Computergrafik

Mitschrift von

Markus Vieth Steffen Eiden Lukas Birklein

27. Dezember 2016

Vorwort

Dieses Skript basiert auf unserer Mitschrift der Vorlesung Computergrafik und VR im WS 2016/17 an der JGU Mainz (Dozent: Prof. Dr. E. Schömer).

Es handelt sich nicht um eine offizielle Veröffentlichung der Universität.

Wir übernehmen keine Gewähr für die Fehlerfreiheit und Vollständigkeit des Skripts.

Fehler können unter Github gemeldet werden. Die aktuelle Version dieses Skriptes ist ebenfalls auf Github zu finden.

Inhaltsverzeichnis

Vo	rwor	t	i
1	Koo 1.1 1.2 1.3 1.4		1 1 2 3 3 3 3 3 4 4 5
2	VB0 2.1 2.2		6 7 8 8
3	3D-0 3.1 3.2	Objekte Orthogonalprojektion	10 10 11
4	Bel 6	Puchtung 4.0.1 Smoothing	15 15 16 16
5	Obe 5.1 5.2	erflächen Texturen	18 18 19
6	Vol u	6 -	20 20 20

1 Koordinatensysteme

1.1 Normalisiertes Koordinatensystem

glViewport: Ausschnitt wo gezeichnet wird.

1.2 Bildschirmkoordinaten = Weltkoordinaten

(-1|1) (1|1)
$$x' = ax + b$$

$$y' = cy + d$$
(-1|-1) (1|-1)

1 Koordinatensysteme

 b_0 : E-Koordinaten des Ursprungs von System B

 $\boldsymbol{b_1}, \boldsymbol{b_2}$ E-Koordinaten der Basisvektoren von System B

$$E_{X} = b_{0} + {}^{B}x_{1} \cdot b_{1} + {}^{B}x_{2} \cdot b_{2}$$

$$[b_{1}, b_{2}] = R \in \mathbb{R}^{2 \times 2}, \quad |b_{1}| = |b_{2}| = 1, \qquad b_{1}^{T} \cdot b - 2 = 0$$

$$R^{T} \cdot R = \mathbb{E}, \det(R) = 1 \text{ (Rechtssystem)}$$

$$\Rightarrow {}^{E}x = b_{0} + {}^{E}R \cdot {}^{B}x$$

1.3 Homogene Koordinaten

$$E_{x^{1}} = \begin{pmatrix} E_{x_{1}} \\ E_{x_{2}} \\ 1 \end{pmatrix} = \begin{pmatrix} E_{x} \\ 1 \end{pmatrix} \in \mathbb{R}^{3}$$

$$= \begin{pmatrix} E_{R_{B}} & b_{0} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} B_{x} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \cos \varphi & -\sin \varphi & b_{0_{1}} \\ \sin \varphi & \cos \varphi & b_{0_{1}} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B_{x_{1}} \\ B_{x_{2}} \\ 1 \end{pmatrix}$$

Allgemein:

$$^{E}x^{1} = {^{E}M_{B}} \cdot {^{B}\hat{x}}$$

- 1. $^{E}M_{B}$ beschreibt die Transformationsmatrix von Koordinaten aus System B in das System E
- 2. ${}^{E}M_{B}$ kann auch interpretiert werden, als die (starre) Transformation, die E in B überführt.

1.4 Transformationen

1.4.1 Rotation

z.B.

$$x' = R \cdot x$$

1.4.2 + Verschiebung

$$x' = Rx + z$$

$$\rightsquigarrow \hat{x}' = Mx \text{ mit } M = \left(\frac{R \mid t}{0 \mid 1}\right)$$

$$x' = R(x+t)$$

1.4.3 Skalierung

$$\underbrace{S = \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix}}_{\text{homogenisiert}} x' = Sx = \begin{pmatrix} x'_1 = s_1 x_1 \\ x'_2 = s_2 x_2 \end{pmatrix}$$

$$\hat{S} = \begin{pmatrix} S & 0 \\ \hline 0 & 1 \end{pmatrix}$$

mit $s_2 = -1$ Spiegelung um x_1

1.4.4 Translation

Homogen:

$$\hat{T} = \begin{pmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

1 Koordinatensysteme

1.4.5 Hintereinanderausführung von Translation, Rotation und Skalierung

z.B.

$$x''' = S(R(x+t))$$
 $\Rightarrow x' = x+t; \quad x'' = Rx'; \quad x''' = Sx''$
$$x''' = \hat{S}\hat{R}\hat{T}\hat{x}$$
 alles homogenisiert

`wird oft weggelassen, wenn klar.

$$^{B}M_{A}{}^{A}x = {}^{B}x$$

$$^{E}x = {}^{E}M_{B}{}^{B}x$$

$$\Rightarrow {}^{E}x = \underbrace{{}^{E}M_{B}{}^{B}M_{A}}_{E_{M_{A}}}{}^{A}x$$

z.B.

