Lecture 1: Stata Basics

Yi Chen

ShanghaiTech University

2021

Outline

- Course Overview
- Introduction to Stata
- Oescribing Your Data
- 4 Data Manipulation
- 5 Stata Programming Basics
- 6 Running Regressions

Outline

- Course Overview
- 2 Introduction to Stata
- Oescribing Your Data
- Data Manipulation
- 5 Stata Programming Basics
- 6 Running Regressions

Course Logistics

Goal: Equip students with basic knowledge about software, which can be useful throughout all stages in an economic research.

 Idea - Literature - Data - Analysis - Tables/Figures - Writing -Presenting

Requirements:

- Know how to use a software "correctly."
- Know how to use a software "efficiently."
 - Efficiency in programming time
 - Efficiency in running time
- Know how to use a software "nicely."
 - Nice to the readers
 - Nice to your advisor (if work as RA)
 - Nice to co-authors/researchers trying to replicate your research
 - Also to (future) yourself!

Even if you have no interest in academia . . .

- Showing facts/writing/presenting are must-have skills for most technical jobs.
- Huge demand for skills in data analysis (data has been considered as the most valuable asset for many Internet companies).
- Jobs like data scientists/consulting welcome students with econ background.
 - e.g., Amazon is the second-largest employer of Econ PhD in the U.S. (behind Federal Reserve).

浏览器视频广告过滤功能是否构成不正当竞 争?北京知识产权法院:构成

百家号 01-06 17:27

新华社北京1月6日电(记者熊琳)日前,腾讯公司与世界星辉公司不正当竞 争纠纷一案尘埃落定。北京知识产权法院终审认定"世界之窗浏览器"讨浪广 告功能构成不正当竞争,判决世界星辉公司赔偿腾讯公司经济损失及合理支 出189万余元。

腾讯公司一审诉称,"世界之窗浏览器"软件系世界星辉公司开发经营,该浏 览器设置有广告过滤功能,用户可有效过滤"腾讯视频"网站在播放影片时的 片头广告和暂停广告, 使腾讯公司不能从该业务中获取直接收益。

一审法院认为,被诉行为不针对特定视频经营者,广告过滤功能属于行业惯 例,网络用户对浏览器广告过滤功能的使用,虽造成广告被浏览次数的减 少,但此种减少并不构成法律应予救济的"实际损害"。据此,一审法院驳回 了腾讯公司全部诉讼请求。

腾讯公司提起上诉。二审中,腾讯公司提交了有关过滤广告功能对网络视频。 行业影响的经济学分析报告。

How to Learn this Course Well?

Did you have following experience?

I read several textbooks on a language. I know how each command works. But I just cannot finish a project on my own.

From bricks to castle

A separate command is like a brick. The entire project is like a castle. What's the missing link?

This course would put greater emphasizes on combining simple commands to achieve a certain goal.

My Expectations

- From passive learning to active learning
- From remembering to understanding
- From answering questions to asking questions

Outline

- Course Overview
- Introduction to Stata
- Oescribing Your Data
- Data Manipulation
- 5 Stata Programming Basics
- 6 Running Regressions

Features of Stata

Stata = statistics + data

Advantage:

- Language: intuitive and easy to learn.
- Do-file: for easy replication.
 - Imagine how you work with an Excel sheet.
- Designed for economists
 - Lots of powerful user-written commands.

Disadvantage:

- Need to put the data into the memory first. Not suitable for handling "huge" data.
- Cumbersome if you wish to build your own econometric model.

Q: how to determine which software to learn?

What You Think Is What You Get

Many students find it difficult to learn Stata at the beginning. Probably because of the following reason:

- Word/Excel/PowerPoint share a common feature—What You See Is What You Get
- Stata, along with many other softwares (Matlab, LATEX, Python)—What You Think Is What You Get
- "Imagination" is very important! Once you get accustomed to this way of thinking, everything would be much easier!

Goal of this Lecture

- After this lecture (Stata Basics), you should be able to—solve econometrics problem sets.
- After next lecture (Stata advanced), you should be able to—do REAL empirical analysis.

Four Windows

- Result window—where you see the output
- Review window—where records the history of your command
- Variable window—where you can see the information of the variables after you load data
- Command window—where you type command
 - However, this is usually not the place where you type commands . . .

First Lesson in Stata—ALWAYS Use DO-file

What's a do-file? Essentially, it's a TEXT file.

