

Accession Nbr :

2000-340369 [30]

Sec. Acc. CPI :

C2000-103446

Sec. Acc. Non-CPI :

N2000-255550

Title :

A conjugated fluorene-based polymer useful as an organic semiconductor, electroluminescence material, and for display elements

Derwent Classes :

A26 A85 E19 L03 U11 U14 W03 X26

Patent Assignee :

(AXIV-) AXIVA GMBH
(CELA) CELANESE AG
(AVET) AVENTIS RES & TECHNOLOGIES GMBH & CO KG
(CELA) CELANESE VENTURES GMBH
(COVI-) COVION ORGANIC SEMICONDUCTORS GMBH

Inventor(s) :

BECKER H; KREUDER W; SPREITZER H; ZUM HB

Nbr of Patents :

10

Nbr of Countries :

88

Patent Number :

DE19846766 A1 20000420 DW2000-30 C08G-061/10 11p *
AP: 1998DE-1046766 19981010

WO200022026 A1 20000420 DW2000-30 C08G-061/02 Ger
AP: 1999WO-EP06420 19990901
DSNW: AE AL AM AU AZ BA BB BG BR BY CA CN CU CZ DM EE GD GE HR HU ID IL IN IS
JP KG KP KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR
TT UA US UZ VN YU ZA
DSRW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT
SD SE SL SZ UG ZW

AU9957436 A 20000501 DW2000-36 C08G-061/02
FD: Based on WO200022026
AP: 1999AU-0057436 19990901

EP1123336 A1 20010816 DW2001-47 C08G-061/02 Ger
FD: Based on WO200022026
AP: 1999EP-0944575 19990901; 1999WO-EP06420 19990901
DSR: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI

KR2001080087 A 20010822 DW2002-13 C08G-061/10
AP: 2001KR-0704537 20010410

CN1330670 A 20020109 DW2002-29 C08G-061/02
AP: 1999CN-0811972 19990901

JP2002527553 W 20020827 DW2002-71 C08G-061/02 37p

THIS PAGE BLANK (USPTO)

FD: Based on WO200022026
AP: 1999WO-EP06420 19990901; 2000JP-0575926 19990901

US6653438 B1 20031125 DW2003-78 C08G-079/08
FD: Based on WO200022026
AP: 1999WO-EP06420 19990901; 2001US-0806707 20010426

EP1123336 B1 20040310 DW2004-18 C08G-061/02 Ger
FD: Based on WO200022026
AP: 1999EP-0944575 19990901; 1999WO-EP06420 19990901
DSR: DE FR GB NL

DE59908822 G 20040415 DW2004-26 C08G-061/02
FD: Based on EP1123336; Based on WO200022026
AP: 1999DE-5008822 19990901; 1999EP-0944575 19990901; 1999WO-EP06420 19990901

Priority Details :

1998DE-1046766 19981010

IPC s :

C08G-061/02 C08G-061/10 C08G-079/08 C07C-025/22 C07C-035/48 C07C-043/192 C07F-005/02
C07F-005/04 C07F-007/22 C09K-011/06 H01L-051/30 H05B-033/14

Abstract :

DE19846766 A

NOVELTY - Conjugated polymers having fluorene structural units containing heteroaryl, aryl, alkyl, heteroalkyl, cycloalkyl groups, where the aryl group can be substituted by non-aromatic substituents, and the polymers can contain F, Cl, CN substituents are new.

DETAILED DESCRIPTION - The conjugated polymers have structural units of formula (I):

R1, R2 = 2-40C heteroaryl or 5-40C aryl, both optionally substituted by one or more R3;
R3, R4 = 1-22C (cyclo)alkyl, 2-20C heteroaryl, 5-20C aryl, F, Cl, SO₃R₅R₆, and individual non-adjacent CH₂ groups in the alkyl can be substituted by O, S, C=O, COO, N-R₅ or by a single aryl which is optionally substituted by one or more non-aromatic R3;
R5, R6 = H, 1-22C (cyclo)alkyl, 2-20C heteroaryl, 5-20C aryl; and individual non-adjacent alkyl CH₂ groups can be substituted by O, S, C=O, COO, N-R₅ or by a single aryl which is optionally substituted by one or more non-aromatic R3;
m, n = 0-3.

INDEPENDENT CLAIMS are included for:

- (1) an electroluminescence device containing the polymer; and
- (2) fluorene derivatives of formula (A).

X, Y = halogen, B(OR₇)₂ or SnR₇R₈R₉;

R7, R8, R9 = H, 1-6C alkyl, or two of these residues can form a ring.

USE - The polymer is useful as an organic semiconductor or an electroluminescence material (claimed), for display elements in television monitor and illumination technology.

ADVANTAGE - The polymer shows emission in the blue and blue-green spectral zones. Surprisingly, by selection of a special substitution pattern in otherwise typical polymers based mainly on 2,7-fluorenyl building units, the morphological properties are greatly improved without loss of useful properties, e.g. in EL applications. (Dwg.0/0)

Manual Codes :

CPI: A05-J A09-A02 A09-A03 A12-E07C A12-E11 E05-C E05-F01 E08-D03 L03-C02C L03-G05
L04-A04
EPI: U11-A15 U14-J W03-A08X X26-J

Update Basic :

2000-30

Update Equivalents :

2000-30; 2000-36; 2001-47; 2002-13; 2002-29; 2002-71; 2003-78; 2004-18; 2004-26

Update Equivalents (Monthly) :

2001-08; 2002-02; 2002-05; 2002-11; 2003-12; 2004-03; 2004-04

THIS PAGE BLANK (USPTO)

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro.INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : C08G 61/02, C07C 43/192, C07F 5/04	A1	(11) Internationale Veröffentlichungsnummer: WO 00/22026
		(43) Internationales Veröffentlichungsdatum: 20. April 2000 (20.04.00)

(21) Internationales Aktenzeichen: PCT/EP99/06420	(81) Bestimmungsstaaten: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) Internationales Anmeldedatum: 1. September 1999 (01.09.99)	
(30) Prioritätsdaten: 198 46 766.4 10. Oktober 1998 (10.10.98) DE	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): AXIVA GMBH [DE/DE]; D-65926 Frankfurt am Main (DE)	
(72) Erfinder; und	
(75) Erfinder/Anmelder (<i>nur für US</i>): SPREITZER, Hubert [DE/DE]; Inselsbergstrasse 10, D-65929 Frankfurt (DE). BECKER, Heinrich [DE/DE]; Zum Talblick 30, D-61479 Glashütten (DE). KREUDER, Willi [DE/DE]; Sertoriusring 13, D-55126 Mainz (DE).	

Veröffentlicht

*Mit internationalem Recherchenbericht.
Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.*

(54) Title: CONJUGATED POLYMERS CONTAINING SPECIAL FLUORENE STRUCTURAL ELEMENTS WITH IMPROVED PROPERTIES

(54) Bezeichnung: KONJUGIERTE POLYMERE, ENTHALTEND SPEZIELLE FLUOREN-BAUSTEINE MIT VERBESSERTEN EIGENSCHAFTEN

(57) Abstract

The invention relates to novel polymers containing fluorene structural elements, monomer parent compounds upon which said polymers are based, and the use of said inventive polymers as organic semiconductors and/or as electroluminescent material, in addition to electroluminescent devices containing said polymers.

(57) Zusammenfassung

Die vorliegende Erfindung beschreibt neuartige Polymere enthaltende Fluoren-Bausteine, die den Polymeren zugrundeliegenden monomeren Ausgangsverbindungen, sowie die Verwendung der erfindungsgemäßen Polymeren als organischer Halbleiter und/oder als Elektrolumineszenzmaterial sowie Elektroluminesenzvorrichtungen enthaltend derartige Polymere.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Beschreibung

Konjugierte Polymere, enthaltend spezielle Fluorenbausteine mit verbesserten Eigenschaften

5 Es besteht ein hoher industrieller Bedarf an großflächigen Festkörper-Lichtquellen für eine Reihe von Anwendungen, überwiegend im Bereich von Anzeigeelementen, der Bildschirmtechnologie und der Beleuchtungstechnik. Die an diese Lichtquellen gestellten Anforderungen können zur Zeit von keiner der bestehenden Technologien 10 völlig befriedigend gelöst werden.

Als Alternative zu herkömmlichen Anzeige- und Beleuchtungselementen, wie Glühlampen, Gasentladungslampen und nicht selbstleuchtenden Flüssigkristallanzeigeelementen, sind bereits seit einiger Zeit 15 Elektrolumineszenz(EL)materialien und -vorrichtungen, wie lichtemittierende Dioden (LED), in Gebrauch.

Neben anorganischen sind seit etwa 30 Jahren auch niedermolekulare organische Elektrolumineszenzmaterialien und -vorrichtungen bekannt (siehe z.B. 20 US-A-3,172,862). Bis vor kurzem waren aber solche Vorrichtungen in ihrer praktischen Verwendbarkeit stark eingeschränkt.

In WO 90/13148 und EP-A-0,443,861 sind Elektroluminesenzvorrichtungen beschrieben, die einen Film aus einem konjugierten Polymer als lichtemittierende 25 Schicht (Halbleiterschicht) enthalten. Solche Vorrichtungen bieten zahlreiche Vorteile wie die Möglichkeit, großflächige, flexible Displays einfach und kostengünstig herzustellen. Im Gegensatz zu Flüssigkristalldisplays sind Elektrolumineszenzdisplays selbstleuchtend und benötigen daher keine zusätzliche rückwärtige Beleuchtungsquelle.

