1. Шпорцы к экзу по диффурам by Rexhaif

новные свойства автономных систем. Положения равновесия.

Автономные системы: Сиситема обыкновенных ДУ называется автономной, когда переменная t явно не входит в систему. $\dot{x} = \frac{dx}{dt} = f(x)$; (1). Иначе, в координатном виде: $\frac{dx_i}{dt} = f_i(x_1, \dots, x_n), i = \overline{1, n}.$ Свойства автономных систем: 1. Если

 $x = \varphi(t)$ - решение системы (1), то $\forall C : x =$

 $\varphi(t+C)$ - тоже решение системы. Док-во: $\frac{d\varphi(t+C)}{dt} = \frac{d\varphi(t+C)}{d(t+C)} = f(\varphi(t+C)).$ 2. Две фазовые траектории либо не имеют общих точек, либо совпадают. Док-во: Пусть ρ_1, ρ_2 - фазовые траектории. Им отвечает интервал решения $x = \varphi(t), \dots, x = 0$ $\psi(x)$. И пусть $\varphi(t_1) = x_0 = \psi(t_2)$ (есть общая точка). Рассмотрим вектор-функцию $x = \psi(t + (t_2 - t_1)) = X(t)$. В силу св-ва (1) это тоже решение, притом: $X(t_1) = \varphi(t_1) \Rightarrow$ $X(t) = \varphi(t) \Rightarrow \varphi(t) = \psi(t + (t_2 - t_1))$, т.е кривые совпадают.

3. Фазовая траектория, отличная от точки, есть гладкая кривая. Док-во: Пусть $X^0 =$ $arphi(t_0)=rac{darphi(t_0)}{dt}$. Этот вектор - касательная и в каждой точке он не равен нулю. ЧТД. Положение равновесия: Точка $a \in \mathbb{R}^4$ на-

зывается точкой равновесия авт. системы, если $f(a) = 0(\dot{x}(a) = 0).$

1.2. Классификация фазовых траекторий автономных систем.

Всякая фазовая траектория принадлежит к одному из трех типов(классов): 1. Гладкая кривая без самопересечений. 2. Замкнутая гладкая кривая (цикл). 3. Точка.

Теорема: Если фаз. траектория решения $x = \varphi(t)$ есть гладская замкн. кривая, то это решение есть периодическая ф-я t с пе-

риодом T > 0. NEED SOME PROOFS FOR 1.5. Производная в силу систе-THAT SHIT, BUT I'M TOO LAZY.

1.1. Автономные системы. Ос- 1.3. Групповые свойства решений автономной системы уравнений.

Пусть $x(t,x^0)|_{t=0} = x^0$ - решение системы (1), т.е $x^0 \neq 0$ - нач. условие для системы (1). Тогда $x(t_1+t_2,x^0)=x(t_2;x(t_1,x^0))=$ $x(t_1, x(t_2, x^0)).$ **Док-во**: Пусть вект. функции: $\varphi_1(t) =$ $x(t, x(t_1, x^0)); \varphi_2(t) = x(t + t_1, x^0)$ - это решение для системы 1. При t = 0: $\varphi_1(0) = x(t_1, x^0); \varphi_2(0) = x(t_1, x^0).$ T.e $\varphi_1(0) = \varphi_2(0)$. В силу теор. о единственности $\varphi_1(t) = \varphi_2(t) \forall t$. Отсюда следует оба уравнения из условия. Из предыдущег оследует: $x(-t, x(t, x^0)) = x_0$.

1.4. Структура решений автономной системы в окрестности неособой точки.

Дано: $\frac{dx}{dt} = f(x)$ в нек-й окрестности точки V точки a; $f(a) \neq 0$. Фазовые траектории в окрестности V будут кривыми и гладкой заменой переменных их можно сделать прямыми.

