The Math Behind Neural Networks

Justin Sybrandt

Note: I've ripped off all images in this presentation.

The Brain and the Machine

1942 A Logical Calculus of Ideas Immanent in Nervous Activity

- McCulloch & Pitts
- Neurons + Synapses

The Brain and the Machine

1942 A Logical Calculus of Ideas Immanent in Nervous Activity

- McCulloch & Pitts
- Neurons + Synapses

1945 First Draft of a Report on the EDVAC

- von Neumann
- Defines E-Elements

Actual Neuron

Perceptron

1958 The perceptron: A probabilistic model for information storage and organization in the brain.

Activation Functions

Perceptron Inference

Notation

x: input data vector of size n

 ${m w}$: weight vector of size n

 α : activation function

prediction output

Inference

$$z = \sum_{i=1}^{n} x_i w_i$$
$$o = \alpha(z)$$

Basic Perceptron Training

Notation

t: target label in $\{0,1\}$

prediction output

 η : learning rate

• Update Step: for all (x,t)

$$w = w + \Delta w$$

$$\Delta w = \eta \ x (t - o)$$

• Converges if $x \in X$ is linearly separable

7

Issue with Basic Training

Perceptron Training with Gradient Descent

Notation

$$\mathcal{L}(X, w, t)$$
: loss function

Update

$$\Delta w = -\eta \frac{\partial \mathcal{L}}{\partial w}$$

9

Perceptron GD Example

Mean Squared Error

$$\mathscr{L}_{MSE}(X, w, t) = \frac{1}{2} \mathbb{E}_{j=1}^{d} (t_j - o_j)^2$$

Sigmoid Activation

$$\alpha(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

• Gradient Contribution for a single (x,t)

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_i}$$

• Gradient Contribution for a single (x,t)

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_i}$$

$$\frac{\partial \mathcal{L}}{\partial o} = \frac{\partial}{\partial o} \frac{(t - o)^2}{2} = -(t - o)$$

• Gradient Contribution for a single (x,t)

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_i}$$

$$\frac{\partial \mathcal{L}}{\partial o} = \frac{\partial}{\partial o} \frac{(t - o)^2}{2} = -(t - o)$$

$$\frac{\partial o}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

11

• Gradient Contribution for a single (x,t)

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_i}$$

$$\frac{\partial \mathcal{L}}{\partial o} = \frac{\partial}{\partial o} \frac{(t - o)^2}{2} = -(t - o)$$

$$\frac{\partial o}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

$$\frac{\partial z}{\partial w_i} = \frac{\partial}{\partial w_i} \sum_{i=1}^n w_i x_j = x_i$$

11

Gradient of MSE: Put it All Together

• Gradient Contribution for a single (x,t)

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial w_i}$$

$$= -(t - o)\sigma(z)(1 - \sigma(z))x_i$$

$$= -(t - o)(o - o^2)x_i$$

Update Weights

$$\Delta w_i = -\eta \frac{\partial \mathcal{L}}{\partial w_i} = \eta \, \mathbb{E}_{x \in X}(t - o)(o - o^2) x_i$$

Gradient of MSE: Implications

$$\Delta w_i = \eta \, \mathbb{E}_{x \in X}(t - o)(o - o^2)x_i$$

- Weight update is largest when o=0.5, vanishes elsewhere.
- Weight update is proportional to x_i .
- Weight does NOT update if t = o.

Feed-Forward Neural Network

An example of a Feed-forward Neural Network with one hidden layer (with 3 neurons)

Feed-Forward Neural Network: Notation

An example of a Feed-forward Neural Network with one hidden layer (with 3 neurons)

$$h_j = \sum_{i=1}^n W_{ij} x_i + b_j$$
 $z = \sum_{j=1}^k W'_j o_j^{(h)} + b'$ $o_j^{(h)} = h_j$ $o = \sigma(z)$

Back Propagation

• Weight Update:

$$\Delta W = -\eta \frac{\partial \mathcal{L}}{\partial W}$$

Back Propagation

• Weight Update:

$$\Delta W = -\eta \frac{\partial \mathcal{L}}{\partial W}$$

Derivative in last layer (look familiar):

$$\frac{\partial \mathcal{L}}{\partial W_j'} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial W_j'}$$

Back Propagation

• Weight Update:

$$\Delta W = -\eta \frac{\partial \mathcal{L}}{\partial W}$$

Derivative in last layer (look familiar):

$$\frac{\partial \mathcal{L}}{\partial W_j'} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial W_j'}$$

Derivative in hidden layer:

$$\frac{\partial \mathcal{L}}{\partial W_{ij}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial o_j^{(h)}} \frac{\partial o_j^{(h)}}{\partial h_j} \frac{\partial h_j}{\partial W_{ij}}$$

Gradient at Hidden Layer

• Gradient contribution for a single (x, t) on weight W_{ij} .

$$\frac{\partial \mathcal{L}}{\partial W_{ij}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial o_j^{(h)}} \frac{\partial o_j^{(h)}}{\partial h_j} \frac{\partial h_j}{\partial W_{ij}}$$

Gradient at Hidden Layer

• Gradient contribution for a single (x, t) on weight W_{ij} .

$$\frac{\partial \mathcal{L}}{\partial W_{ij}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial o_j^{(h)}} \frac{\partial o_j^{(h)}}{\partial h_j} \frac{\partial h_j}{\partial W_{ij}}$$

Same as before

$$\frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} = -(t - o)(o - o^2)$$

Hidden Propagation

$$\frac{\partial z}{\partial o_j^{(h)}} = W_j' \quad \frac{\partial o_j^{(h)}}{\partial h_j} = 1 \quad \frac{\partial h_j}{\partial W_{ij}} = x_i$$

One Hidden Layer: Putting it All Together

Last-Layer Weight

$$\frac{\partial \mathcal{L}}{\partial W'_j} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial W'_j}$$
$$= -(t - o)(o - o^2)h_j$$

Inner-Layer Weight

$$\frac{\partial \mathcal{L}}{\partial W_{ij}} = \frac{\partial \mathcal{L}}{\partial o} \frac{\partial o}{\partial z} \frac{\partial z}{\partial o_j^{(h)}} \frac{\partial o_j^{(h)}}{\partial h_j} \frac{\partial h_j}{\partial W_{ij}}$$
$$= -(t - o)(o - o^2)W_j'x_i$$

Effect of Learning Rate

Local Minima

Stochastic Gradient Descent

- Sample many batches of size b from $X^{d \times n}$.
- *b* << *n*.
- Allows small incorrect steps during training.
- Better overcomes local minima.

Gradient Descent Modifications

- Momentum
- Nesterov

Momentum

Original

$$\Delta W = -\eta \frac{\partial \mathcal{L}}{\partial W}$$

With Momentum

$$M_k = \beta M_{k-1} + \alpha \frac{\partial \mathcal{L}}{\partial W}$$
$$\Delta W = -\eta M_k$$

Nesterov

Original

$$\Delta W = -\eta \frac{\partial \mathcal{L}}{\partial W}$$

With Nesterov

$$N_k = \beta N_{k-1} + \alpha \frac{\partial}{\partial W} \mathcal{L}(X, (W - \beta N_{k-1}), t)$$
$$\Delta W = -\eta N_k$$

Bias and Variance

Bias and Variance

- In case of bias:
 - Increase model parameters
 - Increase features
 - Lower learning rate
- In case of variance:
 - Increase data
 - Remove features
 - Add regularization terms
 - Raise learning rate