Ouick Reference Page

Equivalent Statements for Invertibility

Invertible Matrices (Theorem 2.4.7). Let A be a square matrix. The following statements are equivalent.

- 1. A is invertible.
- A has a left inverse.
- A has a right inverse.
- The RREF of A is the identity matrix. 4.
- A can be expressed as a product of elementary matrices. 5.
- The homogeneous system Ax = 0 has only the trivial solution.
- For any b, Ax = b has a unique solution.
- The determinant of **A** is nonzero, $\det A \neq 0$
- The columns/rows of **A** spans \mathbb{R}^n
- The columns/rows of A are linearly independent.
- **A** is of full rank, $rank(\mathbf{A}) = \mathbf{n}$
- 12. nullitv(A) = 0
- 13 0 is not an eigenvalue of A
- The linear transformation T_{\bullet} defined by **A** is injective, or $Ker(T_{\bullet}) =$ 14.
- 15. The linear transformation T_A defined by **A** is surjective, or $R(T_A) =$

Notation 2.2.15.

Given $\mathbf{A} = (a_{ii})_m \times_p$ and $\mathbf{B} = (b_{ii})_p \times_p$, we can write

$$\mathbf{A} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \text{ where } a_i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{bmatrix} \text{ and }$$

$$\mathbf{B} = [\boldsymbol{b_1} \quad \boldsymbol{b_2} \quad \cdots \quad \boldsymbol{b_n}] \text{ where } \boldsymbol{b_j} = \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{r} \end{bmatrix} \text{ then }$$

$$AB = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_mb_1 & a_mb_2 & \cdots & a_mb_n \end{bmatrix} \text{ where }$$

$$\boldsymbol{a}_{i}\boldsymbol{b}_{j} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{k} \end{bmatrix}$$

$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj}$$

We can also write

AB = A
$$[b_1 \quad b_2 \quad \cdots \quad b_n] = [Ab_1 \quad Ab_2 \quad \cdots \quad Ab_n]$$

$$AB = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} B = \begin{bmatrix} a_1 B \\ a_2 B \\ \vdots \\ a_m B \end{bmatrix}$$

Verifying Invertibility. Let A be a square matrix. If a REF of A has at least one zero row. A is singular.

Effects of ERO On Determinant

- 1) $A \stackrel{kR_i}{\longrightarrow} B_1$: $det(B_1) = k det(A)$
- $\mathbf{A} \xrightarrow{R_i \leftrightarrow R_j} \mathbf{B_1} : \det(\mathbf{B_1}) = -\det(\mathbf{A})$
- 3) $A \xrightarrow{R_j + kR_l} B_1$: $\det(B_1) = \det(A)$
- Furthermore, if E is an elementary matrix of the same size as A, then det(EA) = det(E) det(A)

Adjoints. Let A be a square matrix of order n. Then

$$\mathbf{adj}(\mathbf{A}) = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n-1} & A_{n-1} & \cdots & A_{n-1} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n-2} & A_{n-2} & \cdots & A_{n-1} \end{bmatrix}$$

where Aii is the (i, i)-cofactor of A

Inverse with Adjoints. If **A** is an invertible matrix, then $A^{-1} = \frac{1}{\det(A)} adj(A)$

Adjoint Identity. For any square matrix,

$$A(adj(A)) = \det(A) I$$

Cramer's Rule. Suppose Ax = b is a linear system where $A = (a_{ij})_n \times n$, x =

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}. \text{ Let } \mathbf{A}_i \text{ be the } \mathbf{n} \times \mathbf{n} \text{ matrix obtained from } \mathbf{A} \text{ by replacing }$$

the ith column of A and B.

If A is invertible, then the system has only one solution

$$\mathbf{x} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} \det(\mathbf{A}_1) \\ \det(\mathbf{A}_2) \\ \vdots \\ \det(\mathbf{A}_n) \end{bmatrix}. \text{ In general, } \mathbf{x}_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})}$$

When $span(S) = \mathbb{R}^n$. Suppose $S = \{u_1, u_2, \dots, u_k\}$. Let $A = (u_1 u_2 \dots u_k)$.

- If a REF of A has no zero rows, then the linear system is always consistent. Hence $span(S) = \mathbb{R}^n$
- If a REF of **A** has zero rows, then $span(S) \subset \mathbb{R}^n$

From the result above, we conclude that if |S| < n, S cannot span \mathbb{R}^n

Properties of Linear Span. Let $S = \{u_1, u_2, \dots, u_k\} \subseteq \mathbb{R}^n$.

(Contains the origin)

$$\mathbf{0} \in span(S)$$
(ii) (Closed under Linear Combination)

$$\forall \mathbf{u}, \mathbf{v} \in span(S), \alpha, \beta \in \mathbb{R}, \alpha \mathbf{u} + \beta \mathbf{v} \in span(S)$$

When $span(S_1) \subseteq span(S_2)$. Let $S_1 = \{u_1, u_2, \dots, u_k\}$ and $S_2 =$ $\{v_1, v_2, \cdots, v_m\}$ be subsets of \mathbb{R}^n . Then $span(S_1) \subseteq span(S_2)$ if and only if each u_i is a linear combination of v_1, v_2, \dots, v_m

$$span\{u_1, u_2, \dots, u_k\} \subseteq span\{v_1, v_2, \dots, v_m\}$$

$$\leftrightarrow$$

$$(v_1, v_2, \dots, v_m | u_1 | u_2 | \dots | u_k) \text{ is consistent}$$

Linear Dependence

A set $\{u_1, u_2, \dots, u_k\}$ is linearly dependent if there exists $c_1, c_2, \dots, c_k \in \mathbb{R}$, not all zero such that

$$c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2 + \dots + c_k \boldsymbol{u}_k = \boldsymbol{0}$$

A set $\{u_1, u_2, \dots, u_k\}$ is linearly independent if whenever $c_1, c_2, \dots, c_k \in \mathbb{R}$ is such that

$$c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \dots + c_k \boldsymbol{u_k} = \boldsymbol{0}$$

necessarily $c_1 = \cdots = c_k = 0$

You can use this to prove linear independence as well.

Testing for Linear Independence. Let $A = (u_1 u_2 \cdots u_k)$.

 $\{u_1, u_2, \cdots, u_k\} \subseteq \mathbb{R}^n$ is linearly dependent \leftrightarrow Ax = 0 has only the trivial solution

↔ all columns of REF of A are pivot

Equivalent ways to check for basis. To prove that *S* is a basis for *V*

By definition

(i) V = span(S)(ii) S is linearly independent

B1 $|S| = \dim(V)$

(i) (ii) $S \subseteq V$

S is linearly independent. (iii)

B2

(i) $|S| = \dim(V)$

(ii) $V \subseteq span(S)$ **Transition Matrix.** Suppose $V \subseteq \mathbb{R}^n$ is a subspace with dimension k. S = $\{u_1, u_2, \dots, u_k\}$ and $T = \{v_1, v_2, \dots, v_k\}$ are basis for V. Then the transition matrix from S to T, denoted as P, is

 $P = [[u_1]_T, \cdots, [u_k]_T]$

such that

$$[w]_T = P[w]_S$$

$$[w]_S = P^{-1}[w]_T$$

The transition matrix from *S* to *T* can be found by

$$(T \mid S) \xrightarrow{G.J.E} \left(\begin{array}{c} \mathbb{I}_{k} \\ \circ - \circ \end{array} \right| \xrightarrow{\widehat{P}}$$

Orthogonal Basis to Relative Coordinates.

