GE2262 Business Statistics - Review

Understanding the Formulae Sheet

(1)

$$\begin{aligned} \bullet & \mu = \frac{1}{N} \sum_{i=1}^{N} x_i \\ \bullet & \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \\ \bullet & \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \\ \bullet & S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \end{aligned}$$

•
$$\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

•
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Reminder: N, μ, σ^2, π are population parameters; n, \bar{X}, s^2, p are sample statistics. β_0, β_1 is for true regression line, b_0 , b_1 is for estimated regression line.

(2)

•
$$\mu = E(X) = \sum_{i=1}^{N} x_i P(x_i)$$

• $\sigma^2 = Var(X) = \sum_{i=1}^{N} (x_i - \mu)^2 P(x_i)$

Corollary:
$$\sigma^2=E(X^2)-E(X)^2=\sum_{i=1}^N x_i^2 P(x_i)-\mu^2$$

(3)

$$X \sim \mathcal{B}(n,\pi)$$

•
$$P(X=x) = \binom{n}{x} \pi^x (1-\pi)^{n-x} = \frac{n!}{x!(n-x)!} \pi^x (1-\pi)^{n-x}$$

•
$$\mu = E(X) = n\pi$$

•
$$\sigma^2 = Var(X) = n\pi(1-\pi)$$

(4)

•
$$P(A) = P(A \wedge B_1) + P(A \wedge B_2) + \cdots + P(A \wedge B_n)$$

•
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• $P(A|B) = \frac{P(A \land B)}{P(B)}$

•
$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

•
$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

Reminder: to prove two events are independent, show P(A | B) = P(A).

(5)

•
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

• $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1^2)$

(6)

$$ullet \ ar{X} \sim \mathcal{N}(\mu, rac{\sigma^2}{n})$$

$$oldsymbol{\cdot} ar{X} \sim \mathcal{N}(\mu, rac{\sigma^2}{n}) \ oldsymbol{\cdot} Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1^2)$$

Reminder: to prove the sample mean is normally distributed, one of the following conditions must be satisfied:

- the sample is drawn from a normal population
- ullet sample size $n\geq 30$ and apply Central Limit Theorem
- the population is unknown and n < 30, assume the population is normal

•
$$ar{X}\pm Z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

•
$$ar{X} \pm t_{lpha/2,n-1} rac{s}{\sqrt{n}}$$

Reminder: $rac{\sigma}{\sqrt{n}}$ is the standard error. $E=Z_{lpha/2}rac{\sigma}{\sqrt{n}}$ is the margin of error / sampling error.

•
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

• $t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}$

•
$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$$

Reminder: 3 types of hypothesis testing:

Туре	H_0	H_1	CV	RR	P-value
Two-tail	$\mu=\mu_0$	$\mu eq \mu_0$	$\pm Z_{lpha/2}$	$Z < -Z_{lpha/2}$ or $Z > Z_{lpha/2}$	$P(z < -\ Z\) + P(z > \ Z\)$
Lower- tail	$\mu \geq \mu_0$	$\mu < \mu_0$	$-Z_{lpha}$	$Z<-Z_{lpha}$	P(z < Z)
Upper- tail	$\mu \le \mu_0$	$\mu > \mu_0$	Z_{lpha}	$Z>Z_{lpha}$	P(z>Z)

(9)

$$ullet \ p \sim \mathcal{N}(\pi, rac{\pi(1-\pi)}{\pi})$$

$$egin{array}{ll} ullet & p \sim \mathcal{N}(\pi, rac{\pi(1-\pi)}{n}) \ ullet & Z = rac{p-\pi}{\sqrt{rac{\pi(1-\pi)}{n}}} \sim \mathcal{N}(0,1^2) \end{array}$$

$$egin{align} ullet & p \pm Z_{lpha/2} \sqrt{rac{p(1-p)}{n}} \ ullet & E = Z_{lpha/2} \sqrt{rac{\pi(1-\pi)}{n}} \ ullet & Z = rac{p-\pi_0}{\sqrt{rac{\pi_0(1-\pi_0)}{n}}} \ \end{pmatrix}$$

