

FCC PART 15.247 TEST REPORT

For

Micron Electronics LLC.

1001 Yamato Road, Suite 400, Boca Raton, Florida, United States, 33431

FCC ID: ZKQ-BMT

Report Type: Original Report		Product Type: Tracker
Test Engineer:	Stone Zhang	Stone Zhang
Report Number:	RSHA18080600	01-01A
Report Date:	2018-09-06	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Prepared By:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTYTEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	6
SUPPORT EQUIPMENT LIST AND DETAILS	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	13
FCC §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)	14
APPLICABLE STANDARD	14
CALCULATED DATA:	
FCC §15.203 - ANTENNA REQUIREMENT	16
APPLICABLE STANDARD	16
Antenna Connector Construction	16
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS & RESTRICTED F	REQUENCY BANDS17
APPLICABLE STANDARD	17
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(e) - POWER SPECTRAL DENSITY	58
APPLICABLE STANDARD	
TEST PROCEDURE	58

Bay Area Compliance Laboratories Corp. (Kuns
--

Report No.: RSHA180806001-01A

FCC Part 15.247 Page 3 of 65

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Micron Electronics LLC.
Tested Model	Bolt Mini-2
Product Type	Tracker
Dimension	110 mm(L)*58 mm(W)*30 mm(H)
Power Supply	DC 3.6 V supplied from Non-rechargeable lithium battery

Report No.: RSHA180806001-01A

Objective

This report is prepared on behalf of Micron Electronics LLC. in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

N/A

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC 558074 D01 15.247 Meas Guidance v05.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 65

^{*}All measurement and test data in this report was gathered from production sample serial number: 20180806001. (Assigned by BACL, Kunshan). The EUT was received on 2018-08-06.

Measurement Uncertainty

Item		Uncertainty	
AC Power Lines Conducted Emissions		3.19dB	
RF conduct	ed test with spectrum	0.9dB	
RF Output Po	ower with Power meter	0.5dB	
	30MHz~1GHz	6.11dB	
D 11 4 1 1 1 1	1GHz~6GHz	4.45dB	
Radiated emission	6GHz~18GHz	5.23dB	
	18GHz~40GHz	5.65dB	
Occupied Bandwidth		0.5kHz	
Temperature		1.0℃	
	Humidity	6%	

Report No.: RSHA180806001-01A

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 5 of 65

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g and 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11;

For 802.11n-HT40 mode, EUT was tested with Channel 3, 6 and 9;

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: RSHA180806001-01A

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

RF test tool: SSCOM 5931_wifi_QA_Tool_V 1.0.0

Pre-scan with all the data rates, and the worst case was performed as below:

Mode	Data rate	Power level
802.11b	1 Mbps	30
802.11g	6 Mbps	20
802.11n-HT20	MCS0	20
802.11n-HT40	MCS0	20

FCC Part 15.247 Page 6 of 65

Duty Cycle:

FCC Part 15.247 Page 7 of 65

FCC Part 15.247 Page 8 of 65

Mode	Duty Cycle (%)	T(us)	1/T(kHz)	10log(1/x)
802.11b	100	/	/	0
802.11g	100	/	/	0
802.11n-HT20	100	/	/	0
802 11n-HT40	100	/	/	0

Report No.: RSHA180806001-01A

Note:"x" means the Duty Cycle.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
DELL	Notebook	GX620	D65874152	
DELL	Adapter	LA65NS0-00	DF263	

External I/O Cable

Cable Description	Length (m)	From Port	To
Serial and USB Cable two in one	0.8	Notebook	EUT

FCC Part 15.247 Page 9 of 65

FCC Part 15.247 Page 10 of 65

For Radiated Emissions(Above 1GHz):

FCC Part 15.247 Page 11 of 65

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Not Compliance
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density Compl	

Report No.: RSHA180806001-01A

Note: The EUT is battery operated equipment.

