Recurrence Relations

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Introduction

Recurrence Relations are Mathematical Equations: A recurrence relation is an equation which is defined in terms of itself.

Natural Computable Functions as Recurrences: Many natural functions are expressed using recurrence relations.

- (linear) f(n) = f(n-1) + 1, f(1) = 1 $\Rightarrow f(n) = n$ (polynomial) f(n) = f(n-1) + n, f(1) = 1 $\Rightarrow f(n) = \frac{1}{2}(n^2 + n)$ (exponential) f(n) = 2.f(n-1), f(0) = 1 $\Rightarrow f(n) = 2^n$
- $\Rightarrow f(n) = n!$ • (factorial) f(n) = n.f(n-1), f(0) = 1

Recurrence is Mathematical Induction:

Recurrence: T(n) = 2T(n-1) + 1 with base condition, T(0) = 0.

Base-condition check: $T(0) = 2^0 - 1$

Induction Hypothesis: $T(n-1) = 2^{n-1} - 1$

Proof: $T(n) = 2T(n-1) + 1 = 2(2^{n-1}-1) + 1 = 2^n - 1$

Types of Recurrence Relations:

- First Order, Second Order, ..., Higher Order
- Linear vs. Non-Linear
- Homogeneous vs. Non-Homogeneous
- Constant vs. Variable Coefficients

Applications: Algorithm Analysis, Counting, Problem Solving, Reasoning etc.

Regions using Straight Lines in a Plane

Recurrent Problem: Maximum number of regions defined using *n* lines in a plane.

Recursive Solution:

(Proposed by Jacob Steiner in 1826)

- **Observation-0:** No line is parallel and co-linear with another.
- Observation-1: $(n+1)^{th}$ line, when introduced into a plane with n lines, intersects with all n line exactly once.
- Observation-2: When traversed from one endpoint to another of a newly introduced line, every time at crossing-point of intersection with another line, the new line has created one new region.
- Observation-3: After last intersection, the line cuts the infinite ending region into two (that is, introducing the final new region).

Recurrence Relation: $L_n = \text{maximum number of regions created by } n \text{ lines in a plane.}$

$$L_n = \begin{cases} L_{n-1} + n, & \text{if } n > 0 \\ 1, & \text{if } n = 0 \end{cases}$$

Number of Regions:
$$L_n = L_{n-1} + n = L_{n-2} + (n-1) + n = L_{n-3} + (n-2) + (n-1) + n$$

= $\cdots = L_0 + 1 + 2 + 3 + \cdots + (n-2) + (n-1) + n = 1 + \sum_{i=1}^{n} i = \frac{n(n+1)}{2} + 1$

Regions using Bent Lines (V-shaped) in a Plane

Recurrent Problem: Maximum number of regions defined using n bent-lines (V-shaped) in a plane.

Recursive Solution:

(Variant of Maximum Regions by Straight Lines Problem)

- Observation-0: No V-shaped bent-line tip will coincide with the tip of another bent-line.
- Observation-1: A bent-line is like two straight lines except that regions merge when the two lines do not extend past their intersection point.
- Observation-2: The tip point must lie beyond the intersections with the other lines – that is all we lose; that is, we lose only two regions per line.

Recurrence Relation: $V_n = \text{maximum number of regions created by } n \text{ bent-lines.}$

$$V_n = \begin{cases} L_{2n} - 2n, & \text{if } n > 0 \\ 1, & \text{if } n = 0 \end{cases}$$

Number of Regions: $V_n = L_{2n} - 2n = \frac{2n(2n+1)}{2} + 1 - 2n = \frac{2n^2 - n + 1}{2}$

Tower of Hanoi:

n Disk Transfer with 3 Pegs

Recurrent Problem: Number of steps required in transferring all *n* disks (having different sizes) from Peg-A to Peg-B using auxiliary Peg-C, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by François Édouard Anatole Lucas in 1883)

- ① If n = 1, Move the disk from Peg-A to Peg-B.
- 2 If n > 1, Move top (n-1) disks from Peg-A to Peg-C using Peg-B as auxiliary. Move Largest disk directly from Peg-A to Peg-B. Move (n-1) disks from Peg-C to Peg-B using Peg-A as auxiliary.

Recurrence Relation: $T_n =$ number of movements for transferring n disks.

$$T_n = \left\{ \begin{array}{cc} T_{n-1} + 1 + T_{n-1}, & \text{if } n > 1 \\ 1, & \text{if } n = 1 \end{array} \right. \Rightarrow T_n = 2T_{n-1} + 1 \; (n > 1), \, T_1 = 1$$

Number of Moves:
$$T_n = 2T_{n-1} + 1 = 2^2T_{n-2} + 2 + 1 = 2^3T_{n-3} + 2^2 + 2 + 1 = \cdots$$

= $2^{n-1}T_1 + 2^{n-2} + 2^{n-3} + \cdots + 2^2 + 2^1 + 2^0 = \sum_{i=0}^{n-1} 2^i = 2^n - 1$

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrent Problem: Number of steps required in transferring *n* different-sized disks from Peg-A to Peg-B using auxiliary Peg-C and Peg-D, such that –

- Always smaller sized disk is placed above larger sized disk.
- At start, all n disks are stacked together in Peg-A in their descending order of size (bottom-up).

Recursive Solution:

(Proposed by J.S. Frame and B.M. Stewart in 1941)

- ① If $n \le 3$, Solve the problem directly using 3 pegs.
- 2 Fix a value of k in the range $1 \le k \le n$.
- **3** Keep the k largest disks on Peg-A, and transfer the smallest (n-k) disks from Peg-A to Peg-D.
- Transfer the largest k disks from Peg-A to Peg-B without disturbing the smallest (n-k) disks already sitting on Peg-D. (Since larger disk can never be above smaller disk, Peg-D is unusable in this part, that is, we solve 3-peg Tower-of-Hanoi problem on k disks.)
- Transfer the smallest (n k) disks from Peg-D to Peg-B without disturbing the largest k disks on Peg-B.
 (In this step, all the four pegs can be used.)

Tower of Hanoi:

n Disk Transfer with 4 Pegs

Recurrence Relation: H_n = number of movements for transferring n disks with 4-pegs.

 $T_n =$ number of movements for transferring n disks with 3-pegs.

$$\therefore \ \, H_n = \left\{ \begin{array}{rcl} H_{n-k} + T_k + H_{n-k} & = & 2H_{n-k} + 2^k - 1, & \text{if } n > 3 \\ T_n & = & 2^n - 1, & \text{if } 0 \leq n \leq 3 \end{array} \right.$$

Number of Moves: Depends on best choice of k. For simplicity, let us assume n = uk.

$$\begin{array}{l} \textit{U}_{n} \approx 2\textit{U}_{n-k} + 2^{k} \approx 2^{2}\textit{U}_{n-2k} + (2+1).2^{k} \approx 2^{3}\textit{U}_{n-3k} + (2^{2}+2+1).2^{k} \\ \approx \cdots \approx 2^{u-1}\textit{U}_{k} + (2^{u-2}+2^{u-3}+\cdots+2^{2}+2^{1}+2^{0}).2^{k} \\ \approx \left(\sum_{i=0}^{u-1} 2^{i}\right).2^{k} = \frac{2^{u+k}}{2^{u+k}} = \frac{2^{\frac{n}{k}+k}}{2^{\frac{n}{k}+k}} \quad \text{(by Paul Stockmeyer in 1994)} \end{array}$$

Since, $(\frac{n}{k} + k)$ can be minimized for $k = \sqrt{n}$, therefore $U_n \approx 2^{2\sqrt{n}}$.

