SUDOKU MADE EASY

By

Wg Cdr Gyaneshwar Singh(Retd)

Published by:

BFC Publications Private Limited CP-61, Viraj Khand, Gomti Nagar, Lucknow-226010

ISBN: 978-93-5509-002-7

Copyright © Wg Cdr Gyaneshwar Singh (Retd) (2021)

All rights reserved.

No part of this publication may be copied, reproduced, strode in a retrieval system, or transmitted in any form or by any means including photocopying and recording without specific prior permission of the publisher. Any person who does any unauthorised act in relation to the publication of this work may be liable to legal proceedings and civil claims for damages.

The views expressed and the materials provided in this book are solely those of the author and presented by the publisher in good faith. All the names, places, events and incidents are either the product of the author's imagination or are used fictitiously. Any resemblance is purely coincidental. The author and the publisher will not be responsible for any action taken by a reader based on the content of this book. This work does not aim to hurt sentiment of any religion, class, sect, region, nationality or gender.

Dedication

This book is dedicated to the memory of

Late KN Ramamurthy, father of my friend

Wg Cdr K R Nagesh

Preface

This book is an attempt to simplify the game of SUDOKU. Simple techniques suggested in the book rationalize and make this game tangible and achievable. More we dwell inside; more fascinating and beautiful world opens for us. Logic and numbers had never been so thrilling and engrossing. I know there will be many ways to solve a problem but a systematic approach is always welcome.

It was during an official tour to Bangalore, I happened to stay with my Air Force Colleague, Wg Cdr K R Nagesh. There his father, late K N Ramamurthy introduced to me to this game. I found it quite interesting and soon I found this game everywhere, in all magazines and newspapers. I got inspiration from them and started solving this game. During solving these puzzles, I developed "Circle method". This method helped me in solving comple× Sudoku puzzles. All these played a key role in inspiring me to design and write this book. Special mention of my lovely daughter, Nivedita Singh for e-typing and cover design of this book. Hopefully this book will be helpful to all, especially to the students, seniors and housewives.

Wg Cdr Gyaneshwar Singh (Retd) 05 April 2021

Index

Sr. No.	Chapter Name	Page No.
1.	Introduction and assumptions	06
2.	Techniques to solve	18
3.	Examples	29
4.	Solved Sudoku	49
5.	Sudoku practice pages	130

Chapter 1

Introduction and Assumptions

INTRODUCTION

This game is popular all over the world and has become a hobby for people of all ages. This game can be made easy by making suitable assumptions and devising certain rules. How to do it? Here, we go...

Sudoku is a number game in which numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 are needed to be distributed in a big square divided into 9×9 small squares. So, the total number of small squares is 81. The distribution should be such that for every column, the numbers from top to bottom or from left to right in case of rows contain all numbers from 1 to 9. Further to it, there is mid-size square made up of 3 small column or three rows (indicated by blue and white colour on the figures illustrated in this book), in addition to the conditions stated above of serial appearance of numbers 1 to 9, each midsized squares formed by three columns and rows (we will use the word Block for them in subsequent paragraphs) should also contain number 1 to 9 compulsorily.

To illustrate this, let us take figure 1, we have designated different blocks/squares of the 9×9 square. The convention and formulation of rules for this game are stated as follows

Rule 1: Designating Squares

We designate squares

(a) 9×9 square as the big square, which contains all 81 small squares (or Unit Square)

- (b) 3×3 squares are blocks as shown in the figure 1, which will contain 9 small squares (or Unit square). There are nine, 3×3 squares, shown alternately white and blue. These blocks may be identified as the row blocks or the column blocks as explained in subsequent paragraphs.
- (c) And there are total 81 small squares or Unit squares.

Learning point

So, we have three types of squares in the game of Sudoku, 9×9 square, 3×3 squares and Small or unit Squares. We must also remember that 9×9 square has 81 unit squares, 3×3 square has 9 unit squares and the small square means unit square. So, we have big square, block square and unit square.

Rule 2: Numbering of Columns and Rows

For column, we number them 1....2....3....up to 9 in the ascending order that is from left to right as shown in the figure 1. Similarly, we number the rows 1 to 9 from top to bottom fashion as shown in figure 1.

Learning point

Numbering of column and rows

Fig 1

Rule 3: Symbols for Column and Rows

Now, we designate with symbols C or R where C stands for column and R stands for row.

So now, we can designate any of the small squares (Unit square) in terms of corresponding row and column. The concept is same as that of **two dimensional coordinate geometry systems**, where we take help of X and Y axis to describe a point on the plane of a paper. That means, we can describe the unit square in 9×9 Square (Big square) in similar fashion.

Say C₅₇. (Given by a black dot on figure 2)

C57 means go to column 5 and then come down to row 7. Number 7 is suffix to number 5, denotes row. So, C57 means column no 5 and row no 7. It can also be described as R75. Means row no.7 and column no 5, but for our convenience and simplicity, we will take reference with 'C' (means column) only.

Similarly, in figure 2, the unit square with two black dots can be referred to as C₈₄ or R₄₈.

Learning point

Writing symbols for Unit squares.

Fig 2

Exercise 1

Designate reference locations for the followings in figure 3.

- (a) Square with single dot.
- (b) Square with two dots.
- (c) Square with single heart.
- (d) Square with two hearts.
- (e) Square with Single Square.
- (f) Square with two squares.
- (g) Square with single spade.
- (h) Square with single club.
- (i) Square with single triangle.

Fig 3

Rule 4: Numbering of 3×3 square (Block square or Block) (Fig 4)

We designate row and column 3×3 square (or Block square or block), First, by block, we mean a square of 3×3 unit squares. There are total 9 blocks, we number them as follows. Vertically top to down are 1, 2 and 3 blocks. Center has 4, 5and 6 blocks. Similarly, right vertical top to down are 7, 8 and 9 blocks.

Fig 4

Learning point

Numbering of blocks or block squares.

Rule 5: Row or column block to block reference

We further designate names for each block to block for easy reference. This is done as follows - this has the same numbers as that of row 1 to 3 will be used for row block to block reference as it is easily comprehended-

That means 1^{st} row block to block means block no 1, block no 4 and block no 7.

Second row block to block reference means block no 2, block no 5 and block no 8

Third block to block reference row means block no 3, block no 6 and block no 9.

Fig 5

Second row blocks (contains blocks 2, 5 and 8)

Third row blocks (contains blocks 3, 6 and 9)

Fig 6

Learning point

Notations for row blocks

Similarly, we can designate column block to block references; only interesting part is that here block no 1 comes for both, in case of row and column block to block reference.

First column block Second column block Third column block

Learning point

Notations for column blocks

Rule 6. Naming of Individual row line and Individual column lines

<u>Individual column lines</u>

Learning point

Notations for row lines and column lines

Chapter 2

Techniques to Solve

After developing conventions for references in 9×9 squares, block to block rows, block to block column, individual row lines and individual column lines, we proceed to understand the conditions in filling the numbers in 9×9 Square.

- (a) Each individual row line or the individual column line should contain 1 to 9 digits, of course with no repetition.
- (b) Each block (3×3 Square) should also contain 1 to 9 digits with no repetition.

Keeping the conditions in mind, the following techniques can be adopted to fill the numbers in each blank unit square.

<u>Technique 1: Row block to block arrangement (or Column block to block)</u>

- (a) There are three row blocks 1, 2 and 3 as described earlier. By Row block to block scanning, we fulfill the condition that digit 1 to 9 should appear in each single row in block to block scanning.
- (b) The digits appearing in first row of 1st block can only appear in second or third row of 4th block or second or third row of 7th block.
- (c) The digits appearing in 2nd row of 1st block can only appear in 1st row or 3rd row of 4th block or 7th block.
- (d) The digits appearing in 3rd row of 1st block can only appear in 1st row or 2nd row of 4th block.
- (e) In similar fashion, for 4th and 7th block, digits appearing in a particular row will find places in adjacent blocks in other two rows.

(f) Same way 2nd row block to block and 3rd row block to block scanning is performed to enter digits in individual unit squares.

(i) 1st row block to block scanning (Blocks 1, 4 and 7)

Each block has 3 row lines and when blocks 1, 4 and 7 are combined, each row namely row 1, row 2 and row 3 is complete with 9 unit squares.

Normally, we start from first row block. This means that in this row block to block arrangements, there are three individual row lines as illustrated below. Here, three conditions need to be fulfilled - firstly each block (3×3) should contain 1 to 9 and secondly each individual row line and column line should contain 1 to 9 with no repetition.

That means any number appearing on C₁₁, C₂₁, C₃₁ of 1st block can only appear on 4th block either at C₄₂ or C₅₂ or C₆₂ or C₄₃ or C₅₃ or C₆₃, similarly it can only appear on block 7 at C₇₂, C₈₂, C₉₂ or C₇₃ or C₈₃ or C₉₃ etc. This will be clear with example as given figure 11. We take first row block to block arrangement-

Fig 11

Number 8 is appearing in block 1 at C₂₁ or R₁₂ (row 1), which is also in first row line. 8 is also appearing in 3rd block at C₉₃ which also happens to be 3rd line row (R3). So 8 can only appear in row 2 of 2nd block, because filling of number 8 at any other unit square say at C₅₁, C₅₃, C₆₁, and C₆₃ will violate the basic condition that each individual row line should contain digits 1 to 9 only once. Hence 8 will only appear at C₅₂ or C₆₂. Again 8 cannot appear at both C₅₂ and C₆₂ as 8 is also there at C₆₄, hence by comparing with the individual column lines C₅ and C₆ we find that column C₆ contains number 8 at C₆₄, so 8 can only appear at C₅₂ indicated by red colour. This way we satisfy the conditions that each row line or column line will contain digit 1 to 9 only once. That means in block to block scanning we have to satisfy the conditions of row and column lines and individual blocks both together.

Fig 12

Similarly, digit 9 appears at C_{12} and C_{41} so by block-to-block row arrangement, we find that 9 can only be placed in 7^{th} block at C_{83}

because that is the only vacant place and 4 is appearing in 7th block at C₇₃.

Now see that 4 is appearing at C₃₁ of 1st block and by 1st row block to block scanning, we can say that 4 can appear only in C₆₂ of 4th block (indicated with red) as 4 is contained in 7th block at C₆₃.

Fig 13

(ii) Second Row Block to block scanning (Blocks 2, 5 and 8)

Here, we have three rows, row 4, row 5 and row 6. Now, number 2 is contained in row 4 in 2nd block and also in 5th block at C₄₆ so by 2nd row block to block scanning, 2 can only appear at block 8

at C85 or C95, but it cannot appear in C95 as 2 also appears in 7th block at C92. So it has to come at C85 only.

By this second block to block scanning, there is no clue for digit 6 so leave it as for now. Similarly, for digits 1, 7, 8, 9 and 4 there are no clues so leave them here as they are.

(iii) Third row block-to-block Scanning/arrangement (Blocks 3, 6 and 9)

In this case number 7 can come to C_{48} as 7 is there in C_{65} and number 9 can come at place C_{99} because 9 are contained in row 7 at C_{37} , in row 8 at C_{58} and also at C_{74} .

Similarly, block-to-block column scanning /arrangement are also done.

- (a) There are three column bocks, 1, 2 and 3 as described earlier. By column block to block scanning we fulfill the condition that digit 1 to 9 should appear in each single column in block to block scanning.
 - (ii) The digits appearing in first column of $\mathbf{1}^{st}$ block can only appear in second or third column of $\mathbf{2}^{nd}$ block or third column of $\mathbf{3}^{rd}$ block.
 - (iii) The digits appearing in 2^{nd} column of 1^{st} block can only appear in 1^{st} column or 3^{rd} Column of 2^{nd} block or 3^{rd} block.
 - (iv) The digits appearing in 3^{rd} column of 1^{st} block can only appear in 1^{st} column or 2^{nd} block or 3rd block.
 - (V) In similar fashion, for 2^{nd} and 3^{rd} column block, digits appearing in a particular column will find places in adjacent blocks in other two columns in case of 2^{nd} and 3^{rd} blocks.
 - (vi) Same way, 2nd column block to block and 3rd column block to block scanning is performed to enter digits in individual unit squares.

First vertical column block-to-block Scanning/arrangement (Blocks 1, 2 and 3)

In this case block 1, 2 and 3 are involved and we have to take care of column and row lines also. The first column block to block scanning gives no clue for digit 8 at C_{21} , of first block but digit 9 is at two places, one at C_{12} in the first column line and the other at 3rd column line at C_{37} .

Fig 14

So, 9 have to appear in column line 2 only at C₂₅ but not at C₂₆ because there is digit 9 at C₆₆. This way scanning of 1st vertical column block to block gives no clue for digits 8, 4, 2, 6 and 7. So leave them as they are.

(iv) <u>Second column block-to-block Scanning/arrangement</u> (Blocks 4, 5 and 6)

In the second column block to block scanning, the blocks 3, 4 and 5 play the role. Here, we see that digit 9 appears in C₄₁, which is the 4th column line and at C₅₈, which is at 5th column line so now 9 can appear in 6th column only and that too in C₆₆, which already has been filled with digit 9. For digit 6, 8, 4, 3, 1 and 7 there is no clue so we leave the vacancies as they are. Digit 8 can appear in vertical line no. 4 at C₄₇ and C₄₉ but we cannot proceed further similarly for digit 3 there are three vacancies at C₅₄ C₅₅ and C₅₆ so here also we cannot place digit 3. We have to wait for a condition where we can decide about its vacancy and then fill them

(v) <u>Third vertical column block-to-block</u> Scanning/arrangement (Blocks 7,8 and 9)

Blocks 7, 8 and 9 play the role here and third vertical column block to block scanning gives 2 at C₇₉ (Red colour). For 7, 6, 8 and 3, there is no clue.

