Lesson 6 Guide

Contents

1	Less	son 6: Saving and Investment	1
	1.1	Firm's Decision	1
	1.2	User Cost	1
	1.3	Defining Marginal Benefit MPK ^e	2
	1.4	Investment	3
	1.5	The Goods Market Equlibrium	4
	1.6	Shifts	5

1 Lesson 6: Saving and Investment

1.1 Firm's Decision

Firms have to make a decision about what to use their resources for. There are two things that firms use their resources for.

- 1. Pay dividends to stock holders
- 2. Increase capacity to produce more in the future (I)

Firms will choose a level of capital (K) that maximizes profit by reaching the condition MB = MC

MB = Expected marginal product of capital (MPK^e)

MC = User-cost of capital (UC)

 π_{max} when UC = MPK^e

1.2 User Cost

We will express user cost in number of output, which is the real cost.

Example: Michael Scott's Paper Company

- Output: Reams of Paper (Price = \$10)
- Capital: Van (Price = \$10,000)
- UC = 1,000 reams of paper

1.2.1 User Cost Factors

User Cost depends on:

- Real Price of capital (P_k)
- The depreciation rate (δ)
- The real interest rate (r)
- The business tax on revenue (τ)
- Investment Tax Credit (ITC)

1.2.2 Defining User Cost

Start without considering taxes or tax credits

$$\frac{w}{\tau} = 0$$
 and $ITC = 0$

$$UC = rP_k + \delta P_k$$

$$UC = (r + \delta)P_k$$

Now lets add in τ (business tax on revenue) Firms will now be losing some % of their benefit (revenue) MPK^e

At max π :

$$UC = MPK^{e} - \tau MPK^{e}$$

$$UC = (1 - \tau)MPK^{e}$$

$$\frac{(r + \delta)P_{k}}{1 - \tau} = \frac{(1 - \tau)MPK^{e}}{1 - \tau}$$

$$MPK^{e} = \frac{(r + \delta)P_{k}}{1 - \tau}$$

$$UC = \frac{(r + \delta)P_{k}}{1 - \tau}$$

Now let us add in Investment Tax Credit (ITC). Assume ITC is a % of P_k (real price of capital)

$$P_k = P_k - ITC(P_k)$$

$$P_k = (1 - ITC)P_k$$

Plug this into our user cost we get:

$$UC = \frac{(r+\delta)(1-ITC)P_k}{(1-\tau)}$$

1.2.3 Shifts in User costs

- 1. Increase in r is increase in UC
- 2. Increase in δ is increase in UC
- 3. Increase in ITC is decrease in UC
- 4. Increase in P_k is increase in UC
- 5. Increase in τ is increase in UC

1.3 Defining Marginal Benefit MPK^e

Capital has diminishing marginal returns. This means that as K increases, Y increases, but at a decreasing rate. As K goes up, MPK^e goes down.

1.3.1 UC vs MPK $^{\rm e}$

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


Shifts for UC are all the variables in the equation of UC, which move it up or down. Shifts for MPK are A and AS. These are total factor productivty (or tech) and "Animal Spirits". Animal Spirits referrs to investor confidence.

1.4 Investment

1.4.1 Terminology

 $I_t = Gross \ investment \ in \ year \ t \ K_t = capital \ stock \ at \ beginning \ of \ year \ t \ K_{t+1} = capital \ stock \ at \ beginning \ of \ year \ t \ + 1$

- Net investment = ΔK during year t - $K_{t+1} - K_t$
- Net investment = gross investment depreciation

$$K_{t+1} - K_t = I_t - \delta K_t$$
$$I_t = K_{t+1} - K_t + \delta K_t$$

If we assume that firms are trying to maximize profit π then $I_t = K^* - K_t + \delta K_t$ where K^* is the value of k_{t+1} that fulfills the condition $UC = MPK^e$

From this we can see that if r (real interest rate) increases, then User Cost increases, which means MPK^e must increase, which means K^* must increase, so I_t decreases.

 $\bullet~$ r increases, $I_{\rm t}$ decreases

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

1.5 The Goods Market Equlibrium

- We are in a closed economy so NX = 0
- Savings = Investment

We can go back to our GDP function

$$Y = C + I + G$$

Then rewrite it with investment as our response:

$$I = Y - C - G$$

We know for savings

$$S = S_{pvt} + S_{pub}$$

$$S = ((Y + TR + INT) - (C + T)) + (T - (G + TR + INT))$$

$$S = Y - C - G$$

Therefore savings is equal to investment (S = I) when in equilibrium.

Recall in Lesson 5 we learned that when r increases, consumption decreases, so savings must increase. And in this lesson we determined that when r increases, I decreases.

This brings us to our model of Savings vs Investment

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


At the equilibrum point above Savings is equal to investment for the given level of r (real interest rate).

1.6 Shifts

The following states how an increase in each factor changes the resposne variable.

1.6.1 Savings Function

$$S = Y - C - G$$

- Y +
- Y₂ -
- \bullet W_1 -

- W₂ T +
- Autonomous Consumption -
- Consumer confidence -
- G -

1.6.2 Investment Function

$$I = K^* - K_t + \delta K_t$$

- A +
- AS +
- τ -
- δ -
- P_k ITC +