MATH 302

Chapter 5

SECTION 5.2: CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

Contents

What is a Constant Coefficient Homogeneous ODE?	2
Distinct Real Roots: $\sqrt{b^2 - 4ac} > 0$	3
Repeated Roots: $\sqrt{b^2 - 4ac} = 0$	4
Complex Roots: $\sqrt{b^2 - 4ac} < 0$ Complex Numbers	6

Created by: Pierre-Olivier Parisé Fall 2022

WHAT IS A CONSTANT COEFFICIENT HOMOGENEOUS ODE?

We restrict even further the second order ODE. A **second order constant coefficient ODE** is an ODE of the form

$$ay'' + by' + cy = f(x) \tag{1}$$

where a, b, c are fixed numbers and f is a continuous function.

Goal:

Find the solutions to

$$ay'' + by' + cy = 0.$$

We call this the constant coefficient homogeneous ODE.

Trick:

Distinct Real Roots: $\sqrt{b^2 - 4ac} > 0$

Example 1.

a) Find the general solution of

$$y'' + 6y' + 5y = 0.$$

b) Solve the following IVP:

$$y'' + 6y' + 5y = 0,$$

General Fact:

- If the roots of the characteristic polynomial are r_1 and r_2 , then $y_1(x) = e^{r_1x}$ and $y_2 = e^{r_2x}$ are solutions to the ODE.
- The general solutions is given by

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}.$$

Repeated Roots:
$$\sqrt{b^2 - 4ac} = 0$$

Example 2.

a) Find the general solution of

$$y'' + 6y' + 9y = 0.$$

b) Solve the following IVP:

$$y'' + 6y' + 9y = 0$$
, $y(0) = 3$, $y'(0) = -1$.

$\underline{\text{General Facts:}}$

- If the root of the characteristic polynomial is r_1 , then $y_1(x) = e^{r_1x}$ and $y_2(x) = xe^{r_1x}$ are solutions to the ODE.
- The general solution is given by

$$y(x) = e^{r_1 x} (c_1 + c_2 x).$$

Complex Roots: $\sqrt{b^2 - 4ac} < 0$

Example 3.

a) Find the general solution of

$$y'' + 4y' + 13y = 0.$$

b) Solve the following IVP:

$$y'' + 4y + 13y = 0$$
, $y(0) = 2$, $y'(0) = -3$.

Complex Numbers

A complex number is an expression of the form

$$z = \alpha + i\beta$$

where α , β are real numbers and $i^2 = -1$ $(i = \sqrt{-1})$.

Consider $z = \alpha + i\beta$ and $w = \gamma + i\mu$.

- z = w if and only if $\alpha = \gamma$ and $\beta = \mu$. $zw = (\alpha \gamma \beta \mu) + i(\alpha \mu + \beta \gamma)$.

- $z + w = (\alpha + \gamma) + i(\beta + \mu)$.
- $z/w = \frac{\alpha\gamma + \beta\mu}{\gamma^2 + \mu^2} + i\left(\frac{\alpha\gamma \beta\mu}{\gamma^2 + \mu^2}\right)$, if $w \neq 0$.

EXAMPLE 4. If z = 1 + i and w = 1 - i, find

a) z+w.

b) zw.

c) z/w.

EXAMPLE 5. Complete the previous example.

General Facts:

- If $r_1 = \alpha + \beta i$ and $r_2 = \alpha \beta i$ are the roots of the characteristic polynomial, then $y_1(x) = e^{\alpha x} \cos(\beta x)$ and $y_2(x) = e^{\alpha x} \sin(\beta x)$ are solutions to the ODE.
- $\bullet\,$ The general solution has the form

$$y(x) = e^{\alpha x} (c_1 \cos(\beta x) + c_2 \sin(\beta x)).$$