Справочник формул по математике

Калитвин В.А. kalitvin@gmail.com

1 ноября 2017 г.

1. Признаки делимости

на 2 — последняя цифра числа чётная

на 3 — сумма цифр числа делится на 3

на 4 — две последние цифры числа нули или образуют число, делящиеся на 4

на 5 — последняя цифра числа 0 или 5

на 6 — число должно делится на 2 и на 3

на 7 — число, полученное вычитанием удвоенной последней цифры из исходного числа с отброшенной последней цифрой, делится на 7 (Пример: 5915, 591-10=581)

на 8 — три последние цифры числа нули или образуют число, делящееся на 8

на 9 — сумма цифр числа делится на 9

на 10 — число должно заканчиваться на 0

на 11 — сумма цифр, стоящих на четных местах, отличается от суммы цифр, стоящих на нечётных местах, на число, кратное 11

на 25 — две последние цифры цисла 00, 25, 50 или 75

2. Формулы сокращенного умножения

Квадрат суммы

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

Квадрат разности

$$(a-b)^2 = a^2 - 2ab + b^2$$

Разность квадратов

$$a^2 - b^2 = (a - b)(a + b)$$

Куб суммы

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Куб разности

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Сумма кубов

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Разность кубов

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Для $n \in N$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

Если n - четное

$$a^{n} - b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots + ab^{n-2} + b^{n-1})$$

Если n - нечетное

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1})$$

Бином Ньютона

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k =$$

$$= C_n^0 a^n + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a^1 b^{n-1} + C_n^n b^n,$$

где $C_n^k = \frac{n!}{k!(n-k)!}$ — число сочетаний из n по k.

3. Свойства степени

$$\begin{array}{lll} a^0 = 1 & a^m \cdot a^n = a^{m+n} \\ a^m : a^n = a^{m-n} & a^{-n} = \frac{1}{a^n} \\ (a^m)^n = a^{mn} & (\frac{a}{b})^{-m} = (\frac{b}{a})^m \\ (a \cdot b)^m = a^m \cdot b^m & a\frac{1}{n} = \sqrt[n]{a} \\ (\frac{a}{b})^m = \frac{a^m}{b^m} & a\frac{n}{n} = \sqrt[n]{a^m} \end{array}$$

4. Свойста квадратного (арифметического) корня

$$\begin{array}{ll} \sqrt{a} \cdot \sqrt{b} = \sqrt{ab} & \sqrt[n]{a} = \sqrt[nk]{a^k} \\ \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}, b \neq 0 & \sqrt[n]{a} \cdot \sqrt[nk]{b} = \sqrt[nk]{a} \cdot b \\ (\sqrt{a})^m = \sqrt{a^m} & \frac{\sqrt[nk]{a}}{\sqrt[nk]{b}} = \sqrt[nk]{\frac{a}{b}}, b \neq 0 \\ \sqrt{ab} = \sqrt{|a|} \cdot \sqrt{|b|} & (\sqrt[nk]{a})^m = \sqrt[nk]{a^m} \\ \sqrt{\frac{a}{b}} = \frac{\sqrt{|a|}}{|b|}, b \neq 0 & \sqrt[nk]{m} = \sqrt[nk]{a} \\ \sqrt{a^m} = (\sqrt{|a|})^m & \end{array}$$

5. Модуль числа

$$|a| = \begin{cases} a, a \ge 0, \\ -a, a < 0, \end{cases}, |a| = \sqrt{a^2}$$

Свойства

$$\begin{array}{ll} |a| \geq 0; & |a \cdot b| = |a| \cdot |b| & |a+b| \leq |a| + |b| \\ |a| = 0 \Leftrightarrow a = 0 & \left|\frac{a}{b}\right| = \frac{|a|}{|b|}, b \neq 0 & |a-b| \geq ||a| - |b|| \\ |x| \leq a, a \geq 0 \Leftrightarrow -a \leq x \leq a & |x| \geq a \Leftrightarrow x \geq a \text{ или } x \leq -a \end{array}$$

Геометрический смысл модуля |a| — расстояние от 0 до точки a. |a-b| — расстояние между точками a и b.