30 Eine typische Vorrichtung nach WO 90/13148 besteht aus einer lichtemittierenden Schicht in Form eines dünnen, dichten Polymerfilms (Halbleiterschicht), der

wenigstens ein konjugiertes Polymer enthält. Eine erste Kontaktschicht steht in Kontakt mit einer ersten Oberfläche, eine zweite Kontaktschicht mit einer weiteren Oberfläche der Halbleiterschicht. Der Polymerfilm der Halbleiterschicht hat eine genügend geringe Konzentration von extrinsischen Ladungsträgern, so daß beim

- 5 Anlegen eines elektrischen Feldes zwischen den beiden Kontaktschichten Ladungsträger in die Halbleiterschicht eingebracht werden, wobei die eine Kontaktschicht positiv gegenüber der anderen wird, und die Halbleiterschicht Strahlung aussendet. Die in solchen Vorrichtungen verwendeten Polymere sind 10 konjugiert. Unter konjugiertem Polymer versteht man ein Polymer, das ein delokalisiertes Elektronensystem entlang der Hauptkette besitzt. Das delokalisierte Elektronensystem verleiht dem Polymer Halbleitereigenschaften und gibt ihm die Möglichkeit, positive und/oder negative Ladungsträger mit hoher Mobilität zu 15 transportieren.

- 15 Für die Verwendung in EL-Elementen gemäß WO 90/13148 sind bereits sehr viele verschiedene Polymere vorgeschlagen worden. Besonders gut geeignet scheinen dabei Derivate des Poly(p-phenylen-vinylens) PPV zu sein. Derartige Polymere sind 20 beispielsweise in WO 98/27136 beschrieben. Diese Polymere sind insbesondere für Elektrolumineszenz im grünen bis roten Spektralbereich geeignet. Im blauen bis blaugrünen Spektralbereich sind bisher hauptsächlich Polymere auf Basis des Poly- 25 p-phenylens (PPP) bzw. Polyfluorens (PF) vorgeschlagen worden. Entsprechende Polymere sind beispielsweise in EP-A-0,707,020, WO 97/05184 und WO 97/33323 beschrieben. Diese Polymere zeigen bereits gute EL-Eigenschaften, wobei die Entwicklung noch lange nicht abgeschlossen ist. So weisen Polymere im blauen bis blaugrünen Spektralbereich häufig noch das Phänomen der morphologischen 30 Instabilität auf. Z. B. zeigen viele Polyfluorene flüssigkristallines oder verwandtes Verhalten, welches im dünnen Film zu Domänenbildung führen kann was wiederum zur Herstellung einer homogen leuchtenden Fläche ungeeignet ist. Auch neigen diese Polymere zur Aggregatbildung, was die Elektrolumineszenz ungewünscht in den langwelligen Bereich verschiebt, sowie die Lebensdauer der EL-Elemente negativ beeinflußt.

Aufgabe der vorliegenden Erfindung war es daher, Polymere bereitzustellen, die im blauen und blaugrünen Spektralbereich zur Emission geeignet sind und die gleichzeitig verbessertes morphologisches Verhalten aufweisen.

Überraschend wurde nun gefunden, daß durch die Wahl spezieller Substitutionsmuster in ansonsten typischen Polymeren, die hauptsächlich durch 2,7-Fluorenylbausteine aufgebaut sind, die morphologischen Eigenschaften signifikant verbessert werden ohne die guten Anwendungseigenschaften (Emissionsfarbe, Quantenausbeute der Emission, Verwendbarkeit in EL-Applikationen) zu verlieren.

Die erfindungsgemäßen Polymere enthalten Fluoreneinheiten, die durch ihr Substitutionsmuster geeignet sind, Aggregation im Film zu unterdrücken. Dies wird im besonderen dadurch erreicht, daß die 9,9-Position durch zwei verschiedenartige Aromaten substituiert ist. Dieses Ergebnis ist überraschend, vor allem im Hinblick auf Angaben in der wissenschaftlichen Literatur (G. Klärner et al., Adv. Mater. 1998, 10, 993), wonach der Einbau von Diphenylfluoreneinheiten in der Hauptkette keine derartigen Effekte ergibt. Dies bedeutet aber gerade auch, daß es sich als besonders günstig erwiesen hat, zwei unterschiedliche aromatische Substituenten an dieser Position einzuführen.

Gegenstand der Erfindung sind konjugierte Polymere, die Struktureinheiten der Formel (I),

(I)

worin

R¹, R² zwei verschiedene Substituenten aus der Gruppe C₂-C₄₀-Heteroaryl, C₅-C₄₀-Aryl darstellen; wobei die vorstehend genannten Aryle und/oder Heteroaryle mit einem oder mehreren Substituenten R³ substituiert sein können;

verschiedenartig sollen die Aryle und/oder Heteroaryle im Sinne dieser Erfindung bereits sein, wenn sie sich durch die Art oder Stellung von Substituenten unterscheiden,

R³, R⁴ gleich oder verschieden C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl, F, Cl, CN, SO₃R⁵, NR⁵R⁶; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein können, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können, R⁵, R⁶ gleich oder verschieden H, C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl, dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können, und m, n jeweils eine ganze Zahl 0, 1, 2 oder 3, bevorzugt 0 oder 1 ist, enthalten.

Bevorzugt stehen R¹, R² für zwei verschiedene Substituenten aus der Gruppe C₅-C₄₀-Aryl, C₂-C₄₀-Heteroaryl; wobei die vorstehend genannten Aryle bzw. Heteroaryle mit einem oder mehreren Substituenten R³ substituiert sein können.

Das erfindungsgemäße Polymer enthält mindestens 10 Mol-%, vorzugsweise 10 Mol-% bis 100 Mol-%, an Struktureinheiten der Formel (I) statistisch, alternierend, periodisch, oder in Blöcken eingebaut.

Die erfindungsgemäßen Polymere sind vorzugsweise Copolymere bestehend aus einer oder mehrerer Struktureinheiten der Formel (I). In einer weiteren Ausführungsform der vorliegenden Erfindung kann das erfindungsgemäße Polymer auch verschiedene Struktureinheiten der Formel (I) und weitere - für sich alleine nicht erfindungsgemäße - Struktureinheiten enthalten. Beispiele für derartige weitere Monomere sind 1,4-Phenylene, 4,4'-Biphenyle und weitere 2,7-Fluorene, die

gegebenenfalls auch Substituenten tragen können, bevorzugt dabei verzweigte oder unverzweigte C₁-C₂₂-Alkyl- oder Alkoxygruppen.

Die erfindungsgemäßen Polymere weisen im allgemeinen 10 bis 10000, vorzugsweise 10 bis 5000, besonders bevorzugt 50 bis 5000, ganz besonders bevorzugt 50 bis 1000 Wiederholeinheiten auf.

5 Besonders bevorzugt sind Polymere bei denen m, n gleich null sind.

Die erfindungsgemäßen Polymere lassen sich durch die unterschiedlichsten Reaktionen aufbauen. Bevorzugt sind jedoch einheitliche C-C-Kupplungsreaktion, z. B. Suzuki-Kondensation und Stille-Kondensation. Einheitliche C-C-Kupplungsreaktion soll in diesem Zusammenhang bedeuten, daß aus der Stellung der reaktiven Gruppen in den entsprechenden Monomeren die Verknüpfung in den Polymeren festgelegt ist. Dies ist besonders gut durch die o. g. Reaktionen, die sich wegen des sauberen Ablaufs sehr gut eignen, gegeben. Geeignet ist weiterhin die Nickel katalysierte Kupplung von Halogenaromaten (Yamamoto-Kupplung). Weniger gut sind hingegen oxidative Verfahren (z. B. Oxidative Kupplung mit Fe(III)-Salzen) geeignet, da diese zu undefinierten Verknüpfungen führen.

Aus oben gesagtem resultiert auch die bevorzugte Wahl der Monomere: diese stellen die entsprechenden Bishalogen-, Bispseudohalogen- (d. h. im Sinne dieser Erfindung z. B. Bis-Triflat, Bis-Nonaflat, Bis-Tosylat), Bisboronsäure-, Bisstannat-, Monohalogen-monoboronsäure-, Monohalogen-monostannatderivate der Verbindungen gemäß Formel (I) und Formel (II) dar.

25 Die Synthese der erfindungsgemäßen Polymere ist beispielhaft durch das nachfolgende Schema 1 wiedergegeben:

Formel (II)

Der Rest R bedeutet im vorstehenden Schema Wasserstoff oder einen beliebigen organischen Rest, vorzugsweise einen Rest mit 1 bis 40 Kohlenstoffatomen.

5 Beispiele hierfür sind entsprechende Alkylreste, z. B. Methyl oder Butyl. Des weiteren kann R für einen aromatischen Rest mit 5 bis 30 Kohlenstoffatomen stehen, der gegebenenfalls substituiert sein kann. Der Rest R^{1a} entspricht in seiner Definition dem Rest R¹; Der Rest R^{2a} entspricht in seiner Definition dem Rest R²; Der Rest R^{3a} entspricht in seiner Definition dem Rest R³; Der Rest R^{4a} entspricht in seiner Definition dem Rest R⁴.

10 In Schema 1 ist die Polymerisation via Suzuki-Kupplung angegeben. Es sei ausdrücklich darauf verwiesen, daß es sich hierbei nur um eine mögliche Ausführungsform handelt. Es sind natürlich auch andere Kombinationen von Boronsäuren und Halogenen/Pseudohalogenen ausführbar. Analog ist mit entsprechenden Zinnverbindungen auch die Polymerisation nach Stille durchzuführen.