Fig 15

Technique 2: Same block complete 1 to 9

There are total 9 blocks as designated earlier in chapter 1. Each block should contain digit 1 to 9 compulsorily. Hence, each block can be scanned for 1 to 9 digits but by not sacrificing the conditions for other/respective rows and columns lines. For example, take the case in the following block (Fig 16) - Block no. 1 contains digits 1, 2, 3, 4 and 5.

1	2	3	7		6	9	5	莱
4			8	1		3	乘乘	7
		5				1	4	6
5								
		8						
9		7						
	8	2						
	4	1						
	5	9						

Fig 16

There are two vacancies in Block 7, C₈₂ and C₉₁ but for block 7, digit 2 cannot happen at C₉₁ because of presence of 2 at C₂₁ hence 2 goes to C₈₂. You can see here that for digit 2, there is no clue in the row block to block arrangement of Block no. 1 and Block 4 but still we can fill digit 2 on the basis that each block should contain 1 to 9 and it should also satisfy other conditions of row and column lines. That is why 2 are slotted in C₈₂ in 7th block. Similarly, with the same logic digit 4 can happen only on C₅₁ in block 4 and on C₂₈ in block

3. Similarly for block 7, digit 8 will go to C_{91} to complete the block filling from 1 to 9.

1	2	3	7	4	6	9	5	8
4			8	1		3	2	7
		5				1	4	6
5								
		8						
9		7						
	8	2						
	4	1						
	5	9						

Fig 17

Technique 3: Individual Column to have 1 to 9

Each individual column and row will have digit 1 to 9 so accordingly it can be filled.

For example:

Individual row line

Fig 18

Individual column line

With this background, let us now solve the following one (Example 1, Fig 20)

	1				9			5
9					6	7		4
							9	3
		5			1	3		7
	9	1	4	7	5	6	8	
7		8	3			5		
8	6							
5		9	6					
1			9				7	

Fig 20

Chapter 3

Example

Solution to Example 1

Step 1 – (Row blocks scanning involving blocks1, 4 &7)

1st row block to block scanning gives nothing because there is no clue for digit 1, 6, 7, 5 and 4. Number 9 is placed evenly in 1st, 2nd and 3rd row lines and one each in the blocks 1, 4 and 7. So there is no need to do anything.

Second row block to block scanning also does not give any clue. 61 at C99 is obtained by third row to row block scanning as 6 is existing in C27 and C48 and this tells us to place 6 in 9th horizontal row line in block 9 at C99 but not at C79 as 6 is there at 7th vertical column line at C75. For other digits, there is no clue so we leave them as they are till we get some leads.

Step 2 – (Column blocks scanning)

Now, we come to column wise block to block scanning.

1st column block to block scanning gives nothing as 1 and 9 both digits are contained in all three blocks of 1st column. Digit 5 indicates presence in block 2 & 3 but whether it will be in C₂₂ or C₂₃ of block 1 is not known. Similarly 3, 8 and 7 also have no clue.

	1				9		62	5
9					6	7		4
							9	3
		5			1	3		7
3	9	1	4	7	5	6	8	26
7		8	3			5		
8	6						5 ₃	
5		9	6				3 ₅	
1			9	54			7	61

Fig 20 (a)

2nd column block to block scanning also gives nothing. There are 9 and 6 in block no 4 and 6 but there is no clue how they are going to fit into block 5.Similarly the digits contained in block 5 also need to be placed in block 4 and block 6 but there exists no clue.

3rd column-to-column block scanning gives 62 at C₈₁ because block 8 and 9 contain 6, so 6 can only be in block 7 at C₈₁ also because of presence of 6 at C₆₂. Study of block 7 reveal that for digit 6

individual unit square C₇₁ and C₈₂ is ruled out for 6 as vertical column line 7 contains 6 at C₇₅ also unit square C₈₂ is ruled out for 6 as 6 is contained in unit square C₆₂.

Now, again 3rd column block-to-block scanning gives 53 at C₈₇ and also because of 3rd row block to block scanning gives 53 at C₈₇.

Now, many new opportunities have developed because of filling of these 3 digits.

We can go for 54 at C₅₉, obtained by 3rd row block to block horizontal scanning and 6th column line scanning (because of presence of 5 at C₆₅)

Again, 35 is obtained at C88 by 3rd column line scanning

at C95 are obtained by 5th row line scanning. With 6 new digits found many new opportunities have been opened up for finding other digits. By repetitive use of row to row, Column to column blocks scanning, scanning of individual blocks, scanning of row and lines, we can find other numbers, who can fit in to different unit squares. Let us see how it can be done.

	1				9	816	62	5
9					6	7	27	4
						115	Ø	3
		5			1	3	49	7
3	9	1	4	7	5	6	8	2 ₆
7	410	8	3			5	18	911
8	6					912	5 ₃	114
5		9	6				3 ₅	813
1			9	54			7	61

Fig 20 (b)

Now, for column line 8, 27 can happen only on C₈₂ because 26 is on C₉₅ so 2 can be either on block 7 or 9. Block 9 does not have a blank space so it can happen only on C₈₂.

By 8^{th} vertical line scanning, we get 18 at C_{86} because of presence of 1 at C_{64} and this clears way for 49 at C_{84} . Alternatively, we can say for column line no 8, 2 cannot happen in C_{84} or C_{86} because of presence of 2 in block 8. This leaves with only one possibility that 2 appears in C_{82} .

410 at C26 is obtained by 2nd row block to block scanning Study of block 8 reveals that 911 can be placed at C96 because each block should contain 1 to 9 digits. 3rd column block to block scanning gives 9₁₂ at C₇₇, which also conforms to 3rd block to block row scanning helped by presence of 9 at C₄₉ and C₃₈.

9th column line reveals that 8 cannot happen at C₉₇, as 8 do exist at C₁₇, hence 8 for this column has to happen (8₁₃) at C₉₈.

So 114 is placed at C96 to complete the 9th column line.

7th block scanning allows us to write 1₁₅ at C₇₃, this can also be obtained by 3rd vertical column block to block scanning and similarly to complete the block 7, 8₁₆ is also filled up at C₇₁.

For 6th individual row line, 617 is placed atC56, as 6 is present at C62. Similarly, 218 is also filled up to complete this row.

	1				9	8 16	62	5
9			126		6	7	2 7	4
		624				115	9	3
621	2 22	5	820	9 19	1	3	49	7
3	9	1	4	7	5	6	8	2 ₆
7	410	8	3	6 17	2 18	5	18	911
8	6					912	5 ₃	1 14
5		9	6	125		2 27	3 ₅	8 13
1			9	54	8 23	428	7	61

Fig 20 (c)

5th block scanning and presence of 9 at C₄₉ allows us to write 9₁₉ at C₅₄. 8₂₀ complete the block 5 at C₄₄.

2nd block scanning and presence of 6 atC₂₇ allows us to write 6₂₁ atC₁₄ and hence, 2₂₂ is also filled at C₂₄.

 8_{23} at C_{69} is obtained by 3^{rd} row block to block horizontal row scanning.

624 at C33 is obtained by first row block to block scanning (meaning presence of 6 at C81 and C62) and 1st column block to block scanning. (meaning presence of 6 at c14 and C27). Similarly 125 at C58 is also obtained by scanning of 6th row unit line and 6th column unit line.

126 at C42 is obtained by 2nd column to column block scanning and 1st row block to block scanning.

227 is obtained by 8th individual row line study and 2 can happen only at C₇₈ as in this line, 2 cannot go to C₂₈ and C₆₈ because of presence of 2 at C₆₆ and C₂₄.

This makes 428 filling at C79 easy as it is the only number left in block 9.

447	1	7 36	2 46	3 38	9	816	62	5
9	544	3 37	126	841	6	7	2 7	4
248	8 43	624	5 45	439	7 35	115	9	3
621	2 22	5	820	9 19	1	3	49	7
3	9	1	4	7	5	6	8	2 ₆
7	4 10	8	3	6 17	2 18	5	18	911
8	6	4 31	7 42	2 40	3 34	912	5 ₃	114
5	7 32	9	6	125	433	2 27	3 ₅	8 13
1	3 30	2 29	9	54	823	428	7	61

229 at C39 because of 9th individual row line scanning and the presence of 2 at C24 and hence 330 at C29 to complete the row line.

This makes it possible to fill-in 431 and 732 for 3rd block fillings at C37 and C28 respectively.

3rd row block-to-block scanning gives 4_{33 at} C₆₈ and 3₃₄ at C₆₇ by 6th vertical column line scanning. And by same 6th column line scanning, we get 7₃₅ at C₆₃.

This helps us in filling 736 at C31 and 337 at C32 by 3rd vertical column line scanning.

338 by 1st row block to block scanning at C₅₁. 439 by 4th block filling at C₅₃. 240 by 5th vertical line scanning at C₅₇ and 8₄₁ at C₅₂. 7₄₂ By 6th block filling at C₄₇. **8**₄₃ by 2nd vertical line filling at C₂₃ and similarly 5₄₄ at C₂₂.

This gives 545 at C43 and 246 at C41 by 4th block filling.

447 and 248 by 1st block filling at C₁₁ and C₁₃ respectively. This completes the Sudoku filling in Fig 20(d).

What we have learnt from Example 1

We have used following concepts, which will lay on the basis of problem solving techniques in this book.

- (a) Big square means 9×9square- Rule 1
- (b) Block square or block means 3×3 squares rule 1
- (c) Numbering of column and row (rule 2)
- (d) Symbols for column and row (rule 3)
- (e) Numbering of blocks rule 4
- (f) Row block to block scanning rule 5
- (g) Column block to block scanning rule 5
- (h) Row lines 1 to 9 rule 6
- (i) Column lines 1 to 9 rule 6

- (j) Location of a unit square is indicated or denoted by (Rule 3) alphabet C (or R), C stands for columns and R stands for rows, this will have two suffix digits, indicating column and row numbers. For simplification, we have used column- C alphabet in this book for simplicity only, the first number on the suffix indicates column line and second number indicates row line. So the meaning of a number or digit, say a digit 2 is at C85 means digit 2 is at column 8 and row 5. Similar concept may be developed for row (R) indications also but in this book we will go with notation C only. C94 means the digit is at column line 9 corresponding to row line 4; intersecting unit square gives the location of the digit. This can also be denoted as R49, means the digit is at row line 4 and column line 9 and the intersecting unit square gives the position of the digit. R49 and C94 are of the same value.
- (k) Digit movements- Digits with suffix numbers indicate the moves made while filling of unit squares sequentially. For an example 1 61 at C99 means it is the first move with digit 6 for filling up of the Sudoku box C99. Similarly 813 at C98 mean it the 13th move in filling Sudoku boxes at C98. So and so forth.
- (1) We start with row block to block scanning. First row block to block scanning. In this scanning blocks 1, 4 and 7 are involved. Then second row block to block scanning involving block 2, 5 and 8 and then we go for 3rd row block to block scanning involving block 3, 6 and 9. Once row block to block scanning is over
- (m)Then, we will find that many cells have been filled. After this we go for 1st column block to block scanning involving block 1, 2 and 3. Then 2nd column block to block scanning involving blocks 4, 5 and 6 then go for 3rd column bock to block scanning involving blocks 7,8 and 9. Once this is done we will find that many empty unit square have been filled giving rise many more possibilities for filling rest of the unit square.

- (n) Now go to individual blocks filling because each block should have compulsorily digits 1 to 9.
- (o) Individual row and column lines filling follow after that.
- (p) This sequence of block to block, block filling and lines filling continues till we fill all the empty cells.
- (q) Even after doing all the above it is possible that all the cells are not filled, then we go for different techniques. One of them is Circle method developed by this author, described in later in this book. Apart from this circle method, a no of logics can also be developed to fill the remaining cells. We shall see all these in the subsequent examples.

E×ample 2

				8	7	6		
8		5			4			
7							1	8
4					9		3	
		3				9		
9	6		2					7
3	4	1						5
			8	4		1		2
		9	1	7				

Fig 21

		4 5		8	7	6		
8		5	64	1 3	4			
7		62					1	8
4					9		3	
		3				9		
9	6		2					7
3	4	1						5
			8	4		1		2
	81	9	1	7				

Fig 21 (a)

Solution to Example 2

First, second and third row block to block scanning gives nothing. Similarly 1st, 2nd and 3rd column block to block scanning gives nothing

81 can happen only in C29 for block 3 scanning because of presence of 8 at C48 and C12.

62 is slotted in C33 for block1 because of presence of 6 at C71 and C26.

13 only possible in C₅₂ of block 4 because of presence of 1 at C₄₉ and C₈₃.

64 is slotted at C42 because of 1st row block to block scanning.

As Block 2&3 have digit 4 in their respective places hence by 1st column block to block scanning, 45 is slotted at C₃₁.

Now Fig 21(b)

48 at C₆₃, we got with 1st row block to block horizontal scanning. 49 at C₄₅, because of 2nd column block to block vertical scanning.

4₁₀ at C₈₆ because of second row block to block horizontal scanning. 4₁₁ at C₉₉ because of 3rd column block to block vertical scanning.

		47		8	7	6		
8		5	6 6	15	4			
7		64				4 8	1	8
4		2 12	7 23		9		3	
5 19		3	4 9		822	9		
9	6	814	2		124		410	7
3	4	11						5
616	517	7 13	8	42	3 20	1	921	2
215	8 3	9	1	7	5 18			411

Fig 21 (b)

2₁₂ at C₃₄ because of third vertical column line scanning because of presence of 2 at C₉₈ and C₄₆

713 at C38 because of third column line scanning.

8₁₄ at C₃₆ because of third vertical column line scanning. This completes 3rd column line.

215 for block 3 only possible in C19 because of the presence of 2 at C98.

616 & 517 are accordingly filled up for block 3 at C18 and C28 respectively

5_{18 at C69} because of third row Block to block horizontal scanning 5₁₉ at C₁₉ because of first column block to block vertical scanning 3₂₀ only possible in C₆₈ for row 8 and hence 9₂₁ automatically get slotted in C₈₈.

