## PMR3508 - Aprendizado de Máquina e Reconhecimento de Padrões

Testando kNN com a base adult obtida no UCI repository. Iniciando com carregamento da base e com análise básica da base e dos atributos.

Autor: Fabio G. Cozman Data: 09/08/2018

```
In [1]: import pandas as pd import sklearn
```

```
In [3]: adult.shape
```

Out[3]: (32561, 15)

```
In [4]: | adult.head()
```

Out[4]:

|   | Age | Workclass            | fnlwgt | Education | Education-<br>Num | Martial<br>Status          | Occupation            | Reli |
|---|-----|----------------------|--------|-----------|-------------------|----------------------------|-----------------------|------|
| 0 | 39  | State-gov            | 77516  | Bachelors | 13                | Never-<br>married          | Adm-clerical          | Not- |
| 1 | 50  | Self-emp-<br>not-inc | 83311  | Bachelors | 13                | Married-<br>civ-<br>spouse | Exec-<br>managerial   | Hus  |
| 2 | 38  | Private              | 215646 | HS-grad   | 9                 | Divorced                   | Handlers-<br>cleaners | Not- |
| 3 | 53  | Private              | 234721 | 11th      | 7                 | Married-<br>civ-<br>spouse | Handlers-<br>cleaners | Hus  |
| 4 | 28  | Private              | 338409 | Bachelors | 13                | Married-<br>civ-<br>spouse | Prof-<br>specialty    | Wif∈ |

| In [5]: | adult["Country"].value_counts() |          |  |  |  |  |  |  |  |
|---------|---------------------------------|----------|--|--|--|--|--|--|--|
| Out[5]: | United-States                   | 29170    |  |  |  |  |  |  |  |
|         | Mexico                          | 643      |  |  |  |  |  |  |  |
|         | Philippines                     | 198      |  |  |  |  |  |  |  |
|         | Germany                         | 137      |  |  |  |  |  |  |  |
|         | Canada                          | 121      |  |  |  |  |  |  |  |
|         | Puerto-Rico                     | 114      |  |  |  |  |  |  |  |
|         | El-Salvador                     | 106      |  |  |  |  |  |  |  |
|         | India                           | 100      |  |  |  |  |  |  |  |
|         | Cuba                            | 95       |  |  |  |  |  |  |  |
|         | England                         | 90       |  |  |  |  |  |  |  |
|         | Jamaica                         | 81       |  |  |  |  |  |  |  |
|         | South                           | 80       |  |  |  |  |  |  |  |
|         | China                           | 75       |  |  |  |  |  |  |  |
|         | Italy                           | 73       |  |  |  |  |  |  |  |
|         | Dominican-Republic              | 70       |  |  |  |  |  |  |  |
|         | Vietnam                         | 67       |  |  |  |  |  |  |  |
|         | Guatemala                       | 64       |  |  |  |  |  |  |  |
|         | Japan                           | 62       |  |  |  |  |  |  |  |
|         | Poland                          | 60       |  |  |  |  |  |  |  |
|         | Columbia                        | 59       |  |  |  |  |  |  |  |
|         | Taiwan                          | 51       |  |  |  |  |  |  |  |
|         | Haiti                           | 44       |  |  |  |  |  |  |  |
|         | Iran                            | 43<br>37 |  |  |  |  |  |  |  |
|         | Portugal<br>Nicaragua           | 37<br>34 |  |  |  |  |  |  |  |
|         | Peru                            | 34       |  |  |  |  |  |  |  |
|         | Greece                          | 29       |  |  |  |  |  |  |  |
|         | France                          | 29       |  |  |  |  |  |  |  |
|         | Ecuador                         | 28       |  |  |  |  |  |  |  |
|         | Ireland                         | 24       |  |  |  |  |  |  |  |
|         | Hong                            | 20       |  |  |  |  |  |  |  |
|         | Trinadad&Tobago                 | 19       |  |  |  |  |  |  |  |
|         | Cambodia                        | 19       |  |  |  |  |  |  |  |
|         | Laos                            | 18       |  |  |  |  |  |  |  |
|         | Thailand                        | 18       |  |  |  |  |  |  |  |
|         | Yugoslavia                      | 16       |  |  |  |  |  |  |  |
|         | Outlying-US(Guam-USVI-etc)      | 14       |  |  |  |  |  |  |  |
|         | Honduras                        | 13       |  |  |  |  |  |  |  |
|         | Hungary                         | 13       |  |  |  |  |  |  |  |
|         | Scotland                        | 12       |  |  |  |  |  |  |  |
|         | Holand-Netherlands              | 1        |  |  |  |  |  |  |  |
|         | Name: Country, dtype: int64     |          |  |  |  |  |  |  |  |
|         |                                 |          |  |  |  |  |  |  |  |