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} = c.t_n$, where $n \ge 0$ and c is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution: $t_n = c.t_{n-1} = c^2.t_{n-2} = \cdots = c^i.t_{n-i} = \cdots = c^n.t_0 = B.c^n$, for $n \ge 0$

Example

- ① $a_n = 3.a_{n-1}$ where $n \ge 1$ and $a_2 = 18$. Clearly, $a_2 = 3^2.a_0 = 18 \Rightarrow a_0 = 2$. So, $a_n = 2.3^n$ for $n \ge 0$ is the unique solution.
- Number of Different Summands of n: $s_{n+1} = 2.s_n$ where $n \ge 1$ with boundary condition $s_1 = 1$. To directly apply the formula proposed, let $t_n = s_{n+1}$, which formulates the reccurence as, $t_n = 2.t_{n-1}$ where $n \ge 0$ with $t_0 = 1$. So, $t_n = 1.2^n$. Now, $s_n = t_{n-1} = 2^{n-1}$ for $n \ge 1$.

Different Summands of 3	Different Summands of 4			
(1) 3 (2) 1+2	(1') 4		(3') 2 + 2	(4') 1 + 1 + 2
(3) 2+1 (4) 1+1+1	(1'') 3+1	(2'') 1 + 2+1	(3'') 2 + 1+1	(4'') 1 + 1 + 1+1

Solving First-Order Recurrence Relations

First-Order Linear Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n).t_n$, where $n \ge 0$

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = f(n-1).t_{n-1} = f(n-2).f(n-1).t_{n-2} = \cdots = B.\left[\prod_{k=1}^n f(n-k)\right]$$

Example: (Factorials) $f_n = n.f_{n-1}$, $n \ge 1$ and $f_0 = 1$. Solution: $f_n = n!$ $(n \ge 0)$.

First-Order Non-Linear Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1}^k = c.t_n^k$, where $t_n > 0$ for $n \ge 0$ and c, k are constants

Boundary Condition: $t_0 = B$, where B is a constant

Solution: Let $r_n = t_n^k$. So, the recurrence becomes, $r_{n+1} = c.r_n$ for $n \ge 0$ and $r_0 = B^k$. Hence, $t_n^k = r_n = B^k.c^n$ implying $t_n = B.(\sqrt[k]{c})^n$ for $n \ge 0$.

Example (a small Variation): $\log_2 a_{n+1} = 2 \cdot \log_2 a_n$ for $n \ge 0$ and $a_0 = 2$.

Putting $b_n = \log_2 a_n$ gives $b_{n+1} = 2.b_n$ and $b_0 = 1$.

So, $b_n = 2^n$ and hence $a_n = 2^{2^n}$ for n > 0.

Solving First-Order Recurrence Relations

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $t_{n+1} + d \cdot t_n = f(n)$ or alternatively, $t_{n+1} = c \cdot t_n + f(n)$, where $f(n) \neq 0$ (which means non-homogeneous) for $n \geq 0$ and c = -d is a constant

Boundary Condition: $t_0 = B$, where B is a constant

Solution:
$$t_n = c.t_{n-1} + f(n-1) = c^2.t_{n-2} + c^1.f(n-2) + f(n-1) = \cdots$$

= $c^i.t_{n-i} + \sum_{k=0}^{i-1} c^k.f(n-i+k) = \cdots = B.c^n + \sum_{k=0}^{n-1} c^k.f(k)$, for $n \ge 0$

Example:

• (Comparisons in Sorting) – Bubble, Selection and Insertion $a_n = a_{n-1} + (n-1)$ where $n \ge 2$ and $a_1 = 0$.

Hence, the solution, $a_n = 0 + \sum_{k=1}^{n-1} k = \frac{n^2 - n}{2}$. $\Rightarrow O(n^2)$

• (n^{th} term in Sequence) 0, 2, 6, 12, 20, 30, 42, ... $a_n = a_{n-1} + 2n$ where $n \ge 1$ and $a_0 = 0$. (How?) Since $a_1 - a_0 = 2$, $a_2 - a_1 = 4$, $a_3 - a_2 = 6$, $a_4 - a_3 = 8$, $a_5 - a_4 = 10$, $a_6 - a_5 = 12$, therefore $a_n - a_0 = 2 + 4 + \cdots + 2n = n^2 + n$, implies $a_n = n^2 + n$.

First-Order Linear Non-Homogeneous Recurrence with Variable Coefficients

General Form: $t_{n+1} = f(n).t_n + g(n)$, where $g(n) \neq 0$ for $n \geq 0$ and $t_0 = B$ (constant)

Generic Solution:
$$t_n = B \cdot \left[\prod_{k=0}^{n-1} f(k) \right] + \sum_{k=1}^{n-1} \left[\prod_{j=1}^{k-1} f(n-j) \right] \cdot g(n-k)$$
, for $n \ge 0$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0 \ (n \ge 2)$$
 and $t_0 = D_0, t_1 = D_1$; $C_0(\ne 0), C_1, C_2(\ne 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution,
$$t_n = c.x^n$$
 $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0$ $\Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: 2 Distinct Real Roots as,
$$R_1 = \frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0}, R_2 = \frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0}$$

Exact Solution: As
$$t_n = A_1.R_1^n$$
 and $t_n = A_2.R_2^n$ are linearly independent solutions, so $t_n = A_1.R_1^n + A_2.R_2^n = A_1.(\frac{-C_1+\sqrt{C_1^2-4C_0C_2}}{2C_0})^n + A_2.(\frac{-C_1-\sqrt{C_1^2-4C_0C_2}}{2C_0})^n$

(Here, A_1 and A_2 are arbitrary constants)

Constant Determination:
$$A_1 + A_2 = t_0 = D_0$$
 and $A_1 - A_2 = \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}$

because,
$$D_1 = t_1 = (A_1 + A_2).\left(-\frac{C_1}{2C_0}\right) + (A_1 - A_2).\left(\frac{\sqrt{C_1^2 - 4C_0C_2}}{2C_0}\right)$$

 $\therefore A_1 = \frac{1}{2}\left(D_0 + \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}\right) \text{ and } A_2 = \frac{1}{2}\left(D_0 - \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}}\right).$

Unique Solution:

$$\therefore t_n = \frac{1}{2} \left[\left(D_0 + \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}} \right) \cdot \left(\frac{-C_1 + \sqrt{C_1^2 - 4C_0C_2}}{2C_0} \right)^n + \left(D_0 - \frac{2C_0D_1 + C_1D_0}{\sqrt{C_1^2 - 4C_0C_2}} \right) \cdot \left(\frac{-C_1 - \sqrt{C_1^2 - 4C_0C_2}}{2C_0} \right)^n \right]$$

Example (Fibonacci Number)

```
Recurrence Relation: F_{n+2}=F_{n+1}+F_n, where n\geq 0 and F_0=0, F_1=1 Substituting with F_n=c.x^n (c,x\neq 0), we get cx^{n+2}=cx^{n+1}+cx^n. Characteristic Equation x^2-x-1=0 has two distinct roots, \alpha=\frac{1+\sqrt{5}}{2} and \beta=\frac{1-\sqrt{5}}{2}. Hence, F_n=c_1(\frac{1+\sqrt{5}}{2})^n+c_2(\frac{1-\sqrt{5}}{2})^n, with the constants derived as, c_1=\frac{1}{\sqrt{5}}, c_2=-\frac{1}{\sqrt{5}}. Solution: (Binet Form) F_n=\frac{1}{\sqrt{5}}\left[\alpha^n-\beta^n\right] (\alpha=1-\beta) is called the Golden Ratio)
```

Example (Count of Subsets with NO Consecutive Elements Chosen)

Let, the number of such subsets of $\mathcal{S} = \{x_1, x_2, \dots, x_n\}$ is $= a_n$ If $n = 0 \Rightarrow \mathcal{S} = \phi$, $a_0 = 1$. If $n = 1 \Rightarrow \mathcal{S} = \{x_1\}$, $a_1 = 2$. Let $n \geq 2$ and $\mathcal{A} \subseteq \mathcal{S} = \{x_1, x_2, \dots, x_{n-1}, x_n\}$, a_n can be contributed from:

- When $x_n \in \mathcal{A} \Rightarrow x_{n-1} \notin \mathcal{A}$, $\therefore \mathcal{A}$ may be counted in a_{n-2} ways.
- When $x_n \notin A$, A may be counted in a_{n-1} ways.

