ECRICOME 2016

EXERCICE 1

Partie A

Pour tout couple de réels (x, y), on définit la matrice M(x, y) par :

$$M(x,y) = \begin{pmatrix} 3x & -2x + 2y & 2x - y \\ -x - y & 4x - 3y & -2x + y \\ -2y & 4x - 4y & -x + y \end{pmatrix}$$

On appelle E l'ensemble des matrices M(x,y) où x et y décrivent $\mathbb R$:

$$E = \{M(x, y), (x, y) \in \mathbb{R}^2\}$$

On note A = M(1,0) et B = M(0,1).

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. En déterminer une base et donner sa dimension.
- 2. Montrer que 1, 2 et 3 sont valeurs propres de A et déterminer les espaces propres associés. A est-elle diagonalisable?
- 3. Déterminer une matrice inversible P de $\mathcal{M}_3(\mathbb{R})$ dont la première ligne est (1 -2 1), et telle que :

$$A = PD_A P^{-1}$$
, où $D_A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$

- 4. Déterminer P^{-1} (faire figurer le détail des calculs sur la copie).
- 5. En notant X_1 , X_2 et X_3 les trois vecteurs colonnes formant la matrice P, calculer BX_1 , BX_2 et BX_3 . En déduire l'existence d'une matrice diagonale D_B que l'on explicitera telle que :

$$B = PD_B P^{-1}$$

6. En déduire que pour tout $(x,y) \in \mathbb{R}^2$, il existe une matrice diagonale D(x,y) de $\mathcal{M}_3(\mathbb{R})$ telle que :

$$M(x,y) = PD(x,y)P^{-1}$$

- 7. En déduire une condition nécessaire et suffisante sur (x,y) pour que M(x,y) soit inversible.
- 8. Montrer que B^2 est un élément de E. La matrice A^2 est-elle aussi un élément de E?

Partie B

On souhaite dans cette partie étudier les suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ définies par les conditions initiales $a_0=1,\ b_0=0,\ c_0=0$ et les relations de récurrence suivantes :

$$\begin{cases} a_{n+1} = 3a_n + 4b_n - c_n \\ b_{n+1} = -4a_n - 5b_n + c_n \\ c_{n+1} = -6a_n - 8b_n + 2c_n \end{cases}$$

Pour tout $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$.

- **9.** Que vaut X_0 ?
- 10. Déterminer une matrice C telle que pour tout $n \in \mathbb{N}$, on ait :

$$X_{n+1} = CX_n$$

Déterminer ensuite deux réels x et y tels que C = M(x, y).

- 11. Montrer que, pour tout $n \in \mathbb{N}$, $X_n = C^n X_0$.
- 12. À l'aide des résultats de la partie A, exprimer a_n , b_n et c_n en fonction de n.

EXERCICE 2

1. Pour tout $n \in \mathbb{N}$, on définit la fonction $g_n : [0, +\infty[\to \mathbb{R} \text{ par } :$

$$g_n(x) = \frac{(\ln(1+x))^n}{(1+x)^2}$$

- a) Étudier les variations de la fonction g_0 , définie sur $[0, +\infty[$ par : $g_0(x) = \frac{1}{(1+x)^2}$. Préciser la limite de g_0 en $+\infty$, donner l'équation de la tangente en 0, et donner l'allure de la courbe représentative de g_0 .
- **b)** Pour $n \ge 1$, justifier que g_n est dérivable sur $[0, +\infty[$ et montrer que :

$$\forall x \in [0, +\infty[, \quad g'_n(x) \geqslant 0 \iff n \geqslant 2\ln(1+x)$$

En déduire les variations de la fonction g_n lorsque $n \ge 1$. Calculer soigneusement $\lim_{x \to +\infty} g_n(x)$.

c) Montrer que, pour $n \ge 1$, g_n admet un maximum sur $[0, +\infty[$ qui vaut :

$$M_n = \left(\frac{n}{2e}\right)^n$$

et déterminer $\lim_{n\to+\infty} M_n$.

d) Montrer enfin que pour tout $n \ge 1$:

$$g_n(x) = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^{\frac{3}{2}}} \right)$$

2. On pose pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{+\infty} g_n(t)dt$$

- a) Montrer que l'intégrale I_0 est convergente et la calculer.
- b) Montrer que pour tout entier $n \ge 1$, l'intégrale I_n est convergente.
- c) À l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, \ I_{n+1} = (n+1)I_n$$

d) En déduire que :

$$\forall n \in \mathbb{N}, \ I_n = n!$$

3. Pour tout $n \in \mathbb{N}$, on définit la fonction f_n par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{n!} \ g_n(x) & \text{si } x \geqslant 0 \end{cases}$$

a) Montrer que pour tout $n \in \mathbb{N}$, f_n est une densité de probabilité.

