The Decisional Diffie-Hellman problem for class group actions

Jana Sotáková

QuSoft

June 12, 2020

Joint work with Wouter Castryck and Frederik Vercauteren

Diffie-Hellman using groups

Alice and Bob wish to establish a shared secret over an insecure channel.

They agree on a group G and an element $g \in G$ that generates a multiplicative subgroup of size N.

So both Alice and Bob share g^{ab} .

Assumptions for the Diffie-Hellman exchange

Cyclic group $G=\langle g \rangle$ generated by an element of order n and $a,b,c \in \mathbb{Z}/N$.

Secret keys (discrete logarithm problem)

If the adversary sees (G, g, g^a) , she should not be able to compute a.

Intercepted transcript (computational Diffie-Hellman assumption)

If the adversary sees the transcript of the conversation (G, g, g^a, g^b) , she should not able to compute the shared value g^{ab} .

Shared secret (decisional Diffie-Hellman)

The adversary cannot distinguish between (G, g, g^a, g^b, g^{ab}) and (G, g^a, g^b, g^c) for $a, b, c \stackrel{\$}{\longleftarrow} \mathbb{Z}/N$.

Some (polynomial) reductions

We have a cyclic group $G=\langle g \rangle$ of prime order N:

- b discrete logarithm: $(g, g^a) \rightarrow a$,
- lacktriangle computational Diffie-Hellman: $(g,g^a,g^b) o g^{ab}$,
- ▶ decisional Diffie-Hellman: $(g, g^a, g^b, g^c) \rightarrow ab \stackrel{?}{=} c$ in \mathbb{Z}/N .

Reductions independent of the group *G*:

- ightharpoonup CDH implies DLP (compute a,b from g^a,g^b and then compute g^{ab}),
- ▶ DDH implies DLP (compute a, b, c from g^a, g^b, g^c and compare $ab \stackrel{?}{=} c$),
- ▶ DDH implies CDH (compute g^{ab} from g^a, g^b and compare $g^{ab} \stackrel{?}{=} g^c$).

Other reductions:

- ▶ DLP implies CDH if N-1 is smooth [Den Boer],
- ▶ DLP implies CDH if there exist suitable elliptic curve over \mathbb{F}_N [Maurer-Wolf],
- ► CDH does not imply DDH: there are group for which DDH is easy (pairings of elliptic curves).

Where do we see these assumptions

We have a cyclic group $G=\langle g \rangle$ of prime order N:

- b discrete logarithm: $(g, g^a) \rightarrow a$,
- lacktriangledown computational Diffie-Hellman: $(g,g^a,g^b) o g^{ab}$,
- ▶ decisional Diffie-Hellman: $(g, g^a, g^b, g^c) \rightarrow ab \stackrel{?}{=} c$.
- The discrete logarithm problem is the most natural mathematically, so a lot of effort into breaking DLP.
- 2. CDH is the 'advertised' assumption for DH-based protocols, e.g. ECDH,
- 3. CDH ony guarantees 1 'hardcore' bit that is not predictable: if we want g^{ab} to look random to the attacker, we need DDH,
- DDH used in ElGamal encryption, Cramer-Shoup cryptosystem, signatures, . . . ,
- 5. DDH in a group of size $N > 2^n$ gives g^{ab} with n bits of computational entropy, hashing produces random-looking strings.

And Shor's algorithm breaks DLP in cyclic groups.

Group actions

Commutative group G and $G \times X \to X$ be a free and transitive group action:

$$(g,x)\mapsto g\star x.$$

- ▶ group action: $g * (h * x) = (g \cdot h) * x$ for any $g, h \in G$ and $x \in X$.
- ▶ free and transitive: for any $x, x' \in X$ there exists a unique $g \in G$:

$$x' = g \star x$$
.

transport of structure from the group G to a set X.

Group-action based cryptography: secrets=computing in the group ${\it G}$, public = points of ${\it X}$

Diffie-Hellman	Group action Diffie-Hellman
cyclic group G	group G acting on a set X
choose generator g of order n	choose a starting point $x \in X$
sample random $a,b\in\mathbb{Z}/n$	sample random $g_a,g_b\in \mathcal{G}$
exchange g^a, g^b	exchange $g_a \star x, g_b \star x$
compute $(g^a)^b = g^{ab} = (g^b)^a$	$g_b \star (g_a \star x) = (g_a \cdot g_b) \star x = g_a \star (g_b \star x)$

Non-example

Textbook Diffie-Hellman

We have a cyclic group $G = \langle g \rangle$ of prime order N.

