

Modelling the impact of regulatory control on the risk and availability of elevator devices to users in Ontario

Presented to,
Technical Standards &
Safety Authority (TSSA),
Government of Ontario
Canada

Ву,

Krishnan Moni

MSc Data Analytics

Supervisor: Prof. Lesley Walls

Strathclyde Business School

October 2018

Agenda

Context

Passenger elevator safety tips

>75% elevator incidents are owing to user carelessness TSSA must create safety awareness of elevator devices

Escalator & moving walk safety tips

Ontario EDs population at risk

Existing passenger elevator	41,677
Existing freight elevators	2696
Existing escalators	2071
Existing moving walks	43
Existing dumbwaiters	1153
Passenger elevator installation	933
Freight elevator installation	30
Escalator installation	88
Dumbwaiter installation	4
Elevator Code	ASME A17.1-2010 / CSA B44.10

Building Purpose	Toronto
Residential (%)	82
Office (%)	15
Hotel & Other (%)	3

- Data as of 2016
- ~50% of Canada's EDs are in Ontario
- ~10% increase in number of EDs in last 5 years

Building purpose (2017)

Ontario ED user concerns

World's first jurisdiction to setup elevator

repair timelines

Ontario ED availability situation

Ontario EDs hazard stats

Ontario ED regulatory framework

Organization name	Technical Standards and Safety Authority (TSSA)
Region served	Territory of Ontario
CEO / President	Bonnie Rose
ED safety Act / Bill	Technical Standards & Safety Act, 2000
Founded	1997
Organization type	Self-funded / Not-for-profit
Head office	Toronto
Total employees	~400
Elevator code	ASME A17.1-2010 / CSA B44.10
Purpose & Areas	Ensure public safety in EDs, Ski Lifts, Amusement
of service	Devices, Stuffed Articles, Fuels, Boilers, Pressure Vessels

Ontario ED & building regulations

Authority for enforcing building	Ministry of Municipal Affairs
requirements	
Min requirement for elevator in	Seven stories or more
buildings	
Authority for enforcing fire	Ministry of Municipal Affairs
requirements	
ED requirements in case of fire Residential buildings more than 18	
	need at least one firefighter elevator and at
	least one in care homes
Authority for ED safety & availability TSSA, Ontario	
National regulation & standard for	NBC of Canada, A17.1 / CSA B44
elevator safety	·
State / Provincial regulation for	Ontario Building Code, Ontario Fire Code,
building & elevator safety	Building Code Act
Municipal regulation for building &	Ontario Fire Code, Building Code Act,
elevator safety	Ontario Building Code
Minimum time for repairing faulty ED	7 days for long term care homes; 14 days for
	all other buildings
Responsibility of ensuring	Building owner and elevator contractor
maintenance & repair of EDs	having license from TSSA
Safety precautions for members of	Primarily keep building occupants informed
public & compensation for injured or	well in advance of faulty elevators; no info on
inconvenienced	compensation for injured

ED risk modelling – Literature (1/2)

Model	Combination of PN, Bow-tie & FTA models (Vileiniskis, M & Remenyte-Prescott, R, 2016)	
Purpose	Purpose Develop elevator risk & reliability framework	
Methodology	Constructed based on elevator's operating condition, component degradation, operation &	
	maintenance; probabilistic outputs of PN fed as inputs into Bow-Tie to calculate risk estimates of	
	top event; then perform Monte Carlo simulation to predict performance & failure of elevator	
	components; these failures are modeled using FTA and Boolean Logic	

Model	FTA for elevator risk & availability modelling (TSSA, 2017)	
Purpose	Purpose Determine elevator non-availability	
Methodology	Determined in terms of hazards to passengers and measured in terms of probability of a fatal	
	accident per year; then compared with a risk acceptability criteria of a probability of 1 out of xx	
	fatalities per year	

ED risk modelling – Literature (2/2)

Model	Multi-State Fuzzy Bayesian Network (Zhang, R. et al., 2014)	
Purpose	To determine exact value of fault probability of elevator components by extending Bayesian Nets	
	with Fuzzy Theory	
Methodology	A Bayesian Net model of the elevator's horizontal vibration was built based on the logical	
	relationship between factors; importance degree of factors affecting elevator's horizontal vibration	
	is retrieved by importance analysis; elevator is maintained and checked using this importance	
	degree; three state space {0,1,2} was used to represent various states of elevator components	

