Криптографические протоколы Лекция 8 Протоколы распределения ключей (Часть 2)

Деркач Максим Юрьевич

October 18, 2018

Ссылки

- 1. ISO/IEC 11770-1:2010 Information technology Security techniques Key management Part 1: Framework
- 2. ISO/IEC 11770-2:2008 Information technology Security techniques Key management Part 2: Mechanisms using symmetric techniques
- 3. ISO/IEC 11770-3:2008 Information technology Security techniques Key management Part 3: Mechanisms using asymmetric techniques
- 4. ISO/IEC 11770-4:2006 Information technology Security techniques Key management Part 4: Mechanisms based on weak secrets
- 5. СТБ 34.101.45-2013 "Информационные технологии и безопасность. Алгоритмы электронной цифровой подписи и транспорта ключа на основе эллиптических кривых". http://apmi.bsu.by/assets/files/std/bign-spec19.pdf

Протоколы распределения ключей Needham-Schroeder (NSSK)

- 1. $A > S : ID_A || ID_B || R_A$
- 2. $S > A : E_{K_{AS}}(R_A||ID_B||KS||E_{K_{BS}}(KS||ID_A))$
- 3. $A->B:E_{K_{BS}}(KS||ID_A)$
- 4. $B->A:E_{KS}(R_B)$
- 5. $A > B : E_{KS}(R_B 1)$

Протоколы распределения ключей Needham-Schroeder (NSSK)

Атака

Если ключ KS скомпрометирован, возможна атака на протокол методом повтора сеанса: берутся сообщения из прошлого сеанса с ключом KS^* :

- 1. $A > S : ID_A ||ID_B|| R_A$
- 2. $S > A : E_{K_{AS}}(R_A||ID_B||KS||E_{K_{BS}}(KS||ID_A))$
- 3. $I(A) > B : E_{K_{BS}}(KS^*||ID_A)$
- 4. $B- > I(A) : E_{KS^*}(R_B)$
- 5. $I(A) > B : E_{KS*}(R_B 1)$

Протоколы распределения ключей кеввегоs

Несколько видоизмененный протокол Needham — Schroeder был положен в основу программного средства аутентификации пользователей распределенных вычислительных систем Kerberos.

В целях исключения возможности осуществления атаки, описанной выше, клиент, пройдя аутентификацию на сервере аутентификации, должен предварительно, до того, как ему будет предоставлен доступ к серверам приложений, получить у специального сервера выдачи билетов так называемые билеты – структуры данных, в которых указывается срок полномочий клиента для доступа к серверам приложений. По истечении этого срока клиент должен получать новый билет. Эта мера ограничивает срок, в течение которого возможно осуществить атаку на протокол.

Протоколы распределения ключей кеввегоs

```
AS - сервер аутентификации TGS - сервер выдачи билетов ticket_1 = ID_{TGS}||E_{K_{AS},T_{GS}}(ID_A||ID_{TGS}||T_{AS}||L||K_{A,TGS}) - auth_1 = E_{K_A,T_{GS}}(ID_A||T_A||...) ticket_2 = ID_B||E_{K_B}(ID_A||ID_B||ID_{TGS}||L'||K) auth_2 = E_K(ID_A||T_A||K_A) auth_3 = E_K(ID_A||T_A+1||K_B)
```

Протоколы распределения ключей кеrвeros

- 1. A->AS: $ID_A||ID_{TGS}||R_A$
- 2. AS->A: $E_{K_{A,AS}}(E_{K_{A,TGS}}||R_A||ticket_1)$
- 3. $A->TGS:ID_B||ticket_1||auth_1|$
- 4. $TGT > A : E_{K_{A,TGS}}(K||ticket_2)$
- 5. A->B: $ticket_2||auth_2|$
- 6. B->A: auth₃

Шаги (1) – (2) выполняются только во время первого входа клиента в систему.

Шаги (3) – (4) выполняются всякий раз , когда клиент A хочет обратиться к новому серверу B.

