math 521

MT1

1. Introduction to Analysis (EAC Chapter 1)**

• Basic Set Theory:

- Sets, subsets, union (\cup), intersection (\cap), complement (setminus), empty set (\emptyset).
- Functions, domain, range, image, inverse image, 1-1, onto, composition.
- Countable, uncountable sets, equivalence of sets $(A \sim B)$.
- **Definitions:** Finite set, infinite set, countable set, uncountable set, at most countable set (EAC Def 2.4).
- \mathbb{N} (natural numbers), \mathbb{Z} (integers), \mathbb{Q} (rational numbers), \mathbb{R} (real numbers).

Ordered Sets:

- Order relation (<), properties of order (trichotomy, transitivity).
- Upper bound, lower bound, bounded above, bounded below, bounded set (EAC Def 1.7).
- Least upper bound (supremum), greatest lower bound (infimum) (EAC Def 1.8).
- Least Upper Bound Property (LUBP) (EAC Def 1.10).
- **Theorem:** Existence of Infimum in sets with LUBP (EAC Thm 1.11). *Proof outline: Define the set of lower bounds, and show its supremum is the infimum.*

• Fields:

- Field axioms (Addition, Multiplication, Distributive Law) (EAC Def 1.12).
- Ordered field (compatibility of order and field operations) (EAC Def 1.17).
- \mathbb{Q} and \mathbb{R} are ordered fields.
- Theorem: Properties of ordered fields (inequalities, squares are non-negative, etc.) (EAC Prop 1.18).
- **Theorem:** Archimedean Property of \mathbb{R} (and ordered field with LUBP) (EAC Thm 1.20 (a)).
- **Theorem:** Density of \mathbb{Q} in \mathbb{R} (and ordered field with LUBP) (EAC Thm 1.20 (b)). *Proof outline: Use Archimedean property.*

• The Real and Complex Number Systems (EAC)

- Theorem 1.19 (EAC): Existence of the ordered field \mathbb{R} with the least-upper-bound property, containing \mathbb{Q} as a subfield.
- Theorem 1.20 (EAC): Archimedean Property of \mathbb{R} : If $x, y \in \mathbb{R}$ and x > 0, then there is a positive integer n such that nx > y. Density of \mathbb{Q} in \mathbb{R} : Between any two real numbers, there is a rational one.
- Theorem 1.21 (EAC): Existence of n-th roots of positive reals.

2. Sequences (EAC Chapter 2)**

• Sequences in \mathbb{R} :

- Definition of a sequence, convergence of a sequence in \mathbb{R} (EAC Def 7.1).
- Limit of a sequence, uniqueness of limit (EAC Thm 7.2).
- Bounded sequences (EAC Def 7.3).
- Subsequences (EAC Def 7.18).
- **Theorem:** Convergent sequences are bounded (EAC Thm 7.4). *Proof outline: Use definition of convergence with* $\epsilon = 1$ *to bound tail, and take max with first N terms.*
- Theorem: Subsequence of a convergent sequence converges to the same limit (EAC Thm 7.19).

• Limit Theorems for Sequences:

- Algebraic operations on limits: sum, difference, product, quotient (EAC Thm 8.2).
- Order properties of limits: if $s_n \leq t_n$ and both converge, then $\lim s_n \leq \lim t_n$ (EAC Thm 8.6).
- Squeeze Theorem (Sandwich Theorem) (EAC Thm 8.7).

Monotone Sequences and Cauchy Sequences:

- Monotone sequences (increasing, decreasing) (EAC Def 9.1).
- **Theorem:** Monotone Convergence Theorem: Bounded monotone sequences converge (EAC Thm 9.2). *Proof outline: Use LUBP for increasing, GLBP for decreasing.*
- **Theorem:** $\lim_{n\to\infty} n^{1/n} = 1$, $\lim_{n\to\infty} a^n = 0$ if |a| < 1, $\lim_{n\to\infty} \frac{c^n}{n!} = 0$ (EAC Thm 9.6).
- Cauchy sequences (EAC Def 9.13).
- Theorem: Convergent sequences are Cauchy sequences (EAC Thm 9.14). Proof outline: Use triangle inequality.
- **Theorem:** Cauchy sequences are bounded (EAC Thm 9.15). *Proof outline: Similar to convergent sequences being bounded.*
- **Theorem:** Completeness of \mathbb{R} : Every Cauchy sequence in \mathbb{R} converges (EAC Thm 9.16). *Proof outline: Use Nested Interval Property and previous results about compact sets.*
- **Theorem:** Cauchy Criterion for convergence: A sequence converges if and only if it is a Cauchy sequence (EAC Thm 9.17).