•
$$E = Z_{\alpha/2} \sqrt{\frac{\pi(1-\pi)}{\pi}}$$

$$ullet Z=rac{p-\pi_0}{\sqrt{rac{\pi_0(1-\pi_0)}{2}}}$$

(10)

$$\begin{array}{l} \bullet \quad S_{XY} = \frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(Y_{i}-\bar{Y})}{n-1} \text{ (Sample Covariance)} \\ \bullet \quad r_{XY} = \frac{S_{XY}}{S_{X}S_{Y}} \text{ (Coefficient of Correlation)} \\ \bullet \quad \text{SST} = \sum_{i=1}^{n}(Y_{i}-\bar{Y})^{2} \text{ (Sum of Squares Total)} \end{array}$$

•
$$r_{XY} = \frac{S_{XY}}{S_X S_Y}$$
 (Coefficient of Correlation)

• SST =
$$\sum_{i=1}^{N} (Y_i - \bar{Y})^2$$
 (Sum of Squares Total)

• SSR =
$$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$
 (Sum of Squares Regression)

• SSE =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 (Sum of Squares Error)

• SST = SSR + SSE
•
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 (Coefficient of Determination)

•
$$Y = \beta_0 + \beta_1 X + \epsilon$$
 (True Regression Line)

•
$$K=\frac{1}{SST}=1-\frac{1}{SST}$$
 (Coefficient of Determination)
• $Y=\beta_0+\beta_1X+\epsilon$ (True Regression Line)
• $b_1=\frac{\sum_{i=1}^n(X_i-\bar{X})(Y_i-\bar{Y})}{\sum_{i=1}^n(X_i-\bar{X})^2}=r_{XY}\frac{S_Y}{S_X}$ (Least Squares Estimator)
• $b_0=\bar{Y}-b_1\bar{X}$

•
$$b_0 = \bar{Y} - b_1 \bar{X}$$

•
$$b_1 \pm t_{\alpha/2,n-2} S_{b_1}$$
 (Confidence Interval for Slope)
• $t = \frac{b_1 - \beta_1}{S_{b_1}}$ (Hypothesis Testing for Slope)
• $S_{b_1}^2 = \frac{SSE}{\sum_{i=1}^n (X_i - \bar{X})^2}$

•
$$t=rac{b_1-eta_1}{S_{b_1}}$$
 (Hypothesis Testing for Slope)

$$\bullet \ \ S_{b_1}^2 = rac{SSE}{\sum_{i=1}^n (X_i - ar{X})^2}$$

1. Introduction to Statistics

- Statistics: the branch of mathematics that transforms data into useful information for decision making.
- Descriptive Statistics: collecting, summarizing (numbers, tables, graphs), and describing data (distribution, central tendency, variability).
- Inferential Statistics: making inferences about **population** based on **sample** data.

Process of a Statistical Study:

 $Population \rightarrow Sample \rightarrow Sample \ Statistics \rightarrow Population \ Parameters$

- Variable: a characteristic, number or quantity that can be measured or counted.
- Data: the values measured or collected for each variable.

Types of Variables:

- Numerical variables (counted or measured)
 - o Discrete: finite number of values
 - Continuous: infinite number of values
- Categorical variables (defined by categories)
 - Nominal: no orderOrdinal: order

1.1. Data Tables and Graphs

- **Summary table**: a table that lists the number of observations for each category (e.g. red, blue, green).
 - Applicable: categorical variables
- **Bar chart**: a chart that uses bars to represent the frequency of each category.
 - Applicable: categorical variables
 - Can use **frequency** or **relative frequency**. Values should not be marked on the bars.
 - o Bars are not connected.
- **Pie chart**: a chart that uses slices to represent the proportion of each category.
 - o Applicable: categorical variables
 - Should use **relative frequency**. Values should be marked on the slices.
- **Frequency distribution**: a table that lists the number of observations within each interval. (e.g. $[0,100),[100,200),\cdots$)
 - o Applicable: numerical variables
 - Can use **frequency** or **relative frequency**.
- **Histogram**: a chart that uses bars to represent the frequency of each interval.
 - Applicable: numerical variables
 - Bars are connected (i.e. no gaps between bars). Values should not be marked on the bars.

