ΜΥΥ601 Λειτουργικά Συστήματα Εαρινό 2024

Μάθημα 1 Εισαγωγή στα Λειτουργικά Συστήματα

Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων

1

Περίγραμμα

- Εξέλιξη
- Επιτεύγματα
- Χαρακτηριστικά
- Εικονικοποίηση
- Unix
- Windows
- Android

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Πρώτη Γενιά (1945-55)

- Σειριακή επεξεργασία
 - Κονσόλα με διακόπτες και λάμπες
 - Συσκευή εισόδου για κώδικα μηχανής π.χ. αναγνώστης καρτών
 - Συσκευή εξόδου για τα αποτελέσματα π.χ. εκτυπωτής
 - Καθόλου λειτουργικό σύστημα
 - Αρχικά προγραμματισμός απευθείας στο υλικό
 - Αργότερα χρήση μεταγλωττιστή
- Προβλήματα
 - Εκ των προτέρων δέσμευση υπολογιστικού χρόνου
 - Δύσχρηστη λειτουργία με κάρτες χαρτιού ή ταινίες
 - Χρονοβόρα εγκατάσταση λογισμικού
 - Πηγαίο πρόγραμμα εφαρμογής
 - Μεταγλωττιστής
 - Φόρτωση και διασύνδεση με βιβλιοθήκες συναρτήσεων

Εαρινό 2024

©Σ. Β. Αναστασιάδης

3

3

Δεύτερη Γενιά (1955-65)

- Συστήματα δέσμης (Batch Systems)
 - Πρώτο λειτουργικό σύστημα στα μέσα του '50
 - Από τη General Electric για έναν IBM 701
 - Βελτιωμένη αξιοποίηση πόρων με εκτέλεση δέσμης
 - Εξελίχθηκε από κατασκευαστές υπολογιστών (π.χ. IBM)
- Λογισμικό παρατηρητή (Monitor)
 - Μόνιμα στη μνήμη (resident monitor)
 - Διαβάζει εργασίες μία κάθε φορά (job control language)
 - Επανακτά έλεγχο όταν μια εργασία τελειώνει
- Χαρακτηριστικά υλικού
 - Προστατεύει τον παρατηρητή από εργασίες των χρηστών
 - Εμποδίζει τη μονοπώληση από μία εργασία με χρονομέτρηση
 - Προνομιακές εντολές εκτελούνται μόνο από τον παρατηρητή
 - Π.χ. λειτουργίες προσπέλασης συσκευών Εισόδου/Εξόδου (Input/Output)
 - Διακοπές περνούν τον έλεγχο από τις εφαρμογές στον παρατηρητή

Εαρινό 2024

©Σ. Β. Αναστασιάδης

4

Τρίτη Γενιά (1965-80)

- Πολυπρογραμματισμός δέσμης (multiprogrammed batch systems)
 - Συσκευές Εισόδου/Εξόδου (Ε/Ε) αργές σε σχέση με επεξεργαστή
 - Διατηρεί πολλά προγράμματα στη μνήμη
 - Αλλάζει εργασίες όταν μία περιμένει για Ε/Ε
 - Μεγιστοποιεί τη χρήση επεξεργαστή

Spooling

- Simultaneous Peripheral Operation On Line
- Διατηρεί προσωρινά δεδομένα Ε/Ε στο δίσκο

• Υποστήριξη υλικού

- Διαχείριση μνήμης
 - Το σύστημα διατηρεί ταυτόχρονα πολλές εργασίες στη μνήμη
- Διαχείριση Εισόδου/Εξόδου
 - Άμεση προσπέλαση μνήμης (DMA): Ε/Ε ταυτόχρονη με επεξεργασία
 - Ε/Ε με διακοπές (interrupts): Ένα σήμα διακοπής σταματά την τρέχουσα εκτέλεση του επεξεργαστή όταν ολοκληρώνεται μία λειτουργία Εισόδου/Εξόδου

