S 622.34 L3ahms 1994 Pioneer Technical Services, Inc Abandoned hardrock mine

PARTMENT OF STATE LANDS ABANDONED MINES AND RECLAMATION BUREAU

ABANDONED HARDROCK MINE PRIORITY SITES

SUMMARY REPORT

STATE DOCUMENTS

MAY 1 6 1994

MONTANA STATE LIBRARY 1515 East 6th Avenue Cap No. 201800 Helena, MT 59620-1808

JAN 7 2 1995 MAR 1 5 1995

> APR 1 2 1995 JAN 3 1 1996

FEB 2 0 1997

SEP -1 1998

ALV 5 1998

Dec 16, 1998

JAN 9 2002

FEB 1 2 2002

JUN 2 3 2005

AUG 1 7 2007

OCT 26 2007

SAMPLE DESIGNATION LEGEND

MONTANA STATE LIBRARY \$ 622.34 L3ahms 1994 c.1

3 0864 00092396 4

GW: Groundwater sample from well, spring, shaft

or adit discharge.

SW: Surface water sample from stream, river,

ditch, or adit discharge.

SE: Stream sediment sample.

TP: Mill tailings sample from tailings pond or pile, or stream-side tailings deposit.

WR: Waste rock sample from waste rock dump.

SS: Background soil sample.

MONTANA DEPARTMENT OF STATE LANDS ABANDONED MINES AND RECLAMATION BUREAU

ABANDONED HARDROCK MINE PRIORITY SITES

SUMMARY REPORT

PREPARED FOR:

ABANDONED MINES AND RECLAMATION BUREAU
MONTANA DEPARTMENT OF STATE LANDS

1625 ELEVENTH AVENUE
HELENA, MONTANA 59620

PREPARED BY:

PIONEER TECHNICAL SERVICES, INC. P.O. BOX 3445 BUTTE. MONTANA 59702

WITH ASSISTANCE BY:

THOMAS, DEAN AND HOSKINS, INC. 1200 TWENTY-FIFTH STREET, SOUTH GREAT FALLS, MONTANA 59405

Engineering Services Agreement DSL-AMRB No.004

MARCH 1994

The cover photograph is of the Maginnis Mine and Mill, Maiden, Montana located approximately 23 miles northeast of Lewistown, Montana This photograph was taken by W.H. Culver and graciously provided by the Montana Historical Society for use on this cover.

		a de la companya de

TABLE OF CONTENTS

	<u>ray</u>	e No.
1.0	INTRODUCTION	. 1-1
	1.1 PROJECT OBJECTIVES	. 1-2
	1.2 PROJECT DESCRIPTION	. 1-5
	1.3 SUMMARY OF FINDINGS	. 1-6
2.0	INVESTIGATION METHODS	. 2-1
	2.1 DATABASE AND LITERATURE SEARCH	. 2-1
	2.2 FIELD METHODS	. 2-2
3.0	DATA EVALUATION AND COMPARISONS	. 3-1
	3.1 DATA VALIDATION AND EVALUATION	. 3-1
	3.1.1 Laboratory Data Validation and Evaluation	. 3-2
	3.2 DATA INTERPRETATION	. 3-3
	3.2.1 Background Soil Comparison	. 3-3
	Sediment	. 3-3 . 3-3
	3.3 DATA MANAGEMENT	. 3-4
4.0	SITE RANKING	<i>1</i> _1

5.0 SITE SUMMARY FORMS

Beaverhead County	,	•		_
	Baldy Mountain	Garrett Hill	PA # 01-092	Page No. 5- 1
	Bannack	Amous Battleta	-	
	Dannack	Apex Millsite	PA # 01-006	5-2
		Gold Leaf/Priscilla	PA # 01-031	5-3
	Birch Creek	Indian Queen	PA # 01-034	5-4
	Elkhorn-South	Old Elkhom	PA # 01-169	5-5
	Ermont	Ermont Mill & Mines	PA # 01-005	5-6
•	Hecla	Silver King	PA # 01-094	5-7
		Lower Cleve	PA # 01-143	5- 8
		Trapper	PA # 01-144	5-9
	Lemhi Pass	South Frying Pan	PA # 01-211	5- 10
		Last Chance No. 1	PA # 01-216	5- 11
	•	Last Chance No. 2	PA # 01-220	5- 12
	Lost Creek	Tungsten Millsite	PA # 01-170	5- 13
	Wisdom	Clara	PA # 01-262	5- 14
		Martin	PA # 01-270	5- 15
Broadwater County				
	Confederate	Miller Mountain	PA # 04-138	5- 16
. •		Hummingbird	PA # 04-144	5- 17
	Hellgate	Argo	PA#04-015	5- 18
	Indian Creek	Park (Marietta)	PA # 04-012	5- 19
		St. Louis	PA # 04-013	5-20
		Diamond Hill	PA# 04-020	5-21
	Radersburg	Ohio	PA # 04-009	5-22
		Keating Tailings	PA # 04-121	5-23
•	Winston	East Pacific	PA # 04-008	5-24
		Vosburg	PA # 04-014	5-25
Cascade County				
	Hughesville	Block P Tailings	PA # 07-090	5- 26
		Galena Creek Sampling	PA # 07-090	5- 27
		Bon Ton	PA # 07-094	5-28
	Neihart	Vilipa	PA # 07-080	5-29
		Molton	PA # 07-084	5-30
		Evening Star Millsite	PA # 07-087	5-31
		Compromise	PA # 07-100	5-32
		Carpenter Creek Tailings	PA # 07-103	5-33

Cascade County				Page No.
Cascade County	Neihart	Rochester	PA # 07-110	5- 34
	110mart	Silver Belt	PA # 07-111	5-35
		Fairplay	PA # 07-112	5- 36
		Atlantus	PA # 07-113	5-37
		Stallabrass	PA # 07-113	5-37 5-38
		Dacotah	PA # 07-121	5-39
		Maud S.	PA # 07-121 PA # 07-129	5- 40
		Neihart Tailings	PA # 07-129 PA # 07-134	5-40 5-41
		Silver Dike Adit	PA # 07-135	5-42
			PA # 07-137	5-42 5-43
		Silver Dyke Tailings	PA # 07-137 PA # 07-138	5-43 5-44
		Silver Dyke Millsite Sherman No. 2		5- 44 5- 45
			PA # 07-140	
		Sherman No. 2	PA # 07-142	5-46 5-47
		Big Seven	PA # 07-156	5-47
		Baker	PA # 07-180	5-48
Deer Lodge County				
	Orofino	Champion	PA # 12-003	5-49
•	Silver Lake	Cable	PA # 12-002	5- 50
		Gold Coin Mine	PA # 12-004	5-51
		Silver Lake Millsite	PA # 12-070	5-52
Fergus County	14	- ****	DA # 44 040	F
	Warm Springs	Tail Holt	PA # 14-010	5-53
		Cumberland	PA # 14-017	5- 54
Flathead County				
•	Hog Heaven	Flathead Mine	PA # 15-012	5-55
Gallatin County	_			
	Bozeman	Elk Creek Corundum	PA # 16-013	5- 56
		Thumper Mica	PA # 16-015	5-57
		Karst Asbestos	PA # 16-018	5- 58
Granite County				
Oranico Country	Alps	Alps	PA # 20-065	5-59
		·		
	Antelope Creek	Silver King	PA # 20-186	5-60
		Lori No. 13	PA # 20-191	5-61
		Ant	PA # 20-194	5-62
	Combination	Combination	PA # 20-009	5-63
	Combination	Combination	FA# 20-009	J-03
	Dunkleburg	Forest Rose	PA # 20-004	5-64
		Wasa	PA # 20-023	5-65
		Jackson Park	PA # 20-027	5-66
	Maxville	Maxville Tails (Londonderr	3PA # 20-209	5-67
	Mooso Loko	Poppor	DA # 20:475	E 60
	Moose Lake	Banner Old Dominion	PA # 20-175	5-68 5-60
		Old Dominion	PA # 20-180	5-69

:

Granite County				<u>Page No.</u>
•	Philipsburg	Bi-Metallic/Old Red	PA # 20-002	5-70
		Douglas Creek Tailings	PA # 20-003	5-71
		Algonquin	PA # 20-005	5-72
		Rumsey Mine and Millsite		5- 73
		Scratch All	PA # 20-019	5-74
		Trout	PA # 20-062	5-75
		Granite Mountain	PA # 20-110	5- 76
		True Fissure	PA # 20-111	5- 77
				0 11
	South Boulder	Nonpareil	PA # 20-012	5-78
		Brooklyn	PA # 20-025	5-79
				- O- 7 O
Jefferson County				
-	Alhambra	Middle Fk. Warm Springs	PA # 22-046	5-80
		Alhambra Hot Springs	PA # 22-049	5-81
		Solar Silver	PA # 22-054	5-82
			17111 22 004	3-02
	Basin	Bullion	PA # 22-008	5-83
		Basin Millsite	PA # 22-036	· 5-84
		Perry Park	PA # 22-039	5-85
		Buckeye	PA # 22-072	5- 86
		Enterprise	PA # 22-074	5- 87
		Jack Creek Tailings	PA # 22-296	5- 88
		Marguerite	PA # 22-301	
		mai guonto	1 A # 22-301	5-89
	Cataract	Mantle (East)	PA # 22-032	5-90
		Crystal	PA # 22-073	5-90 5-91
		Eva May	PA # 22-075	5- 92
		Morning Glory	PA # 22-077	5- 93
			174 22-011	J- 3 3
	Clancy	Nellie Grant	PA # 22-244	5-94
	•	General Grant	PA # 22-245	5- 9 5
				3-33
	Colorado	Alta	PA # 22-001	5-96
• • •		Bertha	PA # 22-002	5- 97
		Bluebird	PA # 22-003	5- 98
		Corbin Flats	PA # 22-004	5- 99
		Gregory	PA # 22-005	5- 100
			PA # 22-007	5- 101
			PA # 22-102	5- 101 5- 102
		A 41	PA # 22-104	5- 102 5- 103
			PA # 22-358	5- 103 5- 104
		one one one	1 7 # 22-330	5- 104
	Elkhorn	Elkhorn Queen	PA # 22-027	5- 105
			PA#22-027	
		_	PA#22-111 PA#22-284	5- 106 5- 107
		• • •	PA#22-204 PA#22-336	5- 107 5- 109
			i /\π <u>∠∠</u> -330	5- 108
	High Ore	Comet Tailings	PA # 22-009	E 400
		·	PA # 22-009 PA # 22-029	5- 109
		o. o, Lugio	- M # 44-U49	5- 110

Judith Basin County				Page No.
	Hughesville	Block P Mine	PA # 23-001	5- 111
		Marcelline	PA # 23-022	5- 112
		Belt Patent	PA # 23-035	5- 113
		NE NE S7 (Lucky Strike)	PA # 23-042	5-114
		Wright Lode	PA # 23-045	5- 115
		Edwards Lode	PA # 23-046	5-116
		Harrison/Moulton	PA # 23-056	5-117
		Moulton	PA # 23-058	5-118
		Tiger	PA # 23-059	5-119
	Yogo	Vortex	PA # 23-027	5- 120
	. 090	NE NE S31	PA # 23-079	5- 121
Lewis & Clark County				
Lowe & Olark County	Helena	Davis Gulch II	PA # 25-040	5-122
	Tiolona	Spring Hill Tailings	PA # 25-067	5- 123
			PA#25-007	5- 123 5- 124
		Lady Luck		
		Mother Lode	PA # 25-363	5- 125
	Lincoln	Seven-Up Pete/Rover	PA # 25-020	5- 126
		Blackfoot Tailings	PA # 25-322	5- 127
	Marysville	Bald Mountain	PA # 25-061	5- 128
	,	Big Ox Millsite	PA # 25-115	5- 129
		Big Ox Mine	PA # 25-116	5-130
		Belmont	PA # 25-167	5- 131
		Piegan-Gloster Millsite	PA # 25-172	5- 132
		Empire Millsite	PA # 25-175	5- 133
		Bald Butte Millsite	PA # 25-179	5- 134
		Argo Millsite	PA # 25-314	5- 135
		Wildcat	PA # 25-317	5- 136
		Goldsil Millsite	PA # 25-365	5- 137
	Orphir	Victory/Evening Star	PA # 25-010	5- 138
	Rimini	Tenmile	PA # 25-005	5- 139
		Red Water	PA # 25-007	5-140
		Valley Forge/Susie	PA # 25-008	5- 141
		Lower Tenmile/Engstrom	PA # 25-030	5-142
		Armstrong	PA # 25-102	5-143
		Beatrice	PA # 25-103	5- 144
		Red Mtn North & #13	PA # 25-019	5- 145
		Upper Valley Forge	PA # 25-280 - 282	5- 146
		SE SE S13	PA # 25-294	5- 147
	Scratchgravel	Franklin	PA # 25-339	5- 148
	Stemple	NE NW S13	PA # 25-197	5- 149
		Swansea Tailings	PA # 25-208	5-150
		SE SW S10	PA # 25-212	5- 151
		Pangewasset	PA # 25-226	5- 152
		Astor	PA # 25-227	5- 153

			•	
Lincoln County				Page No.
	Libby	Snowshoe	PA # 27-005	5- 154
		Cherry Creek Millsite	PA # 27-006	5- 155
		Mitchell Creek	PA # 27-055	5- 156
		Silver Cable	PA # 27-066	5- 157
			•	
Madison County				
	Norris/Red Bluff		PA # 29-013	5- 158
		Grubstake	PA # 29-399	5- 159
	Norwegian	Norwegian	PA # 29-006	5- 160
	Pony	Atlantia O Dacitia	DA # 00 000	
	Pony	Atlantic & Pacific	PA # 29-033	5- 161
		Boss Tweed	PA # 29-034	5- 162
		Strawberry	PA # 29-038	5- 163
	Rochester	Emma	PA # 29-061	E 464
	. (00,100,0)	Thistle No. 1	PA # 29-001 PA # 29-073	5- 164
		Watseca Millsite	_ · · · · · -	5- 165 5- 100
		vvalseca ivillisite	PA # 29-075	5- 166
	Sheridan	Smuggier	PA # 29-010	5- 167
		Goldschmidt-Steiner	PA # 29-078	5- 167 5- 168
	•	Red Pine	PA # 29-079	
		Broad Gauge	PA # 29-293	5- 169 5- 470
		Latest Out		5- 170
		Uncle Sam	PA # 29-354	5- 171
		_ :::	PA # 29-383	5- 172
		Lakeshore .	PA # 29-436	5- 173
		Buckeye	PA # 29-451	5- 174
		Pedro	PA # 29-455	5- 175
		SE SW S26 (Keynote)	PA # 29-474	5- 176
		NE SE S26	PA # 29-476	5- 177
	Silver Star	Broadway/Victoria	PA # 29-179	5- 178
	-		1 M # 20-119	3- 176
	South Boulder	Mammoth	PA # 29-008	5- 179
		Mammoth Tailings	PA # 29-082	5- 180
				3 - 100
	Tidal Wave	B&H	PA # 29-083	5- 181
		Dry Gulch (South)	PA # 29-282	5- 182
		Eleanor East	PA # 29-285	5- 183
		Pete & Joe	PA # 29-449	5- 184
		Ohio	PA # 29-473	5- 185
			17111 20 410	3- 103
		Kearsage	PA # 29-102	5- 186
		General Shafter	PA # 29-103	5- 187
		Apex	PA # 29-105	5- 188
		JTC	PA # 29-106	5- 189
		Pacific	PA # 29-118	5- 190
		Easton	PA # 29-121	5- 191
				O- 131
	Washington	Missouri	PA # 29-373	5- 192
		SE SE S25	PA # 29-394	5- 192 5- 193
			· / \ # 20-007	J- 193

		· · · · · · · · · · · · · · · · · · ·		
Meagher County	5 0 1			Page No.
	Beaver Creek	SE NW S24	PA # 30-017	5- 194
		Lane	PA # 30-019	5-195
	•	Bigler	PA # 30-067	5-196
		Porcupine ·	PA # 30-069	5- 197
	Castle Mtn.	Cumberland	PA#30-004	5- 198
		Belle of the Castle	PA # 30-007	5- 199
	Smith River	SW NE S10	PA # 30-078	5-200
Mineral County			Α	
	Cedar Creek	Cajun Queen No. 1	PA # 31-049	5-201
	Iron Mountain	Iron Mountain Millsite	PA#31-010	5-202
		Gold King	PA # 31-067	5-203
		Belle of the Hills	PA # 31-072	5-204
		Dillon Millsite	PA # 31-073	5-205
	Keystone	Nancy Lee Mine	PA # 31-001	5-206
		Keystone	PA # 31-074	5-207
		Little Anaconda	PA # 31-077	5-208
		Hopkins	PA # 31-078	5-209
		Nancy Lee Millsite	PA # 31-082	5-210
		Nancy Lee Mill - Slowey	PA # 31-090	5-211
	Packer Creek	Tarbox-Mineral King	PA#31-003	5-212
		Salteste Consolidate	PA # 31-021	5-213
Missoula County				
	Cramer Creek	Linton	PA # 32-017	5-214
	Elk Creek	Morse & Kennedy	PA # 32-033	5-215
	Ninemile	Joe Wallit	PA#32-010	5-216
		Lost Cabin	PA # 32-011	5-217
		Nugget	PA # 32-042	5-218
		Hautilla	PA # 32-057	5-219
	Woodman	Ward Lode	PA # 32-005	5-220
		Upper Triantler	PA # 32-048	5 - 221
		Mill Creek Mine	PA # 32-049	5-222
Park County				
	Emigrant	Allison	PA # 34-018	5-223
	New World	McLaren Tailings	PA # 34-004	5-224
		Lower Glengarry	PA # 34-006	5-225
		Gold Dust	PA # 34-007	5-226
		Little Daisy	PA # 34-009	5-227
		McLaren Mine	PA # 34-010	5-228
		Black Warrior	PA # 34-079	5-229

Park County				Page No.
•	New World	Upper Alice E.	PA# 34-085	5- 230
		Fisher Creek No. 1	PA # 34-090	5- 231
		Homestake No. 2	PA # 34-093	5-232
Powell County				
1 Owen County	Elliston	Charter Oak	PA#39-003	<i>E</i> 222
•	Linoton	Lily/Orphan Boy	PA # 39-005 PA # 39-006	5- 233 5- 234
		Monarch	PA # 39-008	5- 235
		Ontario Millsite	PA # 39-010	5-236
		Golden Anchor	PA # 39-012	5- 237
		Hard Luck	PA # 39-012	5- 238
		Kimball	PA # 39-014	5- 239
		Sure Thing	PA # 39-020	5-239 5-240
		Julia	PA # 39-020	5-240 5-241
		Telegraph Mine	PA # 39-022	5- 241 5- 242
		Third Term	PA # 39-023 PA # 39-024	5- 242 5- 243
		Anna R./Hattie M.	PA # 39-024 PA # 39-044	
		Mountain View	PA # 39-044 PA # 39-062	5-244 5-245
	Powell	Viking	PA # 39-002 PA # 39-077	5-245
	1 04011	VIKILIS	PA # 39-0//	5-246
	Emery	Emery	PA # 39-004	5-247
	Orphir	NE NW S32	PA # 39-052	5-248
Ravalli County				
	Curlew	Curlew	PA # 41-003	5-249
	Frog Pond	Montana Prince	PA # 41-004	5-250
	Hughes Creek	Lucky Joe	PA # 41-027	5-251
	Pleasant View	Blue Bird	PA # 41-009	5-252
Sanders County				
	Blue Creek	Broken Hill	PA # 45-005	5- 253
	Plains	Montro Gold	PA # 45-010	5- 254
		Dee Creek	PA # 45-041	5-255
		Lower Letterman	PA # 45-047	5-256
	Trout Creek	Holliday (Silver Mark)	PA # 45-009	5-257
	White Pine	Jack Waite	PA # 45-002	5-258
Silver Bow County				
-	Basin Creek	Highland Mine	PA # 47-028	5-259
	Elk Park	Mary Emmee/Clinton	PA # 47-035	5-260
		Rising Sun	PA # 47-037	5-261

Silver Bow County				Page No.
	Melrose	Old Glory	PA# 47-027	5-262
		Clipper	PA # 47-029	5-263
		Maiden Rock	PA # 47-051	5- 264
	Moose Creek	Middle Fork Millsite	PA # 47-081	5- 265
Stillwater County				
	Nye	Mouat Mine	PA # 48-001	5-266
	Stillwater	Benbow Millsite	PA # 48-005	5-267
Sweet Grass County				
•	Independence	Poorman/Emma	PA # 49-001	5-268
	•	Yager/Daisy	PA # 49-002	5-269
		NE SE S22	PA # 49-003	5-270

TABLE OF CONTENTS (Cont'd)

		Page No.
6.0 REFER	ENCES	6-1
GLOSSARY		
	LIST OF TABLES	
TABLE 1-1 TABLE 4-1	ABANDONED HARDROCK MINES PRIORITY SITES LIST ABANDONED HARDROCK MINES PRIORITY SITES AIMSS RANKING	
TABLE 4-2	ABANDONED HARDROCK MINES PRIORITY SITES SAFETY RANKING	4-2 4-4

1.0 INTRODUCTION

This document provides a summary of the Hazardous Material Inventory Project implemented for the Abandoned Hardrock Mine Priority Sites. The Hazardous Materials Inventory was conducted for the Montana Department of State Lands, Abandoned Mine Reclamation Bureau (DSL-AMRB).

This report is organized into five sections. Section 1.0 presents the introduction, project objectives, a brief description of the project tasks, and a summary of the findings. Section 2.0 briefly describes field methods used during the inventory. Section 3.0 discusses data evaluation techniques and data management for the project. Section 4.0 presents a brief description of the Abandoned and Inactive Mines Scoring System (AIMSS) which was developed to rank the 270 priority sites. Section 5.0 presents one page summaries for each of the priority sites. The summaries typically provide details about each site, such as volumes of wastes, contaminant concentrations, observed releases to surface water and groundwater, water quality criteria exceedances, and potential safety hazards.

This summary report is supported by several other project documents databases, including:

- The Sampling and Analysis Plan (SAP) presents the sampling approach for the Abandoned Mines Hazardous Materials Inventory. This SAP also contains instructions on completing the Inventory Form and the Standard Operating Procedures (SOPs) for conducting the field sampling activities (Pioneer, 1993a).
- The Quality Assurance Project Plan (QAPjP) describes quality assurance procedures used for evaluating the field and lab data for the project (Pioneer, 1993b).
- The Laboratory Analytical Protocol (LAP) describes laboratory requirements for the project (Pioneer, 1993c).
- The Health and Safety Plan describes practices and procedures to be followed by field investigators who performed the project to minimize exposure to hazardous materials and to eliminate any possibility of physical injury (Pioneer, 1993d).

- The Abandoned Hardrock Mines Project Report is a compilation of the reports listed above, as well as this Summary Report, the AIMSS Report, the Data Validation/Evaluation Report, and the completed Hazardous Material Inventory Forms for each site (Pioneer, 1994).
- The Abandoned Hardrock Mine Priority Sites, Hazardous Materials Inventory Databases.

The Abandoned Hardrock Mines Project Report can be viewed in Helena, Montana, at the Montana State Library; the DSL-AMRB office; or the Montana Department of Health and Environmental Sciences, Solid and Hazardous Waste Bureau (DHES-SHWB) office or in Missoula, Montana, at the United States Department of Agriculture, Forest Service (USFS), Region 1 office. A partial copy is also located at the United States Department of Interior, Bureau of Land Management (BLM) State Office in Billings, Montana.

1.1 PROJECT OBJECTIVES

There are an estimated 6,000 abandoned or inactive hardrock mine and milling sites in Montana. This legacy of Montana's mining past has left a wide range of problems and challenges for the DSL-AMRB and other state and federal agencies charged with the reclamation and mitigation of these problems.

The problems associated with the abandoned and inactive hardrock mine sites are varied and range from safety hazards caused by hazardous mine openings, dangerous highwalls, and dilapidated structures, to threats to human and non-human life and the environment by mining waste containing elevated heavy metals and other contaminants. To date, the DSL-AMRB has conducted a great deal of work to eliminate the problems of unsafe openings, high-walls, and structures, and has made over 1,500 of these sites safer.

In 1991, the DSL-AMRB concluded that substantial progress had been made in eliminating imminent hazards to public health and safety at abandoned hardrock mine sites. However, limited progress was realized with regard to the problems relating to heavy metal and mineral processing reagent contamination of surface water and

groundwater. Not only were these sites causing severe environmental degradation, but they were also the sites of highest concern to the public. Additionally, the DSL-AMRB recognized that there were a number of other state and federal programs that had resources available to address their problems, but there was no coordinated approach to determining which specific sites should be addressed first. As a result, the DSL-AMRB solicited various state and federal agencies, requesting assistance in the identification of suspected problem sites. The following agencies responded to the DSL-AMRB request: USFS-Region 1, BLM, DHES, and the Montana Department of Natural Resources and Conservation (DNRC). A list of 270 suspect sites was compiled from the input of these agencies supplemented by a review of existing data from the DSL-AMRB master inventory. This priority sites list is presented in Table 1-1. Although this list includes the majority of the highest potential hazard sites in Montana, several others have been identified and will continue to be identified, investigated, and ranked in the upcoming years by the DSL-AMRB.

The agencies previously listed agreed to a cooperative course of action, with DSL-AMRB designated as the lead agency. The agencies established the following objectives:

- To identify and prioritize those abandoned mine sites that are presently the most serious threats to public health and safety and the environment.
- To collect data on each priority site in a consistent manner to identify problems
 associated with each site and to directly compare and rank sites. All sampling and
 analysis methods will strictly follow U.S. Environmental Protection Agency (EPA)
 protocols to ensure consistent and accurate results.
- To develop a long-term strategy to utilize statutory and financial resources available to systematically reduce the hazards associated with the prioritized abandoned mine sites.

Upon completion of this report, the first two objectives stated above are fulfilled, and the framework to complete the third objective is in place.

			_	_		-	_					_	-		_	_						_			_						-			_	_			_							_			-		_			_		_		-
PA No.	3 6/3	31-074	31-077	31-078	790-12		31-021	32-017	32-033	32-010	32-011	32-042	32-057	32-005	32-048	32-049	34-018	34-00	34-00	200	34.010	34.070	34 085	34-090	34-093	39-003	39-006	39-008	39-012	39-014	39-018	39-020	39-022	39-023	39-044	39-062	39-077	39-004	41-003	9	41-027	41-009	2003	45.010	45-047	45-009	45-002	7 028	17-037	47-027	47-029	47-051	18-08	48-005	100-64	49-002	
SITE NAME	Nancy I see Mine	Keystone	Little Anaconda	Hopking Nearcy I are Millaide	Nancy Lee Mill - Slower	Tarbox-Mineral King	Salteste Consolidate	Linton	Morse & Kennedy	Joe Wallit	Lost Cabin	Nugget	Hautilla	Ward Lode	Upper Triantler	Mull Creek Mine	McI gram Tailing	McLauen Immg	Cold Past	Little Daiev	McLaren Mine	Black Warrion	Upper Alice E.	Fisher Creek No. 1	Homestake No. 2	Charter Oak	Luly/Orphan Boy	Monarch Ontario Millerte	Golden Anchor	Hard Luck	Kimbell	Sure Thing	Julia	Third Term	Anna R./Hattie M.	Mountain View	Viking	NF NW 632	Curley	Montana Prince	Lucky Joe	Blue Bird	Months (2)	Dee Creek	Lower Letterman	Holliday (Silver Mark)	Jack Warte	Mary Furmes/Clinton	Rieing Sun	Old Glory	Chipper	Middle Fork Millaite	Mouat Mine	Benbow Millaite	Poorman/Emma	NU SP S22	
DISTRICT	Keystone	Keystone	Keystone	Kevstone			Packer Creek	Crammer Creek	Elk Creek	Ninemile	Ninemile	Numeraile	Nmemile	Woodman	Woodman W	Frairmet	New World	New World	New World	New World	New World	New World	New World	New World	New World	Elliston	Filiaton	Elliston	Elliston	Ellinton	Elliston	Elliston	Elliston	Elliston	Elliston	Elliston	Eliston	O THE	Curlery	It 3g Pond	Hughes Creek	Fleasant View	Plaine	Plains		_	White Pine	_		Metrose	Metrose	Moose Creek	Nye	Stillwater	Independence	Independence	
COUNTY	Mineral	Mineral	Minera	Mineral	Mineral	Mineral	Mineral	Missoula	Missoula	Missoula	Massoula	Missoula	MINORINA	Missoula	Missouls	Park	Park	Par	Par	Park	Park	Park	Park	Park.	Pag.	Powell	Powell	Powell	Powell	Powell	Powell	Powell	Powell	Powell	Powell	Powell	Powell	Powell	_		Ravalli					Sanders	Silver Bow	Silver Bow	Silver Bow	Silver Bow	Silver Bow	Silver Bow			Sweet Grass		
PA No. 25-365	25-010	25-005	25-007	25-030	29-102	25-103	25-019	25-280	25-294	25-339	761-67	25.212	717-67	077-67	27-005	27-006	27-055	27-066	29-013	29-399	29-006	29-033	29-034	29-038	190-67	20.07	29-010	29-078	29-079	29-293	29-354	29-76	29-451	29-455	29-474	29-476	29-008	29-082	29-083	29-282	597-67	29 473	29-102	29-103	29-105	20.18	29-121	29-373	29-394	30-017	30-067	30-069	30-00	30-007	31-049	31-010	31-067
SITE NAME Goldeil Milleite	Victory/Evening Star	Termile Mine	Valley Forne/Sneie	Lower Termile Millsite	Armetrong	Beatrice	Ked Min North & #13	Opper Valley Forge	Stratelin	NE NW 613	Swanges Tailings	SP SW SIO	Panoremaner	Artor	Snowshoe	Cherry Creek Millaite	Mitchell Creek	Silver Cable	Boaz	Orubetake	Norwegian	Atlantic & Pacific	Boss Tweed	Sunworth	Thirds No. 1	Waterce	Smuggler	Goldachmidt-Steiner	Red Pine	Broad Gauge	Laten Cut	Lakerhore	Buckeye	Pedro	SE SW S26 (Keynote)	NE SE S26 Prondumy/Victoria	Mammoth	Mammoth Tailings	BAH	Dry Galch (South)	Pete & Ioe	Ohio	Kearnage	General Shafter	Apen	Pacific	Easton	Missouri	SE SE S25	SE NW S24	Bigler	Porcupine	Cumberland	Star NF C10		2	Gold King Belle of the Hills
DISTRICT Marywille	Orphi	Rimin	Rimini	Rimini	Rimini	Kumum			Scratcheravel	Stemole	Stemple	Stemple	Stemple	Stemple	Libby	Libby	Libby	Libby	Nomis/Red Bluff	Norris/Red Bluff	Norwegian	Ponty	Pony	Rochester	Rochester	Rochester	Sheridan	Sheridan	Sheridan	Sheridan	Sheridan	Sheridan	Sheridan	Sheridan	Sheridan	Silver Star	South Boulder	South Boulder	Tidal Wave	Tidel Wave	Tidal Wave	Tidal Wave	Virgina City	Virgina City	Virginia City	Virginia City	Virginia City	Washington	Washington	Beaver Creek	Beaver Creek	Beaver Creek	Cartle Mtn.	Smith River			Iron Mountain Iron Mountain
COUNTY Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lincoln	Lincoln	Lincoln	_		_	Madison	Macagon	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madiam	Madison	Madison	Madison	Mescher	Meagher	Meagher	Meagher	Meagher	Meagher	Mineral	Mineral	Mineral
20-180	20-002	20-005	20-018	20-019	70-07	20-11	20-012		22-046	1.4	22-054	~	22-036	22-039	22-072	22-074	22-296	22-301	22-032	27.075	27.07.2	22-244	22-245	22-001	22-002	22-003	22-004	22-003	22-102	22-104	22-358	22-027	22-111	22-284	22-009	22-029	23-001	23-022	23-033	23-045	23-046	23-056	23-058	23-039	23-079	25-040	25-067	25-073	25-202	15-322	190-57	25-115	25-167	25-172	25-175	25-179	25-317
Old Dominion	Donelas Creek Teilings	Algonquin	Rumsey Mine/Mill	Scratch All	Granite Mountain	True Fiseure	Nonpareil	Brooklyn	Middle Fk. Warm Springs	Alhambra Hot Springs	Solar Silver	Bullion	Basin Millsite	Perry Park	Buckeye	Enterprise	Jack Creek Ladings	Margnerate	Mantle (East)	Fvs Mar	Mornine Glory	Nellie Grant	General Grant	Alta	Bertha	Bluebird	Corbin Flats	Gregory Working	Argentine	Minah Mine	Wickes Smetter	Elkhorn Queen	Queen (Tourmaline)	Soundanak	Cornet Tailings	Grey Eagle	Block P Mine	Marcelline Dalt Dates	Lucky Strike/NE NP S7	Wright Lode	Edwards Lode	=			NE NE S31	-	1		Seven-Up Pete/Rover	Blackfoot Tailings			Belmont	Aillaite		Beld Butte Millaite	- 1
Moose Lake	Philipsburg	Philipsburg	Philipsburg	Philipshure	Philipsburg	Philipsburg	South Boulder	South Boulder			E		Barin	Barin 7	Darin C		Pagerin	Catarage	Cataract	Cataract	Catamet	Chance	Clancy	Colorado	Colorado	Colorado	Colorado	Colorado	Colorado	Colorado	Colorado	Elkhorn	Elkhorn	Filthorn	High Ore	High Ore	Hugherville	Hushendile			Hugheaville	Hugherville	nugnesville	Yogo	Yogo	Helena	Helena			Lincoln	Marysville	Marysville	Maryaville			Marysville Marysville	
Oranite Oranite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Granite	Jefferson	Jefferson	Jefferson	Jefferson	Jetterson	Jefferson	Lefterson	lefferon	Jefferson	lefferen	Jefferson	Jeffenson	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	lefferon	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	Jefferson	Judith Barm	Judith Baein	Judith Barin	Judith Basin	Judith Basin	Judith Beam	Indith Basin	Judith Basin	Judith Basin	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Chark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark	Lewis & Clark
01-092	01-031	01-034	691-10	01-094	01-143	01-144	01-211	01-216	01-220	01-170	797-10	07-10	64-136	04-144	24013	04-013	04-020	04-000	04-121	04-008	04-014	060-20	07-094	04-090	03-080	07-084	02-100	07-103	07-110	07-111	07-112	0/-113	07-120	07-129	07-134	07-135	07-137	07-140	07-142	07-156	07-180	500.7	2-004	2-070	4-010	14-017	710-51	5-015	16-018	20-065	26.190	20-194	600-0	0-00-0	20-023	0-209	0-175
n n	ŏ		Old Elkhorn Fracert Mill & Mines	Silver King	Lower Cleve	Trapper	South Frying Pan	Last Chance No. 1	There was a	ungsten Mulate		Miller Monthsin	Humaniachia	Amo	Park (Mariette)		=						Bon Ton		Vilipa	45.00		hings				Shallshare	_				Silver Dyke Milleite		-SW	=		Cable	Vine			Cumberland 1	E		natos	Alpe			_			Maxville Tailings 20	- [
Baldy Mountain Bannack		Birch Creek	Ermont	Hecla	Hecla	Hecla	Lemhi Pass	Lemin Pass	Long Case	Window	Windom	Confederate	Confederate	Helloate	Indian Creek	Indian Creek	Indian Creek	Radersburg	Radersburg	Winston	Winston		Hugherville		Neihari	Neihart	Neihart			Neihart	Nethart	Neihart	Neihart	Neihart	Neihart					Neihart	Neuhart	Silver Lake	Silver Lake		Warm Springs	Warm Springs			Bozeman	Alps	Antelope Creek	Antelope Creek	Combination	Dunkleburg	Dunklehurg		Moose Lake
Beaverhead Beaverhead	Beaverhead	Beaverhead	Beaverhead	Beaverhead	Beaverhead	Beaverhead	Beaverhead	Deavernead	Beaverhead	Beaverhead	Beaverhead	Broadwater	Broadwater	Broadwater	Broadwater	Broadwater	Broadwater	Broadwater	Broadwater	Broadwater	Broadwater	Cascade	Cascade	Cancello	Caecade	Caecade	Cascade	Cascade	Cascade	Cascade	Cascade	Cancade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade	Cascade Deer I odes	Deer Lodge	Deer Lodge	2		rengue Flathead		Gallatin	Gallatin	Oranite				Gramite	Granite	Granite	Oranite

TABLE 1-1: ABANDONED HARDROCK MINE PRIORITY SITES LIST

1.2 PROJECT DESCRIPTION

The 270 priority sites investigated under the Abandoned Mines Hazardous Materials Inventory were located in 23 counties and in 86 out of the 206 mining districts in Montana. Site investigations began May 18, 1993, and were completed on September 20, 1993. Two field crews, each consisting of three scientists and technicians, were in the field for approximately 95 days to complete the data collection effort.

The site investigation conducted at each site involved the following tasks: overall site reconnaissance; mapping; collection of tailings, slag, waste rock, adit discharge, flooded shafts, stream water, and sediment samples; field analysis of solid matrix samples using an X-ray Fluorescence (XRF) Spectrometer; and measurements of field parameters in water, including flow rates, pH, specific conductance, temperature, oxidation reduction potential, and alkalinity. The field team members also photographed sample locations and significant site features, video taped the site, and evaluated safety hazards.

The period during which the field investigations were conducted was abnormally wet. There were 69 days of measurable precipitation with a total accumulation of 11.2 inches (measured at Butte, Montana). This compared to a 40-year average accumulation of 6.4 inches for the same period and location. The above-average amount of precipitation may have resulted in higher than normal stream flows and documentation of increased storm runoff events and releases to surface water than would normally be expected. The abnormally high level of precipitation may also have led to an abnormally low number of observed releases to air via blowing dust from the waste sources.

The physical setting and topography associated with these sites ranged from gently sloping land in valley bottoms to very steep, high elevation, mountainous areas. Access to sites was often difficult due to poor road conditions or absence of maintained roads. Access to several sites was limited to travel on foot or by helicopter. Ownership of the priority sites is a mix of public lands (U.S. Department of Agriculture/Forest Service, U.S. Department of Interior/Bureau of Land Management, Montana Department of State Lands, etc.) and patented lands (private ownership). The priority sites consist of primarily inactive/abandoned mine sites; however, exploration activities were in progress at several of the sites.

Significant features at the sites included tailings ponds, impoundments, and piles; waste rock dumps or piles; mine openings, including adits, shafts, glory holes, and exploration trenches; miscellaneous buildings and structures; and roads. Mine opening discharges and streams adjacent to or flowing through the sites were common.

Hazardous materials observed at some of the sites included chemical reagents, solvents, asbestos-containing material, petroleum fuels or lubricating oils storage (barrels or tanks) and miscellaneous power supply items (poles, transformers, lines, etc.). Some of the sites support wildlife, domestic grazing, or aquatic life. Residential occupation of the sites was observed in rare cases, but residences adjacent to the sites occurred more frequently.

1.3 **SUMMARY OF FINDINGS**

The following information is provided as an overview of the data compiled during the Hazardous Materials Inventory.

Laboratory Sampling

- Total number of lab samples: 1,554 (does not include the QA/QC duplicates),
 representing approximately 34,200 data points generated by the laboratories.
- Total number of XRF samples: 3,082 (does not include the QA/QC duplicates),
 representing approximately 64,700 data points.

Waste Rock Associated with the Priority Sites

- Estimated total volume: 6,481,000 cubic yards.
- Estimated total area: 14,470,000 square feet (332 acres).
- Estimated total unvegetated/uncovered area: 13,405,000 square feet (307 acres).

Mill Tailings Associated with the Priority Sites

- Estimated total volume: 7,952,000 cubic yards.
- Estimated total area: 18,653,000 square feet (428 acres).
- Estimated unvegetated/uncovered area: 12,718,000 square feet (292 acres).

Adit Discharges Associated with the Priority Sites

- Total number of discharging adits: 151.
- Number of adit discharges with pH ≤ 5.00: 23.
- Number of adit discharges with pH ≤ 6.00: 34.

Flooded Shafts Associated with the Priority Sites

- Total number of open shafts with water: 9.
- Shafts with pH ≤ 5.00: 3.

Water Quality Criteria

- Number of discharges exceeding Safe Drinking Water Act MCL/MCLGs: 65.
 - 60 adits
 - 5 shafts
- Number of adit discharges exceeding acute aquatic life criteria: 76.
- Number of observed releases to surface water: 120.

2.0 INVESTIGATION METHODS

2.1 DATABASE AND LITERATURE SEARCH

Data collected in the field was supplemented by an extensive literature search and the use of several computer databases. This supplemental information was used to complete the inventory forms and fulfill receptor information requirements for the AIMSS. The computer databases used to collect this information were:

- The Montana Bureau of Mines and Geology (MBMG) Well Logs Database, which was compiled by the MGMB and the DNRC. This database was used to estimate the number of wells within a one- and four-mile radius of each site.
- The Montana Rivers Information System (MRIS), Version 2.0, compiled by the Montana State Library for the Montana Department of Fish, Wildlife and Parks. This database was used to assign classifications relating to riparian habitat quality, wetlands frontage, fisheries habitat and species classification, and sport fisheries classification for stream reaches potentially impacted by each site, where applicable.
- The Montana Department of Health and Environmental Sciences, Water Quality Bureau (DHES-WQB) - Community Water Supplies Database. The DHES-WQB provided a list of surface water resources presently used for drinking water supplies in Montana.

Additional information was obtained from the following sources:

- Peak and average stream flow estimates were obtained from USGS flow monitoring reports on gaged streams.
- Population estimates were obtained by counting buildings delineated on the USGS quadrangle maps and USFS Forest Visitors Maps. Field observations supplemented this source of information.

- Historic mine/millsite operations, mineralogy, and geology were obtained from several sources, including: USBM Circulars, USGS Bulletins and Professional Papers, and MBMG Memoirs, Bulletins, and Circulars.
- Historic analytical data were obtained from the DSL-AMRB project files, the DHES-SHWB project files, the DHES-WQB, USFS project files, and MBMG data collected for the USFS. This data was reviewed prior to site visits to provide the investigators with background information on potential hazards associated with each site.

2.2 FIELD METHODS

A detailed discussion of specific investigation methodologies is found in the DSL-AMRB Hazardous Materials Inventory Sampling and Analysis Plan (SAP), (Pioneer, 1993a). The purpose of this section is to describe some of the unique details of the investigative methods used to fulfill the project objectives.

The first task in undertaking consistent evaluation of 270 sites was the development of an inventory form that would serve as a field sampling plan to ensure that the necessary pertinent data was collected for each site. The inventory form was used during the investigation to guide and focus the investigative tasks. Literature searches and database searches were performed prior to the field investigations to provide investigators with background information on each site.

Sampling was performed on waste rock dumps, mill tailings, streams, ponds, adit discharges, flooded shafts, and from domestic groundwater wells or monitoring wells, when present.

Each tailing's feature was characterized both spatially and vertically by hand-auguring to determine accurate depths and delineate stratification or differences in metals concentrations between the upper oxidized zone(s) and the lower reduced zones. Subsamples were collected from each visually different strata.

Typically, several subsamples were collected from each waste rock dump in order to better characterize very heterogeneous waste sources.

Subsamples from the tailings and waste rock were analyzed in the field using X-ray Fluorescence (XRF) Spectrometers. The field screening data allowed the investigators to make informed decisions on the number of samples required for laboratory analyses and indicated how best to composite the subsamples from the potential sources in order to send representative samples to the laboratory, while minimizing the number of samples to achieve this end. The XRF analyses also provided an increased number of valid and discrete data points per site achieving a more thorough understanding of the problems associated with each site. Solids were characterized additionally by measurement of pH and radioactivity.

Stream sediment samples were also analyzed in the field with the XRF in order to assist in the assessment the extent of contamination and migration from the waste sources.

Surface water sampling was often conducted so as to characterize impacts to drainage basins, as well as contributions from individual sites, when multiple sources were present. Waters were additionally characterized in the field by measuring flow rates, pH, specific conductance, oxidation/reduction potential, and temperature.

Site mapping was conducted using standard "Chain and Compass" surveying techniques. The primary purpose of mapping was to estimate volume and area of waste sources and record sample locations. Other significant site features, such as streams or drainages, roads, mine openings, and structures, were also recorded on the site sketches. Sample locations and other significant site features were documented on photographic slides and video tape to assist the resource managers in their evaluation of the priority sites.

3.0 DATA EVALUATION AND COMPARISONS

The purpose of this section is to discuss data quality validation and evaluations, as well as comparisons of the data to pertinent criteria.

3.1 DATA VALIDATION AND EVALUATION

3.1.1 Laboratory Data Validation and Evaluation

The laboratory utilized during this investigation complied all of the QA/QC performance requirements as defined in the Contract Laboratory Program (CLP) Statement of Work (SOW, March 1990). The data packages provided by the laboratory allowed comprehensive data validation and evaluation procedures to be accomplished. Overall laboratory data validation/evaluation was performed according to guidelines developed by the U.S. Environmental Protection Agency (EPA).

The laboratory data were validated according to the document <u>Laboratory Data Validation</u> <u>Functional Guidelines for Evaluating Inorganics</u> (EPA 1988). The data validation procedures were performed partially by laboratory chemists and partially by a data reviewer from Pioneer Technical Services, Inc. The data validation procedure included an evaluation of the following:

- holding times;
- initial and continuing calibrations;
- calibration and preparation blanks;
- inductively coupled plasma (ICP) interference check samples;
- laboratory control samples (LCS);
- laboratory duplicate sample analyses (precision assessment);
- matrix spike sample analyses (accuracy assessment);
- furnace atomic absorption (AA) quality control (QC);
- Inductively Coupled Plasma (ICP) serial dilutions;
- sample result verification;
- field duplicate analyses (precision assessment);
- field blank analyses; and
- overall assessment of data for the case

Data evaluation occurred after the data validation process was completed and the qualifiers had been applied to the data. The data evaluation process involved a statistical analysis of the data to identify outliers and assess the quality of the data overall. Data evaluation was performed on the laboratory data which met the Data Quality Objectives (DQOs) outlined in the Final QAPjP for the Abandoned Mines Hazardous Materials Inventory (Pioneer, 1993b).

Although numerous qualifications (flags) were applied to the laboratory data compiled during this investigation, and a small portion of the data were evaluated as outliers, none of the data were flagged "R" or were otherwise considered unusable. Consequently, 100 percent of the laboratory data (soil and water) compiled during this investigation are considered valid and useable for all of the objectives of this project.

The limitations of the data compiled during this investigation should be considered when making interpretations. Please refer to the document entitled <u>Data Validation and Evaluation Report for the Abandoned Mines Hazardous Materials Inventory</u> for a detailed description of the procedures followed and results provided by the overall data assessments.

3.1.2 X-Ray Fluorescence Spectrometer Data Validation

Data provided by the field portable XRF Spectrometer were also validated; the XRF data were validated according to manufacturer specifications. Additionally, XRF data were compared to laboratory data to assess precision, correlation, and overall usability.

After data provided by the XRF Spectrometer were statistically compared to laboratory data, 7 out of the 12 XRF analytes were determined to be fully useable at the same level as the laboratory data. These elements were arsenic, antimony, barium, iron, manganese, lead, and zinc. Five out of the 12 XRF analytes were screened out as being unusable based on lack of correlation and poor overall precision. These elements were copper, cadmium, chromium, cobalt, and mercury.

3.1.3 Other Field Measurements

Field parameter measurements, such as pH, Eh, and specific conductance, were not evaluated for data quality. Standard operating procedures (Pioneer, 1993a) were carefully followed in the field to achieve a consistent and acceptable level of quality.

3.2 DATA INTERPRETATION

The analytical data collected was compared to site-specific background or upgradient concentrations, as well as drinking water standards and aquatic life criteria. The following sections explain how these comparisons were made.

3.2.1 Background Soil Comparison

Background soil samples were collected to establish the extent to which metals concentrations were elevated in comparison to the local background. Background samples were typically applied to groups of sites in close proximity to one another and within similar geologic units.

3.2.2 Observed Releases to Groundwater, Surface Water, and Sediment

An observed release to surface water is defined as a downstream surface water or stream sediment concentration at more than three times the upstream surface water or sediment concentration, for any constituent that can be attributed to the site. Groundwater, surface water, and stream sediment analytical data was used to document observed releases from the priority sites.

3.2.3 MCL/MCLG, Aquatic Life Criteria Comparisons

Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs) are drinking water standards promulgated under the federal Safe Drinking Water Act (SDWA), (40 CFR Parts 141, 143). MCLs and MCLGs apply to public water systems; however, they may be relevant and appropriate to surface or groundwater if those waters

are used as drinking water. Groundwater and surface water metals concentrations observed in samples collected were evaluated against these standards. The current SDWA MCLs and MCLGs expressed in micrograms per liter (ug/L) are:

Arsenic: 50 ug/L

Barium: 2,000 ug/L

Cadmium: 5 ug/L

Copper: 1,300 ug/L

Chromium: 100 ug/L

Mercury: 2 ug/L

Nickel: 100 ug/L

Antimony: 6 ug/L

Lead: 15 ug/L

Cyanide: 200 ug/L

Surface water and mine discharge analytical results were also evaluated against the freshwater acute and chronic aquatic life criteria as presented in the Montana Numeric Water Quality Standards, Circular WQB-7. These criteria are expressed as a function of total hardness and were corrected for the hardness measured in each sample.

3.3 <u>DATA MANAGEMENT</u>

The data collected under this project has been input into the data manager dBase IV, Version 2.0. Four files were created to contain the data and aid in any manipulation of the data that may be desired. These files are summarized briefly below.

- PTSDATA.DBF contains field data collected for each sample during the Hazardous Materials Inventory;
- XRFDATA.DBF contains the analyses done by the field XRF data generated during the Hazardous Materials Inventory;
- LABDATA.DBF contains the data from all of the laboratory analyses performed during the Hazardous Materials Inventory; and
- PRIORITY. DBF is the modified dBase file provided to Pioneer by DSL-AMRB from the master inventory.

The information from these four files can be readily combined with one another to form a relational database.

4.0 SITE RANKING

The final task of the Hazardous Materials Inventory involved the development of a system to rank the severity of hazards or environmental threats associated with the sites investigated in order to assist the DSL-AMRB in prioritizing reclamation efforts and allocation of resources. This system, the Abandoned and Inactive Mines Scoring System (AIMSS), closely follows the EPA's Hazard Ranking System, although the AIMSS is specifically focused on potential hazards typically associated with the abandoned or inactive hardrock mines.

The AIMSS also evaluated potential safety hazards associated with the sites such as hazardous mine openings, high-walls, and structures, and generated a separate safety score for each site. The AIMSS utilized the data collected for each site to assign a ranking score.

The AIMSS is focused towards the physical site setting and potential hazards associated with abandoned and inactive mines due to its capability to evaluate mine opening discharges and large quantities of mine wastes. The AIMSS scoring method evaluates relative risks between sites. This accounts for site-specific contaminant concentrations and the varying toxicity of different constituents, as well as adit discharges in the source evaluation. This method more effectively discriminates between sites with higher concentrations or more toxic constituents in relation to sites with lower concentrations or less toxic constituents. In order to generate an overall Mine Site Human Health and Environmental Hazard Score, the AIMSS evaluates the groundwater pathway, surface water pathway, air pathway, and direct contact pathway. Under each pathway, the AIMSS evaluates observed releases, potential to release, pathway characteristics, waste characteristics, and targets.

Table 4-1 lists the priority sites and their associated AIMSS score, sorted in descending order. Seven of the 270 sites on the priority list were not ranked due to complications associated with collecting the necessary data. Three of these sites were inactive or abandoned when originally inventoried, but since then have become active mining or milling operations. Because these sites are currently active, ranking and evaluation are difficult due to continually changing site conditions. These sites were the Watseca Mill, the Cable Mine, and the Maiden Rock Mine. Two of the sites, the Silver Cable and the

SITE				AMSS	2															
ZAK.	0,	COUNTY	PA No.	SCORE	RANK	SITENAME	COUNTY	N W	SOUR	SITE				AIMSS	SITE				AMSS	
- ^	Corbin Flats Red Mm - Month & 613	Jefferson	1	4698.59	8	Bertha	Jefferson	22-002	21.82	13 VE	SITE NAME Roberter	COUNTY	PA No.	SCORE	RANK	SITENAME	COUNTY	PA No.	SCORE	
	Emery	Powel	36-00-8	1628.48 879.62	2 2	Gold LeaffPriecing	Beaverhead	01-031	20.08	2	Lost Cabin	Missoula	32-011	0.5	8 8	Victory/Evening Star	Lewis & Clark	25-010	0.120	
•	Red Water	Levels & Clark		978.02	2 2	Gold Coin Mine	Deer Lodge	12.004	17.50	£	Belle of the Hills	Mineral	31-072	8 95	8 8	Telegraph Mine	Powel	38-023	0.120	
10	Curtery	Ravall	•	625.00	2	Agonguin	Grante	20-018 20-018	# C	₹ :	Bek Patent	Judith Basin	23-035	1,420	8	Apex	Madson	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 2	
D N	Block P Tallings	Cascade	04-080	536.80	z	Big Ox Millette	Lewis & Clark	25-115	2 2	<u> </u>	Parmer	Beaverhead	4 1	9	50	Upper Alice E.	ž	37 - 088	0.090	
•	Comet Tailings	Jefferson	22-009	510.61	٤ ٤	BroadwayNictoria	Madson	29-179	15.53	3	Easton	Madson	26.12	300	2 5	¥	Grante	25 26 26	0.000	
۰	Charter Oak	Powell	36.00	4004	2 2	Punken Hill	Missoula	32-005	2.72	Ξ	Golden Anchor	Powell	39-012	280	712	Third Term	Nava N	4 5	080	
2;	Spring Hill Tallings	Lewis & Clark	25-067	456.20	2	NE NW S13	Lewis & Clark	25-197	13.80	£ ;	Little Anaconda	Mineral	31-077	522	213	Old Dominion	Granke	20-180	000	
= 2	Dougas Creek Talings Shot D Miss	Grante	5 63 5 63 5 63	347.88	2	Ontario Milistre	Powell	39-010	58	2	Seven-Up Peter Roser	Jende & Charl	2 28	8	24	Belle Of the Castle	Meagher	30-007	000	
. .	Vosburg	Broadwater	04-014	326.17	8 :	Cherry Creek Milliste	Lineoth	27-006	13.20	5	Goldschmidt-Steiner	Madison	29-020	3 5	5 2	Silver King	Beaverhead	100.0	990	_
7	Ala	Jefferson	22-001	262.52	2 Z	Blackfoot Tallings	Madeon	900 S	12.62	<u>\$</u>	Mountain View	Powell	39-062	8	212		Sanders	45.047	900	_
5	Scratch All	Grante	20-019	250.58	2 2	Arcentine	Lewis & Clark	5-322	12.57	ž :	General Grant	Jefferson	22-245	9	29	Hopldns	Mineral	31-030	9 5	
£ (Washington	Jefferson	22-007	250.25	3	Sure Thing	Power	70-77	R 9	<u> </u>	Tacoma	Jefferson	22-284	1.10	218	Hammingbird	Broadwater	9414	2 2	_
: :	Enterprise	Jefferson	22-074	245.76	æ	True Flagure	Granite	5	10.57	<u> </u>	Months King	Mineral	200	8	22	General Shafter	Madson	29-163	000	
2 2	Park (Marietta)	Broadwater	04-012	240.40	8	Eve May	Jefferson	2-075	10.15	3 2	Mourice Berhow Mileite	Judith Basin	23-058	98.0	ā	Viking	Powel	39-077	000	_
! ጸ	Crystal	Lewis & Clark	25 th	240.27	6 1	Old Elidrom	Beaverhead (11-169	E	<u> </u>	Nugget	Minsouth	48-UC)	000.0	# F	Baker	Cascade	07-180	0.030	_
2	Flathead Mine	Flathead	15-012	180.73	B 8	Norparell	Granite	210-01	2.73	\$	Wildcat	Lewis & Clark	28-317	0.880	3 2	Last Chance No. 2	Beaverhead	01-220	0.020	_
2	Goldsii Milishe	Lewis & Clark	25-365	180.51	: 8	Tiger	Jefferson 2	12.2	7.7	157	Fisher Creek No. 1	Park	34-080	0.860	12	Last Chance No. 1	Beaverhead	15.041	8 6	
R ;	Nancy Lee Mill - Slowey	Mineral	31-080	175.41	5	Eldom Queen	Jefferson	2-027	7.57	¥ \$	Marceline	Judith Basin	23-022	0.780	82	Upper Triantler	Missoula	32-048	0.020	
3	East Pacific	Broadwater	900-70	169.32	2	Bald Mountain	Lewis & Clark 2	206	. 8	· 5	MINET MOUNTAIN A P.H.	Broadwater	92 1 35 1	0.73	122	Keystone	Mineral	31-074	0.020	
8 8	Edwards Lode	Cascade Lufet Beet	135	90.98	8	Pacific	Madson 2	9-118	0.62	ē	Kimbal	Powel	20-083	92.0	2 2	Lori No. 13	Granke	20-191	0.00	-
22	Nelle Grant	Jefferson	22.24	135 64	3 8	Evening Star Millette	Cascade	7-067	6.42	162	Sher Lake Milete	Deer Lodge	12-070	0.74	\$ 8	South Ending Dan	Missoula	32-033	0.010	_
8	Combination	Granke	20-00	127.02	8 8	Dillon Millette	Mineral L		2 5	ā :	Monanch	Powel	39-008	000	Ē	Marguente	Jefferson	72-30	0.0	
RS	Valley Forge/Susie	Lewis & Clark	28-00 8	126.03	6	Boss Tweed	Madeon	g g		¥ ¥	Little Daisy Present Mina Millian	A (34-008	980	22	Haudille	Missouta	32-057	0.00	_
3 2	Ametrong Camerder Ct. Telling	Levels & Clark	22.52	95.00	8	Black Warrior	Park	4-079	2	2	Broad Gaune	Madeo		9.0	8 i	Norwegian	Madson	29-006	0.010	
8	Bullon	Jefferson	200.00	103.53	8 §	Lower Cleve	Beaverhead 0	1-143	2.88	167	Atlantic & Pacific	Madeo	2000	000	2 2	Elk Creek Connolum	Gallacti	16-013	0.00	
8	Highland Mine	Silver Bow	47-028	27.78	<u> </u>	Beatrice	Cascade 0	8 5	8 3	\$ 1	ucky Strike/NE NE S7	Judith Basin	23-042	0.500	82	Lane	Meacher	34.045	000	
3 5	Lower Terraile Miliste	Lewis & Clark	28-030	97.38	Ē	St. Louis	Broadwater 0	Ş	3	5	Tager/Datey Alfacen	Sweet Grass	48-002	0.550	23	Eleanor East	Madson	29-285	960	
3 8	Termin	Lewis & Chirt		8 1	ā.	McLaren Tallings	Park	7007	5.24	=	Jackson Park	Grante		5 5 5	2 2	Pete & Joe	Madison	29-449	0.010	_
6	Boaz	Madson	2003	24.57	<u> </u>	Keating Tailings	Broadwater 0	121	8	72	Gold Dust	Ą	7 00 7	8 6	5 5		Jefferson	22-038	900	-
8	Cumberland	Mengher	30-00	78.22	\$	Sher King	Grande	200	£ 5	£ :	Clipper	Saver Bow	47-028	0.450	2		Judith Basin	27.072	8 8	_
8	Nancy Lee Miliste	Mineral	31-062	23.28	107	Strawberry	Madson	8	7 27	: E	Wickes Smetter Satteste Consolidate	Mineral	22.388	97.0	77.		Par	34-083	8	
=	Snowshoe	Uncoin	27-005	72.21 80 16	2 8	Lakeshore	Madison	8	8.	178	Joe Walk	Missouth	32-010	0.420	£ 5		Lewis & Clark	25-040	800	_
7	Silver Dyke Tallings	Cascade	07-137	68.15	5	Sher Bet	Cascade		6.8	- E !	Holliday (Silver Mark)	Sanders	45-009	0.400	\$		Lewis & Clark	8 5	8 8	_
å 1	Maxville Tails (Londonderry)		20-208	25.	E	Basin Millette	Jefferson 2	960-2	8 8	2 2	Mayd S.	Cascade	07-128	0.400	2 3	7	Meagher	30-017	2000	
4	Trout	Granke	20-05	8 ts	2 5	Julia Annua Julia	Powell	705	3.00	5	Smuggler	Madison	28-010	0.350	<u> </u>	9 10 10 10 10 10 10 10 10 10 10 10 10 10	Madison	28-473	0 00	_
\$!	Buckeye	Jefferson	22-022	56.45	==	Uncle Sem	Madison 29	900-	2.2	ě	Kearsage	Madeon	20-102	0.330	5 6	_	Gellatin	41-027 16-015	5 6	-
÷ \$	BI-Metallic/Old Red	Granite	20-002	52.20	ŧ	Moton	Cascade 07	100	93	3	SE SW S10	Levels & Charle	36-014 25-25-25-25-25-25-25-25-25-25-25-25-25-2	0.320	R i	-	Sweet Grass	49-001	000	-
4	Gregory	Jefferson	22-005	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	= :	Swansea Tallings	~ .	5.208	3.28	Ž	Mantle (East)	Jefferson	22-032	0.290	ē 8	e de la company	Meagher	30-069	000	_
8 :	Thistle No. 1	Madison	29-073	47.02	=	Fattpley	., _	2-112	1 % C	ž i	Staffabrase	Cascade	07-120	0.280	×		Madson	29-106	9 8	
ខ្លួ	Middle Fk. Warm Springs	Jefferson	22-046	48.31	2	Jack Wale	•	2005	88	.	Argo	Broadwater	28.282	0.280	ž		Beaverhead	01-082	0000	
8	Ermort Mil & Mines	Beaverhead	90-60	3 2 2	R 5	Arra B Atomic at		800	3 5	2	Cumberland	Fergus	14-0-1	0.270	8 %		Sweet Grass	49-003	000	
3 1	Montro Gold	Sanders	45-010	38.91	2	SW NE S10	Meacher 30		3 5	2 §	Champion	Deer Lodge	12-003	0.260	152		Lincoln	27-056	8 8	
8 8	Granite Mountain	Grante	20-110	38.06	22	Sourdough	. ~	336	8	Ē	When	Madson	25,280	0.240	8 5		Powel	39-052	0000	
25	Neithart Tailings	Cascade	07-134	27.55	<u> </u>		Madson 29	56		26	Belmont	Lewis & Clark	25-167	0.22	8 8		Lewis & Clark	22.53	000	-
3	Bluebird	Jefferson	22-003	32.47	; \$	Latest Out	Madkon 29			2 j	Aps	Granite	20-065	0.160	¥2.		Cascade	31-057	90.0	
8 \$	Forest Rose	Granke	20-004	30.87	121	Morning Glory	Jefferson 22	, F	- 2	i ž	Clara	Forgue	14-010 38-010	0.160	2	Argo Milette	Lewis & Clark	25-314	8 8	_
3 5	Marremoth Tallings	Madson	29-082	8 8	£ 5	Tungsten Millette	Beaverhead 01	-170	Ξ	\$	Sherman No. 2 -SW	Cascade	07-402	5 C	2 1		Lewis & Clark	75-294	0.00	
2	Whight Lode	Judith Basin	23-045	2 2	R 9	Nancy Lee Mine	Wineral 31	500	3 3	79	Blue Bird	Ravall	41-00	91.0	1 1		Lewis & Chark	28-363 28	Ranked	
8	SE SW S26 (Keynote)		29-474	38.42	<u> 5</u>	Middle Fork Milette	¥ .	2-72/	5 8	2 3	Big Ox Mine	Lewis & Clark	25-116	0.140	i		Lincoln	27-066 Ne	Raffee	-
3 2	Shver Dyke Millette Brnotiten	_ `	07-136	8 8	132	Rising Sun	•	7-037	8	2	Compromise	Cascade	07-100	8 8	1	_	Silver Bow	17-051 Nc	Ranked	
: 28	Harrison/Mouton		22-026	27.24		Solar Silver Alternitins Hot Sortings	Jefferson 22	2.054	5, 7	Ŕ	SE SE 525	Madson	28-304	81.0		Cable elena Creek Samulina	Deer Lodge Cascade	12-002 N	Ranks	
6	Missouri		28-373	24.42	.	Indian Queen			4 2	8 8	Mount Mine	Silberter	48-001	0.130	ı	Minah Mine	Jefferson	22-104 No		
8	Dacotah	ı	07-121	22.91	86	NE SE S26	70	22	. 2	3 8	Red Pine	Silver Bow Madeon	47-027	8:5				: :		
						!						WIENER.	ein-ez	U:130					7	_

TABLE 4-1 ABANDONED HARDROCK MINES PRIORITY SITES AIMSS RANKING

Minah Mines, were inaccessible and no data was collected. The Mother Lode site was not ranked because it was actually a photographic film recycling facility. The final unranked investigation was actually a comprehensive sampling of a drainage basin and the individual sites within the basin were ranked separately.

The AIMSS also generates a distinct safety score for each site by evaluating site accessibility and safety hazards present (i.e., shafts, stopes, open adits, hazardous structures, and explosives/other hazardous materials or chemicals). Table 4-2 lists the priority sites and their associated safety score, sorted in descending order.

This ranking should be considered dynamic and will change as sites are added and/or removed from the priority list. Additional sites will be added to the priority list as they are identified. Sites will be removed from the priority list following successful completion of reclamation activities.

SAFETY	No SCORE	L		0.00	8 6	90	00.00	92	80.	90	8.8	80.0	900	9	900	8.0	800	8.6	80	80	93 0:00	80	8 8		-	-				8 8		_			88				8 8	00.00	90.0	8 8	00.0	0.00	8 8	88	90.0	88	8 8	00.0	8.5		-
	LANTY PA	Madison 29-440			Jefferson 27-US	· ``	Judith Basin 23-04!	•••	Cascade 07-13	~ *	Graphs 20.00	• •			ĸ		~ .	cade 07-113	•	~	-	., ,	mend 15_013	~ ~	×	x a	MA 401	×	N.	Boot 28-35		74	Mon 29-06:	Ä	inite 20-02	3 *	ň	E Clark 25-11	, n	_	- , t	The ad 01-09-		~ (10 17 17 17 17 17 17 17 17 17 17 17 17 17				•	.,	ade 07-15 Clark 25-21		
	ш		_								_				Ē	ord Broadwate										į				of Madison					ark Grante		_							_			,				T Cascade		
	SITE NAM	Pete & Jo	Eleatnor Eas		Bhebird	Valley Forge	Wright Lo	Pedro		Angles of	B-Metallevo	Buckey	NE NE S31	Broken H	General Shar	Hummingbird	Cyster	Fairpla	# # # # # # # # # # # # # # # # # # #	Uncle Se	Tarbox-Miner	Pacin Mileba	Flathead N	Wildcat	General Gran	Lower Termile Mil	Belle of the Hills	Enterpris	NE SE S	Belt Patent	Jack Creek T	Easton	Little Anaco	Iron Mountain Millsk	Jackson Park Block P Tallange	Old Glory	Ontario Milistr	20 00 00 00 00 00 00 00 00 00 00 00 00 0	\$		Combinet	Silver King	Cherry Creek Milisi	Queen (Tourmaline	Dillon Millsite	Keating Tailings	Clipper Saltesta Consolida	Holliday (Silver Mark	McLaren Talling	Black Warrio	SE SW S10	Mantle (Ea	
SITE	ZAK	502	8 8	2 8	2 2	230	21	3 5	2.7	÷ ;	218	217	218	218	23	ន	3 5	72	23	22	i i	3 8	8	Ē	22	8 8	2	238	2	3 2	25	2 2	2 2	ž	5 52 5 52 5 53	247	25	2 5	ž	8 8	3 2	8	55	£ \$	2	8	2 2	2	2	£ ;	£	398	
SAFETY	SCORE	9.70	9 5	3 8	8	7.60	8:	3 5	2 2	1 2	8	8	9.0	9.00	5.70	8 8	8 8	8.	95.	8	Ŗ	2 8	3.60	3.28	5.5	8 8	2.80	S. :	2.50	2 2	2.00	8 8	8	8 5	8 8	52.	K 8	8 8	0.90	ا ال	8 8	0.50	95.5	\$ 8	8	8	8 8	8	8.6	8 8	8	9.0	2
	PA No.	25-020 #			,	14-010	36-003	20.065	40.001	46.00	31-074	34-090	07-140	27-005	28.365	25 ± 55	K 25-172	29-006	07-120	29-118	6 5	23-056	39-044	32-011	39-023	32-033	28-079	28-106	20-62	32-057	22-30	38-062	01-14	47-081	39-022	39-077	25-22	100-20	75-22	23-059	31-001	32-049	7 G	23-03-10 01-002	49-003	01-22	28-292	25-363	23-027	07-103	20-191	01-211	42.003
	COUNTY	Lenvis & Cha	Leves & Cha	Missouta	Powel	Fergue	Mean	Grank	Sweet Gras	Stillwater	Mineral	Park	Cascade	Lincoln	Lewis & Chr.	Serviers	Lewis & Chr	Madson	Cascade	Madeon	Gellerin	Judith Basin	Powell	Missouta		Missoula	Madeon	Madison	Levels & Clari	Missouta	Jefferson	Sanders	Beaverhead	Silver Bow	Powel	Lewis & Clari	Lewis & Clari	Cascade	Lewis & Clari	Jefferen	Mineral	Missoula	Jefferson	Beaverhead	Sweet Grass	Beaverhead	Lewis & Clark	Lewis & Clark	Judith Basin	Beaverhead	Granke	Beaverhead	-
	SITE NAME	Seven-Up Pete/Rover	Baid Butte Millsite	Nugget	Hand Luck	40 H	Allow Wells	Aps	Poormen/Emma	Mount Mine	Keystone	Fisher Creek No. 1	Sherman No. 2 - NE	Snowshoe	GOODEL MISSES	De Creek	Plegan/Gloster Millsite	Norwegian	Statistics	Maiden Boot	Elk Creek Connoton	Harrison/Moutton	Arma R. Plattie M.	Lost Cabin	Montana Prince	Morse & Karnedy	Red Pine	۲ ا	Area Miliste	Hautha	Marguerte	Jack Walte	Trapper	Windle Fork Mileste Want Lode	Jule	Vilding	Pangewasset Belle Of the Castle	Bon Ton	Aetor		Nancy Lee Mine	Mill Croek Mine	Solar Silver	Garrett Hill	NW SE 522	Last Chance No. 2	SE SE S13	Mother Lode	Vortex	Last Chance No. 1	Lori No. 13	South Frying Pan	
SITE	¥.	2 5	<u> </u>	3	ž	<u> </u>	<u> </u>	ž	146	147	\$	2	<u>5</u>	<u> </u>	2 5	<u> </u>	55	2	15,	2 5	\$	ē	29	£ :	. ñ	2	10.	8 8	2	12	<u> </u>	2 2	<u>\$</u>	2 5	82	£ 9	<u> </u>	5	2 j	ž ž	\$	Ē	B E	3 2	Ē :	2 <u>6</u> 25	Ī	8 8	8 6	2	8	R	
SAFETY	SCORE	2 28	3.28	32.25 25.25	8 8	3 8	25.73	28.05	28.00	8.8	8 8	8 8	8.2	3 8	3 5	8	24.00	8 5	2 2	2 8	22.80	22.40	8 8	8 8	8 5	20.80	8 5	2 8	8 8	8 8	8 8	8	8	2.2	9.80	8 8	8.8	6.4	8.8	3 88	3.00	2.50	2.88	200	8.5	3 8	8.	8 8	8 8	8	0.0		3
l	7 × 70.		22-007	39-008	25 E	47-10 47-04	41-027	30-078	12-003	34-007	22.018	20-02	16-018	2 2	07-135	25-067	01-270	9 50 9 50 9 50 9 50 9 50	70-07	01-031	25-103	29-078	25.24	26.01	787-72	12-004	22-073	28-040	27-055	39-004	79-300	29-282	04-136	39-052	20-208	34016	34-065	07-142	22-102	32-017	01-169	48-005 7-07-1	07-180	25-322	32-048	25.37	28-010	20-018	22-046	17-028	23-046	900	27-27
) Tailo	Madeon	Jefferson	Jefferson	Powel	Madeon	Sher Bow	Revell	Meagher	Deer Lodge	P.	Lewis & Clark	Madeon Gell in	A TOTAL	Broadwater	Cascade	Lewis & Clark	Beaverhead	Lewis & Clark	Levels & Clerk	Beaverhead	Lewis & Clark	Madeon	Jefferson	Madson	Jefferson	Deer Lodge	Jefferson	Lewis & Clark	Lincoln	Powel	Galletin Madeon	Madson	Broadwater	Powed	Granke	Factor Services	ž	Cascade	Prumi	Missouta	Beaverhead	Schooler	Cascade	ewis & Clark	Missouta	Madson	Madson	Grante	Jefferson	Sher Bow	Judith Basin	DESMANDED	
SITE NAME	Prond Gause	Wickes Smelter	Weshington	Monerch	Keertage Man o	Mary Emmes/Clinton	Lucky Joe	SW NE S10	Champion	Gold Dust	Red Min North & \$13	Keest Ashardas	Rin Ov Milleto	Arno	Silver Dike Adit	Spring Hill Tailings	Martin	Morning Miles	Swansea Tallinos	Gold Leaf/Priscilla	Beatrice	Goldschmidt-Steiner	Nelle Grant	Boaz	Tacome	<u>.</u>		Davis Guich II		Emery	Grubstake	Dry Gulch (South)	Miller Mountain		Maxwille Tallings	Sher King	Upper Alce E.	Sherman No. 2 - SW	Argentine Lilydorphan Bov	Linton		Benbow Milste Eldom Ones			Opper Triantler	Missouri	Smuggler		prings		Edwards Lode Aner Millade	Sura Dates	
RANK	8	2	F 1	2 1	? ?	2	2	۱ ء	R (2 2	8 2	3 3	2 2	3	g	8	6 8	8 8	8	5	2	8 3	3 8	8	6	8 1	8 §	Ē	ā	= 5 5	ž \$	\$	ē !	ŝ	₽:	= =	: 2	Z :	= =	4	2 :	2 2	2	Ž :	2 2	ā	27 5	/2 1		_	₹ £	<u> </u>	
SCORE	30060.00	4819.50	377.40	8 5	262.50	261.00	260.00	8.55	246.40	3 5	3 5	00.00	175.00	173.78	172.50	99.99	2 S	28.00	122.10	116.80	25 26	E 5	3 8	8	28.88	8 8	8 8	72.00	8 1	8 £	62.00	8 1	8 8	8.8	8 8	2 S S S S S S S S S S S S S S S S S S S	47.00	8.8	8 8	8.	8 5	42.80	8.18	8.1	8 8	8.0	60.00	3 8	37.20	36.40	8 8	8 8	
PA No.	25-339	20-062	23-022		07-110	07-100	07-084			//0-77	9-01	22-040	29-451	22-009	22-004	28-007	07-121	25.061	41-003	22-001	20-175	28-082	07-111	25-010	090-20	29-075	700-10 01-034	20-180	49-002	30-004	12-070	07-113	34-006	45-010	26.024	41-008	04-008	20.00	20-02	22-020	20018	25-167		•	20-02	_	28-008				30-017		
COUNTY	Lewis & Clark	Granke	Judith Basin	Name of	Cascade	Cascade	Cascade	Grante	lefferen	Caerage	Broadwater	Jefferson	Madeon	Jefferson	Jefferson	Lewis & Clark	Cascade	Lewis & Clark	Ravall	Jefferson	Grante	Sandara	Cascade	Lewis & Clark	Cascade	Madeon	Beaverhead	Grante	Sweet Grass	Madem	Deer Lodge	4	Park	•	Madeon Cart	•			Grante		Grante	¥			Granke	*		Beaverhead		_	Cascade		
SITE NAME	Franklin	Trout	Marceline Above in	Structura	Rochester	Compromise	Moton	Rhork D Mine	Morning Closs	Eventro Star Millebe	Park (Marietta)	Aframbra Hot Springs	Buckeye	Cornet Tallings	Corbin Flats	Red Water	Decetah	Bald Mountain	Curter	₹ ,	Barner Manual Talen	Louis Laternan	Silver Belt			Watseca Millere		_	Yager/Daley	BroadwayMetoria	Silver Lake Milishe	Atlantus Loche Software on en	Lower Glengerry	Montro Gold	Boss Tweed Lady Luck			Sher Date Talling	Douglas Creek Tailings	Grey Eagle	Scratch A		ğ	Homestake No. 2	Brookin						_		
RANK					_	_				. ~		_				m a		_	~	.	• "	, .			•		. ~	_				-							_														

TABLE 4-2 ABANDONED HARDROCK MINES PRIORITY SITES SAFETY RANKING

5.0 SITE SUMMARY FORMS

Mine/Site Name: Garrett Hill	County: Beaverhead
Legal Description: T 6S R 12W	Section(s): NE 1/4, NE 1/4, Sec. 15
Mining District: Bald Mountain	Mine Type: Hardrock/Tungsten
Latitude: N 45° 19' 00"	Primary Drainage: Dyce Creek
Longitude: W 113° 03' 00"	USGS Code: 10020002
Land Status: Private	Secondary Drainage: West Fork Dyce Creek
Quad: Polaris	Date Investigated: September 15, 1993
Inspectors: Bullock/Pierson	P.A. # <u>01-092</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- The volume of tailings associated with this site was estimated to be 290 cubic yards. The only element determined to be elevated at least three times background was copper measured at 456 mg/kg. The tailings impoundment was in excellent condition with berms intact and most of the surface area is vegetated.
- The volume of waste rock associated with this site was estimated to be 500 cubic yards.
 The only element elevated at least three times background was copper measured at 325 mg/kg.
- There were no adit discharges, seeps or springs associated with this site.
- No direct pathways to surface water were identified during this investigation.
- The mill building was classified as a hazardous structure.
- There were three trenches, on of which has vertical walls, but was only 3 to 4 feet deep.

Garrett Hill PA# 01-092 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/15/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES							
TELD O	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sh (mg/Kg)	Zn (mg/Kg)	CYANIDE (ma/Ke)
01-092-TP-1 01-092-WR-1	17.2 15.1	11.7 25.6	0.7 U 0.9 U	2.85	23.7 2.97	456 325	31800 10500	0.028 U 0.026 U	556 J 450 J	6.73 6.8	4.92 U 6.27 U	#33	12 T S:	N N
BACKGROUND	92	13	0.5 U	က	5	14.1	12100	0.024 J	482	10	23	ر 7	29	Ž.
									U - Not Detected, J - J	stimated Quantity	U - Not Detected, J - Estinated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	ry or Precision, NR	- Not Requested	
	Acid/base	Acio/base Accounting										LEGEND		
FIELD ID	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	(SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. t/1000t	TP1 - Comp WR1 - Com BACKGROU TP1DUP - I	TP1 - Composite of subsamples TP1A and 1B. WR1 - Composite of subsamples WR1A through 1D. BACKGROUND - From the Ermont Mill (01-005-SS-1). TP1DUP - Duplicate of the 01-092-TP-1 sample.	TP1A and 1B. WR1A throughout Mill (01-00)	h 1D. 35-SS-1). e.	
Q.D.		000	107 108 251	107 108 251	107 <0.01 108 <0.01 251 <0.01	<0.01 <0.01 <0.01	0.01 0.01 <0.01	000	107 108 251					

Mine/Site Name: Apex Millsite	County: Beaverhead
Legal Description: T_8S_R_11W_	Section(s): SW 1/4, SE 1/4, NW 1/4, Sec. 6
Mining District: Bannack	Mine Type: Millsite/Au, Ag, Cu, Pb
Latitude: N 45° 09' 48"	Primary Drainage: Grasshopper Creek
Longitude: W 112° 59' 50"	USGS Code: 10020002
Land Status: Public	Secondary Drainage: Grasshopper Creek
Quad: Bannack	Date Investigated: September 16, 1993
Inspectors: Bullock/Pierson	P.A. # <u>01-006</u>
Organization: Pioneer Technical Services,	
Inc./Thomas Dean and Hoskins Inc.	

- The data used to evaluate this site was collected by the MDHES CECRA Program during previous investigations and cleanup efforts.
- The volume of tailings associated with this site was estimated to be approximately 79,800 cubic yards. Previous sampling results have documented elevated levels of arsenic, copper, lead, and zinc in the tailings. A CECRA response action consisting of tailings consolidation and runon control was conducted by MDHES in 1989. The tailings impoundments were inspected during the MDSL site investigation and were in fair condition. The tailings impoundments were considered to be on the edge of the 100 year flood plain of Grasshopper Creek.
- Monitoring well data did not document any exceedances of MCLs, and no observed releases to groundwater were documented; although, arsenic concentrations were slightly elevated.
- Grasshopper Creek was located approximately 800 feet north (downgradient) of the tailings impoundments. Previous sampling results did not document any observed releases to the Creek attributable to this site.
- One potentially hazardous open adit was identified at the site; although, the adit was gated and locked. The mill building was stabilized as part of the cleanup efforts by MDHES and MDSL/AMRB and is maintained by MDFWP.

Mine/Site Name: Gold Leaf/Priscilla County: Beaverhead Section(s): NW 1/4, Sec. 8 Legal Description: T 8S R 11W Mine Type: Hardrock/Au, Ag, Pb, Zn, Cu; Mining District: Bannack Latitude: N 45° 09' 19" Placer/Au Primary Drainage: Grasshopper Creek Longitude: W 112° 59' 05" USGS Code: 10020002 Land Status: Private Secondary Drainage: Grasshopper Creek Quad: Bannack Date Investigated: September 16, 1993 Inspectors: Bullock/Pierson Organization: Pioneer Technical Services, P.A. # 01-031 Inc./Thomas, Dean and Hoskins, Inc.

There were approximately 89,000 cubic yards of tailings in two separate impoundments, the Gold Leaf tailings (70,000) and the Excelsior tailings (19,000). The following elements were at least three times background in the Gold Leaf tailings:

Arsenic: 429J to 593J ma/ka Cobalt: 19.4 to 22.7 mg/kg

Iron: 94,000JX to 98,100JX mg/kg

Lead: 589 to 937 mg/kg

Zinc: 587J to 629J mg/kg

Cadmium: 4.3J to 4.4J mg/kg

Copper: 789 to 902 mg/kg Mercury: 4.09J to 4.59J mg/kg

Antimony: 30J to 36.9J mg/kg

The following elements were at least three times background in the Excelsior tailings:

Cadmium: 2.6J mg/kg Copper: 925 mg/kg Lead: 360 mg/kg

Cobalt: 42.5 mg/kg Mercury: 11.4J mg/kg Zinc: 345J mg/kg

- There were no adit discharges, seeps or springs associated with this site.
- Grasshopper creek flowed from west to east through this site. Observed releases were documented for copper and zinc. There were no MCLs or MCLGs exceeded. The acute and chronic aquatic life criteria for zinc were exceeded and could be attributed to this site.
- Other potentially hazardous materials on site included two 55-gallon barrels of lube oil, one 55-gallon barrel of hydraulic oil, one 55-gallon barrel of waste oil, and one sealed 55-gallon barrel of unknown content.
- One HMO, the Priscilla Adit, was open and accessible.

Gold Leaf/ Priscilla PA# 01-031 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/16/83

<u> </u>	Metals in soils		eithe nor day			SOLID MA	SOLID MATRIX ANALYSES							
			nesure per dry weignt basis	weignt basis										
FIELD	FIELD As D (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Kg)	Sb (me/Kg)	Zn (mar/Ka)	CYANIDE
01-031-SE-1	1 176	178	14.4					!! !! !!				#	(mg/ng)	(mg/kg)
01-031-SE-2	183	2	7 0	6	2 2		XF 0998	0.16 J	723	12.2	12	9.47 UJ	56.4	2
01-031-TP-1	593	8 8		5 5 7	7 -	5. L	3420 JX	0.032 U	4	5.46	6.39 UJ		28.5	2
01-031-TP-2	429	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) - (3 5	7.7	8	34000 JX	4.09 ا	937	17.5	289	36.9	200	2 2
01-031-TP-3	2 6 6	7 6	7 - 7 4		7.1.0	305	38100 JX	4.59 J	573	10.6	886	S -	587	7 7 6
01-031-WP-1	2007	7 7 6	0.0	6.24 C.5	8.03	925	34800 JX	11.4 J	1360	17.3	360		8 8 -	
01-031-WR-2	116 1		ن د د د	16.1	4.52 J	392	49000 JX	0.547 J	454	10.6	12.1	4.86 11.1	2 -	0. 14 O
7.110	2		<u>-</u>	12.3	L /6:/	483	49700 JX	0.788 J	536	18.6	38.7		93.8	¥ &
BACKGROUND	D 76	<u>£</u>	0.5 U	် က	10	1.4	12100	0.024 J	482	5	8		6	
-								!	!	2	3	۲,	78	Y Z
	Acid/Base	Acid/Base Accounting							U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	acy or Precision; NR	2 - Not Requested	
		•												
	14 000	TOTAL		SULFUR				PYRITIC	SULFUR					'111
FIELD	SULFUR	SULFUR ACID BASIP	NEUTRAL.	ACID BASE	SULFATE	PYRITIC	ORGANIC	SULFUR	ACID BASE	-				
	%	1000L	V1000t	r/1000t	SULFUK %	SULFUK	SULFUR	ACID BASE	POTENT.					
04 024 TO 4				1		## ## ## ## ## ##		!!	71000F					
01-031-1F-1 01-031-TP-2	0.20	18.7 R Ct	73.8	92	22.0	-0.04 -0.04	0.03	0	73.8					
01-031-TP-3	0.26	2.5	197	. ç	6 5	0.02	0.06	0.62	73.7					
01-031-WR-1	3.53	110	176	66 1	<u> </u>		0.02	1.56	135					
01-031-WR-2	1.48	46.2	115	68.4	0.67	0.36	0.45	11.2 11.2	98.5 0.50					
	Material States		C			WATER MA	WATER MATRIX ANALYSES						-	
THELD	Metals III v	Valler	Kesuns in ug/L	ug/L									HA	HARDNESS
А	As	Ba	ਣ	රී	ڻ	₂	ē.	Hg	Ψu	Z	£	ť	,	CALC
01-031-SW-1	2.62	2.62 51 4.59 (4.59 U		6.24 U	:=====================================	**************************************	CIRRECTED 11						### (### C#CO3/L)
01-031-SW-2	1.73	20.5	4.59 U	5 U	6.24 U	2.33 U	215	0.12 U	15.6	74.4 10.9 U	4.1. 4.1.3	31.7 U 31.7 U	248 8.71 U	85.9 29.9
									U - Not Detected, J - 1	Estimated Quantity, N	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Nor Requested	cy or Precision; NR	- Not Requested	
	Wet Chemistry		Results in mg/l			L								
	TATOR		•			- SS	SE1 - Downgradient of tailing pond 2 on Grasshopper Creek.	ing pond 2 on Gra	ushopper Creek	LEGEND	- SW] - Same as sample SF1	samule SE1		
FTELD	DISSOLVED						SE2 - Upgradient of waste rock dump 4 on Grasshopper Creek	rock dump 4 on G	rasshopper Creek.		SW2 - Same as sample SE2.	sample SE2		
.O.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	=		11.1 Composite of subsamples IPIA, 1B-A, and 1B-B. TP2 - Composite of subsamples TPIC-A, 1C-B, and 1C-C.	mples IPIA, IB-A uples TPIC-A, IC	, and 1B-B. -B, and 1C-C.					-
01-031-SW-1	141 6 16	9	16	× 0.05	X X X X X X X X X X		TP3 - Composite of subsamples TP2A and 2B. WR1 - Composite of subsamples WR1A, 1B, 2A, and 2B.	nples TP2A and 21 mples WR1A, 1B,	B. 2A, and 2B.					
7-46-100-10	701	D	1	8	ž	WR BAC	WR2 - Composite of subsamples WR4A, 4B, 4C, 5A, 5B, and 5C. BACKGROIND - From the Formert Mill (or one and).	mples WR4A, 4B,	4C, 5A, 5B, and 50	೮				
								101	-002-02-17.					

Mine/Site Name: Indian Queen	County: Beaverhead
Legal Description: T 5S R 10W	Section(s): NE 1/4, SE 1/4, Sec. 15
Mining District: Birch Creek	Mine Type: <u>Hardrock/Cu</u>
Latitude: N 45 ° 53' 55"	Primary Drainage: Birch Creek
Longitude: W 112 ° 49' 10"	USGS Code: 10020004
Land Status: Private	Secondary Drainage: Birch Creek
Quad: Twin Adams Mountain	Date Investigated: June 15, 1993
Inspectors: Babits, Lasher, Belanger, Clark/	P.A. # <u>01-034</u>
Pierson	
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean, and Hoskins, Inc.	

- There were no mill tailings at this site.
- There were approximately 2,600 cubic yards of mostly uncovered slag at the site that extend to the creek. The following were elevated at least three times background:

Cobalt: 57.3 mg/kg
Copper: 7,130 mg/kg
Managanese: 14,300 mg/kg

Chromium: 40 mg/kg
Iron: 155,000 mg/kg
Nickel: 19 mg/kg

Zinc: 873 mg/kg

 There was approximately 15,490 cubic yards of uncovered waste rock. The following were elevated at least three times background:

Arsenic: 377 to 5,210 mg/kg

Cobalt: 20.2 to 74.6 mg/kg

Copper: 2,070 to 15,900 mg/kg

Mercury: 0.715 to 0.822 mg/kg

Cadmium: 7.4 to 15.6 mg/kg

Chromium: 16.4 to 48.2 mg/kg

Iron: 88,400 to 107,000 mg/kg

Manganese: 1,800 to 2,910 mg/kg

Nickel: 10 to 25 mg/kg Lead: 468 to 503 mg/kg

Zinc: 431 to 1,490 mg/kg

- There were no discharging adits identified at the site.
- No surface water samples were collected from Birch Creek due to extremely high water conditions; however, observed releases to Birch Creek sediment were documented for arsenic, cadmium, cobalt, copper, manganese, nickel, lead, and zinc.

Indian Queen PA# 01-034 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER-BABITS INVESTIGATION DATE: 06/15/93

					
	CYANIDE (ma/Ke)	X X X X X X X X X X X X X X X X X X X	Z Z		
	Zn (mg/Kg)	29 432 873 431 431 646 1490	117 Not Requested	ek.	5. md 4. 340SS-1).
	St (mg/Kg)		< 4	LEGEND I Birch Creek. g on Birch Creek on creek. WR1B. les WR1A, 1B,	les WR3A and les WR2, 3B, e 334-WR-1. n Queen (01-0
	Pb (mg/Kg)	503 20 468 503 868	56 Outlier for Accurac	LEGEND SEI - 20' upgradient of slag on Birch Creek. SE2 - 20' downgradient of slag on Birch Creek. SGI - slag from East on raced on creek. WRI - Sample of subsample WRIB. WR2 - Composite of subsamples WRIA, 1B, and 1C.	WR3 - Composite of subsamples WR3A and 5. WR4 - Composite of subsamples WR2, 3B, and 4. WR1-DUP - Duplicate of 01-034-WR-1. BACKGROUND - From Indian Queen (01-0340SS-1)
	Ni (mg/Kg)	, 25 12 13 9 3 4	582 3 56 < 4 117 U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	SE1 - 20' upgr SE2 - 20' dow SG1 - slag fro WR1 - Sample WR2 - Compo	WR3 - Compo WR4 - Compo WR1-DUP - D BACKGROUN
14	Mn (mg/Kg)	237 1100 14300 2910 1800 1820 2320	582 U-Nat Detected; J-	PYRITIC SULFUR ACID BASE POTENT. V1000t	15.2 15.9 49.3 37.2
SES	Hg (mg/Kg)	 0.019 0.029 0.013 0.169 0.822 0.215 0.715 	0.085	PYRITIC SULFUR ACID BASE VI 000t	00000
SOLID MATRIX ANALYSES	Fe (mg/Kg)	28400 51900 155000 107000 28000 92100 88400	19200	ORGANIC SULFUR %	0.49 0.51 0.01 0.01
SOLID M	Cu (mg/Kg)	14 4200 7130 15900 826 13500 2070	382	SULFATE PYRITIC SULFUR SULFUR % %	6.6.6.6.0 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
	Cr (mg/Kg)	5.7 11.1 40 17.1 8.1 16.4	<u>r.</u>	SULFATE SULFUR %	0.02 0.02 0.05 0.05
	Co (mg/Kg)	2.6 15.4 57.3 20.2 9.7 74.6	6.5 5.	TOTAL SULFUR ACID BASE POTENT. v1000t	0.49 0.95 40.3 47.4 36.5
	Cd (mg/Kg)	A 0.7 6.7 6.4 7.7 7.11 7.11 6.11	2.2	NEUTRAL. POTENT. v1000	15.2 15.9 41 49.3 37.2
Metals in soils Results per dry weight basis	Ba (mg/Kg)	38.9 91.8 42.6 9.1 253 79.1 55.1	101	Accounting TOTAL SULFUR ACID BASE V1000t	14.7 15 0.62 1.87 0.62
Metals in soils Results per dry	As (mg/Kg)	5 448 105 759 377 5210	£	Acid Base/Accounting TOTAL TOTAL SULFUR ACID BAS % v1000t	0.47 0.48 0.02 0.06 0.02
	FEELD D	01-034-SE-1 01-034-SE-2 01-034-SG-1 01-034-WR-1 01-034-WR-2 01-034-WR-3	BACKGROUND	FIELD U	01-034-WR-1 01-034-WR1-DUP 01-034-WR-2 01-034-WR-3 01-034-WR-4

Mine/Site Name: Old Elkhorn	County: Beaverhead
Legal Description: T 4S R 12W	Section(s): NE 1/4, NE 1/4, Sec. 14
Mining District: Elkhorn	Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn
Latitude: N 45° 29' 23"	Primary Drainage: Wise River
Longitude: W 113° 02' 18"	USGS Code: 10020004
Land Status: Public	Secondary Drainage: Elkhorn Creek
Quad: Elkhorn Hot Springs	Date Investigated: September 15, 1993
Inspectors: Bullock/Pierson	P.A. # <u>01-169</u>
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc	

- Ore from this site was milled at the Elkhorn Mill, PA# 01-009.
- The volume of waste rock associated with this site was estimated to be 50,000 cubic yards. The following elements were elevated at least three times background:
 Arsenic: 121J mg/kg
 Mercury: 1.59J mg/kg to 1.75J mg/kg

Cadmium: 4.8J mg/kg

Copper: 189 mg/kg to 573 mg/kg

Lead: 717 mg/kg

Zinc: 821J mg/kg

- There was one open adit identified with a discharge associated with this site with a significant estimated flow of 150 gpm. The pH at this discharge point was 5.72 and the specific conductance was measured at 291 umhos/cm. The MCL for cadmium was exceeded in the adit discharge. Acute and chronic aquatic life criteria were exceeded for iron, cadmium, copper, lead, and zinc were exceeded. A portion of the adit discharge flows over and through waste rock to a settling pond prior to discharging into Elkhorn Creek. There are two seeps associated with this site. The PPE for the adit discharge was sampled as SW-3 just prior to its confluence with Elkhorn Creek. One seep emanates from the northern toe of a waste rock dump characterized by sample SW-2. The MCL/MCLGs were exceeded for cadmium (SW-2, SW-3) and copper (SW-2). The MCL/MCLG for antimony was exceeded for the seep (SW-2). Acute aquatic life criteria was exceeded for copper and zinc in SW-2 and SW-3. Chronic aquatic life criteria were exceeded for cadmium, copper, lead, and zinc in SW-2 and SW-3.
- Two surface water samples were collected on Elkhorn Creek; SW-1 was downstream and SW-4 was upstream of the site. Observed releases to Elkhorn Creek were documented for copper and zinc. No MCLs were exceeded; however, acute and chronic aquatic life criteria were exceeded for copper and zinc which were directly attributable to the site.
- There were two potentially hazardous structures associated with this property. In addition, WR-1 was rated overly steep and was eroding. The open adit was classified as a hazardous mine opening, especially due to the heavy tourist use.

OId EIkhorn PA# 01-169 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BUILLOCK INVESTIGATION DATE: 09/16/93

FIELD As D (mg/kg)		•	siege and meight page.										
	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ks)	CYANIDE
01-169-WR-1 17.1 J	·	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.37 1.09 4.59 4.19	1.25 U 1.35 U 1.18 U 1.25 U	52.9 1.83 189 573	6980 JX 2820 JX 14500 JX 18200 JX	0.032 U 0.031 U 1.59 J 1.75 J	392 251 393 1590	4.58 4.516 4.13	6.68 5.51 UJ 22.2 717	6.18 UJ 5.32 UJ 5.99 UJ 9.92 J	134 J 19 J 123 J 821 J	R R R R R
BACKGROUND 12.3 J	182 J	1.1 U	5 .9	4.37 J	17.8	12300 JX	0.052 J	1170 U - Not Detected J -	8.28 Estimated Quantity,	1170 8.28 15.8 7.35 UJ 15.8 JU- Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	7.35 UJ	158 J	X X
Acid/Base	Acid/Base Accounting												
TOTAL FIELD SULFUR D %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000k	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	·				
01-169-WR-1 0.26 01-169-WR-2 1.07	8.12 33.4	33.1 7.61	K K	25 <0.01 0.09 -26 0.38 0.11	0.09 0.11	0.17 0.58	2.81 3.44	30.3 4.18					

THELLD D As Ba 01-169-GW-1 119.9 5.03 01-169-SW-2 11.18 01-169-SW-3 11.26 11.18 01-169-SW-3 11.26 11.18 01-169-SW-4 11.12 U 10.1 TOTAL TOT	4.59 U 4.59 U 4.59 U 4.59 U	6.47 6.24 L 5 U 6.24 L 10 6.24 L 6.33 6.24 L 5 U 6.24 L	ت 6.24 U 6.24 U	ರೆ								
Wet Chemistry TOTAL DISSOLVED SOLDS TOTAL TOTAL TOTAL DISSOLVED SOLDS TOTAL TOTAL TOTAL TOTAL TOTAL DISSOLVED SOLDS TOTAL TOTAL	- H	് 6.47 5 U 10 6.33 5 U	Cr 6.24 U 6.24 U	70								HARDINESS
1.12 U 11.7 1.12 U 11.7 1.18 8.2 1.26 11.8 1.12 U 10.1 Wet Chemistry TOTAL DISSOLVED SOLIDS 238 < 5 67 < 5		6.47 5 U 10 6.33 5 U	6.24 U		Fe	Hg	Mn	Ä	a.	æ	Zn (m	Zn (mg CaCO3/L)
1.18 8.2 1.26 11.8 1.12 U 10.1 Wet Chemistry TOTAL DISSOLVED SOLDS CHLORDS 238 < 5 67 < 5		10 6.33 5 U		745 23.6	3590	0.12 U	3590	10.9 U	107	======== 31.7 U	3630 99.3	99.3
1.20 11.8 1.12 U 10.1 Wet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDE 238 < 5 67 < 5		6.33 5 U	6.24 U	2930	926 926	0.12 0.12 U	9490	10.9 U	1.88 57.5	31.7 50.8 0.8	159	8 28
Wet Chemistry TOTAL DISSOLVED SOLDS CHLORDS 238 < 5 67 < 5))	6.24 U	700	193	0.12 U	3210	10.9 U	8	31.7 U	3200	35
Wet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDS 238 < 5 67 < 5			0.64	2.33	5	_	7.47	10.9 U	0.94 U	35.3	8.71 U	17.3
Wet Chemistry TOTAL DISSOLVED SOLDS CHLORIDS 238 < 5 67 < 5					. •		U · Not Detected, J ·	\mathbf{U} . Not Detected, J \cdot Estimated Quantity, \mathbf{X} . Outlier for Accuracy or Precision, NR \cdot Not Requested	C. Outlier for Accura	cy or Precision, NR	- Not Requested	
TOTAL DISSOLVED SOLIDS 238 < 67 < 67 < 67 < 67 < 67 < 67 < 67 < 6	Results in mg/l							LEGEND				
238 × 238 × 67				SE1 - L SE2 - U WR1 - C	SBI - Downgradient Elkhom Creek near old bridge. SB2 - Upgradient Elkhom Creek. WRI - Composite of subsamples WRI A and 1B.	m Creek near old reek ples WR1A and 1:	bridge.		GWI - Adit #1 discharge. SWI - Same as sample SEI.	discharge. sample SB1.		•
238 < 67 < 67 <	SULFATE	NO3/NO2-N		WR2 - 1	WR2 - Composite of subsamples WR1C through 1G.	ples WRIC throug	gh 1G.		at PPE to Elidom Greek	at PPE to Elichorn Creek	or waste rock d ck.	i di
		0.09 0.07	R R R	BACKO	BACKGROUND - From the Old Elkhorn Mine (01-169-38-1).	Old Elkhorn Mine	s (01-169-SS-1).		SW3 - Adit discharge at PPE to ELkhorn Creek. SW4 - Upgradient Elkhorn Creek.	sharge at PPE to ent Elkhorn Cree	Elkhom Creek ek.	
01-169-SW-3 204 < 5	131	50.0	Z 2									
	,	3	£									

Mine/Site Name: Ermont Mill County: Beaverhead Legal Description: T 6S R 11W Section(s): NW 1/4, SE 1/4, Sec. 35 Mine Type: Hardrock/Ag, Au, Cu Mining District: Ermont Primary Drainage: Beaverhead River Latitude: N 45° 16' 05" USGS Code: 10020002 Longitude: W 112° 54' 50" Land Status: Public Secondary Drainage: Ermont Gulch Date Investigated: June 14, 1993 Quad: Ermont P.A. # 01-005 Inspectors: Babits, Belanger, Lasher, Clark/Pierson Organization: Pioneer Technical Services, Inc./Thomas, Dean and Hoskins, Inc.

There were approximately 200,000 cubic yards of uncovered tailings on site. The following were elevated at least three times background:

Arsenic: 3,510 mg/kg Barium: 796 mg/kg Cobalt: 11.5 mg/kg

Iron: 36,500 mg/kg

Mercury: 1.38J mg/kg Antimony: 54J mg/kg

Zinc: 334 mg/kg

There were approximately 4,160 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 431 mg/kg Cobalt: 9.3 mg/kg Mercury: 1.06J mg/kg

- There were no discharging adits on site.
- A dry intermittent drainage was identified on site; however, no surface water or sediment samples were collected because the nearest flowing water was one and one-half miles from the site.

Ermont Mill and Mines PA# 01-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/14/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ું. જ			SOLID MA	SOLID MATRIX ANALYSES	6						
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
01-005-TP-1 01-112-WR-1	3510 431	796 192	1.3 0.4 U	11.5 9.3	11.8 5.1	22.4 17.6	36500 20300	1.38 J 1.06 J	852 629	14	61	54 J 334 10 J 43	334 85	13.5 NR
BACKGROUND	92	134	0.5 U	ო	10	14.1	12100	0.024 J	482	10	83	۲ ر	89	S.
Dan Jak	Acid/Base Accounting	Building							U - Not Detected, J	· Estimated Quartity	U - Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	ncy or Precision, N	R - Not Requested	
FIELD O	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	SULFUR NEUTRAL. ACID BASE POTENT. POTENT.	(SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASIB V1000t	SULFUR ACID BASE POTENT.	TP1 - Comport - C, - WR1 - Comport BACKGROU	TPI - Composite of subsamples TPIA-A, -B, -C, and 1B-A, -B, -C, -D, -B. WRI - Composite of subsamples WR1, 2A, 2B, 3, and 5. BACKGROUND - Accross drainage from edit #4. From the Ermont Mill (01-005-SS-1).	EEGEND ss TP1A-A, -B, les WR1, 2A, 2) sinage from adit ((01-005-SS-1))	-C, and 1B-A, - B. 3, and 5.	щ́
01-005-TP-1 01-112-WR-1	0.14			İ	0.13 <0.01	3 <0.01 M 0.01	0.02 <0.01	0.31	84.2 398					

County: Beaverhead Mine/Site Name: Silver King Section(s): NE 1/4, SW 1/4, Sec. 11 Legal Description: T 3S R 11W Mine Type: Hardrock/Pb, Zn, Ag Mining District: Hecla Primary Drainage: Big Hole River Latitude: N 45° 35' 08" USGS Code: 10020004 Longitude: W 112° 55' 42" Secondary Drainage: Trapper Creek Land Status: Private Date Investigated: August 26, 1993 Quad: Hardrock/Pb, Zn, Ag Inspectors: Bullock, Tuesday P.A. # 01-094 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings found to be associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 1,100 cubic yards. The following elements were elevated at least three times background:

Cadmium: 918J mg/kg Mercury: 26.6J mg/kg Lead: 32,300JX mg/kg Antimony: 339J mg/kg Zinc: 113,000J mg/kg

- There were two collapsed adits observed at this site. Groundwater was not likely to be
 present; and limestone was present to buffer water that may pass through the old
 workings. There were no adit discharges, seeps or springs associated with this site.
- There were no direct pathways observed from this site to Trapper Creek, located approximately ¼ mile below the site. No surface water or groundwater samples were collected.
- No other hazardous materials were observed at this site.

Silver King PA# 01-094

AMRE HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 08/26/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	9			SOLID MATF	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
01-094-WR-1	91.9	23 J	918.00 J	2.68	4.57 JX	266	25800	26.6 J	544 J	# 즉	ii	32300 JX 339 J 113000 J	113000 J NR	NR.
BACKGROUND	63	4 0	2.2	6.5	5.1	382	19200	0.085 J	582	ო	%	4	117	
	!								U-Not Detected, JE	Estimated Quantity, X .	U - Not Detected, J - Entirmed Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	or Precision, NR - N	Vot Requested	
	Acid/Base Accounting	Accounting										FOFND		
# !!	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	TOTAL SULFUR SULFUR SULFUR NEUTRAL ACID BASE SULLACID BASE POTENT. POTENT. SULL VIOOR VIOOR VIOOR VIOOR	SULFUR ACID BASE POTENT. V1000t	FATE	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t	SE2 - WR1 - Compo BACKGROUN WR1DUP - Do	SE2. WRI - Composite of subsamples WRIA, 1B, and 2. BACKGROUND - From the Indian Queen Mine (01-034-SS-1). WRIDUP - Duplicate of the 01-094-WR-1 sample.	cs WR1A, 1B, t disn Queen Min -094-WR-1 sam	end 2. ne (01-034-SS.: nple.	ä
01-094-WR-1 01-094-WR-1DUP	0.67 0.67	20.9 20.9 5.09	404 406	386	6.04 0.04	0.66	0.3	20.6 21.9	381 384					

Mine/Site Name: Lower and Upper Cleve County: Beaverhead Section(s): NE 1/4, SW 1/4, Sec. 1 Legal Description: T 3S R 11W Mine Type: Hardrock/Ag, Cu, Pb Mining District: Hecla Primary Drainage: Trapper Creek/Big Hole Latitude: N 45° 36' 14" Longitude: W 112° 54' 45" River Land Status: Private USGS Code: 10020004 Secondary Drainage: Sappington Creek Quad: Mount Tahepia Date Investigated: September 14, 1993 Inspectors: Bullock/Pierson Organization: Pioneer Technical Services, P.A. # 01-143 Inc./Thomas. Dean and Hoskins. Inc.

- There were no mill tailings found to be associated with this site.
- The volume of waste rock associated with this site was estimated to be 49,000 cubic yards. (Upper Cleve adits and dumps were added due to the close proximity and contribution to erosion problems.) The following elements were elevated at least three times background:

Arsenic: 268J to 615J mg/kg

Cadmium: 18.9 to 51.0 mg/kg

Copper: 1,540 mg/kg

Mercury: 8.97J to 16.6J mg/kg

Manganese: 6,600 mg/kg

Nickel: 12.8 mg/kg

Lead: 1,920 to 9,770 mg/kg Antimony: 225J to 352J mg/kg Zinc: 3,310 to 7,670 mg/kg

- There were no adit discharges, seeps or springs identified at this site.
- The mine was located near the headwaters of the North Fork of Sappington Creek.
 Surface water samples were collected upstream and downstream from the site; no MCLs/MCLGs or acute or chronic aquatic life criteria were exceeded. The pH ranged between 8.63 and 8.80 and Eh ranged between 218 to 240 mV.
- Observed releases to the North Fork of Sappington Creek (sediment) were documented for arsenic, lead, and antimony.
- Two open adits located at this site were classified as hazardous mine openings.

Upper and Lower Cleve PA# 01-143 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/14/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES	<i>ω</i>						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Kø)	CYANIDE (me/Ke)
01-143-SE-1 01-143-SE-2 01-143-SE-3 01-143-WR-1 01-143-WR-2	319 J 162 J 81.5 J 615 J 268 J	31.1 22.8 46.6 22.7 0.19 U	8.92 14.70 5.43 51.00 18.90	7.61 4.89 4.41 3.11	9.51 11.9 11.3 5.68 2.14	222 214 1540 440	24800 12800 12500 12700 11500	3.51 J 6.28 J 1.88 J 16.6 J 8.97 J	542 670 704 6600 878	19.5 12.1 14.7 12.8 4.36	1680 3930 1270 9770	#	1310 2730 1230 7670 3310	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
BACKGROUND	€	5	2.2	6.5	5.	382	19200	0.085 J	582	ო	95	4 UJ	117	< 0.271
	Acid/Base Accounting	\ccounting							U - Not Detected, J.	- Estimated Quantity	U - Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	mcy or Precision, NR	t - Not Requested	
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. t/1000t	SULFUR ACID BASE POTENT. V1000t	SULFUR SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT: v1000t					
01-143-WR-1 01-143-WR-2	6.04 0.04	00	0 482 0 497	482 497	<0.01 <0.01	<0.01 <0.01	0.01 0.01	00	482 497					

	Metals in Water		Results in ua/		-	WATER MATRIX ANALYSES	IX ANALYSES							
FIELD D	As	BB BB	8	පී		ಸ	Ŧ.	Hg	Μ'n	Z	£	S	H Z	HARDNESS CALC.
01-143-SW-1 01-143-SW-2	3.09 2.81	13.1 11.5	3.09 13.1 4.59 U 5 U 6.24 U 2.81 11.5 4.59 U 5 U 6.24 U	5 U	ii .	2.33 U 2.33 U	13.7 U 0.23 J 15.5 0.13 J	0.23 J 0.13 J	3.76 U 3.76 U 3.76 U	10.9 U	2.58 1.33		15.6 159 8.71 U 154	159
	:								U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	timated Quantity, X	Outlier for Accur	ncy or Precision, NR	- Not Requested	
	Wet Chemistry		Results in mg/l							LEGEND				
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N CYANIDE	NO3/NO2-N	CYANIDE	SE1 - 1 SE2 - 1 SE3 - 1	 SE1 - Downgradient sediment, 650' below road to Trapper Mine in Sappington Creek. SE2 - 150' below waste rock dump 1 on Sappington Creek. SE3 - 110' above waste rock dump 1 on Sappington Creek. 	ut; 650' below ros. k. t dump 1 on Sappii dump 1 on Sappii	d to Trapper Mine ngton Creek.		SW1 - 150 beld Creek. SW2 - 110 abo	SW1 - 150 below waste rock dump 1 on Sappington Creek. SW2 - 110' above waste rock dump1 on Sappington Creek.	ump 1 on Seppir	uotă tatou
	193 < 5 < 5 0.1 NR 199 < 5 5 0.1 NR	v v	v ហហ	0.1	N N N	WRI - WR2 - BACKG	WRI - Composite of subsamples WRI A and IC. WR2 - Composite of subsamples WR2A and 2B. BACKGROUND - From the Indian Queen Mine (01-034-SS-1).	nples WR1A and 1 uples WR2A and 2 Indian Queen Min	C. B. e (01-034-SS-1).					

Mine/Site Name: Trapper County: Beaverhead Legal Description: T 3S R 11W Section(s): NW 1/4, NW 1/4, Sec. 12 Mine Type: Hardrock/Au, Ag, Pb, Cu Mining District: Hecla Latitude: N 45° 35' 45" Primary Drainage: Trapper Creek USGS Code: 10020004 Longitude: W 112° 54' 52" Land Status: Private Secondary Drainage: N. Fk. Sappington Ck. Date Investigated: August 26, 1993 Quad: Mount Tahepia P.A. # 01-144 Inspectors: Bullock, Tuesday Organization: Pioneer Technical Services, Inc.

The volume of mill tailings associated with this site was estimated to be 1,460 cubic yards. The following elements were elevated at least three times background:

Arsenic: 818J to 1,260J mg/kg Cadmium: 65.9J to 110J mg/kg Chromium: 16.8 mg/kg

Copper: 2570 to 3980 mg/kg Mercury: 39.6J to 85.8J mg/kg Manganese: 1770 mg/kg

Nickel: 16.3 to 34.3 mg/kg Lead: 7860 to 13,600 mg/kg Antimony: 463 to 536 mg/kg Zinc: 21,800 to 24,200 mg/kg

 The volume of waste rock associated with this site was estimated to be 6,700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 505J mg/kg Cadmium: 96.2J mg/kg Mercury: 10.6J mg/kg Nickel: 10.6 mg/kg Antimony: 157 mg/kg Zinc: 1060 mg/kg

- There were no adit discharges, seeps or springs observed at this site.
- The Main Fork of Sappington Creek appeared to flow through and around the tailings pond during high flow events. Surface water samples were collected up and down stream of this site and there were no documented releases or MCL/MCLGs exceedences. No acute or chronic aquatic life criteria were exceeded. Sediment samples were collected up and down stream from this site. Observed releases of copper, lead, mercury, nickel, and zinc were documented in the sediments.
- There were two hazardous structures identified at this site, the old mill and a cabin.

Trapper PA# 01-144 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/15/93

	Metals in soils		Results per dry weight basis	ight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd Co (mg/Kg) (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sh (me/Ke)	Zn (ma/Ka)	CYANIDE
01-144-SE-1 01-144-SE-2 01-144-TP-1 01-144-WR-1	5.62 8.18 J 1260 J 505 J	13.4 J 12.4 J 4.92 32.5 0.187 U	0.987 UJ 0.953 UJ 65.9 J 110 J 96.2 J	3.48 2.37 2.78 6.71 2.46	8.27 JX 3.14 JX 6.58 16.8	22.1 0.484 U 2570 3980 0.396 U	7640 3920 10200 18500 7240	0.181 J 0.038 UJ 39.6 J 85.8 J 34.3 J	302 J 251 J 811 1770 1180	9.57 JX 2.55 JX 16.3 34.3	374 JX 6.81 UJX 7860 13600 5.58 U	10.9 J 6.58 UJ 463 536 157	206 J 22.7 J 21800 24200 1060	N N N N N N N N N N N N N N N N N N N
BACKGROUND	£	\$	2.2	6.5	7.7	382	19200	0.085 J	582	ю	%		117	< 0.271
	Acid/Base Accounting	ccounting							U - Not Detector, J . E	Saimated Quantity, X -	U - Not Detector, J - Beirnsted Quantity: X - Outlier for Accuracy or Precision; NR - Not Requested	Pecinion, NR - Not.	Requested	
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE t/1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
01-144-TP-1 01-144-TP-2 01-144-WR-1	000	2	188 136 888	187 135 886	0.00	60.01 0 0 60.01	60.01 0	0-0	188 135 888					

	Metals in Water		Results in ua/L			WATER MATRIX ANALYSES	IX ANALYSES							
FIELD											Mi Toni		-	HARDNESS
a	As::::::::::::::::::::::::::::::::::::	- 11	2	Ds රා වා	Ċ	r _C	ir e	Hg	Mn	ï	P	ĸ	Zn (m	CALC.
01-144-SW-1 01-144-SW-2	1.12 U 1.12 U	32.8 31.1	4.59 U 4.59 U	250		2.33 U 2.33 U	2.33 U 31.1 J 2.33 U 36.3 J	0.22	3.76 U 5.8	3.76 U 10.9 U 5.8 10.9 U	1.02 0.94 U	31.7 U 31.7 U	11.4 152 8.71 U 168	152 168
							. *		U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	timated Quantity, X	Outlier for Accuracy o	r Precision; NR - Not	Requested	
	Wet Chemistry	œ	Results in mg/l							FOFND				
FIELD LD.	TOTAL FIELD DISSOLVED I.D. SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	9	SBI - Sappington Creek 200 feet below last tailings pond. SB2 - Sappington Creek 100 feet upstream from waste rock. TPI - Composite of subsamples TPIB, 2AA, and 3AA. TP2 - Composite of subsamples TP2AB and 3AB.	O feet below last i O feet upstream fr ples TP1B, 2AA, ples TP2AB and i	nailings pond. om waste rock. and 3AA. 3AB.		SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1. sample SE2.		. •
01-144-SW-1 01-144-SW-2	179 169	5.0 5.0	A On CO	^ 0.05 0.05	AN AN		WRI - Composite of subsamples WRIA, 1B, 2A, and 2B. BACKGROUND - From Indian Queen Mine (01-034-SS-1).	nples WRIA, 1B, dian Queen Mine	2A, and 2B. (01-034-SS-1).					

Mine/Site Name: South Frying Pan Creek County: Beaverhead Legal Description: T 10S R 15W Section(s): NE 1/4, NW 1/4, Sec. 28 Mine Type: Hardrock/Unknown Mining District: Lemhi Pass Latitude: N 45° 56' 15" Primary Drainage: Frying Pan Creek USGS Code: 10020001 Longitude: W 113° 26' 56" Secondary Drainage: South Frying Pan Creek Land Status: Public Date Investigated: August 25, 1993 Quad: Lemhi Pass Inspectors: Bullock, Tuesday P.A. # 01-211 Organization: Pioneer Technical Services, Inc.

- This site was an uranium mine associated with the Last Chance No. 1 (PA# 01-216) and the Last Chance No. 2 (PA# 01-220)
- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately
 400 cubic yards. The following elements were elevated at least three times background:

Arsenic: 89.3 mg/kg Copper: 43.3 to 442 mg/kg

Barium: 4,520J mg/kg Mercury: 0.156J to 0.565J mg/kg

Cobalt: 26.2 mg/kg
Chromium: 16.1 mg/kg
Manganese: 6,620 mg/kg
Lead: 90.7 to 1,120 mg/kg

Antimony: 28.5J mg/kg Zinc: 420 mg/kg

Thorium-238: 27 to 530 pCi/l Thorium-230: 140 pCi/l

- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation.
- South Frying Pan Creek was flowing directly south of the site. Surface water and sediment samples were collected upstream and downstream from the site in the creek. An observed release to South Frying Pan Creek (sediment) was documented for barium, which was directly attributable to the site. No MCL/MCLGs or aquatic life criteria attributable to this site were exceeded; however, the chronic aquatic life criteria for lead was exceeded in both the upstream and downstream samples.
- Relatively high radiation readings (0.60 mR/HR) were observed in a portion of the waste rock material at this site.
- The waste rock dump was very steep and unstable and posed a potential safety hazard.

