Hồi quy tuyến tính một biến (Simple linear regression)

Đặng Thanh Hải (Ph.D)
School of Engineering and Technology, VNUH
Email: hai.dang@vnu.edu.vn

Estimation of Random Variables

◆ Very often, we want to estimate the value of an inaccessible random variable Y (dependent or response variable) in terms of the observation of an accessible random variable X (independent or predictor variable)

Mô hình hồi quy tuyết tính đơn giản $y = \beta_0 + \beta_1 x + \varepsilon$

- ★ The least squares point estimates (Các ước lượng điểm bình phương tối thiểu)
 - ✓ Predicted value of the dependent variable y (Giá trị dự đoán của biến phụ thuộc y)

$$\hat{y}_i = b_0 + b_1 x_i$$

✓ Minimize sum of squared residuals (Cực tiểu hoá tổng các lỗi bình phương)

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

The Least Squares Point Estimates

or the simple linear regression model:

1 The least squares point estimate of the slope β_1 is

$$b_1 = \frac{SS_{xy}}{SS_{xx}}$$
 where

$$SS_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n} \quad \text{and} \quad SS_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

2 The least squares point estimate of the y-intercept β_0 is

$$b_0 = \overline{y} - b_1 \overline{x}$$
 where

$$\overline{y} = \frac{\sum y_i}{n}$$
 and $\overline{x} = \frac{\sum x_i}{n}$

Here n is the number of observations (an observation is an observed value of x and its corresponding value of y).

♦ The Tasty Sub Shop Case

y _i	\boldsymbol{x}_{i}	x_i^2	$\boldsymbol{x_i}\boldsymbol{y_i}$
527.1	20.8	$(20.8)^2 = 432.64$	(20.8)(527.1) = 10963.68
548.7	27.5	$(27.5)^2 = 756.25$	(27.5)(548.7) = 15089.25
767.2	32.3	$(32.3)^2 = 1,043.29$	(32.3)(767.2) = 24780.56
722.9	37.2	$(37.2)^2 = 1,383.84$	(37.2)(722.9) = 26891.88
826.3	39.6	$(39.6)^2 = 1,568.16$	(39.6)(826.3) = 32721.48
810.5	45.1	$(45.1)^2 = 2,034.01$	(45.1)(810.5) = 36553.55
1040.7	49.9	$(49.9)^2 = 2,490.01$	(49.9)(1040.7) = 51930.93
1033.6	55.4	$(55.4)^2 = 3,069.16$	(55.4)(1033.6) = 57261.44
1090.3	61.7	$(61.7)^2 = 3,806.89$	(61.7)(1090.3) = 67271.51
1235.8	64.6	$(64.6)^2 = 4,173.16$	(64.6)(1235.8) = 79832.68
$\sum y_i = 8603.1$	$\sum x_i = 434.1$	$\sum x_i^2 = 20,757.41$	$\sum x_i y_i = 403,296.96$

♦ The Tasty Sub Shop Case

◆ Point Estimation and Point Prediction, and the Danger of Extrapolation

◆ Point Estimation and Point Prediction, and the Danger of Extrapolation

et b_0 and b_1 be the least squares point estimates of the y-intercept β_0 and the slope β_1 in the simple linear regression model, and suppose that x_0 , a specified value of the independent variable x, is inside the experimental region. Then

$$\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}_0$$

- 1 is the point estimate of the mean value of the dependent variable when the value of the independent variable is x_0 .
- 2 is the point prediction of an individual value of the dependent variable when the value of the independent variable is x_0 . Here we predict the error term to be 0.

- ◆ Các yêu cầu để có thể kiểm định giả thuyết và xây dựng khoảng tin cậy khi sử dụng mô hình
 - 1 At any given value of x, the population of potential error term values has a mean equal to 0.
 - 2 Constant Variance Assumption At any given value of x, the

At any given value of x, the population of potential error term values has a variance that does not depend on the value of x. That is, the different populations of potential error term values corresponding to different values of x have equal variances. We denote the constant variance as σ^2 .

3 Normality Assumption

At any given value of x, the population of potential error term values has a **normal distribution**.

4 Independence Assumption

Any one value of the error term ε is **statistically** independent of any other value of ε . That is, the value of the error term ε corresponding to an observed value of y is statistically independent of the value of the error term corresponding to any other observed value of y.

