Introduction to HCI

Methods for Design, Prototyping and Evaluating User Interaction

Spring 2019

Lecture 5

The Design Cycle

The Art of UI Design

A soufflé is eggs, butter, milk & flour, but the difference between soaring and sinking is in the execution.

The Design Process

[KOBERG & BAGNALL]

The Design Process [KOBERG & BAGNALL]

I. Acceptance

Getting started

Because of a deadline
Because of possible reward
Because you are forced to

Commitment

Time Resources Responsibility

Key is to set motivation

2. Analysis

Understand Users and Tasks

Who are the users?

What are their tasks?

Observe and test, don't guess

7. Evaluation Design Process 6. Implementation 3. Definition 5. Idea selection 4. Ideation

Tools

Notebook
Smartphone:
audio + video recorder
still camera

Understand Users

User-centered design starts and ends with real users.

Observation, surveys, interviews

Two ways to summarize traits:

- Abstraction
- Archetypes

Persona

Persona Examples

Brad Colbow (http://carsonified.com/blog/design/how-to-understand-your-users-with-personas/)

Tasks

What are the tasks?

Observe and test, don't guess

Tasks:

- Finding a point-of-interest
- Sending a message
- Taking/sharing a photo

Mixture of easy/hard

- Browse for a contact
- : :
- Create a location-based reminder

Support strange paths..

3. Definition

Focus on the problem

Choose appropriate level of detail

Not "bicycle cup-holders"

...but

"helping cyclists to drink coffee without accidents"

Or, helping users work out more regularly

Or, helping users learn during their commute

4. Ideation

Brainstorming

- Stretch mental muscles
 - Loosen up with simple games
 - Do homework
 - Seed with related ideas/objects
- Get physical
 - Sketch
 - Make models
 - Act out
- IDEO rules
 - One conversation at a time
 - Stay focused
 - Encourage wild ideas
 - Defer judgment
 - Build upon idea from others

Aim for quantity!

5. Idea Selection

Define importance of each idea

- Does it address problem
- Will target users like it
- Is hardware available
- Is software available
- What is the cost
- Market window

...

Rank ideas according to your criteria

don't kill ideas with "fatal flaws" too early

Pick top N

Choices depend on resources and stage of the project

Design Discipline

Great design is about choosing what to leave out.

Takes a clear understanding of users' needs.

SIMPLIFY whenever possible.

Rough it out

Sketch

Argue

Get criticism from others

Seeing through many eyes

Studio model

The space is a cognitive extension

Think

Step back...

Critique your own design

Why did you make the choices you did?

What is the real design space you are working in?

Try to avoid "overthinking" before your first sketch

6. Implementation

Scale up low → high fidelity

• Low-fidelity (quick, cheap, dirty) sketches, paper models, foam core, ...

6. Implementation

Scale up low → high fidelity

• Low-fidelity (quick, cheap, dirty) sketches, paper models, foam core, ...

Medium fidelity(slower, more expensive)
 Flash, JavaScript, AJAX, ...

6. Implementation

Scale up low → high fidelity

Low-fidelity (quick, cheap, dirty)
 sketches, paper models, foam core, ...

Medium fidelity(slower, more expensive)
 Flash, JavaScript, AJAX, ...

High fidelity (slowest, most expensive)

The full interface

Implementation

Web design

- Sites created at multiple levels of detail
- Sites iteratively refined at all levels of detail
- Iterate quickly to see what works
- Mock up tools (Denim...)

7. Evaluation

Many types of evaluation:

- Prototype walkthroughs
- Think-aloud studies
- Wizard-of-Oz
- Performance comparisons

Type of evaluation chosen depends on the level of implementation, etc.

Evaluation

Early tests - Wizard of Oz approach

Evaluation

Walk-through prototype design

Design Cycle Over Project Lifespan

Design Cycle Over Project Lifespan

Project timeline

Evaluation reveals problems with design. Re-design requires cycling the process.

Design Cycle Over Project Lifespan

Prototype implementations eventually increase in fidelity to reach final product

Comparison

[Lewis & Rieman]

- 1. Who will use?
- 2. What are their tasks?
- 3. Plagiarize
- 4. Rough out a design
- 5. Think about design
- 6. Create a prototype
- 7. Test it with users
- 8. Iterate
- 9. Build a production version
- 10. Track use
- 11. Evolve the design

[Koberg & Bagnall]

Comparison

[Lewis & Rieman] [Koberg & Bagnall] Who will use? [2] What are their tasks? [2] I. Acceptance 3. Plagiarize [4] 7. Evaluation 2. Analysis Rough out a design [4, 6] Think about design [5] **Design Process** Create a prototype [6] 3. Definition 6. Implementation Test it with users [7] 4. Ideation 5. Idea selection Iterate $[7 \rightarrow 1]$ Build a production version [6]

10. Track use[7]

11. Evolve the design $[7\rightarrow 1]$

Build, Track, Change

Prototype

Evaluate

Design continues after the product ships.

Design

Quality – bug fixes.

Track usage, seek user feedback (support!).

Do something about the problems you find.