

Основы искусственного интеллекта

<u>Лекция</u>

Сверточные нейронные сети

к.ф.-м.н., доцент кафедры ИСиЦТ Корнаева Е.П.

Сверточные Нейронные Сети (СНС) / Convolution Neural networks (CNN)

СНС использует особенности зрительной коры, в которой простые клетки активируются на простые признаки (например, линии), а сложные на комбинацию активаций простых. СНС связана с математической операцией свертки для понижения размеров матриц. СНС обычно являются глубокими.

https://waksoft.susu.ru/2017/03/01/neyronnyie-seti-prakticheskoe-primenenie/

https://www.youtube.com/watch?v=IOHayh06LJ4

Сверточные нейронные сети (CNN) — это просто нейронные сети, в которых вместо общей операции умножения на матрицу, по крайней мере в одном слое, используется свертка.

Свертка / Convolution операция использует особенности зрительной коры, в которой простые клетки активируются на простые признаки (например, линии), а сложные на комбинацию активаций простых. СНС связана с математической операцией свертки для понижения размеров матриц. СНС обычно являются глубокими.

30	3,	2_2	1	0
0_2	0_2	1_0	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

X: матрица/тензор входов

θ: Ядро/Kernel (3х3)

0	1	2		
2	2	0		
0	1	2		

12	12	17
10	17	19
9	6	14

Полное скалярное произведение:

$$\mathbf{X}^{(k)} \cdot \boldsymbol{\theta} = \mathbf{x}_{ij}^{(k)} \theta_{ij}$$

Размер ядра (матрица весов) СНН определяет количество признаков, которые будут объединены для получения нового признака на выходе.

Ядро (kernel), матрица свертки (convolution matrix) или маска (mask) - это небольшая матрица, используемая для размытия, повышения резкости, тиснения, обнаружения краев и многого другого. Это достигается путем свертки между ядром и изображением.

Identity	$ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$	
Gaussian blur 5 × 5 (approximation)	$ \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} $	

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Часто используемые техники

Операцию свертки обычно комбинируют с операциями дополнения, шагания и группирования.

Дополнение / Padding

Шагание / Striding

Группирование / Pooling

Прямые вычисления в CHC / Forward propagation in CNN

Упражнение. Найти результат свертки изображения цифры «4» размером [3 3].

Kernel
$$\Theta^{(1)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, padding (1), stride [1 1].

0	0	0	0	0
0	0.5	1	0.5	0
0	0.5	0.5	0.5	0
0	1	1	0.5	0
0	0	0	0	0

	l .	l -	l .	I			I	I	1				1			
0	0	0	0	0,5	1	0	0,5	0,5		0		2,5				
0	0	0	0,5	1	0,5	0,5	0,5	0,5		1		3,5		2,5	3,5	2,5
0	0	0	1	0,5	0	0,5	0,5	0		0		2,5		,	Ĺ	ĺ
0	0,5	1	0	0,5	0,5	0	1	1		1		3	1			
0,5	1	0,5	0,5	0,5	0,5	1	1	0,5	×	2	=	4	\Rightarrow	3	4	2,5
1	0,5	0	0,5	0,5	0	1	0,5	0		1		2,5				
0	0,5	0,5	0	1	1	0	0	0		0		3,5		3,5	4	2,5
0,5	0,5	0,5	1	1	0,5	0	0	0		1		4				_,=
0,5	0,5	0	1	0,5	0	0	0	0		0		2,5				
				~							`				(4)	
				X						$\Theta^{(1)}$)				$Z^{(1)}$	

Прямые вычисления в CHC / Forward propagation in CNN

Многоканальная версия сверточной нейронной сети

- Каждый фильтр представляет собой коллекцию ядер, причем для каждого отдельного входного канала слоя есть одно ядро, и каждое ядро уникально;
- Количество выходных каналов слоя равно количеству фильтров.

! В случае с 1 каналом термины «фильтр» и «ядро» взаимозаменяемы, в общем случае они разные

Прямые вычисления в CHC / Forward propagation in CNN

Пример свертки.

Дано: цв. изобр. [5 5 3], свертка 2 фильтрами [3 3 3], дополнение (1), шаг [2 2].

Результатом свертки изображения [q q] ядром/kernel [k k], с дополнением/padding (p) и шагом/stride [s s] является матрица размером [r r]: $r = \frac{q-k+2p}{s} + 1 = \frac{5-3+2}{2} + 1 = 3$.

Количество операций свертки: $r^2 = 9$.

$$X$$
, [5 5 3] $\rightarrow X$, [7 7 3] $\rightarrow \tilde{X}^{(1)}$, [9 27];

$$\Theta^{(1)}$$
, [3 3 3 2] $\rightarrow \Theta^{(1)}$, [27 2];

$$Z^{(2)} = \tilde{X}^{(1)}\Theta^{(1)}, [9\ 2] \to Z^{(2)} = Z^{(2)} + \Theta_0^{(1)}, [9\ 2] \to Z^{(2)}, [3\ 3\ 2].$$

1 0 0

Bias b1 (1x1x1)

b1[:,:,0]

toggle movement

Convolutional networks intuition

Обучение СНС / CNN Training algorithm

Для задачи классификации

$$J(\Theta^{(k)}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_l} \left(y_j^{(i)} \ln(h_j^{(i)}) + (1 - y_j^{(i)}) (\ln(1 - h_j^{(i)})) \right) \Rightarrow \min.$$

Алгоритм обучения.

- 1. Задать начальные значения компонент матрицы $\Theta^{(k)}$ случайным образом.
- 2. Рассчитать вектор градиента $\nabla J = \left[\left[\partial J / \partial \theta_{ij}^{(k)} \right] \right]$ методом обратного распространения ошибки.
- 3. Найти новые значения компонент $\Theta^{(\mathbf{k})}: \theta_{ij}^{(\mathbf{k})^{S+1}} = \theta_{ij}^{(\mathbf{k})^S} \alpha \frac{\partial J}{\partial \theta_{ij}^{(\mathbf{k})}}$.
- 4. Повторять пп. 2-3 до достижения минимума $J: J^{s+1} J^s < \delta$ или #итерации $> N_{max}$.
- 5. Вывод результатов: $\Theta^{(k)}$.

Смотрите больше по ссылкам:

Convolutional neural networks: видео с визуализацией, на английском языке

<u>Convolutions Over Volumes</u>: видео фрагмент специализации «Deep Learning» на платформе «Coursera» от проф. Andrew Ng <u>Нейросети на практике (настройка сетей)</u>: лекция Семена Козлова (Simon)

AlexNet (designed by Alex Krizhevsky) – глубокая сверточная нейронная сеть для распознавания 1000 классов, признанная лучшей в 2012 г. в конкурсе <u>ImageNet Large Scale Visual Recognition</u> Challenge.

Эволюция сетей на примере конкурса <u>ImageNet Large Scale Visual Recognition Challenge</u>.

На август 2017 года в ImageNet 14 197 122 изображения, разбитых на 21 841 категорию [https://ru.wikipedia.org/wiki/ImageNet]