

OV2640FSL Color CMOS 2.0 MegaPixel Camera Module with OmniPixel2TM Technology

General Description

The OV2640FSL is a sensor on-board camera and lens module designed for mobile applications where low power consumption and small size are of utmost importance.

Proprietary sensor technology utilizes advanced algorithms to cancel Fixed Pattern Noise (FPN), eliminate smearing, and drastically reduce blooming. All required camera functions are programmable through the serial SCCB interface.

The device can be programmed to provide image output in various fully processed and encoded formats.

The OV2640FSL features the OV2640 CAMERACHIP™ sensor. Refer to the *OV2640 Datasheet* for chip-specific information.

Caution: READ THIS FIRST!
Prior to finalizing any mechanical or electrical design for production, consult with OmniVision to confirm any final dimensional or electrical pinout data.

Features

- UXGA/SXGA and any size scaling down from SXGA to 40x30
- Output support for Raw RGB, RGB (RGB565/555), YUV (422/420), YCbCr (4:2:2) formats, and 8-bit compressed data
- 8mm x 8mm x 5.85mm module size
- Flex cable connector
- 2.8V operation, low power dissipation
- Serial Camera Control Bus (SCCB) interface
- Function controls:
 - Exposure control
 - Gain
 - White balance
 - Hue control
 - Windowing

Ordering Information

Product	Package
OV02640-FSL0	8mm x 8mm x 5.85mm Flex Cable

Applications

- · Cell phones
- PDAs
- Picture phones
- Vision toys

Key Specifications

Array Size		1600 x 1200		
*		1.3VDC <u>+</u> 5%		
Power Supply		2.5 ~ 3.0VDC		
	1/0	1.7V to 3.3V		
	P	125 mW (for 15 fps, UXGA		
Power	Active	YUV mode)		
Requirements	7101110	140 mW (for 15 tps, UXGA		
Requirements		compressed mode)		
	Standby			
		• YUV(422/420)/YCbCr422		
Output I	Formats (8-bit)	• RGB565/555		
	,	8-bit compressed data 8-/10-bit Raw RGB data		
	>4!1 F	- ,		
	Optical Format			
	nief Ray Angle			
Maximum	UXGA/SXGA			
Image		30 fps		
Transfer Rate	CIF			
	•	0.6 V/Lux-sec		
	S/N Ratio			
D	ynamic Range			
	Scan Mode	Progressive		
Maximum Exp	osure Interval	1247 x t _{ROW}		
Gam	ma Correction			
		2.2 μm x 2.2 μm		
Dark Current		15 mV/s at 60°C		
	Well Capacity	12 Ke		
Fixed	Pattern Noise	<1% of V _{PEAK-TO-PEAK}		
	Image Area	3590 µm x 2684 µm		
Packag	ge Dimensions	8mm x 8mm x 5.85mm		
-				

Figure 1 OV2640FSL Pin Diagram

Functional Description

Figure 2 shows the functional block diagram of the OV2640FSL Camera Module. The OV2640FSL includes:

- OV2640 CAMERACHIP image sensor
- Flex cable

Figure 2 Functional Block Diagram

Connector PWDN should be connected to ground if unused.

Sensor reset pin RESETB is active low.

AVDD is 2.8V sensor analog power DVDD is 1.3V sensor digital power.

DOVDD is 1.8V to 3.0V sensor digital IO power. Sensor AGND and DGND should be separated and connected to a single point outside PCB (DO NOT connect inside module).

C1, C2 should be close to sensor DVDD and DGND.
C3 should be close to sensor SVDD, AVDD and AGND.

C4 should be close to sensor VREFH and AGND.

C5 should be close to sensor VREFN and AGND.

C6 should close to sensor DOVDD and DGND. C7 should close to sensor EVDD and DGND.

D[9:2] is module YUV and RGB 8-bit output (D9: MSB, D2: LSB).

D[9:0] is module raw RGB 10-bit output (D9: MSB, D0: LSB).

Imaging Specifications

Table 1 Sensor Image Functions

Sensor Imaging Functions	Description
Auto Exposure	Module automatically sets correct exposure time.
Auto Exposure ON/OFF	Auto exposure can be turned off so the exposure can be set manually.
Auto White Balance (AWB)	AWB without companion processor interaction.
Auto White Balance OFF	AWB can be turned off.
Electrical Illumination Flicker Elimination	Interference from 50Hz or 60Hz illumination can be suppressed with manually set frame rate divider.
Image Size Decimation	Size can be altered using the windowing registers. Quarter-format sub-sampling is also provided.
Image ON/OFF	Image ON/OFF can be controlled by register settings.
Vertical Flip	Transposes the top and bottom sides of the image.
RGB Output	RGB raw data output available.
AGC Gain	Automatic Gain Control (AGC)
White Balance	Automatic White Balance

NOTE: OV2640FSL features the OV2640 CAMERACHIP sensor. Refer to the *OV2640 Datasheet* for chip-specific information.

