ML HW6 Report

學號:B04611015 系級: 資工二 姓名:陳佳佑

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize.

我將資料的 rating 減掉總共的平均再除以標準差,得到 normalize 的 rating。 然後 predict 的結果再乘以標準差加上平均,得到還原後的結果。

std = np.std(y)
mean = np.mean(y)
y = (y-mean)/std

Without Normalized: 0.84326 (Kaggle Best)

Normalized: 0.86417

Normalized 後的結果較差,有可能是因為標準化,造成最佳化時,極點附近是平面, gradient 太小造成無法逼近,而原先 unnormalized 的曲面,有可能相比之下較尖。

2. (1%)比較不同的 latent dimension 的結果。

Latent Dimension	Best Validation Loss
120	0.8513
110	0.8458
100	0.8512
90	0.8477
80	0.8485
70	0.8476
60	0.8506
50	0.8520
40	0.8536

從上圖可以觀察到,不同 latent dimension 之間,在 70~110 時,其實並沒有差非常多,可以看成是,實際的 latent feature 只有到 70 維,而往上以後,只是多很多為 0 的 feature。而實際上在 Training 時,Best Validation Loss 出現的 epoch,隨著 Latent Dimension 增加而遞減,可以想成是因為在沒有任何 normalization 下,越多的維度 dot 所產生的 gradient 會越大,造成更快走向 local minimum。

3. (1%)比較有無 bias 的結果。

Bias Model

```
def generate_model(n_movies, n_users):
    movie input = keras.layers.Input(shape=(1,))
    movie_vec = keras.layers.Platten()(keras.layers.Embedding(n_movies + 1, 100, embeddings_initializer='random_uniform')(movie_input))
    movie_vec = keras.layers.Dropout(0.2)(movie_vec)

user_input = keras.layers.Input(shape=(1,))
    user_vec = keras.layers.Flatten()(keras.layers.Embedding(n_users + 1, 100, embeddings_initializer='random_uniform')(user_input))
    user_vec = keras.layers.Dropout(0.2)(user_vec)

input_vecs = keras.layers.merge([movie_vec,user_vec], 'dot')

mbv = keras.layers.Flatten()(keras.layers.Embedding(n_movies + 1,1,embeddings_initializer='random_uniform')(movie_input))
    ubv = keras.layers.Flatten()(keras.layers.Embedding(n_users + 1,1,embeddings_initializer='random_uniform')(user_input))
    output = keras.layers.Hatten()(keras.layers.Embedding(n_users + 1,1,embeddings_initializer='random_uniform')(user_input))
    output = keras.layers.Hatten()(keras.layers.Embedding(n_users + 1,1,embeddings_initializer='random_uniform')(user_input))
    output = keras.layers.Hatten()(keras.layers.Embedding(n_users + 1,1,embeddings_initializer='random_uniform')(user_input))
    model = kmodel.Model([movie_input, user_input], output)
    model.compile(optimizer = 'adam',loss = 'mean_squared_error', metrics=[root_mean_squared_error])
    return model
```

Bias Score (kaggle): 0.84442 (2nd place) Orginal Score (kaggle): 0.84326 (2nd place)

基本上兩者的差距很小,可以算是統計上的誤差。

Bias term 最主要的目的是為了消除單一 user 或單一電影的偏見。而在此資料集上 bias 的不明顯,有可能是因為每個用戶的偏見都不大。

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

DNN model

```
movie_input = keras.layers.Input(shape=[1])
movie_vec = keras.layers.Flatten()(keras.layers.Embedding(n_movies + 1, 120)(movie_input))
movie_vec = keras.layers.Dropout(0.1)(movie_vec)

user_input = keras.layers.Input(shape=[1])
user_vec = keras.layers.Flatten()(keras.layers.Embedding(n_users + 1, 120)(user_input))
user_vec = keras.layers.Dropout(0.1)(user_vec)

input_vecs = keras.layers.merge([movie_vec, user_vec], mode='concat')
nn = keras.layers.Dropout(0.2)(keras.layers.Dense(128, activation='relu')(input_vecs))
nn = keras.layers.normalization.BatchNormalization()(nn)
nn = keras.layers.Dropout(0.3)(keras.layers.Dense(128, activation='relu')(nn))
nn = keras.layers.normalization.BatchNormalization()(nn)
nn = keras.layers.Dense(128, activation='relu')(nn)

result = keras.layers.Dense(5, activation='softmax')(nn)

model = kmodels.Model([movie_input, user_input], result)
model.compile('adam', 'categorical_crossentropy')
```

Embedding 的做法與 MF 一樣,但是把 dot 改成 concat,然後接 DNN。

MF 的結果為 0.84, DNN 的結果為 1.2

DNN 的結果會比較差的原因有可能如下,首先,因為 DNN 的結果,我是用 softmax 所以出來結果只會是整數,在 evaluation 公式為 RMSE 的情況下,每個錯誤都是非常巨大的。再者,DNN 的 model 對於這個訓練集而言有點過於複雜,造成 Model 的 complexity 更高,更容易 overfitting,或許把 Dropout 調大,跑更多的 epoch 能有一樣的表現,但是就效率而言,已經慢 MF 很多了。

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

 $negative = \hbox{\tt ['Horror','War','Crime','Thriller','Film-Noir']}: red$

Child = ['Animation','Children's','Fantasy']: yellow

Misc = ['Mystery', 'Sci-Fi'] : green

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結果, 結果好壞不會影響評分。

首先,我將 Genre 變成 19 維的 0,1 矩陣,然後接下來我直接讓他與 Embedding 過後的 movie_id concat,形成一個 120 維的 tensor,最後與 userid 的 embedding 內積。

會如此設計是因為剛好這學期軒田老師的技法課的 final project 也是做 recommender system,而我們也使用了類似的技巧,獲得不錯的 performance。除此之外,或許在 concat 前加一層 Dense 會有更好的結果,因為 genre 就不會都是 0.1。

Bonus (Kaggle): 0.84978