6. Прогрессии

Арифметическая прогрессия

$$a_{n+1} = a_n + d,$$

где d — разность прогрессии Формулы n-го члена

$$a_n = a_1 + (n-1)d$$

$$a_n = a_k + (n-k)d$$

$$a_n = \frac{a_{n-k} + a_{n+k}}{2}$$

Формулы суммы первых n членов

$$S_n = \frac{2a_1 + (n-1)d}{2} \cdot n = \frac{a_1 + a_n}{2} \cdot n$$

Формула для разности

$$d = a_{n+1} - a_n$$

Если n+m=k+p, то

$$a_n + a_m = a_k + a_p$$

Сумма последовательных натуральных чисел от 1 до n:

$$S = \frac{n(n+1)}{2}$$

Геометрическая прогрессия

$$b_{n+1} = b_n \cdot q,$$

где $q \neq 0$ — знаменатель прогрессии

Формулы n-го члена

$$b_n = b_1 \cdot q^{n-1}$$
$$b_n = b_k \cdot q^{n-k}$$
$$b_n^2 = b_{n-k} \cdot b_{n+k}$$

Формулы суммы первых n членов

$$S_n = b_1 \frac{1 - q^n}{1 - q} = b_1 \frac{q_n - 1}{q - 1}, q \neq 1$$

 $S_n = b_1 \cdot n, q = 1$

Формула для знаменателя

$$q = \frac{b_{n+1}}{b_n}$$

Если n+m=k+p, то

$$b_n \cdot b_m = b_k \cdot b_p$$

Сумма бесконечно убывающей геометрической прогрессии

$$S = \frac{b_1}{1 - q}, |q| < 1$$

7. Тригонометрия

Знаки тригонометрических функций по четвертям

Тригонометрические тождества

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$$

$$|\cos \alpha| = \sqrt{1 - \sin^2 \alpha}$$

$$|\sin \alpha| = \sqrt{1 - \cos^2 \alpha}$$

$$\operatorname{tg} \alpha = \frac{1}{\operatorname{ctg} \alpha}$$

$$\operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha}$$

$$1 + \operatorname{tg}^2 \alpha = \frac{1}{\sin^2 \alpha} = \csc^2 \alpha$$

$$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha} = \csc^2 \alpha$$

Формулы сложения тригонометрических функций

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$
$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta}{\cot \beta \pm \cot \alpha}$$

Тригонометрические функции двойного аргумента

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha} = \frac{2}{\cot \alpha}$$

$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha} = \frac{\cot \alpha - \tan \alpha}{2}$$

Тригонометрические функции тройного аргумента

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$
$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

$$tg \, 3\alpha = \frac{3 tg \, \alpha - tg^3 \, \alpha}{1 - 3 tg^2 \, \alpha}$$
$$ctg \, 3\alpha = \frac{ctg^3 \, \alpha - 3 ctg \, \alpha}{3 ctg^2 \, \alpha - 1}$$

Тригонометрические функции половинного аргумента

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$tg^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

$$ctg^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{1 - \cos \alpha}$$

$$tg \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

$$ctg \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}$$

Выражение тригонометрических функций через тангенс половинного угла

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^{2} \frac{\alpha}{2}}$$

$$\cos \alpha = \frac{1 - \operatorname{tg}^{2} \frac{\alpha}{2}}{1 + \operatorname{tg}^{2} \frac{\alpha}{2}}$$

$$\operatorname{tg} \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 - \operatorname{tg}^{2} \frac{\alpha}{2}}$$

$$\operatorname{ctg} \alpha = \frac{1 - \operatorname{tg}^{2} \frac{\alpha}{2}}{2 \operatorname{tg} \frac{\alpha}{2}}$$

Формулы преобразования суммы в произведение

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\tan x + \tan y = \frac{\sin(x+y)}{\cos x \cos y}$$

$$\tan x - \tan y = \frac{\sin(x-y)}{\cos x \cos y}$$

$$\operatorname{ctg} x + \operatorname{ctg} y = \frac{\sin(x+y)}{\sin x \sin y}$$

$$\operatorname{ctg} x - \operatorname{ctg} y = -\frac{\sin(x-y)}{\sin x \sin y}$$

$$\operatorname{tg} x + \operatorname{ctg} y = \frac{\cos(x-y)}{\cos x \sin y}$$

$$\operatorname{tg} x - \operatorname{ctg} y = -\frac{\cos(x+y)}{\cos x \sin y}$$

$$\operatorname{tg} x - \operatorname{ctg} y = -\frac{\cos(x+y)}{\cos x \sin y}$$

$$\operatorname{tg} x + \operatorname{ctg} x = \frac{1}{\sin x \cos x} = \frac{2}{\sin 2x}$$

$$\operatorname{tg} x - \operatorname{ctg} x = -2\frac{\cos 2x}{\sin 2x} = 2\operatorname{ctg} 2x$$

$$\operatorname{cos} x + \sin x = \sqrt{2}\cos(45^\circ - x) = \sqrt{2}\sin(45^\circ + x)$$

$$\operatorname{cos} x - \sin x = \sqrt{2}\sin(45^\circ - x) = \sqrt{2}\cos(45^\circ + x)$$

