Lemma. If α and β are 1-forms on $T_p \mathbf{R}^3$ and V is a nonzero vector in the plane spanned by $\langle \alpha \rangle$ and $\langle \beta \rangle$, then there is a vector, W, in this plane such that

$$\alpha \wedge \beta = \langle V \rangle^{-1} \wedge \langle W \rangle^{-1}. \tag{1}$$

Proof. Let V_1, V_2 be two linearly independent vectors in $T_p \mathbf{R}^3$. In order to prove formula (1),we only need to prove that there exists W in the plane spanned by $\langle \alpha \rangle$ and $\langle \beta \rangle$ such that

$$\alpha \wedge \beta(V_1,V_2) = \langle V \rangle^{-1} \wedge \langle W \rangle^{-1}(V_1,V_2).$$