South Frying Pan Creek PA# 01-211 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/25/93

	Metals in soils		Results per dry weight basis	weight basis	44	SOLID MA'	SOLID MATRIX ANALYSES	Ø							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co yKg) (mg/Kg)	Cr (mg/Kg)	. Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (ms/Ke)	
01-211-SE-1 01-211-SE-2 01-211-WR-1 01-211-WR-2	9.79 U 7.01 U 89.3 6.5	234 J 63.8 J 4520 J 371 J	1.9 U 1.3 U 2.5 0.9 U	3.15 2.65 26.2 9.62	7.94 6.83 4.58 16.1	7.45 2.56 442 43.3	5530 5310 15800 6780	0.057 U 0.04 U 0.565 J 0.156 J	84 141 6620 1010	13.6 J 8.13 J 18.3 J 18.4 J	13.4 U 9.61 U 1120 90.7	12.9 UJ 10.3 J 28.5 J 6.27 UJ	25.4 15.5 420 72.8	AN AN AN	
BACKGROUND	5.13 U	221 J	1.0 U	3.82	4.61	6.23	7120 U-)	0.033 U 944 9.52 J 7.03 U 6.79 UJ 33. U Not Debeck J - Editmind Quantity, X - Oxilier for Accuracy or Precision, NR - Not Requested, * - From Barringer Laboratory	944 4 Quantity, X - Outlier f	9.52 J Ger Accernacy or Precini	7.03 U	6.79 UJ	33.6 r Laboratory.	Z Z	
	Radiochemistry	stry					Acid/Base Accounting	counting							
FIELD ID	Analyte Th-228 (pCi/l)	Analyte Th-230 (pCi/l)	Analyte Th-232 (pCif)	Analyte U-234 (pCi/l)	Analyte U-235 (pCi/l)	Analyte U-238 (pCi/l)	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.
01-211-WR-1* 01-211-WR-2*	530 [20] 27 [2]	140 [10] 2.1 [0.6]	510 [20] 20 [2]	2.1 [0.7] 1.3 [0.5]	0.0 [0.2] 0.0 [0.2]	2.3 [0.7] 1.0 [0.5]	0.78	24.4 0.94	9.63 15.6	-15 14.7	0.08	0.22 <0.01	0.48	6.87	2.76
BACKGROUND*	1.6 [0.7]	1.4 [0.05]	1.7 [0.7]	0.9 [0.5]	0.0 [0.2]	0.8 [0.5]								ı	

						WATER MATRIX ANALYSES	X ANALYSES								
FIELD	Metals in Water		Results in ug/L										×	Hardness	
D	As ::===================================	Ba	Cd	, a	Co Cr	Cu	Fe	Hg	Wn	Ÿ	æ	æ	Zn (mg	CALC. Zn (mg CaCO3/L)	
01-211-SW-1 01-211-SW-2	1.9 0.96 U	32.3 28.9	2.57 U 2.57 U	9.7 U 9.7 U		1.55 U 1.55 U	64.7 48.5	0.12 UJX 7.37 0.15 JX 9.2	7.37 9.2	14 17.6	3.88 J 2.26 J	30.7 J 30.7 U	7.57 U 22.7 8.9 J 20.9	22.7 20.9	
FIELD	Analyte Th-228 (pCi/l)	Analyte Th-230 (pCi/l)	Analyte Th-232 (pCi/l)	;		Analyte U-238 (pC/I)		ė	- Not Detected, J - H	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requessed	Juliur for Accuracy o	or Precision; NR - Not	Requested		
01-211-SW-1* 01-211-SW-2*	0.0 [1.1] 0.9 [1.4]	2.0 [1.5] 1.8 [1.5]	0.0 [1.0] 0.0 [1.1]	0.0 [0.8] 0.0 [2.3]	0.0 [0.5] 0.0 [1.6]	0.0 [0.5] 0.0 [2.0]									
	Wet Chemistry		Results in mg/l		÷	. Plus or minns.	SEI -	SE1 - Downstream on South Frying Pan Creek	1 Frying Pan Cn		LEGEND	END			
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		SE2 - WRJ - WR2 - BACK	SE2 - Upstream on South Frying Pan Creek. WR1 - South of dump #1; sample of the WR1 subsample. WR2 - Northwest side of dump #1; sample of the WR2 subsample. BACKGROUND - From the Last Chance #1/FRR (01.2) s.Ss.1)	rying Pan Creek ample of the Wi mp#1; sample Last Chance#1	E. RI subsample. of the WR2 subsam		SW2 - Same as sample SSE2.	ample SSE2.		
01-211-SW-1 01-211-SW-2	55	< 5.0 × 5.0	50 × 5.0 × 55 × 5.0 × 5.	0.050.05	NR NR						÷				

Mine/Site Name: Last Chance No. 1/IER County: Beaverhead Legal Description: T 10S R 15W Section(s): NE 1/4, NW 1/4, Sec. 29 Mining District: Lemhi Pass Mine Type: Hardrock/Thorium, Uranium Latitude: N 44° 56' 25" Primary Drainage: North Frying Pan Creek USGS Code: 10020001 Longitude: W 113° 28' 12" Land Status: Public Secondary Drainage: North Frying Pan Creek Quad: Lemhi Pass Date Investigated: August 25, 1993 Inspectors: Bullock, Tuesday P.A. # 01-216 Organization: Pioneer Technical Services, Inc.

- This site was an uranium mine associated with the Last Chance No. 2 (PA# 01-220) and the South Frying Pan Creek (PA# 01-211) mines.
- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 13,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 37.4 mg/kg

Barium: 4,370J mg/kg

Mercury: 4.53J mg/kg

Manganese: 4,760 mg/kg

Cobalt: 18.8 mg/kg

Copper: 70.6 mg/kg

Lead: 31.1 mg/kg

Zinc: 149 mg/kg

Thorium-228: 440 pCi/l Thorium-230: 150 pCi/l Thorium -232: 420 pCi/l Uranium-234: 6.8 pCi/l

Uranium-238: 7.2 pCi/l

- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation.
- The nearest surface water drainage was a small intermittent stream bed (dry during the investigation) located approximately 250 feet from toe of dump. No direct runoff pathways from the waste rock dump to the drainage were identified.
- High radiation readings were observed in the open trench (7.0 mR/HR) located above the adit and in the waste rock material (0.90 to 4.0 mR/HR).
- Potential safety hazards associated with the site included a adit with a locked gate, a highwall associated with the trench cut, and a steep and unstable waste rock dump.

Last Chance #1/IER PA# 01-216 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/25/93

		•												
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As Ba (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/K.g)	Zn (mg/Kg)	CYANIDE (mg/Kg)
	37.4	4370 J	0.8 U	18.8	2.63	70.6	9120 4.53 J	4.53 J		4760 13 J		11.8 J	# Q	NR
BACKGROUND	5.13 U	221 7	1.9 U	3.82	4.61	6.23	7120	0.033 U Not Detected, J - Estima	0.033 U 944 9.52 J 7.03 U 6.79 UJ 33.6	9.52 J for Accuracy or Pre	7.03 U	6.79 UJ	33.6	ď
	Radiochemistry	istry								•				
FIELD D	Analyte Th-228 (pCi/l)	Analyte Analyte <t< td=""><td>Aralyte Th-232 (pCi/l)</td><td>Analyte U-234 (pCi/l)</td><td>Analyte U-235 (pCi/l)</td><td>Analyte U-238 (pCi/l)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Aralyte Th-232 (pCi/l)	Analyte U-234 (pCi/l)	Analyte U-235 (pCi/l)	Analyte U-238 (pCi/l)								
01-216-WR-1*	440 [20]	150 [10]	420 [20]	6.8 [1.1]	0.1 [0.3]	7.2 [1.2]	ii ir							
BACKGROUND*	1.6 [0.7]	1.4 [0.05]	1.7 [0.7]	0.9 [0.5]	0.0 [0.2]	2] 0.8 [0.5] [] - Plus or minus.								
	Acid/Base Accounting	\ccounting										LEGEND		
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 11000t	SULFUR ACID BASB POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t	WR1 - Compa	WRI - Composite of subsamples WR1 A and I B. BACKGROUND - From the Last Chance #1/IER (01-216-SS-1).	st Chance #1/6	IB. ER (01-216-SS-1	
01-216-WR-1	0.49	15.3	20.1	8.4	0.03	0.04	0.42	1.25	18.9		*****			

Mine/Site Name: Last Chance No. 2/IER County: Beaverhead Legal Description: T 10S R 15W Section(s): SW 1/4, NE 1/4, Sec. 29 Mining District: Lemhi Pass Mine Type: Hardrock/Thorium, rare earths Latitude: N 45° 56' 08" Primary Drainage: Frying Pan Creek USGS Code: 10020001 Longitude: W 113° 27' 48" Land Status: Public Secondary Drainage: South Frying Pan Creek Date Investigated: August 25, 1993 Quad: Lemhi Pass Inspectors: Bullock, Tuesday P.A. # 01-220 Organization: Pioneer Technical Services, Inc.

- This site was an uranium mine associated with the Last Chance No. 1 (PA# 01-216) and the South Frying Pan Creek (PA# 01-211) mines.
- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 11,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 82.1 mg/kg

Copper: 84.1 mg/kg

Mercury: 0.104J mg/kg

Thorium-230: 5 pCi/l

Uranium-234: 4.4 pCi/l

Lead: 22.5 mg/kg

Antimony: 21.5 mg/kg

Thorium-228: 61 pCi/l

Thorium-232: 66 pCi/l

Uranium-238: 4.3 pCi/l

- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation.
- South Frying Pan Creek was flowing approximately 100 feet south of the site; however, no surface water samples were collected due to lack of a direct runoff pathway from the waste rock dump to the creek.
- Relatively high radiation readings (0.30 mR/HR) were observed in the waste rock dump at this site.
- One potentially hazardous collapsing shack was identified at the site.

Last Chance #2/IER PA# 01-220 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/25/93

·	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MA	SOLID MATRIX ANALYSES	v		-				
FIELD As ID (mg/Kg)	As (mg/Kg) ====================================	Ba Cd Co (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)		Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
01-220-WR-1	82.1	429 J	0.8 U	8.15		94.1	13400	0.104 J	0.104 J 200 12.6 J	12.6 J	22.5	21.5 J	21.5 J 19.2 NR	X
BACKGROUND	5.13 U	221 5	1.0 U	3.82	4.61	6.23	7120	0.033 U U-Not Detected, J	0.033 U 944 9.52 J 7.03 U 6.79 UJ 33.6 U-Net Detected: J - Edinated Quantity, X - Outlier for Accuracy or Precision; NR - Net Requested: *- From Burniner Lab	9.52 J	7.03 U	6.79 UJ	33.6 From Berringer La	
	Radiochemistry	istry										•	•	i
Analyte Analyte Analyte Analyte FIELD Th-228 Th-230 Th-232 U-234 D (pC/I) (pC/I) (pC/I) (pC/I)	Analyte Th-228 (pCi/l)	Analyte Th-230 (pCi/l)	Analyte Th-232 (pCi/l)	Analyte U-234 (pCi/l)		Analyte U-238 (pCi/l)	٠							
01-220-WR-1*	61 [6]	5 [1.8]	(9) 99	4.4 [0.9]	0.0 [0.2]	4.3 [0.9]	ji H							
BACKGROUND*	1.6 [0.7]	1.4 [0.05]	1.7 [0.7]	[5:0] 6:0	0.0 [0.2] 0.8 [0.5] [] - Plus or minus	2] 0.8 [0.5] [] - Plus or minus								
	Acid/Base Accounting	ccounting										LEGEND		
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE 1/1000t		SULFUR ACID BASIE POTENT. 1/1000t		PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASIE V1000t	SULFUR ACID BASE POTENT. 1/1000t	WR1 - Comp BACKGROU	WRI - Composite of subsamples WR1A through 1C. BACKGROUND - From the Last Chance #1/IER (01-216-SS-1).	es WR1A through Chance #1/IE	gh IC. IR (01-216-SS-	
	0.01 0.31	0.31		13.8 13.5 0.01		<0.01	<0.01 0	0	13.8		.*			

Mine/Site Name: Tungsten Millsite County: Beaverhead Section(s): SW 1/4, Sec. 4; SE1/4, SE/14, Sec. 5 Legal Description: T 4S R 9W Mine Type: Millsite/Tungsten Mining District: Lost Creek Latitude: N 45° 30' 45" Primary Drainage: Big Hole River USGS Code: 10020004 Longitude: W 112° 43' 45" Secondary Drainage: Sassman Gulch Land Status: Public Date Investigated: September 13, 1993 Quad: Earls Gulch P.A. # 01-170 Inspectors: Bullock/Pierson Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 448,000 cubic yards. A heavy petroleum odor was observed in the lower clay of TP-4 (Total Petroleum Hydrocarbons = 611 mg/kg). The following elements were elevated at least three times background:

Barium: 2620 mg/kg

Manganese: 4,380 to 14,900 mg/kg

Lead: 123 mg/kg Cadmium: 2.81 mg/kg Antimony: 19.9 mg/kg Copper: 107 to 567 mg/kg Zinc: 468 mg/kg Mercury: 0.054 to 0.475 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 11,700 cubic yards. The following elements were elevated at least three times background:

Copper: 2380 mg/kg Antimony: 18.5 mg/kg Mercury: 0.054 mg/kg Manganese: 2310 mg/kg

- The site was partially reclaimed in 1990.
- Several residences were located in close proximity to the site. Groundwater sample were collected from residential well located directly downgradient from the site and one directly upgradient from the site. Total petroleum hydrocarbons were measured at 23.3 mg/L in the downgradient well (GW-1). No MCLs were exceeded in either of the wells; however, the chronic aquatic life criteria for mercury was exceeded in the upgradient well (GW-2). Additionally, an observed release to groundwater was documented for barium, which was directly attributable to the site.
- No surface water was observed on or near the site during the investigation, intermittent Sassman Gulch (dry during the investigation) was located more than 1,000 feet south of the site; consequently, no surface water samples were collected.
- Potential safety hazards identified at the site include a 15 feet tall loadout wall and an eroding tailings pile (TP-6); however, the majority of the site was surrounded by a fence.

Tungsten Millsite PA# 01-170 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/13/83

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES	S S				-		
DI DI	As (mg/Kg)	Ba (mg/Kg)	. Cd (mg/Kg)	Co (mg/Kg)	ت (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Нg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mer/Ke)	Total Petroleum Hydrocarbons (ma/Ks)
01-170-TP-1 01-170-TP-2 01-170-TP-3 01-170-TP-5 01-170-WR-1	7.5 J 107 J 5.58 J 12.6 J 8.03 J 6.28 J	89.2 2620 88.9 41.6 134 40.9		7.35 17.8 7.5 12.7 16.2 9.59	11.6 7.94 9.78 15.5 16.5 6.08	107 123 189 567 331 2380	32500 17600 38200 62500 47900 28600	0.055 J 0.475 J 0.087 J 0.143 J 0.072 J	4380 14900 4670 5310 7000 2310	10.1 10.4 10.4 16.5 21.8 10.7	17.9 35.1 31.5 123 7.36 8.87	# _{¬¬} 33¬¬	119 79.6 125 154 468 323	NR NR NR NR NR NR
BACKGROUND	56 169 Acid/Base Accounting	169 ccounting	8.0 XL 8.	13.8	29.4	34.2	25300	0.014 U	462 U - Not Detector, J - J	26 Estimated Quantity, 3	462 26 30 4 UJ 119 U - Not Detectet, J - Estimated Questity, X - Outlier for Accumsy or Precision; NR - Not Requested	4 UJ	119 -Not Requested	Z Z
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. #1000t	SULFUR ACID BASE POTENT:	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
01-170-TP-1 01-170-TP-2 01-170-TP-4 01-170-TP-5 01-170-WR-1	60.01 60.01 60.03 60.06	0 0.31 0.94 1.87	165 47.7 125 135 206 131		6.01 6.01 6.01 6.03 6.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.02 0.01 0.01 0.02 0.01	00000	165 47.7 125 135 206 131					

	Metals in Water		Results in ua/l			WATER MAT	WATER MATRIX ANALYSES	Į v						
FIELD			b					í						HARDNESS
Ω	As	Ba	Be Cd Co	రి	ប៉	r _O	Ŗ.	Hg	Mn	Z	£	æ	5	CALC.
01-170-GW-1 01-170-GW-2	3.39	97.5 29.1	4.59 U 4.59 U	ာ ၁၁ ၁၁	6.24 U 6.24 U	U 2.33 U U 2.33 U	53.1 24.4	0.12 U 3.76 U 0.15 J 4.6	3.76 U 4.6	10.9 U 1.22 U 31.7 U 10.9 U 2.17 31.7 U	1.22 U 2.17	1.22 U 31.7 U 2.17 31.7 U	8.71 U 69.3	8.71 U 309 69.3 175
	Wet Chemistry	æ	Results in ma/l						U. Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision; NR. Not Requested	timated Quantity, X . t	Outlier for Accuracy	or Precision, NR - No	ot Requesteed	
FIELD LD. 01-170-GW-1 01-170-GW-2	TOTAL TOTAL TOTAL FIELD DISSOLVED HYDRO ID SOLIDS CHLORIDE SULFATE NO3ANO2-N (mg/ 170-GW-1 408 31 60 0.64 23.3 11-170-GW-2 234 9 16 0.4 NR	CHLORIDE 31	SULFATE 60 16	SULFATE NO3/NO2-N 60 0.64 16 0.4	TOTAL PETROLEUM HYDROCARBONS (mg/L) 23.3 NR		TP1 - Composite of subsamples TP1A, 1B, and 1D. TP2 - Sample of the TP1C subsample. TP3 - Composite of subsamples TP2A, 2B, 2C, 3A, 3B, 3C, 4A, and 4B. TP4 - Sample of the TP4C subsample. TP5 - Sample of the TP6A subsample. TP5 - Sample of the TP6A subsamples WR1 - Composite of subsamples WR1A and 1B. BACKGROUND - From the Emma Mine (29-061-38-1).	subsample. yelse TP2A, 1B, an subsample. subsample. subsample. mples WR1A and 1:	d ID. 3, 3A, 3B, 3C, 4A, 1 B. 61-38-1).	S S S S S S S S S S S S S S S S S S S	GW2 - Downgra GW2 - Water si	GW1 - Downgradent sample at trailor, below tailings pond 8. GW2 - Water supply well for mill, converted to residence.	railor, below is II, converted to	alings pond 8. residence.
												,.		

Mine/Site Name: Clara	County: Beaverhead
Legal Description: T 3S R 14W	Section(s): NE 1/4, NW 1/4, Sec. 18
Mining District: Wisdom	Mine Type: Hardrock/Unknown
Latitude: N 45° 34' 43"	Primary Drainage: Sleek Creek
Longitude: W 113° 22' 38"	USGS Code: 10020004
Land Status: Private	Secondary Drainage: Dry Gulch
Quad: Highland Ranch	Date Investigated: August 13, 1993
Inspectors: Bullock, Tuesday, Belanger	P.A. # <u>01-262</u>
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings identified to be associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 2,185 cubic yards. The following elements were elevated at least three times background:

Barium: 622 mg/kg
Cadmium: 6.1J mg/kg
Copper: 86.8 mg/kg
Mercury: 1.1 mg/kg
Lead: 145 mg/kg
Iron: 39,300 mg/kg

Zinc: 995 mg/kg

- There was one discharging adit identified at this site and it was characterized by sample GW-1. The pH of GW-1 was 7.02 and specific conductance was 240 umhos/cm. No MCLs or MCLGs were exceeded. The acute aquatic life criteria for cadmium was exceeded. Chronic aquatic life criteria were exceeded for lead. The adits discharge flows over a portion of Waste Rock Dump #1, prior to seeping back into the ground.
- Two surface water samples were collected from Dry Gulch, one up gradient and one
 down gradient represented by SW-2 and SW-1 respectively. Observed releases were
 documented for copper, iron, lead and zinc, all directly attributable to this site. The
 MCL/MCLG for lead was exceeded in SW-1. The acute aquatic life standard for iron and
 zinc were exceeded in SW-1. Chronic aquatic life criteria were exceeded for copper and
 zinc in SW-1.
- Several safety hazards were found to be present at this site including the collapsed shaft, a structure near the shaft, and a cabin. Access to this site was unrestricted.

CIATA PA# 01-262 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/13/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>\$</u>			SOLID MA'	SOLID MATRIX ANALYSES	W		-				
FIELD D (As (mg/Kg) (Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
01-262-SE-1 01-262-SE-2 01-262-WR-1	7 8 U U U U	173 48.5 622	0.8 0.8 1.5	7.6.0 0.00 0.00	5.8 2.6 4.1 U	8.3 86.8	11800 6390 39300	0.061 U 0.045 U 1.1	249 140 1990	4 4 8	12 U 14 U	9 U 10 U 18 U	49 40 895	N N N
BACKGROUND	ဖ	178	0.5 U	4 .5	4	3.4	11400	0.027 U	880	4	10	0 9	62	Z Z
	Acid/Base Accounting	ccounting							U - Not Detected, J.	U - Not Detector, J - Balimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	X - Outlier for Accur	acy or Precision, h	AR - Not Requested	
TOTAL FIELD SULFUR ED %	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	22	SULFATE SULFUR	PYRITIC SULFUR		PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
01-262-WR-1DUP 01-262-WR-1	0.01 <0.01	0.31	33.0 32.4	32.7 32.4	0.01 <0.01	<0.01 <0.01	0.01	00.0	33.0 32.4					

	Metals in Water Results in und	Vater io/l			<u>-</u>	WATER MATRIX ANALYSES	IX ANALYSES							
FIELD	() 	B	ਲ	రి	ර්	ට	F.	Hg	Mn	፟፟፟፟፟፟፟	Pb	ક્ક	H 42	HARDNESS CALC.
01-262-GW-1 01-262-SW-1 01-262-SW-2		65 64 8	27 57 U 57 U	9.7 U 6.83 9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U 6.83 U	7.7 J 17.2 J 1.55 U	162 3100 203	0.160 0.250 0.180	87.7 434 6.97	12.7 U 165 12.7 U	2.62 2.32 0.72 U	30.7 U 30.7 U 30.7 U	40.7 204 7.57 U	0.7 84 04 122 57 U 57.4
	Wet Chemistry								U - Not Detected, J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	- Outlier for Accura	acy or Precision; NR .	· Not Requested	
FEBLD LD.	New York	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	SE1 - I SE2 - I WR1 - BACKG	SBI - Downgradient of site on Dry Gulch. SB2 - Upgradient of site in Dry Gulch. WRI - Composite of subsamples WRIA, 1B, 2, and 3. BACKGROUND - From the Clara Mine (01-262-SS-1).	e on Dry Gulch. Dry Gulch. mples WR1A, 1B,	2, and 3. 62-SS-1).	LEGEND	GWI - Discharge from adit to dump 3. SWI - Same as sample SEI. SW2 - Same as sammle SF2	GWI - Discharge from adit associated with waste rock dump 3. SWI - Same as sample SEI. SW2 - Same as sample SF2	ciated with was	te rock
01-262-GW-1 01-262-SW-1 01-262-SW-2] 	209 5.0 23 < 330 10.0 15 < 181 8.0 22 <	22	^ 0.05 0.05 0.05	N N N N N N	WRIDI	WR.IDUP - Duplicate of the 01-262-WR-1 sample.	ne 01-262-WR-1 sa	mple.					

Mine/Site Name: Martin County: Beaverhead Legal Description: T 3S R 13W Section(s): NE 1/4, NW 1/4, Sec. 19 Mining District: Wisdom Mine Type: Hardrock/Cu, Pb, Ag, Au Latitude: N 45° 33' 32" Primary Drainage: Warm Spring Creek Longitude: W 113° 15' 23" USGS Code: 10020004 Secondary Drainage: E. Fk. Warm Spring Ck. Land Status: Public Date Investigated: September 9, 1993 Quad: Stewart Mountain Inspectors: Bullock, Tuesday P.A. # 01-270 Organization: Pioneer Technical Services, Inc.

There were no mill tailings found to be associated with this site.

The volume of waste rock associated with this site was estimated at 1,100 cubic yards.

The following elements were elevated at least three times background:

Arsenic: 15.6 mg/kg Cadmium: 10.8 mg/kg Copper: 177J mg/kg

Lead: 1850 mg/kg Antimony: 18J mg/kg Zinc: 1240 mg/kg

Mercury: 9.26 mg/kg

There was one discharging adit identified at this site. The flow was approximately 1.5 gpm with a pH of 6.9. No MCLs or MCLGs were exceeded. Acute and chronic aquatic life criteria were exceeded for cadmium, copper, lead, and zinc.

- The East Fork of Warm Spring Creek flowed along the western end of this site. An observed release was documented for zinc. The acute aquatic life criteria were exceeded for copper and zinc, and the chronic aquatic life criteria were exceeded for zinc; these exceedances were attributable to the site.
- There were six standing or partially collapsed cabins at this site that present a safety hazard.

Martin PA# 01-270 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>ស</u>			SOLID MAT	SOLID MATRIX ANALYSES	6						
FIELD D	As (mg/Kg)	As Be (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (me/Ke)
01-270-SE-1 01-270-SE-2 01-270-WR-1	6.24 U 4.67 U 15.6	49.5 J 79.1 J 143 J	0.7 U 0.5 U 10.8	3.71 J 4.97 J 5.41 J	1.76 2.28 2.08	5.86 J 3.57 J 177 J	11800 11300 12100	0.104 0.038 U 9.26	285 J 321 J 398 J		27.9 8.01 U 1850	#33-	52.5 33.7 1240	N N N N N N N N N N N N N N N N N N N
BACKGROUND	5.08	84.5 J	0.4 U	6.91	10.1	7.2 J	12500	0.031 U	403 J	3.54	6.85 U	5.21 UJ	37.8	Z Z
	Acid/Base Accounting	Accounting							U - Not Detected, J .	Estimated Quantity,	U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	icy or Precision, NI	R - Not Requested	
FIELD	TOTAL SULFUR %	TOTAL TOTAL TOTAL TOTAL SULFUR ACID BASB POTENT. % v1000t v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR		ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
01-270-WR-1	0.01	0.31	9.45	9.14	9.14 <0.01	<0.01	0.01	0	9.45					
														_

WATER MATRIX ANALYSES	no oo po	2.7 9.7 U 6.83 U 23.3 767 0.28 59.2 12.7 U 53 30.7 U.) ³ 16 2.57 U 9.7 U 6.83 U 2.13 633 0.15 24.5 12.7 U 1.78 30.7 U.) ³ 26 2.57 U 9.7 U 6.87 1.55 U 24.8 0.17 4.08 UJ 12.7 U 2.9 30.7 U.) ³ 7.5	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	SULFATE NO3/NO2-N C < 5.0 0.12 < 5.0 < 0.05
	. రీ	9.7 U 6.83 9.7 U 6.83 9.7 U 6.87		NO3/NOZ-N CYANEDI 0.12 NR 0.05 NR
Metals in Water Results in uo/L	Be		,	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE 81 < 5.0 < 55.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0 < 6.0
	FIELD D	01-270-GW-1 01-270-SW-1 01-270-SW-2		FIELD 1D. 61-270-GW-1 61-270-SW-1

Mine/Site Name: Miller County: Broadwater Section(s): SW 1/4, SE 1/4, Sec. 13 Legal Description: T 10N R 2E Mining District: Confederate Mine Type: Hardrock/Au Primary Drainage: Confederate Gulch Latitude: N 46° 37' 12" USGS Code: 10030101 Longitude: W 111° 24' 58" Land Status: Private Secondary Drainage: Greehorn Gulch Date Investigated: July 26, 1993 Quad: Diamond City P.A. # 04-138 Inspectors: Babits, Flammang, Lasher Organization: Pioneer Technical Services, Inc.

- There were no tailings on site.
- There were approximately 11,950 cubic yards of mostly uncovered waste rock on site.

 The following were elevated at least three times background:

Cadmium: 3.2 to 4.1 mg/kg Iron: 52,600 to 54,600 mg/kg

Copper: 91.8 to 2,520 mg/kg Mercury: 1.57J to 2.46J mg/kg

Manganese: 1,540 mg/kg

Lead: 89 to 2,960 mg/kg

Zinc: 250 mg/kg

- There was a discharging adit on site that entered the gulch; the pH measurement was 5.23. The MCL for nickel and the acute and chronic aquatic life criteria for copper and zinc were exceeded in the adit discharge. Additionally, the chronic aquatic life criteria for iron and mercury were exceeded in the adit discharge.
- Adit discharge flowed over waste rock and made up the entire flow of Greenhorn Gulch.
 The gulch flowed into Confederate Gulch 1.5 miles away.
- There were several open or partially open adits and hazardous structures on site.

Miller PA# 04-138 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/26/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	isis Sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Kg)	CYANIDE (merKe)
04-138-SE-1 04-138-WR-1 04-138-WR-2 04-138-WR-3	9 10 24 27	109 152 156 293	1.6 3.2 4.1	8 R. E. E. R. R. E. E.	16.1 7.4 5.2 8.3	30.3 91.8 902 2520	27100 29200 54600 52600	0.221 J 1.57 J 2.46 J 2.39 J	365 247 452 1540	21 1 14 1 10 1 26 L	55 135 88 2960	7 UJ 7 UJ 6 UJ 6 UJ 6 UJ		A A A A
BACKGROUND	20	98.5	0.8	5.8	9.11	21.6	14100	0.042 J	419	10 J	23	9 m	98	X X
	Acid/Base	Acid/Base Accounting							U - Not Detected, J -	Estimated Quantity, N	U . Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	cy or Precision; NR -	Not Requested	
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL ACID BASE SULFUR ACID BASE POTENT: POTENT. ** #1000t #1000t #1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT V1000t					
04-138-WR-1 04-138-WR-2 04-138-WR-3	1.38 0.57 0.24	43.1 17.8 7.50	48.6 32.1 21.4	5.45 14.3 13.9	0.46 0.14 0.12	0.59 0.16 0.06	0.33 0.27 0.06	18.4 5.00 1.87	30.1 27.1 19.5					

						WATER MAT	WATER MATRIX ANALYSES							
	Metais in water Results in ug/L	water ug/L												
FIELD ID	1	1	ষ্ট	වී	þ	ರೆ	£	Hg	Mn	Z	£	S	Ę	HARDNESS CALC.
04-138-SW-1		!! !	2.57 U	78.8	6.83 U	189	2.01 U 2.57 U 78.8 6.83 U 189 83300 0.13	0.13	7000 J 145 7.03 30.7 U 1920 1090	145	7.03	30.7 U	1920	1090
									U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	nimated Quantity, X	:- Outlier for Accurac	cy or Precision; NR - N	Not Requested	
	Wet Chemistry Results in ma/l	>=							•					
	TOTAL					SE1 - 5	SE1 - 500 feet from waste rock dump 1 in Greenhorn Gulch.	mp 1 in Greenhorn	1	LEGEND	- SW1 - Discha	SW1 - Discharge from adit #1.		
FIELD L.D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	WR2 - (WKI - Composite of subsamples WRI, 2A, and 2B. WR2 - Composite of subsamples WR3A, 3B, and 3C. WR3 - Commosite of subsamples WR4 5 and 6	WR1, 2A, and 2B. VR3A, 3B, and 3C WR4 5, and 6						
04-138-SW-1	04-138-SW-1 1810 < 5.0 1160 < 0.05 NR	< 5.0	1160	< 0.05	NR NR	BACKG	BACKGROUND - From the Hummigbird Mine (04-144-8S-1).	nigbird Mine (04-)	144-88-1).					
						-								

Mine/Site Name: Hummingbird	County: Broadwater
Legal Description: T 10N R 2E	Section(s): SE 1/4, NE 1/4, Sec. 13
Mining District: Confederate	Mine Type: <u>Hardrock/Au, Ag</u>
Latitude: N 46° 37' 40"	Primary Drainage: White Creek
Longitude: W 111° 24' 45"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Johnnys Gulch
Quad: Whites City	Date Investigated: July 26, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # 04-144
Organization: Pioneer Technical Services Inc.	

- There were no tailings on site.
- There were approximately 4,360 cubic yards of mostly covered waste rock on site. The following were elevated at least three times background:

Mercury: 2.17J mg/kg Nickel: 39J mg/kg Lead: 77 mg/kg

- There was a discharging adit on site that did not have a surface route to water. The pH
 of this sample was 7.64. No MCLs/MCLGs were exceeded; however, the chronic aquatic
 life criteria for mercury was exceeded in the adit discharge
- There was no surface water on site. No surface water or sediment samples were collected.
- There were no hazardous openings or structures on site.

Hummingbird PA# 04-144 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/26/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD D	As (mg/Kg)	As Ba Cd Co Cr (mg/Kg) (mg/Kg) (mg/Kg) (mg/K	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
04-144-WR-1	17	157	2.1	10		49.6	31300	2.17 J	570	r=====================================	77	5 W	87	N.
BACKGROUND	20	98.5	8.0	5. 89.	11.9	21.6	14100	0.042 J	419	10 J	8	6 03	8	Z Z
									U - Not Detected, J.	U - Not Defected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	X . Outlier for Accu	rncy or Precision; N	R - Not Requested	
	Acid/Base	Acid/Base Accounting												
TOTAL SULFUR SULFUR TOTAL SULFUR NEUTRAL ACID BASE SULFA FIELD SULFUR ACID BASE POTENT. POTENT. SULFU D % v1000c v1000c v1000c %	TOTAL SULFUR	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
04-144-WR-1	0.31	89.6	39.2	29.5	0.02	0.12	0.12 0.17 3.75	3.75	35.5					

	Metals in Water Results in ud/	Vater In/				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD	¥.	Pa Ba	ਣ	පී	Ö	రే	£.	Hg	Mn	ï	£	8	H, H,	HARDNESS CALC.
04-144-SW-1	14-144-SW-1 0.96 U 15.3 2.57 U 9.7 U 6.83 U	15.3	2.57 U	0.7.e	6.83 U	J 1.55 U 236 0.12	236	0.12	J.07	7.07 J 12.7 U 3.09 30.7 U	3.09	30.7 U	7.57 U 231	231
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quantity, X	. Outlier for Accura	acy or Precision, NR -	- Not Requested	
	Wet Chemistry													
						L GVA	WP1 - Commencial of a land of the land	. C.		LEGEND				
FIELD	TOTAL					BACK	PACKGROUND - 50 feet up from adit #1 from Hummingbird Mine (04-144_SS-1).	ipies waai, 2, 3 ar ip from adit #1 from	ia 4. n Hummingbird M.	ime (04-i 44_SS-1	SW1 - Adit dis	SW7 - Adit discharge (North of cabin).).	cabin).	
Œ.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE									
04-144-SW-1	4-144-SW-1 NR NR 0.11 NR	NR		0.11	RETURNING NAMED IN									-
														,÷

Mine/Site Name: Argo Mine and Millsite County: Broadwater Section(s): NW 1/4, NE 1/4, Sec. 27 Legal Description: T 11N R 1E Mine Type: Hardrock/Cu Mining District: Hellgate Latitude: N 46° 41' 16" Primary Drainage: Missouri River USGS Code: 10030101 Longitude: W 111° 33' 52" Land Status: Private/Public Secondary Drainage: Hellgate Gulch Quad: Hellgate Gulch Date Investigated: July 26, 1993 P.A. # 04-015 Inspectors: Bullock, Clark/Pierson Organization: Pioneer Technical Services, Inc./Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be 9,000 cubic yards.

The following elements were elevated at least three times background:

Copper: 7,810 mg/kg Mercury: 0.562J mg/kg

 The volume of waste rock associated with this site was estimated to be 14,400 cubic yards. The following elements were elevated at least three times background:

Cadmium: 2.2 mg/kg

Mercury: 0.511J mg/kg

Copper: 58,200 mg/kg Iron: 55,100 mg/kg

Nickel: 31J mg/kg Lead: 59 mg/kg

• There were no adit discharges, seeps or springs identified at this site.

- Hellgate Gulch Creek was flowing through and around this site. Storm water was
 observed running off the tailings directly into Hellgate Creek. Surface water samples
 were collected from Hellgate Creek above the site and below the majority of the
 workings, just upstream from the Harris Gulch confluence. An observed release was
 documented for copper. No MCL/MCLGs were exceeded. In addition, no acute or
 chronic aquatic life criteria were exceeded.
- Adit #1 did have a gate, but it was not locked and was determined to present a potential safety hazard. The mill and the cabin at WR-2 were identified as hazardous structures.

Argo PA# 04-015 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/26/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>ss</u>			SOLID MA	SOLID MATRIX ANALYSES	6						
FIBLD ID	As (mg/Kg)	Ba (mg/Kg)		Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mø/Kg)	Ni (me/Ke)	Pb (mo/Ke)	Sb	Zn	CYANIDE
- 2 - 7		33.7 39.7 35.6 34.1	0.9 0.9 1.4 2.2	6.8 6.8 8.8 8.8	6.9 3.1 5.2	2240 14.8 7810 58200	15400 14900 18000 55100	0.013 J 0.017 J 0.562 J 0.511 J	299 244 286 201	12 J	22 19 30 30	#3333	(mg/kg)	(mg/kg)
BACKGROUND	9	225	9.0	4.7	4. 10.	. 52.4	8640	0.023 J	410		§ 4	3 6	€ &	X X
	Acid/Base Accounting	Accounting							U - Not Detected, J -	U - Not Detector, J - Bairmaed Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accurac	y or Precinion; NR - N	ot Requested	
TRELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	SULFUR NEUTRAL. ACID BASB SULFATE POTENT. POTENT. SULFUR v1000: v1000: %	SULFUR ACID BASIB POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT					
04-015-TP-1 04-015-WR-1	0.99 1.14	30.9 35.6	77.9 62.9	47.0 27.3	60.01 60.01	0.04 0.22	0.97 1.06	1.25 6.87	76.6 56.0					

Netale in Warter Results in ug/L FIELD As Ba Cd Co Cr Cu Fo Hg Min Ni Fo Sb Zn (mg Cacoust)															
O.96 U 29.6 L 2.57 U 9.7 U 6.83 U 2.29		Metals in M Results in u	Vater 19/L				WATER MATR	RIX ANALYSES							
0.96 U 29.6 2.57 U 9.7 U 6.83 U 22.9 0.96 U 25.5 2.57 U 9.7 U 6.83 U 1.55 U	FIELD	# # # #	1 1 1 1 1	ਠ	రి	ర			Hg	Mn	Z	£	€	HA	RDNESS CALC.
Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE TP1 - Composite of subsamples WR14, 1B, 84, 1A, 1A, 1A, 1A, 1B, 1B, 1B, 1B, 1B, 1B, 1B, 1B, 1B, 1B	04-015-SW-1	0.96.0 0.96.0		2.57 U 2.57 U	9.7 U 9.7 U	6.83 U 6.83 U		81 81 89	0.09	14.8 J 10.2 J	12.7 U 12.7 U	3.34	30.7 U	0 75.7 U 72.7	318 314
TOTAL TOTAL		Wet Chemistry						. •		U - Not Detected; J - Es	timated Quantity, X -	Outlier for Accuracy	or Precision, NR - No	A Requested	
DISSOLVED SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE SOLIDS COmposite of subsamples TP1A-A, 1A-B, 1A-C, 1B-B, and 1B-C.		Results in mg/I					SEI -	Downgradient from	nost of the site. hu	1 1	LEGEND	5 5 5 5			
380 < 5.0 59 < 0.05 NR 349 5.7 53 < 0.05 NR	FIELD LD.	i	CHLORIDE		NO3/NO2-N	CYANIDE	SEZ - TPI - C	Harris Gulch conf Upgradient of site; 2 Composite of subsan	luence. 00'above trail head ples TP1A-A, 1A-	. Toronam vi ! B. 1A-C. 1B-A. 1F	#	SW2 - Same a	s sample SE1.		
	4-015-SW-1 4-015-SW-2		< 5.0 5.7	53	0.050.05			and 1B-C. Composite of subsa GROUND - From the	mples WR1A, 1B, 9 Argo (04-015-SS	and 2A. -1).					

Mine/Site Name: Park	County: Broadwater
Legal Description: T 7N R 1W	Section(s): NE 1/4, NE 1/4, Sec. 15
Mining District: Indian Creek	Mine Type: Hardrock/Au, Pb, Ag
Latitude: N 46° 21' 53"	Primary Drainage: Indian Creek
Longitude: W 111° 42' 21"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Indian Creek
Quad: Giant Hill	Date Investigated: July 27, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # <u>04-012</u>
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc.	-

The volume of tailings associated with this site was estimated to be 60 cubic yards. The
impoundments were breached and the majority of the volume of tailings have washed
down the drainage. The following elements were elevated at least three times
background:

Arsenic: 1,260J mg/kg

Cyanide was also at 0.292U mg/kg.

Lead: 4,160 mg/kg

The volume of waste rock associated with this site was estimated to be approximately
 65,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 4,730J to 9,820J mg/kg

Cadmium: 14 to 101 mg/kg Chromium: 86J mg/kg

Conner 450 to 200 tm

Copper: 159J to 308J mg/kg

Mercury: 0.59J to 0.713J mg/kg

Lead: 8270to 13,100 mg/kg

Antimony: 33J mg/kg

Zinc: 1,220J to 2,230J mg/kg

- There were three discharging adits identified at this site, the most significant of which was characterized by sample GW-1. GW-1 had a measured discharge of 0.6 cfs, a pH of 4.29, and a specific conductance of 270 umhos/cm. The MCL/MCLGs for arsenic and cadmium were exceeded. Acute aquatic life criteria were exceeded for arsenic, cadmium, copper, lead, and zinc. Chronic aquatic life criteria were exceeded for arsenic, cadmium, copper, iron, lead, mercury, and zinc. There was one significant seep associated with this site which was sampled as GW-2. This seep was discharging from the toe of WR-2 at an estimated flow of 35 gpm, a pH of 2.93 and a specific conductance of 1380 umhos/cm. The MCL/MCLGs for arsenic, cadmium, and antimony were exceeded. Acute aquatic life criteria were exceeded for arsenic, cadmium, copper, and zinc. Chronic aquatic life criteria were exceeded for arsenic, iron, copper, lead, and zinc.
- Indian Creek and a small perennial tributary into the creek were identified to be associated with this site. Observed releases were documented for arsenic, cadmium, lead, and zinc, which were directly attributable to this site. MCL/MCLGs were exceeded for arsenic and cadmium, which were directly attributable to the site. Acute aquatic life criteria were exceeded for cadmium, copper, and zinc. Chronic aquatic life criteria were exceeded for cadmium, copper, lead, mercury, and zinc.

Park PA# 04-012 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/27/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sh (merKe)	Zn (me/Ke)	CYANIDE (me/Re)
04-012-SE-1 04-012-SE-2 04-012-TP-1 04-012-WR-1	4350 J 11 J 1260 J 4730 J	112 112 66 60	25 0.5 U	82 J 2.1 J	13 J 11 J 3 J	56.9 J 11.4 J 48.9 J	30600 14500 35500	0.144 J 0.064 J 0.056 J	1690 J 399 J 143 J	7 J 8 J 3 UJ	1850 11 4160	#337	2090 J 46 J 190 J	NR NR 0.292 U
04-012-WR-2 04-012-WR-3	8900 J 8920 J 9820 J	30.4 30.1	£ 8 <u>1</u> 0	6.6 1.6.0 1.0.0	86 J	308 J	65/00 58900 71200	0.59 J 0.713 J 0.137 J	790 J 781 J 702 J	- EE	8270 12800 13100	19 J 27 J 33 J	1430 J 1220 J 2320 J	X X X
BACKGROUND	44 J 315 Acid/Base Accounting	315 ccounting	7	24 J	. t	28.9 J	37600	0.088 J	1220 J U-Net Detected, J-E	1220 J 31 11 UJ 112 U-Not Detector, J Estimated Quantity, X Outlier for Accuracy or Precision, NR - Not Requested	31 • Outlier for Accuracy	11 UJ cy or Precision; NR - N	112 J Not Requested	S.
FELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE #1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000K	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
04-012-TP-1 04-012-WR-1 04-012-WR-2 04-012-WR-3	2.00 4.02 1.25 0.20	62.5 126 39.0 6.25	-0.00 20.6 -0.62 2.58		,	60.01 2.00 0.10 0.02	0.03 1.65 0.33 0.05	0.00 62.5 3.12 0.62	-0.00 -41.8 -3.74 -1.96					

	Metale in Water		1			WATER MA	WATER MATRIX ANALYSES							
FIELD	Melalo III Vale		Nesdills iii ug/L										_	HARDNESS
Ω	A	Ba	B	රී	Ċ	ਠੌ	Fe	Hg	W	Z	£	&	Z,	CALC. Zn (mg CaCO3/L)
04-012-GW-1 04-012-GW-2		2.01 U 7.6		9.7 U 134	6.83 U 6.83 U	64.2 975	3450 32600	0.16	842 J	12.7 U	ij	30.7 U	5710	10 81
04-012-SW-1	71	15 6	=======================================	9.7 U	6.83 ∪	15.6	902	0.055	324	12.7 U		30.7 30.7 U	7.540 1540	38.7
04-012-SW-3	215	10.8	30.6	 	0.83 0.83 0.00	42.1 3	1700 7	0.093	14.5 495	13.2 12.7 U	1.55 U 31.2	30.7 U 30.7 U	46.1 JX 3620 JX	
	Wet Chemistry	X	Results in mg/l						U · Not Detected, J · J	U - Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accuracy	or Precision, NR - 1	Not Requested	
FIELD LD. 04-012-GW-1 04-012-GW-2 04-012-SW-1 04-012-SW-2	TOTAL DISSOLVED SOLIDS CH 203 < 1270 < 1270 < 1105 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657 < 1657	CHLORIDE < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	SULFATE 104 800 30 < 5 ^	NO3/NO2-N 0.39 0.31 0.08 < 0.05	SULFATE NO3ANO2-N CYANIDE 104 0.39 NR 800 0.31 <0.005 30 0.08 <0.005 < 5 < 0.05 NR 76 0.19 NR		SE1 - Downgradient Indian Creek. SE2 - Upgradient Indian Creek. TP1 - Composite of subsamples TP1 and 2. WR1 - Composite of subsamples WR14, 1B, 2A, 2B, and 2C. WR2 - Composite of subsamples WR3A, 4A, 4B, 4C, 5A, 6A, 6B, 7A, and 9A. WR3 - Sample of the WR8 subsample. BACKGROUND - From the Park Mine (04-012-SS-1).	t Creek. vok. mples TP1 and 2. mples WR1A, 1B, mples WR3A, 4A, subsample.	2A, 2B, and 2C. 4B, 4C, 5A, 6A, 12-3S-1).	LEGEND	GW1 - Adit discharge at waste rock dump 2. GW2 - Seep below mill. SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Eastern tributary prior to confluence.	charge at waste charge at waste sample SE I. sample SE Z. tributsay prior to tributsay prior tributsay	rock dump 2.	

Mine/Site Name: St. Louis	County: Broadwater
Legal Description: T 7N R 1W	Section(s): NW 1/4, NW 1/4, Sec.26
Mining District: Indian Creek	Mine Type: Hardrock/Ag, Au, Pb
Latitude: N 46° 20' 19"	Primary Drainage: Indian Creek
Longitude: W 111° 41' 55"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: West Fork Indian Creek
Quad: Giant Hill	Date Investigated: July 27, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # <u>04-013</u>
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc	

- There were no mill tailings observed at this site during the investigation.
- The volume of leach pad material associated with this site was estimated to be approximately 1,300 cubic yards. The concentration of cyanide measured in a sample of the leach pad material was 5.27 mg/kg. The following elements were elevated at least three times background:

Arsenic: 2,110J mg/kg Cadmium: 9 mg/kg Lead: 1,110 mg/kg Zinc: 1,180J mg/kg

Copper: 202J mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 17,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 4,840 mg/kg Cadmium: 38 mg/kg Lead: 2,590 mg/kg Zinc: 1,540J mg/kg

Copper: 316J mg/kg

- No MCLs were exceeded in upstream or downstream surface water samples collected from West Fork Indian Creek; however, chronic aquatic life criteria were exceeded for mercury in both the upstream and downstream samples, and the chronic aquatic life criteria for lead was exceeded in the downstream sample.
- Observed releases to West Fork Indian Creek were documented for arsenic and lead.
 The chronic aquatic life criteria exceedance for lead was directly attributable to the site.
 Additionally, significant increases in lead and zinc concentrations (greater than three times) were observed in downstream sediment samples collected from West Fork Indian Creek (compared to upstream concentrations).
- Potentially hazardous structures that were observed at the site included a trench highwall (20 to 40 feet high) and three small unstable buildings.

St. Louis PA# 04-013 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - Bullock INVESTIGATION DATE: 07/27/93

	Metals in soils Results per dry	Metals in soils Resutts per dry weight basis				SOLID MAT	SOLID MATRIX ANALYSES			·				
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mg/Ke)	Sb (mo/Ke)	Zn	CYANDE
04-013-LP-1 04-013-SE-1 04-013-SE-2 04-013-WR-1	2110 J 22 11 4840 J	47.6 78.4 34.2 81.6	2.6 0.9 38	7.9 J 5.1 7.1 7 11 5.9 9 J 4 J	5.9 4 J	202 J 19.1 7.2 316 J	33900 22100 18600 37500	0.184 J 0.035 J 0.017 J 0.164 J	307 J 277 335 776 J		1110 318 15 2590	#-33-	368 60 1540 J	5.27 NR NR
BACKGROUND	4	315	10	24 J	15 J	28.9 J	37600	0.088 J	1220 J	ი ე	۳	11 W	112 J	
	Acid/Base Accounting	ccounting							U - Not Detected, J -	Estimated Quantity, X	- Outlier for Actum	U - Not Detector, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	Vot Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASB V1000t	NEUTRAL. POTENT. v1000k	SULFUR NEUTRAL. ACID BASIB SUL. POTENT. POTENT. SUL. VIOOR VIOOR ,		PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000	SULFUR ACID BASIE POTENT. v1000t					
04-013-LP-1 04-013-WR-1	0.74 0.35	23.1 10.9	13.6 8.29	-9.52 -2.64	<0.01 0.33	0.25 <0.01	0.56 0.03	7.81 0.00	5.78 8.29					

FIELD	Motole in Mater	, defer				WATER MATRIX ANALYSES	X ANALYSES							
Д	Results in ug/L	g/L											, ri	HARDNESS
	As	Ba Elling	As Be cd Co C	రి	Ç	ති	Fe	Hg	Mn	ï	æ	B	Zn (n	CALC. Zn (mg CaCO3/L)
34-013-SW-1 34-013-SW-2	3 0.96 U	< 16.6 U 7.67	2.57 U 2.57 U	0.7.0 0.7.0	6.83 U 6.83 U	1.55 U 1.55 U	666 0.044 44.5 0.052	0.044 0.052	18.3 J 9.1 J	18.3 J 12.7 U 9.1 J 12.7 U	13.1 13.1 1.86	13.1 30.7 U 20.7 U 74.7 1.86 30.7 U 7.57 U 71.3	20.7 U 7.57 U	74.7
	,								\mathbf{U} -Not Detector, \mathbf{I} - Estimated Quantity, \mathbf{X} - Outlier for Accuracy or Precision; NR - Not Requested	climated Quantity, X -	- Outlier for Accuracy	7 or Precision; NR - N	lot Requested	
≩ α	Wet Chemistry Results in mod					-								
										LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDB	SEI - D SE2 - U SE2 - U	LPI - Composite LPIA and 1B (Leach SE1 - Downgradient on West Fork Indis SE2 - Upgradient on West Fork Indian (WR1 - Sample of the WR1 subsample.	LPI - Composite LPI A and 1B (Leach Pad). SEI - Downgradient on West Fork Indian Creek. SE2 - Upgradient on West Fork Indian Creek. WRI - Sample of the WRI subsample.	\		SW1 - Same	SW1 - Same as sample SE1. SW2 - Same as sample SE2.		÷
04-013-SW-1 04-013-SW-2	150 151	< 5.0 < 5.0	£ 6	0.13 < 0.01 0.47 NR	> 0.01 NR	BACKO	ROUND - From t	BACKGROUND - From the Park Mine (04-012-SS-1).	2-SS-1).					

Mine/Site Name: Diamond Hill	County: Broadwater
Legal Description: T 7N R 1W	Section(s): SW 1/4, NW 1/4, Sec. 36
Mining District: Indian Creek	Mine Type: Hardrock/Au
Latitude: N 46° 18' 48"	Primary Drainage: Indian Creek
Longitude: W 111° 40' 38"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: West Fork Indian Creek
Quad: Giant Hill	Date Investigated: July 28, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>04-020</u>
Organization: Pioneer Technical Services, Inc.	

 There were approximately 220 cubic yards of uncovered tailings on site. The following were elevated at least three times background:

Copper: 181J mg/kg Mercury: 3.38J mg/kg

- There were 71,000 cubic yards of mostly uncovered waste rock on site. The following was elevated at least three times background:
 Mercury: 0.369J to 0.61J mg/kg
- There were no discharging adits on site. There was one monitoring well located on site; no MCLs/MCLGs were exceeded.
- Tailings were located adjacent to the West Fork of Indian Creek; however, no MCLs/MCLGs or acute or chronic aquatic life criteria were exceeded which were attributable to the site.
- An observed release to the West Fork of Indian Creek (sediment) was documented for mercury.
- There were numerous hazardous openings and pits located on site.

Diamond Hill PA# 04-020 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/28/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES	40						
FIELD D	As (mg/Kg)	Ba (mg/Kg)		Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (ms/Kg)	Sb (me/Ke)	Zn	CYANDE
04-020-SE-1 04-020-SE-2 04-020-TP-1 04-020-WR-1	88488 12486	165 73 73 56.8 55.4	0.6 U 1.3 0.9 0.5	20.6 1.0.9 1.4.3 1.8.3 1.8.8 1.4.8	121 8 9 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	107 J 120 J 181 J 67.4 J 88.7 J	39400 27000 51200 52400 39200	0.58 J 0.526 J 3.38 J 0.61 J 0.369 J	419 J 226 J 366 J 119 J 526 J	13 J 2 U 1 C L C	285 36 15 14	#3-333	300 J 49 J 46 J 7 J 7 J	0.622 U 0.335 U 0.291 U NR
BACKGROUND	44 J 315 Acid/Base Accounting	315 accounting	2	24 J	15)	28.9 J	37600	0.088 J	1220 J 9 J 31 11 UJ 112 J U-Not Detected, J Batimated Quantity, X Outlier for Accuracy or Precision: NR Not Requested	9 J Estimated Quantity, 7	31 X-Oullier for Accus	11 UJ	112 J	K K
CERTY O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASIE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT. V1000t					
04-020-TP-1 04-020-WR-1 04-020-WR-2	1.29 2.64 0.97	40.3 82.5 30.3	7.45 -1.86 12.2	-32.9 -84.3 -18.1	1.13 2.52 0.89	0.09 0.02 0.02	0.07 0.10 0.06	2.81 0.62 0.62	4.64 -2.49 11.6					

Clair	Metals in Water		Results in ug/L			WATER MATRIX ANALYSES	IX ANALYSES						-	u A D TANGS
D D	A	Ba	ර වී	රී	ರ	ਨੌ	Fe	Hg	Mn	ž	2	В	Zn (ms	CALC.
04-020-GW-1 04-020-GW-2	1.69 U 3.03	222		9.7 U 9.7 U	6.83 U 6.83 U	5.27 J 5.33 J	!!	0.072	4.08 U	ii	!! !! !!	li .	23.5 JX 232	232
04-020-SW-1 04-020-SW-2	4.62 4.37	20.8	2.57 U 2.57 U	9.7 U 9.7 U	6.83 U	5.47 J 5.1 J	310 J 211 J	0.096 0.12	4.06 U 31.4 13.6	12.7 C	.55.0 8.36 1.55.0 1.55.0	30.7 U	7.74 7.74 7.74 7.74 7.74	238 8.8 5.8
	:								U - Not Detected, J - 1	Stimated Quantity, 3	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	cy or Precision, NR	- Not Requested	3
	Wet Chemistry	az	Results in mg/l							LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N			SBI - Upgradient on West Fork Indian Creek. SB2 - Downgradient on West Fork Indian Creek. TPI - Composite of subsamples TPI A.A, B, TPIB-A, and B. WRI - Composite of subsamples WRIA, 1B, 1C, and 1D	Fork Indian Creel ast Fork Indian Cr poles TP1A-A, B, uples WR1A, 1B,	c. eek. TP1B-A, and B. 1C, and 1D.		GW1 - Monitoring well at GW2 - Duplicate of GW1. SW1 - Same as SE1.	GW1 - Monitoring well at mouth of Engh Pit by adia 3. GW2 - Duplicate of GW1. SW7 - Same as SB1. SW7 - Same as SR7	th of Engh Pit by	adit 3.
04-020-GW-1 04-020-GW-2 04-020-SW-1 04-020-SW-2	375 385 188 195	6.7 7.2 < 5.0 < 5.0	6.7 98 7.2 99 : 5.0 37 5.0 37	0.82 0.79 0.05 0.05	A N O O O O O O O O O O O O O O O O O O		WR2 - Composite of subsamples WR2, WR4, WR6, WR9, and WR11 BACKGROUND - From Park (Marietta) (04-012-S81)	mples WR2, WR4 ark (Marietta) (04.	i, WR6, WR9, and 1 -012-SS1).	WR11.				

Mine/Site Name: Ohio County: Broadwater Legal Description: T 5N R 1W Section(s): NW 1/4, SE 1/4, Sec. 13 Mining District: Radersburg Mine Type: Hardrock/Au Latitude: N 46° 11' 08" Primary Drainage: Crow Creek Longitude: W 111° 40' 07" USGS Code: 10030101 Secondary Drainage: Keating Gulch Land Status: Private Date Investigated: September 3, 1993 Quad: Radersburg P.A. # 04-009 Inspectors: Bullock, M. Babits, S. Babits, Flammang/Pierson Organization: Pioneer Technical Services. Inc./Thomas. Dean and Hoskins. Inc.

The volume of tailings associated with this site was estimated to be 37,000 cubic yards.

The following elements were elevated at least three times background:

Arsenic: 203J to 321J mg/kg Iron: 79,600J mg/kg

Cobalt: 32.2 to 86.3 mg/kg Mercury: 0.35J to 0.595J mg/kg

Copper: 142 to 350 mg/kg Zinc: 207J to 333J mg/kg

• The volume of waste rock associated with this site was estimated to be 19,500 cubic vards. The following elements were elevated at least three times background:

Arsenic: 136J mg/kg Iron: 75,400J mg/kg
Cobalt: 29.4 mg/kg Mercury: 0.622J mg/kg
Copper: 98.4 mg/kg Lead: 189J mg/kg

- There were no adit discharges, seeps or springs associated with this site.
- Keating Gulch flowed to the north of this site. No observed water releases were attributable to this site. No MCLs or MCLGs, or acute or chronic aquatic life criteria were exceeded. Sediment samples were collected up and down stream of this site. Observed releases of arsenic, copper, and iron were documented; directly attributed to this site.
- The shaft and adit on the north side of Keating Gulch were identified as hazard mine openings. In addition, the loadout and several of the cabins were classified as hazardous structures.

Ohio PA# 04-009 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/03/93

FIELD	Results per o	Results per dry weight basis	sis											
	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
04-009-SE-1 04-009-SE-2 04-009-TP-1 04-009-TP-2 04-009-WR-1	8.63 J 50.6 J 321 J 203 J 136 J	55.3 J 56.4 J 36.3 J 54 J 94.1 J	0.9 U 0.8 U 1.1 U 1.0 U 0.7 U	7.53 12.5 86.3 32.2 29.4	3.96 4.9 8.35 7.41 3.07	22.6 75.9 350 142 98.4	17700 J 35300 J 79600 J 46000 J 75400 J	0.059 J 0.071 J 0.595 J 0.35 J	355 295 269 264 27.7	7.59 J 7.85 J 8.45 J 5.82 J 1.89 J	30.2 J 29.4 J 70.9 J 50.1 J	33333	148 J 85.5 J 333 J 207 J 36.1 J	R R R R R R
BACKGROUND	6.11 J	214 J	1.0 U	8.92	6.14	22.6	19200 J	0.106 J	819	7.83 J	25.2 J	6.96 UJ	79.6 J	X X
	Acid/Base Accounting	counting							U - Not Detected, J -	Estimated Quantity, 3	U - Not Detectork J - Estimated Quantity, X - Outlier for Accurary or Precision; NR - Not Requested	cy of Precision, NR	· Not Requested	
FIELD O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT:	80 80	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT: \$1000t					
04-009-TP-1 04-009-TP-2 04-009-WR-1	4.85 3.44 9.32	152 107 291	36.7 39.9 -16	-115 -68 -307	3.11 104 4.3	1.5 2.28 3.07	0.24 0.12 1.95	46.9 71.2 95.9	-10.1 -31.3 -112					

	Metals in Water Results in uo/L	ater 1/L				WATER MATE	WATER MATRIX ANALYSES		e.					
FIELD ID	i		Ba Cd	පී		రె	£	ž	Mn	Z	£	æ	5	HARDNESS CALC.
04-009-SW-1 04-009-SW-2	1.18 U 1.18 U	37.9 33.4	4.59 U U 59 U	İ	6.24 U 6.24 U	2.33 U 2.33 U	34.4 85.9	34.4 0.12 U 85.9 0.12 U	5.4 3.76 U	10.9 U 10.9 U	10.9 U 0.72 U 31.7 U 11.1 309 10.9 U 0.93 31.7 U 9.33 281	31.7 U 31.7 U	11.1	309
								-	\mathbf{U} -Not Detector, \mathbf{I} - Estimated Quantity, \mathbf{X} - Outlier for Accuracy or Precision; NR - Not Requested	stimuted Quantity, X	- Outlier for Accurac	7 or Precision, NR -	· Not Requested	
	Wet Chemistry Results in mg/l					SE1	SE1 - 540 feet unoradient of mill huilding in V action	of mill building in P.		LEGEND				
- C	TOTAL					SEZ - TP1 -	SE2 - 400 feet downgradient in Keating Chich. TP1 - Composite of subsamples TP1A-A, 2A-B, 2A-C, 2A-D,	nt in Kesting Gulch. nples TP1A-A, 2A-F	3, 2A-C, 2A-D,		SW2 - Same as sample SE1. SW2 - Same as sample SE2.	s sample SE1. s sample SE2.		
LD.	SOLIDS	CHLORIDE	SULFATE	NO3/NOZ-N	O	173	2B-A, 2B-B, and 2B-C. TP2 - Composite of subsamples TP2A-A, 2A-B, 2A-C, 2A-D, 2B-A,	2B-C. nples TP2A-A, 2A-E	3, 2A-C, 2A-D, 2E	3 . 4				
04-009-SW-1 04-009-SW-2	390 7.0 131 366 8.0 135	7.0 8.0	131 135	0.050.05	N N N	WRI -	2B-B, and 2B-C. WR1 - Composite of subsamples WR1A through 1C, 2A, and 2B. BACKGROUND - 850 feet upgradient from mill building. From the Ohio Mine (04-099-8S-1).	B-B, and 2B-C. mposite of subsamples WR1A throug JUND - 850 feet upgradient from mil From the Ohio Mine (04-009-8S-1).	gh 1C, 2A, end 2B Ubuilding					

Mine/Site Name: <u>Keating Tailings</u> Legal Description: T <u>5N</u> R <u>1E</u>	County: Broadwater Section(s): SE 1/4, SE 1/4, Sec. 18
Mining District: Radersburg	Mine Type: Hardrock/Au, Cu
Latitude: N 46° 11' 02"	Primary Drainage: Crow Creek
Longitude: W 111° 39' 34"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Keating Gulch
Quad:_Radersburg	Date Investigated: September 3, 1993
Inspectors: M. Babits, S. Babits,	P.A. # <u>04-121</u>
Flammang/Pierson	
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

The volume of tailings associated with this site was estimated to be 144,000 cubic yards.

The following elements were elevated at least three times background:

Arsenic: 143J to 336J mg/kg

Manganese: 3040 mg/kg Copper: 378 to 486 mg/kg Lead: 684J mg/kg

Zinc: 251J to 2640J mg/kg Iron: 43,200J to 55,200J mg/kg

Mercury: 0.76J mg/kg

Waste rock associated with this site was located in an active mining area and was not investigated.

- There were no discharges associated with mine openings identified at this site. There was a spring located near the northeast corner of the toe of TP-2, which was characterized by sample SW-1. The flow of the spring was measured at 0.04 cfs with a pH of 6.6 and specific conductance of 470 umhos/cm. No MCLs or MCLGs were exceeded. In addition, no acute or chronic aquatic life criteria were exceeded.
- Keating Gulch, and intermittent stream, was dry at the time of this investigation. The stream channel had been diverted around the tailings impoundment. Sediment samples were collected in the dry gulch up gradient and down gradient from this site. No observed releases could be attributed to this site.
- Precipitation was ponded on the lower tailings pond.

Keating Tailings PA# 04-121 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/03/93

	Metals in soils	SE SE				SOLID MAT	SOLID MATRIX ANALYSES							
	Results per	Results per dry weight basis	sis											
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (ms/Ke)	Pb (me/Ke)	Sb (ma/(Kg)	Zu	CYANIDE
04-121-SE-1 04-009-SE-2 04-121-TP-1 04-121-TP-2	26.7 J 50.6 J 143 J 336 J	50 J 56.4 J 128 J 279 J	0.7 U 0.8 U 0.9 U 7.1	13.1 12.5 9.52 11.2	6.48 4.9 11.6 8.17	52.5 75.9 378 486	21500 J 35300 J 43200 J 55200 J	0.026 U 0.071 J 0.184 J 0.76 J	295 235 236 3040	8.18 J 7.85 J 5.23 J	29.4 J 57.3 J	#333	108 J 85.5 J 251 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	6.11 J	214 J	1.0 U	8.92	6.14	22.6	19200 J	0.106 J	819 U - Not Detected, J -	7.83 J	819 7.83 J 25.2 J 6.96 UJ 79.6 J	6.96 UJ	79.6 J	X X
	Acid/Base Accounting	ccounting								,		The state of the s	Describer to 1	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE t/1000t	SULFUR ACID BASE POTENT. v1000t					
04-121-7P-1 04-121-7P-1 04-121-7P-2	1.81 1.8 0.93	56.5 56.2 29.1	-2 -1.9 7.93	58 54 12-	1.28 1.28 0.85	0.5 0.44 0.03	0.02 0.08 0.05	15.6 13.7 0.94	-17.7 -15.7 6.99					

Package Pack															
3.85 8.6 4.59 U 5.0 9.37 U 2.33 U 894 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 U 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 U 6.24 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 33.4 4.59 U 5.0 U 0.54 U 2.33 U 86.9 0.12 U 707 10.9 U 0.72 U 31.7 U 1.18 U 30.1		Metals in W. Results in ug	/ater g/L				WATER MAT	RIX ANALYSES				-			
3.85 8.6 4.59 U 5 U 9.37 U 2.33 U 894 0.12 U 707 10.9 U 0.72 U 31.7 U Wet Chemistry Wet Chemistry Results in mg/l TOTAL SOLIDS CHLORIDE SULFATE NO3NOZ-N CHLORIDE 1.604 1.8 9.37 U 2.33 U 894 0.12 U 707 10.9 U 0.72 U 31.7 U 0.93 31.7 U 0.84 Detected J. Estimated Quantity. X. Outlier for Accuracy or Precision; N or Anning Part of Composite of Subsamples TP1A-A, B, C, and 1B-A, B, C, 172 U 31.7 U 0.72 U 31.7 U 0.72 U 31.7 U 0.72 U 0.	FTELD D	ļ	. !	පි	රී	ర	ರೆ		H.	Wu	Z	£	ť	ŀ	HARDINESS CALC.
Vet Chemistry Pesults in mg/l Results in mg/l Pesults in mg/l Pesults in mg/l	04-121-SW-1 04-009-SW-2		ļ	4.59 U 4.59 U	5 U	9.37 U 6.24 U	2.33 U 2.33 U	# !!	0.12 U 0.12 U	707 3.76 U	10.9 U	0.72 U	31.7 U	13.6	mg CaCC33(1)
TOTAL SE2 - Downgradient in Keeting Gulch SE2 - 400 downgradient of berm on tailing pond 2 of the Ohio Mine. This serves as the upgradient sample for 04-121. TP1 - Composite of subsamples TP1A-A, B, C, and 1B-A, B, C TP2 - Composite of subsamples TP2A-A, B, C, and 2B-A, B, BACKGROUND - From the Ohio Mine (04-009-SS-1). TP1DUP - Duplicate of the sample 04-121-TP1.		Wet Chemistry Results in ma/				·				U - Not Detected, J - E	stimated Quantity; X	· Outlier for Accum	LEY OF Precision; NR.	Not Requested	
1604 18 981 < 0.05 < 0.005 366 8.0 135 < 0.05 NR	FIELD LD.	' 	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		Downgradient in Kee 400 downgradient of Mine. This serves as Composite of subsam	ting Gulch. 'bern on tailing po the upgradient samp ples TP1A-A, B, C,			SW1 - Spring a	at the toe of tailin	ugs pond 2.	
	04-121-SW-1 04-009-SW-2		8.0 8.0	981 135	< 0.05 < 0.05	< 0.005 NR		Composite of subsam GROUND - From the UP - Duplicate of the	ples TP2A-A, B, C, Ohio Mine (04-005 sample 04-121-TP1	and 2B-A, B.					

Mine/Site Name: East Pacific County: Broadwater_ Section(s): Sec. 26 and Sec. 27 Legal Description: T 8N R 1W Mine Type: Hardrock/Au, Ag, Pb, Zn, Cu Mining District: Winston Primary Drainage: Weasel Creek Latitude: N 46° 25.1' USGS Code: 10030101 Longitude: W 111° 42.2' Land Status: Private/Public Secondary Drainage: Spring Gulch Date Investigated: July 27 and 28, 1993 Quad: Winston P.A. # 04-008 Inspectors: Babits, Flammang, Lasher Organization: Pioneer Technical Services, Inc.

 There were approximately 1,450 cubic yards of uncovered tailings on site. The following were elevated at least three times background:

Arsenic: 458J mg/kg
Cobalt: 11.5J mg/kg
Copper: 399J mg/kg
Iron: 31,600 mg/kg

Mercury: 0.256J mg/kg
Nickel: 33 Lmg/kg
Lead: 4 760 mg/kg

Nickel: 33J mg/kg
Antimony 33J mg/kg
Lead: 4,760 mg/kg
Zinc: 5,550 J mg/kg

There were approximately 74,900 cubic yards of mostly uncovered waste rock on site.
 The following were elevated at least three times background:

Arsenic: 575J mg/kg

Cobalt: 11.4J to 20.2J mg/kg

Copper: 213J to 980J mg/kg

Mercury: 0.325J to 0.789J mg/ka

Cadmium: 36 to 53 mg/kg

Chromium: 11J to 95J mg/kg

Iron: 32,700 to 42,100 mg/kg,

Manganese: 1.620 to 1.710J mg/kg

Nickel: 13J to 101J mg/kg

Nickel: 13J to 101J mg/kg

Lead: 4,000 to 6,160 mg/kg

Zinc: 4,650J to 8,240J mg/kg

- There were two discharging adits identified at the site. The adit associated with WR-4 was sampled (SW-3); the pH measurement was 8.02. The discharge did not enter the creek via a surface route. The MCL/ MCLG for cadmium and acute and chronic aquatic life criteria for zinc were exceeded in the adit discharge. Additionally, the chronic aquatic life criteria for mercury was exceeded in the adit discharge.
- There were tailings in Spring Creek. Observed releases to Spring Creek were documented for arsenic, cadmium, iron, manganese, lead, and zinc. The MCL for cadmium was exceeded in the downstream sample, and acute and chronic aquatic life criteria were exceeded for cadmium and zinc in the downstream sample. These exceedances were directly attributable to the site.

East Pacific PA# 04-008 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/27/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES		·					
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Ke)
04-008-SE-1 04-008-SE-2 04-008-TP-1 04-008-WR-1 04-008-WR-3	30 J 365 J 458 J 575 J 236 J 214 J	124 73.3 64.2 107 56.9 65.3	1.1 3.2 3.3 3.6 3.6 3.6 3.6	13.5 J 13.5 J 11.5 J 20.2 J 13.5 J 11.4 J	8 4 8 8 8 ± 1 2 5 8 5 ± 1 2 5 5 ±	88.3 J 347 J 399 J 980 J 475 J 213 J	27400 27200 31600 42100 38600	0.173 J 0.227 J 0.256 J 0.608 J 0.789 J	763 J 2350 J 2510 J 1620 J 1710 J	24 J 32 J 33 J 101 J 13 J	49 2690 4760 6160 4250 4000	#3	133 J 6120 J 5550 J 8240 J 6950 J 4650 J	0.58 U 0.298 U 0.283 U NR NR
BACKGROUND	85 63.2 Acid/Base Accounting	63.2 ccounting	0.7	1.9 U	6 .	11.6	0006	0.011 J	470 U - Not Detected; J - E	3 U Estimated Quantity, X	77 - Outlier for Accuracy	470 3 U 77 6 UJ 74 U - Not Detector, J - Batimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	74 Vot Requested	S.
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASB v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASIB POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. t/1000t					
04-008-TP1-DUP 04-008-TP-1 04-008-WR-1 04-008-WR-2 04-008-WR-3	0.86 0.88 0.58 3.42 3.00	26.9 27.5 18.1 107 93.7	73.3 73.3 22.3 93.0 86.7	46.5 45.8 4.16 -13.9 -7.02	6.01 6.01 6.01 6.60 6.60 6.60	0.58 0.53 0.05 1.22 1.43	0.34 0.35 0.31 1.80 1.15	17.5 16.6 1.56 38.1 44.7	55.8 56.8 56.8 54.9 42.0					

	Metals in Water		Not of although			WATER MATE	WATER MATRIX ANALYSES							
FIELD			adie iii dyr										HAR	HARDNESS
A ::	As	Pa Ba	ਠੌ	රී	ď	ට	Fe	Я́Н	Wn	ž	£	Ŕ	7n (mo	CALC.
04-008-SW-1 04-008-SW-2 04-008-SW-3	1.69 U 9.59 6.35	3.9 10.9 8.6	2.57 U 12.8 8.9	2.57 U 9.7 U 12.8 9.7 U 8.9 9.7 U	6.83 U 6.83 U 6.83 U	3.6 J 10.7 J 4.9 J	25.3 J 191 J 16.1 J	0.12 0.11 0.12	4.08 U 33.9 5.57	12.7 U 12.7 U 12.7 U	4.08 U 12.7 U 1.55 U 30.7 U 7.57 33.9 12.7 U 72.6 30.7 U 939 5.57 12.7 U 2.88 30.7 U 774	30.7 U 30.7 U 30.7 U	7.57 U) 30.5 939 JX 102 774 JX 196	30.5 102 196
	Wet Chemistry	å	Results in mg/l							EGEND		a richingt NK - No	r Requested	
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	SULFATE NOS/NO2-N CYANIDB	CYANIDE	•	SEI - 100 feet upgradient of waste rock dump 3 in Spring Creek. SE2 - 100 feet downgradient of tailings in Spring Creek. TPI - Composite of subsamples TP-1A-A, B, C, TP1B-B, and A. WRI - Composite of subsamples WR1A, B, C, WR2A, B, end C.	of waste rock dun nt of tailings in S uples TP-1A-A, B mples WR1A, B,	np 3 in Spring Creel pring Creek I, C, TP1B-B, and A C, WRZA, B, and C	1 L	SW1 - Same as SE1. SW2 - Same as SE2. SW3 - Adit discharge	SWI - Same as SEI. SW2 - Same as SE2. SW3 - Adit discharge at waste rook dump 4.	ock dump 4.	:
04-008-SW-1 04-008-SW-2 04-008-SW-3	!	× 5.0 5.0	 5.0 12 0.1 < 0.01 5.0 72 0.21 < 0.01 5.0 139 0.4 NR 	0.1 0.21 0.4	^ 0.01 NR		WR2 - Composite of subsamples WR3A and 3B. WR3 - Composite of subsamples WR4A, B, WR5A, B, and C. BACKGROUND - From Vosburg (04-014-SS1). TP1-DUP - Duplicate of 04-008-TP-1.	mples WR3A and mples WR4A, B, osburg (04-014-5 L-008-TP-1.	3B. WR5A, B, and C. ISI).					

Mine/Site Name: Vosburg County: Broadwater Legal Description: T 8N R 1W Section(s): SW 1/4, SW 1/4, Sec. 34 Mine Type: Hardrock/Au,Pb, Ag, Zn Mining District: Winston Primary Drainage: Beaver Creek Latitude: N 46° 23' 58" USGS Code: 10030101 Longitude: W 111° 43' 11" Secondary Drainage: Badger Creek Land Status: Public Date Investigated: July 27, 1993 Quad: Winston P.A. # 04-014 Inspectors: Babits, Lasher, Flammang Organization: Pioneer Technical Services, Inc.

There were approximately 2,200 cubic yards of tailings at the site. The majority of the tailings were uncovered. The following were elevated three times background:

Arsenic: 13,100 mg/kg

Cobalt: 6.2 mg/kg

Copper: 780 mg/kg

Copper: 780 mg/kg

Copper: 780 mg/kg

Copper: 780 mg/kg

Copper: 780 mg/kg

Mercury: 0.256J mg/kg
Lead: 4,640 mg/kg
Zinc: 564 mg/kg

Manganese: 2,080 mg/kg
Antimony: 12 mg/kg
Cyanide: 8.38 mg/kg

• There were approximately 29,850 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 204 to 3,990 mg/kg

Cobalt: 7.9 mg/kg

Copper: 38.2 to 379 mg/kg

Iron: 30,500 to 32,800 mg/kg Mercury: 1.41J to 1.64J mg/kg

Zinc: 318 to 596 mg/kg

- Neither of the two discharging adits had a surface route to water. A sample was
 collected from the discharge associated with WR-5 (SW-5). The MCL for arsenic and
 the chronic aquatic life criteria for arsenic, mercury, and lead were exceeded in the adit
 discharge.
- There were tailings in Badger Creek. Observed releases to Badger Creek were documented for arsenic, copper, iron, manganese, lead, and zinc. The MCL for arsenic was exceeded in downstream sample, as were the acute and chronic aquatic life criteria for copper and lead. Additionally, the chronic aquatic life criteria for iron was exceeded in the downstream sample. These exceedances were directly attributable to the site.

Vosburg PA# 04-014 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/27/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg) ====================================	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Ph (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
04-014-SE-1 04-014-SE-2 04-014-TP-1 04-014-WR-1 04-014-WR-2	60 8860 13100 2030 204 3990	65.3 76.8 95 131 33.1	- r. r. so o r. 6. 4 8 4 8 8	3.7 3.4 6.2 7.9 5.6	7.4 10.3 16.6 1.5 1.3 U	17.5 564 780 273 38.2 379	10400 54400 78600 30500 8670 32800	0.038 J 0.102 J 0.256 J 1.64 J 1.41 J	392 1600 2080 2080 3860 598 2030	იო4ო00 ეე⊸ეეეე	47 3590 4640 737 86 729	#3333	332 332 564 586 586 318	0.436 U 1.1 8.38 NR NR
BACKGROUND	85 63.2 Acid/Base Accounting	63.2 Accounting	0.7	1.9 U	6 .	11.6	0006	0.011	470 U · Not Detector, J · I	470 3 U 77 6 UJ 74 U - Not Detected; J - Batimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	77 - Outlier for Accurac	6 UJ	74 - Not Requested	Υ Z
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT: #1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
04-014-TP-1 04-014-WR-1 04-014-WR-3 04-014-WR-3	0.35 0.04 0.65	10.9 1.25 1.25 20.3	15.8 6.97 12.8 6.38		0.33 0.03 0.41	0.00 0.00 0.00 0.00 0.00	0.02 0.01 0.03 0.15	0.00 0.00 2.81	15.8 6.97 12.8 3.57				•	

As Ba Cd 2.67 2.01 U 2.57 U 2.95 4.67 2.57 U 2.68 2.01 U 2.57 U 2.68 2.01 U 2.57 U 2.67 2.57 U 2.67 L 2.67		WATER MATRIX ANALYSES	IX ANALYSES					erment wa		2011
3	ප්		F.	Hg	Wn	Z	£	£	E) 52	CALC.
S "	9.7 U 6.83 U 9.7 U 6.83 U	1.55 U 14.9	123 1300	0.038 U 0.038 U	4.08 U 61.6 J	12.7 U 12.7 U 12.7 U	4.64 35.3	30.7 U 30.7 U	7.57 U 21.5 27.1 25.5	21.5 25.5
S #	D	<u> </u>	2		5.5 J 12.7 U 2.95 30.7 U 7.57 U - Net Detector J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Nex Requested	12.7 U nimed Quantity, x -	2.95 Outlier for Accurac	30.7 U cy or Precision, NR -1	7.57 U Not Requested	5
11 11 13						LEGEND				
	NO3/NO2-N CYANIDE		100 feet upgradient o At PPE of adit discha Composite of subsam Composite of subsam	SE1 - 100 feet upgradent of tailings in Badger Creek. SE2 - At PPE of adir discharge and tailigns in Badger Creek. TP1 - Composite of subsamples TP1A, 1B, and TP2A-A. WR1 - Composite of subsamples WR1, 2A, and 2B.	Jreek. adger Creek. TP2A-A. 2B.		SW1 - Same as SE1. SW2 - Same as SE2. SW5 - Adit discharge	SW1 - Same as SE1. SW2 - Same as SE2. SW5 - Adit discharge of weste rock dump 5.	rock dump 5.	
).05 < 0.01 .05 < 0.01		Composite of subsert Composite of subsert ROUND - From V.	WR2 - Composite of subsamples WR3A and B. WR3 - Composite of subsamples WR4A, 4B, 5A, 5B, 5C, and 5D. BACKGROUND - Prom Vorbing (IAA)14.5811	, 5B, 5C, and 5D.					
< 5.0 12				(10.11)						

Mine/Site Name: Block "P" Tailings County: Cascade Legal Description: T 15N R 8E Section(s): SE 1/4, Sec. 16 Mine Type: Mill Tailings Mining District: Barker/Hughesville Latitude: 47° 03' 20" Primary Drainage: Dry Fork Belt Creek Longitude: 110° 38' 56" USGS Code: 10030105 Land Status: Private/Public Secondary Drainage: Galena Creek Date Investigated: June 7, 1993 Quad: Barker Inspectors: Bullock, Babits, Flammang, P.A. # 07-090 Lasher, Clark / Pierson Organization: Pioneer Technical Services,

The total volume of mill tailings associated with this site was estimated at 625,000 cubic yards, contained in two impoundments (upper and lower). The following elements were elevated at least three times background in previous investigations:

Arsenic: 520 to 2,140 mg/kg

Copper: 254 to 688 mg/kg

Mercury: 0.35 to 1.00 mg/kg

Cadmium: 13.0 to 68.0 mg/kg

Iron: 44,200 to 141,000 mg/kg

Lead: 4,000 to 10,600 mg/kg

- The tailings were poorly contained, and were actively eroding into Galena Creek. The tailings had a very low pH (1.81), were unvegetated, and had large erosion channels cut through them. An additional 10,000 cubic yards of tailing materials were observed in large stream side deposits downstream in Dry Fork Belt Creek.
- No waste rock or flowing adits were associated with this site.

Inc./ Thomas, Dean and Hoskins, Inc.

- Surface water samples were collected during the 1993 investigation. Observed releases
 to surface water were documented for Arsenic in water, and mercury in sediment
 samples. Drinking water standards (MCL's) were exceeded for arsenic, cadmium, lead,
 and antimony; acute aquatic life criteria exceedances for cadmium, copper, and zinc
 were also documented. Upstream samples exceeded MCL's for cadmium, antimony, and
 lead, and acute aquatic life criteria for cadmium, copper, and zinc; the Hughesville
 mining district was upstream from the site and contributed to the observed upstream
 water quality degradation.
- Monitoring wells, sampled previously, indicated that MCL's were exceeded for cadmium, copper, nickel, and lead. These samples also documented an observed release to groundwater for cadmium, copper, iron, and lead. manganese, zinc, and nickel concentrations were very elevated in the downgradient well.
- No hazardous structures or openings were observed at the site.

Block P. Tailings PA# 07-090 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BUILLOCK INVESTIGATION DATE: 06/07/83

	CYANIDE (mg/Kg)	1
	Zn (mg/Kg)	1590 J 2080 J 1970 J
	Sb (mg/Kg)	5 U 3 U 4 U
	Pb (mg/Kg) ====================================	705 1070 1110 X - Outlier for Accus
	Ni (mg/Kg)	25 J 18 J 23 J Entireled Quantity.
	Mn (mg/Kg)	3120 J 25 J 705 5 U 1590 J 2720 J 18 J 1070 3 U 2080 J 4030 J 23 J 1110 4 U 1970 J U Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision: NR. Not Requested
40	Hg (mg/Kg)	0.147 J 0.037 J 0.045 J
SOLID MATRIX ANALYSES	Fe (mg/Kg)	51700 21600 26700
SOLID MAT	Cu (mg/Kg)	182 J 149 J 149 J
	Cr (mg/Kg)	0 to 0.
	Co C) (mg/Kg) (mg/	
<u> </u>		13.2 J
Metals in soils Results per dry weight basis	Ξij	123
Metals in soils Results per dry	As (mg/Kg) 396	140
	FIELD D 07-090-SE-1	07-090-SE-2 07-090-SE-3

		HARDNESS CALC. Zn (mcC-CO3/1)	66.2 105 97.4		
		7	632 3670 3440	4R - Not Reque	
		୫	36.9 33 33.5	ascy or Precision; ?	
		£	6.75 38.7 39	and plants	
		Z	790 8.78 U 6.75 36.9 632 3890 19.1 38.7 33 36.70 3640 18.8 39 33.5 3440		LEGEND reek. roek, sprox. 425 bold Rush Creek.
		M	790 3890 3640 U. Na Dengal		noe with Galeria C Creek in Galeria C confluence with C
s		Ħ	0.038 U 0.038 U 0.038 U		eek below confluer rith Dry Fork Belt (P. Tailings below 1. 2.
WATER MATRIX ANALYSES		¥.	1390 6040 4360		LEGEND SBI - In Dry Fork Belt Creek below confluence with Calera Creek. SB2 - Before confluence with Dry Fork Belt Creek in Galena Creek, approx. 425. SB3 - Upgradient of Block P. Tailings below confluence with Gold Rush Creek. SW1 - Same as sample SB1. SW2 - same as sample SB2. SW3 - Same as sample SB3.
WATER M		5	23.5 121 100		
		Ċ	222		CYANIDB 0.02 0.01
		රී	5.99 U 5.99 U 5.99 U		NO3/NO2-N < 0.05 < 0.05 < 0.05
		ਣ	2.9 16.3 15.5		SULFATE 23 106 87
	ater g/L	Æ	40.7 45.4 45.2		CHLORIDB CHLORIDB 5.0 5.0 5.0
	Metals in Water Results in ug/L	Ą	9.92 54.5 16.8	Wet Chemistry	TOTAL DISSOLVED SOLIDS 72 190
		FIELD D	07-090-SW-1 07-090-SW-2 07-090-SW-3		FIELD LD. 07-090-SW-1 07-090-SW-2 07-090-SW-3

Mina/Cita Nama, Calana Craak Campling	County: Judith Racin
Mine/Site Name: Galena Creek Sampling	County: Judith Basin
Legal Description: N/A	Section(s): N/A
Mining District: Hughesville	Mine Type: N/A
Latitude: N 47° 03' to 47° 05'	Primary Drainage: Dry Fork Belt Creek
Longitude: W 110° 38' to 110° 38'	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Galena Creek
Quad: Barker	Date Investigated: June 7, 1993
Inspectors: Bullock, Babits, Flammang, Lasher,	P.A. # <u>07-090</u>
Clark/Pierson	
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

• The purpose of this sampling exercise was to characterize the impacts from the numerous mine sites along Galena Creek during a high-flow, storm event. Surface water and sediment samples were collected in the Dry Fork Belt Creek, and in Galena Creek between each potential source. This data has been applied to evaluating the following sites:

> Block P Tailings - PA# 07-090 Lucky Strike/NE NE S7 - PA# 23-042 Marcelline Mine - PA# 23--022 Wright Lode - PA# 23-045 Edwards Lode - PA# 23-046 Belt Patent - PA# 23-035 Block P Mine - PA# 23-001

• Observed releases and exceedances of MCL/MCLGs and aquatic life criteria were evaluated on a site-specific basis on the inventory forms for each of these sites.

Galena Creek PA# 07-090 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/07/93

	Metals in soils		Results per dry weight basis	/ weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mø/Ke)	Cyanide (metit e)
07-090-SE-1	396	486		177.1	8.5	182 -	558555555 64700		10 11 11 11 11 11 11 11 11				:======:::::::::::::::::::::::::::::::	GYAN)
07-090-SE-2	140	97.3	_	7 7) o	1 40 1	31,00	0.147	3120 J	25 J	202	5 U	1590 J	Z.
07-090-SE-3	196	123	•	78.1	8	2 6 6	26700	0.037	2720 J	18 J	1070	Э С	2080 J	0.31 U
07-090-SE-4	272	147		3.5	i ru	1 701	7000	0.045	4030	23 J	1110	4 0	1970 J	0.57
07-090-SE-5	368	213		6.7.3	4.7	146	43300	2.000	651	က ဖ	1590	4	811 J	X X
23-046-SE-6	379	220		1. 611	7.3	2 2 2	96400	U.214 J	975 J	ე თ	1410	S ∪	566 J	ď
07-090-SE-7	15 15	59	0.8	3.6 J	3.0	2 C	25,000	0.2/3	1800 J	- -	4040	5 U	562 J	X X
07-090-SE-8	255	218		5	4	2 44.	43700		438	က က	28	4 ⊃	152 J	ž
07-090-SE-9	43	222	2.6 J	7 76	(F)	- 670	25	0.0	Z120 J	19 J	3390	ე ე	749 J	Z.
07-090-SE-10	28	88.8		44.1	τ α	2 6 6 5 5	25.50	C /CO:O	2600 J	2 4 J	432	2 ∩	632 J	Z Z
07-090-SE-11	5	809	33.3 J	13.8	. «	- 647	0000	0.03	653	ე თ	82	4	180 J	œ
)	9	2	90200	L 8/1.0	10100	78 J	6800	1	7000	Z.
									U - Not Detected, J - E	stimuted Quantity, X	- Outlier for Accurac	y or Precision, NR.	Not Requested	

	Metals in Metals		1		>	WATER MATRIX ANALYSES	K ANALYSES							
HELD	Melais III Valle		Kesulis in ug/L											HARDNESS
O	As ====================================	B	ļ			ರ	£	H	M	Z	£	ŧ	1,	CALC.
07-090-SW-1		5,0	2.9	5.99 U		**************************************	1200						m) w7	Al (ng cacost)
07-090-SW-2	54.5	45.4	16.3	200	י טע		200	0.038	06/	8.78 ∪	6.75	36.9	632	68.2
07-090-SW-3	16.8	45.2	<u>ا</u> د		יי איני	<u> </u>	9040 9040	0.038	3890	19.1	38.7	33	3670	50
07-090-SW-4	38.8	22.7	35.55		יי איני	3 %	0654	0.038	3640	18.8	30	33.5	3440	97.4
07-090-SW-5	38.7	23	34.6	3 c) =	240	200	0.038	8670	43.4	121	53.8	7750	131
23-046-SW-6	13.9	20.6	13.2	- G	ם בי	57 a	12600	0.038 U	8940	45.9	59.6	20	7980	35
07-090-SW-7	æ	23.7	34.7	6.77) יי	פי אמ	220	0.087	869	10.9	14.5	18.3 U	2130	76.9
07-090-SW-8	29	23.6	30.2	5 6 6 7) = (290	12300	0.038	0608	39.4	68.6	50.8	7790	142
07-090-SW-9	0.98 U	25.1	2.55 U	20 C	بر د د	45.58	250	0.038	7560	41.5	51.1	38.9	7090	137
07-090-SW-10	5.09	20		2 00 2	بر در	4 <u>8</u>	2,5	0.038 U	20 20 20 20	8.78 U	37.6	32.1	585	107
07-090-SW-11	0.98	26.5	0 6 6	200	= 2 u		5 C	0.038	4.77	8.78 U	2.52	33	54.3	85.5
))	* 57	200	0.038 0	840	8.78 U	3	32.9	861	115
	Wet Chemistry	æ	Results in ma/						U - Not Detected, J - 1	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Outlier for Accurac	y or Precision, NR - N	Vot Requested	
	TOTAL		•											-
Field	DISSOLVED										LEGEND			
2		ממומטותט	- THE P. P. P. P. P. P. P. P. P. P. P. P. P.			07-090-SE	_	Dry Fork of Belt Ck. downstream of confluence with of Galera Ck	n of confluence with	of Galera Ck.	07-0	07-090-SW-1 Same as SE-1	12	
11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11	CALURIDE	SULFAIE	SOLFAIE NO3/NO2-N C	CYANIDE	07-090-SE-2	_	Ordens Ck. upstresm of confluence , downstresm of Block P Tails	ice, downstream of B	lock P Tails	040			
07-090-SW-1	> 22	5.0	23	300		07-090-SE	_	Galena Ck. upetream of Block P Tails, downstream of Lucky Strike	Tails, downstream of	Lucky Strike	07-0	٠.	- E-	
07-090-SW-2	190	20	<u> </u>		2 2	05-060-20	_	Salena CK, upstream of the Lucky Strike	Ay Strike		01-0	07-090-SW-4 Same as SE-4	SE-4	
07-090-SW-3	146	50	87.	300	20.0	00-060-10	_	Sulons Ck. downstream of the Marcelline	larcelline		9-70	17-090-SW-5 Same as SE-5	SE-5	
07-090-SW-4	318	20	181	50.0	0 2	23-046-EE-0	_	Junamed trib. to Galeria Ch. @ the Marcelline	the Marcelline		23-0	23-046-SW-6 Sume as SE-6	SE-6	
07-090-SW-5	v 308	50	182	900	2	07-090-KE		Calona Ck. upstream of the Marcelline, downstream of Belt Patent	elline, downstream of	Belt Patent	97-08	07-090-SW-7 Same as SE-7	SE-7	
23-046-SW-6	141 <	5.0	8		2 CZ	07-090-3E-		Calona Cit, upstream of the Belt Patent, downstream of Block P	Patent, downstream a	f Block P	07-08	77-090-SW-8 Same as SE-8	SE-8	, '
07-090-SW-7	320 <	5.0	185	0.07	2 Z	07 000 em so	. •	Mains On updream of the Block P Mine	ck P Mine		07-0	7-090-SW-9 Same as SE-9	SE-9	
07-090-SW-8	274 <	5.0	178	900	2	07 000 111		Create			07-04	17-090-3W-10 Same as SE-10	SE-10	
07-090-SW-9	182 <	5.0	88	0.07	ď	78-060-10	A Dates Creek	T-COUNTY			97-04	07-090-SW-11 Same as SE-11	SE-11	
07-090-SW-10	130	5.0	မွ	0.05	Z Z									
07-090-SW-11	218 <	5.0	113 <		2	-								
														_

Mine/Site Name: Bon Ton	County: Cascade
Legal Description: T 15N R 8E	Section(s): SE 1/4, SE 1/4, Sec. 1
Mining District: Hughesville	Mine Type: Hardrock/Ag, Pb, Zn
Latitude: N 47° 04' 58"	Primary Drainage: Dry Fork Belt Creek
Longitude: W 110° 38' 52"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: McKay Gulch
Quad: Barker	Date Investigated: June 3, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>07-094</u>
Organization: Pioneer Technical Services, Inc.	•

- The volume of material tentatively identified as tailings associated with this site was
 estimated to be approximately 1,200 cubic yards; however, no elements were elevated
 more than three times background (based on XRF analytical data). Lead and zinc were
 moderately elevated above background concentrations.
- The volume of waste rock associated with this site was estimated to be approximately 3,300 mg/kg. The following elements were elevated at least three times background:

Arsenic: 523J to 1,330J mg/kg Manganese: 41,100 mg/kg Cadmium: 187 mg/kg Lead: 9,140 to 12,300 mg/kg

Iron: 109,000 mg/kg

Mercury: 0.556 mg/kg

Antimony: 61.8J mg/kg

Zinc: 50,900 mg/kg

- One discharging adit was identified at the site during the investigation. MCLs were exceeded for cadmium and antimony in the adit discharge. The acute aquatic life criteria for zinc was exceeded in the adit discharge. The chronic aquatic life criteria for iron, cadmium, and zinc were also exceeded. The pH measurement in the adit discharge was 6.10 and the specific conductance was 980 umhos/cm.
- The intermittent McKay Gulch was flowing directly through the site (through the waste rock dumps in places). Observed releases to McKay Gulch were documented for arsenic, cadmium, iron, manganese, lead, and zinc. The MCL for cadmium was exceeded in the downstream McKay Gulch sample. Acute and chronic aquatic life criteria for zinc were exceeded in the downstream sample; also, chronic aquatic life criteria for iron, cadmium, and lead were exceeded in the downstream sample. No MCLs or aquatic life criteria were exceeded in the upstream sample. All MCL and aquatic life criteria exceedances in McKay Gulch were directly attributable to the site.
- Stream erosion created potentially hazardous (unstable) slopes on WR-1 and WR-3.
- The remains of a wooden building on site was classified a hazardous structure.

Bon Ton PA# 07-094 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/03/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>ia</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
07-094-CONC 07-094-SE-1	587 J 51.9 J	127 J 75.7 J	90.2 2.6	28.3	13.1 J	25.6 J	41100	0.132	156000	701	2610	======================================	93000	NR
07-094-SE-2 07-094-WR-1	219 J 523 J	179 J 67.3 J	60.3 13.5	4.23	10.3 J	40.5	33400	0.105	30700	25.1 166	335 287	5.17 UJ 25.2 J	945 21500	X X
07-094-WR-2	1330 J	36.8 J	187.0	3.27	8.98 1.89.90	39.3 J	109000	0.556 0.159	11300 41100	51.5 175	9140 12300	9.24 J 61.8 J	3860 50900	2 Z
BACKGROUND	122 J	4	ĸ	9.66	26.5 J	22.7 J	33300	0.071	11900	55	375	4.24 J	1570	ž
	Acid/Base Accounting	counting							U - Not Detected, J.	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	acy or Precision, N	R - Not Requested	
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
07-094-WR-1 07-094-WR-2	9.4 23.9	294 747	143 182	-151 -565	0.29 10.4	5.32 9.58	3.79 3.99	166 299	-23.1					

Field Fiel																					
33.9 11.5 20.1 5.99 U 5 U 44.1 7060 0.038 U 7920 54.9 10.2 26.6 1300 14.1 16 8.27 6.17 5 U 11.2 J 2670 0.038 U 7920 54.9 10.2 26.6 1300 24.1 18.3 U 24.1 24		Metals in V Results in	<i>N</i> ater ug/L				WATER MATE	RIX ANALYSES	16												
1.41 26.8 2.55 u 5.99 u 5 u 4.4 J 7060 0.038 u 7920 54.9 10.2 26.6 1300 14.1 16 8.27 6.17 5 u 11.2 J 2870 0.038 u 2090 18.9 12.1 4.12 18.3 u 24.4 1.2 J 2870 0.038 u 2090 18.9 16.6 18.3 u 24.4 1.2 J 2870 0.038 u 2090 18.9 16.6 18.3 u 24.4 1.2 J 2870 0.038 u 2090 18.9 16.6 18.3 u 24.4 1.2 J 2870 2.039 u 2.0	FIELD ID	A	Be	చ	පී	ర	♂	FI •	鉛	Mn	Ä	£	ß	HAR Zn (me	CALC.						
Wet Chemistry Counce - Small concentrate pile Northeast of mill building LEGEND CONC - Small concentrate pile Northeast of mill building LEGEND CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building SW1 - Same as sample SE1. SOLIDS CONC - Small concentrate pile Northeast of mill building SW1 - Same as sample SE1. SOLIDS CONC - Small concentrate pile Northeast of alleged tailings, approx. 10. SW2 - Same as sample SE2. ASA < 5.0 7 CONC - Small concentrate pile Northeast of mill building CONC - Small concentrate pile Northeast of mill building SW2 - Same as sample SE2. SW2 - Same as sample SE2. ASA < 5.0 7 CONC - Small concentrate pile northeast of mill building <th <="" colspan="6" td=""><td>07-094-GW-1 07-094-SW-1 07-094-SW-2</td><td>33.9 1.41 14.1</td><td>11.5 26.8 16</td><td>20.1 2.55 U 8.27</td><td>5.99 U 5.99 U 6.17</td><td>35 SC</td><td>4.4 J 5.27 J 11.2 J</td><td>7060 35.9 2870</td><td>0.036 U 0.038 U 0.038 U</td><td>7920 9.9 2090</td><td>54.9 12.1 18.9</td><td>10.2 4.12 16.6</td><td>ii ii</td><td>13000 JX 24.7 JX 3340 JX</td><td>7 JX 609 7 JX 202 7 JX 359</td></th>	<td>07-094-GW-1 07-094-SW-1 07-094-SW-2</td> <td>33.9 1.41 14.1</td> <td>11.5 26.8 16</td> <td>20.1 2.55 U 8.27</td> <td>5.99 U 5.99 U 6.17</td> <td>35 SC</td> <td>4.4 J 5.27 J 11.2 J</td> <td>7060 35.9 2870</td> <td>0.036 U 0.038 U 0.038 U</td> <td>7920 9.9 2090</td> <td>54.9 12.1 18.9</td> <td>10.2 4.12 16.6</td> <td>ii ii</td> <td>13000 JX 24.7 JX 3340 JX</td> <td>7 JX 609 7 JX 202 7 JX 359</td>						07-094-GW-1 07-094-SW-1 07-094-SW-2	33.9 1.41 14.1	11.5 26.8 16	20.1 2.55 U 8.27	5.99 U 5.99 U 6.17	35 SC	4.4 J 5.27 J 11.2 J	7060 35.9 2870	0.036 U 0.038 U 0.038 U	7920 9.9 2090	54.9 12.1 18.9	10.2 4.12 16.6	ii ii	13000 JX 24.7 JX 3340 JX	7 JX 609 7 JX 202 7 JX 359
TOTAL		Wet Chemistry						-		U - Not Detected, J	- Estimated Quantity,	X · Outlier for Accu	racy or Precision, NB	R - Not Requested							
TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE WR1 - Composite of subsemples WR1A and 1B. WR2 - Composite of subsemples WR2A and 2B. BACKGROUND - From the Bon Ton Mine (07-094-SS-1).		Results in mg/l	_								LEGEND										
764 < 5.0 353 < 0.05 NR 221 < 5.0 7 < 0.05 NR 427 < 5.0 161 < 0.05 NR	FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	SEE - SEE - SEE - WRI -	Approx. 25 upstrea Downgradient of all Composite of subst	e pile Northeast of i m from waste rock o leged tailings, appro- umples WR1A and i	mill building. dump 3. w. 10.		GW1 - Dische SW1 - Same a SW2 - Same a	arge from a colla ta sample SE1. ta sample SE2.	psed adit.							
	07-094-GW-1 07-094-SW-1 07-094-SW-2	764 221 427	× × × 500	353 7 161	^ ^ ^ 0.00 0.00 0.00 0.00 0.00 0.00 0.00	R	WR2 - BACK	Composite of subs. GROUND - From th	emples WR2A and . te Bon Ton Mine (0	2B. 77-094-SS-1).											

Mine/Site Name: Vilipa	County: Cascade
Legal Description: T 14N R 8E	Section(s): SW 1/4, NE 1/4, Sec. 16
Mining District: Neihart	Mine Type: <u>Hardrock/Ag, Au, Pb, Zn, Cu</u>
Latitude: N 46° 58' 31"	Primary Drainage: Belt Creek
Longitude: W 110° 42' 40"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: McKay Creek
Quad: Neihart	Date Investigated: July 29, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # <u>07-080</u>
Organization: Pioneer Technical Services.	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 5,700 cubic yards. The following elements were elevated at least three times background:

Copper: 108J to 151J mg/kg Mercury: 0.397J to 0.917 mg/kg

- One minor adit discharge, two shafts with small amounts of accumulated precipitation, and one small seep at the toe of a waste rock dump were identified as groundwater features at the site during the investigation; however, none of these water sources were sampled. Instead, an additional sample was collected from McKay Creek (in the central section of the site) to assess potential impacts.
- McKay Creek flowed directly through the site (WR-4 was actively eroding into McKay Creek); surface water samples were collected upstream, near the center of the site, and downstream from the site. An observed release to McKay creek was documented for copper. No MCLs were exceeded in any of the samples. The acute aquatic life criteria exceedance for copper was directly attributable to the site. Downstream sediment samples indicated elevated concentrations (greater than three times upstream) of copper, mercury, and manganese.
- Four potentially hazardous mine openings were identified at the site including three open but partially collapsed shafts and one open adit. One of the cabins located on site was collapsing and potentially hazardous.

Vilipa PA# 07-080 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/29/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	şi Si			SOLID MAT	SOLID MATRIX ANALYSES							
FELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mer(Ke)	Pb (me/Ke)	Sb (me/Ke)	Zu	CYANIDE
07-080-SE-1 07-080-SE-2	8 7	135 J	6.9	23.4 J	24.4	283 J	19500		1820	14 J	242 J)	######################################	Sugar Sugar
07-080-SE-3	2 S	61.3	<u> </u>	2 2 8	2. c	425 J	24300	0.074 J	3840	26 J	668 1) D	1285	¥ 2 Z
07-080-WR-1	41	137 J	2.1	ט איני	17.6	25.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0,00	0.03	372	12 J	100 J	∩ 9	315 J	ž
07-080-WR-2	8	130 J	1.6	9	36.9	151 J	22000	0.397 J	2 5 4 7		775 J	7 0	52.58	Z.
BACKGROUND	10.5	131	1.4	6.83	22.2	26.1	20600	0.048 U	209	. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	. Sec. 7	2 6	6 6	ž į
									U - Not Detected, J	U. Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision, NR. Not Requested	X - Outlier for Accura	C. O.S. C.S. Ery or Precision, NF	C Not Reguested	¥ Ž
	Acid/Base Accounting	Accounting												
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
07-080-WR-1 07-080-WR-2	0.88 27.5 0.20 6.25	27.5 6.25	20.6 1.78	-6.85 -4.47	0.13 0.13	0.39	0.31 0.06	12.2 0.31	8.45 1.46					

	Metals in Water Results in uo/L	Water uo/L				WATER MATRIX ANALYSES	X ANALYSES							
FIELD		,											H	HARDNESS
a	A	Ba	PO	ප	ರ	Ö	Я	я́н	Mn	ï	£	5	, L	CALC.
07-080-SW-1 07-080-SW-2	3.22			9.7 U	6.83 U	6.83 U 18.9	143 J	0.11	24.9	12.7 U	1.8 J		201	201 36.6
07-080-SW-3	4.05	17.9	2.57 U	9.7.0	6.83 U	4.83	102 J	0.12 0.065	23.3 4.08 ∪	12.7 U 12.7 U	1.5. L. 1.	30.7 U	203	8 8 8
							.•		U · Not Detected, J · 1	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Remembed	Outlier for Accura	kry or Precision; NR.	· Not Remested	n S
	Wet Chemistry	> -												***************************************
	Masaus III alling	_								LEGEND				
FIELD	TOTAL					SE2 - D	SE1 - Downstream of site on McKay Creek SE2 - McKay Creek between WR-3 and WR-4	n McKay Creek n WR-3 and WR-	4		SW1 - Same SW2 - Same	Same as SE-1 Same as SE-2		
ID.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANII		SE3 - Upstream from site on McKay Creek WR1 - Composite of subsamples WR1A, 2A, 3A, 3B, and 3C.	n McKay Creek iples WR1A, 2A,	3A, 3B, and 3C.			Same as SE-3		.`
07-080-SW-1 07-080-SW-2 07-080-SW-3	102 102 85	 5.0 5.0 5.0 25 6.05 5.0 18 0.05 	22 28 18	^ ^ 0.05 0.05 0.05	N N N N N N N N N N N N N N N N N N N		BACKGROUND - From the Silver Dyke Adit (07-135-SS-1).	Silver Dyke Adit	(07-135-SS-1)					

Mine/Site Name: Molton	County: Cascade
Legal Description: T 14N R 8E	Section(s): SW 1/4, SE 1/4, Sec. 29
Mining District: Neihart	Mine Type: Hardrock/Ag, Pb, Zn
Latitude: N 46° 56' 21"	Primary Drainage: Belt Creek
Longitude: W 110° 44' 07"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Rock Creek
Quad: Neihart	Date Investigated: July 29, 199
Inspectors: Bullock, Clark/Pierson	P.A. # <u>07-084</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	•

- There were no tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 100,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 274 mg/kg Copper: 165J mg/kg Mercury: 0.622J mg/kg

- There were two adit discharges associated with this site. GW-1 was a sample from the discharge associated with the large adit and dump in the drainage directly upstream from the main level shaft area. This discharge had a flow of approximately 40 gpm, a pH of 7.9, and a specific conductance of 450 umhos/cm. None of the MCLs or MCLGs were exceeded in this sample. The acute aquatic life criteria for zinc and the chronic aquatic life criteria for lead and zinc were exceeded in this sample. GW-2 was a sample from the discharge associated with the caved adit on the hillside north of the main level shaft area. This discharge had a flow of approximately 15 gpm, a pH of 5.75, and a specific conductance of 930 umhos/cm. The MCL/MCLGs for cadmium, nickel, and antimony were exceeded in this sample. Acute and chronic aquatic life criteria were exceeded for cadmium, copper, lead and zinc. This discharge seeped back into the ground prior to reaching the drainage below.
- Rock Creek, a small perennial tributary to Belt Creek flowed though the site. Surface
 water samples did not document an observed release of any of the metals analyzed.
 The MCL for cadmium and aquatic life criteria for lead and zinc were exceeded both up
 and down stream of this site and therefore, were not directly attributable to this site. The
 stream sediment data did document an observed release of mercury.
- Six large transformers remained on site, possibly containing PCBs.

Molton PA# 07-084 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/29/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. S			SOLID MAT	SOLID MATRIX ANALYSES		-					
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mø/Kg)	Sb (me/Ke)	Zn Zn	CYANIDE
07-084-SE-1 07-084-SE-2 07-084-WR-1 07-084-WR-2	102 J 149 J 79 274	348 J 292 J 470 J 889 J	62.5 J 23.6 J 24 3.6		25.7 J 29 J 7.4 42.6	123 J 113 J 40.8 J 165 J	34400 87500 31200 37000	2.75 JX 0.351 JX 0.144 J 0.622 J	16200 20400 16000 1230	34 34 24 J	4440 5320 4230 J 4250 J	21.0 0.0 0.0 0.0 0.0	11400 J 4890 J 5290 J 705 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	53.3 828 Acid/Base Accounting	828 ccounting	15.3	9:11	72.7	50.1	30600	0.051 U	10400 U-Not Detected; J-	10400 91.5 5110 2.99 UJ 3530 U - Not Detectet J - Estimated Quantity, X - Outlier for Accumsy or Precision; NR - Not Requested	5110 - Outlier for Accuracy	2.99 UJ	3530 Not Requested	Z Z
FTELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASIB POTENT. 1/1000k	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
07-084-WR-1 07-084-WR-2	1.77 0.86	55.3 26.9	29.7 12.3	-25.6 -14.5	0.30 0.60	30 0.74 60 0.07	0.73 0.19	23.1	6.56 10.1					

	HARDNESS CALC.	810 204 100 362 000 130 200 105	
	Z	2610 33100 11000 11200	mp 2 (Adit #2)
	8	30.7 U 43 J 30.7 U J 30.7 U unity of Precision; NR-1	weste rock du I North hill else semple SEI.
	æ	10 775 20.4 J 21.8 J	GW1 - Adit at waste rock dump 2 (Adit #2), GW2 - Adit on North hill above shaft. SW1 - Same as sample SE1. SW2 - Same as sample SE2.
	ï	12.7 U 231 38.2 33.3 immed Quantity, X · Ou	2.
	Mn	1750 12.7 U 10 30.7 U 2610 51000 231 775 43 33100 5900 38.2 20.4 J 30.7 U 11000 6890 33.3 21.8 J 30.7 U 11200 U-Not Detected; J- Editimated Quantity, X- Outlier for Accuracy or Precision; NR - Not Requested	waste rock dump 3 e waster rock dump 1, and 2B. i, 3C, and 4A. ine (07-100-SS-1).
		0.13 J 0.1 J 0.094 0.094	dient; 330 belov mately 100 abov mples WR1A, 24 mples WR3A, 3E
WATER MATRIX ANALYSES	Fe	199 210 582 J 869 J	SB1 - Rook Creek downgradient, 330 below waste rock dump 3. SB2 - Rook Creek; approximately 100 above waster rock dump 2. WR1 - Composite of subsamples WR1A, 2A, and 2B. WR2 - Composite of subsamples WR3A, 3B, 3C, and 4A. BACKGROUND - From the Compromise Mine (07-100-SS-1).
VATER MATR	ō	1.55 U 72.1 11.5 11.5	981 - 1 982 - 1 981 - 1 982 - 1 8ACK
	გ	0.833 U.83.83 U.83.83 U.83.83 U.83.83	CYANDB NR NR NR NR
	. ფ	9.7.0 35.1 9.7.0 U.7.0	NO3/NO2-N
	S	2.83 4.3 33.3	SULFATE 4800 168 149 130
iter /L	# B	20.3 23.8 22.8 26.9	CHLORIDB
Metals in Water Results in ug/L	As	2.64 J 2.93 2.93 2.46 Wet Chemistry	TOTAL DISSOLVED SOLLDS (16 < 807 < 243 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 189 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 180 < 1
C HI	a	07-084-GW-1 07-084-GW-2 07-084-SW-1 07-084-SW-2	FIELD LD. 07-084-GW-1 07-084-GW-2 07-084-SW-1

Mine/Site Name: Evening Star Mine/Millsite	County: Cascade
Legal Description: T 14N R 8E	Section(s): NW 1/4, SW 1/4, Sec. 29
Mining District: Neihart	Mine Type: Hardrock/Ag, Pb, Zn
Latitude: N 46° 56' 39"	Primary Drainage: Belt Creek
Longitude: W 110° 44' 46"	USGS Code: 10030105
Land Status: Public	Secondary Drainage: Belt Creek
Quad: Neihart	Date Investigated: June 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>07-087</u>
Organization: Pioneer Technical Services, Inc.	

• The volume of tailings associated with this site was estimated to be approximately 1,200 cubic yards. Precipitation was observed to have collected on TP-1. The following elements were elevated at least three times background:

Barium: 4,150 mg/kg Mercury: 0.277 mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 9,984 cubic yards. The following elements were elevated at least three times background:

Copper: 160 mg/kg Mercury: 0.186 to 0.301 mg/kg

- One discharging adit was observed at the site during the investigation; after flowing through WR-1, the discharge seeped into the ground. No MCLs were exceeded in the adit discharge; however, the acute and chronic aquatic life criteria for zinc were exceeded. The pH measurement in the adit discharge was 6.48. No other groundwater or surface water samples were collected during the investigation
- One potentially hazardous adit opening was identified at the site; also, nine potentially hazardous structures were identified.
- The mill building contained numerous barrels and bags of various hazardous and unknown materials; all barrels were in poor condition.

Evening Star Mill PA# 07-087 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>8</u>			SOLID MAT	SOLID MATRIX ANALYSES	(A						
FIELD D	As (mg/Kg)	Be (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (ms/Ke)	Ni (me/Ke)	Pb	8	Zn .	CYANIDE
07-087-TP-1 07-087-WR-1 07-087-WR-2	104 86.3 34 J	4150 233 640 J	32.1 26.6 7.9	6.49 13.4 17.5	29.3 10.6 35.5 J	98.1 160 46.3 J	30000 45000 34700	0.277 0.301 0.186	11000 12000 8150	90.9 87.5 93.4	5860 14800 5370	(mg/kg)	(mg/kg) 	(mg/Kg) 1.371 U NR
BACKGROUND	53.3	828	15	11.6	72.7	50.1	30600	0.051 U	10400	5.16	5110	2.99 UJ	3530	ž ž
	Acid/Base Accounting	\ccounting							U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	ncy or Precision; h	IR - Not Requested	
FEELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	į	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASB POTENT:					
07-087-TP1 07-087-WR1 07-087-WR2	1.24 2.47 0.76	<u> </u>	28.6 34.6 64.6	5. 8. 6. 8. 8.	0.26 0.28 0.23	0.68 1.22 0.24	0.3 0.97 0.29	21.2 38.1 7.5	7.36 4.14 57.1					

	Metals in Water Results in ug/L	Nater ug/L				WATER MATRIX ANALYSES	X ANALYSES				, w mages fine			
FIELD	FIELD ID As	æ	ਲ	రి	Ċ	õ	Ħ •	光	Mn	Z	£	ŧ	Ħ ,	HARDINESS CALC.
07-087-GW-1	0.98 U	6.4	2.55 U	6.4 2.55 U 5.99 U 8.93	8.93 J	J 3.23 J 184 0.038 U	184	11	8560 86.8 6.64 18.3 U 606 JX 489	86.8	6.64	18.3 U	XC 909	4n (mg CaCO3/L)
	Wet Chemistry Results in mg/l	•-					··		U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quantity,	X - Outlier for Accur	acy or Precision; NR -	- Not Requested	
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		TP1 - Composite of subsamples TP2A, WR1 - Composite of subsamples WR1 4 WR2 - Sample of the WR2 subsample. BACKGROUND - From the Compromis	TP1 - Composite of subsamples TP2A, 1A, and 1B. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Sample of the WR2 subsample. BACKGROUND - From the Compromise Mine (07-100-SS-1).	d 1B. and 1C.	LEGEND	GW1 - Sample	GWI - Sample from the Evening Star add:	g Star adit.	.*
07-087-GW-1	613 < 5.0 215 < 0.05 NR	< 5.0	215	× 0.05	NR NR	:								

Mine/Site Name: Compromise	County: Cascade
Legal Description: T 14N R 8E	Section(s): NW 1/4, NE 1/4, Sec. 32
Mining District: Neihart	Mine Type: Hardrock/Ag, Au, Pb, Zn
Latitude: N 46° 56' 16"	Primary Drainage: Belt Creek
Longitude: W 110° 44' 05"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Compromise Gulch
Quad: Neihart	Date Investigated: June 1, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>07-100</u>
Organization: Pioneer Technical Services Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 600 cubic yards. The following elements were elevated at least three times background:

 Arsenic: 164 to 177 mg/kg

 Mercury: 0.245 to 0.516 mg/kg
- Two discharging adits and one discharging shaft were identified at the site. MCLs for cadmium and nickel were exceeded in the shaft discharge (GW-1), no MCLs were exceeded in either of the adit discharges. Acute and chronic aquatic life criteria were exceeded for zinc in the shaft discharge as well as chronic aquatic life criteria for iron, mercury, cadmium and lead. Acute and chronic aquatic life criteria were exceeded for zinc in both adit discharges(GW-2 and GW-3), and chronic aquatic life criteria were exceeded for mercury and lead in both adit discharges. Chronic aquatic life criteria were exceeded for iron and copper in the Adit #1 discharge (GW-2).
- The intermittent Compromise Gulch was flowing directly through the site. Three surface water samples were collected from Compromise Gulch during the investigation (upstream, center of site, and downstream). Downstream iron, manganese, nickel, and zinc concentrations were elevated at least three times the upstream concentrations, but were not significantly elevated in the source samples; thus not directly attributable to this site. The MCL/MCLG for nickel was exceeded in the downstream sample. Acute and chronic aquatic life criteria were exceeded for several elements in both the upstream and downstream samples, and were therefore not directly attributable to this site. An observed release to Compromise Gulch was documented for arsenic (sediment).
- One potentially hazardous mine opening (Shaft #1, fenced) was identified at the site.
 Potentially hazardous structures included the headframe associated with Shaft #1 and two highwalls ranging in height from 15 to 30 feet.
- A recreational cabin was identified at the south end of the site and the site was also determined to be in close proximity to the town of Neihart.