Теорема о выпрямлении: пусть $f(a) \neq 0$. Тогда в малой окрестности точки a систему (1) путем гладкой замены переменных можно привести к виду: (2) $\frac{dy_1}{dt} = 0$; $\frac{dy_2}{dt} =$ $0; \ldots; \frac{dy_n}{dt} = 1$. Траектории для (2) - прямые линии: $y_1 = C_1; \dots; y_n = t + C_n$. **Док-во**: Т.к $f(a) \neq 0$ - без огр. общн. говорим, что : $f_n(a) \neq 0$. Пров. гиперплоск. $P: x_n = a_n$. Её точки имеют вид: (ξ, a_n) . Пусть: $x = \varphi(t, \xi)$ - решение (1), такое, что $\varphi(0,\xi) = (\xi,a_n)$ - нач. точка лежит на P. Формула: $x = \varphi(t, \xi)$ - и дает искомую замену. Обознач. $y_1 = \xi_1; \dots; y_n = t$. В новых переменных траектории будут прямыми линиями, т.к из опред. решения имеем, что ξ_1, \ldots, ξ_{n-1} лежат вдоль траектории $x=\varphi(t,\xi^0)$ и её уравн. в перем. y им. вид: $y_1 = \xi_1^0; \dots; y_n = t.$

мы. Геометрическая интерпретация.

Дано : $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x},t)$ (1). Пусть в области $G \subset \mathbb{R}^{n+1}$ ф-я \vec{f} непр. дифф. по всем ар-**Конструкция** : Рассм. произв. ф-ю u =

 (t, \vec{x}) . Пусть $\vec{x} = \vec{\varphi}(t)$ - решение сист. (1) \Rightarrow Вдоль реш. системы имеем $u(t, \vec{\varphi}(t)) =$ $\mathbb{W}(t)$. Дифференцируем $\mathbb{W}(t)$ по t: $\frac{d\mathbb{W}}{dt}$ $(\frac{\partial u(x,\vec{t})}{\partial t} + \sum_{j=1}^n \frac{\partial u(t,\vec{x})}{\partial x_j} \cdot \frac{dx_j}{dt})|_{\vec{x} = \vec{\varphi}(t)} = \frac{\partial u(t,\vec{x})}{\partial t} +$ $\sum_{j=1}^{n} \frac{\partial u(t,\vec{x})}{\partial x_{j}} \cdot f_{j}(t,\vec{x})|_{\vec{x}=\vec{\varphi}(t)}$ (2). Полученное в (2) выражение - производной ф-ии u в силу системы (1). Обозн. \dot{u} или $\frac{du}{dt}$

Геом. интерпретация : Пусть u(x) - гладкая и $\nabla u(x) \neq 0$ в уч. обл. $D. \Rightarrow$ ур-е u(x) = 0 опр. гладкую поверхность S, а вектор $\nabla u(x)$ ортогонален к S в точке х и направлен в сторону возр. ф-ии u(x). Если $\dot{u}(x) < 0$, то участок ф-ии f(x) образует прямой или тупой угол с вектором $\nabla u(x)$.

1.6. Первые интегралы. Теорема о первых интегралах. Независимые интегралы.

Определение: Φ -я u(x) называется первым интегралом автономной системы (1) если она постоянна вдоль каждой траектории этой системы.

того, чтобы ф-я u(x) была перв. интег. системы (1) необх. и достаточно, чтобы она удовл. соотн в области $D \colon \sum_{j=1}^n \frac{\partial u(x)}{\partial x_j}$. $f_i(x) = 0 \ (\#)$ Док-во (1) : Пусть u(x) - непр. интегрируемо в обл. $D. x = \varphi(t)$ - решение системы (1) \Rightarrow $\mathbb{W}(t) = u(\varphi(t))$ - постоянна $\forall t \Rightarrow \dot{u}(x) = 0$ в D. Обратно: Пусть # - в области $D \Rightarrow$ пусть $x = \varphi(t)$ - решение для $(1) \Rightarrow \frac{d}{dt}u(\varphi(t)) = \sum_{j=1}^{n} \frac{\partial u(x)}{\partial x_j} f_j(x)|_{x=\varphi(t)} = 0$ $\Rightarrow u(\varphi(t))$ - не зависит от $t \Rightarrow$ - явл. первым интегралом. ЧТД. (2) Теорема о независимых интегра-

