Capítulo 1: Introdução

Capítulo 1: Introdução

- O Que Sistemas Operacionais Fazem
- Organização do Sistema Computacional
- Arquitetura do Sistema Computacional
- Estrutura do Sistema Operacional
- Operações do Sistema Operacional
- Gerência de Processos
- Gerência de Memória
- Gerência de Armazenamento
- Proteção e Segurança
- Estruturas de Dados do Kernel
- Ambientes Computacionais
- Sistemas Operacionais Open-Source (Código-Aberto)

Objetivos

- Descrever a organização básica de sistemas computacionais
- Apresentar um tour sobre os principais components de sistemas operacionais
- Apresentar uma visão geral dos diversos tipos de ambientes computacionais
- Explorar diversos sistemas operacionais open-source

O que é um Sistema Operacional?

- Um programa que atua como um intermediário entre o usuário de um computador e o hardware do computador
- Responsabilidades de um sistema operacional:
 - Executar programas do usuário e tornar mais fácil a resolução de problemas do usuário
 - Tornar o uso do sistema computacional mais conveniente
 - Utilizar o hardware do computador de forma eficiente

Estrutura de um Sistema Computacional

- Sistemas computacionais são divididos em quarto componentes:
 - Hardware fornece recursos computacionais básicos
 - CPU, memória, dispositivos de I/O
 - Sistema operacional
 - Controla e coordena o uso do hardware entre os vários programas e usuários
 - Programas definem a forma com que os recursos do sistema serão utilizados para resolver os problemas computacionais do usuário
 - Processadores de palavras, compiladores, navegadores web, sistemas de bancos de dados, jogos
 - Usuários
 - Pessoas, máquinas, outros computadores

Quatro Componentes de um Sistema Computacional

O Que Sistemas Operacionais Fazem

- Depende do ponto de vista
- Usuários desejam conveniência, facilidade de uso e bom desempenho
 - Não se importa com utilização de recursos
- Mas computadores compartilhados, como mainframes ou minicomputadores devem manter todos os usuários felizes
- Usuários de sistems dedicados, como workstations possuem recursos dedicados, ms frequentemente utilizam recursos compartilhados de servidores
- Dispositivos móveis possuem poucos recursos e são otimizados para usabilidade e duração de bateria
- Alguns computadores tem pouca ou nenhuma interace com o usuário, tais como computadores embarcados em dispositivos e carros

Definição de Sistema Operacional

- Sistema Operacional é um alocador de recursos
 - Gerencia todos os recursos
 - Decide requisições em conflito para que o uso de recursos seja eficiente e justo
- Sistema Operacional é um programa de controle
 - Controla a execução dos programas para prevenir erros e uso impróprio do computador

Definição de Sistema Operacional (Cont.)

- Não há uma definição universal aceita
- "Tudo o que um fabricante entrega quando você compra um sistema operacional" é uma boa aproximação
 - Mas varia amplamente
- "O programa rodando a todo momento no computador" é o kernel.
- Todos o resto é
 - um programa do sistema (que vem junto com o sistema operacional) ou
 - um programa de aplicação.

Inicialização do Computador

- programa de bootstrap é carregado no momento em que o computador é ligado ou reiniciado
 - Normalmente armazenado na ROM ou EPROM, geralmente conhecido como firmware
 - Inicializa todos os aspectos do sistema
 - Carrega o kernel do sistema operacional e inicia sua execução

Organização do Sistema Computacional

- Operação do sistema computacional
 - Uma ou mais CPUs, controladoras de dispositivos conectam através de bus compartilhados provendo acesso a memória compartilhada
 - Execução concorrente de CPUs e dispositivos competindo por ciclos de memória

Universidade de Brasília

Faculdade UnB Gama 💜

Operação do Sistema Computacional

- Dispositivos I/O e a CPU podem rodar concorrentemente
- Cada controladora de dispositivo é responsável por um tipo de dispositivo em particular
- Cada controladora de dispositivo possui um buffer local
- A CPU move os dados de/para a memória principal de/para os buffers locais
- Quando se diz I/O, refere-se a transferência de dados do dispositivo para o buffer da controladora
- A controladora do dispositivo informa a CPU que sua operação foi encerrada por meio de uma interrupção