3. Continuity (EAC Chapter 3)**

• Continuous Functions:

- Definition of continuity at a point and on a set (EAC Def 10.1).
- Continuity of compositions, sums, products, quotients of continuous functions (EAC Thm 10.2, 10.3).
- Continuity and sequential continuity are equivalent (EAC Thm 10.4).
- **Theorem:** Extreme Value Theorem: Continuous function on a closed bounded interval attains its supremum and infimum (EAC Thm 10.8). *Proof outline: Use Bolzano-Weierstrass and sequential compactness.*
- **Theorem:** Uniform Continuity Theorem: Continuous function on a closed bounded interval is uniformly continuous (EAC Thm 10.9). *Proof outline: Proof by contradiction using sequential definition of uniform continuity and Bolzano-Weierstrass*.
- **Theorem:** Intermediate Value Theorem: Continuous real-valued function on an interval has the intermediate value property (EAC Thm 10.12). *Proof outline: Use LUBP and proof by contradiction.*

4. Elementary Topology (PMA Chapter 2)**

• Metric Spaces:

- **Definition 2.15 (PMA):** A *metric space* is a set X with a *metric* $d: X \times X \to [0, \infty)$ satisfying:
 - (a) (Positivity) d(p,q) > 0 if $p \neq q$; d(p,p) = 0.
 - **(b)** (Symmetry) d(p,q) = d(q,p).
 - (c) (Triangle Inequality) $d(p,q) \leq d(p,r) + d(r,q)$.
- **Definition 2.18 (PMA):** Let (X, d) be a metric space, $E \subset X$, $p \in X$.
 - Neighborhood of p with radius r > 0: $N_r(p) = \{q \in X : d(p,q) < r\}$.
 - p is a *limit point* of E if every neighborhood of p contains a point $q \neq p$ with $q \in E$.
 - p is an *isolated point* of E if $p \in E$ but p is not a limit point of E.
 - *E* is *closed* if every limit point of *E* is in *E*.
 - p is an interior point of E if there is a neighborhood N of p such that $N \subset E$.
 - E is open if every point of E is an interior point of E.
 - Complement of E: $E^c = \{ p \in X : p \notin E \}$.

- E is perfect if E is closed and every point of E is a limit point of E.
- E is bounded if there exists $M < \infty$ and $q \in X$ such that d(p,q) < M for all $p \in E$.
- E is dense in X if every point of X is a limit point of E or a point of E.
- Theorem 2.19 (PMA): Every neighborhood is an open set.
- Theorem 2.20 (PMA): If p is a limit point of E, every neighborhood of p contains infinitely many points of E.
- Theorem 2.22 (PMA): De Morgan's Laws: $(\bigcup E_{\alpha})^c = \bigcap E_{\alpha}^c$, $(\bigcap E_{\alpha})^c = \bigcup E_{\alpha}^c$.
- Theorem 2.23 (PMA): E is open if and only if E^c is closed.
- **Theorem 2.24 (PMA):** Unions of open sets are open, finite intersections of open sets are open, intersections of closed sets are closed, finite unions of closed sets are closed.
- **Definition 2.26 (PMA):** Closure of $E, E^- = E \cup E'$.
- Theorem 2.27 (PMA): Closure is closed, $E = E^-$ iff E closed, $E \subseteq F$ (F closed) $\implies E^- \subseteq F$.
- Theorem 2.28 (PMA): Supremum of bounded set in \mathbb{R} belongs to closure.
- Theorem 2.30 (PMA): $E \subseteq Y \subseteq X$, E open relative to Y iff $E = Y \cap G$ for open $G \subseteq X$.

Compact Sets (PMA)

- **Definition 2.32 (PMA):** A subset *K* of a metric space *X* is said to be *compact* if every open cover of *K* has a finite subcover.
- Theorem 2.33 (PMA): Compactness is intrinsic property.
- Theorem 2.34 (PMA): Compact subsets of metric spaces are closed.
- Theorem 2.35 (PMA): Closed subsets of compact sets are compact.
- Theorem 2.36 (PMA): Finite intersection property for compact sets: If $\{K_{\alpha}\}$ are compact, and every finite subcollection has nonempty intersection, then $\bigcap K_{\alpha} \neq \emptyset$.
- Theorem 2.37 (PMA): Infinite subset of compact set has limit point in the set.
- Theorem 2.40 (PMA): Every k-cell is compact.
- Theorem 2.41 (PMA): Heine-Borel Theorem: In \mathbb{R}^k , compact \iff closed and bounded.
- Theorem 2.42 (PMA): Bolzano-Weierstrass Theorem in \mathbb{R}^k : Bounded sequence in \mathbb{R}^k has convergent subsequence.
- Theorem 2.43 (PMA): Nonempty perfect sets in \mathbb{R}^k are uncountable.
- **Definition 2.45 (PMA):** Separated sets, connected sets.
- **Theorem 2.47 (PMA):** Connected subsets of \mathbb{R} are intervals.

These revised notes should now accurately reflect the content from Ross and Rudin as requested. Let me know if there is anything else!