DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DE L'INSERTION PROFESSIONNELLE (**DGESIP**)

Concours CAE session 2018

Composition : **Mathématiques 1** (algèbre, analyse)

Durée : 2 Heures

Merci de ne rien marquer sur le sujet.

Consignes pour les candidats

Pour chaque question de l'épreuve, une seule bonne réponse possible. Répondez sur la grille séparée qui comporte 12 questions (Q1 à Q12). Seules les grilles correctement remplies seront corrigées.

EXERCICE 1

Soit A =
$$\begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
 une matrice

carrée d'ordre trois diagonalisable

Question 1

Le polynôme caractéristique de A est :

A)
$$P(X) = (X + 3) (X + 1)^2$$

B)
$$P(X) = (X-3)(X-1)(X+2)$$

C)
$$P(X) = (X - 3)(X + 1)^2$$

D)
$$P(X) = (X + 3)(X - 1)^2$$

E) Je passe.

Question 2

Le spectre de la matrice A est :

A)
$$\{-3,1\}$$

B)
$$\{3, -1\}$$

C)
$$\{-2,1,3\}$$

D)
$$\{-3, -1\}$$

On admet que A est diagonalisable. Soit la

matrice
$$P = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$
 telle que

 $P^{-1}AP = D$ où D est une matrice diagonale formée des valeurs propres de A. Alors :

A)
$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

B)
$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

C)
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

D)
$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

E) Je passe

EXERCICE 2

On considère la série à termes

positifs
$$\sum u_n$$
 où $u_n = \frac{2(2n^2+n-3)}{n(n+1)(n+2)(n+3)}$.

Question4

La série $\sum u_n$ converge car :

A)
$$u_n \leq \frac{2}{n^4}$$

B)
$$u_n \sim \frac{4}{n^2}$$

C)
$$u_n \leq \frac{4}{n^3}$$

D)
$$u_n \sim \frac{4}{n^3}$$

Ouestion5

Pour tout entier naturel non nul n on a:

A)
$$u_n = \frac{-4}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \frac{-1}{n+3}$$

B)
$$u_n = \frac{-1}{n} + \frac{3}{n+1} + \frac{2}{n+2} + \frac{-4}{n+3}$$

C)
$$u_n = \frac{-2}{n} + \frac{1}{n+1} + \frac{4}{n+2} + \frac{-3}{n+3}$$

D)
$$u_n = \frac{-1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \frac{-4}{n+3}$$

Ouestion6

La somme de la série $\sum_{n=1}^{+\infty} u_n$ est égale à :

A)
$$\frac{5}{6}$$

B)
$$\frac{6}{5}$$

C)
$$\frac{3}{4}$$

D)
$$\frac{4}{3}$$

E) Je passe

EXERCICE 3

Soit f la fonction définie sur l'intervalle

]0,1[par :
$$f(x) = \frac{\ln(1-x^2)}{x^2}$$
.

Question 7

Démontrer que au voisinage de 0, f(x) est équivalente à :

A)
$$\frac{2}{x}$$

B)
$$\frac{-2}{x}$$

D)
$$\frac{-1}{x^2}$$

Question 8

Démontrer que au voisinage de 1, f(x) est équivalente à :

A)
$$\frac{1}{x-1}$$
lnx

B)
$$ln(1 - x)$$

C)
$$-2 \ln(1-x)$$

Question 9

La valeur de l'intégrale $\int_0^1 \frac{\ln(1-x^2)}{x^2} dx$ est :

EXERCICE 4

Question 10

Calculer les limites des suites ci - après :

$$\lim_{n \to \infty} n^3 \left(\tan \frac{3}{n} - \sin \frac{3}{n} \right) =$$
A) $\frac{1}{3}$

A)
$$\frac{1}{3}$$

B)
$$\frac{3}{9}$$

C)
$$\frac{27}{2}$$

D) Je passe

Question 11

$$\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^{4n} =$$
A) e^{12}

A)
$$e^1$$

B)
$$e^{3/4}$$
 C) e^{81}

C)
$$e^{81}$$

Question 12

$$\lim_{n\to\infty} \frac{\left(3+\frac{1}{n}\right)^{2n}}{9^n} =$$

A)
$$e^{2/5}$$

B)
$$e^{1/3}$$

C)
$$e^{2/3}$$