Examen de contrôle continu 2

Durée: 2h

Documents et calculatrices interdits

Exercice 1 (Questions de cours). Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien.

- 1. Rappeler la définition de l'adjoint d'un endomorphisme $f \in L(E)$.
- 2. Montrer que $f \in L(E)$ est antisymétrique si et seulement si $\forall x \in E, \langle x, f(x) \rangle = 0$.
- 3. Montrer que toute famille orthogonale (u_1, \ldots, u_k) dont chacun des vecteurs est non nul forme une famille libre.

Exercice 2. Soit $E = \mathbb{R}_3[X]$ muni de la forme bilinéaire symétrique

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire.
- 2. Trouver l'orthonormalisé de Gram-Schmidt de la famille $(1, X, X^2)$.
- 3. En déduire le projeté orthogonal de X^3 sur $\mathbb{R}_2[X]$ = Vect $(1, X, X^2)$.
- 4. Quelle est la distance de X^3 à $\mathbb{R}_2[X]$?

Exercice 3. Sur l'espace $E = \mathbb{R}^3$ muni du produit scalaire usuel, on considère l'hyperplan

$$H = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 + x_3 = 0\}.$$

- 1. Déterminer H^{\perp} .
- 2. Donner la matrice de la projection orthogonale p_H dans la base canonique de \mathbb{R}^3 . En déduire celle de s_H , la symétrie orthogonale par rapport à H.
- 3. Calculer la distance $d(e_1, H)$ du vecteur e_1 à H.

Exercice 4. Diagonaliser en base orthonormée l'endomorphisme f de \mathbb{R}^3 (muni du produit scalaire usuel) dont la matrice dans la base canonique est donnée par

$$M = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

Exercice 5. Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix}$$

- 1. Montrer que u est un endomorphisme orthogonal.
- 2. Montrer que 1 est la seule valeur prore réelle de u.
- 3. Construire une base orthonormée du sous-espace propre $E_1(u)$.
- 4. Construire une base orthonormée de $E_1(u)^{\perp}$.
- 5. Soit \mathcal{B} la base obtenue en accollant les deux bases trouvées aux questions précédentes. Quelle est la matrice de u dans la base \mathcal{B} ?