This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 April 2001 (19.04.2001)

PCT

(10) International Publication Number WO 01/27622 A1

(51) International Patent Classification7: G01N 33/53

(21) International Application Number: PCT/US00/28495

(22) International Filing Date: 13 October 2000 (13.10.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/159,394

14 October 1999 (14.10.1999) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

60/159,394 (CIP)

Filed on

14 October 1999 (14.10.1999)

(71) Applicant (for all designated States except US): BRISTOL-MYERS SQUIBB COMPANY [US/US]; Route 206 and Province Line Road, P.O. Box 4000, Princeton, NJ 08543 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WEINMANN, Roberto [US/US]; 98 Bayard Lane, Princeton, NJ 08540 (US). EINSPAHR, Howard, M. [US/US]; 67 Green Avenue, Lawrenceville, NJ 08648 (US). KRYSTEK, Stanley, R., Jr. [US/US]; 15 Back Brook Road, Ringoes, NJ 08551 (US). SACK, John, S. [US/US]; 50 Merion Place, Lawrenceville, NJ 08648 (US). SALVATI, Mark, E. [US/US]; 9 Tracey Drive, Lawrenceville, NJ 08648 (US). TOKARSKI, John, S. [US/US]; 11 Walker Drive,

Princeton, NJ 08540 (US). WANG, Chihuei [—/US]; 916 Deer Creek Drive, Plainsboro, NJ 08536 (US). ATTAR, Ricardo, M. [AR/US]; 10 Santina Court, Lawrenceville, NJ 08648 (US).

- (74) Agents: LICATA, Jane, Massey et al.; Law Offices of Jane Massey Licata, 66 E. Main Street, Marlton, NJ 08053 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

11/27622 A1

(54) Title: CRYSTALLOGRAPHIC STRUCTURE OF THE ANDROGEN RECEPTOR LIGAND BINDING DOMAIN

(57) Abstract: The first crystal structure of the androgen receptor ligand binding domain has been determined to 2.0 angstrom resolution. Disclosed are the coordinates for the crystal structure, and methods for determining agonists, partial agonists, antagonists, partial antagonists, and selective androgen receptors modulators (SARMS) of the androgen receptor.

CRYSTALLOGRAPHIC STRUCTURE OF THE ANDROGEN RECEPTOR LIGAND BINDING DOMAIN

Field of Invention

5

10

15

20

25

30

35

The present invention relates to compositions and crystals of androgen receptor ligand binding domain optionally in complex with its ligand. This invention also relates to methods of using the structure coordinates of the androgen receptor ligand binding domain /ligand complex to solve the structure of similar or homologous proteins or protein complexes. This invention also relates to methods for designing and selecting ligands that bind to the androgen receptor and methods of using such ligands.

Background of the Invention

The androgen receptor (AR) is a member of the steroid nuclearreceptor superfamily of ligand-dependent transcription factors. The binding of androgen to AR initiates the gene activation required for male sex development.

AR is an important target primarily in two drug discovery areas. In oncology drug discovery, inhibitors (antagonists or partial antagonists) of androgen receptor function are useful for treatment of anti-androgen refractory prostate cancer. In metabolic diseases drug discovery, agonists or partial agonists to the androgen receptor in muscle are useful to treat age-related diseases.

As with the other members of the steroid receptor family, AR has several functional domains including a DNA binding domain (DBD), and a 261 residue ligand-binding domain (LBD) (Mw = 30,245 Da) which contains the androgen binding site, and is responsible for switching on the androgen function.

Development of synthetic ligands that specifically bind to androgen receptors has been largely guided by trial and error method of drug design despite the importance of the androgen receptor in physiological processes and medical conditions such as prostate cancer and modulation of reproductive organ modulation. Previously, new ligands specific for androgen receptors were discovered in the absence of information on the three dimensional structure of the androgen receptor with a bound ligand. Before the present invention, researchers were

PCT/US00/28495 WO 01/27622

-2-

essentially discovering androgen receptor ligands by probing in the dark and without the ability to visualize how the amino acids of the androgen receptor held a ligand in its grasp.

Consequently, it would be advantageous to devise methods and compositions for reducing the time required to discover ligands to the androgen receptor, synthesize such compounds and administer such compounds to organisms to modulate physiological processes regulated by the androgen receptor.

The cDNA and amino acid sequences of human and rat androgen receptors have been described (Proc. Natl. Acad. Sci. U.S.A. 1988 85: 7211-7215). However, there have been no crystals reported of any androgen receptor. Thus, x-ray crystallographic analysis of such proteins has not been possible.

We have discovered the first crystal structure of the androgen receptor ligand binding domain (AR-LBD). Our understanding or the androgen receptor structure has allowed for the determination of the ligand binding site for selective androgen receptor modulators (SARMs).

Summary of the Invention

5

10

15

20

25

30

The present invention provides crystals of AR-LBD and crystals of an AR-LBD bound to a ligand, i.e. an AR-LBD/AR-LBD ligand complex. Most preferably the AR-LBD ligand is dihydrotestosterone (DHT). Thus, the present invention is directed to a crystal of an AR-LBD comprising:

- 1) an AR-LBD and an AR-LBD ligand or
- 2) an AR-LBD without an AR-LBD ligand; wherein said crystal diffracts to at least 3 angstrom resolution and has a crystal stability within 5% of its unit cell dimensions. The crystal of AR or AR-LBD preferably has at least 200 amino acid and preferably comprises amino acid sequence 672 to 917 of rat AR or the AR amino acid sequence 672 to 917 of human AR.

The present invention also provides the structure coordinates of the AR-LBD/AR-LBD ligand complex. The complete coordinates are listed in Table A.

The present invention also provides a method for determining at least a portion of the three-dimensional structure of molecules or 35 molecular complexes which contain at least some structurally similar

PCT/US00/28495

WO 01/27622

- 3 -

features to the androgen receptor ligand binding domain. It is preferred that these molecules or molecular complexes comprise at least a part of the ligand binding site defined by structure coordinates of AR-LBD amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877 and F878 according to Table A, or a mutant or homologue thereof. Since the

protein sequences for rat and human AR LBD are identical, the human

numbering system was used herein. 10

15

20

25

30

35

The present invention also provides a machine-readable data storage medium which comprises a data storage material encoded with machine readable data defined by the structure coordinates of an AR-LBD/AR-LBD ligand or ligand complex according to Table A or a homologue of the complex.

The present invention further provides a binding site in AR-LBD for an AR-LBD ligand as well as methods for designing or selecting AR modulators including agonists, partial agonists, antagonists, partial antagonists and/or selective androgen receptor modulators (SARMs) of AR using information about the crystal structures disclosed herein.

Brief Description of the Drawing

Figure 1 is a ribbon style drawing of the Androgen Receptor LBD. The substrate DHT is shown as a ball-and-stick figure.

Figure 2 is a comparison of the androgen receptor ligand binding domain with progesterone receptor ligand binding domain.

Figure 3 provides three views of the omit electron density map of dihydrotestosterone (DHT) in the hormone-binding site of AR-LBD. There are hydrogen bonds between the steroid and the side chains of Arg 752 and Asn 705.

Figure 4 is a comparison of the binding of dihydrotestosterone to AR-LBD (top) and of progesterone to PR-LBD (bottom). Note that an additional hydrogen bond interaction would be possible if both the sidechains of both N719 and the progesterone were flipped.

Detailed Description of the Invention

The first crystal structure of the androgen receptor ligand binding domain (AR-LBD) has been determined to 2.0 Å resolution. Crystals of rat AR-LBD were grown from precipitating solutions containing 0.9 M Sodium Tartrate, 0.1 M Na Hepes, pH 7.5. X-ray diffraction from the crystals have the symmetry and systematic absences of the orthorhombic space group P212121 with unit cell dimensions $a = 56.03 \, \text{Å}$, $b = 66.27 \, \text{Å}$, $c = 70.38 \, \text{Å}$, and one molecule per asymmetric unit (Mathews Volume = $2.16 \, \text{Å}^3 \, \text{Da}^{-1}$). The structure was determined by the method of molecular replacement using the structure of the Progesterone Receptor LBD (PR-LBD) as the search model.

The complex of AR-LBD with dihydrotestosterone (DHT) shows
the mode of binding of the steroid to the receptor in the agonist
conformation.

Dihydrotestosterone

15

5

The following abbreviations are used throughout the application:

A = Ala = Alanine

V = Val = Valine

20 L = Leu = Leucine

I = Ile = Isoleucine

P = Pro = proline

F = Phe = phenylalanine

W = Trp = Tryptophan

25 M = Met = Methionine

G = Gly = Glycine

S = Ser = Serine

T = Thr = Threonine

C = Cys = Cysteine

30 Y = Tyr = Tyrosine

N =Asn = Asparagine

O =Gln = Glutamine

D = Asp = Aspartic Acid

E = Glu = Glutamic Acid

K = Lys = Lysine

5 R = Arg = Arginine

H = His = Histidine

"Atom type" refers to the element whose coordinates have been determined. Elements are defined by the first letter in the column.

10

20

25

30

35

"X, Y, Z" crystallographically define the atomic position determined for each atom.

"B" is a thermal factor that measures movement of the atom around its atomic center.

"Occ" is an occupancy factor that refers to the fraction of the molecules in which each atom occupies the position specified by the coordinates. A value of "1" indicates that each atom has the same conformation, i.e., the same position, in all molecules of the crystal.

Additional definitions are set forth in the specification where necessary.

The androgen receptor (AR) described herein is intended to include any polypeptide which has the activity of the naturally occurring androgen receptor. The AR and AR-LBD contemplated herein includes all vertebrate and mammalian forms such as rat, mouse, pig, goat, horse, guinea pig, rabbit, monkey, orangutan and human. Such terms also include polypeptides that differ from naturally occurring forms of AR and AR-LBD by having amino acid deletions, substitutions, and additions, but which retain the activity of AR and AR-LBD, respectively. The crystal structure of the invention preferably contains at least 25%, more preferably at least 50%, more preferably at least 95%, more preferably at least 90%, and most preferably all of the coordinates listed in Table A. The crystal of the AR-LBD/AR-LBD ligand of the invention preferably has the following unit cell dimensions in angstroms: $a = 56.03 \pm 5\%$, b

-6-

= $66.27 \pm 5\%$, $c = 70.38 \pm 5\%$ and an orthorhombic space group P212121.

5

10

15

20

25

30

35

The AR-LBD ligand of this invention is any peptide, peptide mimetic or nonpeptide, including small organic molecules, that is capable of acting as a ligand for AR-LBD. In a preferred embodiment, the AR-LBD ligand is an AR modulator. By "AR modulator" it is meant an agonist or activator, a partial agonist or partial activator, an antagonist or inhibitor, or a partial antagonist or partial inhibitor which demonstrates tissue specific activations of the AR. Such compounds are also referred to herein as SARMs (selective androgen receptor modulators) of the AR-LBD. Examples of preferred agonists include androgens such as dihydrotestosterone.

The peptides referred to herein (e.g., AR, AR-LBD, and the like) may be produced by any well-known method, including synthetic methods, such as solid phase, liquid phase and combination solid phase/liquid phase syntheses; recombinant DNA methods, including cDNA cloning, optionally combined with site directed mutagenesis; and/or purification of the natural products, optionally combined with enzymatic cleavage methods to produce fragments of naturally occurring

Advantageously, the crystallizable compositions provided by this invention are amenable to x-ray crystallography. Thus, this invention also provides the three-dimensional structure of the AR-LBD/AR-LBD ligand complex, particularly the complex of rat AR-LBD with dihydrotestosterone.

The three-dimensional structure of the AR-LBD / dihydrotestosterone complex of this invention is defined by a set of structure coordinates as set forth in Table A. The term "structure coordinates" refers to Cartesian coordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of an androgen receptor/dihydrotestosterone complex in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the complex.

Those of skill in the art will understand that a set of structure coordinates for a receptor or receptor/ligand complex or a portion

-7-

thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape.

The variations in coordinates discussed above may be generated because of mathematical manipulations of the structure coordinates. For example, the structure coordinates set forth in Table A could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates; integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.

10

15

20

25

30

35

Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in structure coordinates. If such variations are within an acceptable standard error as compared to the original coordinates, the resulting three-dimensional shape is considered to be the same.

Various computational analyses are therefore necessary to determine whether a molecule or molecular complex or a portion thereof is sufficiently similar to all or parts of the androgen receptor/dihydrotestosterone described above as to be considered the same. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, CA) version 4.1, and as described in the accompanying User's Guide.

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps:

1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures

10

15

20

25

30

35

41 1

are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this invention we will define equivalent atoms as protein backbone atoms (N, Cs, C and O) for all conserved residues between the two structures being compared. We will also consider only rigid fitting operations.

When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses an algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

For the purpose of this invention, any molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, C α , C, O) of less than 1.5 Å when superimposed on the relevant backbone atoms described by structure coordinates listed in Table A are considered identical. More preferably, the root mean square deviation is less than 1.0 Å. In a preferred embodiment of the present invention, the molecule or molecular complex comprises at least a portion of the ligand binding site defined by structure coordinates of AR-LBD amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877 and F878 according to Table A, or a mutant or homologue of said molecule or molecular complex. More preferred are molecules or molecular complexes comprising all or any part of the ligand binding site defined by structure coordinates of AR-LBD amino acids N705, Q711, R752, F764 and T877 according to Table A, or a mutant or homologue of said molecule or molecular complex. Since the protein sequences for rat and human AR LBD are identical, the human numbering system has been used herein.

The term "complex" or "molecular complex" means AR-LBD or a mutant or homologue of AR-LBD in a covalent or non-covalent association with a chemical entity or compound.

PCT/US00/28495

5

10

15

20

25

30

35

For purposes of the present invention, by "at least a portion of" it is meant all or any part of the ligand binding site defined by these structure coordinates.

By "mutant or homologue" as used herein it is meant a molecule or molecular complex having a similar structure and/or sequences to AR-LBD. By "similar structure" it is meant a mutant or homologue having a binding pocket that has a root mean square deviation from the backbone atoms of said AR-LBD amino acids of not more than 1.5 Angstroms. By "similar sequence" it is meant a mutant or homologue having 30%, or more preferably 75%, identity with AR-LBD.

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein or protein complex from the relevant portion of the backbone of the AR portion of the complex as defined by the structure coordinates described herein.

Once the structure coordinates of a protein crystal have been determined they are useful in solving the structures of other crystals.

Thus, in accordance with the present invention, the structure coordinates of an androgen receptor/dihydrotestosterone complex, and in particular a complex, and portions thereof is stored in a machine-readable storage medium. Such data may be used for a variety of purposes, such as drug discovery and x-ray crystallographic analysis or protein crystal.

Accordingly, in one embodiment of this invention is provided a machine-readable data storage medium comprising a data storage material encoded with the structure coordinates set forth in Table A.

One embodiment utilizes System 10 as disclosed in WO 98/11134, the disclosure of which is incorporated herein by reference in its entirety

For the first time, the present invention permits the use of structure-based or rational drug design techniques to design, select, and synthesize chemical entities, including inhibitory and stimulatory compounds that are capable of binding to AR-LBD, or any portion thereof.

10

15

20

25

30

35

One particularly useful drug design technique enabled by this invention is iterative drug design. Iterative drug design is a method for optimizing associations between a protein and a compound by determining and evaluating the three-dimensional structures of successive sets of protein/compound complexes.

Those of skill in the art will realize that association of natural ligands or substrates with the binding pockets of their corresponding receptors or enzymes is the basis of many biological mechanisms of action. The term "binding pocket" as used herein, refers to a region of a molecule or molecular complex, that, as a result of its shape, favorably associates with another chemical entity or compound. Similarly, many drugs exert their biological effects through association with the binding pockets of receptors and enzymes. Such associations may occur with all or any parts of the binding pockets. An understanding of such associations will help lead to the design of drugs having more favorable associations with their target receptor or enzyme, and thus, improved biological effects. Therefore, this information is valuable in designing potential ligands or inhibitors of receptors or enzymes, such as inhibitors of AR.

The term "associating with" refers to a condition of proximity between chemical entities or compounds, or portions thereof. The association may be non-covalent -- wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions -- or it may be covalent.

In iterative drug design, crystals of a series of protein/compound complexes are obtained and then the three-dimensional structures of each complex is solved. Such an approach provides insight into the association between the proteins and compounds of each complex. This is accomplished by selecting compounds with inhibitory activity, obtaining crystals of this new protein/compound complex, solving the three dimensional structure of the complex, and comparing the associations between the new protein/compound complex and previously solved protein/compound complexes. By observing how changes in the compound affected the protein/compound associations, these associations may be optimized.

PCT/US00/28495

5

10

15

20

30

35

In some cases, iterative drug design is carried out by forming successive protein-compound complexes and then crystallizing each new complex. Alternatively, a pre-formed protein crystal is soaked in the presence of an inhibitor, thereby forming a protein/compound complex and obviating the need to crystallize each individual protein/compound complex.

As used herein, the term "soaked" refers to a process in which the crystal is transferred to a solution containing the compound of interest.

The structure coordinates set forth in Table A can also be used to aid in obtaining structural information about another crystallized molecule or molecular complex. This may be achieved by any of a number of well-known techniques, including molecular replacement.

The structure coordinates set forth in Table A can also be used for determining at least a portion of the three-dimensional structure of molecules or molecular complexes which contain at least some structurally similar features to AR. In particular, structural information about another crystallized molecule or molecular complex may be obtained. This may be achieved by any of a number of well-known techniques, including molecular replacement.

Therefore, in another embodiment this invention provides a method of utilizing molecular replacement to obtain structural information about a crystallized molecule or molecular complex whose structure is unknown comprising the steps of:

- a) generating an X-ray diffraction pattern from said crystallized molecule or molecular complex;
 - b) applying at least a portion of the structure coordinates set forth in Table A to the X-ray diffraction pattern to generate a three-dimensional electron density map of the molecule or molecular complex whose structure is unknown; and
 - c) using all or a portion of the structure coordinates set forth in Table A to generate homology models of AR-LBD or any other nuclear hormone receptor ligand binding domain.

Preferably, the crystallized molecule or molecular complex is obtained by soaking a crystal of this invention in a solution.

10

15

20

25

30

35

By using molecular replacement, all or part of the structure coordinates of the AR-LBD/AR-LBD ligand complex provided by this invention or molecular complex whose structure is unknown more quickly and efficiently than attempting to determine such information ab initio.

Molecular replacement provides an accurate estimation of the phases for an unknown structure. Phases are a factor in equations used to solve crystal structures that can not be determined directly. Obtaining accurate values for the phases, by methods other than molecular replacement, is a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a homologous portion has been solved, the phases from the known structure provide a satisfactory estimate of the phases for the unknown structure.

Thus, this method involves generating a preliminary model of a molecule or molecular complex whose structure coordinates are unknown, by orienting and positioning the relevant portion of the AR-LBD/AR-LBD ligand complex according to Table A within the unit cell of the crystal of the unknown molecule or molecular complex so as best to account for the observed X-ray diffraction pattern of the crystal of the molecule or molecular complex whose structure is unknown. Phases can then be calculated from this model and combined with the observed Xray diffraction pattern amplitudes to generate an electron density map of the structure whose coordinates are unknown. This, in turn, can be subjected to any well-known model building and structure refinement techniques to provide a final, accurate structure of the unknown crystallized molecule or molecular complex [E. Lattman, "Use of the Rotation and Translation Functions", in Meth. Enzymol., 115, pp. 55-77 (1985); M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Set., No. 13, Gordon & Breach, New York (1972)].

The structure of any portion of any crystallized molecule or molecular complex, or mutant, homologue or orphan receptor that is sufficiently homologous to any portion of the AR-LBD/AR-LBD ligand complex can be solved by this method. Along with the aforementioned AR, there also exist a number of AR for which the activating or

10

15

20

25

30

35

deactivating ligands may not be characterized. These proteins are classified as AR due to strong sequence homology to other AR, and are known as orphan receptors.

The structure coordinates are also particularly useful to solve the structure of crystals of AR-LBD/AR-LBD ligand co-complexed with a variety of chemical entities. This approach enables the determination of the optimal sites for interaction between chemical entities, including interaction of candidate AR inhibitors with the complex. For example, high resolution X-ray diffraction data collected from crystals exposed to different types of solvent allows the determination of where each type of solvent molecule resides. Small molecules that bind tightly to these sites can then be designed and synthesized and tested for their AR inhibition activity.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 1.5-3 A resolution X-ray data to an R value of about 0.20 or less using computer software, such as X-PLOR [Yale University, 1992, distributed by Molecular Simulations, Inc.; see, e.g., Blundell & Johnson, supra; Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)]. This information may thus be used to optimize known AR agonists, partial agonists, antagonists, partial antagonists and SARMS, and more importantly, to design new AR agonists/antagonists.

Accordingly, the present invention is also directed to a binding site in AR-LBD for an AR-LBD ligand in which a portion of AR-LBD ligand is in van der Walls contact or hydrogen bonding contact with at least one of the following residues: V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD. For purposes of this invention, by AR-LBD binding site it is also meant to include mutants or homologues thereof. In a preferred embodiment, the mutants or homologues have at least 25% identity, more preferably 50% identity, more preferably 75% identity, and most preferably 95% identity to residues V685, L700, L701, S702, S703, L704, N705, E706, L707,

- 14 -

G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD binding sites.

5

10

15

20

25

30

35

The present invention is also directed to a machine-readable data storage medium, comprising a data storage material encoded with machine readable data, wherein the data is defined by the structure coordinates of an AR-LBD/AR-LBD ligand according to Table A or a homologue of said complex, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms of the complex of not more than 3.0Å. Preferably, the machine-readable data storage medium, according to the invention, is wherein said molecule or molecular complex is defined by the set of structure coordinates for AR-LBD/AR-LBD ligand according to Table A, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 2.0 Å. In a preferred embodiment the machine-readable data storage medium comprises a data storage material encoded with a first set of machine readable data comprising a Fourier transform of at least a portion of the structural coordinates for an AR-LBD/AR-LBD ligand according to Table A; which, when combined with a second set of machine readable data comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, said first set of data and said second set of data.

The present invention also provides for computational methods using three dimensional models of the androgen receptor that are based on crystals of AR-LBD/AR-LBD ligand complex. Generally, the computational method of designing an androgen receptor ligand determines which amino acid or amino acids of the AR-LBD interact with a chemical moiety (at least one) of the ligand using a three dimensional model of a crystallized protein comprising the AR-LBD with a bound ligand, and selecting a chemical modification (at least one) of the

chemical moiety to produce a second chemical moiety with a structure that either decreases or increases an interaction between the interacting amino acid and the second chemical moiety compared to the interaction between the interacting amino acid and the corresponding chemical moiety on the natural hormone.

The computational methods of the present invention are for designing androgen receptor synthetic ligands using such crystal and three dimensional structural information to generate synthetic ligands that modulate the conformational changes of the androgen receptor's LBD. These computational methods are particularly useful in designing an agonist, partial agonist, antagonist or partial antagonist or SARMs to the androgen receptor, wherein the agonist, partial agonist, antagonist or partial antagonist or SARMS has an extended moiety that prevents any one of a number of ligand-induced molecular events that alter the receptor's influence on the regulation of gene expression, such as preventing the normal coordination of the activation domain observed for a naturally occurring ligand or other ligands that mimic the naturally occurring ligand, such as an agonist. As described herein, synthetic ligands of the androgen receptor will be useful in modulating androgen receptor activity in a variety of medical conditions.

AR is known to comprise various domains as follows:

1) a variable amino-terminal domain;

5

10

15

20

25

30

35

- 2) a highly conserved DNA-binding domain (DBD); and
- 3) a less conserved carboxyl-terminal ligand-binding domain (LBD).

This modularity permits different domains of each protein to separately accomplish different functions, although the domains can influence each other. The separate function of a domain is usually preserved when a particular domain is isolated from the remainder of the protein. Using conventional protein chemistry techniques a modular domain can sometimes be separated from the parent protein. Using conventional molecular biology techniques each domain can usually be separately expressed with its original function intact or chimerles of two different nuclear receptors can be constructed, wherein the chimetics retain the properties of the individual functional domains of the respective nuclear receptors from which the chimerica were generated.

Amino Terminal Domain

- 16 -

The amino terminal domain is the least conserved of the three domains. This domain is involved in transcriptional activation and in some cases its uniqueness may dictate selective receptor-DNA binding and activation of target genes by specific receptor isoforms. This domain can display synergistic and antagonistic interactions with the domains of the LBD. For example, studies with mutated and/or deleted receptors show positive cooperativity of the amino and carboxy terminal domains. In some cases, deletion of either of these domains will abolish the receptor's transcriptional activation functions.

10 DNA-Binding Domain

5

15

20

25

30

35

The DBD is the most conserved domain. The DBD contains two perpendicularly oriented a-helixes that extend from the base of the first and second zinc fingers. The two zinc fingers function in concert along with non-zinc finger residues to direct nuclear receptors to specific target sites on DNA and to align receptor homodimer or heterodimer interfaces. Various amino acids in DBD influence spacing between two half-sites for receptor dimer binding.

Ligand or AR Binding Domain

The LBD is the second most highly conserved domain. Whereas integrity of several different LBD sub-domains is important for ligand binding, truncated molecules containing only the LBD retain normal ligand-binding activity. This domain also participates in other functions, including dimerization, nuclear translocation and transcriptional activation. Importantly, this domain is the binding site for ligands, i.e. AR modulators, and undergoes ligand-induced conformational changes as detailed herein.

As described herein, the LBD of AR can be expressed, crystallized, its three dimensional structure determined with a ligand bound (either using crystal data from the same receptor or a different receptor or a combination thereof), and computational methods used to design ligands to its LBD, particularly ligands that contain an extension moiety that coordinates the activation domain of AR.

Once a computationally designed ligand (CDL) is synthesized, it can be tested using assays to establish its activity as an agonist, partial agonist, antagonist or partial antagonist or SARM, and affinity, as described herein. After such testing, the CDLs can be further refined by

- 17 -

generating LBD crystals with a CDL bound to the LBD. The structure of the CDL can then be further refined using the chemical modification methods described herein for three dimensional models to improve the activity or affinity of the CDL and make second generation CDLs with improved properties, such as that of a super agonist or antagonist.

5

10

15

20

25

30

35

Typically AR-LBD is purified to homogeneity for crystallization. Purity of AR-LBD is measured with SDS-PAGE, mass spectrometry and hydrophobic HPLC. The purified AR for crystallization should be at least 97.5 % pure or 97.5%, preferably at least 99.0% pure or 99.0% pure, more preferably at least 99.5% pure or 99.5% pure.

Initially purification of the unliganded receptor can be obtained by conventional techniques, such as hydrophobic interaction chromatography (HPLC), ion exchange chromatography (HPLC), and heparin affinity chromatography.

To achieve higher purification for improved crystals of AR, it will be desirable to ligand shift purify the nuclear receptor using a column that separates the receptor according to charge, such as an ion exchange or hydrophobic interaction column, and then bind the eluted receptor with a ligand, especially an agonist or partial agonist. The ligand induces a change in the receptor's surface charge such that when rechromatographed on the same column, the receptor then elutes at the position of the liganded receptor are removed by the original column run with the unliganded receptor. Usually saturating concentrations of ligand are used in the column and the protein can be preincubated with the ligand prior to passing it over the column.

More recently developed methods involve engineering a "tag" such as with histidine placed on the end of the protein, such as on the amino terminus, and then using a nickle chelation column for purification, Janknecht R., Proc. Natl. Acad.Sci. USA Vol 88:8972-8976 (1991) incorporated by reference.

To determine the three dimensional structure of a AR-LBD, it is desirable to co-crystalize the LBD with a corresponding LBD ligand.

Typically purified AR-LBD is equilibrated at a saturating concentration of ligand at a temperature that preserves the integrity of the protein. Ligand equilibration can be established between 2 and 37° C, although the receptor tends to be more stable in the 2-20° C range.

WO 01/27622 PCT/US00/28495 - 18 -

Preferably crystals are made with the hanging drop methods. Regulated temperature control is desirable to improve crystal stability and quality. Temperatures between 4 and 25°C are generally used and it is often preferable to test crystallization over a range of temperatures. It is preferable to use crystallization temperatures from 18 to 25°C, more preferably 20 to 23°C, and most preferably 22°C.

5

10

15

20

25

30

35

Ligands that interact with AR can act as an agonist, partial agonist, antagonist or partial antagonist or SARM based on what ligand-induced conformational changes take place.

Agonists or partial agonists induce changes in receptors that place them in an active conformation that allows them to influence transcription, either positively or negatively. There may be several different ligand-induced changes in the receptor's conformation.

Antagonists or partial antagonists bind to receptors, but fail to induce conformational changes that alter the receptor's transcriptional regulatory properties or physiologically teleram conformations. Binding of an antagonist or partial antagonist can also block the binding and therefore the actions of an agonist or partial agonist.

Partial agonists, or partial antagonists, bind to receptors and induce only part of the changes in the receptors that are induced by agonists or antagonists, respectively. The differences can be qualitative or quantitative. Thus, a partial agonist or partial antagonist may induce some of the conformation changes induced by agonists or antagonists, respectively, but not others, or it may only induce certain changes to a limited extent.

As described herein, the unliganded receptor is in a configuration that is either inactive, has some activity or has repressor activity. Binding of agonist ligands induces conformational changes in the receptor such that the receptor becomes more active, either to stimulate or repress the expression of genes. The receptors may also have non-genomic actions, some of the known types of changes and/or the sequelae of these are listed herein.

Heat shock protein binding domains present a region for binding to the LBD and can be modulated by the binding of a ligand to the LBD. Consequently, an extended chemical moiety (or more) from the ligand that stabilizes the binding or comact of the heat shock protein binding

- 19 -

domain with the LBD can be designed. Typically such chemical moieties will extend past and away from the molecular recognition domain on the ligand and usually past the buried binding cavity of the ligand.

Ligand binding by the receptor is a dynamic process, which regulates receptor function by inducing an altered conformation.

5

10

15

20

25

30

The three-dimensional structure of the liganded AR receptor will greatly aid in the development of new AR synthetic ligands. In addition, AR is overall well suited to modern methods including three-dimensional structure elucidation and combinatorial chemistry such as those disclosed in EP 335 628, U.S. patent 5,463,564, which are incorporated herein by reference. Computer programs that use crystallography data when practicing the present invention will enable the rational design of ligand to AR. Programs such as RASMOL can be used with the atomic coordinates from crystals generated by practicing the invention or used to practice the invention by generating three dimensional models and/or determining the structures involved in ligand binding. Computer programs such as INSIGHT and GRASP allow for further manipulation and the ability to introduce new structures. In addition, high throughput binding and bioactivity assays can be devised using purified recombinant protein and modern reporter gene transcription assays described herein and known in the art in order to refine the activity of a CDL.

Generally the computational method of designing an AR synthetic ligand comprises two steps:

- 1) determining which amino acid or amino acids of AR- LBD interacts with a first chemical moiety (at least one) of the ligand using a three dimensional model of a crystallized protein comprising an AR-LBD with a bound ligand; and
- 2) selecting a chemical modifications (at least one) of the first chemical moiety to produce a second chemical moiety with a structure to either decrease or increase an interaction between the interacting amino acid and the second chemical moiety compared to the interaction between the interacting amino acid and the first chemical moiety.
- Preferably the method is carried out wherein said three dimensional model is generated by comparing isomorphous ligand derivatives to produce improved phasing. Further preferred is wherein said method

comprises determining a change in interaction between said interacting amino acid and said ligand after chemical modification of said first chemical moiety, especially wherein said three dimensional model is generated by comparing isomorphous ligand derivatives to produce improved phasing. Also preferred is wherein said selecting uses said 5 first chemical moiety that interacts with at least one of the interacting amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, 10 L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906.

15

20

As shown herein, interacting amino acids form contacts with the ligand and the center of the atoms of the interacting amino acids are usually 2 to 4 angstroms away from the center of the atoms of the ligand. Generally these distances are determined by computer as discussed herein and in McRee 1993, however distances can be determined manually once the three dimensional model is made. See also Wagner et al., Nature 378(6558):670-697 (1995) for stereochemical figures of -three dimensional models. More commonly, the atoms of the ligand and the atoms of interacting amino acids are 3 to 4 angstroms apart. The invention can be practiced by repeating steps I and 2 to refine the fit of the ligand to the LBD and to determine a better ligand, such as an agonist, partial agonist, antagonist or partial antagonist or SARM. The three dimensional model of AR can be represented in two 25 dimensions to determine which amino acids contact the ligand and to select a position on the ligand for chemical modification and changing the interaction with a particular amino acid compared to that before chemical modification. The chemical modification may be made using a computer, manually using a two dimensional representation of the three 30 dimensional model or by chemically synthesizing the ligand. The ligand can also interact with distant amino acids after chemical modification of the ligand to create a new ligand. Distant amino acids are generally not in contact with the ligand before chemical modification. A chemical modification can change the structure of the ligand to make as new 35 ligand that interacts with a distant amino acid usually at least 4.5

- 21 -

angstroms away from the ligand, preferably wherein said first chemical moiety is 6 to 12 angstroms away from a distant amino acid. Often distant amino acids will not line the surface of the binding cavity for the ligand, they are too far away from the ligand to be part of a pocket or binding cavity. The interaction between a LBD amino acid and an atom 5 of an LBD ligand can be made by any force or attraction described in nature. Usually the interaction between the atom of the amino acid and the ligand will be the result of a hydrogen bonding interaction, charge interaction, hydrophobic interaction, van der Waals interaction or dipole interaction. In the case of the hydrophobic interaction it is recognized 10 that this is not a per se interaction between the amino acid and ligand, but rather the usual result, in part, of the repulsion of water or other hydrophilic group from a hydrophobic surface. Reducing or enhancing the interaction of the LBD and a ligand can be measured by calculating or testing binding energies, computationally or using thermodynamic or 15 kinetic methods as known in the art.

Chemical modifications will often enhance or reduce interactions of an atom of a LBD amino acid and an atom of an LBD ligand. Steric hindrance will be a common means of changing the interaction of the LBD binding cavity with the activation domain.

