- 1. Unit 1. The Chemistry of Life
 - 1. The Chemical Foundation of Life
 - 1. Carbon
 - 2. Biological Macromolecules
 - 1. Introduction
 - 2. Synthesis of Biological Macromolecules
 - 3. <u>Carbohydrates</u>
 - 4. <u>Lipids</u>
 - 5. Proteins
 - 6. Nucleic Acids
- 2. Unit 2. The Cell
 - 1. Cell Structure
 - 1. Introduction
 - 2. Studying Cells
 - 3. Prokaryotic Cells
 - 4. Eukaryotic Cells
 - 5. The Endomembrane System and Proteins
 - 6. <u>The Cytoskeleton</u>
 - 7. Connections between Cells and Cellular Activities
 - 2. Structure and Function of Plasma Membranes
 - 1. Introduction
 - 2. Components and Structure
 - 3. Passive Transport
 - 4. Active Transport
 - 5. Bulk Transport
 - 3. Metabolism
 - 1. ATP: Adenosine Triphosphate
 - 2. Enzymes
 - 4. Cell Communication
 - 1. Introduction
 - 2. <u>Signaling Molecules and Cellular Receptors</u>

- 3. Propagation of the Signal
- 4. Response to the Signal
- 5. Cell Reproduction
 - 1. <u>Introduction</u>
 - 2. Cell Division
 - 3. The Cell Cycle
 - 4. Control of the Cell Cycle
 - 5. Cancer and the Cell Cycle
 - 6. Prokaryotic Cell Division
- 3. Unit 3. Genetics
 - 1. Meiosis and Sexual Reproduction
 - 1. Introduction
 - 2. The Process of Meiosis
 - 2. DNA Structure and Function
 - 1. Introduction
 - 2. DNA Structure and Sequencing
 - 3. <u>Basics of DNA Replication</u>
 - 4. DNA Replication in Prokaryotes
 - 5. <u>DNA Replication in Eukaryotes</u>
 - 6. **DNA** Repair
 - 3. Genes and Proteins
 - 1. Introduction
 - 2. The Genetic Code
 - 3. Prokaryotic Transcription
 - 4. Eukaryotic Transcription
 - 5. RNA Processing in Eukaryotes
 - 6. Ribosomes and Protein Synthesis
 - 4. Gene Expression
 - 1. Introduction
 - 2. <u>Regulation of Gene Expression</u>
 - 3. Prokaryotic Gene Regulation
 - 4. Eukaryotic Epigenetic Gene Regulation

- 5. Eukaryotic Transcription Gene Regulation
- 6. <u>Eukaryotic Post-transcriptional Gene Regulation</u>
- 7. <u>Eukaryotic Translational and Post-translational Gene Regulation</u>
- 8. Cancer and Gene Regulation
- 4. The Periodic Table of Elements

Carbon

By the end of this section, you will be able to:

- Explain why carbon is important for life
- Describe the role of functional groups in biological molecules

Cells are made of many complex molecules called macromolecules, such as proteins, nucleic acids (RNA and DNA), carbohydrates, and lipids. The macromolecules are a subset of **organic molecules** (any carbon-containing liquid, solid, or gas) that are especially important for life. The fundamental component for all of these macromolecules is carbon. The carbon atom has unique properties that allow it to form covalent bonds to as many as four different atoms, making this versatile element ideal to serve as the basic structural component, or "backbone," of the macromolecules.

Individual carbon atoms have an incomplete outermost electron shell. With an atomic number of 6 (six electrons and six protons), the first two electrons fill the inner shell, leaving four in the second shell. Therefore, carbon atoms can form up to four covalent bonds with other atoms to satisfy the octet rule. The methane molecule provides an example: it has the chemical formula CH₄. Each of its four hydrogen atoms forms a single covalent bond with the carbon atom by sharing a pair of electrons. This results in a filled outermost shell.

Hydrocarbons

Hydrocarbons are organic molecules consisting entirely of carbon and hydrogen, such as methane (CH₄) described above. We often use hydrocarbons in our daily lives as fuels—like the propane in a gas grill or the butane in a lighter. The many covalent bonds between the atoms in hydrocarbons store a great amount of energy, which is released when these molecules are burned (oxidized). Methane, an excellent fuel, is the simplest hydrocarbon molecule, with a central carbon atom bonded to four different hydrogen atoms, as illustrated in [link]. The geometry of the methane molecule, where the atoms reside in three dimensions, is determined by the shape of its electron orbitals. The carbons and the four hydrogen atoms

form a shape known as a tetrahedron, with four triangular faces; for this reason, methane is described as having tetrahedral geometry.

Methane has a tetrahedral geometry, with each of the four hydrogen atoms spaced 109.5° apart.

As the backbone of the large molecules of living things, hydrocarbons may exist as linear carbon chains, carbon rings, or combinations of both. Furthermore, individual carbon-to-carbon bonds may be single, double, or triple covalent bonds, and each type of bond affects the geometry of the molecule in a specific way. This three-dimensional shape or conformation of the large molecules of life (macromolecules) is critical to how they function.

Hydrocarbon Chains

Hydrocarbon chains are formed by successive bonds between carbon atoms and may be branched or unbranched. Furthermore, the overall geometry of the molecule is altered by the different geometries of single, double, and triple covalent bonds, illustrated in [link]. The hydrocarbons ethane, ethene, and ethyne serve as examples of how different carbon-to-carbon bonds

affect the geometry of the molecule. The names of all three molecules start with the prefix "eth-," which is the prefix for two carbon hydrocarbons. The suffixes "-ane," "-ene," and "-yne" refer to the presence of single, double, or triple carbon-carbon bonds, respectively. Thus, propane, propene, and propyne follow the same pattern with three carbon molecules, butane, butane, and butyne for four carbon molecules, and so on. Double and triple bonds change the geometry of the molecule: single bonds allow rotation along the axis of the bond, whereas double bonds lead to a planar configuration and triple bonds to a linear one. These geometries have a significant impact on the shape a particular molecule can assume.

When carbon forms single bonds with other atoms, the shape is tetrahedral. When two carbon atoms form a double bond, the shape is planar, or flat. Single bonds, like those found in ethane, are able to rotate. Double bonds, like those found in ethene cannot rotate, so the atoms on either side are locked in place.

Hydrocarbon Rings

So far, the hydrocarbons we have discussed have been **aliphatic hydrocarbons**, which consist of linear chains of carbon atoms. Another type of hydrocarbon, **aromatic hydrocarbons**, consists of closed rings of carbon atoms. Ring structures are found in hydrocarbons, sometimes with the presence of double bonds, which can be seen by comparing the structure of cyclohexane to benzene in [link]. Examples of biological molecules that incorporate the benzene ring include some amino acids and cholesterol and its derivatives, including the hormones estrogen and testosterone. The benzene ring is also found in the herbicide 2,4-D. Benzene is a natural component of crude oil and has been classified as a carcinogen. Some hydrocarbons have both aliphatic and aromatic portions; beta-carotene is an example of such a hydrocarbon.

Carbon can form five-and six membered rings. Single or double bonds may connect the carbons in the ring, and nitrogen may be substituted for carbon.

Isomers

The three-dimensional placement of atoms and chemical bonds within organic molecules is central to understanding their chemistry. Molecules that share the same chemical formula but differ in the placement (structure) of their atoms and/or chemical bonds are known as **isomers**. **Structural isomers** (like butane and isobutene shown in $[\underline{link}]a$) differ in the placement of their covalent bonds: both molecules have four carbons and ten hydrogens (C_4H_{10}), but the different arrangement of the atoms within

the molecules leads to differences in their chemical properties. For example, due to their different chemical properties, butane is suited for use as a fuel for cigarette lighters and torches, whereas isobutene is suited for use as a refrigerant and a propellant in spray cans.

Geometric isomers, on the other hand, have similar placements of their covalent bonds but differ in how these bonds are made to the surrounding atoms, especially in carbon-to-carbon double bonds. In the simple molecule butene (C_4H_8), the two methyl groups (CH_3) can be on either side of the double covalent bond central to the molecule, as illustrated in [link]b. When the carbons are bound on the same side of the double bond, this is the cis configuration; if they are on opposite sides of the double bond, it is a trans configuration. In the trans configuration, the carbons form a more or less linear structure, whereas the carbons in the cis configuration make a bend (change in direction) of the carbon backbone.

Note:
Art Connection

(a) Structural isomers

Butane

Isobutane

(b) Geometric isomers

cis-2-butene

$$H_{\circ}C = C$$

methyl groups on same side of double bond

trans-2-butene

$$\begin{array}{c}
H_{\circ}C = C \\
H_{\circ}C
\end{array}$$

methyl groups on opposite sides of double bond

(c) Enantiomers

D-isomer

Molecules that have the same number and type of atoms arranged differently are called isomers. (a) Structural isomers have a different covalent arrangement of atoms. (b)
Geometric isomers have a different arrangement of atoms around a double bond.
(c) Enantiomers are mirror images of each other.

Which of the following statements is false?

- a. Molecules with the formulas CH₃CH₂COOH and C₃H₆O₂ could be structural isomers.
- b. Molecules must have a double bond to be *cis-trans* isomers.
- c. To be enantiomers, a molecule must have at least three different atoms or groups connected to a central carbon.
- d. To be enantiomers, a molecule must have at least four different atoms or groups connected to a central carbon.

In triglycerides (fats and oils), long carbon chains known as fatty acids may contain double bonds, which can be in either the *cis* or *trans* configuration, illustrated in [link]. Fats with at least one double bond between carbon atoms are unsaturated fats. When some of these bonds are in the *cis* configuration, the resulting bend in the carbon backbone of the chain means that triglyceride molecules cannot pack tightly, so they remain liquid (oil) at room temperature. On the other hand, triglycerides with *trans* double bonds (popularly called trans fats), have relatively linear fatty acids that are able to pack tightly together at room temperature and form solid fats. In the human diet, trans fats are linked to an increased risk of cardiovascular disease, so many food manufacturers have reduced or eliminated their use in recent years. In contrast to unsaturated fats, triglycerides without double bonds between carbon atoms are called saturated fats, meaning that they contain all the hydrogen atoms available. Saturated fats are a solid at room temperature and usually of animal origin.

These space-filling models show a *cis* (oleic acid) and a *trans* (eliadic acid) fatty acid. Notice the bend in the molecule cause by the *cis* configuration.

Functional Groups

Functional groups are groups of atoms that occur within molecules and confer specific chemical properties to those molecules. They are found along the "carbon backbone" of macromolecules. This carbon backbone is formed by chains and/or rings of carbon atoms with the occasional substitution of an element such as nitrogen or oxygen. Molecules with other elements in their carbon backbone are **substituted hydrocarbons**.

The functional groups in a macromolecule are usually attached to the carbon backbone at one or several different places along its chain and/or ring structure. Each of the four types of macromolecules—proteins, lipids, carbohydrates, and nucleic acids—has its own characteristic set of functional groups that contributes greatly to its differing chemical properties and its function in living organisms.

A functional group can participate in specific chemical reactions. Some of the important functional groups in biological molecules are shown in [link]; they include: hydroxyl, methyl, carbonyl, carboxyl, amino, phosphate, and sulfhydryl. These groups play an important role in the formation of molecules like DNA, proteins, carbohydrates, and lipids. Functional groups are usually classified as hydrophobic or hydrophilic depending on their charge or polarity characteristics. An example of a hydrophobic group is the non-polar methane molecule. Among the hydrophilic functional groups is the carboxyl group found in amino acids, some amino acid side chains, and the fatty acids that form triglycerides and phospholipids. This carboxyl group ionizes to release hydrogen ions (H⁺) from the COOH group resulting in the negatively charged COO group; this contributes to the hydrophilic nature of whatever molecule it is found on. Other functional groups, such as the carbonyl group, have a partially negatively charged oxygen atom that may form hydrogen bonds with water molecules, again making the molecule more hydrophilic.

Functional Group	Structure	Properties	
Hydroxyl	о—н R	Polar	
Methyl	R —— CH ₃ Nonpolar		
Carbonyl	0 R R'	Polar	
Carboxyl	O C OH	Charged, ionizes to release H ⁺ . Since carboxyl groups can release H ⁺ ions into solution, they are considered acidic.	
Amino	R — N H	Charged, accepts H ⁺ to form NH ₃ ⁺ . Since amino groups can remove H ⁺ from solution, they are considered basic.	
Phosphate	R P OH OH	Charged, ionizes to release H ⁺ . Since phosphate groups can release H ⁺ ions into solution, they are considered acidic.	
Sulfhydryl	R — S	Polar	

The functional groups shown here are found in many different biological molecules.

Hydrogen bonds between functional groups (within the same molecule or between different molecules) are important to the function of many macromolecules and help them to fold properly into and maintain the appropriate shape for functioning. Hydrogen bonds are also involved in various recognition processes, such as DNA complementary base pairing and the binding of an enzyme to its substrate, as illustrated in [link].

Hydrogen bonds connect two strands of DNA together to create the double-helix structure.

Section Summary

The unique properties of carbon make it a central part of biological molecules. Carbon binds to oxygen, hydrogen, and nitrogen covalently to form the many molecules important for cellular function. Carbon has four electrons in its outermost shell and can form four bonds. Carbon and hydrogen can form hydrocarbon chains or rings. Functional groups are groups of atoms that confer specific properties to hydrocarbon (or substituted hydrocarbon) chains or rings that define their overall chemical characteristics and function.

Art Connections

Exercise:

Exercise:

Problem: [link] Which of the following statements is false?

- a. Molecules with the formulas CH_3CH_2COOH and $C_3H_6O_2$ could be structural isomers.
- b. Molecules must have a double bond to be *cis-trans* isomers.
- c. To be enantiomers, a molecule must have at least three different atoms or groups connected to a central carbon.
- d. To be enantiomers, a molecule must have at least four different atoms or groups connected to a central carbon.

Solution:	
[link] C	
Review Questions	
Exercise:	
Problem:	
Each carbon molecule can bond with as many as other atom(s) or molecule(s).	
a. one	
b. two	
c. six	
d. four	
Solution:	
D	

Problem:

Which of the following is not a functional group that can bond with carbon?

- a. sodium
- b. hydroxyl
- c. phosphate
- d. carbonyl

Solution:

Α

Free Response

Exercise:

Problem: What property of carbon makes it essential for organic life?

Solution:

Carbon is unique and found in all living things because it can form up to four covalent bonds between atoms or molecules. These can be nonpolar or polar covalent bonds, and they allow for the formation of long chains of carbon molecules that combine to form proteins and DNA.

Exercise:

Problem:

Compare and contrast saturated and unsaturated triglycerides.

Solution:

Saturated triglycerides contain no double bonds between carbon atoms; they are usually solid at room temperature. Unsaturated triglycerides contain at least one double bond between carbon atoms and are usually liquid at room temperature.

Glossary

aliphatic hydrocarbon

hydrocarbon consisting of a linear chain of carbon atoms

aromatic hydrocarbon

hydrocarbon consisting of closed rings of carbon atoms

enantiomers

molecules that share overall structure and bonding patterns, but differ in how the atoms are three dimensionally placed such that they are mirror images of each other

functional group

group of atoms that provides or imparts a specific function to a carbon skeleton

geometric isomer

isomer with similar bonding patterns differing in the placement of atoms alongside a double covalent bond

hydrocarbon

molecule that consists only of carbon and hydrogen

isomers

molecules that differ from one another even though they share the same chemical formula

organic molecule

any molecule containing carbon (except carbon dioxide)

structural isomers

molecules that share a chemical formula but differ in the placement of their chemical bonds

substituted hydrocarbon

hydrocarbon chain or ring containing an atom of another element in place of one of the backbone carbons

Introduction class="introduction"

Foods such as bread, fruit, and cheese are rich sources of biological macromolecules . (credit: modification of work by Bengt Nyman)

Food provides the body with the nutrients it needs to survive. Many of these critical nutrients are biological macromolecules, or large molecules, necessary for life. These macromolecules (polymers) are built from

different combinations of smaller organic molecules (monomers). What specific types of biological macromolecules do living things require? How are these molecules formed? What functions do they serve? In this chapter, these questions will be explored.

Synthesis of Biological Macromolecules By the end of this section, you will be able to:

- Understand the synthesis of macromolecules
- Explain dehydration (or condensation) and hydrolysis reactions

As you've learned, **biological macromolecules** are large molecules, necessary for life, that are built from smaller organic molecules. There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids); each is an important cell component and performs a wide array of functions. Combined, these molecules make up the majority of a cell's dry mass (recall that water makes up the majority of its complete mass). Biological macromolecules are organic, meaning they contain carbon. In addition, they may contain hydrogen, oxygen, nitrogen, and additional minor elements.

Dehydration Synthesis

Most macromolecules are made from single subunits, or building blocks, called **monomers**. The monomers combine with each other using covalent bonds to form larger molecules known as **polymers**. In doing so, monomers release water molecules as byproducts. This type of reaction is known as **dehydration synthesis**, which means "to put together while losing water."

In the dehydration synthesis reaction depicted above, two molecules of glucose are linked together to form the disaccharide maltose. In the process, a water molecule is formed.

In a dehydration synthesis reaction ([link]), the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a molecule of water. At the same time, the monomers share electrons and form covalent bonds. As additional monomers join, this chain of repeating monomers forms a polymer. Different types of monomers can combine in many configurations, giving rise to a diverse group of macromolecules. Even one kind of monomer can combine in a variety of ways to form several different polymers: for example, glucose monomers are the constituents of starch, glycogen, and cellulose.

Hydrolysis

Polymers are broken down into monomers in a process known as hydrolysis, which means "to split water," a reaction in which a water molecule is used during the breakdown ([link]). During these reactions, the polymer is broken into two components: one part gains a hydrogen atom (H+) and the other gains a hydroxyl molecule (OH–) from a split water molecule.

In the hydrolysis reaction shown here, the disaccharide maltose is broken down to form two glucose monomers with the addition of a water molecule. Note that this reaction is the reverse of the synthesis reaction shown in [link].

Dehydration and **hydrolysis reactions** are catalyzed, or "sped up," by specific enzymes; dehydration reactions involve the formation of new bonds, requiring energy, while hydrolysis reactions break bonds and release energy. These reactions are similar for most macromolecules, but each monomer and polymer reaction is specific for its class. For example, in our bodies, food is hydrolyzed, or broken down, into smaller molecules by catalytic enzymes in the digestive system. This allows for easy absorption of nutrients by cells in the intestine. Each macromolecule is broken down by a specific enzyme. For instance, carbohydrates are broken down by amylase, sucrase, lactase, or maltase. Proteins are broken down by the enzymes pepsin and peptidase, and by hydrochloric acid. Lipids are broken down by lipases. Breakdown of these macromolecules provides energy for cellular activities.

Note:

Link to Learning

Visit <u>this site</u> to see visual representations of dehydration synthesis and hydrolysis.

Section Summary

Proteins, carbohydrates, nucleic acids, and lipids are the four major classes of biological macromolecules—large molecules necessary for life that are built from smaller organic molecules. Macromolecules are made up of single units known as monomers that are joined by covalent bonds to form larger polymers. The polymer is more than the sum of its parts: it acquires

new characteristics, and leads to an osmotic pressure that is much lower than that formed by its ingredients; this is an important advantage in the maintenance of cellular osmotic conditions. A monomer joins with another monomer with the release of a water molecule, leading to the formation of a covalent bond. These types of reactions are known as dehydration or condensation reactions. When polymers are broken down into smaller units (monomers), a molecule of water is used for each bond broken by these reactions; such reactions are known as hydrolysis reactions. Dehydration and hydrolysis reactions are similar for all macromolecules, but each monomer and polymer reaction is specific to its class. Dehydration reactions typically require an investment of energy for new bond formation, while hydrolysis reactions typically release energy by breaking bonds.

Review Questions

Exercise:

Problem: Dehydration synthesis leads to formation of

- a. monomers
- b. polymers
- c. water and polymers
- d. none of the above

Solution:

 \mathbf{C}

Exercise:

Problem:

During the breakdown of polymers, which of the following reactions takes place?

- a. hydrolysis
- b. dehydration

- c. condensation
- d. covalent bond

Solution:

Α

Free Response

Exercise:

Problem: Why are biological macromolecules considered organic?

Solution:

Biological macromolecules are organic because they contain carbon.

Exercise:

Problem:

What role do electrons play in dehydration synthesis and hydrolysis?

Solution:

In a dehydration synthesis reaction, the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a molecule of water. This creates an opening in the outer shells of atoms in the monomers, which can share electrons and form covalent bonds.

Glossary

biological macromolecule

large molecule necessary for life that is built from smaller organic molecules

dehydration synthesis

(also, condensation) reaction that links monomer molecules together, releasing a molecule of water for each bond formed

hydrolysis

reaction causes breakdown of larger molecules into smaller molecules with the utilization of water

monomer

smallest unit of larger molecules called polymers

polymer

chain of monomer residues that is linked by covalent bonds; polymerization is the process of polymer formation from monomers by condensation

Carbohydrates

By the end of this section, you will be able to:

- Discuss the role of carbohydrates in cells and in the extracellular materials of animals and plants
- Explain the classifications of carbohydrates
- List common monosaccharides, disaccharides, and polysaccharides

Most people are familiar with carbohydrates, one type of macromolecule, especially when it comes to what we eat. To lose weight, some individuals adhere to "low-carb" diets. Athletes, in contrast, often "carb-load" before important competitions to ensure that they have enough energy to compete at a high level. Carbohydrates are, in fact, an essential part of our diet; grains, fruits, and vegetables are all natural sources of carbohydrates. Carbohydrates provide energy to the body, particularly through glucose, a simple sugar that is a component of **starch** and an ingredient in many staple foods. Carbohydrates also have other important functions in humans, animals, and plants.

Molecular Structures

Carbohydrates can be represented by the stoichiometric formula $(CH_2O)_n$, where n is the number of carbons in the molecule. In other words, the ratio of carbon to hydrogen to oxygen is 1:2:1 in carbohydrate molecules. This formula also explains the origin of the term "carbohydrate": the components are carbon ("carbo") and the components of water (hence, "hydrate"). Carbohydrates are classified into three subtypes: monosaccharides, disaccharides, and polysaccharides.

Monosaccharides

Monosaccharides (mono- = "one"; sacchar- = "sweet") are simple sugars, the most common of which is glucose. In monosaccharides, the number of carbons usually ranges from three to seven. Most monosaccharide names end with the suffix -ose. If the sugar has an aldehyde group (the functional group with the structure R-CHO), it is known as an aldose, and if it has a

ketone group (the functional group with the structure RC(=O)R'), it is known as a ketose. Depending on the number of carbons in the sugar, they also may be known as trioses (three carbons), pentoses (five carbons), and or hexoses (six carbons). See [link] for an illustration of the monosaccharides.

Monosaccharides are classified based on the position of their carbonyl group and the number of carbons in the backbone. Aldoses have a carbonyl group (indicated in green) at the end of the carbon chain, and ketoses

have a carbonyl group in the middle of the carbon chain. Trioses, pentoses, and hexoses have three, five, and six carbon backbones, respectively.

The chemical formula for glucose is $C_6H_{12}O_6$. In humans, glucose is an important source of energy. During cellular respiration, energy is released from glucose, and that energy is used to help make adenosine triphosphate (ATP). Plants synthesize glucose using carbon dioxide and water, and glucose in turn is used for energy requirements for the plant. Excess glucose is often stored as starch that is catabolized (the breakdown of larger molecules by cells) by humans and other animals that feed on plants.

Galactose (part of lactose, or milk sugar) and fructose (found in sucrose, in fruit) are other common monosaccharides. Although glucose, galactose, and fructose all have the same chemical formula ($C_6H_{12}O_6$), they differ structurally and chemically (and are known as isomers) because of the different arrangement of functional groups around the asymmetric carbon; all of these monosaccharides have more than one asymmetric carbon ([link]).

Note:		
Art Connection		

Glucose, galactose, and fructose are all hexoses. They are structural isomers, meaning they have the same chemical formula ($C_6H_{12}O_6$) but a different arrangement of atoms.

What kind of sugars are these, aldose or ketose?

Glucose, galactose, and fructose are isomeric monosaccharides (hexoses), meaning they have the same chemical formula but have slightly different structures. Glucose and galactose are aldoses, and fructose is a ketose.

Monosaccharides can exist as a linear chain or as ring-shaped molecules; in aqueous solutions they are usually found in ring forms ([link]). Glucose in a ring form can have two different arrangements of the hydroxyl group (OH) around the anomeric carbon (carbon 1 that becomes asymmetric in the process of ring formation). If the hydroxyl group is below carbon number 1 in the sugar, it is said to be in the alpha (α) position, and if it is above the plane, it is said to be in the beta (β) position.

Five and six carbon monosaccharides exist in equilibrium between linear and ring forms. When the ring forms, the side chain it closes on is locked into an α or β position. Fructose and ribose also form rings, although they form five-membered rings as opposed to the six-membered ring of glucose.

Disaccharides

Disaccharides (di- = "two") form when two monosaccharides undergo a dehydration reaction (also known as a condensation reaction or dehydration synthesis). During this process, the hydroxyl group of one monosaccharide combines with the hydrogen of another monosaccharide, releasing a molecule of water and forming a covalent bond. A covalent bond formed between a carbohydrate molecule and another molecule (in this case, between two monosaccharides) is known as a **glycosidic bond** ([link]). Glycosidic bonds (also called glycosidic linkages) can be of the alpha or the beta type.

Sucrose is formed when a monomer of glucose and a monomer of fructose are joined in a dehydration reaction to form a glycosidic bond. In the process, a water molecule is lost. By convention, the carbon

atoms in a monosaccharide are numbered from the terminal carbon closest to the carbonyl group. In sucrose, a glycosidic linkage is formed between carbon 1 in glucose and carbon 2 in fructose.

Common disaccharides include lactose, maltose, and sucrose ([link]). Lactose is a disaccharide consisting of the monomers glucose and galactose. It is found naturally in milk. Maltose, or malt sugar, is a disaccharide formed by a dehydration reaction between two glucose molecules. The most common disaccharide is sucrose, or table sugar, which is composed of the monomers glucose and fructose.

Common disaccharides include maltose (grain sugar), lactose (milk sugar), and sucrose (table sugar).

Polysaccharides

A long chain of monosaccharides linked by glycosidic bonds is known as a **polysaccharide** (poly- = "many"). The chain may be branched or unbranched, and it may contain different types of monosaccharides. The molecular weight may be 100,000 daltons or more depending on the number of monomers joined. Starch, glycogen, cellulose, and chitin are primary examples of polysaccharides.

Starch is the stored form of sugars in plants and is made up of a mixture of amylose and amylopectin (both polymers of glucose). Plants are able to synthesize glucose, and the excess glucose, beyond the plant's immediate energy needs, is stored as starch in different plant parts, including roots and seeds. The starch in the seeds provides food for the embryo as it germinates and can also act as a source of food for humans and animals. The starch that is consumed by humans is broken down by enzymes, such as salivary amylases, into smaller molecules, such as maltose and glucose. The cells can then absorb the glucose.

Starch is made up of glucose monomers that are joined by α 1-4 or α 1-6 glycosidic bonds. The numbers 1-4 and 1-6 refer to the carbon number of the two residues that have joined to form the bond. As illustrated in [link], amylose is starch formed by unbranched chains of glucose monomers (only α 1-4 linkages), whereas amylopectin is a branched polysaccharide (α 1-6 linkages at the branch points).

Amylose and amylopectin are two different forms of starch. Amylose is composed of unbranched chains of glucose monomers connected by α 1,4 glycosidic linkages. Amylopectin is composed of branched chains of glucose monomers connected by α 1,4 and α 1,6 glycosidic linkages. Because

of the way the subunits are joined, the glucose chains have a helical structure. Glycogen (not shown) is similar in structure to amylopectin but more highly branched.

Glycogen is the storage form of glucose in humans and other vertebrates and is made up of monomers of glucose. Glycogen is the animal equivalent of starch and is a highly branched molecule usually stored in liver and muscle cells. Whenever blood glucose levels decrease, glycogen is broken down to release glucose in a process known as glycogenolysis.

Cellulose is the most abundant natural biopolymer. The cell wall of plants is mostly made of cellulose; this provides structural support to the cell. Wood and paper are mostly cellulosic in nature. Cellulose is made up of glucose monomers that are linked by β 1-4 glycosidic bonds ([link]).

In cellulose, glucose monomers are linked in unbranched chains by β 1-4 glycosidic linkages. Because of the way the glucose subunits are joined, every glucose monomer is flipped relative to the next one resulting in a linear, fibrous structure.

As shown in [link], every other glucose monomer in cellulose is flipped over, and the monomers are packed tightly as extended long chains. This gives cellulose its rigidity and high tensile strength—which is so important to plant cells. While the β 1-4 linkage cannot be broken down by human digestive enzymes, herbivores such as cows, koalas, and buffalos are able, with the help of the specialized flora in their stomach, to digest plant material that is rich in cellulose and use it as a food source. In these animals, certain species of bacteria and protists reside in the rumen (part of the digestive system of herbivores) and secrete the enzyme cellulase. The appendix of grazing animals also contains bacteria that digest cellulose, giving it an important role in the digestive systems of ruminants. Cellulases can break down cellulose into glucose monomers that can be used as an energy source by the animal. Termites are also able to break down cellulose because of the presence of other organisms in their bodies that secrete cellulases.

Carbohydrates serve various functions in different animals. Arthropods (insects, crustaceans, and others) have an outer skeleton, called the exoskeleton, which protects their internal body parts (as seen in the bee in $[\underline{link}]$). This exoskeleton is made of the biological macromolecule **chitin**, which is a polysaccharide-containing nitrogen. It is made of repeating units of N-acetyl- β -d-glucosamine, a modified sugar. Chitin is also a major component of fungal cell walls; fungi are neither animals nor plants and form a kingdom of their own in the domain Eukarya.

Insects have a hard outer exoskeleton made of chitin, a type of polysaccharide. (credit: Louise Docker)

Note:

Career Connections Registered Dietitian

Obesity is a worldwide health concern, and many diseases such as diabetes and heart disease are becoming more prevalent because of obesity. This is one of the reasons why registered dietitians are increasingly sought after for advice. Registered dietitians help plan nutrition programs for individuals in various settings. They often work with patients in health care facilities, designing nutrition plans to treat and prevent diseases. For example, dietitians may teach a patient with diabetes how to manage blood sugar levels by eating the correct types and amounts of carbohydrates. Dietitians may also work in nursing homes, schools, and private practices. To become a registered dietitian, one needs to earn at least a bachelor's degree in dietetics, nutrition, food technology, or a related field. In addition, registered dietitians must complete a supervised internship

program and pass a national exam. Those who pursue careers in dietetics take courses in nutrition, chemistry, biochemistry, biology, microbiology, and human physiology. Dietitians must become experts in the chemistry and physiology (biological functions) of food (proteins, carbohydrates, and fats).

Benefits of Carbohydrates

Are carbohydrates good for you? People who wish to lose weight are often told that carbohydrates are bad for them and should be avoided. Some diets completely forbid carbohydrate consumption, claiming that a low-carbohydrate diet helps people to lose weight faster. However, carbohydrates have been an important part of the human diet for thousands of years; artifacts from ancient civilizations show the presence of wheat, rice, and corn in our ancestors' storage areas.

Carbohydrates should be supplemented with proteins, vitamins, and fats to be parts of a well-balanced diet. Calorie-wise, a gram of carbohydrate provides 4.3 Kcal. For comparison, fats provide 9 Kcal/g, a less desirable ratio. Carbohydrates contain soluble and insoluble elements; the insoluble part is known as fiber, which is mostly cellulose. Fiber has many uses; it promotes regular bowel movement by adding bulk, and it regulates the rate of consumption of blood glucose. Fiber also helps to remove excess cholesterol from the body: fiber binds to the cholesterol in the small intestine, then attaches to the cholesterol and prevents the cholesterol particles from entering the bloodstream, and then cholesterol exits the body via the feces. Fiber-rich diets also have a protective role in reducing the occurrence of colon cancer. In addition, a meal containing whole grains and vegetables gives a feeling of fullness. As an immediate source of energy, glucose is broken down during the process of cellular respiration, which produces ATP, the energy currency of the cell. Without the consumption of carbohydrates, the availability of "instant energy" would be reduced. Eliminating carbohydrates from the diet is not the best way to lose weight. A low-calorie diet that is rich in whole grains, fruits, vegetables, and lean

meat, together with plenty of exercise and plenty of water, is the more sensible way to lose weight.

Note:

Link to Learning

For an additional perspective on carbohydrates, explore "Biomolecules: the Carbohydrates" through this <u>interactive animation</u>.

Section Summary

Carbohydrates are a group of macromolecules that are a vital energy source for the cell and provide structural support to plant cells, fungi, and all of the arthropods that include lobsters, crabs, shrimp, insects, and spiders. Carbohydrates are classified as monosaccharides, disaccharides, and polysaccharides depending on the number of monomers in the molecule. Monosaccharides are linked by glycosidic bonds that are formed as a result of dehydration reactions, forming disaccharides and polysaccharides with the elimination of a water molecule for each bond formed. Glucose, galactose, and fructose are common monosaccharides, whereas common disaccharides include lactose, maltose, and sucrose. Starch and glycogen, examples of polysaccharides, are the storage forms of glucose in plants and animals, respectively. The long polysaccharide chains may be branched or unbranched. Cellulose is an example of an unbranched polysaccharide, whereas amylopectin, a constituent of starch, is a highly branched molecule. Storage of glucose, in the form of polymers like starch of glycogen, makes it slightly less accessible for metabolism; however, this prevents it from

leaking out of the cell or creating a high osmotic pressure that could cause excessive water uptake by the cell.

Art Connections

•				•	,		
E	v	ρ	r	CI	C	Δ	•

Problem: [link] What kind of sugars are these, aldose or ketose?

Solution:

[link] Glucose and galactose are aldoses. Fructose is a ketose.

Review Questions

Exercise:

Problem: An example of a monosaccharide is ______.

- a. fructose
- b. glucose
- c. galactose
- d. all of the above

Solution:

D

Exercise:

Problem:Cellulose and starch are examples of:

- a. monosaccharides
- b. disaccharides
- c. lipids

d. polysaccharides	
Solution:	
D	
Exercise:	
Problem:	
Plant cell walls contain which of the following in abundance?	
a. starchb. cellulosec. glycogend. lactose	
Solution: B	
Exercise:	
Problem:	
Lactose is a disaccharide formed by the formation of al between glucose and	bond
a. glycosidic; lactoseb. glycosidic; galactosec. hydrogen; sucrosed. hydrogen; fructose	
Solution:	

В

Free Response

Exercise:

Problem:

Describe the similarities and differences between glycogen and starch.

Solution:

Glycogen and starch are polysaccharides. They are the storage form of glucose. Glycogen is stored in animals in the liver and in muscle cells, whereas starch is stored in the roots, seeds, and leaves of plants. Starch has two different forms, one unbranched (amylose) and one branched (amylopectin), whereas glycogen is a single type of a highly branched molecule.

Exercise:

Problem:

Why is it impossible for humans to digest food that contains cellulose?

Solution:

The β 1-4 glycosidic linkage in cellulose cannot be broken down by human digestive enzymes. Herbivores such as cows, koalas, and buffalos are able to digest grass that is rich in cellulose and use it as a food source because bacteria and protists in their digestive systems, especially in the rumen, secrete the enzyme cellulase. Cellulases can break down cellulose into glucose monomers that can be used as an energy source by the animal.

Glossary

carbohydrate

biological macromolecule in which the ratio of carbon to hydrogen and to oxygen is 1:2:1; carbohydrates serve as energy sources and

structural support in cells and form the a cellular exoskeleton of arthropods

cellulose

polysaccharide that makes up the cell wall of plants; provides structural support to the cell

chitin

type of carbohydrate that forms the outer skeleton of all arthropods that include crustaceans and insects; it also forms the cell walls of fungi

disaccharide

two sugar monomers that are linked together by a glycosidic bond

glycogen

storage carbohydrate in animals

glycosidic bond

bond formed by a dehydration reaction between two monosaccharides with the elimination of a water molecule

monosaccharide

single unit or monomer of carbohydrates

polysaccharide

long chain of monosaccharides; may be branched or unbranched

starch

storage carbohydrate in plants

Lipids

By the end of this section, you will be able to:

- Describe the four major types of lipids
- Explain the role of fats in storing energy
- Differentiate between saturated and unsaturated fatty acids
- Describe phospholipids and their role in cells
- Define the basic structure of a steroid and some functions of steroids
- Explain the how cholesterol helps to maintain the fluid nature of the plasma membrane

Lipids include a diverse group of compounds that are largely nonpolar in nature. This is because they are hydrocarbons that include mostly nonpolar carbon—carbon or carbon—hydrogen bonds. Non-polar molecules are hydrophobic ("water fearing"), or insoluble in water. Lipids perform many different functions in a cell. Cells store energy for long-term use in the form of fats. Lipids also provide insulation from the environment for plants and animals ([link]). For example, they help keep aquatic birds and mammals dry when forming a protective layer over fur or feathers because of their water-repellant hydrophobic nature. Lipids are also the building blocks of many hormones and are an important constituent of all cellular membranes. Lipids include fats, oils, waxes, phospholipids, and steroids.

Hydrophobic lipids in the fur of aquatic mammals, such as

this river otter, protect them from the elements. (credit: Ken Bosma)

Fats and Oils

A fat molecule consists of two main components—glycerol and fatty acids. Glycerol is an organic compound (alcohol) with three carbons, five hydrogens, and three hydroxyl (OH) groups. Fatty acids have a long chain of hydrocarbons to which a carboxyl group is attached, hence the name "fatty acid." The number of carbons in the fatty acid may range from 4 to 36; most common are those containing 12–18 carbons. In a fat molecule, the fatty acids are attached to each of the three carbons of the glycerol molecule with an ester bond through an oxygen atom ([link]).

Glycerol

+

Fatty Acid

Triacylglycerol

Triacylglycerol is formed by the joining of three fatty acids to a glycerol backbone in a dehydration reaction. Three molecules of water are released in the process.

During this ester bond formation, three water molecules are released. The three fatty acids in the triacylglycerol may be similar or dissimilar. Fats are also called **triacylglycerols** or **triglycerides** because of their chemical

structure. Some fatty acids have common names that specify their origin. For example, palmitic acid, a **saturated fatty acid**, is derived from the palm tree. Arachidic acid is derived from *Arachis hypogea*, the scientific name for groundnuts or peanuts.

Fatty acids may be saturated or unsaturated. In a fatty acid chain, if there are only single bonds between neighboring carbons in the hydrocarbon chain, the fatty acid is said to be saturated. Saturated fatty acids are saturated with hydrogen; in other words, the number of hydrogen atoms attached to the carbon skeleton is maximized. Stearic acid is an example of a saturated fatty acid ([link])

Stearic acid is a common saturated fatty acid.

When the hydrocarbon chain contains a double bond, the fatty acid is said to be **unsaturated**. Oleic acid is an example of an unsaturated fatty acid ([link]).

Oleic acid is a common unsaturated fatty acid.

Most unsaturated fats are liquid at room temperature and are called oils. If there is one double bond in the molecule, then it is known as a monounsaturated fat (e.g., olive oil), and if there is more than one double bond, then it is known as a polyunsaturated fat (e.g., canola oil).

When a fatty acid has no double bonds, it is known as a saturated fatty acid because no more hydrogen may be added to the carbon atoms of the chain. A fat may contain similar or different fatty acids attached to glycerol. Long straight fatty acids with single bonds tend to get packed tightly and are solid at room temperature. Animal fats with stearic acid and palmitic acid (common in meat) and the fat with butyric acid (common in butter) are examples of saturated fats. Mammals store fats in specialized cells called adipocytes, where globules of fat occupy most of the cell's volume. In plants, fat or oil is stored in many seeds and is used as a source of energy during seedling development. Unsaturated fats or oils are usually of plant origin and contain *cis* unsaturated fatty acids. *Cis* and *trans* indicate the configuration of the molecule around the double bond. If hydrogens are present in the same plane, it is referred to as a cis fat; if the hydrogen atoms are on two different planes, it is referred to as a **trans fat**. The *cis* double bond causes a bend or a "kink" that prevents the fatty acids from packing tightly, keeping them liquid at room temperature ([link]). Olive oil, corn oil, canola oil, and cod liver oil are examples of unsaturated fats. Unsaturated fats help to lower blood cholesterol levels whereas saturated fats contribute to plaque formation in the arteries.

Saturated fatty acid

Stearic acid

Unsaturated fatty acids

Cis oleic acid

Trans oleic acid

Saturated fatty acids have hydrocarbon chains connected by single bonds only. Unsaturated fatty acids have one or more double bonds. Each double bond may be in a *cis* or *trans* configuration. In the *cis* configuration, both hydrogens are on the same side of the hydrocarbon chain. In the *trans* configuration, the hydrogens are on opposite sides. A *cis* double bond causes a kink in the chain.

In the food industry, oils are artificially hydrogenated to make them semisolid and of a consistency desirable for many processed food products. Simply speaking, hydrogen gas is bubbled through oils to solidify them. During this hydrogenation process, double bonds of the *cis-* conformation in the hydrocarbon chain may be converted to double bonds in the transconformation.

Margarine, some types of peanut butter, and shortening are examples of artificially hydrogenated trans fats. Recent studies have shown that an increase in trans fats in the human diet may lead to an increase in levels of low-density lipoproteins (LDL), or "bad" cholesterol, which in turn may lead to plaque deposition in the arteries, resulting in heart disease. Many fast food restaurants have recently banned the use of trans fats, and food labels are required to display the trans fat content.

Omega Fatty Acids

Essential fatty acids are fatty acids required but not synthesized by the human body. Consequently, they have to be supplemented through ingestion via the diet. **Omega-**3 fatty acids (like that shown in [link]) fall into this category and are one of only two known for humans (the other being omega-6 fatty acid). These are polyunsaturated fatty acids and are called omega-3 because the third carbon from the end of the hydrocarbon chain is connected to its neighboring carbon by a double bond.

Alpha-linolenic acid is an example of an omega-3 fatty acid. It has three *cis* double bonds and, as a result, a curved shape. For clarity, the carbons are not shown. Each singly bonded carbon has two hydrogens associated with it, also not shown.

The farthest carbon away from the carboxyl group is numbered as the omega (ω) carbon, and if the double bond is between the third and fourth carbon from that end, it is known as an omega-3 fatty acid. Nutritionally important because the body does not make them, omega-3 fatty acids include alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), all of which are polyunsaturated. Salmon, trout, and tuna are good sources of omega-3 fatty acids. Research indicates that omega-3 fatty acids reduce the risk of sudden death from heart attacks, reduce triglycerides in the blood, lower blood pressure, and prevent thrombosis by inhibiting blood clotting. They also reduce inflammation, and may help reduce the risk of some cancers in animals.

Like carbohydrates, fats have received a lot of bad publicity. It is true that eating an excess of fried foods and other "fatty" foods leads to weight gain. However, fats do have important functions. Many vitamins are fat soluble,

and fats serve as a long-term storage form of fatty acids: a source of energy. They also provide insulation for the body. Therefore, "healthy" fats in moderate amounts should be consumed on a regular basis.

Waxes

Wax covers the feathers of some aquatic birds and the leaf surfaces of some plants. Because of the hydrophobic nature of waxes, they prevent water from sticking on the surface ([link]). Waxes are made up of long fatty acid chains esterified to long-chain alcohols.

Waxy coverings on some leaves are made of lipids. (credit: Roger Griffith)

Phospholipids

Phospholipids are major constituents of the plasma membrane, the outermost layer of animal cells. Like fats, they are composed of fatty acid chains attached to a glycerol or sphingosine backbone. Instead of three fatty acids attached as in triglycerides, however, there are two fatty acids forming

diacylglycerol, and the third carbon of the glycerol backbone is occupied by a modified phosphate group ([link]). A phosphate group alone attached to a diacylglycerol does not qualify as a phospholipid; it is phosphatidate (diacylglycerol 3-phosphate), the precursor of phospholipids. The phosphate group is modified by an alcohol. Phosphatidylcholine and phosphatidylserine are two important phospholipids that are found in plasma membranes.

A phospholipid is a molecule with two fatty acids and a modified phosphate group attached to a glycerol backbone. The phosphate may be modified by the addition of charged or polar chemical groups. Both choline and serine attach to the phosphate group at the position labeled R via the hydroxyl group.

A phospholipid is an amphipathic molecule, meaning it has a hydrophobic and a hydrophilic part. The fatty acid chains are hydrophobic and cannot interact with water, whereas the phosphate-containing group is hydrophilic and interacts with water ([link]).

The phospholipid bilayer is the major component of all cellular membranes. The hydrophilic head groups of the phospholipids face the aqueous solution. The hydrophobic tails are sequestered in the middle of the bilayer.

The head is the hydrophilic part, and the tail contains the hydrophobic fatty acids. In a membrane, a bilayer of phospholipids forms the matrix of the structure, the fatty acid tails of phospholipids face inside, away from water, whereas the phosphate group faces the outside, aqueous side ([link]).

Phospholipids are responsible for the dynamic nature of the plasma membrane. If a drop of phospholipids is placed in water, it spontaneously forms a structure known as a micelle, where the hydrophilic phosphate heads face the outside and the fatty acids face the interior of this structure.

Steroids

Unlike the phospholipids and fats discussed earlier, **steroids** have a fused ring structure. Although they do not resemble the other lipids, they are grouped with them because they are also hydrophobic and insoluble in water. All steroids have four linked carbon rings and several of them, like cholesterol, have a short tail ([link]). Many steroids also have the –OH functional group, which puts them in the alcohol classification (sterols).

Cholesterol

Cortisol

Steroids such as cholesterol and cortisol are composed of four fused hydrocarbon rings.

Cholesterol is the most common steroid. Cholesterol is mainly synthesized in the liver and is the precursor to many steroid hormones such as testosterone and estradiol, which are secreted by the gonads and endocrine

glands. It is also the precursor to Vitamin D. Cholesterol is also the precursor of bile salts, which help in the emulsification of fats and their subsequent absorption by cells. Although cholesterol is often spoken of in negative terms by lay people, it is necessary for proper functioning of the body. It is a component of the plasma membrane of animal cells and is found within the phospholipid bilayer. Being the outermost structure in animal cells, the plasma membrane is responsible for the transport of materials and cellular recognition and it is involved in cell-to-cell communication.

Note:

Link to Learning

For an additional perspective on lipids, explore the interactive animation "Biomolecules: The Lipids"

Section Summary

Lipids are a class of macromolecules that are nonpolar and hydrophobic in nature. Major types include fats and oils, waxes, phospholipids, and steroids. Fats are a stored form of energy and are also known as triacylglycerols or triglycerides. Fats are made up of fatty acids and either glycerol or sphingosine. Fatty acids may be unsaturated or saturated, depending on the presence or absence of double bonds in the hydrocarbon chain. If only single bonds are present, they are known as saturated fatty acids. Unsaturated fatty acids may have one or more double bonds in the

hydrocarbon chain. Phospholipids make up the matrix of membranes. They have a glycerol or sphingosine backbone to which two fatty acid chains and a phosphate-containing group are attached. Steroids are another class of lipids. Their basic structure has four fused carbon rings. Cholesterol is a type of steroid and is an important constituent of the plasma membrane, where it helps to maintain the fluid nature of the membrane. It is also the precursor of steroid hormones such as testosterone.

Review Questions

Exercise:

Problem:

Saturated fats have all of the following characteristics except:

- a. they are solid at room temperature
- b. they have single bonds within the carbon chain
- c. they are usually obtained from animal sources
- d. they tend to dissolve in water easily

Solution:

 \Box

Exercise:

Problem:Phospholipids are important components of _____.

- a. the plasma membrane of animal cells
- b. the ring structure of steroids
- c. the waxy covering on leaves
- d. the double bond in hydrocarbon chains

Solution:

Free Response

Exercise:

Problem:

Explain at least three functions that lipids serve in plants and/or animals.

Solution:

Fat serves as a valuable way for animals to store energy. It can also provide insulation. Waxes can protect plant leaves and mammalian fur from getting wet. Phospholipids and steroids are important components of animal cell membranes, as well as plant, fungal, and bacterial membranes.

Exercise:

Problem:

Why have trans fats been banned from some restaurants? How are they created?

Solution:

Trans fats are created artificially when hydrogen gas is bubbled through oils to solidify them. The double bonds of the *cis* conformation in the hydrocarbon chain may be converted to double bonds in the *trans* configuration. Some restaurants are banning trans fats because they cause higher levels of LDL, or "bad"cholesterol.

Glossary

lipid

macromolecule that is nonpolar and insoluble in water

omega fat

type of polyunsaturated fat that is required by the body; the numbering of the carbon omega starts from the methyl end or the end that is farthest from the carboxylic end

phospholipid

major constituent of the membranes; composed of two fatty acids and a phosphate-containing group attached to a glycerol backbone

saturated fatty acid

long-chain of hydrocarbon with single covalent bonds in the carbon chain; the number of hydrogen atoms attached to the carbon skeleton is maximized

steroid

type of lipid composed of four fused hydrocarbon rings forming a planar structure

trans fat

fat formed artificially by hydrogenating oils, leading to a different arrangement of double bond(s) than those found in naturally occurring lipids

triacylglycerol (also, triglyceride)

fat molecule; consists of three fatty acids linked to a glycerol molecule

unsaturated fatty acid

long-chain hydrocarbon that has one or more double bonds in the hydrocarbon chain

wax

lipid made of a long-chain fatty acid that is esterified to a long-chain alcohol; serves as a protective coating on some feathers, aquatic mammal fur, and leaves

Proteins

By the end of this section, you will be able to:

- Describe the functions proteins perform in the cell and in tissues
- Discuss the relationship between amino acids and proteins
- Explain the four levels of protein organization
- Describe the ways in which protein shape and function are linked

Proteins are one of the most abundant organic molecules in living systems and have the most diverse range of functions of all macromolecules. Proteins may be structural, regulatory, contractile, or protective; they may serve in transport, storage, or membranes; or they may be toxins or enzymes. Each cell in a living system may contain thousands of proteins, each with a unique function. Their structures, like their functions, vary greatly. They are all, however, polymers of amino acids, arranged in a linear sequence.

Types and Functions of Proteins

Enzymes, which are produced by living cells, are catalysts in biochemical reactions (like digestion) and are usually complex or conjugated proteins. Each enzyme is specific for the substrate (a reactant that binds to an enzyme) it acts on. The enzyme may help in breakdown, rearrangement, or synthesis reactions. Enzymes that break down their substrates are called catabolic enzymes, enzymes that build more complex molecules from their substrates are called anabolic enzymes, and enzymes that affect the rate of reaction are called catalytic enzymes. It should be noted that all enzymes increase the rate of reaction and, therefore, are considered to be organic catalysts. An example of an enzyme is salivary amylase, which hydrolyzes its substrate amylose, a component of starch.

Hormones are chemical-signaling molecules, usually small proteins or steroids, secreted by endocrine cells that act to control or regulate specific physiological processes, including growth, development, metabolism, and reproduction. For example, insulin is a protein hormone that helps to regulate the blood glucose level. The primary types and functions of proteins are listed in [link].

Protein Types and Functions				
Туре	Examples	Functions		
Digestive Enzymes	Amylase, lipase, pepsin, trypsin	Help in digestion of food by catabolizing nutrients into monomeric units		
Transport	Hemoglobin, albumin	Carry substances in the blood or lymph throughout the body		
Structural	Actin, tubulin, keratin	Construct different structures, like the cytoskeleton		
Hormones	Insulin, thyroxine	Coordinate the activity of different body systems		
Defense	Immunoglobulins	Protect the body from foreign pathogens		
Contractile	Actin, myosin	Effect muscle contraction		
Storage	Legume storage proteins, egg white (albumin)	Provide nourishment in early development of the embryo and the seedling		

Proteins have different shapes and molecular weights; some proteins are globular in shape whereas others are fibrous in nature. For example, hemoglobin is a globular protein, but collagen, found in our skin, is a fibrous protein. Protein shape is critical to its function, and this shape is maintained by many different types of chemical bonds. Changes in temperature, pH, and exposure to chemicals may lead to permanent changes in the shape of the protein, leading to loss of function, known as **denaturation**. All proteins are made up of different arrangements of the same 20 types of amino acids.

Amino Acids

Amino acids are the monomers that make up proteins. Each amino acid has the same fundamental structure, which consists of a central carbon atom, also known as the alpha (α) carbon, bonded to an amino group (NH₂), a carboxyl group (COOH), and to a hydrogen atom. Every amino acid also has another atom or group of atoms bonded to the central atom known as the R group ([link]).

Amino acids have a central asymmetric carbon to which an amino group, a carboxyl group, a hydrogen atom, and a side chain (R group) are attached.

The name "amino acid" is derived from the fact that they contain both amino group and carboxyl-acid-group in their basic structure. As mentioned, there are 20 amino acids present in proteins. Nine of these are considered essential amino acids in humans because the human body cannot produce them and they are obtained from the diet. For each amino acid, the R group (or side chain) is different ([link]).

Note:

Art Connection

There are 20 common amino acids commonly found in proteins, each with a different R group (variant group) that determines its chemical nature.

Which categories of amino acid would you expect to find on the surface of a soluble protein, and which would you expect to find in the interior? What distribution of amino acids would you expect to find in a protein embedded in a lipid bilayer?

The chemical nature of the side chain determines the nature of the amino acid (that is, whether it is acidic, basic, polar, or nonpolar). For example, the

amino acid glycine has a hydrogen atom as the R group. Amino acids such as valine, methionine, and alanine are nonpolar or hydrophobic in nature, while amino acids such as serine, threonine, and cysteine are polar and have hydrophilic side chains. The side chains of lysine and arginine are positively charged, and therefore these amino acids are also known as basic amino acids. Proline has an R group that is linked to the amino group, forming a ring-like structure. Proline is an exception to the standard structure of an animo acid since its amino group is not separate from the side chain ([link]).

Amino acids are represented by a single upper case letter or a three-letter abbreviation. For example, valine is known by the letter V or the three-letter symbol val. Just as some fatty acids are essential to a diet, some amino acids are necessary as well. They are known as essential amino acids, and in humans they include isoleucine, leucine, and cysteine. Essential amino acids refer to those necessary for construction of proteins in the body, although not produced by the body; which amino acids are essential varies from organism to organism.

The sequence and the number of amino acids ultimately determine the protein's shape, size, and function. Each amino acid is attached to another amino acid by a covalent bond, known as a **peptide bond**, which is formed by a dehydration reaction. The carboxyl group of one amino acid and the amino group of the incoming amino acid combine, releasing a molecule of water. The resulting bond is the peptide bond ([link]).

Peptide bond formation is a dehydration synthesis reaction. The carboxyl group of one amino acid is linked to the amino group of the incoming amino acid. In the process, a molecule of water is released.

The products formed by such linkages are called peptides. As more amino acids join to this growing chain, the resulting chain is known as a polypeptide. Each polypeptide has a free amino group at one end. This end is called the N terminal, or the amino terminal, and the other end has a free carboxyl group, also known as the C or carboxyl terminal. While the terms polypeptide and protein are sometimes used interchangeably, a polypeptide is technically a polymer of amino acids, whereas the term protein is used for a polypeptide or polypeptides that have combined together, often have bound non-peptide prosthetic groups, have a distinct shape, and have a unique function. After protein synthesis (translation), most proteins are modified. These are known as post-translational modifications. They may undergo cleavage, phosphorylation, or may require the addition of other chemical groups. Only after these modifications is the protein completely functional.

Note:

Link to Learning

Click through the steps of protein synthesis in this <u>interactive tutorial</u>.

Note:

Evolution Connection

The Evolutionary Significance of Cytochrome c

Cytochrome c is an important component of the electron transport chain, a part of cellular respiration, and it is normally found in the cellular organelle, the mitochondrion. This protein has a heme prosthetic group, and the central ion of the heme gets alternately reduced and oxidized during electron transfer. Because this essential protein's role in producing cellular energy is crucial, it has changed very little over millions of years. Protein sequencing has shown that there is a considerable amount of cytochrome c amino acid sequence homology among different species; in other words, evolutionary kinship can be assessed by measuring the similarities or differences among various species' DNA or protein sequences.

Scientists have determined that human cytochrome c contains 104 amino acids. For each cytochrome c molecule from different organisms that has been sequenced to date, 37 of these amino acids appear in the same position in all samples of cytochrome c. This indicates that there may have been a common ancestor. On comparing the human and chimpanzee protein sequences, no sequence difference was found. When human and rhesus monkey sequences were compared, the single difference found was in one amino acid. In another comparison, human to yeast sequencing shows a difference in the 44th position.

Protein Structure

As discussed earlier, the shape of a protein is critical to its function. For example, an enzyme can bind to a specific substrate at a site known as the active site. If this active site is altered because of local changes or changes in overall protein structure, the enzyme may be unable to bind to the substrate. To understand how the protein gets its final shape or conformation, we need to understand the four levels of protein structure: primary, secondary, tertiary, and quaternary.

Primary Structure

The unique sequence of amino acids in a polypeptide chain is its **primary structure**. For example, the pancreatic hormone insulin has two polypeptide chains, A and B, and they are linked together by disulfide bonds. The N terminal amino acid of the A chain is glycine, whereas the C terminal amino acid is asparagine ([link]). The sequences of amino acids in the A and B chains are unique to insulin.

Bovine serum insulin is a protein hormone made of two peptide chains, A (21 amino acids long) and B (30 amino acids long). In each chain, primary structure is indicated by three-letter abbreviations

that represent the names of the amino acids in the order they are present. The amino acid cysteine (cys) has a sulfhydryl (SH) group as a side chain. Two sulfhydryl groups can react in the presence of oxygen to form a disulfide (S-S) bond. Two disulfide bonds connect the A and B chains together, and a third helps the A chain fold into the correct shape. Note that all disulfide bonds are the same length, but are drawn different sizes for clarity.

The unique sequence for every protein is ultimately determined by the gene encoding the protein. A change in nucleotide sequence of the gene's coding region may lead to a different amino acid being added to the growing polypeptide chain, causing a change in protein structure and function. In sickle cell anemia, the hemoglobin β chain (a small portion of which is shown in [link]) has a single amino acid substitution, causing a change in protein structure and function. Specifically, the amino acid glutamic acid is substituted by valine in the β chain. What is most remarkable to consider is that a hemoglobin molecule is made up of two alpha chains and two beta chains that each consist of about 150 amino acids. The molecule, therefore, has about 600 amino acids. The structural difference between a normal hemoglobin molecule and a sickle cell molecule—which dramatically decreases life expectancy—is a single amino acid of the 600. What is even more remarkable is that those 600 amino acids are encoded by three nucleotides each, and the mutation is caused by a single base change (point mutation), 1 in 1800 bases.

The beta chain of hemoglobin is 147 residues in length, yet a single amino acid substitution leads to sickle cell anemia. In normal hemoglobin, the amino acid at position seven is glutamate. In sickle cell hemoglobin, this glutamate is replaced by a valine.

Because of this change of one amino acid in the chain, hemoglobin molecules form long fibers that distort the biconcave, or disc-shaped, red blood cells and assume a crescent or "sickle" shape, which clogs arteries ([link]). This can lead to myriad serious health problems such as breathlessness, dizziness, headaches, and abdominal pain for those affected by this disease.

In this blood smear, visualized at 535x magnification using bright field microscopy, sickle cells are crescent shaped, while normal cells are disc-shaped. (credit: modification of work by Ed Uthman; scale-bar data from Matt Russell)

Secondary Structure

The local folding of the polypeptide in some regions gives rise to the **secondary structure** of the protein. The most common are the α -helix and β -pleated sheet structures ([link]). Both structures are the α -helix structure —the helix held in shape by hydrogen bonds. The hydrogen bonds form between the oxygen atom in the carbonyl group in one amino acid and another amino acid that is four amino acids farther along the chain.

The α -helix and β -pleated sheet are secondary structures of proteins that form because of hydrogen bonding between carbonyl and amino groups in the peptide backbone. Certain amino acids have a propensity to form an α -helix, while others have a propensity to form a β -pleated sheet.

Every helical turn in an alpha helix has 3.6 amino acid residues. The R groups (the variant groups) of the polypeptide protrude out from the α -helix chain. In the β -pleated sheet, the "pleats" are formed by hydrogen bonding between atoms on the backbone of the polypeptide chain. The R groups are attached to the carbons and extend above and below the folds of the pleat. The pleated segments align parallel or antiparallel to each other, and hydrogen bonds form between the partially positive nitrogen atom in the amino group and the partially negative oxygen atom in the carbonyl group of the peptide backbone. The α -helix and β -pleated sheet structures are found in most globular and fibrous proteins and they play an important structural role.

Tertiary Structure

The unique three-dimensional structure of a polypeptide is its **tertiary structure** ([link]). This structure is in part due to chemical interactions at work on the polypeptide chain. Primarily, the interactions among R groups creates the complex three-dimensional tertiary structure of a protein. The nature of the R groups found in the amino acids involved can counteract the formation of the hydrogen bonds described for standard secondary structures. For example, R groups with like charges are repelled by each other and those with unlike charges are attracted to each other (ionic bonds). When protein folding takes place, the hydrophobic R groups of nonpolar amino acids lay in the interior of the protein, whereas the hydrophilic R groups lay on the outside. The former types of interactions are also known as hydrophobic interactions. Interaction between cysteine side chains forms disulfide linkages in the presence of oxygen, the only covalent bond forming during protein folding.

The tertiary structure of proteins is determined by a variety of chemical interactions. These include hydrophobic interactions, ionic bonding, hydrogen bonding and disulfide linkages.

All of these interactions, weak and strong, determine the final threedimensional shape of the protein. When a protein loses its threedimensional shape, it may no longer be functional.

Quaternary Structure

In nature, some proteins are formed from several polypeptides, also known as subunits, and the interaction of these subunits forms the **quaternary structure**. Weak interactions between the subunits help to stabilize the overall structure. For example, insulin (a globular protein) has a combination of hydrogen bonds and disulfide bonds that cause it to be mostly clumped into a ball shape. Insulin starts out as a single polypeptide and loses some internal sequences in the presence of post-translational modification after the formation of the disulfide linkages that hold the remaining chains together. Silk (a fibrous protein), however, has a β -pleated sheet structure that is the result of hydrogen bonding between different chains.

The four levels of protein structure (primary, secondary, tertiary, and quaternary) are illustrated in [link].

The four levels of protein structure can be observed in these illustrations. (credit: modification of work by National Human Genome Research Institute)

Denaturation and Protein Folding

Each protein has its own unique sequence and shape that are held together by chemical interactions. If the protein is subject to changes in temperature, pH, or exposure to chemicals, the protein structure may change, losing its shape without losing its primary sequence in what is known as denaturation. Denaturation is often reversible because the primary structure of the polypeptide is conserved in the process if the denaturing agent is removed, allowing the protein to resume its function. Sometimes denaturation is irreversible, leading to loss of function. One example of irreversible protein denaturation is when an egg is fried. The albumin protein in the liquid egg white is denatured when placed in a hot pan. Not all proteins are denatured at high temperatures; for instance, bacteria that survive in hot springs have proteins that function at temperatures close to boiling. The stomach is also very acidic, has a low pH, and denatures proteins as part of the digestion process; however, the digestive enzymes of the stomach retain their activity under these conditions.

Protein folding is critical to its function. It was originally thought that the proteins themselves were responsible for the folding process. Only recently was it found that often they receive assistance in the folding process from protein helpers known as **chaperones** (or chaperonins) that associate with the target protein during the folding process. They act by preventing aggregation of polypeptides that make up the complete protein structure, and they disassociate from the protein once the target protein is folded.

Note:

Link to Learning

For an additional perspective on proteins, view <u>this animation</u> called "Biomolecules: The Proteins."

Section Summary

Proteins are a class of macromolecules that perform a diverse range of functions for the cell. They help in metabolism by providing structural support and by acting as enzymes, carriers, or hormones. The building blocks of proteins (monomers) are amino acids. Each amino acid has a central carbon that is linked to an amino group, a carboxyl group, a hydrogen atom, and an R group or side chain. There are 20 commonly occurring amino acids, each of which differs in the R group. Each amino acid is linked to its neighbors by a peptide bond. A long chain of amino acids is known as a polypeptide.

Proteins are organized at four levels: primary, secondary, tertiary, and (optional) quaternary. The primary structure is the unique sequence of amino acids. The local folding of the polypeptide to form structures such as the α helix and β -pleated sheet constitutes the secondary structure. The overall three-dimensional structure is the tertiary structure. When two or more polypeptides combine to form the complete protein structure, the configuration is known as the quaternary structure of a protein. Protein shape and function are intricately linked; any change in shape caused by changes in temperature or pH may lead to protein denaturation and a loss in function.

Art Connections

Exercise:

Problem:

[link] Which categories of amino acid would you expect to find on the surface of a soluble protein, and which would you expect to find in the interior? What distribution of amino acids would you expect to find in a protein embedded in a lipid bilayer?

Solution:

[link] Polar and charged amino acid residues (the remainder after peptide bond formation) are more likely to be found on the surface of

soluble proteins where they can interact with water, and nonpolar (e.g., amino acid side chains) are more likely to be found in the interior where they are sequestered from water. In membrane proteins, nonpolar and hydrophobic amino acid side chains associate with the hydrophobic tails of phospholipids, while polar and charged amino acid side chains interact with the polar head groups or with the aqueous solution. However, there are exceptions. Sometimes, positively and negatively charged amino acid side chains interact with one another in the interior of a protein, and polar or charged amino acid side chains that interact with a ligand can be found in the ligand binding pocket.

