Restricted or Ported Tutte Decomposion and Analogs of All-Minors Laplacian Expansions

Seth Chaiken
Assoc. Prof. Emeritus Dept. of Computer Science
Univ. at Albany
schaiken@albany.edu

October 13, 2019

What is a parametrized strong Tutte function?

Tutte equations are satisfied in a very general setup:

- 1. Elements $\{e\}$ each with parameters g_e, r_e .
- 2. A category $\mathcal N$ of objects $\mathbf N$ each with ground set $S=S(\mathbf N)$ of elements.
- 3. For some decomposible \mathbf{N} , for one or more separators $e \in S(\mathbf{N})$, the contraction and deletion operations are defined with results \mathbf{N}/e and $\mathbf{N}\backslash e$ in \mathcal{N} , with ground sets $S(\mathbf{N})\backslash \{e\}$
- 4. Some $N = N_1 \oplus N_2$ are direct sums, where $S(N_1) \cap S(N_2) = \emptyset$.
- 5. For each indecomposible N with no separators there is an additional parameter i_N called the *initial value*.

Tutte equations, functions and Good Questions

1. For all **N** with separator $e \in S(\mathbf{N})$,

$$F(\mathbf{N}) = g_e F(\mathbf{N}/e) + r_e(\mathbf{N}\backslash e)$$

2. When $N = N_1 \oplus N_2$,

$$F(\mathbf{N}) = F(\mathbf{N_1})F(\mathbf{N_2})$$

3. When **N** is indecomposible,

$$F(\mathbf{N}) = i_{\mathbf{N}}$$

F is Tutte function when all the Tutte equations are satisfied. This MEANS $F(\mathbf{N})$ is what is computed by applying Tutte equations in any order they are applicable. Good Questions: When does $\mathcal N$ and parameters ACTUALLY HAVE a Tutte function? If so, what is a *universal* Tutte function?

Some answers-for Graphs and Matroids

Only loops and coloops need initial values

The only **N** with no separators and no $\mathbf{N} = \mathbf{N_1} \oplus \mathbf{N_2}$ for $\mathbf{N}_i \neq \emptyset$ are $\mathbf{loop}(e)$ and $\mathbf{coloop}(e)$.

The famous Tutte Polynomial

Adding all $g_e = r_e = 1$, the Tutte polynomial $F(\mathbf{N})(x,y)$ obtained from $i_{\mathbf{loop}(e)} = x$, $i_{\mathbf{coloop}(e)} = y$ and $i_{\emptyset} = 1$. is a universal Tutte function.

Normal Tutte Functions

(Zaslavsky) With arbitrary g_e, r_e , the *normal* Tutte functions are obtained with $i_{\mathbf{coloop}(\mathbf{e})} = g_e y + x$, $i_{\mathbf{loop}(\mathbf{e})} = r_e x + y$ and $i_{\emptyset} = 1$. (Zas. result abt. normal Tutte fun here.)

Our setup

- Matrices N_{α} , N_{β}^{\perp} ; full row rank, columns indexed by $P \coprod E$. rank (N_{α}) + rank (N_{β}^{\perp}) = |E| + |P|. P_{α} , $P_{\beta} \leftrightarrow P$, $P_{\alpha} \cap P_{\beta} = \emptyset$.
- ▶ Weight (parameter) matrices $G = \text{diag}\{g_e\}_{e \in E}$, $R = \text{diag}\{r_e\}_{e \in E}$.
- ▶ Matrix with columns $P_{\alpha} \coprod P_{2} \coprod E$

$$L\left(\begin{array}{c}N_{\alpha}\\N_{\beta}^{\perp}\end{array}\right) = \left[\begin{array}{c|c}N_{\alpha}(P) & 0 & N_{\alpha}(E)G\\\hline 0 & N_{\beta}^{\perp}(P) & N_{\beta}^{\perp}(E)R\end{array}\right]$$

Define

$$F(L) = (\binom{2p}{p})$$
 – tuple of determinants $L[Q_1Q_2E]$)

indexed by sequences $Q_{\alpha}Q_{\beta}\subseteq P_{\alpha}P_{\beta}$ where $Q_{\alpha}\subseteq P_{\alpha}$, $Q_{\beta}\subseteq P_{\beta}, |Q_{\alpha}Q_{\beta}|=p=|P|$.

