visual analysis

July 29, 2025

1 Visual Analysis of Dental Radiography Dataset

This notebook performs comprehensive exploratory analysis and visualization on the **Dental Radiography** dataset available at Kaggle.

1.1 Dataset Description

The dataset contains dental radiograph images and corresponding YOLO-style annotations for various oral conditions (e.g., caries, crown, implants). It's suitable for object detection, image classification, and semantic segmentation tasks in dental AI applications.

1.2 Notebook Overview

1.2.1 1. Annotation Parsing & Preprocessing

- Load YOLO-format annotations using label_parser.py
- Group bounding boxes, detect duplicated labels per tooth, and filter single/multi-class images

1.2.2 2. Class Distribution Analysis

- Use class stats utils.py to extract label counts and frequency of each class
- Visualize number of annotations and unique images per class in train, val, or test splits

1.2.3 3. Annotation Visualization

- Use annotation_visualizer.py to display bounding boxes:
 - Single-class examples
 - Multi-class images
 - Grouped teeth with overlapping annotations (multi-label situations)

1.2.4 4. Ratio-Based Image Analysis

- Compute and visualize:
 - Missing Teeth Ratio from segmentation masks
 - Darkness Ratio from grayscale intensity
- Display histograms and heatmaps to explore data distribution

1.2.5 5. Semantic Segmentation with SegFormer

- Apply pretrained model vimassaru/segformer-b0-finetuned-teeth-segmentation via segmentation_utils.py
- Segment X-rays and visualize the teeth areas

1.2.6 6. Feature Embedding of Images & Masks (No Clustering)

- From mask_clustering_analysis.py:
 - Extract RGB color histograms
 - Apply PCA, t-SNE, and UMAP to obtain image-level embeddings
 - Visualize most distinct images along each embedding dimension

1.3 Dataset Source

Kaggle: Dental Radiography Dataset

1.4 Code Modules

File	Purpose
label_parser.py	Parses YOLO annotations, groups teeth, checks label consistency
<pre>class_stats_utils.py annotation_visualizer.py</pre>	Extracts and visualizes class and image frequencies Shows annotated examples: single/multi-class and
	grouped boxes
segmentation_utils.py	Applies SegFormer model to X-ray images
mask_clustering_analysis.py	Embeds image and mask features via color histograms (no clustering)

```
[1]: # Imports
import pandas as pd
from label_parser import load_annotations_csv, get_class_frequencies,__
filter_images_by_num_classes

# Path to annotations
csv_path = "/Volumes/L/L_PHASO077/dental_radiography/train/_annotations.csv"

# Load annotations and show label stats
df = load_annotations_csv(csv_path)

# Show class frequency
print(" Class Frequency:")
print(get_class_frequencies(df))
```

```
Class Frequency:
    Fillings
                       5242
    Implant
                       1784
    Cavity
                        576
    Impacted Tooth
                        428
    Name: count, dtype: int64
[2]: from annotation_visualizer import (
         visualize_single_class_examples,
         visualize_multi_class_examples,
         group_bounding_boxes,
         visualize_grouped_boxes
     )
     class_colors = {
             "Implant": "skyblue",
                                        # Light and clear blue
# Soft and distinguishable green
             "Fillings": "lightgreen",
             "Impacted Tooth": "orange", # Bright orange
             "Cavity": "purple"
                                           # Strong and distinct purple
         }
     main_path = '/Volumes/L/L_PHAS0077/dental_radiography/'
     main_train_path = main_path + 'train'
     file_path = main_train_path+'/_annotations.csv'
[3]: df_flat = []
     for _, row in df.iterrows():
         for label, bbox in zip(row["Labels"], row["BBoxes"]):
             df_flat.append({
                 "filename": row["Image"],
                 "class": label,
                 "xmin": bbox[0],
                 "ymin": bbox[1],
                 "xmax": bbox[2],
                 "ymax": bbox[3]
             })
     df_flat = pd.DataFrame(df_flat)
[4]: # Call each visualization as needed
     visualize_single_class_examples(df_flat, main_train_path, class_colors)
```

