Inverse Galois Problem

Jia-Hao Liang

Instructor: Olivier Fouquet

Coaches: Estelle Basset and Arthur Gerard

20th August 2024

Table of Contents

- Introduction
 - Galois Theory
 - Inverse Galois Problem
- 2 Problem 1
 - Statement
 - Solution
- Problem 2
 - Statement
 - Solution
- Problem 3
 - Statement
 - Solution

Introduction to Galois Theory

- $K := \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$ is the smallest field containing $\alpha_1, \dots, \alpha_n$, and \mathbb{Q} .
- $Aut_{\mathbb{Q}}K$ is the automorphism group that fixes \mathbb{Q} .
- Galois extension:

$$K/\mathbb{Q}$$
 is Galois

• Galois correspondence:

 $Subextension \longleftrightarrow Subgroup$

Introduction

The $Inverse\ Galois\ Problem$ over $\mathbb Q$ for a group G asks whether a finite group G is the Galois group of a field extension of $\mathbb Q$.

- Object: Field extension, Minimal polynomial, Automorphism group
- Main interest: Find the field extension
- Procedure

Introduction

Procedure:

- Step 1: Construct the extension
- Step 2: Prove that the extension is Galois
 - Method 1: Roots, all the roots, nothing but the roots
 - Method 2: Degree = Order
- Step 3: Show the Automorphism group is equal to the given group

Statement 1

Show that $\mathbb{Z}/n\mathbb{Z}$ for all $2 \leq n \leq 12$ is the Galois group of a field extension over \mathbb{Q} .

Main Idea

- Cyclotomic field

Notation

Denote a primitive n-th root of unity as ζ_n .

Definition

Cyclotomic field is a field $K_n = \mathbb{Q}(\zeta_n)$ obtained from the field \mathbb{Q} of rational numbers by adjoining ζ_n , where n is a natural number.

Solution

We divide the problem into two cases

$$\begin{cases} n=2,4,6,10,12 & n+1 \text{ is a prime number} \\ n=3,5,7,8,9,11 & n+1 \text{ is a composite number} \end{cases}$$

Easy case: When n+1 is a prime number (n=2,4,6,10,12)

- Step 1: Consider $\mathbb{Q}(\zeta_{n+1})/\mathbb{Q}$.
- Step 2: Consider the minimal polymonial of ζ_{n+1} : $\mu_{\zeta_{n+1}} = \sum_{i=1}^n x^n$ Then, by "the roots, all the roots, nothing but the roots", $\mathbb{Q}(\zeta_{n+1})/\mathbb{Q}$ is Galois.
- Step 3: Consider the automorphism $f: \zeta_{n+1} \mapsto \zeta_{n+1}^a$. $Aut_{\mathbb{Q}}\mathbb{Q}(\zeta_{n+1}) \simeq (\mathbb{Z}/(n+1)\mathbb{Z})^* \simeq \mathbb{Z}/n\mathbb{Z}$.

Easy case: When n+1 is a prime number (n=2,4,6,10,12)

- Step 1: Consider $\mathbb{Q}(\zeta_{n+1})/\mathbb{Q}$.
- Step 2: Consider the minimal polymonial of ζ_{n+1} : $\mu_{\zeta_{n+1}} = \sum_{i=1}^n x^n$ Then, by "the roots, all the roots, nothing but the roots", $\mathbb{Q}(\zeta_{n+1})/\mathbb{Q}$ is Galois.
- Step 3: Consider the automorphism $f: \zeta_{n+1} \mapsto \zeta_{n+1}^a$. $Aut_{\mathbb{Q}}\mathbb{Q}(\zeta_{n+1}) \simeq (\mathbb{Z}/(n+1)\mathbb{Z})^* \simeq \mathbb{Z}/n\mathbb{Z}$.

