# Deep Learning With Computer Vision And Advanced NLP (DL CV NLP)

## Implementation of ANN using Keras:

```
In [ ]: |# Importing Libraries
        import tensorflow as tf
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import os
In [ ]: |# Checking version of Tensorflow ans Keras
        print(f"Tensorflow Version {tf. version }")
        print(f"Keras Version {tf.keras.__version__}}")
        Tensorflow Version 2.5.0
        Keras Version 2.5.0
In [ ]: # Changing directory to my drive
        ROOT = "/content/drive/MyDrive/DL-CV-NLP/Revision "
        os.chdir(ROOT)
In [ ]: |os.getcwd()
Out[5]: '/content/drive/My Drive/DL-CV-NLP/Revision '
```

### **GPU / CPU Check**

```
In [ ]: tf.config.list_physical_devices("GPU")
Out[6]: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
In [ ]: tf.config.list_physical_devices("CPU")
Out[7]: [PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]
```

```
In [ ]: |check_list = ['GPU','CPU']
         for device in check list:
           out = tf.config.list physical devices(device)
           if len(out) > 0:
             print(f"{device} is available!")
             print(f"Details >> {out}")
             print(f"{device} isn't available!")
         GPU is available!
         Details >> [PhysicalDevice(name='/physical device:GPU:0', device type='GPU')]
         CPU is available!
         Details >> [PhysicalDevice(name='/physical device:CPU:0', device type='CPU')]
         #Creating a simple classifier using keras on MNIST data
 In [ ]: |mnist = tf.keras.datasets.mnist
         (X_train_full, y_train_full), (X_test, y_test) = mnist.load_data()
         Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnis
         t.npz (https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz)
         11493376/11490434 [=============== ] - 0s Ous/step
 In [ ]: |print(f"data type of X_train_full: {X_train_full.dtype},\n shape of X_train_full: {X_train_full}
         data type of X train full: uint8,
          shape of X_train_full: (60000, 28, 28)
In [ ]: X_test.shape
Out[11]: (10000, 28, 28)
In [ ]: len(X_test[1][0])
Out[12]: 28
 In [ ]: |# create a validation data set from the full training data
         # Scale the data between 0 to 1 by dividing it by 255. as its an unsigned data between 0
         X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255.
         y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
         # scale the test set as well
         X_{\text{test}} = X_{\text{test}} / 255.
In [ ]: |len(X_train_full[5000:] )
Out[14]: 55000
```

```
In [ ]: # Lets view some data
plt.imshow(X_train[0], cmap="binary")
plt.show()
```



```
In [ ]: |plt.figure(figsize=(15,15))
             sns.heatmap(X_train[0], annot=True, cmap="binary")
Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb350107390>
                                                                                                                0
                                                                                                                                  - 0.8
                                                             0
                                                                 0
                                                                        0
                                                                                                                0
                                                     0 0.38 0.38 0.3 0.46 0.24 0
                                   0
                                      0
                                          0 0
                                                 0
                                                                              0
                                                                                  0
                               0.54 0.92 0.92 0.92 0.92 0.92 0.92 0.98 0.98 0.97 1 0.96 0.92 0.75 0.082 0
                                                                                          0
                                              1 1 1 1 1 1 1 1 1 1 0.74 0.09 0
                        0.89 1 0.82 0.78 0.78 0.78 0.78 0.55 0.24 0.24 0.24 0.24 0.24 0.5 0.87 1
                                                                                   0.740.082 0
                                                                                                                                  - 0.6
                                                                        0 0.13 0.84 1
                                                                    0
                                                                       0 0.42 0.62
                                                             0
                                                                0
                                                                   0
                                                                                      1 0.95 0.2
                                                      0 0.098 0.46 0.89 0.89 0.89 0.99 1
                                               0 0.27 0.47 0.86 1 1 1 1 1
                                                                                                                                   - 0.4
                                       0 0.15 0.73 0.99 1 1 1 0.87 0.81 0.81 0.29 0.27 0.84 1
                                                                                                                0
                                      0.44 0.86 1 0.95 0.89 0.45 0.35 0.12 0
                                    0
                                                                        0
                                                                           0
                                                                              0 0.78
                                                                                      0.95 0.16
                                    0
                                             0.69 0.24 0
                                                             0
                                                                 0
                                                                    0
                                                                        0
                                                                           0 0.19 0.91 1 0.92
                                    0 0.0710.49
                                                                           0 0.55
                                                                                   0.93 0.22
                                                                                                                                   - 0.2
                                                                        0 0.82 0.98 1 0.66
                                                                    0
                                                                        0 0.95 1 0.94 0.22
                                                             0
                                                                 0
                                                                    0
                                                                       0.35 0.98 0.95
                                                             0
                                                                 0 0.02 0.81 0.96 0.62
                                                                 0 0.0160.46 0.27 0
                                                             0
                                                                                   0
                                                                                      0
                                                                                          0
                                                                 0
                                                                    0
                                                                               0
                                                                                   0
                                                                                      0
```

