

Kapitel 4, Teil 3

Flüsse: Goldberg-Tarjan

Effiziente Algorithmen, SS 2018 Professor Dr. Petra Mutzel

VO 8/9 am 8./15. Mai 2018

4 / 63

4.6 Der Goldberg-Tarjan Algorithmus

bisher betrachtete Flussalgorithmen

- Algorithmus von Ford und Fulkerson
- Algorithmus von Dinic
- Algorithmus von Malhotra, Pramodh Kumar und Maheshwari

Beobachtung Gemeinsamkeit rundenorientiert

- **1** Starte mit leerem Fluss Φ .
- 2 Berechne Fluss Ψ für den Restgraphen.
- $\bullet = \Phi + \Psi$
- 4 Wiederholen, falls $\Psi \neq 0$.

konkret

- Ford-Fulkerson beliebiger flussvergrößernder Weg
- Dinic Sperrfluss in N_{Φ} ("naiv" berechnet)
- Malhotra-Pramodh Kumar-Maheshwari Sperrfluss in N_Φ mit Forward-Backward-Propagation

Muss das so sein? Geht es grundsätzlich anders?

Forward-Backward-Propagation Revisited

bei Forward-Backward-Propagation

- 1 erzeuge Überschuss bei Knoten mit minimalem Potenzial
- 2 treibe Überschuss zur Senke und zur Quelle

Beobachtung

so lange Knoten mit Überschuss existiert haben wir keinen Fluss, d.h. Kirchhoff-Regel nicht erfüllt

Definition 4.20

Für Netzwerk (G=(V,E),c) heißt $\Phi\colon E\to\mathbb{R}_0^+$ Präfluss, wenn

- $\forall e \in E : \Phi(e) \le c(e)$
- $\forall v \in V \setminus \{Q\} : e(v) \ge 0$

mit
$$e(v) := \sum_{e=(\cdot,v)\in E} \Phi(e) - \sum_{e=(v,\cdot)\in E} \Phi(e)$$
 gilt.

 $v \in V \setminus \{Q, S\}$ mit e(v) > 0 heißt aktiv.

Über Präflüsse

klar Präfluss ist weniger enger Begriff als Fluss also jeder Fluss ist auch Präfluss

Beobachtung Restgraph auch für Präfluss sinnvoll

klar Ziel Umwandlung Präfluss → Fluss

Geht das überhaupt?

Erinnerung bei Malhotra et al.: Überschuss zur Not → Quelle

Geht das für einen Präfluss auch?

Überschuss zur Quelle bringen

Lemma 4.21

Sei (G=(V,E),c) Netzwerk, Φ Präfluss für $G,\ v\in V$ aktiv. In Rest $_\Phi$ gibt es einen Weg von v nach Q.

Beweis.

Schreibweise $x \leadsto_{\Phi} y \stackrel{\mathsf{def}}{\Leftrightarrow} \exists \mathsf{Weg} \mathsf{von} \ x \mathsf{zu} \ y \mathsf{in} \ \mathsf{Rest}_{\Phi}$

$$\begin{array}{ccc} \mathsf{Definiere} & \underline{V^*} := \{ w \in V \mid v \leadsto_\Phi w \} \\ & \overline{V^*} := V \setminus V^* \end{array}$$

zu zeigen
$$Q \in V^*$$

Annahme $Q \notin V^*$ (Ziel: Widerspruch)

Die Summe der Überschüsse

$$\begin{array}{ll} \text{Annahme} & Q \notin V^* \\ \text{Betrachte} & \sum\limits_{w \in V^*} e(w) \end{array}$$

$$\begin{aligned} & \text{klar} & & \sum_{w \in V^*} e(w) \geq 0 \\ & & \text{weil} \ e(w) \geq 0 \ \text{für alle} \ w \neq Q \end{aligned}$$

wie für Min Cut=Max Flow Aufspaltung nach Kanten

$$\text{klar} \quad \sum_{w \in V^*} e(w) = \sum_{w \in V^*} \left(\sum_{e = (\cdot, w) \in E} \Phi(e) - \sum_{e = (w, \cdot) \in E} \Phi(e) \right)$$

$$e \in \underline{V^*} \times \underline{V^*}$$

$$e \in \overline{V^*} \times \overline{V^*}$$

 $e \in \overline{V^*} \times V^*$

$$e \in V^* \times \overline{V^*}$$

 $e \in V^* \times \overline{V^*}$

taucht positiv und negativ auf also Beitrag 0 taucht gar nicht auf also kein Beitrag taucht nur positiv auf also Beitrag $\Phi(e)$

