8 Relačná algebra a relačný kalkul

8.1 Relačná algebra

8.1.1 Základné operácie

Základnými operáciami relačnej algebry sú:

- 1. výber
- 2. projekcia
- 3. kartézsky súčin
- 4. zjednotenie
- 5. rozdiel
- 6. prienik
- 7. delenie
- 8. spojenie

Tieto operácie môžu byť klasifikované z rôznych pohľadov:

- 1. Podľa počtu zdrojových relácií
 - Unárne výber, projekcia
 - **Binárne** kartézsky súčin, prienik, rozdiel, zjednotenie, delenie, spojenie
- 2. Podľa typu operácií
 - **Množinové operácie** zjednotenie, prienik, kartézsky súčin, rozdiel
 - Relačné operácie spojenie, delenie, výber, projekcia

8.1.1.1 VÝBER - SELECTION

Definícia – Elementárna podmienka EC

Elementárnou podmienkou EC nazývame výraz v tvare:

kde operátor je z množiny relačných operátorov $\{=, <, >, <=, >=, \neq\}$.

Definícia – Podmienka C

Podmienkou C nazývame výraz v tvare:

[NOT]
$$EC_1$$
 [{OR | AND |NOT} [[NOT] EC_2]...]

Definícia - Selection

Operácia SELECTION (Výber) vytvorí z relácie $R_1(A_1,A_2,...,A_n)$ reláciu $R_2(A_1,A_2,...,A_n)$ takú, že pre každú n-ticu $t\in R_2$ platí $t\in R_1$ a je splnená podmienka C.

Označenie

a) grafické

a) matematické

$$R_2 = \sigma_c(R_1)$$

Príklad 8.1 – Výber

Vypíšte všetky údaje o predmetoch, ktoré garantuje učiteľ s osobným číslom="KI001"

a) pomocou operácií relačnej algebry

$$\sigma_{cis_ucitel="KI001"}(predmet)$$

ы pomocou SQL príkazu

cis_predmet	Nazov	kredity	cis_ucitel
P111	Základy informatiky 1	6	K1001
P211	Základy informatiky 2	6	K1001
A502	C-jazyk	8	K1001

Komutativita výberu

$$\sigma_{cond1}(\sigma_{cond2}(R)) = \sigma_{cond2}(\sigma_{cond1}(R))$$

Kaskáda výberu (pre konjunkciu)

$$\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(...(\sigma_{\text{condn}}(R)))) = \sigma_{\text{cond1 AND cond2 AND ...AND condn}}(R)$$

8.1.1.2 PROJEKCIA - PROJECTION

Definícia - Projection

Operácia PROJECTION (Projekcia) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ reláciu $R_2(B_1,B_2, ..., B_m)$ takú, že množina atribútov $(B_1,B_2, ..., B_m) \subset (A_1,A_2, ..., A_n)$ a pre stupeň relácie R_2 platí m < n a $card(R_2) = card(R_1)$.

Označenie

a) grafické

- b) matematické
 - $R_2 = \pi_{B1..Bm}(R_1)$

Príklad 8.2 - Projekcia

Vypíšte zoznam mien a priezvísk všetkých študentov

- a) pomocou operácií relačnej algebry $\pi_{\text{meno,priezvisko}}(os_udaje)$
- ы pomocou SQL príkazu SELECT meno, priezvisko FROM os_udaje;

meno priezvisko Peter Novák Stanislav Steinmüller János Tóth Marek Rátroch Bohuslav Biely Branislav Baláž Peter Kapustný Marek Ďurica Martin Kľúčiar Lukáš Satrapa Krnáč Ján Juraj Papún Andrej Janči Zdeno Svetkovský Stanislava Slámová Erika Lipovská Peter Malík

Kaskáda projekcií

Ak zoznam zoznam2 atribútov projekcie obsahuje zoznam atribútov zoznam1, tak môžeme písať:

 $\pi_{zoznam1}(R) = \pi_{zoznam1}(\pi_{zoznam2}(R))$

8.1.1.3 KARTÉZSKY SÚČIN – PRODUCT

Definícia - Product

Operácia PRODUCT (Karteziánsky súčin) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ a z relácie $R_2(B_1,B_2, ..., B_m)$, tretiu reláciu $R_3(A_1, A_2, ..., A_a, B_1, B_2, ..., B_m)$ takú, že obsahuje všetky kombinácie n-tíc, kde pre každú n-ticu t platí:

 $t \in \mathbf{R}_3$ a t je usporiadanou dvojicou $t = t_1, t_2$ ak $t_1 \in \mathbf{R}_1$ a $t_2 \in \mathbf{R}_2$.

Označenie

a) grafické

b) matematické

 $R_3 = R_1 x R_2$

Príklad 8.3- Kartézsky súčin

Vypíšte všetky kombinácie mien a priezvísk študentov a čísel predmetov, ktoré je možné si zapísať.

a) pomocou operácií relačnej algebry

```
a = \pi_{\text{meno,priezvisko}}(\text{os\_udaje}) \qquad \text{//vyber všetky mená a priezviská študentov} \\ b = \pi_{\text{cis\_predmet}}(\text{predmet}) \qquad \text{// vyber všetky čísla predmetov} \\ \text{Kartézsky\_súčin} = a \times b \qquad \text{// vytvor všetky kombinácie}
```

ы pomocou príkazov SQL

```
SELECT meno, priezvisko FROM os_udaje INTO TEMP a;
```

SELECT cis_predmet FROM predmet INTO TEMP b;

SELECT meno, priezvisko, cis_predmet
FROM a,b;

Meno	priezvisko	cis_predmet
Peter	Novák	A501
Stanislav	Steinmüller	A501
János	Tóth	A501
Peter	Novák	A901
Stanislav	Steinmüller	A901
János	Tóth	A901
	***	•••

8.1.1.4 ZJEDNOTENIE - UNION

Definícia - Union

Operácia UNION (zjednotenie) vytvorí z relácie

 $R_1(A_1, A_2, ..., A_n)$ a z relácie $R_2(A_1, A_2, ..., A_n)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

 $t \in \mathbb{R}_3$ ak $t \in \mathbb{R}_1$, alebo $t \in \mathbb{R}_2$

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \cup R_2$$

$$R_3 = UNION (R_1,R_2)$$

$$R_3 = R1$$
 UNION R_2

Definícia – Union kompatibilita

Dve relácie $\mathbf{R_1}$ a $\mathbf{R_2}$ sú union kompatibilné, ak majú *totožnú* množinu atribútov.

