STOCHASTIC VOLATILITY

Jacques Burrus [jacques.burrus@bfi.lat]

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- ② GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- - Variance model description
 - Formula for European vanillas
 - Numerical example
- - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- ② GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- A SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

Empirical observations about the volatility

- The Black-Scholes model makes the simplifying assumptions that volatility was a constant (or at least deterministic) quantity.
- Since Black Monday it is clear that this hypothesis was no longer able to satisfactorily explain the smile.
- Multiple empirical studies focus on the behavior of volatility and highlight the stochastic nature of volatility.
- In his 1988 article "Volatility Persistence abd Stock Valuations: Some Empirical Evidence Using Garch", Chou suggests that:
 - Volatility is mean-reverting: it tends to oscillate around a long-term equilibrium value.
 - Volatility is persistent: it is a predictable random variable (unlike stock returns in efficient markets).
 - Also, volatility tends to be related to the returns: generally periods of negative returns (financial crisis) are associated with a high volatility.

STOCK INDEX

- This index reinvests dividends so as to remove the jumps associated with dividends.
- The proportion of each stock is weighted according to the firm's capitalization.
- The index is normalized to the arbitrary value of 100 at the beginning of the data in 1962.

STOCK INDEX

• The index S increased more than tenfolds between 1962 and 1985.

Figure 1. NYSE stock index

Index Returns

- Clearly, the stock index is prone to cointegration.
 - For example, one could explain the value of the stock index S_t as a function of the size X_t of a tree planted in 1962.
- Therefore Chou focuses on the index returns R_t defined as:

$$R_{t+1} = \frac{(S_{t+1} + D_t) - S_t}{S_t}$$

- The term D_t is the amount of dividends paid between t and t+1 and needs to be added to the capital gains.
- For the sake of studying the volatility, this definition of the returns is a good proxy for the log-returns.

$$R_{t+1} pprox \ln rac{S_{t+1} + D_t}{S_t}$$

INDEX RETURNS

• As expected the returns *R* look quite hectic.

Index Variance

- Chou aims at explaining the conditional variance of the returns, i.e. the variance ν_t at a given date t.
- The variance is an observable quantity that describes the fluctuations of the returns.
 - Thus, Chou cannot get as many independent observations of the variances as there are published stock returns.
 - Therefore he divides the data set into subperiods of N points of length ΔT and assumes a constant variance ν for each subperiod. The variance ν is estimated as:

$$\nu_j = \left(\frac{1}{N} \sum_{t=t_j}^{t_j+N} R_t^2\right) - \left(\frac{1}{N} \sum_{t=t_j}^{t_j+N} R_t\right)^2$$

- A week corresponds to N=5 business days and $\Delta T=5/252$.
- The variance ν increases with N unlike to volatility $\sigma = \sqrt{(\nu/\Delta T)}$.

INDEX VARIANCE

ullet The variance u of the index is not constant but seems smoother than the returns R.

- Empirical volatility
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- - Variance model description,
 - Formula for European vanillas
 - Numerical example
- - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

GENERALIZED AUTO-REGRESSIVE CONDITIONAL HETEROSKEDASTICITY

- Chou explores the variance with a Generalized Auto-Regressive Conditional Heteroskedasticity (Garch) model.
 - Conditional: The variance ν is not observable directly. It represents the fluctuation of the noise conditional on a equation for the returns R.
 - ullet Heteroskedasticity: The variance follows a stochastic process and may as such vary over time. The statistician must explicitly the heteroskedasticity model for the variance u.
 - Auto-Regressive: The variance is assumed mean-reverting. Said differently, the variance at date t+1 depends partly on its value at date t. This is a specification of the model of the variance ν .
 - ullet Generalized: The statistician has latitude to define the models for the return R and the variance u.