Table 2 Output Specifications

Output Image Formats	Description
	UXGA (1600 x 1200 pixels)
Output Formats	SXGA (1280 x 1024)
Output Formats	SVGA (800 x 600 pixels)
	CIF (400 x 292 pixels)
RGB Raw Format	8-bit or 10-bit
YUV Format	4:2:0 or 4:2:2 compliant with CCIR656
YUV Order	YUYV or UYVY
Embedded Sync Codes	Sync signals coded in with data output (CCIR656) or output separately.
Data Clipping	According to CCIR656 or no clipping.
Format in Decimation Mode	PCLK verifies whether or not there is data on every cycle.

Pin Description

Table 3 Module Pin Description

Pin Number	Name	Pin Type	Function/Description	
01	STROBE	I/O	Flash control output	
02	AGND	Power	A/D converter ground, array decoder ground	
03	SIOD	I/O	SCCB serial interface data I/O	
04	AVDD	Power	2.8 V supply for A/D converter and array decoder	
05	SIOC	Input	SCCB serial interface clock input	
06	RESETB	Input (0)	Chip reset, active low	
07	VSYNC	Output	Vertical synchronization output when chip is in master mode	
08	PWDN	Input (0) ^a	Power down mode enable, active high	
09	HREF	Output	Horizontal reference output	
10	DVDD	Power	1.3 V supply for digital circuits	
11	DOVDD	Power	2.8 V supply for digital video port	
12	DATA9	Output	Video port output bit[9]	
13	XCLK1	Input	Crystal clock input	
14	DATA8	Output	Video port output bit[8]	
15	DGND	Power	Digital video port ground	
16	DATA7	Output	Video port output bit[7]	
17	PCLK	Output	Pixel clock output	
18	DATA6	Output	Video port output bit[6]	
19	DATA2	Output	Video port output bit[2]	
20	DATA5	Output	Video port output bit[5]	
21	DATA3	Output	Video port output bit[3]	
22	DATA4	Output	Video port output bit[4]	
23	DATA1	Output	Video port output bit[1]	
24	DATA0	Output	Video port output bit[0]	

a. Input (0) represents an internal pull-down low resistor.

Electrical Characteristics

Table 4 Absolute Maximum Ratings

Ambient Storage Temperature	-40°C to +95°C	
	V _{DD-A}	4.5V
Supply Voltages (with respect to Ground)	V _{DD-C}	3V
	V _{DD-IO}	4.5V
All Input/Output Voltages (with respect to Ground)		-0.3V to V _{DD-IO} +1V

NOTE: Exceeding the Absolute Maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent device damage.

Table 5 DC Characteristics (-30°C < T_A < 70°C)

Symbol	Parameter	Min	Тур	Max	Unit
Supply					
V _{DD-A}	Supply voltage	2.5	2.8	3.0	V
V _{DD-D}	Supply voltage	1.24	1.3	1.36	V
V _{DD-IO}	Supply voltage ^a	1.71	2.8	3.3	V
I _{DDA-A}	Active (Operating) Current ^b		30	40	mA
I _{DDA-D}	Active (Operating) Current ^b		25 (YUV) 35 (Compressed)	35 (YUV) 50 (Compressed)	mA
I _{DDA-IO}	Active (Operating) Current ^b	7	6	10	mA
I _{DDS-SCCB}	Standby Current ^b		1	2	mA
I _{DDS-PWDN}	Standby Current		600	1200	μΑ
Digital Inpu	its				
V _{IL}	Input voltage LOW			0.54	V
V _{IH}	Input voltage HIGH	1.26			V
C _{IN}	Input capacitor			10	pF
Digital Out	outs (standard loading 25 pF)				
V _{OH}	Output voltage HIGH	1.62			V
V _{OL}	Output voltage LOW			0.18	V
Serial Inter	face Inputs				
V _{IL}	SIO_C and SIO_D	-0.5	0	0.54	V
V _{IH}	SIO_C and SIO_D	1.26	1.8	2.3	V

a. 1.8V I/O is supported. Contact your local OmniVision FAE for further details.

b. $V_{DD-A} = 2.8V$, $V_{DD-D} = 1.3V$, and $V_{DD-IO} = 1.8V$ for 15 fps in UXGA mode $I_{DDS-SCCB}$ refers to SCCB-initiated Standby, while $I_{DDS-PWDN}$ refers to PWDN pin-initiated Standby

Table 6 AC Characteristics ($T_A = 25$ °C, $V_{DD-A} = 2.8V$)