11 12

10

13 14 15 16 17 18 19 20 21 22 23 24 25

- 0.0

## **Architechture Used:**

```
In [ ]: model_clf.layers
```

In [ ]: model\_clf.summary()

Model: "sequential"

| Layer (type)         | Output Shape | Param # |
|----------------------|--------------|---------|
| inputLayer (Flatten) | (None, 784)  | 0       |
| hiddenLayer1 (Dense) | (None, 300)  | 235500  |
| hiddenLayer2 (Dense) | (None, 100)  | 30100   |
| outputLayer (Dense)  | (None, 10)   | 1010    |

Total params: 266,610 Trainable params: 266,610 Non-trainable params: 0

Non-trainable params. 0

```
In [ ]: # firsLayer * secondLayer + bias 784*300 + 300, 300*100+100, 100*10+10
```

Out[20]: (235500, 30100, 1010)

```
In [ ]: # Total parameters to be trained
sum((235500, 30100, 1010))
```

Out[21]: 266610

```
In [ ]: |hidden1 = model_clf.layers[1]
   hidden1.name
Out[22]: 'hiddenLayer1'
In [ ]: len(hidden1.get_weights()[1])
Out[23]: 300
In [ ]: | hidden1.get_weights()
Out[24]: [array([[-0.04071231, 0.02368394, -0.04371588, ..., 0.03490927,
       0.04804594, -0.04025941],
       [0.07241748, 0.04408754, 0.04216108, ..., 0.03603031,
       0.03906497, -0.07369931],
       [-0.05971236, 0.06530608, -0.03200042, ..., -0.00993332,
       0.06796919, -0.05723395,
       [0.05587782, 0.03816801, -0.04787287, ..., 0.01242442,
       0.02829525, -0.04116471],
       [-0.03556294, 0.06861447, 0.0311735, ..., 0.05164792,
       -0.00438299, -0.0568511 ],
       [-0.00249385, -0.05429724, -0.03027862, ..., 0.05772662,
       0.03096132, -0.02140954]], dtype=float32),
    0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)]
In [ ]: weights, biases = hidden1.get_weights()
```

```
In [ ]: |print("shape\n",weights.shape, "\n")
         weights
         shape
          (784, 300)
Out[26]: array([[-0.04071231, 0.02368394, -0.04371588, ..., 0.03490927,
                  0.04804594, -0.04025941],
                [0.07241748, 0.04408754, 0.04216108, ..., 0.03603031,
                  0.03906497, -0.07369931,
                [-0.05971236, 0.06530608, -0.03200042, ..., -0.00993332,
                  0.06796919, -0.05723395],
                [0.05587782, 0.03816801, -0.04787287, ..., 0.01242442,
                  0.02829525, -0.04116471],
                [-0.03556294, 0.06861447, 0.0311735, ..., 0.05164792,
                 -0.00438299, -0.0568511 ],
                [-0.00249385, -0.05429724, -0.03027862, ..., 0.05772662,
                  0.03096132, -0.02140954]], dtype=float32)