Review Questions

\blacksquare				•		
н	v	ΔΙ	401	ıc	Δ	•
نا	Л	CI	'Ci	IJ	C	•

Problem: The	monomers	that	make up	proteins are	called	

- a. nucleotides
- b. disaccharides
- c. amino acids
- d. chaperones

Solution:

C

Exercise:

Problem:

The α helix and the β -pleated sheet are part of which protein structure?

- a. primary
- b. secondary
- c. tertiary
- d. quaternary

Solution:

В

Free Response

Exercise:

Problem:

Explain what happens if even one amino acid is substituted for another in a polypeptide chain. Provide a specific example.

Solution:

A change in gene sequence can lead to a different amino acid being added to a polypeptide chain instead of the normal one. This causes a change in protein structure and function. For example, in sickle cell anemia, the hemoglobin β chain has a single amino acid substitution—the amino acid glutamic acid in position six is substituted by valine. Because of this change, hemoglobin molecules form aggregates, and the disc-shaped red blood cells assume a crescent shape, which results in serious health problems.

Exercise:

Problem: Describe the differences in the four protein structures.

Solution:

The sequence and number of amino acids in a polypeptide chain is its primary structure. The local folding of the polypeptide in some regions is the secondary structure of the protein. The three-dimensional structure of a polypeptide is known as its tertiary structure, created in part by chemical interactions such as hydrogen bonds between polar side chains, van der Waals interactions, disulfide linkages, and

hydrophobic interactions. Some proteins are formed from multiple polypeptides, also known as subunits, and the interaction of these subunits forms the quaternary structure.

Glossary

alpha-helix structure (α -helix)

type of secondary structure of proteins formed by folding of the polypeptide into a helix shape with hydrogen bonds stabilizing the structure

amino acid

monomer of a protein; has a central carbon or alpha carbon to which an amino group, a carboxyl group, a hydrogen, and an R group or side chain is attached; the R group is different for all 20 amino acids

beta-pleated sheet (β -pleated)

secondary structure found in proteins in which "pleats" are formed by hydrogen bonding between atoms on the backbone of the polypeptide chain

chaperone

(also, chaperonin) protein that helps nascent protein in the folding process

denaturation

loss of shape in a protein as a result of changes in temperature, pH, or exposure to chemicals

enzyme

catalyst in a biochemical reaction that is usually a complex or conjugated protein

hormone

chemical signaling molecule, usually protein or steroid, secreted by endocrine cells that act to control or regulate specific physiological processes

peptide bond

bond formed between two amino acids by a dehydration reaction

polypeptide

long chain of amino acids linked by peptide bonds

primary structure

linear sequence of amino acids in a protein

protein

biological macromolecule composed of one or more chains of amino acids

quaternary structure

association of discrete polypeptide subunits in a protein

secondary structure

regular structure formed by proteins by intramolecular hydrogen bonding between the oxygen atom of one amino acid residue and the hydrogen attached to the nitrogen atom of another amino acid residue

tertiary structure

three-dimensional conformation of a protein, including interactions between secondary structural elements; formed from interactions between amino acid side chains

Nucleic Acids

By the end of this section, you will be able to:

- Describe the structure of nucleic acids and define the two types of nucleic acids
- Explain the structure and role of DNA
- Explain the structure and roles of RNA

Nucleic acids are the most important macromolecules for the continuity of life. They carry the genetic blueprint of a cell and carry instructions for the functioning of the cell.

DNA and **RNA**

The two main types of nucleic acids are **deoxyribonucleic acid** (**DNA**) and **ribonucleic acid** (**RNA**). DNA is the genetic material found in all living organisms, ranging from single-celled bacteria to multicellular mammals. It is found in the nucleus of eukaryotes and in the organelles, chloroplasts, and mitochondria. In prokaryotes, the DNA is not enclosed in a membranous envelope.

The entire genetic content of a cell is known as its genome, and the study of genomes is genomics. In eukaryotic cells but not in prokaryotes, DNA forms a complex with histone proteins to form chromatin, the substance of eukaryotic chromosomes. A chromosome may contain tens of thousands of genes. Many genes contain the information to make protein products; other genes code for RNA products. DNA controls all of the cellular activities by turning the genes "on" or "off."

The other type of nucleic acid, RNA, is mostly involved in protein synthesis. The DNA molecules never leave the nucleus but instead use an intermediary to communicate with the rest of the cell. This intermediary is the **messenger RNA** (**mRNA**). Other types of RNA—like rRNA, tRNA, and microRNA—are involved in protein synthesis and its regulation.

DNA and RNA are made up of monomers known as **nucleotides**. The nucleotides combine with each other to form a **polynucleotide**, DNA or

RNA. Each nucleotide is made up of three components: a nitrogenous base, a pentose (five-carbon) sugar, and a phosphate group ([link]). Each nitrogenous base in a nucleotide is attached to a sugar molecule, which is attached to one or more phosphate groups.

A nucleotide is made up of three components: a nitrogenous base, a pentose sugar, and one or more phosphate groups. Carbon residues in the pentose are numbered 1' through 5' (the prime distinguishes these residues from those in the base, which are numbered without using a

prime notation). The base is attached to the 1' position of the ribose, and the phosphate is attached to the 5' position. When a polynucleotide is formed, the 5' phosphate of the incoming nucleotide attaches to the 3' hydroxyl group at the end of the growing chain. Two types of pentose are found in nucleotides, deoxyribose (found in DNA) and ribose (found in RNA). Deoxyribose is similar in structure to ribose, but it has an H instead of an OH at the 2' position. Bases can be divided into two categories: purines and pyrimidines. Purines have a double ring structure, and pyrimidines have a single ring.

The nitrogenous bases, important components of nucleotides, are organic molecules and are so named because they contain carbon and nitrogen. They are bases because they contain an amino group that has the potential of binding an extra hydrogen, and thus, decreases the hydrogen ion concentration in its environment, making it more basic. Each nucleotide in DNA contains one of four possible nitrogenous bases: adenine (A), guanine (G) cytosine (C), and thymine (T).

Adenine and guanine are classified as **purines**. The primary structure of a purine is two carbon-nitrogen rings. Cytosine, thymine, and uracil are classified as **pyrimidines** which have a single carbon-nitrogen ring as their primary structure ([link]). Each of these basic carbon-nitrogen rings has different functional groups attached to it. In molecular biology shorthand, the nitrogenous bases are simply known by their symbols A, T, G, C, and U. DNA contains A, T, G, and C whereas RNA contains A, U, G, and C.

The pentose sugar in DNA is deoxyribose, and in RNA, the sugar is ribose ([link]). The difference between the sugars is the presence of the hydroxyl group on the second carbon of the ribose and hydrogen on the second carbon of the deoxyribose. The carbon atoms of the sugar molecule are numbered as 1', 2', 3', 4', and 5' (1' is read as "one prime"). The phosphate residue is attached to the hydroxyl group of the 5' carbon of one sugar and the hydroxyl group of the 3' carbon of the sugar of the next nucleotide, which forms a 5'–3' **phosphodiester** linkage. The phosphodiester linkage is not formed by simple dehydration reaction like the other linkages

connecting monomers in macromolecules: its formation involves the removal of two water molecules. A polynucleotide may have thousands of such phosphodiester linkages.

DNA Double-Helix Structure

DNA has a double-helix structure ([link]). The sugar and phosphate lie on the outside of the helix, forming the backbone of the DNA. The nitrogenous bases are stacked in the interior, like the steps of a staircase, in pairs; the pairs are bound to each other by hydrogen bonds. Every base pair in the double helix is separated from the next base pair by 0.34 nm. The two strands of the helix run in opposite directions, meaning that the 5' carbon end of one strand will face the 3' carbon end of its matching strand. (This is referred to as antiparallel orientation and is important to DNA replication and in many nucleic acid interactions.)

Native DNA is an antiparallel double helix. The phosphate backbone (indicated by the curvy lines) is on the outside, and the bases are on the

inside. Each base from one strand interacts via hydrogen bonding with a base from the opposing strand. (credit: Jerome Walker/Dennis Myts)

Only certain types of base pairing are allowed. For example, a certain purine can only pair with a certain pyrimidine. This means A can pair with T, and G can pair with C, as shown in [link]. This is known as the base complementary rule. In other words, the DNA strands are complementary to each other. If the sequence of one strand is AATTGGCC, the complementary strand would have the sequence TTAACCGG. During DNA replication, each strand is copied, resulting in a daughter DNA double helix containing one parental DNA strand and a newly synthesized strand.

Cytosine

In a double stranded DNA molecule, the two strands run antiparallel to one another so that one strand runs 5' to 3' and the other 3' to 5'. The phosphate backbone is located on the outside,

and the bases are in the middle.
Adenine forms hydrogen bonds (or base pairs) with thymine, and guanine base pairs with cytosine.

A mutation occurs, and cytosine is replaced with adenine. What impact do you think this will have on the DNA structure?

RNA

Ribonucleic acid, or RNA, is mainly involved in the process of protein synthesis under the direction of DNA. RNA is usually single-stranded and is made of ribonucleotides that are linked by phosphodiester bonds. A ribonucleotide in the RNA chain contains ribose (the pentose sugar), one of the four nitrogenous bases (A, U, G, and C), and the phosphate group.

There are four major types of RNA: messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and microRNA (miRNA). The first, mRNA, carries the message from DNA, which controls all of the cellular activities in a cell. If a cell requires a certain protein to be synthesized, the gene for this product is turned "on" and the messenger RNA is synthesized in the nucleus. The RNA base sequence is complementary to the coding sequence of the DNA from which it has been copied. However, in RNA, the base T is absent and U is present instead. If the DNA strand has a sequence AATTGCGC, the sequence of the complementary RNA is UUAACGCG. In the cytoplasm, the mRNA interacts with ribosomes and other cellular machinery ([link]).

A ribosome has two parts: a large subunit and a small subunit. The mRNA sits in between the two subunits. A tRNA molecule recognizes a codon on the mRNA, binds to it by complementary base pairing, and adds the correct amino acid to the growing peptide chain.

The mRNA is read in sets of three bases known as codons. Each codon codes for a single amino acid. In this way, the mRNA is read and the protein product is made. **Ribosomal RNA (rRNA)** is a major constituent of ribosomes on which the mRNA binds. The rRNA ensures the proper alignment of the mRNA and the ribosomes; the rRNA of the ribosome also has an enzymatic activity (peptidyl transferase) and catalyzes the formation of the peptide bonds between two aligned amino acids. **Transfer RNA (tRNA)** is one of the smallest of the four types of RNA, usually 70–90 nucleotides long. It carries the correct amino acid to the site of protein synthesis. It is the base pairing between the tRNA and mRNA that allows for the correct amino acid to be inserted in the polypeptide chain. microRNAs are the smallest RNA molecules and their role involves the regulation of gene expression by interfering with the expression of certain mRNA messages. [link] summarizes features of DNA and RNA.

Features of D	NA and RNA	
	DNA	RNA
Function	Carries genetic information	Involved in protein synthesis
Location	Remains in the nucleus	Leaves the nucleus
Structure	Double helix	Usually single-stranded
Sugar	Deoxyribose	Ribose
Pyrimidines	Cytosine, thymine	Cytosine, uracil
Purines	Adenine, guanine	Adenine, guanine

Even though the RNA is single stranded, most RNA types show extensive intramolecular base pairing between complementary sequences, creating a predictable three-dimensional structure essential for their function.

As you have learned, information flow in an organism takes place from DNA to RNA to protein. DNA dictates the structure of mRNA in a process known as **transcription**, and RNA dictates the structure of protein in a process known as **translation**. This is known as the Central Dogma of Life, which holds true for all organisms; however, exceptions to the rule occur in connection with viral infections.

Note:	
Link to	Learning

To learn more about DNA, explore the <u>Howard Hughes Medical Institute</u> <u>BioInteractive animations</u> on the topic of DNA.

Section Summary

Nucleic acids are molecules made up of nucleotides that direct cellular activities such as cell division and protein synthesis. Each nucleotide is made up of a pentose sugar, a nitrogenous base, and a phosphate group. There are two types of nucleic acids: DNA and RNA. DNA carries the genetic blueprint of the cell and is passed on from parents to offspring (in the form of chromosomes). It has a double-helical structure with the two strands running in opposite directions, connected by hydrogen bonds, and complementary to each other. RNA is single-stranded and is made of a pentose sugar (ribose), a nitrogenous base, and a phosphate group. RNA is involved in protein synthesis and its regulation. Messenger RNA (mRNA) is copied from the DNA, is exported from the nucleus to the cytoplasm, and contains information for the construction of proteins. Ribosomal RNA (rRNA) is a part of the ribosomes at the site of protein synthesis, whereas transfer RNA (tRNA) carries the amino acid to the site of protein synthesis. microRNA regulates the use of mRNA for protein synthesis.

Art Connections

Exercise:

Problem:

[link] A mutation occurs, and cytosine is replaced with adenine. What impact do you think this will have on the DNA structure?

Solution:

[link] Adenine is larger than cytosine and will not be able to base pair properly with the guanine on the opposing strand. This will cause the DNA to bulge. DNA repair enzymes may recognize the bulge and replace the incorrect nucleotide.

Review Questions

Exercise:

Problem: A nucleotide of DNA may contain _____.

- a. ribose, uracil, and a phosphate group
- b. deoxyribose, uracil, and a phosphate group
- c. deoxyribose, thymine, and a phosphate group
- d. ribose, thymine, and a phosphate group

Solution:

 \mathbf{C}

Exercise:

Problem:The building blocks of nucleic acids are _____.

- a. sugars
- b. nitrogenous bases
- c. peptides
- d. nucleotides

Solution:

D

Free Response

Exercise:

Problem: What are the structural differences between RNA and DNA?

Solution:

DNA has a double-helix structure. The sugar and the phosphate are on the outside of the helix and the nitrogenous bases are in the interior. The monomers of DNA are nucleotides containing deoxyribose, one of the four nitrogenous bases (A, T, G and C), and a phosphate group. RNA is usually single-stranded and is made of ribonucleotides that are linked by phosphodiester linkages. A ribonucleotide contains ribose (the pentose sugar), one of the four nitrogenous bases (A,U, G, and C), and the phosphate group.

Exercise:

Problem: What are the four types of RNA and how do they function?

Solution:

The four types of RNA are messenger RNA, ribosomal RNA, transfer RNA, and microRNA. Messenger RNA carries the information from the DNA that controls all cellular activities. The mRNA binds to the ribosomes that are constructed of proteins and rRNA, and tRNA transfers the correct amino acid to the site of protein synthesis. microRNA regulates the availability of mRNA for translation.

Glossary

deoxyribonucleic acid (DNA)

double-helical molecule that carries the hereditary information of the cell

messenger RNA (mRNA)

RNA that carries information from DNA to ribosomes during protein synthesis

nucleic acid

biological macromolecule that carries the genetic blueprint of a cell and carries instructions for the functioning of the cell

nucleotide

monomer of nucleic acids; contains a pentose sugar, one or more phosphate groups, and a nitrogenous base

phosphodiester

linkage covalent chemical bond that holds together the polynucleotide chains with a phosphate group linking two pentose sugars of neighboring nucleotides

polynucleotide

long chain of nucleotides

purine

type of nitrogenous base in DNA and RNA; adenine and guanine are purines

pyrimidine

type of nitrogenous base in DNA and RNA; cytosine, thymine, and uracil are pyrimidines

ribonucleic acid (RNA)

single-stranded, often internally base paired, molecule that is involved in protein synthesis

ribosomal RNA (rRNA)

RNA that ensures the proper alignment of the mRNA and the ribosomes during protein synthesis and catalyzes the formation of the peptide linkage

transcription

process through which messenger RNA forms on a template of DNA

transfer RNA (tRNA)

RNA that carries activated amino acids to the site of protein synthesis on the ribosome

translation

process through which RNA directs the formation of protein

Introduction class="introduction"

(a) Nasal sinus cells (viewed with a light microscope), (b) onion cells (viewed with a light microscope), and (c) Vibrio tasmaniensis bacterial cells (seen through a scanning electron microscope) are from very different organisms, yet all share certain characteristic s of basic cell structure. (credit a: modification of work by Ed Uthman, MD; credit b: modification of work by Umberto Salvagnin; credit c:

modification
of work by
Anthony
D'Onofrio,
William H.
Fowle, Eric J.
Stewart, and
Kim Lewis of
the Lewis
Lab at
Northeastern
University;
scale-bar data
from Matt
Russell)

Close your eyes and picture a brick wall. What is the basic building block of that wall? A single brick, of course. Like a brick wall, your body is composed of basic building blocks, and the building blocks of your body are cells.

Your body has many kinds of cells, each specialized for a specific purpose. Just as a home is made from a variety of building materials, the human body is constructed from many cell types. For example, epithelial cells protect the surface of the body and cover the organs and body cavities within. Bone cells help to support and protect the body. Cells of the immune

system fight invading bacteria. Additionally, blood and blood cells carry nutrients and oxygen throughout the body while removing carbon dioxide. Each of these cell types plays a vital role during the growth, development, and day-to-day maintenance of the body. In spite of their enormous variety, however, cells from all organisms—even ones as diverse as bacteria, onion, and human—share certain fundamental characteristics.

Studying Cells

By the end of this section, you will be able to:

- Describe the role of cells in organisms
- Compare and contrast light microscopy and electron microscopy
- Summarize cell theory

A cell is the smallest unit of a living thing. A living thing, whether made of one cell (like bacteria) or many cells (like a human), is called an organism. Thus, cells are the basic building blocks of all organisms.

Several cells of one kind that interconnect with each other and perform a shared function form tissues, several tissues combine to form an organ (your stomach, heart, or brain), and several organs make up an organ system (such as the digestive system, circulatory system, or nervous system). Several systems that function together form an organism (like a human being). Here, we will examine the structure and function of cells.

There are many types of cells, all grouped into one of two broad categories: prokaryotic and eukaryotic. For example, both animal and plant cells are classified as eukaryotic cells, whereas bacterial cells are classified as prokaryotic. Before discussing the criteria for determining whether a cell is prokaryotic or eukaryotic, let's first examine how biologists study cells.

Cell Theory

The microscopes we use today are far more complex than those used in the 1600s by Antony van Leeuwenhoek, a Dutch shopkeeper who had great skill in crafting lenses. Despite the limitations of his now-ancient lenses, van Leeuwenhoek observed the movements of protista (a type of single-celled organism) and sperm, which he collectively termed "animalcules."

In a 1665 publication called *Micrographia*, experimental scientist Robert Hooke coined the term "cell" for the box-like structures he observed when viewing cork tissue through a lens. In the 1670s, van Leeuwenhoek discovered bacteria and protozoa. Later advances in lenses, microscope

construction, and staining techniques enabled other scientists to see some components inside cells.

By the late 1830s, botanist Matthias Schleiden and zoologist Theodor Schwann were studying tissues and proposed the **unified cell theory**, which states that all living things are composed of one or more cells, the cell is the basic unit of life, and new cells arise from existing cells. Rudolf Virchow later made important contributions to this theory. For a perspective on cell size, try the HowBig interactive at this site: http://openstaxcollege.org/l/cell_sizes

Note:

Career Connection Cytotechnologist

Have you ever heard of a medical test called a Pap smear ([link])? In this test, a doctor takes a small sample of cells from the uterine cervix of a patient and sends it to a medical lab where a cytotechnologist stains the cells and examines them for any changes that could indicate cervical cancer or a microbial infection.

Cytotechnologists (cyto- = "cell") are professionals who study cells via microscopic examinations and other laboratory tests. They are trained to determine which cellular changes are within normal limits and which are abnormal. Their focus is not limited to cervical cells; they study cellular specimens that come from all organs. When they notice abnormalities, they consult a pathologist, who is a medical doctor who can make a clinical diagnosis.

Cytotechnologists play a vital role in saving people's lives. When abnormalities are discovered early, a patient's treatment can begin sooner, which usually increases the chances of a successful outcome.

These uterine cervix cells, viewed through a light microscope, were obtained from a Pap smear.

Normal cells are on the left. The cells on the right are infected with human papillomavirus (HPV).

Notice that the infected cells are larger; also, two of these cells each have two nuclei instead of one, the normal number. (credit: modification of work by Ed Uthman, MD; scale-bar data from Matt Russell)

Section Summary

A cell is the smallest unit of life. Most cells are so tiny that they cannot be seen with the naked eye. Therefore, scientists use microscopes to study cells. Electron microscopes provide higher magnification, higher resolution, and more detail than light microscopes. The unified cell theory states that all organisms are composed of one or more cells, the cell is the basic unit of life, and new cells arise from existing cells.

Review Questions

Exercise:
Problem:
When viewing a specimen through a light microscope, scientists use to distinguish the individual components of cells.
a. a beam of electronsb. radioactive isotopesc. special stainsd. high temperatures
Solution:
C
Exercise:
Problem: The is the basic unit of life.
a. organism b. cell c. tissue d. organ
Solution:
В
Free Response
Exercise:

Problem:

In your everyday life, you have probably noticed that certain instruments are ideal for certain situations. For example, you would use a spoon rather than a fork to eat soup because a spoon is shaped for scooping, while soup would slip between the tines of a fork. The use of ideal instruments also applies in science. In what situation(s) would the use of a light microscope be ideal, and why?

Solution:

A light microscope would be ideal when viewing a small living organism, especially when the cell has been stained to reveal details.

Exercise:

Problem:

In what situation(s) would the use of a scanning electron microscope be ideal, and why?

Solution:

A scanning electron microscope would be ideal when you want to view the minute details of a cell's surface, because its beam of electrons moves back and forth over the surface to convey the image.

Exercise:

Problem:

In what situation(s) would a transmission electron microscope be ideal, and why?

Solution:

A transmission electron microscope would be ideal for viewing the cell's internal structures, because many of the internal structures have membranes that are not visible by the light microscope.

Exercise:

Problem:

What are the advantages and disadvantages of each of these types of microscopes?

Solution:

The advantages of light microscopes are that they are easily obtained, and the light beam does not kill the cells. However, typical light microscopes are somewhat limited in the amount of detail they can reveal. Electron microscopes are ideal because you can view intricate details, but they are bulky and costly, and preparation for the microscopic examination kills the specimen.

Glossary

cell theory see unified cell theory

electron microscope

an instrument that magnifies an object using a beam of electrons passed and bent through a lens system to visualize a specimen

light microscope

an instrument that magnifies an object using a beam visible light passed and bent through a lens system to visualize a specimen

microscope

an instrument that magnifies an object

unified cell theory

a biological concept that states that all organisms are composed of one or more cells; the cell is the basic unit of life; and new cells arise from existing cells

Prokaryotic Cells By the end of this section, you will be able to:

- Name examples of prokaryotic and eukaryotic organisms
- Compare and contrast prokaryotic cells and eukaryotic cells
- Describe the relative sizes of different kinds of cells
- Explain why cells must be small

Cells fall into one of two broad categories: prokaryotic and eukaryotic. Only the predominantly single-celled organisms of the domains Bacteria and Archaea are classified as prokaryotes (pro- = "before"; -kary- = "nucleus"). Animals, plants, fungi, and protists are all eukaryotes (eu- = "true") and are made up of eukaryotic cells.

Components of Prokaryotic Cells

All cells share four common components: 1) a plasma membrane, an outer covering that separates the cell's interior from its surrounding environment; 2) cytoplasm, consisting of a jelly-like cytosol within the cell in which other cellular components are found; 3) DNA, the genetic material of the cell; and 4) ribosomes, which synthesize proteins. However, prokaryotes differ from eukaryotic cells in several ways.

A **prokaryote** is a simple, mostly single-celled (unicellular) organism that lacks a nucleus, or any other membrane-bound organelle. We will shortly come to see that this is significantly different in eukaryotes. Prokaryotic DNA is found in a central part of the cell: the **nucleoid** ([link]).

This figure shows the generalized structure of a prokaryotic cell. All prokaryotes have chromosomal DNA localized in a nucleoid, ribosomes, a cell membrane, and a cell wall. The other structures shown are present in some, but not all, bacteria.

Most prokaryotes have a peptidoglycan cell wall and many have a polysaccharide capsule ([link]). The cell wall acts as an extra layer of protection, helps the cell maintain its shape, and prevents dehydration. The capsule enables the cell to attach to surfaces in its environment. Some prokaryotes have flagella, pili, or fimbriae. Flagella are used for locomotion. Pili are used to exchange genetic material during a type of reproduction called conjugation. Fimbriae are used by bacteria to attach to a host cell.

Note:

Career Connection

Microbiologist

The most effective action anyone can take to prevent the spread of contagious illnesses is to wash his or her hands. Why? Because microbes

(organisms so tiny that they can only be seen with microscopes) are ubiquitous. They live on doorknobs, money, your hands, and many other surfaces. If someone sneezes into his hand and touches a doorknob, and afterwards you touch that same doorknob, the microbes from the sneezer's mucus are now on your hands. If you touch your hands to your mouth, nose, or eyes, those microbes can enter your body and could make you sick.

However, not all microbes (also called microorganisms) cause disease; most are actually beneficial. You have microbes in your gut that make vitamin K. Other microorganisms are used to ferment beer and wine. Microbiologists are scientists who study microbes. Microbiologists can pursue a number of careers. Not only do they work in the food industry, they are also employed in the veterinary and medical fields. They can work in the pharmaceutical sector, serving key roles in research and development by identifying new sources of antibiotics that could be used to treat bacterial infections.

Environmental microbiologists may look for new ways to use specially selected or genetically engineered microbes for the removal of pollutants from soil or groundwater, as well as hazardous elements from contaminated sites. These uses of microbes are called bioremediation technologies. Microbiologists can also work in the field of bioinformatics, providing specialized knowledge and insight for the design, development, and specificity of computer models of, for example, bacterial epidemics.

Cell Size

At 0.1 to 5.0 μ m in diameter, prokaryotic cells are significantly smaller than eukaryotic cells, which have diameters ranging from 10 to 100 μ m ([link]). The small size of prokaryotes allows ions and organic molecules that enter them to quickly diffuse to other parts of the cell. Similarly, any wastes produced within a prokaryotic cell can quickly diffuse out. This is not the case in eukaryotic cells, which have developed different structural adaptations to enhance intracellular transport.

This figure shows relative sizes of microbes on a logarithmic scale (recall that each unit of increase in a logarithmic scale represents a 10-fold increase in the quantity being measured).

Small size, in general, is necessary for all cells, whether prokaryotic or eukaryotic. Let's examine why that is so. First, we'll consider the area and volume of a typical cell. Not all cells are spherical in shape, but most tend to approximate a sphere. You may remember from your high school geometry course that the formula for the surface area of a sphere is $4\pi r^2$, while the formula for its volume is $4\pi r^3/3$. Thus, as the radius of a cell increases, its surface area increases as the square of its radius, but its volume increases as the cube of its radius (much more rapidly). Therefore, as a cell increases in size, its surface area-to-volume ratio decreases. This same principle would apply if the cell had the shape of a cube ([link]). If the cell grows too large, the plasma membrane will not have sufficient surface area to support the rate of diffusion required for the increased volume. In other words, as a cell grows, it becomes less efficient. One way to become more efficient is to divide; another way is to develop organelles that

perform specific tasks. These adaptations lead to the development of more sophisticated cells called eukaryotic cells.

Notice that as a cell increases in size, its surface area-to-volume ratio decreases. When there is insufficient surface area to support a cell's increasing volume, a cell will either divide or die. The cell on the left has a volume of 1 mm³ and a surface area of 6 mm², with a surface area-to-volume ratio of 6 to 1, whereas the cell on the right has a volume of 8 mm³ and a surface area of 24 mm², with a surface area-to-volume ratio of 3 to 1.

Prokaryotic cells are much smaller than eukaryotic cells. What advantages might small cell size confer on a cell? What advantages might large cell size have?

Section Summary

Prokaryotes are predominantly single-celled organisms of the domains Bacteria and Archaea. All prokaryotes have plasma membranes, cytoplasm, ribosomes, and DNA that is not membrane-bound. Most have peptidoglycan cell walls and many have polysaccharide capsules. Prokaryotic cells range in diameter from 0.1 to 5.0 µm.

As a cell increases in size, its surface area-to-volume ratio decreases. If the cell grows too large, the plasma membrane will not have sufficient surface area to support the rate of diffusion required for the increased volume.

Art Connections

Exercise:

Problem:

[link] Prokaryotic cells are much smaller than eukaryotic cells. What advantages might small cell size confer on a cell? What advantages might large cell size have?

Solution:

[link] Substances can diffuse more quickly through small cells. Small cells have no need for organelles and therefore do not need to expend energy getting substances across organelle membranes. Large cells have organelles that can separate cellular processes, enabling them to build molecules that are more complex.

Review Questions

Exercise:

Problem:

Prokaryotes depend on ______ to obtain some materials and to get rid of wastes.

a. ribosomes

- b. flagella
- c. cell division
- d. diffusion

Solution:

D

Exercise:

Problem: Bacteria that lack fimbriae are less likely to _____.

- a. adhere to cell surfaces
- b. swim through bodily fluids
- c. synthesize proteins
- d. retain the ability to divide

Solution:

Α

Free Response

Exercise:

Problem:

Antibiotics are medicines that are used to fight bacterial infections. These medicines kill prokaryotic cells without harming human cells. What part or parts of the bacterial cell do you think antibiotics target? Why?

Solution:

The cell wall would be targeted by antibiotics as well as the bacteria's ability to replicate. This would inhibit the bacteria's ability to

reproduce, and it would compromise its defense mechanisms.

Exercise:

Problem:Explain why not all microbes are harmful.

Solution:

Some microbes are beneficial. For instance, *E. coli* bacteria populate the human gut and help break down fiber in the diet. Some foods such as yogurt are formed by bacteria.

Glossary

nucleoid

central part of a prokaryotic cell in which the chromosome is found

prokaryote

unicellular organism that lacks a nucleus or any other membranebound organelle

Eukaryotic Cells By the end of this section, you will be able to:

- Describe the structure of eukaryotic cells
- Compare animal cells with plant cells
- State the role of the plasma membrane
- Summarize the functions of the major cell organelles

Have you ever heard the phrase "form follows function?" It's a philosophy practiced in many industries. In architecture, this means that buildings should be constructed to support the activities that will be carried out inside them. For example, a skyscraper should be built with several elevator banks; a hospital should be built so that its emergency room is easily accessible.

Our natural world also utilizes the principle of form following function, especially in cell biology, and this will become clear as we explore eukaryotic cells ([link]). Unlike prokaryotic cells, eukaryotic cells have: 1) a membrane-bound nucleus; 2) numerous membrane-bound organelles such as the endoplasmic reticulum, Golgi apparatus, chloroplasts, mitochondria, and others; and 3) several, rod-shaped chromosomes. Because a eukaryotic cell's nucleus is surrounded by a membrane, it is often said to have a "true nucleus." The word "organelle" means "little organ," and, as already mentioned, organelles have specialized cellular functions, just as the organs of your body have specialized functions.

At this point, it should be clear to you that eukaryotic cells have a more complex structure than prokaryotic cells. Organelles allow different functions to be compartmentalized in different areas of the cell. Before turning to organelles, let's first examine two important components of the cell: the plasma membrane and the cytoplasm.

Note:	
Art Connection	

These figures show the major organelles and other cell components of (a) a typical animal cell and (b) a typical eukaryotic plant cell. The plant cell has a cell wall, chloroplasts, plastids, and a central vacuole—structures not found in animal cells. Plant cells do not have lysosomes or centrosomes.

If the nucleolus were not able to carry out its function, what other cellular organelles would be affected?

The Plasma Membrane

Like prokaryotes, eukaryotic cells have a **plasma membrane** ([link]), a phospholipid bilayer with embedded proteins that separates the internal contents of the cell from its surrounding environment. A phospholipid is a lipid molecule with two fatty acid chains and a phosphate-containing group. The plasma membrane controls the passage of organic molecules, ions, water, and oxygen into and out of the cell. Wastes (such as carbon dioxide and ammonia) also leave the cell by passing through the plasma membrane.

The eukaryotic plasma membrane is a phospholipid bilayer with proteins and cholesterol embedded in it.

The plasma membranes of cells that specialize in absorption are folded into fingerlike projections called microvilli (singular = microvillus); ([link]). Such cells are typically found lining the small intestine, the organ that absorbs nutrients from digested food. This is an excellent example of form following function. People with celiac disease have an immune response to gluten, which is a protein found in wheat, barley, and rye. The immune response damages microvilli, and thus, afflicted individuals cannot absorb

nutrients. This leads to malnutrition, cramping, and diarrhea. Patients suffering from celiac disease must follow a gluten-free diet.

Microvilli, shown here as they appear on cells lining the small intestine, increase the surface area available for absorption. These microvilli are only found on the area of the plasma membrane that faces the cavity from which substances will be absorbed. (credit "micrograph": modification of work by Louisa Howard)

The Cytoplasm

The **cytoplasm** is the entire region of a cell between the plasma membrane and the nuclear envelope (a structure to be discussed shortly). It is made up of organelles suspended in the gel-like **cytosol**, the cytoskeleton, and various chemicals ([link]). Even though the cytoplasm consists of 70 to 80 percent water, it has a semi-solid consistency, which comes from the proteins within it. However, proteins are not the only organic molecules found in the cytoplasm. Glucose and other simple sugars, polysaccharides, amino acids, nucleic acids, fatty acids, and derivatives of glycerol are found there, too. Ions of sodium, potassium, calcium, and many other elements are also dissolved in the cytoplasm. Many metabolic reactions, including protein synthesis, take place in the cytoplasm.

The Nucleus

Typically, the nucleus is the most prominent organelle in a cell ([link]). The **nucleus** (plural = nuclei) houses the cell's DNA and directs the synthesis of ribosomes and proteins. Let's look at it in more detail ([link]).

The nucleus stores chromatin (DNA plus proteins) in a gel-like substance called the nucleoplasm. The nucleolus is a condensed region of chromatin where ribosome synthesis occurs. The boundary of the nucleus is called the nuclear envelope. It consists of two phospholipid bilayers: an outer membrane and an inner membrane. The nuclear membrane is continuous with the endoplasmic reticulum. Nuclear pores allow substances to enter and exit the nucleus.

The Nuclear Envelope

The **nuclear envelope** is a double-membrane structure that constitutes the outermost portion of the nucleus ([link]). Both the inner and outer membranes of the nuclear envelope are phospholipid bilayers.

The nuclear envelope is punctuated with pores that control the passage of ions, molecules, and RNA between the nucleoplasm and cytoplasm. The **nucleoplasm** is the semi-solid fluid inside the nucleus, where we find the chromatin and the nucleolus.

Chromatin and Chromosomes

To understand chromatin, it is helpful to first consider chromosomes. **Chromosomes** are structures within the nucleus that are made up of DNA, the hereditary material. You may remember that in prokaryotes, DNA is organized into a single circular chromosome. In eukaryotes, chromosomes are linear structures. Every eukaryotic species has a specific number of chromosomes in the nuclei of its body's cells. For example, in humans, the chromosome number is 46, while in fruit flies, it is eight. Chromosomes are only visible and distinguishable from one another when the cell is getting ready to divide. When the cell is in the growth and maintenance phases of its life cycle, proteins are attached to chromosomes, and they resemble an unwound, jumbled bunch of threads. These unwound protein-chromosome complexes are called **chromatin** ([link]); chromatin describes the material that makes up the chromosomes both when condensed and decondensed.

(a) This image shows various levels of the organization of chromatin (DNA and protein). (b) This image shows paired chromosomes. (credit b: modification of work by NIH; scale-bar data from Matt Russell) *Please note that 8 histones should be shown!

The Nucleolus

We already know that the nucleus directs the synthesis of ribosomes, but how does it do this? Some chromosomes have sections of DNA that encode ribosomal RNA. A darkly staining area within the nucleus called the **nucleolus** (plural = nucleoli) aggregates the ribosomal RNA with associated proteins to assemble the ribosomal subunits that are then transported out through the pores in the nuclear envelope to the cytoplasm.

Ribosomes

Ribosomes are the cellular organelles responsible for protein synthesis. When viewed through an electron microscope, ribosomes appear either as clusters (polyribosomes) or single, tiny dots that float freely in the cytoplasm. They may be attached to the cytoplasmic side of the plasma

membrane or the cytoplasmic side of the endoplasmic reticulum and the outer membrane of the nuclear envelope ([link]). Electron microscopy has shown us that ribosomes, which are large complexes of protein and RNA, consist of two subunits, aptly called large and small ([link]). Ribosomes receive their "orders" for protein synthesis from the nucleus where the DNA is transcribed into messenger RNA (mRNA). The mRNA travels to the ribosomes, which translate the code provided by the sequence of the nitrogenous bases in the mRNA into a specific order of amino acids in a protein. Amino acids are the building blocks of proteins.

Ribosomes are made up of a large subunit (top) and a small subunit (bottom). During protein synthesis, ribosomes assemble amino acids into proteins.

Because proteins synthesis is an essential function of all cells (including enzymes, hormones, antibodies, pigments, structural components, and surface receptors), ribosomes are found in practically every cell. Ribosomes are particularly abundant in cells that synthesize large amounts of protein.

For example, the pancreas is responsible for creating several digestive enzymes and the cells that produce these enzymes contain many ribosomes. Thus, we see another example of form following function.

Mitochondria

Mitochondria (singular = mitochondrion) are often called the "powerhouses" or "energy factories" of a cell because they are responsible for making adenosine triphosphate (ATP), the cell's main energy-carrying molecule. ATP represents the short-term stored energy of the cell. Cellular respiration is the process of making ATP using the chemical energy found in glucose and other nutrients. In mitochondria, this process uses oxygen and produces carbon dioxide as a waste product. In fact, the carbon dioxide that you exhale with every breath comes from the cellular reactions that produce carbon dioxide as a byproduct.

In keeping with our theme of form following function, it is important to point out that muscle cells have a very high concentration of mitochondria that produce ATP. Your muscle cells need a lot of energy to keep your body moving. When your cells don't get enough oxygen, they do not make a lot of ATP. Instead, the small amount of ATP they make in the absence of oxygen is accompanied by the production of lactic acid.

Mitochondria are oval-shaped, double membrane organelles ([link]) that have their own ribosomes and DNA. Each membrane is a phospholipid bilayer embedded with proteins. The inner layer has folds called cristae. The area surrounded by the folds is called the mitochondrial matrix. The cristae and the matrix have different roles in cellular respiration.

This electron micrograph shows a mitochondrion as viewed with a transmission electron microscope. This organelle has an outer membrane and an inner membrane. The inner membrane contains folds, called cristae, which increase its surface area. The space between the two membranes is called the intermembrane space, and the space inside the inner membrane is called the mitochondrial matrix. ATP synthesis takes place on the inner membrane. (credit: modification of work by Matthew Britton; scale-bar data from Matt Russell)

Peroxisomes

Peroxisomes are small, round organelles enclosed by single membranes. They carry out oxidation reactions that break down fatty acids and amino acids. They also detoxify many poisons that may enter the body. (Many of these oxidation reactions release hydrogen peroxide, H_2O_2 , which would be damaging to cells; however, when these reactions are confined to peroxisomes, enzymes safely break down the H_2O_2 into oxygen and water.) For example, alcohol is detoxified by peroxisomes in liver cells.

Glyoxysomes, which are specialized peroxisomes in plants, are responsible for converting stored fats into sugars.

Vesicles and Vacuoles

Vesicles and **vacuoles** are membrane-bound sacs that function in storage and transport. Other than the fact that vacuoles are somewhat larger than vesicles, there is a very subtle distinction between them: The membranes of vesicles can fuse with either the plasma membrane or other membrane systems within the cell. Additionally, some agents such as enzymes within plant vacuoles break down macromolecules. The membrane of a vacuole does not fuse with the membranes of other cellular components.

Animal Cells versus Plant Cells

At this point, you know that each eukaryotic cell has a plasma membrane, cytoplasm, a nucleus, ribosomes, mitochondria, peroxisomes, and in some, vacuoles, but there are some striking differences between animal and plant cells. While both animal and plant cells have microtubule organizing centers (MTOCs), animal cells also have centrioles associated with the MTOC: a complex called the centrosome. Animal cells each have a centrosome and lysosomes, whereas plant cells do not. Plant cells have a cell wall, chloroplasts and other specialized plastids (double-membrane organelle involved in photosynthesis and pigment/food storage), and a large central vacuole, whereas animal cells do not.

The Centrosome

The **centrosome** is a microtubule-organizing center found near the nuclei of animal cells. It contains a pair of centrioles, two structures that lie perpendicular to each other ([link]). Each centriole is a cylinder of nine triplets of microtubules.

The centrosome consists of two centrioles that lie at right angles to each other. Each centriole is a cylinder made up of nine triplets of microtubules. Nontubulin proteins (indicated by the green lines) hold the microtubule triplets together.

The centrosome (the organelle where all microtubules originate) replicates itself before a cell divides, and the centrioles appear to have some role in pulling the duplicated chromosomes to opposite ends of the dividing cell. However, the exact function of the centrioles in cell division isn't clear, because cells that have had the centrosome removed can still divide, and plant cells, which lack centrosomes, are capable of cell division.

Lysosomes

Animal cells have another set of organelles not found in plant cells: lysosomes. The **lysosomes** are the cell's "garbage disposal." In plant cells, the digestive processes take place in vacuoles. Enzymes within the lysosomes aid the breakdown of proteins, polysaccharides, lipids, nucleic acids, and even worn-out organelles. These enzymes are active at a much lower pH than that of the cytoplasm. Therefore, the pH within lysosomes is

more acidic than the pH of the cytoplasm. Many reactions that take place in the cytoplasm could not occur at a low pH, so again, the advantage of compartmentalizing the eukaryotic cell into organelles is apparent.

Note:

Evolution Connection

Endosymbiosis

We have mentioned that both mitochondria and chloroplasts contain DNA and ribosomes. Have you wondered why? Strong evidence points to endosymbiosis as the explanation.

Symbiosis is a relationship in which organisms from two separate species depend on each other for their survival. Endosymbiosis (endo- = "within") is a mutually beneficial relationship in which one organism lives inside the other. Endosymbiotic relationships abound in nature. We have already mentioned that microbes that produce vitamin K live inside the human gut. This relationship is beneficial for us because we are unable to synthesize vitamin K. It is also beneficial for the microbes because they are protected from other organisms and from drying out, and they receive abundant food from the environment of the large intestine.

Scientists have long noticed that bacteria, mitochondria, and chloroplasts are similar in size. We also know that bacteria have DNA and ribosomes, just as mitochondria and chloroplasts do. Scientists believe that host cells and bacteria formed an endosymbiotic relationship when the host cells ingested both aerobic and autotrophic bacteria (cyanobacteria) but did not destroy them. Through many millions of years of evolution, these ingested bacteria became more specialized in their functions, with the aerobic bacteria becoming mitochondria and the autotrophic bacteria becoming chloroplasts.

Section Summary

Like a prokaryotic cell, a eukaryotic cell has a plasma membrane, cytoplasm, and ribosomes, but a eukaryotic cell is typically larger than a prokaryotic cell, has a true nucleus (meaning its DNA is surrounded by a

membrane), and has other membrane-bound organelles that allow for compartmentalization of functions. The plasma membrane is a phospholipid bilayer embedded with proteins. The nucleus's nucleolus is the site of ribosome assembly. Ribosomes are either found in the cytoplasm or attached to the cytoplasmic side of the plasma membrane or endoplasmic reticulum. They perform protein synthesis. Mitochondria participate in cellular respiration; they are responsible for the majority of ATP produced in the cell. Peroxisomes hydrolyze fatty acids, amino acids, and some toxins. Vesicles and vacuoles are storage and transport compartments. In plant cells, vacuoles also help break down macromolecules.

Animal cells also have a centrosome and lysosomes. The centrosome has two bodies perpendicular to each other, the centrioles, and has an unknown purpose in cell division. Lysosomes are the digestive organelles of animal cells.

Plant cells and plant-like cells each have a cell wall, chloroplasts, and a central vacuole. The plant cell wall, whose primary component is cellulose, protects the cell, provides structural support, and gives shape to the cell. Photosynthesis takes place in chloroplasts. The central vacuole can expand without having to produce more cytoplasm.

Art Connections

Exercise:

Problem:

[link] If the nucleolus were not able to carry out its function, what other cellular organelles would be affected?

Solution:

[link] Free ribosomes and rough endoplasmic reticulum (which contains ribosomes) would not be able to form.

Review Questions

Exercise:
Problem:
Which of the following is surrounded by two phospholipid bilayers?
a. the ribosomes b. the vesicles c. the cytoplasm d. the nucleoplasm
Solution:
D
Exercise:
Problem: Peroxisomes got their name because hydrogen peroxide is:
a. used in their detoxification reactionsb. produced during their oxidation reactionsc. incorporated into their membranesd. a cofactor for the organelles' enzymes
Solution:
В
Exercise:
Problem:
In plant cells, the function of the lysosomes is carried out by

a. vacuoles

b. peroxisomesc. ribosomes

$\boldsymbol{\alpha}$	1			. •			
•	$\mathbf{\alpha}$	I٦	1	tı	n	n	•
ı J	w	ı			u		•

Α

Exercise:

Problem:

Which of the following is found both in eukaryotic and prokaryotic cells?

- a. nucleus
- b. mitochondrion
- c. vacuole
- d. ribosomes

Solution:

D

Free Response

Exercise:

Problem:

You already know that ribosomes are abundant in red blood cells. In what other cells of the body would you find them in great abundance? Why?

Solution:

Ribosomes are abundant in muscle cells as well because muscle cells are constructed of the proteins made by the ribosomes.

Exercise:

Problem:

What are the structural and functional similarities and differences between mitochondria and chloroplasts?

Solution:

Both are similar in that they are enveloped in a double membrane, both have an intermembrane space, and both make ATP. Both mitochondria and chloroplasts have DNA, and mitochondria have inner folds called cristae and a matrix, while chloroplasts have chlorophyll and accessory pigments in the thylakoids that form stacks (grana) and a stroma.

Glossary

cell wall

rigid cell covering made of cellulose that protects the cell, provides structural support, and gives shape to the cell

central vacuole

large plant cell organelle that regulates the cell's storage compartment, holds water, and plays a significant role in cell growth as the site of macromolecule degradation

centrosome

region in animal cells made of two centrioles

chlorophyll

green pigment that captures the light energy that drives the light reactions of photosynthesis

chloroplast

plant cell organelle that carries out photosynthesis

chromatin

protein-DNA complex that serves as the building material of chromosomes

chromosome

structure within the nucleus that is made up of chromatin that contains DNA, the hereditary material

cytoplasm

entire region between the plasma membrane and the nuclear envelope, consisting of organelles suspended in the gel-like cytosol, the cytoskeleton, and various chemicals

cytosol

gel-like material of the cytoplasm in which cell structures are suspended

eukaryotic cell

cell that has a membrane-bound nucleus and several other membranebound compartments or sacs

lysosome

organelle in an animal cell that functions as the cell's digestive component; it breaks down proteins, polysaccharides, lipids, nucleic acids, and even worn-out organelles

mitochondria

(singular = mitochondrion) cellular organelles responsible for carrying out cellular respiration, resulting in the production of ATP, the cell's main energy-carrying molecule

nuclear envelope

double-membrane structure that constitutes the outermost portion of the nucleus

nucleolus

darkly staining body within the nucleus that is responsible for assembling the subunits of the ribosomes

nucleoplasm

semi-solid fluid inside the nucleus that contains the chromatin and nucleolus

nucleus

cell organelle that houses the cell's DNA and directs the synthesis of ribosomes and proteins

organelle

compartment or sac within a cell

peroxisome

small, round organelle that contains hydrogen peroxide, oxidizes fatty acids and amino acids, and detoxifies many poisons

plasma membrane

phospholipid bilayer with embedded (integral) or attached (peripheral) proteins, and separates the internal content of the cell from its surrounding environment

ribosome

cellular organelle that carries out protein synthesis

vacuole

membrane-bound sac, somewhat larger than a vesicle, which functions in cellular storage and transport

vesicle

small, membrane-bound sac that functions in cellular storage and transport; its membrane is capable of fusing with the plasma membrane and the membranes of the endoplasmic reticulum and Golgi apparatus

The Endomembrane System and Proteins By the end of this section, you will be able to:

- List the components of the endomembrane system
- Recognize the relationship between the endomembrane system and its functions

The endomembrane system (endo = "within") is a group of membranes and organelles ([link]) in eukaryotic cells that works together to modify, package, and transport lipids and proteins. It includes the nuclear envelope, lysosomes, and vesicles, which we've already mentioned, and the endoplasmic reticulum and Golgi apparatus, which we will cover shortly. Although not technically *within* the cell, the plasma membrane is included in the endomembrane system because, as you will see, it interacts with the other endomembranous organelles. The endomembrane system does not include the membranes of either mitochondria or chloroplasts.

Note:
Art Connection

"Membrane and secretory proteins are synthesized in the rough endoplasmic reticulum (RER). The RER also sometimes modifies proteins. In this illustration, a (green) integral membrane protein in the ER is modified by attachment of a (purple) carbohydrate. Vesicles with the integral protein bud from the ER and fuse with the cis face of the Golgi apparatus. As the protein passes along the Golgi's cisternae, it is further modified by the addition of more carbohydrates. After its synthesis is

complete, it exits as integral membrane protein of the vesicle that bud from the Golgi's **trans** face and when the vesicle fuses with the cell membrane the protein becomes integral portion of that cell membrane. (credit: modification of work by Magnus Manske)

If a peripheral membrane protein were synthesized in the lumen (inside) of the ER, would it end up on the inside or outside of the plasma membrane?

The Endoplasmic Reticulum

The **endoplasmic reticulum (ER)** ([link]) is a series of interconnected membranous sacs and tubules that collectively modifies proteins and synthesizes lipids. However, these two functions are performed in separate areas of the ER: the rough ER and the smooth ER, respectively.

The hollow portion of the ER tubules is called the lumen or cisternal space. The membrane of the ER, which is a phospholipid bilayer embedded with proteins, is continuous with the nuclear envelope.

Rough ER

The **rough endoplasmic reticulum (RER)** is so named because the ribosomes attached to its cytoplasmic surface give it a studded appearance when viewed through an electron microscope ([link]).

This transmission electron micrograph shows the rough endoplasmic reticulum and other organelles in a pancreatic cell. (credit: modification of work by Louisa Howard)

Ribosomes transfer their newly synthesized proteins into the lumen of the RER where they undergo structural modifications, such as folding or the acquisition of side chains. These modified proteins will be incorporated into cellular membranes—the membrane of the ER or those of other organelles —or secreted from the cell (such as protein hormones, enzymes). The RER also makes phospholipids for cellular membranes.

If the phospholipids or modified proteins are not destined to stay in the RER, they will reach their destinations via transport vesicles that bud from the RER's membrane ([link]).

Since the RER is engaged in modifying proteins (such as enzymes, for example) that will be secreted from the cell, you would be correct in assuming that the RER is abundant in cells that secrete proteins. This is the case with cells of the liver, for example.

Smooth ER

The **smooth endoplasmic reticulum (SER)** is continuous with the RER but has few or no ribosomes on its cytoplasmic surface ([link]). Functions

of the SER include synthesis of carbohydrates, lipids, and steroid hormones; detoxification of medications and poisons; and storage of calcium ions.

In muscle cells, a specialized SER called the sarcoplasmic reticulum is responsible for storage of the calcium ions that are needed to trigger the coordinated contractions of the muscle cells.

Note:

Link to Learning

You can watch an excellent animation of the endomembrane system <u>here</u>. At the end of the animation, there is a short self-assessment.

Note:

Career Connection

Cardiologist

Heart disease is the leading cause of death in the United States. This is primarily due to our sedentary lifestyle and our high trans-fat diets. Heart failure is just one of many disabling heart conditions. Heart failure does not mean that the heart has stopped working. Rather, it means that the heart can't pump with sufficient force to transport oxygenated blood to all the vital organs. Left untreated, heart failure can lead to kidney failure and failure of other organs.

The wall of the heart is composed of cardiac muscle tissue. Heart failure occurs when the endoplasmic reticula of cardiac muscle cells do not

function properly. As a result, an insufficient number of calcium ions are available to trigger a sufficient contractile force.

Cardiologists (cardi- = "heart"; -ologist = "one who studies") are doctors who specialize in treating heart diseases, including heart failure. Cardiologists can make a diagnosis of heart failure via physical examination, results from an electrocardiogram (ECG, a test that measures the electrical activity of the heart), a chest X-ray to see whether the heart is enlarged, and other tests. If heart failure is diagnosed, the cardiologist will typically prescribe appropriate medications and recommend a reduction in table salt intake and a supervised exercise program.

The Golgi Apparatus

We have already mentioned that vesicles can bud from the ER and transport their contents elsewhere, but where do the vesicles go? Before reaching their final destination, the lipids or proteins within the transport vesicles still need to be sorted, packaged, and tagged so that they wind up in the right place. Sorting, tagging, packaging, and distribution of lipids and proteins takes place in the **Golgi apparatus** (also called the Golgi body), a series of flattened membranes ([link]).

The Golgi apparatus in this white blood cell is visible as a stack of semicircular, flattened rings in the lower portion of the image. Several vesicles can be seen near the Golgi apparatus. (credit: modification of work by Louisa Howard)

The receiving side of the Golgi apparatus is called the *cis* face. The opposite side is called the *trans* face. The transport vesicles that formed from the ER travel to the *cis* face, fuse with it, and empty their contents into the lumen of the Golgi apparatus. As the proteins and lipids travel through the Golgi, they undergo further modifications that allow them to be sorted. The most frequent modification is the addition of short chains of sugar molecules. These newly modified proteins and lipids are then tagged with phosphate groups or other small molecules so that they can be routed to their proper destinations.

Finally, the modified and tagged proteins are packaged into secretory vesicles that bud from the *trans* face of the Golgi. While some of these vesicles deposit their contents into other parts of the cell where they will be used, other secretory vesicles fuse with the plasma membrane and release their contents outside the cell.

In another example of form following function, cells that engage in a great deal of secretory activity (such as cells of the salivary glands that secrete digestive enzymes or cells of the immune system that secrete antibodies) have an abundance of Golgi.

In plant cells, the Golgi apparatus has the additional role of synthesizing polysaccharides, some of which are incorporated into the cell wall and some of which are used in other parts of the cell.

Note:

Career Connection

Geneticist

Many diseases arise from genetic mutations that prevent the synthesis of critical proteins. One such disease is Lowe disease (also called

oculocerebrorenal syndrome, because it affects the eyes, brain, and kidneys). In Lowe disease, there is a deficiency in an enzyme localized to the Golgi apparatus. Children with Lowe disease are born with cataracts, typically develop kidney disease after the first year of life, and may have impaired mental abilities.

Lowe disease is a genetic disease caused by a mutation on the X chromosome. The X chromosome is one of the two human sex chromosome, as these chromosomes determine a person's sex. Females possess two X chromosomes while males possess one X and one Y chromosome. In females, the genes on only one of the two X chromosomes are expressed. Therefore, females who carry the Lowe disease gene on one of their X chromosomes have a 50/50 chance of having the disease. However, males only have one X chromosome and the genes on this chromosome are always expressed. Therefore, males will always have Lowe disease if their X chromosome carries the Lowe disease gene. The location of the mutated gene, as well as the locations of many other mutations that cause genetic diseases, has now been identified. Through prenatal testing, a woman can find out if the fetus she is carrying may be afflicted with one of several genetic diseases.

Geneticists analyze the results of prenatal genetic tests and may counsel pregnant women on available options. They may also conduct genetic research that leads to new drugs or foods, or perform DNA analyses that are used in forensic investigations.

Lysosomes

In addition to their role as the digestive component and organelle-recycling facility of animal cells, lysosomes are considered to be parts of the endomembrane system. Lysosomes also use their hydrolytic enzymes to destroy pathogens (disease-causing organisms) that might enter the cell. A good example of this occurs in a group of white blood cells called macrophages, which are part of your body's immune system. In a process known as phagocytosis or endocytosis, a section of the plasma membrane of the macrophage invaginates (folds in) and engulfs a pathogen. The invaginated section, with the pathogen inside, then pinches itself off from

the plasma membrane and becomes a vesicle. The vesicle fuses with a lysosome. The lysosome's hydrolytic enzymes then destroy the pathogen ([link]).

Phagocytosis

A macrophage has engulfed (phagocytized) a potentially pathogenic bacterium and then fuses with a lysosomes within the cell to destroy the pathogen. Other organelles are present in the cell but for simplicity are not shown.

Section Summary

The endomembrane system includes the nuclear envelope, lysosomes, vesicles, the ER, and Golgi apparatus, as well as the plasma membrane. These cellular components work together to modify, package, tag, and transport proteins and lipids that form the membranes.

The RER modifies proteins and synthesizes phospholipids used in cell membranes. The SER synthesizes carbohydrates, lipids, and steroid hormones; engages in the detoxification of medications and poisons; and stores calcium ions. Sorting, tagging, packaging, and distribution of lipids and proteins take place in the Golgi apparatus. Lysosomes are created by the budding of the membranes of the RER and Golgi. Lysosomes digest macromolecules, recycle worn-out organelles, and destroy pathogens.

Art Connections

Exercise:

Problem:

[link] If a peripheral membrane protein were synthesized in the lumen (inside) of the ER, would it end up on the inside or outside of the plasma membrane?

Solution:

[link] It would end up on the outside. After the vesicle passes through the Golgi apparatus and fuses with the plasma membrane, it turns inside out.

Review Questions

Exercise:

Problem:

Which of the following is not a component of the endomembrane system?

- a. mitochondrion
- b. Golgi apparatus
- c. endoplasmic reticulum
- d. lysosome

Solution:

					•		
\mathbf{E}	v	Ω	М	C)	ıc	Δ	•
	^	ι.		١.	.7	L .	•

Problem:

The process by which a cell engulfs a foreign particle is known as:

- a. endosymbiosis
- b. phagocytosis
- c. hydrolysis
- d. membrane synthesis

Solution:

В

Exercise:

Problem:

Which of the following is most likely to have the greatest concentration of smooth endoplasmic reticulum?

- a. a cell that secretes enzymes
- b. a cell that destroys pathogens
- c. a cell that makes steroid hormones
- d. a cell that engages in photosynthesis

Solution:

 \mathbf{C}

Exercise:

Problem:

Which of the following sequences correctly lists in order the steps involved in the incorporation of a proteinaceous molecule within a cell?

- a. synthesis of the protein on the ribosome; modification in the Golgi apparatus; packaging in the endoplasmic reticulum; tagging in the vesicle
- b. synthesis of the protein on the lysosome; tagging in the Golgi; packaging in the vesicle; distribution in the endoplasmic reticulum
- c. synthesis of the protein on the ribosome; modification in the endoplasmic reticulum; tagging in the Golgi; distribution via the vesicle
- d. synthesis of the protein on the lysosome; packaging in the vesicle; distribution via the Golgi; tagging in the endoplasmic reticulum

\circ	•	
	lution	•
$\mathbf{D}\mathbf{U}$	luuvii	

 \mathbf{C}

Free Response

Exercise:

Problem:

In the context of cell biology, what do we mean by form follows function? What are at least two examples of this concept?

Solution:

"Form follows function" refers to the idea that the function of a body part dictates the form of that body part. As an example, compare your arm to a bat's wing. While the bones of the two correspond, the parts serve different functions in each organism and their forms have adapted to follow that function.

Exercise:

Problem:

In your opinion, is the nuclear membrane part of the endomembrane system? Why or why not? Defend your answer.

Solution:

Since the external surface of the nuclear membrane is continuous with the rough endoplasmic reticulum, which is part of the endomembrane system, then it is correct to say that it is part of the system.

Glossary

endomembrane system

group of organelles and membranes in eukaryotic cells that work together modifying, packaging, and transporting lipids and proteins

endoplasmic reticulum (ER)

series of interconnected membranous structures within eukaryotic cells that collectively modify proteins and synthesize lipids

Golgi apparatus

eukaryotic organelle made up of a series of stacked membranes that sorts, tags, and packages lipids and proteins for distribution

rough endoplasmic reticulum (RER)

region of the endoplasmic reticulum that is studded with ribosomes and engages in protein modification and phospholipid synthesis

smooth endoplasmic reticulum (SER)

region of the endoplasmic reticulum that has few or no ribosomes on its cytoplasmic surface and synthesizes carbohydrates, lipids, and steroid hormones; detoxifies certain chemicals (like pesticides, preservatives, medications, and environmental pollutants), and stores calcium ions

The Cytoskeleton By the end of this section, you will be able to:

- Describe the cytoskeleton
- Compare the roles of microfilaments, intermediate filaments, and microtubules
- Compare and contrast cilia and flagella
- Summarize the differences among the components of prokaryotic cells, animal cells, and plant cells

If you were to remove all the organelles from a cell, would the plasma membrane and the cytoplasm be the only components left? No. Within the cytoplasm, there would still be ions and organic molecules, plus a network of protein fibers that help maintain the shape of the cell, secure some organelles in specific positions, allow cytoplasm and vesicles to move within the cell, and enable cells within multicellular organisms to move. Collectively, this network of protein fibers is known as the **cytoskeleton**. There are three types of fibers within the cytoskeleton: microfilaments, intermediate filaments, and microtubules ([link]). Here, we will examine each.

Microfilaments thicken the cortex around the inner edge of a cell; like rubber bands, they resist tension.

Microtubules are found in

Microtubules are found in the interior of the cell where they maintain cell shape by resisting compressive forces. Intermediate filaments are found throughout the cell and hold organelles in place.

Microfilaments

Of the three types of protein fibers in the cytoskeleton, **microfilaments** are the narrowest. They function in cellular movement, have a diameter of about 7 nm, and are made of two intertwined strands of a globular protein called actin ([link]). For this reason, microfilaments are also known as actin filaments.

Microfilaments are made of two intertwined strands of actin.

Actin is powered by ATP to assemble its filamentous form, which serves as a track for the movement of a motor protein called myosin. This enables actin to engage in cellular events requiring motion, such as cell division in animal cells and cytoplasmic streaming, which is the circular movement of the cell cytoplasm in plant cells. Actin and myosin are plentiful in muscle cells. When your actin and myosin filaments slide past each other, your muscles contract.

Microfilaments also provide some rigidity and shape to the cell. They can depolymerize (disassemble) and reform quickly, thus enabling a cell to change its shape and move.

White blood cells (your body's infection-fighting cells) make good use of this ability. They can move to the site of an infection and phagocytize the pathogen.

Note:

Link to Learning

To see an example of a white blood cell in action, watch a short time-lapse video of the cell capturing two bacteria. It engulfs one and then moves on to the other. https://www.openstaxcollege.org/l/chasing_bcteria

Intermediate Filaments

Intermediate filaments are made of several strands of fibrous proteins that are wound together ([link]). These elements of the cytoskeleton get their name from the fact that their diameter, 8 to 10 nm, is between those of microfilaments and microtubules.

Intermediate filaments consist of several intertwined strands of fibrous proteins.

Intermediate filaments have no role in cell movement. Their function is purely structural. They bear tension, thus maintaining the shape of the cell, and anchor the nucleus and other organelles in place. [link] shows how intermediate filaments create a supportive scaffolding inside the cell.

The intermediate filaments are the most diverse group of cytoskeletal elements. Several types of fibrous proteins are found in the intermediate filaments. You are probably most familiar with keratin, the fibrous protein that strengthens your hair, nails, and the epidermis of the skin.

Microtubules

As their name implies, microtubules are small hollow tubes. The walls of the microtubule are made of polymerized dimers of α -tubulin and β -tubulin, two globular proteins ([link]). With a diameter of about 25 nm, **microtubules** are the widest components of the cytoskeleton. They help the cell resist compression, provide a track along which vesicles move through the cell, and pull replicated chromosomes to opposite ends of a dividing cell. Like microfilaments, microtubules can dissolve and reform quickly.

Microtubules are hollow. Their walls consist of 13 polymerized dimers of α -tubulin and β -tubulin (right image). The left image shows the molecular structure of the tube.

Microtubules are also the structural elements of flagella, cilia, and centrioles (the latter are the two perpendicular bodies of the centrosome). In fact, in animal cells, the centrosome is the microtubule-organizing center. In eukaryotic cells, flagella and cilia are quite different structurally from their counterparts in prokaryotes, as discussed below.

Flagella and Cilia

To refresh your memory, **flagella** (singular = flagellum) are long, hair-like structures that extend from the plasma membrane and are used to move an entire cell (for example, sperm, *Euglena*). When present, the cell has just one flagellum or a few flagella. When **cilia** (singular = cilium) are present, however, many of them extend along the entire surface of the plasma membrane. They are short, hair-like structures that are used to move entire cells (such as paramecia) or substances along the outer surface of the cell (for example, the cilia of cells lining the Fallopian tubes that move the ovum toward the uterus, or cilia lining the cells of the respiratory tract that trap particulate matter and move it toward your nostrils.)

Despite their differences in length and number, flagella and cilia share a common structural arrangement of microtubules called a "9 + 2 array." This is an appropriate name because a single flagellum or cilium is made of a ring of nine microtubule doublets, surrounding a single microtubule doublet in the center ([link]).

This transmission electron micrograph of two flagella shows the 9 + 2 array of microtubules: nine microtubule doublets surround a single microtubule doublet. (credit: modification of work by Dartmouth Electron Microscope Facility, Dartmouth College; scalebar data from Matt Russell)

You have now completed a broad survey of the components of prokaryotic and eukaryotic cells. For a summary of cellular components in prokaryotic and eukaryotic cells, see [link].

