PUB-NO: JP408199235A

DOCUMENT-IDENTIFIER: JP 08199235 A

TITLE: PRODUCTION OF NIOBIUM-CONTAINING FERRITIC STEEL SHEET

PUBN-DATE: August 6, 1996

INVENTOR-INFORMATION:

NAME COUNTRY

MIYAZAKI, ATSUSHI SATO, SUSUMU YAMATO, KOJI

INT-CL (IPC): C21D 8/02; C22C 38/00; C22C 38/00; C22C 38/26; C22C 38/38

ABSTRACT:

PURPOSE: To inexpensively produce an Nb-containing ferritic steel sheet excellent in workability, high temp. proof stress, and corrosion resistance by applying specific age treating annealing, cold rolling, and finish annealing to a hot rolled plate of a steel having a specific composition consisting of C, Si, Mn, P, S, Cr, Nb, N, and Fe.

CONSTITUTION: A <u>steel</u> stock, which has a composition consisting of, by weight, iÜ0.03% C, iÜ2.0% <u>Si</u>, iÜ2.0% Mn, iÜ0.1% P, 4-30% <u>Cr</u>, 0.1-1.0% <u>Nb</u>, iÜ0.03% N, and the balance Fe with inevitable impurities and further containing, if necessary, one or more kinds among 0.03-3.0% <u>MO</u>, 0.03-1.0% CO, 0.03-1.0% CO, iÜ6.0% Al, and 0.005-1.0% <u>REM</u> or one or more kinds among 0.03-0.2% Ti, 0.03-0.2% Zr, and 0.03-0.2% V, is <u>hot</u>-rolled. The resulting <u>hot</u> rolled plate is subjected to age treating <u>annealing</u> at 650-900iãC for 1-30hr and to <u>cold</u> rolling at 50-85% draft. Then, the <u>cold</u> rolled sheet is finish<u>-annealed</u> at 800-930iãC for iÜ10min.

COPYRIGHT: (C) 1996, JP0

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-199235

(43)公開日 平成8年(1996)8月6日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	F I	技術表示箇所
C 2 1 D	8/02	D	8821-4K		
		Α	8821-4K		
C 2 2 C	38/00	301 Z			
		302 Z			
	38/26				

	30/20		審查請求	未請求	請求項	質の数 6	OL	(全 10]	頁)「	終頁	に続く
(21)出願番号		特願平7-6552		(71)	出願人	00000	1258				
(00) (LISSE		亚 -2					数株式	—	Limeyas, a		1.4%00
(22)出願日		平成7年(1995)1月19日				天暉児 号	神尸巾	中央区北2	上川田	7 1 日	1 番28
				(72)	発明者	•	淳				
						千葉県	千葉市	中央区川崎	倚町1番	卧地	川崎製
						鉄株式	(会社技	術研究所	勺		
				(72)	発明者	佐藤	進				
						千葉県	千葉市	中央区川崎	倚町 1番	針	川崎製
						鉄株式	会社技	術研究所に	勺		
				(72)	発明者	大和	康二				
						千葉県	千葉市	中央区川崎	倚町1番	卧地	川崎製
						鉄株式	会社技	術研究所に	勺		
				(74)	代理人	弁理士	: 小川	順三	(外1名	5)	

(54) 【発明の名称】 Nb含有フェライト鋼板の製造方法

(57)【要約】

【目的】 従来レベルの加工性、高温耐力および耐食性を維持したまま、冷間圧延後の仕上げ焼鈍温度を低下 (再結晶温度を低下)させ、安価に製造できる製造プロセスを提案する。

【構成】 C:0.03wt%以下、 Si:2.0 wt%以下、M n:2.0 wt%以下、 P:0.1 wt%以下、S:0.0 3wt%以下、 Cr:4~30wt%、Nb:0.1~1.0 w t%、 N:0.03wt%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延した後、650~900℃の温度範囲で1~30時間保持する時効処理焼鈍を行い、その後50~85%の圧下率で冷間圧延し、次いで800~930℃の温度範囲で10分以下保持する仕上げ焼鈍を行う。

【特許請求の範囲】

【請求項1】C:0.03wt%以下、 Si: 2.0 wt%

以下、

Mn: 2.0 wt%以下、 P:0.1 wt%以下、

S:0.03wt%以下。 $Cr: 4 \sim 30 \text{wt}\%$

Nb: $0.1 \sim 1.0 \text{ wt}\%$ N:0.03wt%以下を含有

し、残部がFeおよび不可避的不純物からなる鋼素材を熱 間圧延した後、650 ~900 ℃の温度範囲で1~30時間保 持する時効処理焼鈍を行い、その後50~85%の圧下率で 冷間圧延し、次いで800 ~930 ℃の温度範囲で10分以下 10 %以下、 保持する仕上げ焼鈍を行うことを特徴とするNb含有フ ェライト鋼板の製造方法。

【請求項2】C:0.03wt%以下、 Si: 2.0 wt% 以下、

Mn: 2.0 wt%以下。 P:0.1 wt%以下。

S:0.03wt%以下、 $Cr: 4 \sim 30 \text{wt}\%$.

Nb: $0.1 \sim 1.0 \text{ wt}\%$ N:0.03wt%以下を含有 し、残部がFeおよび不可避的不純物からなる鋼素材を熱 間圧延した後、950 ~1100℃の温度範囲で10分以内保持 する再結晶焼鈍を行い、さらに650 ~900℃の温度範囲 で1~30時間保持する時効処理焼鈍を行い、その後50~ 85%の圧下率で冷間圧延し、次いで800 ~930 ℃の温度

範囲で10分以下保持する仕上げ焼鈍を行うことを特徴と するNb含有フェライト鋼板の製造方法。

【請求項3】C:0.03wt%以下、 Si: 2.0 wt% 以下、

Mn: 2.0 wt%以下、 P:0.1 wt%以下、

S:0.03wt%以下、 $Cr: 4 \sim 30 \text{wt}\%$

Nb: $0.1 \sim 1.0 \text{ wt}\%$, N:0.03wt%以下を含有

間圧延した後、650 ~900 ℃の温度範囲で 1~30時間保 持する時効処理焼鈍を行い、さらに800 ~970℃の温度 範囲で10分以内保持する再結晶焼鈍を行い、その後50~ 85%の圧下率で冷間圧延し、次いで800 ~930 ℃の温度 範囲で10分以下保持する仕上げ焼鈍を行うことを特徴と するNb含有フェライト鋼板の製造方法。

