Исследование процессов убывания площади групп солнечных пятен (исследовательский проект)

Выполнил: Садртдинов Ильдус Научный руководитель: А.Б. Шаповал

Идеи исследования

- Данные сильно зашумлены (поведение групп пятен, несовершенство наблюдений), необходима фильтрация
- Аппроксимация поведения солнечных пятен моделью
- Использование модели для исследования поведения солнечных пятен

Обзор литературы

• *Petrovay K. and Van Driel-Gesztelyi L.* (1997) Making sense of sunspot decay - скорость убывания площади в среднем пропорциональна отношению радиуса группы к максимальному радиусу

$$D \propto \frac{r}{r_0}$$

• *Hathaway D.H. and Choudhary D.P.* (2008) Sunspot group decay - скорость убывания площади распределена логнормально

Обзор данных

	Время наблюдения	№ группы	Наблюдаемая	Скорректир.		
			площадь	площадь	Широта (°)	Долгота (°)
			$(\mu { m Hem})$	$(\mu {\rm Hem})$		
	1874-05-09 11:55:40	8600	639.0	378.0	7.4	-30.7

Время жизни групп

Несовершенство наблюдений

Фильтрация данных

Фильтрация данных сходна с методом Hathaway D.H. and Choudhary D.P. (2008)

• Рассматриваются только центральные фрагменты историй наблюдений

$$\varphi_{\rm max} = 60^{\circ}$$

• В выборку попадают наблюдения, большие значения минимальной площади

$$S_{\min} = 35 \,\mu \text{Hem}$$

• Исключаются все истории наблюдений, содержащие пропуски

Результат фильтрации

От последовательностей к векторам

$$\begin{pmatrix} S_1 \\ S_2 \\ \vdots \\ S_n \end{pmatrix} \to \left\{ (x_i, y_i) \middle| i = 1, ..., n - d \right\},$$
где $x_i = \begin{pmatrix} S_i \\ S_{i+1} \\ \vdots \\ S_{i+d-1} \end{pmatrix}, y_i = S_{i+d}$

Метрика

$$MSLE(a, X, y) = \frac{1}{l} \sum_{i=1}^{l} \left(\log y_i - \log a(x_i) \right)^2$$

Базовые модели

• Линейная регрессия

$$S_{d+1} \approx a(x) = \alpha_0 + \alpha_1 S_1 + \dots + \alpha_d S_d$$

• Логарифмическая линейная регрессия

$$\log S_{d+1} \approx \log a(x) = \alpha_0 + \alpha_1 \log S_1 + \dots + \alpha_d \log S_d$$

$$S_{d+1} \approx a(x) = \exp \left(\alpha_0 + \alpha_1 \log S_1 + \dots + \log S_d\right) = c_0 S_1^{\alpha_1} \dots S_d^{\alpha_d}$$

Метод k-ближайших соседей

Оценивание моделей

$$(S_1^i, ..., S_{n_i}^i) \rightarrow (\widehat{S}_1^i, ..., \widehat{S}_{n_i}^i)$$

$$\hat{S}_{i}^{i} = S_{i}^{i}, j = 1, ..., d$$

$$\widehat{S}_{j}^{i} = a((\widehat{S}_{j-d}^{i}, ..., \widehat{S}_{j-1}^{i})), j = d+1, ..., n_{i}$$

$$N = \sum_{i=1}^{l} (n_i - d)$$

$$MSLE(a, \mathcal{S}) = \frac{1}{N} \sum_{i=1}^{l} \sum_{j=d+1}^{n_i} (\log S_j^i - \log \widehat{S}_j^i)^2$$

Подбор гиперпараметров

Скорость убывания площади: сбор статистики

- Модель обучалась только на убывающих фрагментах истории наблюдений, максимальная размерность d=4
- С помощью алгоритма продлевались истории наблюдений групп, исчезающих за восточным лимбом Солнца, до достижения минимальной площади

$$\varphi_{\min} = 60^{\circ}$$
 $S_{\min} = 45 \,\mu\text{Hem}$

• Из рассмотрения исключались пятна, приходящие с западного лимба Солнца

$$\varphi_{\rm max} = -60^{\circ}$$

 Из оставшихся последовательностей рассматривались только строго убывающие после максимума, имеющие длину не меньше Т=10 дней

Скорость убывания площади: модель

$$D_i = \frac{S_{i-1} - S_{i+1}}{2} \qquad \qquad \sigma = \frac{S}{S_0} \qquad \qquad D \approx \alpha \sigma^{\gamma}$$

$$\sigma = \frac{S}{S_0}$$

$$D \approx \alpha \sigma^{\gamma}$$

$$\mathcal{L}(\alpha, \gamma) = \frac{1}{2l} \sum_{i=1}^{l} \left(\log(D_i) - \log(\alpha \sigma_i^{\gamma}) \right)^2 \to \min_{\alpha, \gamma}$$

Скорость убывания площади: модель

$$D \approx \alpha \sigma^{\gamma}$$

α^*	γ^*
85.979	0.514

$$D \propto \sqrt{\sigma} = \sqrt{\frac{S}{S_0}}$$

$$D \propto \frac{r}{r_0}$$

Результат Petrovay K. and Van Driel-Gesztelyi L. (1997)

Скорость убывания площади: модель

Скорость убывания площади: распределение

Заключение

- Разработана модель для предсказания площадей солнечных пятен
- С помощью методов машинного обучения подтвержден результат *Petrovay K. and Van Driel-Gesztelyi L.* (1997)

$$D \propto \sqrt{\frac{S}{S_0}}$$

• Логнормальное распределение скорости убывания совпадает с результатом *Hathaway D.H.* and *Choudhary D.P.* (2008)

Источники

- 1. Bumba V. (1963) Development of spot group areas in dependence on the local magnetic field // Bulletin of the Astronomical Institute of Czechoslovakia, №14, P. 91-96.
- 2. Hathaway D.H., Choudhary D.P. (2008) Sunspot group decay // Solar Phys. (2008), №250. P. 269-278.
- 3. Petrovay K., Van Driel-Gesztelyi L. (1997) Making sense of sunspot decay // Solar Phys. (1997), №166. P. 249-266.
- Royal Observatory, Greenwich USAF/NOAA Sunspot Data [Электронный ресурс] / Dr. David Hathaway. URL: https://solarscience.msfc.nasa.gov/greenwch.shtml, свободный. (дата обращения: 31.01.20).
- 5. SciPy Lognormal distribution [Электронный ресурс] / The SciPy community. URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html, свододный. (дата обращения: 14.05.20).