微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

一、实验题目

· 晶体管共射极单管放大器

二、实验目的

- 1. 掌握放大器静态工作点的调试方法,学会分析静态工作点对放大器性能的影响;
- 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出 电压的测试方法:
- 3. 熟悉常用电子仪器及模拟电路实验设备的使用。

三、实验原理

实验原理电路如图1所示

图1 共射极单管放大电路

图1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用 R_{B2} 和 R_{B1} 组成的分压电路,并在发射极中接有电阻 R_E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号 U_i 后,在放大器的输出端便可得到一个与 U_i 相位相反,幅值被放大了的输出信号 U_0 ,从而实现了电压放大。

在图1电路中,当流过偏置电阻 R_{B1} 和 R_{B2} 的电流远大于晶体管T的 基极电流 I_{B} 时(一般5~10倍),则它的静态工作点可用下式估算, U_{cc} 为供电电源,此为+12 V_{cc}

$$\begin{split} &U_{B}\approx\frac{R_{B1}}{R_{B1}+R_{B2}}U_{CC}\\ &I_{E}=\frac{U_{B}-U_{BE}}{R_{E}}\approx I_{C}\\ &U_{CE}=U_{CC}-I_{C}(R_{C}+R_{E}) \end{split}$$

电压放大倍数 $A_u = -β \frac{R_C IIR_L}{r_{be}}$

输入电阻 $R_i = R_{B1} ||R_{B2}||r_{be}$

输出电阻 R₀ ≈ R_C

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

晶体管输入电阻 $r_{be} = 300\Omega + (1 + \beta) \frac{26mV}{I_E(mA)}$

1. 静态工作点的调试:

放大器静态工作点的调试是指对三极管集电极电流 I_c (或 U_{CE})调整与测试。改变电路参数 V_{CC} , R_C , R_B (R_{B1} , R_{B2})都会引静态工作点的变化。

一般所说的工作点"偏高"或"偏低"不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切的说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如须满足较大信号的要求,静态工作点最好尽量靠近交流负载线的中点。

图2 电路参数对静态工作点的影响

- 2. 放大器动态指标测试:
 - 1) 电压放大倍数Au的测量
 - 2)输入电阻R_i和输出电阻R_n的测量
 - 3) 最大不失真输出电压U_{oP-P}的测量
 - 4) 放大器频率特性的测量

图3 输入和输出电阻测量电路

放大器的幅频特性就是测量不同频率信号时的电压放大倍数 A_U , A_{um} 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数0.707Aum所对应的频率分别称为下限频率 f_L 和上限频率 f_H ,则通频带 $f_{BW} = f_H - f_L$

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

图4幅频特性曲线

3. 观察静态工作点对输出波形的影响

I_{CQ}↑, 三极管进入饱和区而引起的失真, u_o出现饱和失真, 形状为"削顶"失真。

I_{CQ} ↓, 三极管进入截止区而引起的失真, u_o出现截止失真, 形状为"缩顶"失真。

I_{co}正常,即工作点选在交流负载线的重心,当加大输入信号时,u_o同 时出现饱和失真与截止失真。

四、实验内容

- 1.静态工作点的测量与调整
 - 1) 输入端短接,调节Rw,使得Ic=2.0mA,即U_F=2.4V;
 - 2) 测量差模放大倍数 A_{ud} 用万用表DCV档测量 U_{B} , U_{c} 和 U_{c} ;
 - 3) 用万用表欧姆档测出电阻R_{B2};
 - 4) 静态工作点测量条件—输入接地。
- 2. 电压放大倍数的测量

调节频率为1KHZ的正弦波作为输入信号 U_i 。同时用双踪示波器观察放大器输入电压 U_i 和输出电压 U_0 的波形,在 U_0 波形不失真的条件下,用毫伏表或者示波器测量开路和带载两种情况下 U_0 的有效值,并用双踪示波器观察 U_0 和 U_i 的相位关系,观察并记录一组 U_0 和 U_i 的波形。

