Florida: The American Dream

Loans In Limbo: Florida's Housing Challenge

April 2024: 3rd-Highest Foreclosure Rate **Foreclosure Rate:** 1 For Every 2,779 Homes

Our Team

Pranav Bhushan

David Dapaah

Chieng-Jui Huang

Tanmay Sakharkar

Henry Liu

Capstone

Final Presentation

Florida 30

Table of **Contents**

Evocutive Summary

Executive Summary

03

Data Overview & Highlights

05

Findings & Insights

02

Business Problem & Project Objectives

04

Model Description

06

Challenges & Workarounds

07 Recommendations & Opportunities

Executive Summary: Client Overview

Freddie Mac:

The Federal Home Loan Mortgage Corporation, also known as Freddie Mac, is a government-sponsored entity (GSE) dedicated to supporting the U.S. housing market.

- Mission: Promote stability and affordability in housing by purchasing and securitizing mortgages
- **Impact:** Ensures a steady flow of funds for homebuyers and renters

Stakeholders:

- Freddie Mac
- Fannie Mae
- Corporate Financial Institutions (e.g.: Wells Fargo, Chase Bank, etc.)
- Mortgage Payers
- Market Investors

Executive Summary: Project Overview

Goals:

- **1. Delinquency Prediction:** Predict delinquency rates for home loans in Florida, identifying patterns and trends
- **2. Payment Class Transition:** Predict the probability of loans already 30 days delinquent (Class 1) transitioning to different payment classes: Current (Class 0), 60 day delinquent (Class 2), 90 day delinquent (Class 3), or Repossession (Class RA or 4) over a one-year period
- **3. Factor Analysis:** Identify the key variables/factors contributing to loan delinquency, such as Credit Score or DTI Ratio
- **4. Model Validation:** Plot our delinquency model's prediction against the given data, and minimize the margin of error (MOE)

02

Business
Problem &
Project
Objectives

Business Problem & Project Objectives

Problem:

Florida presents unique challenges with its historically volatile housing market, seasonal population shifts, and natural disaster risks — making it an ideal test case for **developing models to estimate the probability of mortgage delinquency**

Objectives:

- 1. Identify Key Predictive Variables
- 2. Develop and Validate Predictive Models
- 3. Provide Data-Driven Insights For Decision Making

... 03

Data
Overview &
Highlights

Data Source

Freddie Mac Single Family Loan-Level Sample Historical Dataset for FL (2000-2018):

- 32 Features (Columns)
- 54,895 Loans (Rows)

Freddie Mac Single Family Loan-Level Sample Performance Dataset for FL (2000-2018):

- 32 Features (Columns)
- 950,000 Monthly Loan Payments (Rows)

Freddie Mac Single Family Loan-Level Cleaned Sample Dataset for FL (2000-2018):

- 32 Features (Columns)
- 9,941 Loans (Rows)

-Used cleaned dataset to do model selection, cross validation, and model training

Data Transformation

Data Transformation Steps:

1) Unpivot The Data To Show Reporting Periods As Columns:

	LOAN_SEQUENCE_NUMBER	02/01/2000	03/01/2000	04/01/2000	05/01/2000	06/01/2000	07/01/2000	08/01/2000	09/01/2000	10/01/2000
0	F00Q10000035	NaN								
1	F00Q10000049	NaN								
2	F00Q10000054	NaN								
3	F00Q10000091	NaN								
4	F00Q10000094	NaN								

2) Start Tracking For The Next 13 Months When Borrower Misses Their First Payment:

	LOAN_SEQUENCE_NUMBER	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	Month 9	Month 10	Month 11	Month 12	Month 13
0	F00Q10000116	1	0	0	0	0	0	0	0	0	0	NaN	NaN	NaN
1	F00Q10000238	1	0	0	0	0	0	0	0	0	0	0	0	0
2	F00Q10000355	1	2	3	3	3	3	3	3	3	RA	RA	NaN	NaN
3	F00Q10000736	1	1	2	NaN	NaN	NaN	NaN						
4	F00Q10000821	1	0	0	0	0	0	0	0	0	0	0	0	0