$$^{E}M_{B}$$
 $^{E}M_{A}$

 $^{B}M_{A}$

gesucht

$${}^{E}M_{A} = {}^{E}M_{B}{}^{B}M_{A}$$

$$\Rightarrow {}^{B}M_{A} = {}^{E}M_{B}^{-1} \cdot {}^{E}M_{A}$$

$${}^{E}M_{B}^{-1} = {}^{B}M_{E}$$

1.5 Invertierung von M

Sei
$$M = \left(\frac{R \mid t}{0 \mid 1}\right)$$
 $R^{-1}_{\text{Drehung um } -\varphi} = R^T \text{ u.a. auch, da Rotation } (R^T R = 1)$
$$Mx = Rx + t = x'$$

$$\rightsquigarrow R^T(x' - t) = x$$

$$\rightsquigarrow R^T x' - R^T t$$

$$\rightsquigarrow M^{-1} = \left(\frac{R^T \mid -R^T t}{0 \mid 1}\right)$$

1.6 Qt

```
1 QMatrix4x4 M;
2 M.setToIdentity(); // M=1
3 M.rotate(\varphi, 0, 0, 1); // Rotation um die z-Achse
4 // M=M\cdot R
5 M.scale(s_1, s_2); // M=M\cdot S
6 M.translate(t_1, t_2); // M=M\cdot T
7 // M=\underbrace{1\cdot R\cdot S\cdot T}_{\text{Leserichtung für Transformation}}
8 // Leter Befehl wird zuerst ausgeführt! LIFO!
9 Mx'
```

2 VBO

interpolierte Farbe z.B. Mischung

Abbildung 2.1: Beispiel Raster

Shader nimmt die Attribute von den Randpunkten und prozessiert diese auf die Pixel im inneren des Dreiecks.

2.1 Baryzentrische Koordinaten

varying im Vertexshader

Abbildung 2.2: Baryzentrisches Koordinatensystem

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

$$x = \alpha \cdot a + \beta \cdot b + \gamma \cdot c \wedge \alpha + \beta + \gamma = 1$$

$$\Rightarrow f(x) = \alpha \cdot f(a) + \beta \cdot f(b) + \gamma \cdot f(c)$$

2 VBO

2.2 Texturen

2.2.1 Mipmap

$$S = \sum_{i=0}^{\infty} (\frac{1}{4})^i = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

Bildschirmpixel

Abbildung 2.3: bilineare Interpolation

In der Regel sind Texturkoordinaten in $[0,1]^2$, wenn größer wird sie periodisch verwendet.

Abbildung 2.4: Maps Mipmapping

3 3D-Objekte

3.1 Orthogonalprojektion

$$x \in [l,r]$$

$$y \in [b,t]$$

$$z \in [-f,-n]$$

 $Sichtquader \rightarrow Einheitsquader$

$$x' \in [-1, 1]$$

 $y' \in [-1, 1]$
 $z' \in [-1, 1]$

$$x' = a\alpha \cdot x + \beta$$
$$l \mapsto -1, \ r \mapsto 1$$

(1)
$$-1 = \alpha \cdot l + \beta$$
(2)
$$1 = \alpha \cdot r + \beta$$
(2)
$$2 = \alpha \cdot r - \alpha \cdot l \Rightarrow \alpha = \frac{2}{r - l}$$

$$1 = \frac{2 \cdot r}{r - l} + \beta$$

$$\beta = 1 - \frac{2r}{r - l} = \frac{r - l - 2r}{r - e} = -\frac{r + l}{r - l}$$

3.2 Perspektivische Projektion

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & \frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & \frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{O} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$z' = -\frac{2}{f-n}z - \frac{f+n}{f-n}$$

$$z = n$$
 $z* = \frac{2n - (f+n)}{f-n} = \frac{n-f}{f-n} = -1$

$$-n \mapsto -1, -f \mapsto 1$$

Qmatrix4x4.ortho(1,n,b,t,n,f);

3.2 Perspektivische Projektion

$$\frac{y'}{-n} = \frac{y}{z}$$

$$y' = -\frac{n \cdot y}{z}$$

3D-Objekte

Sichtpyramide \rightarrow Einheitswürfel

$$y' = -\frac{n \cdot y}{z}$$

$$[b, t] \mapsto [-1, 1]$$

$$y'' = \alpha \cdot y' + \beta$$

$$y'' = \frac{2}{t \cdot b} \cdot y' - \frac{t + b}{t - b}$$

$$y'' = \frac{-2n}{t - b} \cdot \frac{y}{z} - \frac{t + b}{t - b}$$

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \xrightarrow{\text{Dehomogen-}} \begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{pmatrix}$$
 isierung
$$\begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{pmatrix}$$
 Kartesiche koord.