Components of Prokaryotic and Eukaryotic Cells				
Cell Component	Function	Present in Prokaryotes?	Present in Animal Cells?	Present in Plant Cells?
Plasma membrane	Separates cell from external environment; controls passage of organic molecules, ions, water, oxygen, and wastes into and out of cell	Yes	Yes	Yes
Cytoplasm	Provides turgor pressure to plant cells as fluid inside the central vacuole; site of many metabolic reactions; medium in which organelles are found	Yes	Yes	Yes
Nucleolus	Darkened area within the nucleus where ribosomal subunits are synthesized.	No	Yes	Yes
Nucleus	Cell organelle that houses DNA and directs synthesis of ribosomes and proteins	No	Yes	Yes
Ribosomes	Protein synthesis	Yes	Yes	Yes

Components of Prokaryotic and Eukaryotic Cells				
Cell Component	Function	Present in Prokaryotes?	Present in Animal Cells?	Present in Plant Cells?
Mitochondria	ATP production/cellular respiration	No	Yes	Yes
Peroxisomes	Oxidizes and thus breaks down fatty acids and amino acids, and detoxifies poisons	No	Yes	Yes
Vesicles and vacuoles	Storage and transport; digestive function in plant cells	No	Yes	Yes
Centrosome	Unspecified role in cell division in animal cells; source of microtubules in animal cells	No	Yes	No
Lysosomes	Digestion of macromolecules; recycling of wornout organelles	No	Yes	No
Cell wall	Protection, structural support and maintenance of cell shape	Yes, primarily peptidoglycan	No	Yes, primarily cellulose
Chloroplasts	Photosynthesis	No	No	Yes

Components of Prokaryotic and Eukaryotic Cells				
Cell Component	Function	Present in Prokaryotes?	Present in Animal Cells?	Present in Plant Cells?
Endoplasmic reticulum	Modifies proteins and synthesizes lipids	No	Yes	Yes
Golgi apparatus	Modifies, sorts, tags, packages, and distributes lipids and proteins	No	Yes	Yes
Cytoskeleton	Maintains cell's shape, secures organelles in specific positions, allows cytoplasm and vesicles to move within cell, and enables unicellular organisms to move independently	Yes	Yes	Yes
Flagella	Cellular locomotion	Some	Some	No, except for some plant sperm cells.
Cilia	Cellular locomotion, movement of particles along extracellular surface of plasma membrane, and filtration	Some	Some	No

Section Summary

The cytoskeleton has three different types of protein elements. From narrowest to widest, they are the microfilaments (actin filaments), intermediate filaments, and microtubules. Microfilaments are often associated with myosin. They provide rigidity and shape to the cell and facilitate cellular movements. Intermediate filaments bear tension and anchor the nucleus and other organelles in place. Microtubules help the cell resist compression, serve as tracks for motor proteins that move vesicles through the cell, and pull replicated chromosomes to opposite ends of a dividing cell. They are also the structural element of centrioles, flagella, and cilia.

Review Questions

Exercise:

Problem:

Which of the following have the ability to disassemble and reform quickly?

- a. microfilaments and intermediate filaments
- b. microfilaments and microtubules
- c. intermediate filaments and microtubules
- d. only intermediate filaments

Solution:

В

Exercise:

Problem: Which of the following do not play a role in intracellular movement?

- a. microfilaments and intermediate filaments
- b. microfilaments and microtubules
- c. intermediate filaments and microtubules
- d. only intermediate filaments

Solution:

D

Free Response

Exercise:

Problem:

What are the similarities and differences between the structures of centrioles and flagella?

Solution:

Centrioles and flagella are alike in that they are made up of microtubules. In centrioles, two rings of nine microtubule "triplets" are arranged at right angles to one another. This arrangement does not occur in flagella.

Exercise:

Problem:How do cilia and flagella differ?

Solution:

Cilia and flagella are alike in that they are made up of microtubules. Cilia are short, hair-like structures that exist in large numbers and usually cover the entire surface of the plasma membrane. Flagella, in contrast, are long, hair-like structures; when flagella are present, a cell has just one or two.

Glossary

cilium

(plural = cilia) short, hair-like structure that extends from the plasma membrane in large numbers and is used to move an entire cell or move substances along the outer surface of the cell

cytoskeleton

network of protein fibers that collectively maintain the shape of the cell, secure some organelles in specific positions, allow cytoplasm and vesicles to move within the cell, and enable unicellular organisms to move independently

flagellum

(plural = flagella) long, hair-like structure that extends from the plasma membrane and is used to move the cell

intermediate filament

cytoskeletal component, composed of several intertwined strands of fibrous protein, that bears tension, supports cell-cell junctions, and anchors cells to extracellular structures

microfilament

narrowest element of the cytoskeleton system; it provides rigidity and shape to the cell and enables cellular movements

microtubule

widest element of the cytoskeleton system; it helps the cell resist compression, provides a track along which vesicles move through the cell, pulls replicated chromosomes to opposite ends of a dividing cell, and is the structural element of centrioles, flagella, and cilia

Connections between Cells and Cellular Activities By the end of this section, you will be able to:

- Describe the extracellular matrix
- List examples of the ways that plant cells and animal cells communicate with adjacent cells
- Summarize the roles of tight junctions, desmosomes, gap junctions, and plasmodesmata

You already know that a group of similar cells working together is called a tissue. As you might expect, if cells are to work together, they must communicate with each other, just as you need to communicate with others if you work on a group project. Let's take a look at how cells communicate with each other.

Extracellular Matrix of Animal Cells

Most animal cells release materials into the extracellular space. The primary components of these materials are proteins, and the most abundant protein is collagen. Collagen fibers are interwoven with carbohydrate-containing protein molecules called proteoglycans. Collectively, these materials are called the **extracellular matrix** ([link]). Not only does the extracellular matrix hold the cells together to form a tissue, but it also allows the cells within the tissue to communicate with each other. How can this happen?

The extracellular matrix consists of a network of proteins and carbohydrates.

Cells have protein receptors on the extracellular surfaces of their plasma membranes. When a molecule within the matrix binds to the receptor, it changes the molecular structure of the receptor. The receptor, in turn, changes the conformation of the microfilaments positioned just inside the plasma membrane. These conformational changes induce chemical signals inside the cell that reach the nucleus and turn "on" or "off" the transcription of specific sections of DNA, which affects the production of associated proteins, thus changing the activities within the cell.

Blood clotting provides an example of the role of the extracellular matrix in cell communication. When the cells lining a blood vessel are damaged, they display a protein receptor called tissue factor. When tissue factor binds with another factor in the extracellular matrix, it causes platelets to adhere to the wall of the damaged blood vessel, stimulates the adjacent smooth muscle cells in the blood vessel to contract (thus constricting the blood vessel), and

initiates a series of steps that stimulate the platelets to produce clotting factors.

Intercellular Junctions

Cells can also communicate with each other via direct contact, referred to as intercellular junctions. There are some differences in the ways that plant and animal cells do this. Plasmodesmata are junctions between plant cells, whereas animal cell contacts include tight junctions, gap junctions, and desmosomes.

Plasmodesmata

In general, long stretches of the plasma membranes of neighboring plant cells cannot touch one another because they are separated by the cell wall that surrounds each cell ([link]b). How then, can a plant transfer water and other soil nutrients from its roots, through its stems, and to its leaves? Such transport uses the vascular tissues (xylem and phloem) primarily. There also exist structural modifications called **plasmodesmata** (singular = plasmodesma), numerous channels that pass between cell walls of adjacent plant cells, connect their cytoplasm, and enable materials to be transported from cell to cell, and thus throughout the plant ([link]).

A plasmodesma is a channel between the cell walls of two adjacent plant cells.

Plasmodesmata allow materials to pass from the cytoplasm of one plant cell to the cytoplasm of an adjacent cell.

Tight Junctions

A **tight junction** is a watertight seal between two adjacent animal cells ([link]). The cells are held tightly against each other by proteins (predominantly two proteins called claudins and occludins).

Tight junctions form watertight connections between adjacent animal cells. Proteins create tight junction adherence. (credit: modification of work by Mariana Ruiz Villareal)

This tight adherence prevents materials from leaking between the cells; tight junctions are typically found in epithelial tissues that line internal organs and cavities, and comprise most of the skin. For example, the tight junctions of the epithelial cells lining your urinary bladder prevent urine from leaking out into the extracellular space.

Desmosomes

Also found only in animal cells are **desmosomes**, which act like spot welds between adjacent epithelial cells ([link]). Short proteins called cadherins in the plasma membrane connect to intermediate filaments to create desmosomes. The cadherins join two adjacent cells together and maintain the cells in a sheet-like formation in organs and tissues that stretch, like the skin, heart, and muscles.

A desmosome forms a very strong spot weld between cells. It is created by the linkage of cadherins and intermediate filaments. (credit: modification of work by Mariana Ruiz Villareal)

Gap Junctions

Gap junctions in animal cells are like plasmodesmata in plant cells in that they are channels between adjacent cells that allow for the transport of ions, nutrients, and other substances that enable cells to communicate ([link]). Structurally, however, gap junctions and plasmodesmata differ.

A gap junction is a protein-lined pore that allows water and small molecules to pass between adjacent animal cells. (credit: modification of work by Mariana Ruiz Villareal)

Gap junctions develop when a set of six proteins (called connexins) in the plasma membrane arrange themselves in an elongated donut-like configuration called a connexon. When the pores ("doughnut holes") of connexons in adjacent animal cells align, a channel between the two cells forms. Gap junctions are particularly important in cardiac muscle: The electrical signal for the muscle to contract is passed efficiently through gap junctions, allowing the heart muscle cells to contract in tandem.

	_		
N	_	4	_
1 74	"		щ,

Link to Learning

To conduct a virtual microscopy lab and review the parts of a cell, work through the steps of this <u>interactive assignment</u>.

Section Summary

Animal cells communicate via their extracellular matrices and are connected to each other via tight junctions, desmosomes, and gap junctions. Plant cells are connected and communicate with each other via plasmodesmata.

When protein receptors on the surface of the plasma membrane of an animal cell bind to a substance in the extracellular matrix, a chain of reactions begins that changes activities taking place within the cell. Plasmodesmata are channels between adjacent plant cells, while gap junctions are channels between adjacent animal cells. However, their structures are quite different. A tight junction is a watertight seal between two adjacent cells, while a desmosome acts like a spot weld.

Review Questions

Exercise:

Problem: Which of the following are found only in plant cells?

- a. gap junctions
- b. desmosomes
- c. plasmodesmata

d. tight junctions
Solution:
C
Exercise:
Problem:
The key components of desmosomes are cadherins and
a. actinb. microfilamentsc. intermediate filamentsd. microtubules
Solution:
C
Free Response
Exercise:
Problem:
How does the structure of a plasmodesma differ from that of a gap junction?
Solution:

They differ because plant cell walls are rigid. Plasmodesmata, which a

allow movement of really large molecules. Gap junctions are necessary

plant cell needs for transportation and communication, are able to

in animal cells for transportation and communication. **Exercise:**

Problem:Explain how the extracellular matrix functions.

Solution:

The extracellular matrix functions in support and attachment for animal tissues. It also functions in the healing and growth of the tissue.

Glossary

desmosome

linkages between adjacent epithelial cells that form when cadherins in the plasma membrane attach to intermediate filaments

extracellular matrix

material (primarily collagen, glycoproteins, and proteoglycans) secreted from animal cells that provides mechanical protection and anchoring for the cells in the tissue

gap junction

channel between two adjacent animal cells that allows ions, nutrients, and low molecular weight substances to pass between cells, enabling the cells to communicate

plasmodesma

(plural = plasmodesmata) channel that passes between the cell walls of adjacent plant cells, connects their cytoplasm, and allows materials to be transported from cell to cell

tight junction

firm seal between two adjacent animal cells created by protein adherence

Introduction class="introduction"

Despite its seeming hustle and bustle. Grand Central Station functions with a high level of organization : People and objects move from one location to another, they cross or are contained within certain boundaries, and they provide a constant flow as part of larger activity. Analogously , a plasma membrane's functions involve movement

within the cell and across boundaries in the process of intracellular and intercellular activities. (credit: modification of work by Randy Le'Moine)

The plasma membrane, which is also called the cell membrane, has many functions, but the most basic one is to define the borders of the cell and keep the cell functional. The plasma membrane is selectively permeable. This means that the membrane allows some materials to freely enter or leave the cell, while other materials cannot move freely, but require the use

of a specialized structure, and occasionally, even energy investment for crossing.

Components and Structure By the end of this section, you will be able to:

- Understand the fluid mosaic model of cell membranes
- Describe the functions of phospholipids, proteins, and carbohydrates in membranes
- Discuss membrane fluidity

A cell's plasma membrane defines the cell, outlines its borders, and determines the nature of its interaction with its environment (see [link] for a summary). Cells exclude some substances, take in others, and excrete still others, all in controlled quantities. The plasma membrane must be very flexible to allow certain cells, such as red blood cells and white blood cells, to change shape as they pass through narrow capillaries. These are the more obvious functions of a plasma membrane. In addition, the surface of the plasma membrane carries markers that allow cells to recognize one another, which is vital for tissue and organ formation during early development, and which later plays a role in the "self" versus "non-self" distinction of the immune response.

Among the most sophisticated functions of the plasma membrane is the ability to transmit signals by means of complex, integral proteins known as receptors. These proteins act both as receivers of extracellular inputs and as activators of intracellular processes. These membrane receptors provide extracellular attachment sites for effectors like hormones and growth factors, and they activate intracellular response cascades when their effectors are bound. Occasionally, receptors are hijacked by viruses (HIV, human immunodeficiency virus, is one example) that use them to gain entry into cells, and at times, the genes encoding receptors become mutated, causing the process of signal transduction to malfunction with disastrous consequences.

Fluid Mosaic Model

The existence of the plasma membrane was identified in the 1890s, and its chemical components were identified in 1915. The principal components identified at that time were lipids and proteins. The first widely accepted

model of the plasma membrane's structure was proposed in 1935 by Hugh Davson and James Danielli; it was based on the "railroad track" appearance of the plasma membrane in early electron micrographs. They theorized that the structure of the plasma membrane resembles a sandwich, with protein being analogous to the bread, and lipids being analogous to the filling. In the 1950s, advances in microscopy, notably transmission electron microscopy (TEM), allowed researchers to see that the core of the plasma membrane consisted of a double, rather than a single, layer. A new model that better explains both the microscopic observations and the function of that plasma membrane was proposed by S.J. Singer and Garth L. Nicolson in 1972.

The explanation proposed by Singer and Nicolson is called the **fluid mosaic model**. The model has evolved somewhat over time, but it still best accounts for the structure and functions of the plasma membrane as we now understand them. The fluid mosaic model describes the structure of the plasma membrane as a mosaic of components—including phospholipids, cholesterol, proteins, and carbohydrates—that gives the membrane a fluid character. Plasma membranes range from 5 to 10 nm in thickness. For comparison, human red blood cells, visible via light microscopy, are approximately 8 µm wide, or approximately 1,000 times wider than a plasma membrane. The membrane does look a bit like a sandwich ([link]).

The fluid mosaic model of the plasma membrane describes the plasma membrane as a fluid combination of phospholipids, cholesterol, and proteins. Carbohydrates attached to lipids (glycolipids) and to proteins (glycoproteins) extend from the outward-facing surface of the membrane.

The principal components of a plasma membrane are lipids (phospholipids and cholesterol), proteins, and carbohydrates attached to some of the lipids and some of the proteins. A phospholipid is a molecule consisting of glycerol, two fatty acids, and a phosphate-linked head group. Cholesterol, another lipid composed of four fused carbon rings, is found alongside the phospholipids in the core of the membrane. The proportions of proteins, lipids, and carbohydrates in the plasma membrane vary with cell type, but for a typical human cell, protein accounts for about 50 percent of the composition by mass, lipids (of all types) account for about 40 percent of the composition by mass, with the remaining 10 percent of the composition by mass being carbohydrates. However, the concentration of proteins and lipids varies with different cell membranes. For example, myelin, an outgrowth of the membrane of specialized cells that insulates the axons of the peripheral nerves, contains only 18 percent protein and 76 percent lipid. The mitochondrial inner membrane contains 76 percent protein and only 24 percent lipid. The plasma membrane of human red blood cells is 30 percent lipid. Carbohydrates are present only on the exterior surface of the plasma membrane and are attached to proteins, forming **glycoproteins**, or attached to lipids, forming glycolipids.

Phospholipids

The main fabric of the membrane is composed of amphiphilic, phospholipid molecules. The **hydrophilic** or "water-loving" areas of these molecules (which look like a collection of balls in an artist's rendition of the model) ([link]) are in contact with the aqueous fluid both inside and outside the cell. **Hydrophobic**, or water-hating molecules, tend to be non-polar. They interact with other non-polar molecules in chemical reactions, but generally

do not interact with polar molecules. When placed in water, hydrophobic molecules tend to form a ball or cluster. The hydrophilic regions of the phospholipids tend to form hydrogen bonds with water and other polar molecules on both the exterior and interior of the cell. Thus, the membrane surfaces that face the interior and exterior of the cell are hydrophilic. In contrast, the interior of the cell membrane is hydrophobic and will not interact with water. Therefore, phospholipids form an excellent two-layer cell membrane that separates fluid within the cell from the fluid outside of the cell.

A phospholipid molecule ([link]) consists of a three-carbon glycerol backbone with two fatty acid molecules attached to carbons 1 and 2, and a phosphate-containing group attached to the third carbon. This arrangement gives the overall molecule an area described as its head (the phosphate-containing group), which has a polar character or negative charge, and an area called the tail (the fatty acids), which has no charge. The head can form hydrogen bonds, but the tail cannot. A molecule with this arrangement of a positively or negatively charged area and an uncharged, or non-polar, area is referred to as **amphiphilic** or "dual-loving."

This phospholipid molecule is composed of a hydrophilic head and two hydrophobic tails. The hydrophilic head group consists of a phosphate-containing group attached to a glycerol molecule.

The hydrophobic tails, each containing either a saturated or an unsaturated fatty acid, are long hydrocarbon chains.

This characteristic is vital to the structure of a plasma membrane because, in water, phospholipids tend to become arranged with their hydrophobic tails facing each other and their hydrophilic heads facing out. In this way, they form a lipid bilayer—a barrier composed of a double layer of phospholipids that separates the water and other materials on one side of the barrier from the water and other materials on the other side. In fact, phospholipids heated in an aqueous solution tend to spontaneously form

small spheres or droplets (called micelles or liposomes), with their hydrophilic heads forming the exterior and their hydrophobic tails on the inside ([link]).

In an aqueous solution, phospholipids tend to arrange themselves with their polar heads facing outward and their hydrophobic tails facing inward. (credit: modification of work by Mariana Ruiz Villareal)

Proteins

Proteins make up the second major component of plasma membranes. **Integral proteins** (some specialized types are called integrins) are, as their name suggests, integrated completely into the membrane structure, and their hydrophobic membrane-spanning regions interact with the hydrophobic region of the the phospholipid bilayer ([link]). Single-pass integral membrane proteins usually have a hydrophobic transmembrane segment that consists of 20–25 amino acids. Some span only part of the membrane associating with a single layer—while others stretch from one side of the membrane to the other, and are exposed on either side. Some complex proteins are composed of up to 12 segments of a single protein, which are extensively folded and embedded in the membrane ([link]). This type of protein has a hydrophilic region or regions, and one or several mildly hydrophobic regions. This arrangement of regions of the protein tends to orient the protein alongside the phospholipids, with the hydrophobic region of the protein adjacent to the tails of the phospholipids and the hydrophilic region or regions of the protein protruding from the membrane and in contact with the cytosol or extracellular fluid.

Integral membranes proteins may have one or more alpha-helices that span the membrane (examples 1 and 2), or they may have betasheets that span the membrane (example 3). (credit: "Foobar"/Wikimedia Commons)

Peripheral proteins are found on the exterior and interior surfaces of membranes, attached either to integral proteins or to phospholipids. Peripheral proteins, along with integral proteins, may serve as enzymes, as structural attachments for the fibers of the cytoskeleton, or as part of the cell's recognition sites. These are sometimes referred to as "cell-specific" proteins. The body recognizes its own proteins and attacks foreign proteins associated with invasive pathogens.

Carbohydrates

Carbohydrates are the third major component of plasma membranes. They are always found on the exterior surface of cells and are bound either to proteins (forming glycoproteins) or to lipids (forming glycolipids) ([link]). These carbohydrate chains may consist of 2–60 monosaccharide units and can be either straight or branched. Along with peripheral proteins, carbohydrates form specialized sites on the cell surface that allow cells to recognize each other. These sites have unique patterns that allow the cell to be recognized, much the way that the facial features unique to each person allow him or her to be recognized. This recognition function is very important to cells, as it allows the immune system to differentiate between body cells (called "self") and foreign cells or tissues (called "non-self"). Similar types of glycoproteins and glycolipids are found on the surfaces of viruses and may change frequently, preventing immune cells from recognizing and attacking them.

These carbohydrates on the exterior surface of the cell—the carbohydrate components of both glycoproteins and glycolipids—are collectively referred to as the glycocalyx (meaning "sugar coating"). The glycocalyx is highly hydrophilic and attracts large amounts of water to the surface of the cell. This aids in the interaction of the cell with its watery environment and in the cell's ability to obtain substances dissolved in the water. As discussed above, the glycocalyx is also important for cell identification, self/non-self

determination, and embryonic development, and is used in cell-cell attachments to form tissues.

Note:

Evolution Connection

How Viruses Infect Specific Organs

Glycoprotein and glycolipid patterns on the surfaces of cells give many viruses an opportunity for infection. HIV and hepatitis viruses infect only specific organs or cells in the human body. HIV is able to penetrate the plasma membranes of a subtype of lymphocytes called T-helper cells, as well as some monocytes and central nervous system cells. The hepatitis virus attacks liver cells.

These viruses are able to invade these cells, because the cells have binding sites on their surfaces that are specific to and compatible with certain viruses ([link]). Other recognition sites on the virus's surface interact with the human immune system, prompting the body to produce antibodies. Antibodies are made in response to the antigens or proteins associated with invasive pathogens, or in response to foreign cells, such as might occur with an organ transplant. These same sites serve as places for antibodies to attach and either destroy or inhibit the activity of the virus. Unfortunately, these recognition sites on HIV change at a rapid rate because of mutations, making the production of an effective vaccine against the virus very difficult, as the virus evolves and adapts. A person infected with HIV will quickly develop different populations, or variants, of the virus that are distinguished by differences in these recognition sites. This rapid change of surface markers decreases the effectiveness of the person's immune system in attacking the virus, because the antibodies will not recognize the new variations of the surface patterns. In the case of HIV, the problem is compounded by the fact that the virus specifically infects and destroys cells involved in the immune response, further incapacitating the host.

HIV binds to the CD4 receptor, a glycoprotein on the surfaces of T cells. (credit: modification of work by NIH, NIAID)

Membrane Fluidity

The mosaic characteristic of the membrane, described in the fluid mosaic model, helps to illustrate its nature. The integral proteins and lipids exist in the membrane as separate but loosely attached molecules. These resemble the separate, multicolored tiles of a mosaic picture, and they float, moving somewhat with respect to one another. The membrane is not like a balloon, however, that can expand and contract; rather, it is fairly rigid and can burst if penetrated or if a cell takes in too much water. However, because of its mosaic nature, a very fine needle can easily penetrate a plasma membrane

without causing it to burst, and the membrane will flow and self-seal when the needle is extracted.

The mosaic characteristics of the membrane explain some but not all of its fluidity. There are two other factors that help maintain this fluid characteristic. One factor is the nature of the phospholipids themselves. In their saturated form, the fatty acids in phospholipid tails are saturated with bound hydrogen atoms. There are no double bonds between adjacent carbon atoms. This results in tails that are relatively straight. In contrast, unsaturated fatty acids do not contain a maximal number of hydrogen atoms, but they do contain some double bonds between adjacent carbon atoms; a double bond results in a bend in the string of carbons of approximately 30 degrees ([link]).

Thus, if saturated fatty acids, with their straight tails, are compressed by decreasing temperatures, they press in on each other, making a dense and fairly rigid membrane. If unsaturated fatty acids are compressed, the "kinks" in their tails elbow adjacent phospholipid molecules away, maintaining some space between the phospholipid molecules. This "elbow room" helps to maintain fluidity in the membrane at temperatures at which membranes with saturated fatty acid tails in their phospholipids would "freeze" or solidify. The relative fluidity of the membrane is particularly important in a cold environment. A cold environment tends to compress membranes composed largely of saturated fatty acids, making them less fluid and more susceptible to rupturing. Many organisms (fish are one example) are capable of adapting to cold environments by changing the proportion of unsaturated fatty acids in their membranes in response to the lowering of the temperature.

Visit this <u>site</u> to see animations of the fluidity and mosaic quality of membranes.

Animals have an additional membrane constituent that assists in maintaining fluidity. Cholesterol, which lies alongside the phospholipids in the membrane, tends to dampen the effects of temperature on the membrane. Thus, this lipid functions as a buffer, preventing lower temperatures from inhibiting fluidity and preventing increased temperatures from increasing fluidity too much. Thus, cholesterol extends, in both directions, the range of temperature in which the membrane is appropriately fluid and consequently functional. Cholesterol also serves other functions, such as organizing clusters of transmembrane proteins into lipid rafts.

The Components and Functions of the Plasma Membrane		
Component Location		
Phospholipid	Main fabric of the membrane	
Cholesterol	Attached between phospholipids and between the two phospholipid layers	

The Components and Functions of the Plasma Membrane		
Component	Location	
Integral proteins (for example, integrins)	Embedded within the phospholipid layer(s). May or may not penetrate through both layers	
Peripheral proteins	On the inner or outer surface of the phospholipid bilayer; not embedded within the phospholipids	
Carbohydrates (components of glycoproteins and glycolipids)	Generally attached to proteins on the outside membrane layer	

Note:

Career Connection

Immunologist

The variations in peripheral proteins and carbohydrates that affect a cell's recognition sites are of prime interest in immunology. These changes are taken into consideration in vaccine development. Many infectious diseases, such as smallpox, polio, diphtheria, and tetanus, were conquered by the use of vaccines.

Immunologists are the physicians and scientists who research and develop vaccines, as well as treat and study allergies or other immune problems. Some immunologists study and treat autoimmune problems (diseases in which a person's immune system attacks his or her own cells or tissues, such as lupus) and immunodeficiencies, whether acquired (such as acquired immunodeficiency syndrome, or AIDS) or hereditary (such as severe combined immunodeficiency, or SCID). Immunologists are called in to help treat organ transplantation patients, who must have their immune systems suppressed so that their bodies will not reject a transplanted organ.

Some immunologists work to understand natural immunity and the effects of a person's environment on it. Others work on questions about how the immune system affects diseases such as cancer. In the past, the importance of having a healthy immune system in preventing cancer was not at all understood.

To work as an immunologist, a PhD or MD is required. In addition, immunologists undertake at least 2–3 years of training in an accredited program and must pass an examination given by the American Board of Allergy and Immunology. Immunologists must possess knowledge of the functions of the human body as they relate to issues beyond immunization, and knowledge of pharmacology and medical technology, such as medications, therapies, test materials, and surgical procedures.

Section Summary

The modern understanding of the plasma membrane is referred to as the fluid mosaic model. The plasma membrane is composed of a bilayer of phospholipids, with their hydrophobic, fatty acid tails in contact with each other. The landscape of the membrane is studded with proteins, some of which span the membrane. Some of these proteins serve to transport materials into or out of the cell. Carbohydrates are attached to some of the proteins and lipids on the outward-facing surface of the membrane, forming complexes that function to identify the cell to other cells. The fluid nature of the membrane is due to temperature, the configuration of the fatty acid tails (some kinked by double bonds), the presence of cholesterol embedded in the membrane, and the mosaic nature of the proteins and protein-carbohydrate combinations, which are not firmly fixed in place. Plasma membranes enclose and define the borders of cells, but rather than being a static bag, they are dynamic and constantly in flux.

Review Questions

Exercise:

Problem:

Which plasma membrane component can be either found on its surface or embedded in the membrane structure?

- a. protein
- b. cholesterol
- c. carbohydrate
- d. phospholipid

Solution:

Α

Exercise:

Problem:

Which characteristic of a phospholipid contributes to the fluidity of the membrane?

- a. its head
- b. cholesterol
- c. a saturated fatty acid tail
- d. double bonds in the fatty acid tail

Solution:

D

Exercise:

Problem:

What is the primary function of carbohydrates attached to the exterior of cell membranes?

a. identification of the cell

- b. flexibility of the membrane
- c. strengthening the membrane
- d. channels through membrane

Solution:

Α

Free Response

Exercise:

Problem:

Why is it advantageous for the cell membrane to be fluid in nature?

Solution:

The fluid characteristic of the cell membrane allows greater flexibility to the cell than it would if the membrane were rigid. It also allows the motion of membrane components, required for some types of membrane transport.

Exercise:

Problem:

Why do phospholipids tend to spontaneously orient themselves into something resembling a membrane?

Solution:

The hydrophobic, nonpolar regions must align with each other in order for the structure to have minimal potential energy and, consequently, higher stability. The fatty acid tails of the phospholipids cannot mix with water, but the phosphate "head" of the molecule can. Thus, the head orients to water, and the tail to other lipids.

Glossary

amphiphilic

molecule possessing a polar or charged area and a nonpolar or uncharged area capable of interacting with both hydrophilic and hydrophobic environments

fluid mosaic model

describes the structure of the plasma membrane as a mosaic of components including phospholipids, cholesterol, proteins, glycoproteins, and glycolipids (sugar chains attached to proteins or lipids, respectively), resulting in a fluid character (fluidity)

glycolipid

combination of carbohydrates and lipids

glycoprotein

combination of carbohydrates and proteins

hydrophilic

molecule with the ability to bond with water; "water-loving"

hydrophobic

molecule that does not have the ability to bond with water; "waterhating"

integral protein

protein integrated into the membrane structure that interacts extensively with the hydrocarbon chains of membrane lipids and often spans the membrane; these proteins can be removed only by the disruption of the membrane by detergents

peripheral protein

protein found at the surface of a plasma membrane either on its exterior or interior side; these proteins can be removed (washed off of the membrane) by a high-salt wash

Passive Transport By the end of this section, you will be able to:

- Explain why and how passive transport occurs
- Understand the processes of osmosis and diffusion
- Define tonicity and describe its relevance to passive transport

Plasma membranes must allow certain substances to enter and leave a cell, and prevent some harmful materials from entering and some essential materials from leaving. In other words, plasma membranes are **selectively permeable**—they allow some substances to pass through, but not others. If they were to lose this selectivity, the cell would no longer be able to sustain itself, and it would be destroyed. Some cells require larger amounts of specific substances than do other cells; they must have a way of obtaining these materials from extracellular fluids. This may happen passively, as certain materials move back and forth, or the cell may have special mechanisms that facilitate transport. Some materials are so important to a cell that it spends some of its energy, hydrolyzing adenosine triphosphate (ATP), to obtain these materials. Red blood cells use some of their energy doing just that. All cells spend the majority of their energy to maintain an imbalance of sodium and potassium ions between the interior and exterior of the cell.

The most direct forms of membrane transport are passive. **Passive transport** is a naturally occurring phenomenon and does not require the cell to exert any of its energy to accomplish the movement. In passive transport, substances move from an area of higher concentration to an area of lower concentration. A physical space in which there is a range of concentrations of a single substance is said to have a **concentration gradient**.

Selective Permeability

Plasma membranes are asymmetric: the interior of the membrane is not identical to the exterior of the membrane. In fact, there is a considerable difference between the array of phospholipids and proteins between the two leaflets that form a membrane. On the interior of the membrane, some proteins serve to anchor the membrane to fibers of the cytoskeleton. There

are peripheral proteins on the exterior of the membrane that bind elements of the extracellular matrix. Carbohydrates, attached to lipids or proteins, are also found on the exterior surface of the plasma membrane. These carbohydrate complexes help the cell bind substances that the cell needs in the extracellular fluid. This adds considerably to the selective nature of plasma membranes ([link]).

The exterior surface of the plasma membrane is not identical to the interior surface of the same membrane.

Recall that plasma membranes are amphiphilic: They have hydrophilic and hydrophobic regions. This characteristic helps the movement of some materials through the membrane and hinders the movement of others. Lipid-soluble material with a low molecular weight can easily slip through the hydrophobic lipid core of the membrane. Substances such as the fat-soluble vitamins A, D, E, and K readily pass through the plasma membranes in the digestive tract and other tissues. Fat-soluble drugs and hormones also gain easy entry into cells and are readily transported into the body's tissues and organs. Molecules of oxygen and carbon dioxide have no charge and so pass through membranes by simple diffusion.

Polar substances present problems for the membrane. While some polar molecules connect easily with the outside of a cell, they cannot readily pass through the lipid core of the plasma membrane. Additionally, while small ions could easily slip through the spaces in the mosaic of the membrane, their charge prevents them from doing so. Ions such as sodium, potassium, calcium, and chloride must have special means of penetrating plasma membranes. Simple sugars and amino acids also need help with transport across plasma membranes, achieved by various transmembrane proteins (channels).

Diffusion

Diffusion is a passive process of transport. A single substance tends to move from an area of high concentration to an area of low concentration until the concentration is equal across a space. You are familiar with diffusion of substances through the air. For example, think about someone opening a bottle of ammonia in a room filled with people. The ammonia gas is at its highest concentration in the bottle; its lowest concentration is at the edges of the room. The ammonia vapor will diffuse, or spread away, from the bottle, and gradually, more and more people will smell the ammonia as it spreads. Materials move within the cell's cytosol by diffusion, and certain materials move through the plasma membrane by diffusion ([link]). Diffusion expends no energy. On the contrary, concentration gradients are a form of potential energy, dissipated as the gradient is eliminated.

Diffusion through a permeable membrane moves a substance from an area of high concentration (extracellular fluid, in this case) down its concentration gradient (into the cytoplasm). (credit: modification of work by Mariana Ruiz Villareal)

Each separate substance in a medium, such as the extracellular fluid, has its own concentration gradient, independent of the concentration gradients of other materials. In addition, each substance will diffuse according to that gradient. Within a system, there will be different rates of diffusion of the different substances in the medium.

Factors That Affect Diffusion

Molecules move constantly in a random manner, at a rate that depends on their mass, their environment, and the amount of thermal energy they possess, which in turn is a function of temperature. This movement accounts for the diffusion of molecules through whatever medium in which they are localized. A substance will tend to move into any space available to it until it is evenly distributed throughout it. After a substance has diffused completely through a space, removing its concentration gradient, molecules will still move around in the space, but there will be no *net*

movement of the number of molecules from one area to another. This lack of a concentration gradient in which there is no net movement of a substance is known as dynamic equilibrium. While diffusion will go forward in the presence of a concentration gradient of a substance, several factors affect the rate of diffusion.

- Extent of the concentration gradient: The greater the difference in concentration, the more rapid the diffusion. The closer the distribution of the material gets to equilibrium, the slower the rate of diffusion becomes.
- Mass of the molecules diffusing: Heavier molecules move more slowly; therefore, they diffuse more slowly. The reverse is true for lighter molecules.
- Temperature: Higher temperatures increase the energy and therefore the movement of the molecules, increasing the rate of diffusion. Lower temperatures decrease the energy of the molecules, thus decreasing the rate of diffusion.
- Solvent density: As the density of a solvent increases, the rate of diffusion decreases. The molecules slow down because they have a more difficult time getting through the denser medium. If the medium is less dense, diffusion increases. Because cells primarily use diffusion to move materials within the cytoplasm, any increase in the cytoplasm's density will inhibit the movement of the materials. An example of this is a person experiencing dehydration. As the body's cells lose water, the rate of diffusion decreases in the cytoplasm, and the cells' functions deteriorate. Neurons tend to be very sensitive to this effect. Dehydration frequently leads to unconsciousness and possibly coma because of the decrease in diffusion rate within the cells.
- Solubility: As discussed earlier, nonpolar or lipid-soluble materials pass through plasma membranes more easily than polar materials, allowing a faster rate of diffusion.
- Surface area and thickness of the plasma membrane: Increased surface area increases the rate of diffusion, whereas a thicker membrane reduces it.
- Distance travelled: The greater the distance that a substance must travel, the slower the rate of diffusion. This places an upper limitation

on cell size. A large, spherical cell will die because nutrients or waste cannot reach or leave the center of the cell, respectively. Therefore, cells must either be small in size, as in the case of many prokaryotes, or be flattened, as with many single-celled eukaryotes.

A variation of diffusion is the process of filtration. In filtration, material moves according to its concentration gradient through a membrane; sometimes the rate of diffusion is enhanced by pressure, causing the substances to filter more rapidly. This occurs in the kidney, where blood pressure forces large amounts of water and accompanying dissolved substances, or **solutes**, out of the blood and into the renal tubules. The rate of diffusion in this instance is almost totally dependent on pressure. One of the effects of high blood pressure is the appearance of protein in the urine, which is "squeezed through" by the abnormally high pressure.

Facilitated transport

In **facilitated transport**, also called facilitated diffusion, materials diffuse across the plasma membrane with the help of membrane proteins. A concentration gradient exists that would allow these materials to diffuse into the cell without expending cellular energy. However, these materials are ions are polar molecules that are repelled by the hydrophobic parts of the cell membrane. Facilitated transport proteins shield these materials from the repulsive force of the membrane, allowing them to diffuse into the cell.

The material being transported is first attached to protein or glycoprotein receptors on the exterior surface of the plasma membrane. This allows the material that is needed by the cell to be removed from the extracellular fluid. The substances are then passed to specific integral proteins that facilitate their passage. Some of these integral proteins are collections of beta pleated sheets that form a pore or channel through the phospholipid bilayer. Others are carrier proteins which bind with the substance and aid its diffusion through the membrane.

Channels

The integral proteins involved in facilitated transport are collectively referred to as **transport proteins**, and they function as either channels for the material or carriers. In both cases, they are transmembrane proteins. Channels are specific for the substance that is being transported. **Channel proteins** have hydrophilic domains exposed to the intracellular and extracellular fluids; they additionally have a hydrophilic channel through their core that provides a hydrated opening through the membrane layers ([link]). Passage through the channel allows polar compounds to avoid the nonpolar central layer of the plasma membrane that would otherwise slow or prevent their entry into the cell. **Aquaporins** are channel proteins that allow water to pass through the membrane at a very high rate.

Facilitated transport moves
substances down their
concentration gradients. They may
cross the plasma membrane with
the aid of channel proteins. (credit:
modification of work by Mariana
Ruiz Villareal)

Channel proteins are either open at all times or they are "gated," which controls the opening of the channel. The attachment of a particular ion to the channel protein may control the opening, or other mechanisms or substances may be involved. In some tissues, sodium and chloride ions pass freely through open channels, whereas in other tissues a gate must be opened to allow passage. An example of this occurs in the kidney, where both forms of channels are found in different parts of the renal tubules. Cells involved in the transmission of electrical impulses, such as nerve and muscle cells, have gated channels for sodium, potassium, and calcium in their membranes. Opening and closing of these channels changes the relative concentrations on opposing sides of the membrane of these ions, resulting in the facilitation of electrical transmission along membranes (in the case of nerve cells) or in muscle contraction (in the case of muscle cells).

Carrier Proteins

Another type of protein embedded in the plasma membrane is a **carrier protein**. This aptly named protein binds a substance and, in doing so, triggers a change of its own shape, moving the bound molecule from the outside of the cell to its interior ([link]); depending on the gradient, the material may move in the opposite direction. Carrier proteins are typically specific for a single substance. This selectivity adds to the overall selectivity of the plasma membrane. The exact mechanism for the change of shape is poorly understood. Proteins can change shape when their hydrogen bonds are affected, but this may not fully explain this mechanism. Each carrier protein is specific to one substance, and there are a finite number of these proteins in any membrane. This can cause problems in transporting enough of the material for the cell to function properly. When all of the proteins are bound to their ligands, they are saturated and the rate of transport is at its maximum. Increasing the concentration gradient at this point will not result in an increased rate of transport.

Some substances are able to move down their concentration gradient across the plasma membrane with the aid of carrier proteins. Carrier proteins change shape as they move molecules across the membrane. (credit: modification of work by Mariana Ruiz Villareal)

An example of this process occurs in the kidney. Glucose, water, salts, ions, and amino acids needed by the body are filtered in one part of the kidney. This filtrate, which includes glucose, is then reabsorbed in another part of the kidney. Because there are only a finite number of carrier proteins for glucose, if more glucose is present than the proteins can handle, the excess is not transported and it is excreted from the body in the urine. In a diabetic individual, this is described as "spilling glucose into the urine." A different group of carrier proteins called glucose transport proteins, or GLUTs, are involved in transporting glucose and other hexose sugars through plasma membranes within the body.

Channel and carrier proteins transport material at different rates. Channel proteins transport much more quickly than do carrier proteins. Channel proteins facilitate diffusion at a rate of tens of millions of molecules per second, whereas carrier proteins work at a rate of a thousand to a million molecules per second.

Osmosis

Osmosis is the movement of water through a semipermeable membrane according to the concentration gradient of water across the membrane, which is inversely proportional to the concentration of solutes. While diffusion transports material across membranes and within cells, osmosis transports *only water* across a membrane and the membrane limits the diffusion of solutes in the water. Not surprisingly, the aquaporins that facilitate water movement play a large role in osmosis, most prominently in red blood cells and the membranes of kidney tubules.

Mechanism

Osmosis is a special case of diffusion. Water, like other substances, moves from an area of high concentration to one of low concentration. An obvious question is what makes water move at all? Imagine a beaker with a semipermeable membrane separating the two sides or halves ([link]). On both sides of the membrane the water level is the same, but there are different concentrations of a dissolved substance, or **solute**, that cannot cross the membrane (otherwise the concentrations on each side would be balanced by the solute crossing the membrane). If the volume of the solution on both sides of the membrane is the same, but the concentrations of solute are different, then there are different amounts of water, the solvent, on either side of the membrane.

In osmosis, water always moves from an area of higher water concentration to one of lower concentration. In the diagram shown, the solute cannot pass through the selectively permeable membrane, but the water can.

To illustrate this, imagine two full glasses of water. One has a single teaspoon of sugar in it, whereas the second one contains one-quarter cup of sugar. If the total volume of the solutions in both cups is the same, which cup contains more water? Because the large amount of sugar in the second cup takes up much more space than the teaspoon of sugar in the first cup, the first cup has more water in it.

Returning to the beaker example, recall that it has a mixture of solutes on either side of the membrane. A principle of diffusion is that the molecules move around and will spread evenly throughout the medium if they can. However, only the material capable of getting through the membrane will diffuse through it. In this example, the solute cannot diffuse through the membrane, but the water can. Water has a concentration gradient in this system. Thus, water will diffuse down its concentration gradient, crossing the membrane to the side where it is less concentrated. This diffusion of water through the membrane—osmosis—will continue until the concentration gradient of water goes to zero or until the hydrostatic pressure of the water balances the osmotic pressure. Osmosis proceeds constantly in living systems.

Tonicity

Tonicity describes how an extracellular solution can change the volume of a cell by affecting osmosis. A solution's tonicity often directly correlates with the osmolarity of the solution. **Osmolarity** describes the total solute concentration of the solution. A solution with low osmolarity has a greater number of water molecules relative to the number of solute particles; a

solution with high osmolarity has fewer water molecules with respect to solute particles. In a situation in which solutions of two different osmolarities are separated by a membrane permeable to water, though not to the solute, water will move from the side of the membrane with lower osmolarity (and more water) to the side with higher osmolarity (and less water). This effect makes sense if you remember that the solute cannot move across the membrane, and thus the only component in the system that can move—the water—moves along its own concentration gradient. An important distinction that concerns living systems is that osmolarity measures the number of particles (which may be molecules) in a solution. Therefore, a solution that is cloudy with cells may have a lower osmolarity than a solution that is clear, if the second solution contains more dissolved molecules than there are cells.

Hypotonic Solutions

Three terms—hypotonic, isotonic, and hypertonic—are used to relate the osmolarity of a cell to the osmolarity of the extracellular fluid that contains the cells. In a **hypotonic** situation, the extracellular fluid has lower osmolarity than the fluid inside the cell, and water enters the cell. (In living systems, the point of reference is always the cytoplasm, so the prefix *hypomeans* that the extracellular fluid has a lower concentration of solutes, or a lower osmolarity, than the cell cytoplasm.) It also means that the extracellular fluid has a higher concentration of water in the solution than does the cell. In this situation, water will follow its concentration gradient and enter the cell.

Hypertonic Solutions

As for a **hypertonic** solution, the prefix *hyper*- refers to the extracellular fluid having a higher osmolarity than the cell's cytoplasm; therefore, the fluid contains less water than the cell does. Because the cell has a relatively higher concentration of water, water will leave the cell.

Isotonic Solutions

In an **isotonic** solution, the extracellular fluid has the same osmolarity as the cell. If the osmolarity of the cell matches that of the extracellular fluid, there will be no net movement of water into or out of the cell, although water will still move in and out. Blood cells and plant cells in hypertonic, isotonic, and hypotonic solutions take on characteristic appearances ([link]).

Note: Art Connection Hypertonic Isotonic Hypotonic solution H₂O H₂

Osmotic pressure changes the shape of red blood cells in hypertonic, isotonic, and hypotonic solutions. (credit: Mariana Ruiz Villareal)

A doctor injects a patient with what the doctor thinks is an isotonic saline solution. The patient dies, and an autopsy reveals that many red blood cells have been destroyed. Do you think the solution the doctor injected was really isotonic?

Note:

Link to Learning

For a video illustrating the process of diffusion in solutions, visit this <u>site</u>.

Tonicity in Living Systems

In a hypotonic environment, water enters a cell, and the cell swells. In an isotonic condition, the relative concentrations of solute and solvent are equal on both sides of the membrane. There is no net water movement; therefore, there is no change in the size of the cell. In a hypertonic solution, water leaves a cell and the cell shrinks. If either the hypo- or hypercondition goes to excess, the cell's functions become compromised, and the cell may be destroyed.

A red blood cell will burst, or lyse, when it swells beyond the plasma membrane's capability to expand. Remember, the membrane resembles a mosaic, with discrete spaces between the molecules composing it. If the cell swells, and the spaces between the lipids and proteins become too large, the cell will break apart.

In contrast, when excessive amounts of water leave a red blood cell, the cell shrinks, or crenates. This has the effect of concentrating the solutes left in the cell, making the cytosol denser and interfering with diffusion within the cell. The cell's ability to function will be compromised and may also result in the death of the cell.

Various living things have ways of controlling the effects of osmosis—a mechanism called osmoregulation. Some organisms, such as plants, fungi, bacteria, and some protists, have cell walls that surround the plasma membrane and prevent cell lysis in a hypotonic solution. The plasma membrane can only expand to the limit of the cell wall, so the cell will not

lyse. In fact, the cytoplasm in plants is always slightly hypertonic to the cellular environment, and water will always enter a cell if water is available. This inflow of water produces turgor pressure, which stiffens the cell walls of the plant ([link]). In nonwoody plants, turgor pressure supports the plant. Conversly, if the plant is not watered, the extracellular fluid will become hypertonic, causing water to leave the cell. In this condition, the cell does not shrink because the cell wall is not flexible. However, the cell membrane detaches from the wall and constricts the cytoplasm. This is called **plasmolysis**. Plants lose turgor pressure in this condition and wilt ([link]).

The turgor pressure within a plant cell depends on the tonicity of the solution that it is bathed in. (credit: modification of work by Mariana Ruiz Villareal)

Without adequate water, the plant on the left has lost turgor pressure, visible in its wilting; the turgor pressure is restored by watering it (right). (credit: Victor M. Vicente Selvas)

Tonicity is a concern for all living things. For example, paramecia and amoebas, which are protists that lack cell walls, have contractile vacuoles. This vesicle collects excess water from the cell and pumps it out, keeping the cell from lysing as it takes on water from its environment ([link]).

A paramecium's contractile vacuole, here visualized using bright field light microscopy at 480x magnification,

continuously pumps water out of the organism's body to keep it from bursting in a hypotonic medium. (credit: modification of work by NIH; scale-bar data from Matt Russell)

Many marine invertebrates have internal salt levels matched to their environments, making them isotonic with the water in which they live. Fish, however, must spend approximately five percent of their metabolic energy maintaining osmotic homeostasis. Freshwater fish live in an environment that is hypotonic to their cells. These fish actively take in salt through their gills and excrete diluted urine to rid themselves of excess water. Saltwater fish live in the reverse environment, which is hypertonic to their cells, and they secrete salt through their gills and excrete highly concentrated urine.

In vertebrates, the kidneys regulate the amount of water in the body. Osmoreceptors are specialized cells in the brain that monitor the concentration of solutes in the blood. If the levels of solutes increase beyond a certain range, a hormone is released that retards water loss through the kidney and dilutes the blood to safer levels. Animals also have high concentrations of albumin, which is produced by the liver, in their blood. This protein is too large to pass easily through plasma membranes and is a major factor in controlling the osmotic pressures applied to tissues.

Section Summary

The passive forms of transport, diffusion and osmosis, move materials of small molecular weight across membranes. Substances diffuse from areas of high concentration to areas of lower concentration, and this process continues until the substance is evenly distributed in a system. In solutions containing more than one substance, each type of molecule diffuses according to its own concentration gradient, independent of the diffusion of other substances. Many factors can affect the rate of diffusion, including concentration gradient, size of the particles that are diffusing, temperature of the system, and so on.

In living systems, diffusion of substances into and out of cells is mediated by the plasma membrane. Some materials diffuse readily through the membrane, but others are hindered, and their passage is made possible by specialized proteins, such as channels and transporters. The chemistry of living things occurs in aqueous solutions, and balancing the concentrations of those solutions is an ongoing problem. In living systems, diffusion of some substances would be slow or difficult without membrane proteins that facilitate transport.

Art Connections

Exercise:

Problem:

[link] A doctor injects a patient with what the doctor thinks is an isotonic saline solution. The patient dies, and an autopsy reveals that many red blood cells have been destroyed. Do you think the solution the doctor injected was really isotonic?

Solution:

[link] No, it must have been hypotonic as a hypotonic solution would cause water to enter the cells, thereby making them burst.

Review Questions

Exercise:

Problem: Water moves via osmosis ______.

- a. throughout the cytoplasm
- b. from an area with a high concentration of other solutes to a lower one
- c. from an area with a high concentration of water to one of lower concentration

d. from an area with a low concentration of water to one of higher concentration
Solution:
C
Exercise:
Problem:
The principal force driving movement in diffusion is the
a. temperatureb. particle sizec. concentration gradientd. membrane surface area
Solution:
C
Exercise:
Problem: What problem is faced by organisms that live in fresh water?
a. Their bodies tend to take in too much water.b. They have no way of controlling their tonicity.c. Only salt water poses problems for animals that live in it.d. Their bodies tend to lose too much water to their environment.
Solution:
A

Free Response

Exercise:

Problem:

Discuss why the following affect the rate of diffusion: molecular size, temperature, solution density, and the distance that must be traveled.

Solution:

Heavy molecules move more slowly than lighter ones. It takes more energy in the medium to move them along. Increasing or decreasing temperature increases or decreases the energy in the medium, affecting molecular movement. The denser a solution is, the harder it is for molecules to move through it, causing diffusion to slow down due to friction. Living cells require a steady supply of nutrients and a steady rate of waste removal. If the distance these substances need to travel is too great, diffusion cannot move nutrients and waste materials efficiently to sustain life.

Exercise:

Problem: Why does water move through a membrane?

Solution:

Water moves through a membrane in osmosis because there is a concentration gradient across the membrane of solute and solvent. The solute cannot effectively move to balance the concentration on both sides of the membrane, so water moves to achieve this balance.

Exercise:

Problem:

Both of the regular intravenous solutions administered in medicine, normal saline and lactated Ringer's solution, are isotonic. Why is this important?

Solution:

Injection of isotonic solutions ensures that there will be no perturbation of the osmotic balance, and no water taken from tissues or added to them from the blood.

Glossary

aquaporin

channel protein that allows water through the membrane at a very high rate

carrier protein

membrane protein that moves a substance across the plasma membrane by changing its own shape

channel protein

membrane protein that allows a substance to pass through its hollow core across the plasma membrane

concentration gradient

area of high concentration adjacent to an area of low concentration

diffusion

passive process of transport of low-molecular weight material according to its concentration gradient

facilitated transport

process by which material moves down a concentration gradient (from high to low concentration) using integral membrane proteins

hypertonic

situation in which extracellular fluid has a higher osmolarity than the fluid inside the cell, resulting in water moving out of the cell

hypotonic

situation in which extracellular fluid has a lower osmolarity than the fluid inside the cell, resulting in water moving into the cell

isotonic

situation in which the extracellular fluid has the same osmolarity as the fluid inside the cell, resulting in no net movement of water into or out of the cell

osmolarity

total amount of substances dissolved in a specific amount of solution

osmosis

transport of water through a semipermeable membrane according to the concentration gradient of water across the membrane that results from the presence of solute that cannot pass through the membrane

passive transport

method of transporting material through a membrane that does not require energy

plasmolysis

detaching of the cell membrane from the cell wall and constriction of the cell membrane when a plant cell is in a hypertonic solution

selectively permeable

characteristic of a membrane that allows some substances through but not others

solute

substance dissolved in a liquid to form a solution

tonicity

amount of solute in a solution

transport protein

membrane protein that facilitates passage of a substance across a membrane by binding it

Active Transport By the end of this section, you will be able to:

- Understand how electrochemical gradients affect ions
- Distinguish between primary active transport and secondary active transport

Active transport mechanisms require the use of the cell's energy, usually in the form of adenosine triphosphate (ATP). If a substance must move into the cell against its concentration gradient—that is, if the concentration of the substance inside the cell is greater than its concentration in the extracellular fluid (and vice versa)—the cell must use energy to move the substance. Some active transport mechanisms move small-molecular weight materials, such as ions, through the membrane. Other mechanisms transport much larger molecules.

Electrochemical Gradient

We have discussed simple concentration gradients—differential concentrations of a substance across a space or a membrane—but in living systems, gradients are more complex. Because ions move into and out of cells and because cells contain proteins that do not move across the membrane and are mostly negatively charged, there is also an electrical gradient, a difference of charge, across the plasma membrane. The interior of living cells is electrically negative with respect to the extracellular fluid in which they are bathed, and at the same time, cells have higher concentrations of potassium (K⁺) and lower concentrations of sodium (Na⁺) than does the extracellular fluid. So in a living cell, the concentration gradient of Na⁺ tends to drive it into the cell, and the electrical gradient of Na⁺ (a positive ion) also tends to drive it inward to the negatively charged interior. The situation is more complex, however, for other elements such as potassium. The electrical gradient of K⁺, a positive ion, also tends to drive it into the cell, but the concentration gradient of K⁺ tends to drive K⁺ out of the cell ([link]). The combined gradient of concentration and electrical charge that affects an ion is called its **electrochemical gradient**.

Note:

Electrochemical gradients arise from the combined effects of concentration gradients and electrical gradients. (credit: "Synaptitude"/Wikimedia Commons)

Injection of a potassium solution into a person's blood is lethal; this is used in capital punishment and euthanasia. Why do you think a potassium solution injection is lethal?

Moving Against a Gradient

To move substances against a concentration or electrochemical gradient, the cell must use energy. This energy is harvested from ATP generated through the cell's metabolism. Active transport mechanisms, collectively called

pumps, work against electrochemical gradients. Small substances constantly pass through plasma membranes. Active transport maintains concentrations of ions and other substances needed by living cells in the face of these passive movements. Much of a cell's supply of metabolic energy may be spent maintaining these processes. (Most of a red blood cell's metabolic energy is used to maintain the imbalance between exterior and interior sodium and potassium levels required by the cell.) Because active transport mechanisms depend on a cell's metabolism for energy, they are sensitive to many metabolic poisons that interfere with the supply of ATP.

Two mechanisms exist for the transport of small-molecular weight material and small molecules. **Primary active transport** moves ions across a membrane and creates a difference in charge across that membrane, which is directly dependent on ATP. **Secondary active transport** describes the movement of material that is due to the electrochemical gradient established by primary active transport that does not directly require ATP.

Carrier Proteins for Active Transport

An important membrane adaption for active transport is the presence of specific carrier proteins or pumps to facilitate movement: there are three types of these proteins or **transporters** ([link]). A **uniporter** carries one specific ion or molecule. A **symporter** carries two different ions or molecules, both in the same direction. An **antiporter** also carries two different ions or molecules, but in different directions. All of these transporters can also transport small, uncharged organic molecules like glucose. These three types of carrier proteins are also found in facilitated diffusion, but they do not require ATP to work in that process. Some examples of pumps for active transport are Na⁺-K⁺ ATPase, which carries sodium and potassium ions, and H⁺-K⁺ ATPase, which carries hydrogen and potassium ions. Both of these are antiporter carrier proteins. Two other carrier proteins are Ca²⁺ ATPase and H⁺ ATPase, which carry only calcium and only hydrogen ions, respectively. Both are pumps.

A uniporter carries one molecule or ion. A symporter carries two different molecules or ions, both in the same direction. An antiporter also carries two different molecules or ions, but in different directions. (credit: modification of work by "Lupask"/Wikimedia Commons)

Primary Active Transport

The primary active transport that functions with the active transport of sodium and potassium allows secondary active transport to occur. The second transport method is still considered active because it depends on the use of energy as does primary transport ([link]).

Primary active transport moves ions across a membrane, creating an electrochemical gradient (electrogenic transport). (credit: modification of work by Mariana Ruiz Villareal)

One of the most important pumps in animals cells is the sodium-potassium pump (Na^+-K^+ ATPase), which maintains the electrochemical gradient (and the correct concentrations of Na^+ and K^+) in living cells. The sodium-potassium pump moves K^+ into the cell while moving Na^+ out at the same time, at a ratio of three Na^+ for every two K^+ ions moved in. The Na^+-K^+ ATPase exists in two forms, depending on its orientation to the interior or exterior of the cell and its affinity for either sodium or potassium ions. The process consists of the following six steps.

- 1. With the enzyme oriented towards the interior of the cell, the carrier has a high affinity for sodium ions. Three ions bind to the protein.
- 2. ATP is hydrolyzed by the protein carrier and a low-energy phosphate group attaches to it.
- 3. As a result, the carrier changes shape and re-orients itself towards the exterior of the membrane. The protein's affinity for sodium decreases and the three sodium ions leave the carrier.
- 4. The shape change increases the carrier's affinity for potassium ions, and two such ions attach to the protein. Subsequently, the low-energy

- phosphate group detaches from the carrier.
- 5. With the phosphate group removed and potassium ions attached, the carrier protein repositions itself towards the interior of the cell.
- 6. The carrier protein, in its new configuration, has a decreased affinity for potassium, and the two ions are released into the cytoplasm. The protein now has a higher affinity for sodium ions, and the process starts again.

Several things have happened as a result of this process. At this point, there are more sodium ions outside of the cell than inside and more potassium ions inside than out. For every three ions of sodium that move out, two ions of potassium move in. This results in the interior being slightly more negative relative to the exterior. This difference in charge is important in creating the conditions necessary for the secondary process. The sodium-potassium pump is, therefore, an **electrogenic pump** (a pump that creates a charge imbalance), creating an electrical imbalance across the membrane and contributing to the membrane potential.

Note:

Link to Learning

Watch this <u>video</u> to see a simulation of active transport in a sodiumpotassium ATPase.

Secondary Active Transport (Co-transport)

Secondary active transport brings sodium ions, and possibly other compounds, into the cell. As sodium ion concentrations build outside of the plasma membrane because of the action of the primary active transport process, an electrochemical gradient is created. If a channel protein exists and is open, the sodium ions will be pulled through the membrane. This movement is used to transport other substances that can attach themselves to the transport protein through the membrane ([link]). Many amino acids, as well as glucose, enter a cell this way. This secondary process is also used to store high-energy hydrogen ions in the mitochondria of plant and animal cells for the production of ATP. The potential energy that accumulates in the stored hydrogen ions is translated into kinetic energy as the ions surge through the channel protein ATP synthase, and that energy is used to convert ADP into ATP.

An electrochemical gradient, created by primary active transport, can move other substances against their concentration gradients, a process called co-transport or secondary active transport. (credit: modification of work by Mariana Ruiz Villareal)

If the pH outside the cell decreases, would you expect the amount of amino acids transported into the cell to increase or decrease?

Section Summary

The combined gradient that affects an ion includes its concentration gradient and its electrical gradient. A positive ion, for example, might tend to diffuse into a new area, down its concentration gradient, but if it is diffusing into an area of net positive charge, its diffusion will be hampered by its electrical gradient. When dealing with ions in aqueous solutions, a combination of the electrochemical and concentration gradients, rather than just the concentration gradient alone, must be considered. Living cells need certain substances that exist inside the cell in concentrations greater than they exist in the extracellular space. Moving substances up their electrochemical gradients requires energy from the cell. Active transport uses energy stored in ATP to fuel this transport. Active transport of small molecular-sized materials uses integral proteins in the cell membrane to move the materials: These proteins are analogous to pumps. Some pumps, which carry out primary active transport, couple directly with ATP to drive their action. In co-transport (or secondary active transport), energy from primary transport can be used to move another substance into the cell and up its concentration gradient.

Art Connections

Exercise:

Problem:

[link] Injection of a potassium solution into a person's blood is lethal; this is used in capital punishment and euthanasia. Why do you think a potassium solution injection is lethal?

Solution:

[link] Cells typically have a high concentration of potassium in the cytoplasm and are bathed in a high concentration of sodium. Injection of potassium dissipates this electrochemical gradient. In heart muscle, the sodium/potassium potential is responsible for transmitting the signal that causes the muscle to contract. When this potential is dissipated, the signal can't be transmitted, and the heart stops beating. Potassium injections are also used to stop the heart from beating during surgery.

Exercise:

Problem:

[link] If the pH outside the cell decreases, would you expect the amount of amino acids transported into the cell to increase or decrease?

Solution:

[link] A decrease in pH means an increase in positively charged H⁺ ions, and an increase in the electrical gradient across the membrane. The transport of amino acids into the cell will increase.

Review Questions

Exercise:

Problem:

Active transport must function continuously because _____

- a. plasma membranes wear out
- b. not all membranes are amphiphilic
- c. facilitated transport opposes active transport
- d. diffusion is constantly moving solutes in opposite directions

Solution:

Exercise:

Problem:

How does the sodium-potassium pump make the interior of the cell negatively charged?

- a. by expelling anions
- b. by pulling in anions
- c. by expelling more cations than are taken in
- d. by taking in and expelling an equal number of cations

\circ	•	
	luti	nn
JU.	ıuu	vii.

 \mathbf{C}

Exercise:

Problem:

What is the combination of an electrical gradient and a concentration gradient called?

- a. potential gradient
- b. electrical potential
- c. concentration potential
- d. electrochemical gradient

Solution:

D

Free Response

Exercise:

Problem:

Where does the cell get energy for active transport processes?

Solution:

The cell harvests energy from ATP produced by its own metabolism to power active transport processes, such as the activity of pumps.

Exercise:

Problem:

How does the sodium-potassium pump contribute to the net negative charge of the interior of the cell?

Solution:

The sodium-potassium pump forces out three (positive) Na^+ ions for every two (positive) K^+ ions it pumps in, thus the cell loses a positive charge at every cycle of the pump.

Glossary

active transport

method of transporting material that requires energy

antiporter

transporter that carries two ions or small molecules in different directions

electrochemical gradient

gradient produced by the combined forces of an electrical gradient and a chemical gradient

electrogenic pump

pump that creates a charge imbalance

primary active transport

active transport that moves ions or small molecules across a membrane and may create a difference in charge across that membrane

pump

active transport mechanism that works against electrochemical gradients

secondary active transport

movement of material that is due to the electrochemical gradient established by primary active transport

symporter

transporter that carries two different ions or small molecules, both in the same direction

transporter

specific carrier proteins or pumps that facilitate movement

uniporter

transporter that carries one specific ion or molecule

Bulk Transport By the end of this section, you will be able to:

- Describe endocytosis, including phagocytosis, pinocytosis, and receptor-mediated endocytosis
- Understand the process of exocytosis

In addition to moving small ions and molecules through the membrane, cells also need to remove and take in larger molecules and particles (see [link] for examples). Some cells are even capable of engulfing entire unicellular microorganisms. You might have correctly hypothesized that the uptake and release of large particles by the cell requires energy. A large particle, however, cannot pass through the membrane, even with energy supplied by the cell.

Endocytosis

Endocytosis is a type of active transport that moves particles, such as large molecules, parts of cells, and even whole cells, into a cell. There are different variations of endocytosis, but all share a common characteristic: The plasma membrane of the cell invaginates, forming a pocket around the target particle. The pocket pinches off, resulting in the particle being contained in a newly created intracellular vesicle formed from the plasma membrane.

Phagocytosis

Phagocytosis (the condition of "cell eating") is the process by which large particles, such as cells or relatively large particles, are taken in by a cell. For example, when microorganisms invade the human body, a type of white blood cell called a neutrophil will remove the invaders through this process, surrounding and engulfing the microorganism, which is then destroyed by the neutrophil ([link]).