FCC Part 15.247 Page 12 of 65

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test (Chamber 1#)						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-12	2018-11-11	
Sunol Sciences	Broadband Antenna	JB3	A040914-2	2016-01-09	2019-01-08	
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-15	2019-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-09-14	
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-09-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-09-14	
	Radiate	ed Emission Test (Char	nber 2#)			
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26	
ETS-LINDGREN	Horn Antenna	3115	6229	2016-01-11	2019-01-10	
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17	
Narda	Pre-amplifier	AFS42-00101800	2001270	2017-12-12	2018-12-11	
Heatsink Required	Amplifier	QLW-18405536-J0	15964001009	2017-12-12	2018-12-11	
SINOSCITE	Band Reject Filter	BSF2400-2483MN- 0995	/	2018-08-05	2019-08-04	
Narda	Attenuator/10dB	10dB	1	2018-08-15	2019-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14	
RF Conducted Test						
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2017-09-21	2018-09-20	
Narda	Attenuator/6dB	6dB	/	2018-01-10	2019-01-09	
Agilent	Power Meter	N1912A	MY5000492	2017-11-18	2018-11-17	
Agilent	Power Sensor	N1921A	MY54210024	2017-11-18	2018-11-17	
High-Flying Electronics	RF Cable	/	/	Each time	/	

Report No.: RSHA180806001-01A

FCC Part 15.247 Page 13 of 65

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSHA180806001-01A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure										
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)							
0.3-1.34	614	1.63	*(100)	30							
1.34-30	824/f	2.19/f	*(180/f²)	30							
30-300	27.5	0.073	0.2	30							
300-1500	/		f/1500	30							
1500-100,000	/		1.0	30							

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Data:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

	Frequency	Anten	Antenna Gain		Output Power		Power	MPE Limit
Mode	Range (MHz)			Density (mW/cm ²)	(mW/cm ²)			
802.11b		0.50	1.12	15.00	31.62	20	0.0070	1.0
802.11g	2412~2462	0.50	1.12	13.00	19.95	20	0.0044	1.0
802.11n-HT20		0.50	1.12	13.00	19.95	20	0.0044	1.0
802.11n-HT40	2422~2452	0.50	1.12	12.00	15.85	20	0.0035	1.0

FCC Part 15.247 Page 14 of 65

Band	Frequency Range	Maximum Antenna Gain		Target Output Power		Evaluation Distance	Power Density	MPE Limit
24.14	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
Band 2	1850-1910	0.5	1.12	24.00	251.2	20	0.056	1.000
Band 4	1710-1755	0.5	1.12	24.00	251.2	20	0.056	1.000
Band 12	699-716	0.0	1.00	24.00	251.2	20	0.050	0.466

- 1: The target output power and maximum antenna gain were declared by the manufacturer.

 2. Wi-Fi and LTE can transmit simultaneously, and the worst condition is as below:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.007/1.0 + 0.05/0.466 = 0.1143 < 1.0$$

Conclusion: The device meets the exemption requirement.

FCC Part 15.247 Page 15 of 65

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules, §15.203 state that the subject device must meet the following criteria:

Report No.: RSHA180806001-01A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a PIFA antenna for Wi-Fi, which the antenna gain is 0.5dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 16 of 65

FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS & RESTRICTED FREQUENCY BANDS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 65

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup were set with the following configurations:

Report No.: RSHA180806001-01A

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
About 1CH-	1MHz	3 MHz	/	PK
Above 1GHz	1MHz	3 MHz	/	Ave

Test Procedure

According to ANSI C63.10-2013 clause 6.5, 6.6 and 6.7.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 18 of 65

Test Data

Environmental Conditions

Temperature:	24.2℃
Relative Humidity:	51 %
ATM Pressure:	101.2 kPa

The testing was performed by Stone Zhang on 2018-08-30 to 2018-09-05.

EUT operation mode: Transmitting

Spurious Emission Test:

30MHz-1GHz:

Pre-scan with 802.11b, 802.11g, 802.11n-HT20, 802.11n-HT20, 802.11n-HT40 modes of operation in the X,Y and Z axes of orientation, the worst case 802.11b mode(high channel:2462MHz) in X-axis of orientation was recorded

Report No.: RSHA180806001-01A

Corrected Frequency Amplitude		Rx A	ntenna	Turntable	Corrected Factor	Limit	Margin	
(MHz)	QuasiPeak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	(dB/m)	(dBµV/m)	(dB)	
30.640350	18.90	199.0	Н	336.0	-4.4	40.00	21.10	
40.922350	15.61	101.0	V	248.0	-11.3	40.00	24.39	
119.201550	11.35	199.0	Н	104.0	-11.3	43.50	32.15	
223.671200	10.05	199.0	Н	232.0	-12.2	46.00	35.95	
292.461000	11.52	199.0	Н	243.0	-10.7	46.00	34.48	
748.228100	19.45	101.0	Н	50.0	-2.5	46.00	26.55	