Compromise PA# 07-100 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/01/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES	so.						
FIELD OI	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	I	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/K.g.)	Zn (me/Ke)	CYANIDE
07-100-SE-1 07-100-SE-2 07-100-SE-3 07-100-WR-1 07-100-WR-4	56.2 78.7 6.93 164	690 1250 146 323 311	22.5 10.7 0.7 19.4 29.9	163 9.61 8.98 16.5 20.7	11.1 11.5 10.4 8.64 9.29	35.6 9.04 9.04 5.7	30100 24600 23600 43600 43500	0.064 U 0.147 0.059 U 0.516	86100 8700 854 14500	86.88 15.6 89.88	3690 3690 31.7 6680	#3333	5600 2470 189 3810	A R R R R R R
BACKGROUND	53.3	828	15.3	11.6	72.7	50.1	30600	0.051 U	10400 U-Not Detected J-	91.5 Balinated Quantity,	3.38 UJ 7520 10400 91.5 5110 2.99 UJ 3530 1-Not Deceted J - Batimated Quantity, X - Outlier for Accurancy or Precision: NR - Not Received	3.38 UJ 2.99 UJ 9.er Precision: NR - J	7520 3530	X X
	Acid/Base	Acid/Base Accounting				,						. - 		
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V10000	NEUTRAL. POTENT. #1000t	SULFUR ACID BASE POTENT. V1000t	NE SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %		SULFUR ACID BASE POTENT.					
07-100-WR1	1.12	35	41.4	6.38	0.21	0.48	0.43	15	26.4					

	;					WATER M	WATER MATRIX ANALYSES							
FIELD	Metals in Water		Results in ug/L											HARDNESS
U	A	B8 11 11 11 11 11 11 11 11 11 11 11 11 11	2	Co	ರ	రె	F.	я́н	Mn	ž	æ	욼	27	CALC.
07-100-GW-1 07-100-GW-2 07-100-GW-3 07-100-SW-1 07-100-SW-3 07-100-SW-3 1D 1D 1D 07-100-GW-2	7.61 3.72 3.48 6.17 2.98 4.53 Wet Chemistry TOTAL DISSOLVED SOLIDS 124	7.73 74.3 74.3 74.3 11 43.2 171 171 171 171 173 173 173 173 173 173	10.2 J 2.55 U 2.55 U 2.55 U 2.55 U 2.55 U 2.55 U 2.55 U 2.55 U 2.55 U	80.7 5.99 U 5.99 U 5.99 U 5.99 U 5.99 U 6.08 6.08	12.6 5 U 55 U 55 U 55 U 55 U NR NR	10.6 10.6 5.77 15 13.1 14.1	16600 J 0.200 45200 JX 1380 J 0.210 140 JX 199 J 0.100 80.4 JX 12500 J 0.100 80.4 JX 155 J 0.170 71.8 JX 760 J 0.230 358 JX T.8 JX 760 J 0.230 358 JX U-Net Detected J- Batimar approx. 200' South of cabin. SEZ - Below small footbridge in bend in road to cabin, approx. 200' South of cabin. SEZ - Below confluence of add if 2 with Comprommise Galch stream. SEZ - Below confluence of add if 2 with Comprommise Galch stream. SEZ - Degradient, approx. 200' above waste rock dump 5. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR4 - Composite of subsamples WR1A, 1B, and 1C.	0.200 0.210 0.100 0.160 0.170 0.230 0.230 1 of cabin: 1 of cabin: 200 above waste; 200 above waste; mmples WR.LA, 1B,	45200 JX 447 34 J 83 U 8780 140 JX 478 11.2 J 18.3 U 164 80.4 JX 106 123 J 18.3 U 165 7450 JX 106 123 J 18.3 U 3660 718 JX 8.78 U 9.77 J 18.3 U 3660 718 JX 8.78 U 9.77 J 18.3 U 3660 U-Not Detected: J. Entimated Quantity, X. Outlier for Accuracy or Precision: NR. Not Requested to cabin, GWJ - From shaft #1. besiler grab from 10° GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #1. seep. GWZ - Collappeed actif #2. seep. GWZ - Collappeed actif #2. seep. GWZ - Same as sample SE1. SWZ - Same as sample SE2. 4C, 5A, 5B, 5c, 6A. SWZ - Same as sample SE2.	447 47.8 8.7.8 10.6 8.78 9.57 imated Quantity, 3.	34 J 11.2 J 4.2.1 J 12.3 J 9.77 J 12.6 J 12.6 J Coulier for Accuracy GW1 - From sh GW2 - Collapse GW3 - Collapse SW1 - Same as	34 J . 8.3 U 8780 49 11.2 J 18.3 U 164 81. 4.21 J 18.3 U 165 50. 123 J 18.3 U 3660 26 9.77 J 18.3 U 3660 26 9.77 J 18.3 U 3660 26 9.77 J 18.3 U 3660 26 9.77 J 18.3 U 3660 26 9.77 J 18.3 U 3660 26 9.77 J 18.3 U 3600 3600 3600 3600 3600 3600 3600 3	8780 164 165 3660 454 310 is Requested	490 81.1 50.5 57.7 56.7 56.7
07-100-5W-3 07-100-SW-2 07-100-SW-3	394 80 74	A A A A	25 25 25 25 25 25 25 25 25 25 25 25 25 2	× × 0.05 0.05 0.05	Z Z Z Z Z Z Z Z	<u>a</u>	6B, and 6C. BACKGROUND - 200' Northeast from acit #3; from the Compromise Mine (07-100-3S-1).	rtheast from adit #	3; from the Comprom	9		अवाक्तित अंदर्भ		

Mine/Site Name: Carpenter Creek Tailings	County: Cascade
Legal Description: T 14N R 8E	Section(s). SE 1/4, SW 1/4, Sec. 16; NE 1/4,
Mining District: Niehart	NW 1/4, Sec. 21
Latitude: N 46° 58' 00"	Mine Type: Mill Tailings
Longitude: W 110° 43' 01"	Primary Drainage: Belt Creek
Land Status: Private/Pubic	USGS Code: 10030105
Quad: Neihart	Secondary Drainage: Carpenter Creek
Inspectors: Tuesday, Babits, Clark, Belanger,	Date Investigated: May 24 and 25, 1993
Flammang, Lasher/Pierson	P.A. # <u>07-103</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

• The total volume of mill tailings associated with this site was estimated at 111,000 cubic yards, contained in two impoundments (upper and lower). The following elements were elevated at least three times background:

Arsenic: 34.5 to 139 mg/kg Barium: 663 to 2,820 mg/kg

Cadmium: 12.4 to 34.2 mg/kg Cobalt: 21.5 mg/kg

Copper: 1,950 to 3,740 mg/kg Manganese: 2,100 to 6,870 mg/kg

Lead: 3,750 to 18,500 mg/kg Zinc: 1,790 to 2,990 mg/kg

- The tailings were poorly contained, and were actively eroding into Carpenter Creek from surface runoff and bank undercutting, and were only 25% vegetated. Tailings materials were observed washing into Carpenter Creek during a storm event.
- No waste rock or flowing adits were associated with this site.
- An observed release to surface water for arsenic, barium, and lead was documented with sediment samples. No exceedences of drinking water standards were documented.
 Aquatic life criteria exceedences for cadmium, copper, lead, and zinc (acute) and mercury, cadmium, copper, lead, and zinc (chronic) were documented at this site.
- A spring was located in the northeast corner of the lower pond and ponded up by the road. This water eventually crossed the lower tailings and discharged to Carpenter Creek.
- No hazardous structures or openings existed at the site, though several old cabins at the site were unsafe.

Carpenter Creek Tailings PA# 07-103 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER-TUESDAY INVESTIGATION DATE: 6/24/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID M.	SOLID MATRIX ANALYSES	S.						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn	CYANIDE
07-103-LT-1	61.4	927	24.1	11	14.9 J	3450	42600	0.095	4720		(94.4m)	MANAGE STATES	(mg/kg)	(mg/kg)
07-103-SE-1	 2	2820 1100	30.6 20.6	5.49	9.22 J	2740	28600	0.071	3950	24.9	4940 4940	3.59 U.	2370	1.16 U
07-103-SE-3	139	905	34.5	21.5	11.5	3740	43900 49500	0.071 J	4090 090	30.7	9540	3.99 UJ	1790	Z Z
07-103-SE-4 07-103-SE-5	46.6 24.5	737	25.0	10.2	15.2 J	2670	38000	0.106 J	503 0503	8, 5, 8, 7,	18500	4.06 UJ	1960	<u>¥</u> !
07-103-UT-1	69.8	8 8	28.0	8.72 11.3	9.27 J	2910	28000	0.045 J	2100	16.7	5100	3.33	1090	žž
07-103-UT-2	36.6	1200	21.3	9.93	16.1	1950 1950	40700	0.015 U 0.019 U	6830 6870	45.8 45.8	4620 3750	5.27 J	2990	1.194 U
BACKGROUND	10.5	131	4.	6.83	22.2	26.1	20600	0.048 U	607	. 4.	8 E	7 6 6		0 152.1
									U - Not Detected, J -	- Estimated Quantity,)	C - Outlier for Accura.	Outlier for Accuracy or Precision; NR - Not Requestee	Not Requested	Ľ Ž
	Acid/Base Accounting	Accounting												
FTELD ID	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE VIOOR	SULFUR ACID BASE POTENT: V1000					
07-103-LT-1 07-103-LT-2 07-103-UT1 07-103-UT2	1.21 0.5 0.42 0.57	37.8 15.6 13.1 17.8	25.1 16.1 23.4 21.2	-13 0.43 10.3 3.40	0.09 0.2 0.07 0.12	0.5 0.15 0.05 0.13	0.81 0.15 0.30 0.32	15.9 4.69 1.56 4.06	9.16 11.4 21.9 17.1					

FIELD ID 07-103-SW-1	Metals in V	Metals in Water . Re	Results in ug/L											
ID 77-103-SW-1)			1							HA	HARDNESS
77-103-SW-1	As	Ba	P _D	පී	ប៉	ខី	Fe	Hg	W	ž	ź	Ę	,	CALC.
	26	186									- 11		Zu(mg	Zn(mg CaCO3/L)
07-103-SW-3	2.17		<u>.</u> 4	0.00	0.03	62.9	174	0.064	243	8.78 ∪	42	18.3 U	560	560 22 R
07-103-SW-4	2.58	14.9	4	0 66 5	- u	5 7 7 9	226	0.15 J	249	8.78 U	45.8	18.3 U	64 64	3 6
07-103-SW-5	2.81	15.8	3.37	5.99 U	6.67 J	56.2	12/	2 2 2 2	244 244	8.78 U	24.8	18.3 ∪	238	30.2
							<u>}</u>	200.0	707	9.57	90.4 4.	18.3 U	526	28.4
									U - Not Detected, J -	Estimated Quantity, X	- Outlier for Accuracy	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	(Requested	
Wet	Wet Chemistry	ď	Results in mg/l			L								
			1			E	[1] - Commonite of enhancement of the Astronomy	17 14 91		LEGEND	ı			
	TOTAL					[12]	LTZ - Composite of subsamples LT-LA, -2A, -3A, and -4.	mples Lifth -2A,	-5A, and -4A. 37, and 4B		SWI - Above	SW1 - Above Snow Creek confluence in Carpenter	tence in Carpe	inter
_	DISSOLVED					SEI	SE1 - Just above confluence of Carpenter Creek with Snow Creek	se of Camenter Cre-	of, alle 45.	1	Creek			
1.0.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		approximately 730 feet from SE1.	O feet from SE1.		1	SW3 - Same as sample SE3.	sample SE3.		
07-103-SW-1	ಜ	s 5.0	14 <			SE3	SE3 - At PPE of lower tailings pond in Carpenter Creek.	ings pond in Carpen.	ter Creek.		SW5 - Same as sample SE5.	s sample SES.		
07-103-SW-3	£ 32	× × 500	1	0.05	œ Z	SES	SE4 - At Free of upper takings pond in Carpentar Creek. SE5 - Upgradient of upper tailings pond in Carpenter Creek.	ungs pond in Carpen tailings pond in Car	iter Creek. Denter Creek					
07-103-5W-4	T ;	۰ ر ن ن	4	0.05	¥	5	JT1 - Composite of subsamples UT1B, 2A, and 3B.	mples UTIB, 2A, an	d 3B					
C-MC-C01-7	t	o.c v	2	20.05	Œ Z	5	JT2 - Composite of subsamples UTID, 2C, and 3C.	mples UTID, 2C, an	d 3C.					
						BAC	BACKGROUND - From Silver Dyke Adit (07-135-SS-1).	Water Dyke Adit (07-	135-55-1).					

Mine/Site Name: Rochester	County: Cascade
Legal Description: T 14N R 8E	Section(s). SE 1/4, SE 1/4, Sec. 29
Mining District: Neihart	Mine Type: Hardrock/Au, Ag, Zn, Pb
Latitude: N 46° 56' 24"	Primary Drainage: Belt Creek
Longitude: W 110° 43' 46"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Rock Creek
Quad: Neihart	Date Investigated: June 2, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>07-110</u>
Organization: Pioneer Technical Services, Inc.	

No mill tailings were associated with this site.

• The volume of waste rock associated with this site was estimated to be 3,280 cubic yards. The following elements were elevated at least three times background:

Arsenic: 193J mg/kg

Cadmium: 7.3 to 136 mg/kg Copper: 47.4J to 205J mg/kg

Mercury: 0.65 mg/kg

Lead: 3,580 to 10,700 mg/kg Zinc: 2,060 to 29,700 mg/kg Barium: 744J to 1,110J mg/kg

Chromium: 37.9J mg/kg Iron: 38,800 to 40,900 mg/kg Nickel: 76.5 to 160 mg/kg Antimony: 51.4J mg/kg

The waste rock dumps had only sparse vegetated.

- Rock Creek was flowing adjacent to WR-6 and undercutting the waste dump and formed an unstable highwall. No samples of Rock Creek were collected. The pH and specific conductance ranged from 5.77, and 330 umhos/cm upstream to 5.94 and, 420 umhos/cm downstream.
- No observed releases, exceedances of drinking water standards or aquatic life criteria were documented at this site.
- No discharging adits, springs or seeps were observed.
- Four hazardous openings existed at the site: partially caved shafts with steep sides.

Rochester PA# 07-110 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUSEDAY INVESTIGATION DATE: 06/02/93

Column Fe
Fe
38800
12000 0.142 320 10 J 138 3 UJ U - Not Detectet J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Req LEGEND WR5 - Composite of subsamples WR54, 5B, 5C, WR5 - Composite of subsamples WR54, 5B, 5C, WR6 - Composite of subsamples WR54, 5B, 5C, WR6 - Composite of subsamples WR54, 5B, 5C, WR6 - Composite of subsamples WR54, 5B, 5C, WR6 - Composite of subsamples WR54, 5B, 5C, WR5 - Composite of subsamples WR54, 5B, SC, WR5 - Composite of subsamples WR54, 5B, SC, WR54, SC, W
U - Not Detected, J - Estimated
ORGANIC SULFUR ACID BASE SULFUR ACID BASE FOTENT:
0.82 14.7 0.29 7.19

Mine/Site Name: Silver Belt	County: Cascade
Legal Description: T 14 N R 8 E	Section(s): NW 1/4, SW 1/4, Sec. 28
Mining District: Neihart	Mine Type: <u>Hardrock/Ag, Pb, Zn, Au</u>
Latitude: N 46° 56' 39"	Primary Drainage: Belt Creek
Longitude: W 110° 43' 15"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Rock Creek
Quad: Neihart	Date Investigated: July 30, 1993
Inspectors: Babits, Flammang/Pierson	P.A. # <u>07-111</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no tailings at this site.
- The volume of uncovered waste rock on site was estimated to be approximately 9,005 cubic yards. The following were elevated at least three times background:

Arsenic: 500 to 581 mg/kg

Copper: 116J to 135J mg/kg

Moroup: 0.645 IX mg/kg

Managenese: 2.620 to 3.080 mg/kg

Lead: 4,180 to 5,350 mg/kg

Antimony 24J to 28J mg/kg

Zinc: 9,500J to 18,300J mg/kg

- One adit discharge was identified at the site; the pH measurement was 6.63. The MCL
 for cadmium and the acute and chronic aquatic life criteria for cadmium, copper, lead,
 and zinc were exceeded in the adit discharge. Also, the chronic aquatic life criteria for
 iron and mercury were exceeded in the adit discharge.
- Rock Creek flowed through waste rock located on site. Observed releases to Rock
 Creek were documented for cadmium, copper, mercury, manganese, and zinc. The MCL
 for cadmium and acute and chronic aquatic life criteria for cadmium and copper were
 exceeded in the downstream sample; these exceedances were directly attributable to the
 site.

Silver Belt PA# 07-111 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/30/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis				SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
07-111-SE-1 07-111-SE-2 07-111-WR-1 07-111-WR-2	144 J 28 J 581 J 500 J	114 J 258 J 105 J 85.6 J	53.2 J 10.4 J 35.3 J 83.8 J	19.3 13.1 6	7.6 J 29.8 J 29.8 J 5.1 J	187 J 50.9 J 116 J 135 J	31900 28200 59300 57900	0.143 JX 0.104 JX 0.39 JX 0.645 JX	13200 1010 3080 2620	27 26 29 5	2810 225 4180 5350	13 J 17 U 24 J 28 J	8060 J 1650 J 9500 J 9500 J	X X X X
BACKGROUND	L 6 L	110	0.4 UJ	7.4	10.4	=	12000	0.142	320	10 J	138	3 UJ	115	Z Z
	Acid/Base Accounting	ccounting							U - Not Detected, J -	U - Not Detector, J - Belinning Quantity, X - Outlier for Accumsy or Precision; NR - Not Requested	- Outlier for Accuracy	or Precinion; NR - 1	Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. ¢1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT:					
07-111-WR-1 07-111-WR-2	1.56 0.55	48.7 17.2	5.19 2.45	-43.5 -14.7	0.89	0.21 0.02	0.46	6.56 0.62	-1.37 1.83					

	Metals in Water	Nater				WATER MATR	WATER MATRIX ANALYSES							
FIRT D	Results in ug/L	ng/L												HABDNESS
1	As	Ba	8	රී		5		Hg	Mn	Z	£	ß	Zu	CALC.
07-111-GW-1 07-111-SW-1 07-111-SW-2	4.99 J 2.1 J 2.76 J	3.87 19.8 34.1	37.9 13 2.57 U	19.7 6.83 9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U 6.83 U	28.2 10.1 1.55 U	1520 22.7 32.8	0.11 J 0.14 J 0.038 U	14100 462 11.4	14100 48.6 462 12.7 U 11.4 12.7 U	231 3.93 1.54	30.7 U 30.7 U 30.7 U	8930 3800 86.8	930 68 800 52.5 6.8 34
	Wet Chemistry								U-Not Detected, J.	U - Not Detectock J - Estimated Quartity; X - Outlier for Accuracy or Presision; NR - Not Requested	Outlier for Accuracy	7 or Precision; NR - N	iot Requested	
	Results in mg/l									LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		3EI - 100 feet below waste rock dump 2 on Rock Creek. SE2 - Across from cabins above waste rock dump 2. WR1 - Composite of subsamples WR1A, 1B, 1C, and 1D. WR2 - Composite of subsamples WR2A and 2B.	te rock dump 2 on l above waste rock d amples WR1A, 1B, umples WR2A and	Rock Creek. hump 2. , 1C, and 1D. 2B.		SW1 - Same as SE1. SW2 - Same as SE2.	us SE2.		·
07-111-GW-1 07-111-SW-1 07-111-SW-2	176 97 76	A A A	60 8 8	v v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N N N N N N N N N N N N N N N N N N N		BACKGROUND - From Mand S. Mine (07-129-SS-1).	Maud S. Mine (07-1	129-83-1).					

Mine/Site Name: Fairplay	County: Cascade
Legal Description: T 14N R 8E	Section(s): SW 1/4, NW 1/4, Sec. 28
Mining District: Neihart	Mine Type: <u>Hardrock/Ag, Pb, Zn, Au</u>
Latitude: N 46° 56' 44"	Primary Drainage: Belt Creek
Longitude: W 110° 43' 10"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Rock Creek
Quad: Neihart	Date Investigated: July 30, 1993
Inspectors: Babits, Flammang/Pierson	P.A. # <u>07-112</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no tailings at this site.
- An estimated 2,010 cubic yards of uncovered waste rock were located at this site. The following elements were elevated at least three times background:

Arsenic: 257J mg/kg

Copper: 287J mg/kg

Mercury: 1.02JX mg/kg

Lead: 18,400 mg/kg Zinc: 6,260 mg/kg Cadmium: 22.9J mg/kg

Iron: 40,500 mg/kg

Manganese: 1,140 mg/kg

Antimony: 20J mg/kg

- One discharging adit was identified at the site; the pH measurement was 6.09. The MCL for cadmium and the acute and chronic aquatic life criteria for cadmium, copper, lead, and zinc were exceeded in the adit discharge. Additionally, the chronic aquatic life criteria for iron was exceeded in the adit discharge.
- Waste rock was located approximately 40 feet from an unnamed tributary to Rock Creek.
 No MCL/MCLG or acute or chronic aquatic life criteria exceedances were attributed to the site.
- An observed release to the unnamed tributary to Rock Creek (sediment) was documented for mercury.
- There were no hazardous openings or structures identified at the site.

Fairplay PA# 07-112 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 0730/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MAT	SOLID MATRIX ANALYSES	6						
FIELD D	As (mg/Kg)	As Ba Cd (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	ت	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Ke)	Zn (ma/Ka)	CYANDE
07-112-SE-1 07-111-SE-2 07-112-WR-1	21 J 28 J 257 J	230 J 258 J 44.2 J	3.5 J 10.4 J 22.9 J		48.9 J 29.8 J 2.5 J	36.6 J 50.9 J 287 J	43600 28200 40500	0.026 JX 2680 0.104 JX 1010 1.02 JX 1140	2680 1010 1140	26 26 4	455 225 18400	7 U 17 U 20 J	763 J 1650 J 6260 J	#
BACKGROUND	19 J	110	0.4 UJ	7.4	10.4	Ξ	12000	0.142	320 U - Not Detected; J -	320 10 J 138 3 UJ 115 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - New Removement	138 X - Outlier for Accu	3 UJ	115 R - Not Requested	
	Acid/Base Accounting	Accounting											•	
FIELD U	TOTAL SULFUR %	TOTAL SULFUR SULFUR SULFUR ACID BASE SULF ACID BASE POTENT. POTENT. SULF V1000¢ V1000¢ V1000¢ %	NEUTRAL. POTENT. t/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASB POTENT. V1000t					
07-112-WR-1	2.48	77.5	47.4	-30.1	4.0	0.98	1.06	30.6	16.8					

WATER MATRIX ANALYSES	Fe Hg Man Ni ph ea	U 92.7 30. U 0.88 30. U 0.72 UJ 30. U 1.54 30.	LEGEND GW1 - Adit discharge from adit #1. SB1 - Across from dump where stream first appears. WR1 - A composite of subsamples WR1A and B (2/3 A and 1/3 B). BACKGROUND - From Mand S. Mire (07-129-SS-1). SW2 - QA Blank.
		11.5 6.83 U 9.7 U 6.83 U 9.7 U 6.83 U 9.7 U 6.83	* NO3/NO2-N CYANTDB
	₽ CS	9.7 22.9 33.7 2.57 U 2.01 U 2.57 U 34.1 2.57 U	CHLORIDB SULFATE 5.0 88 5.0 5 NR NR 5.0 6
Metals in Water Results in ug/L	i	1	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS 158 < 5.0 67 < 5.0 NR NR NR NR NR NR NR NR
	FIELD D	07-112-GW-1 07-112-SW-1 07-112-SW-2 07-111-SW-2	FIELD LD. 07-112-GW-1 07-112-SW-1 07-111-SW-2

County: Cascade Mine/Site Name: Atlantus Section(s): SE 1/4, SE 1/4, Sec. 29 Legal Description: T 14N R 8E Mine Type: Hardrock/Au, Ag, Pb, Zn Mining District: Neihart Primary Drainage: Belt Creek Latitude: N 46° 56' 14" USGS Code: 10030105 Longitude: W 110° 43' 44" Secondary Drainage: Compromise Gulch Land Status: Private Date Investigated: June 2, 1993 Quad: Neihart P.A. # 07-113 Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 55 cubic yards. The following elements were elevated at least three times background (using XRF data):

Iron: 36,694 to 44,266 mg/kg

Manganese: 13,114 to 20,804 mg/kg

Lead: 3,681 to 4,363 mg/kg

Zinc: 1,336 to 1,836 mg/kg

- No adit discharges, seeps or springs were observed. The nearest surface water was Compromise Gulch, 500 feet to the south.
- No observed releases or exceedences of drinking water standards or aquatic life criteria were documented during this investigation.
- One very hazardous mine opening was on site, a 30' deep, partially caved shaft with vertical sides

Mine/Site Name: Stallabrass	County: Cascade
Legal Description: T 13N R 8E	Section(s): SW 1/4, NW 1/4, Sec. 4
Mining District: Neihart	Mine Type: Hardrock/Au (no significant
Latitude: N 46° 55' 11"	production)
Longitude: W 110° 43' 24"	Primary Drainage: Belt Creek
Land Status: Private/Public	USGS Code: 10030105
Quad: Neihart	Secondary Drainage: Belt Creek
Inspectors: Bullock, Clark/Pierson	Date Investigated: July 30, 1993
Organization: Pioneer Technical Services,	P.A. # <u>07-120</u>
Inc./Thomas. Dean and Hoskins. Inc.	

 Neihart tailings were hauled to this site during highway construction in the late 1970's for driveway cover. The material was not used and was presently stock piled adjacent to the MDT Maintenance facility. The volume of mill tailings was estimated to be 50 cubic yards. The following elements were elevated at least three times background:

Arsenic: 181J mg/kg Manganese: 7,960 mg/kg

Barium: 3,000J mg/kg
Cadmium: 17.9J mg/kg
Copper: 157J mg/kg
Lead: 7,320 mg/kg
Antimony: 14J mg/kg
Zinc: 4,570J mg/kg

• The volume of waste rock associated with this site was estimated to be 5,458 cubic yards. The following elements were elevated at least three time background:

Arsenic: 165J mg/kg

Barium: 2,880J mg/kg

Cadmium: 2.4J mg/kg

Copper: 76.1J mg/kg

Mercury: 3.54JX mg/kg

Lead: 1,800 mg/kg

Antimony: 27J mg/kg

Zinc: 673J mg/kg

Iron: 36,700 mg/kg

- There were no discharging mine openings, seeps or springs identified at this site.
- No domestic groundwater wells were present on this site. The residents on this site
 used water directly from Belt Creek instead of groundwater.
- There were no direct runoff pathways between this site and Belt Creek, located approximately 150 yards from the base of the lower waste rock dump.
- There were 3 adits identified at this site, all classified as hazardous mine openings.

Stallabrass Pa# 07-120 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/30/83

	Metals in soils Results per dra	Metals in soils Results per dry weight basis	<u>.v</u> .		·	SOLID MAT	SOLID MATRIX ANALYSES	·						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Ou (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (ms/Ke)	Ni Mi	Pb		5 2	CYANIDE
07-120-TP-1 07-120-WR-1	181 165 J	3000 J 2880 J	17.9 J 2.4 J	2.3 U 5.9	9.3 J 11.5 J	157 J 30900 76.1 J 3670		0.116 JX 3.54 JX	7960	ii	7320 1800	(mg/kg) ====================================	(mg/kg) 4570 J 673 J	Kg) (mg/Kg) ====================================
BACKGROUND	19 J	110	0.4 UJ	7.4	10.4	E	12000	0.142	320	10 J	138	3 07	115	ž ž
	Acid/Base Accounting	e diffa	•						U - Not Detected, J.	U - Na Detected, I - Estimated Quantity, X - Osalier for Accuracy or Precision; NR - Not Requested	X - Outlier for Accu	racy or Precision, Ni	R - Not Requested	
FTELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE		SULFUR ACID BASIE POTENT. V1000t	SULFATE SULFUR %		ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	TP1 - Pile of WR1 - Comp BACKGROU TP1 DUP - Du	LEGEND TPI - Pile of Nethart Tailings at MDT maintenance facility. WR1 - Composite from unvegetated areas on damp. BACKGROUND - From the Maud S. Mine (07-129-SS-1). TPI DUP - Duplicate of the 07-120-TP-1 sample.	at MDT maintens etated areas on ch faud S. Mine (07-	ance facility. hump. -129-SS-1).	
07-120-TP-1 07-120-TP-1DUP 07-120-WR-1	0.74 0.72 0.72		10.1 10.9 14.5	-13.0 <0. -11.6 <0. -8.02 0.	60.01 60.01 6.35	0.39 0.38 0.08	0.38 0.37 0.29	12.2 11.9 2.50	-2.05 -0.98 12.0					

Mine/Site Name: Dacotah	County: Cascade
Legal Description: T 14N R 8E	Section(s): NW 1/4, SW 1/4, Sec. 28
Mining District: Neihart	Mine Type: Hardrock/Ag, Pb, Zn
Latitude: N 46° 56' 45"	Primary Drainage: Belt Creek
Longitude: W 110° 43' 24"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Rock Creek
Quad: Neihart	Date Investigated: June 8, 1993
Inspectors: Bullock, Babits, Flammang,	P.A. # <u>07-121</u>
Lasher, Clark/Pierson	
Organization: Pioneer Technical Services, Inc.	

- There were no tailings on site.
- There were approximately 10,015 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 83 to 255J mg/kg Copper: 66.2J to 129 mg/kg

Mercury: 0.793J mg/kg Nickel: 84J mg/kg

Antimony: 26J mg/kg

Cadmium: 9.3J to 40.1 mg/kg

Iron: 36,300 to 67,500 mg/kg Manganese: 2,550 to 12,800J mg/kg

Lead: 1,780 to 21,800 mg/kg Zinc: 3,110J to 10,200 mg/kg

- There was one discharging adit on site which entered Belt Creek. A sample of the discharge revealed a pH of 2.38. MCLs for cadmium, nickel, and antimony and acute and chronic aquatic life criteria were exceeded for cadmium and zinc in the adit discharge. Additionly, chronic aquatic life criteria were exceeded for iron, mercury copper, lead, and nickel.
- The Belt Creek flowed immediately adjacent to the site. Observed releases to Belt Creek were documented for cadmium, copper, iron, manganese, nickel, lead, and zinc. The MCL for nickle was exceeded in the downstream sample, which was directly attributable to the site. Additionally, chronic aquatic life criteria were exceeded for iron and copper in the downstream sample, again attributable to the site.
- There was one open adit, numerous hazardous structures, and highwalls on site.

Dacotah PA# 07-121 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/08/93

-18 - a - 1 - a	Metals in soils Results per dry	Metals in soils Results per dry weight basis				SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/K.e)	CYANIDE
07-121-SE-1 07-121-SE-2 07-121-WR-1 07-121-WR-5 07-121-WR-6	38 126 165 83 255 J	98.9 133 56.1 144 205	63.2 J 3 J 14.9 J 9.3 J 40.1	13.6 J 6.1 J 17.8 J 2 J 5.6	33.4 12.1 7.5 10.3 5.3	541 J 26.6 J 78.8 J 66.2 J 129	9170 65200 36300 67500 40000	0.178 J 0.063 J 0.105 J 0.793 J 0.416	7920 J 1000 J 12800 J 379 J	92 J 12 J 14 J 14 J	398 1710 1780 7510	# 2222.	11300 J 1270 J 4650 J 3110 J	R X X X X
BACKGROUND	19 J 110 Acid/Base Accounting	110 ccounting	0.4 UJ	4.7	10.4	E	12000	0.142	320 U - Not Detected; J - B	10 J Reinwed Quantity, X	138	320 10 J 138 3 UJ 115 U-Not Detector, J. Batimated Quantity, X. Outlier for Accuracy or Precision; NR Not Requested	10200 115	X X
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL. ACID BASE POTENT. V1000t V1000t	NEUTRAL. POTENT. #1000t	NS.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
07-121-WR-1 07-121-WR-5 07-121-WR-6DUP 07-121-WR-6	3.25 2.37 1.65 1.63	102 74 51.5 50.9	37.8 6.28 7.7 7.56	\$ \$ 44	1.13 1.87 0.56 0.54	0.56 0.03 0.29 0.27	1.56 0.47 0.8 0.82	17.5 0.94 9.06 8.43	20.3 5.34 -1.36 -0.88					

	Metals in Water Results in ug/L	Water ug/L				WATER MATI	WATER MATRIX ANALYSES	(F						
MELD		ı												HARDNESS
<u>و</u>	As	Ba	ខ	රි	ರ	Ç	Ę.	Hg	M	Ž	á	ŧ		CALC.
07-121-GW-1 07-121-SW-1	5.13	5.13 2.24 U 420 1.61 II 17.7 16.7	420		21.2	90.1	52600	0.047	1520	951	216	220	Zn (====================================	50 Zn (mg CaCO3/L)
07-121-SW-2	96.		62.9 65.9	 8 4 0	5.33	5.07 21.4	95.9 1580	0.078	231 16400	12.6 124	2.52	21.8 43.9	3060	51.9
									U - Not Detected, J - 1	U - Not Detectod, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	- Outlier for Accuracy	7 or Precision; NR	Not Requested	
	Wet Chemistry	>=												
		=					;			LEGEND				
FIELD	TOTAL					SE1 - SE2 -	SE1 - Ugradient of Dacotah, downgradient of Fairplay. SE2 - Sample of Rock Creek at base of waste rock dump 1.	ah, downgradient o sek at base of wast	of Feriplay. To rock dump 1.		GW1 - Discharge from adit #1. SW1 - Same as sample SE1.	rge from adit #1 s sample SE1.		
LD.	SOLIDS		SULFATE	NO3/NO2-N CYANIDE	CYANIDE		WK1 - Composite of subsamples WRIA, 1B, 1C, and 2. WR5 - Composite of subsamples WR3, 5A, 5B, 9A, and 9B.	amples WR1A, 1B unples WR3, 5A, :	', 1C', and 2. 5B, 9A, and 9B.		SW2 - Same as sample SE2.	is sample SE2.		:
07-121-GW-1 07-121-SW-1	2330		1400	 5.0 1400 < 0.05 NE 	X.		WR6 - Composite of subsamples WR6, 7, and 8. BACKGROUND - From the Maud S. Mine (07-129-SS-1).	amples WR6, 7, an ie Maud S. Mine ((nd 8. 07-129-SS-1).					
07-121-SW-2	8 S	v v	8 5	0 0 0 0 0 0 0 0	ž Z									
			į											

Mine/Site Name: Maud S.	County: Cascade
Legal Description: T 14N R 8E	Section(s): SW 1/4, SW 1/4, Sec. 28
Mining District: Neihart	Mine Type: <u>Hardrock/Ag, Pb, Zn</u>
Latitude: N 46° 56' 25"	Primary Drainage: Belt Creek
Longitude: W 110° 43' 18"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Rock Creek
Quad: Neihart	Date Investigated: June 9, 1993
Inspectors: Babits, Flammang	P.A. # <u>07-129</u>
Organization: Pioneer Technical Services, Inc.	

- There were no tailings on site.
- There were approximately 1,800 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 1,380J mg/kg
Cadmium: 35.9 mg/kg
Iron: 55,600 mg/kg
Manganese: 8,290 mg/kg
Lead: 7,880 mg/kg
Antimony: 18J mg/kg

Copper: 159 mg/kg Mercury: 1.11 mg/kg Nickel: 55J mg/kg Lead: 7,880 mg/kg Zinc: 5,610 mg/kg

Barium: 526 mg/kg

- One adit was identified on site, which held water but was not discharging. The pH of the adit discharge was 6.51. MCLs for cadmium and antimony and acute and chronic aquatic life criteria for cadmium, copper, lead and zinc were exceeded in the sample.
- There was no surface water on site. The nearest surface water was Rock Creek located approximately 0.5 miles away. No surface water or sediment samples were collected.

Maud S. PA# 07-129 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/08/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>:ম</u>			SOLID MA	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	As Ba (mg/Kg) (mg/Kg)	Cd (mg/Kg)		Co Cr (mg/Kg) (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANDE
07-129-WR-1	1380 J	526	35.9		27	159	25600	1.11	8290	55 J	55 J 7880	# -	5610 NR	NR.
BACKGROUND	19 J	110	0.4 UJ	7.4	10.4	Ξ	12000	0.142	320	10 J	138	3 UJ		χ Υ
	Acid/Base Accounting	Accounting							U - Not Detected, J	U • Not Detected, I - Estimated Quantity, X • Outlier for Accuracy or Precision, NR • Not Requested	X - Outlier for Accu	uncy or Precision; Ni	R - Not Requested	
TOTAL SULFUR NEUTRAL. ACID BASE SULF. FIELD SULFUR ACID BASE POTENT. POTENT. SULF. ED % V1000t V1000t V1000t %	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.					
07-129-WR-1	1.14	4	7.25	-37	1.07	7 0.04	0.3 1.25 6	1.25	9					

As Ba Cd Co 1.61 U 19.5 42.6 5.99 U 1.74 19.2 39.5 5.99 U Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N C	WATER MAI	WATER MATRIX ANALYSES						
1.61 U 19.5 42.6 1.74 19.2 39.5 Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE 64 < 5.0 43	õ	F	Hg Mn	Z	£	ó	ш ,	HARDINESS CALC.
Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE 64 < 5.0 43	5 U 22 7.67 21.9	88 63.9	27 27 27	ii ii	228 28.2 222 30.2	28.2 30.2	6260 6360	260 31.7
TOTAL DISSOLVED CHLORIDE SULFATE 64 < 5.0 43			U - Not Detected, J.	U - Not Detected; J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accura	cy or Precision, NR	· Not Requested	
TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE 64 < 5.0 43				LEGEND				
64 < 5.0 43		WRI - Composite of subsamples WRIA, 1B, and 1C. BACKGROUND - Approx. 150-200 feet above adit. From Mand S. Mine (07-129-SS-1).	RIA, IB, and IC. 0 feet above adit. (29-SS-1).		GW1 - Filled adit. GW2 - Duplicate o	GW7 - Filled adit. GW2 - Duplicate of sample 07-129-GW-1.	-129-GW-1	
3.0 40 0.12	R. R.							

Mine/Site Name: Neihart Tailings	County: Cascade
Legal Description: T 14N R 8E	Section(s): SW 1/4, SW 1/4, Sec. 29
Mining District: Neihart	Mine Type: Nill Tailings Pond
Latitude: N 46° 56' 30"	Primary Drainage: Belt Creek
Longitude: W 110° 44' 40"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Belt Creek
Quad: Neihart	Date Investigated: June 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>07-134</u>
Organization: Pioneer Technical Services, Inc.	

There were approximately 23,000 cubic yards of tailings associated with this site. The following elements were elevated at least three times background:

Arsenic: 190 to 284 mg/kg

Cadmium: 47.4 to 63.1 mg/kg

Lead: 37,400 mg/kg

Antimony: 10.1J to 17.4J mg/kg

Zinc: 10,400 to 14,000 mg/kg

- There was no waste rock associated with this site.
- There were no discharging adits or shafts associated with this site.
- Belt Creek flowed between the tailings impoundment and U.S. Highway 89. The northeastern side of the tailings impoundment was heavily riprapped during a highway reconstruction project in the 1970's. A run-on diversion ditch, discharged into a small wetlands and then into Belt Creek which encircled the southern end of this site. A sample collected from the wetlands discharge did not exceed any MCL/MCLGs, but did exceed acute aquatic life criteria for cadmium and zinc, as well as chronic aquatic life criteria for cadmium, copper, lead, and zinc. Surface water samples were not collected in Belt Creek due to dilution effects from very high flowrates. Stream sediment samples from Belt Creek documented an observed release of arsenic, directly attributable to this site.
- One residence was located adjacent to this site, but did not appear to have been recently occupied.

Neihart Tailings PA# 07-134 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s.</u>	•		SOLID MATF	SOLID MATRIX ANALYSES							
FIELD	As (mg/Kg)	Be (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANDE
07-134-SE-1 07-134-SE-2 07-134-SE-3 07-134-TP-1-1 07-134-TP-2	27.2 8 29.2 190 284 234	2440 224 600 1630 984 38.7	93.1 1.0 3.8 47.4 63.1 40.7	11.5 9.33 9.02 3.96 17.8 5.4	15.5 18.8 16 7.31 15.3	67.7 14.1 29.8 223 371 62.7	17100 18400 20100 33100 38300 53600	0.105 U 0.083 0.05 U 0.118 0.121 0.061 U	71500 865 2240 11100 20700	488 26.9 29.7 63.4 151 9.14	1060 327 792 10100 11400 37400	#-33	22800 528 1170 11400 14000	2277 1.289 U 1.27 U 1.213 U 1.283 U
BACKGROUND	53.3 828 Acid/Base Accounting	828 Accounting	15.3	9:11	72.7	50.1	30600	0.051 U	10400 U - Not Detected, J -	91.5 Estimated Quantity, X	5110 :- Outlier for Accuracy	10400 91.5 5110 2.99 UJ 3530 U-Not Detector, J. Edumated Quantity, X. Outlier for Accuracy or Precision, NRNot Requested	3530 for Requested	A.
FEELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. #1000t	A ASE	:172	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
07-134-TP1-1 07-134-TP1-2DUP 07-134-TP1-2 07-134-TP-2 07-134-TP-2DUP	1.64 3.39 3.37 4.94 8.96	51.2 106 105 154 155	26.5 26.3 -9.1 -9.3	-34 -79 -79 -163 -164	0.56 0.15 0.16 2.44 2.45	0.55 2.07 2.04 0.86 0.88	0.53 1.17 1.17 1.64 1.63	17.2 64.7 63.7 26.9 27.5	0.54 -38.2 -37.4 -35.9 -36.8					

	Metals in Water Results in un/l	Vater			S .	WATER MATRIX ANALYSES	ANALYSES						
FIELD ID	As	Ba	1	ర		ਰ	Fe	H	Mn	Ž	£	6	HARDNESS CALC.
07-13 4- SW-1	U 86.0			3 5.99 U	5 U	8.9 J	223	0.038 U	660 U-Not Detect J-B	16 Batimated Questity, X -	12.1 Outlier for Accuracy	660 16 12.1 18.3 U 1580 U-Not Deceted J - Editinated Quantity, X - Outline for Accuracy or Precision: NR - Not Removed	223 0.038 U 660 16 12.1 18.3 U 1580 JX 57.3 U - Not Detector J. Editional Quantity, X. Outlier for Accuracy or Practices NR. Not Recogni
	Wet Chemistry Results in ma/												
						į	•			LEGEND			
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE	SE2 - U SE3 - U SE3 - D TP1-1 -	2E1 - Same as sample SWI. SE2 - Upgradient Belt Creek Tailings. SE3 - Downgradient of Belt Creek Tailings. TP1-1 - Composite of oxidized zone; from h	2E Same as sample SW1. SE2 - Upgradient Belt Creek Tailings. SE3 - Downgradient of Belt Creek Tailings. TP1-1 - Composite of oxidized zone; from holes 2-5 in tailings pond 1.	les 2-5 in tailings	pond 1.	TP2DUP - Du SW1 - Outlet ponc	IP2DUP - Duplicate of sample 07-134-TP-2. SWI - Outlet of Belt Creek of Belt Creek of se pond associated with diversion ditch	TP2DUP - Duplicate of sample 07-134-TP-2. SW1 - Outlet of Belt Creek of Belt Creek of settling pond associated with diversion ditch.
07-134-SW-1	86 < 5.0 28 < 0.05 0.01	> 5.0	28	× 0.05	0.01	TP1-2 - TP2 - C BACKGI	Composite of TP2 omposite of reduce ROUND - From C	TP1-2 - Composite of TP2-1all and TP2-2all. TP2 - Composite of reduced zone; from holes 2-5 in tailings pond 1. BACKGROUND - From Compromise (07-1000-SS-1).	12-5 in tailings po 00-88-1).	md 1.			

Mine/Site Name: Silver Dyke Adit Legal Description: T 14N R 8E	County: Cascade Section(s): SE 1/4, SW 1/4, Sec. 10
Mining District: Neihart	Mine Type: Hardrock / Ag, Pb, Zn
Latitude: N 46° 58' 57"	Primary Drainage: Belt Creek
Longitude: W 110° 41' 48"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Squaw Creek
Quad: Neihart	Date Investigated: June 1, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>07-135</u>
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 12,100 cubic yards. The following elements were elevated at least three times background:

Arsenic: 124 to 217 mg/kg

Cadmium: 48.6 to 72.7 mg/kg

Copper: 2,530 to 3,330 mg/kg

Iron: 80,900 mg/kg

Mercury: 0.66 to 1.35 mg/kg

Manganese: 4,040 mg/kg

Lead: 16,400 to 31,800 mg/kg

Zinc: 6,050 to 7,050 mg/kg

- The waste rock dumps were unvegetated.
- One discharging adit had a significant flow (1 cfs). The adit water (SW-1) had a pH of 5.12, a high specific conductance of 2,450 us/cm, and exceeded drinking water standards for cadmium, copper, nickel, and antimony; aquatic life criteria for lead, mercury, cadmium, copper, lead, and zinc (chronic) and cadmium, copper, and zinc (acute) were exceeded in the adit discharge.
- The discharge flowed over the waste rock at the site and was the source of water in Squaw Creek. No observed releases were documented due to the lack of an upstream sample, however, downstream sediment data was more than three times background soil data for manganese, lead, and zinc. Exceedances of drinking water standards were documented in Squaw Creek for cadmium, copper, nickel, and antimony. Aquatic life criteria for lead, mercury, cadmium, copper, lead, and zinc (chronic) and cadmium, copper, and zinc (acute) were exceeded downstream in Squaw Creek. No seeps or springs were observed...
- One hazardous opening existed on-site: the glory hole on the hilltop above the adit had dangerously steep sides and the DSL erected fence was down in several places.

Silver Dyke Adit PA# 07-135 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/01/93

	7 - 4 - 4		:			SOLID MAT	SOLID MATRIX ANALYSES							
	Metals in soils		Results per dry weight basis	weight basis										
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Ke)	Pb	SP (A)	Zu	CYANIDE
07-135-SE-2	105	₹	50.4	11.2	10.3	1500	36500	0.28	1680	13.8		# :	(mg/kg) ====================================	(mg/Kg)
07-135-SE-4	9. E.	/0.7 49.5	2. Q 4. C	11.2	17.5 14.5	933 875	23700	0.062	2230	12	2460	3.07	8 8 24 25 24 25	Y Y
07-135-WR-1	124	86	72.7	6.9	10.6	3330	60300 60300	0.062 U 1.35	1920 1460	0, C 0, C	1960	3.22 UJ	1330	Z.
7-NVR-50	/17	757	48.6	6	11.2	2530	80900	99.0	4040	29.6	16400	2.8 UJ	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	X X
BACKGROUND	10.5	131	4.1	6.83	22.2	26.1	20600	0.048 U	209	15.6	199	3.39 UJ	878	Z Z
									U - Not Detected, J.	Estimated Quantity	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	macy or Precision; NF	R - Not Requested	
	Acid/Base	Acid/Base Accounting												
	TOTAL	TOTAL	NEUTRAL	SULFUR ACID BASE	SIII FATE	CE exa	CHANGE OF CO.	PYRITIC	SULFUR					
MELD	SULFUR	ACID BASE		POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	ACID BASE POTENT.					-,
				V1000t		8	\$	t/1000t	t/1000t					
07-135-WR1 07-135-WR2	1.98	61.9 61.5	4.0-1 4.0-1	6 62		0.14	0.94 0.81	4.37 6.87	4.78 5.84					

	Metals in Water		Results in ug/L			WATER MAT	WATER MATRIX ANALYSES							
TELD	A	8	ੲ	පී	Ċ	ć	ß	į	• ;				HA	HARDINESS CALC.
## ## ## ## ## ## ## ## ##		## ## ## ## ## ## ##						gu 	Min	ž	£	S	Zn (m	Zn (mg CaCO3/L)
07-135-GW-1	2.5	29.3		5.99 U	5 0	12.3	173 J	0.150	75 o IY	**************************************				
07-135-GW-2	2.84	29.4	2.55 U	5.99 U	5 0	25.3	308	6200	25.55 75.55 75.55	0 / 0 0 / 0	97.6	18.3 U	497	83. 1.
07-135-SW-1	4.88	2.24 L		260	7.72	8950	37400	0.150	428000 ×	0.70 0.70 0.70	4.76	18.3	1350	83.6
07-135-SW-2	7.12	10.6		208	60	0440	2007	3 5	X 00007	9/9	826 J	<u>\$</u>	148000	1320
07-135-SW-3	4.37	16.2		8	20.00	4220	1540	0.150	XC 00001	85	1400 7	147	120000	1090
07-135-SW-4	4.79	21.5		9	20.00	2200	2 6	5 6	43100 JX	310	268 J	40.6	26900	495
				?)	3	6 067	2	Z6000 JX	201	343 J	37	36800	381
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X	- Outlier for Accura	cy or Precision, NR	L - Not Requested	-
	Wet Chemistry	uz.	Results in mg/l			Ŀ								
	TOTAL		•			SR2.	SH2 - 150 fast below been of secute and dome	of unmake and a		LEGEND				
Field	DISSOLVED					SE3.	SE3 - At mad crossing below residence (40:170)	Off Traidence (A)	wild 2.		GW1 - Glen Hawthorne residence.	awthorne reside	nce.	
.GI	SOLIDS	CHLORIDE		-	CYANIDE		SE4 - Squaw Creek above Savage Mill and Carpenter Creek.	Savage Mill and	Our). I Carpenter Creek.		GW2 - Duplicate of sample 07-135-GW1.	te of sample 07.	-135-GW1.	
07-135-GW-1	130	< 50	49	11 11 11			WR1 - Composite of subsamples WR1A, 1B, and 1C.	umples WR1A, 1	B, and 1C.		SW2 - Same as sample SE2.	sample SE2.		-
07-135-GW-2	137	v 500	5.5	0.27	2	W K	WKZ - Composite of subsamples WR2A through 2B.	amples WR2A th	nough 2B.		SW3 - Same as sample SE3.	semple SE3.		
07-135-SW-1	2720	v 5.0	1710	0	2		W 097 - ONO ONE	est of waste roc	ik dump 1,		SW4 - Same as	Same as sample SE4.		
07-135-SW-2	2280	> 5.0	1410	80.0	ď		HOIR GIE SHVEL	HORR LINE AND (U/-135-SS-1)	35-88-1).					
07-135-SW-3	1040	200	642	v 0.05	2									
07-135-SW-4	732	> 5.0	466	0.1	Ž.	-								
						-								

Mine/Site Name: Silver Dyke Tailings	County: Cascade
Legal Description: T 14N R 8E	Section(s): SE 1/4, NW 1/4, Sec. 15
Mining District: Neihart	Mine Type: Tailings from Hardrock mining
Latitude: N 46° 58' 32"	and milling/Ag, Pb, Zn
Longitude: W 110° 41' 43"	Primary Drainage: Belt Creek
Land Status: Public	USGS Code: 10030105
Quad: Neihart	Secondary Drainage: Carpenter Creek
Inspectors: Tuesday, Belanger, Flammang,	Date Investigated: May 26, 1993
Clark, Lasher/Pierson	P.A. # <u>07-137</u>
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc	

• The volume of mill tailings remaining at this site was estimated at 56,350 cubic yards; an unknown volume of tailings, formerly at the site, had been deposited in the Carpenter Creek floodplain following a catastrophic failure of the tailings dam. The following elements were elevated at least three times ground (on-site tailings):

Arsenic: 48.1 to 64.5 mg/kg Cadmium: 6.7JX to 8.1JX mg/kg Manganese: 2,120J mg/kg Barium: 836J to 1,040J mg/kg Copper: 1,140 to 5,510 mg/kg Lead: 2,920 to 14,200 mg/kg

- The tailings were uncontained, the dam was washed away during the failure. Tailings
 were actively eroding into a small tributary that bisected the tailings and discharged to
 Carpenter Creek. The tailings were unvegetated. Tailings materials were observed in
 the Carpenter Creek floodplain downstream from the site.
- No waste rock was associated with this site, though one of the tailings piles consists of small rock fragments of uniform size (1/2").
- An observed release to surface water for arsenic, barlum, cadmlum, copper, manganese, and lead was documented with sediment samples, and for copper, manganese, and lead in water samples. No exceedances of drinking water standards were documented.
 Aquatic life criteria exceedences for copper, lead, and zinc (acute) and mercury, copper, lead, and zinc (chronic) were documented at this site.
- No discharging adits, springs or seeps were found at the site.
- No hazardous structures or openings existed at the site. Potentially hazardous
 highwalls existed within the tailings due to the dam failure and subsequent undercut
 banks.

Silver Dyke Tailings PA# 07-137 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/26/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	. ■	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mo/Ko)	qs qs	r Z	CYANIDE
07-137-SE-1	17.7	67.3										Ì	(mg/Kg)	(mg/Kg)
07-137-SE-2	55.9	6.69 1.00 1.00	14.4 X	10.2 3	20.5	63.5	26400	0.023	855 J	26.4 J	586	3.1 U.I	712	
07-137-SE-3	14.1	79.1	X X	2.5	- 6 - 5 - 4	9440	3/300	0.034	2950 J	26 J	7440 J	3.34 U.	1430	2 Q
07-137-SE-4	6.02	724 J	14 7 IX	20.00	ر د بر	20.0	21300	0.024	317 J	23.3 J	145 J	4.43 U.	237	2 2
07-137-TP-1	48.1	836 J	8.1 JX	•	1. 0	990	45500	0.074	2670 J	48.6 J	7730 J	4.36 UJ	1670 J	2 2
07-137-TP-2	64.5	1040	6.7 JX	7.49	. 6	#200 FF 40	3000	0.057	1080 J	12.1	8620 J	2.96 UJ	816.1	ď
07-137-TP-6	54.2	254 J	6.7 JX	-	12.5	1140	31300	0.067	2120 J	17.1 J	14200 J	3.51 UJ	798 J	Z CZ
) į	2	0000	0.052	1560 J	16 J	2920 J	3.01 UJ	838	ž
BACKGROUND	10.5	131	4.4	6.83	22.2	26.1	20600	0.048 U	209	15.6	299	3.39 UJ	548	ď
	Acid/Base Accounting	Accounting							U - Not Detected, J - E.	stimuted Quantity, X	nimated Quantity; X - Outlier for Accuracy or Precision; NR - Not Requested	or Precision; NR - N	of Requested	•
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
07-137-TP1	0.46	14.4	######################################	######################################	DIESTERNIES O 18									
07-137-TP2 07-137-TP6	0.2 6 1.09	34.1	86.80 24.80	0.27	0.04	0.00 90.00 90.00	0.22 0.08 0.50	2.50 1.25 18.4	3.71 7.14 9.79					

	······································		
	HARDNESS CALC.	0 J 26.8 5 J 36.5 6 U 23.1 9 J 23.7	
	HAI	20 J 80.5 J 6 U 9.9 J	
	5	18.3 U 18.3 U 18.3 U 18.3 U	sample SE1. sample SE2. sample SE3. sample SE4.
	£	1 U 32.2 J 1.2 J 8.36 J	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Same as sample SE3. SW4 - Same as sample SE4.
	ž	8.78 U 8.78 U 8.78 U 8.78 U	LEGEND k sting pile) of pile).
	Ā	2.6 U 8.78 U 1 U 18.3 U 20 15.8 J 8.78 U 32.2 J 18.3 U 80.5 2.6 U 8.78 U 1.2 J 18.3 U 6.5 4.37 J 8.78 U 8.36 J 18.3 U 9.5 U. Not Detected, J.: Estimated Quantity, X.: Outlier for Accuracy or Precision, NR: Not Requested	e with Squaw Cree to be middle of exi to be lower portion sest to mill. (5-SS-1).
	.	0.15 J 0.17 J 0.29 J 0.15 J	EEGEN SEI - On unnamed tributary above site. SE2 - On unnamed tributary at PPE above road. SE3 - On Carpenter Creek above tailings site. SE4 - On Carpenter Creek, 33% above confluence with Squaw Creek. TP1 - Composite of holes 2A and 3B (estimated to be middle of existing pile). TP5 - Composite of holes 12 and 3C (estimated to be lower portion of pile). TP6 - Composite of holes on upper most pile closest to mill. BACKGROUND - From Silver Dyke Adit (07-135-SS-1).
X ANALYSES	£	20.1 85.4 45.2 62.8	SEI - On unnamed tributary above site. SE2 - On unnamed tributary at PPE above ros SE3 - On Carpenter Creek above tailings site. SE4 - On Carpenter Creek, 35% above conflue. TP1 - Composite of holes 2A and 3B (estimat TP6 - Composite of holes 2C and 3C (estimat TP6 - Composite of holes 7C and 3C (estimat TP6 - Composite of holes on upper most pile. BACKGROUND - From Silver Dyke Adit (07)
WATER MATRIX ANALYSES	5	1.35 U 24.2 1.35 U 3.8	8E1 - 0 8E2 - 0 8E3 - 0 8E4 - 0 172 - C 176 - C 176 - C 176 - C
>	ರ	9.03 J 12.5 J 12.3 J 6.43 J	CYANIDE NR NR NR
	రి	D 66.6.6.0 D 66.6.6.0 D 7.6.6.6.0	NO3/NO2-N NO3/NO2-N N 0.05 N 0.05 N 0.05
	ಶ	2.55 U 2.55 U 2.55 U 2.55 U	SULFATE 8 15 < 5.0 < 5.0
ater. //∟	Ba	9.4 24.2 10.2 11.4	CHLORIDE 5:0
Metals in Water Results in ug/L	As	1.49 U 1.49 U 1.49 U 1.49 U	Wet Chemistry Results in mg/l TOTAL DISSOLUED SOLUE 62 64 67 654
	FIELD ID	07-137-SW-1 07-137-SW-2 07-137-SW-3 07-137-SW-4	FIELD LD. 07-137-SW1 07-137-SW2 07-137-SW4

Mine/Site Name: Silver Dyke Mill Legal Description: T 14N R 8E Mining District: Neihart Latitude: N 46° 58' 42" Longitude: W 110° 41' 55" Land Status: Private Quad: Neihart Inspectors: Tuesday Belanger Flammang.	County: Cascade Section(s): NE 1/4, NW 1/4, Sec. 15 Mine Type: Hardrock / Ag, Pb, Zn Primary Drainage: Belt Creek USGS Code: 10030105 Secondary Drainage: Squaw Creek Date Investigated: May 25, 1993 P.A. # 07-138
Quad: Neihart Inspectors: Tuesday, Belanger, Flammang,	Date Investigated: <u>May 25, 1993</u> P.A. # <u>07-138</u>
Lasher, Clark / Pierson	
Organization: Pioneer Technical Services.	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings at this site. Tailings from this mill were transported to the east and were inventoried under the Silver Dyke Tailings, PA# 07-137
- The volume of waste rock associated with this site was estimated to be 82,600 cubic yards. The following elements were elevated at least three times background:

Arsenic: 69.8 to 182 mg/kg

Cadmium: 12.7JX to 40.8JX mg/kg

Mercury: 0.291 to 0.366 mg/kg Lead: 4,830 to 4,380 mg/kg Barium: 450J mg/kg

Copper: 2,120 to 3,730 mg/kg

Manganese: 3,610J to 5,050J mg/kg

Zinc: 1,510 to 4,380 mg/kg

- The waste rock dumps were unvegetated and contained abundant sulfides.
- No discharging adits, springs or seeps were observed.
- Two large ore bins were collapsing and the mill building (with machinery) had mostly collapsed; all three were hazardous structures. Asbestos may have be present associated with old bearings and rollers or with insulation.

Silver Dyke Mill PA# 07-138 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 05/25/93

		H				
	CYANIDE	NR NR	ž Ž		.c.	
	Z Z	1510 J 2300 J	2 8 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Not Requested	2A, 2B, and 2 id 1C.	
	Sb (me/Ke)	#333	3.39 UJ	acy or precision, NK	LEGEND S TP1A, 1B, 1C, SS WR1A, 1B, sn SS WR2A, 2B, 2C Iver Dyke Adit (0	
	Pb (me/K.e.)	4830 J 8430 J 8720 J	607 15.6 667 3.39 UJ 5.48	TOTAL DIESE	LEGEND TP1 - Composite of subsamples TP1A, 1B, 1C, 2A, 2B, and 2C. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of subsamples WR2A, 2B, 2C, 3A, 3B, and 3C. BACKGROUND - From the Silver Dyte Adit (07-138-SS-1).	
	Ni (me/Ke)	40.9 J 13.4 J 28.2 J	15.6 Betimated Ouersity		TP1 - Compo WR1 - Comp WR2 - Comp BACKGROU	
	Mn (mg/Kg)	5050 J 996 J 3610 J	607 U - Not Detected, J -		SULFUR ACID BASE POTENT.	3.20 31.7 -31.7
40	Hg (mg/Kg)	0.024 0.366 0.291	0.048 U		PYRITIC SULFUR ACID BASE V1000t	14.7 12.8 20.9
SOLID MATRIX ANALYSES	Fe (mg/Kg)	41700 58900 39200	20600		ORGANIC SULFUR	0.80 1.06 0.90
SOLID MA	Cu (mg/Kg)	2120 2140 3730	26.1		PYRITIC SULFUR	0.47 0.41 0.67
	Ē	12.1 13 7.57	22.2		SULFATE SULFUR %	0.01 0.60
	Co (mg/Kg)	13.4 J 7.88 J 11.6 J	6.83		SULFUR ACID BASE SULL POTENT: SULL	-21.5 -115 -48.7
<u>8</u>	Cd (mg/Kg)	12.7 JX 17.3 JX 40.8 JX	4. 4.		NEUTRAL. POTENT. v1000t	17.9 -18.8 19.1
Metals in soils Results per dry weight basis	Ba (mg/Kg)	104 J 289 J 450 J	131	Accounting	TOTAL SULFUR ACID BASE V1000t	39.4 96.2 67.8
Metals in soils Results per dry	As (mg/Kg)	69.8 182 111	10.5	Acid/Base Accounting		1.26 3.08 2.17
	FIELD ID	07-138-TP-1 07-138-WR-1 07-138-WR-2	BACKGROUND		HELD D	07-138-TP1 07-138-WR1 07-138-WR2

Mine/Site Name: Sherman No. 2 (Northwest)	County: Cascade
Legal Description: T 14N R 8E	Section(s): NW 1/4, SW 1/4, Sec. 15
Mining District: Neihart	Mine Type: Hardrock/Ag, Pb, Zn, Cu
Latitude: N 46° 58' 27"	Primary Drainage: Belt Creek
Longitude: W 110° 41' 52"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Carpenter Creek
Quad: Neihart	Date Investigated: May 26, 1993
Inspectors: Tuesday/Pierson	P.A. # <u>07-140</u>
Organization: Pioneer Technical Services,	
Inc./ Thomas Dean and Hoskins Inc.	

- There were no mill tailings that were from this site; tailings were present in the Carpenter Creek floodplain below the adit at this site, but they originated upstream from the dam failure at the Silver Dyke Tailings site.
- There was no waste rock observed at this site. It may have washed away or been buried during the dam failure event. No source samples were collected.
- No adit discharges, seeps or springs were observed.
- This site was associated with the Sherman #2 (southwest) PA# 07-142. The adit was approximately 60' from Carpenter Creek.
- No observed releases or exceedances of drinking water standards or aquatic life criteria were documented during this investigation; no surface water samples were collected.
- One mine opening was on site, a partially caved adit that was accessible.

Mine/Site Name: Sherman No. 2 (Southwest) Legal Description: T 14N R 8E	County: Cascade Section(s): NW 1/4, SW 1/4, Sec. 15
Mining District: Neihart	Mine Type: <u>Hardrock/Ag, Pb, Zn, Cu</u>
Latitude: N 46° 58' 23"	Primary Drainage: Belt Creek
Longitude: W 110° 41' 56"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: BurgCreek/Carpenter
Quad:_Neihart	<u>Creek</u>
Inspectors: Tuesday, Belanger, Clark,	Date Investigated: May 26, 1993
Lasher/Pierson	P.A. # <u>07-142</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 200 cubic yards.
 The following elements were elevated at least three times background (using XRF data):

Iron: 66,590 mg/kg Manganese: 2,946 to 5,792 mg/kg

Lead: 8,605 mg/kg Zinc: 3,862 to 4,760 mg/kg

- There was a very small discharge (<1gpm) from the adit which may have been seepage from adjacent Burg Creek. The discharge had a pH of 7.1 and SC of 110 us/cm. No other seeps or springs were observed.
- Tailings were in the Carpenter Creek floodplain below this site, but were from upstream dam failure at Silver Dyke Tailings site.
- No observed releases or exceedences of drinking water standards or aquatic life criteria were documented during this investigation; no surface water samples were collected.
- One mine opening was onsite, a partially caved adit that was accessible. A hazardous loadout structure was also at the site.

Mine/Site Name: Big Seven	County: Cascade
Legal Description: T 14N R 8E	Section(s): SE 1/4, NE 1/4, Sec. 28
Mining District: Neihart	Mine Type: <u>Hardrock/Au, Ag, Pb, Zn</u>
Latitude: N 46° 56' 55"	Primary Drainage: Belt Creek
Longitude: W 110° 42' 15"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Snow Creek
Quad: Neihart	Date Investigated: May 27, 1993
Inspectors: Tuesday, Flammang, Lasher,	P.A. # <u>07-156</u>
Clark, Belanger / Pierson	- -
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

• The mill tailings associated with this site were impounded in one pond (TP-3) and 2 piles (TP-1 and -2). They were in the floodplain of a small tributary of Snow Creek and extended at least 1,000 feet downstream from the site. The volume of these tailings was estimated at 2,580 cubic yards and were 40% revegetated (naturally). The following elements were elevated at least three times background:

Arsenic: 121 to 212 mg/kg

Cadmium: 9.5 to 13.5JX mg/kg

Mercury: 0.071 mg/kg

Manganese: 2,710 to 6,860 mg/kg

Antimony: 15.2 mg/kg Zinc: 2,430 to 2,740 mg/kg

• The volume of waste rock associated with this site was estimated to be 25,800 cubic yards. The following elements were elevated at least three times background:

Arsenic: 246 to 381 mg/kg Cadmium: 2.0 to 10.2 mg/kg

Manganese: 1,280 mg/kg Lead: 2,880 mg/kg

Zinc: 2,200 mg/kg

- An observed release to surface water (tributary of Snow Creek) was documented in sediments for mercury and manganese, and in water samples for zinc and manganese.
 Exceedances of drinking water standards were recorded for cadmium; and aquatic life criteria for mercury, cadmium, lead, and zinc (chronic), cadmium and zinc (acute) were documented in surface water at the Big Seven site.
- One discharging adit had a significant flow (0.06 cfs) with significant iron staining 1,000 feet downstream. The adit water (SW-3) had a pH of 6.63, an specific conductance of 500 us/cm, and exceeded drinking water standards for cadmium and nickel; aquatic life criteria for mercury, cadmium, lead, and zinc (chronic), and cadmium and zinc (acute) were also exceeded in the adit discharge.
- Several buildings were at the site, but most appeared in fair condition. There were two open adits at the site.

Big Seven PA# 07-156
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - TUESDAY
INVESTIGATION DATE: 05/27/83

Volume							- CALL: CALL:	2						
	Metals in soils		Results per dry weight basis (mg/kg)	eight basis (n	ng/kg)	<u>8</u>	SOLID MATRIX ANALYSES	VALYSES						
FIELD ID	A	Ba	ρΩ	පී	ប៉	₽	F	Н	M	ž	£	ಕ	ř	
07-156-SF-1	CVC	161				## ## ## ## ##						20	5 7	CYANIDE
07-156-SE-4	, ¢	2 4		4.0	13.4	73.2	37800	0.017 U	2870	36.8	7. 2.10	144		
7 100 011	2	C	0.4	20.6	8	₹	38400	1 9100	6	3 6	2 ;	- ! - !	286	¥
U/-130-SE-5	124	715 J	22.3 J	42.1	31.7.1	8	3000		200	4.70	111	5.12 J	312	œ Z
07-156-TP-2	212	365	13.5 JX	7 32	10.0	1 6	00000	67 LO	18300	147	887	5.94 UJ	4150	2
07-156-TP-3A	121	174	200	2 2 6	5 6). (3)	2/100	0.071	4140 J	36 J	2510 J	3 03 11.1	2740 1	
07-156-TP-3B	126	9 1	9 6	3.27	18.1	47.2	17900	0.016 U	2710	20.4	434	9.51	26.6	¥ 2
07.156.WP-1	2 6	2 5	- i	54.	30.3	52.1	29700	0.017 U	6860	47 B	576		200	¥2,
07 156 WB 2	- 6 6	2.78	2.0	14.8	22.8	26.8	55100	0.014	1280	, ,		13.5	0807	1.279 U
Z-NV-001-/U	788	118	0.	4.	F	92	33000	2 2 2	200	7.7	900	5.29 J	785	æ
07-156-WR-3	246	1	0.5 U	1.71	17.6	30.0	32200	5.00	- 1 0	3.67	2880	9.94 J	83	X.
07-156-WR-4	265	62.3	10.2	1.22 U	8.97	, c.	30,00	0.00	7.7	5.1	92e	7.02 J	368	Z Z
			1		5	3	20200	0.014 0	47.8	4.96 8.	1220	11.2 J	2200	ž
BACKGROUND	15.1	166	0.6 U	6.73	25.1	28.3	26600	0.02 U	422	16.5	420	4 33 11.1	336	9
	Acid/Base Accounting	Counting							U - Not Detected, J - E.	atity. X		And the second s	3	<u> </u>
		5									7	This was to be seen as a	roughpur .	
ETHT.	TOTAL	TOTAL SULFUR	NEUTRAL.	SULFUR ACID BASE	SULFATE	PYRITIC	ORGANIC	PYRITIC SULFUR	SULFUR ACID BASE					
А	%	V1000t	VI 000t	POTENT.	SULFUR %	SULFUR %	SULFUR %	ACTD BASE	POTENT.					
07-156-SI 1						H H H H H H H H								
07-156-TP3A	0.03	ָ קייי פייי	5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	72.1-	0.02	6 0.01	0.01	0.00	-0.33					
07-156-TP3B	0.74	23.1	2.4 2.4	7	8 8	0.25	0.18	7.81	5.08					
07-156-TP-2	1.19	35.9	37.3	. T	, c	4 9	0.28	13.7	8.19					
07-156-WR1	2.05	2	-3.07	S 8		9. C	15.0	14.4	22.9					
07-156-WR2	1.56	48.7	90.0	3 2	8.4	5.6	90.0	0.31	-4.28					
07-156-WRD3	0.83	25.9	2.50	20.0	<u>.</u> 6	6.0 6.0	0.05	0.00	-2.06					
07-156-WR-4	0.46	14.4	550	5.53-	o 4	5.0	0.03	0.00	-3.37					_
07-156-TP3BDUP	0.76	23.7	21.5	- (4.0 - 24.0	2. c	20.0 10.00	0.0	0.0	0.33					
				16.31	0.02	C#.O	0.29	14.1	7.37					

											,			
CLETA	Metals in Water		Results in ug/L			WAT	WATER MATRIX ANALYSES	ALYSES	e.				H7H	HADDNESS
A	As	Ba	ਲ	පී		õ	F	H	Mn	Ä	£	÷		CALC
07-156-SW-1 07-156-SW-2 07-156-SW-3 07-156-SW-4 07-156-SW-5	1.5 J 2.38 J 2.84 J 1.55 J 1.49 U	8.73 18.3 11.1 24.7 2.24 U		6.47 5.99 U 5.99 U 5.99 U	5.7 J 5 U 5 U 5 U 5 U 5 U	9.17 12.2 34.8 10.5	643 20.1 11400 238 13.5 U	0.3 J 0.18 J 0.13 J 0.21 J 0.1 J	2790 J 590 J 14500 J 2080 J 4.4 J	38.7 13.6 169 83.8 8.78 U	6.17 J 2.25 J 8.16 J 3.33 J	18.3 U 18.3 U 18.3 U 18.3 U	1910 J 1910 J 1230 J 6810 J 6900 J 6 U	230 J 25.3 310 J 82.1 230 J 25.3 390 J 248 6 U 8 8
·	Wet Chemistry	č	Results in mg/l						U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	timated Quantity, X - t	Outlier for Accuracy o	w Precinion, NR - Not	4 Requested	}
FIELD I.D.	TDS	CHLORIDE	SULFATE	_	CYANIDE		TP2 - Sample of the TP2 subsample.	ıbsample.		LEGEND	SFI - At imper			
07-156-SW1 07-156-SW2 07-156-SW3 07-156-SW4 07-156-SW5	135 69 328 377 18	× × × × × × × × × × × × × × × × × × ×	84 37 213 240 < 5.0	0.11 0.05 0.05 0.12	A A A A A		TP3A - Sample of the TP3A subsample. TP3B - Sample of the TP3B subsample. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of WR2A, 2B, and 2C. WR3 - Composite of subsamples WR3A, 3B, and 3C. WR4 - Composite of subsamples WR4A, 4B, and 4C.	A subsample. B subsample. mples WR1A, 11 A, 2B, and 2C. mples WR3A, 3I	8, and 1C. 3, and 3C. 3, and 4C.		SE4 - An Juffchoff of two str SE5 - Below final impound SE5 - Below site but before SW1 - Above tailing. SW2 - Below waste rock du SW3 - Adit #1 discharge.	22.1 - Ar juisation of two streams below mine. SE4 - Below final impoundment from wood culvert. SE5 - Below site but before confluence with Snow Creek. SW1 - Above tailings. SW2 - Below waste rock dump 3. SW3 - Adit #1 discharge. SW4 - Same as samula SR4	ns below mine. It from wood cu affuence with Sr. 3.	Jvert. now Creek.

Mine/Site Name: Baker	County: Cascade
Legal Description: T 14N R 8E	Section(s): SW 1/4, NE 1/4, Sec. 16
Mining District: Neihart	Mine Type: Hardrock/Ag, Au, Zn, Pb, Cu
Latitude: N 46° 58' 39"	Primary Drainage: Belt Creek
Longitude: W 110° 42' 40"	USGS Code: 10030105
Land Status: Private	Secondary Drainage: Mackay Creek
Quad: Neihart	Date Investigated: July 29, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # <u>07-180</u>
Organization: Pioneer Technical Services,	- -
Inc./Thomas, Dean and Hoskins, Inc.	_

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 455 cubic yards. The following elements were elevated at least three times background:

Barium: 394J mg/kg

Antimony: 14J mg/kg

Copper: 163J mg/kg

Mercury: 0.95J mg/kg

- Two minor unnamed tributaries to McKay Creek were flowing at the time of the investigation. One of the tributaries flowed through WR-1 (pH = 7.24), the other tributary flowed near WR-2 (pH = 6.14). Both tributaries were sampled for field parameters only.
- Surface water samples of McKay Creek were collected during the Vilipa site
 investigation. The Vilipa site was located in the drainage below the Baker site. No
 MCLs were exceeded in upstream or downstream McKay Creek samples; however,
 acute and chronic aquatic life criteria were exceeded for zinc, and chronic aquatic life
 criteria were exceeded for mercury, copper, and lead in both upstream and downstream
 samples. The acute aquatic life criteria for copper was exceeded in the downstream
 sample. A downstream sediment sample indicated elevated concentrations of barium,
 copper, mercury, and manganese.
- Two potentially hazardous partially open adits were identified at the site, and two of the dumps were eroded and unstable.

Baker PA# 07-180 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/29/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Si			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	Ba Cd Co C (mg/Kg) (mg/Kg) (mg	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (ma/Ke)		CYANDE
07-180-WR-1		394 J	£.	1.5 U	1.7	1ස J	19000	0.95 J	0.95 J 9.9	# 0	ii	Ű.,	(mg/kg) (mg/kg)	(mg/kg)
BACKGROUND	10.5	131	4.	6.83	22.2	26.1	20600	0.048 U	209	15.6	299	3.39 UJ	548	X X
	Acid/Base	Acid/Base Accounting							U - Not Detected, J .	- Estimated Quantity,	U - Not Delector, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	icy or Precision; NR	- Not Requested	
FIELD D	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASIB	SULFUR ACID BASE POTENT.	WR1 - Compo	LEGEND WRI - Composite of subsamples WRI and 2 BACKGROUND - From the Silver Dyke Adit (07-135-88-1).	LEGEND So WR1 and 2. ver Dyke Adit (0.	7-135-88-1).	
19	0.19 5.94 -2.02 -7.96 0.16	5.94	-2.02	-7.96	0.16	0.01	0.02	# _	-2.33	·				

Mine/Site Name: Champion	County: Deerlodge
Legal Description: T 6N R 8W	Section(s): NE 1/4, NW 1/4, Sec. 33
Mining District: Orofino	Mine Type: Hardrock/Ag
Latitude: N 46° 13' 55"	Primary Drainage: Orofino Creek
Longitude: W 112° 36' 40"	USGS Code: 12010201
Land Status: Private/Public	Secondary Drainage: Orofino Creek
Quad: Lockhart Meadows	Date Investigated: July 16, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>12-003</u>
Organization: Pioneer Technical Services, Inc.	

The volume of tailings associated with this site was estimated to be approximately 5,700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 74 mg/kg

Mercury: 0.869 mg/kg

Chromium: 39.5 mg/kg

Lead: 37 mg/kg

- The volume of waste rock associated with this site was estimated to be 6,500 cubic yards. There were no elements found to be elevated greater than three times background.
- There was one discharging adit identified at this site. This discharge was characterized by sample GW-1. The flow from the adit was measured at 0.027 cfs, the pH was 5.92, and specific conductance was 540 umhos/cm. The MCL/MCLG for cadmium was exceeded. In addition, the chronic aquatic life criteria for iron was exceeded. A strong hydrogen sulfide odor emanated from the adit.
- There was an unnamed tributary to Orofino Creek identified to be associated with this site. Samples were collected up and down stream from the site and were characterized by samples SW-2 and SW-1, respectively. No MCLs or aquatic life criteria exceedances were attributable to the site. Stream sediment samples were also collected from the unnamed tributary upstream and downstream from the site; observed releases were documented for arsenic and chromium that were directly attributed to this site.
- The ore bin/loadout on WR-2 was classified as a hazard structure.
- There was approximately 100 pounds of asbestos-containing material located at this site, that was scattered around the upper cement foundation east of adit #1.

Champion PA# 12-003 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/16/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	isis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
12-003-SE-1 12-003-SE-2	8 ~	175	1.7	71.9	14.5	32.6	25500	0.305	3560	42	24	#3	143	NR
12-003-TP-1	74	8	0.7	. 73 i 75	39.5	16.3 16.3	15700	0.142	98 98 98 98	ე ღ	5 5	3 8	ଛ	ž
12-003-WR-1	%	90. 4.	-	9.5	22.6	39.5	26800	0.297	8 8	ာ ဖ	ÿ ₹	33	ස ස	Z Z
BACKGROUND	24	289	1.6	17.4	7.8	17.2	17600	0.106	1760	Ŋ	=	7 1	2	<u> </u>
	Acid/Race	Acid/Race Accounting							U - Not Detected, J.	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	X - Outlier for Accur.	acy or Precision, NA	R - Not Requested	
FIELD	TOTAL	SULFUR ACID BASE	NEUTRAL. POTENT.	SULFUR ACID BASE POTENT.	SULFATE	PYRITIC	ORGANIC	PYRITIC SULFUR	SULFUR ACTD BASE					
Д	%	v/1000t	t/1000t	t/1000t	%	*	% %	V1000t	V1000t					
12-003-WR-1	0.61	19.1	13.6	-5.5	0.48	0.01	0.12	0.31	13.3		-			

į	Metals in Water Results in ug/L	/ater ig/L				WATER MATRIX ANALYSES	RIX ANAL YSE	S						
FIELD B	\$	2	8	ೆ	ර්	ਠੌ	Fe	Я́Н	Mn	ï	£	á	HAR	HARDNESS CALC.
12-003-GW-1 12-003-SW-1 12-003-SW-2	4.68 J 3.54 2.81 J	8.47 41.9 38.20	10.20 J 5.67 J 2.57 U	75.60 9.7 U 9.70 U	6.83 U 6.83 U 6.83 U	1.55 U 1.6 1.55 U	62800 65 11.8	0.038 U 0.038 U 0.038 U	11600 146 4.08 U U-Nat Detected 3-1	11600 55.1 1.04 J 30.7 U 14 146 12.7 U 1.55 U 30.7 U 7.57 U V.Ner Detected 1 - Editinged Quantity, X. Outlier for Accuracy of Procession NR. New Representation	1.04 J 1.55 U 0.83 J	30.7 U 30.7 U 30.7 U	14 7.57 U 7.57 U	57 U 107
	Wet Chemistry Results in mg/l									LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	SEI - : SEZ - 1 TPI - C	SBI - 25 from tailings berm; downstream. SB2 - Upstream from old cabin and small collapsed adit. TPI - Composite of TPI A-A through IA-C, IB-A through IB-C, and IC-A.	m; downstream. cabin and small co -A through IA-C, i	Ilapsed adit.		GW1 - Discharge from adit #1. SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1.		
12-003-GW-1 12-003-SW-1 12-003-SW-2	984 163 151	v v 50.03 50.03	539 35 18	A A 0.05 0.05 0.05	X X X	WRI - BACKC	WRI - Composite of subsamples WRIA, 1B, 1C, 2A, 2B, and 2C. BACKGROUND - From the Champion Mine (12-003-SS-1).	amples WR1A, 1B, he Champion Mine	1C, 2A, 2B, and 2 (12-003-SS-1)	ਹ ਹ				

Mine/Site Name: <u>Cable Mine</u> Legal Description: T <u>5N</u> R <u>13W</u>	County: Deerlodge Section(s): SW 1/4, Sec. 10
Mining District: Silver Lake	Mine Type: Hardrock/Au, Ag, Cu, Tungsten
Latitude: N 46° 12' 02"	Primary Drainage: Warm Springs Creek
Longitude: W 113° 13' 00"	USGS Code: 17010201
Land Status: Private	Secondary Drainage: Cable Creek
Quad: Silver Lake	Date Investigated: September 10, 1993
Inspectors: Babits/Pierson	P.A. # <u>12-002</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- The site was active. No samples were collected.
- The tailings were piled for reprocessed.
- Most waste rock had already been reprocessed.
- The water from the discharging adit was piped to the reprocessing facility.
- Cable Creek was approximately 0.5 miles from the site. The active mine operation was approximately 1,000 feet from the creek.

·		

Mine/Site Name: Gold Coin Legal Description: T 5N R 13W Mining District: Silver Lake Latitude: N 46° 10' 31" Longitude: W 113° 14' 45" Land Status: Private Quad: Silver Lake Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services Inc. County: Deerlodge Section(s): SE 1/4, Mine Type: Frivate Primary Drainage: USGS Code: 17010 Secondary Drainage Date Investigated: P.A. # 12-004	Warm Springs Creek 201 : Daily Gulch
---	--

• The volume of tailings associated with this site was estimated to be approximately 9,367 cubic yards. The tailings were partially revegetated naturally. TP-1 was situated directly in a small wetland located near the highway, and TP-3 was situated directly in Daily Lake. Cyanide measurements varied from non-detect to 21.09 mg/kg in the tailings. The following elements were elevated at least three times background:

Antimony: 16 mg/kg

Arsenic: 207 to 270 mg/kg Iron: 79,700 to 90,100 mg/kg

) to 90,100 mg/kg Zinc: 309 mg/kg

Mercury: 0.943J to 1.75J mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 27,200 cubic yards. The following elements were elevated at least three times background:

Iron: 69,900 mg/kg Antimony: 15 mg/kg

Mercury: 0.729J mg/kg

- There were no flowing adits, filled shafts, seeps, or springs observed at the site during the investigation. A surface water sample was collected from Daily Lake, no MCLs or acute or chronic aquatic life criteria were exceeded. The pH measurement in the lake sample was 8.39.
- One potentially hazardous open adit was observed at the site, all other adits were closed and the shaft was fenced. The mill building was in relatively poor condition and potentially hazardous.

Gold Coin PA# 12-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/26/93

	Metals in soils Results per dry	Metals in soils Resutts per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	- 1		Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (me/Ke)	Ni (me/Ke)	Pb	qs	Z	CYANIDE
12-004-TP-1 12-004-TP-3 12-004-WR-1	270 207 187	218 J 151 J 48.1 J	0.5 U 0.4 U U 4 U	3.3 7.9 4.9	3.7 10.6 3.6	23.8 27.9 33.3	79700 90100 69900	1.75 J 0.943 J 0.729 J	392 J 401 J 387 J	8 J	20 20 20 20	(mg/kg) 16 16 6	(mg/kg)	(mg/kg)
BACKGROUND	2	4	0.5 U	7.1	12.1	42.9	12800	0.025 J	297	13	27	. v	8 8	ž Z
	Acid/Base Accounting	ccounting							U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quantity,	X - Outlier for Accu	ncy or Precision, 1	NR - Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.					
Ð	6.01 6.01 6.01	0000	479 472 172 924	479 472 172 924	479 <0.01 472 <0.01 172 <0.01 924 <0.01	6.01 6.01 6.01 7.00	0.01 0.01 0.01 0.05	0 0 0 2.19	479 472 172 922					

HARDNESS HARDNESS	FIELD D							WALEN MAIN ANALTSES						
Wet Chemistry Wet Chemistry Results in mg/l TOTAL FOLICATE NO3/NO2-N CYANIDE TP1 Composite of subsamples 3A-1, 3A-2 WR1 Composite of subsamples 3A-1, 3A-2 WR2 Composite of s		2	Ba	ಶ	දු	Ö	ರ	F.	置	Mn	Z	£	Ð	HARDNESS CALC.
Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE TP1 - Composite of subsamples TP1A and 1B TP3 - Composite of subsamples 3A-1, 3A-2,	12-004-SW-1 41.:	99	5.	2.57 U	9.7 U	6.83 U	3.2	718	0.038 U	39.2	12.7 U	3.25	30.7 U	7.57 U 181
Results in mg/l TOTAL TOTAL DISSOLVED SOLLDS CHIORDE SULFATE NO3ANO2-N CYANIDE TP1 - Composite of subsamples TP1A and 1B. TP3 - Composite of subsamples 3A-1, 3A-2, 3A-3, and 3A-4. WR1 - Composite of subsamples A-1, 3A-2, 3A-3, and 3A-4. WR1 - Composite of subsamples TP1A and 1B. WR1 - Composite of subsamples 1B. C, 2A, 2B, and 2C. BACKGROUND - From the Silver Lake Milisite (12-070-SS-1). TP1DUP - Duplicate of sample 12-004-TP-1.		į					ļ			U - Not Detected, J - 1	Estimated Quantity, X .	· Outlier for Accun	icy or Precision, NR	· Not Requested
TOTAL DISSOLVED DISSOLVED SOLIDS CHICRIDE SULFATE NO3NO2-N CYANIDE TP1 Composite of subsamples 3A-1, 3A-2, 3A-3, and 3A-4. WR1 - Composite of subsamples 3A-1, 3A-2, 3A-3, and 3A-4. WR1 - Composite of subsamples 3A-1, 3A-2, 3A-3, and 3A-4. WR1 - Composite of subsamples 3A-1, 3A-2, 3A-3, and 3A-4. BACKGROUND - From the Silver Lake Milisite (12-070-SS-1). TP1 DUP - Duplicate of sample 12-004-TP-1.	Results in	stry ng/l					TPI - C	Composite of subsan	TP1A and 1B					
271 < 5.0 117 0.06 NR	- 10	ED CHLOR	IDE ST	ULFATE	IO3/NO2-N	CYANIDE	TP3 - C WR1 - BACKG TP1DUI	Composite of subsan Composite of subsa HOUND - From th P - Duplicate of san	mples 3A-1, 3A-2, 3, mples WR1A, 1B, 1 e Silver Lake Millsij ple 12-004-TP-1.	A-3, and 3A-4. C, 2A, 2B, and 20 te (12-070-SS-1).		owi - Day I	ake.	
		۷ ک	0	117	90.0	NR								

Mine/Site Name: Silver Lake Millsite	County: Deerlodge
Legal Description: T 5N R 13W	Section(s): SW 1/4, SW 1/4, Sec. 21
Mining District: Silver Lake	Mine Type: will/Wulferlite, Scheelite
Latitude: N 46° 09' 59"	Primary Drainage: Flint Creek
Longitude: W 113° 14' 22"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage:
Quad: Silver Lake	Date Investigated: June 25, 1993
Inspectors: Bullock, Flammang, Lasher	P.A. # <u>12-070</u>
Organization: Pioneer Technical Services, Inc.	

• The volume of tailings associated with this site was estimated to be approximately 11,170 cubic yards. The following elements were elevated at least three times background:

Mercury: 0.133J to 0.275J mg/kg

- No waste rock was observed at this site during the investigation.
- There were no adit discharges observed at the site during the investigation; however, a
 pond containing submerged tailings was located on-site. Surface water and sediment
 samples were collected from the pond. No MCLs or acute or chronic aquatic criteria
 were exceeded; however, the concentration of mercury in the pond sediment was
 significantly elevated (greater than three times) above background and was attributable
 to the site.
- A groundwater sample was collected from a residential well located 250 feet northwest of the site. No MCL/MCLGs were exceeded in this sample.
- Potentially hazardous structures associated with this site included the mill, two sheds, and a trailer.
- Several drums/containers containing petroleum products and unknown materials were located on site, one full 55-gallon barrel of unknown content was in poor condition and at risk of rupturing.

Silver Lake Millsite PA# 12-070 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/25/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>w</u>			SOLID MA	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	As Ba ng/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
12-070-SE-1 12-070-TP-1 12-070-TP-2	. 7 6 3 U	119 J 68.4 J 127 J	0.9 1.4 0.5 U	4.9 1.7 1.2 U	10.5 3.4 1.2	53.8 37.2 8.6	8850 3100 786	0.206 J 0.275 J 0.133 J	157 J 364 J 103 J		41 67 · 5	9 0 0 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U 4 U	106 109 37	"
BACKGROUND	2	1	0.5 U	7.1	12.1	42.9	12800	0.025 J	597 13 27 5 J 92 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	13 Estimated Quantity, 3	27 K - Outlier for Accur	5 J	92 R - Not Requested	Z Z
	Acid/Base Accounting	ccounting												
FIELD D	TOTAL TOTAL SULFUR SULFUR ACID BASE % v10000	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. #1000t	SULFUR ACID BASE POTENT. V1000t	SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT t/1000t					
12-070-TP-1 12-070-TP-2	0.00 0.00	00	855 919	855 <0.0 919 <0.0	6.01 6.01	0.18 0.02	<0.01 <0.01	5.62 0.62	849 919					

	Metals in Water Results in ug/L	Water ug/L				WATER MATR	WATER MATRIX ANALYSES							
FIELD			ឌ	පී	ರ	õ	F.	£	ž	¥			•	HARDNESS CALC.
12-070-GW-1				!!						M MAIT WATER THE TANK	e !!!	Se	n) nZ	Zn (mg CaCO3/L)
12-070-GW-2	1.01		2.57 U))))	6.83 U	4.7 5.8	11.8 0 8 1	0.1	4.4	12.7 U	0.38 ∪		7.57 U	88.2
12-070-SW-1	2.93	23.5	2.57 U	9.7 U	6.83 U	2.43	5 6 8	0.038 U	4. 4. 80. 4. 0. 0.	12.7 U 12.7 U	0.59 1.41	30.7 U 30.7 U	7.57 U 7.57 U	86.9 87.8
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X	. Outlier for Accura	LCy or Precision, NR.	· Not Requested	5
	Wet Chemistry	-												
	Results in mg/l									LEGEND				
FIELD	TOTAL DISSOLVED				-	SEI .	SEI - North side of pand near overflow. TPI - Composite of subsamples TPIA-A, 1A-B, 1A-C, 1B-A, 1B-B,	ear overflow. ples TP1A-A, 1A-	B, 1A-C, 1B-A, 1B	.B.	- GW1 - Residen GW2 - QA dup	GW1 - Residential well 250 Northwest of site. GW2 - QA duplicte of sample 12-070-GW-1.	orthwest of site (2-070-GW-1.	
ΠŪ	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		and LE-C. TP2 - Composite of subsamples TP2A and 2B.	ples TP2A and 2B.	-		SW1 - Same as sample SB1.	sample SE1.		
12-070-GW-1 12-070-GW-2	124 < 5.0 9 0.13 < 0.01 137 < 5.0 9 0.12 < 0.01	5.05.0	6	0.13	× 0.01		BACKGROUND - From Silver Lake Millsite (12-070-SS-1).	ver Lake Millsite (12-070-SS-1).					
12-070-SW-1	125	v 5.0	ි -	× 0.05	, o.01									
						-								

Mine/Site Name: Tail Holt	County: Fergus
Legal Description: T 17N R 20E	Section(s): SE 1/4, NE 1/4, Sec. 30
Mining District: Warm Springs	Mine Type: <u>Hardrock/Au, Ag</u>
Latitude: N 47° 12' 27"	Primary Drainage: Fords Creek
Longitude: W 109° 12' 35"	USGS Code: 10040204
Land Status: Public	Secondary Drainage: Collar Gulch
Quad: Judith Peak	Date Investigated: September 11, 1993
Inspectors: Bullock, S. Babits	P.A. # 14-010
Organization: Pioneer Technical Services Inc.	

- There were no mill tailings positively identified at this site during the investigation. The
 material constituting WR-2 was well sorted crushed rock that may have been put through
 an on site milling process
- The volume of waste rock associated with this site was estimated to be approximately 3,800 cubic yards. The following elements were elevated at least three times background:

Arsenic: 283 mg/kg

Mercury: 0.748J mg/kg

Copper: 61 mg/kg

- One adit discharge was observed at the site during the investigation. The adit discharge seeped into WR-1 but did not resurface at the toe of the dump. No MCLs were exceeded in the discharge; however, the acute and chronic aquatic life criteria for copper and the chronic aquatic life criteria for lead and mercury were exceeded. No other surface water was observed on or near the site.
- Potentially hazardous mine openings associated with this site included the adit and the air raise south of the site.

Tail Holt PA# 14-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/11/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sist			SOLID MA	SOLID MATRIX ANALYSES	Ø						
FIELD As Ba Cd D (mg/Kg) (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cq Cq Cq	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (ms/Ks)	Sb	Zn	CYANIDE
14-010-WR-1	283	112	0.8 U	9.2	9.2 1.43	61	31900	0.748 J	1080	4.17	69.4	ii		(mg/kg)
BACKGROUND	31.8	226	0.8 U	6.41	8.08	14.1	20700	0.039 J	3060 U - Not Detected, J.	12 - Estimated Quantity,	3060 12 45.5 5.67 UJ 107 U- Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	5.67 UJ	107 IR - Not Requested	
	Acid/Base	Acid/Base Accounting												
TOTAL SULFUR ACID BASE SULFATE PYRITIC FIELD SULFUR ACID BASE POTENT. POTENT. SULFUR SULFUR SULFUR D % V1000t V1000t V1000t % %	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
14-010-WR-1	0.47	14.7	12.5	-2.2	0.09	0.24	0.14	7.5 4.98	4.98					

	Metals in Water Results in uo/L	Nater ug/L			44	WATER MAT	WATER MATRIX ANALYSES							
FIELD D	FIELD As Be Cd Co Cr	ag I	ষ্ট	රී	Ċ	రె	Ŧ	H	Mn	ឪ	£	S	H .	HARDNESS CALC.
14-010-GW-1	4.32 JX	(31.2	2.57 U	0.7 U	6.83 U	36.4	36.4 857	0.14	82.6 U · Not Detected; J ·	0.14 82.6 12.7 U 6.6 30.7 UJY 38.6 106 U - Not Detected: J - Estimated Quantity: X - Outlier for Accuracy or Precision: NR - Not Requested	6.6 Outlier for Accum	30.7 UJY 38.6	38.6 Not Requested	106
	Wet Chemistry Results in mg/l					L								
FIELD	TOTAL					WR1	WRI - Composite of subsemples WRIA, 1B, 1C, and 2. BACKGROUND - From Tail Holt (14-010-SS-1).	utples WR1A, 1B	, 1C, and 2	LEGEND	- GWI - Adit di	GWI - Adit discharge at portal.		-
ΙD	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE									
14-010-GW-1	4-010-GW-1 179 < 5.0 32 0.21 NR	< 5.0	32	0.21	NR NR									

County: Fergus Mine/Site Name: Cumberland Section(s): NE 1/4, NE 1/4, Sec. 5 Legal Description: T 16N R 20E Mine Type: Hardrock/Ag, Au Mining District: Warm Springs Primary Drainage: Maiden Creek Latitude: N 47° 10' 58" USGS Code: 10040204 Longitude: W 109° 12' 30" Secondary Drainage: Spotted Horse Creek Land Status: Private Date Investigated: September 11, 1993 Quad: Judith Peak P.A. # 14-017 Inspectors: Bullock, S. Babits Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 1,220 cubic yards. The following elements were elevated at least three times background:

Arsenic: 129 to 601 mg/kg

Copper: 46 mg/kg

Mercury: 2.53J to 39.2J mg/kg

Zinc: 347 to 2,170 mg/kg

Nickel: 67.4 mg/kg Lead: 163 mg/kg

Antimony: 17.7J mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 2,935 cubic yards. The following elements were elevated at least three times background:

Arsenic: 154 mg/kg Cadmium: 5 to 9 mg/kg Copper: 61.4 to 384 mg/kg

Mercury: 0.275J mg/kg

Manganese: 16,600 mg/kg Lead: 1,190 to 1,270 mg/kg Zinc: 1,090 to 6,450 mg/kg

- There were no adit discharges, seeps, or springs observed at this site during the investigation.
- Spotted Horse Creek flowed directly through the site, and surface water and sediment samples were collected both upstream and downstream from the site. No MCLs were exceeded in either of the samples; however, the chronic aquatic life criteria for mercury was exceeded in both upstream and downstream samples. The chronic aquatic life criteria for lead and iron were exceeded in the upstream sample.
- An observed release to Spotted Horse Creek (sediment) was documented for mercury which was directly attributable to the site.
- Potentially hazardous mine openings associated with this site included two open adits and a large glory hole with a 100 foot tall highwall.

Cumberland PA# 14-017 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/11/93

	Metals in soils		Document of the second of the	•		SOLID MAT	SOLID MATRIX ANALYSES	40						
FIELD	2	<u>.</u> 8	5 B			ਟੌ	o L	Ħ	Ž	ž	គ	ŧ		
	(mg/Kg) ====================================	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	ro (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
14-017-SE-1 14-017-SE-2	78.8 29.8	253 157	1.0 U	2.08	4.55 88 88	7.86	13800	0.566 J	305	6.18	53.9	#3	208	NR NR
14-017-TP-1 14-017-TP-2	129 60 129	210	0.8 0	2.65	5.22	7.52	8130	2.53 J	23 82 23 82 23 82	3.6 14.3	30.6 19.6	8.02 UJ 5.55 UJ	73.3	NR 255
14-017-WR-1	86.9	38.5		- 4. 4.48	0.96 0.96 ∪	61.4 61.4	33500 16900	39.2 J 0.275 J	1070	67.4 8.61	163 575	17.7 J	2170	1.57
14-017-WR-Z	¥	49.3	5.2	9.12	12.1	8	26500	0.03 U	16600	31.2	1190	6.4 UJ	5 5 5 5 5 5	Z Z
BACKGROUND	31.8	526	0.8 U	6.41	8.08	14.1	20700	0.039	3060	12	45.5	5.67 UJ	107	œ œ
									U - Not Detected, J	- Estimated Quantity	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	ancy or Precision, NR	L - Not Requested	
	Acid/Base Accounting	Accounting												*
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULTUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
14-017-TP-1 14-017-TP-1	6.00 0.00		317 321	317 321	60.01	0.01	0.01	0.31	317					
14-017-TP-2 14-017-WR-1	0.03	0.94 31.6	288 53.9	287	6.0 9.0 7.0 7.0	20.0 20.0 20.0 20.0 20.0	20.0	0.31 0.62	320 287					
14-017-WR-2	0.62	19.4	3	74.6	0.03	0.24	0.35	7.5	35.4 86.5					

	Metals in Water		Results in ug/L			WATER M	WATER MATRIX ANALYSES							
FIELD													H	HARDNESS
D	A	Ba	ਣ	රී		ਹ	F	Hg	Mn	Z	£	8	72	CALC.
14-017-SW-1 14-017-SW-2	3.08 JX 2.03 JX	115	. 115 2.57 U 9.7 U 6.83 . 114 2.57 U 9.7 U 6.83	9.7 U 9.7 U	6.83 U 6.83 U	1.7 2.57	475 0.2 1130 0.18	0.2 0.18	6.6 21.1	6.6 12.7 U 21.1 12.7 U	2.62	30.7 UJ	17.5 15.3	17.5 103
James E	Wet Chemistry		Results in mg/l						U - Not Detected, J -	U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	t - Outlier for Accum	acy or Precision; NR.	Not Requested	?
	TOTAT									LEGEND				
FIELD	DISSOLVED					<u> </u>	SEI - Downstream of lower tailings near Spotted Horse well. SE2 - Upstream of pond created by waste rock dump 3 on	r tailings near Spo sated by waste roc	tted Horse well. k dump 3 on		SW1 - Same as sample SE1.	s sample SE1.		
LD.	SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANII	CHLORIDE	SULFATE	NO3/NO2-N CYANII	CYANIDE		Spotted Horse well.		•			semple onc.		
14-017-SW-1		< 5.0	6	0.11	< 0.005		TP1 - Composite of subsamples TP1A-A and 1B. TP2 - Sample of subsample TP1A-B.	ples TP1A-A and TP1A-B.	18.					
14-017-SW-2	128	20	S.	v 0.05	9000	_≊_	WR1 - Composite of subsamples WR1 and 2.	nples WR1 and 2.						
						<u>*</u>	WR2 - Composite of subsamples 3A and 3B.	nples 3A and 3B.						
						B	BACKGROUND - From the Tail Holt Mine (14-0) 0-88-13	Tail Holt Mine (1	4.010.99.1)					

County: Flathead Mine/Site Name: Flathead Mine Complex Section(s): Sec. 17 and 18 Legal Description: T 25N R 23W Mine Type: Hardrock/Ag, Au, Pb Mining District: Hog Heaven Primary Drainage: Sullivan Creek Latitude: N 47° 55' USGS Code: 17010212 Longitude: W 114° 34' Secondary Drainage: Sullivan Creek Land Status: Private Date Investigated: August 5, 1993 Quad: Koffard Ridge P.A. # 15-012 Inspectors: Bullock, Tuesday, Belanger, Flammang, Clark Organization: Pioneer Technical Services, Inc.

There were approximately 525 cubic yards of tailings on site. The following elements were elevated at least three times background:

Arsenic: 160J mg/kg Copper: 348 mg/kg

Lead: 3,330 mg/kg

Zinc: 3,470 mg/kg

Cadmium: 12.2 mg/kg

Mercury: 1.58 mg/kg Antimony: 130 mg/kg

There were approximately 89,580 cubic yards of waste rock on site. The following

elements were elevated at least three times background:

Arsenic: 134J to 3,690J mg/kg Cadmium: 5.94 to 21.3 mg/kg

Iron: 139,000 mg/kg

Lead: 1,700 to 21,100 mg/kg

Zinc: 2,030 to 2,070 mg/kg

Barium: 1,000 to 2,160 mg/kg Copper: 34 to 5,760 mg/kg

Mercury: 0.734 to 6.1 mg/kg Antimony: 114 to 438 mg/kg

- There were three discharging adits on site and none directly entered surface water. One adit was sampled as GW-1 and had a flowrate of approximately 1 gpm, a pH 2.83 and a specific conductance of 2410 umhos/cm. Arsenic, cadmium, nickel, and antimony exceeded MCL/MCLGs in this discharge. There was a pipe at the West Flathead Nine that discharged to the creek. This discharge was sampled as GW-2 and had a flowrate of approximately 25 gpm, a pH 5.8, and a specific conductance of 1880 umhos/cm. No MCL/MCLGs were exceeded in this discharge. The acute aquatic life criteria for zinc as well as the chronic aquatic life criteria for iron, lead, and zinc were exceeded at the pipe discharge.
- There was no flowing surface water on site; no surface water samples were collected. A dry creek ran adjacent to tailings. There were observed releases of barium, cadmium, mercury, antimony, and zinc in downstream sediments.
- There are ten open adits, five open stopes, numerous hazardous structures, and highwalls on site.

Flathead Mine PA# 15-012 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/05/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES	នួ						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANDE (me/Ke)
15-012-SE-1 15-012-SE-2 15-012-WR-1 15-012-WR-2 15-012-WR-3 15-012-WR-4	20 J 15.4 J 160 J 310 J 778 J 134 J 3690 J	262 70.9 711 1000 2160 89.1 82.4	9.05 0.54 U 12.2 5.94 1.12 2.1.3	13.3 2.03 U 1.78 U 1.96 U 1.57 U 1.66 U	5.52 U 1.43 U 1.83 U 1.10 1.87	21.4 26 348 116 84.7 34 5760	11700 13100 15800 22800 20600 13800 13800	0.243 0.031 1.58 1.91 6.1 0.734	1520 64.3 3.19 72.5 30.7 92	2.65 U 2.55 U 2.32 U 2.56 U 2.05 U 2.16 U	48.1 27.1 3330 3460 16500 1700 21100	24.8 U 6.43 U 130 125 114 89.3 438	1270 80 3470 2070 201 119	X X X X X X X
BACKGROUND	7.17 J 283 Acid/Base Accounting	283 Accounting	1.28	4.96	3.23	6.38 6.38	14100	0.046	1220 U - Not Detected, J -	1220 5.12 20.7 5.23 U U-Not Detected, J. Estimated Quantity, X Outlier for Accuracy or Precision; NR Not Requested	20.7 Outlier for Accuracy	5.23 U y or Precision; NR -	149	ž Ž
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASIB POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t	Mechanical % clay	Mechanical Analysis and % Coarse Material % Coarse % Coarse % sand % silt Material (d % Coarse % silt	: Material % Coarse Material (>2mm)	Cation Exchange Capacity
15-012-TP-1 15-012-WR-1 15-012-WR-3 15-012-WR-4DUP 15-012-WR-4	1.89 3.00 1.62 0.86 25.3 25.6	59.0 93.7 50.6 27.0 791	-3.55 -5.49 -2.23 -1.51 -5.35 -5.21	-62.6 -99.2 -52.8 -796 -803	0.25 0.57 0.35 0.35 0.01	1.37 1.12 0.06 0.30 12.1 11.8	0.27 1.31 0.79 0.21 15.1	42.8 35.0 1.87 9.37 378 367	46.3 40.5 4.11 -10.9 -384	9	7 2	40	0	0.63

	Metals in Water		Results in ug/L			WATER MAT	WATER MATRIX ANALYSES	45			,			
ETELD D		ď	8	රී	ర	ට්	F.	Ħ	×	ž	គ	į	HA .	HARDNESS CALC.
15-012-GW-1	102 J 13.9	13.9	1710	187 U	======================================	1710 187 U 6.83 U 1170	71800 J	0.31	6060	20	- 900	30	Zn (mg CaCO3/L)	Zn (mg CaCO3/L)
15-012-GW-2	32.6 J	16.5	2.57 U	9.7	7.63	1.55 U	15100 J		4040	12.7 U	3.79 J	30.7 U	62300 J 4830 J	793 94.1
									U - Not Detected, J - Balimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X -	Outlier for Accuracy	or Precision; NR - No	of Requested	
	Wet Chemistry	ď	Results in mg/l							LEGEND				
	TOTAL					SEI -	SEI - Sullivan Ck. downstream from Flathead & W. Flathead areas SE2 - Sulivan Ck. unstream from the W. Flathead area	ream from Flathead	& W. Flathead a	reas	GW1 - Flathea	ad Mine western	GW1 - Flathead Mine western adit assoc. w/ WR2	<u></u>
FIELD	DISSOLVED					TPI -	TP1 - Composite of subsamples TP1A, 1B, 1C, 2A, 2B, and 2C.	ples TP1A, 1B, 1C	. 2A. 2B. and 2C.	_ •	GW2 - West F	GW2 - West Flathead Mine from pipe at mine.	m pipe at mine.	
LD.	LD. SOLLDS CHLORIDE SULFATE NO3/NO2-IN CYANIDE	CHLORIDE	CHLORIDE SULFATE	NO3/NO2-N CYANIDE	CYANIDE		WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, 2B, and 2C.	mples WR1A, 1B,	1C, 2A, 2B, and 2	ŭ				
15-012-GW-1	2200	7.7	1320	1.9	N N		WR2 - omposite of subsamples WR3A, 4A, 5A, and 5B.	ples WR3A, 4A, 5,	A, and SB.					
15-012-GW-2	292	> 5.0	162	< 0.05	Z.	WR4	WR4 - Composite of subsamples WR9, 10A, and 11.	mples WR9, 10A, a	D, 5, 800 d 12 B. und 11.					
						BACK	RACTORDOLIND - From the Diether d & /1 6 can as	Clashand Mine (16						

Mine/Site Name: Elk Creek Corundum	County: Gallatin
Legal Description: T 3 S R 3 E	Section(s): NE 1/2, Sec. 22; NW 1/2, Sec. 23
Mining District: Bozeman	Mine Type: Hardrock/Corundum
Latitude: N 45° 33' 48"	Primary Drainage: Elk Creek
Longitude: W 111° 20' 00"	USGS Code: 10020008
Land Status: Private	Secondary Drainage: Elk Creek
Quad: Ruby Mountain	Date Investigated: August 12 ,1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>16-013</u>
Organization: Pioneer Technical Services, Inc.	

- There were no tailings on site.
- There was approximately 7,150 cubic yards of partially covered waste rock on site. The following were elevated at least three times background:

Cadmium: 2J mg/kg Copper: 212 mg/kg Mercury: 0.234 mg/kg

- There were no discharging adits, filled shafts, seeps, or springs identified at the site during the investigation.
- The East Fork of Elk Creek flowed along the toe of the waste rock dump at the site. The
 chronic aquatic life criteria for mercury was exceeded in both upstream and downstream
 samples. The chronic aquatic life criteria for lead was exceeded in the downstream
 sample.
- Two potentially hazardous open shafts were identified at the site.

EIK Creek Corundum PA# 16-013 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/12/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As Be (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (merKe)	Pb (me/Ke)	Sb (ma/Ke)	Zn	CYANIDE
16-018-SE-2 16-013-SE-1 16-013-WR-1	5.33 U 4 U	31.8 31.8 J 267	0.5 U 0.58 UJ 2 J		7.4 8.63 33.4	9.9 7.84 212	5170 4110 32100	0.028 U 0.032 U 0.234	99.1 80.8 309	10 7.55 52	8 U 9.14 U 7 U	6.94 UJ 5.U	19 12 64	NR NR NR NR
BACKGROUND	8.47	156 J	0.43 UJ	5.7	32.2	70.3	16600	0.027 U	382 U - Not Detected, J	33.6 • Estimated Quantity	382 33.6 16.1 5.18 UJ 46.4 U - Na Descreted, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Nat Requested	5.18 UJ kry or Precision; NR	46.4 R - Not Requested	E E
	Acid/Base Accounting	ccounting												
FIELD O	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. 1/1000t		PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
D	60.01 0.01	0.00 0.31	17.0 17.8	17.0 17.5	<0.01 <0.01	60.01 0.03	0.01	0.00 17.0 0.00 17.0	17.0 17.0 17.8					

is in Water Its in ug/L	Ba Cd Co Cr Cu Fe Hg Mn Ni Ph. ct.	51.1 2.57 U 9.7 U 6.83 U 1.55 U 339 0.120 11.3 12.7 U 0.85 30 51 2.57 U 9.7 U 6.83 U 1.55 U 360 0.120 13.1 12.7 U 1.74 30	U - Not Detected, J - Baimated Quantity, X - Outlier for Accuracy or Precision, NR - Not	med and the	 C. 5.0 < 5 0.06 NR 13.0 < 5 0.06 NR
Metals in Water Results in ug/L	Ba	51.1 51	Wet Chemistry	and the	117 < 5.0 < 116 13.0 <
	FIELD D	16-013-SW-1 16-013-SW-2	Wet	FIELD D	V-1

Mine/Site Name: Thumper Mica	County: Gallatin
Legal Description: T 4S R 5E	Section(s): <u>NE 1/4, Sec. 30</u>
Mining District: Bozeman	Mine Type: Hardrock/Mica
Latitude: N 45° 27' 41"	Primary Drainage: Gallatin River
Longitude: W 111° 08' 50"	USGS Code: 10020008
Land Status: Public	Secondary Drainage: Mica Creek/Squaw
Quad: Garnet Mountain	Creek
Inspectors: Bullock, Belanger, Clark	Date Investigated: August 12, 1993
Organization: Pioneer Technical Services, Inc.	P.A. # <u>16-015</u>

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 5,000 cubic yards; however, no elements were elevated significantly above background concentrations.
- No discharging adits were observed at the site during the investigation; however, a groundwater seep was located adjacent to WR-1. This seep was sampled as GW-1 and discharged at a rate of approximately 3 gpm, with a pH of 9.3 and a specific conductance of 80 umhos/cm. No MCLs were exceeded in the seep; however, acute and chronic aquatic life criteria were exceeded for copper, and the chronic aquatic life criteria for lead was exceeded.
- An unnamed tributary to Mica Creek was located east of the site; however, the stream
 was not sampled due to the lack of a defined runoff pathway from the site and the low
 metals concentrations in the potential source.
- One potentially hazardous adit opening and two highwalls were identified at the site.

Thumper Mine PA# 16-015 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/12/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝist			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Ba Cd Co Cr mg/Kg) (mg/Kg) (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (me/Kg)	Mn (ms/k e)	Z	2	8	Zn	CYANIDE
16-015-WR-1	4.99 U	3.37 J	0.54 UJ	0.54 UJ 2.05 U	145 ()	======================================				(mg/kg)	(mg/kg)	(mg/Kg)	(mg/Kg) (mg/Kg)	(mg/Kg)
BACKGROUND	8.47	156				3.	004	0.025 U	37.8	10.5	11.3	6.49 UJ	6.49 UJ 17.5	NR
	:	3		C.	32.2	70.3	16600	0.027 U	382	33.6	16.1	5.18 UJ	46.4	Z.
	Acid/Base Accounting	Accounting							U - Not Defected, J . Estimated Quantity, X . Outlier for Accuracy or Precision, NR . Not Requested	Estimated Quantity,	X - Outlier for Accu	racy or Precision, N	dR - Not Requested	
	TOTAL	TOTAL	NEUTRAL.	SULFUR ACID BASE	SULFATE	SELIGINA		PYRITIC	SULFUR					
rigi.D	SULFUR	ACID BASE	POTENT. V1000t	POTENT. V1000t	SULFUR	SULFUR	SULFUR	SULFUR ACID BASE	ACID BASE POTENT					
16-015-WR-1	<0.01	0.00	0.24	0.24	<0.07	70.07		100010	VIOUT					
						50.05	0.01	0.00	0.24					

E CERT	Metals in Water Results in ug/L	Vater .ug/L				WATER MATR	WATER MATRIX ANALYSES							
О	As			పి	Ċ	∂ Ö	Ţ.	å	ž	;			HAR	HARDNESS CALC.
16-015-GW-1	6:1	18.1	l	2.57 U 9.7 U 6.83 U	6.83 U	6.9	36	1 -	20.1	ž 6	Pb	Sb 	20.1 16 161 207 11 427	Zn (mg CaCO3/L)
	Wet Chemistry Results in mg/l							Ū.	Not Detected, J - I	U - Not Detectec, J - Estimated Quantity, X - Outlier for A / way or Precision, NR - Not Requested	· Outlier for A curt	acy or Precision, NR	I Z. / R - Not Requested	<u> </u>
FIELD	TOTAL					WR1 - BACKC	Composite of subsan ROUND - From The	WR1 - Composite of subsamples WR1A and 1B. BACKGROUND - From Thumper Mica (16-015-SS-1).	SS-1).	LEGEND	GW1 - Seepage	GW1 - Seepage from waste rock dump 1.	sk dump 1.	
LD.	S	CHLORIDE	SULFATE	CHLORIDE SULFATE NO3/NO2-N CYANIDE	CYANIDE									
16-015-GW-1		68 7.0 7 0.15 NR	7	0.15	N N									

Mine/Site Name: Karst Asbestos	County:_Gallatin
Legal Description: T 5S R 4E	Section(s): NW 1/4, SW 1/4, Sec. 36
Mining District: West Gallatin	Mine Type: <u>Hardrock/Asbestos</u>
Latitude: N 45° 21' 25"	Primary Drainage: Gallatin River
Longitude: W 111° 10' 60"	USGS Code: 10020008
Land Status: Public	Secondary Drainage: Gallatin River
Quad: Hidden Lake	Date Investigated: August 13, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>16-018</u>
Organization: Pioneer Technical Services, Inc.	

- An asbestos mine and washing mill were located at this site. Anthophyllite asbestos was detected on-site.
- An unnamed tributary to the Gallitin River flowed adjacent to the washing mill. An
 observed release to the tributary was documented for asbestos. However, the MCL for
 asbestos was not exceeded; and no acute or chronic aquatic life criteria exist for
 asbestos. Asbestos was not detected in upstream or downstream sediment samples.

Karst Asbestos PA# 16-018 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/13/93

									any .
	% Other Non-Fiberous (Range)		O 10						tos fiber <10um long and m
	% Cellulose	Trace 90-100 Trace 90-100 Trace 90-100 Trace 90-100							LEGEND samed tributary. mnamed tributary. adit #1. If in waste rock. le also contained asbes chinking water must co
	% Total Asbestos (Conc. on area basis)	NR ND S-10 5-10 5-10 5-10 S-10 5-10 S-10 6-10 NR Not Requested, ND Not Detected, Thee = <1% * Data obtained from DATACHEM Laboratories.	Z Z Z Z	I from EMSL.		I imii of	Detection (MFL)	 <lod 0.09<="" li=""> 0.76 0.19 LOD - Less than limit of detection. MFL - Millions of fibers per liter. </lod>	LEGEND SEI - 200' upgradient of mill in unnamed tributary. SE2 - 200' downgradient of mill in unnamed tributary. WR1 - In waste rock pile in front of adit #1. WR2 - In downgradient washing mill in waste rock. SW1 - Same location as SB1. Sample also contained asbestos fiber <10 um long and many non-asbestos fibers. SW2 - Same location as SE2. NOTE: EPA regulations specify that drinking water must contain less than 7MFL asbestos.
SES	% Arathophyllite (Conc. on area basis)	NR NR 5-10 5-10 NR - Not Reques		Data obtained from EMSI.	YSES	Total	Asbestos Conc. (MFL)	<lod 0.76 LOD - Less th MFL - Million</lod 	SEE SEE WR WR SW NO
SOLID MATRIX ANALYSES	72	100% Anthro. 100% Anthro.	100%Anthro. 95% Anthro. 5% OTHER		WATER MATRIX ANALYSES	Total		0 4	
SOLID MA	_	PLM PLM PLM	PLM PLM 9		WATER N		Anthrophyllite (MFL)	<1.0D 0.38	
	Sample Description	Soil Soil	• 1				Actinolite-Tremolite (MFL)		
	Color Texture	Granular Granular Granular Granular	Fibrous Fibrous				ş	4LOD 0.38	
	Color	Brown Brown Brown	Grey Grey				!! !!		
		<i>1</i> 0 <i>1</i> 0 <i>1</i> 0	neous neous				Grunerita (MFL)	400 400 400	
	Homogeneity	Heterogeneous Heterogeneous Heterogeneous Heterogeneous	Homogeneous Homogeneous			:	Chrysotile (MFL)	400 400	
	FIELD D	16-018-SE-1* 16-018-SE-2* 16-018-WR-1* 16-018-WR-2*	Karst Mine** Karst Mill**				TELLO D	16-018-SW-2*	

Mine/Site Name: Alps	County:_Granite
Legal Description: T 10N R 16W	Section(s): SE 1/4, Sec. 27
Mining District: Alps	Mine Type: Hardrock/Unknown
Latitude: N 46° 35' 35"	Primary Drainage: Brewster Creek
Longitude: W 113° 35' 10"	USGS Code: 17010202
Land Status: Private	Secondary Drainage: <u>Unnamed tributary to</u>
Quad: Spink Point	Brewster Creek
Inspectors: Babits/Pierson	Date Investigated: June 30, 1993
Organization: Pioneer Technical Services.	P.A. # <u>20-065</u>
Inc./Thomas, Dean and Hoskins, Inc.	

There were no tailings on site.

• There were approximately 14,023 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 63JX mg/kg

Iron: 99,700J mg/kg

Mercury: 0.355 mg/kg

- There was one discharging adit that did not have a surface route to water. The sample from the adit had a pH measured at 4.13. There were no MCLs or MCLGs exceeded.
- The nearest surface water was approximately 1,000 feet from the site. No surface water or sediment samples were collected.
- There was one open shaft and two open adits on site.

