1. About the data set

Site name (three letter code)		Suwa Lake Site (SWL)			
Period of registered data		From April 8, 2015 to December 31, 2015			
This document file	name	FxMt_SWL_2015_30m_01.pdf			
Corresponding data file name		FxMt_SWL_2015_30m_01.csv			
Revision informatio	n				
Date		Details of revision	Renewed file name		
11 June 2018	First registration		Siln_SWL_2015_01.pdf FxMt_SWL_2015_30m_01.pdf FxMt_SWL_2015_30m_01.csv		
Contact person#1	[General]	al] Hiroki Iwata (hiwata@shinshu-u.ac.jp)			
Contact person#2					
Contact person#3					
Contact person#4					

2. Site description

• to DB user See also the general information file.

Hour line (Time difference from UTC)	9 hours ahead of UTC (Japan Standard Time (JST))
Vegetation Type	Lake
Dominant Species (Overstory)	(Scientific name)
Dominant Species (Understory)	(Scientific name)
Canopy height	
LAI	
Other information	

3. Observation and calculation

©to Data provider A list of references is shown in the last page. Please fill-in the blanks as much as possible, or select the suitable option. If you are not sure what to write, leave it as a blank.

3-1. Flux observation system and data acquisition

Type of sonic anemometer	CSAT3 (Campbell Scientific)
Type of IRGA	Open-path CO2/H2O gas analyzer, EC150 (Campbell Scientific)
Sampling rate	10 Hz
Averaging time	30 min
Flux measurement height #1	Approximately 3.2 m (depending on the water level)
Flux measurement height #2	
Flux measurement height #3	
Zero-plane displacement	
Roughness length	
Calibration information	The open-path gas analyzer was calibrated once a year with standard CO2 gases and a dew point generator (LI610, Li-Cor). Additionally, the calibration of water vapor density was checked against a Vaisala humidity sensor.
Other information	

3-2. Flux calculation

		Note/References		
Flow attenuation *4-6	✓ Not applied			
Coordinate rotation *1-3	✓ Double (2D) rotation			
Lag removal *2, 7, 8	✓ Automatic	A relationship between lag time and wind speed/direction was developed and applied (Iwata et al., 2014. Boundary-Layer Meteorol., 151: 95-118)		

3-3. Flux corrections

		Note/References
For sensible heat flux	✓ Cross wind correction *9,10	
For sensible near llux	√ Water vapor correction *11	
High fraguency loss	• [u*, H, LE, Fc]	
High frequency loss	✓ Massman (2000, 2001) *13, 14	
Low frequency loss *16	✓ Block average	
(Detrending)	V Dlock average	
WPL Correction*17-21	✓ For latent heat (LE) flux	
WPL Correction ** -*	✓ For CO₂ flux	
Others *22-24	✓ Temperature dependency for latent heat: L	

✓ Humidity dependency for specific heat: Cp	
✓ Temperature dependency for air density	
✓ Pressure dependency for air density	

3-4. Quality control *25-26

		Note/References
	✓ Spike test *27	
	✓ Absolute limits	
Raw data test	✓ Higher-moment statistics	
Raw data test	✓ Resolution test	
	✓ Harr mean/variance test	
	✓ Discontinuities	
Non steady state test	✓ YES	
Integral turbulence characteristics	✓ Not applied	
Correlation coefficient	✓ Not applied	
Wind direction	✓ YES	Data with flow from the land were excluded.
Footprint test *28, 29	✓ Not applied	
Ablosute thresholds	✓ Not applied	
Others	✓	

3-5. Storage term

	Note/References
Storage term	

26	Oth.	~" :	nf.	rm.	ation
ა-ნ.	Oth	er i	HIO	HIIIc	111OH

©to Data provider ······ If your flux data were evaluated by gradient method, please explain the observation method here.