Column e of L when $e \notin P$ is

$$\begin{bmatrix} N_{\alpha,1,e}g_e \\ N_{\alpha,2,e}g_e \\ \dots \\ N_{\alpha,r_1,e}g_e \\ N_{\beta,1,e}^{\perp}r_e \\ N_{\beta,2,e}^{\perp}r_e \\ \dots \\ N_{\beta,r_2,e}^{\perp}r_e \end{bmatrix} = \begin{bmatrix} N_{\alpha,1,e} \\ N_{\alpha,2,e} \\ \dots \\ N_{\alpha,r_1,e} \\ 0 \\ 0 \\ \dots \\ 0 \end{bmatrix} g_e + \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ N_{\beta,1,e}^{\perp} \\ N_{\beta,2,e}^{\perp} \\ \dots \\ N_{\beta,r_2,e}^{\perp} \end{bmatrix} r_e$$

So,

$$\begin{split} F(L)_{Q_{\alpha}Q_{\beta}} &= L[Q_{\alpha}Q_{\beta}E] = \\ g_{e}L\left(\begin{array}{c} N_{\alpha}/e \\ N_{\beta}^{\perp} \backslash e \end{array}\right)[Q_{\alpha}Q_{\beta}E] + r_{e}L\left(\begin{array}{c} N_{\alpha} \backslash e \\ N_{\beta}^{\perp}/e \end{array}\right)[Q_{\alpha}Q_{\beta}E]. \end{split}$$

Each determinant $L[Q_{\alpha}Q_{\beta}E]$ is one of $\binom{2p}{p}$ components, so

$$F(L) = g_e FL \left(egin{array}{c} N_lpha/e \ N_eta^{\dagger} \setminus e \end{array}
ight) + r_e FL \left(egin{array}{c} N_lpha \setminus e \ N_eta^{\dagger}/e \end{array}
ight)$$

where

N/e means remove the g_e or r_e but otherwise keep column e N/e means replace column e by 0.

$$FL(M) = g_e FL \left(egin{array}{c} N_lpha/e \ N_eta^\perp \setminus e \end{array}
ight) + r_e FL \left(egin{array}{c} N_lpha \setminus e \ N_eta^\perp / e \end{array}
ight)$$

Real deletion/contraction removes e from the ground set of the matroid or other object, but N/e, $N \setminus e$ still have column e. But (*) holds for all $e \in E$, so Laplace's expansion is a basis expansion:

$$L[Q_{\alpha}Q_{\beta}E] = \sum_{A \subseteq E} g_{A}r_{\overline{A}}N_{\alpha}[Q_{\alpha}A]N_{\beta}^{\perp}[Q_{\beta}\overline{A}]\epsilon(Q_{\alpha}A,Q_{\beta}\overline{A})$$

The A term is $\neq 0$ iff $Q_{\alpha}A$ is a column basis for N_{α} and $Q_{\beta}\overline{A}$ is a column basis for N_{β}^{\perp} . So, for each $Q_{\alpha}Q_{\beta}$

$$L[Q_{\alpha}Q_{\beta}E] = \pm \sum_{A \subseteq E} g_{A}r_{\overline{A}}N_{\alpha}[Q_{\alpha}A]N_{\beta}^{\perp}[Q_{\beta}\overline{A}]\epsilon(A,\overline{A})$$

(The non-zero terms all have $|A| = \operatorname{rank}(N_{\alpha}) - |Q_{\alpha}|$.)

Quick and dirty fix

- 1. Drag column e to the far right. Changes sign of F(L) by $\epsilon(E'e)$.
- 2. Left multiply by a determinant 1 matrix that sends the last column to $(0,...,1g_e,0,...,1r_e)^{\mathbf{t}}$ (if the top or bottom submatrix has just 1 row, do the hack: \mathbf{N}/e is number $\mathbf{N}_{1,e}$ that acts like a matrix with columns E' and no rows.)
- 3. Drag the row with the $1g_e$ to the bottom. Changes sign of F(L) by $(-1)^{r\mathbf{N}_{\beta}^{\perp}}$
- 4. With e deleted/contracted from the **N**s defining L, define F by $FL_{Q_{\alpha}Q_{\beta}} = L[Q_{\alpha}Q_{\beta}E']$

Result

$$FL\left(\begin{array}{c}N_{\alpha}\\N_{\beta}^{\perp}\end{array}\right)=\epsilon(E'e)\left(g_{e}(-1)^{\mathsf{r}(N_{\beta}^{\perp})}FL\left(\begin{array}{c}N_{\alpha}/e\\N_{\beta}^{\perp}\backslash e\end{array}\right)+r_{e}FL\left(\begin{array}{c}N_{\alpha}\backslash e\\N_{\beta}^{\perp}/e\end{array}\right)\right)$$