taucht nur negativ auf also Beitrag $-\Phi(e)$

Gesamtüberschuss in V^*

```
wir haben \sum_{w \in V^*} e(w) = \sum_{e \in E \cap (\overline{V^*} \times V^*)} \Phi(e) - \sum_{e \in E \cap (V^* \times \overline{V^*})} \Phi(e)
Betrachte e = (v^*, v') \in E \cap (V^* \times \overline{V^*})
klar es gibt Weg von v nach v^*
                                                                              (Def. V^*)
klar es gibt keinen Weg von v nach v'
also (v^*, v') \notin \mathsf{Rest}_{\Phi}
also \Phi(e) = c(e)
Betrachte e = (v', v^*) \in E \cap (\overline{V^*} \times V^*)
klar
         es gibt Weg von v nach v*
klar es gibt keinen Weg von v nach v'
also (v^*, v') \notin \mathsf{Rest}_{\Phi}
aber (v', v^*) \in E
also \Phi(e) = 0
                 (ware \Phi(e) > 0, dann ware rev(e) = (v^*, v') \in Rest_{\Phi})
```

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Zusammenfassung Summe der Uberschüsse

$$\begin{array}{lll} \text{Wir haben} & \displaystyle \sum_{w \in V^*} e(w) & = & \displaystyle \sum_{e \in E \cap (\overline{V^*} \times V^*)} \Phi(e) - \sum_{e \in E \cap (V^* \times \overline{V^*})} \Phi(e) \\ & = & \displaystyle \sum_{e \in E \cap (\overline{V^*} \times V^*)} 0 - \sum_{e \in E \cap (V^* \times \overline{V^*})} c(e) \\ & = & - \sum_{e \in E \cap (V^* \times \overline{V^*})} c(e) & \leq 0 \end{array}$$

Erinnerung
$$\sum_{w \in V^*} e(w) \geq 0$$
 also
$$\sum_{w \in V^*} e(w) = 0$$

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Wir kommen zum Widerspruch

Wir haben
$$\sum_{w \in V^*} e(w) = 0$$
 Erinnerung
$$\forall w \in V^* \colon e(w) \geq 0$$
 weil $Q \notin V^*$ gemäß Annnahme (und nur Q hat $e(w) \leq 0$)

also
$$\forall w \in V^* \colon e(w) = 0$$

$$\begin{array}{ll} \text{aber} & v \in V^* \text{ mit } e(v) > 0 \text{ Widerspruch} \\ \text{also} & Q \in V^* & \left(Q \text{ erreichbar von } v \text{ in Rest}_\Phi\right) \end{array}$$

also immer möglich: Überschuss zur Quelle bringen

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Sinnvolle Richtungen für den Überschuss

klar Überschuss zur Quelle bringen unproduktiv

Erinnerung bei Malhotra et al.: Überschuss erst zur Senke

Idee Markierungen zur Wegfindung hilfreich

hier Quelle "hoch", Senke "tief", Flussverschiebung "bergab"

Definition 4.22

Sei (G=(V,E),c) Netzwerk, Φ Präfluss, $\mathrm{Rest}_\Phi=(V,E_\Phi,r_\phi)$ Restgraph.

 $d\colon V o \mathbb{N}_0$ heißt gültige Knotenmarkierung, wenn

•
$$d(Q) = n$$
 $(n = |V|)$

•
$$d(S) = 0$$

•
$$\forall e = (v, w) \in E_{\Phi} : d(v) \le d(w) + 1$$

gilt.

 $e=(v,w)\in E_{\Phi}$ heißt wählbar, wenn d(v)=d(w)+1 gilt.

Über gültige Knotenmarkierungen

Lemma 4.23

Sei (G=(V,E),c) Netzwerk, Φ Präfluss, $\mathrm{Rest}_{\Phi}=(V,E_{\Phi},r_{\phi})$ Restgraph, d gültige Knotenmarkierung.

- **1** $\forall v \neq w \in V$: jeder Weg in Rest_Φ von v nach w hat Länge $\geq d(v) d(w)$.
- **2** Es gibt in Rest Φ keinen Weg von Q nach S.

Beweis.

Beobachtung zweite Aussage folgt aus erster, weil:

klar Wege haben Länge $\leq n-1$

gemäß Definition d(Q) = n, d(S) = 0

also jeder Q-S-Weg hat Länge $\geq d(Q) - d(S) = n - 0 = n$

also es gibt keinen Q-S-Weg

also nur noch erste Aussage zu zeigen

Gültige Knotenmarkierung und Weglängen

jeder v-w-Weg hat Länge > d(v) - d(w)zu zeigen

Weg $(v, v_1), (v_1, v_2), (v_2, v_3), \dots, (v_{l-1}, w)$ Betrachte der Länge l

Erinnerung $d(v_i) \leq d(v_{i+1}) + 1$ für alle i (Def. gültige Knotenmarkierung)

also
$$d(v) \le d(v_1) + 1 \le d(v_2) + 2 \le d(v_3) + 3 \le \dots \le d(w) + l$$

