3.3 Regression

Linear Regression

- Simple case: 2 variables
- **Linear equation**: y = mx + b, m = slope of the line, b = intersection of the line with the yy axis
- Estimation of parameters:
 - The estimation for m should be statistically significantly different from 0
 - The estimation for b may or may bot be statistically significantly different from 0
- Assume errors are independently and identically distributed, with constant variance.

Evaluation of Regression Models

Prediction

Given the value of x, the model estimates the value of y (y = mx + b) but the estimate is not perfect

• Error: $\sigma - y$, σ = value estimated, y = true value

Analysis of Evaluation Measures

- Do not use mean error
- Mean absolute error: estimates "typical" error
- Mean squared error: assigns more weight to larger error (may be dominated by a few cases)
- Values depend on the scale of the target variable

Baseline: trivial model

- Trivial model is assuming the mean value for every instance;
- Regression is only useful if its error is lower than the one obtained with the trivial prediction

Other Algorithms

Nearest Neighbor Algorithm for Regression

fin kNN

predict the average of their target values (instead of majority voting)

Decision Trees for Regression

- Train (splitting criterion based on the sum of the variances, instead of gini or entropy)
- Prediction (average of targets in the leaf, instead of majority voting)
- Variants
 - Model trees (using MLR or KNN in the leaves instead of the average)
 - MARS (multivariate adaptive regression splines)

Neural Nets for Regression

- Single output node (predicted y = score)
- · Continuous activation function

SVM for Regression

 Margin: minimize the tube "around" the data (instead of maximizing the distance to the closest examples from each class)

Bias vs. Variance

- **Bias**: type of model an algorithm is able to learn given a set of training data; related to hypothesis language (e.g. linear vs. quadratic)
- **Variance**: variation in model an algorithm is able to learn, given different training data (e.g. small changes)
- Bias-Variance trade-off: low bias implies high variance and vice-versa

< Go back