Index-Based Lists

1.1 Abstract Data Types and Structures

- An abstract data type (ADT) is a specification of the desired behavior from the point of view of the user of the data, leaving the implementation details to the programmer.
- A data structure is a concrete representation of data that is from the point of view of an implementer, not a user.

1.2 Index-Based List methods

Method	Description	
size()	(int) number of elements in the store	
isEmpty()	(boolean) whether the list is empty	
get(i)	return element at index i	
set(i,e)	replace the element at i with e and return the replaced element	
add(i,e)	insert element e at index i and shift up elements with indexes >= i	
remove(i)	remove and return the element at index i and shift down indexes >= i	

1.3 Array-based List

Time complexity of get(i) and set(i,e) is O(1) time, as they are independent of the size of the array (N) or the represented list (n) as an array-based implimentation allows for random access.

```
    def get(i: int):
    if i < 0 or i >= n.size() then
    return "Index out of bound"
    else
    return A[i]
```

```
    def set(i: int, e: element):
    if i < 0 or i >= n.size() then
    return "Index out of bound"
    else
    result = A[i]
    A[i] = e
    return result
```

In an operation add(i, e), we must make room for the new element by shifting forward n-i elements A[i], ..., A[n-1]. Time complexity is O(n) in the worst case that i = 0. The same principles apply for remove(i).

```
    def add(i: int, e: element):
    if n = N then
    return "Array is full"
    if i < n then</li>
    for j in [n-1, n-2, ..., i] do
    A[j+1] ← A[j]
    A[i] ← e
    n ← n + 1
```

```
1. def remove(i: int):
       if i < 0 or i >= n then
2.
            return "Index out of bound"
3.
       e \leftarrow A[i]
4.
       if i < n - 1 then
5.
           for j in [i+1, i+2, ..., n-1] do
6.
               A[j] \leftarrow A[j+1]
7.
8.
       n \leftarrow n-1
       return e
9.
```

2

Positional lists

ADT for a list where we store elements at "positions." Position models the abstract notion of place where a single object is stored within a container data structure. Unlike index, this keeps referring to the same entry even after insertion/deletion happens elsewhere in the collection.

2.1 Positional List methods

Method	Description
size()	(int) number of elements in the store
isEmpty()	(boolean) whether the list is empty
first()	returns the position of first element (null if empty)
last()	returns the position of last element (null if empty)
before(p)	return the position immediately before p (null if p is first)
after(p)	returns the position immediately after p (null if p last)
insertBefore(p, e)	inserts e in front of the element at position p
insertAfter(p, e)	inserts e following the element at position p
remove(p)	remove and return the element at position p

2.2 Singly linked Lists

A singly linked list is a concerete data structure that consistes of a sequence of nodes. The list is captured by a reference to the first node of the list, known as the head. Each node in a singly linked lists stores its element and a link to the next node. The last node stores a null reference instead of a link.

1. def insertFirst(e: element):

O(1)

- 2. Instaniate a new node x
- 3. Set e as element of x
- 4. Set x.next to point to head
- 5. Update head to point to x
- 1. **def** removeFirst(e: element):

O(1)

- 2. Update head to point to next node
- 3. Delete the former first node
- 1. **def** insertBefore(p, e):

O(n)

2. To find the predecessor of p we need to follow the links from the "head".

2.3 Doubly linked lists

A very natural way to implement a positional list is with a doublylinked list, so that it is easy/quick to find the position before. Each Node in a Doubly Linked List stores its element, and a link to the previous and next nodes.

def insertBefore(p, e):

O(1)

- 2. Instaniate a new node x
- 3. Set e as element of x
- 4. Set x.next to point to p
- 5. Set x.prev to point to p.prev
- 6. Set p.prev.next to point to x
- 7. Set p.prev to point to x
- 8. return x
- 1. **def** remove(p):

O(1)

- 2. Set p.prev.next to point to p.next
- 3. Set p.next.prev to point to p.prev
- 4. **return** p.element

Method	Description	Time
size()	(int) number of elements in the store	O(1)
isEmpty()	(boolean) whether the list is empty	O(1)
first()	returns p of first element (null if empty)	O(1)
last()	returns p of last element (null if empty)	O(1)
before(p)	return the position before p (null if p is first)	O(1)
after(p)	returns the position after p (null if p last)	O(1)
insertBefore(p, e)	inserts e in front of the element at position p	O(1)
insertAfter(p, e)	inserts e following the element at position p	O(1)
remove(p)	remove and return the element at position p	O(1)

2.4 Array or Linked List implementation

Linked Lists

- good match to positional ADT
- efficient insertion and deletion
- simpler behaviour as collection grows
- modifications can be made as collection iterated over
- space not wasted by list not having maximum capacity

Arrays

- good match to index-based ADT
- caching makes traversal fast in practice
- no extra memory needed to store pointers
- allow random access (retrieve element by index)

3

Stacks and queues

These ADTs are forms of List with restricted insertiosn and removals

- stacks follow last-in-first-out (LIFO).
- queues follows first-in-first-out (FIFO).

3.1 Stacks

- push(e): inserts an element, e
- pop(): removes and returns the last inserted element
- top(): returns the last inserted element without removing it
- size(): returns the number of elements in the stack
- isEmpty(): indicates whether no elements are stored

Applications:

- Keep track of a history that allows undoing such as Web browser history or undo sequence in a text editor.
- Chain of method calls in a language supporting recursion
- Context-free grammars
- Auxiliary data structure for algorithms
- Component of other data structures

Array based implementation

Array has capacity N. Add elements from left to right. A variable t keeps track of the index of the top element. space used is O(N). Each operation takes O(1) time.

```
1. def push(e: element): # O(1)
2. if t = N - 1 then
3. return "Stack is full"
4. else
5. t \leftarrow t + 1
6. S[t] \leftarrow e
```

```
1. def pop():# O(1)2. if isEmpty() then3. return "Stack is empty"4. else5. t \leftarrow t - 16. return S[t+1]
```

```
1. def size():
2. return t+1
```

3.2 Queues

- enqueue(e): inserts an element, e, at the end of the queue
- dequeue(): removes and returns element at the front of the queue
- first(): returns the element at the front without removing it
- size(): returns the number of elements stored
- isEmpty(): indicates whether no elements are stored

Applications:

- Waiting lists, bureaucracy
- Access to shared resources (e.g., printer)
- Multiprogramming
- Auxiliary data structure for algorithms
- Component of other data structures

Array based implementation

Array has capacity N. Space used is O(N). Each operation takes O(1) time. Can wrap around an array. start: index of the front element. end: index past the last element. size: number of stored elements. end = (start + size) mod N, so we only need to keep track of start and size.

```
    def enqueue(e: element): # O(1)
    if size() = N then
    return "Queue is full"
    else
    end ← (start + size()) mod N
    Q[end] ← e
    size ← size + 1
```

```
    def dequeue():

            if isEmpty() then

    return "Queue is empty"
    else
    e ← Q[start]
    start ← (start + 1) mod N
    size ← size - 1
    return e
```