äquivalent l > d(v) - d(w)

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Algorithmus von Goldberg und Tarjan

Algorithmus 4.24

1. Für alle $v \in V$ d(v) := 0; e(v) := 0

- 2. d(Q) := n
- 3. $\Phi := 0$
- 4. Für alle $v \in V$ mit $e = (Q, v) \in E$ $\Phi(e) := c(e); \ e(v) := c(e)$
- 5. While $\exists v \in V \setminus S \text{ mit } e(v) > 0$
- 6. Führe anwendbare Basisoperation (Push oder Relabel) aus.
- 7. Ausgabe Φ

Basisoperationen

Erinnerung: $v \in V \setminus \{Q,S\}$ mit e(v) > 0 heißt aktiv. Def.: $e = (v,w) \in E_{\Phi}$ heißt wählbar, wenn d(v) = d(w) + 1 gilt.

```
\mathsf{Push}(e = (v, w)) \ \{* \ \mathit{anwendbar}, \ \mathit{wenn} \ v \ \mathit{aktiv} \ \mathit{und} \ e \ \mathit{w\"{a}hlbar} \ \mathit{ist} \ *\}
```

- 1. $\delta := \min\{e(v), r_{\Phi}(e)\}$
- 2. If $e \in E$

Then
$$\Phi(e) := \Phi(e) + \delta$$
 {* Vorwärtskante *} Else $\Phi(e) := \Phi(e) - \delta$ {* Rückwärtskante *} $e(v) := e(v) - \delta$; $e(w) := e(w) + \delta$

Relabel(v)

 $\{*$ anwendbar, wenn v aktiv und keine Kante $(v,\cdot)\in E_\Phi$ wählbar ist $*\}$

1. $d(v) := \min\{d(w) + 1 \mid (v, w) \in E_{\Phi}\}\$

1

Über das Beispiel

Anmerkungen

- sah nicht besonders schnell aus: viele Iterationen
- vielleicht viel Glück (oder "Lenkung") im Spiel
- Ist der Fluss am Ende sicher maximal?
- Terminiert das Verfahren überhaupt immer?
- Falls ja, wie lange kann das dann dauern?

Einsicht Wir brauchen einen Korrektheitsbeweis.

Einsicht Wir brauchen eine Laufzeitanalyse.

zentral sind die Basisoperationen Über Relabel

Lemma 4.25

```
Sei (G = (V, E), c) Netzwerk, \Phi Präfluss, Rest\Phi = (V, E_{\Phi}, r_{\phi})
Restgraph, d gültige Knotenmarkierung.
Wenn Relabel(v) anwendbar ist, erhöht Anwendung von Relabel(v)
d(v) um \geq 1.
```

Beweis.

```
klar
        Relabel anwendbar \Rightarrow v aktiv
also \exists v - Q - \text{Weg in Rest}_{\Phi} (Lemma 4.21)
also \exists (v, w) \in E_{\Phi} für ein w
                                                                      (v \neq Q) also
\min\{d(w)+1\mid (v,w)\in E_{\Phi}\} wohldefiniert
```

```
\min\{d(w)+1\} über nichtleere Menge
Wir haben
```

klar Relabel anwendbar $\Rightarrow \forall (v, w) \in E_{\Phi} : d(v) \neq d(w) + 1$ sonst (v, w) wählbar und Relabel(v) nicht anwendbar

klar
$$d \text{ g\"{u}ltig} \Rightarrow \forall (v, w) \in E_{\Phi} \colon d(v) \leq d(w) + 1$$

also
$$\forall (v, w) \in E_{\Phi} \colon d(v) < d(w) + 1$$

nach Relabel
$$(v)$$
 $\exists (v,w) \in E_{\Phi} \colon d(v) = d(w) + 1$ also $d(v)$ um ≥ 1 gewachsen

Push(v, w) genauer betrachtet

Definition 4.26

Sei (G = (V, E), c) Netzwerk, Φ Präfluss, Rest $\Phi = (V, E_{\Phi}, r_{\phi})$

Restgraph, d gültige Knotenmarkierung, $v \in V$ aktiv,

 $e=(v,w)\in E_{\Phi}$ wählbar.

Push(v, w) heißt saturierend, wenn in der Operation $\delta = r_{\phi}(e)$ gilt.

Sonst heißt Push(v, w) nichtsaturierend.

saturierendes Push(v, w) saturiert (v, w)klar

saturierendes Push saturiert Kante Beobachtung

> offensichtlich "produktiv"

nichtsaturierendes Push Beobachtung

weniger offensichtliche Folgen

Nutzen nicht so klar – unproduktiv?

Uber die Knotenmarkierung d

Lemma 4.27

Im Ablauf des Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) ist d immer eine gültige Knotenmarkierung.

