# Contents

| 1 | Sta  | rtup templates                | 2  |
|---|------|-------------------------------|----|
|   | 1.1  | template                      | 2  |
|   | 1.2  | gvimrc                        | 2  |
| 2 | Gra  | aph Algorithms                | 3  |
|   | 2.1  | Dinic Max-Flow                | 3  |
|   | 2.2  | Hungary Algo                  | 3  |
|   | 2.3  | Min Cut                       | 4  |
|   | 2.4  | Bridges                       | 4  |
|   | 2.5  | Cut Vertices                  | 5  |
|   | 2.6  | Min-Cost Max-Flow             | Ę  |
|   | 2.7  | Strongly Connected Components |    |
|   | 2.8  | 2-SAT                         |    |
| 3 | Lin  | ear Algebra                   | 8  |
|   | 3.1  | ~                             | 8  |
|   | 3.2  | Fast-Fourier Transform        |    |
|   | 3.3  | Simplex                       |    |
| 4 | Stri | ing Algorithms                | 11 |
|   | 4.1  | Suffix Array                  | 11 |
|   | 4.2  | Suffix Tree from Suffix Array |    |
|   | 4.3  | Z-function                    |    |
|   | 4.4  | Suffix Automata               |    |
|   | 4.5  | Palindromes                   |    |
|   | 4.6  | Lyndon decomposition & Duval  |    |
| 5 | Mo   | dular                         | 15 |

## 1 Startup templates

## 1.1 template

```
1 #include < vector >
  #include <list>
3 #include <map>
4 #include <set>
5 #include <deque>
6 #include <stack>
  #include <bitset>
  #include <algorithm>
9 #include <functional>
10 #include < numeric>
11 #include <utility>
12 #include <sstream>
13 #include <iostream>
14 #include <cstdio>
15 #include <cmath>
16 #include < cstdlib >
  #include <cstring>
17
18
  #include <cassert>
19
20 using namespace std;
21
22
  typedef long long ll;
23
  typedef pair<int, int> pii;
  template<typename T> int size(T& a){ return (int) a.size(); }
26
  template<typename T> T sqr(T a) { return a * a; }
28
  \#define (a, b) memset ((a), (b),  size of (a)
29 #define fs first
30 #define sc second
31 #define pb push_back
  #define mp make_pair
33 #define all(a) a.begin(), a.end()
34 #define REP(i, a, b) for (int i = (a); i < (b); ++i)
35 #define REPD(i, a, b) for (int i = (b) - 1; i >= a; --i)
36 #define ve vector
```

## 1.2 gvimrc

```
1 set autoread
2 set autoindent
3 set autochdir
4 set cindent
5 set number
6 syntax on
7 set shiftwidth =4
8 set tabstop =4
9 colorscheme desert
10 set gfn =Monospace\ 12
```

## 2 Graph Algorithms

#### 2.1 Dinic Max-Flow

```
// need: graph( head, nxt, to, capa, flow ), dist, q
   bool bfs(int src, int dest) {
        (dist, -1);
4
       dist[src] = 0;
5
       int \dot{H} = 0;
6
       q[H ++] = src;
7
       REP(i, 0, H) {
8
            int cur = q[i];
9
            for (int e = head[cur]; e != -1; e = nxt[e]) {
10
                if (capa[e] > flow[e] && dist[to[e]] = -1) {
11
                    dist[to[e]] = dist[cur] + 1;
12
                    q[H ++] = to[e];
13
            }
14
15
16
       return dist [dest] >= 0;
17
18
19
   int dfs(int cur, int curflow) {
20
       if (cur == dest) return curflow;
21
       int d;
22
       for(int\& e = work[cur]; e != -1; e = nxt[e]) {
23
            if (capa[e] > flow[e] && (dist[to[e]] = dist[cur] + 1) &&
24
                    (d = dfs(to[e], min(curflow, capa[e] - flow[e])))) {
                flow[e] += d;
flow[e ^ 1] -= d;
25
26
27
                return d;
28
            }
29
30
       return 0;
31
   }
32
33
   int dinic() {
34
       int res = 0;
35
       while (bfs(src, des)) {
36
           int d;
37
           memcpy(work, head, sizeof(head));
38
            while (true) {
39
                d = dfs(src, INF);
40
                if (d = 0) break;
41
                res += d;
42
43
44
       return res;
45
```

## 2.2 Hungary Algo

```
// need: a[n][m], all indices start with 1
    vector < int > u (n+1), v (m+1), p (m+1), way (m+1);
 3
    for (int i=1; i<=n; ++i) {
       p[0] = i;
        int j0 = 0;
 6
        vector < int > minv (m+1, INF);
 7
        vector < char > used (m+1, false);
 8
       do {
 9
           used[j0] = true;
10
           int i0 = p[j0], delta = INF, j1;
            \  \, \textbf{for} \  \, (\, \textbf{int} \  \, \textbf{j} \! = \! 1; \  \, \textbf{j} \! < \! \! = \! \! m; \  \, + \! \! + \! \! \textbf{j} \, ) 
11
12
              if (!used[j]) {
13
                 int cur = a[i0][j]-u[i0]-v[j];
                 \begin{array}{l} \textbf{if} \ (\, cur \, < \, minv \, [\, j \, ] \,) \\ minv \, [\, j \, ] \, = \, cur \,, \quad way \, [\, j \, ] \, = \, j0 \,; \end{array}
14
15
                  if (minv[j] < delta)</pre>
16
17
                     delta = minv[j], j1 = j;
18
19
           for (int j=0; j <= m; ++j)
```

```
if (used[j])
21
           u[p[j]] += delta, v[j] -= delta;
22
         else
23
           minv[j] -= delta;
       j0 = j1;
24
25
     } while (p[j0] != 0);
26
     do {
27
       int j1 = way[j0];
28
       p[j0] = p[j1];
29
       j0 = j1;
30
     } while (j0);
31
32
   // restore ans[] — selected column for each row
33 for (int j=1; j < m; ++j)
    ans[p[j]] = j;
35
   // cost
36|\inf \ \cos t = -v[0];
```

#### 2.3 Min Cut

```
pair<int, ve<int>> GetMinCut(ve< ve<int>> &weights) {
2
     int N = weights.size();
3
     ve < int > used(N), cut, best_cut;
4
     int best_weight = -1;
5
     REPD(phase, 0, N) {
6
7
       ve < int > w = weights [0];
       ve < int > added = used;
8
9
       int prev, last = 0;
       REP(i, 0, phase) {
10
11
         prev = last;
         last = -1;
12
13
         REP(j, 1, N)
             \mbox{\bf if } \mbox{ $(!$ added [j] \&\& (last == -1 \ || \ w[j] > w[last]))$ last = j; } 
14
15
          if (i = phase-1) {
16
           REP(j, 0, N) weights[prev][j] += weights[last][j];
17
           REP(j, 0, N) weights [j][prev] = weights[prev][j];
18
            used[last] = true;
19
            cut.pb(last);
20
            if (best_weight = -1 || w[last] < best_weight) {
21
              best_cut = cut;
22
              best_weight = w[last];
23
24
         } else {}
25
           REP(j, 0, N)
26
              w[j] += weights[last][j];
27
           added[last] = true;
28
29
       }
30
     }
31
     return mp(best_weight, best_cut);
32
```