Symbol	Parameter	Min	Тур	Max	Unit
ADC Paramet	ters				
В	Analog bandwidth		20		MHz
DLE	DC differential linearity error		0.5		LSB
ILE	DC integral linearity error		1		LSB
	Settling time for hardware reset			<1	ms
	Settling time for software reset	4		<1	ms
	Settling time for UXGA/SVGA mode change			<1	ms
	Settling time for register setting	A		<300	ms

Table 7 Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
Oscillator and	d Clock Input				
fosc	Frequency (XCLK)	6	24		MHz
t _r , t _f	Clock input rise/fall time			5	ns
	Clock input duty cycle	45	50	55	%

Timing Specifications

Figure 4 SCCB Interface Timing Diagram

Table 8 SCCB InterfaceTiming Specifications

Symbol	Parameter	Min	Тур	Max	Unit
f _{SIO_C}	Clock Frequency			400	KHz
t _{LOW}	Clock Low Period	1.3			μs
t _{HIGH}	Clock High Period	600			ns
t _{AA}	SIOC low to Data Out valid	100		900	ns
t _{BUF}	Bus free time before new START	1.3			μs
t _{HD:STA}	START condition Hold time	600			ns
t _{SU:STA}	START condition Setup time	600			ns
t _{HD:DAT}	Data-in Hold time	0			μs
t _{SU:DAT}	Data-in Setup time	100			ns
t _{SU:STO}	STOP condition Setup time	600			ns
t _{R,} t _F	SCCB Rise/Fall times			300	ns
t _{DH}	Data-out Hold time	50			ns

Figure 5 UXGA, SVGA, and CIF Line/Pixel Output Timing

Table 9 Pixel Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
t _p	PCLK period	./	27.78		ns
t _{pr}	PCLK rising time		3.5		ns
t _{pf}	PCLK falling time		2.2		ns
t _{dphr}	PCLK negative edge to HREF rising edge	0		5	ns
t _{dphf}	PCLK negative edge to HREF negative edge	0		5	ns
t _{dpd}	PCLK negative edge to data output delay	0		5	ns
t _{su}	Data bus setup time	15			ns
t _{hd}	Data bus hold time	8			ns

Figure 6 UXGA Frame Timing

Figure 7 SVGA Frame Timing

Figure 8 CIF Mode Frame Timing

Figure 9 Frame Exposure Mode Timing with EXPST_B Staying Low

Figure 10 Frame Exposure Mode Timing with EXPST_B Asserted

Table 10 Frame Exposure Timing Specifications

		_		
Symbol	Min	Тур	Max	Unit
tline		1922 (UXGA)		tp
tvs	—	4		tline
tdfvr	8		9	tp
tdfvf			4	tline
tdvsc			2	tline
tdhv		38964 (UXGA)		tp
tdvh		15928 (UXGA)		tp
tdhso	0			ns
tdef	20			tp
tdes	8		1900 (UXGA)	tp

NOTE 1) FREX must stay high long enough to ensure the entire sensor has been reset.

2) Shutter must be closed no later then 3896 tp after VSYNC falling edge.

Package Specifications

Refer to Figure 11 for package information on the OV2640FSL module.

Figure 11 OV2640FSL Package Specifications

Mechanical Specifications

Table 11 Mechanical Dimensions

Parameter	Specification	Comments	
Sensor	6.30 mm x 6.32 mm	CMOS in housing	
Lens	Plastic		
Connection Type	24 x 0.5 mm	Flex cable	
Housing	8.0 mm x 8.0 mm x 5.85 mm	Excluding mushroom	

Connector Information

The OV2640FSL uses a 24-pin, 0.5 mm pitch flex cable connector. Table 12 shows a listing of some recommended connectors.

Table 12 Recommended Connectors

Manufacturer	Part No.	Description
Molex	52437-2427 (Bulk) 52437-2491 (Tape reel)	0.5 FPC Connector ZIF for SMT, R/A (bottom contact)

Optical Specifications

Table 13 Optical Specifications

Parameter	Specification	Comments
Lens Elements	4-element plastic	Fixed focus
Viewing Angle	59.9° diagonal	
Focal Length	3.78 mm	
F Number	2.8	
Focus Range	60 cm → ∞	Allowable blur size: 4.4 μm
Filter	IR cut	Included
Mount Description	M7 x 0.35P	
TV Distortion	<1%	
Focus Adjustment	Fixed	At 1.2 m

Handling Precautions

WARNING: READ THIS FIRST!

Prior to handling any OmniVision flex camera module, read the following precautions.