Príklad 8.4 – Union kompatibilné relácie

```
Ak máme reláciu
študent(os_cislo,rod_cislo, st_zameranie,
st_odbor, rocnik, forma, stav, dat_1zapisu,
st_skupina, dat_ukoncenia)
a reláciu
študent_PD(os_cislo,rod_cislo, st_zameranie,
st_odbor, rocnik, forma, stav, dat_1zapisu,
st_skupina, dat_ukoncenia),
```

tak relácie sú union kompatibilné.

Príklad 8.5 – Union nekompatibilné relácie

Ak máme reláciu študent(os_cislo,rod_cislo, st_zameranie,

st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia)

a reláciu

študenti(rod_cislo, os_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia),

tak relácie nie sú union kompatibilné, pretože poradie atribútov nie je totožné.

Príklad 8.6 – Union nekompatibilné relácie

Ak máme reláciu

```
študent(os_cislo,rod_cislo, st_zameranie,
st_odbor, rocnik, forma, stav, dat_1zapisu,
st_skupina, dat_ukoncenia)
```

a reláciu

```
študenti(os_cislo, rod_cislo,st_zameranie, st_odbor, rocnik),
```

tak relácie nie sú union kompatibilné, pretože počet atribútov nie je totožný.

Príklad 8.7 – Zjednotenie

Vytvorte dve relácie z relácie osobné údaje také, že prvá relácia bude obsahovať mená a priezviská všetkých žien a druhá relácia mená a priezviská všetkých mužov.

Potom napíšte príkaz pre zjednotenie oboch relácií.

a) pomocou operácií relačnej algebry

```
os_udaje_zeny=\pi_{\text{meno,priezvisko}}(\sigma_{\text{rod\_cislo}[3,3]>4}(\text{os\_udaje}))
```

os_udaje_muzi=
$$\pi_{\text{meno,priezvisko}}(\sigma_{\text{rod_cislo}[3,3]<5}(\text{os_udaje}))$$

Zjednotenie = os_udaje_zeny ∪ os_udaje_muzi

b) pomocou príkazov SQL

```
SELECT meno, priezvisko FROM os_udaje WHERE rod_cislo[3,3] >4 INTO TEMP os_udaje_zeny;
```

SELECT meno, priezvisko FROM os_udaje WHERE rod_cislo[3,3] <5 INTO TEMP os_udaje_muzi;

SELECT meno, priezvisko FROM os_udaje_zeny
UNION
SELECT meno, priezvisko FROM os udaje muzi;

meno	priezvisko
Andrej	Janči
Bohuslav	Biely
Branislav	Baláž
Erika	Lipovská
František	Murgaš
Juraj	Papún
Ján	Krnáč
János	Tóth
Marek	Rátroch
Martin	Kľúčiar
Peter	Kapustný
Peter	Malík
Rastislav	Kontroš
Rudolf	Kováč
Stanislav	Steinmüller
Stanislava	Slámová
Zdeno	Svetkovský
Ľuboš	Lehotský

Komutativita

$$R_1 \cup R_2 = R_2 \cup R_1$$

Asociativita

$$R_1 \cup (R_2 \cup R_3) = (R_1 \cup R_2) \cup R_3$$

8.1.1.5 ROZDIEL - DIFFERENCE

Definícia - Difference

Operácia DIFFERENCE (rozdiel) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ a z relácie $R_2(A_1,A_2,...,A_n)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

 $t \in \mathbf{R}_3$ ak $t \in \mathbf{R}_1$ a $t \notin \mathbf{R}_2$.

Označenie

a) grafické

 R_1 - $R_2 \neq R_2$ - R_1

b) matematické

$$R_3 = R_1 - R_2$$

 $R_3 = R_1$ DIFFERENCE R_2

 $R_3 = DIFFERENCE (R_1, R_2)$

Príklad - Rozdiel

Pomocou operácie rozdiel vypíšte rodné čísla študentov z relácie osobné údaje, ktorí nie sú študentmi druhého ročníka.

a) pomocou operácií relačnej algebry

$$R_1 = \pi_{rod_cislo}(os_udaje)$$

 $R_2 = \pi_{rod_cislo}(\sigma_{rocnik} = 2(student))$
 $ROZDIEL = R_1 - R_2$

ы pomocou príkazov SQL

```
SELECT rod_cislo FROM os_udaje
  INTO TEMP R1;

SELECT rod_cislo FROM student
  WHERE rocnik = 2
  INTO TEMP R2;

SELECT * FROM R1
  WHERE rod_cislo NOT IN
    (SELECT rod_cislo FROM R2);
```

rod_cislo 755022/8569 760103/2238 770913/3326 771203/5472 781001/3623 781015/4431 781130/4454 781201/1248

8.1.1.6 PRIENIK – INTERSECTION

Definícia - Intersection

Operácia INTERSECTION (prienik) vytvorí z relácie $R_1(A_1, A_2, ..., A_n)$ a z relácie $R_2(A_1, A_2, ..., A_n)$ tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

 $t \in \mathbb{R}_3$ ak $t \in \mathbb{R}_1$ a súčasne $t \in \mathbb{R}_2$

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \cap R_2$$

 $R_3 = R_1$ INTERSECTION R_2
 $R_3 = INTERSECTION$ (R1, R2)

Operáciu relačnej algebry prienik je možné vyjadriť pomocou operácie rozdiel, potom pre prienik relácii R₁ a R₂ platí:

$$R_3 = R_1 - (R_1 - R_2)$$
, alebo
 $R_3 = R_2 - (R_2 - R_1)$

alebo

pomocou operácií zjednotenie a rozdiel

$$R_3 = (R_1 \cup R_2) - ((R_1 - R_2) \cup (R_2 - R_1))$$

Príklad 8.9 - Prienik

Pomocou operácie prienik vypíšte všetky rodné čísla študentov z relácie osobné údaje, ktorí sú študentmi druhého ročníka.