Generalized Auto-Regressive Conditional Heteroskedasticity

• The model for the return is:

$$R_{t+1} = r_f + \delta \cdot \nu_t + \epsilon_{t+1}$$

• The variance is defined indirectly as:

$$\epsilon_{t+1}|I_t \sim N(0, \nu_t)$$

- Note that this is a one-factor model that explains the extra return $R r_f$ in terms of the variance. This is the risk-return trade-off.
- The model for the variance reads:

$$\nu_t = \alpha_0 + \alpha \cdot \epsilon_t^2 + \beta \cdot \nu_{t-1}$$

- The coefficient β is responsible for the persistence.
- The long-term equilibrium value is: $\nu_{\infty} = \frac{\alpha_0}{1-\alpha-\beta}$
- Therefore, the coefficients α and β must satisfy: $0 \le \alpha + \beta \le 1$

GENERALIZED AUTO-REGRESSIVE CONDITIONAL HETEROSKEDASTICITY

- The Garch model parameters are r_f , α_0 , α , β , and δ .
- In order to estimate the value of these parameters, the statistician can e.g. maximize the log-likelyhood of the observed data wrt the aforementioned parameters.

• Chou obtained the following results for subperiods of length one week (N = 5).

Table I. Full and sub-sample estimation of the GARCH(I,I)-M model using weekly returns of NYSE value weighted index

$K_{t+1} = r_j + oV_t + e_{t+1}$
$V_t = \alpha_0 + \alpha e_t^2 + \beta V_{t-1}$
with $e_{i+1} \mid I_i \sim N(0, V_i)$.

Sample period	$r_J \times 10^2$	$\alpha_0 \times 10^4$	α	β	δ	$\alpha + \beta$	$\sigma^2 \times 10^{4a}$
July 1962-December 1985 No. obs. = 1225	0·122 (1·49) ^b	0·096 (2·83)	0·151 (7·17)	0·835 (38·85)	4·50 (1·94)	0.986	4.074
July 1962-December 1985 No. obs. = 1225		0·099 (2·83)	0·151 (7·15)	0·834 (38·64)	4·56 (3·28)	0.985	4.090
July 1962-December 1973 No. obs. = 599	0·159 (1·85)	0·092 (2·18)	0·217 (6·12)	0·778 (24·13)	5·05 (1·78)	0.995	3 · 574
January 1974-December 1985 No. obs. = 626	0·008 (0·04)	0·159 (2·03)	0.084	0·882 (23·67)	6·15 (1·32)	0.966	4.567

^a The estimate is computed using the residuals of the last step iteration. This estimate is more stable than that given by equation (8) if a + f is close to one.
^b Numbers in parentheses are tratios.

^{&#}x27; Weekly excess returns are used for estimation hence no constant terms are necessary.

- The parameters of the model describing the returns *R* are not statistically significant at the 95% confidence interval (t-stat lower than 3).
 - Predicting the level of returns is usually a tedious and thankless task.
 - However, the parameter r_f has the typical dimension of a risk-free rate. Also, the estimated coefficient δ is positive so that the greater the risk ν_t , the greater the return R_{t+1} .
- For the sake of option pricing, these parameters are irrelevant.
 - The model is continuous and the Girsanov theorem states that the empirical drift of the return R is irrelevant for the transition to the Equivalent Martingale Measure.
- Fortunately, the parameters of the heteroskedasticity model are statistically significant at the 95% confidence interval (t-stat higher than 3).
 - These parameters are truly important for option pricing.

- \bullet The persistence is quite strong as the parameter β is greater than 0.778.
- The surprise variance α is about 0.15.
- As required the sum $\alpha + \beta$ is positive but smaller than 1.
- ullet The variance u_t henceforth reverts to a defined long-term value u_{∞} .

Note that the residuals are not auto-correlated.

Table II. Auto-correlation for residuals and normalized squared residuals of the GARCH(1,1)-M model (1962.07–1985.12)

$$R_{t+1} = r_f + \delta V_t + e_{t+1}$$

 $V_t = \alpha_0 + \alpha e_t^2 + \beta V_{t-1}$
with $e_{t+1} | I_t \sim N(0, V_t)$,

lag	1	2	3	4	5	6	7	8	9	10
acfa of e,	0.050b	-0.024	0.046	0.026	-0.043	0.048	0.025	-0.056	-0.007	-0.003
acf of u_i^2	0.012	0.040	-0.047	0.004	-0.011	0.006	-0.021	0.005	-0.022	-0.032
lag	11	12	13	14	15	16	17	18	19	20
acf of er	-0.005	0.019	0.028	0.012	-0.023	0.014	0.023	0.006	0.004	0.056
$acf of u_i^2$	0.008	-0.023	-0.005	0.033	0.001	-0.040	0.003	-0.036	-0.032	-0.015
lag	21	22	23	23	25	26				
acf of e	0.018	0.042	0.044	0.012	-0.018	0.008				
acf of u_t^2	-0.001	0.022	0.018	0.000	-0.035	0.028				

acf: auto-correlation function.

