Sampling Based Inference

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn basic sampling methods
 - Understand the concept of Markov chain Monte Carlo
 - Able to apply MCMC to the parameter inference of Bayesian networks
 - Know the mechanism of rejection sampling
 - Know the mechanism of importance sampling
- Learn sampling based inference
 - Understand the concept of Metropolis-Hastings algorithm
 - Know the mechanism of Gibbs sampling
- Know a case study of sampling based inference
 - Understand the latent Dirichlet allocation model
 - Know the collapsed Gibbs sampling
 - Know how to derive Gibbs sampling formula for LDA

Importance Sampling

- Huge waste from the rejection
- Is generating the PDF the end goal?
 - No... Usually, the question follows
 - Calculating the expectation of PDF
 - Calculating a certain probability
- Let's use the wasted sample to answer the questions

Filtered Extreme Values

•
$$E(f) = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \cong \frac{1}{L}\sum_{l=1}^{L}\frac{P(z^l)}{q(z^l)}f(z^l)$$

- L = # of samples, z^l = a sample of Z
- Here, the importance weight plays the role

$$r^l = \frac{P(z^l)}{q(z^l)}$$

• What if $P(z^l)$ and $q(z^l)$ is not normalized, as they should be as probability distributions

•
$$E(f) \cong \frac{1}{L} \sum_{l=1}^{L} \frac{P(z^l)}{q(z^l)} f(z^l) = \frac{1}{L} \frac{Z_q}{Z_p} \sum_{l=1}^{L} \frac{\tilde{P}(z^l)}{\tilde{q}(z^l)} f(z^l)$$

•
$$P(Z>1) = \int_{1}^{\infty} 1_{z>1} p(z) dz = \int_{1}^{\infty} 1_{z>1} \frac{p(z)}{q(z)} q(z) dz \cong \frac{1}{L} \sum_{l=1}^{L} \frac{P(z^{l})}{q(z^{l})} 1_{z^{l}>1}$$

Likelihood Weighting Algorithm

- P(E=T|MC=T,A=F)=?
- LikelihoodWeighting
 - SumSW=NormSW=0
 - Iterate many times
 - SW=SampleWeight = 1
 - Generate a sample from the Bayesian network
 - Buglary → false
 - Earthquake → false
 - Alarm=F|B=F,E=F
 - P(A=F|B=F,E=F)=0.999
 - SW=1*0.999
 - JC|A=T→true
 - MC=T|A=F
 - P(MC=T|A=F)=0.01
 - SW=1*0.999*0.01
 - If the sample has E=T, then SumSW+=SW
 - NormSW+=SW
 - Return SumSW/NormSW
- Any further improvement?
- These samples are....

В	E	P(A B,E)
Т	T	0.95
Т	F	0.94
F	T	0.29
F	F	0.001

A	P(J A)
T	0.90
F	0.05
A	P(M A)
T	0.70

F

0.01