Sobre a unicidade de taxas internas de retorno positivas *

Clóvis de Faro **

Introdução;
 A função valor futuro;
 Condição de suficiência baseada em uma propriedade da função k(i);
 Confronto com as condições de Soper e de Norstrom;
 Conclusão.

Como é fartamente sabido, seja por inexistência ou por multiplicidade de taxas de juros que anulem a função valor atual, a aplicação do critério da taxa interna de retorno para o caso de projetos de investimento do tipo não-convencional pode entrar em colapso. No presente trabalho é apresentada a derivação formal de uma nova condição de suficiência para a existência e unicidade de taxas internas de retorno positivas associadas a projetos com mais de uma variação de sinal na sequência de fluxos de caixa. Finalizando-se, é efetuada uma comparação entre esta nova condição de suficiência e as respectivamente devidas a Soper e a Norstrom, ficando evidenciado que nenhuma dentre elas é dominante.

1. Introdução

Seja S > 0 a inversão inicial e n, denominado de vida econômica, o intervalo de tempo ao longo do qual serão manifestadas as consequências de

Isentando-o de responsabilidade por qualquer erro remanescente, agradeço a Alberto de Mello e Souza por críticas e sugestões.

^{••} Do IPEA/INPES.

um determinado empreendimento, ou projeto de investimento. Representando-se por Q_j , $j=1, 2, \ldots, n$, o lucro relativo ao j-ésimo período da vida econômica, forme-se a chamada sequência de fluxos de caixa líquidos: $\{-S, Q_1, Q_2, \ldots, Q_n\}$. Sendo i a taxa periódica de juros compostos considerada, o valor atual do projeto será:

$$V(i) = -S + \sum_{j=1}^{n} Q_{j} (1+i)^{-j}$$
 (1)

Por definição, a taxa interna de retorno, i^* , associada ao projeto em apreço é a taxa que anula o seu valor atual; ou seja, é a taxa de juros tal que $V(i^*)=0$. No caso mais geral, tendo em vista que taxas com significação econômica são números reais não inferiores a I-100% por período, segue-se que a determinação de taxas internas de retorno é equivalente à busca de raízes da seguinte equação:

$$-S + \sum_{j=1}^{n} Q_j (1+i)^{-j} = 0, i > -1$$
 (2)

Ora, excetuando-se os casos em que exista somente uma variação de sinal na seqüência dos fluxos de caixa líquidos, ¹ não só poderá não existir uma solução de (2), como ainda, se existir, tal solução pode não ser única. Tais possibilidades levaram a que fossem desenvolvidas condições de suficiência para a existência e unicidade de taxas internas de retorno, entre as quais se destacam as devidas respectivamente a Soper (1959) e a Norstrom (1972).

Restringindo-se a atenção ao campo das taxas positivas, que é o de real interesse prático, o propósito do presente trabalho é o de apresentar uma nova condição de suficiência para a existência e unicidade de taxas internas de retorno.² Encerrando-se a análise, será efetuado um confronto entre esta nova condição e as anteriormente aludidas.

¹ Para tais casos, que correspondem ao que é genericamente chamado de projeto de investimento convencional, pode-se garantir a existência e unicidade da taxa interna de retorno. Vide, por exemplo, de Faro. 1972 p. 62-73.

² Conquanto a análise aqui desenvolvida seja apresentada como original, é imperativo mencionar que a condição de suficiência dela derivada aparece, acompanhada de outras proposições ainda mais gerais, sem porém nenhuma comprovação formal de suas respectivas validades, em um trabalho não publicado de Pistoia (1974).

2. A função valor futuro

Considerada a taxa i, a função valor futuro, ou montante na época n, associada a um projeto de investimento cuja sequência de fluxos de caixa líquidos é $\{-S, Q_1, \ldots, Q_n\}$, é definida através da relação:

$$P(i) = -S(1+i)^{n} + \sum_{j=1}^{n} Q_{j}(1+i)^{n-j}$$
(3)

Em face da expressão (2), é de conclusão imediata que existe a seguinte relação entre as funções valor atual e valor futuro associadas a um mesmo projeto de investimento:

$$V(i) = (1+i)^{-n} P(i)$$
 (4)

Como $(1+i)^{-n} \neq 0$ para qualquer i > 0, segue-se então que:

Lema A: V(i) = 0 se, e somente se, P(i) = 0.

Como consequência do lema A, conclui-se que a taxa interna de retorno associada a um projeto de investimento pode ser alternativamente definida como a taxa de juros que anula a função valor futuro.