Observe fig 21 (c)

 $822\ \&723\ \&124$ because of second Column block to block scanning at $C_{65},$ C44 and C_{66} respectively.

		47		8	7	6		
8		5	6 6	15	4	241		
7		64		940	2 39	48	1	8
4	1 31	2 12	723	527	9	8 34	3	6 29
5 19	7 32	3	4 9	628	822	9	2 33	130
9	6	814	2	325	124	5 26	410	7
3	4	11	938	2 37	6 36		8 35	5
6 16	517	7 13	8	42	3 20	1	921	2
215	8 3	9	1	7	5 18			411

Fig 21 (c)

325 at C56 because block 8 cannot have 3 at column no 5 at C57 and Now 526 at C76 automatically comes for row 6 filling.

527 only possible at C54 for row 4 because of presence of 526 at C76 and 5 at C97 and 517 at C28 hence 628 automatically get slotted in C55 for 5th column line.

629 at C94 because of second row block to block horizontal scanning. 130 at C95 because of 3rd column block to block vertical scanning.

 $1_{31\ at\ C24}\ \&\ 7_{32}$ at $C_{25}\ \&\ 2_{33}$ at C_{85} because of second Row block to block horizontal scanning

834 at C74 is automatically gets slotted for Block 8

835 at C87 because of 3rd column vertical block to block scanning.

636 at C67 because of 2nd column block to block vertical scanning

237 at C54 & 938 at C47 because of Third row block to block horizontal scanning

239 at C₆₃ & 9₄₀ at C₅₃ because of 2nd column block to block vertical scanning.

241 at C₇₂ because of 3rd column block to block vertical scanning.

149	248	47	347	8	7	6	544	950
8	951	5	6 6	15	4	241	7 45	3 52
7	3 53	64	5 46	940	2 39	48	1	8
4	1 31	2 12	723	527	9	8 34	3	6 29
5 19	7 32	3	4 9	628	822	9	2 33	130
9	6	814	2	3 25	124	5 26	4 10	7
3	4	11	938	2 37	6 36	7 54	8 35	5
616	517	713	8	42	3 20	1	921	2
215	8 3	9	1	7	5 18	342	643	411

Fig 21 (d) Solved)

Now Fig 21(d)

342 at C₇₉ because of 3rd column block to block vertical column scanning.

643 at C89 because of third row block to block horizontal scanning.
544 at C81 because of 3rd column block to block vertical scanning.
745 at C82 & 546 at C43 & 147 at C11& 248 at C21 because of first block to block horizontal scanning and hence 349 at C41& 950 at C91 are automatically filled for block 4 and block 7 respectively.

951 at C22 because of first row block to block horizontal scanning hence 352 at C92.

353 at C23 for first row block to block scanning.

754 at C77 by 3rd column block to block scanning.

This completes the Sudoku.

Example 3

Hopefully, you have enjoyed solving Sudoku with two examples given above. Before, we proceed to another Sudoku puzzle, we should summarize what we have learnt from example 1 and 2.

- (a) For solving any Sudoku puzzle, we should proceed in a sequence in the sense that go for horizontal row scanning first example 1st row block to block scanning, then 2nd row block to block and then 3rd row block to block scanning. Once it is over then goes for column scanning. 1st column scanning then 2nd column scanning and then 3rd column scanning. Once that is over then, we go for line scanning. There are 18 lines, 9 row lines and 9 column lines.
- (b) Then go for individual block scanning. We have 9 blocks and their identification numbers are designated as in the rule 4.
- (c) Once these are done individually or in a combination thereof, new situation emerges where again row block to block or column block to block, row or column lines and individual block

- scanning is needed and this process continues till the puzzle is solved.
- (d) Once these techniques are exhausted and still the Sudoku is not solved then logic helps in solving the Sudoku. If the normal logics also fail to solve Sudoku then a technique developed by this author can be applied to solve Sudoku. This can be known as Gyaneshwar's circle method.
- (e) This circle method has been described in details in the subsequent chapters.

2			9			7		
		5		6				4
9	4				5			
1				5			4	
5		8				3		1
	3			7				6
			2		7		1	3
7				3		2		
3	2	4			6			7

Fig 22

2			9			7		
89		5		6		17		4
9	4				5	66		
1				5			4	
5		8				3	7 ₂	1
41	3			7				6
68	54	912	2	811	7	4 ₃	1	3
7	810	1 ₁₃		3		2	6 5	
3	2	4			6			7

Fig 22 (a)

Solution to Example 3

First, second and third row block to block scanning gives nothing.

41 at C16 is obtained by 1st column block to block scanning.

2nd column block to block scanning gives nothing

 3^{rd} column block to block scanning gives 7_2 at C85 and 4_3 at C77.

54 only possible in C₂₇ for row line no 7.

6s at C88 possible for Block 9 .This makes 6s possible at C73 and 1s at C72 by 3^{rd} column block to block scanning.

For column line no 1, 68 possible only in C_{17} . Further this gives 89 at C_{12}

Again this helps in filling with 8_{10} at C_{28} by $1^{\rm st}$ column block to block scanning.

For row line no 7, 8_{11} is possible only in C₅₇ this helps in filling 9_{12} at C₃₇.

Now for block 3, only vacant place is C_{38} so it is filled with 1_{13} .

Observe fig 22(b)

Now 1st column block to block scanning give 1₁₄ at C₂₁.

615 by 1st row block to block scanning at C31.

3₁₆ at C₃₃ for block 1filling and accordingly for block 1 the only vacant place is filled with 7₁₇.at C₂₂.

 7_{18} at C_{34} because of 1^{st} column block to block scanning. This gives 2_{19} at C_{36} for column line no 3.

 7_{20} at C₄₃ because of 2^{nd} column block to block scanning. Now 1_{21} at C₅₃ because of 1^{st} row block to block scanning.

As block 4 has 9 at C_{41} so for row line no 2, 9_{22} possible only in C_{82} . So for row line no 2, 2_{23} is filled in C_{62} and this enables 3_{24} at C_{42} .

2	1 ₁₄	6 15	9	426	825	7	327	528
89	7 ₁₇	5	324	6	223	17	922	4
9	4	316	7 ₂₀	1 ₂₁	5	66	229	830
1		7 ₁₈		5			4	
5		8				3	7 ₂	1
41	3	219		7				6
68	54	912	2	811	7	4 ₃	1	3
7	810	1 ₁₃		3		2	6 5	
3	2	4			6			7

Fig 22 (b)

For block 4, 8_{25} is filled at C_{61} and accordingly only vacant unit of block 4 is filled with 4_{26} at C_{51} .

 3_{27} by 3^{rd} column block to block scanning at C₈₁so only no left 5_{28} is filled for 1^{st} row line at C₉₁.

For 8^{th} column line 2_{29} is possible only in C₈₃ because of presence of 2 at C₂₉ and C₃₆.

This allows us to fill 830 at C93 for block 7.

Now, refer Fig 22(c)

2	1 ₁₄	6 15	9	426	825	7	327	5 28
89	7 ₁₇	5	3 24	6	223	17	922	4
9	4	3 ₁₆	7 ₂₀	1 ₂₁	5	6 ₆	229	830
1	943	7 ₁₈	647	5	3 35	848	4	2 ₃₁
5	642	8	441	234	940	3	7 ₂	1
41	3	219	846	7	1 37	944	5 45	6
68	54	912	2	811	7	4 ₃	1	3
7	810	1 ₁₃	5 38	3	439	2	65	932
3	2	4	1 36	933	6	5 49	850	7

Fig 22 (c)

 3^{rd} column block to block scanning gives 2_{31} at C_{94} and this allows us to fill 9_{32} at C_{98} for column line no 9.

 3^{rd} row block to block scanning gives 9_{33} at C_{59} and for column line 5 the vacant place at C_{55} is filled with 2_{34} .

 2^{nd} row block to block scanning gives 3_{35} at C_{64}

For block 6, 1_{36} possible only in C₄₉ this gives 1_{37} at C₆₆ by second column block to block scanning. Now for block 6 again 5_{38} possible only at C₄₈ and this give 4_{39} at C₆₈. This helps us in filling 9_{40} at C₆₅ for column line 6.

This helps us in filling 4_{41} at C_{45} and hence 6_{42} at C_{25} for row line 5. The vacant place of block 2 is filled with 9_{43} at C_{24} ,

We get 944 from 2nd row block to block scanning or by 3rd column block to block scanning at C₇₆.

 5_{45} is obtained at C_{86} for row line 6. Now only vacant unit at C_{66} for row line 6 is filled with 8_{46} . This leaves only vacant place of Block 5 to be filled with 6_{47} at C_{44}

Similarly, 8_{48} , 5_{49} and 8_{50} are filled to complete the Sudoku square

Now, we have solved three examples, so we have fair idea of what is to be done for solving Sudoku puzzles. These examples are of simple forms and we will slowly go tougher ones. But be sure, if you understood the processes above then it will not be difficult for you to attempt and solve tougher ones also. Good luck.

Chapter 4

Solved Sudoku

Solved Sudoku 1

	7			9				
		7				9		1
8	9		2		5			
			9	7	4	1		
9		1				8		7
		6	1	5				
			3		9			5
5		9				7		
			5				4	9

Fig 23

Solution: Refer fig 23 (a)

11 at C₁₁ by 1st block filling and 1₂ by 1st Row block to block horizontal scanning.

73 at C83 by 3rd row line filling.

74 at C41 by 4th column line filling.

95 at C86 by 8th column line filling.

86 at C66 by 5th block filling.

77 at C₆₉ by 6th block filling.

18 at C₆₈ by 6th vertical line.

11	3	217	7 4	9		5 13		
6 16	514	7				9		1
8	9	418	2	12	5		7 3	
		5 15	9	7	4	1		
9	411	1				8	5 12	7
		6	1	5	86		9 5	
		820	3		9		19	5
5		9			1 8	7		
	1 10	3 19	5		7 7		4	9

Fig 23 (a)

19 at C87 by 3rd column block to block scanning.

110 at C29 by 1st column block to block scanning.

411 at C25 by filling of 5th row line.

512 at C85 by 5th row line scanning.

513 at C71by 3rd column block to block scanning.

514 at C22 by 1st row block to block scanning

515 at C34 by 1st column block to block vertical scanning.

616 at C12, 217 at C31 and 418 at C33 – By 1st block filling.

319 at C39 and 820 at C37 by 3rd column line filling.

11	3	217	7 4	9	6 30	5 13	8 31	429
616	514	7				9		1
8	9	418	2	12	5		7 3	
324	827	5 15	9	7	4	1		
9	411	1				8	512	7
7 23	2 28	6	1	5	86	433	9 5	3 34
4 21	7 22	820	3	6 37	9	2 38	1 9	5
5	626	9			1 8	7		832
2 25	1 10	3 19	5	8 35	7 7	6 36	4	9

Fig 23 (b)

Now, refer fig 23(b)

421 at C 17 by 1st column block to block scanning.

722 at C 27 by 3rd row block to block scanning and 324 at C14, and 723 at C16 By 1st column block to block vertical scanning. 225 at C19 by 1st column line filling.

Empty cell of block 3 is filled with 626 at C28.

827 at C24 and 228 at C26 by 2nd column line filling.

429 at C91 by 7th block filling.

630 at C₆₁ - By 4th block filling.

831 by filling of 1st row line at C81.

832 and 433 by 3rd column block to block scanning at C98 and C76 respectively.

334 at C96 by filling 6th row line.

835 by 3rd row block to block scanning at C59 and 636 by 9th row line filling at C79.

637 at C57 by 3^{rd} row block to block scanning. This gives us 238 at C77 by 7^{th} row line filling.

Refer fig 23 (c)

11	3	217	7 4	9	6 30	5 13	8 31	429
6 16	514	7	847	4 51	3 50	9	242	1
8	9	4 18	2	12	5	340	7 3	641
3 24	827	5 15	9	7	4	1	6 43	252
9	411	1	646	3 49	248	8	5 12	7
7 23	2 28	6	1	5	86	433	9 5	3 34
421	7 22	820	3	6 37	9	238	19	5
5	6 26	9	4 45	244	18	7	3 ₃	8 32
2 25	1 10	3 19	5	8 35	7 7	6 36	4	9

339 is obtained at C 88 for block 9 filling.

340 at \mathbb{C}_{73} by 7^{th} block filling and 641 at \mathbb{C}_{93} , we get by 3^{rd} row line filling.

242 at C82 we get by filling 8th block.

Similarly,

643 at C84, we get by filling 8th column line.

244 at C58 and 445 at C48 by 6th block filling.

646 at C45 and 847 at C42 by 4th column line filling.

248 at C65 and 349 at C55 by 7th block filling.

350 at C62 and 451 at C52 by 4th block filling

252 at C94 by 8th block filling.

SOLVED SUDOKU 2

Apart from the techniques learnt above, application of logic also helps in big way in solving Sudoku problems. Here is an example.

	3	8		5	6		7
			6				9
			1	8	2		
	5		4			9	
	4	2			1	5	
				1		6	
		5	7	9			6
4				6			
6			2		9	7	

Fig 24

Ref Fig 24 (a)

28	3	8	910	46	5	6	1 5	7
		423	6					9
524	64	925	1	7 ₂₆	8	2		
1 3	5	61	4			7 15	9	
912	4	2		62	7 13	1	5	
			514	911	1		6	
	29	5	7		9			6
4					6			
6			2		47	9	7	

Fig 24 (a)

First, second and third row block to block scanning gives nothing. Similarly, 1st, 2nd and 3rd column block to block scanning also gives nothing.

Scanning of 2nd block gives 61 at C₃₄.

2nd column block to block scanning gives 62 at C₅₅.

Scanning of 2nd row block to block gives 1₃ at C₁₄.

1st column block to block scanning gives 64 at C 23.

