

Eksamen

24.05.2019

REA3024 Matematikk R2

Nynorsk

Hymorak						
Eksamensinforma	asjon					
Eksamenstid	5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal leverast inn seinast etter 5 timar.					
Hjelpemiddel på Del 1:	Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar.					
Hjelpemiddel på Del 2:	Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon.					
Framgangsmåte:	Del 1 har 9 oppgåver. Del 2 har 4 oppgåver.					
	Der oppgåveteksten ikkje seier noko anna, kan du fritt velje framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil ein alternativ metode kunne gi låg/noko utteljing.					
	Bruk av digitale verktøy som grafteiknar og CAS skal dokumenterast.					
Rettleiing om vurderinga:	Poeng i Del 1 og Del 2 er berre rettleiande i vurderinga. Karakteren blir fastsett etter ei samla vurdering. Det betyr at sensor vurderer i kva grad du					
	 viser rekneferdigheiter og matematisk forståing 					
	 gjennomfører logiske resonnement 					
	 ser samanhengar i faget, er oppfinnsam og kan ta i bruk 					
	fagkunnskap i nye situasjonar					
	 kan bruke formålstenlege hjelpemiddel 					
	 forklarer framgangsmåtar og grunngir svar 					
	 skriv oversiktleg og er nøyaktig med utrekningar, nemningar, 					
	tabellar og grafiske framstillingar					
	vurderer om svar er rimelege					
Andre opplysningar:	Kjelder for bilete, teikningar osv.:					
	 Tromsø: https://unsplash.com/photos/ist1RQ0fkcE (04.02.2019) Alle grafar og figurar: Utdanningsdirektoratet 					

DEL 1 Utan hjelpemiddel

Oppgåve 1 (3 poeng)

Deriver funksjonane

- a) $f(x) = 3\sin(4x+1) + x$
- b) $g(x) = 4 \sin x \cdot \cos x$

Oppgåve 2 (5 poeng)

Bestem integrala

- a) $\int (x^4 x^2) \, \mathrm{d}x$
- b) $\int 4x \cdot e^{-x^2} dx$
- c) $\int \frac{4}{x^2 2x 3} dx$

Oppgåve 3 (4 poeng)

a) Bruk formelen for summen av ei aritmetisk rekkje til å rekne ut

$$1+5+9+\cdots+157$$

b) Ei geometrisk rekkje er gitt ved $a_3 = 1$ og $a_6 = \frac{1}{27}$.

Avgjer om den uendelege rekkja $a_1+a_2+a_3+\cdots$ konvergerer. Bestem eventuelt summen av rekkja.

Oppgåve 4 (2 poeng)

Funksjonen f er gitt ved

$$f(x) = a^2 - x^2$$
, der $a > 0$

Rektangelet ABCD er gitt ved at

- B er det høgre skjeringspunktet mellom grafen til f og x-aksen
- D er toppunktet på grafen til f

Vis at arealet av det fargelagde området utgjer $\frac{2}{3}$ av arealet til rektangelet.

Oppgåve 5 (8 poeng)

Vi har gitt punkta A(3, 1, 0), B(3, 2, 4) og C(-1, 1, 4).

a) Vis at punkta ligg i planet α gitt ved

$$\alpha$$
: $x - 4y + z + 1 = 0$

Ei linje ℓ står normalt på lpha og går gjennom A .

b) Bestem ei parameterframstilling for ℓ .

Ei kuleflate tangerer α i A.

c) Forklar at kuleflata er gitt ved likninga

$$(x-3-t)^2+(y-1+4t)^2+(z-t)^2=18t^2$$
 , for en $t\in\mathbb{R}$

Punktet P(4, 1, 1) ligg på kuleflata.

d) Bestem sentrum til kuleflata.

Oppgåve 6 (4 poeng)

Løys likningane

a)
$$\sin(2x) = 1$$
, $x \in [0, 2\pi]$

b)
$$\sin(\pi x) + \sqrt{3}\cos(\pi x) = 0$$
, $x \in [0, 2]$

Oppgåve 7 (3 poeng)

Nedanfor har vi teikna retningsdiagramma til differensiallikningane

1)
$$y' = \frac{x}{y}$$
 2) $y' = x \cdot y$ 3) $y' = 2x$

$$2) \quad y' = x \cdot y$$

$$3) \quad y' = 2x$$

Argumenter for kva for eit av retningsdiagramma som høyrer til kvar av dei tre differensiallikningane.

Oppgåve 8 (3 poeng)

Bruk induksjon til å bevise at påstanden P(n) er sann for alle $n \in \mathbb{N}$

$$P(n)$$
: $3 \cdot 4 + 6 \cdot 5 + 9 \cdot 6 + \dots + (3n) \cdot (n+3) = n \cdot (n+1) \cdot (n+5)$

Oppgåve 9 (4 poeng)

Vatn lek ut frå eit hòl i botnen av ein sylinderforma tank med ein fart som til kvar tid er proporsjonal med kvadratrota av vasshøgda y i tanken.

a) Set opp ei differensiallikning som svarer til opplysningane ovanfor.

Ved tida t = 0 er vasshøgda 100 cm. Etter 2 timar er vasshøgda 81 cm.

b) Kor lang tid vil det gå før tanken er tom?

DEL 2 Med hjelpemiddel

Oppgåve 1 (6 poeng)

Tabellen nedanfor viser vass-standen til tidvatnet ved Leirvik på Stord 14. august 2018. Vass-standen er målt frå eit nullnivå som heiter sjøkartnull.

Klokkeslett	03.00	06.00	09.00	12.00	15.00	18.00	21.00	23.00
Vass-stand (cm)	102	26	10	81	109	43	20	57

a) Bruk tala frå tabellen til å lage ein sinusfunksjon g som er ein god modell for vassstanden.

Funksjonen f gitt ved

$$f(x) = 130 \sin(0.501x - 0.532) + 148$$
, $x \in [0, 24)$

er ein god modell for vass-standen til tidvatnet i Tromsø x timar etter midnatt 14. august 2018.

- b) Bestem perioden til f. Gi en praktisk tolking av dette talet.
- c) Gi ei praktisk tolking av tala 148 og 130 i modellen f.
- d) Ved kva tidspunkt aukar vass-standen med 50 cm per time?

Oppgåve 2 (7 poeng)

Punkta P(2, 4, -3) og Q(0, 0, 1) ligg på ei kuleflate K slik at PQ er ein diameter til kuleflata.

a) Vis at kuleflata K er gitt ved likninga

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$$

Planet α er gitt ved

$$\alpha$$
: $x - y + z = 7$

b) Bestem eksakt den minste avstanden mellom kuleflata K og planet α .

Eit plan β er gitt ved likninga

$$\beta$$
: $2x + y + t \cdot (z - 3) = -1$

c) Vis at avstanden mellom sentrum i kuleflata K og planet β er gitt ved

$$d(t) = \frac{\left|5 - 4t\right|}{\sqrt{5 + t^2}}$$

d) Bestem eksakte verdiar for t slik at planet β tangerer kuleflata K.

Oppgåve 3 (5 poeng)

Funksjonen f er gitt ved

$$f(x) = \frac{1}{x^2}$$

a) Bruk figuren nedanfor til å forklare at

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2} \le 1 + \int_1^k \frac{1}{x^2} dx , \quad k \in \mathbb{N}$$

Vi skal no sjå på den uendelege rekkja

$$S = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

- b) Bruk resultatet frå oppgåve a) til å grunngi at S < 2.
- c) Bruk CAS til å bestemme ein eksakt verdi for S.

Oppgåve 4 (6 poeng)

Ein sirkel har sentrum i (0, 5) og radius 2. Vi roterer denne sirkelen 360° om x-aksen. Da får vi ein omdreiingslekam som vist på figuren.

a) Forklar at grafane til f og g saman dannar sirkelen når f og g er gitt ved

$$f(x) = 5 + \sqrt{4 - x^2}$$

$$g(x) = 5 - \sqrt{4 - x^2}$$

b) Bruk CAS til å bestemme den eksakte verdien for volumet av omdreiingslekamen.

Ein annan sirkel har sentrum i (2, 7) og radius 3. Vi roterer også denne sirkelen 360° om x-aksen.

Bruk CAS til å bestemme den eksakte verdien for volumet av denne c) omdreiingslekamen.

Bokmål

Eksamensinformasjon					
Eksamenstid	5 timer: Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.				
Hjelpemidler på Del 1:	Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.				
Hjelpemidler på Del 2:	Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.				
Framgangsmåte:	Del 1 har 9 oppgaver. Del 2 har 4 oppgaver.				
	Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Dersom oppgaven krever en bestemt løsningsmetode, kan en alternativ metode gi lav/noe uttelling.				
	Bruk av digitale verktøy som graftegner og CAS skal dokumenteres.				
Veiledning om vurderingen:	Poeng i Del 1 og Del 2 er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du				
	 viser regneferdigheter og matematisk forståelse 				
	 gjennomfører logiske resonnementer 				
	 ser sammenhenger i faget, er oppfinnsom og kan ta i bruk 				
	fagkunnskap i nye situasjoner				
	 kan bruke hensiktsmessige hjelpemidler 				
	 forklarer framgangsmåter og begrunner svar 				
	 skriver oversiktlig og er nøyaktig med utregninger, 				
	benevninger, tabeller og grafiske framstillinger				
	 vurderer om svar er rimelige 				
Andre opplysninger:	Kilder for bilder, tegninger osv.:				
	 Tromsø: https://unsplash.com/photos/ist1RQ0fkcE (04.02.2019) Alle grafer og figurer: Utdanningsdirektoratet 				

DEL 1 Uten hjelpemidler

Oppgave 1 (3 poeng)

Deriver funksjonene

- a) $f(x) = 3\sin(4x+1) + x$
- b) $g(x) = 4 \sin x \cdot \cos x$

Oppgave 2 (5 poeng)

Bestem integralene

- a) $\int (x^4 x^2) \, \mathrm{d}x$
- b) $\int 4x \cdot e^{-x^2} dx$
- c) $\int \frac{4}{x^2 2x 3} dx$

Oppgave 3 (4 poeng)

a) Bruk formelen for summen av en aritmetisk rekke til å regne ut

$$1+5+9+\cdots+157$$

b) En geometrisk rekke er gitt ved $a_3 = 1$ og $a_6 = \frac{1}{27}$.

Avgjør om den uendelige rekken $a_1 + a_2 + a_3 + \cdots$ konvergerer. Bestem eventuelt summen av rekken.

Oppgave 4 (2 poeng)

Funksjonen f er gitt ved

$$f(x) = a^2 - x^2$$
, der $a > 0$

Rektangelet ABCD er gitt ved at

- B er det høyre skjæringspunktet mellom grafen til f og x-aksen
- D er toppunktet på grafen til f

Vis at arealet av det fargelagte området utgjør $\frac{2}{3}$ av rektangelets areal.

Oppgave 5 (8 poeng)

Vi har gitt punktene A(3, 1, 0), B(3, 2, 4) og C(-1, 1, 4).

a) Vis at punktene ligger i planet α gitt ved

$$\alpha$$
: $x - 4y + z + 1 = 0$

En linje ℓ står normalt på α og går gjennom A.

b) Bestem en parameterframstilling for ℓ .

En kuleflate tangerer α i A.

c) Forklar at kuleflaten er gitt ved likningen

$$(x-3-t)^2+(y-1+4t)^2+(z-t)^2=18t^2$$
 , for en $t\in\mathbb{R}$

Punktet P(4, 1, 1) ligger på kuleflaten.

d) Bestem sentrum til kuleflaten.

Oppgave 6 (4 poeng)

Løs likningene

a)
$$\sin(2x) = 1$$
, $x \in [0, 2\pi]$

b)
$$\sin(\pi x) + \sqrt{3}\cos(\pi x) = 0$$
, $x \in [0, 2]$

Oppgave 7 (3 poeng)

Nedenfor har vi tegnet retningsdiagrammene til differensiallikningene

1)
$$y' = \frac{x}{y}$$
 2) $y' = x \cdot y$ 3) $y' = 2x$

$$2) \quad y' = x \cdot y$$

$$3) \quad y' = 2x$$

Argumenter for hvilket av retningsdiagrammene som hører til hver av de tre differensiallikningene.

Oppgave 8 (3 poeng)

Bruk induksjon til å bevise at påstanden P(n) er sann for alle $n \in \mathbb{N}$

$$P(n)$$
: $3 \cdot 4 + 6 \cdot 5 + 9 \cdot 6 + \dots + (3n) \cdot (n+3) = n \cdot (n+1) \cdot (n+5)$

Oppgave 9 (4 poeng)

Vann lekker ut fra et hull i bunnen av en sylinderformet tank med en fart som til enhver tid er proporsjonal med kvadratroten av vannhøyden y i tanken.

a) Sett opp en differensiallikning som svarer til opplysningene ovenfor.

Ved tiden t = 0 er vannhøyden 100 cm. Etter 2 timer er vannhøyden 81 cm.

b) Hvor lang tid vil det gå før tanken er tom?

DEL 2 Med hjelpemidler

Oppgave 1 (6 poeng)

Tabellen nedenfor viser vannstanden til tidevannet ved Leirvik på Stord 14. august 2018. Vannstanden er målt fra et nullnivå som heter sjøkartnull.

Klokkeslett	03.00	06.00	09.00	12.00	15.00	18.00	21.00	23.00
Vannstand (cm)	102	26	10	81	109	43	20	57

a) Bruk tallene fra tabellen til å lage en sinusfunksjon g som er en god modell for vannstanden.

Funksjonen f gitt ved

$$f(x) = 130 \sin(0.501x - 0.532) + 148$$
, $x \in [0, 24)$

er en god modell for vannstanden til tidevannet i Tromsø x timer etter midnatt 14. august 2018.

- b) Bestem perioden til f. Gi en praktisk tolkning av dette tallet.
- c) Gi en praktisk tolkning av tallene 148 og 130 i modellen f.
- d) Ved hvilke tidspunkter øker vannstanden med 50 cm per time?

imen REA3024 Matematikk R2 Våren 2019

Oppgave 2 (7 poeng)

Punktene P(2, 4, -3) og Q(0, 0, 1) ligger på en kuleflate K slik at PQ er en diameter til kuleflaten.

a) Vis at kuleflaten K er gitt ved likningen

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$$

Planet α er gitt ved

$$\alpha$$
: $x-y+z=7$

b) Bestem eksakt den minste avstanden mellom kuleflaten K og planet α .

Et plan β er gitt ved likningen

$$\beta$$
: $2x + y + t \cdot (z - 3) = -1$

c) Vis at avstanden mellom sentrum i kuleflaten K og planet β er gitt ved

$$d(t) = \frac{\left|5 - 4t\right|}{\sqrt{5 + t^2}}$$

d) Bestem eksakte verdier for t slik at planet β tangerer kuleflaten K.

Oppgave 3 (5 poeng)

Funksjonen f er gitt ved

$$f(x) = \frac{1}{x^2}$$

a) Bruk figuren nedenfor til å forklare at

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2} \le 1 + \int_1^k \frac{1}{x^2} dx , \quad k \in \mathbb{N}$$

Vi skal nå se på den uendelige rekken

$$S = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

- b) Bruk resultatet fra oppgave a) til å begrunne at S < 2.
- c) Bruk CAS til å bestemme en eksakt verdi for S.

Oppgave 4 (6 poeng)

En sirkel har sentrum i (0, 5) og radius 2. Vi roterer denne sirkelen 360° om x-aksen. Da får vi et omdreiingslegeme som vist på figuren.

a) Forklar at grafene til f og g sammen danner sirkelen når f og g er gitt ved

$$f(x) = 5 + \sqrt{4 - x^2}$$

$$g(x) = 5 - \sqrt{4 - x^2}$$

b) Bruk CAS til å bestemme den eksakte verdien for volumet av omdreiingslegemet.

En annen sirkel har sentrum i (2, 7) og radius 3. Vi roterer også denne sirkelen 360° om x-aksen.

Bruk CAS til å bestemme den eksakte verdien for volumet av dette omdreiingslegemet.

