Viewing in 3D

Dr. Ayatullah F. Mollah
Department of Computer Science and Engineering,
Aliah University

3-D Viewing Process

Viewing Coordinate System

Identify viewer position relative to scene

Viewer "looks through" a window

Must specify position and view direction

View Plane

View plane defined by normal vector (N)

View Reference Points

- P_r: a point in the scene we are looking at
- P₀: a distant point from which we're looking
- Note P_r , P_0 , and N are expressed in $x_m y_m z_m$

Look-Up Vector

View-plane normal vector and reference point are not enough

We also need to specify orientation of view(er)

View-up vector (V) must be normal to N

Viewing Coordinates

Changing Views (1)

Changing Views (2)

Maintain N, change P_r and P_o

Transformation from WC to VC

- Transformation sequences
 - Translate the view reference point to the origin of the WC system
 - 2. Apply rotations to align the x_v , y_v , and z_v axes with the world axes

General sequence of translate-rotate transformation

Transformation from WC to VC (cont')

Translation

- view reference point(x_0 , y_0 , z_0)

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation

- rotate around the world x_w axis to bring z_v into the $x_w z_w$ plane
- rotate around the world \boldsymbol{y}_w axis to align the \boldsymbol{z}_w and \boldsymbol{z}_v axis
- final rotation is about the z_w axis to align the y_w and y_v axis

Transformation from WC to VC (cont')

- Rotation by uvn system
 - Calculate unit uvn vectors
 - N : view-plane normal vector
 - V : view-up vector
 - U : perpendicular to both N and V

$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = (n_1, n_2, n_3)$$

$$\mathbf{u} = \frac{\mathbf{V} \times \mathbf{N}}{|\mathbf{V} \times \mathbf{N}|} = (u_1, u_2, u_3)$$

$$\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_1, v_2, v_3)$$

Form the composite rotation matrix

$$\mathbf{R} = \begin{bmatrix} u_1 & u_2 & u_3 & 0 \\ v_1 & v_2 & v_3 & 0 \\ n_1 & n_2 & n_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{WC,VC} = \mathbf{R} \cdot \mathbf{T}$$

Projection

- General definition
 - Transform points in n-space to m-space(m<n)
- In computer graphics

Map viewing coordinates to 2D screen coordinates

Taxonomy of Projections

Parallel & Perspective

Parallel Projection

Perspective Projection

Parallel Projection

Center of projection is at infinity

Direction of projection (DOP) same for all

Orthographic & Oblique

- Orthographic parallel projection
 - the projection is perpendicular to the view plane

Oblique parallel projection

The projectors are inclined with respect to the view plane

Orthographic Projections

DOP perpendicular to view plane

Orthographic Coordinates

$$x_p = x$$
, $y_p = y$

Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles

Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles

Perspective vs. Parallel

- Perspective projection
 - + Size varies inversely with distance looks realistic
 - Distance and angles are not(in general) preserved
 - Parallel line do not (in general) remain parallel
- Parallel projection
 - + Good for exact measurements
 - + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

Classical Viewing

Front elevation

Isometric

Elevation oblique

One-point perspective

Plan oblique

Three-point perspective

(Thank You)