лы : Пусть т. a не есть положение рав-

гралов $u_1(x), \ldots, u_{n-1}(x)$ и любой иной первый интеграл выражается через них. Док-во (2) : Пусть окр. a дост. мала $\Rightarrow \exists$ окр. V точки y = 0 и гладкая обратимая замена $x = \varphi(y)$ приводящая систему к виду $\frac{dy_1}{dt} = 0; \dots; \frac{dy_n}{dt} = 1$. Полученная система имеет n-1 незав. первых интегралов $u_1(y) = y_1; \dots; u_{n-1}(y) = y_{n-1}$ и всякий иной первый интеграл выражается че-

новесия. Тогда в её некоторой окрестности

 $\exists n-1$ независимых интегралов первых инте-

1.7. Устойчивость положения равновесия по Ляпунову. Асимптотическая устойчивость.

Устойчивость по Ляпунову: Положение

равновесия a называется устойчивым по Ля-1. $\exists \delta_0 > 0$, такое, что если $|x^0 - a| < \delta_0$, то решение $x(t, x_0)$ - существует и единств. при $0 < t < \infty$. 2. $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$, такое, что если

 $|x^0 - a| \le \delta$, то $|x(t, x^0) - a| \le \varepsilon$, при всех $0 < t < \infty$

Асимптотическая устойчивость: Положение равновесия а назыв. асимптотически устойчивым, если оно устойчиво по Ляпунову и если $\lim_{t\to+\infty} x(t,x^0) = a$, при достаточно малом $|x^0 - a|$. (1) Теорема опервых интегралах : Для

Проще: Если точку сдвинуть из положения равновесия, то она будет стремиться туда вернуться.

1.8. Линейные автономные системы. Структура общего решения в случае различных корней. Случай вещественной матрицы.

(1) Вид :
$$\begin{cases} \frac{dy_1}{dt} = a_{11}y_1 + \ldots + a_{1n}y_n \\ \ldots \\ \frac{dy_n}{dt} = a_{n1}y_1 + \ldots + a_{nn}y_n \end{cases}$$

Собственные значения : Вектор $e \neq 0$ на-

случае - матрицы из a_{ij}), если $Ae = \lambda e$. Притом λ - назыв. собств. значением матрицы и $det(A-\lambda E)=0$. Если собственные значения матрицы A различны, то существует невырожд. матрица T, приводящая матрицу A к диагональному виду.

Случай различных корней : Пусть $\lambda_1, \ldots, \lambda_n$ - собств. значения матрицы $A \Rightarrow$ всякое решение уравнения $\frac{dy}{dt} = A\dot{x}$ имеет вид: $x(t) = C_1 e^{\lambda_1 t} \vec{e_1} + \ldots + C_n e^{\lambda_n t} \vec{e_n}$, где $\vec{e_i}$ - собств. вектор матрицы A.

A - вещ. λ - вещ. e - собств. вектор. $\Rightarrow \vec{\lambda}$ собств. знач. с собств. вектором \vec{e} . Док-во: $Ae = \lambda e \Rightarrow \vec{A}\vec{e} = \vec{\lambda}\vec{e}; \vec{A} = A \Rightarrow A\vec{e} = \vec{\lambda}\vec{e}.$ ЧТД. Если λ - вещ. собств. знач. \Rightarrow собств. вектор тоже веществ. и решение берем как $x = e^{\lambda t} \vec{e}$.