【請求項4】請求項1~3のいずれか1項において、素 材の成分組成がC:0.03wt%以下、 Si: 2.0 wt %以下、

Mn: 2.0 wt%以下、 P:0.1 wt%以下、

S:0.03wt%以下、 $Cr: 4 \sim 30 wt\%$

Nb: $0.1 \sim 1.0 \text{ wt}\%$ N:0.03wt%以下を含み、

かつMo:0.03~3.0 wt%、 Co: $0.03 \sim 1.0 \text{ wt}\%$

Cu: $0.03 \sim 1.0$ wt% Al: 6.0 wt%以下、

REM : 0.005 ~0.1 wt%のうちから選ばれる1種または 2種以上を含有し、残部がFeおよび不可避的不純物から なるものであるNb含有フェライト鋼板の製造方法。

【請求項5】請求項1~3のいずれか1項において、素 材の成分組成がC:0.03wt%以下、 Si: 2.0 wt %以下、

2

Mn: 2.0 wt%以下、 P:0.1 wt%以下、

S:0.03wt%以下、 $Cr: 4 \sim 30 wt\%$

Nb: $0.1 \sim 1.0 \text{ wt}\%$ N: 0.03wt%以下を含み、 かつTi:0.03~0.2 wt%、 $Zr: 0.03 \sim 0.2 \text{ wt\%}$

V:0.03~0.2 wt%のうちから選ばれる1種または2種 以上を含有し、残部がFeおよび不可避的不純物からなる ものであるNb含有フェライト鋼板の製造方法。

【請求項6】請求項1~3のいずれか1項において、素 材の成分組成がC:0.03wt%以下、 Si: 2.0 wt

Mn: 2.0 wt%以下、 P:0.1 wt%以下、

S:0.03wt%以下、 $Cr: 4 \sim 30 wt\%$

N: 0.03wt%以下を含み、 Nb: $0.1 \sim 1.0 \text{ wt}\%$

かつMo:0.03~3.0 wt%、 Co: $0.03 \sim 1.0 \text{ wt}\%$ Cu: 0.03~1.0 wt%. A1:6.0 wt%以下、

REM: 0.005~0.1 wt%を含み、さらにTi: 0.03~0.2

wt%、 $Zr: 0.03 \sim 0.2 \text{ wt}\%$

V:0.03~0.2 wt%のうちから選ばれる1種または2種 以上を含有し、残部がFeおよび不可避的不純物からなる 20 ものであるNb含有フェライト鋼板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、Nb含有フェライト鋼 板の製造方法に係り、とくに再結晶温度の低下をはか り、もって仕上げ焼鈍温度の低下を可能にするNb含有 フェライト鋼板の製造方法に関するものである。

[0002]

【従来の技術】Nbを添加したフェライト鋼は、Tiや Zrを添加したフェライト鋼に比べて、高温耐力が高い し、残部がFeおよび不可避的不純物からなる鋼素材を熱 30 ことが知られている。このため、N b 添加鋼のうち、例 えば、Nb含有フェライト系ステンレス鋼は、高温疲労 限が高いので、自動車の排気部材(排気パイプやコンバ ーターシェル等)のような、高温において振動を受ける 部材に多用されている。この他、Nbは、鋼の耐食性を 向上させることも周知である。さて、上記排気部材など の用途において、素材は一般に、曲げげ加工、穴拡げ加 工等の過酷な加工を受けるため、これら加工に耐えうる 高い加工性を有することが必要となる。したがって、こ れら用途において、鋼板は、当然のことながら、仕上げ 40 焼鈍により再結晶した状態で使用される。

> 【0003】ここで、上記したTi, Zr添加鋼は、そ れらの再結晶温度が低いため、900℃程度の仕上げ焼 鈍でも十分再結晶可能である。例えば、特公昭54-1 1770号公報には、Ti添加鋼で830℃、3分で再 結晶することが、また鉄と鋼第5年(1979)第7号 には、Zr添加フェライト系ステンレス鋼で830℃、 15分での仕上げ焼鈍条件が記載されている。しかし、 これらのTi、Zr添加鋼は、先に述べたように、高温 耐力が低いという欠点があり、高温に加熱される排気部 50 材などには使用できないという基本的な問題がある。

【0004】これに対して、前記Nb添加鋼は高い高温 耐力を有していると同時に、再結晶温度が高いという問 題がある。例えば、特公昭61-51012号公報にお いては、900℃以下の仕上げ焼鈍では再結晶不足とな り、成形性が悪いとの記載が、特開平5-279805 号公報には、Cr含有量を5.5~9.5 wt%にして、95 O℃で仕上げ焼鈍鈍を行っており、低Cr化はほとんど 再結晶温度の低下に寄与しないことがわかる。また、特 公昭59-52226号公報では、耐食性向上のためN bを添加しているが、熱延板を1000℃で焼鈍して、 冷延後の焼鈍を950℃で行ったとの記載がある。

【0005】

【発明が解決しようとする課題】以上述べたように、N bを添加したフェライト鋼は、高温耐力、耐食性の向上 をもたらす反面、Ti、Zr添加鋼に比して再結晶温度 が100℃程度も上昇する。このため、Nb添加フェラ イト鋼を素材とした冷延焼鈍鋼板が、その本来持ってい る加工性を十分に引き出すために、従来技術においては 通常、冷延後の仕上げ焼鈍温度を950℃以上で行って いた。そして、仕上げ焼鈍温度が高いことは、製品の製 造を困難にし、また焼鈍設備の負担の増大、製造コスト の上昇を招くという問題があった。そして、これらの問 題は、圧延素材が熱間圧延温度域においてフェライト単 相組織にあるときに特に深刻であった。