In phagocytosis, the cell membrane surrounds the particle and engulfs it. (credit: Mariana Ruiz Villareal)

In preparation for phagocytosis, a portion of the inward-facing surface of the plasma membrane becomes coated with a protein called **clathrin**, which stabilizes this section of the membrane. The coated portion of the membrane then extends from the body of the cell and surrounds the particle, eventually enclosing it. Once the vesicle containing the particle is enclosed within the cell, the clathrin disengages from the membrane and the vesicle merges with a lysosome for the breakdown of the material in the newly formed compartment (endosome). When accessible nutrients from the degradation of the vesicular contents have been extracted, the newly formed endosome merges with the plasma membrane and releases its contents into the extracellular fluid. The endosomal membrane again becomes part of the plasma membrane.

Pinocytosis

A variation of endocytosis is called **pinocytosis**. This literally means "cell drinking" and was named at a time when the assumption was that the cell was purposefully taking in extracellular fluid. In reality, this is a process that takes in molecules, including water, which the cell needs from the extracellular fluid. Pinocytosis results in a much smaller vesicle than does phagocytosis, and the vesicle does not need to merge with a lysosome ([link]).

In pinocytosis, the cell membrane invaginates, surrounds a small volume of fluid, and pinches off. (credit: Mariana Ruiz Villareal)

A variation of pinocytosis is called **potocytosis**. This process uses a coating protein, called **caveolin**, on the cytoplasmic side of the plasma membrane,

which performs a similar function to clathrin. The cavities in the plasma membrane that form the vacuoles have membrane receptors and lipid rafts in addition to caveolin. The vacuoles or vesicles formed in caveolae (singular caveola) are smaller than those in pinocytosis. Potocytosis is used to bring small molecules into the cell and to transport these molecules through the cell for their release on the other side of the cell, a process called transcytosis.

Receptor-mediated Endocytosis

A targeted variation of endocytosis employs receptor proteins in the plasma membrane that have a specific binding affinity for certain substances ([link]).

In receptor-mediated endocytosis, uptake of

substances by the cell is targeted to a single type of substance that binds to the receptor on the external surface of the cell membrane. (credit: modification of work by Mariana Ruiz Villareal)

In **receptor-mediated endocytosis**, as in phagocytosis, clathrin is attached to the cytoplasmic side of the plasma membrane. If uptake of a compound is dependent on receptor-mediated endocytosis and the process is ineffective, the material will not be removed from the tissue fluids or blood. Instead, it will stay in those fluids and increase in concentration. Some human diseases are caused by the failure of receptor-mediated endocytosis. For example, the form of cholesterol termed low-density lipoprotein or LDL (also referred to as "bad" cholesterol) is removed from the blood by receptor-mediated endocytosis. In the human genetic disease familial hypercholesterolemia, the LDL receptors are defective or missing entirely. People with this condition have life-threatening levels of cholesterol in their blood, because their cells cannot clear LDL particles from their blood.

Although receptor-mediated endocytosis is designed to bring specific substances that are normally found in the extracellular fluid into the cell, other substances may gain entry into the cell at the same site. Flu viruses, diphtheria, and cholera toxin all have sites that cross-react with normal receptor-binding sites and gain entry into cells.

Note: Link to Learning

See receptor-mediated endocytosis in action, and click on different <u>parts</u> for a focused animation.

Exocytosis

The reverse process of moving material into a cell is the process of exocytosis. **Exocytosis** is the opposite of the processes discussed above in that its purpose is to expel material from the cell into the extracellular fluid. Waste material is enveloped in a membrane and fuses with the interior of the plasma membrane. This fusion opens the membranous envelope on the exterior of the cell, and the waste material is expelled into the extracellular space ([link]). Other examples of cells releasing molecules via exocytosis include the secretion of proteins of the extracellular matrix and secretion of neurotransmitters into the synaptic cleft by synaptic vesicles.

In exocytosis, vesicles containing substances fuse with the plasma membrane. The contents are then released to the exterior of the cell. (credit: modification of work by Mariana Ruiz Villareal)

Methods of Transport, Energy Requirements, and Types of Material Transported		
Transport Method	Active/Passive	Material Transported

Methods of Transport, Energy Requirements, and Types of Material Transported

Transport Method	Active/Passive	Material Transported
Diffusion	Passive	Small-molecular weight material
Osmosis	Passive	Water
Facilitated transport/diffusion	Passive	Sodium, potassium, calcium, glucose
Primary active transport	Active	Sodium, potassium, calcium
Secondary active transport	Active	Amino acids, lactose
Phagocytosis	Active	Large macromolecules, whole cells, or cellular structures
Pinocytosis and potocytosis	Active	Small molecules (liquids/water)
Receptor- mediated endocytosis	Active	Large quantities of macromolecules

Section Summary

Active transport methods require the direct use of ATP to fuel the transport. Large particles, such as macromolecules, parts of cells, or whole cells, can be engulfed by other cells in a process called phagocytosis. In phagocytosis,

a portion of the membrane invaginates and flows around the particle, eventually pinching off and leaving the particle entirely enclosed by an envelope of plasma membrane. Vesicle contents are broken down by the cell, with the particles either used as food or dispatched. Pinocytosis is a similar process on a smaller scale. The plasma membrane invaginates and pinches off, producing a small envelope of fluid from outside the cell. Pinocytosis imports substances that the cell needs from the extracellular fluid. The cell expels waste in a similar but reverse manner: it pushes a membranous vacuole to the plasma membrane, allowing the vacuole to fuse with the membrane and incorporate itself into the membrane structure, releasing its contents to the exterior.

Review Questions

Exercise:

Problem: What happens to the membrane of a vesicle after exocytosis?

- a. It leaves the cell.
- b. It is disassembled by the cell.
- c. It fuses with and becomes part of the plasma membrane.
- d. It is used again in another exocytosis event.

Solution:

 \mathbf{C}

Exercise:

Problem:

Which transport mechanism can bring whole cells into a cell?

- a. pinocytosis
- b. phagocytosis
- c. facilitated transport
- d. primary active transport

Solution:

В

Exercise:

Problem:

In what important way does receptor-mediated endocytosis differ from phagocytosis?

- a. It transports only small amounts of fluid.
- b. It does not involve the pinching off of membrane.
- c. It brings in only a specifically targeted substance.
- d. It brings substances into the cell, while phagocytosis removes substances.

Solution:

 \mathbf{C}

Free Response

Exercise:

Problem:

Why is it important that there are different types of proteins in plasma membranes for the transport of materials into and out of a cell?

Solution:

The proteins allow a cell to select what compound will be transported, meeting the needs of the cell and not bringing in anything else.

Exercise:

Problem:

Why do ions have a difficult time getting through plasma membranes despite their small size?

Solution:

Ions are charged, and consequently, they are hydrophilic and cannot associate with the lipid portion of the membrane. Ions must be transported by carrier proteins or ion channels.

Glossary

caveolin

protein that coats the cytoplasmic side of the plasma membrane and participates in the process of liquid update by potocytosis

clathrin

protein that coats the inward-facing surface of the plasma membrane and assists in the formation of specialized structures, like coated pits, for phagocytosis

endocytosis

type of active transport that moves substances, including fluids and particles, into a cell

exocytosis

process of passing bulk material out of a cell

pinocytosis

a variation of endocytosis that imports macromolecules that the cell needs from the extracellular fluid

potocytosis

variation of pinocytosis that uses a different coating protein (caveolin) on the cytoplasmic side of the plasma membrane

receptor-mediated endocytosis

variation of endocytosis that involves the use of specific binding proteins in the plasma membrane for specific molecules or particles, and clathrin-coated pits that become clathrin-coated vesicles

ATP: Adenosine Triphosphate By the end of this section, you will be able to:

- Explain the role of ATP as the cellular energy currency
- Describe how energy is released through hydrolysis of ATP

Even exergonic, energy-releasing reactions require a small amount of activation energy in order to proceed. However, consider endergonic reactions, which require much more energy input, because their products have more free energy than their reactants. Within the cell, where does energy to power such reactions come from? The answer lies with an energy-supplying molecule called **adenosine triphosphate**, or **ATP**. ATP is a small, relatively simple molecule ([link]), but within some of its bonds, it contains the potential for a quick burst of energy that can be harnessed to perform cellular work. This molecule can be thought of as the primary energy currency of cells in much the same way that money is the currency that people exchange for things they need. ATP is used to power the majority of energy-requiring cellular reactions.

ATP is the primary energy currency of the cell. It has an adenosine backbone with three phosphate groups attached.

As its name suggests, adenosine triphosphate is comprised of adenosine bound to three phosphate groups ([link]). Adenosine is a nucleoside consisting of the nitrogenous base adenine and a five-carbon sugar, ribose.

The three phosphate groups, in order of closest to furthest from the ribose sugar, are labeled alpha, beta, and gamma. Together, these chemical groups constitute an energy powerhouse. However, not all bonds within this molecule exist in a particularly high-energy state. Both bonds that link the phosphates are equally high-energy bonds (**phosphoanhydride bonds**) that, when broken, release sufficient energy to power a variety of cellular reactions and processes. These high-energy bonds are the bonds between the second and third (or beta and gamma) phosphate groups and between the first and second phosphate groups. The reason that these bonds are considered "high-energy" is because the products of such bond breaking—adenosine diphosphate (ADP) and one inorganic phosphate group (P_i)—have considerably lower free energy than the reactants: ATP and a water molecule. Because this reaction takes place with the use of a water molecule, it is considered a hydrolysis reaction. In other words, ATP is hydrolyzed into ADP in the following reaction:

Equation:

$$ATP + H_2O \rightarrow ADP + P_i + free energy$$

Like most chemical reactions, the hydrolysis of ATP to ADP is reversible. The reverse reaction regenerates ATP from ADP + P_i . Indeed, cells rely on the regeneration of ATP just as people rely on the regeneration of spent money through some sort of income. Since ATP hydrolysis releases energy, ATP regeneration must require an input of free energy. The formation of ATP is expressed in this equation:

Equation:

$$ADP + P_i + free \ energy \rightarrow ATP + H_2O$$

Two prominent questions remain with regard to the use of ATP as an energy source. Exactly how much free energy is released with the hydrolysis of ATP, and how is that free energy used to do cellular work? The calculated ΔG for the hydrolysis of one mole of ATP into ADP and P_i is -7.3 kcal/mole (-30.5 kJ/mol). Since this calculation is true under standard conditions, it would be expected that a different value exists under cellular conditions. In fact, the ΔG for the hydrolysis of one mole of ATP in a living

cell is almost double the value at standard conditions: -14 kcal/mol (-57 kJ/mol).

ATP is a highly unstable molecule. Unless quickly used to perform work, ATP spontaneously dissociates into ADP + P_i, and the free energy released during this process is lost as heat. The second question posed above, that is, how the energy released by ATP hydrolysis is used to perform work inside the cell, depends on a strategy called energy coupling. Cells couple the exergonic reaction of ATP hydrolysis with endergonic reactions, allowing them to proceed. One example of energy coupling using ATP involves a transmembrane ion pump that is extremely important for cellular function. This sodium-potassium pump (Na⁺/K⁺ pump) drives sodium out of the cell and potassium into the cell ([link]). A large percentage of a cell's ATP is spent powering this pump, because cellular processes bring a great deal of sodium into the cell and potassium out of the cell. The pump works constantly to stabilize cellular concentrations of sodium and potassium. In order for the pump to turn one cycle (exporting three Na+ ions and importing two K⁺ ions), one molecule of ATP must be hydrolyzed. When ATP is hydrolyzed, its gamma phosphate doesn't simply float away, but is actually transferred onto the pump protein. This process of a phosphate group binding to a molecule is called phosphorylation. As with most cases of ATP hydrolysis, a phosphate from ATP is transferred onto another molecule. In a phosphorylated state, the Na⁺/K⁺ pump has more free energy and is triggered to undergo a conformational change. This change allows it to release Na⁺ to the outside of the cell. It then binds extracellular K⁺, which, through another conformational change, causes the phosphate to detach from the pump. This release of phosphate triggers the K⁺ to be released to the inside of the cell. Essentially, the energy released from the hydrolysis of ATP is coupled with the energy required to power the pump and transport Na⁺ and K⁺ ions. ATP performs cellular work using this basic form of energy coupling through phosphorylation.

N	01	tο
Τ.4	U	ι.

Art Connection

The sodium-potassium pump is an example of energy coupling.

The energy derived from exergonic ATP hydrolysis is used to pump sodium and potassium ions across the cell membrane.

The hydrolysis of one ATP molecule releases 7.3 kcal/mol of energy ($\Delta G = -7.3$ kcal/mol of energy). If it takes 2.1 kcal/mol of energy to move one Na⁺ across the membrane ($\Delta G = +2.1$ kcal/mol of energy), how many sodium ions could be moved by the hydrolysis of one ATP molecule?

Often during cellular metabolic reactions, such as the synthesis and breakdown of nutrients, certain molecules must be altered slightly in their conformation to become substrates for the next step in the reaction series. One example is during the very first steps of cellular respiration, when a molecule of the sugar glucose is broken down in the process of glycolysis. In the first step of this process, ATP is required for the phosphorylation of glucose, creating a high-energy but unstable intermediate. This phosphorylation reaction powers a conformational change that allows the phosphorylated glucose molecule to be converted to the phosphorylated sugar fructose. Fructose is a necessary intermediate for glycolysis to move

forward. Here, the exergonic reaction of ATP hydrolysis is coupled with the endergonic reaction of converting glucose into a phosphorylated intermediate in the pathway. Once again, the energy released by breaking a phosphate bond within ATP was used for the phosphorylation of another molecule, creating an unstable intermediate and powering an important conformational change.

Note:

Link to Learning

See an interactive animation of the ATP-producing glycolysis process at this <u>site</u>.

Section Summary

ATP is the primary energy-supplying molecule for living cells. ATP is made up of a nucleotide, a five-carbon sugar, and three phosphate groups. The bonds that connect the phosphates (phosphoanhydride bonds) have high-energy content. The energy released from the hydrolysis of ATP into ADP + P_i is used to perform cellular work. Cells use ATP to perform work by coupling the exergonic reaction of ATP hydrolysis with endergonic reactions. ATP donates its phosphate group to another molecule via a process known as phosphorylation. The phosphorylated molecule is at a higher-energy state and is less stable than its unphosphorylated form, and this added energy from the addition of the phosphate allows the molecule to undergo its endergonic reaction.

Art Connections

Exercise:

Problem:

[link] The hydrolysis of one ATP molecule releases 7.3 kcal/mol of energy ($\Delta G = -7.3$ kcal/mol of energy). If it takes 2.1 kcal/mol of energy to move one Na⁺ across the membrane ($\Delta G = +2.1$ kcal/mol of energy), how many sodium ions could be moved by the hydrolysis of one ATP molecule?

Solution:

[link] Three sodium ions could be moved by the hydrolysis of one ATP molecule. The ΔG of the coupled reaction must be negative. Movement of three sodium ions across the membrane will take 6.3 kcal of energy (2.1 kcal × 3 Na⁺ ions = 6.3 kcal). Hydrolysis of ATP provides 7.3 kcal of energy, more than enough to power this reaction. Movement of four sodium ions across the membrane, however, would require 8.4 kcal of energy, more than one ATP molecule can provide.

Review Questions

Exercise:

Problem: The energy released by the hydrolysis of ATP is

- a. primarily stored between the alpha and beta phosphates
- b. equal to -57 kcal/mol
- c. harnessed as heat energy by the cell to perform work
- d. providing energy to coupled reactions

Solution:

Exercise:

Problem:

Which of the following molecules is likely to have the most potential energy?

- a. sucrose
- b. ATP
- c. glucose
- d. ADP

Solution:

A

Free Response

Exercise:

Problem:

Do you think that the E_A for ATP hydrolysis is relatively low or high? Explain your reasoning.

Solution:

The activation energy for hydrolysis is very low. Not only is ATP hydrolysis an exergonic process with a large $-\Delta G$, but ATP is also a very unstable molecule that rapidly breaks down into ADP + P_i if not utilized quickly. This suggests a very low E_A since it hydrolyzes so quickly.

Glossary

ATP

adenosine triphosphate, the cell's energy currency

phosphoanhydride bond bond that connects phosphates in an ATP molecule

Enzymes

By the end of this section, you will be able to:

- Describe the role of enzymes in metabolic pathways
- Explain how enzymes function as molecular catalysts
- Discuss enzyme regulation by various factors

A substance that helps a chemical reaction to occur is a catalyst, and the special molecules that catalyze biochemical reactions are called enzymes. Almost all enzymes are proteins, made up of chains of amino acids, and they perform the critical task of lowering the activation energies of chemical reactions inside the cell. Enzymes do this by binding to the reactant molecules, and holding them in such a way as to make the chemical bond-breaking and bond-forming processes take place more readily. It is important to remember that enzymes don't change the ΔG of a reaction. In other words, they don't change whether a reaction is exergonic (spontaneous) or endergonic. This is because they don't change the free energy of the reactants or products. They only reduce the activation energy required to reach the transition state ([link]).

Enzymes lower the activation energy of the reaction but do not change the free energy of the reaction.

Enzyme Active Site and Substrate Specificity

The chemical reactants to which an enzyme binds are the enzyme's **substrates.** There may be one or more substrates, depending on the particular chemical reaction. In some reactions, a single-reactant substrate is broken down into multiple products. In others, two substrates may come together to create one larger molecule. Two reactants might also enter a reaction, both become modified, and leave the reaction as two products. The location within the enzyme where the substrate binds is called the enzyme's **active site**. The active site is where the "action" happens, so to speak. Since enzymes are proteins, there is a unique combination of amino acid residues (also called side chains, or R groups) within the active site. Each residue is characterized by different properties. Residues can be large or small, weakly acidic or basic, hydrophilic or hydrophobic, positively or negatively charged, or neutral. The unique combination of amino acid residues, their positions, sequences, structures, and properties, creates a very specific chemical environment within the active site. This specific environment is suited to bind, albeit briefly, to a specific chemical substrate (or substrates). Due to this jigsaw puzzle-like match between an enzyme and its substrates (which adapts to find the best fit between the transition state and the active site), enzymes are known for their specificity. The "best fit" results from the shape and the amino acid functional group's attraction to the substrate. There is a specifically matched enzyme for each substrate and, thus, for each chemical reaction; however, there is flexibility as well.

The fact that active sites are so perfectly suited to provide specific environmental conditions also means that they are subject to influences by the local environment. It is true that increasing the environmental temperature generally increases reaction rates, enzyme-catalyzed or otherwise. However, increasing or decreasing the temperature outside of an optimal range can affect chemical bonds within the active site in such a way that they are less well suited to bind substrates. High temperatures will eventually cause enzymes, like other biological molecules, to **denature**, a process that changes the natural properties of a substance. Likewise, the pH of the local environment can also affect enzyme function. Active site amino acid residues have their own acidic or basic properties that are optimal for catalysis. These residues are sensitive to changes in pH that can impair the

way substrate molecules bind. Enzymes are suited to function best within a certain pH range, and, as with temperature, extreme pH values (acidic or basic) of the environment can cause enzymes to denature.

Induced Fit and Enzyme Function

For many years, scientists thought that enzyme-substrate binding took place in a simple "lock-and-key" fashion. This model asserted that the enzyme and substrate fit together perfectly in one instantaneous step. However, current research supports a more refined view called **induced fit** ([link]). The induced-fit model expands upon the lock-and-key model by describing a more dynamic interaction between enzyme and substrate. As the enzyme and substrate come together, their interaction causes a mild shift in the enzyme's structure that confirms an ideal binding arrangement between the enzyme and the transition state of the substrate. This ideal binding maximizes the enzyme's ability to catalyze its reaction; in other words, this interaction renders the enzyme catalytically active.

Note:

Link to Learning

View an animation of induced fit at this website.

When an enzyme binds its substrate, an enzyme-substrate complex is formed. This complex lowers the activation energy of the reaction and promotes its rapid progression in one of many ways. On a basic level,

enzymes promote chemical reactions that involve more than one substrate by bringing the substrates together in an optimal orientation. The appropriate region (atoms and bonds) of one molecule is juxtaposed to the appropriate region of the other molecule with which it must react. Another way in which enzymes promote the reaction of their substrates is by creating an optimal environment within the active site for the reaction to occur. Certain chemical reactions might proceed best in a slightly acidic or non-polar environment. The chemical properties that emerge from the particular arrangement of amino acid residues within an active site create the perfect environment for an enzyme's specific substrates to react.

You've learned that the activation energy required for many reactions includes the energy involved in manipulating or slightly contorting chemical bonds so that they can easily break and allow others to reform. Enzymatic action can aid this process. The enzyme-substrate complex can lower the activation energy by contorting substrate molecules in such a way as to facilitate bond-breaking, helping to reach the transition state. Finally, enzymes can also lower activation energies by taking part in the chemical reaction itself. The amino acid residues can provide certain ions or chemical groups that actually form covalent bonds with substrate molecules as a necessary step of the reaction process. In these cases, it is important to remember that the enzyme will always return to its original state at the completion of the reaction. One of the hallmark properties of enzymes is that they remain ultimately unchanged by the reactions they catalyze. After an enzyme is done catalyzing a reaction, it releases its product(s).

According to the induced-fit model, both enzyme and substrate undergo dynamic conformational changes upon binding. The enzyme contorts the substrate into its transition state, thereby increasing the rate of the reaction.

Control of Metabolism Through Enzyme Regulation

It would seem ideal to have a scenario in which all of the enzymes encoded in an organism's genome existed in abundant supply and functioned optimally under all cellular conditions, in all cells, at all times. In reality, this is far from the case. A variety of mechanisms ensure that this does not happen. Cellular needs and conditions vary from cell to cell, and change within individual cells over time. The required enzymes and energetic demands of stomach cells are different from those of fat storage cells, skin cells, blood cells, and nerve cells. Furthermore, a digestive cell works much harder to process and break down nutrients during the time that closely follows a meal compared with many hours after a meal. As these cellular demands and conditions vary, so do the amounts and functionality of different enzymes.

Since the rates of biochemical reactions are controlled by activation energy, and enzymes lower and determine activation energies for chemical reactions, the relative amounts and functioning of the variety of enzymes within a cell ultimately determine which reactions will proceed and at which rates. This determination is tightly controlled. In certain cellular environments, enzyme activity is partly controlled by environmental factors, like pH and temperature. There are other mechanisms through which cells control the activity of enzymes and determine the rates at which various biochemical reactions will occur.

Regulation of Enzymes by Molecules

Enzymes can be regulated in ways that either promote or reduce their activity. There are many different kinds of molecules that inhibit or promote enzyme function, and various mechanisms exist for doing so. In some cases of enzyme inhibition, for example, an inhibitor molecule is similar enough to a substrate that it can bind to the active site and simply block the substrate from binding. When this happens, the enzyme is inhibited through **competitive inhibition**, because an inhibitor molecule competes with the substrate for active site binding ([link]). On the other hand, in noncompetitive inhibition, an inhibitor molecule binds to the enzyme in a location other than an allosteric site and still manages to block substrate binding to the active site.

Competitive and noncompetitive inhibition affect the rate of reaction differently. Competitive inhibitors affect the initial rate but do not affect the maximal rate, whereas noncompetitive inhibitors affect the maximal rate.

Some inhibitor molecules bind to enzymes in a location where their binding induces a conformational change that reduces the affinity of the enzyme for

its substrate. This type of inhibition is called **allosteric inhibition** ([link]). Most allosterically regulated enzymes are made up of more than one polypeptide, meaning that they have more than one protein subunit. When an allosteric inhibitor binds to an enzyme, all active sites on the protein subunits are changed slightly such that they bind their substrates with less efficiency. There are allosteric activators as well as inhibitors. Allosteric activators bind to locations on an enzyme away from the active site, inducing a conformational change that increases the affinity of the enzyme's active site(s) for its substrate(s).

Allosteric inhibitors modify the active site of the enzyme so that substrate binding is reduced or prevented. In contrast, allosteric activators modify the active site of the enzyme so that the affinity for the substrate increases.

Note:

Everyday Connection

Have you ever wondered how pharmaceutical drugs are developed? (credit: Deborah Austin)

Drug Discovery by Looking for Inhibitors of Key Enzymes in Specific Pathways

Enzymes are key components of metabolic pathways. Understanding how enzymes work and how they can be regulated is a key principle behind the development of many of the pharmaceutical drugs ([link]) on the market today. Biologists working in this field collaborate with other scientists, usually chemists, to design drugs.

Consider statins for example—which is the name given to the class of drugs that reduces cholesterol levels. These compounds are essentially inhibitors of the enzyme HMG-CoA reductase. HMG-CoA reductase is the enzyme that synthesizes cholesterol from lipids in the body. By inhibiting this enzyme, the levels of cholesterol synthesized in the body can be reduced. Similarly, acetaminophen, popularly marketed under the brand name Tylenol, is an inhibitor of the enzyme cyclooxygenase. While it is effective in providing relief from fever and inflammation (pain), its mechanism of action is still not completely understood.

How are drugs developed? One of the first challenges in drug development is identifying the specific molecule that the drug is intended to target. In the case of statins, HMG-CoA reductase is the drug target. Drug targets are identified through painstaking research in the laboratory. Identifying the

target alone is not sufficient; scientists also need to know how the target acts inside the cell and which reactions go awry in the case of disease. Once the target and the pathway are identified, then the actual process of drug design begins. During this stage, chemists and biologists work together to design and synthesize molecules that can either block or activate a particular reaction. However, this is only the beginning: both if and when a drug prototype is successful in performing its function, then it must undergo many tests from in vitro experiments to clinical trials before it can get FDA approval to be on the market.

Many enzymes don't work optimally, or even at all, unless bound to other specific non-protein helper molecules, either temporarily through ionic or hydrogen bonds or permanently through stronger covalent bonds. Two types of helper molecules are **cofactors** and **coenzymes**. Binding to these molecules promotes optimal conformation and function for their respective enzymes. Cofactors are inorganic ions such as iron (Fe++) and magnesium (Mg++). One example of an enzyme that requires a metal ion as a cofactor is the enzyme that builds DNA molecules, DNA polymerase, which requires bound zinc ion (Zn++) to function. Coenzymes are organic helper molecules, with a basic atomic structure made up of carbon and hydrogen, which are required for enzyme action. The most common sources of coenzymes are dietary vitamins ([link]). Some vitamins are precursors to coenzymes and others act directly as coenzymes. Vitamin C is a coenzyme for multiple enzymes that take part in building the important connective tissue component, collagen. An important step in the breakdown of glucose to yield energy is catalysis by a multi-enzyme complex called pyruvate dehydrogenase. Pyruvate dehydrogenase is a complex of several enzymes that actually requires one cofactor (a magnesium ion) and five different organic coenzymes to catalyze its specific chemical reaction. Therefore, enzyme function is, in part, regulated by an abundance of various cofactors and coenzymes, which are supplied primarily by the diets of most organisms.

Dietary Vitamins		
Vitamin A	Folic acid	
СН ₃ СН ₃ СН ₃ ОН	H ₂ N N N H OH OH OH OH OH	
Vitamin B ₁	Vitamin C	
CI [®] NH ₃ CI [®] CH ₃ NH ₃ C N	ОНОН	
Vitamin B ₂	Vitamin D₂ (calciferol)	
OH O	OH CH3 CH3 CH3 CH3 CH3	
Vitamin B₅ (pyridoxine)	Vitamin E (alpha-tocopherol)	
niacin H ₃ C N OH	HO CH ₃ H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	

Vitamins are important coenzymes or precursors of coenzymes, and are required for enzymes to function properly.

Multivitamin capsules usually contain mixtures of all the vitamins at different percentages.

Enzyme Compartmentalization

In eukaryotic cells, molecules such as enzymes are usually compartmentalized into different organelles. This allows for yet another level of regulation of enzyme activity. Enzymes required only for certain cellular processes can be housed separately along with their substrates, allowing for more efficient chemical reactions. Examples of this sort of

enzyme regulation based on location and proximity include the enzymes involved in the latter stages of cellular respiration, which take place exclusively in the mitochondria, and the enzymes involved in the digestion of cellular debris and foreign materials, located within lysosomes.

Feedback Inhibition in Metabolic Pathways

Molecules can regulate enzyme function in many ways. A major question remains, however: What are these molecules and where do they come from? Some are cofactors and coenzymes, ions, and organic molecules, as you've learned. What other molecules in the cell provide enzymatic regulation, such as allosteric modulation, and competitive and noncompetitive inhibition? The answer is that a wide variety of molecules can perform these roles. Some of these molecules include pharmaceutical and non-pharmaceutical drugs, toxins, and poisons from the environment. Perhaps the most relevant sources of enzyme regulatory molecules, with respect to cellular metabolism, are the products of the cellular metabolic reactions themselves. In a most efficient and elegant way, cells have evolved to use the products of their own reactions for feedback inhibition of enzyme activity. **Feedback inhibition** involves the use of a reaction product to regulate its own further production ([link]). The cell responds to the abundance of specific products by slowing down production during anabolic or catabolic reactions. Such reaction products may inhibit the enzymes that catalyzed their production through the mechanisms described above.

Metabolic pathways are a series of reactions catalyzed by multiple enzymes. Feedback inhibition, where the end product of the pathway inhibits an upstream step, is an important regulatory mechanism in cells.

The production of both amino acids and nucleotides is controlled through feedback inhibition. Additionally, ATP is an allosteric regulator of some of the enzymes involved in the catabolic breakdown of sugar, the process that produces ATP. In this way, when ATP is abundant, the cell can prevent its further production. Remember that ATP is an unstable molecule that can spontaneously dissociate into ADP. If too much ATP were present in a cell, much of it would go to waste. On the other hand, ADP serves as a positive allosteric regulator (an allosteric activator) for some of the same enzymes that are inhibited by ATP. Thus, when relative levels of ADP are high compared to ATP, the cell is triggered to produce more ATP through the catabolism of sugar.

Section Summary

Enzymes are chemical catalysts that accelerate chemical reactions at physiological temperatures by lowering their activation energy. Enzymes are usually proteins consisting of one or more polypeptide chains. Enzymes have an active site that provides a unique chemical environment, made up of certain amino acid R groups (residues). This unique environment is perfectly suited to convert particular chemical reactants for that enzyme, called substrates, into unstable intermediates called transition states. Enzymes and substrates are thought to bind with an induced fit, which means that enzymes undergo slight conformational adjustments upon substrate contact, leading to full, optimal binding. Enzymes bind to substrates and catalyze reactions in four different ways: bringing substrates together in an optimal orientation, compromising the bond structures of substrates so that bonds can be more easily broken, providing optimal environmental conditions for a reaction to occur, or participating directly in their chemical reaction by forming transient covalent bonds with the substrates.

Enzyme action must be regulated so that in a given cell at a given time, the desired reactions are being catalyzed and the undesired reactions are not. Enzymes are regulated by cellular conditions, such as temperature and pH. They are also regulated through their location within a cell, sometimes being compartmentalized so that they can only catalyze reactions under certain circumstances. Inhibition and activation of enzymes via other molecules are other important ways that enzymes are regulated. Inhibitors can act competitively, noncompetitively, or allosterically; noncompetitive inhibitors are usually allosteric. Activators can also enhance the function of enzymes allosterically. The most common method by which cells regulate the enzymes in metabolic pathways is through feedback inhibition. During feedback inhibition, the products of a metabolic pathway serve as inhibitors (usually allosteric) of one or more of the enzymes (usually the first committed enzyme of the pathway) involved in the pathway that produces them.

Review Questions

Exercise:

Problem: Which of the following is not true about enzymes:

- a. They increase ΔG of reactions
- b. They are usually made of amino acids
- c. They lower the activation energy of chemical reactions
- d. Each one is specific to the particular substrate(s) to which it binds

Solution:

Α

Exercise:

Problem: An allosteric inhibitor does which of the following?

- a. Binds to an enzyme away from the active site and changes the conformation of the active site, increasing its affinity for substrate binding
- b. Binds to the active site and blocks it from binding substrate
- c. Binds to an enzyme away from the active site and changes the conformation of the active site, decreasing its affinity for the substrate
- d. Binds directly to the active site and mimics the substrate

\circ	•	
	lution:	
. 717		

 \mathbf{C}

Exercise:

Problem:

Which of the following analogies best describe the induced-fit model of enzyme-substrate binding?

- a. A hug between two people
- b. A key fitting into a lock
- c. A square peg fitting through the square hole and a round peg fitting through the round hole of a children's toy
- d. The fitting together of two jigsaw puzzle pieces.

\sim 1	•	
		\mathbf{n}
וטכי		on:
		

D

Free Response

Exercise:

Problem:

With regard to enzymes, why are vitamins necessary for good health? Give examples.

Solution:

Most vitamins and minerals act as coenzymes and cofactors for enzyme action. Many enzymes require the binding of certain cofactors or coenzymes to be able to catalyze their reactions. Since enzymes catalyze many important reactions, it is critical to obtain sufficient vitamins and minerals from the diet and from supplements. Vitamin C (ascorbic acid) is a coenzyme necessary for the action of enzymes that build collagen, an important protein component of connective tissue throughout the body. Magnesium ion (Mg++) is an important cofactor that is necessary for the enzyme pyruvate dehydrogenase to catalyze part of the pathway that breaks down sugar to produce energy. Vitamins cannot be produced in the human body and therefore must be obtained in the diet.

Exercise:

Problem:

Explain in your own words how enzyme feedback inhibition benefits a cell.

Solution:

Feedback inhibition allows cells to control the amounts of metabolic products produced. If there is too much of a particular product relative to what the cell's needs, feedback inhibition effectively causes the cell to decrease production of that particular product. In general, this reduces the production of superfluous products and conserves energy, maximizing energy efficiency.

Glossary

active site

specific region of the enzyme to which the substrate binds

allosteric inhibition

inhibition by a binding event at a site different from the active site, which induces a conformational change and reduces the affinity of the enzyme for its substrate

coenzyme

small organic molecule, such as a vitamin or its derivative, which is required to enhance the activity of an enzyme

cofactor

inorganic ion, such as iron and magnesium ions, required for optimal regulation of enzyme activity

competitive inhibition

type of inhibition in which the inhibitor competes with the substrate molecule by binding to the active site of the enzyme

denature

process that changes the natural properties of a substance

feedback inhibition

effect of a product of a reaction sequence to decrease its further production by inhibiting the activity of the first enzyme in the pathway that produces it

induced fit

dynamic fit between the enzyme and its substrate, in which both components modify their structures to allow for ideal binding

substrate

molecule on which the enzyme acts

Introduction class="introduction"

Have you ever become separated from a friend while in a crowd? If so, you know the challenge of searching for someone when surrounded by thousands of other people. If you and your friend have cell phones, your chances of finding each other are good. A cell phone's ability to send and receive messages makes it an ideal communicatio n device. (credit: modification of work by Vincent and Bella Productions)

Imagine what life would be like if you and the people around you could not communicate. You would not be able to express your wishes to others, nor could you ask questions to find out more about your environment. Social organization is dependent on communication between the individuals that comprise that society; without communication, society would fall apart.

As with people, it is vital for individual cells to be able to interact with their environment. This is true whether a cell is growing by itself in a pond or is one of many cells that form a larger organism. In order to properly respond to external stimuli, cells have developed complex mechanisms of communication that can receive a message, transfer the information across the plasma membrane, and then produce changes within the cell in response to the message.

In multicellular organisms, cells send and receive chemical messages constantly to coordinate the actions of distant organs, tissues, and cells. The ability to send messages quickly and efficiently enables cells to coordinate and fine-tune their functions.

While the necessity for cellular communication in larger organisms seems obvious, even single-celled organisms communicate with each other. Yeast cells signal each other to aid mating. Some forms of bacteria coordinate their actions in order to form large complexes called biofilms or to organize the production of toxins to remove competing organisms. The ability of cells to communicate through chemical signals originated in single cells and was essential for the evolution of multicellular organisms. The efficient and error-free function of communication systems is vital for all life as we know it.

Signaling Molecules and Cellular Receptors By the end of this section, you will be able to:

- Describe four types of signaling found in multicellular organisms
- Compare internal receptors with cell-surface receptors
- Recognize the relationship between a ligand's structure and its mechanism of action

There are two kinds of communication in the world of living cells. Communication between cells is called **intercellular signaling**, and communication within a cell is called **intracellular signaling**. An easy way to remember the distinction is by understanding the Latin origin of the prefixes: inter- means "between" (for example, intersecting lines are those that cross each other) and intra- means "inside" (like intravenous).

Chemical signals are released by **signaling cells** in the form of small, usually volatile or soluble molecules called ligands. A **ligand** is a molecule that binds another specific molecule, in some cases, delivering a signal in the process. Ligands can thus be thought of as signaling molecules. Ligands interact with proteins in **target cells**, which are cells that are affected by chemical signals; these proteins are also called **receptors**. Ligands and receptors exist in several varieties; however, a specific ligand will have a specific receptor that typically binds only that ligand.

Forms of Signaling

There are four categories of chemical signaling found in multicellular organisms: paracrine signaling, endocrine signaling, autocrine signaling, and direct signaling across gap junctions ([link]). The main difference between the different categories of signaling is the distance that the signal travels through the organism to reach the target cell. Not all cells are affected by the same signals.

In chemical signaling, a cell may target itself (autocrine signaling), a cell connected by gap junctions, a nearby cell (paracrine signaling), or a distant cell (endocrine signaling).

Paracrine signaling acts on nearby cells, endocrine signaling uses the circulatory system to transport ligands, and autocrine signaling acts on the signaling cell. Signaling via gap junctions involves signaling molecules moving directly between adjacent cells.

Paracrine Signaling

Signals that act locally between cells that are close together are called **paracrine signals**. Paracrine signals move by diffusion through the

extracellular matrix. These types of signals usually elicit quick responses that last only a short amount of time. In order to keep the response localized, paracrine ligand molecules are normally quickly degraded by enzymes or removed by neighboring cells. Removing the signals will reestablish the concentration gradient for the signal, allowing them to quickly diffuse through the intracellular space if released again.

One example of paracrine signaling is the transfer of signals across synapses between nerve cells. A nerve cell consists of a cell body, several short, branched extensions called dendrites that receive stimuli, and a long extension called an axon, which transmits signals to other nerve cells or muscle cells. The junction between nerve cells where signal transmission occurs is called a synapse. A **synaptic signal** is a chemical signal that travels between nerve cells. Signals within the nerve cells are propagated by fast-moving electrical impulses. When these impulses reach the end of the axon, the signal continues on to a dendrite of the next cell by the release of chemical ligands called **neurotransmitters** by the presynaptic cell (the cell emitting the signal). The neurotransmitters are transported across the very small distances between nerve cells, which are called **chemical synapses** ([link]). The small distance between nerve cells allows the signal to travel quickly; this enables an immediate response, such as, Take your hand off the stove!

When the neurotransmitter binds the receptor on the surface of the postsynaptic cell, the electrochemical potential of the target cell changes, and the next electrical impulse is launched. The neurotransmitters that are released into the chemical synapse are degraded quickly or get reabsorbed by the presynaptic cell so that the recipient nerve cell can recover quickly and be prepared to respond rapidly to the next synaptic signal.

Synapse

The distance between the presynaptic cell and the postsynaptic cell—called the synaptic gap—is very small and allows for rapid diffusion of the neurotransmitter. Enzymes in the synapatic cleft degrade some types of neurotransmitters to terminate the signal.

Endocrine Signaling

Signals from distant cells are called **endocrine signals**, and they originate from **endocrine cells**. (In the body, many endocrine cells are located in endocrine glands, such as the thyroid gland, the hypothalamus, and the pituitary gland.) These types of signals usually produce a slower response

but have a longer-lasting effect. The ligands released in endocrine signaling are called hormones, signaling molecules that are produced in one part of the body but affect other body regions some distance away.

Hormones travel the large distances between endocrine cells and their target cells via the bloodstream, which is a relatively slow way to move throughout the body. Because of their form of transport, hormones get diluted and are present in low concentrations when they act on their target cells. This is different from paracrine signaling, in which local concentrations of ligands can be very high.

Autocrine Signaling

Autocrine signals are produced by signaling cells that can also bind to the ligand that is released. This means the signaling cell and the target cell can be the same or a similar cell (the prefix *auto*- means self, a reminder that the signaling cell sends a signal to itself). This type of signaling often occurs during the early development of an organism to ensure that cells develop into the correct tissues and take on the proper function. Autocrine signaling also regulates pain sensation and inflammatory responses. Further, if a cell is infected with a virus, the cell can signal itself to undergo programmed cell death, killing the virus in the process. In some cases, neighboring cells of the same type are also influenced by the released ligand. In embryological development, this process of stimulating a group of neighboring cells may help to direct the differentiation of identical cells into the same cell type, thus ensuring the proper developmental outcome.

Direct Signaling Across Gap Junctions

Gap junctions in animals and plasmodesmata in plants are connections between the plasma membranes of neighboring cells. These water-filled channels allow small signaling molecules, called **intracellular mediators**, to diffuse between the two cells. Small molecules, such as calcium ions (Ca²⁺), are able to move between cells, but large molecules like proteins

and DNA cannot fit through the channels. The specificity of the channels ensures that the cells remain independent but can quickly and easily transmit signals. The transfer of signaling molecules communicates the current state of the cell that is directly next to the target cell; this allows a group of cells to coordinate their response to a signal that only one of them may have received. In plants, plasmodesmata are ubiquitous, making the entire plant into a giant, communication network.

Types of Receptors

Receptors are protein molecules in the target cell or on its surface that bind ligand. There are two types of receptors, internal receptors and cell-surface receptors.

Internal receptors

Internal receptors, also known as intracellular or cytoplasmic receptors, are found in the cytoplasm of the cell and respond to hydrophobic ligand molecules that are able to travel across the plasma membrane. Once inside the cell, many of these molecules bind to proteins that act as regulators of mRNA synthesis (transcription) to mediate gene expression. Gene expression is the cellular process of transforming the information in a cell's DNA into a sequence of amino acids, which ultimately forms a protein. When the ligand binds to the internal receptor, a conformational change is triggered that exposes a DNA-binding site on the protein. The ligandreceptor complex moves into the nucleus, then binds to specific regulatory regions of the chromosomal DNA and promotes the initiation of transcription ([link]). Transcription is the process of copying the information in a cells DNA into a special form of RNA called messenger RNA (mRNA); the cell uses information in the mRNA (which moves out into the cytoplasm and associates with ribosomes) to link specific amino acids in the correct order, producing a protein. Internal receptors can directly influence gene expression without having to pass the signal on to other receptors or messengers.

Hydrophobic signaling molecules typically diffuse across the plasma membrane and interact with intracellular receptors in the cytoplasm.

Many intracellular receptors are transcription factors that interact with DNA in the nucleus and regulate gene expression.

Cell-Surface Receptors

Cell-surface receptors, also known as transmembrane receptors, are cell surface, membrane-anchored (integral) proteins that bind to external ligand molecules. This type of receptor spans the plasma membrane and performs signal transduction, in which an extracellular signal is converted into an intercellular signal. Ligands that interact with cell-surface receptors do not have to enter the cell that they affect. Cell-surface receptors are also called

cell-specific proteins or markers because they are specific to individual cell types.

Because cell-surface receptor proteins are fundamental to normal cell functioning, it should come as no surprise that a malfunction in any one of these proteins could have severe consequences. Errors in the protein structures of certain receptor molecules have been shown to play a role in hypertension (high blood pressure), asthma, heart disease, and cancer.

Each cell-surface receptor has three main components: an external ligand-binding domain, a hydrophobic membrane-spanning region, and an intracellular domain inside the cell. The ligand-binding domain is also called the **extracellular domain**. The size and extent of each of these domains vary widely, depending on the type of receptor.

Note:

Evolution Connection

How Viruses Recognize a Host

Unlike living cells, many viruses do not have a plasma membrane or any of the structures necessary to sustain life. Some viruses are simply composed of an inert protein shell containing DNA or RNA. To reproduce, viruses must invade a living cell, which serves as a host, and then take over the hosts cellular apparatus. But how does a virus recognize its host? Viruses often bind to cell-surface receptors on the host cell. For example, the virus that causes human influenza (flu) binds specifically to receptors on membranes of cells of the respiratory system. Chemical differences in the cell-surface receptors among hosts mean that a virus that infects a specific species (for example, humans) cannot infect another species (for example, chickens).

However, viruses have very small amounts of DNA or RNA compared to humans, and, as a result, viral reproduction can occur rapidly. Viral reproduction invariably produces errors that can lead to changes in newly produced viruses; these changes mean that the viral proteins that interact with cell-surface receptors may evolve in such a way that they can bind to receptors in a new host. Such changes happen randomly and quite often in the reproductive cycle of a virus, but the changes only matter if a virus

with new binding properties comes into contact with a suitable host. In the case of influenza, this situation can occur in settings where animals and people are in close contact, such as poultry and swine farms. [footnote] Once a virus jumps to a new host, it can spread quickly. Scientists watch newly appearing viruses (called emerging viruses) closely in the hope that such monitoring can reduce the likelihood of global viral epidemics.

A. B. Sigalov, The School of Nature. IV. Learning from Viruses, Self/Nonself 1, no. 4 (2010): 282-298. Y. Cao, X. Koh, L. Dong, X. Du, A. Wu, X. Ding, H. Deng, Y. Shu, J. Chen, T. Jiang, Rapid Estimation of Binding Activity of Influenza Virus Hemagglutinin to Human and Avian Receptors, PLoS One 6, no. 4 (2011): e18664.

Cell-surface receptors are involved in most of the signaling in multicellular organisms. There are three general categories of cell-surface receptors: ion channel-linked receptors, G-protein-linked receptors, and enzyme-linked receptors.

Ion channel-linked receptors bind a ligand and open a channel through the membrane that allows specific ions to pass through. To form a channel, this type of cell-surface receptor has an extensive membrane-spanning region. In order to interact with the phospholipid fatty acid tails that form the center of the plasma membrane, many of the amino acids in the membrane-spanning region are hydrophobic in nature. Conversely, the amino acids that line the inside of the channel are hydrophilic to allow for the passage of water or ions. When a ligand binds to the extracellular region of the channel, there is a conformational change in the proteins structure that allows ions such as sodium, calcium, magnesium, and hydrogen to pass through ([link]).

Gated ion channels form a pore through the plasma membrane that opens when the signaling molecule binds. The open pore then allows ions to flow into or out of the cell.

G-protein-linked receptors bind a ligand and activate a membrane protein called a G-protein. The activated G-protein then interacts with either an ion channel or an enzyme in the membrane ([link]). All G-protein-linked receptors have seven transmembrane domains, but each receptor has its own specific extracellular domain and G-protein-binding site.

Cell signaling using G-protein-linked receptors occurs as a cyclic series of events. Before the ligand binds, the inactive G-protein can bind to a newly revealed site on the receptor specific for its binding. Once the ligand binds to the receptor, the resultant shape change activates the G-protein, which releases GDP and picks up GTP. The subunits of the G-protein then split into the α subunit and the $\beta\gamma$ subunit. One or both of these G-protein fragments may be able to activate other proteins as a result. After a while, the GTP on the active α subunit of the G-protein is hydrolyzed to GDP and the $\beta\gamma$ subunit is deactivated. The subunits reassociate to form the inactive G-protein and the cycle begins anew.

Heterotrimeric G proteins have three subunits: α , β , and γ . When a signaling molecule binds to a G-protein-coupled receptor in the plasma membrane, a GDP molecule associated with the α subunit is exchanged for GTP. The β and γ subunits dissociate from the α subunit, and a cellular response is triggered either by the α subunit or the dissociated $\beta\gamma$ pair. Hydrolysis of GTP to GDP terminates the signal.

G-protein-linked receptors have been extensively studied and much has been learned about their roles in maintaining health. Bacteria that are pathogenic to humans can release poisons that interrupt specific G-protein-

linked receptor function, leading to illnesses such as pertussis, botulism, and cholera. In cholera ([link]), for example, the water-borne bacterium *Vibrio cholerae* produces a toxin, choleragen, that binds to cells lining the small intestine. The toxin then enters these intestinal cells, where it modifies a G-protein that controls the opening of a chloride channel and causes it to remain continuously active, resulting in large losses of fluids from the body and potentially fatal dehydration as a result.

Transmitted primarily through contaminated drinking water, cholera is a major cause of death in the developing world and in areas where natural disasters interrupt the availability of clean water. The cholera bacterium, *Vibrio cholerae*, creates a toxin that modifies G-proteinmediated cell signaling

pathways in the intestines. Modern sanitation eliminates the threat of cholera outbreaks, such as the one that swept through New York City in 1866. This poster from that era shows how, at that time, the way that the disease was transmitted was not understood. (credit: New York City Sanitary Commission)

Enzyme-linked receptors are cell-surface receptors with intracellular domains that are associated with an enzyme. In some cases, the intracellular domain of the receptor itself is an enzyme. Other enzyme-linked receptors have a small intracellular domain that interacts directly with an enzyme. The enzyme-linked receptors normally have large extracellular and intracellular domains, but the membrane-spanning region consists of a single alpha-helical region of the peptide strand. When a ligand binds to the extracellular domain, a signal is transferred through the membrane, activating the enzyme. Activation of the enzyme sets off a chain of events within the cell that eventually leads to a response. One example of this type of enzyme-linked receptor is the tyrosine kinase receptor ([link]). A kinase is an enzyme that transfers phosphate groups from ATP to another protein. The tyrosine kinase receptor transfers phosphate groups to tyrosine molecules (tyrosine residues). First, signaling molecules bind to the extracellular domain of two nearby tyrosine kinase receptors. The two neighboring receptors then bond together, or dimerize. Phosphates are then added to tyrosine residues on the intracellular domain of the receptors (phosphorylation). The phosphorylated residues can then transmit the signal to the next messenger within the cytoplasm.

Note: **Art Connection** Plasma membrane Receptor tyrosine kinase Cytoplasm When signaling molecules bind the receptors, the receptors dimerize. Signaling molecule Tyrosine • residues Tyrosine residues on the intracellular domain are phosphorylated, triggering a downstream cellular response. hosphorylated tyrosine résidues Cellular response

A receptor tyrosine kinase is an enzyme-linked receptor with a single transmembrane region, and extracellular and intracellular domains.

Binding of a signaling molecule to the extracellular domain causes the receptor to dimerize. Tyrosine residues on the intracellular domain are then autophosphorylated,

triggering a downstream cellular response. The signal is terminated by a phosphatase that removes the phosphates from the phosphotyrosine residues.

HER2 is a receptor tyrosine kinase. In 30 percent of human breast cancers, HER2 is permanently activated, resulting in unregulated cell division. Lapatinib, a drug used to treat breast cancer, inhibits HER2 receptor tyrosine kinase autophosphorylation (the process by which the receptor adds phosphates onto itself), thus reducing tumor growth by 50 percent. Besides autophosphorylation, which of the following steps would be inhibited by Lapatinib?

- a. Signaling molecule binding, dimerization, and the downstream cellular response
- b. Dimerization, and the downstream cellular response
- c. The downstream cellular response
- d. Phosphatase activity, dimerization, and the downsteam cellular response

Signaling Molecules

Produced by signaling cells and the subsequent binding to receptors in target cells, ligands act as chemical signals that travel to the target cells to coordinate responses. The types of molecules that serve as ligands are incredibly varied and range from small proteins to small ions like calcium (Ca²⁺).

Small Hydrophobic Ligands

Small hydrophobic ligands can directly diffuse through the plasma membrane and interact with internal receptors. Important members of this class of ligands are the steroid hormones. Steroids are lipids that have a hydrocarbon skeleton with four fused rings; different steroids have different functional groups attached to the carbon skeleton. Steroid hormones include the female sex hormone, estradiol, which is a type of estrogen; the male sex hormone, testosterone; and cholesterol, which is an important structural component of biological membranes and a precursor of steriod hormones ([link]). Other hydrophobic hormones include thyroid hormones and vitamin D. In order to be soluble in blood, hydrophobic ligands must bind to carrier proteins while they are being transported through the bloodstream.

Steroid hormones have similar chemical structures to their precursor, cholesterol. Because these molecules are small and hydrophobic, they can diffuse directly across the plasma membrane into the cell, where they interact with internal receptors.

Water-Soluble Ligands

Water-soluble ligands are polar and therefore cannot pass through the plasma membrane unaided; sometimes, they are too large to pass through the membrane at all. Instead, most water-soluble ligands bind to the extracellular domain of cell-surface receptors. This group of ligands is quite diverse and includes small molecules, peptides, and proteins.

Other Ligands

Nitric oxide (NO) is a gas that also acts as a ligand. It is able to diffuse directly across the plasma membrane, and one of its roles is to interact with receptors in smooth muscle and induce relaxation of the tissue. NO has a very short half-life and therefore only functions over short distances. Nitroglycerin, a treatment for heart disease, acts by triggering the release of NO, which causes blood vessels to dilate (expand), thus restoring blood flow to the heart. NO has become better known recently because the pathway that it affects is targeted by prescription medications for erectile dysfunction, such as Viagra (erection involves dilated blood vessels).

Section Summary

Cells communicate by both inter- and intracellular signaling. Signaling cells secrete ligands that bind to target cells and initiate a chain of events within the target cell. The four categories of signaling in multicellular organisms are paracrine signaling, endocrine signaling, autocrine signaling, and direct signaling across gap junctions. Paracrine signaling takes place over short distances. Endocrine signals are carried long distances through the bloodstream by hormones, and autocrine signals are received by the same cell that sent the signal or other nearby cells of the same kind. Gap junctions allow small molecules, including signaling molecules, to flow between neighboring cells.

Internal receptors are found in the cell cytoplasm. Here, they bind ligand molecules that cross the plasma membrane; these receptor-ligand complexes move to the nucleus and interact directly with cellular DNA. Cell-surface receptors transmit a signal from outside the cell to the cytoplasm. Ion channel-linked receptors, when bound to their ligands, form a pore through the plasma membrane through which certain ions can pass. G-protein-linked receptors interact with a G-protein on the cytoplasmic side of the plasma membrane, promoting the exchange of bound GDP for GTP and interacting with other enzymes or ion channels to transmit a signal. Enzyme-linked receptors transmit a signal from outside the cell to an intracellular domain of a membrane-bound enzyme. Ligand binding causes activation of the enzyme. Small hydrophobic ligands (like steroids) are able to penetrate the plasma membrane and bind to internal receptors. Watersoluble hydrophilic ligands are unable to pass through the membrane; instead, they bind to cell-surface receptors, which transmit the signal to the inside of the cell.

Art Connections

Exercise:

Problem:

[link] HER2 is a receptor tyrosine kinase. In 30 percent of human breast cancers, HER2 is permanently activated, resulting in unregulated cell division. Lapatinib, a drug used to treat breast cancer, inhibits HER2 receptor tyrosine kinase autophosphorylation (the process by which the receptor adds phosphates onto itself), thus reducing tumor growth by 50 percent. Besides autophosphorylation, which of the following steps would be inhibited by Lapatinib?

- a. Signaling molecule binding, dimerization, and the downstream cellular response.
- b. Dimerization, and the downstream cellular response.
- c. The downstream cellular response.
- d. Phosphatase activity, dimerization, and the downsteam cellular response.

Solution:

[link] C. The downstream cellular response would be inhibited.

Review Questions

Exercise:

Problem:

What property prevents the ligands of cell-surface receptors from entering the cell?

- a. The molecules bind to the extracellular domain.
- b. The molecules are hydrophilic and cannot penetrate the hydrophobic interior of the plasma membrane.
- c. The molecules are attached to transport proteins that deliver them through the bloodstream to target cells.
- d. The ligands are able to penetrate the membrane and directly influence gene expression upon receptor binding.

Solution:

В

Exercise:

Problem:

The secretion of hormones by the pituitary gland is an example of

a. autocrine signaling

b. paracrine signaling

c. endocrine signaling

d. direct signaling across gap junctions

Solution:
C
Exercise:
Problem:
Why are ion channels necessary to transport ions into or out of a cell?
a. Ions are too large to diffuse through the membrane.b. Ions are charged particles and cannot diffuse through the hydrophobic interior of the membrane.c. Ions do not need ion channels to move through the membrane.d. Ions bind to carrier proteins in the bloodstream, which must be removed before transport into the cell.
Solution:
В
Exercise:
Problem:
Endocrine signals are transmitted more slowly than paracrine signals because
a. the ligands are transported through the bloodstream and travel greater distances
b. the target and signaling cells are close together
c. the ligands are degraded rapidly d. the ligands don't bind to carrier proteins during transport

Solution:

A

Free Response

Exercise:

Problem:

What is the difference between intracellular signaling and intercellular signaling?

Solution:

Intracellular signaling occurs within a cell, and intercellular signaling occurs between cells.

Exercise:

Problem:

How are the effects of paracrine signaling limited to an area near the signaling cells?

Solution:

The secreted ligands are quickly removed by degradation or reabsorption into the cell so that they cannot travel far.

Exercise:

Problem:

What are the differences between internal receptors and cell-surface receptors?

Solution:

Internal receptors are located inside the cell, and their ligands enter the cell to bind the receptor. The complex formed by the internal receptor and the ligand then enters the nucleus and directly affects protein production by binding to the chromosomal DNA and initiating the making of mRNA that codes for proteins. Cell-surface receptors, however, are embedded in the plasma membrane, and their ligands do

not enter the cell. Binding of the ligand to the cell-surface receptor initiates a cell signaling cascade and does not directly influence the making of proteins; however, it may involve the activation of intracellular proteins.

Exercise:

Problem:

Cells grown in the laboratory are mixed with a dye molecule that is unable to pass through the plasma membrane. If a ligand is added to the cells, observations show that the dye enters the cells. What type of receptor did the ligand bind to on the cell surface?

Solution:

An ion channel receptor opened up a pore in the membrane, which allowed the ionic dye to move into the cell.

Glossary

autocrine signal

signal that is sent and received by the same or similar nearby cells

cell-surface receptor

cell-surface protein that transmits a signal from the exterior of the cell to the interior, even though the ligand does not enter the cell

chemical synapse

small space between axon terminals and dendrites of nerve cells where neurotransmitters function

endocrine cell

cell that releases ligands involved in endocrine signaling (hormones)

endocrine signal

long-distance signal that is delivered by ligands (hormones) traveling through an organisms circulatory system from the signaling cell to the

target cell

enzyme-linked receptor

cell-surface receptor with intracellular domains that are associated with membrane-bound enzymes

extracellular domain

region of a cell-surface receptor that is located on the cell surface

G-protein-linked receptor

cell-surface receptor that activates membrane-bound G-proteins to transmit a signal from the receptor to nearby membrane components

intercellular signaling

communication between cells

internal receptor

(also, intracellular receptor) receptor protein that is located in the cytosol of a cell and binds to ligands that pass through the plasma membrane

intracellular mediator

(also, second messenger) small molecule that transmits signals within a cell

intracellular signaling

communication within cells

ion channel-linked receptor

cell-surface receptor that forms a plasma membrane channel, which opens when a ligand binds to the extracellular domain (ligand-gated channels)

ligand

molecule produced by a signaling cell that binds with a specific receptor, delivering a signal in the process

neurotransmitter

chemical ligand that carries a signal from one nerve cell to the next

paracrine signal

signal between nearby cells that is delivered by ligands traveling in the liquid medium in the space between the cells

receptor

protein in or on a target cell that bind to ligands

signaling cell

cell that releases signal molecules that allow communication with another cell

synaptic signal

chemical signal (neurotransmitter) that travels between nerve cells

target cell

cell that has a receptor for a signal or ligand from a signaling cell

Propagation of the Signal By the end of this section, you will be able to:

- Explain how the binding of a ligand initiates signal transduction throughout a cell
- Recognize the role of phosphorylation in the transmission of intracellular signals
- Evaluate the role of second messengers in signal transmission

Once a ligand binds to a receptor, the signal is transmitted through the membrane and into the cytoplasm. Continuation of a signal in this manner is called **signal transduction**. Signal transduction only occurs with cell-surface receptors because internal receptors are able to interact directly with DNA in the nucleus to initiate protein synthesis.

When a ligand binds to its receptor, conformational changes occur that affect the receptor's intracellular domain. Conformational changes of the extracellular domain upon ligand binding can propagate through the membrane region of the receptor and lead to activation of the intracellular domain or its associated proteins. In some cases, binding of the ligand causes **dimerization** of the receptor, which means that two receptors bind to each other to form a stable complex called a dimer. A **dimer** is a chemical compound formed when two molecules (often identical) join together. The binding of the receptors in this manner enables their intracellular domains to come into close contact and activate each other.

Binding Initiates a Signaling Pathway

After the ligand binds to the cell-surface receptor, the activation of the receptor's intracellular components sets off a chain of events that is called a **signaling pathway** or a signaling cascade. In a signaling pathway, second messengers, enzymes, and activated proteins interact with specific proteins, which are in turn activated in a chain reaction that eventually leads to a change in the cell's environment ([link]). The events in the cascade occur in a series, much like a current flows in a river. Interactions that occur before a certain point are defined as upstream events, and events after that point are called downstream events.

Note:

Art Connection

Upon binding of epidermal growth factor (EGF) to the EGF receptor (EGFR), two proteins associated with the receptor called GRB2 and SOS activate RAS, a small G-protein.

A protein kinase called RAF is activated by RAS-GTP. RAF phosphorylates MEK, which in turn phosphorylates ERK, a MAP kinase. The phosphorylated ERK enters the nucleus, where it triggers a cellular response.

The epidermal growth factor (EGF) receptor (EGFR) is a receptor tyrosine kinase involved in the regulation of cell growth, wound healing, and tissue repair. When EGF binds to the EGFR, a cascade of downstream events causes the cell to grow and divide. If EGFR is activated at

inappropriate times, uncontrolled cell growth (cancer) may occur.

In certain cancers, the GTPase activity of the RAS G-protein is inhibited. This means that the RAS protein can no longer hydrolyze GTP into GDP. What effect would this have on downstream cellular events?

Signaling pathways can get very complicated very quickly because most cellular proteins can affect different downstream events, depending on the conditions within the cell. A single pathway can branch off toward different endpoints based on the interplay between two or more signaling pathways, and the same ligands are often used to initiate different signals in different cell types. This variation in response is due to differences in protein expression in different cell types. Another complicating element is **signal integration** of the pathways, in which signals from two or more different cell-surface receptors merge to activate the same response in the cell. This process can ensure that multiple external requirements are met before a cell commits to a specific response.

The effects of extracellular signals can also be amplified by enzymatic cascades. At the initiation of the signal, a single ligand binds to a single receptor. However, activation of a receptor-linked enzyme can activate many copies of a component of the signaling cascade, which amplifies the signal.

Methods of Intracellular Signaling

The induction of a signaling pathway depends on the modification of a cellular component by an enzyme. There are numerous enzymatic modifications that can occur, and they are recognized in turn by the next component downstream. The following are some of the more common events in intracellular signaling.

Note:

Link to Learning

Observe an animation of cell signaling at this site.

Phosphorylation

One of the most common chemical modifications that occurs in signaling pathways is the addition of a phosphate group (PO₄⁻³) to a molecule such as a protein in a process called phosphorylation. The phosphate can be added to a nucleotide such as GMP to form GDP or GTP. Phosphates are also often added to serine, threonine, and tyrosine residues of proteins, where they replace the hydroxyl group of the amino acid ([link]). The transfer of the phosphate is catalyzed by an enzyme called a **kinase**. Various kinases are named for the substrate they phosphorylate. Phosphorylation of serine and threonine residues often activates enzymes. Phosphorylation of tyrosine residues can either affect the activity of an enzyme or create a binding site that interacts with downstream components in the signaling cascade. Phosphorylation may activate or inactivate enzymes, and the reversal of phosphorylation, dephosphorylation by a phosphatase, will reverse the effect.

In protein phosphorylation, a phosphate group (PO₄⁻³) is added to residues of the amino acids serine, threonine, and tyrosine.

Second Messengers

Second messengers are small molecules that propagate a signal after it has been initiated by the binding of the signaling molecule to the receptor. These molecules help to spread a signal through the cytoplasm by altering the behavior of certain cellular proteins.

Calcium ion is a widely used second messenger. The free concentration of calcium ions (Ca²⁺) within a cell is very low because ion pumps in the plasma membrane continuously use adenosine-5'-triphosphate (ATP) to remove it. For signaling purposes, Ca²⁺ is stored in cytoplasmic vesicles, such as the endoplasmic reticulum, or accessed from outside the cell. When signaling occurs, ligand-gated calcium ion channels allow the higher levels

of Ca^{2+} that are present outside the cell (or in intracellular storage compartments) to flow into the cytoplasm, which raises the concentration of cytoplasmic Ca^{2+} . The response to the increase in Ca^{2+} varies, depending on the cell type involved. For example, in the β -cells of the pancreas, Ca^{2+} signaling leads to the release of insulin, and in muscle cells, an increase in Ca^{2+} leads to muscle contractions.

Another second messenger utilized in many different cell types is **cyclic AMP** (**cAMP**). Cyclic AMP is synthesized by the enzyme adenylyl cyclase from ATP ([link]). The main role of cAMP in cells is to bind to and activate an enzyme called **cAMP-dependent kinase** (**A-kinase**). A-kinase regulates many vital metabolic pathways: It phosphorylates serine and threonine residues of its target proteins, activating them in the process. A-kinase is found in many different types of cells, and the target proteins in each kind of cell are different. Differences give rise to the variation of the responses to cAMP in different cells.

This diagram shows the mechanism for the formation of cyclic AMP (cAMP). cAMP serves as a second messenger to activate or inactivate proteins within the cell. Termination of the signal occurs when an enzyme called phosphodiesterase converts cAMP into AMP.