 $S = \{u_1, u_2, \cdots, u_k\} \text{ is a } \begin{cases} (i) \text{ orthogonal } \\ (ii) \text{ orthonormal } \\ \text{basis for } V \subseteq \mathbb{R}^n \text{ subspace.} \end{cases}$ $(i) \qquad v = \frac{v \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{v \cdot u_2}{v \cdot u_2} u_2 + \cdots + \frac{v \cdot u_k}{u_k \cdot u_k} u_k$ $(ii) \qquad v = (v \cdot u_1) u_1 + (v \cdot u_2) u_2 + \cdots + (v \cdot u_k) u_k$

(i)
$$v = \frac{v \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{v \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{v \cdot u_k}{u_k \cdot u_k} u_k$$

(ii)
$$v = (v \cdot u_1)u_1 + (v \cdot u_2)u_2 + \cdots + (v \cdot u_k)u_k$$

Orthogonal Projection. Let $V \subseteq \mathbb{R}^n$. Every $\mathbf{w} \in \mathbb{R}^n$ can be decomposed

$$w = w_n + w_n$$

where $w_n \in V$ and $w_n \perp V$. The unique vector $w_n \in V$ is called the orthogonal projection of w onto V.

$$\begin{split} S &= \{u_1, u_2, \cdots, u_k\} \text{ is a } \begin{cases} &(i) \text{ orthogonal } \\ &(ii) \text{ orthonormal } \\ &\text{ basis for } V \subseteq \mathbb{R}^n \text{ subspace.} \end{cases} \\ (iii) & w_p &= \frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k \\ (iv) & w_p &= (w \cdot u_1) u_1 + (w \cdot u_2) u_2 + \cdots + (w \cdot u_k) u_k \end{split}$$

(iii)
$$w_p = \frac{w \cdot u_1}{u_1 \cdot u_2} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_3} u_2 + \dots + \frac{w \cdot u_k}{u_1 \cdot u_k} u_k$$

iv)
$$w_p = (w \cdot u_1)u_1 + (w \cdot u_2)u_2 + \dots + (w \cdot u_k)u_k$$

Gram-Schmidt Process. $S = \{u_1, u_2, \dots, u_k\}$ be linearly independent.

$$v_1 = u_1$$

$$v_2 = u_2 - \frac{v_1 \cdot u_2}{v_1 \cdot v_1} v_1$$

$$v_3 = u_3 - \frac{v_1 \cdot u_3}{v_1 \cdot v_1} v_1 - \frac{v_2 \cdot u_3}{v_2 \cdot v_2} v_2$$

$$v_k = u_k - \frac{v_1 \cdot u_k}{v_1 \cdot v_1} \ v_1 - \frac{v_2 \cdot u_k}{v_2 \cdot v_2} \ v_2 - \dots - \frac{v_{k-1} \cdot u_2}{v_{k-1} \cdot v_{k-1}} \ v_{k-1}$$

Then $\{v_1, v_2, \dots, v_k\}$ is an orthogonal set and hence

$$\left\{\frac{v_1}{\|v_1\|}, \frac{v_2}{\|v_2\|}, \cdots, \frac{v_k}{\|v_k\|}\right\}$$

is an orthonormal basis for span(S)

Obtaining the Least Squares Solution.

u is a least square Au is the projection of b onto the column space of A, Col(A) solution to Ax = b \boldsymbol{u} is a solution to $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$

Finding Projection using Least Squares. Let $S = \{u_1, u_2, \dots, u_k\} \subseteq$ $\mathbb{R}^n, V = span(S)$. For any $\mathbf{w} \in \mathbb{R}^n$, the projection of \mathbf{w} onto V is $\mathbf{A}\mathbf{u}$, where $A = (u_1 \cdots u_k)$, and $u \in \mathbb{R}^k$ is a solution to $A^T A x = A^T w$

Finding Least Squares using Shortcut. Projection of **w** onto **V** is the formula below (although it is not proven)

$$A(A^TA)^{-1}A^Tw$$

Transition Matrix between Two Orthogonal Basis.

Let $S = \{u_1, u_2, \dots, u_k\}, T = \{v_1, v_2, \dots, v_k\}$ orthonormal basis for subspace $W \subseteq \mathbb{R}^n$

- 1. Transition matrix $P: S \to T$ is an orthogonal matrix
- The transition matrix $T \rightarrow P^T$ 2 where

$$P = [v_1 \ v_2 \ v_3]^T [u_1 \ u_2 \ u_3]$$

Equivalent Statements for Diagonalizability.

A is diagonalizable.

(ii)

- There exists a *basis* $\{u_1, u_2, \dots, u_n\} \subseteq \mathbb{R}^n$ of eigenvectors of A
- (iii) The sum of dimension of the eigenspaces of A is equal to its

$$\sum_{\lambda \text{ eigenvectors of } A} \dim(E_{\lambda}) = n$$

(iv) The characteristic polynomial of A splits $\det(xI - A) = (x - \lambda_1)^{r_1}(x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k}$ where r_i is the multiplicity of eigenvalue λ_i , for $i = 1, \dots, k$ and the eigenvalues are distinct, $\lambda_i \neq \lambda_i$ for $i \neq j$, and the dimension of each eigenspace is equal to its multiplicity

Standard Matrix. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then the standard matrix A can be denoted as

 $\dim(E_{\lambda_i}) = r_i$

$$A = [T(e_1) \quad T(e_1) \quad \cdots \quad T(e_1)]$$

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if there exists a $m \times n$ matrix A s.t. T(u) = Au for all $u \in \mathbb{R}^n$

Retrieving the Standard Matrix. Suppose $S = \{u_1, u_2, \dots, u_n\} \subseteq \mathbb{R}^n$ is a basis and $T(u_1)$, $T(u_2)$, ..., $T(u_n)$ is given. Define the representation of T with

$$[T]_S = [T(u_1) \quad T(u_1) \quad \cdots \quad T(u_1)]$$

Then for any $v \in \mathbb{R}^n$,

$$T(v) = T(c_1u_1 + c_2u_2 + \dots + c_ku_n)$$

= $c_1T(u_1) + c_2T(u_2) + \dots + c_kT(u_n)$
= $[T]_S[v]_S$

So, the standard matrix of T is the representation of T with respect to E, the standard matrix, $\mathbf{A} = [T]_{E}$

 $P = (u_1 \ u_2 \ \cdots \ u_n)$ is the transition matrix from S to E such that $P^{-1}v =$

$$\mathbf{A} \boldsymbol{v} = T(\boldsymbol{v}) = [T]_{\mathcal{S}} [\boldsymbol{v}]_{\mathcal{S}} = [T]_{\mathcal{S}} P^{-1} \boldsymbol{v}$$
 Therefore, $A = [T]_{\mathcal{S}} P^{-1}$

Range and Rank. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The range of T, which is denoted by R(T), is the set of images of T.

$$R(T) = \{T(\mathbf{u}) \mid \mathbf{u} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m = \{A\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^n\} = Col(A)$$

Hence

$$rank(T) = dim(R(T)) = dim(Col(A)) = rank(A)$$

Kernel and Nullity. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The kernel of T, which is denoted by Ker(T), is the set of vectors in \mathbb{R}^n , whose image is the zero vector in \mathbb{R}^n

$$Ker(T) = \{ u \in \mathbb{R}^n \mid T(u) = 0 \} \subseteq \mathbb{R}^m$$
$$= \{ u \in \mathbb{R}^n \mid Au = 0 \}$$
$$= Null(A)$$

Hence,

$$nullity(T) = \dim(Ker(T)) = \dim(Null(A)) = nullity(A)$$

Injective. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is injective if whenever $T(\mathbf{u}) = T(\mathbf{v})$, necessarily $\mathbf{u} = \mathbf{v}$.

$$T$$
 is injective \Leftrightarrow Ker(T) = $\{0\}$ \Leftrightarrow $nullity(T) = 0$

Surjective. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is surjective if for any $\mathbf{w} \in \mathbb{R}^n$ \mathbb{R}^m , there is a $\mathbf{u} \in \mathbb{R}^n$ such that $T(\mathbf{u}) = \mathbf{w}$

T is surjective
$$\Leftrightarrow R(T) = \mathbb{R}^m \Leftrightarrow rank(T) = m$$

Linear Systems and Their Solutions

Linear Systems. A linear system with m equations and n variables can be written in the following form.

$$\begin{array}{c} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{array}$$

Augmented Matrix. An augmented matrix of a linear system with m equations and n variables can be written in the following form.

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{pmatrix}$$

Solution set. The set of all solutions to a linear system.

$$\left\{ \begin{pmatrix} 1 - 2s \\ s \\ s \end{pmatrix} \middle| s \in \mathbb{R} \right\}$$

General Solution. An expression that gives us all the solutions to the equation.

E.g.,
$$\begin{cases} x_1 = 1 - 2s \\ x_2 = s \\ x_3 = s \end{cases}$$

Inconsistent. The situation when a system of linear equation has no solutions.

Consistent. The situation when a system of linear equations has *solutions*.

Remark 1.1.10. Every linear solution has either

(i) no solution

- (ii) exactly one solution
- (iii) infinitely many solution
- Geometric Interpretation of the Solution.

No Solution: Empty

One Solution: A point
Infinitely Many Solutions: Depends on

Depends on the number of arbitrary parameters. Could be a line (1), a plane

(2), 3D space (3)...

Elementary Row Operations (ERO).

- (i) Multiply a row by a nonzero constant.
- (ii) Interchange two rows.
- (iii) Add a multiple of one row to another row.

EROS with Variables. There are some additional precautions when doing EROS with a matrix containing variables/unknowns.

- 1. $\frac{1}{2}R_i$, $R_i + \frac{1}{2}R_i$ are not allowed.
- 2. αR_i , $(1 + \alpha)R_i$ are not allowed

Row Equivalent Matrices. Two augmented matrices are row equivalent if one can be obtained from the other by a series of elementary row operations. If two augment matrices are row equivalent, then they have the same set of solutions. The REF/RREF form of any matrix is row equivalent to the original matrix.