Use of logic

Since for block 1, digit 1 can appear at either at C_{22} or C_{32} so this helps us in filling 15 at C_{81} by 1^{st} row block to block scanning.

For Row line 1, 46 is filled up at C51. This gives 47 at C69 by 2nd column block to block to scanning. We get 28 by 1st row line filling. **For block 3, places C28 and C38 is reserved for 9&7**. So, if we go for 1st column block to block scanning then we can enter 29 at C27. Further we get 9₁₀ at C41 by 1st row line filling.

We get 9_{11} at C56 by 2^{nd} column block to block scanning and this helps in getting 9_{12} at C_{15} by 2^{nd} row block to block scanning Now for row line 5 we get 7_{13} at C_{65} .

For row line 6, 5₁₄ can happen only at C46 because block 3 and 8 have 5.

For block 2, digit 7 can happen only at either C₁₆, C₂₆ or C₃₆ so this helps us in filling 7₁₅ at C₇₄ by second row block to block scanning.

Now, Fig 24 (b)

28	3	8	91	46	5	6	1 5	7
		4 ₂	6			5 3	8 ₂	9
52	64	92	1	7 2	8	2	3 ₂	42
1 3	5	6 1	4			7 1	9	
91		2		62	7 ₁	1	5	
		3 ₃	5 1	91	1	42	6	21
	29	5	7	1 1	9		4 ₂	6
4	93	7 ₃			6		21	11
6		1 3	2		47	9	7	5 2

Fig 24 (b)

We get 1₁₆ at C₅₇ for row line 7.

C28 and C38 are reserved for 9&7 so for row line 8 we get 117 at C98.

This helps in getting 218 at C 88 for row line 8.

We get 2₁₉ at C₉₆ and 4₂₀ at C₇₆ easily for row line 6.

We get 421 at C93 and 522 at C99 for column line 9 filling.

By 1st column block to block scanning we get 423 at C32.

For 3rd row line we 5₂₄ get at C₁₃.

1st row block to block scanning gives 9₂₅ at C₃₃.

We get 726 and 327 at C53 and C83 by 3rd row line filling.

We get 428 at C87 by 9th block filling.

So 829 is easily obtained at C82 by 8th column line filling.

Hence 5₃₀ at C₇₂ is also obtained easily for block no 7.

We get 9_{31} and 7_{32} at C_{28} and C_{38} by 3^{rd} row block to block scanning. For column line 3, we get 1_{33} and 3_{34} at C_{39} and C_{36} .

Now, refer Fig 24 (c)

28	3	8	91	46	5	6	1 5	7
7 ₃	1 3	42	6	2 ₅	3 ₅	5 3	8 ₂	9
5 ₂	64	92	1	7 ₂	8	2	3 ₂	42
1 ₃	5	61	4	84	24	7 ₁	9	3 ₅
91		2	34	62	71	1	5	8 5
84	7 3	3 ₃	51	91	1	42	6	21
34	29	5	7	11	9	84	42	6
4	9 ₃	7 3	84	5 4	6	34	21	11
6	8 3	1 3	2	34	47	9	7	5 2

Fig 24 (c)

For column line 2 we fill 135 at C22.

This helps in filling 7₃₆ at C₁₂ for 1ST block filling.

737 and 839 at C26 and C29 are filled up for column line 2.

 3_{40} at C₁₇ filled for block no 3 and for column line 1, we get 8_{41} at C₁₆.

We get 842 at C77 for row line 7.

Also we get at 343 C78 by 7th column line filling.

This gives 344 at C59 by 3rd row block to block scanning.

For block 6 we get 545 at C58 and 846 at C48 by filling of block.

We get 347 by 4th column line filling at C45.

Also we get 848 at C54 and 249 at C64 by block 5 filling.

Also we get 250 at C52 and 351 at C62 by block 4 filling

Also we get 352 at C94 and 853 at C95 by block 8 filling

<u>Note</u>- Sentences highlighted by green ink indicate the application of logic. This Sudoku is the example, where you can link various probable fillings based on certain logics. Many a times the application of logic increases and is interdependent and interlinked which requires stretching of memory and imagination. To simplify a method developed by this author and named "Gyaneshwar's Circle method" can be used to solve the Sudoku. The details of circle method have been explained in the subsequent chapters. This circle method has been used extensively in this book.

SOLVED SUDOKU 3 (GYANESHWAR'S CIRCLE METHOD)

		5	7			3	8	
		6		2	1	5		
7						1		2
				1		2	3	
6						9		8
	9	2		8		7		
3	6	7				8		5
		1	9	5		6		
	5				6	4		

Fig 25

Solution - Refer Fig 25(a)

			46	69				
		5	7		46	3	8	
		6		2	1	5		
7			5 7			1		2
			\bigcirc	1		2	3	
6			2 5	7 1		0		8
	9	2		8	38	7		
3	6	7	1 ₂	44	2 ₃	8	91	5
		1	9	5		6		
	5			39	6	4		

Fig 25 (a)

We get 9_1 at C_{87} because of presence of 9 in block 6 and 1_2 at C_{47} by 7^{th} row line filling.

We get 23 by 7th row line filling at C₆₇

This gives 44 at C₅₇ by 7th row line scanning.

Second row block to block scan gives 25 at C45.

Digit 9 and 6 cannot be placed at C₅₉ and C₅₅ so for column line 5 because of presence of 9 and 6 in block 6 and in row line 5 so digits 9 and 6 can only happen at C₅₁ and C₅₃. We indicate this by drawing small circles on the respective unit squares (C₅₁ and C₅₃) as indicated on fig 19(a).and write 69 on the top of Sudoku table for indication only. By drawing circle at C₅₁ and C₅₃, we reserve these cells for digit 6and 9. So wherever we circle a cell, mean that cell is reserved for a digit and we write the digit on top of the Sudoku table or to left or right of the Sudoku table as indicated.

Now coming back to block 4, we see that C₆₁ cannot have either 3, 5 or 8. These digits 3,5and 8 will occupy each either in C₄₂, C₄₃ or C₆₃. So left over digit 4₆ can only be accommodated in C₆₁.

Now second column block to block scanning reserves C₄₄ and C₄₆ for digit 4 and 6 because of presence of 4 and 6 at C₆₁ and C₆₉ respectively. We again put circles on the respective place as indicated and write 46 on top for indication.

Examination of column line 4 reveals that 57 is possible only in C43.

Examination of row line 6 reveals that 38 is possible in C66. This 38 helps in filling 39 at C59 for 5th column line filling. Again for column line 5 at C55 we fill 710.

Now fig 25(b)

Now 1	1g 25(<u>b)</u>	46	69					
		5	7	62	46	3	8	923	12
9 ₂₆	827	6	3 13	2	1	5			47
7			57 (92	814	1	622	2	
518	7 17	8 19		1	911	2	3		
6			25	7 ₁₀	5 12	9		8	
	9	2		8	38	7	5 20		
3	6	7	12	44	2 ₃	8	91	5	
		1	9	5	7 ₁₆	6		3 ₂₁	
	5		8 15	3 9	6	4			

Fig 25 (b)

For block 5, we can easily fill 911 and 512 at C64 and C65.

Unit squares C₁₁ and C₂₁ are reserved for digit 1 and 2 by 1st row block to block scanning. We put circles on them and write 12 to the left or right of the table indicate the circles as shown in the fig 25b.

Now for block 4, we can easily fill at 313 at C42 and 814 at C63...

Now for block 6, we can easily fill 815 at C49 and 716 at C68.

1st column block to block scanning gives 7₁₇ at C₂₄

4th row line scanning gives 5₁₈ at C₁₄ and 8₁₉ at C₃₄.

8th block filling gives 5₂₀ at C₈₆. 9th block filling gives 3₂₁ at C₉₈ 8th column line filling gives 6₂₂ at C₈₃.

Now c82 and C92 are reserved for 4 and 7 so we put circle and write 47 on the right side of the Sudoku square for indication. This reservation gives us 923 at C91. This presence of 923 at C91gives 624 at C51 and hence 925 at C53.

2nd row line filling gives 9₂₆ at C₁₂ and 8₂₇ at C₂₂.

Now fig 25 (c)

			4	6					
13	23	5	7	62	46	3	8	9 ₂₃	1
9 ₂₆	827	6	3 13	2	1	5 (74	44	4
7	3 37	436	57 (92	814	1	622	2	
5 18	7 17	8 19 (44	1	911	2	3	644	
6	1 38	3 39	2 5	7 ₁₀	512	9	440	8	
435	9	2	64	8	38	7	5 20	143	
3	6	7	12	44	2 3	8	91	5	
828	429	1	9	5	7 16	6	230	3 ₂₁	
231	5	932	8 15	3 9	6	4	1 45	7 46	

Fig 25 (c)

 8^{th} row line filling gives 8_{28} at C_{18} and 4_{29} at C_{28} and further 2_{30} at C_{88} .

 3^{rd} row block to block scanning gives 2_{31} at C_{19} . This helps in getting 9_{32} at C_{39} for block 3.

Now presence of 2_{31} at C_{19} gives 1_{33} at C_{11} (because it can either be 1 or 2) and hence 2_{34} at C_{21} .

Now 1st column line scanning gives 4₃₅ at C₁₆.

 1^{st} column block to block scanning gives 436 at C33.

This makes vacant place of block 1 to be filled with 3₃₇ at C₂₃.

Now block 2 is filled with 1₃₈ at C₂₅ and with 3₃₉ at C₃₅ and this helps in filling at C₈₅ with 4₄₀ for 5th row line filling.

435 at C₁₆ help in filling 641 at C₄₆ and hence 442 is filled at C₄₄.

Now block8 is filled with 143 at C96 and with 644 at C94.

3rd column block to block scanning gives 145 at c89 and 746 at C99.

This helps in filling 747 at C82 with and 448 at C92.

Circle method helps in memorizing various probable blank positions which helps in future moves. The number of blank cells may increase and it sometime becomes unmanageable and difficult to remember them. So if we use circles along with numbers then it becomes very easy to identify and make the next move. This definitely makes Sudoku a game of fun.

SOLVED SUDOKU 4

1		5					8	7
	4		5			1		3
				1				5
		3	6			7	1	
7	1		3		9		5	6
	6				1	3		
2				4				
4	3	1			8		7	
6	5					9		

Fia 26

Solution-

56

1		5					8	7
	4		5			1		3
3				1				5
		3	6			7	1	
7	1		3		9	8 5	5	6
	6				1	3		
2				4			3 ₃	
4	3	1	91		8		7	2 ₂
6	5					9	44	

Fig 26 (a)

By logic, for row line 8, digit 5&6 can happen only on C_{58} and C_{78} because of presence of 5&6 at C_{42} and C_{44} also at C_{93} and C_{95} so we mark them with circles and write 56 outside for indication. Also circle is drawn for C_{67} because for block 6 digit 5 and 6 can happen only on C_{58} and C_{67} .

Further 9₁ is filled at C₄₈ for row line 8. This gives 2₂ at C₉₈ for 8th row line.

Now in block 6, the position of digit 3 will be either on C_{59} or C_{69} . This position of 3 at block 6 and by 3^{rd} column block to block scanning we get 3_3 at C_{87} .

56

This move gives rise to a new possibility and that is for row line 7 digit 5 and 6 can only happen at C₆₇ and C₇₇, we designate them by circle and write 56 outside.

Now in block 9, places C₉₇ and C₉₉ are reserved for digit 1 and 8 by 3rd column block to block scanning. So we draw circle for them also and write 18. This allows us to write 44 at C₈₉. This also helps us to write 85 at C₇₅ by 3rd column block to block scanning.

			26				24		69	
	1	910	5					8	7	
	811	4		5			1		3	
	3	712			1				5	
		29	3	6			7	1		
	7	1	46	3	27	9	8 5	5	6	
		6	814			1	3	28		
	2 (813			4			3 ₃		56
	4	3	1	91		8		7	22	
56	6	5					9	44		
		78			Fig 26	(b)			18	

Now fig 26 (b)

5th row line scanning gives 46 at C₃₅, Hence 27 is filled at C₅₄ for 5th row line.

By scanning of Block 8, we get 28 at C86.

For block 7 again we reserve places for 24 and 69 by drawing circles at C₇₁ &C₇₃ and C₈₂&C₈₃ respectively.

By second row block to block scanning we get 29 at C24.

For 2nd column line, digit 8and 7 cannot happen at C₂₁, it can only happen at C₂₃and C₂₇ so they are also circled and written 78.

This allows us to enter digit 910 at C21 for column line 2.

Again for block 1, 2 &6 can only happen at C₃₂ and C₃₃ so we circle them and write 26 on top.

This allows us to write 8₁₁ at C₁₂ because of presence of 7 at C₁₅. Again this helps us to enter digit 7₁₂ at circled place C₂₃.

This also facilitates in writing 813 at circled place C27.

For 3rd column line we can write 8₁₄ at C₃₆.

Refer fig 26 (c)

This gives 8_{15} at C_{54} by 2^{nd} row block to block scanning and 8_{16} at C_{43} by 2^{nd} column block to block scanning.

Now we can write 8_{17} at C_{99} for row line 9. And this will give us 1_{18} at C_{97} .

This gives 1₁₉ at C₄₉ by 3rd row block to block scanning. For 7th row line we can fill 9₂₀ at C₃₇ and also 7₂₁ at C₄₇.

By block 3 filling, we can write 722 at C39.

For 9th row line we can write2₂₃ at C₆₉. And this allows us to fill3₂₄ at C₅₉.

 2^{nd} column block to block scanning gives 2_{25} at C_{41} and 3_{26} at C_{61} .

225 at C41 give 427 at circled C71 and this gives 228 at C73.

Now, refer fig 26 (d)

228 at C73 give 629 at circled C33 and this gives 230 at C32.
629 at circled C33 give 931 at C83 and this helps in getting 632 at C82.