15 Die Polymerisation gemäß Suzuki ist wie folgt vorzunehmen:

Die der Struktureinheit der Formel (I) zugrundeliegenden Monomere (und gegebenenfalls weitere zusätzliche Monomere mit entsprechenden aktiven Abgangsgruppen) werden in einem inerten Lösungsmittel bei einer Temperatur im Bereich von 0°C bis 200°C in Gegenwart eines Palladiumkatalysators zur Reaktion gebracht. Dabei ist darauf zu achten, daß die Gesamtheit aller verwendeten Monomere ein möglichst ausgeglichenes Verhältnis an Boronsäurefunktionen zu

Halogen- bzw. Pseudohalogenfunktionen aufweist. Es kann sich zudem als vorteilhaft erweisen, am Ende der Reaktion durch Endcapping mit monofunktionellen Reagenzien eventuell überschüssige reaktive Gruppen zu entfernen.

- 5 Zur Durchführung der angegebenen Reaktion mit Boronsäure(ester)n werden die aromatischen Borverbindungen, die aromatischen Halogenverbindungen, eine Base und katalytische Mengen des Palladiumkatalysators in Wasser oder in ein oder mehrere inerte organische Lösungsmittel oder vorzugsweise in eine Mischung aus Wasser und einem oder mehreren inerten organischen Lösungsmitteln gegeben und bei einer Temperatur von 0 bis 200°C, bevorzugt bei 30 bis 170°C, besonders bevorzugt bei 50 bis 150°C, insbesonders bevorzugt bei 60 bis 120°C für einen Zeitraum von 1 h bis 200 h, bevorzugt 5 h bis 150 h, besonders bevorzugt 24 h bis 120 h, gerührt. Es kann sich dabei auch als vorteilhaft erweisen, eine Art von Monomer (z. B. ein Bisboronsäurederivat) kontinuierlich oder diskontinuierlich über einen längeren Zeitraum langsam zuzudosieren, um damit das Molekulargewicht zu regeln. Das Rohprodukt kann nach dem Fachmann bekannten und dem jeweiligen Polymer angemessenen Methoden, z.B. mehrfaches Umfällen bzw. auch durch Dialyse gereinigt werden.
- 10 20 Für das beschriebene Verfahren geeignete organische Lösungsmittel sind beispielsweise Ether, z. B. Diethylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan, Dioxolan, Diisopropylether, tert.-Butylmethylether, Kohlenwasserstoffe, z. B. Hexan, iso-Hexan, Heptan, Cyclohexan, Toluol, Xylol, Alkohole, z. B. Methanol, Ethanol, 1-Propanol, 2-Propanol, Ethylenglykol, 1-Butanol, 2-Butanol, tert.-Butanol, Ketone, z. B. Aceton, Ethylmethylketon, iso-Butylmethylketon, Amide, z.B. Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Nitrile, z.B. Acetonitril, Propionitril, Butyronitril, und Mischungen derselben.
- 15 25 30 Bevorzugte organische Lösungsmittel sind Ether, wie Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan, Diisopropylether, t-Butylmethylether, Kohlenwasserstoffe, wie Hexan, Heptan, Cyclohexan, Toluol,

Xylol, Alkohole, wie Methanol, Ethanol, 1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, tert.-Butanol, Ethylenglykol, Ketone, wie Ethylmethylketon, iso-Butylmethylketon, Amide, wie Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon und Mischungen derselben.

5

Besonders bevorzugte Lösungsmittel sind Ether, z. B. Dimethoxyethan, Tetrahydrofuran, Kohlenwasserstoffe, z. B. Cyclohexan, Toluol, Xylol, Alkohole, z. B. Ethanol, 1-Propanol, 2-Propanol, 1-Butanol, tert.-Butanol und Mischungen derselben.

10

In einer besonders bevorzugten Variante werden bei dem beschriebenen Verfahren Wasser und ein oder mehrere Lösungsmittel eingesetzt. Beispiele sind Mischungen aus Wasser und Toluol, Wasser, Toluol und Tetrahydrofuran sowie Wasser, Toluol und Ethanol.

15

Basen, die bei dem beschriebenen Verfahren vorzugsweise Verwendung finden sind Alkali- und Erdalkalimetallhydroxide, Alkali- und Erdalkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkali- und Erdalkalimetallacetate, Alkali- und Erdalkalimetallalkoholate, sowie primäre, sekundäre und tertiäre Amine.

20

Besonders bevorzugt sind Alkali- und Erdalkalimetallhydroxide, Alkali- und Erdalkalimetallcarbonate und Alkalimetallhydrogencarbonate. Insbesondere bevorzugt sind Alkalimetallhydroxide, wie Natriumhydroxid und Kaliumhydroxid, sowie Alkalimetallcarbonate und Alkalimetallhydrogencarbonate, wie Lithiumcarbonat, Natriumcarbonat und Kaliumcarbonat.

25

Die Base wird bei dem angegebenen Verfahren bevorzugt mit einem Anteil von 100 bis 1000 Mol-%, besonders bevorzugt 100 bis 500 Mol-%, ganz besonders bevorzugt 150 bis 400 Mol-%, insbesondere 180 bis 250 Mol-%, bezogen auf Borgruppen, eingesetzt.

30

Der Palladiumkatalysator enthält Palladiummetall oder eine Palladium (0) oder (II)

Verbindung und einen Komplexliganden, vorzugsweise einen Phosphanliganden. Die beiden Komponenten können eine Verbindung bilden, z.B. das besonders bevorzugte $\text{Pd}(\text{PPh}_3)_4$, oder getrennt eingesetzt werden.

- 5 Als Palladiumkomponente eignen sich beispielsweise Palladiumverbindungen, wie
Palladiumketonate, Palladiumacetylacetone, Nitrilpalladiumhalogenide,
Olefinpalladiumhalogenide, Palladiumhalogenide, Allylpalladiumhalogenide und
Palladiumbiscarboxylate, bevorzugt Palladiumketonate, Palladiumacetylacetone,
bis- η^2 -Olefinpalladiumdihalogenide, Palladium(II)halogenide, η^3 -
10 Allylpalladiumhalogenid Dimere und Palladiumbiscarboxylate, ganz besonders
bevorzugt Bis(dibenzylidenaceton)palladium(0) [$\text{Pd}(\text{dba})_2$], $\text{Pd}(\text{dba})_2 \text{CHCl}_3$,
Palladiumbisacetylacetonat, Bis(benzonitril)palladiumdichlorid, PdCl_2 , Na_2PdCl_4 ,
Dichlorobis(dimethylsulfoxid)palladium(II), Bis(acetonitril)palladiumdichlorid,
Palladium-II-acetat, Palladium-II-propionat, Palladium-II-butanoat und (1c,5c-
15 Cyclooctadien)palladiumdichlorid.

- Ebenso als Katalysator dienen kann Palladium in metallischer Form, im folgenden
nur Palladium genannt, vorzugsweise Palladium in pulverisierter Form oder auf
einem Trägermaterial, z.B. Palladium auf Aktivkohle, Palladium auf Aluminiumoxid,
20 Palladium auf Bariumcarbonat, Palladium auf Bariumsulfat, Palladium auf
Aluminumsilikaten, wie Montmorillonit, Palladium auf SiO_2 und Palladium auf
Calciumcarbonat, jeweils mit einem Palladiumgehalt von 0,5 bis 10 Gew.-%.
Besonders bevorzugt sind Palladium in kolloidaler oder pulverisierter Form,
Palladium auf Aktivkohle, Palladium auf Barium- und/oder Calciumcarbonat und
25 Palladium auf Bariumsulfat, jeweils mit einem Palladiumgehalt von 0,5 bis 10 Gew.-%
% insbesondere bevorzugt ist Palladium auf Aktivkohle mit einem Palladiumgehalt
von 5 oder 10 Gew.-%
Der Palladiumkatalysator wird bei dem erfindungsgemäßen Verfahren mit einem
Anteil von 0,01 bis 10 Mol-%, bevorzugt 0,05 bis 5 Mol-%, besonders bevorzugt 0,1
30 bis 3 Mol-%, insbesondere bevorzugt 0,1 bis 1,5 Mol-%, bezogen auf die
Halogengruppen, eingesetzt.

Für das Verfahren geeignete Liganden sind beispielsweise Phosphane, wie Trialkylphosphane, Tricycloalkylphosphane, Triarylphosphane, wobei die drei Substituenten am Phosphor gleich oder verschieden, chiral oder achiral sein können und wobei einer oder mehrere der Liganden die Phosphorgruppen mehrerer Phosphane verknüpfen können und wobei ein Teil dieser Verknüpfung auch ein oder mehrere Metallatome sein können.

Beispiele für im Rahmen des hier beschriebenen Verfahrens verwendbare Phosphane sind Trimethylphosphan, Tributylphosphan, Tricyclohexylphosphan, Triphenylphosphan, Tritolyphosphan, Tris-(4-dimethylaminophenyl)phosphan, Bis(diphenylphosphano)methan, 1,2-Bis(diphenylphosphano)ethan, 1,3-Bis(diphenylphosphano)propan und 1,1'-Bis(diphenylphosphano)ferrocen.

Weitere geeignete Liganden sind beispielsweise Diketone, z. B. Acetylaceton und Octafluoracetylaceton und tert. Amine, z. B. Trimethylamin, Triethylamin, Tri-n-propylamin und Triisopropylamin.

Bevorzugte Liganden sind Phosphane und Diketone, besonders bevorzugt sind Phosphane.