Row-Echelon Form (REF). A matrix is said to be in REF if they have properties 1 and 2.

- there are any zero rows, they a grouped together at the bottom of the matrix.
- in any two successive rows that do not consist entirely of zeros, leading entry in the lower row occurs further right than the leading entry in the higher row.

Reduced Row-Echelon Forms (RREF). A matrix is said to be in RREF if it is in REF and has properties 3 and 4.

- 3. The leading entry of every nonzero row is 1.
- 4. In each pivot column, except the pivot point, all other entries are zero.

 $\label{eq:pivot column of the column of th$

 $\#pivot\ columns = \#leading\ entries = \#non-zero\ rows$

Gaussian Elimination. Algorithm that reduces an augmented matrix into REF using ERO.

Gauss-Jordan Elimination. Algorithm that reduces an augmented matrix into RREF using ERO.

Remark 1.4.5. Every matrix has a unique RREF but have many REFs

Remark 1.4.8.1. A linear system is inconsistent if the last column of a REF of the augmented matrix is a pivot column.

Remark 1.4.8.2. A linear system has only one solution if every column except the last column is a pivot column.

Remark 1.4.8.3. A consistent linear system has infinitely many solutions if apart from the last column, a REF of the augmented matrix has at least one more non-pivot column.

Notation of EROs.

- cR_i: multiply the ith row by constant c
- 2. $R_i \leftrightarrow R_i$: interchange the ith and the jth row
- R_i + cR_i: add c times of jth row to the ith row

Homogeneous Linear Systems. A system of linear equation is said to be homogeneous if all constant terms are zero.

Trivial Solution. $x_1 = 0, x_2 = 0, \dots, x_n = 0$ is always a solution to the homogeneous system, hence it is called the trivial solution.

Non-trivial Solution. Any solution other than the trivial solution is called the non-trivial solution.

Solutions of Homogeneous System.

- A homogeneous system of linear equations has either only the trivial solution or infinitely many solutions in addition to the trivial solution.
- A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions

Matrices

Matrix. A matrix is a rectangular array of numbers.

Entries. Are the numbers in the array.

Size of the Matrix. Size of the matrix is given by $m\times n$ where m is the number of rows and n is the number of columns.

(i, j)-Entry. The (i, j)-entry of a matrix is the number which is in the i^{th} row and the j^{th} column of the matrix.

Notation of Matrices. A m \times n matrix can be written as $\mathbf{A} = (a_{ii})_m \times n$.

Square Matrices. A matrix is a square matrix if it has the same number of rows and columns. A $n \times n$ matrix is called a square matrix of order n.

#rows = #columns.

Diagonal Entry. The aii entry is called the diagonal entry.

Diagonal Matrices. A square matrix is called a diagonal matrix if all its non-diagonal entries are zero.

$$a_{ii} = 0, \quad \forall i \neq j$$

Scalar Matrices. A diagonal matrix is called a scalar matrix if all diagonal entries are the same.

$$a_{ii} = c$$
, $\forall i$

Identity Matrices. A diagonal matrix is called an identity matrix if all is diagonal entries are 1.

Zero Matrices. A matrix with all entries equals zero is called a zero matrix. $a_{ij} = 0, \quad \forall i, j$

Symmetric Matrices. A square matrix is symmetric if $a_{ij} = a_{ji}$ for all i, j. A matrix **A** is symmetric if and only if $\mathbf{A} = \mathbf{A}^T$

Triangular Matrices.

- 1. A square matrix (aij) is called upper triangular if aij = 0 for all i > j
- A square matrix (a_{ij}) is called *lower triangular* if a_{ij} = 0 for all i < j

Both upper and lower triangular matrices are called triangular matrices

- Equal Matrices. 2 matrices are said to be equal if
- 1. they have the same size.
- their corresponding entries are equal.

Matrix Addition. Given $A = (a_{ij})_m \times n$ and $B = (b_{ij})_m \times n$,

$$\mathbf{A} + \mathbf{B} = (\mathbf{a}_{ii} + \mathbf{b}_{ii})_{m \times n}$$

Matrix Subtraction. Given $A = (a_{ij})_m \times_n$ and $B = (b_{ij})_m \times_n$

$$\mathbf{A} - \mathbf{B} = (\mathbf{a}_{ij} - \mathbf{b}_{ij})_{m} \times \mathbf{n}.$$

Scalar Multiplication. Given $A = (a_{ii})_{m \times n}$ and a constant c_i

$$A = (ca_{ii})_m \times n$$

Theorem 2.2.6. (Basic Properties)

- $1. \qquad \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- 2. A + (B + C) = (A + B) + C
- 3. c(A + B) = cA + cB
- 4. $(c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$
- 5. (cd)A = c(dA) = d(cA)
- 6. A + 0 = 0 + A = A
- 7. A A = 0
- 8 0A = 0

Matrix Multiplication. Given $A = (a_{ij})_{m \times p}$ and $B = (b_{ij})_{p \times n_r}$ the product of AB is defined to be a $m \times n$ matrix whose (i, j)-entry is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{i1p}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

The number of columns in A must be equal to the number of rows in B.

Multiplication Is Not Commutative. In general, $AB \neq BA$.

Remark 2.2.10.4. When AB = 0, it is not necessary that A = 0 or B = 0.

Theorem 2.2.11. (Basic Properties)

- 1. A(BC) = (AB)C
- 2. $A(B_1 + B_2) = AB_1 + AB_2$
- $(C_1 + C_2)A = C_1A + C_2A$
- 3. c(AB) = (cA)B = A(cB)
- $4. \qquad \mathbf{A0} = \mathbf{0} \\ \mathbf{0A} = \mathbf{0}$
 - IA = AI = A

Powers of Square Matrices. Let A be a square matrix and n a nonnegative integer. We define A^n as follows:

as follows:

$$\mathbf{A}^{n} = \begin{cases} \mathbf{I} & \text{if } n = 0 \\ \mathbf{A}\mathbf{A} \dots \mathbf{A} & \text{if } n \ge 1 \\ (\mathbf{A}^{-1})^{-n} & \text{if } n < 0 \end{cases}$$

Note:

- 1. $\mathbf{A}^{m}\mathbf{A}^{n} = \mathbf{A}^{m+n}$
- 2. In general, $(AB)^2 \neq A^2B^2$

Notation 2.2.15.

Given $\mathbf{A} = (a_{ij})_m \times_p$ and $\mathbf{B} = (b_{ij})_p \times_n$, we can write

$$\mathbf{A} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \text{ where } a_i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{bmatrix} \text{ and }$$

$$\mathbf{B} = [\boldsymbol{b}_1 \quad \boldsymbol{b}_2 \quad \cdots \quad \boldsymbol{b}_n] \text{ where } \boldsymbol{b}_j = \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_p \end{bmatrix} \text{ then }$$

$$AB = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_mb_1 & a_mb_2 & \cdots & a_mb_n \end{bmatrix} \text{ where }$$

$$\boldsymbol{a}_{i}\boldsymbol{b}_{j} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{bmatrix}$$

$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{p}$$

We can also write

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}$$

$$AB = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} B = \begin{bmatrix} a_1 B \\ a_2 B \\ \vdots \\ a_m B \end{bmatrix}$$

Representation of Linear Systems. We can represent the system of linear equations as $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is the coefficient matrix, \mathbf{x} is the variable matrix and \mathbf{b} is the constant matrix

Solution to Linear Systems. A $n \times 1$ matrix u is said to be a solution to the linear system Ax = b if Au = b

Transposes. Given $A = (a_{ij})_m \times n$, then $A^T = (a_{ji})_n \times m$

Theorem 2.2.22 (Basic Properties)

Let **A** be a $m \times n$ matrix.

- 1. $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- 1. $(\mathbf{A}^T)^T = \mathbf{A}^T$ 2. If **B** is an m × n matrix, then $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- 3. If c is a scalar, then $(cA)^T = cA^T$
- 4. If B is a $n \times p$ matrix, then $(AB)^T = B^TA^T$

Inverses. Let A be a *square matrix* of order n. **A** is said to be invertible if there exists a square matrix **B** of order n such that AB = I and BA = I. **B** is called the inverse of A

Singular Matrix. A square matrix is called *singular* if it has no inverses.

Matrix Cancellation Laws. Let A be an invertible $m \times m$ matrix.

- (a) If B_1 and B_2 are m × n matrices such that $AB_1 = AB_2$, then $B_1 = B_2$
- (b) If C_1 and C_2 are $n \times m$ matrices such that $C_1A = C_2A$, then $C_1 = C_2$ If A is not invertible, the cancellation laws may not hold.

Uniqueness of Inverses. If B and C are inverses of a square matrix A, then B=C. The inverse of A can be denoted as A^{-1} .