On considère à présent, pour tout $n \in \mathbb{N}$, X_n une variable aléatoire réelle admettant f_n pour densité. On notera F_n la fonction de répartition de X_n .

- b) La variable aléatoire X_n admet-elle une espérance?
- c) Que vaut $F_n(x)$ pour x < 0 et $n \in \mathbb{N}$?
- d) Calculer $F_0(x)$ pour $x \ge 0$.
- e) Soit $x \ge 0$ et $k \in \mathbb{N}^*$. Montrer que :

$$F_k(x) - F_{k-1}(x) = -\frac{1}{k!} \frac{(\ln(1+x))^k}{1+x}$$

- f) En déduire une expression de $F_n(x)$ pour $x \ge 0$ et $n \in \mathbb{N}^*$ faisant intervenir une somme (on ne cherchera pas à calculer cette somme).
- g) Pour $x \in \mathbb{R}$ fixé, déterminer la limite de $F_n(x)$ lorsque n tend vers $+\infty$.
- h) La suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ converge-t-elle en loi?
- 4. Pour tout $n \in \mathbb{N}$, on note $Y_n = \ln(1 + X_n)$.
 - a) Justifier que Y_n est bien définie. Quelles sont les valeurs prises par Y_n ?
 - b) Justifier que Y_n admet une espérance et la calculer.
 - c) Justifier que Y_n admet une variance et la calculer.
 - d) On note H_n la fonction de répartition de Y_n . Montrer que :

$$\forall x \in \mathbb{R}, \ H_n(x) = F_n(e^x - 1)$$

- e) Montrer que Y_n est une variable aléatoire à densité et donner une densité de Y_n .
- f) Reconnaître la loi de Y_0 . À l'aide de ce qui précède, déterminer le moment d'ordre k de Y_0 pour tout $k \in \mathbb{N}^*$.

EXERCICE 3

Dans tout l'exercice, X et Y sont deux variables aléatoires définies sur le même espace probabilisé et à valeurs dans \mathbb{N} . On dit que les deux variables X et Y sont **échangeables** si :

$$\forall (i,j) \in \mathbb{N}^2, \quad \mathbb{P}([X=i] \cap [Y=j]) = \mathbb{P}([X=j] \cap [Y=i])$$

Résultats préliminaires

- 1. On suppose que X et Y sont deux variables indépendantes et de même loi. Montrer que X et Y sont échangeables.
- 2. On suppose que X et Y sont échangeables. Montrer, à l'aide de la formule des probabilités totales, que :

$$\forall i \in \mathbb{N}, \quad \mathbb{P}([X=i]) = \mathbb{P}([Y=i])$$

Étude d'un exemple

Soient n, b et c trois entiers strictement positifs.

Une urne contient initialement n boules noires et b boules blanches. On effectue l'expérience suivante, en distinguant trois variantes.

- On pioche une boule dans l'urne.
 On définit X la variable aléatoire qui vaut 1 si cette boule est noire et 2 si elle est blanche.
- On replace la boule dans l'urne et :
 - \star Variante 1 : on ajoute dans l'urne c boules de la même couleur que la boule qui vient d'être piochée.
 - \star Variante 2 : on ajoute dans l'urne c boules de la couleur opposée à celle de la boule qui vient d'être piochée.
 - * Variante 3 : on n'ajoute pas de boule supplémentaire dans l'urne.
- On pioche à nouveau une boule dans l'urne.
 On définit Y la variable aléatoire qui vaut 1 si cette seconde boule piochée est noire et 2 si elle est blanche.
- 3. a) Compléter la fonction Scilab suivante, qui simule le tirage d'une boule dans une urne contenant b boules blanches et n boules noires et qui retourne 1 si la boule tirée est noire, et 2 si la boule tirée est blanche.

```
function res = tirage(b, n)
r = rand()
if ...... then
res = 2
else
res = 1
end
endfunction
```

b) Compléter la fonction suivante, qui effectue l'expérience étudiée avec une urne contenant initialement b boules blanches, n boules noires et qui ajoute éventuellement c boules après le premier tirage, selon le choix de la variante dont le numéro est variante.

