```
% Author: Spencer Goulette
% ECE 486 - HW #3 Problem 5
% February 12th, 2019
clear variables
```

Problem 5

```
f = linspace(-0.5, 0.5, 1001); % Frequency from -0.5 to 0.5
z = \exp(1i \cdot 2 \cdot pi \cdot f); % Z
H1 = (1.0000.*z.^{(2)} + 1.6180.*z.^{(1)} + 1.0000)./(1.*z.^{(2)} +
-1.5371.*z.^{(1)} + 0.9025); % Filter 1 H(z)
H2 = (1.0000.*z.^{(2)} - 0.6180.*z.^{(1)} + 1.0000)./(1.*z.^{(2)} -
0.8100); % Filter 2 H(z)
H = (20*log10(abs(H1 .* H2))); % Gain in dB without G
G = 1 / 10^{(max(H) / 20)} % G to make max gain 1 V/V <--- Answer to
Part A
H = H1 .* H2; % Gain in V/V without G
HG = H1 .* H2 .* G; % Gain in V/V with G
Fig1 = figure('Position', [200, 75, 850, 600]); % set figure size and
location <--- Answer to Part B
plot(f,H,f,HG); % stem plot
grid on; % add grid
set(gca, 'fontsize', 16); % increase font size
xlabel('frequency, Hz', 'fontsize', 16); % x label
ylabel('Gain, V/V', 'fontsize', 16); % y label
title('Homework 3, problem 5', 'fontsize', 16); % title
legend('Gain without G','Gain with G'); % legend
0 <= n <= 19
xG = x .* G; % After G stage
a1 = [1.0000 -1.5371 \ 0.9025]; % Coefficients for Filter 1
b1 = [1.0000 \ 1.6180 \ 1.0000];
a2 = [1.0000 \ 0.0000 \ -0.8100]; % Coefficients for Filter 2
b2 = [1.0000 - 0.6180 1.0000];
y1 = filter(a1,b1,xG); % Filter 1
y2 = filter(a2,b2,y1); % Filter 2
x = x'; % Transpose rows to columns and rename
G = xG';
Filter1 = y1';
Filter2 = y2';
T = table(x,G,Filter1,Filter2) % Create table <--- Answer to Part C
G =
```

0.0139 $\label{eq:warning: maginary parts of complex X and/or Y arguments ignored } T =$

20×4 table

X	G	Filter1	Filter2
3	0.041655	0.041655	0.041655
1.5	0.020827	-0.1106	-0.084855
-1.8	-0.024993	0.11788	-0.0099566
0.2	0.002777	-0.02014	0.14815
0	0	-0.11212	-0.10609
0	0	0.20405	0.0066568
0	0	-0.21804	-0.017022
0	0	0.14874	-0.033723
0	0	-0.022615	0.15018
0	0	-0.11214	-0.10609
0	0	0.20407	0.0066428
0	0	-0.21803	-0.017002
0	0	0.14871	-0.033732
0	0	-0.022582	0.15018
0	0	-0.11217	-0.10609
0	0	0.20408	0.0066288
0	0	-0.21803	-0.016983
0	0	0.14869	-0.03374
0	0	-0.02255	0.15018
0	0	-0.1122	-0.10608

Published with MATLAB® R2017b