Inverse of a 2 × **2 matrix.** Let $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then \mathbf{A} is invertible

and
$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{c} & \frac{d}{ad-bc} \end{bmatrix}$$

Theorem 2.3.9 (Basic Properties)

Let **A**. **B** be two invertible matrices and *c* a nonzero scalar

- 1. $c\mathbf{A}$ is invertible and $(c\mathbf{A})^{-1} = \frac{1}{2}\mathbf{A}^{-1}$
- 2. \mathbf{A}^{T} is invertible and $(\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$
- A-1 is invertible and (A-1)-1 = A
- 4. **AB** is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- 5. \mathbf{A}^n is invertible and $(\mathbf{A}^n)^{-1} = (\mathbf{A}^{-1})^n$

By part 4, $(A_1A_2 ... A_k)^{-1} = A_k^{-1} ... A_2^{-1} A_1^{-1}$

Elementary Matrices. A square matrix is called an elementary matrix if it can be obtained from an identity matrix by performing a single elementary row operation. There are 3 types of elementary matrices and they are all invertible. Their inverses are also elementary matrices of the same type.

$$L$$
 elementary row operation E

where E is the corresponding elementary matrix

Finding Inverses. Let A be an invertible matrix of order n. Then

Verifying Invertibility. Let A be a square matrix. If a REF of A has at least one zero row, A is singular.

Theorem 2.4.12. Suppose A and B are square matrices of the same size. If AB = I, then

- (i) A is invertible
- B is invertible (ii)
- (iii) $A^{-1} = B$
- $B^{-1} = A$ (iv)
- BA = I

Theorem 2.4.14. Suppose A and B are square matrices of the same size. If A is singular, then both AB and BA are singular.

Determinants. Let $A = (a_{ij})_{n \times n}$. Let M_{ij} be the $(n-1) \times (n-1)$ matrix obtained from A by deleting the ith row and the ith column. Then the determinant of A is defined to be

$$\det(\mathbf{A}) = \begin{cases} a_{11} & \text{if } n = 1\\ a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} & \text{if } n > 1 \end{cases}$$

Where $A_{ij} = (-1)^{i+j} \det(\mathbf{M}_{ij})$ which is called the (i, j)-cofactor of A.

Cofactor Expansions. Let $A = (a_{ii})_n \times n$.

$$\det(\pmb{A}) = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

 $= a_{1i}A_{1i} + a_{2i}A_{2i} + \cdots + a_{ni}A_{ni}$

Hence, you can expand along any column and row.

Determinant of Triangular Matrices. If **A** is a $n \times n$ triangular matrix, then $\det(\mathbf{A}) = a_{11}a_{22}a_{33}\cdots a_{nn} = \prod_{i=1}^{n} a_{ii}$

Determinant of Transposes. If **A** is a square matrix, then $det(A^T) = det(A)$

Determinant of Matrices with Identical Rows or Rolumns.

- The determinant of a square matrix with two identical rows is zero.
- The determinant of a square matrix with two identical columns is

Determinant of Matrices with Zero Rows/Columns. The determinant of a square matrix with a zero row is 0.

Effects of ERO On Determinant

- $\mathbf{A} \stackrel{kR_i}{\longrightarrow} \mathbf{B_1} : \det(\mathbf{B_1}) = k \det(\mathbf{A})$
- 5) $A \xrightarrow{R_1 \leftrightarrow R_l} B_1$: $\det(B_1) = -\det(A)$ 6) $A \xrightarrow{R_1 \leftrightarrow R_l} B_1$: $\det(B_1) = \det(A)$

Furthermore, if E is an elementary matrix of the same size as A, then det(EA) = det(E) det(A)

Invertible Matrices and Determinants. A square matrix A is invertible if and only if $det(A) \neq 0$

Scalar Multiplication and Determinants. If A is a square matrix of order n and c a scalar, then $det(cA) = c^n det(A)$

Matrix Multiplication and Determinants. If A and B are square matrices of the same size, then det(AB) = det(A)det(B)

Invertible Matrices and Determinants. If A is an invertible matrix, then $det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$

Adjoints. Let A be a square matrix of order n. Then

$$\mathbf{adj}(\mathbf{A}) = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n-1} & A_{n-2} & \cdots & A_{n-1} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n-1} & A_{2n} & \cdots & A_{n-1} \end{bmatrix}$$

where Ai is the (i, i)-cofactor of A.

Inverse with Adjoints. If **A** is an invertible matrix, then $\mathbf{A}^{-1} = \frac{1}{\operatorname{det}(\mathbf{A})} \operatorname{adj}(\mathbf{A})$

Adjoint Identity. For any square matrix,

$$A(adj(A)) = det(A) I$$

Cramer's Rule. Suppose Ax = b is a linear system where $A = (a_{ij})_n \times n$, $x = a_{ij}$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}. \text{ Let } \mathbf{A}_i \text{ be the } n \times n \text{ matrix obtained from } \mathbf{A} \text{ by replacing } \mathbf{b}_n \end{bmatrix}$$

If A is invertible, then the system has only one solution

$$\mathbf{x} = \frac{1}{\det(A)} \begin{vmatrix} \det(A_1) \\ \det(A_2) \\ \vdots \\ \det(A_n) \end{vmatrix}$$
. In general, $\mathbf{x}_i = \frac{\det(A_i)}{\det(A)}$

Vector Spaces

Geometric Vectors

- A (nonzero) vector can be represented geometrically by an arrow.
- The zero vector, denoted by 0, is represented by a point

n-vectors. Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be two *n*-vectors.

- $\mathbf{u} = \mathbf{v}$ if and only if $u_i = v_i$ for all $i = 1, 2, \dots, n$
- The addition $\mathbf{u} + \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

- For any real number c, the scalar multiple $c\mathbf{u}$ of \mathbf{u} is defined by
- $c\mathbf{u} = (cu_1, cu_2, \cdots, cu_n)$ The *n*-vector $(0,0,\cdots,0)$ is called the zero vector and is denoted by **0**.
- The negative of u is defined by (-1)u and is denoted by -u.
- The subtraction $\mathbf{u} \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by $\mathbf{u} + (-\mathbf{v})$

Basic Properties of Vectors. Let u, v, w be n-vectors and c, d real numbers

- n + n = n + n
- u + (v + w) = (u + v) + w
- u+0=0+u=u
- u + (-u) = 0
- $c(d\mathbf{u}) = (cd)\mathbf{u}$
- c(u+v) = cu + cv
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- if $a\mathbf{u} = \mathbf{0}$, then a = 0 or $\mathbf{u} = \mathbf{0}$

Euclidean n-space. The set of all n-vectors of real number is called the Euclidean *n*-space, denoted by \mathbb{R}^n

Implicit vs Explicit Solutions to Linear Systems.

Implicit: $\{ \boldsymbol{v} \in \mathbb{R}^n \mid \boldsymbol{v} \text{ fulfils some condition} \}$

Explicit:
$$\{u + s_1v_1 + s_2v_2 + \dots + s_kv_k \mid s_1, s_2, \dots, s_k \in \mathbb{R}\}$$

Linear Combinations. Let u_1, u_2, \cdots, u_k be vectors in \mathbb{R}^n . For any real numbers c_1, c_2, \dots, c_k , the vector

$$c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \dots + c_k \boldsymbol{u_k}$$

is called a linear combination of u_1, u_2, \dots, u_k .

Linear Spans. Let $S = \{u_1, u_2, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of u_1, u_2, \cdots, u_k

$$\{c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \dots + c_k \mathbf{u_k} | c_1, c_2, \dots, c_k \in \mathbb{R}\}$$

is called a linear span of S and is denoted by span(S). The span can be thought of as the set of all possible linear combinations.

$$w \in span\{u_1, u_2, \dots, u_k\} \leftrightarrow (u_1 u_2 \dots u_k \mid w)$$
 is consistent

When
$$span(S) = \mathbb{R}^n$$
. Suppose $S = \{u_1, u_2, \dots, u_k\}$. Let $A = (u_1, u_2, \dots, u_k)$.

- If a REF of A has no zero rows, then the linear system is always consistent. Hence $span(S) = \mathbb{R}^n$
- If a REF of A has zero rows, then $span(S) \subset \mathbb{R}^n$

From the result above, we conclude that if |S| < n, S cannot span \mathbb{R}^n

Properties of Linear Span. Let $S = \{u_1, u_2, \dots, u_k\} \subseteq \mathbb{R}^n$.

