Applying SIR model in Covid-19 data

Goal

- Analyze Covid-19 in the United States
- Find models that can represent the Covid-19 data

Data

- Covid-19 in the United States from 2020 to 2022
- Our World in Data COVID-19 repository

 SIR model with Bayesian Method

Continuous-time SIR model

The SIR model

$$N = S(t) + I(t) + R(t)$$
 $\frac{dN}{dt} = \frac{dS(t)}{dt} + \frac{dI(t)}{dt} + \frac{dR(t)}{dt}$ Susceptible Infected Recovered

Transition Probability

$$p(\Delta t) = \begin{cases} \frac{\beta si}{N} \Delta t, & \text{if } (\mathbf{s}, \mathbf{i}) \xrightarrow{\Delta t} (s - 1, i + 1) \\ \gamma i \Delta t, & \text{if } (\mathbf{s}, \mathbf{i}) \xrightarrow{\Delta t} (s, i - 1) \\ 1 - \left[\frac{\beta si}{N} \Delta t + \gamma i \Delta t \right], & \text{if } (\mathbf{s}, \mathbf{i}) \xrightarrow{\Delta t} (s, i) \end{cases}$$

Discrete-time approximation

* To deal with real-world data, we need some discrete-time approximation

$$i_d \sim \text{Poisson}\left(\frac{\beta \ S(t_d) \ I(t_d)}{N}(t_d - t_{d-1})\right)$$
 $r_d \sim \text{Poisson}\left(\gamma i(t_d - t_{d-1})\right)$

Bayesian Framework

- What we want to find is $p(\beta|D)$, $p(\gamma|D)$
- Bayesian Framework

$$p(\beta \mid \mathcal{D}) \propto_{\beta} \prod_{d \in D} p_{e_i}(i_d | i_{d-1}, \phi) \ p(\beta)$$

$$p(\beta \mid \mathcal{D}) \propto_{\beta} \left[\prod_{d \in D} \frac{\left(\frac{\beta S(t_d) I(t_d) \Delta t}{N}\right)^{i_d} \exp\left\{-\frac{\beta S(t_d) I(t_d) \Delta t}{N}\right\}}{i_d} \right] \ p(\beta)$$

$$p(\gamma \mid \mathcal{D}) \propto_{\gamma} \prod_{d \in D} p_{e_i}(i_r | i_{d-1}, \phi) \ p(\gamma)$$

$$p(\gamma \mid \mathcal{D}) \propto_{\gamma} \left[\prod_{d \in D} \frac{(\gamma i \Delta t)^{i_r} \exp \{-\gamma i \Delta t\}}{i_r} \right] \ p(\gamma)$$

Metropolis-Hasting

- Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution.
- For $\phi = \beta$, γ
 - a. Start with ϕ_0
 - b. For i = 1, 2, ..., n
 - i. Draw ϕ^* from $q(\phi_{i-1})$
 - ii. Compute $a = \frac{L(D,\phi^*)q(\phi_{i-1}|\phi^*)}{L(D,\phi_{i-1})q(\phi^*|\phi_{i-1})}$
 - iii. If a > 1, accept ϕ^*
 - iv. If 0 < a < 1, accept ϕ^* with probability a.

Apply to the real data

- Change of β over pandemic
 - a. Mask restriction in US (2.5 -> 3) 2020.10.19
 - b. Fully vaccinated rate reached 50% 2021.01.13
 - c. Mask restriction in US (3 -> 2.5) 2021.05.22
 - d. Omicron in US 2021.12.01
- Constant γ over pandemic

Prior distribution selection

• Gamma Distribution for β and γ

Result

• Change of β over time

Table 1: Posterior means					
Parameter	Posterior mean				
β_1	0.234				
eta_2	0.229				
eta_3	0.269				
eta_4	0.251				
eta_5	0.253				
γ	0.212				
<u>γ</u>	0.212				

Result

• Blue: real data

• Red: simulation data

Forecasting Covid cases

• 9 days prediction

pred	32346.44
actual	32680.78

• 30 days prediction

pred	26161.97
actual	52383.63

Summary

- Divided data into 5 parts
- Short computation time
- Difference between the model and actual infection
 - Change of $\beta/\gamma/N$ over time
 - Gap between the actual infection and the S-I-R process
 - A person who is infected once cannot be infected again
 - Need a more complex model

2. SEIREIR model

 Significant latency period during which individuals have been infected but not yet infectious.

SEIREIR model

- Two covid19 pandemic seasons
 - before omicron (2021-01)
 - after omicron (2022-02)

SEIREIR model

- Two EIR processes in the model
 - E_o, I_o, R_o: States for Covid19 before omicron
 - E_b, I_b, R_b: States for Covid19 after omicron

1) Build a model

```
data %>%
 dplyr::select(day,reports=cases) %>%
 filter(dav<=834) %>%
 pomp(
    times="day",t0=0,
    rprocess=euler(seireir_step,delta.t=1),
    rinit=seireir_init,
    rmeasure=rmeas,
    dmeasure=dmeas,
    accumvars="H".
    statenames=c("S","E_o","I_o","R_o","E_b","I_b","R_b","H"),
    paramnames=c("Beta_o", "Beta_b", "Beta_r", "mu_EI_o", "mu_IR_o",
                 "Beta_or", "mu_IR_r",
                 "mu_EI_b", "mu_IR_b", "eta", "rho", "k", "N"),
    params=c(Beta_o=0.2, Beta_b = 14,Beta_or = 0.22, Beta_r = 0.5, mu_EI_o= 0.66,
             mu_IR_0 = 0.185, mu_EI_b = 0.2, mu_IR_r = 0.0085,
             mu_IR_b=0.04257, rho=0.996, k=9, eta=0.4, N=332915074)
) -> measSEIREIR
```

