TEMARIO

Modelos Lineales con R

Profesor: Andrés García Medina andres.garcia.medina@uabc.edu.mx

Ensenada B.C. a 31 de enero de 2024

UNIDAD I. Modelo de regresión lineal simple con R

- 1.1. Modelo lineal simple
- 1.2. Teoría de los modelos lineales
 - 1.2.1. Estimación por mínimos cuadrados
 - 1.2.2. Distribución de los parámetros
 - 1.2.3. Prueba de hipótesis con la razón F
 - 1.2.4. El teorema de Gauss-Markov
- 1.3. Modelos lineales con factores
- 1.4. Aplicación de los modelos lineales en datos empíricos

UNIDAD II. Análisis de regresión lineal simple

- 2.1. Estimación de máxima verosimilitud (MLE)
- 2.2. La prueba de razón de verosimilitud generalizada (GLRT)
- 2.3. El criterio de información de Akaike (AIC) general
- 2.4. Propiedades de la cuasiverosimilitud.

UNIDAD III. Modelos lineales mixtos

- 3.1. Modelo lineal mixto
- 3.2. Propiedades generales
- 3.3. Estimación de máxima verosimilitud del modelo lineal mixto
 - 3.3.1. Método de Newton
 - 3.3.2. Algoritmo esperanza-maximización (EM)

UNIDAD IV. Modelos de regresión generalizados

- 4.1. La familia exponencial de distribuciones
- 4.2. Teoría de los modelos lineales generalizados
- 4.3. Devianza y diagnóstico de modelos
- 4.4. Modelos lineales generalizados con R
 - 4.4.1. Modelo Binomial
 - 4.4.2. Modelo Poisson
 - 4.4.3. Modelo log-lineal

ESTRUCTURA DE LAS PRÁCTICAS DE LABORATORIO

- **1.** Regresión lineal con R
- 2. Máxima versosimilitud en la selección de modelos de regresión lineal con R
- 3. Método de Newton para estimación de parámetros en los modelos lineales con R
- 4. Algoritmo de esperanza-maximización para estimación de parámetros en los modelos lineales con R
- 5. Modelo lineal mixto con R
- 6. Modelo de regresión binomial con R
- 7. Modelo de regresión Poisson con R
- 8. Modelo de regresión log-lineal para tablas de contingencia con R

La evaluación será llevada a cabo de forma permanente durante el desarrollo de la unidad de aprendizaje de la siguiente manera:

Criterios de acreditación

- Para tener derecho a examen ordinario y extraordinario, el estudiante debe cumplir con los porcentajes de asistencia que establece el Estatuto Escolar vigente.
- Calificación en escala del 0 al 100, con un mínimo aprobatorio de 60.
- Para exentar el examen ordinario se requiere una calificación mínima de 60.

Criterios de evaluación

Total		100%
	ooratorio nal	30% 30
 2 exámenes pa 	rciales	40%

Notas:

- El anteproyecto se presenta el jueves 21 de marzo (2024).
- El primer examen parcial se realizará el martes 2 de abril (2024).
- El segundo examen parcial se realizará el jueves 30 de mayo (2024).
- El reporte final del proyecto y código anexo se entregan el viernes 24 de mayo (2024).
- Las presentaciones del proyecto final se realizarán el martes 28 de mayo (2024).
- No se permite el uso de celular dentro del aula.

Reportes de Laboratorio

 Se envian al correo electrónico del profesor los cuadernos de jupyter en formato pdf explicando detalladamente cada una de los ejercicios de la práctica de laboratorio a más tardar una semana después de concluir la misma.

Presentación final

- Se desarrollará un proyecto de investigación durante el semestre donde se pongan en práctica los conocimientos del curso.
- Se debe entregar un reporte con una extensión mínima de 3000 palabras y máximo de 5000.
- El reporte debe integrar los elementos comunes de un trabajo científico: título, autores, resumen, introducción, marco teórico, metodología, resultados, conclusiones, referencias, y apéndice.
- El código del proyecto se debe referenciar en los anéxos del reporte y subir a un repositorio privado de github.
- Las presentaciones se llevarán a cabo de manera presencial con una duración de 20 minutos más 10 minutos de preguntas.
- El proyecto se deberá desarrollar en equipo de dos personas.
- El tema del proyecto será elegido por los integrantes del equipo y se deberá presentar un anteproyecto para visto bueno del profesor.

Literatura

- Principal: Wood, S. N. (2017). Generalized additive models: an
- introduction with R. CRC press.
- La referente en el PUA
- Se dará a conocer la literatura especializada en temas particulares.

Compromiso

Manifiesto que he leído y acepto lo establecido en el presente documento actualizado al 31 de enero de 2024.

NOMBRE DEL ALUMNO	MATRÍCULA	FIRMA
AGUILAR GUADALUPE JESUS ALFREDO	360160	
CRUZ SANCHEZ LEONARDO	361837	
GONZÁLEZ MARTÍN IRENE GUADALUPE	368578	
GUERRERO ALVARADO JOSE FRANCISCO	361175	

GUTIERREZ RODRIGUEZ OSCAR EXCELL	368686	
MORALES VÉLEZ JUAN CARLOS	360917	
OROZCO FRIAS KASANDRA	368807	
VACA MONTEJANO MAXIMILIANO	364897	
VALDEZ GARCIA ALONDRA ALEJANDRA	360444	