This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$5 + 4i \text{ and } -4$$

The solution is $x^3 - 6x^2 + x + 164$, which is option B.

A.
$$b \in [-2.3, 4.4], c \in [-1.6, -0.93]$$
, and $d \in [-21.5, -18]$
 $x^3 + x^2 - x - 20$, which corresponds to multiplying out $(x - 5)(x + 4)$.

B.
$$b \in [-8.4, -5.6], c \in [0.11, 1.85], \text{ and } d \in [163.6, 167.2]$$

* $x^3 - 6x^2 + x + 164$, which is the correct option.

C.
$$b \in [3, 9.5], c \in [0.11, 1.85]$$
, and $d \in [-165.4, -158.5]$
 $x^3 + 6x^2 + x - 164$, which corresponds to multiplying out $(x - (5 + 4i))(x - (5 - 4i))(x - 4)$.

D.
$$b \in [-2.3, 4.4], c \in [-0.84, 0.88]$$
, and $d \in [-17.4, -12]$
 $x^3 + x^2 + 0x - 16$, which corresponds to multiplying out $(x - 4)(x + 4)$.

E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (5 + 4i))(x - (5 - 4i))(x - (-4)).

2. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-1}{2}, \frac{-1}{4}, \text{ and } \frac{7}{5}$$

The solution is $40x^3 - 26x^2 - 37x - 7$, which is option E.

A.
$$a \in [35, 42], b \in [-88, -76], c \in [47, 56],$$
 and $d \in [-8, -2]$
 $40x^3 - 86x^2 + 47x - 7$, which corresponds to multiplying out $(2x - 1)(4x - 1)(5x - 7)$.

B.
$$a \in [35, 42], b \in [-66, -63], c \in [4, 12], \text{ and } d \in [3, 13]$$

 $40x^3 - 66x^2 + 9x + 7, \text{ which corresponds to multiplying out } (2x - 1)(4x + 1)(5x - 7).$

C.
$$a \in [35, 42], b \in [20, 30], c \in [-38, -35], \text{ and } d \in [3, 13]$$

 $40x^3 + 26x^2 - 37x + 7, \text{ which corresponds to multiplying out } (2x - 1)(4x - 1)(5x + 7).$

D. $a \in [35, 42], b \in [-29, -24], c \in [-38, -35], \text{ and } d \in [3, 13]$

 $40x^3 - 26x^2 - 37x + 7$, which corresponds to multiplying everything correctly except the constant term.

E. $a \in [35, 42], b \in [-29, -24], c \in [-38, -35], \text{ and } d \in [-8, -2]$

* $40x^3 - 26x^2 - 37x - 7$, which is the correct option.

General Comment: To construct the lowest-degree polynomial, you want to multiply out (2x + 1)(4x + 1)(5x - 7)

3. Describe the zero behavior of the zero x = 8 of the polynomial below.

$$f(x) = -7(x-2)^{10}(x+2)^6(x+8)^{11}(x-8)^6$$

The solution is the graph below, which is option B.

В.

D.

E. None of the above.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

4. Describe the zero behavior of the zero x = 8 of the polynomial below.

$$f(x) = -9(x-5)^{12}(x+5)^9(x+8)^{10}(x-8)^7$$

The solution is the graph below, which is option A.

A.

D.

E. None of the above.

General Comment: You will need to sketch the entire graph, then zoom in on the zero the question asks about.

5. Which of the following equations *could* be of the graph presented below?

The solution is $-17x^4(x+4)^4(x+1)^6$, which is option C.

A.
$$-8x^7(x+4)^4(x+1)^{11}$$

2107-1615

The factors x and (x + 1) should both have even powers.

B. $-14x^{10}(x+4)^8(x+1)^9$

The factor (x + 1) should have an even power.

C. $-17x^4(x+4)^4(x+1)^6$

* This is the correct option.

D. $14x^{10}(x+4)^6(x+1)^9$

The factor (x + 1) should have an even power and the leading coefficient should be the opposite sign.

E. $13x^8(x+4)^{10}(x+1)^{10}$

This corresponds to the leading coefficient being the opposite value than it should be.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).

6. Describe the end behavior of the polynomial below.

$$f(x) = 5(x+3)^3(x-3)^8(x+7)^3(x-7)^5$$

The solution is the graph below, which is option D.

