פתרון לממ"ן 17- 2007 אלגברה לינארית 1 - 20109

שאלה 1

- את תהליך של עליה עליה את הקבוצה על היא בסיס של $\{v_1=(1,1,1,1),v_2=(1,2,-1,1)\}$ א. אפידט כדי לקבל בסיס אורתוגונלי ל- U

$$u_2^{'}=v_2-rac{v_2\cdot u_1^{'}}{\left\|u_1^{'}
ight\|^2}u_1^{'}$$
ים רי $u_1^{'}=v_1=(1,1,1,1)$ נגדיר

 $u_{2}^{'}$ יו ו- $u_{1}^{'}$ יו ו- $u_{2}^{'}$ (נגרמל את הוקטורים יוע ו- $u_{2}^{'}$ - $u_{1}^{'}$ יו $u_{2}^{'}$ ו- $u_{2}^{'}$ יוע ו- $u_{2}^{'}$ מתקבל את הוקטורים יוע ו- $u_{2}^{'}$ יוע ו- $u_{1}^{'}$ יוע ו- $u_{1}^{'}$ יוע ו- $u_{2}^{'}$ יוע ו- $u_{2}^{'$

$$.u_{2}=\dfrac{u_{2}^{'}}{\left\Vert u_{2}^{'}\right\Vert }=\dfrac{1}{2\sqrt{19}}(1,~~5,~~-7,~~1)~, u_{1}=\dfrac{u_{1}^{'}}{\left\Vert u_{1}\right\Vert }=(\dfrac{1}{2},~~\dfrac{1}{2},~~\dfrac{1}{2},~~\dfrac{1}{2})~:$$
 ונגדיר

$$B_1 = \left\{ (rac{1}{2}\,,rac{1}{2}\,,rac{1}{2}\,,rac{1}{2}),rac{1}{2\sqrt{19}}\,(1,5,-7,1)
ight\} \ :U$$
ינק נקבל בסיס אורתונורמלי וווי u_1 יי u_2

: בסיס ל- U^{\perp} , כפי שעשינו בסעיף הקודם נמצא בסיס אורתונורמלי ל- U^{\perp} , כפי שעשינו בסעיף הקודם ב

$$v = (x, y, z, t) \in \mathbf{R}^4 \Leftrightarrow \begin{cases} x + y + z + t = 0 \\ x + 2y - z + t = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -2 & 0 \end{pmatrix}$$

$$\begin{cases} x = -3a - b \\ y = 2a \end{cases} : \text{ tight } t = b \ , \ z = a \text{ partial } t = b \end{cases} , \ z = a$$

$$U^{\perp} = Sp\{(-3, \ 2, \ 1, \ 0), (-1, \ 0, \ 0 \ 1)\}$$

$$u_3 = \frac{u_3'}{\|u_3'\|} = \frac{1}{\sqrt{2}}(-1, 0, 0, 1) : \text{ that } t = (-$$

 $v_4 = (-3, 2, 1, 0)$: נסמו

$$u_{4}^{'}=(-3,2,1,0)-\frac{3}{2}\left(-1,0,0,1\right)=\left(-\frac{3}{2},2,1,-\frac{3}{2}\right),u_{4}^{'}=v_{4}-\frac{v_{4}\cdot u_{3}^{'}}{\left\|u_{3}^{'}\right\|^{2}}u_{3}^{'}:$$
 נגדיר

$$\left\| u_{4} \right\| = \frac{\sqrt{38}}{2}$$
) $u_{4} = \frac{u_{4}}{\left\| u_{4} \right\|} = \frac{1}{\sqrt{38}}(-3, 4, 2, -3)$: נגדיר

. אורתונורמלי.
$$U^{\perp}$$
 ל-- ל-- $B_2=\left\{\frac{1}{\sqrt{2}}\left(-1,0,0,1\right),\frac{1}{\sqrt{38}}\left(-3,4,2,-3\right)\right\}$ הבסיס

כמובן , ${f R}^4$ בסיס של של $B=B_1\cup B_2$ הניסיס איחוד הבסיס של , ${f R}^4=U\oplus U^\perp$ -של אורתונורמלי:

$$B = \left\{ (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \frac{1}{2\sqrt{19}} (1, 5, -7, 1), \frac{1}{\sqrt{2}} (-1, 0, 0, 1), \frac{1}{\sqrt{38}} (-3, 4, 2, -3) \right\}$$

U על על על האורתוגונלי ההיטל את על על על על .v=(3,0,0,1) יהי

 $v=v_1+v_2$ כך ש- $v_1\in U^\perp$ פריוון ש- $v_1\in U$ קיימים איים, $V=U\oplus U^\perp$