Recurrence Relation: $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$ and $a_0 = 1, a_1 = 2$. Solution: $a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right]$, $n \ge 0$ (Note that, $a_n = F_{n+2}$)

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Example (Count of Binary Strings having NO consecutive 0s)

Let, b_n = number of such binary strings of length n;

 $b_n^{(0)} =$ count of such strings ending with 0 and $b_n^{(1)} =$ count of such strings ending with 1 Recurrence Relation: $b_n = 2.b_{n-1}^{(1)} + b_{n-1}^{(0)} = b_{n-1}^{(1)} + b_{n-1} = b_{n-2} + b_{n-1}$ $(n \ge 3)$ and

:
$$b_n = 2.b_{n-1}^{*} + b_{n-1}^{*} = b_{n-1}^{*} + b_{n-1} = b_{n-2} + b_{n-1} \ (n \ge 3)$$
 at $b_1 = 2, b_2 = 3$, implying $b_0 = b_2 - b_1 = 1$.

Solution:
$$b_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \right], n \ge 0$$
 (Note that, $b_n = F_{n+2}$)

Example $(2 \times n \text{ Chessboard Tiling using Dominoes})$

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard.

Recurrence Relation: $t_n = t_{n-1} + t_{n-2}$ ($n \ge 2$) and $t_1 = 1, t_2 = 2$

Solution:
$$t_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$
, $n \ge 0$ (Note that, $t_n = F_{n+1}$)

Example (Counting Legal Arithmetic Expressions without Parenthesis)

```
10 digit symbols: 0, 1, 2, ..., 9 and 4 binary operation symbols: +, -, *, / e_n = number of legal arithmetic expressions with n symbols.
```

Note that, last symbol is always a digit. So, Two ways to construct recurrence for e_n : $10e_{n-1}$ (last two symbols as digits) and $39e_{n-2}$ (last two symbol as operator and digit)

Recurrence Relation: $e_n=10e_{n-1}+39e_{n-2}$ ($n\geq 0$) and $e_1=10,e_2=100\Rightarrow e_0=0$

Characteristics Roots: $R_1 = 5 + 3\sqrt{6}$ and $R_2 = 5 - 3\sqrt{6}$

Solution: $e_n = \frac{5}{3\sqrt{6}} \left[(5 + 3\sqrt{6})^n - (5 - 3\sqrt{6})^n \right], n \ge 0$

Example (Count of Transmission Words with Constraints)

 $w_n =$ number of *n*-length words using a, b, c (three) letters that can be transmitted where no word having two consecutive a's

Two ways to construct recurrence for w_n :

- First letter is b or c: Number of words = w_{n-1} (each)
- First letter is a, Second letter is b or c: Number of words = w_{n-2} (each)

Recurrence Relation: $w_n = 2w_{n-1} + 2w_{n-2}$ $(n \ge 2)$ and $w_0 = 1, w_1 = 3$

Characteristics Roots: $R_1 = 1 + \sqrt{3}$ and $R_2 = 1 - \sqrt{3}$

Solution: $w_n = \left(\frac{2+\sqrt{3}}{2\sqrt{3}}\right)(1+\sqrt{3})^n + \left(\frac{-2+\sqrt{3}}{2\sqrt{3}}\right)(1-\sqrt{3})^n, n \ge 0$

Aritra Hazra (CSE, IITKGP)

CS21001 : Discrete Structures

Example (Number of Palindromic Summands)

 p_n = number of palindromic summands of n.

Two ways to construct recurrence for p_n :

- Appending +1 at both sides of all the $(n-2)^{th}$ palindromic summands.
- Incrementing both ends of all the $(n-2)^{th}$ palindromic summands by +1.

For 3:	For 5:	For 4:	For 6:	
	(1') 5	(1) 4	(1') 6	(1'') 1 + 4 + 1
(1) 3	(2') 2 + 1 + 2	(2) 1 + 2 + 1	(2') 2 + 2 + 2	(2'') 1 + 1 + 2 + 1 + 1
(2) 1 + 1 + 1	(1'') 1 + 3 + 1	(3) 2 + 2	(3') 3 + 3	(3'') 1 + 2 + 2 + 1
	(2'') 1 + 1 + 1 + 1 + 1	(4) 1 + 1 + 1 + 1	(4') 2 + 1 + 1 + 2	(4'') 1 + 1 + 1 + 1 + 1 + 1

Recurrence Relation:
$$p_n=2p_{n-2}$$
 ($n\geq 3$) and $p_1=1, p_2=2$ Characteristics Roots: $R_1=\sqrt{2}$ and $R_2=-\sqrt{2}$ Solution: $p_n=\left(\frac{1}{2}+\frac{1}{2\sqrt{2}}\right)(\sqrt{2})^n+\left(\frac{1}{2}-\frac{1}{2\sqrt{2}}\right)(-\sqrt{2})^n, \ n\geq 1$

Observation:
$$p_n = 2^{\frac{n}{2}}$$
 (when n is even) and $p_n = 2^{\lfloor \frac{n}{2} \rfloor}$ (when n is odd) (How?) Reason: For $n = 2k$ ($k \in \mathbb{Z}^+$), $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^{2k} + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^{2k} = 2^k = 2^{\frac{n}{2}}$ For $n = 2k - 1$ ($k \in \mathbb{Z}^+$), $p_n = (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^{2k-1} + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^{2k-1} = 2^{k-1} = 2^{\lfloor \frac{n}{2} \rfloor}$

Example (Number of Divisions in Euclidean GCD Computation)

Estimation of remainders are done as follows: $(F_n = n^{th} \text{ Fibonacci Number})$

$$(r_{n} > 0) \Rightarrow r_{n} \ge 1 = F_{2}$$

$$(q_{n} \ge 2) \wedge (r_{n} \ge F_{2}) \Rightarrow r_{n-1} = q_{n}r_{n} \ge 2.1 = 2 = F_{3}$$

$$(q_{n-1} \ge 1) \wedge (r_{n-1} \ge F_{3}) \wedge (r_{n} \ge F_{2}) \Rightarrow r_{n-2} = q_{n-1}r_{n-1} + r_{n} \ge 1.r_{n-1} + r_{n} = F_{3} + F_{2} = F_{4}$$

$$\dots \qquad \dots \qquad \dots$$

$$(q_{3} \ge 1) \wedge (r_{3} \ge F_{n-1}) \wedge (r_{4} \ge F_{n-2}) \Rightarrow r_{2} = q_{3}r_{3} + r_{4} \ge 1.r_{3} + r_{4} = F_{n-1} + F_{n-2} = F_{n}$$

$$(q_{2} \ge 1) \wedge (r_{2} \ge F_{n}) \wedge (r_{3} \ge F_{n-1}) \Rightarrow b = r_{1} = q_{2}r_{2} + r_{3} \ge 1.r_{2} + r_{3} = F_{n} + F_{n-1} = F_{n+1}$$

Important Property of Fibonacci Numbers: $F_n > \alpha^{n-2}$ (for $n \ge 3$), where $\alpha = \frac{1+\sqrt{5}}{2}$ Let, GCD(a,b) uses n Divisions ($a \ge b \ge 2$). So, $b \ge F_{n+1} > \alpha^{n-1} = (\frac{1+\sqrt{5}}{2})^{n-1}$. $\therefore b > \alpha^{n-1} \Rightarrow \log_{10} b > (n-1)\log_{10} \alpha > \frac{n-1}{5}$ (as $\log_{10} \alpha = \log_{10} \left(\frac{1+\sqrt{5}}{2}\right) \approx 0.209 > \frac{1}{5}$). If b is k-digit decimal number, $10^{k-1} \le b < 10^k \Rightarrow k > \log_{10} b > \frac{n-1}{5} \Rightarrow n < 5k + 1$.