Funções Comuns de Interrupções

- Interrupção geralmente transfere o controle para a rotina de serviço de interrupção, através do vetor de interrupção, que contém os endereços de todas as rotinas de serviço
- A arquitetura de interrupção deve guardar o endereço da instrução interrompida
- Uma trap ou exceção é uma interrupção gerada por software causada por um erro ou uma requisição de usuário
- Um sistema operacional é dirigido por interrupções

Lidando com Interrupções

- O sistema operacional preserva o estado da CPU por meio do armazenamento dos registradores e do contador do programa (program counter)
- Determina que tipo de interrupção ocorreu:
 - polling
 - sistema de interrupção vetorizado
- Separa segmentos de código que determinam qual ação deve ser tomada para cada tipo de interrupção

Timeline da Interrupção

Estrutura de I/O

- Após o início da I/O, o controle é retornado ao programa de usuário apenas após I/O ser completada
 - A instrução Wait deixa a CPU ociosa até a próxima interrupção
 - Wait loop (contenção para acesso à memória)
 - No máximo uma requisição I/O está em vigor por vez, não há processamento de I/O simultâneo
- Após o início da I/O, o controle é retornado ao programa de usuário sem esperar que I/O seja completada
 - System call requisite o SO para que permita que o usuário ahuarde o término da I/O request to the OS to allow user to wait for I/O completion
 - Tabela de estados do dispositivo contém entradas para cada dispositivo de I/O indicando seu tipo, endereço e estado
 - O SO realiza indexações nessa tabela de I/O para determinar o estado do dispositivo e modificar entradads da tabela para incluir interrupções

Definições de Armazenamento e Revisão de Notações

A unidade básica de armazenamento de um computador é o **bit**. Um bit pode conter um de dois valores, 0 e 1. Todo o armazenamento em um computador é uma coleção de bits. Dados bits suficientes, é incrível o quanto um computador pode representar: números, letras, imagens, filmes, sons, documentos e programas, por exemplo. Um **byte** são 8 bits, e na maioria dos computadores é o menor pedaço de armazenamento conveniente. Por exemplo, a maioria dos computadores não possui instruções para mover um bit, mas sim para mover um byte. Um termo menos comum é **palavra**, que é a unidade básica de memória de um computador. Uma palavra é composta por um ou mais bytes. Por exemplo, um computador que possui registradores de 64 bits e endereçamento de memória de 64 bits normalmente possui palavras de 64 bits (8 bytes). Um computador executa operações no tamanho de sua palavra em vez de 1 byte por vez.

O armazenamento de um computador é geralmente expresso e manipulado em bytes e coleções de bytes.

- 1 kilobyte, ou KB, é 1,024 bytes
- 1 megabyte, ou MB, é 1,024² bytes
- 1 gigabyte, ou GB, é 1,0243 bytes
- 1 **terabyte**, ou **TB**, é 1,024⁴ bytes
- 1 **petabyte**, ou **PB**, é 1,024⁵ bytes

Fabricantes geralmente arredondam esses número e dizem que 1 megabyte é 1 milhão de bytes e que 1 gigabyte é 1 bilhão de bytes. Medições em rede são exceção; são dadas em bits (pois redes transmitem dados um bit por vez).