## 2.4 Bridges

```
// need: graph( head, to, nxt ), used, tin, fup, timer
   void dfs (int v, int par = -1) {
 3
     used[v] = true;
 4
     tin[v] = fup[v] = timer++;
     for (int e = head[v]; e != -1; e = nxt[e]) {
 6
       int u = to[e];
 7
        \quad \textbf{if} \ (u == par) \quad \textbf{continue}; \\
 8
        if (used[u])
 9
          fup[v] = min (fup[v], tin[u]);
10
        else {
11
          dfs(u, v);
12
          fup[v] = min (fup[v], fup[u]);
13
          if (fup[u] > tin[v])
            IS_BRIDGE(v, u);
14
15
```

```
16 | }
17 | }
18 |
19 | void find_bridges() {
10     timer = 0;
21     _(used, 0)
22     REP(i, 0, N)
23     if (!used[i]) dfs (i);
24 | }
```

#### 2.5 Cut Vertices

```
// need: graph (head, to, nxt), tin, fup, used, timer
   void dfs (int v, int par = -1) {
     used[v] = true;
 3
     tin[v] = fup[v] = timer++;
 5
     int children = 0;
 6
     for (int e = head[v]; e != -1; e = nxt[e]) {
       int u = to[e];
       if (u = par) continue;
 8
        if (used[u])
 9
10
          fup[v] = min (fup[v], tin[u]);
        else {
11
12
          dfs(u, v);
13
          fup\,[\,v\,] \;=\; min\;\; (\,fup\,[\,v\,]\,\,,\;\; fup\,[\,u\,]\,)\,\,;
14
          if (fup[u] >= tin[v] && p != -1)
15
            IS_CUTPOINT(v);
16
         ++children;
17
18
19
     if (p = -1 \&\& children > 1)
20
       IS_CUTPOINT(v);
21
22
23
   int main() {
24
     timer = 0;
25
      (used, 0);
26
     \overline{d}fs(0);
27
```

## 2.6 Min-Cost Max-Flow

```
// need: graph (head, nxt, to, from, capa, cost, flow)
   ^{\prime\prime}// pi , dist , prve
   void updatePotentials() {
     memcpy(pi, dist, sizeof(int) * N);
 5
  }
 6
 7
   bool fordBellman(int src, int dst) {
 8
     REP(i, 0, N) dist[i] = INF;
 9
     dist[src] = 0;
10
     bool changed;
11
     REP(phase, 0, N) {
12
13
        changed = false;
14
       REP(v, 0, N) {
          if(dist[v] == INF) continue;
15
16
          for (int e = head[v]; e != -1; e = nxt[e]) {
            \quad \textbf{int} \ u \, = \, to \, [\, e \, ] \, ; \quad
17
            if(capa[e] > flow[e] \&\& dist[u] > dist[v] + cost[e])  {
18
19
               dist[u] = dist[v] + cost[e];
20
               prve[u] = e;
21
               changed = true;
22
23
          }
24
25
        if(!changed) break;
26
27
     return ! changed;
```

```
29
30
   set < \ pii \ > \ q;
31
   bool dijkstra (int src, int dst) {
32
     REP(i, 0, N) dist[i] = INF;
      dist[src] = 0;
33
34
      q.insert (mp(0, 0));
35
36
      while (size (q)) {
37
         pii tmp = (*q.begin());
38
         \mathbf{int} \ v = \mathrm{tmp.sc} \, , \ d = \mathrm{tmp.fs} \, ;
39
        q.erase(q.begin());
40
        if(d != dist[v]) continue;
41
         for(int e = head[v]; e != -1; e = nxt[e]) {
42
43
           int u = to[e];
44
           if(\operatorname{capa}[e] > \operatorname{flow}[e] \;\&\& \; \operatorname{dist}[u] > \operatorname{dist}[v] + \operatorname{cost}[e] - \operatorname{pi}[v] + \operatorname{pi}[u]) \; \{
45
              dist\,[\,u\,] \,=\, dist\,[\,v\,] \,+\, cost\,[\,e\,] \,-\, pi\,[\,v\,] \,+\, pi\,[\,u\,]\,;
46
              prve[u] = e;
47
             q.insert( mp(dist[u], u));
48
49
        }
50
51
      return dist[dst] != INF;
52
53
54
    pii minCostMaxFlow(int src, int dst) {
55
      if (!fordBellman(src, dst)) return mp(0, 0);
56
      int sumFlow = 0, sumCost = 0;
57
58
      do {
59
        int curFlow = INF, curCost = 0;
60
        int cur = dst;
61
         while(cur != src) {
62
           int e = prve[cur];
63
           curFlow = min(curFlow, capa[e] - flow[e]);
64
           curCost += cost[e];
65
           cur = from[e];
66
67
        cur = dst;
68
        while (cur != src) {
69
           int e = prve[cur];
70
           flow[e] += curFlow;
flow[e ^ 1] -= curFlow;
71
72
           cur = from[e];
73
74
        sumCost += curFlow * curCost;
75
         updatePotentials();
76
      } while(dijkstra(src, dst));
77
78
      return mp(sumFlow, sumCost);
79
```

## 2.7 Strongly Connected Components

```
// need: graph (head, to, nxt), reverse graph (rhead, rto, rnxt)
   // used, compID, order
   void dfs1(int v) {
3
4
     used[v] = true;
5
     for(int e = head[v]; e != -1; e = nxt[e]) {
6
       if (! used [to [e]]) dfs1 (to [e]);
7
8
     order.pb(v);
9
10 void dfs2 (int v, int id) {
11
     used[v] = true;
12
     compID[v] = id;
13
     for(int e = rhead[v]; e != -1; e = rnxt[e]) {
       if (!used[ rto[e] ]) dfs2(rto[e]);
14
15
16 }
17 void main() {
    _(used, false);
```

```
REP(i, 0, N)
19
20
       if (!used[i]) dfs1(i);
21
      (used, false);
22
     int id = 0;
23
     REPD(i, 0, N)  {
24
       int v = order[i];
25
       if (!used[v]) dfs2(v, id++);
26
27
```

## 2.8 2-SAT

```
Problem: (a \lor c) \& (a \lor !b) \& \dots
Edges: (a \lor b) is equivalent to (!a \Rightarrow b) \lor (!b \Rightarrow a)
Solution: there is no solution iff for some x \ compID[x] = compID[!x], else see code below
```

```
 // \ need: \ graph \, , \ scc \\ \textbf{int} \ main() \ \{
 2
3
       (used, false);
      \overline{REP}(i, 0, N)
 4
5
         if (!used[i]) dfs1 (i);
 6
 7
       (\text{compID}, -1);
      \overline{\mathbf{i}}\mathbf{n}\mathbf{t} id = 0;
 9
      REPD(\;i\;,\;\;0\;,\;\;N)\;\;\{
        int v = order[i];
10
11
         if (comp[v] = -1) dfs2(v, id++);
12
13
      REP(\,i\,\,,\,\,\,0\,,\,\,N)
14
15
         if (compID[i] == compID[i^1]) {
16
           puts ("NO SOLUTION");
17
           \mathbf{return} \ \ 0\,;
18
19
      REP(i, 0, N) {
20
         21
         printf ("%d ", ans);
22
23 }
```