♦ Lỗi kỳ vọng bình phương (mean square error) và Lỗi chuẩn (standard error) của mô hình

f the regression assumptions are satisfied and SSE is the sum of squared residuals:

- 1 The point estimate of σ^2 is the mean square error
- 2 The point estimate of σ is the standard error

$$s^2 = \frac{SSE}{n-2}$$

$$s = \sqrt{\frac{SSE}{n-2}}$$

Trong đó:

$$SSE = \sum (y_i - \hat{y}_i)^2$$

n - 2 là **số bậc tự do** gắn với SSE.

- ♦ Mô hình chỉ thực sự có ý nghĩa khi thực sự (về mặt thống kê) tồn tại mối quan hệ giữa y và x.
 - ✓ Kiểm định mức ý nghĩa (thống kê) của hệ số góc và hệ số chắn (Testing the Significance of the Slope and y-Intercept)
 - Kiểm định: H_0 : $\beta_1 = 0$ H_a : $\beta_1 \neq 0$
- ♦ Khi giả thuyết cho mô hình hồi quy tuyến tính đúng
 - \checkmark Tất cả giá trị b_1 phân phối chuẩn với kỳ vọng $β_1$ và độ lệch chuẩn $σ_{b_1} = \frac{σ}{\sqrt{SS_{xx}}}$
 - Do lỗi chuẩn s là ước lượng điểm của σ_1 nên ước lượng điểm của σ_{b_1} là: $s_{b_1} = \frac{s}{\sqrt{SS_{rr}}}$ (Sai số chuẩn của ước lượng b_1)

Friday, January 20, 17

◆ Do đó, khi giả thuyết cho mô hình hồi quy tuyến tính đúng

Các giá trị
$$\frac{b_1 - \beta_1}{s_{b_1}}$$
 tuân theo **phân bố t** với n-2 bậc tự do

ightharpoonup Do đó, khi H_0 : $\beta_1 = 0$ đúng:

Sử dụng thống kê:
$$t = \frac{b_1}{s_{b_1}}$$
, tuân theo **phân bố t** với n-2 bậc tự do

Kiểm định mối quan hệ hồi quy tuyến tính

Null Hypothesis H_0 : $\beta_1 = 0$

Statistic
$$t = \frac{b_1}{s_{b_1}}$$
 where $s_{b_1} = \frac{s}{\sqrt{SS_{xx}}}$

Assumptions

The regression assumptions

Here $t_{\alpha/2}$, t_{α} , and all p-values are based on n-2 degrees of freedom. If we can reject H_0 : $\beta_1=0$ at a given value of lpha, then we conclude that the slope (or, equivalently, the regression relationship) is significant at the lpha level.

A Confidence Interval for the Slope

If the regression assumptions hold, a 100(1 – α) percent confidence interval for the true slope β_1 is $[b_1 \pm t_{\alpha/2} s_{b_1}]$. Here $t_{\alpha/2}$ is based on n-2 degrees of freedom.

Kiểm định mức ý nghĩa (thống kê) của hệ số chắn y

$$H_0$$
: $\beta_0 = 0$
 H_a : $\beta_0 \neq 0$.

Sử dụng thống kê:

$$t = \frac{b_0}{s_{b_0}}$$
 where $s_{b_0} = s \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SS_{xx}}}$

t tuân theo **phân bố t** với n-2 bậc tự do

A Confidence Interval and a Prediction Interval

f the regression assumptions hold,

1 A 100(1 – α) percent confidence interval for the mean value of y when x equals x_0 is

$$\left[\hat{y} \pm t_{\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_{xx}}}\right]$$

2 A 100(1 – α) percent prediction interval for an individual value of y when x equals x_0 is

$$\left[\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{SS_{xx}}}\right]$$

Here, $t_{\alpha/2}$ is based on (n-2) degrees of freedom.

Tính hiệu quả của mô hình

igoplus Được đo thông qua "hệ số quyết định đơn giản" (simple coefficient of determination) r^2

or the simple linear regression model

- **1** Total variation = $\sum (y_i \bar{y})^2$
- **2** Explained variation = $\sum (\hat{y}_i \overline{y})^2$
- **3** Unexplained variation = $\sum (y_i \hat{y}_i)^2$
- 4 Total variation = Explained variation + Unexplained variation

5 The simple coefficient of determination is

$$r^2 = \frac{\text{Explained variation}}{\text{Total variation}}$$

6 r² is the proportion of the total variation in the n observed values of the dependent variable that is explained by the simple linear regression model.

