Event, Emotion and Causality in Commonsense View

虞扬 20221019

"Millions of basic facts and understanding possessed by most people"

Encyclopedic Knowledge: (《猛虎行》, 作者, 李白)

Factual Knowledge: (中华人民共和国, 首都, 北京)

Commonsense Knowledge: (鸟, CapableOf, 飞翔)

- A. The scale of commonsense knowledge could be enormous
- B. A kind of preference rather than fixed fact
- C. Implicit in Text, and more conceptual

Eventuality Dataset

Atomic

[2020] Event-Centered

	Count	#words
# triples: If-Event-Then-*	877,108	-
- Mental-State	212,598	-
- Event	521,334	-
- Persona	143,176	-
# nodes: If-Event-Then-*	309,515	2.7
- Mental-State	51,928	2.1
- Event	245,905	3.3
- Persona	11,495	1.0
Base events	24,313	4.6
# nodes appearing > 1	47,356	_

[2020] Mental-Event-Entity

	Head	Relation
SICAL-ENTITY		ObjectUse
	bread	AtLocation*
	bread	MadeUpOf
П- П		HasProperty*
ICA		CapableOf*
HYS	baker	Desires*
<u>, </u>		Not Desires*
VT-CENTERED		IsAfter
		HasSubEvent
	X runs out	IsBefore
	of steam	HinderedBy
Ę		Causes
VE		xReason
<u> </u>	X watches anyway	isFilledBy
		xNeed
Z		xAttr
TIO	X runs out of steam	xEffect
AL-INTERAC	or steam	xReact
		xWant
		xIntent
OCI	X votes	oEffect
0	for Y	oReact

oWant

Event Mining

ASER

	# Eventuality	# Relation	# Relation Types
FrameNet	27,691	1,709	7
ACE	3,290	0	0
PropBank	112,917	0	0
NomBank	114,576	0	0
TimeBank	7,571	8,242	1
OMCS (Only include edges about eventualities)	74,989	116,097	4
Event2Mind	24,716	57,097	3
ProPora	2,406	16,269	1
ATOMIC	309,515	877,108	9
ATOMIC-2020	638,128	1,331,113	23
GLUECOSE	286,753	304,099	10
Knowlywood	964,758	2,644,415	4
ASER (core)	52,940,258	52,296,498	14
ASER (full)	438,648,952	648,514,465	14
ASER (concept)	15,640,017	224,213,142	14

Concept

ASER: A Large-scale Eventuality Knowledge Graph. WWW. 2020

ASER: Towards Large-scale Commonsense Knowledge Acquisition via Higher-order Selectional Preference over Eventualities. Artificial Intelligence. 2022

TransOMCS & DISCOS

TransOMCS

To ConceptNet-like Commonsense

DISCOS

To ATOMIC-like Commonsense

In Downstream Task (Conversation)

Problems:

when a friend in **distress** tells us that he recently **adopted a cat**.

- 1. finds out he has allergies
- 2. becomes less lonely
- 3. finds a cat at the animal shelter

ATOMIC

Selectional Preference

- A. Event Centric
 Emotion can help (Persona)
- B. Events in ATOMIC are isolated follow Dialog Flow (Context)

Flow-Centered

			-
Relation	ASER (full)	ASER (core)	ASER (concept)
Precedence	14,058,213	1,790,016	4,798,015
Succession	4,939,291	663,183	1,963,820
Synchronous	19,464,898	3,123,042	8,013,943
Reason	9,775,829	2,205,076	6,439,128
Result	16,153,925	2,012,311	6,718,666
Condition	18,052,484	3,160,271	8,063,967
Contrast	59,333,901	8,655,661	24,978,311
Concession	5,684,395	477,155	1,499,276
Conjunction	82,121,343	13,978,907	45,597,200
Instantiation	1,278,381	18,496	93,266
Restatement	1,304,095	65,753	242,301
Alternative	3,539,892	583,174	123,883
ChosenAlternative	647,228	35,406	1,843,140
Exception	106,000	20,155	93,412
Co-Occurrence	412,054,590	49,232,161	113,744,814
Overall	648,514,465	86,020,767	224,213,142

Mapping statistics of ATOMIC nodes and edges in ASER

Relation	Nodes	Edges	Avg. Shortest Path Length
oEffect	31.1%	25.36%	2.41
oReact	87.3%	51.53%	2.22
oWant	61.6%	36.95%	2.47
xAttr	95.8%	53.67%	2.38
xEffect	33.1%	21.81%	2.51
xIntent	33.8%	21.06%	2.56
xNeed	52.9%	24.91%	2.67
xReact	88.7%	52.66%	2.25
xWant	58.8%	30.60%	2.59
Average	62.9%	35.91%	2.44

- 1. Bad Coverage on Causality-related Relations
- 2. Emotion-related clues are easier to mine

Unit

8

1. Word

Suicide is one of the leading causes of death.