【0006】そこで、本発明の目的は、Nbを添加した フェライト鋼板を製造する際に、その加工性、高温耐力 および耐食性については従来レベルを維持したまま、冷 間圧延後の仕上げ焼鈍温度を低下(再結晶温度を低下) させ、安価に製造できる製造プロセスを提案することに ある。また、本発明の目的は、上記フェライト鋼の圧延 素材が熱間圧延温度域においてフェライト単相組織を呈 する場合に、上記各特性を維持したまま、冷間圧延後の 仕上げ焼鈍温度を低下(再結晶温度を低下)させ、安価 に製造できる製造プロセスを提案することにある。

[0007]

【課題を解決するための手段】さて、発明者らは、上掲 の目的の実現に向けて、化学組成、熱間圧延および冷間 圧延および熱処理の各条件の影響について詳細な検討を 行った。その結果、とくに熱間圧延後に適正範囲の温度 と時間で時効処理を行うことによって再結晶温度が10 ○℃程度も低下すること、また時効処理による効果を発 揮させるには適切な冷間圧延率が存在することなどの新 規な知見を得た。

【0008】本発明は、上記の知見を具体化した下記の 構成を要旨とするものである。

(1) C: 0.03wt%以下、 Si: 2.0 wt%以下、M n:2.0 wt%以下、 P:0.1 wt%以下、S:0.0 3wt%以下、 $Cr: 4 \sim 30 \text{wt}\%$, $Nb: 0.1 \sim 1.0 \text{ w}$ N: 0.03wt%以下を含有し、残部がFeおよ び不可避的不純物からなる鋼素材を熱間圧延した後、65 50 %以下、S:0.03wt%以下、

0 ~900 ℃の温度範囲で1~30時間保持する時効処理焼 鈍を行い、その後50~85%の圧下率で冷間圧延し、次い で800 ~930 ℃の温度範囲で10分以下保持する仕上げ焼 鈍を行うことを特徴とするNb含有フェライト鋼板の製 造方法。

【0009】(2) C:0.03wt%以下、 Si: 2.0 wt%以下、Mn: 2.0 wt%以下、 P:0.1 wt%以 下、S:0.03wt%以下。 $Cr: 4 \sim 30 \text{wt}\%$. Nb: $0.1 \sim 1.0 \text{ wt}\%$ N:0.03wt%以下を含有し、残 10 部がFeおよび不可避的不純物からなる鋼素材を熱間圧延 した後、950~1100℃の温度範囲で10分以内保持する再 結晶焼鈍を行い、さらに650 ~900℃の温度範囲で1~3 0時間保持する時効処理焼鈍を行い、その後50~85%の 圧下率で冷間圧延し、次いで800 ~930 ℃の温度範囲で 10分以下保持する仕上げ焼鈍を行うことを特徴とするN b含有フェライト鋼板の製造方法。

【0010】(3) C:0.03wt%以下、 Si:2.0 wt%以下、Mn: 2.0 wt%以下、 P:0.1 wt%以 $Cr: 4\sim 30wt\%$, Nb: 下、S:0.03wt%以下、 20 0.1 ~1.0 wt%, N:0.03wt%以下を含有し、残 部がFeおよび不可避的不純物からなる鋼素材を熱間圧延 した後、650 ~900 ℃の温度範囲で1~30時間保持する 時効処理焼鈍を行い、さらに800 ~970℃の温度範囲で1 0分以内保持する再結晶焼鈍を行い、その後50~85%の 圧下率で冷間圧延し、次いで800 ~930 ℃の温度範囲で 10分以下保持する仕上げ焼鈍を行うことを特徴とするN b含有フェライト鋼板の製造方法。

て、素材の成分組成がC:0.03wt%以下、 30 2.0 wt%以下、Mn:2.0 wt%以下、 P:0.1 wt%以下、S:0.03wt%以下、 $Cr: 4 \sim 30 wt\%$ Nb: $0.1 \sim 1.0 \text{ wt}\%$ N:0.03wt%以下を含み、 かつMo:0.03~3.0 wt%、 Co: $0.03\sim1.0$ wt%, C u:0.03~1.0 wt%、 A1:6.0 wt%以下、REM :0.0 05 ~0.1 wt%のうちから選ばれる1種または2種以上 を含有し、残部がFeおよび不可避的不純物からなるもの であるNb含有フェライト鋼板の製造方法。

【0011】(4) 上記(1) ~(3) のいずれか1つにおい

【0012】(5) 上記(1) ~(3) のいずれか1つにおい て、素材の成分組成がC:0.03wt%以下、 Si: 40 2.0 wt%以下、Mn: 2.0 wt%以下、 P:0.1 wt %以下、S:0.03wt%以下、 $Cr: 4 \sim 30 wt\%$ Nb: $0.1 \sim 1.0 \text{ wt}\%$ N:0.03wt%以下を含み、 かつTi:0.03~0.2 wt%、 $Zr: 0.03 \sim 0.2 \text{ wt}\%$ V:0.03~0.2 wt%のうちから選ばれる1種または2種 以上を含有し、残部がFeおよび不可避的不純物からなる ものであるNb含有フェライト鋼板の製造方法。

【0013】(6) 上記(1) ~(3) のいずれか1つにおい て、素材の成分組成がC:0.03wt%以下、 Si: 2.0 wt%以下、Mn: 2.0 wt%以下、 P:0.1 wt $Cr: 4 \sim 30wt\%$

Nb: 0.1 ~1.0 wt%、 N: 0.03wt%以下を含み、かつMo: 0.03~3.0 wt%、 Co: 0.03~1.0 wt%、Cu: 0.03~1.0 wt%、 Al: 6.0 wt%以下、REM: 0.0 05 ~0.1 wt%を含み、さらにTi: 0.03~0.2 wt%、 Zr: 0.03~0.2 wt%、V: 0.03~0.2 wt%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなるものであるNb含有フェライト鋼板の製造方法。

[0014]

【作用】最初に、本発明法をNb含有フェライト鋼に適 10 用した場合の例を図1および図2に示す。図1は、14.9 wt%Cr-0.48wt%Nb(表1の鋼3)のNb含有フェライトに、本発明法(板厚5 mmの熱延板を800%×10hrの時効処理焼鈍→圧下率80%の冷間圧延→板厚2 mmの冷延板を仕上げ焼鈍)と従来法(5 mmの熱延板を980%×3 minの焼鈍→圧下率80%の冷間圧延→板厚2 mmの冷延板を仕上げ焼鈍)とをそれぞれ適用した場合における、仕上げ焼鈍温度(焼鈍時間1 min)と硬さとの関係を示したものである。図1から、本発明法によれば、上記した両者の関係が低温側にシフ 20トしているおり、再結晶温度が低下していることがわかる。

【0015】また、図2は、15wt%Crフェライトステンレス鋼(C:0.008~0.012wt%、Si:0.8~0.9 wt%、Mn:0.2~0.3 wt%、P:0.031~0.035 wt%、S:0.002~0.005 wt%、N:0.005~0.010wt%)をベースにNb量を変化させた鋼について本発明法(板厚5mmの熱延板を980℃×1min再結晶焼鈍→800℃×10hrの時効処理焼鈍→圧下率80%の冷間圧延→冷延板を仕上げ焼鈍)と従来法(5mmの熱延板を980~1000℃×3minの焼鈍→圧下率80%の冷間圧延→冷延板を仕上げ焼鈍)とをそれぞれ適用した場合における、Nb添加量と仕上げ焼鈍時の再結晶温度との関係を示したものである。ここで、再結晶温度とは、図1に示すような仕上げ焼鈍温度(焼鈍時間1min)と硬さとの関係から、硬さが安定しはじめた温度で定義する(以下、同じ)ものである。

【 0 0 1 6 】図2から、従来法では、N b 量が増えるにつれ、再結晶温度も上昇し、0.1 wt%のN b 添加では9 5 0 ℃、0.6 wt%のN b では1 0 0 0 ℃程度の再結晶温度になるのに対し、本発明法は、N b 含有量によらず再結晶温度はほほ一定であるとともに、従来法に較べて、著しく再結晶温度が低下していることがわかる。

【0017】このように、時効処理を利用した本発明のごとき新プロセスでは、従来プロセス材と比較して再結晶焼鈍した後の加工性、高温耐力、耐食性といった各特性の低下が懸念された。しかし、後述するように、本発明法によって製造したフェライト鋼におけるこれらの特性は、従来プロセス材と同等な特性を示すことが確認された。従来、Nb添加鋼の再結晶温度が高いのは、不可

6

避的な性質であるものと考えられていた。しかし、加工性、高温耐力、耐食性において従来プロセス材と同様な特性を有し、しかも冷間圧延後の再結晶温度のみを低下させるという、Nb含有フェライト鋼の安価な新製造プロセスの開発を成功させるに到った。

【0018】本発明のこのような効果は、本発明者らの 広範囲な実験による新規な知見を基にして完成されたも のであり、そのポイントは、熱間圧延後の時効処理と冷 間圧延率を適正に制御することにある。上記知見につい ての技術的根拠は必ずしも解明されたわけではないが、 冷延板の再結晶温度の低下は、熱延板に存在する過飽和 Nbを可及的に減少させることによって、冷延板の昇温 中に析出するNbも可及的に減少させることが可能とな ったことによってもたらされたものであると考えてい る。

【0019】次に、本発明において、Nb含有フェライト鋼の化学組成を要旨構成のとおりに限定した理由について説明する。

C:0.03wt%以下

0 Cは、加工性、溶接性、耐食性に有害であるため、0.03 wt%以下、好ましくは0.005 wt%とする。

【0020】Si:2.0 wt%以下

Siは、耐酸化性に有効な元素であり、また、自動車排気ガスによる凝縮水腐食に対しても有効な元素である。 しかし、2.0wt %を超えると加工性が劣化するので、2.0wt%以下の範囲で添加する。なお、好ましい添加量は $0.7 \sim 1.3$ wt%である。

【0021】Mn:2.0 wt%以下

Mnは、2.0 wt%を超えると硬化し、加工性が劣化する 30 ため、2.0 wt%以下、好ましくは0.5wt%以下、さらに 好ましくは0.1 wt%以下の範囲とする。

【0022】P:0.1 wt%以下

Pは、加工性を劣化させる元素であり、0.1 wt%を超えると特にその影響が顕著になるので、0.1 wt%以下、好ましくは0.04wt%以下とする。

【0023】S:0.03wt%以下

Sは、加工性を劣化させる元素であり、0.03wt%を超えると特にその影響が顕著になるので、0.03wt%以下、好ましくは0.01wt%以下とする。

40 【0024】Cr:4~30wt%

C r は、耐酸化性および耐食性を向上させるために有効な元素であり、4wt%未満の添加量では高温(例えば950℃)における耐酸化性が確保できなくなる。一方、30wt%を超えると鋼の脆化が著しくなり、製造性が悪化するた。したがって、Crの添加量は $4\sim30$ wt%、好ましくは $10\sim20$ wt%の範囲とする。

[0025] Nb: 0.1 \sim 1.0 wt%

明法によって製造したフェライト鋼におけるこれらの特 N b は、高温耐力、加工性、耐食性を向上させるに有用性は、従来プロセス材と同等な特性を示すことが確認さ な元素である。 $0.1~\rm kt\%$ 未満ではその効果が十分ではなれた。従来、N b 添加鋼の再結晶温度が高いのは、不可 50 いが、 $1~\rm kt\%$ を超えて添加すると、ラーベス相の析出に

より脆化が著しくなる。したがって、Nbの添加量は0.1 \sim 1.0 wt%、好ましくは $0.3 \sim$ 0.6 wt%の範囲とする。 【0.026】N:0.03wt%以下

Nは、加工性、溶接性、耐食性に有害であるため、0.03 wt%以下、好ましくは0.010 wt%以下とする。

[0027] Mo: $0.03\sim3.0$ wt%

Moは、いずれも耐食性の向上に有効な元素であり、必要に応じて添加される。その量が0.03wt%未満では効果がなく、過剰の添加は加工性を劣化させるため、0.03~3.0 wt%の範囲、好ましくは0.1~1.3 wt%の範囲で添 10 加する。

