Section 3.3 – Properties of Division

Long Division

Divide
$$(x^3 + 2x^2 - 5x - 6) \div (x+1)$$

Quotient
$$x^2 + x - 6$$

$$x+1)x^3 + 2x^2 - 5x - 6$$
Divisor
$$x^3 + x^2$$

$$x^2 - 5x$$

$$x^2 - x$$

$$x^2 - 6x - 6$$

$$-6x - 6$$

$$-6x - 6$$

$$0$$
Remainder
$$Q(x) = x^2 + x - 6$$

$$R(x) = 0$$

Example

Use the long division to find the quotient and the remainder: $(x^4 - 16) \div (x^2 + 3x + 1)$

Solution

$$x^{2} - 3x + 8$$

$$x^{2} + 3x + 1 x^{4} + 0x^{3} + 0x^{2} + 0x - 16$$

$$x^{4} + 3x^{3} + x^{2}$$

$$-3x^{3} - x^{2}$$

$$-3x^{3} - 9x^{2} - 3x$$

$$8x^{2} + 3x - 16$$

$$8x^{2} + 24x + 8$$

$$-21x - 24$$

$$\frac{x^{4} - 16}{x^{2} + 3x + 1} = x^{2} - 3x + 8 + \frac{-21x - 24}{x^{2} + 3x + 1}$$

$$x^{4} - 16 = (x^{2} + 3x + 1)(x^{2} - 3x + 8) + (-21x - 24)$$

Remainder Theorem

If a number c is substituted for x in the polynomial f(x), then the result f(c) is the remainder that would be obtained by dividing f(x) by x-c.

That is, if
$$f(x) = (x-c)Q(x) + R(x)$$
 then $f(c) = R$

Example

If $f(x) = x^3 - 3x^2 + x + 5$, use the remainder theorem to find f(2)

Solution

$$x^{2}-x-1$$

$$x-2)x^{3}-3x^{2}+x+5$$

$$x^{3}-2x^{2}$$

$$-x^{2}+x$$

$$-x^{2}+2x$$

$$-x+5$$

$$-x+2$$

$$3$$

$$f(2) = 3$$

Factor Theorem

A polynomial f(x) has a factor x-c if and only if f(c) = 0

Example

Show that x-2 is a factor of $f(x) = x^3 - 4x^2 + 3x + 2$.

Solution

Since
$$f(2) = (2)^3 - 4(2)^2 + 3(2) = 0$$

From the factor theorem; x-2 is a factor of f(x).

Synthetic Division

Use synthetic division to find the quotient and the remainder of $\left(4x^3 - 3x^2 + x + 7\right) \div (x - 2)$

Example

If $f(x) = 3x^5 - 38x^3 + 5x^2 - 1$, use the synthetic division to find f(4).

Solution

$$f(4) = 719$$

Example

Show that -11 is a zero of the polynomial $f(x) = x^3 + 8x^2 - 29x + 44$

Solution

$$-11$$
 | 1 | 8 | -29 | 44 | -11 | 33 | -44 | Thus, $f(-11) = 0$, and -11 is a zero of f .

The Rational Zeros Theorem

If the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ has integer coefficients and if $\frac{c}{d}$ is a rational zero of f(x) such that c and d have no common prime factor, then

- 1. The numerator c of the zero is a factor of the constant term a_0
- 2. The denominator d of the zero is a factor of the leading coefficient a_n

possible rational zeros =
$$\frac{\text{factors of the constant term } a_0}{\text{factors of the leading coefficient } a_n} = \frac{\text{possibilities for } a_0}{\text{possibilities for } a_n}$$

Example

Find all rational solutions of the equation: $3x^4 + 14x^3 + 14x^2 - 8x - 8 = 0$

Solution

possibilities for a ₀	±1, ±2, ±4, ±8
possibilities for a _n	±1, ±3
possibilities for c/d	± 1 , ± 2 , ± 4 , ± 8 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{4}{3}$, $\pm \frac{8}{3}$

Using the calculator, the result will show that -2 is a zero.