Lamé's Theorem: Number of divisions performed in Euclidean GCD computation GCD(a,b) $(a \ge b \ge 2,\ a,b \in \mathbb{Z}+)$ is at most 5 times the number of decimal digits in b.

Corollary: Number of divisions, $n < 1 + 5 \log_{10} b < 9 \log_{10} b \Rightarrow n = O(\log_{10} b)$ (as, $b \ge 2 \Rightarrow 4 \log_{10} b \ge \log_{10} 2^4 > 1$)

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0 \ (n \ge 2)$$
 and $t_0 = D_0, t_1 = D_1$; $C_0(\ne 0), C_1, C_2(\ne 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution,
$$t_n = c.x^n$$
 $(c, x \neq 0)$, after substitution,
 $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: Complex Conjugate Pair as Roots,
$$R_1 = x + iy$$
, $R_2 = x - iy$

$$OR, R_1 = r.(\cos \theta + i \sin \theta), R_2 = r.(\cos \theta - i \sin \theta)$$

where,
$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1}(\frac{y}{x})$ $(i = \sqrt{-1})$

Exact Solution:
$$t_n = A_1.R_1^n + A_2.R_2^n = A_1.(x + iy)^n + A_2.(x - iy)^n$$

 $= (\sqrt{x^2 + y^2})^n [A_1.(\cos(n\theta) + i\sin(n\theta)) + A_2.(\cos(n\theta) - i\sin(n\theta))]$
 $= (\sqrt{x^2 + y^2})^n [B_1.\cos(n\theta) + B_2.\sin(n\theta)], \text{ where}$
 $B_1 = (A_2 + A_2), B_2 = i(A_1 - A_2) \text{ (Here, } A_1, A_2, B_1, B_2 \text{ are arbitrary constants)}$

Constant Determination:
$$t_0 = D_0 = B_1$$
 and $B_2 = \frac{D_1 - D_0 \cdot x}{y}$

because,
$$t_1 = D_1 = (\sqrt{x^2 + y^2}).(B_1.\cos\theta + B_2\sin\theta) = (B_1.x + B_2.y).$$

Unique Solution:
$$t_n = (\sqrt{x^2 + y^2})^n \left[D_0 \cdot \cos(n\theta) + \left(\frac{D_1 - D_0 \cdot x}{y} \right) \cdot \sin(n\theta) \right]$$

Example (Finding Value of $n \times n$ Determinant)

$$D_1 = |b| = b, D_2 = \begin{vmatrix} b & b \\ b & b \end{vmatrix} = 0, D_3 = \begin{vmatrix} b & b & 0 \\ b & b & b \\ 0 & b & b \end{vmatrix} = -b^3$$
 and

Recurrence Relation: $D_n = b.D_{n-1} - b.b.D_{n-2} \ (\underline{n} \ge 3)$

Complex Conjugate Pair Roots: $R_1 = b\left[\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right], R_2 = b\left[\frac{1}{2} - i \cdot \frac{\sqrt{3}}{2}\right]$

Solution: $D_n = b^n . \left[A_1 . \left(\frac{1}{2} + i . \frac{\sqrt{3}}{2} \right)^n + A_2 . \left(\frac{1}{2} - i . \frac{\sqrt{3}}{2} \right)^n \right] = b^n \left[B_1 \cos(\frac{n\pi}{3}) + B_2 \sin(\frac{n\pi}{3}) \right]$

Constants: $b = D_1 = b.[B_1.(\frac{1}{2}) + B_2.(\frac{\sqrt{3}}{2})]; \quad 0 = D_2 = b^2.[B_1.(-\frac{1}{2}) + B_2.(\frac{\sqrt{3}}{2})]$

Therefore, $\Rightarrow B_1 = 1, B_2 = \frac{1}{\sqrt{3}}$, implying $D_n = b^n \left[\cos\left(\frac{n\pi}{3}\right) + \left(\frac{1}{\sqrt{3}}\right) \sin\left(\frac{n\pi}{3}\right) \right]$, $n \ge 1$

Second-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} = 0 \ (n \ge 2)$$
 and $t_0 = D_0, t_1 = D_1;$ $C_0(\ne 0), C_1(\ne 0), C_2(\ne 0)$ and D_0, D_1 all are constants.

Characteristic Equation: Seeking a solution,
$$t_n = c.x^n$$
 $(c, x \neq 0)$, after substitution, $C_0.c.x^n + C_1.c.x^{n-1} + C_2.c.x^{n-2} = 0 \Rightarrow C_0.x^2 + C_1.x + C_2 = 0$

Equation Roots: **2 Equal Roots**,
$$R = R_1 = R_2 = -\frac{C_1}{2C_0}$$
 (here, $C_1^2 = 4C_0C_2$)

$$t_n = A_1.R^n = A_1.(-\frac{C_1}{2C_0})^n \text{ and } t_n = A_2.g(n).R^n = A_2.g(n).(-\frac{C_1}{2C_0})^n$$

$$\Rightarrow C_0.g(n).(-\frac{C_1}{2C_0})^n + C_1.g(n-1).(-\frac{C_1}{2C_0})^{n-1} + C_2.g(n-2).(-\frac{C_1}{2C_0})^{n-2} = 0$$

$$\Rightarrow g(n) - 2.g(n-1) + g(n-2) = 0 \text{ (as, } C_1^2 = 4C_0C_2 \text{ and } C_0, C_1, C_2 \neq 0)$$
is satisfied by, $g(n) = an + b$ (constants $a(\neq 0)$, b , with simplest $g(n) = n$)

$$\therefore t_n = (A_1 + A_2.n).(-\frac{C_1}{2C_0})^n$$

Constant Determination:
$$t_0 = D_0 = A_1$$
 and

$$t_1 = D_1 = (A_1 + A_2).(-\frac{C_1}{2C_0}) \Rightarrow A_2 = -\frac{2C_0D_1 + C_1D_0}{C_1}$$

Unique Solution:
$$t_n = [D_0 - (\frac{2C_0D_1 + C_1D_0}{C_1}).n].(-\frac{C_1}{2C_0})^n$$

Generic Solution: $t_n = (A_1 + A_2 \cdot n + A_2 \cdot n^2 + \cdots + A_{k-1} \cdot n^{k-1}) \cdot R^n$, for all k equal roots

Example (Finding Value of $n \times n$ Determinant)

Recurrence Relation:
$$D_n = 2D_{n-1} - D_{n-2}$$
 $(n > 3)$

Equal Real Roots:
$$R = 1$$

Solution:
$$D_n = (A_1 + A_2.n).1^n = (A_1 + A_2.n)$$

Constants:
$$2 = D_1 = A_1 + A_2$$
; $3 = D_2 = A_1 + 2A_2$ $\Rightarrow A_1 = A_2 = 1$

Therefore,
$$D_n = 1 + n$$
, $n \ge 1$

Aritra Hazra (CSE, IITKGP)

Higher-Order Linear Homogeneous Recurrence with Constant Coefficients

General Form:
$$C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \cdots + C_k.t_{n-k} = f(n) = 0$$
, for $n \ge k$ where the order $k \in \mathbb{Z}^+$, $C_0(\ne 0)$, C_1 , C_2 , ..., $C_k(\ne 0)$ are real constants, and t_n $(n \ge 0)$ be a discrete function. $(f(n) \ne 0 \text{ for non-homogeneous})$

Boundary Condition: $t_i = D_i$, for each $0 \le j \le k-1$ and every D_i is a constant

Characteristic Equation: Seeking a solution as,
$$t_n = c.x^n$$
 $(c, x \neq 0)$
After substitution, $C_0.c.x^n + C_1.c.x^{n-1} + \cdots + C_k.c.x^{n-k} = 0$
Since $c.x \neq 0$, so $C_0.x^k + C_1.x^{k-1} + \cdots + C_{k-1}.x + C_k = 0$