3.输入电阻和输出电阻的测量

接图5所示,取R=2k Ω ,置R_C = 2.4K Ω R_L = 2.4K Ω I_C = 2.0mA。输入f=1KHz的正弦信号U_S,在输出电压U₀为不失真的情况下,用毫伏表或者示波器测出U_S,U_i,用公式算出R_i。输出电阻R₀可根据所测的数据并用公式 算出。

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

图5 输入输出电阻测量电路

4.幅频特性曲线的测量

取 I_c =2.0mA, R_c =2.4k Ω , R_L =2.4k Ω (此时原先测输入阻抗接入的 R_1 去掉)。保持 U_i =10 mVrms不变,先找出中频电压放大倍数时的 U_0 ,然后改变信号源频率f,用示波器测量找出0.707 U_0 对应的 f_L 和 f_H 记录 f_L 和 f_H 以及对应的输出电压 U_0 (因f变化的同时, U_i 会有所变化,所以,实验过程中要求反复调节信号源的幅度,使 U_i =10 mVrms保持不变。)

- 5.测量静态工作点对波形失真的影响
 - 1) 按电路图接线,输入端短接,调节 R_W ,使 $I_C=2.0mA$,即 $U_E=2.4V$;
 - 2) 用万用表DCV档分别测量T管对地点位 U_B 、 U_E 、 U_C 和电阻 R_{B2} 的值:
 - 3) 加入测试信号,即频率1kHz的正弦波信号u_i,有效值12mV 左右,使输出电压u_o足够大但不失真,示波器监视输出;
 - 4) 保持输入信号不变,分别增大和减小电位器 R_W ,使波形出现失真,绘出 u_o 的波形,并测出这两种失真情况下的电压 U_B 、 U_E 、 U_C 和电阻 R_{B2} 的值。

五、原始数据

1. 静态工作点的测量与调整 测量值如下表1

$U_{B}(V)$	$U_{E}(V)$	$U_{C}(V)$	$R_{B2}/k\Omega$
3.0084	2.3996	6.9746	62.865

表1静态工作点的调整和测量实验的测量结果

2. 放大器动态指标测试

测量值如下表2 $I_c = 2.0 \text{mA}$

U_i = 10mVrms (参考值) U_i = 10.03mVrms (测量值)

$R_L/k\Omega$	U_0	A_u
2.4	0.766V	150.9
趋于无穷	1.514V	76.4

表2 电压放大倍数测量输出阻抗测量实验的测量结果 R_0 (测量值) = 2.28k Ω , R_0 (计算理论值) = 2.34k Ω 波形图见数据记录纸。

3. 测量输入电阻测量值如下表3

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

U _S	U _i	R
10.22mV	6.10mV	1.9993k $oldsymbol{\Omega}$

表3 测量输入电阻实验的测量结果

4. 幅频特性曲线的测量测量值如下表4

f/Hz	200	300	400	800	900	1k
U ₀ /mV	0.486	0.593	0.658	0.752	0.762	0.754
U _i /mV	10.19	10.16	10.15	10.12	10.11	10.13
f/Hz	2k	5k	100k	500k	700k	800k
U_0 /m V	0.782	0.799	0.764	0.660	0.611	0.564
U _i /mV	10.10	10.05	9.72	9.71	10.19	10.02
f/Hz	850k	870k	900k	1000k	263 (fL)	867k(fH)
U ₀ /mV	0.542	0.532	0.519	0.478	0.537	0.537
U _i /mV	9.93	9.90	9.86	9.70	10.11	10.03

表4 测量幅频特性曲线实验的测量结果

5. 测量静态工作点对波形失真的影响

输入端短接后,测量得

$$\begin{aligned} \mathsf{U_B} &= 3.0000(\mathsf{V}), \mathsf{U_E} = 2.4015(\mathsf{V}), \mathsf{U_C} = 7.0012(\mathsf{V}) \\ \mathsf{R_{B2}} &= 62.212(\mathsf{k}\,\Omega) \end{aligned}$$

