	杭州	电子和	斗技大:	学学生	考试卷	(A)卷	
考试课程 线性代数			考试日期	2014	年1月1	1日	成 绩	
课程号	A0714030	4	牧师号		任课教	师姓名	3	
考生姓名		学号	号(8位)		年级		专业	
								_
题 号		- =		Ξ	Д		Ŧī.	六
得 分								
	答案全部书写在 三为草稿纸使用,							

- 一、填空题(请将答案填写在横线上。本题总共六小题,每题 3 分,总共
- 1、设A 为五阶方阵,秩(A)=4 , A* 是 A 的伴随矩阵,则秩(A*)=__(
- 2、实二次型 f=x₁²+2x₂²-3x₃³的秩为<u> 3</u>, 正惯性指数为<u>2</u>

负惯性指数为_____;

- 3、已知三阶方阵 A 的三个特征值分别为1, 2, 3, 则 $|A^2 + 2A 3E| = 0$
- 4、若向量纸 $\alpha_1 = [1,1,2]^{\mathsf{T}}$, $\alpha_2 = [3,t,1]^{\mathsf{T}}$, $\alpha_3 = [0,2,-t]^{\mathsf{T}}$ 线性相关, 则 t <u>- 2 丸 ケ</u> ;
- 6、设 A 是 5×3 矩阵,且秩 (A) = 2,已知 η_1 , η_2 是 非 齐次线性 方程组 AX = b 的两个相异的解,

二、选择题(请将正确答案填写在括号中,在字母前勾选所得结果视为无效。

- 1、若向量组α,β线性相关,则(Α):
 - (A) α, β对应分量成比例
- (B) 其中必有一零向量
- (C) α,β一定是非零向量
- (D) α=kβ, k 是不为零的数
- 2、设λ=2是可逆矩阵 A 的一个特征值,则矩阵 $(\frac{1}{3}A^2)^{-1}$ 有一个特征值等于(β);
 - (A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$

- 3、己知矩阵 $\begin{bmatrix} 22 & 30 \\ -12 & x \end{bmatrix}$ 有一个特征向量 $\begin{bmatrix} -5 \\ 3 \end{bmatrix}$,则 x = ():
 - (A) -12
- (C) -16
 - (D) -18
- 4、若 A 为正交阵,则下列矩阵中不是正交阵的是(7);
 - (A) A^{-1}
- (C) A^3
- (D) 3A
- 5、岩方程组 AX=b 中,方程的个数小于未知量的个数,则有(**2**);
 - (A) AX=b 必有无穷多解
- (B) AX=0 必有非零解
- (C) AX=0 仅有零解
- (D) AX=0 一定无解
- 6、设A为m×n矩阵,B为n×m矩阵,则(**P**,);
 - (A) 当m>n 时,必有行列式 |AB| ≠ 0
- (B) 当 m>n 时,必有行列式 | AB | = 0
- (C) 当 m < n 时,必有行列式 | AB | ≠ 0
- (D) 当 m<n 时,必有行列式|AB| = 0

杭州电子科技大学 13-14-01《线性代数》期末试卷

第1页

2、设实二次型 $f(x_1,x_2,x_3,x_4)$ = $a(x_1^2+x_2^2+x_3^2)$ + $2x_1x_2$ + $2x_1x_3$ - $2x_2x_3$ + x_4^2 , a 取何值时 f 正

$$A = \begin{pmatrix} a & 1 & 1 & 0 \\ 1 & a & -1 & 0 \\ -1 & -1 & a & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} a & 1 & 1 & 0 \\ 1 & a & -1 & 0 \\ -1 & -1 & a & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Delta_3 = \alpha^2 - 170$$

$$\Delta_3 = \alpha(\alpha - 1)(\alpha + 1)70.$$

3、在欧氏空间 R³ 中,设有两组基:

(I): $\alpha_1,\alpha_2,\alpha_3$: (II): $\beta_1=\alpha_1+\alpha_2+\alpha_3,\beta_2=\alpha_2+\alpha_3,\beta_3=\alpha_3$: 设α在基(I)下的坐标为 $X=[1,1,1]^T$,求α在 III、 X=[1,1] (II) X=[1,1] (II) X=[1,1] (II) X=[1,1] (II) X=[1,1] (II) X=[1,1] (II) X=[1,1] (III) X=[1,1] (IIII) X=[1,1] (III) X=[1,1] (IIII) X=[1,1] (IIII) X=[1,1] (III) X=[1,1] (I

4、判别矩阵 $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ 能否和对角矩阵相似。岩与对角矩阵相似,求一个可逆矩阵

使得P-IAP 为对角矩阵。

$$|\lambda E - A| = (\lambda - 3)(\lambda - 2)(\lambda + 1)$$

$$\lambda_1 = -(42)(10^{-10})(10$$

至
$$p = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 0 & 4 \\ -1 & 1 & 1 \end{pmatrix}$$
 为这阵 且 $p^{-1}\Lambda p = diay(-1, 2, 3)$ 3

得分

四、试求解下列各题(本题共四小题,每题6分,共24分)

1、 设向 域纸 $\alpha_1 = [1,1,2]^T$, $\alpha_2 = [0,2,1]^T$, $\alpha_3 = [2,0,3]^T$, $\alpha_4 = [1,1,0]^T$,

