SIGNALS & SYSTEMS

MR. ANKUR JYOTI SARMAH

ASSISTANT PROF., DEPT. OF ELECTRONICS & TELECOM. ENGG.

ASSAM ENGINEERING COLLEGE

 $X(s) = \frac{P(s)}{Q(s)} \qquad \text{and} \quad x(s) \text{ is expressed in forms of } x(s) = \frac{P(s)}{q(s)} \text{, fun } x(e) \text{ is}$ $= \frac{b_0 s^M + b_1 s^{M-1} + b_2 s^{M-2} + + b_{M-1} s + b_M}{a_0 s^N + a_1 s^{N-1} + a_2 s^{N-2} + + a_{N-1} s + a_N} \qquad \text{function}.$

where, P(s) = Numerator polynomial of X(s)Q(s) = Denominator polynomial of X(s)

here, bo, b, by are co-efficients of humariar polynomial and..... and are ", penominator polynomial

$$X(S) = \frac{b_0 \left(s^M + \frac{b_1}{b_0} s^{M-1} + \frac{b_2}{b_0} s^{M-2} + \dots + \frac{b_{M-1}}{b_0} s + \frac{b_M}{b_0}\right)}{a_0 \left(s^N + \frac{a_1}{a_0} s^{N-1} + \frac{a_2}{a_0} s^{N-2} + \dots + \frac{a_{N-1}}{a_0} s + \frac{a_N}{a_0}\right)}$$

$$= G \frac{(s - z_1) (s - z_2) \dots (s - z_M)}{(s - p_1) (s - p_2) \dots (s - p_N)}$$

where,
$$G = \frac{b_0}{a_0} = Scaling factor$$

 $z_1, z_2,, z_M = Roots of numerator polynomial, P(s)$

 $p_1, p_2,, p_N = Roots of denominator polynomial, Q(s)$

The years and pous are known or infinity.

Auro extreme value, zero or infinity.

genis at which XIST becomes yers.

Poly at which XIST becomes infinity.

Representation of Poles and Zeros in s-Plane

We know that, Complex frequency, $s = \sigma + j\Omega$

where,
$$\sigma$$
 = Real part of s, Ω = Imaginary part of s

Hence the s-plane is a complex plane, with σ on real axis and Ω on imaginary axis as shown in fig 3.5. In the s-plane, the zeros are marked by small circle "o" and the poles are marked by letter "X".

For example consider the rational function of s shown below.

$$X(s) = \frac{(s+2)(s+5)}{s(s^2+6s+13)}$$

$$s = \frac{-6 \pm \sqrt{36 - 4 \times 13}}{2} = \frac{-6 \pm j4}{2} = -3 + j2, -3 - j2$$

$$\therefore s^{2} + 6s + 13 = (s + 3 - j2)(s + 3 + j2)$$

$$\therefore X(s) = \frac{(s+2)(s+5)}{s(s^{2} + 6s + 13)} = \frac{(s+2)(s+5)}{s(s+3-j2)(s+3+j2)}$$

The zeros of the above function are,

$$z_1 = -2$$
$$z_2 = -5$$

The poles of the above function are,

$$p_1 = 0$$

$$p_2 = -3 + j2$$

$$p_3 = -3 - j2$$