Elagrange multiplier test statistics for GARCH(1,2) and GARCH(2,1) are respectively 0.074 and 0.355, while the 5 per cent critical value is 3.84.

 $^{^{}b}$ 2(std. error of acf) = $\frac{2}{100}$, observations = $\frac{2}{1225}$ = 0.057.

 $u_t^2 = \frac{e_t^2}{V}$: normalized squared residuals.

^d The Box–Pierce Q statistics for e_t and u_t^2 are respectively 29·62 and 18·12, which are both less than the 5 per cent critical value of 38·90.

Effect of the length of the subperiod

- The previous conclusions drawn for N = 5 are still valid.
 - Note that the heteroskedasticity model is a simpler I-Garch model where $\alpha+\beta=1.$

$$\nu_t = \alpha_0 + \alpha \cdot \epsilon_t^2 (1 - \alpha) \cdot \nu_{t-1}$$

Table III. Parameter estimates and tests of the IGARCH(1,1)-M model for temporal aggregated data $R_{i,j}^{N} = r_{i,j} + \delta V_{i,j} + r_{i,j}.$

 $V_t = \alpha_0 + \alpha e_t^2 + (1 - \alpha)V_{t-1}$

with $e_{t+1} \mid I_t \sim N(0, V_t)$, where R_t^N is the N-trading-day return.

N	$r_f \times 10^2$	$\alpha_0 \times 10^4$	α	å	IIri	IIf2	LR ^b (p-value)
1	0.04	0.003	0.089	6.09	-6089 - 23	- 6088 - 49	1.48
	(3·30)°	(6.41)	(18 - 14)	(2.52)			(0.224)
2	0.07	0.012	0-104	4.72	-4402-61	-4401-17	2-88
	$(2 \cdot 40)$	(5.51)	$(12 \cdot 03)$	(1.96)			(0.089)
3	0.10	0.017	0.097	4.03	- 3416-68	-3415-68	2.00
	$(2 \cdot 24)$	(3.56)	(8-37)	(1.80)			(0.158)
5	0.13	0.053	0.139	3.87	- 2407 - 68	$-2407 \cdot 24$	0.88
	(1.75)	$(3 \cdot 28)$	(6-82)	(1.74)			(0.348)
10	0.17	0.182	0.148	4.13	$-1446 \cdot 91$	-1445-31	3-20
	(0.97)	(2.51)	(4-73)	(1.83)			(0.074)
20	0.25	0.793	0.210	3.62	$-847 \cdot 70$	- 846-09	3 - 22
	(0.64)	(1.88)	(3 - 22)	(1.59)			(0.073)
50 ^b	_	5.870	0.406	3.64	$-388 \cdot 09$	$-386 \cdot 80$	2-58
		(1.30)	$(2 \cdot 26)$	(3.77)			(0.108)
250	_	_	_	_	_	- 93-22	-0.55°
							(0-250)
Weekly	0-130	0.072	0-166	4.09	- 2493-98	- 2493-49	0.98
	(1.69)	(2.83)	(7-94)	(1.87)			(0-322)
Monthly	_	0.427	0-138	3-36	-801-92	- 799-96	3-92
		(1-57)	(2-78)	(2.75)			(0.048)
Monthly	0.92	0.507	0-157	0.96	-2136-41	-2125-31	2-20
(1926-1985)	(4.29)	(3.04)	(8-22)	(1.20)			(0-276)

^d IIf1 and IIf2 are respectively the log likelihood function estimates for the IGARCH-M and GARCH-M model ^b The likelihood ratio test statistic, $LR = 2 \times (II(2 - IIIT))$.

^{*} For monthly and N = 50, 250 cases, the excess returns are used hence the model is estimated without the constant term r_i. Negative estimates for the risk-free rate are obtained if total returns are used.
*The estimation for IGARCH does not converge for this data set hence a Wald-t statistic is used.