$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)$$
, где $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$

Формулы преобразования произведения в сумму

$$\sin x \sin y = \frac{1}{2} \left(\cos(x - y) - \cos(x + y) \right)$$
$$\cos x \cos y = \frac{1}{2} \left(\cos(x - y) + \cos(x + y) \right)$$
$$\sin x \cos y = \frac{1}{2} \left(\sin(x - y) + \sin(x + y) \right)$$

Значения тригонометрических функций некоторых углов

Угол в градусах	0°	30°	45°	60°	90°	180°	270°	360°
Угол в радианах	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	0	_	0
$\operatorname{ctg} \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	_	0	_

Тригонометрическая окружность

Свойства обратных тригонометрических функций

$$\begin{split} \arcsin(-a) &= -\arcsin a, |a| \leq 1 \\ \arccos(-a) &= \pi - \arccos a, |a| \leq 1 \\ \arctan(-a) &= -\arctan \epsilon a, a \in R \\ \arctan(-a) &= \pi - \arctan \epsilon a, a \in R \\ \arctan a + \arccos a &= \frac{\pi}{2}, |a| \leq 1 \\ \arctan a + \arctan a &= \frac{\pi}{2}, a \in R \end{split}$$

8. Некоторые пределы

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

$$\lim_{x\to 0} \frac{tgx}{x} = 1$$

$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a, a > 0$$

$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

9. Производная

Производной функции f(x) в точке x_0 называется предел отношения приращения функции $\Delta f = f(x_0 + \Delta x) - f(x_0)$ к приращению аргумента Δx при $\Delta x \to 0$, если этот предел существует

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Геометрический смысл производной

Производная в точке x_0 равна угловому коэффициенту касательной к графику функции f(x) в этой точке

Уравнение касательной

к графику функции f(x) в точке x_0

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Вторая производная

Второй производной функции y = f(x) называется производная от производной f'(x) и обозначается f''(x).

Физический смысл производной

Если точка перемещается по оси x и ее координата изменяется по закону x(t), то мгновенная скорость точки - производная функции x(t)

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = x'(t)$$

Физический смысл второй производной

Если точка перемещается по оси x и ее координата изменяется по закону x(t), то ускорение точки - вторая производная функции x(t)

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = v'(t) = x''(t)$$

Правила дифференцирования

Если у функций u(x) и v(x) существуют производные, то

$$(u \pm v)' = u' \pm v'$$

$$(cu)' = cu', c = const$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, v \neq 0$$

Производная сложной функции

Если y=f(g(x)) и существуют производные f_g^\prime и g_x^\prime , то

$$y_x' = f_g' \cdot g_x'$$

10. Производные элементарных функций

Функция	Производная
f(x) = c	$c'=0$, где $c-{ m const}$
$f(x) = x^n$	$(x^n)' = nx^{n-1}$
$f(x) = e^x$	$(e^x)' = e^x$
$f(x) = a^x$	$(a^x)' = a^x lna$
f(x) = lnx	$(\ln x)' = \frac{1}{x}$
$f(x) = log_a x$	$(log_a x)' = \frac{1}{x lna}$
$f(x) = \sin x$	$(\sin x)' = \cos x$
$f(x) = \cos x$	$(\cos x)' = -\sin x$
$f(x) = \operatorname{tg} x$	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$
$f(x) = \operatorname{ctg} x$	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$
f(x) = arcsinx	$(arcsinx)' = \frac{1}{\sqrt{1-x^2}}$
$f(x) = \arccos x$	$(arccosx)' = -\frac{1}{\sqrt{1-x^2}}$
f(x) = arctgx	$(arctgx)' = \frac{1}{1+x^2}$
f(x) = arcctgx	$(arcctgx)' = -\frac{1}{1+x^2}$

11. Логарифмы

Определение логарифма. Логарифмом положительного числа b по основанию $a\ (a>0, a\ne 1)$ называется показатель степени, в которую нужно возвести a, чтобы получить b.