FCC Part 15.247 Page 19 of 65

1GHz-18GHz:

802.11b Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Note:

- 1. This test was performed with the 2.4-2.4835GHz band reject filter.
- 2. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor
- 3. Corrected Amplitude = Corrected Factor + Reading
- 4. Margin = Limit Corrected. Amplitude

Low Channel: 2412MHz

Report No.: RSHA180806001-01A

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1448.800000	38.64		150.0	V	247.0	-1.5	74.00	35.36
1448.800000		28.72	200.0	Н	0.0	-1.5	54.00	25.28
3094.400000	45.37		150.0	Н	249.0	6.3	74.00	28.63
3094.400000		35.90	150.0	Н	249.0	6.3	54.00	18.10
4824.000000		38.07	150.0	V	10.0	10.8	54.00	15.93
4824.000000	48.18		150.0	V	10.0	10.8	74.00	25.82
7236.000000		42.58	150.0	Н	159.0	15.3	54.00	11.42
7236.000000	52.14		150.0	Н	159.0	15.3	74.00	21.86
10690.000000		44.91	150.0	Н	95.0	18.2	54.00	9.09
10690.000000	55.91		150.0	Н	95.0	18.2	74.00	18.09
17877.600000		46.18	200.0	Н	112.0	19.0	54.00	7.82
17877.600000	55.93		150.0	Н	34.0	19.0	74.00	18.07

FCC Part 15.247 Page 20 of 65

Middle Channel: 2437MHz

Full Spectrum

Frequency	Corrected .	Corrected Amplitude		ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1554.200000	39.61		200.0	V	120.0	-0.9	74.00	34.39
1557.600000		29.21	200.0	V	359.0	-0.8	54.00	24.79
3227.000000	46.98		150.0	V	53.0	6.6	74.00	27.02
3227.000000		36.11	200.0	V	242.0	6.6	54.00	17.89
4874.000000		37.99	200.0	Н	33.0	11.1	54.00	16.01
4874.000000	47.47		150.0	Н	288.0	11.1	74.00	26.53
7311.000000		42.28	200.0	V	185.0	15.4	54.00	11.72
7311.000000	51.66		150.0	V	66.0	15.4	74.00	22.34
11060.600000		45.60	200.0	Н	33.0	19.0	54.00	8.40
11060.600000	56.76		200.0	Н	33.0	19.0	74.00	17.24
17847.000000		45.96	200.0	V	319.0	19.0	54.00	8.04
17847.000000	55.56		200.0	V	319.0	19.0	74.00	18.44

FCC Part 15.247 Page 21 of 65

High Channel: 2462MHz

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1197.200000		28.70	150.0	V	72.0	-3.0	54.00	25.30
1197.200000	37.78		200.0	V	95.0	-3.0	74.00	36.22
2904.000000		34.99	150.0	V	9.0	5.5	54.00	19.01
2904.000000	46.21		150.0	V	9.0	5.5	74.00	27.79
4924.000000		39.34	200.0	V	300.0	11.3	54.00	14.66
4924.000000	47.98		200.0	V	300.0	11.3	74.00	26.02
7386.000000		42.25	200.0	V	358.0	15.5	54.00	11.75
7386.000000	52.82		150.0	V	123.0	15.5	74.00	21.18
11016.400000		46.00	200.0	Н	0.0	19.0	54.00	8.00
11016.400000	56.52		200.0	Н	0.0	19.0	74.00	17.48
17881.000000		45.20	150.0	V	9.0	19.0	54.00	8.80
17881.000000	55.53		150.0	V	9.0	19.0	74.00	18.47

FCC Part 15.247 Page 22 of 65

Report No.: RSHA180806001-01A

802.11g Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.4835GHz band reject filter.
- 2. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor

2G

- 3. Corrected Amplitude = Corrected Factor + Reading
- 4. Margin = Limit Corrected. Amplitude

