

Eyecloud OpenNCC Software Development Kit (SDK) API

Specification

June 2021 Revision 3.0.1

修订历史

Vesion	Date	Editor	Description
1.0.0	2020/1/10	王新华	Initial version
1.0.1	2020/3/16	王洋	Optimized version
2.0.0	2020/4/7	左文平	修订接口,添加 python 接口
3.0.0 2020/10/14		2020/10/14 左文平	1:添加支持 2 个模型接口 sdk_net2_init()以及对应的结构体。 2: meta 数据格式增加了 64 字节。
			3:移除了读取红外数据和深度数据接口。
3.0.1	2021/6/30	张迪	优化文档结构

Revision 3.0.1

目录

修订历史	2
目录	3
一: SDK C/C++接口说明	5
1.设备初始化相关接口	5
1.1 加载设备固件	5
1.2 获取连接设备 usb 版本信息	6
1.3 初始化相机 AI 参数	6
1.4 初始化 2 个模型相机 AI 参数	7
1.5 获取 meta data 大小	10
1.6 移除 sdk	10
1.7 获取 sdk 版本信息	10
2.视频流相关接口	11
2.1 获取设备 yuv 数据	11
2.2 获取设备 H.264 或 H.265 数据流	11
2.3 获取设备 jpeg 数据	12
2.4 获取设备 AI 算法运算结果	12
3.相机控制相关接口	13
3.1 获取相机模组信息	13
3.2 选择模组工作模式	13
3.3 控制相机视频输出方式	14
3.4 选择相机聚焦模式	14
3.5 设置相机镜头距离	15
3.6 触发单次聚焦	15
3.7 选择相机曝光模式	15
3.8 设置相机曝光时间	16
3.9 设置相机曝光增益	16
3.10 选择相机白平衡模式	16
3.11 浮点数转化	17
二:SDK Python 接口说明	17
1.设备初始化相关接口	17

	1.1 获取 sdk 版本信息	17
	1.2 获取设备连接 usb 信息	17
	1.3 加载设备固件	18
	1.4 初始化相机 AI 参数	18
	1.5 初始化 2 个模型相机 AI 参数	19
	1.6 移除 sdk	20
2	.视频流相关接口	20
	2.1 获取设备 yuv 数据	20
	2.2 获取设备 H.264 或 H.265 数据流	21
	2.3 获取设备 jpeg 数据	21
	2.4 获取设备 AI 网络数据运算结果	21
3	.相机控制相关接口	22
	3.1 获取相机模组信息	22
	3.2 选择模组工作模式	23
	3.3 控制相机视频输出方式	23
	3.4 设置相机聚焦模式	23
	3.5 选择相机镜头距离	24
	3.6 触发单次聚焦	24
	3.7 选择相机曝光模式	24
	3.8 选择相机曝光时间	25
	3.9 选择相机曝光增益大小	25
	3.10 选择相机白平衡模式	25
	3.11 浮点数转化	26

一、 SDK C/C++接口说明

接口包含文件主要在 sdk.h、cameraCtrl.h 、Fp16Convert 3 个文件。

OpenNCC sdk 视频处理流程图

1.设备初始化相关接口

1.1 加载设备固件

接口名称	接口参数	参数说明
load_fw()	const char* bootExe	Usb boot 程序路径
	const char* firmware	固件文件放置路径

接口调用说明:

load_fw("./moviUsbBoot", "./fw/flicRefApp.mvcmd");

返回值: 0: 成功; -1 失败

接口功能说明:

自动加载设备固件,设备 boot 运行, host (PC) 打开 usb 设备。

1.2 获取连接设备 usb 版本信息

接口名称	接口参数	参数说明
get_usb_version()	void	无

接口调用说明:

get usb version();

返回值: 30: usb3.0、20: usb2.0

接口功能说明:

获取设备连接的 usb 版本信息(端口和 usb 线)

1.3 初始化相机 AI 参数

接口名称	接口参数	参数说明
	vscRecvCb cb	回调函数
	void* param	回调函数参数
	const char *blob_path	AI 模型文件(blob 格式)路
sdk_init()		径
		相机配置参数,具体内容
	CameraInfo*cam	见下方
	int cam_Len	相机配置结构体长度