$$log_a b = c \Leftrightarrow a^c = b$$

Свойства логарифма

Основное логарифмическое тождество:

$$a^{log_ab}=b,$$
 где $a>0; a
eq 1; b>0.$ $log_aa=1$ $log_a1=0$

$$log_a a^m = m$$

Логарифм произведения

$$log_c(ab) = log_c a + log_c b, \ a > 0, b > 0.$$

Логарифм частного

$$log_c(\frac{a}{b}) = log_c a - log_c b, \ a > 0, b > 0$$

Логарифм степени

$$log_c a^n = nlog_c a, a > 0, c > 0, c \neq 1.$$

$$log_{c^n} a = \frac{1}{n} log_c a, a > 0, c > 0, c \neq 1.$$

Логарифм корня

$$log_c \sqrt[n]{a} = \frac{1}{n} log_c a$$

Переход к новому основанию

$$log_a b = \frac{log_c b}{log_c a}, a > 0, a \neq 1, c > 0, c \neq 1, b > 0$$

Формулы, следующие из свойств логарифмов

$$log_a b = \frac{1}{log_b a}$$

$$\frac{log_n b}{log_n c} = \frac{log_m b}{log_m c} = log_c b$$

$$log_n b \cdot log_m c = log_m b \cdot log_n c$$
$$a^{log_n b} = b^{log_n a}$$

Десятичный логарифм - это логарифм по основанию 10:

$$log_{10}b = lgb$$

Натуральный логарифм — это логарифм по основанию е.

$$log_e b = lnb.$$

12. Таблица интегралов элементарных функций

$$\int 0 \cdot dx = C$$

$$\int 1 \cdot dx = x + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} arcsinx + C \\ -arccosx + C \end{cases}$$

$$\int \frac{1}{1+x^2} dx = \begin{cases} arctgx + C \\ -arcctgx + C \end{cases}$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\cos^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin^2 x} dx = -\cot x + C$$

$$\int \frac{1}{\sin$$

13. Основные формулы комбинаторики

Число перестановок из п элементов

$$P_n = n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$$

Число размещений из n элементов по k элементов:

$$A_n^k = \frac{n!}{(n-k)!} = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)$$

Число сочетаний из n элементов по k элементов

$$C_n^k = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k}$$

14. Текстовые задачи

14.1. Задачи на движение

$$S = v \cdot t$$
.

где v — скорость движения, t — время, S — расстояние, пройденное за время t со скоростью v.

14.2. Задачи на работу

$$A = N \cdot t$$

где N — работа, произведенная в единицу времени, t — время, в течение которого производится работа, A — работа, произведенная за время t.

14.3. Задачи на сложные проценты

$$A_n = A_0 \left(1 + \frac{p}{100} \right)^n,$$

где A_0 — начальный капитал, p% — процент годовыхм, n — годы, на которые положен вклад, A_n — наращенный капитал за n лет.

14.4. Задачи на десятичную форму числа

Стандартным видом числа x называют его запись в виде $a\cdot 10^n,$ где $1\leq a<10$ и n –пелое число.

Число n называют порядком числа x.

14.5. Задачи на концентрацию смеси и сплавы

Процентными содержаниями веществ A,B,C в данной смеси называются величины $p_A\%,p_B\%,p_c\%,$ соответственно вычисляемые по формулам:

$$p_A\% = C_A \cdot 100\%, \ p_B\% = C_B \cdot 100\%, \ p_C\% = C_C \cdot 100\%,$$

где C_A, C_B, C_C — масса соответствующих веществ.

15. Таблица умножения

$1 \times 1 = 1$	$2 \times 1 = 2$	$3 \times 1 = 3$	$4 \times 1 = 4$	$5 \times 1 = 5$
$1 \times 2 = 2$	$2 \times 2 = 4$	$3 \times 2 = 6$	$4 \times 2 = 8$	$5 \times 2 = 10$
$1 \times 3 = 3$	$2 \times 3 = 6$	$3 \times 3 = 9$	$4 \times 3 = 12$	$5 \times 3 = 15$
$1 \times 4 = 4$	$2 \times 4 = 8$	$3 \times 4 = 12$	$4 \times 4 = 16$	$5 \times 4 = 20$
$1 \times 5 = 5$	$2 \times 5 = 10$	$3 \times 5 = 15$	$4 \times 5 = 20$	$5 \times 5 = 25$
$1 \times 6 = 6$	$2 \times 6 = 12$	$3 \times 6 = 18$	$4 \times 6 = 24$	$5 \times 6 = 30$
$1 \times 7 = 7$	$2 \times 7 = 14$	$3 \times 7 = 21$	$4 \times 7 = 28$	$5 \times 7 = 35$
$1 \times 8 = 8$	$2 \times 8 = 16$	$3 \times 8 = 24$	$4 \times 8 = 32$	$5 \times 8 = 40$
$1 \times 9 = 9$	$2 \times 9 = 18$	$3 \times 9 = 27$	$4 \times 9 = 36$	$5 \times 9 = 45$
1 × 10 = 10	$2 \times 10 = 20$	$3 \times 10 = 30$	$4 \times 10 = 40$	$5 \times 10 = 50$