a) pomocou operácií relačnej algebry

```
R_1 = \pi_{rod\_cislo}(os\_udaje)

R_2 = \pi_{rod\_cislo}(\sigma_{rocnik=2}(student))

PRIENIK = R_1 \cap R_2
```

b) pomocou príkazov SQL SELECT rod_cislo FROM os_udaje INTO TEMP R1;

```
SELECT rod_cislo FROM student
WHERE rocnik = 2
INTO TEMP R2;
```

SELECT * FROM R1
WHERE rod_cislo IN
(SELECT rod_cislo FROM R2);

rod_cislo 771124/3578 790907/1259 791229/5431 800312/7845 800407/3522

Komutativita

 $R_1 \cap R_2 = R_2 \cap R_1$

Asociativita

 $R_1 \cap (R_2 \cap R_3) = (R_1 \cap R_2) \cap R_3$

DELENIE - DIVISION

Definícia - Division

Operácia DIVISION (delenie) vytvorí z relácie $D(A_1,A_2, ..., A_p, A_{p+1},A_{p+2},...,A_n)$ delením reláciou $d(A_{p+1},A_{p+2},...,A_n)$ tretiu reláciu $Q(A_1,A_2, ..., A_p)$ takú, že konkatenáciou $t_Q \in Q$ a $t_d \in d$ dostaneme n-ticu

$$t_D \in D. (t_Q, t_d = t_D)$$

Označenie

1414

P111

b) matematické

$$Q = D \div d$$

Priklad 8.10

Vypíšte osobné čísla všetkých študentov, ktorí majú zapísané oba predmety: P202 a P301.

a) riešenie číslo 1 - pomocou príkazov SQL

SELECT cis_predmet FROM predmet
WHERE predmet.cis_predmet = "P202"
OR

predmet.cis_predmet = "P301"
INTO TEMP menovatel;

SELECT COUNT(*) pocet FROM menovatel INTO TEMP yyy;

SELECT unique os_cislo, cis_predmet
FROM zap_predmety
WHERE cis_predmet IN
 (SELECT cis_predmet FROM
menovatel)
INTO TEMP xxx;

SELECT os_cislo, COUNT(*) pocet FROM xxx
GROUP BY os_cislo
INTO TEMP zzz;

SELECT os_cislo FROM zzz, yyy
WHERE zzz.pocet = yyy.pocet;

b) riešenie číslo 2 - pomocou príkazov relačnej algebry

$$\begin{split} &\text{menovatel} = \sigma_{\text{cis_predmet="P202" OR cis_predmet="P301"}}(\pi_{\text{cis_predmet}}(\text{predmet})) \\ &\text{xxx} = \sigma_{\text{unique}}(\pi_{\text{os_cislo},\text{cis_predmet}}(\text{za} \not \text{p_predmety} \quad \text{cis_premdet} \text{menovatel})) \\ &\text{yyy} = \sigma_{\text{unique}}(\pi_{\text{os_cislo}}(\text{xxx})) \\ &\text{zzz} = \pi_{\text{os_cislo}}((\text{yyy} \times \text{menovatel}) - \text{xxx}) \\ &\text{PODIEL} = \text{yyy} - \text{zzz} \end{split}$$

```
c) riešenie číslo 2 - pomocou príkazov <del>SQL</del>
 SELECT cis predmet FROM predmet
   WHERE cis_predmet = "P202"
      OR cis_predmet = "P301"
   INTO TEMP menovatel;
 SELECT UNIQUE os_cislo , cis_predmet
   FROM zap_predmety
   WHERE cis_predmet IN
 (SELECT cis_predmet FROM menovatel)
   INTO TEMP xxx;
 SELECT unique os_cislo FROM xxx
   INTO TEMP yyy;
 SELECT os cislo FROM yyy, menovatel
   WHERE cis predmet NOT IN
(SELECT cis_predmet FROM xxx
 WHERE xxx.os_cislo = yyy.os_cislo)
   INTO TEMP zzz;
 SELECT os cislo FROM yyy
   WHERE os cislo NOT IN
      (SELECT os_cislo FROM zzz);
```

os_cislo 1402 1555

8.1.1.7 SPOJENIE - JOIN

Definícia - Join

Operácia JOIN (spojenie) vytvorí z relácie

 $R_1(X, A_1,A_2, ..., A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu $R_3(X,A_1,A_2,...,A_a,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ a pre hodnoty atribútov X platí $t_1.X=t_2.X$, potom n-tica $t \in R_3$ má atribúty

 $\mathsf{t} = \mathsf{t}_1..X \;,\; \mathsf{t}_1..A_1 \;,\; \mathsf{t}_1..A_2 \;,\; \ldots,\; \mathsf{t}_1..A_a \;,\; \mathsf{t}_2..X \;,\; \mathsf{t}_2..B_1,\; \mathsf{t}_2..B_2,\; \ldots,\; \mathsf{t}_2..B_{m_a}$

SPOJENIE						
1512 P103	P102 Algebra	1512 P103 Matematická analýza 1				
1512 P102	P103 Matematická analýza 1	1512 P102 Algebra				
1319 P103	P111 Základy informatiky 1	1319 P103 Matematická analýza 1				

Pri operácii spojenie je potrebné si uvedomiť, že množiny atribútov, cez ktoré sa spojenie realizuje môžu, ale nemusia mať rovnaké mená, ale vždy musia mať rovnakú doménu.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_c R_2$$

$$R_3 = R_1 \text{ JOIN}_C R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, C)$$

Poznámka

V prípade, že množiny atribútov, cez ktoré sa realizuje spojenie majú rovnaké mená, nie je nutné pri operátore spojenia uvádzať podmienku vyjadrujúcu spojenie atribútov dvoch relácií.

