Module 06: Interaction of Different Types of Flow

Unit 01: Surface Water and Groundwater Interaction

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To solve unsteady interaction problem between channel flow, surface flow and groundwater flow.

Dr. Anirban Dhar

3 / 16

Problem Definition to Solution

Problem Statement

Required

ullet Unsteady Channel Flow: $Q_c(x,t)$, $y_c(x,t)$

Problem Statement

Required

- Unsteady Channel Flow: $Q_c(x,t)$, $y_c(x,t)$
- Unsteady Free-surface Flow (Shallow water): $h_s(x, y, t)$, $u_s(x, y, t)$, $v_s(x, y, t)$

4 / 16

Problem Statement

Required

- Unsteady Channel Flow: $Q_c(x,t)$, $y_c(x,t)$
- Unsteady Free-surface Flow (Shallow water): $h_s(x,y,t)$, $u_s(x,y,t)$, $v_s(x,y,t)$
- Unsteady Unconfined Aquifer Flow: $h_q(x, y, t)$

Problem Definition Channel Flow

Required

• Unsteady Channel Flow: $Q_c(x,t)$, $y_c(x,t)$

Problem Definition

Channel Flow

Governing Equation for unsteady 1D channel flow (St. Venant Equations) can be written as (Weiming, 2007),

Initial Boundary Value Problem

Continuity Equation:

$$\frac{\partial A}{\partial t} + \frac{\partial Q_c}{\partial x} = -q_c$$

Problem Definition

Channel Flow

Governing Equation for unsteady 1D channel flow (St. Venant Equations) can be written as (Weiming, 2007),

Initial Boundary Value Problem

Continuity Equation:

$$\frac{\partial A}{\partial t} + \frac{\partial Q_c}{dx} = -q_c$$

Momentum Equation:

$$\frac{\partial}{\partial t} \left(\frac{Q_c}{A} \right) + \frac{\partial}{\partial x} \left(\frac{\alpha Q_c^2}{2A^2} \right) + g \frac{\partial H}{\partial x} + g S_f = 0$$

Problem Definition

Channel Flow

Governing Equation for unsteady 1D channel flow (St. Venant Equations) can be written as (Weiming, 2007),

Initial Boundary Value Problem

Continuity Equation:

$$\frac{\partial A}{\partial t} + \frac{\partial Q_c}{\partial x} = -q_c$$

Momentum Equation:

$$\frac{\partial}{\partial t} \left(\frac{Q_c}{A} \right) + \frac{\partial}{\partial x} \left(\frac{\alpha Q_c^2}{2A^2} \right) + g \frac{\partial H}{\partial x} + g S_f = 0$$

where

 $y_c = \text{depth of flow}$

$$S_f$$
 = friction slope $\left(=\frac{n^2Q^2}{R^{4/3}A^2}\right)$

A = cross-sectional area

 q_c = lateral outflow

 $z_c = \text{elevation of the channel bottom w.r.t. datum}$

H= water surface elevation (= y_c+z)

 $\alpha =$ momentum correction factor

 Q_c = discharge q= acceleration due to gravity

Problem Definition Unsteady Free-surface Flow

Required

• Unsteady Free-surface Flow (Shallow water): $h_s(x,y,t)$, $u_s(x,y,t)$, $v_s(x,y,t)$

Computational Hydraulics

Problem Definition Unsteady Free-surface Flow

Depth-integrated mass and momentum conservation equations for surface water flow can be written as,

Governing equation

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = \mathbf{S} \tag{1}$$

$$\mathbf{U} = \begin{bmatrix} h_s \\ h_s u_s \\ h_s v_s \end{bmatrix}, \quad \mathbf{E} = \begin{bmatrix} hu_s \\ h_s u_s^2 + \frac{gh_s^2}{2} \\ h_s u_s v_s \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} h_s v_s \\ h_s u_s v_s \\ h_s v^2 + \frac{gh_s^2}{2} \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} \mathbf{R} + q_c - q_s \\ gh_s (S_{0x} - S_{fx}) \\ gh_s (S_{0y} - S_{fy}) \end{bmatrix}$$

where $h_s =$ water height, $u_s, v_s =$ velocity at x and y directions.

Problem Definition Unsteady Unconfined Aquifer Flow

Required

• Unsteady Unconfined Aquifer Flow: $h_g(x, y, t)$

Problem Definition Unsteady Unconfined Aquifer Flow

Governing equation

In two-dimension groundwater flow in unconfined aquifer can be written as,

$$S_y \frac{\partial h_g}{\partial t} = \frac{\partial}{\partial x} \left(K_x (h_g - \xi) \frac{\partial h_g}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y (h_g - \xi) \frac{\partial h_g}{\partial y} \right) - W_P + W_I + q_s$$

where $K_x, K_y =$ hydraulic conductivity at x and y directions $W_I =$ injection rate, $W_P =$ pumping rate, $\xi =$ elevation of aquifer base.