Principles of a Good Graph:

- uniform and appropriate (i.e. not too compressed or too spread out) scale
- properly labeled axes
- y-axis starts at 0 (and goes down for negative values)
- title

1.2. Central Tendency, Variability, and Shape

Central Tendency:

Mean

$$\begin{array}{l} \circ \ \ \text{Sample mean: } \bar{X} = \frac{\sum_{i=1}^n X_i}{n} \\ \circ \ \ \text{Population mean: } \mu = \frac{\sum_{i=1}^N x_i}{N} \\ \end{array}$$

$$\circ \ \ a_{\frac{n+1}{2}} \text{ if } n \text{ is odd} \\ \circ \ \ \frac{1}{2} \big(a_{\frac{n}{2}} + a_{\frac{n}{2}+1} \big) \text{ if } n \text{ is even} \\$$

• Mode: the value that occurs most frequently

- In a continuous distribution, the mode is the peak of the distribution.
- No mode if all values are unique.
- Several modes if multiple values occur with the same frequency.

Variability:

• Range:
$$R = X_{max} - X_{min}$$

• IQR:
$$Q_3 - Q_1$$

$$\circ \ \ Q_1 = a_{rac{n+1}{\epsilon}}$$
 is the lower quartile

$$\circ \ \ Q_3 = a_{rac{3(n+1)}{4}}$$
 is the upper quartile

$$\circ$$
 e.g. when $n=10$, $Q_1=a_{rac{11}{4}}=rac{3}{4}a_3+rac{1}{4}a_4, Q_3=a_{rac{33}{4}}=rac{3}{4}a_8+rac{1}{4}a_9$

$$\circ$$
 Outliers: $(-\infty, Q_1 - 1.5IQR) \cup (Q_3 + 1.5IQR, +\infty)$

• Variance:

$$\begin{array}{ll} \circ & \text{Sample variance: } s^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1} \\ \circ & \text{Population variance: } \sigma^2 = \frac{\sum_{i=1}^N (X_i - \mu)^2}{N} \end{array}$$

$$\circ$$
 Population variance: $\sigma^2 = rac{\sum_{i=1}^{n}(x_i - \mu)^2}{N}$

Shape:

	Left Skew	Symmetric	Right Skew
Longer tail	Left	None	Right
	Mean < Median	Mean = Median	Mean > Median
Skewness	< 0	0	> 0

Boxplot (Five-number summary):

$$ullet$$
 X_{min} , Q_1 , Median, Q_3 , X_{max}

• Each interval contains 25% of the data.

$$X_{min}\Rightarrow$$
 Whisker $\Rightarrow Q_1\Rightarrow$ Box \Rightarrow Median \Rightarrow Box $\Rightarrow Q_3\Rightarrow$ Whisker $\Rightarrow X_{max}$

2. Probability

- Outcome: a possible result of an experiment.
- **Event**: a collection of outcomes.
- Complement event: $A' = \{x \in S : x \notin A\}$

- **Sample space** *S*: the set of all possible outcomes.
- Probability: the likelihood of an event occurring.
 - A priori probability: computed theoretically
 - o Empirical probability: computed with experimental data
 - Subjective probability: based on personal judgment
- **Joint probability**: probability of two or more events occurring together.
- Marginal probability: probability of a single event occurring. (simple probability)
 - $P(A) = P(A \wedge B_1) + P(A \wedge B_2) + \cdots + P(A \wedge B_n)$
 - \circ where B_1, B_2, \cdots, B_n are mutually exclusive and collectively exhaustive.
- Mutually exclusive events: $P(A \wedge B) = 0$
- Collectively exhaustive events: $P(A \lor B) = 1$

