Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Thermodynamics & Thermochemistry

DPP: 8

Q1 The equilibrium constant for a reaction is 100 what will be the value of ΔG° ?

 $R=8.314 J K^{-1} \; mol^{-1}, \; T=300 \; K:$

- (A) -11488 kJ
- (B) -11.488 kJ
- (C) -12 kJ
- (D) -12000 kJ
- **Q2** For the reaction: $N_2O_4(g) \rightleftharpoons 2\,NO_2(g)$ $\Delta U \ = \ 2.0 \ Kcal, \ \Delta\,S \ = \ 50 \ cal \ K^{-1} \ \text{at}$ $300\ K$

Calculate ΔG

- (A) + 12.4 kcal
- (B) -12.4 kcal
- (C) -6.4 kcal
- (D) +6.4 kcal
- **Q3** Which relation is **incorrect**:
 - (A) $\Delta G = -T\Delta S_T$
 - (B) $\Delta G^\circ = -2.303~\text{RT}\log\mathrm{K}$
 - (C) $\Delta H = \Delta U + \Delta n_g RT$
 - (D) $W_{useful} \, = \Delta H$
- Q4 Which is always correct at equilibrium
 - (A) $\Delta G^{\circ} = 0$
 - (B) $\Delta G = 0$
 - (C) $\Delta S_{system} = 0$
 - (D) $\Delta E = 0$
- Q5 For the water gas reaction

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

The standard Gibbs energy of reaction (at $1000~{\rm K}$) is $-8.1~{\rm kJ~mol^{-1}}$. Value of

equilibrium constant is-

(A) 2.6

(B) 6.2

(C) 8.2

- (D) 10
- Q6 For vaporization of water at 1 atm pressure, the values of ΔH and ΔS are $40.63~{\rm kJ~mol}^{-1}$ and $108.8~{\rm JK}^{-1}~{\rm mol}^{-1}$ respectively. The temp. at which Gibbs energy change (ΔG) for this transformation will be zero is:
 - (A) 273.4 K
 - (B) 393.4 K
 - (C) 373.4 K
 - (D) 293.4 K
- Q7 Calculate ΔG° for the conversion of oxygen to ozone, $3/2O_2(\ g) \longrightarrow O_3(\ g)$ at $298\ K.$ If K_P for this conversion is 3×10^{-29} .
 - (A) $+175.3 \text{ kJ mol}^{-1}$
 - (B) $+162.7 \text{ kJ mol}^{-1}$
 - (C) $-162.7 \text{ kJ mol}^{-1}$
 - (D) $-140.5 \text{ kJ mol}^{-1}$
- Q8 Identify the correct statement regarding entropy.
 - (A) At 0° C, the entropy of a perfectly crystalline substance is taken to be zero.
 - (B) At absolute zeró temp. the entropy of a perfectly crystalline solid is positive.
 - (C) At absolute zero temp. the entropy of all crystalline substance is taken be zero
 - (D) At absolute zero temp. the entropy of a perfectly crystalline solid is taken to be zero.

Q9 The following data is known about the melting of a compound $AB.\,\Delta H=9.2\;kJ\;mol^{-1}.\,\Delta S$

$$= 0.008 \; \rm kJ \; K^{-1}$$

-0.008 kJ I mol^{-1} . Its melting point is:

- (A) $736~\mathrm{K}$
- (B) $1050~\mathrm{K}$
- (C) $1150~\mathrm{K}$
- (D) 1150° C
- Q10 The entropy change for the conversion of $1~\mathrm{mol}$ of α -tin (at $13^{\circ}\mathrm{C}, 1~\mathrm{atm}$) to $1~\mathrm{mol}$ of β -tin ($13^{\circ}\mathrm{C}, 1~\mathrm{atm}$), if enthalpy of transition is $2.095~\mathrm{kJ}~\mathrm{mol}^{-1}$ is
 - (A) $7.32 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$
 - (B) $14.62~\mathrm{J~K^{-1}~mol^{-1}}$
 - (C) $56.3~\mathrm{J~mol^{-1}~K^{-1}}$
 - (D) 0

Answer Key

Q1	(B)	Q6	
Q2	(B)	Q7	(B)
Q3	(D)	Q8	(D)
Q4	(B)	Q9	(C)
Q5	(A)	Q10	

Master NCERT with PW Books APP