1G

Low Channel: 2412MHz

4G

Frequency in Hz

5G

8

10G

18G

3G

Full Spectrum

Frequency	Corrected .	Corrected Amplitude Ry		ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1591.600000		32.26	200.0	V	179.0	-0.6	54.00	21.74
1591.600000	39.69		200.0	V	179.0	-0.6	74.00	34.31
2897.200000		35.25	200.0	Н	291.0	5.4	54.00	18.75
2897.200000	44.24		200.0	Н	291.0	5.4	74.00	29.76
4824.000000		38.74	150.0	V	47.0	10.8	54.00	15.26
4824.000000	47.29		200.0	V	141.0	10.8	74.00	26.71
7228.800000		42.35	200.0	Н	316.0	15.3	54.00	11.65
7228.800000	51.78		200.0	Н	316.0	15.3	74.00	22.22
11091.200000		45.88	150.0	V	226.0	18.9	54.00	8.12
11091.200000	55.68		200.0	V	141.0	18.9	74.00	18.32
17785.800000		45.29	200.0	V	218.0	18.9	54.00	8.71
17785.800000	55.87		200.0	V	218.0	18.9	74.00	18.13

FCC Part 15.247 Page 23 of 65

Middle Channel: 2437MHz

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1591.600000	40.41		200.0	V	149.0	-0.6	74.00	33.59
1591.600000		30.50	200.0	V	149.0	-0.6	54.00	23.50
3128.400000	45.87		200.0	Н	22.0	6.3	74.00	28.13
3128.400000		36.10	200.0	Н	22.0	6.3	54.00	17.90
4874.000000		39.09	150.0	V	72.0	11.1	54.00	14.91
4874.000000	46.53		200.0	V	96.0	11.1	74.00	27.47
7311.000000		42.40	200.0	Н	111.0	15.4	54.00	11.60
7311.000000	52.04		200.0	Н	111.0	15.4	74.00	21.96
10764.800000		45.83	150.0	Н	280.0	18.4	54.00	8.17
10764.800000	56.18		150.0	Н	280.0	18.4	74.00	17.82
17248.600000		45.06	200.0	V	162.0	18.3	54.00	8.94
17248.600000	56.09		200.0	V	162.0	18.3	74.00	17.91

FCC Part 15.247 Page 24 of 65

High Channel: 2462MHz

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	(z) MaxPeak Avera	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1197.200000		29.32	200.0	V	359.0	-3.0	54.00	24.68
1197.200000	38.76		200.0	V	359.0	-3.0	74.00	35.24
2985.600000		34.87	200.0	Н	180.0	5.9	54.00	19.13
2985.600000	44.84		150.0	Н	0.0	5.9	74.00	29.16
4924.000000	48.89		150.0	V	349.0	11.3	74.00	25.11
4924.000000		38.54	150.0	V	349.0	11.3	54.00	15.46
7386.000000		43.19	150.0	V	12.0	15.5	54.00	10.81
7386.000000	51.41		150.0	V	12.0	15.5	74.00	22.59
10095.000000		45.22	200.0	V	307.0	18.2	54.00	8.78
10095.000000	56.41		200.0	V	307.0	18.2	74.00	17.59
17813.000000		45.20	200.0	V	178.0	18.9	54.00	8.80
17813.000000	55.42		200.0	V	178.0	18.9	74.00	18.58

FCC Part 15.247 Page 25 of 65

802.11n-HT20 Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.4835GHz band reject filter.
- 2. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor
- 3. Corrected Amplitude = Corrected Factor + Reading
- 4. Margin = Limit Corrected. Amplitude

Low Channel: 2412MHz

-	80-												
3 µ V/n	60-						had to		خال	وال المالية		. 	*
Level in dB µ V/m	40-	and the state of t	*	ا الوارداد الموليداد الموليدات	المديدة المدينية المدينة المدي المدينة المدينة				*			A STATE OF THE PARTY OF THE PAR	***
Lev	20-	A Continue of the Continue of											
	0- 1	G G	20	G 3	G 4	G 5	G (8	+	10G		 18G
					Frequ	iency i	n Hz						