6 × 1 = 6	$7 \times 1 = 7$	$8 \times 1 = 8$	9 × 1 = 9	$10 \times 1 = 10$
6 × 2 = 12	$7 \times 2 = 14$	$8 \times 2 = 16$	$9 \times 2 = 18$	$10 \times 2 = 20$
$6 \times 3 = 18$	$7 \times 3 = 21$	$8 \times 3 = 24$	$9 \times 3 = 27$	10 × 3 = 30
6 × 4 = 24	$7 \times 4 = 28$	$8 \times 4 = 32$	9 × 4 = 36	$10 \times 4 = 40$
$6 \times 5 = 30$	$7 \times 5 = 35$	$8 \times 5 = 40$	$9 \times 5 = 45$	$10 \times 5 = 50$
$6 \times 6 = 36$	$7 \times 6 = 42$	$8 \times 6 = 48$	$9 \times 6 = 54$	$10 \times 6 = 60$
$6 \times 7 = 42$	$7 \times 7 = 49$	$8 \times 7 = 56$	$9 \times 7 = 63$	$10 \times 7 = 70$
$6 \times 8 = 48$	$7 \times 8 = 56$	$8 \times 8 = 64$	$9 \times 8 = 72$	$10 \times 8 = 80$
6 × 9 = 54	$7 \times 9 = 63$	$8 \times 9 = 72$	$9 \times 9 = 81$	10 × 9 = 90
6 × 10 = 60	$7 \times 10 = 70$	$8 \times 10 = 80$	9 × 10 = 90	10 × 10 = 100

16. Таблица квадратов двузначных натуральных чисел

Десятки	Единицы											
	0	1	2	3	4	5	6	7	8	9		
1	100	121	144	169	196	225	256	289	324	361		
2	400	441	484	529	576	625	676	729	784	841		
3	900	961	1024	1089	1156	1225	1296	1369	1444	1521		
4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401		
5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481		
6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761		
7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241		
8	6400	5661	6724	6889	7056	7225	7396	7569	7744	7921		
9	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801		

17. Таблица кубов натуральных чисел от 1 до 10

a	1	2	3	4	5	6	7	8	9	10
a^3	1	8	27	64	125	256	343	512	729	1000

18. Простые числа от 2 до 997

2	3	5	7	11	13	17	19	23	29	31	37	41
43	47	53	59	61	67	71	73	79	83	89	97	101
103	107	109	113	127	131	137	139	149	151	157	163	167
173	179	181	191	193	197	199	211	223	227	229	233	239
241	251	257	263	269	271	277	281	283	293	307	311	313
317	331	337	347	349	353	359	367	373	379	383	389	397
401	409	419	421	431	433	439	443	449	457	461	463	467
479	487	491	499	503	509	521	523	541	547	557	563	569
571	577	587	593	599	601	607	613	617	619	631	641	643
647	653	659	661	673	677	683	691	701	709	719	727	733
739	743	751	757	761	769	773	787	797	809	811	829	839
853	857	859	863	877	881	883	887	907	911	919	929	937
941	947	953	967	971	977	983	991	997				

19. Греческий алфавит

A	α	альфа	В	β	бета	Γ	γ	гамма	Δ	δ	дельта
П	π	пи	E	ϵ	эпсилон	Р	ρ	po	Z	ζ	дзета
Σ	σ	сигма	Н	η	эта	Т	τ	тау	Θ	θ	тета
Υ	υ	ипсилон	I	ι	йота	Φ	φ	фи	K	κ	каппа
X	ξ	хи	Λ	λ	лямбда	Ψ	ψ	пси	M	μ	мю
Ω	ω	омега									