20

The present invention also provides methods for identifying compounds that modulate androgen receptor activity. Various methods or combinations thereof can be used to identify these compounds. For example, test compounds can be modeled that fit spatially into the AR-LBD as defined by structure coordinates according to Table A, or using a 25 three-dimensional structural model of AR-LBD, mutant AR-LBD or AR-LBD homolog or portion thereof. Structure coordinates of the ligand binding site, in particular amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, 30 R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 can also be used to identify structural and chemical features. Identified structural or chemical features can then be employed to design or select 35 compounds as potential AR modulators. By structural and chemical

PCT/US00/28495

- 22 -

features it is meant to include, but is not limited to, van der Waals interactions, hydrogen bonding interactions, charge interaction, hydrophobic bonding interaction, hydrophobic interaction and dipole interaction. Alternatively, or in conjunction, the three-dimensional structural model or the ligand binding site can be employed to design or 5 select compounds as potential AR modulators. Compounds identified as potential AR modulators can then be synthesized and screened in an assay characterized by binding of a test compound to the AR-LBD. Examples of assays useful in screening of potential AR modulators include, but are not limited to, screening in silico, in vitro assays and 10 high throughput assays. Finally, these methods may also involve modifying or replacing one or more amino acids from AR-LBD such as V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, 15 M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.

A preferred method of the invention can be described as a computational method of designing an androgen receptor antagonist from an androgen receptor agonist comprising:

20

25

30

35

- 1) determining a structure of a molecular recognition domain of said agonist using a three dimensional model of a crystallized protein comprising an AR-LBD, and
- 2) selecting at least one chemical modification of said agonist that provides a ligand structure that extends beyond a binding site for said agonist and in the direction of at least one protein domain important in AR biological function.

Another preferred method of the invention can be described as a computational method of designing a selective androgen receptor modulator such as an androgen receptor super agonist or antagonist comprising:

> 1) determining at least one interacting amino acid of an AR-LBD that interacts with at least one first chemical moiety of said ligand using a three dimensional model of a crystallized protein comprising AR-LBD with a bound ligand, and

5

10

15

20

25

30

35

- 23 -

2) selecting at least one chemical modification of said first chemical moiety to produce a second chemical moiety with a structure to reduce or enhance an interaction between said interacting amino acid and said second chemical moiety compared to said interaction between said interacting amino acid and said first chemical moiety.

However, as will be understood by those of skill in the art upon this disclosure, other structure based design methods can be used. Various computational structure based design methods have been disclosed in the art.

For example, a number computer modeling systems are available in which the sequence of the AR-LBD and the AR-LBD structure (i.e., atomic coordinates of AR-LBD and/or the atomic coordinates of the active site, the bond and dihedral angles, and distances between atoms in the active site such as provided in Table A) can be input. This computer system then generates the structural details of the site in which a potential AR modulator binds so that complementary structural details of the potential modulators can be determined. Design in these modeling systems is generally based upon the compound being capable of physically and structurally associating with AR-LBD. In addition, the compound must be able to assume a conformation that allows it to associate with AR-LBD. Some modeling systems estimate the potential inhibitory or binding effect of a potential AR modulator prior to actual synthesis and testing.

Methods for screening chemical entities or fragments for their ability to associate with AR-LBD are also well known. Often these methods begin by visual inspection of the active site on the computer screen. Selected fragments or chemical entities are then positioned with the AR-LBD. Docking is accomplished using software such as QUANTA and SYBYL, following by energy minimization and molecular dynamics with standard molecular mechanic forcefields such as CHARMM and AMBER. Examples of computer programs which assist in the selection of chemical fragment or chemical entities useful in the present invention include, but are not limited to, GRID (Goodford, P.J. J. Med. Chem. 1985 28:849-857), AUTODOCK (Goodsell, D.S. and Olsen, A.J. Proteins,

- 24 -

Structure, Functions, and Genetics 1990 8:195-202), and DOCK (Kunts et al. J. Mol. Biol. 1982 161:269-288).

Upon selection of preferred chemical entities or fragments, their relationship to each other and AR-ABD can be visualized and the entities or fragments can be assembled into a single potential modulator. Programs useful in assembling the individual chemical entities include, but are not limited to CAVEAT (Bartlett et al. Molecular Recognition in Chemical and Biological Problems Special Publication, Royal Chem. Soc. 78, 182-196 (1989)) and 3D Database systems (Martin, Y.C. J. Med. Chem. 1992 35:2145-2154).

5

10

15

20

25

30

35

Alternatively, compounds may be designed *de novo* using either an empty active site or optionally including some portion of a known inhibitor. Methods of this type of design include, but are not limited to LUDI (Bohm H-J, J. Comp. Aid. Molec. Design 1992 6:61-78) and LeapFrog (Tripos Associates, St. Louis. MO).

The present invention is also directed to an AR-LBD selective androgen receptor modulator (SARM), in particular an agonist or antagonist or partial agonist or partial antagonist, identified by a computational process of the invention.

The present invention is further directed to a method for treating prostate cancer comprising administering an effective amount of an AR modulator, preferably an antagonist or partial antagonist, identified by a computational process of the invention.

The present invention is also direct to a method for treating an age related disease comprising administering an effective amount of an AR modulator, preferably an agonist or partial agonist, identified by a computational process of the invention, preferably wherein said age related disease is osteoporosis, muscle wasting or loss of libido.

Compounds identified as agonists, partial agonists, antagonists, partial antagonists or SARMs by the methods disclosed herein which are active when given orally can be formulated as liquids for example syrups, suspensions or emulsions, tablets, capsules and lozenges. A liquid composition will generally consist of a suspension or solution of the compound in a suitable liquid carrier(s), for example ethanol, glycerin, sorbitol, non-aqueous solvent such as polyethylene glycol, oils or water, with a suspending agent, preservative, surfactant, wetting agent,

flavoring or coloring agent. Alternatively, a liquid formulation can be prepared from a reconstitutable powder. For example a powder containing active compound, suspending agent, sucrose and a sweetener can be reconstituted with water to form a suspension; and a syrup can be prepared from a powder containing active ingredient, sucrose and a 5 sweetener. A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid compositions. Examples of such carriers include magnesium stearate, starch, lactose, sucrose, microcrystalline cellulose, binders, for example polyvinylpyrrolidone. The tablet can also be provided with a color film 10 coating, or color included as part of the carrier(s). In addition, active compound can be formulated in a controlled release dosage form as a tablet comprising a hydrophilic or hydrophobic matrix. A composition in the form of a capsule can be prepared using routine encapsulation procedures, for example by incorporation of active compound and 15 excipients into a hard gelatin capsule. Alternatively, a semi-solid matrix of active compound and high molecular weight polyethylene glycol can be prepared and filled into a hard gelatin capsule; or a solution of active compound in polyethylene glycol or a suspension in edible oil, for example liquid paraffin or fractionated coconut oil can be prepared and 20 filled into a soft gelatin capsule. Compounds identified by the processes described herein which are active when given parenterally can be formulated for intramuscular or intravenous administration. A typical composition for intra-muscular administration will consist of a suspension or solution of active ingredient in an oil, for example arachis 25 oil or sesame oil. A typical composition for intravenous administration will consist of a sterile isotonic aqueous solution containing, for example active ingredient, dextrose, sodium chloride, a co-solvent, for example polyethylene glycol and, optionally, a chelating agent, for example ethylenediaminetetracetic acid and an anti-oxidant, for example, sodium 30 metabisulphite. Alternatively, the solution can be freeze dried and then reconstituted with a suitable solvent just prior to administration. Identified compounds which are active on rectal administration can be formulated as suppositories. A typical suppository formulation will generally consist of active ingredient with a binding 35 and/or lubricating agent such as a gelatin or cocoa butter or other low

- 26 -

melting vegetable or synthetic wax or fat. Identified compounds which are active on topical administration can be formulated as transdermal compositions. Such compositions include, for example, a backing, active compound reservoir, a control membrane, liner and contact adhesive.

PCT/US00/28495

The typical daily dose of a varies according to individual needs, the condition to be treated and with the route of administration. Suitable doses are in the general range of from 0.001 to 10 mg/kg bodyweight of the recipient per day.

The following examples are to illustrate the invention, but should not be interpreted as a limitation thereon.

Examples

5

10

Cloning, Expression and Purification of the Androgen Receptor Ligand-Binding Domain

The rat androgen receptor (rAR) ligand-binding domain (LBD) cDNA, from amino acid 646 to 901, was cloned from a rat prostate cDNA 15 library (Clontech) by PCR. The primers used were CATATGATTGAAGGCTATGAATGTCAACCTATCTTT (SEQ ID NO:3) and TCACTGTGTGTGGAAATAGATGGG (SEQ ID NO:4). The rat AR LBD was expressed as a fusion protein driven by the T7 promoter of pET28b vector (Novagen) to include an N-terminal polyhistidine tag and a 20 thrombin cleavage site. The replacement of T877 for A (the LNCaP mutation) in this rAR LBD expression construct was performed with the QuickChange Site-Directed Mutagenesis kit (STRATAGENE). Dihydrotestosterone (DHT) was included in the E. coli (BL21-DE3) fermentation medium at a concentration of 0.05 mM. Induction with 25 $0.4\ mM$ isopropyl- β -D-thiogalactopyranoside was allowed to proceed for 16 hours at 20°C in M9 minimal media supplemented with casamino acids (Difco) and trace minerals, and pellets were stored at -70 °C. A total of 6-9 mg of recombinant AR LBD was isolated from a 15 gram cell pellet following sonication and chromatography on a nickel-chelate resin. 30 Polyhistidine-tagged AR LBD of approximately 90% purity eluted at 0.45 M imidazole in a gradient of 0.05-1.0 imidazole. This material was quantitatively cleaved at an engineered site for thrombin recognition, followed by chromatography on benzamidine sepharose (Pharmacia) to remove the serine protease, with a 70% recovery. The final sample 35 containing the sequence Gly-Ser-His-Met at the N-terminus followed by

residues 646-901 of the rat (664 – 919 in the human) AR LBD protein, was concentrated for crystallography to 2 mg/ml in 20 mM Tris (pH 7.5), 0.5 M NaCl, 10% glycerol, 1 mM EDTA and 1 mM DTT.

The sequence of the rat Androgen Receptor LBD (AR), as cloned, with the secondary structural features marked. For comparison, the aligned sequence of the Progesterone Receptor LBD (PR) is given. Residues involved in androgen binding are marked (*). Residues which are disordered in the crystal structure are underlined. The AR sequence is SEQ ID NO:1. The PR sequence is SEQ ID NO:2.

```
10
                           |-----H3-----
     |-H1--|
    660 GSHMIEGYECQPIFLNVLEAIEPGVVCAGHDNNQPDSFAALLSSLNELGE
                                                           AR
            GQDIQLIPPLINLLMSIEPDVIYAGHDNTKPDTSSSLLTSLNQLGE
     678
15
                            |-----H4/5-----
     710 RQLVHVVKWAKALPGFRNLHVDDQMAVIQYSWMGLMVFAMGWRSFTNVNS
                                                           AR
     724 RQLLSVVKWSKSLPGFRNLHIDDQITLIQYSWMSLMVFGLGWRSYKHVSG
20
                               |----H7----|
           SSSS SSS |-H6|
     760 RMLYFAPDLVFNEYRMHKSRMYSQCVRMRHLSQEFGWLQITPQEFLCMKA
     774 QMLYFAPDLILNEQRMKESSFYSLCLTMWQIPQEFVKLQVSQEEFLCMKV
                        |----H9-----
25
     810 LLLFSIIPVDGLKNOKFFDELRMNYIKELDRIIACKRKNPTSCSRRFYQL
                                                           AR
     824 LLLLNTIPLEGLRSQTQFEEMRSSYIRELIKAIGLRQKGVVSSSQRFYQL
         ---H10/11-----| |--|
                                        |-----H12-----|
     860 TKLLDSVQPIARELHQFTFDLLIKSHMVSVDFPEMMAEIISVQVPKILSG
                                                            AR
30
     874 TKLLDNLHDLVKQLHLYCLNTFIQSRALSVEFPEMMSEVIAAQLPKILAG
          SSS
     910 KVKPIYFHTQ
                    AR
35
     924 MVKPLLFHK
                    ₽R
```

Crystallization

40

45

The AR-LBD - Dihydrotestosterone (DHT) complex was crystallized at 20° C by vapor diffusion in the hanging-drop mode. In the crystallization trials, the protein complex as obtained from MMB&B was used without any further purification. In the initial trial to obtain crystallization conditions, a sparse matrix crystallization screen was done with the Crystal Screens 1 and 2 (Hampton Research). For each crystallization trial, a 2 µl drop was prepared by mixing 1 µl of purified protein (1.9 mg ml⁻¹) with an equal volume of reservoir solution. The reservoir contained 1.0 ml of the precipitating solution. Small crystals were obtained in two days from six of the drops (table 1).

Table 1: Crystallization Conditions

20

25

30

35

Precipitating Solution	Result
1.5 M Li Sulfate, 0.1M Na Hepes, pH 7.5	Small r ds
0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5	Larger rods
2% v/v PEG 400, 2.0 M Am Sulfate,	
0.1M Na Hepes, pH 7.5	Small cubes
1.6 M Mg Sulfate, 0.1M MES, pH 6.5	Small crystallites
1.6 M Am Sulfate, 0.1 M Na Cl,	
0.1 M Hepes, pH 7.5	Small rods
12% v/v Glycerol, 1.5 M Am Sulfate,	
0.1 M Tris, pH 8.5	Small rods
	0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5 2% v/v PEG 400, 2.0 M Am Sulfate, 0.1M Na Hepes, pH 7.5 1.6 M Mg Sulfate, 0.1M MES, pH 6.5 1.6 M Am Sulfate, 0.1 M Na Cl, 0.1 M Hepes, pH 7.5 12% v/v Glycerol, 1.5 M Am Sulfate,

The largest single crystal, measuring 0.05 mm x 0.04 mm x 0.26mm, was obtained from Crystal Screen 1, solution # 29 (0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5). This crystal was subsequently used in the initial data collection run (as described below).

Optimization of the crystallization condition was done using a Cyperlab C-200 automated crystallization robotic workstation. A crystallization trial was performed using a 24-step linear gradient from 0.6 M to 1.26 M Na tartrate, 100 Mm Hepes, pH 7.5 (Note: The optimization screen used sodium rather than sodium/potassium tartrate). The largest, rod shaped crystal, with dimensions 0.09 mm x 0.09 mm x 0.20mm, was obtained at 0.887 M Na Tartrate. This crystal was used in the second data collection run (as described below).

Data Collection and Reduction

For the initial X-ray experiment, the crystal from the initial crystallization screen was flash cooled by dipping it in a cryoprotectant solution containing the precipitating solution (0.8 M Na/K Tartrate, 0.1M Na Hepes, pH 7.5) with 250mm NaCl and 20% Glycerol added and then placed it in a cold stream at 100° K.

For data set 1, X-ray diffraction data were collected with an R-Axis II imaging plate detector. The radiation was generated from a Rigaku RU-200 rotating at 5 kw power with a fine focus filament (0.3 x 3.0mm) was monchromated (Cu Kα) and intensified by focusing with Yale mirrors (Molecular Structure Corporation). The crystal diffracted to better than 2.4 Å resolution. Autoindexing and processing of the measured intensity data was carried out with the HKL software package (Otwinoski, L. (1993) in CCP4 Study Weekend, Data Collection and

10

15

20

25

30

Processing (Sawyer, L., Issacs, N., and Bailey, S., Eds.) pp 56-62, SERC Daresbury Laboratory, Warrington, U.K). X-ray diffraction from the crystals have the symmetry and systematic absences of the orthorhombic space group P212121 with unit cell dimensions a = 56.03 Å, b = 66.27 Å, c = 70.38 Å, and one molecule per asymmetric unit (Mathews Volume = 2.16 Å 3 Da- 1).

A second X-ray diffraction data set (data set 2) was collected at the IMCA-CAT beamline (sector 17ID) at the Advanced Photon Source synchrotron at Argonne, II. The crystal from the optimization screen described above, was flash-cooled by placing it in the reservoir solution (0.877 M Na Tartrate, 0.1M Na Hepes, pH 7.5) with 250mm NaCl and 20% Glycerol added, and then placing it in a cold stream at 100° K. The data were collected with a Bruker 2x2 mosaic CCD detector. The crystal diffracted to better than 2.0 Å. Autoindexing and processing of the measured intensity data was carried out with the HKL2000 software package (Otwinoski, L. (1993) in CCP4 Study Weekend, Data Collection and Processing (Sawyer, L., Issacs, N., and Bailey, S., Eds.) pp 56-62, SERC Daresbury Laboratory, Warrington, U.K.). The data collection and processing statistics for both data sets are summarized in table 2.

Structure Determination (Molecular Replacement)

The structure was determined by the method of molecular replacement with the program AmoRe (Navaza, J. (1994) AmoRe: an automated package for molecular replacement. Acta Cryst. D50, 157-163). The Progesterone Receptor ligand binding domain (PR-LBD), which has 54% sequence identity and 76% sequence homology to AR-LBD, was used as the search model. The atomic coordinates of PR-LBD (Protein Data Bank reference code 1A28) by Williams & Sigler (Nature 1998 393, 391) were unmodified except for the removal of the ligand and solvent molecules. A second molecular replacement search was performed with a theoretical model for the AR-LBD provided by the MMS/CADD group (table 3). The PR-LBD structure gave a slightly better solution than the AR-model (1.7 σ vs.1.3 σ above background) and was used in the subsequent refinement, although both structures gave equivalent results with no molecular interpenetration.

Table 2: Data	C 11	cti 1	a and	Proc	ssing
---------------	------	-------	-------	------	-------

	Table 2: Data C ll ct	ti n and Proc ssing Data Set I	Data Set II
	Date	5/19/99	6/17/99
	Source/Detector	Rigaku RU-200	IMCA/APS 17ID
5	Detector	R-axis II	Bruker 2x2
•	Wavelength	Cu Kα (1.54 Å)	1.00 Å
	Frames	364	400
	ΔΦ	0.5°	0.5°
	Crystal to plate distance	150 mm	135 mm
10	Time/frame	20 min	1 sec
	Number of Observations	209,891	416,207
	Data Reduction Program	HKL	HKL2000
	Unique reflections	10,824	18,308
	Reflections Used	10,114	16,862
15	Resolution	2.4 Å (2.5-2.4 Å)	2.0 Å (2.1-2.0 Å)
	Completeness	93.8% (71.6%)	92.6 % (73.0 %)
	Multiplicity	6.3	7.3
	Mosiacity	0.502	0.332
	Rsym (on I)	4.2 % (17.5%)	10.1 % (25.6%)
20	Space Group	P212121	P212121
	a	56.09 Å	56.08 Å
	b	66.43 Å	65.76 Å
	C	70.54 Å	70.51 Å
	Wilson B-value	39.05 Ų	29.26 Ų

Values for data in the last resolution shell are given in parentheses

Table 3: Molecular Replacement Statistics
Search Model: Progesterone

	Search Model:	Progesterone	AR Model
30		(PDB file 1A28)	
	Program Used	AmoRe	AMoRe
	Resolution Range	8.0 – 4.0 Å	8.0 – 4.0 Å
	Radius of Integration	25 Å	25 Å
	Number of Reflections	2.393	2,393
35	Number of Atoms	2,019	2,094
••	RF Correlation (2 nd solution)	0.16 (0.12)	0.13 (0.11)
	TF Correlation (2 nd solution)	0.31 (0.20)	0.23 (0.14)
	TF R-factor (2 nd solution)	49.0% (52.7%)	52.1% (54.0%)
	Rigid Body Correlation	0.34	0.28
40	Rigid Body R-factor	48.1%	50.4%

Structure Refinement

The structure was first refined with the initial 2.4 Å data set (2σ data, 9,818 reflections) by the method of simulated annealing with

program X-PLOR (Brünger, A.T., Kuriyan, J. & Karplus, J. (1987) "Crystallographic R-factor refinement by molecular dynamics", Science 235: 458-460) in four cycles to an R-factor of 27.7%. Each refinement cycle consisted of a least-squares minimization, simulated annealing at 3000°, and individual isotropic B-factor refinement. The first cycle, with the Progesterone molecular replacement model unmodified for the sequence differences between AR and PR, gave an R-factor of 33.8%. The model was then rebuilt using the AR amino acid sequence and a second refinement cycle gave an R-factor of 29.6%. At this stage of the refinement, the DHT molecule could be clearly seen in the difference electron density map.

After each cycle, the structure was carefully examined using molecular computer graphics program Chain (Sack, John S. (1988) "CHAIN- A Crystallographic Modeling Program", J. Mol. Graphics 6: 224-225) and modifications were made to the structure as needed. Several 15 residues, from both the N- and C-termini of the molecule, which were not seen in the electron density maps were removed from the model. After the second cycle of refinement, the DHT was added to the model. Solvent molecules were added where there were 3σ peaks in both the 2Fo - Fcand Fo - Fc electron density maps and removed if their B-factor went 20 above 60 Å². After four cycles of X-PLOR refinement, a careful examination of the electron density showed the model to be much improved, although molecular refitting still needed to be done in some regions. The density is clear except for some of the loop regions, particularly the loop between helices I and II, which was also poorly 25 modeled in the PR structure.

Table 4: Refinement Statistics (X-PLOR)

Part I: 2σ data (9,818 reflections) to 2.4 Å						
Cycle 1	251 residues	No ligand	0 waters	R = 33.8 %		
Cycle 2	248 residues	No ligand	0 waters	R = 29.6%		
Cycle 3	247 residues	ligand	18 waters	R = 28.3 %		
Cycle 4	246 residues	ligand	40 waters	R = 27.7%		
	Cycle 1 Cycle 2 Cycle 3	Cycle 1 251 residues Cycle 2 248 residues Cycle 3 247 residues	Cycle 1 251 residues No ligand Cycle 2 248 residues No ligand Cycle 3 247 residues ligand	Cycle 1 251 residues No ligand 0 waters Cycle 2 248 residues No ligand 0 waters Cycle 3 247 residues ligand 18 waters		

Part II: 2o data (15,067 reflections) to 2.0 Å

10

35

Cycle 5	246 residues	ligand	32 waters	R = 27.9 %
Cycle 6	246 residues	ligand	57 waters	R = 26.8 %

- 32 -

 Cycle 7
 246 residues
 ligand
 58 waters
 R = 26.7 %

 Cycle 8
 246 residues
 ligand
 106 waters
 R = 24.2%

At this stage of the refinement, the higher resolution data collected at the APS synchrotron became available. Four additional X-PLOR refinement cycles were performed with the 2.0 Å data set (2 σ data, 15,067 reflections) following the same protocol. The final structure has an R-factor of 24.2% with a total of 106 solvent molecules. The final refinement statistics are presented in table 5.

10 Table 5: Final Refinement Parameters Resolution Range 10.0 – 2.0 Å

5

15

20

25

30

35

Resolution Range 15,067 Reflections 24.2 % R-factor 31.2 % R-free 246 (672-917) # residues 2118 (1991 atoms, 21 DHT, 106 waters) # atoms **RMS** deviations 0.014 Å bond lengths 1.594° bind angles 1.558° Improper angles Average B-factors 25.02 Å² **Protein** 14.40 Å² DHT

30.21 Å²

29.26 Å²

Description of the Molecule

Water

Wilson B-factor

The structure of AR-LBD is complete from residues 671 through 917 for the wild-type and 672 to 918 for the LNCaP mutant. Analysis of the structures with program PROCHECK showed only minor exceptions to the allowed geometry. In the wild-type structure, the first six residues of the chain (664 - 670) are not seen in the electron density and are probably disordered. This leaves only one residue before the initial residue of the first α-helix (H1) in the wild-type structure, none in the LNCaP mutant structure. On the C-terminal end, the last two residues (918 - 919) are not seen in the electron density of the wild-type structure, but only the last is missing in the mutant. In addition, since the loop between helices 9 and 10 (residues 845-850) is not well defined, it has been modeled as poly-alanine.

10

35

Folding and Packing

As expected, the AR LBD has the same overall three-dimensional structure as those of the other nuclear hormone receptor LBDs. The molecule is folded into a "helical sandwich" consisting of 10 α -helices. There are four small pieces of beta strand, forming two short beta-sheets; one in the core of the molecule between helices 5 and 6 near the ligand binding site, and the other formed by the loop between helices 8 and 9 and the C-terminus. This latter sheet, also seen in the PR LBD structure, holds helix 12 in the closed, agonist conformation, close to and capping the ligand binding site.

Lack of Dimer Formation

Studies have indicated that the estrogen, progesterone, and androgen receptors all function as homodimers and that AR LBD forms dimers in solution. Thus it could be expected that the AR LBD domains 15 might form homodimers in the crystal similar to those previously seen in the RXR- α and estrogen receptor (ER) LBD crystal structures. In the PR LBD structure, the two monomers in the asymmetric unit are related by a dyad, but the two-fold-symmetric configuration is strikingly different from that of the RXR and ER homodimers and the area buried in this 20 configuration is much smaller than would be expected for stable dimer formation. In the AR LBD crystal, the ligand-binding domains are unmistakably monomeric, and there are no twofold axes relating domains. Moreover, the homodimer interaction seen in the structures of ER and RXR LBDs is not possible for the AR LBD, as the C-terminal tail 25 is bound to the groove formed by helices 9 and 10, thereby obstructing the contact region between monomers in RXR and ER homodimers. Whether this observation reflects a non-dimeric state of the AR LBD in the functional AR dimer or is an artifact of the conditions used for AR LBD crystallization remains to be determined. It is noteworthy that the 30 ER LBD constructs used for crystallization have been truncated to remove an analogous C-terminal extension.

Comparison with Progesterone Receptor

While there is only 55% sequence identity between AR LBD and PR LBD, there is a 77% sequence similarity, and as expected, the three-dimensional structures of these two LBDs are very similar with an r.m.s.

10

25

30

35

deviation of 1.3 Å between corresponding $C\alpha$ atom positions. As with PR, AR LBD has no helix 2, but its helix 12 is longer than those of RXR or TR. In the case of AR, while helices 10 and 11 are nearly contiguous, there is a proline residue at position 868 that causes a kink between the two helices.

Comparison with theoretical AR model

The theoretical AR model obtained from MMS/CADD and the AR structure have an r.m.s. deviation of 1.29 Å for the 247 alpha carbons. More importantly, the hormone binding site is virtually identical with the exception of the side chains of Met 732(749), Leu 863(880), and Leu 864 (881) which are in different rotomers. This causes the binding cavity to be more compact in the AR structure. Also, there is a flip of the side chain of Asn 688(705) so that the ND2 atom is in position to make a hydrogen bond to the carbonyl off of the D-ring.

Table 6: Comparison of AR-LBD to PR-LBD and Theoretical model

	Calpila	Michili	0.00	
AR vs. Pr	1.22 (246)	1.27 (983)	1.80 (772)	1.53 (1,755)
AR vs. CADD	1.25 (246)	1.31 (983)	2.41(971)	1.93 (1,954)

20 Binding of Dihydrotestosterone

At the end of the molecular replacement procedure with the PR LBD structure without progesterone as search model, the largest piece of difference electron density, at approximately the 3o level, was found at the progesterone-binding site. Replacing the bound progesterone agonist (which has a carboxyl group at the 17-position) with a model of dhydrotestosterone (DHT, which has a hydroxyl group at the 17-position) produced an even better fit to the difference electron density, indicating that DHT binds to AR LBD in an almost identical fashion to the way progesterone binds to PR LBD. Both agonists interact with helices 3, 5, and 11 of their respective LBDs. Ring A, which is identical in the two steroids, makes similar interactions with the side chains of Q711, M745, R752 (Q725, M759, R766 in PR LBD), and a conserved water molecule. The interactions with ring C are also similar, with close contacts to the mainchain of L704 (L718 in PR LBD) and sidechain of N705 (N719 in PR LBD). The contact between C18 and the O_γ1 of T877 is unique to the wild-type AR LBD, as the corresponding cysteinyl side chain is pointed away from the steroid in the PR LBD structure.

Since progesterone and DHT differ in the substituent on ring D, it is expected that interactions with respective receptors will differ in this region. In the AR LBD structure, Nδ2 of N705 makes a hydrogen bond to the D-ring hydroxyl of DHT. A similar interaction could be made between progesterone and the PR LBD if there were a flip of both the steroid acetyl group and the side chain of N719. This would place the oxygen approximately 3.2 Å from the Nδ2 atom of Asn 719. The ligand contact surface area is slightly larger for progesterone in PR than for DHT in AR (483 vs. 448 Ų) but they are both considerably smaller than the ligand contact surface area in TR (559 Ų), PPARγ (583 Ų), or the Vitamin D receptor (677 Ų).

Figure 3 shows two orthogonal views of the omit electron density map of dihydrotestosterone (DHT) in the hormone-binding site of AR-LBD. There are hydrogen bonds between the steroid and the side chains of Arg 752 and Asn 705.

Table 7: Dihydrotestosterone Contacts (3.4 Å)
Hydrogen Bonds

20	O3 O3	Arg 752 Nh2 Gln 711 Nε2	2.89 Å (2.77 A) 3.36 Å (3.20 A)							
05	O20 O20	Asn 705 Nδ2 Thr 877 Ογ1	2.80 Å (3.20 A) 2.70 Å (N/A)							
25	Possible Close Contacts									
	C11	Leu 704 O	3.31 Å							
30	C12	Asn 705 Nδ2	3.07 Å							
	C17	Asn 705 Nδ2	3.34 Å							
35	C19	Met 745 Sδ	3.38 Å							
	C18	Thr 877 Ογ1	3.07 Å							

15

Comparison with Progesterone binding

Comparison of the structure of DHT in the AR-LBD with the

structure of progesterone in the PR-LBD (Williams, S.P. & Sigler, P.B.
(1998) "Atomic Structure of Progesterone Complexed with its Receptor",
Nature 393, 391) shows a similar mode of binding. Ring A, which is
identical in the two steroids, makes similar interactions with the side
chains of Q711, M745, R752, Q711 and a conserved water molecule

(table 8). The interaction with ring C are also similar, with close

5

10

15

contacts to the mainchain of L704 and sidechain of N705. The contact from C18 to the O γ 1 of T877 is unique to AR-LBD, as the corresponding cysteine sidechain is pointed away from the steroid in the PR-LBD structure

Since progesterone and DHT differ in the substitution off of ring D, it is expected that there will be different interactions with the protein in this region. In the AR structure, the N δ 2 atom of Asn 705 makes hydrogen bond to the D-ring hydroxyl.

A similar interaction could be made in the PR if there were a flip of both the steroid carboxyl group and the side chain of N719. This would place the carboxyl oxygen approximately 3.2 A from the N δ 2 atom of Asn 719. In AR-LBD, there is also a close contact to the side chain of T877 which is absent in the PR-LBD structure.

Figure 4 shows comparison of AR and PR steroid binding Comparison of the binding of dihydrotestosterone to AR-LBD (top) and of progesterone to PR-LBD (bottom). Note that an additional hydrogen bond interaction would be possible if both the sidechains of both N719 and the progesterone were flipped.

Table 8: Comparison of AR and PR steroid binding

20	Tuble 8. comparison of 121 and 151											
20		AR	PR .									
	Ring A											
0.5	O3:	H-bond to R752 NH2 (2.9 A)	H-bond to R766 NH2 (2.8 A)									
25		H-bond to water (3.5 A)	H-bond to water (3.1 / 3.4 A)									
		SC of Q711 in different rotomer distance to O3 is 3.4 and 4.13 A	Contact to SC of Gln 725 distance to O3 is 3.2 and 3.3 A									
30	C19	Contact to M745 SD (3.4 A)	Similar orientation (3.5 A)									
35	C2:	SC of Q711 (3.5 A)	different rotomer (3.2 & 3.3) distance to C4 is 4.1 A									
	Ring C											
	C11	LO704 O (3.3A)	(3.5A)									
40	C12	Contact to N705 Nδ2 (3.1A)	Contact to N719 Oδ1 (3.4 A)									
	C18	Contact T877 Oγ1 (3.1 A)	SC of C891 pointing away distance to Sγ is 3.8 A									
	Ring D											
45	O20/C21 O21 in AR is close to C21 in PR (Possible flip of Carboxyl in PR?)											

N/A

O20: Contact to C891 Ca (3.2 A)

O20: H-bond N705 Nδ2 (2.8A) O20: Contact T877 Cγ1 (2.7 A) C21: Contact to N719 OD1 (3.2 A) SC of C891 pointing away

C17

Contact N705 N82 (3.3 A)

Ring in slightly different orientation; distance to N719 O81 is 4.7 A

10

15

20

25

5

Structure of the Complex of DHT with the LBD of the LNCaP Mutant

In the LNCaP mutant, T877 is replaced by an alanine residue. The mutant LBD structure has an r.m.s. deviation of 0.8 Å compared to the wild-type structure, close to the expected r.m.s. deviation due to the estimated errors in the coordinates. In particular, the binding of DHT is essentially identical by wild-type and mutant LBDs except at the point of mutation. Here the replacement of T877 by alanine leaves additional space off the D-ring of DHT to accommodate a larger substituent on position 17. This may explain the promiscuous ability of the LNCaP mutant, unlike wild-type AR, to bind to a variety of other hormones and analogs like some progestins, estrogens and cortisols that differ from DHT in substitution at position 17. For example, the binding of flutamide, estradiol, and progesterone to the LNCaP mutant can activate the mutant receptor. Conversely, mutation of T877 to residues with larger sidechains such as aspartic acid and lysine would be expected completely preclude the binding of ligands with any substituent at position 17 of the D-ring and such mutations have been shown to totally eliminate androgen binding.