求α,,α2,α3,α4 的一个极人线性无关组,将其余向量用该极人线性无关组线性表示;

2、设矩阵
$$A \ \ \Box B$$
 相似,其中 $A = \left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & x \end{array} \right], \quad B = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{array} \right], \quad \ xx \ \ \ \ \ \, y$ 的值:

3、设A 为三阶方阵,有 3 个不同的特征值 λ_1 , λ_2 , λ_3 , 对应的特征向量分别为 α_1 , α_2 , α_3 , 岩β= α_1 + α_2 + α_3 ,证明: β, Aβ, A^2 β线性无关;

$$2 k_1\beta + k_2(A\beta) + k_3(A^2\beta) = 0$$

$$A\beta = A(\alpha_1 + \alpha_2 + \alpha_3) = A\alpha_1 + A\alpha_2 + A\alpha_3 = \lambda_1\alpha_1 + \lambda_2\alpha_2 + \lambda_3\alpha_3$$

$$A\beta = A(\alpha_1 + \alpha_2 + \alpha_3) = A\alpha_1 + A\alpha_2 + A\alpha_3 = A_1\alpha_1 + A_2\alpha_2 + A_3\alpha_3$$

$$A^2\beta = A(\lambda_1\alpha_1 + \lambda_2\alpha_2 + \lambda_3\alpha_3) = A_1^2\alpha_1 + \lambda_2^2\alpha_2 + \lambda_3^2\alpha_3$$

$$(k_1 + k_2 + k_3) + k_3 (k_1 + k_2 + k_3 + k_3) + k_3 (k_1^2 + k_3^2 + k_3^2 + k_3^2 + k_3) = 0$$

$$(k_1 + k_2 + k_1^2 + k_3) \times (k_1 + k_2 + k_3^2 + k_3) + (k_1 + k_3 + k_3^2 + k_3) \times (k_1 + k_3 + k_3^2 + k_$$

$$\begin{cases} k_1 + \lambda_2 k_3 + \lambda^3 k_3 = 0 \\ k_1 + \lambda_3 k_3 + \lambda_3^2 k_3 = 0 \end{cases}$$
 、 $k_1 = k_3 = 0$ 、 $k_1 = k_3 = 0$ 、 $k_1 = k_3 = 0$ 4、设向域组 $(1): \beta_1 = [0,1,-1]^T, \beta_2 = [a,2,1]^T, \beta_3 = [b,1,0]^T$ 及向域组 $(11): \alpha_1 = [1,2,-3]^T$,

4、设向量组(1):
$$\beta_1 = [0,1,-1]^T$$
, $\beta_2 = [a,2,1]^T$, $\beta_3 = [b,1,0]^T$ 及向量组(II): $\alpha_1 = [1,2,-3]^T$,

$$\alpha_2$$
 = [3,0,1]^T, α_3 = [9,6,-7]^T 有相同的秩,且 β_3 可由 α_1 , α_2 线性表示,求 a,b 的值。

.州电子科技大学 13-14-01《线性代数》期末试卷

第 3 页

五、(10 分) 设三阶实对称矩阵 A 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -2$, 对应

于λ₃的特征向量为 $ξ_1$ =[-1,1,2]^T,求

- (1) 对应于λ, 的特征向量;

Generated by CamScann

(1)设对在于礼的特征同量为多二(公,公,公)丁

: 3 131 : - X1+ X2+ 2X3 = 0

得基础 辦系 $3_2 = (1,1,0)^T$ $3_3 = (2,0,1)^T$ 公对在于AI 钢特化向量为 batk333 ka.k3不知0·21

(2) $\leq p = (s_1 s_2 s_3) = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} q \in \mathcal{A}$

p p-1AP = diay (-2,1,1)

A = P diag (-2, 1, 1) P

其中 P⁺ = (-も も ら) も も も -ま)

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$

得分

用正交线性替换将实二次型 $f(x_1,x_2,x_3)=x_1^2-2x_2^2-2x_3^2-4x_1x_2+4x_1x_3+8x$

化为标准形,并写出正交线性替换。

并写出正交线性盲人。
$$S = \begin{pmatrix}
1 & -2 & 2 \\
-2 & -2 & 4 \\
2 & 4 & -2
\end{pmatrix}$$

(NE-10) = (1+7) (1-2)2

· A的特化值为小=-7 小==2 (二重)

A1=-7 代λ (A1E-Λ) X=o 得基础解音引=(2,1,-1)T

 $A_2 = 2 \cdot \cdot \cdot (A_1 E - A_1 X = 0)$ $3_2 = (2, -1, 0)^T$ $3_3 = (2, 3, 1)$

$$3_2' = 3_2 = (2, -1, 0)^T$$

 $g_3' = g_3 - \frac{(S_3, S_2')}{(S_1', S_2')} g_3' = (\xi, \xi, 1)^T$

$$\eta_1 = \frac{3}{15.1} = \frac{1}{15}(2,1,-1)^T$$

$$13 = \frac{33'}{113'11} = \frac{1}{315}(2,4,5)^T$$

政格性替换 X=UY.

林均的 -752+252+245

重电子科技大学 13-14-01《线性代数》期末试卷