Équations différentielles linéaires

I. Systèmes d'équations linéaires d'ordre 1

I.1. Présentation du problème

Soit I un intervalle de \mathbb{R} . Un système différentiel linéaire d'ordre 1 est un système de la forme

$$(\Sigma): \begin{cases} x_1' = a_{1,1}(t)x_1 + a_{1,2}(t)x_2 + \dots + a_{1,n}(t)x_n + b_1(t) \\ x_2' = a_{2,1}(t)x_1 + a_{2,2}(t)x_2 + \dots + a_{2,n}(t)x_n + b_2(t) \\ \dots \\ x_n' = a_{n,1}(t)x_1 + a_{n,2}(t)x_2 + \dots + a_{n,n}(t)x_n + b_n(t) \end{cases}$$

dans lequel:

- o les a_{ij} et les b_i sont des fonctions données de I dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , supposées continues sur I;
- \circ les x_i sont les fonctions inconnues.

Une solution de (Σ) sur un intervalle $J \subset I$ est un n-uplet de fonctions (x_1, \ldots, x_n) de J dans \mathbb{K} , de classe C^1 sur J, et vérifiant, pour tout $t \in J$ et tout $i \in [1, n]$, $x'_i(t) = \sum_{j=1}^n a_{ij}(t)x_i(t)$.

Pour tout t dans I, notons A(t) la matrice de $\mathcal{M}_n(\mathbb{K})$ dont les coefficients sont les nombres $a_{ij}(t)$, et B(t) la matrice colonne de $\mathcal{M}_{n1}(\mathbb{K})$ dont les coefficients sont les $b_i(t)$. Le système (Σ) se réécrit alors sous la forme

$$(\Sigma) : X' = A(t)X + B(t)$$

Sous cette forme, une solution du système sur un intervalle $J \subset I$ est une fonction $X: t \longmapsto X(t) = {}^t (x_1(t) \cdots x_n(t))$ de J dans l'espace $\mathcal{M}_{n1}(\mathbb{K})$ des colonnes, de classe C^1 sur J, vérifiant X'(t) = A(t)X(t) + B(t) pour tout t dans J.

On peut aussi considérer, pour tout t, l'endomorphisme φ_t de \mathbb{K}^n dont la matrice est A(t) dans la base canonique; et le vecteur b(t) de \mathbb{K}^n dont la colonne des coordonnées dans cette même base est B(t). Les applications $t \longmapsto \varphi_t$ et $t \mapsto b(t)$ sont alors des applications continues sur I, à valeurs respectivement dans $\mathcal{L}(\mathbb{K}^n)$ et \mathbb{K}^n . Le système (Σ) peut alors s'écrire $x' = \varphi_t(x) + b(t)$; une solution du système sur un intervalle J inclus dans I est une fonction $x: t \mapsto x(t)$ de J dans \mathbb{K}^n , de classe C^1 sur J, et vérifiant $x'(t) = \varphi_t(x(t)) + b(t)$ pour tout t dans J.

I.2. Théorème de Cauchy-Lipschitz

On appelle **problème de Cauchy** pour le système (Σ) tout problème de la forme suivante :

(C)
$$\begin{cases} X' = A(t)X + B(t) \\ X(t_0) = X_0 \end{cases}$$

où t_0 est un réel quelconque de l'intervalle I, et X_0 un élément quelconque de \mathbb{K}^n . Une solution du problème (C) sur un intervalle J inclus dans I et contenant t_0 est alors une solution X du système (Σ) , vérifiant de plus la condition $X(t_0) = X_0$. Cette dernière condition sera en général appelée **condition de Cauchy**, ou condition initiale.

Proposition I.1. Avec les notations précédentes, soit X une fonction continue d'un intervalle J inclus dans I et contenant t_0 , à valeurs dans \mathbb{K}^n . Alors, X est solution sur J du problème de Cauchy (C) si et seulement si elle vérifie

$$(C'): \forall t \in J \quad X(t) = X_0 + \int_{t_0}^t A(u)X(u) \, du + \int_{t_0}^t B(u) \, du.$$

Théorème I.2 (de Cauchy-Lipschitz, cas linéaire). Soient A et B deux fonctions continues sur un intervalle I de \mathbb{R} , à valeurs respectivement dans $\mathcal{M}_n(\mathbb{K})$ et \mathbb{K}^n . Alors, pour tout choix de t_0 dans I et de X_0 dans \mathbb{K}^n , le problème de Cauchy

(C)
$$\begin{cases} X' = A(t)X + B(t) \\ X(t_0) = X_0 \end{cases}$$

admet une et une seule solution X sur l'intervalle I; de plus, toute solution sur un intervalle J contenant t_0 et inclus dans I est en fait la restriction à J de cette solution X.