[0028] Co: $0.03\sim1.0$ wt%

Coは、靭性向上のため有用な元素であり、必要に応じて添力する。添加量が0.03wt%未満では効果がなく、1.0 wt%を超えて添加しても効果が飽和するため、0.03~1.0 wt%、好ましくは0.06~0.3 wt%の範囲とする。

[0029] Cu: $0.03\sim1.0$ wt%

Cuは、いずれも耐食性の向上に有効な元素であり、必要に応じて添加される。その量が0.03wt%未満では効果がなく、過剰の添加は加工性を劣化させるため、0.03~1.0 wt%の範囲、好ましくは0.1~0.8 wt%の範囲で添加する。

【0030】A1:6.0 wt%以下

A1は、耐酸化性の向上に有用な元素であり、必要に応じて添加する。しかし、過度の添加は加工性を劣化させるので、6.0 wt%以下の範囲、好ましくは1.0~3.0wt%の範囲で添加する。なお、A1の不可避的不純物量は、A1脱酸しない場合には0.01wt%以下であり、また、特にA1脱酸する場合には0.01~0.1 wt%程度含有してもよい。

[0031] REM : $0.005 \sim 0.1$ wt%

REMは、希土類元素、すなわち、Yおよびランタノイドの元素群を意味する。この元素は、0.0050wt%以上の添加によって、鋼の耐酸化性を改善するが、過剰に添加すると、熱間加工性の低下を招くため、0.005~0.1 wt%、好ましくは0.005~0.04wt%の範囲で添加する。

[0.032] Ti: $0.03\sim0.2$ wt%

Nb含有フェライト鋼の再結晶温度を低下させる効果がある。添加量が、0.03wt%未満ではその効果がなく、一方、0.2.wt%を超えて添加しても、効果が飽和するので、0.03~0.2 wt%、好ましくは0.05~0.15wt%の範囲で添加する。また、Ti+Zr+Vの合計量として0.03~0.2 wt%の範囲とするのがよい。

[0033] Zr: 0.03 \sim 0.2 wt%

Tiと同様に、N b 含有フェライト鋼の再結晶温度を低下させる効果がある。添加量が、0.03wt%未満ではその効果がなく、一方、0.2.wt%を超えて添加しても、効果が飽和するので、0.03~0.2 wt%、好ましくは0.05~0.15 wt%の範囲で添加する。また、Ti + Zr + Vの合計量として0.03~0.2 wt%の範囲とするのがよい。

8

 $[0034]V:0.03\sim0.2 \text{ wt}\%$

Tiと同様に、N b 含有フェライト鋼の再結晶温度を低下させる効果がある。添加量が、0.03wt%未満ではその効果がなく、一方、0.2.wt%を超えて添加しても、効果が飽和するので、0.03~0.2 wt%、好ましくは0.05~0.15 wt%の範囲で添加する。また、Ti+Zr+Vの合計量として0.03~0.2 wt%の範囲とするのがよい。

【0035】次に、本発明において、製造条件を要旨構成のとおりに限定した理由について説明する。

·時効処理焼鈍

時効処理焼鈍は、本発明において特に重要な要件である。図3は、C:0.007 wt%、Si:0.85wt%、Mn:0.39 wt%、P:0.035 wt%、S:0.004 wt%、Cr:14.7wt%、Nb:0.48wt%、N:0.008 wt%からなるNb含有フェライト鋼熱延板を、時効処理焼鈍(保持時間10hr)→圧下率80%の冷間圧延→冷延板の仕上げ焼鈍の工程において、時効処理焼鈍の温度と仕上げ焼鈍時の再結晶温度との関係を調べたものである。

【0036】図3に示されるように、時効処理温度には 適正な温度が存在することが明らかである。すなわち、 時効処理温度が、650℃未満でも、900℃を超えて も時効の効果が小さいため、650~900℃の温度範 囲にする必要がある。なお、好ましい温度範囲は700 ~850℃の温度範囲である。また、いずれの時効処理 温度範囲においても、時効時間が1時間未満であると十 分に再結晶温度が低下せず、一方、30時間を超えて処 理しても効果が飽和し、コスト高になるだけであるた め、時効処理時間は1~30時間とする。なお、この時 効処理焼鈍は熱間圧延後に徐冷または保熱等によって行 っても、箱焼鈍によって行ってもよい。

【0037】: 再結晶焼鈍

上記の時効処理焼鈍単独でも冷延板の再結晶温度は十分低下するが、熱延板の再結晶工程を付加することにより冷延板の加工性とくにC方向の特性を一層高めることができる。熱延板の再結晶工程を付加して行う方法として、①上記の時効処理焼鈍に先立って行ってもよいし、②時効処理焼鈍後に行ってもよく、それぞれ同様な効果が得られる。

【0038】再結晶焼鈍の処理温度は、上記Φの場合に 40 は、950~1100℃、好ましくは1050~110 0℃とすることによって、加工性の改善を図ることがで きる。すなわち、950℃未満の温度では、熱延板が再 結晶せず、一方、1100℃を超える場合には、短時間 加熱でさえ、熱延板の結晶粒が粗大化して熱延板の靭性 を劣化させるからである。上記②の場合には、前工程で ある時効処理焼鈍によって再結晶温度がΦの場合よりも 低下するので、800~970℃、好ましくは850超 え~970℃とすることによって、加工性の改善を図る ことができる。すなわち、800℃未満の温度では、熱 延板が再結晶せず、一方、970℃を超える場合には、

短時間加熱でさえ、時効処理の効果が消失してしまい、 冷延板の再結晶温度が従来法のそれと同じように高くな ってしまうからである。

【0039】また、いずれの場合にも、再結晶焼鈍の処 理時間が10分を超えて処理しても効果が飽和し、コス ト高になるだけであるため、再結晶焼鈍時間時は10分 以内、好ましくは0.5~5分とする。

【0040】.冷間圧延

熱延板に時効処理焼鈍あるいは更に再結晶焼鈍を施した 後、50~85%の圧下率で冷間圧延することによって 10 再結晶温度は効果的に低下する。冷間圧下率が50%未 満では、転位の導入が不十分であり、冷延焼鈍時の再結 晶粒が均一にならず、加工性が劣る。一方、圧下率が8 5%を超えると、たとえ時効処理条件が満たされていて も、冷延板の再結晶温度は低下しない。よって、冷間圧 延の圧下率は50~85%とする。なお、冷間圧下率が 過剰になると再結晶温度は低下しない理由は、導入され た転移密度が増し、再結晶焼鈍時にNbの析出サイトが 増え、熱延板の時効処理焼鈍時に一部残留した固溶Nb かと考えられるが明確にはわかっていない。

【0041】・仕上げ焼鈍

上記の工程で得られた冷間圧延状態の鋼板は、仕上げ焼 鈍により再結晶させ実用に耐えうる十分な加工性を得る ことができる。仕上げ焼鈍は、冷間圧延までの工程で鋼 板の再結晶温度は低下しているので、従来のNb含有フ ェライト鋼板より低温度で行うことができる。このた め、本発明の仕上げ焼鈍温度は800~930℃で行え ばよい。すなわち、830℃未満の温度ではこの時効を 行っても冷延板の再結晶が不十分であり、一方、930 ℃を超えるとコスト高になるためである。好ましい温度 範囲は、850~880℃である。

【0042】本発明法において、上述した工程以外につ いては、この種の鋼を製造する際に用いられる一般的な 工程でよい。すなわち、所定の成分組成からなる鋼を転 炉、電気炉等の通常の製鋼法で溶製し、連続鋳造法また

は造塊法で鋼片とした後、熱間圧延する。また、熱延板 焼鈍の後では、酸洗ー冷間圧延-仕上げ焼鈍-酸洗、必 要に応じて、さらに冷間圧延ー仕上げ焼鈍ー酸洗を繰り 返し行う方法によればよい。そして、上記熱間圧延条件 としては、例えば、スラブ加熱温度1250℃、熱延終 了温度は800~950℃、特に850~900℃が推 奨される。

1.0

[0043]

- 【実施例】表1に示す化学組成の鋼を溶製し、1250 ℃に加熱して圧延終了温度850~900℃で板厚5m mまで熱間圧延し、時効処理焼鈍を含む各種熱処理、所 定圧下率の冷間圧延を行った。得られた冷延鋼板の一部 の試料を用いて再結晶温度を測定するとともに、他の試 料について仕上げ焼鈍をおこないこの冷延焼鈍板につい て加工性(伸び)および耐力を測定した。その評価方法 は次のとおりである。なお、熱膨張試験により変態の有 無を調べ、熱間圧延温度域でフェライト単相か否かを調 査した。(表1参照)
- が微細析出し易くなり、再結晶温度を高めるのではない 20 (1) 再結晶温度:冷間圧延後の試料について、焼鈍温度 (時間は1分)と硬さの関係から、硬さが安定しはじめ た温度から求めた。(図1参照)
 - (2) 加工性(伸び):圧延方向(L方向)および圧延方 向に垂直な方向(C方向)について、JIS Z224 1に準拠して伸びを測定した。伸び値に応じて、A:3 5%以上, B:30~35%未満, C:25~30%未 満, D:25%未満の4段階で評価した。
 - (3) 高温耐力: JIS G0567に準拠して高温耐力 を950℃で測定した。その値に応じて、A:12MP a以上、B;8~12MPa未満、C;8MPa未満の 3段階で評価した。
 - (4) 耐食性: JIS G0577に準拠して孔食電位を 測定した。

[0044]

【表1】

		1	1				,	. ,				1011
	ANN D	C I	1 s i	1.4-	l C r	<u>.</u>	s	Nb	Al	N	12 その他	高温組織
-	-	<u> </u>	+	Mn				 				1
	1	0.008	1. 95	0. 31	4. 3	0. 031	0.003	0, 45	*0.007	0.005	-	7±ライト 単相
1	2	0. 015	1. 31	0.32	11. 7	0.035	0.005	0. 51	*0.031	0.007	-	
	3	0. 007	0. 85	0. 39	14. 9	0.035	0,004	0.48	* 0.019	0.008	-	1
	4	0, 005	0. 09	0.09	27. 5	0.033	0,005	0, 31	* 0. 005	0.005	-	
	5	0. 004	0. 13	0. 12	17. 5	0. 031	0.004	0. 30	2. 91	0. 007		•
	6	0. 006	0.89	0. 33	14. 7	0.083	0. CO4	0. 44	* 0, 005	0. 007	_	~
	7	0.010	0. 31	0. 30	17. 3	0. 035	0, 005	0, 40	* 0. 009	0. 012	Mo/0, 53	•
適	8	0.005	0. 21	0. 21	18. 3	0. 031	0.004	0. 32	*0.007	0. 005	Mo/1, 16	•
合	9	0.007	0. 89	0, 35	14. 7	0, 031	0, 004	0, 49	± 0, 007	0. 012	Co/0. 12	-
na.	10	0.007	0, 09	0. 08	4. 7	0. 033	0, 005	0. 30	2. 53	0. 005	-	*
例	1 1	0. 015	1. 45	0. 35	9. 5	0. 033	0.006	0. 45	* 0, 005	0. 013	REM/0, 008	•
	12	0.007	0. 90	0. 33	14. 2	0.031	0, 005	0. 44	* 0, 081	0, 007	Ti/0, 08	*
i	1 3	0, 013	0, 61	0.39	14. 9	0.029	0, 003	0, 45	\$0.005	0.009	Zr/0, 11	*
	14	0. 015	0. 51	0. 41	19.3	0.033	0.005	0, 35	* 0, 005	0, 014	V/ 0, 11	*
	15	0.003	0. 83	0, 03	14. 9	0.021	0, 003	0. 43	* 0, 005	0.007	Mo/0, 43, Ti/0, 13	*
	16	0, 011	0. 11	0, 31	19. 3	0, 031	0, 003	0, 41	* 0. 006	0.013	Cu/0, 33, V/0, 11	
	1 7	0. 011	0. 11	0. 31	19. 1	0, 030	0,004	0, 45	≠ 0. 005	0.011	Co/0, 15, Zr/0, 13	•
	ì 8	0. 015	0.05	0. 31	9. 5	0. 029	0.001	0, 38	* 0, 001	0, 005	A1/1. 53, T1/0. 05	
SUS	430JIL	0, 021	0, 61	0, 51	19, 5	0, 031	0, 004	0, 35	* 0, 006	0.018	A1/1, 53, Ti/0, 05 -Zr/0, 05, V/0, 04 Cu/0, 51	ı
	Α	0. 019	2, 53	0. 31	11, 5	0. 033	0.002	0.49	*0, 005	0. 019		•
比	В	0.009	0. 10	0. 05	33.1	0. 025	0.003	0, 30	*0.002	0. 009		•
	C	0.006	0.81	0. 33	15. 1	0. 13	0.003	0. 51	* 0. 009	0.007		•
較	D	0. 013	0.89	0. 39	15, 2	0. 033	0.004	1,.13	* 0. 005	0, 010		•
m	Е	0, 006	0. 91	0, 33	14. 9	0.031	0, 005	< 0.01	*0.003	0.015	Ti/0, 21	•
例	F	0, 012	0. 91	0. 33	14, 7	0.033	0.006	0. 03	*0.061	0. 012	žr/0, 51	
	G	0. 015	0. 81	0. 35	15. 2	0.031	0.005	<0.01	*0, 005	0.007	V/0.51	•
				•							·-··	

*:不可避的不純物

【0045】·実施例1

30 * 結果を示す。

表1の鋼3を用いて、各種条件で熱延板の時効処理焼 鈍、冷間圧延し、仕上げ焼鈍を行った。表2に、再結晶 温度、冷延焼鈍板の加工性、高温耐力、孔食電位の測定* [0046]

【表2】

- 1	- 4

実験	鋼	熱延板の焼鈍条件	冷間圧延	冷延板の	仕上げ	室温伸く	—— *1- F (%)	*2	引.食	T
No	No	5hr〜30hr焼鈍はベル焼鈍 10min以内焼鈍は連続焼鈍	庄下達 (%)	冷延板の 再結晶温度 (で)	焼鈍条件 七×分	L	C	耐力 at 950℃	孔食 電位 (mV)	備考
1	3	800℃×10hr	85	880	900×3	Α	В	Α	153	発明例
2	3	800℃×10hr	97	930	900×3	С	С	A	150	比較例
3	3	800℃×10hr	45	900	900×3	С	С	A	152	比較例
4	3	850℃×10hr	80	880	880×3	Α	В	Λ	150	発明例
5	3	1060で×50s 後750 で×30hr	80	880	880×3	AA	Α	A	153	発明例
6	3	860℃× 5hr	80	880	880×1	Α	В	A	151	発明例
7	3	980℃× 3min	80	970	1000×1	Α	В	A(12MPa)	142	従来例
8	3	980℃× 3min	80	970	880×3	С	С	Λ	153	比較例
9	3	950℃× 5hr	80	970	900×3	С	С	A	150	比較例
1 0	3	980で×1min後 800で×10hr	70	880	880×1	Α	Α	A	149	発明例
1 1	3	900で×3min後 800で×10hr	70	880	880×1	Α	В	Α	148	比較例
1 2	3	1150℃×1min後 800℃×10hr	70	880	880×1	С	С	A	153	比較例
1 3	3	800℃×10hr後 850℃×5min	70	880	900×1	Α	Α	Α	149	発明例
14	3	800で×10hr後 990で×3min	70	970	900×1	С	С	A	153	比較例
15	3	800℃×10hr後 930℃×1mim	70	900	900×1	Α	Α	Α	152	発明例
16	3	550℃×15hr後 880℃×5min	70	970	900×1	С	С	A	149	比較例
17	3	820で× 5hr後 950で×1mia	80	900	900×1	Α	Α	A	149	発明例
185	US430JTL	980℃×1min	80	960	1000×1	Α	В	A (12MPa)	141	従来例
1 9		980℃×1min	80	960	900×1	С	С	A (12MPa)	151	比較例
20	*	830℃×20hr+880 ℃×1min	80	880	900×1	Α	Α	A (12MPa)	152	発明例
2 1	3	* 3	85	880	900×1	Α	В	Α	150	発明例

- 室温伸び AA:40%以上、A:40未満~35%、B:35未満~30%、C:30未満~25%、D:25%未満耐力at 950℃ A:124Pa 以上、B:124Pa 未満~8、C:34Pa未満巻き収り温度を800 でとして650 でまで10hrかけて徐冷。熱延板のベル、連続焼鈍はせず。

【0047】No. 7のように、再結晶温度は、従来法で 00℃以下に低下していることがわかる。No. 2のよう に、冷延圧下率が過剰であると、再結晶温度が上昇す る。また、No. 5、No. 10のように、時効処理焼鈍前 に高温で短時間の再結晶焼鈍行うと、冷延焼鈍板のC方 向伸びが改善される。これは、熱延板の再結晶が促進さ れたことによると推定しているが、明確にはわかってい ない。一方、No. 11のように時効処理前の再結晶焼鈍 温度が不十分であると時効処理焼鈍による低温再結晶効 果以外にはメリットがなく、時効前の再結晶焼鈍工程分 だけコスト上昇を招き、好ましくない。さらに、その再 40 結晶焼鈍が、No. 12のように、高過ぎる(1150 ℃)と、冷延焼鈍板の加工性が著しく劣化する。これに 対し、No. 13、15、17のように、時効処理の後 に、熱延板を850、930、950℃のような低温で 再結晶焼鈍すると、熱延板の再結晶が促進されるととも に、この時効処理焼鈍は仕上げ焼鈍時にも効果を発揮 し、低温で再結晶化する。このような処理材は、No. 1*

- *のような時効処理だけのものと比較すると、C方向伸び は970℃のであるが、本発明法に従えば、いずれも9 30 も向上している。しかし、No. 14のように、時効処理 後の再結晶焼鈍温度が高すぎる(990℃)と、せっか くの時効処理の効果が消失し、冷延板の再結晶温度は従 来法(No. 7)同様に、970℃と高くなってしまい、 冷延板の再結晶温度は低下しない。No. 18~20にお いて、既存鋼であるSUS430JIL鋼についても検 討したが、まったく同様な結果を得た。また、表2中に 併記したが、本発明法で製造した焼鈍冷延板は、いずれ も孔食電位、950℃での高温耐力ともに従来法で製造 した焼鈍冷延板と同等であることがわかる。
 - 【 0 0 4 8 】·実施例 2

表1に示す各種成分組成の鋼を用いて、各種条件で熱延 板の時効処理焼鈍、冷間圧延し、仕上げ焼鈍を行った。 表3に、再結晶温度、冷延焼鈍板の加工性、高温耐力の 測定結果を示す。

[0049]

【表3】

16

	1 2					10	
鋼 No	熱延板燒鈍条件	冷間圧延 止下率 (%)	冷延板の 再結晶温度 (℃)	仕上げ 焼鈍条件 ℃×nin	*1 室温仲ぴ L方向	≠2 耐力 at 950℃	備 考
1	820 ℃× 2hr	75	880	880×5	A	A	発明例
2	760 ℃×20hr	75	880	900×5	A	A	発明例
4	980℃×1min後800 ℃×10hr	80	880	930×3	В	Α	発明例
4	980 ℃×1min	80	950	930×3	С	A	比較例
4	980 ℃×1min	80	9 50	980×1	В	A	従来例
5	980℃×1min後820 ℃×10hr	80	880	900×3	С	A	発明例
5	980 ℃×1min	80	950	980×1	D	A	從来例
6	800 ℃×10hr	85	880	900×3	Α	A	発明例
7	820 ℃×10hr	85	880	900×3	Α	A.	発明例
8	800℃×10hr後920 ℃×1min	85	880	900×3	Α	Α	発明例
9	800 ℃×10hr	85	880	900×3	A	A	発明例
1 0	980 ℃×5min	85	970	900×3	D	A	比較例
10	980℃×1min後 800℃× 1hr	85	880	900×3	Α	A	発明例
11	980℃×1min後 800℃× 1hr	85	880	900×3	A	A	発明例
1 1	980 ℃×1min	85	950	900×3	С	Α	比較例
1 2	800 ℃×10hr	85	860	880×1	Α	A	発明例
13	800 ℃×10hr	85	860	880×1	Α	Α	発明例
14	800 C×1hr +860 C×1min	85	860	880×1	Α	A	発明例
15	800 ℃×10hr	85	850	880×1	Λ	A	発明例
16	800 ℃×10hr	85	860	880×1	Α	Α	発明例
17	800 ℃×10hr	85	850	880×1	Α	A	発明例
18	800 ℃×10hr	85	840	880×1	Α	Λ	発明例
Α	800 ℃×1hr +860 ℃×1min	85	880	880×1	D	A	比較例
В	800 ℃×1hr +860 ℃×1min	85	880	880×1	D	A	比較例
С	800 ℃×1hr +860 ℃×1min	85	880	880×1	D	Α	比較例
D	800 ℃×1hr +860 ℃×1min	85	880	880×1	D	A	比較例
E	900 C×1min	85	850	880×1	А	С	比較例
F	900 ℃×lmin	85	850	880×1	Α	В	比較例
G	900 ℃×1min	85	850	880×1	Α	С	比較例
	· · · · · · · · · · · · · · · · · · ·						

A;35%以上、B;35未満~30%、C;30未満~25%、D;25%未満A;12MPa以上、B;12MPa未満~8、C;8MPa未満 *1 窒温仰び *2 耐力at 950℃

【0050】表3から、特に、Nb含有鋼にTi,Z の鋼よりも再結晶温度が低下していることがわかる。一 方、本発明に適合しない比較鋼である鋼Aは、Si含有 量が高く、例え低温で再結晶化しても加工性が劣り実用 にならない。また、鋼BはCrが、鋼CはPが、鋼Dは Nbが、それぞれ過剰に含有されているため、加工性に 劣り実用にならない。また、鋼E, F, Gは、Nb無添 加で、Ti, Zr, V添加鋼であるため、冷延板の再結 晶温度は低いものの、高温耐力が低く、高温用部材とし て使用できない。なお、No. 21は、熱延板を更めて焼

*てコイル巻取り温度を800℃に高め、その後650℃ r 、Vを添加した鋼 $1\,2$ 、 $1\,3$ 、 $1\,4$ は、N b 単独添加 40 まで徐冷することが時効処理(No. $2\,1$ では保持時間は 10時間)となるプロセスで実施した発明例であり、他 の発明例と同様な効果が得られた。

【0051】

【発明の効果】上述したように、本発明方法によれば、 従来の方法が抱えていたNb含有フェライト鋼板の製造 上の問題点が解消される。すなわち、本発明方法によれ ば、加工性、高温耐力、耐食性は従来法の場合と同等の 水準を有しつつ、冷間圧延後の再結晶温度が低下させる ことができ、仕上げ焼鈍温度を従来法よりも100℃程 鈍することなく、熱延終了温度を850~800℃とし*50 度も低下させることが可能となる。したがって、本発明

方法によれば、再結晶温度が低下して、製造しやすくなるとともに、より安価に製造可能になるので、産業上極めて有用である。

【図面の簡単な説明】

【図1】仕上げ焼鈍温度と硬さとの関係を示すグラフで

ある。

【図2】N b添加量と再結晶温度との関係を示すグラフである。

18

【図3】時効処理焼鈍温度と再結晶温度との関係を示す グラフである。

【図1】

【図3】

フロントページの続き

(51) Int. Cl. ⁶ C 2 2 C 38/38 識別記号 庁内整理番号

FI

技術表示箇所