Why it's important? You need hundreds (even thousands) of operations to transit from raw data to final output.

- Recording
- Reminder
- Organization
- Replication

Comments in Do-file

A Do-file = a collection of commands + comments

- Comments are for annotation only and will not be executed by Stata.
 - But using comments properly is VERY important for a "nice" do-file!
- Three ways of commenting
 - begin the line with *
 - begin the comment with // (at the beginning or at the end)
 - if the // indicator is at the end of a line, it must be preceded by one or more blanks
 - place the comment between /* and */ delimiters
- Another use of comments: temporarily "save"

Stata General Syntax

All Stata commands can be expressed in follow syntax (or a subset)

[prefix:] command [varlist] [= exp.] [if exp.] [in range] [weight =] [using filename] [, options]

- bysort and eststo are the two mostly used prefix. For some reasons, quietly does not come with a ":"
- We will talk about weight in the Data Analysis part.

If Commands are Too Long ...

change the end-of-line delimiter to ';' by using #delimit,

```
use mydata
#delimit;
summarize weight price displ headroom rep78 length turn gear_ratio
if substr(company,1,4)=="Ford" |
substr(company,1,2)=="GM", detail;
gen byte ford = substr(company,1,4)=="Ford";
#delimit cr
gen byte gm = substr(company,1,2)=="GM"

fragment of example.do —
```

using /* */ comment brackets or to use the /// line-join indicator

```
    tragment of example.do —

   use mydata
   summarize weight price displ headroom rep78 length turn gear_ratio /*
         */ if substr(company,1,4)=="Ford" |
                substr(company,1,2) == "GM", detail
  gen byte ford = substr(company,1.4) == "Ford"
   gen byte gm = substr(company,1,2) == "GM"
                                                               fragment of example.do
or

    fragment of example.do —

   use mydata
   summarize weight price displ headroom rep78 length turn gear_ratio ///
           if substr(company,1,4) == "Ford" |
              substr(company,1,2) == "GM", detail
   gen byte ford = substr(company,1,4) == "Ford"
   gen byte gm = substr(company,1,2) == "GM"
                                                                fragment of example.do -
```

Several Useful Short-Cuts in the Do-file Editor

- Ctrl + D (w/o any highlight): execute the whole do-file
- Ctrl + D (w highlight): execute the selected commands (can involve multiple lines)
- Ctrl + Shift + D: execute all the remaining codes from the cursor
- Alt + Cursor: rectangle selection
 - Keep you do-file tidy is not just for good-looking!

Resources for Learning Stata

- Undoubtedly, the best resource for learning Stata is... Stata itself.
 - help: if you know the very specific command
 - search: if you only have a general idea
- Many tutorials outside
 - https://stats.idre.ucla.edu/stata/
 - http://wlm.userweb.mwn.de/Stata/wstatbas.htm
 - Fei Wang's short note (Reading Material 1.1)
- Stata Journal—very good for advanced econometric program, such as rdrobust (Reading Material 1.2)

Outline

- Course Overview
- Introduction to Stata
- Oescribing Your Data
- 4 Data Manipulation
- Stata Programming Basics
- 6 Running Regressions

Know the data sufficiently WELL before doing any econometric analysis!

- Econometric models always need some assumptions.
 - Many of them are hard or even impossible to test.
- Data description does not require any assumption.

Load Data

- To load a data, first make sure the data is in the right place!
- Data loading: use command use cps4_small.dta,clear
- Data in Stata looks similar to an Excel sheet:
 - Each row represents an "observation."
 - Each column represents a "variable."

Data Description

- Data description describe summarize
- Sometimes you can use abbreviations—e.g., you can type sum instead of summarize.
 - But at the beginning, I encourage you to type the full command.
 - Stata also allows abbreviations for variable names. But I recommend NEVER doing so.

