Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Ankit Kumar Peter Ondruska Mohit Ivyer James Bradbury Ishaan Gulrajani Victor Zhong Romain Paulus Richard Socher

MetaMind

ICML, 2017 Presenter: Tianlu Wang

- Introduction
- 2 Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- 3 Experiments
 - Compared to baselines
 - Qualitative Example

Introduction

- Tasks in natural language processing can be cast as a question answering problem:
 - Machine Translation ⇒ What is the translation into French?
 - Name entity recognition ⇒ What are the name entity tags in this sentence?

- State-of-the-art on multiple dataset:
 - Question answering(Facebook bAbl dataset)
 - Text classification for sentiment analysis(Stanford Sentiment Treebank)
 - Sequence modeling for part-of-speech tagging(WSJ-PTB)

Intuition from Neuroscience

- The episodic memory in humans stores specific experiences in their spatial and temporal context.
- Provide a vector representation to capture all relevant information from input sequences and questions.

- Introduction
- 2 Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- Experiments
 - Compared to baselines
 - Qualitative Example

Model Overview

- Introduction
- 2 Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- 3 Experiments
 - Compared to baselines
 - Qualitative Example

Input Module

- $h_t = GRU(x_t, h_{t-1}), x_t$ is embedding of tth word
- output of this module is denoted as c, $|c| = T_c$
 - input is a single sentence:output all hidden states of RNN, $|c|=T_c$ is number of words
 - input is a list of sentences:concatenate, insert end-of-sentence tokens and output hidden states at end-of-sentence tokens, $|c| = T_c$ is number of sentences

- Introduction
- Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- 3 Experiments
 - Compared to baselines
 - Qualitative Example

Question Module

- ullet $q_t = \mathit{GRU}(x_t^Q, q_{t-1}), \, x_t^Q$ is embedding of tth word in the question
- output the final state of recurrent network, noted as q

- Introduction
- Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- Experiments
 - Compared to baselines
 - Qualitative Example

Need for Multiple Episodes

• In every iteration: (note it is c, not c_t)

$$c(\text{input sequence}) + q(\text{question}) + m^{i-1}(\text{previous memory}) \Rightarrow e^{i}(\text{episode memory})$$
 $m^{i} = GRU(e^{i}, m^{i-1})$

• why we need multiple episodes?

Attention Mechanism

- gating function: $g_t^i = G(c_t, m^{i-1}, q)$, output a scalar score
- $G(c, m, q) = \sigma(W^{(2)} tanh(W^{(1)} z(c, m, q) + b^{(1)}) + b^{(2)})$, 2-layer nn
- $z(c, m, q) = [c, m, q, c \circ q, c \circ m, |c q|, |c m|, c^T W^{(b)} q, c^T W^{(b)} m]$
- output is a scalar score g_t^i for every c_t in c

Memory Update Mechanism

episode vector is the final state of GRU

$$h_t^i = g_t^i GRU(c_t, h_{t-1}^i) + (1 - g_t^i) h_{t-1}^i$$
 (1)

$$e^i = h^i_{T_c} \tag{2}$$

$$m^{i} = GRU(e^{i}, m^{i-1}) \tag{3}$$

- Introduction
- 2 Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- 3 Experiments
 - Compared to baselines
 - Qualitative Example

Answer Module

• A GRU whose initial state is initialized to the last memory $a_0 = m^{T_M}$

$$y_t = softmax(W^{(a)}a_t) \tag{4}$$

$$a_t = GRU([y_{t-1}, q], a_{t-1})$$
 (5)

- Introduction
- 2 Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- 3 Experiments
 - Compared to baselines
 - Qualitative Example

Compared to baselines

Task	MemNN	DMN
1: Single Supporting Fact	100	100
2: Two Supporting Facts	100	98.2
3: Three Supporting Facts	100	95.2
4: Two Argument Relations	100	100
5: Three Argument Relations	98	99.3
6: Yes/No Questions	100	100
7: Counting	85	96.9
8: Lists/Sets	91	96.5
9: Simple Negation	100	100
10: Indefinite Knowledge	98	97.5
11: Basic Coreference	100	99.9
12: Conjunction	100	100
13: Compound Coreference	100	99.8
14: Time Reasoning	99	100
15: Basic Deduction	100	100
16: Basic Induction	100	99.4
17: Positional Reasoning	65	59.6
18: Size Reasoning	95	95.3
19: Path Finding	36	34.5
20: Agent's Motivations	100	100
Mean Accuracy (%)	93.3	93.6

Table 1. Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. (Weston et al., 2015a). The DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

Compared to baselines

Model	Acc (%)
SVMTool	97.15
Sogaard	97.27
Suzuki et al.	97.40
Spoustova et al.	97.44
SCNN	97.50
DMN	97.56

Table 3. Test accuracies on WSJ-PTB

Compared to baselines

Max	task 3	task 7	task 8	sentiment
passes	three-facts	count	lists/sets	(fine grain)
0 pass	0	48.8	33.6	50.0
1 pass	0	48.8	54.0	51.5
2 pass	16.7	49.1	55.6	52.1
3 pass	64.7	83.4	83.4	50.1
5 pass	95.2	96.9	96.5	N/A

Table 4. Effectiveness of episodic memory module across tasks. Each row shows the final accuracy in term of percentages with a different maximum limit for the number of passes the episodic memory module can take. Note that for the 0-pass DMN, the network essential reduces to the output of the attention module.

- Introduction
- 2 Dynamic Memory Network
 - Model Overview
 - Input Module
 - Question Module
 - Episodic Memory Module
 - Answer Module
- 3 Experiments
 - Compared to baselines
 - Qualitative Example

Qualitative Examples

