CU Boulder: Algebra Prelim

January 2018

Juan Moreno April 2019

These are my solutions to the questions on the CU Boulder *Algebra* preliminary exam from *January* 2018 found here. I worked on these solutions over the summer of 2019 in preparation for the preliminary exam in the Fall 2019. Please send any questions, comments, or corrections to juan.moreno-1@boulder.edu.

Problem 1. Let G be the symmetric group S_5 and P a Sylow 5-subgroup of G. (i) Show that the normalizer $N_G(P)$ has order 20.

Proof. By Sylow's Theorem, $|\text{Syl}_5(G)| \equiv 1 \pmod{5}$ and $|\text{Syl}_5(G)|$ divides $\frac{120}{5} = 24$. Thus $|\text{Syl}_5(G)| = 1$ or 6. However, there are 24 5-cycles in S_5 so in fact $|\text{Syl}_5(G)| = 6$. Sylow's Theorem also states that G acts on the set $|\text{Syl}_5(G)| = 6$. Sylow's Theorem also states that G acts on the set $|\text{Syl}_5(G)| = 6$. Observing that the stabilizer of P under this action is $N_G(P)$, orbit-stabilizer theorem then implies that

$$|G| = |N_G(P)| \cdot |\text{Syl}_5(G)| \implies |N_G(P)| = \frac{120}{6} = 20.$$

(ii) In the special case when P contains the 5-cycle (12345), find a set of generators for $N_G(P)$.

Solution. Clearly $P = \langle (12345) \rangle \leq N_G(P)$. Now $(12345)^4 = (12345)^{-1} = (15432) = ((25)(34))(12345)((25)(34))^{-1}$. It follows that $\sigma = (12345)$, $\tau = (25)(34) \in N_G(P)$ and these elements satisfy the relations

$$\sigma^5 = \tau^2 = 1$$
, $\sigma \tau = \tau \sigma^{-1}$,

so that these elements generate a subgroup of $N_G(P)$ isomorphic to the dihedral group D_{20} . Since this group has order 20, we must have $N_G(P) = \langle \sigma, \tau \rangle \cong D_{20}$

Problem 2. Let G be a group and Z(G) be the center of the group. An automorphism $\alpha \in \operatorname{Aut}(G)$ is said to be central if for all $x \in G$ we have $x^{-1}\alpha(x) \in Z(G)$. Show that the central automorphisms form a normal subgroup N of $\operatorname{Aut}(G)$.

Proof. The identity automorphism is clearly central. As for inverses, in $\alpha \in \operatorname{Aut}(G)$ is central then for all $x \in G$, $x\alpha(x^{-1}) \in Z(G)$ and since automorphisms must preserve the center, $\alpha^{-1}(x\alpha(x^{-1})) = \alpha^{-1}(x)x^{-1} \in Z(G)$, so that $\alpha^{-1}(x)x^{-1} = x^{-1}(\alpha^{-1}(x)x^{-1})x = x^{-1}\alpha^{-1}(x) \in Z(G)$. So the inverse of a central automorphism is also central. To see that the central automorphisms are closed under composition, take two central automorphisms α, β and compute

$$x^{-1}\alpha\circ\beta(x)=x^{-1}\alpha(\beta(x))=x^{-1}\beta(x)\beta(x)^{-1}\alpha(\beta(x)).$$

Since both β and α are central, $x^{-1}\beta(x)$, $\beta(x)^{-1}\alpha(\beta(x)) \in Z(G)$. That the central automorphisms are closed under composition then follows from the fact that Z(G), being a subgroup of G, is closed under multiplication. Lastly, to see that this group is indeed normal we simply compute the following for any central α , any $\beta \in \operatorname{Aut}(G)$ and all $x \in G$:

$$x^{-1}(\beta^{-1}\circ\alpha\circ\beta(x))=\beta^{-1}(\beta(x^{-1})\cdot\alpha(\beta(x)))=\beta^{-1}(\beta(x)^{-1}\cdot\alpha(\beta(x))).$$

Since α is central, $\beta(x)^{-1} \cdot \alpha(\beta(x)) \in Z(G)$ and since β , being an automorphism of G, preserves the center, we have $\beta^{-1}(\beta(x)^{-1} \cdot \alpha(\beta(x))) \in Z(G)$. Thus $\beta^{-1} \circ \alpha \circ \beta$ is central, implying the subgroup of Aut(G) of central automorphisms is indeed a normal sugroup.

Problem 3. Let k be a field and R the subring of k(x) generated by k[x] and 1/x. For a typical nonzero element $p(x) = \sum_{i=-M}^{N} a_i x^i$ of R, define

$$H(p(x)) = max(\{i \in \mathbb{Z} | a_i \neq 0\})$$
 and $L(p(x)) = min(\{i \in \mathbb{Z} | a_i \neq 0\}).$

Show that R is a Euclidean domain with Euclidean norm given by N(p(x)) = H(p(x)) - L(p(x)) and N(0) = 0.

