DIGITAL SYSTEMS AND MICROPROCESSORS (ELE2002M)

Instructor:

Assoc. Prof. Dr. Edmond Nurellari

Module Specifications

- Lectures: Monday (12pm-2pm and 4pm-6pm)
- □ Labs: Thursdays (6pm-8pm)
- Slides and Assignments on Blackboard
- Tutorials will run alongside lectures
- Pre-requisite for advanced courses
- Emphasis on problem solving
- Lab component Design, simulation and synthesis
- Hardware Description Language (Verilog or VHDL)

Textbooks

- M Morris Mano, Michael D Ciletti (2013). Digital Design, 5th Edition,
 Pearson Prentice Hall.
- □ Thomas L. Floyd (2014). Digital Fundamentals A Systems Approach (First Edition). Pearson
- J. Bhasker. A Verilog HDL Primer (Third Edition). BSP

Analog System

- Analogue Systems
 - V(t) can have any value between its minimum and maximum value

Digital Systems

- Digital Systems
 - V(t) must take a value selected from a set of values called an alphabet
 - Binary digital systems form the basis of almost all hardware systems currently

For example, Binary Alphabet: 0, 1.

Slide Example

• Consider a child's slide in a playground:

a set of discrete steps

Integrated Circuits

Levels of Integration

- □ SSI (Small scale integration) less than 10 gates
- MSI (Medium scale integration) 10-1000 gates
- LSI (Large scale integration) 1000s of gates
- VLSI (Very large scale integration) more than 100K gates

Digital Logic Families

- TTL Transistor-Transistor logic (standard logic)
- □ ECL Emitter-coupled logic (high speed)
- MOS Metal-oxide semiconductor (high density)
- CMOS Complementary MOS (low power)

More about these in the CMOS VLSI Design Course.

Computer Aided Design

- Electronic Design Automation covers all phases of design of Integrated Circuits.
- □ First step of EDA is design entry
- Variety of options available to create a physical realization of a digital circuit on Silicon
- Designer can choose between ASICs, FPGAs, PLDs, or a full custom IC (microcontrollers, microprocessors)
- Each device comes with a set of CAD tools
- Some CAD systems allow entering a design using schematics.
- Other CAD tools can use HDLs to describe a digital hardware.

Recap - World of Binary

- Binary Number System
- Difference between Binary and Decimal Number System
- Octal and Hexadecimal Number System
- Conversion between different number systems
- Binary Coding

Recap - Conversions

- Decimal to Binary
- Decimal to Octal
- Decimal to Hexadecimal

- Binary to Decimal
- Octal to Decimal
- Hexadecimal to Decimal

Recap - Complements

- 9's Complement of Decimal Number
- 10's Complement of Decimal Number
 (Add 1 to 9's Complement)

- □ 1's Complement of Binary Number
- 2's Complement of Binary Number(Add 1 to 1's Complement)

Recap - Binary Logic

Two main types

- Combinational
 - Outputs dependent only on current input

Outputs dependent on both past and present inputs

Recap - Design Example using AND Gate

- ■Consider a buzzer which sounds when:
 - The lights are on **and**
 - The door is open **and**
 - No key is in the ignition

Variable	Value	Situation	
Α	1	Lights are on	
	0	Lights are off	
В	1	Door is open	
	0	Door is closed	
С	1	Key is in ignition	
	0	Key is out of ignition	
Р	1	Buzzer is on	
	0	Buzzer is off	

Exercise

Complete the truth table for this circuit and name the equivalent primitive function/gate.

A	В	A+B	A.B	A.B	Р
0	0				
0	1				
1	0				
1	1				
		1		1	

Recap - Laws of Boolean Algebra

Tautology (Idempotent)	$A \cdot A = A$ $A + A = A$		
Complementary	$A \cdot A' = 0$ $A + A' = 1$		
Operating with logic 0 and logic 1	$A \cdot 0 = 0$ $A \cdot 1 = A$ A + 0 = A $A + 1 = 1$		
Commutative	$A \cdot B = B \cdot A$ A + B = B + A		
Associative	(A.B).C = A.B.C = A.(B.C)		
Distributive	A. (B + C) = A.B + A.C A + (B.C) = (A + B).(A + C)		

Summary

- A circuits desired outputs can be specified in terms of inputs
- An Boolean (logical) expression can be derived from the truth table.
- The Boolean expression can then be simplified using either
 - Boolean Algebra
 - 2. Karnaugh Maps

Exercises

- You should be able to:
 - Construct truth tables given boolean expressions
 - Compare expressions using truth tables
 - Produce a sum-of-products form from a truth table by combining minterms
 - Simplify the resulting expression algebraically
 - Represent the expression as a circuit using logic gates