Present in small concentrations in the plasma membrane, **inositol phospholipids** are lipids that can also be converted into second messengers. Because these molecules are membrane components, they are located near membrane-bound receptors and can easily interact with them. Phosphatidylinositol (PI) is the main phospholipid that plays a role in cellular signaling. Enzymes known as kinases phosphorylate PI to form PI-phosphate (PIP) and PI-bisphosphate (PIP₂).

The enzyme phospholipase C cleaves PIP_2 to form **diacylglycerol (DAG)** and **inositol triphosphate (IP₃)** ([link]). These products of the cleavage of PIP_2 serve as second messengers. Diacylglycerol (DAG) remains in the plasma membrane and activates protein kinase C (PKC), which then phosphorylates serine and threonine residues in its target proteins. IP_3 diffuses into the cytoplasm and binds to ligand-gated calcium channels in the endoplasmic reticulum to release Ca^{2+} that continues the signal cascade.

The enzyme phospholipase C breaks down PIP₂ into IP₃ and DAG, both of which serve

as second messengers.

Section Summary

Ligand binding to the receptor allows for signal transduction through the cell. The chain of events that conveys the signal through the cell is called a signaling pathway or cascade. Signaling pathways are often very complex because of the interplay between different proteins. A major component of cell signaling cascades is the phosphorylation of molecules by enzymes known as kinases. Phosphorylation adds a phosphate group to serine, threonine, and tyrosine residues in a protein, changing their shapes, and activating or inactivating the protein. Small molecules like nucleotides can also be phosphorylated. Second messengers are small, non-protein molecules that are used to transmit a signal within a cell. Some examples of second messengers are calcium ions (Ca²⁺), cyclic AMP (cAMP), diacylglycerol (DAG), and inositol triphosphate (IP₃).

Art Connections

Exercise:

Problem:

[link] In certain cancers, the GTPase activity of the RAS G-protein is inhibited. This means that the RAS protein can no longer hydrolyze GTP into GDP. What effect would this have on downstream cellular events?

Solution:

[link] ERK would become permanently activated, resulting in cell proliferation, migration, adhesion, and the growth of new blood vessels. Apoptosis would be inhibited.

Review Questions

Exercise:

Problem: Where do DAG and IP₃ originate?

- a. They are formed by phosphorylation of cAMP.
- b. They are ligands expressed by signaling cells.
- c. They are hormones that diffuse through the plasma membrane to stimulate protein production.
- d. They are the cleavage products of the inositol phospholipid, PIP₂.

\circ	•
	lution:
	uuuui.

D

Exercise:

Problem:

What property enables the residues of the amino acids serine, threonine, and tyrosine to be phosphorylated?

- a. They are polar.
- b. They are non-polar.
- c. They contain a hydroxyl group.
- d. They occur more frequently in the amino acid sequence of signaling proteins.

$\boldsymbol{\alpha}$	•	
S O	lution	•
	<i>.</i>	-

 \mathbf{C}

Free Response

Exercise:

Problem:

The same second messengers are used in many different cells, but the response to second messengers is different in each cell. How is this possible?

Solution:

Different cells produce different proteins, including cell-surface receptors and signaling pathway components. Therefore, they respond to different ligands, and the second messengers activate different pathways. Signal integration can also change the end result of signaling.

Exercise:

Problem:

What would happen if the intracellular domain of a cell-surface receptor was switched with the domain from another receptor?

Solution:

The binding of the ligand to the extracellular domain would activate the pathway normally activated by the receptor donating the intracellular domain.

Glossary

```
cyclic AMP (cAMP) second messenger that is derived from ATP
```

cyclic AMP-dependent kinase (also, protein kinase A, or PKA) kinase that is activated by binding to cAMP

diacylglycerol (DAG)

cleavage product of PIP₂ that is used for signaling within the plasma membrane

dimer

chemical compound formed when two molecules join together

dimerization

(of receptor proteins) interaction of two receptor proteins to form a functional complex called a dimer

inositol phospholipid

lipid present at small concentrations in the plasma membrane that is converted into a second messenger; it has inositol (a carbohydrate) as its hydrophilic head group

inositol triphosphate (IP₃)

cleavage product of PIP₂ that is used for signaling within the cell

kinase

enzyme that catalyzes the transfer of a phosphate group from ATP to another molecule

second messenger

small, non-protein molecule that propagates a signal within the cell after activation of a receptor causes its release

signal integration

interaction of signals from two or more different cell-surface receptors that merge to activate the same response in the cell

signal transduction

propagation of the signal through the cytoplasm (and sometimes also the nucleus) of the cell

signaling pathway

(also signaling cascade) chain of events that occurs in the cytoplasm of the cell to propagate the signal from the plasma membrane to produce a response

Response to the Signal By the end of this section, you will be able to:

- Describe how signaling pathways direct protein expression, cellular metabolism, and cell growth
- Identify the function of PKC in signal transduction pathways
- Recognize the role of apoptosis in the development and maintenance of a healthy organism

Inside the cell, ligands bind to their internal receptors, allowing them to directly affect the cell's DNA and protein-producing machinery. Using signal transduction pathways, receptors in the plasma membrane produce a variety of effects on the cell. The results of signaling pathways are extremely varied and depend on the type of cell involved as well as the external and internal conditions. A small sampling of responses is described below.

Gene Expression

Some signal transduction pathways regulate the transcription of RNA. Others regulate the translation of proteins from mRNA. An example of a protein that regulates translation in the nucleus is the MAP kinase ERK. ERK is activated in a phosphorylation cascade when epidermal growth factor (EGF) binds the EGF receptor (see [link]). Upon phosphorylation, ERK enters the nucleus and activates a protein kinase that, in turn, regulates protein translation ([link]).

The MAP kinase ERK phosphorylates MNK1. MNK1 in turn phosphorylates eIF-4E, which is associated with mRNA. The mRNA unfolds and protein sythesis begins.

ERK is a MAP kinase that activates translation when it is phosphorylated. ERK phosphorylates MNK1, which in turn phosphorylates eIF-4E, an elongation initiation factor that, with other initiation factors, is associated with mRNA. When eIF-4E becomes phosphorylated, the mRNA unfolds, allowing protein synthesis in the nucleus to begin. (See [link] for the phosphorylation pathway that activates ERK.)

The second kind of protein with which PKC can interact is a protein that acts as an inhibitor. An **inhibitor** is a molecule that binds to a protein and prevents it from functioning or reduces its function. In this case, the

inhibitor is a protein called I κ -B, which binds to the regulatory protein NF- κ B. (The symbol κ represents the Greek letter kappa.) When I κ -B is bound to NF- κ B, the complex cannot enter the nucleus of the cell, but when I κ -B is phosphorylated by PKC, it can no longer bind NF- κ B, and NF- κ B (a transcription factor) can enter the nucleus and initiate RNA transcription. In this case, the effect of phosphorylation is to inactivate an inhibitor and thereby activate the process of transcription.

Increase in Cellular Metabolism

The result of another signaling pathway affects muscle cells. The activation of β-adrenergic receptors in muscle cells by adrenaline leads to an increase in cyclic AMP (cAMP) inside the cell. Also known as epinephrine, adrenaline is a hormone (produced by the adrenal gland attached to the kidney) that readies the body for short-term emergencies. Cyclic AMP activates PKA (protein kinase A), which in turn phosphorylates two enzymes. The first enzyme promotes the degradation of glycogen by activating intermediate glycogen phosphorylase kinase (GPK) that in turn activates glycogen phosphorylase (GP) that catabolizes glycogen into glucose. (Recall that your body converts excess glucose to glycogen for short-term storage. When energy is needed, glycogen is quickly reconverted to glucose.) Phosphorylation of the second enzyme, glycogen synthase (GS), inhibits its ability to form glycogen from glucose. In this manner, a muscle cell obtains a ready pool of glucose by activating its formation via glycogen degradation and by inhibiting the use of glucose to form glycogen, thus preventing a futile cycle of glycogen degradation and synthesis. The glucose is then available for use by the muscle cell in response to a sudden surge of adrenaline—the "fight or flight" reflex.

Cell Growth

Cell signaling pathways also play a major role in cell division. Cells do not normally divide unless they are stimulated by signals from other cells. The ligands that promote cell growth are called **growth factors**. Most growth factors bind to cell-surface receptors that are linked to tyrosine kinases. These cell-surface receptors are called receptor tyrosine kinases (RTKs).

Activation of RTKs initiates a signaling pathway that includes a G-protein called RAS, which activates the MAP kinase pathway described earlier. The enzyme MAP kinase then stimulates the expression of proteins that interact with other cellular components to initiate cell division.

Note:

Career Connection

Cancer Biologist

Cancer biologists study the molecular origins of cancer with the goal of developing new prevention methods and treatment strategies that will inhibit the growth of tumors without harming the normal cells of the body. As mentioned earlier, signaling pathways control cell growth. These signaling pathways are controlled by signaling proteins, which are, in turn, expressed by genes. Mutations in these genes can result in malfunctioning signaling proteins. This prevents the cell from regulating its cell cycle, triggering unrestricted cell division and cancer. The genes that regulate the signaling proteins are one type of oncogene which is a gene that has the potential to cause cancer. The gene encoding RAS is an oncogene that was originally discovered when mutations in the RAS protein were linked to cancer. Further studies have indicated that 30 percent of cancer cells have a mutation in the RAS gene that leads to uncontrolled growth. If left unchecked, uncontrolled cell division can lead tumor formation and metastasis, the growth of cancer cells in new locations in the body. Cancer biologists have been able to identify many other oncogenes that contribute to the development of cancer. For example, HER2 is a cellsurface receptor that is present in excessive amounts in 20 percent of human breast cancers. Cancer biologists realized that gene duplication led to HER2 overexpression in 25 percent of breast cancer patients and developed a drug called Herceptin (trastuzumab). Herceptin is a monoclonal antibody that targets HER2 for removal by the immune system. Herceptin therapy helps to control signaling through HER2. The use of Herceptin in combination with chemotherapy has helped to increase the overall survival rate of patients with metastatic breast cancer. More information on cancer biology research can be found at the National Cancer Institute website

(http://www.cancer.gov/cancertopics/understandingcancer/targetedtherapie s).

Cell Death

When a cell is damaged, superfluous, or potentially dangerous to an organism, a cell can initiate a mechanism to trigger programmed cell death, or **apoptosis**. Apoptosis allows a cell to die in a controlled manner that prevents the release of potentially damaging molecules from inside the cell. There are many internal checkpoints that monitor a cell's health; if abnormalities are observed, a cell can spontaneously initiate the process of apoptosis. However, in some cases, such as a viral infection or uncontrolled cell division due to cancer, the cell's normal checks and balances fail. External signaling can also initiate apoptosis. For example, most normal animal cells have receptors that interact with the extracellular matrix, a network of glycoproteins that provides structural support for cells in an organism. The binding of cellular receptors to the extracellular matrix initiates a signaling cascade within the cell. However, if the cell moves away from the extracellular matrix, the signaling ceases, and the cell undergoes apoptosis. This system keeps cells from traveling through the body and proliferating out of control, as happens with tumor cells that metastasize.

Another example of external signaling that leads to apoptosis occurs in T-cell development. T-cells are immune cells that bind to foreign macromolecules and particles, and target them for destruction by the immune system. Normally, T-cells do not target "self" proteins (those of their own organism), a process that can lead to autoimmune diseases. In order to develop the ability to discriminate between self and non-self, immature T-cells undergo screening to determine whether they bind to so-called self proteins. If the T-cell receptor binds to self proteins, the cell initiates apoptosis to remove the potentially dangerous cell.

Apoptosis is also essential for normal embryological development. In vertebrates, for example, early stages of development include the formation of web-like tissue between individual fingers and toes ([link]). During the

course of normal development, these unneeded cells must be eliminated, enabling fully separated fingers and toes to form. A cell signaling mechanism triggers apoptosis, which destroys the cells between the developing digits.

The histological section of a foot of a 15-day-old mouse embryo, visualized using light microscopy, reveals areas of tissue between the toes, which apoptosis will eliminate before the mouse reaches its full gestational age at 27 days. (credit: modification of

Termination of the Signal Cascade

The aberrant signaling often seen in tumor cells is proof that the termination of a signal at the appropriate time can be just as important as the initiation of a signal. One method of stopping a specific signal is to degrade the ligand or remove it so that it can no longer access its receptor. One reason that hydrophobic hormones like estrogen and testosterone trigger long-lasting events is because they bind carrier proteins. These proteins allow the insoluble molecules to be soluble in blood, but they also protect the hormones from degradation by circulating enzymes.

Inside the cell, many different enzymes reverse the cellular modifications that result from signaling cascades. For example, **phosphatases** are enzymes that remove the phosphate group attached to proteins by kinases in a process called dephosphorylation. Cyclic AMP (cAMP) is degraded into AMP by **phosphodiesterase**, and the release of calcium stores is reversed by the Ca²⁺ pumps that are located in the external and internal membranes of the cell.

Section Summary

The initiation of a signaling pathway is a response to external stimuli. This response can take many different forms, including protein synthesis, a change in the cell's metabolism, cell growth, or even cell death. Many pathways influence the cell by initiating gene expression, and the methods utilized are quite numerous. Some pathways activate enzymes that interact with DNA transcription factors. Others modify proteins and induce them to change their location in the cell. Depending on the status of the organism, cells can respond by storing energy as glycogen or fat, or making it available in the form of glucose. A signal transduction pathway allows muscle cells to respond to immediate requirements for energy in the form of glucose. Cell growth is almost always stimulated by external signals called growth factors. Uncontrolled cell growth leads to cancer, and mutations in

the genes encoding protein components of signaling pathways are often found in tumor cells. Programmed cell death, or apoptosis, is important for removing damaged or unnecessary cells. The use of cellular signaling to organize the dismantling of a cell ensures that harmful molecules from the cytoplasm are not released into the spaces between cells, as they are in uncontrolled death, necrosis. Apoptosis also ensures the efficient recycling of the components of the dead cell. Termination of the cellular signaling cascade is very important so that the response to a signal is appropriate in both timing and intensity. Degradation of signaling molecules and dephosphorylation of phosphorylated intermediates of the pathway by phosphatases are two ways to terminate signals within the cell.

Review Questions

Exercise:

Problem: What is the function of a phosphatase?

- a. A phosphatase removes phosphorylated amino acids from proteins.
- b. A phosphatase removes the phosphate group from phosphorylated amino acid residues in a protein.
- c. A phosphatase phosphorylates serine, threonine, and tyrosine residues.
- d. A phosphatase degrades second messengers in the cell.

Solution:

B

Exercise:

Problem:How does NF-κB induce gene expression?

a. A small, hydrophobic ligand binds to NF-κB, activating it.

- b. Phosphorylation of the inhibitor $I\kappa$ -B dissociates the complex between it and NF- κ B, and allows NF- κ B to enter the nucleus and stimulate transcription.
- c. NF-kB is phosphorylated and is then free to enter the nucleus and bind DNA.
- d. NF-κB is a kinase that phosphorylates a transcription factor that binds DNA and promotes protein production.

Solution:
В
Exercise:
Problem:
Apoptosis can occur in a cell when the cell is
a. damagedb. no longer neededc. infected by a virusd. all of the above
Solution:
D
Exercise:
Problem: What is the effect of an inhibitor binding an enzyme?
a. The enzyme is degraded.b. The enzyme is activated.c. The enzyme is inactivated.

d. The complex is transported out of the cell.

Solution:

Free Response

Exercise:

Problem:

What is a possible result of a mutation in a kinase that controls a pathway that stimulates cell growth?

Solution:

If a kinase is mutated so that it is always activated, it will continuously signal through the pathway and lead to uncontrolled growth and possibly cancer. If a kinase is mutated so that it cannot function, the cell will not respond to ligand binding.

Exercise:

Problem:

How does the extracellular matrix control the growth of cells?

Solution:

Receptors on the cell surface must be in contact with the extracellular matrix in order to receive positive signals that allow the cell to live. If the receptors are not activated by binding, the cell will undergo apoptosis. This ensures that cells are in the correct place in the body and helps to prevent invasive cell growth as occurs in metastasis in cancer.

Glossary

apoptosis

programmed cell death

growth factor

ligand that binds to cell-surface receptors and stimulates cell growth

inhibitor

molecule that binds to a protein (usually an enzyme) and keeps it from functioning

phosphatase

enzyme that removes the phosphate group from a molecule that has been previously phosphorylated

phosphodiesterase

enzyme that degrades cAMP, producing AMP, to terminate signaling

Introduction class="introduction"

A sea urchin begins life as a single cell that (a) divides to form two cells, visible by scanning electron microscopy. After four rounds of cell division, (b) there are 16 cells, as seen in this SEM image. After many rounds of cell division, the individual develops into a complex, multicellula r organism, as seen in this (c) mature sea urchin. (credit a: modificatio

n of work by Evelyn Spiegel, Louisa Howard: credit b: modificatio n of work by Evelyn Spiegel, Louisa Howard; credit c: modificatio n of work by Marco Busdraghi; scale-bar data from Matt Russell)

A human, as well as every sexually reproducing organism, begins life as a fertilized egg (embryo) or zygote. Trillions of cell divisions subsequently occur in a controlled manner to produce a complex, multicellular human. In other words, that original single cell is the ancestor of every other cell in the body. Once a being is fully grown, cell reproduction is still necessary to repair or regenerate tissues. For example, new blood and skin cells are

constantly being produced. All multicellular organisms use cell division for growth and the maintenance and repair of cells and tissues. Cell division is tightly regulated, and the occasional failure of regulation can have lifethreatening consequences. Single-celled organisms use cell division as their method of reproduction.

Cell Division

By the end of this section, you will be able to:

- Describe the structure of prokaryotic and eukaryotic genomes
- Distinguish between chromosomes, genes, and traits
- Describe the mechanisms of chromosome compaction

The continuity of life from one cell to another has its foundation in the reproduction of cells by way of the cell cycle. The **cell cycle** is an orderly sequence of events that describes the stages of a cell's life from the division of a single parent cell to the production of two new daughter cells. The mechanisms involved in the cell cycle are highly regulated.

Genomic DNA

Before discussing the steps a cell must undertake to replicate, a deeper understanding of the structure and function of a cell's genetic information is necessary. A cell's DNA, packaged as a double-stranded DNA molecule, is called its **genome**. In prokaryotes, the genome is composed of a single, double-stranded DNA molecule in the form of a loop or circle ([link]). The region in the cell containing this genetic material is called a nucleoid. Some prokaryotes also have smaller loops of DNA called plasmids that are not essential for normal growth. Bacteria can exchange these plasmids with other bacteria, sometimes receiving beneficial new genes that the recipient can add to their chromosomal DNA. Antibiotic resistance is one trait that often spreads through a bacterial colony through plasmid exchange.

Prokaryotes, including bacteria and archaea, have a single, circular chromosome located in a central region called the nucleoid.

In eukaryotes, the genome consists of several double-stranded linear DNA molecules ([link]). Each species of eukaryotes has a characteristic number of chromosomes in the nuclei of its cells. Human body cells have 46 chromosomes, while human **gametes** (sperm or eggs) have 23 chromosomes each. A typical body cell, or somatic cell, contains two matched sets of chromosomes, a configuration known as **diploid**. The letter n is used to represent a single set of chromosomes; therefore, a diploid organism is designated 2n. Human cells that contain one set of chromosomes are called gametes, or sex cells; these are eggs and sperm, and are designated 1n, or **haploid**.

There are 23 pairs of homologous chromosomes in a female human somatic cell. The condensed chromosomes are viewed within the nucleus (top), removed from a cell in mitosis and spread out on a slide (right), and artificially arranged according to length (left); an arrangement like this is called a karyotype. In this image, the chromosomes were exposed to fluorescent stains for differentiation of the different chromosomes. A method of staining called "chromosome painting" employs fluorescent dyes that highlight chromosomes in different colors. (credit: National Human Genome Project/NIH)

Matched pairs of chromosomes in a diploid organism are called **homologous** ("same knowledge") **chromosomes**. Homologous

chromosomes are the same length and have specific nucleotide segments called **genes** in exactly the same location, or **locus**. Genes, the functional units of chromosomes, determine specific characteristics by coding for specific proteins. Traits are the variations of those characteristics. For example, hair color is a characteristic with traits that are blonde, brown, or black.

Each copy of a homologous pair of chromosomes originates from a different parent; therefore, the genes themselves are not identical. The variation of individuals within a species is due to the specific combination of the genes inherited from both parents. Even a slightly altered sequence of nucleotides within a gene can result in an alternative trait. For example, there are three possible gene sequences on the human chromosome that code for blood type: sequence A, sequence B, and sequence O. Because all diploid human cells have two copies of the chromosome that determines blood type, the blood type (the trait) is determined by which two versions of the marker gene are inherited. It is possible to have two copies of the same gene sequence on both homologous chromosomes, with one on each (for example, AA, BB, or OO), or two different sequences, such as AB.

Minor variations of traits, such as blood type, eye color, and handedness, contribute to the natural variation found within a species. However, if the entire DNA sequence from any pair of human homologous chromosomes is compared, the difference is less than one percent. The sex chromosomes, X and Y, are the single exception to the rule of homologous chromosome uniformity: Other than a small amount of homology that is necessary to accurately produce gametes, the genes found on the X and Y chromosomes are different.

Eukaryotic Chromosomal Structure and Compaction

If the DNA from all 46 chromosomes in a human cell nucleus was laid out end to end, it would measure approximately two meters; however, its diameter would be only 2 nm. Considering that the size of a typical human cell is about 10 μ m (100,000 cells lined up to equal one meter), DNA must be tightly packaged to fit in the cell's nucleus. At the same time, it must also be readily accessible for the genes to be expressed. During some stages

of the cell cycle, the long strands of DNA are condensed into compact chromosomes. There are a number of ways that chromosomes are compacted.

In the first level of compaction, short stretches of the DNA double helix wrap around a core of eight **histone proteins** at regular intervals along the entire length of the chromosome ([link]). The DNA-histone complex is called chromatin. The beadlike, histone DNA complex is called a **nucleosome**, and DNA connecting the nucleosomes is called linker DNA. A DNA molecule in this form is about seven times shorter than the double helix without the histones, and the beads are about 10 nm in diameter, in contrast with the 2-nm diameter of a DNA double helix. The next level of compaction occurs as the nucleosomes and the linker DNA between them are coiled into a 30-nm chromatin fiber. This coiling further shortens the chromosome so that it is now about 50 times shorter than the extended form. In the third level of packing, a variety of fibrous proteins is used to pack the chromatin. These fibrous proteins also ensure that each chromosome in a non-dividing cell occupies a particular area of the nucleus that does not overlap with that of any other chromosome (see the top image in $[\underline{link}]$).

Double-stranded DNA wraps around histone proteins to form nucleosomes that have the appearance of "beads on a string." The nucleosomes are coiled into a 30-nm chromatin fiber. When a cell undergoes mitosis, the chromosomes condense even further.

DNA replicates in the S phase of interphase. After replication, the chromosomes are composed of two linked sister **chromatids**. When fully

compact, the pairs of identically packed chromosomes are bound to each other by cohesin proteins. The connection between the sister chromatids is closest in a region called the **centromere**. The conjoined sister chromatids, with a diameter of about 1 μ m, are visible under a light microscope. The centromeric region is highly condensed and thus will appear as a constricted area.

Note:

Link to Learning

This animation illustrates the different levels of chromosome packing. https://www.openstaxcollege.org/l/Packaged DNA

Section Summary

Prokaryotes have a single circular chromosome composed of double-stranded DNA, whereas eukaryotes have multiple, linear chromosomes composed of chromatin surrounded by a nuclear membrane. The 46 chromosomes of human somatic cells are composed of 22 pairs of autosomes (matched pairs) and a pair of sex chromosomes, which may or may not be matched. This is the 2*n* or diploid state. Human gametes have 23 chromosomes or one complete set of chromosomes; a set of chromosomes is complete with either one of the sex chromosomes. This is the *n* or haploid state. Genes are segments of DNA that code for a specific protein. An organism's traits are determined by the genes inherited from each parent. Duplicated chromosomes are composed of two sister

chromatids. Chromosomes are compacted using a variety of mechanisms during certain stages of the cell cycle. Several classes of protein are involved in the organization and packing of the chromosomal DNA into a highly condensed structure. The condensing complex compacts chromosomes, and the resulting condensed structure is necessary for chromosomal segregation during mitosis.

F

Review Questions	
Exercise: Problem:	
A diploid cell hast cell.	he number of chromosomes as a haploid
a. one-fourthb. halfc. twiced. four times	
Solution:	
С	
Exercise:	
Problem:	
An organism's traits are det inherited	ermined by the specific combination of
a. cells.	
b. genes.c. proteins.	
d. chromatids.	

Solution:
В
Exercise:
Problem:
The first level of DNA organization in a eukaryotic cell is maintained by which molecule?
a. cohesinb. condensinc. chromatind. histone
Solution:
D
Exercise:
Problem:
Identical copies of chromatin held together by cohesin at the centromere are called
a. histones.
b. nucleosomes.
c. chromatin. d. sister chromatids.
Solution:
D

Free Response

Exercise:

Problem:

Compare and contrast a human somatic cell to a human gamete.

Solution:

Human somatic cells have 46 chromosomes: 22 pairs and 2 sex chromosomes that may or may not form a pair. This is the 2n or diploid condition. Human gametes have 23 chromosomes, one each of 23 unique chromosomes, one of which is a sex chromosome. This is the n or haploid condition.

Exercise:

Problem:

What is the relationship between a genome, chromosomes, and genes?

Solution:

The genome consists of the sum total of an organism's chromosomes. Each chromosome contains hundreds and sometimes thousands of genes, segments of DNA that code for a polypeptide or RNA, and a large amount of DNA with no known function.

Exercise:

Problem:

Eukaryotic chromosomes are thousands of times longer than a typical cell. Explain how chromosomes can fit inside a eukaryotic nucleus.

Solution:

The DNA double helix is wrapped around histone proteins to form structures called nucleosomes. Nucleosomes and the linker DNA in between them are coiled into a 30-nm fiber. During cell division, chromatin is further condensed by packing proteins.

Glossary

cell cycle

ordered sequence of events that a cell passes through between one cell division and the next

centromere

region at which sister chromatids are bound together; a constricted area in condensed chromosomes

chromatid

single DNA molecule of two strands of duplicated DNA and associated proteins held together at the centromere

diploid

cell, nucleus, or organism containing two sets of chromosomes (2n)

gamete

haploid reproductive cell or sex cell (sperm, pollen grain, or egg)

gene

physical and functional unit of heredity, a sequence of DNA that codes for a protein.

genome

total genetic information of a cell or organism

haploid

cell, nucleus, or organism containing one set of chromosomes (n)

histone

one of several similar, highly conserved, low molecular weight, basic proteins found in the chromatin of all eukaryotic cells; associates with DNA to form nucleosomes

homologous chromosomes

chromosomes of the same morphology with genes in the same location; diploid organisms have pairs of homologous chromosomes

(homologs), with each homolog derived from a different parent

locus

position of a gene on a chromosome

nucleosome

subunit of chromatin composed of a short length of DNA wrapped around a core of histone proteins

The Cell Cycle

By the end of this section, you will be able to:

- Describe the three stages of interphase
- Discuss the behavior of chromosomes during karyokinesis
- Explain how the cytoplasmic content is divided during cytokinesis
- Define the quiescent G₀ phase

The **cell cycle** is an ordered series of events involving cell growth and cell division that produces two new daughter cells. Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages of growth, DNA replication, and division that produces two identical (clone) cells. The cell cycle has two major phases: interphase and the mitotic phase ([link]). During **interphase**, the cell grows and DNA is replicated. During the **mitotic phase**, the replicated DNA and cytoplasmic contents are separated, and the cell divides.

The cell cycle consists of interphase and the mitotic phase. During interphase, the cell grows and the nuclear DNA is duplicated. Interphase is followed by the mitotic phase. During the mitotic phase, the duplicated chromosomes are segregated and distributed into daughter nuclei. The cytoplasm is usually divided as well, resulting in two daughter cells.

Interphase

During interphase, the cell undergoes normal growth processes while also preparing for cell division. In order for a cell to move from interphase into the mitotic phase, many internal and external conditions must be met. The three stages of interphase are called G_1 , S, and G_2 .

G₁ Phase (First Gap)

The first stage of interphase is called the G_1 phase (first gap) because, from a microscopic aspect, little change is visible. However, during the G_1 stage, the cell is quite active at the biochemical level. The cell is accumulating the building blocks of chromosomal DNA and the associated proteins as well as accumulating sufficient energy reserves to complete the task of replicating each chromosome in the nucleus.

S Phase (Synthesis of DNA)

Throughout interphase, nuclear DNA remains in a semi-condensed chromatin configuration. In the **S phase**, DNA replication can proceed through the mechanisms that result in the formation of identical pairs of DNA molecules—sister chromatids—that are firmly attached to the centromeric region. The centrosome is duplicated during the S phase. The two centrosomes will give rise to the **mitotic spindle**, the apparatus that orchestrates the movement of chromosomes during mitosis. At the center of each animal cell, the centrosomes of animal cells are associated with a pair of rod-like objects, the **centrioles**, which are at right angles to each other.

Centrioles help organize cell division. Centrioles are not present in the centrosomes of other eukaryotic species, such as plants and most fungi.

G₂ Phase (Second Gap)

In the G_2 phase, the cell replenishes its energy stores and synthesizes proteins necessary for chromosome manipulation. Some cell organelles are duplicated, and the cytoskeleton is dismantled to provide resources for the mitotic phase. There may be additional cell growth during G_2 . The final preparations for the mitotic phase must be completed before the cell is able to enter the first stage of mitosis.

The Mitotic Phase

The mitotic phase is a multistep process during which the duplicated chromosomes are aligned, separated, and move into two new, identical daughter cells. The first portion of the mitotic phase is called **karyokinesis**, or nuclear division. The second portion of the mitotic phase, called cytokinesis, is the physical separation of the cytoplasmic components into the two daughter cells.

Note:

Link to Learning

Revisit the stages of mitosis at this <u>site</u>.

Karyokinesis (Mitosis)

Karyokinesis, also known as **mitosis**, is divided into a series of phases—prophase, prometaphase, metaphase, anaphase, and telophase—that result in the division of the cell nucleus ([link]). Karyokinesis is also called mitosis.

Karyokinesis (or mitosis) is divided into five stages—prophase, prometaphase, metaphase, anaphase, and telophase. The pictures at the bottom were taken by fluorescence microscopy (hence, the black background) of cells artificially stained by fluorescent dyes: blue fluorescence indicates DNA (chromosomes) and green fluorescence indicates microtubules (spindle apparatus). (credit "mitosis drawings": modification of work by Mariana Ruiz Villareal; credit "micrographs":

modification of work by Roy van Heesbeen; credit "cytokinesis micrograph": Wadsworth Center/New York State Department of Health; scale-bar data from Matt Russell)

Which of the following is the correct order of events in mitosis?

- a. Sister chromatids line up at the metaphase plate. The kinetochore becomes attached to the mitotic spindle. The nucleus reforms and the cell divides. Cohesin proteins break down and the sister chromatids separate.
- b. The kinetochore becomes attached to the mitotic spindle. Cohesin proteins break down and the sister chromatids separate. Sister chromatids line up at the metaphase plate. The nucleus reforms and the cell divides.
- c. The kinetochore becomes attached to the cohesin proteins. Sister chromatids line up at the metaphase plate. The kinetochore breaks down and the sister chromatids separate. The nucleus reforms and the cell divides.
- d. The kinetochore becomes attached to the mitotic spindle. Sister chromatids line up at the metaphase plate. Cohesin proteins break down and the sister chromatids separate. The nucleus reforms and the cell divides.

During **prophase**, the "first phase," the nuclear envelope starts to dissociate into small vesicles, and the membranous organelles (such as the Golgi complex or Golgi apparatus, and endoplasmic reticulum), fragment and disperse toward the periphery of the cell. The nucleolus disappears (disperses). The centrosomes begin to move to opposite poles of the cell. Microtubules that will form the mitotic spindle extend between the centrosomes, pushing them farther apart as the microtubule fibers lengthen. The sister chromatids begin to coil more tightly with the aid of **condensin** proteins and become visible under a light microscope.

During **prometaphase**, the "first change phase," many processes that were begun in prophase continue to advance. The remnants of the nuclear envelope fragment. The mitotic spindle continues to develop as more microtubules assemble and stretch across the length of the former nuclear area. Chromosomes become more condensed and discrete. Each sister chromatid develops a protein structure called a kinetochore in the centromeric region ([link]). The proteins of the kinetochore attract and bind mitotic spindle microtubules. As the spindle microtubules extend from the centrosomes, some of these microtubules come into contact with and firmly bind to the kinetochores. Once a mitotic fiber attaches to a chromosome, the chromosome will be oriented until the kinetochores of sister chromatids face the opposite poles. Eventually, all the sister chromatids will be attached via their kinetochores to microtubules from opposing poles. Spindle microtubules that do not engage the chromosomes are called polar microtubules. These microtubules overlap each other midway between the two poles and contribute to cell elongation. Astral microtubules are located near the poles, aid in spindle orientation, and are required for the regulation of mitosis.

During prometaphase, mitotic spindle microtubules from opposite poles attach to each sister chromatid at the kinetochore. In anaphase, the connection between

the sister chromatids breaks down, and the microtubules pull the chromosomes toward opposite poles.

During **metaphase**, the "change phase," all the chromosomes are aligned in a plane called the **metaphase plate**, or the equatorial plane, midway between the two poles of the cell. The sister chromatids are still tightly attached to each other by cohesin proteins. At this time, the chromosomes are maximally condensed.

During **anaphase**, the "upward phase," the cohesin proteins degrade, and the sister chromatids separate at the centromere. Each chromatid, now called a chromosome, is pulled rapidly toward the centrosome to which its microtubule is attached. The cell becomes visibly elongated (oval shaped) as the polar microtubules slide against each other at the metaphase plate where they overlap.

During **telophase**, the "distance phase," the chromosomes reach the opposite poles and begin to decondense (unravel), relaxing into a chromatin configuration. The mitotic spindles are depolymerized into tubulin monomers that will be used to assemble cytoskeletal components for each daughter cell. Nuclear envelopes form around the chromosomes, and nucleosomes appear within the nuclear area.

Cytokinesis

Cytokinesis, or "cell motion," is the second main stage of the mitotic phase during which cell division is completed via the physical separation of the cytoplasmic components into two daughter cells. Division is not complete until the cell components have been apportioned and completely separated into the two daughter cells. Although the stages of mitosis are similar for most eukaryotes, the process of cytokinesis is quite different for eukaryotes that have cell walls, such as plant cells.

In cells such as animal cells that lack cell walls, cytokinesis follows the onset of anaphase. A contractile ring composed of actin filaments forms just inside the plasma membrane at the former metaphase plate. The actin filaments pull the equator of the cell inward, forming a fissure. This fissure, or "crack," is called the **cleavage furrow**. The furrow deepens as the actin ring contracts, and eventually the membrane is cleaved in two ([link]).

In plant cells, a new cell wall must form between the daughter cells. During interphase, the Golgi apparatus accumulates enzymes, structural proteins, and glucose molecules prior to breaking into vesicles and dispersing throughout the dividing cell. During telophase, these Golgi vesicles are transported on microtubules to form a phragmoplast (a vesicular structure) at the metaphase plate. There, the vesicles fuse and coalesce from the center toward the cell walls; this structure is called a **cell plate**. As more vesicles fuse, the cell plate enlarges until it merges with the cell walls at the periphery of the cell. Enzymes use the glucose that has accumulated between the membrane layers to build a new cell wall. The Golgi membranes become parts of the plasma membrane on either side of the new cell wall ([link]).

During cytokinesis in animal cells,

a ring of actin filaments forms at the metaphase plate. The ring contracts, forming a cleavage furrow, which divides the cell in two. In plant cells, Golgi vesicles coalesce at the former metaphase plate, forming a phragmoplast. A cell plate formed by the fusion of the vesicles of the phragmoplast grows from the center toward the cell walls, and the membranes of the vesicles fuse to form a plasma membrane that divides the cell in two.

G₀ Phase

Not all cells adhere to the classic cell cycle pattern in which a newly formed daughter cell immediately enters the preparatory phases of interphase, closely followed by the mitotic phase. Cells in G_0 phase are not actively preparing to divide. The cell is in a **quiescent** (inactive) stage that occurs when cells exit the cell cycle. Some cells enter G_0 temporarily until an external signal triggers the onset of G_1 . Other cells that never or rarely divide, such as mature cardiac muscle and nerve cells, remain in G_0 permanently.

Note:

Scientific Method Connection

Determine the Time Spent in Cell Cycle Stages

Problem: How long does a cell spend in interphase compared to each stage of mitosis?

Background: A prepared microscope slide of blastula cross-sections will show cells arrested in various stages of the cell cycle. It is not visually

possible to separate the stages of interphase from each other, but the mitotic stages are readily identifiable. If 100 cells are examined, the number of cells in each identifiable cell cycle stage will give an estimate of the time it takes for the cell to complete that stage.

Problem Statement: Given the events included in all of interphase and those that take place in each stage of mitosis, estimate the length of each stage based on a 24-hour cell cycle. Before proceeding, state your hypothesis.

Test your hypothesis: Test your hypothesis by doing the following:

- 1. Place a fixed and stained microscope slide of whitefish blastula crosssections under the scanning objective of a light microscope.
- 2. Locate and focus on one of the sections using the scanning objective of your microscope. Notice that the section is a circle composed of dozens of closely packed individual cells.
- 3. Switch to the low-power objective and refocus. With this objective, individual cells are visible.
- 4. Switch to the high-power objective and slowly move the slide left to right, and up and down to view all the cells in the section ([link]). As you scan, you will notice that most of the cells are not undergoing mitosis but are in the interphase period of the cell cycle.

Slowly scan whitefish blastula cells with the high-power objective as illustrated in image (a) to identify their mitotic stage. (b) A microscopic image of the scanned cells is

shown. (credit "micrograph": modification of work by Linda Flora; scale-bar data from Matt Russell)

- 5. Practice identifying the various stages of the cell cycle, using the drawings of the stages as a guide ([link]).
- 6. Once you are confident about your identification, begin to record the stage of each cell you encounter as you scan left to right, and top to bottom across the blastula section.
- 7. Keep a tally of your observations and stop when you reach 100 cells identified.
- 8. The larger the sample size (total number of cells counted), the more accurate the results. If possible, gather and record group data prior to calculating percentages and making estimates.

Record your observations: Make a table similar to [link] in which you record your observations.

Results of Cell Stage Identification						
Phase or Stage	Individual Totals	Group Totals	Percent			
Interphase						
Prophase						
Metaphase						
Anaphase						

Results of Cell Stage Identification					
Phase or Stage	Individual Totals	Group Totals	Percent		
Telophase					
Cytokinesis					
Totals	100	100	100 percent		

Analyze your data/report your results: To find the length of time whitefish blastula cells spend in each stage, multiply the percent (recorded as a decimal) by 24 hours. Make a table similar to [link] to illustrate your data.

Estimate of Cell Stage Length

Percent (as Decimal)	Time in Hours
	Percent (as Decimal)

Estimate of Cell Stage Length						
Phase or Stage Percent (as Decimal) Time in Hours						
Cytokinesis						

Draw a conclusion: Did your results support your estimated times? Were any of the outcomes unexpected? If so, discuss which events in that stage might contribute to the calculated time.

Section Summary

The cell cycle is an orderly sequence of events. Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages. In eukaryotes, the cell cycle consists of a long preparatory period, called interphase. Interphase is divided into G_1 , S, and G_2 phases. The mitotic phase begins with karyokinesis (mitosis), which consists of five stages: prophase, prometaphase, metaphase, anaphase, and telophase. The final stage of the mitotic phase is cytokinesis, during which the cytoplasmic components of the daughter cells are separated either by an actin ring (animal cells) or by cell plate formation (plant cells).

Art Connections

Exercise:

Problem:

[link] Which of the following is the correct order of events in mitosis?

a. Sister chromatids line up at the metaphase plate. The kinetochore becomes attached to the mitotic spindle. The nucleus reforms and the cell divides. Cohesin proteins break down and the sister chromatids separate.

- b. The kinetochore becomes attached to the mitotic spindle. Cohesin proteins break down and the sister chromatids separate. Sister chromatids line up at the metaphase plate. The nucleus reforms and the cell divides.
- c. The kinetochore becomes attached to the cohesin proteins. Sister chromatids line up at the metaphase plate. The kinetochore breaks down and the sister chromatids separate. The nucleus reforms and the cell divides.
- d. The kinetochore becomes attached to the mitotic spindle. Sister chromatids line up at the metaphase plate. Cohesin proteins break down and the sister chromatids separate. The nucleus reforms and the cell divides.

Solution:

[link] D. The kinetochore becomes attached to the mitotic spindle. Sister chromatids line up at the metaphase plate. Cohesin proteins break down and the sister chromatids separate. The nucleus reforms and the cell divides.

Review Questions

Exercise:

Problem:

Chromosomes are duplicated during what stage of the cell cycle?

- a. G_1 phase
- b. S phase
- c. prophase
- d. prometaphase

Solution:

Exercise:

Problem:

Which of the following events does not occur during some stages of interphase?

- a. DNA duplication
- b. organelle duplication
- c. increase in cell size
- d. separation of sister chromatids

Solution:

D

Exercise:

Problem: The mitotic spindles arise from which cell structure?

- a. centromere
- b. centrosome
- c. kinetochore
- d. cleavage furrow

Solution:

В

Exercise:

Problem:

Attachment of the mitotic spindle fibers to the kinetochores is a characteristic of which stage of mitosis?

- a. prophase
- b. prometaphase

c. metaphase
d. anaphase
Solution:
В
Exercise:
Problem:
Unpacking of chromosomes and the formation of a new nuclear envelope is a characteristic of which stage of mitosis?
a. prometaphase
b. metaphase c. anaphase
d. telophase
Solution:
D
Exercise:
Problem:
Separation of the sister chromatids is a characteristic of which stage of mitosis?
a. prometaphase
b. metaphase
c. anaphase d. telophase

Solution:

C

•			•		
н	v	1Ci	C	Δ	•

The chromosomes become visible under a light microscope during which stage of mitosis?

- a. prophase
- b. prometaphase
- c. metaphase
- d. anaphase

Solution:

Α

Exercise:

Problem:

The fusing of Golgi vesicles at the metaphase plate of dividing plant cells forms what structure?

- a. cell plate
- b. actin ring
- c. cleavage furrow
- d. mitotic spindle

Solution:

A

Free Response

Exercise:

Briefly describe the events that occur in each phase of interphase.

Solution:

During G_1 , the cell increases in size, the genomic DNA is assessed for damage, and the cell stockpiles energy reserves and the components to synthesize DNA. During the S phase, the chromosomes, the centrosomes, and the centrioles (animal cells) duplicate. During the G_2 phase, the cell recovers from the S phase, continues to grow, duplicates some organelles, and dismantles other organelles.

Exercise:

Problem:

Chemotherapy drugs such as vincristine and colchicine disrupt mitosis by binding to tubulin (the subunit of microtubules) and interfering with microtubule assembly and disassembly. Exactly what mitotic structure is targeted by these drugs and what effect would that have on cell division?

Solution:

The mitotic spindle is formed of microtubules. Microtubules are polymers of the protein tubulin; therefore, it is the mitotic spindle that is disrupted by these drugs. Without a functional mitotic spindle, the chromosomes will not be sorted or separated during mitosis. The cell will arrest in mitosis and die.

Exercise:

Problem:

Describe the similarities and differences between the cytokinesis mechanisms found in animal cells versus those in plant cells.

Solution:

There are very few similarities between animal cell and plant cell cytokinesis. In animal cells, a ring of actin fibers is formed around the periphery of the cell at the former metaphase plate (cleavage furrow). The actin ring contracts inward, pulling the plasma membrane toward the center of the cell until the cell is pinched in two. In plant cells, a new cell wall must be formed between the daughter cells. Due to the rigid cell walls of the parent cell, contraction of the middle of the cell is not possible. Instead, a phragmoplast first forms. Subsequently, a cell plate is formed in the center of the cell at the former metaphase plate. The cell plate is formed from Golgi vesicles that contain enzymes, proteins, and glucose. The vesicles fuse and the enzymes build a new cell wall from the proteins and glucose. The cell plate grows toward and eventually fuses with the cell wall of the parent cell.

Exercise:

Problem:

List some reasons why a cell that has just completed cytokinesis might enter the G_0 phase instead of the G_1 phase.

Solution:

Many cells temporarily enter G_0 until they reach maturity. Some cells are only triggered to enter G_1 when the organism needs to increase that particular cell type. Some cells only reproduce following an injury to the tissue. Some cells never divide once they reach maturity.

Exercise:

Problem:

What cell cycle events will be affected in a cell that produces mutated (non-functional) cohesin protein?

Solution:

If cohesin is not functional, chromosomes are not packaged after DNA replication in the S phase of interphase. It is likely that the proteins of the centromeric region, such as the kinetochore, would not form. Even

if the mitotic spindle fibers could attach to the chromatids without packing, the chromosomes would not be sorted or separated during mitosis.

Glossary

anaphase

stage of mitosis during which sister chromatids are separated from each other

cell cycle

ordered series of events involving cell growth and cell division that produces two new daughter cells

cell plate

structure formed during plant cell cytokinesis by Golgi vesicles, forming a temporary structure (phragmoplast) and fusing at the metaphase plate; ultimately leads to the formation of cell walls that separate the two daughter cells

centriole

rod-like structure constructed of microtubules at the center of each animal cell centrosome

cleavage furrow

constriction formed by an actin ring during cytokinesis in animal cells that leads to cytoplasmic division

condensin

proteins that help sister chromatids coil during prophase

cytokinesis

division of the cytoplasm following mitosis that forms two daughter cells.

G₀ phase

distinct from the G_1 phase of interphase; a cell in G_0 is not preparing to divide

G₁ phase

(also, first gap) first phase of interphase centered on cell growth during mitosis

G₂ phase

(also, second gap) third phase of interphase during which the cell undergoes final preparations for mitosis

interphase

period of the cell cycle leading up to mitosis; includes G₁, S, and G₂ phases (the interim period between two consecutive cell divisions

karyokinesis

mitotic nuclear division

kinetochore

protein structure associated with the centromere of each sister chromatid that attracts and binds spindle microtubules during prometaphase

metaphase plate

equatorial plane midway between the two poles of a cell where the chromosomes align during metaphase

metaphase

stage of mitosis during which chromosomes are aligned at the metaphase plate

mitosis

(also, karyokinesis) period of the cell cycle during which the duplicated chromosomes are separated into identical nuclei; includes prophase, prometaphase, metaphase, anaphase, and telophase

mitotic phase

period of the cell cycle during which duplicated chromosomes are distributed into two nuclei and cytoplasmic contents are divided; includes karyokinesis (mitosis) and cytokinesis

mitotic spindle

apparatus composed of microtubules that orchestrates the movement of chromosomes during mitosis

prometaphase

stage of mitosis during which the nuclear membrane breaks down and mitotic spindle fibers attach to kinetochores

prophase

stage of mitosis during which chromosomes condense and the mitotic spindle begins to form

quiescent

refers to a cell that is performing normal cell functions and has not initiated preparations for cell division

S phase

second, or synthesis, stage of interphase during which DNA replication occurs

telophase

stage of mitosis during which chromosomes arrive at opposite poles, decondense, and are surrounded by a new nuclear envelope

Control of the Cell Cycle By the end of this section, you will be able to:

- Understand how the cell cycle is controlled by mechanisms both internal and external to the cell
- Explain how the three internal control checkpoints occur at the end of G_1 , at the G_2/M transition, and during metaphase
- Describe the molecules that control the cell cycle through positive and negative regulation

The length of the cell cycle is highly variable, even within the cells of a single organism. In humans, the frequency of cell turnover ranges from a few hours in early embryonic development, to an average of two to five days for epithelial cells, and to an entire human lifetime spent in G_0 by specialized cells, such as cortical neurons or cardiac muscle cells. There is also variation in the time that a cell spends in each phase of the cell cycle. When fast-dividing mammalian cells are grown in culture (outside the body under optimal growing conditions), the length of the cycle is about 24 hours. In rapidly dividing human cells with a 24-hour cell cycle, the G_1 phase lasts approximately nine hours, the S phase lasts 10 hours, the G_2 phase lasts about four and one-half hours, and the M phase lasts approximately one-half hour. In early embryos of fruit flies, the cell cycle is completed in about eight minutes. The timing of events in the cell cycle is controlled by mechanisms that are both internal and external to the cell.

Regulation of the Cell Cycle by External Events

Both the initiation and inhibition of cell division are triggered by events external to the cell when it is about to begin the replication process. An event may be as simple as the death of a nearby cell or as sweeping as the release of growth-promoting hormones, such as human growth hormone (HGH). A lack of HGH can inhibit cell division, resulting in dwarfism, whereas too much HGH can result in gigantism. Crowding of cells can also inhibit cell division. Another factor that can initiate cell division is the size of the cell; as a cell grows, it becomes inefficient due to its decreasing surface-to-volume ratio. The solution to this problem is to divide.

Whatever the source of the message, the cell receives the signal, and a series of events within the cell allows it to proceed into interphase. Moving forward from this initiation point, every parameter required during each cell cycle phase must be met or the cycle cannot progress.

Regulation at Internal Checkpoints

It is essential that the daughter cells produced be exact duplicates of the parent cell. Mistakes in the duplication or distribution of the chromosomes lead to mutations that may be passed forward to every new cell produced from an abnormal cell. To prevent a compromised cell from continuing to divide, there are internal control mechanisms that operate at three main **cell cycle checkpoints**. A checkpoint is one of several points in the eukaryotic cell cycle at which the progression of a cell to the next stage in the cycle can be halted until conditions are favorable. These checkpoints occur near the end of G_1 , at the G_2/M transition, and during metaphase ([link]).

The cell cycle is controlled at three checkpoints. The integrity of the DNA is assessed at the G_1 checkpoint. Proper chromosome duplication is assessed at the G_2 checkpoint. Attachment of each kinetochore to a spindle fiber is assessed at the M checkpoint.

The G₁ Checkpoint

The G_1 checkpoint determines whether all conditions are favorable for cell division to proceed. The G_1 checkpoint, also called the restriction point (in yeast), is a point at which the cell irreversibly commits to the cell division process. External influences, such as growth factors, play a large role in carrying the cell past the G_1 checkpoint. In addition to adequate reserves and cell size, there is a check for genomic DNA damage at the G_1 checkpoint. A cell that does not meet all the requirements will not be allowed to progress into the S phase. The cell can halt the cycle and attempt to remedy the problematic condition, or the cell can advance into G_0 and await further signals when conditions improve.

The G₂ Checkpoint

The G_2 checkpoint bars entry into the mitotic phase if certain conditions are not met. As at the G_1 checkpoint, cell size and protein reserves are assessed. However, the most important role of the G_2 checkpoint is to ensure that all of the chromosomes have been replicated and that the replicated DNA is not damaged. If the checkpoint mechanisms detect problems with the DNA, the cell cycle is halted, and the cell attempts to either complete DNA replication or repair the damaged DNA.

The M Checkpoint

The M checkpoint occurs near the end of the metaphase stage of karyokinesis. The M checkpoint is also known as the spindle checkpoint, because it determines whether all the sister chromatids are correctly attached to the spindle microtubules. Because the separation of the sister chromatids during anaphase is an irreversible step, the cycle will not proceed until the kinetochores of each pair of sister chromatids are firmly anchored to at least two spindle fibers arising from opposite poles of the cell.

Note:

Link to Learning

Watch what occurs at the G_1 , G_2 , and M checkpoints by visiting this website to see an animation of the cell cycle.

Regulator Molecules of the Cell Cycle

In addition to the internally controlled checkpoints, there are two groups of intracellular molecules that regulate the cell cycle. These regulatory molecules either promote progress of the cell to the next phase (positive regulation) or halt the cycle (negative regulation). Regulator molecules may act individually, or they can influence the activity or production of other regulatory proteins. Therefore, the failure of a single regulator may have almost no effect on the cell cycle, especially if more than one mechanism controls the same event. Conversely, the effect of a deficient or non-functioning regulator can be wide-ranging and possibly fatal to the cell if multiple processes are affected.

Positive Regulation of the Cell Cycle

Two groups of proteins, called **cyclins** and **cyclin-dependent kinases** (Cdks), are responsible for the progress of the cell through the various checkpoints. The levels of the four cyclin proteins fluctuate throughout the cell cycle in a predictable pattern ([link]). Increases in the concentration of cyclin proteins are triggered by both external and internal signals. After the cell moves to the next stage of the cell cycle, the cyclins that were active in the previous stage are degraded.

The concentrations of cyclin proteins change throughout the cell cycle. There is a direct correlation between cyclin accumulation and the three major cell cycle checkpoints. Also note the sharp decline of cyclin levels following each checkpoint (the transition between phases of the cell cycle), as cyclin is degraded by cytoplasmic enzymes.

(credit: modification of work by "WikiMiMa"/Wikimedia Commons)

Cyclins regulate the cell cycle only when they are tightly bound to Cdks. To be fully active, the Cdk/cyclin complex must also be phosphorylated in specific locations. Like all kinases, Cdks are enzymes (kinases) that phosphorylate other proteins. Phosphorylation activates the protein by changing its shape. The proteins phosphorylated by Cdks are involved in advancing the cell to the next phase. ([link]). The levels of Cdk proteins are relatively stable throughout the cell cycle; however, the concentrations of cyclin fluctuate and determine when Cdk/cyclin complexes form. The different cyclins and Cdks bind at specific points in the cell cycle and thus regulate different checkpoints.

Cyclin-dependent kinases (Cdks) are protein kinases that, when fully activated, can phosphorylate and thus activate other proteins that advance the cell cycle past a checkpoint. To become fully activated, a Cdk must bind to a cyclin protein and then be phosphorylated by another kinase.

Since the cyclic fluctuations of cyclin levels are based on the timing of the cell cycle and not on specific events, regulation of the cell cycle usually occurs by either the Cdk molecules alone or the Cdk/cyclin complexes. Without a specific concentration of fully activated cyclin/Cdk complexes, the cell cycle cannot proceed through the checkpoints.

Although the cyclins are the main regulatory molecules that determine the forward momentum of the cell cycle, there are several other mechanisms that fine-tune the progress of the cycle with negative, rather than positive, effects. These mechanisms essentially block the progression of the cell cycle until problematic conditions are resolved. Molecules that prevent the full activation of Cdks are called Cdk inhibitors. Many of these inhibitor molecules directly or indirectly monitor a particular cell cycle event. The block placed on Cdks by inhibitor molecules will not be removed until the specific event that the inhibitor monitors is completed.

Negative Regulation of the Cell Cycle

The second group of cell cycle regulatory molecules are negative regulators. Negative regulators halt the cell cycle. Remember that in positive regulation, active molecules cause the cycle to progress.

The best understood negative regulatory molecules are **retinoblastoma protein** (**Rb**), **p53**, and **p21**. Retinoblastoma proteins are a group of tumor-suppressor proteins common in many cells. The 53 and 21 designations refer to the functional molecular masses of the proteins (p) in kilodaltons. Much of what is known about cell cycle regulation comes from research conducted with cells that have lost regulatory control. All three of these regulatory proteins were discovered to be damaged or non-functional in cells that had begun to replicate uncontrollably (became cancerous). In each case, the main cause of the unchecked progress through the cell cycle was a faulty copy of the regulatory protein.

Rb, p53, and p21 act primarily at the G_1 checkpoint. p53 is a multifunctional protein that has a major impact on the commitment of a cell to division because it acts when there is damaged DNA in cells that are undergoing the preparatory processes during G_1 . If damaged DNA is detected, p53 halts the cell cycle and recruits enzymes to repair the DNA. If the DNA cannot be repaired, p53 can trigger apoptosis, or cell suicide, to prevent the duplication of damaged chromosomes. As p53 levels rise, the production of p21 is triggered. p21 enforces the halt in the cycle dictated by p53 by binding to and inhibiting the activity of the Cdk/cyclin complexes. As a cell is exposed to more stress, higher levels of p53 and p21 accumulate, making it less likely that the cell will move into the S phase.

Rb exerts its regulatory influence on other positive regulator proteins. Chiefly, Rb monitors cell size. In the active, dephosphorylated state, Rb binds to proteins called transcription factors, most commonly, E2F ([link]). Transcription factors "turn on" specific genes, allowing the production of proteins encoded by that gene. When Rb is bound to E2F, production of proteins necessary for the G_1 /S transition is blocked. As the cell increases in size, Rb is slowly phosphorylated until it becomes inactivated. Rb releases E2F, which can now turn on the gene that produces the transition protein, and this particular block is removed. For the cell to move past each of the checkpoints, all positive regulators must be "turned on," and all negative regulators must be "turned off."

Note:		
Note: Art Connection		

Rb halts the cell cycle and releases its hold in response to cell growth.

Rb and other proteins that negatively regulate the cell cycle are sometimes called tumor suppressors. Why do you think the name tumor suppressor might be appropriate for these proteins?

Section Summary

Each step of the cell cycle is monitored by internal controls called checkpoints. There are three major checkpoints in the cell cycle: one near the end of G_1 , a second at the G_2/M transition, and the third during metaphase. Positive regulator molecules allow the cell cycle to advance to the next stage. Negative regulator molecules monitor cellular conditions and can halt the cycle until specific requirements are met.

Art Connections

Exercise:

Problem:

[link] Rb and other proteins that negatively regulate the cell cycle are sometimes called tumor suppressors. Why do you think the name tumor suppressor might be an appropriate for these proteins?

Solution:

[link] Rb and other negative regulatory proteins control cell division and therefore prevent the formation of tumors. Mutations that prevent these proteins from carrying out their function can result in cancer.

Review Questions

Exercise:

Problem:

At which of the cell cycle checkpoints do external forces have the greatest influence?

- a. G_1 checkpoint
- b. G₂ checkpoint
- c. M checkpoint
- $d. G_0$ checkpoint

Solution:

Α

Exercise:

Problem:

What is the main prerequisite for clearance at the G_2 checkpoint?

a. cell has reached a sufficient size

- b. an adequate stockpile of nucleotides
- c. accurate and complete DNA replication
- d. proper attachment of mitotic spindle fibers to kinetochores

Solution:

C

Exercise:

Problem:

If the M checkpoint is not cleared, what stage of mitosis will be blocked?

- a. prophase
- b. prometaphase
- c. metaphase
- d. anaphase

Solution:

D

Exercise:

Problem:

Which protein is a positive regulator that phosphorylates other proteins when activated?

- a. p53
- b. retinoblastoma protein (Rb)
- c. cyclin
- d. cyclin-dependent kinase (Cdk)

Solution:

					•		
\mathbf{E}	v	Ω	М	C)	ıc	Δ	•
	^	ι.		١.	.7	L .	•

Many of the negative regulator proteins of the cell cycle were discovered in what type of cells?

- a. gametes
- b. cells in G₀
- c. cancer cells
- d. stem cells

Solution:

 \mathbf{C}

Exercise:

Problem:

Which negative regulatory molecule can trigger cell suicide (apoptosis) if vital cell cycle events do not occur?

- a. p53
- b. p21
- c. retinoblastoma protein (Rb)
- d. cyclin-dependent kinase (Cdk)

Solution:

A

Free Response

Exercise:

Describe the general conditions that must be met at each of the three main cell cycle checkpoints.

Solution:

The G_1 checkpoint monitors adequate cell growth, the state of the genomic DNA, adequate stores of energy, and materials for S phase. At the G_2 checkpoint, DNA is checked to ensure that all chromosomes were duplicated and that there are no mistakes in newly synthesized DNA. Additionally, cell size and energy reserves are evaluated. The M checkpoint confirms the correct attachment of the mitotic spindle fibers to the kinetochores.

Exercise:

Problem:

Explain the roles of the positive cell cycle regulators compared to the negative regulators.

Solution:

Positive cell regulators such as cyclin and Cdk perform tasks that advance the cell cycle to the next stage. Negative regulators such as Rb, p53, and p21 block the progression of the cell cycle until certain events have occurred.

Exercise:

Problem: What steps are necessary for Cdk to become fully active?

Solution:

Cdk must bind to a cyclin, and it must be phosphorylated in the correct position to become fully active.

Exercise:

Rb is a negative regulator that blocks the cell cycle at the G_1 checkpoint until the cell achieves a requisite size. What molecular mechanism does Rb employ to halt the cell cycle?

Solution:

Rb is active when it is dephosphorylated. In this state, Rb binds to E2F, which is a transcription factor required for the transcription and eventual translation of molecules required for the G_1/S transition. E2F cannot transcribe certain genes when it is bound to Rb. As the cell increases in size, Rb becomes phosphorylated, inactivated, and releases E2F. E2F can then promote the transcription of the genes it controls, and the transition proteins will be produced.

Glossary

cell cycle checkpoint

mechanism that monitors the preparedness of a eukaryotic cell to advance through the various cell cycle stages

cyclin

one of a group of proteins that act in conjunction with cyclindependent kinases to help regulate the cell cycle by phosphorylating key proteins; the concentrations of cyclins fluctuate throughout the cell cycle

cyclin-dependent kinase

one of a group of protein kinases that helps to regulate the cell cycle when bound to cyclin; it functions to phosphorylate other proteins that are either activated or inactivated by phosphorylation

p21

cell cycle regulatory protein that inhibits the cell cycle; its levels are controlled by p53

p53

cell cycle regulatory protein that regulates cell growth and monitors DNA damage; it halts the progression of the cell cycle in cases of DNA damage and may induce apoptosis

retinoblastoma protein (Rb)

regulatory molecule that exhibits negative effects on the cell cycle by interacting with a transcription factor (E2F)

Cancer and the Cell Cycle By the end of this section, you will be able to:

- Describe how cancer is caused by uncontrolled cell growth
- Understand how proto-oncogenes are normal cell genes that, when mutated, become oncogenes
- Describe how tumor suppressors function
- Explain how mutant tumor suppressors cause cancer

Cancer comprises many different diseases caused by a common mechanism: uncontrolled cell growth. Despite the redundancy and overlapping levels of cell cycle control, errors do occur. One of the critical processes monitored by the cell cycle checkpoint surveillance mechanism is the proper replication of DNA during the S phase. Even when all of the cell cycle controls are fully functional, a small percentage of replication errors (mutations) will be passed on to the daughter cells. If changes to the DNA nucleotide sequence occur within a coding portion of a gene and are not corrected, a gene mutation results. All cancers start when a gene mutation gives rise to a faulty protein that plays a key role in cell reproduction. The change in the cell that results from the malformed protein may be minor: perhaps a slight delay in the binding of Cdk to cyclin or an Rb protein that detaches from its target DNA while still phosphorylated. Even minor mistakes, however, may allow subsequent mistakes to occur more readily. Over and over, small uncorrected errors are passed from the parent cell to the daughter cells and amplified as each generation produces more nonfunctional proteins from uncorrected DNA damage. Eventually, the pace of the cell cycle speeds up as the effectiveness of the control and repair mechanisms decreases. Uncontrolled growth of the mutated cells outpaces the growth of normal cells in the area, and a tumor ("-oma") can result.

Proto-oncogenes

The genes that code for the positive cell cycle regulators are called **proto-oncogenes**. Proto-oncogenes are normal genes that, when mutated in certain ways, become **oncogenes**, genes that cause a cell to become cancerous. Consider what might happen to the cell cycle in a cell with a recently acquired oncogene. In most instances, the alteration of the DNA sequence

will result in a less functional (or non-functional) protein. The result is detrimental to the cell and will likely prevent the cell from completing the cell cycle; however, the organism is not harmed because the mutation will not be carried forward. If a cell cannot reproduce, the mutation is not propagated and the damage is minimal. Occasionally, however, a gene mutation causes a change that increases the activity of a positive regulator. For example, a mutation that allows Cdk to be activated without being partnered with cyclin could push the cell cycle past a checkpoint before all of the required conditions are met. If the resulting daughter cells are too damaged to undergo further cell divisions, the mutation would not be propagated and no harm would come to the organism. However, if the atypical daughter cells are able to undergo further cell divisions, subsequent generations of cells will probably accumulate even more mutations, some possibly in additional genes that regulate the cell cycle.

The Cdk gene in the above example is only one of many genes that are considered proto-oncogenes. In addition to the cell cycle regulatory proteins, any protein that influences the cycle can be altered in such a way as to override cell cycle checkpoints. An oncogene is any gene that, when altered, leads to an increase in the rate of cell cycle progression.

Tumor Suppressor Genes

Like proto-oncogenes, many of the negative cell cycle regulatory proteins were discovered in cells that had become cancerous. **Tumor suppressor genes** are segments of DNA that code for negative regulator proteins, the type of regulators that, when activated, can prevent the cell from undergoing uncontrolled division. The collective function of the best-understood tumor suppressor gene proteins, Rb, p53, and p21, is to put up a roadblock to cell cycle progression until certain events are completed. A cell that carries a mutated form of a negative regulator might not be able to halt the cell cycle if there is a problem. Tumor suppressors are similar to brakes in a vehicle: Malfunctioning brakes can contribute to a car crash.

