

Upravte Vašu operáciu aby bola:

 komutatívna 	•	kom	utai	tívna
---------------------------------	---	-----	------	-------

- asociatívna
- mala nulu

mala		
	opačné	DI ATZA

	0	1	2	3
0				
1				
2				
3				

Upravte Vašu operáciu

	4_	1/
KOM)	$\Pi \Gamma \mathfrak{P}$	tívna
		OT A TTOO

- asociatívna
- mala nulu
- mala opačné prvky

	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)				
(0,1)				
(1,0)				
(1,1)				

Upravte Vašu operáciu

	4_	4/
Kom		tívna
		CH A THESE

- asociatívna
- mala nulu

\mathbf{m}		n PV KV
	opačné	DI ATTA

	0	1	\boldsymbol{x}	<i>x</i> +1
0				
1				
x				
<i>x</i> +1				

Navrhnite operáciu

	0	1
0		
1		

- komutatívna
- asociatívna
- mala nulu
- mala opačné prvky

Navrhnite operáciu sčítania

nad abecedou binárnych polynómov $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

- komutatívna
- asociatívna
- mala nulu
- mala opačné prvky

Navrhnite operáciu násobenia

	0	1
0		
1		

- komutatívna
- asociatívna
- mala jednotku inú než nulu

Navrhnite operáciu násobenia

nad abecedou binárnych polynómov $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

- komutatívna
- asociatívna
- mala jednotku

Obor integrity

Nech na množine F sú definované dve binárne operácie 🕀, 🛇 s týmito vlastnosťami

- operácie 🕀, 🛇 sú komutatívne a asociatívne
- existuje neutrálny prvok $0 \in F$ vzhľadom na operáciu \oplus a neutrálny prvok $1 \in F$ vzhľadom na operáciu \otimes , pričom $1 \neq 0$
- pre každé $f \in F$ existuje inverzný prvok vzhľadom na operáciu \oplus
- pre každé $f_{_1}$, $f_{_2}$, $f_{_3}$ \in F platí distributívny zákon $f_{_1} \otimes \left(f_{_2} \oplus f_{_3}\right) = \left(f_{_1} \otimes f_{_2}^-\right) \oplus \left(f_{_1} \otimes f_{_3}^-\right)$
- pre každé $f_{_1}$, $f_{_2} \in {\cal F}$ také, že $f_{_1} \otimes f_{_2} = 0$ platí $f_{_1} = 0$ alebo $f_{_2} = 0.$

Potom algebrickú štruktúru ($\mathcal{O}_{,}\oplus$, \otimes) voláme <u>oborom integrity.</u>

Obor integrity

0	000	0
1	001	1
2	010	\boldsymbol{x}
3	011	<i>x</i> +1
4	100	x^2
5	101	x^2+1
7	111	$x^2 + x + 1$

KIS – FRI ŽU

Euklidov obor integrity

Nech na množine F sú definované dve binárne operácie 🕀, 🛇 s týmito vlastnosťami

- operácie 🕀, 🛇 sú komutatívne a asociatívne
- existuje neutrálny prvok $0 \in F$ vzhľadom na operáciu \oplus a neutrálny prvok $1 \in F$ vzhľadom na operáciu \otimes , pričom $1 \neq 0$
- pre každé $f \in F$ existuje inverzný prvok vzhľadom na operáciu \oplus
- pre každé $f_1^-, f_2^-, f_3^- \in F^-$ platí distributívny zákon $f_1^- \otimes \left(f_2^- \oplus f_3^-\right) = \left(f_1^- \otimes f_2^-\right) \oplus \left(f_1^- \otimes f_3^-\right)$
- pre každé f_1 , $f_2 \in F$ také, že $f_1 \otimes f_2 = 0$ platí $f_1 = 0$ alebo $f_2 = 0$.

Potom algebrickú štruktúru ($\mathcal{Q}_{,}\oplus$, \otimes) voláme <u>oborom integrity.</u>

- Obor integrity (Φ, \oplus, \otimes) sa volá euklidovským, ak existuje zobrazenie $\delta \colon F \{0\} \to N$ tak, že platí
- ak ϕ' je deliteľom prvku ϕ potom $\mathcal{S}(\phi') \leq \mathcal{S}(\phi)$
- pre každé $\phi_1 \phi_2 \in \mathcal{D}$ existujú prvky ϕ , $\phi' \in \mathcal{D}$ tak, že $\phi_2 = \phi_1 \otimes \phi + \phi'$, pričom alebo f' = 0, alebo $f' \neq 0$ a $\delta(\phi') < \delta(\phi_1)$

Delitel' prvku

0	000	0
1	001	1
2	010	x
3	011	<i>x</i> +1
4	100	x^2
5	101	x^2+1
7	111	$x^2 + x + 1$

KIS – FRI ŽU

Veľkosť prvku

Obor integrity $(\mathcal{O},\oplus,\otimes)$ sa volá euklidovským, ak existuje zobrazenie $\delta\colon F-\{0\}\to N$ tak, že platí

- ak $\,\phi'\,$ je deliteľom prvku $\,\phi\,$ potom $\,\mathcal{S}(\,\phi')\,\leq\,\mathcal{S}(\,\phi)\,$
- pre každé ϕ_1 ϕ_2 \in \mathcal{D} existujú prvky ϕ , ϕ' \in \mathcal{D} tak, že $\phi_2 = \phi_1 \otimes \phi + \phi'$, pričom alebo f' = 0, alebo $f' \neq 0$ a $\delta(\phi') < \delta(\phi_1)$

0	000	0
1	001	1
2	010	\boldsymbol{x}
3	011	<i>x</i> +1
4	100	x^2
5	101	x^2+1
7	111	$x^2 + x + 1$

veľkosť polynómu = = stupeň polynómu

Vypočítajte

2015:8=

Vypočítajte

$$x^{6}+x^{5}+x^{2}+x+1:x^{2}+x+1=$$

Vypočítajte

$$x^{6}+x^{5}+x^{2}+x+1:x^{2}+x+1=$$
 $(1100111):(111)=$