## 3 Linear Algebra

#### 3.1 Gauss Elimination

```
//Ax = B. RETURN: determinant, A \rightarrow A^{(-1)}, B \rightarrow solution
   typedef double T;
   typedef vector<T> VT;
   typedef vector < VT> VVT;
 5
 6
   T Gauss Jordan (VVT &a, VT &b) {
 7
      \mathbf{const} int n = a.size();
 8
      ve < int > irow(n), icol(n), ipiv(n);
 9
     T \det = 1;
10
11
     REP(i, 0, n) {
12
        int pj = -1, pk = -1;
13
        REP(j, 0, n) if (!ipiv[j])
          REP(k, 0, n) if (!ipiv[k])
14
15
             if (pj = -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
        if \ (fabs(a[pj][pk]) < EPS) \ \{ \ cerr << "Matrix is singular." << endl; \ exit(0); \ \} \\
16
        ipiv [pk]++;
17
        swap(a[pj], a[pk]);
swap(b[pj], b[pk]);
18
19
20
        if (pj != pk) det *= -1;
21
        irow[i] = pj;
22
        icol[i] = pk;
23
        T\ c\ =\ 1.0\ /\ a\,[\,pk\,]\,[\,pk\,]\,;
24
25
        det *= a[pk][pk];
26
        a[pk][pk] = 1.0;
        \begin{array}{lll} & \text{REP}(p, \ 0, \ n) & a[pk][p] \ *= \ c \, ; \\ & b[pk] \ *= \ c \, ; \end{array}
27
28
29
        REP(p, 0, n) \quad \textbf{if} \quad (p != pk) \quad \{
30
          c = a[p][pk];
31
          a\,[\,p\,]\,[\,pk\,] \ = \ 0\,;
32
          33
          b[p] = b[pk] * c;
34
35
36
37
     REPD(p, 0, n) if (irow[p] != icol[p]) {
38
        REP(k, 0, n) swap(a[k][irow[p]], a[k][icol[p]]);
39
40
41
     return det;
42
```

#### 3.2 Fast-Fourier Transform

```
typedef complex<double> base;
 3
    void fft (vector<base> & a, bool invert) {
      int n = (int) a.size();
 4
 6
      \mbox{for } (\mbox{int} \ i \ = \ 1 \, , \ j \ = \ 0 \, ; \ i \ < \ n \, ; \ i + +) \ \{
 7
         int bit = n >> 1;
 8
         for (; j >= bit; bit >>= 1)
 9
           j — bit;
10
         j += bit;
11
         if (i < j) swap (a[i], a[j]);
12
13
14
      \mathbf{for} \ (\mathbf{int} \ \operatorname{len} \ = \ 2; \ \operatorname{len} \ <= \ \mathrm{n}; \ \operatorname{len} \ <<= \ 1) \ \{
15
         double ang = 2 * PI/len * (invert ? -1 : 1);
16
         base wlen (\cos(ang), \sin(ang));
17
         base w (1);
18
            \label{eq:formula} \mbox{for (int $j=0$; $j< len/2$; $j++$) } \{
19
20
              base u = a[i+j], v = a[i+j+len/2] * w;
21
              a\,[\;i\!+\!j\;]\;=\;u\;+\;v\,;
22
              a[i+j+len/2] = u - v;
```

## 3.3 Simplex

```
// maximize c^T x
 2
    //Ax \ll b
    // \ x > = 0
 3
 5
   struct LPSolver {
 6
      int m, n;
 7
      ve < int > B, N;
      ve<\ ve<\!\!\mathbf{double}\!\!>\ >\ D;
 8
 9
10
        LPSolver(\textbf{const} \ ve < ve < \textbf{double} > > \&A, \ \textbf{const} \ ve < \textbf{double} > \&b \,, \ \textbf{const} \ ve < \textbf{double} > \&c) \ :
         m(\texttt{b.size())} \;,\; n(\texttt{c.size())} \;,\; N(\texttt{n}+1) \;,\; B(\texttt{m}) \;,\; D(\texttt{m}+2, \; \texttt{ve} < \textbf{double} > (\texttt{n}+2)) \;\; \{
11
12
           REP(i, 0, m) REP(j, 0, n) D[i][j] = A[i][j];
            REP(i , 0, m) \{ B[i] = n+i ; D[i][n] = -1 ; D[i][n+1] = b[i]; \}
13
14
           REP(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
15
           N[n] = -1; D[m+1][n] = 1;
16
17
      void Pivot(int r, int s)
18
19
         REP(i, 0, m + 2) if (i != r)
           \overrightarrow{REP}(j, 0, n + 2) \quad if \quad (j != s)
20
21
              D[i][j] = D[r][j] * D[i][s] / D[r][s];
22
         REP(j, 0, n + 2) if (j != s) D[r][j] /= D[r][s];
          \begin{array}{l} \text{REP(i, 0, n + 2) if (i != r) D[i][s] /= -D[r][s];} \\ D[r][s] = 1.0 \ / \ D[r][s]; \\ \end{array} 
23
24
25
         swap(B[r], N[s]);
26
27
28
      bool Simplex(int phase) {
29
         int x = phase == 1 ? m+1 : m;
         while (true) {
30
31
            int s = -1;
32
            REP(j, 0, n + 1) {
33
               if (phase = 2 \&\& N[j] = -1) continue;
34
                \text{if } (s = -1 \mid \mid D[x][j] < D[x][s] \mid \mid D[x][j] = D[x][s] \&\& N[j] < N[s] ) \ s = j; \\ 
35
36
             if \ (D[x][s] >= -EPS) \ return \ true; \\
37
            \mathbf{int} \ r \ = \ -1;
38
           REP(i, 0, m) {
39
               \quad \textbf{if} \ (D[\ i\ ][\ s\ ] \ <= \ 0) \ \ \textbf{continue}\,;
40
                if \ (r = -1 \ || \ D[i][n+1] \ / \ D[i][s] < D[r][n+1] \ / \ D[r][s] \ || 
                    D[i][n+1] / D[i][s] = D[r][n+1] / D[r][s] & B[i] < B[r]) r = i;
41
42
43
            if (r = -1) return false;
44
            Pivot(r, s);
45
      }
46
47
48
       double Solve (ve<double> &x) {
49
         int r = 0;
50
         REP(i, 1, m) if (D[i][n+1] < D[r][n+1]) r = i;
51
         if (D[r][n+1] \le -EPS) {
52
            Pivot(r, n);
53
             \textbf{if} \quad (!\,\mathrm{Simplex}\,(1) \quad || \quad D[m+1][n+1] < -\mathrm{EPS}) \quad \textbf{return} \quad -\mathrm{numeric\_limits} < \textbf{double} > :: \mathrm{infinity}\,() \ ; \\ 
           REP(i, 0, m) if (B[i] = -1) {
54
55
               int s = -1;
56
              REP(j, 0, n+1)
57
                  if \ (s = -1 \ || \ D[i][j] < D[i][s] \ || \ D[i][j] = D[i][s] \ \&\& \ N[j] < N[s]) \ s = j; \\ 
58
               Pivot(i, s);
59
            }
60
61
         if (!Simplex(2)) return numeric limits<double>::infinity();
62
         x = ve < double > (n);
```

```
63 REP(i, 0, m) if (B[i] < n) x[B[i]] = D[i][n+1];
64 return D[m][n+1];
65 };
```

