PAT-NO:

JP02000150235A

DOCUMENT-IDENTIFIER: JP 2000150235 A

TITLE:

SPIN VALVE MAGNETORESISTIVE SENSOR AND THIN-FILM

MAGNETIC HEAD

PUBN-DATE:

May 30, 2000

INVENTOR-INFORMATION:

COUNTRY NAME **UENO, MASANORI** N/A NAGAI, HIDEYASU N/A SUZUKI, KOICHI N/A FUKAGAWA, TOMOKI N/A HIGAMI, FUMINORI N/A

INT-CL (IPC): H01F010/26

ABSTRACT:

PROBLEM TO BE SOLVED: To intensify (111) orientation of each film layer of a spin valve film, increase unidirectional anisotropic magnetic field, reduce the interaction magnetic field between both of the magnetic layers, obtain thermal and magnetic stability, and improve magnetic conversion characteristic, such as high change rate of magnetoresistivity and linearity of magnetoresistive change.

SOLUTION: A first base film 21 of nonmagnetic metal such as Ta and a second base film 22 of alloy formed thereon which alloy is expressed by NiFeX (X is at least one kind selected from among Cr, Nb and Rh) are formed on a substrate layer 2. A free magnetic layer 4 and a pin magnetic layer 6, which are arranged sandwiching a nonmagnetic conducting layer 5, and an antiferromagnetic layer 7 are laminated on the base layer 2, thereby forming a spin valve film 3. In a spin valve magnetoresistive sensor having the spin valve film 3, the second base film has an fcc structure and subjected to (111) orientation.

COPYRIGHT:	(C)2000,JPO

Abstract Text - FPAR (1):

----- KWIC -----

PROBLEM TO BE SOLVED: To intensify (111) orientation of each film layer of a spin valve film, increase unidirectional anisotropic magnetic field, reduce the interaction magnetic field between both of the magnetic layers, obtain thermal and magnetic stability, and improve magnetic conversion characteristic, such as high change rate of magnetoresistivity and linearity of magnetoresistive change.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-150235 (P2000-150235A)

(43)公開日 平成12年5月30日(2000.5.30)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H01F 10/26

H01F 10/26

5E049

審査請求 未請求 請求項の数4 FD (全 5 頁)

(21)出願番号

特願平10-331916

(22)出願日

平成10年11月9日(1998.11.9)

(71)出願人 392034355

リードライト・エスエムアイ株式会社 大阪府三島郡島本町江川2丁目15番17号

(72)発明者 上野 昌紀

大阪府三島郡島本町江川2丁目15番17号 リードライト・エスエムアイ株式会社内

(72)発明者 永井 秀康

大阪府三島郡島本町江川2丁目15番17号 リードライト・エスエムアイ株式会社内

(74)代理人 100098062

弁理士 梅田 明彦

最終頁に続く

(54) 【発明の名称】 スピンパルブ磁気抵抗センサ及び薄膜磁気ヘッド

(57)【要約】

【解決手段】 基板上にTaなどの非磁性金属の第1下地膜21とその上に形成されるNiFeX(XはCr、Nb、Rhから選択される少なくとも1種)で表される合金の第2下地膜22とからなる下地層2を形成し、その上に非磁性導電層5を挟んで配置されたフリー磁性層4及びピン磁性層6と、反強磁性層7とを積層したスピンバルブ膜3を備えるスピンバルブ磁気抵抗センサにおいて、第2下地膜がfcc構造を有し、かつ(111)配向されている。

【効果】 スピンバルブ膜の各膜層の(111)配向を強くし、一方向異方性磁場を大きくして、両磁性層間の相互作用磁場を小さくでき、熱的・磁気的に高い安定性が得られ、高い磁気抵抗変化率及び磁気抵抗変化の線形性など、磁気変換特性が向上する。

【特許請求の範囲】

【請求項1】 基板上に下地層と、前記下地層の上に非 磁性層を挟んで配置された1対の磁性層と、一方の前記 磁性層に隣接する反強磁性層とを積層したスピンバルブ 磁気抵抗センサであって、

1

前記下地層が、非磁性金属の第1下地膜と、前記第1下 地膜の上に形成されるNiFeX(XはCr、Nb、R hから選択される少なくとも1種)で表される合金の第 2下地膜とからなり、前記第2下地膜がfcc構造を有 し、かつ(111)配向されていることを特徴とするス 10 ピンバルブ磁気抵抗センサ。