→ Hệ số tương quan

The simple correlation coefficient between y and x, denoted by r, is

$$r = +\sqrt{r^2}$$
 if b_1 is positive and $r = -\sqrt{r^2}$ if b_1 is negative

where b_1 is the slope of the least squares line relating y to x. This correlation coefficient measures the strength of the linear relationship between y and x.

Kiểm định F-Test cho mô hình

★ Một cách khác để kiểm định độ ý nghĩa của mô hình hồi quy tuyến tính

uppose that the regression assumptions hold, and define the **overall** *F* **statistic** to be

$$F(\text{model}) = \frac{\text{Explained variation}}{(\text{Unexplained variation})/(n-2)}$$

Also define the p-value related to F(model) to be the area under the curve of the F distribution (having 1 numerator and n-2 denominator degrees of freedom) to the right of F(model)—see Figure 14.20(b).

We can reject H_0 : $\beta_1 = 0$ in favor of H_a : $\beta_1 \neq 0$ at level of significance α if either of the following equivalent conditions holds:

- **1** $F(\text{model}) > F_{\alpha}$
- **2** p-value $< \alpha$

Here the point F_{α} is based on 1 numerator and n-2 denominator degrees of freedom.

Hồi quy đa biến (Multiple linear regression)

A case study

TastySub2 **TABLE 15.1** The Tasty Sub Shop Revenue Data Population Size, x₁ Yearly Revenue, y (Thousands of Residents) Business Rating, x2 (Thousands of Dollars) Restaurant 20.8 527.1 3 27.5 2 548.7 2 3 32.3 767.2 37.2 722.9 4 39.6 826.3 5 45.1 810.5 1040.5 49.9 7 55.4 1033.6 5 9 61.7 1090.3 10 64.6 1235.8

FIGURE 15.2 Plot of y (Yearly Revenue) versus x_2 (Business Rating)

A case study

A Geometrical Interpretation of the Regression Model Relating y to x_1 and x_2

A case study

TABLE 15.2 The Point Predictions and Residuals Using the Least Squares Point Estimates, $b_0 = 125.29$, $b_1 = 14.1996$, and $b_2 = 22.811$

Restaurant	Population Size, x ₁ (Thousands of Residents)	Business Rating, x ₂	Yearly Revenue, y (Thousands of Dollars)	Predicted Yearly Revenue $\hat{y} = 125.29 + 14.1996x_1 + 22.811x_2$	Residual, y – ŷ
1	20.8	3	527.1	489.07	38.03
2	27.5	2	548.7	561.40	-12.70
3	32.3	6	767.2	720.80	46.40
4	37.2	5	722.9	767.57	-44.67
5	39.6	8	826.3	870.08	-43.78
6	45.1	3	810.5	834.12	-23.62
7	49.9	9	1040.7	1039.15	1.55
8	55.4	5	1033.6	1026.00	7.60
9	61.7	4	1090.3	1092.65	-2.35
10	64.6	7	1235.8	1202.26	33.54
		$SSE = (38.03)^2$	$+ (-12.70)^2 + \cdots + (33.$	$54)^2 = 9420.8$	

The multiple regression model relating y to x_1, x_2, \ldots, x_k is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \varepsilon$$

Here

1 $\mu_y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$ is the mean value of the dependent variable y when the values of the independent variables are x_1, x_2, \dots, x_k .

2 $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ are (unknown) regression parameters relating the mean value of y to x_1, x_2, \dots, x_k .

3 ε is an **error term** that describes the effects on y of all factors other than the values of the independent variables x_1, x_2, \ldots, x_k .

Hồi quy tuyến tính đa biến

Assumptions for the Multiple Regression Model

- 1 At any given combination of values of x_1 , x_2, \ldots, x_k , the population of potential error term values has a mean equal to 0.
- **2** Constant variance assumption: At any given combination of values of x_1, x_2, \ldots, x_k , the population of potential error term values has a variance that does not depend on the combination of values of x_1, x_2, \ldots, x_k . That is, the different populations of potential error term values corresponding to different combinations of values of x_1, x_2, \ldots, x_k have equal variances. We denote the constant variance as σ^2 .
- **3** Normality assumption: At any given combination of values of x_1, x_2, \ldots, x_k , the population of potential error term values has a normal distribution.
- 4 Independence assumption: Any one value of the error term ε is statistically independent of any other value of ε . That is, the value of the error term ε corresponding to an observed value of y is statistically independent of the error term corresponding to any other observed value of y.

