Statistiques avancées — Régression : Erreur de prédiction du Lasso

24 Septembre 2021

L'objectif de ce TD est de traiter les capacités prédictives du Lasso (Least absolute shrinkage and selection operator); en particulier, nous calculons des bornes supérieures sur l'erreur de prédiction du Lasso, et montrons que celui-ci surpasse dans certains cas la régression linéaire classique.

Problème 1 (Bornes sur l'erreur de prédiction du Lasso). Soit $(X_i, Y_i)_{1 \leq i \leq n}$ un n-échantillon i.i.d avec $X_i \in \mathbb{R}^p$ un vecteur de prédicteurs et $Y_i \in \mathbb{R}$ un réponse, pour tout $1 \leq i \leq n$. On note $X \in \mathbb{R}^{n \times p}$ la matrice de design, $Y \in \mathbb{R}^n$ le vecteur de réponses et $\varepsilon \in \mathbb{R}^n$ le vecteur de bruit. On considère le modèle linéaire suivant, avec $\beta^* \in \mathbb{R}^p$ inconnu et $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ pour tout $1 \leq i \leq n$:

$$Y_i = X_i^{\top} \beta^* + \varepsilon_i. \tag{1}$$

- 1) Dans cette question on suppose $n \geq p$ et la matrice de covariance empirique $X^{\top}X$ inversible.
 - a) Rappeler la formule de l'estimateur des moindres carrés ordinaires $\hat{\beta}^{LS}$.
 - b) Calculer l'erreur moyenne de prédiction $n^{-1}\mathbb{E}[\|X(\hat{\beta}^{LS}-\beta^*)\|_2^2]$.
 - c) Préciser la valeur de $n^{-1}\mathbb{E}[\|X(\hat{\beta}^{LS}-\beta^*)\|_2^2]$ dans le cas d'un design orthogonal, où $X^\top X = I_p$.
 - d) Que se passe-t-il si p > n?

Dans la suite du problème, on étudie un estimateur parcimonieux de β^* , reposant sur une pénalisation ℓ_1 des moindres carrés. L'estimateur du Lasso est défini comme suit :

$$\hat{\beta} \in \operatorname{argmin}_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1 \right\}, \tag{2}$$

où $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$. Le paramètre $\lambda > 0$ est le paramètre de régularisation, contrôlant la parcimonie de l'estimateur $\hat{\beta}$. L'objecif du problème est de calculer une borne supérieure sur l'erreur de prédiction du Lasso $n^{-1}\|X(\hat{\beta}-\beta^*)\|_2^2$, et de la comparer à l'erreur de prédiction des moindres carrés ordinaires. Pour $\beta \in \mathbb{R}^p$, soit

$$\ell_n(\beta, \beta^*) = \frac{1}{n} ||X(\beta - \beta^*)||_2^2.$$

On va prouver un résultat de la forme suivante :

$$\ell_n(\hat{\beta}, \beta^*) \leq R(\beta^*, \sigma^2, n, p, \delta)$$
 avec probabilité au moins $1 - \delta, \delta \in (0, 1)$. (3)

Dans l'équation (3), $R(\beta^*, \sigma^2, n, p, \delta)$ est une borne supérieure valide avec grande probabilité (par rapport à la distribution du bruit ε) qui dépend de la dimension du problème p, du nombre d'observations n, de la variance du bruit σ^2 , et de la probabilité $1 - \delta$ avec laquelle on veut contrôler l'erreur de prédiction $\ell_n(\hat{\beta}, \beta^*)$.

2) En utilisant la définition $\hat{\beta}$ comme un minimiseur de $\mathcal{F}(\beta) = \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1$, montrer que, pour tout $\beta \in \mathbb{R}^p$:

$$\ell_n(\hat{\beta}, \beta^*) \le \ell_n(\beta, \beta^*) + 4\lambda \|\beta\|_1 + \frac{2}{n} \varepsilon^\top X(\hat{\beta} - \beta) - 2\lambda \left(\|\beta\|_1 + \|\hat{\beta}\|_1 \right).$$
 (4)