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **5**

5

Τρίτη Γενιά (1965-80) (συνέχεια)

- Χρονομερισμός (time-sharing)
 - Υποστηρίζει πολλαπλούς χρήστες ταυτόχρονα στον υπολογιστή
 - Διαμερίζει τον υπολογιστικό χρόνο μεταξύ των χρηστών
 - Ελαχιστοποιεί το χρόνο απόκρισης
 - Οι εντολές εισάγονται από το τερματικό
 - Δημοφιλής στη διάρκεια της δεκαετίας του `70
- Ένα από τα πρώτα ΛΣ χρονομερισμού
 - Compatible Time-Sharing System (CTSS)
 - Αναπτύχθηκε στο MIT για έναν IBM 709 το 1961
 - Συνολική μνήμη συστήματος 32,000 36-bit λέξεις
 - Ο παρατηρητής χρησιμοποιούσε 5,000 λέξεις
- Νέα ζητήματα
 - Ασφάλεια, σύστημα αρχείων, χρονοδρομολόγηση συσκευών

Εαρινό 2024

©Σ. Β. Αναστασιάδης

7

7

Τέταρτη Γενιά (1980-Σήμερα)

- Προσωπικοί υπολογιστές
 - Συστήματα για ένα χρήστη
 - Πρώτα εμφανίστηκαν ως μικρο-υπολογιστές στα μέσα δεκαετίας '70
 - Τα πρώτα ΛΣ αποθηκεύονταν σε ROM για να ελέγχουν συσκευές Ε/Ε
 - Αργότερα προσαυξήθηκαν με λογισμικό RAM (π.χ. CP/M, MS DOS)
- Σταθμοί εργασίας
 - Πιο ευέλικτο και γρήγορο υλικό από αυτό των προσωπικών Η/Υ
 - Σχεδιάστηκαν να λειτουργούν σε δικτυακό περιβάλλον
 - Απαιτούν πιο πολύπλοκο ΛΣ (π.χ. UNIX)
- Σἡμερα
 - Καμία διαφορά προσωπικών υπολογιστών και σταθμών εργασίας

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Πέμπτη Γενιά (1990-Σήμερα)

- Κινητοί υπολογιστές
 - Συσκευή που συνδυάζει κινητό τηλέφωνο με υπολογιστή
 - Nokia N9000 το πρώτο τηλέφωνο που περιείχε προσωπικό ψηφιακό βοηθό (PDA/personal digital assistant) (1990)
 - Ericsson GS88 η πρώτη συσκευή που ονομάστηκε έξυπνο τηλέφωνο (1997)
- Λειτουργικά συστήματα
 - Android (Google, 2008)
 - iOS (Apple, 2007)
 - Blackberry (RIM, 2002-2022)
 - Symbian (Symbian Ltd, 1998)
 - Windows Phone/Mobile/CE (Microsoft, 1996-2017)
 - Tizen (Samsung), HarmonyOS (Huawei)

Εαρινό 2024

©Σ. Β. Αναστασιάδης

9

9

Τύποι Λειτουργικών Συστημάτων

- 1. Mainframe (π.χ. IBM OS/390)
 - Υπολογιστικές υπηρεσίες δέσμης, συναλλαγών, χρονομερισμού
- 2. Διακομιστές (π.χ. Unix, Linux, Windows)
 - Εξυπηρετούν πολλαπλούς χρήστες στο δίκτυο
- 3. Πολυεπεξεργαστές (π.χ. Solaris)
 - Διαχείριση πολλαπλών επεξεργαστών στο ίδιο σύστημα
- 4. Προσωπικοί υπολογιστές (π.χ. Windows, macOS, Linux, Minix, L4/Fiasco)
 - Εξυπηρετούν κυρίως έναν χρήστη (π.χ. επεξεργασία κειμένου)
- 5. Τηλέφωνα, αυτοκίνητα (π.χ. Android, iOS, Automotive Grade Linux)
 - Τηλεφωνία, πολυμέσα, εφαρμογές, ασύρματα δίκτυα
- 6. Πραγματικού χρόνου (π.χ., QNX/Blackberry)
 - Προθεσμίες στην επεξεργασία δεδομένων (π.χ., βιομηχανία)
- 7. Ενσωματωμένα συστήματα και δίκτυα αισθητήρων (π.χ., TinyOS)
 - Περιορισμοί στο μέγεθος, μνήμη, ενέργεια (π.χ. οικιακές συσκευές)

