$$\cos \beta \rightarrow 2$$
 $li = \alpha + \beta \alpha i$; $\alpha, \beta > 0$; $i = 1, 2, ..., n$

eqm.
$$\rightarrow$$
 (3) $\infty := LC_1 + i = 1, 2, ..., m$

Jull emplt
$$\rightarrow \emptyset$$
 $L = \sum_{i=1}^{n} Ri = \sum_{i=1}^{n} (\alpha + \beta x_i)$

[A] Utility maximization problem

Max.
$$U = \sum_{i=1}^{n} C_i^0$$

$$L = \sum_{i=1}^{n} c_i + \lambda \left[I - \sum_{i=1}^{n} p_i c_i \right]$$

Foc:
$$\frac{\partial L}{\partial c_i} = 0 = mOc_i^{0-1} - xp_i n$$

$$\Rightarrow p_i = \lambda^{-1} \circ c_i \circ -1 = \lambda^{-1} \circ \left(\frac{\chi_i}{L}\right)^{\theta-1}$$

[3] Calculating & (elasticity of del. as faced by each producer)

$$\frac{dp}{dx} = x^{-1} \partial L^{1-\theta} (0-1) x^{-2}$$

$$\frac{dx}{2} = x^{-1} O L^{1-0} x^{-0-2}$$

$$= \frac{1}{2} = \frac{$$

[e] MR = MC condition

$$Ti = pixi - (x+pxi)w + i=1,2,...,n$$

$$\alpha$$
, $(p_i - \beta \omega) x_i = \Delta \omega$

$$\alpha_i = \frac{\Delta \omega}{p_i - \beta \omega} = \frac{\Delta}{p_i / \omega - \beta}$$

From [] we have
$$p = 0^{-1}\beta\omega$$

or, $p/\omega = 0^{-1}\beta$

$$L = \sum_{i=1}^{m} (\alpha + \beta \alpha i) = m (\alpha + \beta \alpha i)$$

or,
$$n = \frac{L}{\alpha + \beta \alpha 1}$$

$$= \frac{L}{\alpha + \beta \frac{0}{1-0}} = \frac{L}{\alpha (1+\frac{0}{1-0})}$$

$$= \frac{L}{\alpha + \beta \frac{0}{1-0}} = \frac{L}{\alpha}$$

$$\hat{n} = \frac{L(1-\theta)}{\infty}$$
; $\hat{n}^* = \frac{L^*(1-\theta)}{\infty}$