【請求項2】 前記第2下地膜の膜厚が20~100Å の範囲内にあることを特徴とする請求項1に記載のスピ ンバルブ磁気抵抗センサ。

【請求項3】 前記XがCrであり、かつその組成が2 0~50at%の範囲内にあることを特徴とする請求項 1又は2に記載のスピンバルブ磁気抵抗センサ。

【請求項4】 請求項1乃至3のいずれかに記載のスピ ンバルブ磁気抵抗センサを備えるであることを特徴とす る薄膜磁気ヘッド。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気記録装置に使 用される磁気抵抗型センサに関し、特にスピンバルブ磁 気抵抗効果を利用した磁気センサ及び薄膜磁気ヘッドに 関する。

[0002]

【従来の技術】最近、再生用磁気ヘッドにおいて飽和磁 界を小さくして磁界感度を高めるために、基板上に非磁 性層を挟んで1対の磁性層を積層したサンドイッチ構造 30 のスピンバルブ膜からなる磁気センサが開発されてい る。スピンバルブ膜は、一方の磁性層(ピン層)の磁化 が、それに隣接する反強磁性層との交換結合磁界により 素子高さ方向に固定されるのに対し、他方の磁性層(フ リー層)の磁化は、一般に永久磁石の磁界を利用したハ ードバイアス法により、素子のトラック幅方向に単磁区 化され、外部磁界により自由に回転する。

【0003】反強磁性層による一方向異方性磁場が大き いほど、ピン層を良好に単磁区化することができ、また その磁化が十分に固定されるほど、外部磁場に対する磁 40 気応答の線形性が確保され、磁気センサの磁気特性が向 上する。そこで、従来より様々な反強磁性材料が提案さ れている。また、反強磁性材料は、その下地の材料によ って特性が変化することが知られている。

【0004】例えば、特開平8-315326号公報に は、高抵抗で配向性を向上させ得る結晶性軟磁性膜を磁 気抵抗効果膜の下地として配置することにより、磁気抵 抗変化率等の特性を向上させることができる磁気抵抗効 果ヘッドが開示されている。更に同公報によれば、前記 a等の非磁性金属膜を設けることが記載されている。ま た、特開平8-213238号公報に記載される磁気抵 抗センサは、磁性自由層の結晶配向を揃えるためにTa 下地層を用いている。

【0005】更に、特開平9-16915号公報には、 スピンバルブ磁気抵抗型トランデューサにおいて、下地 層としてTa膜とNiFe系合金膜との2層膜を用いる ことにより、反強磁性層の結晶性を改善し、ピン層の磁 化を十分に固定して線形な磁気抵抗変化を得られること が開示されている。また、特開平6-325934号公 報には、磁気抵抗効果素子において、fcc格子を有す る材料の第1下地膜と基板との間にTa等の第2下地膜 を配置した2層構造の下地層により、その上に形成する 強磁性膜の(111)配向を改善すると共に、表面平滑 性を向上できることが記載されている。

[0006]

【発明が解決しようとする課題】しかしながら、従来の Ta膜からなる下地層を設けたスピンバルブ膜では、反 強磁性層による一方向異方性磁場が通常200~100 〇エルステッド(Oe)で限界があるため、これを磁気 20 ヘッドに適用した場合、動作温度が高くなるとピン層の 磁化方向が変化して、磁気変換特性が不安定になり、信 頼性を損なう虞があった。

【0007】また、スピンバルブ磁気抵抗センサにおい て、フリー層を薄くすると再生出力を高くできるが、そ の膜厚が或る限界(約30~40Å)を超えると、フリ ─層の(111)配向が不十分になって、フリー層・ピ ン層間の強磁性的な相互作用が大きくなり、逆に再生出 力が低下し、磁気的に不安定になるという問題があっ た。そのため、通常フリー層の膜厚は約50~100Å の範囲内に設定されているが、再生出力を高くするため には、磁気的安定性を確保しつつフリー層の膜厚をでき る限り薄くできることが好ましい。

【0008】そこで、本発明は、上述した従来の問題点 に鑑みてなされたものであり、その目的とするところ は、スピンバルブ膜の反強磁性膜による一方向異方性を 大きくし、かつフリー層とピン層間の相互作用を小さく して、熱的及び磁気的に磁気変換特性を安定化させたス ピンバルブ磁気抵抗センサを提供することにある。

【0009】また、本発明の別の目的は、かかるスピン バルブ磁気抵抗センサを備えることにより、より好記録 密度化を達成可能な高性能の薄膜磁気ヘッドを提供する ことにある。

[0010]

