

$$P = 1,2,3,... \text{ integer } > 0$$

special case: infinity norm

$$L_{\infty} = \max_{i} |u_{i} - V_{i}|$$

We need to include 1x because we will be comparing norms of vectors of different lengths.

Similarly for two-dimensional "vectors"