The group $\operatorname{Aut}(G)\cong (\mathbb{Z}/N\mathbb{Z})^{\times}$ acts on the set $X=\{g,g^2,g^3,\ldots,g^{N-1}\}$ by $a\star g=g^a.$ $a\star (b\star g)=a\star (g^b)=g^{ab}=(ab)\star g$

Problem: X still has too much structure:

Indeed, $X \subset G$ so we can still multiply elements of X:

$$(a \star g) \cdot (b \star g) = g^a \cdot g^b = g^{a+b} \in G$$

Group actions in isogeny-based cryptography

Setting of [C'06, RS'06, DKS'18, CSIDH, CSURF]:

- ightharpoonup group: class group $\mathsf{Cl}(\mathcal{O})$ of an order \mathcal{O} in an imaginary quadratic field,
- ▶ set: elliptic curves defined over a finite field \mathbb{F}_q with CM by \mathcal{O} .

First we choose an order:

$$\mathcal{O} = \mathbb{Z}[\pi] = \{a + b\pi : a, b \in \mathbb{Z}\}\$$

for some π satisfying

$$\pi^2 - t\pi + q = 0$$
 with $t, q \in \mathbb{Z}$ and $t^2 - 4q < 0$

The elliptic curves:

$$E: y^2 = x^3 + ax + b,$$
 $a, b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$

satisfying

$$\#E(\mathbb{F}_q) = 1 + \#\{(u,v) \in \mathbb{F}_q \times \mathbb{F}_q : v^2 = u^3 + au + b\} = 1 - t + q.$$

Endomorphism rings

$$\mathcal{O}=\mathbb{Z}[\pi]$$
 and $\pi^2-t\pi+q=0$ and elliptic curves \emph{E} such that $\#\emph{E}(\mathbb{F}_q)=1-t+q$.

Elliptic curves give finite abelian groups $E(\mathbb{F}_q)$.

Isogenies: homomorphisms of elliptic curves $\varphi: E \to E'$ as abelian groups, given by rational maps

$$(x,y)\mapsto (f(x,y),g(x,y))$$
 for $f,g\in\mathbb{F}_q(x,y)$

We want elliptic curves such that

$$\mathcal{O} \cong \operatorname{End}(E) = \{ \operatorname{isogenies} \varphi : E \to E \}$$

Denote the set of such elliptic curves (up to \mathbb{F}_q -isomorphism) $\mathscr{E}\!\ell l_q(\mathcal{O},t)$.

What is the relationship between $\mathcal{E}\ell\ell_q(\mathcal{O},t)$ a \mathcal{O} ?

- 1. For any $E, E' \in \mathcal{E}\!\ell_q(\mathcal{O}, t)$, any isogeny $\varphi: E \to E'$ corresponds to an ideal $\mathfrak{a} \subset \mathcal{O}$ and vice versa.
- 2. The principal ideals $(\alpha) \subset \mathcal{O}$ correspond to endomorphisms $\varphi : E \to E$.

ℓ-isogenies

$$\mathcal{O}=\mathbb{Z}[\pi] \text{ and } \pi^2-t\pi+q=0 \text{ and } \mathscr{E}\!\!\ell_q(\mathcal{O},t) \text{ is the set of elliptic curves } E \text{ such that } \#E(\mathbb{F}_q)=1-t+q.$$

What is an isogeny corresponding to an ideal?

Modern setting

Only need isogenies corresponding to ideals $\mathfrak{a}=(\ell,\pi-1)$ for primes $\ell||1-t+q|$:

- ▶ We have $\ell | \#E(\mathbb{F}_q)$ but $\ell^2 \nmid \#E(\mathbb{F}_q)$,
- ▶ there is a unique cyclic subgroup $H \subset E(\mathbb{F}_q)$ of order ℓ ,
- ▶ the isogeny $\varphi: E \to E'$ is the one given by the group homomorphism $E \to E/H$.

Description of $H \longrightarrow \text{reconstruct}$ the rational maps in $O(\sqrt{\ell})$.

Main advantage

This description does not need any ideals $\mathfrak{a} \subset \mathcal{O}$, only ℓ -torsion points for $\ell | \# \mathcal{E}(\mathbb{F}_q)$.

All other isogenies are given by sequences of isogenies

$$E_1 \stackrel{\varphi_1}{\to} E_2 \dots E_n \stackrel{\varphi_n}{\to} E_{n+1}$$

where φ_i are constructed as above (+ small technical details).

