Federated Learning for Autonomous IoT Systems:

Dr Anna Lito Michala

Tiny data collectors,

University of Glasgow

vastly distributed systems,

Annalito.Michala@glasgow.ac.uk

and the land of tiny challenges

Tiny data collectors

- Embedded devices connected to a variety of sensors (IoT)
 - Accessible? (maintenance & management)
 - Fault tolerant / Reliable or Robust?
 - Secure?
 - Privacy preserving?
 - Understandable?
 - Data correctness?
 - Distributed but not really decentralised!

Source: https://gigazine.net/gsc_news/en/20170412-iot-market-2023

Tiny data collectors

- loT capabilities increase (CPU, memory, GPUs, FPGAs and custom accelerators)
- The cloud is not enough!
 - Latency
 - Privacy
 - "Dirty" data
 - Demand
- ML is becoming an Edge core component
- But what will the Edge look like?

On the Edge

Solving the task variant allocation problem in distributed robotics

José Cano¹ • David R. White³ · Alejandro Bordallo¹ · Ciaran McCreesh² · Anna Lito Michala² · Jeremy Singer² · Vijay Nagarajan¹

Optimizing Task Allocation for Edge Micro-Clusters in Smart Cities

Yousef Alhaizaey School of Computing Science University of Glasgow Glasgow, United Kingdom y.alhaizaey.1@research.gla.ac.uk Jeremy Singer School of Computing Science University of Glasgow Glasgow, United Kingdom jeremy.singer@glasgow.ac.uk Anna Lito Michala School of Computing Science University of Glasgow Glasgow, United Kingdom annalito.michala@glasgow.ac.uk

Real-time Recursive Risk Assessment Framework for Autonomous Vehicle Operations

Wei Ming Dan Chia^{1,2}, Sye Loong Keoh^{2,3}, Anna Lito Michala², Cindy Goh³

¹Infocomm Technology (ICT), Singapore Institute of Technology, Singapore

²School of Computing Science, University of Glasgow, Glasgow, United Kingdom

³University of Glasgow, Singapore

Vastly distributed systems

Source: https://www.supplychain.gr/

Vastly distributed systems

Land Transport: Major Technology Areas

Annalito.Michala@glasgow.ac.uk

Federated Learning

- A new architecture
- Still vastly distributed
- Where should the aggregation take place?
- How computationally intensive is the information extraction when looking at one set of collected data?
- Can it be deployed in IoT or should it be on the Edge?

Federated Learning Frameworks

IntegrateFL (MLOps platform)

NVIDIA Flare

Flower

- Python SDKs
- Differential privacy Real-time Data network monitoring and metrics
- Mostly built around Kubernetes, AWS and similar infrastructure technologies with some interesting web interfaces to improve usability and scalability
- Similar to above but Open Source. Implemented in Python.
- Docker and Python, Open source

The land of tiny challenges

- Power
- CPU
- RAM
- Networking
- Cost

The land of tiny challenges

Vibration Edge Computing in Maritime IoT

ANNA LITO MICHALA, University of Glasgow, UK IOANNIS VOURGANAS, Abertay University, UK ANDREA CORADDU, University of Strathclyde, UK

mini-ELSA: using Machine Learning to improve space efficiency in Edge Lightweight Searchable Attribute-based encryption

Jawhara Aljabri *†, Anna Lito Michala*, Jeremy Singer*, Ioannis Vourganas ‡

* School of Computing Science, University of Glasgow, United Kingdom

† Faculty of Computers and Information Technology, University of Tabuk, Saudi Arabia

‡ School of Design and Informatics, Abertay University, United Kingdom

Annalito.Michala@glasgow.ac.uk

Smartphone-based DNA diagnostics for malaria detection using deep learning for local decision support and blockchain technology for security

Xin Guo^{1,4}, Muhammad Arslan Khalid^{1,4}, Ivo Domingos², Anna Lito Michala[©]², Moses Adriko³, Candia Rowel³, Diana Ajambo³, Alice Garrett¹, Shantimoy Kar¹, Xiaoxiang Yan¹, Julien Reboud[©]¹, Edridah M. Tukahebwa³ and Jonathan M. Cooper[©]¹

Data Privacy Threat Modelling for Autonomous
Systems: A Survey from the GDPR's
Perspective

Naila Azam*, Lito Michala*, Shuja Ansari[†], Nguyen Binh Truong*
*School of Computing Science, University of Glasgow, Glasgow G12 8QQ UK
[†]James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ UK

Tiny data collectors

- Embedded devices connected to a variety of sensors (IoT)
 - Accessible? (maintenance & management)
 - Fault tolerant / Reliable or Robust?
 - Secure?
 - Privacy preserving?
 - Understandable?
 - Data correctness?
 - Distributed but not really decentralised!

Source: https://gigazine.net/gsc_news/en/20170412-iot-market-2023

Elixir benefits

- High availability
- High concurrency
- Reliability by design
- Fault tolerance
- Communication protocols
- Quick development time
- Easier code maintenance (source code lines)
- Heterogeneous hardware compatibility

Erlang/Elixir ecosystem

- Nerves (OS targeting IoT)
- Kry10 (secure OS)
- Nx (Tensor math)
- evision (OpenCV Elixir bindings)
- Explorer, Livebook
- Other projects looking at
 - Learning/Federated learning
 - IoT programming in general

CAEFL: Composable and Environment Aware Federated Learning Models

Ruomeng (Cocoa) Xu

r.xu.1@research.gla.ac.uk School of Computing Science, University of Glasgow Glasgow, United Kingdom

Anna Lito Michala

annalito.michala@glasgow.ac.uk School of Computing Science, University of Glasgow Glasgow, United Kingdom

Phil Trinder

Phil.Trinder@glasgow.ac.uk School of Computing Science University of Glasgow Glasgow, United Kingdor

The land of opportunities

- Are we saving enough power by not sending each data point from the IoT device?
- Is that sufficient to be used for our computation needs efficiently?
- Can other algorithms adapt to such vast distribution?
- What happens when we have small local datasets?

Thank you!

Questions?

Dr Anna Lito Michala

University of Glasgow

Annalito.Michala@glasgow.ac.uk