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Μεγάλα Επιτεύγματα

- Λειτουργικά συστήματα
 - Το πιο πολύπλοκο είδος λογισμικού
 - MIT/Bell Labs Multics το 1975 είχε 20 εκατομμύρια γραμμές κώδικα
 - Microsoft Windows 50 εκ.,
 - Debian Linux (2009) 324 εκ.
 - Linux kernel (2020) 27.8 εκ.
- Επιτεύγματα που λύνουν δύσκολα πρακτικά προβλήματα
 - Διεργασία
 - Διαχείριση μνήμης
 - Προστασία και ασφάλεια πληροφορίας
 - Χρονοδρομολόγηση και διαχείριση πόρων
 - Δομή συστήματος

Εαρινό 2024

©Σ. Β. Αναστασιάδης

11

11

Κίνητρα

- Πρώτα πολυπρογραμματιστικά και πολυχρηστικά συστήματα
 - Η αλλαγή της εκτελούμενης εργασίας γινόταν με διακοπές
 - Ο επεξεργαστής αποθηκεύει το τρέχον περιβάλλον εκτέλεσης πριν τρέξει τον χειριστή διακοπής
 - Η ανάπτυξη λογισμικού συστήματος ήταν τρομερά πολύπλοκη
 - Τα σφάλματα δύσκολο να ανιχνευθούν και να διορθωθούν (π.χ., απαιτείται διαίσθηση και εμπειρία από τον προγραμματιστή)
- Κύριες αιτίες σφαλμάτων
 - Ακατάλληλος συγχρονισμός π.χ. αναξιόπιστα σήματα διακοπής Ε/Ε
 - Εσφαλμένη αποκλειστική προσπέλαση π.χ. όταν πολλά προγράμματα χρησιμοποιούν ταυτόχρονα τον ίδιο πόρο
 - Ακαθόριστη λειτουργία προγράμματος π.χ. σε κοινόχρηστη μνήμη
 - Αδιέξοδα π.χ. πολλαπλά προγράμματα περιμένουν το ένα το άλλο

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **12**

Προστασία και Ασφάλεια Πληροφορίας

- Προστασία: διαχείριση χαμηλού επιπέδου
 - Μηχανισμός ελέγχου πρόσβασης στους πόρους του συστήματος
- Ασφάλεια: διαχείριση υψηλού επιπέδου
 - Μέτρο διατήρησης της εμπιστευτικότητας, ακεραιότητας, διαθεσιμότητας και αυθεντικότητας συστήματος και δεδομένων
- Έλεγχος πρόσβασης
 - Πρόσβαση του χρήστη στο σύστημα και τα δεδομένα
 - Γενικότερη πρόσβαση των διεργασιών σε πόρους και αντικείμενα
- Έλεγχος ροής πληροφορίας
 - Ροή δεδομένων στο σύστημα
 - Μεταφορά δεδομένων στους χρήστες
- Πιστοποίηση
 - Εφαρμογή πολιτικών προστασίας και ασφάλειας