 In [ ]: |print("shape\n", biases.shape)
         shape
          (300,)
 In [ ]: LOSS_FUNCTION = "sparse_categorical_crossentropy" # use => tf.losses.sparse_categorical_
         OPTIMIZER = "SGD" # or use with custom learning rate=> tf.keras.optimizers.SGD(0.02)
         METRICS = ["accuracy"]
         model clf.compile(loss=LOSS FUNCTION,
                       optimizer=OPTIMIZER,
                       metrics=METRICS)
```

```
Epoch 1/30
404 - val loss: 0.3050 - val accuracy: 0.9118
Epoch 2/30
187 - val_loss: 0.2445 - val_accuracy: 0.9314
329 - val loss: 0.2028 - val accuracy: 0.9444
Epoch 4/30
434 - val loss: 0.1808 - val accuracy: 0.9494
Epoch 5/30
501 - val loss: 0.1614 - val accuracy: 0.9562
Epoch 6/30
560 - val_loss: 0.1473 - val_accuracy: 0.9606
Epoch 7/30
606 - val_loss: 0.1357 - val_accuracy: 0.9632
Epoch 8/30
645 - val loss: 0.1261 - val accuracy: 0.9656
Epoch 9/30
678 - val_loss: 0.1165 - val_accuracy: 0.9680
Epoch 10/30
704 - val_loss: 0.1101 - val_accuracy: 0.9688
Epoch 11/30
729 - val_loss: 0.1042 - val_accuracy: 0.9708
Epoch 12/30
751 - val loss: 0.0988 - val accuracy: 0.9724
Epoch 13/30
769 - val_loss: 0.0967 - val_accuracy: 0.9722
Epoch 14/30
788 - val_loss: 0.0947 - val_accuracy: 0.9724
Epoch 15/30
800 - val loss: 0.0878 - val accuracy: 0.9750
Epoch 16/30
816 - val loss: 0.0854 - val accuracy: 0.9750
Epoch 17/30
832 - val_loss: 0.0854 - val_accuracy: 0.9762
Epoch 18/30
838 - val loss: 0.0834 - val accuracy: 0.9754
Epoch 19/30
853 - val loss: 0.0790 - val accuracy: 0.9764
Epoch 20/30
```

```
862 - val loss: 0.0782 - val accuracy: 0.9760
   Epoch 21/30
   872 - val_loss: 0.0764 - val_accuracy: 0.9776
   Epoch 22/30
   879 - val loss: 0.0755 - val accuracy: 0.9760
   Epoch 23/30
   889 - val_loss: 0.0738 - val_accuracy: 0.9766
   Epoch 24/30
   897 - val loss: 0.0720 - val accuracy: 0.9778
   Epoch 25/30
   907 - val loss: 0.0717 - val accuracy: 0.9768
   Epoch 26/30
   909 - val loss: 0.0704 - val accuracy: 0.9776
   Epoch 27/30
   918 - val loss: 0.0731 - val accuracy: 0.9774
   Epoch 28/30
   921 - val loss: 0.0715 - val accuracy: 0.9782
   Epoch 29/30
   927 - val loss: 0.0700 - val accuracy: 0.9790
   Epoch 30/30
   931 - val loss: 0.0667 - val accuracy: 0.9784
In [ ]: history.params
```

Out[30]: {'epochs': 30, 'steps': 1719, 'verbose': 1}

In [ ]: pd.DataFrame(history.history)

| $\cap$ |   | + | Гο  | 11  | ١. |
|--------|---|---|-----|-----|----|
| v      | u | L | 1 3 | ) Т | ١. |
|        |   |   |     |     |    |