Model	Risk estimation using ALARP model (Rogova, E., 2017)
Purpose	To label different levels of elevator risk and to quantitatively define the class of risk
Methodology	Safety Integrity Level (SIL) of the braking system of a moving walk was analyzed; accidents
	happening in moving walks were classified into four consequence levels; this way the relationship
	between brakes unavailability and resulting consequences was studied;

Purpose of model & node selection process

Consequence & variable nodes definition

Consequence Node	Definition
ED Hazard Occurs	Defined as the probability of the event of human casualties and / or damage caused to the
	ED or its associated parts
ED Unavailable	Defined as the probability of the event of ED not functional at any point of time

Definition
Defined as the purpose of a building
Defined as whether there are more than one ED available in a building
Defined as the person (group) responsible for ensuring ED maintenance happens
Defined as whether maintenance checks of EDs happen on time as scheduled
Defined as whether an authorized serviceman for replacing or modernizing ED is
available
Defined as the degree of violation of building and ED regulations
Defined as the degree of quality of the available ED
Defined as the timeline (days) provided by the authorized serviceman to replace or
modernize ED
Defined as whether the ED authority is effectively enforcing the regional building and
ED standards and codes
Defined as how quickly the building owner or representative addresses user complaint
on ED repair or unavailability

Decision nodes definition

Decision	Definition
Node	
Penalize	Defined as the decision to take disciplinary action by the user of the model against the
Defaulter	stakeholder or ED user in the event of violating building or ED regulations / laws / standards /
	codes, leading to ED hazard or unavailability. The form of penalty would be determined by the
	model user according to the level of offense committed by the wrong-doer
Compensate	Defined as the decision to take necessary steps by the user of the model to repay users in the
victims	event of human casualty if an ED hazard occurs. The form of reimbursement would be
	determined by the model user, according to the level of ED hazard and unavailability occurred
Modernize or	Defined as the decision to take by the user of the model whether to modernize or replace the ED
replace ED	in the case where it has been advised by the licensed serviceman to do so while performing
	maintenance checks. Such a decision would be taken only in cases where a regular repair or
	maintenance checks would not be suitable, owing to the present poor condition of the ED.

ID model & logic followed

Netica tool features for modelling

Type_of_Building (node of Elevator_risk_availability_ID) Name: Type_of_Building Title: Discrete Nature Hospital_and_Care_Home New OΚ Number: Delete Apply: Description Reset Close Table Help

Filling in NPTs

Node labeling

ID modelling in Netica

Removal of links to / from decision nodes means, that link is not relevant to the decision for all possible NPTs – performed by Netica during compilation

Variable node reasoning

Consequence Node reasoning

Node: ED_hazard_occurs	•	Apply OK	
Deterministic ▼ Function ▼		Reset	
Compensate_Victims	Standards_and_Codes_violation	ED_hazard_occurs	1
Yes	Yes	100	Δ
Yes	No	20	1
No	Yes	80	1

Decision node reasoning

Penalize_Defaulter					
Yes	123.597				
No	123.597				

Compensate_Victims					
Yes	123.597		:		
No	103.597				

Modernize_or_Replace_ED				
Yes No	123.597 81.9443			

Output by Netica; opt for state with higher utility (not % values)

Scenario - Selecting a variable state

- Selecting a state shows 100% evidence of event
- Note change in utilities of decision nodes and other associated variables
- Netica immediately recompiles & reruns model
- Note color change of changed node

Scenario – Drag black bar

- Drag black bar next to each probabilities back & forth
- Notice change in probabilities & utilities

Scenario – Deselecting state

- Deselecting a variable's state, leaves other two states selected
- Notice change in utilities and probabilities

Scenario – Node removal & addition

- Remove a node by first deleting arcs to / from the variable and then delete the node itself
- Shows updated probabilities of all nodes
- Add a new node simply by dragging a new node to the interface

Model usefulness & limitations

- Reliable to a certain extent
- Identify concerns with certain combination of events
- Answers specific questions and problems
- Useful for real-time business purpose decision making
- Helps users share understanding of the impact of events and decisions

- Variable selection varies depending on understanding of the problem
- Model is currently 'biased', resulting in same type of decisions irrespective of inputs
- Useful to have stronger evidence for events for better decisions

Recommendations

- It is only a 'model' (representation of reality); not a 'decision-maker' – ultimate decision to be taken by TSSA considering output from model as guidance
- BBNs & IDs are useful techniques to model any complex problems for decision analysis
- ED risk & availability problem analyzed better through IDs than conventional method, like FTA

For more information or questions

Email: krishnan.moni.2017@uni.strath.ac.uk