Burrus

Financial

Intelligence

Numbers in parenthèses are t-ratios except for the last column where p-values are given.
^d For monthly and N = 50, 250 cases, the excess returns are used hence the model is estimated without the constant

- Empirical volatility
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroske dasticity
 - Volatility Index
- - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- - Variance model description,
 - Formula for European vanillas
 - Numerical example
- - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

VIX INDEX AND SPX RETURNS

- The previous Garch model did not contemplate a correlation between the stock return R_{t+1} and the concurrent variance ν_{t+1} .
- In fact, by taking the CBOE VIX index as a proxy for the volatility, one observes that crashes tend to be associated with higher values for VIX (see e.g. Manda 2010).

Daily closing levels of the S&P 500 Index (SPX) and the S&P 500 Volatility Index (VIX). The sample period is January 3, 2005 – December 11, 2009. Source: CBOE and Yahoo Finance

- - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroske dasticity
 - Volatility Index
- ② GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- - Variance model description,
 - Formula for European vanillas
 - Numerical example
- - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- 2 General Stochastic volatility models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- A SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

STOCHASTIC VOLATILITY MODELS

- ullet Empirical studies suggest that volatility is persistent, mean-reverting, and related with the underlying level S.
- Therefore a natural extension of the Black-Scholes model is to treat the volatility σ or equivalently the instantaneous variance $\nu=\sigma^2$ as an additional random variable.

Physical measure

- In the empirical measure P, the dynamics of an underlying S under a general Stochastic Volatility (SV) model read:
- In the physical dynamics of the underlying S read:
 - Return model

$$dS_t/S_t = \mu^P dt + \sqrt{\nu_t} dW_{1t}^P$$

Volatility model:

$$d\nu_t = \kappa^P dt + \eta dW_{2t}^P$$

Dependence model

$$dW_{1t}^P dW_{2t}^P = \rho dt$$

Physical measure

- remains always positive.
- Note that the SV model involves two distinct Wiener processes W_1^P and W_2^P that are linearly dependent through the instantaneous correlation ρ .
 - ullet This will lead to an important caveat regarding SV models.

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- ② GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

RISK-NEUTRAL MEASURE

- \bullet In order to switch to the risk-neutral measure Q, we assume that the market trades three assets:
 - Money Market Account (MMA) B compounded continuous at rate r:

$$B_t = B_0 e^{rt}$$

- Stock S.
- Another derivative C whose value at date t depends on the values of the state variables S_t and ν_t at date t.
- The dynamics of the MMA B and stock S are straightforward.
- The P&L of the derivative C are given by Itô's lemma:

$$dC = \frac{\partial C}{\partial t}dt + \frac{\partial C}{\partial S}dS + \frac{1}{2}\frac{\partial^{2} C}{\partial S^{2}}dS^{2} + \frac{\partial C}{\partial \nu}d\nu + \frac{1}{2}\frac{\partial^{2} C}{\partial \nu^{2}}d\nu^{2} + \frac{\partial^{2} C}{\partial S\partial \nu}dSd\nu + o(dt)$$

• i.e.

$$dC = \left[\frac{\partial C}{\partial t} + \mu^{P} S \frac{\partial C}{\partial S} + \frac{\nu S^{2}}{2} \frac{\partial^{2} C}{\partial S^{2}} + \kappa^{P} \frac{\partial C}{\partial \nu} + \frac{\eta^{2}}{2} \frac{\partial^{2} C}{\partial \nu^{2}} + \rho \eta \sqrt{\nu} S \frac{\partial^{2} C}{\partial S \partial \nu} \right] dt + \left[\sqrt{\nu} S \frac{\partial C}{\partial S} \right] dW_{1}^{P} + \left[\eta \frac{\partial C}{\partial \nu} \right] dW_{2}^{P} + o(dt)$$

$$\mathbf{BFI}$$

RISK-NEUTRAL MEASURE

ullet For the sake of clarity we introduce the linear operation ${\cal A}$ defined as:

$$\mathcal{A} = \frac{\partial \cdot}{\partial t} + \frac{\nu S^2}{2} \frac{\partial^2 \cdot}{\partial S^2} + \frac{\eta^2}{2} \frac{\partial^2 \cdot}{\partial \nu^2} + \rho \eta \sqrt{\nu} S \frac{\partial^2 \cdot}{\partial S \partial \nu}$$

• The dynamics of the derivative C can then be written more concisely as:

$$dC = \left[AC + \mu^{P} S \frac{\partial C}{\partial S} + \kappa^{P} \frac{\partial C}{\partial \nu} \right] dt + \left[\sqrt{\nu} S \frac{\partial C}{\partial S} \right] dW_{1}^{P} + \left[\eta \frac{\partial C}{\partial \nu} \right] dW_{2}^{P} + o(dt)$$