Frequency	Corrected Amplitude		Rx Antenna		Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1591.600000		31.07	200.0	V	178.0	-0.6	54.00	22.93
1591.600000	40.59		200.0	V	178.0	-0.6	74.00	33.41
3091.000000		35.01	200.0	V	39.0	6.2	54.00	18.99
3091.000000	45.73		200.0	V	39.0	6.2	74.00	28.27
4824.000000		38.19	150.0	V	0.0	10.8	54.00	15.81
4824.000000	47.23		200.0	V	293.0	10.8	74.00	26.77
7236.000000		43.03	150.0	Н	211.0	15.3	54.00	10.97
7236.000000	51.94		200.0	Н	66.0	15.3	74.00	22.06
11067.400000	55.70		200.0	V	127.0	19.0	74.00	18.30
11067.400000		45.33	150.0	V	1.0	19.0	54.00	8.67
17921.800000		45.63	200.0	V	75.0	19.1	54.00	8.37
17921.800000	55.74		150.0	V	72.0	19.1	74.00	18.26

FCC Part 15.247 Page 26 of 65

Middle Channel: 2437MHz

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1520.200000	39.61		200.0	V	29.0	-1.1	74.00	34.39
1520.200000		29.56	200.0	V	29.0	-1.1	54.00	24.44
3070.600000	45.77		150.0	V	212.0	6.2	74.00	28.23
3070.600000		36.48	200.0	V	75.0	6.2	54.00	17.52
4874.000000	47.55		150.0	Н	351.0	11.1	74.00	26.45
4874.000000		38.24	150.0	Н	351.0	11.1	54.00	15.76
7311.000000		42.44	200.0	V	242.0	15.4	54.00	11.56
7311.000000	51.83		200.0	V	242.0	15.4	74.00	22.17
11050.400000		45.56	200.0	V	306.0	19.0	54.00	8.44
11050.400000	55.98		150.0	V	122.0	19.0	74.00	18.02
17942.200000		45.74	150.0	V	5.0	19.1	54.00	8.26
17942.200000	55.79		200.0	V	62.0	19.1	74.00	18.21

FCC Part 15.247 Page 27 of 65

High Channel: 2462MHz

Full Spectrum

Frequency	Corrected Amplitude		Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1465.800000	39.11		150.0	V	79.0	-1.5	74.00	34.89
1465.800000		29.15	150.0	V	79.0	-1.5	54.00	24.85
2944.800000	45.55		200.0	Н	145.0	5.7	74.00	28.45
2944.800000		35.87	200.0	Н	145.0	5.7	54.00	18.13
4924.000000		39.00	150.0	V	169.0	11.3	54.00	15.00
4924.000000	47.95		150.0	V	169.0	11.3	74.00	26.05
7386.000000		42.77	150.0	Н	282.0	15.5	54.00	11.23
7386.000000	52.04		200.0	Н	0.0	15.5	74.00	21.96
11067.400000		45.30	200.0	V	207.0	19.0	54.00	8.70
11067.400000	55.91		150.0	V	3.0	19.0	74.00	18.09
17690.600000		45.33	200.0	V	0.0	18.7	54.00	8.67
17690.600000	55.88		200.0	V	0.0	18.7	74.00	18.12

FCC Part 15.247 Page 28 of 65

Report No.: RSHA180806001-01A

802.11n-HT40 Mode:

(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz band reject filter.
- Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

Low Channel: 2422MHz

Frequency in Hz

Corrected Amplitude Rx Antenna Corrected Frequency Turntable Limit Margin Factor MaxPeak Average Height Polar (MHz) Degree $(dB\mu V/m)$ (dB) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ (cm) (H/V)1197.200000 29.13 121.0 -3.0 24.87 200.0 V 54.00 1197.200000 V -3.0 35.56 38.44 200.0 121.0 74.00 2927.800000 150.0 218.0 54.00 35.16 Η 5.6 18.84 ---2927.800000 200.0 339.0 74.00 29.03 44.97 Η 5.6 4844.000000 150.0 Н 307.0 10.9 54.00 15.58 ---38.42 4844.000000 47.08 150.0 307.0 10.9 74.00 26.92 Η 7266.000000 41.93 200.0 V 301.0 15.3 54.00 12.07 V 15.3 22.78 7266.000000 51.22 150.0 53.0 74.00 ---10894.000000 46.21 200.0 V 172.0 18.8 54.00 7.79 ---10894.000000 56.12 ---200.0 V 172.0 18.8 74.00 17.88 V 249.0 9.08 17054.800000 ---44.92 200.0 18.1 54.00 17054.800000 56.10 200.0 V 249.0 18.1 74.00 17.90