How to describe data: tabulate command

- tabulate is a very useful command to describe the frequency *discrete* variables (DO NOT use the command for continuous variable!)
- You can tabulate one variable tabulate female
- You can also tabulate two variables tabulate female married
- tabulate can not only report frequencies, but also shares tabulate female married, column tabulate female married, row

How to describe data: summarize command

- summarize not only can used to describe the whole data set, it can also be used on each variable separately summarize wage
- To see more details, you can add detail option, summarize wage, detail
- You can also summarize a list of variables: summarize wage educ exper hrswk

Using if condition

- Sometimes we do not wish to describe the full sample, instead, we may only want to learn the information of female.
- Logic conditions:
 - == equal to
 - != not equal to
 - <= less than or equal to; < less than</p>
 - >= greater than or equal to; > greater than
- You can add if condition to most Stata commands: summarize wage if female==1 tabulate married if female!=1
- IMPORTANT: "=" for expression; "==" for logic (Q: what does the following command mean?)

```
generate married_women = [married == 1] if female == 1
```

Combining Multiple Conditions

- You can also impose multiple if condition
 - | or
 - & and
- You can use bracket to specify the priority
- count command—count the observations that satisfy the condition(s)
 count if female==1&married==1
 count if (female==1 | married==1)&wage<=20
 count if female==1 | (married==1 &wage<=20</pre>

Exercise 1.1—Old Age Support in China

Data support.dta contains the follow information from three waves of CHARLS (China Health and Retirement Longitudinal Study)

FN097_w2 Who do you think you can rely on financially for old-age support? 如果您将来老了干不动工作了,您认为生活来源主要将是什么?

- Children 子女 → Skip to FN098_w2 请跳至 FN098_w2
- 2. Savings 储蓄结束本部分
- 3. Pension or retirement salary 养老金或退休金结束本部分
- Commercial pension insurance 商业养老保险结束本部分
- 5. Other 其他结束本部分

Try to answer following questions by using only tabulate

- Overall, what's the most important source of old-age support in China? Children or pension?
- Is the answer different for urban and rural residents?
- Chinese government has been improving the public pension system, especially in rural China. Can you find any sign of it from the data?

Sometimes, you can really know a lot simply by describing data!

How to describe data—plot graphs

Generally speaking, there are two types of graphs—oneway graph and twoway graph.

One-way graph is the graph that only requires one variable, a typical example is a histogram,

- histogram graph histogram wage
- To save the graph, use export graph command (make sure the graph window is open!)
 graph export hist_wage.wmf, replace

Two-way graph is the graph that requires two variables

- scatter graph (when you have two or more variables, make sure to start with twoway command, first y variable, then x variable!) twoway scatter wage educ
- You can also draw a fitted line twoway lfit wage educ
- But sometimes you wish to draw above two graphs together, use "()" or "||" to separate different graphs
 twoway (scatter wage educ) (lfit wage educ)
 or twoway scatter wage educ \$||\$ lfit wage educ

Simple graphs can also be very informative—"One Graph is Worth a Thousand Words"

Figure 2. Bunching at Different Thresholds of R&D Intensity, 2011

Notes: This figure plots the empirical distribution of R&D intensity for all manufacturing firms with R&D intensity between 0.5 percent and 15 percent in the Administrative Tax Return Database, Panel A reports the pooled data distribution with all sizes of firms. Panels B, C, and D report the R&D intensity distribution of small, medium, and large firms, respectively. Note that large fractions of the firms bunch at the thresholds (6 percent for small, 4 percent for medium, and 3 percent for large) at which they qualify to apply for the InnoCom certification.

Source: Administrative Tax Return Database. See Section IIA for details.

FIGURE 1 IMPACTS OF CHILDREN

From: Kleven, Henrik, Camille Landais and Jakob Egholt Søgaard. 2019. Children and Gender Inequality: Evidence from Denmark. American Economic Journal: Applied Economics, 11(4), 181–209.

Fig. 1. National total fertility rate of China, 1949–2002. Data source: Lu and Zhai (2009) "Sixty Years of New China Population."

From: Chen, Yi and Hanming Fang. 2021. The Long-Term Consequences of China's "Later, Longer, Fewer" Campaign in Old Age. Journal of Development Economics, 151, 102664.

Outline

- Course Overview
- 2 Introduction to Stata
- Oescribing Your Data
- Data Manipulation
- Stata Programming Basics
- 6 Running Regressions

Manipulate "Variables"

- After we know the data "sufficiently" well, we can start to analyze the data.
- But before running regressions, we may need to modify the data according to our needs.
- I assume you already know the basic commands, including: generate, replace, drop, keep.
 - drop and keep can be applied to BOTH variables and observations.
 - replace (or recode) are concrete examples of the conflict between "programming time" and "running time."
 - For large data sets, using generate→drop→rename maybe faster than using replace.

gen versus egen

- egen: extensions to generate
 - More complicated operations to variables/observations.
 - help egen
- Although the two commands look very similar and share some command features, they differ in some important aspects.
 - The same function may perform differently, e.g., sum
 - May treat missing value differently.
- It is important to check that what Stata DO is what you THINK.
 - "What You Think Is What You Get"

Stata Example—From CPI to Price Deflator

In economics, we often need to use "real" values. However, what we typically have is data on CPI.

You are given a time series of China's CPI "cpi.dta". You are asked to calculate a series of deflators that adjusts nominal values to the price level in 2000.

- What are the deflators?
- 4 How to compute the deflators using Excel?
- How to compute the deflators using Stata?

Stata Example—From CPI to Price Deflators (Cont.)

In the previous slides, we use the trick $\log(a \times b) = \log(a) + \log(b)$ to transform running multiplication to running sum.

Q: what if a (or b) is negative or equals to zero?

bysort: "generate" within each group

- Often, you wish to generate a value for each group. Take household for example,
 - Aggregate individual income to generate household income
 - Number of children/working adults/seniors in household
 - The best-educated in household
- When generating such kind of variables, you will not only use the information of the individual, but also use the information of other people in the same group.
- Stata example: count number of seniors (age≥60) for each household

Exercise 1.2—Keep "Nuclear" Households

Multi-generational households are often very difficult to analysis empirically. To keep the analysis simple, researchers often focus on "nuclear" households—households that are at most composed of father, mother, and young children (age < 18).

You are given a data (chip2002.dta) containing follow variables at individual level: age, relationship to household head. How to pick up those "nuclear" households?

Manipulate "Data"

- So far, we have been manipulating "variables."
- But sometimes, we may need to change the entire structure of the data. e.g., reshape.

- Other examples include: xpose, merge, append.
 - A "unique" identifier plays a central role in merge command. More details later.

Data in Excel format often looks like this:

GeoFips	GeoName	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957
00000	United States	1.93E+08	1.93E+08	2.14E+08	2.36E+08	2.49E+08	2.64E+08	2.71E+08	2.9E+08	3.1E+08	3.28E+08
01000	Alabama	2471947	2382967	2662225	3047380	3234463	3374775	3285389	3705568	3960676	4193495
02000	Alaska	(NA)									
04000	Arizona	856875	892996	978633	1198121	1338733	1440476	1499279	1641513	1840024	2011001
05000	Arkansas	1529473	1443263	1545153	1738594	1803288	1807509	1783027	1951398	2003164	2069298
06000	California	16328095	16930872	18884915	21407772	23483086	25383334	26392235	28848373	31709645	33987167
08000	Colorado	1706932	1742194	1907826	2229155	2369643	2395991	2487957	2717047	2968282	3295732
09000	Connecticut	3127814	3120784	3481317	3900173	4192305	4583649	4732791	5114012	5556616	5953327
10000	Delaware	435656	481420	553910	595260	634145	684774	716885	815169	960967	962796
11000	District of Columbia	1632778	1689982	1790171	1840925	1890377	1867970	1851862	1826556	1919532	1987674
12000	Florida	2942337	3095135	3520448	3899139	4377369	4893982	5193561	5933568	6824376	7549472
13000	Georgia	3048038	3080560	3562973	4078257	4349731	4515538	4521434	4977742	5317198	5481685
15000	Hawaii	(NA)									
16000	Idaho	689809	684967	741924	819019	890716	860570	876662	927298	1004086	1075804
17000	Illinois	13992219	13398699	14696564	15891440	16524568	17734981	18120771	19427214	20922155	21836490
18000	Indiana	5181118	4973942	5621879	6382212	6641141	7322346	7008221	7539316	8092990	8338189
19000	lowa	3850529	3264637	3776405	3961572	4186452	3990428	4383449	4160718	4403187	4886884
20000	Kansas	2332838	2345851	2636654	2880927	3327186	3194350	3425624	3434360	3617804	3811267
21000	Kentucky	2639642	2530635	2748592	3186199	3334931	3504870	3480265	3637744	3830789	3976619
22000	Louisiana	2445645	2663637	2855397	3146798	3378092	3593308	3616680	3836780	4237082	4680189
23000	Maine	1028077	1018353	1043853	1136657	1222227	1234375	1275984	1410595	1473831	1530431
24000	Maryland	3156450	3245460	3624711	4048492	4406534	4750488	4874186	5233582	5672663	6056051
25000	Massachusetts	6472310	6506597	7215419	7696460	7882328	8417837	8694087	9160063	9756463	10295504
26000	Michigan	8790815	8878347	10050675	10950976	11585312	13078967	13007154	14484893	15013183	15465843
27000	Minnesota	3809163	3618102	3992061	4337904	4432944	4702507	4910583	5176944	5389100	5718265
28000	Mississippi	1581504	1413436	1621578	1770002	1864834	1896582	1845098	2089751	2110848	2137278
29000	Missouri	4859816	4760539	5246777	5677411	5908969	6266962	6427659	6864015	7234960	7438665
30000	Montana	814884	752157	924494	992718	1007430	1022775	1021182	1121511	1177350	1224754
31000	Nebraska	1812062	1653194	1967805	2004577	2156440	2038612	2213727	2135830	2192877	2575933