Εαρινό 2024

©Σ. Β. Αναστασιάδης

15

15

Χρονοδρομολόγηση και Διαχείριση Πόρων

- Δικαιοσύνη
 - Δίκαιη πρόσβαση σε πόρους από εργασίες ίδιας κατηγορίας
- Διαφοροποίηση απόκρισης
 - Διάκριση μεταξύ εργασιών διαφορετικών κατηγοριών
 - Π.χ. αλλαγή εργασίας όταν μία περιμένει για Είσοδο/Έξοδο, ή προτεραιότητα σε απαιτητικές εργασίες όπως Video Playback, VoIP
- Αποδοτικότητα
 - Μεγιστοποίηση ρυθμού εκτέλεσης
 - Ελαχιστοποίηση χρόνου απόκρισης
 - Υποστήριξη μέγιστου πλήθους χρηστών

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Δομή Συστήματος

- Μοντέρνα λειτουργικά συστήματα
 - Πολλαπλοί επεξεργαστές, δίκτυο υψηλής ταχύτητας
 - Συσκευές μνήμης και αποθήκευσης διαφόρων τύπων/ταχυτήτων
 - Εφαρμογές πολυμέσων, Διαδίκτυο, Ιστός, πελάτης/διακομιστής
 - Απειλές ασφάλειας
- Διαχείριση πολυπλοκότητας
 - Αρθρωτός προγραμματισμός λογισμικού
 - Δημιουργεί καλώς ορισμένες διεπαφές
 - Ιεραρχική δομή
 - Διαχωρίζει τις λειτουργίες σε πολλαπλά επίπεδα
 - Κάθε επίπεδο εκτελεί περιορισμένο υποσύνολο λειτουργιών
 - Κάθε επίπεδο χρησιμοποιεί το παρακάτω για βασικές λειτουργίες
 - Αφαίρεση πληροφορίας
 - Τροποποιήσεις σε ένα επίπεδο δεν απαιτούν αλλαγές σε άλλα επίπεδα

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **17**

17

Σύγχρονα Χαρακτηριστικά

- Αρχιτεκτονική μικροπυρήνα
 - Αναθέτει μόνο λίγες βασικές λειτουργίες στον πυρήνα
 - Χώροι διευθύνσεων, επικοινωνία διεργασιών, βασική χρονοδρομολόγηση
 - Προσφέρει άλλες υπηρεσίες ως διεργασίες σε επίπεδο χρήστη
 - Αντικαθιστά τη μονολιθική αρχιτεκτονική
 - Η οποία υλοποιεί τις περισσότερες λειτουργίες ως μία διεργασία
- Πολυνηματισμός
 - Nhua
 - Διεκπεραιώσιμη μόναδα εκτέλεσης κώδικα (καταχωρητές & στοίβα)
 - Εκτελεί κώδικα ακολουθιακά και μπορεί να διακοπεί
 - Πολλαπλά νήματα προσθέτουν ευελιξία στον προγρ/σμό και χρονισμό
 - Αποφεύγουν επιβαρύνσεις από τη συχνή εναλλαγή διεργασιών
 - Διερνασία
 - Συλλογή ενός ή πολλών νημάτων και πόρων συστήματος (π.χ. μνήμη)

Εαρινό 2024 ©Σ. Β. Αναστασιάδης

Σύγχρονα Χαρακτηριστικά (συνέχεια)

- Συμμετρικός πολυεπεξεργαστής
 - Αυτόνομο υπολογιστικό σύστημα
 - Πολλαπλοί επεξεργαστές χρησιμοποιούν από κοινού μνήμη και Ε/Ε
 - Όλοι οι επεξεργαστές εκτελούν τις ίδιες λειτουργίες
 - Προτερήματα
 - Βελτιωμένη απόδοση από πολλαπλές παράλληλες διεργασίες
 - Διαθεσιμότητα άλλων επεξεργαστών όταν ένας αποτυγχάνει
 - Κλιμάκωση με την προσθήκη επιπλέον επεξεργαστών
- Κατανεμημένα λειτουργικά συστήματα
 - Εκτελούνται σε συστάδα (cluster) από ανεξάρτητους υπολογιστές
 - Παρέχουν διεπαφή ενοποιημένου συστήματος
- Αντικειμενοστρεφής σχεδιασμός
 - Αρθρωτή και προσαρμόσιμη δομή συστήματος

19 Εαρινό 2024 ©Σ. Β. Αναστασιάδης

19

Εικονικοποίηση

- Στόχος
 - Ταυτόχρονη εκτέλεση πολλαπλών λειτουργικών συστημάτων στην ίδια μηχανή
 - Κάθε λειτουργικό σύστημα εκτελεί τις δικές του εφαρμογές
- Πώς λειτουργεί
 - Εικονική Μηχανή (VM)
 - Εξομοιωμένη συλλογή συσκευών υλικού
 - Εκτελεί λειτουργικό σύστημα και εφαρμογές
 - Παρατηρητής Εικονικής Μηχανής (VMM)
 - Τρέχει στο λειτουργικό σύστημα οικοδεσπότη
 - Προσφέρει προγραμματίσιμο περιβάλλον
 - Υποστηρίζει πολλαπλές εικονικές μηχανές
 - Συνδέει τις εικονικές μηχανές με επεξεργαστή, αποθήκευση, δίκτυο

Εαρινό 2024

©Σ. Β. Αναστασιάδης

20

Διεπαφές Μηχανής

Ορισμοί

- Application Programming Interface (API)
 - Η μηχανή όπως τη βλέπει το πηγαίο λογισμικό εφαρμογής
 - Γλώσσα υψηλού επιπέδου και κλήσεις λειτουργικού συστήματος
- Application Binary Interface (ABI)
 - Η μηχανή όπως τη βλέπει το εκτελέσιμο της εφαρμογής
 - Καταχωρητές, εντολές μηχανής, κλήσεις συστήματος
 - Εικονικοποιείται από τη διεργασία του λειτουργικού συστήματος
- Instruction Set Architecture (ISA)
 - Η μηχανή όπως τη βλέπει το λειτουργικό σύστημα
 - Υλικό μηχανής, πραγματική μνήμη, πόροι εισόδου/εξόδου
 - Εικονικοποιείται από τον παρατηρητή εικονικής μηχανής

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **21**

21

Unix

- Іоторіа
 - Πρώτα αναπτύχθηκε από τον Ken Tompson στα Bell Labs σε PDP-7 (1969)
 - Μεταφορά στον PDP-11 έδειξε ικανότητα υποστήριξης πολλών Η/Υ
 - Ανάπτυξη σε C έδειξε τα προτερήματα γλωσσών υψηλού επιπέδου για ΛΣ
- Περιγραφή
 - Διεπαφή εφαρμογών
 - Οι χρήστες καλούν λειτουργίες ΛΣ απευθείας ή μέσω βιβλιοθηκών
 - Διεπαφή υλικού
 - Το ΛΣ αλληλεπιδρά απευθείας με το υλικό
 - Ενδιάμεσο σύστημα
 - Έλεγχος διεργασιών
 - Διαχείριση αρχείων και οδηγοί συσκευών Ε/Ε

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **22**

23

Minix

- Σύστημα που μοιάζει με Unix
 - Έκδοση 1.0 το 1987 για Intel 8088 αρχιτεκτονική
 - 11,800 γραμμές C και 800 γραμμές assembly
 - Γράφτηκε από τον Andrew Tanenbaum, Vrije University, Netherlands
- Σχεδιασμός μικροπυρήνα
 - Ο πυρήνας περιλαμβάνει μεταφορά μηνυμάτων και οδηγούς Ε/Ε
 - Το σύστημα αρχείων και η διαχείριση μνήμης εκτελούνται ως διεργασίες χρήστη
 - Χαμηλότερη απόδοση λόγω συχνών αλλαγών επιπέδου χρήστη/πυρήνα