Označenie v prípade rovnakých mien atribútov

a) grafické

b) matematické

 $R_3 = R_1 \bowtie R_2$

 $R_3 = R_1 \text{ JOIN } R_2$

 $R_3 = JOIN(R_1,R_2)$

Operáciu relačnej algebry spojenie je možné vyjadriť pomocou operácií kartézsky súčin a výber. V tom prípade pre spojenie $R_3 = R_1 \bowtie_{\mathbb{C}} R_2$ platí:

$$R_3 = \sigma_C(R_1 \times R_2)$$

Príklad 8.11 - Spojenie s použitím rovnakých mien atribútov

SELECT os_udaje.*,student.* FROM os_udaje, student WHERE os_udaje.rod_cislo=student.rod_cislo

Príklad 8.12 - Spojenie s použitím rôznych mien atribútov V prípade, že by v relácii študent atribút, v ktorom bude uložené rodné číslo mal meno RC, príklad spojenia by vyzeral nasledovne:

SELECT os_udaje.*,student.* FROM os_udaje, student
WHERE os_udaje.rod_cislo=student.rc;

Príklad 8.13 - Spojenie

Pomocou operácie spojenie, spojte nasledovné relácie R₁ a R₂.

 $R_1 = \pi_{\text{rod_cislo, meno, priezvisko}}(\text{os_udaje})$

 $R_2 = \pi_{\text{os_cislo,rod_cislo, rocnik, st_skupina}}(\text{student})$

a) pomocou operácií relačnej algebry:

SPOJENIE = $R_1 \bowtie R_2$

b) pomocou príkazov SQL

```
SELECT rod_cislo,
meno,
priezvisko
FROM os_udaje
INTO TEMP r1;

SELECT os_cislo,
rod_cislo,
rocnik,
st_skupina
FROM student
INTO TEMP r2;
```

SELECT r1.*,r2.* FROM r1,r2 WHERE r1.rod_cislo = r2.rod_cislo;

```
SELECT ou.rod_cislo,

meno,

priezvisko,

os_cislo,

st.rod_cislo,

rocnik,

st_skupina

FROM os_udaje ou,

student st

WHERE
```

ou.rod_cislo=st.
rod_cislo;

r1.rod_cislo	Meno	priezvisko	os_cislo	o r2.rod_cislo	rocnik	st_skupina
801106/3456	Peter	Novák	1512	801106/3456	1	5Z012
800312/7845	Stanislav	Steinmüller	1469	800312/7845	2	5Z021
810514/5341	Branislav	Baláž	1567	810514/5341	1	5Z013
781015/4431	Peter	Kapustný	1319	781015/4431	3	5ZA31
800407/3522	Marek	Ďurica	1555	800407/3522	2	5Z022
791229/5431	Martin	Kľúčiar	1402	791229/5431	2	5Z023
771124/3578	Lukáš	Satrapa	1096	771124/3578	2	5Z023
771203/5472	Ján	Krnáč	1103	771203/5472	4	5ZI41
790310/2145	Juraj	Papún	1333	790310/2145	3	5ZA32
791225/7452	Rastislav	Kontroš	1448	791225/7452	1	5P011
755022/8569	Erika	Lipovská	807	755022/8569	1	5Z013

SQL 99

SELECT

ou.rod_cislo, meno, priezvisko,
os_cislo, st.rod_cislo,rocnik,
st_skupina

FROM os_udaje as ou,
 INNER JOIN student as st
 ON ou.rod_cislo=st.rod_cislo;

SPLIT

Definícia - Split

Operácia split vytvorí z relácie $R_1(A_1,A_2...A_n)$ dve relácie $R_2(A_1,A_2...A_n)$ a $R_3(A_1,A_2...A_n)$ také, že pre každé $t \in R_1$ platí:

- t patrí do práve jednej z relácií R₂ a R₃
- ak pre t je splnená podmienka C, potom $t \in \mathbb{R}_2$
- ak pre t nie je splnená podmienka C, potom $t \in \mathbb{R}_3$

Označenie

a) grafické

b) matematické

$$R_2 = \sigma_c R_1$$

$$R_3 = \sigma_{\neg c} R_1$$

Príklad 8.14 - Split

Vytvorte reláciu, ktorá obsahuje zoznam mien, priezvísk a rodných čísel všetkých osôb z relácie osobné údaje. Potom ju pomocou operácie split rozdeľte na dve relácie – muži a ženy.

a) pomocou operácií relačnej algebry

```
\begin{array}{lll} R_1 = \pi_{\text{meno, priezvisko,rod\_cislo}}(\text{os\_udaje}) \\ R_2 = \sigma_{\text{rod\_cislo}[3,3]>4} & R_1 & \text{//ženy} \\ R_3 = \sigma_{\text{rod\_cislo}[3,3]>4} & R_1 & \text{//muži} \end{array}
```

b) pomocou SQL príkazov

meno	priezvisko	rod_cislo
Stanislava	Slámová	796123/5471
Erika	Lipovská	755022/8569

```
SELECT * FROM r1
WHERE rod_cislo[3,3]<=4; //muži
```

meno	priezvisko	rod_cislo
Peter	Novák	801106/3456
Stanislav	Steinmüller	800312/7845
János	Tóth	790907/1259
Marek	Rátroch	810130/3695
Bohuslav	Biely	781201/1248
Branislav	Baláž	810514/5341
Peter	Kapustný	781015/4431
Marek	Ďurica	800407/3522
Martin	Kľúčiar	791229/5431
Ján	Krnáč	771203/5472

8.1.2 Ďalšie operácie relačnej algebry

V literatúre sa môžeme stretnúť s ďalšími operáciami relačnej algebry, ktoré sú rozšírením základných operácií relačnej algebry a sú to:

- a) prirodzené spojenie
- b) theta spojenie
- c) equi spojenie
- d) inequi spojenie
- e) externé spojenie
- f) polospojenie (semi spojenie)
- g) doplnok

