ECE 5730 Memory Systems Spring 2009

Cache Content Management

Announcements

Quiz 3 on Tuesday

- Quiz 2
 - Average = 6.8/10

Where We're Headed

- Non-uniform cache architectures (today)
- Off-line content management
 - Partitioning heuristics (today)
 - Prefetching heuristics
 - Locality optimization
- Combined approaches
- Cache power management
- Cache case studies

More on Prefetching

- Actual lookup: cache lookup generated by an external source, e.g., the CPU

 regular lookup. CPU actually worth some thing, go get it
- Prefetch lookup: cache interrogates itself to see if a line is resident or must be prefetched

 I want to see if the they I'm going to prefetch is alread,
 ther (i.e. no stream buffer)
- Access ratio: (prefetch + actual)/actual

4 high ratio means lots of prefetching lookups

Simplistic Prefetching Approaches

- Prefetch next block when current one accessed
 - Access ratio = 2

Prefetch next block when current one misses

- Tagged prefetch
 - Tag bit associated with each cache block
 - Initialized to 0 when block brought into the cache
 - Set to 1 when the block is accessed by the CPU
 - 0 to 1 transition causes a prefetch of the next block

Errata

Stream Buffer Management

Errata

Multi-Way Stream Buffer Management

[Jouppi90]

Cache Content Management

- Partitioning heuristics
 - Which items get placed and where (cache level, cache sets/ways, buffers)
- Fetching heuristics
 - When to bring an item into the cache
- Locality optimizations
 - Change layout or ordering to improve reuse

Decisions can be made at runtime (*on-line heuristics*), at design/compile time (off-line heuristics), or a combination of the two (combined approaches)

Non-Uniform Cache Access Time

 For large L2 or L3 caches (10's of MB), access latencies can vary significantly among banks

Non-Uniform Cache Architectures

 Conventional cache: cache access time is set according to the worst case access latency

Lo farthest cach bank from contoller

- NUCA: cache access time varies depending on distance of the bank from the processor
- Static NUCA (S-NUCA)
 - Delay-oblivious content management

- we know about NU CA, but we're very naire / dumb

- Dynamic NUCA (D-NUCA)
 - Data with high reuse located in faster banks

- smart management of latency differences

NUCA Physical Organizations

NUCA Physical Organizations

Estima	tod	200066	latencies
E Suilla	lea	access	ialencies

				(Low Leaves							
	Technology	L2	Num.	U	nloade	d latency	у_/	Conserv	ative	Aggressive		
₽	(nm)	size	banks	bank	min	max	avg.	Loaded	IPC	Loaded	IPC	
ا ح	130	2MB	16	3	7	13	10	11.3	0.54	10.0	0.55	
5	100	4MB	32	3	9	21	15	17.3	0.56	15.3	0.57	
	70	8MB	32	5	12	26	19	21.9	0.61	19.3	0.63	
	50	16MB	32	8	17	$\overline{41}$	29	34.2	0.59	30.2	0.62	

_										
						1	err:bb4	due to w	we let	enez
25 AUG	Technology	L2	Num.	U:	nloaded	Latenc	y	Loaded		J 18
he	(nm)	Size	Banks	bank	min	max	avg.	Latency	IPC	
switc	130	2MB	16	3	4	11	8	9.7	0.55	[/ >
>	100	4MB	32	3	4	15	10	11.9	0.58	
S	70	8MB	32	5	6	29	18	20.6	0.62	
	50	16MB	32	8	9	32	21	24.2	0.65	IJ

decreasing the # of banks improved laterary to the controller, but you lose du to laterar me the non more complus sub bank

[Kim02]

Lecture 6: 12

Dynamic NUCA (D-NUCA)

- Cache controller accounts for varying latency
 - Line placement
 - By migrating lines to different banks

Ggo to the feather bits on late of accerted

- Content management considerations
 - Mapping: Which banks a line can reside in and how the line is mapped to those banks (direct mapped? now any? fully)
 - Search: How the set of possible locations are searched to find a line
 - Movement: Under what conditions lines are migrated from one bank to another

[Kim02]

D-NUCA Mapping

Simple

- Each column is a set
- Different access times among sets try to equalish the set placement

Fair

 Average access time across all sets is roughly equalized

Shared

- Higher associativity to offset higher latency

Le cache controlle

D-NUCA Search

- Incremental
 - Banks are searched in order from closest to furthest
- Multicast
 - Address is sent to multiple banks in parallel
- Smart search
 - Based on partial tag comparison [Kessler89]
 - Partial tag array in cache controller
 - Hit if a match of partial tag and bank tag

- Perform lookups in parallel

 Perform only first bank lookup in parallel

D-NUCA Line Movement

- Placement on a miss of similar to set duely
 - Place closest, furthest away, or in-between?
 - What do we do with the victim?
 - Evict (zero-copy policy)
 - Move to a further bank (one-copy policy)
- Migration
 - After n hits to a line, swap the line with the one in the bank that is m positions closer to the cache controller

IPC Comparison

[Kim02]

