Parallel Sorting

John Mellor-Crummey

Department of Computer Science Rice University

johnmc@rice.edu

Topics for Today

- Introduction
- Sorting networks and Batcher's bitonic sort
- Other parallel sorting methods
 - —sample sort
 - —histogram sort
 - —radix sort
 - —parallel sort with exact splitters

Sorting Algorithm Attributes

- Internal vs. external
 - —internal: data fits in memory
 - —external: uses tape or disk
- Comparison-based or not
 - —comparison sort
 - basic operation: compare elements and exchange as necessary
 - Θ(n log n) comparisons to sort n numbers
 - —non-comparison-based sort
 - e.g. radix sort based on the binary representation of data
 - Θ(n) operations to sort n numbers
- Parallel vs. sequential

Today's focus: internal parallel comparison-based sorting distributed memory architectures

Parallel Sorting Basics

- Where are the input and output lists stored?
 - —both input and output lists are distributed
- What is a parallel sorted sequence?
 - —sequence partitioned among the processors
 - —each processor's sub-sequence is sorted
 - —all in P_i 's sub-sequence < all in P_k 's sub-sequence if j < k
 - the best process mapping can depend on network topology

Element-wise Parallel Compare-Exchange

When partitioning is one element per process

1. Processes P_i and P_k send their elements to each other

[communication step]

Each process now has both elements

2. Process P_j keeps min(a_j,a_k), and P_k keeps max(a_j, a_k)

Bulk Parallel Compare-Split

- 1. Send block of size *n/p* to partner
- 2. Each partner now has both blocks
- 3. Merge received block with own block
- 4. Retain only the appropriate half of the merged block

 P_i retains smaller values; process P_i retains larger values

Sorting Network

- Network of comparators designed for sorting
- Comparator: two inputs x and y; two outputs x' and y'
 —types

 - decreasing (denoted Θ) : x' = max(x,y) and y' = min(x,y)

Sorting network speed is proportional to its depth

Sorting Networks

- Network structure: a series of columns
- Each column consists of a vector of comparators (in parallel)
- Sorting network organization:

Example: Bitonic Sorting Network

Bitonic sequence

- —two parts: increasing and decreasing
 - $\langle 1,2,4,7,6,0 \rangle$: first increases and then decreases (or vice versa)
- —cyclic rotation of a bitonic sequence is also considered bitonic
 - $\langle 8,9,2,1,0,4 \rangle$: cyclic rotation of $\langle 0,4,8,9,2,1 \rangle$

Bitonic sorting network

- —sorts n elements in $\Theta(\log^2 n)$ time
- —network kernel: rearrange a bitonic sequence into a sorted one

Bitonic Split (Batcher, 1968)

• Let $s = \langle a_0, a_1, ..., a_{n-1} \rangle$ be a bitonic sequence

$$-a_0 \le a_1 \le \cdots \le a_{n/2-1}$$
, and
 $-a_{n/2} \ge a_{n/2+1} \ge \cdots \ge a_{n-1}$

$$s_1 = \langle \min(a_0, a_{n/2}), \min(a_1, a_{n/2+1}), \dots, \min(a_{n/2-1}, a_{n-1}) \rangle$$

 $s_2 = \langle \max(a_0, a_{n/2}), \max(a_1, a_{n/2+1}), \dots, \max(a_{n/2-1}, a_{n-1}) \rangle$

- Sequence properties
 - $-s_1$ and s_2 are both bitonic

$$-\forall_{x} \forall_{y} x \in s_{1}, y \in s_{2}, x < y$$

 Works for any bitonic sequence, even if the increasing and decreasing parts are different lengths

Bitonic Merge

Sort a bitonic sequence through a series of bitonic splits

Example: use bitonic merge to sort 16-element bitonic sequence

How: perform a series of log_2 16 = 4 bitonic splits

Original
sequence
1st Split
2nd Split
3rd Split
4th Split

3	5	8	9	10	12	14	20	95	90	60	40	35	23	18	0
3	5	8	9	10	12	14	0	95	90	60	40	35	23	18	20
3	5	8	0	10	12	14	9	35	23	18	20	95	90	60	40
3	0	8	5	10	9	14	12	18	20	35	23	60	40	95	90
0	3	5	8	9	10	14 12	14	18	20	23	35	40	60	90	95