Faculdade UnB Gama

Estrututa de Armazenamento

- Memória principal única mídia de armazenamento grande que a CPU pode acessar diretamente
 - Random access memory (RAM)
 - Tipicamente volátil
- Armazenamento secundário extensão da memória principal que fornece grande capacidade de armazenamento não volátil (ex.: HDD, SSD)
- Discos rígidos metal rígido ou bandejas de vidro cobertas por material magnético gravável
 - A superfície do Disco é logicamente dividida em trilha, que são subdivididas em setores
 - A controladora do disco determina a interação lógica entre o dispositivo e o computador
- Discos de estado sólido mais rápidos do que discos rígidos, não voláteis
 - Várias tecnologias
 - Se tornando popular

Hierarquia de Armazenamento

- Sistemas de armazenamento organizados em hierarquia
 - Velocidade
 - Custo
 - Volatilidade
- Caching copiar informações para um sistema de armazenamento mais rápido; a memória principal pode ser vista como um cache para a memória secundária
- Driver de Dispositivo para cada controladora do dispositivo para genrenciar I/O
 - Fornece interface uniforme entre a controladora e o kernel

Hierarquia de Armazenamento

Caching

- Princípio importante, realizado em vários níveis de um computador (hardware, SO, software)
- Informação em uso copiada de um armazenamentro mais lento para um mais rápido temporariamente
- Armazenamento mais rápido (cache) checa primeiro se a informação já não está lá
 - Se estiver, utiliza-se a informação diretamente da cache(rápido)
 - Se não, os dados são copiado para a cache e então utilizados de lá
- Cache é menor do que o armazenamento sendo "cached"
 - Importante problema de design de gerenciamento de cache (qual o problema se for maior?)
 - Tamanho de cache e política de substituição

Estrutura de Acesso Direto a Memória (DMA)

- Utilizada para dispositivos I/O de alta velocidade capazes de transmitir dados a uma velocidade próxima a da memória
- Controladora de dispositivo transfere blocos de dados do buffer diretamente para a memória principal sem a intervenção da CPU
- Apenas uma interrupção é gerada por bloco, em vez de uma por byte

Como um Computador Moderno Funciona

A von Neumann architecture

Arquitetura de um Sistema Computacional

- Maioria dos sistemas utiliza único processador genérico
 - Maioria dos sitemas também possui processador para fins específicos
- Sistemas multiprocessados crescendo em uso e importância
 - Também conhecidos como sistemas paralelos, sistemas fortemente acoplados
 - Vantagens incluem:
 - 1. Vazão aumentada
 - Economia de escala
 - Confiabilidade aumentada tolerância a faltas
 - Dois tipos:
 - Multiprocessamento Assimétrico cada processador recebe uma única tarefa.
 - Multiprocessamento Simétrico cada processador desempenha todas as tarefas

Faculdade UnB Gama 💜

Silberschatz, Galvin and Gagne ©2013

Arquitetura Multiprocessada Simétrica

Um Design Dual-Core

- Multi-chip e multicore
- Sistemas contendo todos os chips
 - Chassis contendo múltiplos sistemas separados

Sistemas Clusterizados

- Como sistemas multiprocessados, mas são múltiplos sistemas trabalhando juntos
 - Normalmente compartilham memória via área de armazenamento em rede - storage-area network (SAN)
 - Fornece serviços de alta disponibilidade que sobrevivem a falhas
 - Clusterização assimétrica possui uma máquina em modo de hotstandby
 - Clusterização simétrica possui múltiplos nós rodando aplicações, monitorando um ao outro
 - Alguns clusters são para computação de alto desempenho highperformance computing (HPC)
 - Programas devem ser escrito para utilizar paralelização
 - Alguns possuem gerenciador de bloqueio distribuído distributed lock manager (DLM) para evitar operações conflitantes

Clustered Systems

Estrutura do Sistema Operacional

- Multiprogramação (Batch system) necessária para eficiência
 - Único usuário não pode ocupar a CPU e I/O por todo o tempo
 - Multiprogramação organiza trabalhos (código e dados) para que a CPU tenha sempre algo para executar
 - Um subconjunto dos trabalhos totais é mantido em memória
 - Um trabalho selecionado e executado via job scheduling
 - Quando precisar esperar (por I/O, por exemplo), o SO troca para outro trabalho
- Compartilhamento de tempo (multitasking) é extensão lógica na qual a CPU troca entre trabalhos tão frequentemente que usuários podem interagir com cada trabalho enquanto rodam, gerando a computação interativa
 - Tempo de resposta deve ser < 1 segundo
 - Cada usuário tem pelo menos um programa executando em memória ⇒processo
 - Se muitas tarefas prontas para serem rodadas ao mesmo tempo ⇒ CPU scheduling
 - Se processos não cabem na memória, swapping os retira e reinsere para execução
 - Memória virtual permite a execução de processos que não estão inteiramente na memória principal