Question: what should the data looks like in Stata?

Stata example: how to work with this type of data?

Outline

- Course Overview
- 2 Introduction to Stata
- Oescribing Your Data
- Data Manipulation
- 5 Stata Programming Basics
- 6 Running Regressions

Return Values and Scalar

- Not all commands are used to generate the final output. Many of them are used to generate intermediate output, which will be used in further analysis.
 - e.g., deviation from the mean $z_i = (x_i \overline{x})$
- If you have variable x_i in Stata, how would you generate z_i ?
 - Use summarize x to find the mean of x_i , say 6.66
 - generate z_i = x_i 6.66
 - It is very dangerous to do so!
- Principles of automation
 - Automate everything that can be automated.
 - Write a single script that executes all code from beginning to end.

The correct approach is to use the return values—a critical part for automation.

. summarize wage

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	1,000	20.61566	12.83472	1.97	76.39

. return list

scalars:

. display r(mean) 20.61566 Stata-defined scalars only keeps the return list from the last command. But you can define your own scalar to record the numbers of interest.

. summarize educ

Variable	Variable Obs		Std. Dev.	Min	Max
educ	1,000	13.799	2.711079	0	21

. scalar m_educ = r(mean)

.

. summarize exper

Variable	Obs	Mean	Std. Dev.	Min	Max
exper	1,000	26.508	12.85446	2	65

. display r(mean) 26.508

. display m_educ

Exercise 1.3—Computing Standard Deviations

In data cps4_small.dta, you are asked to calculate the standard deviation of wage using the following formula:

$$sd(\mathsf{wage}) = \sqrt{\frac{1}{\mathit{N}-1}\sum_{i=1}^{\mathit{N}}\left(\mathsf{wage}_i - \overline{\mathsf{wage}}\right)^2}$$

You are not supposed to directly use the standard deviation from summarize command.

Hint: How many operations are included in the formula? How to realize them in Stata?

• Split one "big" problem to several "smaller" problems.

Break into several smaller problems:

- ullet Get necessary information such as $\overline{\text{wage}}$ and N
- ② Generate a new variable $(wage_i \overline{wage})^2$
- Compute the summation of the above variable
- Compute the standard deviation using the formula

Note that the whole process should be fully automated, which means you should not stop Stata until you get the final output sd(wage).

Using Local and Global

- The general idea of local/global is similar to scalar—they use "symbols" to represent something.
- The usage is also similar—first, define a local/global; then call it.
 - As its name suggests, locals are only effective "locally"—the defining command and calling command have to be executed in the same program.
 - Locals are usually the preferable method among scalar/local/global—it avoids some bugs that maybe difficult to find.
- The most severe bugs in programming are not those that software will report errors, but those that program can be executed but the outputs are wrong.
- Locals play a central role in our advanced course.

Loop—forvalues/foreach

- You often need to repeat an operation for several times. Instead of copying & pasting repeatedly, you should utilize the loop structure in Stata.
 - It makes your program look much nicer.
 - It makes things much easier when revising the code.
- Basic usage

Using Loops More "Automatically"

- The input of values seems trivial at the beginning—it is because either you have very limited values or the the values follow some simple rules. But it's not always the case!
- e.g., China's population census covers 31 provinces (excluding Taiwai, Hong Kong and Macau)
 - The provincial codes do not have a specific rule ... and there are 31 codes!
 - The code may change by year! (Chongqing became a municipality directly under the central government in 1997. Such changes are much more common at prefecture level and county level.)
- levelsof: displays a sorted list of the distinct values of varname.

