Sobre los números normales y el espacio $^{\omega}2$

Angel Granado

angel.granado@correo.unimet.edu.ve Universidad Metropolitana.

March 8, 2023

Definición. Sea $x \in [0,1]$ y $\{a_n\}_{n<\omega} \in {}^{\omega}2$ el desarrollo binaria de x. Sea $S_n(x)$ la cantidad de 1's en la expansión binaria de x en los primeros n términos. Decimos que x es un **número simplemente** normal en base 2 si

$$\lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

Denotaremos por SN_2 al conjunto de todos los números $x \in [0, 1]$ que son simplemente normales en base 2 y por $\mathcal{B}([0, 1])$ a la σ -álgebra de Borel del [0, 1] dotado de la topología usual. Observe que $SN \in \mathcal{B}([0, 1])$, en efecto:

Si $x \in SN_2$ entonces existe $t \in {}^{\omega}2$ tal que $x = \sum_{i < \omega} \frac{t_i(x)}{2^{i+1}}$ y

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i < n} t_i = \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

$$A_n = \left\{ x \in [0, 1] : \left| \frac{1}{n+1} \sum_{i \le n} x_i - \frac{1}{2} \right| < \frac{1}{k} \right\}$$

Unos de los resultados más célebres del **Teorema Fuerte de los Grandes Números** fue formulado por Borel (1909) términos de los números normales en base 2:

Teorema (Borel 1909). Todos los números en [0,1] son simplemente normales en base 2, excepto por un conjunto de Borel de medida 0.

Es decir, si $m: \mathcal{L} \to [0, +\infty)$ es la medida de Lebesgue entonces

$$m\left(\left\{x \in [0,1] : \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}\right\}\right) = 1$$

Definición. El **Espacio de Cantor** es el conjunto $^{\omega}2$ de todas las funciones $s:\omega\to 2$ cuya topología es el ω -producto del espacio $2=\{0,1\}$, donde 2 está equipado con la topología discreta.

La topología del espacio $^{\omega}2$.

La topología del espacio de Cantor está generada por la base conformada por los conjuntos de la forma

$$B_s = \{ t \in {}^{\omega}2 : s \subseteq t \}$$

donde s es una sucesión finita de 1's y 0's. Si $d: {}^{\omega}2 \times {}^{\omega}2 \to [0, +\infty)$ definida como

$$d(s,t) = \frac{1}{2^{\min\{n < \omega : s(n) \neq t(n)\}}}$$

para $s, t \in {}^{\omega}2$. Entonces, d es una métrica sobre el espacio de Cantor e induce la topología generada por los abiertos básicos B_s . Así que el espacio de Cantor es metrizable.

Para definir una medida sobre el espacio de Cantor, es necesario hacer uso del siguiente teorema:

Teorema 1 (Halmos 38B). Si $\{(X_i, S_i, \mu_i)\}_{i < \omega}$ es una sucesión de espacios de medida tales que $\mu_i(X_i) = 1$ para $i < \omega$, entonces existe una única medida μ sobre la σ -álgebra $S = \bigotimes_{i < \omega} S_i$ con la propiedad que, para cada conjunto medible E de la forma $A \times X^{(n)}$, donde $X^{(n)} = \prod_{i > n} X_i$, se verifica

$$\mu(E) = (\mu_1 \times \cdots \times \mu_n)(A)$$

la medida μ se denomina el **producto** de las medidas μ_i , $\mu = \bigotimes_{i < \omega} \mu_i$. El espacio de medida

$$\left(\prod_{i<\omega} X_i, \bigotimes_{i<\omega} S_i, \bigotimes_{i<\omega} \mu_i\right)$$

es el **Producto Cartesiano** es los espacio de medida $\{(X_i, S_i, \mu_i)\}_{i < \omega}$.

Demostración. Halmos 1950, Teorema 38B.

En virtud del **teorema 1**, existe una única medida μ definida sobre la σ -álgebra de Borel sobre $^{\omega}2$, tal que si B_s es un abierto básico donde $s \in {}^{n}2$ entonces $\mu(B_s) = \frac{1}{2^{n}}$. Denotaremos también por μ a la completación de la medida definida sobre el espacio de Cantor. De esta forma, los subconjuntos de $^{\omega}2$ para los cuales esta medida está definida se denominan subconjuntos medibles de $^{\omega}2$.