Table A

	ATOM	1	СВ	ILE	672	14.846	25.527	23.734	1.00 25.78
5	ATOM	2		ILE	672	16.247	25.008	24.099	1.00 25.56
J	MOTA	3		ILE	672	14.842	27.035	23.978	1.00 25.60
	ATOM	4	CD1		672	15.312	27.404	25.360	1.00 25.81
	ATOM	5		ILE	672	15.115	23.900	21.789	1.00 25.32
		6		ILE	672	16.189	23.926	21.195	1.00 24.67
40	ATOM	7		ILE	672	13.004	25.282	22.008	1.00 24.75
10	ATOM			ILE	672	14.475	25.215	22.242	1.00 25.11
	MOTA	8		PHE	673	14.448	22.768	22.030	1.00 25.89
	ATOM	9		PHE	673	14.980	21.446	21.635	1.00 25.86
	ATOM	10			673	14.020	20.306	22.029	1.00 26.22
45	ATOM	11		PHE PHE	673	14.557	18.923	21.722	1.00 25.12
15	MOTA	12			673	15.765	18.501	22.251	1.00 25.16
	ATOM	13	CD1			13.877	18.066	20.874	1.00 25.81
	ATOM	14	CD2		673	16.286	17.255	21.946	1.00 23.42
	ATOM	15	CEl		673	14.403	16.809	20.567	1.00 25.08
	MOTA	16	CE2		673		16.417	21.107	1.00 23.85
20	ATOM	17		PHE	673	15.609	21.374	20.147	1.00 25.25
	ATOM	18		PHE	673	15.213		19.680	1.00 24.38
	MOTA	19		PHE	673	16.260	20.926	19.412	1.00 25.01
	ATOM	20		LEU	674	14.193	21.792	17.969	1.00 25.58
	MOTA	21	-	LEU	674	14.237	21.802		1.00 26.05
25	MOTA	22		LEU	674	12.833	21.974	17.391	1.00 26.55
	ATOM	23		LEU	674	12.067	20.653	17.317	1.00 26.35
	ATOM	24	CD1		674	10.617	20.887	16.935	
	ATOM	25	CD2		674	12.762	19.758	16.304	1.00 26.09
	ATOM	26	С	LEU	674	15.199	22.801	17.357	1.00 25.10 1.00 26.08
30	ATOM	27	0	LEU	674	15.743	22.518	16.294	
	ATOM	28	N	ASN	675	15.440	23.939	18.019	1.00 24.63
	ATOM	29	ÇA	ASN	675	16.356	24.964	17.484	1.00 23.19
	ATOM	30	CB	ASN	675	16.478	26.215	18.393	1.00 24.20
	ATOM	31	CG	ASN	675	15.206	27.067	18.452	1.00 24.32
35	ATOM	32	OD1	ASN	675	14.368	27.062	17.547	1.00 24.82
	ATOM	33	ND2	ASN	675	15.076	27.817	19.539	1.00 24.74
	ATOM	34	С	ASN	675	17.726	24.338	17.397	1.00 21.66
	ATOM	35	0	ASN	675	18.435	24.524	16.417	1.00 21.43
	ATOM	36	N	VAL	676	18.095	23.612	18.448	1.00 21.17
40	ATOM	37	CA	VAL	676	19.394	22.952	18.507	1.00 20.92
	ATOM	38	CB	VAL	676	19.718	22.442	19.934	1.00 21.33
	ATOM	39	CG1	VAL	676	18.899	21.237	20.247	1.00 24.09
	ATOM	40	CG2	VAL	676	21.192	22.095	20.065	1.00 21.88
	ATOM	41	С	VAL	676	19.501	21.830	17.473	1.00 19.78
45	ATOM	42	0	VAL	676	20.421	21.827	16.646	1.00 19.99
	ATOM	43	N	LEU	677	18.530	20.923	17.434	1.00 19.08
	ATOM	44	CA	LEU	677	18.601	19.848	16.453	1.00 17.91
	ATOM	45	СВ	LEU	677	17.383	18.921	16.518	1.00 17.50
•	ATOM	46		LEU	677	17.267	18.083	17.798	1.00 16.78
50	ATOM	47		LEU	677	16.355	16.934	17.541	1.00 17.01
-	ATOM	48		LEU	677	18.615	17.555	18.225	1.00 17.10
	ATOM	49	C	LEU	677	18.768	20.427	15.068	1.00 16.96
	ATOM	50	ō	LEU	677	19.640	20.008	14.347	1.00 14.94
	ATOM	51	N	GLU	678	17.980	21.445	14.736	1.00 19.12
55	ATOM	52	CA	GLU	678	18.058	22.121	13.437	1.00 20.06
55	ATOM	53	CB	GLU	678	16.972	23.188	13.317	1.00 23.33
		54	CG	GLU	678	15.532	22.646	13.381	1.00 28.64
	ATOM ATOM	55	αÇ	GLU	678	14.459	23.736	13.387	1.00 32.31
		56		GLU	678	14.811	24.943	13.374	1.00 34.41
60	ATOM			GLU	678	13.253	23.384	13.410	1.00 34.91
60	ATOM	57 58	C	GLU	678	19.410	22.783	13.243	1.00 19.33
	MOTA	58	C	GLU	0/0	17.410	22.703		

	ATOM ATOM	59 60	N	GLU ALA	678 679	19.966 19.966	22.737 23.324	12.152 14.329 14.303	1.00 18.20 1.00 19.45 1.00 18.84
	ATOM	61		ALA	679	21.257	24.018	15.517	1.00 17.67
	ATOM	62		ALA	679	21.388	24.919	14.195	1.00 19.25
5	MOTA	63	С	ALA	679	22.472	23.094	13.558	1.00 19.27
	ATOM	64	0	ALA	679	23.479	23.436	14.802	1.00 18.82
	ATOM	65	N	ILE	680	22.395	21.914	14.802	1.00 17.49
	ATOM	66	CA	ILE	680	23.518	20.984		1.00 17.05
	ATOM	67	CB	ILE	680	23.674	20.231	16.056 17.158	1.00 17.03
10	ATOM	68	CG2		680	24.022	21.213		1.00 15.55
	ATOM	69	CG1		680	22.393	19.467	16.391	1.00 13.33
	ATOM	70	CD1		680	22.558	18.575	17.552	1.00 15.80
	MOTA	71	С	ILE	680	23.516	19.984	13.593	1.00 10.03
	ATOM	72	0	ILE	680	24.518	19.303	13.370	1.00 17.12
15	ATOM	73	N	GLU	681	22.415	19.922	12.847	1.00 16.79
	ATOM	74	CA	GLU	681	22.265	19.002	11.719	1.00 17.20
	ATOM	75	CB	GLU	681	20.902	19.227	11.094	
	ATOM	76	CG	GLU	681	20.579	18.300	9.952	1.00 18.48
	ATOM	77	CD	GLU	681	20.473	16.823	10.348	1.00 17.51
20	ATOM	78		GLU	681	20.659	16.502	11.524	1.00 17.58
	ATOM	79	OE2	GLU	681	20.214	15.981	9.467	1.00 18.59
	ATOM	80	С	GLU	681	23.370	19.128	10.673	1.00 18.79
	ATOM	81	0	GLU	681	23.517	20.173	10.043	1.00 20.09
	MOTA	82	N	PRO	682	24.145	18.044	10.437	1.00 19.02
25	ATOM	83	CD	PRO	682	23.969	16.704	11.019	1.00 18.22
	ATOM	84	CA	PRO	682	25.252	18.021	9.472	1.00 19.11
	ATOM	85	CB	PRO	682	25.681	16.546	9.493	1.00 18.30
	ATOM	86	CG	PRO	682	25.338	16.109	10.846	1.00 17.08
	ATOM	87	С	PRO	682	24.912	18.475	8.057	1.00 19.76
30	ATOM	88	0	PRO	682	23.771	18.382	7.625	1.00 21.13
	ATOM	89	N	GLY	683	25.901	18.995	7.339	1.00 20.64
	ATOM	90	CA	GLY	683	25.665	19.422	5.972	1.00 21.67
	ATOM	91	С	GLY	683	25.809	18.260	4.990	1.00 23.13
	ATOM	92	0	GLY	683	25.595	17.108	5.355	1.00 23.47
35	ATOM	93	N	VAL	684	26.190	18.567	3.748	1.00 23.58
	ATOM	94	CA	VAL	684	26.365	17.573	2.685	1.00 22.44
	ATOM	95	CB	VAL	684	26.320	18.216	1.259	1.00 24.93
	ATOM	96	CG1	VAL	684	26.217	17.130	0.183	1.00 24.57
	ATOM	97	CG2	VAL	684	25.153	19.228	1.131	1.00 24.89
40	ATOM	98	С	VAL	684	27.725	16.934	2.811	1.00 20.64
	ATOM	99	0	VAL	684	28.708	17.614	3.042	1.00 19.82
	ATOM	100	N	VAL	685	27.778	15.631	2.585	1.00 19.05
	ATOM	101	CA	VAL	685	29.012	14.878	2.665	1.00 17.89
	ATOM	102	CB	VAL	685	28.955	13.857	3.867	1.00 17.81
45	ATOM	103	CG1	VAL	685	30.303	13.189	4.086	1.00 15.58
	ATOM	104	CG2	VAL	685	28.527	14.556	5.147	1.00 16.27
	ATOM	105	С	VAL	685	29.143			1.00 17.88
	ATOM	106	0	VAL	685	28.238	13.367	0.969	1.00 18.33
	ATOM	107	N	CYS	686	30.224	14.339	0.609	1.00 17.00
50	ATOM	108	CA	CYS	686	30.451	13.628	-0.650	1.00 17.52
	ATOM	109	CB	CYS	686	31.101	14.534	-1.706	1.00 17.76
	ATOM	110	SG	CYS	686	30.166	16.031	-2.147	1.00 21.38
	MOTA	111	С	CYS	686	31.354	12.447	-0.327	1.00 16.97
	ATOM	112	0	CYS	686	32.141	12.496	0.615	1.00 17.15
55	ATOM	113	N	ALA	687	31.183	11.360	-1.065	1.00 17.74
	ATOM	114	CA	ALA	687	31.949	10.132	-0.836	1.00 17.57
	MOTA	115	CB	ALA	687	31.161	8.929	-1.295	1.00 16.91
	ATOM	116	С	ALA	687	33.277	10.161	-1.526	1.00 18.06
	ATOM	117	0	ALA	687	34.185	9.431	-1.139	1.00 17.98
60	MOTA	118	N	GLY	688	33.370	11.023	-2.539	1.00 18.50
	ATOM	119	CA	GLY	688	34.580	11.167	-3.326	1.00 19.16
	ATOM	120	С	GLY	688	34.705	10.099	-4.388	1.00 19.90

1

- 40 -

						- 40 -			
	ATOM	121	0	GLY	688	35.802	9.730	-4.771	1.00 20.86
	ATOM	122		HIS	689	33.582	9.630	-4.907	1.00 20.92 1.00 22.43
	ATOM	123		HIS	689	33.577	8.576	-5.912	1.00 22.43
	ATOM	124		HIS	689	32.195	7.917	-5.900 -6.857	1.00 22.28
5	ATOM	125		HIS	689	32.046	6.775 5.656	-7.033	1.00 22.64
_	ATOM	126	CD2		689	32.782	6.724	-7.796	1.00 22.44
	ATOM	127	ND1		689	31.040 31.166	5.627	-8.516	1.00 23.43
	MOTA	128	CEl	HIS	689	32.219	4.960	-8.074	1.00 23.78
	ATOM	129	NE2		689	33.923	9.063	-7.328	1.00 24.19
10	MOTA	130	C	HIS	689 689	33.511	10.145	-7.731	1.00 24.06
	ATOM	131	0	HIS ASP	690	34.719	8.296	-8.073	1.00 26.27
	MOTA	132	N	ASP	690	35.017	8.691	-9.447	1.00 28.86
	ATOM	133 134	CA CB	ASP	690	36.330	8.096	-9.963	1.00 28.93
15	ATOM	134	CG	ASP	690	36.696	8.618	-11.361	1.00 30.03
13	MOTA MOTA	136	OD1		690	37.868	8.497	-11.764	1.00 31.23
	ATOM	137	OD2		690	35.819	9.170	-12.061	1.00 29.72
	ATOM	138	С	ASP	690	33.872	8.164	-10.286	1.00 30.15 1.00 30.46
	ATOM	139	0	ASP	690	33.701	6.952	-10.409	1.00 30.40
20	MOTA	140	N	ASN	691	33.065		-10.832 -11.655	1.00 32.33
	ATOM	141	CA	ASN	691	31.933		-11.416	1.00 33.00
	MOTA	142	CB	ASN	691	30.725 30.079		-10.074	1.00 32.95
	ATOM	143	CG	ASN	691	29.187	8.474	-9.930	1.00 32.13
	MOTA	144		ASN	691 691	30.547	10.024	-9.069	1.00 33.57
25	ATOM	145		ASN ASN	691	32.284	8.608	-13.136	1.00 35.13
	ATOM	146 147	С 0	ASN	691	31.419	8.733	-13.999	1.00 36.66
	MOTA	148	N	B T B	602	33.565	8.471	-13.434	1.00 36.15
	ATOM ATOM	149	CA	ALA	692	33.995	8.365	-14.819	1.00 37.44
30	ATOM	150	CB	ALA	692	35.148		-15.103	1.00 36.71
00	ATOM	151	С	ALA	692	34.425		-15.027	1.00 38.39 1.00 39.10
	ATOM	152	0	ALA	692	34.414	6.406	-16.139	1.00 39.10
	ATOM	153	N	GLN	693	34.757	6.241	-13.928 -13.942	1.00 40.00
	ATOM	154	CA	GLN	693	35.200		-13.942 -12.745	1.00 41.81
35	ATOM .	155	СВ	GLN	693	36.131		-13.110	1.00 44.34
	MOTA	156	CG	GLN	693	37.538 38.420		-13.902	1.00 45.44
	MOTA	157	CD	GLN	693 693	39.378	5.587	-13.363	1.00 45.95
	ATOM	158		GLN GLN	693	38.115		-15.186	1.00 45.47
40	ATOM	159 160	NE2	GLN	693	33.988		-13.854	1.00 39.48
40	ATOM ATOM	161	Ö	GLN	693	32.997		-13.217	1.00 40.11
	ATOM	162	Ŋ	PRO	694	34.055	2.743	-14.485	1.00 38.78
	ATOM	163	CD	PRO	694	35.138	2.286	-15.375	1.00 38.88
	ATOM	164	CA	PRO	694	32.970	1.762	-14.489	1.00 36.98 1.00 37.17
45	ATOM	165	CB	PRO	694	33.571		-15.265	
	MOTA	166	CG	PRO	694	34.432	1.2/1	-16.234 -13.109	1.00 35.56
	MOTA	167	C	PRO	694	32.575	1 198	-12.204	1.00 35.44
	ATOM	168	0	PRO	694	33.411 31.289	1 022	-12.958	1.00 34.27
50	ATOM	169	N	ASP	695 695	30.776		-11.698	1.00 32.38
50	ATOM	170	CA CB	ASP ASP	695	29.251		-11.694	1.00 29.77
	ATOM	171 172	CG	ASP	695	28.660	1.901	-11.608	1.00 28.80
	ATOM	173		ASP	695	27.532	2.100	-12.089	1.00 27.09
	ATOM ATOM	174		ASP	695	29.329	2.794	-11.057	1.00 28.72
55	ATOM	175	C	ASP	695	31.318		-11.524	1.00 32.55
50	ATOM	176	0	ASP	695	31.237		-12.429	1.00 33.50
	ATOM	177	N	SER	696	32.025	-1.052	-10.424	1.00 31.71
	ATOM	178	CA	SER	696	32.577	-2.333	10.077	1.00 30.42 1.00 30.43
	MOTA	179	СВ	SER	696	34.064		3 -10.425 3 -9.567	1.00 30.43
60	MOTA	180	OG	SER	696	34.854	-1.589 -2.449		
	MOTA	181	C	SER	696	32.340	-2.445		
	MOTA	182	0	SER	696	32.275	-1.410	, ,	

İ

	ATOM	183	N	PHE	697	32.104	-3.669	-8.099	1.00 28.48
		184	CA	PHE	697	31.890	-3.933	-6.679	1.00 26.74
	ATOM	185	СВ	PHE	697	31.982	-5.442	-6.423	1.00 25.46
	ATOM	186	CG	PHE	697	31.781	-5.827	-4.989	1.00 24.31
5	ATOM	187	CD1		697	30.536	-5.722	-4.398	1.00 24.48
5	ATOM	188	CD2		697	32.845	-6.281	-4.220	1.00 24.78
	ATOM				697	30.344	-6.063	-3.071	1.00 24.65
	ATOM	189	CE2		697	32.659	-6.626	-2.886	1.00 24.77
	ATOM	190		PHE	697	31.406	-6.512	-2.315	1.00 24.30
40	ATOM	191	CZ		697	32.956	-3.205	-5.846	1.00 26.76
10	ATOM	192	C	PHE	697	32.641	-2.393	-4.972	1.00 27.12
	MOTA	193	0	PHE		34.219	-3.495	-6.140	1.00 25.86
	MOTA	194	N	ALA	698	35.351	-2.911	-5.436	1.00 24.97
	MOTA	195	CA	ALA	698	36.596	-3.305	-6.131	1.00 25.52
	ATOM	196	CB	ALA	698	35.323	-1.402	-5.300	1.00 25.24
15	ATOM	197	С	ALA	698		-0.852	-4.216	1.00 24.99
	MOTA	198	0	ALA	698	35.559	-0.737	-6.414	1.00 25.11
	MOTA	199	N	ALA	699	35.029		-6.490	1.00 23.76
	ATOM	200	CA	ALA	699	35.001	0.717		1.00 24.31
	MOTA	201	CB	ALA	699	34.845	1.156	-7.943	1.00 24.31
20	ATOM	202	С	ALA	699	33.873	1.281	-5.668	
	MOTA	203	0	ALA	699	34.084	2.133	-4.795	1.00 22.51 1.00 21.56
	MOTA	204	N	LEU	700	32.682	0.770	-5.957	1.00 21.36
	ATOM	205	CA	LEU	700	31.440	1.185	-5.314	
	ATOM	206	CB	LEU	700	30.274	0.397	-5.937	
25	MOTA	207	CG	LEU	700	29.249	0.984	-6.911	1.00 18.78
	ATOM	208	CD1	LEU	700	29.727	2.269	-7.529	1.00 18.69
	ATOM	209	CD2	LEU	700	28.952	-0.015	-7.957	1.00 17.10
	ATOM	210	С	LEU	700	31.456	0.977	-3.793	1.00 20.77
	ATOM	211	0	LEU	700	30.891	1.765	-3.035	1.00 19.67
30	MOTA	212	N	LEU	701	32.103	-0.093	-3.350	1.00 20.77
	ATOM	213	CA	LEU	701	32.147	-0.367	-1.941	1.00 20.58
	ATOM	214	CB	LEU	701	32.099	-1.871	-1.670	1.00 19.52
	ATOM	215	CG	LEU	701	30.582	-2.050	-1.567	1.00 19.40
	ATOM	216	CD1	LEU	701	30.046	-2.911	-2.642	1.00 17.73
35	ATOM	217	CD2	LEU	701	30.173	-2.510	-0.217	1.00 17.25
-	ATOM	218	С	LEU	701	33.261	0.365	-1.241	1.00 20.86
	ATOM	219	0	LEU	701	33.126	0.734	-0.088	1.00 21.69
	ATOM	220	N	SER	702	34.356	0.615	-1.937	1.00 21.06
	ATOM	221	CA	SER	702	35.406	1.378	-1.316	1.00 20.96
40	ATOM	222	СВ	SER	702	36.632	1.400	-2.190	1.00 21.52
	ATOM	223	OG	SER	702	37.204	0.120	-2.175	1.00 23.71
	ATOM	224	С	SER	702	34.874	2.791	-1.105	1.00 20.81
	ATOM	225	0	SER	702	35.187	3.423	-0.103	1.00 20.82
	ATOM	226	N	SER	703	34.023	3.250	-2.028	1.00 20.55
45	ATOM	227	CA	SER	703	33.443	4.585	-1.934	1.00 18.91
	ATOM	228	CB	SER	703	32.755	4.966	-3.224	1.00 18.44
	ATOM	229	OG	SER	703	33.748	5.182	-4.194	1.00 20.63
	ATOM	230	С	SER	703	32.470	4.678	-0.793	1.00 18.35
	ATOM	231	0	SER	703	32.520	5.625	-0.025	1.00 18.89
50	ATOM	232	N	LEU	704	31.596	3.684	-0.662	1.00 17.26
-	ATOM	233	CA	LEU	704	30.639	3.687	0.432	1.00 16.37
	MOTA	234	CB	LEU	704	29.691	2.497	0.342	1.00 15.19
	ATOM	235	CG	LEU	704	28.558	2.583	-0.660	1.00 14.03
	ATOM	236	CD1		704	27.882	1.259	-0.748	1.00 12.28
55	ATOM	237		LEU	704	27.582	3.681	-0.235	1.00 14.48
33	ATOM	238	C	LEU	704	31.366	3.678	1.761	1.00 16.10
	ATOM	239	Ö	LEU	704	30.925	4.340	2.696	1.00 16.81
	ATOM	240	N	ASN	705	32.495	2.961	1.829	1.00 16.70
	ATOM	241	CA	ASN	705	33.307	2.863	3.049	1.00 16.66
60	ATOM	242	СВ	ASN	705	34.398	1.794	2.924	1.00 15.46
JU	ATOM	243	CG	ASN	705	33.850	0.384	2.941	1.00 16.24
	ATOM	244		ASN	705	34.448	-0.512	2.385	1.00 16.82
	WI OLI		701			• •			

	ATOM	245	ND2		705	32.726	0.180 4.201	3.592 3.410	1.00	16.07 17.17
	ATOM	246	C	ASN	705	33.955	4.201	4.570		17.46
	MOTA	247	0	ASN	705	33.970	4.882	2.415	1.00	
_	MOTA	248	N	GLU	706	34.512	6.193	2.598		17.55
5	ATOM	249	CA	GLU	706	35.151 35.739	6.668	1.258		18.93
	ATOM	250	CB	GLU	706		8.029	1.282	1.00	
	MOTA	251	CG	GLU	706	36.394	8.146	2.347		23.68
	ATOM	252	CD	GLU	706	37.488	9.225	2.978	1.00	
4.0	ATOM	253	OE1		706	37.586	7.175	2.569	1.00	
10	ATOM	254			706	38.246 34.089	7.180	3.069		16.10
	ATOM	255	C	GLU	706		8.023	3.950		16.62
	MOTA	256	0	GLU	706	34.313	7.076	2.445		15.13
	ATOM	257	N	LEU	707	32.927	7.916	2.792		14.21
4-	ATOM	258	CA	LEU	707	31.803 30.604	7.579	1.925		12.85
15	ATOM	259	CB	LEU	707 707	29.318	8.262	2.328		12.03
	ATOM	260	CG	LEU	707	29.537	9.745	2.280	1.00	
	ATOM	261	CD1		707	28.252	7.889	1.374	1.00	
	ATOM	262	CD2		707	31.461	7.634	4.228	1.00	
00	ATOM	263	С	LEU	707	31.121	8.557	4.980	1.00	
20	ATOM	264	0	LEU	707	31.532	6.358	4.602		13.93
	ATOM	265	N Cr	GLY	708	31.332	5.976	5.965		12.96
	MOTA	266	CA	GLY	708	32.213	6.620	6.917		13.13
	ATOM	267	C	GLY GLY	708	31.849	7.061	7.987		13.55
25	ATOM	268	0	GLU	709	33.468	6.687	6.514	1.00	14.14
25	ATOM	269	N	GLU	709	34.525	7.279	7.322		15.83
	ATOM	270	CA	GLU	709	35.874	7.046	6.658	1.00	16.73
	ATOM	271 272	CB CG	GLU	709	37.051	7.547	7.446		18.68
	ATOM	273	CD	GLU	709	37.573	6.514	8.401		21.63
30	ATOM ATOM	274		GLU	709	36.766	5.660	8.826		23.39
30	ATOM	275	OE2		709	38.784	6.544	8.723		23.17
	ATOM	276	C	GLU	709	34.334	8.775	7.486	1.00	16.65
	ATOM	277	Õ	GLU	709	34.628	9.317	8.563		17.59
	ATOM	278	N	ARG	710	33.845	9.427	6.428	1.00	16.70
35	ATOM	279	CA	ARG	710	33.616	10.869	6.418	1.00	17.32
55	ATOM	280	CB	ARG	710	33.459	11.346	4.990	1.00	16.07
	ATOM	281	CG	ARG	710	34.659	11.098	4.137	1.00	16.18
	ATOM	282	CD	ARG	710	34.329	11.498	2.706	1.00	16.39
	ATOM	283	NE	ARG	710	35.512	11.535	1.850	1.00	15.28
40	ATOM	284	CZ	ARG	710	35.587	12.246	0.733	1.00	15.30
. •	ATOM	285		ARG	710	34.550	12.975	0.357	1.00	14.96
	ATOM	286		ARG	710	36.691	12.242	0.001		14.89
	ATOM	287	С	ARG	710	32.376	11.230	7.218	1.00	17.85
	ATOM	288	0	ARG	710	32.379	12.156	8.034	1.00	17.75
45	ATOM	289	N	GLN	711	31.291	10.516	6.955	1.00	18.71
	ATOM	290	CA	GLN	711	30.067	10.745	7.697	1.00	19.38
	ATOM	291	CB	GLN	711	28.908	9.938	7.127	1.00	19.79
	ATOM	292	CG	GLN	711	28.377	10.566	5.878		22.36
	ATOM	293	CD	GLN	711	27.058	10.010	5.446		23.37
50	ATOM	294	OE1	GLN	711	26.758	9.932	4.244		25.35
	ATOM	295	NE2	GLN	711	26.228	9.677	6.410		24.52
	ATOM	296	С	GLN	711	30.209	10.494	9.188		19.48
	ATOM	297	0	GLN	711	29.564	11.183	9.985		19.57
	ATOM	298	N	LEU	712	31.043	9.529	9.571		18.76
55	ATOM	299	CA	LEU	712	31.259	9.227	10.984		19.20
	ATOM	300	CB	LEU	712	32.163	8.008	11.157		20.55
	ATOM	301	CG	LEU	712	32.522	7.607	12.590		21.95
	ATOM	302	CD1	LEU	712	31.288	7.641	13.484		23.43
	ATOM	303	CD2	LEU	712	33.132	6.223	12.586		22.57
60	ATOM	304	С	LEU	712	31.876	10.428	11.704		19.23
	ATOM	305	0	LEU	712	31.507	10.743	12.834		17.65
	ATOM	306	N	VAL	713	32.809	11.099	11.039	1.00	19.70

- 43 -

									1.00 19.68
	ATOM	307	CA \	/AL	713	33.427	12.270	11.619	
	ATOM	308	CB \	/AL	713 ·	34.453	12.859	10.658	1.00 20.01
	ATOM	309	CG1 V	/AL	713	34.722	14.292	11.001	1.00 21.16
	ATOM	310	CG2 V	JAL	713	35.750	12.069	10.750	1.00 20.06
5	ATOM	311	C 1	VAL	713	32.328	13.277	11.990	1.00 19.53
_	ATOM	312	0 1	VAL	713	32.325	13.802	13.086	1.00 20.00
	ATOM	313	N I	HIS	714	31.330	13.434	11.128	1.00 19.20
	ATOM	314	CA I	HIS	714	30.215	14.356	11.358	1.00 19.47
	ATOM	315	CB I	HIS	714	29.498	14.658	10.038	1.00 20.77
10	ATOM	316		HIS	714	30.331	15.410	9.058	1.00 21.60
	ATOM	317	CD2	HIS	714	31.369	15.016	8.283	1.00 22.31
	ATOM	318	ND1		714	30.131	16.744	8.784	1.00 22.32
	ATOM	319	CE1		714	31.005	17.139	7.876	1.00 23.41
	ATOM	320	NE2		714	31.768	16.113	7.557	1.00 23.22
15	ATOM	321		HIS	714	29.183	13.885	12.383	1.00 18.83
10	ATOM	322		HIS	714	28.497	14.701	13.005	1.00 18.73
	ATOM	323		VAL	715	29.006	12.572	12.485	1.00 18.39
	ATOM	324		VAL	715	28.063	11.972	13.434	1.00 16.86
	ATOM	325		VAL	715	27.869	10.435	13.134	1.00 16.78
20	ATOM	326	CG1		715	27.037	9.756	14.197	1.00 17.10
20	ATOM	327	CG2		715	27.183	10.259	11.817	1.00 17.34
	ATOM	328		VAL	715	28.667	12.166	14.817	1.00 15.60
	MOTA	329		VAL	715	27.958	12.422	15.788	1.00 15.49
	ATOM	330		VAL	716	29.986	12.077	14.913	1.00 15.13
25	ATOM	331		VAL	716	30.622	12.250	16.205	1.00 15.01
20	ATOM	332		VAL	716	32.136	11.885	16.158	1.00 14.93
	ATOM	333		VAL	716	32.825	12.233	17.481	1.00 13.26
	ATOM	334	CG2		716	32.310	10.373	15.870	1.00 14.26
	ATOM	335	C	VAL	716	30.419	13.681	16.708	1.00 15.83
30	ATOM	336		VAL	716	30.129	13.883	17.887	1.00 16.61
-	ATOM	337		LYS	717	30.544	14.665	15.816	1.00 16.59
	ATOM	338	CA	LYS	717	30.390	16.082	16.183	1.00 17.20
	ATOM	339	CB	LYS	717	30.884	16.974	15.041	1.00 18.94
	ATOM	340	CG	LYS	717	32.361	16.747	14.698	1.00 22.56
35	ATOM	341	CD	LYS	717	33.245	16.752	15.978	1.00 25.34
	ATOM	342	CE	LYS	717	34.294	15.609	16.007	1.00 27.06
	ATOM	343	NZ	LYS	717	34.709	15.195	17.410	1.00 27.21
	ATOM	344	С	LYS	717	28.951	16.387	16.534	1.00 16.77
	MOTA	345	0	LYS	717	28.658	16.931	17.593	1.00 18.49
40	ATOM	346	N	TRP	718	28.049	15.976	15.659	1.00 15.68
	ATOM	347	CA	TRP	718	26.618	16.143	15.868	1.00 14.61
	ATOM	348	CB	TRP	718	25.889	15.442	14.689	1.00 11.97
	MOTA	349	CG	TRP	718	24.433	15.266	14.841	1.00 9.66
_	ATOM	350	CD2	TRP	718	23.757	14.069	15.254	1.00 10.28
45	ATOM	351	CE2	TRP	718	22.373	14.371	15.293	1.00 9.98
	MOTA	352	CE3	TRP	718	24.176	12.778	15.612	1.00 10.09
	ATOM	353	CD1		718	23.472	16.199	14.645	1.00 9.89
	ATOM	354	NEI		718	22.228	15.688	14.918	1.00 8.38
	ATOM	355	CZ2		718	21.394	13.419	15.663	1.00 9.00
50	ATOM	356	CZ3		718	23.201	11.835	15.980	1.00 8.20
	ATOM	357	CH2		718	21.835	12.171	16.004	1.00 7.32
	MOTA	358	С	TRP	718	26.200	15.562	17.261	1.00 15.34
	ATOM	359	0	TRP	718	25.659	16.269	18.124	1.00 14.55
	ATOM	360	N	ALA	719	26.468	14.272	17.464	1.00 16.10
55	MOTA	361	CA	ALA	719	26.143	13.559	18.683	1.00 15.03
	MOTA	362	СВ	ALA	719	26.796	12.184	18.657	1.00 13.59
	ATOM	363	С	ALA	719	26.623	14.346	19.881	1.00 15.62
	MOTA	364	0	ALA	719	25.857	14.646	20.785	1.00 15.85
	ATOM	365	N	LYS	720	27.870	14.781	19.828	1.00 17.45
60	MOTA	366	CA	LYS	720	28.463	15.516	20.924	1.00 18.63
	ATOM	. 367	СВ	LYS	720	29.970	15.625	20.715	1.00 19.81
	MOTA	368	CG	LYS	720	30.644	14.292	21.012	1.00 21.18