For row line 3, we can write 4₃₃ at C₆₃.

Similarly for row line 1, we can write 634 at C51.

2nd column block to block scanning gives 9₃₅ at C₅₂.

This helps in filling 7₃₆ at C₆₂ for block 4.

634 at C51 helps in filling 537 at C58 and hence 638 at C78.

This again helps in filling 539 at C77and 640 at C67 for row line 7

26					24			69	
1	910	5	2 ₂₅	6 34	326	42	8	7	
811	4 (23	5	935	7 36	1 (63	3	
3 (71	62	8 16	1	433	22	93	5	
946	29	3	6	8 15	5 43	7	1	444	
7	1	46	3	27	9	8 5	5	6	
547	6	814	442	7 ₄₁	1	3	28	945	
2 (813	920	7 ₂₁	4 (64	53	3 ₃ (11	56
4	3	1	91	53	8	638	7	2 ₂	56
6	5	7 ₂₂	1 19	3 24	2 ₂₃	9	44	81	
78 Fig 20					(d)			18	

 2^{nd} column block to block scanning give 7_{41} at C_{56} , 4_{42} at C_{46} and 5_{43} at C_{64} .

Scanning of block 8 gives 444 at C94 and 945 at C96

Similarly, scanning of block 2 give 946 at C14 and 547 at C16.

SOLVED SUDOKU 5

			9		7	8		6
		8					7	
6	7	1	5	2	8			3
		2		3	9			
				5				
			8	7		4		
2				9	5	3		
	6					1		
5		7			4			

Fig 27

Solution- Ref Fig 27a

By 3^{rd} row line filling we get 4_1 at C_{83} and 9_2 at C_{73} .

Now 4 and 7 can happen only in C₉₈ and C₉₇ by 9th block filling because of presence of 7, 4 in C₈₂ and C₈₃, also at C₃₉ and C₆₉. So we circle them. This gives 5₃ at C₈₈ by 3rd row block to block scanning.

74 at C_{48} is obtained by 8^{th} row line filling because of presence of 4 in 6^{th} block.

This helps in filling 75 at C97 and 46 at C98 in the 9th block.

27 is filled at C₆₈ by 8^{th} row line filing

28 Is filled at C45 by 2nd column block to block scanning.

This helps with 39 at C49 for 6th block filling or 4th column line filling and 4₁₀ for 5th block filling at C₄₄ and hence 3₁₁ is obtained at C₆₂ by 2nd column block to block scanning.

Now for row line 8, 3 and 9 can only happen in C₁₈ and C₃₈ because of 3 and 9 at C₅₇ and C₇₇ respectively and 9 has to happen for row line 8 so we circle them and write 39 at right as shown.

This helps us in getting 8₁₂ at C₅₈ for row line 8. For third column line, 6 and 9 can only happen in C₃₅ and C₃₆ because of presence of 9 at C₅₇ and C₄₁ and also of 6 at C₁₃ and C₂₈. Hence we circle them and write 69 on top of the table.

Now fig 27b

This helps in getting 513 at C31 by third vertical column line scanning.

This automatically fills up 3₁₄ at C₃₈ for 3rd column line filling and 9₁₅ at C₁₈.

We get 4_{16} by 3^{rd} column line filling at C_{37} .

We get 917 by 1st block scanning at C22.

We get 2₁₈ at C₂₁, 3₁₉ at C₁₁ and 4₂₀ at C₁₂ by first block filling.

Now we get 4₂₁ at C₅₁by 1st row block to block scanning and 4₂₂ at C₂₅ by first column block to block scanning.

123 Is filled at C₈₁ for 1st row line.

69

78

Accordingly 3_{24} and 5_{25} are filled for 2^{nd} column line at C_{26} and C_{24} respectively.

70		09						
3 19	2 ₁₈	5 13	9	421	7	8	1 ₂₃	6
420	917	8			311		7	
6	7	1	5	2	8	92	41	3
	5 25	2	410	3	9			
	422		28	5				
1 ₂₈	324		8	7		4	2 27	5 ₂₆
2		416		9	5	3		75
915	6	314	7 ₄	812	27	1	5 3	46
5		7	3 9		4			

Fig 27 (b)

47

39

This gives 5_{26} at C_{96} by 2^{nd} row block scanning.

Then we get 227 at C86 by 6th row line scanning.

In block 2, 7 and 8 can only happen in C₁₄ and C₁₅ because of presence of 7 and 8 at C₄₆ and C₅₆. So we circle them and write 78 on top as shown.

This gives 128 at C16.

Now refer fig 27c

Also, we get 9_{29} and 6_{30} for 6^{th} horizontal row line scanning at C_{36} and C_{66} respectively.

Then we get 6_{31} at 0_{35} , and then we get 1_{32} at 0_{65} by sixth column line scanning.

We get 5_{33} at C_{72} by 3^{rd} column block to block scanning, 2_{34} at C_{92} by 7^{th} block filling.

We get 1_{35} at C_{94} and 2_{36} at C_{79} by 3^{rd} column block to block scanning and hence 6_{37} at C_{74} and 7_{38} at C_{75} is obtained for 7^{th} column line filling.

. 78		69						
3 19	2 ₁₈	5 13	9	421	7	8	1 ₂₃	6
420	917	8	6 ₅₁	1 50	311	533	7	234
6	7	1	5	2	8	92	41	3
74	5 25	2	4 ₁₀	3	9	6 ₃₇	8 ₄₁	1 ₃₅
839	422	63	28	5	1 ₃₂	7 ₃₈	342	943
1 ₂₈	324	92	8	7	6 ₃₀	4	2 ₂₇	5 ₂₆
2	847	416	1 ₅₂	9	5	3	6 45	75
915	6	314	7 ₄	812	27	1	5 3	46
5	148	7	3 9	649	4	236	944	846

Fig 27 (c)

47

93

 7_{38} at C₇₅ helps in getting 8_{39} at C₁₅ and hence 7_{40} at C₁₄.

This helps in filling 8_{41} at C_{84} and 3_{42} at C_{85} and 9_{43} at C_{95} by 8^{th} block filling.

This helps in filling 9th block by 944, 645, and 846 at C89, C87 and C99 respectively. Further it helps in filling 847 at C27, 148 at C29, 649 at C59 for block 8 and 150 at C52 and 651 at C42. This also helps in filling 152 at C46 for 4th column line filling.

SOLVED SUDOKU 6

7	3		6		5	4		
4			9				6	
5	6							
9				5		2		
	2		8		3		9	
		5		9				1
			5				8	4
	5	4			9		2	7
		6	7		4		5	3

Fig 28

Solution (Fig 28 a)

Here, we have a condition that in both blocks 2 and 8, we see that C₈₄ & C₈₆ and C₂₄ & C₂₆ - all have possibilities of accommodating digit 4 by 1st and 3rd column block to block scanning. If this is true then by logic digit 4 will lie on the center line in block 5 at C₅₅ only so we get 4₁ at C₅₅.

3₃

Fig 28 (a)

This gives 4_2 at C_{43} by 2^{nd} column block to block scanning.

For column line 4 we get 3_3 at C_{48} and 2_4 at C_{46} and 1_5 at C_{44} . For column line 5, places of C_{52} and C_{53} are reserved for 3 &7. We circle them and write 37 on top because of 3&7 cannot happen in C_{57} , C_{58} and C_{59} , C_{57} . In block5, digit 7 will occupy either C_{64} or C_{66} so for row line 2, digit 7 cannot appear at C_{62} so for row line 2, digit 3 and 7 can only appear at C_{72} and C_{52} . We circle them and write 37 on the side.

This gives 5_6 at C_{92} for 2^{nd} row line filling.

57 at C75.by 3rd column block to block scanning.

Now fig 28b

For column line 6 digits 1,2 and 8 can only happen at C₆₂, C₆₃ and C₆₅ because of presence of 1& 2 at C₄₄ and C₄₆, so places C₆₄ and C₆₆ are reserved for digit 6 and 7 and circle them.

				37	67				
7	3		6		5	4			
4	1 ₁₄		9				6	5 ₆	37
5	6		42						
9			1 ₅	5		2			
19	2	7 8	8	41	3	57	9	6 ₁₀	
		5	24	9				1	
316	711	1 ₁₃	5				8	4	
8 ₁₈	5	4	3 ₃		9		2	7	
217	912	6	7		4		5	3	
				Fig 28	(b)	169			-

 7_8 at C₃₅, 1_9 at C₁₅ and 6_{10} at C₉₅ by 5^{th} row filling

 7_{11} at C27 by 1^{st} column block to block scanning and 9_{12} at C29 by 2^{nd} column line filling. .

This allows 1₁₃ at C₃₇ for block 3 and 1₁₄ at C₂₂ by 1st column block to block scanning.

Now refer fig 28 (c)

We get 3_{15} at C_{34} because at block 1 the places C_{31} , C_{32} and C_{33} are occupied by 289. The vacant places of block 9 will occupy 169. We circle them.

 3^{rd} row block to block scanning gives 3_{16} at C_{17} .

Similarly 2₁₇ at C₁₉ and 8₁₈ at C₁₈ is filled for block 3.

The presence of 96 in row line 9 allows us to fill 1 19 at Circled C79.

				37	67				
7	3		6	2 ₂₅	5	4	1 ₂₈	931	
4	1 14	229	9		827		6	56	37
5	6		42		1 ₂₆			2 ₃₀	
9		3 ₁₅	1 ₅	5		2		832	
19	2	7 8	8	41	3	57	9	6 ₁₀	
		5	24	9				1	
3 ₁₆	711	1 ₁₃	5	622	223	9_2	8	4	
8 ₁₈	5	4	3 ₃	1 ₂₁	9	62	2	7	
217	912	6	7	820	4	11	5	3	

Fig 28 (c)

169

820 at C59 and 121 at C58 are obtained by 9th column line filling.

 6_{22} at C_{57} and 2_{23} at C_{67} are obtained for 6^{th} block filling (helped by presence of 6 in column line 4 at C_{41}).

We get 9_{23} at C_{77} and 6_{24} at C_{78} by row line 7 and row line 8 filling

 2_{25} at C_{51} by 2^{nd} column block to block scanning

We get 1_{26} at C_{63} and 8_{27} at C_{62} by 4^{th} block filling.

 1^{st} row block to block scanning give 1_{28} at C_{81} .

 2^{nd} row line filling gives 2^{29} at C_{32} .

1st row block to block scanning give 2₃₀ at C₉₃

 9^{th} column line scanning gives 9_{31} at C_{61} and 8_{32} at C_{94} .

 3^{rd} column block to block scanning gives 8_{33} at C_{73} .

Now fig 28d

				37	67				
7	3	8 ₃₄	6	2 ₂₅	5	4	1 ₂₈	931	
4	1 ₁₄	229	9	34	827	$\overline{\left(7_4\right)}$	6	5 ₆	37
5	6	935	42	74	1 ₂₆	833	344	230	
9	440	3 ₁₅	15	5	63	2	7 ₃₉	832	
19	2	7 ₈	8	41	3	5 ₇	9	6 ₁₀	
6 ₃₆	849	5	24	9	$\overline{\left(7_{3}\right)}$	3 ₄₅	446	1	
3 ₁₆	711	1 ₁₃	5	622	223	9_2	8	4	
8 ₁₈	5	4	3 ₃	1 ₂₁	9	62	2	7	
217	9 ₁₂	6	7	820	4	11	5	3	

Fig 28 (d)

169

Sudoku Made Easy / 78

 1^{st} row block to block scanning gives 8_{34} at $C_{31}.and\,9_{35}$ at C_{33} by 1^{st} block filling.

We get 6_{36} at C_{16} by 2^{nd} block filling; this gives 7_{37} at C_{66} and 6_{38} at C_{64} of 6^{th} column line.

This gives us 7_{39} at C_{84} and 4_{40} at C_{24} by 4^{th} row line scanning.

This allows us to have 7_{41} at C_{72} for 7^{th} block filling and this helps in filling 3_{42} at C_{52} and 7_{43} at C_{53} for 5^{th} column line.

This helps infilling 3_{44} at C_{83} for 7^{th} block filling.

Now we fill 3_{45} at C_{76} , 4_{46} at C_{86} and 8_{49} at C_{26} for 6^{th} row line filling.

SUDOKU 7

			2				7	8
		7			3	2	1	
	2		7			6	4	
	1		9	2		7		
						8		
		2		4	8		5	
	6	4			2		8	
	8	1	5		4	9		
2					6	4		

Fig 29

Solution- Refer fig 29a

 2^{nd} column block to block scanning gives 4_1 at $C_{42}.$ This helps in getting 8_2 at C_{49} for 4^{th} column line filling.

 6^{th} column line filling gives 7_3 at C_{65} . Now C_{61} and C_{63} are circled for 19.

1, 3 & 6 cannot happen at C₆₄ for block 5. Now, we circle C₄₁, C₄₂ and C₄₃ for 5, 8 & 6 and write 568 as shown.

This gives 5_4 at C_{64} for block 7 by 6^{th} column line filling.

For block 9, place C₈₈ and C₉₈ is reserved for 6&2 so we circle them and write 62 as shown. That means the remaining place is occupied by 1, 5, 3&7. That also we circle and write 1537 as shown.

Now fig 29b

With these arrangements, for column line 8, 157 cannot be accommodated at C_{89} so it is filled with 3_5

By 8^{th} column line filling we get 9_6 at C_{85} and this gives 2_7 at circled C_{88} and 6_8 at C_{84} , This also allows us to write 6_9 at C_{98} 2^{nd} row block to block scanning gives 2_{10} at C_{95} .

Now fig 29C

For 8th block filling we get 4₁₁ at C₉₄ this allows us to circle C₇₆ and 96 for digit 1&3 and hence we circle them. This also allows us to reserve C₁₆ and C₂₆ for digits 9&7. We again circle them and write 97 on the right as shown.