3) Pour un vecteur $x \in \mathbb{R}^p$, on définit la norme ℓ_{∞} de $x : ||x||_{\infty} = \max_{1 \leq j \leq p} |x_j|$. Montrer que, pour tout $\beta \in \mathbb{R}^p$:

$$\frac{1}{n}\varepsilon^{\top}X(\hat{\beta}-\beta) - \lambda \left(\|\beta\|_{1} + \|\hat{\beta}\|_{1}\right) \le \left(\frac{1}{n}\|\varepsilon^{\top}X\|_{\infty} - \lambda\right) \left(\|\hat{\beta}\|_{1} + \|\beta\|_{1}\right). \tag{5}$$

Indice: utiliser l'inégalité suivante pour $x, y \in \mathbb{R}^p$, découlant de la dualité des normes ℓ_1 et ℓ_∞ : $x^\top y \leq \|x\|_\infty \|y\|_1$.

On cherche à présent à montrer que, pour une valeur de λ bien choisie, le membre de droite de l'inégalité (5) est négatif ou nul avec grande probabilité

4) Pour $1 \le j \le p$, notons X^j la j-ième colonne de la matrice de design X. Soit $\delta \in (0,1)$ fixé. On suppose $\|X^j\|_2^2 \le n$ pour tout $1 \le j \le p$, et

$$\lambda = \sigma \sqrt{\frac{2}{n} \ln(p/\delta)}.$$

- a) On définit la variable aléatoire $\zeta_j = \frac{\varepsilon^\top X^j}{\sigma \|X^j\|_2}$. Quelle loi suit ζ_j ?
- b) Montrer que, pour tout $1 \le j \le p$,

$$\mathbb{P}\left(|\varepsilon^{\top} X^{j}| > \sigma \sqrt{2n \ln(p/\delta)}\right) \leq \frac{\delta}{p}.$$

Indice : utiliser l'inégalité de concentration Gaussienne $\mathbb{P}(\xi>x)\leq \frac{1}{2}\exp(-x^2/2)$ pour $\xi\sim\mathcal{N}(0,1)$.

- c) En déduire que $\mathbb{P}\left(n^{-1}\|\varepsilon^{\top}X\|_{\infty} > \lambda\right) \leq \delta$.
- 5) En utilisant les réponses aux questions précédentes, conclure que, pour $\delta \in (0,1)$ fixé, si $\lambda = \sigma \sqrt{\frac{2}{n} \ln(p/\delta)}$ alors, avec probabilité au moins 1δ ,

$$\ell_n(\hat{\beta}, \beta^*) \le \inf_{\beta \in \mathbb{R}^p} \left\{ \ell_n(\beta, \beta^*) + 4\sqrt{2}\sigma\sqrt{\frac{\ln(p/\delta)}{n}} \|\beta\|_1 \right\}.$$
 (6)

L'inégalité (6) est appelée une "inégalité oracle". En effet, elle compare l'erreur de prédiction de l'estimateur du Lasso, $\ell_n(\hat{\beta}, \beta^*)$, à l'erreur de prédiction du meilleur estimateur parcimonieux de β^* . Ce meilleur estimateur, noté $\bar{\beta}$, satisfait :

$$\bar{\beta} \in \operatorname{argmin}_{\beta \in \mathbb{R}^p} \left\{ \ell_n(\beta, \beta^*) + 4\sqrt{2}\sigma \sqrt{\frac{\ln(p/\delta)}{n}} \|\beta\|_1 \right\}.$$

En pratique, on ne connait pas l'estimateur oracle $\bar{\beta}$, car on ne peut pas calculer la perte $\ell_n(\beta, \beta^*)$ qui dépend de β^* , lui-même inconnu. Cependant, sous certaines conditions sur β^* , on peut obtenir un résultat plus précis.

7) On suppose $\|\beta^*\|_0=\sum_{j=1}^p 1_{\{|\beta_j|>0\}}\leq s,$ et $\|\beta^*\|_\infty\leq a.$ Montrer que

$$\ell_n(\hat{\beta}, \beta^*) \le C\sigma\sqrt{\frac{\ln(p/\delta)}{n}}as$$
 (7)

avec probabilité au moins $1-\delta,$ et C une constant numérique que l'on précisera.

8) Comparer la borne supérieure sur l'erreur de prédiction du Lasso obtenue en (7) à l'erreur de prédiction de l'estimateur des moindres carrés calculé à la question 1) et conclure.