Beweis.

Strategie

- 1 Knotenmarkierung d initial gültig.
- 2 Basisoperationen lassen d auch bei Veränderung gültig.

initial
$$d(Q) = n, d(S) = 0$$
 \checkmark

$$\begin{array}{ll} \text{initial} & \forall v \in V \setminus \{Q\} \colon d(v) = 0 \\ \Rightarrow d(v) \leq d(w) + 1 \text{ nur für Kanten } (Q, w) \in E_{\Phi} \text{ kritisch} \\ \end{array}$$

initial
$$\forall e = (Q, w) \in E \colon \Phi(e) = c(e)$$
 also $e \notin E_{\Phi} \checkmark$

Voraussetzung Push(v, w) anwendbar

1 Fall nichtsaturierendes Push

möglich
$$\operatorname{rev}(e) = (w,v)$$
 wird erzeugt in Rest_Φ Erinnerung $\operatorname{Push}(v,w)$ anwendbar also $d(v) = d(w) + 1$ also
$$d(w) = d(v) - 1 \leq d(v) + 1 \checkmark$$

saturierendes Push 2. Fall

Beobachtung wie nicht-saturierendes Push nur e = (v, w) wird aus Rest_{Φ} entfernt das entfernt Bedingung, schafft keine neue $\sqrt{}$ klar

d weiterhin gültig

```
Voraussetzung
                  Relabel(v) anwendbar
Beobachtung
                kein Problem für Kanten (v, w) \in E_{\Phi}
                 weil d(v) explizit korrekt gesetzt
                 (d(v) := \min\{d(w) + 1 \mid (v, w) \in E_{\Phi}\})
Betrachte Kante e = (w, v) \in E_{\Phi}
      für e = (w, v) \in E_{\Phi} vorher d(w) \leq d(v) + 1
Erinnerung d(v) wird nur größer
                                                        (Lemma 4.25)
```

Petra Mutzel

also

Wiederholung: Zentrale Begriffe und Einsichten

- Überschuss $e(v) = \sum_{e=(\cdot,v)\in E} \Phi(e) \sum_{e=(v,\cdot)\in E} \Phi(e)$
- Präfluss $e(v) \ge 0$ (bei Fluss e(v) = 0)
- Rest_Φ unverändert für Präfluss Φ sinnvoll
- Einsicht Uberschuss zur Quelle transportierbar (Lemma 4.21)
- gültige Knotenmarkierung d(Q) = n, d(S) = 0 und $d(v) \leq d(w) + 1$ für alle $(v, w) \in E_{\Phi}$
- Einsicht in Rest Φ mit gültiger Knotenmarkierung d haben alle v-w-Wege Länge $\geq d(v) - d(w)$ und es gibt keinen Q-S-Weg (Lemma 4.23)

Algorithmus von Goldberg und Tarjan

Algorithmus 4.24

- Für alle $v \in V$ d(v) := 0; e(v) := 0
- 2. d(Q) := n
- 3. $\Phi := 0$
- Für alle $v \in V$ mit $e = (Q, v) \in E$ $\Phi(e) := c(e); \ e(v) := c(e)$
- While $\exists v \in V \setminus S \text{ mit } e(v) > 0$ 5.
- 6. Führe anwendbare Basisoperation (Push oder Relabel) aus.
- Ausgabe Φ

```
\begin{array}{l} \textbf{Push}(e=(v,w)) \\ \{*\ anwendbar,\ wenn\ v\ aktiv\ und\ e\ w\"{a}hlbar\ ist\ *\} \\ 1. \quad \delta:=\min\{e(v),r_{\Phi}(e)\} \\ 2. \quad \text{If}\ e\in E \\ \quad \text{Then}\ \Phi(e):=\Phi(e)+\delta \\ \quad \text{Else}\ \Phi(e):=\Phi(e)-\delta\ \{*\ R\"{u}ckw\"{a}rtskante\ *\} \end{array}
```

Relabel(v)

 $\{* anwendbar, wenn v aktiv und keine Kante <math>(v,\cdot) \in E_\Phi$ wählbar ist $*\}$

1. $d(v) := \min\{d(w) + 1 \mid (v, w) \in E_{\Phi}\}\$

 $e(v) := e(v) - \delta; \ e(w) := e(w) + \delta$

Analyse Goldberg/Tarjan – Schritt für Schritt

schon gesehen

Lemma 4.25

Sei (G=(V,E),c) Netzwerk, Φ Präfluss, $\mathrm{Rest}_\Phi=(V,E_\Phi,r_\phi)$ Restgraph, d gültige Knotenmarkierung. Wenn $\mathrm{Relabel}(v)$ anwendbar ist, erhöht Anwendung von $\mathrm{Relabel}(v)$ d(v) um ≥ 1 .

