Introduction to Probability

Set Theory & Venn Diagram

Set Theory & Venn Diagram

- Sets and Elements
- Equivalent Sets
- Subsets
- Proper Subsets
- Empty Sets
- Set Notation
- Set Builder Notation
- Set Conclusion
- Intersection of Sets
- Union of Sets
- Disjoint Set
- Universal Set
- Compliment of a Set
- Venn Diagram Region Map

What is a Set?

In Layman terms:

Set is a collection of things which are grouped together based on some criteria that makes them similar.

The easiest way to think about a "SET" are things in everyday life:

Sets and Elements

Equivalent Sets

Subsets

Proper Subsets

Empty Set

Subsets Vs. Proper Subsets

$$S = \{1,2,3\}$$

Set	Subset	Proper Subset
{Ø} or {}		
{0}		
{1}		
{2}		
{3}		
{0,1}		
{0,2}		
{1,2}		
{0,1,2}		×

Set Notation

We often use set notation to represent a list of outcomes

Example: Single Coin Flip

$$S = \{ H,T \}$$

Example: Single Die Roll

Example: Rain in a day

Example: Flip Two Indistinguishable Coins

$$S = \{ (H,H), (H,T), (T,T) \}$$

Example: Flip Two Distinguishable Coins

$$S = \{ (H1,H2), (H1,T2), (H2,T1), (T1,T2) \}$$

Set Builder Notation

Set Builder Notation is a way of writing out what we want in our set

```
C = { n | n is an odd integer less than 10 }
C = { n | n is an odd integer < 10 }</pre>
```

Set Notation: $C = \{1,3,5,7,9\}$


```
D = { n | n is one of the seven days }
Set Notation: P = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
```


Set Conclusions

- Set is a simple way of categorizing things based on some common criterion.
- We do this all the time. Usually we group things together e.g. clustering clothes together, gadgets together etc.
- Real-life examples:

Amazon offers "similar items" based on the set concept. Google offers "similar apps" in its app store.

Set Operations

Set and Elements

Equivalent Sets

Set Operations: Intersection

Set Operations: Intersection

$$A = \{1,2,3,4,5,6,7,8,9\}$$

$$A = \{1,2,3,4,5,6,7,8,9\}$$

$$B = \{6,7,8,9,10,11,12,13,14\}$$

$$B = \{6,7,8,9,10,11,12,13,14\}$$

What elements do these sets have in common? What elements do they share? Where do these two sets overlap?

Set Operations: Intersection

Set Operations: Union

Disjoint Set

Universal Set

S =

The universal set contains all elements we are interested in; depends on problem.

Compliment of a Set

Of everything in S, some are also in A; but usually not everything. If an element is in S but not in A then it is in the complement set A'.

Compliment of a Set

Which region(s) make up A? 2 2,1

Which region(s) make up $A \cap B$?

Which region(s) make up $A \cup B$?

Exercise

Question

Which regions make up A'?

What region(s) are in the universal set U?

1,2,3,4

Solution:

What region(s) are in the universal set U? 1,2,3,4

Which regions make up A'?

Question:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up B'?

If B is made up of regions 1 & 3, then NOT B has to be everything else...

Solution:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up B'?

2,4

Question:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up $(A \cap B)'$?

Solution:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up $(A \cap B)'$?

If $A \cap B$ is region 1, then everything that is NOT that must be regions 2,3,4

Question:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up $(A \cup B)'$?

Solution:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up $(A \cup B)'$?

If $A \cup B$ is region 1,2,3 then everything that is NOT that must be region 4

Question:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up $(A' \cap B')$?

Solution:

$$U_r =$$

What region(s) are in the universal set U? 1,2,3,4

Which regions make up $(A' \cap B')$?

$$A' = \{3,4\}$$

$$B'=\{2,\!4\}$$

What region(s) do they share?

4

Question:

$$U_r =$$

What region(s) are in the universal set U?

1,2,3,4

Which regions make up $(A' \cup B')$?

Solution:

$$U_r =$$

What region(s) are in the universal set U? 1,2,3,4

Which regions make up $(A' \cup B')$?

$$A' = \{3,4\}$$

$$B' = \{2,4\}$$

What region(s) are in either or both? 2,3,4

Example:

 $A = \{1,2,4,5\}$

Example:

 $B \cap C = \{1,3\}$

Example:

 $A \cup C = \{1,2,4,5,3,7\}$

Question:

Which region(s) comprise $(A \cup (B \cap C))$?

Solution:

Which region(s) comprise $(A \cup (B \cap C))$?

Step 1: Do the inner () first. So what is $B \cap C$?

1,3

Step 2: What regions make up *A*?

1,2,4,5

Step 3: Complete the union.

1,2,3,4,5

Question:

Which region(s) comprise $(A \cap (B \cup C))$?

Solutions:

Which region(s) comprise $(A \cap (B \cup C))$?

Step 1: Do the inner () first. So what is $B \cup C$?

1,2,6,3,7,4

Step 2: What regions make up *A*?

1,2,4,5

Step 3: Find common regions.

1,2,4

Venn Diagram Region - Summary

- A Venn diagram can be broken down into several discrete regions.
- Each set, subset, intersection, union etc. can then be written as a list of regions.
- From those list you can then figure out intersections, unions, etc., whatever problem is asking you to find.
- Once you have your list based answer, you can then go back and shade in the appropriate regions in the Venn diagram.