Hồi quy tuyến tính đa biến

◆ Lỗi kỳ vọng bình phương (mean square error) và
 Lỗi chuẩn (standard error) của mô hình

The Mean Square Error and the Standard Error

Suppose that the multiple regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \varepsilon$$

utilizes k independent variables and thus has (k + 1) parameters β_0 , β_1 , β_2 , . . . , β_k . Then, if the regression assumptions are satisfied, and if *SSE* denotes the sum of squared residuals for the model:

1 A point estimate of σ^2 is the mean square error

$$s^2 = \frac{SSE}{n - (k + 1)}$$

2 A point estimate of σ is the standard error

$$s = \sqrt{\frac{SSE}{n - (k + 1)}}$$

Tính hiệu quả của mô hình

♦ Được đo thông qua "hệ số quyết định đơn giản" (simple coefficient of determination) r^2

The Mean Square Error and the Standard Error

suppose that the multiple regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \varepsilon$$

utilizes k independent variables and thus has (k + 1) parameters β_0 , β_1 , β_2 , . . . , β_k . Then, if the regression assumptions are satisfied, and if *SSE* denotes the sum of squared residuals for the model:

1 A point estimate of σ^2 is the mean square error

$$s^2 = \frac{SSE}{n - (k + 1)}$$

2 A point estimate of σ is the standard error

$$s = \sqrt{\frac{SSE}{n - (k + 1)}}$$

Adjusted R²

The adjusted multiple coefficient of determination (adjusted R^2) is

$$\overline{R}^2 = \left(R^2 - \frac{k}{n-1}\right)\left(\frac{n-1}{n-(k+1)}\right)$$

where R^2 is the multiple coefficient of determination, n is the number of observations, and k is the number of independent variables in the model under consideration.

Kiểm định F-test tổng thể cho mô hình

An F-Test for the Multiple Regression Model

Suppose that the regression assumptions hold and that the multiple regression model has (k + 1) parameters, and consider testing

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_k = \mathbf{0}$

versus

 H_a : At least one of $\beta_1, \beta_2, \ldots, \beta_k$ does not equal 0.

We define the overall F statistic to be

$$F(\text{model}) = \frac{(\text{Explained variation})/k}{(\text{Unexplained variation})/[n - (k + 1)]}$$

Also define the p-value related to F(model) to be the area under the curve of the F distribution (having k and [n-(k+1)] degrees of freedom) to the right of F(model). Then, we can reject H_0 in favor of H_a at level of significance α if either of the following equivalent conditions holds:

- **1** $F(\text{model}) > F_{\alpha}$
- **2** p-value $< \alpha$

Here the point F_{α} is based on k numerator and n-(k+1) denominator degrees of freedom.

Kiểm định mức ý nghĩa của từng biến

Testing the Significance of the Independent Variable x_i

Null **Hypothesis** $H_0: \beta_i = 0$ Test

Statistic
$$t = \frac{b_j}{s_{b_i}}$$
 $df = n - (k + 1)$

Assumptions

The regression assumptions

A Confidence Interval for the Regression Parameter β_i

f the regression assumptions hold, a 100(1 - α) percent confidence interval for β_i is

$$[b_j \pm t_{\alpha/2}s_{b_j}]$$

Here $t_{\alpha/2}$ is based on n - (k + 1) degrees of freedom.

A Confidence Interval and a Prediction Interval

f the regression assumptions hold,

1 A 100(1 – α) percent confidence interval for the mean value of y when the values of the independent variables are x_1, x_2, \ldots, x_k is

$$[\hat{y} \pm t_{\alpha/2} s \sqrt{\text{distance value}}]$$

2 A 100(1 – α) percent prediction interval for an individual value of y when the values of the independent variables are x_1, x_2, \ldots, x_k is

$$[\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \text{distance value}}]$$

Here $t_{\alpha/2}$ is based on n-(k+1) degrees of freedom and s is the standard error (see page 566). Furthermore, the formula for the **distance value** (also sometimes called the **leverage value**) involves matrix algebra and is given in Bowerman, O'Connell, and Koehler (2005). In practice, we can obtain the distance value from the outputs of statistical software packages (such as MINITAB and an Excel add-in).