Data Cleaning & Merging

Data Cleaning Steps:

- 1) Replace 'RA' with '4'
- 2) Drop Rows Where the Delinquency Status For All Reporting Periods Is '0'
- **3)** Drop Rows Where There Is No Delinquency Status For Month 13

Data Merging: Utilized Inner Join on The Historical Dataset And The Performance Dataset On 'Loan Sequence Number'

Feature Exploration

LTV (Loan-to-Value) vs CLTV (Combined Loan-to-Value):

- Both measure loan-to-property value, but CLTV includes additional liens
- Frequent refinancing and high home equity loans in Florida cause these metrics to align closely

Maturity Year vs First Payment Year:

- The difference between these variables is the loan term length, which is often fixed
- Florida's housing market trends, such as its preference for traditional fixed-term loans, makes the maturity year and first payment year highly correlated

Feature Exploration

Original Loan Term vs Maturity Year:

- The maturity year is directly determined by the original loan term and the loan start date
- In Florida, the prevalence of standardized loan terms (e.g., 15- or 30-year mortgages) creates a direct relationship, leading to high collinearity

Address Multicollinearity:

- Reduce Redundant Information: Eliminate or combine variables with overlapping information
- Set Threshold: Remove variables with correlation coefficients exceeding 80% to ensure model stability

.....

04

Model Description

Feature Exploration

Address Outliers To Improve Model Quality:

- Replace outliers with mean values
- Focus on features where outliers exceed a threshold of >5% of the data

Actions Taken:

- Features Removed Due to Excessive Outliers:
 - Mortgage Insurance %
 - Original Loan Term
 - Debt-to-Income (DTI) Ratio
 - Maturity Year
 - Loan-to-Value (LTV)

Determine Model Specification

Accuracy as Measurement

What

Finalize Model Specification

Random Forest is Better Due to XGBoost Having The Following Issues:

- Overfitting: Limits learning from all features & increases dependency on one feature
- Consequence: Feature Bias & reduced robustness & lack of generalization

Features in the Random Forest Model

Payment History

Categorical Features

Numeric Features

 From Month 2 to Month 12

- First Time Buyer
- Property Valuation Method
- Metropolitan Statistical Area

- Credit Score
- Original Combined Loan-to-Value
- First Payment Year
- Maturity Month
- First Payment Month
- Number of Borrowers
- Number of Property Units

.....

05

Findings & Insights

Model Evaluation

Random Forest Classifier

Key Attribute: Subsampling

- Random subset of features for every split
- Lower risk of overreliance on specific features

Less Prone to Overfitting: spreads importance across a variety of features

Gradient Boosting Classifier

Accuracy

91%

(Average from 5-Fold Cross-Validation)

Key Attribute: Sequentiality

- Sequential trees attempt to correct errors of prior trees
- Higher risk of emphasizing dominant features

More Prone to Overfitting: specific features may be excessively emphasized

Revisiting Features

Actual vs Predicted Probability Distribution of Class 1

	0	1	2	3	RA
Predicted	67.03	5.81	2.08	24.5	0.56
Actual	66.08	6.66	2.61	23.98	0.64

*In Percentage (%)

Takeaways

Payment History is the Most Important Predictor:

- Consistent across both models
- Recent payment history (Months 6-12) is the most valuable predictor
- Additional Important Features:
 - Credit Score
 - Original Unpaid Balance (Amount Borrowed)
 - Original Interest Rate

Freddie Mac should place much higher emphasis on evaluating the most recent history of how a loan has been performing compared to initial attributes of the loan.

