Laboratorium Podstaw Elektroniki					
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.		
Informatyka	_	I		<i>!1</i>	
Temat Laboratorium				Numer lab.	
	Wprowadzenie			2	
Skład grupy ćwiczeniowej oraz numery indeksów					
Ewa Fengler(132219), Sebastian Maciejewski(132275), Jan Techner(132332)					
Uwagi			Ocena		

1 Zadanie A

Cel

Ćwiczenie ma na celu zaznajomienie z podstawowymi wielkościami fizycznymi służącymi do opisu własności obwodów elektrycznych oraz oznaczeniami elementów tych obwodów (cewki, rezystory i kondensatory). Aby prawidłowo wykonać opisane w poleceniu pomiary konieczne jest także nauczenie się obsługi przyrządów pomiarowych - pomiar rezystancji, pojemności kondensatorów i pojemności cewek przy pomocy multimetru RIGOL DS1022.

1.1 Część 1.

Odczytanie wartości rezystancji na podstawie kodu paskowego rezystorów oraz pomiar jej wartości za pomocą multimetru.

R	Barwy	Odczyt	Pomiar
R1	czerwony, czerwony, brązowy	220Ω	220Ω
R2	pomarańczowy, pomarańczowy, zielony	$3,3M\Omega$	$3,25M\Omega$
R3	brązowy, czarny, brązowy	100Ω	98Ω
R4	brązowy, czarny, czerwony	$1k\Omega$	$0,99k\Omega$
R5	czerwony, czarny, czerwony	$2k\Omega$	$1,95k\Omega$
R6	czerwony, czarny, zielony	$2M\Omega$	$1,97M\Omega$

1.2 Część 2.

Odczytanie pojemności kondensatorów oraz pomiar ich pojemności przy pomocy mostka pomiarowego.

C	Oznaczenie	Odczyt	Pomiar
C1	223	22nF	33,4nF
C2	10n	10nF	8,4nF
C3	132	3,3nF	2,9nF
C4	222	2,2nF	2,3nF
C5	10μF	10μF	10,7μF
C6	12μF	22μF	20,9μF

1.3 Część 3.

Pomiar indukcyjności wybranych cewek używając mostka pomiarowego.

L	Pomiar
L1	30,08nH
L2	30,28nH
L3	30,9μH

2 Zadanie B

Cel

Zadanie B ma na celu zapoznanie się z metodą obliczania oporu zastępczego dla rezystorów połączonych szeregowo i równolegle (także dla całych obwodów) i naukę umiejętności budowania oraz pomiaru właściwości obwodów na płytce prototypowej. W sposób naturalny ćwiczenie kształci również umiejętność odczytywania schematów obwodów.

2.1 Część 1.

Obliczenie i wyprowadzenie wzoru dla rezystancji zastępczej obwodu przedstawionego poniżej

$$R_z = R_7 + \frac{R_5 + R_6}{R_5 * R_6} + \frac{R_1 * R_2 * R_3 + R_1 * R_2 * R_4 + R_1 * R_3 * R_4 + R_2 * R_3 * R_4}{R_1 * R_2 * R_3 * R_4} + \frac{R_8 + R_9}{R_8 * R_9}$$

$$R_z = 1000\Omega + \frac{100\Omega + 200\Omega}{100\Omega \times 200\Omega} + \frac{1\Omega + 100\Omega}{1\Omega \times 100\Omega} +$$

 $+\frac{2000\Omega*3000\Omega*1000\Omega+2000\Omega*3000\Omega*270\Omega+2000\Omega*1000\Omega*270\Omega+3000\Omega*1000\Omega*270\Omega}{2000\Omega*3000\Omega*1000\Omega*270\Omega}$

$$R_z = 1000\Omega + 0.015\Omega + 1.01\Omega + 0.006\Omega = 1001.031\Omega$$

Rysunek 1: Badany obwód RLC

3 Pomiary

Dla obwodu z rysunku ?? dokonano serią pomiarów napięcia na elementach R, L, C dla częstotliwości wejściowej z zakresu <0;12kHz>. Pomiary wykonane podczas badań zapisano w poniższej tabeli ??.

Częstotliwość(kHz)	$V_c(mV)$	$V_l(mV)$	$V_r(mV)$
0.8	727	9	29
2.0	770	57	77
•••	•••		

Tablica 1: Wartości pomiarów na elementach obwodu dla różnych częstotliwości

Zależności z tabeli ?? przedstawiono jako charakterystykę napięciowo-częstotliwościową na rysunku ??.

Rysunek 2: Zależność napięć na elementach obwodu względem częstotliwości

4 Wnioski

Zakładając poprawność przeprowadzonych badań jesteśmy w stanie stwierdzić, że dla częstotliwości równej... wg znanej nam wiedzy [?] zachodzi zjawisko rezonansu szeregowego, które pokrywa się z wartością obliczoną na podstawie wzorów algebraicznych [?]. Wszelkie rozbieżności mogą wynikać z...