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Linux

- Πρώτη ἐκδοση 0.01 το 1991
 - Αναπτύχθηκε με εργαλείο το σύστημα Minix
 - Ξεκίνησε από τον Linus Torvalds, φοιτητή πληροφορικής U. Helsinki, Finland
 - Μονολιθικός σχεδιασμός με ολόκληρο το σύστημα στον πυρήνα
 - Συγκρίσιμο με το Minix σε μέγεθος και λειτουργίες
- Δομή συστήματος
 - Η *δυναμική διασύνδεση* φορτώνει δυναμικά ενότητες κώδικα του πυρήνα
 - Υποστηρίζει *στοιβαζόμενες ενότητες* που οργανώνονται ιεραρχικά
- GNU Άδεια Δημόσιας Χρήσης
 - Free Software Foundation ιδρύθηκε από τον Richard Stallman το 1984
 - Χρήση, αντιγραφή, αλλαγές, διανομή πηγαίου/ δυαδικού κώδικα
 - Προϊόν με βάση το Linux δε μπορεί να διανέμεται μόνο σε δυαδική μορφή

Eαρινό 2024 ©Σ. Β. Αναστασιάδης **25**

Eupivo 2024

25

Dop'n Tou Linux Processes Proc

Windows

- Іоторіа
 - Windows 3.0 μια γραφική διεπαφή για το DOS (1990)
 - Windows NT ένα νέο λειτουργικό σύστημα 32-bit (1993)
 - Επόμενες εκδόσεις του NT είναι τα Windows XP, Vista, Server, 7, 8, 10, 11
- Αρχιτεκτονική
 - Πολυπεξεργασία τόσο για συστήματα ενός χρήστη όσο και διακομιστές
 - Δομή *τροποποιημένου μικροπυρήνα* για βελτιωμένη απόδοση
- Το λειτουργικό σύστημα διαχωρισμένο από το λογισμικό εφαρμογών
 - Executive: διεργασίες, νήματα, Ε/Ε, ασφάλεια, μνήμη, αντικείμενα
 - Kernel: χρονοδρομολόγηση, συγχρονισμός, χειρισμός εξαιρέσεων
 - Device drivers: εξειδικευμένες βιβλιοθήκες για συστήματα αρχείων και υλικό

27

- Λογισμικό για παράθυρα και γραφικά
- Hardware Abstraction Layer (HAL): απομονώνει το ΛΣ από το υλικό
- Λειτουργίες σε επίπεδο χρήστη
 - Εισαγωγή χρηστών, εκτύπωση, κοινόχρηστες βιβλιοθήκες, εφαρμογές

Εαρινό 2024 ©Σ. Β. Αναστασιάδης

27

Apxitektoviků System support Service processes Service control System support System support Service control System support System su

Αρχιτεκτονική Λογισμικού Android

- Εφαρμογές
 - Συνήθως υλοποιημένες σε Java
- Πλαίσιο Εφαρμογής
 - Δομικά στοιχεία εφαρμογών
- Βιβλιοθήκες Συστήματος
 - Χρήσιμες συναρτήσεις
- Πυρήνας Linux
 - Τροποποιημένος για κινητά

Εαρινό 2024

©Σ. Β. Αναστασιάδης

29

29

Μονάδες Μέτρησης

- Κύρια μνήμη/Σύστημα αρχείων
 - Δυνάμεις του 2
 - $K=2^{10}, M=2^{20}, G=2^{30}, T=2^{40}$
 - Π.χ. RAM 512 MB (ή MiB) = $512x2^{20}$ =512x1,048,576=536,870,912 bytes
- Συσκευές δευτερεύουσας μνήμης
 - Δυνάμεις του 10
 - M=10⁶, G=10⁹, T=10¹², P=10¹⁵
 - Π.χ. σκληρός δίσκος 160 GB = 160,000,000,000 bytes
- Δίκτυα
 - Δυνάμεις του 10
 - K=10³, M=10⁶, G=10⁹, T=10¹²
 - Π.χ. DSL γραμμή 24 Mbps = 24,000,000 bits/s

Εαρινό 2024

©Σ. Β. Αναστασιάδης