- DO NOT try to open the unit enclosure as there is no user-serviceable component inside.
- To prevent damage to the camera module by electrostatic discharge, handle the camera module ONLY after discharging ALL static electricity from yourself and ensuring a static-free environment for the camera module.
- DO NOT touch the top surface of the lens.
- DO NOT press down on the lens.
- DO NOT try to focus the lens.
- DO NOT put the camera module in a dusty environment.
- To reduce the risk of electrical shock and damage to the camera module, turn OFF the power before connect and disconnect the camera module.
- DO NOT bend the flex cable in a sharp angle.
- DO NOT twist the flex cable.
- DO NOT peel the flex cable when you install and uninstall the camera module.
- DO NOT drop the camera module more than 60 cm onto any hard surface.
- To prevent fire or shock hazard, DO NOT expose camera module to rain or moisture.
- DO NOT expose camera module to direct sunlight.
- DO NOT put camera module in a high temperature environment.
- DO NOT use liquid or aerosol cleaners to clean the lens.
- DO NOT make any changes or modifications to camera module.
- DO NOT subject camera module to strong electromagnetic field.
- DO NOT subject the camera module to excessive vibration or shock.

Note:

- All information shown herein is current as of the revision and publication date. Please refer to the OmniVision web site (http://www.ovt.com) to obtain the current versions of all documentation.
- OmniVision Technologies, Inc. reserves the right to make changes to their products or to discontinue any product or service without further notice (It is advisable to obtain current product documentation prior to placing orders).
- Reproduction of information in OmniVision product documentation and specifications is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. In such cases, OmniVision is not responsible or liable for any information reproduced.
- This document is provided with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Furthermore, OmniVision Technologies, Inc. disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.
- 'OmniVision' and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. 'OmniPixel2' and 'CameraChip' are trademarks of OmniVision Technologies, Inc. All other trade, product or service names referenced in this release may be trademarks or registered trademarks of their respective holders. Third-party brands, names, and trademarks are the property of their respective owners.

For further information, please feel free to contact OmniVision at info@ovt.com.

OmniVision Technologies, Inc. 1341 Orleans Drive Sunnyvale, CA USA (408) 542-3000

Document Title: OV2640FSL Flex Module Datasheet **Version:** 1.0

DESCRIPTION OF CHANGES

Initial release

Document Title: OV2640FSL Flex Module Datasheet **Version:** 1.1

DESCRIPTION OF CHANGES

The following changes were made to version 1.0:

- In Table 5 on page 5, made the following changes:
 - Added "40 mA" for Maximum specification of I_{DDA-A}
 - $-\,$ Added "35 mA (YUV)" and "50 mA (Compressed)" for Maximum specification of $I_{DDA\text{-}D}$
 - $-\,$ Added "10 mA" for Maximum specification of $I_{DDA\text{-}IO}$
 - Added "2 mA" for Maximum specification of I_{DDS-SCCB}
 - Added "1200 μA " for Maximum specification of $I_{\mbox{\scriptsize DDS-PWDN}}$
- Changed module schematic in Figure 3 on page 2.

Document Title: OV2640FSL Flex Module Datasheet **Version:** 1.2

DESCRIPTION OF CHANGES

The following changes were made to version 1.1:

- Under Key Specifications on page 1, changed specification for Core Power Supply from "1.2VDC \pm 5%" to "1.3VDC \pm 5%"
- In Figure 3 on page 2, changed DVDD voltage callouts (2 places) from "1.2V" to "1.3V"
- In Figure 3 on page 2, changed 4th line under Notes from "DVDD is 1.2V sensor digital power" to "DVDD is 1.3V sensor digital power"
- In Table 3 on page 4, changed description of pin 10 (DVDD) from "1.2V supply for digital circuits" to "1.3V supply for digital circuits"
- In Table 5 on page 5, changed Min, Typ, and Max for Supply voltage (V_{DD-D}) from "1.14", "1.2", and "1.26" to "1.24", "1.3", and "1.36"
- In Table 5 on page 5, changed table footnote b from " $V_{DD-A}=2.8V,\,V_{DD-D}=1.2V,\,...$ " to " $V_{DD-A}=2.8V,\,V_{DD-D}=1.3V,\,...$ "

Document Title: OV2640FSL Flex Module Datasheet **Version:** 1.3

DESCRIPTION OF CHANGES

The following changes were made to version 1.2:

- In Figure 1 on page 1, added "Note: When using Molex connectors, disregard Molex pin 1 indicator and use OVT pinout for PCB layout."
- In Table 12 on page 12, added table footnote a "When using Molex connectors, disregard Molex pin 1 indicator and use OVT pinout for PCB layout."
- In Table 13 on page 12, changed Lens Elements specification from "3-element plastic" to "4-element plastic"
- In Table 13 on page 12, changed Focus Range specification from "80 cm $\rightarrow \infty$ " to "60 cm $\rightarrow \infty$ " and added "Allowable blur size: 4.4 μ m" under Comments
- In Table 13 on page 12, added "At 1.2 m" under Comments for the Focus Adjustment specification