HEDGING PORTFOLIO

- ullet We next construct a portfolio Π which is:
 - ullet Long one unit of a derivative V,
 - \bullet Short α units of underlying asset S,
 - ullet Short a MMA deposit of notional eta ,
 - Short γ units of derivative C.
- The market value of this portfolio is therefore:

$$\Pi = V - \alpha S - \beta - \gamma C$$

PORTFOLIO DYNAMICS

 The composition of the portfolio Π are locally deterministic and its P&L reads:

$$d\Pi = dV - \alpha dS - d\beta - \gamma dC$$

 After replacing the P&L of the individual assets with their expressions, the P&L becomes:

$$d\Pi = \left[\left(AV + \mu^{P} S \frac{\partial V}{\partial S} + \kappa^{P} \frac{\partial V}{\partial \nu} \right) - \alpha (\mu^{P} S) - r\beta - \gamma \left(AC + \mu^{P} S \frac{\partial C}{\partial S} + \kappa^{P} \frac{\partial C}{\partial \nu} \right) \right] dt$$
$$+ \sqrt{\nu} S \left[\frac{\partial V}{\partial S} - \alpha - \gamma \frac{\partial C}{\partial S} \right] dW_{1}^{P} + \eta \left[\frac{\partial V}{\partial \nu} - \gamma \frac{\partial C}{\partial \nu} \right] dW_{2}^{P} + o(dt)$$

PORTFOLIO COMPOSITION

- The portfolio composition -i.e. the parameters α , β , and γ are chosen so as to cancel out:
 - The volatility risk dW_2^P :

$$\gamma = \frac{\partial V}{\partial \nu} / \frac{\partial C}{\partial \nu}$$

• The directional risk dW_1^P :

$$\alpha = \frac{\partial V}{\partial S} - \gamma \frac{\partial C}{\partial S}$$

• And the theta leak dt:

$$\beta = \frac{1}{r} \left[\left(AV + \mu^{P} S \frac{\partial V}{\partial S} + \kappa^{P} \frac{\partial V}{\partial \nu} \right) - \alpha \left(\mu^{P} S \right) - \gamma \left(AC + \mu^{P} S \frac{\partial C}{\partial S} + \kappa^{P} \frac{\partial C}{\partial \nu} \right) \right]$$

$$= \frac{1}{r} \left[\left(AV + \kappa^{P} \frac{\partial V}{\partial \nu} \right) - \gamma \left(AC + \kappa^{P} \frac{\partial C}{\partial \nu} \right) \right]$$

$$= \frac{1}{r} \left[AV - \gamma \cdot AC \right]$$

Portfolio value

• Under this hedging strategy, the P&L is zero.

$$d\Pi = 0$$

• And the market value of the portfolio is preserved in time:

$$\Pi_t = \Pi_0 = 0$$

• Finally, this observation yields:

$$\beta = V - \alpha S - \gamma C$$

RISK-NEUTRAL PDE

• Replacing the MMA deposit β by its expression gives:

$$V - \alpha S - \gamma C = \frac{1}{r} [AV - \gamma \cdot AC]$$

• Then replacing α :

$$V - \left(\frac{\partial V}{\partial S} - \gamma \frac{\partial C}{\partial S}\right) S - \gamma C = \frac{1}{r} \left[AV - \gamma \cdot AC\right]$$

• Some basic manipulations:

$$\left(rV - AV - rS\frac{\partial V}{\partial S}\right) = \gamma \left(rC - AC - rS\frac{\partial C}{\partial S}\right)$$

RISK-NEUTRAL PDE

• Replacing γ shows that:

$$\left(rV - AV - rS \frac{\partial V}{\partial S} \right) / \frac{\partial V}{\partial \nu} = \left(rC - AC - rS \frac{\partial C}{\partial S} \right) / \frac{\partial C}{\partial \nu}$$

- At this stage it is critical to realize that the choice of the derivatives C
 and V is arbitrary.
- Therefore one can write that there exists a function κ^Q that depends only on the date t, and the state variables S and ν that verifies:

$$\left(rV - AV - rS\frac{\partial V}{\partial S}\right) / \frac{\partial V}{\partial \nu} = \kappa^{Q}$$

- \bullet This function κ^Q does not depend on the derivative but only on the state variables.
- There is no additional information about κ^Q .
- In particular, the function κ^Q is not unique.