- 44 -

1.00 23.81 20.860 32.136 14.334 720 LYS CD 1.00 25.84 369 MOTA 12.975 21.244 32.762 720 LYS 370 CE 22.708 1.00 26.70 MOTA 12.661 32.729 720 LYS 1.00 18.98 ΝZ MOTA 371 21.204 16.860 27.822 LYS 720 372 С 1.00 19.86 **ATOM** 22.321 17.377 27.921 LYS 720 1.00 18.21 ATOM 373 0 20.238 17.369 27.070 721 ALA N 1.00 18.10 374 MOTA 20.382 18.651 26.406 721 ALA 375 CA 1.00 17.43 19.146 ATOM 19.461 26.584 721 CB ALA 1.00 18.80 376 ATOM 20.675 18.492 24.941 ALA 721 1.00 19.16 С 377 24.192 19.485 20.660 ATOM 721 1.00 19.00 0 ALA 378 10 MOTA 20.904 17.247 24.518 722 LEU 1.00 19.60 379 N 21.207 MOTA 23.119 16.912 722 LEU 1.00 19.45 ÇA 380 21.119 ATOM 15.395 22.955 722 LEU 1.00 19.62 CB 381 ATOM 20.271 14.771 21.855 722 LEU 1.00 17.02 CG 382 MOTA 15.657 19.099 21.540 722 CD1 LEU 1.00 17.38 383 15 19.815 ATOM 13.382 17.362 22.298 722 CD2 LEU 1.00 20.27 384 MOTA 22.616 22.754 23.521 722 LEU 385 С 1.00 21.72 23.549 MOTA 17.125 722 1.00 20.69 0 LEU 386 22.811 MOTA 17.992 21.574 723 PRO 1.00 20.29 387 N 18.317 21.861 MOTA 20.500 723 PRO CD 1.00 21.24 388 20 MOTA 24.167 18.428 21.211 723 PRO 389 CA 1.00 20.40 ATOM 23.997 18.917 19.767 723 PRO CB 1.00 20.05 390 22.624 MOTA 19.349 19.706 723 1.00 21.66 CG PRO 391 25.195 MOTA 17.287 21.266 PRO 723 1.00 21.14 392 C 24.935 MOTA 16.165 20.821 723 1.00 22.02 393 0 PRO ATOM 25 26.369 21.800 17.588 724 1.00 22.29 GLY 394 N MOTA 27.416 16.598 21.874 724 395 CA GLY 1.00 23.13 ATOM 27.132 15.478 22.838 724 1.00 23.78 GLY 396 C 28.004 MOTA 23.076 14.658 724 GLY 397 0 1.00 24.14 25.946 MOTA 15.446 23.434 725 398 PHE 1.00 24.24 N 30 MOTA 25.610 24.360 14.368 725 PHE 1.00 23.59 399 CA MOTA 14.554 24.214 24.915 725 PHE 400 CB 23.703 1.00 23.80 MOTA 25.648 13.353 725 CG PHE 1.00 22.83 401 MOTA 12.239 23.260 24.944 CD1 PHE 725 402 1.00 22.40 MOTA 23.675 13.328 27.046 CD2 PHE 725 1.00 22.77 403 35 MOTA 22.804 25.623 11.130 725 CE1 PHE 1.00 21.05 404 MOTA 12.226 23.221 27.731 CE2 PHE 725 1.00 22.31 405 MOTA 22.784 11.123 27.025 725 CZ PHE 1.00 24.85 406 MOTA 14.170 26.582 25.505 PHE 725 407 С 1.00 23.79 MOTA 26.863 13.028 25.873 725 1.00 25.97 40 408 0 PHE MOTA 27.070 15.270 26.083 N ARG 726 ATOM 409 1.00 27.63 28.033 27.207 15.229 726 CA ARG 410 1.00 29.27 ATOM 28.204 27.831 16.620 CB ARG 726 1.00 31.68 411 MOTA 26.995 17.087 28.622 726 ARG CG 412 1.00 34.22 **ATOM** 26.727 29.759 16.141 726 ARG CD 413 1.00 37.18 45 MOTA 16.595 25.670 30.657 16.595 31.872 16.090 ARG 726 ΝE 1.00 38.28 414 MOTA 25.464 726 ARG CZ 415 24.486 1.00 39.44 MOTA 32.635 16.558 726 NH1 ARG 416 1.00 38.78 MOTA 26.232 15.109 32.329 726 NH2 ARG 417 MOTA 1.00 27.24 29.423 26.902 14.615 726 С ARG 1.00 27.08 50 418 MOTA 30.253 14.449 27.797 726 ARG 0 1.00 27.15 ATOM 419 29.683 14.316 25.632 727 .ASN N 420 1.00 26.29 ATOM 13.695 30.938 25.244 CA ASN 727 MOTA 421 1.00 25.46 13.687 31.115 23.717 727 422 CB ASN 1.00 24.95 MOTA 31.195 15.085 23.118 727 ASN CG 1.00 24.88 55 MOTA 423 30.893 15.277 21.947 727 OD1 ASN 424 MOTA 31.628 1.00 24.54 16.055 23.909 ND2 ASN 727 425 1.00 26.17 MOTA 30.934 25.750 12.261 727 С ASN MOTA 426 1.00 27.30 11.689 31.994 25.992 727 ASN 0 427 1.00 25.64 MOTA 29.749 25.895 11.673 728 N LEU 60 428 1.00 25.16 MOTA 10.289 29.625 728 728 26.362 429 LEU CA ATOM 1.00 22.98 28.190 9.759 26.191 LEU CB 430 MOTA

- 45 -

1.00 20.68 9.711 27.448 24.859 728 CG LEU 1.00 19.66 431 26.076 MOTA 9.133 25.084 CD1 LEU 728 1.00 19.79 432 ATOM 28.203 23.856 8.883 728 CD2 LEU 1.00 25.79 433 29.974 ATOM 10.208 27.833 LEU 728 1.00 25.15 С 434 29.739 11.157 ATOM 28.571 728 1.00 27.05 LEU 0 435 30.516 ATOM 9.064 28.247 729 1.00 28.68 HIS 436 N 30.871 ATOM 8.808 29.642 729 CA HIS 1.00 30.72 31.570 437 7.455 MOTA 29.737 729 438 HIS 1.00 33.13 CB 31.943 MOTA 7.042 31.132 729 1.00 33.50 HIS 31.218 439 CG MOTA 32.276 6.978 .729 1.00 34.21 CD2 HIS 440 33.209 10 ATOM 6.603 31.460 729 ND1 HIS 1.00 34.64 33.247 441 6.293 ATOM 32.744 729 1.00 34.52 CE1 HIS 442 32.049 ATOM 6.510 33.263 1.00 29.25 1.00 29.28 729 NE2 HIS 443 29.577 ATOM 8.772 30.450 729 HIS 444 С 28.594 MOTA 8.182 30.003 729 1.00 30.21 HIS 0 445 15 MOTA 9.295 29.625 31.681 730 VAL 1.00 31.02 446 N 9.365 28.465 MOTA 32.592 CA VAL 730 1.00 32.08 447 28.898 MOTA 9.793 34.036 CB VAL 730 1.00 32.91 1.00 31.86 448 MOTA 9.446 27.811 35.077 CG1 VAL 730 29.176 449 MOTA 11.284 34.074 730 1.00 30.89 450 CG2 VAL 27.600 20 MOTA 8.108 32.662 730 VAL 1.00 30.40 451 C 26.371 MOTA 8.192 32.704 730 VAL 1.00 30.81 452 0 28.244 MOTA 32.770 6.956 27.509 1.00 31.55 28.410 1.00 36.23 27.771 1.00 40.32 731 453 N ASP MOTA 5.709 32.819 CA ASP 731 454 MOTA 4.536 33.244 731 CB ASP 455 25 MOTA 3.152 32.966 CG ASP 731 456 1.00 42.21 27.974 MOTA 2.619 31.837 731 OD1 ASP 27.075 1.00 42.23 457 MOTA 2.599 33.867 731 OD2 ASP 1.00 28.94 458 5.425 26.889 ATOM 31.474 731 ASP 1.00 29.47 459 С 4.912 25.789 MOTA 31.408 731 460 ASP 1.00 26.17 0 5.760 27.587 30 MOTA 30.403 732 ASP 461 N 27.057 1.00 24.53 5.510 MOTA 29.079 ASP 732 1.00 24.04 CA 5.711 28.119 462 MOTA 28.024 732 1.00 23.64 1.00 22.31 ASP 463 CB 4.654 29.186 MOTA 28.073 CG ASP 732 464 MOTA 28.984 3.592 28.728 732 1.00 23.89 OD1 ASP 465 35 ATOM 30.231 4.904 27.444 OD2 ASP 732 1.00 23.96 466 25.875 MOTA 6.387 28.770 732 1.00 22.56 ASP С 467 5.982 24.981 MOTA 28.030 ASP 732 1.00 23.56 468 0 25.920 MOTA 7.612 29.288 733 GLN N 1.00 22.94 469 ATOM 24.855 8.591 29.121 CA GLN 733 1.00 22.73 470 40 MOTA 25.166 9.847 29.942 733 CB GLN 1.00 23.24 471 MOTA 26.225 29.359 10.776 733 1.00 23.27 CG GLN 472 MOTA 26.480 12.013 30.208 733 GLN CD 1.00 24.33 1.00 23.47 473 MOTA 27.477 12.696 30.018 733 OE1 GLN 474 **ATOM** 31.130 25.577 12.316 733 NE2 GLN 1.00 23.20 475 45 MOTA 7.997 23.557 29.636 28.979 733 GLN 476 C 1.00 23.08 ATOM 22.522 28.979 8.075 733 0 GLN 477 1.00 23.37 MOTA 7.459 23.625 30.853 30.853 31.545 734 478 N MET MOTA 22.508 1.00 24.31 6.832 734 CA MET 1.00 27.26 479 MOTA 22.906 6.596 33.003 480 CB MET 734 50 1.00 31.61 MOTA 22.047 5.604 33.749 734 CG MET 481 1.00 39.54 MOTA 22.821 5.121 35.293 734 SD MET MOTA 482 1.00 37.92 23.387 3.401 34.884 734 483 CE MET 22.077 MOTA 1.00 23.31 5.510 30.902 MET 734 484 C 1.00 23.35 MOTA 20.884 30.732 5.247 485 O MET 734 55 1.00 21.64 ATOM 23.052 4.671 30.571 735 486 N ALA 1.00 20.44 MOTA 22.788 3.390 29.939 735 ALA 487 CA 1.00 20.71 MOTA 24.110 2.683 29.650 735 ALA 488 CB MOTA 1.00 19.23 22.013 28.644 3.570 ALA 735 1.00 19.59 489 С MOTA 21.015 2.905 735 736 27.799 736 26.51 28.398 ALA 490 0 1.00 18.69 60 MOTA 22.501 4.460 VAL 491 N 1.00 17.76 MOTA 21.877 4.734 492 CA VAL **ATOM**

- 46 -1.00 18.30 22.760 5.771 25.742 1.00 17.05 CB VAL 736 493 22.011 6.998 MOTA 25.373 736 1.00 17.25 CG1 VAL 494 5.118 23.420 MOTA 24.544 CG2 VAL 736 1.00 18.16 495 20.389 MOTA 5.133 26.673 736 1.00 17.42 VAL С 496 19.512 4.614 MOTA 25.962 1.00 17.60 736 VAL 497 0 20.096 5.985 ATOM 27.658 1.00 16.31 737 ILE 498 N 18.724 6.429 MOTA 27.914 737 ILE 1.00 14.71 CA 18.683 499 7.497 MOTA 29.046 737 ILE 1.00 14.05 CB 17.272 500 29.476 ATOM 7.772 737 1.00 15.11 CG2 ILE 19.325 501 8.819 28.602 MOTA 1.00 12.32 737 502 CG1 ILE 19.618 MOTA 10 29.769 9.804 1.00 16.74 CD1 ILE 737 503 5.216 17.904 MOTA 28.352 737 1.00 16.09 ILE 504 С 16.812 MOTA 4.982 27.853 737 1.00 18.15 ILE 18.468 505 0 4.451 ATOM . 29.281 738 GLN 1.00 17.97 N 17.845 MOTA 506 3.260 29.850 738 1.00 20.53 GLN 507 CA 18.713 MOTA 2.715 15 30.960 1.00 23.88 GLN 738 CB 508 3.394 18.568 32.278 MOTA 738 1.00 26.69 ÇG GLN 19.439 509 2.726 MOTA 33.306 GLN 738 1.00 29.30 20.593 510 CD ATOM 2.390 33.027 738 1.00 28.53 OE1 GLN 511 18.887 MOTA 2.475 34.483 738 1.00 16.76 NE2 GLN 512 17.548 20 ATOM 2.111 28.904 738 1.00 16.47 С GLN 513 16.788 29.249 MOTA 1.226 738 1.00 16.39 GLN 0 514 2.029 18.260 MOTA 27.792 739 1.00 16.41 TYR 515 N 17.995 MOTA 26.819 0.983 1.00 15.99 1.00 15.68 739 CA TYR 516 19.285 0.448 MOTA 26.174 739 TYR 517 CB 20.313 25 ATOM -0.115 27.130 739 1.00 15.41 TYR 518 CG 19.950 MOTA -0.852 28.251 739 CD1 TYR 1.00 16.17 519 20.915 MOTA -1.31729.151 CE1 TYR 1.00 16.49 739 520 21.656 MOTA 0.131 26.925 739 TYR 1.00 17.09 CD2 22.624 521 **ATOM** -0.321 27.817 739 CE2 TYR 1.00 16.83 522 -1.040 22.253 30 MOTA 28.921 739 1.00 18.24 TYR CZ -1.435 23.256 523 MOTA 29.787 739 524 OH TYR 17.100 1.00 16.45 1.527 MOTA 25.721 1.00 17.63 TYR 739 С 16.295 525 MOTA 0.793 25.138 739 1.00 15.61 TYR 526 0 17.195 ATOM 2.822 25.453 740 SER 1.00 15.61 527 N 16.403 35 MOTA 3.404 24.384 740 1.00 15.49 CA SER 528 4.403 17.252 ATOM 23.619 740 SER 1.00 18.39 CB 529 17.682 ATOM 5.421 24.512 740 SER 1.00 14.87 OG 530 15.060 ATOM 24.697 4.054 740 1.00 15.75 С SER 531 MOTA 14.376 4.451 23.778 740 1.00 14.33 SER 0 14.659 MOTA 532 40 25.948 4.188 741 TRP N 1.00 14.83 533 MOTA 4.835 13.382 26.202 TRP 741 1.00 15.35 534 CA MOTA 27.706 13.113 4.997 741 TRP CB 1.00 17.05 MOTA 535 13.000 3.720 28.465 741 CG TRP 11.800 1.00 17.91 536 2.987 MOTA 28.765 CD2 TRP 741 1.00 18.98 45 ATOM 537 12.190 1.834 29.467 741 CE2 TRP 1.00 18.66 538 **ATOM** 10.434 3.193 28.505 CE3 TRP 741 1.00 17.12 539 14.020 MOTA 3.016 28.995 741 1.00 19.60 540 CD1 TRP MOTA 13.551 1.878 29.592 NE1 TRP 741 1.00 18.79 541 11.266 0.876 MOTA 29.915 741 CZ2 TRP 1.00 17.91 50 542 9.509 **ATOM** 28.949 2.240 741 CZ3 TRP 543 1.00 18.35 MOTA 9.934 1.098 29.644 741 CH2 TRP 1.00 15.12 544 MOTA 12.166 25.471 4.246 741 545 С TRP 1.00 15.56 4.995 MOTA 11.376 24.902 741 TRP 0 546 12.034 1.00 14.55 MOTA 2.920 25.391 742 MET 1.00 12.90 N 547 55 MOTA 2.339 10.870 24.723 742 CA MET 548 1.00 13.16 MOTA 10.866 24.785 0.815 742 MET CB 1.00 12.17 549 MOTA 9.597 24.219 0.185 742 MET CG 1.00 15.00 550 MOTA 0.336 8.263 25.353 742 MET SD 551 1.00 13.52 MOTA 8.639 26.462 -0.994 742 1.00 12.47 552 CE MET 60 MOTA 2.763 10.699 23.290 742 MET 9.610 1.00 13.31 553 С MOTA 3.153 22.886 742 MET 554 0 MOTA

- 47 -

					740	22.497	2.656	11.748	1.00	12.12
	MOTA	555	-	GLY	743		3.057	11.663	1.00	
	ATOM	556		GLY	743	21.102	4.558	11.452	1.00	
	ATOM	557	_	GLY	743	20.947		10.768	1.00	
	ATOM	558	-	GLY	743	20.022	5.009		1.00	
5	ATOM	559	•	LEU	744	21.835	5.336	12.070	1.00	
	ATOM	560	CA	LEU	744	21.817	6.797	11.972	1.00	
	ATOM	561	CB	LEU	744	22.884	7.418	12.888		
	ATOM	562	CG	LEU	744	22.702	7.481	14.399	1.00	9.95
	ATOM	563	CD1	LEU	744	23.967	8.075	14.954	1.00	9.77
10	ATOM	564		LEU	744	21.516	8.341	14.799	1.00	9.16
. •	ATOM	565	С	LEU	744	22.087	7.258	10.563	1.00	
	ATOM	566	_	LEU	744	21.424	8.173	10.080	1.00	
	ATOM	567	_	MET	745	23.083	6.651	9.921	1.00	
		568		MET	745	23.466	6.991	8.541	1.00	11.39
15	MOTA	569		MET	745	24.839	6.427	8.191	1.00	10.75
15	ATOM			MET	745	25.961	6.948	9.076	1.00	8.86
	MOTA	570		MET	745	27.509	6.429	8.487	1.00	11.97
	ATOM	571			745	28.579	6.939	9.717	1.00	9.84
	MOTA	572		MET	745	22.462	6.498	7.508		12.29
	ATOM	573	-	MET		22.234	7.155	6.495		10.62
20	MOTA	574	_	MET	745		5.342	7.793		12.05
	ATOM	575	-	VAL	746	21.855	4.733	6.934		11.50
	ATOM	576		VAL	746	20.874		7.426		11.19
	ATOM	577		VAL	746	20.524	3.315			10.17
	ATOM	578	CG1		746	19.245	2.852	6.811	1.00	9.64
25	MOTA	579	CG2		746	21.615	2.355	7.095		
	ATOM	580	С	VAL	746	19.605	5.565	6.942		12.13
	ATOM	581	0	VAL	746	19.000	5.792	5.907		12.72
	ATOM	582	N	PHE	747	19.227	6.051	8.117		12.64
	ATOM	583	CA	PHE	747	18.014	6.857	8.304		12.63
30	ATOM	584	CB	PHE	747	17.763	7.031	9.800		11.19
-	ATOM	585	CG	PHE	747	16.411	7.542	10.126		10.00
	ATOM	586	CD1		747	15.286	6.780	9.847	1.00	9.30
	ATOM	587		PHE	747	16.253	8.798	10.700	1.00	7.79
	ATOM	588	CE1		747	14.008	7.260	10.136	1.00	8.30
35	ATOM	589	CE2		747	14.996	9.293	10.993	1.00	6.75
55	ATOM	590	CZ	PHE	747	13.867	8.524	10.707	1.00	8.21
	ATOM	591	Č	PHE	747	18.137	8.241	7.621	1.00	13.26
	ATOM	592	Õ	PHE	747	17.178	8.751	7.042	1.00	13.81
		593	N	ALA	748	19.298	8.873	7.740	1.00	12.46
40	ATOM		CA	ALA	748	19.513	10.172	7.119		12.97
40	ATOM	594		ALA	748	20.749	10.808	7.648		11.50
	ATOM	595	CB	ALA	748	19.640	9.988	5.635		13.78
	ATOM	596	C		748	19.226	10.850	4.882		14.44
	MOTA	597	0	ALA		20.209	8.864	5.204		14.54
45	ATOM	598	N	MET	749	20.381	8.578	3.782		14.78
45	ATOM	599	CA	MET	749	21.241	7.331	3.607		15.28
	ATOM	600	CB	MET	749		6.945			15.33
	MOTA	601	CG	MET	749	21.622		1.193	1.00	18.79
	MOTA	602	SD	MET	749	20.315	6.246	1.135		18.82
	ATOM	603	CE	MET	749	20.226	4.627	3.142		15.85
50	ATOM	604	С	MET	749	19.023	8.390	-		
	ATOM	605	0	MET	749	18.808	8.780	1.990		17.51
	ATOM	606	N	GLY	750	18.088	7.829	3.895		16.02
	ATOM	607	CA	GLY	750	16.748	7.618	3.384		16.34
	ATOM	608	С	GLY	750	16.057	8.956	3.225		17.79
55	ATOM	609	0	GLY	750	15.263	9.135	2.289		19.00
-	ATOM	610	N	TRP	751	16.361	9.897	4.121		17.36
	ATOM	611	CA	TRP	751	15.778	11.241	4.091		17.99
	ATOM	612	СВ	TRP	751	16.108	12.026	5.366	1.00	16.08
	ATOM	613	CG	TRP	751	15.528	13.458	5.416	1.00	14.99
60	ATOM	614		TRP	751	14.151	13.821	5.617	1.00	13.68
	ATOM	615		TRP	751	14.099	15.230	5.697	1.00	12.98
	ATOM	616		TRP	751	12.967	13.090	5.743		14.14
					·					

- 48 -

	ATOM ATOM	617 618	CD1	TRP	751 751	16.225 15.375	14.636 15.705 15.926	5.364 5.538 5.899	1.00 13.27 1.00 12.27 1.00 14.74
	ATOM	619		TRP	751	12.907		5.942	1.00 14.63
	MOTA	620		TRP	751	11.775	13.780 15.188	6.020	1.00 14.82
5	ATOM	621		TRP	751	11.756	11.995	2.857	1.00 18.41
	ATOM	622	-	TRP	751	16.266	12.558	2.124	1.00 20.13
	MOTA	623	-	TRP	751	15.457	11.971	2.607	1.00 19.13
	MOTA	624		ARG	752	17.569	12.616	1.431	1.00 19.06
	ATOM	625	_	ARG	752	18.150	12.380	1.389	1.00 18.53
10	MOTA	626		ARG	752	19.644	12.300	2.567	1.00 18.25
	ATOM	627		ARG	752	20.370	12.900	2.317	1.00 17.24
	ATOM	628		ARG	752	21.870	12.501	2.298	1.00 14.94
	ATOM	629		ARG	752	22.467	10.973	3.370	1.00 14.90
	ATOM	630	-	ARG	752	22.976	11.561	4.554	1.00 14.75
15	MOTA	631	NH1		752	22.928	9.864	3.240	1.00 13.87
	ATOM	632	NH2		752	23.684	12.077	0.138	1.00 20.27
	MOTA	633	C	ARG	752	17.572	12.815	-0.828	1.00 20.66
	MOTA	634	0	ARG	752	17.392	10.761	0.083	1.00 22.00
	MOTA	635	N	SER	753	17.391 16.823	10.099	-1.093	1.00 22.25
20	MOTA	636	CA	SER	753	16.823	8.590	-0.879	1.00 20.25
	ATOM	637	CB	SER	753	17.988	8.027	-0.687	1.00 19.78
	MOTA	638	OG	SER	753	15.434	10.635	-1.289	1.00 23.31
	ATOM	639	C	SER	753	14.978	10.803	-2.409	1.00 23.88
	ATOM	640	0	SER	753	14.762	10.870	-0.173	1.00 24.76
25	MOTA	641	N	PHE	754	13.405	11.375	-0.156	1.00 26.45
	ATOM	642	CA	PHE	754	12.835	11.243	1.245	1.00 26.43
	ATOM	643	CB	PHE	754 754	11.447	11.765	1.364	1.00 28.06
	ATOM	644	CG	PHE	754 754	10.407	11.168	0.654	1.00 28.69
	ATOM	645	CD1		754 754	11.184	12.895	2.118	1.00 27.96
30	ATOM	646	CD2	PHE	754 754	9.126	11.703	0.687	1.00 29.47
	ATOM	647	CE1	PHE	754	9.901	13.442	2.160	1.00 28.93
	MOTA	648		PHE	754	8.876	12.849	1.445	1.00 29.47
	ATOM	649	CZ C	PHE	754	13.239	12.818	-0.630	1.00 27.47
25	ATOM	650		PHE	754	12.543	13.100	-1.614	1.00 26.87
35	ATOM	651 652	O N	THR	755	13.823	13.732	0.125	1.00 29.01
	ATOM	653	CA	THR	755	13.725	15.134	-0.190	1.00 30.83
	ATOM	654	CB	THR	755	14.345	15.972	0.918	1.00 29.71
	ATOM ATOM	655	OG1	THR	755	15.669	15.524	1.183	1.00 28.99
40	ATOM	656	CG2		755	13.553	15.796	2.164	1.00 29.63
40	ATOM	657	C	THR	755	14.317	15.460	-1.552	1.00 32.57
	ATOM	658	Ô	THR	755	13.841	16.358	-2.234	1.00 33.24
	ATOM	659	N	ASN	756	15.262	14.639	-1.991	1.00 34.71
	ATOM	660	CA	ASN	756	15.920	14.842	-3.273	1.00 36.48
45	ATOM	661	СВ	ASN	756	17.417	14.562	-3.149	1.00 36.89
	ATOM	662	CG	ASN	756	18.137	15.616	-2.344	1.00 37.02
	ATOM	663		ASN	756	17.563	16.237	-1.456	1.00 39.11
	ATOM	664		ASN	756	19.392	15.844	-2.668	1.00 37.24
	ATOM	665	С	ASN	756	15.360	14.065	-4.457	1.00 37.88
50	ATOM	666	0	ASN	756	14.684	14.628	-5.313	1.00 39.57
	ATOM	667	N	VAL	757	15.654	12.773	-4.518	1.00 38.99
	ATOM	668	CA	VAL	757	15.210	11.948	-5.633	1.00 39.74
	ATOM	669	CB	VAL	757	16.274	10.869	-5.971	1.00 39.96
	ATOM	670		VAL	757	17.639	11.540	-6.170	1.00 40.00
55	ATOM	671	CG2	VAL	757	16.354	9.819	-4.871	1.00 39.28
	ATOM	672	С	VAL	757	13.835	11.308	-5.456	1.00 39.95
	MOTA	673	0	VAL	757	13.501	10.335	-6.134	1.00 40.19
	ATOM	674	N	ASN	758	13.037	11.874	-4.559	1.00 40.46
	ATOM	675	CA	ASN	758	11.699	11.374	-4.265	1.00 41.28
60	ATOM	676	СВ	ASN	758	10.678	11.894	-5.288	1.00 43.82 1.00 44.84
	ATOM	677	CG	ASN	758	10.257	13.331	-5.005 -4.764	1.00 44.84
	MOTA	678	OD1	ASN	758	11.097	14.199	-4.704	1.00 10.40

	ATOM	679	ND2	ASN	758	8.953	13.576	-4.987	1.00	
	ATOM	680		ASN	758	11.622	9.858	-4.100	1.00	
	ATOM	681	0	ASN	758	10.592	9.229	-4.404		40.73
	ATOM	682	N	SER	759	12.733	9.298	-3.612	1.00	40.04
5	ATOM	683	CA	SER	759	12.891	7.877	-3.326		38.71
•	ATOM	684	CB	SER	759	11.763	7.415	-2.395	1.00	
	ATOM	685	OG	SER	759	11.496	8.369	-1.378		34.26
	ATOM	686	С	SER	75 9	13.027	6.921	-4.532	1.00	
	ATOM	687	0	SER	759	12.833	5.711	-4.382		39.20
10	ATOM	688	N	ARG	760	13.409	7.438	-5.704		39.12
	ATOM	689	CA	ARG	760	13.564	6.589	-6.892		38.62
	ATOM	690	CB	ARG	760	13.451	7.422	-8.171		40.63
	ATOM	691	CG	ARG	760	13.598	6.577	-9.444		44.41 46.97
	ATOM	692	CD	ARG	760	13.903		-10.715		48.86
15	ATOM	693	NE	ARG	760	14.534		-11.729 -12.614		49.74
	MOTA	694	CZ	ARG	760	13.875				50.04
	MOTA	695	NH1		760	12.542		-12.649 -13.398		49.46
	ATOM	696	NH2		760	14.553		-6.876		36.88
	ATOM	697	C	ARG	760	14.897	5.840 4.741	-7.426		37.48
20	ATOM	698	0	ARG	760	15.024	6.466	-6.275		34.87
	ATOM	699	N	MET	761	15.902	5.890	-6.159		32.21
	ATOM	700	CA	MET	761	17.238 18.171	6.510	-7.194		33.77
	MOTA	701	CB	MET	761 761	17.588	6.682	-8.571		36.10
06	MOTA	702	CG	MET	761 761	18.859	7.115	-9.788		40.36
25	ATOM	703	SD	MET MET	761	18.737	8.904	-9.809	-	38.10
	ATOM	704	CE	MET	761	17.738	6.242	-4.751		29.46
	ATOM	705 706	С 0	MET	761	17:144	7.080	-4.075	1.00	28.57
	ATOM	707	N	LEU	762	18.837	5.635	-4.319		26.78
30	ATOM ATOM	707	CA	LEU	762	19.382	5.905	-2.992	1.00	24.13
30	ATOM	709	CB	LEU	762	19.956	4.637	-2.393	1.00	24.05
	MOTA	710	CG	LEU	762	18.957	3.502	-2.272		23.69
	ATOM	711	CD1		762	19.615	2.272	-1.632		23.99
	ATOM	712		LEU	762	17.788	4.011	-1.439		24.34
35	ATOM	713	C	LEU	762	20.458	6.968	-3.040		23.01
	ATOM	714	0	LEU	762	21.537	6.726	-3.548		22.65
	ATOM	715	N	TYR	763	20.162	8.132	-2.475		22.03
	ATOM	716	CA	TYR	763	21.066	9.273	-2.450		20.69
	ATOM	717	CB	TYR	763	20.250	10.540	-2.266		23.12
40	ATOM	718	CG	TYR	763	20.946	11.782	-2.730		25.58 26.87
	ATOM	719	CD1		763	20.841	12.187	-4.052 -4.492		28.03
	ATOM	720		TYR	763	21.416	13.373 12.590	-1.841		26.77
	MOTA	721	CD2		763	21.662		-2.272	1.00	
45	MOTA	722	CE2		763	22.247 22.107	13.789 14.172	-3.604		28.85
45	ATOM	723	CZ	TYR	763 763	22.595	15.379	-4.047		30.59
	ATOM	724	ОН	TYR TYR	763 763	22.068	9.173			18.78
	ATOM	725 726	С 0	TYR	763	21.910	9.828	-0.304		17.73
	ATOM	727	N	PHE	764	23.128	8.401			17.33
50	ATOM ATOM	728	CA	PHE	764	24.152	8.191			16.94
50	ATOM	729	CB	PHE	764	25.086	7.078		1.00	15.91
	ATOM	730	CG	PHE	764	24.505	5.724	-0.807		16.79
	ATOM	731		PHE	764	24.211	4.961	-1.908	1.00	16.06
	ATOM	732		PHE	764	24.267	5.205	0.450		16.83
55	ATOM	733		PHE	764	23.691	3.692	-1.756		18.06
•	MOTA	734		PHE	764	23.748	3.941			18.27
	ATOM	735	CZ	PHE	764	23.458	3.176			17.80
	ATOM	736	C	PHE	764	24.964	9.441			17.39
	ATOM	737	0	PHE	764	25.379	9.797			17.28
60	ATOM	738	N	ALA	765	25.224	10.084			17.00
	ATOM	739	CA	ALA	765	26.013	11.292			16.32
	MOTA	740	СВ	ALA	765	27.479	10.957	-1.460	1.00	16.17

									1.00 16.66
	ATOM	741	C .	ALA	765	25.674	11.913	-2.841	
	ATOM	742	0	ALA	765	25.051	11.267	-3.675	1.00 16.71
	ATOM	743	N	PRO	766	26.016	13.196	-3.032	1.00 17.18
	ATOM	744	CD	PRO	766	26.544	14.169	-2.064	1.00 15.41
5	ATOM	745	CA	PRO	766	25.703	13.846	-4.311	1.00 17.49
9	ATOM	746		PRO	766	26.183	15.277	-4.077	1.00 17.30
		747	_	PRO	766	26.002	15.451	-2.608	1.00 17.07
	ATOM	748		PRO	766	26.429	13.161	-5.481	1.00 17.65
	ATOM	749		PRO	766	25.923	13.099	-6.598	1.00 17.73
40	ATOM			ASP	767	27.578	12.569	-5.166	1.00 18.27
10	MOTA	750			767	28.416	11.850	-6.115	1.00 18.49
	MOTA	751		ASP		29.877	12.312	-5.955	1.00 18.71
	ATOM	752		ASP	767	30.413	12.135	-4.525	1.00 19.47
	ATOM	753	CG	ASP	767		12.133	-3.569	1.00 20.31
	ATOM	754	OD1		767	29.611		-4.348	1.00 19.04
15	ATOM	755	OD2		767	31.650	12.102		1.00 17.79
	ATOM	756		ASP	767	28.330	10.317	-5.981	1.00 17.79
	ATOM	757	0	ASP	767	29.191	9.594	-6.476	
	ATOM	758	N	LEU	768	27.334	9.820	-5.267	1.00 18.04
	ATOM	759	CA	LEU	768	27.164	8.379	-5.110	1.00 18.20
20	ATOM	760	CB	LEU	768	27.955	7.809	-3.914	1.00 17.47
	ATOM	761	CG	LEU	768	28.032	6.263	-3.786	1.00 16.12
	ATOM	762	CD1		768	28.641	5.671	-5.047	1.00 14.30
	ATOM	763	CD2		768	28.850	5.846	-2.563	1.00 15.17
	ATOM	764	C	LEU	768	25.690	8.129	-4.930	1.00 18.58
25		765	Ö	LEU	768	25.184	8.068	-3.812	1.00 17.79
25	MOTA		N	VAL	769	24.979	8.156	-6.048	1.00 19.79
	MOTA	766		VAL	769	23.553	7.895	-6.035	1.00 20.42
	ATOM	767	CA		769	22.709	9.142	-6.447	1.00 19.95
	ATOM	768	CB	VAL	769	23.571	10.190	-7.096	1.00 20.70
	ATOM	769	CG1			21.537	8.757	-7.277	1.00 19.19
30	MOTA	770	CG2		769		6.609	-6.852	1.00 20.73
	ATOM	771	С	VAL	769	23.373		-7.961	1.00 22.43
	ATOM	772	0	VAL	769	23.873	6.467		1.00 19.70
	ATOM	773	N	PHE	770	22.871	5.604	-6.157	1.00 19.70
	ATOM	774	CA	PHE	770	22.683	4.277	-6.681	
35	ATOM	775	CB	PHE	770	22.596	3.263	-5.503	1.00 18.44
	ATOM	776	CG	PHE	770	23.930	2.757	-4.996	1.00 16.41
	MOTA	777	CD1	PHE	770	25.079	3.546	-5.053	1.00 14.52
	ATOM	778	CD2	PHE	770	24.025	1.468	-4.459	1.00 14.96
	ATOM	779	CE1	PHE	770	26.291	3.070	-4.588	1.00 13.39
40	ATOM	780		PHE	770	25.243	0.979	-3.983	1.00 13.90
70	ATOM	781	CZ	PHE	770	26.383	1.786	-4.050	1.00 13.96
	ATOM	782	Ċ_	PHE	770	21.425	4.134	-7.473	1.00 19.41
	ATOM	783	Õ	PHE	770	20.367	4.583	-7.054	1.00 19.74
	ATOM	784	N	ASN	771	21.534	3.474	-8.611	1.00 20.33
45		785	CA	ASN	771	20.363	3.157	-9.410	1.00 20.23
45	ATOM	786	CB	ASN	771	20.524		-10.864	1.00 19.33
	ATOM			ASN	771	21.883		-11.403	1.00 18.89
	ATOM	787	CG		771	22.574		-10.942	1.00 19.51
	MOTA	788		ASN		22.289		-12.382	1.00 19.02
	ATOM	789		ASN	771		1.636	-9.292	1.00 21.01
50	ATOM	790	Ç	ASN	771	20.278			1.00 20.52
	ATOM	791	0	ASN	771	21.129	1.013	-8.648	
	ATOM	792	N	GLU	772	19.258	1.043	-9.898	1.00 22.23
	ATOM	793	CA	GLU	772	19.056	-0.393	-9.841	1.00 22.51
	ATOM	794	CB	GLU	772	17.888		-10.711	1.00 23.17
55	ATOM	795	CG	GLU	772	16.562		-10.099	1.00 24.81
	ATOM	796	CD	GLU	772	15.761	-1.672	-9.724	1.00 25.41
	ATOM	797		GLU	772	14.624	-1.488	-9.252	1.00 25.33
	ATOM	798	OE2		772	16.265	-2.803	-9.913	1.00 26.23
	ATOM	799	C	GLU	772	20.282	-1.102	-10.303	1.00 22.96
60	ATOM	800	Ö	GLU	772	20.631	-2.148	-9.785	1.00 23.89
90		801	N	TYR	773	20.961		-11.276	1.00 22.51
	ATOM				773	22.158	-1 164	-11.748	1.00 22.55
	ATOM	802	CA	TYR	113	22.130	1.104		

