Business Analyses Using Excel

The final project for this course will be a product of both analyses and a detailed writing report based on the given dataset "STIHLDelivery.xlsx".

Stihl Inc is a multinational company that has its U.S. headquarters in Virginia Beach, VA, where it manufactures and coordinates all U.S. and Caribbean product distribution through 11 U.S. distribution centers, called branches. This dataset contains the delivery information of Stihl's 4 distribution centers (PAS, IMS, MDW, and SNW) in 2019. In the file, the worksheet "PAS" ("IMS", "MDW", "SNW") contains the logistic spending in PAS (IMS, MDW, and SNW) distribution center. The worksheet "Customer Information" includes the information of customers and their locations.

This is group work, and each group is expected to conduct analyses and deliver reports based on the below instructions.

Objectives:

Excel is a powerful tool to conduct business analyses. The objective of the course project is to review what we have learned in BNAL 405 and conduct business analyses step by step using the raw data. It aims to enhance students' understanding of Excel skills and build critical thinking skills of business-related decision-making.

Role and audience

You will conduct this project as if you are a senior business analyst who reports to the logistic manager or CEO. You would like to show the expense analyses and the prediction for the future six months (Jan – Mar 2020) (for different regions, and detailed analyses based on top customers and top zip codes that have the highest expenses). These analyses are aimed to provide an understanding of where the most costs come from, so the management team can optimize the logistic resources. Also, based on the cost prediction, the company can reserve a proper level of capital for related spending.

Detailed Requirements

The delivery of this project has two modes:

- A written report.
- Excel files used for the analyses

The analyses and writing report should include the following contents.

- 1, Data Description and Report Objectives
- 2, Data Cleaning

You need to combine the different distribution center data with the customer information to conduct detailed customer analysis and location (based on zip code) analysis.

- 3, Use various Data Visualization to show the relationship between costs and other factors.
- 4. Description Analysis for the costs across the year.

And explain the data in detail.

- 5. Predictive Analysis. Forecast the expense for Jan-Mar 2020. And explain the model.
- 6. Summarize the findings based on the analyses and provide proper managerial suggestions.

Rubric / Evaluation Criteria

Grading of the course project based on the below criteria:

	Evaluation Criteria			
Category	Excellence	Above Average	Average	Below Average
	(100%)	(85%)	(75%)	(65%)
Writing report	Write logically and	Write logically and	Generally, flow	There are major
	flow well	flow well, but there	well, have some	logic gaps
		are a couple of	logic gaps	
		disconnections		
Project Objectives	Clearly and logically	Written well, but not	Written well, but	Poorly written
	well written	very detail	very concise	
Descriptive	Include various	Include various	Limited methods are	Limited methods are
Analyses (including	methods to show	methods to show	used to present the	used to present the
data visualization)	data visualization	data visualization	descriptive analyses	descriptive analyses.
	and descriptive	and descriptive		And there are
	analyses from	analyses, but only		mistakes.
	different	from limited		
	perspectives	perspectives		
Predictive Analyses	Try several different	Try several different	Use one or two	Use one or two
(regression	models and pick up	models and pick up	models. And there	models. And there
analyses)	the most suitable	the most suitable	are minor mistakes.	are major mistakes.
	prediction model.	prediction model.		
		There are minor		
		mistakes.		
Discussion and	Connect with the	Connect with the	Discussions and	Limited discussions
conclusion	project objectives	project objectives	conclusions are in	and conclusions.
	and draw insightful	and the conclusions	detail, but there are	
	conclusions.	are clear and	some logical gaps.	
		thorough.		

Participation rule

This is group work and each group member should contribute equally. If a group member contributes significantly less than others, the group should report it and the student is subject to a 20% off penalty (based on the group performance). The deducted points will be added evenly to other group members.

For example, if a group has 5 students and there is 1 contribute nothing, assume the group project score is 90, this no contribution student score will be 90*0.8=72, the deducted 18 points will be evenly distributed to other 4 members, so the other 4 grade will be 90+(18/4)=96.5

Submission Guidelines

Please submit the relevant documents through the Blackboard system.

This is group work, so one submission per group.