2.1. Rules of Probability

- Axioms:
 - \circ $0 \leq P(A) \leq 1$
 - P(S) = 1
- General addition rule:
 - $P(A \vee B) = P(A) + P(B) P(A \wedge B)$
 - When A and B are mutually exclusive, $P(A \vee B) = P(A) + P(B)$
- Conditional probability:
 - $\circ \ \ P(A|B) = rac{P(A \wedge B)}{P(B)}$ is the probability of A given B. (P(B) > 0)
- General multiplication rule:
 - $P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$
- Independent events:
 - \circ To prove A and B are independent, show P(A|B) = P(A) or P(B|A) = P(B).
 - \circ Corollary: $P(A \wedge B) = P(A)P(B)$

2.2. Counting Techniques

- **Permutation**: the number of ways to arrange r objects from n objects.
 - \circ $_{n}P_{r}=rac{n!}{(n-r)!}$
- **Combination**: the number of ways to choose r objects from n objects.
 - $\circ _nC_r = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

3. Probability Distributions

- Random variable: a variable whose value is determined by the outcome of a random experiment.
 - Discrete random variable: counted values
 - Continuous random variable: measured values
- **Probability distribution**: a mutually exclusive listing of all possible numerical outcomes and their corresponding probabilities.

3.1. Discrete Probability Distributions

Axioms:

• $0 \le P(X = x_i) \le 1$ • $\sum_{i=1}^{N} P(X = x_i) = 1$

Statistics:

• Expected value: $\mu=E(X)=\sum_{i=1}^N x_i P(x_i)$ • Variance: $\sigma^2=Var(X)=\sum_{i=1}^N (x_i-\mu)^2 P(x_i)$

Binomial Distribution:

• $X \sim \mathcal{B}(n,\pi)$

 \circ where n is the number of trials and π is the probability of success.

• applies when there are *n* **independent** trials and each trial has a **constant** probability of success π . There are **two mutually exclusive outcomes** for each trial.

• $P(X=x) = \binom{n}{x} \pi^x (1-\pi)^{n-x} = \frac{n!}{x!(n-x)!} \pi^x (1-\pi)^{n-x}$

• $\mu = E(X) = n\pi$

• $\sigma^2 = Var(X) = n\pi(1-\pi)$

• When $\pi < 0.5$, the distribution is left-skewed. When $\pi > 0.5$, the distribution is rightskewed.

3.2. Continuous Probability Distributions

• P(X = x) = 0

• **Probability density function** f(x): the function that describes the relative likelihood of a continuous random variable taking on a particular value.

 \circ $f(x) \geq 0$

 $\circ \int_{-\infty}^{+\infty} \frac{1}{f(x)} dx = 1$

• Cumulative distribution function F(x): the probability that a continuous random variable is less than or equal to a certain value.

 \circ F(x) = P(X < x)

 $\circ F(x) = \int_{-\infty}^{x} f(t)dt$

Normal Distribution:

• $X \sim \mathcal{N}(\mu, \sigma^2)$

 \circ where μ is the mean and σ^2 is the variance.

• Normal density function: $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

 \circ Mean = Median = Mode = μ

o Empirical rule: 68-95-99.7 rule

• $P(a \le X \le b) = F(b) - F(a) = \int_a^b f(x) dx$

• Standardized normal distribution: $Z = rac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1^2)$

 $\circ P(x \leq x_0) = P(z \leq \frac{x_0 - \mu}{\sigma})$

4. Sampling Distributions

Sampling distribution: the probability distribution of a sample statistic from all possible samples of a given size.

Sampling distribution of the sample mean:

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, then $ar{X} \sim \mathcal{N}(\mu, rac{\sigma^2}{n})$.

- Mean $\mu_{ar{X}}=\mu$
- Standard deviation or **standard error** $SE = \sigma_{ar{X}} = rac{\sigma}{\sqrt{n}}$

Central Limit Theorem:

- If the sample size n is large enough, the sampling distribution of the sample mean will be approximately normally distributed.
- Applicable when $n \geq 30$.

5. Confidence Intervals of Population Mean

Confidence interval is a range of values, based on one sample taken from a population, that is likely to contain the true population parameter.