## In [6]: import matplotlib.pyplot as plt

In [7]: adult["Age"].value\_counts().plot(kind="bar")

Out[7]: <matplotlib.axes.\_subplots.AxesSubplot at 0xa0b3c10f0>



In [8]: adult["Sex"].value\_counts().plot(kind="bar")

Out[8]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10a1ba208>



In [9]: adult["Education"].value\_counts().plot(kind="bar")

Out[9]: <matplotlib.axes.\_subplots.AxesSubplot at 0xa0b7d2a58>



In [10]: adult["Occupation"].value\_counts().plot(kind="bar")

Out[10]: <matplotlib.axes.\_subplots.AxesSubplot at 0xa0b89b0f0>



Retirando linhas com dados faltantes.

```
In [11]: nadult = adult.dropna()
```

| Aula - <sup>-</sup> | Testando | kNN | com a | base adult |
|---------------------|----------|-----|-------|------------|
|                     |          |     |       |            |

| In [12]: | nadult |  |
|----------|--------|--|

|    | Age | Workclass            | fnlwgt | Education        | Education-<br>Num | Martial<br>Status             | Occupatio             |
|----|-----|----------------------|--------|------------------|-------------------|-------------------------------|-----------------------|
| 0  | 39  | State-gov            | 77516  | Bachelors        | 13                | Never-<br>married             | Adm-clerica           |
| 1  | 50  | Self-emp-<br>not-inc | 83311  | Bachelors        | 13                | Married-<br>civ-<br>spouse    | Exec-<br>manageria    |
| 2  | 38  | Private              | 215646 | HS-grad          | 9                 | Divorced                      | Handlers-<br>cleaners |
| 3  | 53  | Private              | 234721 | 11th             | 7                 | Married-<br>civ-<br>spouse    | Handlers-<br>cleaners |
| 4  | 28  | Private              | 338409 | Bachelors        | 13                | Married-<br>civ-<br>spouse    | Prof-<br>specialty    |
| 5  | 37  | Private              | 284582 | Masters          | 14                | Married-<br>civ-<br>spouse    | Exec-<br>manageria    |
| 6  | 49  | Private              | 160187 | 9th              | 5                 | Married-<br>spouse-<br>absent | Other-<br>service     |
| 7  | 52  | Self-emp-<br>not-inc | 209642 | HS-grad          | 9                 | Married-<br>civ-<br>spouse    | Exec-<br>manageria    |
| 8  | 31  | Private              | 45781  | Masters          | 14                | Never-<br>married             | Prof-<br>specialty    |
| 9  | 42  | Private              | 159449 | Bachelors        | 13                | Married-<br>civ-<br>spouse    | Exec-<br>manageria    |
| 10 | 37  | Private              | 280464 | Some-<br>college | 10                | Married-<br>civ-<br>spouse    | Exec-<br>manageria    |
| 11 | 30  | State-gov            | 141297 | Bachelors        | 13                | Married-<br>civ-<br>spouse    | Prof-<br>specialty    |
| 12 | 23  | Private              | 122272 | Bachelors        | 13                | Never-<br>married             | Adm-clerica           |
| 13 | 32  | Private              | 205019 | Assoc-<br>acdm   | 12                | Never-<br>married             | Sales                 |

|    | Age | Workclass            | fnlwgt | Education      | Education-<br>Num | Martial<br>Status          | Occupatio            |
|----|-----|----------------------|--------|----------------|-------------------|----------------------------|----------------------|
| 15 | 34  | Private              | 245487 | 7th-8th        | 4                 | Married-<br>civ-<br>spouse | Transport-<br>moving |
| 16 | 25  | Self-emp-<br>not-inc | 176756 | HS-grad        | 9                 | Never-<br>married          | Farming-<br>fishing  |
| 17 | 32  | Private              | 186824 | HS-grad        | 9                 | Never-<br>married          | Machine-or inspct    |
| 18 | 38  | Private              | 28887  | 11th           | 7                 | Married-<br>civ-<br>spouse | Sales                |
| 19 | 43  | Self-emp-<br>not-inc | 292175 | Masters        | 14                | Divorced                   | Exec-<br>manageria   |
| 20 | 40  | Private              | 193524 | Doctorate      | 16                | Married-<br>civ-<br>spouse | Prof-<br>specialty   |
| 21 | 54  | Private              | 302146 | HS-grad        | 9                 | Separated                  | Other-<br>service    |
| 22 | 35  | Federal-<br>gov      | 76845  | 9th            | 5                 | Married-<br>civ-<br>spouse | Farming-<br>fishing  |
| 23 | 43  | Private              | 117037 | 11th           | 7                 | Married-<br>civ-<br>spouse | Transport-<br>moving |
| 24 | 59  | Private              | 109015 | HS-grad        | 9                 | Divorced                   | Tech-<br>support     |
| 25 | 56  | Local-gov            | 216851 | Bachelors      | 13                | Married-<br>civ-<br>spouse | Tech-<br>support     |
| 26 | 19  | Private              | 168294 | HS-grad        | 9                 | Never-<br>married          | Craft-repai          |
| 28 | 39  | Private              | 367260 | HS-grad        | 9                 | Divorced                   | Exec-<br>manageria   |
| 29 | 49  | Private              | 193366 | HS-grad        | 9                 | Married-<br>civ-<br>spouse | Craft-repail         |
| 30 | 23  | Local-gov            | 190709 | Assoc-<br>acdm | 12                | Never-<br>married          | Protective-<br>serv  |