/

- 51 -

	ATOM	803	CB	TYR	773	22.640	-0.492		1.00 22.84
	ATOM	804	CG	TYR	773	23.825	-1.191		1.00 22.80
	ATOM	805	CD1	TYR	773	23.680	-2.384		1.00 23.02
	ATOM	806		TYR	773	24.791	-3.041	-14.837	1.00 23.77
5	ATOM	807		TYR	773	25.095	-0.671	-13.418	1.00 22.59
3		808		TYR	773	26.198	-1.309	-13.938	1.00 24.43
	ATOM			TYR	773	26.047		-14.643	1.00 24.22
	ATOM	809	CZ			27.172		-15.155	1.00 25.98
	ATOM	810	OH	TYR	773			-10.680	1.00 23.17
	ATOM	811	С	TYR	773	23.254		-10.523	1.00 24.08
10	ATOM	812	0	TYR	773	23.969			
	ATOM	813	N	ARG	774	23.432	-0.044	-9.982	1.00 22.85
	ATOM	814	CA	ARG	774	24.427	0.047	-8.922	1.00 21.74
	ATOM	815	CB	ARG	774	24.623	1.487	-8.494	1.00 22.23
	ATOM	816	CG	ARG	774	26.026	1.952	-8.735	1.00 22.58
15	ATOM	817	CD	ARG	774	26.073	3.066	-9.756	1.00 23.92
13		818	NE	ARG	774	26.048	4.383	-9.146	1.00 24.69
	MOTA	819	CZ	ARG	774	26.961	5.328	-9.365	1.00 25.97
	ATOM		NH1		774	27.982		-10.171	1.00 25.01
	ATOM	820			774	26.837	6.509	-8.783	1.00 26.70
~~	MOTA	821	NH2			23.976	-0.796	-7.743	1.00 21.36
20	MOTA	822	C	ARG	774	24.791	-1.386	-7.052	1.00 20.25
	ATOM.	823	0	ARG	774			-7.512	1.00 21.93
	ATOM	824	N	MET	775	22.669	-0.854		1.00 23.85
	ATOM	825	CA	MET	775	22.136	-1.681	-6.439	1.00 23.03
	MOTA	826	CB	MET	775	20.614	-1.582	-6.380	1.00 23.42
25	ATOM	827	CG	MET	775	20.121	-0.241	-5.955	1.00 25.40
	ATOM	828	SD	MET	775	18.333	-0.199	-5.865	
	ATOM	829	CE	MET	775	17.909	1.086	-7.064	1.00 27.26
	ATOM	830	С	MET	775	22.550	-3.136	-6.666	1.00 25.38
	ATOM	831	0	MET	775	22.897	-3.832	-5.733	1.00 25.75
30	MOTA	832	N	HIS	776	22.507	-3.593	-7.912	1.00 27.39
•	ATOM	833	CA	HIS	776	22.891	-4.954	-8.262	1.00 28.41
	ATOM	834	СВ	HIS	776	22.418	-5.302	-9.684	1.00 29.01
	ATOM	835	CG	HIS	776	22.639	-6.738	-10.067	1.00 30.57
	ATOM	836	CD2	HIS	776	21.877	-7.843	-9.864	1.00 30.73
35	ATOM	837		HIS	776	23.764	-7.168	-10.739	1.00 30.81
00	ATOM	838	CE1		776	23.685	-8.475	-10.932	1.00 29.87
	ATOM	839	NE2		776	22.551	-8.907	-10.411	1.00 29.53
	ATOM	840	C	HIS	776	24.403	-5.065	-8.178	1.00 29.55
	ATOM	841	ŏ	HIS	776	24.923	-5.865	-7.414	1.00 30.12
40	ATOM	842	N	LYS	777	25.109	-4.283	-8.989	1.00 31.13
40				LYS	777	26.570	-4.290	-8.980	1.00 32.73
	MOTA	843	CA	LYS	777	27,130		-10.161	1.00 31.29
	ATOM	844	CB	LYS	777	26.678	-3.948	-11.525	1.00 30.55
	ATOM	845	CG	LYS	777	27.443		-12.003	1.00 29.83
45	ATOM	846	CD	LYS	777	28.928		-12.116	1.00 30.35
45	ATOM	847	CE	-	777	29.631		-12.983	1.00 30.53
	ATOM	848	ΝZ	LYS		27.032	-3.655	-7.660	1.00 34.07
	ATOM	849	С	LYS	777	27.382	-2.478	-7.611	1.00 36.43
	MOTA	850	0	LYS	777		-4.437	-6.596	1.00 33.74
	MOTA	851	N	SER	778	26.995		-5.250	1.00 33.75
50	MOTA	852	CA	SER	778	27.387	-4.013		
	ATOM	853	CB	SER	778	26.593	-2.789	-4.769	1.00 33.69
	ATOM	854	OG	SER	778	25.254	-3.122	-4.452	1.00 33.41
	ATOM	855	С	SER	778	27.065	-5.204	-4.366	1.00 32.95
	ATOM	856	0	SER	778	27.447	-5.260		1.00 31.80
55	ATOM	857	N	ARG	779	26.344	-6.149		1.00 32.09
	ATOM	858	CA	ARG	779	25.926	-7.386		1.00 31.15
	ATOM	859	СВ	ARG	779	27.161	-8.256		1.00 30.74
	ATOM	860	ĊĞ	ARG	779	28.065	-8.415		1.00 28.19
	ATOM	861	CD	ARG	779	29.338	-9.182		1.00 26.90
60	ATOM	862	NE	ARG	779	30.284	-9.129		1.00 26.55
	ATOM	863	CZ	ARG	779	31.583	-9.401	-6.014	1.00 26.64
	MOTA	864		ARG	779	32.091	-9.753		1.00 27.87
	ALON	503			-	_			

	ATOM	865	NH2	ARG	779	32.398	-9.234	-7.050	1.00	
		866		ARG	779	25.128	-7.063	-3.084	1.00	
	ATOM		_	ARG	779	25.027	-7.880	-2.163	1.00	31.03
	ATOM	867	_	MET	780	24.521	-5.875	-3.097	1.00	29.82
_	ATOM	868	-		780	23.721	-5.381	-1.990	1.00	29.36
5	ATOM	869		MET		24.295	-4.068	-1.473		30.17
	ATOM	870	_	MET	780			-0.277		30.12
	ATOM	871	-	MET	780	25.194	-4.191	0.168	1.00	
	ATOM	872	SD	MET	780	25.835	-2.592		1.00	
	ATOM	873	CE	MET	780	24.525	-1.995	1.114		
10	ATOM	874	С	MET	780	22.262	-5.165	-2.331	1.00	
. •	ATOM	875	0	MET	780	21.542	-4.505	-1.566	1.00	
	ATOM	876		TYR	781	21.831	-5.638	-3.497	1.00	
		877		TYR	781	20.433	-5.498	-3.897	1.00	
	ATOM			TYR	781	20.229	-5.985	-5.338	1.00	27.73
45	ATOM	878		TYR	781	18.896	-5.604	-5.964	1.00	26.05
15	ATOM	879				18.847	-4.861	-7.140	1.00	25.95
	ATOM	880	CD1		781	17.624	-4.510	-7.718		25.58
	ATOM	881		TYR	781		-5.984	-5.382		25.08
	ATOM	882	CD2		781	17.686				24.57
	ATOM	883		TYR	781	16.471	-5.643	-5.955		24.77
20	ATOM	884	CZ	TYR	781	16.446	-4.904	-7.115		
	ATOM	885	OH	TYR	781	15.238	-4.572	-7.668		24.60
	ATOM	886	С	TYR	781	19.701	-6.393	-2.929		30.06
	ATOM	887	ō	TYR	781	19.984	-7.589	-2.856		32.08
	ATOM	888	N	SER	782	18.730	-5.821	-2.235		30.74
25		889	CA	SER	782	17.935	-6.500	-1.198		31.41
25	ATOM	890	СВ	SER	782	18.551	-7.836	-0.726	1.00	32.82
	ATOM				782	17.785	-8,438	0.308	1.00	35.91
	ATOM	891	OG	SER	782	18.027	-5.483	-0.070		30.50
	ATOM	892	C	SER		17.044	-4.807	0.230		30.31
	MOTA	893	0	SER	782	-	-5.287	0.459		29.34
30	MOTA	894	N	GLN	783	19.242		1.522		28.01
	ATOM	895	CA	GLN	783	19.455	-4.314			
	MOTA	896	CB	GLN	783	20.900	-4.309	2.020		28.50
	ATOM	897	CG	GLN	783	21.327	-5.532	2.805		29.62
	ATOM	898	CD	GLN	783	21.790	-6.634	1.900		32.01
35	ATOM	899	OE1	GLN	783	21.486	-6.621	0.714		33.24
•	ATOM	900		GLN	783	22.547	-7.587	2.436		32.18
	ATOM	901	C	GLN	783	19.089	-2.963	0.935	1.00	26.36
	ATOM	902	Ö	GLN	783	18.342	-2.211	1.544	1.00	26.08
			N	CYS	784	19.538	-2.698	-0.290	1.00	25.49
40	ATOM	903			784	19.212	-1.439	-0.956		24.45
40	ATOM	904	CA	CYS		19.951	-1.312	-2.294	1.00	
	MOTA	905	СВ	CYS	784		-0.989	-2.120		18.24
	MOTA	906	SG	CYS	784	21.746				25.03
	ATOM	907	С	CYS	784	17.698	-1.290	-1.146		25.67
	ATOM	908	O	CYS	784	17.155	-0.183	-1.044		
45	ATOM	909	N	VAL	785	17.003	-2.406	-1.360	1.00	
	MOTA	910	CA	VAL	785	15.538	-2.399	-1.547		25.02
	ATOM	911	CB	VAL	785	14.987	-3.826	-1.903		25.94
	ATOM	912		VAL	785	13.457	-3.901	-1.710	1.00	26.21
	MOTA	913		VAL	785	15.349	-4.195	-3.324	1.00	26.31
50	ATOM	914	C	VAL	785	14.864	-1.979	-0.257	1.00	23.91
50			Ö	VAL	785	13.881	-1.259	-0.260		24.19
	ATOM	915					-2.455	0.853		25.02
	ATOM	916	N	ARG	786	15.402				25.39
	ATOM	917	CA	ARG	786	14.855	-2.158	2.165		
_	MOTA	918	CB	ARG	786	15.468	-3.114	3.198		26.15
55	ATOM	919	CG	ARG	786	15.392	-4.591	2.748		28.30
	ATOM	920	CD	ARG	786	15.314	-5.583	3.900		29.76
	ATOM	921	NE	ARG	786	14.269	-5.206	4.851		32.39
	ATOM	922	CZ	ARG	786	14.292	-5.475	6.157		32.41
	ATOM	923		ARG	786	15.301	-6.153	6.701	1.00	32.09
60	ATOM	924		ARG	786	13.326	-5.001	6.932		33.31
JU				ARG	786	15.083	-0.679	2.520		24.71
	ATOM	925	C			14.180		3.030		25.52
	MOTA	926	0	ARG	786	14.190	-0.001	5.050	1.00	23.32

- 53 -

					707	16.246	-0.146	2.160	1.00 23.53
	MOTA	927	-	MET	787 ·	16.548	1.252	2.463	1.00 22.11
	MOTA	928		MET	787	18.018	1.528	2.261	1.00 20.46
	MOTA	929		MET	787	18.883	0.925	3.314	1.00 17.04
_	ATOM	930		MET	787	20.578	0.861	2.788	1.00 20.46
5	ATOM	931		MET	787	21.285	1.969	3.729	1.00 20.07
	MOTA	932		MET	787	15.736	2.173	1.588	1.00 23.39
	MOTA	933	C	MET	787	15.730	3.281	1.997	1.00 24.11
	MOTA	934		MET	787		1.752	0.348	1.00 24.89
	ATOM	935	N	ARG	788	15.521	2.499	-0.625	1.00 26.29
10	ATOM	936	CA	ARG	788	14.738	1.790	-1.980	1.00 28.55
	MOTA	937	СВ	AŖG	788	14.833	2.474	-3.174	1.00 32.52
	ATOM	938	CG	ARG	788	14.166	1.541	-4.395	1.00 35.44
	MOTA	939	CD	ARG	788	14.217		-5.540	1.00 33.44
	MOTA	940	NE	ARG	788	13.426	1.996	-6.783	1.00 33.11
-15	ATOM	941	CZ	ARG	788	13.899	2.177		1.00 41.32
	ATOM	942	NHl	ARG	788	15.182	1.960	-7.081	1.00 41.48
	ATOM	943	NH2		788	13.079	2.567	-7.754	1.00 41.40
	ATOM	944	С	ARG	788	13.312	2.475	-0.090	1.00 26.50
	MOTA	945	0	ARG	788	12.596	3.473	-0.146	1.00 26.36
20	ATOM	946	N	HIS	789	12.920	1.339	0.483	1.00 26.36
-	MOTA	947	CA	HIS	789	11.587	1.173	1.052	1.00 20.70
	ATOM	948	CB	HIS	789	11.377	-0.287	1.479	1.00 29.07
	ATOM	949	CG	HIS	789	9.970	-0.609	1.879	1.00 30.42
	ATOM	950	CD2	HIS	789	8.890	-0.944	1.137	1.00 31.35
25	ATOM	951	ND1	HIS	789	9.538	-0.567	3.188	1.00 32.05
	ATOM	952	CE1	HIS	789	8.249	-0.856	3.235	1.00 32.56
	ATOM	953	NE2	HIS	789	7.831	-1.087	2.001	1.00 32.55
	ATOM	954	С	HIS	789	11.369	2.133	2.231	1.00 26.08
	ATOM	955	0	HIS	789	10.275	2.671	2.394	1.00 25.72
30	ATOM	956	N	LEU	790	12.413	2.318	3.048	1.00 25.92
••	ATOM	957	CA	LEU	790	12.433	3.234	4.218	1.00 25.41
	ATOM	958	CB	LEU	790	13.811	3.216	4.887	1.00 23.94
	ATOM	959	CG	LEU	790	14.039	3.400	6.383	1.00 23.32
	ATOM	960	CD1	LEU	790	15.444	3.930	6.570	1.00 22.41
35	ATOM	961	CD2	LEU	790	13.047	4.324	7.014	1.00 23.17
	ATOM	962	С	LEU	790	12.218	4.654	3.720	1.00 25.47
	ATOM	963	0	LEU	790	11.359	5.380	4.216	1.00 25.06
	ATOM	964	N	SER	791	13.040	5.056	2.757	1.00 25.60
	ATOM	965	CA	SER	791	12.942	6.375	2.177	1.00 26.51
40	ATOM	966	СВ	SER	791	13.851	6.446	0.973	1.00 28.35
	ATOM	967	OG	SER	791	14.936	5.559	1.179	1.00 32.32
	ATOM	968	С	SER	791	11.521	6.561	1.716	1.00 26.02
	ATOM	969	Ō	SER	791	10.950	7.632	1.885	1.00 26.00
	ATOM	970	N	GLN	792	10.964	5.505	1.122	1.00 26.31
45	ATOM	971	CA	GLN	792	9.600	5.526	0.610	1.00 26.32
70.	ATOM	972	СВ	GLN	792	9.237	4.200	-0.112	1.00 28.65
	ATOM	973	CG	GLN	792	9.700	4.109	-1.603	1.00 30.43
	ATOM	974	CD	GLN	792	9.421	2.749	-2.277	1.00 31.95
	ATOM	975		GLN	792	8.479	2.607	-3.062	1.00 33.53
50	ATOM	976		GLN	792	10.273	1.764	-2.007	1.00 32.31
50	ATOM	977	C	GLN	792	8.629	5.836	1.721	1.00 24.88
	ATOM	978	0	GLN	792	7.702	6.610	1.528	1.00 24.96
	ATOM	979	N	GLU	793	8.886	5.301	2.907	1.00 23.72
		980	CA	GLU	793	8.014	5.550	4.051	1.00 22.89
55	MOTA	981	CB	GLU	793	8.460	4.728	5.273	1.00 23.65
55	ATOM	981	CG	GLU	793	8.555	3.199	5.055	1.00 25.18
	ATOM				793	7.383	2.406	5.651	1.00 27.08
	ATOM	983	CD	GLU GLU	793 793	6.207	2.735	5.351	1.00 25.97
	ATOM	984			793 793	7.648	1.450	6.433	1.00 28.69
60	ATOM	985		GLU	793 793	7.949		4.400	1.00 21.58
60	MOTA	986	C	GLU	793 793	6.903		4.764	1.00 21.52
	MOTA	987	0	GLU		9.042		4.274	1.00 21.26
	MOTA	988	N	PHE	794	9.042	1.104	7.6,4	1.00 21.20

	ATOM	989	CA PHE	794	8	. 999	9.208	4.598	1.00	20.65
	ATOM	990	CB PHE	794	10	. 334	9.890	4.323		19.81
	ATOM	991	CG PHE	794	11	.413	9.541	5.304		19.96
	ATOM	992	CD1 PHE	794	11	.226	9.728	6.662		20.01
5	ATOM	993	CD2 PHE	794		.599	8.974	4.878		19.43
J	ATOM	994	CE1 PHE	794	12	.206	9.347	7.566		19.86
	ATOM	995	CE2 PHE	794	13	.570	8.593	5.787		18.95
	ATOM	996	CZ PHE	794	13	.374	8.777	7.118		19.37
	MOTA	997	C PHE	794	7	.929	9.863	3.759		22.26
10	ATOM	998	O PHE	794	7	.387	10.906	4.138		22.19
10	ATOM	999	N GLY	795	7	.688	9.270	2.585		23.81
		1000	CA GLY	795	6	.676	9.750	1.662		25.46
	ATOM	1001	C GLY	795	5	.309	9.232	2.037		26.19
	ATOM	1001	O GLY	795	4	.414	10.002	2.345		27.46
15	ATOM	1002	N TRP	796		.181	7.912	2.081	-	27.45
15	ATOM	1003	CA TRP	796		.931	7.239	2.428		28.24
	ATOM	1004	CB TRP	796		.135	5.697	2.542		27.71
	ATOM		CG TRP	796		.478	4.998	1.187		27.50
	MOTA	1006	CD2 TRP	796		.208	3.763	0.985	1.00	26.97
20	ATOM	1007	CE2 TRP	796		.312	3.556	-0.417		26.72
20	MOTA	1008	-			.777	2.816	1.845		25.52
	MOTA	1009				.177	5.460	-0.079	1.00	27.17
	ATOM	1010	CD1 TRP			.676	4.601	-1.035	1.00	27.59
	ATOM	1011				.967	2.448	-0.970	1.00	25.70
~-	MOTA	1012				. 427	1.714	1.290	1.00	25.51
25	MOTA	1013	CZ3 TRP			5.514	1.543	-0.106		25.42
	ATOM	1014	CH2 TRP			3.345	7.826	3.706	1.00	29.13
	MOTA	1015	C TRP			2.132	8.026	3.801		29.87
	ATOM	1016	O TRP			.223	8.212	4.632		29.96
~~	MOTA	1017	N LEU			3.816	8.768	5.923		29.80
30	MOTA	1018	CA LEU			.692	8.223	7.061		28.43
	ATOM	1019	CB LEU			1.552	6.736	7.383		27.68
	ATOM	1020	CG LEU			5.709	6.269	8.228		27.20
	ATOM	1021	CD1 LEU			3.216	6.470	8.058		26.62
	MOTA	1022	CD2 LEU			3.864	10.260	5.991		30.39
35	MOTA	1023	C LEC			3.447	10.827	6.983		32.25
	MOTA	1024	O LEU			1.415	10.027	4.978		31.03
	MOTA	1025	N GLN				12.360	5.005		30.93
	ATOM	1026	CA GLN			1.518 3.117	13.030	4.964		31.58
	ATOM	1027	CB GLN				12.757	3.701		32.86
40	ATOM	1028	CG GL1			2.253	13.580	3.633		32.89
	MOTA	1029	CD GLN			0.944	13.380	4.648		33.16
	ATOM	1030	OE1 GL			0.342		2.421		33.46
	MOTA	1031	NE2 GL			0.521	13.892	6.294		30.02
	MOTA	1032	C GL1			5.267	12.764	7.147		30.51
45	MOTA	1033	O GL			4.716	13.460	6.462		28.60
	MOTA	1034	N IL			6.497	12.283	7.648		27.76
	ATOM	1035	CA IL			7.277	12.634		1.00	26.34
	MOTA	1036	CB IL			B.546	11.747	7.829	1.00	25.78
	ATOM	1037	CG2 IL			9.382	12.246	9.007		25.57
50	ATOM	1038	CG1 IL			8.168	10.286	8.046		
	ATOM	1039	CD1 IL			7.271	10.063	9.211		25.52
	MOTA	1040	C IL			7.729	14.094	7.552		28.59
	MOTA	1041	O IL			8.181	14.552	6.496		29.81
	ATOM	1042	N TH			7.610	14.790	8.678		28.71
55	MOTA	1043	CA TH			7.967	16.197	8.874		28.68
	ATOM	1044	CB TH	R 800		7.202	16.718	10.142		29.24
	ATOM	1045		R 800		5.839		9.815		31.49
	ATOM	1046				7.824	17.925	10.746		29.69
	ATOM	1047		R 800		9.475	16.347	9.116		28.69
60	ATOM	1048				0.069		9.796		29.15
	ATOM	1049		0 801	1	0.116		8.565		28.18
	ATOM	1050				9.618	18.376	7.569	1.00	27.62

- 55 **-**

						11 555	17 600	8.780	1.00 27.74
	MOTA	1051		PRO	801	11.555 11.797	17.600 18.983	8.178	1.00 27.08
	MOTA	1052		PRO	801	10.908	18.956	7.002	1.00 26.58
	ATOM	1053		PRO	801	11.907	17.570	10.271	1.00 27.38
_	MOTA	1054		PRO	801	12.981	17.101	10.666	1.00 27.75
5	MOTA	1055		PRO	801 802	10.982	18.045	11.095	1.00 27.01
	MOTA	1056	-	GLN		11.189	18.079	12.542	1.00 26.73
	MOTA	1057		GLN	802	10.316	19.162	13.192	1.00 28.09
	ATOM	1058	-	GLN	802	10.582	20.596	12.692	1.00 29.79
	MOTA	1059		GLN	802	9.997	20.900	11.303	1.00 30.48
10	ATOM	1060		GLN	802	8.948	20.381	10.918	1.00 30.36
	MOTA	1061		GLN	802	10.660	21.782	10.571	1.00 30.57
	ATOM	1062		GLN	802	10.968	16.715	13.219	1.00 24.81
	MOTA	1063		GLN	802	11.599	16.415	14.222	1.00 24.41
	MOTA	1064		GLN	802		15.904	12.669	1.00 23.52
15	MOTA	1065		GLU	803	10.064	14.558	13.196	1.00 21.64
	ATOM	1066		GLU	803	9.797	13.897	12.459	1.00 20.29
	ATOM	1067		GLU	803	8.632	14.434	12.848	1.00 18.44
	ATOM	1068		GLU	803	7.277	13.786	12.119	1.00 17.84
	ATOM	1069		GLU	803	6.147	13.700	10.958	1.00 18.19
20	MOTA	1070	OE1		803	6.308	13.592	12.704	1.00 19.88
	MOTA	1071	OE2		803	5.065 11.067	13.784	12.923	1.00 21.04
	MOTA	1072		GLU	803	_	13.764	13.777	1.00 20.89
	MOTA	1073		GLU	803	11.537 11.612	14.001	11.722	1.00 19.87
	ATOM	1074	N	PHE	804		13.418	11.254	1.00 19.24
25	ATOM	1075	CA	PHE	804	12.863	13.410	9.822	1.00 17.23
	ATOM	1076	СВ	PHE	804	13.144	13.645	9.384	1.00 14.85
	MOTA	1077	CG	PHE	804	14.557 15.012	12.380	9.095	1.00 13.76
	MOTA	1078	CD1		804		14.706	9.301	1.00 13.69
	MOTA	1079		PHE	804	15.440	12.160	8.729	1.00 13.79
30	ATOM	1080	CE1		804	16.335	14.496	8.936	1.00 13.36
	MOTA	1081		PHE	804	16.765	13.217	8.647	1.00 12.84
	MOTA	1082	CZ	PHE	804	17.214	13.802	12.157	1.00 20.31
	ATOM	1083	C	PHE	804	14.034 14.807	12.939	12.564	1.00 21.30
	MOTA	1084	0	PHE	804		15.086	12.463	1.00 20.30
35	ATOM	1085	N	LEU	805	14.187	15.503	13.339	1.00 20.09
	MOTA	1086	CA	LEU	805	15.271	17.008	13.582	1.00 19.58
	ATOM	1087	CB	LEU	805	15.250 15.552	17.834	12.330	1.00 20.47
	MOTA	1088	CG	LEU	805	15.704	19.281	12.707	1.00 19.84
40	MOTA	1089		LEU	805	16.816	17.343	11.670	1.00 19.41
40	MOTA	1090		LEU	805 805	15.172	14.767	14.651	1.00 19.83
	ATOM	1091	С	LEU		16.142	14.205	15.106	1.00 20.77
	MOTA	1092	0	LEU	805	13.980	14.719	15.223	1.00 20.17
	ATOM	1093	N	CYS	806	13.765	14.026	16.494	1.00 21.27
4.5	ATOM	1094	CA	CYS	806 806	12.372	14.332	17.078	1.00 22.13
45	ATOM	1095	CB	CYS	806	12.142	16.017	17.706	1.00 27.50
	ATOM	1096	SG	CYS CYS	806	13.938	12.515	16.378	1.00 20.36
	ATOM	1097	C		806	14.575	11.904	17.241	1.00 20.30
	ATOM	1098	0	CYS MET	807	13.348	11.903	15.350	1.00 19.67
EΩ	ATOM	1099	N	MET	807	13.491	10.458	15.160	1.00 18.10
50	ATOM	1100	CA	MET	807	12.668	9.944	13.989	1.00 17.25
	ATOM	1101	CB CG	MET	807	11.195	9.877	14.279	1.00 16.70
	ATOM	1102 1103	SD	MET	807	10.377	9.142	12.911	1.00 19.42
	ATOM		CE	MET	807	10.144	10.560	11.908	1.00 16.21
55	ATOM	1104 1105	C	MET	807	14.947	10.062	14.979	1.00 17.75
55	ATOM	1105	0	MET	807	15.371	9.038	15.490	1.00 18.41
	ATOM ATOM	1105	Ŋ	LYS	808	15.712	10.871	14.257	1.00 17.31
	ATOM	1107	CA	LYS	808	17.116	10.592	14.054	1.00 16.27
		1108	CB	LYS	808	17.729	11.514	12.994	1.00 15.01
60	ATOM ATOM	1110	CG	LYS	808	19.171	11.154	12.733	1.00 14.63
JU	ATOM	1111	CD	LYS	808	19.679	11.569	11.371	1.00 15.42
	ATOM	1112	ÇE	LYS	808	19.422	13.053	11.092	1.00 15.64
		1116	ىتب	تبديد					

1.00 14.15 11.928 20.232 13.940 808 LYS ΝZ 1113 ATOM 1.00 16.89 15.376 10.726 17.857 808 LYS MOTA 1114 C 1.00 16.07 15.677 9.908 18.731 LYS 808 0 MOTA 1115 1.00 16.53 16.166 17.522 11.747 809 1116 N ALA MOTA 1.00 17.68 17.461 18.175 11.931 ALA 809 1117 CA **ATOM** 1.00 16.91 18.155 17.628 13.139 809 1118 CB ALA MOTA 1.00 19.03 17.989 18.348 10.691 809 ALA С ATOM 1119 1.00 20.50 10.207 18.996 18.932 809 ALA 1120 0 ATOM 1.00 19.36 18.392 10.184 16.766 810 1121 LEU N ATOM 1.00 18.99 16.459 9.011 19.186 810 LEU 10 1122 CA ATOM 1.00 19.09 14.966 8.811 19.263 810 LEU CB 1.00 20.20 1.00 21.29 1.00 18.75 1.00 18.88 1123 **ATOM** 20.651 9.020 810 14.406 CG LEU MOTA 1124 12.954 20.594 8.606 810 CD1 LEU ATOM 1125 21.674 15.176 8.199 CD2 LEU 810 1126 ATOM 7.716 18.722 17.116 810 С LEU 15 ATOM 1127 1.00 20.78 6.780 19.509 17.213 810 LEU 1128 0 ATOM 1.00 17.63 17.456 17.537 7.636 1129 N LEU 811 MOTA 16.959 1.00 15.58 6.447 811 18.215 CA LEU A'TOM 1130 1.00 14.70 18.346 6.456 15.438 CB LEU 811 **ATOM** 1131 1.00 14.14 1.00 13.66 14.574 17.148 6.107 811 CG LEU 20 ATOM 1132 13.164 14.746 6.408 17.511 CD1 LEU 811 ATOM 1133 1.00 13.62 16.744 4.632 CD2 LEU 811 MOTA 1134 17.582 1.00 15.42 19.598 6.328 811 LEU 1135 С ATOM 1.00 17.27 20.189 5.252 17.554 811 LEU 0 MOTA 1136 18.084 1.00 13.97 20.153 7.429 25 N LEU 812 1137 ATOM 1.00 12.94 7.373 18.734 21.455 812 LEU MOTA 1138 CA 1.00 12.69 18.937 22.004 8.790 LEU 812 CB **ATOM** 1139 1.00 12.03 19.670 8.893 23.342 812 CG LEU 1140 MOTA 1.00 12.16 18.802 8.422 24.488 CD1 LEU 812 MOTA 1141 1.00 13.12 20.037 23.559 10.325 CD2 LEU 812 30 1142 MOTA 1.00 12.97 1.00 12.99 6.658 20.098 21.330 812 LEU **ATOM** 1143 С 6.118 20.629 6.681 20.662 6.064 21.950 LEU 812 22.282 0 **ATOM** 1144 1.00 13.55 20.136 813 1145 N PHE MOTA 1.00 14.19 CA PHE 813 19.859 1146 ATOM 1.00 15.20 7.088 22.821 19.137 813 35 CB PHE 1147 **ATOM** 8.435 22.841 1.00 16.11 19.818 813 CG PHE 1148 ATOM 8.640 23.624 9.472 22.036 1.00 15.97 20.946 CD1 PHE 813 MOTA 1149 1.00 16.07 19.349 1150 CD2 PHE 813 ATOM 1.00 18.37 9.845 23.615 813 21.604 CE1 PHE 1151 MOTA 1.00 17.54 10.687 22.014 19.991 40 CE2 PHE 813 1152 MOTA 1.00 17.99 22.801 10.883 21.126 813 CZ PHE MOTA 1153 4.856 1.00 14.71 21.753 813 18.971 PHE **ATOM** 1154 C 1.00 14.79 4.618 22.530 18.058 PHE 813 1155 0 **ATOM** 1.00 16.09 20.709 19.255 4.082 814 ATOM 1156 N SER 1.00 15.96 1.00 15.79 18.453 20.369 2.917 CA SER 814 45 ATOM 1157 19.062 17.697 3.172 814 MOTA 1158 CB SER 19.274 1.00 15.51 4.087 814 16.640 1159 OG SER MOTA 1.00 16.05 19.169 1.581 20.294 1160 C SER 814 MOTA 1.00 17.02 19.779 0.620 18.610 814 SER 1161 0 **ATOM** 20.779 1.00 16.07 1.498 20.395 815 50 1162 N ILE MOTA 1.00 17.04 20.747 21.099 0.226 ATOM 1163 CA ILE 815 19.325 1.00 16.75 -0.086 21.620 CB ILE 815 MOTA 1164 1.00 17.43 22.222 1.113 18.706 CG2 ILE 815 MOTA 1165 1.00 17.01 -1.245 -1.753 19.341 22.600 CG1 ILE 815 1166 MOTA 17.953 1.00 17.98 CD1 ILE 22.915 815 55 1167 MOTA 1.00 17.86 0.187 21.826 22.172 815 ILE 1168 C MOTA 1.00 18.49 0.981 21.802 23.111 815 ILE MOTA 1169 0 -0.700 22.809 1.00 18.25 21.994 ILE 816 1170 N MOTA -0.804 23.947 1.00 18.91 22.913 CA ILE 816 MOTA 1171 25.178 1.00 19.07 22.298 -0.099 ILE 816 22.298 22.175 20.939 60 1172 CB MOTA 1.378 24.921 1.00 17.73 1173 CG2 ILE 816 MOTA 1.00 18.04 -0.692 25.537 CG1 ILE 816 1174 **ATOM**

