Theoretische Informatik: Endliche Automaten, Formale Sprachen und Grammatiken

Marko Livajusic

9. Januar 2025

Inhaltsverzeichnis

1	Höl	nere Datenstrukturen	3
	1.1		3
2	Aut	omaten	4
	2.1		4
	2.2	2.2.1 Moore-Automat	45 5
3	Nic	htdeterministische Endliche Automaten	7
	3.1	Epsilon-NEAs	7
	3.2	NEA zu DEA mit Potenzmengenkonstruktion	2
4	Reg	guläre Ausdrücke 1	3
	4.1	RegEx zu NEA14.1.1Regulärer Ausdruck: Leere Menge14.1.2Regulärer Ausdruck: Leeres Wort14.1.3Regulärer Ausdruck: Eingabesymbol14.1.4Regulärer Ausdruck: Verkettung14.1.5Regulärer Ausdruck: Alternative14.1.6Regulärer Ausdruck: N-malige Wiederholung1	$\frac{3}{3}$ $\frac{3}{4}$
5	For	male Sprachen	1
	5.1	Reguläre Sprachen	1
	5.2	Q3.2: Grammatiken]
	5.3	5.3.1 Ableitungsbaum	2 2 3
	5.4	Kontextfreie Sprachen	3

IN	HAL.	TSVERZEICHNIS	2
		5.4.1 Chomsky-Normalform	
6	Reg	gistermaschine	6
	6.1	Häufige Operationen	
	6.2	Kleiner als	6
	6.3	Größer als	7

1. Höhere Datenstrukturen

1.1 Binärbaum

1.1.1 Einfügen

```
public void insert(int value) {
   if (root == null) {
       root = new Node(value);
       return;
   }
   Node it = root, parent = null;
   while (it != null) {
       parent = it;
       // gehe rechts
       if (value > it.value) {
               it = it.right;
       } else if (value < it.value) { // gehe links</pre>
           it = it.left;
       }
   }
   Node n = new Node(value);
   if (parent.value > value) {
       parent.left = n;
   } else if (parent.value < value) {</pre>
       parent.right = n;
   }
}
```

2. Automaten

2.1 Transduktor

Definition 1 Ein Transduktorautomat $\mathcal{T}: \{\Sigma, A, Z, z_0, \delta, \lambda\}$ ist ein deterministicher endlicher Automat ohne einen Endzustand.

 Σ : Eingabealphabet

A: Ausgabealphabet

Z : Zustandsmenge

 $\mathbf{z_0} \in Z$: Startzustand

 $\delta: \Sigma \times Z \to Z: Überführungsfunktion$

 $\lambda: \Sigma \times Z \to A^*$: Ausgabefunktion

2.1.1 Mealy-Automat

Definition 2 Ein Mealy-Automat ¹ ist ein Transduktor, dessen Ausgabe von der Überführungsfunktion δ und vom aktuellen **Zustand** z_n abhängig ist.

2.2 Akzeptor

Definition 3 Ein Akzeptor $\mathcal{A}: \{\Sigma, Z, z_0, \delta, F\}$ ist ein deterministicher endlicher Automat, der die Eingabe überprüft und keine Ausgabe besitzt. Er lässt sich wie folgt beschreiben:

 Σ : Eingabealphabet

Z: Zustandsmenge

 z_0 : Startzustand

 δ : Überführungsfunktion

F: Endzustandsmenge

¹für die Klausur irrelevant.

2.2.1 Moore-Automat

Definition 4 Ein Moore-Automat ist ein Transduktor, dessen Ausgabe vom aktuellen **Zustand** z_n abhängig ist.

2.2.2 Minimierung von DEAs

Zu minimieren sei folgender DEA:

Diagonale als äquivalent markieren:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1		=		
q_2			=	
q_3				=

Felder, wo ein Zustand auf einen Endzustand trifft, streichen

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1		=		
q_2			=	
q_3	X	X	X	≡

Eine Übergangstabelle mit übrigen Zuständen erstellen. Die Zustandspaare, die auf einen bereits gestrichenen Zustandspaar abgebildet werden, streichen

Zustand	0	1
(q_0,q_1)	(q_1,q_2)	$(\mathbf{q_2},\mathbf{q_3})$
(q_0,q_2)	(q_1,q_1)	$(\mathbf{q_2},\mathbf{q_3})$
(q_1,q_2)	(q_2,q_1)	(q_3,q_3)

Die neue Tabelle sieht dann so aus:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1	X	=		
q_2	X			
q_3	X	X	X	=

Die leeren Felder als äquivalent markieren:

Zustand	q_0	q_1	q_2	q_3
q_0	=			
q_1	X	=		
q_2	X	=	=	
q_3	X	X	X	=

Spaltenweise die Zustände zusammenfassen:

3. Nichtdeterministische Endliche Automaten

3.1 ϵ -NEAs

Definition 5 Ein ϵ -NEA ist ein Akzeptor, der ϵ -Übergänge besitzt und deshalb mit dem leeren Wort Zustände wechseln kann.