Interpretation: for a $100(1-\alpha)\%$ CI,

- We are $100(1-\alpha)\%$ confident that the true population parameter lies within the interval.
- If all samples of size n are taken, $100(1-\alpha)\%$ of the intervals will contain the true population parameter.

5.1. Z-Distribution

Applicable when the population standard deviation σ is known.

$$100(1-\alpha)\%$$
 CI for μ :

$$ar{X} \pm Z_{lpha/2} rac{\sigma}{\sqrt{n}}$$

where

- $Z_{\alpha/2}$ is the **critical value**.
- ullet $E=Z_{lpha/2}rac{\sigma}{\sqrt{n}}$ is the margin of error or sampling error.

Factors that affect the width of the CI:

- When σ increases, margin of error increases. $\sigma \uparrow \Rightarrow \frac{\sigma}{\sqrt{n}} \uparrow$
- When n increases, margin of error decreases. $n \uparrow \Rightarrow \frac{\sigma}{\sqrt{n}} \downarrow$
- ullet When level of confidence 1-lpha increases, margin of error increases.

$$1-\alpha \uparrow \Rightarrow \alpha \downarrow \Rightarrow Z_{\alpha/2} \uparrow$$

For a population with known σ , the width of the CI is the same regardless of the actual sample, holding all other factors constant.

1- α	$Z_{lpha/2}$
0.90	1.645
0.95	1.96
0.99	2.576

 $Z_{lpha/2}$ is defined as the value of Z such that $P(Z \le z) = lpha/2$. Do note that since lpha/2 < 0.5, z is negative, but we take the absolute value. Therefore when lpha decreases, z decreases and $Z_{lpha/2}$ increases.

As level of confidence 1-lpha increases, $Z_{lpha/2}$ increases.

5.2. t-Distribution

For a normal population with unknown σ , the sample standard deviation s is used.

The t-statistic is defined as $t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$.

t follows a t-distribution with n-1 degrees of freedom. $t \sim t(n-1)$.

Degrees of freedom:

- Total number of observations minus the number of parameters estimated from the data.
- For calculation of sample variance, the degrees of freedom are n-1.
- For combining multiple t-distributions, the degrees of freedom are the sum of the individual degrees of freedom. (e.g. n-1+m-1=n+m-2)
- For least squares estimation, the degrees of freedom are n-2.

t-distribution is a bell-shaped curve that is symmetric about the mean $\mu=0$. It is flatter and has heavier tails than the standard normal distribution. As the degrees of freedom increase, the tdistribution approaches the standard normal distribution.

 $t_{lpha/2,n-1}$ is the critical value of the t-distribution. It is the value of t such that $P(T \leq t) = lpha/2$.

- $t_{\alpha/2,n-1}$ is larger than $Z_{\alpha/2}$.
- ullet As level of confidence 1-lpha increases, $t_{lpha/2,n-1}$ increases.
- ullet As degree of freedom n-1 increases, $t_{lpha/2,n-1}$ decreases. (Starting from $+\infty$ to the normal distribution)

 $100(1-\alpha)\%$ CI for μ :

$$ar{X} \pm t_{lpha/2,n-1} rac{s}{\sqrt{n}}$$

where

- $t_{\alpha/2,n-1}$ is the critical value. $E=t_{\alpha/2,n-1}\frac{s}{\sqrt{n}}$ is the margin of error.

Factors that affect the width of the CI:

- s is a random variable; it does not affect the width of the Cl. Instead, it decides the width.
- ullet When n increases, margin of error decreases.

$$\begin{array}{ccc} \circ & n \uparrow \Rightarrow \frac{s}{\sqrt{n}} \downarrow \\ \circ & n \uparrow \Rightarrow t_{\alpha/2, n-1} \downarrow \end{array}$$

• When level of confidence $1-\alpha$ increases, margin of error increases.