- 57 -

			an1 '	** ~	016	20.516	-0.346	26.933	1.00 17.73
	MOTA	1175		ILE	816 816	23.302	-2.226	24.385	1.00 20.13
	ATOM	1176		ILE ILE	816	22.615	-3.184	24.040	1.00 20.43
	ATOM	1177	-	PRO	817	24.392	-2.385	25.180	1.00 20.85
_	ATOM	1178		PRO	817	25.303	-1.373	25.730	1.00 21.00
5	ATOM	1179		PRO	817	24.805	-3.720	25.631	1.00 22.05
	ATOM	1180	-	PRO	817	26.016	-3.444	26.523	1.00 21.47
	MOTA	1181	-	PRO	817	26.554	-2.197	26.001	1.00 21.80
	MOTA	1182		PRO	817	23.706	-4.320	26.458	1.00 22.95
10	ATOM	1183 1184		PRO	817	22.988	-3.594	27.151	1.00 23.12
10	MOTA	1185		VAL	818	23.585	-5.640	26.418	1.00 24.79
	ATOM	1186	-	VAL	818	22.544	-6.316	27.195	1.00 26.35
	ATOM ATOM	1187		VAL	818	22.513	-7.860	26.916	1.00 27.19
	ATOM	1188		VAL	818	23.864	-8.515	27.282	1.00 27.82
15	ATOM	1189	CG2		818	21.362	-8.524	27.676	1.00 27.72
15	ATOM	1190		VAL	818	22.742	-6.047	28.692	1.00 26.79
	ATOM	1191	-	VAL	818	21.777	-5.849	29.421	1.00 26.79
	ATOM	1192		ASP	819	23.992	-5.963	29.136	1.00 27.83
	ATOM	1193		ASP	819	24.240	-5.732	30.550	1.00 29.78
20	ATOM	1194		ASP	819	25.406	-6.593	31.063	1.00 32.59
	ATOM	1195	CG	ASP	819	26.747	-5.908	30.959	1.00 35.35
	ATOM	1196	OD1	ASP	819	27.117	-5.518	29.825	1.00 38.62
	ATOM	1197	OD2		819	27.431	-5.776	32.011	1.00 36.18
	ATOM	1198	С	ASP	819	24.377	-4.266	30.937	1.00 29.73
25	ATOM	1199	0	ASP	819	24.899	-3.930	32.007	1.00 30.00
	ATOM	1200	N	GLY	820	23.839	-3.403	30.085	1.00 29.43 1.00 28.69
	MOTA	1201	CA	GLY	820	23.878	-1.974	30.342	1.00 27.42
	ATOM	1202	С	GLY	820	25.216	-1.317	30.125	1.00 27.42
	ATOM	1203	0	GLY	820	26.221	-1.982	29.938 30.135	1.00 28.29
30	MOTA	1204	N	LEU	821	25.208	0.010	29.947	1.00 28.64
	ATOM	1205	CA	LEU	821	26.410	0.831 2.110	29.195	1.00 28.29
	ATOM	1206	CB	LEU	821	26.023	1.940	27.991	1.00 28.32
	MOTA	1207	CG	LEU	821	25.083 24.046	3.022	28.031	1.00 27.27
0.5	ATOM	1208	CD1		821	25.831	1.953	26.653	1.00 27.18
35	ATOM	1209	CD2		821	26.948	1.164	31.349	1.00 28.62
	ATOM	1210	C	LEU	821 821	26.341	0.747	32.342	1.00 28.84
	ATOM	1211	O N	LYS	822	28.060	1.897	31.441	1.00 28.49
	ATOM	1212 1213	CA	LYS	822	28.642	2.268	32.741	1.00 29.80
40	ATOM ATOM	1213	CB	LYS	822	29.865	3.169	32.576	1.00 30.45
70	ATOM	1215	CG	LYS	822	30.924	2.626	31.666	1.00 32.84
	ATOM	1216	CD	LYS	822	31.517	1.345	32.194	1.00 35.27
	ATOM	1217	CE	LYS	822	32.433	0.688	31.161	1.00 36.20
	ATOM	1218	NZ	LYS	822	33.498	1.623	30.710	1.00 37.22
45	ATOM	1219	С	LYS	822	27.621	3.016	33.587	1.00 30.25
	ATOM	1220	0	LYS	822	27.353	2.655	34.731	1.00 31.02
	ATOM	1221	N	ASN	823	27.065	4.080	33.029	1.00 29.98
	ATOM	1222	CA	ASN	823	26.070	4.852	33.735	1.00 29.55
	ATOM	1223	CB	ASN	823	26.458	6.323	33.774	1.00 31.17
50	ATOM	1224	CG	ASN	823	27.832	6.544	34.350	1.00 32.55
	ATOM	1225		ASN	823	28.787	5.856	33.985	1.00 33.56
	ATOM	1226		ASN	823	27.952	7.520	35.246	1.00 34.42
	ATOM	1227	С	ASN	823	24.807	4.665	32.943	1.00 28.73 1.00 29.00
	ATOM	1228	0	ASN	823	24.476	5.473	32.091	1.00 27.99
55	MOTA	1229	N	GLN	824	24.127	3.562	33.199 32.514	1.00 27.77
	MOTA	1230	CA	GLN	824	22.893	3.227 1.731	32.514	1.00 27.77
	MOTA	1231	CB	GLN	824	22.590	1.731	32.736	1.00 28.13
	ATOM	1232	CG	GLN	824	21.343	1.158	30.551	1.00 20.93
60	ATOM	1233	CD	GLN	824	21.331	0.976	29.855	1.00 30.20
60	ATOM	1234		GLN	824 824	22.300 20.211	1.775	30.028	1.00 30.02
	ATOM	1235		GLN GLN	824 824	21.723	4.115	32.960	1.00 27.61
	ATOM	1236	С	GTIN	024	41,143	4.110	55.500	

.

	ATOM	1237	0	GLN	824	20.747	4.275	32.226	1.00 27.58
	ATOM	1238	N	LYS	825	21.833	4.752	34.122	1.00 27.13
	ATOM	1239	CA	LYS	825	20.742	5.590	34.595	1.00 26.37
	ATOM	1240	CB	LYS	825	20.815	5.802	36.113	1.00 28.08 1.00 31.02
5	ATOM	1241	CG	LYS	825	19.430	5.823	36.792 38.335	1.00 31.02
	ATOM	1242	CD	LYS	825	19.493	5.693	39.002	1.00 33.41
	ATOM	1243	CE	LYS	825	18.086	5.725 4.516	38.739	1.00 35.55
	MOTA	1244	NZ	LYS	825	17.196 20.679	6.917	33.876	1.00 24.74
	ATOM	1245	C	LYS	825	19.625	7.518	33.799	1.00 25.30
10	ATOM	1246	0	LYS	825	21.794	7.375	33.330	1.00 24.06
	ATOM	1247	N	PHE PHE	826 826	21.830	8.646	32.597	1.00 23.44
	ATOM	1248 1249	CA CB	PHE	826	23.247	9.191	32.573	1.00 25.61
	ATOM	1249	CG	PHE	826	23.768	9.527	33.930	1.00 28.86
15	ATOM ATOM	1251		PHE	826	22.916	10.067	34.890	1.00 29.49
13	ATOM	1252		PHE	826	25.091	9.284	34.268	1.00 29.08
	ATOM	1253		PHE	826	23.373	10.356	36.156°	1.00 29.57
	ATOM	1254		PHE	826	25.551	9.571	35.533	1.00 29.80
	ATOM	1255	CZ	PHE	826	24.688	10.108	36.479	1.00 30.14
20	ATOM	1256	С	PHE	826	21.344	8.463	31.178	1.00 21.78
	ATOM	1257	0	PHE	826	20.808	9.380	30.568	1.00 21.42 1.00 20.42
	ATOM	1258	N	PHE	827	21.581	7.277	30.636	1.00 20.42
	ATOM	1259	CA	PHE	827	21.145	6.937	29.299 28.857	1.00 18.74
	ATOM	1260	CB	PHE	827	21.814	5.644 5.083	27.610	1.00 17.02
25	MOTA	1261	CG	PHE	827	21.238 21.780	5.412	26.380	1.00 16.74
	MOTA	1262		PHE	827	20.123	4.261	27.656	1.00 16.46
	ATOM.	1263		PHE	827	21.225	4.939	25.212	1.00 16.50
	MOTA	1264		PHE	827 827	19.555	3.782	26.491	1.00 17.41
20	MOTA	1265	CZ	PHE	827	20.105	4.120	25.266	1.00 16.35
30	ATOM	1266 1267	C	PHE	827	19.627	6.778	29.277	1.00 19.19
	ATOM ATOM	1268	Ö	PHE	827	18.962	7.183	28.331	1.00 18.79
	ATOM	1269	N	ASP	828	19.079	6.150	30.312	1.00 20.42
	MOTA	1270	CA	ASP	828	17.638	5.943	30.421	1.00 21.69
35	ATOM	1271	СВ	ASP	828	17.325	5.045	31.633	1.00 23.37
•	ATOM	1272	CG	ASP	828	17,885	3.627	31.487	1.00 24.46
	ATOM	1273	OD1	ASP	828	17.900	3.095	30.365	1.00 26.34
	MOTA	1274	OD2	ASP	828	18.296	3.023	32.501	1.00 26.77
	MOTA	1275	С	ASP	828	16.931	7.287	30.572	1.00 21.41 1.00 21.87
40	MOTA	1276	0	ASP	828	15.835	7.487	30.070 31.313	1.00 22.11
	MOTA	1277	N	GLU	829	17.552	8.187 9.510	31.533	1.00 23.92
	ATOM	1278	CA	GLU	829	17.005	10.309	32.499	1.00 27.77
	ATOM	1279	CB	GLU	829	17.910 18.168	11.823	32.130	1.00 32.20
45	ATOM	1280	CG	GLU GLU	829 829	19.650	12.266	32.334	1.00 35.29
45	ATOM	1281 1282	CD OF 1	GLU	829	20.005	12.655	33.482	1.00 37.06
	ATOM	1283		GLU	829	20.463	12.217	31.360	1.00 34.89
	ATOM ATOM	1284	C	GLU	829	17.011	10.166	30.174	1.00 22.78
	ATOM	1285	ŏ	GLU	829	15.963	10.539	29.656	1.00 22.06
50	MOTA	1286	N	LEU	830	18.201	10.200	29.575	1.00 22.21
	ATOM	1287	CA	LEU	830	18.437	10.812	28.272	1.00 22.14
	ATOM	1288	CB	LEU	830	19.885	10.575	27.852	1.00 21.24
	ATOM	1289	CG	LEU	830	20.415	11.572	26.833	1.00 21.76
	ATOM	1290	CD1	LEU	830	20.037	13.004	27.215	1.00 21.40
5 5	ATOM	1291	CD2	LEU	830	21.895	11.429	26.752	1.00 22.34
	ATOM	1292	С	LEU	830	17.499	10.318	27.191	1.00 22.74
	MOTA	1293	0	LEU	830	16.874	11.114	26.481	1.00 23.35
	ATOM	1294	N	ARG	831	17.400	9.002	27.079	1.00 22.23
	MOTA	1295	CA	ARG	831	16.559	8.352	26.097	1.00 22.37
60	MOTA	1296	СВ	ARG	831	16.780	6.849	26.186	1.00 22.50 1.00 22.59
	ATOM	1297	CG	ARG	831	15.957	6.087	25.219 25.375	1.00 22.39
	MOTA	1298	CD	ARG	831	16.130	4.600	23.313	1.00 23.23

ATOM 1300 CZ ARG 831 14.738 3.800 23.497 ATOM 1301 NH1 ARG 831 13.632 4.173 24.094 ATOM 1302 NH2 ARG 831 14.676 3.366 22.25 ATOM 1303 C ARG 831 14.676 3.366 22.25 ATOM 1304 O ARG 831 15.086 8.667 26.30 ATOM 1305 N MET 832 14.655 8.593 27.55 ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.594 ATOM 1310 CE MET 832 11.693 9.332 31.594 ATOM 1311 C MET 832 10.059 10.026 31.65 ATOM 1312 O MET 832 11.740 10.512 27.091 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.782 11.198 27.76 ATOM 1315 CB ASN 833 13.562 12.599 27.42 ATOM 1316 CG ASN 833 13.562 12.599 27.42 ATOM 1317 OD1 ASN 833 13.562 12.599 27.42 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.240 12.093 25.12 ATOM 1324 CG TYR 834 16.892 13.051 21.65 ATOM 1325 CD1 TYR 834 16.892 13.051 21.65 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.828 13.975 21.50 ATOM 1329 CZ TYR 834 18.558 14.341 22.66 ATOM 1329 CZ TYR 834 18.558 14.341 22.66 ATOM 1329 CZ TYR 834 18.558 14.341 22.66	1.00 24.36 1.00 25.37 1.00 24.31 1.00 22.46 1.00 22.76 3 1.00 22.76 3 1.00 22.91 9 1.00 23.88 0 1.00 24.65 1.00 29.43 1.00 29.67 3 1.00 23.47 1.00 23.79
ATOM 1300 CZ ARG 831 14.738 3.800 23.49. ATOM 1301 NH1 ARG 831 13.632 4.173 24.09. ATOM 1302 NH2 ARG 831 14.676 3.366 22.25. 5 ATOM 1303 C ARG 831 15.086 8.667 26.30. ATOM 1304 O ARG 831 14.354 8.964 25.35. ATOM 1305 N MET 832 14.655 8.593 27.55. ATOM 1306 CA MET 832 13.276 8.859 27.92. ATOM 1307 CB MET 832 13.126 8.762 29.42. ATOM 1309 SD MET 832 11.739 9.050 29.87. ATOM 1309 SD MET 832 11.693 9.332 31.59. ATOM 1310 CE MET 832 10.059 10.026 31.65. ATOM 1311 C MET 832 12.879 10.262 27.51. ATOM 1312 O MET 832 11.740 10.512 27.09. ATOM 1313 N ASN 833 13.762 11.198 27.76. ATOM 1314 CA ASN 833 13.762 12.599 27.42. ATOM 1315 CB ASN 833 14.676 13.482 28.01. ATOM 1316 CG ASN 833 14.532 13.679 29.54. ATOM 1317 OD1 ASN 833 14.532 13.679 29.54. ATOM 1318 ND2 ASN 833 13.293 13.628 30.03. ATOM 1319 C ASN 833 13.403 12.761 25.90. ATOM 1320 O ASN 833 13.403 12.761 25.90. ATOM 1321 N TYR 834 14.240 12.093 25.12. ATOM 1322 CA TYR 834 14.240 12.093 25.12. ATOM 1323 CB TYR 834 16.892 13.051 21.653 ATOM 1324 CG TYR 834 16.892 13.051 21.653 ATOM 1325 CD1 TYR 834 16.892 13.051 21.653 ATOM 1326 CE1 TYR 834 17.239 12.869 23.98 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 17.239 12.869 23.98 ATOM 1329 CZ TYR 834 18.268 13.791 23.87	1.00 25.37 1.00 24.31 1.00 22.46 1.00 22.89 1.00 22.76 1.00 22.91 1.00 23.88 1.00 24.65 1.00 29.43 1.00 29.67 1.00 23.47 1.00 23.79
ATOM 1301 NH1 ARG 831 13.632 4.173 24.09 ATOM 1302 NH2 ARG 831 14.676 3.366 22.25 ATOM 1303 C ARG 831 15.086 8.667 26.30 ATOM 1304 O ARG 831 14.354 8.964 25.35 ATOM 1305 N MET 832 14.655 8.593 27.55 ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.066 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.782 11.198 27.76 ATOM 1315 CB ASN 833 13.562 12.599 27.42 ATOM 1316 CG ASN 833 13.562 12.599 27.42 ATOM 1317 OD1 ASN 833 13.562 12.599 27.42 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1310 N TYR 834 14.240 12.093 25.12 ATOM 1320 C ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 16.802 13.051 21.636 ATOM 1324 CG TYR 834 16.802 13.051 21.636 ATOM 1325 CD1 TYR 834 16.802 13.051 21.636 ATOM 1326 CE1 TYR 834 17.239 12.869 23.98 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.86	1.00 24.31 1.00 22.46 1.00 22.89 1.00 22.76 3 1.00 22.91 9 1.00 23.88 1.00 24.65 6 1.00 29.43 1.00 29.67 3 1.00 23.47 1.00 23.79
ATOM 1302 NH2 ARG 831 14.676 3.366 22.25 5 ATOM 1303 C ARG 831 15.086 8.667 26.30 ATOM 1304 O ARG 831 14.354 8.964 25.35 ATOM 1305 N MET 832 14.655 8.593 27.55 ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 4TOM 1309 SD MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 11.693 9.332 31.59 ATOM 1311 C MET 832 11.099 10.026 31.65 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1314	2 1.00 22.46 1.00 22.89 1.00 22.76 3 1.00 22.91 9 1.00 23.88 0 1.00 24.65 6 1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
5 ATOM 1303 C ARG 831 15.086 8.667 26.30 ATOM 1304 O ARG 831 14.354 8.964 25.35 ATOM 1305 N MET 832 14.655 8.593 27.55 ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 10 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.782 11.198 27.76 ATOM 1315 CB ASN 833 13.562 12.599 27.42 ATOM 1316 CG ASN 833 14.676 13.482 28.01 ATOM 1317 OD1 ASN 833 14.532 13.679 29.54 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.691 12.489 22.87 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.86	1.00 22.89 1.00 22.76 3 1.00 22.91 9 1.00 23.88 0 1.00 24.65 6 1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
ATOM 1304 O ARG 831 14.354 8.964 25.35 ATOM 1305 N MET 832 14.655 8.593 27.55 ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1310 CE MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.782 11.198 27.76 ATOM 1315 CB ASN 833 13.562 12.599 27.42 ATOM 1316 CG ASN 833 14.676 13.482 28.01 ATOM 1317 OD1 ASN 833 14.532 13.679 29.54 ATOM 1318 ND2 ASN 833 14.532 13.679 29.54 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.240 12.093 25.12 ATOM 1323 CB TYR 834 14.240 12.093 25.12 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1328 CE2 TYR 834 18.558 14.341 22.66	1.00 22.76 1.00 22.91 1.00 23.88 1.00 24.65 1.00 29.43 1.00 29.67 1.00 23.47 1.00 23.79
ATOM 1305 N MET 832 14.655 8.593 27.55 ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 10 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.782 11.198 27.76 ATOM 1315 CB ASN 833 13.562 12.599 27.42 ATOM 1316 CG ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.66	3 1.00 22.91 9 1.00 23.88 0 1.00 24.65 6 1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
ATOM 1306 CA MET 832 13.276 8.859 27.92 ATOM 1307 CB MET 832 13.126 8.762 29.42 10 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 17.239 12.869 23.98 ATOM 1329 CZ TYR 834 18.558 14.341 22.65	9 1.00 23.88 0 1.00 24.65 6 1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
ATOM 1307 CB MET 832 13.126 8.762 29.42 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.676 13.482 28.01 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 15.519 13.864 30.27 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 14.121 12.165 23.67 ATOM 1324 CG TYR 834 16.802 13.051 21.63 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.667	1.00 24.65 6 1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
10 ATOM 1308 CG MET 832 11.739 9.050 29.87 ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 16.491 12.489 22.87 ATOM 1324 CG TYR 834 16.802 13.051 21.63 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.667	1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
ATOM 1309 SD MET 832 11.693 9.332 31.59 ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	6 1.00 29.43 1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
ATOM 1310 CE MET 832 10.059 10.026 31.65 ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 15.519 13.864 30.27 ATOM 1319 C ASN 833 13.293 13.628 30.03 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 14.121 12.165 23.67 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	1 1.00 29.67 3 1.00 23.47 7 1.00 23.79
ATOM 1311 C MET 832 12.879 10.262 27.51 ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 15.519 13.864 30.27 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	3 1.00 23.47 7 1.00 23.79
ATOM 1312 O MET 832 11.740 10.512 27.09 ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 16.491 12.489 22.87 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.239 12.869 23.98 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	7 1.00 23.79
ATOM 1313 N ASN 833 13.782 11.198 27.76 ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 13.403 12.761 25.90 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.239 12.869 23.98 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	
ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.239 12.869 23.98 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.67	8 1.00 23.63
ATOM 1314 CA ASN 833 13.562 12.599 27.42 ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 20 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.662	
ATOM 1315 CB ASN 833 14.676 13.482 28.01 ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	
ATOM 1316 CG ASN 833 14.532 13.679 29.54 ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.66	
ATOM 1317 OD1 ASN 833 15.519 13.864 30.27 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.67	
20 ATOM 1318 ND2 ASN 833 13.293 13.628 30.03 ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.67	
ATOM 1319 C ASN 833 13.403 12.761 25.90 ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.67	
ATOM 1320 O ASN 833 12.463 13.397 25.44 ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.67	5 1.00 23.94
ATOM 1321 N TYR 834 14.240 12.093 25.12 ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.553 14.341 22.67	5 1.00 24.48
ATOM 1322 CA TYR 834 14.121 12.165 23.67 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.62	3 1.00 23.69
25 ATOM 1323 CB TYR 834 15.340 11.532 23.00 ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.62	
ATOM 1324 CG TYR 834 16.491 12.489 22.87 ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.62	
ATOM 1325 CD1 TYR 834 16.802 13.051 21.63 ATOM 1326 CE1 TYR 834 17.828 13.975 21.50 ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.83 ATOM 1329 CZ TYR 834 18.558 14.341 22.66	
ATOM 1325 CD1 TTR 834 17.828 13.975 21.50 ATOM 1326 CE1 TYR 834 17.239 12.869 23.98 ATOM 1327 CD2 TYR 834 18.268 13.791 23.87 ATOM 1328 CE2 TYR 834 18.558 14.341 22.62	- - · · · ·
ATOM 1327 CD2 TYR 834 17.239 12.869 23.98 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.62	
30 ATOM 1328 CE2 TYR 834 18.268 13.791 23.87 ATOM 1329 CZ TYR 834 18.558 14.341 22.62	
30 ATOM 1328 CE2 TYR 834 18.268 13.791 23.66 ATOM 1329 CZ TYR 834 18.558 14.341 22.62	
ATOM 1329 CZ TYR 834 18.558 14.341 22.04	
10 571 15 363 37 46	
ATOM 1331 C TYR 834 12.809 11.574 23.12	8 1.00 24.43
ATOM 1332 O TYR 834 12.297 12.006 22.09	2 1.00 24.26
35 ATOM 1333 N ILE 835 12.260 10.599 23.8	3 1.00 24.33
33 ATOM 1333 N 222 23 49	0 1.00 23.48
ATOM 1554 CA 155 000 10 704 9 707 24 2	
AIOM 1333 CB 125 227 8 308 24 0	4 1.00 19.87
ATOM 1336 CG2 102 005 11 657 7 624 23 7	
ATOM 1337 CGI ILL 033	
40 ATOM 1336 CD1 111 037 23 6	
ATOM 1339 C 1111 033	
ATOM 1340 O THE CSS	
ATOM 1341 N LYS 836 9.998 11.738 24.7	
ATOM 1342 CA LYS 836 9.006 12.747 25.1	
45 ATOM 1343 CB LYS 836 9.245 13.281 26.5	1.00 29.95
ATOM 13/4 CG TYS 836 9.115 12.252 2/./	12 1.00 32.62
ATOM 1345 CD LYS 836 7.690 11.672 27.9	1.00 33.04
ATOM 1346 CE LYS 836 7.575 10.238 27.3	44 1.00 34.32
ATOM 1347 NZ LYS 836 8.559 9.259 27.9	
70 000 12 010 000 0 000 12 010 24 1	64 1.00 28.39
00 RION 1540 0 550	46 1.00 29.09
A100 1545 0 22 10 104 14 240 22 6	
ATOM 1350 N GHO 357	
AIOM 1331 CA GEO CO.	-
ATOM 1552 CB CBC TO	
55 ATOM 1353 CG GLU 837 12.305 16.584 23.6	
ATOM 1354 CD GLU 837 11.553 17.887 23.9	
ATOM 1355 OE1 GLU 837 11.612 18.303 25.1	
ATOM 1356 OE2 GLU 837 10.925 18.503 23.0	63 1.00 35.58
ATOM 1357 C GLU 837 9.666 14.907 21.3	
60 ATOM 1358 O GLU 837 9.041 15.699 20.6	
ATOM 1359 N LEU 838 9.826 13.631 20.9	
ATOM 1559 & EEO 050	
ATOM 1360 CA LEU 838 9.250 13.092 19.7	74 1.00 30.90

- 60 -

					•			
	3.004	1361	CB LEU	838	9.614	11.622	19.592	1.00 30.44
	ATOM		CG LEU	838	8.810	10.983	18.460	1.00 30.56
	ATOM	1362	CD1 LEU	838	9.077	11.728	17.151	1.00 30.31
	ATOM	1363	CD2 LEU	838	9.166	9.533	18.330	1.00 30.00
_	ATOM	1364		838	7.740	13.211	19.884	1.00 32.66
5	MOTA	1365		838	7.076	13.706	18.983	1.00 32.60
	MOTA	1366	O LEU	839	7.186	12.724	20.979	1.00 34.82
	MOTA	1367	N ASP		5.755	12.823	21.162	1.00 37.61
	ATOM	1368	CA ASP	839	5.331	12.117	22.449	1.00 39.22
	MOTA	1369	CB ASP	839			22.557	1.00 41.54
10	ATOM	1370	CG ASP	839	3.816	11.952	23.592	1.00 43.10
	ATOM	1371	OD1 ASP	839	3.249	12.375		1.00 42.60
	ATOM	1372	OD2 ASP	839	3.192	11.400	21.613	
	MOTA	1373	C ASP	839	5.338	14.293	21.187	1.00 38.83
	ATOM	1374	O ASP	839	4.285	14.645	20.672	1.00 39.02
15	ATOM	1375	N ARG	840	6.195	15.151	21.731	1.00 40.51
10	ATOM	1376	CA ARG	840	5.916	16.580	21.828	1.00 42.20
	ATOM	1377	CB ARG	840	7.032	17.289	22.610	1.00 43.32
	ATOM	1378	CG ARG	840	6.657	18.639	23.261	1.00 45.47
	ATOM	1379	CD ARG	840	6.945	19.881	22.401	1.00 46.95
20		1380	NE ARG	840	8.319	20.371	22.542	1.00 48.57
20	MOTA		CZ ARG	840	9.066	20.823	21.533	1.00 49.57
	ATOM	1381	NH1 ARG	840	8.580	20.860	20.294	1.00 49.89
	MOTA	1382	NH2 ARG	840	10.314	21.220	21.755	1.00 49.90
	MOTA	1383			5.776	17.220	20.457	1.00 43.27
	MOTA	1384	C ARG	840	4.860	18.004	20.232	1.00 43.50
25	ATOM	1385	O ARG	840	6.663	16.876	19.528	1.00 44.53
	ATOM	1386	N ILE	841			18.211	1.00 46.22
	MOTA	1387	CA ILE	841	6.600	17.483	17.510	1.00 45.82
	ATOM	1388	CB ILE	841	7.983	17.572	-	1.00 45.02
	ATOM	1389	CG2 ILE	841	9.044	18.078	18.463	1.00 46.46
30	ATOM	1390	CG1 ILE	841	8.383	16.237	16.918	
	ATOM	1391	CD1 ILE	841	8.064	16.150	15.463	1.00 45.92
	MOTA	1392	C ILE	841	5.534	16.913	17.286	1.00 48.04
	ATOM	1393	O ILE	841	5.472	17.272	16.109	1.00 48.90
	ATOM	1394	N ILE	842	4.737	15.976	17.786	1.00 49.91
35	ATOM	1395	CA ILE	842	3.632	15.446	16.990	1.00 51.38
•	ATOM	1396	CB ILE	842	3.577	13.878	16.889	1.00 51.11
	ATOM	1397	CG2 ILE	842	3.917	13.445	15.482	1.00 51.75
	ATOM	1398	CG1 ILE	842	4.523	13.192	17.870	1.00 50.67
	ATOM	1399	CD1 ILE	842	4.691	11.701	17.619	1.00 49.36
40	ATOM	1400	C ILE	842	2.384	16.003	17.659	1.00 52.63
70		1401	O ILE	842	1.509	16.551	16.999	1.00 52.38
	ATOM	1401		843	2.356	15.939	18.986	1.00 54.81
	ATOM			843	1.242	16.456	19.761	1.00 57.24
	ATOM	1403		843	1.424	16.129	21.247	1.00 56.69
45	ATOM	1404			1.215	17.962	19.557	1.00 59.28
45	ATOM	1405	C ALA	843	1.847	18.704	20.304	1.00 59.69
	ATOM	1406		843		18.391	18.481	1.00 61.60
	ATOM	1407	N CYS	844	0.560	19.810	18.130	1.00 63.67
	ATOM	1408	CA CYS	844	0.402		17.979	1.00 64.05
	MOTA	1409	CB CYS	844	1.766	20.536	16.470	1.00 65.30
50	MOTA	1410	SG CYS	844	2.751	20.268		1.00 64.63
	MOTA	1411	C CYS	844	-0.441	19.854	16.848	
	ATOM	1412	O CYS	844	-1.618	19.471	16.889	1.00 64.70
	ATOM	1413	N ALA	845	0.136	20.332	15.738	1.00 65.65
	ATOM	1414	CA ALA	845	-0.545	20.374	14.439	1.00 65.96
55	ATOM	1415	CB ALA	845	-0.195	21.639	13.684	1.00 65.80
-	ATOM	1416	C ALA	845	-0.079	19.165	13.644	1.00 66.49
	ATOM	1417	O ALA	845	-0.675	18.829	12.620	1.00 66.85
	ATOM	1418	N ALA	846	0.998	18.533	14.127	1.00 66.74
		1419	CA ALA	846	1.601	17.343	13.511	1.00 66.90
60	ATOM	1419	CB ALA	846	3.110		13.730	1.00 66.74
90	ATOM	1420	C ALA	846	0.984	16.074	14.086	1.00 66.88
	ATOM			846	1.675		14.345	1.00 66.35
	MOTA	1422	O ALA	040	1.073	20.002		

						_			14 201	1.00 67.27	
	MOTA	1423	N	ALA	847		.325	16.141	14.291 14.826	1.00 67.87	
	ATOM	1424	CA	ALA	847		.162	15.076		1.00 68.14	
	ATOM	1425	CB	ALA	847	-	.515	14.407	16.033 15.251	1.00 68.35	
	ATOM	1426	С	ALA	847		.420	15.816	15.278	1.00 68.33	
5	ATOM	1427	0	ALA	847		.432	17.046		1.00 69.11	
_	ATOM	1428	N	ALA	848		3.468	15.079	15.597	1.00 69.71	
	ATOM	1429	CA	ALA	848		.728	15.685	16.016	1.00 69.68	
	ATOM	1430	CB	ALA	848		5.272	16.598	14.907	1.00 70.20	
	ATOM	1431	С	ALA	848		5.737	14.586	16.340	1.00 70.20	
10	ATOM	1432	0	ALA	848		5.342	13.474	16.720		
	ATOM	1433	N	ALA	849		7.021	14.914	16.146		
	ATOM	1434	CA	ALA	849		3.185	14.043	16.374	1.00 70.31 1.00 70.65	
	ATOM	1435	CB	ALA	849		9.014	13.929	15.079	1.00 70.83	
	ATOM	1436	С	ALA	849		7.856		16.920	1.00 70.12	
15	ATOM	1437	0	ALA	849		7.665		18.130	1.00 70.12	
	ATOM	1438	N	ALA	850		7.808		16.020	1.00 69.47	
	ATOM	1439	CA	ALA	850		7.473		16.377	1.00 68.74	
	ATOM	1440	CB	ALA	850		8.494		15.774	1.00 67.76	
	ATOM	1441	С	ALA	850		6.061		15.845	1.00 67.70	
20	ATOM	1442	0	ALA	850		5.590		15.864	1.00 66.46	
	ATOM	1443	N	SER	851		5.391		15.388	1.00 65.28	
	ATOM	1444	CA	SER	851		4.046		14.846	1.00 65.24	
	MOTA	1445	CB	SER	851		3.664		14.018	1.00 65.05	
	ATOM	1446	OG	SER	851		2.405		13.369	1.00 64.16	
25	ATOM	1447	С	SER	851		3.023		15.944	1.00 64.16	
	MOTA	1448	0	SER	851		2.426		15.969	1.00 62.68	
	ATOM	1449	N	CYS	852		2.873	11.651	16.879	1.00 60.90	
	ATOM	1450	CA	CYS	852		1.901			1.00 61.3	
	ATOM	1451	CB	CYS	852		2.353			1.00 62.00	
30	ATOM	1452	SG	CYS	852		1.712			1.00 59.7	
	MOTA	1453	С	CYS	852		1.480			1.00 59.6	
	MOTA	1454	0	CYS	852		0.28	_		1.00 57.8	
	MOTA	1455	N	SER	853		2.440			1.00 55.4	
	MOTA	1456	CA	SER	853		2.10			1.00 56.2	
35	ATOM	1457	СВ	SER	853		3.30			1.00 57.6	
	MOTA	1458	OG	SER	853		3.48		_	1.00 53.0	9
	MOTA	1459	С	SER	853		1.61			1.00 53.2	
	MOTA	1460	0	SER	853		0.60			1.00 49.7	
	MOTA	1461	N	ARG	854		2.30	-		1.00 46.3	
40	ATOM	1462	CA	ARG	854		1.92			1.00 47.2	
	MOTA	1463	CB	ARG	854		.3.02			1.60 48.0	
	ATOM	1464	CG	ARG	854		2.74			1.00 49.8	
	ATOM	1465	CD	ARG	854		-2.98			1.00 51.1	
	MOTA	1466	NE	ARG	854		4.34			1.00 51.2	
45	ATOM'	1467	CZ	ARG	854		4.91	- :		1.00 51.3	
	MOTA	1468		L ARG	854		-4.26 -6.15			1.00 51.2	
	MOTA	1469		2 ARG	854		-6.15 -0.56			1.00 43.7	2
	ATOM	1470	C	ARG	854		0.29			1.00 43.8	
	MOTA	1471.		ARG	854		-0.36	-		1.00 39.6	8
50	ATOM	1472	N	ARG	855		0.86			1.00 36.5	
	MOTA	1473	CA	ARG	855		0.71			1.00 36.4	
	MOTA	1474	CB	ARG	855		1.80			1.00 34.7	
	ATOM	1475	CG	ARG	855					1.00 32.8	
	MOTA	1476	CD	ARG	855		1.72			1.00 30.5	
55	MOTA	1477	NE	ARG	855		2.86			1.00 29.6	
	MOTA	1478	CZ	ARG	855		2.13			1.00 28.8	
	ATOM	1479		1 ARG	855		4.08		_		20
	ATOM	1480		2 ARG	855		2.10				
-	ATOM	1481	_	ARG	855		3.18				
60	ATOM	1482		ARG	855 856		1.97				
	MOTA	1483		PHE PHE	856 856		3.08				
	MOTA	1484	CA	rns	020		5.00	,.,0			

