Algoritmizace a programování

MAIN

21/100/19

20100101010

0101010101017

100100100000

10010101010100

3011 010101010

10100101110

0101001011

1010100101

0,00101101

2,0,00,010

001001010101010

Technická dokumentace Semestrální Práce Číslo 27

Volodymyr Cherniakov

2022

Úkol a předpoklady

Je zadáno n vektorů délky k. Zapište program, který pro každou takovouto sadu vektorů nalezne a vypíše dva vektory s maximálním skalárním součinem.

Pro dva vektory (u, v) vypočteme skalární součin dle vztahu:

$$\sum_{i=1}^{n} u_{i} \cdot v_{i}$$

Specifikace vstupu:

Program má umožnit při jednom spuštění zpracování libovolného počtu zadání. Pro každou úlohu nechť program nejdříve načte celá čísla n a k (představující počet vektorů a počet složek každého z vektorů). Poté program načte jednotlivé vektory a vypíše výsledek svého šetření. Po načtení záporného nebo nulového n nechť program skončí svoji činnost.

Návrh řešení

- 1. Načteme počet vektoru a jejich délku (musí být kladná čísla).
- 2. Vytvoření 2D pole a načtení prvků vektoru do tohoto pole.
- 3. Najít vektory s největším skalárním součinem a zapsat je do jiného pole.
- 4. Vypište do konzoly pole vektorů s nejvyšším skalárním součinem a jejich skalární součin.

Algoritmus pro hledání skalárního součinu:

První cyklus prochází první rozměr pole od 0 do předposledního prvku. Druhý cyklus taky prochází první rozměr pole, ale od prvku prvního cyklu + 1. Třetí cyklus prochází druhý rozměr pole od 0 do délky pole. Při každé iteraci přičteme k proměnné temp součin prvku pole s indexem z prvního cyklu na první rozměru a třetího cyklu na druhém rozměru a prvním rozměru a třetího cyklu na prvním rozměru a třetího cyklu na druhém rozměru.

Například:

$$a = (1, -4, 5)$$

 $b = (0, 3, -4)$
 $c = a \cdot b$
 $c = (1 \cdot 0 + (-4) \cdot 3 + 5 \cdot (-4))$
 $c = -32$

Protokol z testování

Číslo testu	Typ testu, popis vstupů	Očekávaný výsledek	Skutečný výsledek	Prošel (ano/ne)
Nº1	Zadám záporný počet vektorů	Program se zastaví	Program se zastaví	ano
Nº2	Zadám zápornou délku vektoru	Program se zastaví	Program se zastaví	ano
Nº3	Zadám všechny prvky vektoru na nuly.	Skalární součin bude roven nule a vektory budou nulové.	Skalární součin bude roven nule a vektory budou nulové.	ano
Nº4	Všechny prvky zadávám jako čísla.	Spočítá skalární součin	Spočítá skalární součin	ano
Nº5	Zadám písmeno jako počet vektorů	Chyba	Chyba	ano
Nº6	Zadám písmeno jako délku vektorů	Chyba	Chyba	ano
Nº7	Zadám písmeno jako vektorový prvek	Chyba	Chyba	ano

Screenshoty výsledků akceptačních testů

Nº1

```
Enter the choice:

1 - Semestral Project

2 - Christmas Project

0 - Exit

1

Enter the number of vectors(n): -1

Enter the choice:

1 - Semestral Project

2 - Christmas Project

0 - Exit
```

Nº2

```
Enter the choice:

1 - Semestral Project

2 - Christmas Project

0 - Exit

1

Enter the number of vectors(n): 3
Enter the length of vectors(k): -4
Incorrect input

Enter the choice:

1 - Semestral Project

2 - Christmas Project

0 - Exit
```

Nº3

```
Enter the choice:
1 - Semestral Project
2 - Christmas Project
0 - Exit
Enter the number of vectors(n): 3
Enter the length of vectors(k): 4
Enter the vectors:
0 0 0 0
0 0 0 0
0 0 0
               0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
       0.0
Vectors with maximum scalar product:
(0.0 0.0 0.0)
(0.0 0.0 0.0)
Scalar product of these vectors: 0.0
Enter the number of vectors(n): -1
```

Screenshoty výsledků akceptačních testů

Nº4

```
Enter the choice:
1 - Semestral Project
2 - Christmas Project
0 - Exit
Enter the number of vectors(n): 3
Enter the length of vectors(k): 4
Enter the vectors:
1 1 1 1
3 2 4 2
0 0 0 12
All vectors:
      1.0 1.0 1.0
2.0 4.0 2.0
0.0 0.0 12.0
1.0
   1.0
3.0
0.0
Vectors with maximum scalar product:
(3.0 2.0 4.0 2.0)
(0.0 0.0 0.0 12.0)
Scalar product of these vectors: 24.0
```

Nº5

```
Enter the choice:

1 - Semestral Project

2 - Christans Project

3 - Enter the number of vectors(n): B

Enception in thread "main" java.util.ImpublismatchEnception

B Enception in thread "main" java.util.ImpublismatchEnception

B Enception in thread "main" java.util.ImpublismatchEnception

B Enception in thread "main" java.util.ImpublismatchEnception

at java.hams/java.util.ImpublismatchEnception

at java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.hams/java.ham
```

Nº6

Nº7

```
Enter the choice:

1 - Semestral Project

2 - Christmas Project

3 - Semestral Project

4 - Christmas Project

5 - Kgit

1

Enter the number of vectors(n): 2
Enter the length of vectors(k): 3
Enter the vectors:

9 0 1

1 1 0 12

Exception in thread "main" java.util.InputNismatchException

at java.base/java.util.Scanner.throwFor(Scanner.java:539)

at java.base/java.util.Scanner.nextnt(Scanner.java:2258)

at java.base/java.util.Scanner.nextnt(Scanner.java:2258)

at java.base/java.util.Scanner.nextnt(Scanner.java:2258)

at java.base/java.util.Scanner.nextnt(Scanner.java:2212)

at semestral_vork.SemestralProject.createArray(SemestralProject.java:53)

at semestral_vork.SemestralProject.main(SemestralProject.java:23)

at semestral_vork.SemestralProject.main(SemestralProject.java:23)

at semestral_vork.SemestralProject.main(SemestralProject.java:23)

at semestral_vork.SemestralProject.main(SemestralProject.java:23)

at semestral_vork.SemestralProject.main(SemestralProject.java:23)

C:\Users\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\Loca\User\autry\Appbata\L
```