|    | loss     | accuracy | val_loss | val_accuracy |
|----|----------|----------|----------|--------------|
| 0  | 0.610783 | 0.840400 | 0.304987 | 0.9118       |
| 1  | 0.285988 | 0.918727 | 0.244523 | 0.9314       |
| 2  | 0.234710 | 0.932945 | 0.202774 | 0.9444       |
| 3  | 0.200725 | 0.943436 | 0.180845 | 0.9494       |
| 4  | 0.175329 | 0.950091 | 0.161418 | 0.9562       |
| 5  | 0.155363 | 0.955982 | 0.147345 | 0.9606       |
| 6  | 0.139052 | 0.960618 | 0.135747 | 0.9632       |
| 7  | 0.125705 | 0.964527 | 0.126051 | 0.9656       |
| 8  | 0.114648 | 0.967818 | 0.116540 | 0.9680       |
| 9  | 0.105304 | 0.970418 | 0.110109 | 0.9688       |
| 10 | 0.096849 | 0.972945 | 0.104200 | 0.9708       |
| 11 | 0.089239 | 0.975055 | 0.098834 | 0.9724       |
| 12 | 0.082732 | 0.976909 | 0.096679 | 0.9722       |
| 13 | 0.076676 | 0.978764 | 0.094740 | 0.9724       |
| 14 | 0.071677 | 0.979964 | 0.087841 | 0.9750       |
| 15 | 0.066792 | 0.981600 | 0.085419 | 0.9750       |
| 16 | 0.062317 | 0.983236 | 0.085411 | 0.9762       |
| 17 | 0.058702 | 0.983764 | 0.083373 | 0.9754       |
| 18 | 0.054696 | 0.985291 | 0.078985 | 0.9764       |
| 19 | 0.051254 | 0.986236 | 0.078202 | 0.9760       |
| 20 | 0.048405 | 0.987182 | 0.076363 | 0.9776       |
| 21 | 0.045569 | 0.987909 | 0.075493 | 0.9760       |
| 22 | 0.042715 | 0.988855 | 0.073792 | 0.9766       |
| 23 | 0.040419 | 0.989673 | 0.072045 | 0.9778       |
| 24 | 0.038164 | 0.990745 | 0.071726 | 0.9768       |
| 25 | 0.035741 | 0.990891 | 0.070450 | 0.9776       |
| 26 | 0.034124 | 0.991782 | 0.073145 | 0.9774       |
| 27 | 0.032035 | 0.992091 | 0.071539 | 0.9782       |
| 28 | 0.030310 | 0.992745 | 0.070034 | 0.9790       |
| 29 | 0.028805 | 0.993127 | 0.066688 | 0.9784       |

```
In [ ]: |pd.DataFrame(history.history).plot()
Out[32]: <matplotlib.axes. subplots.AxesSubplot at 0x7fb30c471810>
          1.0
          0.8
                                             oss
          0.6
                                             accuracy
                                             val loss
          0.4
                                             val_accuracy
          0.2
          0.0
                           10
                                 15
                                        20
                                              25
In [ ]: |model_clf.evaluate(X_test, y_test)
         Out[33]: [0.07131989300251007, 0.9776999950408936]
In [ ]: |x_new = X_test[:3]
         # x_new
In [ ]: |actual = y_test[:3]
         actual
Out[35]: array([7, 2, 1], dtype=uint8)
In [ ]: |y_prob = model_clf.predict(x_new)
        y_prob.round(3)
Out[36]: array([[0.
                     , 0.
                            , 0.
                                  , 0.001, 0.
                                                , 0.
                                                       , 0.
                                                             , 0.999, 0.
                0.
                     ],
                                   , 0.
                                         , 0.
                                                , 0.
                                                      , 0.
                                                             , 0.
               [0.
                     , 0.
                            , 1.
                                                                    , 0.
                0.
               [0.
                     , 0.997, 0.
                                 , 0.
                                         , 0.
                                                , 0.
                                                       , 0.
                                                             , 0.001, 0.001,
                0.
                     ]], dtype=float32)
In [ ]: |y_prob
Out[37]: array([[1.26814825e-06, 4.46078133e-07, 1.07542524e-04, 1.11021555e-03,
                8.08912104e-10, 6.93279389e-07, 2.99566656e-11, 9.98763442e-01,
                2.68553026e-06, 1.37673715e-05],
               [1.36328981e-05, 2.90468706e-05, 9.99673128e-01, 1.67828388e-04,
                4.09359916e-12, 2.81948644e-07, 2.40973009e-06, 2.80236584e-10,
                1.13638853e-04, 7.04005257e-11],
               [8.51472032e-06, 9.97284412e-01, 3.58027231e-04, 7.38601229e-05,
                4.06352337e-04, 9.29948001e-05, 1.49637301e-04, 9.27356305e-04,
                6.85796491e-04, 1.29904947e-05]], dtype=float32)
```

```
In [ ]: y_pred = np.argmax(y_prob, axis = -1)
In [ ]: y_pred
Out[39]: array([7, 2, 1])
In [ ]: actual
Out[40]: array([7, 2, 1], dtype=uint8)
```

```
In [ ]: # plot
for data, pred, actual_data in zip(x_new, y_pred, actual):
    plt.imshow(data, cmap="binary")
    plt.title(f"Predicted {pred} and Actual {actual_data}")
    plt.axis("off")
    plt.show()
    print("##############"")
```

Predicted 7 and Actual 7



#### ##########################

Predicted 2 and Actual 2



#### ########################

Predicted 1 and Actual 1



In [ ]: