Course Code	Course Name	Credits
CSC302	Discrete Structures and Graph Theory	3

Pre-r	Pre-requisite: Basic Mathematics				
Cour	Course Objectives: The course aims:				
1	Cultivate clear thinking and creative problem solving.				
2	Thoroughly train in the construction and understanding of mathematical proofs. Exercise				
	common mathematical arguments and proof strategies.				
3	To apply graph theory in solving practical problems.				
4	Thoroughly prepare for the mathematical aspects of other Computer Engineering courses				
Cour	se Outcomes: On successful completion, of course, learner/student will be able to:				
1	Understand the notion of mathematical thinking, mathematical proofs and to apply them				
	in problem solving.				
2	Ability to reason logically.				
3	Ability to understand relations, functions, Diagraph and Lattice.				
4	Ability to understand and apply concepts of graph theory in solving real world problems.				
5	Understand use of groups and codes in Encoding-Decoding				
6	Analyze a complex computing problem and apply principles of discrete mathematics to				
	identify solutions				

Module	Detai	led Contents	Hours
1	Logic	2	6
	1.1	Propositional Logic, Predicate Logic, Laws of Logic, Quantifiers,	
		Normal Forms, Inference Theory of Predicate Calculus,	
		Mathematical Induction.	
2	Relations and Functions		6
	2.1	Basic concepts of Set Theory	
	2.2	Relations: Definition, Types of Relations, Representation of	
		Relations, Closures of Relations, Warshall's algorithm, Equivalence	
		relations and Equivalence Classes	
	2.3	Functions: Definition, Types of functions, Composition of	
1000		functions, Identity and Inverse function	1000
3		s and Lattice	5
	3.1	Partial Order Relations, Poset, Hasse Diagram, Chain and Anti	
		chains, Lattice, Types of Lattice, Sub lattice	
4	Cour		6
	4.1	Basic Counting Principle-Sum Rule, Product Rule, Inclusion-	
		Exclusion Principle, Pigeonhole Principle	
_	4.2	Recurrence relations, Solving recurrence relations	_
5	0	braic Structures	8
	5.1	Algebraic structures with one binary operation: Semi group,	
		Monoid, Groups, Subgroups, Abelian Group, Cyclic group,	
		Isomorphism	
	5.2	Algebraic structures with two binary operations: Ring	
	5.3	Coding Theory: Coding, binary information and error detection,	
	~	decoding and error correction	
6	Grap	oh Theory	8
		Types of graphs, Graph Representation, Sub graphs, Operations on	
		Graphs, Walk, Path, Circuit, Connected Graphs, Disconnected	
		Graph, Components, Homomorphism and Isomorphism of Graphs,	
		Euler and Hamiltonian Graphs, Planar Graph, Cut Set, Cut Vertex,	

Applications.	

Textbooks:

- 1 Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, "Discrete Mathematical Structures", Pearson Education.
- 2 C. L. Liu "Elements of Discrete Mathematics", second edition 1985, McGraw-Hill Book Company. Reprinted 2000.
- 3 K. H. Rosen, "Discrete Mathematics and applications", fifth edition 2003, Tata McGraw Hill Publishing Company

References:

- 1 Y N Singh, "Discrete Mathematical Structures", Wiley-India.
- 2 J. L. Mott, A. Kandel, T. P. Baker, "Discrete Mathematics for Computer Scientists and Mathematicians", Second Edition 1986, Prentice Hall of India.
- 3 J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Publishing Company
- 4 Seymour Lipschutz, Marc Lars Lipson, "Discrete Mathematics" Schaum"s Outline, McGraw Hill Education.
- 5 Narsing Deo, "Graph Theory with applications to engineering and computer science", PHI Publications.
- 6 P. K. Bisht, H. S. Dhami, "Discrete Mathematics", Oxford press.

Assessment:

Internal Assessment Test:

The assessment consists of two class tests of 20 marks each. The 1stclass test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2nd class test has to be conducted (Internal Assessment II) when an additional 40% syllabus is completed. The duration of each test will be for one hour.

End Semester Theory Examination:

- 1 The question paper will comprise a total of 6 questions, each carrying 20 marks.
- 2 Out of the 6 questions, 4 questions have to be attempted.
- 3 Question 1, based on the entire syllabus, will have 4sub-questions of 5 marks each and is compulsory.
- 4 Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.
- 5 Each sub-question in (4) will be from different modules of the syllabus.
- Weightage of each module will be proportional to the number of lecture hours, as mentioned in the syllabus.

Useful Links 1 https://www.edx.org/learn/discrete-mathematics 2 https://www.coursera.org/specializations/discrete-mathematics 3 https://nptel.ac.in/courses/106/106/106106094/ 4 https://swayam.gov.in/nd1 noc19 cs67/preview