We have the factorization of: $(x+2)(3x^3+8x^2-2x-4)=0$

For
$$3x^3 + 8x^2 - 2x - 4 \implies \frac{c}{d} = \frac{\pm 1, \pm 2, \pm 4}{\pm 1, \pm 3}$$

 $x = -\frac{2}{3}$ is another solution.

We have the factorization of: $(x+2)(x+\frac{2}{3})(3x^2+6x-6)=0$

By applying quadratic formula to solve: $3x^2 + 6x - 6 = 0 \implies x = -1 \pm \sqrt{3}$

Hence, the polynomial has two rational roots x = -2 and $-\frac{2}{3}$ and two irrational roots $x = -1 \pm \sqrt{3}$.

Exercises Section 3.3 – Properties of Division

1. Find the quotient and remainder if f(x) is divided by p(x):

$$f(x) = 2x^4 - x^3 + 7x - 12;$$
 $p(x) = x^2 - 3$

- 2. Find the quotient and remainder if f(x) is divided by p(x): $f(x) = 3x^3 + 2x 4$; $p(x) = 2x^2 + 1$
- 3. Find the quotient and remainder if f(x) is divided by p(x): f(x) = 7x + 2; $p(x) = 2x^2 x 4$
- **4.** Find the quotient and remainder if f(x) is divided by p(x): f(x) = 9x + 4; p(x) = 2x 5
- 5. Use the remainder theorem to find f(c): $f(x) = x^4 6x^2 + 4x 8$; c = -3
- **6.** Use the remainder theorem to find f(c): $f(x) = x^4 + 3x^2 12$; c = -2
- 7. Use the factor theorem to show that x-c is a factor of f(x): $f(x) = x^3 + x^2 2x + 12$; c = -3
- 8. Use the synthetic division to find the quotient and remainder if the first polynomial is divided by the second: $2x^3 3x^2 + 4x 5$; x 2
- 9. Use the synthetic division to find the quotient and remainder if the first polynomial is divided by the second: $5x^3 6x^2 + 15$; x 4
- 10. Use the synthetic division to find the quotient and remainder if the first polynomial is divided by the second: $9x^3 6x^2 + 3x 4$; $x \frac{1}{3}$
- 11. Use the synthetic division to find f(c): $f(x) = 2x^3 + 3x^2 4x + 4$; c = 3
- 12. Use the synthetic division to find f(c): $f(x) = 8x^5 3x^2 + 7$; $c = \frac{1}{2}$
- 13. Use the synthetic division to find f(c): $f(x) = x^3 3x^2 8$; $c = 1 + \sqrt{2}$
- **14.** Use the synthetic division to show that c is a zero of f(x):

$$f(x) = 3x^4 + 8x^3 - 2x^2 - 10x + 4;$$
 $c = -2$

15. Use the synthetic division to show that c is a zero of f(x):

$$f(x) = 27x^4 - 9x^3 + 3x^2 + 6x + 1;$$
 $c = -\frac{1}{3}$

16. Find all values of k such that f(x) is divisible by the given linear polynomial:

$$f(x) = kx^3 + x^2 + k^2x + 3k^2 + 11; x + 2$$

- 17. Find all solutions of the equation: $x^3 x^2 10x 8 = 0$
- **18.** Find all solutions of the equation: $x^3 + x^2 14x 24 = 0$

- 19. Find all solutions of the equation: $2x^3 3x^2 17x + 30 = 0$
- **20.** Find all solutions of the equation: $12x^3 + 8x^2 3x 2 = 0$
- 21. Find all solutions of the equation: $x^4 + 3x^3 30x^2 6x + 56 = 0$
- **22.** Find all solutions of the equation: $3x^5 10x^4 6x^3 + 24x^2 + 11x 6 = 0$
- 23. Find all solutions of the equation: $6x^5 + 19x^4 + x^3 6x^2 = 0$