Images for Class: Fillings

Class: Fillings

Class: Fillings

Images for Class: Implant

Class: Implant

Class: Implant

Images for Class: Impacted Tooth

Class: Impacted Tooth

Class: Impacted Tooth

Images for Class: Cavity

Class: Cavity

Class: Cavity

Images with Multiple Classes and Bounding Boxes

Image: 0911_jpg.rf.11ba7bcbbd3056174e462824c85bcdd8.jpg

Image: 0974_jpg.rf.1106191cfb2fa2d640fa75593eeb8122.jpg

Cavity Implant Fillings

Impacted Tooth

Image: 0170_jpg.rf.4fd8f8e6179d4c147396b5dfa63fb65e.jpg

lmage: 0639_jpg.rf.15e60af9d988588d7d28aa63a90722fa.jpg

Fillings Impacted Tooth Implant Cavity

Implant
Impacted Tooth
Fillings
Cavity

Pair Frequencies:

```
['Fillings', 'Impacted Tooth']: 11 image(s)
['Cavity', 'Fillings']: 26 image(s)
['Cavity', 'Implant']: 5 image(s)
```

Grouped Bounding Boxes with Multiple Classes

Image: 0013_jpg.rf.18d48fad3e2d024f79264bc1a060bef0.jpg

Fillings Impacted Tooth

Image: 0308_jpg.rf.39bfefbd46345a3821ecb4c7a60ec85d.jpg

Cavity Implant

42 boxes with mutiple label.

```
# Step 3: Plot class distribution
fixed_class_order = ["Implant", "Fillings", "Impacted Tooth", "Cavity"]
plot_class_distribution(class_counts, fixed_class_order)
```

Folder: train

Total box count per class: [1784, 5242, 428, 576] Image count per class : [580, 863, 252, 230]

Folder: test

Total box count per class: [104, 315, 32, 22]
Image count per class : [31, 57, 17, 12]

Folder: valid
Total box count per class: [159, 540, 38, 43]
Image count per class : [59, 97, 25, 23]

1.5 SegFormer for Teeth Segmentation

In this section, we use a pretrained **SegFormer-B0** model fine-tuned on dental imagery for **semantic segmentation of teeth**.

The model used is:

AutoModelForSemanticSegmentation.from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassaru/segformer-b0-finetuned-teeth-segformer-b0-finetuned-teeth-segmentation).from_pretrained("vimassa

We apply it to X-ray images to segment regions containing teeth. This step is helpful for preprocessing, analysis, and focusing attention on relevant anatomical structures. The predictions are visualized as segmentation masks using a colormap.

Model source: vimassaru/segformer-b0-finetuned-teeth-segmentation

Code: See attached file segmentation_utils.py

```
[8]: from segmentation_utils import batch_infer_and_save
from pathlib import Path

batch_infer_and_save(
    source_folder = "./assets/source_img",
    output_folder = "./assets/segformer_outputs",
    pattern="*.jpg",
    max_images = 3
)
```

/Users/hananalaskar/miniforge3/envs/yolov11_env/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See

https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm

 ${\tt Processing:~0001_jpg.rf.30a42966fb9c51553f6949b70234218d.jpg}$

Saved: assets/segformer_outputs/0001_jpg.rf.30a42966fb9c51553f6949b70234218d_s

egformer_result.png

 ${\tt Processing:~0001_jpg.rf.57229a11e925669019e179341e22c97a.jpg}$

Saved: assets/segformer_outputs/0001_jpg.rf.57229a11e925669019e179341e22c97a_s egformer_result.png

Processing: 0001_jpg.rf.f94abcb7858bb419a7202ef60ef95bd6.jpg

Saved: assets/segformer_outputs/0001_jpg.rf.f94abcb7858bb419a7202ef60ef95bd6_s egformer_result.png

1.6 Feature Analysis of X-rays and Segmentation Masks

In this section, we perform feature-based analysis of **dental X-ray images** and their **segmentation masks** using color histograms.