Mô hình các biến định tính

♦ Sử dụng biến giả

TABLE 15.8 The Electronics World Sales Volume Data

DS Electronics 1

Store	Number of Households, x	Location	Sales Volume, <i>y</i>
1	161	Street	157.27
2	99	Street	93.28
3	135	Street	136.81
4	120	Street	123.79
5	164	Street	153.51
6	221	Mall	241.74
7	179	Mall	201.54
8	204	Mall	206.71
9	214	Mall	229.78
10	101	Mall	135.22

FIGURE 15.12 Plot of the Sales Volume Data and a Geometrical Interpretation of the Model $y = \beta_0 + \beta_1 x + \beta_2 D_M + \varepsilon$

Dữ liệu dòng thời gian (Time series data)

Các thành phần của dữ liệu dòng thời gian

- ◆ 4 components of time series data
 - **♦** Trend, Seasonal variation, Cycle
 - **◆ Irregular fluctuations** are erratic time series movements that follow no recognizable or regular pattern.

FIGURE 16.1 Time Series Exhibiting Trend, Seasonal, and Cyclical Components

Methods for time series data

- ★ The time series components remain essentially constant over time
 - √ Series regression models
 - **✓** Multiplicative decomposition
- ◆ The time series components might be changing slowly over time
 - **✓** Exponential smoothing
- ◆ The time series components might be chang- ing fairly quickly over time
 - **✓** Box–Jenkins methodology

Time Series Regression

♦ Modeling trend components

FIGURE 16.2 Plot of Cod Catch versus Time

$$y_t = \beta_0 + \varepsilon_t$$

FIGURE 16.3 Plot of Calculator Sales versus Time

$$y_t = \beta_0 + \beta_1 t + \varepsilon_t$$

Time Series Regression

♦ Modeling seasonal components

FIGURE 16.5 Time Series Plot of TRK-50 Bike Sales

$$y_t = \beta_0 + \beta_1 t + \beta_{Q2} Q_2 + \beta_{Q3} Q_3 + \beta_{Q4} Q_4 + \varepsilon_t$$

Time Series Regression

- **♦** Constant seasonal variation
 - ✓ The magnitude of the seasonal swing does not depend on the level of the time series
- **♦** Increasing seasonal variation
 - ✓ The magnitude of the seasonal swing increases as the level of the time series increases.
 - ✓ First use a **fractional power transformation**: taking the square roots, quartic roots, and natural logarithms
- (a) Plot of the monthly hotel room averages versus time

(b) Plot of the quartic roots of the monthly hotel averages versus time

Friday, January 20, 17

Multiplicative Decomposition

TABLE 16.9 Monthly Sales of Tasty Cola (in Hundreds of Cases) TastyCola

			Sales,				Sales,
Year	Month	t	\boldsymbol{y}_t	Year	Month	t	y_t
1	1 (Jan.)	1	189	2	7	19	831
	2 (Feb.)	2	229		8	20	960
	3 (Mar.)	3	249		9	21	1,152
	4 (Apr.)	4	289		10	22	759
	5 (May)	5	260		11	23	607
	6 (June)	6	431		12	24	371
	7 (July)	7	660	3	1	25	298
	8 (Aug.)	8	777		2	26	378
	9 (Sept.)	9	915		3	27	373
	10 (Oct.)	10	613		4	28	443
	11 (Nov.)	11	485		5	29	374
	12 (Dec.)	12	277		6	30	660
2	1	13	244		7	31	1,004
	2	14	296		8	32	1,153
	3	15	319		9	33	1,388
	4	16	370		10	34	904
	5	17	313		11	35	715
	6	18	556		12	36	441

FIGURE 16.10 Time Series Plot of the Tasty Cola Sales Data

Multiplicative Decomposition

♦ Decompose the time series into its **trend**, **seasonal**, **cyclical**, and **irregular components**

$$y_t = TR_t \times SN_t \times CL_t \times IR_t$$

Here **TR_t**, **SN_t**, **CL_t**, **and IR_t** represent the trend, seasonal, cyclical, and irregular components of the time series in time period t.