8.1.2.1 PRIRODZENÉ SPOJENIE - NATURAL JOIN

Definícia – Prirodzené spojenie - Natural join

Operácia NATURAL JOIN (prirodzené spojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X, tretiu reláciu

$$R_3(X,A_1,A_2,...,A_a,B_1,B_2,...,B_m)$$
 takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ a pre hodnoty atribútov X platí

$$t_1.X=t_2.X$$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ má atribúty $\mathbf{t} = \mathbf{t}_1.\mathbf{X}$, $\mathbf{t}_1.\mathbf{A}_1$, $\mathbf{t}_1.\mathbf{A}_2$, ..., $\mathbf{t}_1.\mathbf{A}_a$, $\mathbf{t}_2.\mathbf{B}_1$, $\mathbf{t}_2.\mathbf{B}_2$, ..., $\mathbf{t}_2.\mathbf{B}_m$, pričom atribúty s rovnakými menami *sa neopakujú*.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_N R_2$$

$$R_3 = R_1 \text{ JOIN}_N R_2$$

$$R_3 = JOIN (R_1, R_2, N)$$

Príklad 8.15 - Prirodzené spojenie
Vypíšte pre každého študenta nasledovné údaje:
rodné číslo, meno, priezvisko, osobné číslo, ročník, študijná skupina
(Spravte teda to isté, čo v príklade 8.11, ale s potlačením duplicity stĺpca rodné číslo).

a) pomocou operácií relačnej algebry

 $\begin{array}{l} R_1 = \pi_{\text{rod_cislo, meno, priezvisko}}(\text{os_udaje}) \\ R_2 = \pi_{\text{os_cislo,rod_cislo, rocnik, st_skupina}}(\text{student}) \\ \text{SPOJENIE} = R_1 \; \textstyle \textstyle \bigotimes_N \; R_2 \end{array}$

b) pomocou SQL príkazov

SELECT rod_cislo, meno,
 priezvisko
FROM os_udaje
INTO TEMP r1;

SELECT os_cislo, rod_cislo,
 rocnik, st_skupina
FROM student

INTO TEMP r2;

SELECT r1.*,r2.os_cislo, r2.rocnik, r2.st_skupina FROM r1,r2

WHERE r1.rod_cislo = r2.rod_cislo;

rod_cislo	meno	priezvisko	os_cislo	rocnik	st_skupina
801106/3456	Peter	Novák	1512	1	5Z012
800312/7845	Stanislav	Steinmüller	1469	2	5Z021
790907/1259	János	Tóth	1414	2	5Z021
755022/8569	Erika	Lipovská	807	1	5Z013

SQL99

Špeciálny prípad

Ak relácie R a S sú UNION kompatibilné tak:

 $R \cap S = R \bowtie S$

THETA JOIN

Definícia –Theta join

Operácia THETA JOIN (Θ - spojenie) vytvorí z relácie $\mathbf{R_1}(\mathbf{X}, \mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_n})$ a z relácie $\mathbf{R_2}(\mathbf{X}, \mathbf{B_1}, \mathbf{B_2}, \dots, \mathbf{B_m})$, ktoré majú spoločnú množinu atribútov X tretiu reláciu $\mathbf{R_3}(\mathbf{X}, \mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_a}, \mathbf{X}, \mathbf{B_1}, \mathbf{B_2}, \dots, \mathbf{B_m})$ takú, že

ak $t_1 \in \mathbf{R}_1$ a ak $t_2 \in \mathbf{R}_2$ a pre hodnoty atribútov \mathbf{X} platí $\mathbf{t_1.X} \odot \mathbf{t_2.X}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ má atribúty $\mathbf{t} = \mathbf{t}_1.\mathbf{X}$, $\mathbf{t}_1.\mathbf{A}_1$, $\mathbf{t}_1.\mathbf{A}_2$, ..., $\mathbf{t}_1.\mathbf{A}_a$, $\mathbf{t}_2.\mathbf{X}$ $\mathbf{t}_2.\mathbf{B}_1$, $\mathbf{t}_2.\mathbf{B}_2$,..., $\mathbf{t}_2.\mathbf{B}_m$, pričom *operátor* Θ nadobúda hodnotu z množiny relačných operátorov $\{=,<,>,<=,>=,\neq\}$.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_{\theta} R_2$$

$$R_3 = R_1 \text{ JOIN}_{\theta} R_2$$

$$R_3 = JOIN(R_1, R_2, \theta)$$

Priklad 8.16 [Codd90]

Predpokladajme, že máme reláciu Výrobok (cis_vyrobku, nazov, mnozstvo) a reláciu Objednávka (cis_odberatela, cis_vyrobku, poz_mnostvo).

V prípade, že požiadavka je formulovaná nasledovne:

SELECT vyrobok.*, objednavka.*
FROM vyrobok, objednavka
WHERE
vyrobok.mnozstvo<objednavka.poz_mnozstvo

Výsledná relácia bude obsahovať atribúty z oboch relácií a tie n-tice, kde požadované množstvo je väčšie ako množstvo vyrobených výrobkov.

8.1.2.2 EQUI JOIN

Definícia – Equi join

Operácia EQUI JOIN je takou *operáciou o-spojenia*, kde operátor o nadobúda hodnotu relačného operátora =.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_E R_2$$

$$R_3 = R_1 \text{ JOIN}_E R_2$$

$$R_3 = JOIN(R_1, R_2, E)$$

8.1.2.3 INEQUI JOIN

Definícia – Inequi join

Operácia INEQUI JOIN je takou *operáciou ⊕-spojenia*, kde operátor ⊕ nadobúda hodnotu z množiny relačných operátorov {<,>,<=,>=,≠}.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 \bowtie_{\bar{E}} R_2$$

$$R_3 = R_1 \text{ JOIN}_{\bar{E}} R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, \bar{E})$$

8.1.2.4 EXTERNAL JOIN

Definícia – External join - FULL

Operácia EXTERNAL JOIN – FULL (Vonkajšie spojenie - úplné) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,...,A_a,X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$

potom n-tica $t \in R_3$ má atribúty $t = t_1.X$, $t_1.A_1$, $t_1.A_2$, ..., $t_1.A_a$, $t_2.X$, $t_2.B_1$, $t_2.B_2$, ..., $t_2.B_m$ a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota $t_1.X \notin \{\text{hodnôt } t_2.X\}$
- alebo hodnota $t_2.X \notin \{\text{hodnôt } t_1.X\}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice \mathbf{t} .m