Ganz besonders bevorzugte Liganden sind Triphenylphosphan, 1,2-Bis(diphenylphosphano)ethan, 1,3-Bis(diphenylphosphano)propan und 1,1'-Bis(diphenylphosphano)ferrocen, insbesondere Triphenylphosphan.

Für das Verfahren weiterhin geeignet sind wasserlösliche Liganden, die beispielsweise Sulfonsäuresalz- und/oder Sulfonsäurereste und/oder Carbonsäuresalz- und/oder Carbonsäurereste und/oder Phosphonsäuresalz und/oder Phosphonsäurereste und/oder Phosphoniumgruppen und/oder Peralkylammoniumgruppen und/oder Hydroxygruppen und/oder Polyethergruppen mit geeigneter Kettenlänge enthalten.

Bevorzugte Klassen von wasserlöslichen Liganden sind mit den obigen Gruppen substituierte Phosphane, wie Trialkylphosphane, Tricycloalkylphosphane, Triarylphosphane, Dialkylarylphosphane, Alkyldiarylphosphane und Heteroarylphosphane wie Tripyridylphosphan und Trifurylphosphan, wobei die drei Substituenten am Phosphor gleich oder verschieden, chiral oder achiral sein können und wobei einer oder mehrere der Liganden die Phosphorgruppen mehrerer

Phosphane verknüpfen können und wobei ein Teil dieser Verknüpfung auch ein oder mehrere Metallatome sein können, Phosphite, Phosphinigsäureester und Phosphonigsäureester, Phosphole, Dibenzophosphole und Phosphoratome enthaltende cyclische bzw. oligo- und polycyclische Verbindungen.

5

Der Ligand wird bei dem Verfahren mit einem Anteil von 0,1 bis 20 Mol %, bevorzugt 0,2 bis 15 Mol %, besonders bevorzugt 0,5 bis 10 Mol %, insbesonders bevorzugt 1 bis 6 Mol %, bezogen auf die aromatischen Halogengruppen, eingesetzt. Es können gegebenenfalls auch Mischungen zweier oder mehrerer verschiedener Liganden eingesetzt werden.

10

15

Vorteilhafte Ausführungsformen des beschriebenen Verfahrens der Suzuki-Variante sind für niedermolekulare Kupplungen z.B. in WO 94/101 05, EP-A-679 619, WO-A-694 530 und PCT/EP 96/03154 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird. Sie gelten durch Zitat als Bestandteil der Beschreibung dieser Anmeldung.

Die Polymerisation gemäß Stille ist wie folgt vorzunehmen:

20

Die den Struktureinheiten der Formel (I) und (II) zugrundeliegenden Monomeren (und gegebenenfalls weitere Monomere mit entsprechenden aktiven Abgangsgruppen) werden in einem inerten Lösungsmittel bei einer Temperatur im Bereich von 0°C bis 200°C in Gegenwart eines Palladiumkatalysators zur Reaktion gebracht. Dabei ist darauf zu achten, daß die Gesamtheit aller verwendeten Monomere ein möglichst ausgeglichenes Verhältnis an Zinnorganylfunktionen zu Halogen- bzw. Pseudohalogenfunktionen aufweist. Es kann sich zudem als vorteilhaft erweisen, am Ende der Reaktion durch Endcapping mit monofunktionellen Reagenzien eventuell überschüssige reaktive Gruppen zu entfernen.

25

30

Ein Überblick über diese Reaktion findet sich z.B. bei J.K. Stille, Angew. Chemie Int. Ed. Engl. 1986, 25, 508.

Zur Durchführung des Verfahrens werden bevorzugt aromatische Zinnverbindungen,

12

aromatische Halogenverbindungen, in ein oder mehrere inerte organische Lösungsmittel gegeben und bei einer Temperatur von 0°C bis 200°C, bevorzugt bei 30°C bis 170°C, besonders bevorzugt bei 50°C bis 150°C, insbesondere bevorzugt bei 60°C bis 120°C für einen Zeitraum von 1 h bis 200 h, bevorzugt 5 h bis 150 h, besonders bevorzugt 24 h bis 120 h, gerührt. Es kann sich dabei auch als vorteilhaft erweisen, eine Art von Monomer (z. B. ein Bisstannylderivat) kontinuierlich oder diskontinuierlich über einen längeren Zeitraum langsam zuzudosieren, um damit das Molekulargewicht zu regeln. Das Rohprodukt kann nach dem Fachmann bekannten und dem jeweiligen Polymer angemessenen Methoden, z.B. mehrfaches Umfällen bzw. auch durch Dialyse gereinigt werden.

Für das beschriebene Verfahren geeignete organische Lösungsmittel sind beispielsweise Ether, z.B. Diethylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan, Dioxolan, Diisopropylether, tert.-Butylmethylether, Kohlenwasserstoff, z.B. Hexan, iso-Hexan, Heptan, Cyclohexan, Benzol, Toluol, Xylol, Alkohole, z.B. Methanol, Ethanol, 1-Propanol, 2-Propanol, Ethylenglykol, 1-Butanol, 2-Butanol, tert.-Butanol, Ketone, z.B. Aceton, Ethylmethylketon, iso-Butylmethylketon, Amide, z.B. Dimethylformamid (DMF), Dimethylacetamid, N-Methylpyrrolidon, Nitrile, z.B. Acetonitril, Propionitril, Butyronitril und Mischungen derselben.

Bevorzugte organische Lösungsmittel sind Ether, wie Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan, Diisopropylether, Kohlenwasserstoffe, wie Hexan, Heptan, Cyclohexan, Benzol, Toluol, Xylol, Alkohole, wie Methanol, Ethanol, 1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, tert.-Butanol, Ethylenglykol, Ketone, wie Ethylmethylketon, oder Amide, wie DMF.

Besonders bevorzugte Lösungsmittel sind Amide, ganz besonders bevorzugt ist DMF.

Die Palladium- und die Phosphinkomponente sind analog zu der Beschreibung für die Suzuki-Variante zu wählen.

Weiterer Gegenstand der vorliegenden Erfindung sind die dem erfindungsgemäßen Polymeren zugrundeliegenden monomeren Vorprodukte. Diese werden durch die Formel (A)

5

worin

R¹, R² zwei verschiedene Substituenten aus der Gruppe C₂-C₄₀-Heteroaryl, C₅-C₄₀-Aryl darstellen; wobei die vorstehend genannten Aryle bzw. Heteroaryle mit einem oder mehreren Substituenten R³ substituiert sein können;

10 verschiedeneartig sollen die Aryle bzw. Heteroaryle im Sinne dieser Erfindung bereits sein, wenn sie sich durch die Art oder Stellung von Substituenten unterscheiden;

15 R³, R⁴ gleich oder verschieden C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl, F, Cl, CN, SO₃R⁵, NR⁵R⁶; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein können, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können,

20 R⁵, R⁶ gleich oder verschieden H, C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können, und

25 m, n jeweils eine ganze Zahl 0, 1, 2 oder 3, bevorzugt 0 oder 1 ist,

14

X, Y gleich oder verschieden Halogen, bevorzugt Cl, Br oder I, B(OR⁷)₂ oder
SnR⁷R⁸R⁹,
R⁷, R⁸, R⁹ gleich oder verschieden H, C₁-C₆-Alkyl, wobei zwei Reste auch einen
gemeinsamen Ring bilden können und diese Reste auch verzweigt oder
unverzweigt sein können.

5

Beispielhafte Monomere sind im nachfolgenden Schema 2 aufgeführt:

5

Die geeigneten 9-Aryl¹-9-aryl²-fluorenmonomere sind beispielhaft wie im folgenden Schema 3 beschrieben zu synthetisieren:

In den vorstehenden Formeln steht Ar^1 für einen Rest R^1 und Ar^2 für einen Rest R^2 .

16

Der Rest R hat die gleiche Bedeutung wie vorstehend definiert (Schema 1 und 2)

Demzufolge sind einfache Fluorenonderivate zu halogenieren. Für m, n = 0

5 entspricht dies der Halogenierung von Fluoren. 2,7-Dibromfluoren ist
beispielsweise kommerziell erhältlich (z. B. Aldrich). Anschließend kann eine
Arylgruppe durch die übliche Grignard-Reaktion eingeführt werden. Dies kann
beispielsweise gemäß den Beschreibungen im Organikum (15. Auflage, 1977, Seite
623) geschehen.

10 Anschließend kann ein Phenolderivat sauer katalysiert addiert werden. Dies kann
analog den Beschreibungen in WO 92/07812 geschehen. Die dadurch erhaltene
Verbindung kann verethert werden. Dies kann z. B. der Williamson'schen Methode
folgend geschehen (vgl. Organikum, 15. Auflage, 1977, Seite 253).

15 15 Die dadurch erhaltenen Verbindungen (Bishalogenfluorenderivate) sind bereits als
Monomere verwendbar. Durch eine weitere Umsetzung (Metallierung mit
anschließender Reaktion entweder mit Borsäureester oder Trialkylzinnhalogenid)
sind weitere Monomere zu gewinnen: Fluorenbisboronsäurederivate,
Fluorenbisstannate bzw. bei entsprechender Stöchiometrie auch Monohalogen-
20 fluorenmonoboronsäurederivate bzw. Monohalogenfluorenmonostannate. Diese
letztgenannten Umsetzung können nach Standardverfahren durchgeführt werden,
wie sie beispielsweise in WO 98/27136 beschrieben sind.