Challenges & Workarounds

06

Challenges

Data Issues

Incomplete Data: Missing values in critical variables

Class Imbalance: Unequal distribution across payment classes

Historical Data Size:

Large and comprehensive, though computationally intensive

Modeling Constraints

Random Forest Limitations:

Computationally intensive and less interpretable

Feature Importance:

Difficulty in determining the most impactful features without over-reduction in dimensionality

Operational Constraints

Time:

Project timeline constraints restricted model exploration and fine-tuning for deeper analysis

Computational Power:

Insufficient tools for processing large datasets efficiently

Workarounds

Data Handling

Imputation:

Replaced missing values in critical features

Outlier Handling:

Dropped features with more than 5% outliers

Dimension Reduction:

Removed irrelevant columns (e.g., "Postal Code")

Improved Modeling

Replaced XGBoost With Random Forest:

Replace the model for better generalization and to mitigate overfitting

Feature Elimination:

Eliminated certain features to identify the most predictive variables while avoiding over-reduction

Workflow Optimization

Streamlined Data:

Used sample dataset instead of historical dataset in order to reduce total code output generation time

Created ETL Pipeline:

Created an ETL pipeline to load, clean, and transform the data in a sequential manner

07

Recommendations & Opportunities

Incorporate Recent Payment History:

- Focus on analyzing the last six months of payment data to assess trends in financial stability
- Use timely payments as a positive indicator of recovery and missed payments as a warning sign for further delinquency

Leverage Credit Score Insights:

- Prioritize borrowers with high credit scores for recovery programs or retention efforts
- Develop targeted interventions for borrowers with low credit scores to mitigate delinquency risks

Consider The Impact of Original UPB:

- Pay closer attention to borrowers with higher UPB, as larger loan sizes may indicate a higher risk of financial strain
- Tailor repayment plans or refinancing options for borrowers with lower UPB to ensure affordability

Factor In Original Interest Rates:

- Identify high-interest loans as potential stress points and consider offering rate modifications or consolidation options
- Use low-interest loans as indicators of borrowers with higher recovery potential and less financial burden

	0	1	2	3	RA
Predicted	67.03	5.81	2.08	24.5	0.56
Actual	66.08	6.66	2.61	23.98	0.64

*In Percentage (%)

Focus on High-Risk Borrowers (Class 3):

 Allocate resources to borrowers in worsening conditions (Class 3) through targeted loan restructuring and intensive outreach programs to minimize financial losses

Implement Early Interventions (Class 1 and 2):

 Offer forbearance, repayment plans, or financial counseling to borrowers who are 30-60 days delinquent to prevent escalation to more severe delinquency

	0	1	2	3	RA
Predicted	67.03	5.81	2.08	24.5	0.56
Actual	66.08	6.66	2.61	23.98	0.64

*In Percentage (%)

Maintain Positive Status for Current Borrowers (Class 0):

 Introduce incentives like interest rate reductions or rewards for consistent payments to ensure borrowers stay current

Strengthen Communication and Support:

 Provide clear repayment options, personalized assistance, and financial counseling to enhance borrower engagement and satisfaction

Opportunities

Expand Predictive Modeling Beyond Current Use Cases:

- Apply prediction models for other scenarios such as COVID-19 impact analysis, identifying trends in payment behavior, or forecasting recovery rates for economic shocks
- Use these models to address emerging challenges beyond traditional delinquency management

Validate Models With Historical Data:

- Test and refine models using actual historical data to ensure robustness and accuracy
- Showcase the accuracy of these models in predicting key outcomes, building confidence in their application

Opportunities

Drive Business Efficiency Through Insights:

- Use insights from predictive models to optimize resource allocation for high-risk borrowers and tailor interventions
 - This, in-turn, helps reduce delinquency rates and financial losses while improving overall portfolio performance

Leverage Data For Adjacent Business Areas:

- Apply similar strategies in adjacent business areas like auto loan or credit card loan product design to open new growth avenues
- Use data-driven recommendations to scale programs that work effectively, such as early interventions or rewards for positive borrower behavior

Thank You!

Questions?