Cause

Financial stress is one of the main causes of divorce.

3. Clause

We play with a steady beat so that dancers can follow it.

4. Event

A car travelling from Guizhou to Guangdong collided head-on with a bush results the ten people, six men and four women, including the driver, died at the scene.

Effect

Causality Extraction

1.Simple Causality

[Financial stress] is one of the main causes of [divorce].

2.Embedded Causality

3. Cross Causality

Traditional BIO Tagging

"B" for Begin
"I" for Inside
"O" for Other

Causality Extraction

C for Cause E for Effect

Embedded Causality

Emb for this

CISAN

CISAN

Domain-augmented

KA-CNN

Multi-scale event causality extraction via simultaneous knowledge-attention and convolutional. Expert Systems. 2022

Model	SemEval2010 (1)	CEC (2)	Financial (4)
BiLSTM+CRF	73.20	68.74	74.75
CNN+BiLSTM+CRF	74.20	71.68	74.31
CNN+Att+BiLSTM+CRF (CSNN)	73.71	70.61	74.59
CISAN(w/o Bert)	74.20	72.49	75.99
Bert-CSNN	75.69	74.61	76.23
CISAN (unigram)	77.65	75.26	76.07
CISAN (bigram)	77.26	75.93	76.70
CISAN (trigram)	77.14	74.45	76.29
CISAN (quagram)	77.35	75.27	77.09
KA-CNN (w/o CNN)	-	73.68	77.90
KA-CNN (w/o CALN)	-	72.03	75.49
KA-CNN	-	74.39	80.83

Causality Score:

Hits Score:

H(X, Y) / H(Y, X)

Similarity Score:

 $\sum_{i=k}^{i=0} Similarity_Score("X may cause Y", S_i) / K$

NLI Score(CaKNowLI):

$$(X, Y) =>$$
 "X causes Y" $=> \sum_{i=k}^{i=0} NLI_Score(prompt(X, Y)) / K$ "X is the reason for Y" BERT ... (NLI)

Definition: ECPE

```
c_1: Yesterday morning,

c_2^C: a police man visited the old man with the lost money,

c_3^C: and told him that the thief was caught.

c_4^E: The old man was very happy,

c_5: and deposited the money in the bank.
```

 $\begin{aligned} & Document \\ & d = [c_1, c_2, \dots, c_{|d|}] \end{aligned}$


```
(c_4^E): The old man was very happy, c_2^C: a police man visited the old man with the lost money)
```

```
(c_4^E: The old man was very happy, c_3^C: and told him that the thief was caught)
```

Clause Pairs
$$P = \{..., (c^e, c^c), ...\}$$

Taxonomy

 c_1 : At first I thought this restaurant was good,

 $c_2^{\mathcal{C}}$: but I was tired of going to the same restaurant always,

 c_3^C : I want to change to another restaurant.

 c_4^E : but my friend says that it is affordable,

 c_5 : which makes me disgusted.

A. Pipeline

B. Sequence Labeling

ECPE-2Step

A. Emotion & cause Extraction

B. Pairing & Filtering

$$P_{all} = \{..., (c_i^e, c_j^c), ...\}$$

$$x_{(c_i^e, c_j^c)} = [s_i^e; s_j^c; v^d]$$

$$\hat{y}_{(c_i^e, c_j^c)} = \delta(\theta^T x_{(c_i^e, c_j^c)})$$

$$c_i = [v_{i,1}, v_{i,2}, v_{i,3}, v_{i,4}, v_{i,5}, v_{i,6}]$$

...was caught. The old man was very happy, and deposited ...