## 4 String Algorithms

### 4.1 Suffix Array

```
struct entry {
      int nr[2], p;
   } L[MAXN], tmp[MAXN];
   \#define \ eq(a, b) \ ((a).nr[0] == (b).nr[0] \&\& (a).nr[1] == (b).nr[1])
 4
 5 int cnt [MAXN], p[2][MAXN];
 7
   \mathbf{void} \ \ \mathrm{radixPass} \, (\, \mathrm{entry} \ * \ \mathrm{a} \, , \ \ \mathbf{int} \ \ \mathrm{N}, \ \ \mathbf{int} \ \ \mathrm{pass} \, , \ \ \mathbf{int} \ \ \mathrm{K}, \ \ \mathrm{entry} \ * \ \mathrm{b} \, ) \ \ \{
 8
      memset(cnt, 0, (K + 1) * sizeof(int));
      REP(i, 0, N) cnt[a[i].nr[pass]]++;
 9
10
      int sum = 0;
      REP(i, 0, K + 1) {
11
12
        sum += cnt[i];
13
        cnt[i] = sum - cnt[i];
14
      REP(i, 0, N) b[cnt[a[i].nr[pass]]++] = a[i];
15
16|}
17
18
   void makeSA(int * s , int N, int * suftab , int * isuftab) {
19
     REP(i, 0, N) p[0][i] = s[i];
20
      int k = 200;
      21
22
23
24
25
           L[i].p = i;
26
27
        radixPass(L, N, 1, k, tmp);
28
        radixPass(tmp, N, 0, k, L);
29
        k \; = \; 1 \, ;
30
        REP(i, 0, N)
31
           p[step][L[i].p] = i > 0 \&\& eq(L[i], L[i-1]) ?
32
             p[step][L[i-1].p] : k++;
33
34
        if(k > N) break;
35
36
      \hat{R}EP(i, 0, N) suftab[i] = L[i].p;
37
      REP(i, 0, N) isuftab[suftab[i]] = i;
38
39
40 void makeLCP(int * s, int * suftab, int * isuftab, int N, int * lcptab) {
41
      int cur = 0;
42
      REP(i, 0, N)
43
        if (isuftab[i] == 0) continue;
        {\bf int}\  \  {\rm ii}\  \, =\  \, {\rm i}\  \, +\  \, {\rm cur}\  \, ,\  \  \, {\rm jj}\  \, =\  \, {\rm suftab}\left[\,{\rm isuftab}\left[\,{\rm i}\,\right]\  \, -\  \, 1\,\right]\  \, +\  \, {\rm cur}\  \, ;
44
45
        while(ii < N && jj < N && s[ii] == s[jj]) ii++, jj++, cur++;
         lcptab [isuftab [i]] = cur--;
46
47
         if(cur < 0) cur = 0;
48
49
```

## 4.2 Suffix Tree from Suffix Array

```
struct Seg {
 1
 2
      \mathbf{int}\ \mathrm{lb}\ ,\ \mathrm{rb}\ ,\ \mathrm{lcp}\ ;
      vector < Seg*> childList;
 4
      void init(int l, int i, int j) {
 5
         lb = i; rb = j; lcp = l;
 6
 7
      void add(Seg * son) {
 8
         childList.pb(son);
 9
10
11 typedef Seg* pSeg;
12
13 struct Stack {
      pSeg\ segs\left[ M\!A\!X\!N<<\ 1\,\right];
14
15
      int size;
```

```
void push(pSeg seg) {
17
       segs[size++] = seg;
18
19
     pSeg pop() {
20
       return segs[--size];
21
22
     pSeg top() {
23
       return segs[size - 1];
24
25
   } stack;
26
27
   pSeg top() { return stack.top(); }
28
   void push(pSeg seg) { stack.push(seg); }
29
   pSeg pop() { return stack.pop(); }
31
   pSeg init(int lcp, int lb, int rb) {
32
     pSeg ret = new Seg;
33
     ret->init(lcp, lb, rb);
34
     {\bf return} \ {\rm ret} \ ;
35
36
   pSeg makeTree() {
37
38
     stack.size = 0;
     pSeg lastInterval = NULL;
39
     int lastSingleton = 0;
41
     stack.push(init(0, 0, -1));
42
     REP(i\ ,\ 1\ ,\ N)\ \{
43
       int lb = i - 1;
       pSeg singleton = init(N - suftab[i - 1] - 1, i - 1, i - 1);
44
45
        //process(singleton);
46
47
       while(lcptab[i] < top()->lcp) {
48
          if(singleton != NULL) {
49
            top()->add(singleton);
50
            singleton = NULL;
51
          top()->rb = i - 1;
52
          lastInterval = pop();
53
          //process(lastInterval);
54
55
          lb = lastInterval \rightarrow lb;
56
          \mathbf{if}\,(\,\mathrm{lcptab}\,[\,\mathrm{i}\,] \;<=\; \mathrm{top}\,(\,) -\!\!>\! \mathrm{lcp}\,) \quad \{
57
            top()->add(lastInterval);
58
            lastInterval = NULL;
59
60
61
        if(lcptab[i] > top()->lcp)
62
          if(lastInterval != NULL)
63
            pSeg seg = init(lcptab[i], lb, -1);
64
            seg->add(lastInterval);
65
            push(seg);
66
            lastInterval = NULL;
67
          } else push(init(lcptab[i], lb, -1));
68
69
       if(singleton != NULL) {
70
          top()->add(singleton);
71
72
73
     assert(stack.size == 1);
74
     //process(top());
75
     return top();
76
```

#### 4.3 Z-function

```
9 | if (i+z[i]-1 > r)
10 | l = i, r = i+z[i]-1;
11 | }
12 | return z;
13 | }
```

#### 4.4 Suffix Automata

```
struct state {
     int len, link;
 3
     map < char, int > next;
 4
   };
   \verb|state| st [MAXLEN*2|;
   int sz, last;
 8
 9
   void sa_init() {
10
     sz = last = 0;
      st[0].len = 0;
11
12
      st[0]. link = -1;
13
     ++sz;
14
15
16
   \mathbf{void} \ \mathbf{sa\_extend} \ (\mathbf{char} \ \mathbf{c}) \ \{
17
      \mathbf{int} \ \mathbf{cur} \ = \ \mathbf{sz} +\!\!+\!\! ;
18
      st[cur].len = st[last].len + 1;
19
      int p;
      for (p=last; p!=-1 && !st[p].next.count(c); p=st[p].link)
20
21
        st[p].next[c] = cur;
22
      if (p = -1)
        st\,[\,cur\,]\,.\,link\ =\ 0\,;
23
24
      else {
25
        int q = st[p].next[c];
26
        if (st[p].len + 1 = st[q].len)
27
           st[cur].link = q;
28
        \mathbf{else} \ \{
29
          int clone = sz++;
30
           st[clone].len = st[p].len + 1;
           st[clone].next = st[q].next;
31
32
           st[clone].link = st[q].link;
33
           for (; p!=-1 \&\& st[p].next[c]==q; p=st[p].link)
34
             st[p].next[c] = clone;
35
           st[q]. link = st[cur]. link = clone;
36
37
38
      last = cur;
39
```

#### 4.5 Palindromes

```
for (i = 0; i < n; i++)
 2
      if(i > r) k = 1;
 3
      else k = \min(d1[l + r - i], r - i);
 4
 5
      while (0 \le i-k \&\& i+k < n \&\& s[i-k] == s[i+k]) k++;
 6
      d1[i] = k;
 7
      \mathbf{if}(\mathbf{i} + \mathbf{k} - 1 > \mathbf{r})
 8
        r = i + k - 1, l = i - k + 1;
9
10
11
   \mbox{for}\,(\,i\ =\ 0\,;\ i\ <\ n\,;\ i++)\{
12
      if(i > r) k = 0;
13
      else k = \min(d2[1 + r - i + 1], r - i + 1);
14
15
      while (i + k < n \& i - k - 1 >= 0 \& s[i+k] == s[i - k - 1]) k++;
16
      d2[i] = k;
17
18
      if(i + k - 1 > r)
19
        l \; = \; i \; - \; k \, , \; \; r \; = \; i \; + \; k \; - \; 1 \, ;
20
```