E. None of the above.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

7. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-4-5i$$
 and 4

The solution is $x^3 + 4x^2 + 9x - 164$, which is option C.

A. $b \in [-8, -3], c \in [8.79, 9.4],$ and $d \in [160, 168]$ $x^3 - 4x^2 + 9x + 164$, which corresponds to multiplying out (x - (-4 - 5i))(x - (-4 + 5i))(x + 4).

B. $b \in [-1, 2], c \in [0.48, 1.62], \text{ and } d \in [-24, -18]$ $x^3 + x^2 + x - 20, \text{ which corresponds to multiplying out } (x + 5)(x - 4).$

C. $b \in [2, 5], c \in [8.79, 9.4]$, and $d \in [-165, -163]$ * $x^3 + 4x^2 + 9x - 164$, which is the correct option.

D. $b \in [-1, 2], c \in [-0.13, 0.06]$, and $d \in [-18, -14]$ $x^3 + x^2 + 0x - 16$, which corresponds to multiplying out (x + 4)(x - 4).

E. None of the above.

This corresponds to making an unanticipated error or not understanding how to use nonreal complex numbers to create the lowest-degree polynomial. If you chose this and are not sure what you did wrong, please contact the coordinator for help.

General Comment: Remember that the conjugate of a + bi is a - bi. Since these zeros always come in pairs, we need to multiply out (x - (-4 - 5i))(x - (-4 + 5i))(x - (4)).

8. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$-7, \frac{-3}{2}, \text{ and } \frac{-5}{3}$$

The solution is $6x^3 + 61x^2 + 148x + 105$, which is option C.

2107-1615

- A. $a \in [0,7], b \in [-44, -36], c \in [-26, -17],$ and $d \in [101, 112]$ $6x^3 - 41x^2 - 22x + 105$, which corresponds to multiplying out (x-7)(2x-3)(3x+5).
- B. $a \in [0,7], b \in [59,62], c \in [138,153]$, and $d \in [-109,-103]$ $6x^3 + 61x^2 + 148x - 105$, which corresponds to multiplying everything correctly except the constant term.
- C. $a \in [0,7], b \in [59,62], c \in [138,153], \text{ and } d \in [101,112]$ * $6x^3 + 61x^2 + 148x + 105$, which is the correct option.
- D. $a \in [0,7], b \in [-26, -18], c \in [-119, -111], \text{ and } d \in [-109, -103]$ $6x^3 - 23x^2 - 118x - 105, \text{ which corresponds to multiplying out } (x-7)(2x+3)(3x+5).$
- E. $a \in [0, 7], b \in [-65, -60], c \in [138, 153], \text{ and } d \in [-109, -103]$ $6x^3 - 61x^2 + 148x - 105, \text{ which corresponds to multiplying out } (x - 7)(2x - 3)(3x - 5).$

General Comment: To construct the lowest-degree polynomial, you want to multiply out (x+7)(2x+3)(3x+5)

9. Describe the end behavior of the polynomial below.

$$f(x) = -4(x-5)^3(x+5)^4(x+6)^3(x-6)^3$$

The solution is the graph below, which is option A.

A.

E. None of the above.

General Comment: Remember that end behavior is determined by the leading coefficient AND whether the **sum** of the multiplicities is positive or negative.

10. Which of the following equations *could* be of the graph presented below?

The solution is $-12x^9(x+1)^8(x-1)^5$, which is option C.

A.
$$10x^{11}(x+1)^4(x-1)^5$$

This corresponds to the leading coefficient being the opposite value than it should be.

B.
$$-8x^7(x+1)^8(x-1)^{10}$$

The factor (x-1) should have an odd power.

C.
$$-12x^9(x+1)^8(x-1)^5$$

* This is the correct option.

D.
$$3x^{10}(x+1)^4(x-1)^{11}$$

The factor x should have an odd power and the leading coefficient should be the opposite sign.

E.
$$-10x^9(x+1)^9(x-1)^{10}$$

The factor -1 should have an even power and the factor 1 should have an odd power.

General Comment: General Comments: Draw the x-axis to determine which zeros are touching (and so have even multiplicity) or cross (and have odd multiplicity).