1.6.1 Key Steps

- 1. Feature Extraction: We compute normalized RGB histograms for each image and mask.
- 2. **Dimensionality Reduction**: Project histogram features using **PCA**, **t-SNE**, and **UMAP** to visualize and compare image-level variability.
- 3. Visualization: Identify and plot image extremes (Min, Mid, Max) across embedding axes.
- 4. Ratio Metrics: Calculate and visualize:
 - Missing Teeth Ratio (portion of image area not covered by teeth in the mask)
 - Darkness Ratio (portion of low-intensity pixels in the image)
- 5. **Joint Analysis**: Generate a 2D histogram to explore the correlation between the two ratios.

Code Source: mask_feature_analysis.py

This analysis provides insight into the variability and visual characteristics of the dataset, helping inform preprocessing and model design decisions.

[1]: from mask_feature_analysis import *

```
/Users/hananalaskar/miniforge3/envs/yolov11_env/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
```

Found 1269 source images and 1269 mask images.

/Users/hananalaskar/miniforge3/envs/yolov11_env/lib/python3.11/site-packages/umap/umap_.py:1952: UserWarning: n_jobs value 1 overridden to 1 by setting random_state. Use no seed for parallelism.
warn(
OMP: Info #276: omp_set_nested routine deprecated, please use

OMP: Info #2/6: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.

CSVs saved to /Volumes/L/L_PHAS0077/yolo/explore_data/analysis_outputs

Original: PCA 1: Min vs. Mid vs. Max

PCA 1 Min PCA 1 Mid PCA 1 Mid O.3021
-0.2841
0938 jpg.rf.476b1ea283c5ccbbddaa023eb40a46d8.jpg 0194 jpg.rf.3fa08ba5eb780e87abe9054d5c262513.jpg 0158_jpg.rf.6ba9ac13623e5a1dd9ca15ec2dc6a4a5.jpg

Original: PCA 3: Min vs. Mid vs. Max

PCA 3 Min PCA 3 Mid PCA 3 Max 0.1793 0.0000 0.2680
0710_jpg.rf.lec82f15d2399e9df2252f4908e44b03.jpg 0009_jpg.rf.957a0a16c5101765b0679e95eb9619a3.jpg 0158_jpg.rf.6ba9ac13623e5a1dd9ca15ec2dc6a4a5.jpg

Original: tSNE 1: Min vs. Mid vs. Max

tSNE 1 Min tSNE 1 Mid tSNE 1 Max
-18.2765 -0.0184 19.1016
0719_jpg.rf.041f488043af405b5b8431efc3d8f157.jpg 0323_jpg.rf.2bd124050fdcb8c212a28a98519b6f5c.jpg 0312_jpg.rf.a3b1695f851900ec415a5f75cb8283a2.jpg

Original: tSNE 2: Min vs. Mid vs. Max

 tSNE 2 Min
 tSNE 2 Mid
 tSNE 2 Max

 -13.2048
 0.0508
 13.6213

 0216_jpg.rf.383ad8db30c3550784f4224029ac85b0.jpg
 0926_jpg.rf.a2e580fab789e0b19d1cdcf2348484cc.jpg
 0710_jpg.rf.lec82f15d2399e9df2252f4908e44b03.jpg

tSNE 3 Min tSNE 3 Mid tSNE 3 Max
-8.5056 0.1867 7.8576
0764_jpg.rf.b8fffd780e5a12b7ec1fa76401e58b16.jpg 0401_jpg.rf.4ee77b28f8a16c155427c0843370684c.jpg 0528_jpg.rf.e77c08c50a3a5fa6775a204568db14fe.jpg

Original: UMAP 1: Min vs. Mid vs. Max

UMAP 1 Min UMAP 1 Mid UMAP 1 Max
-1.5263 7.1693 13.0275
0158_jpg.rf.acfc32660c641086b7fa9a7f37d9130c.jpg 0054_jpg.rf.b81c1de4282e2881bc92f9d5b6ca106f.jpg 0812_jpg.rf.ea6f0c99e94cc51c5a17d6b32e05221a.jpg

