

Eletroquímica: células eletrolíticas

Vanize Caldeira da Costa

Uruguaiana, novembro de 2021

Nas celas eletrolíticas, energia elétrica é utilizada para que reações químicas de oxirredução não espontâneas ocorram

Reações químicas provocadas pela passagem de corrente elétrica são chamadas de eletrólise

Exemplo:

A eletricidade pode ser usada para se decompor o cloreto de sódio (NaCl) fundido nos seus elementos componentes:

O cloro é oxidado
$$2 \overset{+1}{\text{NaCI}}_{(I)} \rightarrow 2 \overset{0}{\text{Na}}_{(I)} + \overset{0}{\text{CI}}_{2(g)}$$

$$= \overset{+1}{\text{NaCI}}_{(I)} \rightarrow 2 \overset{0}{\text{Na}}_{(I)} + \overset{0}{\text{CI}}_{2(g)}$$

$$= \overset{-1}{\text{CI}}_{(I)} \rightarrow 2 \overset{0}{\text{Na}}_{(I)} + \overset{0}{\text{CI}}_{2(g)}$$

Uma célula eletrolítica consiste de dois eletrodos imersos em um sal fundido ou uma solução aquosa

Geralmente inertes, formados por platina ou grafite

Eletrólise ígnea

Reação química provocada pela passagem de corrente elétrica através de um composto iônico fundido.

Eletrólise aquosa

Reação química provocada pela passagem de corrente elétrica através de uma solução aquosa contendo eletrólitos.

Para que seja possível forçar uma reação de oxirredução não espontânea, o gerador de corrente elétrica utilizado para executar a eletrólise deve fornecer uma diferença de potencial adequada

Exemplo:

$$E_{red}^{\circ} (CI_{2}/CI_{-}) = + 1,36 \text{ V}$$

 $E_{red}^{\circ} (Na_{-}/Na) = - 2,71 \text{ V}$

O cloro é oxidado
$$2 \overset{+1}{\text{NaCl}}_{(n)} \rightarrow 2 \overset{0}{\text{Na}}_{(n)} + \overset{0}{\text{Cl}}_{2(g)}$$
 O sódio é reduzido

$$\Delta E^{\circ} = E^{\circ} (Na^{+}/Na) - E^{\circ} (CI_{2}/CI^{-})$$

 $\Delta E^{\circ} = -2.71 - (+1.36) = -4.07 \text{ V}$

Necessário aplicar uma diferença de potencial superior à 4,07 V

Eletrólise aquosa

Como as substâncias iônicas têm altos pontos de fusão, a eletrólise dos sais fundidos requer altas temperaturas

Alternativa

Eletrólise pode ser realizada em uma solução aquosa contendo o sal

A presença de água pode dificultar a eletrólise de alguns espécies químicas...

Auto-ionização da água:

$$H_2O \implies H^+ + OH^-$$

Íons OH⁻ competem com os ânions da substância dissolvida pelo processo de oxidação

Íons H⁺ competem com os cátions da substância dissolvida pelos elétrons disponibilizados no cátodo (processo de redução)

Eletrólise aquosa

Demais cátions sofrer redução **Maior** tendência que o H+ <u>م</u> **Menor** facilidade tendência que o H⁺ Cátions de metais alcalinos, Aumenta alcalino-terrosos e alumínio Ex: K+, Na+, Ca2+

oxidação sofrer facilidade de Aumenta

Demais ânions

Maior tendência que o OH⁻

OH-

Menor tendência que o OH⁻

Ânions
oxigenados e
fluoreto
Ex: F⁻, SO₄²⁻, NO₃⁻

Eletrólise aquosa

Eletrólise de uma solução aquosa de NaCl

Cátions presentes: H+ e Na+ Maior tendência de sofrer redução

Ânions presentes: OH- e CI- Maior tendência de sofrer oxidação

Dissociação do eletrólito: 2 NaCl → 2 Na+ + 2 Cl-

Auto-ionização da água: $2 H_2O \rightarrow 2 H^+ + 2 OH^-$

Semirreação no cátodo: 2 H⁺ + 2 e⁻ → H₂

Semirreação no ânodo: $2 \text{Cl}_2 \rightarrow \text{Cl}_2 + 2 \text{e}^-$

2 NaCl + 2 $H_2O \rightarrow 2 Na^+ + H_2 + Cl_2 + OH^-$

O que ocorre durante a eletrólise de uma solução aquosa de AgNO₃?

Aplicações da eletrólise

Célula eletrolítica para eletrodeposição de prata

Copyright @ 2008 Pearson Prentice Hall, Inc.

Galvanoplastia

Refino eletrolítico do cobre

Obtenção de substâncias

Exemplos:

F₂, Cl₂, metais alcalinos, metais alcalino-terrosos, alumínio etc.

