Test funzione pagerank.mlx

Casi d'uso della funzione pagerank.mlx.

mathwork200.mat

Calcolo del pagerank con la funzione pagerank.

Caso d'uso con la matrice presente nel file mathwork200.mat. Utilizziamo la funzione pagerank.mlx che restituisce i rank delle varie pagine e verifichiamo che la somma sia pari a 1 e che tutti gli elementi siano non negativi.

```
load mathwork200.mat;
R = pagerank(G)
R = 200 \times 1
     1.759217077077456e-03
     5.536967249760527e-03
     4.787988545059624e-03
     4.798261903167869e-03
     4.798261903167869e-03
     4.787988545059624e-03
     4.787988545059624e-03
     4.787988545059624e-03
     4.787988545059624e-03
     4.787988545059624e-03
somma = sum(R)
somma =
     1.000000000000001e+00
elementi negativi = R(R<0)
elementi negativi =
  0×1 empty double column vector
```

```
Calcolo accuratezza con il confronto con centrality.
 gs = digraph(G','omitselfloops');
 Pk = centrality(gs, 'pagerank', 'FollowProbability', 0.85, 'Tolerance', 10^-7)
  Pk = 200 \times 1
       1.759218218273203e-03
       5.536987754565612e-03
       4.788004697167616e-03
       4.798278107809245e-03
       4.798278107809245e-03
       4.788004697167616e-03
```

```
4.788004697167616e-03

4.788004697167616e-03

4.788004697167616e-03

...

err_rel = norm(R - Pk) /norm(Pk)

err_rel = 2.255144023869366e-06
```

repubblica.mat

Calcolo del pagerank con la funzione pagerank.

Caso d'uso con la matrice presente nel file *repubblica.mat*. Utilizziamo la funzione *pagerank.mlx* che restituisce i rank delle varie pagine e verifichiamo che la somma sia pari a 1 e che tutti gli elementi siano non negativi.

```
load repubblica.mat;
R = pagerank(G)
R = 100 \times 1
     3.664699397456729e-03
     1.029684187083375e-02
     1.116717668417418e-02
     1.366765578072275e-02
     1.127516818154505e-02
     1.180565271229337e-02
     2.263673517866172e-02
     1.180565271229337e-02
     1.180565271229337e-02
     9.317240410089991e-02
somma = sum(R)
somma =
     1.00000000000001e+00
elementi negativi = R(R<0)
elementi negativi =
  0 \times 1 empty double column vector
```

Calcolo accuratezza con il confronto con centrality.

```
gs = digraph(G','omitselfloops');
Pk = centrality(gs,'pagerank','FollowProbability',0.85, 'Tolerance',10^-7)
```

```
3.664699631657786e-03
1.029684172841195e-02
1.116717613261781e-02
1.366765616199609e-02
1.127516762994737e-02
1.180565199946794e-02
2.263673331531058e-02
1.180565199946794e-02
1.180565199946794e-02
9.317241228041624e-02

...

err_rel = norm(R - Pk) /norm(Pk)

err_rel =
1.328518307259801e-07
```

ilsole24.mat - Generato attraverso surfer.m

Calcolo del pagerank con la funzione pagerank.

Caso d'uso con la matrice presente nel file *ilsole24.mat*. Utilizziamo la funzione *pagerank.mlx* che restituisce i rank delle varie pagine e verifichiamo che la somma sia pari a 1 e che tutti gli elementi siano non negativi.

```
load ilsole24.mat;
R = pagerank(G)
R = 50 \times 1
     1.754064806994633e-02
     5.501631556589102e-02
     3.832664334518363e-02
     2.163697112447623e-02
     1.784492461948087e-02
     1.784492461948087e-02
     1.784492461948087e-02
     1.784492461948087e-02
     1.784492461948087e-02
     1.784492461948087e-02
somma = sum(R)
somma =
     1.000000000000000e+00
elementi negativi = R(R<0)
elementi negativi =
  0×1 empty double column vector
```

Calcolo accuratezza con il confronto con centrality.

```
gs = digraph(G','omitselfloops');
Pk = centrality(gs, 'pagerank', 'FollowProbability', 0.85, 'Tolerance', 10^-7)
Pk = 50 \times 1
     1.754064989155613e-02
     5.501627210757631e-02
     3.832662297948022e-02
     2.163697385138413e-02
     1.784492650363190e-02
     1.784492650363190e-02
     1.784492650363190e-02
     1.784492650363190e-02
     1.784492650363190e-02
     1.784492650363190e-02
err rel = norm(R - Pk)/norm(Pk)
err_rel =
     3.651360140139452e-07
```

galeazzi.mat - Generato attraverso surfer.m

Calcolo del pagerank con la funzione pagerank.

Caso d'uso con la matrice presente nel file *galeazzi.mat*. Utilizziamo la funzione *pagerank.mlx* che restituisce i rank delle varie pagine e verifichiamo che la somma sia pari a 1 e che tutti gli elementi siano non negativi.

```
load galeazzi.mat;
R = pagerank(G)
R = 100 \times 1
     5.757299647526484e-03
     1.445745499257526e-02
     2.310100886932469e-02
     6.369012748855036e-03
     6.369012748855036e-03
     6.369012748855036e-03
     6.369012748855036e-03
     6.369012748855036e-03
     6.369012748855036e-03
     9.603584402562067e-03
somma = sum(R)
somma =
     1.000000000000005e+00
elementi negativi = R(R<0)
elementi negativi =
```

Calcolo accuratezza con il confronto con centrality.

```
gs = digraph(G','omitselfloops');
Pk = centrality(gs, 'pagerank', 'FollowProbability', 0.85, 'Tolerance', 10^-7)
Pk = 100 \times 1
     5.757300357651519e-03
     1.445745708004059e-02
     2.310101420449277e-02
     6.369013550566284e-03
     6.369013550566284e-03
     6.369013550566284e-03
     6.369013550566284e-03
     6.369013550566284e-03
     6.369013550566284e-03
     9.603585701942361e-03
err rel = norm(R - Pk)/norm(Pk)
err rel =
     6.283601285943538e-07
```

Casi di errore della funzione pagerank.mlx.

Caso in cui la matrice in ingresso è vuota:

```
G = [];
R = pagerank(G);

Error using pagerank (line 8)
La matrice di input è vuota.
```

Caso in cui la matrice in ingresso non è sparsa:

```
G = [1 2 4; 1 5 6; 4 5 6];
R = pagerank(G);

Error using pagerank (line 12)
La matrice di input non è sparsa.
```

Caso in cui la matrice non è di tipo sparse logic:

```
G = sparse([1 0 0; 0 1 0; 0 0 1]);
R = pagerank(G);
```

```
Error using pagerank (line 16)
La matrice di input non contiene solo elementi logici.
```

Caso in cui la matrice in ingresso non è quadrata:

```
G = sparse(logical([1 0 0; 0 1 0]));
R = pagerank(G);

Error using pagerank (line 22)
La matrice di input non è quadrata.
```

Caso in cui l'ingresso è un elemento logico:

```
G = sparse(logical(1));
R = pagerank(G)
```

Error using pagerank (line 26) Dimensioni della matrice di input non corrette.