|       | Age | Workclass | fnlwgt | Education        | Education-<br>Num | Martial<br>Status          | Occupatio            |
|-------|-----|-----------|--------|------------------|-------------------|----------------------------|----------------------|
| 31    | 20  | Private   | 266015 | Some-<br>college | 10                | Never-<br>married          | Sales                |
|       |     |           |        |                  |                   |                            |                      |
| 32526 | 32  | Private   | 211349 | 10th             | 6                 | Married-<br>civ-<br>spouse | Transport-<br>moving |
| 32527 | 22  | Private   | 203715 | Some-<br>college | 10                | Never-<br>married          | Adm-cleric           |
| 32528 | 31  | Private   | 292592 | HS-grad          | 9                 | Married-<br>civ-<br>spouse | Machine-or           |
| 32529 | 29  | Private   | 125976 | HS-grad          | 9                 | Separated                  | Sales                |
| 32532 | 34  | Private   | 204461 | Doctorate        | 16                | Married-<br>civ-<br>spouse | Prof-<br>specialty   |
| 32533 | 54  | Private   | 337992 | Bachelors        | 13                | Married-<br>civ-<br>spouse | Exec-<br>manageria   |
| 32534 | 37  | Private   | 179137 | Some-<br>college | 10                | Divorced                   | Adm-cleric           |
| 32535 | 22  | Private   | 325033 | 12th             | 8                 | Never-<br>married          | Protective-<br>serv  |
| 32536 | 34  | Private   | 160216 | Bachelors        | 13                | Never-<br>married          | Exec-<br>manageria   |
| 32537 | 30  | Private   | 345898 | HS-grad          | 9                 | Never-<br>married          | Craft-repai          |
| 32538 | 38  | Private   | 139180 | Bachelors        | 13                | Divorced                   | Prof-<br>specialty   |
| 32540 | 45  | State-gov | 252208 | HS-grad          | 9                 | Separated                  | Adm-cleric           |
| 32543 | 45  | Local-gov | 119199 | Assoc-<br>acdm   | 12                | Divorced                   | Prof-<br>specialty   |
| 32544 | 31  | Private   | 199655 | Masters          | 14                | Divorced                   | Other-<br>service    |

|       | Age | Workclass            | fnlwgt | Education        | Education-<br>Num | Martial<br>Status          | Occupatio             |
|-------|-----|----------------------|--------|------------------|-------------------|----------------------------|-----------------------|
| 32545 | 39  | Local-gov            | 111499 | Assoc-<br>acdm   | 12                | Married-<br>civ-<br>spouse | Adm-clerica           |
| 32546 | 37  | Private              | 198216 | Assoc-<br>acdm   | 12                | Divorced                   | Tech-<br>support      |
| 32547 | 43  | Private              | 260761 | HS-grad          | 9                 | Married-<br>civ-<br>spouse | Machine-or<br>inspct  |
| 32548 | 65  | Self-emp-<br>not-inc | 99359  | Prof-school      | 15                | Never-<br>married          | Prof-<br>specialty    |
| 32549 | 43  | State-gov            | 255835 | Some-<br>college | 10                | Divorced                   | Adm-clerica           |
| 32550 | 43  | Self-emp-<br>not-inc | 27242  | Some-<br>college | 10                | Married-<br>civ-<br>spouse | Craft-repai           |
| 32551 | 32  | Private              | 34066  | 10th             | 6                 | Married-<br>civ-<br>spouse | Handlers-<br>cleaners |
| 32552 | 43  | Private              | 84661  | Assoc-voc        | 11                | Married-<br>civ-<br>spouse | Sales                 |
| 32553 | 32  | Private              | 116138 | Masters          | 14                | Never-<br>married          | Tech-<br>support      |
| 32554 | 53  | Private              | 321865 | Masters          | 14                | Married-<br>civ-<br>spouse | Exec-<br>manageria    |
| 32555 | 22  | Private              | 310152 | Some-<br>college | 10                | Never-<br>married          | Protective-<br>serv   |
| 32556 | 27  | Private              | 257302 | Assoc-<br>acdm   | 12                | Married-<br>civ-           | Tech-<br>support      |

