PROBLEM

Gray to Binary equivalent □

亷

Medium

Accuracy: 68.7%

Submissions: 40K+

Points: 4

Given an integer number **n**, which is a decimal representation of <u>Gray Code</u>. Find the **binary equivalent** of the Gray Code & return the **decimal representation** of the **binary equivalent**.

Decimal	Binary	Gray Code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Example 1:

Input:

n = 4

Output:

7

Explanation:

Given 4, its gray code = 110.

Binary equivalent of the gray code 110 is 100.

Return 7 representing gray code 100.

Example 2:

Input:

n = 15

Output:

10

Explanation:

Given 15 representing gray code 1000.

Binary equivalent of gray code 1000 is 1111.

Return 10 representing gray code 1111

ie binary 1010.

Your Task:

You don't need to read input or print anything. Your task is to complete the function grayToBinary() which accepts an integer n as an input parameter and returns decimal representation of the binary equivalent of the given gray code.

```
Expected Time Complexity: O(log (n)).
Expected Auxiliary Space: O(1).
Constraints:
```

CODE

#User function Template for python3

```
class Solution:
```

 $0 \le n \le 10^9$

```
##Complete this function

# function to convert a given Gray equivalent n to Binary equivalent.

def grayToBinary(self,n):
    binary=bin(n)[2:]
    res=binary[0]
    for i in range(1,len(binary)):
        res+=str(int(res[-1])^int(binary[i]))
    return int(res,2)

##Your code here
```