Proof. First we note that R is an integral domain since it is a subring of the field k(x). It remains to show that the Division algorithm holds for any two $p(x), q(x) \in R$ with $q(x) \neq 0$. Suppose first that $L(p(x)), L(q(x)) \geq 0$. Then in fact $p(x), q(x) \in k[x]$ and using the standard division algorithm we may write

$$p(x) = q(x) \cdot b(x) + r(x),$$

for some b(x), $r(x) \in k[x]$ with either r(x) = 0 or $\deg(r(x)) < \deg(q(x))$. Note that in this case $\deg(r(x)) = H(r(x))$.

Problem 4. Let F be a field of arbitrary characteristic. Show that any two elements of order 2 in the special linear group $SL_2(F)$ are conjugate in $GL_2(F)$. Find a necessary and sufficient condition on F for $SL_2(F)$ to have a unique element of order 2.

Solution. Let $A \in SL_2(F)$ be an element of order 2. Then A satisfies the equation p(A) = 0, where $p(x) = x^2 - 1$. Now recall that the conjugacy class of a matrix is completely determined by a list of invariant factors $a_0(x), a_1(x), ..., a_n(x)$ such that $a_i(x)$ divides $a_{i+1}(x)$ for all i = 0, ..., n-1, and the product $\prod_{i=0}^n a_i(x)$ is the characteristic polynomial of the matrix, $c_A(x)$. Since in this case $c_A(x)$ is of degree 2, there are only two possible lists of invariant factors, namely $L1 = \{c_A(x)\}$ or $L2 = \{x - a, x - a\}$, for some $a \in F$ such that $(x - a)^2 = c_A(x)$. The L2 case implies the only root of $c_A(x)$, that is, the unique eigenvalue of A must be $a \in F$. Since $A \in SL_2(F)$ det $A = a^2 = 1$ so either a = 1 or a = -1. If a = 1 then A is simply the identity matrix, which we do not actually consider an element of order 2. If a = -1, the rational canonical form of A is then $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Note that this matrix is still the identity if char F = 2. Now consider the L1 case.

Let $c_A(x) = x^2 + bx + c$. The rational canonical form of A is then $\begin{pmatrix} 0 & -c \\ 1 & -b \end{pmatrix}$. Since $\det A = 1$, we must have c = 1, but then

$$\begin{pmatrix} 0 & -1 \\ 1 & -b \end{pmatrix}^2 = \begin{pmatrix} -1 & b \\ -b & b^2 - 1 \end{pmatrix}.$$

The only way this matrix could equal the 2×2 identity is if char F = 2 and b = 0. The rational canonical form is then $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Thus, if $char F \neq 2$ the unique rational canonical form representing matrices of order

2 and determinant 1 in $GL_2(F)$ is $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and if char F = 2 the representing matrix is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Since the rational canonical forms derived above are examples of matrices in $SL_2(F)$ of order 2, there is a unique such matrix in $SL_2(F)$ if and only if these matrices constitute their own conjugacy class, i.e. if and only if these matrices are in the center of $GL_2(F)$. Suppose first that $\operatorname{char} F \neq 2$. Then the matrix in question is scalar and hence lies in the center of $GL_2(F)$ so it must be the unique element of $SL_2(F)$ of order 2. Now if $\operatorname{char} F = 2$ then we find that

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix},$$

and

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

so the matrix in question does not lie in the center. Thus, a necessary and sufficient condition for $SL_2(F)$ to have a unique element of order 2 is for char $F \neq 2$.

Problem 5. Let p be a prime, \mathbb{F}_p be the field with p elements, and let t be an indeterminate. Let $F = \mathbb{F}_p(t)$ be the field of fractions of the polynomial ring $\mathbb{F}_p[t]$.

(i) Show that $g(x) = x^p - x + t$ is separable over F.

Proof. The derivative of g is $D_x(g(x)) = -1$. This polynomial has no roots, hence g(x) is relatively prime to its derivative so it must be separable. □

(ii) Show that if α is a root of g then $\alpha + 1$ is also a root. Deduce that the roots of g are precisely those of the form $\alpha + b$ for $b \in \mathbb{F}_p$.

Proof. If α is a root of g then

$$(\alpha + 1)^p - (\alpha + 1) + t = \alpha^p + 1 - (\alpha + 1) + t = \alpha^p - \alpha + t = g(\alpha) = 0.$$

Thus $\alpha + 1$ is also a root of g. Replacing α with $\alpha + 1$ and repeating the above computation p - 1 times shows that α , $\alpha + 1$,..., $\alpha + (p - 1)$ are all roots of g. Since g is a degree p polynomial, it can have at most p roots, therefore there are all the roots of g.

