Advanced Machine Learning

Course Outline

Course Details and Topics

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Problem Sheets

- I am going to provide many problem sheets
- One problem sheets will be marked and worth 20% (you will know which one this is)
 ■
- The other problem sheets are optional, but some small proportion of the questions will be on the exam
- I will go through the problem sheets, but if you have not attempted the questions you won't learn that much

Course Structure

- Lectures
 - ★ Tuesday 14:00-14:45 (02/1039)
 - ★ Thursday 16:00-16:45 (54/5025)
 - ★ Friday 17:00-17:45 (35/1005) ■
- Assessment
 - ★ 80% Exam
- ★ 20% Problem Sheet

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

What's in the Course

- This course is going to cover the core principles and mathematics behind machine learning
- It is not going to explicitly teach different machine learning algorithms, although some will be covered.
- We are not looking at advanced algorithms but cover the principles fish
- There are very good implementation available (e.g. scikit-learn)
- Along the way though we will meet (often many times) particular algorithms

Cracking the Code

Topics

- Mathematics is the language of machine learning
- You can do machine learning without mathematics, but if you want to develop and understand advanced algorithms then you have no choice!
- This course invites you on a journey to crack the code of mathematics for machine learning
- If this isn't a challenge you want, then this is probably not the course for you!

• Learning Theory

- ★ Bias-Variance
- ★ Overfitting, symmetry and regularisation
- ★ Ensembling, bagging and boosting
- Mathematics
 - * Function Spaces: Kernel Methods and Gaussian Processes
 - ★ Linear Algebra, embeddings, positive definiteness, subspace, determinants

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Topics Continued

- Optimisation
 - ★ Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
 ■
- Constrained Optimisation
 - ★ KKT conditions
 - ★ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - ★ Convex functions
 - ⋆ SVMs, Lasso
 - ⋆ Jensen's inequality

Topics Continued

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - * Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - ⋆ VAEs and GANs
 - ★ Entropy and information theory
 - ⋆ Variational Approximation