	Note/References

4. Registered Data

Observation items	Symbol	Unit	Height(s) Depth(s)	Instruments	Level of data processing
Year	Year	#### (YYYY)	***	***	
Date	DOY	1~365(6)	***	***	
Time	TIME	#### (HHMM)	***	***	
CO ₂ flux	Fc	micoromol·m ⁻² ·s ⁻¹	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell) and open-path CO2/H2O analyzer (EC150, Campbell)	Quality-controll ed
Sensible heat flux	н	W∙m ⁻²	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell) and open-path CO2/H2O analyzer (EC150, Campbell)	Quality-controll ed
Latent heat flux	LE	W∙m⁻²	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell) and open-path CO2/H2O analyzer (EC150, Campbell)	Quality-controll ed
Water vapor flux	E	mmol·m ⁻² ·s ⁻¹	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell) and open-path CO2/H2O analyzer (EC150, Campbell)	Quality-controll ed
Friction velocity	USt	m∙s ⁻¹	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell)	Quality-controll ed
Momentum flux (along wind)	TAU wu	kg m⁻¹·s⁻²	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell)	Quality-controll ed
Momentum flux (cross wind)	TAU wv	kg m⁻¹·s⁻²	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell)	Quality-controll ed

				Three-dimensional	
Atmospheric stability parameter	ZL	-	3.2 m	sonic anemo-thermometer (CSAT3, Campbell) and open-path	Quality-controll
				CO2/H2O analyzer (EC150, Campbell)	
Global solar radiation (incoming)	Rg	W∙m⁻²	2.7 m	Four-component net radiometer (CNR4, Kipp & Zonen)	Quality-controll ed
Global solar radiation (outgoing)	Rg_out	W∙m⁻²	2.7 m	Four-component net radiometer (CNR4, Kipp & Zonen)	Quality-controll ed
Long-wave radiation (incoming)	Rgl	W∙m⁻²	2.7 m	Four-component net radiometer (CNR4, Kipp & Zonen)	Quality-controll ed
Long-wave radiation (outgoing)	Rgl_out	W∙m²	2.7 m	Four-component net radiometer (CNR4, Kipp & Zonen)	Quality-controll ed
Net Radiation	Rn	W∙m²	2.7 m	Four-component net radiometer (CNR4, Kipp & Zonen)	Quality-controll ed
Albedo	Alb		2.7 m	Four-component net radiometer (CNR4, Kipp & Zonen)	Quality-controll ed
Wind direction	WD	degrees	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell)	Quality-controll ed
Wind speed	WS	m∙s ⁻¹	3.2 m	Three-dimensional sonic anemo-thermometer (CSAT3, Campbell)	Quality-controll ed
Barometric pressure	Pa	kPa	1.9 m	Barometer (PTB100, Vaisala)	Quality-controll ed
Air temperature	Та	degrees C	3.2 m	Platinum resistance thermometer and capacitive hygrometer (HMP60, Vaisala)	Quality-controll ed
Relative humidity	Rh	%	3.2 m	Platinum resistance thermometer and capacitive hygrometer (HMP60, Vaisala)	Quality-controll ed
Vapor pressure deficit	VPD	kPa	3.2 m	Platinum resistance thermometer and capacitive hygrometer (HMP60, Vaisala)	Calculated from Ta and Rh Quality-controll ed

Vapor pressure	VP	kPa	3.2 m	Platinum resistance	Calculated from
				thermometer and	Ta and Rh
				capacitive hygrometer	Quality-controll
				(HMP60, Vaisala)	ed
H ₂ O concentration	Но	mmol·mol⁻¹	3.2 m	Open-path CO2/H2O	Quality-controll ed
				analyzer (EC150,	
				Campbell)	
CO ₂ concentration	Со	micoromol·mol ⁻¹	3.2 m	Open-path CO2/H2O	Quality-controll ed
				analyzer (EC150,	
				Campbell)	
Water temperature	Tw(1)	degrees C	-0.2 m	Thermistor (Pt100,	Quality-controll
				Campbell)	ed
Water temperature	Tw(2)	degrees C	-0.45 m	Thermistor (Pt100,	Quality-controll
				Campbell)	ed
Water temperature	Tw(3)	degrees C	-0.95 m	Thermistor (Pt100,	Quality-controll
				Campbell)	ed

_					
5.	Note	tor	data	users	

The figure of "-99999" denotes missing or rejected data.				

