数学笔记

RC

2019年5月17日

目录

I	高等	穿数学																				1
1	无穷	· ·穷级数															2					
	1.1	概念和	性质																			2
		1.1.1	等比级数																			2
		1.1.2	调和级数																			2
		1.1.3	p 级数 .																			2
		1.1.4	敛散性 .																			2
	1.2	常数项	级数审敛	法																		2
		1.2.1	正项级数																			2
		1.2.2	交错级数																			3
		1.2.3	绝对收敛	与条	件收	敛																3
	1.3	幂级数																				4
		1.3.1	阿贝尔定	理。																		4
		1.3.2	函数展开	成幂:	级数																	5
	1.4	傅里叶	级数																			5

Part I

高等数学

Chapter 1

无穷级数

- 1.1 概念和性质
- 1.1.1 等比级数

1.1.2 调和级数

TODO

1.1.3 p 级数

TODO

1.1.4 敛散性

级数收敛的必要条件: $\lim_{n\to\infty}u_n=0$.

- 1.2 常数项级数审敛法
- 1.2.1 正项级数

正向级数收敛的充要条件是部分和数列 $\{S_n\}$ 有界.

比较审敛法

若
$$u_n \leq v_n$$
, 则

$$\begin{cases} \sum_{n=1}^{\infty} v_n 收敛 \Longrightarrow \sum_{n=1}^{\infty} u_n 收敛, \\ \sum_{n=1}^{\infty} u_n 发散 \Longrightarrow \sum_{n=1}^{\infty} v_n 发散. \end{cases}$$

比较审敛法的极限形式

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\begin{cases} 0, & \mathbb{M}\sum_{n=1}^\infty v_n \& t \Leftrightarrow \sum_{n=1}^\infty u_n \& t \Leftrightarrow 0,\\ +\infty, & \mathbb{M}\sum_{n=1}^\infty v_n \& t \Leftrightarrow \sum_{n=1}^\infty u_n \& t \Leftrightarrow 0,\\ A\neq 0, & \exists t \Leftrightarrow 0,\end{cases}$$

比值审敛法 (达朗贝尔判别法)

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho \begin{cases} <1 \Longrightarrow \psi \text{ in } \\ >1 \Longrightarrow \text{ in } \\ =1 \Longrightarrow \text{ in } \end{cases}$$

根值审敛法 (柯西判别法)

$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho \begin{cases} <1 \Longrightarrow \psi \text{ in } \\ >1 \Longrightarrow \text{ in } \\ =1 \Longrightarrow \text{ in } \end{cases}$$

1.2.2 交错级数

莱布尼茨定理

对
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
, 若有

- 1. $u_n \ge u_{n+1}$ (绝对值递减),
- 2. $\lim_{n\to\infty}u_n=0$, 则收敛, 且和 $S\leq u_1$.

1.2.3 绝对收敛与条件收敛

绝对收敛: $\sum_{n=1}^{\infty} |u_n|$ 收敛.

条件收敛: $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} |u_n|$ 发散.

1.3 幂级数

1.3.1 阿贝尔定理

- 1. 若 $\sum_{n=0}^{\infty} a_n x^n$ 当 $x = x_0$ 时收敛,则 $|x| < |x_0|$ 时绝对收敛,
- 2. 若 $\sum_{n=0}^{\infty} a_n x^n$ 当 $x = x_1$ 时发散,则 $|x| > |x_1|$ 时发散. 由此推出,若不是只在 x = 0 点收敛,则必存在 R > 0,使
- 1. |x| < R 时, 绝对收敛,
- 2. |x| > R 时, 发散,
- 3. $x = \pm R$ 时, 不确定.

求收敛域方法

- 1. 先通过 $\lim_{n \to \infty} |\frac{u_{n+1}(x)}{u_n(x)}| = \rho(x) < 1$ 或 $\lim_{n \to \infty} \sqrt[n]{u_n(x)} = \rho(x) < 1$ 求出收敛区间,
- 2. 在讨论两个端点处的敛散性, 得收敛域.

1.3.2 函数展开成幂级数

常用展开式

$$\begin{split} \frac{1}{1+x} &= \sum_{n=0}^{\infty} (-1)^n x^n, & -1 < x < 1 \\ \frac{1}{1-x} &= \sum_{n=0}^{\infty} x^n, & -1 < x < 1 \\ \ln(1+x) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, & -1 < x \le 1 \\ e^x &= \sum_{n=0}^{\infty} \frac{1}{n!} x^n, & -\infty < x < +\infty \\ a^x &= \sum_{n=0}^{\infty} \frac{(\ln a)^n}{n!} x^n, & -\infty < x < +\infty \\ \sin x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, & -\infty < x < +\infty \\ \cos x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, & -\infty < x < +\infty \\ \frac{1}{1+x^2} &= \sum_{n=0}^{\infty} (-1)^n x^{2n}, & -1 < x < 1 \\ \arctan x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, & -1 < x \le 1 \end{split}$$

1.4 傅里叶级数