A Lei de Faraday

A massa de uma substância produzida num eletrodo é proporcional à carga elétrica que circula na cela eletrolítica e à massa molar dessa substância.

$$Q = i \times \Delta t$$

Q: carga elétrica

i: corrente elétrica – ampére (C/s)

Δt: intervalo de tempo (s)

Carga de 1 elétron = $1,6 \times 10^{-19}$ C

1 elétron - 1,6 x 10⁻¹⁹ C

6,02 x 10²³ elétrons - X

1 mol de elétrons

Constante de Faraday (F)

A Lei de Faraday

A massa de uma substância produzida num eletrodo é proporcional à carga elétrica que circula na cela eletrolítica e à massa molar dessa substância.

Proporcionalidade estequiométrica que existe entre a quantidade, em mols, de elétrons que chega ou sai de um eletrodo e a quantidade, em mols, da substância formada

Exemplos:

1 mol de Al³⁺ é reduzido por... 3 mols de e⁻...

produzindo 1 mol de Al^o

Assim, nesses exemplos, podemos afirmar que:

A carga de 1 mol de elétrons (96485 C), passando pelo circuito, deposita 1 mol de Ag, isto é, 108 g de Ag.

$$1 \text{ Ag}^+ + 1 \text{ e}^- \rightarrow 1 \text{ Ag}^0$$

A carga de 2 mols de elétrons (2 x 96485 C), passando pelo circuito, deposita 1 mol de Cu, isto é, 63,5 g de Cu.

$$1 \text{ Cu}^{2+} + 2 \text{ e}^{-} \rightarrow 1 \text{ Cu}^{0}$$

A carga de 3 mols de elétrons (3 x 96485 C), passando pelo circuito, deposita 1 mol de Al, isto é, 27,0 g de Al.

$$1 \text{ Al}^{3+} + 3 \text{ e}^{-} \rightarrow 1 \text{ Al}^{0}$$

O mesmo tipo de raciocínio pode ser utilizado nos processos que ocorrem em celas galvânicas...

Exemplo 1:

Um técnico encarregado de uma indústria de galvanoplastia deseja depositar, em uma peça metálica, um revestimento de 11,74 g de níquel, durante um processo de niquelação realizado com uma corrente de 96,5 A. Qual a carga (C) e o tempo, em minutos, necessário para que essa deposição ocorra, sabendo que a célula eletrolítica foi preparada por meio da solubilização de íons Ni²⁺?

Tempo?

Q = i x Δt 39060 C = 96,5 A x Δt $\Delta t = 405$ s $\Delta t = 405/60 = 6,8$ minutos

Exemplo 2:

Qual a quantidade em mols de elétrons que deve passar por um circuito eletrolítico a fim de depositar meio mol de prata metálica na eletrólise de íons Ag+?

```
1 Ag<sup>+</sup> + 1 e<sup>-</sup> → 1 Ag<sup>0</sup>
1 mol 1 mol

1 mol de e<sup>-</sup> - 1 mol de Ag<sup>0</sup>

X - 0,5 mol de Ag<sup>0</sup>

X = 0,5 mol de elétrons
```

Exemplo 3:

Q = 579000 C

Uma indústria de peças para motos realiza a cromação delas por meio da redução eletrolítica do cromo (III).

a) Equacione a semirreação de redução;

$$1 \text{ Cr}^{3+} + 3 \text{ e}^{-} \rightarrow 1 \text{ Cr}^{0}$$

b) Qual a massa de Cr produzida após 1930 s de eletrólise utilizando uma corrente de 300 A.

De acordo com a reação...

$$Q = i \times \Delta t \qquad \qquad 1 Cr^{3+} + 3 e^{-} \rightarrow 1 Cr^{0}$$

Q = 300 x 1930

3 mols de elétrons produzem 1 mol de Cr⁰

Carga de 3 mols de
$$e^-$$
 = 3 x 96485 C = 289455 C

Massa de 1 mol de Cr = 52 g

$$X = 104 g$$

Exemplo 4:

(Unip-SP) O alumínio é obtido pela eletrólise do óxido de alumínio (Al₂O₃) fundido, de acordo com a reação catódica:

$$AI^{3+} + 3 e^{-} \rightarrow AI$$

A quantidade de elétrons, em mols, necessária para a obtenção de 675 g de alumínio é: (Dado: massa molar do alumínio = 27 g/mol)

- a) 3
- b) 75
 - c) 50
 - d) 100

De acordo com a reação...

$$1 \text{ Al}^{3+} + 3 e^{-} \rightarrow 1 \text{ Al}^{0}$$

3 mols de elétrons produzem 1 mol de Al^o

X = 75 mols de elétrons

Exemplo 5: (formação de substâncias gasosas)

Na eletrólise de uma solução aquosa de Na_2SO_4 foram coletados 240 ml de gás oxigênio (O_2) no ânodo, durante 193 s. Qual o valor da corrente elétrica que atravessou esse circuito durante o processo? (volume molar do gás a 20° C e 1 atm = 22,4 L)

```
4 OH<sup>-</sup> → O_2 + 2 H<sub>2</sub>O + 4 e<sup>-</sup>
1 mol 4 mols
Volume Carga
22,4 L - 4 x 96485 C
0,240 L - Q
```

$$Q = i \times \Delta t$$

4135 $C = i \times 193$
 $i = 21,4 \text{ A}$

$$Q = 4135 C$$