Characteristic Roots:
$$k$$
 roots as, R_1, R_2, \ldots, R_k , such that $C_0.R_i^k + C_1.R_i^{k-1} + \cdots + C_{k-1}.R_i + C_k = 0$, where $1 \le i \le k$

Classification of Roots:
$$(u + 2v + w = k \text{ and } 1 \le \alpha_i, \beta_i, \beta_i', \gamma_i \le k)$$

1 Real Distinct Roots:
$$u$$
 such roots, $R_{\alpha_1}, R_{\alpha_2}, \ldots, R_{\alpha_u}$

② Complex Conjugate Pair Roots:
$$v$$
 such root pairs, $\langle R_{\beta_1}, R_{\beta'_1} \rangle, \langle R_{\beta_2}, R_{\beta'_2} \rangle, \ldots, \langle R_{\beta_v}, R_{\beta'_v} \rangle$ having the form,

$$\langle \textit{\textbf{R}}_{\textit{\textbf{\beta}}_{\textit{\textbf{I}}}}, \textit{\textbf{R}}_{\textit{\textbf{\beta}}_{\textit{\textbf{I}}}'} \rangle = \textit{\textbf{x}}_{\textit{\textbf{I}}} \pm \textit{\textbf{i}} \textit{\textbf{y}}_{\textit{\textbf{I}}} = \textit{\textbf{r}}_{\textit{\textbf{I}}} (\cos \theta_{\textit{\textbf{I}}} \pm \textit{\textbf{i}} \sin \theta_{\textit{\textbf{I}}}), \text{ where } \textit{\textbf{r}}_{\textit{\textbf{I}}} = \sqrt{\textit{\textbf{x}}_{\textit{\textbf{I}}}^2 + \textit{\textbf{y}}_{\textit{\textbf{I}}}^2}, \theta_{\textit{\textbf{I}}} = \tan^{-1}(\frac{\textit{\textbf{y}}_{\textit{\textbf{I}}}}{\textit{\textbf{x}}_{\textit{\textbf{I}}}})$$

3 Real Equal Roots: w such roots,
$$R_{\gamma} = R_{\gamma_1} = R_{\gamma_2} = \cdots = R_{\gamma_w}$$

Generic Solution:
$$t_n = \sum_{l=1}^{u} A_{\alpha_l} \cdot R_{\alpha_l}^n + \sum_{l=1}^{v} \left(A_{\beta_l} \cdot R_{\beta_l}^n + A_{\beta_l'} \cdot R_{\beta_l'}^n \right) + R_{\gamma}^n \cdot \sum_{l=1}^{w} A_{\gamma_l} \cdot n^{l-1}$$

 $= \sum_{l=1}^{u} A_{\alpha_l} \cdot R_{\alpha_l}^n + \sum_{l=1}^{v} r_l^n \cdot \left(B_{\beta_l} \cdot \cos n\theta_l + B_{\beta_l'} \cdot \sin n\theta_l \right) + R_{\gamma}^n \cdot \sum_{l=1}^{w} A_{\gamma_l} \cdot n^{l-1}$

 $(A_{\alpha_I},A_{\beta_I},A_{\beta_I'},A_{\gamma_I},B_{\beta_I},B_{\beta_I'})$ are constants and $B_{\beta_I}=A_{\beta_I}+A_{\beta_I'}$, $B_{\beta_I}=i(A_{\beta_I}-A_{\beta_E'})$, $i=\sqrt{-1}$

Aritra Hazra (CSE, IITKGP)

Solving Third-Order Recurrence Relations

Example (Tiling Problem)

Let, t_n = number of ways to tile $2 \times n$ ($n \in \mathbb{Z}^+$) chessboard

Tile Types: one L-shaped and one 1×1

Recurrence Relation: $t_n = t_{n-1} + 4t_{n-2} + 2t_{n-3}$ (n > 4) and $t_1 = 1, t_2 = 5, t_3 = 11$ Characteristics Roots: $R_1 = -1$, $R_2 = 1 + \sqrt{3}$, $R_3 = 1 - \sqrt{3}$ Solution: $t_n = 1.(-1)^n + (\frac{1}{\sqrt{3}}).(1+\sqrt{3})^n + (-\frac{1}{\sqrt{3}}).(1-\sqrt{3})^n$ $=(-1)^n+(\frac{1}{\sqrt{2}})\cdot[(1+\sqrt{3})^n-(1-\sqrt{3})^n], n\geq 1$

First-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form:
$$t_n + C.t_{n-1} = K.B^n$$
 $(n \ge 1)$ and $t_0 = D$ (Here, $B(\ne 0), C(\ne 0), D, K$ are all arbitrary constants)

Homogeneous Solution Part:
$$t_n^{(h)} = A.(-C)^n$$
 (A is an arbitrary constant)

Particular Solution Part:
$$t_n^{(p)} = \begin{cases} A_1.B^n, & \text{if } B^n \neq (-C)^n \\ A_2.n.B^n, & \text{if } B^n = (-C)^n \end{cases}$$
 (A₁, A₂ are constants)

Exact Solution:
$$t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} A.(-C)^n + A_1.B^n, & \text{if } B^n \neq (-C)^n \\ (A + A_2.n).B^n, & \text{if } B^n = (-C)^n \end{cases}$$

Constant Determination:
$$A_1.B^n + C.A_1.B^{n-1} = K.B^n \Rightarrow A_1 = \frac{K.B}{B+C}$$

$$A_2.n.B^n + C.A_2.(n-1).B^{n-1} = K.B^n \Rightarrow A_2 = K$$
Finally, $t_0 = D = \begin{cases} A + A_1 \Rightarrow A = \frac{DB + DC - KB}{B + C} \\ A \Rightarrow A = D \end{cases}$

Unique Solution:
$$t_n = \begin{cases} \left(\frac{DB+DC-KB}{B+C}\right).(-C)^n + \left(\frac{KB}{B+C}\right)B^n \\ (D+K.n).B^n = (D+K.n).(-C)^n \end{cases}, n \ge 1$$

- (ロ)(部)(E)(E)(E) (9QC

Example (Towers of Hanoi Problem)

Strategy for T_n : Moving n disks with 3 pegs requires – (i) twice the movement of

(n-1) disks, and (ii) once the movement of the largest disk. Recurrence Relation: $T_n = 2T_{n-1} + 1 \ (n \ge 1)$ and $T_0 = 0$

Homogeneous Solution: $T_n^{(h)} = A.2^n$

Particular Solution: $T_n^{(p)} = A_1 \cdot 1^n = A_1$, hence $A_1 = 2A_1 + 1 \Rightarrow A_1 = -1$

Final Solution: $T_n = A \cdot 2^n - 1$, with $T_0 = 0 = A \cdot 2^0 - 1 \Rightarrow A = 1$,

implying $T_n = 2^n - 1$, $n \ge 0$.

Example (Comparisons to find Min-Max from 2^n Element Set)

Strategy for M_n : Divide 2^n -element set into two. Find Min-Max from both sets + two comparisons (Max-vs-Max and Min-vs-Min) from chosen Min-Max elements of each set.

Recurrence Relation: $M_n = 2M_{n-1} + 2 \ (n \ge 2)$ and $M_1 = 1$

Homogeneous Solution: $M_n^{(h)} = A.2^n$

Particular Solution: $M_n^{(p)} = A_1.1^n = A_1$, hence $A_1 = 2A_1 + 2 \Rightarrow A_1 = -2$

Final Solution: $M_n = A.2^n - 2$, with $M_1 = 1 = A.2^1 - 2 \Rightarrow A = \frac{3}{2}$,

implying $M_n = (\frac{3}{2}).2^n - 2$, $n \ge 1$.