Faculdade UnB Gama 😗

Layout da Memória para Sistemas Multiprogramdos

Operações do Sistema Operacional

- Interrupt driven (hardware e software)
 - Hardware interrompido por um dos dispositivos
 - Interrupção de Software (exception ou trap):
 - Erro de software (exemplo: divisão por zero)
 - Requisição de serviço pelo sistema operacional
 - Outros problemas incluindo loop, processos modificando uns aos outros ou o sistema operacional

Operações do Sistema Operacional(cont.)

- Dual-mode operação que permite ao sistema operacional (OS) proteger ele mesmo ou outros componentes do sistema
 - User mode e kernel mode
 - Mode bit provido por hardware
 - Fornece a capacidade para distinguir quando o sistema está sendo executado o 'user mode' e 'kernel mode'
 - Algumas instruções designadas como 'privilegiadas', somente executadas no 'kernel mode'.
 - O modo de mudanças de chamadas do sistema para o kernel, o retorno da chamada redefine para o usuário
- Cada vez mais CPUs suporta operações multimodo.
 - ex: virtual machine manager (VMM) gerenciamento da máquina virtual, modo para VMs convidadas.

Transição do Modo Usuário para Kernel

- Tempo para prevenir loop infinito / processos que sobrecarregam recursos
 - Tempo está definido para interromper o computador após um período de tempo
 - Guarda um contador que é decrementando por um relógio físico.
 - Sistema operacional definido o contador (instrução privilegiada)
 - Quando o contador zera, gera um interrupção.
 - Configuração antes do processo de agendamento para recuperar o controle ou encerrar o programa que excede o tempo alocado.

Gerenciamento de Processos

- Um processo é um programa em execução, uma unidade de trabalho dentro do sistema. Programa é uma entidade passiva, processo é uma entidade ativa.
- Processo necessita recursos para realizar sua tarefa
 - CPU, memória, I/O (dispositivos de entrada/saída), arquivos
 - Dados de inicialização
- O encerramento do processo requer a recuperação de quaisquer recursos reutizáveis.
- Processo Single-threaded tem um contador de programas (program counter)
 que especifica a localização da próxima instrução para executar
 - Processo executa instruções sequencialmente, uma de cada vez, até a conclusão
- Processo Multi-threaded tem um contador de programas por thread.
- Tipicamente o sistema tem muitos processos, alguns usuários, algumas operações de sistema sendo executadas concorrentemente por uma ou mais CPUs.
 - Concorrência por multiplexação de CPUs entre os processos /threads.

Atividades de Gerenciamento de Procesos

O sistema operacional é responsável pelas seguintes aividades em conexão dentro de processos de gerenciamento:

- Criar ou excluir tanto processo do usuário como do sistema
- Suspender ou retornar processos
- Fornecer mecanismos para a sincronização de processos
- Fornecer mecanismos para a comunicação de processos
- Fornecer mecanismos para a manipulação de *deadloc*

Gerenciamento de Memória

- Para executar um programa, todas(ou parte) das instruções devem estar na memória
- Todos (ou parte) dos dados que são necessários para o programa, devem estar na memória.
- Gerenciamento da memória determina o que está na memória e quando:
 - Otimizar utilização da CPU e respostas do computador aos usuários
- Atividades de gerenciamento de memória
 - Acompanhar quais partes da memória estão sendo atualmente e por quem
 - Decidir que processo (ou partes do mesmo) e dados para entrar e sair da memória
 - Alocar e desalocar espaço de memória se necessário.