Teorema 2.

- 1. Para cada $t \in {}^{\omega}2$, la serie $\sum_{n<\omega} \frac{t_n}{2^{n+1}}$ converge y $0 \le \sum_{n<\omega} \frac{t_n}{2^{n+1}} \le 1$.
- 2. Para cada $x \in [0,1]$ existe un $t \in {}^{\omega}2$ tal que $x = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$.
- 3. Para $s, t \in {}^{\omega} 2 \sum_{n < \omega} \frac{s_n}{2^{n+1}} < \sum_{n < \omega} \frac{t_n}{2^{n+1}}$ si y sólo si existe un $m < \omega$ tal que $s_n = t_n$ para n < m, $s_m = 0$ y $t_m = 1$, y existe un n > m tal que $s_n = 0$ o $t_n = 1$.

- 4. Para $s,t \in {}^{\omega}2$, $\sum_{n<\omega} \frac{s_n}{2^{n+1}} = \sum_{n<\omega} \frac{t_n}{2^{n+1}}$ si y sólo si s=t o si existe un $m<\omega$ tal que $s_n=t_n$ para n< m, $s_m \neq t_m$ y para toda n>m se tiene que $s_n=t_m$ y $t_n=s_m$.
- 5. Para $x \in [0,1]$ existe un único $t \in {}^{\omega}2$ tal que $x = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$, excepto en los casos donde x > 0 y tiene fracciones binarias finitas, en ese caso x tiene dos expresiones binarias.
- 6. La cardinalidad del conjunto de todos los $x \in [0,1]$ con fracciones binarias finitas es \aleph_0 .

Definición. Sea $k: {}^{\omega}2 \to [0,1]$ la función dada por $k(t) = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$, k se denomina el **mapeo** estándar de ${}^{\omega}2$ sobre [0,1].

Proposición 1. k es una función continua y sobreyectiva. Si W es el conjunto de los miembros no estancados de $^{\omega}2$ entonces $k \upharpoonright W$ es un homeomorfismo de W sobre el conjunto de todos los $x \in [0,1]$ que no poseen fracciones binarias finita.

Lema 1.Sea k el mapeo estándar de $^{\omega}2$ sobre [0,1]. Si $B_s\subseteq {^{\omega}2}$ es un abierto básico, entonces

$$k[B_s] = \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$$

Demostración. Sea $s \in {}^{n}2$ y $B_s = \{t \in {}^{\omega}2 : s \subseteq t\}$, si $x \in \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$ entonces existe un $a \in {}^{\omega}2$ tal que

$$x = \sum_{i < \omega} \frac{t_i}{2^{i+1}} = \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i > n} \frac{t_i}{2^{i+1}}$$

Si $x \in k[B_s]$ entonces existe un $t \in B_s$ tal que

$$x = \sum_{i < \omega} \frac{t_i}{2^{i+1}} = \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i > n} \frac{t_i}{2^{i+1}}$$

En consecuencia,

$$x \le \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i \ge n} \frac{1}{2^{i+1}}$$

$$= \sum_{i < n} \frac{s_i}{2^{i+1}} + 1 - \frac{1 - (1/2)^n}{1/2}$$

$$= \sum_{i < n} \frac{s_i}{2^{i+1}} - 1 + \frac{1}{2^{n-1}}$$

$$\le \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}$$

Además,

$$x = \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i \ge n} \frac{t_i}{2^{i+1}} \ge \sum_{i < n} \frac{s_i}{2^{i+1}}$$

Lo que implica que

$$k[B_s] \subseteq \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n} \right]$$

Por otra parte, si $\left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$ entonces existe un $t \in {}^{\omega}2$ tal que x = k(t). Luego, por el **Teorema 2**, se tiene que

$$\sum_{i < n} \frac{t_i}{2^{i+1}} = \sum_{i < n} \frac{s_i}{2^{i+1}}$$

Lo que implica que $t_i = s_i$ para i < n. En consecuencia, $t \in B_s$ y $x \in k[B_s]$.