5.3. Sample Size Determination

When determining the sample size n for a given level of confidence 1-lpha and margin of error $\pm E$:

$$E=Z_{lpha/2}rac{\sigma}{\sqrt{n}} \Rightarrow n=\left(rac{Z_{lpha/2}\sigma}{E}
ight)^2$$

6. Hypothesis Testing of Population Mean

Hypothesis: a statement about a **population parameter** (μ, σ^2, π) .

Null hypothesis H_0 : always contains the equality sign.

Alternative hypothesis H_1 : the complement of the null hypothesis.

Rejection region: the range of values that lead to the rejection of H_0 .

- Two-tail test: $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$
- Lower-tail test: $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$
- Upper-tail test: $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$

Decision \ Truth	H_0 is True	H_0 is False
DNR H_0	Level of significance $1-lpha$	Type II error eta
Reject H_0	Type I error $lpha$	Power of the test $1-eta$

How to reduce Type II error β :

- By increasing α , β decreases.
- By increasing sample size n, β decreases.

6.1. **Z-Test**

Applicable when the population standard deviation σ is known.

Z-statistic:
$$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$$

- ullet Two-tail test: CV = $\pm Z_{lpha/2}$
 - $\circ \;\;$ If $Z<-Z_{lpha/2}$ or $Z>Z_{lpha/2}$, reject $H_0.$
 - \circ If P(z<-|Z|)+P(z>|Z|)<lpha , reject H_0 .
- Lower-tail test: $CV = -Z_{\alpha}$
 - \circ If $Z<-Z_{\alpha}$, reject H_0 .
 - \circ If $P(z < Z) < \alpha$, reject H_0 .
- Upper-tail test: $CV = Z_{\alpha}$
 - \circ If $Z>Z_{\alpha}$, reject H_0 .
 - If $P(z > Z) < \alpha$, reject H_0 .

6.2. t-Test

Applicable when the population standard deviation σ is unknown.

t-statistic:
$$t=rac{ar{X}-\mu_0}{s/\sqrt{n}}$$

(p-value approach can only yield a range of values from the t-distribution.)

7. Proportion

Variable of interest: the variable is a two-level categorical variable.

Sample proportion $p=\frac{Y}{n}$, where Y is the number of successes and n is the sample size.

Population proportion π is the probability of success.

By binomial distribution, $p \sim \mathcal{N}(\pi, rac{\pi(1-\pi)}{n})$

Sampling distribution of the sample proportion:

•
$$\mu_p = \pi$$
• $\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}$

According to Central Limit Theorem, we approximate the sampling distribution of the sample proportion to a normal distribution, if all of the following conditions are satisfied:

- n > 30
- $n\pi \geq 5$ (or $np \geq 5$)
- $n(1-\pi) \ge 5$ (or $n(1-p) \ge 5$)

Z-statistic:
$$Z=rac{p-\pi}{\sqrt{rac{\pi(1-\pi)}{n}}}$$

7.1. Confidence Intervals of Population Proportion

Unlike the case of population mean, the standard deviation of p is dependent on π . Therefore, we always estimate the standard deviation of p using the sample proportion p:

$$s_p = \sqrt{rac{p(1-p)}{n}}$$

100(1-lpha)% CI for π :

$$p\pm Z_{lpha/2}\sqrt{rac{p(1-p)}{n}}$$

where

- ullet $Z_{lpha/2}$ is the critical value.
- ullet $E=Z_{lpha/2}\sqrt{rac{p(1-p)}{n}}$ is the margin of error.

Remarks:

- If p E < 0, set p E = 0.
- If p + E > 1, set p + E = 1.

Factors that affect the width of the CI:

- When *n* increases, margin of error decreases.
- When level of confidence $1-\alpha$ increases, margin of error increases.
- When 0 and <math>p increases, margin of error increases. When 0.5 and <math>p increases, margin of error decreases.

Sample size determination:

$$E=Z_{lpha/2}\sqrt{rac{\pi(1-\pi)}{n}} \Rightarrow n=\left(rac{Z_{lpha/2}}{E}
ight)^2\pi(1-\pi)$$

If neither π nor p is known (which is usually the case), use $\pi=0.5$ which yields the largest sample size.