Gerenciamento de Armazenamento

- Sistema operacional (OS) fornece uma visão uniforme, lógica do armazenamento de informações
 - Astrai propriedades físicas da unidade de armazenamento lógico arquivo (file)
 - Cada meio é controlado por um dispositivo (ex: unidade de disco, unidade de fita)
 - As propriedades variáveis incluem velocidade de acesso, capacidade, taxa de transferência de dados, método de acesso (sequencial ou randômico)
- Gereciamento de Arquivos de Sistema
 - Arquivos geralmente organizados em diretórios
 - Controle de acesso na maioria do sistema para determinar quem pode acessar e o que
 - Atividades do Sistema Operacional incluem
 - Creating and deleting files and directories
 - Criar e excluir arquivos e diretórios
 - Primitivos para manipular arquivos e diretórios
 - Mapeamento dos arquivos no armazenamento secundário
 - Backup files onto stable (non-volatile) storage media
 - Arquivos de backup em suportes de armazenamento estáveis (não voláteis)

Gerenciamento de Armazenamento em Massa

- Geralmente discos usados para armazenar dados que não cabem na memória principal devem ser mantidos por um período "longo" de tempo
- A gestão adequada é de importância central
- Toda velocidade de operações no computador depende do subsistema do disco e seus algoritmos
- Atividades do Sistema Operacional (OS)
 - Gerenciamento de espaço-livre
 - Alocação de armazenamento
 - Programação de disco
- Alguns dispositivos de armazenamento não necessitam ser rápidos.
 - Armazenamento terciário inclue armazenamento óptico, fita magnética
 - Ainda devem ser gerenciados pelo Sistema Operacional ou aplicativos
 - Variam entre WORM (write-once, read-many-times; escrita-única, leituramuitas-vezes) e RW (read-write; leitura e escrita)

Desempenho de Vários Níveis de Armazenamento

Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Movimento entre níveis de hierarquia de armazenamento pode ser explícito ou implícito

Migração do dado "A" do Disco para Registro

 Ambientes multitarefa devem ser cautelosos para usar o valor mais recente, não importa onde ele está armazenado na hierarquia de armazenamento

- Ambiente multiprocessador devem fornecer cache coherency no hardware de modo que todas as CPUs terem o mais recente valor nos suas respectivas cache
- Situação do ambiente distribuído ainda mais complexa
 - Várias cópias de um dado podem existir
 - Várias soluções tratadas no Capítulo 17

Subsistema de I/O (Entrada/Saída)

- Um dos propósitos do Sistema Operacional (OS) é esconder/abstrair particularidades dos dispositivos de hardware do usuário
- O subsistema I/O (entrada/saída) é responsável por:
 - Gerenciamento de memória de I/O (entrada/saída) incluindo buffering (armazenar dados temporiamente enquanto está sendo transferido), caching (armazenar partes dos dados em armanezamento mais rápido para aumentar o desempenho), spooling (a sobreposição da saída de um trabalho com a entrada de outros)
 - Interface geral do driver de dispositivo
 - Drivers para dispositivos de hardware específicos

Proteção e Segurança

- Proteção qualquer mecanismo para controlar o acesso de processos ou usuários aos recursos é definido pelo sistema operacional (OS)
- Segurança defesa do sistema contra ataques internos ou externos
 - Grande alcance, incluindo negação de serviço (DoS Attack), worms, vírus, roubo de identidade e serviço
- Sistemas geralmente primeiro distinguem entre usuários para determinar quem pode fazer e o quê
 - Identificação de usuário (user IDs, security IDs) incluindo nome e número associados, um por usuário
 - User ID associados com todos os arquivos, processos desse usuário para determinar o controle de acesso
 - Identificação de grupo (group ID) que permite um conjunto de usuários sejam definidos e controles sejam gerenciados – incluindo também associação com processos, arquivos
 - Privilege escalation (Escalonamento de Privilégios) permite que o usuário mude para um ID efetivo com mais direitos