지나 한지 기본 한지 보고 있지

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Example (Strings with Digits containing Even Number of 1s)

 $S_n =$ number of *n*-length strings constructed using $\Sigma = \{0, 1, 2, \dots, 9\}$ having even 1s. Two ways to contribute to S_n :

- n^{th} symbol is not 1: S_{n-1} ways for each 9 such cases.
- n^{th} symbol is 1: Odd number of 1s in (n-1)-length part = $(10^{n-1} S_{n-1})$

Recurrence Relation:
$$S_n = 9S_{n-1} + (10^{n-1} - S_{n-1}) = 8S_{n-1} + 10^{n-1} \ (n \ge 2)$$
 and $S_1 = 9$ (all digits except 1)

Homogeneous Solution:
$$S_n^{(h)} = A.8^n$$

Particular Solution:
$$S_n^{(p)} = A_1.10^{n-1}$$
, hence $10A_1 = 8A_1 + 10 \Rightarrow A_1 = 5$

Final Solution:
$$S_n = A.8^n + 5.10^{n-1}$$
, with $S_1 = 9 = 8A + 5 \Rightarrow A = \frac{1}{2}$,

implying
$$S_n = (\frac{1}{2}).8^n + 5.10^{n-1}, n \ge 1.$$

Example (Edges in Hasse Diagram)

$$\mathcal{P}(S)$$
 = Power Set of *n*-element set *S* forming Poset $(\mathcal{P}(S), \subseteq)$.
 E_n = number of edges in Hasse Diagram in poset $(\mathcal{P}(S), \subseteq)$

Recurrence Relation:
$$E_{n+1} = 2E_n + 2^n \ (n > 1)$$
 and $E_1 = 1$

Solution:
$$E_n = E_n^{(h)} + E_n^{(p)} = A.2^n + A_1.n.2^n$$
 with $A = 0, A_1 = \frac{1}{2}$ implies $E_n = n.2^{n-1}$. $n > 1$

Example (Area under a Snowflake – Concept of Fractals)

 a_n = area of 3-sided regular polygon after n transforms

Formulating the Recurrence Relation:

$$a_0 = \frac{\sqrt{3}}{4} \tag{3-sided},$$

$$a_1 = \frac{\sqrt{3}}{4} + 3.(\frac{\sqrt{3}}{4}).[\frac{1}{3}]^2 = \frac{\sqrt{3}}{3}$$
 (4 × 3 = 12-sided),
 $a_2 = \frac{\sqrt{3}}{2} + 4^1.3.(\frac{\sqrt{3}}{4}).[\frac{1}{22}]^2 = \frac{10\sqrt{3}}{27}$ (4² × 3 = 48-sided)

$$a_3 = \frac{10\sqrt{3}}{27} + 4^2 \cdot 3 \cdot (\frac{\sqrt{3}}{3}) \cdot [\frac{1}{33}]^2$$
 (4³ × 3 = 192-sided)

Recurrence Relation:

$$a_{n+1} = a_n + 4^n \cdot 3 \cdot (\frac{\sqrt{3}}{4}) \cdot [\frac{1}{3^{n+1}}]^2 = a_n + (\frac{1}{4\sqrt{3}}) \cdot (\frac{4}{9})^n \quad (n \ge 0)$$

Solution: $a_n = a_n^{(h)} + a_n^{(p)} = A \cdot 1^n + B \cdot (\frac{4}{9})^n = A + B \cdot (\frac{4}{9})^n$

So,
$$B = (-\frac{9}{5})(\frac{1}{4\sqrt{3}})$$
 and $a_n = A + (-\frac{9}{5})(\frac{1}{4\sqrt{3}})(\frac{4}{9})^n = A - (\frac{1}{5\sqrt{3}})(\frac{4}{9})^{n-1}$

Now,
$$a_0 = \frac{\sqrt{3}}{4} = A - (\frac{1}{5\sqrt{3}}) \cdot (\frac{4}{9})^{-1} \implies A = \frac{6}{5\sqrt{3}}$$

Finally,
$$a_n = \frac{6}{5\sqrt{3}} - (\frac{1}{5\sqrt{3}})(\frac{4}{9})^{n-1} = (\frac{1}{5\sqrt{3}})[6 - (\frac{4}{9})^{n-1}], \quad n \ge 0$$

Generalized Recurrence Relations for Area under Regular Polygon Fractals

For 4-sided (unit-length) Regular Polygon:

$$a_{n+1} = a_n + 5^n \cdot 4 \cdot 1 \cdot \left[\frac{1}{3n+1}\right]^2 = a_n + \left(\frac{4}{9}\right) \cdot \left(\frac{5}{9}\right)^n$$

For k-sided (m-length) Regular Polygon:

$$a_{n+1} = a_n + (k+1)^n \cdot k \cdot \left[\frac{m^2 \cdot k}{4 + 2n(\frac{1800}{2})} \right] \cdot \left[\frac{1}{3^{n+1}} \right]^2$$

(Koch's Snowflake, 1904)

Aritra Hazra (CSE, IITKGP)

CS21001: Discrete Structures

Autumn 2020

Second-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form:
$$t_n + C_1 \cdot t_{n-1} + C_2 \cdot t_{n-2} = K \cdot B^n \ (n \ge 1)$$
 and $t_0 = D_0, t_1 = D_1$ (Here, $B(\ne 0), C_1, C_2(\ne 0), D_0, D_1, K$ are all arbitrary constants)

Homogeneous Solution Part: $(A_1, A_2 \text{ are constants})$

$$t_n^{(h)} = \begin{cases} A_1.R_1^n + A_2.R_2^n, & \text{for distinct roots} \\ (A_1 + A_2.n).R^n, & \text{for equal roots} \end{cases}$$

Particular Solution Part: (A', A'', A''') are constants)

$$t_n^{(\rho)} = \left\{ \begin{array}{ll} A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ A'.B^n, & \text{for equal roots when } B \neq R \\ A'''.n^2.B^n, & \text{for equal roots when } B = R \end{array} \right.$$

Exact Solution:
$$t_n = t_n^{(h)} + t_n^{(p)} = \begin{cases} (A_1.R_1^n + A_2.R_2^n) + A'.B^n, & \text{for distinct roots when } R_1 \neq B \neq R_2 \\ (A_1.R_1^n + A_2.R_2^n) + A''.n.B^n, & \text{for distinct roots when } R = R_1 \text{ or } R = R_2 \\ (A_1 + A_2.n).R^n + A''.B^n, & \text{for equal roots when } B \neq R \\ (A_1 + A_2.n).R^n + A'''.n^2.B^n, & \text{for equal roots when } B = R \end{cases}$$

Constant Determination: Left For You as an Exercise!
Unique Solution: Left For You as an Exercise!

Homework: What happens for Complex Conjugate Pair Roots?