Eine andere Methode ist dem folgenden Schema zu entnehmen:

Für die Rest gilt hierbei $\text{Aryl}^1 = \text{Ar}^1 = \text{R}^1$ und $\text{Aryl}^2 = \text{Ar}^2 = \text{R}^2$.

5 Ausgehend von bishalogenierten Fluorenonderivaten (vgl. obige) können zunächst als Zwischenprodukt 4,4'-Dihalogenbiphenyl-2-carbonsäureesterderivate durch

10 basische Ringöffnung mit anschließender Veresterung erhalten werden. Diese Verbindungen können dann durch Umsetzung mit zwei verschiedenen Aryl-

Grignard-Reagenzien, wobei sich die zwischenzeitliche Hydrolyse, um das

15 entsprechende Keton als Intermediat zu isolieren, als hilfreich erwiesen hat, und anschließende saure Cyclisierung zu den gewünschten Fluorenmonomeren umgesetzt werden.

Wie schon oben beschrieben ist hier eine weitere Umsetzung zu den entsprechenden Fluorenbisboronsäurederivaten, Fluorenbisstannaten bzw.

Monohalogenfluorenmonoboronsäurederivaten bzw. Monohalogenfluorenmonostannaten möglich.

Damit ist nun gezeigt, daß Monomere, die bevorzugt durch die oben beschriebenen Polymerisationsmethoden zu erfindungsgemäßigen Polymeren umgesetzt werden können, leicht zugänglich sind.

5 Die so erhaltenen Polymere eignen sich ganz besonders bevorzugt als organischer Halbleiter und insbesondere als Elektrolumineszenzmaterialien.

Als Elektrolumineszenzmaterialien im Sinne der Erfindung gelten Materialien, die als aktive Schicht in einer Elektrolumineszenzvorrichtung Verwendung finden können.
10 Aktive Schicht bedeutet, daß die Schicht befähigt ist, bei Anlegen eines elektrischen Feldes Licht abzustrahlen (lichtemittierende Schicht) und/oder daß sie die Injektion und/oder den Transport der positiven und/oder negativen Ladungen verbessert (Ladungsinjektions- oder Ladungstransportschicht).

15 Gegenstand der Erfindung ist daher auch die Verwendung eines erfindungsgemäßigen Polymers als Elektrolumineszenzmaterial sowie als organischer Halbleiter.

Um als Elektrolumineszenzmaterialien Verwendung zu finden, werden die
20 erfindungsgemäßigen Polymere im allgemeinen nach bekannten, dem Fachmann geläufigen Methoden, wie Eintauchen (Dipping) oder Lackschleudern (Spincoating), in Form eines Films auf ein Substrat aufgebracht.

Gegenstand der Erfindung ist somit ebenfalls eine Elektrolumineszenzvorrichtung
25 mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser aktiven Schichten ein oder mehrere erfindungsgemäßige Polymere enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht und/oder eine Transportschicht und/oder eine Ladungsinjektionsschicht sein.

Der allgemeine Aufbau solcher Elektrolumineszenzvorrichtungen ist beispielsweise
30 in US-A-4,539,507 und US-A-5,151,629 beschrieben. Polymere enthaltende Elektrolumineszenzvorrichtungen sind beispielsweise in WO 90/13148 oder EP-A-0,443,861 beschrieben.

Sie enthalten üblicherweise eine elektrolumineszierende Schicht zwischen einer Kathode und einer Anode, wobei mindestens eine der Elektroden transparent ist. Zusätzlich können zwischen der elektrolumineszierenden Schicht und der Kathode 5 eine oder mehrere Elektroneninjektions- und/oder Elektronentransportschichten eingebracht sein und/oder zwischen der elektrolumineszierenden Schicht und der Anode eine oder mehrere Lochinjektions- und/oder Lochtransportschichten eingebracht sein. Als Kathode können vorzugsweise Metalle oder metallische Legierungen, z.B. Ca, Sr, Ba, Mg, Al, In, Mg/Ag dienen. Als Anode können Metalle, 10 z.B. Au, oder andere metallisch leitende Stoffe, wie Oxide, z.B. ITO (Indiumoxid/Zinnoxid) auf einem transparentem Substrat, z.B. aus Glas oder einem transparenten Polymer, dienen.

Im Betrieb wird die Kathode auf negatives Potential gegenüber der Anode gesetzt. Dabei werden Elektronen von der Kathode in die Elektroneninjektionsschicht- 15 /Elektronentransportschicht bzw. direkt in die lichtemittierende Schicht injiziert. Gleichzeitig werden Löcher von der Anode in die Lochinjektionsschicht/ Lochtransportschicht bzw. direkt in die lichtemittierende Schicht injiziert.

Die injizierten Ladungsträger bewegen sich unter dem Einfluß der angelegten 20 Spannung durch die aktiven Schichten aufeinander zu. Dies führt an der Grenzfläche zwischen Ladungstransportschicht und lichtemittierender Schicht bzw. innerhalb der lichtemittierenden Schicht zu Elektronen/Loch-Paaren, die unter Aussendung von Licht rekombinieren. Die Farbe des emittierten Lichtes kann durch die als lichtemittierende Schicht verwendeten Materialien variiert werden.

25 Elektrolumineszenzvorrichtungen finden Anwendung z.B. als selbstleuchtende Anzeigeelemente, wie Kontrolllampen, alphanumeriche Displays, monochromen oder multichromen Matrixdisplays, Hinweisschilder, elektrooptischen Speichern und in optoelektronischen Kopplern.

30 In der vorliegenden Anmeldung sind verschiedene Dokumente zitiert, beispielsweise um das technische Umfeld der Erfindung zu illustrieren. Auf alle diese Dokumente

wird hiermit ausdrücklich Bezug genommen, sie gelten durch Zitat als Bestandteil der vorliegenden Anmeldung.

Die Erfindung wird durch die Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen.

5

A) Synthese der Monomeren:

1. Herstellung der erfindungsgemäßen Monomeren:

Beispiel M1: Darstellung von 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-[4-(3,7-dimethyloctyloxy)phenyl]fluoren

10

i) 2,7-Dibrom-9-(2,5-dimethylphenyl)fluoren-9-ol:

Das Grignardreagenz von 102 g Brom-p-xylol, dargestellt in üblicher Weise in THF, wurde zu einer Suspension von 2,7-Dibromfluoren (169 g) in 500 ml THF bei 5-15°C zugetropft. Anschließend wurde der Ansatz für zwei Stunden zum Rückfluß erhitzt. Zur Hydrolyse wurde mit ca. 1200 ml Eiswasser und 30 ml konz. Schwefelsäure versetzt. Die Phasen wurden getrennt, die wäßrige Phase mehrfach mit Ethylacetat rückgeschüttelt und die vereinigten organischen Phasen nochmals mit Wasser rückgeschüttelt. Nach Trocknung über Na₂SO₄ wurde das Lösemittel abgezogen und das erhaltene Rohprodukt aus Ethanol umkristallisiert.

20

Ausbeute: 163 g (73%)

¹H NMR (d₆-DMSO): [ppm] δ = 8.05 (s (br), 1 H, OH), 7.85 (d, 2 H, H-4, J = 8 Hz), 7.60 (dd, 2 H, H-3, J₁ = 1 Hz, J₂ = 8 Hz), 7.15 (d, 2 H, H-1, J = 2 Hz), 7.02 (dd (br), 1 H, H-4', J₁ = 2 Hz, J₂ = 8 Hz), 6.85 (d, 1 H, H-3', J = 7.5 Hz), 6.48 (s (br), 1 H, H-6'), 2.38 (s, 3 H, Me), 1.2 (s(br), 3 H, Me).

25

ii) 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-hydroxyphenyl)fluoren

9.5 g Phenol wurden mit 22.2 g 2,7-Dibrom-9-(2,5-dimethylphenyl)fluoren-9-ol, 25 ml Toluol und 0.1 ml Mercaptopropionsäure vermischt. Anschließend wurden 5 ml konz. Schwefelsäure zugetropft. Der Ansatz wurde dann für ca. 2 h bei 60°C gerührt, schließlich mit 100 ml MeOH und 100 ml Wasser versetzt. Der Feststoff wurde abgesaugt und durch Ausröhren mit Ethanol weiter gereinigt.

30

Ausbeute: 16 g (61%)

¹H NMR (d_6 -DMSO): [ppm] δ = 9.4 (s (br), 1 H, OH), 7.92 (d, 2 H, H-4, J = 8 Hz), 7.60 (dd, 2 H, H-3, J_1 = 1 Hz, J_2 = 8 Hz), 7.45 (d, 2 H, H-1, J = 2 Hz), 6.98 (m, 4 H, H-2'', H-3', H-4'), 6.87 (s (br), 1 H, H-6'), 6.67 (Teil eines AA'BB', 2 H, H-3''), 2.17 (s, 3 H, Me), 1.38 (s(br), 3 H, Me).

iii) 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-[4-(3,7-dimethyloctyloxy)phenyl]fluoren

52 g 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-hydroxyphenyl)fluoren wurden mit 18 g 3,7-Dimethyloctylchlorid, 80 ml Ethanol, 7 g KOH, 1 g NaI für 5 Tage refluxiert. Nach 10 DC war die Reaktion nach dieser Zeit beendet. Das Lösemittel wurde abgezogen, mit Ethylacetat versetzt und der Niederschlag wurde abgesaugt. Dieser wurde noch mehrfach mit Ethylacetat nachgewaschen. Die organische Phase wurde getrocknet und das Lösemittel wurde abgezogen.

