PROBABILIDAD Y ESTADÍSTICA

Docente: Nidia Quintero Peña

2-2020

Taller 5. MUESTRAS BIVARIADAS

Ejercicio 1.

Un ingeniero químico está investigando el efecto de la temperatura de operación de proceso en el rendimiento del producto. El estudio da como resultado los siguientes datos.

Temperatura, °C (x)	100	110	120	130	140	150	160	170	180	190
Rendimiento, % (y)	45	51	54	61	66	70	74	78	85	89

Se requiere analizar los datos y para ello se necesita:

- a) Calcular la media, mediana, varianza y desviación estándar de cada variable (x: Temperatura, y: Rendimiento).
- b) Graficar el diagrama de caja y bigotes de cada variable (x: Temperatura, y: Rendimiento).
- c) Graficar el diagrama de dispersión de los datos (x: Temperatura, variable independiente. y: Rendimiento, variable dependiente).
- d) Calcular la covarianza y el coeficiente de correlación lineal.
- e) Realizar la regresión lineal, mostrando la ecuación de la recta y el coeficiente de determinación.
- f) ¿Es la recta aceptable para modelar los datos? Justifique su respuesta.
- g) En el caso que sea aceptable, grafique la recta obtenida y el diagrama de dispersión de los datos en una misma figura, además estime el rendimiento del producto para una temperatura de 143°C.

Ejercicio 2.

Las distribuciones de colores para dos bolsas de dulces M&M's, una sencilla y otra de cacahuates, se muestran en la tabla siguiente. Realice un gráfico de barras lado a lado y un gráfico tipo pastel que permitan comparar las distribuciones de cada bolsa de dulces.

	Café	Amarillo	Rojo	Anaranjado	Verde	Azul
Sencillo	15	14	12	4 3	5	6
Cacahuate	6	2	2		3	5