Tarea 5

Rigoberto Canseco López

Calcular las siguientes integrales

1. $\int \cot^3 x \ dx$

Solución

Usando la fórmula $\int \cot^n(x) \ dx = -rac{\cot^{n-1}(x)}{n-1} - \int \cot^{-2+n}(x) \ dx$, donde n=3

$$\begin{aligned} &= -\frac{1}{2}\cot^2 x - \int \cot x \; dx \\ \text{Reemplazamos } \cot x \text{ por } \frac{\cos x}{\sin x} \\ &= -\frac{1}{2}\cot^2 x - \int \frac{\cos x}{\sin x} \; dx \end{aligned}$$

Para la integral $\frac{\cos x}{\sin x}$, substituimos $u = \sin x$ y $du = \cos x \ dx$

$$=-rac{1}{2}\mathrm{cot}^2\,x-\intrac{1}{u}\;dx$$

La integral de $\frac{1}{u}$ es $\ln u$

$$-\ln u - \frac{1}{2} \cot^2 x + C$$

Sustituyendo u por $\sin x$

$$=-rac{1}{2}\mathrm{cot}^2\,x-\ln(\sin x)+C$$

2. $\int x^6 \sin x \ dx$

Solución

Por integración por partes para $x^6 \sin x$

$$\int u\ dv = uv - \int v\ du$$
 $u = x^6,\quad du = 6x^5\ dx,\quad dv = \sin x\ dx,\quad v = -\cos\ x$

Tenemos que

$$=-x^6\cos x+6\int x^5\cos x\ dx$$

Por integración por partes para $x^5 \cos x$

$$\int u\ dv = uv - \int v\ du$$
 $u = x^5, \quad du = 5x^4\ dx, \quad dv = \cos x\ dx, \quad v = \sin\ x$

Tenemos que

$$=-x^{6}\cos x+6x^{5}\sin x-30\int x^{4}\sin x\;dx$$

Por integración por partes para $x^4 \sin x$

$$\int u \, dv = uv - \int v \, du$$

$$u = 30x^4, \quad du = 4x^3 \, dx, \quad dv = \sin x \, dx, \quad v = -\cos x$$

Tenemos que

$$=30x^4\cos x - x^6\cos x + 6x^5\sin x - 120\int x^3\cos x\ dx$$

Por integración por partes para $x^3 \cos x$

$$\int u \ dv = uv - \int v \ du$$

$$u = x^3, \quad du = 3x^2 \ dx, \quad dv = \cos x \ dx, \quad v = \sin x$$

Tenemos que

$$=30x^4\cos x-x^6\cos x+6x^5\sin x-120x^3\sin x+360\int x^2\sin x\ dx$$

Por integración por partes para $x^2 \sin x$

$$\int u\ dv = uv - \int v\ du$$
 $u = x^2, \quad du = 2x\ dx, \quad dv = \sin x\ dx, \quad v = -\cos\ x$

Tenemos que

$$=30x^{4}\cos x-x^{6}\cos x+6x^{5}\sin x-120x^{3}\sin x-360x^{2}\cos x+720\int x\cos x\ dx$$

Por integración por partes para $x \cos x$

$$\int u \, dv = uv - \int v \, du$$

$$u = x, \quad du = dx, \quad dv = \cos x \, dx, \quad v = \sin x$$

Tenemos que

$$=30x^4\cos x-x^6\cos x+6x^5\sin x-120x^3\sin x-360x^2\cos x+720x\sin x-720\int\sin x\ dx$$

La integral de $\sin x$ es $\cos x$

$$=30x^{4}\cos x-x^{6}\cos x+6x^{5}\sin x-120x^{3}\sin x-360x^{2}\cos x+720x\sin x-720\cos x+C$$

Factorizando

$$=6x(x^4-20x^2+120)\sin x-(x^6-30x^4+360x^2-720)\cos x+C$$

3.
$$\int \frac{\ln x}{\sqrt{x}} dx$$

Solución

Por integración por partes para $\frac{\ln x}{\sqrt{x}}$

$$\int u\ dv = uv - \int v\ du$$
 $u = \ln x, \quad du = 1/x\ dx, \quad dv = 1/\sqrt{x}\ dx, \quad v = 2\sqrt{x}$

Tenemos que

$$=2\sqrt{x}\ln x-2\int\frac{1}{\sqrt{x}}dx$$

La integral de $1/\sqrt{x}$ es $2\sqrt{x}$

$$=2\sqrt{x}\ln x - 4\sqrt{x} + C$$

Factorizando

$$=2\sqrt{x}(\ln(x)-2)+C$$

4. $\int 3^x \cos x \ dx$

Solución

Por integración por partes para $3^x \cos x$

$$\int u\ dv = uv - \int v\ du$$
 $u = \cos x, \quad du = -\sin x\ dx, \quad dv = 3^x\ dx, \quad v = 3^x/\ln 3$