Das Produkt wurde durch doppelte Destillation am Kurzwegverdampfer (10^{-3} mbar;

15 1. Destillation zur Trocknung: 80°C; 2. Destillation: 250°C) gereinigt.

Ausbeute: 48 g (73%)

¹H NMR ($CDCl_3$): [ppm] δ = 7.83 (d, 2 H, H-4, J = 8 Hz), 7.55 (dd, 2 H, H-3, J_1 = 1 Hz, J_2 = 8 Hz), 7.38 (d, 2 H, H-1, J = 2 Hz), 7.02 (m, 4 H, H-2'', H-3', H-4'), 6.92 (s (br), 1 H, H-6'), 6.77 (Teil eines AA'BB', 2 H, H-3''), 3.90 (m, 2 H; OCH₂), 2.17 (s, 3 H, Me), 1.80 (m, 1 H), 1.65 (m, 3 H), 1.38 (s (br), 3 H, Me), 1.30 (m, 3 H); 1.16 (m, 3 H), 0.93 (d, 3 H, CH₃, J = 6.6 Hz), 0.86 (d, 6 H; 2 x CH₃, J = 6.7 Hz).

Beispiel M2: Darstellung von 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester

25 Unter Stickstoffatmosphäre wurde (86.0 g, 130 mmol) 2,7-Dibrom-9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren in 300 ml destilliertem THF gelöst und unter leichtem Erwärmen zu 7.29 g (300 mmol) Magnesium getropft.

Anschließend wurde für 3 h refluxiert. Danach wurde mit 100ml dest THF verdünnt und auf Raumtemperatur abgekühlt. In einem 2 L Kolben wurden 34,3g (330 mmol) Borsäuretrimethylester in 500 ml destilliertem THF gelöst und auf -78°C gekühlt. Bei dieser Temperatur wurde die Grignardlsg. langsam zugetropft, so daß die Temperatur -70°C nicht überschritt (2 Stunden). Über Nacht wurde langsam unter

Röhren auf Raumtemperatur erwärmt.

Die galeertartige Masse (grünlich) wurde mit 500 ml Eiswasser und 32,5ml Schwefelsäure conc. versetzt, 60 min gerührt und die organische Phase wurde abgetrennt. Die Wasserphase noch 1 x mit 100 ml Ethylacetat extrahiert.

5 Die organische Phasen wurden vereinigt mit gesättigter NaCl gewaschen, über MgSO₄ getrocknet, und einrotiert. Es wurden 88,1g Rohprodukt erhalten. Es wurde nun 2x in 400 ml n-Hexan aufgeschlämmt, 60 min bei RT gerührt, abgesaugt und im Vakuumtrockenschrank bei RT getrocknet (67,5 g Ausbeute).
10 Die Boronsäure wurde in 450 ml Dichlormethan gelöst, 13 g Ethylen glycol und 0.8 ml Schwefelsäure wurden zugesetzt. Es wurde am Wasserabscheider 5 Stunden zum Rückfluß erhitzt, abgekühlt, mit 100 ml Wasser gewaschen (diese Phasen wurde mit 150 ml Dichlormethan extrahiert) und mit MgSO₄ getrocknet. Es wurde einrotiert und der Rückstand wurde zweimal aus einer Mischung aus 600 ml n-Hexan und 70 ml Essigester umkristallisiert. Man erhielt 24.5 g (32%) 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-
15 bisethylenglycolester als farblose Kristalle mit einer Reinheit (NMR) größer 99%.
1H NMR (CDCl₃): [ppm] δ = 7.95–7.75 (m, 6H, Fluoren); 7.17 (d, 2H, J = 8 Hz, H-2'); 6.95 (br. s, 1H, H-2''); 6.90 (d, 1H, J = 8 Hz, H-4''); 6.84 (d, 1H, J= 8 Hz, H-5''); 4.34, 20 4.15 (s, 8H, Boronsäureester); 3.95–3.85 (m, 2H, OCH₂); 2.20 (s, 3H, CH₃); 1.80–1.45 (m, 4H); 1.35 (3H, CH₃); 1.32–1.10 (m, 6H, Alkyl); 0.90 und 0.85 (2d, 9H, 3 x CH₃).

2. Herstellung weiterer Comonomere:

Beispiel CM1: Darstellung von 2,7-Dibrom-9,9-bis-(2-ethylhexyl)fluoren

25 Die Darstellung erfolgte in Analogie zu Beispiel 1 in WO 97/05184. Das Produkt (84% Ausbeute) konnte durch doppelte Destillation an einem Kurzwegverdampfer [10⁻³ mbar; 1. Destillation (zum Abtrennen überschüssigen Ethylhexylbromids und restlichem DMSO) 100°C; 2. Destillation: 155°C] als hochviskoses hellgelbes Öl gewonnen werden.

30 ¹H NMR (CDCl₃): [ppm] δ= 7.54 – 7.43 (m, 6H, H-Aryl); 1.93 (d mit Fs., 4 H, J = 4.0 Hz); 1.0–0.65 (m, 22H, H-Alkyl); 0.58–0.45 (m, 8H, H-Alkyl).

Beispiel CM2: Darstellung von 9,9-Bis-(2-ethylhexyl)fluoren-2,7-bisboronsäurebisglykolester

Magnesium (6.32 g, 0.26 mol) wurde in 10 ml THF vorlegt, mit etwas Iod versetzt und ein paar Tropfen 2,7-Dibrom-9,9-bis-(2-ethylhexyl)fluoren zugegeben. Das Anspringen der Reaktion war durch starke Exothermie erkennbar. Anschließend wurde parallel die restliche Menge des Bisbromids (insgesamt 68.56 g, 0.125 mol) und 300 ml THF zugetropft. Nach Beendigung der Zugabe wurde für ca. 5 h refluxiert. Es waren nur noch geringe Mengen Mg-Späne zu erkennen.

Parallel dazu wurde Borsäuretrimethylester (28.6 g, 0.27 mol) in THF (200 ml) vorgelegt und auf -70°C gekühlt. Bei dieser Temperatur wurde die Grignardlösung langsam zugetropft. Anschließend wurde langsam über Nacht unter Rühren auf Raumtemperatur erwärmt.

Die Reaktionslösung wurde auf 300 ml Eisswasser und 10 ml Schwefelsäure conc. gegeben und die organische Phase abgetrennt. Die organische Phase wurde noch einmal mit Wasser gewaschen (neutral). Nach Trocknung über Na₂SO₄ wurde einrotiert. Das Rohprodukt wurde mit Hexan (500 ml) ausgerührt. Dadurch wurde die rohe Bisboronsäure (diese enthält variable Mengen verschiedene Anhydride) erhalten.

Diese wurde direkt durch Refluxieren (12 h) in Toluol mit Ethylenglykol und Schwefelsäure am Wasserabscheider verestert.

Ausbeute über beide Stufen: 70-85%. Reinheit (NMR) >98.5%

¹H NMR (CDCl₃): (NMR-Signale stark verbreitert bzw. verdoppelt wg. Diastereomerie) δ = 7.86 (m, 2 H, H-1); 7.79 (m, 2 H, H-3); 7.73 (d, 2 H, H-4, J = 8 Hz); 4.38 (s (br), 8 H, O-CH₂); 2.02 (m, 4 H, C-CH₂); 0.75 (m (br), 22 H, H-Alkyl); 0.47 (m (br), 8 H, H-Alkyl).

Beispiel CM3: Darstellung von 4,4'-Dibromtriphenylamin

Die Darstellung erfolgte analog zu K. Haga et al, Bull. Chem. Soc. Jpn., 1986, 59, 803-7: 3.10 g (10.4 mmol) Bis(4-bromphenyl)amin (J. Berthelot et al, Can. J. Chem., 1989, 67, 2061), 1.28 g Cyclohexan-1,4-dion (11.4 mmol) und 2.17g (11.4 mmol) p-Toluolsulfonsäure Hydrat wurden in 50 ml Toluol am Wasserabscheider erhitzt. Nach 12 h Reaktionszeit wurde das Lösungsmittel entfernt und durch

Säulenchromatographie (Hexan/Essigsäureethylester 4:1) gereinigt. Es wurden 3.82 g (9.46 mmol, 91%) 4,4'-Dibromotriphenylamin als viskoses Öl erhalten.

¹H NMR (CDCl₃): [ppm] δ = 7.01–6.95 (m, 5H), 6.88, 6.74 (AA'BB', 4 + 4 H).

5 B) Synthese der Polymere:

Beispiel P1: Copolymerisation von 9,9-Bis(2-ethylhexyl)fluoren-2,7-bisboronsäure-bisglycolester und 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyl-octyloxy)phenyl)fluoren durch Suzuki-Reaktion (Polymer P1).

10 13.21 g (20 mmol) 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyl-octyloxy)phenyl)fluoren und 11.61 g K₂CO₃ (84 mmol) wurden in 25 ml Toluol und 25 ml Wasser gelöst und mit N₂ begast. Anschließend wurden 7.743 g (14.6 mmol) 9,9-Bis(2-ethylhexyl)fluoren-2,7-bisboronsäure-bisglykolester sowie 200 mg Pd(PPh₃)₄ (0.17 mmol) unter Schutzgas zugegeben. Die gelb-bräunliche, trübe Suspension wurde unter N₂-Überlagerung bei 87°C Innentemperatur kräftig gerührt. An den folgenden drei Tagen wurde jeweils 1.11 g (2.1 mmol) des Diboronsäureesters zugegeben. Nach 3 Tagen wurde zu der sehr viskosen Mischung weitere 25 ml Toluol zugegeben. Nach insgesamt 4 Tagen wurde aufgearbeitet.