ECPE-2D: Emotion-Cause Pair Extraction based on Joint Two-Dimensional Representation, Interaction and Prediction. ACL. 2020

$$c_{i-|w|}, \cdots, c_{i-1}, c_i, c_{i+1}, \cdots, c_{i+|w|}$$

$$\mathbf{y}_{i}^{\mathrm{cml}} = [y_{i}^{\mathrm{cml}_{-|w|}}, \cdots, y_{i}^{\mathrm{cml}_{0}}, \cdots, y_{i}^{\mathrm{cml}_{|w|}}]$$

$$p(y_i^{\text{cml}_j} = 1|c_i) = \hat{y}_i^{\text{cml}_j} = \frac{1}{1 + e^{\mathbf{W}^{\text{cml}_j}} \mathbf{r}_i^{\text{e},N} + \mathbf{b}^{\text{cml}_j}},$$
(7)

$$p(y_i^{\text{cml}_j} = 0|c_i) = 1 - \hat{y}_i^{\text{cml}_j},$$
 (8)

$$L^{\text{CMLL}} = -\sum_{i=1}^{|d|} \sum_{j=-|w|}^{|w|} (y_i^{\text{cml}_j} \cdot \log \hat{y}_i^{\text{cml}_j} + (1 - y_i^{\text{cml}_j}) \cdot \log (1 - \hat{y}_i^{\text{cml}_j})).$$
(9)

Effective Inter-Clause Modeling for End-to-End Emotion-Cause Pair Extraction. ACL. 2020

DC-MRC

A. Exposure Bias

Use Pseudo Cause-Specific Emotion Extraction Query Emotion-Specific Cause

B. Set Combination

- 1. Intersection 2.Union
- 3. Harmonic 4. Complementary

Leaderboard

Model		Em	otion Extract	ion	Ca	Cause Extraction			Emotion-Cause Pair Extraction		
		Р	R	F1	Р	R	F1	Р	R	F1	
	Indep	0.8375	0.8071	0.8210	0.6902	0.5673	0.6205	0.6832	0.5082	0.5818	
ECPE-2Step	Inter-CE	0.8494	0.8122	0.8300	0.6809	0.5634	0.6151	0.6902	0.5135	0.5901	
	Inter-EC	0.8364	0.8107	0.8230	0.7041	0.6083	0.6507	0.6721	0.5705	0.6128	
ECPE-2D	Inter-EC	0.8511	0.8237	0.8365	0.7133	0.6285	0.6672	0.7118	0.5984	0.6494	
ECPE-ZD	+Bert	0.8627	0.9221	0.8910	0.7336	0.6934	0.7123	0.7292	0.6544	0.6889	
	Inter-EC	0.8494	0.8297	0.8390	0.7256	0.6417	0.6799	0.6814	0.7257	0.6521	
ECPE-MLL	ISML-6	0.8582	0.8429	0.8500	0.7248	0.6702	0.6950	0.7091	0.6441	0.6740	
	+Bert	0.8608	0.9191	0.8886	0.7382	0.7912	0.7630	0.7700	0.7235	0.7452	
SLSN (w	o Bert)	0.8406	0.7980	0.8118	0.6992	0.6588	0.6778	0.6836	0.6291	0.6545	
Pair	GCN	0.8857	0.7958	0.8375	0.7907	0.6928	0.7375	0.7692	0.6791	0.7202	
Ranl	«CP	0.9123	0.8999	0.9057	0.7461	0.7788	0.7615	0.7119	0.7630	0.7360	
CD-N	ИRC	0.9692	0.9398	0.9537	0.8101	0.8068	0.8077	0.8249	0.7800	0.8013	

Sequence Tagging

	Yuan et al.	IE-CNN	UTOS
c_1 : Yesterday morning,	O	O	N
$c_2^{\mathcal{C}}$: a police man visited the old man with the lost money,	C,2	С-Н	1-C
$c_3^{\mathcal{C}}$: and told him that the thief was caught.	C,1	С-Н	1-C
c_4^E : The old man was very happy,	O	Е-Н	1-E
c_5 : and deposited the money in the bank.	O	O	O

Figure 1: An example of emotion-cause pair extraction.