3.1.1 ϵ -NEA \rightarrow NEA

Gegeben sei folgendes Zustandsdiagramm eines ϵ -NEA, welches in einen NEA umgewandelt werden soll:

Zuerst wird eine leere Übergangstabelle erstellt:

Zustand	0	1
q_0		
q_1		
q_2		
q_3		

Danach wird für jedes Eingabesymbol eine Tabelle mit der ϵ -Hülle erstellt:

Zus	stand	ϵ^*	0	ϵ^*
q_0				

Wie oben zu sehen ist, wird zuerst der Startzustand q_0 eingetragen. Danach wird die ϵ -Hülle des Zustands q_0 berechnet und eingetragen.

Definition 6 Eine ϵ -Hülle ist die Menge aller Zustände, die ein Zustand q_n mit dem leeren Wort ϵ erreichen kann.

Da im vorigen Beispiel q_0 mit dem leeren Wort keinen anderen Zustand als sich selbst erreichen kann, wird für dessen ϵ -Hülle q_0 eingetragen.

Die nächte Spalte steht für den Zustand, der erreicht wird, wenn bei q_0 das Eingabesymbol 0 eingegeben wird. Dies ist in diesem Beispiel der Zustand q_1 :

Zustand	ϵ^*	0	ϵ^*
q_0	q_0	$\mathbf{q_1}$	

Die letzte Spalte bezieht sich auf die ϵ -Hülle des Zustands aus der mittleren Spalte, welcher hier fettgedruckt steht. Die ϵ -Hülle von q_1 ist dabei $\{q_1,q_2\}$. Diese wird ebenfalls eingetragen:

Zustand	ϵ^*	0	ϵ^*
q_0	q_0	q_1	$\{q_1,q_2\}$

Diese ϵ -Hülle $\{q_1, q_2\}$ repräsentiert dabei die Zustände, die q_0 bei der Eingabe von 0 erreicht werden. Deshalb können diese in die Übergangstabelle eingetragen werden:

Zustand	0	1
q_0	$\{q_1, q_2\}$	
q_1		
q_2		
q_3		

Dieser Vorgang wird für alle Zustände durchgeführt, sowohl für die Eingabe von 0 als auch von 1. Die Tabellen sehen nach dem Algorithmus wie folgt aus:

Zustand	ϵ^*	0	ϵ^*
$\{q_0\}$	$\{q_0\}$	$\{q_1\}$	$\{q_1,q_2\}$
\int_{a}	$\{q_1\}$	Ø	Ø
$\{q_1\}$	$\{q_1, q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_3\}$	$\{q_3\}$	Ø	Ø

Zustand	ϵ^*	1	ϵ^*
$\{q_0\}$	$\{q_0\}$	Ø	Ø
$\{q_1\}$	$\{q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
$\{q_2\}$		$ \begin{array}{ c c }\hline \{q_3\}\\\hline \{q_3\}\\\hline \end{array} $	$\frac{\{q_3\}}{\{q_3\}}$
$\{q_3\}$	$\{q_3\}$	Ø	Ø

Zustand	0	1
$\{q_0\}$	$\{q_1,q_2\}$	Ø
$\{q_1\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$
$\{q_2\}$	$\{q_2\}$	$\{q_3\}$
$\{q_3\}$	Ø	Ø

Noch sollen die Endzustände ermittelt werden. Zu den Endzuständen gehört der Endzustand aus dem ϵ -NEAund die Zustände, die durch das leere Wort ϵ in den ursprünglichen Endzustand gelangen können. Deshalb wird in diesem Fall nur q_3 der Endzustand. Gezeichnet sieht das neue Zustandsdiagramm wie folgt aus:

Abbildung 3.1: Der neue NEA, ohne ϵ -Übergänge.

"o" steht hier für die leere Menge \emptyset .