Príklad 8.17 – External join FULL

Pomocou príkazov SQL realizujte úplné vonkajšie spojenie relácií r1 a r2 definovaných nasledovnými SELECT-ami:

SELECT UNIQUE os_cislo ,cis_predmet FROM zap_predmety INTO TEMP r1;

SELECT cis_predmet, nazov
FROM predmet
INTO TEMP r2;

Riešenie

SELECT r1.*, r2.*
FROM r1, OUTER r2
WHERE r1.cis_predmet=r2.cis_predmet
UNION
SELECT r1.*,r2.*
FROM OUTER r1, r2
WHERE r1.cis_predmet=r2.cis_predmet;

os_cislo	r1.cis_predmet	r2.cis_predmet A502 A506 A601	nazov C-jazyk Časti elektronických systémov Matematické programovanie
 807	 P202	 P202	 Matematická analýza 2
807	P203	1 202	matematicka anaryza z
807	P211	P211	Základy informatiky 2
807	V101	V101	Praktikum z programovania 1
	•••		
1448	P111	P111	Základy informatiky 1
1448	P202	P202	Matematická analýza 2
1448	P203		
1469	P203		
1469	P301	P301	Pravdepodobnosť
1469	P303	P303	Matematická analýza 3
1512	P102	P102	Algebra
1512	P103	P103	Matematická analýza 1
1512	P111	P111	Základy informatiky 1
1545	P103	P103	Matematická analýza 1
1545	P202	P202	Matematická analýza 2
1545	P203		
1555	P202	P202	Matematická analýza 2
1555	P203		
1555	P301	P301	Pravdepodobnosť
1555	P303	P303	Matematická analýza 3
1559	P201		
1559	P203		
	•••		

SQL99

```
SELECT r1.*, r2.*
FROM r1 FULL OUTER JOIN r2
ON r1.cis_predmet = r2.cis_predmet
```

Oracle

```
SELECT r1.*, r2.*
  FROM r1+, r2
  WHERE r1.cis_predmet = r2.cis_predmet
UNION
SELECT r1.*,r2.*
  FROM r1, r2+
  WHERE r1.cis_predmet = r2.cis_predmet;
```

Definícia – External join - LEFT

Operácia EXTERNAL JOIN – LEFT (vonkajšie spojenie - ľavé) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,...,A_a,X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ potom n-tica $t \in R_3$ má atribúty

 $t=t_1..X$, $t_1..A_1$, $t_1..A_2$,..., $t_1..A_a$, $t_2..X$, $t_2..B_1$, $t_2..B_2$,..., $t_2..B_m$. a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota t₂.X ∉ {hodnôt t₁.X}
 potom n-tica t ∈ R₃ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice t.

Príklad 8.18 – Externé spojenie LEFT

Pomocou príkazov SQL realizujte ľavé vonkajšie spojenie relácií r1 a r2 definovaných v predchádzajúcom príklade 8.17:

SELECT r1.*,r2.*
FROM OUTER r1, r2
WHERE r1.cis_predmet=r2.cis_predmet;

Os_cislo	r1.cis_predmet	r2.cis_predmet	nazov
945	P111	P111	Základy informatiky 1
1381	P111	P111	Základy informatiky 1
1414	P111	P111	Základy informatiky 1
1448	P111	P111	Základy informatiky 1
1512	P111	P111	Základy informatiky 1
 1333	 P602	 P602	 Číslicové počítače
1381	P609	P609	Manažment
		A601	Matematické programovanie
1333	A602	A602	Databázové systémy
1381	A602	A602	Databázové systémy
1612	A602	A602	Databázové systémy
		V502	Právo 1
		V601	Právo 2
		A702	Operačné systémy*
		A709	%Marketing
1103	A806	A806	Riadenie počítačom
		V719	Základy programovania vo Win.
945	A904	A904	Prognostika

```
SQL99

SELECT r1.*,r2.*

FROM r1 LEFT OUTER JOIN r2

ON r1.cis_predmet = r2.cis_predmet;

ORACLE

SELECT r1.*,r2.*

FROM r1+, r2

WHERE r1.cis_predmet = r2.cis_predmet;
```

Definícia – External join - RIGHT

Operácia EXTERNAL JOIN - RIGHT(vonkajšie spojenie - pravé) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2, ...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,...,A_a,X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ potom n-tica $t \in R_3$ má atribúty

 $t=t_1.X,t_1.A_1,t_1.A_2,...,t_1.A_a$, $t_2.X$, $t_2.B_1$, $t_2.B_2,...,t_2.B_m$. a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota t₁.X ∉ {hodnôt t₂.X}
 potom n-tica t ∈ R₃ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice t.

Priklad 8.19 - OUTER RIGHT

Pomocou príkazov SQL realizujte úplné vonkajšie spojenie relácií r1 a r2 definovaných v príklade 8.17:

SELECT r1.*,r2.*

FROM r1, OUTER r2

WHERE r1.cis_predmet=r2.cis_predmet;

os_cislo	r1.cis_predmet	r2.cis_predmet	nazov
807	P202	P202	Matematická analýza 2
807	P203		
807	P211	P211	Základy informatiky 2
807	V101	V101	Praktikum z programovania 1
		•••	
1545	P103	P103	Matematická analýza 1
1545	P202	P202	Matematická analýza 2
1545	P203		
1555	P202	P202	Matematická analýza 2
1555	P203		
1555	P301	P301	Pravdepodobnosť
1555	P303	P303	Matematická analýza 3
1559	P201		
1559	P203		
1567	P202	P202	Matematická analýza 2
1567	P203		
1567	V201	V201	Praktikum z programovania 2
SQL99			

SELECT r1.*,r2.*

FROM r1 RIGHT OUTER JOIN r2

ON r1.cis_predmet = r2.cis_predmet;

ORACLE

SELECT r1.*,r2.*

FROM r1, r2+

WHERE r1.cis_predmet = r2.cis_predmet;

8.1.2.5 SEMI JOIN

Definícia – Semi join

Operácia SEMI JOIN (polospojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$ tretiu reláciu $R_3(X,A_1,A_2,...,A_a)$ takú,

ak pre n-ticu $\mathbf{t}_1 \in \mathbf{R}_1$ existuje spojenie *aspoň* s jednou n-ticou $\mathbf{t}_2 \in \mathbf{R}_2$, potom $\mathbf{t}_1 \in \mathbf{R}_3$.