媒体数据和 meta 数据有 2 种方式获取,

1)通过回调函数被动获取。

int imageWidth;

2)通过 read_XXX_data()主动获取,使用第二种方法不用设置回调函数以及回调参数。

//图像宽度

typedef struct{

```
int imageHeight; //图像高度
int startX; //Ai 运算起点 x 坐标
int startY; //Ai 运算起点 y 坐标
int endX; //Ai 运算终点 x 坐标
```

int endX; //Ai 运算终点 x 坐标 int endY; //Ai 运算终点 y 坐标

int inputDimWidth;

/* 缩放后模型输入宽,如果<=0,自动从模型的 xml 获取*/int inputDimHeight;

/* 缩放后模型输入高,如果<=0,自动从模型的 xml 获取 */ IMAGE_FORMAT inputFormat;

/* 模型输入格式,只支持 RGB/RGB_PLANAR/BGR/BGR_PLANAR */ float meanValue[3];

/* 缩放后的数据二次预处玿如果 inputFormat 为 RGB:

R = (R-meanValue[0])/stdValue

G = (G-meanValue[0])/stdValue

B = (B-meanValue[0])/stdValue */

float stdValue;

int isOutputYUV; //使能开关 1: open 0:close int isOutputH26X; //使能开关 1: open 0:close int isOutputJPEG; //使能开关 1: open 0:close

encodeMode mode; /* H264/H265 */

} CameraInfo;

接口调用说明:

返回值: 0: 成功; -1 失败

接口功能说明:

指定相机 AI 模型文件,AI 计算参数,初始化设备算法模型,相机功能开关选择,通过 mode 参数设置视频压缩编码参数(ENCODE_H264_MODE,ENCODE_H265_MODE),注意,此处仅仅是功能开关是否开启,视频输出还要通过 camera video out()控制是否输出。

注意:本接口仅仅支持单模型单输入的 AI 模型。要是使用 2 个 AI 模型或者一个模型 2 个输入必须使用 sdk net2 init()接口。

1.4 初始化 2 个模型相机 AI 参数

接口名称	接口参数	参数说明
	vscRecvCb cb	回调函数
	void* param	回调函数参数
sdk_net2_init()	const char *blob_path	AI 模型 1 文件(blob 格式)
	Network1Par* par1	模型1配置参数,具体内
		容见下方

int par1_Len	配置结构体长度
const char *blob2_path	AI 模型 2 文件(blob 格式)
Network2Par* par2	模型2配置参数,具体内
	容见下方
int par2_Len	配置结构体长度

媒体数据和 meta 数据有 2 种方式获取,一:通过回调函数被动获取,二:通过 read_XXX_data()主动获取,使用第二种方法不用设置回调函数以及回调参数。

```
/* first module process setting */
typedef struct{
    int imageWidth;
    int imageHeight;
    int startX;
    int startY;
    int endX;
    int endY;
    int inputDimWidth;
    int inputDimHeight;
    IMAGE FORMAT inputFormat;
   /* input image mode, only RGB/RGB_PLANAR/BGR/BGR_PLANAR */
    float meanValue[3];
                              /* inputFormat RGB:
                                       R = (R-meanValue[0])/stdValue
                                        G = (G-meanValue[0])/stdValue
                                        B = (B-meanValue[0])/stdValue */
    float stdValue;
    int
         isOutputYUV;
    int
         isOutputH26X;
         isOutputJPEG;
    int
    encodeMode mode;
                                    /* H264/H265 */
  char extInputs[MAX EXTINPUT SIZE];
                                            /* second model input */
  int
        modelCascade;
                                             /* linked next model */
        inferenceACC;
                                            /* Accelerating inference 0:close
  int
1:open */
} Network1Par;
```



```
/* second module param */
typedef struct{
    int startXAdj;
    int startYAdj;
    int endXAdj;
    int endYAdj;
    char labelMask[MAX_LABEL_SIZE];
    /* mask label, bit equal to 1 will be useful */
    float minConf;
                                 /* conf value from first model */
    int inputDimWidth;
    int inputDimHeight;
    IMAGE_FORMAT inputFormat;
    /* input image mode, only RGB/RGB PLANAR/BGR/BGR PLANAR */
    float meanValue[3];
                                  /* inputFormat RGB:
                                        R = (R-meanValue[0])/stdValue
                                        G = (G-meanValue[0])/stdValue
                                        B = (B-meanValue[0])/stdValue */
    float stdValue;
    char extInputs[MAX_EXTINPUT_SIZE];
                                            /* second model input */
    int
          modelCascade;
                                /*linked next model for third model in future*/
} Network2Par;
```