Lema B: Se $-S + \sum_{j=1}^{n} Q_j > 0$ então existirá ao menos uma taxa de juros positiva para a qual a função valor futuro se anula.

Para i = 0, segue-se de (3) que:

$$P(0) = -S + \sum_{j=1}^{n} Q_{j}$$

Por outro lado, tomando-se o limite quando a taxa de juros é feita infinitamente grande, tem-se que:

$$\lim_{i \to \infty} P(i) = \lim_{i \to \infty} S(1+i)^n < 0$$

Logo, sendo a função valor futuro um polinômio em i, e portanto uma função contínua, segue-se que se P(0) > 0 haverá ao menos uma taxa $i^* > 0$ tal que $P(i^*) = 0$.

Lema C: Se P(0) > 0 e se a função valor futuro for estritamente decrescente no intervalo considerado, então existirá somente uma taxa in-

terna de retorno (positiva), i^* , e a função valor atual será estritamente decrescente no intervalo definido por $i \in (0, i^*]$.

A primeira parte do lema é uma consequência imediata do que foi visto no lema anterior e da monotonicidade de P (i). Quanto à segunda parte, observe-se que:

$$\frac{dV(i)}{di} = \frac{d}{di} \left[(1+i)^{-n} P(i) \right] = -n (1+i)^{-n-1} P(i) + (1+i)^{-n} \frac{dP(i)}{di}$$

Ora, da continuidade da função valor futuro segue-se que teremos $P(i) \ge 0$ para $i \in (0, i^*]$, e, juntamente com a hipótese anterior, decorre que:

$$\frac{dV(i)}{di} < 0, i \in (0, i^*]$$

Lema D: Seja $K(i) = -nS + \sum_{j=1}^{n} (n-j) Q_{j} (1+i)^{-j}$. Se K(i) < 0 para i > 0, então a função valor futuro será estritamente decrescente no intervalo considerado.

De (3) tem-se que:

$$\frac{dP(i)}{di} = -nS (1+i)^{n-1} + \sum_{j=1}^{n} (n-j) Q_j (1+i)^{n-j-1}$$

$$= (1+i)^{n-1} \left[-nS + \sum_{j=1}^{n} (n-j) Q_j (1+i)^{-j} \right]$$

$$= (1+i)^{n-1} K(i)$$

É então óbvio que $K(i) < 0 \implies dP(i)/di < 0, i > 0.$

3. Condição de suficiência baseada em uma propriedade da função k(i)

Considerando-se um projeto de investimento com mais de uma variação de sinal em sua sequência de fluxos de caixa, e tal que $-S + \sum_{j=1}^{n} Q_j > 0$, defina-se:

$$M = \max_{j} \{Q_{j}, j = 1, \ldots, n\}$$
 (5)

^a A relevância da imposição de tal condição é discutida em de Faro & Mello e Souza. 1976.

Concentrando-se a atenção no exame da função K(i), e levando em contra os lemas apresentados no item anterior, segue-se que uma nova condição de existência e unicidade para taxas internas de retorno positivas pode ser estabelecida a partir da seguinte proposição.

Teorema

Se for verificada a condição

$$-2S + M (n-1) \leqslant 0 \tag{6}$$

então teremos que K(i) < 0 para i > 0.

Demonstração

Forme-se a função K_M (i) obtida quando se substitui em K (i) cada um dos Q_J por M. Tendo em vista a definição expressa por (5), e o fato de que estamos considerando o caso de projetos com mais de uma variação de sinal na seqüência de fluxos de caixa líquidos, é óbvio que:

$$K_M(i) = -nS + \sum_{j=1}^{n} (n-j) M (1+i)^{-j} > K(i), i \ge 0$$
 (7)

Derivando-se com respeito a i, tem-se que:

$$dK_{M}(i) / di = -M \sum_{j=1}^{n} j (n-j) (1+i)^{-j-1} < 0, i \ge 0$$

Por conseguinte, se K_M $(0) \leqslant 0 \Longrightarrow K_M$ (i) < 0, i > 0; donde de (7), segue-se que K (i) < 0, i > 0.

Ora:

$$K_{M}(0) = -nS + M \sum_{j=1}^{n} (n-j)$$

$$= -nS + Mn^{2} - Mn (n+1) / 2$$

$$= [-2S + M (n-1)] n / 2$$

Logo:

$$-2S + M (n-1) \leqslant 0 \Longrightarrow K_M (0) \leqslant 0.$$
 c.q.d.