## 4.6 Lyndon decomposition & Duval

```
// Lyndon decomposition
   for(int i = 0; i < n;) {
      int j=i+1, k=i;
 4
      while (j < n \&\& s[k] <= s[j]) {
 5
         if (s[k] < s[j])
 6
           k = i;
         _{
m else}
           ++k;
 9
         ++j;
10
11
       \mathbf{while} (i <= k) {
12
         cout \ll s.substr(i, j-k) \ll ';
13
         i \ += \ j \ - \ k \, ;
14
15 }
16
17
    string \min\_\operatorname{cyclic\_shift} (string s) {
18
      s += s;
19
      int n = (int) s.length();
20
      int i=0, ans=0;
21
      \mathbf{while} \ (\, i \, < \, n/2) \ \{\,
22
         ans = i;
23
         int j=i+1, k=i;
         while (j < n \&\& s[k] <= s[j]) { if (s[k] < s[j])
24
25
26
              k \; = \; i \; ;
27
            _{
m else}
28
               +\!\!+\!\!k;
29
           ++j;
30
31
         \mathbf{while} \ (\mathtt{i} \mathrel{<=} \mathtt{k}) \quad \mathtt{i} \mathrel{+=} \mathtt{j} - \mathtt{k};
32
33
      return s.substr (ans, n/2);
34 }
```

#### 5 Modular

```
All \ algorithms \ described \ here \ work \ on \ nonnegative \ integers \, .
 3
   // return a \% b (positive value)
 4 int mod(int a, int b) {
    return ((a%b)+b)%b;
 6
 8
   // computes gcd(a,b)
 9 int gcd(int a, int b) {
10
     int tmp;
11
     while(b){a%=b; tmp=a; a=b; b=tmp;}
12
13 }
14
15
   // computes lcm(a,b)
16 int lcm(int a, int b) {
17
     return a/\gcd(a,b)*b;
18
19
   //\ returns\ d=gcd(a,b);\ finds\ x,y\ such\ that\ d=ax+by
20
21
  int extended_euclid(int a, int b, int &x, int &y) {
22
     int xx = y = 0;
23
     int yy = x = 1;
24
     while (b) {
25
       \quad \textbf{int} \ q \, = \, a/b \, ;
26
       int t = b; b = a\%b; a = t;
27
       t = xx; xx = x-q*xx; x = t;
28
       t = yy; yy = y-q*yy; y = t;
29
30
     return a;
31
32
33
   // finds all solutions to ax = b \pmod{n}
34 ve<int> modular linear equation solver(int a, int b, int n) {
35
     int x, y;
36
     ve<int> solutions;
37
     int d = extended_euclid(a, n, x, y);
38
     if (!(b%d)) {
39
       x = mod (x*(b/d), n);
40
       \mbox{ for } (\mbox{ int } i = 0; \ i < d; \ i++)
41
          solutions.push back(mod(x + i*(n/d), n));
42
43
     return solutions;
44
45
46
    // computes b such that ab = 1 \pmod{n}, returns -1 on failure
47 int mod_inverse(int a, int n) {
     int x, y;
     \mathbf{int}\ d = \mathtt{extended\_euclid}(\mathtt{a}\,,\ \mathtt{n}\,,\ \mathtt{x}\,,\ \mathtt{y})\,;
49
50
     if (d > 1) return -1;
51
     return \mod(x,n);
52 }
53
54
   // find z such that z % x=a, z % y=b. Here, z is unique modulo M=lcm(x,y).
55
   // Return (z,M). On failure, M=-1.
   pii chinese_remainder_theorem(int x, int a, int y, int b) {
56
57
     int s, t;
58
     int d = extended_euclid(x, y, s, t);
59
     if (a\%d != b\%d) return make_pair(0, -1);
60
     return make pair(mod(s*b*x+\overline{t*a*y},x*y)/d, x*y/d);
61
62
63
   // Chinese remainder theorem: find z such that
   // z % x[i] = a[i] for all i. Note that the solution is
64
   // unique modulo M = lcm \ i \ (x[i]). Return (z,M). On failure, M = -1.
66 pii chinese_remainder_theorem(const ve<int> &x, const ve<int> &a) {
     pii ret = make_pair(a[0], x[0]);
68
     for (int i = 1; i < x.size(); i++) {
       ret = chinese\_remainder\_theorem(ret.second, ret.first, x[i], a[i]);
69
70
       if (ret.second = -1) break;
71
     }
     return ret;
```

|                                                                                                                                                                                                                  | Theoretical                                                                                                                                                                                                                                                                       | Computer Science Cheat Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                  | Definitions                                                                                                                                                                                                                                                                       | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| f(n) = O(g(n))                                                                                                                                                                                                   | iff $\exists$ positive $c, n_0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$ .                                                                                                                                                                                            | $\sum_{i=1}^{n} i = \frac{n(n+1)}{2},  \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},  \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| $f(n) = \Omega(g(n))$                                                                                                                                                                                            | iff $\exists$ positive $c, n_0$ such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$ .                                                                                                                                                                                            | i=1 $i=1$ $i=1$ $i=1$ In general:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $f(n) = \Theta(g(n))$                                                                                                                                                                                            | iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ .                                                                                                                                                                                                                                  | $\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[ (n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left( (i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| f(n) = o(g(n))                                                                                                                                                                                                   | iff $\lim_{n\to\infty} f(n)/g(n) = 0$ .                                                                                                                                                                                                                                           | $\sum_{k=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $\lim_{n \to \infty} a_n = a$                                                                                                                                                                                    | iff $\forall \epsilon > 0$ , $\exists n_0$ such that $ a_n - a  < \epsilon$ , $\forall n \ge n_0$ .                                                                                                                                                                               | Geometric series:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $\sup S$                                                                                                                                                                                                         | least $b \in \mathbb{R}$ such that $b \ge s$ , $\forall s \in S$ .                                                                                                                                                                                                                | $\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1},  c \neq 1,  \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c},  \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c},   c  < 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $\inf S$                                                                                                                                                                                                         | greatest $b \in \mathbb{R}$ such that $b \le s$ , $\forall s \in S$ .                                                                                                                                                                                                             | $\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}},  c \neq 1,  \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}},   c  < 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| $ \liminf_{n \to \infty} a_n $                                                                                                                                                                                   | $\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$                                                                                                                                                                                                              | Harmonic series: $n = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 = n + 1 =$ |  |  |  |
| $\limsup_{n \to \infty} a_n$                                                                                                                                                                                     | $\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$                                                                                                                                                                                                              | $H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $\binom{n}{k}$                                                                                                                                                                                                   | Combinations: Size $k$ subsets of a size $n$ set.                                                                                                                                                                                                                                 | $\sum_{i=1}^{n} H_i = (n+1)H_n - n,  \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left( H_{n+1} - \frac{1}{m+1} \right).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| $\begin{bmatrix} n \\ k \end{bmatrix}$                                                                                                                                                                           | Stirling numbers (1st kind):<br>Arrangements of an $n$ element set into $k$ cycles.                                                                                                                                                                                               | 1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ , 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ , 3. $\binom{n}{k} = \binom{n}{n-k}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| $\left\{ egin{array}{c} n \\ k \end{array} \right\}$                                                                                                                                                             | Stirling numbers (2nd kind):<br>Partitions of an $n$ element<br>set into $k$ non-empty sets.                                                                                                                                                                                      | $4.  \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5.  \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6.  \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7.  \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| $\left\langle {n\atop k}\right\rangle$                                                                                                                                                                           | 1st order Eulerian numbers:<br>Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with $k$ ascents.                                                                                                                                                                                 | $8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n-1} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| $\langle\!\langle {n \atop k} \rangle\!\rangle$                                                                                                                                                                  | 2nd order Eulerian numbers.                                                                                                                                                                                                                                                       | <b>10.</b> $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$ , <b>11.</b> $\binom{n}{1} = \binom{n}{n} = 1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $C_n$                                                                                                                                                                                                            | Catalan Numbers: Binary trees with $n+1$ vertices.                                                                                                                                                                                                                                | <b>13.</b> $\binom{n}{2} = 2^{n-1} - 1,$ <b>13.</b> $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| $14. \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$                                                                                                                                                               | 1)!, <b>15.</b> $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)$                                                                                                                                                                                                                  | $16. \ \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \ \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   | $\left\{ egin{aligned} n \ -1 \end{aligned} \right\} = \left[ egin{aligned} n \ n-1 \end{aligned} \right] = \left( egin{aligned} n \ 2 \end{aligned} \right),  20. \ \sum_{k=0}^n \left[ egin{aligned} n \ k \end{aligned} \right] = n!,  21. \ C_n = rac{1}{n+1} {2n \choose n}, \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| $22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n} \right\rangle$                                                                                                                            | $\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$                                                                                                                                                                                                                            | $\binom{n}{n-1-k}$ , $24. \ \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| <b>25.</b> $\binom{0}{k} = \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$                                                                                                                                                 | <b>25.</b> $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ <b>26.</b> $\begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ <b>27.</b> $\begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $28. \ \ x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n}, \qquad 29. \ \ \binom{n}{m} = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m},$ |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n}$                                                                                                                                                    | $ {n \choose k} {n-k \choose m} (-1)^{n-k-m} k!, $                                                                                                                                                                                                                                | <b>32.</b> $\left\langle \left\langle {n\atop 0} \right\rangle \right\rangle = 1,$ <b>33.</b> $\left\langle \left\langle {n\atop n} \right\rangle \right\rangle = 0$ for $n \neq 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $34. \; \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle \!\! \right\rangle = (k - 1)^n$                                                                               | $+1$ $\binom{n-1}{k}$ $+(2n-1-k)$ $\binom{n-1}{k}$                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $36.  \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$                                                                                                                                      | $\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left( \!\! \left\langle x+n-1-k \right\rangle \!\! \right),$                                                                                                                                   | 37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