接口调用说明:

- char *blob = "./blob/vehicle-license-plate-detection-barrier-0106/vehicle-license-plate-detection-barrier-0106.blob";
- char *blob2 = "./blob/license-plate-recognition-barrier-0001/license-plate-recognition-barrier-0001.blob";

//5. sdk 初始化

ret = sdk_net2_init(0,0,\

blob, &cnn1PrmSet, sizeof(cnn1PrmSet), \
blob2, &cnn2PrmSet, sizeof(cnn2PrmSet));

返回值: 0: 成功: -1 失败

接口功能说明:

指定相机 2 个 AI 模型文件, 2 个 AI 计算参数, 初始化设备算法模型, 相机功能开关选择, 通过 mode 参数设置视频压缩编码参数(ENCODE_H264_MODE,

ENCODE_H265_MODE),注意,此处仅仅是功能开关是否开启,视频输出还要通过 camera_video_out() 控制是否输出。

1.5 获取 meta data 大小

接口名称	接口参数	参数说明
get_meta_size()	void	无

接口调用说明: 略。

返回值: cnn 计算结果 meta data 数据大小,注意,仅仅对单模型一个 blob 文件有用。

接口功能说明:

相机关闭, 重新加载算法模型, 更换模型前调用

1.6 移除 sdk

接口名称	接口参数	参数说明
sdk_uninit()	void	无

接口调用说明:

sdk_uninit();

返回值:无

接口功能说明:

相机关闭, 重新加载算法模型, 更换模型前调用

1.7 获取 sdk 版本信息

接口名称	接口参数	参数说明
get_sdk_version()	char* version	版本信息

接口调用说明:

- char version[100];
- get_sdk_version(version);

返回值: void

获取 sdk 版本信息。

2.视频流相关接口

2.1 获取设备 yuv 数据

接口名称	接口参数	参数说明
	char* pbuf	接收缓存区
		输入输出参数,输入时表
	int * size	示输入缓存区大小,输出
road www.data()		时表示返回视频数据大
read_yuv_data()		小
	int blocked	数据返回 0: 如果无数据
		立即返回; 1: 阻塞直到
		读取到数据才返回

接口调用说明:

read_yuv_data(data_yuv,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 yuv 数据流,内容:结构体 frameSpecOut+YUV (nv12)数据.

2.2 获取设备 H.264 或 H.265 数据流

接口名称	接口参数	参数说明
	char* pbuf	接收缓存区
read_26x_data()	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视频数据大小
	int blocked	数据返回 0: 如果无数据 立即返回; 1: 阻塞直到 读取到数据才返回

接口调用说明:

• read_26x_data(data_26x,&size,1)

返回值: 0: 成功; -1 失败

获取设备 H.264 或 H.265 数据流,内容: 结构体 frameSpecOut+H26X 数据.

2.3 获取设备 ipeg 数据

接口名称	接口参数	参数说明	
read_jpg_data()	char* pbuf	接收缓存区	
	int * size	输入输出参数,输入时表示输入缓存区大小,	
		输出时表示返回视频数据大小	
	int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞	
		直到读取到数据才返回	

接口调用说明:

read_jpg_data(yuv420p,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 jpeg 数据流,内容:结构体 frameSpecOut+MJPEG 数据

2.4 获取设备 AI 算法运算结果

接口名称	接口参数	参数说明
read_meta_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存
		区大小,输出时表示返回视频数据大
		小
	int blocked	数据返回 0: 如果无数据立即返回; 1:
		阻塞直到读取到数据才返回

接口调用说明:

• read meta data(data mate,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 AI 网络运算结果数据,内容:结构体 frameSpecOut+AI 数据, AI 数