Sorting via Bitonic Merging Network

- Sorting network can implement bitonic merge algorithm
 - —bitonic merging network
- Network structure
 - $-\log_2 n$ columns
 - —each column
 - n/2 comparators
 - performs one step of the bitonic merge
- Bitonic merging network with n inputs: ⊕BM[n]
 - —yields increasing output sequence
- Replacing ⊕ comparators by ⊖ comparators: ⊖BM[n]
 - —yields decreasing output sequence

Bitonic Merging Network, BM[16]

- Input: bitonic sequence
 - input wires are numbered 0,1,...,n-1 (shown in binary)
- Output: sequence in sorted order
- Each column of comparators is drawn separately

Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?

Two steps

- Build a bitonic sequence
- Sort it using a bitonic merging network

Building a Bitonic Sequence

- Build a single bitonic sequence from the given sequence
 - —any sequence of length 2 is a bitonic sequence.
 - —build bitonic sequence of length 4
 - sort first two elements using ⊕BM[2]
 - sort next two using ⊖BM[2]
- Repeatedly merge to generate larger bitonic sequences
 - $-\oplus BM[k] \& \ominus BM[k]$: bitonic merging networks of size k

Building a Bitonic Sequence

Input: sequence of 16 unordered numbers

Output: a bitonic sequence of 16 numbers

Bitonic Sort, n = 16

- First 3 stages create bitonic sequence input to stage 4
- Last stage (⊕BM[16]) yields sorted sequence

Complexity of Bitonic Sorting Networks

- Depth of the network is Θ(log² n)
 - —log₂ n merge stages
 - $-j^{th}$ merge stage is $log_2 2^j = j$

-depth =
$$\sum_{j=1}^{\log_2 n} \log_2 2^j = \sum_{i=1}^{\log_2 n} j = (\log_2 n + 1)(\log_2 n)/2 = \theta(\log^2 n)$$

- Each stage of the network contains n/2 comparators
- Complexity of serial implementation = $\Theta(n \log^2 n)$

Mapping Bitonic Sort to a Hypercube

Consider one item per processor

- How do we map wires in bitonic network onto a hypercube?
- In earlier examples
 - —compare-exchange between two wires when labels differ in 1 bit
- Direct mapping of wires to processors
 - —all communication is nearest neighbor

Mapping Bitonic Merge to a Hypercube

Communication during the last merge stage of bitonic sort

- Each number is mapped to a hypercube node
- Each connection represents a compare-exchange

Mapping Bitonic Sort to Hypercubes

Communication in bitonic sort on a hypercube

- Processes communicate along dims shown in each stage
- Algorithm is cost optimal w.r.t. its serial counterpart
- Not cost optimal w.r.t. the best sorting algorithm

Batcher's Bitonic Sort in NESL

```
function bitonic_merge(a) =
   if (\#a == 1) then a
   else
      let
         halves = bottop(a)
         mins = \{\min(x, y) : x \text{ in halves}[0]; y \text{ in halves}[1]\};
         maxs = \{max(x, y) : x \text{ in halves}[0]; y \text{ in halves}[1]\};
      in flatten({bitonic_merge(x) : x in [mins,maxs]});
   function bitonic sort(a) =
   if (\#a == 1) then a
   else
      let b = {bitonic_sort(x) : x in bottop(a)};
      in bitonic merge(b[0]++reverse(b[1]));
```

Sample Sort

Sample Sort

Algorithm

- —each processor sorts its local data.
- —each processor selects a sample vector of size p-1 from its local data.
 the kth element of the vector is element n/p((k+1)/p) of local data.
- —send samples to P_0 . merge them there and produce a combined sorted sample of size p(p-1).
- $-P_0$ defines and broadcasts a vector of p-1 splitters with the k^{th} splitter as element p(k + 1/2) of the combined sorted sample.
- —each processor sends its local data to the appropriate destination processors, as defined by the splitters, in one round of all-to-all communication.
- —each processor merges the data chunks that it receives.