Tenemos que

$$=\frac{3^x\cos x}{\ln 3}+\frac{1}{\ln 3}\int 3^x\sin x\ dx$$

Por integración por partes para $3^x \sin x$

$$\int u \ dv = uv - \int v \ du$$
 $u = \sin x, \quad du = \cos x \ dx, \quad dv = 3^x \ dx, \quad v = 3^x / \ln 3$

Tenemos que

$$=rac{3^x \sin x}{\ln^2 3} + rac{3^x \cos x}{\ln 3} - rac{1}{\ln^2 3} \int 3^x \cos x \ dx$$

Agregamos $\frac{1}{\ln^2 3} \int 3^x \cos x dx$ a las dos partes

$$\left(1 + rac{1}{\ln^2 3}
ight) \int 3^x \cos x dx = rac{3^x \sin x}{\ln^2 3} + rac{3^x \cos x}{\ln 3} + C$$

Dividiendo entre $1 + \frac{1}{\ln^2 3}$

$$\int 3^x \cos x dx = \frac{\frac{3^x \sin x}{\ln^2 3} + \frac{3^x \cos x}{\ln 3}}{1 + \frac{1}{\ln^2 3}} + C$$

$$\frac{3^x (\sin x + \ln 3 \cos x)}{1 + \ln^2 3} + C \quad \blacksquare$$

5. $\int e^{2x} \sin 3x \ dx$

Solución

Por integración por partes para $e^{2x} \sin 3x$

$$\int u\ dv = uv - \int v\ du$$

$$u = \sin 3x,\quad du = 3\cos 3x\ dx,\quad dv = e^{2x}\ dx,\quad v = e^{2x}/2$$

Tenemos que

$$= \frac{1}{2}e^{2x}\sin 3x - \frac{3}{2}\int e^{2x}\cos 3x \ dx$$

Por integración por partes para $e^{2x} \cos 3x$

$$\int u \ dv = uv - \int v \ du$$

$$u = \cos 3x, \quad du = -3\sin 3x \ dx, \quad dv = e^{2x} \ dx, \quad v = e^{2x}/2$$

Tenemos que

$$= \frac{1}{2}e^{2x}\sin 3x - \frac{3}{4}e^{2x}\cos 3x - \frac{9}{4}\int e^{2x}\sin 3x \ dx$$

Agregamos $\frac{9}{4} \int e^{2x} \sin 3x \ dx$ en ambas partes

$$\frac{13}{4} \int e^{2x} \sin 3x \, dx = \frac{1}{2} e^{2x} \sin 3x - \frac{3}{4} e^{2x} \cos 3x - \frac{9}{4} \int e^{2x} \sin 3x \, dx + \frac{9}{4} \int e^{2x} \sin 3x \, dx$$

Multiplicando ambas partes por 4/13

$$\int e^{2x} \sin 3x \ dx = \frac{4}{13} \left(\frac{1}{2} e^{2x} \sin 3x - \frac{3}{4} e^{2x} \cos 3x \right) + C$$

Factorizando

$$= \frac{1}{13}e^{2x}(2\sin 3x - 3e^{2x}\cos 3x) + C \quad \blacksquare$$

6. $\int \arctan x \ dx$

Solución

Por integración por partes para $\arctan x$

$$\int u\ dv = uv - \int v\ du$$
 $u = rctan x, \quad du = 1/(x^2+1)\ dx, \quad dv = dx, \quad v = x$

Tenemos que

$$=x\arctan x-\intrac{x}{x^2+1}dx$$

Sustituimos la integral $x/(x^2+1)$ por $u=x^2+1$ y $dU=2x\ dx$

$$= x \arctan x - \frac{1}{2} \int \frac{1}{u} du$$

La integral de 1/u es $\ln x$

$$=x\arctan x-rac{\ln u}{2}+C$$

Se sustituye $u = x^2 + 1$

$$=x\arctan x-rac{1}{2}\ln(x^2+1)+C$$

7.
$$\int (x^2+2x)\sqrt[4]{x^3+3x^2+9}\ dx$$

Solución

Para la integral $(x^2+2x)\sqrt[4]{x^3+3x^2+9}$, sustituimos $u=x^3+3x^2+9$ y $du=(3x^2+6x)$

$$=rac{1}{3}\int\sqrt[4]{u}\ du$$

La integral de $\sqrt[4]{u}$ es $4u^{5/4}/5$

$$=rac{4u^{5/4}}{15}+C$$

Sustituimos $u = x^3 + 3x^2 + 9$

$$=rac{4}{15}(x^3+3x^2+9)^{5/4}+C$$

8. $\int \sec x \tan x \cos(\sec x) dx$

Solución

Para la integral $\tan x \sec x \cos(\sec x)$, sustituimos $u = \sec x$ y $du = \tan x \sec x dx$

$$=\int \cos u \ du$$

La integral de $\cos u$ es $\sin u$

$$=\sin u + C$$

Sustituyendo de $u = \sec x$

$$=\sin\sec x+C$$