1. (LU 分解)

LU 分解を用いて次の連立1次方程式を解け. (ピボット選択は不要)

$$\begin{cases} 0.5a - b + 2c + d = 3\\ a + 2b + 2c + d = 7\\ 2a - 2b + 5c - 0.5d = 6.5\\ 2a + 4b + 6c + d = 15 \end{cases}$$

1. (LU factorization)

Solve the following system of linear equations using LU factorization (without pivoting).

$$\begin{cases}
0.5a - b + 2c + d = 3 \\
a + 2b + 2c + d = 7
\end{cases}$$

$$2a - 2b + 5c - 0.5d = 6.5$$

$$2a + 4b + 6c + d = 15$$

2. (べき乗法を用いた固有値計算)

べき乗法を用いた行列Aの固有値計算では適当な初期ベクトル $x^{(0)}$ を与え、反復

$$x^{(k+1)} = Ax^{(k)}$$

を繰り返すことで、固有値 λ_1 、固有ベクトル v_1 を得る。べき乗法に関する以下の問いに答えよ。なお、 $A \in \mathbb{R}^{n \times n}$ の固有値、固有ベクトルは λ_j 、 v_j (j=1,2...n)、 $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_{n-1}| > |\lambda_n|$ であると仮定する。

a) レーリー商R(x)は次の式で示される。なお、(a,b)はベクトルa,bの内積である。

$$R(x) = \frac{(x, Ax)}{(x, x)} = \frac{x^{T} Ax}{x^{T} x}$$

対称行列Aの場合、固有値 λ_1 を計算する方法は2つある。ひとつは $R(x^{(k)})$ を用いる方法、もうひとつは各要素の比 $x_i^{(k+1)}/x_i^{(k)}$ (i=1,2...n)を用いる方法である。これらの値はいずれも λ_1 に収束する。この2つの方法の収束の速さの違いについて議論せよ。

- b) 絶対値最小の固有値λ_nを求める方法を示せ.
- 2. (Power iteration for Eigenvalues calculation)

In the power iteration of matrix A, a calculation starts with an initial vector $x^{(0)}$ and repeats an iteration;

$$x^{(k+1)} = Ax^{(k)}.$$

then obtains the eigenvalue λ_1 , and the corresponding eigenvector v_1 . Let the eigenvalues and eigenvectors of matrix $A \in \mathbb{R}^{n \times n}$ as λ_j and v_j $(j = 1, 2 \dots n)$, respectively, and assume $|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_{n-1}| > |\lambda_n|$. Answer the following questions related to the power iteration.

a) Rayleigh's quotient R(x) is given as the following equation. Note that (a, b) expresses the dot product of vectors a and b.

$$R(x) = \frac{(x, Ax)}{(x, x)} = \frac{x^T Ax}{x^T x},$$

There are two methods to calculate λ_1 for a symmetric matrix A. One is to use $R(x^{(k)})$ and the other is to use the ratio of each component $x_i^{(k+1)}/x_i^{(k)}$, (i = 1, 2 ... n). Both values converge to λ_1 after the iteration. Explain the difference in the convergence rate of these two methods.

b) Explain a method to calculate the eigenvalue λ_n of the least absolute value, based on the power iteration method.

3. (偏微分方程式, 解の安定性)

空間x, 時間tの関数u(x,t)に対する拡散方程式を差分法で解く.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

格子点 (x_j,t_n) は次式で定義し、この格子点での関数値を u_j^n とする.

$$x_i = x_0 + j\Delta x$$
, $t_n = t_0 + n\Delta t$

この偏微分方程式を近似する差分方程式の一つに Crank-Nicolson の差分方程式がある.

$$u_j^{n+1} = u_j^n + \frac{1}{2}\rho \left(u_{j+1}^n - 2u_j^n + u_{j-1}^n\right) + \frac{1}{2}\rho \left(u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}\right)$$

なお、 $\rho = \Delta t/(\Delta x)^2$ である。以下の問いに答えよ。

a) 上記の差分方程式は波数 ξの特解

$$u_j^n = g^n e^{-i\xi j\Delta x}$$

を持つ. $i = \sqrt{-1}$. このとき、増幅率gを求めよ.

- b) 増幅率gを用いてこの差分方程式の解の安定性を議論せよ.
- 3. (partial differential equations, stability of numerical solution)
- a) The diffusion equation in one space dimension for a scalar function u(x,t), where t is time, x is a spatial variable, is:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

The grid point (x_j, t_n) is defined as following equations and the value of the functions at the point is defined as u_j^n

$$x_j = x_0 + j\Delta x$$
, $t_n = t_0 + n\Delta t$

One of the difference equations, which approximate the diffusion equation, is the Crank-Nicolson difference equation as follows,

$$u_j^{n+1} = u_j^n + \frac{1}{2}\rho(u_{j+1}^n - 2u_j^n + u_{j-1}^n) + \frac{1}{2}\rho(u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}),$$

with $\rho = \Delta t/(\Delta x)^2$. Answer the following questions..

a) The difference equation has a particular solution with a wave number ξ ;

$$u_i^n = g^n e^{-i\xi j\Delta x}$$

where $i = \sqrt{-1}$. Derive the equation of the gain g by substituting it to the difference equation.

b) Using the derived gain g, discuss the stability of numerical solution of the difference equation.