6. Important events

©to Data provider Please list noteworthy events during the observation period. For example, relocation of the instruments, reasons for missing observation, dates of sowing and harvesting at agricultural site should be listed in the table by date.

Date	Events
From Oct 5 to Nov 09	The depth of water temperature measurements may be changed to 80, 130, and 155 cm depth sometime during the period. We found the float of water temperature sensors was missing and sensors were lowered in the water on November 9.

References

Flux calculation

- *1 McMillen, R.T., 1988. Boundary-Layer Meteorology, 43: 231-245.
- *2 Aubinet M. et al.,2000. Advances in Ecological Research, 30: 113-175.
- *3 Wilczak. J.M., Oncley, S.P. and Stage, S.A., 2001. Boundary-Layer Meteorology, 99: 127-150.
- *4 Wyngaard, J. C. and Zhang, S. F., 1985. J. Atmos. Oceanic Tech., 2: 548-558.
- *5 Kaimal, J.C. et al., 1990. Boundary-Layer Meteorol., 53: 103-115.
- *6 Shimizu, T. et al., 1999. Boundary-Layer Meteorol., 64: 227–236.
- *7 Leuning, R. and Judd M.J., 1996. Global Change Biology, 2: 241-254.
- *8 Information from Li-Cor

Flux correction

- *9 Schotanus, P. et al., 1983. Boundary-Layer Meteorology, 26: 81-93.
- *10 Liu, H., Peters, G. and Foken, T., 2001. Boundary-Layer Meteorology, 100: 459-468.
- *11 Kaimal J.C. and Gaynor, J.E., 1991. Boundary-Layer Meteorology, 56: 401-410.
- *12 Watanabe et al., 2000. Boundary-Layer meteorol. 96, 743-491.
- *13 Massman, W. J., 2000. Agric. For. Meteorol. 104, 185-198
- *14 Massman, W. J., 2001. Agric. For. Meteorol. 107, 247-251
- *15 Moore, C.J., 1986. Boundary-Layer Meteorology, 37: 17-35.
- *16 Moncrieff, J. et al., 2004. Averaging, detrending and filtering of eddy covariance time series. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 7-31.
- *17 Webb, E. K., Pearman, G.I. and Leuning, R., 1980. Quarterly Journal of the Royal Meteorological Society, 106: 85-100.
- *18 Fuehrer, P.L. and Friehe, C.A., 2002. Boundary-Layer Meteorology, 102: 415-457.
- *19 Liebethal, C. and Foken, T., 2003. Boundary-Layer Meteorology, 109: 99-106.
- *20 Leuning, R. 2004. Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 119-132.
- *21 Massman, W. 2004. Concerning the measurement of atmospheric tarce gas fluxes with open- and closed-path eddy covariance system: The WPL terms and spectral attenuation. In: X. Lee (Editor), Handbook of Micrometeorology: A guide for surface Flux Measurements. Kluwer, Dirdrecht, pp. 133-160.
- *22 Fischer, G (Editor), 1988. Landolt-Börnstein, Numerical data and functional relationships in science and technology, Group V: Geophysics and space research, Volume 4: Meteorology Subvolume b: Physical and chemical properties of the air. Springer, Berlin, Heidelberg, 570pp.
- *23 Stull, R.B., 1988. An Introduction to Boundary Layer meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666pp.
- *24 Cohen, E. R. and Taylor, B. N., 1986. The 1986 adjustment of the fundamental physical constants. Internatinal Counsil of Scientific Unions (ICSU), Committee on Data for Science and Technology (CODATA). CODATA-Bulletin, No. 63: 36pp.

Quality control

- *25 Vickers, D. and Mahrt, L., 1997. Journal of Atmospheric and Oceanic Technology, 14: 512-526.
- *26 Foken, T. and Wichura, B., 1996. Agricultural and Forest Meteorology, 78: 83-105.
- *27 Hojstrup, J., 1993. Measuring Science Technology, 4: 153-157.
- *28 Schmid, H. P., 1994. Boundary-Layer Meteorology, 67: 293-318.
- *29 Korman, R. and Meixner, F.X., 1990. . Boundary-Layer Meteorology, 99: 207-224.