据格式如下:

3.相机控制相关接口

3.1 获取相机模组信息

接口名称	接口参数	参数说明
camera_control_get_features()	SensorModesConfig *	设备信息的结构体指 针

接口调用说明:

SensorModesConfig cameraCfg;

camera_control_get_features(&cameraCfg);

返回值: 0: 成功; -1 失败

cameraCfg.moduleName 相机模组名称

cameraCfg.camWidth 图像宽 cameraCfg.camHeight 图像高

cameraCfg.camFps 相机帧率

cameraCfg.AFmode 是否支持自动聚焦 1 支持,0 不支持

cameraCfg.maxEXP 最大曝光时间,单位微秒 us

cameraCfg.minGain 最小增益倍数 cameraCfg.maxGain 最大增益倍数

接口功能说明:

获取相机可见光模组模式信息,有的相机支持多种视频模式,可以通过 camera_select_sensor()选择使用。

3.2 选择模组工作模式

接口名称	接口参数	参数说明
camera_select_sensor()	int sensorid	camera_control_get_features 获取到相机支持的模组信 息数组, sensorid 为数组的 序号。

接口调用说明:

● camera_select_sensor(0); 返回值: 0: 成功; -1 失败

设置相机可见光模组的工作模式。

3.3 控制相机视频输出方式

接口名称	接口参数	参数说明
	int video_type	Yuv 数据输出模式
camera_video_out()	camera_ctrl_VIDEO_out	禁止,单次(拍照用),连
	mode	续

```
typedef enum
```

{

```
VIDEO_OUT_DISABLE, /* 禁止输出 */
VIDEO_OUT_SINGLE, /* 输出一次 */
VIDEO_OUT_CONTINUOUS, /* 连续输出 */
}camera_ctrl_video_out;
```

接口调用说明:

camera_video_out(YUV420p, VIDEO_OUT_CONTINUOUS);

返回值: 0: 成功; -1 失败

接口功能说明:

控制设备输出视频数据的模式,该设置当前对YUV420p,H26X,JPEG 有效,其中好 H26X 不支持单次输出。

3.4 选择相机聚焦模式

接口名称	接口参数	参数说明
		CAMERA_CONTROLAF_MODE_O
camera_control_af_mo	camera_ctrl_af_m	FF : 手动
de()	ode af_mode	CAMERA_CONTROLAF_MODE_A
		UTO: 自动

接口调用说明:

● camera_control_af_mode(CAMERA_CONTROL__AF_MODE_OFF); 返回值: 0: 成功; -1 失败

接口功能说明:

设置相机聚焦模式,通过 camera_control_get_features() 获取到相机是否支持手动模式(cameraCfg.AFmode),只有支持手动才可以设置,否则设置无效,相

机不执行该命令, 默认自动。

3.5 设置相机镜头距离

接口名称	接口参数	参数说明
camera_control_lens_move()	uint32_t lens_position	距离大小,范围(1-100)

接口调用说明:

camera_control_lens_move(10);

返回值: 0: 成功; -1 失败

接口功能说明:

手动聚焦时候用, 距离越大, 值越大。

3.6 触发单次聚焦

接口名称	接口参数	参数说明
camera_control_focus_trigger()	无	

接口调用说明:

camera_control_focus_trigger();

返回值: 0: 成功; -1 失败

接口功能说明:

单次聚焦。

3.7 选择相机曝光模式

接口名称	接口参数	参数说明
camera_control_ae_mode()	camera_ctrl_ae_mode	手动,自动选择。
	flash_mode	

接口调用说明:

 camera_control_ae_mode(CAMERA_CONTROL__AE_AUTO__FLASH_MODE__AU TO);

返回值: 0: 成功; -1 失败

接口功能说明:

曝光方法设置。

3.8 设置相机曝光时间

接口名称	接口参数	参数说明
camera_control_ae_set_exp()	uint32_t	曝光时间设置,单位微
	exp_compensation	秒(us) 范围(1-1/fps)

接口调用说明:

camera control ae set exp(20000);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光,设置曝光时间。

3.9 设置相机曝光增益

接口名称	接口参数	参数说明
camera_control_ae_set_gain	uint32_t iso_val	增益值
()		