Provincial Code in China

北京 11 天津 12 河北 13 山西 14 内蒙古 15

辽宁 21 吉林 22 黑龙江 23

上海 31 江苏 32 浙江 33 安徽 34 福建 35 江西 36 山东 37

河南 41 湖北 42 湖南 43 广东 44 广西 45 海南 46

重庆 50 四川 51 贵州 52 云南 53 西藏 54

陕西 61 甘肃 62 青海 63 宁夏 64 新疆 65

香港 81 澳门 82

Using Loops More "Flexibly"

- Sometimes, you need to do a set of operations that are similar but not exactly the same.
- You don't wish to give up the loop structure merely because of several lines of different commands.
- Solution: use if loop within the forvalues/foreach loop.
 - Note if loop here is different from if conditions.

Stata example: China's aging process from 1990 to 2000 in different provinces.

Outline

- Course Overview
- 2 Introduction to Stata
- Oscribing Your Data
- 4 Data Manipulation
- Stata Programming Basics
- 6 Running Regressions

Numbers in Regressions

- I assume that you already know how to run simple regressions using regress command.
- I also assume that you know how to interpret a standard regression output in Stata.
- Similar to summarize command, all numbers in regress output will be stored somewhere.
 - check ereturn list
 - The coefficient of varname will be stored in _b[varname] and the standard error will be stored in _se[varname].

- One often overlooked number is the number of "observations" used in regression.
 - Observations in data \neq observations in regression.
 - regress y x1 requires that the dependent variable (y) and the independent variables (x1) are not missing.
- Pay attention when the number of observations changes a lot across regressions.
- e.g., going from regress y x1 to regress y x1 x2 involves two effect:
 - A further restriction that x2 is not missing.
 - Adding a new variable x2.
- Look at following three regressions:
 - 1 regress y x1
 - 2 regress y x1 if missing(x2)==0
 - 3 regress y x1 x2

Hypothesis Test

- In Stata output, aside from Coef. and Std.Err., you can also see t-value and p-value.
 - In statistics and econometrics courses, you have to first define a "hypothesis" before computing t-value and p-value.
 - In Stata, those two values are for a specific hypothesis test: _b[varname]=0
- But we are not always interested in knowing whether the coefficient is zero or not. e.g., testing life-cycle hypothesis.
- Takeaway: report **standard errors** in tables! Not t-value, not p-value.
- Using the post-estimation command test to test linear hypothesis more flexibly.
 - Post-estimation commands are those that can only be used after an estimation. help regress postestimation

Nonlinear Models

Nonlinearity in the variables

$$y = \beta_1 + \beta_2 x^2 + e$$

$$y = \beta_1 + \beta_2 \frac{1}{x} + e$$

$$\ln(y) = \beta_1 + \beta_2 \ln(x) + e$$

Nonlinearity in parameters

$$y = \beta_1 + \beta_2^2 x$$

$$y = \beta_1 + \beta_1 \beta_2 x$$

 When we are talking about nonlinear models, we refer to the latter case.

Probit Model

I will use Probit model as an example of nonlinear model.

• For binary dependent variable *y*:

$$\Pr(y=1) = \Phi\left(\beta_1 + \beta_2 x_i\right)$$
,

where Φ is the CDF of a standard normal distribution.

• The interpretation of β_2 is unclear here. Therefore, we usually does not directly report the output of probit command.

Marginal Effect:

$$ME = \frac{\partial \Pr(y_i = 1)}{\partial x_i} = \phi (\beta_1 + \beta_2 x_i) \beta_2$$

Notice that the marginal effect is a function of x_i . For reporting purpose, usually we prefer to report a single number.

Average marginal effect (AME) is defined as

$$E\left(\frac{\partial \Pr(y_i = 1)}{\partial x_i}\right) = E\left[\phi\left(\beta_1 + \beta_2 x_i\right)\beta_2\right]$$

Marginal effect at mean (MEM) is defined as

$$\left. \frac{\partial \Pr(y_i = 1)}{\partial x_i} \right|_{x_i = \overline{x}} = \phi \left(\beta_1 + \beta_2 \overline{x} \right) \beta_2$$

- Economists usually prefer average marginal effect.
- Reading Material 1.3 for more details.