FCC Part 15.247 Page 29 of 65

Middle Channel: 2437MHz

Full Spectrum

Frequency	Corrected Amplitude		Rx A	Rx Antenna		Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	(dBµV/m)	(dB)
1656.200000		29.77	200.0	V	230.0	-0.1	54.00	24.23
1656.200000	39.87		200.0	V	230.0	-0.1	74.00	34.13
2931.200000		35.12	150.0	Н	348.0	5.6	54.00	18.88
2931.200000	45.05		200.0	Н	358.0	5.6	74.00	28.95
4874.000000		38.69	150.0	Н	251.0	11.0	54.00	15.31
4874.000000	47.62		200.0	Н	59.0	11.0	74.00	26.38
7311.000000		42.61	200.0	V	243.0	15.4	54.00	11.39
7311.000000	52.09		200.0	V	243.0	15.4	74.00	21.91
11145.600000		45.22	200.0	Н	97.0	18.9	54.00	8.78
11145.600000	56.85		150.0	Н	212.0	18.9	74.00	17.15
17354.000000		45.97	200.0	V	83.0	18.4	54.00	8.03
17354.000000	55.72		200.0	V	83.0	18.4	74.00	18.28

FCC Part 15.247 Page 30 of 65

High Channel: 2452MHz

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1197.200000		27.95	200.0	V	325.0	-3.0	54.00	26.05
1197.200000	37.43		200.0	V	325.0	-3.0	74.00	36.57
2907.400000		34.42	200.0	Н	79.0	5.5	54.00	19.58
2907.400000	45.72		150.0	Н	146.0	5.5	74.00	28.28
4904.000000		38.85	200.0	Н	246.0	11.2	54.00	15.15
4904.000000	48.10		200.0	Н	246.0	11.2	74.00	25.90
7356.000000		43.31	200.0	Н	92.0	15.5	54.00	10.69
7356.000000	52.33		200.0	Н	92.0	15.5	74.00	21.67
11451.600000		46.14	200.0	V	158.0	18.4	54.00	7.86
11451.600000	55.99		200.0	V	158.0	18.4	74.00	18.01
17932.000000		46.33	150.0	V	72.0	19.1	54.00	7.67
17938.800000	55.69		150.0	V	12.0	19.1	74.00	18.31

FCC Part 15.247 Page 31 of 65

18GHz-25GHz:

Pre-scan with 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40 modes of operation in the X,Y and Z axes of orientation, the worst case 802.11b mode(high channel:2462MHz) in X-axis of orientation was recorded

Horizontal

Report No.: RSHA180806001-01A

Date: 5.SEP.2018 09:43:12

Vertical

Date: 5.SEP.2018 09:58:46

FCC Part 15.247 Page 32 of 65

Report No.: RSHA180806001-01A

Fundamental Test & Restricted Bands Emissions Test:

Note:

- 1. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor
- 2.Corrected Amplitude = Corrected Factor + Reading
- 3.Margin = Limit Corrected. Amplitude

802.11b Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Frequency	Corrected	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin			
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)			
			Low Chan	nel: 2412M	Hz						
2412		102.13	100	Н	316	2.9	/	/			
2412	103.57		100	Н	316	2.9	/	/			
2412		100.56	207	V	46	2.9	/	/			
2412	101.41		207	V	46	2.9	/	/			
2390	52.25		240	Н	179	2.8	74	21.75			
2390		41.92	240	Н	179	2.8	54	12.08			
	Middle Channel: 2437MHz										
2437	104.25		187	Н	241	2.9	/	/			
2437		102.12	187	Н	241	2.9	/	/			
2437	103.25		174	V	244	2.9	/	/			
2437		101.65	174	V	244	2.9	/	/			
			High Chan	nel: 2462M	Hz						
2462	105.35		175	Н	194	3.0	/	/			
2462		102.35	175	Н	194	3.0	/	/			
2462	104.62		204	V	185	3.0	/	/			
2462		102.49	204	V	185	3.0	/	/			
2483.5	50.16		237	Н	27	3.0	74	23.84			
2483.5		41.35	237	Н	27	3.0	54	12.65			