Zoology of proposals

 $\mathcal{O}=\mathbb{Z}[\pi]$ and $\pi^2-t\pi+q=0$ and $\mathscr{E}\!\ell_q(\mathcal{O},t)$ is the set of elliptic curves E such that $\#E(\mathbb{F}_q)=1-t+q$. The class group $\operatorname{Cl}(\mathcal{O})$ acts on $\mathscr{E}\!\ell_q(\mathcal{O},t)$ via $([\mathfrak{a}],E)\mapsto a\star E$.

Proposals differ in choosing q and t.

- ▶ [C'06, RS'06] allow ordinary $(t \neq 0)$ elliptic curves over \mathbb{F}_q , any t and \mathcal{O} .
- ▶ [DKS'18] use ordinary elliptic curves over a prime field \mathbb{F}_p with $\#E(\mathbb{F}_p) = q+1-t$ divisible by lots of small primes, eg. with points of order ℓ for every

$$\ell \in \{3,5,7,11,13,17,103,523,821,947,1723\}.$$

► CSIDH [BLMPR'18] uses supersingular elliptic curves (t=0) over \mathbb{F}_p with $p \equiv 3 \mod 8$, order $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ and $\#E(\mathbb{F}_p) = p+1$ divisible by lots of small primes, e.g.

$$p = 4 \cdot 3 \cdot 5 \cdot \ldots \cdot 373 \cdot 587 - 1$$

► CSURF [DW'19] uses supersingular elliptic curves over \mathbb{F}_p with $p \equiv 7 \mod 8$, order $\mathcal{O} = \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$ and $\#E(\mathbb{F}_p) = p+1$ divisible by lots of small primes, e.g.

$$p = 8 \cdot 3^2 \cdot \ldots \cdot \widehat{347} \cdot \ldots \cdot \widehat{359} \cdot \ldots \cdot 389 - 1$$

Complex multiplication

 $\mathcal{O}=\mathbb{Z}[\pi] \text{ and } \pi^2-t\pi+q=0 \text{ and } \mathscr{E}\!\!\ell_q(\mathcal{O},t) \text{ is the set of elliptic curves } E \text{ such that } \#E(\mathbb{F}_q)=1-t+q.$

Theorem (Main theorem of complex multiplication)

For the order $\mathcal O$ and elliptic curves $\mathcal{E}\!\ell\ell_q(\mathcal O,t)$, consider the mapping

$$(\{\textit{ideals of }\mathcal{O}\},\ \mathcal{E}\!\ell_q(\mathcal{O},t)) o \mathcal{E}\!\ell_q(\mathcal{O},t) \ (\mathfrak{a},E) \longmapsto E'$$

where $\varphi: E \to E'$ is the isogeny corresponding to $\mathfrak a$. This mapping factors though the classgroup $\mathrm{Cl}(\mathcal O)$ and induces a free and transitive action

$$\mathsf{CI}(\mathcal{O}) imes \mathscr{E}\!\ell_q(\mathcal{O},t) \longrightarrow \mathscr{E}\!\ell_q(\mathcal{O},t)$$

 $([\mathfrak{a}],E) \longmapsto [\mathfrak{a}] \star E.$

So we finally have a group $CI(\mathcal{O})$ acting on a set $\mathcal{E}\mathcal{U}_q(\mathcal{O},t)$ freely and transitively.

Assumptions for the group action Diffie-Hellman

 $\mathcal{O}=\mathbb{Z}[\pi]$ and $\pi^2-t\pi+q=0$ and $\mathscr{E}\!\ell_q(\mathcal{O},t)$ is the set of elliptic curves E such that $\#E(\mathbb{F}_q)=1-t+q$. The class group $\mathrm{Cl}(\mathcal{O})$ acts on $\mathscr{E}\!\ell_q(\mathcal{O},t)$ via $\{[\mathfrak{q}],E\}\mapsto a\star E$.

Group action Diffie-Hellman	Commutative isogeny schemes
group G acting on a set X	class group $Cl(\mathcal{O})$ acting on $\mathscr{E}\!\ell_q(\mathcal{O},t)$
choose a starting point $x \in X$	choose starting curve, e.g. $E: y^2 = x^3 + x$
sample random $g_a,g_b\in G$	sample random $[\mathfrak{a}], [\mathfrak{b}], \stackrel{\$}{\longleftarrow} Cl(\mathcal{O})$
exchange $g_a \star x, g_b \star x$	exchange $[\mathfrak{a}] \star E, [\mathfrak{b}] \star E$

Vectorization/Group Action Inverse Problem (discrete logarithm problem)

If the adversary sees $(E, [\mathfrak{a}] \star E)$, she should not be able to compute [a].