Mutated p53 genes have been identified in more than one-half of all human tumor cells. This discovery is not surprising in light of the multiple roles that the p53 protein plays at the G_1 checkpoint. A cell with a faulty p53 may

fail to detect errors present in the genomic DNA ([link]). Even if a partially functional p53 does identify the mutations, it may no longer be able to signal the necessary DNA repair enzymes. Either way, damaged DNA will remain uncorrected. At this point, a functional p53 will deem the cell unsalvageable and trigger programmed cell death (apoptosis). The damaged version of p53 found in cancer cells, however, cannot trigger apoptosis.

The role of normal p53 is to monitor DNA and the supply of oxygen (hypoxia is a condition of reduced oxygen supply). If damage is detected, p53 triggers repair mechanisms. If repairs are unsuccessful, p53 signals apoptosis. A cell with an abnormal p53 protein cannot repair damaged DNA and thus cannot signal apoptosis. Cells with abnormal p53 can become

cancerous. (credit: modification of work by Thierry Soussi)

Human papillomavirus can cause cervical cancer. The virus encodes E6, a protein that binds p53. Based on this fact and what you know about p53, what effect do you think E6 binding has on p53 activity?

- a. E6 activates p53
- b. E6 inactivates p53
- c. E6 mutates p53
- d. E6 binding marks p53 for degradation

The loss of p53 function has other repercussions for the cell cycle. Mutated p53 might lose its ability to trigger p21 production. Without adequate levels of p21, there is no effective block on Cdk activation. Essentially, without a fully functional p53, the G_1 checkpoint is severely compromised and the cell proceeds directly from G_1 to S regardless of internal and external conditions. At the completion of this shortened cell cycle, two daughter cells are produced that have inherited the mutated p53 gene. Given the non-optimal conditions under which the parent cell reproduced, it is likely that the daughter cells will have acquired other mutations in addition to the faulty tumor suppressor gene. Cells such as these daughter cells quickly accumulate both oncogenes and non-functional tumor suppressor genes. Again, the result is tumor growth.

Note: Link to Learning			

Watch an animation of how cancer results from errors in the cell cycle. https://www.openstaxcollege.org/l/cancer

Section Summary

Cancer is the result of unchecked cell division caused by a breakdown of the mechanisms that regulate the cell cycle. The loss of control begins with a change in the DNA sequence of a gene that codes for one of the regulatory molecules. Faulty instructions lead to a protein that does not function as it should. Any disruption of the monitoring system can allow other mistakes to be passed on to the daughter cells. Each successive cell division will give rise to daughter cells with even more accumulated damage. Eventually, all checkpoints become nonfunctional, and rapidly reproducing cells crowd out normal cells, resulting in a tumor or leukemia (blood cancer).

Art Connections

Exercise:

Problem:

[link] Human papillomavirus can cause cervical cancer. The virus encodes E6, a protein that binds p53. Based on this fact and what you know about p53, what effect do you think E6 binding has on p53 activity?

- a. E6 activates p53
- b. E6 inactivates p53
- c. E6 mutates p53

d. E6 binding marks p53 for degradation

Solution:

[link] D. E6 binding marks p53 for degradation.

Review Questions

_	•	
HVC	ercise	•
$\Delta \Lambda$.ı cısc	•

Problem:

_____ are changes to the order of nucleotides in a segment of DNA that codes for a protein.

- a. Proto-oncogenes
- b. Tumor suppressor genes
- c. Gene mutations
- d. Negative regulators

Solution:

 \mathbf{C}

Exercise:

Problem:

A gene that codes for a positive cell cycle regulator is called a(n)

- a. kinase inhibitor.
- b. tumor suppressor gene.
- c. proto-oncogene.
- d. oncogene.

Problem: A mutated gene that codes for an altered version of Cdk that is active in the absence of cyclin is a(n) a. kinase inhibitor. b. tumor suppressor gene. c. proto-oncogene. d. oncogene. Solution: D Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
Exercise: Problem: A mutated gene that codes for an altered version of Cdk that is active in the absence of cyclin is a(n) a. kinase inhibitor. b. tumor suppressor gene. c. proto-oncogene. d. oncogene. Solution: D Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
Problem: A mutated gene that codes for an altered version of Cdk that is active in the absence of cyclin is a(n) a. kinase inhibitor. b. tumor suppressor gene. c. proto-oncogene. d. oncogene. Solution: D Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
A mutated gene that codes for an altered version of Cdk that is active in the absence of cyclin is a(n) a. kinase inhibitor. b. tumor suppressor gene. c. proto-oncogene. d. oncogene. Solution: D Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
in the absence of cyclin is a(n) a. kinase inhibitor. b. tumor suppressor gene. c. proto-oncogene. d. oncogene. Solution: D Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
b. tumor suppressor gene. c. proto-oncogene. d. oncogene. Solution: D Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
Exercise: Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
Problem: Which molecule is a Cdk inhibitor that is controlled by p53? a. cyclin b. anti-kinase c. Rb d. p21
a. cyclin b. anti-kinase c. Rb d. p21
b. anti-kinase c. Rb d. p21
Solution:
D
Free Response
Exercise:

Problem:Outline the steps that lead to a cell becoming cancerous.

Solution:

If one of the genes that produces regulator proteins becomes mutated, it produces a malformed, possibly non-functional, cell cycle regulator, increasing the chance that more mutations will be left unrepaired in the cell. Each subsequent generation of cells sustains more damage. The cell cycle can speed up as a result of the loss of functional checkpoint proteins. The cells can lose the ability to self-destruct and eventually become "immortalized."

Exercise:

Problem:

Explain the difference between a proto-oncogene and a tumor suppressor gene.

Solution:

A proto-oncogene is a segment of DNA that codes for one of the positive cell cycle regulators. If that gene becomes mutated so that it produces a hyperactivated protein product, it is considered an oncogene. A tumor suppressor gene is a segment of DNA that codes for one of the negative cell cycle regulators. If that gene becomes mutated so that the protein product becomes less active, the cell cycle will run unchecked. A single oncogene can initiate abnormal cell divisions; however, tumor suppressors lose their effectiveness only when both copies of the gene are damaged.

Exercise:

Problem:

List the regulatory mechanisms that might be lost in a cell producing faulty p53.

Solution:

Regulatory mechanisms that might be lost include monitoring of the quality of the genomic DNA, recruiting of repair enzymes, and the triggering of apoptosis.

Exercise:

Problem:

p53 can trigger apoptosis if certain cell cycle events fail. How does this regulatory outcome benefit a multicellular organism?

Solution:

If a cell has damaged DNA, the likelihood of producing faulty proteins is higher. The daughter cells of such a damaged parent cell would also produce faulty proteins that might eventually become cancerous. If p53 recognizes this damage and triggers the cell to self-destruct, the damaged DNA is degraded and recycled. No further harm comes to the organism. Another healthy cell is triggered to divide instead.

Glossary

oncogene

mutated version of a normal gene involved in the positive regulation of the cell cycle

proto-oncogene

normal gene that when mutated becomes an oncogene

tumor suppressor gene

segment of DNA that codes for regulator proteins that prevent the cell from undergoing uncontrolled division

Prokaryotic Cell Division By the end of this section, you will be able to:

- Describe the process of binary fission in prokaryotes
- Explain how FtsZ and tubulin proteins are examples of homology

Prokaryotes, such as bacteria, propagate by binary fission. For unicellular organisms, cell division is the only method to produce new individuals. In both prokaryotic and eukaryotic cells, the outcome of cell reproduction is a pair of daughter cells that are genetically identical to the parent cell. In unicellular organisms, daughter cells are individuals.

To achieve the outcome of cloned offspring, certain steps are essential. The genomic DNA must be replicated and then allocated into the daughter cells; the cytoplasmic contents must also be divided to give both new cells the machinery to sustain life. In bacterial cells, the genome consists of a single, circular DNA chromosome; therefore, the process of cell division is simplified. Karyokinesis is unnecessary because there is no nucleus and thus no need to direct one copy of the multiple chromosomes into each daughter cell. This type of cell division is called **binary (prokaryotic) fission**.

Binary Fission

Due to the relative simplicity of the prokaryotes, the cell division process, called binary fission, is a less complicated and much more rapid process than cell division in eukaryotes. The single, circular DNA chromosome of bacteria is not enclosed in a nucleus, but instead occupies a specific location, the nucleoid, within the cell ([link]). Although the DNA of the nucleoid is associated with proteins that aid in packaging the molecule into a compact size, there are no histone proteins and thus no nucleosomes in prokaryotes. The packing proteins of bacteria are, however, related to the cohesin and condensin proteins involved in the chromosome compaction of eukaryotes.

The bacterial chromosome is attached to the plasma membrane at about the midpoint of the cell. The starting point of replication, the **origin**, is close to the binding site of the chromosome to the plasma membrane ([link]). Replication of the DNA is bidirectional, moving away from the origin on both strands of the loop simultaneously. As the new double strands are

formed, each origin point moves away from the cell wall attachment toward the opposite ends of the cell. As the cell elongates, the growing membrane aids in the transport of the chromosomes. After the chromosomes have cleared the midpoint of the elongated cell, cytoplasmic separation begins. The formation of a ring composed of repeating units of a protein called **FtsZ** directs the partition between the nucleoids. Formation of the FtsZ ring triggers the accumulation of other proteins that work together to recruit new membrane and cell wall materials to the site. A **septum** is formed between the nucleoids, extending gradually from the periphery toward the center of the cell. When the new cell walls are in place, the daughter cells separate.

These images show the steps of binary fission in prokaryotes. (credit: modification of work by "Mcstrother"/Wikimedia Commons)

Note:

Evolution Connection

Mitotic Spindle Apparatus

The precise timing and formation of the mitotic spindle is critical to the success of eukaryotic cell division. Prokaryotic cells, on the other hand, do not undergo karyokinesis and therefore have no need for a mitotic spindle. However, the FtsZ protein that plays such a vital role in prokaryotic cytokinesis is structurally and functionally very similar to tubulin, the building block of the microtubules that make up the mitotic spindle fibers that are necessary for eukaryotes. FtsZ proteins can form filaments, rings, and other three-dimensional structures that resemble the way tubulin forms microtubules, centrioles, and various cytoskeletal components. In addition, both FtsZ and tubulin employ the same energy source, GTP (guanosine triphosphate), to rapidly assemble and disassemble complex structures. FtsZ and tubulin are homologous structures derived from common evolutionary origins. In this example, FtsZ is the ancestor protein to tubulin (a modern protein). While both proteins are found in extant organisms, tubulin function has evolved and diversified tremendously since evolving from its FtsZ prokaryotic origin. A survey of mitotic assembly components found in present-day unicellular eukaryotes reveals crucial intermediary steps to the complex membrane-enclosed genomes of multicellular eukaryotes ([link]).

Cell Division Apparatus among Various Organisms			5
	Structure of genetic material	Division of nuclear material	Separation of daughter cells

	Structure of genetic material	Division of nuclear material	Separation of daughter cells
Prokaryotes	There is no nucleus. The single, circular chromosome exists in a region of cytoplasm called the nucleoid.	eus. The binary fission. le, As the chromosome is replicated, the two copies on of move to plasm of the cell by	FtsZ proteins assemble into a ring that pinches the cell in two.
Some protists	Linear chromosomes exist in the nucleus. attach nuclear envelo which remain intact. mitotic spindle through envelo elonga cell. N	remains intact. The mitotic spindle passes through the envelope and elongates the cell. No centrioles	Microfilaments form a cleavage furrow that pinches the cell in two.

Cell Division Apparatus among Various Organisms			
	Structure of genetic material	Division of nuclear material	Separation of daughter cells
Other protists	Linear chromosomes exist in the nucleus.	A mitotic spindle forms from the centrioles and passes through the nuclear membrane, which remains intact. Chromosomes attach to the mitotic spindle, which separates the chromosomes and elongates the cell.	Microfilaments form a cleavage furrow that pinches the cell in two.

	Structure of genetic material	Division of nuclear material	Separation of daughter cells
Animal cells	Linear chromosomes exist in the nucleus.	A mitotic spindle forms from the centrosomes. The nuclear envelope dissolves. Chromosomes attach to the mitotic spindle, which separates the chromosomes and elongates the cell.	Microfilaments form a cleavage furrow that pinches the cell in two.

Section Summary

In both prokaryotic and eukaryotic cell division, the genomic DNA is replicated and then each copy is allocated into a daughter cell. In addition, the cytoplasmic contents are divided evenly and distributed to the new cells. However, there are many differences between prokaryotic and eukaryotic cell division. Bacteria have a single, circular DNA chromosome but no nucleus. Therefore, mitosis is not necessary in bacterial cell division. Bacterial cytokinesis is directed by a ring composed of a protein called FtsZ. Ingrowth of membrane and cell wall material from the periphery of the cells

results in the formation of a septum that eventually constructs the separate cell walls of the daughter cells.

Exercise:
Problem:
Which eukaryotic cell cycle event is missing in binary fission?
a. cell growthb. DNA duplicationc. karyokinesisd. cytokinesis
Solution:
C
Exercise:
Problem:
FtsZ proteins direct the formation of a that will eventually form the new cell walls of the daughter cells.
a. contractile ring
b. cell plate
c. cytoskeleton d. septum
a. septam
Solution:
В

Free Response

Exercise:

Problem:

Name the common components of eukaryotic cell division and binary fission.

Solution:

The common components of eukaryotic cell division and binary fission are DNA duplication, segregation of duplicated chromosomes, and division of the cytoplasmic contents.

Exercise:

Problem:

Describe how the duplicated bacterial chromosomes are distributed into new daughter cells without the direction of the mitotic spindle.

Solution:

As the chromosome is being duplicated, each origin moves away from the starting point of replication. The chromosomes are attached to the cell membrane via proteins; the growth of the membrane as the cell elongates aids in their movement.

Glossary

binary fission prokaryotic cell division process

FtsZ

tubulin-like protein component of the prokaryotic cytoskeleton that is important in prokaryotic cytokinesis (name origin: Filamenting temperature-sensitive mutant **Z**)

origin

(also, ORI) region of the prokaryotic chromosome where replication begins (origin of replication)

septum

structure formed in a bacterial cell as a precursor to the separation of the cell into two daughter cells

Introduction class="introduction"

```
Each of us,
 like these
other large
multicellula
r organisms,
 begins life
    as a
 fertilized
 egg. After
 trillions of
    cell
 divisions,
 each of us
 develops
   into a
 complex,
multicellula
r organism.
 (credit a:
modificatio
 n of work
 by Frank
 Wouters;
  credit b:
modificatio
 n of work
  by Ken
   Cole,
  USGS;
  credit c:
modificatio
 n of work
 by Martin
  Pettitt)
```


The ability to reproduce in kind is a basic characteristic of all living things. *In kind* means that the offspring of any organism closely resemble their parent or parents. Hippopotamuses give birth to hippopotamus calves, Joshua trees produce seeds from which Joshua tree seedlings emerge, and adult flamingos lay eggs that hatch into flamingo chicks. *In kind* does not generally mean exactly the same. Whereas many unicellular organisms and a few multicellular organisms can produce genetically identical clones of themselves through cell division, many single-celled organisms and most multicellular organisms reproduce regularly using another method. Sexual reproduction is the production by parents of two haploid cells and the fusion of two haploid cells to form a single, unique diploid cell. In most plants and animals, through tens of rounds of mitotic cell division, this diploid cell will develop into an adult organism. Haploid cells that are part of the sexual reproductive cycle are produced by a type of cell division called meiosis. Sexual reproduction, specifically meiosis and fertilization, introduces variation into offspring that may account for the evolutionary success of sexual reproduction. The vast majority of eukaryotic organisms, both multicellular and unicellular, can or must employ some form of meiosis and fertilization to reproduce.

The Process of Meiosis By the end of this section, you will be able to:

- Describe the behavior of chromosomes during meiosis
- Describe cellular events during meiosis
- Explain the differences between meiosis and mitosis
- Explain the mechanisms within meiosis that generate genetic variation among the products of meiosis

Sexual reproduction requires **fertilization**, the union of two cells from two individual organisms. If those two cells each contain one set of chromosomes, then the resulting cell contains two sets of chromosomes. Haploid cells contain one set of chromosomes. Cells containing two sets of chromosomes are called diploid. The number of sets of chromosomes in a cell is called its ploidy level. If the reproductive cycle is to continue, then the diploid cell must somehow reduce its number of chromosome sets before fertilization can occur again, or there will be a continual doubling in the number of chromosome sets in every generation. So, in addition to fertilization, sexual reproduction includes a nuclear division that reduces the number of chromosome sets.

Most animals and plants are diploid, containing two sets of chromosomes. In each **somatic cell** of the organism (all cells of a multicellular organism except the gametes or reproductive cells), the nucleus contains two copies of each chromosome, called homologous chromosomes. Somatic cells are sometimes referred to as "body" cells. Homologous chromosomes are matched pairs containing the same genes in identical locations along their length. Diploid organisms inherit one copy of each homologous chromosome from each parent; all together, they are considered a full set of chromosomes. Haploid cells, containing a single copy of each homologous chromosome, are found only within structures that give rise to either gametes or spores. **Spores** are haploid cells that can produce a haploid organism or can fuse with another spore to form a diploid cell. All animals and most plants produce eggs and sperm, or gametes. Some plants and all fungi produce spores.

The nuclear division that forms haploid cells, which is called **meiosis**, is related to mitosis. As you have learned, mitosis is the part of a cell

reproduction cycle that results in identical daughter nuclei that are also genetically identical to the original parent nucleus. In mitosis, both the parent and the daughter nuclei are at the same ploidy level—diploid for most plants and animals. Meiosis employs many of the same mechanisms as mitosis. However, the starting nucleus is always diploid and the nuclei that result at the end of a meiotic cell division are haploid. To achieve this reduction in chromosome number, meiosis consists of one round of chromosome duplication and two rounds of nuclear division. Because the events that occur during each of the division stages are analogous to the events of mitosis, the same stage names are assigned. However, because there are two rounds of division, the major process and the stages are designated with a "I" or a "II." Thus, **meiosis I** is the first round of meiotic division and consists of prophase I, prometaphase I, and so on. **Meiosis II**, in which the second round of meiotic division takes place, includes prophase II, prometaphase II, and so on.

Meiosis I

Meiosis is preceded by an interphase consisting of the G_1 , S, and G_2 phases, which are nearly identical to the phases preceding mitosis. The G_1 phase, which is also called the first gap phase, is the first phase of the interphase and is focused on cell growth. The S phase is the second phase of interphase, during which the DNA of the chromosomes is replicated. Finally, the G_2 phase, also called the second gap phase, is the third and final phase of interphase; in this phase, the cell undergoes the final preparations for meiosis.

During DNA duplication in the S phase, each chromosome is replicated to produce two identical copies, called sister chromatids, that are held together at the centromere by **cohesin** proteins. Cohesin holds the chromatids together until anaphase II. The centrosomes, which are the structures that organize the microtubules of the meiotic spindle, also replicate. This prepares the cell to enter prophase I, the first meiotic phase.

Prophase I

Early in prophase I, before the chromosomes can be seen clearly microscopically, the homologous chromosomes are attached at their tips to the nuclear envelope by proteins. As the nuclear envelope begins to break down, the proteins associated with homologous chromosomes bring the pair close to each other. Recall that, in mitosis, homologous chromosomes do not pair together. In mitosis, homologous chromosomes line up end-to-end so that when they divide, each daughter cell receives a sister chromatid from both members of the homologous pair. The **synaptonemal complex**, a lattice of proteins between the homologous chromosomes, first forms at specific locations and then spreads to cover the entire length of the chromosomes. The tight pairing of the homologous chromosomes is called **synapsis.** In synapsis, the genes on the chromatids of the homologous chromosomes are aligned precisely with each other. The synaptonemal complex supports the exchange of chromosomal segments between nonsister homologous chromatids, a process called crossing over. Crossing over can be observed visually after the exchange as **chiasmata** (singular = chiasma) ([link]).

In species such as humans, even though the X and Y sex chromosomes are not homologous (most of their genes differ), they have a small region of homology that allows the X and Y chromosomes to pair up during prophase I. A partial synaptonemal complex develops only between the regions of homology.

Early in prophase I, homologous chromosomes come together to form a synapse. The chromosomes are bound tightly together and in perfect alignment by a protein lattice called a synaptonemal complex and by cohesin proteins at the centromere.

Located at intervals along the synaptonemal complex are large protein assemblies called **recombination nodules**. These assemblies mark the points of later chiasmata and mediate the multistep process of **crossover** or genetic recombination—between the non-sister chromatids. Near the recombination nodule on each chromatid, the double-stranded DNA is cleaved, the cut ends are modified, and a new connection is made between the non-sister chromatids. As prophase I progresses, the synaptonemal complex begins to break down and the chromosomes begin to condense. When the synaptonemal complex is gone, the homologous chromosomes remain attached to each other at the centromere and at chiasmata. The chiasmata remain until anaphase I. The number of chiasmata varies according to the species and the length of the chromosome. There must be at least one chiasma per chromosome for proper separation of homologous chromosomes during meiosis I, but there may be as many as 25. Following crossover, the synaptonemal complex breaks down and the cohesin connection between homologous pairs is also removed. At the end of prophase I, the pairs are held together only at the chiasmata ([link]) and are called **tetrads** because the four sister chromatids of each pair of homologous chromosomes are now visible.

The crossover events are the first source of genetic variation in the nuclei produced by meiosis. A single crossover event between homologous non-sister chromatids leads to a reciprocal exchange of equivalent DNA between a maternal chromosome and a paternal chromosome. Now, when that sister chromatid is moved into a gamete cell it will carry some DNA from one parent of the individual and some DNA from the other parent. The

sister recombinant chromatid has a combination of maternal and paternal genes that did not exist before the crossover. Multiple crossovers in an arm of the chromosome have the same effect, exchanging segments of DNA to create recombinant chromosomes.

Crossover occurs between non-sister chromatids of homologous chromosomes. The result is an exchange of genetic material between homologous chromosomes.

Prometaphase I

The key event in prometaphase I is the attachment of the spindle fiber microtubules to the kinetochore proteins at the centromeres. Kinetochore proteins are multiprotein complexes that bind the centromeres of a chromosome to the microtubules of the mitotic spindle. Microtubules grow from centrosomes placed at opposite poles of the cell. The microtubules move toward the middle of the cell and attach to one of the two fused homologous chromosomes. The microtubules attach at each chromosomes' kinetochores. With each member of the homologous pair attached to opposite poles of the cell, in the next phase, the microtubules can pull the homologous pair apart. A spindle fiber that has attached to a kinetochore is called a kinetochore microtubule. At the end of prometaphase I, each tetrad is attached to microtubules from both poles, with one homologous chromosome facing each pole. The homologous chromosomes are still held together at chiasmata. In addition, the nuclear membrane has broken down entirely.

Metaphase I

During metaphase I, the homologous chromosomes are arranged in the center of the cell with the kinetochores facing opposite poles. The homologous pairs orient themselves randomly at the equator. For example, if the two homologous members of chromosome 1 are labeled a and b, then the chromosomes could line up a-b, or b-a. This is important in determining the genes carried by a gamete, as each will only receive one of the two homologous chromosomes. Recall that homologous chromosomes are not identical. They contain slight differences in their genetic information, causing each gamete to have a unique genetic makeup.

This randomness is the physical basis for the creation of the second form of genetic variation in offspring. Consider that the homologous chromosomes of a sexually reproducing organism are originally inherited as two separate sets, one from each parent. Using humans as an example, one set of 23 chromosomes is present in the egg donated by the mother. The father provides the other set of 23 chromosomes in the sperm that fertilizes the

egg. Every cell of the multicellular offspring has copies of the original two sets of homologous chromosomes. In prophase I of meiosis, the homologous chromosomes form the tetrads. In metaphase I, these pairs line up at the midway point between the two poles of the cell to form the metaphase plate. Because there is an equal chance that a microtubule fiber will encounter a maternally or paternally inherited chromosome, the arrangement of the tetrads at the metaphase plate is random. Any maternally inherited chromosome may face either pole. Any paternally inherited chromosome may also face either pole. The orientation of each tetrad is independent of the orientation of the other 22 tetrads.

This event—the random (or independent) assortment of homologous chromosomes at the metaphase plate—is the second mechanism that introduces variation into the gametes or spores. In each cell that undergoes meiosis, the arrangement of the tetrads is different. The number of variations is dependent on the number of chromosomes making up a set. There are two possibilities for orientation at the metaphase plate; the possible number of alignments therefore equals 2n, where n is the number of chromosomes per set. Humans have 23 chromosome pairs, which results in over eight million (2^{23}) possible genetically-distinct gametes. This number does not include the variability that was previously created in the sister chromatids by crossover. Given these two mechanisms, it is highly unlikely that any two haploid cells resulting from meiosis will have the same genetic composition ($\lceil link \rceil$).

To summarize the genetic consequences of meiosis I, the maternal and paternal genes are recombined by crossover events that occur between each homologous pair during prophase I. In addition, the random assortment of tetrads on the metaphase plate produces a unique combination of maternal and paternal chromosomes that will make their way into the gametes.

Random, independent assortment during metaphase I can be demonstrated by considering a cell with a set of two chromosomes (n = 2). In this case, there are two possible arrangements at the equatorial plane in metaphase I. The total possible number of different gametes is 2n, where n equals the number of chromosomes in a set. In this example, there are four possible genetic combinations for the gametes. With n = 23 in human cells, there are over 8 million possible combinations of paternal and maternal chromosomes.

In anaphase I, the microtubules pull the linked chromosomes apart. The sister chromatids remain tightly bound together at the centromere. The chiasmata are broken in anaphase I as the microtubules attached to the fused kinetochores pull the homologous chromosomes apart ([link]).

Telophase I and Cytokinesis

In telophase, the separated chromosomes arrive at opposite poles. The remainder of the typical telophase events may or may not occur, depending on the species. In some organisms, the chromosomes decondense and nuclear envelopes form around the chromatids in telophase I. In other organisms, cytokinesis—the physical separation of the cytoplasmic components into two daughter cells—occurs without reformation of the nuclei. In nearly all species of animals and some fungi, cytokinesis separates the cell contents via a cleavage furrow (constriction of the actin ring that leads to cytoplasmic division). In plants, a cell plate is formed during cell cytokinesis by Golgi vesicles fusing at the metaphase plate. This cell plate will ultimately lead to the formation of cell walls that separate the two daughter cells.

Two haploid cells are the end result of the first meiotic division. The cells are haploid because at each pole, there is just one of each pair of the homologous chromosomes. Therefore, only one full set of the chromosomes is present. This is why the cells are considered haploid—there is only one chromosome set, even though each homolog still consists of two sister chromatids. Recall that sister chromatids are merely duplicates of one of the two homologous chromosomes (except for changes that occurred during crossing over). In meiosis II, these two sister chromatids will separate, creating four haploid daughter cells.

Note:	
Link to	Learning

Review the process of meiosis, observing how chromosomes align and migrate, at <u>Meiosis: An Interactive Animation</u>.

Meiosis II

In some species, cells enter a brief interphase, or **interkinesis**, before entering meiosis II. Interkinesis lacks an S phase, so chromosomes are not duplicated. The two cells produced in meiosis I go through the events of meiosis II in synchrony. During meiosis II, the sister chromatids within the two daughter cells separate, forming four new haploid gametes. The mechanics of meiosis II is similar to mitosis, except that each dividing cell has only one set of homologous chromosomes. Therefore, each cell has half the number of sister chromatids to separate out as a diploid cell undergoing mitosis.

Prophase II

If the chromosomes decondensed in telophase I, they condense again. If nuclear envelopes were formed, they fragment into vesicles. The centrosomes that were duplicated during interkinesis move away from each other toward opposite poles, and new spindles are formed.

Prometaphase II

The nuclear envelopes are completely broken down, and the spindle is fully formed. Each sister chromatid forms an individual kinetochore that attaches

to microtubules from opposite poles.

Metaphase II

The sister chromatids are maximally condensed and aligned at the equator of the cell.

Anaphase II

The sister chromatids are pulled apart by the kinetochore microtubules and move toward opposite poles. Non-kinetochore microtubules elongate the cell.

The process of chromosome alignment differs between meiosis I and meiosis II. In prometaphase I, microtubules attach to the fused kinetochores of homologous chromosomes, and the homologous chromosomes are arranged at the midpoint of the cell in metaphase I. In anaphase I, the homologous chromosomes are separated. In prometaphase II, microtubules attach to the kinetochores of sister chromatids, and the sister chromatids are arranged at the midpoint of the cells in metaphase II. In anaphase II, the sister chromatids are separated.

Telophase II and Cytokinesis

The chromosomes arrive at opposite poles and begin to decondense. Nuclear envelopes form around the chromosomes. Cytokinesis separates the two cells into four unique haploid cells. At this point, the newly formed nuclei are both haploid. The cells produced are genetically unique because of the random assortment of paternal and maternal homologs and because of the recombining of maternal and paternal segments of chromosomes (with their sets of genes) that occurs during crossover. The entire process of meiosis is outlined in [link].

	Stage	Event	Outcome
INTERPHASE	S phase	Nuclear envelope Chromatin	
	Prophase I	Spindle Chiasmata Chromatids Tetrad	Chromosomes condense, and the nuclear envelope fragments. Homologous chromosomes bind firmly together along their length, forming a tetrad. Chiasmata form between non-sister chromatids. Crossing over occurs at the chiasmata. Spindle fibers emerge from the centrosomes.
_	Prometaphase I	Centromere (with kinetochore)	Homologous chromosomes are attached to spindle microtubules at the fused kinetochore shared by the sister chromatids. Chromosomes continue to condense, and the nuclear envelope completely disappears.
MEIOSIS	Metaphase I	Microtubule attached to kinetochore Metaphase plate	Homologous chromosomes randomly assemble at the metaphase plate, where they have been maneuvered into place by the microtubules.
	Anaphase I	Sister Homologous chromosome separate	Spindle microtubules pull the homologous chromosomes apart. The sister chromatids are still attached at the centromere.
	Telophase I and Cytokinesis	Cleavage furrow	Sister chromatids arrive at the poles of the cell and begin to decondense. A nuclear envelope forms around each nucleus and the cytoplasm is divided by a cleavage furrow. The result is two haploid cells. Each cell contains one duplicated copy of each homologous chromosome pair.
MEIOSIS II	Prophase II		Sister chromatids condense. A new spindle begins to form. The nuclear envelope starts to fragment.
	Prometaphase II	XX XX	The nuclear envelope disappears, and the spindle fibers engage the individual kinetochores on the sister chromatids.
	Metaphase II		Sister chromatids line up at the metaphase plate.
	Anaphase II	Sister chromati separate	
	Telophase II and Cytokinesis	Haploid daughter cells	Chromosomes arrive at the poles of the cell and decondense. Nuclear envelopes surround the four nuclei. Cleavage furrows divide the two cells into four haploid cells.

An animal cell with a diploid number of four (2n = 4) proceeds through the stages of meiosis to form four haploid daughter cells.

Comparing Meiosis and Mitosis

Mitosis and meiosis are both forms of division of the nucleus in eukaryotic cells. They share some similarities, but also exhibit distinct differences that lead to very different outcomes ([link]). Mitosis is a single nuclear division that results in two nuclei that are usually partitioned into two new cells. The nuclei resulting from a mitotic division are genetically identical to the original nucleus. They have the same number of sets of chromosomes, one set in the case of haploid cells and two sets in the case of diploid cells. In most plants and all animal species, it is typically diploid cells that undergo mitosis to form new diploid cells. In contrast, meiosis consists of two nuclear divisions resulting in four nuclei that are usually partitioned into four new cells. The nuclei resulting from meiosis are not genetically identical and they contain one chromosome set only. This is half the number of chromosome sets in the original cell, which is diploid.

The main differences between mitosis and meiosis occur in meiosis I, which is a very different nuclear division than mitosis. In meiosis I, the homologous chromosome pairs become associated with each other, are bound together with the synaptonemal complex, develop chiasmata and undergo crossover between sister chromatids, and line up along the metaphase plate in tetrads with kinetochore fibers from opposite spindle poles attached to each kinetochore of a homolog in a tetrad. All of these events occur only in meiosis I.

When the chiasmata resolve and the tetrad is broken up with the homologs moving to one pole or another, the ploidy level—the number of sets of chromosomes in each future nucleus—has been reduced from two to one. For this reason, meiosis I is referred to as a **reduction division**. There is no such reduction in ploidy level during mitosis.

Meiosis II is much more analogous to a mitotic division. In this case, the duplicated chromosomes (only one set of them) line up on the metaphase plate with divided kinetochores attached to kinetochore fibers from opposite poles. During anaphase II, as in mitotic anaphase, the kinetochores divide and one sister chromatid—now referred to as a chromosome—is pulled to one pole while the other sister chromatid is pulled to the other pole. If it

were not for the fact that there had been crossover, the two products of each individual meiosis II division would be identical (like in mitosis). Instead, they are different because there has always been at least one crossover per chromosome. Meiosis II is not a reduction division because although there are fewer copies of the genome in the resulting cells, there is still one set of chromosomes, as there was at the end of meiosis I.

Meiosis and mitosis are both preceded by one round of DNA replication; however, meiosis includes two nuclear divisions. The four daughter cells resulting from meiosis are haploid and genetically distinct. The daughter cells resulting from mitosis are diploid and identical to the parent cell.

Note:

Evolution Connection

The Mystery of the Evolution of Meiosis

Some characteristics of organisms are so widespread and fundamental that it is sometimes difficult to remember that they evolved like other simpler traits. Meiosis is such an extraordinarily complex series of cellular events that biologists have had trouble hypothesizing and testing how it may have evolved. Although meiosis is inextricably entwined with sexual reproduction and its advantages and disadvantages, it is important to separate the questions of the evolution of meiosis and the evolution of sex, because early meiosis may have been advantageous for different reasons than it is now. Thinking outside the box and imagining what the early benefits from meiosis might have been is one approach to uncovering how it may have evolved.

Meiosis and mitosis share obvious cellular processes and it makes sense that meiosis evolved from mitosis. The difficulty lies in the clear differences between meiosis I and mitosis. Adam Wilkins and Robin Holliday^[footnote] summarized the unique events that needed to occur for the evolution of meiosis from mitosis. These steps are homologous chromosome pairing, crossover exchanges, sister chromatids remaining attached during anaphase, and suppression of DNA replication in interphase. They argue that the first step is the hardest and most important, and that understanding how it evolved would make the evolutionary process clearer. They suggest genetic experiments that might shed light on the evolution of synapsis.

Adam S. Wilkins and Robin Holliday, "The Evolution of Meiosis from Mitosis," *Genetics* 181 (2009): 3–12.

There are other approaches to understanding the evolution of meiosis in progress. Different forms of meiosis exist in single-celled protists. Some appear to be simpler or more "primitive" forms of meiosis. Comparing the meiotic divisions of different protists may shed light on the evolution of meiosis. Marilee Ramesh and colleagues [footnote] compared the genes involved in meiosis in protists to understand when and where meiosis might have evolved. Although research is still ongoing, recent scholarship

into meiosis in protists suggests that some aspects of meiosis may have evolved later than others. This kind of genetic comparison can tell us what aspects of meiosis are the oldest and what cellular processes they may have borrowed from in earlier cells.

Marilee A. Ramesh, Shehre-Banoo Malik and John M. Logsdon, Jr, "A Phylogenetic Inventory of Meiotic Genes: Evidence for Sex in *Giardia* and an Early Eukaryotic Origin of Meiosis," *Current Biology* 15 (2005):185–91.

Note:

Link to Learning

Click through the steps of this interactive animation to compare the meiotic process of cell division to that of mitosis: <u>How Cells Divide</u>.

Section Summary

Sexual reproduction requires that diploid organisms produce haploid cells that can fuse during fertilization to form diploid offspring. As with mitosis, DNA replication occurs prior to meiosis during the S-phase of the cell cycle. Meiosis is a series of events that arrange and separate chromosomes and chromatids into daughter cells. During the interphases of meiosis, each chromosome is duplicated. In meiosis, there are two rounds of nuclear division resulting in four nuclei and usually four daughter cells, each with half the number of chromosomes as the parent cell. The first separates homologs, and the second—like mitosis—separates chromatids into individual chromosomes. During meiosis, variation in the daughter nuclei is

introduced because of crossover in prophase I and random alignment of tetrads at metaphase I. The cells that are produced by meiosis are genetically unique.

Meiosis and mitosis share similarities, but have distinct outcomes. Mitotic divisions are single nuclear divisions that produce daughter nuclei that are genetically identical and have the same number of chromosome sets as the original cell. Meiotic divisions include two nuclear divisions that produce four daughter nuclei that are genetically different and have one chromosome set instead of the two sets of chromosomes in the parent cell. The main differences between the processes occur in the first division of meiosis, in which homologous chromosomes are paired and exchange non-sister chromatid segments. The homologous chromosomes separate into different nuclei during meiosis I, causing a reduction of ploidy level in the first division. The second division of meiosis is more similar to a mitotic division, except that the daughter cells do not contain identical genomes because of crossover.

Review Questions

se

Problem: Meiosis produces	daughter cells.	
a. two haploidb. two diploidc. four haploidd. four diploid		
Solution:		

C

Exercise:

Problem: What structure is most important in forming the tetrads?

a. centromere b. synaptonemal complex c. chiasma d. kinetochore **Solution:** В **Exercise: Problem:** At which stage of meiosis are sister chromatids separated from each other? a. prophase I b. prophase II c. anaphase I d. anaphase II **Solution:** D **Exercise: Problem:** At metaphase I, homologous chromosomes are connected only at what structures? a. chiasmata b. recombination nodules

c. microtubules d. kinetochores

Solution:

A

Exercise:

Problem: Which of the following is *not* true in regard to crossover?

- a. Spindle microtubules guide the transfer of DNA across the synaptonemal complex.
- b. Non-sister chromatids exchange genetic material.
- c. Chiasmata are formed.
- d. Recombination nodules mark the crossover point.

$\overline{}$. •			
6	ol	11	ti	\mathbf{a}	n	•
. 1				.,		_

C

Exercise:

Problem:

What phase of mitotic interphase is missing from meiotic interkinesis?

- a. G_0 phase
- b. G₁ phase
- c. S phase
- d. G₂ phase

Solution:

 \mathbf{C}

Exercise:

Problem: The part of meiosis that is similar to mitosis is _____.

- a. meiosis I
- b. anaphase I
- c. meiosis II

d. interkinesis

Solution:

 \mathbf{C}

Exercise:

Problem:

If a muscle cell of a typical organism has 32 chromosomes, how many chromosomes will be in a gamete of that same organism?

a. 8

b. 16

c. 32

d. 64

Solution:

В

Free Response

Exercise:

Problem: Describe the process that results in the formation of a tetrad.

Solution:

During the meiotic interphase, each chromosome is duplicated. The sister chromatids that are formed during synthesis are held together at the centromere region by cohesin proteins. All chromosomes are attached to the nuclear envelope by their tips. As the cell enters prophase I, the nuclear envelope begins to fragment, and the proteins holding homologous chromosomes locate each other. The four sister

chromatids align lengthwise, and a protein lattice called the synaptonemal complex is formed between them to bind them together. The synaptonemal complex facilitates crossover between non-sister chromatids, which is observed as chiasmata along the length of the chromosome. As prophase I progresses, the synaptonemal complex breaks down and the sister chromatids become free, except where they are attached by chiasmata. At this stage, the four chromatids are visible in each homologous pairing and are called a tetrad.

Exercise:

Problem:

Explain how the random alignment of homologous chromosomes during metaphase I contributes to the variation in gametes produced by meiosis.

Solution:

Random alignment leads to new combinations of traits. The chromosomes that were originally inherited by the gamete-producing individual came equally from the egg and the sperm. In metaphase I, the duplicated copies of these maternal and paternal homologous chromosomes line up across the center of the cell. The orientation of each tetrad is random. There is an equal chance that the maternally derived chromosomes will be facing either pole. The same is true of the paternally derived chromosomes. The alignment should occur differently in almost every meiosis. As the homologous chromosomes are pulled apart in anaphase I, any combination of maternal and paternal chromosomes will move toward each pole. The gametes formed from these two groups of chromosomes will have a mixture of traits from the individual's parents. Each gamete is unique.

Exercise:

Problem:

What is the function of the fused kinetochore found on sister chromatids in prometaphase I?

Solution:

In metaphase I, the homologous chromosomes line up at the metaphase plate. In anaphase I, the homologous chromosomes are pulled apart and move to opposite poles. Sister chromatids are not separated until meiosis II. The fused kinetochore formed during meiosis I ensures that each spindle microtubule that binds to the tetrad will attach to both sister chromatids.

Exercise:

Problem:

In a comparison of the stages of meiosis to the stages of mitosis, which stages are unique to meiosis and which stages have the same events in both meiosis and mitosis?

Solution:

All of the stages of meiosis I, except possibly telophase I, are unique because homologous chromosomes are separated, not sister chromatids. In some species, the chromosomes do not decondense and the nuclear envelopes do not form in telophase I. All of the stages of meiosis II have the same events as the stages of mitosis, with the possible exception of prophase II. In some species, the chromosomes are still condensed and there is no nuclear envelope. Other than this, all processes are the same.

Glossary

chiasmata

(singular, *chiasma*) the structure that forms at the crossover points after genetic material is exchanged

cohesin

proteins that form a complex that seals sister chromatids together at their centromeres until anaphase II of meiosis

crossover

exchange of genetic material between non-sister chromatids resulting in chromosomes that incorporate genes from both parents of the organism

fertilization

union of two haploid cells from two individual organisms

interkinesis

(also, *interphase II*) brief period of rest between meiosis I and meiosis II

meiosis

a nuclear division process that results in four haploid cells

meiosis I

first round of meiotic cell division; referred to as reduction division because the ploidy level is reduced from diploid to haploid

meiosis II

second round of meiotic cell division following meiosis I; sister chromatids are separated into individual chromosomes, and the result is four unique haploid cells

recombination nodules

protein assemblies formed on the synaptonemal complex that mark the points of crossover events and mediate the multistep process of genetic recombination between non-sister chromatids

reduction division

nuclear division that produces daughter nuclei each having one-half as many chromosome sets as the parental nucleus; meiosis I is a reduction division

somatic cell

all the cells of a multicellular organism except the gametes or reproductive cells

spore

haploid cell that can produce a haploid multicellular organism or can fuse with another spore to form a diploid cell

synapsis

formation of a close association between homologous chromosomes during prophase I

synaptonemal complex

protein lattice that forms between homologous chromosomes during prophase I, supporting crossover

tetrad

two duplicated homologous chromosomes (four chromatids) bound together by chiasmata during prophase I

Introduction class="introduction"

Dolly the sheep was the first large mamma l to be cloned.

The three letters "DNA" have now become synonymous with crime solving, paternity testing, human identification, and genetic testing. DNA can be retrieved from hair, blood, or saliva. Each person's DNA is unique, and it is possible to detect differences between individuals within a species on the basis of these unique features.

DNA analysis has many practical applications beyond forensics. In humans, DNA testing is applied to numerous uses: determining paternity, tracing

genealogy, identifying pathogens, archeological research, tracing disease outbreaks, and studying human migration patterns. In the medical field, DNA is used in diagnostics, new vaccine development, and cancer therapy. It is now possible to determine predisposition to diseases by looking at genes.

Each human cell has 23 pairs of chromosomes: one set of chromosomes is inherited from the mother and the other set is inherited from the father. There is also a mitochondrial genome, inherited exclusively from the mother, which can be involved in inherited genetic disorders. On each chromosome, there are thousands of genes that are responsible for determining the genotype and phenotype of the individual. A gene is defined as a sequence of DNA that codes for a functional product. The human haploid genome contains 3 billion base pairs and has between 20,000 and 25,000 functional genes.

DNA Structure and Sequencing By the end of this section, you will be able to:

- Describe the structure of DNA
- Explain the Sanger method of DNA sequencing
- Discuss the similarities and differences between eukaryotic and prokaryotic DNA

The building blocks of DNA are nucleotides. The important components of the nucleotide are a nitrogenous base, deoxyribose (5-carbon sugar), and a phosphate group ([link]). The nucleotide is named depending on the nitrogenous base. The nitrogenous base can be a purine such as adenine (A) and guanine (G), or a pyrimidine such as cytosine (C) and thymine (T).

Each nucleotide is made up of a sugar, a phosphate group, and a nitrogenous base. The sugar is deoxyribose in DNA and ribose in RNA.

The nucleotides combine with each other by covalent bonds known as phosphodiester bonds or linkages. The purines have a double ring structure with a six-membered ring fused to a five-membered ring. Pyrimidines are smaller in size; they have a single six-membered ring structure. The carbon atoms of the five-carbon sugar are numbered 1', 2', 3', 4', and 5' (1' is read as "one prime"). The phosphate residue is attached to the hydroxyl group of the 5' carbon of one sugar of one nucleotide and the hydroxyl group of the

3' carbon of the sugar of the next nucleotide, thereby forming a 5'-3' phosphodiester bond.

Base pairing takes place between a purine and pyrimidine; namely, A pairs with T and G pairs with C. Adenine and thymine are complementary base pairs, and cytosine and guanine are also complementary base pairs. The base pairs are stabilized by hydrogen bonds; adenine and thymine form two hydrogen bonds and cytosine and guanine form three hydrogen bonds. The two strands are anti-parallel in nature; that is, the 3' end of one strand faces the 5' end of the other strand. The sugar and phosphate of the nucleotides form the backbone of the structure, whereas the nitrogenous bases are stacked inside. Each base pair is separated from the other base pair by a distance of 0.34 nm, and each turn of the helix measures 3.4 nm. Therefore, ten base pairs are present per turn of the helix. The diameter of the DNA double helix is 2 nm, and it is uniform throughout. Only the pairing between a purine and pyrimidine can explain the uniform diameter. The twisting of the two strands around each other results in the formation of uniformly spaced major and minor grooves ([link]).

DNA has (a) a double helix structure and (b) phosphodiester bonds. The (c) major and minor grooves are binding sites for DNA binding proteins during processes such as transcription (the copying of RNA from DNA) and replication.

When comparing prokaryotic cells to eukaryotic cells, prokaryotes are much simpler than eukaryotes in many of their features ([link]). Most prokaryotes contain a single, circular chromosome that is found in an area of the cytoplasm called the nucleoid.

A eukaryote contains a well-defined nucleus, whereas in prokaryotes, the chromosome lies in the cytoplasm in an area called the nucleoid.

In eukaryotic cells, DNA and RNA synthesis occur in a separate compartment from protein synthesis. In prokaryotic cells, both processes occur together. What advantages might there be to separating the processes? What advantages might there be to having them occur together?

The size of the genome in one of the most well-studied prokaryotes, *E.coli*, is 4.6 million base pairs (approximately 1.1 mm, if cut and stretched out). So how does this fit inside a small bacterial cell? The DNA is twisted by what is known as supercoiling. Supercoiling means that DNA is either under-wound (less than one turn of the helix per 10 base pairs) or over-

wound (more than 1 turn per 10 base pairs) from its normal relaxed state. Some proteins are known to be involved in the supercoiling; other proteins and enzymes such as DNA gyrase help in maintaining the supercoiled structure.

Eukaryotes, whose chromosomes each consist of a linear DNA molecule, employ a different type of packing strategy to fit their DNA inside the nucleus ([link]). At the most basic level, DNA is wrapped around proteins known as histones to form structures called nucleosomes. The histones are evolutionarily conserved proteins that are rich in basic amino acids and form an octamer. The DNA (which is negatively charged because of the phosphate groups) is wrapped tightly around the histone core. This nucleosome is linked to the next one with the help of a linker DNA. This is also known as the "beads on a string" structure. This is further compacted into a 30 nm fiber, which is the diameter of the structure. At the metaphase stage, the chromosomes are at their most compact, are approximately 700 nm in width, and are found in association with scaffold proteins.

In interphase, eukaryotic chromosomes have two distinct regions that can be distinguished by staining. The tightly packaged region is known as heterochromatin, and the less dense region is known as euchromatin. Heterochromatin usually contains genes that are not expressed, and is found in the regions of the centromere and telomeres. The euchromatin usually contains genes that are transcribed, with DNA packaged around nucleosomes but not further compacted.

These figures illustrate the compaction of the eukaryotic chromosome.

Section Summary

The currently accepted model of the double-helix structure of DNA was proposed by Watson and Crick. Some of the salient features are that the two strands that make up the double helix are complementary and anti-parallel in nature. Deoxyribose sugars and phosphates form the backbone of the structure, and the nitrogenous bases are stacked inside. The diameter of the double helix, 2 nm, is uniform throughout. A purine always pairs with a pyrimidine; A pairs with T, and G pairs with C. One turn of the helix has ten base pairs. During cell division, each daughter cell receives a copy of

the DNA by a process known as DNA replication. Prokaryotes are much simpler than eukaryotes in many of their features. Most prokaryotes contain a single, circular chromosome. In general, eukaryotic chromosomes contain a linear DNA molecule packaged into nucleosomes, and have two distinct regions that can be distinguished by staining, reflecting different states of packaging and compaction.

Art Connections

Exercise:

Problem:

[link] In eukaryotic cells, DNA and RNA synthesis occur in a separate compartment from protein synthesis. In prokaryotic cells, both processes occur together. What advantages might there be to separating the processes? What advantages might there be to having them occur together?

Solution:

[link] Compartmentalization enables a eukaryotic cell to divide processes into discrete steps so it can build more complex protein and RNA products. But there is an advantage to having a single compartment as well: RNA and protein synthesis occurs much more quickly in a prokaryotic cell.

Review Questions

Exercise:

Problem: DNA double helix does not have which of the following?

- a. antiparallel configuration
- b. complementary base pairing
- c. major and minor grooves
- d. uracil

Solution:

D

Exercise:

Problem:In eukaryotes, what is the DNA wrapped around?

- a. single-stranded binding proteins
- b. sliding clamp
- c. polymerase
- d. histones

Solution:

D

Free Response

Exercise:

Problem:Provide a brief summary of the Sanger sequencing method.

Solution:

The template DNA strand is mixed with a DNA polymerase, a primer, the 4 deoxynucleotides, and a limiting concentration of 4 dideoxynucleotides. DNA polymerase synthesizes a strand complementary to the template. Incorporation of ddNTPs at different locations results in DNA fragments that have terminated at every possible base in the template. These fragments are separated by gel electrophoresis and visualized by a laser detector to determine the sequence of bases.

Exercise:

Problem:

Describe the structure and complementary base pairing of DNA.

Solution:

DNA has two strands in anti-parallel orientation. The sugar-phosphate linkages form a backbone on the outside, and the bases are paired on the inside: A with T, and G with C, like rungs on a spiral ladder.

Glossary

electrophores is

technique used to separate DNA fragments according to size

Basics of DNA Replication By the end of this section, you will be able to:

- Explain how the structure of DNA reveals the replication process
- Describe the Meselson and Stahl experiments

The elucidation of the structure of the double helix provided a hint as to how DNA divides and makes copies of itself. This model suggests that the two strands of the double helix separate during replication, and each strand serves as a template from which the new complementary strand is copied. What was not clear was how the replication took place. There were three models suggested ([link]): conservative, semi-conservative, and dispersive.

The three suggested models of DNA replication. Grey indicates the original DNA strands, and blue indicates newly synthesized DNA.

In conservative replication, the parental DNA remains together, and the newly formed daughter strands are together. The semi-conservative method

suggests that each of the two parental DNA strands act as a template for new DNA to be synthesized; after replication, each double-stranded DNA includes one parental or "old" strand and one "new" strand. In the dispersive model, both copies of DNA have double-stranded segments of parental DNA and newly synthesized DNA interspersed.

Meselson and Stahl were interested in understanding how DNA replicates. They grew $E.\ coli$ for several generations in a medium containing a "heavy" isotope of nitrogen (15 N) that gets incorporated into nitrogenous bases, and eventually into the DNA ([link]).

Meselson and Stahl experimented with *E. coli* grown first in heavy nitrogen (¹⁵N) then in ¹⁴N. DNA grown in ¹⁵N (red band) is heavier than DNA grown in ¹⁴N (orange band), and sediments to a lower level in cesium chloride solution in an ultracentrifuge. When DNA grown in ¹⁵N is switched to media containing ¹⁴N, after one round of cell division the DNA sediments halfway between the ¹⁵N and ¹⁴N levels, indicating that it now contains fifty percent ¹⁴N. In

subsequent cell divisions, an increasing amount of DNA contains ¹⁴N only. This data supports the semiconservative replication model. (credit: modification of work by Mariana Ruiz Villareal)

The *E. coli* culture was then shifted into medium containing ¹⁴N and allowed to grow for one generation. The cells were harvested and the DNA was isolated. The DNA was centrifuged at high speeds in an ultracentrifuge. Some cells were allowed to grow for one more life cycle in ¹⁴N and spun again. During the density gradient centrifugation, the DNA is loaded into a gradient (typically a salt such as cesium chloride or sucrose) and spun at high speeds of 50,000 to 60,000 rpm. Under these circumstances, the DNA will form a band according to its density in the gradient. DNA grown in ¹⁵N will band at a higher density position than that grown in ¹⁴N. Meselson and Stahl noted that after one generation of growth in ¹⁴N after they had been shifted from ¹⁵N, the single band observed was intermediate in position in between DNA of cells grown exclusively in ¹⁵N and ¹⁴N. This suggested either a semi-conservative or dispersive mode of replication. The DNA harvested from cells grown for two generations in ¹⁴N formed two bands: one DNA band was at the intermediate position between ¹⁵N and ¹⁴N, and the other corresponded to the band of ¹⁴N DNA. These results could only be explained if DNA replicates in a semi-conservative manner. Therefore, the other two modes were ruled out.

During DNA replication, each of the two strands that make up the double helix serves as a template from which new strands are copied. The new strand will be complementary to the parental or "old" strand. When two daughter DNA copies are formed, they have the same sequence and are divided equally into the two daughter cells.

N	n	t	Δ	•
Τ.4	v	ι	C	•

Link to Learning

Click through this tutorial on DNA replication.

Section Summary

The model for DNA replication suggests that the two strands of the double helix separate during replication, and each strand serves as a template from which the new complementary strand is copied. In conservative replication, the parental DNA is conserved, and the daughter DNA is newly synthesized. The semi-conservative method suggests that each of the two parental DNA strands acts as template for new DNA to be synthesized; after replication, each double-stranded DNA includes one parental or "old" strand and one "new" strand. The dispersive mode suggested that the two copies of the DNA would have segments of parental DNA and newly synthesized DNA.

Review Questions

Exercise:

Problem:

Meselson and Stahl's experiments proved that DNA replicates by which mode?

- a. conservative
- b. semi-conservative
- c. dispersive
- d. none of the above

Solution:

В

Exercise:

Problem:

If the sequence of the 5'-3' strand is AATGCTAC, then the complementary sequence has the following sequence:

- a. 3'-AATGCTAC-5'
- b. 3'-CATCGTAA-5'
- c. 3'-TTACGATG-5'
- d. 3'-GTAGCATT-5'

Solution:

C

Free Response

Exercise:

Problem:

How did the scientific community learn that DNA replication takes place in a semi-conservative fashion?

Solution:

Meselson's experiments with $E.\ coli$ grown in $^{15}{
m N}$ deduced this finding.

DNA Replication in Prokaryotes By the end of this section, you will be able to:

- Explain the process of DNA replication in prokaryotes
- Discuss the role of different enzymes and proteins in supporting this process

DNA replication has been extremely well studied in prokaryotes primarily because of the small size of the genome and the mutants that are available. *E. coli* has 4.6 million base pairs in a single circular chromosome and all of it gets replicated in approximately 42 minutes, starting from a single origin of replication and proceeding around the circle in both directions. This means that approximately 1000 nucleotides are added per second. The process is quite rapid and occurs without many mistakes.

DNA replication employs a large number of proteins and enzymes, each of which plays a critical role during the process. One of the key players is the enzyme DNA polymerase, also known as DNA pol, which adds nucleotides one by one to the growing DNA chain that are complementary to the template strand. The addition of nucleotides requires energy; this energy is obtained from the nucleotides that have three phosphates attached to them, similar to ATP which has three phosphate groups attached. When the bond between the phosphates is broken, the energy released is used to form the phosphodiester bond between the incoming nucleotide and the growing chain. In prokaryotes, three main types of polymerases are known: DNA pol I, DNA pol II, and DNA pol III. It is now known that DNA pol III is the enzyme required for DNA synthesis; DNA pol I and DNA pol II are primarily required for repair.

How does the replication machinery know where to begin? It turns out that there are specific nucleotide sequences called origins of replication where replication begins. In *E. coli*, which has a single origin of replication on its one chromosome (as do most prokaryotes), it is approximately 245 base pairs long and is rich in AT sequences. The origin of replication is recognized by certain proteins that bind to this site. An enzyme called **helicase** unwinds the DNA by breaking the hydrogen bonds between the nitrogenous base pairs. ATP hydrolysis is required for this process. As the DNA opens up, Y-shaped structures called **replication forks** are formed.

Two replication forks are formed at the origin of replication and these get extended bi- directionally as replication proceeds. Single-strand binding **proteins** coat the single strands of DNA near the replication fork to prevent the single-stranded DNA from winding back into a double helix. DNA polymerase is able to add nucleotides only in the 5' to 3' direction (a new DNA strand can be only extended in this direction). It also requires a free 3'-OH group to which it can add nucleotides by forming a phosphodiester bond between the 3'-OH end and the 5' phosphate of the next nucleotide. This essentially means that it cannot add nucleotides if a free 3'-OH group is not available. Then how does it add the first nucleotide? The problem is solved with the help of a primer that provides the free 3'-OH end. Another enzyme, RNA **primase**, synthesizes an RNA primer that is about five to ten nucleotides long and complementary to the DNA. Because this sequence primes the DNA synthesis, it is appropriately called the **primer**. DNA polymerase can now extend this RNA primer, adding nucleotides one by one that are complementary to the template strand ([link]).

results from this supercoiling. Single-strand binding proteins bind to the single-stranded DNA to prevent the helix from re-forming. Primase synthesizes an RNA primer. DNA polymerase III uses this primer to synthesize the daughter DNA strand. On the leading strand, DNA is synthesized continuously, whereas on the lagging strand, DNA is synthesized in short stretches called Okazaki fragments. DNA polymerase I replaces the RNA primer with DNA. DNA ligase seals the gaps between the Okazaki fragments, joining the fragments into a single DNA molecule. (credit: modification of work by Mariana Ruiz Villareal)

You isolate a cell strain in which the joining together of Okazaki fragments is impaired and suspect that a mutation has occurred in an enzyme found at the replication fork. Which enzyme is most likely to be mutated?

The replication fork moves at the rate of 1000 nucleotides per second. DNA polymerase can only extend in the 5' to 3' direction, which poses a slight problem at the replication fork. As we know, the DNA double helix is antiparallel; that is, one strand is in the 5' to 3' direction and the other is oriented in the 3' to 5' direction. One strand, which is complementary to the 3' to 5' parental DNA strand, is synthesized continuously towards the replication fork because the polymerase can add nucleotides in this direction. This continuously synthesized strand is known as the **leading strand**. The other strand, complementary to the 5' to 3' parental DNA, is extended away from the replication fork, in small fragments known as **Okazaki fragments**, each requiring a primer to start the synthesis. Okazaki fragments are named after the Japanese scientist who first discovered them. The strand with the Okazaki fragments is known as the **lagging strand**.

The leading strand can be extended by one primer alone, whereas the lagging strand needs a new primer for each of the short Okazaki fragments. The overall direction of the lagging strand will be 3' to 5', and that of the leading strand 5' to 3'. A protein called the **sliding clamp** holds the DNA polymerase in place as it continues to add nucleotides. The sliding clamp is a ring-shaped protein that binds to the DNA and holds the polymerase in place. **Topoisomerase** prevents the over-winding of the DNA double helix ahead of the replication fork as the DNA is opening up; it does so by causing temporary nicks in the DNA helix and then resealing it. As synthesis proceeds, the RNA primers are replaced by DNA. The primers are removed by the exonuclease activity of DNA pol I, and the gaps are filled in by deoxyribonucleotides. The nicks that remain between the newly synthesized DNA (that replaced the RNA primer) and the previously synthesized DNA are sealed by the enzyme DNA **ligase** that catalyzes the formation of phosphodiester linkage between the 3'-OH end of one nucleotide and the 5' phosphate end of the other fragment.

Once the chromosome has been completely replicated, the two DNA copies move into two different cells during cell division. The process of DNA replication can be summarized as follows:

- 1. DNA unwinds at the origin of replication.
- 2. Helicase opens up the DNA-forming replication forks; these are extended bidirectionally.
- 3. Single-strand binding proteins coat the DNA around the replication fork to prevent rewinding of the DNA.
- 4. Topoisomerase binds at the region ahead of the replication fork to prevent supercoiling.
- 5. Primase synthesizes RNA primers complementary to the DNA strand.
- 6. DNA polymerase starts adding nucleotides to the 3'-OH end of the primer.
- 7. Elongation of both the lagging and the leading strand continues.
- 8. RNA primers are removed by exonuclease activity.
- 9. Gaps are filled by DNA pol by adding dNTPs.
- 10. The gap between the two DNA fragments is sealed by DNA ligase, which helps in the formation of phosphodiester bonds.

[link] summarizes the enzymes involved in prokaryotic DNA replication and the functions of each.

Prokaryotic DNA Replication: Enzymes and Their Function		
Enzyme/protein	Specific Function	
DNA pol I	Exonuclease activity removes RNA primer and replaces with newly synthesized DNA	
DNA pol II	Repair function	
DNA pol III	Main enzyme that adds nucleotides in the 5'-3' direction	
Helicase	Opens the DNA helix by breaking hydrogen bonds between the nitrogenous bases	
Ligase	Seals the gaps between the Okazaki fragments to create one continuous DNA strand	
Primase	Synthesizes RNA primers needed to start replication	
Sliding Clamp	Helps to hold the DNA polymerase in place when nucleotides are being added	
Topoisomerase	Helps relieve the stress on DNA when unwinding by causing breaks and then resealing the DNA	

Prokaryotic DNA Replication: Enzymes and Their Function		
Enzyme/protein	Specific Function	
Single-strand binding proteins (SSB)	Binds to single-stranded DNA to avoid DNA rewinding back.	

Note:

Link to Learning

Review the full process of DNA replication <u>here</u>.

Section Summary

Replication in prokaryotes starts from a sequence found on the chromosome called the origin of replication—the point at which the DNA opens up. Helicase opens up the DNA double helix, resulting in the formation of the replication fork. Single-strand binding proteins bind to the single-stranded DNA near the replication fork to keep the fork open. Primase synthesizes an RNA primer to initiate synthesis by DNA polymerase, which can add nucleotides only in the 5' to 3' direction. One strand is synthesized continuously in the direction of the replication fork; this is called the leading strand. The other strand is synthesized in a direction away from the replication fork, in short stretches of DNA known as Okazaki fragments. This strand is known as the lagging strand. Once replication is completed, the RNA primers are replaced by DNA nucleotides and the DNA is sealed

with DNA ligase, which creates phosphodiester bonds between the 3'-OH of one end and the 5' phosphate of the other strand.

Art Connections

Exercise:

Problem:

[link] You isolate a cell strain in which the joining together of Okazaki fragments is impaired and suspect that a mutation has occurred in an enzyme found at the replication fork. Which enzyme is most likely to be mutated?

Solution:

[link] DNA ligase, as this enzyme joins together Okazaki fragments.

Review Questions

Exercise:

Problem:

Which of the following components is not involved during the formation of the replication fork?

- a. single-strand binding proteins
- b. helicase
- c. origin of replication
- d. ligase

	111#1	nn.
OU	luu	ion:

D

Exercise:

Problem: Which of the following does the enzyme primase synthesize?
a. DNA primerb. RNA primerc. Okazaki fragmentsd. phosphodiester linkage
Solution:
В
Exercise:
Problem: In which direction does DNA replication take place?
a. 5'-3' b. 3'-5' c. 5' d. 3'
Solution:
A
Free Response
Exercise:
Problem:
DNA replication is bidirectional and discontinuous; explain your understanding of those concepts.
Solution:

At an origin of replication, two replication forks are formed that are extended in two directions. On the lagging strand, Okazaki fragments are formed in a discontinuous manner.

Exercise:

Problem: What are Okazaki fragments and how they are formed?

Solution:

Short DNA fragments are formed on the lagging strand synthesized in a direction away from the replication fork. These are synthesized by DNA pol.

Exercise:

Problem:

If the rate of replication in a particular prokaryote is 900 nucleotides per second, how long would it take 1.2 million base pair genomes to make two copies?

Solution:

1333 seconds or 22.2 minutes.

Exercise:

Problem:

Explain the events taking place at the replication fork. If the gene for helicase is mutated, what part of replication will be affected?

Solution:

At the replication fork, the events taking place are helicase action, binding of single-strand binding proteins, primer synthesis, and synthesis of new strands. If there is a mutated helicase gene, the replication fork will not be extended.

Exercise:

Problem:

What is the role of a primer in DNA replication? What would happen if you forgot to add a primer in a tube containing the reaction mix for a DNA sequencing reaction?

Solution:

Primer provides a 3'-OH group for DNA pol to start adding nucleotides. There would be no reaction in the tube without a primer, and no bands would be visible on the electrophoresis.