RISK-NEUTRAL PDE

ile Ile

Eventually, the risk-neutral PDE becomes:

$$\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{\nu S^2}{2}\frac{\partial^2 V}{\partial S^2} + \kappa^Q \frac{\partial V}{\partial \nu} + \frac{\eta^2}{2}\frac{\partial^2 V}{\partial \nu^2} + \rho \eta \sqrt{\nu} S\frac{\partial^2 V}{\partial S \partial \nu} - rV = 0$$

• Simple manipulations show that a dividend yield q affects only the convection term by replacing r by r-q.

RISK-NEUTRAL SDE

- Applying the Feynman-Kac theorem transforms the previous PDE into the risk-neutral SDE:
 - Return model:

$$dS_t/S_t = (r-q)dt + \sqrt{\nu_t}dW_{1t}^Q$$

Volatility model:

$$d\nu_t = \kappa^Q dt + \eta dW_{2t}^Q$$

Dependence model:

$$dW_{1t}^Q dW_{2t}^Q = \rho dt$$

 As expected, the drift of the non-dividend paying stock S is the risk-free rate.

- - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroske dasticity
 - Volatility Index
- 2 General Stochastic volatility models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- - Variance model description,
 - Formula for European vanillas
 - Numerical example
- - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

Market incompleteness

• Market practitioners often relate the empirical and risk-neutral drifts κ^P and κ^Q as:

$$\kappa^{Q} = \kappa^{P} + \phi$$

- ullet The function ϕ is interpreted as the market price for the variance risk.
- It is not uniquely defined when $|\rho| \neq 1$.
- Thus, the risk-neutral measure (i.e. the Arrow-Debreu density) is not uniquely defined.
- This means that the market is incomplete.
- Indeed SV models specify two Wiener processes (when the correlation ρ is ne) but describe only one risky asset S.

Market incompleteness

- In full rigor, quants should treat the market price of variance risk ϕ like a local volatility and extract its expression from market prices.
- However, practitioners usually make the simplifying assumptions that the function ϕ is a constant:

$$\phi(t,S,\nu)=\phi_0$$

• Quants specify the volatility model (κ^Q, η) so that a calibration (e.g. minimizing the mismatch) has the least mismatch with market prices given the aforementioned simplifying assumption.

Remaining market risk

- Traders must realize that under SV models, the market risk cannot be entirely eliminated!
- A good SV model must therefore not only produce good Greeks but also explains the dynamics of the smile.

HEDGING CONSIDERATIONS

- Under SV models hedging requires:
 - A deposit
 - A directional risky asset such as stock, forward, future.
 - An a convex risky asset with preferably a strong and stable exposure to volatility (i.e. a stable gamma or equivalently a low speed) such as vanillas, straddles, or variance swaps.
- In practice, hedging volatility (that is the gamma risk) requires at least one convex instrument.

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- 2 General Stochastic volatility models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- ② GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

HESTON MODEL

- ullet In 1993, Steven Heston published a SV model under which volatility σ is mean-reverting, persistent, correlated with the asset S, and remains positive.
- ullet Specifically, in the empirical (or risk-neutral) measure, the variance u follows a Cox-Ingersoll-Ross (CIR) process:

$$d\nu_t = \theta \left(\omega^{P/Q} - \nu_t \right) dt + \xi \sqrt{\nu_t} dW_{2t}^{P/Q}$$

- ullet controls the reversion-speed. The larger, the slower the mean-reversion.
- ullet ω is the equilibrium variance.
- \bullet ξ is the volatility of the variance.
- \bullet The change of measure affects only the equilibrium variance ω which is assumed constant.