зыв. собств, вектором матрицы A(в нашем 1.9. Анализ плоской фазовой си- 1.10. Анализ плоской фазовой C(V). Ф-я V(x) называется положительно стемы. Разбор различных случаев. Вещественные корни.

Дано:
$$\begin{cases} \dot{x}_1 = a_{11}x_1 + \dots \\ \dot{x}_1 = a_{21}x_1 + \dots \end{cases}$$
, λ_1, λ_2 - собств значения.

Корни вещественны, различны, не ну-Случай вещественной матрицы : Пусть левые : $\Rightarrow x(t) = C_1 e^{\lambda_1 t} \vec{e}_1 + C_2 e^{\lambda_2 t} \vec{e}_2$. \vec{e}_i - базис на плоскости. Пусть ξ_1, ξ_2 - коорд. вектора x в базисе \vec{e}_1, \vec{e}_2 . $\xi_1 = C_1 e^{\lambda_1 t}; \xi_2 = C_2 e^{\lambda_2 t}$. $\lambda_1 < 0, \lambda_2 < 0$: Узел. При $C_1 = C_2 = 0$ точка покоя (0, 0). Траектории направлены

> $\lambda_1>0, \lambda_2>0$: Устойчивый узел. Траектории направлены из центра.

> $\lambda_1 > 0, \lambda_2 < 0$: Седло. Траектории образуют гиперболы во всех четвертях. В нижних четвертях направлены вниз, в верхних вверх.

системы. Разбор различных случаев. Комплексные корни.

Оба корня чисто мнимые : Центр. $\xi_1 = \rho_0 cos(\beta t + \psi); \xi_2 = \rho_0 sin(\beta t + \psi), \rho_0 =$ $2\sqrt{a^2+b^2}$. Фазовые траектории - эллипсы, направление зависит от знака $\beta:\beta>0$ против часовой.

 α < 0 : Устойчивый фокус. ξ_1 = $\rho_0 e^{\alpha t} cos(\beta t + \psi); \xi_2 = \rho_0 e^{\alpha t} sin(\beta t + \psi)$ Траектории - спирали, закручивающиеся в центр, направление зависит от знака β . $\alpha > 0$: Неустойчивый фокус. Спираль раскручивается.

1.11. Функции Ляпунова. Лемма об оценке квадратичной формы.

Положительно и отрицательно определенные ф-ии: Пусть есть $x \in \mathbb{R}^4$, $V(a) \in$

определенной в области V, если есть т. a, такая что в её окрестности $V(x) > 0 \forall x \in U(a)$ и V(a) = 0. И отрицательн определенной иначе.

Функция Ляпунова : Положительно определенная в окр. точки a функция V(x)называется ф-ей Ляпунова системы $\dot{x} =$ f(x) (1), если $V(x) < 0, \forall x \in V. V(x)$ производная в силу системы (1). $\dot{V}(x) =$ $\sum_{i} \frac{\partial V}{\partial x_{i}} f_{j}(x) \leq 0.$

Лемма о квадр. форме : Если A - веществ. симм. матрица (n x n) $\Rightarrow \forall x \in \mathbb{R}^4$ верно: $\alpha |x|^2 \leq |(Ax,x)| \leq \beta |x|^2$, где $\alpha =$ $min(A); \beta = max(A).$

Док-во : Приведем A к диаг. виду с помощью орт. преобразования матрицей T, т.е $T^{-1}AT = \mathcal{L}$ - диаг. матрица с элементами $\lambda_1, \ldots, \lambda_n$. Сделаем замену $x = TY \Rightarrow$ в силу ортогональности (Ax, x) = (ATY, TY) = $(T^{-1}ATY, y) = (T^{-1}ATY, Y) = (\mathcal{L}Y, Y) =$ $\sum_{i=1}^{n} \lambda_i y_i$, так что $\alpha |x|^2 = |(Ax, x)| = \beta |x|^2$. Т.к ортогон. преобр. сохраняет длину вектора то |x| = |y|. Лемма доказана.