This gives 6_{12} at C_{46} by logic for row line 6.

Now fig 29(d)

For row 2, digits 6 & 8 possible only on C₁₂ and C₅₂ because of the presence of 6 and 8 in block 7 and presence of 6&8 on column line 2

so we circle them and connect with an arch as shown and write 68. That means c22 and C92 are reserved for 5&9, we circle them also.

Now C₁₈ and C₅₈ are also reserved for 3&7 for row line 8. We circle them also.C₁₄ and C₃₄ are also reserved for 3&8, we again circle them and write 38 on right side of the Table as shown.

Now for column line 2, we can write 3_{13} at C_{21} . This gives 3_{14} at C_{93} by 1^{st} row bock to block scanning.

Now fig 29d

This give $9_{15}\,\text{at}\,\,\text{C}_{92}\,\text{as}\,\,5\&7$ not possible at C92 and also $5_{16}\,\,\text{at}\,\,\text{C}_{71}\text{for}$ block 7 filling

This helps in getting 5_{17 at} C₂₂ for row line 2 filling.

This gives 318 at C76 and 119 at C96 for block 8 filling. 3rd column block to block scanning gives 120 at C77. We get 121 at C77 by 3rd block to block scanning.

3rd row block to block scanning gives 1₂₁ at C₅₉.

This gives 122 at C45 for block 5 filling and hence we get 323 at C55. This gives 324 at C47 and 925 at C57 for block 6 filling. This also gives 7₂₆ at C₅₈ for block 6 filling.

Now fig 29e

Now for row line 8, we get 3_{27} at C_{18} . By 3^{rd} row line filling we get 5_{28} at C_{53} .

By 1^{st} row line filling we get 4_{29} at C_{11} , 1_{30} at C_{61} , 6_{31} at C_{51} and 9_{32} at C_{31} .

Accordingly, we get 833 at C52 and 934 at C63.

By 1^{st} block filling we get 6_{35} at C 12, 1_{36} at C13 and 8_{37} at C33.

For third column line filling we get 3_{38} at C $_{34}$, 6_{39} at C $_{35}$ and 5_{40} at C $_{39}$.

This helps in filling 841 at C14 and 742 at C99.

The vacancy at block 9 is filled with 543 at C97.

This gives 7_{44} at c_{17} for 7^{th} row line filling.

This gives 9_{45} at c_{29} by 3^{rd} block filling. For block 2, we fill 9_{46} at C_{16} , 7_{47} at C_{26} , 4_{48} at C_{25} and 5_{49} at C_{15} .

SUDOKU 8 (Self Practice)

				1	5	7		4
5			4			2	3	1
1	8							
			7			4		
		1	5		4	6		
		6			1	3		
			1				6	7
6	1	8			7			3
7		3	6	5				

Fig 30

Solved Sudoku 8

59

37	66	28	917	1	5	7	82	4	
5	99	7 ₅	4	818	6_1	2	3	1	68
1	8	43	3 13	7 ₄	214	9_4	$\left(5_4\right)$	61	59
836	3 ₃₁	$\left(5_{2}\right)$	7	620		4	1 ₃₀	235	
940	234	1	5	326	4	6	7 ₃₈	839	
441	7 ₃₇	6	8 15	227	1	3	952	5 ₅₁	
233	532	9_2	1	423	324	811	6	7	
6	1	8	216	922	7	54	443	3	459
7	421	3	6	5	812	1 ₁₀ (242	944	249

Fig 30 (a)

Hints -

4₂₁ is obtained from 9th row line filling. At C₂₉, 9 not possible because of presence of 9 at C₂₂. Here 2 is also not possible because of presence of 2 at C₄₈, This makes no place for 2 in the 9th block 7th row. So 2&9 has to be in 9th row and that to in 9th block. So 4₂₁ is placed at C₂₉.

Now again 2&9 are in the 9th block and in 9th row so 9₂₂ is placed at C58 as for 8th row only 922 at c58 only satisfy the criteria of that all digit 1 to 9 should appear in a row or column.

SUDOKU 9

7			3		2			
			8	4				
9		6	7			8		
	1		2	3	8			7
2			9		1			3
5			6	7		2	8	
		5		2	7	3		8
			5	8				
			1		3			2

Fig 31

7	419	821	3	9 ₃₁	2	648	1 47	5 ₃₄	
311	522	1 ₂₀	8	4	632	7 ₆	21	933	
9	2 ₁₅	6	7	1 ₁₇	5 ₅	8	31	4 ₁₈	
67	1	48	2	3	8	941	542	7	59
2	823	72	9	5 ₃	1	44	64	3	87,46
5	926	32	6	7	42	2	8	14	93
1 ₁₂	636	5	41	2	7	3	940	8	
410	3 ₂₅	216	5	8	9 ₂₉	1 ₃₉	7 ₃₉	635	
89	7 ₃₇	9 ₂₈	1	6 ₃₀	3	5 ₄₃	444	2	

Fig 31 (a)

We get 4_1 at C_{47} by 4^{th} column line filling.

This facilitates 4_2 at C_{66} by 2^{nd} column block to block scanning and hence 5_3 at c_{55} by block 5 filling.

We get 14 at C96 by 2nd row block to block scanning.

9, 6 and 1 cannot happen in C₆₃ hence only 5₅ can go there for 6th column line scanning because of presence of 9, 6 and 1 at C₁₃, C₃₃ and C₆₅.

Examining block 7, we find that 2&3 can happen only in C₈₂ and C₈₃ because of 2&3 at C₄₁, C₆₁ and C₆₆ and C₆₇ so we circle 2& 3 at C₈₂ and C₈₃.

This gives 76 at C72 for block 7 filling.

5 and 9 cannot happen in C₇₅ and C₈₅ hence it can only happen in C₇₄ and C₈₄ hence we circle both. Also we circle C₇₅ and C₈₅ for 4 and 6.

This gives 6_7 at C_{14} and 4_8 at C_{34} by 4^{th} row line scanning. We get 8_9 at C_{19} by 1^{st} column line scanning hence 4_{10} at C_{18} , 3_{11} at C_{12} and 1_{12} at C_{17} .

This gives 3_{13} at C_{83} and 2_{14} at C_{82} , 2_{15} to C_{23} by 1^{st} block to block scanning and 2_{16} to C_{38} by 1^{st} column block to block scanning.

Now we get 1_{17} and 4_{18} at C_{53} and at C_{93} respectively by third row line scanning. This enables 4_{19} , 1_{20} , 8_{21} and 5_{22} by first block filling.

Hence we get 8_{23} , 7_{24} at C_{25} and at C_{35} by 1^{st} column block to block scanning. We get 3_{25} by 3^{rd} row block to block scanning at C_{28} .

Also, we get 9_{26} and 3_{27} by first column block to block scanning at C_{26} and C_{36} .

This gives 9_{28} at C_{39} by 3^{rd} column line scanning and 9_{29} at C_{68} by 6^{th} block filling,

Further, we get 6₃₀ at C₅₉ by 6th block filling.

This gives 9_{31} and 6_{32} by 4^{th} block filling,

This helps us in getting 9_{33} , 5_{34} and 6_{35} at C_{92} , C_{91} and C_{98} respectively by 9^{th} column line filling.

Then, we 6_{36} and 7_{37} by 3^{rd} block filling.

This helps in filling 7_{38} , 1_{39} and 9_{40} by 9^{th} block filling.

This way we can fill 9_{41} at C_{74} only hence we get 5_{42} at C_{84} .

This enables us to fill 5_{43} and 4_{44} for 9^{th} block filling.

So we get 445 and 646 at C75 and C85 by 3rd column block to block scanning.

Now, we get 1_{47} and 6_{48} by 7^{th} block filling. And that completes Sudoku.

SUDOKU 10 – Solved

			3	86		1		6	
8		1		7			3		
			2	1	5		7		
6	9		8 10		3 9				
	84	2		97		3			
					28		8	9	
25	4	611	5	31	8				179
5 ₁₂	7	83		6		2	414	3	
3	1_1	9	4 ₁₅	2 ₂	7				568
15	1	5		Fig 32					

31 at C57 by 3^{rd} block to block m scanning and 22 at C59 by 6^{th} block filling.

83 by 3rd block filling at C₃₈ or 3rd column line filling with presence of 8 in block 1 and at C₁₅ or C₂₅ and at C₆₇.

84 at C25 by 1st block to block vertical column scanning.

25 at C₁₇ by 3rd block filling or 2 not possible in C₃₇, C₇₇, C₈₇ and C₉₇.

86 at C₅₁ by 6th block filling

97 by 5^{th} vertical line filling at C55. 28 at C66 by 6^{th} row line filling. 39 by 5^{th} block filling at C64. 810 by 5^{th} block filling at C45, 1 & 5 not possible in C_{37} because of the presence of 1 at C_{32} and 5 at C_{47} so. 611 by 3rd block filling at C37 Now 1&5 are earmarked at C_{18} and C_{29} and they are circled. This make C_{77} , C_{87} circled for 1, 7 &9..

Row 8, block 6 contains 5 so 512 at C18. This gives 113 at C29.

1,7,9,5,6 and 8 not possible in block 6 for row 8 by 8th row scanning, this gives 5,6 and 8 in the row 9 of block 9 and hence circled and this gives at 414 at C88 and hence 415 at C49 by 3rd block horizontal scanning.

	25		25								
			3	86		1		6			
8		1		7			3				
	6 ₁	3 1	2	1	5		7				
6	9		8 1		3 9		$\left(1_{2}\right)$	2_2	12		
	84	2		97		3					
	3 1				28		8	9			
2 5	4	6 1	5	31	8	$\overline{7_2}$	9_1	(1_2)	179		
5_1	7	83		6		2	4 ₁	3			
3	$\left(1\right)$	9	4 ₁	22	7				568		
15	1	5		Fig 32	(a)						

Now fig 32(a)

C21 and C23 is circled for 2&5.

Now since 6 is contained in block 3 row 7 and also by 1^{st} vertical column block scanning we get 616 at C23.

This gives 317 by 1st column block scanning and also 318 by 1st vertical column block scanning.

2, 5 will occupy C_{21} and C_{22} from 2^{nd} vertical column scanning. This gives 2 or 5 to occupy at C_{81} by first row line scanning. If that is the case then in blocks 7, 9 will occupy either at C_{72} or at C_{73} . If that is the case then 9_{19} will occupy C_{87} by 3^{rd} column block to block scanning.

This gives 721 and 120 at C77 and C97 respectively.

For row 4 line 1, 2 is possible only in C_{84} and C_{94} hence circle. This gives 1_{22} and 2_{23} at C_{84} and C_{94}

Now Fig 32(b)

By third vertical block scanning, we get 224 at C81 this gives 525 and 226 at C21 and C22 respectively. From 4th row line scanning we get 727 at C34, this gives 728 at C11.by 1st column block to block scanning.

From 1st row scanning, we get 929 and 430 at C34 and C34 respectively.

	25				25						
7 28	5_2	430	3	86	929	1	2_2	6			
8	2_2	1	6 52	7	453	948	3	5 49			
930	616	317	2	1	5	845	7	444			
6	9	7 27	810	5 32	3 9	4 40	$\left(1_{2}\right)$	2_2	12		
439	84	2	150	97	6 51	3	542	7 ₄₁			
138	3 18	5 31	7 34	433	28	6 37	8	9			
2 5	4	611	5	31	8	$\overline{7_2}$	9_1	1_2	179		
5_1	7	8 ₃	935	6	1 36	2	4 ₁₄	3			
3	1_1	9	415	2 ₂	7	$\left(5_4\right)$	6_4	8_4	568		
15	1	5		Fig 32	(b)						

930 at C34 is obtained by 1^{st} block completion. If it is 1, 4 at C15 and C16 then by 1^{st} vertical column line scanning the we get 531 at C36. This gives 532 at C54 by 5^{th} column line scanning and hence 433 at C56.

By 6^{th} row line scanning, we get 734 at C46. 935 possible in C48 and hence 136 at C68 by 6^{th} block filling.

We get 637 by 6^{th} row line scanning at C76 and 138 at C16. Now with 2^{nd} block filling 439 is obtained at C15.

This gives 440 at C74. Now by 8^{th} block filling we get 7_{41} and 5_{42} at C95 and C85 respectively.

3rd vertical block scanning gives 643 at C89. 3rd row line scanning gives 444 at C93 and 845 at C73. This helps in filling 846 at C99 and 547 at C79 in block 9. 948 and 549 are obtained by 7th block filling. 150 and 651 are obtained by 5th block filling. 652 and 453 are obtained by 4th block filling.

SUDOKU 11 - Solved

31 by 2nd row block scanning and 32 by 1st vertical column block scanning at C26 and C33 respectively.

33 by 3rd and row block scanning at C47. 84 by 2nd column block scanning at C49.

5 **3**₃ **5**₁₃ Fig 33

 2_5 at C_{32} by 1^{st} column block scanning. 7_6 by 3^{rd} column line filling at C_{35} and this gives 7_{7at} C_{12} . We get 4_8 at C_{11} by 1^{st} block filling. This gives 4_9 at C_{52} by 1^{st} row block scanning.

 3_{10} by 1^{st} row block scanning at C91. 5_{11} at C61 and 2_{12} at C41 by 1^{st} row line scanning.

Now with this C_{22} and C_{23} are occupied by 56 hence it is circled. Now for block 3, 5_{13} can happen only in C_{36} because of presence of 5 in C_{48} , C_{89} and in column 2. C_{76} , C_{86} and C_{96} will house 278 for row line 6, so they are circled. This makes 16 to slot in C_{16} and C_{46} and hence they are circled.