Identities Cont.

# 

**42.** 
$$\left\{ {m+n+1 \atop m} \right\} = \sum_{k=0}^m k \left\{ {n+k \atop k} \right\},$$
 **43.** 
$$\left[ {m+n+1 \atop m} \right] = \sum_{k=0}^m k(n+k) \left[ {n+k \atop k} \right],$$

**44.** 
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

**46.** 
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose n+k},$$
 **47.** 
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

$$\mathbf{48.} \ \left\{ \begin{array}{l} n \\ \ell+m \end{array} \right\} \binom{\ell+m}{\ell} = \sum_{k} \left\{ \begin{array}{l} k \\ \ell \end{array} \right\} \binom{n-k}{m} \binom{n}{k}, \qquad \mathbf{49.} \ \left[ \begin{array}{l} n \\ \ell+m \end{array} \right] \binom{\ell+m}{\ell} = \sum_{k} \left[ \begin{array}{l} k \\ \ell \end{array} \right] \binom{n-k}{m} \binom{n}{k}.$$

Trees

Every tree with n vertices has n-1 edges.

Kraft inequality: If the depths of the leaves of a binary tree are  $d_1, \ldots, d_n$ :

$$d_1, \dots, d_n$$
:  

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

#### Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If  $\exists \epsilon > 0$  such that  $f(n) = O(n^{\log_b a - \epsilon})$  then

$$T(n) = \Theta(n^{\log_b a}).$$

If 
$$f(n) = \Theta(n^{\log_b a})$$
 then 
$$T(n) = \Theta(n^{\log_b a} \log_2 n).$$

If  $\exists \epsilon > 0$  such that  $f(n) = \Omega(n^{\log_b a + \epsilon})$ , and  $\exists c < 1$  such that  $af(n/b) \leq cf(n)$  for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that  $T_i$  is always a power of two. Let  $t_i = \log_2 T_i$ . Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let  $u_i = t_i/2^i$ . Dividing both sides of the previous equation by  $2^{i+1}$  we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply  $u_i = i/2$ . So we find that  $T_i$  has the closed form  $T_i = 2^{i2^{i-1}}$ . Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
,  $T(1) = 1$ .

Rewrite so that all terms involving T are on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
...

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let  $m = \log_2 n$ . Summing the left side we get  $T(n) - 3^m T(1) = T(n) - 3^m = T(n) - n^k$  where  $k = \log_2 3 \approx 1.58496$ . Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let  $c = \frac{3}{2}$ . Then we have

$$n \sum_{i=0}^{m-1} c^{i} = n \left( \frac{c^{m} - 1}{c - 1} \right)$$

$$= 2n(c^{\log_{2} n} - 1)$$

$$= 2n(c^{(k-1)\log_{c} n} - 1)$$

$$= 2n^{k} - 2n,$$

and so  $T(n) = 3n^k - 2n$ . Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$
  
=  $T_i$ .

And so 
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by  $x^i$ .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually  $G(x) = \sum_{i=0}^{\infty} x^i g_i$ .
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of  $x^i$  in G(x) is  $g_i$ . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:

$$\sum_{i\geq 0}^{1} g_{i+1} x^i = \sum_{i\geq 0}^{1} 2g_i x^i + \sum_{i\geq 0}^{1} x^i.$$

We choose  $G(x) = \sum_{i \geq 0} x^i g_i$ . Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:

$$G(x) = x \left( \frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$

$$= x \left( 2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So 
$$g_i = 2^i - 1$$
.