Alps PA# 20-065 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/30/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>s:</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FELD D	As Be (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
20-065-WR-1 20-065-WR-2	51 JX XL 83 JX	287 961	0.4 U 0.4 U	1 U 2.6 J	0.8 U 1.6 J	4.6 7.9	29000 J 99700 J	0.159 0.355	140 J 1390 J	2 J 12 J	6 J	# ¬¬	10 J NR	NR NR
BACKGROUND	19 JX	415	0.6 U	2.4 J	ر 6.4	5.6	17300 J	0.067	985 J	80 (12 J	4	, , , , , , , , , , , , , , , , , , ,	
	Acid/Base Accounting	ccounting							The state of the s	caumated Campiny,	o - tra caecaca esammeo Qumuly, A - Oullet for Accuracy of Precision, NR - Na Requested	Lcy or Precision; N.	R - Not Requested	_
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. t/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	<u>p</u> ⁴ <u>p</u> 2	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
20-065-WR-1 20-065-WR-2	0.14 0.52	4.37 16.2	4.37 -0.5 -4.8 0.1 16.2 1.01 -15 0.0	4.8 -15	0.11 0.07	<0.01 0.06	0.39	0	-0.45 -0.87					

	Metals in Water	fater				WATER MATRIX ANALYSES	IX ANALYSES							
GIBL	Results in ug/L	. 1/6											HABDMESS	TESS
A	1	As Ba Cd Co Cr	ਣ	రి	Ċ	సె	Ę,	H	Mn	ž	£	ŧ	CALC	, C
20-065-GW-1		65.2 JX	65.2 JX 2.57 U	9.7 U	6.83 U	U 1.55 U 4930 0.038 U 1130 12.7 U 1.36 30.7 U 14.1 40.3	4930	0.038 U	1130 U·Not Detected, J·1	1130 12.7 U 1.36 30.7 U 14.1 U. No Detected J. Estimated Quantity X. Online for Annuran are Description as No. 1.	12.7 U 1.36	30.7 U	14.1 40.3	40.3
	Wet Chemistry Results in mg/l					WR1	WR1 - Composite of subsamples WR1 and 2	moles WR1 and 2		LEGEND		- NII thoras a fa	nor requested	
FIELD LD.	TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	•	WR2 - Sample of the subsample WR4. BACKGROUND - Apprx. 100 feet above waste rock dump 4. From the Alps Mine (20-065-SS-1).	mple of the subsample WR4. OUND - Apprx. 100 feet above waste From the Alpa Mine (20-065-SS-1).	rock dump 4.		GWI - Dischar	OWI - Discharging adit at waste rock dump 1.	rock dump 1.	
20-065-GW-1	109	s 5.0	29	× 0.05	NR.									

Mine/Site Name: Silver King Legal Description: T 6N R 15W Mining District: Antelope Creek Latitude: N 46° 18' 05" Longitude: W 113° 30' 00" Land Status: Private Quad: Cornish Gulch	County: Granite Section(s): Sec. 5 Mine Type: Hardrock/Ag, Au Primary Drainage: Rock Creek USGS Code: 17010202 Secondary Drainage: Sluice Gulch Date Investigated: June 30, 1993
	Date Investigated: <u>June 30, 1993</u> P.A. # 20-186
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 29,255 cubic yards. The following elements were elevated at least three times background:

Arsenic: 444JX to 575JX mg/kg Copper: 122 to 287 mg/kg Iron: 44,500J to 47,600J mg/kg

Mercury: 1.47 to 4.9 mg/kg

Manganese: 1,440 mg/kg Lead: 43J to 137J mg/kg Antimony: 80J to 269J mg/kg

- There was one flowing adit associated with the site. No MCLs were exceeded in the adit discharge; however, acute and chronic aquatic life criteria were exceeded for copper.
- Sluice Gulch Creek was flowing adjacent to the site on the west side during the
 investigation, and upstream and downstream surface water samples were collected. No
 observed releases were documented and MCL/MCLGs were not exceeded. No aquatic
 life criteria were exceeded that were attributable to the site.
- Potentially hazardous mine openings associated with the site included five open adits, one collapsed adit, and an open stope. Another adit had been secured by a metal door.

Silver King PA# 20-186 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06:30/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	asis.			SOLID MA	SOLID MATRIX ANALYSES							
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cq (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	Zn	CYANIDE
20-186-SP-1 20-186-WR-1 20-186-WR-4	575 JX 444 JX 450 JX	465 214 718	0.5 U 0.6 U 0.6 U	2.2 J 6.4 J 6.9 J	4.4 J 6.8 J 12.7 J	122 287 185	22900 J 44500 J 47600 J	1.47 2.27 4.9	365 J 1440 J 407 J	6 J 13 J 17 J	43 J 89 J 137 J		23 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	11 J 267 Acid/Base Accounting	267	1.7	=	8.7	7.8	12800	0.08 JX	250 U - Not Detected; J -	250 9 15 5 UJ 62 U - Net Detected; J - Estimated Quantity; X - Outlier for Accumey or Precision; NR - Not Requested	15 X - Outlier for Accum	5 UJ	62 R - Not Requested	χ Σ
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT:					
20-186-SP-1 20-186-WR-1 20-186-WR-4	0.11 3.44 3.22 101 0.4 12.5	3.44 101 12.5	2.08 46.7 0.84	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	0.05 0.54 0.38	0.02 2.13 <0.01	0.04 0.55 0.03		1.46 -19.8 0.84					

	Metals in Water Results in uo/L	Vater Ig/L				WATER MATE	WATER MATRIX ANALYSES	10						:
FIELD	As	As Ba Cd Co	වි	రి	ರ	ខឹ	Ŗ	H	W	ž	వ	ŧ	Ħ (HARDNESS CALC.
20-186-GW-1 20-186-SW-1 20-186-SW-2	6.95 J 15.1 J	7.83 JX 58.2 JX 56.4 JX	2.57 U 2.57 U 2.7 U	9.7 U 9.7 U	6.83 U 6.83 U	197 J 1.55 U	273	ii –	li	12.7 U 12.7 U	1.64 30.7 U	30.7 U	86	2n (mg caco3/L) ====================================
	Wet Chemistry)	6.	6.		0.038 U	10.4 12.7 U 1 30.7 U 7.57 U V Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision: NR. Not Requested	12.7 U Estimated Quantity. 3	1 U C-Outlier for Accura	30.7 U icy or Precision NR	7.57 U	4
	Results in mg/l									LEGEND				
FIELD LD	_	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	SPI - WRJ - WR4 - BACK	SPI - Composite of subsamples SPIA and 1B WRJ - Compsotie of subsamples WR1A, 1B, WR4 - Composite of subsamples WR4 and 5. BACKGROUND - From the Montana Prince A	SP1 - Composite of subsamples SP1A and 1B. WR1 - Compactie of subsamples WR1A, 1B, 2, and 3. WR4 - Composite of subsamples WR4 and 5. BACKGROUND - From the Montana Prince Mine (41-004.59.1)	2, and 3.		GW1 - End of SW1 - 100 ups SW2 - 100 dov	GWl - End of pipe pumping wa SWl - 100' upstream of adit #1. SW2 - 100' downstream of last s	GW1 - End of pipe pumping water from adit #1. SW1 - 100' upstream of adit #1. SW2 - 100' downstream of last structuer to the North.	North.
20-186-GW-1 20-186-SW-1 20-186-SW-2	402 182 160	8.7 144 0.3 < 5.0 10 0.12 7.7 10 0.12	4 0 0 0	0.3 0.12 0.12	R R R									

Mine/Site Name: Lori No. 13	County: Granite
Legal Description: T 6 N R 15 W	Section(s): SE 1/4, NW 1/4, Sec. 4
Mining District: Antelope Creek	Mine Type: <u>Hardrock/Unknown</u>
Latitude: N 46° 18' 17"	Primary Drainage: Rock Creek
Longitude: W 113° 29' 00"	USGS Code: 17010202
Land Status: Public	Secondary Drainage: Sluice Gulch
Quad: Antelope Creek	Date Investigated: September 10, 1993
Inspectors: Babits/Pierson	P.A. # <u>20-191</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were identified at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 700 cubic yards. The waste rock pile was well vegetated; consequently, no samples were collected.
- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation; and no surface water was identified on or near the site, the nearest surface water was located approximately 800 feet south of the site. No groundwater or surface water samples were collected.
- One potentially hazardous open adit was identified at the site.

Mine/Site Name: Ant	County: Granite
Legal Description: T 6 N R 15 W	Section(s): NE 1/4, NE 1/4, Sec. 34
Mining District: Antelope Creek	Mine Type: Hardrock/Unknown
Latitude: N 46° 14' 08" or 09"	Primary Drainage: Rock Creek
Longitude: W 113° 27' 12"	USGS Code: 17010202
Land Status: Private	Secondary Drainage: South Fork Antelope
Quad: Potato Lakes	Creek
Inspectors: M. Babits, S. Babits/Pierson	Date Investigated: September 9, 1993
Organization: Pioneer Technical Services,	P.A. # <u>20-194</u>
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 2,300 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,060 mg/kg Copper: 50.6J mg/kg Mercury: 0.312 mg/kg Barium: 3,420J mg/kg Iron: 67,200 mg/kg

- One adit which contained water was identified at the site; however, the water was not flowing. The pH measurement in the ponded water was 2.9. No MCLs were exceeded in the water; however, the chronic aquatic life criteria for iron was exceeded.
- No surface water was identified on or adjacent to the site. The nearest surface water, South Fork of Antelope Creek, was located approximately 450 feet east of the site. No surface water or sediment samples were collected.
- Four potentially hazardous open adits were identified at the site.

Ant PA# 20-194
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 09/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>8</u>			SOLID MAT	SOLID MATRIX ANALYSES	10						
FIELD D	As (mg/Kg)	Ba Cd Co C (mg/Kg) (mg/Kg) (mg/K	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	æu)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
20-194-WR-1	1060	3420 J	0.6 U	2.13 U	4.65	50.6 J	67200	0.312	321 J 2.78 U	321 J 2.78 U	25.2	ii	26.9	N N
BACKGROUND	11)	267	1.7	=	8.7	7.8	12800	0.08 JX	250	o	15	5 0.1		2
	Acid/Base Accounting	Accounting		•					U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quantity, .	K - Outlier for Accu	racy or Precision; NR	R - Not Requested	
TELD O	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL ACID BASE SULF/SULFUR ACID BASE POTENT. POTENT. SULF/% 1/1000t 1/	NEUTRAL. Potent. v1000l	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR		SULFUR ACID BASIB POTENT. V1000t					
20-194-WR-1	0.63	19.7	3.94	-16	0.01	0.07	0.55 2.19	2.19	1.75					

	Metals in Water Results in ug/L	/ater ig/L				WATER MATRIX ANALYSES	IX ANALYSES		-					
FEELD	*	. Æ	3	ć	d	(1							HARDNESS
	Fe Fig Mn Ni Pb Sb Zn (mg CaCO3/L)						F6	Hg	Mn	ïZ	£	8	Zn (n	ng CaCO3/L)
Z0-194-SW-1	3.5	2.01 U	2.57 U	9.7 ∪	6.83 U	3.1 J	1700	0.12 UJX	604	19.6 JX 2.83	2.83	30.7 U	30.7 U 13.7 J 639	639
								U	Not Detected, J.	U - Not Detected, J - Estimated Quantity, X - Outlier for A Aurery or Precision, NR - Not Requested	· Outlier for A .curs	acy or Precision, NR	- Not Requested	
	Wet Chemistry Results in ma/									LEGEND				
	TOTAL					WKI - BACKG	Composite of subsar ROUND - From Ma	WKI - Composite of subsamples WR1A and 1B. BACKGROUND - From Montans Prince (41-004-SS-1).	4-88-1).		SW1 - Adit dis	SW1 - Adit discharge at waste rock dump 1.	rock dump 1.	
FIELD	DISSOLVED													
Ġ.	SOLIDS	CHLORIDE	CHLORIDE SULFATE	NO3/NO2-N CYANID	CYANIDE	-								
20-194-SW-1	20-194-SW-1 950 < 5.0 519 0.63 NR	950 < 5.0	519	0.63	NR NR									

Mine/Site Name: Combination Millsite	County: Granite
Legal Description: T 8N R 14W	Section(s): SE 1/4, E 1/2, Sec. 7
Mining District: Combination	Mine Type: Hardrock/Cu, Pb, Zn, Ag, Au
Latitude: N 46° 27' 30"	Primary Drainage: Flint Creek
Longitude: W 113° 23' 30"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage: South Fork Lower
Quad: Black Pine Ridge	Willow Creek
Inspectors: Tuesday, Belanger, Clark	Date Investigated: July 21, 1993
Organization: Pioneer Technical Services, Inc.	P.A. # <u>20-009</u>

• The mill tailings associated with this site were not impounded but were in the floodplains of both Mill Creek and South Fork Lower Willow Creek; the tailings extended one half mile downstream from the site in the S. F. Lower Willow Creek floodplain. The volume of these tailings were estimated at 69,500 cubic yards and were 20% revegetated. Some reclamation/ revegetation work was done by Inspiration Mining on the floodplain tailings. The following elements were elevated at least three times background:

Arsenic: 2,050 mg/kg
Cadmium: 89.5 mg/kg
Mercury: 306J mg/kg
Antimony: 2,210 mg/kg

Barium: 1,100 mg/kg
Copper: 9,620 mg/kg
Lead: 14,400 mg/kg
Zinc: 584 mg/kg

- There was no waste rock associated with this site.
- An observed release to surface water (S. F. Lower Willow Creek) was documented in sediments for arsenic, cadmium, copper, mercury, lead, antimony, and zinc, and in water samples for copper and lead. No exceedances of drinking water standards were found in either creek.
- Aquatic life criteria for copper and lead (acute) and copper, lead, and mercury (chronic)
 were exceeded in downstream samples; criteria for copper (acute) and copper and lead
 (chronic) were also exceeded in upstream samples. A possible upstream contaminant
 source (e.g. Combination Mine) may be responsible for the exceedances.
- The old mill foundation could be hazardous. A vat of unknown contents (15 cubic yards), and a pile of white powder may be hazardous materials.
- No adit discharges, springs or seeps were observed at the site.

Combination PA# 20-009 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/21/83

	Metals in soils Results per dry	Metals in solls Results per dry weight basis	. <u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES	6						
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mo/Ke)	CYANIDE
20-009-SE-1 20-009-SE-2 20-009-SE-3	311 37.1 10.2	105 286 94.9	6.9 2.4 0.9	6.01 6.5 2.93	1.74 10.2 2.45	830 250 18.8	10800 13400 3710	52.3 J 1.07 J	372 J 605 J	2.8 U 13.7	1550 91.2	337	241	NR NR
Z0-009-1 P-1	2020	100	89.5	3.33	4.51	9620	28300	306	462 J	3.28 0.00 0.00	14400	6.07 2210	32.6 584	£ £
BACKGROUND	76.3	328	6 .	6.18	90.9	116	11700	1.33 J	1530 J 6.77 85.8 33.3 47.4	6.77	85.8	33.3	47.4	æ
	Acid/Base Accounting	Accounting.								(Time)	A. Outlier for Accel	racy of Precision,	NR - Not Requested	
FELD	TOTAL SULFUR %		NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
20-009-TP-1	0.08	2.5	1.81	-0.7	0.06	0.06 <0.01	0.02	0	1.81					

Housing in Water Results in United Resul															
3.25 78.5 2.57 U 9.7 U 6.83 U 17.2 1280 U 17.4 12.7 U 9.7 U 6.83 U 17.2 1280 U 17.4 12.7 U 15.5 U 9.7 U 6.83 U 17.2 1280 U 17.4 12.7 U 15.5 U 30.7 U 1.58 U 1.58 U 1.59 U 1.50 U 1.		Metals in W Results in u	/ater ig/L				WATER MAI	IRIX ANALYSES							
3.25 78.5 2.57 U 9.7 U 6.83 U 17.2 1280 0.038 U 17.4 12.7 U 9.33 30.7 U 1.59 U 78.2 2.57 U 9.7 U 6.83 U 17.2 1280 0.038 U 17.4 12.7 U 9.3 30.7 U 1.55 U	EKLD ID	As	æ		පී	ប៉	ರೆ	£	H	Mn	Z	£	5	H	RDNESS CALC.
Wet Chemistry Results in mg/l SE3 - Downstream from junction of Mill Cree TOTAL SE2 - Upstream in Mill Cree DISSOLVED SULFATB NO3/NO2-N CYANIDB STOR Lower Willow Cree SOLIDS CHLORIDE SULFATB NO3/NO2-N CYANIDB BACKGROUND - From the Combination Mir 89 5.0 7 0.16 NR NR 112 5.0 14 < 0.05	-SW-1 -SW-2 -SW-3	3.25 2.4 1.69 U	78.5 69.7 78.2		0.7.6 U 7.6 U 7.6	6.83 U 6.83 U 6.83 U	21.9 17.2 1.9	!!	 j	20.9 17.4 15.6 U - Not Detected. J -	12.7 U 12.7 U 12.7 U 12.7 U	9.93 3.3 1.55 U	30.7 U 30.7 U 30.7 U 30.7 U	7.57 U 7.57 U 7.57 U 7.57 U	15.1 21 14.3
TOTAL SE2 - Upstream in Mill Creek SE3 - Upstream in Mill Creek SE3 - Upstream in S. Fork Lower Willow Creek SULPATB NO3/NO2-N CYANIDB SOLIDS CHLORIDE SULFATB NO3/NO2-N CYANIDB SACKGROUND - From the Combination Mine (20-009-SS-1) 12		Wet Chemistry Results in mg/l					SE	- Downstream from ju	metion of Mill Cree	k and Willow Cre	LEGEND	MS - MS	100		
89 < 5.0 7 0.16 NR 112 < 5.0 14 < 0.05 NR 95 < 5.0 6 0.18 NR	ELD (D	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFAI	NO3/NO2-N	CYANIDE	SE3 SE3 TP1	- Upstream in Mill Cr - Upstream in S. Fork - Composite of subsen KGROUND - From th	reck. Lower Willow Creamples TP1A1, 1B2, 18 Combination Min	ek. 1C1, and 1D1. 1e (20-009-3S-1).		SW2 - Same as SW3 - Same as	sample SE2.		
	-SW-1 -SW-2 -SW-3	85 25 85	× × 5:0 5:0 5:0	7 41 6	0.16 0.05 0.18	N N N N N N									

County: Granite Mine/Site Name: Forest Rose Section(s): NW 1/4, SE 1/4, Sec. 22 Legal Description: T 9N R 12W Mine Type: Hardrock/Pb, Zn, Ag Mining District: Dunkleburg Primary Drainage: Clark Fork River Latitude: N 46° 30' 29" USGS Code: 17010202 Longitude: W 113° 05' 21" Secondary Drainage: Dunkleburg Creek Land Status: Private/Public Date Investigated: June 29, 1993 Quad: Dunkleburg Creek P.A. # 20-004 Inspectors: Bullock, Flammang, Clark Organization: Pioneer Technical Services, Inc.

 The volume of tailings associated with this site was estimated to be approximately 23,000 cubic yards. The dam at the lower impoundment failed just prior to this investigation. The following elements were elevated at least three times background:

Arsenic: 330JX to 444JX mg/kg Cadmium: 58.2J to 143J mg/kg Copper: 404 to 563 mg/kg Iron: 109,000J to 113,000J mg/kg Mercury: 0.342 to 0.377 mg/kg Lead: 690J to 6,8810J mg/kg Antimony: 28J to 49J mg/kg Zinc: 6,590J to 16,800J mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 8,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 227 to 801JX mg/kg Cadmium: 3.2J to 477J mg/kg Copper: 208 to 1,770 mg/kg Iron: 75,700 to 164,000 mg/kg Mercury: 0.648J to 2.93 mg/kg Lead: 242J to 60,400J mg/kg Antimony: 24J to 470J mg/kg Zinc: 2,840J to 51,500J mg/kg

- One discharging adit was identified at the site. No MCLs were exceeded in the adit
 discharge; however, acute and chronic aquatic life criteria were exceeded for zinc, and
 the chronic aquatic life criteria for cadmium were exceeded in the adit discharge.
- Three surface water and sediment samples were collected at the site from Dunkleburg Creek. One sample was collected from the toe of WR-1, to determine potential impacts from the waste rock and samples were collected both upstream and downstream from the site, proper. Observed releases to Dunkleburg Creek were documented for arsenic, copper, iron, and lead. The MCL/MCLG for antimony was exceeded in both upstream and downstream samples. The chronic aquatic life criteria exceedances for iron and lead were directly attributable to the site. Other aquatic life criteria were exceeded, but not directly attributable to this site. Dunkleburg Creek was very turbid at the time of the investigation due to a recent breach in the tailings impoundment.
- Potential safety hazards identified at the site included an open adit, 12 collapsing structures, and two unstable tailings dams.

Forest Rose PA# 20-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/29/93

	CYANIDE	<u>R R R R R R R R R R</u>	Z.
	Zn (mø/Ke)	2040 J 1270 J 2230 J 7430 J 16800 J 6590 J 5660 51500 J 2840 J	106 J
	Sb (mg/Kg)		5 U 106 of Precision, NR - Not Requested
	Pb (mg/Kg)	1010 J 428 J 2820 J 6810 J 1820 J 690 J 4570 60400 J	38 J Oddier for Accomps
	Ni (mg/Kg)	28 5 2 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	36 J femmed Questiy, X .
	Mn (mg/Rg)	1370 J 1370 J 1310 J 819 J 2090 J 1720 J 1730 J 1760 J 165 J	1040 J U-Net Descent J-Es SULFUR ACID BASE POTENT: #1000 234 -235 -265 -267 -360 -160
	Hg (mg/Kg)	0.13 0.049 0.342 0.377 0.052 0.648 J 2.93 0.934	9.06 PYRITIC SULFUR ACID BASE 1/1000 77.5 499 500 456 453 2.81 90.3
SOLID MATRIX ANALYSES	Fe (mg/Kg)	45600 J 13700 J 43200 J 38800 J 109000 J 113000 J 39200 75700 J	23500 J ORGANIC SULFUR % % 0.94 2.8 2.8 2.8 1.94 1.96 1.96 1.96 2.07
SOLID MAT	Cu (mg/Kg)	125 53.7 44.4 563 404 208 1770 526	34.6 PYRITIC SULFUR % 16 16 16 14.5 10.09 2.89 2.89
	Cr (mg/Kg)	000 000 000 000 000 000 000 000 000 00	342 J SULFATE SULFATE SULFOR \$ 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2.71 0.06
weight basis	Co (mg/Kg)		10.4 J SULFUR ACID BASE POTENT: V1000t 423 -165 -165 -224 -230 206 2175 -175
Results per dry weight basis	Cd (mg/Kg)	4.8 J 22 J 13.5 J 58.2 J 143 J 65.1 J 40.9 3.2 J	0.8 J NEUTRAL. POTENT. 1/1000 590 265 265 191 191 186 355 64.3
	Ba (mg/Kg)	65.8 25.6 118 37.6 12.2 13.1 23.1	122 counting TOTAL SULFUR ACID BASE VIOOR 167 430 429 415 416 149 240 207
Metals in soils	As (mg/Kg)	116 JX 51 JX 336 JX 336 JX 336 JX 527 JX 801 JX 350 JX	Acid/Base Accounting TOTAL TOTAL SULFUR SULFUR ACID BAS 13.8 16.7 13.8 13.3 13.3 14.5 13.3 14.6 14.76 15.6 16.63 207
	FIELD ID	20-004-SE-1 20-004-SE-2 20-004-SE-3 20-004-TP-1 20-004-TP-2 20-004-WR-1 20-004-WR-3 20-004-WR-3	FIELD ID CO-004-TP-1 CO-004-TP-2 CO-004-TP-3 CO-004-TP-3 CO-004-TP-3 CO-004-WR-1 CO-004-WR-3 CO-004-WR-4

	Metals in Water		Results in ug/L			WATER MATE	WATER MATRIX ANALYSES							
FIELD													HA	HARDNESS
Œ,	As		25	වී	Ö	రే	Ę.	£	W	Z	£	ŧ	1, 1,	CALC.
20-004-GW-1	3 9	i i	4.1 J	9.7 U	6.83 U	6.83 U 4.1 J	113	0.038 U	35.5	12.7 U	3.88	20 20 7 11	1700	Al (mg cacoar)
20-004-SW-2	6.43 5.92	82.2 13.3	3.7 J	85. 85 \$2. \$2.	17.9 8.8	31.9	16100	0.038 U	453	24.2	68.7	23.8 23.8	474	928 728
20-004-SW-3	1.4.1	11.3	33	XD 66.5	527	2.5	- 7 - 7 - 7	0.038	7.47	o ;	9.13	18.3 U	374	199
)		į	š	ŗ.	-	20.9	8.78	1.73	19.4	346	175
									U - Not Detected, J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Remember	· Outlier for Accurac	y or Precision, NR - N	Vot Requested	-
	Wet Chemistry	G	Receibte in mod			į				LEGEND				
	TOTAL	2				- XEI	SE1 - Downstream of breached dam on tailings pond 3.	ched dam on tailing	s pond 3.		WR4 - Compa	WR4 - Composite of subsamples WR4A and 4B.	es WR4A and 4	, ggi
FIELD	DISSOLVED					- 738	SEZ - At the of Waste rock dump I.	dump I.			BACKGROU	BACKGROUND - From the Jackson Park Mine	:bson Park Mine	
G.	Ī	CHLORIDE	SULFATE	NO3/NO3-N	CYANIDE	Ē	72) Comment of the control of the co	am of end of waste n	ock dump 2.		(30	(20-027-SS-1).		
						-	11 1 Constituents of subsamples IPIA-A, IA-B, IA-C, IA-D, IB-A, IB-B, IB	mpies IPIA-A, IA-I	B, IA-C, IA-D, IE	3-A,	TP2DUP - Du	TP2DUP - Duplicate of sample 20-004-TP-2.	20-004-TP-2.	
20-004-GW-1	× 308	5.0	28	0	œ Z		ID-D, ID-C, IB-D, IB-E, and IB-F.	IB-E, and IB-F.	;		TP3DUP - Du	TP3DUP - Duplicate of sample 20-004-TP-3.	20-004-TP-3.	
20-004-SW-1	448	200	5	200	<u> </u>	- 711	11.2 - Composite of subsamples TP2A-A, 2A-B, 2A-C, 2B-A,	mpies TPZA-A, 2A-1	B, 2A-C, 2B-A,		GW1 - Discha	GW1 - Discharge from adit #1.		
20-004-SW-2	250 <	2	1	, de	<u> </u>		25-B, and 28-C.				SW1 - Same as sample SE1.	s sample SE1.		
20 004 SW 3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 (3 8	¥ !	- E.T.	1P3 Composite of subsamples TP3A-A, 3A-B, 3B-A, 3B-B, and 3B-C.	nples TP3A-A, 3A-E	3, 3B-A, 3B-B, ant	13B-C.		•		
	O.	3	90.0	¥	WR1	WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, and 2B.	mples WR1A, 1B, 1	C, 2A, and 2B.		SW7 - Same as sample SE7	. somele CE3		
						WR3	WR3 - Commonite of enthermoles WP 34 2D and 20	mulas W/D2A 2D			201100	semipic oct.		
							COLLINGIA VI GULOS	MILIPIES WINDLY, JD, &	ura X.		SW3 - SAme	SW3 - SAme as sample SF3		_

Mine/Site Name: Wasa	County: Granite
Legal Description: T 9N R 12W	Section(s): SW 1/4, SW 1/4, Sec. 27
Mining District: Dunkleburg	Mine Type: Hardrock/Zn, Au, Ag, Pb, Cu
Latitude: N 46° 29' 53"	Primary Drainage: Douglas Creek
Longitude: W 113° 05' 38"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage: North Fork of Douglas
Quad: Pikes Peak	Creek
Inspectors: Babits, Lasher/Pierson	Date Investigated: June 29, 1993
Organization: Pioneer Technical Services,	P.A. # <u>20-023</u>
Inc./Thomas, Dean and Hoskins, Inc.	

There were no tailings on site.

• There were approximately 16,005 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 53 to 108 mg/kg Cadmium: 10 to 25.3 mg/kg

Copper: 116 to 736 mg/kg Iro Mercury: 0.328J to 0.452J mg/kg Le

Zinc: 382 to 5,670 mg/kg

Iron: 98,500 mg/kg Lead: 293 mg/kg

There were two discharging adits on site that entered surface water. The samples had pH measurements of 2.57 and 7.50. There was also a pit that held groundwater. This sample had a pH 7.94. The low pH adit exceeded MCLs for cadmium, copper, and antimony. The other adit and pit exceeded MCLs for cadmium and antimony. The chronic aquatic life criteria for iron, nickel, and lead was exceeded in the low pH adit. The chronic and acute aquatic life criteria for copper and zinc was exceeded in the neutral pH adit. The acute aquatic life criteria was exceeded for cadmium in the neutral pH adit. The acute and chronic aquatic life criteria for zinc was exceeded in the neutral pH adit. The acute and chronic aquatic life criteria for copper zinc was exceeded in the pit.

- The creek ran through waste rock. There were observed releases of cadmium, copper, and zinc in downstream surface water. The acute aquatic life criteria for cadmium was exceeded in downstream surface water. The acute and chronic aquatic life criteria for copper and zinc was exceeded in downstream surface water; however, none of the exceedances were directly attributable to the site.
- There was one open adit and one highwall on site.

Wasa PA# 20-023 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/29/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES							
FTELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Ръ (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (ma/Ka)
20-023-SE-1 20-023-SE-2 20-023-WR-1 20-023-WR-3 20-023-WR-4 20-023-WR-4	96 77 102 108 108 108	95.9 67.4 113 40.7 88.9 25.8 29.6	5.7 5.4.4 19.2 0.5 U 25.3 0.4 U	67.9 78.8 16.3 1.3 2.9 8.4 8.4	9.2 8.55 8.62 7.7 7.7	973 833 588 72 72 736 408	21600 39100 35700 20900 55400 98500 46300	0.028 J 0.058 J 0.066 J 0.452 J 0.038 J 0.328 J 0.328 J	1960 1960 1490 45.7 1460 210 664	28 3 3 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	293 293 293 293 293 293 293	4 2 1 4 2 4 4	308 308 8720 4010 67 5670 382	R R R R R R R
BACKGROUND	17 JX 122 Acid/Base Accounting	122 ccounting	0.8	10.4 J	34.2 J	34.6	23500 J	0:00	1040 J U - Not Detected, J - E	36 J Entimented Quantity, X.	36 J 38 J 5 U 100	5 U	106 J	Z Z
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE. V1000t	SULFUR ACID BASE POTENT. V1000					
20-023-WR-1 20-023-WR-2 20-023-WR-3 20-023-WR-4 20-023-WR-5	0.03 0.63 0.06 2.25 1.59	0.94 19.7 1.87 70.3 49.7	6.86 0.79 7.91 -3.1 58.3	5.93 -19 6.04 -73 8.66	40.010.042.090.85	40.0160.0160.0160.0560.05	0.08 0.14 0.04 0.11 0.28	2.5 0 0 1.56 14.4	6.88 7.1-7 4.4 4.4 4.4					

	CALC.	32.2 289 74.5 17.2 274	80
	HARDNESS CALC.	4540 32.2 3160 289 1770 74.5 89.5 17.2 5250 274	ump 2. Dischaspereek.
	S	18.3 U 4 20 3 29.7 1 18.3 U 8 28.4 5 5 Technica MR - Not Resp	it discharge at waste rook dump gres to N. Fork Douglas Creek it discharge at waste rook dumy nn pit. ne as subsample SE1. ne as subsample SE2.
	£	1.77 18 1.41 2 0.7 29 2.63 18 1.47 28	GWI - Adit discharge at waste rock dump 2. Discharge goes to N. Fork Douglas Creek. GW2 - Adit discharge at waste rock dump 6. GW3 - From pit. SW1 - Same as subsample SE1. SW2 - Same as subsample SE2.
	Z	309 169 1.77 18.3 U 4540 93.2 29.4 1.41 20 3160 51.4 22.5 0.7 29.7 1770 19.3 9.07 2.63 18.3 U 89.5 120 43.9 1.47 28.4 5250 U-Not Detected, 1 Editamend Quantity, X Outline for Accountary or Precisious, NR Not Responsed	LEGEND GWI GWZ GWS SWI SWI
	Mn	99 10 2.2 29 3.3 99.0 0043. Estimated	
		ii L	Creek. Id 3. Id 6. In (20-027-SS-1)
v	雅	0.038 U 0.038 U 0.038 U 0.038 U 0.044	A Fork DOuglas orth Fork Douglas samples WR1 ar ple WR2. ple WR4. samples WR5 an samples WRA samples WRA samples WRA Jackson Park Mi
IX ANALYSE	땂	11500 303 125 55.7 112	SEI - Upgradient in North Fork DOuglas Creek. SE2 - Downgradient in North Fork Douglas Creek. WR1 - Composite of subsamples WR2. WR2 - Sample of subsample WR2. WR2 - Sample of subsample WR4. WR4 - Composite of subsamples WR5 and 6. WR5 - Composite of subsamples WR7 and 7B. BACKGROUND - From Jackson Park Mine (20-027-SS-1).
WATER MATRIX ANALYSES	ខី	3330 10.5 19.4 17.4 95.9	SEI - U SE2 - I WR1 - WR2 - WR3 - WR5 - WR5 -
>	ರ	6.5 U 6.5 U 6.5 U	CYANIDE NN NR NN NN
	రి	69.6 JX 5.99 UX 6.7 JX 5.99 UX 7.7 JX	NO3NO2-N 0.06 0.19 NR 0.05
Results in ug/L	P	208 J 19.1 J 26 J 2.57 J 51.7 J	SULFATE 179 187 52 13
	8	6.33 9.73 20.1 8.2 Re	CHLORIDE 5.0 5.0 5.0 5.0 5.0
Metals in Water	As	28.9 1.38 0.98 U 6.19 2.89 Wet Chemistry	TOTAL DISSOLVED SOLIDS 260 < 400 < 139 < 58 < 409 < 409 < 409
į	TELD ID	20-023-GW-1 20-023-GW-2 20-023-GW-3 20-023-SW-1 20-023-SW-2	FIELD LD. 20-023-GW-1 20-023-GW-2 20-023-GW-3 20-023-SW-1

Mine/Site Name: Jackson Park	County: Granite
Legal Description: T 9 N R 12 W	Section(s): SW 1/4, SW 1/4, Sec. 13
Mining District: Dunkleburg	Mine Type: <u>Hardrock/Unknown</u>
Latitude: N 46° 31' 50"	Primary Drainage: <u>Dunkleburg Creek</u>
Longitude: W 113° 03' 23"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage: Unnamed tributary to
Quad: Drummond	Dunkleburg Creek
Inspectors: Babits, Lasher/Pierson	Date Investigated: July 1, 1993
Organization: Pioneer Technical Services.	P.A. # <u>20-027</u>
Inc /Thomas Dean and Hoskins, Inc.	

- No tailings were observed at this site during the investigation.
- There were approximately 2,900 cubic yards of waste rock on site. The majority of the waste rock was covered. The following were elevated at least three times background:

Arsenic: 685JX to 1,860JX mg/kg

Cobalt: 31.5J mg/kg

Mercury: 0.751 to 1.11 mg/kg

Nickel: 122J mg/kg

Antimony: 61J to 230J mg/kg

Cadmium: 17.4J to 18.3J mg/kg Chromium: 125J to 139J mg/kg Manganese: 3,890J mg/kg Lead: 2,870J to 8,070J mg/kg

Lead: 2,8/0J to 8,0/0J mg/kg Zinc: 3,080J to 3,250J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was flowing on or near the site during the investigation; consequently, no surface water or sediment samples were collected.
- No hazardous openings or structures were identified at the site.

Jackson Park PA# 20-027 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/29/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	.83 .83			SOLID MAT	SOLID MATRIX ANALYSES				-			
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd Co (mg/Kg) (mg/Kg)	Со (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (ma/Ke)	CYANDE
20-027-WR-1 20-027-WR-2	685 JX 1860 JX	152	18.3 J 17.4 J	29.2 J 31.5 J	139 J 125 J	856 902	44500 J 49900 J	0.751	2230 J 3890 J	122 J 104 J	2870 J 8070 J	61 J 230 J	3080 J 3250 J	NR NR
BACKGROUND	17 JX	123	0.8 ر	10.4 J	34.2 J	34.6	23500 J	90.0	1040 J	36	38	. S.	106 J	Z Z
	Acid/Base Accounting	counting							U - Not Detected, J . 1	Estimated Quartity,	U . Not Detected, I - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	icy or Precision, N	R - Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WR1 - Compo WR2 - Sample BACKGROU	LEGEND WR1 - Composite of subsamples WR1, 2, and 3. WR2 - Sample of the subsample WR4. BACKGROUND - From the Jackson Park Mine (20-027-SS-1).	s WR1, 2, and wR4.	3. e (20-027-SS-1)	
20-027-WR-1 20-027-WR-2	0.31 <0.01	9.68 0	0.31 9.68 73.9 64.2 0.3 <0.01 <0.01 0 45.4 45.4 <0.01 <0.01	64.2 45.4	0.3 <0.01	6.00 0.01	0.01	0	73.9 45.4					
														-

Mine/Site Name: Maxville Tailings/ Londonderry Legal Description: T 8 N R 13 W Mining District: Maxville Latitude: N 46° 28' 27" Longitude: W 113° 14' 33" Land Status: Private/Public Ouad: Maxville	County: Granite Section(s): SW 1/4, NW 1/4, NW 1/4, Sec. 4 Mine Type: Hardrock/Ag, Au Primary Drainage: Flint Creek USGS Code: 17010202 Secondary Drainage: Boulder Creek Date Investigated: September 9, 1993 P.A. # 20-209
Land Status: Private/Public	Date Investigated: September 9, 1993
Inspectors: M. Babits, S. Babits/Pierson	1 .A. # <u>20 200</u>
	•
Longitude: W 113° 14' 33" Land Status: Private/Public Quad: Maxville	Secondary Drainage: Boulder Creek

 The volume of tailings associated with this site was estimated to be approximately 10,550 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,480 to 4,260 mg/kg Cadmium: 4.9 to 6.1 mg/kg

Zinc: 708 to 898 mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 8,400 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,340 to 1,790 mg/kg Antimony: 124J to 135J mg/kg

Zinc: 151 to 205 mg/kg

- One discharging adit, associated with WR-2, was identified at the site. The pH
 measurement in the adit discharge was 7.3. MCLs for arsenic and cadmium were
 exceeded in the adit discharge. Additionally, acute and chronic aquatic life criteria were
 exceeded for arsenic and zinc, and chronic aquatic life criteria were exceeded for iron
 and cadmium.
- Flint Creek was flowing directly adjacent to WR-1 and WR-2. An observed release to Flint Creek (sediment) was documented for mercury. Surface water samples were not collected due to extremely high flow and likely excessive dilution.
- A potentially hazardous wooden ore chute was identified at the site.

Maxville/Londonderry PA# 20-209 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>ଜ</u>			SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	N. (me/Ke)	Pb (mar(K.r.)	Sh	1 7	CYANIDE
20-209-SE-1 20-209-SE-2 20-209-TP-1	214 196 4260	975 J 1030 J	£: 7.	3.32 J 3.19 J	4.87	64.4 J 61.9 J	8310 6950	0.591 17.9	5280 J 5270 J	3.3 U	246 246	13.3 J	(mg/kg)	(mg/kg)
20-209-TP-2 20-209-WR-1	1480 1790	. 187 . 187 . 1	4. 0. 9. ± 0.	2.1.5 1.5 J 1.6 U	1.33 U 10.1 1.13 U	30 J 117 J 144 J	10500 22900 8000	0.284	245 J 697 J	2.46 U 11.6	523 190	151 J 20.7 J	888 898 805	X X X
20-209-WR-2	1340	116 J	9.0	1.57 U	55.	15.3 J	7240	0.826	8.47 J 9.4 J	2:09 U 2:1	150 120	124 J 135 J	151 205	Z Z Z Z
BACKGROUND	76.3	328	1.6	6.18	90.9	116	11700	1.33 J	1530 J	6.77	85.8	33.3	47.4	Z Z
	Acid/Base Accounting	Accounting							U - Not Detected, J -	U . Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	K - Outlier for Accu	ney or Precision; N	R - Not Requested	
FEELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE	NEUTRAL. POTENT 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT. V1000t					
20-209-TP-1 20-209-TP-2 20-209-WR-1 20-209-WR1-DUP 20-209-WR-2	0.42 0.69 0.08 0.07 0.1	13.1 21.6 2.5 2.19 3.12	2.19 36.5 0.28 0.15 0.74	-11 -149 -2.2 -2.4	0.31 0.69 0.07 0.05 0.08	0.00 0.01 0.01 0.01	0.02 0.02 0.01 0.01	2.81 0 0.31 0.31						

	Metals in Water Resufts in ug/L	Vater ıg/L				WATER MAT	WATER MATRIX ANALYSES	_						
FIELD D	A,	8	ਲ	3	ប៉	ਨੌ	Fe	He	Mn	Z	£	ઇ	H ,	HARDNESS CALC.
20-209-SW-1	2350 JX 28.1 5.57 9.7 U 6.83 U 2 11600	28.1	5.57	9.7 U	6.83 U	2	11600	· 0.12 U	0.12 U 1090 25.9 2.15 30.7 U.Jy 2630 U - Not Detected J - Entimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	25.9	2.15 X · Outlier for Accum	# ~ £	2630 251	251 (mg CaCO3/L)
	Wet Chemistry Results in mg/l									FOREND				
FIELD LD	TOTAL FIELD DISSOLVED LD SOLLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		SB1 - 150 feet upgradient from waste rock dump 2. SB2 - 200 feet downgradient from waste rock dump 1. TP1 - Composite of subsamples TP1A-A, 1A-B, 2A-A, and 2A-B. TP2 - Composite of subsamples TP1A-C and 1B-B.	from waste rock dunt from waste rock ples TP1A-A, 1A-ples TP1A-C and ples TP1A-C and	mp 2. dump 1. B, 2A-A, and 2A-B 1B-B.		BACKGROUN SW1 - Adit dis	BACKGROUND - From the Combination Mine. (20-009-SS-1) SW1 - Adit discharge at waste rock dump 2.	nbination Mine. SS-1) ok dump 2.	
20-209-SW-1	392	3.9	137	0.11	NA NA	-	WRI - Composite of subsamples WRI, 2A, 2B, and 3. WR2 - Sample of the WR3 subsample.	mples WR1, 2A, 2 subsample.	B, and 3.					

County: Granite Mine/Site Name: Banner Tailings Legal Description: T 4N R 16W Section(s): SE 1/4, SW 1/4, Sec. 36 Mine Type: Hardrock/Au, Ag Mining District: Moose Lake Latitude: N 46° 03' 04" Primary Drainage: Middle Fork Rock Creek USGS Code: 17010202 Longitude: W 113° 32' 04" Land Status: Private/Public Secondary Drainage: Middle Fork Rock Creek Date Investigated: June 21, 1993 Quad: Moose Lake Inspectors: Tuesday, Belanger, Lasher P.A. # 20-175 Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be 2,500 cubic yards.

The following elements were elevated at least three times background:

Arsenic: 155J mg/kg

Mercury: 1.46JX mg/kg

Antimony: 220J mg/kg

Copper: 65.1 mg/kg

Lead: 898 mg/kg

Cyanide: 0.265 mg/kg

 Tailings were recently dozed and were mostly enclosed in a basin with no apparent outlet; however, there was no impoundment structure and the tails were unvegetated.

 The volume of waste rock associated with this site was estimated to be 15,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 140J mg/kg

Lead: 424 mg/kg

Copper: 114 mg/kg

Antimony: 125J mg/kg

• The waste rock dumps were being undercut by and actively eroded into the Middle Fork Rock Creek. No observed releases or exceedances of drinking water standards or aquatic life criteria were documented during this investigation.

 No adit discharges, seeps or springs were observed. No hazardous structures, mine openings, or highwalls were present.

Banner PA# 20-175 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/21/93

0	Metals in soils Results per dry weight basis	sis			SOLID MA	SOLID MATRIX ANALYSES							
mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (ma/(kg)	Zn Zn	CYANIDE
20-175-SE-1 11 J 20-175-SE-2 7 J 20-175-TP-1 155 J 20-175-WR-1 140 J	102 138.1 184.6	0.6 U 0.7 U 1.1 0.5	1.5 U 2.3 1.3 U 1.2	5.8 6.8 1 U 0.9 U	8.2 11.7 65.1 114	4660 5580 3990 17800	0.055 JX 0.052 JX 1.46 JX 1 JX	88 121 7.8 223	6 4 D 4	6 U 898 424	#33	*832	NR NR 0.265
BACKGROUND 11 J	792	1.7	=	8.7	7.8	12800	0.08 JX	250 U - Not Detected, J -	250 9 15 5 UJ 62 U. Na Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision: NR. Na Requested	15 Outlier for Accum	5 UJ	62 Not Requested	X X
TOTAL FIELD SULFUR ID %	ACIONDASSE ACCOUNTING TOTAL SULFUR SULFUR ACID BASE 1000	NEUTRAL. POTENT. v1000	SULFUR ACID BASIE POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT. V1000t	SEI - Upstream of dumps. SE2 - Downstream of dumps. TP1 - Composite of subsampl WR1 - Composite of subsampl BACKGROUND - From the.	of dumps. ram of dumps. te of subsamples in of subsamples. From the M.	LEGEND SEI - Upstream of dumps. SE2 - Downstream of dumps. TPI - Composite of subsamples TPIA through 1D. WR1 - Composite of subsamples WR1A through 1B. BACKRROUND - From the Mantana Pairson Mines (At 60 and 8)	D. 118.	
20-175-TP-1 0.04 20-175-WR-1 0.23	1.25 7.19	: 1	-0.3 -5.3	0.03 0.22	<0.01 <0.01	0.01	0	0.93				15 (41 -004-52)	

Mine/Site Name: Old Dominion Mine	County: Granite
Legal Description: T_4N_R_16W_	Section(s): SE 1/4, SE 1/4, Sec. 36
Mining District: Moose Lake	Mine Type: Hardrock/Au
Latitude: N 46° 02' 55"	Primary Drainage: Middle Fork Rock Creek
Longitude: W 113° 31' 30"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage: Middle Fork Rock Creek
Quad: Moose Lake	Date Investigated: June 21, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>20-180</u>
Organization: Pioneer Technical Services, Inc.	

The volume of tailings associated with this site was estimated to be 5,600 cubic yards.

The following elements were elevated at least three times background:

Copper: 28.5 mg/kg Lead: 103 mg/kg

Mercury: 0.445JX mg/kg

Cyanide: 0.282 mg/kg

- Tailings were within an enclosed basin with no apparent outlet or impoundment structure and the tailings were mostly (75%) revegetated
- The volume of waste rock associated with this site was estimated to be 6,700 cubic yards. The following element was elevated at least three times background: Lead: 68 mg/kg
- One observed release of lead was documented in downgradient well. No exceedances of drinking water standards or aquatic life criteria were documented during this investigation.
- No adit discharges, seeps or springs were observed. Two hazardous structures were on site: the mill building and an old generator building. No mine openings, or highwalls were present.

Old Dominion PA# 20-180 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/21/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	SS			SOLID MA'	SOLID MATRIX ANALYSES	w			·			
FIELD D	As (mg/Kg)	Ba (mg/Kg)	- 1	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb (months)	Zn Zn	CYANIDE
20-180-TP-1 20-180-WR-1	13 J 6 J	225	0.6 U 0.5 U	1.4 U 1.2 U	4 0 1	28.5 6.7	6080 2280	0.445 JX 0.195 JX	23 8.2	33	103	4 UJ	######################################	(mg/kg)
BACKGROUND	L 11	267	1.7	1	8.7	7.8	12800	0.08 JX	250	6	15	2	° 8	¥ 2
	Acid/Base Accounting	\ccounting							U - Not Detected, J.	Estimated Quantity	U - Not Detecteck, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	racy or Precision, NR	R - Not Requested	
FIELD D	TOTAL TOTAL TOTAL SULFUR SULFUR ACID BASE % 1/1000t	TOTAL SULFUR ACID BASE v1000t		SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASB v1000t	SULFUR ACID BASE POTENT. V1000t					
20-180-TP-1 20-180-WR-1	0.01	0.31		1.06 0.75 0.01 <0.01 2.58 2.26 <0.01 0.01	0.01 <0.01	60.01 0.01	<0.01 <0.01	0 1.06 0.31 2.26	1.06 2.26					

	Metals in Water Results in ug/L	Water ug/L				WATER MAT	WATER MATRIX ANALYSES						•	
FIEL.D D	As Be Cd	Ba	- 1	į	ប់	ਠ	Fe	H	Mn	ž	£	ŧ	H 1	HARDNESS CALC.
20-180-GW-1 20-180-GW-2	U 86.0 U 86.0	116 313	l	9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U	U 55.5 U 8.93		15.3 0.038 U 102 0.038 U	4.08 U 12.7 U 0.38 U 30.7 U 12.8 4.3 12.7 U 0.38 U 30.7 U 8.43 U Ma Detected J - Editinged Quantity, X : Outlier for Accessor Processor	4.08 U 12.7 U 0.38 L 30.7 U 12.8 101 4.3 12.7 U 0.38 U 30.7 U 8.43 93.6 No Detected J. Estimated Quantity, X. Coullin for Accounts to Provide the Account of Provider Section 1. Estimated Quantity, X. Coullin for Accounts to Provide the Account of Provider Section 1. Estimated Quantity, X. Coullin for Accounts to Provider Section 1. Estimated Quantity, X. Coullin for Accounts to Provider Section 1. Estimated Quantity, X. Coullin for Accounts to Provide Section 1. Estimated Quantity, X. Coullin for Accounts to Provide Section 1. Estimated Quantity, X. Coullin for Accounts to Provide Section 1. Estimated Quantity, X. Coullin for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Quantity, X. Coulling for Accounts to Provide Section 1. Estimated Description 1. Estimated Section 1. Estimated	0.38 U 30.7 U 0.38 U 30.7 U	30.7 U 30.7 U 30.7 U	12.8 8.43	(mg caccost)
	Wet Chemistry Results in mg/l	>-				E	TPI - Composit of subsamples TP1A-A, 1B-A, 1B-B.	ples TP1A-A, 1B-A	18-B	LEGEND	d IM		nor reducated	
FIELD I.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		1C.A, and 1D.A. WRI - Composite of subsamples WR1A, 1B, 2A, 2B, and 2C. BACKGROUND - From the Montana Prince Mine (41-004-SS-1).	unples WR1A, 1B, 2 se Montana Prince M	A, 2B, and 2C. fine (41-004-SS-1	,	GW2 - Floyd's 1	OW2 - Floyd's residence (downgradient) West of site. GW2 - Floyd's residence (downgradient) North of site.	adient) West of gradient) North	of site.
20-180-GW-1 20-180-GW-2	127 < 5.0 5 0.08 NR 139 < 5.0 6 0.09 NR	< 5.0 < 5.0	9	0.08 0.09	S S									

Mine/Site Name: Bi-Metallic/Old Red County: Granite Legal Description: T 7N R 13W Section(s): NE 1/4, SW 1/4, Sec. 33 Mine Type: Hardrock/Ag, Au, Pb Mining District: Philipsburg Latitude: N 46° 18' 44" Primary Drainage: Flint Creek Longitude: W 113° 16' 16" USGS Code: 17010202 Secondary Drainage: Douglas Creek Land Status: Private/Public Date Investigated: June 22, 1993 Quad: Fred Burr Lake/Philipsburg P.A. # 20-002 Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services, Inc.

The mill tailings associated with this site were slurried in flumes down a dry tributary to Douglas Creek, and were probably the source of the Douglas Creek Tailings. The total volume of tailings was roughly estimated at 40 cubic yards, but may be significantly more. The tailings in the drainage were 90% revegetated, while those at the mill site were not. The following elements were elevated at least three times background:

Arsenic: 3,270 mg/kg Cadmium: 3.2 mg/kg Copper: 126 mg/kg Mercury: 1.5 mg/kg Lead: 667J mg/kg Manganese: 3,760 Zinc: 469 mg/kg Antimony: 112J mg/kg

The volume of waste rock associated with this site was estimated to be 62,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2,860 to 8,230J mg/kg

Cadmium: 1.7 mg/kg Mercury: 2.02 mg/kg Copper: 72.5J mg/kg

Lead: 667J mg/kg

Antimony: 78J to 79J mg/kg

Zinc: 387 to 568 mg/kg

- The Bimetallic site was intimately associated with the Granite Mine site to the east. No real boundary exists separating the two sites. For the investigation, the access road was the dividing line between the two.
- No observed releases, exceedances of drinking water standards or aquatic life criteria were documented at this site.
- No discharging adits, springs or seeps were observed.
- No hazardous structures or openings existed at the site.

Bimetallic/Old Red PA# 20-002 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/22/93

Persuth Pers															
May Ray May Ray Col Co Co Co Co Co Co C		Metals in son Results per	olis dry weight ba	<u>8</u>			SOLID MAT	RIX ANALYSES	.						
1 3270 201 3.2 2.4 2.3 126 J 18100 1.5 3760 1.5 J 667 J 112 J 469 2 2860 114 1.7 3.9 2.8 7.2.5 J 20200 2.02 2.02 2.00 367 J 112 J 469 UND 25 J 286 0.5 U 9.8 4.6 9 13900 0.161 JX 1730 1.0 3.0 3.0 3.0 3.0 3.0 4.6 9 13900 0.161 JX 1730 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	77 5 1	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE
UND 25 J 286 0.5 U 9.8 4.6 9 13900 0.161 JX 1230 11 9 4 UJ 41 41 41 41 41 41 41 4	5-002-TP-1 5-002-WR-1 5-002-WR-2	3270 8230 J 2860	201 108 114	3.2 0.6 U 1.7	2.4 3.9 3.9	10-0	126 J 32.4 72.5 J	18100 26900 20200	1.5 0.801 JX 2.02	3760 179 2200	15 J 2 U 12 J	667 J 386 413 J	112 J 79 J	469 387 568	0.292 U NR
Acid/Base Accounting	ACKGROUND	25 J	586	0.5 U	89. 69.	4.6	တ	13900	0.161 JX	1230	#	Ø	4 UJ	4	X X
TOTAL SULFUR NEUTRAL ACID BASE SULFATE PYRITIC ORGANIC SULFUR ACID BASE SULFUR SULFUR SULFUR SULFUR ACID BASE POTENT. ** **L1000*** **V1000*** *V1000*** *V1000*** *		Acid/Base A	\ccounting					-		U - Not Detected, J -	Estimated Quantity, 3	Cuttier for Accura	icy of Precision, NI	R - Not Requested	
0.19 5.94 5.62 -0.3 0.12 <0.01 0.07 0 5.62 1 0.74 23.1 -2.1 -25 0.59 0.01 0.14 0.31 -2.36 2 1.17 36.6 5.19 -31 0.32 0.62 0.23 19.4 -14.2	FIELD D	TOTAL SULFUR %	* ≪	2 4 4 1	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t	TP1 - Compos WR1 - Compo	ite of subsamples site of subsample site of subsample	LEGEND TP1, 2, and 3. WR1A, 1B, 8.	and 1C.	
	-002-TP-1 -002-WR-1 -002-WR-2	0.19 0.74 1.17		<u> </u>	-0.3 -25 -31	0.12 0.59 0.32	<0.01 0.01 0.62	0.07 0.14 0.23	0.31 19.4	5.62 -2.36 -14.2	BACKGROUN	D - From the Gn	anite Mountain	Mine (20-110-	SSI)

Mine/Site Name: Douglas Creek	County: Granite
Legal Description: T 7N R 13W	Section(s). SE 1/4, SE 1/4, Sec. 31
Mining District: Philipsburg	Mine Type: Tailings/Au, Ag, Pb
Latitude: N 46° 18' 38"	Primary Drainage: <u>Douglas Creek</u>
Longitude: W 113° 15' 50"	USGS Code: 17010202
Land Status: Private	Secondary Drainage: None
Quad: Philipsburg	Date Investigated: June 23, 1993
Inspectors: Bullock, Flammang, Lasher	P.A. # <u>20-003</u>
Organization: Pioneer Technical Services, Inc.	

 The volume of tailings associated with this site was estimated to be approximately 295,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,520 to 2,950 mg/kg Cadmium: 2.4 to 5.7 mg/kg Copper: 63.1J to 181J mg/kg Mercury: 1.06 to 16.4 mg/kg Zinc: 464 to 2,030 mg/kg Manganese: 4,270 to 13,700 mg/kg

Nickel: 44J to 56J mg/kg Lead: 336J to 1,430J mg/kg Antimony: 115J to 224J mg/kg

- There was no waste rock observed at this site during the investigation.
- No adit discharges, filled shafts, springs, or seeps were observed at the site during the investigation.
- The site was situated directly in the intermittent Douglas Creek drainage; surface water was flowing through and under the tailings piles at the time of this investigation. Three surface water samples were collected from Douglas Creek (upstream, center of site, and downstream). Observed releases to Douglas Creek were documented for arsenic, manganese, lead, and zinc. The MCL for arsenic was exceeded and was directly attributable to the site. The acute and chronic aquatic life criteria for copper and zinc, and the chronic aquatic life criteria for mercury and lead were exceeded in all of the samples, and therefore not directly attributable to the site. Observed releases for arsenic, manganese, and nickel were also documented in the stream sediment samples. The upstream sediment mercury concentration was significantly elevated at 22.5 mg/kg.
- One potentially hazardous adit opening was identified approximately 0.5 miles above this site. Both tailings impoundments had unstable slopes down to the stream, and both tailings dams had been breached.

Douglas Creek PA# 20-003 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/23/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MATE	SOLID MATRIX ANALYSES					-		
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
20-003-SE-1 20-003-SE-3 20-003-SE-3 20-003-TP-18 20-003-TP-2A 20-003-TP-2BA 20-003-TP-2BB	2000 1260 2710 2710 2710 2140 1520 2950	136 128 265 274 274 185 309	8 24 4 8 8 2 4 8 8 7 7 8 7 4 4	66 6. 4.1. 6. 4.1. 1. 4.2. 1.	6,40,40,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	95.1 J 75.1 J 129 J 181 J 75.1 J 118 J 63.1 J	12300 13400 18500 13700 8380 14700 13700	22.5 3.84 3.78 16.4 3.17 1.52	3030 3390 10600 13700 11500 4270 4270	74 1 4 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	390 J 403 J 535 J 1430 J 556 J 602 J 974 J	46 J 81 J 135 J 224 J 186 J 115 J 115 J	763 535 1030 2030 985 464 496 817	£££££££
PACKGROUND FIELD D	Acid/Base Accounting TOTAL SULFUR SULFUR ACID BAS VIOOOL	286 Accounting TOTAL SULFUR ACID BASE V1000k	0.5 U NEUTRAL. POTENT. v1000t.	買	4.6 SULFATE SULFUR %	9 PYRITIC SULFUR	13900 ORGANIC SULFUR	0.161 JX PYRITIC SULFUR ACID BASIB V1000t	1230 U-Na Daestet, J. SULFUR ACID BASE POTENT.	1230 11 9 4 UJ 41 U-Not Detector, J. Estimated Quantity, X Outlier for Accuracy or Precision; NR - Not Requested SULFUR Cation Exchange Capacity ACID BASE POTENT. V1000t. millientivelente/100-	11 9 mated Quantity, X - Outlier for Accuracy or I Cation Exchange Capacity millier mixed entry 100%	4 UJ or Precinianz NR - N	41 Not Requested	X X
20-003-TP1A 20-003-TP1B 20-003-TP2A 20-003-TP2B-A 20-003-TP2B-B	0.29 0.29 0.18 0.11 0.38	9.06 9.06 5.62 3.44 11.9	37.5 26.5 6.24 14.4 15.6	28.4 17.4 0.62 11 3.75	0.05 0.13 0.12 0.02 0.26	0.16 0.01 0.03 0.06	80.0 80.0 80.0 80.0 80.0 80.0 80.0	3.44 0.31 0.94 1.87	32.5 23.1 5.93 13.5	4.05 1.29 3.38 3.13 5.22	9 II			

	Metals in Water		Results in ug/L			WATER MATRIX ANALYSES	(ANALYSES							
FIELD													¥	HARDNESS
D	A	Ba	As Ba Cd	ខ		ō	ŭ.	Ħ	Mn	ï	£	S	7,0 (12	CALC.
20-003-SW-1 20-003-SW-2	24.3	28.5	2.57 U 2.57 U	9.7 U 9.7 U	9 6	.83 U 5.43 .83 U 5.9	63.7 270	# # #	16.1 557	12.7 U	1.33	1.33 30.7 U	51.9	51.9 24.3
20-003-0W-3	4.78	25.3	2.57 U	9.7 ∪	6.83 ∪	6.37	316	0.17	807	12.7 U	5.55	30.7 U	249	8 8 1 E
	Wet Chemistry		Doe: the in man						U - Not Detected, J - J	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Outlier for Accuracy	y or Precision, NR - No	ot Requested	
										LEGEND				
	TOTAL					- 13g	SB1 - Located approx. 100 upstream from the east end of tailings pond 2.	7 upstream from th	e east end of taili	sæ.	TP2B-B - Ca	TP2B-B - Composite of subsamples TP2B-C and	nples TP2B-C	Pu
PIELD .	DISSOLVED	ļ				SB2	SE2 - Approx. 70 downstream of tailings pond 2, below confluence	eam of tailings por	nd 2, below confl	emoc	BACKGROID	2B-D.	and Mark	
LD.	SOLLOS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		of two stream channels.	mels.				(20-110-88-1)	anne Moutain	Mine
20-003-SW-1	81 < 5.0 10 < 0.05 NR	> 5.0	10	× 0.05			SE3 - Approx. 100' below tailings pond 1.	tailings pond 1.			SW1 - Same as sample SE1.	as sample SE1.		
20-003-SW-2	8	> 5.0	5	v 0.05	Z.	- Aldr	TP1B Compared of subsamples 1P1A-A through 1A-B.	empies IPIA-Ath	rough IA-E.		SW2 - Same	SW2 - Same as sample SE2.		
20-003-SW-3	86	> 5.0		90.0	Z.	TP2A-	TP2A - Composite of subsamples 171B-A through 1B-D.	umples 17 15-A th	rough IB-D.		SW3 - Same as sample SE3.	as sample SE3.		
						TP2B-A	TP2B-A - Composite of subsamples TP2B-A and 2B-B	beamples TP2B-A	and 2B-B					

County: Granite Mine/Site Name: Algonquin Section(s): SE 1/4, SE 1/4, Sec. 30 Legal Description: T 7N R 13W Mine Type: Hardrock/Ag, Au, Pb, Zn, Mn Mining District: Philipsburg Primary Drainage: Douglas Creek Latitude: N 46°_19' 40" USGS Code: 17010202 Longitude: W 113° 15' 57" Secondary Drainage: Frost Creek Land Status: Private Date Investigated: June 23, 1993 Quad: Philipsburg P.A. # 20-005 inspectors: Tuesday, Belanger, Clark Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 52,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 99 to 1,420 mg/kg Chromium: 21.9 mg/kg

Iron: 48,800 mg/kg Manganese: 4,590 to 9,850 mg/kg

Lead: 747 to 1,270 mg/kg

Zinc: 4,890 to 15,400 mg/kg

Cadmium: 10 to 35.4 mg/kg Copper: 69.1 to 1,570 mg/kg

Mercury: 1.02 mg/kg Nickel: 51 mg/kg

Antimony: 17 to 42 mg/kg

- The waste rock dumps were mostly unvegetated and WR-1 had been undercut, which resulted in unstable highwalls on the dump.
- Frost Creek flowed through the site. No observed releases or exceedances of drinking water standards were documented during this investigation. Aquatic life criteria for zinc (both acute and chronic) were exceeded both up- and downstream in Frost Creek. No adit discharges, seeps or springs were observed.
- Two hazardous structures were onsite: one older mine office building and an old shed.
 One mine opening was onsite: a shaft fenced by Department of State Lands, but was still open and hazardous (headframe has collapsed into shaft).
- Observed probable asbestos insulation on the boiler in the mine building.

Algonquin PA# 20-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/23/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES	en.						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	7	CYANIDE
20-005-SE-1 20-005-SE-2 20-005-WR-1	4 t 8	80.4 119 65.6	0.5 U 1.2	10.6 8.3 3.4	6.1 3.2 6.2	6.7 J	16500	0.025	591 1700	2 J 6 J	98 J 185 J		(mg/kg) ========= 238 600	(mg/kg)
20-005-WR-2 20-005-WR-3	1420 776	36.7 51.3	34.8	7.3 16.9	21.9 21.9 8.4	1570 J 1570 J 690 J	48800 28700	1.02 1.02 0.354	1540 4590 9850	13 J 28 J 51 J	747 J 585 J 1270 J	17 J 35 J	4890 15300 15400	X X X
BACKGROUND	25.5	286	0.5 U	8.6	4.6	o	13900	0.161 JX	1230	= :	o	; 4	<u> 4</u>	
	Acid/Base Accounting	\ccounting							C . Not Detected 7	o - n'a Legadra, j - Estimited Quartry, X - Outlier for Accuracy or Precision; NR - Not Requested	X - Outlier for Accu	ncy or Precision, N	VR - Not Requester	73
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASB POTENT. V1000					
20-005-WR-1 20-005-WR-2 20-005-WR-3	1.28 2.17 1.53	40 67.8 47.8	145 117 408		0.4 1.05 <0.01	0.24 0.41 0.61	0.64 0.71 1.56	7.5 12.8 19.1	137 104 389					

	Metals in Water Results in ug/L	/ater ig/L				WATER MATRIX ANALYSES	X ANALYSES							
FIELD D	11 11 11		ਣ	రి	Ċ	r, C	F	Ħ	×	Z	ಕ	ដ	## <u>'</u>	HARDNESS CALC.
20-005-SW-1 20-005-SW-2	3.19 3.53	23.1 24.4	23.1 2.57 U 9.7 U 6.83 24.4 2.57 U 9.7 U 6.83	9.7 U 9.7 U	6.83 U 6.83 U	1.55 U 104 1.55 U 160		0.038 U 0.038 U	37.7	37.7 12.7 U 0.38 U 30.7 U 3.8 U 30.7 U	0.38 U 0.38 U		56.4 21.3 63.1 21.5	Zn (mg CaCO3/L)
	Wet Chemistry									LEGEND	- Outlier for Accura	icy or Precision, NR	· Not Requested	
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SEI - Upstream of site in Frost Creek. SE2 - Downstream from site, 100 in Fr WR1 - Composite of subsamples WR1. WR2 - Composite of subsamples WR3. WR3 - Composite of subsamples WR3.	SBI - Upstream of site in Frost Creek. SB2 - Downstream from site, 100' in Frost Creek. WRJ - Composite of subsamples WR1A through 1C and WR2A through 2C. WR2 - Composite of subsamples WR3A and 3B. WR3 - Composite of subsamples WR4A through 3B.	the ph 1C and WR2A 3.		SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1.		
20-005-SW-1 94 < 5.0 8 0.06 NR 20-005-SW-2 75 < 5.0 8 0.05 NR	94 75	< 5.0 < 5.0	ω ω	0.06 0.05	NR NR		ROUND - From th	BACKGROUND - From the Grante Mountain Mine (20-110-SS-1).	Mine (20-110-S	S-1)				٠.

Mine/Site Name: Rumsey	County: Granite
Legal Description: T 6N R 13W	Section(s): NE 1/4, NE 1/4, Sec. 8
Mining District: Philipsburg	Mine Type: Hardrock/Au, Ag
Latitude: N 46° 17' 32"	Primary Drainage: Flint Creek
Longitude: W 113° 14' 49"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage: Fred Burr Creek
Quad: Philipsburg/Fred Burr Lake	Date Investigated: June 24, 1993
Inspectors: Tuesday, Belanger, Clark	P.A. # <u>20-018</u>
Organization: Pioneer Technical Services, Inc.	

• The mill tailings associated with this site were not impounded but were in the floodplain of Fred Burr Creek and extended at least one mile downstream from the site. The volume of these tailings were estimated at 2,800 cubic yards and were 90% revegetated (naturally). The following elements were elevated at least three times background:

Arsenic: 520 mg/kg Copper: 63.8 mg/kg Lead: 195 mg/kg Cadmium: 9.3 mg/kg Mercury: 4.7 mg/kg Zinc: 1,130 mg/kg

- The volume of waste rock associated with this site was estimated to be 22,000 cubic yards. None of the elements analyzed were elevated above three times background.
- An observed release to surface water (Fred Burr Creek) was documented in sediments for arsenic, copper, mercury, lead, and zinc. No exceedances of drinking water standards or aquatic life criteria were documented in Fred Burr Creek.
- One discharging adit had a significant flow (13 gpm). The adit water (SW-2) had a pH of 6.70, an specific conductance of 207 us/cm, and did not exceed drinking water standards; aquatic life criteria for mercury (chronic) was exceeded in the adit discharge.
- The old stone mill foundation could be hazardous. The large (10 by 12 feet) adit was a hazardous mine opening.

Rumsey PA# 20-018 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/24/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Ba Cd mg/Kg) (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Рь (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Ke)
20-018-SE-1 20-018-SE-3 20-018-TP-1 20-018-WR-1	4 196 520 5	25.3 J 64 J 233 J 201 J	0.50 0.80 0.30 0.50	3 4.1 10.6 15.7	6.8 6.8	2.6 20.3 63.8 15.8	8100 12100 31200 26300	0.068 J 5.56 J 4.7 J 0.423 J	93.6 J 758 J 1550 J 542 J	6 6 1 1 1 1 1 1	5 U 67 195 4 U	4 U 6 6 0 4 U	277 1130 1130 52	NR 0.304
BACKGROUND	25 J	286	0.5 U	8.0	4. 6	တ	13900	0.161 JX	1230 U - Not Detected, J - 1	11 Estimated Quantity;	1230 11 9 4 UJ 41 U. No. Detected, J. Edimeled Quertity, X Outlier for Accumacy or Precision, NR Nat Requested	4 UJ	41 JR - Not Requested	Z Z
	Acid/Base Accounting	\ccounting												
FIRELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	i	SULFUR NEUTRAL. ACID BASE POTENT. POTENT.	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASIB POTENT. V1000t					
20-018-TP-1 20-018-WR-1	0.01 <0.01	0.31		3.95 46.5	0.01 <0.01	<0.01 <0.01	0.01 0.02	00	4.27 46.5					

						NATED MATE	WATER MATRIX ANA! YEE						
	Metals in Water Results in ug/L	Vater ıg/L			-								
FIELD	FIELD D As Ba	Ba	ප	ರೆ	ర	♂	Fe	a	Mn	ž	£	£	HARDNESS CALC.
20-018-SW-2	0.98 U	3.63	2.57 U 9.7 U 6.83 U	U 7.6	6.83 U	1.55 U	1.55 U 73.9 0.11	-	8 (at Detected, J. Es	12.7 U	8 12.7 U 0.38 U 30.7 U 7.57 U U Net Detected, J. Editmated Quantity, X. Outlier for Accuracy or Precision, NR. Not Requested	30.7 U	8 12.7 U 0.38 U 30.7 U 7.57 U 80.2 Net Detected, J. Edimated Quantity, X. Outlier for Accumacy or Precision, NR. Not Requested
	Wet Chemistry Results in mg/l					SEI.	SBI - Upstream in Fred Burr Creek - 120 feet.	ur Creek - 120 feet.		LEGEND	SW2 - Adit dischame	hora	-
FIELD LD.		CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	SE3 - TP1 - WR1 BACK	Downstream in Fred Composite of subsan - Composite of subsa GROUND - From th	SE3 - Downstream in Fred Burr Creek - 1/2 mile. TP1 - Composite of subsamples TP1B-1, 1A-1, and 1C-1. WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, and 3A. BACKGROUND - From the Granite Mountain Mine (20-110-SS-1).	11C-1. A, end 3A. e (20-110-SS-)				
20-018-SW-2		122 < 5.0	12	60.0		-							

County: Granite Mine/Site Name: Scratch All Section(s): NE 1/4, SE 1/4, Sec. 30 Legal Description: T 7N R 13W Mine Type: <u>Hardrock/Mn</u>, Pb, Zn, Ag Mining District: Philipsburg Primary Drainage: Camp Creek Latitude: N 46° 19' 53" USGS Code: 17010202 Longitude: W 113° 15' 59" Secondary Drainage: None_ Land Status: Private Date Investigated: June 22, 1993 Quad: Philipsburg P.A. # 20-019 Inspectors: Bullock, Flammang, Clark Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during this investigation.
- The volume of waste rock associated with this site was estimated to be approximately 543,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 264 to 377 mg/kg Cadmium: 9.5 to 33.3 mg/kg Copper: 166J to 386J mg/kg

Mercury: 0.654 to 1.14 mg/kg

Manganese: 11,700 to 18,700 mg/kg

Nickel: 62J to 95J mg/kg Lead: 1,090J to 2,950J mg/kg

Antimony: 28J mg/kg

Zinc: 4,480 to 17,700 mg/kg

- No adit discharges, filled shafts, seeps, or springs were observed at the site during the investigation, and no other surface water was located on or near the site; consequently, no groundwater or surface water samples were collected.
- Four potentially hazardous mine openings were identified at the site including two fenced shafts, one partially blocked adit, and one open adit. A 15 feet tall highwall associated with the pit was also potentially hazardous. Six structures were identified that presented potential safety hazards; and several drums/tanks were located on-site that may contain hazardous materials. Potential asbestos containing materials were also identified on-site.

Scratch All PA# 20-019 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/22/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mo/Re)	Pb (%)	8	Z	CYANIDE
20-019-WR-1 20-019-WR-2	377 264	80.4 75.5	33.3 9.5	6.5	9.3	386 J 166 J	14200	1.14	**	62 J 95 J	2950 J	28 J	(mg/kg) ====================================	(mg/kg)
BACKGROUND	8	286	. 0.5 U	8.	4.6	on .	13900	0.161 JX	1230	11	o	. 4 . U	4	
	Acid/Base Accounting	Accounting							Tomano mario	- Communed Community	C. A. C.	acy or Precision; N	R - Not Requested	
FIELD CD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000:	NEUTRAL. POTENT. v1000t	SULFUR ACID BASIE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	WR1 - Comp WR2 - Comp BACKGROU (20 WR1DUP - I	WRI - Composite of subsamples WRIA, IE, and 2. WR2 - Composite of subsamples WRIB, IC, and ID. BACKGROUND - From the Granite Mountain Mirre (20-110-SS-1). WRIDUP - Duplicate of the 20-019-WR.1 seems!	LEGEND es WR1A, 1E, a es WR1B, 1C, a rante Mountain	and 2. and 1D. 1 Mine	
20-019-WR-1DUP 20-019-WR-1 20-019-WR-2	1.76 1.77 0.15	55.3 55.3 4.69	•	495 492 558	60.01 60.01 60.01	495 <0.01 2.25 492 <0.01 2.24 558 <0.01 0.9	2.45 2.44 0.81	70.3 479 70 478 28.1 534	479 478 534				<u>,</u>	

County: Granite Mine/Site Name: Trout Section(s): NE 1/4, SE 1/4, Sec. 30 Legal Description: T 7N R 13W Mine Type: Hardrock/Au, Ag, Pb Zn Mining District: Philipsburg Primary Drainage: Cliff Gulch Latitude: N 46° 19' 48" USGS Code: 17010202 Longitude: W 113° 16' 05" Secondary Drainage: Cliff Gulch Land Status: Private Date Investigated: June 21, 1993 Quad: Philipsburà P.A. # 20-062 Inspectors: Bullock, Flammang, Clark __ Organization: Pioneer Technical Services, Inc.

There were approximately 93,000 cubic yards of mostly uncovered tailings on site. The

following elements were elevated at least three times background:

Arsenic: 95J to 285J mg/kg
Cadmium: 6.5 to 26.7 mg/kg
Copper: 156 to 376 mg/kg
Manganese: 16,900 to 19,500 mg/kg

Barium: 1,340 mg/kg
Chromium: 24 mg/kg
Mercury: 1.83JX mg/kg
Nickel: 79 to 110 mg/kg

Manganese: 16,900 to 19,500 mg/kg Nickel: 79 to 110 mg/kg Lead: 946 to 2,780 mg/kg Antimony: 33J mg/kg Zinc: 3,090 to 14,500 mg/kg

• There were approximately 1,750 cubic yards of slag on site. The following elements were elevated at least three times background:

Arsenic: 663J mg/kg Cadmium: 7.2 mg/kg Chromium: 17.7 mg/kg Copper: 47.2 mg/kg

Mercury: 0.882JX mg/kg Manganese: 97,200 mg/kg

Nickel: 387 mg/kg Zinc: 4,850 mg/kg

There were approximately 18,140 cubic yards of mostly uncovered waste rock on site.

The following elements were elevated at least three times background:

Arsenic: 218J to 615J mg/kg

Chromium: 14.7 to 30.2 mg/kg

Mercury: 2.51JX mg/kg

Cadmium: 3.1 to 19.1 mg/kg

Copper: 38.9 to 323 mg/kg

Manganese: 25,800 mg/kg

Nickel: 111 mg/kg Lead: 3,680 mg/kg

Antimony: 28J mg/kg Zinc: 1,480 to 11,200 mg/kg

- There were no discharging adits, shafts, seeps or springs identified at the site.
- There was no surface water on site. The nearest surface water was over 1 mile away; no surface water samples were collected. A dry drainage was identified below the site and its headwaters were in the tailings; hence, there was no upstream sample. A downstream sediment sample was collected.

Trout PA# 20-062 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BUILLOCK INVESTIGATION DATE: 06/22/93

=														
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	88 8			SOLID MAT	SOLID MATRIX ANALYSES	w						
FIELD ID	As Be (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mo/Re)	Pb (mo/Ke)	SP (c)	Zn (2)	Cymride
<u>و</u> ا ب	303 J 2540 663 J 507 95 J 547 285 J 1340 615 J 215 218 J 605 10 J 39.5 ND 25 J 286 Acid/Base Accounting ** V1000t ** V1000t 0.92 28.7 2.17 67.8 -0.01 0 0.92 28.7 2.17 67.8 -0.01 0 1.8 56.2 milliequivalents/100g 4.19 0.62	303 J 2540 663 J 507 95 J 547 285 J 1340 615 J 215 218 J 605 10 J 39.5 25 J 286 Acid/Base Accounting TOTAL SULFUR SULFUR ACID BASE % V1000¢ <0.01 0 0.92 28.7 2.17 67.8 <0.01 0 0.92 28.7 2.17 67.8 <0.01 0 1.8 56.2 Cation Exchange Capacity milliequivalents/100g 4.19 0.62 3.79		21.8 2.7 2.6 17 2.2 2.6 17 2.2 2.6 17 2.0 8.2 1.2 U 8.3 3.1 4.9 30 19.1 0.5 U 9.8 4.7 14 0.5 U 9.8 4.7 17 4.0 0.5 U 9.8 4.9 5.0 17.7 4.0 0.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6	27.5242867 8 EAR 120222222	274 47.2 156 376 38.9 223 323 323 323 40.01 0.01 0.01 0.07	16800 17400 8690 21400 19300 3990 15600 15600 0.05 0.05 0.05 0.02 1.01	1.23 JX 0.882 JX 0.412 JX 1.83 JX 0.335 JX 2.51 JX 0.054 JX 0.054 JX 0.31 16.6 58.7 24.1	28300 97200 16900 154000 25800 25800 25810 1230 U. Na Desclet J 177 177 177 177 177 177 187 177 177 177	28300 131 2900 21 J 11200 97200 15900 21 J 11200 97200 387 1240 10 J 4850 15500 110 2780 33 J 14500 154000 7723 198 7 J J 1170 25800 111 3680 28 J 11200 581 4 UJ 1480 11200 11200 1120 11200 1120 11200 1120	131 2900 21 J 11200 387 1240 10 J 4850 79 946 5 J 3090 723 196 7 J 1170 111 3680 28 J 11200 12 198 7 J 1170 111 3680 28 J 11200 12 13 64 UJ 41 1480 12 11200 12 13 64 UJ 41 1480 12 11200 12 12 12 12 12 12 12 12 12 12 12 12 12 1	21 J 10 J 5 J 33 J 7 J 28 J 4 UJ 8 may a Precision N with old mill: C 28 B 4 UJ 8 TPI-18 C 8 TPI-18 C 16 WR1. 2 and 6 w WR4. 4 B 16 WR3. Trante Mountain mple 20-062-SL	11200 14500 14500 11200 1480 1480 A1 R. Not Requested d 3. D, and 2D. LO#1. S, and 6.	MAN AN

Mine/Site Name: Granite Mountain County: Granite Section(s): NE 1/4, SE 1/4, Sec. 32 Legal Description: T 7 N R 13 W Mine Type: Hardrock/Ag, Au, Pb Mining District: Philipsburg Latitude: N 46° 18' 55" to 19' 05" Primary Drainage: Flint Creek Longitude: W 113° 14' 20" to 14' 50" USGS Code: 17010202 Secondary Drainage: Douglas Creek Land Status: Private/Public Date Investigated: June 22, 1993 Quad: Fred Burr/Philipsburg P.A. # 20-110 Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 8,280 cubic yards. Tailings were also observed in a dry stream bed extending approximately 1 mile downstream to Douglas Creek. The following elements were elevated at least three times background:

Arsenic: 55,000J mg/kg

Mercury: 4.58JX mg/kg

Cadmium: 38.3 mg/kg

Lead: 1,240 mg/kg Antimony: 224J mg/kg

Copper: 1,560 mg/kg Iron: 298,000 mg/kg

Zinc: 7,920 mg/kg

Cyanide: 0.737 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 53,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3,420 mg/kg

Lead: 315 mg/kg

Copper: 52.9 mg/kg

Antimony: 28 mg/kg

Mercury: 1.67 JX mg/kg Zinc: 289 mg/kg

- No flowing adits or filled shafts, were observed on or adjacent to the site during the investigation; no groundwater or surface water samples were collected.
- The fenced shaft was open and potentially hazardous. A highwall located near the top of the hill was unstable and potentially hazardous.

Granite Mountain PA# 20-110 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/22/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>%</u>			SOLID MA	SOLID MATRIX ANALYSES	60						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn (mo/Ko)	CYANIDE
20-110-TP-2 20-110-WR-1	55000 J 3420 J	98.4 232	38.3 1.3	4.9 4.3	10.4 1.8	1560 52.9	298000 21200	4.58 JX 1.67 JX	1990	11 6	ii	224 J 28 J	7920	0.737
BACKGROUND	28.	286	0.5 U	6 0	6.	o	13900	0.161 JX	1230 U - Not Detected, J .	11 Estimated Quantity;	1230 11 9 4 UJ 41 U-Not Detected 1 - Enimated Quantity, X - Outlier for Accuracy or Precision NR . Not Reserved	4 UJ	41 41	
	Acid/Base Accounting	Accounting												
FIELD U	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULE SULE	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t	TP2 - Sampl WR1 - Comp BACKGROU WR1DUP - 1	LEGEND TP2 - Sample of the TP2 subsample. WR1 - Composite of WR1A, 1B, 1C, 1D, and 1E. BACKGROUND - From Granite Mountain Mine (20-110-SS-1). WR1DUP - Duplicate of sample 20-110-WR-1.	LEGEND nample. 1B, 1C, 1D, and ite Mountain Mis ble 20-110-WR-1	- 11 B. ine (20-110-SS- 1.	(:
20-110-TP-2 20-110-WR-1DUP 20-110-WR-1	0.72 0.43 0.41	22.5 13.4 12.8	-2.3 2.02 2.37	-25 -1- -10	000	.1 0.47 0.01 11	0.15 0.09 0.09	14.7 0 0.31	-17 2.02 20.6					

Mine/Site Name: True Fissure County: Granite Section(s): NE 1/4, SE 1/4, Sec. 30 Legal Description: T 7N R 13W Mine Type: Hardrock/Ag, Mn, Pb, Zn Mining District: Philipsburg Latitude: N 46° 19' 32" Primary Drainage: Douglas Creek USGS Code: 17010202 Longitude: W 113° 16' 00" Secondary Drainage: Camp Creek Land Status: Private Date Investigated: June 23, 1993 Quad: Philipsburg P.A. # 20-111 Inspectors: Tuesday, Belanger, Clark Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 106,300 cubic yards. The following elements were elevated at least three times background:

Arsenic: 502 mg/kg

Copper: 43.4J to 43.7J mg/kg

Nickel: 142J mg/kg

Zinc: 1,730 to 2,420 mg/kg

Cadmium: 2.3 to 3.6 mg/kg Manganese: 34,900 mg/kg

Lead: 347J to 1,140J mg/kg

- The waste rock dumps were undercut for use as fill material, and resulted in unstable highwalls on WR-4. A residence was located at the base of WR-1.
- No observed releases or exceedances of drinking water standards or aquatic life criteria were documented during this investigation. No adit discharges, seeps or springs were observed
- Two hazardous structures were on site: one older building and an old covered tramway. Two mine openings were on site: an adit closed by Department of State Lands (DSL), and a shaft fenced by DSL but still open.

True Fissure PA# 20-111 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/23/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u> </u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co . (mg/Kg)	Cr (mg/Kg)		Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	. Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
20-111-WR-1 20-111-WR-2	74 502		3.6 2.3	1	6.1	43.4 J 43.7 J	6960 37800	0.244 1.88	34900	142 J 2 U	347 J 1140 J	# ¬ ¬	2420 1730	N N R
BACKGROUND	25 J	586	0.5 U	89	4.6	o	13900	0.161 JX		1230 11 9 4 UJ 41	6	4 U.	4	S.
	Acid/Base Accounting	Accounting								'(may on mine w	icy or recision; N	K - Not Requested	
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.	WR1 - Compo WR2 - Compo BACKGROUN	WR1 - Composite of subsamples WR1A through 1C, 4A, and 4B. WR2 - Composite of subsamples WR2A and 3A. BACKGROUND - From the Granite Mountain Mine (20-110-SS-1)	es WR1A throu se WR2A and 3 anite Mountain	igh 1C, 4A, and 1A. Mime (20-110-3	4B. SS-1)
20-111-WR-1 20-111-WR-2	0.34 0.75	10.6 23.4	88 1	584 <0.01 0.44 -22 0.57 0.04	<0.01 0.57	0.44 0.04	0.34 0.14	13.7 1.25	581 0.19					

Mine/Site Name: Nonpareil	County: Granite
Legal Description: T 8 N R 12 W	Section(s): SW 1/4, SW 1/4, Sec. 32
Mining District: South Boulder	Mine Type: <u>Hardrock/Pb, Ag, Zn, Cu</u>
Latitude: N 46° 23' 53"	Primary Drainage: Flint Creek
Longitude: W 113° 08' 20"	USGS Code: 17010202
Land Status: Private/Public	Secondary Drainage: Boulder Creek
Quad: Maxville	Date Investigated: September 8, 1993
Inspectors: M. Babits, S. Babits/Pierson	P.A. # <u>20-012</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

There were approximately 1,445 cubic yards of tailings on site. The following were

elevated at least three times background:

Arsenic: 360 to 697 mg/kg Cadmium: 23.1 to 45.8 mg/kg

Mercury: 1.22 mg/kg

Antimony: 243J to 282J mg/kg Cyanide: 0.395 to 0.541 mg/kg Barium 433 mg/kg

Copper: 159 to 316 mg/kg Lead: 2,640 to 3,110 mg/kg Zinc: 3,260 to 12,100 mg/kg

 There were approximately 3,200 cubic yards of uncovered waste rock. The following were elevated at least three times background:

Arsenic: 2,330 mg/kg Iron: 176,000 mg/kg Antimony: 116J mg/kg Copper: 863J mg/kg Lead: 5,720 mg/kg Zinc: 3,310 mg/kg

- There were no discharging adits, filled shafts, seeps, or springs identified at the site.
- Boulder Creek was flowing approximately 200 feet west of the site. Water which flowed directly through the tailings discharged into Boulder Creek. An observed release to Boulder Creek was documented for copper; however, no MCLs or acute or chronic aquatic life criteria were exceeded that were attributable to the site.

Nonpareil PA# 20-012 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/08/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	: <u>\$</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FEELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Re)	Pb (mo/Ke)		Zn	CYANIDE
20-012-SE-1 20-012-SE-2 20-012-TP-1 20-012-TP-2 20-012-WR-1	54.1 177 360 697 2330	28.9 J 139 J 433 J 319 J 111 J	4.6 7.9 23.1 45.8 0.5 U	3.37 J 5.76 J 1.64 U 8.89 J 2.02 J	3.23 5.57 2.16 4.09	42.7 J 69.8 J 159 J 316 J 863 J	7660 18400 14900 29700 176000	0.751 0.719 1.22 0.169	195 J 702 J 9.66 J 198 J 119 J	6.97 11.7 2.13 U 42.4 5.85	97.2 754 3110 2640 5720	6.1 UJ 42.5 J 282 J 243 J 116 J	(mg/kg) 1020 1380 3260 12100	(mg/Kg)
BACKGROUND	17 JX 122 Acid/Base Accounting	122 ccounting	80	10.4 J	34.2 J	34.6	23500 J	90:0	1040 J 36 J 38 J 5 U 106 U-Not Detector, J. Estimated Quantity, X Outlier for Accuracy or Precision; NR Not Requested	36 J stimated Quantity, X .	38 J	S U	106 J	Z Z
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASB SULFATE POTENT. SULFUR	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRUTIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
20-012-TP-1 20-012-TP-2 20-012-WR-1	0.84 2.65 0.53	26.2 82.8 16.6	1.51 11.7 -0.3	-25 -71 -72	0.63 0.6 0.51	0.06 1.76 -0.01	0.15 0.29 0.02	1.87 55 0	-0.36 -43.3 -0.28					

WATER MATRIX ANALYSES	Cd Co Ct Cu Fe Hg Min Ni Ph et	4.27 J 9.7 U 6.83 U 2.9 J 48.2 0.12 UJX 2.57 U 9.7 U 6.83 U 8.87 J 75.3 0.13 JX 2.57 U 9.7 U 6.83 U 9.4 J 99.4 0.12 UJX	U - NOW DESCROP, J. Estaturad Quantity, X Outlier for Accuracy or Presinion V.R No. Research	SEI - Upgradient (100' from mill building in Boulder Creek. Just upgradient of pumphouse. SEZ - At PPE of pond discharge to Boulder Creek. SW2 - Same as SEI. SW2 - Same as SEI. SW2 - Same as SEI. SW3 - Same as SEI. SW3 - Same as SEI. SW4 - Same as SEI. SW4 - Same as SEI. SW4 - Same as SEI. SW5 - Same as SEI. SW6 - Same as SEI. SW7
	රි PS	4.27 J 9.7 2.57 U 9.7 2.57 U 9.7		SULFATE NO3/NO
Metals in Water Results in ug/L	æ	1.79 15.1 2.86 21 5.13 32.6	Wet Chemistry	※ #
	FIELD D	20-012-SW-1 20-012-SW-2 20-012-SW-3	> 0	FTELD ID.

Mine/Site Name: Brooklyn County: Granite Section(s): SE 1/4, NW 1/4, Sec. 5 Legal Description: T 7N R 12W Mine Type: Hardrock/Ag, Cu, Pb, Zn, Bismuth Mining District: South Boulder Latitude: N 46° 23' 23" Primary Drainage: Flint Creek USGS Code: 17010202 Longitude: W 112° 07' 30" Secondary Drainage: Boulder Creek Land Status: Public Date Investigated: June 24, 1993 Quad: Maxville/Pikes Peak P.A. # 20-025 Inspectors: Bullock, Flammang, Lasher Organization: Pioneer Technical Services, Inc.

• Two small impoundments were constructed between the upper mine workings and Boulder Creek. The waste material in these impoundments was either mill tailings or eroded waste rock from the waste rock dumps above. There was no evidence of a mill structure on site, and no historical accounts of milling on-site were found. There were approximately 4800 cubic yards of waste material in the impoundment area. The following elements were elevated at least three times background:

Arsenic: 668 mg/kg
Cadmium: 99.3 mg/kg
Mercury: 10.4J mg/kg
Antimony: 747 mg/kg

Barium: 861J mg/kg
Copper: 2290 mg/kg
Lead: 5650 mg/kg
Zinc: 13,500 mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 38,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 388 to 797 mg/kg Barium: 435J mg/kg

Cadmium: 38.7 to 41.4 mg/kg

Mercury: 2.2J to 20.8J mg/kg

Antimony: 64 to 644 mg/kg

Copper: 121 to 566 mg/kg

Lead: 2030 to 5510 mg/kg

Zinc: 648 to 9140 mg/kg

- There were no discharging adits or shafts associated with this site.
- Boulder Creek flowed along the base of the lower workings (WR-5 and WR-6).
 Observed releases were documented for mercury and lead. MCLs and MCLGs were not exceeded in the samples collected. The chronic aquatic life criteria for lead was exceeded and was be directly attributed to this site.

Brooklyn PA# 20-025 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/24/93

·	Metals in soils Results per dry	Metals in soils Results per dry weight basis	รั เร			SOLID MA	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mo/Ko)	CYANIDE
20L025_SE_1	126	240 -		######################################	######################################		## ## ## ## ## ## ## ## ## ## ## ## ##						(ang Ang)	(mg/kg)
20.025 SE 2	5 5	0 0	0.7	– (ပ် ၊	4.	56.5	8610	1.52 J	42.4 J	60	537	£	1560	Q
20 025 TB 4	- 00	3 9	7.7	3.5	2.6	œ	9410	0.099 J	278 J	9 60	8	3 4	3 5	¥ 0
20 000 14/2 0	8 9	5	96 97 97	3.8	5.7	2290	15900	10.4	182	- 4	בפצט	, ,	0000	۲ :
20-025-WR-2	99 1	294	38.7	3.9	3.5	266	17700	12.6 J	43.9		3630 5540	4 4	3300	¥ ;
20-02-WR-3	/6/	727	ო	6.3	ო	121	24300	22.1	43.4			ŧ.	9.6	Y :
Z0-0Z5-WR-5	88	435 J	4.14	4.4	2.5	213	17600	2 8 0	A 4 4	2 6	250	\$ 3	848	Υ Z
							}		? ?	3	0150	78 4	3180	Z Z
BACKGROUND	X, 71	<u>5</u>	0.8 J	10.4 J	34.2 J	34.6	23500 J	90:0	1040 J	36 J	86	5 U	106	2
	Acid/Base Accounting	scounting						Ä-n	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	1 Quantity, X - Outl	ier for Accumacy or Pi	recision, NR - Not R	cquested	
	TOTAL	TOTAL	NEUTRAL.	SULFUR ACID BASE	SHIFATE	OVE THE	DE LA CORO	PYRITIC	SULFUR					
FIELD	SULFUR	ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	ACID BASE POTENT.					
			V1000£	V1000t	*	*	*	√1000 t	t/1000t					
20-025-TP-1	3.29	50	-1.6	-104 401-	96.0	1.25	1.08	::::::::::::::::::::::::::::::::::::::						
20-025-WR-2 20-025-WR-3	1.81 5.07	56.5 58	5.7	5. 8.	0.49	0.29	8.1	90.6	-3.36					
20-025-WR-5	1.65	51.5	165	- - - - - - - - - -	0.1	0.46	 90.	81.8 8.4.4	-39.7 151					

13.4 2.57 U 9.7 U 6.83 U 2.33 110 0.067 6.2 12.7 U 9.39 30.7 U 7.57 U	·	Metals in Water Results in ud/	Nater ud/l		·		WATER MATRIX ANALYSES	IX ANALYSES							
2.88 13.4 2.57 U 9.7 U 6.83 U 2.33 110 0.067 6.2 12.7 U 9.39 30.7 U 7 1 1.24 10.5 2.57 U 9.7 U 6.83 U 1.55 U 2.5.5 0.038 U 4.43 12.7 U 9.39 30.7 U 7 1 1.24 10.5 2.57 U 9.7 U 6.83 U 1.55 U 2.5.5 0.038 U 4.43 12.7 U 9.39 30.7 U 7 1 1.24 10.5 2.57 U 9.7 U 6.83 U 1.55 U 2.5.5 0.038 U 4.43 12.7 U 9.39 30.7 U 7 1 1.24 10.58 Security in mg/l 2.5	FIELD	į	n B	P	පී	Ċ	.පී.	Fe	Hg	Wn	ŭ	£	6	HY '	HARDNESS CALC.
Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE WR2 - Composite of subsamples WR1, WR3 - Composite of subsamples WR3, WR5 - Composite of subsamples	20-025-SW-1 20-025-SW-2		13.4 10.5	2.57 U 2.57 U	U 7.6 U 7.6	6.83 U 6.83 U	2.33 1.55 U		0.067	6.2 4.43 elected 3 · Estimated	12.7 U 12.7 U 12.7 U	9.39 0.38 U	30.7 U 30.7 U cision; NR - Not Rea	7.57 U 7.57 U 7.57 U	51.5 51.8
TOTAL SEE2 - Upgradient of waste rock dump 5 and 6. SEE2 - Upgradient of mine. SEE2 - Upgradien		Wet Chemistry Results in mg/l									ECEND				
95 < 5.0 5 < 0.05 NR 96 < 5.0 5 < 0.05 NR	FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		Downgradient of war Jpgradient of mine. Composite of subsan and 1B-C.	ste rock dump 5 and uples TPIA-A IA-B,	6. 1B-A, 1B-B,		SW1 - Same as SW2 - Same as	sample SE1.		.*
	20-025-SW-1 20-025-SW-2	88	× 5:0	សស	^ 0.05	NR NR		Composite of subsa Composite of susba Composite of subsa ROUND - From th	mples WR1, 24, 2B mples WR3A, 3B, 3: mples WR5A, 5B, 6: e Jackson Park Mine	C, and 3C. C, and 3D. A, 6B, and 6C.					

County: Jefferson Mine/Site Name: Middle Fork Warm Springs Section(s): SE 1/4, SE 1/4, Sec. 30, SW 1/4, Legal Description: T 8 N R 2 W Mining District: Alhambra SW 1/4, Sec. 29 Mine Type: Hardrock/Unknown Latitude: N 46° 25' 00" Primary Drainage: Warm Springs Creek Longitude: W 111° 53' 48"_ USGS Code: 10030101 Land Status: Public Secondary Drainage: Middle Fork Warm Quad: Clancy Springs Creek Inspectors: Babits, Lasher, Flammang Organization: Pioneer Technical Services, Inc. Date Investigated: August 17, 1993 P.A. # 22-046

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 17,700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3,010J to 24,000J mg/kg

Mercury: 0.189 to 0.273 mg/kg

Zinc: 523J to 1,350J mg/kg

Cadmium: 5J to 7.3J mg/kg

Lead: 992J to 2,550J mg/kg

Copper: 93.8 to 252 mg/kg

- There were four discharging adits identified at the site. The adit discharges were sampled for field parameters only. The pH measurements ranged from 6.61 to 7.16.
- An unnamed tributary to Middle Fork Warm Springs Creek flowed directly through the
 waste rock material at the site. Observed releases to this tributary were documented for
 arsenic, cadmium, copper, lead, and zinc. The MCL for cadmium was exceeded in the
 downstream sample; this exceedance was directly attributable to the site. Acute and
 chronic aquatic life criteria for zinc and the chronic aquatic life criteria for copper were
 exceeded in the downstream sample; these exceedances were also directly attributable
 to the site.
- One potentially hazardous open adit was identified at the site.

Middle Fork Warm Springs PA# 22-046 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/17/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb Sb	Zn	CYANDE
22-046-SE-1 22-046-SE-2 22-046-WR-1 22-046-WR-2 22-046-WR-3 22-046-WR-4	7.43 J 1130 J 5540 J 3010 J 4290 J 24000 J	23 J 37.9 J 14.2 J 12.9 J 9.29 J 8.4 J	0.6 U 1.7.7 0.7 J 0.5 U 5.0 J 1.3 J	5.53 13.4 2.17 U 3.5 1.86 U	3.63 15.8 1.53 U 1.38 U 1.61 3.55	12.6 115 63.4 114 93.8 252	9220 32500 24100 30100 30400 68600	0.031 U 0.206 0.08 0.189 0.273 0.027 U	223 814 41.4 41.4 295 453 1200	2.55 U 2.43 U 2.43 U 2.43 U	9.5 U 263 J 982 J 2450 J 1890 J 2550 J	7.21 U 7.29 U 6.86 U 6.18 U 5.89 U	28.4 J 1610 J 188 J 523 J 1350 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	32.1 J 77.7 . Acid/Base Accounting	77.7 J	0.9 J	1.	16.8	29.2	27200	0.03 U	587 U - Not Detected, J.	587 9.28 52.7 J 5.46 U 116 J U - Ned Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Net Requested	52.7 J	5.46 U	116 J	χ χ Σ χ
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIB V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
22-046-WR-1 22-046-WR-2 22-046-WR-3 22-046-WR-4	0.25 0.74 1.19 6.65	7.81 23.1 37.2 208	-6.12 -1.81 7.71 10.4	-13.9 -24.9 -29.5 -197	0.24 0.66 0.56 1.60	-0.01 0.02 0.25 1.59	0.01 0.06 0.38 3.46	0.00 0.62 7.81 49.7	-6.12 -2.44 -0.10 -39.2					

Ē	Metals in Water		Results in ug/L			WATER MAT	WATER MATRIX ANALYSES				+9 <i>6</i> 6			
a a	As	Æ	8	రి	გ	రె	F.	Н	Mn	Ż	<u>خ</u> خ	ಕ	∄ `	HARDNESS CALC.
22-046-SW-1 22-046-SW-2	2.5 6.17 2.57 U 9.7 U 6.83 U 23.1 8.27 8.27 J 9.7 U 6.83 U	6.17 8.27	2.57 U 8.27 J	9.7 U 9.7 U	6.83 U 6.83 U	1.77 J 12.8 J	1.77 J 67.5 12.8 J 337	0.25 J 0.21 J	6.07 317 317	6.07 12.7 U 0.72 U 30.7 U 13.3 31.7 12.7 U 2.22 30.7 U 1290	0.72 U 2.22	0.72 U 30.7 U 2.22 30.7 U	13.3	1290 101
	Wet Chemistry	œ	Results in mg/l			L				COEND	A County In Accum	KY OF PTECISION, NR	- Not Requested	
FIELD LD.	TOTAL FIELD DISSOLVED ID SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANII	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		 SE1 - Upgradient (200') on unnamed tributary of Middle Fork Warm Springs. SE2 - Downgradient (150') on unnamed tributary of Middle Fork Warm Springs. 	unnamed tributar 1 Springs. 21 unnamed tribu Springs.	y of tary of	O C C C C C C C C C C C C C C C C C C C	BACKGROUND - 50 feet S. SWI - Same as sample SEI. SW2 - Same as sample SE2.	BACKGROUND - 50 feet South and East of SW-1 SW1 - Same as sample SE1. SW2 - Same as sample SE2.	h and Bast of S	W-1
22-046-SW-1 22-046-SW-2	81 176	s 5.0 5.0	61	< 0.05	NR NR		WRI - Composite of subsamples WR5B and 5C. WR2 - Composite of subsamples WR5A, 6A, and 6B. WR3 - Composite of subsamples WR1, 2, 3A, and 3B. WR4 - Composite of subsamples WR1, 2, 3A, and 3B.	ples WR5B and ples WR5A, 6A, ples WR1, 2, 3A	5C. and 6B. , and 3B.					

Mine/Site Name: Alhambra Hot Springs Legal Description: T 8 N R 3 W	County: Jefferson Section(s): NW 1/4, NE 1/4, Sec. 16
Mining District: Alhambra	Mine Type: Hardrock/Gravel
Latitude: N 46° 27' 05"	Primary Drainage: Prickly Pear Creek
Longitude: W 111° 59' 02"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Warm Springs Creek
Quad: Clancy	Date Investigated: August 17, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>22-049</u>
Organization: Pioneer Technical Services, Inc.	

- No mill tailings were observed at the site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 5,560 cubic yards. The following elements were elevated at least three times background:

Barium: 310J to 529J mg/kg

Lead: 4,260 mg/kg

Mercury: 0.473 to 2.26 mg/kg

Antimony: 17.5J mg/kg

- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation.
- Warm Springs Creek was flowing approximately 300 feet south of the site; however, no surface water or sediment samples were collected due to lack of a direct runoff route.
- A potentially hazardous 10 foot highwall was identified above the upper waste rock dump.

Alhambra Hot Springs PA# 22-049 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/17/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.હ</u>			SOLID MAT	SOLID MATRIX ANALYSES	"						
FIELD D	As Ba (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
22-049-WR-1 22-049-WR-2	21.2 J 14.3 J	310 J 529 J	1.2 J 1.4 J	1.66 U 4.75	1.17 U 1.18 U	171 10.2	3650 9920	2.26 53.7 0.473 288	53.7 288	2.17 U 3.43	4260 J 106 J	# ¬ ⊃	148 J 66.1 J	
BACKGROUND	32.1 J	J. 7.77	0.9 J	1.1	16.8	29.2	27200	0.03 U	287	9.28	52.7 J	.5.46 U	116.J	Z.
	Acid/Base Accounting	Accounting							U - Not Detected, J -	- Estimated Quartity,	U - Not Detected, I - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	acy or Precision, N	IR - Not Requested	
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t		SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000	WR1 - Sempi WR2 - Comp BACKGROUI	LEGEND WR1 - Sample of subsample WR1. WR2 - Composite of subsamples WR2, 3A, and 3B. BACKGROUND. From Middle Fork warm Springs. (22.246.SS.1)	LEGEND mple WR1. beamples WR2, 3A, an n Middle Fork Warm S (22-046-SS-1)	nd 3B.	
22-049-WR-1 22-049-WR-2	0.07 0.05			1.43 -0.76 0.02 4.30 2.74 0.03	0.02 0.03	<0.01 <0.01	0.05	0.00	1.43			÷		

County: Jefferson Mine/Site Name: Solar Silver Section(s): SE 1/4, SE 1/4, Sec. 30 Legal Description: T 8 N R 2 W Mine Type: Hardrock/Pb, Ag, Au Mining District: Warm Springs Primary Drainage: Middle Fork Warm Springs Latitude: N 46° 25' 00" Longitude: W 111° 53' 48" Creek USGS Code: 10030101 Land Status: Private/Public Secondary Drainage: Unnamed tributary to Quad: Clancy Middle Fork Warm Springs Creek Inspectors: Babits, Flammang, Lasher Date: August 17, 1993 Organization: Pioneer Technical Services, Inc. P.A. # 22-054

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 1,700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2,760J mg/kg Lead: 715J mg/kg

Zinc: 667J mg/kg

- One discharging adit was observed at the site during the investigation. The discharge
 eventually flowed into an unnamed tributary of Middle Fork Warm Springs Creek. MCLs
 for arsenic and cadmium were exceeded in the adit discharge. Acute and chronic
 aquatic life criteria were exceeded for copper and zinc, and the chronic aquatic life
 criteria for iron was exceeded. The pH measurement in the adit discharge was 6.94.
- Middle Fork Warm Springs Creek flowed directly adjacent to the waste rock dump.
 Observed releases to Middle Fork Warm Springs Creek were documented for arsenic, lead, and zinc. The MCL for cadmium was exceeded in the downstream sample; however, the exceedance was not attributable to the site. Acute and chronic aquatic life criteria for zinc were exceeded in the downstream sample; these exceedances were directly attributable to the site.
- One potentially hazardous open adit was identified at the site.

Solar Silver PA# 22-054 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/17/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis Si			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg) (mg	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Мп (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
22-046-NR-5 22-046-WR-5	1130 J 2760 J	37.9 J 29.1 J	15 J 1 J	13.4 6.95	15.8 6.07	115	32500 56800	0.206	814 720	7.71	263 J 715 J	7.59 U 6.91 U	1610 J 667 J	Z Z
BACKGROUND	32.1 J	J.7.7	۲ -	14.1	16.8	29.2	27200	0.03 U	587 U - Not Detected J -	9.28	587 9.28 52.7 J 5.46 U 116 J	52.7 J 5.46 U	116 J	Œ Z
	Acid/Base /	Acid/Base Accounting								, ,		Ly of Precision, N	K - Not Kequested	
TIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000k	NBUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASIE POTENT. v1000t					
22-046-WR-5	1.37	42.8	-5.6	84	125	<0.01	0.16	0	-5.55					

						WATER MAT	WATER MATRIX ANALYSES	v						
	Metals in Water Results in ug/L	Water ⊧ug/L												
FELD	As	Be Be	꿍	రి	ඊ წ	చే	Re	H _g	Mn	ï	&	Sb	HARDN CALC. Zn(mg CaC	HARDNESS CALC. Zn(mg CaCO3/L.)
22-046-SW-1 22-046-SW-2 22-046-SW-7	2.5 23.1 152	6.17 8.27 6.4	2.57 U 8.27 J 10.9 J	0.7.6 U 7.6 U 7.6	6.83 U 6.83 U 6.83 U	1.77 J 12.8 J 108 J	67.5 337 4810	0.25 J 0.21 J 0.22 J	6.07 317 1490	12.7 U 12.7 U 12.7 U	0.72 U 30.7 U 2.22 30.7 U 5.03 30.7 U	30.7 U 30.7 U 30.7 U 30.7 U	13.3 1290 2250	13.3 28.1 290 101 250 271
	Wet Chemistry Results in ma/l	>-												·
FIELD LD.	TOTAL DISSOLVED SOLIDS	!	SULFATE	NO3/NO2-N CYANIDE	CYAN	SE2 - 1 SE2 - 1 WR5 - BACK(LEGE SBI - Upgradient on unnamed tributary (250°) of Midd Frk. Wrm. Sprgs. SB2 - Downgradient (150°) unnamed tributary from waste rock dump 7. WR5 - Composite of subsamples WR7B and 7A. BACKGROUND -From the Middle Fork Warm Springs (22-046-SS-1).	ned tributary (250°) urnamed tributary inples WR7B and 7½ Middle Fork Warm	of Midd Frk. Wn from waste rock d A. a Springs (22-046	LEGEND n. Sprgs. ump 7.	SWI - Same as sample SEI. SW2 - Same as sample SE2. SW7 - Adit discharge at was	SWI - Same as sample SEI. SW2 - Same as sample SE2. SW7 - Adit discharge at waste rock dump 7.	ock dump 7.	
22-046-SW-1 22-046-SW-2 22-046-SW-7		5.05.05.0	9 61 172	9 < 0.05 61 < 0.05 172 < 0.05	A R R	NOTE	NOTE: 22-046-WR-5 was collected and submitted to the lab under 22-046, not as 22-054 (Solar Silver)	ollected and submi	tted to the lab unc	ier 22-046, not as	22-054 (Solar S	ilver).		

Mina/Cita Name: Dullian	County: Jefferson
Mine/Site Name: Bullion	
Legal Description: T 7N R 6W	Section(s): SW 1/4, SE 1/4, Sec. 13
Mining District: Basin	Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn
Latitude: N 46° 21' 22"	Primary Drainage: Basin Creek
Longitude: W 112° 17' 40"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Jack Creek
Quad: Basin	Date Investigated: July 6, 1993
Inspectors: Bullock, Belanger, Clark	P.A. # <u>22-008</u>
Organization: Pioneer Technical Services, Inc.	

There were approximately 4,200 cubic yards of tailings on site. The following elements were elevated at least three times background:

Arsenic: 2,440 to 4,470 mg/kg

Cadmium: 2.9 mg/kg

Copper: 172 to 257 mg/kg

Mercury: 0.373J to 0.575J mg/kg

Lead: 3,330J to 5,110J mg/kg

Antimony: 151 to 196 mg/kg

• There were approximately 42,150 cubic yards of waste rock on site. The following were elevated at least three times background:

Arsenic: 1,690J to 18,100J mg/kg

Cadmium: 4.1 mg/kg

Copper: 137 to 372 mg/kg

Mercury: 0.383J to 0.519J mg/kg

Lead: 3,610J to 11,300J mg/kg

Antimony: 66 to 254 mg/kg

Zinc: 695 mg/kg

- There were two discharging adits on site. One entered surface water and was sampled as GW-1. This discharge had a flow rate of approximately 7 gpm, the pH was 2.92, and a specific conductance of 2610 umhos/cm. This discharge exceeded MCL/MCLGs for arsenic, cadmium, copper, nickel, and antimony. The chronic and acute aquatic life criteria for arsenic, cadmium, copper, lead, and zinc were exceeded. The chronic aquatic life criteria for iron was also exceeded.
- The tributary of Jack Creek received the adit discharge and flowed through the tailings. Observed releases were documented for arsenic, cadmium, copper, lead, and zinc. Arsenic and cadmium exceeded MCLs in the downstream surface water sample. Acute and chronic aquatic life criteria were exceeded for cadmium, copper, and zinc both upstream and downstream of the site. Observed releases to the stream sediments were also documented for arsenic, copper, lead, antimony, and zinc.
- There were no hazardous openings on site. There were five hazardous structures and three highwalls at pits or trenches.

Bullion PA# 22-008 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/06/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mørKe)	CYANIDE (mo/Re)
22-008-SF-1	0	000								(P. P.)		(Sugar)	(By Am)	(mg/kg)
22-008-0E-2		23.3	0.0	ر د. ا	4	9.9	7440	0.038	3	•	9			
77 000 01 2	0007	6	0.60	11.6	5.5	192	39200	0.067	853	, 5	9 6	۰ ز	3	¥
22-000-SE-3	1230 J	56.4	6.0	o	7.4	146	18600	9000	3 8	2 (200	2	313	Z Z
22-008-TP-1	2440 J	88.9	2.9	2.2	2.6	257	226	0000	8	7	383 T	2	275	X X
22-008-TP-2	3420 J	118	0.5 1	111	e c	£	7,000	0.203	16.9	4	3330 7	196	258	œ
22-008-TP-3	4470 J	40.6	25.0	14	i a	7/-	991	0.575 J	18.5	2 C	3870 J	164	5	ď
22-008-WR-1	18100 .1	138	2 0	<u>,</u>	7 6	4/0	001CL	0.373 J	6 .7	4	5110 J	151	175	2
22-008-WB-2	16001	3 4))	<u>:</u> ;	2.3	137	36700	0.383 J	7.78	2 1	3610	740	2 4	£ (
7-111-000-77	5 0601	C.77	4 .1	2.1	-	372	15800	0.519 J	83.7	2 0	1300	t 9	S 5	¥ į
	;								•	Y	3	8	692	Z Z
BACKGROUND	- - 	8	0.6 ∪	22.1	20.3	35	35000	0.08	6830	2	39 J	2	188	2
	Acid/Base Accounting	ccounting							U - Not Detected; J -	· Estimated Quantity, X	timated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	ry or Precision; NR	- Not Requested	É
		TOTAL		SULFUR				200						
	TOTAL	SULFUR	NEUTRAL.	ACID BASE	SULFATE	PYRITIC	ORGANIC	FIRITO	SULFUR					
FIELD	SULFUR	ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	SILFIE	ACTO BASE	ACID BASE					
a	*	V1000t	V1000t	1/1000t	*	*	*	V1000t	VIDOR					
22-008-TP-1DUP	0.31	988	0.42											
22-008-TP-1	0.32	9	0.58	, d.		8 6	3 3 8 8 8	2.81	-2.39					
22-008-TP-2	0.21	6.56	6,0	5.7	910	8 5	8 6	C. 7	-1.92					
22-008-TP-3	1.21	37.8	.33	4	2 6	20, 7	5.5	ر د ا	-1.23					
22-008-WR-1	1.04	32.5	-28	, K	5 6	+ · · ·	5 8	38.7	42					
22-008-WR-2	1.41	4	4	3 🌳		20.05 20.05	9 C	0.62	-3.23					
				!	•	2	3	>	4 .					•

	Metals in Water	fater				WATER MA	WATER MATRIX ANALYSES							
HELD	n ellega	J.												HARDNESS
Ð	As	Ba	ਲ	පී	ರ	రే	Fe	H	Mn	ž	£	. 6	ı	CALC.
22-008-GW-1 22-008-SW-1 22-008-SW-2 22-008-SW-3	57.	8.57 13.6 12.5 13.6	736 2.57 U 26.4 22.9	508 9.7 U 20.5 17.1	13.3 J 15 J 6.83 U	19400 J 12.2 J 631 J 424 J	325000 J 105 J 8470 J 4280 J	0.038 U 0.038 U 0.038 U 0.038 U	31000 JX 4.6 JX 1200 JX	31000 JX 142 4.6 JX 12.7 U 1200 JX 12.8	743 JX 147 4.96 JX 30.7 U 15.4 JX 30.7 U	30.7 U	80600 J 45.2 J 2960 J	An (mg CacCO3AL) 80600 J 366 45.2 J 19.7 2960 J 33.2
	Wet Chemistry	æ	Results in mg/l						U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	timated Quantity, X	Outlier for Accuracy	SOL / U	2570 J	35.7
FIELD	TOTAL DISSOLVED					Ē				LEGEND				
.D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		351 - Upgradient on Jack Creek. SE2 - PPE - Adit #6 discharge after flowing through dump.	Creek. Irge after flowing ti	hrough dump.		BACKGROUND - From the Bullion Mine	OUND - From the Br	ullion Mine	3100 g ann
22-008-GW-1	5		H H H H H H				SE3 - Downgradient Jack Creek; approx. 100 below TP2. TP1 - Composite of subsamples TP1A-A, B, C, and TP1B-A, B.	Creek; approx. 100 uples TP1A-A, B,	7 below TP2. C, and TP1B-A, B.		TP1DUP. Duplicate of sample 22-008-TP-1.	cate of sample 2	22-008-TP-1.	
22-008-SW-2	14.	, ,	. 7	v v	¥ @	<u> </u>	FP2 - Composite of subsamples TP2A-A, B, and TP2B-A, B.	nples TP2A-A, B,	and TP2B-A, B.		SW1 - Same as sample SE1.	sample SE1.	i	
22-008-SW-3	137	> 5.0	4.	v 0.05	œ	WRI	11.5 - Composite of subsamples TP1A-D, 2A-C, and 2B-C. WR1 - Composite of subsamples WR2B, 2C, and 3B.	nples TP1A-D, 2A mples WR2B, 2C,	-C, and 2B-C. and 3B.		SW2 - Same as sample SE2.	sample SE2.		
						WR	WR2 - Composite of subsamples WR5A 5B, and 3D	moles WRSA SR	Or pus			adminis one.		

Mine/Site Name: Basin Millsite Legal Description: T 6 N R 5 W Mining District: Basin Latitude: N 46° 16' 17" Longitude: W 112° 15' 18" Land Status: Private Quad: Basin Inspectors: Babits, Lasher/Pierson	County: Jefferson Section(s): NE 1/4, SW 1/4, Sec. 17 Mine Type: Millsite/Custom mill Primary Drainage: Boulder River USGS Code: 10020006 Secondary Drainage: Basin Creek Date Investigated: July 9, 1993 P.A. # 22-036
Organization: Pioneer Technical Services, Inc./Thomas. Dean and Hoskins	P.A. # <u>22-030</u>

 The volume of tailings associated with this site was estimated to be approximately 19,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2,840JX mg/kg

Cadmium: 27.7 mg/kg

Marcung: 0.585 L mg/kg

Marganese: 1.360.

Mercury: 0.585J mg/kg

Manganese: 1,360J to 5,050J mg/kg

Lead: 102 to 3,340 mg/kg

Antimony: 37J mg/kg

Zinc: 4,460 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 1,735 cubic yards. The following elements were elevated at least three times background:

Arsenic: 139JX to 232JX mg/kg
Copper: 342 to 963 mg/kg
Manganese: 1,370J mg/kg
Antimony: 35J to 329J mg/kg

Cadmium: 38.5 to 103 mg/kg
Mercury: 0.493J to 0.517J mg/kg
Lead: 2,190 to 11,900 mg/kg
Zinc: 3,770 to 12,500 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was flowing on or near the site during the investigation. The nearest surface water was over 1,000 feet away; no surface water samples were collected due to the lack of a direct runoff route.
- No hazardous mine openings were identified at the site.

Basin Millsite PA# 22-036 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/09/93

	Metals in soils Results per dry weight basis	lls dry weight ba	Sis			SOLID MAT	SOLID MATRIX ANALYSES	(0						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	(C)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Kg)	Pb (me/Ke)	Sb	Zn	CYANIDE
22-036-TP-1 22-036-TP-2 22-036-WR-1 22-036-WR-2	39 JX 2840 JX 232 JX 139 JX	43.5 350 64.1 59.1	0.5 U 27.7 38.5 103	8.0 9.0 9.4 9.4	11.9 10.8 1.7 7.4	25.5 25.5 963 342	10700 26900 18900 17300	0.014 J 0.585 J 0.493 J 0.517 J	1360 J 5050 J 672 J 1370 J	4 1 1 4	3340 11900 21900	6 UJ 37 J 329 J	135 4460 3770	0.308 U 0.302 U NR
BACKGROUND	15	65.1	0.5 U	4	6.3 J	10.3 J	9160	0.01 ع	344 J U - Na Datected J -	6 Estimated Quantity	344 J 6 11 JX 7 UJ 94 U-Na Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Na Requested	7 UJ	94 R - Not Requested	Z Z
FELD D	ACIO/Base Accounting TOTAL TOTAL SULFUR ACID BASS	COUNTING TOTAL SULFUR ACID BASE 1/1000t	NEUTRAL. POTENT. v1000t	A SEE	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	TP1 - Compo TP2 - Compo WR1 - Comp WR2 - Same BACKGROU	LEGEND TP1 - Composite of subsamples TP1A-A, -B, 1B-A, and -B. TP2 - Composite of subsamples TP1A-C, 1C-A, 1C-B, and 1C-C. WR1 - Composite of subsamples WR1, 2, 3, 4, 5, 6, and 7. WR2 - Same as sample 22-036-WR21 (Split) BACKRROUND - From Morning Glace, Marc (2) and 2 and 3.	LEGEND TP1A-A, -B, 1B- TP1A-C, 1C-A, 1 WR1, 2, 3, 4, 5, WR-1. (Split)	B-A, and -B. 1, 1C-B, and 1C. 5, 6, and 7.	Ų
22-036-TP-1 22-036-TP-2 22-036-WR-1 22-036-WR-2	<0.011.692.912.19	52.8 90.9 68.4	94.4 3.63 9.8	94.4 61.2 -87 -59	60.01 60.34 60.01 685	-0.01 1.12 2.16 0.63	0.04 0.23 0.84 0.71	35 67.5 19.7	94.4 79 -63.8 -9.88				(1797-1797)	

Mine/Site Name: Perry Park	County: Jefferson
Legal Description: T 8 N R 6 W	Section(s): NW 1/4, SW 1/4, Sec. 36
Mining District: Basin	Mine Type: Placer/Au
Latitude: N 46° 24' 03"	Primary Drainage: Basin Creek
Longitude: W 112° 18' 02"	USGS Code: 1002006
Land Status: Private/Public	Secondary Drainage: Grub Gulch
Quad: Three Brothers	Date Investigated: July 9, 1993
Inspectors: Babits, Bullock, Clark	P.A. # <u>22-039</u>
Organization: Pioneer Technical Services, Inc.	

- No mill tailings were observed at this site during the investigation.
- No waste rock was observed at this site during the investigation.
- Approximately 22,000 cubic yards of placer dredgings were identified at the site. The
 material consisted of very large cobbles and boulders; consequently, no samples were
 collected.
- The dredged material was situated directly in Grub Gulch. A sediment sample did not indicate any metals values elevated above background. No surface water samples were collected.
- No hazardous mine openings or structures were identified at the site.

Perry's Park PA# 22-039 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/09/93

	Metals in soils					SOLID MAT	SOLID MATRIX ANALYSES							
	Results per	Results per dry weight basis	sis											
FIELD As Ba Cd Co Cr Cu ID (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)		Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE
22-039-SE-1	15 J	15 J 27.1	0.5 U 4.7	4.7	3.6	6.8	10000	0.028 J 428	428	4	======================================	4 0	99	- QV
BACKGROUND	88	92	0.7 U	9.5	10.9 J	49.7 J	20400	0.107 J	654 J	o	117 JX		•	ž ž
									U - Not Detected, J -	Stimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	cy or Precision; N	R - Not Requested	
									SEI - Grub Gule BACKGROUND	h below placer o From the Ente	SEI - Grub Gulch below placer diggings approx. 300' above crossing. BACKGROUND - From the Enterprise (22-074-8S-1).	O' above crossi -1).	ing.	

Mine/Site Name: Buckeye	County: Jefferson
Legal Description: T 8 N R 6 W	Section(s): NW 1/4, SE 1/4, Sec. 36
Mining District: Basin	Mine Type: Hardrock/Au
Latitude: N 46° 23' 52"	Primary Drainage: Basin Creek
Longitude: W 112° 17' 38"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Basin Creek
Quad: Three Brothers	Date Investigated: July 6, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # <u>22-072</u>
Organization: Pioneer Technical Services, Inc/	
Thomas Dean & Hoskins, Inc.	

 The volume of tailings associated with this site was estimated to be approximately 20,750 cubic yards. The following elements were elevated at least three times background:

Arsenic: 708JX to 17,100JX mg/kg Copper: 168 to 1,160 mg/kg Antimony: 76J to 2,350J mg/kg Cadmium: 3.9 to 24.9 mg/kg Lead: 417 to 14,100 mg/kg Zinc: 1,250 to 4,040 mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 6,130 cubic yards. The following elements were elevated at least three times background:

Arsenic: 628JX mg/kg Manganese: 1,970 mg/kg Antimony: 29J mg/kg Mercury: 0.342J mg/kg Lead: 1,850 mg/kg Zinc: 340 mg/kg

- There were no discharging adits, filled shafts, seeps, or springs observed at the site during the investigation.
- Basin Creek flowed directly adjacent to the tailings. Surface water and sediment samples were collected upstream and downstream from the site. No MCLs were exceeded in the Basin Creek samples. Acute and chronic aquatic life criteria were exceeded for copper and zinc in the downstream sample; these exceedances were directly attributable to the site.
- No hazardous mine openings or structures were identified at the site.

Buckeye PA# 22-072 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/06/93

	Metals in soils Results per dry weight basis	lls dry weight ba	Sign			SOLID MAT	SOLID MATRIX ANALYSES	•						
FELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mo/Ke)	Sb (mar(Ze)	nZ (-7)	CYANIDE
22-074-SE-2 22-072-SE-3 22-072-TP-1 22-072-TP-3 22-072-TP-4 22-072-TP-4	2360 997 JX 17100 JX 252 JX 708 JX 7160 JX 628 JX	30 30.4 29.6 22.4 74.4 86.4	7.2 24.9 3.9 0.9 U 0.5 U	10.5 7.2 16.2 5.2 5.8 1.4	12.6 J 4.8 4.1 7 7 3.8 0.4 J 1.4 U	60.6 J 44.3 1160 168 51.2 17.9 35	47100 19200 24400 16900 6610 21000 18600	0.083 J 0.056 J 0.056 J 0.082 J 0.087 J 0.031 J	455 J 488 J 24.2 J 237 J 61.7 J 393 J	2 2	415 JX 589 14100 281 213 417		208 253 4040 1250 300 54	JX NR NR 0.271 U 0.577 U 0.41 U
BACKGROUND	Acid/Base Accounting TOTAL SULFUR SULFUR ACID BASIS	76 scounting TOTAL SULFUR ACID BASE	0.7 U NEUTRAL.	9.5 SULFUR ACID BASE	10.9 J SULFATE	49.7 J	20400 ORGANIC	0.107 J PYRITIC SULFUR	654 J U-Not Detected, J-E SULFUR ACID BASE	9 6 Indianaed Quantity, X -	117 JX 8 UJ 10.	B UJ	104 Not Requested	X X
ID 22-072-TP-1 22-072-TP-2 22-072-TP-3 22-072-TP-3 22-072-WR-1 22-072-WR-1	2.45 2.45 0.31 0.09 0.09 0.04 0.87	78.5 78.5 9.68 2.81 2.81 1.25 27.2 27.2	110001 -2 -0.9 1.03 0.82 -0.8 8.72 9.25	-79 -79 -11 -1.8 -2.1 -19	2.00 0.05 0.05 0.05 0.05 0.05 0.05	4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	SULFUR * 0.27 0.02 0.02 <0.01 0.16 0.16	ACID RASE V1000t 48.1 1.87 0.62 0.62 0.62 4.06 4.06	FOTENT. #1000t -50.1 -2.79 0.4 0.19 -0.81 4.86 5.19					

	Metals in Water Results in ug/L	Vater \g/L				WATER MATE	WATER MATRIX ANALYSES							
FIELD ID	FIELD ID As	88	P	రి		2	ድ	H	Mn	Z	£	£	π ξ	HARDNESS CALC.
22-074-SW-2 22-072-SW-3	10.1 18.1	4.43 5.53		9.7 U 9.7 U		6.83 U 6.23 J 9.27 J 15.9 J	167 284 J	0.038 U 0.038 U	0.038 U 143 12.7 U 9.67 J 30.7 U 129 23.3 0.038 U 161 JX 12.7 U 14.5 JX 30.7 U 165 J 25.9	143 12.7 U 161 JX 12.7 U	9.67 J 30.7 U 14.5 JX 30.7 U	30.7 U 30.7 U	129 165 J	23.3 25.9
	Wet Chemistry Results in ma/l								U - Not Detected, J - Entimeted Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	imeted Quantity, X -	Outlier for Accuracy o	or Precision, NR - Not	Requested	
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	22-074 SE3 - TP1 - (TP2 - C	-SE2 - In Basin Cree Downgradient of PPI Composite of subsam	22-074-SE2 - In Basin Creek down oe PPE from Enterprise Mine. SE3 - Downgradient of PPE of tailings in Basin Creek. TP1 - Composite of subsamples TP1A-A, IA-B, and IB-A. TP2 - Composite of subsamples TP1B-B, IB-C, IC-B, and ID-P.	i	LEGEND	SW3 - Same as sample SE3. 22-074-SW2 - Same as 22-07	SW3 - Same as sample SE3. 22-074-SW2 - Same as 22-074-SE2 sample.	E2 sample.	
22-074-SW-2 22-072-SW-3	8 8	< 5.0 5.0	< 5.0 8 < 0.05 < 5.0 8 < 0.05	0.050.05	S S		TP3 - Composite of subsamples 1 TP4 - Sample of TPE subsample. BACKGROUND - From the Ente	TP3 - Composite of subsamples TP1C-A and 1D-A. TP4 - Sample of TPE subsample. BACKGROUND - From the Enterprise Mine (22-074-SS-1).	D-A. 074-SS-1).					

Mine/Site Name: Enterprise Legal Description: T 8 N R 6 W	County: Jefferson Section(s): NW 1/4, SE 1/4, Sec. 36
Mining District: Basin	Mine Type: Hardrock/Au
Latitude: N 46° 23' 52"	Primary Drainage: Basin Creek
Longitude: W 112° 17' 38"	USGS Code: 10020006
Land Status: Public	Secondary Drainage: Basin Creek
Quad: Three Brothers	Date Investigated: July 6, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # <u>22-074</u>
Organization: Pioneer Technical Services.	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated witht this site was estimated to be approximately 22,930 cubic yards. The following elements were elevated at least three times background:

Arsenic: 5,840 to 22,400 mg/kg Lead: 1,000JX to 3,520JX mg/kg

Antimony: 91J to 291J mg/kg

- One discharging adit was identified at the site. MCLs were exceeded for arsenic, copper, cadmium, and antimony in the adit discharge. Acute and chronic aquatic life criteria were exceeded for arsenic, cadmium, copper, lead, and zinc, and chronic aquatic life criteria were exceeded for iron and mercury. The pH measurement in the adit discharge was 2.9.
- The adit discharge entered Basin Creek downstream from the site. Surface water and sediment samples were collected from Basin Creek upstream and downstream from the adit discharge confluence. Acute and chronic aquatic life criteria were exceeded for copper and zinc in the downstream sample; these exceedances were directly attributable to the adit discharge.
- Observed releases to Basin Creek (sediment) were documented for arsenic, lead, and antimony, which were directly attributable to the site.
- No hazardous mine openings were identified at the site.

Enterprise PA# 22-074 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/06/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	: <u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANIDE
22-074-SE-1 22-074-SE-2 22-074-WR-1 22-074-WR-2	15 2360 5840 22400	29.2 30 81.5 24.4	0.6 U 0.9 0.9 4.1	8.1 10.5 2.2 U 2.1 U	5.7 J 12.6 J 2.3 J 1.4 UJ	12.9 J 60.6 J 62.4 J 94.6 J	15400 47100 37000 33100	0.031 J 0.083 J 0.068 J 0.209 J	412 J 455 J 131 J 20.8 J	ე ე ე ე	34 JX 415 JX 1000 JX 3520 JX	42 J 192	# X X X X X	N X X X X X X X X X X X X X X X X X X X
BACKGROUND	88	92	0.7 U	9.5	10.9 J	49.7 J	20400	0.107 J	654 J U - Not Detected J . E	654 J 9 117 JX 8 UJ 104 JJ U-Na Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - New Requested	117 JX - Outlier for Accuracy	8 UJ	104 JX	_
	Acid/Base Accounting	Accounting												
FIELD U	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t		PY SU	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASB POTENT. V1000t					
22-074WR-1 22-074WR-2	0.38	11.9 92.8	3.1 8.8	-15 0.3 -98 0.6	0.36 0.63	<0.01 1.76	0.03 0.58	95	-3.1 -59.8					

	Metals in Water Results in uo/I	Nater un/l	:			WATER MATI	WATER MATRIX ANALYSES							
FIELD		8	3	ಕೆ	Ċ	ਟੋ	Fe	H	Ş	3	ŧ	ŧ	#	HARDNESS CALC.
22-074-SW-1 22-074-SW-2 22-074-SW-4		4.27 4.43 13.9	2.57 U 2.57 U 146	H 13	9.7 U 6.83 U 9.7 U 6.83 U 42 6.83 U	2.43 J 6.23 J 1340 J	99.7 167 131000	0.130 J 0.038 U 0.081 J	13.3 143 28900 U-Na Detected J-	13.3 12.7 U 5.42 J 30.7 U 12.9 28900 31.7 U 9.67 J 30.7 U 12.9 28900 31.7 1340 J 84.2 23400 U Net Detected J Estimated Quantity X : Outlier for Account or Description of the Account of t	5.42 J 30.7 U 9.67 J 340 J 84.2	30.7 U 30.7 U 30.7 U 84.2	Zn (mg 12.9 129 23400	Zn (mg CaCO3/L) 9 23 9 23.3 0 192
	Wet Chemistry Results in mg/l												nan vedneme	· · · · · · · · · · · · · · · · · · ·
FIELD 1.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	SE2 - SE2 - WRJ - WRZ -	LEGE! SE1 - Upgradient in Basin 100' above confluence with urnamed tributary. SE2 - In Basin Creek down of PPE of adit discalinge. WR1 - Composite of unbarmples WR2A and 2D. WR2 - Commosite of unbarmples WR2A and 2D.	100' above confluer of PPE of adit discriples WR2A and 21	nce with unnamed alarge.	LEGEND I tributary.	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW4 - Adit discharge.	sample SE1. sample SE2. sharge.		
22-074-SW-1 22-074-SW-2 22-074-SW-4	43 80 1050	43 < 5.0 80 < 5.0 1050 < 5.0	× 25 8 8 22	A 0.05 0.05 0.05 NR 0.05 NR	AN AN AN		BACKGROUND - 300 upgradient from SW1. From Enterprise (22-074-SS-1).	radient from SWI.	c. From Enterprise ((22-074-88-1)				

Mine/Site Name: Jack Creek Tailings	County: Jefferson
Legal Description: T 7N R 6W	Section(s): SW 1/4, NE 1/4, Sec. 14
Mining District: Basin	Mine Type: <u>railings</u>
Latitude: N 46° 21' 42"	Primary Drainage: Basin Creek
Longitude: W 112° 18' 27"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Jack Creek
Quad: Basin	Date Investigated: July 6, 1993
Inspectors: Bullock, Belanger, Clark	P.A. #_22-296
Organization: Pioneer Technical Services, Inc.	

There were approximately 23,000 cubic yards of tailings on site. The following elements were elevated at least three times background:

Arsenic: 1,890 mg/kg Copper: 381J mg/kg Antimony: 26J mg/kg Cadmium: 2.2 to 4.0 mg/kg Lead: 147 to 681JX mg/kg

- There was no waste rock on site.
- There were no discharging mine openings, seeps, or springs identified at this site.
- Jack Creek ran through the tailings impoundment area. No observed releases to Jack Creek were documented; and no MCL/MCLGs were exceeded in upstream or downstream surface water samples. The acute aquatic life criteria was exceeded for lead in the downstream sample, which was directly attributable to the site.
- There were no hazardous openings on site.

Jack Creek Tailings PA# 22-296 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/06/93

	Metals in soils	oils	•			SOLID MAT	SOLID MATRIX ANALYSES							
···········	results bet	results per ary weignt basis	Sis											
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (me/Ke)	Ni (me/Ke)	Pb	88	5	CYANIDE
22-296-SE-1 22-296-SE-2 22-296-TP-1 22-296-TP-2	573 263 132 1890	31.5 24.2 141 67.2	4.2 1.7 4.0 2.2	12.9 7.6 14.7 8.4	16.1 3.1 J 15.6 7.5 J	127 J 83.1 J 91.1 J 381 J	26700 8890 26800 21500	0.013 UJ 0.015 J 0.044 0.096 J	H	#	158 79 JX 147 881 JX	!!	284 201 348J	NR NR
BACKGROUND	68 J	£	0.6 U	22.	20.3	35	35000	0.08 J		2 7	7 6E	. D .c	323 188	
	Acid/Base Accounting	Accounting							U · Not Detected; J ·	Estimated Quantity,	U - Nat Detectec, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Nat Requested	acy or Precision, N	VR - Not Requester	
FEELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASIB POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE t/1000t	SULFUR ACID BASE POTENT					
22-296-SE-1 22-296-SE-2 22-296-TP-1 22-296-TP-2	0.03 0.04 0.08 0.08	0.94 0.31 2.5 2.5	4.05 3.1 4.76 1.63	3.12 2.79 2.26 -0.9	0.02 40.01 0.01 0.05	60.01 60.03 60.03	0.01 0.04 0.02	0 0 0.31	4.05 3.1 3.82 1.32					

	Metals in Water Results in ug/L	Vater ig/L				WATER MATRIX ANALYSES	IX ANALYSES				, access,	٠		
FIELD D	FIELD As Ba Cd Co Cr	Ba	ਣ	රී	ඊ	õ	Fe	н	W	ï	£	ŧ	E ,	HARDNESS CALC.
22-296-SW-1 22-296-SW-2	20.8 J 36.5 J	13.1 17.7	3.83 2.57 U	U 7.6 U 7.6	6.83 U 6.83 U	63.6 J 65.2 J	723 1170	0.038 U 0.038 U	145 156 U-Na Descret J.	145 12.7 U 8.96 J 30.7 U 416 14.7 J 30.7 U 411 U-No Detected J : Estimated Quantity X : Outlier for Account.	8.96 J 14.7 J X.Outlier for Account	30.7 U	416 411	416 25.6
	Wet Chemistry Results in mall											ary of fictional, NK.	· No requested	
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB			SBI - Upgradient of tailings on Jack Creek. SB2 - Downgradient of tailings on Jack Creek. TPI - Composite of subsamples TPIA-A, B, C, and TPIB-A, B, C. TP2 - Composite of subsamples TPIC-A, B, and TPID-A.	s on Jack Creek ings on Jack Creek ples TP1A-A, B, C ples TP1C-A, B, a	and TP1B-A, B	LEGEND	SW1 - Same as sample SE1. SW2 - Same as sample SE2.	s sample SE1.		
22-296-SW-1 22-296-SW-2	22-296-SW-1 58 < 5.0 10 < 0.05 NR 22-296-SW-2 54 < 5.0 14 < 0.05 NR	< 5.0 <	10 4	0.050.05	N N N N N		BACKGROUND - From the Bullion Mine (22-008-SS-1).	e Bullion Mine (2,	2-008-SS-1).					

Mine/Site Name: Marguerite	County: Jefferson
Legal Description: T 6N R 5W	Section(s): NE 1/4, NW 1/4, Sec. 6
Mining District: Basin	Mine Type: Hardrock/Au, Ag
Latitude: N 46° 18' 30"	Primary Drainage: Basin Creek
Longitude: W 112° 16' 28"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: <u>Lily-of-the-West Gulch</u>
Quad: Basin	Date Investigated: July 9, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # <u>22-301</u>
Organization: Pioneer Technical Services.	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately
 580 cubic yards. The following elements were elevated at least three times background:

Arsenic: 70JX mg/kg Copper: 31.6 mg/kg

Lead: 422 mg/kg

Barium: 341 mg/kg

Mercury: 1.24J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was located on or near the site (the site was located well above the nearest drainage); consequently, no surface water or sediment samples were collected.
- One potentially hazardous partially open adit was identified at the site.

Marguerite PA# 22-301 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES	10		·				
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Ba Cd Co Cr (mg/Kg) (mg/Kg) (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Kg)	Zn (mø/K.e)	CYANIDE
22-301-WR-1	70 X	34.	0.4 U	3.9	1.3 U	31.6	11000 1.24 J	1.24 J	302 J	jj	422	11	83	AN AN
BACKGROUND	15	65.1	0.5 U	4	6.3 J	10.3 J	9160	0.01 ي	344 5	ဖ	1. X		3.	2
	A cood/bioA								U - Not Detected, J - J	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	cy or Precision, NR	t - Not Requested	
	Acid/ base Accounting	ccounting												
FIELD D	TOTAL TOTAL TOTAL SULFUR NEUTRAL. SULFUR ACID BASE POTENT. % 1/1000t 1/1000t	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE SULF POTENT: SULF	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT. v1000t					
22-301-WR-1	90.0	1.56	3.36	1.8	0.05	25 <0.01		3.36	3.36					

		ı — —	7
	HARDINESS CALC. (mg CaCO3/L)	0.2	
	HA) CZ (mg (4.08 U 12.7 U 4.14 .J 30.7 U 7.57 U 0.2 de Detected, J - Estimated Quantity, X - Outlier for A : Junacy or Precision; NR - Not Requested	
	S	30.7 U cy or Precision, NR.	
	Pb	4.14 .J	LEGEND 12. 2-077-SS-1)
	ž	12.7 U intimated Quantity, X	samples WR1 and Morning Glory (2
	Mn	4.08 U 12.7 U 4.14 .J 30.7 U 7.57 U U - Not Detected; J - Entimated Quantity, X - Outlier for A : Survey or Precision; NR - Not Requested	WR1 - Composite of subsamples WR1 and 2. BACKGROUND - From Morning Glory (22-077-SS-1) SW1 - Bottle Blank
	He	0.038 U	WRI BAC SWI
X ANALYSES	F0	11.8 U	
WATER MATRIX ANALYSES	On Contraction of the contraction 1.55 U		
>	ರ	6.83 U	
	Co	9.7 U	
ater //	20	2.01 U 2.57 U	
	Ba see see see see see see see see see se	7.0 7.0 7.0	
Metals in Water Results in ug/L	FIELD D As Ba Cd Cd Cd Cd Cd Cd Cd Cd Cd C		
	FIELD D		

Mine/Site Name: Mantle East	County: Jefferson
Legal Description: T 6 N R 5 W	Section(s): SE 1/4, NW 1/4, Sec. 9
Mining District: Cataract	Mine Type: Hardrock-Underground/Au
Latitude: N 46° 17' 26"	Primary Drainage: Boulder River
Longitude: W 112° 14' 21"	USGS Code: 10020006
Land Status: Private	Secondary Drainage: Cataract Creek
Quad: Mount Thompson	Date Investigated: July 7, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 22-032
Organization: Pioneer Technical Services.	
Inc./Thomas, Dean and Hoskins, Inc.	
Inc./ I flomas, Dean and Floskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 4,148 cubic yards. The following elements were elevated at least three times background:

Arsenic: 76JX mg/kg

Mercury: 0.208J to 0.254J mg/kg

Lead: 114 to 288 mg/kg

Copper: 38.4 to 66.6 mg/kg Manganese: 1,110J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site during the investigation.
- WR-5 was situated directly in the Cataract Creek drainage. Sediment samples were collected from Cataract Creek upstream and downstream from the site; no observed releases were documented.
- No hazardous openings or structures were identified at the site.

Mantle (East) PA# 22-032
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 07/07/93

	Metals in soils Results per dry weight basis	ils dry weight ba	sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As Ba (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
22-032-SE-1 22-032-SE-2 22-032-WR-1 22-032-WR-2	27. 14. 14. 20. 57. 57. 57. 57. 57. 57. 57. 57. 57. 57	79.2 45.8 38.5 52.3	9.5 7.4 0.6 U 0.6 U	17.1 16.7 8.6 8.4	6.9 3.8 J 1.7 2.6	360 254 J 38.4 66.6	17600 8780 11000 18000	0.048 J 0.016 J 0.208 J 0.254 J	1070 J 988 J 1110 J	9 4 7 7	X + + ×	12 J 9 J 7 UJ 7 UJ	889 580 JX 136 278	N N N N N N N N N N N N N N N N N N N
BACKGROUND	15 65.1	65.1	0.5 U	4	6.3 1	10.3 J	9160	٥.01 ل	344 J U - Not Detected J - J	6 Estimated Quantity,	344 J 6 11 JX 7 UJ 94 U-Nat Detected: J - Estimated Quantity; X - Outlier for Accuracy or Precision; NR - Nat Requested	7 UJ	94 - Not Requested	
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.	SE1 - Upgrad SE2 - Downg WR1 - Comp WR2 - Comp	LEGEND SEI - Upgradient on Cataract Creek. SE2 - Downgradient on Cataract Creek. WR1 - Composite of subsamples WR1, 2, 3, and 4. WR2 - Composite of WR5A and 5B. BATKOROTIND: Error 41, 3, 34	LEGEND Treek. It Creek. In WR1, 2, 3, and 45B.	d 4.	
22-032-WR-1 22-032-WR-2		5.94 11.2	6.71 8.54	0.77 -2.7	0.08	0.03	0.08 0.13	0.94 0.94	5.77 7.61			ज्याम ड जावर्ष (५७	(1-88-1/0-3	

Mine/Site Name: Crystal	County: Jefferson
Legal Description: T 7N R 5W	Section(s): NW 1/4, All 1/4, Sec. 20
Mining District: Basin/Cataract	Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn
Latitude: N 46° 21' 01"	Primary Drainage: Cataract Creek
Longitude: W 112° 15' 37"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Uncle Sam Gulch
Quad: Basin	Date Investigated: July 7, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # <u>22-073</u>
Organization: Pioneer Technical Services.	
Inc./ Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- Approximately 15 acres of disturbed (strip mined) area was identified at the site. The following elements were elevated at least three times background:

Arsenic: 458J to 7,310 mg/kg Copper: 292 to 1,250 mg/kg

Mercury: 0.492J mg/kg Antimony: 23 to 73 mg/kg Cadmium: 2.1 to 18.4 mg/kg

Iron: 65,100 mg/kg

Lead: 188J to 3,570 mg/kg Zinc: 479 to 3,260 mg/kg

- One discharging adit was identified at the site. The pH measurement in the adit discharge was 3.41. MCLs for arsenic, cadmium, and copper were exceeded in the adit discharge. Acute and chronic aquatic life criteria were exceeded for arsenic, cadmium, copper, lead, and zinc.
- Waste rock was observed directly in the Uncle Sam Gulch drainage. Observed releases to Uncle Sam Gulch were documented for arsenic, cadmium, copper, iron, lead, and zinc. MCLs were exceeded for arsenic, cadmium, and copper in the downstream sample; these exceedances were directly attributable to the site. Acute and chronic aquatic life criteria were exceeded for arsenic and cadmium in the downstream sample, again attributable to the site.
- The U.S. Department of Energy was conducting a research project at this site at the time of the investigation. Settling ponds were being constructed for the treatment of Acid Mine Drainage.
- Two potentially hazardous open adits and a hazardous loadout structure were identified at the site.

Crystal PA# 22-073 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/07/93

ž &	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis.			SOLID MAT	SOLID MATRIX ANALYSES							
As (mg/Kg)		Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cn (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn (me/kg)	CYANIDE
434		19.3	2.4	6 .	1.4	27.4	4820	0.048	200			ii ii		(mg/kg)
2510 .		4. 9	- 7	7.7	2.1	203	17600	0.057	758	4	7 000 000	2 ℃	1110	
524		, e		10.0 10.0	io io	292	38100	0.059	1310	13	867		3267	
449 J		23	17.8	. «	5.7 7.7	337	38000	0.062 J	2640	2	559	} ~	479	£ 2
3880		34	2.1	7 29	. 6	3/0	13800	0.031	743	7	3570 J		2230	
7310 J		11.4	0.55	<u> </u>	=	25.5	73600	0.062 J	1350	60	3350 J		783	
458 J		45	7	4.0	. 4 6	200	9500	0.492 J	19.7	7	3090 J		290	
390 390		23.5	0.4 U	1.0	,	20.0	00701	0.051 J	263	က	188 J		482	
539		22	13.6	20.2	7.8.	28.7 248.	9380 1800	0.107	4	က	339 J		5	
				!		}	36	0.033	1020	ın	387 JX	_	KF 266	
140 J	_	193	0.7 U	4.0	14.9	71.2	21200	0.114 J	1930	=	- 9S	S	159	
Acid/Bas	₹	Acid/Base Accounting							U - Not Detected, J - H	Interest Quantity, X	Ostlier for Accuracy	or Precision, NR - Not Requested	iot Requested	
TOTAL		TOTAL SULFUR	NEUTRAL.	SULFUR ACID BASE	SHEFATE		City	PYRITIC	SULFUR					
SULFUR		ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	ACID BASE POTENT					
	ij		7)000t	t/1000t	*	*	*	t/1000t	V1000t					
0.61		19.1	2.13	-17	0.29	0.16	naariinterii O 48							
0.0		0.31	8.8	4.52	0.01	<0.01	<0.0 ⁵	, o	-2.0/ 4.83					
0.00 2.00 2.00		78.7	8. Y	27.0	60.01 0.01	0.37	0.39	11.6	4					
3.75		117	t 0	-4.5 5.77	0.24	60.0 60.0	0.01	0	5.47					,
0.0		0.31	6.65	25.0	8 5	4.0	0.93 8.63	77.2	-87					
0.08		2.5	6	3.4	6.0 20.0	0.0	0.0 0.1	0.3	6. 4. 4. 5.					
									:					

Hg Mn Ni Pb Sb Zn (mg CaCO3L) O38 U 15.8 JX 12.7 U 5.14 JX 30.7 U 39.4 J 9.5 O38 U 15.60 JX 12.7 U 46.8 JX 30.7 U 11500 J 46.6 O38 U 13600 JX 59.1 425 JX 172 84300 J 224 U-Net Detected 1- Entered Quantity. X - Confer for Accuracy or Presisting, NR. Not Requested LEGEND WR1-C and ID. WR2-A, 2B, 2C, and 2D. SW1- Same as SE1. WR3-A, 3B, 3C, 3E, and 3F. SW4-A ddit disclasses.		
15.8 JX 12.7 U 5.14 JX 30.7 U 2100 JX 12.7 U 46.8 JX 30.7 U 13600 JX 59.1 425 JX 172 426 JX 172	WATER MATRIX ANALYSES	WATER MATRIX ANA Results in ug/L
15.8 JX 12.7 U 5.14 JX 30.7 U 2100 JX 12.7 U 46.8 JX 30.7 U 13600 JX 12.7 U 46.8 JX 30.7 U 13600 JX 12.7 U 42.5 JX 17.2 U. Not Detect the Leitenship (quality, X. Ondire for Accuracy or Proteining, NR. Not LEGEND WR6 - Composite of subsamples of sub	1	(
15.8 JX 12.7 U 5.14 JX 30.7 U 2100 JX 12.7 U 46.8 JX 30.7 U 425.0 JX 30.7 U 425.0 JX 172 U 425.0		
Net Detected 7 - Estimated Quantity, X : Outlier for Accounty or Precision, NR - Net Requested LEGEND WR6 - Composite of subsamples WR4R, 4C, 4D, a WR7 - Composite of subsamples WR4F and 4G. BACKGROUND - From Crystal Mine. (22-073-SS-1) SW1 - Same as SE1. SW2 - Same as SE2. E, and 3F. SW4 - Actit discharate.	10.8 J 3130 J 26700 J 112	112
Sam Gulch. nd 2D. E, and 3F.	8	Results in mg/l
Nam Chich. nd 2D. E, and 3F.	SE1 - Approx. 3	SEI - Approx. 3
nd 2D. E, end 3F.		CYANIDE
U.C. and I.D. SW1 - Same as SE1. 224, 28, 2C, and 2D. SW2 - Same as SE2. 334, 38, 3C, 38, and 3F. SW4 - Adit discharee.		
2A, 2B, 2C, and 2D. 3A, 3B, 3C, 3E, and 3F.	WAZ - Compos	NR 50.0 ×
3A, 3B, 3C, 3E, and 3F.	WAS Composite	œ Z
	with Composi	•

County: Jefferson Mine/Site Name: Eva May Section(s): NW 1/4, NW 1/4, Sec. 22 Legal Description: T 7N R 5W Mine Type: Hardrock/Pb, Cu, Au, Ag Mining District: Cataract Primary Drainage: Cataract Creek Latitude: N 46° 21' 00" USGS Code: 10020006 Longitude: W 112° 13' 20" Secondary Drainage: Cataract Creek Land Status: Private/Public Date Investigated: July 7, 1993 Quad: Mount Thompson P.A. # 22-075 Inspectors: Bullock, Belanger, Clark Organization: Pioneer Technical Services, Inc.

 The volume of tailings associated with this site was estimated to be approximately 11,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1300 mg/kg Cadmium: 2.8 mg/kg Lead: 1450JX mg/kg Antimony: 70 mg/kg

- The tailings may erode into Cataract Creek during storm events.
- The volume of waste rock associated with this site was estimated to be approximately 92,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 14,700 mg/kg Cadmium: 11.2 mg/kg

Copper: 357J mg/kg Mercury: 0.199J to 0.585J mg/kg Lead: 1270JX to 5970JX mg/kg Antimony: 114J to 165J mg/kg

Zinc: 1660JX mg/kg

- The adit discharge at Adit #2 exceeded the MCL for arsenic and the MCL/MCLG for Cadmium. Acute aquatic life criteria was exceeded for iron, copper, and zinc. Chronic aquatic life criteria was exceeded for cadmium, copper, lead and zinc. The adit discharge had a low flow rate of approximately 5 gpm and had a pH of 6.67 and a specific conductance of 355 umhos/cm. The discharge entered a small diversion ditch from Cataract Creek which flowed through WR-2 then returned to the Creek.
- Water samples from Cataract Creek were not collected during this investigation due to high relative flows. Sediment samples collected from Cataract Creek documented observed releases of arsenic, copper, lead, and antimony.

Eva May PA# 22-075 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/07/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	S.S.			SOLID MATI	SOLID MATRIX ANALYSES			-				
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANIDE
22-075-SE-1 22-075-SE-2 22-075-TP-1 22-075-WR-1 22-075-WR-2	49 1300 384 14700	33.9 25.3 170 31.6 4.2	0.8 0.6 U 2.8 0.7 11.2	2.1 3 7.9 1.5 U	3.2 J 4.2 J 4.7 J 1.2 UJ 1 UJ	30.2 J 9.4 J 206 J 357 J 56.5 J	5940 5870 22300 29900 14200	0.036 J 0.022 J 0.082 J 0.585 J 0.199 J	291 J 240 J 160 J 102 J 9.4 J	0 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87 JX 14 JX 14 JX 14 JX 1270 JX 5970 JX	7377-	75 JX 75 JX 75 JX 420 JX 60 JX	N N N N N N N N N N N N N N N N N N N
BACKGROUND	140 J 193 Acid/Base Accounting	193 Accounting	0.7 U	e. 4	6.71	71.2	21200	0.114 J	1930 U - Not Detected, J - Esti		11 56 J 5 U 155 mily, X - Outlier for Accuracy or Precision; NR - Not Responsed	5 U	159 d Requested	v
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
22-075-TP-1 22-075-WR-1 DUP 22-075-WR-1 22-075-WR-2 DUP 22-075-WR-2	0.23 2.63 2.58 2.58	7.19 82.2 82.2 80.9 80.6	6.2 6.3.5 6.3.7 6.9	-7.4 -88 -88 -85 -85	0.2 2.49 2.49 0.61 0.57	0.01 60.01 60.01 1.15	0.02 0.15 0.03 0.83 0.83	0.31 0 35.9 36.9	-0.52 -3.02 -3.52 -39.6 -40.8					
	Cation/Exch	Cation/Exchange Capacity	>			Meci	Mechanical Analysis and % Coarse Material	and % Coarse) Material					
FIELD ID	milliequivalents/100g	100g	ii		FIELD			ND % SILT		% COARSE MATERIAL (>2mm)	AL (>2mm)			•
22-075-TP-1	6.17				22-075-TP-1	2	82	16	ii 					

		WALEN MAIN ANALTSES	ANAL I ORO							
చి	Ö	Ö	F.	H	×	Z	ź	ŧ	HAR	HARDNESS CALC.
5.93 9.7 U	6.83 U	67.2 J 1750 0.230 J	1750	0.230 J	1300	12.7.0	11.7.1	12.7 U 11.7 II 20.7 II	11	CO3/L)
					J - Not Detected, J - Es	U - Net Detected, J - Betimmed Quantity, X - Outlier for Accounty or Precision, NR - Net Requested	utlier for Accuracy or	JO. / U	1490 Requested	8/
						LEGEND				
		SE1 - Dow SE2 - Upst TP1 - Com	SE1 - Downstream Calaract Creek. SE2 - Upstream Calaract Creek. TP1 - Composite of subsample TP1	Creek. ek. Je TP1 A 13 17 33			WR2DUP - Duplicate of the 22-4 GWI - Discharge from adit #2.	icate of the 22-07 e from adit #2.	WR2DUP - Duplicate of the 22-075-WR-2 sample. GWI - Discharge from actit #2.	
SULFATE NO3/NO2-N	YANIDE	WRI - Cor	nposite of subsam	ples WRIB and IC	; 1					
72 < 0.05	NR	WR2 - Sen BACKGRO	nple of the WR2A XVND - From the	subsample. Crystal Mine (22-07.	3-SS-1).					
		WKIDUP.	Duplicate of the	22-075-WR-1 sampl	9					
N03/N	N-20									

County: Jefferson Mine/Site Name: Morning Glory Section(s). E 1/4, NW 1/4, Sec. 33 Legal Description: T 7N R 5W Mine Type: Hardrock/Ag, Pb, Au, Zn Mining District: Cataract Primary Drainage: Boulder River Latitude: N 46° 19' 05" USGS Code: 10020006 Longitude: W 112° 14' 35" Secondary Drainage: Cataract Creek Land Status: Public Date Investigated: July 7, 1993 Quad: Mount Thompson P.A. # <u>22-077</u> Inspectors: Bullock, Belanger, Clark Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 7200 cubic yards. The following elements were elevated at least three times background:

Arsenic: 91 to 2250 mg/kg

Copper: 97.3J to 150J mg/kg

Manganese: 5190J to 22,800J mg/kg Nickel: 25 mg/kg

Lead: 475JX to 2070JX mg/kg

Cadmium: 4.8 to 7.8 mg/kg

Mercury: 0.188J to 0.248J mg/kg

Zinc: 1140JX to 1210JX mg/kg

The tailings oxidized zone, ranging 2 to 4 feet deep, contained significantly higher concentrations of arsenic and lead than the underlying reduced zone.

The volume of waste rock associated with this site was estimated to be approximately 29,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 48 mg/kg Cobalt: 11.9 mg/kg

Mercury: 0.54J mg/kg

Lead: 88JX mg/kg

Cadmium: 1.5 mg/kg Copper: 33.6J mg/kg

Manganese: 3830J mg/kg

- There were no adit discharges, seeps or springs associated with this site.
- Cataract Creek flowed along the base of the waste rock dumps and tailings impoundment. No surface water samples were collected due to the high dilution effect from the creek. Sediment samples were collected up and down stream of the site, as well as in Uncle Sam Creek, just above its confluence with Cataract Creek. The down stream sample (SE-2) showed significant increases in arsenic, cadmium, cobalt, copper, lead, and zinc concentrations, but due to the very high concentrations found in the Uncle Sam Creek Sample (SE-3), no observed release could be directly attributed to this site. The Crystal Mine was situated on the headwaters of Uncle Sam Creek and was probably the source of contaminants found in SE-3

Morning Glory PA# 22-077
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 07/07/93

				
	CYANIDE (me/Ke)			٠ ٧ =
	Zn (mø/Kø)	₩ ₩₩₩₩	185 JX 94 JX Not Requested	net CreekA. 1B-B, and 1B 7, 2A, and 2B. e (22-077-SS-;
	Sh (me/Ke)	#33	7 UJ	LEGEND Elent. Uence with Cata TP1A-A and 1B TP1A-B, 1A-C, WR1A, 1B, 1C ming Glory Min ND sample.
	Pb (mg/Kg)	# 		LEGEND SEI - Cataract Creek upgradient. SE2 - Cataract Creek downgradient. SE3 - Uncle Sam Creek at confluence with Cataract Creek TP1 - Composite of subsamples TP1A-A and 1B-A. TP1 - Composite of subsamples TP1A-B, 1A-C, 1B-B, and 1B-C. WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, and 2B BACKGROUND - From the Morning Glory Mine (22-077-SS-1). SSI - Same as the BACKGROUND sample.
	Ni (mg/Kg)	3 C C C C C C C C C C C C C C C C C C C	1.2. 6 Extirnated Quarrity;)	SEI - Catarac SE2 - Catarac SE3 - Uncle S TP1 - Compos TP2 - Compos WR1 - Compo BACKGROUN SSI - Same as
	Mn (mg/Kg)	284 J 617 J 1020 J 5190 J 22800 J	344 J	SULFUR ACID BASE POTENT. 1/1000t 1/22 72.1 122 58.6
	Hg (mg/Kg)	0.012 U 0.01 U 0.033 J 0.248 J 0.188 J	0.01 J	PYRITIC SULFUR ACID BASE v1000t 0 2.5 6.25 14.7
SOLID MATRIX ANALYSES	Fe (mg/Kg)	3450 4960 11600 17400 12900	9160	ORGANIC SULFUR % <0.01 0.03 0.05 0.14
SOLID MAT	Cu (mg/Kg)	19.3 J 170 J 848 J 150 J 97.3 J 33.6 J	10.3 J	PYRITIC SULFUR % <0.01 0.08 0.2 0.47
	Cr (mg/Kg)	1.6 UJ 1.7 J 2.6 J 5.5 J 7.2 J 7.8 J	6.3 J	SULFATE SULFUR % 0.01 0.08 0.02 0.12
	Co (mg/Kg)	2.5 20.2 3.1 2.4 1.9	4	SULFUR ACID BASIB POTENT. V1000t 1.61 68.7 120 50.5
asis S	Cd (mg/Kg)	0.6 U 13.6 7.8 7.8 1.5	0.5 U	NBUTRAL. POTENT. v1000: 1.92 74.6 128 73.3
Metals in soils Results per dry weight basis	Ba (mg/Kg) ====================================	19.6 19.1 57 65.4 26.4	65.1 Accounting	TOTAL SULFUR ACID BASE V1000t 0.31 5.94 8.43 22.8
Metals in soils Results per dry	As (mg/Kg)	93 539 2250 91 48	15 65.1 Acid/Base Accounting	TOTAL SULFUR % 0.01 0.19 0.27
	FIELD D	22-077-SE-1 22-077-SE-3 22-077-SE-3 22-077-TP-1 22-077-TP-2	BACKGROUND	FIELD D 22-077-SS-1 22-077-TP-1 22-077-TP-2 22-077-TP-2

Mine/Site Name: Nellie Grant Legal Description: T 8N R 5W Mining District: Clancy Latitude: N 46° 26' 16" Longitude: W 112° 12' 07" Land Status: Private/Public Quad: Chessman Reservoir Inspectors: Bullock, Tuesday, Babits, Lasher, Clark, Belanger, Flammang/Pierson Organization: Pioneer Technical Services. Inc./Thomas. Dean and Hoskins, Inc.

County: Jefferson Section(s): SW 1/4, SW 1/4, Sec. 14 Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn Primary Drainage: Lump Gulch USGS Code: 10030101 Secondary Drainage: Lump Gulch Date Investigated: May 18 and 19, 1993 P.A. # 22-244

There were approximately 10,000 cubic yards of uncovered tailings on site. The following elements were elevated at least three times background:

Arsenic: 4,210 to 9,500 mg/kg

Cadmium: 10.8 to 312 mg/kg

Cobalt: 27 to 28.8 mg/kg Copper: 50.5 to 467 mg/kg Chromium: 19.7J to 26J mg/kg Iron: 29, 500 to 61,400 mg/kg

Mercury: 0.106J to 0.235J mg/kg Nickel: 36.6 to 37.3 mg/kg

Lead: 9,380 to 13,500 mg/kg

Zinc: 763 to 33,700 mg/kg

There were approximately 2,500 cubic yards of uncovered waste rock on site. The following elements were elevated at least three times background:

Arsenic: 969 to 2,570 mg/kg

Cadmium: 7.6 to 9.2 mg/kg

Cobalt: 10.8 mg/kg

Copper: 87.2 to 143 mg/kg

Iron: 33.600 mg/kg

Mercury: 0.156J to 0.184J mg/kg

Lead: 7,410 to 15,500 mg/kg

Zinc: 417 to 934 mg/kg

- There were no discharging adits on site. There were three shafts that did not discharge; but, held water. Shaft #3 was sampled as GW-3 and pH 3.51 and a specific conductance of 640 umhos/cm. Arsenic and cadmium exceeded MCL/MCLGs. There were two monitoring wells on site that were potentially downgradient (GW-3 and 4) and one spring (GW-1) that was upgradient. There were observed releases of arsenic, cadmium, cobalt, copper, iron, nickel, lead, and zinc in GW-3 and cadmium and zinc in GW-4. The MCL/MCLGs were exceeded for cadmium in GW-3 and 4 and the MCL was exceeded for arsenic in GW-3.
- Lump Gulch Creek ran through eroded tailings. There were observed releases of cadmium and zinc in downstream surface water in the creek. Cadmium exceeded MCL/MCLGs in downstream surface water in the creek. The acute and chronic aquatic life criteria for copper, lead, and zinc were exceeded in downstream surface water in the creek. Elevated upgradient metal concentrations (SW-1) indicated the possible presence of an upgradient source.

Nelle Grant Mine PA# 22-244
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER-BULLOCK
INVESTIGATION DATE: 05/18/93 & 06/19/93

	Metals in soils		rsults per dry \	Results per dry weight basis (mg/kg)	ng/kg)	SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As	Ba	Cd	ప	บั	Cu	ir.	Hg	Mn	ïZ	£	S	5	CYANIDE
22-244-SE-1	599	430	7 9										İ	LANIDE
0 0 0 0 0 0		?	ţ	0.00	ر 20.1	39.4	6860	0.122	1780	100	;			
Z-244-2E-Z	8/8	26.1	9	1.37 U	11511	27.3	75.40		3 !	8.	4	Z \	393	ž
22-244-SE-3	354	284	8	35 a	- 0 - 0		000	0.034	102	2.01 U	198	4.2 UJ	202	ĝ
22-244-SF-4	887	;	3 1	3 6	7	5	20/00	0.274 J	763	7.16	8	100	1 6	
100000	2 5	₽ !	?	œ.1œ	1.14 U	42.3	2660	0 114 .1	1020	6	3 3	3 :	2310	¥
77-744-1A-1	4210	46.7	10.8	141 0	7.36	20.5	20500		0761	0.0	26.	4.16 UJ	4	ž
22-244-TA-2	9330	53.2	312.0	28.8	10.7	5.5	00067	L LT.0	46.9	2.59	9380	4.32 UJ	763	Z
22-244-TA-3	550	8	9 5	2 6	2.6	104	000/6	0.235 J	758	36.6	13500	- 1	33700	2
22 244 WIB 4	8	5.5	0.0	17	7 9Z	321	61400	0.106	283	37.3	0670		200	<u> </u>
1-VAA-4-7-77	ĝ	0.0	9.5	1.31	0.936 ∪	87.2	6490	0 187	9 6		0/06	2.0.7	20212	¥
22-244-WR-3	2570	81.2	7.6	10.8	200	4.5	2000	5 6	0.0	1.64 U	15500	6.74 J	934	1.070
			?	2	20.4	<u>?</u>	22000	2 9CL.0	73.7	1.75 п	7410	3.65 UJ	417	Z.
BACKGROUND	10	52.7	1.3	3.15	2.23 J	6.12	6390	1 2500	787	Ç	ě			
						!			107	۷.5	21.9	3.4 UJ	43.6	ĸ
	Acid/Base Accounting	counting							U - Not Detacted, J - E	i - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	ier for Accuracy or P	Tecisios; NR - Not Re	pesses	
												EGENO		
	TOTAL	SULFIR	NET TO A	SULFUR	1			PYRITIC	SULFUR	SEI - Lump Gulch @ culvert N. of main access road to logging/mine	(culvert N. of	main access road	to logging/m	-
FIELD	SULFUR	ACID BASE	POTENT	POTENT	SULFAIE	FIRILC	ORGANIC	SULFUR	ACID BASE	SE2 - 1/2 way down center drainage @ edge of shuried tailings	m center drainage	e @ edge of shmi	ed tailmes	į
Ð	*	10001/4	1,1000	WINDS	SULFUR	SULFUR	SULFUR	ACID BASE	POTENT.	SE3 - Outlet of pond S. of access road in Lump Gulch	nd S. of access re	and in Lump Gulc	ا اج	
						r	*	10001/4	₹1000t	SE4 - Lump Gulch Creek in tailings deposit downgradient of SWI	Creek in tailings	deposit downgra.	dient of SWI	
22-244-TA-1	1.49	46.5	4.47	51.0	1 33	900				TP1 - Sample of th	Sample of the subsample TP1-A1	I-A1.		
22-244-TA-2	8.95	280	517	-274	2 54	9 6	2 6	1.8/	-6.35	TP2 - Sample of the	Sample of the subsample TP1-B1	I-B1.		
22-244-TA-3	6.97	218	2 24	, 6	2 6	9.3	98.7	111	-106	TP3 - Sample of the	Sample of the subsample TP1-B2	-B2		
22-244 WIP 4	5	2 7	7.7-	077-	ا دی ا	40.	1.82	151	-153	WR1 - composite of the embounder 10th Pot The	of the subcomple	· William I.		
22 244 WP 9	3 6		17.7	901-	1.14	0.78	. 8	24.4	-37	WR3. Composite	of the subsample	MEDI 1 22	ILI, KIKI,	and KILT
	- c	C. [4	-17.9	-59.5	1.07	0.09	0.17	2.81	7 02.	DACPORDATE TO THE SUBSTITUTES WIND-1, 3-3, and 3-4	Or the Succession	58 WKU)>-1, 5-5, 8	and 3-4.	
0	3.05	95.3	-12.1	-107	1.18	0.76	111	23.7	2 4	BACKGROUND - From the Nelhe Grant (22-244-SS-1)	rom the Nellie	Grant (22-244-SS-	÷	
								1.02	53.3	WKIDUP - Duplicate of the sample 22-244-WR-1	ate of the sample	: 22-244-WR-1		

HELD	Metals in Water		Results in ug/L			WATER MATRIX ANALYSES	X ANALYSES							
III	As	88	PG Cq	CO	Ç	r.	Fe	Hg	Mn	ï	£	. 8	CALC.	CALC.
22-244-GW-1	n n	0	2 67										Similar Similar	acost)
22 244 CW 2) () ()	0 6	7:27	⊃ : 68:0 1	12.1	25	125	0.19 J	2.77	8.78	1 85	18.2.1.1	0	
2747-04-2	20.0	20.3	2.30		8.37 J	1.35 U	831	0.21	486	878	1 36 1	5 6) 	D (
22-244-GW-3	53.4	33.2	107		13.4 J	369	9270	0 13	3530) () () ()	5.5) ()	9	86.7
Z2-244-GW-4	4.28	22.5	82.9		25	52	12.5		2250	29.5	080	18.3 ∪	12700	Ξ
22-244-SW-1	123	21.2	4.37		7.73	47.4	5 5	2.03	1320	2	- 38	18.3 ∪	10600	90
22-244-SW-2	45.4	9	מצי		100		2 6	2	50	8.78 ∪	98.5	18.3 U	315	14.1
22-244 SW 3	900	9 6	8 8		ا ا ا	2	3830	0.21 J	0986	87	316	57.4	2002	. 6
240	0.03	3	763		2	19.1 J	312	0.22 J	500	10.9	18.2	18.3	2440	, y
		1							II - Most Pastardad, I. Basima	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2	0 17	5/.3
	Wet Chemistry	œ.	Results in mg/l						THE PERSONAL PRINCIPLE	unamed Quantity, A Outlier for Accuracy or Precision, NR - Not Requested	ier for Accuracy or P	recisios; NR - Not R	potaento	
	TOTAL									21101				
FIELD	DISSOLVED					יבותו	Dackmann d aming			LEGEND				
G	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	-ZM2	GW2 - Monitoring well furthert South along access	approximately 35 thest South alone	yards.					
						GW3	GW3 - Shaft #3, East of building.	lding.	meess road.					
ZZ-Z44-GW-1	v ?	20	ري د	v 0.05	ž	CW.	TW4. Monitoring and first and Area James	Sharet Month of the						
22-244-GW-2	153 <	5.0	16	v 0.05	ď	1/03	Townson we will	मान्त्रत १४०१चा बाठामु	locess road.					
22-244-GW-3	289 <	5.0	171	v 0.05	2	- THO	SWIT Swille as sumple SEI.	.						
22-244-GW-4	345 <	5.0	175	v	2	- 740	CAN 2 - Serine as Serinpie SEZ.							٠.
22-244-SW-1	2	5.0	15	v	2		ows - sume as sample ses.							
22-244-SW-2	817 <	5.0	491	0.68	ğ									
22-244-SW-3	>	5.0 q	49	v 0.05	Z.									

- There were no tailings on site.
- There were approximately 1,580 cubic yards of waste rock on site. The following elements were elevated at least three times background:

Arsenic: 2,320 to 5,130 mg/kg

Copper: 55.4 mg/kg

Mercury: 0.244J to 0.542J mg/kg Zinc: 444 mg/kg

Lead: 3,810 to 5,400 mg/kg

- There were no discharging mine openings on site. There was one filled shaft that did not discharge. This shaft was sampled as GW-1 and had a pH 6.47 and specific conductance of 100 umhos/cm. Cadmium exceeded the MCL/MCLG in this sample.
- There was no surface water on site. The nearest surface water was one mile away. No surface water or sediment samples were collected.
- The shaft was hazardous mine openings, but was covered with an AMRB grate.

General Grant PA# 22-245 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/19/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>:8</u>			SOLID MAT	SOLID MATRIX ANALYSES	40						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (ma/Ke)
22-245-WR-1 22-245-WR-2	2320 5130	55.6 44.4	3.4 1.9	1.26 U 1.12 U	1.05 U 2.42 J	112 55.4	10300 7970	0.244 J 0.572 J	79.5 2.8	1.64 U	3810 5400	3.84 UJ 4.1 J	444	3.84 UJ 444 NR 4.1 J 66 NR
BACKGROUND	10	52.7	£.	3.15	2.23 J	6.12	6390	0.035 J	284 U - Not Detected, J -	284 2.6 21.9 3.4 UJ 43.6 U-Not Detected J - Editated Quantity X - Outlier for Accounty or Processor No. No. Beautone.	21.9 X-Outlier for Acon	3.4 UJ	43.6	
	Acid/Base	Acid/Base Accounting								,			name and a value of	
FIELD D	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000					
22-245-WR-1 22-245-WR-2	0.59 0.51	18.4 15.9	-4.75 -2.46	-4.75 -23.2 0.5 -2.46 -18.4 0.4	0.51 0.47	0.02 -0.01	0.06	0.62 -5.37 0.00 -2.46	-5.37 -2.46					

	Metals in Water	ater			•	WATER MATRIX ANALYSES	X ANALYSES							•
FIEL D	Results in ug/L	3/L											HA	HARDNESS
Œ	As Ba Cd	æ	రౌ	రి	ರ	ਹੌ	, Ed	H	Mn	Ä	£	5	,	CALC.
22-245-GW-1		46.7	6.3	5.99 U	5.67 J	5.99 U 5.67 J 1.87 J 693 0.14 J 568 8.78 U 17.2 18.3 U	693	0.14 J	268	8.78 U	8.78 U 17.2	18.3 U	773 33.8	33.8
-									\mathbf{U} . Not Detected, \mathbf{J} . Estimated Quantity, \mathbf{X} . Outlier for Accuracy or Precision; NR - Not Requested	Satimated Quantity, X	· Outlier for Accum	icy or Precision, NR	- Not Requested	
	Wet Chemistry													
										LEGEND				İ
FIELD	TOTAL					WR1 - C WR2 - C BACKGB	Composite of subsar Composite of subsar Composite of subsar	WR1 - Composite of subsamples WR1-1 and 1-3. WR2 - Composite of subsamples WR2-1, 2-2, and 2-3. RACKGROTIND: E	-3. and 2-3.		GW1 - Discha	GWI - Discharge from shaft #1 at General Grant.	at General Grant.	
.TD.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDI	CYANIDE				(22-244-SS-1).					
22-245-GW-1	92	< 5.0		######################################	NR NR									

Mine/Site Name: Alta Legal Description: T _7N _ R _4W _ Mining District: Colorado Latitude: N 46° 22' 24" Longitude: W 112° 05' 12" Land Status: Private Quad: Wickes Inspectors: Bullock, Belanger/Pierson Organization: Pioneer Technical Services	County: Jefferson Section(s): SE 1/4, NW 1/4, Sec. 10 Mine Type: Hardrock/Au, Pb, Ag, Fe, Zn, Cu Primary Drainage: Prickly Pear USGS Code: 10030101 Secondary Drainage: Spring Creek Date Investigated: August 17, 1993 P.A. # 22-001
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- Water discharging from the base of WR-1 was apparently a discharge from the main level shaft. This discharge constituted the start of flow in a small, unnamed tributary to Spring Creek. The discharge flow was approximately 10 gpm, pH was measured at 2.59, and specific conductance was 420 umhos/cm. Arsenic, cadmium, copper, nickel, and antimony exceeded MCLs and MCLGs. Acute aquatic life criteria were exceeded for arsenic, iron, cadmium, copper, and zinc. Chronic aquatic life criteria were exceeded for arsenic, mercury, cadmium, copper, and zinc.
- Observed releases to the unnamed tributary (sediment) were documented for arsenic and lead.
- Approximately 175,000 cubic yards of waste rock material was located at this site. The following elements were elevated at least three times background:

Arsenic: 249J to 658J mg/kg Lead: 3100J to 15, 100J mg/kg

Severe erosion was occurring on several of the waste rock dumps.

Alta PA# 22-001 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/17/93

Be	Metals in soils Results per dry weight basis	SOLID MA	SOLID MAI KIX ANALYSES							
#21 J 97.4 J 1.3 J 2.8 J 4.1 J 230 JX 46 J 120 J 0.5 U 5 J 8.9 J 32.3 JX 249 J 67.1 J 0.5 U 1.8 U 2.4 J 217 JX 558 J 61.5 J 1.1 J 1.7 U 1.2 U 193 JX 3 293 J 57 J 0.6 J 1.9 U 1.3 U 122 JX ND 187 J 92.1 6.6 11.4 8.4 J 232 J Acid/Base Accounting TOTAL SULFUR NEUTRAL ACD BASE SULFATE PYRITIC ORG SULFUR ACD BASE POTENT POTENT SULFUR SULFUR SULFUR * v1000t v1000t v1000t % 2.8 87.5 -0.6 -88 2.62 0.03	Cd Co (mg/Kg) (mg/Kg)		Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mo/Ke)	Pb (mo/K o)		Z į	CYANIDE
46 J 120 J 0.5 U 5.5 J 4.1 J 220 JX 249 J 67.1 J 0.5 U 1.8 U 2.4 J 217 JX 258 J 61.5 J 1.1 J 1.7 U 1.2 U 193 JX 3 293 J 57 J 0.6 J 1.9 U 1.3 U 1.2 U 193 JX ND 187 J 92.1 6.6 11.4 8.4 J 232 J Acid/Base Accounting TOTAL SULFUR NEUTRAL ACD BASE SULFUR SULFUR SULFUR ACD BASE POTENT POTENT SULFUR SULFUR SULFUR * * **VIOOO*** **** **** 2.8 87.5 - 0.6 - 88 2.62 0.03	13 32	-					Suranni Suranni	(By Am)	(mg/Kg) ====================================	(mg/Kg)
1 249 J 67.1 J 0.5 U 1.8 U 2.4 J 217 JX 258 J 61.5 J 1.1 J 1.7 U 1.2 U 193 JX 3 293 J 57 J 0.6 J 1.9 U 1.2 U 193 JX ND 187 J 92.1 6.6 11.4 8.4 J 232 J Acid/Base Accounting TOTAL SULFUR NEUTRAL ACD BASE SULFATE PYRITIC ORG SULFUR ACD BASE POTENT POTENT SULFUR SULFUR SULFUR * v1000t v1000t v1000t % % 2.8 87.5 -0.6 -88 2.62 0.03	25.2 25.0 10.50	2,500		0.12	<u>8</u>	ر 9	1170 J	0 9	613	N.
293 J 61.5 J 1.1 J 1.7 U 1.2 U 193 JX 3 293 J 57 J 0.6 J 1.9 U 1.3 U 122 JX ND 187 J 92.1 6.6 11.4 8.4 J 232 J Acid/Base Accounting TOTAL SULFUR NEUTRAL ACD BASE SULFATE PYRITIC ORG SULFUR ACD BASE POTENT POTENT SULFUR SULFUR SULFUR * * **VIOOR*** VIOOR*** **** 2.8 87.5 -0.6 -88 2.62 0.03	0.5 U 1.8 U	747		5 5 5 5 5	, 19, 5 19,	10)	_ გ	O 9	120	
3 293 J 57 J 0.6 J 1.9 U 1.3 U 122 JX ND 187 J 92.1 6.6 11.4 8.4 J 232 J Acid/Base Accounting TOTAL SULFUR NEUTRAL ACID BASE SULFATE PYRITIC ORE SULFUR ACID BASE POTENT POTENT SULFUR SULFUR SULFUR * v1000t v1000t v1000t % % 2.8 87.5 -0.6 -88 2.62 0.03	1.1 1.7 U	U 193		0.426		4 (3940 J	⊃ : 9 :	366 J	
Acid/Base Accounting Acid/Base Accounting TOTAL SULFUR ACID BASE SULFATE PYRITIC OR SULFUR ACID BASE POTENT. SULFUR SUL	J 0.6 J 1.9 U	U 122		0.437	710 5	7 7 80 80	3100 5	ວ =	328 JX	œ 0
Acid/Base Accounting TOTAL SULFUR TOTAL SULFUR NEUTRAL ACID BASE SULFATE PYRITC OR SULFUR ACID BASE POTENT. POTENT. SULFUR SULFUR SULFUR * v1000t v1000t v1000t % % 2.8 87.5 -0.6 -88 2.62 0.03	6.6 11.4	7		0.029	1040	-	777) ;		
Acid/Base Accounting TOTAL SULFUR TOTAL SULFUR SULFUR ** **V1000t **V1000t **** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** ** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** ** ** *** ** ** ** ** ** ** ** ** ** ** ** ** *					U - Not Detected, J -	Estimated Quantity:	U- Not Detected, J. Estimated Quantity, X. Outlier for Accounting an amount of the Accounting to the A		819	Z Z
TOTAL SULFUR SULFUR SULFATE PYRITIC ORG SULFUR ACID BASE POTENT. POTENT. SULFUR	inting					,		The second like	· Not Requested	
TOTAL SULFUR NEUTRAL ACID BASIB SULFATE PYRITIC ORG SULFUR ACID BASIB POTENT. POTENT. SULFUR SULFUR SUL										
SULFUR ACID BASIS POTENT. POTENT. SULFUR SULFUR SUL * v1000t v1000t v1000t % % , , , , , , , , , , , , , , , , ,	SULFUR NEUTRAL. ACID BASE		ORGANIC	PYRUTIC	SULFUR					
2.8 87.5 -0.6 -88 2.62 0.03	SE POTENT. POTENT.	-4	SULFUR	ACID BASE	POTENT.					
2.50 30 -3 -93 0.94 1.26 DUP 0.88 27.5 -1.4 -29 0.84 <0.01 0.87 27.2 -1.6 -29 0.82 <0.01	0.6 -3 -88 -1.4 -29 -1.6 -29	11 17 18 18 18 11	0.15 0.68 0.05 0.06	0.94 39.4 0	1.58 1.42 1.44 1.64					

	Metals in Water Results in ug/L	'ater g/L				WATER MAT	WATER MATRIX ANALYSES	46			HAME .			
FIELD D	FIELD As Bs Cd Co C	æ	පි	ర	ඊ	రె	Ŧ.	H	Mn	ž	£	ŧ	ļ	HARDNESS CALC.
22-001-SW-1	1270	2.01 U	892 J	206	78.5	16200 J	16200 J 368000	0.21 J	0.21 J 390000 117 26.3 329 289000 1230 U - Not Detector, J. Bainmard Quantity, X Outlier for Accuracy or Precision; IN: - Not Remonent Ann No. Dec.	117 Outlier for Accuracy	26.3	329	289000	m (mg cacos/L)
	Wet Chemistry Results in mg/l					. [
FIELD LD. 22-001-SW-1	TOTAL FIELD DISSOLVED LD. SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 22-001-SW-1 5810 ND 3450 < 0.05 NR	CHLORIDE	SULFATE NO3/NO 3450 < 0.05	SULPATE NO3/NOZ-N CYANIDE 3450 < 0.05 NR	CYANIDE		SEI - At single stream below waste rock dump 1. SE2 - Upgradient of site. WR1 - Composite of subsamples WR1A, 1B, 1C, 1D, and 1B. WR2 - Composite of subsamples WR2, 3, and 4. WR3 - Composite of subsamples WR5, 6, 7, and 8. BACKGROUND - From the Bertha Mine (22-002-SS-1). WR3DUP - Duplicate of sample 22-001-WR-3.	ow weste rock dun mples WR1 A, 1B, mples WR2, 3, an mples WR5, 7, ie Bertha Mine (22, mple 22-001-WR,	np 11C, 1D, and 1E. d 4. and 8. !-002-SS-1).	LEGEND	SW1 - Same as sample SE1.	sample SE1.		

Mine/Site Name: Bertha	County: Jefferson
Legal Description: T 7N R 4W	Section(s): S 1/4, Sec. 3
Mining District: Colorado	Mine Type: Hardrock/Cu, Pb, Ag, Au, Zn
Latitude: N 46° 22' 55"	Primary Drainage: Little Prickly Pear
Longitude: W 112° 05' 10"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Spring Creek
Quad: Jefferson City	Date Investigated: July 12, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>22-002</u>
Organization: Pioneer Technical Services, Inc.	

- This site was reclaimed by the MDSL/AMRB in 1987. Waste rock dumps and tailings ponds were almost completely revegetated.
- The volume of tailings associated with this site was roughly estimated at 115,000 cubic yards. Accurate estimation of volume was difficult due to covering and grading activities that occurred during the reclamation activities. The following elements were elevated at least three times background:

Copper: 2270J to 6320J mg/kg

Antimony: 8J to 21J mg/kg

Mercury: 0.209 to 1.34 mg/kg

• The volume of waste rock at this site was roughly estimated at 19,000 cubic yards. The following elements were elevated at least three times background:

Cadmium: 21.3 mg/kg Copper: 998J to 2290J mg/kg

Mercury: 0.345 to 2.62 mg/kg Lead: 8170J mg/kg

Antimony: 8J to 21J mg/kg

Spring Creek flowed along the reclaimed waste rock and tailings impoundments. Observed releases to Spring Creek (sediment) were documented for cadmium, copper, lead, and zinc. No MCLs or MCLGs were exceeded in Spring Creek water samples. Acute aquatic life criteria were exceeded for iron both up and down stream of the site. The unnamed tributary coming into Spring Creek from the northwest contained elevated levels of cadmium (25.80J ug/l), copper (1540 ug/l), lead (81.7 ug/l), and zinc (2920J ug/l). MCLs and MCLGs were exceeded for cadmium and copper in this tributary. Acute aquatic life criteria were exceeded for iron, cadmium, copper, and zinc. Chronic aquatic life criteria were exceeded for cadmium, copper, lead, and zinc. Stream flows were approximately 40 gpm in Spring Creek and 30 gpm in unnamed tributary. The pH and specific conductance of Spring Creek below the site was measured at 7.8 and 367 umhos/cm, respectively. The pH and specific conductance of the unnamed tributary was measured at 8.15 and 333 umhos/cm, respectively.

Bertha PA# 22-002 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/22/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
22-002-SE-1 22-002-SE-2 22-002-SE-3 22-002-TP-1 22-002-WR-1	19 1 33 1 1 4 4 1 20 1	37.4 51.6 46.7 34.7 32.7	3.9 2.7 1.2 7.6 21.3	8.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	395 J 186 J 78.1 J 6320 J 2270 J	15100 29800 22400 35400 17400	0.015 0.022 0.014 1.34 0.209	740 740 412 476 1120 485	/ @ D @ @ .	223 J 168 J 68 J 588 J 245 J	6 UU 6 UU 8 LU 8 J	739 384 121 1200 371	N N N N N N N N N N N N N N N N N N N
22-002-WR-2	30	38.7	4.4	7.7	3.8 J	686 1866	27000	0.345	362 607	10 J	8170 J 292 J	25 J 6 UJ	2520 472	<u> </u>
BACKGROUND	187 J	92.1	6 .6	4.1.4	8.4	232 J	31600	0.029	1040 U-Net Depoted 1.	1040 11 J 447 J 6 UJ 618	447 J	6 UJ	618	N.
	Acid/Base Accounting	ccounting						·			Programme to Decimal	y of tracellican, N.R.	Not Requested	
TIELD O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. #1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
22-002-TP-1 22-002-TP-2DUP 22-002-TP-2 22-002-WR-1 22-002-WR-2	3.6 0.59 0.6 4.19 2.33	112 18.4 18.7 131 72.8	38.2 3.86 3.89 -11	-74 -15 -15 -142 31.6	0.23 0.35 0.35 1.84 1.19	2.56 0.05 0.09 0.91 0.44	0.81 0.19 0.16 1.44 0.7	80 1.56 2.81 28.4 13.7	41.7 2.3 1.08 -39.3 90.7					

	Metals in Water		Results in ug/L			WATER MATI	WATER MATRIX ANALYSES							
HELD D	As	82	8	රී	ರ	ಕ	Ÿ.	Ĭ	Ş	7	ź	ŧ	HA	HARDNESS CALC.
22-002-SW-1 22-002-SW-2	9.14 J 10.91 J	9.14 J 19.90 10.91 J 81.20	3.27 J 25.80 J	3.27 J 9.70 U 6 25.80 J 9.70 U 6	######################################	19.80 1540	7220 JX 3710 JX	0.120	158	12.7 U	2.87	2.87 30.7 U	#	Zn (mg CaCO3/L)
2-002-SW-3	5.58	73.30		9.70 U	6.83 U	19.00	2770 JX	0.150	153 U-Net Detactor, J-E	1520 22.5 81.7 30.7 U 2920 153 12.7 U 15.1 30.7 U 109 U-Net Detected 1- Estimated Dumitier X- Dumitier X- Dumitier X-	81.7 15.1	30.7 U 30.7 U	2920 J 109 J	32 4 214
	Wet Chemistry		Results in mg/l			L				FGEND		of the listed and the last	or Requested	
HELD I.D.	TOTAL DISSOLVED SOLIDS	HIORIDA	±. •	NOSAIOS N		SE1-	SE1 - Spring Creek immediatly downgradient of ballings pond 2. SE2 - Umamod tributary to Spring Creek which flows past Northern workings.	atly downgradient Spring Creek whi	of bailings pond 2.]	BACKGROUND - From the (22-002-89-1) SW1 - Same as sample Se1	BACKGROUND - From the Bertha Mine (22-002-SS-1) SW1 - Same as sample Se1	tha Mine	
22-002-SW-1	######################################				CIANIDE		NE3 - Spring Creek upgradient of tailings pond 1. TP1 - Sample of the TP1A subsample.	ent of tailings pons ubsample.	d 1.		SW2 - Same as sample SE2.	sample SE2.		
22-002-SW-2	352	v v	115	0.05 0.05	Z Z	- ZAL	TP2 - Composite of subsamples TP3A-A, 3A-B, 3B-A, 3B-B, 3B-C, 3B-D, and 3C-A through 3C-C.	ples TP3A-A, 3A- ough 3C-C.	-B, 3B-A, 3B-B, 3E			eduple ses.		
-MS-200	O	v 2.0		v 0.05	œ	WR1 -	WR1 - Composite of subsamples WR1A, 1B, and 1C.	ples WR1A, 1B, 8	and 1C.					,
						MIC	WAL - Composite of subsamples WRZA and 2B.	pies WRZA and	2B.			-		-

Latitude: N 46° 21′ 32″ Longitude: W 112° 10′ 00″ Land Status: Private/Public Quad: Mount Thompson Inspectors: Babits, Lasher/Pierson Private/Public Sectors: Pabits, Lasher/Pierson P.A.	ne Type: Hardrock//Au, Ag imary Drainage: Spring Creek GGS Code: 10030101 econdary Drainage: Curtain Gulch ate Investigated: July 8, 1993 A. # 22-003
Organization: Pioneer Technical Services. Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 70,550 cubic yards. The following elements were elevated at least three times background:

Arsenic: 100JX to 587JX mg/kg

Mercury: 0.407J mg/kg

Zinc: 1,910 mg/kg

Copper: 441 mg/kg Lead: 4,990 mg/kg

Three discharging adits were identified at the site during the investigation; all of these discharges entered Curtain Creek. One sample was collected for laboratory analysis. MCLs for arsenic, cadmium, and copper were exceeded in the adit discharge. Acute and chronic aquatic life criteria were exceeded for cadmium, copper, and zinc and chronic aquatic life criteria were exceeded for iron and lead.

- Curtain Creek flowed directly through two waste rock dumps at the site. Observed
 releases to Curtain Creek were documented for arsenic, copper, and zinc. The MCL for
 cadmium was exceeded in the downstream surface water sample; however, the
 exceedance was not attributable to the site. Acute and chronic aquatic life criteria for
 copper and zinc were exceeded in the downstream sample; these exceedances were
 directly attributable to the site.
- One potentially hazardous partially collapsed shaft was identified at the site.

Blue Bird PA# 22-003 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/08/93

Field As Ba Cd Co Cr Cu Fe High Mn Ni Ph Sh Zh Cn Cr Cu Fe High Mn Ni Ph Sh Zh Cn Cr Cu Cr Cu Cr Cu Cr Cu Cr Cu Cr Cr	·	Metals in soils Results per dry	Metals in soils Results per dry weight basis	iši Ši			SOLID MA	SOLID MATRIX ANALYSES	46						
100 JX 37.1 14.2 14.2 19.8 441 47000 0.407 J 1440 J 11 4990 11 J 1910 45 100 JX 37.1 0.5 U 4 3.9 18.9 3440 0.102 J 584 J 3.0 2.9 6 UJ 45 100 JX 37.1 0.5 U 4 3.9 24.3 50.4 2540 0.102 J 1810 J 14 258 5 UJ 255 Acid/Base Accounting	FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (ma/Ke)	Zn	CYANIDE
ND	22-003-WR-1 22-003-WR-2	587 JX 100 JX		1.4 0.5 U	14.2	19.8 3.9	441	47000 31400	H H	1440 J 584 J	11 3 U	4990	11 J	1910	NR NR
TOTAL SULFUR SU	BACKGROUND	28 JX	123	0.7	14.9		50.4	25400	0.052 J	1810 J	4	528	5 UJ	} } } }	
TOTAL SULFUR NEUTRAL ACID BASE SULFATE PYRITIC ORGANIC SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR ACID BASE 41000c 1100c 1100c 121 6.56 78.6 72 0.1 0.03 0.08 0.94		Acid/Base A	ccounting							U - NOT Detected, J -	Estimated Quantity,	X - Outlier for Accu	macy or Precision, N	R - Not Requested	_
1.06 33.1 9.94 -23 0.92 0.02 0.12 0.62 0.21 6.56 78.6 72 0.1 0.03 0.08 0.94	FIBLD	TOTAL SULFUR	TOTAL SULFUR ACID BASE. V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT.					
	22-003-WR-1 22-003-WR-2	1.06 0.21	33.1 6.56	9.94 78.6	.23 27	0.92	0.02 0.03	0.12	0.62 0.94	9.31 7.77					

	Metals in Water	Vater				WATER MA	WATER MATRIX ANALYSES	w						
FIELD	Results in ug/L	J/6r											HAH	·
А	As	Ba	25	చి	ò	Ö	Fe	Ħ	Mn	ž	£	ŧ		CALC
22-003-SW-1 22-003-SW-2	142	12.1	25.1	16.2	6.83 U	1620 J	19000 J	0.038 U	4590 JX	12.7 U	8.21	8.21 . X 30.7 U	36.	Zn (mg caco3/L)
22-003-SW-4	31.7	8.77	12.2	0 7.6 0 7.6	9.33 J	3.13 605 J	29.9 4700 J	0.210 J 0.038 U	4.08 U 1390 JX	12.7 U 12.7 U	6.81 J 13 JX	30.7 U 30.7 U	7.57 U	37.4
							,		U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	timated Quantity, X	· Outlier for Accum	LCY OF Precision; NR	- Not Requested	?
	Wet Chemistry													
										LEGEND				
FIELD	TOTAL					WR1 WR2	WRI - Composite of subsamples WR1A, 1B, 1C, and 2. WR2 - Composite of subsamples WR3A, 3B, 3C, and 4. PACTOR OF THE ACCOUNT.	unples WR1A, 1B, ruples WR3A, 3B,	1C, and 2. 3C, and 4.		SW1 - At uppe SW2 - At uppe	SW1 - At uppersite adit discharge. SW2 - At uppersite spring headwaters.	rge. Iwaters.	
LD.	SOLIDS	CHLORIDE	SULFATE		CYANIDE	<u> </u>	From Bluebird Mine (22-003-SS-1).	From Bluebird Mine (22-003-SS-1).			SW4 - The dow	SW4 - The downgradient spring sample after	sample after	
22-003-SW-1	375	5.0		() 	N.								aum discrianges.	
22-003-SW-4	217	v v	—	v 0.05 0.05	X X		,							

Mine/Site Name: Corbin Flats Legal Description: T 7N R 4W	County: Jefferson Section(s): S 1/2, Sec. 1
Mining District: Colorado	Mine Type: will/Cu, Pb, Zn
Latitude: N 46° 23' 13"	Primary Drainage: Prickly Pear Creek
Longitude: W 112° 02' 30"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Spring Creek
Quad: Jefferson City	Date Investigated: July 12, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>22-004</u>
Organization: Pioneer Technical Services, Inc.	

 The volume of partially revegetated tailings associated with this site was estimated to be approximately 700,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 975J to 1,270J mg/kg

Manganese: 17,500 to 20,400 mg/kg

Cadmium: 61.7 to 104 mg/kg

Lead: 7,540J to 15,500J mg/kg

Copper: 897J to 2,010J mg/kg Mercury: 0.31 to 1.45 mg/kg Antimony: 104J to 194J mg/kg Zinc: 9,360 to 13,500 mg/kg

- Spring Creek was observed flowing directly through the tailings; although, it appeared that previous attempts were made to reroute the creek to the north of the tailings. The MCL for cadmium was exceeded in both upstream and downstream samples from Spring Creek; the MCL for arsenic was exceeded in the downstream sample. Acute and chronic aquatic life criteria for cadmium, copper, and zinc and the chronic aquatic life criteria for mercury were exceeded in both upstream and downstream samples. Acute and chronic aquatic life criteria for lead and the chronic aquatic life criteria for iron were exceeded in the downstream sample. Metals concentrations measured in upstream and downstream sediment samples were very similar to background concentrations.
- Observed releases to Spring Creek were documented for arsenic and lead. The MCL
 exceedance for arsenic and the acute and chronic aquatic life criteria exceedances for
 lead in the downstream sample were directly attributable to the site.
- A residential well located adjacent to and downgradient from the site was sampled during the investigation. No MCLs were exceeded.
- Several residences were located near the site, and the area was observed being used for recreational purposes during the investigation. The site had a high potential for hazardous dust propagation.

Corbin Flats PA# 22-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/12/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>s</u> is			SOLID MAT	SOLID MATRIX ANALYSES	ø.						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	Zn Zn	CYANIDE
22-004 SE-1 22-004 SE-2 22-004 TP-1 22-004 TP-2			3.2 3.3 61.7 104	4.3 2.6 5.1	4.5 J 1.6 U 2.3 J 4.2 J	76.6 J 161 J 897 J 2010 J	12800 9460 20400 27800	0.104 0.026 0.31 1.45	458 1320 20400 17500	. 5 J 20 J 19 J	223 J 204 J 7540 J 15500 J	#33	506 561 9360	N N N N N N N N N N N N N N N N N N N
BACKGROUND	187 J 92.1 Acid/Base Accounting	92.1	9.	4.	8.4 J	232 J	31600	0.029	1040 U - Na Detected, J.	1040 11 J 447 J 6 UJ 618 U-Not Detected: J - Estimated Quantity, X - Outlier for Accumacy or Precision, NR - Not Requested	447 J X - Outlier for Accur	6 UJ	618 R- Not Requested	X X
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE SULFAI POTENT. SULFUE	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASIE POTENT. V1000t					
22-004-TP-1 22-004-TP-2	1.5	46.9 83.1	3.2 66.6	4-	0.59 0.84	0.56 1.07	0.35 0.75	17.5 33.4						

	Metals in Water	Vater				WATER MATI	WATER MATRIX ANALYSES							
FIELD	Results in ug/L	ng/L											Ħ	HABINESS
A	As	E B	8	රි		ਟੌ	F	нg	Mn	ž	£	÷	; <u>j</u>	CALC
22-004-GW-1 22-004-SW-1 22-004-SW-2	9.12 J 20.51 J 103		4.03 J 241 J 25.1 J	9.70 U 11.00 9.7 U	6.83 U 6.83 U 7.97	3.70 233 348	76.1 JX 630 JX 6530	0.120 0.095 0.094	18.1 8580 8830	12.7 U 59.3 12.7 U	3.95 17.3 960	30.7 U 30.7 U 30.7 U	66.8 J 26300 J 5630	24 (mg cacost) 36.8 J 197 300 J 536 630 215
	Wet Chemistry								O - Not Detected, J.	o - ina. Loceccea, J - Estimaco Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	K - Outlier for Accur	ncy or Precision, NR	l - Not Requested	
	Mesaules III elife									LEGEND				
FIBLD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	SE2.	NBI - Upaream in Spring Creek. NB2 - Downstream of tailings in Spring Creek. TPI - Composite of subsamples TPI A-A, 1B-1 through 1B-3, and 1C-1 through 1C-4.	reek. ga in Spring Creel ples TP1A-A, 1B C-4.	k. +1 through 1B-3,		GWI - Residential well. SWI - Same as sample SEI. SW2 - Same as sample SE2.	ntial well. s sample SE1. s sample SE2.		
22-004-GW-1 22-004-SW-1 22-004-SW-2		< 5.0< 5.0	156 144 206	0.050.360.24NR	A A A	IP2 - BACK	TP2 - Composite of subsamples TP1D-1 through 1D-4. BACKGROUND - From the Bertha Mine (22-002-SS-1).	ples TP1D-1 thro 3 Bertha Mine (2;	ngh 1D-4. 2-002-8S-1).					

- Approximately 10,000 cubic yards of tailings were associated with this site. The following elements were elevated at least three times background: Arsenic: 5870J mg/kg
- The volume of waste rock at this site was approximately 30,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 770J to 1060J mg/kg Mercury: 0.412 to 0.544 mg/kg Lead: 4910J to 11500J mg/kg

- Erosion of waste rock and tailings into drainages was occurring.
- An observed release to Clancy Creek was documented for lead. Also, the acute aquatic life criteria for copper was exceeded in Clancy Creek, which was directly attibutable to the site. Observed releases to the unnamed tributary of Clancy Creek were documented for arsenic and lead. The MCL for cadmium was also exceeded in this tributary; however, the exceedance could not be attributed to the site. The pH of Clancy Creek dropped from 7.73 to 7.58 between the up- and down-gradient sample locations. Specific conductance increased from 190 to 240 umhos/cm. The unnamed tributary made up less than 5 percent of the flow of Clancy Creek at this location.

Gregory PA# 22-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/1793

	Metals in soils		Results per dry weight basis	veight basis		SOLID MATF	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	nZ (a View)	CYANIDE
22-005-SE-3 22-005-SE-5 22-005-TP-1 22-005-WR-1 22-005-WR-2 22-005-WR-3	5820 J 22 J 22 J 22 J 5870 J 1740 J 1060 J 381 J 770 J	92.1 J 125 J 125 J 104 J 45.5 J 90.4 J 101 J	8.00 - 4.00 - 6.	5.67 U 6.5 J 7.8 J 7.8 J 7.2 J 7.2 J 7.3 J	8.67 11.1 J 4.4 J 8.2 J 12.0 U 1.5 U 8 J	331 14.1 JX 16.1 JX 204 JX 204 JX 453 JX 166 JX 129 JX	90700 13200 J 21700 J 19700 J 35500 J 30100 J 58400 J	0.208 0.039 0.063 0.04 0.457 0.412	334 908 J 60.8 J 705 J 705 J 70.5 J	7.4 U 30 J 50 J 50 J 50 J 60 J 60 J	2180 J 83 J 577 J 347 J 11500 J 4910 J 6790 J	50 U S U S U S U S U S U S U S U S U S U	1080 J 158 JX 195 JX JX 273 JX 273 JX 220 JX 220 JX 563 JX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BACKGROUND	187 J 92.1 Acid/Base Accounting	92.1 ccounting	ත ත	4.	8.4 J.	232 J	31600	0.029	1040 U - Not Detected, J - E	11 J Estimated Quantity, X	1040 11 447 J 6 UJ 618 U-Not Detected J - Enimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	6 UJ 17 or Precision: NR	618 R - Not Requested	X X
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000	SULFUR ACID BASE POTENT.					
22-005-TP-1 22-005-TP-2 22-005-WR-1 22-005-WR-2 22-005-WR-3DUP 22-005-WR-3DUP 22-005-WR-3DUP	0.48 0.29 3.98 1.87 1.9 2.1	15 9.06 124 58.4 59.4 65.6 66.5	-6.7 -3.3 -3.7 -3.3 -5.8 -6.3	25 132 25 25 25 25 25 25 25 25 25 25 25 25 25	0.46 0.24 1.75 0.94 0.98 2.03	60.01 0.01 1.52 0.47 0.01	0.02 0.04 0.71 0.46 0.06	0 0.31 47.5 14.7 13.4 0.31	-6.73 -5.61 -54.8 -18.4 -16.7 -6.1					

7.13 2.6 5.8 20.2 84 2.01 0 13 43.7 2.5 stry Results in ED CHLORIDE SULE			WAIEKMAIF	WATER MATRIX ANALYSES					a4		
2 3.17 5.8 30.3 20.2 216 2.01 4.81 43.7 Wet Chemistry TOTAL DISSOLVED SOLIDS CHORUDS 13.1 < 5.0	ಲೆ ಕ	៦	ខី	£	£	Ž	ž	ź	. 1	•	CALC.
3.17 5.8 30.3 20.2 30.3 20.2 30.3 20.2 30.3 20.2 30.1 2.01 4.81 43.7 43.7 TOTAL DISSOLVED SOLIDS CHLORUDI 13.1 < 5.0		6831	30 5 J						20	n) n/Z ====================================	Zn (mg CaCO3/L)
3 30.3 20.2 20.1 216 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	3 9.7 U	6.83 U	2.5.	<u>.</u> 5	0.27	591	12.7 U	4.4	30.7 U	940	89.2
Vet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDS 131 < 5.0		8.07	1020	55	0.22 0	91.9	15.5	0.75	30.7 U	31.1	92
Wet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDE 131 < 5.0		6.83 U	2230 .1	51700		14000	22.3	500	36.5	14900	316
Wet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDE 161 < 5.0	_	683 1	1.55	3	900	2/95	31.7	48.1	30.7 U	20400	156
Wet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDE 131 < 5.0		3	3	0.0	_	133	14.6	3.73	30.7 U	29.9	1
TOTAL DISSOLVED SOLIDS CHLORIDE 161 < 5.0	in ma/l				_	U - Not Detected, J - 1	U - Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accura:	y or Precision; NR -	Not Requested	:
DISSOLVED SOLIDS CHLORIDE 161 < 5.0 131 < 5.0	•		É				LEGEND				
SOLIDS CHLORIDE 161 < 5.0 131 < 5.0			SE3-	SE3 - Downstream tributary sample above culvert.	ry sample above cuts	Ť.		SW1 - Clancy	SW1 - Clancy Creek downstream from tailings and	un from tailing	pue
161 < 5.0	FATE NO3/NO2-N	CYANIDE	TPT	TP1 - Semple of the TP1 subsemble	sample. uhesmole			confluence	11Ce.	Þ	!
131 × 5.0				TP2 - Composite of subsample TP2A and 2B.	uple TP2A and 2B.			SW2 - Upstream Clancy Creek at Pegasus gaging	m Clancy Creek	at Pegasus gag	ing
C ()	•	Z Z	WR1 -	WR1 - Composite of subsamples WR1A through 1E and 2A through 2C	mples WR1A throus	th IF and 24 the	Oct House	Station.	1		
	30 × 0.05	Z Z	WR2 -	WR2 - Composite of subsamples WR3A through 3C	mples WR3A throns	# 15, III 15 #		3W3 - Downstream tributary sample above culvert.	ream tributary su	umple above cu	Mert.
65 0.6 > 160 5.0 5.0 5.6 5.0 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6		Z.	WR3 -	WR3 - Composite of subsemples WR44 and 4D	mules WP 4A and 41	;		3w4 - Mouth of small Northern tributary coming	f small Northern	n tributary com	ng.
878 < 5.0	•	Z.	BACK	יים מעוספו	The Charles and the Control of the C			downst	downstream of waste rock dump 2.	ock dump 2.	
5.0		9	TO THE PERSON NAMED IN	The state of the s	0-77) omw mpc (77-0	02-58-1).				Ī	
}		Ę	WKZD	WKZDUP - Duplicate of the 22-005-WR-2 sample.	ie 22-005-WR-2 sem	ple.					

Mine/Site Name: Washington Legal Description: T 7N R 4W Mining District: Colorado Latitude: N 46° 21' 39" Longitude: W 112° 08' 14" Land Status: Private Quad: Mount Thompson Inspectors: Bullock, Belanger, Pierson Organization: Pioneer Technical Services,	County: Jefferson Section(s): SW 1/4, NW 1/4, Sec. 17 Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn Primary Drainage: Prickly Pear Creek USGS Code: 10030101 Secondary Drainage: Spring Creek Date Investigated: August 16, 1993 P.A. # 22-007
Land Status: Private Quad: Mount Thompson Inspectors: Bullock, Belanger, Pierson	Date Investigated: August 16, 1993

• The volume of tailings associated with this site was estimated to be approximately 86,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 9180J to 11,000J mg/kg

Iron: 95,700J to 101,000J mg/kg Lead: 4310J to 5830J mg/kg

Zinc: 5660JX to 10700JX mg/kg

Cadmium: 31.9J to 68.9J mg/kg

Mercury: 0.207 mg/kg Antimony: 43 mg/kg

- Tailings were actively eroding into this tributary of Spring Creek.
- The volume of waste rock associated with this site was estimated to be approximately 36,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2410J to 3250J mg/kg
Mercury: 0.384 to 0.39 mg/kg
Antimony: 19 mg/kg

Cadmium: 16.4J to 20.8J mg/kg
Lead: 2330J to 4420J mg/kg
Zinc: 5660JX to 10700JX mg/kg

- Two adit discharges were associated with this site, making up all of the flow of this tributary of Spring Creek during mid-summer, low-flow conditions. Both adit discharges exceeded the MCL for arsenic. Acute aquatic life criteria were exceeded for iron and zinc at both adits and for arsenic at Adit #1. Chronic aquatic life criteria were exceeded for zinc at both adits and also for arsenic and cadmium at Adit #1. Adit discharge pH measurements were 7.86 and 7.27 for Adit #1 and Adit #2, respectively.
- This tributary to Spring Creek flowed intermittently above the adit discharges and below
 it flowed through the waste rock and tailings. Observed releases were observed for
 arsenic, lead and zinc. The chronic aquatic life criteria for lead was exceeded and was
 directly attributed to this site. The upgradient surface water sample indicated the
 presence of an upgradient contaminant source.

Washington PA# 22-007 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/16/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE (me/Ke)
22-007-SE-1 22-007-SE-2 22-007-TP-1 22-007-TP-2 22-007-WR-1 22-007-WR-2	5100 44 9180 J 11000 J 2410 3250	28.4 29.9 20.8 J 13.3 J 26.6 24.1	32.7 J 2.6 J 31.9 J 68.9 J 16.4 J 20.8 J	7.2 12.6 13.2 J 17.7 J 5.8 4.3	8.6 32.6 7.6 J 19.9 J 7.9 3.9	156 33.6 293 JX 280 JX 53.8 67.2	46400 22900 95700 J 101000 J 39900 33700	0.084 0.028 U 0.207 0.08 0.384 0.39	3210 875 2770 J 6360 J 1470	21 19 J 24 J 6	2280 133 5830 J 4310 J 2330 4420	28 8 0 0 0 0 0 0 0 0 0 0 0	5080 184 5660 JX 10700 JX 2970 3010	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BACKGROUND	187 J	92.1	9.9	11.4	8.4 J	232 J	31600	0.029	1040 U - Not Detected, J -	1040 11 J 447 J 6 UJ 618 U-Not Detected: J - Batimated Quantity, X - Outlier for Accuracy or Precision; NR - Nos Requested	447 J	6 UJ y or Precision; NR	618 Not Requested	
PELD O	Acid/Base Accounting TOTAL TOTAL SULFUR SULFUR ACID BASI	CCOUNTING TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT: V1000t	SULFUR ACID BASE POTENT. #1000t		PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
22-007-TP-1 22-007-TP-2 22-007-TP-2DUP 22-007-WR-1 22-007-WR-2	11.7 10.6 10.3 4.89 4.13	366 331 322 153 129	47.5 124 124 48.6 29.0	-318 -207 -199 -104 -100	6.01 6.01 6.01 0.10 2.39	10.2 10.8 10.8 1.38 0.41	1.65 2.35 2.38 3.41 1.33	319 337 337 43.1 12.8	-271 -213 -214 5.54					

	Metals in Water		Results in ug/L			WATER MATR	WATER MATRIX ANALYSES							
FIELD			•									•	Ξ	HARDNESS
ID	As	88	වී	ව	ರ	రే	Fe	åH	Ā	Z	£	Ð	72	CALC.
22-007-GW-1	621	21.2	2.57 U	9.7 U	9.57 J	2.03	3660 J	0.260 J	1740 JX	1740 JX 12.7 U		20.7 11		∑ \$0
22-007-SW-1	1060	2.1.5 5.8	2.57 U	10.6	6.83 ∪ =	e e	17700 J	0.160 J	3630 JX	12.7 U	4.27	30.7 U	2230 2330	367
22-007-SW-2	59.3	9.87	32.7	0.7.6 □ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.83 U	13.5 13.5 1	950 950	0.140 0.450 1.20 1.20	5130	33.5	471	32.7	10800	478
22-007-SW-3	2.43	78.1	27.3	9.7 U	6.83 U	58.8	55.7	0.120 U	385 498	27.8	2.51 3.26	30.7 U	3980 3920	438 5
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	atimated Quantity, X	- Outlier for Accura	cy or Precision, NR	Not Requested	2
	Wet Chemistry	. 42	Results in mg/l											
	TOTAL		,							FGEND				
FIELD LD.	DISSOLVED SOLIDS	CHLORIDE	SILIFATE	NO3AIOS.N	SV ANIIDE	SE1	SE1 - In stream approx. 300' downgradient of tailings pond 4.	O' downgradient of	f tailings pond 4.		- GW1 - Discha	GW1 - Discharge from adit #1.		
61 61 61 61 61 61 61 61 61 61				N-70N/CON	CIANIDE		SE.2 - Between tailings and waste rock at road.	waste rock at road	no i		GW2 - Discha	GW2 - Discharge from adit #2.		
22-007-GW-1	343	> 50		× 0.05	ž		IP1 - Composite fsubsamples TP1A-A through 1A-C, 2A-A	ples TP1A-A thro	ugh 1A-C, 2A-A		SW1 - Same a	SW1 - Same as sample SE1.		
22-007-GW-2	512	> 5.0	٠	× 0.05	Z.		TP2 - Composite of subsamples TP4A-A through 4A C and 4D C	unough zn-L, and sn-A unough sn-C.	P.C		SW2 - Same a	SW2 - Same as sample SE2.		
22-007-SW-1	9//	5.0	٠	< 0.05	Z Z	WR1 -	WRI - Composite of subsemple WP14 1D and 24 street and	moles WP14 1D	and 24 through 20	i	SW3 - Upgrad	SW3 - Upgradient of site approx. 200 feet.	x. 200 feet.	
22-007-SW-2	712	s 5.0	•	< 0.05	Z.	WR2	WR2 - Composite of subsamples WR34 3D and 4	mples WR34 3B	and 2A unrough 2C.					
22-007-SW-3	325	s 5.0	•	< 0.05	Z.	TP2DU	TP2DUP - Dimiticate of the 22-007-TP-2 seemals	22-007-TP-2 sam	autu 4. nie					•
						10000								

Mine/Site Name: Argentine Legal Description: T _7N R _5W Mining District: Colorado Latitude: N 46° 23' 20" Longitude: W 112° 11' 53" Land Status: Private/Public Quad: Chessman Reservoir Inspectors: Bullock, Belanger, Pierson	County: Jefferson Section(s): SW 1/4, NW 1/4, Sec. 2 Mine Type: Hardrock/Unknown Primary Drainage: Clancy Creek USGS Code: 10030101 Secondary Drainage: South Fork Quartz Creek Date Investigated: August 16, 1993
Inspectors: Bullock, Belanger, Pierson	Date Investigated: August 16, 1993
Organization: Pioneer Technical Services, Inc. / Thomas, Dean and Hoskins, Inc.	P.A. # <u>22-102</u>

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 26,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 259J mg/kg
Lead: 785J to 7640J mg/kg

Manganese: 2540 mg/kg
Zinc: 610J to 1490J mg/kg

- Three of the adits had minor discharges, although only the adit associated with WR-2 had significant flow. Water samples were collected from this adit (GW-2) and from the adit associated with WR-1 (GW-1). The MCL/MCLG for cadmium was exceeded in GW-1. Acute aquatic life criteria were exceeded for iron, cadmium, copper, lead and zinc in GW-1, and for iron and zinc in GW-2. Chronic aquatic life criteria were exceeded for cadmium, copper, lead, and zinc in GW-1 and for zinc in GW-2.
- An unnamed tributary to the South Fork of Spring Creek bisects the site. Vegetative
 buffer strips were present between the stream and the waste rock dumps. Observed
 releases were documented for manganese, lead, and zinc. There were no MCLs or
 MCLGs exceeded; however, acute and chronic aquatic life criteria were exceeded for
 zinc and were directly attributable to the site.

Argentine PA# 22-102 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/16/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>85</u>			SOLID MAT	SOLID MATRIX ANALYSES	10						
FIELD D	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	Zn	CYANIDE
22-102-SE-1 22-102-SE-2 22-102-WR-1 22-102-WR-2	27 6 U 55.6 J 259 J	41.8 13.8 72.7 J 22.6 J	3.4 J 0.7 U 2.6 J 8.6 J	4.1 2.5 U 8.94 3.16	3.5 3.4 6.89 1.47	34.7 3.4 97.3 231	9900 5790 23000 23300	0.04 U 0.037 U 0.032 U 0.056	2620 146 2540 877	3 3 U 6.69 2.41 U	449 35 785 J 7640 J	8 U 7.54 U 7.54 U 5.84 U	439 439 30 610 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	88 76 Acid/Base Accounting	76 ccounting	0.7 U	<u>හ</u> ැ	10.9 J	49.7 J	20400	0.107 J	654 J U-Not Detected: J-E	654 J 9 117 JX 8 UJ 104 U Not Detectet J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	117 JX Outlier for Accuracy o	8 UJ or Precision; NR -1	104 Not Requested	Z Z
FIELD D	TOTAL SULFUR SULFUR ACID BASE % v1000t	TOTAL SULFUR ACID BASIB V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASIS SULI POTENT. SULI V1000t %	FATE	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT. v1000t					
22-102-WR-1 22-102-WR-2	0.15 2.43	4.69 75.9	4.99 -7.2		88	0.04	0.08	1.25 3.74 23.7 -30.9	3.74 -30.9					

	Metals in Water Results in ug/L	Vater ig/L				WATER N	WATER MATRIX ANALYSES							
FIELD D	As====================================	!!	20 PJ #g	පී	ប់	రే	Fe	置	Mn	Z		5	,	HARDNESS CALC.
22-102-GW-1 22-102-GW-2	1.49 U		7.63	9.7 U	6.83 U	26.5	1050 J	0.190 J	3110 JX	12.7 U	106	30.7.11		230 (mg CaCU3/L)
22-102-SW-1	3.15	5.33	2.57 U) / G	6.83 U	3.27	3190 J	0.120	9110 JX	13.8	4.36	30.7 U	3990	19.2 415
22-102-SW-2	2.18	4.8		9.7 U		2.47	66.5 J	0.118 U	XL 0081 XL 2.7	12.7 U	17 1.97	30.7 U 30.7 U	385 83 83	41.4
							.*		U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	timated Quantity, X -	Outlier for Accuracy	r or Precision; NR - N	ot Requested	
	Wet Chemistry Results in ma/			-										
							:			LEGEND	2			
FEELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		M. L. Downgradient of site. SE2 - Upgradient of site. WR1 - Composite of subsamples WR1B, 1C, and 2B. WR2 - Composite of subsamples WR1A and 2A.	s. mples WR1B, 1C mples WR1A and	, and 2B.		GW1 - Associated with wast GW2 - Associated with wast SW1 - Same as sample SE1.	GWI - Associated with waste rock dump I. GW2 - Associated with waste rock dump 3. SWI - Same as sample SEI.	rock dump 1 rock dump 3.	
22-102-GW-1 22-102-GW-2 22-102-SW-1	79 643 102	۸ ۸ ۸ دن دن دن دن دن دن	24 × 338 × 22 ×	× 0.05 0.05 0.05	S S S S		BACKGROUND - From the Enterprise Mine (22-074-SS-1)	e Enterprise Mine	(22-074-SS-1)			. उत्पाकीत अप्टर		
22-102-SW-2	22	> 20	ဖ	< 0.05	ž	-								

Mine/Site Name: Minah Legal Description: T_7N_R_4W Mining District: Colorado Latitude: N 46° 21' 53" Longitude: W 112° 08' 16" Land Status: Private Quad: Mount Thompson Inspectors: Babits, Lasher/Pierson	County: Jefferson Section(s): SW 1/4, SW 1/4, Sec. 17 Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn Primary Drainage: Prickly Pear Creek USGS Code: 10030101 Secondary Drainage: Spring Creek Date Investigated: July 9, 1993 P.A. # 22-104
Inspectors: <u>Babits, Lasher/Pierson</u> Organization: <u>Pioneer Technical Services,</u> Inc./Thomas, Dean and Hoskins, Inc.	P.A. # <u>22-104</u>

 The Minah Mine became part of the Montana Tunnels project in 1989. All features of the Minah Mine have been obliterated; consequently, no samples were collected during the investigation.

			·

Mine/Site Name: Wickes Smelter Legal Description: T _7N R _4W Mining District: Colorado Latitude: N 46° 21' 06" Longitude: W 112° 06' 01" Land Status: Private Quad: Wickes Inspectors: Bullock, Belanger, Pierson Organization: Pioneer Technical Services	County: Jefferson Section(s): SW 1/4, SW 1/4, Sec. 15 Mine Type: Smelter/Cu, Zn, Pb Primary Drainage: Spring Creek USGS Code: 10030101 Secondary Drainage: Finn Gulch Creek Date Investigated: August 17, 1993 P.A. # 22-358
Organization: Pioneer Technical Services.	
Inc./Thomas, Dean and Hoskins, Inc.	

 Contaminant sources at this site were associated with historic smelting activities and included possible kiln dust, clinker, and slag. The volume of waste material associated with this site was roughly estimated at 2000 to 4000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 613J to 4290J mg/l Mercury: 3.18 to 20.9 mg/kg

Antimony: 20 to 26 mg/kg

Cadmium: 26.6J mg/kg

Lead: 9400J to 31,700J mg/kg Zinc: 2960JX to 19,000JX mg/kg

- The high mercury measurement was obtained in a sample of the suspected flue dust material directly north of the stack.
- Finn Gulch, a small intermittent tributary to Spring Creek, bisects the site. The drainage
 was dry at the time of this investigation. Sediment samples were collected up and down
 gradient of the site. An observed release of mercury to this drainage was documented.
- The town of Wickes was adjacent to this site. Direct contact hazards were considered significant, especially with regard to small children.

Wickes Tailings PA# 22-358 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BUILLOCK INVESTIGATION DATE: 08/17/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u> </u>			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Re)	Pb (me/Ke)	Sb	Zn	CYANIDE
22-358-SE-1 22-358-SE-2 22-358-WR-1	77 J 33 J 613 J	38.9 J 66.4 J 779 J	1.5 J 0.5 U - 7.7	3.7 J 6.9 J	4 C	188 JX XZ Z37 JX	11200 J 16800 J	4.8 0.035 U	354 J 574 J	4 J B	700 J 344 J	# > >	(mg/kg) ====================================	N N N N N N N N N N N N N N N N N N N
22-358-WR-2 22-358-WR-3	789 J 4290 J	109 J 25.9 J	8.7 J	0.04 0.44 0.04		2370 JX 3780 JX	31900 J 31900 J 33500 J	3.18 20.9 35.2	2940 J 1020 J 467 J	8 0 E	25600 J 9400 J 31700 J	R	19000 19000	
BACKGROUND	187 J	92.1	9.9	4.11	8.4 J	232 J	31600	0.029	1040 U. Nappenet I.	11 J	د 447	e m	618	_
	Acid/Base Accounting	ccounting							Accuracy of Precision, NR - Not Requested		Outlier for Accura	icy of Precision, Ni	2 - Not Requested	
FELD U	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT: V1000t					
22-358-WR-1 22-358-WR-2 22-358-WR-3	1.82 0.77 2.38	56.9 24.1 74.4	-6.5 5.91 2.48	-63 -18 -72	0.47 0.44 1.8	0.46 0.07 0.15	0.89 0.26 0.43	14.4 2.19 4.69	.20.8 3.72 -2.21					

	Metals in Water Results in ug/L	r er				WATER MATRIX ANALYSES	IX ANALYSES						·	
FIELD	As.	2	ਣ	రి	ŏ	రే	F.	Ħ	Ä	ž	á	ŧ	Ε ,	HARDNESS CALC.
22-358-GW-1	0.96 U	2.01 U	0.96 U 2.01 U 2.57 U 9.7 U 6.83 L	9.7 U	6.83 U	U 1.55 U 37.8 0.18 J 18.2	37.8	0.18 J	18.2	ii	1.13	12.7 U 1.13 30.7 U	m) n2 :=======: 15.9	An (mg CaCU3/L)
									U - Not Detected, J -	U. Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision, NR. Not Requested	(- Outlier for Accura	acy or Precision, NR	- Not Requested	9
										J	LEGEND			
								SE1 - Downgradient of site.	ent of site.			GWI - OA/OC Blank	Riank	
								SE2 - Upgradient of site.	of site.			2		
								WR1 - Sample fr	WR1 - Sample from the WR4 subsample.	ample.				
								WR2 - SAmple fr	WR2 - SAmple from the WR2 subsample.	rample.				
								WR3 - Sample from the WR1 subsample.	om the WR1 subsa	ample.				
								BACKGROUND - From the Bertha Mine (22-002-SS-1).	· From the Bertha	Mine (22-002-SS	H).			

Mine/Site Name: Elkhorn Queen Legal Description: T 6N R 3W Mining District: Elkhorn Latitude: N 46° 14' 46" Longitude: W 111° 56' 42" Land Status: Private/Public	County: Jefferson Section(s): SE 1/4, NW 1/4, Sec. 26 Mine Type: Hardrock/Au, Ag, Pb, Zn, Cu Primary Drainage: Elkhorn Creek USGS Code: 10020006 Secondary Drainage: South Fork Queen
Land Status: Private/Public	·
Quad: Tacoma Park	Gulch
Inspectors: Babits, Flammang, Lasher	Date Investigated: August 16, 1993
Organization: Pioneer Technical Services, Inc.	P.A. # <u>22-027</u>

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 23,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 10,100J mg/kg Cobalt: 28.4 mg/kg Mercury: 0.441 mg/kg Lead: 40,200J mg/kg Zinc: 20,000J mg/kg Cadmium: 405J mg/kg Iron: 112,000 mg/kg Nickel:19.1 mg/kg Antimony: 64.6J mg/kg

- There were no discharging adits, filled shafts, seeps, or springs identified at the site during the investigation.
- The South Fork of Queen Gulch was the nearest surface water to the site, which was located approximately 1,000 feet to the north. No surface water or sediment samples were collected due to the lack of a direct runoff route.
- Potential safety hazards identified at the site included an open shaft (with a headframe and loadout structure) and an open adit .

EIKhorn Queen PA# 22-027 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/16/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	: <u>8</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (ma/Ke)	Zn (27)	CYANIDE
22-027-WR-1	10100 J	118 J	405 J	28.4		87.6	112000	0.441	2590	19.1	-	646 -	5	(mg/kg)
BACKGROUND	29.8 J	255 J	1.1	7.47	5.79	31.7	19700	0.039	1170	6.23	382 1	382.1 5.89.11		¥ 9
	Acid/Base Accounting	Accounting							U - Not Detected; J -	Estimated Quantity,	U. Not Detected, J. Estimated Quantity, X. Oudier for Accuracy or Precision; NR. Not Requested	LCy or Precision; N	R - Not Requested	
		D										LEGEND		
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE	NEUTRAL. POTENT.	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT	WRI - Comp	WRI - Composite of subsamples WR1A, 1B, and 1C. BACKGROUND - From Tacoma (22-284-SS-1).	es WRIA, 1B, na (22-284-SS	and 1C.	
22-027-WR-1	4.24 132 380 -94.4 <0.04	132	38.0		=======================================	`	7000ty % ===================================	V1000t	V1000t					
				:	è	8	2 .00	36.2	-58.2					
														-

Mine/Site Name: <u>Queen/Tourmaline Queen</u> Legal Description: T <u>6N</u> R <u>3W</u> Mining District: <u>Elkhorn</u>	County: <u>Jefferson</u> Section(s): <u>SW 1/4, NE 1/4, Sec. 22</u> Mine Type: <u>Hardrock/Au</u>
Latitude: N 46° 15' 00"	Primary Drainage: Boulder River
Longitude: W 111° 57' 00"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Elkhorn Creek
Quad: Elkhorn	Date Investigated: August 16, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # _22-111
Organization: Pioneer Technical Services, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 80,000 cubic yards. The following elements were elevated at least three times background:

- No discharging adits, filled shafts, seeps, or springs were identified at the site during the investigation.
- Elkhorn Creek was flowing approximately 20 feet from the toe of WR-1. Surface water and sediment samples were collected upstream and downstream from the site. Chronic aquatic life criteria were exceeded for mercury and lead in both the upstream and downstream samples. Contaminant concentrations were not elevated in the downstream samples (surface water or sediment) when compared to the upstream samples.
- No hazardous mine openings or structures were identified at the site.

Queen PA# 22-111 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/16/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MA:	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Ou (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (mo/Ke)
22-111-SE-1 22-111-SE-2 22-111-WR-1	156 J 140 J 1420 J	37 J 17.8 J 37.4 J	45.1 J 36.3 J 1.2 J	4.17 2.47 U 14.3	9.32 6.29 12.5	279 212 33.4	14700 14400 87600	23.4 14.6 0.032 U	1570 1050 395	5.36 4.81 5.93	2010 J 1800 J 73.4 J	110 J 103 J 4.73 U	6140 J	NR NR
BACKGROUND	29.8 J	255 J	1.1	7.47	5.79	31.7	19700	0.039	1170 U - Not Detected, J.	6.23 Estimated Quantity	1170 6.23 38.2 J 5.89 U 101 J U · Not Detected 1 · Endinated Quantity, X · Outlier for Accuracy or Precision: NR · New Representation	5.89 U	101 J	Ž Ž
	Acid/Base Accounting	Accounting												-
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	TOTAL SULFUR NEUTRAL. ACID BASB POTENT. v1000t v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	,, ,,	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASIE v1000t	SULFUR ACID BASE POTENT:					
22-111-WR-1	0.47	14.7	1.90	-12.8	0.38	<0.01	0.09	0.00	1.90					

	Metals in Water Resutts in ug/L	Vater ug/L				WATER MA	WATER MATRIX ANALYSES							
FIELD D	FIELD . ID As	,	ਣ	පී	Ċ	రె	jų O	Ħ	ž	ž	Ħ	ŧ		HARDNESS CALC.
22-111-SW-1 22-111-SW-2	3.42 4.39	10.6	2.57 U 2.57 U	2.57 U 9.7 U 6.83 U 2.57 U 9.7 U 6.83 U	6.83 U 6.83 U	5.77 J 4.03 J	300 262	# 0 0	!!	12.	22.8 24.7	30.7 U	Zn (65.2	Zn (mg CaCO3/L)
	474								U - Not Detected, J	U · Not Detected, J · Estimated Quantity, X · Outlier for Accuracy or Precision, NR · Not Requested	X - Outlier for Accu	racy or Precision; NR	S. Not Requested	<u>.</u>
	Results in mg/l					_				ECEND				
FIELD LD.		CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SEI - Upstream on Elithorn Creek. SE2 - Downstream on Elithorn Creek. WRI - Composite of subsamples WRIA, 1B, and 1C. BACKGROUND - From Tacoma (22-284-SS-1).	Creek xm Creek. piles WR1A, 1B, xoma (22-284-SS	and 1C.		SW1 - Same as SE1. SW2 - Same as SE2.	s SE1.		
22-111-SW-1 22-111-SW-2	i	< 5.0 < 5.0	108 < 5.0 10 < 0.05 NR 114 < 5.0 10 0.08 NR	× 0.05	N N N					÷				

Mine/Site Name: Tacoma	County: Jefferson
Legal Description: T 6N R 3W	Section(s): NW 1/4, NE 1/4, Sec. 34
Mining District: Elkhorn	Mine Type: Hardrock/Au, Ag, Pb
Latitude: N 46° 13' 58"	Primary Drainage: Elkhorn Creek
Longitude: W 111° 57' 47"	USGS Code: 10020006
Land Status: Public	Secondary Drainage: Tacoma Gulch
Quad: Tacoma Park	Date Investigated: August 16, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>22-284</u>
Organization: Pioneer Technical Services, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 7,320 cubic yards. The following elements were elevated at least three times background:

Arsenic: 177J mg/kg

Mercury: 0.175 to 0.507 mg/kg

Zinc: 859J to 1,530J mg/kg

Cadmium: 3.9 J to 12J mg/kg Lead: 1,320J to 23,600J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- An unnamed, minor, intermittent drainage (dry at the time of the investigation) was situated through the center of the site; however, no sediment samples were collected.
- Seven potentially hazardous open (or partially open) adits were identified at the site.

Tacoma PA# 22-284 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/16/93

						SOLID MA	SOLID MATRIX ANAL VEES							
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis:											
FIELD D	As Ba (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Ou (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (me/Ke)	N.	Pb (me(Ke)	SP (A)	Zn	CYANIDE
22-284-WR-1 22-284-WR-2	177 J 35.2 J	168 J 158 J	12.0 J 3.9 J	6.97 7.67	1.39 U 2.09	334	30200 19100	0.507 0.175	900	2.66	23600 J	6.34 J	(mg/kg) 1530 J	(mg/Kg)
BACKGROUND	29.8 J	255 J	1.1 J	7.47	5.79	31.7	19700	0.039	1170	6.23	38.2 J		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	¥ 0
	Acid/Base Accounting	Accounting							U - Not Detected, J.	Estimated Quantity;	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	acy or Precision, N	R - Not Requested	
FIELD	TOTAL SULFUR %	TOTAL TOTAL SULFUR SULFUR ACID BASE % 1/1000t	NEUTRAL. POTENT. 1/1000t		SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT. V1000t	WR1 - Compo WR2 - Compo BACKGROUN	LEGEND WRI - Composite of subsamples WRI, 2A, 2B, 5, and 6. WR2 - Composite of subsamples WR7, 8, and 9. BACKGROUND - From Tacoms (22-284-S9-1).	LEGEND es WR1, 2A, 21 es WR7, 8, and na (22-284-SS-	3, 5, and 6. 9. 1).	
22-284-WR-1 22-284-WR-2	0.03	0.94	14.3 42.8		13.3 0.02 42.5 <0.01	<a>0.01	0.01	0.00	14.3 42.8					

Mine/Site Name: Sourdough Legal Description: T 6N R 3W Mining District: Elkhorn Latitude: N 46° 17' 00" Longitude: W 111° 57' 37"	County: Jefferson Section(s): NW 1/4, SE 1/4, Sec. 10 Mine Type: Hardrock/Fe, Au Primary Drainage: Elkhorn Creek USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Greyback Gulch
Quad: Elkhorn	Date Investigated: August 20, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>22-336</u>
Organization: Pioneer Technical Services, Inc.	

- There were no tailings on site.
- There were approximately 34,250 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 105 to 560 mg/kg

Copper: 336 to 750 mg/kg

Mercury: 0.848 mg/kg

- There was a discharging adit on site and it did not enter the creek by a surface route. The sample had a pH of 6.56. Cadmium exceeded the MCL/MCLG.
- The creek ran adjacent to waste rock. There was an observed release of copper in downstream surface water. No MCL/MCLGs were exceeded in downstream surface water. The chronic aquatic life criteria for lead was exceeded in downstream surface water, which was directly attributable to the site.
- There were five open adits and one highwall on site.