- 62 -

								10 005	1.00 30.24
	ATOM	1485	_	PHE	856	2.846	8.128	18.895	1.00 30.24
	MOTA	1486	CG :	PHE	856	4.058	7.977	19.755	1.00 30.00
	MOTA	1487	CD1		856	5.022	8.972	19.787	
	ATOM	1488	CD2		856	4.241	6.829	20.536	
5	ATOM	1489	_	PHE	856	6.150	8.832	20.580	
	ATOM	1490	CE2	PHE	856	5.364	6.676	21.335	1.00 28.86
	ATOM	1491	CZ	PHE	856	6.325	7.680	21.357	1.00 29.62
	ATOM	1492	С	PHE	856	3.308	6.290	17.254	1.00 30.61
	ATOM	1493	0	PHE	856	4.420	5.803	17.424	1.00 30.75
10	ATOM	1494	N	TYR	857	2.258	5.543	16.943	1.00 29.79
	ATOM	1495	CA	TYR	857	2.446	4.118	16.725	1.00 29.79
	ATOM	1496	CB	TYR	857	1.116	3.365	16.660	1.00 30.78
	ATOM	1497	CG	TYR	857	1.254	1.871	16.396	1.00 32.21
	ATOM	1498	CD1	TYR	857	1.425	0.972	17.442	1.00 32.75
15	ATOM	1499	CE1	TYR	857	1.548	-0.401	17.215	1.00 34.60
••	ATOM	1500	CD2	TYR	857	1.208	1.362	15.098	1.00 33.36
	ATOM	1501	CE2	TYR	857	1.331	-0.011	14.854	1.00 34.67
	ATOM	1502	CZ	TYR	857	1.503	-0.887	15.918	1.00 35.61
	ATOM	1503	ОН	TYR	857	1.652	-2.244	15.697	1.00 36.96
20	ATOM	1504	C	TYR	857	3.206	3.929	15.419	1.00 29.44
	MOTA	1505	0	TYR	857	4.135	3.125	15.371	1.00 29.44
	ATOM	1506	N	GLN	858	2.847	4.685	14.376	1.00 28.32
	ATOM	1507	CA	GLN	858	3.533	4.537	13.087	1.00 28.06
	ATOM	1508	CB	GLN	858	2.675	5.020	11.890	1.00 28.98
25	ATOM	1509	CG	GLN	858	1.970	6.384	12.029	1.00 31.65
	ATOM	1510	CD	GLN	858	0.781	6.569	11.059	1.00 32.26
	ATOM	1511	OE1	GLN	858	0.385	7.700	10.724	1.00 32.11
	ATOM	1512	NE2	GLN	858	0.210	5.458	10.617	1.00 32.79
	ATOM	1513	С	GLN	858	4.967	5.077	13.037	1.00 26.56
30	ATOM	1514	0	GLN	858	5.820	4.525	12.332	1.00 26.58
-	ATOM	1515	N	LEU	859	5.266	6.101	13.825	1.00 24.64
	ATOM	1516	CA	LEU	859	6.622	6.632	13.832	1.00 22.82
	ATOM	1517	CB	LEU	859	6.675	8.067	14.395	1.00 23.93
	ATOM	1518	CG	LEU	859	6.054	9.243	13.617	1.00 23.18
35	ATOM	1519	CD1		859	6.616	10.541	14.156	1.00 23.42
	ATOM	1520	CD2		859	6.363	9.137	12.173	1.00 22.30
	ATOM	1521	С	LEU	859	7.545	5.705	14.613	1.00 20.92
	ATOM	1522	0	LEU	859	8.694	5.486	14.222	1.00 20.35
	ATOM	1523	N	THR	860	7.030	5.124	15.691	1.00 20.30
40	ATOM	1524	CA	THR	860	7.821	4.195	16.505	1.00 20.14
	ATOM	1525	CB	THR	860	7.215	3.957	17.905	1.00 18.65
	MOTA	1526	OG1	THR	860	5.849	3.551	17.797	1.00 18.55
	ATOM	1527	CG2	THR	860	7.314	5.196	18.734	1.00 18.12 1.00 20.30
	ATOM	1528	С	THR	860	7.969	2.855	15.765	
45	ATOM	1529	0	THR	860	8.922	2.108	15.985	
	MOTA	1530	N	LYS	861	7.040	2.600	14.851	1.00 21.02
	ATOM	1531	CA	LYS	861	7.046	1.411	14.034	1.00 21.82
	ATOM	1532	CB	LYS	861	5.649	1.178	13.475	1.00 23.82
	ATOM	1533	CG	LYS	861	5.375	-0.268	13.110	1.00 26.71
50	MOTA	1534	CD	LYS	861	5.015	-1.106	14.321	1.00 28.40
	MOTA	1535	CE	LYS	861	4.924	-2.587	13.922	1.00 30.14
	MOTA	1536	NZ	LYS	861	4.542	-3.514	15.050	1.00 31.53 1.00 21.28
	ATOM	1537	С	LYS	861	8.040	1.642	12.895	
	MOTA	1538	0	LYS	861	8.781	0.750	12.510	1.00 21.01
55	MOTA	1539	N	LEU	862	8.093	2.863	12.389	1.00 21.49
	MOTA	1540	CA	LEU	862	9.021	3.192	11.311	1.00 21.32
	MOTA	1541	CB	LEU	862	8.713	4.577	10.731	1.00 22.14 1.00 21.98
	MOTA	1542	CG	LEU	862	9.816	5.281	9.921	1.00 21.98
00	ATOM	1543		LEU	862	10.022	4.563	8.622	1.00 22.72
60	ATOM	1544		LEU	862	9.456	6.726	9.670	1.00 22.36
	ATOM	1545	C	LEU	862	10.438	3.181 2.884	11.854 11.133	1.00 21.13
	MOTA	1546	0	LEU	862	11.386	2.004	11.133	1.00 22.30

- 63 -

								12 105	1.00 20.71
	ATOM	1547		LEU	863	10.596	3.602	13.105	1.00 20.71
	ATOM	1548	CA	LEU	863	11.906	3.625	13.749	1.00 18.78
	ATOM	1549	CB	LEU	863	11.827	4.423	15.040	
	ATOM	1550		LEU	863	11.890	5.931	14.863	1.00 18.02 1.00 19.67
5	ATOM	1551	CD1	LEU	863	12.103	6.545	16.230	1.00 15.57
•	ATOM	1552	CD2	LEU	863	13.049	6.291	13.944	1.00 18.08
	ATOM	1553	С	LEU	863	12.462	2.218	14.004	
	ATOM	1554	0	LEU	863	13.676	1.984	13.895	1.00 17.06
	ATOM	1555	N	ASP	864	11.592	1.307	14.436	1.00 18.33
10	MOTA	1556	CA	ASP	864	11.985	-0.088	14.642	1.00 19.28
	ATOM	1557		ASP	864	10.797	-0.917	15.143	1.00 19.27
	ATOM	1558		ASP	864	10.525	-0.727	16.620	1.00 19.92
	ATOM	1559	OD1		864	11.256	0.045	17.271	1.00 20.94
	ATOM	1560	OD2		864	9.577	-1.364	17.116	1.00 19.39
15		1561	C	ASP	864	12.467	-0.692	13.321	1.00 19.06
15	ATOM	1562	Õ	ASP	864	13.377	-1.519	13.298	1.00 18.82
	ATOM	1563	N	SER	865	11.847	-0.263	12.222	1.00 19.90
	MOTA	1564	CA	SER	865	12.202	-0.764	10.894	1.00 19.17
	ATOM	1565	CB	SER	865	11.226	-0.289	9.798	1.00 18.59
20	MOTA MOTA	1566	OG	SER	865	11.167	1.123	9.613	1.00 19.91
20		1567	C	SER	865	13.634	-0.507	10.489	1.00 18.01
	ATOM	1568	Ö	SER	865	14.213	-1.294	9.765	1.00 18.93
	ATOM	1569	N	VAL	866	14.257	0.535	11.004	1.00 17.08
	ATOM	1570	CA	VAL	866	15.619	0.747	10.589	1.00 15.20
25	MOTA	1571	CB	VAL	866	16.093	2.211	10.783	1.00 15.01
25	MOTA	1572	CG1		866	14.982	3.081	11.320	1.00 13.81
	MOTA			VAL	866	17.344	2.280	11.574	1.00 13.41
	ATOM	1573	CGZ	VAL	866	16.564	-0.260	11.194	1.00 14.83
	ATOM	1574	0	VAL	866	17.625	-0.518	10.641	1.00 14.66
20	ATOM	1575	N	GLN	867	16.168	-0.873	12.302	1.00 15.12
30	ATOM	1576 1577	CA	GLN	867	17.031	-1.849	12.977	1.00 15.64
	ATOM		CB	GLN	867	16.508	-2.155	14.374	1.00 16.10
	ATOM	1578	CG	GLN	867	16.526	-0.968	15.315	1.00 16.35
	ATOM	1579	CD	GLN	867	17.910	-0.474	15.672	1.00 17.91
25	ATOM	1580		GLN	867	18.924	-1.175	15.510	1.00 17.76
35	ATOM	1581		GLN	867	17.958	0.750	16.201	1.00 17.53
	MOTA	1582	C	GLN	867	17.358	-3.143	12.233	1.00 14.54
	MOTA	1583	0	GLN	867	18.487	-3.594	12.271	1.00 15.92
	MOTA	1584		PRO	868	16.364	-3.809	11.634	1.00 14.35
40	MOTA	1585	N CD	PRO	868	14.914	-3.555	11.696	1.00 15.17
40	MOTA	1586		PRO	868	16.630	-5.040	10.886	1.00 13.73
	MOTA	1587	CA CB	PRO	868	15.232	-5.465	10.415	1.00 14.35
	MOTA	1588	CG	PRO	868	14.331	-4.928	11.438	1.00 14.42
	ATOM	1589 1590	C	PRO	868	17.500	-4.704	9.674	1.00 13.45
45	ATOM	1591	Ö	PRO	868	18.341	-5.497	9.254	1.00 14.77
45	ATOM		N	ILE	869	17.289	-3.514	9.113	1.00 13.49
	ATOM	1592	CA	ILE	869	18.043	-3.044	7.970	1.00 12.06
	ATOM	1593	CB	ILE	869	17.447	-1.740	7.358	1.00 12.53
	ATOM	1594	ÇG2		869	18.272	-1.307	6.175	1.00 12.44
5 0	ATOM	1595	CG1		869	15.998	-1.973	6.928	1.00 12.25
50	ATOM	1596	CD1		869	15.258	-0.746	6.432	1.00 11.91
	ATOM	1597	CDI	ILE	869	19.458	-2.818	8.411	1.00 11.70
	ATOM	1598	Ö	ILE	869	20.356	-3.302	7.755	1.00 13.01
	ATOM	1599			870	19.655	-2.254	9.610	1.00 12.19
c c	ATOM	1600	N	ALA ALA	870	21.007	-1.993	10.110	1.00 11.52
55	ATOM	1601	CA		870	20.971	-1.189	11.375	1.00 10.62
	ATOM	1602	CB	ALA	870	21.758	-3.287	10.350	1.00 12.90
	MOTA	1603		ALA ALA	870	22.955	-3.374	10.074	1.00 13.99
	ATOM	1604	О N	ARG	871	21.082	-4.262	10.962	1.00 14.67
60	ATOM	1605		ARG	871	21.659	-5.577	11.226	1.00 15.30
60	ATOM	1606 1607		ARG	871	20.668	-6.465	11.970	1.00 16.99
	ATOM	1607		ARG	871	21.317	-7.789		1.00 20.44
	MOTA	1000	ÇG	ANG	J, I				

						0 355	12 100	1.00 22.19
	MOTA	1609	CD ARG	871	20.552	-8.755 -9.736	13.190 13.678	1.00 25.05
	MOTA	1610	NE ARG	871		-9.736 -9.581	14.785	1.00 24.87
	ATOM	1611	CZ ARG	871	22.248	-8.513	15.553	1.00 26.86
	MOTA	1612	NH1 ARG	871	22.085 23.221 -		15.059	1.00 27.12
5	MOTA	1613	NH2 ARG	871		-6.287	9.939	1.00 16.18
	ATOM	-1614	C ARG	871	22.119	-6.846	9.897	1.00 16.90
	MOTA	1615	O ARG	871	23.216	-6.256	8.886	1.00 17.08
	ATOM	1616	N GLU	872	21.300	-6.874	7.595	1.00 17.70
	MOTA	1617	CA GLU	872	21.669	-6.670	6.578	1.00 20.21
10	ATOM	1618	CB GLU	872	20.546	-7.920	5.827	1.00 27.32
	ATOM	1619	CG GLU	872	20.070	-7.600	4.715	1.00 31.24
	MOTA	1620	CD GLU	872	19.041	-8.069	3.544	1.00 32.65
	ATOM	1621	OE1 GLU	872	19.199	-6.867	5.018	1.00 33.14
	MOTA	1622	OE2 GLU	872	18.068	-6.229	7.064	1.00 16.22
15	MOTA	1623	C GLU		22.961	-6.892	6.504	1.00 16.64
	ATOM	1624	O GLU		23.826	-4.927	7.254	1.00 15.48
	MOTA	1625	N LEU		23.109 24.304	-4.230	6.781	1.00 13.64
	MOTA	1626	CA LEU			-2.718	6.664	1.00 13.09
	MOTA	1627	CB LEU		24.040	-2.718	5.640	1.00 12.60
20	MOTA	1628	CG LEU		22.957	-0.985	5.856	1.00 13.12
	MOTA	1629	CD1 LEU		22.396	-2.529	4.229	1.00 12.29
	ATOM	1630	CD2 LEU		23.511	-4.510	7.662	1.00 13.26
	ATOM	1631	C LEU		25.489	-4.541	7.185	1.00 12.91
	MOTA	1632	O LEU		26.621	-4.688	8.960	1.00 14.96
25	ATOM	1633	N HIS		25.237	-5.011	9.935	1.00 15.73
	ATOM	1634	CA HIS		26.297 25.735	-5.154	11.351	1.00 14.09
	MOTA	1635	CB HIS		25.513	-3.860	12.062	1.00 13.53
	MOTA	1636	CG HIS		26.303	-2.769	12.204	1.00 12.74
	MOTA	1637	CD2 HIS		24.365	-3.588	12.771	1.00 12.74
30	MOTA	1638	ND1 HIS		24.451	-2.397	13.313	1.00 11.45
	MOTA	1639	CE1 HIS		25.616	-1.878	12.990	1.00 10.87
	MOTA	1640	NE2 HIS		26.945	-6.342	9.549	1.00 16.66
	MOTA	1641	C HIS		28.171	-6.454	9.539	1.00 16.68
	MOTA	1642	O HIS		26.122	-7.356	9.268	1.00 18.67
35	MOTA	1643	N GLN		26.635	-8.674	8.853	1.00 19.45
	ATOM	1644	CA GL		25.507	-9.726	8.779	1.00 21.56
	ATOM	1645	CB GLN			-10.875	9.864	1.00 25.76
	MOTA	1646	CG GL		25.500	-11.938	9.671	1.00 26.74
40	ATOM	1647	CD GL		27 871	-11.624	9.654	1.00 27.36
40	ATOM	1648	OE1 GLN NE2 GLN			-13.204	9.589	1.00 27.93
	ATOM	1649			27.324	-8.521	7.491	1.00 18.37
	ATOM	1650	C GL		28.428	-9.022	7.294	1.00 18.65
	ATOM	1651			26.737	-7.724	6.597	1.00 18.47
A E	ATOM	1652	N PHI		27.338	-7.515	5.280	1.00 18.22
45	ATOM	1653 1654	CB PH		26.453	-6.641	4.377	1.00 19.25
	ATOM	1655	CG PH		26.966	-6.506	2.954	1.00 19.63
	ATOM		CD1 PH		28.038	-5.675	2.657	1.00 18.97
	ATOM	1656 1657	CD2 PHI		26.380	-7.226	1.917	1.00 19.90
50	ATOM	1658	CE1 PH		28.519	-5.558	1.343	1.00 20.30
50	ATOM ATOM	1659	CE2 PHI		26.857	-7.113	0.597	1.00 20.70
		1660	CZ PHI		27.926	-6.281	0.310	1.00 18.82
	ATOM	1661	C PHI		28.689	-6.871	5.403	1.00 17.76
	ATOM	1662	O PH		29.687	-7.412	4.920	1.00 17.95
55	ATOM	1663	N TH		28.741	-5.732	6.086	1.00 17.85
J	ATOM	1664	CA TH		30.002	-5.024	6.215	1.00 17.77
	ATOM	1665	CB TH		29.855	-3.641	6.915	1.00 18.24
	ATOM	1666	OG1 TH		30.954	-2.808	6.525	1.00 19.13
	MOTA MOTA	1667	CG2 TH		29.868	-3.765	8.444	1.00 17.92
60		1668	C TH		31.040	-5.884	6.900	1.00 17.52
UU	MOTA MOTA	1669			32.208	-5.849	6.514	1.00 16.51
		1670	N PH		30.634	-6.610	7.943	1.00 18.06
	MOTA	10,0	f4 F 17	_		-		

	ATOM ATOM	1671 1672		PHE PHE	878 878	31.559 30.863	-7.501 -8.201	8.651 9.805	1.00 19.20 1.00 19.53
	MOTA	1673	_	PHE	878	31.731	-9.220	10.484	1.00 20.60
	ATOM	1674	CD1		878	32.681	-8.829	11.414	1.00.19.88
5	ATOM	1675	CD2		878	31.623	-10.575	10.150	1.00 20.59
J	ATOM	1676	CE1		878	33.518	-9.774	12.008	1.00 22.10
		1677	CE2		878	32.454	-11.532	10.733	1.00 20.21
	ATOM	1678		PHE	878	33.403	-11.138	11.660	1.00 20.82
	MOTA	1679		PHE	878	32.176	-8.567	7.725	1.00 18.91
10	MOTA	1680	-	PHE	878	33.400	-8.724	7.670	1.00 17.63
10	ATOM			ASP	879	31.326	-9.268	6.973	1.00 19.57
	ATOM	1681 1682	-	ASP	879	31.800	-10.301	6.054	1.00 20.02
	ATOM		_	ASP	879	30.622	-10.972	5.342	1.00 20.24
	ATOM	1683		ASP	879	29.693	-11.724	6.307	1.00 22.04
4-	ATOM	1684	OD1		879	30.122	-12.072	7.443	1.00 23.16
15	ATOM	1685	OD2		879	28.520	-11.968	5.937	1.00 21.98
	MOTA	1686		ASP	879	32.723	-9.654	5.044	1.00 20.35
	ATOM	1687	-		879	33.802	-10.171	4.737	1.00 20.51
	MOTA	1688		ASP	880	32.342	-8.472	4.580	1.00 20.77
~~	MOTA	1689		LEU	880	33.149	-7.775	3.596	1.00 20.33
20	MOTA	1690		LEU	880	32.484	-6.471	3.180	1.00 20.23
	MOTA	1691	CB	LEU		33.089	-5.838	1.939	1.00 18.50
	MOTA	1692	CG	LEU	880	33.310	-6.886	0.855	1.00 19.38
	MOTA	1693	CD1		880		-4.762	1.477	1.00 18.07
	ATOM	1694	CD2		880	32.159 34.529	-7.496	4.136	1.00 20.40
25	ATOM	1695	С	LEU	880		-7.723	3.453	1.00 21.41
	MOTA	1696	0	LEU	880	35.513	-7.040	5.376	1.00 20.90
	MOTA	1697	N	LEU	881	34.602		6.011	1.00 20.84
	ATOM	1698	CA	LEU	881	35.882		7.364	1.00 19.23
	MOTA	1699	СВ	LEU	881	35.651		8.031	1.00 19.26
30	MOTA	1700	CG	LEU	881	36.989		7.350	1.00 19.67
	MOTA	1701		LEU	881	37.662		9.500	1.00 18.92
	MOTA	1702	CD2	LEU	881	36.810		6.188	1.00 21.55
	ATOM	1703	С	LEU	881	36.818		6.107	1.00 21.03
	ATOM	1704	0	LEU	881	38.055		6.492	1.00 22.39
35	ATOM	1705	N	ILE	882	36.230			1.00 23.63
	MOTA	1706	CA	ILE	882	37.013	-10.265	6.671	1.00 23.00
	ATOM	1707	CB	ILE	882	36.136	-11.390	7.248	1.00 23.00
	MOTA	1708	CG2		882	36.855	-12.729	7.185	1.00 22.73
	ATOM	1709	CG1	ILE	882	35.749	-11.006	8.675	1.00 22.94
40	ATOM	1710	CD1	ILE	882	36.922	-10.412	9.491	1.00 22.34
	ATOM	1711	С	ILE	882	37.668	-10.643	5.340	1.00 24.48
	ATOM	1712	0	ILE	882	38.859	-10.953	5.290	1.00 24.23
	ATOM	1713	N	LYS	883		-10.541	4.256	1.00 23.73
	ATOM	1714	CA	LYS	883	37.441	-10.868	2.945	1.00 28.23
45	MOTA	1715	CB	LYS	883	36.492	-11.820	2.211	1.00 27.47
	ATOM	1716	CG	LYS	883	35.140	-11.240	1.932	1.00 27.17
	ATOM	1717	CD	LYS	883	34.293	3 -12.163	1.109	1.00 27.60
	ATOM	1718	CE	LYS	883	32.92€	5 -11.544	0.899	1.00 28.94
	ATOM	1719	NZ	LYS	883		5 -12.319	-0.003	1.00 29.99
50	ATOM	1720	С	LYS	883	37.749		2.061	1.00 30.08
	MOTA	1721	0	LYS	883	37.823		0.841	1.00 30.81
	ATOM	1722	N	SER	884	37.976		2.672	1.00 32.24
	ATOM	1723	CA	SER	884	38.268		1.938	1.00 33.66
	ATOM	1724	СВ	SER	884	38.440		2.921	1.00 32.96
55	ATOM	1725	OG	SER	884	39.460	6 -6.384	3.856	1.00 32.02
-	ATOM	1726	C	SER	884	39.500	7.349	1.042	1.00 35.48
	ATOM	1727	ō	SER	884	39.49	1 -6.867	-0.087	1.00 35.08
	MOTA	1728	N	HIS	885	40.55	7 -7.969	1.556	1.00 38.15
	ATOM	1729	CA	HIS	885	41.81		0.824	1.00 40.84
60	ATOM	1730	CB	HIS	885	42.88		1.789	1.00 43.70
UU	ATOM	1731	CG	HIS	885	44.03		1.124	1.00 47.44
	ATOM	1732		HIS	885	44.24	0 -10.707	0.860	1.00 49.14
	WI OW	2,72							

	ATOM ATOM	1733 1734	ND1 CE1	HIS	885 885	45.172 46.034	-8.737 -9.615	0.704 0.217 0.300	1.00 49.20 1.00 49.74 1.00 50.17
	MOTA	1735	NE2		885	45.493		-0.432	1.00 41.12
	MOTA	1736	_	HIS	885	41.682	-9.017 -9.010	-1.288	1.00 41.51
5	ATOM	1737	-	HIS	885	42.563	-9.010 -9.762	-0.544	1.00 41.14
	MOTA	1738	-	MET	886	40.586		-1.686	1.00 41.17
	MOTA	1739		MET	886	40.372	-10.033	-1.212	1.00 43.08
	ATOM	1740		MET	886	39.859	12 060	-0.584	1.00 45.59
	MOTA	1741		MET	886	40.928	14 173	0.457	1.00 50.78
10	ATOM	1742		MET	886	40.175	14.113	-0.725	1.00 48.51
	ATOM	1743		MET	886	39.069	10 074	-2.761	1.00 40.68
	MOTA	1744		MET	886	39.455 39.535	-10.074	-3.923	1.00 41.66
	MOTA	1745		MET	886	39.535	-9.193	-2.370	1.00 39.25
	MOTA	1746		VAL	887	38.542	-8.565	-3.333	1.00 37.55
15	ATOM	1747		VAL	887	36.187	-8.459	-2.802	1.00 37.19
	ATOM	1748	-	VAL	887	35.526	-9.828	-2.756	1.00 37.49
	ATOM	1749		VAL	887	36.175	-7.817	-1.429	1.00 36.99
	ATOM	1750	CG2		887	38.145	-7.168	-3.702	1.00 37.08
	ATOM	1751	C	VAL	887	37.484	-6.444	-4.442	1.00 37.26
20	MOTA	1752	0	VAL	887	39.320	-6.809	-3.188	1.00 35.90
	ATOM	1753	N	SER	888	39.955	-5.515	-3.437	1.00 35.05
	ATOM	1754	CA	SER	888	40.231	-5.342	-4.929	1.00 35.29
	MOTA	1755	СВ	SER	888	41.335	-6.133	-5.326	1.00 36.74
	MOTA	1756	OG	SER	888	39.216	-4.290	-2.898	1.00 34.27
25	MOTA	1757	С	SER	888 888	39.402	-3.179	-3.396	1.00 34.78
	MOTA	1758	0	SER	889	38.391	-4.485	-1.875	1.00 32.78
	MOTA	1759	N	VAL VAL	889	37.636	-3.386	-1.283	1.00 31.50
	MOTA	1760	CA	VAL	889	36.244	-3.857	-0.772	1.00 30.79
20	ATOM	1761	CB CG1		889	35.509	-2.729	-0.055	1.00 30.12
30	ATOM	1762	CG2		889	35.410	-4.364	-1.903	1.00 30.08
	ATOM	1763 1764	C	VAL	889	38.410	-3.002	-0.064	1.00 31.36
	ATOM	1765	0	VAL	889	38.855	-3.895	0.648	1.00 32.20
	ATOM ATOM	1766	N	ASP	890	38.692	-1.724	0.156	1.00 31.10
35	ATOM	1767	CA	ASP	890	39.364	-1.428	1.414	1.00 30.80
33	ATOM	1768	СВ	ASP	890	40.849	-1.093	1.296	1.00 33.89
	ATOM	1769	CG	ASP	890	41.720	-1.949	2.261	1.00 35.96
	ATOM	1770		ASP	890	41.248	-2.314	3.373	1.00 35.86
	ATOM	1771		ASP	890	42.882	-2.260	1.901	1.00 37.33
40	ATOM	1772	C	ASP	890	38.629	-0.493	2.326	1.00 28.51
1,0	ATOM	1773	ō	ASP	890	37.889	0.379	1.889	1.00 27.96
	ATOM	1774	N	PHE	891	38.761	-0.782	3.610	1.00 26.20
	ATOM	1775	CA	PHE	891	38.096	-0.045	4.661	1.00 24.15
	ATOM	1776	СВ	PHE	891	37.595	-1.027	5.732	1.00 20.51
45	ATOM	1777	CG	PHE	891	36.501	-1.937	5.259	1.00 16.33
	ATOM	1778	CD1		891	36.741	-2.892	4.288	1.00 15.42
	ATOM	1779	CD2	PHE	891	35.230	-1.826	5.773	1.00 14.37
	MOTA	1780		PHE	891	35.720		3.832	1.00 13.60
	ATOM	1781	CE2	PHE	891	34.220		5.335	1.00 14.04 1.00 13.43
50	ATOM	1782	CZ	PHE	891	34.467	-3.607	4.353	1.00 13.43
	MOTA	1783	С	PHE	891	39.036		5.305	1.00 24.38
	ATOM	1784	0	PHE	891	40.150		5.695	1.00 23.93
	MOTA	1785	N	PRO	892	38.603		5.437	1.00 23.93
	MOTA	1786	CD	PRO	892	37.376		4.909	1.00 22.44
55	MOTA	1787	CA	PRO	892	39.441		6.060	1.00 23.41
	ATOM	1788	СВ	PRO	892	38.582		5.940	1.00 23.21
	ATOM	1789	CG	PRO	892	37.796		4.748	1.00 23.13
	MOTA	1790	C	PRO	892	39.655		7.520 8.078	1.00 23.31
	MOTA	1791	0	PRO	892	38.887		8.076	1.00 24.55
60	ATOM	1792	N	GLU	893	40.619			1.00 24.55
	MOTA	1793	CA	GLU	893	40.984		9.555	1.00 28.90
	MOTA	1794	CB	GLU	893	41.885	4.385	10.072	1.00 20.90

- 67 -

								11 500	1.00 33.98
	ATOM	1795		GLU	893	42.329	4.192	11.509	1.00 33.38
	ATOM	1796	CD	GLU	893	42.441	5.498	12.280	1.00 37.50
	ATOM	1797	OE1		893	43.356	6.292	11.955	1.00 39.34
	ATOM	1798	OE2		893	41.624	5.729	13.216	1.00 26.24
5	MOTA	1799	С	GLU	893	39.859	3.054		1.00 20.24
_	ATOM	1800	0	GLU	893	39.750	1.992	11.180	1.00 27.23
	ATOM	1801	N	MET	894	39.052	4.078	10.782	
	ATOM	1802	CA	MET	894	37.968	3.974	11.744	1.00 26.28
	ATOM	1803	CB	MET	894	37.313	5.337	11.954	1.00 28.30
10	ATOM	1804	CG	MET	894	38.256	6.389	12.509	1.00 32.56
	ATOM	1805	SD	MET	894	38.847	5.925	14.144	1.00 38.01
	ATOM	1806	CE	MET	894	37.260	5.830	15.037	1.00 35.95
	MOTA	1807	Ċ	MET	894	36.927	2.918	11.393	1.00 24.69
	ATOM	1808	Ō	MET	894	36.337	2.311	12.287	1.00 24.64
15	ATOM	1809	N	MET	895	36.662	2.743	10.102	1.00 23.64
15	ATOM	1810	CA	MET	895	35.705	1.738	9.645	1.00 22.83
	ATOM	1811	CB	MET	895	35.487	1.824	8.135	1.00 21.32
	ATOM	1812	CG	MET	895	34.669	3.006	7.693	1.00 21.17
		1813	SD	MET	895	33.044	3.064	8.432	1.00 20.56
20	ATOM	1814	CE	MET	895	32.088	2.305	7.205	1.00 22.81
20	ATOM		C	MET	895	36.171	0.328	10.032	1.00 22.26
	MOTA	1815	o	MET	895	35.469	-0.383	10.714	1.00 22.26
	ATOM	1816		ALA	896	37.362	-0.066	9.616	1.00 22.06
	ATOM	1817	N	ALA	896	37.867	-1.378	9.953	1.00 22.36
25	ATOM	1818	CA	ALA	896	39.243	-1.588	9.350	1.00 22.56
25	MOTA	1819	CB	ALA	896	37.914	-1.581	11.460	1.00 22.96
	MOTA	1820	C		896	37.520	-2.630	11.947	1.00 23.87
	MOTA	1821	0	ALA	897	38.377	-0.586	12.212	1.00 23.92
	MOTA	1822	N	GLU	897	38.455	-0.724	13.666	1.00 24.05
00	MOTA	1823	CA	GLU	897	39.128	0.502	14.313	1.00 25.98
30	MOTA	1824	CB	GLU	897	39.288	0.390	15.841	1.00 27.50
	ATOM	1825	CG	GLU	897	39.150	1.718	16.555	1.00 27.88
	MOTA	1826	CD	GLU		40.150	2.453	16.674	1.00 29.49
	MOTA	1827		GLU	897	38.036	2.018	17.013	1.00 29.22
	MOTA	1828		GLU	897	37.076	-0.901	14.276	1.00 22.80
35	MOTA	1829	C	GLU	897	36.873	-1.774	15.094	1.00 22.95
	ATOM	1830	0	GLU	897	36.129	-0.071	13.884	1.00 22.19
	MOTA	1831	N	ILE	898	34.801	-0.178	14.459	1.00 21.88
	A TOM	1832	CA	ILE	898	33.940	1.077	14.196	1.00 21.85
40	ATOM	1833	CB	ILE	898	32.478	0.836	14.587	1.00 22.66
40	MOTA	1834	CG2		898	34.438	2.233	15.043	1.00 22.82
	ATOM	1835	CG1		898	33.490	3.390	15.019	1.00 23.11
	ATOM	1836		ILE	898	34.080	-1.398	13.968	1.00 20.49
	ATOM	1837	C	ILE	898	33.228	-1.917	14.656	1.00 21.90
4 50	ATOM	1838	0	ILE	898	34.410	-1.860	12.781	1.00 19.59
45	MOTA	1839	N	ILE	899	33.747	-3.027	12.248	1.00 19.42
	ATOM	1840	CA	ILE	899		-3.014	10.706	1.00 19.12
	ATOM	1841	CB	ILE	899	33.758 33.095	-4.285	10.157	1.00 18.71
	MOTA	1842		ILE	899	32.987	-1.786	10.187	1.00 18.56
	ATOM	1843		ILE	899	33.054	-1.588	8.683	1.00 15.05
50	ATOM	1844		ILE	899		-4.338	12.832	1.00 19.02
	ATOM	1845	C	ILE	899	34.305 33.571	-5.300	12.982	1.00 19.98
	ATOM	1846	0	ILE	899			13.233	1.00 19.03
	MOTA	1847	N	SER	900	35.565	-4.344	13.822	1.00 19.74
	MOTA	1848	CA	SER	900	36.177	-5.518		1.00 19.62
55	ATOM	1849	CB	SER	900	37.614	-5.631 -4.478	13.340 13.683	1.00 13.02
	ATOM	1850	OG	SER	900	38.368			1.00 20.48
	MOTA	1851	С	SER	900	36.135	-5.502	15.355	1.00 20.45
	MOTA	1852	0	SER	900	36.352	-6.521	16.010	1.00 21.19
	ATOM	1853		VAL	901	35.866	-4.346	15.939	
60	ATOM	1854	CA	VAL	901	35.808	-4.235	17.396	
	MOTA	1855		VAL	901	36.705	-3.074	17.927	1.00 20.22 1.00 20.37
	MOTA	1856	CG1	. VAL	901	36.407	-2.785	19.382	1.00 20.37

