Step-1

Given matrices are
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}_{and} A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$
.

We have to factor each matrix A into PA = LU.

Step-2

We first reduce A into the upper triangular matrix or the row echelon form U by elementary row operations.

In the non singular case, there is a permutation matrix P that reorders the rows of A to avoid zeroes in the pivot positions.

Step-3

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$$
We have

$$R_2 \rightarrow R_2 - 2R_1 \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

We apply the same operation on the identity matrix while an elementary row operation on A and pre multiplying an elementary row matrix with A are identical procedures.

Let us consider
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Applying $R_2 \rightarrow R_2 - 2R_1$ on this, we get

$$B = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$BA = U = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
Now,

Step-4

Observe that B is the elementary matrix whose inverse is also an elementary matrix obtained by the operation $R_2 \rightarrow R_2 + 2R_1$ on the identity matrix.

$$B^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

So,
$$BA = U \Rightarrow A = B^{-1}U$$

$$= \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

=LU

We easily see that the given matrix A has no zeroes in its pivot positions.

So, we are not needed to multiply any matrix P with it to reorder the pivot positions.

In other words, we multiply with the identity matrix to continue A as it is.

i.e.,
$$I = P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 such that $PA = LU$.

(Observe that the text book answer differs and there can be many times of row transformations which result in different sets of P, L, and $\hat{Uae}^{TM}s$.)

Step-5

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$
We have

$$\left. \begin{array}{l}
 R_1 \to R_3 \\
 R_2 \to R_1 \\
 R_3 \to R_2
 \end{array} \right\} \Rightarrow B = \begin{bmatrix}
 2 & 2 & 0 \\
 0 & 2 & 0 \\
 1 & 0 & 1
 \end{bmatrix}$$

This reordering can be done by the multiple P obtained from the identity matrix I when the same operations are performed.

$$\begin{vmatrix} R_1 \to R_3 \\ R_2 \to R_1 \\ \text{i.e.} & R_3 \to R_2 \end{vmatrix} \Rightarrow P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

We now apply row operations on B to change it into the upper triangular matrix U.

Step-6

Now we reduce *B* to lower triangular matrix.

We have

$$B = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$R_3 \to R_3 - 0.5R_1 \Rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}_{\hat{\mathbf{a}} \in [\hat{\mathbf{a}} \in ['(3)]}$$

The respective elementary matrix is obtained by applying $R_3 \rightarrow R_3 + 0.5R_1$ on the identity matrix

$$L_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.5 & 0 & 1 \end{bmatrix}$$

Step-7

$$R_3 \to R_3 + 0.5R_2 \Rightarrow \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Applying

This is the upper triangular matrix U.

Step-8

 $L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.5 & 1 \end{bmatrix}$

The respective elementary matrix is obtained by applying $R_3 \rightarrow R_3 - 0.5R_2$ on the identity matrix, we get

The above performance can be written as $L_2^{-1}L_1^{-1}B = U$

$$L_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -0.5 & 0 & 1 \end{bmatrix} \quad L_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.5 & 1 \end{bmatrix}$$

$$\Rightarrow B = L_{1}L_{2}U \text{ where}$$

$$L = L_1 L_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -0.5 & 0.5 & 1 \end{bmatrix}$$

Step-9

Now B = LU

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -0.5 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The product of lower and upper triangular matrices.

Further, we have PA = B

Thus, we obtained
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -0.5 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}_{is}$$

Hence the PA = LU decomposition of the matrix

0	1	0	[1	0	1		1 0 -0.5	0	0	[2	2	0
0	0	1	2	2	0	=	0	1	0	0	2	0
1	0	0	0	2	0		-0.5	0.5	1	0	0	1