Sourdough PA# 22-336 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/20/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MA	SOLID MATRIX ANALYSES	15						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mo/Ko)	Sb (marker)	Zu	CYANIDE
22-336-SE-1 22-336-SE-2	5.72 U 46.2	14.9	5.5 33	2.01 J 13.3 J	11.9 J 36.3 J	7.9	6070	0.062	148	5.37 J	7.84 U	∥ ⊃	(mg/kg)	(mg/Kg)
22-336-WR-1 22-336-WR-2 22-336-WR-3	535 535 105	25.1 29.9	8.0.5 2.0.5 3.0.5	14.6 J	5.76 J 7.18 J	25 25 25 25 25 25 25 25 25 25 25 25 25 2	13500 51800	0.05 0.056	95 95 5 5 5	19.6 J 12.9 J 6.54 J	16.8 36.2 70.6	7.58 U 5.69 U 6.57 U	72.3 249 126	Z Z Z
BACKGBOIND) g		3		13.51 13.61	998	24900	0.848	640	14 J	32.7	4.96 U	173	ž Ž
	- 8	<u>/cı</u>	0.7 0.3	15.5 J	55.6 J	64.1	24500	0.118	1260	33.5 J	86.7	4.86 U	121	X X
	Acid/Base Accounting	ccounting							O - Not Detector J -	o - Noa Leaenda, J - Edermated Quantity, X - Outlier for Accuracy or Procision; NR - Not Requested	- Outlier for Accuracy	or Precision, NR - 3	Not Requested	
PIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
22-336-WR-1 22-336-WR-2 22-336-WR-3	0.02 0.56 0.05	0.62 17.5 1.56	79.8 13.9 31.9	79.2 -3.6 30.3	-0.01 0.38 0.01	0.01 0.06 0.06	0.02 0.12 0.04	0.31 0.31 0.00	79.5 79.5 12 31.9					

	Metals in Water Results in ug/L	Vater ıg/L				WATER MAI	WATER MATRIX ANALYSES							
FIELD D	Α	i	Ba Cd	ප		రే	Fe	8 H	Mn	Z	£	5	Ħ	HARDNESS CALC.
22-336-SW-1 22-336-SW-2 22-336-SW-3	3.33 J 2.47 J 8.82 J		2.57 U 2.57 U 8.6	9.7 U 6.83 9.7 U 8.73 148 6.83	6.83 U 8.73 J 6.83 U	1.55 U 6.5 J 1120 J	50.3 J 145 J 34000 J	0.12 U 0.12 U 0.12 U	8.77 11.7 7460	12.7 U 12.7 U 35.4	1.55 U 2.24 1.55 U	1.55 U 30.7 U 7.57 U 65.4 2.24 30.7 U 7.57 U 65.4 1.55 U 30.7 U 429 470	7.57 U 7.57 U 7.57 U 429	24 (mg CaCO3/L) 17 U 65.4 17 U 70.4 19 470
	Wet Chemistry Results in mall					Ĺ			- Construction of the cons	o - roa deadar, j - Estiminad (quantity, X - Outlier for Accumsy or Precision; NR - Not Requested	Outlier for Accuracy o	or Precision, NR - Not	A Requested	
FIELD LD. 22-336-SW-1 22-336-SW-2 22-336-SW-3	TOTAL DISSOLVED SOLEDS 99 80 684	CHLORIDB	SULFATE 11 7 467	NO3/NO2-N CYANII < 0.05 NR < 0.05 NR 0.05 NR	ULFATB NO3NO2-N CYANIDE 11 < 0.05 NR 7 < 0.05 NR 467 0.31 NR		SEI - Upgradient approx. 300 from waste rock dump 4. SE2 - Downgradient approx. 50 from base of waste rock dump 5. WR1 - Composite of subsamples WR2, 3A, and 3B. WR2 - Composite of subsamples WR4A, 4B, 4C, and 4D. WR3 - Composite of subsamples WR5A, 5B, and 5C. BACKGROUND - North side of Greyback Creek. From Sourdough Mine (22-336-SS-1).	Pgradient approx. 300' from weate rock swagradient approx. 50' from base of w composite of subsamples WR2, 34, and composite of subsamples WR34, 4B, 4d composite of subsamples WR54, 5B, ar COUND. North side of Greyback Creal From Sourdough Mine (22-336-SS-1).	c dump 4. waste rock dump. d 3B. IC, and 4D. und 5C. sk.	EGEND	SW1 - Same as sample SE1. SW2 - Same a sample SE2. SW3 - Adit discharge of was	SW1 - Same as sample SE1. SW2 - Same a sample SE2. SW3 - Adit discharge of waste rock dump 5.	rock dump 5.	

County: Jefferson Mine/Site Name: Comet Section(s): S 1/2, Sec. 36 Legal Description: T 7N R 5W Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn Mining District: Basin/High Ore Primary Drainage: Boulder River Latitude: N 46° 18' 37" USGS Code: 10020006 Longitude: W 112° 10' 02" Secondary Drainage: High Ore Creek Land Status: Private Date Investigated: July 8, 1993 Quad: Mount Thompson Inspectors: Bullock, Belanger, Clark P.A. # 22-009 Organization: Pioneer Technical Services, Inc.

- The past reclamation project involving stream diversion and settling pond construction
 was in need of repair and maintenance. The diversion ditch was at risk of failure and the
 upper settling pond was at full capacity and ineffective.
- The volume of tailings associated with this site was estimated to be approximately 500,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3400 to 4790 mg/kg Ca Copper: 324J to 445J mg/kg Iron Mercury: 0.338 to 0.975 mg/kg Lea

Cadmium: 13.0 to 20.1 mg/kg Iron: 33,900 to 39,700 mg/kg Lead: 2330 to 4420 mg/kg

Antimony: 14 to 31 mg/kg

Zinc: 1900J to 3020J mg/kg

Manganese: 5860 to 8550 mg/kg

- The lower tailings impoundment (TP2) was breached and actively eroding.
- The volume of waste rock associated with this site was estimated to be approximately 214,000 cubic yards. The following elements are elevated at least three times background:

Arsenic: 1260 to 1610 mg/kg Copper: 245J to 248J mg/kg Cadmium: 23.6 to 36.4 mg/kg Manganese: 3930 to 6100 mg/kg

Mercury: 0.543 to 1.59 mg/kg Antimony: 25 mg/kg Lead: 2590 to 3750 mg/kg Zinc: 3720J to 6060J mg/kg

High Ore Creek had been diverted around most of the site, although diversion leakage, groundwater discharge, and runoff was still transporting contaminants to the creek. Observed releases to High Ore Creek were documented for arsenic, cadmium, copper, manganese, lead, and zinc; and MCLs for arsenic and cadmium were exceeded in the downstream sample. The acute aquatic life criteria was exceeded for zinc and the chronic aquatic life criteria for copper and zinc were exceeded; directly attributable to the site. Water pH in the stream remains above neutral as the stream flows through the impacted area.

Comet Tailings PA# 22-009 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/08/93

As Ba (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg) (mayKg)	SOLID MATRIX ANALYSES	
19.3 17.4 4.7 224J 18300 1.2 5.3 8.7 7.8J 11300 17.7 16.1 1.8 324J 39700 13.0 10.8 3.3 445J 39700 20.1 12.6 3.3 445J 32500 36.4 8.1 1.6 248J 24500 23.6 5.0 1.5 245J 24500 23.6 6.7 4.6 35.9J 12100 SULFUR NEUTRAL ACTO BASE SULFATE PYRTIC ORGANIC B POTENT POTENT SULFUR SULFUR SULFUR V1000t V1000t % % % 7.23 6.61 <0.01 0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 0.01 0.01 146 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 4.22 0.57 0.37 0.24		Zn
1.2 1.3		("WAS (WAS (MG) (MG/Kg) (MG/Kg)
1.2 3.3 8.7 7.8 11300 13.0 16.1 1.8 324 339700 20.1 12.6 3.3 445.1 33500 20.1 12.6 3.3 445.1 32500 36.4 8.1 1.6 248.1 24500 23.6 5.0 1.5 245.1 24500 23.6 5.0 1.5 245.1 24500 23.6 5.0 1.5 245.1 24500 23.6 5.0 1.5 245.1 24500 23.6 5.0 1.5 245.1 24500 23.6 5.0 1.5 245.1 24500 23.6 5.0 1.5 245.1 24500 3.7 3.7 3.8 3.0 6.7 4.6 3.8 3.2 4.1 4.5 6.78 0.67 0.24 45.3 4.7 0.57 0.34 45.3 4.7 0.34 0.57 0.24 45.3 4.7 0.34 0.57 0.24 45.3 4.7 0.34 0.57 0.24 45.3 4.7 0.34 0.57 0.24 45.3 4.7 0.34 0.55 0.55 45.3 4.7 0.34 0.55 45.3 45.3 45.5 45.3 45.3 45.5 45.3 45.3 45.5 45.		3670 I ND
13.0 10.1 1.8 3244 38700 13.0 10.8 3.3 4444 33800 20.1 12.6 3.3 4454 33800 36.4 8.1 1.6 248.1 24500 23.6 5.0 1.5 245.1 24500 23.6 6.7 4.6 35.9 12100 SULFUR NEUTRAL ACID BASE SULFATE PYRTIC ORGANIC B POTENT VIOOR % % % 7.23 6.61 <0.01 0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 <0.01 146 53.8 <0.01 <0.01 146 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 42.2 0.57 0.37 0.24 45.3 4.7 0.39 0.22	0.025 992	18 55
13.0 10.8 3.3 434 33900 20.1 12.6 3.3 445 33900 36.4 8.1 1.6 248.1 24500 23.6 5.0 1.5 245.1 223100 3.0 6.7 4.6 35.9 12100 SULFUR ACID BASE SULFATE PYRITIC ORGANIC VIOCK VIOCK VIOCK W % % 7.23 6.61 <0.01 <0.01	0.338 5860	1530 14 2010 1
2.0. 1.2.0 3.3 445 32500 36.4 8.1 1.6 248 J 24500 23.6 5.0 1.5 245 J 223100 3.0 6.7 4.6 35.9 J 12100 SULFUR SULFATE PYRITIC ORGANIC B POTENT. ACID BASE SULFATE PYRITIC ORGANIC VIOOR VIOOR % % % 7.23 6.61 <0.01 <0.01 7.41 6.78 0.01 <0.01 7.45 53.8 <0.01 <0.01 104 46.6 0.63 0.99 0.22 41.1 42.2 0.57 0.34 45.3 4.7 0.39 0.52	0.975 7440	2610 26 4000 1
3.0 6.7 4.6 35.9 124500 3.0 6.7 4.6 35.9 12100 SULFUR NEUTRAL. ACID BASE SULFATE PYRITIC ORGANIC VIOOR VIOOR % % % 7.23 6.61 <0.01 <0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 <0.01 0.01 146 53.8 <0.01 <0.01 0.01 104 46.6 0.63 0.99 0.22 41.1 42.2 0.57 0.34 45.3 4.7 0.39 0.24	0.674 8550	2270 31 300.1
3.0 6.7 4.6 35.9 J 12100 SULFUR NEUTRAL ACID BASE SULFATE PYRITIC ORGANIC POTENT: POTENT: SULFUR SULFUR SULFUR VIOCOC VIOCOC % % % 7.23 6.61 <0.01 0.01 0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 <0.01 0.01 197 197 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 42.2 0.57 0.37 0.24 45.3 4.7 0.39 0.52		3750 13 6060J NR
3.0 6.7 4.6 35.9 J 12100 SULFUR NEUTRAL. ACID BASE SULFATE PYRITIC ORGANIC VIOOR VIOOR % % % 7.23 6.61 <0.01 0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 <0.01 0.01 146 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 45.3 4.7 0.39 0.24	0.543 6100	2590 25 3720 J
SULFUR NEUTRAL. ACID BASE SULFATE PYRITIC ORGANIC B POTENT. POTENT. SULFUR SULFUR V1000t V1000t % % 7.23 6.61 <0.01 0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 <0.01 0.01 19.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 0.347 0.34 45.3 4.7 0.39 0.52		
SULFUR NEUTRAL. ACID BASIS SULFATE PYRITIC ORGANIC POTENT. POTENT. SULFUR SULFUR SULFUR V1000c V1000c % % % 7.23 6.61 <0.01 0.01 7.41 6.78 0.01 <0.01 0.01 146 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 11.34 0.18 104 4.66 0.63 0.99 0.22 41.1 4.22 0.57 0.37 0.24 45.3 4.7 0.39 0.52	<u>}</u>	
NEUTRAL. ACID BASE SULFATE PYRITIC ORGANIC POTENT. POTENT. SULFUR	U - Not Detected, J - Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested
7.23 6.61 <0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.		
7.23 6.61 <0.01 0.01 0.01 7.41 6.78 0.01 <0.01 0.01 0.01 1.46 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.39 0.22 41.1 4.22 0.57 0.37 0.24 45.3 4.7 0.39 0.52		
7.41 6.78 0.01 0.01 146 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 4.22 0.57 0.37 0.24 45.3 4.7 0.39 0.52		
146 53.8 <0.01 3.47 0.38 79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 4.22 0.57 0.37 0.24 45.3 -4.7 0.39 0.52	D.S.	
79.7 19.7 0.4 1.34 0.18 104 46.6 0.63 0.99 0.22 41.1 4.22 0.57 0.37 0.24 45.3 -4.7 0.39 0.50	ر م	
104 46.6 0.63 0.99 0.22 41.1 4.22 0.57 0.37 0.24 45.3 -4.7 0.39 0.52	3 5	
41.1 4.22 0.57 0.37 0.24 45.3 -4.7 0.39 0.52	9 G	
45.3 -4.7 0.39 0.62		
80:0 70:0 min		

Ž	Metals in Water		Results in ug/L			WATER MATRIX ANALYSES	IX ANALYSES							
ij	As	B		రి	ර	õ	F.	9 H	Mn	Z	<u>£</u>	ಕ	HA	HARDNESS CALC.
	13.4 J 11 J 56.7 J 4.19 J	44.4 45.5 27 29.5	7.87 8.37 7.03 2.57 U	9.7 U 9.7 U 9.7 U 0.7 C	6.83 U 6.83 U 6.83 U 6.83 U	57 J 63.2 J 20.8 J 1.55 U	39.9 22.4 429 209	0.038 U 0.130 J 0.042 J 0.038 U	455 440 1240 43.7	12.7 U 12.7 U 12.7 U 12.7 U	#	#222	2020 129	An (mg CaCO3A.) 70 286 10 288
~	Wet Chemistry	ž	Results in mg/l						U-Not Detected, 1- Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested E-DEND	dinated Quantity, X.	Outlier for Accuracy	or Precision; NR - No	7.57 U	¥ 80
	TOTAL DISSOLVED SOLIDS	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N	NO3/NO2-N CYANIDE	CYANIDE		Downgradient approx. Upgradient approx. Composite of subsa	SB1 - Downgradient approx. 0.25 mile from the end of reclaimed stream. SB2 - Upgradient approx. 300 feet above town. TP1 - Composite of subsamples TP1A-A, -B, -C.	re end of reclaime r. -C.	od stream.	SSI - Background sample GWI - Silver Hill shaft #1.	SSI - Background sample. GWI - Silver Hill shaft #1. GW7 - Dunlinede of sample 32 000 0000	i income	
	327 × 354 × 194 × 101	0.00 cm	8 88°	o o o o o o o o o o o o o o o o o o o	R R R		Composite of subsar Composite of subsar TPIC-A, -B, -C. Composite of subsa	 TP2 - Composite of subsamples TP2A-A, -B, -C, and -D. TP3 - Composite of subsamples TP1B-A, -B, -C, -D, -B, and TP1C-A, -B, -C. WR1 - Composite of subsamples WR1A, 1B, 1C, 1D, 1B, 2A, 2B, and 2C. 	C, and -D. C, -D, -B, and IC, 1D, 1B, 2A, 2	B, and 2C.	SW1 - Same as sample SE1.	sample SE1	T-WD-600	
lj.			,	35	YE	WR2 - BACK	Composite of subs FROUND - From the	WK2 - Composite of subsamples WR3A, 3B, 3C, and 3D. BACKGROUND - From the Comet Mine (22-009-SS-1).	3C, and 3D. 09-SS-1).					

Mine/Site Name: Grey Eagle	County: Jefferson
Legal Description: T 7N R 5W	Section(s): SW 1/4, Sec. 35
Mining District: Basin/High Ore	Mine Type: Hardrock/Ag, Pb, Cu, Zn, Au
Latitude: N 46° 18' 52"	Primary Drainage: Boulder River
Longitude: W 112° 12' 00"	USGS Code: 10020006
Land Status: Private	Secondary Drainage: Bishop Creek
Quad: Mount Thompson	Date Investigated: July 9, 1993
Inspectors: Bullock, Belanger, Clark	P.A. # <u>22-029</u>
Organization: Pioneer Technical Services, Inc.	

- There were no tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 73,000 cubic yards. The following elements were elevated at least three times background:

Copper: 503 mg/kg

Mercury: 0.411J mg/kg

Lead: 722 mg/kg

Zinc: 859 mg/kg

- Iron staining emanating from Adit #1 indicated past discharge, although no discharge was occurring at the time of the investigation. The water collected within the adit portal had a pH of 6.98 and a specific conductance of 354 umhos/cm.
- Bishop Creek, a tributary to High Ore Creek, flowed adjacent to the site. Observed releases to Bishop Creek (sediment) were documented for copper, lead, and zinc. No MCLs/MCLGs or aquatic life criteria were exceeded that were directly attributable to the site.

Grey Eagle PA# 22-029 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.ø</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD As D (mg/Kg)	ii 	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn	CYANDE
22-029-SE-1 6. 22-029-SE-2 22-029-WR-1 268	63 JX 7 JX 265 JX	62.9 57.3 491	0.6 U	 	5.9 7.5 1.1 U	43.3 7.1 503	9470 10500 13900	0.013 J 0.01 U 0.411 J	817 J 557 J 1840 J	4 6 0	266 14 722	#_=.	361 361 32 850	AN AN
BACKGROUND 13	137	265	3.0	6.7	9 .	35.9 J	12100	0.019	1280 6.3 84 7.0 227.3 U. Not Detected. 1. Estimated Outmitry X. Outlier for Accounts as Benefit and State of the Accounts	6.J Stimated Quantity:	84 Suffer for According	n 2	27 Z	ž ž
Acid/B	Acid/Base Accounting	ounting										ary a richaldi, ink	r - Nor Kequested	
TOTAL FIELD SULFUR D %	R AC	TOTAL SULFUR ACID BASE	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.		PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASB V1000t	SULFUR ACID BASE POTENT.					
	4	54.4	54.4 84.2 29.8	29.8	0.51	0.72	0.51	22.5	61.7					

	Metals in Water Results in ug/L	<i>N</i> ater ug/L				WATER MATI	WATER MATRIX ANALYSES						. •	
FIELD D	As	.	8		ប័	ਠੌ	Ř	Hg	Ž	2	ž	ī	Ħ	HARDNESS CALC.
22-029-SW-1 22-029-SW-2	2.31 22.6 2.57 U 1.69 U 21.9 2.57 U	22.6 21.9	2.57 U 2.57 U	9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U	4.23 J U 2.9 J	187 J 0.038 U 159 J 0.038 U	0.038 U	11	12.7 U	29.6 JX 12.7 U 9.68 JX 30.7 U 16.6 JX 12.7 U 5.77 IX 30.7 U	30.7 U	Zn (mg CeCO3/L)	Zn (mg CaCO3/L)
	Wet Chemistry	~							U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy of Precision, NR - Not Requested	timated Quantity, X	Outlier for Accurac	y of Precision, NR -	Not Requested	32.4
	Results in mg/l									LEGEND				
FIELD	TOTAL					SEI - SEZ -	SEI - Downgradient of waste rock dumps on Bishop Creek. SE2 - Upgradeint of waste rock dumps on Bishop Creek. WR1 - Commonite of minasemales WD1 & strendt 17	te rock dumps on I rock dumps on Bis!			SW1 - Same as sample SE1 SW2 - Same as sample SE2	sample SE1. sample SE2.		
I.D.	SOLIDS	CHLORIDE	SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE	NO3/NO2-N CYANIDE	CYANIDE		BACKGROUND - From the Comet Tailings (22-009-SS-1)	Cornet Tailings (2.	2-009-8S-1).					
22-029-SW-1 22-029-SW-2	129 97	s 5.0 5.0	17 8	o 0.05	N. N. N.									
						-								

County: Judith Basin Mine/Site Name: Block "P" Mine Section(s): NE 1/4, NW 1/4 Sec. 7 Legal Description: T 15N R 9E Mine Type: Hardrock/Pb, Ag, Zn Mining District: Hughesville Primary Drainage: Dry Fork Belt Creek Latitude: N 47° 05' 01"_ USGS Code: 10030105 Longitude: W 110° 37' 56" Secondary Drainage: Galena Creek Land Status: Private/Public Date Investigated: June 7, 1993 Quad: Barker P.A. # 23-001 Inspectors: Bullock, Babits, Flammang, Lasher, Clark / Pierson Organization: Pioneer Technical Services, Inc./

- Thomas, Dean and Hoskins, Inc.
 There were no mill tailings associated with this site.
- The total volume of waste rock associated with this site was estimated at 125,000 cubic yards. The following elements were elevated at least three times background in previous investigations:

Arsenic: 299 to 1,030 mg/kg

Mercury: 0.20 to 1.40 mg/kg

Lead: 4,050 to 24,600 mg/kg

- The waste rock was not contained, and was actively eroding into Galena Creek. The waste rock had a very low pH (2.52), was unvegetated, and had very steep sides along Galena Creek.
- One adit was on site; previous investigations estimated flow at 6 gpm, pH was 6.49, and SC was 375 us/cm. One seep was also associated with this site; flow estimated at 1.5 gpm, pH was 3.45, and SC was 1010 us/cm.
- Surface water samples were collected during the 1993 investigation. Observed releases to surface water were documented for arsenic in water, and arsenic, mercury, and lead in sediment samples. Drinking water standards (MCL's) were exceeded for cadmium, lead, and antimony; acute aquatic life criteria exceedances for cadmium, copper, and zinc were also documented. Upstream samples exceeded MCL's for antimony and lead, and acute aquatic life criteria for copper and zinc; the Hughesville mining district was upstream from the site and contributed to the observed upstream water quality degradation.
- Monitoring wells, sampled previously, indicated that MCL's were exceeded for cadmium, copper, nickel, and lead. These samples also documented an observed release to groundwater for copper and lead. The upgradient well exceeded MCL's for arsenic, cadmium, and nickel, indicating an upgradient source of contaminants.
- There was one open shaft, one open adit and at least five hazardous structures at the site.

Block P. Mine PA# 23-001 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/07/93

	CYANIDE (mg/Kg)	
	Zn (mg/Kg)	749 J 632 J 180 J 7000 J
	Sb (mg/Kg)	55 U 5 U 15 U 15 U 15 U 15 U 15 U 15 U
	Pb (mg/Kg)	3390 432 82 6800 • Outlier for Accura
	Ni (mg/Kg)	19 J 24 J 9 J 78 J Alimed Quantity, X
	Mn (mg/Kg)	2120 J 19 J 3390 5 U 749 2600 J 24 J 432 5 U 632 653 J 9 J 82 4 U 180 10100 J 78 J 6800 15 7000 U-Net Detected 1 - Editinated Quantity, X - Outlier for Accuracy or Precision, NR - Net Requested
	Hg (mg/Kg)	0.161 J 0.057 J 0.03 J 0.178 J
SOLID MATRIX ANALYSES	Fe (mg/Kg)	43700 21400 13400 50200
SOLID MAT	Cu (mg/Kg)	215 J 243 J 140 J 1450 J
	Cr (mg/Kg)	4. w. — œ. æ æ æ rù
	Co (mg/Kg)	0 4 4 6. 0 4 4 8 0 1 1 1
8	Cd (mg/Kg)	33.3 J
Metals in soils Results per dry weight basis	Ĕij	218 222 88.8 608
Metals in soils Results per dry	As (mg/Kg)	255 43 101
	FIELD D	07-090-SE-8 07-090-SE-9 07-090-SE-10 07-090-SE-11

WATER MATRIX ANALYSES		HARDNESS CALC. Fe Hg Mn Ni Pb Sb Zn (mg CgCO3/L)	11800 0.038 U 7560 41.5 51.1 38.9 7090 137 1370 0.038 U 558 8.78 U 37.6 32.1 585 107 403 0.038 U 77.4 8.78 U 2.52 33 54.3 85.5 1950 0.038 U 840 8.78 U 64 32.9 861 115		SES - Upstream of Belt Patent Mine, downstream of Block P. Mine. SE9 - Galera Creek above Block P. Mine, approx. 20' above old weir. SE10 - Green Creek before confluence with Galena Creek approx. 610' SE11 - Daisy Creek before confluence with Greek.	SW8 - Same as sample SE8. SW9 - seme as sample SE9. SE10 - Same as sample SE10. SE11 - Same as sample SE11.
		ඊ පී	5.99 U 5 U 5.99 U 5.6 5.99 U 5.13 5.99 U 5 U		NO3NO2-N CYANIDB	0.060.070.050.050.05
		PD #4	23.6 30.2 25.1 2.55 U 20 2.55 U 26.5 3.9		CHLORIDE SULFATE	5.0 178 5.0 86 5.0 35 5.0 113
	Metals in Water Results in ug/L	٩	29 0.98 U 2.09 0.98 U	Wet Chemistry Results in mod		274 c 182 c 130 c 218 c
	·	FIELD	07-090-\$W-8 07-090-\$W-9 07-090-\$W-10 07-090-\$W-11		FIELD LD.	07-090-SW-8 07-090-SW-9 07-090-SW-10 07-090-SW-11

Mine/Site Name: Marcelline Legal Description: T 15N R 9E	County: Judith Basin Section(s): SE 1/4, NW 1/4, Sec. 7 Mine Type: Hardrock/Ag, Pb, Zn
Mining District: Hughesville	Primary Drainage: Dry Fork Belt Creek
Latitude: N 47° 04' 47"	
Longitude: W 110° 38' 04"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Galena Creek
Quad: Barker	Date Investigated: June 4, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>23-022</u>
Organization: Pioneer Technical Services, Inc.	

- There were no tailings on site.
- There were approximately 700 cubic yards of waste rock on site. The following elements were elevated at least three times background:

Copper: 196 mg/kg

Mercury: 0.464 to 0.87 mg/kg

Lead: 12,000 mg/kg

- There were no discharging adits on site. There was one filled shaft on site was
 discharging approximately 4 gpm with a pH 3.08 and a specific conductance of 2190
 umhos/cm. Cadmium, nickel, and antimony exceeded MCL/MCLGs. Acute aquatic life
 criteria were exceeded for cadmium, copper, and zinc. The chronic aquatic life criteria
 were exceeded for cadmium, copper, iron mercury, lead, nickel, and zinc.
- An adit discharge from the Danny T Mine, up-slope from this site, flowed through Waste Rock #4 prior to discharging into Galena Creek. This discharge exceeded the MCL/MCLGs for arsenic, cadmium, copper, nickel, and antimony. This discharge also exceeded the acute and chronic aquatic life criteria for arsenic, cadmium, copper, and zinc, as well as the chronic aquatic life criteria for iron, lead, and nickel.
- There were no observed releases documented on Galena Creek from the water samples (the creek has upgradient sources). Galena creek exceeded cadmium and antimony MCL/MCLGs both upstream and downstream from this site. The acute aquatic life criteria for cadmium, copper and zinc as well as the chronic aquatic life criteria for cadmium, copper, iron, lead, and zinc were exceeded in both the upstream and downstream Galena Creek samples. Therefore, these exceedances are not directly attributed to this site.
- There were two open adits and one partially open shaft (six feet) on site that were classified as hazardous mine openings.

Marcelline PA# 23-022 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/04/93

	Metals in soils		sults per dry	Results per dry weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	į	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Re)	Pb (me/Ke)	qs qs	2	CYANIDE
23-022-WR-2 23-022-WR-4	122 334	208 J 245 J	1.5.1 4.4.1	2.07 J 1.55 J	1.41 J	31.1	23600	0.464	62.2	3.93	938	3.98 UJ	(mg/kg) ======== 125	(mg/kg)
07-090-SE-5 23-046-SE-6	368 379	213 220	0.7 U 2.3 J	6.7 J	7.4	46 2 46 2 5	29/00 56400	0.214 J	145 975 J	2.76 9 J	12000 1410	ე ა ე	2170 566 J	2 Z
07-090-SE-7	1 5	28	0.8 J	3.6 J	3.7	196 1	25200	0.275 J 0.177 J	1800 J 438 J	## # T E	587 787	ზ 4 ⊃ ⊃	562 J 152 J	œ œ
BACKGROUND	122 J	441 J	5.0	9.66	26.5 J	22.7 J	33300	0.071	11900	25	375	4.24 J	1570	<u> </u>
	!								U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Mirrated Quantity, X	- Outlier for Accura	ry or Precision, NR -	Not Requested	•
a ú	Acid/Base Accounting	Accounting												
	TOTAL	TOTAL	NEUTRAL.	SULFUR ACID BASE	SULFATE	. OTHIRA	OBCANIC	PYRITIC	SULFUR					
FIELD	SULFUR	ACID BASE POTENT. #1000t #1000t	POTENT. V1000t		SULFUR	SULFUR	SULFUR	ACID BASE	ACID BASE POTENT. V1000t					
23-022-WR-2 23-022-WR-4		54.7 34.1	6.8 4.4	-56 -38	1.71 0.94	< 0.01 0.03	0.04	0 94						
									2.5					

						WATED 14	TON LAINE VIOL							
FIELD	Metals in Water		Results in ug/L				WATER MATRIX ANALTSES							
0	As	B 11 11 11 11 11 11 11 11 11 11 11 11 11	S C C	ပိ	Ċ	రౌ	Fe	£	Mn	ž	æ	å	5	CALC.
23-022-GW-1 23-022-GW-2 23-022-SW-1 23-022-SW-2 07-090-SW-5 23-046-SW-6 07-090-SW-7	15.1 14.7 1800 1840 38.7 13.9 33 Wet Chemistry	2.24 U 2.24 U 2.24 U 5.43 U 5.43 23 23 23 23.7 Re	U 365 U 369 U 512 U 513 34.4 13.2 34.7	106 111 98.2 86.7 8.73 5.99 U	46	277 264 2730 2950 2950 256 57.8 265	51000 52800 248000 291000 12600 5150 12300	0.086 J 0.051 J 0.01 J 0.079 J 0.038 U 0.087	183000 186000 183000 184000 8940 869 8090	981 989 989 980 980 990 990 990 990 990 990	502 539 137 216 59.6 14.5 68.6	100 96 126 125 50 18.3 U	79500 81000 108000 108000 7980 2130 7790	781 791 471 487 135 76.9
FIELD LD	8	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	WR WR	WR2 - Composite of subsamples WR2A, 2B, 2C, 3A, 3B, and 3C. WR4 - Composite of subsamples WR4A and 4B. BACKGROUND - From the Bon Ton Mine (77-709.8s.1)	umples WR2A, 2B, umples WR4A and 4 e Bon Ton Mine (0	2C, 3A, 3B, and 3C 4B.		GW1 - From the GW2 - Duplica	GW1 - From the Marcelline Shaft. GW2 - Duplicate of 23-022-GW-1	naft. N-1.	
23-022-GW-1 23-022-GW-2 23-022-SW-1 23-022-SW-2 07-090-SW-5 23-046-SW-6	2220 < 2190 < 2700 < 2800 < 308 < 141 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 370 < 37	, , , , , , , , , , , , , , , , , , ,	1370 1360 1610 1620 182 60	0.0 0.0 0.05 0.05 0.05 0.05 0.05	*		07-090-SE5 - Galena Creek downstream from the site 23-046-SE6 - Unnamed Trib. from Wright/Edwards at confuence with Galena Ck. 07-090-SE7 - Galena Creek upstream from the site.	c downstream from b. from Wright/Eck t upstream from the	the site wards at confuence saite.	with Galena Ck.		3W 1 - Eastern Inbutary drainage @ confluence with Galena Creek. SW2 - Eastern tributary drainage as it enters Marceline property @ toe of the upgradient mine dump. 07-090-SW5 - Same as 07-090-SE5 23-046-SW5 - Same as 23-046-SE6	age @ confluen ge as it enters N e upgradient mi -SE5 -SE6	e with Galena arceline te dump.

County: Judith Basin Mine/Site Name: Belt Patent Section(s): NW 1/4, NE 1/4, Sec. 7 Legal Description: T 15N R 9E Mine Type: Hardrock/Au, Pb, Zn Mining District: Hughesville Primary Drainage: Dry Fork Belt Creek Latitude: N 47° 04' 47" USGS Code: 10030105_ Longitude: W 110° 38' 00" Secondary Drainage: Galena Creek Land Status: Private/Public Date Investigated: June 4, 1993 Quad: Barker P.A. # 23-035 Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be 750 cubic yards. The tailings are actively eroding into Galena Creek. The following elements were elevated at least three times background in the samples collected:

Arsenic: 929 to 3520 mg/kg

Copper: 250 to 384 mg/kg Lead: 9570 to 17,100 mg/kg

Zinc: 5440 to 7830 mg/kg

Cadmium: 33.9J to 50.4J mg/kg

Mercury: 1.4 to 2.1 mg/kg

Antimony: 17.4J to 33.5J mg/kg

- The volume of waste rock associated with this site was estimated to be approximately 65 cubic yards. No samples of the dump were collected for laboratory analysis; however, XRF measurements were taken.
- There were no adit discharges, seeps or springs observed at the site at the time of the investigation.
- Galena Creek flowed adjacent to the site on the west side. No observed release to surface water were attributed to the site. Contaminant concentrations measured in the upstream surface water sample were nearly identical to the concentrations measured in the downstream samples. MCLs were exceeded for cadmium and antimony both upstream and downstream of the site. Additionally, the chronic aquatic life criteria for iron, mercury, cadmium, copper, lead and zinc, and the acute aquatic life criteria for cadmium, copper, and zinc were exceeded both upstream and downstream from the site. The upgradient surface water sample indicated the presence of an upgradient contaminant source.

Belt/Grace/Marcelline PA# 23-035 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/04/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>si</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Ou (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mø/Kø)	N. (mo/Re)	Pb	Se	5	CYANIDE
07-090-SE-7 07-090-SE-8 23-035-TP-1A 23-035-TP-1B	154 255 929 3520	59 218 1100 J 884 J	0.8 J 3 J 33.9 J 50.4 J	3.6 J 3.7 9 J 4.8 1.26 U 1.47 J 1.39 J 0.98 U	3.7 4.8 1.47 J 0.98 U	106 J 215 J 384 250	25200 43700 31200 76000	0.177 J 0.161 J 2.1 1.3	438 J 2120 J 77.6	33 J 19 J 1.85 U 1.72 U	584 3390 17100 9570	33.5 J	(mg/kg) 152 J 749 J 5440 7830	(mg/kg) NR NR 1.128 U
BACKGROUND	122 J	ւ 1	5.0	9.66	26.5 J	22.7 J	33300	0.071	11900 U-Net Detector, J. B	11900 75 375 4.24 J 1570 U-Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	375 - Outlier for Accuracy	4.24 J	1570 Not Requested	Š.
	Acid/Base Accounting	counting												
O O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFUR SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
23-035-TP1A 23-035-TP1B	1.91 2.84	59.7 88.7	4.3 -10	26. 26.	1.01	0.22 0.76	0.68	6.87 23.7	-11.1 -34					

-		HARDNESS CALC Mn Ni Pb Sb Zeitme Ca-CCalc	275 205	Commun. A. Collins for Artists of Precision; NR Not Requested	SW7 - Same as sample SE7. SW8 - Same as sample SE8.
K ANALYSES		Fe Hg	265 12300 0.038 U 239 11800 0.038 U		SE7 - Downstream in Galena Creek. SE8 - Upstream in Galena Creek. TP1A - Composite of subsamples TP1A and 2A. TP1B - Sample of the TP1B subsample. BACKGROUND - From the Bon Ton Mine (07-094-SS-1).
WATER MATRIX ANALYSES		ටි ඊ	İ		
					TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 320 < 5.0 185 0.07 NR 274 < 5.0 178 0.06 NR
	ater p/L	Be cd Co	23.7 34.7 23.6 30.2		CHLORIDE SULFATE 5.0 185 178
	Metals in Water Results in ug/L	As	88	Wet Chemistry	TOTAL DISSOLVED SOLIDS 320 <
		FIELD D	07-090-SW-7 07-090-SW-8		FIELD LD. 07-090-SW-7

County: Judith Basin Mine/Site Name: NE SE S7 (Lucky Strike) Section(s): NE 1/4, NE 1/4, Sec. 7 Legal Description: T 15N R 9E Mine Type: Hardrock/Ag, Pb, Zn Mining District: Hughesville Primary Drainage: Dry Fork Belt Creek Latitude: N 47° 04' 28" USGS Code: 10030105 Longitude: W 110° 38' 00" Secondary Drainage: Galena Creek Land Status: Private/Public Date Investigated: June 4, 1993 Quad: Barker P.A. # 23-042 Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 5,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 272 to 368 mg/kg Copper: 85.6 to 146J mg/kg Mercury: 0.214 to 0.458 mg/kg

- A minor discharge from the on site adit was observed at the time of the investigation. No MCLs/MCLGs or Montana Numeric Water Quality Standards were exceeded in the adit discharge. The discharge combined with an unnamed tributary which flowed over and through WR-1 and then discharged to Galena Creek. A second surface water sample was collected from the discharge after flowing through the waste rock dump. There were no MCL exceedances; however, acute aquatic life criteria were exceeded for cadmium, copper, and zinc, and chronic aquatic life criteria were exceeded for copper, lead, and zinc.
- Surface water samples were collected upstream and downstream from the site in Galena Creek. MCLs were exceeded for cadmium and antimony in both the upstream and downstream samples. Chronic aquatic life criteria for iron, cadmium, copper, lead, and zinc were exceeded in the both the upstream and downstream samples. Acute aquatic life criteria were exceeded for cadmium, copper, lead and zinc in both the upstream and downstream samples; additionally, acute aquatic life criteria for cadmium was exceeded in the upstream sample.
- There was little stream bank vegetation observed, and predominant iron oxide staining was evident during the investigation.
- There was a shaft observed above the adit which had caved and poses a safety hazard.

NE SE Sec. 7 (Lucky Strike) PA# 23-042 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/04/93

	Metals in soils Results per dry weight basis	eight basis	**			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD As D (mg/Kg)	s Ba (g) (mg/Kg)	# # # #	Cd (mg/Kg) (Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sh (mg/Kg)	Zn (me/Ks)	CYANIDE
07-090-SE-4 27 07-090-SE-5 36 23-042-WR-1 28	272 368 283 1	147 213 195 J	3.6 J 0.7 U 1.1 J	_		107 J 146 J 85.6	45900 56400 32400	0.097 J 0.214 J 0.458	651 J 975 J 180	6 J 9 J 2.75	1590 1410 971		811 J 566 J 135	N N N
BACKGROUND 12	122 J	441 J	ω	9.66	26.5 J	22.7 J	33300	0.071	11900 75 375 4.24 J 1570 U. Not Detector J. Estimated Operator X. Online for Account.	75 Stimated Quantity 3	375 - Outlier for Account	4.24 J	1570	ž Ž
Acid/l	Acid/Base Accounting	ıting										acy of Frecision, NR	Not Requested	-
TOTAL FIELD SULFUR D %		29	SINEUTRAL. A POTENT. PV1000t t	SULFUR ACID BASE POTENT. V1000k	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASB POTENT.					
		19.7 -3	-3.5	-3.5 -23 0.57	0.57	< 0.01	0.06	0	-3.53					

	Metals in Water	Vater			•	VATER MA	WATER MATRIX ANALYSES	(f)						
FIELD	Results in ug/L	ng/L											_	HADDAMESS
0	As	Ba	స్త	రి	ರ	ਹ	₽.	Hg	Mn	Z	£	ŧ	7	CALC
23-042-SW-1 23-042-SW-2	3.24	18 46.8	2.55 U 2.55 U		5 U	5.2	512	0.086	5220	37.8	2.53	18.3 U	403	Zn (mg caco3/L) ====================================
07-090-SW-4 07-090-SW-5	38.8 38.7	22.7 23	36.5 34.4	9.03 8.73	200	246 246	11600	0.038 U	2730 8670	23.6 43.4	2.91 121	18.3 U 53.8	208 7750	59.3 131
))	}	2007	0.030	U-Not Detected: J.	U- Not Detected. J. Ediranted Quantity, X. Outlier for Accuracy or Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. Practices No. No. No. No. No. No. No. No. No. No.	59.6 X - Outlier for Accou	50 mover Precision No	7980	135
	Wet Chemistry											101 tonesco	namarkawa wa -	
	Results in mg/l									LEGEND				
FIELD	TOTAL DISSOLVED					# # #	SB4 - Downgradient Galena Creek. SB5 - Upgradient Galena Creek.	na Creek. Creek.			SW1 - Adit discharge. SW2 - Discharge from	SW1 - Adit discharge. SW2 - Discharge from bottom of dump.	of dump.	
.D.	SOLIDS	CHLORIDE	SULFATE		CYANIDE	ž A	WK1 - Composite of subsamples WR1 and 2A through 2C. BACKGROUND - From Silver Dyke Adit (07-135-58-1).	amples WR1 and 2. lilver Dyke Adit (07	A through 2C. '-135-SS-1).		SW4 - Same as sample SE4.	as sample SE4.	•	
23-042-SW-1	279 115	5.0 5.0	177 < 0.05	× 0.05	 	-					o o o o o o o o o o o o o o o o o o o	cac admiss se		
7-090-SW-4	318	, v	1 6		¥ &	:								
27-090-SW-5	308	> 5.0	182	90.0	Z									-

Mine/Site Name: Wright Lode County: Judith Basin Legal Description: T 15N R 9E Section(s): NW 1/4, NW 1/4, Sec. 7 Mining District: Hughesville Mine Type: Hardrock/Pb, Ag, Zn Latitude: N 47° 05' 03" Primary Drainage: Dry Fork Belt Creek Longitude: W 110° 38' 23" USGS Code: 10030105 Land Status: Private/Public Secondary Drainage: Galena Creek Quad: Barker Date Investigated: June 7, 1993 Inspectors: Bullock, Flammang, Clark P.A. # 23-045 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 19,900 cubic yards. The following elements were elevated at least three times background:

Arsenic: 280 to 316 mg/kg

Cadmium: 3.4J mg/kg

Copper: 83.6J to 246J mg/kg

Mercury: 0.427J to 0.649J mg/kg

Lead: 8,430 to 14,200 mg/kg

Zinc: 393J to 640J mg/kg

- There were no mine opening discharges, seeps or springs identified at this site.
- A storm runoff event was occurring during the investigation. An unnamed tributary to Galena Creek flowed directly through the site (over and through WR-3 and WR-4). The MCL/MCLG for antimony was exceeded in both upstream and downstream surface water samples collected from the tributary. Observed releases to surface water were documented for arsenic, cadmium, copper, mercury, lead, and zinc. MCL/MCLGs for arsenic and cadmium were exceeded in the downstream sample and were directly attributable to the site. Acute and chronic aquatic life criteria were exceeded for arsenic, cadmium, and lead in the downstream sample, and chronic aquatic life criteria were exceeded for iron, mercury, and copper in the downstream sample. The acute and chronic aquatic life criteria exceedances for arsenic, cadmium, and lead and the chronic aquatic life criteria exceedances for mercury and copper were directly attributable to the site.
- Several potentially hazardous pits and trenches were scattered throughout the area, ranging to 10 feet deep. Several of the waste rock dumps had very steep and unstable banks.

Wright Lode PA# 23-045 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/07/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES	co.						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Ou (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	Zn	CYANIDE
23-045-WR-2 23-045-WR-4	280 316	183 170	3.4 J 1.7 J	1.2 U 1.2 U	2.1	246 J 83.6 J	21400 17900	0.427 J 0.649 J	16.7 J 22.6 J	2 U 3 J	8430 14200	4 U	640 J	NR A
BACKGROUND	53	270	0.6 U	3.1 J	7	11.6 J	11100	0.053 J	359 J	c	241	. ro	S 80	
	Acid/Base	Acid/Base Accounting							U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quantity,	X - Outlier for Accu	racy or Precision; N	NR - Not Requested	
FIELD D	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT.					
23-045-WR-2 23-045-WR-4	1.42 1.6	44.4 50	4.8 3.3	44.4 4.8 49 1.24 50 -3.3 -53 1.55	1.24 1.55	0.02	0.16	0.62	# #					

	Metals in Water Results in ug/L	Water ug/L				WATER MATR	WATER MATRIX ANALYSES						-	
FIELD D	As	æ	ਣ	ಕ			F.	%	W	Z	뚭	ť		HARDNESS CALC.
23-045-SW-1 23-045-SW-2	888 0.98 U	182 44.1	182 79 14.4 5.2 44.1 2.55 U 5.99 U 5.1	14.4 5.99 U	5.2 5 U	624 1.35 U	79300 26.7	1.02 0.038 U	4560 29.8 12700 64.7 2.6 U 8.78 U 0.48 27.9	29.8 8.78 U	12700	64.7 27.9	1450 75	Zn (mg CaCO3/L) ====================================
	Wet Chemistry Results in mg/l	· >=				L			U - NOR L'MEGROC, J - Estamaled Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Stimated Quantity, 3	K - Outlier for Accur	acy or Precision, NA	R - Not Requested	
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	WR2 - WR4 - BACKI	WR2 - Composite of subsamples WR2A, 2B, and 3. WR4 - Composite of subsamples WR4A, 4B, 4D, and 4B. BACKGROUND - From the Wright Lode (23-045-SS-1).	mples WR2A, 2B, i mples WR4A, 4B, 4 e Wright Lode (23-4	and 3. 4D, and 4B. 045-SS-1).	LEGEND	SW1 - At base SW2 - Above	SW1 - At base of waste rock dump 4. SW2 - Above waste rock dump 3.	ump 4.	
23-045-SW-1 23-045-SW-2	33-045-SW-1 486 < 5.0 229 < 0.05 NR 33-045-SW-2 106 < 5.0 11 < 0.05 NR	5.05.0	229	< 0.05 < 0.05 <	NR NR									

Mine/Site Name: Edwards Legal Description: T _15N R _9E Mining District: Hughesville Latitude: N 47° 04' 55" Longitude: W 110° 38' 16" Land Status: Private/Public Quad: Barker Inspectors: Babits, Lasher/Pierson	County: Judith Basin Section(s): NW 1/4, NW 1/4, Sec. 7 Mine Type: Hardrock/Ag, Pb, Zn Primary Drainage: Galena Creek USGS Code: 10030105 Secondary Drainage: Unnamed tributary to Galena Creek Date Investigated: June 7, 1993 P.A. # 23-046
Organization: Pioneer Technical Services, Inc/	P.A. # 23-046
Thomas, Dean & Hoskins, Inc.	

- There are no tailings on site.
- There are approximately 50,750 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Arsenic: 649 mg/kg Copper: 499J mg/kg Lead: 24,900 mg/kg Zinc: 827J mg/kg Cadmium: 3.3J mg/kg Mercury: 1.87J mg/kg Antimony: 19 mg/kg

- There were no discharging adits on site.
- The creek ran through waste rock. There were no observed releases to downstream surface water (there was an upgradient contaminant source). Arsenic and antimony exceeded MCLs in downstream surface water which were directly attributable to the site. The acute and chronic aquatic life criteria was exceeded for arsenic, copper, lead, and zinc in downstream surface water. The chronic aquatic life criteria was exceeded for iron in downstream surface water.
- There was one open adit on site.

Edwards PA# 23-046 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/07/93

r			
	Cyanide (market)	N N N N N N N N N N N N N N N N N N N	χ χ Σ
	Zn (mo/Ke)	645 J 562 J	28 J
	Sh		5 U nicy or Precision; NR
	Pb (mg/Kg)	4740 4040 24900	241 X - Outlier for Accu
	Ni (mg/Kg)	2 U 11 J 4 J	5 J Estimated Quantity,
	Mn (mg/Kg)	131 J 1800 J 10.9 J	359 J 5 J 241 5 U 28 J U · Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision; NR · Not Requested
v	Hg (mg/Kg)	0.187 J 0.275 J 1.87 J	0.053 J
SOLID MATRIX ANALYSES	Fe (mg/Kg)	19700 66400 28400	11100
SOLID MAT	Cu (mg/Kg)	68.4 J 139 J 499 J	11.6 J
	Or (mg/Kg)	1.4 7.3 2.2	L
	Co Co Co (mg/Kg) (mg/	1.9 J 1.9 J 1.6 U	3.1 J
<u></u>	Cd (mg/Kg)	3.55 3.35 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0	0.6 U
Metals in soils Results per dry weight basis	Ba (mg/Kg)	182 220 170	270 J
Metals in soils Results per dry	As (mg/Kg)	526 379 649	83
	FIELD D	23-046-SE-2 23-046-SE-6 23-046-WR-2	BACKGROUND

Metals in Water Results in ug/L	HARDNESS As Ba Cd Co Cr Cu Fe Hg Mn Ni Pb Sb Zn (me CaCO)3/1.)	888 182 79 14.4 5.2 624 79300 1.02 4560 29.8 12700 64.7 14500 47.9 1020 164 106 15.5 8.13 812 105000 1.05 6640 49.1 12800 48 19400 73.3 13.9 20.6 13.2 5.99 U 5 U 57.8 5150 0.087 869 10.9 14.5 18.3 U 2130 76.9 U Not Detected; J - Estimated Quantity; X - Outlier for Accuracy or Precis	TOTAL SE2 - Below waste rock chump 1 in tributary. LEGEND SE2 - Below waste rock chump 1 in tributary. SW1 - At base of waste rock chump 4 from 23-045 site.
Metals in M Results in u	As	888 1020 13.9 Wet Chemistry	
	TELD D	23-045-SW-1 23-046-SW-2 23-046-SW-6	FIELD LD. 23-045-SW-1 23-046-SW-2 23-046-SW-6

Mine/Site Name: <u>Harrison</u> Legal Description: T <u>15N</u> R <u>9E</u>	County: Judith Basin Section(s): SE 1/4, NE 1/4, Sec. 6
Mining District: Hughesville	Mine Type: Hardrock/Ag, Pb, Zn
Latitude: N 47° 05' 24"	Primary Drainage: Galena Creek and Dry
Longitude: W 110° 37' 22"	Fork Belt Creek
Land Status: Private/Public	USGS Code: 10030105
Quad: Mixes Baldy	Secondary Drainage: Daisy Creek
Inspectors: Bullock, Flammang, Clark	Date Investigated: June 3, 1993
Organization: Pioneer Technical Services, Inc.	P.A. # <u>23-056</u>

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 10,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 182J mg/kg Barium: 670J mg/kg

Cadmium: 9 mg/kg

Copper: 1,270J mg/kg Lead: 10,600 mg/kg Iron: 90,300 mg/kg Mercury: 0.75 mg/kg

Manganese: 12,800 mg/kg

Nickel: 68.5 mg/kg Zinc: 390 mg/kg

- One discharging adit was observed at the site during the investigation. The adit was discharging at 0.25 cfs, with a pH of 6.10 and a specific conductance of 680 umhos/cm. The MCL for cadmium was exceeded in the adit discharge. Acute and chronic aquatic life criteria were exceeded for copper and zinc in the adit discharge, and chronic aquatic life criteria were exceeded for cadmium and lead.
- The surface water samples collected on Daisy Creek did not document an observed release to surface water attributable to this site. The MCL/MCLG for cadmium was exceeded in surface water samples collected both upstream and downstream of the site in Daisy Creek. Acute and chronic aquatic life criteria were exceeded for copper, lead, and zinc, and chronic aquatic life criteria were exceeded for iron and cadmium, in both upstream and downstream samples. The acute and chronic aquatic life criteria for cadmium, and the chronic aquatic life criteria for mercury were exceeded in the upstream sample on Daisy Creek. Observed releases to Daisy Creek were documented in the stream sediment samples collected for arsenic, copper, iron, mercury, and lead; although, the data indicated likely additional upstream contaminant sources.
- One potentially hazardous collapsing cabin was observed at the site, and several of the waste rock dumps were very steep and unstable.

Harrison/Moulton PA# 23-056 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/03/93

	Metals in soils Results per dry weight basis	basis			SOLID MATI	SOLID MATRIX ANALYSES							
FIELD As D (mg/Kg)	As Ba g/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (ma/Ka)	Pb (marke)		Zu	CYANIDE
23-056-SE-1 306 J 23-056-SE-2 58.6 J 23-056-WR-1 182 J			4.03 5.91 3.2	5.2 J 7.46 J 6.24 J	2590 J 374 J 1270 J	151000 44000 90300	1.1 0.106 0.75	8610 4820 12800	47.2 35.1 68.5	13400 4360	14 J 4.24 UJ	(mg/kg) ====================================	(mg/Kg) NR NR
BACKGROUND 5.	5.1 J 159 J	0.6 U	3.83	8.09 J	9.81	13300	0.028	548	7.93	61.4	3.98 UJ	130	
Acid/B	Acid/Base Accounting							- Charana not - o	Counted Quartity.	o . 100 courses, J - Emirmico Quentry, A - Outlier for Accuracy or Precision, NR - Not Requested	racy or Precision, Ni	R - Not Requested	
TOTAL FIELD SULFUR ID %	TOTAL SULFUR A ACID BASE V1000t		SULFUR ACID BASE POTENT. V1000k	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
23-056-WR-1 4.26		66.4	-67 1.53	1.53	1.08	1.65 33.7	33.7	32.6					

	Metals in Water	Vater				WATER MATF	WATER MATRIX ANALYSES		-					
FIELD	Results in ug/L	ng/L											į	200
A		B	25		ర	రె	P.	Ħ	,	ž	E	ŧ	i	HAKUNESS CALC.
23-056-GW-1 23-056-SW-1 23-056-SW-2		0.98 U 19.8 11.4 1.37 32.5 6.37 0.98 U 19.9 8.3	11.4 6.37 8.3	5.99 U 5.99 U 5.99 U 5.90 U	ა გა ი ი ი	516 J 325 J 133 J	704 4760 4530	0.038 U 0.038 U 0.043	0.038 U 2970 0.038 U 1990 0.043 1600 U-Na Defected I-	23.9 21.9 19.9 Estimated Quantity	26. 34.	18.3 U 18.3 U 18.3 U	Zn (mg CaCO3/L) 2470 JX 355 2060 JX 214 2340 JX 127	Zn (mg CaCO3/L) 10 JX 355 10 JX 214 10 JX 127
	Wet Chemistry Results in mg/l					EB.	SEI - Downstream of dumms and confluence of acts discharges	Ds and confluence	foots discharge	LEGEND		un imperation (-	. vor vednested	
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULPATE	NO3/NO2-N CYANIDE	CYANIDE		SR2 - Upstream of possible influence from dumps. WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, 2B, and 2C. BACKGROUND - From the Tiger Mine (23-059-SS-1).	e riger Mine (23-05	nps. TC, 2A, 2B, and 2 19-SS-1).	Ç;	GWI - Adit discharge. SWI - Same as sample SBI. SWZ - Same as sample SB2.	ischarge. 28 sample SB1. 8 sample SB2.		
23-056-GW-1 23-056-SW-1 23-056-SW-2	495 307 200	v v v	217 178 129	0.11 0.11 0.16	 5.0 217 0.11 NR 5.0 129 0.16 NR 									

Mine/Site Name: Moulton Legal Description: T 15N R 9E Mining District: Hughesville	County: Judith Basin Section(s): SW 1/4, NW 1/4, Sec. 5 Mine Type: Hardrock/Ag, Pb, Zn, Au
Latitude: N 47° 05' 27"	Primary Drainage: Dry Fork Belt Creek
Longitude: W 110° 36' 58"	USGS Code: 10030105
Land Status: Private/Public	Secondary Drainage: Daisy Creek
Quad: Mixes Baldy	Date Investigated: June 3, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>23-058</u>
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 975 cubic yards. The following elements were elevated at least three times background:

Arsenic: 57.2J mg/kg Barium: 794J mg/kg Mercury: 0.261 mgj/kg

Barium: 794J mg/kg

Manganese: 8,360 mg/kg Nickel: 52.7 mg/kg

Cadmium: 5 mg/kg Copper: 618J mg/kg

Lead: 22,400 mg/kg

Iron: 65,300 mg/kg

Zinc: 1,540 mg/kg

- One adit discharge was associated with this site, which flowed across the dump into
 intermittent Daisy Creek. The adit discharge exceeded the MCL for cadmium. Acute
 aquatic life criteria were exceeded for cadmium, copper, lead, and zinc. Chronic aquatic
 life criteria were exceeded for arsenic, cadmium, copper, iron, mercury, copper, lead,
 and zinc. The adit discharge pH measurement was 4.11 and specific conductance was
 1,220 umhos/cm.
- No observed releases to surface water were documented for this site; although, waste rock was observed in the stream channel and vegetation was lacking along the stream bank for more than 50 feet downstream from the adit confluence. The downstream sample in Daisy Creek exceeded the MCL for cadmium; however, the upstream sample in Daisy Creek also exceeded the MCL for cadmium, indicating the presence of an upgradient contaminant source (Tiger Mine). Several acute and chronic aquatic life criteria were exceeded in both the upstream and downstream samples in Daisy Creek.

Moulton PA# 23-058 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/03/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	ບັ §	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mo/Ke)	Pb	Sb (19)	5	CYANIDE
23-058-SE-1 23-058-SE-2 23-058-WR-1	89 J 47.1 J 57.2 J	617 J 871 J 794 J	5.8 2.6 4.7	5.29 1.45 U 5.63	18 J 4.69 J 8.79 J	299 J 241 J 618 J	108000 52300 65300	0.146 0.302 0.261	2370 674 8360	21.5 8.7 52.7	8670 6620 22400	8.19 J 4.68 J 8.55 J	(mg/kg) ====================================	(mg/kg)
BACKGROUND	5.1	159 J	0.6 U	3.83	8.09 J	9.81	13300	0.028	548 U · Not Defected J.	548 7.93 61.4 3.98 UJ 130	61.4	3.98 UJ	£ 65	
	Acid/Base Accounting	Accounting										uncy of Precision, N	R - Not Requested	
TOTAL FIELD SULFUR D %	() () ()	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. #1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACTO BASE POTENT.					
23-058-WR1		90.3	117	117 26.8 0.3	0.37	1.48	1.04	46.2	70.8					

	Metals in Water Resutts in ug/L	Vater ig/L			>	VATER MAT	WATER MATRIX ANALYSES							. •
FIELD	As	æ		రి	************************************	ਠੋ	Ħ	9H	M	ž	ត៍	Ę	Ħ,	HARDINESS CALC.
23-058-SW-1 23-058-SW-2 23-058-SW-3	0.98 U 2.42 3.56	33.8 30.3 10.8	20 22.3 34.7	5.99 U 5.99 U 11.5	2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	186 J 377 917	9450 15100 41900	0.038 U 0.079 J 0.068 J	2530 5360 12400	36.3 48.1 92.8	667 958 1660	21.9 18.3 U 18.3 U	2n (mg CaCO3A), 4950 JX 160 5990 218 7980 327	Zn (mg CaCO3/L) 10 JX 160 10 JX 160 10 327
	Wet Chemistry					Į				Outside to Administration (Augusty, A Outside for Accuracy of Precision, NR Not Requested	A - Outlier for Accus	ncy or Precision; NR	Not Requested	-
FELD 1D	TOTAL DISSOLVED SOLIDS	CHLORIDE	i	NO3/NO2-N CYANIDE	CYANIDE	SEE1 SEE2 WR1 BACI	SBI - Upgradient Daisy Creek. SB2 - Downgradient Daisy Creek. WRI - Composite of subsamples WRIA and 1B. BACKGROUND - From the Tiger Mine (23-059-SS.1).	rock. Creck. unples WR1A and 1	B. (1-88-6)	LEGEND	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Adit discharge.	s sample SE1. s sample SE2. scharge.		
23-058-SW-1 23-058-SW-2 23-058-SW-3	265 365 714	^ ^ 5.0 5.0 5.0	173 244 470	0.28 0.27 0.3	A A A				*					

County: Judith Basin Mine/Site Name: Tiger Section(s): SW 1/4, NW 1/4, Sec. 5 Legal Description: T 15N R 9E Mine Type: Hardrock/Pb, Aq, Zn Mining District: Hughesville Primary Drainage: Dry Fork Belt Creek Latitude: N 47° 05' 29" USGS Code: 10030105 Longitude: W 110° 36' 50" Secondary Drainage: Daisy Creek Land Status: Private/Public__ Date Investigated: June 3, 1993 Quad: Mixes Baldy P.A. # 23-059 Inspectors: Tuesday, Belanger, Lasher Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 8,200 cubic yards. The following elements were elevated at least three times background:

Arsenic: 41.6J to 61.7J mg/kg Cadmium: 5 to 13 mg/kg Copper: 221J to 347J mg/kg

Iron: 183,000 mg/kg Antimony: 15.3J mg/kg Mercury: 0.177 mg/kg Manganese: 5,060 mg/kg

Nickel: 32.7 mg/kg

Lead: 15,900 to 16,600 mg/kg Zinc: 1,770 to 5,460 mg/kg

- Two adit discharges were associated with this site. Adit #1 had major flow (0.025 cfs); adit #4 had a slight discharge (not sampled) which seeped into the waste rock dump. The discharge from adit #1 exceeded the MCL for cadmium, as well as acute aquatic life criteria for cadmium, copper, lead, and zinc. The discharge from adit #1 also exceeded chronic aquatic life criteria for iron, cadmium, copper, lead, and zinc. The adit #1 discharge pH measurement was 5.9.
- The adit #1 discharge makes up the majority of the flow in intermittent Daisy Creek. Observed releases were documented for arsenic, cadmium, copper, iron, manganese, nickel, lead, and zinc in sediments and water. The MCL for cadmium was exceeded in the downstream Daisy Creek sample, which was directly attributed to the site. Additionally, acute aquatic life criteria were exceeded for copper, lead, and zinc, and chronic aquatic life criteria were exceeded for iron, copper, and zinc, which can all be directly attributed to the site.
- The on-site shaft was open and was potentially hazardous.

Tiger PA# 23-059 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/03/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u> </u>			SOLID MAT	SOLID MATRIX ANALYSES							
FELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
23-059-SE-1 23-059-SE-3 23-059-WR-1 23-059-WR-2	7.17 J 58.3 J 61.7 J 41.6 J	142 J 381 J 86.5 J 403 J	0.6 U 4.5 4.6 12.5	2.75 4.57 2.23 3.84	4.63 J 10.8 J 5.36 J 5.57 J	21.9 J 325 J 347 J 221 J	11500 71200 183000 32000	0.09 0.09 0.051 0.177	542 3850 556 560	7.09 29.8 6.46 32.7	165 8590 16600 15900	#3		R N N N N N N N N N N N N N N N N N N N
BACKGROUND	5.1 J	159 J	0.6 U	3.83	8.09 J	9.81	13300	0.028	548 U-Not Detected, J.	548 7.93 61.4 3.98 UJ 130 U Not Detected J Batimated Quantity, X Outlier for Accuracy or Precision; NR Not Requested	61.4 X - Outlier for Accus	3.98 UJ	130 R - Not Requested	Z Z
	Acid/Base Accounting	ccounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000k	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASIE V1000t	SULFUR ACID BASE POTENT. t/1000t					
23-059-WR1 23-059-WR2	27.6	862 62.8		-862 -42	4.32 1.28	2.87 0.16	20.4 0.57	89.7 5						

	Metals in Water Results in und	Nater				VATER MATR	WATER MATRIX ANALYSES							
FIELD	As	B		రి	ర	ರ	F	Ħ	M	Ż	្ន	. ಕ	₩ Ŭ	HARDNESS CALC.
23-059-SW-1 23-059-SW-2 23-059-SW-3	0.98 U 2.33 1.64	47.7 31.4 38	2.55 U 14.1 14	5.99 U 5.99 U 5.99 U	5 U 7.53 J 5 U	2.7 J 353 J 137 J	33.3 14300 5630	0.038 U 0.038 U 0.038 U	4.4 2160 1320 U·Nat Defeated J·Es	9. X. X. J	4.33 657 343	21.8 18.3 U 18.3 U	7.8 JX 57.3 3610 JX 144 3460 JX 136	8 JX 57.3 0 JX 144 0 JX 136
	Wet Chemistry	•							į					
	ALL SINGS	_				į	į			LEGEND				
FIELD LD	TOTAL DISSOLVED SOLIDS	TOTAL DISSOLVED SOLIDS CHLORIDE	8 0 1	NO3/NO2-N CYANIDE	CYANIDE	SES - 1 SE3 - 1 WR1 -	M. L. Upatream. SE3 - Downstream. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of subsamples WR2A, 2B, and 2C.	mples WR1A, 1B, 1 mples WR2A, 2B, e	and 1C. and 2C.		SW1 - Same as sample SE1. SW2 - Adit discharge. SW3 - Same as sample SE3.	s sample SE1. charge. : sample SE3.		·
23-059-SW-1 23-059-SW-2 23-059-SW-3	80 245 232	A A A 55.0	ľ	11 0.09 NR 155 0.66 NR 126 0.27 NR	X X X	BACK	BACKGROUND - South of site ecross Daisy Creek near clear cut From Tiger Mine (23-059-SS-1).	aite across Daisy C (23-059-88-1).	Teek near clear o	4				

Mine/Site Name: Vortex	County: Judith Basin
Legal Description: T 13N R 11E	Section(s): SW 1/4, SW 1/4, Sec. 21
Mining District: Yogo	Mine Type: Hardrock/Yogo sapphires
Latitude: N 46° 52' 15"	Primary Drainage: Judith River
Longitude: W 110° 20' 42"	USGS Code: 10040103
Land Status: Public	Secondary Drainage: Yogo Creek
Quad: Indian Hill	Date Investigated: September 10, 1993
Inspectors: Bullock, S. Babits	P.A. # <u>23-027</u>
Organization: Pioneer Technical Services, Inc.	1.

- The volume of tailings currently associated with this site were estimated to be approximately 450 cubic yards. The volume may increase due to active mining and milling at this site. The tailings impoundment was in very good condition. Arsenic (44.5 mg/kg) was the only element that exceeded three times the background sample concentration.
- There was currently no waste rock associated with this site. All of the material removed from the shaft was processed through the mill.
- There were no adit/shaft discharges, springs or seeps associated with this site.
- Yogo Creek flowed through this site. The active shaft was on the north side of the creek and the mill and tailings impoundment were on the south side of the creek. The tailings impoundment was constructed within the floodplain of the creek. No observed releases attributable to this site were documented from this investigation. No MCLs or MCLGs were exceeded. In addition, no aquatic life criteria were exceeded that could be attributed to this site.
- Surface water and sediment sample data collected indicated minor impacts to Yogo Creek attributable to the Ronco Mine located directly upstream from this site.

Vortex PA# 23-027 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER-BULLOCK INVESTIGATION DATE: 9/10/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u></u>			SOLID MA	SOLID MATRIX ANALYSES	ES						
FIELD D	As (mg/Kg)	As Be Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/K.e)	Sb	Zn	CYANIDE
23-027-SE-1 23-027-SE-2 23-027-SE-3 23-027-TP-1	22.2 15.2 14 44.5	335 468 385 0.166 U	1.0 U 1.3 U 0.7 U U 7.0	3.38 19. 9.86 45. 8.21 3	19.1 45.2 37 13.2	4.82 23.9 19.5 0.351 U	8770 17000 15000 5540	0.037 U 0.045 U 0.052 J 0.039 J	332 332 322 137	24 44.4 36.9	7.3 U 21.9 14.7	#3333	41.1 90.9 61.9	(mg/kg)
BACKGROUND	14.1 155 Acid/Base Accounting	155 Accounting	J.1 U	3.29	14.5	6.4	12200	0.037 J	330 U-Not Detector, J.	11.6 Estimated Quantity, X	330 11.6 9.65 7.34 UJ 44.6 U-Not Detected J- Estimated Quantity, X-Outlier for Accuracy or Prevision, NR-Not Requested	7.34 UJ or Precision, NR - No	1.31 U 44.6 or Requested	χ χ α α
FIELD	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL. SULFUR ACID BASE POTENT. % 11000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT					
	<0.01	0	302	906	905 <0.01	<0.01	0.12	0	906					
ME	MECHANICAL ANALYSIS	ANALYSIS												
a	%CLAY	% CLAY % SAND % SILT	ND % SELT	LT %CC	% COARSE MATERIAL (>2mm)	IAL (>2mm)								
		88 88 88	27 27 33		တ္သ ဝ	it of of of of of of of of of of of of of	ii							

HELD	Metals in Water		Results in ug/L			WATER	WATER MATRIX ANALYSES	ES						
Ð	A	Ba	ප හ	රී	ರ	S.		H	Mn	Z	Pb	£	7	CALC.
23-027-SW-1 23-027-SW-2 23-027-SW-3	0.96 JX 1.38 JX 0.96 U	91.8 98.4 110	2.57 U 2.57 U 2.57 U	U 7.00	6.97 6.83 U	1.55 U 1.55 U 2.47 -	5 5 5 8	0.12 0.12 U	4.08 UJ	12.7 U 12.7 U 12.7 U	3.23 1.47	#33	8.77 7.57 U	177
	Wet Chemistry		Results in mg/l) ;	3		7	0.12.0	4.08	12.7 U	0.72	30.7 U	8.17	203
FEELD LD.	TOTAL DISSOLVED SOLIDS	TOTAL SUSPENDED SOLIDS		CHLORIDB SULFATE	NO3/NO2-N CYANIDE	CYANIDE	ISS	SE1 - Downstream of tailings impoundment, approx. 100: SE2 - Between exposed and reclaimed pond, owned by Ronco. Poursease of the a	wnstream of tailings impoundm tween exposed and reclaimed p	indment, approx.	LEGEND . 100. by	SW1 - Same as sample SE1.	ample SE1.	
23-027-SW-1 23-027-SW-2 23-027-SW-3	267 247 265	^ ^ ^ 4 4 4	267 < 4 < 5.0 12 < 0.05 247 < 4 < 5.0 14 < 0.05 265 < 4 < 5.0 14 < 0.05	12 44	× 0.05 × 0.05 × 0.05	X X X	^ ^ ^ ^ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SR3 - At Ronco intake pond above Ronce tailings, downstream of placer tailings. TP1 - Composite of subsamples TP1A, 1B, and 1C. BACKGROUND - From the Vortex Mine (23-027-SS-1).	Ronco intake pond above 1 of placer tailings. mposite of subsamples TP1 OUND - From the Vortex 1	Ronca tailings, d A, 1B, and 1C Mine (23-027-SS	ownstream	5W3 - Same as sample SE3.	ample SE3.	

Mine/Site Name: <u>NE NE S31</u> Legal Description: T <u>14N</u> R <u>10E</u> Mining District: <u>Yogo</u>	County: Judith Basin Section(s): NE 1/4, NE 1/4, Sec. 31 Mine Type: millsite/Unknown
Latitude: N 46° 56' 07" Longitude: W 110° 29' 42"	Primary Drainage: Yogo Creek USGS Code: 10040103
Land Status: Public Quad: Bandbox Mountain	Secondary Drainage: Elk Creek Date Investigated: September 10, 1993
Inspectors: Bullock, S. Babits Organization: Pioneer Technical Services, Inc.	P.A. # <u>23-079</u>

The volume of tailings associated with this site was estimated to be approximately 650 cubic yards. The following elements were elevated at least three times background:

Cobalt: 118 to 119 mg/kg

Iron: 184,000 to 196,000 mg/kg

Manganese: 1050J to 1070 mg/kg

Lead: 32.1 mg/kg

Copper: 9780 to 11,000 mg/kg

Mercury: 0.178 to 0.203J mg/kg

Nickel: 91.8 to 97.5 mg/kg Zinc: 268 to 279 mg/kg

The tailings impoundment was located in an intermittent drainage and was subject to washouts or erosion during low probability flood/runoff events.

- No waste rock was present on this site. Several small mines were present in the vicinity of the mill and were assumed to have been the source for the ore.
- The surface water samples collected in Elk Creek did not document an observed release of any element to Elk Creek and indicate that there were no significant contaminant sources upstream of the mill in the intermittent tributary. There were no MCL/MCLG exceedances or aquatic life criteria exceedances directly attributable to this site. Sediment sampling in Elk Creek did document observed releases of cobalt, iron, mercury, manganese, nickel, and zinc which were directly attributable to this site. These documented releases indicated that tailings were carried to Elk Creek during spring runoff or storm events.

NE NE S31 PA# 23.079 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER-BULLOCK INVESTIGATION DATE: 9/10/93

	T - T- A-A-A-A	į			•	SOLID M	SOLID MATRIX ANALYSES	ies						
	metals in soils Results per dry	metals in soils Results per dry weight basis												
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Ke)	Pb (me/Ke)	Sb	Zn	CYANIDE
23-079-SE-1 23-079-SE-2 23-079-TP-1 23-079-TP-2	34 6.74 9.95 10.6	193 80.7 113 107	3.3 U 1.1 U 1.2 U 1.1 U	54.2 12.3 119 118	86 36 30.7 26.8	2930 371 9780 11000	168000 25300 196000 184000	0.189 J 0.04 U 0.203 J 0.178	650 209 1070 1050 J	79.6 79.6 29.8 97.5	36.1 15.4 32.1	22.5 UJ 7.5 UJ 8 UJ		NR NR
BACKGROUND	14.1	155	1.1 U	3.29	4 3.	4.9	12200	0.037 J	330 U - Not Defected, J - E	330 11.6 9.65 7.34 UJ 44.6 U. Net Detected J. Beinned Quantity, X. Outlier for Accuracy or Precision; NR Not Requested	9.65 - Outlier for Accurac	7.34 UJ 9 or Precision; NR -)	44.6	X X
	Acid/Base Accounting	ccounting												
FIELD O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000r	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
23-079-TP-1 23-079-TP-10UP 23-079-TP-2	0.58 0.59 0.65	18.1 18.4 20.3	68.8 70.4 69.2	50.7 52 48.8	60.01 60.01 60.01	1.19 1.16 1.17	0.67 0.69 0.9	37.2 36.2 36.6	31.6 34.2 32.6					

	Metals in Water Results in uo/L	Vater ⊌α/L				WATER MA	WATER MATRIX ANALYSES	v						
FIELD	As.	.	ਣ	కి	ರ	đ	i.	ř	¥	;	i	e Jack		HARDNESS CALC.
23-079-SW-1	0.96 U	36.8	36.8 2.57 U 9.7 U 6.8		######################################	287 i			Ħ		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Se ::::::::::::::::::::::::::::::::::::	Zn =========	(mg CaCO3/L)
23-079-SW-2 23-079-SW-3	1.33 0.96 U	38.1	2.57 U 2.57 U	0 7.6 0 7.6	6.83 U U U	2.6 J	71.8 11.8 U	0.21.0 0.21.0 0.21.0	2. 4. 4. 8. 8. 8. 8. 8. 9. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	12.7 U 12.7 U	0.76 0.72 U	30.7 U 30.7 U	13.1	149
								,	U-Not Detected, J. Estimated Quantity, N. Outlier for Accuracy or Precision, NR. Not Repuested	12.7 U timated Quantity, X - (U. 7.2 U Outlier for Accuracy o	3U./U ×Precision, NR·N	11.2 ot Requested	116
	Wet Chemistry													
	Results in mg/l					SE1 - 1	SE1 - Downstream Elk Creek.	ند		LEGEND	o una			
FIRED	TOTAL					SEZ.	SE2 - Upstream Elk Creek. TP1 - Composite of subsamples TP1A, 1B, and 1C.	oles TPIA, IB, and	110.		SW2 - Same as sample SEI. SW2 - Same as sample SE2. SW3 - Upstream intermittent inhutary	sæmple SE2. sæmple SE2. n intermittent tr	chutary	
ΙD	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDI	CYANIDE		1P2 - Composite of subsamples TP2A, 2B, and 2C. BACKGROUND - From the Vortex Mine (23-027-SS-1).	ples TP2A, 2B, smr Vortex Mine (23-0	d 2C. 127-SS-1).		•		Ì	
23-079-SW-1	189 < 5.0 10	< 5.0	16	#1 11 81	NA NA		TPIDUP. Duplicate of the 23-079-TP-1 sample.	3-079-TP-1 sampl	_ o ;					
23-079-SW-2	169	v v		× 0.05	¥.									
C-46-6-10-67	<u>\$</u>	0.00	2	0.06	X X	-								
						_								

Mine/Site Name: Davis Gulch II	County: Lewis and Clark
Legal Description: T 9N R 4W	Section(s): NW 1/4, SE 1/4, Sec. 1
Mining District: Helena	Mine Type: Hardrock/Unknown
Latitude: N 46° 34' 16"	Primary Drainage: Tenmile
Longitude: W 112° 02' 54"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Dry Gulch (Davis
Quad: Helena	Gulch)
Inspectors: Bullock, Pierson	Date Investigated: August 19, 1993
Organization: Pioneer Technical Services,	P.A. # _25-040
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was approximately 20 cubic yards. The following elements were elevated at least three times background:

Mercury: 0.74J mg/kg Nickel: 63 mg/kg

- There were no adit discharges, springs, or seeps associated with this site.
- The site was within 100 feet of Dry Gulch, an intermittent drainage, but was isolated from this drainage by cultural features including a large berm. Due to the isolation of the source from the drainage, no sediment samples were collected.

Davis Guich II PA# 25-040 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/19/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD As ID (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mer/Ke)	Zn (me/Ke)	CYANDE
25-040-WR-1	18.3 J	50.5 J	8.0	22.5	27.6	17.5 J	17.5 J 13500 J	0.74 J	604 J	83		10.8 J 5.35 U	30.1	an an
BACKGROUND	87 J	84.6	2.5	11.9	7.4 J	21 J	16200	0.053	1130	ت 8	. 4	e U.J		Ž
	Acid/Base Accounting	Accounting							U - Not Detected, J -	Estimated Quantity, ?	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	icy or Precision, N	R - Not Requested	
		S. IIII										LEGEND		
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WRI - Comp BACKGROUN	WRI - Composite of subsamples WRI A and 1B. BACKGROUND - From the Red Water Mine (25-007-SS-10)	es WRIA and a Water Mine	1B. (25-007-SS-10)	
25-040-WR-1	<0.01 0 365 365 <0.01		365	365	<0.01	<0.01	<0.01 <0.01	**************************************	365					

 The volume of tailings associated with this site was estimated to be approximately 378,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 485 to 4,800 mg/kg

Zinc: 302 mg/kg

Iron: 182,000 mg/kg

Lead: 121J to 1,180J mg/kg

- Cyanide was present in TP-3 at 758 mg/kg.
- No flowing streams were observed on-site; consequently, no surface water or sediment samples were collected. However, a sample was collected (GW-1) from a spring located near the site which was used as a drinking water source. No MCL/MCLG exceedances were observed in the spring.
- The dam faces on TP-1 and TP-2 were steep and unstable, TP-3 was very steep and unstable; both were actively eroding. An adit located 300 feet west of TP-1 was currently open and potentially hazardous.

Spring Hill Tailings PA# 25-067 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/30/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>99</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FELD O	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Rg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANIDE
25-067-TP-1A 25-067-TP-1B 25-067-TP-2A 25-067-TP-3B 25-067-TP-3	711 485 707 887 4800	54.2 XX 58 XX 55.9 XX 89.7 XX 44 XX	333 255 225 225 245 245 245 245 245 245 245	6.88 4.88 5.81 5.79	13.9 15.8 15.4 12.8	36.3 24.5 59.6 31.7 334	38400 36700 46400 41100 182000	0.109 JX 0.064 JX 0.118 JX 0.192 JX 0.3 JX	328 337 323 410 152	10.4 J 7.11 J 11.9 J 7.74 J 10 J	97.4 J 80.2 J 124 J 121 J	#33333	196 182 164 195	3.1 0.426 7.15 2.63
BACKGROUND	27.1 165 Acid/Base Accounting	165 JX Accounting	1.3 J	13.6	17.9	29.7	23300	XL 170.0	672 U · Not Detector, J ·	672 17.9 J 36.3 J 6.98 UJ 76.4 U-Not Detected J - Estimated Quantity, X - Outlier for Accumay or Precision: NR - Not Requested	36.3 J	6.98 UJ	76.4 Not Requested	S Z
HELD U	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT: V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
25-067-TP-1A 25-067-TP-1B 25-067-TP-2A 25-067-TP-2B 25-067-TP-3DUP 25-067-TP-3	1.39 1.45 2.02 1.48 18 17.9	43.4 45.3 63.1 46.2 561 560	126 173 111 184 -36 -35	82.8 127 48 138 -597 -595	0.88 0.65 1.24 0.38 <0.01	0.28 0.24 0.35 0.49 9.71	0.23 0.56 0.43 0.61 13.9	8.75 7.5 10.9 15.3 303	117 165 100 168 339 341					

	Metals in Water Results in ug/L	Vater ug/L		٠		WATER M	WATER MATRIX ANALYSES						-	
FIELD ID	As		중	රී	ර්		e	뀱	Mn	Z	£	6	, E	HARDNESS CALC.
25-067-GW-1 25-067-GW-2 25-067-GW-3	14.1 J 23 J 4.42 J		2.5 2.57 U 9.7 U 10.6 J 2.01 U 2.57 U 9.7 U 8.83 J 2.01 U 2.57 U 9.7 U 6.83 U	9.7 U 9.7 U 9.7 U	10.6 J 8.83 J 6.83 U	5.1 J 17.6 J 6.8 J	17.2 JX 15.1 JX 11.8 UX	0.12 U 0.15 0.12 U	4.08 U 12.7 U 4.08 U 12.7 U 4.08 U 12.7 U	12.7 U 12.7 U 12.7 U	2.89 J 30.7 U 4.9 J 30.7 U 1.7 J 30.7 U	30.7 U 30.7 U 30.7 U	7.57 U 10.4	57 U 205 1.4 212
	Wet Chemistry								U - Not Detected, J - Bairmaled Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X	Outlier for Accuracy	or Precision; NR - No	of Requested	?
	Kesults in mg/l						TP1A - Composite of subsamples TP1A-1, 1A-B, 1B-A, 1C-A,	mples TP1A-1, 1A	-B, 1B-A, 1C-A,	LEGEND	GW1 - Spring w	GW1 - Spring which supplies residents.	idents.	
FIELD I.D.	DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		and IC-E. TP1B - Composite of subsamples TP1AA-C, 1A-D, 1A-E, 1B-C, 1B-B, and IC-C.	mples TP1AA-C, 1	A-D, 1A-E, 1B-C,		GW2 - Duplicate GW3 - QA Blank.	GW2 - Duplicate of sample GW1. GW3 - QA Blank.		
25-067-GW-1 25-067-GW-2 25-067-GW-3	265 NR NR	* 5 52 0.31 < 0.0 NR NR NR < 0.0 NR NR	52 NR NR	0.31 NR NR	0.0050.0050.005		TP2A - Composite of subsamples TP2A-A, 2A-B, 2A-C, 2B-A, and 2B-B, TP3 - Composite of subsample TP3A, 3B, and 3C. BACKGROUND - From the Franktin Mine (25-339-SS-1). TP3DUP - Duplicate of sample 25-067-TP-3.	mples TP2A-A, 2A ple TP3A, 3B, and Franklin Mine (25 ple 25-067-TP-3.	-B, 2A-C, 2B-A, at 3C. :339-8S-1).	nd 2B-B.				

Mine/Site Name: Lady Luck	County: Lewis and Clark
Legal Description: T 9N R 4W	Section(s): NE 1/4, Sec. 10; NW 1/4, Sec. 11
Mining District: Helena	Mine Type: Hardrock/Au
Latitude: N 46° 33' 06"	Primary Drainage: Tenmile Creek
Longitude: W 112° 04' 55"	USGS Code: 10030101
Land Status: Public	Secondary Drainage: Orofino Creek
Quad: Helena	Date Investigated: August 30, 1993
Inspectors: Tuesday, Flammang/Pierson	P.A. # <u>25-073</u>
Organization: Pioneer Technical Services.	•
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 10,145 cubic yards. The following element were elevated at least three times background:

Mercury: 0.456JX mg/kg

Mercury was the only element which was elevated above background.

- No water was observed on-site; consequently, no surface water or sediment samples were collected. Also, no groundwater samples were collected.
- Adit #5 was open and was potentially hazardous.

Lady Luck PA# 25-073 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/30/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Š			SOLID MATI	SOLID MATRIX ANALYSES							
FIELD As Bs Cd Co Cr D (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sh (mer/Ke)	Zn Zn (mo/Ke)	CYANIDE
25-073-WR-1	18.8 J	0.244 U	1 U	1 U 1.11 U	6.72 J	13.3 JX	4590	0.456 JX 200	200	6.24 J	7.28 U	# ⊃		NR.
BACKGROUND	27.1	165 JX	1.3 J	13.6	17.9	29.7	23300	XL 170.0	672	17.9 J	36.3 J	36.3 J 6.98 UJ	76.4	Ž
	Acid/Base Accounting	Accounting							U - Not Detected, J -	· Estimated Quantity, ?	\mathbf{U} . Not Detected, J . Batimated Quantity, \mathbf{X} . Outlier for Accuracy or Precision, NR - Not Requested	Ly or Precision; NR	- Not Requested	
	TOTAL	TOTAL	NEUTRAL.	SULFUR ACID BASE	SULFATE	PYRITIC	ORGANIC	PYRITIC SULFUR	SULFUR ACID BASE	WRI - Compo	LEGEND WR1 - Composite of subsamples WR3 and 4. BACKGROUND - From the Franklin Mine (25-339-SS-1).	LEGEND as WR3 and 4. mkdin Mine (25-	339-SS-I).	
D %	30LF UK % ===================================	ACID BANE POTENT. POTENT. SULFUR V1000t v1000t v1000t %	POTENT. 1/1000t	POTENT. v1000t	SULFUR		SULFUR	ACID BASE						
25-073-WR-1	<0.01	0	852	852	40.01	<0.01	0.01		852					

Mine/Site Name: Mother Lode Legal Description: T 10N R 3W Mining District: Helena Latitude: N 46° 37′ 00" Longitude: W 111° 55′ 15" Land Status: Private/Public Quad: East Helena Inspectors: Tuesday Flammang/Pierson	County: Lewis and Clark Section(s): Sec. 23 Mine Type: None Primary Drainage: Prickly Pear Creek USGS Code: 10030101 Secondary Drainage: Prickley Pear Creek Date: August 31, 1993 P.A. # 25-363
Inspectors: Tuesday, Flammang/Pierson Organization: Pioneer Technical Services, Inc./Thomas. Dean and Hoskins, Inc.	

This site was a silver film reprocessing facility and not a mining site. The site was
remediated in 1984 by EPA. No samples were collected during the investigation; the site
should be removed from the inventory.

Mine/Site Name: Seven-Up Pete Legal Description: T 14N R 7W Mining District: Lincoln Latitude: N 46° 57' 30" Longitude: W 112° 30' 00" Land Status: Private Quad: Swede Gulch Inspectors: M. Babits, S. Babits/Pierson Organization: Pioneer Technical Services,	County: Lewis and Clark Section(s): NE 1/4, Sec. 29 Mine Type: Hardrock/Unknown Primary Drainage: Blackfoot River USGS Code: 17010203 Secondary Drainage: Seven-Up Pete Creek Date Investigated: September 7, 1993 P.A. # 25-020
Organization: <u>Pioneer Technical Services.</u> Inc./Thomas, <u>Dean and Hoskins</u> , Inc.	

- An extremely small volume of tailings was identified at this site; no samples were collected.
- The volume of waste rock associated with this site was estimated to be approximately 20,800 cubic yards. The following elements were elevated at least three times background:

Arsenic: 71.1J to 309J mg/kg Mercury: 0.49J to 0.826J mg/kg

- Three discharging adits were identified at the site, one of which directly entered surface water. No MCLs were exceeded in a sample of this discharge; however, the chronic aquatic life criteria for cadmium and mercury were exceeded. The discharge pH measurement was 8.36.
- An unnamed tributary to Seven Up Creek flowed through the center of the site (adjacent to several waste rock piles). Surface water and sediment samples were collected upstream and downstream from the site. No MCLs were exceeded; however, chronic aquatic life criteria were exceeded for mercury both upstream and downstream from the site.
- An observed release to the unnamed tributary (sediment) was documented for arsenic.
- One potentially hazardous open adit and numerous hazardous structures were identified at the site.

Seven Up Pete PA# 25-020 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/07/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	- S			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg) ====================================	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	. Sb (mg/Kg)	Zn (mer/Ke)	CYANIDE (mo/Ke)
25-020-SE-1 25-020-SE-2 25-020-WR-1 25-020-WR-2	26.3 J 185 J 309 J 71.1 J	220 J 220 J 180 J 228 J	1.2 U 0.6 0.6 U 1.0 U	6.5 15.7 3.73 6.73		23.7 J 52.3 J 36.4 J 21.6 J	14000 25000 25000 16400	0.238 J 0.085 J 0.49 J 0.829 J	1310 J 462 J 93.3 J 292 J	34.2 J 61.8 J 10.9 J 18.2 J	22.2 J 10.1 J 27.3 J 35.1 J	14.3 U 5.79 U 6.99 U 5.9 U	132 J 61.6 J 51 J 557 J	K K K K
BACKGROUND	19.5 J 168 . Acid/Base Accounting	168 J	1.0 U	9.67 J	36.5 J	228 JX	12800	0.033 UX	468 30.4 J 34.4 6.95 UJ 66.9 J U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	30.4 J Estimated Quantity, 3	34.4 K - Oulier for Accum	6.95 UJ kry or Precision; N	66.9 J	K.
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASIE POTENT. V1000t	EL es	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t		•			
25-020-WR-1 25-020-WR-2	0.43	13.4 5.31	1.3 0.54	-12 4.8	0.23 0.09	0.05	0.15	1.56 0.62	-0.26 -0.09					

·														
	Metals in Water Results in ug/L	Vater ug/L				WATER MATI	WATER MATRIX ANALYSES							
FIELD D	As	Ba	ਣ	පී	ර්	ö	F.	Hg	Mn	Z	£	ŧ	H ,	HARDNESS CALC.
25-020-SW-1 25-020-SW-2 25-020-SW-5	3.97 5.41 9.14	202 128 29.1	2.57 U 2.93 J 4.6 J	9.7 U 6.83 9.7 U 6.83 9.7 U 6.83	0.83 0.83 0.83 0.83 0.83	11 J 11.7 J 6.17 J	1300 395 256	0.19 JX 0.12 UJX 0.15 JX	130 43.1 87.5 Not Detector J.	130 17.1 JX 3.4 30.7 U 16.6 J 43.1 25.3 JX 3.8 30.7 U 21.4 J 87.5 24.7 JX 2.17 30.7 U 36.4 J U-Nat Detected J - Estimated Quantity; X - Outlier for Accuracy or Precision, NR - Nas Requested	3.4 3.8 2.17 • Outlie for Accura	30.7 U 30.7 U 30.7 U 30.7 U	21. (mg (accost)) 16.6 J 100 21.4 J 130 36.4 J 148	6 J 100 4 J 130 4 J 148
	Wet Chemistry Results in mg/l					- IS	SEI - 200 feet upgradient in unnamed tributery	1 unnamed tributery		LEGEND	our.		-	
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE SULFATE NO3/NO2-N	SULFATE	NO3/NO2-N CYANID	CYANIDE		SE2 - Downgradient at toe of weate rock dump 1 in urmamed tributary. WR1 - Composite of WR1 A and 1B. WR2 - Sample of the WR2A subsample. BACKGROUND - From the Swansea Tailings (25-208-SS-1).	of waste rock dump 1 sand 1B. \ subsample. \ Swarsea Tailings (2:	in urmamed tri		SW1 - Same as sample SEI. SW2 - Same as sample SE2. SW5 - Adit discharge at wast	JW 1 - Same as sample SEI. SW2 - Same as sample SE2. SW5 - Adit discharge at waste rock dump 2.	rock dump 2.	
25-020-SW-1 25-020-SW-2 25-020-SW-5	191 256 276	505050	544	0.22 < 0.05 0.37	R R R									

Mine/Site Name: Blackfoot Tailings Legal Description: T 14N R 9W Mining District: Lincoln Latitude: N 46° 56' 33" Longitude: W 112° 45' 10" Land Status: Public Quad: Moose Creek Inspectors: M. Babits, S. Babits/Pierson Organization: Pioneer Technical Services, Inc./Thomas, Dean and Hoskins, Inc.	County: Lewis and Clark Section(s): E 1/2, NE 1/4, NE1/4, Sec. 29 Mine Type: Tailings Dump (Millsite) Primary Drainage: Blackfoot River USGS Code: 17010203 Secondary Drainage: Lincoln Gulch Date Investigated: September 7 and 8, 1993 P.A. # 25-322
--	--

• The volume of tailings associated with this site was estimated to be approximately 5,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 33.7J to 402J mg/kg Cobalt: 23.6 to 54.3 mg/kg Copper: 57.9 to 13,400 mg/kg

Copper: 57.9 to 13,400 mg/kg

Mercury: 0.104J to 2.52J mg/kg

Lead: 48J to 8,700J mg/kg

Cadmium: 0.9 to 114 mg/kg Chromium: 15.2 to 45.9 mg/kg Iron: 27,900 to 205,000 mg/kg Nickel: 18.4J to 57.9J mg/kg Zinc: 157J to 10,500J mg/kg

- No waste rock was observed at this site during the investigation.
- One upgradient (GW-5) and two downgradient (GW-1 and 6) groundwater samples were
 collected during the investigation. Observed releases to groundwater were documented
 for arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc. MCLs were
 exceeded for copper, chromium, mercury, and nickel in the downgradient sample, which
 were attributable to the site.
- No surface water was observed on site. The nearest surface water, the Blackfoot River, was located approximately 180 feet east of the site. No surface water samples were collected due to likely excessive dilution.
- No hazardous mine openings were identified at the site.

Blackfoot Tailings PA# 25-322
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 08/07/93

							1001101101	E. USTUTAS							
	Metals in soils	Rest	Results per dry weight basis (mg/kg)	basis (mg/kg)		SOLD	SOLID MATRIX ANALYSES	Щ. 8							Γ
PULLD ID	A	A	8	បឺ	ŏ	. ₽	£	Ħ	ş	7	1	,			
25-322-TP1A-A	87.2 J	74.6 J	7.8	RATE ET ET ET ET ET ET ET ET ET ET ET ET E								8 1000	Z.	CYANDE	
25-322-TP1A-B	156 J	69.5	60	7	3 6	3 5	00104	2.14 J	15.2 J	8.35 J	4360 J	607	1 0221		
25-322-TP1A-C	84.6	639	30	7			0.000/2	0.2 J	27.6 J	80.9	1170.1	- 0	96	0.667.0	_
25-322-TP1A-D	112 J	203	114.0	9	2 6	70.	34700	0.141	28	10.3	263	5 2 2	7 7007	0.328 U	
25-322-TP1A-E	14.8.1	- 48			9	4440	27900	0.484	56.4	401	243	3 3	7	0.511	-
25-322-TP1B-A	2	27.6	2 5	3.12	3	100	13000	0.0761 J	59.7	27.2	3 -		046	0.396.0	-
25.322.TP1R.R	- 60%		÷ .	D	1.75	617 J	17600	0.837	162	2 2 2 2	3 6	9 3	1930	0.327 U	
25,322,TD1B.C	7.67	6.70	E. (2.51	3.59	58.9 J	28200	0.08082	22.7	7.73	3 6) to	842 J	0.289 U	
DE 320 TO 40 D	007	2	6.6	5.73	82	273	52100	0.263	3	900	120 7	5.65 C	157 J	0.302 U	
25-522-17-18-0	7.00	722	5.	12.3	19.3	338 1	21400	7 70000	2 2	18.6	119 J	7.16 U	1140 J	0.317 U	
Z2-3Z2-1P1B-E	16.9	93.7 J	17.8	4 .93	15.2	- 208	14600	0.00004	C 6/2	44.4	- 8 4	10.8 U	7380 J	0.43	-
Z5-3Z2-1P1C-A	402 7	51.2 J	21.5	54.3	2 97	243	2000	2 19/00	130	14.5	74.5	7.78 U	1240		
25-322-TP1C-B	338 7	45.7 J	6.5	497	5	7 247	2000	CO 63150 CO	60.1 -	57.9 J	3830 1	2.66 U	7920	2020	_
25-322-TP1C-C	108 J	7	707	8	3 6	200	9186	0.369	- 80 -	9.6	45.9	6.33	758	2000	
25-322-TP1C-D	49.4	236	9		7 8	7 080	82400	0.373 J	282 J	23.5	208		200	0.323 0	
25-322-TP1C-E	142.1	25	7	7.0	7.5	62	21300	0.104	306	40.7	122	2 2	7 600	0.411 0	_
25-322.TP1D.A	6	3 5	† t	8	11.7	41.4	15400	0.04215 J	1.69.1	787	. 67	:	0000	0.371 U	
25.322.TP1D.B	- 47	767	6.7	6.23	17.3	370 J	84000	690	157	400	0.50	> 0	2380 7	0.34	
25.322.1040.0	2.0.5	8 5		23.6	13.3	91.1	0666	0.146	. 74	20.21	7 6		- E8	0.387 U	_
A 322 TO 10-C	2	8	O.6 O.6	6.28	7.2	36.1	8610	- 10	Š	D 6	73.7		5590 J	0.39 U	
A-31715-1	26.5	15	30	2.8	1.6 U	215	13800		5 5	0.40 0.40	19.3		79.2 J	0.319 U	-
8-317-1P1E-B	123	74.3	2.7	5.04	8.71	5	32000	2.02	9 !	2.97 U	2770		522 J	0.31	
25-322-TP1E-C	31.1 J	191	1.1	10.7	459	13400	1800	0.00243	2	6.97	143	7.02 UJ	316 J	0.363	
25-322-TP1E-D	14.1	5	63.9	6.28	10.5	200	25.		E 3	18.5	32.4		207	0.385	
25-322-TP1F-A	- - -	130	7.4	4.2	8	8	38300	78.0	9.5	2.45 6.65	5	6.39 UJ	69 f	0.639	
		1	1			}			Š	2.8	4310		1080	0.652	_
DACAGACON	J 6.01	R	0.5 U	6.96	4.52	14.9	9170	0.03401 U	1100	5.71	ş	11 00		•	_
	Add/Base Accounting	affro									U. Not Detected, J. Estimated	O.SZ OJ 10embr X - Oder te Aco	L L'A	¥	_
		TOTAL		SULPUR					-						
		SULTUR	NEUTRAL.	ACID BASE	SHEPATE			PTRUTT	SULTUR	:				Cathon	_
CIRLO	SULTUR	ACTD BASE	POTENT.	POTENT.	SULTUR		ORUMANIC.	SULTUR	ACED BASE	Mechanical Analy	Mechanical Analysis & % Coarse Material	je j		Exchange	
A	*	#1000F4	V1000R	M1000R	2	*	*	WORK N	MODENT.	1			% Comme	Capacity	
25-322-TPIA-A	6 12	101	7 OK							***************************************	% Seed	# X	Material (>2mm)	Company of the Party of the Par	
25-322-TPIA-B	8	7	80	661.	5	2.61	= ;	113	-121	12	22	34.0			
25-322-TPIA-C	1.15	35.9	4.1.	7	, S	8 8	7 .	96	-12.4	t	61.0	92	,	5	_
25-322-TPIA-D	1.89	95	37.2	90		8 6	7.0	1.87	-13.6	ŧ	9	90	o c	5 6	_
25-322-TPIA-E	1.55	48.4	15.	2 6		20	E 3	2.19	-39.4	40	8	4	•	27.5	
25-322-TPIC-A	26.9	839	27.	940	- 6		* :	9.37	-24.7	e 0	8	92	•		-
25-322-TPIC-B	2.15	67.2	-197	9 9	? °	2.5	= ;	£73	7 82	7	25	9	•	5 8	
25-322-TPIC-C	76.	909	2	9 8	٠,	5 6	E 6	1.25	-51	ĸ	<u>ج</u>	2	•	3 :	
25-322-TPIC-D	2.08	8	36.	2	<u> </u>	9 5	9.59	8.12	-37.2	8	123	,	.	***	_
25-322-TPIC-E	1.83	32.2	-15.8	\$	77:1	2 8	2 6	90.	73	9	35	\$	• •	- 6	-
25-322-TP1A-C-DUP	1.13	35.3	411-	46.7	9 6	3 8	5 6	8	17.4	6	8	8	· c	33	
						8	2	1.07	-13.3				,	3	

	Metals in Water		Results in und			477								
PIELD			- Common III (19)			WATER	WATER MATRIX ANALYSES							
0	A.	20	8	ខ	ð		£	ā	4	2	ź	ī		. CALC.
5-322-GW-1	633	6360	440 .1	453	**************************************	7670 -	i	2017年1月19日中共日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日					Za	(mg CoCOML)
5-322-GW-1(D)	5.72	7.23	29.1	412	6.83 U	282	6840	X 25.0	15300	357 JX	26900	30.7 U		897
5-322-GW-5	X 17 (195	10.8	92.1	79.2	295	217000	0.12.0	955	- F	6.76	30.7 U	8000	416
5-322-GW-5(D) 5-322-GW-6	0.96 0	17.9	2.57 ∪	9.7 C	6.83 U	2.13 J	22.3	0.12 U	57.7	12.7	27.2	30.7 UJX	540	280
5-322-GW-6(D)	4.4	<u>8</u> 8	2.57 U	9.7e	6.83 U	13.1 3.07 J	2300 11.8 U	0.16 1.71	949	12.7 U	. F	30.7 U.X	43.2	152
									# Delected, 3 - Entered Co.	U - Net Detected, 3 - Estimated Quantity, 31 - Outlier for Accuracy at Proximia, IR3 - Net Reserved.	0.89		28.8	200
	Wet Chemistry Results in mg/l					ITIAA - S	TP1AA - S. end of pond, 0'-3; greenings median scaled dry send.	V Define swined dry need	- Sigh	LEGEND	9			
É	TOTAL					TPIAB	TPIAB - 3'-5; brown medium grahed partially seturated send. TPIAC - 5'-6; dark bromothek clay and brown flowing saturated send.	with saturated send. d brown flowing saturated sa	· ·	If I can we note at 1715 bordon, gry and with clay. TPICS-1,5/2; comps send. TPICS-3/4: dark brown hom	, gray send with chay.	TP1ED - 4.2'; dark purple send. TP1FA - 25'East of TP1B borehole, 0-1.2'; gray send.	and orthole; 0-1.2°; gray rend.	
9	SOLIDS	CHLORIDE	SULPATE	N-TOWTON	CYANDE	TPIAD .	PPLAD -6.77 ; dark brown to black form. PPLAE -7^{-4} ; durk purply, medium project cond to envolve automated	t. Ved stand to errorch, entermoned		PICE - 4; dark purple sand		IFIACDUP - Duplicata. GWI - N. and of sit, SWL 2.9 bgs and TD 5.7 bgs. (T-2).	.9º bgs sad TD 5.7º bgs. (1	F3)
25-322-GW-1	766	18.0	***************************************	(中国国际共和国制度) 0.47	TOTAL CHARACTER SERVICE	F TPIBA - 5	IPIBA - 30' N. of TPIA bornhole; 0'-3"; tan send.	- Consenda	•	LILLY N. NE. 1/4 Of 17/11 bordbok; orange and gray chy. TPIDB -1.5-2.5; dark brown hom.	wage and gray clay.	GWID - Serple GW1 for Total Dissolved Metals.	otal Dissolved Metals.	
5-322-GW-5	210	> 20	9		866	2. 881.4T	17:185 - 3'-5', orange stand with clay layers, pertially extended.	en, pertially extended	TPIDC - 1	TP1DC - 2.5; dark purple rand.		GWSD - Sample GWs for Total Discoluted March	Cotal Dissolved Metal.	WSD - Sample (1994 for Total Dischart Model.) SWL 7.32' and TD 35 bgs.
-322-GW-6	236	200	0.6	0.13	988	17.00.7	TPIRO - 7-10" dreft brown law.		T-VIEA - 2	IPIEA - 25 West of TPIB borshole, 2"-1.5; gray sand.	2"-1.5"; gray send.	GW6 - Blum Blackfoot R. &	Bwy 200 E. of ethe SWI	3W6 - Birm Blackfoot R. & Buy 200 E. of site SW13.79' and TD 37 bas Orty. D.
						H-3814T	TP1BE - 10; dark purple sand.		TPIEC -	IPLES - 1.54% Orange sand to clay. IPLEC - 4'4.2% dark brown loan.		GW6D · Sample GW6 for Total Dissolved Metals.	otal Dissolved Metals.	
			Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, where the Owner, which is the Owner, which									DALKUKUUND - Above mine. Prom Backfoot Tulings (25:322-55-1)	ibe. Prom Belcidbot Tallin	ge (25-322-88-1)

County: Lewis and Clark Mine/Site Name: Bald Mountain Section(s): NE 1/4, SW 1/4, Sec. 35 Legal Description: T_12N_R 6W Mine Type: Hardrock/Au, Ag_ Mining District: Marysville Primary Drainage: Silver Creek Latitude: N 46° 44' 55" USGS Code: 10030101 Longitude: W 112° 19' 15" Secondary Drainage: Jennies Fork Land Status: Private_ Date Investigated: August 19, 1993 Quad: Greenhorn Mountain P.A. # <u>25-061</u> Inspectors: Babits, Flammang, Lasher Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 64,950 cubic yards. The following elements were elevated at least three times background:

Mercury: 0.964 mg/kg

Lead: 84.5 mg/kg

Zinc: 256 mg/kg

Manganese: 2,200 mg/kg Antimony: 9.83 mg/kg

- The volume of waste rock associated with this site was estimated to be approximately 23,100 cubic yards; however, metals concentrations were not significantly elevated (<3X) above background concentrations.
- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was observed on or near the site during the investigation. The nearest surface water, Jennies Fork, was located approximately 0.5 miles from the site; consequently, no surface water or sediment samples were collected.
- Four potentially hazardous partially collapsed shafts were identified at the site.

Baid Mountain PA# 25-061 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/19/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MA	SOLID MATRIX ANALYSES	s						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd Co (mg/Kg) (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
25-061-TP-1 25-061-TP-2 25-061-WR-1	14.3 16.5 48.8	50.4 117 64.7	0.9 U.1 1.0 U.1 0.7 U.1	3.62 J 3.68 J 6.81 J	5.94 J 3.73 J 5.51 J	79.1 56.4 36.6	9450 9870 14200	0.523 0.964 0.324	2200 1810 994	4.55 J 4.72 J 7.37 J	142 84.5 41.7	# > >		N N N N
BACKGROUND	25 J	099	0.4 UJ	5.6	10.7	32.6	14700	0.187	662 U - Not Detected, J -	662 14 J 28 3 UJ 75 U - Not Detected 1 - Ensimpted Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	28 X - Outlier for Accus	3 UJ	75 R - Not Requested	S C
	Acid/Base Accounting	\ccounting										LEGEND	-	
FEELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V10001	NEUTRAL. POTENT. V1000R	SULFUR ACID BASIE POTENT. V1000t	SULFUR ACID BASE SULFATE POTENT. SULFUR V1000 %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000	TP1 - Composite o and ZB-A TP2 - Composite WR1 - Composite BACKGROUND -	ite of subsample B-A. ide of subsample site of subsample ite of subsample TO - From the Bi	TPI - Composite of subsamples TPIA, IB, ZA-A, ZA-B, ZA-C, and ZB-A. TP2 - Composite of subsamples TP2B-B and ZB-C. WRI - Composite of subsamples WRIA, IB, ZA, and ZB. BACKGROUND - From the Big Ox Mine (25-116-SS-1).	-A, 2A-B, 2A-C :B-C. A, and 2B. :16-SS-1).	
25-061-TP-1 25-061-TP-2 25-061-TP-2DUP 25-061-WR-1	0.07 0.01 <0.01 0.02	2.19 0.31 0.62	38.7 60.1 60.3 57.9	36.6 59.8 60.3 57.2	0.03 60.01 60.01	0.01 0.01 0.01 0.01	0.03 0.01 0.03	0.31 0.31 0.31	38.4 59.8 60 57.9					

Mine/Site Name: Big Ox Millsite Legal Description: T 12N R 6W Mining District: Marysville Latitude: N 46° 47' 33" Longitude: W 112° 18' 12" Land Status: Private Quad: Canyon Creek Inspectors: Bullock, Lasher/Pierson	County: Lewis and Clark Section(s): NW 1/4, SW 1/4, Sec. 24 Mine Type: Millsite/Au, Ag, Cu, Pb Primary Drainage: Little Prickly Pear Creek USGS Code: 10030101 Secondary Drainage: Deer Creek Date Investigated: June 9, 1993 P.A. # 25-115
Inspectors: Bullock, Lasher/Pierson	P.A. # <u>25-115</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

 There were approximately 1,500 cubic yards of tailings on site. The following elements were elevated at least three times background:

Arsenic: 285J mg/kg Copper: 1,130 mg/kg Manganese: 2,500 mg/kg Antimony: 107J mg/kg Cadmium: 221 mg/kg Mercury: 6.07 mg/kg Lead: 10,900 mg/kg Zinc: 24,000 mg/kg

- There was no waste rock on site. The mine was the Big Ox Mine P.A. #25-116.
- There were no discharging mine openings on site.
- Deer Creek was flowing through the tailings at the time of this investigation. There was
 an observed release of lead in downstream surface water. No MCL/MCLGs were
 exceeded. The chronic aquatic life criteria for lead was exceeded in downstream
 surface water. Stream sediment samples also documented releases of arsenic,
 cadmium, copper, mercury, manganese, lead, antimony, and zinc.
- There were no hazardous openings on site. There were numerous collapsing buildings
 including the mill that were classified as hazardous, but may be of some historical
 significance.

Big Ox Milisite PA# 25-115 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MA	SOLID MATRIX ANALYSES							
FIBLD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn.` (mg/Kg)	CYANIDE (me/Ke)
25-115-SE-1 25-115-SE-2 25-115-TP-1	138 J 22 J 285 J	42.1 86.7 25.8	84 0.5 UJ 221	4.8.8. 6.2.0	4.8 3.3 6.0	426 10.8 1130	21400 10300 27500	8.84 0.095 6.07	3280 209 2500	20 J 9 J	6790 18 10900	54 J 4 UJ 107 J		N N N
BACKGROUND	38	920	0.4 UJ	5.6	10.7	32.6	14700	0.187	662 U - Not Detected, J -	662 14 J 28 3 UJ 75 U-Net Detected: J. Estimated Quantity, X. Outlier for Accuracy or Precision; NR. Net Removed	28 X - Outlier for Accu	3 UJ	75 R-Not Requested	
- (2) Sign	Acid/Base	Acid/Base Accounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	TOTAL SULFUR SULFUR SULFUR SULFA ACID BASE POTENT. POTENT. SULFU V1000t V1000t V1000t %	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
25-115-TP-1	4.26	133	146	13.9	0.29	1.62	2.35	50.6	95.5					

	Metals in Water Results in ug/L	Nater ua/L				WATER MATI	WATER MATRIX ANALYSES							
FTELD		B	ਣ	ບໍ			₽.	光	W	Z	£	é	E ,	HARDNESS CALC.
25-115-SW-1 25-115-SW-2		52.7 73.1	2.55 U 2.87	2.55 U 5.99 U 7.7 2.87 5.99 U 5	7.7 5 U	4.27	11	22.8 0.19 986 0.18	3.6 21.8 U-Not Detected; J-1	12. 8.7	28.9 3.82 X - Outlier for Accur	18.3 U 18.3 U 18.3 U	32.1 212 18.8 242 R- Not Requested	(mg CaCUS/L)
	Wet Chemistry Results in mg/l					SEI -	SEI - Deer Creek below tailings @ the dam breach.	lings @ the dam b	reach	LEGEND	SWI - Same as sample QB1	THE states		
FTELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SE2 - Upgradient semple @ the old well casing. TP1 - Composite of subsamples TP1-1A, 1-1B, and 1-2A. BACKGROUND - From the Big Ox Mine (25-116-SS-1).	g the old well casin uples TPI-1A, 1-11 Big Ox Mine (25-	ng 3, and 1-2A 116-SS-1)		SW2 - Same as sample SE2.	s sample SE2.		
25-115-SW-1 25-115-SW-2	223 < 5.0 25 < 0.05 283 < 5.0 24 0.19	5.05.0	25 24	0.050.19										

Mine/Site Name: Big Ox Mine Legal Description: T 12N R 6W Mining District: Marysville	County: Lewis and Clark Section(s): NE 1/4, SE 1/4, Sec. 13 Mine Type: Hardrock/Au, Ag, Pb, Cu Primary Drainage: Little Prickly Pear Creek
Latitude: N 46° 47' 28" Longitude: W 112° 17' 45"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Deer Creek
Quad: Canyon Creek	Date Investigated: June 9, 1993
Inspectors: Babits, Flammang	P.A. # <u>25-116</u>
Organization: Pioneer Technical Services, Inc.	

- Ore derived from this mine was milled at the Big Ox Mill (P.A.# 25-115), which was investigated in conjunction with this site.
- The volume of waste rock associated with this site was estimated to be approximately 3,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 77J mg/kg

Copper: 111 to 260 mg/kg

Lead: 596 to 1,680 mg/kg

Zinc: 1,200 to 1,550 mg/kg

Cadmium: 9.6 to 11.3 mg/kg

Mercury: 1.08 mg/kg

Antimony: 9J to 16J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site during the investigation.
- No surface water was observed on or near the site. The nearest surface water was
 located approximately 1,500 feet away; consequently, no surface water or sediment
 samples were collected.
- One potentially hazardous partially open adit was identified at the site.

Big Ox Mine PA# 25-116 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MA:	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Min (mg/Kg)	Ni (me/Ke)	Pb (mo/Ke)	Sb	Zn	CYANIDE
25-116-WR-1 25-116-WR-2 25-116-WR-4	28.5 1.2 1.5 1.5	167 232 138	9.6 0.4 UJ 11.3	16.6 6.8 5.4	11 12.3 11.9	260 19.7 111	25200 14400 18400	0.247 0.147 1.08	700 591 827	ii	596 24 1680	16 J 1500	1200 1550	NR NR
BACKGROUND	52 7	650	0.4 UJ	5.6	10.7	32.6	14700	0.187	662 14 J 28 3 UJ 75 U-Not Detected J - Betimated Quantity S - Outlier for Accuracy or Provisions No. 144 D	14 J Estimated Quantity: 3	28 C. Outlier for Account	n e	75	ž ž
	Acid/Base Accounting	\ccounting								,			Date Acquested	
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE I	SULFUR NEUTRAL. ACID BASESULFATE POTENT. POTENT. SULFUR 11000t 11000t %	SULFUR ACID BASI POTENT. 1/10001	ESULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. #1000t	WR1 - Compos WR2 - Sample WR4 - Compo BACKGROUN	LEGENID WR1 - Composite of subsamples WR1A and 1B. WR2 - Sample of the WR2 subsamples WR4 - Composite of subsamples WR44 - R4. 7A, and 7B. BACKGROUND - SE of mill building on top of hill before mines. From the Big Ox Mine (25-116-SS-1)	EEGENUD SWR1A and 1E Swample. Cas WRAA, 4B, 7 uilding on top o	3. A. and 7B. fhill before mir	į
25-116-WR-1	0.89	27.8	203		<0.01	96.0	0.03	30	173					

Mine/Site Name: Belmont	County: Lewis and Clark
Legal Description: T 12N R 6W	Section(s): SE 1/4, SW 1/4, Sec. 35
Mining District: Marysville	Mine Type: Hardrock/Au
Latitude: N 46° 44' 45"	Primary Drainage: Silver Creek
Longitude: W 112° 19' 05"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Rawhide Gulch
Quad: Greenhorn Mountain	Date Investigated: August 19, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>25-167</u>
Organization: Pioneer Technical Services, Inc.	

 The volume of tailings associated with this site was estimated to be approximately 57,030 cubic yards. The following elements were elevated at least three times background:

Mercury: 0.464 to 1.93 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 18,800 cubic yards. The following elements were elevated at least three times background:

Mercury: 0.723J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was observed on or near the site. The nearest surface water was located over 1,000 feet from the site; consequently, no surface water or sediment samples were collected.
- Potential safety hazards associated with this site included three open stopes, a collapsing mill building, and several oversteepened and unstable slopes.

Belmont PA# 25-167

AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 08/19/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	is:			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mo/Ka)	Pb (mar(K.e.)	88	5	CYANIDE
25-167-TP-1 25-167-TP-2 25-167-WR-1	28 32.2 19 J	30.2 36.2 26.5 J	1.0 UJ 0.7 UJ 0.4 U	1.61 J 1.85 J 3.07	2.87 J 2.61 J 4.46	56.8 38.1 35.8 J	6510 6840 10700 J	1.93 0.464 0.723 J	1190 1520 630 J	2.38 U 3.54 J 5.27	48.4 38.1 14.6	10 230 5.74 208	(mg/kg) ====================================	(mg/Kg) NR <0.277
BACKGROUND	38.	239	0.5 UJ	8.2	1.41	49.7	19500	0.122	1000	15 J	8)	153	Y Y Z Z
	Acid/Base Accounting	\ccounting							U - Not Detected, J .	U - Not Detected, I - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	C - Outlier for Accum	acy or Precision, Ni	R - Not Requested	
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	B	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.	TP1 - Compos 1A-B, TP2 - Compos	LEGEND IP1 - Composite of subsamples TP1A-A, 1A-B, 1A-C, 1A-D, 1A-B, and 1A-F. IP2 - Composite of subsamples TP2A-A, 2A-B, 2A-C, 2A-D, and 3	LEGEND TPIA-A, IA-E TP2A-A, 2A-E	8, 1A-C, 1A-D, 8, 2A-C, 2A-D,	
25-167-TP-1 25-167-TP-2 25-167-WR-1	6.01 60.01 60.01	000	74.3 74.4 96.8	74.3 74.4 96.8	60.01 60.01 60.01	60.01 60.01 0.01	0.01 -0.01 0.01	0 0 0.31	74.3 74.4 96.5	WR1 - Commp	WRI - Commposite of subsamples WRIA, 1B, 2, and 3. BACKGROUND - From Empire Millsite (25-175-SS-1).	ples WR1A, 1B, e Millsite (25-17	, 2, and 3. 75-SS-1).	
														-

Mine/Site Name: <u>Piegan Gloster Millsite</u> Legal Description: T <u>12N</u> R <u>6W</u> Mining District: <u>Marysville</u>	County: Lewis and Clark Section(s): Sec. 21 and Sec. 27 Mine Type: Millsite/Unknown
Latitude: N 46° 46' 12"	Primary Drainage: Little Prickly Pear Creek
Longitude: W 112° 20' 43"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Piegan Creek
Quad: Canyon Creek	Date Investigated: September 1, 1993
Inspectors: M. Babits, S. Babits, Flammang,	P.A. # <u>25-172</u>
Bullock/Pierson	
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

 The volume of tailings associated with this site was estimated to be approximately 335,820 cubic yards. The following elements were elevated at least three times background:

Cadmium: 4.3 to 7.7 mg/kg Mercury: 1.17JX mg/kg Lead: 112 to 1,940 mg/kg Copper: 157JX to 272JX mg/kg Manganese: 3,820 to 5,110 mg/kg

Zinc: 400J to 2,620J mg/kg

- No waste rock was observed at this site during the investigation.
- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- Piegan Creek was flowing directly through the tailings at this site. Surface water and sediment samples were collected upstream and downstream from the site. Observed releases to Piegan Creek were documented for manganese and zinc. The chronic aquatic life criteria for lead was exceeded in the downstream sample, which was directly attributable to the site.
- Observed releases to Piegan Creek (sediment) were also documented for copper and lead.
- No hazardous mine openings were identified at the site; however, the mill building was collapsing and potentially hazardous.