4. Confronto com as condições de Soper e de Norstrom

Considere-se um projeto de investimento dito do tipo não-convencional; isto é, tal que sua sequência de fluxos de caixa líquidos, $\{-S, Q_1, \ldots, Q_n\}$, apresente mais de uma variação de sinal.

Na sua forma generalizada, sendo $i^*>0$ e tal que V (i^*) = 0, as condições de suficiência de Soper para que i^* seja a única taxa interna de retorno positiva associada ao projeto em apreço, podem ser expressas como ⁴

$$\begin{cases} Q_n > 0 \\ S \geqslant \sum_{j=1}^k Q_j (1 + i^*)^{-j}, k = 1, 2, \dots, n - 1 \end{cases}$$
 (8)

Por outro lado, sendo

$$\begin{cases} A_o = -S \\ A_{k+1} = A_k + Q_{k+1}, \ k = 0, 1, \dots, n-1 \end{cases}$$
 (9)

forme-se a sequência de fluxos de caixa cumulativos:

$$\{A_0, A_1, \ldots, A_n\} \tag{10}$$

Então, segundo Norstrom (1972), o projeto considerado apresentará uma e somente uma taxa interna de retorno positiva se houver exatamente uma variação de sinal na sequência de fluxos de caixa cumulativos e se o produto A_0 A_n < 0.5

Para o confronto entre as condições de Norstrom e de Soper e a que resulta do teorema, consideremos, sucessivamente, os seguintes exemplos numéricos de projetos de investimento, A, B, C e D, definidos por suas respectivas sequências de fluxos de caixa líquidos:

$$A: \{-2, 1, 4, -4, 16\}$$

⁴ Ver de Faro. 1975.

Em ambos os casos, as condições de suficiência só serão satisfeitas se $-S + \sum_{j=1}^{n} Q^{j} > 0$. Note-se também que, como apontado em de Faro (1973), nenhuma das duas condições é implicada pela outra.

Nesse caso n=4 e, como pode ser facilmente verificado, para $i^*=100\%$ por período temos que V (i^*) = 0; ou seja, 100% por período é uma taxa interna de retorno positiva associada ao projeto A. Examinando-se as condições de Soper vemos que as mesmas são satisfeitas, evidenciando-se assim a unicidade da taxa interna considerada, pois que:

$$Q_n = Q_4 = 16 > 0$$

$$k = 1 \Rightarrow S = 2 > \sum_{j=1}^{1} Q_j (1 + i^*)^{-j} = 1 (1 + 1)^{-1} = 0.5$$

$$k = 2 \Rightarrow S = 2 > \sum_{j=1}^{2} Q_j (1 + i^*)^{-j} = 0.5 + 4 (1 + 1)^{-2} = 1.5$$

$$k = 3 \Rightarrow S = 2 > \sum_{j=1}^{3} Q_j (1 + i^*)^{-j} = 1.5 - 4 (1 + i^*)^{-3} = 1$$

Por outro lado, como M = 16, tem-se que:

$$-2 S + M (n-1) = -4 + 16 \times 3 = 44 > 0$$

o que indica que a condição derivada do teorema não é satisfeita, embora 100% por período seja efetivamente a única taxa interna de retorno positiva associada ao projeto A. 6

$$B: \{-9, 7, 7, -3\}$$

Agora, como $Q_n=Q_3=-3<0$, as condições de Soper não são satisfeitas. Entretanto, observando-se que M=7, tem-se que:

$$-2S + M (n-1) = -18 + 7 \times 2 = -4 < 0$$

Consequentemente, a condição derivada do teorema é satisfeita, garantindo-se, assim, que ao projeto B também se associa uma única taxa interna de retorno positiva.

$$C: \{-1, 3, -1, 4\}$$

 $^{^{6}}$ O fato de que a condição de Soper tenha sido satisfeita implica que esta taxa interna seja única mesmo para o intervalo mais geral definido por i>-1.

Observe-se que tal taxa é de 19,51% por período e que a condição de Nostrom também é satisfeita.

Construindo-se a sequência de fluxos de caixa cumulativos tem-se que:

$${A_0, A_1, A_2, A_3} \equiv {-1, 2, 1, 5}$$

Por conseguinte, como esta sequência apresenta uma única variação de sinal, e o produto A_0 $A_n = -3 < 0$, segue-se que a condição de Norstrom é satisfeita. Portanto, ao projeto C, associa-se uma única taxa interna de retorno positiva.