Poznámka

Základná operácia Polospojenia predpokladá, že výsledná relácia bude obsahovať n-tice len z prvej z relácií, ktoré sú operandami. Ale podobne ako pri Vonkajšom spojení aj pri polospojení rozlišujeme pravé, alebo ľavé polospojenie, z čoho vyplýva, že výsledná relácia je tvorená len výskytmi n-tíc tej relácie, ktorá je vo výraze umiestnená vpravo (pravé polospojenie), resp. vľavo (ľavé polospojenie). Z toho vyplýva, že základná operácia Polospojenia je vlastne definovaná ako Ľavé polospojenie.

Označenie – grafické

a) Semi join – LEFT

b) Semi join – RIGHT

Príklad 8.20 – Ľavé polospojenie

SELECT UNIQUE os_udaje.* FROM os_udaje, student

WHERE

os_udaje.rod_cislo=student.rod_cislo

Príklad 8.21 – Pravé polospojenie

SELECT UNIQUE student.*

FROM os_udaje, student

WHERE

os_udaje.rod_cislo=student.rod_cislo

8.1.2.6 COMPLEMENT

Definícia - Complement

Operácia COMPLEMENT (doplnok) vytvorí z relácie $\mathbf{R_1}(\mathbf{A_1, A_2, ..., A_n})$ reláciu $\mathbf{R_2}(\mathbf{A_1, A_2, ..., A_a})$ takú, že $\mathbf{t_2} \in \mathbf{R_2}$ obsahuje *všetky* n-tice, ktoré patria do Kartézskeho súčinu hodnôt domén atribútov relácie $\mathbf{R_1}$ a $\mathbf{t_2} \notin \mathbf{R_1}$

Označenie

a) grafické

b) matematické

$$R_2 = NOT (R_1)$$

$$R_2 = COMP (R_1)$$

$$R_2 = \neg R_1$$

Priklad 8.22

Nech existuje relácia R(A,B), pričom doména atribútu $A = \{1,2,3\}$ a doména atribútu $B = \{x,y,z,w\}$ a nech relácia R má nasledovné n-tice:

Α	В
1	X
1	у
1	Z
2	W

Potom výsledok operácie doplnok je relácia, ktorá má nasledovné n-tice:

А	В
1	W
2	Χ
2	Υ
2 2 3	Z
3	Χ
3	Υ
3	Z
3	W

8.2 Relačný kalkul

Relačný kalkul je základom pre pochopenie filozofie dotazovacích jazykov, ktoré sú založené na predikátovej logike prvého rádu. Sú založené na deklaratívnom popise dotazu, s dôrazom na obsah dotazu a nie na tom ako je samotný dotaz procedurálne spracovaný.

Existuje niekoľko variantov relačného kalkulu a tie najdôležitejšie sú:

- Doménový relačný kalkul (DRK)
- Vektorový relačný kalkul (VRK)

8.2.1 Doménový relačný kalkul

Definícia - Výraz doménového relačného kalkulu

Výraz relačného kalkulu má tvar:

$$\{A_1: x_1,..., A_k: x_k \mid f\}$$

kde:

 $A_1,...,A_k$ sú jednoznačné atribúty

 $x_{1,...,}x_{k}$ sú premenné

f je formula vytvorená podľa nasledovných pravidiel:

• Atomická formula v tvare:

 $R(A_1{:}x_1{,}...,A_p{:}x_p$,) kde $R(A_1{,}...,A_p$) je relačná schéma relácie R a $x_1{,}...,x_p$ sú premenné

alebo

 $x\theta y$ alebo $x\theta c$, kde x, y sú premenné, c je konštanta a θ je relačný operátor z množiny $\{=,<,>,<=,>=\}$

- Ak f_1 a f_2 sú formule, potom výrazy $f_1 \lor f_2$, $f_1 \land f_2$, $\neg f_2$ sú tiež formulami, kde (\neg, \land, \lor) sú logickými spojkami
- Ak f je formula a x premenná, potom výrazy $\exists x(f)$, $\forall x(f)$ sú tiež formulami, pričom $\exists a \forall x \in \mathcal{F}$ sú kvantifikátormi.

Poznámka

Zoznam dvojíc $A_1:x_1,...,A_k:x_k$ je tzv. cieľový zoznam, pretože určuje štruktúru výsledkovej množiny, vytvorenej nad relačnou schémou s atribútmi $A_1,...,A_k$ tak, že príslušné hodnoty n-tíc budú umiestnené do premenných $x_1,...,x_k$ ak formula f nadobúda hodnotu true.

Priklad 8.23

Ak máme schému z relácie UCITEL a výraz relačnej algebry

 $\sigma_{\text{katedra}=\text{KI}}(\text{UCITEL}),$

ktorý reprezentuje požiadavku na výber učiteľov z relácie UCITEL, ktorí vyhovujú podmienke, že sú z katedry informatiky.

V relačnom kalkule by výraz reprezentujúci rovnakú požiadavku vyzeral nasledovne:

{cis_ucitel:c,meno:m,priezvisko:p, katedra:k | UCITEL(cis_ucitel:c,meno:m,priezvisko:p, katedra:k) \(\lambda \) katedra=KI)}

Všimnime si samotnú formulu vo výraze relačného kalkulu, ktorá má dve časti spojené pomocou logického operátora **and** :

- Prvá časť UCITEL(cis_ucitel:c,meno:m,priezvisko:p, katedra:k) definuje, že hodnoty premenných c,m,p,k sú prevzaté z riadku relácie UCITEL;
- Druhá určuje podmienku, že hodnota premennej k musí nadobúdať hodnotu patriacu katedre informatiky, t. j. KI.

Výsledok obsahuje hodnoty štvorice premenných naplnené z n-tíc (riadkov) relácie UCITEL splňujúcu podmienku, že učiteľ je z katedry informatiky.

