Th.
$$A' = T_{e \to e'} A T_{e \to e'}^{-1}$$

Nota. $C = A + \lambda B$

Следствия:

- 1. $TCT^{-1} = T(A + \lambda B)T^{-1} = TAT^{-1} + \lambda TBT^{-1}$
- 2. B = I $TBT^{-1} = TIT^{-1} = I$, T. K. TI = T, $TT^{-1} = I$
- 3. $\det A^{-1} = \det(TAT^{-1}) = \det T \det A \det T^{-1} = \det A \cdot 1$

Nota. То есть характеристика нашего объекта - инвариант при преобразовании T

 $\mathbf{Def.}$ Матрица A называется ортогональной если $A^{-1} = A^T$

Следствие: $AA^{-1} = AA^{T} = I$

$$\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
a_{11} & a_{21} & \dots & a_{n1} \\
a_{12} & a_{22} & \dots & a_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \dots & a_{nn}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & \dots & 0 \\
0 & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 1
\end{pmatrix}$$

Для элементов матрицы:

$$\forall i \sum_{j=1}^{n} a_{ij} a_{ij} = (A_i, A_i) = 1$$

$$\forall i, j (i \neq j) \sum_{k=1}^{n} a_{ik} a_{jk} = (A_i, A_j) = 0$$

$$\forall i, j (i \neq j) \sum_{kk=1}^{n} a_{ik} a_{jk} = (A_i, A_j) = 0$$
В общем, $(A_i, A_j) = \begin{bmatrix} 1, & i = j \\ 0, & i \neq j \end{bmatrix}$

 $\mathbf{Def.}$ Оператор $\mathcal A$ называется ортогональным, если его матрица ортогональна

Возникает вопрос: А ортогональна в каком-либо базисе или во всех сразу?

Свойство: если \mathcal{A} - ортогонален, то $\det A = \pm 1$ (следует из определения $\det(AA^T) = \det(A)$. $\det(A^T) = \det(A) \cdot \det(A) = \det(I) = 1 \Longrightarrow \det(A) = \pm \sqrt{1}$

Th. $T_{e \to e'}$ - преобразование координат в V^n . Тогда T - ортогональный оператор

Здесь базис е - ортонормированный базис

Пусть в базисе
$$e$$
 матрица $T = \begin{pmatrix} \tau_{11} & \dots & \tau_{1n} \\ \vdots & \ddots & \vdots \\ \tau_{n1} & \dots & \tau_{nn} \end{pmatrix}$ - неортогональна

Тогда
$$e_1' = \sum_{i=1}^n \tau_{1i} e_i \quad \Big| \cdot e_1'$$

$$1 = (e'_1, e'_1) = \left(\sum_{i=1}^n \tau_{1i} e_i\right)^2 = \tau_{11}^2 e_1^2 + \tau_{11} e_1 \tau_{12} e_2 + \dots = \tau_{11}^2 + \dots + \tau_{1n}^2 = 1, \text{ то есть строка - это}$$

единичный вектор

 $0=(e_1',e_2')=(au_{11}e_1+ au_{12}e_1+\dots)\cdot(au_{21}e_1+ au_{22}e_2+\dots)=$ произведение 1-ой строки на 2-ую, то есть строки ортогональны

Таким образом, матрица T - ортогональна

Nota. Тогда $A' = TAT^{-1} = TAT^{T}$

2.7. Собственные векторы и значения оператора

Def. Инвариантное подпространство оператора $\mathcal{A}: V \to V$ - это $U = \{x \in V_1 \in V \mid \mathcal{A}x \in V_1\}$

$$Ex.\ V = \mathcal{P}_n(t)$$
 - пространство многочленов степени $\leq n$ на $[a;b],\ \mathcal{D} = \frac{d}{dt}$

 $Nota. \ \mathrm{Ker}\, \mathcal{A}, \mathrm{Im}\, \mathcal{A}$ - инвариантные $(A:V \to V)$

Def. Характеристическим многочленом оператора $\mathcal{A}: V \to V$ ($\mathcal{A}x = Ax, A$ - матрица в неком базисе) называют $\xi(\lambda) = \det(A - \lambda I)$

$$Nota.$$
 Определитель $|A-\lambda I|$ представляет собой $\begin{vmatrix} a_{11}-\lambda & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn}-\lambda \end{vmatrix}$

Nota. Уравнение $\xi(\lambda) = 0$ называется вековым

Def. Собственным вектором оператора \mathcal{A} , отвечающим собственному значению λ , называется вектор $x \neq 0$ такой, что $\mathcal{A}x = \lambda x$

Def. Собственное подпространство оператора \mathcal{A} , отвечающее числу λ_i , определяется как $U_{\lambda_i} = \{x \in V \mid \mathcal{A}x = \lambda_i x\} \cup \{0\}$

 $\mathbf{Def.}\ \dim U_{\lambda_i} = \beta$ - геометрическая кратность числа λ_i

Th.
$$\mathcal{A}x = \lambda x \iff \det(A - \lambda I) = 0, \quad A: V^n \to V^n$$

$$|A - \lambda I| = 0 \Longleftrightarrow rang(A - \lambda I) < n \Longleftrightarrow \dim \operatorname{Im}(A - \lambda I) < n \Longleftrightarrow \dim \operatorname{Ker}(A - \lambda I) \ge 1$$
$$\exists x \in \operatorname{Ker}(A - \lambda I), x \ne 0 \mid (A - \lambda I)x = 0 \Longleftrightarrow Ax - \lambda Ix = 0 \Longleftrightarrow Ax = \lambda x$$

Nota. По основной теореме алгебры вековое уравнение имеет n корней (не всех из них вещественные). В конкретном множестве $\mathcal{K} \ni \lambda$ их может не быть

Def. Кратность корня λ_i называется алгебраической кратностью

Th.
$$\lambda_1 \neq \lambda_2(\mathcal{A}x_1 = \lambda_1 x_1, \mathcal{A}x_2 = \lambda_2 x_2) \Longrightarrow x_1, x_2$$
 - линейно независимы

Составим комбинацию:
$$c_1x_1+c_2x_2=0$$
 $\Big|\cdot\mathcal{A}$ $\lambda_1\neq\lambda_2\Longrightarrow\lambda_1^2+\lambda_2^2\neq0,\exists\ \lambda_2\neq0$ $c_1\mathcal{A}x_1+c_2\mathcal{A}x_2=0\Longleftrightarrow c_1\lambda_1x_1+c_2\lambda_2x_2=0$ Умножим $c_1x_1+c_2x_2=0$ на $\lambda_2\colon c_1\lambda_2x_1+c_2\lambda_2x_2=0$ $c_1\lambda_1x_1+c_2\lambda_2x_2-c_1\lambda_2x_1-c_2\lambda_2x_2=0$ $c_1x_1(\lambda_1-\lambda_2)=0$ Так как $\lambda_1\neq\lambda_2$ по условию, $x_1\neq0$ - собственный вектор, поэтому $c_1=0$, а комбинация линейно независима E сли $\lambda_1=0,\lambda_2\neq0$: $c_2\lambda_2x_2=0\Longrightarrow c_2=0$

Nota. Приняв доказательство за базу индукции, можно доказать линейную независимость для k-ой системы собственных векторов для попарно различных k чисел λ