Laboratório de Física Moderna Radiação de Corpo Negro Aula 01 - Parte 01

Marcelo Gameiro Munhoz munhoz@if.usp.br

Contextualização

 Para iniciar nosso experimento, vamos compreender o contexto que o cerca

 Qual o tipo de fenômeno queremos estudar e por que ele é interessante?

Radiação Térmica

- Ondas eletromagnéticas emitidas por todos os objetos com temperatura acima do zero absoluto
- Importância: um dos grandes problemas em aberto da física clássica no final do século XIX

Radiação Térmica

 Isso ocorre devido ao movimento acelerado (oscilatório) de origem térmica de cargas elétricas que existem no interior dos corpos

Copyright © 2005 Pearson Prentice Hall, In

Espectro de frequência da radiação térmica

• A radiação emitida por um objeto com temperatura T>0~K não apresenta apenas uma frequência (lembre-se das ondas eletromagnéticas), mas uma **distribuição** de frequências

 A "quantidade" de radiação emitida com cada valor de frequência é medida em energia por unidade de tempo (potência) por unidade de área da superfície do objeto, chamada de radiância espectral R_T(V)

Espectro de frequência da radiação térmica

 A "quantidade" de radiação emitida com cada valor de frequência é medida em energia por unidade de tempo (potência) por unidade de área da superfície do objeto, chamada de radiância espectral R_T(V)

Corpo Negro

- Podemos considerar uma classe de objetos que emitem apenas a sua radiação térmica, isto é, absorve (não reflete) toda a radiação incidente e emite (não absorve) toda a radiação térmica produzida
- Este conceito é uma idealização!

Corpo Negro

- Importância: Todos os objetos que se comportam como um corpo negro devem emitir a mesma radiância espectral (universalidade) pois a mesma depende apenas da temperatura e não da forma ou material de que é feito.
- Portanto, esse tipo de objeto permite o estudo da radiação térmica

Leis empíricas

• Lei de Stefan (1879)

$$R_T = \sigma \cdot T^4$$

onde:
$$R_T = \int_0^\infty R_T(\nu) d\nu$$

 Lei do deslocamento de Wien

$$u_{max} \propto T$$

$$\lambda_{max} \cdot T = 2,898 \times 10^{-3} m \cdot K$$

Lei de Rayleigh-Jeans

 Segundo a física clássica a radiância espectral de um corpo negro deveria ser dada por:

$$\rho_T(\nu)d\nu = \frac{8\pi\nu^2kT}{c^3}d\nu$$

 que, como já vimos, não descreve as medidas

Como resolver essa discrepância?

 Em 1900, Max Planck, que tinha contato com físicos experimentais que estudavam o problema da radiação do corpo negro, propõe um equação que descreve perfeitamente os dados...

Proposta de Planck

- Planck inicialmente supôs que as paredes da cavidade eram constituídas de "pequenos osciladores" que trocam energia com a radiação mantendo o equilíbrio térmico
- Planck fez a suposição que esses osciladores poderiam assumir apenas alguns valores específicos de energia:

$$E_1 = 0, E_2 = \Delta E, E_3 = 2 \cdot \Delta E, E_4 = 3 \cdot \Delta E, \dots$$

 Sua intenção era fazer com que ΔE→0 para recuperar a distribuição contínua de energia da física clássica

Fórmula de Planck

 Porém, apenas mantendo essa quantização de energia que Planck consegue reproduzir os dados com a expressão:

$$\rho_T(\nu)d\nu = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{h\nu/kT} - 1} d\nu$$

$$\rho_T(\lambda)d\lambda = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1} d\lambda$$

Implicações do resultado de Planck

- Qual o significado físico da hipótese de Planck?
- Ela impõem que os pequenos osciladores que constituem as paredes da cavidade e estão em equilíbrio com a radiação, só podem assumir certos valores discretos de energia:

$$E = nh\nu$$

Objetivo

 Verificar se a curva de Planck de fato descreve a radiância espectral emitida por uma lâmpada de filamento (o corpo negro que utilizaremos) e, caso isso seja observado, em que condições isso ocorre