FCC Part 15.247 Page 33 of 65

802.11g Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Engguenav	Corrected	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
			Low Chan	nel: 2412M	Hz			
2412		84.55	197	Н	316	2.9	/	/
2412	92.47		197	Н	316	2.9	/	/
2412		83.95	207	V	46	2.9	/	/
2412	91.38		207	V	46	2.9	/	/
2390	51.27		240	Н	179	2.8	74	22.73
2390		41.73	240	Н	179	2.8	54	12.27
]	Middle Cha	nnel: 2437N	MHz			
2437	93.26		187	Н	241	2.9	/	/
2437		85.16	187	Н	241	2.9	/	/
2437	92.53		174	V	244	2.9	/	/
2437		84.32	174	V	244	2.9	/	/
			High Chan	nel: 2462M	Hz			
2462	95.65		175	Н	194	3.0	/	/
2462		87.12	175	Н	194	3.0	/	/
2462	93.43		204	V	185	3.0	/	/
2462		85.62	204	V	185	3.0	/	/
2483.5	52.78		237	Н	27	3.0	74	21.22
2483.5		41.47	237	Н	27	3.0	54	12.53

FCC Part 15.247 Page 34 of 65

802.11n-HT20 Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded)

Frequency	Corrected	Amplitude	Rx A	Rx Antenna		Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	(dBµV/m)	(dB)
			Low Chan	nel: 2412M	Hz			
2412		84.35	197	Н	316	2.9	/	/
2412	92.56		197	Н	316	2.9	/	/
2412		83.46	207	V	46	2.9	/	/
2412	91.45		207	V	46	2.9	/	/
2390	51.36		240	Н	179	2.8	74	22.64
2390		42.58	240	Н	179	2.8	54	11.42
	•]	Middle Cha	nnel: 2437N	ИНz			
2437	93.58		187	Н	241	2.9	/	/
2437		86.23	187	Н	241	2.9	/	/
2437	93.26		174	V	244	2.9	/	/
2437		85.94	174	V	244	2.9	/	/
			High Char	nel: 2462M	Hz			
2462	96.64		175	Н	194	3.0	/	/
2462		88.36	175	Н	194	3.0	/	/
2462	94.29		204	V	185	3.0	/	/
2462		86.13	204	V	185	3.0	/	/
2483.5	53.26	/	237	Н	27	3.0	74	20.74
2483.5		42.83	237	Н	27	3.0	54	11.17

FCC Part 15.247 Page 35 of 65

802.11n-HT40 Mode: (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Frequency	Corrected	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
			Low Chan	nel: 2422M	Hz			
2422		83.25	211	Н	157	2.9	/	/
2422	90.94		211	Н	157	2.9	/	/
2422		82.91	211	V	168	2.9	/	/
2422	89.68		211	V	168	2.9	/	/
2390	49.85		238	Н	186	2.8	74	24.15
2390		40.86	238	Н	186	2.8	54	13.14
]	Middle Cha	nnel: 2437N	МНz			
2437	91.65		160	Н	112	2.9	/	/
2437		84.36	160	Н	112	2.9	/	/
2437	90.35		196	V	159	2.9	/	/
2437		83.26	196	V	159	2.9	/	/
			High Char	nel: 2452M	Hz			
2452	92.31		199	Н	245	3.0	/	/
2452		85.95	199	Н	245	3.0	/	/
2452	81.68		245	V	263	3.0	/	/
2452		84.86	245	V	263	3.0	/	/
2483.5	50.89		246	Н	299	3.0	74	23.11
2483.5		41.83	246	Н	299	3.0	54	12.17

FCC Part 15.247 Page 36 of 65

Conducted Spurious Emissions at Antenna Port

802.11b Low Channel

802.11b Middle Channel

FCC Part 15.247 Page 37 of 65

802.11b High Channel

802.11g Low Channel

FCC Part 15.247 Page 38 of 65

802.11g Middle Channel

802.11g High Channel

FCC Part 15.247 Page 39 of 65

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 40 of 65

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

FCC Part 15.247 Page 41 of 65

802.11n-HT40 Middle Channel

802.11n-HT40 High Channel

FCC Part 15.247 Page 42 of 65

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSHA180806001-01A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.8.1

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3xRBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Stone Zhang on 2018-08-30.