Stack C	Buffer/	Action	A Emotion	Cause	Edge
	[1,2,3,\$] SH	Ø	Ø	Ø
[1]	[2,3,\$]	SH	Ø	Ø	Ø
[1,2]	[3,\$]	SH	Ø	Ø	Ø
[1,2,3]	[\$]	RA_{l_t}	$\varnothing \cup \{3\}$	$\varnothing \cup \{2\}$	$2 \xrightarrow{l_t} 3$
[1,3]	[\$]	RA_{l_n}	$\{3\} \cup \{3\}$	_	$1 \xrightarrow{l_n} 3$
[3]	[\$]	SH	_	_	_
[3,\$]		_	_	_	_

$$\begin{split} \tilde{\mathbf{p}}_{k}^{t} &= \begin{cases} \mathbf{p}_{k}^{t} + \mathbf{v}_{k} & p(y_{i}^{e} = 1 | x_{i}) > 0.5 \\ \mathbf{p}_{k}^{t} - \mathbf{v}_{k} & p(y_{i}^{e} = 1 | x_{i}) \leq 0.5 \end{cases} \\ &\text{If } p(y_{i}^{e} = 1 | x_{i}) > 0.5, \\ v_{k}^{u} &= \begin{cases} \alpha_{k} \cdot (1 - p(y_{k}^{t} = j | x_{k})) & u = j \\ -\alpha_{k} \cdot (1 - p(y_{k}^{t} = j | x_{k})) / (N_{t} - 1) & u \neq j \end{cases} \\ \alpha_{k} &= w_{k}^{i} \cdot p(y_{i}^{e} = 1 | x_{i}) \cdot p(y_{k}^{c} = 1 | x_{k}) \\ \text{when } p(y_{i}^{e} = 1 | x_{i}) \leq 0.5, \\ v_{k}^{u} &= \begin{cases} \alpha_{k} \cdot p(y_{k}^{t} = j | x_{k}) & u = j \\ -\alpha_{k} \cdot p(y_{k}^{t} = j | x_{k}) / (N_{t} - 1) & u \neq j \end{cases} \\ \alpha_{k} &= (1 - w_{k}^{i}) \cdot (1 - p(y_{i}^{e} = 1 | x_{i})) \cdot (1 - p(y_{k}^{c} = 1 | x_{k})) \end{split}$$

Model		Emotion Extraction			Са	Cause Extraction			Emotion-Cause Pair Extraction		
		Р	R	F1	Р	R	F1	Р	R	F1	
	Indep	0.8375	0.8071	0.8210	0.6902	0.5673	0.6205	0.6832	0.5082	0.5818	
ECPE-2Step	Inter-CE	0.8494	0.8122	0.8300	0.6809	0.5634	0.6151	0.6902	0.5135	0.5901	
	Inter-EC	0.8364	0.8107	0.8230	0.7041	0.6083	0.6507	0.6721	0.5705	0.6128	
Yuan	et al.	0.8196	0.7329	0.7739	0.7490	0.6602	0.7018	0.7243	0.6366	0.6776	
IE-CNN (w	/o BERT)	0.8614	0.7811	0.8188	0.7348	0.5841	0.6496	0.7149	0.6279	0.6686	
TransECPE		0.8716	0.8244	0.8474	0.7562	0.6471	0.6974	0.7374	0.6307	0.6799	
Hallseche	+Bert	0.8879	0.8315	0.8588	0.7874	0.6689	0.7233	0.7708	0.6532	0.7072	
UTOS		0.8610	0.7925	0.8250	0.7189	0.6496	0.6802	0.6911	0.6193	0.6524	
0103	+Bert	0.8815	0.8321	0.8556	0.7671	0.7320	0.7471	0.7389	0.7062	0.7203	
MTS	ST	0.8711	0.8178	0.8436	0.7947	0.7404	0.7666	0.7746	0.7109	0.7463	

Question & Answer

Form	Explicit Connectives	Ambiguous Connectives		
Verb	cause, result, arise, trigger	increase, affect, effect, make,		
VCIU	cause, result, arise, trigger	induce, derive, reveal		
Conjunction	because, so	hence, therefore, thus, thereby, since		
Preposition	for, because of,	from, as, with, through, after		
Adverb	accordingly, consequently			
Verb Phrase	result in(from), lead to	stem from, bring about,		
vero Filiase	result in(from), lead to	give rise to, thanks to		
	for the reason(alone),	owing to, due to, in consequence of,		
Prepositional Phrase	as a result of,	in view of, as a consequence of,		
	as a result of,	on account of, in as much as		
	that's why, the result is,	on this(that) account, in this way,		
Clause	by reason that, so that	in that, now that, on the grounds that,		
	by reason that, so that	for fear that, if then		