Orientation Decoding at multiple resolutions at 7T

Ayan Sengupta¹

¹Institute of Experimental Psychology Otto-von-Guericke University Magdeburg

November 12, 2015

Orientation Decoding in primary visual cortex (V1)

- ▶ Most extensively studied paradigm.
- ► Important studies like Kamitani and Tong (2005), Haynes and Rees (2005), Swisher et al., (2010), Alink et al., (2013) etc.

Stimulus

- ▶ 30 Trials = 1 Experimental run
- \triangleright Number of runs = 10
- ightharpoonup Total scan time = 40min
- ▶ 4 orientations in each hemifield (0°, 45°, 90°& 135°) with random phase shifts

General Workflow of Orientation decoding analysis

- ▶ EPI acquisition in one particular resolution
- Volumetric Gaussian filtering with increase in kernel width (expressed in FWHM)
- ► Within-subject leave-one-run-out cross-validation with LinearSVM classifier
- ► Conclusion about the spatial scale of the Orientation specific signals

Simulation Study by Chaimow et al., 2010

Chaimow et al., 2010 simulated fMRI data to model decoding of ODCs at different acquisition resolutions.

Empirical Study (under review)

- ► Siemens 7 Tesla scanner with 32 channel head coil (Nova Medical, Wilmington, MA)
- ► T2*-weighted echo planar images (EPI) (TR/TE=2000/22 ms, FA=90°)
- ▶ Sequential acquisitions with 10% inter-slice gap parallel to calcarine sulcus (on a tilted axial plane)

Region of interest localization

- ▶ Retinotopic mapping to delineate V1 region.
- ▶ Susceptibility weighted imaging to localize veins.

Classification Results (V1)

Acquisition resolution in mm isotropic (scaled by voxel volume)

Classification / Orientation Decoding / MVPA How was it performed ?

Voxel Timeseries

Voxel Timeseries to MVPA dataset

MVPA dataset

Classification Procedure

Cross Validation

C parameter in LinearCSVM

- ▶ C parameter Trade-off parameter between margin width and number of support vectors.
- ▶ Higher C more rigid margin SVM.

Nested Cross Validation

Confusion Matrix

Classification Results (V1)

Acquisition resolution in mm isotropic (scaled by voxel volume)

Classification Results (Fixed Number of Voxels)

Acquisition resolution in mm isotropic (scaled by voxel volume)

Classification Results after Spatial Filtering

Classification Results after Spatial Filtering

Classification Results after Spatial Filtering

Spatial smoothing does not hurt Orientation decoding

- ▶ Reliable Orientation decoding is possible with 3mm iso voxel size. (Kamitani and Tong, 2005 and Haynes and Rees, 2005)
- ► Above chance level decoding could be performed after spatial Gaussian smoothing.

Contribution of veins to decoding

Acquisition resolution in mm isotropic (scaled by voxel volume)

Conclusions

- ▶ Optimal Acquisition Resolution is ≈ 2.5 mm iso.
- ▶ Aliasing is improbable. Highest accuracy of band-pass components $\approx 5\text{-8mm}$ FWHM for all resolutions.
- ▶ Low spatial frequency components contribute to noise.
- ▶ Veins carry little orientation specific signal.

Acknowledgements

- ▶ Jun. Prof. Dr. Michael Hanke
- Renat Yakupov
- ▶ Prof. Dr. Stefan Pollmann
- ▶ Prof. Dr. Oliver Speck

Questions

Discussion: Nyquist Sampling Theory

Discussion: Spatial smoothing does not hurt Orientation decoding

- ▶ Reliable Orientation decoding is possible with 3mm iso voxel size. (Kamitani and Tong, 2005 and Haynes and Rees, 2005)
- ► Above chance level decoding could be performed after spatial Gaussian smoothing.

Discussion: Spatial Re-sampling to Other Resolutions

Dependence on temporal SNR

Mean Pecrentage BOLD signal change