I.3. Système linéaire homogène

Définition. Un système différentiel est dit **homogène** s'il est de la forme X' = A(t)X. Si $(\Sigma): X' = A(t)X + B(t)$ est un système différentiel quelconque, le système $(\Sigma_0): X' = A(t)X$ est appelé système homogène associé à (Σ) .

Proposition I.3. Soit A une fonction continue d'un intervalle I de \mathbb{R} dans $\mathcal{M}_n(\mathbb{K})$. Alors l'ensemble S_0 des solutions sur I du système homogène (Σ_0) : X' = A(t)X est un espace vectoriel sur \mathbb{K} .

Théorème I.4. Soit A une fonction continue d'un intervalle I de \mathbb{R} dans $\mathcal{M}_n(\mathbb{K})$; soit S_0 l'ensemble des solutions sur I du système homogène $(\Sigma_0): X' = A(t)X$. Alors, pour tout t_0 dans I, l'application $\Phi: X \mapsto X(t_0)$ réalise un isomorphisme de S_0 dans \mathbb{K}^n ; S_0 est donc un espace vectoriel de dimension n.

I.4. Système complet

Proposition I.5. Soient A une fonction continue d'un intervalle I dans $\mathcal{M}_n(\mathbb{K})$, B_1 et B_2 deux fonctions continues de I dans \mathbb{K}^n . Si X_1 est une solution sur I du système $(\Sigma_1): X' = A(t)X + B_1(t)$ et X_2 est une solution sur I du système $(\Sigma_2): X' = A(t)X + B_2(t)$, et $si(\lambda, \mu) \in \mathbb{K}^2$, alors $\lambda X_1 + \mu X_2$ est solution sur I du système $X' = A(t)X + (\lambda B_1(t) + \mu B_2(t))$.

Corollaire I.6. Soit A et B deux fonctions continues sur un intervalle I, à valeurs respectivement dans $\mathcal{M}_n(\mathbb{K})$ et \mathbb{K}^n . Si X_0 est une solution sur I du système (Σ) : X' = A(t)X + B(t), alors les solutions de (Σ) sur I sont exactement les fonctions de la forme $X_0 + Y$, où Y est une solution sur I du système homogène (Σ_0) associé à (Σ) .

Corollaire I.7. Sous les hypothèses précédentes, l'ensemble S des solutions sur I du système (Σ) est un sous-espace affine de l'espace des fonctions de I dans \mathbb{K}^n , dont la direction est l'espace vectoriel S_0 des solutions du système homogène associé.

II. Équation linéaire scalaire d'ordre 1 et 2

II.1. Équation d'ordre 1

Proposition II.1. Soit a une fonction de $I \subset \mathbb{R}$ dans \mathbb{K} , continues sur I. L'ensemble des solutions sur I de l'équation homogène y'+ay=0 est une droite vectorielle; elle est engendrée par la fonction $t \longmapsto e^{-A(t)}$ où A est une primitive quelconque de a sur I.

Théorème II.2. Soient a et b deux fonctions de $I \subset \mathbb{R}$ dans \mathbb{K} , continues sur I. Soient $t_0 \in I$ et $y_0 \in \mathbb{K}$. Alors, le problème de Cauchy y' + a(t)y = b(t), $y(t_0) = y_0$ admet une et une seule solution sur I; cette solution f est donnée par

$$\forall t \in I \quad f(t) = e^{-A(t)} \left(y_0 + \int_{t_0}^t e^{A(u)} b(u) \, du \right)$$

où A est la primitive de a qui s'annule en t_0 .

II.2. Traduction d'une équation d'ordre n

On appelle équation différentielle linéaire scalaire d'ordre n toute équation de la forme

(E):
$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_1y' + a_0y = b$$

dans laquelle les a_i et b sont des fonctions continues sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} .

Soit y une solution de (E) sur un intervalle J inclus dans I. Pour tout k de [1, n], on pose $x_k = y^{(k-1)}$; on a en particulier $x_1 = y$. On a alors

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \\ \dots \\ x'_{n-1} = x_n \\ x'_n = a_{n-1}x_n + \dots + a_1x_2 + a_0x_1 + b \end{cases}$$

Autrement dit, la fonction X, de J dans l'espace des colonnes $\mathcal{M}_{n1}(\mathbb{K})$, dont les composantes sont les fonctions x_i , est solution du système $(\Sigma): X' = A(t)X + B(t)$, dans lequel les matrices A(t) et B(t) sont définies, pour tout t de I, par

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \end{pmatrix} \quad ; \quad B(t) = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ b(t) \end{pmatrix}.$$

Réciproquement, si X est une solution du système (Σ) , on vérifie immédiatement que la première fonction composante x_1 de X est solution de l'équation (E). Il est donc équivalent de résoudre l'équation (E) scalaire d'ordre n et de résoudre le système (Σ) d'ordre 1, à n inconnues.

