# Sandbox Results

March 6, 2012

# 1 The only Flux plot(s)



Figure 1: Energy dependent flux in both cells of the reactor, generated by MCNPX and VBUDSII.



Figure 2: Energy dependent flux in both cells of the reactor, generated by MCNPX, VBUDSII and VBUDSI.



Figure 3: Energy dependent flux in both cells of the reactor, generated by MCNPX and VBUDSI.

# 1.1 Cross sections in cell H2O



Figure 4: Energy-dependent cross sections for the H2O cell, generated by VBUDSII.

### 1.1.1 Cross sections in cell H2O, for ZAID 222



Figure 5: Energy-dependent cross sections in the H2O cell for ZAID 222, generated by both MCNPX and VBUDSII.

#### 1.1.2 Cross sections in cell H2O, for ZAID 222, separated by reaction type



Figure 6: Energy-dependent cross sections in the H2O cell for ZAID 222 and MT 7, generated by both MCNPX and VBUDSII.



Figure 7: Energy-dependent cross sections in the H2O cell for ZAID 222 and MT 2, generated by both MCNPX and VBUDSII.



Figure 8: Energy-dependent cross sections in the H2O cell for ZAID 222 and MT 102, generated by both MCNPX and VBUDSII.

# 1.2 Cross sections in cell UO2



Figure 9: Energy-dependent cross sections for the UO2 cell, generated by VBUDSII.

#### 1.2.1 Cross sections in cell UO2, for ZAID 92235



Figure 10: Energy-dependent cross sections in the UO2 cell for ZAID 92235, generated by both MCNPX and VBUDSII.

## 1.2.2 Cross sections in cell UO2, for ZAID 92235, separated by reaction type



Figure 11: Energy-dependent cross sections in the UO2 cell for ZAID 92235 and MT 7, generated by both MCNPX and VBUDSII.



Figure 12: Energy-dependent cross sections in the UO2 cell for ZAID 92235 and MT 2, generated by both MCNPX and VBUDSII.



Figure 13: Energy-dependent cross sections in the UO2 cell for ZAID 92235 and MT 102, generated by both MCNPX and VBUDSII.



Figure 14: Energy-dependent cross sections in the UO2 cell for ZAID 92235 and MT 18, generated by both MCNPX and VBUDSII.

#### 1.2.3 Cross sections in cell UO2, for ZAID 92238



Figure 15: Energy-dependent cross sections in the UO2 cell for ZAID 92238, generated by both MCNPX and VBUDSII.

#### 1.2.4 Cross sections in cell UO2, for ZAID 92238, separated by reaction type



Figure 16: Energy-dependent cross sections in the UO2 cell for ZAID 92238 and MT 7, generated by both MCNPX and VBUDSII.



Figure 17: Energy-dependent cross sections in the UO2 cell for ZAID 92238 and MT 2, generated by both MCNPX and VBUDSII.



Figure 18: Energy-dependent cross sections in the UO2 cell for ZAID 92238 and MT 102, generated by both MCNPX and VBUDSII.



Figure 19: Energy-dependent cross sections in the UO2 cell for ZAID 92238 and MT 18, generated by both MCNPX and VBUDSII.

#### 1.2.5 Cross sections in cell UO2, for ZAID 8016



Figure 20: Energy-dependent cross sections in the UO2 cell for ZAID 8016, generated by both MCNPX and VBUDSII.

### 1.2.6 Cross sections in cell UO2, for ZAID 8016, separated by reaction type



Figure 21: Energy-dependent cross sections in the UO2 cell for ZAID 8016 and MT 7, generated by both MCNPX and VBUDSII.



Figure 22: Energy-dependent cross sections in the UO2 cell for ZAID 8016 and MT 2, generated by both MCNPX and VBUDSII.



Figure 23: Energy-dependent cross sections in the UO2 cell for ZAID 8016 and MT 102, generated by both MCNPX and VBUDSII.

MT 7: total

MT 4: inelastic scattering MT 2: elastic scattering

MT 102: radiative capture

MT 18: fission

XS error 1: nanmean(abs(V-M)./M) XS error 2: V'\*M/norm(V)/norm(M)

 $XS \ error \ 3: \ \log 10(V) \ "*log10(M) / norm(log10(V)) / norm(log10(M))$ 

| cell | ZAID   | МТ  | XS error 1           | XS error 2 | XS error 3 | VBUDSII RR           | MCNPX RR             | RR error             |
|------|--------|-----|----------------------|------------|------------|----------------------|----------------------|----------------------|
| 1    | 222    | 7   | 1.3                  | NaN        | NaN        | 4.8                  | 2.2                  | 1.18                 |
| 1    | 222    | 2   | 1.3                  | NaN        | NaN        | 4.79                 | 2.2                  | 1.18                 |
| 1    | 222    | 102 | 0.9                  | NaN        | NaN        | $9.91 \cdot 10^{-3}$ | $5.63 \cdot 10^{-3}$ | 0.76                 |
| 2    | 92,235 | 7   | $1.73 \cdot 10^{-2}$ | NaN        | NaN        | 10.27                | 11.2                 | $8.3 \cdot 10^{-2}$  |
| 2    | 92,235 | 2   | $7.38 \cdot 10^{-2}$ | NaN        | NaN        | 1.1                  | 1.2                  | $7.99 \cdot 10^{-2}$ |
| 2    | 92,235 | 102 | $2.65\cdot10^{-2}$   | NaN        | NaN        | 1.58                 | 1.7                  | $7.51 \cdot 10^{-2}$ |
| 2    | 92,235 | 18  | $1.8\cdot 10^{-2}$   | NaN        | NaN        | 7.6                  | 8.2                  | $7.39 \cdot 10^{-2}$ |
| 2    | 92,238 | 7   | $3.65 \cdot 10^{-2}$ | NaN        | NaN        | 1.15                 | 1.39                 | 0.17                 |
| 2    | 92,238 | 2   | 0.11                 | NaN        | NaN        | 1.04                 | 1.14                 | $8.5 \cdot 10^{-2}$  |
| 2    | 92,238 | 102 | $9.02 \cdot 10^{-2}$ | NaN        | NaN        | 0.11                 | 0.12                 | $6.25 \cdot 10^{-2}$ |
| 2    | 92,238 | 18  | 0.47                 | NaN        | NaN        | $6.35 \cdot 10^{-3}$ | $1.23 \cdot 10^{-2}$ | 0.48                 |
| 2    | 8,016  | 7   | $6.78 \cdot 10^{-3}$ | NaN        | NaN        | 0.38                 | 0.45                 | 0.16                 |
| 2    | 8,016  | 2   | $1.03 \cdot 10^{-2}$ | NaN        | NaN        | 0.38                 | 0.45                 | 0.16                 |
| 2    | 8,016  | 102 | $9.87 \cdot 10^{-3}$ | NaN        | NaN        | $2.64 \cdot 10^{-6}$ | $2.86 \cdot 10^{-6}$ | $7.67 \cdot 10^{-2}$ |