Piegan Gloster Mill PA# 25-172 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/01/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MATF	SOLID MATRIX ANALYSES	W						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANDE
25-172-SE-1 25-172-SE-2	9.34 U 33.1 J	43.1 J 148 J	1.8 U 2.5	2.82 J 3.47 J	8.39 J 7.34 J	26 JX XL 83 LX	9170	6 JX	225	4.26 U	102	3	119 J	0.464 U
25-172-TP-1 25-172-TP-2 25-172-TP-3	49 J 47.5 J 66.5 J	59.3 J 179 J 271 J	0.9 U 4.3 7.7	3 J 3.39 J 4.76 J	3.24 J 8.52 J 11.3 J	45.7 JX 157 JX 272 JX	11100 11900 14000	0.165 JX 0.274 JX	537 3820 5110	2.14 U 7.71 J	698 112 1290 1940	6.24 UJ 6.24 UJ 6.38 UJ	865 J 400 J 1620 J	0.339 0.919 9.96
BACKGROUND	33.3 J	150 J	O.9 U	6.26 J	14.3 J	35.8 JX	14700	0.367 JX	729 U - Not Detected, J -	729 10.6 J 34.4 6.4 UJ 83.1 J	34.4	6.4 UJ	83.1 J	NR NR
	Acid/Base Accounting	ccounting										a rictisius, inc	- Non Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE 1/1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE SULFA POTENT: SULFU	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT. V1000t					
25-172-TP-1 25-172-TP-2 25-172-TP-3	<0.01 0.04 0.07	0 1.25 2.19	28.6 77.3 102	28.6 76 99.6	60.01 60.01 0.02	6.01 0.02 0.01	0.01 0.03 0.04	0.62 0.31	28.6 76.7 102					

	Metals in Water Results in ug/L	Water ug/L		.· .		WATER MATI	WATER MATRIX ANALYSES							
FIELD ID		- 11	3	రి	Ċ	రే	Ā.	H	Mn	ž	£	6	т . Н	HARDNESS CALC.
25-172-SW-1 25-172-SW-2	5.42 J 6.58 J	36.9 53.2	2.57 U 2.57 U	9.7 U 9.7 U	6.83 U 9.57 J	36.9 2.57 U 9.7 U 6.83 U 9.87 J 53.2 2.57 U 9.7 U 9.57 J 4.6 J	243 JX 118 JX	243 JX 0.12 U 118 JX 0.12 U	10.8 12.7 U 5.06 J 30.7 U 50.2 12.7 U 13.6 J 30.7 U	12.7 U 12.7 U 12.7 U	5.06 J 13.6 J	30.7 U 30.7 U	7.57 U 184 29.3 219	184 219
	Wet Chemistry	>-								O. N. C. L. C. C. C. C. C. C. C. C. C. C. C. C. C.	t Outlier for Accum.	icy or Precision, NR	- Not Requested	
	Kesuits in mg/l	5								LEGEND				
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	882 - 171 - 172 -	 SB1 - Upgradient in Piegan Creek below confluence of 2 tributaries. SB2 - Downgradient in Piegan Creek below tailings pond 3, before placer. TP1 - Composite of subsamples TP1A-A, 1A-B, and 1B-A. TP2 - Composite of subsamples TP2A-A through 2A-D, 2B-A through 2B-C. 	Creek below coni in Creek below ta iles TP1A-A, 1A- les TP2A-A throu	fluence of 2 tributs ulings pond 3, befc B, and 1B-A.	ries. xre placer. rough 2B-C.	SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1.		
25-172-SW-1 25-172-SW-2	202 218	202 < 5 18 0.11 < 0.005 218 < 5 20 < 0.05 < 0.005	18 20	0.11 0.05	0.0050.005		and 4A through 4C. TP3 - Composite of subsamples TP3A-A, 3A-B, 3A-C, 3A-D, 3B-A, 3B-B, and 3B-C.	iles TP3A-A, 3A-	B, 3A-C, 3A-D, 3I	В-А,				
						TOUR I	EXCANANCIAL - FIGHT TIESMI GIORGET MIII (25-172-SS-1)	ricem Goster M	ul (25-172-SS-1).					

Mine/Site Name: Empire Millsite Legal Description: T 12N R 6W Mining District: Marysville Latitude: N 46° 45' 25" Longitude: W 112° 21' 45" Land Status: Private Quad: Canyon Creek and Granite Butte Inspectors: Bullock, Babits, Flammang, Clark, Lasher/Pierson Organization: Pioneer Technical Services, Inc. /Thomas, Dean and Hoskins, Inc.	County: Lewis and Clark Section(s): Sec. 32 and 33 Mine Type: Millsite/Au, Ag, Pb, Zn Primary Drainage: Little Prickly Pear Creek USGS Code: 10030101 Secondary Drainage: Empire Creek Date Investigated: June 9, 1993 P.A. # 25-175
---	--

The volume of mill tailings associated with this site was estimated to be approximately 16,000 cubic yards. The following elements were elevated at least three times background:

Cadmium: 13.4 to 83.7 mg/kg Mercury: 0.505 to 0.893 mg/kg Antimony: 15J to 54J mg/kg Copper: 1840 to 6660 mg/kg Lead: 7310 to 13,700 mg/kg Zinc: 5020 to 39,300 mg/kg

- There was no waste rock associated with this site.
- There were no discharging adits or shafts, or seeps or springs associated with this site.
- Empire Creek flowed through the mill tailing for approximately 4000 feet adjacent to and below the mill. Observed releases were documented for copper, lead, and zinc. There were no MCL/MCLGs exceeded during this sampling event. The chronic aquatic life criteria for lead was exceeded and directly attributable to this site. Cyanide was also slightly elevated in the downgradient sample, but did not constitute an observed release.
- The mill building was a hazardous structure, although may be historically significant.
- Other possible hazardous materials on site included a partially full 55-gallon barrel of black petroleum sludge and several barrels of unknown white powdery material; all located inside the mill building.

Empire Mill PA# 25-175 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/09/93

	Metals in solls Results per dry	Metals in solls Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES	s						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mø/Ke)	Ni (mo/Ke)	Pb (me/Ke)	SP	Zn	CYANIDE
25-175-SE-1	32 J	169	1.3 UJ	3.8	13.8	123	13400	0.443	192	, e.e		# =		(mg/Kg)
25-175-TP-1	88	98.7 2.89	83.7 83.7	5.2 8.2	15.7 42.6	3320 9 660	18900 26300	0.649	1690	15.1	7270		2000	0.87
25-175-TP-3	47 5	28.8 64.9	13.4 38.2	1.2 5.1	7.5 24.1	1840 4160	9700 18800	0.505	1660 2340	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7310	4, c. g.	39300 5020	0.18
BACKGROUND	38 J	239	0.5 UJ	8.2	14.1	49.7	19500	0.122	1000	15 J	8	. 4 	153	8 8 8
	Acid/Base Accounting	counting	•						U - Not Detected, J	U - Nat Detectock J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Nat Requested	X - Outlier for Acca	racy or Precision, NR	R - Not Requested	
CLEATY CL	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
25-175-TP-1 25-175-TP-2 25-175-TP-3	0.02 40.01 0.05	0.62 0 1.56	108 110 141	108 <0.01 110 <0.01 139 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 0.03	0.02	0 094	108 110 140					

HARDMESSS FIELD As Ba Cd Co Co Co Table Fig. Fig. Co Table Fig. Ca Co Table Fig. Ca Co Co Co Co Co Co Co															
Signature Fig. Fi		Metals in Results in	Water t ug/L				WATER MATI	RIX ANALYSES							
5.62 46.4 3.2 5.99 U 5 U 1.35 U 20.6 0.14 2.6 U 8.78 U 2.2 18.3 U 8.8 Wet Chemistry Wet Chemistry Results in mg/l TOTAL ICTAL SOLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SE2 - At the culvant below new dam. SW2 - Same as sample SE1. SOLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE TP1 - Composite of rubsamples TP3-A and 3-2A. SW2 - Same as sample SE1. 195 C 5.0 20 0.27 0.01 TP3 - Composite of rubsamples TP3-LG 3-2B, and 3-2C. SW2 - Same as sample SE2. 201 C 5.0 18 0.05 0.02 BACKGROUND - Same as Empire Mill (25-175-SS-1).	FIELD	As		8	9	ځ	ć	£	:					H	ARDNESS CALC.
5.62 46.4 3.2 5.99 U 5 U 1.35 U 20.6 0.14 2.6 U 8.78 U 2.2 18.3 U 8.8	H		## ## ## ## ## ## ##	## ## ## ## ## ## ##					Hg :========:	Min	ž	ዲ	æ		g CaCO3/L)
Vet Chemistry Results in mg/l LEGEND LEGEND SEL - Upgradient Empire Creek, 15' upstream from where DISSOLVED SWI - Same as sample SEI. SOLTOR SOLTOR SOLTOR SOLTOR TP1 - Composite of subsamples TP2A and 3-2A. TP2 - Composite of subsamples TP2A and 3-2C. TP3 - Composite of subsamples TP3-1D, and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. TP3 - Composite of subsamples TP3-1D, and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. TP3 - Composite of subsamples TP3-1D and 3-2D. A 5.0 C 5.0 C 5.0 C 5.0 D 5.0 D 5.0 D 5.0 D 5.0 D 5.0 D 5.0 D 5.0 D 5.0 D 5.0 D 5	25-175-SW-1 25-175-SW-2	5.62 3.59	946.4 94.1	3.2 2.55 U	5.99 U	55 C C	1.35 U 13.4	20.6 22.8	0.14 41.0	2.6 U 6.27	8.78 U 8.78 U	2.2 13.6	18.3 U 18.3 U	6 U 85.5	173 179
Vet Chemistry Results in mg/l SEL Chigardient Empire Creek, 25 upstream SEL Chigardient Empire Creek, 25 upstream Creek accesses the road										U - Not Detected, J -	Estimated Quantity, X	· Outlier for Accum	acy or Precision, NR.	· Not Requested)
TOTAL TOTA		Wet Chemistr	2-5												
TOTAL DISSOLVED SULFATE NO3ANO2-N CYANIDE TP1 - Composite of subsamples TP3-1C, 3-2A, and 3-2C.		During in the	5								LEGEND				
SOLIDS	-	TOTAL					SE1.	Upgradient Empire (heek, 25' upstrean ad.	n from where		SW1 - Same as	s sample SE1.		
195 < 5.0 20 0.27 0.01 201 < 5.0 18 < 0.05 0.02	FIELD I.D.	DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		At the culvert below Composite of subsen	new dam. ples TP2A and 3-;	2 A .		2W2 - 28me 88	s sample SE2.		
		195 201	< 5.0 < 5.0	25 85	0.27 < 0.05	0.01		Composite of subsan Composite of subsan GROUND - Same as	ples TP3-1C, 3-21 ples TP3-1D and : Empire Mill (25-1	B, and 3-2C. 3-2D. 75-SS-1).					

Mine/Site Name: <u>Bald Butte Millsite</u> Legal Description: T <u>11N</u> R <u>6W</u>	County: Lewis and Clark Section(s): NW 1/4, NE 1/4, Sec. 16
Mining District: Marysville	Mine Type: Millsite/Unknown
Latitude: N 46° 42' 13"	Primary Drainage: <u>Dog Creek</u>
Longitude: W 112° 21' 24"	USGS Code: 17010201
Land Status: Private/Public	Secondary Drainage: <u>Dago Creek</u>
Quad: Greenhorn Mountain	Date Investigated: August 18, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # <u>25-179</u>
Organization: Pioneer Technical Services, Inc.	

The volume of tailingw associated with this site was estimated to be approximately 48,700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 191J to 202J mg/kg Copper: 538J to 852J mg/kg Lead: 612J to 2,500J mg/kg Cadmium: 14.9 to 18.8 mg/kg Mercury: 0.596J to 17.5J mg/kg Zinc: 1,940J to 2,750 mg/kg

The volume of waste rock associated with this site was estimate to be approximately 850 cubic yards. The following elements were elevated at least three times background:

Arsenic: 11,800J mg/kg Copper: 1,630J mg/kg Lead: 19,800J mg/kg Zinc: 73,500J mg/kg Cadmium: 410 mg/kg Iron: 80,900J mg/kg Antimony: 72.7 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site during the investigation.
- Dog Creek was flowing directly through the site; surface water and sediment samples
 were collected upstream and downstream from the site. An observed release to Dog
 Creek was documented for iron. The chronic aquatic life criteria for lead was exceeded
 in the downstream sample, which was directly attributable to the site.
- No hazardous mine openings were identified at the site; however, the mill building was collapsing and potentially hazardous.

Bald Butte Milisite PA# 25-179 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/18/93

	Metals in soils Results per dn	Metals in soils Results per dry weight basis	<u>. er</u>			SOLID MAT	SOLID MATRIX ANALYSES							
TELD O	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	C? (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (me/Ke)	N. System	Pb	SP	2	CYANIDE
25-179-SE-1 25-179-SE-2 25-179-TP-1 25-179-TP-2 25-179-TP-4 25-179-TP-4	209 J 407 J 216 J 191 J 193 J 202 J	281 J 209 J 88.7 J 63.4 J 117 J 97.7 J 21.7 J	34.8 7.4.1 15.5 14.9 14.9	10.4 7.39 3.37 2.45 6.94 5.51 7.58	15.8 10.5 10.4 13.3 19.4 10.9	928 J 538 J 591 J 684 J 682 J	24400 J 23100 J 15500 J 11200 J 18000 J 16300 J	6.26 J 1.39 J 17.5 J 14.4 J 0.596 J	8850 J 7760 J 731 J 409 J 1150 J	7.94 7.94 9.64 7.6 11.9	3390 J 1570 J 1370 J 1110 J 612 J 2500 J	34.7 13.3 7.16 U 6.66 U 6.61 U	(mg/kg) 4240 J 2470 J 1940 J 2280 J 2750 J	NR NR NR NR NR NR
BACKGROUND	51.1 J 290 Acid/Base Accounting	290 J	6.	5.21	8.25	82.4 J	7590 J	0.109	2390 J U-Net Datected, J-1	10.5 4.81 Bacinmed Questity,	2390 J 4.81 139 J 10.2 U 190 . U-Net Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Net Requested	72.7 10.2 U 10.2 U	73500 J 190 J	Z Z Z Z
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
25-179-TP-1 25-179-TP-2 25-179-TP-3 25-179-TP-4 25-179-WR-1	0.04 0.27 0.07 7.12	1.25 8.43 2.19 3.12 222	17.3 15 8.43 12.6 183	16.1 6.6 6.24 9.45 -39	60.01 0.03 0.04 60.01	40.01 0.05 0.01 4.23	0.05 0.03 0.05 6.84	0 1.56 0.31 0.31 132	17.3 13.5 8.12 12.3 51.2					

Metal Resuft	Metals in Water Results in ug/L					WATER MAT	WATER MATRIX ANALYSES	_						
Ą	As	.	25	රී		đ	£	뿚	W	Z	£	÷	Ξ į	HARDNESS CALC
9.14	14	88	2.57 U 2.57 U	2.57 U 9.7 U 2.57 U 9.7 U	6.83 U 6.83 U	4.43 J 6 J	90.7	0.12 U 0.12 U	5	31.2 12.7 U 4.31 J 30.7 U 118 J 154 10.7 U 108 J 30.7 U 17 J 134 U-Net Detected J - Estimated Quantity, X - Outlier for Accumpy or Precision, NR - Net Remonded	4.31 J 7.08 J	30.7 U 30.7 U 30.7 U	118 J 71 J	24 (mg cacosh) ====================================
Wet Chemistry Results in mg/l	nistry mg/l					SEI	SE1 - Upgradent on Dog Creek, 50 feet from mill building	Croek, 50 feet from	mill building	LEGEND	we i me			
TOTAL DISSOLVED SOLIDS	LVED SS CHLO	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CY	CYANIDE		SE2 - Downgradient on Dog Creek, 825 feet from breach. TP1 - Composite of subsamples TP1A-A, 1B-A, and 2A-B. TP2 - Composite of subsamples TP1B-B, 1B-C, 1D-C, and 1D-D. TP3 - Composite of subsamples TP1B-B, and 2B-B.	og Creek, 825 feet mples TP1A-A, 1B mples TP1B-B, 1B mples TP1B-D, and	from breachA, and 2A-BC, 1D-C, and 1D.	Ċ	SW2 - Serire as semple SE2.	sample SE2.		
18	188 < 5.0 26 < 0.05 172 < 5.0 21 < 0.05	5.0 5.0	26 21	^ 0.05 ^ 0.05	N N N N N N N N N N N N N N N N N N N		TP4 - Composite of subsamples TP2A-A and 2B-A. WR1 - Sample of the WR1 subsample. BACKGROUND - From the Wild Cat Mine (25-317-8S-1).	mples TP2A-A and I subsample. Is Wild Cat Mine (2	2B-A. 5-317-88-1).					

Mine/Site Name: Argo Millsite Legal Description: T 12N R 5W Mining District: Marysville Latitude: N 46° 45' 02" Longitude: W 112° 14' 34" Land Status: Private Quad: Austin and Silver City Inspectors: Bullock, S. Babits Organization: Piopour Tachnical Services Inc.	County: Lewis and Clark Section(s): SE 1/4, SW 1/4, Sec. 33 Mine Type: mill/Unknown Primary Drainage: Silver Creek USGS Code: 10030101 Secondary Drainage: Silver Creek Date Investigated: September 2, 1993 P.A. # 25-314
Organization: Pioneer Technical Services, Inc.	

- Tailings associated with the Argo Mill were evaluated as part of a larger volume of
 material associated with the Goldsil Mill (25-365) and were also discussed under that
 investigation. The volume of mill tailings north of the collapsed Argo mill building were
 estimated at 65,400 cubic yards. Mercury at 5.42JX mg/kg was elevated at least three
 times background.
- No discharging adits, springs or seeps were found at the site.
- The tailings were not contained, and approximately 60% unvegetated.
- No waste rock was associated with this site.
- No observed releases to surface water were documented for the site; however, the
 concentration of mercury was elevated (<3X background soil) in the downstream
 sediment sample. No exceedances of drinking water standards nor of aquatic life
 criteria were documented at this site.
- The structures associated with this site were classified as hazardous.

Argo Milisite PA# 25-314
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 09/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES	မွှ						
FIELD D	As (mg/Kg)	Ba (mg/Kg)		Cd Co (mg/Kg) (mg/Kg)			Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn (me/Re)	CYANIDE
25-365-TP-3 25-365-SE-2	13 J 34.2 J	58.6 J 94 J	 	3.48 J 1.39 J	6.54 J 3.85 J	53.1 JX 23.2 JX	8480	5.42 JX 852 3.11 JX 480	852 480	3.82 J 3.14 J	68.5 12.2	#33	137 J	0.379 U
BACKGROUND	. 25	650	0.4 UJ	5.6	10.7	32.6	14700	0.187	662	. 41 L 4	8	Ω ε Ε	<u>.</u> 15	¥ 0
	Acid/Base Accounting	\ccounting							U - Not Detected, J -	Estimated Quaraity, 3	K - Outlier for Accur	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASIE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	TP3 - Sample SE2 - At culve some I BACKGROUN	LEGE ample of TPIC-A subsample (G t culvart on 1st rosd with gate o some Goldail and Argo tailings. ROUND - From the Big Ox Min	LEGEND TP3 - Sample of TP1 C.A subsample (Goldsil Millsite). SE2 - At culvert on 1st road with gate coming from Marysville, below some Goldsil and Argo tailings. BACKGROUND - From the Big Ox Mine (25-116-SS-1).	illsite). om Marysville, 6-SS-1).	below
25-365-TP-3 <0.01	<0.01		49.9	49.9	<0.01	0 49.9 49.9 <0.01 <0.01	<0.01	ä	49.9	SW3 - 200 upgradie	statement of Argo	5W2 - Same as SEZ. SW3 - 200' upgradient of Argo mill site in Silver Creek.	Croek.	

						WATER MAT	WATER MATRIX ANALYSES	-						
	Metals in Water Results in ug/L	Nater ug/L												
FIELD	FIELD As	Ba	ষ্ট	రి	් ඊ	đ	Œ,	8 H	Ä	Ż	ត់	É	HARDINI CALC.	HARDNESS CALC.
25-365-SW-2	4.35	73.6	73.6 4.59 U 5.11 6.24 II			.=====================================						So Zu(mg CaCO3/L)) gm)n/Z) gm)n/Z	Zn(mg CaCO3/L)
25-365-SW-3	2.56	68.4	4.59 U		6.24 U	2.33 U	93.9 93.3	0.12 U 0.12 U	15.3 16.9	10.9 U 10.9 U	6. E.	31.7 U 31.7 U	12.3	181
									U · Not Detected, J ·	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accura	cy or Precision; NR.	Not Requested	
	Wet Chemistry Results in mg/l													
FIELD	TOTAL						. •							
ID.	- 1	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE									
25-365-SW-2 25-365-SW-3	212 < 5 18 189 < 5 18	۸ ۸ ۳ ۳	€ €	0.06	0.06 × 0.005 0.09 × 0.005									

Latitude: N 46° 43' 49" Longitude: W 112° 22' 00" Land Status: Private Secondary	Millsite/Unknown Linage: Little Prickly Pear Creek E: 10030101 Drainage: Lost Horse Creek gated: August 18, 1993
---	--

The volume of tailings associated with this site was estimated to be approximately 2,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 455J to 895J mg/kg Copper: 813J to 1,080J mg/kg

Mercury: 2.3J to 12.2J mg/kg

Lead: 2,580J to 3,330J mg/kg

Zinc: 3,190J to 5,310J mg/kg

Cadmium: 14 to 21 mg/kg

Iron: 26,400J mg/kg

Manganese: 9,120J to 11,500J mg/kg

Antimony: 79.7 to 103 mg/kg

- The volume of waste rock associated with this site was estimated to be approximately
 185 cubic yards. No samples were collected due to the relatively small volume.
- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- Intermittent Lost Horse Creek (dry at the time of the investigation) was situated in the center of the site. Sediment samples were collected upstream and downstream from the site. Observed releases to Lost Horse Creek (sediment) were documented for arsenic, cadmium, copper, manganese, lead, and zinc.
- No hazardous mine openings were identified at the site.

Wild Cat PA# 25-317 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/31/93

Property Property														
Cd Co Cr Cu Fee Hig Mn Ni Prb Sb Zn Car (mg/Kg) (mg/Kg	ے م	soils er dry weight ba	Sist			SOLID MAT	RIX ANALYSES							
1 77.4 J 1.0 2.97 5.06 41.8 J 8840 J 0.398 J 664 J 6.59 117 J 9.28 U 191 J 9.75 J 4.6 315 6.05 219 J 13300 J 0.916 J 2.90 J 6.24 867 J 9.27 997 J 97.5 J 14 4.7 7.99 813 J 16800 J 2.3 J 9100 J 2.89 2.59 J 79.7 3190 J 97.5 J 14 4.7 7.99 813 J 16800 J 2.3 J 9100 J 2.89 2.59 2.580 J 79.7 3190 J 2.80 J 1.9 5.21 8.25 82.4 J 7590 J 0.0109 J 2.39 J 9.29 3330 J 10.2 U 190 J 1.9 1		İ	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb	Sp (A)	LZ .	CYANIDE
1.90 1.9 5.21 8.25 82.4 J 7590 J 0.109 J 2390 J 4.81 139 J 10.2 U 190 J 190	25.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		1.0 4.6 14 21	2.97 3.15 4.7 6.18	5.06 6.05 7.99 11.5	41.8 J 219 J 813 J 1080 J	8640 J 13300 J 16800 J 26400 J	0.398 J 0.916 J 2.3 J 12.2 J	664 J 2960 J 9120 J 11500 J	6.59 6.24 2.89 3.99	117 J 867 J 2580 J 3330 J	9.28 U 9.27 79.7	191 J 997 J 3190 J 5310 J	0.518 U 0.278 U 0.348 U
TOTAL SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR ACID BASE ACID BASE POTENT VIOCOL VIOCO	£.1.5	230 7	1.9	5.21	8.25	82.4 J	7590 J	0.109 J	2390 J U - Not Detected, J - E	4.81 Setimated Quantity; 2	139 J K - Outlier for Accura	10.2 U	190 J R - Not Requested	A R
0.31 43.8 43.5 0.01 <0.01 <0.01 0 43.8 0.31 50.1 49.8 0.01 <0.01 <0.01 <0.01 0 50.1	MBase AL CIR	ACCOUNTING TOTAL STILTUR ACID BASE V1000t	ا ن	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR		ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.	SE1 - Upgradi SE2 - Downgr TP1 - Compor TP2 - Compor BACKGROUN	ient in Lost Horse adient in Lost Ho site of subsamples site of subsamples TD - West of creek	LEGEND Creek me Creek TP1, 2A-A, 24 TP2A-B and 2	\-C, and 2B-A. B-B	
	<u>6</u> .	0.31		43.5 49.8	0.01		60.01 60.01	00	43.8 50.1	(25-3)	17-55-1).			

Legal Description: T 12N R 5W Section Mining District: Marysville Mine Latitude: N 46° 45' 00" Prima Longitude: W 112° 14' 12" USGS Land Status: Private Second	ty: Lewis and Clark on(s): SE 1/4, SE 1/4, Sec. 33 Type: Millsite/Au ry Drainage: Canyon Creek Code: 10030101 ndary Drainage: Silver Creek Investigated: September 2, 1993 # 25-365
---	--

 The volume of tailings associated with this site was estimated to be approximately 700,000 cubic yards. The following elements are elevated at least three times background:

Arsenic: 84.5J mg/kg

Copper: 160 to 379 mg/kg Lead: 205J to 537J mg/kg Zinc: 400J to 1010JX mg/kg Cadmium: 1 to 3 mg/kg

Mercury: 0.69JX to 223J mg/kg Antimony: 10.8J to 66.9J mg/kg Cyanide: 1.97 to 3.13 mg/kg

- There was no waste rock material associated with this site.
- Silver Creek paralleled this site for approximately 1 mile. No observed releases to Silver Creek were documented during this investigation. MCL/MCLGs and aquatic life criteria were not exceeded for this data set. Stream sediment data collected in Silver Creek indicated elevated levels of mercury.
- A variety of hazardous wastes were located in the mill structure, including acids, organic solvents, and other reagents.

Goldsil Milisite PA# 25-365 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/02/93

	Metals in soils		Results per dry weight basis	veight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
25-365-SF-1	- 999	- 660		- 907		## ## ## ## ## ## ## ## ## ## ## ## ##							(mg/kg)	(mg/kg)
25-365-SF-2	20.5	5.50		4.26	5.27 J	31.8 JX		XL 69.0	787	6.22	16.2	7 11.1	- 769	
25-365-TP-1	4.6	0 4 7 4 4 5 -)))	D .	3.85	23.2 JX		3.11 JX	480	3.14	122	7.06	2 - 4	¥ 0
25-365-TP-2	37.1	2.7.2	0.6	2.30	6.07 5	197 JX		81.4 JX	884	3.4 J	237	10.8	7.7	72
25-365-TP-3	- 6	50.20		. 67	4.92	187 JX		46.4 JX	843	3.43	202	1 1 0	5 5	7.07
25-365-TP-4	2 2 2	2007	- c	2. 48. J	6.54	53.1 JX		5.42 JX	852	3.82	685	7.08	127	4.4
25-365-TP-5	יים קינות עינות	.4.4 0.4.4	0 7	9. d	18.6	198	•	21.4 J	827	13.1	245	21.5	13/ 5	0.378
0 11 000 10	0.00		ຕ	2.96	15.3	379	•	223	1430		2 2 2	, c		5. J.
2-303-17-0	36.6	59.9	3.4	4.35	7.86	9	9210 J	98	857	ς - α	 20 20 20 20 20 20 20 20 20 20 20 20 20	D C C	, 010T	1.97
	. [}	}		607	50.0	412 J	2.82
BACKGROUND	25 J	650	0.4 UJ	5.6	10.7	32.6	14700	0.187	9	14 J	58	3 0.7	75	2
	Acid/Base Accounting	ccounting							U - Not Detected, J .	U - Not Detector, J - Estimated Quantity, X - Outlier for Accumery or Precision; NR - Not Requested	- Outlier for Accuracy	or Precision, NR -	Not Requested	
	TOTAL	TOTAL	NEUTRAL.	SULFUR ACID BASE	SULFATE	PYRITIC	DINAGRO	PYRITIC	SULFUR					
GTELD	SULFUR	ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	ACID BASE POTENT.					
					* ************************************	*	*	V1000t	V1000t					
25-365-TP-1	0.03	0.94	1.78	83.1	0.01	<0.01	0.00							
25-365-TP-2	0 .04	0	68.5	68.5	0.0	0.02	2 5	9	- 0 2 2 3 5 6					
25-365-TP-3	~0 .01	0	49.9	49.9	40.07	6 0.0	000) } C	0.0					
25-365-TP-4	6 .04	0	78.5	78.5	<0.01	40.0	000	.	9 C					
25-365-TP-5	0.05	1.56	124	122	0.01	000	2 2	,	0.0					
25-365-TP-6	0.22	6.87	82.9	76.1	0.09	0.03	0.1	96.0	<u>3</u> 8					

	Metals in Water		Results in ug/L			WATER MATI	WATER MATRIX ANALYSES		• .					
FIELD CI	As	. 8	ਹ	ខ	ರ		Ę.	H8	M	Z	£	á	, i	HARDNESS CALC.
25-365-SW-1 25-365-SW-2 25-365-SW-3	5.29 4.35 2.56	82.7 73.6 68.4	82.7 4.59 U 5 U 6.7 73.6 4.59 U 5 U 6.7 68.4 4.59 U 5 U 6.7	2 C C	6.24 U 6.24 U 6.24 U	2.33 U 2.33 U 2.33 U	123 90.8 93.3	0.12 U 21.8 10.9 U 0.12 U 15.3 10.9 U 0.12 U 16.9 U	21.8 15.3 16.9	10.9 U 10.9 U 10.9 U	ii	1.13 31.7 U 1.69 31.7 U 1.53 31.7 U	8.71 U 12.3 12.4	2.3 185 2.4 181
	Wet Chemistry	ž	Results in mg/l						U - Not Detected, J -	U. Not Detected, J. Edrinated Quartify, X. Outlier for Accuracy or Precision; NR Not Requested	- Outlier for Accuracy	or Precinian; NR - ?	Not Requested	2
FIELD L.D.	TOTAL DISSOLVED SOLIDS	HLORIDE	CHLORIDE SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SEI - At toe of bern with flow gate in Silver Creek. SE2 - At oulvert (downgradient) at reed. TP1 - Composite of subsamples TP1A-A through IA-C and	flow gate in Silver C tient) at road. nples TP1A-A throu	reek.	LEGEND	BACKGROUND - From the (25-116-88-1).	BACKGROUND - From the Big Ox Mine (25-116-89-1).	ox Mine	
25-365-SW-1 25-365-SW-2 25-365-SW-3 25-365-SW-5	213 < 5 19 < 0.05 < 0.005 212 < 5 18 0.06 < 0.005 189 < 5 18 0.09 < 0.005 NR NR NR OR < 0.005	សសស ស	67 8 8 R.N.	0.05 0.06 0.09 0.09	0.0050.0050.0050.005		1B-A through 1B-E. TP2 - Composite TP1D-A, B, and C. TP3 - Sample of the TP1C subsample (Argo Mill Tailings) TP4 - Composite of subsamples TP2A-A, B, C, and 2B. TP5 - Composite of subsamples TP3A-A and 3A-B. TP6 - Composite of subsamples TP3A-A and 4A B.	E. B. and C. subsample (Argo M mples TP2A-A, B, C mples TP3A-A and 3	fill Tailings). , and 2B. A-B.		SW2 - Same as sample SE SW3 - Upgradient (200') from Silver Creek SW5 - Pregnant pond below.	SW3 - Same as sample SE1. SW3 - Upgradient (200) from mill building (Argo) in Silver Creek. SW5 - Pregnant pond below mill	nil building (A	и (о&

Mine/Site Name: Victory/Evening Star Legal Description: T 11N R 7W Mining District: Ophir	County: Lewis and Clark Section(s): SW 1/4, NE 1/4, Sec. 17 Mine Type: Hardrock/Au, Ag, Cu
Latitude: N 46° 42' 20"	Primary Drainage: Carpenter Creek
Longitude: W 112° 30' 27"	USGS Code: 17010201
Land Status: Private/Public	Secondary Drainage: Ophir Creek
Quad: Ophir Creek	Date Investigated: July 15, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>25-010</u>
Organization: Pioneer Technical Services, Inc.	

The volume of tailings associated with this site was estimated to be approximately 700 cubic yards. The tailings were very shallow and completely revegetated. The following elements were elevated at least three times background:

Arsenic: 566 mg/kg Iron: 95.600 mg/kg Copper: 5590 mg/kg Mercury: 6.07 mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 8300 cubic yards. The following elements were elevated at least three times background:

Copper: 1050 mg/kg Mercury: 1.08 mg/kg

- There were no discharging adits or shafts associated with this site.
- Ophir Creek flowed intermittently below this site. The stream channel had been heavily
 placered and the water flow was often subsurface below the placer tailings piles in the
 vicinity of this site. No observed releases to surface water were documented during this
 investigation. No MCL/MCLGs were exceeded and no aquatic life criteria were
 exceeded. The stream sediment samples collected documented observed releases of
 arsenic, copper, and mercury, attributable to this site.
- There were no significant hazardous structures or mine openings associated with this site.

Victory/Evening Star PA# 25-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/15/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u> </u>			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Ke)	Pb (me/Ke)	Sb	Zn	CYANIDE
25-010-SE-1 25-010-SE-2 25-010-TP-1 25-010-WR-1	36 J 6 U 566 163	52.9 72.9 236 164	1.9 U 0.7 U 5.2 1.9	7.1 U 7 16.5 14.3	11.2 13.2 38.9 42.4	490 JX 28 5590 1050	15200 10300 95600 29900	2.91 J 0.137 6.07 1.08	129 186 1060 469	9 UJX 17 21 40	23 T 8 8 8	#33-3	57 J 32 143 36	NR NR NR NR
BACKGROUND	7	312	9.	13	81	224	15800	0.296	1570 U - Not Detected, J -	1570 15 156 9 UJ 240 U - Net Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Net Requested	156 C-Outlier for Accur	9 UJ	240 IR - Not Requested	
	Acid/Base Accounting	ccounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULPATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
25-010-TP-1 25-010-WR-1DUP 25-010-WR-1	0.12 1.63 1.61	3.75 50.9 50.3	132 456 464	İ	0.09 60.01 60.01	0.01 0.97 1.37	0.02 1.62 1.54	0.31 30.3 42.8	132 428 422					

HARDNESS Results in Water Results in Water Results in Water Results in Water Results in Water Results in Water Results in Water Results in Water Results in Maj Results in															
1.61 J 19.60 2.57 U 9.70 U 6.83 U 3.57 11.8 U 0.038 U 4.08 U 12.7 U 0.72 U 30.7 U		Metals in Results in	Water ug/L				WATER MATI	RIX ANALYSES					,		
1.61 J 19.60 2.57 U 9.70 U 6.83 U 3.57 11.8 U 0.038 U 4.08 U 12.7 U 0.72 U 30.7 U	FIELD											ereri.		H	RDNESS
1.61 J 19.60 2.57 U 9.70 U 6.83 U 1.55 U 11.8 U 0.038 U 4.08 U 12.7 U 0.72 U 30.7 U Wet Chemistry Results in mg/l TOTAL SOLIDS CHLORIDE CHLORIDE CHLORI	A	i	Ba	Cd				£	He	Mn	ÿ	æ	જ	Zn (me	CALC.
Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE WR1 - Composite of subsamples TP1 A-A, 1B-1 WR1 - Composite of subsamples WR1 A, 1B, 1B, 1B, 1B, 1B, 1B, 1B, 1B, 1B, 1B	25-010-SW-1 25-010-SW-2	1.61 J 2.11 J	19.60 18.90	2.57 U 2.57 U				11.8 U 11.8 U	ii .	4.08 U 4.08 U 7.Not Detected J.E.	12.7 U 12.7 U streeted Quantity, X -	0.72 U 0.72 U 0.72 U	30.7 U 30.7 U	U 75.7 U 75.7	244 246
TOTAL SIE2 - Upgradient of site approx. 100. TP1 - Composite of subsamples TP1A-A, 1B-A, and 1C-A. WR1 - Composite of subsamples TP1A-A, 1B-A, and 1C-A. WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, and 2B. BACKGROUND - From the Victory/Evening Star (25-010-SS-1). WR1DUP - Duplicate of the 25-010-WR-1 sample. Sign 8 < 0.05 < 0.01 Sign 9 < 0.05 < 0.01 Sign S		Wet Chemistry Results in mg/	>=				SE1 -	Downgradient approx	K. 100' from last tail?		LEGEND	9 1100			
255 < 5.0 9 < 0.05 < 0.01 256 < 5.0 8 < 0.05 < 0.01	FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N		SEZ - TP1 - WR1 - BACK	Upgradient of site ap Composite of subsam - Composite of subsam GROUND - From the	prox. 100'. uples TP1A-A, 1B-A mples WR1A, 1B, 1' 'Victory/Evening St	c, 2A, and 2B. er (25-010-8S-1).		SW2 - Same as i	sample SE2.		
	25-010-SW-1 25-010-SW-2	255 256	< 5.0 < 5.0	တထ	× 0.05	0.010.01		OUP - Duplicate of the	e 25-010-WR-1 sam	pje.					

Mine/Site Name: Tenmile Mine	County: Lewis and Clark
Legal Description: T 8N R 5W	Section(s): SE 1/4, SE 1/4, Sec. 5
Mining District: Rimini	Mine Type: Hardrock/Au, Ag, Pb
Latitude: N 46° 28' 20"	Primary Drainage: Tenmile Creek
Longitude: W 112° 14' 30"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Tenmile Creek
Quad: Chessman Reservoir	Date Investigated: July 15, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>25-005</u>
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 3,040 cubic yards (not including three reclaimed dumps located in the lower section of the site). The following elements were elevated at least three times background:

Cadmium: 14.3 mg/kg Zinc: 631 to 989 mg/kg

Copper: 136 to 231 mg/kg Mercury: 0.231 to 0.634 mg/kg

- Two adit discharges were associated with this site, a minute discharge from Adit #1 disappeared into WR-1 but did not re-emerge and was not sampled for laboratory analyses. The minor discharge from adit #5 (two gpm) exceeded the MCL for arsenic and cadmium. Acute aquatic life criteria were exceeded for cadmium and zinc and chronic aquatic life criteria were exceeded for cadmium, lead, and zinc in the Adit #5 discharge. Adit discharge pH measurements were 8.39 and 6.29 for Adit #5 and Adit #1, respectively.
- The toe of one of the reclaimed dumps was located within the Tenmile Creek floodplain.
- Logs, from a wooden ore loadout bin, were leaning downhill and may be potentially hazardous; also, WR-1 was very steep and was considered unstable. The caved upper adit (#1) blew out after this investigation.

Tenmile PA# 25-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/15/93

_													i	
	Metals in soils Results per dry	Metals in soils Resutts per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES	S	,					
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn	CYANDE
25-005-WR-1 25-005-WR-2	1990 5530	17.6 69.6	14.3	5.1 10.6	2.8 3.4	231 136	19900 32000	0.634	437 2220	3 2 U	2390	37 J	831 831	NR NR
BACKGROUND	87 J	84.6	2.5	11.9	7.4 J	24)	16200	0.053	1130 U - Not Detected, J -	1130 8 J 144 J 6 UJ 167 U. Not Detected J. Estimated Quantity X. Online for According to the second of the second	144 J	rn 9	167	Z Z
	Acid/Base Accounting	Accounting											in - non requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE 1/1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
25-005-WR-1 25-005-WR-2DUP 25-005-WR-2	0.17 0.48 0.47	5.31 15 14.7	 	4.97 0.17 -15 0.24 -14 0.27	0.17 0.24 0.27	<0.01 0.1 0.07	0.01 0.14 0.13	3.12 2.19	0.34 -2.9 -1.81					

Metals in Water Results in ug/L Results in ug/L Alaba Ba															
Met Chemistry TOTAL SOLIDS CHLORIDE SULFATE NO3/NO2.N CYANIDE WR21-1 SOLIDS SOLIDS CHLORIDE SULFATE NO3/NO2.N CYANIDE WR2DL		Metals in \ Results in \	Water ug/L				WATER MAT	RIX ANALYSES							
92.7 J 3.70 10.20 J 9.70 U 6.83 U 10.70 Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 335 < 5.0 157 0.39 NR	FIELD	As	æ	ర	රි	Ö	రె	F.	H ₈	Mn	Z	£	ę	Ħ (RDNESS CALC.
Wet Chemistry Results in mg/l TOTAL TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 335 < 5.0 157 0.39 NR	25-005-GW-1	92.7 J	3.70	10.20 J	9.70 U	6.83 U	10.70	297	0.038 U	858 Nat Detected, J. E	12.7 U stimuted Quantity, X · 0	======================================	30.7 U	2050	203(L)
TOTAL DISSOLVED SOLIDS CHLORDE SULFATE NO3/NO2-N CYANIDE WR2DUP - Duplicate of sample 25-005-WR-2. WR2DUP - Duplicate of sample 25-005-WR-2. WR2DUP - Duplicate of sample 25-005-WR-2. WR2DUP - Duplicate of sample 25-005-WR-2. WR2DUP - Duplicate of sample 25-005-WR-2.		Wet Chemistry Results in mg/l					WRI	- Composite of subsar	mples WR1A through	110.	LEGEND		4		
5-GW-1 335 < 5.0 157 0.39 NR	FTELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDB		- Composite of subsar KGROUND - From the DUP - Duplicate of sar	mples WR3A, 3B, sm s Red Water Mine (2 mple 25-005-WR-2.	ad 4. !5-007-SS-1).		D C# 170 - 140	uschange.		
	5-GW-1	335	< 5.0	157	0.39	NR III									

Mine/Site Name: Red Water	County: Lewis and Clark
Legal Description: T 8N R 5W	Section(s): NW 1/4, Sec. 4
Mining District: Rimini	Mine Type: Hardrock/Au, Ag, Pb
Latitude: N 46° 28' 30"	Primary Drainage: Tenmile Creek
Longitude: W 112° 14' 42"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Tenmile Creek
Quad: Chessman Reservoir	Date Investigated: July 13, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>25-007</u>
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 7000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 4010J to 8260J mg/kg

Mercury: 0.327 to 0.499 mg/kg

Copper: 79.6J to 96J mg/kg

Lead: 2140J to 2290J mg/kg

Antimony: 43J mg/kg Zinc: 678 mg/kg

- There was one adit discharge associated with this site. The discharge flowed at approximately 29 gpm across WR-1 and then flowed into Tenmile Creek. The discharge pH was measured at 6.79 and the specific conductance was 203 umhos/cm. The adit discharge sample exceeded MCL/MCLGs for arsenic, cadmium, and antimony. The sample exceeded acute aquatic life criteria for cadmium and zinc, and chronic aquatic life criteria for cadmium, lead, and zinc.
- There was an occupied residence on the north end of this site. A sample of the residence's domestic water supply well did not exceed any of the MCLs or MCLGs.
- Tenmile Creek flowed along the base of the waste rock dumps, approximately 200 yards above a City of Helena drinking water supply intake. Surface water samples collected did not document any observed releases to the creek. There were no MCLs or MCLGs exceeded at the time of this sampling. No aquatic life criteria were exceeded that could be directly attributed to this site. The stream sediment samples collected in Tenmile Creek did document an observed release of lead.
- The discharging adit was an HMO.

Red Water PA# 25-007 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/13/93

- A	Metals in soils	Siic				SOLID MAT	SOLID MATRIX ANALYSES	G						
	Results per	Results per dry weight basis	asis											
FIELD D	As (mg/Kg)	As Ba (mg/Kg) (mg/Kg)		Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mri (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sh	Zu	CYANIDE
25-007-SE-1	350 J	43.6	5	6.4	3.6 J	======================================	9230	*=====================================	300			# :		(mg/kg) ========
25-007-SE-2	167 J 8260 J	21.6	2.6	8.6	1.3 U	11.1 J	2390	0.079	478	יי ר מים	8 2	3 =	<u>4</u> 8	œ g
25-007-WR-2	4010 J	36.6	ດ ບໍ່ເກ		1.2 C	7 96 F	17200	0.327	699	. 4 . J	2140)	. t	8 <u>7</u> 9	¥ &
)))))	ţ	. J.	7 0.0	22400	0.499	661	4	2290 J	17 J	£	ž
BACKGROUND	ال 84	94.6	2.5	11.9	7.4 J	21 J	16200	0.053	1130	8	4	9	167	
									U - Not Detected; J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	K - Outlier for Accum	acy or Precision; N	R - Not Requested	
	Acid/Base Accounting	Accounting											•	
FIRID	TOTAL	TOTAL SULFUR	NEUTRAL.	SULFUR ACID BASE	SULFATE	PYRITIC	ORGANIC	PYRITIC SULFUR	SULFUR ACID BASE					
	*	v/1000t			SULFUR	SULFUR	SULFUR	ACID BASIE V1000t	POTENT.					The second of th
	0.95 0.57	29.7 17.8	9.27 2.2	-20 0.45 -16 0.33	0.45 0.33	0.05	0.33	5.31 1.56	3.96					
								}						

	Metals in Water Results in ug/L	Water ug/L				WATER MAT	WATER MATRIX ANALYSES							
FIELD D	As	B	8	පී	ඊ	Ö	F.	H.	Mn	Z	£	ŧ	, H	HARDNESS CALC.
25-007-GW-1 25-007-GW-2 25-007-GW-3 25-007-SW-1 25-007-SW-2	131 14.3 12.62 J 3.89 J 3.95 J	44811	73.90 2.57 U 2.57 U 2.57 U 2.57 U	13.80 9.70 U 9.70 U 9.70 U 9.70 U	6.83 U 6.83 U 6.83 U 0.83 U U	16.00 49.30 49.40 11.80	6160 11.8 U 20.8 JX 321 JX 242 JX	0.038 U 0.073 0.038 U 0.160 0.160	6250 J 15 J 23.7 64.4 48.5 U · Not Detected J · J	6250 J 12.7 U 1.02 J 33.1 14100 J 15 J 12.7 U 0.72 U 30.7 U 11 J 23.7 12.7 U 3.71 30.7 U 20.1 J 64.4 12.7 U 6.3 30.7 U 201 J 48.5 12.7 U 3.4 30.7 U 157 J U-Na Dateclet J - Entire Manufact Quantity X : Outling for According 10.00 J 157 J	1.02 J 0.72 U 3.71 6.3 3.4	33.1 30.7 U 30.7 U 30.7 U	14100 J 190 1410 J 190 20.1 J 98.8 201 J 16.2 157 J 15.7	190 190 97 98.8 16.2
FIBLD ID. 25-007-GW-1 25-007-GW-2	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS 315	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		SEI - Downgradient of site, just across from house and shed. SE2 - Approx. 25' upgradient of SE end of waste rock dump 1. WR1 - Composite of subsamples WR1A through 1E. WR2 - Composite of subsamples WR2A, 2B, and 2C. BACKGROUND - From the Red Water Mine (25-007-SS-1).	s, just across from ent of SE end of w mples WRIA thro mples WR2A, 2B,	house and shed. raste rock dump 1. ragh 1E. and 2C. (25-007-SS-1).	LEGEND	GW1 - Discharge from the n GW2 - Residential well, 400 GW3 - QA/QC duplicate of SW1 - Same as sample SE1. SW2 - Same as sample SE2.	GWI - Discharge from the mouth of adit #1. GW2 - Residential well, 400 downgradient from site. GW3 - QA/QC duplicate of 25-007-GW-2. SWI - Same as sample SE1. SW2 - Same as sample SE2.	th of adit #1. wingradient from	n site
25-007-GW-3 25-007-SW-1 25-007-SW-2	88 89 60 60	,	2027	, , , , ,	Z Z Z Z									

Mine/Site Name: Valley Forge/Susie	County: Lewis and Clark
Legal Description: T 9N R 5W	Section(s): NE 1/4, S 1/2, Sec. 33
Mining District: Rimini	Mine Type: Hardrock/Au, Ag, Pb
Latitude: N 46° 29' 40"	Primary Drainage: Tenmile Creek
Longitude: W 112° 14' 04"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Tenmile Creek
Quad: Chessman Reservoir	Date Investigated: July 13, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>25-008</u>
Organization: Pioneer Technical Services, Inc.	

- This site was located in the town of Rimini.
- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 6900 cubic yards. WR-1, the upper dump constitutes approximately 1100 cubic yards of the total volume. WR-1 was reclaimed under the MDSL Abandoned Mine Reclamation Program. WR-2 was partially covered by residential lawns and was bordered by Tenmile Creek. The following elements ere elevated at least three times background:

Arsenic: 21,500J mg/kg

Mercury: 0.886 mg/kg

Antimony: 71J mg/kg

Copper: 167J mg/kg

Lead: 9870J mg/kg

Zinc: 757 mg/kg

- A seep emanated from the base of WR-1 and flowed along the side of WR-2 prior to discharging into Tenmile Creek. This seep was probably an adit discharge. Perforated pipe was installed in the seep area as part of the reclamation project to concentrate the flow. At the time of this investigation, the seep was flowing at approximately 20 gpm with a pH of 5.70 and a specific conductance of 379 umhos/cm. A sample collected at the discharge of the pipe exceeded MCL/MCLGs for arsenic, cadmium, and antimony, as well as acute aquatic life criteria for arsenic, iron, cadmium, and zinc, and chronic aquatic life criteria for arsenic, cadmium, mercury, and zinc.
- There was one domestic water supply well within 100 feet of WR-1. Although the water
 in this well exhibited a low pH (5.31) and alkalinity (0 mg/l), the sample did not exceed
 any of the MCLs or MCLGs.
- This site was located below the City of Helena drinking water intake. An observed release to Tenmile Creek was documented for arsenic, which was directly attributable to the site. Although several acute and chronic aquatic life criteria were exceeded for several elements in Tenmile Creek, none could be attributed to the site.

Valley Forge/ Susie PA# 25-008 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/13/93

))		Results per dry weight basis											
	Ba (mg/Kg)	Cd (mg/Kg)	Со (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Ke)	CYANIDE (me/Ke)
25-008-SE-1 212 J 25-008-SE-2 151 J 25-008-WR-1 21500 J		5.3 5.1	ı	6.3 J 3.2 J 2.8 J	28.1 J 14.1 J 167 J	13900 5480 35000	0.024 0.036 0.886	1040 619 711	9 9 9 9	181 J 158 J 9870 J	9 UJ 30 6 UJ 22 71 J 75	301 220 757	AN AN
BACKGROUND 87 J	84.6	2.5	9.11	7.4 J	21 J	16200	0.053	1130 U - Not Detected: J -	1130 8 J 144 J 6 UJ 167 U · Not Detected 1 · Estimated Quantity, X · Outlier for Accuracy or Precision; NR · Not Requested	144 J K-Outlier for Accuru	6 UJ	167 R - Not Requested	
Acid/Base	Acid/Base Accounting	•											
TOTAL FIELD SULFUR D %	TOTAL SULFUR NEUTRAL. ACID BASE SULF. SULFUR ACID BASE POTENT. POTENT. SULF. % v1000t v1000t v1000t %	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t			ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
25-008-WR-1 1.04	32.5	96.2	63.7	0.26	0.2	0.58	6.25						

	Metals in Water Results in ug/L	/ater ig/L				WATER MA	WATER MATRIX ANALYSES							
FIELD D	As	Ba	ව PJ 8g	පී		S	Fe.		Mn	ž	ያ	ક્ર	Zo (m	HARDNESS CALC. Zo (me CaCO3L.)
25-008-GW-1 25-008-GW-2 25-008-SW-1 25-008-SW-2	27700 J 6.72 J 40.74 J 5.61 J	2.01 U 54.00 10.00 10.60	91.80 J 2.57 U 5.17 J 4.30 J	64.90 9.70 U 9.70 U 9.70 U	10.20 6.83 U 6.83 U 6.83 U	33.80 11.00 12.60 12.70	171000 JX 491 JX 425 JX 233 JX	0.150 0.038 U 0.140 0.120	ii	14500 43.6 13.2 53.6 27200 J 31.4 12.7 U 8.98 30.7 U 20.9 J 79.5 12.7 U 4.87 30.7 U 277 J 64.4 12.7 U 4.55 30.7 U 248 J U - Not Detected J - Entimated Quantity, X - Outlier for Ancuracy or Precision, NR - Not Requested	13.2 13.2 8.98 4.87 4.55	53.6 30.7 U 30.7 U 30.7 U	27200 J 921 20.9 J 250 277 J 17.9 248 J 17.7	921 250 17.9 17.7
	Wet Chemistry Results in mg/l					L							-	·
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SE2 - About 25' below confluence with seep in Tenmile Creek. SE2 - Upstream of bridge on Tenmile Creek; 25' upstream of waste rock dump 2. WRI - Composite of subsamples WR 2A and 2B.	fluence with seer n Termile Creek; te rock dump 2. riples WR 2A and	in Termile Creek.	LEGEND	GW1 - From mouth of pipe dump 1. GW2 - Residential well; 100 SW1 - Seme as sample SB1.	GWI - From mouth of pipe at base of waste rock dump 1. GWZ - Residential well; 100 North (downgradient). SWI - Same as sample SRI.	base of waste ro Vorth (downgrad	ck lient).
25-008-GW-1 25-008-GW-2 25-008-SW-1 25-008-SW-2	2010 1020 64 76	× × 5:0 5:0 5:0	1170 575 11	 0.05 1.4 0.05 0.05 0.05 0.05 	X X X X		BACKGROUND - From Red Water Mine (25-007-SS-1).	ed Water Mine (2	(5-007-88-1).		SW2 - Same as sample SE2.	sample SE2.		

Mine/Site Name: Lower Tenmile	County: Lewis and Clark
Legal Description: T 9N R 5W	Section(s): NW 1/4, SE 1/4, Sec. 3
Mining District: Rimini	Mine Type: Hardrock/Unknown
Latitude: N 46° 33' 52"	Primary Drainage: Tenmile Creek
Longitude: W 112° 13' 13"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Tenmile Creek
Quad: Black Mountain	Date Investigated: July 15, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>25-030</u>
Organization: Pioneer Technical Services, Inc.	•

• The volume of tailings associated with this site could not be accurately determined during the investigation because the area has been completely revegetated. The volume was grossly estimated at 13,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3,470 mg/kg

Cadmium: 10.6 mg/kg

Copper: 21J mg/kg

Mercury: 0.242 mg/kg

Lead: 2,410 mg/kg

Zinc: 654 mg/kg

- No MCL /MCLG exceedances were observed in groundwater or surface water samples
 collected at this site. Surface water, which flowed directly through the reclaimed tailings
 area, exceeded acute water quality criteria for copper and zinc in both upstream and
 downstream sample. Chronic water quality criteria were exceeded for copper, lead, and
 zinc in both upstream and downstream samples, indicated the presence of an upstream
 contaminant source.
- An observed release to surface water was documented for lead and arsenic in sediment; however, the concentration of arsenic in the surface water did not exceed any established standards. The chronic water quality criteria was exceeded for lead in both upstream and downstream samples. An observed release to groundwater was documented for zinc; however, the concentration of zinc in the groundwater did not exceed any established standards.
- Residence was located on the reclaimed tailings.

Lower Tenmile PA# 25-030 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 7/15/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	is: si			SOLID M	SOLID MATRIX ANALYSES	SES		-				
FIELD D	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
25-030-SE-1 25-030-SE-2 25-030-TP-1	111 715 3470	39.3 87.9 27.1	,	7.2 4.8 3.8	3.8 2.9 8.8	53.5 30.2 88.3	8170 7120 12300	0.141 0.111 0.242	801 837 313	3 U 2 U 3 U	24 258 2410	# 3 3 _	488 399 654	NR NR NR
BACKGROUND	87 J Acid/Base /	87 J 84.6 Acid/Base Accounting	2.5	6.11	7.4 J	21 J	16200	0.053	1130 U-Net Detected; J-	1130 8 J 144 J 6 UJ 167 U-Not Detected, J Estimated Quentity, X Outlier for Accuracy or Precision, NR Not Requested	144 J • Outlier for Accuracy	6 UJ	167 Vot Requested	K K
TOTAL TOTAL SULFUR FIELD SULFUR ACID BAS D N 10000	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE SULFATE POTENT SULFUR V1000t %	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
25-030-TP-1	0.07	2.19	3.39		0.05	0.01	0.01	0.31	3.08					

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	E	Metals in Water Results in ug/L	Nater ug/L				WATE	WATER MATRIX ANALYSES	ES						
25.5 J 2.80 2.57 U 9.70 U 6.83 U 24.80 92 0.038 U 4.08 U 12.7 U 0.86 J 30.7 U 757 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12.5 U 12.7 U 0.75 J 30.7 U 12.5 U 12	D D	A3	ii 13 14 11 11	Cq	రి	ර්	ਹ		Hg	·.	Z	æ	&	5	CALC.
TOTAL TOTAL TOTAL SULEATE NO3/NO2-N CYANIDE SULEATE NO3/NO2-N CYANIDE SULEATE SOLDS	25-030-6W-1 25-030-6W-2 25-030-8W-1 25-030-8W-2	25.5 J 5.30 J 16.5 J 20.4 J		2.57 U 2.57 U 2.57 U 2.57 U	9.70 U 9.70 U 9.70 U 9.70 U	6.83 U 6.83 U 6.83 U 0.83 U	24.80 1.55 (5.33 5.33	. 724	0.038 U 0.038 U 0.038 U 0.038 U	4.08 U 70.4 4.08 U 4.08 U	12.7 U 12.7 U 12.7 U 12.7 U 12.7 U	0.86 J 0.75 J 2.07 J 6.15 J	30.7 U 30.7 U 30.7 U 30.7 U	7.57 U 82.9 126 163	60.6 90.5 26.4 27.7
TOTAL DISSOLVED SULFATE NO3/NO2-N CYANIDE SOLIDE CHLORIDE SULFATE NO3/NO2-N CYANIDE Composite of tuitings. SE2 - Downgradient of tuitings. SE2 - Downgradient of tuitings. SE2 - Downgradient of tuitings. SE2 - Downgradient of tuitings. SE3 - Downgradient of tuitings. SE2 - Downgradient of tuitings. SE2 - Downgradient of tuitings. SE2 - Downgradient of tuitings. SE3 - Downg		Wet Chemistry Results in mg/l						•			i i	·			
222 < 5.0 46 < 0.05 NR BACKGROUND - From the Red Water Mine (25-007-38-1). 285 9.3 50 < 0.05 NR 72 < 5.0 11 < 0.05 NR 79 < 5.0 11 < 0.05 NR	FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	TOTAL		181 - Upgradient of tailir 182 - Downgradient of ta 191 - Composite of subsa	ege. ilings. mples TP1A and 1E	ori ori	LEGEND	GWI - Resider GW2 - Residen SWI - Same as	ntial well, upgrad ntial well used for	lient. r irrigation, don	mgradient
	25-030-GW-1 25-030-GW-2 25-030-SW-1 25-030-SW-2	222 285 72 79	× × 9.30	8822	× × × 0.05 0.05 0.05 0.05	X X X X		ACKGROUND - From	the Red Water Min	o (25-007-88-1)		SW2 - Same as	s sample SE2.		

Mine/Site Name: Armstrong	County: Lewis and Clark
Legal Description: T 8N R 5W	Section(s): NW 1/4, NW 1/4, Sec. 6
Mining District: Rimini	Mine Type: Hardrock/Pb, Ag
Latitude: N 46° 28' 50"	Primary Drainage: Tenmile Creek
Longitude: W 112° 17' 13"	USGS Code: 10030101
Land Status: Public	Secondary Drainage: Minnehaha Creek
Quad: Three Brothers	Date: July 15, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>25-102</u>
Organization: Pioneer Technical Services, Inc.	

- There were no tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 15,000 cubic yards. The following elements were elevated at least three times background:

Antimony: 41 to 43 mg/kg Zinc: 614 to 724 mg/kg

- There was one adit discharge associated with this site. Field parameter measurements indicated unimpaired water quality.
- Minnehaha Creek was located in the drainage approximately 300 feet below the lower mine workings. No water samples were collected because of the distance from the site and lack of surface water runoff. Sampling during early spring snow melt/runoff events could possibly document impacts to the creek. XRF screening of stream sediments indicated no impacts to the creek attributable to this site.
- There was one hazardous mine opening, the upper adit, and five hazardous structures associated with this site. There was one residence on site that appeared to be used occasionally for recreational use.

Armstrong PA# 25-102 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/15/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD O	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg) (m		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Kø)	CYANIDE
25-102-WR-1 25-102-WR-2	1750 2670	31.3 26.5	0.60	3.5 2.1 U	4.3	470 300	27700 J 30200 J	0.527 J 0.422 J	339 J 181 J	H	ii	#I 	614	N N N
BACKGROUND	87 J	84.6	2.5	11.9	7.4 J	21 J	16200	0.053	1130 U - Not Detected; J - E	1130 8 J 144 J 6 UJ 167 U - Net Detector, J - Estimated Quantly, X - Outlier for Accuracy or Precision; NR - Not Recurrent	144 J - Outlier for Accuracy	6 UJ	167 Not Requested	χ Z
	Acid/Base	Acid/Base Accounting										1	-	
FIBLD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR		ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000	WR1 - Comp WR2 - Comp BACKGROUN WR2DUP - D	LECEND WRI - Composite of subsamples WRIA, 1B, 2A, and 2B WR2 - Composite of subsamples WR3A, 3B, 4A, and 4B BACKGROUND - From the Red Water (25-007-SS-1). WR2DUP - Duplicate of sample 25-102-WR-2.	les WR1A, 1B, les WR3A, 3B, ed Water (25-00 ole 25-102-WR-;	2A, and 2B. 4A, and 4B. 77-SS-1).	
25-102-WR-1 25-102-WR-2DUP 25-102-WR-2	1.12	34.4 35 34.4	1 19		0.94 0.77 0.72	0.04 0.1 0.09	0.12 0.25 0.29	1.25 3.12 2.81	.3.43 4.4 4.22					

Mine/Site Name: Beatrice	County: Lewis and Clark
Legal Description: T 8N R 6W	Section(s): NW 1/4, NW 1/4, Sec. 1
Mining District: Rimini	Mine Type: Hardrock/Au, Ag
Latitude: N 46° 28' 53"	Primary Drainage: Tenmile Creek
Longitude: W 112° 18' 10"	USGS Code: 10030101
Land Status: Public	Secondary Drainage: Minnehaha Creek
Quad: Three Brothers	Date Investigated: July 13, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # 25-103
Organization: Pignogr Tophnical Convices Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 5,185 cubic yards. The following elements were elevated at least three times background:

Copper: 95.8JX to 342JX mg/kg Lead: 600J to 2230J mg/kg

Mercury: 0.265J to 0.997J mg/kg Antimony: 65J mg/kg

- Three of the adits had minor discharges which, when combined, made up the majority of the flow in an unnamed tributary to Minnehaha Creek. No MCL/MCLG exceedances were observed. Acute aquatic life criteria were exceeded for iron, mercury, cadmium, copper, lead, and zinc; however, acute aquatic life criteria were exceeded for mercury, copper, and zinc in the upstream sample also. Chronic aquatic life criteria were exceeded for cadmium, copper, and zinc; however, chronic aquatic life criteria were exceeded for copper and zinc in the upstream sample. Adit discharge pH measurements were 4.34, 6.51, and 5.06 for Adit #1, Adit #2 and Adit #3, respectively. pH measurements for WR-1 seepage and WR-2 seepage were 3.81 and 6.11, respectively.
- The unnamed tributary to Minnehaha Creek cut directly through the toes of WR-1 and WR-2. This caused high turbidity and stained the streambed red. Observed releases to surface water were documented for copper and lead. Chronic aquatic life criteria exceedances for lead were attributed to the site; the exceedance for lead persisted in the sample collected farthest downstream (SW-5).
- The open shaft and open adit were accessible and potentially hazardous.

Beatrice PA# 25-103 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/13/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES	1 2						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Ke)	Pb (me/Ke)	Sb (me/Ke)	Zn (ma/7.2)	CYANIDE
26 103 GE 4					## ## ## ## ## ## ##	11 11 11 11 11						i	(See Allen)	(mg/kg)
75 400 01 0	- (30.2	٦ -	5.4	4.3 E.3	2 4	9330	0.066	Š	2	- *;			
Z2-103-SE-3	T 88	22.5	2 2	8.6	3.2	207 JX	26500	0.00	9 6	<u> </u>	4 (3.	9/	Z Z
25-103-SE-4	26 J	25.7	2 5	16.7	26	XI. CAC	24300	0.030	0.07	Yr 6	239	14)	61 J	Z Z
25-103-SE-5	22 J	11.4	2.4.1	5.4		× 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22,00	0.00	054	a cux	183 J	3 8	7 89	Z
25-103-WR-1	4	31.3	0.7.1) (C	× × × ×	00400	0.084	372	S S	340 J	ე დ	200 J	Z.
25-103-WR-2	41 J	101	- 70	=	- 7	ς <u>Σ</u>	70000	COL.0	88.3	3 CIX	247 J	7 U	28 J	Z.
25-103-WR-3	- S	17.7	2 8 6	4 4	- c	83.0 S	16/00	0.265 J	88.3	3 MX	2230 J	14 J	55	ď
	•		ò) ř	7.	342 JA	39100	0.997 J	282	S JX	C 009	65 J	175 J	ž
BACKGROUND	87 J	84.6	2.5	11.9	7.4 J	21 J	16200	0.053	1130	8	44	6 03	167	Q
·	Acid/Base Accounting	scounting							U - Not Detected, J .	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accuracy	y or Precision; NR - ?	Not Requested	•
TELD O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT:					
25-103-WR-1 25-103-WR-2 25-103-WR-3	0.31 0.89 0.21	9.68 27.8 6.56	-0.9 -0.8 -0.8	-11 -30 -7.4	0.19 0.51 0.14	0.02 0.08 <0.01	0.1 0.3 0.08	0.62 2.5 0	4.34 0.84					

	Metals in Water		Results in ug/L			WATER MA	WATER MATRIX ANALYSES							
FIELD			•										HA	HARDNESS
D	As	BB 11	Cd	ප	ර	Ö		Hg	Mn	Ž	.	S	<u>.</u>	CALC.
25-103-SW-1	2.99	8.43	2.57 U		9	9.20		0.120	11	12.7 U	0.77	30.7.11		
25-103-5W-2	<u>5</u> 5	8.20 7.33	2.57 U	0.00	6.83 C C	121	1970	0.140	307 J	12.7 U	10.4 J	30.7	4.00	
25-103-SW-4	. 46	2 2	257 11	5 C		1/5	2710	0.170	464 J	12.7 U	10.8 J	30.7 U	119 J	609
25-103-SW-5	2.13	8	2.57 U	0 02.6	2 2 2	2 4	35		388	12.7 U	7.85 J	30.7 U	107 J	41.3
		ļ. -)	3	ř	2	2	14.1 J	12.7 U	6.16 J	30.7 U	16.3 J	13.8
2									U - Not Detected, J - I	Satimated Quantity, X	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Pracinion; NR - Not Requested	or Precision, NR - N	Vot Requested	
	Wet Chemistry	Œ.	Results in mg/l											
	TOTAL)			_								
FIELD	DISSOLVED					SEI	SE1 - Upgradient of all drum and discharges	no and dischange	-	LEGEND				-
G.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		SE3 - Downstream of waste rock dump 1 and adit #1.	te rock dump 1 and	1 adit #1.		SW1 - Same as sample SE1. SW2 - Discharse from edit #1	s sample SE1.		
25-103-SW-1 25-103-SW-2	86 64	5.0 5.0	12	H	 XX 	-	SE4 - Downstream of waste rock dump 2 and adit #2. SE5 - Upstream from adit #1, down from waste rock dump 4 and 5.	te rock dump 2 and #1, down from was	1 adit #2. te rock dump 4 and		SW3 - Same as sample SE3.	sample SE3.		
25-103-SW-3	41.	200	25	, v	žŽ	WR	WR1 - Composite of subsamples WR1A through 1C.	unples WR1A thror	ugh 1C		SW5 - Same as sample SE5.	sample SE5.		
25-103-SW-4	115	< 5.0	51	× 0.05	X.	WR3	WR3 - Composite of subsamples WR4A through AC	moles WR4A throu	2B.					
25-103-SW-5	2	v 20.	12	× 0.05	æ	BAC	BACKGROUND - From the Red Water Mine (25-007-88-1).	e Red Water Mine	(25-007-88-1).					
						_								=

Mine/Site Name: Red Mountain	County: Lewis and Clark
Legal Description: T 8N R 5W	Section(s): SE 1/4, SW 1/4, Sec. 4
Mining District: Rimini	Mine Type: <u>Hardrock/Pb, Zn, Cu, Ag, Au</u>
Latitude: N 46° 28' 15"	Primary Drainage: Tenmile Creek
Longitude: W 112° 13' 15"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Tenmile Creek
Quad: Chessman Reservoir	Date Investigated: August 19 and 20, 1993
Inspectors: Bullock, Belanger, Pierson	P.A. # <u>25-019</u>
Organization: Pioneer Technical Services, Inc.	
/Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 13,300 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3900 to 19,000 mg/kg

Lead: 2790 to 7860 mg/kg

Antimony: 33 to 164 mg/kg

Zinc: 373 to 489 mg/kg

- The only potential adit discharge was a seep at the toe of WR-1 that discharges into the man-made flume. The flume supplied water to Chessman reservoir. This seep was discharging at a flow of less than 1 gpm, a pH of 6.67, and a specific conductance of 190 umhos/cm. The sample of this discharge exceeded the MCL for arsenic as well as the acute and chronic aquatic life criteria for cadmium, copper, lead, and zinc.
- A small intermittent tributary to Tenmile Creek contacted several of the waste rock dumps. Observed releases were documented for arsenic, lead, and zinc. No MCL/MCLGs were exceeded that were directly attributed to this site. The acute aquatic life criteria was exceeded for copper and could be directly attributed to this site.
- A water supply flume for the Chessman Reservoir crossed this site. Waste rock from WR-5 and WR-1 sluff or erode into this flume and introduced into the water supply.
- There was one open shaft that was an HMO and one hazardous structure associated with this site.

Red Mountain (13) PA# 25-019 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/19/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES	v ^						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Re)	Sb (me/Ke)	Zn	CYANIDE
25,019,SE-1	7.4 R	9 90		∦ .		11 11 11 11 11 11	81 81 81 81 81 81 81 81 81	## ## ## ## ## ## ## ## ## ## ## ## ##			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(Supple)	(1118/148) 1====================================	(mg/kg)
2000	5 6	9	5.5	9.52 J	2.53 J	28.9	8480	0.04	1020	1 77 1	8	11 04 9		
Z2-019-SE-Z	67.4	14.1		2.33 J	1.46 U	2.56	330		5 6	7 (02.3	0 1	2/2	X Z
25-019-SE-5	5550	13.1	1.0 U.1	1.6.	1 41 11	110	5	0.032	215	20.20	80.8	7.42 U	50.5	ž
25-019-SE-6	84.1	21.7	100		2 26 5	5 - 7	9	0.15/	1/6	2.46 ∪	2330	47.2	194	X X
25-019-WR-1	3900	0 0	9 5	2 4. 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 5	6.6 C	4420	0.058	<u>8</u>	2.37 U	129	6.88 ∪	73.3	2
25 010 WD 2	5 5	7.00	3 :	2 (٠	C: /	15400	0.421	404	2.3 U	2790	33	Ę	2
Z-NV-C10-CZ	3	4.00	0.9 UJ	1.66	1.28 U	23.2	20200	1.16	48.4	2 7 7	2007	3 6	761	¥ !
25-019-WR-3	7010	29.1	0.8 U	3.08	1.27	136	17000		5 5	2.24	000	7.00	189	Z Z
25-019-WR-4	4190	19	0.7 111	- 680	- a	2 2	36.4	b (79/	3.17 J	6120	164	489	Z
		•	3	20.0	8	Š	9004	0.572	33.1	1.71 U	7860	93.8	373	ž
BACKGROUND	103	63.4	0.8 UJ	6.86 J	4.35 J	15.4	9030	0.047	1610	6.69	258	9.78	117	Z
-	Acid/Base,	Acid/Base Accounting							U - Not Detector, J .	U - Not Detected, J - Batimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	t - Outlier for Accura	cy or Precision; NR	- Not Requested	
		TOTAL		SULFUR				Cimidad	!					
i	TOTAL	SULFUR	NEUTRAL.	ACID BASE	SULFATE	PYRITIC	ORGANIC	SULFUR	ACID BASE					
riero	SULFUR	ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	POTENT.					
	**************************************	V1000t	V1000t	1/1000t	*	*	*	t/1000t	10001,4					
25-019-WR-1	0.25	7.81	-0.7	-8.5	0.24									
25-019-WR-2	1.92	8	6	78	9	600	5	1 0) (0.0					
25-019-WR-3	0.56	17.5	4.	6	3 5	70.0	, c	1.07 1.05	-32.3					
25-019-WR-4	0.62	19.4	-2.7	-22	0.47	0.02	0.13	0.62	.3.54 3.34					

	Metals in Water		Results in ua/L			WATER MAT	WATER MATRIX ANALYSES							
FIELD			i h										_	HARDNESS
0	As	Ba	25	రి	ರ	రౌ	Fe	Hg	W	Z	£	£	Z,	CALC.
25-019-GW-1 25-019-SW-1	71.2	2.27		9.7 U	6.83 U	14.2 J	489	0.12 U)) 	1020 16.5 J	52.6 J	30.7 U	1470 J	44.4
25-019-SW-2	13	2.9	2.57 U	0 7.6	88.0	S. 75	<u> </u>	0.12	20.9	12.7 U	3.36 J	30.7 U	23.2 J	o
25-019-SW-3	45.8	5.33	15.4	9.7 U	6.83 U	199 199	1210	0.12	4.73	12.7 U	2.39 J	30.7 U	18.6	7.8
25-019-SW-4	3.66	4.27	2.57 U	9.7 U		1.63	223	0.2 J	7.57	12.7 U	3.49 J	30.7 30.7 U	2700 J 23.2 J	27 8
									U - Not Detected, J - 1	U - Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	· Outlier for Accuracy	or Precision; NR - N	Vot Requested	,
	Wet Chemistry	ž	Results in mg/l							LEGEND				
FIELD 1.D.		CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	SE1 - SE2 - SE5 -	SE1 - Downgradient of waste rock dump 1,2, and 3. SE2 - Upgradient of waste rock dumps 1, 2, and 3. SE5 - Downgradient with sample SW3.	ste rock dump 1,2, ar rock dumps 1, 2, ar ample SW3.	and 3. nd 3.		GW1 - Seepage from waste SW1 - Same as sample SE1.	GW1 - Seepage from waste rock dump 1. SW1 - Same as sample SE1. SW7 - Same as sample SE1.	k dump 1.	<u> </u>
25-019-GW-1 25-019-SW-1 25-019-SW-2 25-019-SW-3 25-019-SW-4	65 84 65 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	× × × × × × × × × × × × × × × × × × ×	^ ^ 5 ~ ~ ~ 6	0.050.050.050.20.51	X		SE6 - Upgradient with sample SW4. WR1 - Composite of subsamples WR1, 2A, and 2B. WR2 - Sample of the WR3 subsample. WR3 - Composite of the subsamples WR4A, 4B, 5, 6A, and 6B. WR4 - Composite of the subsamples WR7A, 7B, 7C, 8A, and 8B. BACKGROUND - From the Red Mountain Mine (25-019-85-1).	ple SW4. mples WR1, 2A, at subsample. bsamples WR4A, 4 bsamples WR7A, 7 bsamples WR7A, 7	nd 2B. IB, 5, 6A. and 6B. IB, 7C, 8A. and 8E. Inc (25-019-38-1).		SW4 - Upgradu	SW3 - Downgradient at Red Mountain N. SW4 - Upgradient, above aquiduct at Red Mountain N.	ountain N. uct at Red Moun	Z una

Mine/Site Name: Upper Valley Forge	County: Lewis and Clark
Legal Description: T 9N R 5W	Section(s): SE 1/4, NW 1/4, Sec. 33
Mining District: Rimini	Mine Type: Hardrock/Au, Ag, Pb
Latitude: N 46° 29' 30"	Primary Drainage: Tenmile Creek
Longitude: W 112° 14' 28"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Tenmile Creek
Quad: Chessman Reservoir	Date Investigated: August 20, 1993
Inspectors: Bullock, Belanger/Pierson	P.A. # <u>25-280 and 25-282</u>
Organization: Pioneer Technical Services, Inc.	
/Thomas, Dean & Hoskins, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 13,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 5380 to 121,000 mg/kg

Iron: 108,000

Lead: 7360 to 48,700 mg/kg

Zinc: 685J mg/kg

Copper: 134 to 645 mg/kg Mercury: 0.477 to 0.691mg/kg Antimony: 80.1 to 826 mg/kg

- There was one adit in the upper workings that may discharge during a spring snow-melt period. Water accumulated near the adit had a pH of 5.7 and a specific conductance of 560 umhos/cm.
- A small seep emanated from the toe of WR-1 and then flowed into the unnamed tributary to Tenmile Creek. At the time of this investigation, the seep discharge was less than 1 gpm, with a pH of 2.66 and a specific conductance of 2720 umhos/cm. The discharge exceeded MCL/MCLGs for arsenic, cadmium, copper, nickel, and antimony. Acute and chronic aquatic life criteria were exceeded for arsenic, cadmium, copper, lead, and zinc. The acute standard was also exceeded for iron.
- Observed releases were documented in the unnamed tributary for arsenic, copper, iron, lead, and zinc. The MCL exceedance for arsenic was attributable to this site. Acute and chronic aquatic life criteria were exceeded for arsenic, copper, lead, and zinc; all directly attributable to this site except for the chronic criteria exceedance for lead, which was also exceeded in the upstream sample. This unnamed tributary entered Tenmile Creek downstream from the City of Helena drinking water intake.

Upper Valley Forge PA# 25-280 and 25-282 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/20/83

	Metals in soils	<u>s</u>	: !			SOLID MAT	SOLID MATRIX ANALYSES							
	vesnirs ber	nesulis per ary weignt basis	<u>v</u>											
FTELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)			Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mø/Kg)	Ni (me/Ke)	Pb	88	Z,	CYANIDE
25-280-SE-1	6340	200	:	# .								(Jingy N.g.)	(mg/Kg)	(mg/Kg)
25-280-SE-2	92.6	37.7 J	23 J	3.37	6.32	414	28100	0.192	4040 J	3.95 U	2150	31.1	1610 J	X.
25-280-WR-1	27200	8.13 J	5.7 J	2.2 J	2.48	13.4	9100	0.031	412 J	4.63	98.6	6.41 U	233 J	ž
25-280-WR-2	2380	16.5 J	0.5 U	1.94	3.35	2 2	30300	0.477	575 J	2.47 U	7360	88.2	685 J	ž
25-280-WR-3	121000	1.82 J	1.7 J	3.81	1.33 U	. £	10800	0.386 0.691	28.7 J 7.86 J	2.38 U 2.47 U	8080 48700	80.1 826	287 J	ž ;
BACKGROUND	ال 87	84.6	2.5	11.9	7.4 J	21 5	16200	0.053	77		}		-	Ľ Ž
								}	3	0	4	9	167	œ Z
									U - Not Detected, J . E	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accuracy	or Precision; NR - P	Vot Requested	
	Acid/Base Accounting	counting												
		TOTAL		SULFUR				PYRITIC	OTTE TITE					
FIELD	TOTAL SULFUR	SULFUR ACID BASE	NEUTRAL. POTENT	ACID BASE	SULFATE	PYRITIC STILETED	ORGANIC	SULFUR	ACTO BASE					
А	- [t/1000t	% %	%	SULFUK %	ACID BASE	POTENT.					
25-280-WR-1	1.82	56.9	4.25			***************************************			i) 11 + 11 + 11 + 11 + 11 + 11 +					
25-280-WR-2	2.07	64.7	-3.7	8 8		0.87	0 0 12 12 13	12.5	8.25 2.05					
25-280-WR-3	9.29	290	7.4	295	4 0.04	2.79	11.8	87.2	-9-6- 8-1-8					

	Metals in Water Results in ug/L	Vater ig/L			-	WATER MATRIX ANALYSES	IX ANALYSES							
FTELD D	As	Ba	రౌ	රි		õ	F.	Ħ	Mn	Z	£	ŧ	,	HARDNESS CALC.
25-280-GW-1 25-280-SW-1 25-280-SW-2	23700 J 609 J 13.1 J		818 38.2 2.57 U	818 127 38.2 9.7 U 2.57 U 9.7 U	24.3 J 6.83 U 6.83 U	3710 J 160 J 1.55 U	184000 J 6820 J 72.6 J	0.12 U 0.12 U 0.12 U 0.12 U	0.12 U 21700 112 2150 33.6 8 0.12 U 1560 15.3 101 30.7 U 0.Net Decided 1. Edited Control of the control of the	112 15.3 12.7 U	2150 101 2.07	33.6 30.7 U 30.7 U	83300 5320 47.2	83300 381 5320 116 47.2 67.5
	Wet Chemistry									of an article of the state of t	a rrecilion, NR - Not	. Requested, ND - No I.	Data	
FIELD LD.		CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	SE1 - SE2 - WR1 -	SEI - Approx. 120' downgradient of waste rock dump 1. below confluence with seep. SE2 - Upgradient of site. WR1 - Composite of subsamples WR1A 1R 1C 2A 2R and 3	gradient of waste rewith seep.	ock dump 1.	LEGEND	GWI - Same as sample SEI. SW2 - Same as sample SE2.	sample SE1.		
25-280-GW-1 25-280-SW-1 25-280-SW-2	2310 235 138	ND 5.0	1330 134 28	v v 0.05 0.05 0.05	ND 1330 < 0.05 < 0.01 < 5.0 134 < 0.05 < 0.01 < 5.0 28 < 0.05 NR		WR2 - Composite of subsamples WR4 and 5. WR3 - Sample of the WR6 subsample. BACKGROUND - From the Red Water Mine (25-007-3S-1).	unples WR4 and 5 subsample.	(25-007-38-1).	,				

Mine/Site Name: SE SE S13	County: Lewis and Clark
Legal Description: T 8N R 6W	Section(s): SE 1/4, SE 1/4, Sec. 13
Mining District: Rimini	Mine Type: Placer/Au
Latitude: N 46° 26' 12"	Primary Drainage: Tenmile Creek
Longitude: W 112° 17' 12"	USGS Code: 10030101
Land Status: Public	Secondary Drainage: Monitor Creek
Quad: Three Brothers	Date Investigated: August 19, 1993
Inspectors: Bullock, Belanger/Pierson	P.A. # <u>25-294</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings or waste rock associated with this site.
- The volume of placer tailings associated with this site was estimated to be approximately 22,000 cubic yards. Sampling was focused on whether mercury contamination associated with amalgamation processes existed. Samples were collected from sediments underlying the rock piles. Mercury was the only element that exceeded the background sample by more than three times, but was not attributed directly to this site.
- Surface water samples collected in Monitor Creek did not document any observed releases. There were no MCL/MCLGs exceeded. Aquatic life criteria were exceeded for cadmium, copper, lead, and zinc in both the upstream and downstream samples, making the exceedances impossible to attribute to this site. There were also no observed releases documented from the sediment data.
- Active mining operations were in progress upstream from this site and may have been responsible for the aquatic life criteria exceedances as well as the visual impacts to Monitor Creek which included heavy sediment loading and an orange, iron-like precipitate.

SE SE Section 13 PA# 25-294 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BUILLOCK INVESTIGATION DATE: 08/19/93

CYANIDE (mg/Kg)	R R R	E E
Zn ng/Kg)	11 - 6 2	167 Not Requested
5	ii	6 UJ or Precision, NR-
		144 J utlier for Accumoy
	 	1130 8 J 144 J 6 UJ 167 U - Not Detected, J - Estimated Quantity, X - Outlier for Accumary or Precision, NR - Not Requested
		- Estim
Mn (mg/Kg)	94.3 J 80.3 J	1130 U - Not Detected
Hg (mg/Kg)	0.056 J 0.126 J 0.212 J	0.053
Fe (mg/Kg)	5290 J 5560 J 3570 J	16200
Cu (mg/Kg)	8.5 J 7.68 J 4.5 J	21 J
Cr (mg/Kg)	1.53 U 2.25 1.39	7.4 J
Co (mg/Kg)	2.18 U 2.42 U 1.96 U	11.9
Cd (mg/Kg)	0.6 U 0.5 U 0.5 U	2.5
Ba (mg/Kg)	7.44 J 6.37 J 12.1 J	86. 6.
As (mg/Kg)	9.48 J 10.3 J 5.86 J	87 J
FIELD D	25-294-SE-1 25-294-SE-2 25-294-SE-3	BACKGROUND
	As Ba Cd Co Cr Cu Fe Hg Mn Ni Pb Sb Zn (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	As Ba Cd Co Cr Cu Fe Hg Min Ni Pb Sb Zn (mg/Kg) (mg/K

	Metals in Water Results in ug/L	Water uo/L			-	WATER MATRIX ANALYSES	IX ANALYSES							
FIELD D	A	eg.	ਣ	රී	Ċ	ರೆ	Ŧ.	Ħ	Mn	ž	£	5	≖ <u>'</u>	HARDNESS CALC.
25-294-SW-1 25-294-SW-2	1.51 1.49 U	29.3 32.8	4.37 4.73	9.7 U 9.7 U	6.83 U 6.83 U	29.3 4.37 9.7 U 6.83 U 13.2 J 261 32.8 4.73 9.7 U 6.83 U 15.5 J 300	261 300	0.12 U 0.12 U	118	12.7 U 17.4 J	10.5 J	10.5 J 30.7 U 11.6 J 30.7 U	264 J 299 J	22 23.6
	Wet Chemistry Results in ma/l	~							- Not Detected 1 -	U - NOR L'MENTRE, J - EMETTRECO QUANTITY, X - Outlier for Accumicy of Precision; NR - Not Requested	- Outlier for Accura	icy or Precision, NR -	- Not Requested	
FIELD 1.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE	SE1 - 5 SE2 - 9 SE3 - P BACKG	 Sediment downgradient on Monitor Creek. Sediment upgradient on Monitor Creek. Placer tailings in seepage drainage. BACKGROUND - From the Red Water (25-007-89-1). 	ant on Monitor Creek on Monitor Creek age drainage. Red Water (25-007	.88-1).	LEGEND	SW1 - Dovngs SW2 - Upgadi	SW1 - Dovrngradient on Monitor Creek. SW2 - Upy adient on Monitor Creek.	or Creek. Sreek.	
25-294-SW-1 25-294-SW-2	81 < 5.0 29 0.16 NR 83 < 5.0 33 0.16 NR	< 5.0 < 5.0	29 33	0.16 0.16	N N N N N N N N N N N N N N N N N N N									

Mine/Site Name: Franklin County: Lewis and Clark Legal Description: T 10N R 4W Section(s): SE 1/4, NW 1/4, Sec. 11 Mining District: Scratch Gravel Mine Type: I lardrock/Ag, Cu, Au, Pb Latitude: N 46° 38' 22" Primary Drainage: Tenmile Creek Longitude: W 112° 04' 25" USGS Code: 10030101 Secondary Drainage: Tenmile Creek Land Status: Private Quad: Scratchgravel Hills Date Investigated: August 31, 1993 P.A. # <u>25-339</u> Inspectors: Tuesday, Flammang/Pierson Organization: Pioneer Technical Services, Inc./Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be 1,100 cubic yards.

The following elements were elevated at least three times background:

Cadmium: 5.22 mg/kg

Copper: 199 mg/kg

Lead: 1,250 mg/kg

Zinc: 832 mg/kg

 The volume of waste rock associated with this site was estimated to be 10,110 cubic yards. The following elements were elevated at least three times background:

Arsenic: 223 mg/kg Lead: 358 to 6,170 mg/kg

Cadmium: 4.10 mg/kg Zinc: 314 mg/kg

Copper: 128 to 1,190 mg/kg Mercury: 0.257 to 0.612 mg/kg

Antimony: 22.6 mg/kg

• The volume of CN heap leach material associated with this site was estimated to be 10,000 cubic yards. The concentration of cyanide in the material was measured at 0.366 mg/kg; additionally, the following elements were elevated at least three times background:

Cadmium: 3.00 mg/kg Zinc: 372 mg/kg Copper: 142 mg/kg Lead: 502 mg/kg

- There were no adit discharges, seeps, springs, or streams associated with this site. A grate placed over the shaft disallowed sampling of groundwater.
- Five potentially hazardous structures and one caving shaft were located on site. The majority of site was enclosed by barbed wire fences and locked gates.

Franklin Mine PA# 25-339 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER-TUESDAY INVESTIGATION DATE: 8/3/193

			II 40 40			
		CYANIDE (me/Ke)	0.366 0.666 NR NR	K K	of WR2C.	
		Zn (me/Ke)	# 2 ¥ 8 ¥ 7	76.4 Not Requested	LPI - Composite of subsamples LPIA, IB, and 2. LP3 - Sample of LP3. WR1 - Composite of the subsamples WR1 and 3A through 3D. WR2 - Composite of subsamples 2A through 2C and 5. BACKGROUND - On ridge SE of waste rock dump 1 and SW of WR2C. IPI - Composite of subsamples TPIA and 1B.	
		Sb (mg/Kg)	 6.15 NR 6.19 22.6 5.11 	< 6.98	LEGEND cles IP1A, 1B, mamples WR1 s ples 2A through SE of waste rock oles TP1A and 1	
		Pb (mg/Kg)	502 NR 1250 6170 358	36.3 X-Outlier for Accur	LPI - Composite of subsamples LPIA, 1B, and 2. LP3 - Sample of LP3. WR1 - Composite of the subsamples WR1 and 3A thrown WR2 - Composite of subsamples 2A through 2C and 5. BACKGROUND - On ridge SE of wrate rock dump 1 as IPI - Composite of subsamples TPIA and 1B.	
		Ni (mg/Kg)	7.8 NR 5.35 5.35 3.31	672 17.9 36.3 < 6.98 76.4 U-Not Detector, J Estimated Quantity, X Outlier for Accumpy or Presision; NR Not Requested	LPI - Composite of s LP3 - Semple of LP3 WR1 - Composite of WR2 - Composite of BACKGROUND - Or TPI - Composite of s	
		Mn (mg/Kg)	1360 NR 617 689 968	672 U - Not Detector, J -	PYRITIC SULFUR ACID BASE POTENT. V1000t	20.4 117 6.09 -49.2 2.95
SES		Hg (mg/Kg)	0.164 0.079 0.612 0.257	0.071	PYRITIC SULFUR ACID BASB V1000t	1.56 1.25 0.94 43.7 0
SOLID MATRIX ANALYSES		Fe (mg/Kg)	25800 NR 17500 37200 22500	23300	ORGANIC SULFUR %	0.36 0.08 0.11 0.97 0.56
SOLIDA		Cu (mg/Kg)	142 NR 199 190 128	29.7	PYRITIC SULFUR %	0.05 0.03 4.1 0.05
		Cr (mg/Kg)	3.39 NR 7.11 2.91 2.64	17.9	ω ω	0.04 0.08 0.15 0.64
		Co (mg/Kg)	8.5 NR 5.86 4.79	13.6	TOTAL SULFUR ACID BASE POTENT. V10000	26. 25. 24. 24. 24.
	sis	Cd (mg/Kg)	3.00 NR 5.22 4.10 0.74	1.32	NEUTRAL. POTENT.	22 119 7.03 -5.5 2.95
Sio	Results per dry weight basis	Ba (mg/Kg)	75.6 NR 33 29.6 78.4	165	TOTAL SULFUR ACID BASE V1000t	9.06 14.1 144 36.9
Metals in soils	Results per	As (mg/Kg)	12.2 NR 71.7 223 13.8	27.1 165	TOTAL SULFUR %	0.29 0.29 4.6 1.18
		FIELD ID	25-339-LP-1 25-339-LP-3 25-339-TP-1 25-339-WR-1 25-339-WR-2	BACKGROUND	FELD D	25-339-LP-3 25-339-TP-1 25-339-WR-1 25-339-WR-2

Mine/Site Name: NE NW S13	County: Lewis and Clark
Legal Description: T 13N R 7W	Section(s): NE 1/4, NW 1/4, Sec. 13
Mining District: Stemple	Mine Type: Millsite/Unknown
Latitude: N 46° 53' 33"	Primary Drainage: Virginia Creek
Longitude: W 112° 26' 08"	USGS Code: 10030101
Land Status: Public	Secondary Drainage: Fool Hen Creek
Quad: Stemple Pass	Date Investigated: August 30, 1993
Inspectors: M. Babits, S. Babits	P.A. # <u>25-197</u>
Organization: Pioneer Technical Services, Inc.	

 The volume of tailings associated with this site was estimated to be approximately 175,000 cubic yards. The following elements were elevated at least three times background:

Lead: 256J mg/kg

- No waste rock was observed at this site during the investigation.
- One discharging adit was identified at the site. At the time of the site visit, this flowing adit made up the entire flow in Fool Hen Creek. Surface water and sediment samples were collected upstream and downstream from the site in Fool Hen Creek. The MCL for arsenic was exceeded in the downstream sample; however, this exceedance was not attributable to the site. An observed release to Fool Hen Creek was documented for lead. Acute and chronic aquatic life criteria were exceeded for copper in the upstream sample. The chronic aquatic life criteria for lead was exceeded in the downstream sample, which was directly attributable to the site.
- Potential safety hazards identified at the site included an open adit and five collapsing cabins.

NE NW Section 13 PA# 25-197 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/30/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ë			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	, Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (me/Ke)
25-197-SE-2 25-197-TP-1 25-197-TP-2	4.97 U 10.5 13.7	42.2 JX 124 JX 134 JX			6.89 17.5 17.9	18.9 33.3 78	2680 6140 7250	5.66 JX 1.55 JX 0.313 JX	239 599 1260	2.26 U 7.43 J 6.55 J	59.9 J 87.1 J 256 J	#333	72.3 195 317	2.61 NR 2.2
BACKGROUND	21.3	145 JX	1.4 J	5.28	8.61	29.6	11900	0.758 JX	889 U - Not Detected, J -	889 12.3 J 60.3 J 8.01 UJ 121 U - Not Detected J - Entimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	60.3 J R-Outlier for Accum	8.01 UJ acy or Precision: Ni	121 R - Not Requested	N N
	Acid/Base Accounting	\ccounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL. ACID BASE POTENT. V1000t V1000t	NEUTRAL. POTENT. v1000k	SULFUR ACID BASE SULFA POTENT: SULFA 1/1000t %	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
25-197-TP-1 25-197-TP-1DUP 25-197-TP-2	<0.01 <0.01 0.47	0 0 14.7	139 138 2.58	139 138 -12	60.01 60.01 0.3	60.0160.0161.4	0.01 0.03 0.03	0 0 4.37	138 138 1.8					

FIELD As Ba Cd Co Cr Cu Fe Fe Fe Mr Ni Pb Sb Zn (reg CACOM)		Metals in Water	Water				WATER MATI	WATER MATRIX ANALYSES							
As Ba Cd Co Cg Cg Fe Fg Mn Ni Pb Sb 5.83 J 416 2.57 U 9.7 U 13.3 J 11.8 UX 0.12 U 4.08 U 12.7 U 2.55 J 30.7 U Wet Chemistry Wet Chemistry Results in mg/l TOTAL DISSOLVED SULFATE NO3/NO2-N CYANIDE TP1 - Composite of subsamples TP1A-A, 1A-B, and 1B-A. SW2 - Same as sample SE2. 119 5 5 0.13 < 0.005 SO.005 BACKGROUND - From SE SW So. 10 (25-212-SS-1).	FIELD	Results in	ng/L											H	RDNESS
5.83 J 416 2.57 U 9.7 U 13.3 J 31.3 J 11.8 UX 0.12 U 4.08 U 12.7 U 2.55 J 30.7 U Vet Chemistry Wet Chemistry Results in mg/l TOTAL TOTAL TOTAL 119 < 5 5 5 6 0.005 120 4.9 J 73.2 JX 0.12 U 4.08 U 12.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 2.55 J 30.7 U 3.5 I 3.5	А		ľ	ਣ	రి	ರ	වි		Нg	Mn	Ë	£	8	7. (me	CALC.
Net Chemistry	5-197-SW-1 5-197-SW-2			2.57 U 2.57 U	9.7 U 9.7 U	13.3 J 6.83 U	31.3 J 4.9 J	# # # # 	0.12 U 0.12 U	4.08 U 26.8 U-Not Detected J-E	12.7 U 12.7 U 12.7 U	2.55 J 24.5 J	30.7 U 30.7 U	7.57 U 7.57 U	116
TOTAL TOTA		Wet Chemistry	~ -				·	-						Datesuber ton -	
TOTAL SE2 - Downgradient (175) from tailings pond 1 in Fool Hen Creek. TP1 - Composite of subsamples TP1A-A, 1A-B, and 1B-A. TP2 - Composite of subsamples TP1A-C, 1B-B, and 1B-C. BACKGROUND - From SE SW Sec. 10 (25-212-SS-1) 119		Mesalus III mg	_								LEGEND				
SOLIDS CHLORIDE SULFATE NO3/NO2/N CYANIDE 119 < 5 5 0.13 < 0.005 127 < 5 6 0.08 < 0.005	FIELD	TOTAL DISSOLVED					75 TE	Downgradient (75') fi Composite of subsamp Composite of subsamp Composite of subsamp Composite of subsamp Composite of subsamp Composite of subsamp Composite of subsamp Composite of subsamp Composite of subsamp	om tailings pond l ples TP1A-A, 1A-l ples TP1A-C, 1P-1	in Fool Hen Cree B, and 1B-A.	-	SW2 - Same as	sample SE2		
119 < 5 5 0.13 < 0.005 127 < 5 6 0.08 < 0.005	1D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		KOROUND - From SE	SW Sec. 10 (25-2	12-58-1).					
	-197-SW-1 -197-SW-2	119	v v	សស	0.13	0.0050.005	· · · · · · · · · · · · · · · · · · ·								

Mine/Site Name: Swansea Tailings/Mine County: Lewis and Clark Legal Description: T 13N R 7W Section(s): NW 1/4, NE 1/4, Sec. 18 Mining District: Stemple Mine Type: Hardrock/Au, Ag, Pb, Cu Latitude: N 46° 53' 27" Primary Drainage: Poorman Creek USGS Code: 17010201 Longitude: W 112° 32' 17" Secondary Drainage: Swansea Gulch Land Status: Private Date Investigated: September 1, 1993 Quad: Swede Gulch P.A. # 25-208 Inspectors: Bullock, M. Babits, S. Babits, Flammang, Pierson Organization: Pioneer Technical Services. Inc./Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be approximately 3700 cubic yards. The following elements were elevated at least three times background:

Cadmium: 25 mg/kg Lead: 2510 mg/kg

Copper: 2010JX mg/kg Antimony: 39.1J mg/kg

Zinc: 503J mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 15,000 cubic yards. The following elements were elevated at least three times background:

Cadmium: 6 to 14 mg/kg

14 mg/kg Copper: 1050JX to 1910JX mg/kg

Mercury: 0.179JX to 0.736JX mg/kg Lead: 361 to 1610 mg/kg Manganese: 1130 mg/kg Antimony: 22.5J mg/kg

Zinc: 239J to 629J mg/kg

There was one discharging adit associated with this site. The water discharging

- There was one discharging adit associated with this site. The water discharging from the adit had a neutral pH (7.29) and did not exceed and MCL/MCLGs or aquatic life criteria.
- There were no observed releases to Swansea Gulch based on the surface water samples collected during this investigation. No exceedances of MCL/MCLGs or aquatic life criteria attributable to this site were documented. The surface water and sediment data collected did indicate a possible upstream source of contaminants that was not identified during this investigation. Spring runoff or storm event sampling would probably document releases from this site due to uncontained contaminant sources in the drainage.

Swansea Tailings PA# 25-208 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/01/93

	Metals in soils					SOLID MATR	SOLID MATRIX ANALYSES							
FIELD U	Results per As (mg/Kg)	Results per dry weight basis As Ba (mg/Kg) (mg/Kg)	sis Cd (mg/Kg)	- Ta		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (may/Kg)	Sb (me/Ke)	Zn	CYANIDE
25-208-SE-1 25-208-SE-2 25-208-TP-1 25-208-WR-1 25-208-WR-3	19.1 J 4.24 U 49.5 J 32.8 J 22.5 J 8.2 J	61 J 67.6 J 29.5 J 67.9 J 173 J 80.6 J	6.3 0.8 U 25.0 6.4 13.4 13.5	3.15 J 4.22 J 4.22 J 4.77 J 8.38 J 4.34 J	13.2 J 16.7 J 6.44 J 16.5 J 19.4 J 14.8 J	1160 JX 15.2 JX 2010 JX 1050 JX 1910 JX 361 JX	5730 8190 5230 7760 13900 7230	0.047 UX 0.031 UX 0.033 UX 0.179 JX 0.318 JX XL 967.0	146 291 183 285 1130 425	7.92 J 11.6 J 3.46 J 12.1 J 22.4 J	863 24.2 2510 815 1610 361	11.8 J 5.6 UJ 39.1 J 22.5 J 5.97 UJ 5.66 UJ		NR NR AL.4 NN NN NN
BACKGROUND	19.5 J	168 J	J C	9.67 J	36.5 J	228 JX	12800	0.033 UX	468 U-Not Detected, J-	30.4 J Estimated Quantity, X	468 30.4 J 34.4 6.95 UJ 66.5 U - Not Detected J - Entimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	6.95 UJ	66.9 J	X X
FIELD	Acid/Base Accounting TOTAL TOTAL SULFUR SULFUR W VIOOO	ccounting TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASIE POTENT. V1000t					
25-208-TP-1 25-208-WR-1 25-208-WR-2DUP 25-208-WR-3 25-208-WR-3	6.04 6.04 6.04 6.04	0000	3.23 9.64 8.18 8.42 37.3		6.01 6.01 6.01 6.01	6.01 6.01 6.01 0.01	6 6 6 6 2 2 2 2 2 2	0.31 0.31 0.31	3.23 9.33 8.18 8.42 37					

	Metals in Water Results in IIAI	Vater .o/				WATER MATRIX ANALYSES	X ANALYSES							
FIELD	As	, , ,	3	5	ځ	č	ģ	:	;					HARDNESS CALC.
							#		Ma ::::::::::::::::::::::::::::::::::::	Mn Ni Pb	Pb	æ	, z	Zn (mg CaCO3/L)
25-208-SW-1	L 31.7 L 23.92	62.9 88.9	2.57 U 2.57 U	9.7	11.9 J	21.3 J	265 JX	0.12 U	17.5	12.7 U	4.32 J	30.7 U	9.5	9.5 90.9
25-208-SW-3	1.18 U	914	4 59 1	ב היי	6.24 L	ر 2.61 د دو ر	19.4 JX	0.12 U	4.13	12.7 U	2.53 J	30.7 U	7.6	79.2
			3)	0.54	Z.33 O	7.4		3.76 U	10.9 U	0.82	31.7 U	11.5	73.6
									$\mathbf{U}\cdot\mathbf{N}$ of Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	etimated Quantity, X	Outlier for Accuracy (or Precision; NR - No	of Requested	
	Wet Chemistry									LEGEND				
	TOTAL					SEI - 1	SE1 - Upgradient of mine and confluence; 40 up from raod	nd confluence; 40	y up from raod		SW1 - Same as sample SE1.	sample SE1.		
FIELD	DISSOLVED					SE2 - S	SE2 - Swanses Chilch: downsmidient of seaste and down	noradient of meste	and dimen		SW2 - Same as sample SE2.	sample SE2.		
ID.		CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		TP1 - Composite of subsamples TP1A-A through 1A-C.	ples TP1A-A thro	ugh 1A-C.		Sws - Adit dis	SW3 - Adit discharge at waste rock dump 5.	rock dump 5.	
25-208-SW-1	117		10	10 0.11 NA			WR1 - Composite of subsamples WR1, 2A, 2B, 3A, and 3B.	nples WRI, 2A, 2	B, 3A, and 3B.					
25-208-SW-2	106	ν.	O	0.07	ď	WR3	WR3 - Composite of subsamples WR4A unough 4D.	upies wk4A uno	45.					
25-208-SW-3	11	۷ ۷	۸ دی	0.15	Z.	BACKO	BACKGROUND - From the Swansea Tailines (25-208-85-1)	Swansea Tailines	35. (25-208-89-1)				•	
						WR2DI	WR2DUP - Dimlicate of the 25-208-Wp.2 ammi-	25-208-WD-2						

Mine/Site Name: SE SW S10	County: Lewis and Clark
Legal Description: T 13N R 7W	Section(s): SE 1/4, SW 1/4, Sec. 10
Mining District: Stemple	Mine Type: Millsite/Unknown
Latitude: N 46° 53' 38"	Primary Drainage: Canyon Creek
Longitude: W 112° 28' 45"	USGS Code: 10030101
Land Status: Public	Secondary Drainage: Virginia Creek
Quad: Stemple Pass	Date Investigated: August 30, 1993
Inspectors: M. Babits, S. Babits	P.A. # 25-212
Organization: Pioneer Technical Services, Inc.	

The volume of tailings associated with this site was estimated to be approximately 2,750 cubic yards. The following elements were elevated at least three times background:
 Copper: 92.8 mg/kg
 Mercury: 8.15JX mg/kg

Lead: 215J mg/kg

- No waste rock was observed at the site during the investigation.
- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water or sediment samples were collected during the investigation, due to the lack of direct runoff routes to surface water located nearest to the site.
- No hazardous mine openings were identified at the site; however, the mill building was collapsing and potentially hazardous.

SE SW Section 10 PA# 25-212 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/30/93

	Metals in soils Results per dry	Metals in solls Results per dry weight basis	<u></u>			SOLID MA'	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	As Bs Cd (mg/Kg) (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co C (mag/Kg) (mag	Cr (mg/Kg)		Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Kg)	CYANIDE (me/Ke)
25-212-TP-1	47.6	278 JX	2.9 J	5.86	4.24	92.8	14300	8.15 JX	803	11.7 J	215 J	215 J 6.28 UJ	6.28 UJ 190 0.305 U	0.305 U
BACKGROUND	21.3	145 JX	1.4 J	5.28	8.61	29.6	11900	0.758 JX	888	12.3 J	60.3 J	60.3 J 8.01 UJ	121	α 2
	A Control							•	U - Not Detected, J .	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	K - Outlier for Accura	acy or Precision, NR	1 - Not Requested	
	asponio V	Acid base Accounting										LEGEND		
TOTAL SULFUR NEUTRAL, ACID BASE SULFATE PYRITIC ORGANIC FIELD SULFUR ACID BASE POTENT. POTENT SULFUR SULFUR SULFUR BU % 11000t 11000t % % %	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	TP1 - Compos BACKGROUN From	TPI - Composite of subsamples TPI A-A, 1B-A, and 1B-B. BACKGROUND - On East side of Virginia Creek. From SE SW Sec. 10 (25-212-SS-1).	of Virginia Cree 25-21 2-SS-1).	sk.	
25-212-TP-1	<0.01	0	170	170	<0.01	<0.01	**************************************	0 170	170					# ************************************

Mine/Site Name: Pangewasset	County: Lewis and Clark
Legal Description: T 13N R 7W	Section(s): SE 1/4, SE 1/4, Sec. 15
Mining District: Stemple	Mine Type: Hardrock/Au
Latitude: N 46° 52' 40"	Primary Drainage: Virginia Creek
Longitude: W 112° 28' 03"	USGS Code: 10030101
Land Status: Private	Secondary Drainage: Gould Creek
Quad: Stemple Pass	Date Investigated: August 31, 1993
Inspectors: M. Babits, S. Babits	P.A. # <u>25-226</u>
Organization: Pioneer Technical Services, Inc.	

- The volume of tailings associated with this site was estimated to be approximately 1,700 cubic yards; however, no metals concentrations were elevated above background.
- The volume of waste rock associated with this site was estimated to be approximately 14,000 cubic yards; however, no metals concentrations were elevated significantly above background.
- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was identified on or near the site. The nearest surface water was located approximately 350 feet from the site; consequently, no surface water or sediment samples were collected.
- Potential safety hazards identified at the site included one open adit and five collapsing cabins.

Pangewasset PA# 25-226 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/31/93

FIELD As Bas Cd Co Cr Co Fe Fig Man Ni Pb Sb Cr Cr Cr Cr Cr Fig Man Ni Pb Sb Cr Cr Cr Cr Cr Cr Cr C															
As Ba Cd Co CD		Metals in s Results per	oils dry weight bas	. <u>es</u>			SOLID MA	TRIX ANALYSES							
1 14.8 274 JX 0.8 U 108 2.33 7.81 2430 0.626 JX 83.7 2.06 J 8.93 J 5.72 UJ 17.1 LEGEND UND 21.3 145 JX 1.4 J 5.28 8.61 29.6 11900 0.693 JX 889 12.3 J 60.3 J 60.1 J 17.1 LEGEND Acid/Base Accounting Acid/Base Accounting TOTAL SULFUR NITCR		As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)		Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Kg)	Pb (me/Ke)	Sb (me/Ke)	uZ Zu	CYANIDE
Note	7- 7-	4.33 U 14.8	10.6 JX 274 JX	0.8 ∪ 8.0 ∪ 8.0	1.08 4.53	2.33 5.13	7.81 30.6	H H	0.693 JX 0.693 JX	83.7 369	2.06 J 8.98 J	8.93 J 32.9 J	5.72 UJ 4.6 UJ	17.1 68.7	0.263 U
Acid/Base Accounting TOTAL SULFUR	QNOC	21.3	145 JX	1.4 J	5.28	8.61	29.6	11900	0.758 JX	889	12.3 J	60.3	8.01 UJ	121	¥ Z
TOTAL SULFUR ACTO BASE SULFATE PYRITIC ORGANIC SULFUR ACTO BASE SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR SULFUR ACTO BASE POTENT. *** *** *** *** *** *** *** *** *** *		Acid/Base /	Accounting							U - Not Detected, J -	Estimated Quantity, 3	 Coulier for Accurac 	cy or Precision, N	R - Not Requested	
 <0.01 0 78.1 78.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 	ii	TOTAL SULFUR %	: ii	NEUTRAL. POTENT. V1000k	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR		PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. #1000t	TP1 - Compos WR1 - Compos BACKGROUN	ite of subsamples	LEGEND TP1A, 1B, and WR1A, 1B, a VSc. 10 (25-2	41C. and 1C. 12-88-1).	
	R-1	<0.01	00	78.1 109	78.1 109	60.01 60.01	<0.01 <0.01		0	78.1 109					

Mine/Site Name:_Astor	County: Lewis and Clark
Legal Description: T 13N R 7W	Section(s): NE 1/4, NE 1/4, Sec. 23
Mining District: Stemple	Mine Type: ! lardrock/Unknown
Latitude: N 46° 52' 34"	Primary Drainage: Virginia Creek
Longitude: W 112° 26' 54"	USGS Code: 10030101
Land Status: Private/Public	Secondary Drainage: Gould Creek
Quad: Stemple Pass	Date Investigated: August 31, 1993
Inspectors: M. Babits, S. Babits	P.A. # <u>25-227</u>
Organization: Pioneer Technical Services Inc.	

- The volume of tailings associated with this site was estimated to be approximately 2 cubic yards. Due to the extremely small volume, no samples were collected for laboratory analysis.
- The volume of waste rock associated with this site was estimated to be approximately 25,000 cubic yards; however, no metals concentrations were elevated significantly above background.
- One discharging adit was identified at the site; the adit discharge entered Gould Creek after flowing through the waste rock pile located on site. No MCLs were exceeded in the adit discharge; however, the chronic aquatic life criteria for lead. The adit discharge pH measurement was 7.65.
- Surface water and sediment samples were collected upstream and downstream from the site in Gould Creek. No MCLs were exceeded; however, the chronic aquatic life criteria for mercury was exceeded in both upstream and downstream samples. The chronic aquatic life criteria for lead was exceeded in the downstream sample. Concentrations of barium, cobalt, copper, iron, nickel, and lead were elevated (>3X) in the downstream sediment sample, compared to the upstream sediment sample.
- No hazardous mine openings were identified at the site.

Astor PA# 25-227 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/31/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	SiS	·		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba Cd (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
25-227-SE-1 25-227-SE-2 25-227-WR-1	7.15 19 48.7	51.8 JX 187 JX 84.1 JX	1.7 J 3.7 J 2.0 J	2.47 9.12 8.62	5.41 11.4 3.14	23 401 80.5	6980 21700 28500	15.1 JX 17.7 JX 0.203 JX	200 552 946	3.06 J 13.2 J 3.71 J	65.7 J 231 J 149 J	6.26 UJ 12.5 UJ 4.88 UJ	e - r	0.314 U 0.672 U NR
BACKGROUND	21.3	145 JX	L 4.	5.28	8.61	29.6	11900	XL 857.0	889 U - Not Detector, J .	12.3 J Estimated Quantity.	889 12.3 J 60.3 J 8.01 UJ 121 U - Not Detected: J - Entimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	8.01 UJ Ley or Precision; NR		N N
	Acid/Base	Acid/Base Accounting												
FELLD	TOTAL SULFUR %	TOTAL SULFUR SULFUR NEUTRAL ACID BASE SULFATE ACID BASE POTENT. POTENT. SULFUR #1000t #1000t #1000t %	NEUTRAL. POTENT. V1000t	SULFUR ACID BASIE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %			SULFUR ACID BASIE POTENT. v1000t					
25-227-WR-1	<0.01	0	40.2	40.2	<0.01	<0.01	<0.01		40.2					

	Metals in Water Results in uo/I	Nater uo/L				WATER MATRIX ANALYSES	X ANALYSES							·
FIELD ID	į	, B	P3 88	పి	ඊ	ರೆ	Ŗ.	H	M	ï	£	ક્ર	HA Zn (me	HARDNESS CALC.
25-227-SW-1 25-227-SW-2		76.3 61.9	2.57 U 2.57 U	9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U	9.3 J 11.7 J	51.7 JX 121 JX	0.14	11.7 12.8	11.7 12.7 U	#	30.7 U	7.57 U 115	115
25-227-SW-3	16.8 J	6 9	2.57 U	9.7 U	6.83 U	1.55 U	101 XL	0.12 U	4.08 U 12.7 U 5.08 J 30.7 U 7.57 U U-Not Detected J. Editmined Quantity, X. Outlier for Accuracy or Properties and Deservation No. 2018	12.7 U	5.08 J	30.7 U	13.5 7.57 U	115 90.1
	Wet Chemistry Results in mg/l		,							ECEND			na veheeren	
FIELD LD	TOTAL DISSOLVED SOLIDS	TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO9ANO2-N CYANII	SULPATE	NO3/NO2-N CYANIDE	CYANIDE		SEI - Upgradient (175) in Gould Creek (mill building) SE2 - Downgradient (270) in Gould Creek (cabin). WR1 - Composite of subsamples WR1A, 1B, and 1C. BACKGROUND - From SE SW Sec. 10 (25-212-SS-1).	ould Croek (mill n Gould Creek (α ples WR1A, 1B, SW Sec.10 (25-2)	building). string 1C. (12-SS-1).		SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Adit discharge at was	SWI - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Adit discharge at waste rock dump 1.	ock dump 1.	
25-227-SW-1 25-227-SW-2 25-227-SW-3	139 128 120	^ ^ ^	2/9	< 0.05 · < 0.005 · < 0.005 · < 0.005 · 0.005 · 0.005 · O.005 ·	< 0.005 < 0.005 NR					***				

Mine/Site Name: Snowshoe County: Lincoln Legal Description: T 28N R 31W Section(s): NE 1/4, NW 1/4, Sec. 7 Mining District: Libby Mine Type: Hardrock/Pb, Zn, Ag Latitude: N 48° 12' 17" Primary Drainage: Snowshoe Creek Longitude: W 115° 38' 42" USGS Code: 17010101 Land Status: Private Secondary Drainage: Snowshoe Creek Quad: Showshoe Peak Date Investigated: August 4, 1993 Inspectors: Tuesday, Belanger, Lasher P.A. # 27-005 Organization: Pioneer Technical Services, Inc.

• The volume of tailings associated with this site was estimated to be approximately 5,000 cubic yards. The tailings were located within the floodplain of Snowshoe Creek. The following elements were elevated at least three times background:

Arsenic: 3,840J mg/kg Cadmium: 142 mg/kg Copper: 664 mg/kg Iron: 98,200 mg/kg Mercury: 0.4 mg/kg Lead: 44,300 mg/kg Antimony: 109 mg/kg Zinc: 11,700 mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 3,990 cubic yards. Some reclamation had been done on the lower dump (WR4). The following elements were elevated at least three times background:

Arsenic: 3,230 mg/kg Cadmium: 81.8 mg/kg Copper: 545 mg/kg Iron: 64,400 mg/kg Mercury: 1.11 mg/kg Lead: 59,300 mg/kg Antimony: 120 mg/kg Zinc: 6,530 mg/kg

- There were no adit discharges associated with the site, however, an intermittent tributary to perennial Snowshoe Creek ran through the site. The tributary had a trickle of flow during the investigation which exceeded the MCL for cadmium. The downstream sample in Snowshoe creek also exceeded the MCL for cadmium. Acute aquatic life criteria were exceeded for cadmium, lead, and zinc in the tributary and Snowshoe Creek. Chronic aquatic life criteria were exceeded for cadmium, mercury, lead, and zinc in the tributary and Snowshoe Creek.
- Observed releases to Snowshoe Creek were documented for arsenic, cadmium, iron, lead, and zinc. The aquatic life criteria exceedances and the MCL exceedances for cadmium can be directly attributed to the site.
- The three open adits and several steep, unstable waste piles were accessible and potentially hazardous.

Snowshoe PA# 27-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/04/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MA	SOLID MATRIX ANALYSES	Ø						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	Zn (Zn)	CYANIDE
27-005-SE-1 27-005-SE-2 27-005-TP-1 27-005-WR-1	17.2 J 1350 J 3840 J 3230 J	12.5 6.45 4.91 7.58		5.63 7.82 5.52 8.44	1.46 1.78 1.58 U 1.73	10.1 28.6 54.5 54.5 54.5	15700 78700 98200 64400	0.04 0.037 0.4 1.11	308 4580 1150	5.2 5.4 2.93 U 6.16	21.4 8320 44300 59300	6.29 U 32.2 109	45.5 9270 11700 6530	NR NR NR NR NR NR NR NR NR NR NR NR NR N
BACKGROUND	54.2 J 18.5 Acid/Base Accounting	18.5 ccounting	27	9.23	1.59 U	29.4	21400	0.061	475 U - NA Detected, J.	475 11.8 198 7.15 U 213 U-Not Detected, J. Endinated Quantity, X Outlier for Accumey or Precision: NR Not Requested	198 C-Outlier for Accur	7.15 U ncy or Precision: N	213 R - Not Requested	
FELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASIB POTENT. V1000t		PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
27-005-TP-1 27-005-WR-1	1.62	50.6 53.4	3.74 15.5		0.09 0.18	1.23 0.55	0.30	38.4 17.2	-34.7 -1.67					

FIELD FIEL		Metals in Water Results in ug/L	Water ug/L	•		-	WATER MATE	WATER MATRIX ANALYSES							
1 0.897 J 2.97 2.57 U 9.7 U 6.83 U 1.67 35.1 J 0.180 JX 4.08 U 12.7 U 1.22 U 30.7 U 30.7 U 9.06 J 4.43 J 4.63 H 9.7 U 6.83 U 2.77 45.2 J 0.210 JX 48.1 12.7 U 60.7 J 30.7 U 9.0 U 1.21 U 1.22 U 30.7 U	FIELD D		ŀ	1			ਟੌ	P.	H	Ä	ž	á	ŧ	H	HARDNESS CALC.
3 9.06 J 4.47 61.5 9.7 U 6.83 U 4.97 191 J 0.220 JX 48.1 12.7 U 60.7 J 30.7 U 1030 J SQ40 J Vet Chemistry Vet Chemistry Results in mg/ TOTAL DISSOLVED SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO2-N CHLORIDE SULFATE NO3/NO3-N CHLORIDE SULFATE	27-005-SW-1 27-005-SW-2		1	{ 1	!!	6.83 U	1.67	35.1 J	0.180 JX	4.08 U	12.7 U	1.22 U	11	Zn (mg ======== U 7.57 U	g CaCO3/L)
Net Chemistry	27-005-SW-3	6.06 6	4.47	61.5	9.7 U	6.83 U	4.97	191 J		175	12.7 U 12.7 U	60.7 J 82.3 J	30.7 U 30.7 U	1030 J 5940 J	41.7 98.5
TOTAL TOTAL DISSOLVED SULFATE NO3/NO2-N CYANIDE SOLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLDS CHLORIDE CAN		Wet Chemistry	,						-	U - NOR L'MERTERE J - I	estimated Quantity, X	- Outlier for Accura.	cy or Precision: NR .	· Not Requested	
TOTAL DISSOLVED SULFATE NO3NO2-N CYANIDE SSCRIPTION STORY STOR	·	Results in mg/	_								LEGEND				
SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 55 < 5.0 < 5.0 NR 53 < 5.0 8 0.1 NR 152 < 5.0 42 0.07 NR	FIELD	TOTAL					SE2 -	Upgradient of mine ii Downstream of mine In floodplain near bas	a Snowshoe Creek and most floodplair is of mines.	n tailings.		SWI - Same as SW2 - Same as	sample SE1.		
55 < 5.0 < 5.0 0.07 NR 53 < 5.0 8 0.1 NR 152 < 5.0 42 0.07 NR			CHLORIDE	H	NO3/NO2-N	CYANIDE	BACK	GROUND - From Sax	owahoe Mine (27-0)	05-88-1).		3w3 - Discharg	re from pipe unde	ar dump.	
152 < 5.0 42 0.07	27-005-SW-1 27-005-SW-2	88	۸ ۸ 5.00		0.07	S S	· · · · · · · · · · · · · · · · · · ·								
	27-005-SW-3	152	v 500	4	0.07	ž Z									

Mine/Site Name: Cherry Creek Millsite County: Lincoln Legal Description: T 29N R 31W Section(s): SE 1/4, NW 1/4, Sec. 27 Mining District: Libby Mine Type: Millsite/Unknown Latitude: N 48° 14' 42" Primary Drainage: Libby Creek USGS Code: 17010101 Longitude: W 115° 32' 50" Land Status: Public Secondary Drainage: Big Cherry Creek Date Investigated: August 4, 1993 Quad: Cable Mountain Inspectors: Tuesday, Belanger, Lasher P.A. # 27-006 Organization: Pioneer Technical Services, Inc.

