

Projet: Customer Segmentation & Churn Prediction Using Machine Learning

1. Contexte

Les entreprises doivent mieux comprendre et anticiper les comportements de leurs clients pour améliorer leur fidélisation et réduire le churn (départ client). Ce projet vise à :

- Regrouper les clients en segments homogènes via l'analyse de leurs comportements.
- Prédire le risque de churn grâce à des algorithmes classiques de machine learning.

Le travail portera exclusivement sur des méthodes **classiques** de machine learning supervisé et non supervisé.

2. Objectifs

- **Customer Segmentation**: Segmenter les clients en groupes similaires selon leurs données comportementales en utilisant des algorithmes de clustering (K-Means, Hierarchical Clustering, DBSCAN).
- Churn Prediction: Construire des modèles de classification pour prédire si un client est susceptible de partir ou de rester (Logistic Regression, Decision Tree, Random Forest, SVM, etc.).

3. Données

- **Sources**: Datasets publics (exemples: Mall Customer Dataset, Telco Customer Churn Dataset).
- Variables attendues :
 - o Informations clients (âge, sexe, revenu, profession, type d'abonnement, etc.)
 - Historique d'achats ou d'utilisation de service
 - o Indicateur de churn (pour la partie classification)

4. Méthodologie du Projet

Le projet se déroulera selon 4 grandes étapes réparties sur 4 semaines.

Plan des 4 Semaines :

Semaine 1 : Exploration et Préparation des Données

- Recherche, choix et téléchargement des datasets.
- Analyse exploratoire des données (EDA) pour comprendre les variables.
- Nettoyage des données : traitement des valeurs manquantes, doublons, incohérences.
- Transformation des variables (encodage des catégories, normalisation/standardisation).
- Premiers graphiques descriptifs pour identifier les patterns.

Livrable : Jeux de données propres et un premier rapport d'exploration.

Semaine 2: Segmentation Clients (Clustering)

- Application des techniques de clustering :
 - o K-Means avec choix optimal de K (méthode du coude, silhouette score).
 - o Hierarchical Clustering avec dendrogramme.
 - DBSCAN pour tester des clusters de formes complexes.
- Visualisation 2D/3D des clusters (PCA, t-SNE).

 Interprétation des segments clients : caractéristiques dominantes de chaque groupe.

Livrable: Visualisations des clusters et analyse des groupes clients.

Semaine 3: Prédiction du Churn (Classification)

- Séparation des données en train/test sets.
- Implémentation de plusieurs modèles de classification :
 - o Logistic Regression, Decision Tree, Random Forest, SVM, k-NN.
- Validation croisée et recherche d'hyperparamètres optimaux.
- Évaluation des modèles avec des métriques :
 - o Accuracy, Precision, Recall, F1-score, ROC-AUC.
- Analyse de l'importance des variables pour la prédiction de churn.

Livrable : Modèle final de prédiction du churn avec évaluation complète.

Semaine 4 : Synthèse, Rapport et Présentation

- Finalisation des notebooks (mise au propre, ajout de commentaires clairs).
- Rédaction du rapport final structuré comprenant :
 - o Introduction, méthodologie, résultats, discussion, conclusion.
- Proposition de recommandations basées sur l'analyse (ex : ciblage marketing des segments sensibles au churn).
- Préparation d'une présentation orale (si demandée).

Livrable: Rapport écrit du projet, fichiers code complets et présentation.

5. Livrables attendus

- b Jeux de données nettoyés.
- Notebooks Python propres et commentés.
- Rapport final détaillé.

- Graphiques de visualisation pour la segmentation et l'évaluation des modèles.
- Présentation synthétique des résultats (si exigée).

6. Contraintes

- Utilisation exclusive d'algorithmes **classiques** de machine learning (pas de deep learning).
- Respect des bonnes pratiques : validation croisée, tuning d'hyperparamètres, analyse critique des résultats.
- Travail régulier réparti sur les 4 semaines.

7. Outils et Technologies

• Langage: Python

• Librairies:

- o Pandas, NumPy pour la manipulation des données
- o Scikit-learn pour le machine learning
- o Seaborn, Matplotlib pour la visualisation
- o Imbalanced-learn (en cas de classes déséquilibrées)