	56								_	
48	1	9	2 ₁₂	8	511	7	6	310		
7 ₇		25		49	3		8	1		
8		32		1 ₂₄	7 ₂₅			4		
	919	818	7	3	226	6	4)	
	2	7 ₆	4		8	1 ₁₄	3			
	31	4		5	9		$\overline{7_2}$		278	
2	817	5 ₁₃	3 ₃				1 ₂₃	6		
3	7	1 16	5							
915	4	6	84	2	120	3	5	7 ₂₁		
Fig 33 (a)										
▼ 16										

Now with this arrangement and with presence of 1 at C92, 1₁₄ can happen only in C75 for block 8. For row block 6, C94 and C95will house 5&9 hence circled. For block 3, 9₁₅ can happen only in C19. This gives 1₁₆ and 8₁₇ at C38 and C27 for block 3. This gives 8₁₈ at C34 for vertical line 3 scanning. Thus 9₁₉ is obtained at C24 for block 2 and presence of 1 at C92 gives 1₂₀ at C69 by 9th row line scanning and 7₂₁ at C99 for row line 9. This gives 7₂₂ at C86 by 3rd vertical block scanning. This gives 1₂₃ at C87 by filling of block 9. 1₂₄ is obtained at C53 by 5th vertical line scanning. 7₂₅ are obtained at C63 by 1st row block to block scanning. 2₂₆ is gotten at C64 by 6th vertical line scanning. This gives 1₂₇ and 6₂₉ for 2nd row block scanning at C46 and C55 respectively. This also gives 6₂₈ at C16 for 6th row line scanning. Presence of 9₁₉ at C₂₄ gives 5_{30 and} 9₃₁ at C94 and C95 for column line 9 scanning. This helps in filling.

 1_{32} and 5_{33} at C_{14} and C_{15} for 2^{nd} block scanning. 6_{34} is obtained by 6^{th} block filling at C_{68} . Now 4_{35} is obtained by 6^{th} vertical line scanning at C_{67} . 4_{36} is obtained by 3^{rd} row block to block scanning at C_{78} and 3^{rd} row block to block filling at C_{57} and C_{58} gives C_{37} and C_{38} respectively. C_{39} by C_{40} is obtained by C_{41} at C_{42} at C_{43} block scanning at C_{41} at C_{41} at C_{42}

by 8^{th} vertical line scanning and 842 at C_{98} by 9^{th} block filling. This gives 243 and 844 at C_{96} and C_{76} respectively for row line 6 filling. Now it is easy to fill 245,546,546,647 and 548

SUDOKU 12 - Solved

Fig 34

21 and 12 by third vertical block scanning.

 6_{3} and 9_{4} by 3^{rd} column block to block scanning. This gives 9&6 at C_{84} and C_{85} so they are circled. So for 8^{th} vertical line scanning, we place at 3_{5} at C_{88} and 8_{6} at C_{89} . 5_{7} is placed at C_{74} by 7^{th} column block scanning because of presence of 5 at 7^{th} block and at C_{66}

 7_8 is obtained at C73 by 7^{th} vertical line scanning. 1^{st} row block to block scanning gives 6&9 at C51 and C61 hence circled. This gives 7_9 at C52 by 4^{th} block filling.

Now examination of block 4 gives 4, 1 at C_{53} and C_{63} hence circled. This gives 2_{10} at C_{43} by 4^{th} block scanning.

Now refer fig 28a.

This gives 1_{11} at C_{22} by 1^{st} row block to block scanning. Now 7 and 9 not possible in C_{47} hence 7 and 9 possible in C_{48} and C_{49} and is circled. This gives 6_{12} at C_{47} . Now, we get 1_{13} at C_{14} by 1^{st} vertical block to block scanning. This gives 2_{14} by 1^{st} block filling. 4_{15} is obtained by 2^{nd} row line scanning at C_{72} .

Now in vertical line 3 ,5 is occupied either at C37 or C38 so 5 cannot happen in C19 and C29 also 5 is at C66, this gives 516 at C99 for 9th row line filling. By 9th block scanning we get 717 at C98. This helps in getting 7_{18} at C49 and 9_{19} at C48.

Fig 34 (a)

Now 1,2,8,5 cannot happen in C_{69} in block 6 so 4_{20} is placed there. This gives 4_{21} and 1_{22} at C_{53} and C_{63} respectively.

Now in fig 28b. This gives 9_{23} and 6_{24} at C_{29} and C_{19} respectively by 9^{th} row line scanning. 1_{25} at C_{58} by 3^{rd} row block to block scanning then this helps in getting 5_{26} at C_{77} by 2^{nd} vertical block to block scanning. This gives 5_{27} at C_{38} by 3^{rd} vertical line scanning. First we get 9_{23} then 7_{24} and 3_{25} at C_{34} , C_{31} and C_{37} respectively

by 3^{rd} vertical line scanning. 9_{23} give 9_{26} and 6_{27} at C_{85} and C_{84} respectively. 9_{28} is obtained at C_{56} by 2^{nd} row block to block scanning. This gives 9_{29} and 6_{30} at C_{61} and C_{51} respectively. 6_{31} is obtained at C_{26} by 6^{th} row line scanning and 6_{32} is gotten by 2^{nd} row block to block scanning at C_{65} .

							9 6		_
		724	5	63	92		1 ₂	2	69
9	1 ₁₁	214	8	7 9	3	415	5	6 ₃	
		6	210	42	12		7	94	41
1 ₁₃			4	835	733	57	62		
	734	8	3	236	632	1	92	4	
	631	4	1	928	5	7 8	2		
7			612	526		9	4	1	
		527 (91	1 ₂₅		6	35	7 ₁₇	
624	9 ₂₃	1 (71	3	420	21	86	516	

Fig 34 (b)

 7_{33} is obtained by 6^{th} vertical line scanning at C_{64} . 7_{34} is gotten by 2nd row block to block scanning at C_{25} . 8_{35} and 2_{36} are obtained by 5^{th} block filling at C_{54} and C_{56} respectively.

Now, it is easy to fill rest of cells and complete the Sudoku.

SUDOKU 13

1			5	6			
2	8	1					
		7					9
5		3	2				4
		2			1		
7					6	2	3
9					8	4	
					3	9	7
			4	9			1

Fig 35

Solution (refer fig 35 (a)

1₁ **by** 1^{st} vertical line scanning at C₁₈.

 5_2 and 6_3 by 1^{st} block filling at C_{23} and C_{13} . 9_4 by 3^{rd} vertical block to block scanning at C_{74} . 4_5 at C_{18} by 1^{st} vertical line scanning. 8_6 at C_{18} by 2^{nd} block filling. The position for 169 is circled in Block 3 filling and te positions of 49 are circled in 1^{st} block filling. This gives 9_7 at C_{31} and hence 4_8 at C_{21} . 8_9 at C_{19} by 1^{st} vertical line

filling at C_{19} . For 2^{nd} vertical line the position of 237 are circled at C_{27} , C_{28} and C_{29} .

Now 3^{rd} row block to block scanning gives 4_{10} at C_{38} . For 8^{th} row line 2_{11} is placed at C_{28} as 3 and 7 are not possible there. This allows positioning of 5_{68} at C_{48} , C_{58} and C_{68} respectively for 8^{th} row line filling hence circled. Now for 6^{th} row line, 45 not possible in C_{26} and at C_{46} so 45 is positioned at C_{56} and C_{66} and hence circled.

7₂₂ **2**₁₃ **5**₂₀ 29 9_4 7₁₆ **5**₁₅ **1**₃₁ **5**₁₈ **1**₁ **2**₁₂ Fig 35 (b)

Now study of 9th block reveals that 56 possible only in C97 and at C37 so 2₁₂ is placed at C79 by 9th block filling. This gives 2₁₃ at C91 by 7th block filling. This gives 8₁₄ at C95 by 9th vertical line filling. This helps in filling 5₁₅ and 7₁₆ at C85 and C84 by 8th block filling. This helps in filling 6₁₇ and 5₁₈ at C89 and C97 respectively by 9th block filling. This gives 6₁₉ at C92 by 9th vertical line filling. We get 5₂₀ by 7th block filling at C72. Now we get 4₂₁ at C73 and 7₂₂ at C71 by 7th block filling.

By 3rd block filling, we get 6_{23} and 5_{24} at C_{37} and at C_{39} respectively. 18 not possible in at C_{82} so 3_{25} is filled for 7^{th} block. For vertical line 5^{th} , 4 is possible only in C_{52} and at C_{56} but C_{56} also may contain 5, hence intuitively 4_{26} is placed at C_{52} . Also by filling 2^{nd} row line 4_{26} is placed at C_{52} . This gives 4_{27} and 5_{28} at C_{66} and C_{56} respectively. By this we get 7_{29} and 9_{30} at C_{62} and C_{42} respectively. By 6^{th} row line filling we get 1_{31} and 9_{32} at C_{46} and C_{26} respectively. This facilitates in filling 1_{33} and 6_{34} at C_{24} and C_{25} respectively.

1	6	a
	u	J

1	48	97	5	1 ₅₀	6	722	851	213	
2	8	1 (930	426	729	520	3 ₂₅	619	479
6 ₃	5 ₂	7	839	343	247	421	1 ₅₂	9	
5 (1 ₃₃	3	2	635	836	94	7 ₁₆	4	
4 ₅ (6 ₃₄	2	7 ₄₁	940	342	1	5 ₁₅	814	376
7 (9 ₃₂	86	1 ₃₁ (5 ₂₈	427	6	2	3	45
9 (744	623	343	7 ₄₉	1 ₄₈	8	4	5 ₁₈	
1 ₁ (2 ₁₁	410 (637	838	5 ₃₁	3	9	7	56
89 (345	524	4	246	9	2 ₁₂	617	1	
	237	-	•	Fig 35	(c)		•		•

This helps in filling 6_{35} and 8_{36} at C_{54} and C_{64} respectively by 4^{th} row line filling. This helps in filling 6_{37} and 8_{38} at C_{48} and C_{58} respectively. Now by 2^{nd} vertical block to block scanning gives 8_{39} at C_{43} . 9_{40} is obtained at C_{55} by 5^{th} vertical line filling. We get 7_{41} and 3_{42} by 5^{th} row line filling at C_{45} and C_{65} respectively. 3_{43} by 4^{th} vertical line filling at C_{47} . This helps in getting 7_{44} and 3_{45} at C_{27} and C_{29} in block 3. This way 2_{46} , 2_{47} , 1_{48} , 7_{49} , 1_{50} , 8_{51} and 1_{52} are filled to complete the Sudoku.

SUDOKU 14 – Solved

3	4	5		814	6	2		
7		94	4	2			8	5
83		2	5		917			4
5 ₉	3 ₁₃	6			7		4	2
2 ₅	7 ₂			5 ₁₈	415			
4	9		2		816	5		
6	511				2	1		81
1 ₁₀	8)		5		27	9
98	26	7	8			4	5 ₁₂	6

Fig 36

 8_1 by 3^{rd} row block to block scanning at C_{97} . 7_2 by 2^{nd} vertical line scanning at C_{25} .

 8_3 by 1^{st} block filling at C_{13} . 2_5 by 2^{nd} block filling at C_{15} . 2_6 by 1^{st} vertical block to block scanning at C_{29} . 2_7 at C_{78} by 3^{rd} row block to block scanning. 9_8 at C_{19} by 1^{st} vertical block to block scanning. 5_9 and 1_{10} by 1^{st} vertical line filling at C_{14} and C_{18} respectively. 5_{11} and 5_{12} by 3^{rd} row line block to block scanning at C_{27} and C_{89} respectively. For block 3, 3 has to be either at C_{37} or at C_{38} , this helps in filling 3_{13} at C_{24} also C_{37} and C_{38} is circled for

34, 8_{14} at C_{51} by 4^{th} block filling. 4_{15} , 8_{16} and 9_{17} by 6^{th} vertical line filling at C_{65} , C_{66} and C_{63} respectively. 5_{18} by 2^{nd} row block to block scanning at C_{55} .

Now fig 36(a

3	4	5	138	814	6	2	919	729	
7		94	4	2			8	5	
83		2	5		917		1 ₃₃	4	* 3
5 ₉	3 13	6 (7	822	4	2	1
25	7 ₂	820 (32	5 ₁₈	415	9 ₂₃	626	127	
4	9	1 ₂₁	2	6_2	816	5	7 ₃₀	3 ₂₈	
6	511 (43			2	1		81	
1 ₁₀	8	33	6 37	436	5		27	9	
98	26	7	8			4	512	6	1
		3		Fig 36	(a)				•

9₁₉ by 7th block filling at C₈₁. 8₂₀ and 1₂₁ by 3rd block filling at C₃₅ and C₃₆ because of presence of 8₁₆ at C₆₆. 8₂₂ and 9₂₃ by 7th vertical line filling at C₇₄ and C₇₅ respectively. 5th bock is circled for 19 in 4th row line and 36 at C₅₂ and C₅₂ respectively. 6th block also circled for 13 at C₅₉ and C₆₉.Now for 4th vertical line, 3₂₄ only possible at C₄₅ because of presence of 3 at C₁₁ and in block 6.

This gives 6_{25} and 6_{26} by 2^{nd} row block to block scanning at C_{56} and C_{85} . 1_{27} by 5^{th} row line filling at C_{95} . 3_{28} and 7_{29} by 9^{th} vertical line scanning at C_{52} and C_{52} respectively. This helps in getting 7_{30} and 7_{31} by 3^{rd} vertical block to block scanning at C_{86} and C_{78} respectively.

Now Fig 36(b)

We get 3_{32} and 1_{33} by 8^{th} vertical line filling at C_{87} and C_{83} respectively. Thus, 4_{34} and 3_{35} are obtained at C_{37} and C_{38} . Scanning of 8^{th} row line gives 4_{36} and 6_{37} at C_{68} and C_{58} . 1_{38} by 1^{st} row line scanning at C_{41} .