TABLE 16.10 Tasty Cola Sales and the Multiplicative Decomposition Method

t Time Period 1 (Jan)	y _t Tasty Cola Sales	First Step: 12-Period Moving Average	tr _t × cl _t : Centered Moving Average	$sn_t \times ir_t: \frac{y_t}{tr_t \times cl_t}$	sn _r : Table 16.11 .493	d _t : <u>y</u> t sn _t 383.37	tr _t : 380.163 +9.489t 389.652	tr _t × sn _t : Multiply tr _t by sn _t 192.10	$cl_t \times ir_t: \frac{y_t}{tr_t \times sn_t}$ $.9839$	cl _t : 3-Period Moving Average	$\frac{ir_t:}{cl_t \times ir_t}$ cl_t
2	229				.596	384.23	399.141	237.89	.9626	.9902	.9721
3	249				.595	418.49	408.630	243.13	1.0241	1.0010	1.0231
4	289				.680	425	418.119	284.32	1.0165	1.0396	.9778
5	260				.564	460.99	427.608	241.17	1.0781	1.0315	1.0452
6	431	447.833			.986	437.12	437.097	430.98	1.0000	1.0285	.9723
7	660	452.417	450.125	1.466	1.467	449.9	446.586	655.14	1.0074	1.0046	1.0028
8	777	458	455.2085	1.707	1.693	458.95	456.075	772.13	1.0063	1.0004	1.0059
9	915	563.833	460.9165	1.985	1.990	459.79	465.564	926.47	.9876	.9937	.9939
10	613	470.583	467.208	1.312	1.307	469.01	475.053	620.89	.9873	.9825	1.0049
11	485	475	472.7915	1.026	1.029	471.33	489.542	498.59	.9727	.9648	1.0082
12	277	485.417	480.2085	.577	.600	461.67	494.031	296.42	.9345	.9634	.9700
13 (Jan)	244	499.667	492.542	.495	.493	494.97	503.520	248.24	.9829	.9618	1.0219
14	296	514.917	507.292	.583	.596	496.64	513.009	305.75	.9681	.9924	.9755
15	319	534.667	524.792	.608	.595	536.13	522.498	310.89	1.0261	1.0057	1.0203
16	370	546.833	540.75	.684	.680	544.12	531.987	361.75	1.0228	1.0246	.9982
17	313	557	551.9165	.567	.564	554.97	541.476	305.39	1.0249	1.0237	1.0012
18	556		560.9165	.991	.986	563.89	550.965	543.25	1.0235	1.0197	1.0037
19	831	564.833 569.333	567.083	1.465	1.467	566.46	560.454	822.19	1.0107	1.0097	1.0010
20	960	576.167	572.75	1.676	1.693	567.04	569.943	964.91	.9949	1.0016	.9933
21	1,152		578.417	1.992	1.990	578.89	579.432	1,153.07	.9991	.9934	1.0057
22	759	580.667	583.7085	1.300	1.307	580.72	588.921	769.72	.9861	.9903	.9958
23	607	586.75	589.2915	1.030	1.029	589.89	598.410	615.76	.9858	.9964	.9894
24	371	591.833 600.5	596.1665	.622	.600	618.33	607.899	364.74	1.0172	.9940	1.0233
25 (Jan)	298		607.7085	.490	.493	604.46	617.388	304.37	.9791	1.0027	.9765
26	378	614.917	622.9585	.607	.596	634.23	626.877	373.62	1.0117	.9920	1.0199
27	373	631 650.667	640.8335	.582	.595	626.89	636.366	378.64	.9851	1.0018	.9833
28	443		656.7085	.675	.680	651.47	645.855	439.18	1.0087	1.0030	1.0057
29	374	662.75	667.25	.561	.564	663.12	655.344	369.61	1.0119	1.0091	1.0028
30	660	671.75	674.6665	.978	.986	669.37	664.833	655.53	1.0068	1.0112	.9956
31	1,004	677.583			1.467	684.39	674.322	989.23	1.0149	1.0059	1.0089
32	1,153				1.693	681.04	683.811	1,157.69	.9959	1.0053	.9906
33	1,388				1.990	697.49	693.300	1,379.67	1.0060	.9954	1.0106
34	904				1.307	691.66	702.789	918.55	.9842	.9886	.9955
35	715				1.029	694.85	712.278	732.93	.9755	.9927	.9827
36	441				.600	735	721.707	433.06	1.0183		