Lemma 4.27

Im Ablauf des Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) ist d immer eine gültige Knotenmarkierung.

Uber die Ausgabe von Goldberg/Tarjan

Lemma 4.28

Wenn der Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) stoppt, ist Φ ein maximaler Fluss.

Beweis.

klar Algorithmus stoppt ⇔ kein Knoten aktiv

Beobachtung Φ Präfluss und kein Knoten aktiv $\Leftrightarrow \Phi$ Fluss

Erinnerung Knotenmarkierung gültig (Lemma 4.27)

also kein Q-S-Weg in Rest $_{\Phi}$ (Lemma 4.23)

also Φ maximal

Auf dem Weg zum Korrektheitsbeweis

wir haben Algorithmus von Goldberg und Tarjan partiell korrekt berechnet maximalen Fluss, wenn und falls er stoppt

7₁₁ Korrektheit Einsichten in die Entwicklung der gültigen Knotenmarkierung d

Lemma 4.29

Im Ablauf des Algorithmus von Goldberg und Tarjan (Algo. 4.24) gilt $\forall v \in V : d(v)$ wächst monoton und $d(v) \leq 2n - 1$.

Petra Mutzel VO 8/9 am 8./15. Mai 2018

```
Zu Beweisen \forall v \in V : d(v) wächst monoton und d(v) \leq 2n - 1.
Erinnerung nur Relabel ändert d und Relabel vergrößert nur
also d(v) wächst monoton für alle v \checkmark
klar d(Q) = n und d(S) = 0 fest \checkmark
Betrachte v \in V \setminus \{Q, S\}, Relabel(v) anwendbar
     e(v) > 0 und \exists v - Q-Weg in Rest_{\Phi}
                                                         (Lemma 4.21)
Sei v' erster Knoten hinter v auf kreisfreiem v-Q-Weg
klar Länge des Weges < n-1
also \ell := \text{Länge des Weges } v' \leadsto Q : \ell \le n-2
darum d(v') - d(Q) < \ell < n - 2 \Rightarrow d(v') - n < n - 2 (Lem. 4.23)
also d(v') \leq 2n - 2
Betrachte Relabel(v)
       anschließend d(v) = \min\{d(w) + 1 \mid (v, w) \in E_{\Phi}\}\
klar
       < 2n - 2 + 1 = 2n - 1
```

Endlichkeit des Algorithmus von Goldberg und Tarjan

Goldberg/Tarjan "lebt" von Basisoperationen Erinnerung Anzahl Basisoperationen nach oben beschränken ldee

Lemma 4.30

In einem Ablauf des Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) werden weniger als $2n^2$ Relabel-Operationen ausgeführt.

Beweis.

Erinnerung

- initial alle Knotenmarkierungen = 0, und d(Q) = n
- Relabel(v) vergrößert d(v) um > 1 (Lemma 4.25)
- $\forall v \in V : d(v) < 2n 1$ (Lemma 4.29)

also
$$\leq n \cdot (2n-1) < 2n^2$$
 Relabel-Operationen

Anzahl der Push-Operationen

Erinnerung

Unterscheidung saturierende Push-Operationen und nichtsaturierende Push-Operationen saturierende Pushs offensichtlich produktiv nichtsaturierende Pushs weniger offensichtlich hilfreich

Lemma 4.31

In einem Ablauf des Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) werden höchstens 2ne saturierende Push-Operationen ausgeführt.

Beweis. (etwas anders als im Skript)

Betrachte saturierendes Push(e) mit e = (v, w)

Betrachte nächstes saturierendes Push(e) mit e = (v, w)

Behauptung dazwischen liegt Push(rev(e))

Begründung nach saturierendem Push(e), e nicht mehr in E_{Φ}

klar Einfügung passiert nur nach Push(rev(e))

```
\begin{array}{c} \text{wir haben} & \text{zwischen zwei saturierenden Push}(e) \\ & \text{liegt ein Push}(\text{rev}(e)) \end{array}
```

Beobachtung beim ersten saturierenden Push(e) (e = (v, w)) gilt d(v) = d(w) + 1

Beobachtung bei
$$Push(rev(e))$$

gilt $d(w) = d(v) + 1$

klar d(w) muss um ≥ 2 gewachsen sein

analog beim zweiten saturierenden $\operatorname{Push}(e)$ gilt wieder d(v) = d(w) + 1 also auch d(v) um ≥ 2 gewachsen

Wir haben

also

klar

also

Beweis von Lemma 4 31

```
bei zwei konsekutiven Push(e) mit e = (v, w)
            wächst d(v) + d(w) um > 4
Beobachtung
              d(v) + d(w) \le 4n - 3 nach letztem sat. Push(e)
              weil d(v) < 2n - 1 (Lemma 4.29)
              und d(v) = d(w) + 1 (e wählbar)
```

insgesamt $\leq n$ saturierende Push(e)

< 2ne saturierende Push-Operationen

Petra Mutzel

in Rest $_{\Phi} < 2e$ Kanten

Anzahl nichtsaturierender Push-Operationen

Lemma 4.32

In einem Ablauf des Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) werden weniger als $4n^2e$ nichtsaturierende Push-Operationen ausgeführt.

