Prácticas de Matlab

Bucles simples

Hoja 2

Nombre:

Apellido:

DNI:

Table of Contents

Prácticas de Matlab	1
B de Matlab y la resolución de EDO	1
Hoja 2	
Sucesiones escalares	
Práctica 1 (Script: Bucle usando índices)	
Práctica 2 (Script: Bucle sin usar índices)	
Sucesiones de varias componentes	
Práctica 3 (Script: Bucle usando índices)	
Práctica 4 (Script: Bucle sin usar índices)	
Forma vectorial de las sucesiones	2
Práctica 5 (Script: Bucle usando índices)	2
Práctica 6 (Script: Bucle sin usar índices)	3
Método de Fuler	

Sucesiones escalares

Consideramos las sucesiones

$$x_{n+1} = x_n + hx_n^2$$

$$t_{n+1} = t_n + h$$

Práctica 1 (Script: Bucle usando índices)

Escribid las instrucciones de matlab (en forma de un *script*) abajo que calculen las dos sucesiones y pinten una frente a la otra. Usad índices para realizar el bucle. Datos x(1) = 1 t(1) = 1

Solución:

Práctica 2 (Script: Bucle sin usar índices)

Escribid las instrucciones de matlab (en forma de un *script*) abajo que calculen las dos sucesiones y pinten una frente a la otra. Evitad índices para realizar el bucle. Usad la operación de concatenar vectores con vectores.

Datos
$$x(1) = 1$$
 $t(1) = 1$, $h = 0.1$, $N = 10$ y $N = 100$

Solución:

Sucesiones de varias componentes

Consideramos las sucesiones

$$x_{n+1} = x_n - hy_n$$

$$y_{n+1} = y_n + hx_n$$

$$t_{n+1} = t_n + h$$

Práctica 3 (Script: Bucle usando índices)

Escribid las instrucciones de matlab (en forma de un *script*) abajo que calculen las dos sucesiones y pinten una frente a la otra. Evitad índices para realizar el bucle. Usad la operación de concatenar vectores con vectores.

Datos
$$x(1) = 1$$
, $y(1) = 1$, $t(1) = 1$, $h = 0.1$, $N = 10$ y $N = 100$

Solución:

Práctica 4 (Script: Bucle sin usar índices)

Escribid las instrucciones de matlab (en forma de un *script*) abajo que calculen las dos sucesiones y pinten una frente a la otra. Evitad índices para realizar el bucle. Usad la operación de concatenar vectores con vectores.

Datos
$$x(1) = 1$$
, $y(1) = 1$, $t(1) = 1$, $h = 0.1$ $N = 10$ y $N = 100$

Solucion:

Forma vectorial de las sucesiones

Dadas las sucesiones:

$$x_{n+1} = x_n - hy_n$$

$$y_{n+1} = y_n + hx_n$$

$$t_{n+1} = t_n + h$$

Escribid las dos primeras sucesiones en forma vectorial (en un papel o en el propio mxl (usando el editor de ecuaciones).

Solución:

Práctica 5 (Script: Bucle usando índices)

Escribid las instrucciones de matlab (en forma de un *script*) abajo que calculen las dos sucesiones y pinten una frente a la otra. Usad índices para realizar el bucle. Datos x(1) = 1, y(1) = 1, t(1) = 1, h = 0.1, N = 10 y N = 100

Solución:

Práctica 6 (Script: Bucle sin usar índices)

Escribid la instrucciones de matlab (en forma de un *script*) abajo que calculen las dos sucesiones y pinten una frente a la otra. Evitad índices para realizar el bucle. Usad la operación de concatenar vectores con vectores.

Datos
$$x(1) = 1$$
, $y(1)$, $t(1) = 1$, $h = 0.1$, $N = 10$ y $N = 100$

Solución:

Método de Euler

Consideramos el método de Euler para el PVI:

$$\frac{dy}{dt} = f(t, y)$$
$$y(t_0) = \alpha$$

es decir

$$y_{n+1} = y_n + hf(t_n, y_n).$$

Consideramos la ecuación diferencial (PVI)

$$\frac{d^2x}{dt^2} = -x$$

$$x(0) = 1$$

$$\frac{dx(0)}{dt} = 1$$

Reescribid dicha ecuación como un sistema de ecuaciones y aplicad el método de Euler. Escribid un *script* usando vuestros scripts anteriores (mejor implementar sin índices) para resolver dicha EDO mediante el método de Euler. Pintad una componente de la solución frente la otra.

Datos
$$x(1) = 1$$
, $\frac{dx(1)}{dt} = 1$, $t(1) = 1$, $h = 0.1$, $N = 10$ y $N = 100$

Solución:

Ultimo valor:

$$x=(-0.5603, -2.2574)$$

Gráfica