3	4	5	1 38	814	6	2	9 ₁₉	7 ₂₉	
7		94	4	2			8	5	
83		2	5		917		1 ₃₃	4	3 6
5 9	3 ₁₃	6 (93	14	7	822	4	2	19
25	7 ₂	820 (32	5 ₁₈	415	9 ₂₃	626	1 ₂₇	
4	9	1 ₂₁	2	62	816	5	7 ₃₀	3 ₂₈	
6	511 (43	7 ₄₀		2	1	332	81	
1 ₁₀	8	33	637	436	5	7 ₃₁	27	9	
98	26	7	8	34	14	4	512	6	13
		34		Fig 36	(b)	•	•	•	_

This gives 9_{39} and 7_{40} by 4^{th} vertical line scanning at C_{44} and C_{47} . 1_{41} is obtained by 4^{th} row line scanning at C_{54} . Now it is easy to complete the SUDOKU.

SUDOKU 15

2	5			3				
4	3	9						5
	1			4	5	8		
				7	4	2	5	
	2		5		1		4	
	4		3	2				
		5	4	9			6	
		4				5	9	2
		2		5			7	8

Fig 37

Solution - refer Fig 37 (a)

41 and 22 by 3rd row block to block scanning at C79 and C67 respectively. **53** by 1st vertical block to block scanning and **84** by 3rd vertical block to block scanning at C16 and C86 respectively. **85** by 1st block filling at C31 because of presence of 8 at C73. By inspection of 3rd block, we see that C17 and C27 are reserved for 78 by 3rd row block to block scanning so it is circled.

Fig 37 (a)

For 3^{rd} block, we find that C_{18} and C_{19} contains 13 because of 1^{st} column line filing and hence circled so by 3^{rd} row block to block scanning we place 9_6 at C_{29} and hence this allows us to place 6_7 at C_{28} . Scanning of 2^{nd} vertical line yields 7_8 at C_{27} and hence 8_9 at C_{17} . 4_{10} by 1^{st} row block to block scanning at C_{91} . Also we get 3_{11} , 2_{12} and 1_{13} at C_{83} , C_{82} and

 C_{81} respectively by 1^{st} row block to block scanning. 8_{14} and 8_{15} by 1^{st} vertical block to block scanning at C_{24} and by 2^{nd} row block to block scanning at C_{55}

7₂₈ 4₁₀ 1₁₃ **7**₂₃ 2₁₂ 2₁₆ **5**₃ **2**₂ **1**₃₆ **7**₈ **1**₁₉ 3₂₆ **4**₁ **1**₃

13 Fig 37 (b)

Now, fig 37 (b)

 2_{16} and 9_{17} by 3^{rd} row line scanning at C_{43} and C_{93} . 6_{18} and 1_{19} by 5^{th} vertical line scanning at C_{52} and C_{58} . 1_{21} and 8_{22} by 4^{th} block filling at C_{52} and C_{62} respectively. This gives 6_{22} and 7_{23} at C_{71} and C_{72} respectively. 8_{24} , 7_{25} , 3_{26} and

627 by 6th block filling at C48, C68, C69 and C49 respectively. 728 and 929 by 1st row line filling at C41 and C61. 930 and 631 by 5th block filling at C44 and C66. 132 and 333 by 3rd block filling at C18 and C19. Now we get, 934 by 2nd block filling at C15 and 935 at C76 by 2nd row block to block scanning. 136 and 337 by 7th vertical line filling at C77 and C75. 338 by 9th block filling at C97. 339,140 and 641 by 4th row line filling at C34, C94 and C14 respectively. Similarly rest of unit squares can be filled to complete the SUDUKO.

SUDOKU 16

4		8	7	1				
7		2		9		8		
5			2	8		1		
	7					4	6	
	5						8	
	8	3					1	9
				3				1
				7		9		6
				6	2			8

Fig 38

Solution (ref Fig 38 a)

16	93	38		245		19	29		
4 (92	8	7	1	322/	62 (21	517	
7	11	2	529	8	6 28	8	3 ₁₅	416	
5 (32	6 ₅₁	2	8	423	1 (91	7 ₁₂	
9	7	14 (32	59	82	4	6	28	
65	5	4 ₃	13	27	92	71	8	31	
26	8	3	627	41	726	511	1	9	
83	649	950	447	3	5 39	230 (74	1	73
33	240	542	835	7	1 ₃₈	9 (44	6	
13	448	7 ₄₅	946	6	2	3 ₃₁ (54	8	
13	•			Fig 38	(a)		45	•	•

SUDOKU 17

3						8		
	2							
9		8		1	2			
8	3	1		4				
7	5	6	1	8	3	2	4	9
				5		1		3
			9	2		4		6
							7	
		4						1

Fig 39

3	130	5 ₃₇	636	7 ₃₅	423	8	926	229
420	2	738	333	925	844	632	127	540
9	6 ₃₁	8	5 43	1	2	739	328	422
8	3	1	2 ₂	4	9 ₃	5 ₄₁	6 ₉	742
7	5	6	1	8	3	2	4	9
221	424	914	746	5	645	1	81	3
16	8 51	35	9	2	748	4	5 ₇	6
5 ₁₂	915	2 ₁₃	411	6 18	1 ₁₀	317	7	84
619	750	4	849	3 ₃₄	5 47	9 ₁₆	28	1

Fig 39 (a)

 $\mathbf{2}_2$ because block 2 row line contains 2. 146 not possible in C31 and C32 so $\mathbf{3}_5$ at C37. 87 not possible in C87 and C17 so $\mathbf{1}_6$ at C17.

SUDOKU 18

					1	7	4	
4		3			5	2		
8			4	3				
7				8	4			
2			3		7			4
			2	6				7
				1		4		2
		2	7	4		8		6
	6	4	9					

Fig 40

Solution

 4_1 by 2^{nd} vertical column line filling at C_{26} . 1_2 at C_{44} by 2^{nd} column block to block scanning. 7_3 at C_{52} by fourth block filling. 2_4 at C_{84} by 8^{th} block filling.

6 ₁₉	220	5 ₂₁	8 7	915	1	7	4	35	
4		3	6 ₉	7 3	5	2		86	256
8			4	3	216				
7	3/5		12	8	4		24		
2			3	514	7			4	
3/5	41		2	6	917			7	
			5 8	1	610	4		2	78
		2	7	4	313	8		6	
	6	4	9	2 ₁₂	811		7 ₁₈		

Fig 40 (a)

35 at C91 by 1^{st} row block to block scanning. 8_6 by 9^{th} vertical column line filling at C92 because of presence of 8 at C_{78} , C_{44} and C_{13} . 8_7 at C41 by fourth block filling. 5_8 by 4^{th} vertical column line filling at C47. 6_9 also by 4^{th} vertical column line filling at C42. 6_{10} at C67 by sixth block filling. 8_{11} , 2_{12} and 3_{13} at C69, C59 and C68 respectively by sixth block fillings. 5_{14} and 9_{15} by 5^{th} vertical column line filling at C55 and C51. 2_{16} and 9_{17} by 6^{th} vertical column line filling at C63 and C66. 7_{18} by 9^{th} row line filling at

C89. **6**19 at C11 by first block filling as 6 will occupy either at C34 or at C35 for block 2. **2**20 at C21 and **5**21 at C31 by first row line filling.

6 19	220	5 ₂₁	8 7	915	1	7	4	35
4	925	3	6 ₉	7 ₃	5	2	126	86
8	137	738	4	3	218		532	
7 (322		12	8	4		2 ₄	
2			3	5 ₁₄	7		6 ₃₃	4
523	41	136	2	6	335	917	834	7
929			5 8	1	6 ₁₀	4	3 ₃₁	2
127	5 ₂₄	2	7	4	3 ₁₃	8	928	6
330	6	4	9	2 ₁₂	811		7 ₁₈	

Fig 40 (b)

C27 and C37 are circled for 7 and 8 similarly C24 and C16 are circled for 3 and 5. Now, **3**₂₂ at C24 is filled by 2nd vertical line /column line filling so this gives **5**₂₃ at C16. This gives **5**₂₄ at C28 by 2nd column line filling. 9 occupies either C87 or C88 hence it may occupy either at C73 or C93 this gives **9**₂₅ at C22. This gives **1**₂₆ at C82 by 2nd row line filling. **1**₂₇ by 3rd block filling as 1 will occupy either at C79 or C99 because of presence of 1 at C82. This gives **9**₂₈ at C88 by 8th row line filling. This gives **9**₂₉ at C17 by 7^h

row line filling and **3**₃₀ at C₁₉ by 3rd block filling. This gives **3**₃₁ at C₈₇ **by** 7th row line filling. Now, Fig 40(C). This gives **5**₃₂ at C₈₃ by 8th column line filling. **6**₃₃ and **8**₃₄ by 8th column line filling at C₈₅ and C₈₆ respectively. **3**₃₅ and 1₃₆ by 6th row line filling at C₇₆ and C₃₆ respectively. 1₃₇ at C₂₃ and 7₃₈ at C₃₃ by 1st block filling.

This gives 7_{39} and 8_{40} at C_{37} and C_{27} respectively against the circled cells C_{37} and C_{27} . 6_{41} , 9_{42} and 8_{43} at C_{34} , C_{35} and C_{25} respectively by 2^{nd} block filling.

644 and **945** by 7th block filling at C73 and C93 respectively. **146** by 8th block filling at C75. **147** and **548** by 9th block filling at C99 and C79 respectively. **549** and **950** by 8th block filling at C94 and C74 respectively.

SUDOKU 19

			5			9	6	
			3		7		5	
		5		1		4		3
		3						4
		7	9		4	6		
5		4				1		
7		1		2				
	4		7		3			
	5	9			6			

Fig 41

Fig 41 (a)

by 6th block filling at C49. **1**₂ at C64 by 2nd column block to block scanning. **5**₃ at C67 by 6th column line scanning. **9**₄ by 6th block filling at C58. **9**₅ at C63 by 2nd column block to block scanning. **4**₆ at C37 by 4th column line scanning. **8**₇ by 6th block filling at C59. **4**₁₂ at C₁₂ by 1st row block to block scanning

. **4**₈ at C₈₉ by 3^{rd} column block to block scanning. **1**₉ at C₈₈ by 8^{th} column line scanning. C₄₃ and C₆₁ is circled for digit 2 and 8. So this gives **6**₁₀ at C₅₂. This gives **4**₁₁ at C₅₁ by 4^{th} block filling. **9**₁₃

at C_{22} by 2^{nd} row line scanning. **9**₁₄ by 1^{st} column block filling at C_{14} and C_{21} are circled for 13 in block 1.

28											
12	3 ₂		5	411		9	6	720	13		
412	9 ₁₃		3	610	7		5	1 ₁₅			
	7 ₂₁	5		1	9 ₅	4		3			
914		3			12			4			
	1 26	7	9		4	6					
5		4				1		919			
7		1	46	2			9 ₁₈	617			
228	4	616	7	94	3		19				
323	5	9	11	8 ₇	6	722	4 8	227			

Fig 41 (b)

Now fig 42b

1₁₅ at C₉₂ by 1st row block to block scanning. **6**₁₆ at C₃₈ by 3rd column line scanning. **6**₁₇ at C₉₇ by 3rd row block to block scanning. **9**₁₈ at C₈₇ by 3rd row block to block scanning. **9**₁₉ at C₉₆ by 3rd column block to block scanning. **7**₂₀ at C₉₁ by 1st row line scanning. **7**₂₁ at C₂₃ by 1st row block to block scanning. **7**₂₂ at C₇₉ by 3rd column block to block scanning. **3**₂₃ at C₁₉ by 1st column line scanning. **3**₂₄ and **1**₂₅ at C₂₁ and C₁₁ respectively by 1st column

block to block scanning and 1st block filling. **1**₂₆ at C₂₅ by 1st column block to block scanning. **2**₂₇ at C₉₉ by 9th row line scanning and **2**₂₈ at C₁₈ by 3rd row block to block scanning.

	28	•							
		$\overline{}$							1
12	32	289	5	411	84	9	6	720	13
4 ₁₂	9 ₁₃	840	3	610	7	238	5	1 ₁₅	
6 ₃₁	7 ₂₁	5	24	1	95	4		3	
914		3			12			4	
832	1 26	7	9	337	4	6	236	5 ₃₄	
5		4				1		919	
7	829	1	4 ₆	2	5 ₃	330	9 ₁₈	617	
228	4	616	7	94	3	5 ₃₅	19	833	
323	5	9	11	87	6	722	48	227	

Fig 41 (c)

Now fig 42c

829 at C27 by 3rd block filling. **330 at** C77 by 9th block filling. **631** at C13 by 1st row block to block scanning. **832 by** 1st column or vertical line filling at C15. This gives **833** at C98 by 9th vertical or column line filling. And hence **5**34 is filled at C95 again by 9th

vertical line filling. Now we get **5**35 at C78 by 9th block filling. Now we get **2**36 and **3**37 by 5th row line filling at C85 and C55 respectively. This helps in getting **2**38 at C72 by

 3^{rd} column block filling. This helps in getting 2_{39} and 8_{40} at C_{31} and at C_{32} by 1^{st} block filling. This gives 8_{41} and 2_{42} by 4^{th} block filling at C_{61} and at C_{43} .

Fig 41 (d)

Now fig 42d

2₄₃ by filling of 6th column line at C₆₆. **8**₄₄ by 7th block filling at C₈₃. **8**₄₅ by 8th block filling at C₇₄ and **8**₄₆ by filling of 5th block at C₄₆. **6**₄₇ by filling of 5th block at C₃₄.

548 at C54 by 4th row line filling as it is not possible in C24 and C84. **7**49 by 5th block filling at C56. **3**50, **6**51, **2**52 and **7**53 are **filled** at C76, at C26, at C24, and at C84 respectively by second row block to block scanning, 3^{rd} block filling, 3^{rd} block filling and 8^{th} block filling.

Chapter 5

Practice Squares

PRACTICE SQUARES

Practice 01

Practice 02

Practice 03

Practice 04

Practice 05