Original: UMAP 2: Min vs. Mid vs. Max

UMAP 2 Min UMAP 2 Mid UMAP 2 Max 2.1455 2.6386 7.5325 0641_jpg.rf.b40d29cb838c0bbe0bcf079f35ede7ce.jpg 0368_jpg.rf.ae4c80bc75e51300b4de70922bf5e637.jpg 0174_jpg.rf.ee4210bb5799f6fb0f645af4e46d1a84.jpg

Original: UMAP 3: Min vs. Mid vs. Max

UMAP 3 Min 0.7836 UMAP 3 Mid 0.7836 0.7836 0.763_jpg.rf.9da3a40d8bb82c6077def7e3dc310a0b.jpg 0926_jpg.rf.a2e580fab789e0b19d1cdcf2348484cc.jpg 0914_jpg.rf.f6f25052c3571ed02ac9c0088dd8c338.jpg

[4]: visualize_extremes(df_masks, ["PCA 1", "PCA 2", "PCA 3"], title_prefix="Mask: ")

Mask: PCA 2: Min vs. Mid vs. Max

PCA 2 Min PCA 2 Mid PCA 2 Mid PCA 2 Max
-0.0164 0.0000 0825_jpg.rf.a36d73e17d7a1da6435245915ea9f14f,jpg 0931_jpg.rf.bdb38638a132d32a13b0e182e7b7eb30.jpg 0845_jpg.rf.905f2c2c3869dcc1bff01b13cac8a9a2.jpg

Mask: PCA 3: Min vs. Mid vs. Max

visualize_combined_pca(df_combined)

PCA 1 orig Min -0.2841 — 0938_jpg.rf.476b1ea283c5ccbbddaa023eb40a46d8.jpg

PCA 1 orig Mid 0.0005 — 0194_jpg.rf.3fa08ba5eb780e87abe9054d5c262513.jpg

PCA 1 orig Max 0.3929 — 0158_jpg.rf.6ba9ac13623e5a1dd9ca15ec2dc6a4a5.jpg

PCA 1 mask Min -0.0813 — 0320_jpg.rf.01af7923754c344871281322fb8e5d66.jpg

PCA 1 mask Mid -0.0000 — 0304_jpg.rf.4d4e47e46979e47028a60557236ba1cc.jpg

PCA 1 mask Max 0.1602 — 0006_jpg.rf.3247261244fe482ceba35bd771f399aa.jpg

visualize_ratios(df_combined)

Segmentation Mask: Missing Teeth Ratio (Norm) Extremes

Segmentation Mask Min
Missing Teeth Ratio (Norm): 0.00
Missing Teeth Ratio (Norm): 0.53
Missing Teeth Ratio (Norm): 0.53
Missing Teeth Ratio (Norm): 0.00
0217_jpg.rf.b21d198dfc0ce564889cbf2a2912f98d.jpg
0318_jpg.rf.56f8ed8a60455d6ff34ec81e762789a1.jpg
0320_jpg.rf.44f757cb8bda6b63208f21fab5ae6a5d.jpg

Original X-Ray: Darkness Ratio (Norm) Extremes

Original X-Ray Min
Darkness Ratio (Norm): 0.00
Darkness Ratio (Norm): 0.00
Darkness Ratio (Norm): 0.27
Darkness Ratio (Norm): 0.00
0051_jpg.rf.8488c6bfe540f9a79ae7d490e2fab827.jpg
0402_jpg.rf.63994d789ad1787836039de7b5b14860.jpg
0158_jpg.rf.6ba9ac13623e5aldd9ca15ec2dc6a4a5.jpg

save_ratio_histograms(df_combined, output_dir="/Volumes/L/L_PHAS0077/ ⇔analysis_outputs")

Saved histogram for Missing Teeth Ratio (Norm) at /Volumes/L/L_PHASO077/analysis_outputs/missing_teeth_ratio_hist.png

Saved histogram for Darkness Ratio (Norm) at /Volumes/L/L_PHAS0077/analysis_outputs/darkness_ratio_hist.png

[8]: save_joint_ratio_heatmap(df_combined, output_dir="/Volumes/L/L_PHAS0077/

analysis_outputs")

Saved joint-ratio heatmap at /Volumes/L/L_PHASO077/analysis_outputs/missing_vs_darkness_heatmap.png

[]: