Camada de Rede: Introdução

Livro: Redes de Computadores e a Internet

Autor: Kurose

- o 4.1.1 Repasse X Roteamento
- 4.2.2 Redes de datagramas
- 4.4.1 Formato do Datagrama
- 4.4.2 Endereçamento IPv4
- 4.4.3 Protocolo ICMP

Camada de Rede

- Transporta um segmento do remetente até o destino
- No lado do remetente encapsula os segmentos em datagramas
- No lado destino, entrega os segmentos a camada de transporte
- Protocolos da camada de rede em cada host, roteador
- O roteador examina os campos em todos os datagramas que passam por ele

Revisao IP 4-2

<u>Principais Funções da Camada</u> de Rede

- ☐ Repasse/encaminhamento
 /forwarding: move os
 pacotes da entrada do
 roteador para a saída
 mais apropriada do
 roteador
- Roteamento: determina a rota toamada pelos pacotes da origem ao destino
 - Algoritmos de Roteamento

Analogia:

- roteamento: processo de planejar uma viagem da origem ao destino
- □ Repasse/encaminhamento /forwarding: processo de passar por um único cruzamento

Algoritmos de roteamento determinam valores na tabela de repasse

4-1

Tabela de Repasse

4 billhões de entradas possíveis

Faixa de endereço de Destino	Interface do Enlace
11001000 00010111 00010000 00000000 até 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 até 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 até 11001000 00010111 00011111 11111111	2
senão	3

Revisao IP 4-5

Concordância do prefixo mais longo

Prefixo do Endereço	interface do enlace
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
senão	3

Exemplos

DA: 11001000 00010111 00010110 10100001 Qual a interface?

DA: 11001000 00010111 00011000 10101010 Qual a interface?

Revisao IP 4-6

O interior da Camada de Rede

Funções de um host, roteador da camada de rede

Revisao IP 4-7

Formato do datagrama IP

Fragmentação do datagrama IP

- Enlaces de rede têm MTU (max.transfer unit) - o maior payload da camada de enlace.
 - o diferentes tipos de links,
 - diferentes MTUs
- Datagrama IP dividido ("fragmentado") na rede
 - Um datagrama vira diversos datagramas
 - o "reconstrução" somente ← no destino final
 - bits do cabeçalho IP usados para identificar e ordenar os diversos fragmentos

Revisao IP 4-9

Fragmentação do datagrama IP

Revisao IP 4-10

Endereçamento IPv4

- □ Endereço IP:
 identificador de 32
 bits para a interface
 do host, roteador
- □ *interface:* conexão entre host/roteador e camada física
 - Em geral, roteadores têm várias interfaces
 - o host têm uma
 - Endereços IP são associados a cada interface

Sub-redes

□ Endereço IP:

- parte da sub-rede (bits de ordem mais alta)
- parte do host (bits de ordem mais baixa)
- □ O que é uma sub-rede ?
 - Interfaces do dispositivo com endereços IP com mesma parte de sub-rede
 - podem alcançar fisicamente cada um roteador interveniente

Rede consiste em 3 sub-redes

Sub-redes

Receita

□ Para determinar as sub-redes, destaque cada interface de seu host ou roteador, criando ilhas de redes isoladas com as interfaces fechando as terminações destas. Cada uma dessa redes isoladas é denominada sub-rede.

Máscara de sub-rede: /24

Revisao IP 4-13

Sub-redes

Quantas?

Revisao IP 4-14

Endereçamento IP: CIDR

CIDR: Classless InterDomain Routing

- Porção da sub-rede do endereço de tamanho arbitrário
- Formato do endereço: a.b.c.d/x, onde x indica o número de bits existentes na primeira parte do endereço

200.23.16.0/23

Endereços IP: como obter um?

- P: Como um host pega um endereço IP?
- Especificado pelo administrador do sistema e armazenado num arquivo
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - O UNIX: /etc/rc.config
- □ DHCP: Dynamic Host Configuration Protocol: pega o endereço dinamicamente de um servidor
 - "plug-and-play"

Revisao IP 4-15 Revisao IP 4-16

Endereços IP: como obter um?

- P: Como a rede pega a parte de sub-rede do endereço IP?
- R: pega seu bloco de endereços de seu provedor ISP

bloco da ISP	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	11001000	00010111	00010010	00000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
 Organization 7	11001000	 00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Revisao IP 4-17

Endereçamento hierárquico: agregação de rotas/endereços

Endereçamento hierárquico permite o aviso de informações de roteamento eficiente:

Revisao IP 4-18

Endereçamento hierárquico: mais rotas específicas

ISPs-R-Us tem uma rota mais especifica que a Organização 1

Endereçamento IP

- P: Como uma ISP pega um bloco de endereços?
- P: ICANN: Internet Corporation for Assigned
 - Names and Numbers
 - o aloca endereços
 - O Gerencia DNS
 - O Designa nome de domínios, resolve disputas

Revisao IP 4-19 Revisao IP 4-20

ICMP: Internet Control Message Protocol

Usado por computadores e roteadores para troca de informação de controle da	<u>Tipo</u>	Código 0	<u>descrição</u> echo reply (ping)
camada de rede	3	Ö	dest. network unreachable
 Error reporting: hospedeiro, 	3	1	dest host unreachable
rede, porta ou protocolo	3	2	dest protocol unreachable
 Echo request/reply (usado 	3	3	dest port unreachable
pela aplicação ping)	3	6	dest network unknown
Transporte de mensagens:	3	7	dest host unknown
 Mensagens ICMP 	4	0	source quench (congestion
transportadas em			control - not used)
datagramas IP	8	0	echo request (ping)
messagem ICMP tipo, código,	9	0	route advertisement
mais primeiros 8 bytes do	10	0	router discovery
datagrama IP que causou o	11	0	TTL expired
erro	12	0	bad IP header

Revisao IP 4-21

Traceroute e ICMP

- O transmissor envia uma série de segmentos UDP para o destino
 - O 1º possui TTL = 1
 - O 2º possui TTL = 2 etc.
 - o nº de porta improvável
- Quando o enésimo datagrama chega ao enésimo roteador:
 - O roteador descarta o datagrama
 - E envia à origem uma mensagem ICMP (type 11, code 0)
 - A mensagem inclui o nome do roteador e o endereço IP

- Quando a mensagem ICMP chega, a origem calcula o RTT
- O traceroute faz isso três vezes

Critério de interrupção

- O segmento UDP finalmente chega ao hospedeiro de destino
- O destino retorna o pacote ICMP "hospedeiro unreachable" (type 3, code 3)
- Quando a origem obtém esse ICMP, ela pára.

Revisao IP 4-22

Exercícios no acadêmico

Endereçamento IP - parte 1 e 2