Test Result: Pass.

FCC Part 15.247 Page 43 of 65

EUT operation mode: Transmitting

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)		
	802.11b mode				
Low	2412	9.198	≥0.5		
Middle	2437	9.198	≥0.5		
High	2462	9.198	≥0.5		
802.11g mode					
Low	2412	16.473	≥0.5		
Middle	2437	16.774	≥0.5		
High	2462	16.533	≥0.5		
	802.11n-HT20 mode				
Low	2412	17.796	≥0.5		
Middle	2437	17.735	≥0.5		
High	2462	17.735	≥0.5		
802.11n-HT40 mode					
Low	2422	36.313	≥0.5		
Middle	2437	36.313	≥0.5		
High	2452	36.433	≥0.5		

FCC Part 15.247 Page 44 of 65

802.11b Low Channel

802.11b Middle Channel

FCC Part 15.247 Page 45 of 65

802.11b High Channel

802.11g Low Channel

FCC Part 15.247 Page 46 of 65

802.11g Middle Channel

802.11g High Channel

FCC Part 15.247 Page 47 of 65

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 48 of 65

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

FCC Part 15.247 Page 49 of 65

802.11n-HT40 Middle Channel

802.11n-HT40 High Channel

FCC Part 15.247 Page 50 of 65

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSHA180806001-01A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.8.1

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Stone Zhang on 2018-08-30.

EUT operation mode: Transmitting

FCC Part 15.247 Page 51 of 65

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	Result	
		802.11b mode			
Low	2412	13.27	30	Pass	
Middle	2437	14.28	30	Pass	
High	2462	14.89	30	Pass	
		802.11g mode			
Low	2412	10.99	30	Pass	
Middle	2437	11.87	30	Pass	
High	2462	12.65	30	Pass	
		802.11n-HT20 mode			
Low	2412	10.31	30	Pass	
Middle	2437	11.57	30	Pass	
High	2462	12.17	30	Pass	
	802.11n-HT40 mode				
Low	2422	10.63	30	Pass	
Middle	2437	10.98	30	Pass	
High	2452	11.51	30	Pass	

FCC Part 15.247 Page 52 of 65

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSHA180806001-01A

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

According to ANSI C63.10-2013 clause 6.10.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Stone Zhang on 2018-08-30.

Test Result: Compliance

FCC Part 15.247 Page 53 of 65

802.11b Mode Left Side

802.11b Mode Right Side

FCC Part 15.247 Page 54 of 65

802.11g Mode Left Side

802.11g Mode Right Side

FCC Part 15.247 Page 55 of 65

802.11n-HT20 Mode Left Side

802.11n-HT20 Mode Right Side

FCC Part 15.247 Page 56 of 65

802.11n-HT40 Mode Left Side

802.11n-HT40 Mode Right Side

FCC Part 15.247 Page 57 of 65

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSHA180806001-01A

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.10.2

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 2. Set the VBW $\geq 3xRBW$.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24.2℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Stone Zhang on 2018-08-30.

EUT operation mode: Transmitting

FCC Part 15.247 Page 58 of 65

Test Result: Pass

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	
	802.11b	mode		
Low	2412	-15.03	≤8	
Middle	2437	-14.67	≤8	
High	2462	-16.33	≤8	
	802.11g	mode		
Low	2412	-18.01	≤8	
Middle	2437	-18.74	≤8	
High	2462	-19.77	≤8	
	802.11n-H7	T20 mode		
Low	2412	-19.69	≤8	
Middle	2437	-19.60	≤8	
High	2462	-19.59	≤8	
802.11n-HT40 Mode				
Low	2422	-23.33	≤8	
Middle	2437	-23.97	≤8	
High	2452	-24.08	≤8	

FCC Part 15.247 Page 59 of 65

802.11b Low Channel

802.11b Middle Channel

FCC Part 15.247 Page 60 of 65

802.11b High Channel

802.11g Low Channel

FCC Part 15.247 Page 61 of 65

802.11g Middle Channel

802.11g High Channel

FCC Part 15.247 Page 62 of 65

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 63 of 65

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

FCC Part 15.247 Page 64 of 65

Report No.: RSHA180806001-01A

802.11n-HT40 High Channel

***** END OF REPORT *****

FCC Part 15.247 Page 65 of 65