测量值如下表5

U _B (V)	U _E (V)	U _C (V)	$R_{B2}(k\Omega)$	失真情况	管子工作状态
4.0100	3.4065	5.2219	40.920	削顶失真	饱和区
3.1050	2.4026	7.1539	63.1201	不失真	工作区
2.0475	1.4485	9.0400	107.62	缩顶失真	截止区

表5 测量静态工作点对波形失真的影响

六、数据处理与分析

 静态工作点的调整和测量 测量结果见原始数据部分。 由测得的数据可以计算出:

$$\begin{split} &U_{BE} = U_{B} - U_{E} = 0.6088V \\ &U_{CE} = U_{C} - U_{E} = 4.575V \\ &I_{C} \approx I_{E} = \frac{U_{E}}{R_{E}} = 1.999 mA \end{split}$$

理论值:

$$U_{B^{2}} = \frac{R_{B1}}{R_{B1} + R_{B2}} U_{CC} = 3.4286V$$

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

$$U_{C_{{\mathbb P}^{1}}} = U_{CC} - I_{C}R_{C} = 7.1707V$$

误差分析:

- a. 电阻 R_E 的实际阻值与标称值1.2k Ω 有误差,因此即使 U_E 为2.4V,实际上 I_C 与2mA也有偏差;
- b. 电阻 R_c 的实际值与标称值2.4k Ω 有误差,因此 $U_{c理论}$ 与 U_c 略有偏差;
- C. 电阻 R_{B1} 的实际值与标称值24k Ω 有误差,因此 $U_{B理论}$ 与 U_{B} 略有偏差;
- d. 测量仪器(万用表)的测量误差。
- 2. 测量电压放大倍数

理论值:

取三极管的 $\beta = 160$,可得:

$$\begin{split} r_{be} &= 300\Omega + (1+\beta) \frac{26 \text{mV}}{I_E(\text{mA})} = 2380\Omega \\ & \text{ \exists R_L} \approx 2.4 k \Omega \, \text{H} \, , \; \; A_{u \underline{\text{#}} \hat{\kappa}} = - \; \beta \, \frac{R_C I I R_L}{r_{be}} = - \; 80.67 \\ & \text{ \exists R_L} \text{ $\not{\&}$} \text{ \exists E} \text{ \exists f} \text{ \exists f} \text{ \exists a} \text{ a} \text{ \exists a} \text{ a} \text{ \exists a} \text{ \exists a} \text{ a} \text{ a} \text{ \exists a} \text{ a} \text{$$

下面根据实验1和实验5的数据计算三极管的实际β值由实验1的数据可以算出:

$$I_{B1}=\dfrac{U_B}{R_{B1}}=125.35\,\mu$$
 A $I_{B2}=\dfrac{U_{CC}-U_B}{R_{B2}}=143.03\,\mu$ A
$$I_B=I_{B2}-I_{B1}=17.68\,\mu$$
 A $I_C=1.999$ mA 所以 β $=\dfrac{I_C}{I_B}=\dfrac{1.999$ mA}{17.68 μ A $I_C=1.399$ mA

以该值作为三极管的β 计算,可得:

可见若取 β =118.4,则计算出的理论值与实际测量值更加相符,考虑到受制作工艺限制使三极管 β 值与标称值离散程度大,以及长期使用器件老化、损坏等原因,可以认为118.4比经验值160更接近实验使用的三极管的真实 β 值。

相对误差为:

当
$$R_L \approx 2.4 k \Omega$$
时, $\frac{|A_{u = \hat{\kappa}} - A_u|}{|A_{u = \hat{\kappa}}|} \times 100\% = 0.43\%$ 。

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

当 R_L 趋于无穷时, $\frac{|A_{u_{\mathbb{H}\hat{v}}}-A_{u}|}{|A_{u_{\mathbb{H}\hat{v}}}|} \times 100\% = 0.81\%$ 。

误差分析:

