

OBJETIVOS:

- ENTENDER COMO SE GENERA Y SE MANTIENE EL FLUJO DE ENERGIA EN TODOS LOS ECOSISTEMAS
- 2. APRENDER COMO Y PORQUE EL FLUJO DE ENERGIA EN LAS CADENAS TROFICAS ES INEFICIENTE
- 3. APRENDER QUE LIMITA LA PRODUCTIVIDAD DE UN ECOSISTEMA
- 4. CUESTIONARNOS COMO PODEMOS APRENDER DE LA NATURALEZA Y EL CICLAJE DE MATERIA PARA GENERAR PROCESOS "HUMANOS" QUE SEAN SOSTENIBLES, CICLICOS Y EFICIENTES

 La energía entra al ecosistema como luz y se pierde en forma de calor.

Niveles tróficos

 Los nutrientes circulan indefinidamente transformados en compuestos orgánicos e inorgánicos.

- Materia orgánica: C elemento fundamental
- ✓ Materia inorgánica: estructura molecular no se basa principalmente en el carbono

Toda la Energía que entra al sistema viene del sol

Fotosíntesis:

- plantas, algas y algunas bacterias capturan la energía lumínica
- transforman y almacenan en moléculas de azúcar (carbohidratos) (C₆H₁₂O₆)
 - Energía lumínica -> energía química

PRODUCTORES PRIMARIOS

AUTÓTROFOS:

- producen propio alimento a partir de sustancias químicas y la energía del sol.
 - Tierra: plantas
 - Agua: algas, plantas o fitoplancton (marina y agua dulce)
- Energía solar activa los procesos químicos en el aparato fotosintético para producir carbohidratos (azucares)

PRODUCTORES PRIMARIOS

FOTOSINTESIS:

PRODUCTIVIDAD PRIMARIA: una medida importante de la energía disponible en el ecosistema

Eficiencia en la producción primaria

Figure 20.1
Ricklefs, Ecology: The Economy of Nature, 8e, © 2018 W. H. Freeman and Company

- Organismos que obtienen su alimento y energía comiendo o descomponiendo partes de otros organismos o sus restos
- HETERÓTROFOS
 - Consumidores primarios: Herbívoros
 - Consumidores secundarios:
 Carnívoros
 - Consumidores terciarios:
 Carnívoros que se alimentan de Carnívoros (carroñeros entran aquí)

VEGANO

VEGANO

VEGETARIANO

VEGANO

VEGETARIANO

COMES DE TODO

- Organismos que obtienen su alimento y energía comiendo o descomponiendo partes de otros organismos o sus restos
- HETERÓTROFOS
 - Consumidores primarios: Herbívoros
 - Consumidores secundarios:
 Carnívoros
 - Consumidores terciarios:
 Carnívoros que se alimentan de Carnívoros (carroñeros entran aquí)

Omnívoros son consumidores primarios y secundarios

Eficiencia de la producción secundaria

FLUJO DE ENERGIA EN UN ECOSISTEMA

Relación entre la productividad primaria y secundaria

Figure 20.6
Ricklefs, Ecology: The Economy of Nature, 8e, © 2018 W. H. Freeman and Company

Cómo fluye esa energía en los ecosistemas?

La perdida de energía se mantiene al pasar a niveles tróficos mayores

La productividad primaria neta no esta repartida uniformemente sobre la tierra

- Las zonas mas productivas son los tropicos, pantanos, estuarios, pastos, arrecifes y cultivos.
- Las menos productivas Tundra y desiertos, y oceano abierto

Net primary productivity (g C/m²/year)

QUÉ LIMITA LA PRODUCTIVIDAD?

- Factor limitante: demasiado o muy poco de un factor abiótico que previene el crecimiento, aún cuando los otros factores están en su rango óptimo de tolerancia
 - CO₂
 - Temperatura
 - Radiación solar
 - Agua
 - Nutrientes (Nitrógeno, Fósforo, etc.)

¿Que limita la productividad primaria?

Figure 20.9 Ricklefs, *Ecology: The Economy of Nature*, 8e, © 2018 W. H. Freeman and Company

Factores que influencian la producción primaria: LUZ, TEMPERATURA, AGUA

Por eso la productividad primaria varia con los ecosistemas

¿Como se inicia el flujo de energía en ecosistemas sin luz solar?

¿Como se inicia el flujo de energía en ecosistemas sin luz solar?

Respiradero hidrotermal Sulfuro de hidrógeno Pluma de ventilación rica en químicos Oxígeno Energía química Azúcar Microbios comida) Chimenea Tapete Gusanos tubícolas de viento microbiana

Quimiosíntesis

El proceso por el cual los microbios, como las bacterias y las arqueas, crean azúcares (alimentos) utilizando la energía liberada de las reacciones químicas.

- Aguas ricas en químicos emergen debajo del lecho marino en fuentes hidrotermales y emanaciones frías.
- Algunas reacciones químicas liberan energía química. Los microbios quimiosintéticos aprovechan la energía química liberada durante las reacciones con los productos químicos de ventilación o emanación.
- Los microbios utilizan la energía química para convertir el carbono inorgánico en moléculas orgánicas, o alimento, mediante el proceso de fijación de carbono.
- Los microbios crecen y se reproducen, y son comidos u hospedados como simbiontes internos por otros animales como gusanos tubícolas y mejillones.

Oxígeno Energía química Azúcar Microbios (comida) 3

Tapete

microbiana

Emanación

fría

Gusanos

tubícolas

Meiillones

Emanación fría

¿COMO PODEMOS APRENDER DE LA NATURALEZA Y EL CICLAJE DE MATERIA PARA GENERAR PROCESOS "HUMANOS" QUE SEAN SOSTENIBLES, CICLICOS Y EFICIENTES?

Conclusiones

- Los ecosistemas dependen de la luz solar o reacciones químicas para generar el flujo de energía.
- El flujo y su ineficiencia hace que la energía disponible disminuya en cada paso de las cadenas tróficas.
- La productividad de los ecosistemas está limitada por la disponibilidad de recursos (materias primas de la fotosíntesis) y/o factores limitantes.