$$\begin{pmatrix} x'' \\ y'' \\ z'' \\ w'' \end{pmatrix} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$y'' = \frac{2n}{t-b} \cdot y + \frac{t+b}{t-b} \cdot z$$

$$w'' = -z$$

$$\frac{y''}{w''} = \frac{2n}{t-b} \frac{y}{(-z)} + \frac{t+b}{t-b} \frac{z}{(-z)}$$

$$z''' = \frac{z''}{w''} = \frac{\alpha \cdot z + \beta}{-z} = -\alpha - \frac{\beta}{z}$$

$$-n \mapsto -1, -f \mapsto 15$$

$$-\alpha - \frac{\beta}{-n} = -1$$

$$-\alpha - \frac{\beta}{-f} = 1$$

$$-\alpha + \frac{\beta}{n} = -1(1)$$

$$-\alpha + \frac{\beta}{f} = 1(2)$$

$$\frac{\beta}{f} - \frac{\beta}{n} = 2(2) - (1)$$

$$\beta \left(\frac{1}{f} - \frac{1}{n}\right) = 2$$

$$\beta \left(\frac{n - f}{fn}\right)$$

$$\beta = \frac{-2nf}{f - n}$$

$$\alpha = \frac{\beta}{f} - 1 = -\frac{2n - (f - n)}{f - n} = \frac{f + n}{f - n}$$

$$p' = R_{\vartheta,x} \cdot R_{\varphi,y} \cdot p$$

$$\uparrow \qquad \uparrow$$

die Welt-x-Achse die Welt-y-Achse

$3\ 3D ext{-}Objekte$

3D-Brille

4 Beleuchtung

4.0.1 Smoothing

4 Beleuchtung

Lambert

$$I_D = I_L \cdot \left(n^T \cdot \ell \right)$$

4.1 Phong Lichtmodell

$$|n| = |\ell| = |r| = |v| = 1$$
$$r = 2n(n^T \ell) - \ell$$

S = Shininess

$$I_S = I_L(\cos \alpha)^S = I_L(r^T v)^S, \quad I_D = I_L(n^T \ell)$$

4.1.1 Phong

$$I_{\mathrm{Color}} = I_{\mathrm{Ambient,Color}} + I_{\mathrm{Diffuse,Color}} + I_{\mathrm{Specular,\ Color}}$$

$$\mathrm{Color} \in \{\mathrm{Red,Green,Blue}\}$$

```
1 void main() {
2
       vec3 normal = normalize(vNormal);
3
       vec3 lightDir = normalize(lighPos - vPos);
       vec3 reflectDie = reflect(lightDir, normal);
 4
5
       vec3 viewDir = normalize(-vPos);
 7
       float lambertian = max(dot(loghtDir, normal), 0.0.);
8
       float specular = 0.0;
10
       if ( lambertian > 0.0) {
           float specAngle = max(dot(reflectDir, viewDir), 0.0);
11
12
           specular = pow(specAngle, uShininess);
13
14
       gl_FragColor = vec4(uAmbient + lambertian * uDiffuse + specular * uSpecular, 1.0);
15 }
```


Abbildung 4.2: Zu ignorierende Lichtquelle

5 Oberflächen

5.1 Texturen

$$(\varphi, \vartheta) \mapsto \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \vartheta \cdot \sin \varphi \\ \sin \vartheta \\ \cos \vartheta \cdot \cos \varphi \end{pmatrix}$$
$$0 \le \varphi \le 2\pi$$
$$-\frac{\pi}{2} \le \vartheta \le \frac{\pi}{2}$$

Abbildung 5.1: Field of view

perspective(fov, aspectratio, n, f);

5.2 Cube-Mapping

6 Volume Rendering mit 3d-Texturen

6.1 DVT

6.1.1 Lambert-Beer-Gesetz

$$I^{\text{out}} = I^{\text{in}} \cdot e^{-\mu \cdot d}$$

Schwächungskoeffizienten

$$I_S = I_0 \cdot e^{\sum_{\square(i,j)\cap S \neq \emptyset} \mu_{ij} \cdot d_{ij}}$$

$$\ln \frac{I_0}{I_S} = \sum_{\square(i,j)\cap S \neq \emptyset}^{\mu_{ij} \cdot d_{ij}}$$

$$I = D \cdot \mu$$

$$\mathbb{R}^{360.000.000 \times 128.000.000}$$

Inverses Problem

Gegeben: Gemessene Intensitäten I_S für alle Strahlen, die die Bildebene treffen für hinreichend viele Aufnahmerichtungen.

Gesucht: Schwächungskoeffizienten für alle Voxel des zu rekonstruierenden Volumens.

$$c^{\text{out}} = c^{\text{in}} \cdot (1 - \alpha_i) + c_i \alpha_i$$

 $\alpha_i = \text{Deckkraft der Farbe } c_i$

 $1-lpha_i$ $\hat{=}$ Transparenz

$$c^{\text{out}} = \sum_{i=1}^{n} c_i \alpha_i \prod_{j=i+1}^{n} (1 - \alpha_j)$$