2) Simulate Graphs

3) Local search

```
· ```{r echo=TRUE}
 params <- c(Beta_o=0.2, Beta_b = 14,Beta_or = 0.22, Beta_r = 0.5, mu_EI_o= 0.66,
              mu_IR_0 = 0.185, mu_EI_b = 0.2, mu_IR_r = 0.0085,
              mu_IR_b=0.04257, rho=0.996, k=9, eta=0.4, N=332915074)
 measSEIREIR %>%
     paramnames=c("Beta_o", "Beta_b", "Beta_r", "Beta_or", "rho", "mu_EI_o", "mu_EI_b", "eta"),
   ) -> measSEIREIR2
bake(file="local_search.rds",{
   registerDoRNG(482947940)
   foreach(i=1:5,.combine=c) %do% {
     library(pomp)
     library(tidyverse)
     measSEIREIR2 %>%
       mif2(
         params=params.
         Np=1000, Nmif=50,
         cooling.fraction.50=0.5.
         rw.sd=rw.sd(Beta_o=0.0001,Beta_b = 0.001,Beta_or = 0.0001,
                      Beta_r = 0.0001, mu_EI_o=0.0001, mu_IR_o = 0.00001, mu_EI_b = 0.00001,
              rho=0.0001, eta=ivp(0.0001), mu_IR_r = 0.000001.
              mu_IR_b=0.000001)
  } -> mifs_local
}) -> mifs_local
```

4) Global Search

```
```{r echo=TRUE}
 ⊙ ¥ ▶
set.seed(2062379496)
runif_design(
 lower = c(Beta_o=1, Beta_b = 50, Beta_or = 0.5,
 Beta_r = 30,mu_EI_o=0.1,mu_EI_b = 0.03,
 rho=0.2.eta = 0).
 upper = c(Beta_0=100, Beta_b = 140, Beta_or = 10,
 Beta_r = 70, mu_EI_o=0.3, mu_EI_b = 0.2,
 rho=1,eta=1),
nseq=160
) -> guesses
```{r include=FALSE, eval=FALSE}
                                                                                                                                  ⊙ ¥ ▶
bake(file="global_search.rds",{
 foreach(quess=iter(quesses, "row"), .combine=rbind) %dopar% {
  library(pomp)
  library(tidyverse)
  mf1 %>%
   mif2(params=c(guess,fixed_params)) %>%
   mif2(Nmif=50) -> mf
  replicate(
   10.
    mf %>% pfilter(Np=1000) %>% logLik()
   ) %>%
   logmeanexp(se=TRUE) -> 11
 mf %>% coef() %>% bind_rows() %>%
    bind_cols(loglik=ll[1],loglik.se=ll[2])
} -> results
 results
}) %>%
 filter((is.finite(loglik)))-> global_results
save(list = c('global_results'),file = 'global.RData')
```

SEIREIR model

Local Search

coef.	βο	β_b	β_{r}	$\mu_{El,o}$	$\mu_{\text{IR,o}}$	$\mu_{\text{El},b}$
value	0.198	13.23	0.499	0.663	0.184	0.200
coef.	$\mu_{IR,r}$	$\mu_{IR,b}$	ρ	k	η	N
value	0.009	0.042	0.996	9	0.400	3.3e8

SEIREIR model

Global Search

coef.	β_{o}	β_b	β_{r}	$\mu_{\text{El,o}}$	$\mu_{\text{IR,o}}$	$\mu_{El,b}$
value	0.213	12.62	0.471	0.652	0.171	0.204
coef.	$\mu_{IR,r}$	$\mu_{\text{IR,b}}$	ρ	k	η	N
value	0.009	0.040	0.996	9	0.446	3.3e8

Summary

- Model and real data tend to match
- Long computation time
- There is still a gap between the SEIR model and the actual covid19 infection

More focused on after omicron cases, with a complicated framework

Local search

coef.	β	μ_{IR}	μ_{ID}	μ_{El}	α
value	0.1515	8.000e-5	5.000e-6	0.8500	0.0866
coef.	μ_{AR}	μ_{Pl}	ρ	N	т
value	0.1492	0.0140	0.9961	3.33e8	1000

Local search

Global search

coef.	β	μ_{IR}	μ_{ID}	μ_{El}	α
value	0.1619	1.784e-4	1.672e-6	1.5506	0.0869
coef.	μ_{AR}	μ_{Pl}	ρ	N	Т
value	0.2562	0.0139	0.9990	3.33e8	1000

Global search

Summary

- SEAPIRD model is more similar to the real data
- Short computation time & more accurate results with a shorter time interval

4. Conclusion

Conclusion

- Applied models to real COVID19 data in the U.S.
 - SIR model with Bayesian method
 - SEIREIR model
 - SEAPIRD model
- Considered the process of the model, computation time, and similarity between the simulation and the real world.
- Continuous changes of β , N, γ are not reflected in the models
- Coefficients in the models are lagging indicators. There will be a gap between the prediction and the actual covid19 progress.