1

EE24BTECH11030 - KEDARANANDA

Question:

A die is rolled. Find the probability that a number greater than or equal to one will appear.

Solution:

Theoretical solution:

To calculate the probability of rolling a number greater than or equal to one:

- A standard die has six faces numbered from 1 to 6.
- The total number of possible outcomes is:

Total outcomes = 6.

• The number of outcomes where the number is greater than or equal to one is:

Favorable outcomes = 6.

• The probability is given by:

$$P(\text{Number} \ge 1) = \frac{\text{Favorable outcomes}}{\text{Total outcomes}} = \frac{6}{6} = 1.$$

Thus, the probability that a number greater than or equal to one will appear is:

1

Computational solution:

Z-Transform Computational Method for Die Roll PMF

PMF for a Single Die Roll

For a single die roll, the probability mass function (PMF) is:

$$P_X(k) = \begin{cases} \frac{1}{6}, & \text{if } x = 1, 2, 3, 4, 5, 6\\ 0, & \text{if } x \notin \{1, 2, 3, 4, 5, 6\} \end{cases}$$

Conditions for PMF

A valid PMF must satisfy the following conditions:

- 1) Non-negativity: $\forall k, P_X(k) \ge 0$.
- 2) Normalization: $\sum_{k} P_X(k) = 1$.

For a single die roll:

$$P_X(1) + P_X(2) + P_X(3) + P_X(4) + P_X(5) + P_X(6) = 1.$$
(2.1)

Substituting $P_X(k) = \frac{1}{6}$ for all valid outcomes:

$$6 \times \frac{1}{6} = 1. \tag{2.2}$$

Z-Transform Expansion

The Z-transform for the number rolled is given by:

$$T(z) = \left(\frac{1}{6}z^{1} + \frac{1}{6}z^{2} + \frac{1}{6}z^{3} + \frac{1}{6}z^{4} + \frac{1}{6}z^{5} + \frac{1}{6}z^{6}\right)$$
(2.3)

where:

• Each term represents the probability of a specific outcome multiplied by its corresponding power of z.

Expansion of T(z)

Simplify the expression:

$$T(z) = \frac{1}{6}(z^1 + z^2 + z^3 + z^4 + z^5 + z^6).$$
 (2.4)

The coefficient of z^k in T(z) gives the probability $P_X(k)$, where X is the outcome of the die roll.

Probability Mass Function (PMF)

The PMF is computed as:

$$P_X(k) = \frac{1}{6}, \quad k \in \{1, 2, 3, 4, 5, 6\}.$$
 (2.5)

Computational Steps

For each $k \in \{1, 2, ..., 6\}$:

- 1) Compute the binomial coefficient (trivial for single outcomes).
- 2) Multiply by $\frac{1}{6}$ to compute $P_X(k)$.

Result for Single Roll

The PMF values are:

$$P_X(1) = \frac{1}{6}, \quad P_X(2) = \frac{1}{6}, \quad \dots, \quad P_X(6) = \frac{1}{6}.$$
 (2.1)

Conclusion

The probability of rolling a number greater than or equal to one is the sum of all PMF values:

$$P(X \ge 1) = \sum_{k=1}^{6} P_X(k) = \frac{6}{6} = 1.$$
 (2.2)

Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) F(x) of a discrete random variable X, representing the outcome of a die roll, is defined as:

$$F(x) = P(X \le x)$$

For a die roll with outcomes 1, 2, 3, 4, 5, 6, the CDF is:

$$F(x) = \begin{cases} 0, & \text{if } x < 1 \\ \frac{1}{6}, & \text{if } 1 \le x < 2 \\ \frac{2}{6}, & \text{if } 2 \le x < 3 \\ \frac{3}{6}, & \text{if } 3 \le x < 4 \\ \frac{4}{6}, & \text{if } 4 \le x < 5 \\ \frac{5}{6}, & \text{if } 5 \le x < 6 \\ 1, & \text{if } x \ge 6 \end{cases}$$