Notes [Shi, Shaeffer; JPDC 14:4, April 1992]

- —asymptotically optimal for $n \ge p^3$
- —for n sufficiently large, no processor ends up with more than 2n/p keys
- —scaling eventually limited by O(p²) sort of combined samples

Histogram Sort

Histogram Sort

- Goal: divide keys into p evenly sized pieces
 - —use an iterative approach to do so
- Initiating processor broadcasts k > p-1 splitter guesses
- Each processor determines how many keys fall in each bin
- Sum histogram with global reduction
- One processor examines guesses to see which are satisfactory
- Iterate if guesses are unsatisfactory
- Broadcast finalized splitters and number of keys for each processor
- Each processor sends local data to appropriate processors using all-to-all communication
- Each processor merges chunks it receives
- Kale and Solomonik improved this (IPDPS 2010)

Radix Sort

- In a series of rounds, sort elements into buckets by digit
 —a k-bit radix sort looks at k bits every iteration
- Start with k least significant bits first, partition data into 2^k buckets
- Use an all-to-all pattern to distribute the buckets among the processors
- Each processor merges the buckets it receives
- Repeat until all bits have been considered
- O(bn/p) where b is the number of bits in a key
- Note: works best on a power of 2 number of processors
 - —even distribution of the 2^k buckets among the processors

Parallel Sorting Using Exact Splitters

Assumptions

Assumptions

- —distributed memory machines are ubiquitous
- —cost of communication >> cost of computation
- —large number of processors
- —size of data >> number of processors

Design goal

—move minimal amount of data over network

Then and Now

- CM-2 results from the 90s
 - —sample-based sort and radix sort are good in practice [Blelloch]
- Today
 - —cost of sampling is often quite high and sample sort requires redistribution at end
 - —sampling process requires well-chosen parameters to yield good samples
 - —can eliminate both steps if exact splitters can be determined quickly

Summary

- Key idea
 - —find p-1 exact splitters in O(p log n) rounds of communication
- Result
 - —close to optimal in computation and communication
 - moves less data than sample sorting, which is widely used
 - computationally a lot more efficient on distributed memory systems

Parallel Sorting with Exact Splitters

Algorithm.

Input: A vector v of n total elements, evenly distributed among p processors.

Output: An evenly distributed vector w with the same distribution as v, containing the sorted elements of v.

- 1. Sort the local elements v_i into a vector v'_i .
- 2. Determine the exact splitting of the local data:
 - (a) Compute the partial sums $r_0=0$ and $r_j=\sum_{k=1}^j d_k$ for $j=1\dots p$.
 - (b) Use a parallel select algorithm to find the elements e_1, \ldots, e_{p-1} of global rank r_1, \ldots, r_{p-1} , respectively.
 - (c) For each r_j , have processor i compute the local index s_{ij} so that $r_j = \sum_{i=1}^p s_{ij}$ and the first s_{ij} elements of v_i' are no larger than e_j .
- 3. Reroute the sorted elements in v'_i according to the indices s_{ij} : processor i sends elements in the range $s_{ij-1} \ldots s_{ij}$ to processor j.
- 4. Locally merge the p sorted sub-vectors into the output w_i .

 $d_i = |v_i|$ r $_{ extsf{i}} = \mathsf{i}^ extsf{th}$ global splitter

Local Sort

- On each processor, sort the local data vi into v'i

Selecting P-1 Exact Splitters

- Base case: single splitter selection
 - —find a single splitter at global rank r
- Apply this algorithm p times (with like phases combined) to each of the desired splitters

Single Splitter Selection

- First, consider first the problem of selecting one element with global rank r
 - —elements may not be unique: want element whose set of ranks contains r
- Define an active region on each P_i,
 - —active range contains all elements that may still have rank r
 - —let a_i be its size
 - —initially, active range on each processor is v'i
- In each round, a pivot is found that partitions the active range in two. If the pivot isn't the target element, iterate on one of the partitions