Les paramètres de sortie sont :

- x : une simulation de la variable aléatoire X
- y: une simulation de la variable aléatoire Y

```
function [x, y] = experience (b, n, c, variante)
       x = tirage (b, n)
2
       if variante == 1 then
3
          if x == 1 then
              . . . . . . . . . . . .
5
          else
6
7
              . . . . . . . . . . .
          end
8
       else if variante == 2 then
          . . . . . . . . . . .
11
           . . . . . . . . . . .
12
           . . . . . . . . . . .
           . . . . . . . . . . .
13
14
       end
\underline{15}
       y = tirage (b, n)
<u>16</u>
    endfunction
```

c) Compléter la fonction suivante, qui simule l'expérience N fois (avec $N \in \mathbb{N}^*$), et qui estime la loi de X, la loi de Y et la loi du couple (X,Y).

Les paramètres de sortie sont :

- loiX : un tableau unidimensionnel à deux éléments qui estime [$\mathbb{P}([X=1]), \mathbb{P}([X=2])$]
- loi Y: un tableau unidimensionnel à deux éléments qui estime [$\mathbb{P}([Y=1]), \mathbb{P}([Y=2])$]
- loiXY: un tableau bidimensionnel à deux lignes et deux colonnes qui estime :

$$\left[\begin{array}{ll} \mathbb{P}([X=1]\cap[Y=1]) & \mathbb{P}([X=1]\cap[Y=2]) \\ \mathbb{P}([X=2]\cap[Y=2]) & \mathbb{P}([X=1]\cap[Y=2]) \end{array}\right]$$

```
function [loiX, loiY, loiXY] = estimation(b, n, c, variante, N)
1
      loiX = [0, 0]
2
      loiY = [0, 0]
3
      loiXY = [0, 0; 0, 0]
       for k = 1 : N
          [x , y] = experience(b, n, c, variante)
6
         \mathbf{loiX}(\mathbf{x}) = \mathbf{loiX}(\mathbf{x}) + 1
7
         . . . . . . . . . . .
8
         . . . . . . . . . . .
9
       end
10
      loiX = loiX / N
11
      loiY = loiY / N
<u>12</u>
      loiXY = loiXY / N
13
    endfunction
14
```

d) On exécute notre fonction précédente avec $b=1,\,n=2,\,c=1,\,N=10000$ et dans chacune des variantes. On obtient :

```
--> [loiX,loiY,loiXY] = estimation(1,2,1,1,10000)
   loiXY =
        0.49837
                    0.16785
        0.16697
                    0.16681
   loiY =
        0.66534
                    0.33466
   loiX =
        0.66622
                    0.33378
--> [loiX,loiY,loiXY] = estimation(1,2,1,2,10000)
   loiXY =
        0.33258
                    0.33286
                    0.08425
        0.25031
   loiY =
        0.58289
                    0.41711
   loiX =
        0.66544
                    0.33456
 -> [loiX,loiY,loiXY] = estimation(1,2,1,3,10000)
   loiXY =
        0.44466
                    0.22098
        0.22312
                    0.11124
   loiY =
        0.66778
                    0.33222
   loiX =
        0.66564
                    0.33436
```

En étudiant ces résultats, émettre des conjectures quant à l'indépendance et l'échangeabilité de X et Y dans chacune des variantes.

On donne les valeurs numériques approchées suivantes :

```
\begin{array}{l} 0.33 \times 0.33 \simeq 0.11 \\ 0.33 \times 0.41 \simeq 0.14 \\ 0.33 \times 0.58 \simeq 0.19 \\ 0.33 \times 0.66 \simeq 0.22 \\ 0.41 \times 0.66 \simeq 0.27 \\ 0.58 \times 0.66 \simeq 0.38 \\ 0.66 \times 0.66 \simeq 0.44 \end{array}
```

- 4. On se place dans cette question dans le cadre de la variante 1.
 - a) Donner la loi de X.
 - b) Déterminer la loi du couple (X, Y).
 - c) Déterminer la loi de Y.
 - d) Montrer que X et Y sont échangeables mais ne sont pas indépendantes.