Шаг (5) выполняется всякий раз, когда A проходит аутентификацию для B.

Шаг (6) является необязательным и выполняется, когда A требует от B взаимную аутентификацию.

Протоколы основанные на ассиметричных криптосистемах

Needham-Schroeder Public Key (NSPK)

- 1. $A > S : ID_A || ID_B$
- 2. $S > A : E_{K_S^{sec}}(K_B^{pub}||ID_B)$
- 3. $A > B : E_{K_B^{pub}}(K_A||ID_A)$
- 4. $B-> S: ID_B||ID_A|$
- 5. $S->B: E_{K_S^{sec}}(K_A^{pub}||ID_A)$
- 6. $B->A: E_{K_A^{pub}}(K_B||K_A)$
- 7. $A->B: E_{K_B^{pub}}(K_B)$
- 8. A, B: $KS = f(K_A, K_B)$

 $E_{K_{s}^{sec}}()$ - подпись на секретном ключе.

 $E_{K_{R}^{Pub}}()$ - шифрование на открытом ключе.

f() - общеизвестная однонаправленная функция.

Протоколы основанные на ассиметричных криптосистемах

NSPK без 3-ей стороны

- 1. $A > B : E_{K_B^{pub}}(K_A||ID_A)$
- 2. $B->A: E_{K_A^{pub}}(K_A||K_B)$
- 3. $A > B : E_{K_B^{pub}}(K_B)$
- 4. A, B: $KS = f(K_A, K_B)$

Смешанные протоколы

EKE(Encrypted Key Exchange)

 $K_{AB}=P$ - пароль

1.
$$A - > B : ID_A || E_P(K_A^{pub})$$

2.
$$B->A: E_P(E_{K_A^{Pub}}(KS))$$

3.
$$A -> B : E_{KS}(R_A)$$

4.
$$B->A: E_{KS}(R_A||R_B)$$

5.
$$A - > B : E_{KS}(R_B)$$

Bilateral Key Exchange with Public Key

1.
$$B->A:ID_B||E_{K_A^{pub}}(R_B||ID_B)$$

2.
$$A - > B : E_{K_R^{pub}}(h(R_B)||R_A||ID_A||KS)$$

3.
$$B->A: E_{KS}(h(R_A))$$

SPX

 a_A, a_B - сетевые адресса.

 L, L_A, L_B - время жизни ключей (приватных и публичных) сеанса, пользователя A и пользователя B соответственно.

$$m_A = (ID_A||ID_B||L_B||K_B^{pub})$$

 $m_B = (ID_B||ID_A||L_A||K_A^{pub})$

- 1. $A > T : ID_B$
- 2. $T->A: m_A||E_{K_{AT}}(h(m_a))<-cert_{AB}$
- 3. $A > B : ID_A||E_{K_A^{sec}}(ID_A||K_A^{pub}||L)||$ $E_{K_B^{pub}}(KS)||E_{K_A^{sec}}(E_{K_B^{pub}}(KS))||t||E_{KS}(t)||a_A|$
- 4. $B->T:ID_A$
- 5. $T > B : m_B || E_{K_{BT}}(h(m_B)) < -cert_{BA}$
- 6. $B->A: E_{KS}(t||a_B)$

- 1. $A->B: E_{K_B^{pub}}(KS||t)||sign_A(ID_B||KS||t)$
- 2. $A->B: E_{K_B^{pub}}(KS||t||sign_A(ID_B||KS||t))$
- 3. $A > B : t||E_{K_B^{pub}}(ID_A||KS)||sign_A(ID_B||t||E_{K_B^{pub}}(ID_A||KS))$

Сертификаты открытых ключей

$$cert_A = (ID_A||K_A^{pub}||t||sign_T(ID_A||K_A^{pub}||t))$$

X.509

$$d_{A} = (T_{A}||R_{A}||ID_{B}||text_{1}||E_{K_{B}^{pub}}(K_{A}))$$

$$d_{B} = (T_{B}||R_{B}||ID_{A}||text_{2}||E_{K_{B}^{pub}}(K_{B}))$$

- 1. A->B: $cert_A||d_A||sign_A(d_A)$
- 2. B->A: $cert_B||d_B||sign_B(d_B)$
- 3. $A > B : R_B ||ID_B|| sign_A (R_B ||ID_B)$
- 4. $A, B : KS = f(K_A, K_B)$

Шаг (3) необязателен, выполняется только если нужно подтвержденрие.