接口调用说明:

camera_control_lens_move(100);

返回值: 0: 成功: -1 失败

接口功能说明:

手动曝光时候,设置增益值,通过上面 3.1 API 接口 camera_control_get_features () 获取到 minGain,maxGain 值(见结构体 SensorModesConfig),手动设置。

3.10 选择相机白平衡模式

接口名称	接口参数	参数说明
camera_control_awb_mode()	camera_ctrl_awb_mode	手动,自动
	awb_mode	

接口调用说明:

● camera_control_awb_mode(CAMERA_CONTROL__AWB_MODE__AUTO); 返回值: 0: 成功; -1 失败

接口功能说明:

相机白平衡设置,手动,自动选择。

3.11 浮点数转化

接口名称	接口参数	参数说明
f16Tof32()	unsigned int x	16 位数据

接口调用说明:

Float f=f16Tof32(100);

返回值: 浮点数

接口功能说明:

16 位 short 数据转浮点数,用于 meta data 计算分析。

二、SDK Python 接口说明

从 API2.0.x 开始支持 python API, sdk 接口见 openncc.py 文件,使用时候导入该模块即可,如: import openncc as ncc。

1.设备初始化相关接口

1.1 获取 sdk 版本信息

接口名称	接口参数	参数说明
get_sdk_version()	无	

接口调用说明:

print("get usb %d sdk versin %s" % (ncc.get_usb_version() ,ncc.get_sdk_version()))返回值:版本信息

接口功能说明:

获取 sdk 版本信息。

1.2 获取设备连接 usb 信息

接口名称	接口参数	参数说明
get_usb_version()	无	无

返回值: 30: usb3.0、20: usb2.0

接口调用说明:

print("get usb %d sdk versin %s" % (ncc.get_usb_version(), ncc.get_sdk_version()))

接口功能说明:

获取设备连接的 usb 版本信息(端口和 usb 线)

1.3 加载设备固件

接口名称	接口参数	参数说明
load_fw()	bootExe	Usb boot 程序路径
	firmware	固件文件放置路径

返回值: 0: 成功; -1 失败

接口调用说明:

res = ncc.load_fw("./moviUsbBoot","fw/flicRefApp.mvcmd") if res<0:</p>

printf('load firmware error!')
sys.exit(1)

接口功能说明:

自动加载设备固件,设备 boot 运行, host (PC) 打开 usb 设备。

1.4 初始化相机 AI 参数

接口名称	接口参数	参数说明
sdk_init()	vscRecvCb cb	回调函数
	param	回调函数参数
	Blob1_path	模型文件路径
		相机配置参数具体内容
	cam	见下方
	Cam_len	相机配置结构体长度

媒体数据以及 meta 数据有 2 种获取方法,具体见 c/c++对应的该接口描述。 接口调用说明:

```
cam_info=ncc.CameraInfo()
cam_info.inputFormat=ncc.IMG_FORMAT_BGR_PLANAR
cam_info.stdValue=1
cam_info.isOutputYUV=1
```

cam_info.isOutputH26X=1
cam_info.isOutputJPEG=1

cam_info.imageWidth = cameraCfg.camWidth
cam_info.imageHeight = cameraCfg.camHeight

cam_info.startX = 0 cam_info.startY = 0

cam_info.endX = cameraCfg.camWidth cam_info.endY = cameraCfg.camHeight

cam_info.inputDimWidth =0
cam_info.inputDimHeight =0
ncc.SetMeanValue(cam_info,0.0,0.0,0.0)

- ret = ncc.sdk_init(None, None, "./blob/face-detection-retail-0004-fp16.blob",cam_info, struct.calcsize("13I4f"))
- print("xlink_init ret=%d " % ret) if (ret<0): return

接口功能说明:

指定相机 AI 模型文件,AI 计算参数,初始化设备算法模型,相机功能开关选择,通过 mode 参数设置视频压缩编码参数(ENCODE_H264_MODE,ENCODE_H265_MODE),注意,此处仅仅是功能开关是否开启,视频输出还要通过 camera_video_out() 控制是否输出。

1.5 初始化 2 个模型相机 AI 参数

接口名称	接口参数	参数说明
	vscRecvCb cb	回调函数
	param	回调函数参数
	blob1 notb	AI 模型 1 文件(blob 格式)
	blob1_path	路径
	nau1	模型1配置参数,具体内
cdle not2 init/\	par1	容见下方
sdk_net2_init()	par1_Len	配置结构体长度
	blaba sath	AI 模型 2 文件(blob 格式)
	blob2_path	路径
	nan3	模型2配置参数,具体内
	par2	容见下方
	par2_Len	配置结构体长度

媒体数据和 meta 数据有 2 种方式获取,一:通过回调函数被动获取,二:通过 read_XXX_data()主动获取,使用第二种方法不用设置回调函数以及回调参数。

接口功能说明:

指定相机 2 个 AI 模型文件, 2 个 AI 计算参数, 初始化设备算法模型, 相机功能开关选择, 通过 mode 参数设置视频压缩编码参数(ENCODE_H264_MODE, ENCODE_H265_MODE), 注意, 此处仅仅是功能开关是否开启, 视频输出还要通过 camera_video_out() 控制是否输出。

1.6 移除 sdk

接口名称	接口参数	参数说明
sdk_uninit()	无	无

接口调用说明:

sdk uninit();

返回值:无

接口功能说明:

相机关闭, 重新加载算法模型, 更换模型前调用

2.视频流相关接口

2.1 获取设备 yuv 数据

接口名称	接口参数	参数说明
GetYuvData()	yuvbuf	接收缓存区,bytearray 类
		型

接口调用说明:

metasize=ncc.get_meta_size()
 offset=struct.calcsize(media_head)
 yuvsize=cameraCfg.camWidth*cameraCfg.camHeight*2
 yuvbuf = bytearray(yuvsize+offset)
 metabuf = bytearray(metasize+offset)

size = ncc.GetYuvData(yuvbuf)

返回值: yuv 实际数据大小。

接口功能说明:

获取设备 yuv 数据流,内容:结构体 frameSpecOut+YUV (nv12)数据.

2.2 获取设备 H.264 或 H.265 数据流

接口名称	接口参数	参数说明
GetH26xData()	databuf	接收缓存区,bytearray 类型

接口调用说明:

用法同获 2.1 获取 yuv 数据

接口功能说明:

获取设备 H.264 或 H.265 数据流,内容: 结构体 frameSpecOut+H26X 数据.

2.3 获取设备 jpeg 数据

接口名称	接口参数	参数说明
GetJpegData()	databuf	接收缓存区,bytearray 类型

接口调用说明:

用法同获 2.1 获取 yuv 数据

接口功能说明:

获取设备 jpeg 数据流,内容:结构体 frameSpecOut+MJPEG 数据.

2.4 获取设备 AI 网络数据运算结果

接口名称	接口参数	参数说明
GetMetaData()	databuf	接收缓存区,bytearray 类型

接口调用说明:

用法同获 2.1 获取 yuv 数据

获取设备 AI 网络运算结果数据,获取设备 AI 网络运算结果数据,内容:结构体 frameSpecOut+AI 数据,AI 数据格式如下:

3.相机控制相关接口

3.1 获取相机模组信息

接口名称	接口参数	参数说明
CameraSensor 类	GetFirstSensor () ,	
	GetNextSensor ()	

接口调用说明:

- sensors=ncc.CameraSensor()
- sensor1 = ncc.SensorModesConfig()
- if sensors.GetFirstSensor(sensor1)==0:

print("camera: %s, %dX%d@%dfps, AFmode:%d,

maxEXP:%dus,gain[%d, %d]\n" % (

sensor1.moduleName, sensor1.camWidth, sensor1.camHeight,

sensor1.camFps,

sensor1.AFmode, sensor1.maxEXP, sensor1.minGain,

sensor1.maxGain))

- sensor2 = ncc.SensorModesConfig()
- while sensors.GetNextSensor(sensor2)==0:

print("camera: %s, %dX%d@%dfps, AFmode:%d,

maxEXP:%dus,gain[%d, %d]\n" % (

sensor2.moduleName, sensor2.camWidth, sensor2.camHeight,

sensor2.camFps,

sensor2.AFmode, sensor2.maxEXP, sensor2.minGain,

sensor2.maxGain))

获取相机可见光模组模式信息,有的相机支持多种视频模式,可以通过 camera_select_sensor()选择使用。

3.2 选择模组工作模式

接口名称	接口参数	参数说明
camera_select_sensor()	sensorid	camera_control_get_features
		获取到相机支持的模组信
		息数组, sensorid 为数组的
		序号。

接口调用说明:

ncc.camera select sensor(0)

返回值: 0: 成功; -1 失败

接口功能说明:

设置相机可见光模组的工作模式。

3.3 控制相机视频输出方式

接口名称	接口参数	参数说明
	video_type	数据类型
camera_video_out()	out mode	禁止,单次(拍照用),连续

接口调用说明:

● ncc.camera_video_out(ncc.YUV420p,ncc.VIDEO_OUT_CONTINUOUS) 返回值: 0: 成功; -1 失败

接口功能说明:

控制设备输出视频数据的模式,该设置当前对 YUV420p,H26X,JPEG 有效,其中好 H26X 不支持单次输出。

3.4 设置相机聚焦模式

接口名称	接口参数	参数说明
camera_control_af_mo	camera_ctrl_af_m	CAMERA_CONTROLAF_MODE_O
de()	ode af_mode	FF : 手动

	CAMERA_CONTROLAF_MODE_A
	UTO: 自动

接口调用说明:

● ncc.camera_control_af_mode(ncc.CAMERA_CONTROL__AF_MODE_AUTO); 返回值: 0: 成功: -1 失败

应回值: U: 风切; -1 入风

接口功能说明:

设置相机聚焦模式,通过 camera_control_get_features() 获取到相机是否支持手动模式(cameraCfg.AFmode),只有支持手动才可以设置,默认自动。

3.5 选择相机镜头距离

接口名称	接口参数	参数说明
camera_control_lens_move()	lens_position	距离大小,范围(1-100)

接口调用说明:

ncc.camera_control_lens_move(10);

返回值: 0: 成功; -1 失败

接口功能说明:

手动聚焦时候用, 距离越大, 值越大。

3.6 触发单次聚焦

接口名称	接口参数	参数说明
camera_control_focus_trigger()	无	

接口调用说明:

camera_control_focus_trigger();

返回值: 0: 成功: -1 失败

接口功能说明:

单次聚焦。

3.7 选择相机曝光模式

接口名称	接口参数	参数说明
camera_control_ae_mode()	camera_ctrl_ae_mode	手动,自动选择。
	flash_mode	

接口调用说明:

ncc.camera_control_ae_mode(ncc.CAMERA_CONTROL__AE_AUTO__FLASH_M ODE__AUTO);

返回值: 0: 成功; -1 失败

接口功能说明:

曝光方法设置。

3.8 选择相机曝光时间

接口名称	接口参数	参数说明
camera_control_ae_set_exp()	exp_compensation	曝光时间设置,单位微
		秒(us) 范围(1-1/fps)

接口调用说明:

ncc.camera control ae set exp(20000);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光,设置曝光时间。

3.9 选择相机曝光增益大小

接口名称	接口参数	参数说明
camera_control_ae_set_gain	iso_val	增益值
()		

接口调用说明:

ncc.camera_control_lens_move(100);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光时候,设置增益值,通过上面 3.1 API 接口 camera_control_get_features () 获取到 minGain,maxGain 值(见对象 SensorModesConfig),手动设置。

3.10 选择相机白平衡模式

接口名称	接口参数	参数说明
camera_control_awb_mode()	camera_ctrl_awb_mode	手动,自动
	awb_mode	

接口调用说明:

● ncc.camera_control_awb_mode(ncc.CAMERA_CONTROL__AWB_MODE__AUTO); 返回值: 0: 成功; -1 失败

接口功能说明:

相机白平衡设置, 手动, 自动选择。

3.11 浮点数转化

接口名称	接口参数	参数说明
f16Tof32()	Х	16 位数据

接口调用说明:

• f=f16Tof32(100);

返回值: 浮点数

接口功能说明:

16 位 short 数据转浮点数,用于 meta data 计算分析。