Beweis.

Idee (grob) Beobachte Algorithmus.

Beschreibe "Zustand" numerisch → Potenzialfunktion Analysiere Verlauf Potenzialfunktion.

etwas konkreter zeige für Potenzialfunktion:

- wächst um > 1 für nichtsaturierendes Push
- wird nicht kleiner für saturierendes Push und Relabel
- initial ≥ 0 und am Ende $\leq 4n^2e$ (Details zu Potenzialfunktionen und amortisierter Analyse in Kapitel 5)

```
konkret Potenzialfunktion P:=P_1+P_2-P_3 mit P_1=(2n-2)\cdot \# \text{saturierende Push-Operationen bisher} P_2=\sum_{v\in V}d(v),\ P_3=\sum_{v\in V,\ v\text{ aktiv}}d(v)
```

initial
$$P_1 = 0, P_2 = n, P_3 = 0$$

also $P = 0 + n - 0 = n \ge 0$

```
Betrachte Push(e) mit e=(v,w) klar v aktiv, d(v)=d(w)+1, weil Push(e) anwendbar 1. Fall Push(e) nichtsaturierend Beobachtung P_1 unverändert, P_2 unverändert Beobachtung P_3 fällt um d(v), kann wachsen um d(w) zusammen P_3 fällt um \geq d(v)-d(w)=1 insgesamt P wächst um \geq 1
```

Analyse der Potenzialfunktion P (Fortsetzung)

haben Potenzialfunktion
$$P=P_1+P_2-P_3$$
 mit
$$P_1=(2n-2)\cdot\# \text{saturierende Push-Operationen bisher}$$

$$P_2=\sum_{v\in V}d(v),\ P_3=\sum_{v\in V,\ v\text{ aktiv}}d(v)$$

2. Fall Push(e) saturierend (e = (v, w))

Beobachtung P_1 wächst um 2n-2

Beobachtung P_2 unverändert

Beobachtung P_3 bezüglich d(v) kann um d(v) fallen

Beobachtung P_3 bezüglich d(w) kann wachsen

 $\operatorname{um} \, d(w) \leq 2n-2$

 $(\mathsf{da}\ d(v) = d(w) + 1 \le 2n - 1)$

insgesamt P kann nicht kleiner werden

Analyse der Potenzialfunktion P (Relabel)

haben Potenzialfunktion
$$P=P_1+P_2-P_3$$
 mit
$$P_1=(2n-2)\cdot\#\text{saturierende Push-Operationen bisher}$$

$$P_2=\sum_{v\in V}d(v),\;P_3=\sum_{v\in V,\;v\;\text{aktiv}}d(v)$$

Betrachte Relabel(v)

Beobachtung P_1 unverändert

Beobachtung P_2 wächst um $h \ge 1$

Beobachtung P_3 wächst um $h \ge 1$

zusammen P unverändert

Fazit für alle Basisoperationen:

P - sinkt nie

P – wächst um ≥ 1 bei jedem nichtsaturierenden Push

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Anzahl nichtsaturierender Push-Operationen beschränken

haben Potenzialfunktion
$$P=P_1+P_2-P_3$$
 mit
$$P_1=(2n-2)\cdot\#\text{saturierende Push-Operationen bisher}$$

$$P_2=\sum_{v\in V}d(v),\ P_3=\sum_{v\in V,\ v\text{ aktiv}}d(v)$$
 initial $P=n$

Maximaler Wert der Potenzialfunktion

- $P_1 \le (2n-2) \cdot 2ne$, weil $\le 2ne$ saturierende Push-Operationen (Lemma 4.31)
- $P_2 \le n \cdot (2n-1)$, weil alle Knotenmarkierungen $\le 2n-1$ (Lemma 4.29)
- P₃ ≥ 0

also
$$P \leq (2n-2) \cdot 2ne + n \cdot (2n-1) = 4n^2e - 4ne + 2n^2 - n \\ < 4n^2e + 2n(n-2e) \leq 4n^2e$$

also $<4n^2e$ nichtsaturierende Push-Operationen

Zusammenfassung der kleinen Schritte

Theorem 4.33

Der Algorithmus von Goldberg und Tarjan (Algorithmus 4.24) berechnet mit Anwendung von $O(n^2e)$ anwendbarer Basisoperationen in beliebiger Reihenfolge einen maximalen Fluss.