De plus, (E) est homogène si et seulement si (Σ) l'est; dans ce cas, l'application $X \longmapsto x_1$ est un isomorphisme d'espaces vectoriels entre leurs espaces de solutions.

II.3. Équation d'ordre 2

II.3.1. Théorème de Cauchy-Lipschitz

Théorème II.3. Soient a, b et c des fonctions de $I \subset \mathbb{R}$ dans \mathbb{K} , continues sur I. Soient $t_0 \in I$ et $(y_0, y_0') \in \mathbb{K}^2$. Alors, le problème de Cauchy

$$y'' + a(t)y' + b(t)y = c(t), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0$$

admet une et une seule solution sur I.

II.3.2. Équation homogène

Soient a et b des fonctions de $I \subset \mathbb{R}$ dans \mathbb{K} , continues sur I. On étudie l'équation homogène $(E_0): y'' + a(t)y' + b(t)y = 0$.

Proposition II.4. L'ensemble S_0 des solutions sur I de (E_0) est un plan vectoriel.

Définition. Si y_1 et y_2 sont deux fonctions solutions de (E_0) , on appelle **wronskien** du couple (y_1, y_2) , la fonction $w = y_1y_2' - y_1'y_2 = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$.

Proposition II.5. Soit (y_1, y_2) un couple de solutions de (E_0) sur I, et w leur wronskien. Alors:

- \triangleright soit (y_1, y_2) est liée, et dans ce cas $\forall t \in I \quad w(t) = 0$;
- \triangleright soit (y_1, y_2) est libre (et donc est une base de l'espace des solutions), et dans ce cas $\forall t \in I \ w(t) \neq 0$.

II.3.3. Variation des constantes

Soient a, b et c trois fonctions de I dans \mathbb{K} , continues sur I. On étudie l'équation (E): y'' + a(t)y' + b(t)y = c(t) et l'équation homogène associée $(E_0): y'' + a(t)y' + b(t)y = 0$.

Théorème II.6. Soit (y_1, y_2) une base de l'espace S_0 des solutions de l'équation homogène (E_0) . Pour toute solution y de l'équation complète (E), il existe deux fonctions λ et μ de classe C^1 sur I, vérifiant le système

$$\begin{cases} \lambda y_1 + \mu y_2 = y \\ \lambda' y_1 + \mu' y_2 = 0 \end{cases}$$

Proposition II.7. Si y_0 est une solution de l'équation homogène (E_0) qui ne s'annule pas sur un intervalle $J \subset I$, on peut chercher les solutions de l'équation complète (E) sous la forme $y = \lambda y_0$ où λ est une fonction de classe C^1 sur J.

III. Système à coefficients constants

III.1. Système homogène

Proposition III.1. Soient $A \in \mathcal{M}_n(\mathbb{K})$, $t_0 \in \mathbb{R}$ et $X_0 \in \mathcal{M}_{n,1}(\mathbb{K})$. Alors, l'unique solution sur \mathbb{R} du problème de Cauchy X' = AX, $X(t_0) = X_0$ est la fonction $t \longmapsto e^{(t-t_0)A}X_0$.

Corollaire III.2. Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

- \circ Si AB = BA, alors $e^{A+B} = e^{A}e^{B}$.
- \circ La matrice e^{A} est inversible, d'inverse e^{-A}

En particulier, si $A \in \mathcal{M}_n(\mathbb{K})$ et $(t,u) \in \mathbb{R}^2$, alors $e^{(t+u)A} = e^{tA}e^{uA}$.

III.2. Cas diagonalisable

Proposition III.3. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si $\lambda \in \mathbb{K}$ est une valeur propre de A, et si V est une colonne vérifiant $AV = \lambda V$, alors $t \longmapsto e^{\lambda t}V$ est une solution sur \mathbb{R} du système X' = AX.

Proposition III.4. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A est diagonalisable, et si (V_1, \ldots, V_n) est une base de colonnes propres associées respectivement aux valeurs propres $\lambda_1, \ldots, \lambda_n$, alors les fonctions $X_i : t \longmapsto e^{\lambda_i t} V_i$ où i décrit [1, n], forment une base de l'espace des solutions du système X' = AX.

III.3. Cas trigonalisable

Proposition III.5. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soient P une matrice inversible et T une matrice triangulaire telles que $P^{-1}AP = T$. Une fonction $X : \mathbb{R} \longrightarrow \mathcal{M}_{n,1}(\mathbb{K})$ de classe C^1 est solution du système X' = AX, si et seulement si la fonction $Y : t \longmapsto P^{-1}X(t)$ est solution du système Y' = TY.