Variance properties

• The conditional mean of the variance ν at a date t in the future reads:

$$E_0[\nu_t] = \nu_0 e^{-\theta t} + \omega (1 + e^{-\theta t})$$

- The mean of the variance reverts to its equilibrium ω within a typical period of $1/\theta$.
- The conditional variance is:

$$extstyle extstyle ext$$

 \bullet The long term variance of the variance is $\frac{\xi^2\omega}{2\theta}.$

Variance properties

- More exactly, it can be shown (using characteristic functions) that the scaled variance $2\alpha(t)\nu_t$ conditionally has a non-central χ^2 -distribution where:
 - The scaling factor is: $\alpha(t) = \frac{2\theta}{\xi^2(1-e^{-\theta t})}$.
 - The degree of freedom is: $k = 4\theta\omega/\xi^2$
 - The non-centrality parameter is: $\lambda(t) = 2\alpha(t)e^{-\theta t}\nu_0$
- ullet The variance u is therefore guaranteed to remain positive.
- It is strictly positive only under the Feller condition: $k \ge 2$.

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- 2 General Stochastic Volatility Models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

EUROPEAN VANILLA OPTIONS

- Heston's model is popular because there exists a closed formula for the prices of European vanilla options that considerably simplifies the calibration.
- The formula for a European vanilla call option with strike K and time to maturity T combines two probabilities P_1 and P_2 :

$$C_0 = S_0 e^{-qT} P_1 - K e^{-rT} P_2$$

• The put-call parity yields the price of the corresponding put.

EUROPEAN VANILLA OPTIONS

• The probabilities P_j are the integrals:

$$P_{j} = \frac{1}{2} + \frac{1}{\pi} \int_{\phi=0}^{+\infty} Re \left\{ \frac{e^{-i\phi \ln K} f_{j}(\phi|x_{0}, \nu_{0}, T)}{i\phi} \right\} d\phi$$

• Where:

$$\begin{split} f_j(\phi|x_0,\nu_0,T) &= \exp\left[C_j(\phi|T) + D_j(\phi|T)\nu_0 + i\phi x_0\right] \\ C_j(\phi|T) &= i\phi(r-q)T + \frac{s}{\xi^2} \left[\left(b_j - i\phi\rho\xi + d_j\right)T - 2\ln\frac{1-ge^{d_jT}}{1-g} \right] \\ D_j(\phi|T) &= \left[\frac{b_j - i\phi\rho\xi + d_j}{\xi^2} \right] \left[\frac{1-e^{d_jT}}{1-ge^{d_jT}} \right] \\ g_j(\phi) &= \frac{b_j - i\phi\rho\xi + d_j}{b_j - i\phi\rho\xi - d_j} \quad d_j(\phi) = \sqrt{(i\phi\rho\xi - b_j)^2 - \xi^2(2i\phi u_j - \phi^2)} \\ u_1 &= \frac{1}{2} \quad u_2 = -\frac{1}{2} \quad a = \theta\omega \quad b_1 = \theta + \psi - \rho\xi \quad b_2 = \theta + \psi \\ \psi &= \theta(\omega^P - \omega^Q) \quad x_0 = \ln S_0 \end{split}$$

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- 2 General Stochastic Volatility Models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

EXAMPLE

- In order to illustrate Heston's model, let's consider the USD-CLP smile as of June 13th 2011.
- The spot price of the USD in CLP was:

$$S_0 = 481.84$$

A calibration yields the parameters:

$$\nu_0 = 0.01435 \approx (0.12)^2$$
 $\theta = 1.584$
 $\omega = 0.03190$
 $\xi = 0.6771$
 $\rho = 0.3795$

NB: The degree of freedom is:

$$k \sim 0.44 < 2$$

So that the Feller condition is not satisfied

EXAMPLE

990

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- 2 General Stochastic Volatility Models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- Q GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

Sabr Model

• The Sabr model observes that the forward price (of let's say the EUR-CLP pair) $F_t(T^*)$ at date t with maturity T^* is the ratio of the prices of two assets:

$$F_t(T*) = \frac{S_t D_t^{EUR}(T^*)}{D_t^{CLP}(T^*)}$$

- $D_t^{CLP}(T^\star)$ is the current price in CLP of a Chilean pure discount bond with maturity T^\star .
- maturity \dot{T}^* .
 $S_t D_t^{EUR}(T^*)$ is the current price in CLP of a European pure discount bond with maturity T^* .
- ullet Therefore, the forward price $F_t(T^*)$ is a martingale in the Equivalent Martingale Measure (EMM) using the Chilean pure discount bond with maturity T^* as a numeraire.
 - This measure is called the T^* -forward measure.
 - The T^* -forward measure is an EMM different from the risk-neutral measure.
- ullet Sabr assumes the dynamics directly in the T^* -forward measure.
- In fact, practioners also apply the Sabr model to fixed-income.