 $1\ 10\ 45\ 120\ 210\ 252\ 210\ 120\ 45\ 10\ 1$ 

|                             | Theoretical Computer Science Cheat Sheet    |          |                                                                                                                                          |                                                                                                    |  |  |
|-----------------------------|---------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|                             | $\pi \approx 3.14159, \qquad e \approx 2.7$ |          | 1828, $\gamma \approx 0.57721$ , $\phi = \frac{1+\sqrt{5}}{2} \approx$                                                                   | 1.61803, $\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$                                        |  |  |
| i                           | $2^i$                                       | $p_i$    | General                                                                                                                                  | Probability                                                                                        |  |  |
| 1                           | 2                                           | 2        | Bernoulli Numbers ( $B_i = 0$ , odd $i \neq 1$ ):                                                                                        | Continuous distributions: If                                                                       |  |  |
| 2                           | 4                                           | 3        | $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$                                                                   | $\Pr[a < X < b] = \int_{-\infty}^{\infty} p(x)  dx,$                                               |  |  |
| 3                           | 8                                           | 5        | $B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$                                                                        | Ja                                                                                                 |  |  |
| 4                           | 16                                          | 7        | Change of base, quadratic formula:                                                                                                       | then $p$ is the probability density function of $X$ . If                                           |  |  |
| 5                           | 32                                          | 11       | $\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$                                                       | $\Pr[X < a] = P(a),$                                                                               |  |  |
| 6                           | 64                                          | 13       |                                                                                                                                          | then $P$ is the distribution function of $X$ . If                                                  |  |  |
| 7                           | 128                                         | 17       | Euler's number $e$ :<br>$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$                                      | P and $p$ both exist then                                                                          |  |  |
| 8                           | 256                                         | 19       | 2 0 24 120                                                                                                                               | $P(a) = \int_{-a}^{a} p(x)  dx.$                                                                   |  |  |
| 9                           | 512                                         | 23       | $\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n = e^x.$                                                                            | $J_{-\infty}$ Expectation: If X is discrete                                                        |  |  |
| 10                          | 1,024                                       | 29       | $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ .                                                                  |                                                                                                    |  |  |
| 11                          | 2,048                                       | 31       | $\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$                                   | $E[g(X)] = \sum_{x} g(x) \Pr[X = x].$                                                              |  |  |
| 12                          | 4,096                                       | 37       | $\left(1 + \frac{1}{n}\right) = e - \frac{1}{2n} + \frac{1}{24n^2} - O\left(\frac{1}{n^3}\right).$                                       | If $X$ continuous then                                                                             |  |  |
| 13                          | 8,192                                       | 41       | Harmonic numbers:                                                                                                                        | $E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$              |  |  |
| 14<br>15                    | 16,384<br>32,768                            | 43<br>47 | $1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$ | $J = \infty$                                                                                       |  |  |
| 16                          | 65,536                                      | 53       | 1                                                                                                                                        | Variance, standard deviation:<br>$VAR[X] = E[X^{2}] - E[X]^{2},$                                   |  |  |
| 17                          | 131,072                                     | 59       | $ \ln n < H_n < \ln n + 1, $                                                                                                             | $\sigma = \sqrt{\text{VAR}[X]}.$                                                                   |  |  |
| 18                          | 262,144                                     | 61       | $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$                                                                                      | $\sigma = \sqrt{VAR[X]}.$ For events A and B:                                                      |  |  |
| 19                          | 524,288                                     | 67       | Factorial, Stirling's approximation:                                                                                                     | $\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$                                                |  |  |
| 20                          | 1,048,576                                   | 71       | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,                                                                                              | $\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$                                                           |  |  |
| 21                          | 2,097,152                                   | 73       |                                                                                                                                          | iff $A$ and $B$ are independent.                                                                   |  |  |
| 22                          | 4,194,304                                   | 79       | $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$                                         |                                                                                                    |  |  |
| 23                          | 8,388,608                                   | 83       | Ackermann's function and inverse:                                                                                                        | $\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$                                                         |  |  |
| 24                          | 16,777,216                                  | 89       |                                                                                                                                          | For random variables $X$ and $Y$ :                                                                 |  |  |
| 25                          | 33,554,432                                  | 97       | $a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$                                        | $E[X \cdot Y] = E[X] \cdot E[Y],$                                                                  |  |  |
| 26                          | 67,108,864                                  | 101      |                                                                                                                                          | if $X$ and $Y$ are independent.                                                                    |  |  |
| 27                          | 134,217,728                                 | 103      | $\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$                                                                                               | E[X+Y] = E[X] + E[Y],                                                                              |  |  |
| 28                          | 268,435,456                                 | 107      | Binomial distribution:                                                                                                                   | $\mathrm{E}[cX] = c\mathrm{E}[X].$ Bayes' theorem:                                                 |  |  |
| 29                          | 536,870,912                                 | 109      | $\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$                                                                                 |                                                                                                    |  |  |
| 30                          | 1,073,741,824                               | 113      | ` '                                                                                                                                      | $\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$                         |  |  |
| 31                          | 2,147,483,648                               | 127      | $E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$                                                                                 | Inclusion-exclusion:                                                                               |  |  |
| 32                          | 4,294,967,296                               | 131      | $\frac{k=1}{k=1} $ Poisson distribution:                                                                                                 | $\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$                                |  |  |
| Pascal's Triangle           |                                             |          | $\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!},  E[X] = \lambda.$                                                                       | i=1 $i=1$ $i=1$                                                                                    |  |  |
| 1<br>1 1                    |                                             |          | n:                                                                                                                                       | $\sum_{k=1}^{n} \binom{n}{k+1} \sum_{k=1}^{n} \binom{k}{k} \binom{k}{k}$                           |  |  |
| 1 2 1                       |                                             |          | Normal (Gaussian) distribution:                                                                                                          | $\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$  |  |  |
| 1 3 3 1                     |                                             |          | $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2},  E[X] = \mu.$                                                              | Moment inequalities:                                                                               |  |  |
| 1 4 6 4 1                   |                                             |          | The "coupon collector": We are given a                                                                                                   | $\Pr\left[ X  \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$                       |  |  |
| 1 5 10 10 5 1               |                                             |          | random coupon each day, and there are n                                                                                                  | Λ 1                                                                                                |  |  |
| 1 6 15 20 15 6 1            |                                             |          | different types of coupons. The distribu-<br>tion of coupons is uniform. The expected                                                    | $\Pr\left[\left X - \mathrm{E}[X]\right  \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$ |  |  |
| 1 7 21 35 35 21 7 1         |                                             |          | number of days to pass before we to col-                                                                                                 | Geometric distribution:                                                                            |  |  |
| 1 8 28 56 70 56 28 8 1      |                                             |          | lect all $n$ types is                                                                                                                    | $\Pr[X=k] = pq^{k-1}, \qquad q = 1 - p,$                                                           |  |  |
| 1 9 36 84 126 126 84 36 9 1 |                                             |          | $nH_n$ .                                                                                                                                 | $E[X] = \sum_{k} kpq^{k-1} = \frac{1}{\pi}.$                                                       |  |  |

#### Trigonometry



Pythagorean theorem:  $C^2 = A^2 + B^2. \label{eq:constraint}$ 

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
,  $\frac{AB}{A+B+C}$ .

Identities: 
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$
 
$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$
 
$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$
 
$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$
 
$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$
 
$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{\pi}{2} - \cot x,$$
 
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$
 
$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$
 
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

 $\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$ 

$$\cot(x \pm y) = \cot x \pm \cot y$$

$$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x$$
,  $\cos 2x = 2\cos^2 x - 1$ ,

$$\cos 2x = 1 - 2\sin^2 x,$$
  $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$ 

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x - 1}{2\cot x},$$

 $\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$ 

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

#### Matrices

Multiplication:

$$C = A \cdot B$$
,  $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$ .

Determinants:  $\det A \neq 0$  iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 $2 \times 2$  and  $3 \times 3$  determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$aei + bfa + cdh$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

## Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \coth x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

 $2\sinh^2\frac{x}{2} = \cosh x - 1$ ,  $2\cosh^2\frac{x}{2} = \cosh x + 1$ .

| $\theta$        | $\sin \theta$        | $\cos \theta$        | $\tan \theta$        | in mathematics                        |
|-----------------|----------------------|----------------------|----------------------|---------------------------------------|
| 0               | 0                    | 1                    | 0                    | you don't under-<br>stand things, you |
| $\frac{\pi}{6}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ | just get used to                      |
| $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    | them.                                 |
| $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | – J. von Neumann                      |
| $\frac{\pi}{2}$ | 1                    | 0                    | $\infty$             |                                       |

#### More Trig.



 $c^2 = a^2 + b^2 - 2ab\cos C.$ 

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities: 
$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}},$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2i},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x = \frac{\sinh ix}{i},$$

 $\cos x = \cosh ix$  $\tan x = \frac{\tanh ix}{i}.$ 

Definitions:

Number Theory The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$ 

: : :

 $C \equiv r_n \bmod m_n$ 

if  $m_i$  and  $m_j$  are relatively prime for  $i \neq j$ . Euler's function:  $\phi(x)$  is the number of positive integers less than x relatively prime to x. If  $\prod_{i=1}^{n} p_i^{e_i}$  is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

$$1 \equiv a^{\phi(b)} \bmod b.$$

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$gcd(a, b) = gcd(a \mod b, b).$$

If  $\prod_{i=1}^{n} p_i^{e_i}$  is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff  $x = 2^{n-1}(2^n-1)$  and  $2^n-1$  is prime. Wilson's theorem: n is a prime iff  $(n-1)! \equiv -1 \mod n$ .