Konkrete Laufzeit?

klar hängt von Implementierung ab und konkreter Reihenfolge der Operationen

```
Ist Gesamtlaufzeit O(n^2e) erreichbar?

ia Beweis konstruktiv
```

Die Push/Relabel-Variante (Algorithmus 4.34)

- 1. Für alle $v \in V \ d(v) := 0$; e(v) := 0;
- 2. Markiere erste Kante der Adj.-Liste von v als aktuell_v
- 3. $d(Q) := n; \Phi := 0$
- 4. Für alle $v \in V$ mit $e = (Q, v) \in E$

$$\Phi(e) := c(e); \ e(v) := c(e)$$

- 5. While $\exists v \in V \setminus S \text{ mit } e(v) > 0$
- 6. Führe Push/Relabel(v) aus.
- 7. Ausgabe Φ

Push/Relabel(v) {* anwendbar, wenn v aktiv ist *}

- 1. If $e = (v, w) = \mathsf{aktuell}_v$ wählbar Then $\mathsf{Push}(e)$; $\mathsf{aktualisiere}$ $\mathsf{aktuell}_v$
- 2. Else
- 4. If *e* letztes Element in Liste Then
- 5. Relabel(v)
- 6. Mache erste Kante der Adj.-Liste von v zu aktuell $_v$.
- 3. Else Mache die nächste Kante aktuella.

Was müssen wir für die Korrektheit nachweisen?

klar Relabel-Operationen müssen anwendbar sein

Lemma 4.35

Wird im Ablauf von Algorithmus 4.34 Relabel(v) aufgerufen, dann ist Relabel(v) anwendbar.

Beweis.

Erinnerung Relabel(v) anwendbar $\Leftrightarrow (e(v) > 0) \land (\forall (v, w) \in E_{\phi}: d(v) < d(w) + 1)$

klar beim Aufruf von Push/Relabel e(v) > 0

Relabel(v) nur ausgeführt, wenn Push nicht anwendbar klar

e(v) > 0 beim Aufruf von Relabel(v) \checkmark klar

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Beweis von Lemma 4 35

```
noch zu zeigen
                 beim Aufruf von Relabel(v)
                  keine Kante (v, w) wählbar
klar
      wenn e = (v, w) inaktuell wird, ist e nicht wählbar
also
       zu zeigen e = (v, w) wird nicht wieder wählbar
Beobachtung
               Relabel(v') mit v' \neq v
                kann nur Kanten (v',\cdot) wählbar machen \checkmark
               Push ändert d nicht \rightsquigarrow keine Kante neu wählbar \checkmark
Beobachtung
Fertig? Nein! Push kann neue Kanten in E_{\Phi} einfügen!
zu zeigen keine wählbare Kante (v, v') wird eingefügt
Betrachte Push(e') mit e' = (x, y)
klar e' wählbar, also d(x) = d(y) + 1
      neue Kante kann nur rev(e') = (y, x) sein
klar
      (y,x) mit d(y) = d(x) - 1 nicht wählbar\checkmark
klar
```

Laufzeit der Push/Relabel-Variante

Theorem 4.36

Die Push/Relabel-Variante (Algorithmus 4.34) berechnet einen maximalen Fluss in Zeit $O(n^2e) = O(n^4)$.

Beweis.

Initialisierung in Zeit O(n+e)

Anzahl Basisoperationen

 $O(n^2)$ Relabel (Lemma 4.30) $O(ne) = O(n^3)$ (Lemma 4.31) saturierende Pushs nichtsaturierende Pushs $O(n^2e) = O(n^4)$ (Lemma 4.32)

aktive Knoten in Stack \rightsquigarrow Zugriff in Zeit O(1)

Beobachtung iedes Push in Zeit O(1) \rightsquigarrow Zeit $O(n^2e)$ für alle Pushs

Gesamtaufwand durch Relabel-Operationen

```
wir haben O(n^2) Relabel-Operationen
```

je Relabel von Knoten v: Zeit O(deg(v)) = O(n)

Gesamtzeit Relabel $O(n^3)$

Anmerkung/Einschub bessere Abschätzung möglich:

```
Erinnerung
             Relabel(v) vergrößert d(v) (Lemma 4.25)
             d(v) \le 2n - 1 (Lemma 4.29)
```

iede Kante nur an O(n) Relabel-Operationen beteiligt also (egal ob sie das Minimum durchpropagiert oder nicht)

Gesamtzeit Relabel $O(ne)\sqrt{}$ also

offen Durchlaufen der Adjazenzliste in Push/Relabel

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Beweis von Theorem 4.36

Durchlaufen der Adjazenzliste in Push/Relabel Betrachte

Aufwand bei Aufruf von Basisoperation schon gezählt√ Schritte ohne Basisoperation