Proposición 2. Sea F una σ -álgebra de subconjuntos de X y sea μ una medida sobre F. Sea G la colección de subconjuntos de X dada por

$$G=\{A\cup N: A\in F\ \&\ (\exists Z\in F)(\mu(Z)=0\ \&\ N\subseteq Z)\},$$

entonces G es una σ -álgebra que contiene a F. Sea

$$\overline{\mu} = \{ \langle A \cup N, s \rangle : A \in F \& \mu(A) = s \& (\exists Z \in F)(\mu(Z) = 0 \& N \subseteq Z) \}$$

Demostración. Halmos 1950, Teorema 13B.

Proposición 3. Sea k el mapeo estándar de $^{\omega}2$ sobre [0,1]. Para cada subconjunto B de $^{\omega}2$, B es medible si y sólo si k[B] es medible. Si ambos conjuntos son medibles entonces $m(k[B]) = \mu(B)$.

Demostración. Observe que B es un conjunto de Borel si y solo si k es un conjunto de Borel. Primero probemos que $m(k[B]) = \mu(B)$ para todo conjunto de Borel B. Sea $s \in {}^{n}2$, consideremos el abierto básico $B_{s} = \{t \in {}^{\omega}2 : s \subseteq t\}$, entonces por definición: $\mu(B_{s}) = \frac{1}{2^{n}}$. Luego, por el **Lema 1**

$$k[B_s] = \left[\sum_{i \le n} \frac{s_i}{2^{i+1}}, \sum_{i \le n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$$

En consecuencia, $\mu(B_s) = \frac{1}{2^n} = k[B_s]$. Ahora definamos a $\overline{\mu}$ una función de conjuntos definida para todo conjunto de Borel en el espacio de Cantor, como $\overline{\mu}(B) = m(k[B])$ para todo conjunto de Borel B. Observe que $\overline{\mu}$ es una, en efecto:

1. Es claro que

$$\overline{\mu}(\emptyset) = m(k[\emptyset]) = m(\emptyset) = 0$$

2. Sea $\{A_n\}_{n<\omega}$ es una sucesión de conjuntos de Borel de $^\omega 2$ disjuntos dos a dos. Sea Z el conjunto de todos los $x\in [0,1]$ que poseen un desarrollo binario finito, como Z es numerable entonces $m(Z_A)=0$. Además, puesto que Z y $k[A_n]$ son conjuntos de Borel para $n<\omega$, $\{k[A_n]\setminus Z\}_{n<\omega}$ es una sucesión de conjuntos de Borel disjunta dos a dos. En consecuencia,

$$\overline{\mu}\Big(\bigcup_{i<\omega} A_n\Big) = m\Big(k\Big[\bigcup_{i<\omega} A_n\Big]\Big) - \underbrace{m(Z)}_{=0}$$

$$= m\Big(\bigcup_{i<\omega} (k[A_n] \setminus Z)\Big)$$

$$= \sum_{i<\omega} m(k[A_n] \setminus Z)$$

$$= \sum_{i<\omega} [\underbrace{m(k[A_n])}_{=\overline{\mu}(A_n)} - \underbrace{m(Z)}_{=0}]$$

$$= \sum_{i<\omega} \overline{\mu}(A_n)$$

Lo que muestra que $\overline{\mu}$ es una medida sobre todos los subconjuntos de Borel del espacio $^{\omega}2$. Luego, si $s \in {}^{n}2$ entonces por construcción verifica que $\overline{\mu}(B_s) = \frac{1}{2^n} = m(k[B_s])$. Entonces, en virtud del

Teorema 1, $\overline{\mu} = \mu$. Lo que muestra que $\mu(B) = m(k[B])$ para todo subconjunto de Borel $B \subseteq {}^{\omega}2$.