【課題を解決するための手段】本発明によれば、上述し た目的を達成するために、基板上に下地層と、前記下地 層の上に非磁性層を挟んで配置された1対の磁性層と、 一方の前記磁性層に隣接する反強磁性層とを積層したス ピンバルブ膜を備え、前記下地層が、非磁性金属の第1 結晶性軟磁性膜の結晶性を高めるために、その下地にT 50 下地膜と、前記第1下地膜の上に形成されるNiFeX (XはCr、Nb、Rhから選択される少なくとも1種)で表される合金の第2下地膜とからなり、前記第2下地膜がfcc(面心立方)構造を有し、かつ(111)配向されていることを特徴とするスピンバルブ磁気抵抗センサが提供される。

【0011】スピンバルブ膜の両磁性層、非磁性層及び 反強磁性層は、このような第2下地膜の上に形成される ことにより、結晶面の(111)配向が強くなり、一方 向異方性磁場が大きくなると共に、両磁性層間の相互作 用磁場が小さくなる。これにより、高い磁気抵抗変化率 10 及び線形な磁気抵抗変化を示すスピンバルブ磁気抵抗セ ンサが得られる。

【0012】スピンバルブ膜の結晶配向性は、下地層の 膜厚を厚くし過ぎても、或る程度以上改善することはで きない。第2下地膜の膜厚は、20~100Åの範囲内 にあることが好ましい。

【0013】また、下地層は、NiFeXに含まれる元素Xの濃度を適当に選択することにより、NiFe合金の場合よりも非磁性化することができ、かつ高抵抗化して下地層へのシャント電流を大幅に少なくし、センサの20磁気抵抗率を高めることができる。特に、元素XがCrであり、かつその組成が20~50at%の範囲内にあると、第2下地膜を構成するNiFeの磁性が消えて非磁性化できるので、好都合である。

【 0 0 1 4 】 更に本発明の別の側面によれば、上述した スピンバルブ磁気抵抗センサを備えることにより、熱的 ・磁気的に高い安定性を有し、高記録密度の可能な薄膜 磁気ヘッドが提供される。

[0015]

【発明の実施の形態】図1は、本発明を適用したスピン 30 バルブ磁気抵抗センサの好適な実施例を示している。このスピンバルブ磁気抵抗センサは、ガラスやシリコン、A12O3・TiCなどのセラミック材料からなる基板上に設けたアルミナ(A12O3)絶縁層1の上に下地層2が形成され、その上にスピンバルブ構造の磁気抵抗(MR)膜3が積層されている。本実施例の下地層2は、厚さ30Åのタンタル(Ta)からなる第1下地膜21と厚さ50Åのニッケルー鉄ークロム(NiFeCr)からなる第2下地膜22との2層構造である。

【0016】MR膜3は、下地層2の上に積層した厚さ 40 50Åのニッケルー鉄 (NiFe)膜41と厚さ10Åのコバルトー鉄 (CoFe)膜42との2層構造からなるフリー磁性層4、厚さ25Åの銅(Cu)膜からなる非磁性導電層5、厚さ20Åのコバルトー鉄 (CoFe)膜からなるピン磁性層6、及び厚さ300Åの白金ーマンガン (PtMn)膜からなる反強磁性層7を有する。MR膜3の上には、厚さ30ÅのTa膜からなる保護層8が付着されている。

【0017】MR膜3の両側は、所定のトラック幅に合き、同じく組成NiFe16Cr25の第2下地膜22の脂わせてエッチングにより除去され、ハードバイアス層9 50 厚t2に関する交換結合磁場Hex、及びピン層/フリー

が形成されている。ハードバイアス層9の上には、センス電流を流すための電極として1対の導電リード10が形成され、かつこの積層構造全体を更にアルミナ絶縁層11で被覆して、本発明のスピンバルブMRセンサを完成する。

【0018】MR膜3は、成膜後に真空磁場中で所定の熱処理を行うことにより、反強磁性層7を規則化させ、かつピン磁性層6に一方向性異方性を与えて、その磁化配向を固定する。NiFeCr第2下地膜22はfcc結晶構造を有し、かつ(111)配向されているので、その上に積層するMR膜3の各層の(111)配向性を高めることができる。これにより、前記MR膜は、反強磁性層7による一方向異方性磁場が大きくなり、かつフリー磁性層4とピン磁性層6間の相互作用磁場が小さくなる。

【0019】前記NiFeCr膜のCr濃度は、第2下地膜22を非磁性化、高抵抗化させるために、20~50at%の範囲が好ましい。第2下地膜22の膜厚は、上述した50Åに限定されず、20~100Åの範囲内において適当に設定することができる。また、前記第2下地膜の材料として、NiFeにCr以外のNb、Rhなどを添加したNiFe系合金を用いることができる。いずれの場合でも、比抵抗の高い組成を選択することにより、下地層へのシャント電流を抑制できるので、大きな磁気抵抗変化率が得られる。