(iii) Show that g has no roots in F.

Proof. If $a \in \mathbb{F}_p$ were a root, then the set of roots of g is $\{a + b | b \in \mathbb{F}_p\} = \mathbb{F}_p$. To see this simply take $\alpha = a + (-a) = 1$ and proceed as in part b. We then have that g factors in F[x] as

$$g(x) = (x-1)(x-2)\cdots(x-(p-1)).$$

However, the constant term of g would then be $\prod_{b \in \mathbb{F}_n} b \neq t$, a contradiction.

(iv) Find the Galois group of g over F.

Solution. By part (ii), g splits in $F(\alpha) \cong F[x]/(g(x))$ where α is any root of g. Part (iii) shows that $F(\alpha) \neq F$ so that $[F(\alpha):F]=p$. It follows that this must be the splitting field of g. Since g is separable, so is $F(\alpha)$ hence $|\text{Gal}(F(\alpha)/F)|=[F(\alpha):F]=p$. Since p is a prime, the only group of order p is the cyclic group of order p, thus $\text{Gal}(F(\alpha)/F)\cong Z_p$.

Problem 6. Let f(x) be a monic polynomial of degree n > 0 over a field K and let $\Delta(f)$ denote its discriminant. Let $g(x) = f(x^2)$. You may assume without proof that $\Delta(g) = \Delta(f)^2(-4)^n f(0)$. (i) Let $f(x) = x^2 + 3x + 1$ so that $g(x) = x^4 + 3x^2 + 1$. Show that $g(x) = x^4 + 3x^2 + 1$. Show that $g(x) = x^4 + 3x^2 + 1$.

Proof. Viewing \mathbb{Q} as a subfield of \mathbb{C} , we know that the roots of f(x) are

$$r_{\pm} = \frac{-3 \pm \sqrt{5}}{2}.$$

We then have that $g(\sqrt{r_\pm}) = f(r_\pm) = 0$ so that $\sqrt{r_\pm}$ are both roots of g in $\mathbb C$. Further, since g(-x) = g(x), we have that $-\sqrt{r_\pm}$ are also roots of g in $\mathbb C$. This accounts for 4 roots of g in $\mathbb C$ and since g has degree 4, these must be all of its roots. Since none of these roots lie in $\mathbb Q$, g does not factor over $\mathbb Q$ into a product of 4 degree 1 polynomial or a product of a degree 1 polynomial and a degree 3 polynomial. The only possibilities left are either g is the product of two irreducible quadratics or g is irreducible. That the former case does not hold and can be checked simply looking at pairwise products of the factors $\{(x-\sqrt{r_\pm}),(x+\sqrt{r_\pm})\}$:

$$(x - \sqrt{r_{\pm}})(x + \sqrt{r_{\pm}}) = x^{2} - r_{\pm} \notin \mathbb{Q}[x],$$

$$(x - \sqrt{r_{+}})(x + \sqrt{r_{-}}) = x^{2} + (\sqrt{r_{-}} - \sqrt{r_{+}})x - \sqrt{r_{+}r_{-}} \notin \mathbb{Q}[x],$$

$$(x - \sqrt{r_{+}})(x - \sqrt{r_{-}}) = x^{2} - (\sqrt{r_{+}} + \sqrt{r_{-}})x + \sqrt{r_{+}r_{-}} \notin \mathbb{Q}[x].$$

(ii) To which familiar group is the Galois group of g over $\mathbb Q$ isomorphic?

Solution. The Galois group of g must be a subgroup of S_4 since it permutes the roots of g. Further, since $\Delta(g) = \Delta(f)^2(-4)^2 = 25 \cdot 16 \in \mathbb{Q}$, its discriminant must be fixed by the Galois group and so this group must in fact lie in A_4 . Let $\alpha_1 = \sqrt{r_+}$, $\alpha_2 = -\sqrt{r_+}$, $\alpha_3 = \sqrt{r_-}$, $\alpha_4 = -\sqrt{r_-}$ and consider the following elements of K

$$\theta_1 = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4) = 0$$

$$\theta_2 = (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4) = -(\sqrt{r_+} + \sqrt{r_-})^2 = 1$$

$$\theta_3 = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3) = -(\sqrt{r_+} - \sqrt{r_-})^2 = -1.$$

These elements, as defined, are permuted by the $Gal(K/\mathbb{Q})$. We view this group as a subgroup of S_4 via the action on the α_i . The stabilizer of the θ_i is the Klein 4-group $V = \{1, (12)(34), (13)(24), (14)(23)\}$. Since g is irreducible, $[K : \mathbb{Q}] = |Gal(K/\mathbb{Q})|$ is at least 4. Thus, $Gal(K/\mathbb{Q}) = V$.