3.1.2 ϵ -NEA \rightarrow DEA

Es sei folgendes Zustandsdiagramm eines ϵ -NEAs gegeben:

Die Umwandlung in ein DEA geschieht wie üblich mit der Potenzmengenkonstruktion:

Zustand	A	В
$\rightarrow \{q_0\}$	$\{q_1,q_4\}$	$\{q_3\}$
$\{q_1,q_4\}$	$\{q_0\}$	$\{q_2^*\}$
$\{q_3\}$	$\{q_4\}$	Ø
$\{q_2^*\}$	$\{q_4\}$	$\{q_3\}$
$\{q_4\}$	Ø	$\{q_2\}$
Ø	Ø	Ø

Anschlißend wird das neue Zustandsdiagramm des DEAs gezeichnet. qE repräsentiert dabei die leere Menge \emptyset .

Abbildung 3.2: Umwandlung von $\epsilon\textsc{-NEA}$ zu DEA. Dieser ist jedoch nicht zwangsläufig optimal bzw. minimal.

3.2 NEA \rightarrow DEA (Potenzmengenkonstruktion)

Dieser NEA soll in einen DEA umgewandelt werden:

Vorgehen: Es wird zuerst eine Übergangstabelle aufgestellt und geschaut, welche Zustände neu auftreten.

Zustand	a	b
$\rightarrow \{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0, q_1, q_2^*\}$
$\{q_0, q_1, q_2\}^*$	$\{q_0, q_2^*\}$	$\{q_0, q_1, q_2^*\}$
$\{q_0, q_2\}^*$	$\{q_0, q_2^*\}$	$\{q_0, q_1, q_2^*\}$

Danach wird aus dieser Übergangstabelle der DEA gezeichnet:

4. Reguläre Ausdrücke

+: wiederhole das Zeichen davor n-mal, wobei n > 0

*: wiederhole das Zeichen davor n-mal, wobei $\mathbf{n} \geq \mathbf{0}$

4.1 RegEx $\rightarrow \epsilon$ -NEA

4.1.1 $R = \emptyset$

4.1.2 $R = \epsilon$

4.1.3 R = a

4.1.4 R = ab

4.1.5 R = a|b

4.1.6 $R = a^*$

Beispiel 1 Es soll der reguläre Ausdruck $(0|1)^*01$ in einen ϵ -NEA umgewandelt werden.

5. Formale Sprachen

5.1 Reguläre Sprachen

Definition 7 Eine Sprache L ist dann regulär, wenn diese sich darstellen lässt mithilfe eines:

- 1. nichtdeterministischen endlichen Automatens
- 2. deterministischen endlichen Automatens
- 3. regulären Ausdrucks.

5.2 Q3.2: Grammatiken

Definition 8 Eine Grammatik G ist ein 4-Tupel $G = \{N, T, P, S\}$, wobei

- N das Nichtterminalalphabet
- T das Terminalalphabet
- P die **Produktionen**
- S das **Startsymbol** ist.

5.2.1 Typ 3 Grammatik (regulär)

Definition 9 Eine reguläre Grammatik G ist eine kontextfreie Grammatik, die zusätzlichen Einschränkungen unterliegt. Diese zeichnet sich dadurch, dass in allen Produktionen immer genau ein Nichtterminal ersetzt werden kann durch genau ein Nichtterminal oder genau ein Nichtterminal, verknüpft mit genau einem Terminal:

$$A \to aB$$

$$S \to aS$$

$$Y \to bS$$

In den regulären Grammatiken wird dabei zwischen linksregulären und rechtsregulären Grammatiken unterschieden.

Definition 10 Eine Grammatik G ist dann **linksregulär**, wenn die rechte Seite einer Produktion nur das leere Wort, ein Terminalsymbol oder ein Nichtterminalsymbol gefolgt von einem Terminalsymbol hat. Die Wörter werden von links gebildet:

$$A \to Ba$$
$$A \to a|\epsilon$$

Definition 11 Eine Grammatik G ist dann **rechtsregulär**, wenn die rechte Seite einer Produktion nur das leere Wort, ein Terminalsymbol oder ein Terminalsymbol gefolgt von einem Nichtterminalsymbol hat. Die Wörter werden von rechts gebildet:

$$A \to aB$$

 $A \to a|\epsilon$

Eine Grammatik G ist dann $rechtsregul\"{a}r$, wenn

5.3 Ableitung

Gegeben sei folgende Grammatik:

$$T = \{x, y, z\}$$

$$N = \{S, M, A, V\}$$

$$P = \{S \rightarrow A|M|V$$

$$A \rightarrow (S + S)$$

$$M \rightarrow (S \cdot S)$$

$$V \rightarrow x|y|z$$

$$\}$$

Wie wird das Wort $(x \cdot (y+z))$ gebildet?

