Devoir surveillé n° 6 – Version 1 –

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Étant donné α dans]0,1[, montrer que pour tout entier naturel n non nul

$$\frac{\alpha}{(n+1)^{1-\alpha}} \leqslant (n+1)^{\alpha} - n^{\alpha} \leqslant \frac{\alpha}{n^{1-\alpha}}.$$

En déduire la limite de la suite de terme général $\sum_{p=1}^{n} \frac{1}{p^{\alpha}}$.

II. Polynômes de Tchebychev.

On définit la suite de polynômes de Tchebychev, notée $(P_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}$, par :

$$P_0 = 1,$$
 $P_1 = X,$ $\forall n \in \mathbb{N}, P_{n+2} = 2XP_{n+1} - P_n.$

On dit qu'un polynôme P est pair si P(-X) = P, impair si P(-X) = -P.

- 1) a) Montrer que, pour tout $n \in \mathbb{N}$, P_n est de degré n.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$, P_n a pour coefficient dominant 2^{n-1} .
 - c) Montrer que, pour tout $n \in \mathbb{N}$, le polynôme P_n est de même parité que n.
 - d) Calculer $P_n(1)$, $P_n(-1)$ et $P_n(0)$ pour tout $n \in \mathbb{N}$.
 - e) Soit $x \in \mathbb{R}$, quelle relation de récurrence vérifie la suite $(P_n(x))_{n \in \mathbb{N}}$? En déduire la valeur de $P_n(x)$, pour tout $n \in \mathbb{N}$. On discutera les trois cas suivants.
 - i) Si |x| > 1.
 - **ii)** Si |x| = 1.

iii) Si
$$|x| < 1$$
.

- 2) a) Montrer que $\forall n \in \mathbb{N}, \ \forall \alpha \in \mathbb{R}, \ P_n(\cos \alpha) = \cos(n\alpha).$
 - **b)** Montrer que, pour tout $n \in \mathbb{N}$, P_n est l'unique polynôme de $\mathbb{R}[X]$ vérifiant la relation : $\forall \alpha \in \mathbb{R}$, $P_n(\cos \alpha) = \cos(n\alpha)$.
 - c) Déterminer, pour tout $n \in \mathbb{N}$, toutes les racines de P_n .
 - d) Déterminer, pour tout $n \in \mathbb{N}$, toutes les racines de P'_n .
- 3) Démontrer que $\forall n \in \mathbb{N}, P_n \wedge P_{n+1} = 1.$
- 4) Écrire dans le langage Python une fonction Tchebychev(n), prenant en argument un entier naturel n et renvoyant la liste des coefficients de P_n. Ainsi, Tchebychev(2) renverra [2,0,-1], car P₂ = 2X² 1. Bien entendu, toutes les boucles seront accompagnées de leurs invariants respectifs.

III. Méthode de Newton.

Soit un réel $a \in]0,29[$, on considère la fonction H définie sur $\mathbb R$ par :

$$\forall t \in \mathbb{R}, \ H(t) = 10 \ t^3 + 31 \ t^2 + 71 \ t - a.$$

- 1) a) Montrer qu'il existe un unique réel noté ℓ tel que $H(\ell) = 0$.
 - **b)** Montrer que $\ell \in \left]0, \frac{1}{2}\right[$.
- 2) On considère la suite (u_n) définie par : $u_0 = \frac{1}{2}$. Pour tout entier n, u_{n+1} est l'abscisse du point d'intersection de l'axe des abscisses et de la tangente à la courbe d'équation y = H(x), au point de coordonnées $(u_n, H(u_n))$.
 - a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n - \frac{H(u_n)}{H'(u_n)}.$$

b) Déterminer le sens de variation de l'application $f: \begin{bmatrix} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & t - \frac{H(t)}{H'(t)} \end{bmatrix}$. En déduire que :

$$\forall n \in \mathbb{N}, u_n \in \left[\ell, \frac{1}{2}\right].$$

c) Soit $x, y \in \left[\ell, \frac{1}{2}\right]$ avec $x \neq y$, soit $A \in \mathbb{R}$, posons

$$g: \left| \begin{array}{ccc} \left[\ell, \frac{1}{2}\right] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & H(x) - H(t) - (x - t)H'(t) - \frac{(x - t)^2}{2}A \end{array} \right|$$

Déterminer A de manière à ce que g(x) = g(y) = 0.

d) En déduire que, pour tout $x, y \in \left[\ell, \frac{1}{2}\right]$, il existe $c \in \left[\ell, \frac{1}{2}\right]$ tel que

$$H(x) = H(y) + (x - y)H'(y) + \frac{(x - y)^2}{2}H''(c).$$

e) Montrer que :

$$\forall n \in \mathbb{N}, |H(\ell) - H(u_n) - (\ell - u_n)H'(u_n)| \leqslant 46|u_n - \ell|^2.$$

f) En déduire :

$$\forall n \in \mathbb{N}, |u_{n+1} - \ell| \le \frac{46 |u_n - \ell|^2}{71},$$

puis que:

$$\forall n \in \mathbb{N}, |u_{n+1} - \ell| \leqslant \frac{7 |u_n - \ell|^2}{10}.$$

- g) Que peut-on en déduire sur la suite (u_n) ?
- h) Pour tout réel $a \in]0,29[$, vérifier que u_2 est une valeur approchée de ℓ à 3×10^{-2} près.
- 3) Application informatique. On utilisera le langage Python sans aucune bibliothèque supplémentaire.

Écrire une fonction $\mathtt{suite(a,n)}$ en langage Python qui prend en entrée le paramètre a et un entier n et qui renvoie la liste $[u_0, u_1, \ldots, u_n]$ des n+1 premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$ de la question 2).

— FIN —