Протоколы распределения ключей Протоколы с использованием ЭЦП

Денниг -Сакко

- 1. $A->S:ID_A||ID_B|$
- 2. S->A: $cert_A||cert_B|$
- 3. A->B: $cert_A||cert_B||E_{K_B^{pub}}(KS||t_A||sign_A(kS||T_A))$
- 4. A, B: $KS = f(K_A, K_B)$

Шаг (3) необязателен, выполняется только если нужно подтвержденрие.

Протоколы распределения ключей Протокол МТІ

1. Предварительный этап:

Выбираются следующие параметры: p, α , где p - простое число, $a \in Z_p^*$

A выбирает $a,\ 1 \leq a \leq p-2,\ z_A = \alpha^a \ (mod\ p).$ B выбирает $b,\ 1 \leq b \leq p-2,\ z_B = \alpha^b \ (mod\ p).$

- 2. A > B: $m_{AB} = \alpha^x \pmod{p}$, $1 \le x \le p 2$, x случайное
- 3. $B->A: m_{BA}=lpha^y \ (mod \ p), \ 1\leq y\leq p-2, \ y$ случайное

Варианты построения ключа:

Nº	$m_A B$	$m_B A$	K_A	K_B	K
1	α^{x}	α^{y}	$m_{BA}^a z_B^x$	$m_{AB}^b z_A^y$	$lpha^{\mathit{bx}+\mathit{ay}}$
2	z_B^x	z_A^y	$m_{BA}^{a^{-1}} lpha^{\chi}$	$m_{AB}^{b^{-1}} \alpha^y$	α^{x+y}
3	z_B^{x}	z_A^y	$m_{BA}^{a^{-1}\chi}$	$m_{AB}^{b^{-1}y}$	α^{xy}
4	z_B^{x}	$z_A^{\dot{Y}}$	m_{BA}^{χ}	$m_{AB}^{y^-}$	$lpha^{ extit{bxay}}$

Предварительное распределение ключей нужно для уменьшения объёма распределяемой и хранимой информации.

 $A_1, ..., A_n$ - абоненты.

K - множество ключей.

P - множество исходных ключевых параметров (p_i - пароль каждого абонента).

Q - множество значений ключевых материалов абонентов (q_i - секрет каждого абонента).

R - множество значений открытой информации $(r_1,...,r_n$ - в открытом доступе).

Схема предварительного распределения ключей:

$$S(n) = (K, P, Q, R, A_0, A_1)$$

1. $A_0: P \times R - > Q$ - алгоритм формирования секретных ключевых материалов.

$$A_0(p_i,r_i)=q_i,\ 1\leq i\leq n$$

2. $A_1: Q \times R - > K$ - алгоритм вычисления ключа парной связи.

$$A_1(q_i,r_j)=A_1(q_j,r_i),$$
 $K_{ij}=A_1(q_i,r_j), i=j$: либо не рассматривается либо некий личный секретный ключ.

$$A_0(p, r_i) = Q_i \subseteq K^{t_i} \subseteq Q, \ 1 \le i \le n$$

Предложение 1

 $orall r_i \in R, \ q_i \in Q, \ 1 \leq i \leq n$ $A_0(p,r_i)=q_i$ - имеет одинаковое число решений относительно $p \in P.$

Предложение 2

 $\forall r_i \in R, \ k \in K, \ 1 \leq i \leq n$ $A_1(q_i,r_i)=k$ - имеет одинаковое число решений относительно $q_i \in Q.$