Ahora, sea $B \subseteq {}^{\omega}2$ un conjunto medible. Por el **Proposición 2**, existen $C, Z \in \mathcal{B}({}^{\omega}2)$ y $N \subseteq Z$ tales que $B = C \cup N$ y $\mu(Z) = 0$. Como C y Z son conjuntos de Borel de ${}^{\omega}2$, entonces k[C] y k[Z] son conjuntos de Borel de [0,1] y $m(k[Z]) = \mu(Z) = 0$. Esto implica que k[N] es medible puesto que m es una medida completa y $k[N] \subseteq k[Z]$. En consecuencia, $k[B] = k[C] \cup k[N]$ es medible y

$$m(k[B]) = m(k[C] \cup k[N]) = m(k[C]) = \mu(C) = \mu(C) + \underbrace{\mu(N)}_{=0} = \mu(B)$$

Por ultimo, tomemos un $B \subseteq {}^{\omega}2$ tal que k[B] es medible, probemos que B es medible. Si k[B] es un conjunto medible entonces existen $A, Z \in \mathcal{B}([0,1])$ con m(Z)=0 tales que existe un $N \subseteq Z$ y $k[B]=A \cup N$. Consideremos el conjunto W de todos los números que pertenecen al intervalo [0,1] que poseen desarrollo binario finito, como Z es numerable, entonces es medible y m(Z)=0. Como m es una medida completa, tenemos que N es medible y m(N)=0.

Terminar!

Lema 1. Sea $x \in [0,1]$, $a \in {}^{\omega}2$ tal que x = k(a) y $A = \{i < \omega : a_i = 1\}$. Entonces, x es simplemente normal en base 2 si y sólo si A tiene densidad asintótica igual a $\frac{1}{2}$.

Demostración. (\Rightarrow) Supongamos que $x \in [0,1]$ es un número simplemente normal en base 2. Entonces,

$$\lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2} \tag{1}$$

Luego, existe un $a \in {}^{\omega}2$ tal que x = k(A). Sea $A = \{i < \omega : a_i = 1\}$, entonces

$$\frac{S_n(x)}{n} = \frac{\sum_{i < n+1} a_i}{n} = \frac{|A \cap n|}{n}$$

Por (1), se tiene que

$$\underline{d(A)} = \liminf_{n \to \infty} \frac{|A \cap n|}{n} = \liminf_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

У

$$\overline{d(A)} = \limsup_{n \to \infty} \frac{|A \cap n|}{n} = \limsup_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

Lo que implica que la densidad asintótica de A existe y es igual a $\frac{1}{2}$.

(\Leftarrow) De forma reciproca. Si $a \in {}^{\omega}2$, $A = \{i < \omega : a_i = 1\}$ y $d(A) = \frac{1}{2}$ entonces, como $\frac{S_n(x)}{x} = \frac{|A \cap n|}{x}$, tenemos que

$$\liminf_{n \to \infty} \frac{S_n(x)}{n} = \liminf_{n \to \infty} \frac{|A \cap n|}{n} = \frac{1}{2} \text{ y } \limsup_{n \to \infty} \frac{S_n(x)}{n} = \limsup_{n \to \infty} \frac{|A \cap n|}{n} = \frac{1}{2}$$
(2)

Por (2), obtenemos que

$$\lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

En consecuencia, x es un número simplemente normal.

Lema 2. Sea $k: {}^{\omega}2 \to [0,1]$ el mapeo estándar de ${}^{\omega}2$ sobre el intervalo [0,1]. Si

$$Char_{[0,1]} = \left\{ \chi_A \in {}^{\omega}2 : d(A) = \frac{1}{2} \right\} \text{ y } SN_2 = \left\{ x \in [0,1] : \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2} \right\},$$

entonces $k[Char_{[0,1]}] = SN_2$.

Demostración. Sea $x \in k[Char_{[0,1]},$ entonces existe un $a \in Char_{[0,1]}$ tal que $x = k(a) = \sum_{i < \omega} \frac{a_i}{2^{(i+1)}}$. Si $A = \{i < \omega : a_i = 1\}$ entonces $d(A) = \frac{1}{2}$, esto implica que $a \in Char_{[0,1]}$. Luego, en virtud del **Lema 1**, $x = k(A) \in SN_2$ lo que muestra que

$$Char_{[0,1]} \subseteq SN_2 \tag{3}$$

Si $x \in SN_2$ entonces existe un $a \in {}^{\omega}2$ tal que x = k(a). Consideremos el conjunto $A = \{i < \omega : a_i = 1\}$, por el **Lema 1**, $d(A) = \frac{1}{2}$ y en consecuencia $a \in Char_{[0,1]}$. Esto implica que $x = k(a) \in k[Char_{[0,1]}]$. De (3) y (4) obtenemos:

$$k[Char_{[0,1]}] = SN_2$$

Definición. Sea $A \subseteq \mathbb{N}$, la densidad asintótica superior de A se define como

$$\overline{d(A)} = \limsup_{n \to \infty} \frac{|A \cap n|}{n}$$

De forma análoga, se define la **densidad asintótica inferior** de A como

$$\underline{d(A)} = \liminf_{n \to \infty} \frac{|A \cap n|}{n}$$

Decimos que A tiene **densidad asintótica** d(A) si $\underline{d(A)} = \overline{d(A)}$, y en ese caso:

$$d(A) = \underline{d(A)} = \overline{d(A)}$$

Algunas observaciones:

- 1. d(A) y $\overline{d(A)}$ siempre existen y $0 \le d(A) \le \overline{d(A)} \le 1$.
- 2. Si $A \subseteq \mathbb{N}$ y d(A) existe entonces $0 \le d(A) \le 1$.
- 3. Si $A \subseteq \mathbb{N}$ es finito entonces d(A) = 0 y $d(\mathbb{N} \setminus A) = 1$.

Ejemplos:

- 1. Si $A = \{n^2 : n < \omega\}$ entonces d(A) = 0.
- 2. Si $A = \{n < \omega : n \mod 2 = 0\}$ entonces $d(A) = \frac{1}{2}$ y $d(\mathbb{N} \setminus A) = \frac{1}{2}$.
- 3. Si P es el conjunto de todos los números primos, entonces d(P) = 0.
- 4. Sea x un numero simplemente normal en base 2 y $a \in {}^{\omega}2$ tal que x = k(a). Si

$$A = \{i < \omega : a_i = 1\}$$

entonces $d(A) = \frac{1}{2}$.

Como consecuencia inmediata del **Lema 2** y de la **Proposición 3**, el **Teorema de Borel** sobre los números simplemente normales en base 2 puede ser formulado en términos de la densidad asintótica:

Teorema 3 Todos los números en el intervalo [0,1] son simplemente normales en base 2, excepto por un conjunto de Borel de medida 0; si y sólo si el conjunto de todas las sucesiones $\chi_A \in {}^{\omega}2$ con $A \subseteq \mathbb{N}$ y $d(A) = \frac{1}{2}$, es un conjunto de medida 1 con respecto a la medida del espacio de Cantor.

Es decir,

$$m\left(\left\{x \in [0,1] : \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}\right\}\right) = 1 \iff \mu\left(\left\{\chi_A \in {}^{\omega}2 : d(A) = \frac{1}{2}\right\}\right) = 1$$

Demostración. Por el Lema 2, se verifica:

$$k\left[\left\{\chi_A \in {}^{\omega}2 : d(A) = \frac{1}{2}\right\}\right] = \left\{x \in [0,1] : \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}\right\}$$

Luego, por la **Proposición 3**, $\left\{\chi_A\in {}^\omega 2:d(A)=\frac{1}{2}\right\}$ es medible si y sólo si $\left\{x\in [0,1]:\lim_{n\to\infty}\frac{S_n(x)}{n}=\frac{1}{2}\right\}$ es medible y

$$\mu\Big(\Big\{\chi_A\in {}^{\omega}2: d(A)=\frac{1}{2}\Big\}\Big)=m\Big(k\Big[\Big\{\chi_A\in {}^{\omega}2: d(A)=\frac{1}{2}\Big\}\Big]\Big)=m\Big(\Big\{x\in [0,1]: \lim_{n\to\infty}\frac{S_n(x)}{n}=\frac{1}{2}\Big\}\Big)$$

Lo que termina la demostración.

Referencias

- 1. Folland, G. B. (1999). Real Analysis: Modern Techniques and Their Applications. John Wiley & Sons INC.
- 2. Halmos, P. R. (1950). Measure Theory. Springer-Verlag.
- 3. Haseo, K., & Linton, T. (1994). Normal numbers and subsets of N with given densities. Fundamenta Mathematicae, 163-179.
- 4. Kechris, A. S. (1995). Classical Descriptive Set Theory. Springer-Verlag.
- 5. Levy, A. (1979). Basic Set Theory. Springer-Verlag Berlin Heidelberg.
- 6. Taylor, M. E. (2006). Measure Theory and Integration. American Mathematical Society.