(2)

Answer ALL questions.

A student investigated the acceleration of a trolley as it rolled down a ramp. The trolley was released from rest at the top of the ramp and allowed to roll onto a horizontal surface. There was a single light gate above the horizontal surface, as shown.

(a) The light gate was connected to a data logger. The data logger recorded the time taken for the card to pass through the light gate.

Describe how the student could determine the velocity v of the trolley as it passed through the light gate.

(b)	The student repeated th	ne procedure	and	determined	four	values	of v.	The	values	are
	shown in the table									

$v/m s^{-1}$							
2.07	1.84	1.91	2.10				

(i)	Calculate the mean	value for v	and the	percentage	uncertainty	in	v
-----	--------------------	-------------	---------	------------	-------------	----	---

(3)

Mean $v = m s^{-1}$

Percentage uncertainty in v = %

(ii) The student measured the distance s that the trolley travelled on the ramp.

Determine the acceleration of the trolley on the ramp.

$$s = 1.50 \text{ m}$$

(2)

 $Acceleration = \dots m s^{-2}$

(iii) A second student carried out the same experiment and determined a similar value for the acceleration of the trolley on the ramp.

State why this does **not** show that the results are reproducible.

(1)