1.00 18.81 38.168 -3.436 17.782 1857 CG2 VAL 901 ATOM 1.00 20.42 -4.087 17.935 34.397 VAL 901 1858 С ATOM 18.841 1.00 21.68 33.999 -4.823 901 VAL **ATOM** 1859 0 1.00 19.34 17.350 -3.187 GLN 902 33.614 N 1860 MOTA 1.00 17.55 -2.957 17.828 32.264 902 5 1861 CA GLN MOTA 1.00 19.32 -1.476 17.735 902 31.929 GLN CB 1862 MOTA 32.952 -0.579 18.371 1.00 20.82 1863 GLN 902 CG MOTA 1.00 23.15 19.861 33.089 -0.776 GLN 902 1864 CD ATOM -1.336 20.528 1.00 23.22 OE1 GLN 902 32.211 **ATOM** 1865 1.00 25.36 -0.288 20.404 34.197 NE2 GLN 902 10 1866 MOTA 1.00 16.24 -3.766 -4.326 17.207 902 31.145 GLN 1867 С MOTA 17.938 1.00 15.40 30.337 902 1868 0 GLN MOTA 1.00 15.79 15.872 -3.810 31.075 903 1869 N VAL MOTA 1.00 15.22 -4.552 15.144 30.025 1870 CA VAL 903 MOTA 13.594 1.00 14.30 -4.461 1871 CB VAL 903 30.195 15 MOTA 1.00 13.20 -5.314 12.883 29.159 1872 CG1 VAL 903 MOTA 1.00 14.90 13.147 -3.005 1873 CG2 VAL 30.012 903 **ATOM** 1.00 14.74 -6.010 15.605 29.860 1874 С VAL 903 ATOM 1.00 14.48 15.693 -6.489 903 28.732 VAL 1875 0 MOTA 1.00 14.65 15.893 -6.729 20 PRO 904 30.976 1876 N MOTA 1.00 13.72 32.377 -6.425 15.571 904 1877 CD PRO MOTA 16.356 1.00 15.80 30.884 -8.122 PRO 904 1878 CA MOTA 32.350 -8.481 16.602 1.00 15.45 904 1879 CB PRO MOTA 1.00 14.60 -7.830 15.512 33.014 904 MOTA 1880 CG PRO 1.00 16.77 17.632 -8.206 30.053 904 25 1881 С PRO **ATOM** 17.713 1.00 18.38 29.151 -9.039 PRO 904 1882 0 MOTA 1.00 17.00 18.589 30.286 -7.295 905 1883 N LYS ATOM 1.00 16.34 -7.292 19.830 29.525 CA LYS 905 1884 MOTA 29.866 -6.085 20.668 1.00 18.17 СВ LYS 905 1885 MOTA 1.00 19.96 31.293 -6.007 21.132 30 905 CG LYS MOTA 1886 1.00 22.09 1.00 23.59 31.464 -4.733 21.947 LYS 905 1887 CD MOTA -4.429 32.911 22.276 1888 CE 905 ATOM LYS 1.00 27.13 23.083 -3.173 905 33.003 1889 NZ LYS **ATOM** 28.039 -7.273 19.546 1.00 15.58 905 1890 С LYS MOTA 20.297 1.00 15.43 27.251 -7.817 35 905 1891 0 LYS MOTA 1.00 15.71 18.466 -6.620 27.647 1892 N ILE 906 MOTA 1.00 15.74 26.239 -6.554 18.086 1893 CA ILE 906 MOTA 17.030 1.00 14.76 25.991 CB ILE 906 -5.423 1894 MOTA 16.565 1.00 13.47 24.527 -5.427 1895 CG2 ILE 906 MOTA 1.00 13.40 -4.051 17.611 26.358 40 CG1 ILE 906 1896 MOTA -2.876 16.686 1.00 13.18 26.021 CD1 ILE 906 1897 MOTA 1.00 17.05 -7.899 17.478 25.800 1898 ILE 906 MOTA С 1.00 16.35 17.834 24.759 -8.471ILE 906 ATOM 1899 0 1.00 17.95 26.609 16.539 -8.385 907 1900 N LEU MOTA LEU 1.00 17.64 26.348 -9.631 15.827 45 ATOM 1901 CA 907 1.00 15.32 14.659 907 27.331 -9.787 LEU 1902 CB **ATOM** 1.00 14.36 1.00 12.28 -8.653 13.632 27.338 ATOM 1903 CG LEU 907 -8.885 12.557 28.382 907 CD1 LEU MOTA 1904 1.00 13.60 25.947 -8.531 13.029 1905 907 CD2 LEU MOTA 26.386 -10.858 16.747 1.00 18.93 50 1906 С LEU 907 MOTA 16.437 1.00 20.36 25.756 -11.860 1907 LEU 907 MOTA 0 27.097 -10.805 17.868 1.00 19.02 SER 908 1908 N MOTA 1.00 19.60 908 27.103 -11.947 18.772 CA SER ATOM 1909 1.00 19.21 19.407 28.469 -12.099 908 1910 CB SER MOTA 28.811 -10.944 20.135 1.00 19.20 55 OG SER-908 MOTA 1911 1.00 20.23 26.027 -11.844 19.867 908 MOTA 1912 С SER 25.946 -12.709 20.752 1.00 20.86 908 1913 0 SER MOTA 19.812 1.00 19.30 25.208 -10.791 ATOM 1914 N GLY 909 1.00 18.22 24.169 -10.603 20.817 GLY 909 1915 CA MOTA 1.00 16.28 24.533 -9.859 22.102 60 MOTA 1916 С GLY 909 -9.712 22.987 1.00 16.09 909 23.711 GLY **ATOM** 1917 0 22.236 1.00 16.37 25.773 -9.422 1918 N LYS 910 **ATOM**

- 69 -

	ATOM	1919	CA	LYS	910	26.166	-8.670	23.411	1.00	17.37
	ATOM	1920		LYS	910	27.665	-8.464	23.403	1.00	
	ATOM	1921	-	LYS	910	28.418	-9.703	23.684	1.00	
	ATOM	1922		LYS	910	29.860	-9.370	23.896	1.00	
5	ATOM	1923		LYS	910	30.577	-10.534	24.482		17.90
•	ATOM	1924		LYS	910	32.055	-10.284	24.502	1.00	
	ATOM	1925		LYS	910	25.472	-7.296	23.532	1.00	
	ATOM	1926	0	LYS	910	25.250	-6.797	24.640	1.00	
	ATOM	1927	N	VAL	911	25.219	-6.641	22.397	1.00	
10	ATOM	1928	CA	VAL	911	24.545	-5.341	22.396	1.00	
	MOTA	1929	CB	VAL	911	25.501	-4.130	22.041	1.00	
	ATOM	1930	CG1	VAL	911	26.928	-4.550	22.019	1.00	
	ATOM	1931	CG2	VAL	911	25.094	-3.412	20.788	1.00	
	ATOM	1932	_	VAL	911	23.379	-5.475	21.458	1.00	
15	ATOM	1933		VAL	911	23.504	-6.015	20.358	-	17.40
	ATOM	1934	N	LYS	912	22.219	-5.032	21.896	1.00	
	ATOM	1935	CA	LYS	912	21.057	-5.210	21.072	1.00	
	ATOM	1936		LYS	912	20.189	-6.325	21.672	1.00	
	ATOM	1937		LYS	912	19.261	-5.889	22.811	1.00	
20	ATOM	1938		LYS	912	19.998	-5.297	24.030 24.370		26.56
	MOTA	1939		LYS	912	19.509	-3.871	24.457		27.08
	ATOM	1940	NZ	LYS	912	18.028 20.262	-3.782 -3.943	20.903		19.72
	ATOM	1941		LYS	912 912	20.202	-2.985	21.651		19.46
25	MOTA	1942	0	LYS	913	19.463	-3.877	19.841		20.13
25	ATOM	1943	N CD	PRO PRO	913	19.437	-4.660	18.599		20.38
	ATOM	1944 1945	CA	PRO	913	18.693	-2.665	19.683		20.09
	ATOM ATOM	1945	CB	PRO	913	18.174	-2.780	18.259		20.97
	ATOM	1947	CG	PRO	913	18.127	-4.240	18.017	1.00	21.02
30	ATOM	1948	C	PRO	913	17.555	-2.665	20.658	1.00	20.77
30	ATOM	1949	Ö	PRO	913	17.108	-3.719	21.120		20.82
	ATOM	1950	N	ILE	914	17.094	-1.460	20.972		20.62
	ATOM	1951	CA	ILE	914	15.965	-1.262	21.846		18.90
	ATOM	1952	CB	ILE	914	16.119	0.012	22.659		17.34
35	MOTA	1953	CG2	ILE	914	14.953	0.149	23.589		15.42
	MOTA	1954	CG1	ILE	914	17.445	-0.022	23.418		16.40
	MOTA	1955	CD1		914	17.794	1.261	24.098		15.82
	ATOM	1956	C	ILE	914	14.823	-1.093	20.858		19.73 20.71
40	MOTA	1957	0	ILE	914	14.946	-0.313	19.909 20.995		19.80
40	ATOM	1958	Ŋ	TYR	915	13.774	-1.908	20.105		19.03
	ATOM	1959	CA	TYR	915	12.622 12.194	-1.823 -3.193	19.566		18.88
	ATOM	1960	CB	TYR	915 915	13.072	-3.773	18.505		18.76
	ATOM	1961 1962	CG CD1	TYR TYR	915	14.096	-4.640	18.832		19.63
45	ATOM ATOM	1962	CEI	TYR	915	14.923	-5.170	17.853		21.76
45	ATOM	1964		TYR	915	12.881	-3.457	17.173		19.64
	ATOM	1965		TYR	915	13.698	-3.989	16.177		20.92
	ATOM	1966	CZ	TYR	915	14.721	-4.839	16.531	1.00	21.98
	ATOM	1967	OH	TYR	915	15.592	-5.314	15.577		25.00
50	ATOM	1968	Ċ	TYR	915	11.468	-1.273	20.882	1.00	18.68
	ATOM	1969	0	TYR	915	11.340	-1.494	22.080		18.72
	ATOM	1970	N	PHE	916	10.621	-0.543	20.194		18.68
	ATOM	1971	CA	PHE	916	9.456	-0.019	20.836		19.66
	ATOM	1972	CB	PHE	916	8.898	1.145	20.042		17.07
55	MOTA	1973	CG	PHE	916	9.567	2.411	20.335		14.89
	ATOM	1974		PHE	916	9.377	3.034	21.561		16.16
	MOTA	1975		PHE	916	10.393	2.992	19.407		16.16
	ATOM	1976		PHE	916	10.010	4.225	21.854		14.78
00	ATOM	1977		PHE	916	11.028	4.183	19.689		16.01 15.28
60	MOTA	1978	CZ	PHE	916	10.836	4.800	20.916		21.60
	ATOM	1979	C	PHE	916	8.451 7.862	-1.148 -1.434	21.910		22.04
	MOTA	1980	0	PHE	916	7.002	-1.404	21.910	1.00	22.04

- 70 **-**

						- 70 -			
		1001	M	HIS	917	8.300	-1.804	19.718	1.00 22.86
	ATOM	1981	N	HIS	917	7.354	-2.899	19.543	1.00 24.45
	ATOM	1982 1983	CA CB	HIS	917	6.549	-2.696	18.258	1.00 23.60
	ATOM	1983	CG	HIS	917	5.921	-1.347	18.153	1.00 21.90
5	MOTA	1985	CD2		917	6.440	-0.153	17.787	1.00 21.97
5	ATOM	1985	ND1		917	4.614	-1.109	18.504	1.00 21.41
	ATOM	1987	CE1		917	4.350	0.178	18.360	1.00 22.05
	MOTA	1988	NE2		917	5.446	0.783	17.929	1.00 21.26
	ATOM	1989	C	HIS	917	8.077	-4.225	19.477	1.00 25.83
10	ATOM	1990	OT1		917	9.185	-4.257	18.908	1.00 27.53
10	ATOM	1991	OT2		917	7.525	-5.225	19.988	1.00 29.26
	MOTA	1992	Cl	DHT	920	27.685	5.199	4.565	1.00 13.59
	ATOM	1993	C2	DHT	920	26.814	6.485	4.636	1.00 12.55
	ATOM ATOM	1994	C3	DHT	920	25.484	6.280	3.944	1.00 12.58
15		1995	03	DHT	920	24.904	7.249	3.448	1.00 11.99
15	ATOM	1996	C4	DHT	920	24.887	4.964	3.857	1.00 13.18
	ATOM	1997	C5	DHT	920	25.464	3.903	4.357	1.00 13.98
	ATOM	1998	C6	DHT	920	24.727	2.560	4.241	1.00 14.79
	ATOM	1999	C7	DHT	920	25.613	1.454	3.609	1.00 14.79
20	ATOM ATOM	2000	C8	DHT	920	26.955	1.303	4.359	1.00 15.54
20		2001	C9	DHT	920	27.708	2.656	4.279	1.00 14.37
	ATOM ATOM	2001		DHT	920	26.943	3.876	4.949	1.00 14.56
	ATOM	2002		DHT	920	29.161	2.525	4.830	1.00 14.73
	ATOM	2003		DHT	920	29.951	1.344	4.192	1.00 14.11
25	ATOM	2005		DHT	920	29.194	-0.010	4.339	1.00 15.34
23	ATOM	2006		DHT	920	27.784	0.212	3.680	1.00 15.67
	ATOM	2007		DHT	920	27.178	-1.232	3.647	1.00 15.64
	ATOM	2007		DHT	920	28.435	-2.118	3.310	1.00 15.37
	ATOM	2009	C17		920	29.679	-1.189	3.426	1.00 14.87
30	ATOM	2010	C18		920	29.107	-0.450	5.847	1.00 14.67
30	ATOM	2011		DHT	920	26.781	3.770	6.524	1.00 13.94
	ATOM	2012		DHT	920	30.910	-1.918	3.981	1.00 16.20
	ATOM	2012	0	нон	921	16.187	17.463	26.217	1.00 26.98
	ATOM	2013	ŏ	нон	922	19.878	17.183	14.290	1.00 13.49
35	ATOM	2015	ŏ	нон	923	18.473	14.908	14.407	1.00 6.52
33	ATOM	2016	ŏ	нон	924	29.144	18.703	11.673	1.00 37.40
	MOTA	2017	Ö	нон	925	27.076	19.321	12.893	1.00 18.76
	ATOM	2018	Ö	нон	926	23.789	12.817	9.649	1.00 33.78
	ATOM	2019	ŏ	нон	927	25.400	14.577	5.432	1.00 19.79
40	ATOM	2020	Ö	нон	928	23.015	12.473	12.245	1.00 14.03
70	ATOM	2021	Ö	нон	929	25.209	14.445	2.442	1.00 19.95
	ATOM	2022	ŏ	нон	930	34.235	16.490	0.235	1.00 41.09
	ATOM	2023	Ö	нон	931	31.687	16.720	1.143	1.00 22.88
	ATOM	2024	Ö	НОН	932	26.451	12.094	2.237	1.00 8.25
45	ATOM	2025	Ö	нон	933	11.606	-0.191	-7.963	1.00 46.13
40	ATOM	2026	Ö	нон	934	13.798	0.894	17.657	1.00 15.30
	ATOM	2027	ŏ	нон	935	15.475	2.114	16.386	1.00 12.01
	ATOM	2028	ō	НОН	936	8.514	-2.110	12.665	1.00 21.79
	ATOM	2029	ŏ	НОН	937	23.094	0.783	14.094	1.00 10.94
50	ATOM	2030	ŏ	нон	938	23.758	-13.306	5.541	1.00 40.43
-	ATOM	2031	ō	HOH	939	22.933	-11.472	10.611	1.00 31.03
	ATOM	2032	ō	нон	940		-11.914	5.354	1.00 51.71
	ATOM	2033	Ō	нон	941	10.995	-6.843	16.294	1.00 29.91
	ATOM	2034	ō	нон	942	23.088	7.362	-10.811	1.00 30.10
55	ATOM	2035	ō	нон	943	26.671	9.139	-8.686	1.00 38.12
-	ATOM	2036	Ö	нон	946	35.410	-8.438	-7.084	1.00 42.68
	ATOM	2037	Ö	нон	947	10.842	24.253	21.391	1.00 43.09
	ATOM	2038	Ö	нон	948	15.704	21.095	27.707	1.00 54.35
	ATOM	2039	ŏ	НОН		1.671	16.382	5.866	1.00 24.50
60	ATOM	2040	Ö	нон	950	8.009	20.744	8.572	1.00 36.16
55	ATOM	2041	Ö	нон	951	29.490		30.961	1.00 56.26
	ATOM	2042	Ö	нон	952	23.829	-12.134	25.596	1.00 39.41
	0.1	-0.4	-		–				

- 71 -

	B TOM	2043	0	нон	953	42.457	5.523	7.132	1.00 28.93
	ATOM ATOM	2043	ŏ	нон	954	41.318	2.323	2.406	1.00 38.22
	ATOM	2045	Ö	нон	955	25.857	7.152	30.722	1.00 18.97
	ATOM -	2045	ŏ	нон	956	18.191	16.505	27.701	1.00 29.01
5	ATOM	2047	ŏ	нон	957	14.018	2.408	20.246	1.00 18.75
3	ATOM	2048	ŏ	нон	958	14.651	4.006	17.873	1.00 21.70
	ATOM	2049	ŏ	нон	959	5.786	11.770	25.499	1.00 35.58
	ATOM	2050	ŏ	нон	960	2.694	19.497	9.834	1.00 25.35
	ATOM	2051	ŏ	нон	961	0.334	6.151	20.624	1.00 27.66
10	ATOM	2052	ŏ	нон	962	-2.677	2.639	17.420	1.00 35.67
10	ATOM	2053	Ö	нон	963	0.868	8.543	25.138	1.00 43.49
	ATOM	2054	ŏ	нон	964	-8.085	7.667	23.358	1.00 40.82
	ATOM	2055	ŏ	нон	965	6.749	1.200	9.766	1.00 24.57
	ATOM	2056	ŏ	нон	966	-0.636	8.734	6.585	1.00 40.09
15	ATOM	2057	.o	нон	967	22.487	-4.734	14.335	1.00 28.04
13	ATOM	2058	ŏ	нон	968	18.615	17.070	7.167	1.00 23.83
	ATOM	2059	ŏ	нон	969	10.049	19.612	2.716	1.00 28.02
	ATOM	2060	ŏ	нон	970	26.829	21.030	22.736	1.00 25.40
	ATOM	2061	ŏ	нон	971	23.684	9.361	5.898	1.00 24.06
20	ATOM	2062	ŏ	нон	972	23.124	15.837	0.189	1.00 29.07
20	ATOM	2063	ŏ	нон	973	34.079	8.287	19.446	1.00 34.35
	ATOM	2064	ō	НОН	974	37.522	2.898	1.092	1.00 22.39
	ATOM	2065	ŏ	нон	975	21.838	14.392	5.445	1.00 20.42
	ATOM	2066	ō	НОН	976	16.106	-10.859	0.784	1.00 48.09
25	ATOM	2067	ō	нон	977	11.295	27.231	20.742	1.00 24.50
20	ATOM	2068	ō	нон	978	21.562	-7.923	18.100	1.00 34.94
	ATOM	2069	ō	НОН	979	41.647	-2.962	5.907	1.00 41.33
	ATOM	2070	ō	нон	981	12.897	22.682	24.938	1.00 44.10
	ATOM	2071	ō	нон	982	33.709	13.619	-5.931	1.00 26.84
30	ATOM	2072	ō	нон	983	0.019	-4.834	14.164	1.00 36.91
00	ATOM	2073	0	нон	984	39.563	3.365	-2.334	1.00 36.56
	ATOM	2074	ō	нон	985	16.244	18.091	7.952	1.00 25.52
	ATOM	2075	Ô	нон	986	13.038	13.790	19.688	1.00 21.93
	ATOM	2076	0	нон	987	22.095	3.621	21.834	1.00 19.27
35	ATOM	2077	0	нон	988	2.516	2.235	3.905	1.00 30.91
	ATOM	2078	0	нон	989	2.950	1.064	1.716	1.00 31.16
	ATOM	2079	0	нон	990	5.186	-1.082	5.207	1.00 26.66
	MOTA	2080	0	HOH	991	-0.310	15.229	24.529	1.00 28.42
	ATOM	2081	0	нон	992	-6.181	9.210	18.935	1.00 37.84
40	ATOM	2082	0	нон	993	17.508	26.662	14.814	1.00 30.32
	ATOM	2083	0	HOH	994	17.401	31.211	13.007	1.00 30.57
	ATOM	2084	0	нон	995	21.268	22.961	10.009	1.00 33.92
	ATOM	2085	0	нон	996	26.335		6.567	1.00 36.58
	ATOM	2086	0	HOH	997	33.730	15.077	4.345	1.00 24.42
45	MOTA	2087	0	НОН	998	28.576	2.290	-15.305	1.00 30.54
	MOTA	2088	0	нон	999	33.926		-13.979	1.00 48.01
	MOTA	2089	0		1000	31.878		-10.283	1.00 36.45
	ATOM	2090	0	нон	1021	30.673		18.256	1.00 34.10
	MOTA	2091	0	нон	1022	35.035		15.084	1.00 37.70
50	ATOM	2092	0	нон	1023	32.791	17.836	19.423	1.00 33.34
	MOTA	2093	0	НОН	1024		-14.097	7.907	1.00 30.71
	MOTA	2094	0	нон	1025	29.778		-0.255	1.00 24.00
	ATOM	2095	0	нон	1026	25.904		24.176	
	MOTA	2096	0	нон	1027		-13.092	7.455	1.00 20.84 1.00 32.80
55	ATOM	2097	0	НОН	1028	31.787		28.988	
	ATOM	2098	0	нон	1029	27.029		13.994	1.00 20.01 1.00 31.66
	MOTA	2099	0	нон	1030	20.499		16.384	1.00 31.66
	ATOM	2100	0	нон	1031	10.991		-1.085	1.00 30.58
00	MOTA	2101	0	нон	1032	7.904		-5.081	1.00 41.35
60	MOTA	2102	0	нон	1033	12.570	3.398	-10.099 -10.962	1.00 28.95
	ATOM	2103	0	нон	1034	17.128			1.00 22.24
	MOTA	2104	0	нон	1035	17.056	1.547	-4.553	1.00 20.35

- 72 -6.595 1.00 25.24 11.020 0.892 HOH 1036 2105 0 MOTA 1.00 27.44 -0.025 1037 3.092 -1.135 2106 0 HOH ATOM 5.653 1.00 34.54 24.006 35.765 HOH 1038 2107 0 MOTA 27.680 1.00 26.47 29.738 нон 1039 2108 0 MOTA 1.00 36.26 8.706 22.315 нон 1040 1.507 2109 ATOM 0 1.00 27.77 9.776 10.755 -4.751 2110 0 HOH 1041 **ATOM** 1.00 25.10 1.00 26.08 14.440 20.223 -3.560 нон 1042 2111 0 MOTA 30.147 -9.103 2.467 HOH 1043 0 MOTA 2112 1.00 28.96 28.518 -12.565 39.044 7.751 -5.152 нон 1044 2113 0 MOTA 17.961 1.00 38.02 1045 HOH 10 2114 0 ATOM 20.994 1.00 37.73 37.030 10.428 1046 НОН 2115 0 MOTA 15.270 1.00 24.79 7.847 -2.227 0 HOH 1047 2116 MOTA 21.522 1.00 40.62 22.567 1.00 30.96 9.958 -5.351 1048

6.839 -6.928

нон

нон 1049

2117

2118 0

MOTA

MOTA

15

- 73 -

We claim:

10

20

- 1. A crystal of an AR-LBD comprising:
 - a) an AR-LBD and an AR-LBD ligand or
 - b) an AR-LBD without an AR-LBD ligand;
- wherein said crystal diffracts to at least 3 angstrom resolution and has a crystal stability within 5% of its unit cell dimensions.
 - 2. The crystal of claim 1 wherein said AR-LBD has at least 200 amino acids.
 - 3. The crystal of claim 1, wherein said AR-LBD is the AR amino acid sequence 672 to 917 of rat AR
 - 4. The crystal of claim 1, wherein said AR-LBD is the AR amino acid sequence 672 to 917 of human AR.
 - 5. The crystal of claim 1 wherein the crystal comprises an AR-LBD and an AR-LBD ligand and the AR-LBD ligand is an agonist or antagonist, a partial agonist or partial antagonist, or a SARMs of the
- 15 antagonist, a partial agonist or partial antagonist, or a SARMs of the AR-LBD.
 - 6. The crystal of claim 5 wherein the agonist is dihydrotestosterone.
 - 7. The crystal of claim 1 having all of the coordinates listed in Table A.
 - 8. The crystal of claim 1 wherein said crystal comprises mammalian AR-LBD protein.
 - 9. The crystal of claim 1 wherein said crystal comprises rat AR-LBD protein.
 - 10. The crystal of claim 1 wherein said AR-LBD ligand has the following unit cell dimensions in angstroms: $a = 56.03 \pm 5\%$, $b = 66.27 \pm 5\%$, $c = 70.38 \pm 5\%$ and an orthorhombic space group P212121.
- A molecule or molecular complex comprising all or any part of the ligand binding site defined by structure coordinates of AR-LBD amino acids V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877 and F878 according to Table A, or a mutant or homologue of said molecule or molecular complex.

PCT/US00/28495

- 74 -

The molecule or molecular complex of claim 11 wherein said 12. mutant or homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said AR-LBD amino acids of not more than 1.5 Angstroms or 30% sequence identity with said AR-LBD amino acids.

5

- A molecule or molecular complex comprising all or any part of 13. the ligand binding site defined by structure coordinates of AR-LBD amino acids N705, Q711, R752, F764 and T877 according to Table A, or a mutant or homologue of said molecule or molecular complex.
- The molecule or molecular complex of claim 13 wherein said 10 mutant or homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said AR-LBD amino acids of not more than 1.5 Angstroms or 30% sequence identity with said AR-LBD amino acids.
- A machine-readable data storage medium comprising a data 15 15. storage material encoded with machine readable data, wherein the data is defined by the structure coordinates of an AR-LBD/AR-LBD ligand or ligand complex according to Table A or a homologue of said complex, wherein said homologue comprises backbone atoms that have a root mean square deviation from the backbone atoms of the 20 complex of not more than 3.0Å
 - The machine-readable data storage medium according to claim 16. 15, wherein said AR-LBD/AR-LBD ligand or ligand complex is homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 2.0 Å.
- A machine-readable data storage medium comprising a data 17. storage material encoded with a first set of machine readable data comprising a Fourier transform of at least a portion of the structural coordinates for an AR-LBD/AR-LBD ligand according to Table A; which, when combined with a second set of machine readable data 30 comprising an X-ray diffraction pattern of a molecule or molecular complex of unknown structure, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, said first 35 set of data and said second set of data.

25

- A binding site in AR-LBD for an AR modulator in which a portion of said ligand is in van der Walls contact or hydrogen bonding contact with any portion or all of residues V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898,
 I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.
- The binding site according to claim 18 wherein the AR-LBD is a homologue or mutant with 25%-95% identity to residues V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.
 - 20. A method of obtaining structural information about a molecule or a molecular complex of unknown structure by using the structure coordinates set forth in Table A, comprising the steps of:
 - a. generating X-ray diffraction data from said crystallized molecule or molecular complex;
 - b. applying at least a portion of the structure coordinates set forth in Table A to said X-ray diffraction pattern to generate a three-dimensional electron density map of at least a portion of the molecule or molecular complex; and
 - c. using all or a portion of the structure coordinates set forth in Table A to generate homology models of AR-LBD or any other nuclear hormone receptor ligand binding domain.
 - 21. A computational method of designing an androgen receptor synthetic ligand comprising:
- a. using a three dimensional model of a crystallized protein comprising an AR-LBD/AR-LBD ligand complex to determine

WO 01/27622

5

15

20

25

30

- at least one interacting amino acid of the AR-LBD that interacts with at least one first chemical moiety of the AR-LBD ligand; and
- b. selecting at least one chemical modification of said first chemical moiety to produce a second chemical moiety with a structure that either decreases or increases an interaction between said interacting amino acid and said second chemical moiety compared to said interaction between said interacting amino acid and said first chemical moiety.
- 10 22. A method for identifying a compound that modulates androgen receptor activity, the method comprising any combination of steps of:
 - a. modeling test compounds that fit spatially into the AR-LBD as defined by structure coordinates according to Table A, or using a three-dimensional structural model of AR-LBD, mutant AR-LBD or AR-LBD homologue or portion thereof;
 - using said structure coordinates or ligand binding site as set forth in claim 18 to identify structural and chemical features;
 - c. employing identified structural or chemical features to design or select compounds as potential AR modulators;
 - d. employing the three-dimensional structural model or the ligand binding site to design or select compounds as potential AR modulators;
 - e. synthesizing the potential AR modulators;
 - f. screening the potential AR modulators in an assay characterized by binding of a test compound to the AR-LBD; and
 - g. modifying or replacing one or more amino acids from AR-LBD selected from the group consisting of V685, L700, L701, S702, S703, L704, N705, E706, L707, G708, E709, Q711, A735, I737, Q738, Y739, S740, W741, M742, G743, L744, M745, V746, F747, A748, M749, G750, R752, Y763, F764, A765, L768, F770, M780, M787, I869, L873, H874, F876, T877, F878, L880, L881, V889, F891, P892, E893, M894, M895, A896, E897, I898, I899, S900, V901, Q902, V903, P904 or I906 of AR-LBD according to Table A.

- 77 -

- 23. The method according to claim 22 wherein the potential AR modulator is from a library of compounds.
- 24. The method according to claim 22 wherein the potential AR modulator is selected from a database.
- 5. 25. The method according to claim 22 wherein the potential AR modulator is designed de novo.
 - 26. The method according to claim 22 wherein the potential AR modulator is designed from a known agonist, partial agonist, antagonist, partial antagonist or SARMs.
- 10 27. The method according to claim 22 wherein the potential AR modulator is an agonist or partial agonist and AR activity is measured by translocation or unwinding or helix 12.
 - 28. The method according to claim 22 wherein the potential AR modulator is an antagonist or partial antagonist and AR activity is measured by translocation or unwinding or helix 12.
 - 29. An AR modulator identified by the method of claim 22.
 - 30. A method for treating prostate cancer comprising administering an effective amount of an AR modulator identified by the method of claim 22.
- 20 31. A method for treating an age related disease comprising administering an effective amount of an AR modulator identified by the method of claim 22.
 - 32. The method of claim 31 wherein said age related disease is osteoporosis, muscle wasting or loss of libido.

SUBSTITUTE SHEET (RULE 26)

FIG. 3

SUBSTITUTE SHEET (RULE 26)

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/28495

A. CLASSIFICATI N OF SUBJECT MATTER							
IPC(7) : Go1N 35/65							
US CL :	035/7.2 International Patent Classification (IPC) or to both	national classification and IPC					
	DS SEARCHED						
	cumentation searched (classification system followed	by classification symbols)					
U.S. : 4	35/4,7.1,7.2,69.1; 436/501,63; 514/2						
Documentati searched	on searched other than minimum documentation to	the extent that such documents are in	cluded in the fields				
	ata base consulted during the international search (na BASE, MEDLINE, WPI, BIOTECH ABS, covering a						
c. Doc	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
Y	US 5,411,981 A (GAILLARD-KELL) especially column 9, line 43, through c	Y et al.) 02 May 1995, see column 10, line 15.	30-32				
Y	US 5,434,176 A (CLAUSSNER et al.) column 8, line 49, through column 9,	30-32					
A	US 5,298,429 A (EVANS et al.) 2 document.	1-32					
Y	US 5,693,646 A (JONES et al.) OF SUMMARY OF THE INVENTION SE	11-14, 18, 19, & 29					
Y	US 5,854,202 A (DEDHAR) 29 I document.	December 1998, see entire	11-14, 18, 19, & 29				
X Furt	her documents are listed in the continuation of Box (C. See patent family annex.					
* Special calegories of clied decuments: "T" later document published after the international filling date or priority date and not in conflict with the application but clied to understand							
"A" document defining the general state of the art which is not considered to be principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an invention cannot be							
document which may threw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other							
special reason (as specified) *O* dominant reference in a serial disclosure, non, exhibition or other with one or more other such documents, such combination being obvious to a person skilled in the art							
oper document published prior to the international filing date but later "At" document member of the same patent family							
Date of the actual completion of the international search Date of mailing of the international search report							
15 FEBR	UARY 2001	0-1 MAR 2001					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer ARDIN MARSCHEL							
_	Feerimile No. (703) 305-3230 Telephone No. (703) 308-0196						

Form PCT/ISA/\$10 (second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/28495

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	NAKADA et al. The Androgen Receptor Status of Neuroendocrine Cells in Human Benign and Malignant Prostate Tissue. Cancer Research. 01 May 1993, Volume 53, pages 1967-1970, see the entire document.	11-14, 18, 19, & 29
ζ	EKENA et al. Determinants of Ligand Specificity of Estrogen Receptor- α : Estrogen versus Androgen Discrimination. Journal of Biological Chemistry. 09 January 1998, Volume 273, Number 2, pages 693-699, see especially the abstract.	11-14, 18, 19. & 29
ζ 	MIYAMOTO et al. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate	11-14, 18, 19, & 29
ľ	cancer DU154 cells. Proceedings of the National Academy of Sciences, USA. June 1998, Volume 95, pages 7379-7384, see the entire document.	30
K	SAI et al. An Exonic Point Mutation of the Androgen Receptor Gene in a Family with Complete Androgen Insensitivity. American Journal of Human Genetics. 1990, Volume 46, pages 1095-1100, see especially the abstract and the Introduction on pages 1095-1096.	11-14, 18, 19, & 29
	·	
	1	