הוא ההיטל האורתוגונלי של v על v על האורתוגונלי האורתוגונלי של v_1 . לחישוב של v_1 שמצאנו. איחודם v_1 הוא בסיס אורתונורמלי של v_2

$$v = \alpha u_1 + \beta u_2 + \gamma u_3 + \delta u_4 : tx$$

. סקלרים
$$\beta, \alpha, v_1 = \alpha u_1 + \beta u_2$$
 -1

 β, α בעזרת המכפלה הפנימית נחשב את

$$v\cdot u_1=(\alpha u_1+\beta u_2+\gamma u_3+\delta u_4)\cdot u_1=\alpha u_1\cdot u_1$$

$$= \alpha$$
 ($\|u_1\|^2 = 1$ כי

$$v \cdot u_2 = \beta$$
 : באופן דומה

$$v \cdot u_1 = (3, 0, 0, 1) \cdot (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 2$$
 : $z = 1$

$$v \cdot u_2 = (3, 0, 0, 1) \cdot \frac{1}{2\sqrt{19}} (1, 5, -7, 1) = \frac{4}{2\sqrt{19}} = \frac{2}{\sqrt{19}}$$

$$v_1 = 2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) + \frac{2}{\sqrt{19}} \cdot \frac{1}{2\sqrt{19}} (1, 5, -7, 1)$$
 : the state of th

$$v_1 = (\frac{20}{19}, \frac{24}{19}, \frac{12}{19}, \frac{20}{19})$$
 : כלומר

הערה, v אפשר להשתמש במשפט, VIII.15, סעיף גי, ולחישוב, β, α , אפשר להשתמש במחרה, אפשר להשתמש פתרון אפער להצורת האורתוגונלי להבנה בנוסחה בעמוד 18 שיעור שמיני. בפתרון שהוצע, חוזרים להגדרת ההיטל האורתוגונלי להבנה המלאה של המושג.

שאלה 2

 $\dim(U\cap W^\perp)\geq 2$ שהנתונים על W עובע מיד ש- $U\geq 2$ וגם $\dim U\geq 2$ וגם W עובע מיד ש-U נובע מיד ש-U נובע מיד ש-U מאידך, ידוע ש-U מאידך מתקבל בפרט ש-U משפט $\dim W$

לכן $W=\dim W=\dim W$ בסיס ל- W. ע"י חישוב דומה $\dim W=\dim W^{\perp}=2$ לכן לכן לכן לכן מתקבל הבסיס ל- W^{\perp} .

-עתה $\dim(U\cap W^\perp)\geq 2$ ו- $\dim W^\perp=2$ מהעובדות $U\cap W^\perp$ נסיק ש

$$W^{\perp} \subset U$$
 כלומר, $(U \cap W^{\perp}) = W^{\perp}$ כלו $(U \cap W^{\perp}) \subseteq W^{\perp}$ כלומר, $\dim(U \cap W^{\perp}) = 2$

מצאנו שמצאנו U -ם וקל ((1,0,0,0),(0,0,0,1)) מוכלת שמצאנו שני, הקבוצה $\{(1,0,0,0),(0,0,0,1)\}$

עבור W^\perp , כלומר W^\perp , היא בלתי תלויה לינארית. W^\perp , כלומר W^\perp , כלומר W^\perp , מוכל ב- W^\perp , מה שגורר ש- W^\perp מוכל ב- W^\perp , מה שגורר ש- W^\perp

שאלה 3

התת-מרחב ImT נפרש על-ידי וקטורי העמודות של המטריצה A, כלומר הוא שווה למרחב ImT התת-מרחב ImT והערכת של המטריצה $A^t=\begin{pmatrix} 1&2&0&2&1\\ -1&-2&1&1&0\\ 1&2&-3&-7&-2 \end{pmatrix}$ הוא מרחב הפתרונות של השורות של המטריצה לבעור (VIII.9 מחישוב סטנדרטי מתקבל ש- $B=\{(-2,1,0,0,0),(-1,0,-1,0,1),(-2,0,-3,1,0)\}$

שאלה 4

יהיו W_2,W_1 של אורתונורמליים אורתונורמליים בהתאמה. $C_2=\{v_1,v_2,...,v_k\},C_1=\{u_1,u_2,...,u_k\}$ יהיו \mathbf{R}^n על-ידי התהליך של גרם-שמידט, ניתן להשלים אותם לבסיסים אורתונורמליים של \mathbf{R}^n , נסמן על-ידי התהליך של גרם-שמידט, ניתן להשלים אותם $B_2=\{v_1,v_2,...,v_n\},B_1=\{u_1,u_2,...,u_n\}$ אותם $B_1,v_2,...,u_n$, עייפ משפט \mathbf{R}^n אורתוגונלית כי היא מעבירה את \mathbf{R}^n שמקיימת \mathbf{R}^n לבסיס האורתונורמלי \mathbf{R}^n נוכיח עתה שמתקיים \mathbf{R}^n לבסיס האורתונורמלי \mathbf{R}^n

.
$$w_1 = \sum_{i=1}^k lpha_i u_i$$
 - יהי פקלרים כך סקלרים מ $lpha_1,...,lpha_k$ יהי אז קיימים . $w_1 \in W_1$

לכן $T(W_1)\subseteq W_2$ -ש שמראה ש- $T(W_1)=\sum_{i=1}^k \alpha_i T(u_i)=\sum_{i=1}^k \alpha_i V_i$ לכן לכן $T(W_1)=W_2$ ממצא ב- $T(W_1)=W_2$ לכן העתקה T שהגדרנו גם מקיימת $W_2\in W_2$ נמצא ב- $T(W_1)=W_2$