Parallelization (computational Diffie-Hellman assumption)

If the adversary sees the transcript of the conversation $(E, [\mathfrak{a}] \star E, [\mathfrak{b}] \star E)$, she should not able to compute the shared value $[\mathfrak{a}\mathfrak{b}] \star E$.

Decisional Diffie-Hellman (decisional Diffie-Hellman)

The adversary cannot distinguish between $(E, [\mathfrak{a}] \star E, [\mathfrak{b}] \star E, [\mathfrak{a}\mathfrak{b}] \star E)$ and $(E, [\mathfrak{a}] \star E, [\mathfrak{b}] \star E, [\mathfrak{c}] \star E)$ for $[\mathfrak{a}], [\mathfrak{b}], [\mathfrak{c}] \xleftarrow{\$} \mathsf{Cl}(\mathcal{O})$.

Decisional Diffie-Hellman problem

 $\mathcal{O}=\mathbb{Z}[\pi]$ and $\pi^2-t\pi+q=0$ and $\mathscr{E}\!\!\ell_q(\mathcal{O},t)$ is the set of elliptic curves E such that $\#E(\mathbb{F}_q)=1-t+q$. The class group $\mathrm{Cl}(\mathcal{O})$ acts on $\mathscr{E}\!\!\ell_q(\mathcal{O},t)$ via $([\mathfrak{a}],E)\mapsto a\star E$.

Castryck-S.-Vercauteren

The group action $E \mapsto [\mathfrak{a}] \star E$ does not hide the group perfectly.

There are (well-understood) quadratic characters

$$\chi: \mathsf{Cl}(\mathcal{O}) \longrightarrow \{\pm 1\}.$$

We show how to

compute $\chi([\mathfrak{a}])$ directly from the elliptic curves $E, E' = [\mathfrak{a}] \star E$, without knowing $[\mathfrak{a}]$ or even without knowing anything about the class group.

Breaking DDH for class group actions

Given a tuple of elliptic curves, decide whether they are a 'Diffie-Hellman' sample:

$$(E, [\mathfrak{a}] \star E, [\mathfrak{b}] \star E, [\mathfrak{c}] \star E) \longrightarrow [\mathfrak{ab}] \stackrel{?}{=} [\mathfrak{c}]$$

We always have $\chi([\mathfrak{a}\mathfrak{b}]) = \chi([\mathfrak{a}]) \cdot \chi([\mathfrak{b}])$. So, for a DH tuple, we always have $\chi([\mathfrak{a}]) \cdot \chi([\mathfrak{b}]) = \chi([\mathfrak{c}])$; for a random $[\mathfrak{c}]$ this holds* with probability 1/2.

When does our attack work?

 $\mathcal{O}=\mathbb{Z}[\pi] \text{ and } \pi^2-t\pi+q=0 \text{ and } \mathscr{E}\!\ell_q(\mathcal{O},t) \text{ is the set of elliptic curves } E \text{ such that } \#E(\mathbb{F}_q)=1-t+q.$ The class group $\mathsf{Cl}(\mathcal{O})$ acts on $\mathscr{E}\!\ell_q(\mathcal{O},t)$ via $([\mathfrak{a}],E)\mapsto \mathsf{a}\star E.$

We need non-trivial characters

From the tuple $(E, [\mathfrak{a}] \star E, [\mathfrak{b}] \star E, [\mathfrak{c}] \star E)$ we compute $\chi([\mathfrak{a}]), \chi([\mathfrak{b}))$ and $\chi([\mathfrak{c}])$ and check

$$\chi([\mathfrak{c}]) \stackrel{?}{=} \chi([\mathfrak{a}]) \cdot \chi([\mathfrak{b}]) = \chi([\mathfrak{a}\mathfrak{b}]).$$

There exist non-trivial characters for a density 1 of orders \mathcal{O} and there is a character computable in time polynomial in $\log q$ if and only if there is a small divisor of t^2-4q .

This attack works

- 1. for ordinary curves [C'06, RS'06, DKS'18]: whenever # Cl(\mathcal{O}) is even and there is a small odd divisor of disc(\mathcal{O}), which is (heuristically) a density 1 set of orders \mathcal{O} . In praticular, it works for all setups proposed in [DKS'18],
- 2. for supersingular curves: whenever $p \equiv 1 \mod 4$. This is not the case for CSIDH or CSURF (they use $p \equiv 3 \mod 4$).

Thank you!

eprint: 2020/151

Breaking the decisional Diffie-Hellman problem for class group actions using genus theory

Wouter Castryck and Jana Sotáková and Frederik Vercauteren

https://eprint.iacr.org/2020/151