Estrutura de Dados do Kernel

- Muito similar ao padrão de estrutura de dados na programação
- Lista Simplesmente Encadeada

Lista Duplamente Encadeada

Lista Encadeada Circular

Estrutura de Dados do Kernel

- Árvore Binária de Busca esquerda <= direita</p>
 - Complexidade Desempenho de busca é O(n)
 - Árvore Binária de Busca Balanceada (AVL) é O(lg n)

Estrutura de Dados do Kernel

Hash function (função hash) pode criar um hash map (mapa hash)

- Bitmap string de *n* dígitos binários representando o estado de *n* itens
- Os dados no sistema Linux são definidos em:

include files <linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>

Ambiente Computacional - Tradicional

- Máquinas de uso geral autonôma
- Porém como a maioria dos sistemas interconectam-se uns com outros (isto é a Internet).
- Portals fornecem acesso à web para sistema internos
- Network computers (thin clients) são como terminais na Web
- Computadores móveis interconectados via wireless networks (redes sem-fio wireless)
- Networking se tornando onipresente cada sistema doméstico usa firewalls para proteger aqueles de ataques da Internet

Ambiente Computacional - Móvel

- Portáteis smartphones, tablets, etc
- Qual é a diferença funcional entre eles e um "tradicional" laptop?
- Caracteristicas extras mais características do Sistema Operacional (GPS, gyroscope)
- Permitem novos tipos de aplicativos como realidade aumentada
- Uso do padrão IEEE 802.11 wireless, ou rede de dados de celulares para conectividade
- Leaders são Apple iOS e Google Android

Ambiente Computacional - Distribuído

- Computação distribuída
 - Coleta de sistemas separados, possivelmente heterogenêos, conectados em rede
 - Network é um caminho de comunicação, TCP/IP é a mais comum
 - Local Area Network (LAN) Rede de Área Local
 - Wide Area Network (WAN) Rede de Longa Distância
 - Metropolitan Area Network (MAN) Rede de Área Metropolitana
 - Personal Area Network (PAN) Rede de Área Pessoal
 - Network Operating System (Sistema Operacional de Redes) fornece recursos entre sistemas na rede.
 - Esquema de comunicão permite que sistemas troquem mensagens
 - Ilusão de um único sistema

Ambiente Computacional – Cliente-Servidor

- Computação Cliente-Servidor
 - Terminais burros substituídos por computadores inteligentes
 - Muitos sistemas agora servidores, respodem as requisições geradas pelos clientes.
 - Compute-server system (Sistema de Servidor de Computação) fornece uma interface para o cliente requisitar serviços (isto é: uma base de dados)
 - File-server system (Sistema de Arquivo-Servidor) fornece interface para clientes armazenarem e recuperar arquivos

Ambiente Computacional – Peer-to-Peer (Par-a-Par)

- Outro modelo de sistema distribuído
- P2P não distingue clientes e servidores
 - Em vez disto, todos os nós são considerados pares
 - Cada um atua como cliente, servidor ou ambos
 - O nó deve juntar-se a uma rede P2P
 - Registra o serviço do nó com o serviço de consulta central ou
 - Broadcast request (pedido de difusão)
 para serviço e responde as requisições
 de serviço via discovery protocol
 (protocolo de descoberta)
 - Exemplos incluem Napster e Gnutella,
 Voice over IP (VoIP) como, por exemplo,
 Skype

Ambiente Computacional – Virtualização

- Permitem sistemas operacional a executerem aplicativos dentro de outros sistemas operacionais
 - Grande e crescente insdústria
- Emulação usada quando o tipo de CPU de origem é de diferente do tipo de destino (isto é, PowerPC para Intel x86)
 - Geralmente é o método mais lento
 - Quando a linguagem do computador não está compilada para o código nativo - Interpretação
- Virtualização Sistema Operacional nativamente compilado para a CPU, executado no sistema operacional convidado também nativamente compilado
 - Considerar Vmware executando sistemas operacionais
 WindowsXP convidados, cada um executando aplicações, todos em um nativo sistema hospedeiro Windows XP
 - VMM (Gerenciador de Máquina Virtual) fornece serviços de virtualização