Single Splitter Selection

- Let each P_i compute m_i, the median of the active range of v'_i
- Use all-to-all broadcast to distribute all m_i
- Weight each median m_i by a_i/(a₁ + a₂ + ... + a_p)
 - —by definition, weights of medians $\{m_i \mid m_i < m_m\}$ sum to ≤ 1/2
- Compute median of medians, m_m, in linear time
 - —M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. 1973. Time bounds for selection. *J. Comput. Syst. Sci.* 7(4):448-461, August 1973.
- Find m_m with binary search over v'_i to determine f_i and l_i it can be inserted into vector v'_i
- Use all-to-all broadcast to distribute all fi and li
- Compute $f = f_1 + f_2 + ... + f_p$ and $I = I_1 + I_2 + ... + I_p$. median m_m has rank [f,l] in v
- If r in [f,l] done; m_m is target element otherwise truncate active range
- If I < r, bottom index of active range is I_i+1
- If r < f, decrease top index to f_i-1
- Loop on truncated active range

Splitting by m_m will eliminate at least 1/4 of elements

—n elements initially, O(lg n) iterations

Simultaneous Selection

- Select multiple targets, each with different global rank
- For sorting, want p-1 elements of global rank

```
-d_1, d_1+d_2, ..., d_1+d_2+...+d_{p-1}
```

- Simple strategy: call single selection for each desired rank
 —would increase communication rounds by O(p)
- Avoid this inflation by solving multiple selection problems independently, but combining their communication

Element Routing

- Move elements from locations where they start to where they belong in sorted order
- Optimal parallel sorting algorithm: communicate every element from current location to a location in the remote array at most once

Merging

- Each processor has p sorted subvectors
- Must merge them into sorted sequence
- Approach
 - —build a binary tree on top of the vectors
 - —for $P \neq 2^k$, a node of height i has at most 2^i leaf descendants

- —merge pairs of subvectors guided by this tree
- —each element moves at most \[\lflig p \end{alignment} \] times
- —total computation time on slowest processor <code>[n/p] [Ig p]</code>

Experimental Setup

Implementation

- —C++ and MPI
- —used Standard Template Library std::sort and std::stable sort for sequential sort

Platforms

- —SGI Altix
 - 256 Itanium 2 processors, 4TB RAM total
- —Beowulf cluster
 - 32 Xeon processors, 3GB of memory per node
 - Gigabit Ethernet interconnect

Time Spent in Different Phases, Scaling P

low and flat is better

Time Spent in Different Phases, Scaling N

Speedup vs. Data Size

Speedup over sequential sort on a Beowulf cluster

Comparison with Sample Sort

- Psort
- Psort with sampled splitters
 - —same algorithm, but use random sampling to pick splitters instead of medians
- Sample sort
 - —traditional sampling based sorting algorithm, and based on the following steps:
 - 1. Pick splitters by sampling or oversampling.
 - 2. Partition local data to prepare for the communication phase.
 - 3. Route elements to their destinations.
 - 4. Sort local data.
 - 5. Redistribute to adjust processor boundaries.

Comparison with Sample Sort

Psort vs. Samplesort (1 billion elements on a Beowulf cluster)

- → Psort with median splitters
- Psort with sampled splitters
- Sample sort

high and flat is better

Things to Consider

- Distributed memory or shared memory
- Latency vs. bandwidth of communication
- Size of data vs. size of processors
- Asymptotic complexity of algorithm

—is P² too large

References

- Adapted from slides "Sorting" by Ananth Grama
- Based on Chapter 9 of "Introduction to Parallel Computing" by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley, 2003
- "Programming Parallel Algorithms." Guy Blelloch.
 Communications of the ACM, volume 39, number 3, March 1996.
- http://www.cs.cmu.edu/~scandal/nesl/algorithms.html#sort
- Edgar Solomonik and Laxmikant V. Kale. Highly Scalable Parallel Sorting. Proceedings of IPDPS 2010.
- D. Cheng, V. Shah, J. Gilbert, A. Edelman. A Novel Parallel Sorting Algorithm for Contemporary Architectures. May 2007 http://gauss.cs.ucsb.edu/publication/psort.pdf