Aritra Hazra (CSE, IITKGP)

Example (Solve:
$$t_{n+2} - 4t_{n+1} + 3t_n = -200 \ (n \ge 0), \ t_0 = 3000, \ t_1 = 3300$$
)

Characteristic Roots (Homogeneous Consideration): $R_1 = 3, R_2 = 1$

Homogeneous Solution: $t_n^{(h)} = A_1.3^n + A_2.1^n = A_1.3^n + A_2$ Particular Solution: $t_n^{(p)} = A_n.1^n = A_n$

Hence, $(n+2)A - 4(n+1)A + 3nA = -200 \Rightarrow A = 100$

Final Solution: $t_n = A_1.3^n + A_2 + 100n = 100.3^n + 2900 + 100n$, $n \ge 0$

(as $t_0 = 3000 = A_1 + A_2$, $t_1 = 3300 = 3$. $A_1 + A_2 + 100$ produces $A_1 = 100$, $A_2 = 2900$)

Example (Total Additions to Compute Fibonacci Number)

 a_n = total number of additions to compute n^{th} Fibonacci number

Recurrence Relation: $a_n = a_{n-1} + a_{n-2} + 1$ $(n \ge 2)$ and $a_0 = a_1 = 0$ (initial cases)

Homogeneous Solution: $a_n^{(h)} = A_1 \cdot (\frac{1+\sqrt{5}}{2})^n + A_2 \cdot (\frac{1-\sqrt{5}}{2})^n$

Particular Solution: $a_n^{(p)} = A \cdot 1^n = A$, hence $A = A + A + 1 \Rightarrow A = -1$

Final Solution: $a_n = A_1 \cdot (\frac{1+\sqrt{5}}{2})^n + A_2 \cdot (\frac{1-\sqrt{5}}{2})^n - 1$, with $A_1 = \frac{1+\sqrt{5}}{2\sqrt{5}}$, $A_2 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_3 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_4 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_5 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_5 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_7 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_8 = -\frac{1-\sqrt{5}}{2\sqrt{5}}$, $A_9 = -\frac{1-\sqrt{5}}{2\sqrt$

 $\Rightarrow a_n = (\frac{1+\sqrt{5}}{2\sqrt{5}}) \cdot (\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2\sqrt{5}}) \cdot (\frac{1-\sqrt{5}}{2})^n - 1 = \frac{1}{\sqrt{5}} \cdot (\frac{1+\sqrt{5}}{2})^{n+1} - \frac{1}{\sqrt{5}} \cdot (\frac{1-\sqrt{5}}{2})^{n+1} - 1, \ n \ge 0$

Higher-Order Linear Non-Homogeneous Recurrence with Constant Coefficients

General Form: $C_0.t_n + C_1.t_{n-1} + C_2.t_{n-2} + \cdots + C_k.t_{n-k} = f(n) \neq 0$, for $n \geq k$ where the order $k \in \mathbb{Z}^+$, $C_0(\neq 0)$, C_1 , C_2 , ..., $C_k(\neq 0)$ are real constants.

Boundary Condition: $t_i = D_i$, for each $0 \le j \le k-1$ and every D_i is a constant

Homogeneous Solution: $t_n^{(h)}$ (computed assuming f(n) = 0 as earlier)

Particular Solution: Three cases to consider while constructing $t_n^{(p)}$:

1 Format of f(n) is a constant multiple of following table (middle column) and is NOT associated with form of $t_n^{(h)}$:

Types	Format of $f(n)$	Format for $t_n^{(p)}$
Type-1	$n^m.R^n \ (m \in \mathbb{N}, R \in \mathbb{R})$	$R^n.\left(\sum_{i=0}^m A_i.n^i\right)$
Type-2	R^n . $sin(n\theta)$ or R^n . $cos(n\theta)$	$R^n.(A_1.\sin(n\theta)+A_2.\cos(n\theta))$

- Format of f(n) is the sum of constant multiples of above table (middle column) and is NOT associated with form of t_n^(h): Take t_n^(p) as the sum of above table entries (right columns)
- 3 A summand f'(n) from f(n) is an associated solution in $t_n^{(h)}$:
 - Format of f'(n) is of Type-1 from above table: $t_n^{(p)} \leftarrow n^s.t_n^{(p)}$, i.e. multiply with smallest s so that no summand of $n^s.f'(n)$ is associated with $t_n^{(h)}$.
 - Format of f'(n) is of Type-2 from above table: Left as Exercisely a re-

Example (Distinct Handshakes with n Persons)

```
H_n = number of total distinct pairwise handshakes among n persons.
```

Recurrence Relation: $H_{n+1} = H_n + n \ (n > 2)$ and $H_1 = 0$ (no handshakes with oneself)

Homogeneous Solution: $H_n^{(h)} = A.1^n = A$

Particular Solution:
$$H_n^{(p)} = n^1 \cdot (A_1 \cdot n + A_0)$$
 (with A (const.) in $H_n^{(h)}$, $H_n^{(p)} \leftarrow n^1 \cdot H_n^{(p)}$)

Hence, $(n+1)^2 \cdot A_1 + (n+1) \cdot A_0 = n^2 \cdot A_1 + n \cdot A_0 + n \Rightarrow A_1 = \frac{1}{2}, A_0 = -\frac{1}{2}$

Final Solution: $H_n = A + \frac{1}{2} \cdot n^2 - \frac{1}{2} \cdot n$, with $H_1 = 0 = A$,

implying, $H_n = \frac{1}{2} \cdot n^2 - \frac{1}{2} \cdot n = \frac{n(n-1)}{2} = \binom{n}{2}, \quad n \ge 1.$

Example (Regions formed by Non-parallel Non-colinear Straight Lines)

 L_n = number of regions formed by n non-parallel and non-colinear straight lines.

Recurrence Relation: $L_{n+1} = L_n + (n+1)$ (n > 1) and $L_0 = 1$ (whole 2-D plane)

Homogeneous Solution: $L_n^{(h)} = A.1^n = A$

Particular Solution: $L_n^{(p)} = n^1 \cdot (A_1 \cdot n + A_0)$ (with A (const.) in $L_n^{(h)}$, $L_n^{(p)} \leftarrow n^1 \cdot L_n^{(p)}$

Hence, $(n+1)^2 A_1 + (n+1) A_0 = n^2 A_1 + n A_0 + (n+1)$ $\Rightarrow A_1 = \frac{1}{2} = A_0$

Final Solution: $L_n = A + \frac{1}{2} \cdot n^2 + \frac{1}{2} \cdot n$, with $L_1 = 1 = A$,

implying,
$$H_n = 1 + \frac{1}{2} \cdot n^2 + \frac{1}{2} \cdot n = \frac{n(n+1)}{2} + 1, \quad n \ge 0.$$

Aritra Hazra (CSE, IITKGP)

CS21001: Discrete Structures

Example (Deriving Formula for
$$S_n = \sum_{i=0}^n i^2$$
)

Recurrence Relation:
$$S_{n+1} = S_n + (n+1)^2 \ (n \ge 0)$$
 and $S_0 = 0$
Homogeneous Solution: $S_n^{(h)} = A.1^n = A$
Particular Solution: $S_n^{(p)} = n.(A_0 + A_1.n + A_2.n^2) = (A_0.n + A_1.n^2 + A_2.n^3)$
Hence, $(n+1).A_0 + (n+1)^2.A_1 + (n+1)^3.A_2 = (n.A_0 + n^2.A_1 + n^3.A_2) + (n^2 + 2n + 1)$
implies, $3A_2 + A_1 = A_1 + 1 \implies A_2 = \frac{1}{3}$ (comparing coefficients of n^2)
 $3A_2 + 2A_1 + A_0 = A_0 + 2 \implies A_1 = \frac{1}{2}$ (comparing coefficients of n)
 $A_2 + A_1 + A_0 = 1 \implies A_0 = \frac{1}{6}$ (comparing constant coefficients)

Final Solution: $S_n = A + \frac{1}{6}.n + \frac{1}{3}.n^2 + \frac{1}{2}.n^3$, with $S_0 = 0 = A$, implying, $H_n = \frac{1}{6}.n + \frac{1}{2}.n^2 + \frac{1}{3}.n^3 = \frac{n(n+1)(2n+1)}{6}$, $n \ge 0$.

Example (Deriving Other Summation Formulas: Try Yourself!)