Ambiente Computacional – Virtualização

- Usa casos envolvendo laptos e desktops executando múltipos sistemas operacionais para exploração ou compatibilidade
 - Apple laptop executando Mac OS X hospdeiro, Windows como convidado
 - Desenvolvimento de aplicativos para múltipos sistemas operacionais sem ter vários sistemas
 - QA teste de aplicações sem ter múltiplos sistemas operacinais
 - Executando e gerenciando ambientes computacionais dentro de data centers (central de dados)
- VMM pode executar nativamente, nesse caso eles também são o hospedeiro
 - Não há um host de uso geral (VMware ESX and Citrix XenServer)

Ambiente Computacional – Virtualização

Ambiente Computacional – Computação em Nuvem

- Fornece computação, armazenamento e até aplicativos como serviços em toda rede
- Extensão lógica de virtualização porque usa a virtualização como base para sua funcionalidade
 - Amazon EC2 tem milhares de servidores, milhões de máquinas virtuais, petabytes de armazenamento disponíveis através da internet, pagamento baseado no uso
- Muitos tipos:
 - Public Cloud (Nuvem Pública) disponível via Internet para qualquer um disposto a pagar
 - Private Cloud (Nuvem Privada) administrado por uma empresa para uso próprio da empresa
 - Hybrid cloud (Nuvem Híbrida) incluem tanto componentes (serviços) de nuvem públicos, privados ou ambos
 - Software as a Service (SaaS, Software como Serviço) um ou mais aplicativos dispoíveis via Internet (ex: processador de texto word)
 - Platform as a Service (PaaS, Plataforma como Serviço) pilha de software prontos para uso de aplicativos via Internet (ex: servidor de base de dados)
 - Infrastructure as a Service (laaS, Infraestrutura como Serviço) servidores ou armazenamento disponível pela Internet (ex: amarzenamento disponível para uso de backup)

Ambiente Computacional – Computação em Nuvem

 Ambiente computacional em nuvem composto de sistemas operacionais tradicionais adicionando VMMs e ferramentas de gerenciamento de ambientes em nuvem

 Conectividade com a internet requer segurança como, por exemplo, uso de firewalls

Os balanceadores de carga espalham o tráfego entre vários

aplicativos

Ambiente Computacional – Sistemas Embarcados em Tempo Real

- Sistema embarcados em tempo real forma mais prevalente de computadores
 - Varia consideravelmente, finalidade especial, sistema operacional com finalidade limitada, sistema operacional em tempo real (real-time OS)
 - Uso expansivo
- Muitos outros ambientes de computação especial também
 - Alguns possuem sistemas operacionais, alguns realizam tarefas sem um sistema operacional
- Sistemas Operacionais em Tempo real têm restrições de tempo fixa bem definidas
 - Processamento deve ser feito dentro de uma restrição
 - Operação correta somente se as restrições forem atendidas

Sistemas Operacionais (Open-Source) Código-Aberto

- Sistemas Operacionais disponibilizados no formato código-fonte aberto ao invés do código-fonte fechado binário (closed-source)
- Contador para o movimento de proteção de cópia (copy protection) e Gerenciamento de Direitos Digitais (DRM)
- Counter to the copy protection and Digital Rights Management (DRM) movement
- Iniciado por Free Software Foundation (FSF, Fundação de Software Livre), que tem "copyleft" GNU Public License (GPL,Licença Pública GNU)
- Exemplos incluem GNU/Linux e BSD UNIX (incluindo núcleo do Mac OS X), e muito mais
- Podem usar VMM como VMware Player (grátis para Windows), Virtualbox (código-aberto e grátis para muitas plataformas http://www.virtualbox.com)
 - Uso para executar sistemas operacionais convidados para exploração Universidade de Brasília

Fim do Capítulo 1