FORWARD PRICE DYNAMICS

• The dynamics of the forward price under Sabr are:

$$dF_t(T^*) = \sigma_t F_t(T^*)^{\beta} dW_{1t}^*$$

ullet The volatility state variable σ is governed by:

$$d\sigma_t = \alpha \sigma_t dW_{2t}^*$$

• Both Wiener processes are linearly related:

$$dW_{1t}^{\star}dW_{2t}^{\star} = \rho dt$$

• NB: The model draws its name from the parameters σ , α , β , ρ .

SPOT PRICE DYNAMICS

 The student may feel more comfortable rewritting the model of the return in terms of the spot price S_t:

$$dS_t/S_t = (r-q)dt + \sigma_t \left[D_t^{CLP}(T^*)/D_t^{EUR}(T^*) \right]^{1-\beta} S_t^{\beta-1} dW_{1t}^*$$

- Note that the instantaneous volatility of the spot S looks like a stochastic Constant Elasticity Volatility (CEV).
- ullet The discount factor remain because the dynamics are written in the T^\star -forward measure.
- Crucially one cannot value a derivative with maturity greater than T^* .
 - This is a reason why the risk-neutral measure is usually preferred.

PARAMETERS

- The state variable σ controls the volatility of the spot price S.
- The parameter α is the volatility of the volatility state variable σ and is often called the volvol.
- The parameter β defines the elasticity or the skewness of the volatility of the spot price S.
- The parameter ρ is the instantaneous correlation between the spot return dS/S and the volatility variable σ .

- EMPIRICAL VOLATILITY
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- 2 General Stochastic Volatility Models
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

EUROPEAN VANILLA OPTIONS

- There exists an approximation for the Black-implied volatility for European options with strike K and maturity $T = T^*$.
 - This implied volatility simplifies the calibration of the model.
 - But it restricts the maturities to T*.
- The first-order proxy (in $\epsilon = \alpha^2 T^*$) for the Black-implied volatility reads:

$$\sigma_{Sabr}^{Black}(K, T^{\star}|F_0(T^{\star}), \sigma_0) = \alpha \frac{\ln F_0/K}{D(\zeta)} \left\{ 1 + \left[\frac{2\gamma_2 - \gamma_1^2 + 1/\chi}{24} \left(\frac{\sigma_0 C(\chi)}{\alpha} \right)^2 + \frac{\rho \gamma_1}{4} \frac{\sigma_0 C(\chi)}{\alpha} + \frac{2 - 3\rho^2}{24} \right] \epsilon + o(\epsilon) \right\}$$

Where

$$\chi = \sqrt{KF_0}$$
 $\zeta = \frac{\alpha}{\sigma_0(1-\beta)} (F_0^{1-\beta} - K^{1-\beta})$

$$\gamma_1 = \frac{\beta}{\chi}$$
 $\gamma_2 = -\frac{\beta(1-\beta)}{\chi^2}$

$$C(x) = x^{\beta}$$
 $D(x) = \ln \frac{\sqrt{1 - 2\rho x + x^{2} + x - \rho}}{1 - \rho}$

- 1 Empirical volatility
 - Stock volatility
 - Generalized Auto-Regressive Conditional Heteroskedasticity
 - Volatility Index
- Q GENERAL STOCHASTIC VOLATILITY MODELS
 - Physical measure
 - Risk-neutral measure
 - Market price of variance risk
- HESTON MODEL
 - Variance model description
 - Formula for European vanillas
 - Numerical example
- SABR MODEL
 - Model description
 - Implied volatility approximation for European vanillas
 - Numerical example

EXAMPLE

• A calibration of the Sabr model onto the same smile gives the parameters:

$$\sigma_0 = 83.03$$
 $\alpha = 0.4414$
 $\beta = -0.0703$
 $\rho = 0.8182$

- Note that σ_0 is simply a state variable related to the volatility.
- The variable $\tilde{\sigma}_0 = \sigma_0 S_0^{\beta-1}$ has the order of magnitude of a volatility.
 - This is a good check for the validity of the calibration.
 - In this example: $\tilde{\sigma}_0 = 0.11$.
- ullet NB: This calibration made the simplifying (and most probably incorrect) assumption that the parameters do not depend on the forward measure T^{\star}

EXAMPLE