- a. 由于 I_B 数量级较小,测量、计算受误差影响大,所以计算出的 β 值受 I_B 的误差影响;
- b. β 的误差导致 $A_{u理论}$ 、 r_{be} ,使得他们的误差也不小,因此采用 $\beta = 94.4$ 进行计算,理论值与实际值仍有一定差距;
- C. 万用表测量误差使 U_i 、 U_o 测量值有误差,使得 A_u 测量值与真实值有偏差。
- 3. 测量输入电阻

由测得的数据可以计算出:

$$R_i = \frac{U_i}{U_s - U_i} R_1 = 2.96 k \Omega ,$$

理论值:

 $R_i = R_{B1} ||R_{B2}|| r_{be} = 2.09 k \Omega$

误差分析:

- a. rbe的计算误差传导到Ri;
- b. 电阻实际阻值与标称值存在差距;
- C. 万用表测量误差。
- 4. 测量幅频特性曲线

根据测量值,以 log_{10} f作为横坐标, U_0 作为纵坐标。做出如下幅频特性曲线。

测量得到的 $f_H = 867kHz$, $f_I = 263Hz$ 。

误差分析:

- a. 信号源内阻导致实际输出值与标称值之间存在误差;
- b. 万用表、示波器测量误差。
- 5. 测量静态工作点对波形失真的影响

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

测量结果如原始数据部分所示。

误差分析:

- a. "波形是否失真"这个问题判断起来具有一定的主观性;
- b. 万用表、示波器测量误差。

七、思考题

- 1. 加入输入信号时,输出波形会出现哪几种失真?分别是什么原因 引起的?
 - 答: (1)饱和失真,当晶体管Q点设置过高而进入饱和区时,会出现输出信号底端"被削平"的情况,即为饱和失真。Q点设置过高,使输入信号正半周靠近峰值的某段时间内晶体管进入饱和区(超出放大区动态范围),导致集电极动态电流产生顶部失真,则集电极电阻上的电压波形随之产生同样的失真。由于输出电压与集电极电阻上的电压变化相位相反,从而导致输出波形产生底部失真、出现饱和失真。
 - (2) 截止失真,当晶体管Q点设置过低而进入截止区时, 会出现输出信号顶端"被削平"的情况,即为截止失真

Q点设置过低,使输入信号负半周靠近峰值的某段时间 内晶体管进入截止区(超出放大区动态范围),导致基 极电流产生底部失真,则集电极电流和电阻上的电压波 形随之产生同样的失真。由于输出电压与集电极电阻上 的电压变化相位相反,从而导致输出波形产生顶部失真 ,出现截止失真。

- (3)同时出现饱和失真和截止失真。 即使工作点选择合适,但当输入信号的振幅足够大时, 仍然会同时出现双向失真。
- 2. 调整静态工作点时, R_{B2}是10k电阻与R_W相串联, 而不能直接用电位器, 为什么?
 - 答: 串联使得无论如何调节 R_W 的阻值, R_{B2} 均大于 $10k\Omega$,这样可以防止 U_B 过大,烧毁三极管。
- 3. 对于本次的单管放大电路,实现放大的条件是?
 - 答:调试合适的直流电源和相应的偏置电路使三极管处于静态工作点,以保证三极管工作在放大区,即对于本次的NPN型晶体管应使 $U_C > U_R > U_F$ 。

八、实验总结

微电子学院

2022.11.28

17号台

PB21061324 徐铭鸽 PB21081565 王蕴璇

- 1. 通过本次实验,学习了放大电路输入输出电阻,放大倍数,幅频 特性等的测量方法,并主动完成测量,达到了实验目的,达到 了实验要求;
- 2. 理解静态工作点的设置对电路放大性能和稳定性的重要影响;
- 3. 实际实验中,误差较大,三极管的工作状态受温度、实验环境等的影响较大,万用表、示波器等测量工具测量精度较低,尤其数字跳动大,环境不同得到的结果可能不同,会产生较大的误差。