- (Contains the origin)
- $\mathbf{0} \in span(S)$ (Closed under Linear Combination) (iv)

$$\forall u, v \in span(S), \alpha, \beta \in \mathbb{R}, \alpha u + \beta v \in span(S)$$

When $span(S_1) \subseteq span(S_2)$. Let $S_1 = \{u_1, u_2, \dots, u_k\}$ and $S_2 =$ $\{v_1, v_2, \dots, v_m\}$ be subsets of \mathbb{R}^n . Then $span(S_1) \subseteq span(S_2)$ if and only if each u_i is a linear combination of v_1, v_2, \cdots, v_m

$$span\{u_1, u_2, \dots, u_k\} \subseteq span\{v_1, v_2, \dots, v_m\}$$

$$\leftrightarrow$$

$$(v_1, v_2, \dots, v_m \mid u_1 \mid u_2 \mid \dots \mid u_k) \text{ is consistent}$$

Subspaces Definition. Let
$$V$$
 be a subset of \mathbb{R}^n . V is a subspace if it satisfies

- the following properties (i) (Contains the origin)
- $\mathbf{0} \in span(S)$ (ii) (Closed under Linear Combination)
 - $\forall u, v \in V, \alpha, \beta \in \mathbb{R}, \alpha u + \beta v \in V$

Subspace Alternate Definition. Let V be a subset of \mathbb{R}^n .

$$V$$
 is a subspace $\leftrightarrow V = span\{u_1, u_2, \dots, u_k\}$

Solution Spaces. The solution set of a homogenous system of linear equations in n variables is a subspace of \mathbb{R}^n

$$V = \{v \mid Av = b\} \subseteq \mathbb{R}^n$$
 is a subspace $\leftrightarrow b = 0$

Redundant Vectors. If a set of vectors is linearly dependent, then there exits at least on redundant vector in the set. If a set of vectors is linearly independent, then there is no redundant vector in the set.

Linear Dependence.

A set $\{u_1, u_2, \dots, u_k\}$ is linearly dependent if there exists $c_1, c_2, \dots, c_k \in \mathbb{R}$, not all zero such that

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$

A set $\{u_1, u_2, \dots, u_k\}$ is linearly independent if whenever $c_1, c_2, \dots, c_k \in \mathbb{R}$ is

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0}$$

necessarily $c_1 = \cdots = c_k = 0$

You can use this to prove linear independence as well.

Testing for Linear Independence. Let $A = (u_1 \ u_2 \cdots u_k)$.

 $\{u_1, u_2, \cdots, u_k\} \subseteq \mathbb{R}^n$ is linearly dependent \leftrightarrow Ax = 0 has only the trivial solution ↔ all columns of REF of A are pivot

Linear Dependence if k > n. Let $S = \{u_1, u_2, \dots, u_k\} \subseteq \mathbb{R}^n$. If k > n, then Sis linearly dependent.

Linear Dependence Special Cases.

- (i) $\{v\} \subseteq \mathbb{R}^n$ is linearly independence $\leftrightarrow v \neq 0$
- $\{v_1, v_2, \cdots, v_k, 0\}$ is linearly dependent. (ii)
- (iii) $\{v_1, v_2\}$ is linearly dependent $\leftrightarrow v_1 = \alpha v_2$ or $v_2 = \beta v_1$
- (iv) The empty set Ø is linearly independent

Basis. Let V be a vector space and $S = \{u_1, u_2, \dots, u_k\}$ a subset of V. Then S is called a basis for V if

- 1. S is linearly independent and
- S spans V

Coordinate System. Let $S = \{u_1, u_2, \dots, u_k\}$ be a basis for a vector space V. then every vector $\boldsymbol{v} \in V$ can be expressed in the form

$$\boldsymbol{v} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2 + \dots + c_k \boldsymbol{u}_k$$
 in exactly one way, where $c_1, c_2, \dots, c_k \in \mathbb{R}$

Basis for \mathbb{R}^n

$$S = \{u_1, u_2, \cdots, u_k\} \text{ is a basis for } \mathbb{R}^n$$

$$\leftrightarrow k = n \text{ and } A = (u_1 \ u_2 \cdots u_k) \text{ is invertible.}$$

Solution Space and Basis. $V = \{ u \in \mathbb{R}^n \mid Au = 0 \}$ as solution space and $s_1 u_1 + \cdots + s_k u_k, s_1, \cdots, s_k \in \mathbb{R}$ is a general solution such that s_i are parameters corresponding to the non-pivot columns in RREF of A, then S = $\{u_1, u_2, \cdots, u_k\}$ is a basis for V

Dimension and Subspaces. Let $U, V \subseteq \mathbb{R}^n$ subspaces. Suppose $U \subseteq V$. Then $\dim(U) < \dim(V)$ with equality if and only if U = V

Relative Coordinates. $S = \{u_1, u_2, \cdots, u_k\}$ basis for subspace $V \subseteq \mathbb{R}^n$. For $v \in V$, $v = c_1 \mathbf{u_1} + \cdots + c_k \mathbf{u_k}$, then

$$[v]_S = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix} \in \mathbb{R}^k$$

Obtaining Relative Coordinates. $S = \{u_1, u_2, \cdots, u_k\}$ basis for subspace

$$(\boldsymbol{u}_1 \ \boldsymbol{u}_2 \cdots \boldsymbol{u}_k \mid \boldsymbol{v}) \xrightarrow{GJE} \begin{pmatrix} 1 & \cdots & 0 \mid c_1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \mid c_k \\ 0 & \cdots & 0 \mid 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \mid 0 \end{pmatrix} \Rightarrow [\boldsymbol{v}]_s = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}$$

Properties of Relative Coordinates.

- 1. $u = v \Leftrightarrow [u]_s = [v]_s$
- 2. $(c_1 \mathbf{u}_1 + \dots + c_k \mathbf{u}_k)_S = c_1 [\mathbf{u}_1]_S + \dots + c_k [\mathbf{u}_k]_S$

$$T = \{\boldsymbol{v}_1, \cdots, \boldsymbol{v}_m\} \subseteq V \begin{cases} \text{linearly independent} \\ \text{spans } V \end{cases}$$

$$\Leftrightarrow$$

$$T = \{[\boldsymbol{v}_1]_S, \cdots, [\boldsymbol{v}_m]_S\} \subseteq \mathbb{R}^k \begin{cases} \text{linearly independent} \\ \text{spans } \mathbb{R}^k \end{cases}$$

Dimension. $V \subseteq \mathbb{R}^n$ subspace, $\dim(V) = |S|$ for any basis S.

Size of Basis. Let $V \subseteq \mathbb{R}^n$ be a k-dimensional subspace and $T \subseteq V$.

- 1. If $|T| > k \Rightarrow T$ is linearly dependent.
- 2. If $|T| < k \Rightarrow T$ cannot span V

Equivalent ways to check for basis. To prove that S is a basis for V

By definition

3

- (iii) V = span(S)
- S is linearly independent (iv)
 - (iv) $|S| = \dim(V)$
 - (v) $S \subseteq V$
- S is linearly independent. (vi)
- B2 (iii) $|S| = \dim(V)$
- (iv) $V \subseteq span(S)$

Transition Matrix. Suppose $V \subseteq \mathbb{R}^n$ is a subspace with dimension k. S = $\{u_1, u_2, \dots, u_k\}$ and $T = \{v_1, v_2, \dots, v_k\}$ are basis for V. Then the transition matrix from S to T, denoted as P, is

$$\boldsymbol{P} = [[\boldsymbol{u}_1]_T, \cdots, [\boldsymbol{u}_k]_T]$$

such that

$$[w]_T = P[w]_S$$
$$[w]_S = P^{-1}[w]_T$$

The transition matrix from S to T can be found by

$$(T \mid S) \xrightarrow{G.J.E} (\underset{\circ - \circ}{\mathbb{I}_k} \mid \underset{\circ - \circ}{\triangleright})$$

Vector Spaces Associated with Matrices

Row Space, Column Space and Null Space. Let

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ c_1 & c_2 & \cdots & c_n \end{pmatrix} \begin{matrix} r_1 \\ \vdots \\ r_m \end{matrix}$$

Column space: $Col(A) = span\{c_1, c_2, \dots, c_n\} \subseteq \mathbb{R}^m$

Column space: $Col(A) = Col(A) = \{Au \mid u \in \mathbb{R}^n\}$

Row space: $Row(A) = span\{r_1, r_2, \dots, r_m\} \subseteq \mathbb{R}^n$

Null space: $Null(\mathbf{A}) = \{ \mathbf{u} \in \mathbb{R}^n \mid A\mathbf{u} = \mathbf{0} \} \subseteq \mathbb{R}^n$

Row Operation and Vector Spaces. Suppose $A = (a_1 \ a_2 \ \cdots \ a_n)$ and $\mathbf{B} = (\mathbf{b_1} \ \mathbf{b_2} \ \cdots \ \mathbf{b_n})$ are row equivalent matrices.