【0020】前記両磁性層は、上記NiFe及びCoFe以外に、Co、CoFeBなどの従来公知の様々な強磁性材料で形成することができ、前記反強磁性層は、上述したPtMn以外に、従来から知られているPdPtMn系、NiMn系、IrMn系、RhMn系、FeMn系、NiO系などの様々な反強磁性材料を用いることができる。

【0021】別の実施例では、図1の実施例とは逆に、 反強磁性層7を基板側にかつフリー磁性層4を基板とは 反対側にして、各膜層を逆の順に積層することができ る。この場合にも、図1の実施例と同様の作用効果が得 られる。また、本発明は、その技術的範囲内において上 記実施例に他の様々な変形・変更を加えて実施すること ができる。

0 【0022】図2は、図1の実施例において、NiFe 16Cr25からなる組成の第2下地膜22の膜厚t2の変 化に関するPtMn反強磁性層7及びフリー磁性層4の NiFe膜41の(111)配向性を示している。この X線回析プロファイルから、概ね20≤t2≤50の範 囲内において、前記両膜層が強い(111)配向性を示 していることが分かる。

【0023】また、図1の実施例においてTa第1下地 膜21の膜厚t1を30Å、15Å及び0Åとしたと き、同じく組成NiFe₁₆Cr₂₅の第2下地膜22の膜 厚t2に関する交換結合磁場Hex、及びピン層/フリー 層間の相互作用磁場Hint の変化を測定したところ、図3A及びBに示す結果が得られた。図3Aは、交換結合磁場Hexが、膜厚t1の大きさに拘わらず、概ね20≦t2≦50の範囲内において大きい値を示し、従って一方向異方性が大きくなることを示している。これに対し、図3Bは、相互作用磁場Hint が、同じく概ね20≦t2≦50の範囲内において小さくなることを示している。

【0024】更に、図1の実施例においてTa第1下地膜21の膜厚t1を一定とし、MR膜3を250℃及び 10270℃で熱処理した場合に、同じく組成NiFe16Cr25の第2下地膜22の膜厚t2に関するピン層/フリー層間の相互作用磁場Hintの変化を測定したところ、図4に示す結果が得られた。同図は、いずれの熱処理温度においても、相互作用磁場Hintが、概ね20≦t2≤70の範囲内において小さくなることを示している。これらの測定結果から、本発明の上述した作用効果が確認された。

[0025]

【発明の効果】本発明は、以上のように構成されている 20 ので、以下に記載されるような効果を奏する。本発明のスピンバルブ磁気抵抗センサによれば、第2下地膜によりスピンバルブ膜の(111)配向を強くし、一方向異方性磁場を大きくして、両磁性層間の相互作用磁場を小さくできるので、熱的・磁気的に高い安定性が得られ、高い磁気抵抗変化率及び磁気抵抗変化の線形性など、磁気変換特性の向上を達成することができる。更に、これにより、熱的・磁気的に高い安定性を有し、高記録密度化可能な磁気へッドを実現することができる。

【図面の簡単な説明】

【図1】本発明によるスピンバルブ磁気抵抗センサの好 適実施例をABS側から見た断面図である。

【図2】NiFeCr第2下地膜の膜厚に関するPtM n反強磁性層及びフリー磁性層のNiFe膜の(11 1)配向性をそれぞれ表すX線回析プロファイルを示す 線図である。

【図3】A図及びB図は、それぞれNiFeCr第2下 地膜の膜厚に関する交換結合磁場Hex、及びピン層/フ リー層間の相互作用磁場Hintの変化を示す線図であ る。

【図4】MR膜を250℃及び270℃でそれぞれ熱処理した場合のNiFeCr第2下地膜の膜厚に関するピン層/フリー層間の相互作用磁場Hintの変化を示す線図である。

【符号の説明】

- 1 絶縁層
- 2 下地層
- 3 MR膜
- 4 フリー磁性層
- 5 非磁性導電層
 - 6 ピン磁性層
 - 7 反強磁性層
 - 8 保護層
 - 9 ハードバイアス層
 - 10 導電リード
 - 11 アルミナ絶縁層
 - 21 第1下地膜
 - 22 第2下地膜
- 41 ニッケルー鉄膜
- 30 42 コバルト-鉄膜

【図1】

【図2】

【図4】

フロントページの続き

(72)発明者 鈴木 功一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内

(72)発明者 深川 智機 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 樋上 文範

大阪府三島郡島本町江川2丁目15番17号 リードライト・エスエムアイ株式会社内 Fターム(参考) 5E049 AA07 AA09 AC00 AC05 BA12 BA16 DB04 DB12