20 Die Reaktionslösung wurde mit 150 ml Toluol verdünnt, die Lösung wurde mit 200 ml 2% wäßriger NaCN 3h ausgerührt. Dabei hellte sich die Mischung nahezu vollständig auf. Der Ansatz wurde unter Schutzgas in einen Scheidetrichter überführt. Die organische Phase wurde mit H₂O gewaschen und durch Zusetzen in 500 ml Ethanol gefällt.

25 Das Polymer wurde in 635 ml THF 1h bei 40°C gelöst und mit 640 ml MeOH ausgefällt, gewaschen und unter Vakuum getrocknet (10.13 g). In 405 ml THF/ 400 ml Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man erhielt 7.55 g (42 %) des Polymeren P1 als leicht gelben Feststoff.

30 ¹H NMR (CDCl₃): [ppm] δ = 8.1–6.3 (m, 19 H, H-Fluoren, H-Phenyl); 4.0 (m, 2 H,

OCH₂); 2.3–0.4 (m, 59 H, Alkyl + Alkoxy-H).

GPC: THF+0.25% Oxalsäure; Säulensatz SDV500, SDV 1000, SDV10000 (Fa.

PPS), 35°C, UV Detektion 254 nm: M_w = 156000 g/mol, M_n = 88000 g/mol.

UV-Vis (Film): λ_{max} = 372 nm

PL (Film): λ_{max} = 413 nm, 433 nm

Beispiel P2

Copolymerisation von 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren und 1 Mol-% 4,4'-Dibromtriphenylamin durch Suzuki-Reaktion (Polymer P2).

6.4733 g (9.8 mmol) 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren, 6.4246 g (10.00 mmol) 9-(4-(3,7-

dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 80.6 mg (0.2 mmol) 4,4'-Dibromtriphenylamin, 9.67 g (42 mmol) K₃PO₄ Hydrat, 30 ml Toluol, 15 ml Wasser und 0.25 ml Ethanol wurden 30 min durch Durchleiten von N₂ entgast. Anschließend wurde 175 mg (0.15 mmol) Pd(PPh₃)₄ unter Schutzgas zugegeben. Die Suspension wurde unter N₂-

Überlagerung bei 87°C Innentemperatur (leichter Rückfluß) kräftig gerührt. Nach 4 Tagen wurden weitere 0.30 g 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester zugesetzt. Nach weiteren 6 Stunden Erhitzen wurden 0.3 ml Brombenzol zugesetzt und noch 3 h zum Rückfluß erhitzt.

Die Reaktionslösung wurde mit 200 ml Toluol verdünnt, die Lösung wurde mit 200 ml 2% wäßrige NaCN 3h ausgerührt. Dabei hellte sich die Mischung nahezu vollständig auf. Die organische Phase wurde mit H₂O gewaschen und durch Zusetzen in 800 ml Ethanol gefällt.

Das Polymer wurde in 200 ml THF 1h bei 40°C gelöst, mit 250 ml MeOH ausgefällt, gewaschen und im Vakuum getrocknet. In 200 ml THF/ 250 ml Methanol wurde ein weiteres Mal umgefällt, abgesaugt und bis zur Massenkonstanz getrocknet. Man

erhielt 9.3 g (18.5 mmol, 93 %) des Polymeren P2 als leicht gelben Feststoff.

¹H NMR (CDCl₃): [ppm] δ = 7.8 (m, 2 H, Fluoren); 7.55 (br. s; 4H, Fluoren) 7.15 (br. s, 2H Phenyl); 7.0–6.9 (m, 3H, 2,5-dimethylphenyl); 6.7 (br. s, 2H, Phenyl), 3.95 (br. s, 2H, OCH₂), 2.1 (s, 3H, CH₃); 1.7 (m, 1H, Alkyl); 1.6 (s, 3H, CH₃); 1.5–0.8 (m, 18H, Alkyl).

5 GPC: THF+0.25% Oxalsäure; Säulensatz SDV500, SDV 1000, SDV10000 (Fa.

PPS), 35°C, UV Detektion 254 nm: M_w = 43000 g/mol, M_n = 23000 g/mol.

10 Elektoluminescenz: λ_{max} = 448 nm; Ergebnis bei Max. Eff.: 0.44 cd/A bei 6.7 V/46.9 mA/cm² / 202 cd/m². 100 cd/m² wurden bei einer Spannung von 6.3 V und einer Stromdichte von 24.4 mA/cm² erreicht.

Beispiel P3

Polymerisation von 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-15 2,7-bisboronsäure-bisethylenglycolester, 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren durch Suzuki-Reaktion (Polymer P3).

Analog Beispiel P2 wurden 6.6054 g (10.00 mol) 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren, 6.4246 g (10.00 mmol) 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 9.67 g (42 mmol) K₃PO₄ Hydrat in 30 ml Toluol, 15 ml Wasser und 0.25 ml Ethanol unter Zuhilfenahme von 175 mg (0.15 mmol) Pd(PPh₃)₄ polymerisiert. Nach Endcapping, analoger Aufarbeitung und Reinigung erhielt man 20 9.1 g (18.2 mmol, 91 %) des Polymeren P3 als leicht gelben Feststoff.

25 ¹H NMR (CDCl₃): [ppm] δ = 7.8 (m, 2 H, Fluoren); 7.55 (br. s; 4H, Fluoren) 7.15 (br. s, 2H Phenyl); 7.0–6.9 (m, 3H, 2,5-dimethylphenyl); 6.7 (br. s, 2H, Phenyl), 3.95 (br. s, 2H, OCH₂), 2.1 (s, 3H, CH₃); 1.7 (m, 1H, Alkyl); 1.6 (s, 3H, CH₃); 1.5–0.8 (m, 18H, Alkyl).

30 GPC: THF+0.25% Oxalsäure; Säulensatz SDV500, SDV 1000, SDV10000 (Fa.

PPS), 35°C, UV Detektion 254 nm: M_w = 47000 g/mol, M_n = 27000 g/mol.

Elektoluminescenz: λ_{max} = 447 nm; Ergebnis bei Max. Eff.: 0.18 cd/A bei 7.2 V/57.3

mA/cm². 100 cd/m² wurden bei einer Spannung von 7.3 V und einer Stromdichte von 62.1 mA/cm² erreicht.

Beispiel P4

5 Polymerisation von 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren und 3% 4,4'-Dibromtriphenylamin durch Suzuki-Reaktion (Polymer P4).

10 Analog Beispiel P2 wurden 9.328 g (14.10 mmol) 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren, 7.955 g (15.00 mmol) 9,9-Bis(2-ethylhexyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 362.8 mg (0.9 mmol) 4,4'-Dibromtriphenylamin, 8.71 g (62 mmol) K₂CO₃ in 30 ml Toluol, 15 ml Wasser und 0.3 ml Ethanol unter Zuhilfenahme von 260 mg (0.225 mmol) Pd(PPh₃)₄ polymerisiert. Nach Endcapping, analoger Aufarbeitung und Reinigung erhält man 11.1 g (24.9 mmol, 83 %) des Polymeren P4 als leicht gelben Feststoff.

20 ¹H NMR (CDCl₃): [ppm] δ = 7.85 (m, 1 H Fluoren); 7.75–7.45 (br. m; 4H, Fluoren); 7.28 (m, 1H, Fluoren); 7.1 (br. s, 1H Phenyl); 7.0–6.9 (m, 1.5H, 2,5-dimethylphenyl); 6.75 (br. s, 2H, Phenyl), 3.95 (br. s, 1H, OCH₂), 2.23 (s, 2H, CH₂); 2.1 –0.5 (m, 27.5 H, Alkyl).

25 GPC: THF+0.25% Oxalsäure; Säulensatz SDV500, SDV 1000, SDV10000 (Fa. PPS), 35°C, UV Detektion 254 nm: M_w = 47000 g/mol, M_n = 27000 g/mol.

Elektoluminescenz: λ_{max} = 446 nm; PL: λ_{max} = 425, 452 nm; Ergebnis bei Max. Eff.: 0.36 cd/A bei 7.5 V/74.3 mA/cm²/271 Cd/m². 100 cd/m² wurden bei einer Spannung von 6.6 V und einer Stromdichte von 30.6 mA/cm² erreicht.

Beispiel P5

30 Polymerisation von 9-(4-(3,7-dimethyloctyloxy)phenyl)-9-(2,5-dimethylphenyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 2,7-Dibrom-9-(2,5-dimethylphenyl)-9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren und 1% 4,4'-Dibromtriphenylamin durch Suzuki-

Reaktion (Polymer P5).

Analog Beispiel P2 wurden 12.966 g (19.6 mmol) 2,7-Dibrom-9-(2,5-dimethylphenyl)-
9-(4-(3,7-dimethyloctyloxy)phenyl)fluoren, 10.607 g (20.00 mmol) 9,9-Bis(2-
5 ethylhexyl)fluoren-2,7-bisboronsäure-bisethylenglycolester, 161 mg (0.4 mmol) 4,4'-
Dibromtriphenylamin, 11.61 g (84 mmol) K₂CO₃ in 40 ml Toluol, 20 ml Wasser und
0.5 ml Ethanol unter Zuhilfenahme von 350 mg (0.3 mmol) Pd(PPh₃)₄ polymerisiert
Nach Endcapping, analoger Aufarbeitung und Reinigung erhielt man 12.2 g (27.4
mmol, 68 %) des Polymeren P5 als leicht gelben Feststoff.