1. Row operations preserved linear relations of the columns. $\forall c_1, c_2, \dots, c_n \in \mathbb{R}, c_1 a_1 + \dots + c_n a_n = \mathbf{0} \Leftrightarrow c_1 b_1 + \dots + c_n b_n = \mathbf{0}$

Row operations preserves row space.

$$Row(A) = Row(B)$$

Basis of Vector Spaces. Suppose R is a REF of A.

- (i) The columns of A corresponding to the pivot columns of R form a basis for Col(A)
- (ii) The nonzero rows of R form a basis for Row(A)

Caution

- (i) Row operations do not preserve column space.
- Row operations do not preserve linear relations of the rows. (ii)

Rank and Nullity of Matrices.

$$rank(A) = dim(Col(A)) = dim(Row(A))$$

 $nullity(A) = dim(null(A))$

Voctor Spaces Summary

Subspace	Subspace of	Basis	Dimension
Col(A)	\mathbb{R}^{n}	Columns of A corresponding to pivot column in REF	rank(A)
Row(A)	\mathbb{R}^n	Nonzero rows in REF	rank(A)
Null(A)	\mathbb{R}^n	Vectors in a general solution	nullity(A)

Rank Nullity Theorem

$$rank(A) + nullity(A) = \#cols$$

Full Rank. A is full rank if $rank(a) = min\{\#Cols, \#Rows\}$

Full Rank and Invertibility.

A square matrix
$$A$$
 is of full rank
 $\Leftrightarrow \det(A) \neq 0$
 $\Leftrightarrow A$ is invertible

Bounds on Rank

$$rank(AB) \le \min\{rank(A), rank(B)\}$$

Applications of Vector Spaces.

- 1. Finding a basis from a spanning set
- Finding a "nicer" basis 2
- Extending a linearly independent subset to a basis for \mathbb{R}^n

Orthogonality

Inner Product. Let $u = (u_i), v = (v_i) \in \mathbb{R}^n$.

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$= \sum_{i=1}^n u_i v_i$$

$$= (u_1 \quad \dots \quad u_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= \begin{cases} \mathbf{u}^T \mathbf{v} & \text{if } \mathbf{u}, \mathbf{v} \text{ are column vectors} \\ \mathbf{u} \mathbf{v}^T & \text{if } \mathbf{u}, \mathbf{v} \text{ are row vectors} \end{cases}$$

Norm.
$$\|u\| = \sqrt{u \cdot u} = (\sum_{i=1}^{n} u_i^2)^{\frac{1}{2}}$$

Distance. $d(u, v) = \|u - v\| = (\sum_{i=1}^{n} (u_i - v_i)^2)^{\frac{1}{2}}$
Angle. $\cos \theta = \frac{u \cdot v}{\|u\|^{\frac{1}{2}}}$

Properties of Inner Product. Let u, v, w be vectors in \mathbb{R}^n and a, b, cscalars

- $u \cdot v = v \cdot u$
- $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$
- $\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a(\mathbf{u} \cdot \mathbf{v}) + b(\mathbf{u} \cdot \mathbf{w})$
- $\mathbf{u} \cdot \mathbf{u} \ge 0$ with equality iff $\mathbf{u} = 0$
- $||c\mathbf{u}|| = |c| ||\mathbf{u}||$
- (Cauchy-Schwarz Inequality) $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$

Orthogonal Vectors. $u, v \in \mathbb{R}^n$ are orthogonal if

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} \mathbf{u} = 0 \text{ or } \mathbf{v} = 0 \\ \mathbf{u} \text{ and } \mathbf{v} \text{ are perpendicular} \end{cases}$$

Orthogonal Sets. A set $\{u_1, u_2, \dots, u_k\}$ is orthogonal if $\mathbf{u}_i \cdot \mathbf{u}_i = 0 \quad \forall i \neq i$

Orthonormal Sets. A set $\{u_1,u_2,\cdots,u_k\}$ is orthogonal if $u_i\cdot u_j=\{egin{matrix}0& \text{if } i\neq j\\1& \text{if } i=j\end{smallmatrix}$

$$\mathbf{u}_i \cdot \mathbf{u}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Orthogonal to Orthonormal. Every orthogonal set of nonzero vectors can be normalised to an orthonormal set.

$$S = \{u_1, u_2, \dots, u_k\} \xrightarrow{normalised} T = \left\{\frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}, \dots, \frac{u_k}{\|u_k\|}\right\}$$

Orthogonal means Independent. An orthogonal set of nonzero vectors is linearly independent.

Orthogonal and Orthonormal Bases. To show that $S = \{v_1, v_2, \dots, v_k\}$ is an orthogonal/orthonormal basis of $V \subseteq \mathbb{R}^n$, we need to check

- S is orthogonal/orthonormal and
- V = span(S) or (ii)
- (iii) $|S| = \dim(V)$ and $S \subseteq V$

Orthogonal Basis to Relative Coordinates.

S =
$$\{u_1, u_2, \cdots, u_k\}$$
 is a $\{(i) \text{ orthogonal basis for } V \subseteq \mathbb{R}^n \text{ subspace.} \}$
(v) $v = \frac{v \cdot u_1}{v_1 \cdot u_1} u_1 + \frac{v \cdot u_2}{v_2 \cdot u_2} u_2 + \cdots + \frac{v \cdot u_k}{u_k \cdot u_k} u_k$
(vi) $v = (v \cdot u_1) u_1 + (v \cdot u_2) u_2 + \cdots + (v \cdot u_k) u_k$

(v)
$$v = \frac{v \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{v \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{v \cdot u_k}{u_k \cdot u_k} u_k$$

(vi)
$$v = (v \cdot u_1)u_1 + (v \cdot u_2)u_2 + \dots + (v \cdot u_k)u_k$$

Vectors Orthogonal to Subspaces. A vector $u \in \mathbb{R}^n$ is orthogonal to a subspace $V = span\{u_1, u_2, \cdots, u_k\} \subseteq \mathbb{R}^n$, denoted by $u \perp V$, if $\forall v \in V, u$ v = 0

$$\begin{array}{ll} \boldsymbol{u} \perp \boldsymbol{V} & \Leftrightarrow \boldsymbol{u} \cdot \boldsymbol{u}_i & \forall i = 1, \cdots, k \\ \Leftrightarrow \boldsymbol{A}^T \boldsymbol{u} = 0 & \boldsymbol{A} = (\boldsymbol{u}_1 & \cdots & \boldsymbol{u}_k) \\ \Leftrightarrow \boldsymbol{u} \in Null(\boldsymbol{A}^T) \end{array}$$

Orthogonal Projection. Let $V \subseteq \mathbb{R}^n$. Every $\mathbf{w} \in \mathbb{R}^n$ can be decomposed uniquely as

$$w = w_p + w_n$$

where $w_n \in V$ and $w_n \perp V$. The unique vector $w_n \in V$ is called the orthogonal projection of w onto V.

$$S=\{u_1,u_2,\cdots,u_k\} \text{ is a} \left\{ \begin{matrix} (i) \text{ orthogonal} \\ (ii) \text{ orthonormal} \end{matrix} \right. \text{basis for } V\subseteq \mathbb{R}^n \text{ subspace}.$$

(vii)
$$w_p = \frac{w \cdot u_1}{u_1} u_1 + \frac{w \cdot u_2}{u_2} u_2 + \dots + \frac{w \cdot u_k}{u_k} u_k$$

Gram-Schmidt Process. $S = \{u_1, u_2, \dots, u_k\}$ be linearly independent.

$$v_1 = u_1$$

$$v_2 = u_2 - \frac{v_1 \cdot u_2}{v_1 \cdot v_2} \quad v_1$$

$$v_3 = u_3 - \frac{v_1 \cdot u_3}{v_4 \cdot v_4} v_1 - \frac{v_2 \cdot u_3}{v_2 \cdot v_2} v_2$$

$$v_k = u_k - \frac{v_1 \cdot u_k}{v_1 \cdot v_1} v_1 - \frac{v_2 \cdot u_k}{v_2 \cdot v_2} v_2 - \dots - \frac{v_{k-1} \cdot u_2}{v_{k-1} \cdot v_{k-1}} v_{k-1}$$

Then $\{v_1, v_2, \dots, v_k\}$ is an orthogonal set and hence

$$\left\{\frac{v_1}{\|v_1\|}, \frac{v_2}{\|v_2\|}, \dots, \frac{v_k}{\|v_k\|}\right\}$$

is an orthonormal basis for span(S)

Least Squares Solutions. A vector $u \in \mathbb{R}^n$ is a least square solution to Ax = b if for every $v \in \mathbb{R}^n$

$$||Au - b|| \le ||Av - b||$$

Obtaining the Least Squares Solution

u is a least square Au is the projection of b onto the solution to Ax = bcolumn space of A. Col(A) \boldsymbol{u} is a solution to $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$

Finding Projection using Least Squares. Let $S = \{u_1, u_2, \dots, u_k\} \subseteq$ $\mathbb{R}^n, V = span(S)$. For any $\mathbf{w} \in \mathbb{R}^n$, the projection of \mathbf{w} onto V is \mathbf{Au} , where $A = (u_1 \cdots u_k)$, and $u \in \mathbb{R}^k$ is a solution to $A^T A x = A^T w$

Finding Least Squares using Shortcut. Projection of w onto V is the formula below (although it is not proven)

$$A(A^TA)^{-1}A^Tw$$

 $A^{T}A$ of Orthogonal/Orthonormal Matrices. Let $S = \{u_1, u_2, \dots, u_k\}$ and $A = (u_1 \cdots u_k)$

- 1. If S is an orthogonal set $\Leftrightarrow A^T A$ is a diagonal matrix
- 2. If S is an orthonormal set $\Leftrightarrow A^T A = I_k$

Orthogonal Matrix. A square matrix of order n is an orthogonal matrix if $A^T = A^{-1}$, or $A^T A = I_L = AA^T$

Product of 2 Orthogonal Matrices. The product of 2 orthogonal matrices is an orthogonal matrix.