$$S \Rightarrow M \Rightarrow (S \cdot S)$$
$$\Rightarrow (v \cdot S) \Rightarrow (x \cdot S) \Rightarrow (x \cdot A) \Rightarrow$$
$$(x \cdot (S+S)) \Rightarrow (x \cdot (v+S)) \Rightarrow (x \cdot (y+S)) \Rightarrow (x \cdot (y+V)) \Rightarrow (x \cdot ($$

5.3.1 Ableitungsbaum

Dies kann man auch mit einem Ableitungsbaum darstellen:

5.3.2 Syntaxdiagramme: Regeln

- 1. 1 Syntaxdiagramm $\hat{=}$ 1 Produktionsregel, wobei das Syntaxdiagramm der Name der Produktionsregel ist
- 2. Nichtterminale: eckig
- 3. Terminale: rund

5.4 Kontextfreie Sprachen

Gegeben sei folgende kontextfreie Grammatik:

$$N = \{A, B, S\}$$

$$T = \{a, b, \epsilon\}$$

$$S = S$$

$$P = \{$$

$$S \to AB$$

$$S \to ABA$$

$$A \to aA$$

$$A \to a$$

$$B \to Bb$$

$$B \to \epsilon$$

$$\}$$

5.4.1 Chomsky-Normalform

Definition 12 Die Chomsky-Normalform ist eine Normalform für kontextfreie Grammatiken und ist die Voraussetzung für den CYK-Algorithmus.

Gegeben sei folgende Grammatik, die in die Chomsky-Normalform gebracht werden sollte:

$$G = (N, T, P, S)$$

$$N = \{A, B\}$$

$$T = \{0\}$$

$$P = \{$$

$$A \rightarrow BAB|B|\epsilon$$

$$B \rightarrow 00|\epsilon$$
}

Um eine Grammatik G in die Chomsky-Normalform zu bringen, müssen 4 Regeln befolgt werden:

- 1. Wähle ein neues Startsymbol.
- 2. Eliminiere ϵ -Regeln.
- 3. Eliminiere unit rules, d.h. Nichtterminal auf ein Nichtterminal, bspw. $S \to A$.
- 4. Jedes Terminalzeichen, das in Kombination mit einem Nichtterminalzeichen auftaucht, wird durch ein Nichtterminalzeichen V_a ersetzt.
- 5. Verändere alle Regeln, wo mehr als zwei Nichtterminale vorkommen, bspw. $S \to AB$.

5.4.2 CYK-Algorithmus

Mit dem CYK-Algorithmus lässt sich sagen, ob ein Wort ω in einer kontextfreien Sprache liegt. Die Voraussetzung für den CYK-Algorithmus ist die Chomsky-Normalform.

Beispiel 2 Sei G eine Grammatik mit Produktionsregeln P, die definiert sind als:

$$S \to BC|AC|BA$$

$$A \to AA|BB|a$$

$$B \to BA|b$$

$$C \to AC|c$$

Nun bestimme man, ob das Wort ababac in L(G) liegt.

Die unterste Zeile ist die 1. Zeile. Fangen wir (von links) mit dem ersten Feld der ersten Zeile, so sehen wir, dass ein Nichtterminalsymbol gesucht ist, welches das

Wort a ableitet. Schaut man auf die Grammatik, so sieht man, dass lediglich die Produktionsregel A das Wort a ableitet, weshalb sie in das untere Feld eingetragen

6. Registermaschine

6.1 Häufige Operationen

6.1.1 $R_1 == R_2$

```
Es gilt: R_1 - R_2 = 0 \land R_2 - R_1 = 0
```

```
load #10
store 1
load #2
store 2
load 1
sub 2
store 3
load 2
sub 1
store 4
load 3
jzero second_check
goto not_equal // else case
second_check: load 4
jzero equal // R1-R2 UND R2-R1 sind 0
not_equal: END
equal: END
```

6.2 $R_1 < R_2$

```
Es gilt: R_2 - R_1 \neq 0
```

```
load #10
store 1
```

```
load #2
store 2

load 2
sub 1
jnzero proceed
end

proceed: do_stuff
end
```

6.3 $R_1 > R_2$

Es gilt: $R_1 - R_2 \neq 0$

```
load #10
store 1
load #2
store 2

load 1
sub 2
jnzero proceed
end

proceed: do_stuff
end
```