Easy case: When n+1 is a prime number (n=2,4,6,10,12)

- Step 1: Consider $\mathbb{Q}(\zeta_{n+1})/\mathbb{Q}$.
- Step 2: Consider the minimal polymonial of ζ_{n+1} : $\mu_{\zeta_{n+1}} = \sum_{i=1}^n x^n$ Then, by "the roots, all the roots, nothing but the roots", $\mathbb{Q}(\zeta_{n+1})/\mathbb{Q}$ is Galois.
- Step 3: Consider the automorphism $f: \zeta_{n+1} \mapsto \zeta_{n+1}^a$. $Aut_{\mathbb{Q}}\mathbb{Q}(\zeta_{n+1}) \simeq (\mathbb{Z}/(n+1)\mathbb{Z})^* \simeq \mathbb{Z}/n\mathbb{Z}$.

Hard case: When n+1 is a composite

Dirichlet's Theorem: For given $n \in \mathbb{N}$, exist prime $p = kn + 1(k \in \mathbb{N})$

Main idea: Effect of Automorphism $g:\zeta_p^{a^ib^j}\longmapsto\zeta_p^{a^{i+u}b^{j+v}}$

• Step 1: $L := \mathbb{Q}(\zeta_p^{a^0b^0} + \ldots + \zeta_p^{a^0b^{k-1}})$ with $<g> = (\mathbb{Z}/p\mathbb{Z})^*, a = g^k, b = g^n$ of degree n by applying automorphism on it.

Hard case: When n+1 is a composite or arbitrary

• Step 2: Consider the polynomial $\prod_{i=0}^{n-1}(x-r_i), r_i \coloneqq \zeta_p^{a^ib^0} + \ldots + \zeta_p^{a^ib^{k-1}}.$ It is the minimal polynomial since it is invariant under $Aut_{\mathbb{Q}}\mathbb{Q}(\zeta_p).$ Define $f:\zeta_p \longmapsto \zeta_p^{a^ub^0}.$

• Step 3: $Aut_{\mathbb{Q}}L \simeq \mathbb{Z}/n\mathbb{Z}$.

Diagram of unit roots

Hard case: When n+1 is a composite or arbitrary

- Step 2: Consider the polynomial $\prod_{i=0}^{n-1}(x-r_i), r_i \coloneqq \zeta_p^{a^ib^0} + \ldots + \zeta_p^{a^ib^{k-1}}.$ It is the minimal polynomial since it is invariant under $Aut_{\mathbb{Q}}\mathbb{Q}(\zeta_p).$ Define $f:\zeta_p \longmapsto \zeta_p^{a^ub^0}.$
- Step 3: $Aut_{\mathbb{O}}L \simeq \mathbb{Z}/n\mathbb{Z}$.

$$\zeta_p^{a^0b^0} \quad \zeta_p^{a^0b^1} \quad \dots \quad \zeta_p^{a^0b^{k-1}} \\
\zeta_p^{a^1b^0} \quad \ddots \qquad \qquad \vdots \\
\vdots \qquad \qquad \ddots \qquad \vdots \\
\zeta_p^{a^{n-1}b^0} \quad \dots \qquad \dots \quad \zeta_p^{a^{n-1}b^{k-1}}$$

Diagram of unit roots

Statement 2

Let $P \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p with exactly p-2 real roots in \mathbb{C} . Show that the Galois group of the smallest subfield of \mathbb{C} containing the roots of P has Galois \mathfrak{S}_p . Find a concrete extension with Galois group \mathfrak{S}_5 .

Analysis

- **1** The smallest subfield is $K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_p)$.
- ② Since automorphism sends root to root, so $Aut_{\mathbb{Q}}K\subset\mathfrak{S}_{p}$.

Statement 2

Let $P \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p with exactly p-2 real roots in \mathbb{C} . Show that the Galois group of the smallest subfield of \mathbb{C} containing the roots of P has Galois \mathfrak{S}_p . Find a concrete extension with Galois group \mathfrak{S}_5 .

Analysis

- **1** The smallest subfield is $K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_p)$.
- ② Since automorphism sends root to root, so $Aut_{\mathbb{Q}}K\subset\mathfrak{S}_{p}$.

Analysis

1 It suffices to find a 'swap' element f and a cyclic permutation g by considering g^ifg^{-i} for $1 \le i \le n$.

WLOG, let the cyclic permutation g be $(1, 2, ..., n) \stackrel{g}{\mapsto} (2, 3 ..., 1)$, and the 'swap' element f be $(1, 2) \stackrel{f}{\mapsto} (2, 1)$.

$$g^{i}fg^{-i}:(1,\ldots,i+1,i+2\ldots,n) \xrightarrow{g^{-i}} (n-i+1,\ldots,1,2,\ldots,n-i) \xrightarrow{f} (n-i+1,\ldots,2,1,\ldots,n-i) \xrightarrow{f} (1,\ldots,i+2,i+1,\ldots,n)$$

Proof

Now we consider the field extension

$$\mathbb{Q} \subset \mathbb{Q}(\alpha_1) \subset K$$

By the Spyglass Property

$$[K:\mathbb{Q}(\alpha_1)] \times [\mathbb{Q}(\alpha_1):\mathbb{Q}] = [K:\mathbb{Q}] \implies p|[K:\mathbb{Q}]$$

By "The roots, all the roots, nothing but the roots", $[K:\mathbb{Q}]$ is Galois. So from "Things move around a lot",

$$[K:\mathbb{Q}] = |Aut_{\mathbb{Q}}K| \implies p ||Aut_{\mathbb{Q}}K||$$

Theorem (Cauchy)

Let G be a finite group and p be a prime factor of |G|. Then G contains an element of order p. Equivalently, G contains a subgroup of order p.

Proof

By Cauchy's theorem, because $p \mid |Aut_{\mathbb{Q}}K|$, so $\exists g \in Aut_{\mathbb{Q}}K \subset \mathfrak{S}_p$ s.t. g has order p. The action g is a cyclic permutation of the roots.

Also, consider $f := \alpha_i \longmapsto \overline{\alpha_i}$, the conjugate action. $f \in Aut_{\mathbb{Q}}K$ and it swaps imaginary roots.

$$K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_p)$$

$$\downarrow \\ \mathbb{Q}(\alpha_1)$$

$$p \mid \\ \mathbb{Q}$$

Example

Consider the roots α_1,\ldots,α_5 of the polynomial

$$P = x^5 - 3x^4 + 3 \in \mathbb{Q}[x]$$

By Eisenstein's Criterion, P is irreducible over \mathbb{Q} .

Because
$$\frac{d}{dx}(x^5 - 3x^4 + 3) = 5x^4 - 12x^3$$
,

-1	$(-\infty,0)$	0	$(0,\frac{12}{5})$	$\frac{12}{5}$	$\left(\frac{12}{5}, +\infty\right)$	3
< 0	7	> 0	\searrow	< 0	7	> 0

By Intermediate Value Theorem, there are 3 real roots, so $Aut_{\mathbb{Q}}\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = \mathfrak{S}_5$

Statement

Show that all groups of order 8 are Galois groups over $\mathbb Q$

Analysis

We know that there are only 5 groups of order 8:

$$\underbrace{\mathbb{Z}/8\mathbb{Z}, \quad \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \quad \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}}_{Abelian}, \underbrace{D_8, \quad Q_8}_{Non-Abelian}$$

Solution

The Abelian groups are:

- \mathbf{O} $\mathbb{Z}/8\mathbb{Z}$

For 1, $\mathbb{Z}/8\mathbb{Z}$ is Galois as shown in Problem 1.

For 2, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \simeq (\mathbb{Z}/3\mathbb{Z})^* \times (\mathbb{Z}/5\mathbb{Z})^* \simeq (\mathbb{Z}/15\mathbb{Z})^* \simeq Gal(\mathbb{Q}(\zeta_{15})/\mathbb{Q})$

For 3, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \simeq Gal\left(\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})/\mathbb{Q}\right)$

Definition of D_8

$$D_8 := \langle a, b : a^4 = b^2 = e, aba = b^{-1} \rangle$$

D_8

- Step 1: Consider $\mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$
- Step 2: Consider $x^4 2$. By "The roots, all the roots, nothing but the roots", this is Galois.
- Step 3: Consider $\sigma: \sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\tau: \tau(i) = -i$. Then, $\sigma\tau\sigma = \tau^{-1}$

Definition of D_8

$$D_8 := \langle a, b : a^4 = b^2 = e, aba = b^{-1} \rangle$$

D_8

- Step 1: Consider $\mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$
- Step 2: Consider $x^4 2$. By "The roots, all the roots, nothing but the roots", this is Galois.
- Step 3: Consider $\sigma: \sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\tau: \tau(i) = -i$. Then, $\sigma\tau\sigma = \tau^{-1}$

Definition of D_8

$$D_8 := \langle a, b : a^4 = b^2 = e, aba = b^{-1} \rangle$$

D_8

- Step 1: Consider $\mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$
- Step 2: Consider $x^4 2$. By "The roots, all the roots, nothing but the roots", this is Galois.
- Step 3: Consider $\sigma : \sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\tau : \tau(i) = -i$. Then, $\sigma \tau \sigma = \tau^{-1}$

Definition of Q_8

$$\langle a,b:a^4=e,a^2=b^2,ba=ab^3\rangle$$

Q_8

- Step 1: Consider $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and then $L = K\left(\sqrt{(2+\sqrt{2})(3+\sqrt{3})}\right)$ Then, $[L:\mathbb{Q}] = 8$ by the Spyglass Property.
- Step 2: Consider

$$P(x) = \prod_{\epsilon_1, \epsilon_2 \in \pm 1} (x - (2 + \epsilon_1 \sqrt{2})(3 + \epsilon_2 \sqrt{3}))$$

Then, $P(x^2)$ is the minimal polynomial of $\sqrt{(2+\sqrt{2})(3+\sqrt{3})}$

Q_8

- Step 1: Consider $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and then $L = K\left(\sqrt{(2+\sqrt{2})(3+\sqrt{3})}\right)$ Then, $[L:\mathbb{Q}] = 8$ by the Spyglass Property.
- Step 2: Consider

$$P(x) = \prod_{\epsilon_1, \epsilon_2 \in \pm 1} (x - (2 + \epsilon_1 \sqrt{2})(3 + \epsilon_2 \sqrt{3}))$$

Then, $P(x^2)$ is the minimal polynomial of $\sqrt{(2+\sqrt{2})(3+\sqrt{3})}$

Q_8

• Step 2(Cont.): Consider

$$\tau: \sqrt{(2+\sqrt{2})(3+\sqrt{3})} \mapsto \sqrt{(2-\sqrt{2})(3+\sqrt{3})} \implies \sqrt{2} \mapsto -\sqrt{2}.$$

$$\sigma: \sqrt{(2+\sqrt{2})(3+\sqrt{3})} \mapsto \sqrt{(2+\sqrt{2})(3-\sqrt{3})} \implies \sqrt{3} \mapsto -\sqrt{3}.$$

• Step 3:

Then we can check that $\sigma\tau = \tau\sigma^3$, where τ and σ has order 4, and $\tau\sigma \neq \sigma\tau \implies Aut_{\mathbb{O}}L$ is not Abelian, so $Aut_{\mathbb{O}}L \simeq Q_8$

Q_8

• Step 2(Cont.): Consider

$$\tau: \sqrt{(2+\sqrt{2})(3+\sqrt{3})} \mapsto \sqrt{(2-\sqrt{2})(3+\sqrt{3})} \implies \sqrt{2} \mapsto -\sqrt{2}.$$

$$\sigma: \sqrt{(2+\sqrt{2})(3+\sqrt{3})} \mapsto \sqrt{(2+\sqrt{2})(3-\sqrt{3})} \implies \sqrt{3} \mapsto -\sqrt{3}.$$

• Step 3: Then we can check that $\sigma \tau = \tau \sigma^3$, where τ and σ has order 4, and $\tau \sigma \neq \sigma \tau \implies Aut_{\mathbb{O}}L$ is not Abelian, so $Aut_{\mathbb{O}}L \simeq Q_8$

Lattice for Q_8

Lattice for L/\mathbb{Q}

$$L = \mathbb{Q}\left(\sqrt{2}, \sqrt{3}, \sqrt{(2+\sqrt{2})(3+\sqrt{3})}\right)$$

$$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$\mathbb{Q}(\sqrt{2}) \quad \mathbb{Q}(\sqrt{6}) \quad \mathbb{Q}(\sqrt{3})$$

$$\mathbb{Q}(\sqrt{3}) \quad \mathbb{Q}(\sqrt{3})$$

Thank You for your Attention!