Equivalent Statements of Orthogonal Matrix

- A is an orthogonal matrix
- The columns of A form an orthonormal basis for \mathbb{R}^n
- The rows of A form an orthonormal basis for \mathbb{R}^n

Transition Matrix between Two Orthogonal Basis.

Let $S = \{u_1, u_2, \dots, u_k\}$, $T = \{v_1, v_2, \dots, v_k\}$ orthonormal basis for subspace

- Transition matrix $P: S \to T$ is an orthogonal matrix
- 4. The transition matrix $T \rightarrow P^T$

where

$$P = [v_1 \ v_2 \ v_3]^T [u_1 \ u_2 \ u_3]$$

Diagonalization

Eigenvalues and Eigenvectors. Let A be a square matrix of order n. A nonzero column vector $u \in \mathbb{R}^n$ is called an eigenvector of A if

$$Au = \lambda u$$
 for some scalar λ

The scalar λ is call an eigenvalue of \boldsymbol{A} and \boldsymbol{u} is said to be an eigenvector of \boldsymbol{A} associated with the eigenvalue λ .

Eigenspace. Let λ is an eigenvalue of **A**. The solution space to the homogeneous system $(\lambda I - A)x = 0$ is called the eigenspace associated to λ and is denoted as

$$E_{\lambda} = \{ \boldsymbol{v} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v} \} = Null(\lambda \boldsymbol{I} - \boldsymbol{A})$$

Characteristic Polynomial. The characteristic polynomial of A is char(A) = det(xI - A)

Finding Eigenvalues. λ is an eigenvalue of $A \Leftrightarrow$ the homogeneous system $(\lambda I - A)x = 0$ has nontrivial solution. The nontrivial solution solutions are the eigenvectors associated to λ .

 λ is an eigenvalue of $A \Leftrightarrow \lambda$ is a root of the characteristic polynomial of A, $\det(\lambda I - A) = 0$

Eigenvalues of Triangular Matrices. If A is an triangular matrix, then its diagonal entries are its eigenvalues.

Multiplicity. Let λ be an eigenvalue of A. The multiplicity of λ is the largest integer r₂ such that

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda)^{r_{\lambda}} p(x)$$

for some polynomial p(x)

Suppose A is an order n square matrix such that det(xI - A) can be factorized completely into linear factors. Then we can write

$$\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_1}(x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k}$$

where $r_1 + r_2 + \cdots + r_k = n$ and $\lambda_1, \lambda_2, \cdots, \lambda_k$ are distinct eigenvalue of A. Then, the multiplicity of λ_i is r_i for $i = 1, 2, \dots, k$

Bounds for Dimension of Eigenspace.

$$1 \le \dim(E_{\lambda}) \le r_{\lambda}$$

Algorithm to Finding Eigenvalue, Eigenvector, Eigenspace,

Compute the characteristic polynomial of A

$$\det(\lambda I - A)$$

- Find all roots λ of the characteristic polynomial.
- For each λ , solve the homogeneous system $(\lambda I A)x = 0$

The vectors in a general solution form a basis for the eigenspace E_2

Diagonalization. An order *n* square matrix *A* is diagonalisable if there exist an invertible matrix P such that

$$P^{-1}AP = D$$

for some diagonal matrix **D**. Equivalently, if $A = PDP^{-1}$.

$$P = (u_1 \cdots u_n), D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda \end{pmatrix}$$
 where u_1 is an eigenvector

associated with A

Equivalent Statements for Diagonalizability.

- (v) A is diagonalizable
- There exists a *basis* $\{u_1, u_2, \dots, u_n\} \subseteq \mathbb{R}^n$ of eigenvectors of A(vi)
- The sum of dimension of the eigenspaces of A is equal to its (vii) order

$$\sum_{\substack{\lambda \text{ eigenvectors of } A}} \dim(E_{\lambda}) = n$$

The characteristic polynomial of A splits (viii) $\det(x\mathbf{I} - \mathbf{A}) = (x - \lambda_1)^{r_1}(x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k}$ where r_i is the multiplicity of eigenvalue λ_i , for $i = 1, \dots, k$ and the eigenvalues are distinct, $\lambda_i \neq \lambda_i$ for $i \neq j$, and the dimension of each eigenspace is equal to its multiplicity

$$\dim(E_{\lambda_i}) = r_i$$

Algorithm to Diagonalization.

- Compute the characteristic polynomial of A $det(\lambda I - A)$
- Find all root λ of the characteristic polynomial.
- For each λ , find a basis S_{λ} for the eigenspace

$$E_{\lambda} = Null(\lambda \mathbf{I} - \mathbf{A})$$

4. Let
$$S = \bigcup_{\lambda} S_{\lambda} \Rightarrow S = \{u_1, u_2, \dots, u_n\}$$
 basis for \mathbb{R}^n

5. Let
$$P = (u_1 u_2 \cdots u_k)$$
 and $D = \begin{pmatrix} \mu_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n \end{pmatrix}$ where u_1 is an

eigenvector associated with u

Then $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

Sufficient Condition of Diagonalization.

- A is a diagonal matrix. (i)
- A is a symmetric matrix. (ii)
- A has n distinct eigenvalues. (iii)

A is not diagonalization if either

- (i) $\det (\lambda I - A)$ does not split into linear factors.
- (ii) there exists eigenvalue λ s.t. dim $(E_{\lambda}) < r_{\lambda}$

Orthogonally Diagonalizable

An order n square matrix A is orthogonally diagonalisable if there exist an orthogonal matrix P such that

$$P^TAP = D$$

for some diagonal matrix **D**. Equivalently, if $A = PDP^T$.

Orthogonally diagonalizable \Leftrightarrow symmetric

Orthogonality of Eigenspaces of Symmetric A. $\lambda_1 \neq \lambda_2$ are distinct eigenvalues of orthogonally diagonalizable matrix A, then $E_{\lambda_1} \perp E_{\lambda_2}$, that is for any vector $v_1 \in E_{\lambda_1}, v_2 \in E_{\lambda_2}, v_1 \cdot v_2 = \mathbf{0}$.

Therefore we can apply Gram-Schmidt process to the basis within each eigenspace

Algorithm to Orthogonally Diagonalization. Suppose A is symmetric. Follow step 1-3 of algorithm to diagonalization.

- Apply Gram-Schmidt process to the basis S_1 of the eigenspace E_2 to obtain an orthonormal basis $T \lambda$
- Let $T = \bigcup_{\lambda} T_{\lambda} \Rightarrow T = \{u_1, u_2, \dots, u_n\}$ is an orthonormal hasis for Rn
- Follow step 5 of algorithm to diagonalization.

Application to Diagonalization.

Suppose $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, then $\mathbf{A}^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}$

Linear Transformation

Linear Transformation. A linear transformation is a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

if n = m, then T is also called a linear operator

Linear Transformation Alternate Definition. Let V and W be vector spaces. A mapping $T: V \to W$ is called a linear transformation if and only if $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$ and $c, d \in \mathbb{R}$

Linear Transformation Basic Properties.

