Exercice 1: (8 points)

- 1. Démontrer que la suite (x_n) défine pour tout entier n par $x_n = n^3$ n'est ni arithmétique ni géométrique.
- 2. Calculer la somme des 8 premiers termes de la suite géométrique de premier terme $v_0 = 2$ et de raison 3.
- 3. Démontrer que la suite(w_n) définie pour tout entier n par $w_n = 2(-4)^n$ est géométrique et donner sa raison et son premier terme.
- 4. Soit (u_n) une suite arithmétique de raison 2 avec $u_1 = 5$. Calculer la somme S des 30 premiers termes de la suite (u_n) .

Correction

- 1. $x_1 = 1$, $x_2 = 8 = x_1 + 7 = x_1 \times 8$. $x_3 = 27 \neq 15 = x_2 + 7$ et $x_3 \neq 64 = x_2 \times 8$. Ainsi, (u_n) n'est ni arithmétique ni géométrique. (2 pts)
- 2. $v_0 + ... + v_7 = v_0(3^0 + ... + 3^7) = v_0 \frac{1 3^8}{1 3} = 2\frac{3^8 1}{3 1} = 2\frac{6560}{2} = 6560.$ (2 pts)
- 3. $w_{n+1} = 2(-4)^{n+1} = 2(-4)^n \times (-4) = w_n \times (-4)$. (1 pt) La suite est bien géométrique de raison -4 et de premier terme $w_0 = 2$. (1 pt)
- **4.** $2S = (u_1 + u_{30}) \times 30 = 5 + (5 + 58) \times 30 = 68 \times 30 = 2040$ d'où S = 1020. (2 pt)

Exercice 2: (5 points)

- 1. Calculer la dérivée f'(x) de la fonction $f(x) = -\frac{4}{3}x^3 4x^2 4x + 1$
- 2. Décomposer f'(x) en un produit de facteurs de degré 1 et étudier son signe.
- 3. Montrer que la suite (u_n) définie pour tout entier naturel par $u_n = -\frac{4}{3}n^3 4n^2 4n + 1$ est strictement décroissante.

Correction

- 1. $f'(x) = -4x^2 8x 4$ (1 pt)
- 2. f'(x) = -4(x+1)(x+1), en effet, $\Delta = 0$, $x_0 = \frac{-(-8)}{-8} = -1$. (2 pts) f'(x) < 0 sur $]-\infty; -1[\cup]-1; +\infty[$, f'(x) = 0 en -1.(1 pt)
- 3. La fonction f est strictement décroissante sur l'intervalle $[0; +\infty[$ donc la suite $(u_n = f(n))$ est strictement décroissante. (1 pt)

Exercice 3: (3 points)

Soit (u_n) la suite définie par récurrence par $u_0 = 1$ et pour tout entier n par $u_{n+1} = 3u_n + 2$. On admet que pour tout entier naturel n, $u_n > 0$.

- 1. Démontrer que le suite (u_n) est strictement croissante.
- 2. Trouver une forme explicite pour la suite (u_n) . On pourra introduire la suite auxiliaire $v_n = u_n + 1$.

Correction

- 1. $u_{n+1} u_n = 2u_n + 2 > 0$ pour tout entier naturel. (u_n) est donc strictement croissante. (1 pt)
- 2. $v_{n+1} = u_{n+1} + 1 = 3u_n + 2 + 1 = 3u_n + 3 = 3(u_n + 1) = 3v_n$. La suite (v_n) est géométrique de raison 3 et de premier terme $v_0 = u_0 + 1 = 2$. D'où $v_n = 2 \times 3^n$ et $u_n = 2 \times 3^n 1$. (2 pts)

Réaliser un algorithme permettant de calculer et afficher les 50 premières puissances de 2 (de 2^1 à 2^{50}). Correction Pour n allant de 1 à 50 faire x prend la valeur 2^n Afficher x fin pour