Multiplicative Decomposition

TA	TABLE 16.11 Estimation of the Seasonal Factors								
		sn _t × ir _t = Year 1	<u>sn</u> t	$sn_t = 1.0008758(\overline{sn}_t)$					
1	Jan.	.495	.490	.4925	.493				
2	Feb.	.583	.607	.595	.596				
3	Mar.	.608	.582	.595	.595				
4	Apr.	.684	.675	.6795	.680				
5	May	.567	.561	.564	.564				
6	June	.991	.978	.9845	.986				
7	July	1.466	1.465	1.4655	1.467				
8	Aug.	1.707	1.676	1.6915	1.693				
9	Sep.	1.985	1.992	1.9885	1.990				
10	Oct.	1.312	1.300	1.306	1.307				
11	Nov.	1.026	1.030	1.028	1.029				
12	Dec.	.577	.622	.5995	.600				

♦ If there is no pattern in the irregular component, we predict IR_t to equal 1. Therefore:

$$\hat{y}_t = tr_t \times sn_t \times cl_t$$

Simple Exponential Smoothing

◆ Forecasts of future time series values are made each period for succeeding periods

Suppose that the time series y_1, \ldots, y_n is described by the equation

$$y_t = \beta_0 + \varepsilon_t$$

where the average level β_0 of the process may be slowly changing over time. Then the estimate S_T of β_0 made in time period T is given by the smoothing equation

$$S_T = \alpha y_T + (1 - \alpha)S_{T-1}$$

where α is a smoothing constant between 0 and

1 and S_{T-1} is the estimate of β_0 made in time period T-1.

- **2** A point forecast made in time period T for any future value of the time series is S_T .
- **3** If we observe y_{T+1} in time period T+1, we can update S_T to S_{T+1} by using the equation

$$S_{T+1} = \alpha y_{T+1} + (1 - \alpha)S_T$$

and a point forecast made in time period T+1 for any future value of the time series is S_{T+1} .

◆ Experience has shown that, in general, it is reasonable to calculate **initial estimates** in exponential smoothing procedures using the mean of half of the historical data.

Simple Exponential Smoothing

Holt-Winters' double exponential smoothing

igspace The model $y_t = eta_0 + eta_1 t + eta_t$

 ℓ_{T-1} denote the estimate of $\beta_0 + \beta_1(T-1)$ in period T-1 b_{T-1} denote the estimate of β_1 in period T-1

$$\ell_T = \alpha y_T + (1 - \alpha) [\ell_{T-1} + b_{T-1}]$$

$$b_T = \gamma [\ell_T - \ell_{T-1}] + (1 - \gamma)b_{T-1}$$

Holt-Winters' double exponential smoothing

Multiplicative Winters' method

- igspace The model $y_t = (eta_0 + eta_1 t) \times SN_t + \varepsilon_t$
- ℓ_{T-1} denote the estimate of $\beta_0 + \beta_1(T-1)$ in period T-1
- b_{T-1} denote the estimate of β_1 in period T-1
- sn_{T-L} denote the "most recent" estimate of the seasonal factor for the season corresponding to time period T; where L denotes the number of seasons in a year

$$\ell_{T} = \alpha \frac{y_{T}}{sn_{T-L}} + (1 - \alpha)[\ell_{T-1} + b_{T-1}]$$

$$b_{T} = \gamma [\ell_{T} - \ell_{T-1}] + (1 - \gamma)b_{T-1}$$

$$sn_{T} = \delta \frac{y_{T}}{\ell_{T}} + (1 - \delta)sn_{T-L}$$

Multiplicative Winters' method

Index Numbers

- ◆ To compare a value of a time series relative to another value of the time series.
 - ✓ Must describe the time series
 - Series decomposition can be employed
 - Index numbers can be used

A simple index is obtained by dividing the current value of a time series by the value of the time series in the base time period and by multiplying this ratio by 100. That is, if y_t denotes the current value and if y_0 denotes the value in the base time period, then the simple index number is

$$\frac{y_t}{y_0} \times 100$$