- T(0) = 0
- $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$
- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- 4. $T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \dots + c_kT(\mathbf{u}_k)$

Standard Matrix. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then the standard matrix A can be denoted as

$$A = [T(e_1) \quad T(e_1) \quad \cdots \quad T(e_1)]$$

A mapping $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if there exists a $m \times n$ matrix A s.t. T(u) = Au for all $u \in \mathbb{R}^n$

Retrieving the Standard Matrix. Suppose $S = \{u_1, u_2, \dots, u_n\} \subseteq \mathbb{R}^n$ is a basis and $T(u_1), T(u_2), \dots, T(u_n)$ is given. Define the representation of T with respect to S as

$$[T]_S = [T(\boldsymbol{u_1}) \quad T(\boldsymbol{u_1}) \quad \cdots \quad T(\boldsymbol{u_1})]$$

Then for any $v \in \mathbb{R}^n$,

$$T(v) = T(c_1u_1 + c_2u_2 + \dots + c_ku_n)$$

= $c_1T(u_1) + c_2T(u_2) + \dots + c_kT(u_n)$
= $[T]_S[v]_S$

So, the standard matrix of T is the representation of T with respect to E, the standard matrix, $\mathbf{A} = [T]_F$

 $P = (u_1 \quad u_2 \quad \cdots \quad u_n)$ is the transition matrix from S to E such that $P^{-1}v =$ $[v]_s$.

$$Av = T(v) = [T]_S[v]_S = [T]_SP^{-1}v$$

Therefore, $A = \lceil T \rceil_{s} P^{-1}$

Composition of Mappings. Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. The composition of T with S, denoted by

 $T \circ S$, is a mapping from \mathbb{R}^n to \mathbb{R}^k defined by

$$(T \circ S)(\mathbf{u}) = T(S(\mathbf{u}))$$
 for $\mathbf{u} \in \mathbb{R}^n$

If **A** and **B** are the standard matrix for S and T respectively, then **BA** is the standard matrix for T o S

Range and Rank. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The range of T, which is denoted by R(T), is the set of images of T.

$$R(T)=\{T(u)\mid u\in\mathbb{R}^n\}\subseteq\mathbb{R}^m=\{Au\mid u\in\mathbb{R}^n\}=Col(A)$$
 Hence,

rank(T) = dim(R(T)) = dim(Col(A)) = rank(A)

Kernel and Nullity. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The kernel of T, which is denoted by Ker(T), is the set of vectors in \mathbb{R}^n , whose image is the zero vector in \mathbb{R}^m

$$Ker(T) = \{ \boldsymbol{u} \in \mathbb{R}^n \mid T(\boldsymbol{u}) = \boldsymbol{0} \} \subseteq \mathbb{R}^m$$
$$= \{ \boldsymbol{u} \in \mathbb{R}^n \mid A\boldsymbol{u} = \boldsymbol{0} \}$$
$$= Null(\boldsymbol{A})$$

Hence

$$nullity(T) = \dim(Ker(T)) = \dim(Null(A)) = nullity(A)$$

Dimension Theorem for Linear Transformation Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation

$$rank(T) + nullity(T) = n$$

Injective. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is injective if whenever $T(\mathbf{u}) = T(\mathbf{v})$, necessarily $\mathbf{u} = \mathbf{v}$.

$$T$$
 is injective \Leftrightarrow Ker(T) = $\{0\}$ \Leftrightarrow $nullity(T) = 0$

Surjective. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is surjective if for any $\mathbf{w} \in \mathbb{R}^n$ \mathbb{R}^m , there is a $\mathbf{u} \in \mathbb{R}^n$ such that $T(\mathbf{u}) = \mathbf{w}$

T is surjective
$$\Leftrightarrow R(T) = \mathbb{R}^m \Leftrightarrow rank(T) = m$$

Poll Everywhere

- True. If a linear system has more variable than equations, then we must introduce parameters in the general solution.
- 2. False. If a linear system has more equations than variables, then the system has at most one solution.
- True. If the trivial solution is the solution of the linear system, it must be a homogeneous system.
- True. If the homogeneous system has a unique solution, it must be the trivial solution
- False. If the homogeneous system has the trivial solution, it must be the unique solution.

 $A^2 + B^2 + 2AB (AB \neq BA)$

<u>False</u>. For any square matrix **A** and **B** of the same size $(A + B)^2 =$

- True. For any diagonal matrix **A** and **B** of the same size $(A + B)^2 =$ $A^2 + B^2 + 2AB$ (AB = BA for diagonal matrix)
- True. Inverse of square matrices is unique.
- <u>True</u>. For a square matrix A, if there is a square matrix B such that AB = I, then necessarily BA = I
- 10. False. Suppose **A** and **B** are $m \times n$ matrices such that there is an invertible matrix P of order n such that AP = B. Then A and B are equivalent.
- 11. <u>True</u>. Suppose A is an invertible matrix of order n. Then for any $b \in$ \mathbb{R}^n
 - (i) Ax = b is consistent.
 - (ii) the solution to Ax = b is unique.
- <u>True</u>. Suppose *A* is an invertible matrix of order *n*. Then Ax = 0 has only the trivial solution.
- 13. True. Every square matrix is row equivalent to a triangular matrix.
- True. If A and B are two square matrices of the same size, then det(AB) = det(BA)
- False. If **A** is an $m \times n$ matrix and **B** is an $n \times m$ matrix, then det(AB) = det(BA)
- <u>True</u>. For any square matrix A, Aadj(A) = det(A) I
- \underline{True} . Suppose A is a singular matrix. Cramer's rule will not give any 17 solution
- 18. <u>True</u>. If **A** is an $n \times k$ matrix with k < n, then any REF of **A** must have
- 19. True. $\{0\} \subseteq \mathbb{R}^n$ is a subspace.
- True. If **A** is an $n \times k$ matrix with k > n, then any REF of **A** must have a nonpivot column.
- False. $\{u, v, w\}$ is linearly independent if none of them is a multiple of the other
- 22. <u>False</u>. $span\{u, v\} \subset \mathbb{R}^n$ is always a plane for any n > 0
- 23. False. $\mathbb{R}^2 \subseteq \mathbb{R}^3$
- 24. True. The dimension of the zero space is 0.
- 25. $\underline{\text{True}}. Col(B) \subseteq Null(A)$
- True. $\lambda = 0$ can be an eigen value of square matrix **A**
- 27. True. If λ is an eigenvalue of A,
 - λ is an eigenvalue of A^T
 - λ^n is an eigenvalue of A^n (ii)
 - λ^{-1} is an eigenvalue of A^{-1} if A is invertible (iii)
- Suppose A diagonalizable,
 - False. (i) If the diagonal matrix **D** is fixed, then the invertible matrix P is unique
 - $\underline{\text{True}}$. (ii) If the diagonal matrix P is fixed, then the invertible matrix D is unique True. If A is not a scalar matrix has only 1 eigenvalue, then A is not
- <u>True</u>. If A is an invertible and diagonalizable matrix, then A^{-1} is diagonalizable
- <u>True</u>. If A is diagonalizable, then A^T is diagonalizable
- False. If A and B are diagonalizable, then A + B is diagonalizable. 32.
- 33. False, If A and B are diagonalizable, then AB is diagonalizable.
- True. If A and B are orthogonally diagonalizable, then A + B is diagonalizable.
- 35. False. If A and B are orthogonally diagonalizable, then AB is diagonalizable False, $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if there exist a matrix A
- such that $\mathbf{A} = [T(\mathbf{e}_1) \ T(\mathbf{e}_1) \ \cdots \ T(\mathbf{e}_1)]$
- False. If $T(\alpha v) = \alpha T(v)$ for any $\alpha \in \mathbb{R}$ and $v \in \mathbb{R}^n$, then T is a linear transformation
- 38 False. If A is a square matrix such that $A^2 = 0$, then A = 0
- 39 True. If **A** is a matrix such that $AA^T = \mathbf{0}$, then $A = \mathbf{0}$
- 40. <u>True.</u> $span(S_1 \cup S_2) = span(S_1) + span(S_2)$
- <u>True.</u> Nullspace of $A = \text{nullspace of } A^T A$ 41. True. rank of $A = \text{rank of } A^T A$
- $\underline{True.rank(M+N)} \leq rank(M) + rank(N)$

Equivalent Statements for Invertibility

Invertible Matrices (Theorem 2.4.7). Let A be a square matrix. The following statements are equivalent.

- 1 A is invertible
- 2 A has a left inverse.
- 3. A has a right inverse.
- The RREF of A is the identity matrix.

- A can be expressed as a product of elementary matrices.
- The homogeneous system Ax = 0 has only the trivial solution.
- For any b, Ax = b has a unique solution.
- 8 The determinant of **A** is nonzero, $\det A \neq 0$
- The columns/rows of A spans \mathbb{R}^n
- 10. The columns/rows of A are linearly independent.
- **A** is of full rank, $rank(\mathbf{A}) = \mathbf{n}$
- 12. $nullity(\mathbf{A}) = 0$
- 13. 0 is not an eigenvalue of A
- 14. The linear transformation T_A defined by **A** is injective, or $Ker(T_A) =$
- The linear transformation T_A defined by **A** is surjective, or $R(T_A) =$