Glossary

helicase

during replication, this enzyme helps to open up the DNA helix by breaking the hydrogen bonds

lagging strand

during replication, the strand that is replicated in short fragments and away from the replication fork

leading strand

strand that is synthesized continuously in the 5'-3' direction which is synthesized in the direction of the replication fork

ligase

enzyme that catalyzes the formation of a phosphodiester linkage between the 3' OH and 5' phosphate ends of the DNA

Okazaki fragment

DNA fragment that is synthesized in short stretches on the lagging strand

primase

enzyme that synthesizes the RNA primer; the primer is needed for DNA pol to start synthesis of a new DNA strand

primer

short stretch of nucleotides that is required to initiate replication; in the case of replication, the primer has RNA nucleotides

replication fork

Y-shaped structure formed during initiation of replication

single-strand binding protein

during replication, protein that binds to the single-stranded DNA; this helps in keeping the two strands of DNA apart so that they may serve as templates

sliding clamp

ring-shaped protein that holds the DNA pol on the DNA strand

topoisomerase

enzyme that causes underwinding or overwinding of DNA when DNA replication is taking place

DNA Replication in Eukaryotes By the end of this section, you will be able to:

- Discuss the similarities and differences between DNA replication in eukaryotes and prokaryotes
- State the role of telomerase in DNA replication

Eukaryotic genomes are much more complex and larger in size than prokaryotic genomes. The human genome has three billion base pairs per haploid set of chromosomes, and 6 billion base pairs are replicated during the S phase of the cell cycle. There are multiple origins of replication on the eukaryotic chromosome; humans can have up to 100,000 origins of replication. The rate of replication is approximately 100 nucleotides per second, much slower than prokaryotic replication. In yeast, which is a eukaryote, special sequences known as Autonomously Replicating Sequences (ARS) are found on the chromosomes. These are equivalent to the origin of replication in *E. coli*.

The number of DNA polymerases in eukaryotes is much more than prokaryotes: 14 are known, of which five are known to have major roles during replication and have been well studied. They are known as pol α , pol β , pol γ , pol δ , and pol ε .

The essential steps of replication are the same as in prokaryotes. Before replication can start, the DNA has to be made available as template. Eukaryotic DNA is bound to basic proteins known as histones to form structures called nucleosomes. The chromatin (the complex between DNA and proteins) may undergo some chemical modifications, so that the DNA may be able to slide off the proteins or be accessible to the enzymes of the DNA replication machinery. At the origin of replication, a pre-replication complex is made with other initiator proteins. Other proteins are then recruited to start the replication process ([link]).

A helicase using the energy from ATP hydrolysis opens up the DNA helix. Replication forks are formed at each replication origin as the DNA unwinds. The opening of the double helix causes over-winding, or supercoiling, in the DNA ahead of the replication fork. These are resolved with the action of topoisomerases. Primers are formed by the enzyme

primase, and using the primer, DNA pol can start synthesis. While the leading strand is continuously synthesized by the enzyme pol δ , the lagging strand is synthesized by pol ε . A sliding clamp protein known as PCNA (Proliferating Cell Nuclear Antigen) holds the DNA pol in place so that it does not slide off the DNA. RNase H removes the RNA primer, which is then replaced with DNA nucleotides. The Okazaki fragments in the lagging strand are joined together after the replacement of the RNA primers with DNA. The gaps that remain are sealed by DNA ligase, which forms the phosphodiester bond.

Telomere replication

Unlike prokaryotic chromosomes, eukaryotic chromosomes are linear. As you've learned, the enzyme DNA pol can add nucleotides only in the 5' to 3' direction. In the leading strand, synthesis continues until the end of the chromosome is reached. On the lagging strand, DNA is synthesized in short stretches, each of which is initiated by a separate primer. When the replication fork reaches the end of the linear chromosome, there is no place for a primer to be made for the DNA fragment to be copied at the end of the chromosome. These ends thus remain unpaired, and over time these ends may get progressively shorter as cells continue to divide.

The ends of the linear chromosomes are known as **telomeres**, which have repetitive sequences that code for no particular gene. In a way, these telomeres protect the genes from getting deleted as cells continue to divide. In humans, a six base pair sequence, TTAGGG, is repeated 100 to 1000 times. The discovery of the enzyme telomerase ([link]) helped in the understanding of how chromosome ends are maintained. The **telomerase** enzyme contains a catalytic part and a built-in RNA template. It attaches to the end of the chromosome, and complementary bases to the RNA template are added on the 3' end of the DNA strand. Once the 3' end of the lagging strand template is sufficiently elongated, DNA polymerase can add the nucleotides complementary to the ends of the chromosomes. Thus, the ends of the chromosomes are replicated.

The ends of linear chromosomes are maintained by the action of the telomerase enzyme.

Telomerase is typically active in germ cells and adult stem cells. It is not active in adult somatic cells. For her discovery of telomerase and its action, Elizabeth Blackburn ([link]) received the Nobel Prize for Medicine and Physiology in 2009.

Elizabeth Blackburn, 2009 Nobel Laureate, is the scientist who discovered how telomerase works. (credit: US Embassy Sweden)

Telomerase and Aging

Cells that undergo cell division continue to have their telomeres shortened because most somatic cells do not make telomerase. This essentially means that telomere shortening is associated with aging. With the advent of modern medicine, preventative health care, and healthier lifestyles, the human life span has increased, and there is an increasing demand for people to look younger and have a better quality of life as they grow older.

In 2010, scientists found that telomerase can reverse some age-related conditions in mice. This may have potential in regenerative medicine.

[footnote] Telomerase-deficient mice were used in these studies; these mice have tissue atrophy, stem cell depletion, organ system failure, and impaired tissue injury responses. Telomerase reactivation in these mice caused extension of telomeres, reduced DNA damage, reversed neurodegeneration, and improved the function of the testes, spleen, and intestines. Thus,

telomere reactivation may have potential for treating age-related diseases in humans.

Jaskelioff et al., "Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice," *Nature* 469 (2011): 102-7.

Cancer is characterized by uncontrolled cell division of abnormal cells. The cells accumulate mutations, proliferate uncontrollably, and can migrate to different parts of the body through a process called metastasis. Scientists have observed that cancerous cells have considerably shortened telomeres and that telomerase is active in these cells. Interestingly, only after the telomeres were shortened in the cancer cells did the telomerase become active. If the action of telomerase in these cells can be inhibited by drugs during cancer therapy, then the cancerous cells could potentially be stopped from further division.

Difference between Prokaryotic and Eukaryotic Replication			
Property	Eukaryotes		
Origin of replication	Single	Multiple	
Rate of replication	1000 nucleotides/s	50 to 100 nucleotides/s	
DNA polymerase types	5	14	
Telomerase	Not present	Present	
RNA primer removal	DNA pol I	RNase H	
Strand elongation	DNA pol III	Pol δ, pol ε	

Difference between Prokaryotic and Eukaryotic Replication				
Property Prokaryotes Eukaryotes				
Sliding clamp	Sliding clamp	PCNA		

Section Summary

Replication in eukaryotes starts at multiple origins of replication. The mechanism is quite similar to prokaryotes. A primer is required to initiate synthesis, which is then extended by DNA polymerase as it adds nucleotides one by one to the growing chain. The leading strand is synthesized continuously, whereas the lagging strand is synthesized in short stretches called Okazaki fragments. The RNA primers are replaced with DNA nucleotides; the DNA remains one continuous strand by linking the DNA fragments with DNA ligase. The ends of the chromosomes pose a problem as polymerase is unable to extend them without a primer. Telomerase, an enzyme with an inbuilt RNA template, extends the ends by copying the RNA template and extending one end of the chromosome. DNA polymerase can then extend the DNA using the primer. In this way, the ends of the chromosomes are protected.

Review Questions

Exercise:

Problem: The ends of the linear chromosomes are maintained by

- a. helicase
- b. primase
- c. DNA pol
- d. telomerase

Solution:

Free Response

Exercise:

Problem:

How do the linear chromosomes in eukaryotes ensure that its ends are replicated completely?

Solution:

Telomerase has an inbuilt RNA template that extends the 3' end, so primer is synthesized and extended. Thus, the ends are protected.

Glossary

telomerase

enzyme that contains a catalytic part and an inbuilt RNA template; it functions to maintain telomeres at chromosome ends

telomere

DNA at the end of linear chromosomes

DNA Repair

By the end of this section, you will be able to:

- Discuss the different types of mutations in DNA
- Explain DNA repair mechanisms

DNA replication is a highly accurate process, but mistakes can occasionally occur, such as a DNA polymerase inserting a wrong base. Uncorrected mistakes may sometimes lead to serious consequences, such as cancer. Repair mechanisms correct the mistakes. In rare cases, mistakes are not corrected, leading to mutations; in other cases, repair enzymes are themselves mutated or defective.

Most of the mistakes during DNA replication are promptly corrected by DNA polymerase by proofreading the base that has been just added ([link]). In **proofreading**, the DNA pol reads the newly added base before adding the next one, so a correction can be made. The polymerase checks whether the newly added base has paired correctly with the base in the template strand. If it is the right base, the next nucleotide is added. If an incorrect base has been added, the enzyme makes a cut at the phosphodiester bond and releases the wrong nucleotide. This is performed by the exonuclease action of DNA pol III. Once the incorrect nucleotide has been removed, a new one will be added again.

Proofreading by DNA polymerase corrects errors during replication.

Some errors are not corrected during replication, but are instead corrected after replication is completed; this type of repair is known as **mismatch repair** ([link]). The enzymes recognize the incorrectly added nucleotide and

excise it; this is then replaced by the correct base. If this remains uncorrected, it may lead to more permanent damage. How do mismatch repair enzymes recognize which of the two bases is the incorrect one? In *E. coli*, after replication, the nitrogenous base adenine acquires a methyl group; the parental DNA strand will have methyl groups, whereas the newly synthesized strand lacks them. Thus, DNA polymerase is able to remove the wrongly incorporated bases from the newly synthesized, non-methylated strand. In eukaryotes, the mechanism is not very well understood, but it is believed to involve recognition of unsealed nicks in the new strand, as well as a short-term continuing association of some of the replication proteins with the new daughter strand after replication has completed.

In mismatch repair, the incorrectly added base is detected after replication.

The mismatch repair proteins detect this base and remove it from the newly synthesized strand by nuclease action. The gap is now filled with the correctly paired base.

In another type of repair mechanism, **nucleotide excision repair**, enzymes replace incorrect bases by making a cut on both the 3' and 5' ends of the incorrect base ([link]). The segment of DNA is removed and replaced with the correctly paired nucleotides by the action of DNA pol. Once the bases are filled in, the remaining gap is sealed with a phosphodiester linkage catalyzed by DNA ligase. This repair mechanism is often employed when UV exposure causes the formation of pyrimidine dimers.

Nucleotide excision repairs thymine dimers. When exposed to UV, thymines lying adjacent to each other can form thymine dimers. In normal cells, they are excised and replaced.

A well-studied example of mistakes not being corrected is seen in people suffering from xeroderma pigmentosa ([link]). Affected individuals have skin that is highly sensitive to UV rays from the sun. When individuals are exposed to UV, pyrimidine dimers, especially those of thymine, are formed;

people with xeroderma pigmentosa are not able to repair the damage. These are not repaired because of a defect in the nucleotide excision repair enzymes, whereas in normal individuals, the thymine dimers are excised and the defect is corrected. The thymine dimers distort the structure of the DNA double helix, and this may cause problems during DNA replication. People with xeroderma pigmentosa may have a higher risk of contracting skin cancer than those who dont have the condition.

Xeroderma pigmentosa is a condition in which thymine dimerization from exposure to UV is not repaired. Exposure to sunlight results in skin lesions. (credit: James Halpern et al.)

Errors during DNA replication are not the only reason why mutations arise in DNA. **Mutations**, variations in the nucleotide sequence of a genome, can also occur because of damage to DNA. Such mutations may be of two types: induced or spontaneous. **Induced mutations** are those that result from an exposure to chemicals, UV rays, x-rays, or some other environmental agent. **Spontaneous mutations** occur without any exposure to any environmental agent; they are a result of natural reactions taking place within the body.

Mutations may have a wide range of effects. Some mutations are not expressed; these are known as **silent mutations**. **Point mutations** are those mutations that affect a single base pair. The most common nucleotide mutations are substitutions, in which one base is replaced by another. These can be of two types, either transitions or transversions. **Transition substitution** refers to a purine or pyrimidine being replaced by a base of the same kind; for example, a purine such as adenine may be replaced by the purine guanine. **Transversion substitution** refers to a purine being replaced by a pyrimidine, or vice versa; for example, cytosine, a pyrimidine, is replaced by adenine, a purine. Mutations can also be the result of the addition of a base, known as an insertion, or the removal of a base, also known as deletion. Sometimes a piece of DNA from one chromosome may get translocated to another chromosome or to another region of the same chromosome; this is also known as translocation. These mutation types are shown in [link].

Note:		
Art Connection		

A frameshift mutation that results in the insertion of three nucleotides is often less deleterious than a mutation that results in the insertion of one nucleotide. Why?

Mutations in repair genes have been known to cause cancer. Many mutated repair genes have been implicated in certain forms of pancreatic cancer, colon cancer, and colorectal cancer. Mutations can affect either somatic cells or germ cells. If many mutations accumulate in a somatic cell, they may lead to problems such as the uncontrolled cell division observed in cancer. If a mutation takes place in germ cells, the mutation will be passed

on to the next generation, as in the case of hemophilia and xeroderma pigmentosa.

Section Summary

DNA polymerase can make mistakes while adding nucleotides. It edits the DNA by proofreading every newly added base. Incorrect bases are removed and replaced by the correct base, and then a new base is added. Most mistakes are corrected during replication, although when this does not happen, the mismatch repair mechanism is employed. Mismatch repair enzymes recognize the wrongly incorporated base and excise it from the DNA, replacing it with the correct base. In yet another type of repair, nucleotide excision repair, the incorrect base is removed along with a few bases on the 5' and 3' end, and these are replaced by copying the template with the help of DNA polymerase. The ends of the newly synthesized fragment are attached to the rest of the DNA using DNA ligase, which creates a phosphodiester bond.

Most mistakes are corrected, and if they are not, they may result in a mutation defined as a permanent change in the DNA sequence. Mutations can be of many types, such as substitution, deletion, insertion, and translocation. Mutations in repair genes may lead to serious consequences such as cancer. Mutations can be induced or may occur spontaneously.

Art Connections

Exercise:

Problem:

[link] A frameshift mutation that results in the insertion of three nucleotides is often less deleterious than a mutation that results in the insertion of one nucleotide. Why?

Solution:

[link] If three nucleotides are added, one additional amino acid will be incorporated into the protein chain, but the reading frame wont shift.

Review Questions

•	•
HV	ercise:
$\mathbf{L}_{\mathbf{\Lambda}}$	CI CISC.

Problem:

During proofreading, which of the following enzymes reads the DNA?

- a. primase
- b. topoisomerase
- c. DNA pol
- d. helicase

Solution:

 \mathbf{C}

Exercise:

Problem:

The initial mechanism for repairing nucleotide errors in DNA is

- a. mismatch repair
- b. DNA polymerase proofreading
- c. nucleotide excision repair
- d. thymine dimers

Solution:

В

Free Response

Exercise:

Problem:

What is the consequence of mutation of a mismatch repair enzyme? How will this affect the function of a gene?

Solution:

Mutations are not repaired, as in the case of xeroderma pigmentosa. Gene function may be affected or it may not be expressed.

Glossary

induced mutation

mutation that results from exposure to chemicals or environmental agents

mutation

variation in the nucleotide sequence of a genome

mismatch repair

type of repair mechanism in which mismatched bases are removed after replication

nucleotide excision repair

type of DNA repair mechanism in which the wrong base, along with a few nucleotides upstream or downstream, are removed

proofreading

function of DNA pol in which it reads the newly added base before adding the next one

point mutation

mutation that affects a single base

silent mutation

mutation that is not expressed

spontaneous mutation

mutation that takes place in the cells as a result of chemical reactions taking place naturally without exposure to any external agent

transition substitution

when a purine is replaced with a purine or a pyrimidine is replaced with another pyrimidine

transversion substitution

when a purine is replaced by a pyrimidine or a pyrimidine is replaced by a purine

Introduction class="introduction"

Genes, which are carried on (a) chromosomes, are linearly organized instructions for making the RNA and protein molecules that are necessary for all of processes of life. The (b) interleukin-2 protein and (c) alpha-2uglobulin protein are just two examples of the array of different molecular structures that are encoded by genes. (credit "chromosome: National Human Genome Research Institute; credit "interleukin2": Ramin
Herati/Created
from PDB
1M47 and
rendered with
Pymol; credit
"alpha-2uglobulin":
Darren
Logan/rendere
d with
AISMIG)

Since the rediscovery of Mendel's work in 1900, the definition of the gene has progressed from an abstract unit of heredity to a tangible molecular entity capable of replication, expression, and mutation ([link]). Genes are composed of DNA and are linearly arranged on chromosomes. Genes specify the sequences of amino acids, which are the building blocks of proteins. In turn, proteins are responsible for orchestrating nearly every function of the cell. Both genes and the proteins they encode are absolutely essential to life as we know it.

The Genetic Code By the end of this section, you will be able to:

- Explain the "central dogma" of protein synthesis
- Describe the genetic code and how the nucleotide sequence prescribes the amino acid and the protein sequence

The cellular process of transcription generates messenger RNA (mRNA), a mobile molecular copy of one or more genes with an alphabet of A, C, G, and uracil (U). Translation of the mRNA template converts nucleotidebased genetic information into a protein product. Protein sequences consist of 20 commonly occurring amino acids; therefore, it can be said that the protein alphabet consists of 20 letters ([link]). Each amino acid is defined by a three-nucleotide sequence called the triplet codon. Different amino acids have different chemistries (such as acidic versus basic, or polar and nonpolar) and different structural constraints. Variation in amino acid

sequence gives rise to enormous variation in protein structure and function.

AMINO ACID						
sdr	COO ⁻ H ₃ N - C - H H	COO ⁻ I H ₃ N – C – H I CH ₃	COO- H ₃ N - C - H CH			
hatic R gro	Glycine COO ⁻	Alanine COO-	CH ₃ CH ₃ Valine COO ⁻			
Nonpolar, aliphatic R groups	H ₃ N — C — H	H ₃ N - C - H CH ₂ CH ₂ S	H ₃ Ň – Ċ – H I H – C – CH ₃ I CH ₂ I CH ₃			
	Leucine	CH ₃ Methionine	Isoleucine			
sdn	COO ⁻ I H ₃ N — C — H I CH ₂ OH	COO ⁻ H ₃ N - C - H H - C - OH L CH ₃	COO ⁻ H ₃ N - C - H CH ₂ SH			
₹ gro	Serine	Threonine	Cysteine			
Polar, uncharged R groups	COO- I	COO- H ₃ N - C - H CH ₂ C H ₂ N	COO- H ₃ N - C - H - CH ₂ - CH ₂ - CH ₂			
	Proline	Asparagine	Glutamine			

3 V (arration i	ii proteiii	. btractare (
	AMINO ACID					
Positively charged R groups	CH ₂	$\begin{array}{c c} COO^-\\ I\\ I\\ CH_2\\ I\\ CH_2\\ I\\ CH_2\\ I\\ NH\\ I\\ NH\\ I\\ NH_2 \end{array}$	CH ₂ C — NH+ CH CH CH H			
	Lysine	Arginine	Histidine			
Negatively charged R groups	H ₃ N — C I C I C Aspart	H ₂ 200 ⁻ ate (COO ⁻ I I I CH ₂ I CH ₂ I CH ₂ I COO ⁻			
Nonpolar, aromatic R groups	COO- H ₃ N-C-H CH ₂	$COO^ H_3N-C-H$ CH_2 OH Tyrosine	COO- I H ₃ N - C - H I CH ₂			

Structures of the 20 amino acids found in proteins are shown. Each amino acid is composed of an amino group (NH₃⁺), a carboxyl group (COO⁻), and a side chain (blue). The side chain may be nonpolar, polar, or charged, as well as large or small. It is the variety of amino acid side chains that gives rise to the incredible variation of protein structure and function.

The Central Dogma: DNA Encodes RNA; RNA Encodes Protein

The flow of genetic information in cells from DNA to mRNA to protein is described by the **Central Dogma** ([link]), which states that genes specify the sequence of mRNAs, which in turn specify the sequence of proteins. The decoding of one molecule to another is performed by specific proteins and RNAs. Because the information stored in DNA is so central to cellular function, it makes intuitive sense that the cell would make mRNA copies of this information for protein synthesis, while keeping the DNA itself intact and protected. The copying of DNA to RNA is relatively straightforward, with one nucleotide being added to the mRNA strand for every nucleotide read in the DNA strand. The translation to protein is a bit more complex because three mRNA nucleotides correspond to one amino acid in the polypeptide sequence. However, the translation to protein is still systematic and **colinear**, such that nucleotides 1 to 3 correspond to amino acid 1, nucleotides 4 to 6 correspond to amino acid 2, and so on.

Instructions on DNA are transcribed onto messenger RNA. Ribosomes are able to read the genetic information inscribed on a strand of messenger RNA and use this information to string amino acids together into a protein.

The Genetic Code Is Degenerate and Universal

Given the different numbers of "letters" in the mRNA and protein "alphabets," scientists theorized that combinations of nucleotides corresponded to single amino acids. Nucleotide doublets would not be sufficient to specify every amino acid because there are only 16 possible two-nucleotide combinations (4^2) . In contrast, there are 64 possible nucleotide triplets (4^3) , which is far more than the number of amino acids. Scientists theorized that amino acids were encoded by nucleotide triplets and that the genetic code was **degenerate**. In other words, a given amino acid could be encoded by more than one nucleotide triplet. This was later confirmed experimentally; Francis Crick and Sydney Brenner used the chemical mutagen proflavin to insert one, two, or three nucleotides into the gene of a virus. When one or two nucleotides were inserted, protein synthesis was completely abolished. When three nucleotides were inserted, the protein was synthesized and functional. This demonstrated that three nucleotides specify each amino acid. These nucleotide triplets are called **codons**. The insertion of one or two nucleotides completely changed the triplet **reading frame**, thereby altering the message for every subsequent amino acid ([link]). Though insertion of three nucleotides caused an extra amino acid to be inserted during translation, the integrity of the rest of the protein was maintained.

Scientists painstakingly solved the genetic code by translating synthetic mRNAs in vitro and sequencing the proteins they specified ([link]).

		Second letter					
		U	С	Α	G		
	U	UUU }Phe UUC }Leu UUG }Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU UGC Cys UGA Stop UGG Trp	UCAG	
letter	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG GIn	CGU CGC CGA CGG	UCAG	Third letter
First letter	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA AGG Arg	U C A G	Third
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG	

This figure shows the genetic code for translating each nucleotide triplet in mRNA into an amino acid or a termination signal in a nascent protein. (credit: modification of work by NIH)

In addition to instructing the addition of a specific amino acid to a polypeptide chain, three of the 64 codons terminate protein synthesis and release the polypeptide from the translation machinery. These triplets are called **nonsense codons**, or stop codons. Another codon, AUG, also has a special function. In addition to specifying the amino acid methionine, it also serves as the start codon to initiate translation. The reading frame for translation is set by the AUG start codon near the 5' end of the mRNA.

The genetic code is universal. With a few exceptions, virtually all species use the same genetic code for protein synthesis. Conservation of codons means that a purified mRNA encoding the globin protein in horses could be transferred to a tulip cell, and the tulip would synthesize horse globin. That there is only one genetic code is powerful evidence that all of life on Earth shares a common origin, especially considering that there are about 10⁸⁴ possible combinations of 20 amino acids and 64 triplet codons.

Note:

Link to Learning

Transcribe a gene and translate it to protein using complementary pairing and the genetic code at this <u>site</u>.

The deletion of two nucleotides shifts the reading frame of an mRNA and changes the entire protein message, creating a nonfunctional protein or terminating protein synthesis altogether.

Degeneracy is believed to be a cellular mechanism to reduce the negative impact of random mutations. Codons that specify the same amino acid typically only differ by one nucleotide. In addition, amino acids with chemically similar side chains are encoded by similar codons. This nuance of the genetic code ensures that a single-nucleotide substitution mutation might either specify the same amino acid but have no effect or specify a similar amino acid, preventing the protein from being rendered completely nonfunctional.

Note:

Scientific Method Connection

Which Has More DNA: A Kiwi or a Strawberry?

Do you think that a kiwi or a strawberry has more DNA per fruit? (credit "kiwi": "Kelbv"/Flickr; credit: "strawberry": Alisdair McDiarmid)

Question: Would a kiwifruit and strawberry that are approximately the same size ([link]) also have approximately the same amount of DNA? **Background**: Genes are carried on chromosomes and are made of DNA. All mammals are diploid, meaning they have two copies of each chromosome. However, not all plants are diploid. The common strawberry is octoploid (8*n*) and the cultivated kiwi is hexaploid (6*n*). Research the total number of chromosomes in the cells of each of these fruits and think about how this might correspond to the amount of DNA in these fruits' cell nuclei. Read about the technique of DNA isolation to understand how each step in the isolation protocol helps liberate and precipitate DNA.

Hypothesis: Hypothesize whether you would be able to detect a difference in DNA quantity from similarly sized strawberries and kiwis. Which fruit do you think would yield more DNA?

Test your hypothesis: Isolate the DNA from a strawberry and a kiwi that are similarly sized. Perform the experiment in at least triplicate for each fruit.

- 1. Prepare a bottle of DNA extraction buffer from 900 mL water, 50 mL dish detergent, and two teaspoons of table salt. Mix by inversion (cap it and turn it upside down a few times).
- 2. Grind a strawberry and a kiwifruit by hand in a plastic bag, or using a mortar and pestle, or with a metal bowl and the end of a blunt instrument. Grind for at least two minutes per fruit.

- 3. Add 10 mL of the DNA extraction buffer to each fruit, and mix well for at least one minute.
- 4. Remove cellular debris by filtering each fruit mixture through cheesecloth or porous cloth and into a funnel placed in a test tube or an appropriate container.
- 5. Pour ice-cold ethanol or isopropanol (rubbing alcohol) into the test tube. You should observe white, precipitated DNA.
- 6. Gather the DNA from each fruit by winding it around separate glass rods.

Record your observations: Because you are not quantitatively measuring DNA volume, you can record for each trial whether the two fruits produced the same or different amounts of DNA as observed by eye. If one or the other fruit produced noticeably more DNA, record this as well. Determine whether your observations are consistent with several pieces of each fruit.

Analyze your data: Did you notice an obvious difference in the amount of DNA produced by each fruit? Were your results reproducible? **Draw a conclusion**: Given what you know about the number of chromosomes in each fruit, can you conclude that chromosome number necessarily correlates to DNA amount? Can you identify any drawbacks to this procedure? If you had access to a laboratory, how could you standardize your comparison and make it more quantitative?

Section Summary

The genetic code refers to the DNA alphabet (A, T, C, G), the RNA alphabet (A, U, C, G), and the polypeptide alphabet (20 amino acids). The Central Dogma describes the flow of genetic information in the cell from genes to mRNA to proteins. Genes are used to make mRNA by the process of transcription; mRNA is used to synthesize proteins by the process of translation. The genetic code is degenerate because 64 triplet codons in mRNA specify only 20 amino acids and three nonsense codons. Almost every species on the planet uses the same genetic code.

Review Questions
Exercise:
Problem:
The AUC and AUA codons in mRNA both specify isoleucine. What feature of the genetic code explains this?
a. complementarityb. nonsense codonsc. universalityd. degeneracy
Solution:
D
Exercise:
Problem: How many nucleotides are in 12 mRNA codons?
a. 12
b. 24 c. 36
d. 48
Solution:
C
Free Response Exercise:

Problem:

Imagine if there were 200 commonly occurring amino acids instead of 20. Given what you know about the genetic code, what would be the shortest possible codon length? Explain.

Solution:

For 200 commonly occurring amino acids, codons consisting of four types of nucleotides would have to be at least four nucleotides long, because $4^4 = 256$. There would be much less degeneracy in this case.

Exercise:

Problem:

Discuss how degeneracy of the genetic code makes cells more robust to mutations.

Solution:

Codons that specify the same amino acid typically only differ by one nucleotide. In addition, amino acids with chemically similar side chains are encoded by similar codons. This nuance of the genetic code ensures that a single-nucleotide substitution mutation might either specify the same amino acid and have no effect, or may specify a similar amino acid, preventing the protein from being rendered completely nonfunctional.

Glossary

Central Dogma

states that genes specify the sequence of mRNAs, which in turn specify the sequence of proteins

codon

three consecutive nucleotides in mRNA that specify the insertion of an amino acid or the release of a polypeptide chain during translation

colinear

in terms of RNA and protein, three "units" of RNA (nucleotides) specify one "unit" of protein (amino acid) in a consecutive fashion

degeneracy

(of the genetic code) describes that a given amino acid can be encoded by more than one nucleotide triplet; the code is degenerate, but not ambiguous

nonsense codon

one of the three mRNA codons that specifies termination of translation

reading frame

sequence of triplet codons in mRNA that specify a particular protein; a ribosome shift of one or two nucleotides in either direction completely abolishes synthesis of that protein

Prokaryotic Transcription By the end of this section, you will be able to:

- List the different steps in prokaryotic transcription
- Discuss the role of promoters in prokaryotic transcription
- Describe how and when transcription is terminated

The prokaryotes, which include bacteria and archaea, are mostly single-celled organisms that, by definition, lack membrane-bound nuclei and other organelles. A bacterial chromosome is a covalently closed circle that, unlike eukaryotic chromosomes, is not organized around histone proteins. The central region of the cell in which prokaryotic DNA resides is called the nucleoid. In addition, prokaryotes often have abundant **plasmids**, which are shorter circular DNA molecules that may only contain one or a few genes. Plasmids can be transferred independently of the bacterial chromosome during cell division and often carry traits such as antibiotic resistance.

Transcription in prokaryotes (and in eukaryotes) requires the DNA double helix to partially unwind in the region of mRNA synthesis. The region of unwinding is called a **transcription bubble.** Transcription always proceeds from the same DNA strand for each gene, which is called the **template strand.** The mRNA product is complementary to the template strand and is almost identical to the other DNA strand, called the **nontemplate strand.** The only difference is that in mRNA, all of the T nucleotides are replaced with U nucleotides. In an RNA double helix, A can bind U via two hydrogen bonds, just as in A–T pairing in a DNA double helix.

The nucleotide pair in the DNA double helix that corresponds to the site from which the first 5' mRNA nucleotide is transcribed is called the +1 site, or the **initiation site**. Nucleotides preceding the initiation site are given negative numbers and are designated **upstream**. Conversely, nucleotides following the initiation site are denoted with "+" numbering and are called **downstream** nucleotides.

Initiation of Transcription in Prokaryotes

Prokaryotes do not have membrane-enclosed nuclei. Therefore, the processes of transcription, translation, and mRNA degradation can all occur simultaneously. The intracellular level of a bacterial protein can quickly be amplified by multiple transcription and translation events occurring concurrently on the same DNA template. Prokaryotic transcription often covers more than one gene and produces polycistronic mRNAs that specify more than one protein.

Our discussion here will exemplify transcription by describing this process in *Escherichia coli*, a well-studied bacterial species. Although some differences exist between transcription in *E. coli* and transcription in archaea, an understanding of *E. coli* transcription can be applied to virtually all bacterial species.

Prokaryotic RNA Polymerase

Prokaryotes use the same RNA polymerase to transcribe all of their genes. In $E.\ coli$, the polymerase is composed of five polypeptide subunits, two of which are identical. Four of these subunits, denoted α , α , β , and β ' comprise the polymerase **core enzyme**. These subunits assemble every time a gene is transcribed, and they disassemble once transcription is complete. Each subunit has a unique role; the two α -subunits are necessary to assemble the polymerase on the DNA; the β -subunit binds to the ribonucleoside triphosphate that will become part of the nascent "recently born" mRNA molecule; and the β ' binds the DNA template strand. The fifth subunit, σ , is involved only in transcription initiation. It confers transcriptional specificity such that the polymerase begins to synthesize mRNA from an appropriate initiation site. Without σ , the core enzyme would transcribe from random sites and would produce mRNA molecules that specified protein gibberish. The polymerase comprised of all five subunits is called the **holoenzyme**.

Prokaryotic Promoters

A **promoter** is a DNA sequence onto which the transcription machinery binds and initiates transcription. In most cases, promoters exist upstream of the genes they regulate. The specific sequence of a promoter is very important because it determines whether the corresponding gene is transcribed all the time, some of the time, or infrequently. Although promoters vary among prokaryotic genomes, a few elements are conserved. At the -10 and -35 regions upstream of the initiation site, there are two promoter consensus sequences, or regions that are similar across all promoters and across various bacterial species ([link]). The -10 consensus sequence, called the -10 region, is TATAAT. The -35 sequence, TTGACA, is recognized and bound by σ . Once this interaction is made, the subunits of the core enzyme bind to the site. The A–T-rich -10 region facilitates unwinding of the DNA template, and several phosphodiester bonds are made. The transcription initiation phase ends with the production of abortive transcripts, which are polymers of approximately 10 nucleotides that are made and released.

The σ subunit of prokaryotic RNA polymerase recognizes consensus sequences found in the promoter region upstream of the transcription start sight. The σ subunit dissociates from the polymerase after transcription has been initiated.

Note:

Link to Learning

View this <u>MolecularMovies animation</u> to see the first part of transcription and the base sequence repetition of the TATA box.

Elongation and Termination in Prokaryotes

The transcription elongation phase begins with the release of the σ subunit from the polymerase. The dissociation of σ allows the core enzyme to proceed along the DNA template, synthesizing mRNA in the 5' to 3' direction at a rate of approximately 40 nucleotides per second. As elongation proceeds, the DNA is continuously unwound ahead of the core enzyme and rewound behind it ([link]). The base pairing between DNA and RNA is not stable enough to maintain the stability of the mRNA synthesis components. Instead, the RNA polymerase acts as a stable linker between the DNA template and the nascent RNA strands to ensure that elongation is not interrupted prematurely.

During elongation, the prokaryotic RNA polymerase tracks along the DNA template,

synthesizes mRNA in the 5' to 3' direction, and unwinds and rewinds the DNA as it is read.

Prokaryotic Termination Signals

Once a gene is transcribed, the prokaryotic polymerase needs to be instructed to dissociate from the DNA template and liberate the newly made mRNA. Depending on the gene being transcribed, there are two kinds of termination signals. One is protein-based and the other is RNA-based. **Rho-dependent termination** is controlled by the rho protein, which tracks along behind the polymerase on the growing mRNA chain. Near the end of the gene, the polymerase encounters a run of G nucleotides on the DNA template and it stalls. As a result, the rho protein collides with the polymerase. The interaction with rho releases the mRNA from the transcription bubble.

Rho-independent termination is controlled by specific sequences in the DNA template strand. As the polymerase nears the end of the gene being transcribed, it encounters a region rich in C–G nucleotides. The mRNA folds back on itself, and the complementary C–G nucleotides bind together. The result is a stable **hairpin** that causes the polymerase to stall as soon as it begins to transcribe a region rich in A–T nucleotides. The complementary U–A region of the mRNA transcript forms only a weak interaction with the template DNA. This, coupled with the stalled polymerase, induces enough instability for the core enzyme to break away and liberate the new mRNA transcript.

Upon termination, the process of transcription is complete. By the time termination occurs, the prokaryotic transcript would already have been used to begin synthesis of numerous copies of the encoded protein because these processes can occur concurrently. The unification of transcription, translation, and even mRNA degradation is possible because all of these processes occur in the same 5' to 3' direction, and because there is no membranous compartmentalization in the prokaryotic cell ([link]). In

contrast, the presence of a nucleus in eukaryotic cells precludes simultaneous transcription and translation.

Multiple polymerases can transcribe a single bacterial gene while numerous ribosomes concurrently translate the mRNA transcripts into polypeptides. In this way, a specific protein can rapidly reach a high concentration in the bacterial cell.

Note:

Link to Learning

Visit this <u>BioStudio animation</u> to see the process of prokaryotic transcription.

Section Summary

In prokaryotes, mRNA synthesis is initiated at a promoter sequence on the DNA template comprising two consensus sequences that recruit RNA polymerase. The prokaryotic polymerase consists of a core enzyme of four protein subunits and a σ protein that assists only with initiation. Elongation synthesizes mRNA in the 5' to 3' direction at a rate of 40 nucleotides per second. Termination liberates the mRNA and occurs either by rho protein interaction or by the formation of an mRNA hairpin.

Review Questions

•	
Exercise	

Problem:

Which subunit of the *E. coli* polymerase confers specificity to transcription?

a. α

b. *β*

c. β'

 $d. \sigma$

Solution:

D

Exercise:

Problem:

The -10 and -35 regions of prokaryotic promoters are called consensus sequences because _____.

- a. they are identical in all bacterial species
- b. they are similar in all bacterial species
- c. they exist in all organisms

d. they have the same function in all organisms

Solution:

В

Free Response

Exercise:

Problem:

If mRNA is complementary to the DNA template strand and the DNA template strand is complementary to the DNA nontemplate strand, then why are base sequences of mRNA and the DNA nontemplate strand not identical? Could they ever be?

Solution:

DNA is different from RNA in that T nucleotides in DNA are replaced with U nucleotides in RNA. Therefore, they could never be identical in base sequence.

Exercise:

Problem:

In your own words, describe the difference between rho-dependent and rho-independent termination of transcription in prokaryotes.

Solution:

Rho-dependent termination is controlled by the rho protein, which tracks along behind the polymerase on the growing mRNA chain. Near the end of the gene, the polymerase stalls at a run of G nucleotides on the DNA template. The rho protein collides with the polymerase and releases mRNA from the transcription bubble. Rho-independent termination is controlled by specific sequences in the DNA template

strand. As the polymerase nears the end of the gene being transcribed, it encounters a region rich in C–G nucleotides. This creates an mRNA hairpin that causes the polymerase to stall right as it begins to transcribe a region rich in A–T nucleotides. Because A–U bonds are less thermostable, the core enzyme falls away.

Glossary

consensus

DNA sequence that is used by many species to perform the same or similar functions

core enzyme

prokaryotic RNA polymerase consisting of α , α , β , and β ' but missing σ ; this complex performs elongation

downstream

nucleotides following the initiation site in the direction of mRNA transcription; in general, sequences that are toward the 3' end relative to a site on the mRNA

hairpin

structure of RNA when it folds back on itself and forms intramolecular hydrogen bonds between complementary nucleotides

holoenzyme

prokaryotic RNA polymerase consisting of α , α , β , β ', and σ ; this complex is responsible for transcription initiation

initiation site

nucleotide from which mRNA synthesis proceeds in the 5' to 3' direction; denoted with a "+1"

nontemplate strand

strand of DNA that is not used to transcribe mRNA; this strand is identical to the mRNA except that T nucleotides in the DNA are replaced by U nucleotides in the mRNA

plasmid

extrachromosomal, covalently closed, circular DNA molecule that may only contain one or a few genes; common in prokaryotes

promoter

DNA sequence to which RNA polymerase and associated factors bind and initiate transcription

Rho-dependent termination

in prokaryotes, termination of transcription by an interaction between RNA polymerase and the rho protein at a run of G nucleotides on the DNA template

Rho-independent

termination sequence-dependent termination of prokaryotic mRNA synthesis; caused by hairpin formation in the mRNA that stalls the polymerase

TATA box

conserved promoter sequence in eukaryotes and prokaryotes that helps to establish the initiation site for transcription

template strand

strand of DNA that specifies the complementary mRNA molecule

transcription bubble

region of locally unwound DNA that allows for transcription of mRNA

upstream

nucleotides preceding the initiation site; in general, sequences toward the 5' end relative to a site on the mRNA

Eukaryotic Transcription By the end of this section, you will be able to:

- List the steps in eukaryotic transcription
- Discuss the role of RNA polymerases in transcription
- Compare and contrast the three RNA polymerases
- Explain the significance of transcription factors

Prokaryotes and eukaryotes perform fundamentally the same process of transcription, with a few key differences. The most important difference between prokaryotes and eukaryotes is the latter's membrane-bound nucleus and organelles. With the genes bound in a nucleus, the eukaryotic cell must be able to transport its mRNA to the cytoplasm and must protect its mRNA from degrading before it is translated. Eukaryotes also employ three different polymerases that each transcribe a different subset of genes. Eukaryotic mRNAs are usually monogenic, meaning that they specify a single protein.

Initiation of Transcription in Eukaryotes

Unlike the prokaryotic polymerase that can bind to a DNA template on its own, eukaryotes require several other proteins, called transcription factors, to first bind to the promoter region and then help recruit the appropriate polymerase.

The Three Eukaryotic RNA Polymerases

The features of eukaryotic mRNA synthesis are markedly more complex those of prokaryotes. Instead of a single polymerase comprising five subunits, the eukaryotes have three polymerases that are each made up of 10 subunits or more. Each eukaryotic polymerase also requires a distinct set of transcription factors to bring it to the DNA template.

RNA polymerase I is located in the nucleolus, a specialized nuclear substructure in which ribosomal RNA (rRNA) is transcribed, processed, and assembled into ribosomes ([link]). The rRNA molecules are considered

structural RNAs because they have a cellular role but are not translated into protein. The rRNAs are components of the ribosome and are essential to the process of translation. RNA polymerase I synthesizes all of the rRNAs except for the 5S rRNA molecule. The "S" designation applies to "Svedberg" units, a nonadditive value that characterizes the speed at which a particle sediments during centrifugation.

RNA Polymerases			
RNA Polymerase	Cellular Compartment	Product of Transcription	α- Amanitin Sensitivity
I	Nucleolus	All rRNAs except 5S rRNA	Insensitive
II	Nucleus	All protein- coding nuclear	Extremely

pre-mRNAs

5S rRNA, tRNAs, and

RNAs

small nuclear

sensitive

Moderately

sensitive

Locations, Products, and Sensitivities of the Three Eukaryotic

RNA polymerase II is located in the nucleus and synthesizes all protein-coding nuclear pre-mRNAs. Eukaryotic pre-mRNAs undergo extensive processing after transcription but before translation. For clarity, this module's discussion of transcription and translation in eukaryotes will use the term "mRNAs" to describe only the mature, processed molecules that

Nucleus

III

are ready to be translated. RNA polymerase II is responsible for transcribing the overwhelming majority of eukaryotic genes.

RNA polymerase III is also located in the nucleus. This polymerase transcribes a variety of structural RNAs that includes the 5S pre-rRNA, transfer pre-RNAs (pre-tRNAs), and **small nuclear** pre-**RNAs**. The tRNAs have a critical role in translation; they serve as the adaptor molecules between the mRNA template and the growing polypeptide chain. Small nuclear RNAs have a variety of functions, including "splicing" pre-mRNAs and regulating transcription factors.

A scientist characterizing a new gene can determine which polymerase transcribes it by testing whether the gene is expressed in the presence of a particular mushroom poison, α -amanitin ([link]). Interestingly, α -amanitin produced by *Amanita phalloides*, the Death Cap mushroom, affects the three polymerases very differently. RNA polymerase I is completely insensitive to α -amanitin, meaning that the polymerase can transcribe DNA in vitro in the presence of this poison. In contrast, RNA polymerase II is extremely sensitive to α -amanitin, and RNA polymerase III is moderately sensitive. Knowing the transcribing polymerase can clue a researcher into the general function of the gene being studied. Because RNA polymerase II transcribes the vast majority of genes, we will focus on this polymerase in our subsequent discussions about eukaryotic transcription factors and promoters.

Structure of an RNA Polymerase II Promoter

Eukaryotic promoters are much larger and more complex than prokaryotic promoters, but both have a TATA box. For example, in the mouse thymidine kinase gene, the TATA box is located at approximately -30 relative to the initiation (+1) site ([link]). For this gene, the exact TATA box sequence is TATAAAA, as read in the 5' to 3' direction on the nontemplate strand. This sequence is not identical to the *E. coli* TATA box, but it conserves the A–T rich element. The thermostability of A–T bonds is low and this helps the DNA template to locally unwind in preparation for transcription.

A generalized promoter of a gene transcribed by RNA polymerase II is shown.

Transcription factors recognize the promoter. RNA polymerase II then binds and forms the transcription initiation complex.

Note:

Art Connection

The mouse genome includes one gene and two pseudogenes for cytoplasmic thymidine kinase. Pseudogenes are genes that have lost their protein-coding ability or are no longer expressed by the cell. These pseudogenes are copied from mRNA and incorporated into the chromosome. For example, the mouse thymidine kinase promoter also has a conserved **CAAT box** (GGCCAATCT) at approximately -80. This sequence is essential and is involved in binding transcription factors. Further upstream of the TATA box, eukaryotic promoters may also contain one or more **GC-rich boxes** (GGCG) or **octamer boxes** (ATTTGCAT). These elements bind cellular factors that increase the efficiency of transcription initiation and are often identified in more "active" genes that are constantly being expressed by the cell.

Transcription Factors for RNA Polymerase II

The complexity of eukaryotic transcription does not end with the polymerases and promoters. An army of basal transcription factors, enhancers, and silencers also help to regulate the frequency with which premRNA is synthesized from a gene. Enhancers and silencers affect the efficiency of transcription but are not necessary for transcription to proceed. Basal transcription factors are crucial in the formation of a **preinitiation complex** on the DNA template that subsequently recruits RNA polymerase II for transcription initiation.

The names of the basal transcription factors begin with "TFII" (this is the transcription factor for RNA polymerase II) and are specified with the letters A–J. The transcription factors systematically fall into place on the DNA template, with each one further stabilizing the preinitiation complex and contributing to the recruitment of RNA polymerase II.

The processes of bringing RNA polymerases I and III to the DNA template involve slightly less complex collections of transcription factors, but the general theme is the same. Eukaryotic transcription is a tightly regulated process that requires a variety of proteins to interact with each other and with the DNA strand. Although the process of transcription in eukaryotes involves a greater metabolic investment than in prokaryotes, it ensures that the cell transcribes precisely the pre-mRNAs that it needs for protein synthesis.

Note:

Evolution Connection

The Evolution of Promoters

The evolution of genes may be a familiar concept. Mutations can occur in genes during DNA replication, and the result may or may not be beneficial to the cell. By altering an enzyme, structural protein, or some other factor, the process of mutation can transform functions or physical features. However, eukaryotic promoters and other gene regulatory sequences may evolve as well. For instance, consider a gene that, over many generations, becomes more valuable to the cell. Maybe the gene encodes a structural protein that the cell needs to synthesize in abundance for a certain function. If this is the case, it would be beneficial to the cell for that gene's promoter

to recruit transcription factors more efficiently and increase gene expression.

Scientists examining the evolution of promoter sequences have reported varying results. In part, this is because it is difficult to infer exactly where a eukaryotic promoter begins and ends. Some promoters occur within genes; others are located very far upstream, or even downstream, of the genes they are regulating. However, when researchers limited their examination to human core promoter sequences that were defined experimentally as sequences that bind the preinitiation complex, they found that promoters evolve even faster than protein-coding genes.

It is still unclear how promoter evolution might correspond to the evolution of humans or other higher organisms. However, the evolution of a promoter to effectively make more or less of a given gene product is an intriguing alternative to the evolution of the genes themselves. [footnote] H Liang et al., "Fast evolution of core promoters in primate genomes," *Molecular Biology and Evolution* 25 (2008): 1239–44.

Eukaryotic Elongation and Termination

Following the formation of the preinitiation complex, the polymerase is released from the other transcription factors, and elongation is allowed to proceed as it does in prokaryotes with the polymerase synthesizing premRNA in the 5' to 3' direction. As discussed previously, RNA polymerase II transcribes the major share of eukaryotic genes, so this section will focus on how this polymerase accomplishes elongation and termination.

Although the enzymatic process of elongation is essentially the same in eukaryotes and prokaryotes, the DNA template is more complex. When eukaryotic cells are not dividing, their genes exist as a diffuse mass of DNA and proteins called chromatin. The DNA is tightly packaged around charged histone proteins at repeated intervals. These DNA—histone complexes, collectively called nucleosomes, are regularly spaced and include 146 nucleotides of DNA wound around eight histones like thread around a spool.

For polynucleotide synthesis to occur, the transcription machinery needs to move histones out of the way every time it encounters a nucleosome. This is accomplished by a special protein complex called **FACT**, which stands for "facilitates chromatin transcription." This complex pulls histones away from the DNA template as the polymerase moves along it. Once the premRNA is synthesized, the FACT complex replaces the histones to recreate the nucleosomes.

The termination of transcription is different for the different polymerases. Unlike in prokaryotes, termination by RNA polymerase II in eukaryotes takes place 1,000–2,000 nucleotides beyond the end of the gene being transcribed. This pre-mRNA tail is subsequently removed by cleavage during mRNA processing. On the other hand, RNA polymerases I and III require termination signals. Genes transcribed by RNA polymerase I contain a specific 18-nucleotide sequence that is recognized by a termination protein. The process of termination in RNA polymerase III involves an mRNA hairpin similar to rho-independent termination of transcription in prokaryotes.

Section Summary

Transcription in eukaryotes involves one of three types of polymerases, depending on the gene being transcribed. RNA polymerase II transcribes all of the protein-coding genes, whereas RNA polymerase I transcribes rRNA genes, and RNA polymerase III transcribes rRNA, tRNA, and small nuclear RNA genes. The initiation of transcription in eukaryotes involves the binding of several transcription factors to complex promoter sequences that are usually located upstream of the gene being copied. The mRNA is synthesized in the 5' to 3' direction, and the FACT complex moves and reassembles nucleosomes as the polymerase passes by. Whereas RNA polymerases I and III terminate transcription by protein- or RNA hairpin-dependent methods, RNA polymerase II transcribes for 1,000 or more nucleotides beyond the gene template and cleaves the excess during pre-mRNA processing.

Art Connections

Exercise:

Problem:

[link] A scientist splices a eukaryotic promoter in front of a bacterial gene and inserts the gene in a bacterial chromosome. Would you expect the bacteria to transcribe the gene?

Solution:

[link] No. Prokaryotes use different promoters than eukaryotes.

Review Questions

Exercise:

Problem:

Which feature of promoters can be found in both prokaryotes and eukaryotes?

- a. GC box
- b. TATA box
- c. octamer box
- d. -10 and -35 sequences

Solution:

В

Exercise:

Problem:

What transcripts will be most affected by low levels of α -amanitin?

- a. 18S and 28S rRNAs
- b. pre-mRNAs
- c. 5S rRNAs and tRNAs

Solution:

В

Glossary

CAAT box

(GGCCAATCT) essential eukaryotic promoter sequence involved in binding transcription factors

FACT

complex that "facilitates chromatin transcription" by disassembling nucleosomes ahead of a transcribing RNA polymerase II and reassembling them after the polymerase passes by

GC-rich box

(GGCG) nonessential eukaryotic promoter sequence that binds cellular factors to increase the efficiency of transcription; may be present several times in a promoter

Octamer box

(ATTTGCAT) nonessential eukaryotic promoter sequence that binds cellular factors to increase the efficiency of transcription; may be present several times in a promoter

preinitiation complex

cluster of transcription factors and other proteins that recruit RNA polymerase II for transcription of a DNA template

small nuclear RNA

molecules synthesized by RNA polymerase III that have a variety of functions, including splicing pre-mRNAs and regulating transcription factors

RNA Processing in Eukaryotes By the end of this section, you will be able to:

- Describe the different steps in RNA processing
- Understand the significance of exons, introns, and splicing
- Explain how tRNAs and rRNAs are processed

After transcription, eukaryotic pre-mRNAs must undergo several processing steps before they can be translated. Eukaryotic (and prokaryotic) tRNAs and rRNAs also undergo processing before they can function as components in the protein synthesis machinery.

mRNA Processing

The eukaryotic pre-mRNA undergoes extensive processing before it is ready to be translated. The additional steps involved in eukaryotic mRNA maturation create a molecule with a much longer half-life than a prokaryotic mRNA. Eukaryotic mRNAs last for several hours, whereas the typical *E. coli* mRNA lasts no more than five seconds.

Pre-mRNAs are first coated in RNA-stabilizing proteins; these protect the pre-mRNA from degradation while it is processed and exported out of the nucleus. The three most important steps of pre-mRNA processing are the addition of stabilizing and signaling factors at the 5' and 3' ends of the molecule, and the removal of intervening sequences that do not specify the appropriate amino acids. In rare cases, the mRNA transcript can be "edited" after it is transcribed.

Note:

Evolution Connection

RNA Editing in Trypanosomes

The trypanosomes are a group of protozoa that include the pathogen *Trypanosoma brucei*, which causes sleeping sickness in humans ([link]). Trypanosomes, and virtually all other eukaryotes, have organelles called mitochondria that supply the cell with chemical energy. Mitochondria are

organelles that express their own DNA and are believed to be the remnants of a symbiotic relationship between a eukaryote and an engulfed prokaryote. The mitochondrial DNA of trypanosomes exhibit an interesting exception to The Central Dogma: their pre-mRNAs do not have the correct information to specify a functional protein. Usually, this is because the mRNA is missing several U nucleotides. The cell performs an additional RNA processing step called **RNA editing** to remedy this.

Trypanosoma brucei is
the causative agent of
sleeping sickness in
humans. The mRNAs of
this pathogen must be
modified by the addition
of nucleotides before
protein synthesis can
occur. (credit:
modification of work by
Torsten Ochsenreiter)

Other genes in the mitochondrial genome encode 40- to 80-nucleotide guide RNAs. One or more of these molecules interacts by complementary base pairing with some of the nucleotides in the pre-mRNA transcript. However, the guide RNA has more A nucleotides than the pre-mRNA has U nucleotides to bind with. In these regions, the guide RNA loops out. The

3' ends of guide RNAs have a long poly-U tail, and these U bases are inserted in regions of the pre-mRNA transcript at which the guide RNAs are looped. This process is entirely mediated by RNA molecules. That is, guide RNAs—rather than proteins—serve as the catalysts in RNA editing. RNA editing is not just a phenomenon of trypanosomes. In the mitochondria of some plants, almost all pre-mRNAs are edited. RNA editing has also been identified in mammals such as rats, rabbits, and even humans. What could be the evolutionary reason for this additional step in pre-mRNA processing? One possibility is that the mitochondria, being remnants of ancient prokaryotes, have an equally ancient RNA-based method for regulating gene expression. In support of this hypothesis, edits made to pre-mRNAs differ depending on cellular conditions. Although speculative, the process of RNA editing may be a holdover from a primordial time when RNA molecules, instead of proteins, were responsible for catalyzing reactions.

5' Capping

While the pre-mRNA is still being synthesized, a **7-methylguanosine cap** is added to the 5' end of the growing transcript by a phosphate linkage. This moiety (functional group) protects the nascent mRNA from degradation. In addition, factors involved in protein synthesis recognize the cap to help initiate translation by ribosomes.

3' Poly-A Tail

Once elongation is complete, the pre-mRNA is cleaved by an endonuclease between an AAUAAA consensus sequence and a GU-rich sequence, leaving the AAUAAA sequence on the pre-mRNA. An enzyme called poly-A polymerase then adds a string of approximately 200 A residues, called the **poly-A tail**. This modification further protects the pre-mRNA from degradation and signals the export of the cellular factors that the transcript needs to the cytoplasm.

Pre-mRNA Splicing

Eukaryotic genes are composed of **exons**, which correspond to protein-coding sequences (*ex*-on signifies that they are *ex*pressed), and *int*ervening sequences called **introns** (*int*-ron denotes their *int*ervening role), which may be involved in gene regulation but are removed from the pre-mRNA during processing. Intron sequences in mRNA do not encode functional proteins.

The discovery of introns came as a surprise to researchers in the 1970s who expected that pre-mRNAs would specify protein sequences without further processing, as they had observed in prokaryotes. The genes of higher eukaryotes very often contain one or more introns. These regions may correspond to regulatory sequences; however, the biological significance of having many introns or having very long introns in a gene is unclear. It is possible that introns slow down gene expression because it takes longer to transcribe pre-mRNAs with lots of introns. Alternatively, introns may be nonfunctional sequence remnants left over from the fusion of ancient genes throughout evolution. This is supported by the fact that separate exons often encode separate protein subunits or domains. For the most part, the sequences of introns can be mutated without ultimately affecting the protein product.

All of a pre-mRNA's introns must be completely and precisely removed before protein synthesis. If the process errs by even a single nucleotide, the reading frame of the rejoined exons would shift, and the resulting protein would be dysfunctional. The process of removing introns and reconnecting exons is called **splicing** ([link]). Introns are removed and degraded while the pre-mRNA is still in the nucleus. Splicing occurs by a sequence-specific mechanism that ensures introns will be removed and exons rejoined with the accuracy and precision of a single nucleotide. The splicing of pre-mRNAs is conducted by complexes of proteins and RNA molecules called spliceosomes.

Not	e:
Art	Connection

Pre-mRNA splicing involves the precise removal of introns from the primary RNA transcript. The splicing process is catalyzed by protein complexes called spliceosomes that are composed of proteins and RNA molecules called snRNAs. Spliceosomes recognize sequences at the 5' and 3' end of the intron.

Errors in splicing are implicated in cancers and other human diseases. What kinds of mutations might lead to splicing errors? Think of different possible outcomes if splicing errors occur.

Note that more than 70 individual introns can be present, and each has to undergo the process of splicing—in addition to 5' capping and the addition

of a poly-A tail—just to generate a single, translatable mRNA molecule.

Note:

Link to Learning

See how introns are removed during RNA splicing at this website.

Processing of tRNAs and rRNAs

The tRNAs and rRNAs are structural molecules that have roles in protein synthesis; however, these RNAs are not themselves translated. Pre-rRNAs are transcribed, processed, and assembled into ribosomes in the nucleolus. Pre-tRNAs are transcribed and processed in the nucleus and then released into the cytoplasm where they are linked to free amino acids for protein synthesis.

Most of the tRNAs and rRNAs in eukaryotes and prokaryotes are first transcribed as a long precursor molecule that spans multiple rRNAs or tRNAs. Enzymes then cleave the precursors into subunits corresponding to each structural RNA. Some of the bases of pre-rRNAs are methylated; that is, a –CH₃ moiety (methyl functional group) is added for stability. Pre-tRNA molecules also undergo methylation. As with pre-mRNAs, subunit excision occurs in eukaryotic pre-RNAs destined to become tRNAs or rRNAs.

Mature rRNAs make up approximately 50 percent of each ribosome. Some of a ribosome's RNA molecules are purely structural, whereas others have catalytic or binding activities. Mature tRNAs take on a three-dimensional

structure through intramolecular hydrogen bonding to position the amino acid binding site at one end and the **anticodon** at the other end ([link]). The anticodon is a three-nucleotide sequence in a tRNA that interacts with an mRNA codon through complementary base pairing.

This is a space-filling model of a tRNA molecule that adds the amino acid phenylalanine to a growing polypeptide chain. The anticodon AAG binds the Codon UUC on the mRNA. The amino acid phenylalanine is attached to the other end of the tRNA.

Section Summary

Eukaryotic pre-mRNAs are modified with a 5' methylguanosine cap and a poly-A tail. These structures protect the mature mRNA from degradation and help export it from the nucleus. Pre-mRNAs also undergo splicing, in which introns are removed and exons are reconnected with single-nucleotide accuracy. Only finished mRNAs that have undergone 5' capping, 3' polyadenylation, and intron splicing are exported from the nucleus to the cytoplasm. Pre-rRNAs and pre-tRNAs may be processed by intramolecular cleavage, splicing, methylation, and chemical conversion of nucleotides. Rarely, RNA editing is also performed to insert missing bases after an mRNA has been synthesized.

Art Connections

Exercise:

Problem:

[link] Errors in splicing are implicated in cancers and other human diseases. What kinds of mutations might lead to splicing errors? Think of different possible outcomes if splicing errors occur.

Solution:

[link] Mutations in the spliceosome recognition sequence at each end of the intron, or in the proteins and RNAs that make up the spliceosome, may impair splicing. Mutations may also add new spliceosome recognition sites. Splicing errors could lead to introns being retained in spliced RNA, exons being excised, or changes in the location of the splice site.

Review Questions

Exercise:

Problem:

Which pre-mRNA processing step is important for initiating translation?

- a. poly-A tail
- b. RNA editing
- c. splicing
- d. 7-methylguanosine cap

Solution:

D

Exercise:

Problem:

What processing step enhances the stability of pre-tRNAs and pre-rRNAs?

- a. methylation
- b. nucleotide modification
- c. cleavage
- d. splicing

Solution:

Α

Glossary

7-methylguanosine cap

modification added to the 5' end of pre-mRNAs to protect mRNA from degradation and assist translation

anticodon

three-nucleotide sequence in a tRNA molecule that corresponds to an mRNA codon

exon

sequence present in protein-coding mRNA after completion of pre-mRNA splicing

intron

non–protein-coding intervening sequences that are spliced from mRNA during processing

poly-A tail

modification added to the 3' end of pre-mRNAs to protect mRNA from degradation and assist mRNA export from the nucleus

RNA editing

direct alteration of one or more nucleotides in an mRNA that has already been synthesized

splicing

process of removing introns and reconnecting exons in a pre-mRNA

Ribosomes and Protein Synthesis By the end of this section, you will be able to:

- Describe the different steps in protein synthesis
- Discuss the role of ribosomes in protein synthesis

The synthesis of proteins consumes more of a cell's energy than any other metabolic process. In turn, proteins account for more mass than any other component of living organisms (with the exception of water), and proteins perform virtually every function of a cell. The process of translation, or protein synthesis, involves the decoding of an mRNA message into a polypeptide product. Amino acids are covalently strung together by interlinking peptide bonds in lengths ranging from approximately 50 amino acid residues to more than 1,000. Each individual amino acid has an amino group (NH₂) and a carboxyl (COOH) group. Polypeptides are formed when the amino group of one amino acid forms an amide (i.e., peptide) bond with the carboxyl group of another amino acid ([link]). This reaction is catalyzed by ribosomes and generates one water molecule.

A peptide bond links the carboxyl end of one amino acid with the amino end of another, expelling one water molecule. For simplicity in this image, only the functional groups involved in the peptide bond are shown. The R and R' designations

refer to the rest of each amino acid structure.

The Protein Synthesis Machinery

In addition to the mRNA template, many molecules and macromolecules contribute to the process of translation. The composition of each component may vary across species; for instance, ribosomes may consist of different numbers of rRNAs and polypeptides depending on the organism. However, the general structures and functions of the protein synthesis machinery are comparable from bacteria to human cells. Translation requires the input of an mRNA template, ribosomes, tRNAs, and various enzymatic factors.

Note:

Link to Learning

Click through the steps of this <u>PBS interactive</u> to see protein synthesis in action.

Ribosomes

Even before an mRNA is translated, a cell must invest energy to build each of its ribosomes. In *E. coli*, there are between 10,000 and 70,000 ribosomes present in each cell at any given time. A ribosome is a complex macromolecule composed of structural and catalytic rRNAs, and many distinct polypeptides. In eukaryotes, the nucleolus is completely specialized for the synthesis and assembly of rRNAs.

Ribosomes exist in the cytoplasm in prokaryotes and in the cytoplasm and rough endoplasmic reticulum in eukaryotes. Mitochondria and chloroplasts also have their own ribosomes in the matrix and stroma, which look more similar to prokaryotic ribosomes (and have similar drug sensitivities) than the ribosomes just outside their outer membranes in the cytoplasm. Ribosomes dissociate into large and small subunits when they are not synthesizing proteins and reassociate during the initiation of translation. In E. coli, the small subunit is described as 30S, and the large subunit is 50S, for a total of 70S (recall that Svedberg units are not additive). Mammalian ribosomes have a small 40S subunit and a large 60S subunit, for a total of 80S. The small subunit is responsible for binding the mRNA template, whereas the large subunit sequentially binds tRNAs. Each mRNA molecule is simultaneously translated by many ribosomes, all synthesizing protein in the same direction: reading the mRNA from 5' to 3' and synthesizing the polypeptide from the N terminus to the C terminus. The complete mRNA/poly-ribosome structure is called a **polysome**.

tRNAs

The tRNAs are structural RNA molecules that were transcribed from genes by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Serving as adaptors, specific tRNAs bind to sequences on the mRNA template and add the corresponding amino acid to the polypeptide chain. Therefore, tRNAs are the molecules that actually "translate" the language of RNA into the language of proteins.

Of the 64 possible mRNA codons—or triplet combinations of A, U, G, and C—three specify the termination of protein synthesis and 61 specify the addition of amino acids to the polypeptide chain. Of these 61, one codon (AUG) also encodes the initiation of translation. Each tRNA anticodon can base pair with one of the mRNA codons and add an amino acid or terminate translation, according to the genetic code. For instance, if the sequence CUA occurred on an mRNA template in the proper reading frame, it would bind a tRNA expressing the complementary sequence, GAU, which would be linked to the amino acid leucine.

As the adaptor molecules of translation, it is surprising that tRNAs can fit so much specificity into such a small package. Consider that tRNAs need to interact with three factors: 1) they must be recognized by the correct aminoacyl synthetase (see below); 2) they must be recognized by ribosomes; and 3) they must bind to the correct sequence in mRNA.

Aminoacyl tRNA Synthetases

The process of pre-tRNA synthesis by RNA polymerase III only creates the RNA portion of the adaptor molecule. The corresponding amino acid must be added later, once the tRNA is processed and exported to the cytoplasm. Through the process of tRNA "charging," each tRNA molecule is linked to its correct amino acid by a group of enzymes called **aminoacyl tRNA synthetases**. At least one type of aminoacyl tRNA synthetase exists for each of the 20 amino acids; the exact number of aminoacyl tRNA synthetases varies by species. These enzymes first bind and hydrolyze ATP to catalyze a high-energy bond between an amino acid and adenosine monophosphate (AMP); a pyrophosphate molecule is expelled in this reaction. The activated amino acid is then transferred to the tRNA, and AMP is released.