Todavia, como M = 4, tem-se que:

$$-2S + M(n-1) = -2 + 4 \times 2 > 0$$

o que significa que a condição de suficiência derivada do teorema não é satisfeita.

$$D: \{-8, 3, 3, 3, -2, 3, -1\}$$

Para esse caso a condição de suficiência de Norstrom não é satisfeita, pois que a sequência de fluxos de caixa cumulativos

$$\{A_0, A_1, A_2, A_3, A_4, A_5, A_6\} \equiv \{-8, -5, -2, 1, -1, 2, 1\}$$

apresenta 3 variações de sinal.

Por outro lado, sendo M = 3, tem-se:

$$-2S + M(n-1) = -16 + 3 \times 5 < 0.$$

Por conseguinte, visto que a condição de suficiência derivada do teorema foi verificada, podemos garantir que ao projeto D também se associa uma única taxa interna de retorno positiva.

Os resultados obtidos permitem com que o confronto entre as condições de suficiência em exame possa ser sumariado como indicado no quadro 1. Neste, para cada projeto, é indicado se as condições de suficiência consideradas são ou não satisfeitas, apresentando-se ainda o valor de sua respectiva taxa interna de retorno positiva, i^* . Aparecem também aí incluídos os resultados advindos das análises dos projetos E: $\{-1, 6, -12, 8\}$ e F: $\{-20, 89, -128, 60\}$ aos quais, respectivamente, associam-se exatamente uma e três taxas internas de retorno positivas.

Quadro 1

Confronto entre as condições de suficiência

Projeto	Soper	Norstrom	Teorema	i* (%)
A	Sim	Não	Não	100
В	Não	Sim	Sim	19,51
C	Sim	Sim	Não	209,46
D	Não	Não	Sim	5,82
E	Não	Não	Não	100
F	Não	Não	Não	20; 25 e 100

5. Conclusão

A condição de suficiência aqui desenvolvida apresenta-se como um valioso instrumento auxiliar no processo de implementação do critério da taxa interna de retorno para a avaliação econômica de projetos de investimento do tipo não-convencional. Isso porque, sendo satisfeita, ficam garantidas a existência e a unicidade de uma taxa interna positiva, requisitos básicos para o emprego do critério. Além do mais, fica também assegurado que a função valor futuro seja estritamente decrescente para taxas positivas. Por seu turno, esta última propriedade garante que, livre dos percalços apontados por Kaplan (1967), seja eficiente o uso do algoritmo proposto por Fisher (1966).

Por outro lado, como evidenciado através do exame dos exemplos numéricos, não existe superioridade entre a condição de suficiência derivada do teorema e as respectivamente devidas a Soper e a Norstrom. Tal fato nos leva a sugerir que, em face da sua simplicidade, possivelmente antes da de Norstrom, a verificação desta nova condição seja incorporada ao algoritmo formal apresentado em de Faro (1974).

Bibliografia

de Faro, Clóvis, Engenharia econômica: elementos. Rio de Janeiro, APEC Editora, 1972.

A sufficient condition for a unique nonnegative internal rate of return: a comment. Journal of Financial and Quantitative Analysis, v. 8, n. 4, p. 6834, Sept. 1973.

. On the internal rate of return criterion. The Engineering Econo
mist, v. 19, n. 3, p. 165-94, Spring 1974.
A eficiência marginal do capital e as condições de Soper: uma análise crítica. Revista Brasileira de Economia, v. 29, n. 3, p. 89-107 Jul./Set. 1975.
% Mello e Soura Alberto de O use de critério de teva interne de

Fisher, Lawrence. An algorithm for finding exact rates of return. The Journal of Business of the University of Chicago, v. 39, n. 1, part II, p. 111-8, Jan. 1966.

Kaplan, Seymour. Computer algorithms for finding exact rates of return. The Journal of Business of the University of Chicago, v. 40, n. 4, p. 389-92, Oct. 1967.

Norstrom, Carl J. A sufficient condition for a unique nonnegative internal rate of return. *Journal of Financial and Quantitative Analysis*, v. 7, n. 3, p. 1835-9, June 1972.

Pistoia, A. About internal rate of return. Manuscrito não-publicado, 1974.

Soper, C.S. The marginal efficiency of capital: a further note. The Economic Journal, v. 69, n. 273, p. 174-7, Mar. 1959.