7.2. Hypothesis Testing of Population Proportion

Z-statistic:
$$Z=rac{p-\pi_0}{\sqrt{rac{\pi_0(1-\pi_0)}{n}}}$$

8. Simple Linear Regression

8.1. Coefficient of Correlation

Covariance:

- $\begin{array}{ll} \bullet & \text{Population covariance: } \sigma_{XY} = \frac{\sum_{i=1}^{N}(X_i \mu_X)(Y_i \mu_Y)}{N} \\ \bullet & \text{Sample covariance: } S_{XY} = \frac{\sum_{i=1}^{n}(X_i \bar{X})(Y_i \bar{Y})}{n-1} \end{array}$

Dividing the XY plane to four quadrants:

- If covariance is positive, the points are in the Q1 and Q3 quadrants.
- If covariance is negative, the points are in the Q2 and Q4 quadrants.
- Covariance can only measure linear association.

Coefficient of Correlation:

- Population coefficient of correlation: $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$ Sample coefficient of correlation: $r_{XY} = \frac{S_{XY}}{S_X S_Y}$
- ρ_{XY} (or r_{XY}) ranges from -1 to 1, and has the same sign as the covariance.

8.2. Simple Linear Regression Model

Linear regression model: $E(Y|X=x) = \beta_0 + \beta_1 x$

Discrepancy: $\epsilon_i = Y_i - E(Y_i|X_i) = Y_i - (\beta_0 + \beta_1 X_i)$

True regression line: $Y_i = eta_0 + eta_1 X_i + \epsilon_i$

Error or residual $e = Y_i - \hat{Y}_i$

Least squares estimation: Minimize SSE

- SSE = Sum of Squares Error: $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$
- ullet Sample regression line: $\hat{Y}_i = b_0 + b_1 X_i$
- $\begin{array}{l} \bullet \quad b_1 = \frac{\sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y})}{\sum_{i=1}^n (X_i \bar{X})^2} = r_{XY} \frac{S_Y}{S_X} \text{ has the same sign as } r_{XY}. \\ \bullet \quad b_0 = \bar{Y} b_1 \bar{X} \end{array}$

The linear regression model is only valid within the range of the data.

Coefficient of Determination:

- SST = Sum of Squares Total: $\sum_{i=1}^{n} (Y_i \bar{Y})^2$
- SSR = Sum of Squares Regression: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$ Coefficient of Determination: $R^2 = \frac{SSR}{SST} = 1 \frac{SSE}{SST}$ In simple linear regression, $R^2 = (r_{XY})^2$

8.3. Confidence Intervals and Hypothesis Testing of Slope

Given the population regression line $Y=eta_0+eta_1X+\epsilon$:

Assume
$$\epsilon \sim \mathcal{N}(0,\sigma^2)$$

Sampling distribution of the slope b_1 :

•
$$b_1 \sim \mathcal{N}(\beta_1, \sigma_{b_1}^2)$$

•
$$E(b_1) = \beta_1$$

$$ullet egin{array}{ll} ullet & E(b_1) = eta_1 \ ullet & s_{b_1}^2 = rac{s_{\epsilon}^2}{\sum_{i=1}^n (X_i - ar{X})^2} = rac{SSE/(n-2)}{\sum_{i=1}^n (X_i - ar{X})^2} \end{array}$$

$$100(1-\alpha)\%$$
 CI for β_1 :

$$b_1\pm t_{lpha/2,n-2}S_{b_1}$$

Hypothesis testing for the slope:

$$H_0:eta_1=0$$
 vs. $H_1:eta_1
eq 0$ (to test if linear relationship exists)

Or ≥ 0 or ≤ 0 for one-tail test.

T-statistic:
$$t=rac{b_1-eta_1}{S_{b_1}}$$

- ullet Critical value: reject H_0 if $t<-t_{lpha/2,n-2}$ or $t>t_{lpha/2,n-2}$
- ullet P-value: reject H_0 if P(t<-|t|)+P(t>|t|)<lpha