Möbius inversion:
$$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of } \\ r & \text{distinct primes.} \end{cases}$$

$$G(a) = \sum_{d|a} F(d),$$

then

$$F(a) = \sum_{d|a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

the numbers. 
$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n} + O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

# Graph Theory

| Loop | An edge connecting a ver- |
|------|---------------------------|
|      | tex to itself.            |

DirectedEach edge has a direction. SimpleGraph with no loops or multi-edges.

WalkA sequence  $v_0e_1v_1\ldots e_\ell v_\ell$ . TrailA walk with distinct edges. Pathwith distinct A trail vertices.

ConnectedA graph where there exists a path between any two vertices.

Component Α maximal connected subgraph.

Tree A connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

each vertex exactly once. CutA set of edges whose re-

Hamiltonian Graph with a cycle visiting

moval increases the number of components. A minimal cut.

Cut-set $Cut\ edge$ A size 1 cut. k-Connected A graph connected with

the removal of any k-1vertices.

 $\forall S \subseteq V, S \neq \emptyset$  we have k-Tough  $k \cdot c(G - S) \le |S|$ .

k-Regular A graph where all vertices have degree k.

k-Factor k-regular spanning subgraph.

A set of edges, no two of Matching which are adjacent.

CliqueA set of vertices, all of which are adjacent.

A set of vertices, none of Ind. set which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar graph.

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n-m+f=2, so  $f \le 2n - 4, \quad m \le 3n - 6.$ 

$$0 \le 2n = 4$$
,  $m \le 3n = 0$ .

Any planar graph has a vertex with de-

#### Notation:

E(G)Edge set

V(G)Vertex set

Number of components c(G)G[S]Induced subgraph

deg(v)Degree of v

 $\Delta(G)$ Maximum degree

 $\delta(G)$ Minimum degree

 $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number Complement graph  $G^c$ 

 $K_n$ Complete graph

 $K_{n_1,n_2}$ Complete bipartite graph

 $r(k, \ell)$ Ramsey number

#### Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

#### Cartesian Projective

$$\begin{array}{ll} (x,y) & (x,y,1) \\ y = mx + b & (m,-1,b) \\ x = c & (1,0,-c) \end{array}$$

Distance formula,  $L_p$  and  $L_{\infty}$ 

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p}.$$

$$\lim_{p \to \infty} \left[ |x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle  $(x_0, y_0), (x_1, y_1)$ and  $(x_2, y_2)$ :

$$\frac{1}{2}$$
 abs  $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$ .

Angle formed by three points:



Line through two points  $(x_0, y_0)$ and  $(x_1, y_1)$ :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others. it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:  $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$ 

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left( 1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

#### Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)}$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

where

$$A_k = \frac{1}{k!} \left[ \frac{d^k}{dx^k} \left( \frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Calculus

Derivatives:

1. 
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

2. 
$$\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

1. 
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2.  $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ , 3.  $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ 

$$4. \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx},$$

**4.** 
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \textbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \textbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx},$$

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7. 
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$\mathbf{10.} \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11. 
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

12. 
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13. 
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14. 
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

$$15. \ \frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$$

**16.** 
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17. 
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

**18.** 
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19. 
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

20. 
$$\frac{d(\operatorname{arccsc} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

21. 
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22. 
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23. 
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

**24.** 
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25. 
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

**26.** 
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27. 
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28. 
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30. 
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31. 
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

32. 
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3. 
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1,$$

**4.** 
$$\int \frac{1}{x} dx = \ln x$$
, **5.**  $\int e^x dx = e^x$ ,

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7. 
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8. 
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12. 
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

**12.** 
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.**  $\int \csc x \, dx = \ln|\csc x + \cot x|$ ,

14. 
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0$$

Calculus Cont.

15. 
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

**16.** 
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17. 
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

**18.** 
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

**21.** 
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$
 **22.** 
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

**22.** 
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

**23.** 
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

**24.** 
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

**25.** 
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

**26.** 
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx$$
,  $n \neq 1$ , **27.**  $\int \sinh x \, dx = \cosh x$ , **28.**  $\int \cosh x \, dx = \sinh x$ ,

**29.** 
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.**  $\int \coth x \, dx = \ln |\sinh x|$ , **31.**  $\int \operatorname{sech} x \, dx = \arctan \sinh x$ , **32.**  $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$ ,

**33.** 
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

**33.** 
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 **34.** 
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

**35.** 
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

**36.** 
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37. 
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

**38.** 
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

**39.** 
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

**40.** 
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

**41.** 
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

**42.** 
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

**43.** 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 **44.** 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 **45.** 
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

44. 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right|,$$

**45.** 
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

**46.** 
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

**47.** 
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48. 
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

**49.** 
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

**50.** 
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51. 
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

**52.** 
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

**53.** 
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

**54.** 
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

**55.** 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

$$\mathbf{56.} \int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57. 
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

**58.** 
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

**59.** 
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

**60.** 
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

**61.** 
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

**65.**  $\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^3},$ 

Calculus Cont.

**62.** 
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0,$$
 **63.**  $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$ 

**64.** 
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

**66.** 
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

**67.** 
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

**68.** 
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

**69.** 
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70. 
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71. 
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

**72.** 
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73. 
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$
,

**74.** 
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

**75.** 
$$\int x^n \ln(ax) \, dx = x^{n+1} \left( \frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

**76.** 
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$
  
 
$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + E v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \quad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$(c^{-1}) \equiv (c-1)c^{-1}, \qquad \Delta(m) \equiv (m-1)c^{-1}$$

 $\sum cu \, \delta x = c \sum u \, \delta x,$ 

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$
  
 $x^{\underline{0}} = 1.$ 

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^0 = 1$$
.

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$
  
=  $1/(x + 1)^{\overline{-n}}$ .

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$= 1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-cx} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} c^i x^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots = \sum_{i=0}^{\infty} i^n x^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{2x}(1 - \sqrt{1-4x}) = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i,$$

$$\frac{x}{1-x} + \frac{x}{1-x} + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If  $b_i = \sum_{i=0}^i a_i$  then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left( \sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Series

Escher's Knot

Expansions:

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{\frac{-n}{n}} = \sum_{i=0}^{\infty} \begin{cases} i \\ n \end{cases} x^i,$$

$$x^{\overline{n}} = \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \begin{cases} i \\ n \end{bmatrix} \frac{n!}{i!},$$

$$\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1)B_{2i}x^{2i-1}}{(2i)!},$$

$$\frac{1}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac$$

$$\begin{aligned}
\left(\frac{1}{x}\right)^{\overline{n}} &= \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i}, \\
\left(e^{x} - 1\right)^{n} &= \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n! x^{i}}{i!}, \\
x \cot x &= \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!}, \\
\frac{B_{2i} x^{2i-1}}{!}, \qquad \zeta(x) &= \sum_{i=1}^{\infty} \frac{1}{i^{x}}, \\
\frac{\zeta(x-1)}{\zeta(x)} &= \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},
\end{aligned}$$



## Stieltjes Integration

If G is continuous in the interval [a,b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let  $A = (a_{i,j})$  and B be the column matrix  $(b_i)$ . Then there is a unique solution iff  $\det A \neq 0$ . Let  $A_i$  be A with column i replaced by B. Then  $x_i = \frac{\det A_i}{\det A}.$ 

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 59 96 81 33 07 48 72 60 24 15 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$
  
where  $k_i \ge k_{i+1} + 2$  for all  $i$ ,  $1 \le i < m$  and  $k_m \ge 2$ .

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$$
  
 $F_{-i} = (-1)^{i-1} F_i,$   
 $F_i = \frac{1}{\sqrt{5}} \left( \phi^i - \hat{\phi}^i \right),$ 

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$
  
$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$