Complexity and causality in ECoG

CIFAR report, June 2020

Task and data

- N=10 patients
- Eyes closed during resting state
- In addition, have 6 hours of sleep data per subject recorded before experiment

Distribution of electrodes across differents ROIs

Preprocessing

- Bipolar montage
- Line noise removal, n=121 electrodes

 Robust detrending for resting state LFP (improve stationarity for parametric GC estimation) High frequency band (HFB) envelope extraction with Generalized Remez FIR minimum phase filter of order 100

HFB amplitude baseline shift after stimulus presentation

Baseline shift of high frequency amplitude ERP for representative face selective electrodes in V2 from stimulus onset

Multivariate VAR model of visually responsive HFB envelope

- 8 visual electrodes, N=28 trials, 1252 observations (2.5 s)
- Stable models in rest (spectral radius ~ 0.982) and stimuli (~ 0.991)

State space model N=28 trials, visually responsive HFB envelope

- 8 visual electrodes, N=28 trials, 1252 observations (2.5 s)
- Stable models in rest and stimuli (spectral radius ~0.98)

Granger causality of HFB envelope, stimuli (left), rest (right)

Lempel Ziv complexity of visually responsive electrodes

Rank of normalised LZc channels is constant as sequence length increases

Lempel Ziv complexity estimate for visual electrodes

Comparison of resting state vs stimulus visualisation normalised LZc of 8 visual electrodes over N=28, 2.5s, trials during