MO824F/MC859A - Tópicos em Otimização Combinatória

Primeiro semestre de 2022

Professor responsável:

Fábio Luiz Usberti (fusberti@ic.unicamp.br) – sala 15 – IC1.

Professor colaborador:

Celso Cavellucci (celsocv@ic.unicamp.br)

1 Página da Disciplina

Página do Ensino Aberto da UNICAMP (Moodle): https://www.ggte.unicamp.br/ea/

2 Horário das Aulas

Dia	Horário	Sala	
Sextas-feiras	19 – 23	CC05 (IC3.5)	

3 Ementa

O curso abrange o estudo de metodologias de solução para problemas em otimização combinatória e pesquisa operacional. Formulações matemáticas de programação linear inteira e inteira mista serão investigadas para problemas de roteamento, localização de facilidades, empacotamento e planejamento. Metaheurísticas e algoritmos exatos serão aplicados e comparados para diferentes problemas. Ao final do curso, espera-se que o aluno seja capaz de propor formulações matemáticas e métodos de solução para problemas de grande porte em pesquisa operacional.

4 Programa

- 1. Modelagem de problemas: princípios do processo de modelagem matemática.
- 2. Introdução à programação linear e programação linear inteira: formulações, otimalidade, relaxações, limitantes, método "branch-and-bound" e relaxação Lagrangiana.
- 3. Metaheurísticas de múltiplos reinícios, por trajetória e populacionais (ex: GRASP, busca tabú e algoritmos genéticos).
- 4. Análise de desempenho de algoritmos para problemas de otimização combinatória.
- Artigos selecionados com problemas e metodologias de otimização combinatória aplicadas a problemas de pesquisa operacional.

5 Critério de Avaliação

A avaliação da disciplina será composta por atividades práticas e um projeto de otimização. Qualquer tentativa de fraude implicará em **média final zero** no semestre para todos os envolvidos além das sanções previstas no regimento da Unicamp.

5.1 Atividades Práticas

Ao longo do semestre serão realizadas n atividades práticas, exigindo implementações de metodologias de otimização. A nota referente às atividades práticas A será calculada como:

$$A = \frac{A_1 + \ldots + A_n}{n}$$

Onde $A_i \in [0, 10]$ é a nota da i-ésima atividade prática.

5.2 Projeto Computacional

Os alunos deverão elaborar um projeto computacional, aplicando metodologias de solução (heurística e exata) para um problema de otimização combinatória. O desenvolvimento do projeto de otimização ocorrerá nas seguintes etapas:

- Tema do projeto (entrega 22/04/2022): submissão do tema do projeto e da referência bibliográfica base.
- 2. **Discussão da proposta** (06/05/2022 e 20/05/2022): discussão com docentes para acompanhamento da proposta de projeto.
- 3. **Proposta de projeto** (entrega 03/06/2022): avaliação será composta por um relatório técnico e uma apresentação em vídeo.
- 4. **Discussão do projeto** (01/07/2022 e 08/07/2022): discussão com docentes para acompanhamento do projeto.
- Projeto final (entrega 15/07/2022): avaliação será composta por um relatório técnico e uma apresentação.

Nota do projeto: A nota T do projeto computacional será calculada como:

$$T = \frac{T_p + 3T_r}{4}$$

Onde $T_p \in [0, 10]$ corresponde à nota da proposta do projeto e $T_r \in [0, 10]$ corresponde à nota do projeto final, respectivamente. **Obs:** As avaliações da proposta e do projeto final estão condicionadas às respectivas apresentações em vídeo, com o objetivo de complementar o entendimento do texto.

5.3 Médias Finais

A média final MF do semestre será calculada como:

$$MF = \frac{4A + 6T}{10}$$

Alunos de pós-graduação: O conceito final para os alunos de pós-graduação será dado de acordo com a tabela abaixo:

Média parcial	Conceito final
$8.5 \leqslant MF \leqslant 10$	A
$7.0 \leqslant MF < 8.5$	В
$5.0 \leqslant MF < 7.0$	С
MF < 5.0	D

Alunos de graduação: Serão aprovados os alunos com $MF \ge 5$. Esta disciplina não possui exame.

6 Atendimento

Para atendimento extra-classe, envie uma mensagem pelo ensino aberto para agendamento com algum dos professores.

7 Bibliografia

- 1. F.S. Hillier, G.J. Lieberman. Introduction to operations research, Mc Graw-Hill, 2009.
- 2. D. Bertsimas, J.N. Tsitsiklis. Introduction to Linear Optimization, Athena Scientific, 1997.
- 3. M.C. Goldbarg, H.P.L. Luna. Otimização combinatória e programação linear : modelos e algoritmos, Campus, 2005.
- 4. M. Arenales, V. Armentano, R. Morabito, H. Yanasse. **Pesquisa Operacional para cursos de engenharia: Modelagem e algoritmos.**, Campus, 2007.
- 5. L.A. Wolsey. Integer Programming, Wiley-Interscience, 1998.
- 6. C.H. Papadimitriou, K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity, Dover, 1998.
- 7. E. Lawler. Combinatorial Optimization: Networks and Matroids, Dover, 2001.
- 8. G.L. Nemhauser, L.A. Wolsey. **Integer and Combinatorial Optimization**, Wiley-Interscience, 1999.

Tabela 1: Calendário da disciplina.

Mês	Dia	Evento	
Março	18	Início das aulas – critério de avaliação, programa da disciplina, introdução à PO.	
Março	25	Introdução à programação linear.	
Abril	1	Introdução à programação linear inteira. Entrega da Atividade 1.	
Abril	8	Relaxação Lagrangiana.	
Abril	15	Não haverá aula. Entrega da Atividade 2.	
Abril	22	Não haverá aula. Entrega do tema/equipe/referência do projeto computacional	
Abril	29	GRASP. Entrega da Atividade 3.	
Maio	6	Discussão da proposta (reuniões individuais a serem agendadas).	
Maio	13	Busca Tabú. Entrega da Atividade 4.	
Maio	20	Discussão da proposta (reuniões individuais a serem agendadas).	
Maio	27	Algoritmos Genéticos. Entrega da Atividade 5.	
Junho	3	Entrega da proposta e da apresentação.	
Junho	10	Métodos de análise de desempenho. Entrega da Atividade 6.	
Junho	17	Não haverá aula. Entrega da Atividade 7.	
Junho	24	Aplicação em Pesquisa Operacional. Entrega da Atividade 8.	
Julho	1	Discussão do projeto (reuniões individuais a serem agendadas).	
Julho	8	Discussão do projeto (reuniões individuais a serem agendadas). Entrega da Atividade 9.	
Julho	15	Entrega do projeto final e da apresentação.	