Priklad 8.24

Majme reláciu UCITEL ako v predchádzajúcom príklade a výraz relačnej algebry:

```
\pi_{\text{meno.priezvisko}}(\sigma_{\text{katedra=KI}}(\text{UCITEL})),
```

ktorý reprezentuje požiadavku na výpis zoznamu mien a priezvísk učiteľov, ktorí sú z katedry informatiky.

Výraz relačného kalkulu s použitím existencialistického kvantifikátora je nasledovný:

```
\{meno:m,priezvisko:p \mid \exists_{katedra}UCITEL(meno:m,priezvisko:p, katedra:k) \land katedra=KI)\}
```

V tomto prípade je však použitie existencialistického kvantifikátora zbytočné a výraz môžeme zjednodušiť bez straty významu s tým, že získame rovnaké výsledky:

```
{meno:m,priezvisko:p | UCITEL(meno:m,priezvisko:p, katedra=KI)}
```

Definicia – Doménová nezávislosť

Výraz dotazovacieho jazyka je doménovo nezávislý, ak jeho výsledok sa nemení pri zmene domény, na základe ktorej je výraz vyhodnotený.

Veta

Pre každý výraz relačného kalkulu, ktorý je doménovo nezávislý existuje výraz relačnej algebry, ktorý je ekvivalentný s výrazom relačného kalkulu.

Veta

Pre každý výraz relačnej algebry existuje ekvivalentný výraz relačného kalkulu.

•

8.2.2 Vektorový relačný kalkul

Na prekonanie obmedzení vyplývajúcich z doménového kalkulu bol definovaný variant relačného kalkulu, v ktorom sa používajú premenné pre celé n-tice, namiesto jednotlivých hodnôt. Týmto sa podarí redukovať počet premenných tak, že pre každú použitú reláciu existuje práve jedna premenná. Vektorový relačný kalkul je však ekvivalentný s doménovým relačným kalkulom, vrátane nevýhody vyplývajúcej z doménovej závislosti.

Definícia - Výraz vektorového relačného kalkulu [Atzeni99]

Výraz vektorového kalkulu je trojica v tvare:

$\{T|L|f\}$

kde:

L je tzv. zoznam pre n-tice relácií, t. j. zoznam prvkov typu x(R), kde x je premenná a R je meno relácie

T je tzv. *cieľový zoznam*, t. j. zoznam elementov v tvare *Y:x.Z* (alebo jednoduchšie *x.Z*, čo zodpovedá výrazu *Z:x.Z*), kde *x* je premenná, *Y* a *Z* sú zoznamy atribútov (rovnakej dĺžky), také, že atribúty *Z* sa musia nachádzať v schéme relácie

f je formula v tvare:

- atómu typu $x.A \vartheta c$, ktorá porovnáva hodnotu x atribútu A s konštantou c
- atómu typu $x_1.A_1 \vartheta x_2.A_2$, ktorá porovnáva hodnotu x_1 atribútu A_1 s hodnotou x_2 atribútu A_2
- logickými spojkami ako v doménovom kalkule
- kvantifikátormi, vyjadrujúcimi rozsah premenných:

 $\exists x(R)(f)$, $\forall x(R)(f)$, $kde \exists x(R)(f)$ znamená, že existuje taká n-tica x z relácie R, ktorá vyhovuje formule f a $\forall x(R)(f)$ znamená, že každá že n-tica x z relácie R vyhovuje formule f

Poznámka

Cieľový zoznam predstavuje zoznam premenných, do ktorých budú vložené hodnoty príslušných atribútov n-tice tvorenej z relácií, ktoré sa nachádzajú v zozname relácií a vyhovujú podmienke definovanej formulou. V prípade, ak cieľový zoznam obsahuje všetky atribúty vyskytujúce sa v relácii, môžeme písať skrátene x.*, ako skratku pre zápis všetkých atribútov v tvare X: x.X, ktoré sa vyskytujú v relácii.

Zoznam premenných pre n-tice relácií je vlastne zoznam premenných, do ktorých sa načítajú n-tice príslušných relácií, tieto premenné a jednotlivé atribúty z nich môžeme ďalej použiť pri vyhodnocovaní v podmienke definvanej formulou f, alebo môžu byť prevzaté do cieľového zoznamu.

Príklad 8.25- Výraz pre jednu reláciu a jej všetky atribúty
Ak máme schému z relácie UCITEL a požiadavku na výber dát o učiteľoch z relácie UCITEL, ktorí vyhovujú podmienke, že sú z katedry informatiky, potom by v n-ticovom relačnom kalkule by výraz vyzeral nasledovne:

{u.*|u(UCITEL)|u.katedra=KI}

V tomto prípade by boli do premennej u vybrané hodnoty pre všetky atribúty n-tíc relácie, pre ktoré platí podmienka, že učiteľ je z katedry informatiky

Príklad 8.26 -Výraz pre jednu reláciu a jej vybrané atribúty

Ak máme schému z relácie UCITEL a požiadavku na výber mien a priezvisk učiteľov z relácie UCITEL, ktorí vyhovujú podmienke, že sú z katedry informatiky, potom by výraz v n-ticovom relačnom kalkule vyzeral nasledovne:

{u.(meno,priezvisko)|u(UCITEL)|u.katedra=KI} alebo {u.meno,u.priezvisko|u(UCITEL)|u.katedra=KI}

V tomto prípade sa vyberajú len hodnoty atribútov meno a priezvisko z relácie UCITEL, pre ntice, ktoré vyhovujú danej podmienke.

Príklad 827 - Výraz pracujúci s viacerými reláciami

Ak máme schémy z relácií OS_UDAJE a ŠTUDENT a požiadavku na výber mien a priezvisk študentov z relácie OS_UDAJE, ktorí vyhovujú podmienke, že sú študentmi tretieho ročníka, potom by výraz v n-ticovom relačnom kalkule vyzeral nasledovne:

{o.(meno,priezvisko)|o(OS_UDAJE),s(ŠTUDENT)| s.ročník=3^o.rod_cislo=s.rod_cislo}