Fazendo o mesmo processo com os dados de teste.

```
In [13]: testAdult = pd.read csv("/Users/imac/Desktop/HOME/Didatico/Aulas/Grad
            uacao/PMR3508/2018/Datasets/Adult-UCI/adult.test.txt",
                    names=[
                    "Age", "Workclass", "fnlwgt", "Education", "Education-Num", "
            Martial Status",
                    "Occupation", "Relationship", "Race", "Sex", "Capital Gain",
            "Capital Loss",
                    "Hours per week", "Country", "Target"],
                    sep=r'\s*,\s*'
                    engine='python',
                    na values="?")
  In [14]: nTestAdult = testAdult.dropna()
Primeiro teste: seleção de atributos numéricos, com kNN para k=3.
  In [15]: Xadult = nadult[["Age","Education-Num","Capital Gain", "Capital Los
            s", "Hours per week"]]
  In [16]: Yadult = nadult.Target
  In [17]: XtestAdult = nTestAdult[["Age", "Education-Num", "Capital Gain", "Capit
            al Loss", "Hours per week"]]
  In [18]: YtestAdult = nTestAdult.Target
  In [19]: from sklearn.neighbors import KNeighborsClassifier
  In [20]: knn = KNeighborsClassifier(n neighbors=3)
  In [21]: from sklearn.model selection import cross val score
  In [22]: scores = cross val score(knn, Xadult, Yadult, cv=10)
  In [23]: | scores
  Out[23]: array([0.79549221, 0.80841896, 0.80609877, 0.79880676, 0.80437666,
                   0.81266578, 0.79608753, 0.8030504, 0.79104478, 0.81525705)
  In [24]: knn.fit(Xadult, Yadult)
  Out[24]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowsk
           i',
                       metric_params=None, n_jobs=1, n_neighbors=3, p=2,
                       weights='uniform')
  In [25]: YtestPred = knn.predict(XtestAdult)
```

Outro teste: mesmos dados, porém kNN com k=30. Melhor resultado obtido.

Passando todos os dados não-numéricos para valores numéricos, e fazendo alguns testes com vários conjuntos de atributos (mantendo k=30, pois foi o valor de k que levou a melhor acurácia).

```
In [35]: from sklearn import preprocessing
In [36]: numAdult = nadult.apply(preprocessing.LabelEncoder().fit_transform)
In [37]: numTestAdult = nTestAdult.apply(preprocessing.LabelEncoder().fit_transform)
In [38]: Xadult = numAdult.iloc[:,0:14]
```

```
In [39]: Yadult = numAdult.Target
In [40]: XtestAdult = numTestAdult.iloc[:,0:14]
In [41]: YtestAdult = numTestAdult.Target
In [42]: knn = KNeighborsClassifier(n neighbors=30)
In [43]: knn.fit(Xadult, Yadult)
Out[43]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowsk
         i',
                    metric params=None, n jobs=1, n neighbors=30, p=2,
                    weights='uniform')
In [44]: YtestPred = knn.predict(XtestAdult)
In [45]: | accuracy score(YtestAdult,YtestPred)
Out[45]: 0.7837317397078353
         Xadult = numAdult[["Age", "Workclass", "Education-Num", "Martial Stat
In [46]:
         us",
                 "Occupation", "Relationship", "Race", "Sex", "Capital Gain",
         "Capital Loss",
                 "Hours per week", "Country"]]
In [47]: XtestAdult = numTestAdult[["Age", "Workclass", "Education-Num", "Mart
         ial Status",
                 "Occupation", "Relationship", "Race", "Sex", "Capital Gain",
         "Capital Loss",
                 "Hours per week", "Country"]]
In [48]: knn = KNeighborsClassifier(n neighbors=30)
In [49]: knn.fit(Xadult,Yadult)
Out[49]: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowsk
         i',
                    metric params=None, n jobs=1, n neighbors=30, p=2,
                    weights='uniform')
In [50]: YtestPred = knn.predict(XtestAdult)
In [51]: | accuracy score(YtestAdult,YtestPred)
Out[51]: 0.8284196547144754
In [52]: Xadult = numAdult[["Age", "Workclass", "Education-Num",
                 "Occupation", "Race", "Sex", "Capital Gain", "Capital Loss",
                 "Hours per week"]]
```

Out[57]: 0.8223107569721115