Performance of D-NUCA Alternatives

~ net					, was training on the same of						
	Av.		Miss	Bank		Av.		Miss	Bank		
Policy	Lat.	IPC	Rate	Access	Policy	lat.	IPC	Rate	Access		
Search					Promotion						
Incremental	24.9	0.65	0.114	89M	1-bank/2-hit	18.5	0.71	0.115	259M		
2 mcast + 14 inc	23.8	0.65	0.113	96M	2-bank/1-hit	17.7	0.71	0.114	266M		
2 inc + 14 mcast	20.1	0.70	0.114	127M	2-bank/2-hit	18.3	0.71	0.115	259M		
2 mcast + 14 mcast	19.1	0.71	0.113	134M	Eviction						
	Mapp	ing	•		insert head, evict random, 1 copy	15.5	0.70	0.117	267M		
Fast shared	16.6	0.73	0.119	266M	insert middle, evict random, 1 copy	16.6	0.70	0.114	267M		
Baseline: simple ma	ail 🛌	18.3	0.71	0.114	266M						

browsend	a bance	avu	7			
Configuration	Loaded	Average	Miss	Bank	Tag	Search
	Latency	IPC	Rate	Accesses	Bits	Array
Base D-NUCA	18.3	0.71	0.113	266M	-	_
SS-performance	18.3	0.76	0.113	253M	7	224KB
SS-energy	20.8	0.74	0.113	40M	7	224KB
SS-performance + shared bank	16.6	0.77	0.119	266M	6	216KB
SS-energy + shared bank	19.2	0.75	0.119	47M	6	216KB
Upper bound	3.0	0.83	0.114	_	-	_
Upper bound + SS-performance	3.0	0.89	0.114	_	7	224KB

[Kim02]

CMP-DNUCA

[Beckmann04]

- D-NUCA L2 cache for Chip shared Multiprocessors
- Where do we store shared data in L2?
- Migrate lines gradually among bankclusters in single steps

other local \Rightarrow other inter \Rightarrow other center \Rightarrow my center \Rightarrow my inter \Rightarrow my local migration policy will cause spenial emergent behavior

CMP-DNUCA Hit Distribution

high sharing workload

low sharing workload

dark is high hit count

[Beckmann04]

Off-line Partitioning Heuristics

 Programmer or compiler partitions code and data between the scratchpad and main memory

Example Embedded Processor Code

```
int main()
                       SDRAM TEST
/* BY: J S Smith
                                                                    int i:
/* Write 0000FFFF to SDRAM from internal cache
                                                                     /* Fill the original array with the stride pattern. */
                                                                     for(i = 0; i < SIZE; i++)
  This code is written for an Analog Devices TS-101
                                                                          data_orig[i] = 0x0000FFFF;
  This chip has 3 internal caches(1 for program and 2 for data
                                                                     /* Copy from data cache 1 to data cache 1 */
/* This will fill data cache 1 will a striding pattern.
                                                                     for(i = 0; i < SIZE; i++)
/* It will copy this strided pattern to the same data cache 1,
                                                                          data_int_1[i] = data_orig[i];
/* to the other data cache 2, to the program cache and finally
  to the external SDRAM.
                                                                     /* Copy from data cache 1 to data cache 2 */
                                                                     for(i = 0; i < SIZE; i++)
                                                                          data_int_2[i] = data_orig[i];
#define SIZE 512
                                                                     /* Copy from data cache 1 to program cache */
                                                                     for(i = 0; i < SIZE; i++)
section ("data1")
                        float data_orig[SIZE];
                                                                           data_int_p[i] = data_orig[i];
section ("SDRAM")
                        float data_external[SZE];
section ("data1")
                                                                     /* Copy from data cache 1 to SDRAM */
                        float data_int_1[SIZE];
section ("data2")
                                                                     for(i = 0; i < SIZE; i++)
                        float data_int_2[SIZE];
section ("program") float data_int_p[SIZE];
                                                                          data_external[i] = data_orig[i];
                                                                     return 0:
```

batten thind)

Example Embedded Processor

SPM + d-cache backed by main memory

correction of paper figure

- Where to map scalar variables and constants
 - Usually take up little space so map to SPM to avoid d-cache conflicts with arrays & scratch pad memory
- Size of arrays
 - Arrays larger than SPM requires book-keeping code to determine which region of the array is addressed
 - Assign these large arrays to d-cache

- Lifetimes of variables
 - Use lifetime analysis to store variables/arrays with disjoint lifetimes in same storage location

- Access frequency of variables
 - Use to estimate degree of conflicts with other variables
 - Rough metric: Interference factor

- High value of IF(u) indicates u is likely to have large number of d-cache conflicts if mapped to DRAM
 - Map instead to SPM

- Conflicts in loops
 - Identify array d-cache conflicts in loops that cannot be avoided by memory address assignment

Map a and b to DRAM and c to SPM

Performance Comparison

- C Random (1K SRAM + 1 K DCache)
- D Our Technique (1K SRAM + 1K DCache)

Next Time

Cache Content Management