10 ¹H NMR (CDCl₃): [ppm] δ = 7.85 (m, 1 H Fluoren); 7.75–7.45 (br. m; 4H, Fluoren);
7.28 (m, 1H, Fluoren); 7.1 (br. s, 1H Phenyl); 7.0–6.9 (m, 1.5H, 2,5-dimethylphenyl);
6.75 (br. s, 2H, Phenyl), 3.95 (br. s, 1H, OCH₂), 2.23 (s, 2H, CH₂); 2.1 –0.5 (m, 27.5
H, Alkyl).

15 GPC: THF+0.25% Oxalsäure; Säulensatz SDV500, SDV 1000, SDV10000 (Fa.
PPS), 35°C, UV Detektion 254 nm: M_w = 53000 g/mol, M_n = 31000 g/mol.
Elektolumineszenz: λ_{max} = 446 nm; PL: λ_{max} = 425, 452 nm; Ergebnis bei Max. Eff.:
0.14 cd/A bei 5.7 V/77.0 mA/cm²/110 Cd/m². 100 cd/m² wurden bei einer Spannung
20 von 5.7 V und einer Stromdichte von 83.0 mA/cm² erreicht.

Vergleichsbeispiele:**Beispiel V1:**

Suzuki-Polymerisation von 2,7-Dibrom-9,9-bis(2-ethylhexyl)fluoren und 9,9-Bis(2-
25 ethylhexyl)fluoren-2,7-bisboronsäurebisglycolester (Polymer V1), Herstellung von
Poly-2,7-[9,9-bis(2-ethylhexyl)fluoren]

8.227g (15.00 mmol) 2,7-Dibrom-9,9-bis(2-ethylhexyl)fluoren, 7.956g (15.00 mmol)
9,9-Bis(2-ethylhexyl)fluoren-2,7-bisboronsäurediethylenglycolester, 8.71 g (63
mmol) K₂CO₃, 25 ml Toluol und 15 ml Wasser wurden 30 min durch Durchleiten von
30 N₂ ent gast. Anschließend wurden 230 mg (0.2 mmol) Pd(PPh₃)₄ unter Schutzgas
zugegeben. Die Suspension wurde unter N₂-Überlagerung bei 87°C Innentemperatur

(leichter Rückfluß) kräftig gerührt. Nach 2 Tagen wurden weitere 20 ml Toluol zugegeben, nach weiteren 2 Tagen wurden weitere 0.20 g 9,9-Bis(2-ethylhexyl)fluoren-2,7-bisboronsäurediethylenglykolester zugesetzt. Nach weiteren 6 Stunden wurden 0.5 ml 4-Bromfluorbenzol zugesetzt und noch 3 h zum Rückfluß erhitzt.

5

Die Aufarbeitung erfolgte wie unter Beispiel P1 angegeben. Man erhielt 3.85 g (9.9 mmol, 33%) des Polymers V1 als leicht beigen Feststoff.

10

^1H NMR (CDCl_3): [ppm] δ = 7.9–7.3 (m, 6 H, H-Arom); 2.15 (br. s, 4H, C(9)- CH_2); 1.1–0.4 (m, 30 H, H-Alkyl).

GPC: THF+0.25% Oxalsäure; Säulensatz SDV500, SDV 1000, SDV10000 (Fa.

PPS), 35°C, UV Detektion 254 nm: M_w = 70000 g/mol, M_n = 34000 g/mol.

UV-Vis (Film): λ_{max} = 376 nm

PL (Film): λ_{max} = 420 nm, 444 nm

15

C) Messungen

20

Während Polymer V1 in einer typischen EL-Vorrichtung grün-gelbe Emission ergab (Maximum bei ca. 540 nm) zeigte das erfindungsgemäße Polymer P1 kräftig blaue Lumineszenz (Wellenlänge bei ca. 460 nm). Diese Farbe blieb auch während eines längeren Beobachtungszeitraums konstant.

Patentansprüche:

1. Konjugierte Polymere, die Struktureinheiten der Formel (I),

5

(I)

worin

R¹, R² zwei verschiedene Substituenten aus der Gruppe C₂-C₄₀-Heteroaryl, C₅-C₄₀-Aryl darstellen; wobei die vorstehend genannten Aryle und/oder Heteroaryle mit einem oder mehreren Substituenten R³ substituiert sein können,

10

R³, R⁴ gleich oder verschieden C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl, F, Cl, CN, SO₃R⁵, NR⁵R⁶; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein können, wobei die vorstehend genannten Aryle mit einem oder mehreren weiteren nichtaromatischen Substituenten R³ substituiert sein können,

15

R⁵, R⁶ gleich oder verschieden H, C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können, und

20

m, n jeweils eine ganze Zahl 0, 1, 2 oder 3 ist, enthalten.

25

2. Polymer gemäß Anspruch 1, dadurch gekennzeichnet, daß es mindestens 10 Mol-% an Struktureinheiten der Formel (I) statistisch, alternierend, periodisch, oder in Blöcken eingebaut enthält.

3. Polymer gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es 10 bis 10000 Wiederholeinheiten der Struktureinheit der Formel (I) aufweist.

4. Polymer gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß m und n gleich null sind.

5. Verwendung des Polymeren gemäß einem der Ansprüche 1 bis 4 als organischer Halbleiter und/oder als Elektrolumineszenzmaterial.

10 6. Elektrolumineszenzvorrichtung enthaltend ein Polymer gemäß einem der Ansprüche 1 bis 4.

7. Verbindungen der Formel (A)

15 worin

R¹, R² zwei verschiedene Substituenten aus der Gruppe C₂-C₄₀-Heteroaryl, C₅-C₄₀-Aryl darstellen; wobei die vorstehend genannten Aryle und/oder Heteroaryle mit einem oder mehreren Substituenten R³ substituiert sein können,

20 R³, R⁴ gleich oder verschieden C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl, F, Cl, CN, SO₃R⁵, NR⁵R⁶; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein können, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können,

25 R⁵, R⁶ gleich oder verschieden H, C₁-C₂₂-Alkyl, C₂-C₂₀-Heteroaryl, C₅-C₂₀-Aryl; dabei können die Alkylreste verzweigt oder unverzweigt sein oder auch Cycloalkyle darstellen; und einzelne, nicht benachbarte CH₂-Gruppen des

32

Alkylrestes durch O, S, C=O, COO, N-R⁵ oder auch einfache Aryle ersetzt sein, wobei die vorstehend genannten Aryle mit einem oder mehreren nichtaromatischen Substituenten R³ substituiert sein können, und

m, n jeweils eine ganze Zahl 0, 1, 2 oder 3 ist,

5 X, Y gleich oder verschieden Halogen, B(OR⁷)₂ oder SnR⁷R⁸R⁹
R⁷, R⁸, R⁹ gleich oder verschieden H, C₁-C₆-Alkyl, wobei zwei Reste auch einen gemeinsamen Ring bilden können und diese Reste auch verzweigt oder unverzweigt sein können.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 99/06420

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C08G61/02 C07C43/192 C07F5/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08G C07C C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 99 54943 A (DOW CHEMICAL CO) 28 October 1999 (1999-10-28) page 11; claims	1-7
A	US 5 777 070 A (INBASEKARAN MICHAEL ET AL) 7 July 1998 (1998-07-07) column 5	1-7
A	WO 97 05184 A (DOW CHEMICAL CO) 13 February 1997 (1997-02-13) cited in the application page 4, line 25 - line 34	1-7
A	WO 97 33323 A (UNIAX CORP) 12 September 1997 (1997-09-12) cited in the application	1-7

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

26 January 2000

Date of mailing of the international search report

08/02/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Andriollo, G

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/06420

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9954943 A	28-10-1999	NONE		
US 5777070 A	07-07-1998	WO	9920675 A	29-04-1999
WO 9705184 A	13-02-1997	US	5708130 A	13-01-1998
		CN	1192223 A	02-09-1998
		EP	0842208 A	20-05-1998
		JP	11510535 T	14-09-1999
		US	5962631 A	05-10-1999
WO 9733323 A	12-09-1997	EP	0885461 A	23-12-1998
		US	5900327 A	04-05-1999

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 99/06420

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C08G61/02 C07C43/192 C07F5/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C08G C07C C07F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
E	WO 99 54943 A (DOW CHEMICAL CO) 28. Oktober 1999 (1999-10-28) Seite 11; Ansprüche ---	1-7
A	US 5 777 070 A (INBASEKARAN MICHAEL ET AL) 7. Juli 1998 (1998-07-07) Spalte 5 ---	1-7
A	WO 97 05184 A (DOW CHEMICAL CO) 13. Februar 1997 (1997-02-13) in der Anmeldung erwähnt Seite 4, Zeile 25 - Zeile 34 ---	1-7
A	WO 97 33323 A (UNIAX CORP) 12. September 1997 (1997-09-12) in der Anmeldung erwähnt ----	1-7

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

26. Januar 2000

Absendedatum des internationalen Recherchenberichts

08/02/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Andriollo, G

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 99/06420

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9954943 A	28-10-1999	KEINE	
US 5777070 A	07-07-1998	WO 9920675 A	29-04-1999
WO 9705184 A	13-02-1997	US 5708130 A CN 1192223 A EP 0842208 A JP 11510535 T US 5962631 A	13-01-1998 02-09-1998 20-05-1998 14-09-1999 05-10-1999
WO 9733323 A	12-09-1997	EP 0885461 A US 5900327 A	23-12-1998 04-05-1999