## PAF Acting

#### **Steering Package** kümmert sich um:

- Lenkung und Beschleunigung
- Zwei Controller für Beschleunigung und Bremsen
- Nutzt die Vorgaben des Local Planner
- Konfiguration für costmaps

#### move\_base Package:

- Gibt die Befehle an das Fahrzeug raus um Befehle auszuführen.

#### **Carla Twist PID Control**

- Abwandlung des offiziellen carla-ros-bridge-Pakets (calra\_ackermann\_control)
- Original:
  - AckermannDrive-Nachrichten -> CarlaEgoVehicleControl-Nachrichten
  - Beschleunigungs- und Bremsvorgänge: PID-Controller
  - Lenkwinkel Vorgaben ohne Regelung an das Fahrzeug
- Im Projekt:
  - Twist-Nachrichten vom Local Planner
  - Threshold bei starken Differenzen der Stellgröße für das vollständige Bremsen oder Gas geben

#### **Carla Twist P Control**

- Vereinfachte Version des Controllers von vorher
- Kein PID-Regler, sondern P-Regler
- P-Regler deutlich einfacher aufgebaut, liefert jedoch meist bessere Ergebnisse in diesem
  Projekt
- Sicherstellung durch den Regler für die Maximale Geschwindigkeitsvorgabe

## Gruppe 1 Funktionen

#### **Carla Control Physics**

- Masse des Fahrzeugs: 1500kg
- Bremskraft: 500.0N
- Beschleunigung wenn der Motor aus ist = Bremskraft / Masse des Fahrzeugs
- Beschleunigung abhängig von: (mit Werten aus Wikipedia)
  - Rollreibung
  - Aerodynamische Trägheit
  - slope force
- Maximaler Steuerung Winkel: 70°
- Max. Beschleunigung: 3.0m/s^2
- Max. Bremsgeschwindigkeit: 8.0m/s^2
- Max. Geschwindigkeit: 180 km/h

### Gruppe 1 Funktionen

#### **Carla Twist PID**

- Control zyklus:
  - laden der Input Parameter
  - Steuern
  - Anhalte und Rückwärtsfahren
  - Geschwindigkeitsregulierung
  - Beschleunigung Regulieren
  - Senden der Control Commands

### Gruppe 1 Funktionen

#### **PSAF Twist P Control Node**

- Frequenz: 20 Hz
- um eine Beschleunigung von 0 zu erhalten muss das Gaspedal bestimmt stark gedrückt werden. (Abwärts Rollen etc.)
- 3 Modes:
  - breaking
  - coasting
  - accelerating

#### ego\_vehicle package

- Starten der ros\_bridge. config.json beschreibt die sensor-arrays.

#### steering\_controllers package

- Nutzen des CarlaEgoVehicleControl-Message in jedem Zeitschritt
- Nutzen eines Stanley-Controller um einen lokalen Pfad des lokal planers zu folgen.
- ACC (automatic cruise control) mit 2 PID. (Distanz und Geschwindigkeit)



## Gruppe 2 Steuerungsmethoden



## Gruppe 2 Steuerungsmethoden (Pure Pursuit)



### **Gruppe 2 Steuerungsmethoden (Pure Pursuit)**

- Nutzt einen Look-Ahead-Point mit festem Abstand vor dem Ego-Car auf dem Pfad (abhängig von der Geschwindigkeit)
- Einfach zu implementierung
- hohe Abstände besser geeignet
- enge Kurven nicht exakt beim befolgen des Pfades

# **Gruppe 2 Steuerungsmethoden (Stanley Methode)**



## Gruppe 2 Steuerungsmethoden (Stanley Methode)

- Vorderachse als Referenzpunkt
- Heading Error und cross-track error
- Ausgleich von lateralen Fehlern durch:
  - e\_fa: Abstand zum Pfad
  - v\_x: Geschwindigkeit des Fahrzeugs
  - k: einstellbarer Gain-Parameter
- Konvergiert unabhängig von den Anfangsbedingungen
- einfach zu verstehen und zu berechnen
- gut für niedrige und hohe Geschwindigkeiten
- Aber: Probleme mit Unstetigkeiten im Pfad
- Pro: erprobt und in der "Darpa Grand Challenge" mit dem Fahrzeug "Stanley" als Gewinner hervorgegangen.

## Gruppe 2 Steuerungsmethoden (Model Predictive Algorithm)

- State-of-the-art für autonome Fahrzeuge
- Benötigt ein Modell, dass die Fahrzeugkinematik beschreibt.
- Weitere Informationen wie Geschwindigkeitsvorgaben, Straßenbeschaffenheit oder Krümmung des Pfades können miteinbezogen werden
- Anhand des Modells kann die Auswirkung einer Linkeingabe zum aktuellen Zeitpunkt untersucht werden.
- Auswirkung auf eine bestimmte Anzahl von Zeitschritten in die Zukunft untersucht (Receding Horizen (Receding Horizon Control))
- Minimierung einer Kostenfunktion als optimale Lenk Vorgabe zum aktuellen Zeitpunkt.
- Nachteil: Rechenintensiv, vor allem für nicht lineare Modelle

### **Gruppe 2 Steuerungsmethoden (Alternativen)**

#### LQR-Regler

Falls Modell eine linear mit Zustandsraum Matrizen besitzt, ist eine geschlossene Lösung für das Optimierungsproblem offline berechenbar.

#### Nichtlineare Modelle

Optimierungsproblem mit numerischen Differentialgleichung Lösungs-Verfahren lösbar.

Deutlich Rechenintensiver als für alle anderen Herangehensweisen.

## **Gruppe 2 Daten informationen**

Loop: 10 Hz

Minimum Distanz zu Fahrzeugen davor: 4 (m)

## Quellen

- Repos
- https://www.ri.cmu.edu/pub\_files/2009/2/Automatic Steering Methods for Autonomous Automobil
  e Path Tracking.pdf
- https://dingyan89.medium.com/three-methods-of-vehicle-lateral-control-pure-pursuit-stanley-and-mpc-db8cc1d32081