A1 gyakorlat, 2005-2006/1., 11. gyakorlat

2005.11.22/24.Integrálás

- 1. Hőlégballonunk ereszkedik 3m/sec sebességgel, ezért 200m-es magasságban kidobunk egy homokzsákot (kiejtjük). Hány másodperc múlva éri el a homokzsák a talajt? (A légellenállást elhanyagoljuk.)
- 2. Autót vezetünk 50km/h sebességgel, amikor hirtelen előttünk 40m-re akadály bukkan fel. Milyen erős lassítás (= konstans negatív gyorsulás) mellett tudunk az akadályig megállni?
- 3. Parciális integrálás

a)
$$\int x \cos(2x) dx$$

b)
$$\int a\cos x dx$$

c)
$$\int \ln^2 x dx$$

a)
$$\int x \cos(2x) dx$$
 b) $\int a \cos x dx$ c) $\int \ln^2 x dx$ d) $\int e^{-x} \sin 2x dx$

e)
$$\int \sin x \cdot \sin x dx$$

f)
$$\int (r^2 + r + 1)e^r dr$$

e)
$$\int \sin x \cdot \sin x dx$$
 f) $\int (r^2 + r + 1)e^r dr$ g) $\int 2x \arcsin(x^2) dx$ h) $\int \theta^2 \sin(2\theta) d\theta$

h)
$$\int \theta^2 \sin(2\theta) d\theta$$

4. Helyettesítéses integrálás (ellenőrizendő a helyettesítő függvény szigorú monotonitása)

a)
$$\int \frac{\mathrm{d}x}{(1+x)\sqrt{x}}$$
, $x=t$

a)
$$\int \frac{dx}{(1+x)\sqrt{x}}$$
, $x = t^2$ b) $\int \frac{x^2}{\sqrt{1-x^2}} dx$, $x = \cos t$ c) $\int \frac{\sin\frac{1}{x}}{x^2} dx$, $x = \frac{1}{t}$

c)
$$\int \frac{\sin\frac{1}{x}}{x^2} dx, \quad x = \frac{1}{t}$$

d)
$$\int \frac{x}{\sqrt{x^2-1}} dx$$
, $x = \operatorname{ch} t$

d)
$$\int \frac{x}{\sqrt{x^2 - 1}} dx$$
, $x = \operatorname{ch} t$ e) $\int \sqrt{x} \sin^2(x^{\frac{3}{2}} - 1) dx$, $u = x^{\frac{3}{2}} - 1$ f) $\int \frac{dx}{\operatorname{sh} x}$, $t = e^x$

f)
$$\int \frac{\mathrm{d}x}{\sin x}$$
, $t = e$

5. Alapintegrálokra vezető egyéb feladatok

a)
$$\int \frac{x^4}{x^2 + 1} \mathrm{d}x$$

b)
$$\int cthxdx$$

c)
$$\int th^2 x dx$$

$$d) \int \frac{\mathrm{d}x}{1 + 3x + 5x^2}$$

e)
$$\int tg^2 x dx$$

6. Oldjuk meg!

(a)
$$f'(x) = \frac{1}{1-x}$$
, $f(-1) = 0$

(b)
$$f'(x) = 3\cos^2(\frac{\pi}{4} - x)$$
, $f(0) = \frac{\pi}{8}$

(c)
$$f''(x) = -4\sin(2X - \frac{\pi}{2}), \quad f(0) = 0, \quad f'(0) = 100$$

(d)
$$f''(x) = 4 \frac{\operatorname{tg} 2x}{\cos^2 x}$$
, $f(0) = -1$, $f'(0) = 4$