

polynomial ring over integral domain

Canonical name PolynomialRingOverIntegralDomain

Date of creation 2013-03-22 15:10:06 Last modified on 2013-03-22 15:10:06

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 10

Author pahio (2872) Entry type Theorem Classification msc 13P05

Related topic RingAdjunction
Related topic FormalPowerSeries
Related topic ZeroPolynomial2

 $Related\ topic \qquad Polynomial Ring Over Field Is Euclidean Domain$

Defines coefficient ring

Theorem. If the *coefficient ring* R is an integral domain, then so is also its polynomial ring R[X].

Proof. Let f(X) and g(X) be two non-zero polynomials in R[X] and let a_f and b_g be their leading coefficients, respectively. Thus $a_f \neq 0$, $b_g \neq 0$, and because R has no zero divisors, $a_f b_g \neq 0$. But the product $a_f b_g$ is the leading coefficient of f(X)g(X) and so f(X)g(X) cannot be the zero polynomial. Consequently, R[X] has no zero divisors, Q.E.D.

Remark. The theorem may by induction be generalized for the polynomial ring $R[X_1, X_2, ..., X_n]$.