Beobachtung für festes v: deg(v) Aufrufe, dann 1 Relabel nur Zeit $O(n \cdot n)$, weil $\leq 2n-1$ Relabel pro Knoten insgesamt: $O(n^3)$ für alle Knoten

alles zusammen Gesamtzeit $O(n^2e) = O(n^4)$

Erinnerung maximalen Fluss berechnen in Zeit $O(n^3)$ möglich also Goldberg/Tarjan bis hier enttäuschend

Die FIFO-Variante (Algorithmus 4.37)

- 1. Für alle $v \in V$ d(v) := 0; e(v) := 0;
- 2. Markiere erste Kante der Adj.-Liste von v als aktuell_v
- 3. d(Q) := n
- 4. $\Phi := 0$; $Qu := \emptyset$
- 5. Für alle $v \in V$ mit $e = (Q, v) \in E$ $\Phi(e) := c(e); \ e(v) := c(e); \ Qu.\mathsf{Enqueue}(v)$
 - . While $Qu \neq \emptyset$
- 7. $v := Qu.\mathsf{Dequeue}()$
- 8. Repeat
- 9. $\operatorname{Push}/\operatorname{Relabel}(v)$, füge dabei aktiv werdende Knoten in Qu ein.
- 10. Until e(v) = 0 oder Relabel(v) aufgerufen wurde.
- 11. If e(v) > 0 Then Qu.Enqueue(v)
- 12. Ausgabe Φ

Über die FIFO-Variante

Theorem 4.38

Die FIFO-Variante (Algorithmus 4.37) berechnet in Zeit $O(n^3)$ einen maximalen Fluss.

Beweis.

Beobachtung bis auf Auswahl des aktiven Knotens genau wie Push/Relabel-Variante

Schlussfolgerungen

- korrekt
- bis auf nichtsaturierende Push-Operationen Laufzeit $O(ne) = O(n^3)$

also nur nichtsaturierende Push-Operationen betrachten

Petra Mutzel VO 8/9 am 8./15. Mai 2018

Durchläufe in der FIFO-Variante

Definiere Durchlauf

1. Durchlauf alle Schritte für die Knoten, die initial in Qu kommen i-ter Durchlauf alle Schritte für die Knoten. die im (i-1)-ten Durchlauf in Qu kommen

Beobachtung

für jeden Knoten < 1 nichtsaturierendes Push je Durchlauf weil danach e(v) = 0Wiedereinfügung danach wieder möglich aber Behandlung frühestens im nächsten Durchlauf

genügt zu zeigen $O(n^2)$ Durchläufe

Anzahl der Durchläufe

Definiere Potenzialfunktion $P = P_1 - P_2$ mit $P_2 = 2 \sum_{i} d(v_i)$

$$P_1 = 2 \sum_{v \in V} d(v)$$

$$P_2 = \max \{d(v) \mid v \text{ aktiv}\}$$

Beobachtung initial P = 2n - 0 = 2n

Beobachtung am Ende $P \le 2 \cdot n(2n-1) < 4n^2$

Beobachtung Relabel(v) vergrößert d(v) um $h \ge 1$ also P_1 wächst um 2h, P_2 wächst um < h

zusammen P wächst um $h \geq 1$

Beobachung Push kann P_1 nicht ändern

aber Push kann P_2 ändern durch Aktivieren/Deaktivieren von Knoten

Auswirkungen von Push auf P

haben Potenzialfunktion
$$P=P_1-P_2$$
 mit
$$P_1=2\sum_{v\in V}d(v)\text{, }P_2=\max\left\{d(v)\mid v\text{ aktiv}\right\}$$

Deaktivierung Falls Push v deaktiviert wird P_2 kleiner und P wächst unkritisch \checkmark

$${\sf Aktivierung} \quad {\sf Push}(e) \ {\sf mit} \ e = (v,w)$$

klar v ist schon aktiv also nur w kann neu aktiv werden

klar d(v) = d(w) + 1, sonst Push(e) nicht anwendbar

also P_2 auch beim Aktivieren von w nicht größer $\sqrt{}$

insgesamt Durchlauf mit Relabel vergrößert $P\sqrt{}$ offen Durchlauf ohne Relabel-Aufruf

Durchläufe ohne Relabel-Aufruf

- also Qu enthält nur "neue" Knoten (vgl. Z.11 in FIFO)
- also Qu enthält nur Knoten w mit Push((v,w)) in diesem Durchlauf
- also Qu enthält nur Knoten w mit d(w) = d(v) 1
- also v wurde inaktiv und in Qu sind nur Knoten w mit d(w) < d(v)
- also P_2 sinkt ≥ 1 also P wächst um ≥ 1

Damit ist die Laufzeit der FIFO Variante von $O(ne)=O(n^3)$ gezeigt.

Petra Mutzel VO 8/9 am 8./15. Mai 2018 6

Dies...

beendet Flussalgorithmen