Canal-Surface Water-Groundwater Interaction

Canal-Surface Water-Groundwater Interaction

Canal-Surface Water-Groundwater Interaction

River-Surface Water-Groundwater Interaction

Time-stepping

$$\textbf{Data:}\ \ Q_c(x,t_n)\text{, }y_c(x,t_n)\text{, }h_s(x,y,t_n)\text{, }u_s(x,y,t_n)\text{, }v_s(x,y,t_n)\text{, }h_g(x,y,t_n)$$

Time-stepping

Time-stepping

| Solve Channel Flow with Δt_c

Time-stepping

Data:
$$Q_c(x,t_n), \ y_c(x,t_n), \ h_s(x,y,t_n), \ u_s(x,y,t_n), \ v_s(x,y,t_n), \ h_g(x,y,t_n)$$
 Result: Updated $Q_c(x,t_{n+1}), \ y_c(x,t_{n+1}), \ h_s(x,y,t_{n+1}), \ u_s(x,y,t_{n+1}), \ v_s(x,y,t_{n+1}), \ h_g(x,y,t_{n+1})$ while $t < end$ time do

Solve Channel Flow with Δt_c

Calculate q_c

Time-stepping

$$\begin{aligned} & \textbf{Data:} \ \ Q_c(x,t_n), \ y_c(x,t_n), \ h_s(x,y,t_n), \ u_s(x,y,t_n), \ v_s(x,y,t_n), \ h_g(x,y,t_n) \\ & \textbf{Result:} \ \ \textbf{Updated} \ \ Q_c(x,t_{n+1}), \ y_c(x,t_{n+1}), \ h_s(x,y,t_{n+1}), \ u_s(x,y,t_{n+1}), \\ & v_s(x,y,t_{n+1}), \ h_g(x,y,t_{n+1}) \end{aligned}$$
 while $t < end$ time do

Solve Channel Flow with Δt_c

Calculate q_c

Solve Surface Flow with Δt_s

Time-stepping

$$\begin{array}{l} \textbf{Data: } Q_c(x,t_n), \ y_c(x,t_n), \ h_s(x,y,t_n), \ u_s(x,y,t_n), \ v_s(x,y,t_n), \ h_g(x,y,t_n) \\ \textbf{Result: } \textbf{Updated } Q_c(x,t_{n+1}), \ y_c(x,t_{n+1}), \ h_s(x,y,t_{n+1}), \ u_s(x,y,t_{n+1}), \\ v_s(x,y,t_{n+1}), \ h_g(x,y,t_{n+1}) \\ \textbf{while } t < & \textit{end time do} \\ & \textbf{Solve Channel Flow with } \Delta t_c \\ & \textbf{Calculate } q_c \\ & \textbf{Solve Surface Flow with } \Delta t_s \\ & \textbf{Calculate } q_s \end{array}$$

Time-stepping

Data:
$$Q_c(x,t_n), y_c(x,t_n), h_s(x,y,t_n), u_s(x,y,t_n), v_s(x,y,t_n), h_g(x,y,t_n)$$

Result: Updated $Q_c(x,t_{n+1}), y_c(x,t_{n+1}), h_s(x,y,t_{n+1}), u_s(x,y,t_{n+1}), v_s(x,y,t_{n+1}), h_g(x,y,t_{n+1})$
while $t < end$ time do

Solve Channel Flow with Δt_c

Calculate $q_{\it c}$

Solve Surface Flow with Δt_s

Calculate q_s

Solve Groundwater Flow with Δt_g

Time-stepping

```
 \begin{array}{l} \textbf{Data: } Q_c(x,t_n), \ y_c(x,t_n), \ h_s(x,y,t_n), \ u_s(x,y,t_n), \ v_s(x,y,t_n), \ h_g(x,y,t_n) \\ \textbf{Result: } \textbf{Updated } Q_c(x,t_{n+1}), \ y_c(x,t_{n+1}), \ h_s(x,y,t_{n+1}), \ u_s(x,y,t_{n+1}), \\ v_s(x,y,t_{n+1}), \ h_g(x,y,t_{n+1}) \\ \textbf{while } t < end \ time \ \textbf{do} \\ & \textbf{Solve Channel Flow with } \Delta t_c \\ & \textbf{Calculate } \ q_c \\ & \textbf{Solve Surface Flow with } \Delta t_s \\ & \textbf{Calculate } \ q_s \\ & \textbf{Solve Groundwater Flow with } \Delta t_g \\ & n \leftarrow n+1 \\ \textbf{end} \\ \end{array}
```

Time-stepping

```
 \begin{aligned} & \textbf{Data: } Q_c(x,t_n), \ y_c(x,t_n), \ h_s(x,y,t_n), \ u_s(x,y,t_n), \ v_s(x,y,t_n), \ h_g(x,y,t_n) \\ & \textbf{Result: } & \textbf{Updated } Q_c(x,t_{n+1}), \ y_c(x,t_{n+1}), \ h_s(x,y,t_{n+1}), \ u_s(x,y,t_{n+1}), \\ & v_s(x,y,t_{n+1}), \ h_g(x,y,t_{n+1}) \\ & \textbf{while } \ t < & \textbf{end } \ time \ \textbf{do} \\ & & \textbf{Solve Channel Flow with } \Delta t_c \\ & & \textbf{Calculate } \ q_c \\ & & \textbf{Solve Surface Flow with } \Delta t_s \\ & & \textbf{Calculate } \ q_s \\ & & \textbf{Solve Groundwater Flow with } \Delta t_g \\ & & n \leftarrow n+1 \end{aligned}
```

Time-Step

$$\Delta t_c < \Delta t_s < \Delta t_a$$

1D-2D Integrated System

(a) Integrated 1D-2D simulations with lateral and flow direction connections (Blade et al., 2012)

(b) Discretization of computational domain

Thank You

References

Blade, E., Gomez-Valentn, M., Dolz, J., Aragon-Hernandez, J., Corestein, G., and Sanchez-Juny, M. (2012). Integration of 1d and 2d finite volume schemes for computations of water flow in natural channels. *Advances in Water Resources*, 42:17 – 29.

Weiming, W. (2007). Computational River Dynamics. Taylor & Francis, London, UK.

Dr. Anirban Dhar