

in Deep Learning: Transformers, visual transformers...

2022

Rufin VanRullen

Directeur de Recherche,

Laboratoire Cerveau et Cognition (CerCo), Unité mixte CNRS-UPS

Attention: definitions

A reminder:

- Attention is how we <u>select</u>
 things and <u>discard</u> others
- Attention can be <u>bottom-up</u> (exogenous, worlddependent), <u>or top-down</u> (endogenous, task-dependent)

Models of attention

Psychological models

- Feature-Integration Theory (Treisman)
- Guided Search (Wolfe)

Neuro-Computational models

- Saliency map (Itti/Koch)
- Selective tuning (Tsotsos)
- Reentry (Hamker)

ML (Deep Learning) models

- Transformers in NLP (Vaswani)
- Transformers in computer vision code/notebook

Sources:

Attention? Attention!
The Illustrated Transformer
Self-attention in Computer Vision

(blog: lilianweng.github.io/lil-log/2018/06/24/attention-attention.html)

(blog: jalammar.github.io/illustrated-transformer/)

(blog: towardsdatascience.com/self-attention-in-computer-vision-2782727021f6)

Seq2Seq models in Natural Language Processing (NLP)

- Machine translation
- Question-Answer dialog (chatbots)
- Document summarization

Sutskever et al (2014)

Solving the vanishing gradients problem with attention

Solving the vanishing gradients problem with attention

Bahdanau et al (2015)

Show, attend and tell

Xu et al (2015)

Show, attend and tell

"A woman is throwing a frisbee in a park."

Xu et al (2015)

Back to NLP: Attention is all you need (Transformers)!

- Main idea: no recurrence, feed-forward architecture, all inputs are provided at once (very large matrix)
- Attention takes care of long-range dependencies

Transformer details

- Self-attention layer: every token/position can « attend » to every other in the <u>same</u> layer
- Encoder-decoder-attention: every position in the decoder can attend to every position in the final <u>encoder</u> layer (as in Seq2Seq models)
- The same feed-forward network is applied independently to each position

Transformer details

Self-attention example

Transformer details

Self-attention computation: Queries, Keys, Values

Transformer details

Self-attention computation: Queries, Keys, Values

The match between query and key determines how much of each value is included in the final output

Transformer details

• Self-attention computation: matrix version

Transformer details

Multi-head attention

1) This is our input sentence*

2) We embed each word*

3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W⁰ to produce the output of the layer

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Transformer details

Multi-head attention

Transformer details

Positional encoding

Transformer details

Residual connections

Transformer details

Encoder + Decoder

Transformer details

The transformer at work... (encoding)

Transformer details

• Family tree of NLP Transformers:

Transformers (attention) in computer vision

- Many recent papers have thought to augment or replace convolution operations in deep networks with a self-attention mechanism
- One example: Ramachandran et al (2019), Stand-alone self-attention in vision models, NeurlPS.

Single-headed attention for computing the pixel output $y_{ij} \in \mathbb{R}^{d_{out}}$ is then computed as follows (see Figure 3):

$$y_{ij} = \sum_{a,b \in \mathcal{N}_k(i,j)} \operatorname{softmax}_{ab} \left(q_{ij}^{\top} k_{ab} \right) v_{ab} \tag{2}$$

where the queries $q_{ij} = W_Q x_{ij}$, keys $k_{ab} = W_K x_{ab}$, and values $v_{ab} = W_V x_{ab}$ are linear transformations of the pixel in position ij and the neighborhood pixels. softmax_{ab} denotes a softmax applied to all logits computed in the neighborhood of ij. $W_Q, W_K, W_V \in \mathbb{R}^{d_{out} \times d_{in}}$ are all learned transforms.

Pay attention... This is what we'll implement in the notebook!

Transformers (attention) in computer vision

- Many recent papers have thought to augment or replace convolution operations in deep networks with a self-attention mechanism
- One example: Ramachandran et al (2019), Stand-alone self-attention in vision models, NeurlPS.

Transformers (attention) in computer vision

- Many recent papers have thought to augment or replace convolution operations in deep networks with a self-attention mechanism
- One example: Ramachandran et al (2019), Stand-alone self-attention in vision models, NeurlPS.
- Attention is permutation-invariant
 position encoding (as in NLP transformers)

$$y_{ij} = \sum_{a,b \in \mathcal{N}_k(i,j)} \operatorname{softmax}_{ab} \left(q_{ij}^\top k_{ab} + q_{ij}^\top r_{a-i,b-j} \right) v_{ab}$$
(3)

Thus, the logit measuring the similarity between the query and an element in $\mathcal{N}_k(i,j)$ is modulated both by the content of the element and the relative distance of the element from the query. Note that by infusing relative position information, self-attention also enjoys translation equivariance, similar to convolutions.

Transformers (attention) in computer vision

- Many recent papers have thought to augment or replace convolution operations in deep networks with a self-attention mechanism
- One example: Ramachandran et al (2019), Stand-alone self-attention in vision models, NeurlP6.
- Accuracy on ImageNet (ResNet50 backbone, varying channel numbers):

Transformers (attention) in computer vision

Colab Notebook:

https://github.com/rufinv/DL-Attention-Class/blob/main/VanRullen_AttentionClass_CIFAR10_2022.ipynb

Implement, train and test a
Deep Convolutional Neural Network (CNN)
for image classification (CIFAR)
with/without attention

go to link now...