(1)
$$\sum_{i=0}^{n} i = L_n = L_{n-1} + n$$
 (2) $\sum_{i=0}^{n} i^3 = C_n = C_{n-1} + n^3$ (3) $\sum_{i=0}^{n} i^4 = Q_n = Q_{n-1} + n^4$ (4) $\sum_{i=0}^{n} i^k = G_n = G_{n-1} + n^k$ ($k \in \mathbb{Z}^+$)

(Here, $n \ge 1$ and $L_0 = C_0 = Q_0 = G_0 = 0$)

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects with Repetition)

- a(n,r) = number of ways to select r objects (repetition allowed) from n distinct objects
 - **1** A particular object is never selected: r objects chosen from (n-1) objects
 - ② A particular object is at least once selected: (r-1) objects chosen from n objects

Recurrence Relation:
$$a(n,r)=a(n-1,r)+a(n,r-1), (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0)=1$ for $n \ge 0, a(0,r)=0$ for $r>0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n,r) = a(n-1,r) + a(n,r-1)$$
 $(n,r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n,r-1)x^r$
 $\Rightarrow f_n(x) - a(n,0) = f_{n-1}(x) - a(n-1,0) + x \cdot \sum_{r=1}^{\infty} a(n,r-1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x \cdot f_n(x) \Rightarrow f_n(x) = \frac{f_{n-1}(x)}{1-x} = \frac{f_0(x)}{(1-x)^n}$
So, $a(n,r)$ is the coefficient of x^r in $f_n(x) = \frac{f_0(x)}{(1-x)^n} = \frac{1}{(1-x)^n} = (1-x)^{-n}$
 $\Rightarrow a(n,r) = (-1)^r \cdot \binom{-n}{r} = \binom{n+r-1}{r-1}$

Solving Recurrences using Generating Functions

Example (Select r Objects from n Distinct Objects w/o Repetition)

- a(n,r) = number of ways to select r objects (w/o repetition) from n distinct objects
 - **1** A particular object is never selected: r objects chosen from (n-1) objects
 - **2** A particular object is once selected: (r-1) objects chosen from (n-1) objects

Recurrence Relation:
$$a(n,r)=a(n-1,r)+a(n-1,r-1), (n \ge r \text{ and } n,r \in \mathbb{N})$$

and $a(n,0)=1$ for $n \ge 0, a(0,r)=0$ for $r>0$

Generating Function: Let, $f_n(x) = \sum_{r=0}^{\infty} a(n,r)x^r$ generates sequence $a(n,0), a(n,1), \ldots$

Derivation:
$$a(n,r) = a(n-1,r) + a(n-1,r-1)$$
 $(n,r \ge 1)$
 $\Rightarrow \sum_{r=1}^{\infty} a(n,r)x^r = \sum_{r=1}^{\infty} a(n-1,r)x^r + \sum_{r=1}^{\infty} a(n-1,r-1)x^r$
 $\Rightarrow f_n(x) - a(n,0) = f_{n-1}(x) - a(n-1,0) + x. \sum_{r=1}^{\infty} a(n-1,r-1)x^{r-1}$
 $\Rightarrow f_n(x) - 1 = f_{n-1}(x) - 1 + x.f_{n-1}(x)$
 $\Rightarrow f_n(x) = (1+x).f_{n-1}(x) = (1+x)^n.f_0(x)$
So, $a(n,r)$ is the coefficient of x^r in $f_n(x) = (1+x)^n.f_0(x) = (1+x)^n$

 $\Rightarrow a(n,r) = \binom{n}{r}$

Solving Recurrences using Generating Functions

Example (Solving a System of Recurrence Relations)

Upon interaction with a nucleus of fissionable material, the following activities happen:

A high-energy neutron releases two high-energy and one low-energy neutrons.

② A low-energy neutron releases *one* high-energy and *one* low-energy neutron.

After $n \ge 0$ interactions, let $a_n =$ number of high-energy neutrons, and $b_n =$ number of low-energy neutrons. Assume, at beginning, $a_0 = 1$, $b_0 = 0$.

Recurrence Relation:
$$a_{n+1} = 2a_n + b_n$$
, $b_{n+1} = a_n + b_n$ $(n \ge 0)$

Generating Function:
$$f(x) = \sum_{n=0}^{\infty} a_n \cdot x^n$$
, $g(x) = \sum_{n=0}^{\infty} b_n \cdot x^n$ generates $\{a_n\}$, $\{b_n\}$ $(n \ge 0)$

Derivation:
$$\sum_{n=0}^{\infty} a_{n+1}.x^{n+1} = 2x \sum_{n=0}^{\infty} a_{n}.x^{n} + x \sum_{n=0}^{\infty} b_{n}.x^{n} \Rightarrow f(x) - a_{0} = 2xf(x) + xg(x)$$
$$\sum_{n=0}^{\infty} b_{n+1}.x^{n+1} = x \sum_{n=0}^{\infty} a_{n}.x^{n} + x \sum_{n=0}^{\infty} b_{n}.x^{n} \Rightarrow g(x) - b_{0} = xf(x) + xg(x)$$

Solving these system of recurrence equations and using generating functions,

$$f(x) = \frac{1-x}{x^2 - 3x + 1} = \left(\frac{5 + \sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 + \sqrt{5}}{2} - x}\right) + \left(\frac{5 - \sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 - \sqrt{5}}{2} - x}\right) \quad \text{and} \quad g(x) = \frac{x}{x^2 - 3x + 1} = \left(\frac{-5 - 3\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 + \sqrt{5}}{2} - x}\right) + \left(\frac{-5 + 3\sqrt{5}}{10}\right) \left(\frac{1}{\frac{3 - \sqrt{5}}{2} - x}\right) \\ a_n = \left(\frac{5 + \sqrt{5}}{10}\right) \left(\frac{3 - \sqrt{5}}{2}\right)^{n + 1} + \left(\frac{5 - \sqrt{5}}{10}\right) \left(\frac{3 + \sqrt{5}}{2}\right)^{n + 1} \quad \text{and} \\ b_n = \left(\frac{-5 - 3\sqrt{5}}{10}\right) \left(\frac{3 - \sqrt{5}}{2}\right)^{n + 1} + \left(\frac{-5 + 3\sqrt{5}}{10}\right) \left(\frac{3 + \sqrt{5}}{2}\right)^{n + 1}, \quad n \ge 0$$

Solving Special Recurrence Relations

Example (Solving Non-linear Recurrences using Generating Functions)

Some Recurrent Problems leading to non-linear recurrences:

- \bullet Number of ways to parenthesize an n length expressions
- Number of different ordered unlabelled rooted *n*-node binary trees
- Number of non-overlapping handshakes among *n* persons seated in round table
- ullet Number of non-intersecting chords of circle with n points located in perimeter
- lacktriangle Number of paths in a imes b grid from bottom-left o top-right corner not crossing diagonal
- Number of Triangulations of an n-sided regular polygon
- Number of Stacky Sequences [For $n \in \mathbb{Z}^+$, Push $1, 2, \ldots, n$ in order into stack, but Pop (from top) + Print anytime in between from unempty stack. All stack-realizable permutations of $1, 2, 3, \ldots, n$ are 'stacky sequences'.

Catalan Numbers solving Non-linear Recurrences

Number of ways to parenthesize (n+1)-length string or construct (n+1)-node binary trees,

$$a_{n+1}=a_0a_n+a_1a_{n-1}+\cdots+a_{n-1}a_1+a_na_0=\sum_{i=0}^na_ia_{n-i},\ (n\geq 0)$$
 and $a_0=1$
Applying generating function, $f(x)=\sum_{n=0}^\infty a_n.x^n$ (to generate sequence $\{a_n\}$), we get –

$$\sum_{n=0}^{\infty} a_{n+1} \cdot x^{n+1} = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i a_{n-i} \right) \cdot x^{n+1} \quad \Rightarrow [f(x) - a_0] = x[f(x)]^2 \quad \Rightarrow f(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

Now,
$$\sqrt{1-4x} = (1-4x)^{\frac{1}{2}} = (\frac{1}{0}) + (\frac{1}{2})(-4x) + (\frac{1}{2})(-4x)^2 + \cdots$$
, so the coefficient of x^{n+1} is: $(\frac{1}{2})(-4)^{n+1} = \frac{(\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-(n+1)+1)}{(n+1)}(-4)^{n+1} = [\frac{-1}{2(n+1)-1}] \cdot {2(n+1) \choose n+1}$

Thank You!