The Mechanism of Protein Synthesis

As with mRNA synthesis, protein synthesis can be divided into three phases: initiation, elongation, and termination. The process of translation is similar in prokaryotes and eukaryotes. Here we'll explore how translation occurs in *E. coli*, a representative prokaryote, and specify any differences between prokaryotic and eukaryotic translation.

Initiation of Translation

Protein synthesis begins with the formation of an initiation complex. In *E. coli*, this complex involves the small 30S ribosome, the mRNA template, three initiation factors (IFs; IF-1, IF-2, and IF-3), and a special **initiator**

tRNA, called $tRNA_f^{Met}$. The initiator tRNA interacts with the **start codon** AUG (or rarely, GUG), links to a formylated methionine called fMet, and can also bind IF-2. Formylated methionine is inserted by $fMet - tRNA_f^{Met}$ at the beginning of every polypeptide chain synthesized by $E.\ coli$, but it is usually clipped off after translation is complete. When an in-frame AUG is encountered during translation elongation, a non-formylated methionine is inserted by a regular Met-tRNA Met .

In *E. coli* mRNA, a sequence upstream of the first AUG codon, called the **Shine-Dalgarno sequence** (AGGAGG), interacts with the rRNA molecules that compose the ribosome. This interaction anchors the 30S ribosomal subunit at the correct location on the mRNA template. Guanosine triphosphate (GTP), which is a purine nucleotide triphosphate, acts as an energy source during translation—both at the start of elongation and during the ribosome's translocation.

In eukaryotes, a similar initiation complex forms, comprising mRNA, the 40S small ribosomal subunit, IFs, and nucleoside triphosphates (GTP and ATP). The charged initiator tRNA, called Met-tRNA_i, does not bind fMet in eukaryotes, but is distinct from other Met-tRNAs in that it can bind IFs.

Instead of depositing at the Shine-Dalgarno sequence, the eukaryotic initiation complex recognizes the 7-methylguanosine cap at the 5' end of the mRNA. A cap-binding protein (CBP) and several other IFs assist the movement of the ribosome to the 5' cap. Once at the cap, the initiation complex tracks along the mRNA in the 5' to 3' direction, searching for the AUG start codon. Many eukaryotic mRNAs are translated from the first AUG, but this is not always the case. According to **Kozak's rules**, the nucleotides around the AUG indicate whether it is the correct start codon. Kozak's rules state that the following consensus sequence must appear around the AUG of vertebrate genes: 5'-gccRccAUGG-3'. The R (for purine) indicates a site that can be either A or G, but cannot be C or U. Essentially, the closer the sequence is to this consensus, the higher the efficiency of translation.

Once the appropriate AUG is identified, the other proteins and CBP dissociate, and the 60S subunit binds to the complex of Met-tRNA_i, mRNA,

and the 40S subunit. This step completes the initiation of translation in eukaryotes.

Translation, Elongation, and Termination

In prokaryotes and eukaryotes, the basics of elongation are the same, so we will review elongation from the perspective of $E.\ coli$. The 50S ribosomal subunit of $E.\ coli$ consists of three compartments: the A (aminoacyl) site binds incoming charged aminoacyl tRNAs. The P (peptidyl) site binds charged tRNAs carrying amino acids that have formed peptide bonds with the growing polypeptide chain but have not yet dissociated from their corresponding tRNA. The E (exit) site releases dissociated tRNAs so that they can be recharged with free amino acids. There is one exception to this assembly line of tRNAs: in $E.\ coli$, fMet $-\ tRNA_f^{\rm Met}$ is capable of entering the P site directly without first entering the A site. Similarly, the eukaryotic Met-tRNA_i, with help from other proteins of the initiation complex, binds directly to the P site. In both cases, this creates an initiation complex with a free A site ready to accept the tRNA corresponding to the first codon after the AUG.

During translation elongation, the mRNA template provides specificity. As the ribosome moves along the mRNA, each mRNA codon comes into register, and specific binding with the corresponding charged tRNA anticodon is ensured. If mRNA were not present in the elongation complex, the ribosome would bind tRNAs nonspecifically.

Elongation proceeds with charged tRNAs entering the A site and then shifting to the P site followed by the E site with each single-codon "step" of the ribosome. Ribosomal steps are induced by conformational changes that advance the ribosome by three bases in the 3' direction. The energy for each step of the ribosome is donated by an elongation factor that hydrolyzes GTP. Peptide bonds form between the amino group of the amino acid attached to the A-site tRNA and the carboxyl group of the amino acid attached to the P-site tRNA. The formation of each peptide bond is catalyzed by **peptidyl transferase**, an RNA-based enzyme that is integrated into the 50S ribosomal subunit. The energy for each peptide bond formation

is derived from GTP hydrolysis, which is catalyzed by a separate elongation factor. The amino acid bound to the P-site tRNA is also linked to the growing polypeptide chain. As the ribosome steps across the mRNA, the former P-site tRNA enters the E site, detaches from the amino acid, and is expelled ([link]). Amazingly, the *E. coli* translation apparatus takes only 0.05 seconds to add each amino acid, meaning that a 200-amino acid protein can be translated in just 10 seconds.

joins the small subunit, and a second tRNA is recruited. As the mRNA moves relative to the ribosome, the polypeptide chain is formed. Entry of a release factor into the A site terminates translation and the components dissociate.

Many antibiotics inhibit bacterial protein synthesis. For example, tetracycline blocks the A site on the bacterial ribosome, and chloramphenicol blocks peptidyl transfer. What specific effect would you expect each of these antibiotics to have on protein synthesis? Tetracycline would directly affect:

- a. tRNA binding to the ribosome
- b. ribosome assembly
- c. growth of the protein chain

Chloramphenicol would directly affect

- a. tRNA binding to the ribosome
- b. ribosome assembly
- c. growth of the protein chain

Termination of translation occurs when a nonsense codon (UAA, UAG, or UGA) is encountered. Upon aligning with the A site, these nonsense codons are recognized by release factors in prokaryotes and eukaryotes that instruct peptidyl transferase to add a water molecule to the carboxyl end of the P-site amino acid. This reaction forces the P-site amino acid to detach from its tRNA, and the newly made protein is released. The small and large ribosomal subunits dissociate from the mRNA and from each other; they

are recruited almost immediately into another translation initiation complex. After many ribosomes have completed translation, the mRNA is degraded so the nucleotides can be reused in another transcription reaction.

Protein Folding, Modification, and Targeting

During and after translation, individual amino acids may be chemically modified, signal sequences may be appended, and the new protein "folds" into a distinct three-dimensional structure as a result of intramolecular interactions. A **signal sequence** is a short tail of amino acids that directs a protein to a specific cellular compartment. These sequences at the amino end or the carboxyl end of the protein can be thought of as the protein's "train ticket" to its ultimate destination. Other cellular factors recognize each signal sequence and help transport the protein from the cytoplasm to its correct compartment. For instance, a specific sequence at the amino terminus will direct a protein to the mitochondria or chloroplasts (in plants). Once the protein reaches its cellular destination, the signal sequence is usually clipped off.

Many proteins fold spontaneously, but some proteins require helper molecules, called chaperones, to prevent them from aggregating during the complicated process of folding. Even if a protein is properly specified by its corresponding mRNA, it could take on a completely dysfunctional shape if abnormal temperature or pH conditions prevent it from folding correctly.

Section Summary

The players in translation include the mRNA template, ribosomes, tRNAs, and various enzymatic factors. The small ribosomal subunit forms on the mRNA template either at the Shine-Dalgarno sequence (prokaryotes) or the 5' cap (eukaryotes). Translation begins at the initiating AUG on the mRNA, specifying methionine. The formation of peptide bonds occurs between sequential amino acids specified by the mRNA template according to the genetic code. Charged tRNAs enter the ribosomal A site, and their amino acid bonds with the amino acid at the P site. The entire mRNA is translated in three-nucleotide "steps" of the ribosome. When a nonsense codon is encountered, a release factor binds and dissociates the components and

frees the new protein. Folding of the protein occurs during and after translation.

Art Connections

Exercise:

Problem:

[link] Many antibiotics inhibit bacterial protein synthesis. For example, tetracycline blocks the A site on the bacterial ribosome, and chloramphenicol blocks peptidyl transfer. What specific effect would you expect each of these antibiotics to have on protein synthesis?

Tetracycline would directly affect:

- a. tRNA binding to the ribosome
- b. ribosome assembly
- c. growth of the protein chain

Chloramphenicol would directly affect

- a. tRNA binding to the ribosome
- b. ribosome assembly
- c. growth of the protein chain

Solution:

[link] Tetracycline: a; Chloramphenicol: c.

Review Questions

Exercise:

Problem:

The RNA components of ribosomes are synthesized in the _____.

The mRNA would be: 5'-AUGGCCGGUUAUUAAGCA-3'. The protein would be: MAGY. Even though there are six codons, the fifth codon corresponds to a stop, so the sixth codon would not be translated.

Exercise:

Problem:

Explain how single nucleotide changes can have vastly different effects on protein function.

Solution:

Nucleotide changes in the third position of codons may not change the amino acid and would have no effect on the protein. Other nucleotide changes that change important amino acids or create or delete start or stop codons would have severe effects on the amino acid sequence of the protein.

Glossary

aminoacyl tRNA synthetase

enzyme that "charges" tRNA molecules by catalyzing a bond between the tRNA and a corresponding amino acid

initiator tRNA

in prokaryotes, called $tRNA_f^{Met}$; in eukaryotes, called $tRNA_i$; a tRNA that interacts with a start codon, binds directly to the ribosome P site, and links to a special methionine to begin a polypeptide chain

Kozak's rules

determines the correct initiation AUG in a eukaryotic mRNA; the following consensus sequence must appear around the AUG: 5'-GCC(**purine**)CC<u>AUG</u>G-3'; the bolded bases are most important

peptidyl transferase

RNA-based enzyme that is integrated into the 50S ribosomal subunit and catalyzes the formation of peptide bonds

polysome

mRNA molecule simultaneously being translated by many ribosomes all going in the same direction

Shine-Dalgarno sequence

(AGGAGG); initiates prokaryotic translation by interacting with rRNA molecules comprising the 30S ribosome

signal sequence

short tail of amino acids that directs a protein to a specific cellular compartment

start codon

AUG (or rarely, GUG) on an mRNA from which translation begins; always specifies methionine

Introduction class="introduction"

The genetic content of each somatic cell in an organism is the same, but not all genes are expressed in every cell. The control of which genes are expressed dictates whether a cell is (a) an eye cell or (b) a liver cell. It is the differentia l gene expression patterns that arise in different cells that give rise

to (c) a complete organism.

Each somatic cell in the body generally contains the same DNA. A few exceptions include red blood cells, which contain no DNA in their mature state, and some immune system cells that rearrange their DNA while producing antibodies. In general, however, the genes that determine whether you have green eyes, brown hair, and how fast you metabolize food are the same in the cells in your eyes and your liver, even though these organs function quite differently. If each cell has the same DNA, how is it that cells or organs are different? Why do cells in the eye differ so dramatically from cells in the liver?

Whereas each cell shares the same genome and DNA sequence, each cell does not turn on, or express, the same set of genes. Each cell type needs a different set of proteins to perform its function. Therefore, only a small subset of proteins is expressed in a cell. For the proteins to be expressed, the DNA must be transcribed into RNA and the RNA must be translated into protein. In a given cell type, not all genes encoded in the DNA are transcribed into RNA or translated into protein because specific cells in our body have specific functions. Specialized proteins that make up the eye (iris, lens, and cornea) are only expressed in the eye, whereas the specialized proteins in the heart (pacemaker cells, heart muscle, and valves)

are only expressed in the heart. At any given time, only a subset of all of the genes encoded by our DNA are expressed and translated into proteins. The expression of specific genes is a highly regulated process with many levels and stages of control. This complexity ensures the proper expression in the proper cell at the proper time.

Regulation of Gene Expression By the end of this section, you will be able to:

- Discuss why every cell does not express all of its genes
- Describe how prokaryotic gene regulation occurs at the transcriptional level
- Discuss how eukaryotic gene regulation occurs at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels

For a cell to function properly, necessary proteins must be synthesized at the proper time. All cells control or regulate the synthesis of proteins from information encoded in their DNA. The process of turning on a gene to produce RNA and protein is called **gene expression**. Whether in a simple unicellular organism or a complex multi-cellular organism, each cell controls when and how its genes are expressed. For this to occur, there must be a mechanism to control when a gene is expressed to make RNA and protein, how much of the protein is made, and when it is time to stop making that protein because it is no longer needed.

The regulation of gene expression conserves energy and space. It would require a significant amount of energy for an organism to express every gene at all times, so it is more energy efficient to turn on the genes only when they are required. In addition, only expressing a subset of genes in each cell saves space because DNA must be unwound from its tightly coiled structure to transcribe and translate the DNA. Cells would have to be enormous if every protein were expressed in every cell all the time.

The control of gene expression is extremely complex. Malfunctions in this process are detrimental to the cell and can lead to the development of many diseases, including cancer.

Prokaryotic versus Eukaryotic Gene Expression

To understand how gene expression is regulated, we must first understand how a gene codes for a functional protein in a cell. The process occurs in both prokaryotic and eukaryotic cells, just in slightly different manners. Prokaryotic organisms are single-celled organisms that lack a cell nucleus, and their DNA therefore floats freely in the cell cytoplasm. To synthesize a protein, the processes of transcription and translation occur almost simultaneously. When the resulting protein is no longer needed, transcription stops. As a result, the primary method to control what type of protein and how much of each protein is expressed in a prokaryotic cell is the regulation of DNA transcription. All of the subsequent steps occur automatically. When more protein is required, more transcription occurs. Therefore, in prokaryotic cells, the control of gene expression is mostly at the transcriptional level.

Eukaryotic cells, in contrast, have intracellular organelles that add to their complexity. In eukaryotic cells, the DNA is contained inside the cell's nucleus and there it is transcribed into RNA. The newly synthesized RNA is then transported out of the nucleus into the cytoplasm, where ribosomes translate the RNA into protein. The processes of transcription and translation are physically separated by the nuclear membrane; transcription occurs only within the nucleus, and translation occurs only outside the nucleus in the cytoplasm. The regulation of gene expression can occur at all stages of the process ([link]). Regulation may occur when the DNA is uncoiled and loosened from nucleosomes to bind transcription factors (epigenetic level), when the RNA is transcribed (transcriptional level), when the RNA is processed and exported to the cytoplasm after it is transcribed (post-transcriptional level), when the RNA is translated into protein (translational level), or after the protein has been made (post-translational level).

Prokaryotic transcription and translation occur simultaneously in the cytoplasm, and regulation occurs at the transcriptional level. Eukaryotic gene expression is regulated during transcription and RNA processing, which take place in the nucleus, and during protein translation, which takes place in the cytoplasm. Further regulation may occur through post-translational modifications of proteins.

The differences in the regulation of gene expression between prokaryotes and eukaryotes are summarized in [link]. The regulation of gene expression is discussed in detail in subsequent modules.

Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic Organisms	
Prokaryotic organisms	Eukaryotic organisms
Lack nucleus	Contain nucleus

Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic Organisms

Prokaryotic organisms	Eukaryotic organisms
DNA is found in the cytoplasm	DNA is confined to the nuclear compartment
RNA transcription and protein formation occur almost simultaneously	RNA transcription occurs prior to protein formation, and it takes place in the nucleus. Translation of RNA to protein occurs in the cytoplasm.
Gene expression is regulated primarily at the transcriptional level	Gene expression is regulated at many levels (epigenetic, transcriptional, nuclear shuttling, post-transcriptional, translational, and post-translational)

Note:

Evolution Connection

Evolution of Gene Regulation

Prokaryotic cells can only regulate gene expression by controlling the amount of transcription. As eukaryotic cells evolved, the complexity of the control of gene expression increased. For example, with the evolution of eukaryotic cells came compartmentalization of important cellular components and cellular processes. A nuclear region that contains the DNA was formed. Transcription and translation were physically separated into two different cellular compartments. It therefore became possible to control gene expression by regulating transcription in the nucleus, and also by controlling the RNA levels and protein translation present outside the nucleus.

Some cellular processes arose from the need of the organism to defend itself. Cellular processes such as gene silencing developed to protect the cell from viral or parasitic infections. If the cell could quickly shut off gene expression for a short period of time, it would be able to survive an infection when other organisms could not. Therefore, the organism evolved a new process that helped it survive, and it was able to pass this new development to offspring.

Section Summary

While all somatic cells within an organism contain the same DNA, not all cells within that organism express the same proteins. Prokaryotic organisms express the entire DNA they encode in every cell, but not necessarily all at the same time. Proteins are expressed only when they are needed. Eukaryotic organisms express a subset of the DNA that is encoded in any given cell. In each cell type, the type and amount of protein is regulated by controlling gene expression. To express a protein, the DNA is first transcribed into RNA, which is then translated into proteins. In prokaryotic cells, these processes occur almost simultaneously. In eukaryotic cells, transcription occurs in the nucleus and is separate from the translation that occurs in the cytoplasm. Gene expression in prokaryotes is mostly regulated at the transcriptional level (some epigenetic and post-translational regulated at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels.

Review Questions

Exercise:

Problem:

Control of gene expression in eukaryotic cells occurs at which level(s)?

a. only the transcriptional level

- b. epigenetic and transcriptional levels
- c. epigenetic, transcriptional, and translational levels
- d. epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels

Solution:

D

Exercise:

Problem:Post-translational control refers to:

- a. regulation of gene expression after transcription
- b. regulation of gene expression after translation
- c. control of epigenetic activation
- d. period between transcription and translation

Solution:

В

Free Response

Exercise:

Problem:

Name two differences between prokaryotic and eukaryotic cells and how these differences benefit multicellular organisms.

Solution:

Eukaryotic cells have a nucleus, whereas prokaryotic cells do not. In eukaryotic cells, DNA is confined within the nuclear region. Because of this, transcription and translation are physically separated. This

creates a more complex mechanism for the control of gene expression that benefits multicellular organisms because it compartmentalizes gene regulation.

Gene expression occurs at many stages in eukaryotic cells, whereas in prokaryotic cells, control of gene expression only occurs at the transcriptional level. This allows for greater control of gene expression in eukaryotes and more complex systems to be developed. Because of this, different cell types can arise in an individual organism.

Exercise:

Problem:

Describe how controlling gene expression will alter the overall protein levels in the cell.

Solution:

The cell controls which proteins are expressed and to what level each protein is expressed in the cell. Prokaryotic cells alter the transcription rate to turn genes on or off. This method will increase or decrease protein levels in response to what is needed by the cell. Eukaryotic cells change the accessibility (epigenetic), transcription, or translation of a gene. This will alter the amount of RNA and the lifespan of the RNA to alter the amount of protein that exists. Eukaryotic cells also control protein translation to increase or decrease the overall levels. Eukaryotic organisms are much more complex and can manipulate protein levels by changing many stages in the process.

Glossary

epigenetic

heritable changes that do not involve changes in the DNA sequence

gene expression

processes that control the turning on or turning off of a gene

post-transcriptional

control of gene expression after the RNA molecule has been created but before it is translated into protein

post-translational

control of gene expression after a protein has been created

Prokaryotic Gene Regulation By the end of this section, you will be able to:

- Describe the steps involved in prokaryotic gene regulation
- Explain the roles of activators, inducers, and repressors in gene regulation

The DNA of prokaryotes is organized into a circular chromosome supercoiled in the nucleoid region of the cell cytoplasm. Proteins that are needed for a specific function, or that are involved in the same biochemical pathway, are encoded together in blocks called **operons**. For example, all of the genes needed to use lactose as an energy source are coded next to each other in the lactose (or *lac*) operon.

In prokaryotic cells, there are three types of regulatory molecules that can affect the expression of operons: repressors, activators, and inducers. **Repressors** are proteins that suppress transcription of a gene in response to an external stimulus, whereas **activators** are proteins that increase the transcription of a gene in response to an external stimulus. Finally, inducers are small molecules that either activate or repress transcription depending on the needs of the cell and the availability of substrate.

The *trp* Operon: A Repressor Operon

Bacteria such as *E. coli* need amino acids to survive. **Tryptophan** is one such amino acid that *E. coli* can ingest from the environment. *E. coli* can also synthesize tryptophan using enzymes that are encoded by five genes. These five genes are next to each other in what is called the **tryptophan** (*trp*) **operon** ([link]). If tryptophan is present in the environment, then *E. coli* does not need to synthesize it and the switch controlling the activation of the genes in the *trp* operon is switched off. However, when tryptophan availability is low, the switch controlling the operon is turned on, transcription is initiated, the genes are expressed, and tryptophan is synthesized.

The five genes that are needed to synthesize tryptophan in *E. coli* are located next to each other in the *trp* operon. When tryptophan is plentiful, two tryptophan molecules bind the repressor protein at the operator sequence. This physically blocks the RNA polymerase from transcribing the tryptophan genes. When tryptophan is absent, the repressor protein does not bind to the operator and the genes are transcribed.

A DNA sequence that codes for proteins is referred to as the coding region. The five coding regions for the tryptophan biosynthesis enzymes are arranged sequentially on the chromosome in the operon. Just before the coding region is the **transcriptional start site**. This is the region of DNA to which RNA polymerase binds to initiate transcription. The promoter sequence is upstream of the transcriptional start site; each operon has a sequence within or near the promoter to which proteins (activators or repressors) can bind and regulate transcription.

A DNA sequence called the operator sequence is encoded between the promoter region and the first *trp* coding gene. This **operator** contains the

DNA code to which the repressor protein can bind. When tryptophan is present in the cell, two tryptophan molecules bind to the *trp* repressor, which changes shape to bind to the *trp* operator. Binding of the tryptophan–repressor complex at the operator physically prevents the RNA polymerase from binding, and transcribing the downstream genes.

When tryptophan is not present in the cell, the repressor by itself does not bind to the operator; therefore, the operon is active and tryptophan is synthesized. Because the repressor protein actively binds to the operator to keep the genes turned off, the *trp* operon is negatively regulated and the proteins that bind to the operator to silence *trp* expression are **negative regulators**.

Note:

Link to Learning

Watch this video to learn more about the *trp* operon. https://www.openstaxcollege.org/l/trp operon

Catabolite Activator Protein (CAP): An Activator Regulator

Just as the *trp* operon is negatively regulated by tryptophan molecules, there are proteins that bind to the operator sequences that act as a **positive regulator** to turn genes on and activate them. For example, when glucose is scarce, *E. coli* bacteria can turn to other sugar sources for fuel. To do this, new genes to process these alternate genes must be transcribed. When glucose levels drop, cyclic AMP (cAMP) begins to accumulate in the cell.

The cAMP molecule is a signaling molecule that is involved in glucose and energy metabolism in *E. coli*. When glucose levels decline in the cell, accumulating cAMP binds to the positive regulator **catabolite activator protein (CAP)**, a protein that binds to the promoters of operons that control the processing of alternative sugars. When cAMP binds to CAP, the complex binds to the promoter region of the genes that are needed to use the alternate sugar sources ([link]). In these operons, a CAP binding site is located upstream of the RNA polymerase binding site in the promoter. This increases the binding ability of RNA polymerase to the promoter region and the transcription of the genes.

When glucose levels fall, *E. coli* may use other sugars for fuel but must transcribe new genes to do so. As glucose supplies become limited, cAMP levels increase. This cAMP binds to the CAP protein, a positive regulator that binds to an operator region upstream of the genes required to use other sugar sources.

The lac Operon: An Inducer Operon

The third type of gene regulation in prokaryotic cells occurs through inducible operons, which have proteins that bind to activate or repress transcription depending on the local environment and the needs of the cell. The *lac* operon is a typical inducible operon. As mentioned previously, *E*. coli is able to use other sugars as energy sources when glucose concentrations are low. To do so, the cAMP–CAP protein complex serves as a positive regulator to induce transcription. One such sugar source is lactose. The *lac* operon encodes the genes necessary to acquire and process the lactose from the local environment. CAP binds to the operator sequence upstream of the promoter that initiates transcription of the *lac* operon. However, for the *lac* operon to be activated, two conditions must be met. First, the level of glucose must be very low or non-existent. Second, lactose must be present. Only when glucose is absent and lactose is present will the *lac* operon be transcribed ([link]). This makes sense for the cell, because it would be energetically wasteful to create the proteins to process lactose if glucose was plentiful or lactose was not available.

Note:	
Art Connection	

Transcription of the *lac* operon is carefully regulated so that its expression only occurs when glucose is limited and lactose is present to serve as an alternative fuel source.

In *E. coli*, the *trp* operon is on by default, while the *lac* operon is off. Why do you think this is the case?

If glucose is absent, then CAP can bind to the operator sequence to activate transcription. If lactose is absent, then the repressor binds to the operator to prevent transcription. If either of these requirements is met, then transcription remains off. Only when both conditions are satisfied is the *lac* operon transcribed ([link]).

Signals that Induce or Repress Transcription of the lac Operon					
Glucose	CAP binds	Lactose	Repressor binds	Transcription	
+	-	-	+	No	
+	-	+	-	Some	
-	+	-	+	No	
-	+	+	-	Yes	

Note:

Link to Learning

Watch an animated tutorial about the workings of *lac* operon here. https://www.openstaxcollege.org/l/lac_operon

Section Summary

The regulation of gene expression in prokaryotic cells occurs at the transcriptional level. There are three ways to control the transcription of an operon: repressive control, activator control, and inducible control. Repressive control, typified by the *trp* operon, uses proteins bound to the operator sequence to physically prevent the binding of RNA polymerase and the activation of transcription. Therefore, if tryptophan is not needed, the repressor is bound to the operator and transcription remains off. Activator control, typified by the action of CAP, increases the binding ability of RNA polymerase to the promoter when CAP is bound. In this case, low levels of glucose result in the binding of cAMP to CAP. CAP then binds the promoter, which allows RNA polymerase to bind to the promoter better. In the last example—the *lac* operon—two conditions must be met to initiate transcription. Glucose must not be present, and lactose must be available for the *lac* operon to be transcribed. If glucose is absent, CAP binds to the operator. If lactose is present, the repressor protein does not bind to its operator. Only when both conditions are met will RNA polymerase bind to the promoter to induce transcription.

Art Connections

Exercise:

Problem:

[link] In *E. coli*, the *trp* operon is on by default, while the *lac* operon is off. Why do you think that this is the case?

Solution:

[link] Tryptophan is an amino acid essential for making proteins, so the cell always needs to have some on hand. However, if plenty of tryptophan is present, it is wasteful to make more, and the expression of the *trp* receptor is repressed. Lactose, a sugar found in milk, is not always available. It makes no sense to make the enzymes necessary to digest an energy source that is not available, so the *lac* operon is only turned on when lactose is present.

Review Questions

Treview Questions
Exercise: Problem:
If glucose is absent, but so is lactose, the <i>lac</i> operon will be
a. activated b. repressed c. activated, but only partially d. mutated
Solution:
В
Exercise:
Problem:
Prokaryotic cells lack a nucleus. Therefore, the genes in prokaryotic cells are:
a. all expressed, all of the timeb. transcribed and translated almost simultaneouslyc. transcriptionally controlled because translation begins before transcription endsd. b and c are both true
Solution:
D

Free Response

Exercise:

Problem:

Describe how transcription in prokaryotic cells can be altered by external stimulation such as excess lactose in the environment.

Solution:

Environmental stimuli can increase or induce transcription in prokaryotic cells. In this example, lactose in the environment will induce the transcription of the *lac* operon, but only if glucose is not available in the environment.

Exercise:

Problem:

What is the difference between a repressible and an inducible operon?

Solution:

A repressible operon uses a protein bound to the promoter region of a gene to keep the gene repressed or silent. This repressor must be actively removed in order to transcribe the gene. An inducible operon is either activated or repressed depending on the needs of the cell and what is available in the local environment.

Glossary

activator

protein that binds to prokaryotic operators to increase transcription

catabolite activator protein (CAP)

protein that complexes with cAMP to bind to the promoter sequences of operons that control sugar processing when glucose is not available

inducible operon

operon that can be activated or repressed depending on cellular needs and the surrounding environment

lac operon

operon in prokaryotic cells that encodes genes required for processing and intake of lactose

negative regulator

protein that prevents transcription

operator

region of DNA outside of the promoter region that binds activators or repressors that control gene expression in prokaryotic cells

operon

collection of genes involved in a pathway that are transcribed together as a single mRNA in prokaryotic cells

positive regulator

protein that increases transcription

repressor

protein that binds to the operator of prokaryotic genes to prevent transcription

transcriptional start site

site at which transcription begins

trp operon

series of genes necessary to synthesize tryptophan in prokaryotic cells

tryptophan

amino acid that can be synthesized by prokaryotic cells when necessary

Eukaryotic Epigenetic Gene Regulation By the end of this section, you will be able to:

- Explain the process of epigenetic regulation
- Describe how access to DNA is controlled by histone modification

Eukaryotic gene expression is more complex than prokaryotic gene expression because the processes of transcription and translation are physically separated. Unlike prokaryotic cells, eukaryotic cells can regulate gene expression at many different levels. Eukaryotic gene expression begins with control of access to the DNA. This form of regulation, called epigenetic regulation, occurs even before transcription is initiated.

Epigenetic Control: Regulating Access to Genes within the Chromosome

The human genome encodes over 20,000 genes; each of the 23 pairs of human chromosomes encodes thousands of genes. The DNA in the nucleus is precisely wound, folded, and compacted into chromosomes so that it will fit into the nucleus. It is also organized so that specific segments can be accessed as needed by a specific cell type.

The first level of organization, or packing, is the winding of DNA strands around histone proteins. Histones package and order DNA into structural units called nucleosome complexes, which can control the access of proteins to the DNA regions ([link]a). Under the electron microscope, this winding of DNA around histone proteins to form nucleosomes looks like small beads on a string ([link]b). These beads (histone proteins) can move along the string (DNA) and change the structure of the molecule.

DNA is folded around histone proteins to create (a) nucleosome complexes. These nucleosomes control the access of proteins to the underlying DNA. When viewed through an electron microscope (b), the nucleosomes look like beads on a string. (credit "micrograph": modification of work by Chris Woodcock)

If DNA encoding a specific gene is to be transcribed into RNA, the nucleosomes surrounding that region of DNA can slide down the DNA to open that specific chromosomal region and allow for the transcriptional machinery (RNA polymerase) to initiate transcription ([link]). Nucleosomes can move to open the chromosome structure to expose a segment of DNA, but do so in a very controlled manner.

Note: Art Connection

Methylation of DNA and histones causes nucleosomes to pack tightly together. Transcription factors cannot bind the DNA, and genes are not expressed.

Histone acetylation results in loose packing of nucleosomes. Transcription factors can bind the DNA and genes are expressed.

Nucleosomes can slide along DNA. When nucleosomes are spaced closely together (top), transcription factors cannot bind and gene expression is turned off. When the nucleosomes are spaced far apart (bottom), the DNA is exposed. Transcription factors can bind, allowing gene expression to occur. Modifications to the histones and DNA affect nucleosome spacing.

In females, one of the two X chromosomes is inactivated during embryonic development because of epigenetic changes to the chromatin. What impact do you think these changes would have on nucleosome packing?

How the histone proteins move is dependent on signals found on both the histone proteins and on the DNA. These signals are tags added to histone proteins and DNA that tell the histones if a chromosomal region should be open or closed ([link] depicts modifications to histone proteins and DNA). These tags are not permanent, but may be added or removed as needed.

They are chemical modifications (phosphate, methyl, or acetyl groups) that are attached to specific amino acids in the protein or to the nucleotides of the DNA. The tags do not alter the DNA base sequence, but they do alter how tightly wound the DNA is around the histone proteins. DNA is a negatively charged molecule; therefore, changes in the charge of the histone will change how tightly wound the DNA molecule will be. When unmodified, the histone proteins have a large positive charge; by adding chemical modifications like acetyl groups, the charge becomes less positive.

The DNA molecule itself can also be modified. This occurs within very specific regions called CpG islands. These are stretches with a high frequency of cytosine and guanine dinucleotide DNA pairs (CG) found in the promoter regions of genes. When this configuration exists, the cytosine member of the pair can be methylated (a methyl group is added). This modification changes how the DNA interacts with proteins, including the histone proteins that control access to the region. Highly methylated (hypermethylated) DNA regions with deacetylated histones are tightly coiled and transcriptionally inactive.

Histone proteins and DNA nucleotides can be modified

chemically. Modifications affect nucleosome spacing and gene expression. (credit: modification of work by NIH)

This type of gene regulation is called epigenetic regulation. Epigenetic means "around genetics." The changes that occur to the histone proteins and DNA do not alter the nucleotide sequence and are not permanent. Instead, these changes are temporary (although they often persist through multiple rounds of cell division) and alter the chromosomal structure (open or closed) as needed. A gene can be turned on or off depending upon the location and modifications to the histone proteins and DNA. If a gene is to be transcribed, the histone proteins and DNA are modified surrounding the chromosomal region encoding that gene. This opens the chromosomal region to allow access for RNA polymerase and other proteins, called **transcription factors**, to bind to the promoter region, located just upstream of the gene, and initiate transcription. If a gene is to remain turned off, or silenced, the histone proteins and DNA have different modifications that signal a closed chromosomal configuration. In this closed configuration, the RNA polymerase and transcription factors do not have access to the DNA and transcription cannot occur ([link]).

Note:

Link to Learning

View this video that describes how epigenetic regulation controls gene expression.

https://www.openstaxcollege.org/l/epigenetic reg

Section Summary

In eukaryotic cells, the first stage of gene expression control occurs at the epigenetic level. Epigenetic mechanisms control access to the chromosomal region to allow genes to be turned on or off. These mechanisms control how DNA is packed into the nucleus by regulating how tightly the DNA is wound around histone proteins. The addition or removal of chemical modifications (or flags) to histone proteins or DNA signals to the cell to open or close a chromosomal region. Therefore, eukaryotic cells can control whether a gene is expressed by controlling accessibility to transcription factors and the binding of RNA polymerase to initiate transcription.

Art Connections

Exercise:

Problem:

[link] In females, one of the two X chromosomes is inactivated during embryonic development because of epigenetic changes to the chromatin. What impact do you think these changes would have on nucleosome packing?

Solution:

[link] The nucleosomes would pack more tightly together.

Review Questions

Exercise:

Problem: What are epigenetic modifications?

- a. the addition of reversible changes to histone proteins and DNA
- b. the removal of nucleosomes from the DNA
- c. the addition of more nucleosomes to the DNA
- d. mutation of the DNA sequence

Solution:

Α

Exercise:

Problem: Which of the following are true of epigenetic changes?

- a. allow DNA to be transcribed
- b. move histones to open or close a chromosomal region
- c. are temporary
- d. all of the above

Solution:

D

Free Response

Exercise:

Problem:

In cancer cells, alteration to epigenetic modifications turns off genes that are normally expressed. Hypothetically, how could you reverse this process to turn these genes back on?

Solution:

You can create medications that reverse the epigenetic processes (to add histone acetylation marks or to remove DNA methylation) and create an open chromosomal configuration.

Glossary

transcription factor

protein that binds to the DNA at the promoter or enhancer region and that influences transcription of a gene

Eukaryotic Transcription Gene Regulation By the end of this section, you will be able to:

- Discuss the role of transcription factors in gene regulation
- Explain how enhancers and repressors regulate gene expression

Like prokaryotic cells, the transcription of genes in eukaryotes requires the actions of an RNA polymerase to bind to a sequence upstream of a gene to initiate transcription. However, unlike prokaryotic cells, the eukaryotic RNA polymerase requires other proteins, or transcription factors, to facilitate transcription initiation. Transcription factors are proteins that bind to the promoter sequence and other regulatory sequences to control the transcription of the target gene. RNA polymerase by itself cannot initiate transcription in eukaryotic cells. Transcription factors must bind to the promoter region first and recruit RNA polymerase to the site for transcription to be established.

Note:

Link to Learning

View the process of transcription—the making of RNA from a DNA template.

https://www.openstaxcollege.org/l/transcript RNA

The Promoter and the Transcription Machinery

Genes are organized to make the control of gene expression easier. The promoter region is immediately upstream of the coding sequence. This

region can be short (only a few nucleotides in length) or quite long (hundreds of nucleotides long). The longer the promoter, the more available space for proteins to bind. This also adds more control to the transcription process. The length of the promoter is gene-specific and can differ dramatically between genes. Consequently, the level of control of gene expression can also differ quite dramatically between genes. The purpose of the promoter is to bind transcription factors that control the initiation of transcription.

Within the promoter region, just upstream of the transcriptional start site, resides the TATA box. This box is simply a repeat of thymine and adenine dinucleotides (literally, TATA repeats). RNA polymerase binds to the transcription initiation complex, allowing transcription to occur. To initiate transcription, a transcription factor (TFIID) is the first to bind to the TATA box. Binding of TFIID recruits other transcription factors, including TFIIB, TFIIE, TFIIF, and TFIIH to the TATA box. Once this complex is assembled, RNA polymerase can bind to its upstream sequence. When bound along with the transcription factors, RNA polymerase is phosphorylated. This releases part of the protein from the DNA to activate the transcription initiation complex and places RNA polymerase in the correct orientation to begin transcription; DNA-bending protein brings the enhancer, which can be quite a distance from the gene, in contact with transcription factors and mediator proteins ([link]).

An enhancer is a DNA sequence that promotes transcription. Each enhancer is made up of short DNA sequences called distal control elements. Activators bound to the distal control elements interact with mediator proteins and transcription factors. Two different genes may have the same promoter but different distal control elements, enabling differential gene expression.

In addition to the general transcription factors, other transcription factors can bind to the promoter to regulate gene transcription. These transcription factors bind to the promoters of a specific set of genes. They are not general transcription factors that bind to every promoter complex, but are recruited to a specific sequence on the promoter of a specific gene. There are

hundreds of transcription factors in a cell that each bind specifically to a particular DNA sequence motif. When transcription factors bind to the promoter just upstream of the encoded gene, it is referred to as a *cis*-acting element, because it is on the same chromosome just next to the gene. The region that a particular transcription factor binds to is called the transcription factor binding site. Transcription factors respond to environmental stimuli that cause the proteins to find their binding sites and initiate transcription of the gene that is needed.

Enhancers and Transcription

In some eukaryotic genes, there are regions that help increase or enhance transcription. These regions, called **enhancers**, are not necessarily close to the genes they enhance. They can be located upstream of a gene, within the coding region of the gene, downstream of a gene, or may be thousands of nucleotides away.

Enhancer regions are binding sequences, or sites, for transcription factors. When a DNA-bending protein binds, the shape of the DNA changes ([link]). This shape change allows for the interaction of the activators bound to the enhancers with the transcription factors bound to the promoter region and the RNA polymerase. Whereas DNA is generally depicted as a straight line in two dimensions, it is actually a three-dimensional object. Therefore, a nucleotide sequence thousands of nucleotides away can fold over and interact with a specific promoter.

Turning Genes Off: Transcriptional Repressors

Like prokaryotic cells, eukaryotic cells also have mechanisms to prevent transcription. Transcriptional repressors can bind to promoter or enhancer regions and block transcription. Like the transcriptional activators, repressors respond to external stimuli to prevent the binding of activating transcription factors.

Section Summary

To start transcription, general transcription factors, such as TFIID, TFIIH, and others, must first bind to the TATA box and recruit RNA polymerase to that location. The binding of additional regulatory transcription factors to *cis*-acting elements will either increase or prevent transcription. In addition to promoter sequences, enhancer regions help augment transcription. Enhancers can be upstream, downstream, within a gene itself, or on other chromosomes. Transcription factors bind to enhancer regions to increase or prevent transcription.

Review Questions

Exercise:	
Problem:	
The binding of	is required for transcription to start.
a. a protein b. DNA polymerase	
c. RNA polymerase	
d. a transcription factor	
Solution:	

Exercise:

 \mathbf{C}

Problem:

What will result from the binding of a transcription factor to an enhancer region?

- a. decreased transcription of an adjacent gene
- b. increased transcription of a distant gene
- c. alteration of the translation of an adjacent gene
- d. initiation of the recruitment of RNA polymerase

Solution:

В

Free Response

Exercise:

Problem:

A mutation within the promoter region can alter transcription of a gene. Describe how this can happen.

Solution:

A mutation in the promoter region can change the binding site for a transcription factor that normally binds to increase transcription. The mutation could either decrease the ability of the transcription factor to bind, thereby decreasing transcription, or it can increase the ability of the transcription factor to bind, thus increasing transcription.

Exercise:

Problem:

What could happen if a cell had too much of an activating transcription factor present?

Solution:

If too much of an activating transcription factor were present, then transcription would be increased in the cell. This could lead to dramatic alterations in cell function.

Glossary

cis-acting element

transcription factor binding sites within the promoter that regulate the transcription of a gene adjacent to it

enhancer

segment of DNA that is upstream, downstream, perhaps thousands of nucleotides away, or on another chromosome that influence the transcription of a specific gene

trans-acting element

transcription factor binding site found outside the promoter or on another chromosome that influences the transcription of a particular gene

transcription factor binding site sequence of DNA to which a transcription factor binds

Eukaryotic Post-transcriptional Gene Regulation By the end of this section, you will be able to:

- Understand RNA splicing and explain its role in regulating gene expression
- Describe the importance of RNA stability in gene regulation

RNA is transcribed, but must be processed into a mature form before translation can begin. This processing after an RNA molecule has been transcribed, but before it is translated into a protein, is called post-transcriptional modification. As with the epigenetic and transcriptional stages of processing, this post-transcriptional step can also be regulated to control gene expression in the cell. If the RNA is not processed, shuttled, or translated, then no protein will be synthesized.

RNA splicing, the first stage of post-transcriptional control

In eukaryotic cells, the RNA transcript often contains regions, called introns, that are removed prior to translation. The regions of RNA that code for protein are called exons ([link]). After an RNA molecule has been transcribed, but prior to its departure from the nucleus to be translated, the RNA is processed and the introns are removed by splicing.

Pre-mRNA can be alternatively spliced to create different proteins.

Note:

Evolution Connection

Alternative RNA Splicing

In the 1970s, genes were first observed that exhibited alternative RNA splicing. Alternative RNA splicing is a mechanism that allows different protein products to be produced from one gene when different combinations of introns, and sometimes exons, are removed from the transcript ([link]). This alternative splicing can be haphazard, but more often it is controlled and acts as a mechanism of gene regulation, with the frequency of different splicing alternatives controlled by the cell as a way to control the production of different protein products in different cells or at different stages of development. Alternative splicing is now understood to be a common mechanism of gene regulation in eukaryotes; according to one estimate, 70 percent of genes in humans are expressed as multiple proteins through alternative splicing.

There are five basic modes of alternative splicing.

How could alternative splicing evolve? Introns have a beginning and ending recognition sequence; it is easy to imagine the failure of the splicing mechanism to identify the end of an intron and instead find the end of the next intron, thus removing two introns and the intervening exon. In fact, there are mechanisms in place to prevent such intron skipping, but mutations are likely to lead to their failure. Such "mistakes" would more than likely produce a nonfunctional protein. Indeed, the cause of many genetic diseases is alternative splicing rather than mutations in a sequence. However, alternative splicing would create a protein variant without the loss of the original protein, opening up possibilities for adaptation of the new variant to new functions. Gene duplication has played an important role in the evolution of new functions in a similar way by providing genes that may evolve without eliminating the original, functional protein.

Note:

Link to Learning

Visualize how mRNA splicing happens by watching the process in action in this video.

https://www.openstaxcollege.org/l/mRNA splicing

Control of RNA Stability

Before the mRNA leaves the nucleus, it is given two protective "caps" that prevent the end of the strand from degrading during its journey. The **5' cap**, which is placed on the 5' end of the mRNA, is usually composed of a methylated guanosine triphosphate molecule (GTP). The **poly-A tail**, which

is attached to the 3' end, is usually composed of a series of adenine nucleotides. Once the RNA is transported to the cytoplasm, the length of time that the RNA resides there can be controlled. Each RNA molecule has a defined lifespan and decays at a specific rate. This rate of decay can influence how much protein is in the cell. If the decay rate is increased, the RNA will not exist in the cytoplasm as long, shortening the time for translation to occur. Conversely, if the rate of decay is decreased, the RNA molecule will reside in the cytoplasm longer and more protein can be translated. This rate of decay is referred to as the RNA stability. If the RNA is stable, it will be detected for longer periods of time in the cytoplasm.

Binding of proteins to the RNA can influence its stability. Proteins, called **RNA-binding proteins**, or RBPs, can bind to the regions of the RNA just upstream or downstream of the protein-coding region. These regions in the RNA that are not translated into protein are called the **untranslated regions**, or UTRs. They are not introns (those have been removed in the nucleus). Rather, these are regions that regulate mRNA localization, stability, and protein translation. The region just before the protein-coding region is called the **5' UTR**, whereas the region after the coding region is called the **3' UTR** ([link]). The binding of RBPs to these regions can increase or decrease the stability of an RNA molecule, depending on the specific RBP that binds.

The protein-coding region of mRNA is flanked by 5' and 3' untranslated regions (UTRs). The presence of RNA-binding proteins at the 5' or 3' UTR influences the stability of the RNA molecule.

RNA Stability and microRNAs

In addition to RBPs that bind to and control (increase or decrease) RNA stability, other elements called microRNAs can bind to the RNA molecule. These **microRNAs**, or miRNAs, are short RNA molecules that are only 21–24 nucleotides in length. The miRNAs are made in the nucleus as longer pre-miRNAs. These pre-miRNAs are chopped into mature miRNAs by a protein called **dicer**. Like transcription factors and RBPs, mature miRNAs recognize a specific sequence and bind to the RNA; however, miRNAs also associate with a ribonucleoprotein complex called the **RNA-induced silencing complex (RISC)**. RISC binds along with the miRNA to degrade the target mRNA. Together, miRNAs and the RISC complex rapidly destroy the RNA molecule.

Section Summary

Post-transcriptional control can occur at any stage after transcription, including RNA splicing, nuclear shuttling, and RNA stability. Once RNA is transcribed, it must be processed to create a mature RNA that is ready to be translated. This involves the removal of introns that do not code for protein. Spliceosomes bind to the signals that mark the exon/intron border to remove the introns and ligate the exons together. Once this occurs, the RNA is mature and can be translated. RNA is created and spliced in the nucleus, but needs to be transported to the cytoplasm to be translated. RNA is transported to the cytoplasm through the nuclear pore complex. Once the RNA is in the cytoplasm, the length of time it resides there before being degraded, called RNA stability, can also be altered to control the overall amount of protein that is synthesized. The RNA stability can be increased, leading to longer residency time in the cytoplasm, or decreased, leading to shortened time and less protein synthesis. RNA stability is controlled by RNA-binding proteins (RPBs) and microRNAs (miRNAs). These RPBs and miRNAs bind to the 5' UTR or the 3' UTR of the RNA to increase or decrease RNA stability. Depending on the RBP, the stability can be increased or decreased significantly; however, miRNAs always decrease stability and promote decay.

Review Questions

Exercise:
Problem:
Which of the following are involved in post-transcriptional control?
a. control of RNA splicing b. control of RNA shuttling c. control of RNA stability d. all of the above
Solution:
D
Exercise:
Problem:
Binding of an RNA binding protein will the stability of the RNA molecule.
a. increaseb. decreasec. neither increase nor decreased. either increase or decrease
Solution:
D
Free Response
Exercise:

Problem:

Describe how RBPs can prevent miRNAs from degrading an RNA molecule.

Solution:

RNA binding proteins (RBP) bind to the RNA and can either increase or decrease the stability of the RNA. If they increase the stability of the RNA molecule, the RNA will remain intact in the cell for a longer period of time than normal. Since both RBPs and miRNAs bind to the RNA molecule, RBP can potentially bind first to the RNA and prevent the binding of the miRNA that will degrade it.

Exercise:

Problem:

How can external stimuli alter post-transcriptional control of gene expression?

Solution:

External stimuli can modify RNA-binding proteins (i.e., through phosphorylation of proteins) to alter their activity.

Glossary

3' UTR

3' untranslated region; region just downstream of the protein-coding region in an RNA molecule that is not translated

5' cap

a methylated guanosine triphosphate (GTP) molecule that is attached to the 5' end of a messenger RNA to protect the end from degradation

5' UTR

5' untranslated region; region just upstream of the protein-coding region in an RNA molecule that is not translated

dicer

enzyme that chops the pre-miRNA into the mature form of the miRNA

microRNA (miRNA)

small RNA molecules (approximately 21 nucleotides in length) that bind to RNA molecules to degrade them

poly-A tail

a series of adenine nucleotides that are attached to the 3' end of an mRNA to protect the end from degradation

RNA-binding protein (RBP)

protein that binds to the 3' or 5' UTR to increase or decrease the RNA stability

RNA stability

how long an RNA molecule will remain intact in the cytoplasm

untranslated region

segment of the RNA molecule that are not translated into protein. These regions lie before (upstream or 5') and after (downstream or 3') the protein-coding region

RISC

protein complex that binds along with the miRNA to the RNA to degrade it

Eukaryotic Translational and Post-translational Gene Regulation By the end of this section, you will be able to:

- Understand the process of translation and discuss its key factors
- Describe how the initiation complex controls translation
- Explain the different ways in which the post-translational control of gene expression takes place

After the RNA has been transported to the cytoplasm, it is translated into protein. Control of this process is largely dependent on the RNA molecule. As previously discussed, the stability of the RNA will have a large impact on its translation into a protein. As the stability changes, the amount of time that it is available for translation also changes.

The Initiation Complex and Translation Rate

Like transcription, translation is controlled by proteins that bind and initiate the process. In translation, the complex that assembles to start the process is referred to as the **initiation complex**. The first protein to bind to the RNA to initiate translation is the **eukaryotic initiation factor-2 (eIF-2)**. The eIF-2 protein is active when it binds to the high-energy molecule **guanosine triphosphate (GTP)**. GTP provides the energy to start the reaction by giving up a phosphate and becoming **guanosine diphosphate (GDP)**. The eIF-2 protein bound to GTP binds to the small **40S ribosomal subunit**. When bound, the methionine initiator tRNA associates with the eIF-2/40S ribosome complex, bringing along with it the mRNA to be translated. At this point, when the initiator complex is assembled, the GTP is converted into GDP and energy is released. The phosphate and the eIF-2 protein are released from the complex and the large **60S ribosomal subunit** binds to translate the RNA. The binding of eIF-2 to the RNA is controlled by phosphorylation. If eIF-2 is phosphorylated, it undergoes a conformational change and cannot bind to GTP. Therefore, the initiation complex cannot form properly and translation is impeded ([link]). When eIF-2 remains unphosphorylated, it binds the RNA and actively translates the protein.

Chemical Modifications, Protein Activity, and Longevity

Proteins can be chemically modified with the addition of groups including methyl, phosphate, acetyl, and ubiquitin groups. The addition or removal of these groups from proteins regulates their activity or the length of time they exist in the cell. Sometimes these modifications can regulate where a protein is found in the cell—for example, in the nucleus, the cytoplasm, or attached to the plasma membrane.

Chemical modifications occur in response to external stimuli such as stress, the lack of nutrients, heat, or ultraviolet light exposure. These changes can alter epigenetic accessibility, transcription, mRNA stability, or translation—all resulting in changes in expression of various genes. This is an efficient way for the cell to rapidly change the levels of specific proteins in response

to the environment. Because proteins are involved in every stage of gene regulation, the phosphorylation of a protein (depending on the protein that is modified) can alter accessibility to the chromosome, can alter translation (by altering transcription factor binding or function), can change nuclear shuttling (by influencing modifications to the nuclear pore complex), can alter RNA stability (by binding or not binding to the RNA to regulate its stability), can modify translation (increase or decrease), or can change post-translational modifications (add or remove phosphates or other chemical modifications).

The addition of an ubiquitin group to a protein marks that protein for degradation. Ubiquitin acts like a flag indicating that the protein lifespan is complete. These proteins are moved to the **proteasome**, an organelle that functions to remove proteins, to be degraded ([link]). One way to control gene expression, therefore, is to alter the longevity of the protein.

Proteins with ubiquitin tags are marked for degradation within the proteasome.

Section Summary

Changing the status of the RNA or the protein itself can affect the amount of protein, the function of the protein, or how long it is found in the cell. To translate the protein, a protein initiator complex must assemble on the RNA.

Modifications (such as phosphorylation) of proteins in this complex can prevent proper translation from occurring. Once a protein has been synthesized, it can be modified (phosphorylated, acetylated, methylated, or ubiquitinated). These post-translational modifications can greatly impact the stability, degradation, or function of the protein.

Art Connections

Exercise:

Problem:

[link] An increase in phosphorylation levels of eIF-2 has been observed in patients with neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. What impact do you think this might have on protein synthesis?

Solution:

[link] Protein synthesis would be inhibited.

Review Questions

Exercise:

Problem:

Post-translational modifications of proteins can affect which of the following?

- a. protein function
- b. transcriptional regulation
- c. chromatin modification
- d. all of the above

Solution:

Free Response

Exercise:

Problem:

Protein modification can alter gene expression in many ways. Describe how phosphorylation of proteins can alter gene expression.

Solution:

Because proteins are involved in every stage of gene regulation, phosphorylation of a protein (depending on the protein that is modified) can alter accessibility to the chromosome, can alter translation (by altering the transcription factor binding or function), can change nuclear shuttling (by influencing modifications to the nuclear pore complex), can alter RNA stability (by binding or not binding to the RNA to regulate its stability), can modify translation (increase or decrease), or can change post-translational modifications (add or remove phosphates or other chemical modifications).

Exercise:

Problem:

Alternative forms of a protein can be beneficial or harmful to a cell. What do you think would happen if too much of an alternative protein bound to the 3' UTR of an RNA and caused it to degrade?

Solution:

If the RNA degraded, then less of the protein that the RNA encodes would be translated. This could have dramatic implications for the cell.

Exercise:

Problem:

Changes in epigenetic modifications alter the accessibility and transcription of DNA. Describe how environmental stimuli, such as ultraviolet light exposure, could modify gene expression.

Solution:

Environmental stimuli, like ultraviolet light exposure, can alter the modifications to the histone proteins or DNA. Such stimuli may change an actively transcribed gene into a silenced gene by removing acetyl groups from histone proteins or by adding methyl groups to DNA.

Glossary

eukaryotic initiation factor-2 (eIF-2) protein that binds first to an mRNA to initiate translation

guanine diphosphate (GDP) molecule that is left after the energy is used to start translation

guanine triphosphate (GTP)
energy-providing molecule that binds to eIF-2 and is needed for translation

initiation complex protein complex containing eIF2-2 that starts translation

large 60S ribosomal subunit second, larger ribosomal subunit that binds to the RNA to translate it into protein

proteasome organelle that degrades proteins

small 40S ribosomal subunit

ribosomal subunit that binds to the RNA to translate it into protein

Cancer and Gene Regulation By the end of this section, you will be able to:

- Describe how changes to gene expression can cause cancer
- Explain how changes to gene expression at different levels can disrupt the cell cycle
- Discuss how understanding regulation of gene expression can lead to better drug design

Cancer is not a single disease but includes many different diseases. In cancer cells, mutations modify cell-cycle control and cells don't stop growing as they normally would. Mutations can also alter the growth rate or the progression of the cell through the cell cycle. One example of a gene modification that alters the growth rate is increased phosphorylation of cyclin B, a protein that controls the progression of a cell through the cell cycle and serves as a cell-cycle checkpoint protein.

For cells to move through each phase of the cell cycle, the cell must pass through checkpoints. This ensures that the cell has properly completed the step and has not encountered any mutation that will alter its function. Many proteins, including cyclin B, control these checkpoints. The phosphorylation of cyclin B, a post-translational event, alters its function. As a result, cells can progress through the cell cycle unimpeded, even if mutations exist in the cell and its growth should be terminated. This post-translational change of cyclin B prevents it from controlling the cell cycle and contributes to the development of cancer.

Cancer: Disease of Altered Gene Expression

Cancer can be described as a disease of altered gene expression. There are many proteins that are turned on or off (gene activation or gene silencing) that dramatically alter the overall activity of the cell. A gene that is not normally expressed in that cell can be switched on and expressed at high levels. This can be the result of gene mutation or changes in gene regulation (epigenetic, transcription, post-transcription, translation, or post-translation).

Changes in epigenetic regulation, transcription, RNA stability, protein translation, and post-translational control can be detected in cancer. While these changes don't occur simultaneously in one cancer, changes at each of these levels can be detected when observing cancer at different sites in different individuals. Therefore, changes in **histone acetylation** (epigenetic modification that leads to gene activation), activation of transcription factors by phosphorylation, increased RNA stability, increased translational control, and protein modification can all be detected at some point in various cancer cells. Scientists are working to understand the common changes that give rise to certain types of cancer or how a modification might be exploited to destroy a tumor cell.

Tumor Suppressor Genes, Oncogenes, and Cancer

In normal cells, some genes function to prevent excess, inappropriate cell growth. These are tumor suppressor genes, which are active in normal cells to prevent uncontrolled cell growth. There are many tumor suppressor genes in cells. The most studied tumor suppressor gene is p53, which is mutated in over 50 percent of all cancer types. The p53 protein itself functions as a transcription factor. It can bind to sites in the promoters of genes to initiate transcription. Therefore, the mutation of p53 in cancer will dramatically alter the transcriptional activity of its target genes.

Note:

Link to Learning

Watch this animation to learn more about the use of p53 in fighting cancer.

Proto-oncogenes are positive cell-cycle regulators. When mutated, proto-oncogenes can become oncogenes and cause cancer. Overexpression of the oncogene can lead to uncontrolled cell growth. This is because oncogenes can alter transcriptional activity, stability, or protein translation of another gene that directly or indirectly controls cell growth. An example of an oncogene involved in cancer is a protein called myc. **Myc** is a transcription factor that is aberrantly activated in Burkett's Lymphoma, a cancer of the lymph system. Overexpression of myc transforms normal B cells into cancerous cells that continue to grow uncontrollably. High B-cell numbers can result in tumors that can interfere with normal bodily function. Patients with Burkett's lymphoma can develop tumors on their jaw or in their mouth that interfere with the ability to eat.

Cancer and Epigenetic Alterations

Silencing genes through epigenetic mechanisms is also very common in cancer cells. There are characteristic modifications to histone proteins and DNA that are associated with silenced genes. In cancer cells, the DNA in the promoter region of silenced genes is methylated on cytosine DNA residues in CpG islands. Histone proteins that surround that region lack the acetylation modification that is present when the genes are expressed in normal cells. This combination of DNA methylation and histone deacetylation (epigenetic modifications that lead to gene silencing) is commonly found in cancer. When these modifications occur, the gene present in that chromosomal region is silenced. Increasingly, scientists understand how epigenetic changes are altered in cancer. Because these changes are temporary and can be reversed—for example, by preventing the action of the histone deacetylase protein that removes acetyl groups, or by DNA methyl transferase enzymes that add methyl groups to cytosines in DNA—it is possible to design new drugs and new therapies to take advantage of the reversible nature of these processes. Indeed, many researchers are testing how a silenced gene can be switched back on in a cancer cell to help re-establish normal growth patterns.

Genes involved in the development of many other illnesses, ranging from allergies to inflammation to autism, are thought to be regulated by

epigenetic mechanisms. As our knowledge of how genes are controlled deepens, new ways to treat diseases like cancer will emerge.

Cancer and Transcriptional Control

Alterations in cells that give rise to cancer can affect the transcriptional control of gene expression. Mutations that activate transcription factors, such as increased phosphorylation, can increase the binding of a transcription factor to its binding site in a promoter. This could lead to increased transcriptional activation of that gene that results in modified cell growth. Alternatively, a mutation in the DNA of a promoter or enhancer region can increase the binding ability of a transcription factor. This could also lead to the increased transcription and aberrant gene expression that is seen in cancer cells.

Researchers have been investigating how to control the transcriptional activation of gene expression in cancer. Identifying how a transcription factor binds, or a pathway that activates where a gene can be turned off, has led to new drugs and new ways to treat cancer. In breast cancer, for example, many proteins are overexpressed. This can lead to increased phosphorylation of key transcription factors that increase transcription. One such example is the overexpression of the epidermal growth factor receptor (EGFR) in a subset of breast cancers. The EGFR pathway activates many protein kinases that, in turn, activate many transcription factors that control genes involved in cell growth. New drugs that prevent the activation of EGFR have been developed and are used to treat these cancers.

Cancer and Post-transcriptional Control

Changes in the post-transcriptional control of a gene can also result in cancer. Recently, several groups of researchers have shown that specific cancers have altered expression of miRNAs. Because miRNAs bind to the 3' UTR of RNA molecules to degrade them, overexpression of these miRNAs could be detrimental to normal cellular activity. Too many miRNAs could dramatically decrease the RNA population leading to a decrease in protein expression. Several studies have demonstrated a change in the miRNA population in specific cancer types. It appears that the subset

of miRNAs expressed in breast cancer cells is quite different from the subset expressed in lung cancer cells or even from normal breast cells. This suggests that alterations in miRNA activity can contribute to the growth of breast cancer cells. These types of studies also suggest that if some miRNAs are specifically expressed only in cancer cells, they could be potential drug targets. It would, therefore, be conceivable that new drugs that turn off miRNA expression in cancer could be an effective method to treat cancer.

Cancer and Translational/Post-translational Control

There are many examples of how translational or post-translational modifications of proteins arise in cancer. Modifications are found in cancer cells from the increased translation of a protein to changes in protein phosphorylation to alternative splice variants of a protein. An example of how the expression of an alternative form of a protein can have dramatically different outcomes is seen in colon cancer cells. The c-Flip protein, a protein involved in mediating the cell death pathway, comes in two forms: long (c-FLIPL) and short (c-FLIPS). Both forms appear to be involved in initiating controlled cell death mechanisms in normal cells. However, in colon cancer cells, expression of the long form results in increased cell growth instead of cell death. Clearly, the expression of the wrong protein dramatically alters cell function and contributes to the development of cancer.

New Drugs to Combat Cancer: Targeted Therapies

Scientists are using what is known about the regulation of gene expression in disease states, including cancer, to develop new ways to treat and prevent disease development. Many scientists are designing drugs on the basis of the gene expression patterns within individual tumors. This idea, that therapy and medicines can be tailored to an individual, has given rise to the field of personalized medicine. With an increased understanding of gene regulation and gene function, medicines can be designed to specifically target diseased cells without harming healthy cells. Some new medicines, called targeted therapies, have exploited the overexpression of a specific

protein or the mutation of a gene to develop a new medication to treat disease. One such example is the use of anti-EGF receptor medications to treat the subset of breast cancer tumors that have very high levels of the EGF protein. Undoubtedly, more targeted therapies will be developed as scientists learn more about how gene expression changes can cause cancer.

Note:

Career Connection

Clinical Trial Coordinator

A clinical trial coordinator is the person managing the proceedings of the clinical trial. This job includes coordinating patient schedules and appointments, maintaining detailed notes, building the database to track patients (especially for long-term follow-up studies), ensuring proper documentation has been acquired and accepted, and working with the nurses and doctors to facilitate the trial and publication of the results. A clinical trial coordinator may have a science background, like a nursing degree, or other certification. People who have worked in science labs or in clinical offices are also qualified to become a clinical trial coordinator. These jobs are generally in hospitals; however, some clinics and doctor's offices also conduct clinical trials and may hire a coordinator.

Section Summary

Cancer can be described as a disease of altered gene expression. Changes at every level of eukaryotic gene expression can be detected in some form of cancer at some point in time. In order to understand how changes to gene expression can cause cancer, it is critical to understand how each stage of gene regulation works in normal cells. By understanding the mechanisms of control in normal, non-diseased cells, it will be easier for scientists to understand what goes wrong in disease states including complex ones like cancer.

Review Questions

Exercise:
Problem: Cancer causing genes are called
a. transformation genes
b. tumor suppressor genes
c. oncogenes d. mutated genes
Solution:
C
Exercise:
Problem:
Targeted therapies are used in patients with a set gene expression pattern. A targeted therapy that prevents the activation of the estrogen receptor in breast cancer would be beneficial to which type of patient?
a. patients who express the EGFR receptor in normal cells b. patients with a mutation that inactivates the estrogen receptor c. patients with lots of the estrogen receptor expressed in their tumor d. patients that have no estrogen receptor expressed in their tumor
Solution:
C
Free Response Exercise:
EXCITISC.

Problem:

New drugs are being developed that decrease DNA methylation and prevent the removal of acetyl groups from histone proteins. Explain how these drugs could affect gene expression to help kill tumor cells.

Solution:

These drugs will keep the histone proteins and the DNA methylation patterns in the open chromosomal configuration so that transcription is feasible. If a gene is silenced, these drugs could reverse the epigenetic configuration to re-express the gene.

Exercise:

Problem:

How can understanding the gene expression pattern in a cancer cell tell you something about that specific form of cancer?

Solution:

Understanding which genes are expressed in a cancer cell can help diagnose the specific form of cancer. It can also help identify treatment options for that patient. For example, if a breast cancer tumor expresses the EGFR in high numbers, it might respond to specific anti-EGFR therapy. If that receptor is not expressed, it would not respond to that therapy.

Glossary

DNA methylation

epigenetic modification that leads to gene silencing; commonly found in cancer cells

histone acetylation

epigenetic modification that leads to gene silencing; commonly found in cancer cells found in cancer cells myc

oncogene that causes cancer in many cancer cells

The Periodic Table of Elements