• The volume of tailings associated with this site was estimated to be approximately 4,540 cubic yards. The tailings have been reclaimed and were moderately to well vegetated. The concentration of cyanide measured in the tailings was 0.867 mg/kg; additionally, the following elements were elevated at least three times background:

Arsenic: 546J mg/kg Cadmium: 22.5 mg/kg Copper: 399 mg/kg Mercury: 0.89 mg/kg Lead: 10,500 mg/kg Antimony: 39.2 mg/kg Zinc: 5,780 mg/kg

- There were no adit discharges or seeps associated with this site. Big Cherry Creek flowed approximately 50 feet east of the site; however, no surface water samples were collected during the investigation. Three sediment samples were collected from Big Cherry Creek corresponding to upstream, probable point of entry, and downstream locations. An observed release to surface water was documented for arsenic in sediments.
- No groundwater samples were collected at this site during the investigation.
- The partially vegetated tailings that contained high concentrations of arsenic and lead were easily accessible by recreationalists.

Cherry Creek Mill PA# 27-006 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/04/93

Peeulis per dry weight basis Peeulis per dry weight basis Peeulis per dry weight basis Peeulis per dry weight basis Peeulis per dry weight basis Peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis per dry weight peeulis peeulis per dry weight peeulis pee															
As Ba Cd Co Co Co Co Co Co Co Fe Hg Mn Ni Ph Ph Sh Zn Co Co<		Metals in son Results per	oils dry weight ba	<u>sis</u>			SOLID MAT	IRIX ANALYSES			•				
143 J 193 643 589 319 22.7 20500 0.029 777 955 779 616 82 616 8	FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn	CYANIDE
18.5 1.23 9.23 1.59 U 29.4 21400 0.061 475 11.8 198 7.15 U 213 213 2140Base Accounting	27-006-SE-1 27-006-SE-2 27-006-SE-3 27-006-TP-1	143 J 470 J 199 J 546 J	19.3 22.4 16.7 35.7	6.43 15.4 8.57 22.5	5.89 7.44 5.12 4.12	H H	22.7 33.8 42.7 399	20500 62000 40100 30300	0.02 0.029 0.025 0.025	2720 1790 384	9.55 8.07 7.11 5.39	795 795 1740 1180	6.82 7.51 6.73 U	616 1150 822 5780	NR NR NR NR OB67
TOTAL SULFUR SULFUR SULFUR SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR SULFUR ACID BASE POTENT: "" "" "" "" "" "" "" "" "" "" "" "" ""	BACKGROUND	54.2 J	18.5	23.	9.23	1.59 U	29.4	21400	0.061	475 U - Nat Detected, J .	11.8 Estimated Quantity.	198 X - Outlier for Accus	7.15 U	213 IR - Not Requested	
	FIELD D 27-006-TP-1	b	TOTAL SULFUR ACID BASIS VIOOR 9.37	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000c	SULE, SULE,		ORGANIC SULFUR % 0.05	PYRITIC SULFUR ACID BASIE V1000t	SULFUR ACID BASE POTENT. V1000t	SE1 - Upgrad SE2 - PPE to SE3 - Downg TP1 - Sample BACKGROUJ	lient on Cherry C Cherry Greek. radient on Cherry of the subsample	LEGEND Treek. y Creek. o TP1 A-B. Inowahoe Mine	(27-005-88-1).	

Mine/Site Name: Mitchell Creek	County: Lincoln
Legal Description: T 31N R 31W	Section(s): SW 1/4, SE 1/4, Sec. 25
Mining District: <u>Libby</u>	Mine Type: Hardrock/Unknown
Latitude: N 48° 24' 57"	Primary Drainage: Kootenai River
Longitude: W 115° 29' 55"	USGS Code: 17010101
Land Status: Private/Public	Secondary Drainage: None
Quad: Vermiculite Mountain	Date Investigated: August 4, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>27-055</u>
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 200 cubic yards. Copper (137 mg/kg) was the only element elevated at least three times background. The waste rock dump was mostly unvegetated.
- No adit discharges, seeps or springs were observed at this site.
- The one adit on-site was open and classified a hazardous mine opening.

Mitchell Creek PA# 27-055 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/04/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sise			SOLID MA'	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	As Ba Cd (mg/Kg) (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
27-055-WR-1	5.63 J	121	0.47 U	6.22	4.55	137	9140	0.027	209	11.8	10.5	5.64 U	30.1 NR	NR
BACKGROUND	54.2 J	18.5	1.23	9.23	1.59 U	29.4	21400	0.061	475	11.8	198	7.15 U	213	<u> </u>
	AcidiBack			÷					U - Not Detected, J.	- Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	ancy or Precision, N	R - Not Requested	
	Acid Dase Accounting	Scouning										LEGEND		
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE	NEUTRAL. POTENT.	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WRI - Com	WRI - Composite of subsamples WRIA and IB. BACKGROUND - From the Snowshoe Mine (27-005-SS-1).	oles WR1A and 1 inowahoe Mine ((B. 27-005-SS-1).	
CITALINITE OF THE CONTROLL OF THE CONTROLL OF THE CONTROLL OF THE CONTROLL OF THE CONTROLL OF THE CONTROL OF TH					;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		***************************************	V1000t	t/1000t					
Z/-CSS-WK-1		0.31	3.82	3.51	0.01	6 0.01	<0.01	0.00	3.82					
														-

Mine/Site Name: Silver Cable	County: Lincoln
Legal Description: T 28N R 31W	Section(s): NW 1/4, NW 1/4, Sec. 32
Mining District: Libby	Mine Type: Hardrock/Pb
Latitude: N 48° 08' 42"	Primary Drainage: Big Cherry Creek
Longitude: W 115° 37' 48"	USGS Code: 17010101
Land Status: Private/Public	Secondary Drainage: Cable Creek
Quad: Snowshoe Peak	Date Investigated: Aug 4 and Sept 7, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # <u>27-066</u>
Organization: Pioneer Technical Services, Inc.	

- The mine was located on a mountainside well above (800 to 1,000 feet) the Cable Creek drainage; however, no samples were collected due to inaccessibility of the workings.
 There appeared to be a good vegetative cover on the dumps, and no direct migration routes to surface water.
- The literature reported that a small mill was constructed for this mine, but never operated. No evidence of the mill was found during the investigation.
- One potentially hazardous mine opening (adit) was identified at the site.

Mine/Site Name: Boaz County: Madison Legal Description: T 3S R 1E Section(s): NW 1/4, SW 1/4, Sec. 19 Mining District: Norris/Red Bluff Mine Type: Hardrock/Au, Pb, Zn, Ag Latitude: N 45° 33' 35" Primary Drainage: Hot Springs Creek Longitude: W 111° 39' 16" USGS Code: 10020007 Land Status: Private Secondary Drainage: Unnamed tributary of Quad:_Norris **Hot Springs Creek** Inspectors: M. Babits, S. Babits Date Investigated: September 13, 1993 Organization: Pioneer Technical Services, Inc. P.A. # 29-013

 The volume of tailings associated with this site was estimated to be approximately 56,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 95.1J to 127J mg/kg Copper: 205 to 241 mg/kg

Manganese: 1,130 to 1,810 mg/kg

Zinc: 1,710 to 2,440 mg/kg

Cadmium: 12.8 to 18 mg/kg Mercury: 0.536J to 1.26J mg/kg Lead: 3,030 to 4,800 mg/kg Cyanide: 0.445 to 2.21 mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 138,770 cubic yards. The following elements were elevated at least three times background:

Cadmium: 2.06 mg/kg

Lead: 576 mg/kg

Manganese: 1,220 mg/kg

Zinc: 399 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- An unnamed tributary to Hot Springs Creek flowed directly through the tailings at the site and eventually discharged into wetlands. Surface water and sediment samples were collected in the tributary upstream and downstream from the site. An observed release to the tributary was documented for lead; and the chronic aquatic life criteria for lead was exceeded in the downstream sample. The upstream sample indicated the presence of an upstream source.
- Two potentially hazardous open adits were identified at the site. The on site shaft had previously been grated by MDSL-AMRB.

Boaz PA# 29-013 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/13/93

	Metals in soils	siic Siic				SOLID MAT	SOLID MATRIX ANALYSES	60						
	Results per	Results per dry weight basis	sis											
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mo/Ke)	Sb	72 Zu	CYANIDE
29-013-SE-1 29-013-SE-2 29-013-TP-1 29-013-TP-2 29-013-WR-1	6.74 J 16.7 J 95.1 J 127 J 25.2 J	119 70.9 230 303 253	0.94 U 1.66 12.80 18.00 2.06	8.27 5.52 9.04 11.6	35.4 14.8 32.4 41.1 53.8	26.6 38.3 205 241 54.2	16400 10400 29600 40900 27200	0.114 J 0.159 J 0.536 J 1.26 J 0.157 J	190 337 1130 1810	31.1 35.2 35.2 44	6.75 5.96 3030 4800 5.76	6.5 UJ 6.08 UJ 6.41 UJ 6.81 J	50.3 330 1710 2440	NR NR 2.21 0.445
BACKGROUND	4.11	501	0.4 U	12.8	8 .3	31.3	22100	0.11	363 J U - Not Detected J -	26.7 Estimated Quantity,	363 J 26.7 6.81 U 5.18 U 43.1 U Met Detected J - Editmined Quantity, X - Outlier for Accuracy or Precision: NR - Net Reconserved	5.18 U	43.1	ž Z
	Acid/Base Accounting	ccounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASIE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE VI 000t	SULFUR ACID BASE POTENT.					
29-013-TP-1 29-013-TP-2 29-013-WR-1	1.25 0.68 <0.01	39 21.2 0			0.24 0.14 0.01	0.84 0.45 0.01	0.17 0.09 0.05	26.2 14.1 0	22.1 31.2 51.4					

	Metals in Water Results in ug/L	Vater IQ/L				WATER MATI	WATER MATRIX ANALYSES	·		·				
FIELD ID		æ	ૹ	රි	ర		F.	Нg	Mn	ž	£	£	- 5	HARDNESS CALC.
29-013-SW-1 29-013-SW-2		j	102 4.59 U 5 U 6.24 U 95.6 4.59 U 5 U 6.24 U	5 C	6.24 U 6.24 U		3.47 1610 0.14 J 2.33 U 73.1 0.12 U	0.14 J 0.12 U	71.8 28.3 5.27 10.9 U		1.38 15.6	1.38 31.7 U 15.6 31.7 U	35 13.8	35 129 13.8 142
	Wet Chemistry													!
	Meadins III III M					İ				LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		 SEI - 180 feet upgradient from tailings pond 1. SE2 - 10 feet downgradient from tailings pond 2. TP1 - Composite of subsamples TP1A-A, 1A-B, 1A-C, and TP-2A. TP2 - Composite of subsamples TP1A-D, 1A-B, 1B-B, and TP-2B. 	from tailings pond 1. from tailings pond poles TP1A-A, 1A-E ples TP1A-D, 1A-E	2. 1A-C, and TP-: , 1B-B, and TP-:	₹ 8	SW1 - Same as SE1. SW2 - Same as SE2.	18 SE1.		
29-013-SW-1 29-013-SW-2	190 196	<!--</td--><td>< 5 11 0.29 < 0.01 < 5 11 0.05 < 0.01</td><td>0.29 0.05</td><td>A 0.01</td><td></td><td>WRI - Composite of subsamples WRIA, 1B, 2, and 3. BACKGROUND - From the Grubstake (29-399-SS-1).</td><td>mples WR1A, 1B, 2 : Grubstake (29-399</td><td>. and 3.</td><td></td><td></td><td></td><td></td><td></td>	< 5 11 0.29 < 0.01 < 5 11 0.05 < 0.01	0.29 0.05	A 0.01		WRI - Composite of subsamples WRIA, 1B, 2, and 3. BACKGROUND - From the Grubstake (29-399-SS-1).	mples WR1A, 1B, 2 : Grubstake (29-399	. and 3.					

Mine/Site Name: Grubstake County: Madison Legal Description: T 3S R 1E Section(s): SE 1/4, SE 1/4, Sec. 19 Mining District: Norris/Red Bluff Mine Type: Hardrock/Au Latitude: N 45° 33' 23" Primary Drainage: Hot Springs Creek Longitude: W 111° 38' 30" USGS Code: 10020007 Land Status: Private Secondary Drainage: South Fork Hot Springs Quad: Norris Creek Inspectors: Babits, Lasher/Pierson Date Investigated: July 22, 1993 Organization: Pioneer Technical Services. P.A. # 29-399 Inc./Thomas, Dean and Hoskins, Inc.

There were approximately 5,780 cubic yards of uncovered tailings at the site. The following were elevated at least 3 times background:

Arsenic: 52 to 63.4 mg/kg Cadmium: 4 to 10 mg/kg Copper: 101 to 148 mg/kg Mercury: 0.331J mg/kg Manganese: 1,360 mg/kg Lead: 566 to 1,690 mg/kg Zinc: 588 to 1,340 mg/kg Cyanide: 22.3 to 40.3 mg/kg

There were approximately 1,030 cubic yards of uncovered waste rock at the site. The following were elevated at least 3 times background:

Arsenic: 65 mg/kg Cadmium: 4 mg/kg Lead: 417 mg/kg Zinc: 546 mg/kg

- There were no discharging adits at the site.
- An dry intermittent drainage was on the site. No surface water samples were collected, but sediment samples were collected. There were no observed releases to downstream sediments; however, cyanide was detected in one downstream sediment sample (SE-3).
- There was one open shaft at the site.

Grubstake PA# 29-399 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/22/93

		T		
	CYANIDE (me/Ke)	NR 0.387 0.295 U 10.6 40.3 22.3 NR	N N	Y (1
	Zn (me/Ke)	133 109 213 588 1340 1220 546	43.1 - Not Requested	(ge pond 5. 1B, 2A, and 1. and 5A. and 5B. A, 1B, and 2.
	Sb (mg/Kg)	# >>>>>>	5.18 U kry or Precision; NR	LEGEND iment. leart below tailing v tailings pond 5. beamples TP1A. beamples TP1A. beamples TP1A a beamples WR1A m the Grubstake I
	Pb (mg/Kg)	81.1 81.1 156 566 1690 1450	6.81 U K-Outlier for Accum	LEGEND SE1 - Background sediment SE2 - At outfall of culvert below tailings pond 5. SE3 - Next dam below tailings pond 5. TP1 - Composite of subsamples TP1A, 1B, 2A, and 3A, TP2 - Composite of subsamples TP4A and 5A. TP3 - Composite of subsamples TP4B and 5B. TP3 - Composite of subsamples TP4B and 5B. SACKGROUND - From the Grubstake (29-399-SS-1).
	Ni (mg/Kg)	78.3 26.3 45.6 33 33 38.8 65.3	26.7 Satimated Quantity, 3	1821 - 1822 - 1822 - 1822 - 1823 - 18
	Mn (mg/Kg)	711 J 721 J 727 J 1360 J 994 J	363 J 26.7 6.81 U 5.18 U 43.1 U- Not Detected: J. Editmeted Quentity, X. Outlier for Accumary or Precision; NR Not Requested	SULFUR ACID BASE POTENT. V1000t 28.8 25.6 34.2
S	Hg (mg/Kg)	0.246 J 0.064 J 0.145 J 0.122 J 0.331 J 0.199 J	0.11	PYRITIC SULFUR ACID BASE V1000: 5.94 28.1 7.19 4.69
SOLID MATRIX ANALYSES	Fe (mg/Kg)	29200 16600 27800 21800 36600 30600	22100	ORGANIC SULFUR % 0.19 0.12 0.15
SOLID MAT	Cu (mg/Kg)	58.8 36.5 54.3 148 101	31.3	PYRITIC SULFUR % 0.19 0.23 0.15
	Cr (mg/Kg)	91.1 28.4 28.4 34.9 42.2 5.13 6.13	34.3	SULFATE SULFUR % 0.1 <0.01 0.19
	Со (mg/Kg)	24.5 12.4 19.2 11.1 18.3 15.2 21.7	12.8	SULFUR ACID BASE POTENT: v1000t 19.7 37.2 23.5
ŝ	Cd (mg/Kg)		0.4 U	NEUTRAL. POTENT. v1000t 34.7 53.8 41.3
Metals in soils Results per dry weight basis	Ba (mg/Kg)	275 125 226 247 247 161	11.4 105 Acid/Base Accounting	TOTAL SULFUR ACID BASE V1000t 15 15 17.8
Metals in soils Results per dry	As (mg/Kg)	28.3 14. 52. 53.4 54.9 65.9	11.4 Acid/Base /	TOTAL SULEUR % 0.48 0.53 0.57 0.29
	FIELD D	29-399-SE-1 29-399-SE-2 29-399-SE-3 29-399-TP-1 29-399-TP-3 29-399-WR-1	BACKGROUND	FELD D 29-399-TP-1 29-399-TP-2 29-399-WR-1

Mine/Site Name: Norwegian	County:_Madison
Legal Description: T 3S R 2W	Section(s): NW 1/4, SE 1/4, Sec. 2
Mining District: Norwegian	Mine Type: Hardrock/Au, Ag
Latitude: N 45° 36' 20"	Primary Drainage: Norwegian Creek
Longitude: W 111° 48' 50"	USGS Code: 10020005
Land Status: Private	Secondary Drainage: Preacher Creek
Quad: Maltbys Mound	Date Investigated: September 13, 1993
Inspectors: M. Babits, S. Babits	P.A. # _29-006
Organization: Pioneer Technical Services, Inc.	

- The volume of tailings associated with this site was estimated to be approximately 1,010 cubic yards. The following elements were elevated at least three times background:
 Copper: 382 mg/kg
- The volume of waste rock associated with this site was estimated to be approximately 2,290 cubic yards. The following elements were elevated at least three times background:

Cobalt: 15.7 mg/kg

Copper: 226 mg/kg Lead: 172 mg/kg

Nickel: 18.7 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was identified on or near the site. The nearest surface water was located more than 1,200 feet away; consequently, no surface water or sediment samples were collected.
- Two potentially hazardous partially collapsed shafts were identified at the site.

Norwegian PA# 29-006 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/13/93

	Metals in soils Results per dry	Metals in solls Resutts per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES	W						
FIELD As Ba D (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/K e)
29-006-TP-1 29-006-WR-1	8.67 J 6.65 J	139	0.94 U 0.83 U	10.4 15.7	11.3 17.9	382 226	29100 24600	0.138 J 0.236 J	788 817	11.5 18.7	122 172	#33	100	0.867
BACKGROUND	10.6 J	102	0.94 U	4.2	8.69	23.9	18500	0.105 J	395	40.4	14.7	6.46 UJ	46.7	Z Z
	Acid/Base Accounting	ccounting							r bananar mu . o	- Estimated Quantity	O . I'VA L'OGENER, J . ESMINISCO (MINISTY, X . OUTLIER FOR ACCURICY OF Precision; NR . Not Requested	uricy or Precision, N	R - Not Requested	
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	a l	SULFUR NEUTRAL. ACID BASE POTENT. POTENT. 1/1000t 1/1000t	SULFATE SULFUR	PYRITIC SULFUR		PYRITIC. SULFUR ACID BASB V1000t	SULFUR ACID BASE POTENT. V1000	TI M	LEGEND TP1 - Composite of subsamples TP1B-A, 1A-A, 1A-B, 1A-C, 1B-B, and 1B-C. WR1 - Composite of subsamples WR 1, 2, 3, and 4. BACKGROUND - From Norwegian Mine (29-006-SS-1)	LEGEND subsamples TP1B-/ and 1B-C. f subsamples WR 1, rom Norwegian Min	ID B-A, 1A-A, 1A .1, 2, 3, and 4. Vine (29-006-8	.B. (1-5)
29-006-TP-1 29-006-WR-1	0.03	0.94 1.87		5.54 8.88	0.02 0.01	0.02 <0.01 0.01 0.01	0.01	0.31	6.48 10.4					

Mine/Site Name: Atlantic/Pacific County: Madison Legal Description: T 2S R 3W Section(s): E 1/2, Sec. 20; W 1/2, Sec. 21 Mining District: Pony Mine Type: Hardrock/Aq. Au Latitude: N 45° 38' 50" Primary Drainage: South Boulder River Longitude: W 111° 59' 20" USGS Code: 10020005 Land Status: Private/Public Secondary Drainage: Park Creek Quad: Pony Date Investigated: September 16 and 18,1993 Inspectors: M. Babits, S. Babits, Flammang P.A. # _29-033 Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 64,500 cubic yards. The following elements were elevated at least three times background:

Lead: 69.9 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 19,000 cubic yards. The following elements were elevated at least three times background:

Cobalt: 34.9 mg/kg

Copper: 91 mg/kg Lead: 156 mg/kg

- Manganese: 6,710 mg/kg
- concentration of 16.1mg/kg, and a water sample collected from a lined impoundment revealed 0.75 mg/l cyanide. One discharging adit was identified at the site. MCLs and acute and chronic aquatic life

A soil sample collected at the base of the heap leach pad revealed a cyanide

- criteria were exceeded for cadmium and copper in the adit discharge. Additionally, the chronic aquatic life criteria for iron was exceeded. The adit discharge pH measurement was 3.6.
- Park Creek flowed adjacent to the site on the west site. Surface water and sediment samples were collected upstream and downstream from the site. An observed release to Park Creek was documented for lead. Acute and chronic aquatic life criteria for copper were exceeded in the downstream sample, and the chronic aquatic life criteria for lead was exceeded in the downstream sample.
- Three potentially hazardous open adits were identified at the site.

Attantic & Pacific PA# 29-033 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/14/93

	Metals in solls Results per dry	Metals in solls Results per dry weight basis	ŝis			SOLID MAT	SOLID MATRIX ANALYSES	9						
FIELD	As (mg/Kg)	Be (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Ke)	Sb (me/Ke)	Zn	CYANIDE
29-033-SE-1 29-033-SE-2 29-033-TP-1 29-033-WR-1 29-033-WR-2 29-033-SS-1 29-033-SS-2 BACKGROUND	6.04 U 6.25 U 5.16 U 4.05 U 4.98 4.76 U NR NR	36.9 55.7 103 187 145 256 NR NR	12.1. 12.1. 12.1. 10.0.	3.42 3.29 2.31 1.88 7.43 34.9 NR NR	12.7 4.53 1.93 2.74 3.85 1.37 NR NR 31.5	19.1 17.6 21.8 21.8 61.6 91 NR NR	6290 8190 10600 19000 19400 15500 NR NR	0.034 U 0.038 U 0.038 U 0.039 0.025 U 0.242 NR NR	123 J 123 J 256 J 173 J 856 J 521 J 6710 J NR NR	15.1 7.5 7.5 1.99 1.99 7.08 N.R. N.R.	8.28 U 8.57 U 27 89.9 156 17.6 NR NR	333333 3	15.7 8.9 6.19 13.6 13.6 NR NR A.9	NR NR NR NR 16.1 0.609
FIELD	Acid/Base Accounting TOTAL TOTAL SULFUR SULFUR W VIOOR	Accounting TOTAL SULFUR ACID BASE	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT: V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	U - Net Detected, J - Es. SULFUR ACID BASE POTENT:	rimand Quantity, X - Outlier for Accu	5	or Precision, NR Not Requested	of Requested	
29-033-TP-1 29-033-TP-2 29-033-WR-1 29-033-WR-2	0.1 0.26 0.15 0.14	3.12 8.12 4.69 4.37	6.78 0.24 0.27 0.41	3.65 -7.9 -4.4	0.1 0.25 0.1 0.14	6.01 6.01 6.01	60.0 60.0 70.0 70.0 70.0	H H	6.78 -0.07 0.27 0.41					

	Metals in Water	Vater				WATER MAT	WATER MATRIX ANALYSES							
FIELD	Ton III agus		į	ŧ										HARDNESS
***************************************		# # #					Fe	Hg	Mm	ÿ		æ	5	Zn (mg CaCO3/L)
29-033-SW-1 29-033-SW-2	1.29 J 5.61 J	23.4 31.1	4.59 U	0 S	6.24 U	6.37	50.8 JX	0.12 U	0.12 U 4.2 10.9 U	10.9 U	1	1.22 U 31.7 U 8.71 U 39.7	8.71 U	39.7
29-033-SW-3	3.38 J	16	7.37	158	6.24 U	2130	21200 JX	0.12 U	9220	10.9 U 29.3	3.59 J	31.7 U 31.7 U	8.71 U	58.1 17.2
	Wet Chemistry							•	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	atimated Quantity, X -	Outlier for Accumicy	or Precision, NR - N	lot Requested	
	Kesuits in mg/I									LEGEND				
1919	TOTAL					SE1.	SE1 - In Park Creek, 3 upstream of where road crosses creek. SE2 - In Park Creek, 30' downstream of spring that flows adjacent	cam of where road natream of spring	crosses creek. that flows adjacent		SW1 - Same as sample SE1. SW2 - Same as sample SE2	sample SE1.		
ID.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		to tailings pond I. TPI - Composite of subsamples TPIAA, IAB, IBA, ICA, IDA, and IDB.	iles TPIAA, IAB,	IBA, ICA, IDA, 8	nd IDB.	SW3 - Adit dis	SW3 - Adit discharge at waste dump 2.	fump 2.	
29-033-SW-1	22	< 5	13	0.26	< 0.01		TP2 - Composite of subsamples TP1BB, 1BC, 1CB, 1CC, and 1DC. WR1 - Composite of subsamples WR1A and 1B.	ples TPIBB, IBC, I	ICB, ICC, and IDC B.	ri				
29-033-SW-2	570	v v	£ 52	6. 5 5. 5 5. 5	, 0.03	WR2	WR2 - Composite of subsamples WR2A and 2B.	ples WR2A and 2.	æi					
29-033-SW-4	X.	, E	X R	3 X	0.76	BAC SSI -	BACKGROUND - From the Strawberry Mine (29-038 -SS-1). SSI - Base of heap leach meanest middle nond. Carb o.c.	Strawberry Mine ((29-038 -SS-1).					
						SS2	SS2 - Composite of 3 holes in brainester field	. burimeter fold						

Mine/Site Name: Boss Tweed County: Madison Legal Description: T 2S R 3W Section(s): SW 1/4, NE 1/4, Sec. 15 Mining District: Pony Mine Type: Hardrock/Au, Ag, Cu, Fe Latitude: N 45° 39' 50" Primary Drainage: North Willow Creek Longitude: W 111° 57' 20" USGS Code: 10020005 Land Status: Private Secondary Drainage: Pony Creek Quad: Ponv Date Investigated: September 14 and 15,1993 Inspectors: M. Babits, S. Babits, Flammang P.A. # 29-034 Organization: Pioneer Technical Services, Inc.

 The volume of tailings associated with this site was estimated to be approximately 65,900 cubic yards. The following elements were elevated at least three times background:

Cadmium: 2.7 to 9 mg/kg Copper: 95 to 518 mg/kg

Mercury: 0.468J to 3.53J mg/kg Lead: 91.7 to 327 mg/kg

Zinc: 279 to 1,030 mg/kg

- A sample of leach pad material collected from this site revealed a cyanide concentration of 0.394 mg/kg.
- The volume of waste rock associated with this site was estimated to be approximately 26,520 cubic yards. The following elements were elevated at least three times background:

Cadmium: 5.6 to 13.3 mg/kg Copper: 146 to 195 mg/kg

Mercury: 0.26J to 1.16 mg/kg Manganese: 2,340 to 2,990 mg/kg

Lead: 138 to 1,870 mg/kg Zinc: 373 to 842 mg/kg

- Four discharging adits were identified at the site. One of the discharges was sampled for laboratory analysis. No MCLs were exceeded in the adit discharge; however, acute and chronic aquatic life criteria for zinc were exceeded. The chronic aquatic life criteria for mercury was also exceeded.
- Pony Creek flowed through the center of the site. Surface water and sediment samples
 were collected upstream and downstream from the site in Pony Creek. No MCLs were
 exceeded; the chronic aquatic life criteria for lead was exceeded in both the upstream
 and downstream samples. An observed release to Pony Creek (sediment) was
 documented for zinc.
- Potential safety hazards observed at the site included five open adits, a collapsing loadout structure, and three highwalls (>25 feet).

Boss Tweed PA# 29-034
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 09/14/93

		_	-	-	_	_	_	_		_	_	_	_	_	_					_													
	1	CYANIDE		¥	Z Z	2	26.0	20.5	Z Z	0.646	9	2	¥ (ž	×	0.394	9	£								•							
	ķ	77	44.7	44.	50 8	279	5 5	3	98	849	593	373	2 6	842	89.8	ž	740	}	Ĺ														
	ŧ		- 50	3 :	7.39 UJ	8 0.7	8 42 111	3 :	9.8	7.29 UJ	5.89 U.J	43111	בר של ע	2.20	5.49 UJ	X X	5 47 11.1	recinian NR - Not Res															
· ·	£		172.6	5	4.4	7.16	327	1	\$	326	31.8	138	5 5	2 (1870	X X	6.5	tlier for Accuracy or P	•														
-	Z		12.7		0.21	15.4	8.58	2	3	=	9.81	16.9	118	<u>-</u>	6.26	Z Z	22	imated Quantity, X - Ou															
	Mn		486	2.0	B (1290	745	88	3 5	090	527	2340	2990	2	200	N.	296	U - Not Detected, J - Est		SULFUR	ACID BASE	POTENT.		3.5	80 0	2. C	0.7	- 6	6.73	37.6	39.6 39.6	1.74	2.13
	Нв		0.0347 UJ	0.0877		0.080.0	0.468 J	0.971	2 63 6	5.55	0.109 J	1.16 J	0.838 J	1 90 0	2 07.0	¥	0.0367 UJ					ACID BASE	# # #	3.75	28.2	ŧ.	<u> </u>	- 6	- 6	50.9	0	0.31	0.31
X ANALYSES	Fe		14700	12400	2400	74000	24500	20500	27600	7,000	14800	2/300	31500	29200		Z.	21300				ORGANIC	SOLFUR		90.0	0.07	0.11	0 12	2	5 6	- i	V.'.	6 0.0	<0.01
SOLID MATRIX ANALYSES	ö		13.5	93.6	8	3 3	\$	354	518	30.00	32.0	<u>S</u>	154	146	9	É	29.2				PYRITIC	solrtor %		0.12	0.84	0.48	0.61	0	- a	3 5	5.6	5.0	0.01
ng/kg)	ð		0.17	5.5	28.4	404	9 10	7.75	6.24	13.4	7		5.43	9.78	œ	:	31.5				SULFATE	* *		0.05	0.2	0.33	0.3	0.00	600	5 5	0.5	20.0	0.00
eight basis (r	ပ	7.74		4.72	5.62	070	5	0.43	88. 6	7.05	16.2		4. (6.48	Z	!	10.7		6	40 Page	ACID BASE	V1000t		60.1	-5.45	-0.97	1.96	4.23	27.9	5	, e	- 4	<u>ci-</u>
Results per dry weight basis (mg/l	PO	12	- c 5 c	7.7	2.3	C.	9 6	0 0	0.6	2.7	.			2.3	ž	•	0.8 U			NET PTD AT	POTENT	V1000t		5/.3	29.2	27.8	34.1	7.05	64.5	39.6	200	3 4	2.42
	Ba	55.6	2 6	77	55.7	36	47.8		40.G	103	133	237	777	7	Z Z		89	ounting	TOTAL	95.5	ACID BASE	#/1000f	7.40	P . (7.	28.7	32.2	2.81	36.6	8.75	181	17.5	2:
Metals in soils	As ====================================	17.71	- v	5 5		17.3 J	8	1 0	L 15.7	4.45 U	20.4 J	13.6	20.22	D (2)	ž		20.1 J	Acid/Base Accounting		TOTAL	-4			0.63	= 6	0.92	1.03	6 0.0	1.17	0.28	0.58	920	
	FIELD ID	29-034-SE-1	29-034-SF-2	10000	29-034-1F-1	29-034-TP-2	29-034-TP-3	20 034 TD A	1	29-034-TP-5	29-034-WR-1	29-034-WR-2	29-034-WR-3	2000	Z9-034-LP-1	-	BACKGROUND				FIELD	Ω	29-034-TD-1	20 024 10 0	20-04-17-2	29-034-1P-3	29-034-1P-4	29-034-TP-5	29-034-WR-1	29-034-WR-2	29-034-WR-3	29-034-WR-3	

	Metals in Water		Results in ug/L			WATER MATRIX ANALYSES	ANALYSES							
FIELD													HARDNESS	NESS
Ω	As ro====================================	Ba	S	రి		8	Ŗ	Нg	M	Z	£	£	CALC.	CALC.
29-034-SW-1	7.82	15.5	,		6.24 U	2.33 U	**************************************		######################################		ij			SCONE)
29-034-SW-2	1.12 U	13.7		2 C	6.24 U	2.57	195	0.15	70.7 70.1	9.00	9.9 9.1	31.7 U		47.3
29-034-5W-3	7	3.23	4.59 U	5 U	6.24 U	12	235	0.13 J	30°	0.00	2.33 2.33	31.7 U	8.71 U	93.7
4-00-4-00-67	T+:-) 		⊃ \$	6.24 U	2.33 U	13.7 U	0.12 U	3.76 U	10.9 U 0.01	1.25	31.7 U		<u>ක</u> ද
	Wet Chemistry	œ	Results in ma/					-	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	ated Quantity; X - Outli	or for Accornery or Pr	ecision, NR - Not Req	•	- 5
	TOTAL													
FIELD	DISSOLVED					101	# 1 mm of the second			LEGEND				
.E.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	14 T	TPI - Composite of subsamples TPIA-A through IA-P. IB-A through IB-C and 2.4.	/KZ. oles TP1A-A through	1A-F. 1B-A through	IB-C and 24	WR3 - Compos	site of subsamples	WR3 - Composite of subsamples WR9A, 9B, and 10.	o i
29-034-SW-1	× 96	5				172 - 0	TP2 - Composite of subsamples TPIA-D, IA-E, IB-D, and IB-E.	iles TPIA-D, IA-E, 1	B-D, and 1B-E.		SEI - 500 feet u	D - From the Strav (pgradient from w	SE1 - 500 feet upgradient from waste rock drum 6 in Prov. C.	38-SS-1)
29-034-SW-2	160	, ro	49	4	<u> </u>	i i	1P3 - Composite of subsamples TP2A-A, 2A-B, 2A-C, 2B-A, 2B-B and 2B-C.	iles TP2A-A, 2A-B, 2	A-C, 2B-A, 2B-B and	12B-C.	SE2 - Downgra	dient of TP3 prior	SE2 - Downgradient of TP3 prior to confluence with inhutary	Tibutary
29-034-SW-3	217 <	ທ	8	0.58	Z.	F	1r4 - Composite of subsamples TP3B-A, 3B-B, 3A-A, 3A-B, and 3A-C.	lies TP3B-A, 3B-B, 3,	A-A, 3A-B, and 3A-C		SW1 - Same as sample SE1.	sample SE1.	:	Ì
29-034-SW-4	Z Z	ž	N.	N.	v 0.005	WRI-	WR! Composite of subsamples 1P3B-C and 3A-D.	ites 1P3B-C and 3A-I	.		SW2 - Same as sample SE2.	sample SE2.	٠	
						WR2-	WR2 - Composite of subsamples WR4 5 6 7 and 9	pies w.r.i, c, and 3. pies WRA 5 6 7 m			SW3 - Adit discharge at WR1	sharge at WR1.		
								M. 1 0 0 1 MIN	d 0.		SW4 - QA/QC Blank	Blank.		

Mine/Site Name: Strawberry County: Madison Legal Description: T 2S R 3W Section(s): N 1/2, NE 1/4, Sec. 14 Mining District: Pony Mine Type: Hardrock/Au, Ag Latitude: N 45° 39' 50" Primary Drainage: North Willow Creek Longitude: W 111° 55' 50" USGS Code: 10020005 Land Status: Private Secondary Drainage: Pony Creek Quad: Pony Date Investigated: September 14, 1993 Inspectors: M. Babits, S. Babits, Flammang P.A. # 29-038 Organization: Pioneer Technical Services, Inc.

 The volume of tailings associated with this site was estimated to be approximately 13,475 cubic yards. The following elements were elevated at least three times background:

Copper: 167 to 294 mg/kg Mercury: 1.17J to 1.94J mg/kg

Cadmium: 1.8 mg/kg Lead: 367 to 584 mg/kg

Zinc: 360 mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 12,820 cubic yards. The following elements were elevated at least three times background:

Zinc: 278 mg/kg

- One discharging adit was identified at the site during the investigation. The MCL for cadmium was exceeded in the adit discharge. Acute and chronic aquatic life criteria were exceeded for cadmium, copper, and zinc.
- Pony Creek was flowing through the center of the site during the investigation. Surface
 water and sediment samples were collected upstream and downstream from the site in
 Pony Creek. No MCLs were exceeded; however, the chronic aquatic life criteria for
 mercury was exceeded in both the upstream and downstream samples.
- Ten potentially hazardous open adits and four open shafts were identified at the site.

Strawberry PA# 29-038 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/14/93

_										
			CYANIDE (mg/Kg)		1.42	<u> </u>	X X			
			сл. (т.g/Kg)	206	360	278 142	74.9			
		8	(mg/Kg)	7.8 UJ 5.95 UJ	7.33 UJ 6.71 UJ	5.01 UJ	5.47 UJ			
		Pb	(mg/Kg)	43.7 21.9	367 584 54	266	15.9 Outlier for Accuracy			
		ž	(mg/Kg)	12.1	39.5 4.87	36.3	22 Zeimsted Questity, X			
		Mn	(mg/Kg)	555 470	55 57 87 87 87 87	415	596 22 15.9 5.47 UJ 74.9 U-Not Detected, J. Estimated Quantity, X Outlier for Accuracy or Precision; NR - Not Reserved	SULFUR ACID BASE POTENT.	V1000t ======= 77.6 0.03	0.03 5.06 5.06 5.06
S		Hg	(mg/Kg)	0.063 J	1.94 J 0.218 J	0.882 J	0.037 UJ	PYRITIC SULFUR ACID BASE	v1000t	0.31 0.31
SOLID MATRIX ANALYSES		Fe (mo/Ke)	######################################	13200	20800	36600	21300	ORGANIC SULFUR	0.01	6.04 0.04 0.04 0.04
SOLID MA		Ou (mg/Kg)	777	45.7 294	167 275	<u>6</u>	7.87	PYRITIC SULFUR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0 0.01 0.01
		Cr (mg/Kg)	7.65	15.4 40.6	9.27 39.7		<u>;</u>	SULFATE SULFUR	40.01 0.33	0.03 0.03 44
		Co (mg/Kg)	!! !!		2.25 18.8 17.5		.	SULFUR ACID BASE POTENT.	ii	3.19 1.22
	asis .	Cd (mg/Kg)	1.5	- + + 80 0	2.8 5.6 0.0	0.8		NEUTRAL. POTENT. t/1000t	77.6 0.34 0.39	0.34 5.38 2.26
soils	Results per dry weight basis	Ba (mg/Kg)	29.6	8 2 6	83.3	168	Accounting	TOTAL SULFUR ACID BASE V1000t	10.6 10.6	10.6 2.19 14.1
Metals in soils	Results pe	As (mg/Kg)	11.6 J	23.2 J 23.2 J 26.1 J	32 J 40.6 J	20.1 J	Acid/Base Accounting	TOTAL SULFUR	<0.01 0.34 0.32	0.34 0.07 0.45
-	· · · · · · · · · · · · · · · · · · ·	FIELD D	29-038-SE-1	29-038-TP-1 29-038-TP-2	29-038-WR-1 29-038-WR-2	BACKGROUND		FIELD	29-038-TP-1 29-038-TP-2 29-038-TP-2DUP	29-038-TP-2 29-038-WR-1 29-038-WR-2

	HARDNESS	Zn (ng ======== 8.71 U 24			i. ste mot dume 0	
		Pb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb	X - Outlier for Accuracy or		SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Addi discharze at waste nock chume o	
		0.12 U 4.6 10.9 U 0.23 J 4.3 10.9 U 0.16 J 1750 81.4	U - Not Detected; J - Estimated Quan	LEGEND	cas tator Forty Creek crossing. 8 below last tailings. A-A IA-B, 2A-A, 2A-B, 2C-A,	A-C, IA-D, IA-B, and 2B-C. 1, 2, 3A, and 3B. 4A, 4B, 6, 7, 8, and 9. Y. Mine (29-038-SS-1).
WATER MATRIX ANALYSES	.	66.5 268 12000		SE1 - 250 feet unafreem of mine section 1	SE2 - 1200 downstream of mill ruins below last tailings. TPI - Composite of subsamples TPIA-A IA-B, 2A-A, 2A-B, 2C-A, 2R-A, and 2B-C.	TP2 - Composite of subsamples TP1A-C, 1A-D, 1A-E, and 2B-C. WR1 - Composite of subsamples WR1, 2, 3A, and 3B. WR2 - Composite of subsamples WR4A, 4B, 6, 7, 8, and 9. BACKGROUND - From the Strawberry Mine (29-038-SS-1).
WATER	ro O	5 U 6.24 U 2.33 U 5 U 6.24 U 2.33 U 77.7			CYANIDB	N N N N N N N N N N N N N N N N N N N
	PO	4.59 U 4.59 U 12.9 36			E SULFATE NO3/NO	 5 31 0.3 5 40 0.4 5 187 0.37
Metals in Water Results in ug/L	As Ba	2.82 13.1 3.37 16.5 4.86 38.1	Wet Chemistry		DISSOLVED SOLIDS CHLORIDE	164 c 5 151 c 5 401 c 5
CTELD		29-038-SW-1 29-038-SW-2 29-038-SW-3			FIELD LD	

Mine/Site Name: Emma County: Madison Legal Description: T 3S R 7W Section(s): SE 1/4, SW 1/4, Sec. 6 Mining District: Rochester Mine Type: Hardrock/Au, Pb, Ag, Zn Latitude: N 45° 34' 37" Primary Drainage: Big Hole River Longitude: W 112° 02' 19" USGS Code: 10020004 Land Status: Public Secondary Drainage: Nez Perce Creek Quad: Nez Perce Hollow Date Investigated: June 18, 1993 Inspectors: Babits, Lasher/Pierson P.A. # <u>29-061</u> Organization: Pioneer Technical Services. Inc./Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be approximately 11,700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3,710 to 5,840 mg/kg

Copper: 492 to 1,440 mg/kg

Lead: 8,990 to 29,500 mg/kg

Zinc: 7,400 to 46,200 mg/kg

Cadmium: 115JX to 495JX mg/kg

Mercury: 0.199 to 0.5 mg/kg Antimony: 95J to 194J mg/kg

The volume of waste rock associated with this site was estimated to be approximately 15,185 cubic yards. The following elements were elevated at least three times background:

Copper: 552 to 870 mg/kg Manganese: 2,030 mg/kg

Mercury: 1.08 to 3.88 mg/kg Lead: 27,500 to 41,200 mg/kg

Antimony: 40J to 100J mg/kg

Zinc: 9,100 to 9,200 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site during the investigation.
- No surface water was identified on or near the site. The nearest flowing water was approximately one mile away; consequently, no surface water or sediment samples were collected.
- Potentially hazardous mine openings identified at the site included one open shaft and four open adits.

Emma PA# 29-061 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/18/93

			CYANIDE (mg/Kg)	Z Z Z	Z Z Z	_					
		,	(mg/Kg)	7400	920 920 920	119	? - Not Requested	A-D. sand 6.	C, 4A, and 4B. t of waste rock	I-SS-1).	
		8	(mg/Kg)	28 E	6 8	4 UJ	aty of Precision, Ni	TPI - Composite of subsamples TPIB-A, IA-A, and IA-B. TP2 - Composite of subsamples TPIA-C and IA-D. WR1 - Composite of subsamples WR1AA, IB, and 6. WR2 - Composite of subsamples WR1AA, IB, and 6.	WR3 - Sample of the WRS subsample. BACKGROUND - On top of the hull, upgradient of waste rock.	dump 6. From the Emma Mine (29-061-SS-1).	
-		£	(mg/Kg)	8990 29500 6200	27500 41200	30 X-Outlier for Acco		site of subsample site of subsample baite of subsamp	WR3 - Sample of the WR5 subsample BACKGROUND - On top of the hill, up	6. From the Em	
		ï	(mg/Kg)	288	ឧឧ	26 Estimated Quantity,		TP1 - Compo TP2 - Compo WR1 - Compo WR2 - Compo	WR3 - Sample BACKGROUN		
		Mn	(mg/Kg)	1370 1370 1670	2030 2030	462 26 30 4 UJ 119 U - Not Detected J - Estimated Quantity, X - Outlier for A communication		SULFUR ACID BASE POTENT.	V1000t	-112 -112	-19.8 15.2
S		盟	(mg/kg) ====================================	0.198 0.99 0.99	3.88 88.00	0.014 U		PYRITIC SULFUR ACID BASE	v1000t ==================================	136 0	24.4
SOLID MATRIX ANALYSES		Fe (mo/Ke)	46700	59600 38200 61100	54600	25300		ORGANIC SULFUR	0.31	2.4 4.00	0.05
SOLID MA		Cu (mg/Kg)	492	1440 160 552	870	34 .2		PYRITIC SULFUR	0.19	4.00 4.00 4.00 4.00	40.01 40.01
		Cr (mg/Kg)	6	20.5 5.4	5. 5.	4:		SULFATE SULFUR %	1.04	0.00 to	0.41
		Co (mg/Kg)	 	16.2 17.4 10.8		0.22		SULFUR ACID BASE POTENT. v1000t	441	38.9 20.5	1.47
	asis	Cd (mg/Kg)	115 JX	72.8 JX 82.3 JX	XL 805			NEUTRAL. POTENT. V1000t	6.08	40.1	15.2
soils	results per dry weight basis	Ba (mg/Kg)	29.9	30.5	8 6	Acid/Base A seel/link	Accounting	TOTAL SULFUR ACID BASE v1000t	47.2 187	1.25 107	13.7
Metals in soils	A STILLS PA	As (mg/Kg)	3710 5840	2910 9500 11900	99	Acid/Rase	PSPG DOC	TOTAL SULFUR	1.51 5.99	3.41 3.41	4.0
		(A)	29-061-TP-1 29-061-TP-2	29-061-WR-1 29-061-WR-2 29-061-WR-3	BACKGROUND			FEELD U	29-061-TP-1 29-061-TP-2	29-061-WR-1	23-00 I-WR-5

Mine/Site Name: Thistle Mine and Millsite	County: Madison
Legal Description: T 3S R 7W	Section(s): SE 1/4, SW 1/4, Sec. 5
Mining District: Rochester	Mine Type: Hardrock/Au, Ag, Pb
Latitude:_N 45° 37' 27"	Primary Drainage: Rochester Creek
Longitude: W 112° 29' 28"	USGS Code: 10020004
Land Status: Private	Secondary Drainage: Rochester Creek
Quad: Twin Bridges	Date Investigated: June 15, 1993
Inspectors: Tuesday, Babits, Belanger,	P.A. # 29-073
Lasher, Clark/Pierson	
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

The volume of tailings associated with this site was estimated to be approximately 56,950 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2,730 to 6,850 mg/kg

Cadmium: 3.8 to 10.5 mg/kg Copper: 371 to 887 mg/kg Mercury: 0.255 to 3.51 mg/kg

Lead: 2,500 to 5,850 mg/kg

Antimony: 27 to 59 ma/ka

The volume of waste rock associated with this site was estimated to be approximately 6,393 cubic yards. The following elements were elevated at least three times background:

Arsenic: 275 mg/kg

Cadmium: 4.3 to 37.3 mg/kg Manganese: 1,610 mg/kg

Mercury: 0.366 to 2.21 mg/kg Lead: 309 to 1,720 mg/kg

Zinc: 1,720 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- Intermittent Rochester Creek was situated adjacent to the tailings at the site. Sediment samples were collected upstream and downstream from the site. Observed releases to Rochester Creek (sediment) were documented for arsenic, cadmium, mercury, and lead.
- Potentially hazardous mine openings identified at the site included four open shafts and six open adits.

Thistle PA# 29-073 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE:

			!		-					_
	CYANIDE	(mg/Kg)	X X	8 8 8 8 8 8	X X X X	Z Z		Creek.	1D-A 1D-B	•
	Zn	(mg/Kg)	8 3	8 <u>6</u> 1	187 1720	74 of Requested		in Rochester	B, 1C-C, and C, 1B-A, and I. Y, 14, and 15. stle Mine	
	£	(mg/Kg)	ო დ -	27 59	m 4	3 UJ Precision NR - Na	LEGEND ochester Creek.	impoundment	IPIC-A, IC-1 TPIA-A. 1A-6 WRIA and 12 WRIB, 11, 13 From the This	
	ም	(mg/Kg) ==========	650	2500 x 2500 x 5850 x	25 720 24	30 <	ftailings in Ro	from tailings	of subsamples of subsamples of subsamples of subsamples	SS-1).
		(mg/Kg) ((- 22	. o 0 %	23	29 mated Quentity, X - Out	LEGEND SB1 - Upstream of tailings in Rochester Creek. SB2 - At breach where tailings flow into creek.	SE3 - Downstream from tailings impoundment in Rochester Creek. TPIA - Commonity of subsecuents and supported to the supported	TPIB - Composite of subsamples IPIC-A, IC-B, IC-C, and ID-A WRI - Composite of subsamples TPIA-A, IA-C, IB-A, and ID-B WRI - Composite of subsamples WRIA and 12. WR2 - Composite of subsamples WRIB, II, 13, 14, and 15. BACKGROUND - Above WRIS. From the Thistle Mine	(29-073-58-1)
	Min		169 130	67.4 122 738	1610	481 29 30 < 3UJ 74 U - Not Demotret, J - Bulimeted Quentity, X - Outlier for Accuracy or Procision, NR - Not Requested	. #	V1000t	-11.4 -3.26 70.1	
	Hg (me/Ke)	75.45. 55.45. 0.045.	0.087 0.024	0.255 3.51 0.366	2.21	0.02 J	PYRITIC SULFUR ACID BASE	V1000t	4.69 0.31 0.62 0.62	}
SOLID MATRIX ANALYSES	Fe (mg/Kg)	12600	19600	32300 67300 36100	45900	0000	ORGANIC SULFUR	*	0.15 0.06 0.1 0.1	
SOLID MAT	Cu (mg/Kg)	83.7	162 66.7	30.8 30.8	67.7 32.8		PYRITIC SULFUR	%	0.15 0.01 0.02 0.02	
	Cr (mg/Kg)	21.8	14.7 18.1	18.1 28.4 20.2	36.3 47.5		SULFATE	%	0.85 1.16 <0.01 0.01	
	Co (mg/Kg)	4.3	4.00 W	13.7 13.7 84.8	14.1		SULFUR ACID BASE POTENT.	t/1000t	43 41 67.6 70.2	
88. 88.	Cd (mg/Kg)	0.5	, 3.6 3.8	10.5 4.3 37.3	9.0		NEUTRAL. POTENT.	niw.	-6.7 -2.9 70.7 74.6	
Metals in soils Results per dry weight basis	Ba (mg/Kg) ====================================	83.1	52.7 39	97.9 61.3 68.5	4	Accounting	TOTAL SULFUR ACID BASE	100012	35.9 38.4 3.12 4.37	
Metals in soils Results per dry	As (mg/Kg)	124 590	291 2730	6850 13 275	19	Acid/Base Accounting	TOTAL SULFUR	***************************************	0.1 0.1 0.14	
	FIELD D	29-073-SE-1 29-073-SE-2	29-073-SE-3 29-073-TP-1A	29-073-WR-1 29-073-WR-1 29-073-WR-2	BACKGROUND		FIELD	29.072.TD.4A	29-073-TP-18 29-073-WR-1 29-073-WR-2	

Mine/Site Name: Watseca	County:_Madison
Legal Description: T 2S R 7W	Section(s): <u>SW 1/4, NW 1/4, Sec. 32; NE 1/4,</u>
Mining District: Rochester	SE 1/4, SEC. 31
Latitude: N 45° 37' 15"	Mine Type: Hardrock/Ag, Au, Cu, Zn
Longitude: W 112° 30' 15"	Primary Drainage: Big Hole River
Land Status: Private	USGS Code: 10020004
Quad: Nez Perce Hollow	Secondary Drainage: Rochester Creek
Inspectors: Bullock, Tuesday, Flammang	Date Investigated: September 20, 1993
Organization: Pioneer Technical Services, Inc.	P.A. # <u>29-075</u>

- The site was active, apparently operating under a Small Miner Exclusion.
- The Thistle I tailings (PA# 29-073) and waste rock from the Watseca dumps were being reprocessed in a cyanide vat leach operation. The tailings impoundment was lined with geotextile and process water appeared to be recycled. No samples were collected.
- There were no discharging adits on site.
- There was no surface water on site; no surface water samples were collected. The
 nearest surface water was Rochester Creek, an intermittent drainage approximately 100
 feet from the facility. The drainage was dry at the time of this investigation.
- There was one hazardous open shaft on site. Several other shafts have been grated by the AMRB.

			•	

Mine/Site Name: Smuggler County:_Madison Legal Description: T 4S R 4W Section(s): SE 1/4, SW 1/4, SW 1/4, Sec. 13 Mining District: Sheridan Mine Type: Hardrock/Au, Ag Latitude: N 45° 28' 57" Primary Drainage: Mill Creek Longitude: W 112° 02' 18" USGS Code: 10020003 Land Status: Public Secondary Drainage: Mill Creek Quad: Copper Mountain Date Investigated: June 16, 1993 Inspectors: Tuesday, Babits, Belanger, Lasher, P.A. # 29-010 Clark/Pierson Organization: Pioneer Technical Services. Inc./Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be approximately 3,000 cubic yards. Approximately 80% of the tailings surface was naturally revegetated. The following elements were elevated at least three times background:

Cadmium: 3.9J mg/kg Lead: 504 mg/kg Mercury: 2.51 mg/kg

Zinc: 435 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 8,500 cubic yards. The following elements were elevated at least three times background:

Cadmium: 6.6 mg/kg Mercury: 0.207J mg/kg

Lead: 514 mg/kg Zinc: 1,030 mg/kg

- Four adits were associated with this site; however, only one of the adits (Adit #1) was discharging water. The Adit #1 discharge was very minor (<1 gpm), and eventually seeped into the ground. The discharge did not exceed any MCL/MCLGs; however, the chronic aquatic life criteria for mercury was exceeded.
- Mill Creek was located approximately 200 yards downgradient from the adits and associated waste rock dumps, and approximately 20 yards downgradient from the tailings on the opposite side of the Mill Creek Road. Mill Creek was not sampled during the investigation.
- Adit #4 was open and posed a hazard.

Smuggler PA# 29-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/16/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES	(0						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	1	Со (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Re)	Pb (me/Ke)		Zn	CYANIDE
29-010-TP-1 29-010-WR-1	28 38	14.8 26.1	3.9 J 6.6	14.8 22.9	30.2 74.6	58.4 71.7	25700 37100	2.51 0.207 J	703 1220	41	504	4 U.	(mg/kg) ====================================	(mg/kg)
BACKGROUND	8	96.4	1.2 JX	20.2	42.1	35.1	18200	0.017 U	909	59	X	4 U	5	2 2
	Acid/Base Accounting	4ccounting							U - Not Detected, J.	U - Not Detected; J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	X - Outlier for Accu	racy or Precision, NR	R - Not Requested	
TIELD O	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL SULFUR ACID BASE POTENT. % 11000t 11000t	NEUTRAL. POTENT. 11000t	SULFUR ACID BASE POTENT. v1000k	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000.					
29-010-TP-1 29-010-WR-1	0.07 0.31	2.19 9.68	49.2 115	47 105	47 0.01 105 <0.01	0.02	0.04	0.62 4.37	48.6 111					
	Cation Exch	Cation Exchange Capacity												
FIELD D 29-010-TP-1	milliequivalents/100g	/100g =======: }												

	Metals in Water	/ater			- '	WATER MATR	WATER MATRIX ANALYSES							
FIELD	Results in ug/L	JØr											Š	UABRANGE
А	D As Ba Cd Co C	Ba	ਣ	රී		ਠ	F.	盟	Mn	Z	£	ú	, i	CALC.
29-010-SW-1	1.69 U	7.13	2.55 U	5.99 U	11	1.93 J	1.93 J 46.2 0.26	0.26	II II I	2.6 U 10.5 J 1.55 U 18.3 U Detected J. Estimated Quantity, X. Outlier for Accounts and Properties of the Company of the Compan	1.55 U	18.3 U	19.6	.6 186
	Wet Chemistry Results in mg/l					-						. Wil fineral b	nor requested	
FIELD LD	TOTAL FIELD DISSOLVED 1D SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE	CHLORIDE	SULFATE	SULFAIE NO3/NO2-N CYANID	CYANIDB	TP1 - (WR1 - BACKC	ITPI - Composite of the subsamples TPI A and IB. WRI - Composite of the subsamples WRI A through IC, and 3A, and 3B. BACKGROUND - From the Uncle Sam Mine (29-383-SS-I). SWI - Adit discharge.	namples TP1A and stamples WR1A tl Uncle Sam Mine	11B. rough 1C, and 3A. (29-383-SS-1).	and 3B.				
29-010-SW-1	234	234 < 5.0	19	0.13	NA NA									

Mine/Site Name: Goldschmidt/Steiner	County: Madison
Legal Description: T 4S R 4W	Section(s): NE 1/4, SW 1/4, Sec. 25
Mining District: Sheridan	Mine Type: Hardrock/Au
Latitude: N 45° 27' 10"	Primary Drainage: Ramshorn Creek
Longitude: W 112° 02' 40"	USGS Code: 10020003
Land Status: Public	Secondary Drainage: Currant Creek
Quad: Copper Mountain	Date Investigated: August 25, 1993
Inspectors: Babits, Flammang/Pierson	P.A. # <u>29-078</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- No tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 6,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 164 mg/kg Copper: 112 mg/kg

Cadmium: 7.79J to 74.9J mg/kg Mercury: 0.49J to 1.01J mg/kg

Manganese: 2,390J to 8,800J mg/kg

Nickel: 191JX mg/kg

Lead: 403JX to 1,500JX mg/kg

Antimony: 8.53J to 37.1J mg/kg

Zinc: 885J to 8,890J mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site during the investigation.
- Currant Creek was flowing through the center of the site during the investigation.
 Surface water and sediment samples were collected uptream and downstream from the site in Currant Creek. No MCLs were exceeded; however, chronic aquatic life criteria for mercury and lead were exceeded in both the upstream and downstream samples.
- Observed releases to Currant Creek (sediment) were documented for mercury, manganese, nickel, lead, and zinc.
- Eight potentially hazardous open adits were identified at the site.

Goldschmidt-Steiner PA# 29-078 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/25/93

	Metals in soils Results ner dry	Metals in soils Results ner dry weight basis	. <u> </u>			SOLID MA	SOLID MATRIX ANALYSES	10						
			2											
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mo/Ke)	Sb (me/Kr)	Zn	CYANIDE
29-078-SE-1 29-078-SE-2 29-078-WR-1	7.52 U 14.7 32.9		1.4 U 1.6 0.0	10.3 46.2 37.2	60.2 82.7 54.1	20 55.1	15000	0.054 U 0.208 J	481 2730	29.6 J	10.3 U 80.1	9.95 UJ 6.34 UJ	3 <u>ji</u>	NR NR
29-078-WR-2 29-078-WR-3	19.7 164	228 J 41.7 J	7.79 J 74.90 J	30.8 30.8 9.9	72.3 JX 45.4 JX	57.6 112	35000 35000 39700	0.557 J 1.01 J 0.49 J	3350 8800 J 2390 J	0 19 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1150 403 JX 1500 JX	6.98 UJ 8.53 J 37.1 J	953 885 J	X
BACKGROUND	8	96.4	1.2 JX	20.2	42.1	35.1	18200	0.017 U	608 U-Nat Detector 1.1	59 Stimuted Quantity	608 59 25 4 UJ 61	4 U	19	X X
	Acid/Base Accounting	\ccounting										יא ש היהמוסת ה	ık - Not Kequested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASIE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASIE V1000t	SULFUR ACID BASB POTENT. v1000t					
29-078-WR-1 29-078-WR-2 29-078-WR-3	<0.01 <0.01 0.11	0 0 44.	21.4 177 50.1	i ! !	40.01 40.01 0.05	0.01 0.01 0.01	<0.01 0.01 0.05	0.31	21.1 177 49.8					

	Metals in Water Results in ug/L	ater 3/L				WATER MATRIX ANALYSES	IX ANALYSES							ı
FIELD D	#	æ	As Be Cd Co C	රී	ប់	ਰੌ	Ŗ	Ħ	M	ž	£	8	Zn (n	HARDNESS CALC.
29-078-SW-1 29-078-SW-2	0.96.U 0.96 U	42.8	2.57 U 2.57 U	9.7 U 9.7 U	6.83 U 6.83 U	1.55 U 1.55 U	278 501	0.14 JX 0.2 JX	41.4	41.4 19.1 4.53 J 30.7 U 45 12.7 U 2.86 J 30.7 U	4.53 J 2.86 J	30.7 U 30.7 U		10.7 J 59.2 17.4 J 69.4
	Wet Chemistry								U - Not Detected, J.	U - Ned Defected, J - Estimated Quantity, X - Outlier for Accuracy or Prezision; NR - Net Requested	K - Outlier for Accur	ney or Precision; NA	R - Not Requested	
	Results in mg/l									LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	CHLORIDB SULFATE NO3/NO2-N CYANIDB	NO3/NO2-N	CYANIDE		SEI - 250 upgradient from cabin in Current Creek. SE2 - 100 downgradient from waste rock dump 1 in Current Creek. WR1 - Composite of subsamples WR1, 9A, 9B, and 9C. WR2 - Composite of subsamples WR4, 7, and 3.	cabin in Current Com waste rock dum uples WR1, 9A, 9E uples WR4, 7, and	reek. p 1 in Current Cr. t, and 9C. 3.	æek.	SW1 - Same as sample SE1. SW2 - Same as sample SE2.	s sample SE1.		
29-078-SW-1 29-078-SW-2	107	< 5.0 < 5.0	< 5.0 < 5 0.33 NR < 5.0 < 5 0.31 NR	0.33 0.31	NA NA NA		WR3 - Composite of subsamples WR10A, 10B, 10C, and 13. BACKGROUND - From Uncle Sam Mine (29-383-SS-1).	nples WR10A, 10E cle Sam Mine (29∹	3, 10C, and 13.					

Mine/Site Name: Red Pine	County:_Madison
Legal Description: T 4S R 4W	Section(s): NW 1/4, NW 1/4, Sec. 3
Mining District: Sheridan	Mine Type: Llardrock/Au, Cu
Latitude: N 45° 31' 20"	Primary Drainage: Indian Creek
Longitude: W 112° 05' 05"	USGS Code: 10020003
Land Status: Public	Secondary Drainage: Unnamed tributary to
Quad: Noble Peak	Indian Creek
Inspectors: Babits, Flammang/Pierson	Date Investigated: August 25, 1993
Organization: Pioneer Technical Services,	P.A. # <u>29-079</u>
Inc./Thomas, Dean and Hoskins, Inc.	

The volume of tailings associated with this site was estimated to be approximately 4,450 cubic yards. The following elements were elevated at least three times background:
 Copper: 236 to 298 mg/kg
 Mercury: 0.432J to 0.442J mg/kg

Antimony: 11.8J to 30.4J mg/kg

Mercury: 0.432J to 0.442J mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 25,000 cubic yards. The following elements were elevated at least three times background:

Copper: 408 mg/kg

Mercury: 0.453J mg/kg

Antimony: 42.7J mg/kg

- One discharging adit was identified at the site during the investigation. No MCLs were
 exceeded in the adit discharge; however, chronic aquatic life criteria were exceeded for
 mercury and lead. This discharge eventually flowed into Indian Creek.
- Indian Creek was flowing south of the site during the investigation; however, surface
 water samples were not collected due to extremely high flow and likely excessive
 dilution. Indian Creek sediment samples were collected upstream and downstream from
 the site; metals concentrations were not significantly elevated in the downstream sample.
- One potentially hazardous open adit was identified at the site.

Red Pine PA# 29-079 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/25/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>89</u>			SOLID MA	SOLID MATRIX ANALYSES	Ø						
FIELD O	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Kø)	Pb (ms/Ke)	Sb (ma/Ke)	. Z	CYANIDE
29-079-SE-1 29-079-SE-2 29-079-TP-1 29-079-TP-3 29-079-WR-1	5.96 9.58 62.7 68.2 5.18 U 64.5	42.3 J 51.5 J 193 J 125 J 83.6 J 39.2 J	1.04 UJ 1.21 UJ 0.97 UJ 0.99 UJ 0.99 UJ	9.92 10.4 17.4 17.9 10.5	38.6 JX 28.5 JX 28.5 JX 29.9 JX 31.6 JX X 5.7 X	39.1 236 238 42.5 408	13600 14800 43900 43200 19000 39600	0.039 UJ 0.032 UJ 0.432 J 0.442 J 0.032 J 0.453 J	460 J 931 J 3150 J 2950 J 1510 J 3420 J	28 X 4 4 X X 4 4 X X X 4 4 X X X 4 4 X X X 4 4 X X X 4 4 X X X X 4 X X 4 X	#33××3×	7.14 UJ 8.38 UJ 11.8 J 30.4 J 6.85 UJ	58.2 J 58.2 J 58.2 J 61.3 J 74.6 J	(mg/kg) NR -0.334 NR -0.290
BACKGROUND	8	154	8.6 JX	15.3	26.1	29.6	20200	0.021	1240 U - Not Detected, J -		89 - Outlier for Accurac	4 UJ y or Precision; NR -	70 Not Requested	X X
FIELD D	Acid/Base Accounting TOTAL TOTAL SULFUR KULTUR 100000	Accounting TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. t/1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
29-079-TP-1 29-079-TP-2 29-079-TP-3 29-079-WR-1	0.7 0.64 0.06 3.8	21.9 20 1.87 119	346 184 32.6 379	324 164 30.7 260	<0.01 0.21 0.02 <0.01	0.64 0.39 0.01 2.39	0.31 0.04 3.88	20 12.2 0.31 74.7	326 172 32.2 304					

	Metals in Water Results in ug/L	Vater .g/L				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD	\$	8	ষ্ট	රී	ර්	ਰ	Ā	H	Mn	Z	. £	ŧ	HAR	HARDNESS CALC.
29-079-SW-3	1.07	5.73	2.57 U	9.7 U	6.83 U	1.07 5.73 2.57 U 9.7 U 6.83 U 1.55 U 43.1 0.21 JX	43.1	0.21 JX	5.47 U - Not Detected, J - 1	5.47 12.7 U 2.24 J 30.7 U 10.9 J U - Not Detected J - Editrated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	2.24 J Outlier for Accura.	30.7 U	5.47 12.7 U 2.24 J 30.7 U 10.9 J 50.7 I Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	20.7
	Wet Chemistry Results in mg/l													
Field LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	SE1 - 1 SE2 - Ii	 SBI - In Indian Creek, 75 up from confluence with adit discharge. SB2 - In Indian Creek at PPB of tailings pond 3. TPI - Composite of subsamples TPI AA through IAC 1BA. 	tp from confluence B of tailings pond 3 ples TP1 AA throug	with adit 1. h 1AC, 1BA	LEGEND	WR1 - Compos BACKGROUNI (29-4	WR1 - Composite of subsamples WR1A t BACKGROUND - From NW SE Sec. 26 (29-476-SS-1).	WR1 - Composite of subsamples WR1A through 1C. BACKGROUND - From NW SE Sec. 26 (29-476-SS-1).	Ü
29-079-SW-3	90 < 5.0 < 5 0.07 NR	> 06 > 5.0 >	S	0.07	NR SE		2AA through 2AC, and 3A through 3C. TP2 - Composite of subsamples TP1BB through 1BE.	nd 3A through 3C.	h 1BE.			ovo - Deschalping doll at waste rock chimp 1.	rock dump 1.	

Mine/Site Name: <u>Broadgauge</u>	County:_Madison
Legal Description: T 4S R 4W	Section(s): SE 1/4, SW 1/4, Sec. 17
Mining District: Sheridan	Mine Type: <u>Hardrock/Au, Ag</u>
Latitude: N 45° 28' 56"	Primary Drainage: Mill Creek
Longitude: W 112° 08' 04"	USGS Code: 10020003
Land Status: Private	Secondary Drainage: Spring Park Creek
Quad: Sheridan	Date: <u>June 16, 1993</u>
Inspectors: Tuesday, Belanger, Clark	P.A. # _29-293
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with the site was estimated to be approximately 2,100 cubic yards (WR-1 was located in an intermittent drainage). The following elements were elevated at least three times background:

Arsenic: 208 to 257 mg/kg

Iron: 59,400 mg/kg Nickel: 73 to 109 mg/kg

Zinc: 1900 mg/kg

Cadmium: 9.3J mg/kg

Manganese: 1620 to 1630 mg/kg

Lead: 231 to 2660 mg/kg

- There was one adit discharge observed at the site during the investigation. No MCLs or acute or chronic aquatic life criteria were exceeded in the adit discharge sample.
- Three hazardous mine openings (two open shafts and one caved shaft) were observed at the site, two of the openings were surrounded by barbed wire; however, the barbed wire was very loose and did not include any warning signs.

Broad Gauge PA# 29-293 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/16/93

		11			
	CYANIDE (marke)	ii			
	Zn (mg/Kg)	1900	R - Not Requested		
	Sb (mg/Kg)	3 UJ 4 UJ 4 UJ 4 UJ	U - NOR Defected; J - Estimated Quantity; X - Outlier for Accuracy or Precision; NR - Not Requested		
	Pb (mg/Kg)	2660 231 36	X - Outlier for Ac		
	Ni (mg/Kg)	73 109 19	- Estimated Quantity		
	Mn (mg/Kg)	1620 1630 366	u - Not Detected, J.	SULFUR ACID BASE POTENT.	123
, s	Hg (mg/Kg)	0.344 0.409 1.1	٠	PYRITIC SULFUR ACID BASE	11.9 6.56
SOLID MATRIX ANALYSES	Fe (mg/Kg)	59400 31900 14900		ORGANIC SULFUR	Ħ
SOLID MA	Cu (mg/Kg)	213 63.2 21.6	•	PYRITIC SULFUR	0.21
	Cr (mg/Kg)	58.4 25.1		SULFATE SULFUR	1.6
•	Co C (mg/Kg) (mg	26.7 26.7 4.0		SULFUR ACID BASE POTENT. V1000t	58.5 122
asis	Cd (mg/Kg)	L 9.0 XL 8.0		NEUTRAL. POTENT. v1000t	135 58.5 1 169 122 1.
Metals in soils Results per dry weight basis	Œ =	37.3 89.4	Acid/Base Accounting	TOTAL SULFUR ACID BASE V1000t	76.9
Metals in soils Results per dry	As (mg/Kg) ====================================	257 16	Acid/Base	TOTAL SULFUR	2.46
	FIELD ID E	29-293-WR-2 BACKGROUND		FIELD D	29-293-WR-1 29-293-WR-2

	HARDNESS	Zn (mg CeCO3L)	Not Requested			
	;	77.3 8.78 U 32.9 18.3 U 100	y, X - Outlier for Accurac	SW1 - Caved flowing adit.		
ANALYSES	Fe He	ij	U - Not Detected, J - Estimated Quantity	WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of subsamples WR2A, 2B, and 2C. BACKGROUND - From the Latest Out Mine (29-354-88-1).		
WATER MATRIX ANALYSES		 } }		WR1 - Con WR2 - Con BACKGRO	ij	
	D As Ba Cd Co C	5.99 U			1.D. SOLIDS CHLORIDB SULFATE NO3NO2-N CYANIDE 19-283-SW-1 360 < 5.0 106 0.31 NR	
	Cd Cd	2.55 U			SULFATE	
Nater ug/L	Ba	10.6			0.00 CHLORIDE 360 < 5.0	
Metals in Water Results in ug/L	As ====================================	8.65	Wet Chemistry Results in mg/l	TOTAL	SOLIDS 360	
FIELD		29-293-SW-1		FIELD	29-293-SW-1	

Mine/Site Name: Latest Out	County: Madison
Legal Description: T 4S R 4W	Section(s): SE 1/4, NE 1/4, Sec. 32
Mining District: Sheridan	Mine Type: Hardrock/Unknown
Latitude: N 45° 26' 35"	Primary Drainage: Ruby River
Longitude: W 112° 06' 53"	USGS Code: 10020003
Land Status: Public	Secondary Drainage: Sand Coulee
Quad: Copper Mountain	Date Investigated: June 17, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 29-354
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volumr of waste rock associated with this site was estimated to be approximately 13,871 cubic yards. The following elements were elevated at least three times background:

Arsenic: 68 mg/kg

Cadmium: 3.3JX to 7JX mg/kg

Cobalt: 31.3 mg/kg

Copper: 166 to 227 mg/kg

Iron: 46,300 mg/kg

Manganese: 1,190 to 1,760 mg/kg

Nickel: 83 mg/kg

Lead: 329 to 671 mg/kg

Zinc: 282 mg/kg

- A groundwater spring, which flowed into a stock watering trough, was identified at the site. No MCLs were exceeded in the spring; however, the chronic aquatic life criteria for mercury was exceeded. The pH measurement in the spring was 7.42.
- An intermittent drainage was located north of the site. The drainage was dry during the investigation; no surface water or sediment samples were collected.
- Potential safety hazards identified at the site included three open shafts and four open adits.

Latest Out PA# 29-354 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/17/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	:ଉ			SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co Ci mg/Kg) (mg/Kg) (mg/	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
29-354-WR-1 29-354-WR-2	88	177 151	3.3 JX 7 JX	24.7 31.3	15 49	166 227	46300 37800	0.015 U 0.014 U	1760 1190	33	671 329	# ¬	282	N N N
BACKGROUND	91	89.4	0.8 JX	4.0	25.1	21.6	14900	<u>-</u>	366 U-Not Detected 1.	19 Beinnet Omerite	366 19 36 4 UJ 80	4 UJ	88	
	Acid/Base	Acid/Base Accounting										ARLY OF PRESSION N.	IK - NOT Kequested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. t/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT					
OUP	<0.01 0.01 0.26		1	20.7 <0.0 19.5 <0.0 23.8 0.2	<0.01 <0.01 0.24	60.01 60.01 60.01	0.02 0.02 0.03 0.03		20.7 19.8 31.9					

	Matale in Mater	Votes.				WATER MAT	WATER MATRIX ANALYSES						
	Results in ug/L	J/Gr						-					Shu y
O O		B	ਝ	ಕೆ	ඊ	ਟੌ	ř.	H	ş	ä	Ē	. [HARDNESS
29-354-GW-1	Ï	49.1	1.69 U 49.1 2.55 U 5.99 U	5.99 U	5 U	1.53 J	14.6	0.25	17.9	8.78 U	8.78 U 155 U 183 U	36 ====================================	5 U 1.53 J 14.6 0.25 17.9 8.78 U 1.55 U 183 U 1.50
									U - Not Detected, J - 1	stimated Quantity, X -	Outlier for Accurac	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	of Requested
	Wet Chemistry										•		
	Results in mg/l					L				LEGEND			
	TOTAL					WR.	WR1 - Composite of subsamples WR3, 4, and 5. WR2 - Composite of subsammles WR1, 2, 6, 7, 8, and 0.	mples WR3, 4, and	15. 8 and 0		GWI - Spring b	GWI - Spring below waste rock dump 2 in pipe.	unp 2 in pipe.
FIELD	DISSOLVED	ACH CONTRA	SIT BATTE	NOSANOS W COMPA	active and	WR	WR2DUP - Duplicate of sample 29-354-WR-2.	umple 29-354-WR	2.				
## ## ## ## ## ## ## ##				N-ZONICON	CIANIDS		BACKUKOUND - 300 feet upgradient of waste rock dump 8.	t upgradient of was	te rock dump 8.				
29-354-GW-1	279	> 2.0	೫	0.68	N.			From the Latest Out (29-354-85-1).	(29-354-8S-1).				

Mine/Site Name: Uncle Sam	County: Madison
Legal Description: T 4S R 3W	Section(s): NE 1/4, Sec. 17
Mining District: Sheridan	Mine Type: :: lardrock/Au, Ag, Pb
Latitude: N 45° 29' 35"	Primary Drainage: Mill Creek
Longitude: W 111° 59' 15"	USGS Code: 10020003
Land Status: Public	Secondary Drainage: Middle Fork Mill Creek
Quad: Ramshorn Mountain	Date Investigated: June 16, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # _29-383
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 18,600 cubic yards. The following elements were elevated at least three times background:

Arsenic: 258 mg/kg

Cadmium: 4.9JX mg/kg Mercury: 0.473 mg/kg

Copper: 261 mg/kg Lead:443 mg/kg

Zinc: 494 mg/kg

- Two discharging adits were identified at the site. MCLs for cadmium and nickel were exceeded in both discharges; additionally, the MCL for antimony was exceeded in the lower adit (SW-3). Acute and chronic aquatic life criteria were exceeded for cadmium, copper, and zinc in both discharges, and chronic aquatic life criteria were exceeded for iron, mercury, and lead in both discharges. Adit discharge pH measurements were 3.29 and 4.95 for SW-3 and SW-4, respectively.
- Middle Fork Mill Creek was flowing adjacent to the site on the south side. Surface water and sediment samples were collected upstream and downstream from the site in Middle Fork Mill Creek. No MCLs were exceeded; however, acute and chronic aquatic life criteria were exceeded for zinc in the downstream sample. The chronic aquatic life criteria for copper was exceeded in the downstream sample. An observed release to Middle Fork Mill Creek was documented for zinc. Additionally, observed releases to Middle Fork Mill Creek (sediment) were documented for lead and zinc.
- No hazardous mine openings were identified at the site; however, a case of explosives, saturated with water, was located at the site.

Uncle Sam PA# 29-383 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/16/93

	Metals in soils	siis	•			SOLID MAT	SOLID MATRIX ANALYSES	·						
	results ber	nesults per dry weignt pasis												
FIELD ID	As (mg/Kg)	Ba (mg/Kg)		Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Min (mg/K.g)	Ni (me/Re)	Pb (me/Ke)	Sb (me/(e)	Zn	CYANIDE
29-383-SE-1	23	97.7	 	l d	71.8	42.3	23000	0.03 U	579	62	20	7 111		
29-383-WR-1	228 228	13.8 13.8	2.5 4.9 X	17.2 28.2	42.4 10.8	86.9 26.1	28700	0.021	456	: KS	88	4		ž ž
29-383-WR-2	3 C	63.5	0.8 JX		62.4	54.6	18100	0.013 U	470 226	7 49	443 51	4 6 3 3	494 39	X X
BACKGROUND	20	96.4	1.2 JX	20.2	42.1	35.1	18200	0.017 U	809	29	52	4 U		α 2
									U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Procinion, NR - Not Requested	tey or Precision, NR	- Not Requested	:
-	Acid/Base Accounting	Accounting												
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000	SULFUR ACID BASE POTENT: v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
29-383-WR-1 29-383-WR-2DUP 29-383-WR-2	1.82 0.01 0.03	56.9 0.31 0.94	40.5 9.59 10.1	-16 9.28 9.21	0.16 0.01 0.01	1.01 6.01 6.01	0.65 0.01 0.02	31.6	8.91 9.59 10.1					
														-

	Metals in Water	Water			-	WATER MAT	WATER MATRIX ANALYSES							
5	Results in ug/L	J/gu r											-	HABDNESS
D	A	Ba	2	೮	ಕ	ಶ	£	Hg	Mn	Z	42	ક્ર		CALC.
29-383-SW-1 29-383-SW-2	1.69 U 1.69 U	6.57 7.17	}	5.99 U 5.99 U	5 U	1.35 U 3.23 J	26.8 277	0.19	2.6 U	2.6 U 8.78 U 1.55 U	1.55 U	18.3 U	#	6 U 16.2
29-383-SW-3 29-383-SW-5	4.18		19.3	34.5	5 U	114 J	2550	0.18	698	104 J	1.35 U	18.3 U 19.2	37.3 1240	18.2
			2	<u>.</u>	16:0	5 6 6	8		1290 212 J 18.8 18.3 U 2090 U-Not Detected, J. Editingled Quantity, X. Outlier for Accuracy or Precision; NR. Not Requested	212 J nimated Quantity, X -	18.8 • Outlier for Accuracy	18.3 U or Precision; NR?	2090 Not Resulented	<u>8</u>
	Wet Chemistry	>-												
	Kesuits in mg/l	5			•					LEGEND				
FIELD L.D.	TOTAL DISSOLVED SOLIDS		SULFATE	NO3/NO2-N	CYANIDE	SE2 -	SEI - Upgradient on Middle Fork Mill Creek; 100' above upper adit dump 1. SE2 - Downgradient of upper adit discharge into Mill Creek. (PPE for upper adit discharge).	s Fork Mill Creek; adit dump 1. er adit discharge int it discharge).	o Mill Creek.		SW1 - Serne as SE1. SW2 - Serne as SE2. SW3 - Lower adit discharge in Middle Fork Mill Creek	erne as SE1. erne as SE2. ower acht discharge in Middle Forb	Middle Fork Mi	Il Creek
29-383-SW-1 29-383-SW-2 29-383-SW-3 29-383-SW-5	58 306 386 386	A A A A R	 5.0 6 0.09 NR 5.0 163 0.15 NR 5.0 181 0.05 NR 	0.09 0.06 0.15 0.05	N N N N N N N N N N N N N N N N N N N	WR1 WR2 WR2I BACK	WRI - Composite of subsamples WRIA, 1B, 1C, and 1D. WR2 - Sample of the subsample WR2. WR2DUP - Duplicate of sample 29-383-WR-2. BACKGROUND - From the Uncle Sam Mine (29-383-S8-1).	mples WR1A, 1B, 1 mple WR2. mple 29-383-WR-2. s Uncle Sam Mine (C, send 1D. 29-383-SS-1).		SW5 - Upper adit discharge.	iii discharge.		
														-

Mine/Site Name: <u>Lakeshore</u>	County:_Madison
Legal Description: T 3S R 4W	Section(s): SE 1/4, SE 1/4, Sec. 8
Mining District: Sheridan	Mine Type: lardrock/Au
Latitude: N 45° 35' 00"	Primary Drainage: Wisconsin Creek
Longitude: W 112° 07' 00"	USGS Code: 10020003
Land Status: Private/Public	Secondary Drainage: Crystal Lake
Quad: Noble Peak	Date Investigated: July 21, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 29-436
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

 There were approximately 13,300 cubic yards of uncovered tailings at the site. The following were elevated at least 3 times background:

Copper: 587 mg/kg Mercury: 5.18J mg/kg Lead: 1,330 mg/kg Zinc: 511 mg/kg

• There were approximately 38,300 cubic yards of uncovered waste rock. The following were elevated at least 3 times background:

Cadmium: 47.6 mg/kg Copper: 379 mg/kg

Lead: 768 to 3,500 mg/kg Zinc: 302 to 8,720 mg/kg

- There were two discharging adits at the site (SW-3 and SW-4) and one (SW-3) entered Crystal Lake. Measured pH's were 7.97 (SW-3) and 7.92 (SW-4). Neither discharge exceeded MCLs or MCLGs or any chronic or acute fresh water aquatic life criteria.
- Crystal Lake contained tailings and was adjacent to waste rock and Wisconsin Creek
 was adjacent to waste rock. Observed releases of cadmium, copper, mercury, lead, and
 zinc were documented in downstream sediments; and an observed release of copper
 was documented in downstream surface water. No MCLs or MCLGs were exceeded, but
 chronic and acute fresh water aquatic life criteria were exceeded for copper in
 downstream surface water.
- There were three open adits at the site.

Lakeshore PA# 29-436 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/21/93

	.*													
Face of the San	Metals in soils	oils				SOLID MA:	SOLID MATRIX ANALYSES	w						
	Results per	Results per dry weight basis	ısis											
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	C. (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (me/Ke)	Min (************************************	Z	£	8	Z	CYANIDE
70 436 65 4			ii 	## ## ## ## ## ## ##		11 11 11 11 11				(System)	(mg/kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
1-10-00-0E-1	ב. ה	37.5	1.2	9.41	23.7	20.3	12300	1 790 0	1 1/4	13.0			#	
29-436-SE-2	102	223	6 .0	9	549	ģ	32500			o. ;	14.6	6.66 U	4	Z Z
29-436-TP-1	186	28.8	14	α	9 C	- 10	25,000	CZ0.0	3910 J	42	322	18.9 U	989	0.783 U
29-436-WR-1	<u>ار</u>	9	- 0	, t	0.30	<u>ک</u> د	38200	5.18	121 J	90.6	1330	16.4	511	238 1
29-436-WR-2	32.			7.7	8. 5 8. 5 8. 5 8. 5 8. 5 8. 5 8. 5 8. 5	84	28600	0.701 J	109	40.6	47.8	4 63 11	- C	N 0 0 0
20 436 14/2 3	3 ;	D (D. /*	0.5 0.5	3.	379	62300	0.27 J	72.2 J	763	3500	ט אר מ אר	9 6	<u> </u>
5-NW-004-62	6.14	4 5.9	г.	12.9	56	5	23100	0.127 J	423 J	19.8	288	£3.0 £3.0	87.20	ž
	,	į							•)	3	0.22.0	305	ž
DACKGROUND	103	8	6 .	19.8	8	57.4	34300	1.23	- 909	£1.7	6	9		
								!		5	D	9.0	70.6	Y Z
									U - Not Detector, J - E	Satimated Quantity,	I - Estimated Quantity, X - Outlier for Accuracy or Precision, NR \cdot Not Requested	cy or Precision, NR	· Not Requested	
	Acid/Base Accounting	Accounting												
		TOTAL		SULFUR					1					-
	TOTAL	SULFUR	NEUTRAL.	ACID BASE	SHIFATE	DVPITTIC	OBCANIC		SULFUR					-
FIELD	SULFUR	ACID BASE	POTENT	POTENT	211111111111111111111111111111111111111		ORGANIC FIELD	SULFUK	ACID BASE					
Ð	*	V1000t	V1000t	v/1000t	*	Solron Services	NOT N	ACID BASE	POTENT					
	## ## ## ## ## ## ## ## ## ## ## ## ##			H H H H H H	11 11 11 11 11 11		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	VIOUR	#1000t					
29-436-WR-1	0.64	2	36.9	16.9	900	6	0.0	0.37						-
29-436-WR-2	1.87	58.4	-18	Ę	4 5B	3 6	87.0) (C) (C)	37.6					
29-436-WR-3	9	1.25	312	187	3 5	8 5	7.0	C.7	4.07					-
29-436-WP-3011P	2	, t	- 6	<u>.</u>	20.0	5.0	0.02	0	3.12					
	5	C7.	3.28	2.03	0.02	<0.04	0.02	0	3.28					
														-

Metals in Water Results in ug/L FIELD ID As 29-436-SW-1 1.69 U 29-436-SW-2 1.38 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3 29-436-SW-3	ater				NATER MATR	WATER MATRIX ANA! YEES							
	1/6 2/1												
	Ba Cd	25	රි	1	ర		뿚	W	Z	£	8	H E	HARDNESS CALC.
	8.63 11.5 JX	2.57 U 2.57 U	9.7 L 9.7 L	6.83 U 10.5 J	1.55 U 9.23 J	1† 61 61 81	0.038 U 0.038 U	4.08 U 4.08 U	12.7 U 12.9	1.55 U 30.7 U	30.7 U	7.57 U 25.5	25.5
29-436-5W-4 1.32	18.4 JX 2.01 UX	2.57 U 2.57 U	9.7 0.7 0.0	7.07 J 6.83 U	6 J 1.55 U	72.8 J 17 J	0.038 U 0.038 U	4.13 4.08 U	12.7 U .	0.72 0.72 0.72 0.72	30.7 30.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 1	29.2 J	32.8 96.6 1
Wet Chemistry							-	U - Not Detector, J - Bainnated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	timated Quantity, X - (Outlier for Accuracy	or Precision; NR - No	of Requested	i
Results in mg/l									LEGEND				
<u>a</u>	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	SE1 - SE2 - TP1 -	 SE1 - 20 feet upstream from waste rock dump 2. SE2 - 20 feet downstream from culvert at South end of Crystal Lake. TP1 - Composite of subsamples TP1A, 1B, and 1C. 	n waste rock dump; rom culvert at South ples TP1A, 1B, and	2. I end of Crystal Lal I C.	·	SW1 - Same as SE1. SW2 - Same as SE2. SW3 - Southern add discharge at useds such discharge.	SE1. SE2.	tenanta mode A	٠.
93 72 150 NR	A A A A A A A A A A A A A A A A A A A	9 38 38 8	0.08 0.05 0.1	9 0.08 < 0.01 11 < 0.05 < 0.01 38 0.1 NR NR NR < 0.01	WR1 - WR2 - WR3 - WR3D BACKI	WRI - Composite of subsamples WR1A, 1B, 1C, 1E, and 3. WR2 - Sample of the subsample WR1F. WR3 - Sample of the subsample WR2. WR3DUP - Duplicate of the sample 29-436-WR-3. BACKGROUND - Above waste rock dump 3.	ubsamples WR1A, 1B, 1C, 1E, and 3. ubsample WR1F. ubsample WR2. of the sample 29-436-WR-3. From find 1 should be seen took dump 3.	C, 1B, and 3.		SW4 - Northern adit discharge at waste rock dump 1.	adit discharge at	a waste rock du	- 1. - 1.

Mine/Site Name: Buckeye	County: Madison
Legal Description: T 4S R 4W	Section(s): SE 1/4, SE 1/4, Sec. 19
Mining District: Sheridan	Mine Type: Hardrock/Pb, Zn, Au, Ag, Cu
Latitude: N 45° 28' 15"	Primary Drainage: Ruby River
Longitude: W 12° 07' 47"	USGS Code: 10020003
Land Status: Private	Secondary Drainage: Mill Creek
Quad: Sheridan	Date Investigated: August 27, 1993
Inspectors: Babits, Flammang/Pierson	P.A. # <u>29-451</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- There were approximately 4,350 cubic yards of mostly uncovered waste rock at the site.

The following were elevated at least 3 times background:

Arsenic: 129J to 359J mg/kg Cadmium: 17.2J to 24.9J mg/kg

Cobalt: 47.4 mg/kg

Copper: 159 to 1,460 mg/kg Iron: 45,100 to 58,700 mg/kg Manganese: 3,050 mg/kg

Nickel: 127 mg/kg

Lead: 427 to 10,300 mg/kg Antimony: 12.4 mg/kg Zinc: 3,060 to 4,130 mg/kg

- There were no discharging adits at the site.
- Mill Creek was adjacent to waste rock and observed releases of copper, lead and zinc were documented in downstream sediments. No surface water samples were collected because of high flow in Mill Creek.
- Barrels with unknown contents were at the site. There were no hazardous openings; however, there were numerous hazardous structures.

Buckeye PA# 29-451 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/27/93

	CYANIDE	40.309 40.387 40.280 40.283 ANR		k. Sreek	9
	Zn (ms/Ke)	22.2 131 674 823 4130 3060	80 R - Not Requested	iD 5 in Mill Creel imp 5 in Mill C 2A-A.2A-B.3A	gh IA-F, TP2/ 3. 5A, and 5B. S-1).
	Sb (me/Ke)	5.64 U 7.68 U 6.62 U 6.87 U 6.8 U	4 UJ	LEGEND Waste rock dump 5) of waste rock dum	es TP1A-C throu 3A-E. bles WR1, 2, and ble 29-451-WR-1 iles WR4A, 4B, 5 st Out (29-354-S
	Pb (mg/Kg)	6.39 55.5 677 714 427 10300	366 19 36 4 UJ 80 U - Not Detected; J - Estimated Quantity, X - Outlier for Acrumacy or Precision; NR - Not Requested	LEGEND SBI - 500 feet upgradient of waste rock dump 5 in Mill Creek. SB2 - Downgradient (@ PPE) of waste rock dump 5 in Mill Creek TPI - Composite of subsamples TPA-A, I A-B, 2A-A, 2A-B, 3A-A	TP2 - Composite of subsamples TP1A-C through 1A-F, TP2A-C, and TP3A-B through3A-E. WR1 - Composite of subsamples WR1, 2, and 3. WR1DUP - Duplicate of sample 29-451-WR-1. WR2 - Composite of subsamples WR4A, 4B, 5A, and 5B. BACKGROUND - From Latest Out (29-354-SS-1).
	Ni (mg/Kg)	16.9 40.2 35.5 28 127 7.06	19 • Estimated Quantity	SE1 - 500 fe SE2 - Down TP1 - Comp	TP2 - Compand of the control of the
	Mn (mg/Kg)	158 192 978 978 1060 3050	366 U - Not Detected, J	SULFUR ACID BASE POTENT. V1000t	105 107 90.4 92.5 30.9
S	Hg (mg/Kg)	0.09 J 0.174 J 0.517 J 1.1 J 0.907 J 2.64 J	<u>:</u>	PYRITIC SULFUR ACID BASE V1000t	8.75 16.9 26.9 26.9 46.2
SOLID MATRIX ANALYSES	Fe (mg/Kg)	8020 15300 25200 25700 58700 45100	14900	ORGANIC SULFUR	0.13 0.07 0.58 0.58 2.08
SOLID MAT	Cu (mg/Kg)	12.5 40.9 205 135 159 1460	21.6	PYRITIC SULFUR %	0.28 0.54 0.86 1.48
	Cr (mg/Kg)	21.5 62 24.6 18.8 41.4 3.92	25.	SULFATE SULFUR %	
	Co (mg/Kg)	4.57 12.1 12.8 15.1 47.4 6.1	4.	SULFUR ACID BASE POTENT. V1000t	90.6 99 62.6 65.6 -179
-	Cd (mg/Kg)	0.82 U 1.11 U 5.65 J 7.91 J 24.90 J	XL 8.0	NEUTRAL. POTENT. 1/1000t	113 124 117 119 15.3
Zis 1	As Ba (mg/Kg) (mg/Kg) (,	31.1 71 101 121 98.4 21.4	89.4 Accounting	TOTAL SULFUR ACID BASE V1000t	22.8 25 54.7 53.7 194
Metals in soils	As (mg/Kg)	4.27 U 8.47 J 90.3 J 58.1 J 359 J	16 89.4 Acid/Base Accounting	TOTAL SULFUR %	0.73 0.8 1.75 1.72 6.22
	FIELD D	29-451-SE-1 29-451-SE-2 29-451-TP-1 29-451-TP-2 29-451-WR-1	BACKGROUND	FIELD O	29-451-TP-1 29-451-TP-2 29-451-WR-1DUP 29-451-WR-1 29-451-WR-2

Mine/Site Name:_Pedro	County:_Madison
Legal Description: T 4S R 3W	Section(s): SW 1/4, SW 1/4, Sec. 17
Mining District: Sheridan	Mine Type: Hardrock/Pb, Ag, Au
Latitude: N 45° 29' 48"	Primary Drainage: Ramshorn Creek
Longitude: W 112° 00' 10"	USGS Code: 10020003
Land Status: Public	Secondary Drainage: North Fork Ramshorn
Quad: Copper Mountain	Creek
Inspectors: Tuesday, Belanger, Clark	Date: June 18, 1993
Organization: Pioneer Technical Services, Inc.	P.A. #_29-455

- "Tailings piles" identified at this site appeared more like waste rock; and there was no evidence of a mill at the site.
- The volume of waste rock associated with this site, including the possible tailings piles, was estimated to be approximately 6,450 cubic yards. The following elements were elevated at least three times background:

Chromium: 257 mg/kg

Mercury: 0.145 to 0.913 mg/kg

Nickel: 296 mg/kg

Lead: 78 mg/kg

- There were no adit discharges, filled shafts, seeps or springs observed at the site.
- There was no flowing surface water observed in the vicinity of this site during the investigation.
- Two hazardous openings were observed at the site including: an open adit located on the north side of the ridge, and a shaft which had caved into an unstable pit located adjacent to the access road.

Pedro PA# 29-455 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/18/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>sis</u>			SOLID MAT	SOLID MATRIX ANALYSES	w						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
29-455-WR-1 29-455-WR-2 29-455-WR-3	s 12 8	150 111 160	0.4 U 0.5 U 0.5 U	11.8 11.3 28.6	31.3 39.7 257	34.5 33.5 53.9	23700 22500 30500	0.913 0.145 0.418	717 561 1090	26 31 296	12 72 78	3 4 4 U U U	ii	S S S
BACKGROUND	8	9 6.	1.2 JX	20.2	42.1	35.1	18200	0.017 U	608 U - Not Detected, J	59 1 - Estimated Quant	608 59 25 4 UJ 61 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	4 UJ	61 NR - Not Requested	
	Acid/Base	Acid/Base Accounting										FGEND	Ş	
FIBLD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v/1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t	× × × ×	WR1 - Composite of subsamples WR1A through 1C. WR2 - Composite of subsamples WR2, 3A, and 3B. WR3 - Composite of subsamples WRAA and 4B. BACKGROUND - From Uncle Sam Mine (29-383-SS-1)	f subsamples WF (subsamples WF (subsamples WF) om Uncle Sam)	RIA through IC R2, 3A, and 3B. R4A and 4B. Mine (29-383-S	.: S-1).
29-455-WR-1 29-455-WR-2 29-455-WR-3	0.01 <0.01 0.03	0.31 0 0.94	18.2 6.41 10.5		<0.01 <0.01 0.01	<0.01 <0.01 <0.01	0.01 60.01 0.02	000	18.2 6.41 10.5					

Mine/Site Name: SE SW S26	County:_Madison
Legal Description: T_3S_R_5W_	Section(s): SE 1/4, SW 1/4, Sec. 26; NW 1/4,
Mining District: Sheridan	NW 1/4, Sec. 35
Latitude: N 45° 32' 30"	Mine Type: <u>Hardrock/Unknown</u>
Longitude: W 112° 11' 20"	Primary Drainage: Ruby River
Land Status: Private/Public	USGS Code: 10020003
Quad: Old Baldy Mountain	Secondary Drainage: Wet Georgia Gulch
Inspectors: Tuesday, Belanger, Clark	Date: <u>June 17, 1993</u>
Organization: Pioneer Technical Services, Inc.	P.A. # <u>29-474</u>

- There were no mill tailings observed at this site during the investigation.
- There were over 17 waste rock dumps located at the site with the total volume of waste rock estimated to be approximately 14,580 cubic yards. The following elements were elevated at least three times background:

Arsenic: 726 to 4650 mg/kg Copper: 133 to 650 mg/kg Nickel: 136 to 142 mg/kg Antimony: 12J mg/kg Cadmium: 52.4J to 57J mg/kg Mercury: 0.544 to 2.92 mg/kg Lead: 4360 to 14,400 mg/kg Zinc: 2300 to 8210 mg/kg

- There were no adit discharges, filled shafts, seeps, or springs observed at the site during the investigation; consequently, no groundwater or surface water samples were collected.
- Adits #3, #4B, and #5 were open and potentially hazardous.

SE SW Section 26 PA# 29-474 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 06/16/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MA	SOLID MATRIX ANALYSES	Ø		:				
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (ma/Ka)	Sb	rZ .	CYANIDE
29-474-WR-1 29-474-WR-2 29-474-WR-3 29-474-WR-4	726 1930 2450 4650	156 220 249 168	15.8 J 0.5 U 57 J 52.4 J	19.8 37.1 21.8 18.2	63.7 67 58.6 20.2	205 133 650 509	24000 42600 47100 57400	2.23 2.92 0.587 0.544	2590 1110 3550 2670	136 142 142 83 41	14400 185 4360 5670	9 J C L C L C L C L C L C L C L C L C L C	(mg/kg) ====================================	NR NR NR NR NR NR NR NR NR NR NR NR NR N
BACKGROUND	98	<u>\$</u>	8.6 JX	15.3	26.	29.6	20200	0.021	1240	8	88	4 UJ	2	
	Acid/Base Accounting	Accounting							U - Not Detected, J.	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	X - Outlier for Accu	uncy or Precision; N	R - Not Requested	
FELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT v1000k	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULTUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000	WR1 - Comp WR2 - Comp WR3 - Comp WR4 - Comp BACKGROU	WR1 - Composite of subsamples WR1 through 6E. WR2 - Composite of subsamples WR7 through 9. WR3 - Composite of subsamples WR10, 11, and 13. WR4 - Composite of subsamples WR14 through 17. BACKGROUND. From NW SR Sa. 24, 72, 476, 69 3.	LEGEND les WR1 through les WR7 through les WR10, 11, an les WR14 through SR Sac 26, 730, 4	n 6E. n 9. nd 13. gh 17.	
29-474-WR-1 29-474-WR-2 29-474-WR-3 29-474-WR-4	0.03 <0.01 0.14 0.51	0.94 0 4.37 15.9	75.5 61.6 36.3 24.8	74.6 61.6 31.9 8.9	0.01 0.01 0.12 0.46	60.01 60.01 60.01 0.02	0.02 0.01 0.03 0.03	0.62	75.5 61.6 36.3 24.2					

Mine/Site Name: NW SE S26	County: Madison
Legal Description: T <u>3S</u> R <u>5W</u>	Section(s): NW 1/4, SE 1/4, Sec. 26
Mining District: Sheridan	Mine Type:
Latitude: N 45° 32' 50"	Primary Drainage: Ruby River
Longitude: W 112° 10' 42"	USGS Code: 10020003
Land Status: Public	Secondary Drainage: Wet Georgia Gulch
Quad: Old Baldy Mountain	Date Investigated: June 17, 1993
Inspectors: Babits, Tuesday, Belanger, Clark,	P.A. # _29-476
Lasher/Pierson	
Organization: Pioneer Technical Services,	
Inc./Thomas Dean and Hoskins Inc.	•

- There were no mill tailings associated with this site.
- There was approximately 5,900 cubic yards of mostly uncovered waste rock at the site.

The following were elevated at least 3 times background:

Arsenic: 169 to 832 mg/kg Chromium: 238 mg/kg Copper: 98.1 to 187 mg/kg Mercury: 0.091 to 0.477 mg/kg

Nickel: 231 mg/kg

Lead: 504 to 3,790 mg/kg Zinc: 2,240 to 2,250 mg/kg

- There were no discharging adits at the site.
- There was waste rock material in the drainage of intermittent Wet Georgia Gulch.
 There were no surface water samples collected and there were no observed releases documented.
- There were two open adits at the site.

NW SE Section 26 PA# 29-476 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/17/93

			π -								
	CYANIDE	(mg/Kg)	N N N N	X S	Z Z	æ					
	Z,	(mg/Kg)	25 25	22.40 22.50	20	2	R - Not Requested				
	æ	(mg/Kg)	4 4 3 3	4 4 3 3	3 07	4	acy or Precision; NI				
	£	(mg/Kg)	98	504 3790	2930	88	X - Outlier for Accu				
	Z	(mg/Kg) :=========	888	23.	\$	€	Estimated Quantity,				
	Mn (me/Ke)		140 473 585			1240	u - Net Defected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Net Requested	SULFUR	POTENT.	94.2 68.6	27.6
s,	Hg (mg/Kg)		0.02 0.017 U 0.334	0.091	ř	0.021		PYRITIC SITT ET ET	ACID BASE	2.19	>
SOLID MATRIX ANALYSES	Fe (mg/Kg)	16000	25700 35400	44000 21000		20200		ORGANIC	SULFUR	0.28	70.0
SOLID MA	Cu (mg/Kg)	######################################	48. 7. 7.	187 98.1	ć	0.87		PYRITIC	SULFUR	0.07 0.14 0.01	
	Cr (mg/Kg)	65.1	83.5 52.8	27.28	26.1	į			SULFUR	0.01 0.11 0.02	
	Co (mg/Kg)	1	15.1 19.5		15.3			SULFUR ACID BASE	POTENT.	88.6 56.4 26.7	
asis	Cd Co (mg/Kg) (mg/Kg)	0.6 UJ	- 16 2 X X 30 X	1.5 JX	8.6 JX			NEUTRAL.	t/1000t		
Metals in soils Results per dry weight basis	Ba (mg/Kg)	83.9	262 417 714	139	7 2		Acid/Base Accounting	TOTAL SULFUR	V1000t	7.81 16.6 0.94	
Metals in soils Results per dry	As (mg/Kg)	7 8	83 83 83 83 83 83 83 83 83 83 83 83 83 8	27	56		Acid/Base	TOTAL	% %	0.25 0.53 0.03	
	FTELD D	29-476-SE-3	29-476-WR-1 29-476-WR-2	29-476-WR-3	BACKGROUND			FIELD		29-476-WR-1 29-476-WR-2 29-476-WR-3	

	HARDNESS CALC.	8 II	O U 182		
		76 St 18.3 U 155 U 18.3 U	~	SW3 - Same as SE3. SW4 - Same as SE4.	
	, K	3.97 12.7 J 6.57 8.78 U	stected, J - Estimated Quantity, X	LEGEND	
	Ħ	# #	U - Not D	SE3 - Wet Georgia Gulch at confluence from Argenta. SE4 - Downstream from ores and workings. WR1 - Composite of subsamples WR1, 2, and 3. WR2 - Composite of subsamples WR4 and 4.	ples WR6, 7, and 8.
WATER MATRIX ANALYSES	Fe	94.8 J 309		SE3 - Wet Georgia Gulch at confluence from An SE4 - Downstream from ores and workings. WR1 - Composite of subsamples WR1, 2, and 3. WR2 - Composite of subsamples WR4 and 5.	WR3 - Composite of subsamples WR6, 7, and 8 BACKGROUND - From NW SE S26 (29-476-SS-1).
WATER	Cr Cr	5 U 3.43 J 5 U 1.35 U		æ	ii II
	20	5.99 U 5.99 U		NO3/NO2-N CYANTER	0.23 N 0.25 N
	Cd Cd	2.55 U 6.07		B SULFATE	თთ
Metals in Water Results in ug/L	As Be Cd Co C	1.69 U 75.7 1.95 75.2	Wet Chemistry Results in mg/l	TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANID	222 < 5.0 207 < 5.0
FIELD	# !! !!	29-476-SW-3 29-476-SW-4	Wet (FIELD DI	29-476-SW-3 29-476-SW-4

Mine/Site Name: Broadway/Victoria County: Madison Legal Description: T 2S R 6W Section(s): NW 1/4, Sec. 2 Mining District: Silver Star Mine Type: Hardrock/Au, Ag, Pb, Cu Latitude: N 45° 41' 55" Primary Drainage: Jefferson River Longitude: W 112° 18' 45" USGS Code: 10020005 Secondary Drainage: Tom Benton Gulch Land Status: Private Quad: Silver Star Date Investigated: September 17, 1993 Inspectors: M. Babits, S. Babits, Flammang P.A. # _29-179 Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 132,000 cubic yards. The concentration of cyanide measured in the tailings ranged from 1.9 to 6.15 mg/kg. The following elements were elevated at least three times background:

Arsenic: 223J to 387J mg/kg

Cobalt: 21.1 mg/kg

Iron: 60,200JX to 89,000JX mg/kg Manganese: 3,240 to 9,620 mg/kg

Antimony: 51.7J mg/kg

Cadmium: 17J to 78J mg/kg

Copper: 547 to 4,010 mg/kg Mercury: 0.264J to 2.39J mg/kg

Lead: 1,380 to 3,760 mg/kg Zinc: 3,550J to 32,300 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 34,575 cubic yards. The following elements were elevated at least three times background:

Arsenic: 218J mg/kg

Cadmium: 48 mg/kg

Cobalt: 26.5 mg/kg Mercury: 0.694J to 1.56J mg/kg Manganese: 4,690 mg/kg

Copper: 716 to 3,290 mg/kg

Lead: 4,020 mg/kg

Zinc: 7,450 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- No surface water was observed on or near the site. The nearest water was located approximately 1.5 miles away; consequently, no surface water or sediment samples were collected.
- Potential safety hazards identified at the site included four open adits and one open shaft.

Broadway/Victoria PA# 29-179 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/17/93

		T			
	CYANIDE (mg/Kg)	NR NR NR 0 - 9 NR NR NR	œ Z	, .	S
	Zn (mg/Kg)	5230 J 1660 J 3550 J 32300 7230 J 7450 330 J	676 :- Not Requested	1, IA-C, IB-A,	2B-B, 2B-C, and 2C. (29-179-SS-1)
	Sb (mg/Kg)	11.9 J 7 UJ 7 T S J 51.7 J 18 J 16.6 J 5.97 UJ	1040 15.1 227 6.39 J 676 U - Nat Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Nat Requested	LEGEND TP1 - Composite of subsamples TP1A-A, 1A-B, 1A-C, 1B-A, and 1B-B. TP2 - Composite of subsamples TP3A-A through 3A-D, and 3B-A.	TP3 - Composite of subsamples TPAA-A and 2B-A. TP4 - Grab from flotation tanks in mill building. TP5 - Composite of subsamples TP2A-B, 2A-C, 2B-B, 2B-C, and 2B-D. WR1 - Composite of subsamples WR1, 2A, 2B, and 2C. WR2 - Sample of the WR6 subsample. BACKGROUND - From the Broadway/Victoria (29-179-SS-1).
	Pb (mg/Kg)	1740 622 1380 1870 3760 4020	227 ; X - Outlier for Aca	omposite of subsampl and 1B-B	TP3 - Composite of subsamples TPAA-, TP4 - Grab from flotation tanks in mill TP5 - Composite of subsamples TP2A-1 and 2B-D. WR1 - Composite of subsamples WR1, WR2 - Sample of the WR6 subsample. BACKGROUND - From the Broadway
	Ni (mg/Kg)	21.5 12.7 16.1 34.9 25.1 17.2	15.1 Estimated Quartity	TP1 - Comp and TP2 - Comp	TP3 - Comport TP4 - Grab fr TP5 - Comport TP5 - Comport WR1 - Comport WR2 - Samp WR2 - Samp BACKGROU
	Mn (mg/Kg)	9620 2230 3240 4830 4690	1040 U - Not Detected, J	SULFUR ACID BASE POTENT	217 - 98.6 - 98.6 59.2 97.2 - 10.8 189
	Hg (mg/Kg)	0.147 J 0.306 J 0.264 J 2.39 J 0.58 J 0.694 J 1.56 J	0.087 J	PYRITIC SULFUR ACID BASE V1000t	122 173 177 13.4 201 0
SOLID MATRIX ANALYSES	Fe (mg/Kg)	38100 JX 89000 JX 60200 JX 50400 60800 JX 29900 42500 JX	19100	ORGANIC SULFUR %	0.05 2.28 2.21 2.21 0.74 1.73 0.32
SOLID MA	Cu (mg/Kg)	547 4010 300 2540 599 716 3290	109	PYRITIC SULFUR %	6.01 5.71 5.71 6.42 6.01
	Cr (mg/Kg)	10.9 J 9.34 J 5.99 J 28.7 12 J 16.9 4.88 J	17.7	SULFATE SULFUR %	0.04 60.01 60.01 60.01 0.84 60.01 0.05
	Co (mg/Kg)	7.16 10.4 3.54 21.1 6.93 9.45 26.5	6.35	SULFUR ACID BASE POTENT. V1000t	215 -166 13 13.5 47.8 27.5 158 133
. <u>8</u>	Cd (mg/Kg)	7-1-22-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-	က	NEUTRAL. POTENT. t/1000t	2.17 23.5 23.7 23.7 23.7 111 190 188 135
Metals in soils Results per dry weight basis	Ba (mg/Kg)	234 J 23.3 J 0.237 U 98.5 U 28.1 J 62.1 J	93.9	TOTAL SULFUR ACID BASE V1000t	1.87 1.90 2.24 2.23 62.8 162 30.9
Metals in soils Resutts per dŋ	As (mg/Kg)	74.1 J 61.4 J 223 J 68.2 J 387 J 218 J 8.82 J	48.3 J 93.9 Acid/Base Accounting	TOTAL SULFUR %	0.06 6.08 7.16 7.14 2.01 5.19 0.99
	FIELD D	29-179-TP-1 29-179-TP-2 29-179-TP-3 29-179-TP-4 29-179-WR-1 29-179-WR-1	BACKGROUND	FIELD	29-179-1P-1 29-179-1P-2 29-179-1P-3 29-179-1P-3 29-179-1P-5 29-179-WR-1 29-179-WR-1

Mine/Site Name: Mammoth	_ County:_Madison
Legal Description: T 2S R 3W	Section(s): NW 1/4, NW 1/4, Sec. 18
Mining District: South Boulder	Mine Type: Hardrock/Au, Ag, Cu
Latitude: N 45° 40' 00"	Primary Drainage: Missouri River
Longitude: W 112° 00' 40"	USGS Code: 10020006
Land Status: Private/Public	Secondary Drainage: Boulder River
Quad: Manhead Mountain	Date Investigated: July 19, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 29-008
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	-

 The volume of tailings associated with this site was estimated to be approximately 47,950 cubic yards. The following elements were elevated at least three times background:

Arsenic: 676 to 704 mg/kg

Cobalt: 26.2 mg/kg Mercury: 0.851 mg/kg

Zinc: 293 mg/kg

Cadmium: 4.9J mg/kg

Copper: 220 to 1,860 mg/kg

Lead: 90 mg/kg

• The volume of waste rock associate with this site was estimated to be approximately 29,350 cubic yards. The following elements were elevated at least three times background:

Arsenic: 223 to 339 mg/kg

Mercury: 1.09 mg/kg

Copper: 225 to 401 mg/kg

Lead: 87 mg/kg

- One discharging adit was identified at the site. The discharge seeped into waste rock prior to reaching surface water. A sample of this discharge had a pH of 7.45. No MCLs were exceeded in the adit discharge; however, acute and chronic aquatic life criteria were exceeded for copper. The pH measurement in the adit discharge was 7.45.
- An unnamed tributary flowed through the site and discharged into the South Boulder River. Observed releases to the South Boulder River (sediment) were documented for arsenic and copper
- Potential safety hazards identified at the site included one open shaft and two open adits.

Mammoth Mine PA# 29-008 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/19/83

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	- 18			SOLID MAT	SOLID MÄTRIX ANALYSES		-					
	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (me/Ke)	N. (me/ke)	Pb	SP	ង្	CYANIDE
29-008-SE-1 29-008-SE-2 29-008-TP-1 29-008-TP-2 29-008-WR-1	5 U 7 U 103 J 676 704 223 339	67.2 31.3 131 J 249 279 88.3		5.5 12.4 19.6 JX 26.2 12.6 7	12.1 28 39.2 JX 1.9 8 16.7	15 64.4 285 J 220 1860 401	9800 10300 27200 J 26900 44200 38300	0.259 0.287 0.594 0.372 0.851	274 377 723 J 20.6 398 358	33 1 2 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.5 3.3 ± 5.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		28 107 214 JX 50 293 75	MR NR NR NR NR NR NR NR NR NR NR NR NR NR
BACKGROUND	28 174 Acid/Base Accounting	174 ccounting	. .	=	24.3	28.6	15900	0.219	140 1000 U - Not Detectort, J - E.	13 18 streed Questity, X -	87 6 U 64 23 6 U 47 15 X - Outlier for Accuracy or Precisions, No. Requessed	6 U G U or Precision, NR - N	66 47 iot Requested	
# # # # # # # # # # # # # # # # # # #	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000:				·	
29-008-TP-1 29-008-TP-2 29-008-WR-1 29-008-WR-2	0.15 1.64 0.41 0.71	4.69 51.2 12.8 22.2	-0.7 6.66 12.1 1.31	6. 4. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0.13 0.07 0.25 0.51	0.02 1.36 0.05 0.06	60.01 0.21 0.11 0.14	0.62 42.5 1.56 1.87	-1.31 -35.8 10.5					

	Metals in Water Results in ug/L	Nater ug/L				WATER MATRIX ANALYSES	UX ANALYSE!							
FIELD ID	As	æ	ಶ	రి	ಕ	õ		. H	W	Z	£	S	- 1	HARDNESS CALC.
29-008-SW-1 29-082-SW-1 29-008-SW-3	1.69 U 26.5 6.07	37.9 18.8 33.4	2.57 U 4.77 J 2.57 U	9.7 U 9.7 U 9.7 U	9.7 U 6.83 U 9.7 U 6.83 U 9.7 U 6.83 U	1.55 U 305 173		34.6 0.038 U 2740 0.039 420 0.038 U	4.08 U 333 28.7	12.7 U 1.55 U 16.4 1.85 U 15.7 U 15.5 U	1.55 U	30.7 U 7.57 U 44 30.7 U 129 83.1	7.57 U 129	83.1
	Wet Chemistry								U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	infinited Quantity, X -	Outlier for Accuracy	or Precision, NR - N	of Requested	
	Results in mg/l	_								FOEND				
	TOTAL					SE1 - 1 SE2 - 1	SE1 - Upgradient in unnamed tributary. SE2 - In Boulder Creek above confluence	SE1 - Upgradient in unnamed tributary. SE2 - In Boulder Creek above confluence of unnamed tributary	mamed tributary		SW1 - Same as sample SE1.	sample SE1.	•	,
FIELD I.D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	29-082-	with adit discharge. -SE3 - Downgradient	with adit discharge. 29-082-SE3 - Downgradient of site on South Boulder River	oulder River		tribu	the control of the co	scharge and uni rr River.	usmed
29-008-SW-1 29-082-SW-1 29-008-SW-3	127 153 141	× 5.0 5.3 5.0	75 15	5 0.08 75 0.11 15 0.14	N N N N N N N N N N N N N N N N N N N		Composite of subsar Composite of subsar Composite of subsar Composite of subsar	TPI - Composite of subsamples TPIA-A and IB. TT2 - Composite of subsamples TPIA-B, IA-C, IA-D, and IA-E. WR1 - Composite of subsamples WR1, 2A, 2B, 3A, 3B, and 3C. WR2 - Composite of subsamples WR4A, 5A, 5B, and 6.	1B. 7, 1A-D, and 1A-E. 1, 3A, 3B, and 3C. 18, and 6.					

Mine/Site Name: Mammoth Tailings County: Madison Legal Description: T 2S R 3W Section(s): Sec. 7 and Sec. 18 Mining District: South Boulder Mine Type: Hardrock/Au, Ag, Cu Latitude: N 45° 40' 14" Primary Drainage: <u>Jefferson River</u> Longitude: W 112° 00' 48" USGS Code: 10020005 Secondary Drainage: South Boulder River Land Status: Private/Public Date Investigated: July 19, 1993 Quad: Manhead Mountain Inspectors: Tuesday, Belanger, Clark P.A. # <u>29-082</u> Organization: Pioneer Technical Services, Inc.

• The volume of tailings associated with this site was estimated to be approximately 405,500 cubic yards. Evidence of tailings eroding along the bank of the South Boulder River was observed at the time of the investigation. The following elements were elevated at least three times background:

Arsenic: 289J to 651J mg/kg

Copper: 434J to 1160J mg/kg

Lead: 105 mg/kg

Zinc: 224JX mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 1000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 244J mg/kg Mercury: 1.2 mg/kg

- There was one adit discharge observed at the site during the investigation. No MCLs/MCLGs were exceeded in the adit discharge sample; however, the acute aquatic life criteria for copper and zinc were exceeded, as well as the chronic aquatic life criteria for copper and zinc. No MCLs/MCLGs were exceeded in a surface water sample collected in the unnamed tributary to the South Boulder River; however, chronic aquatic life criteria for iron, copper and zinc were exceeded, and acute aquatic life criteria for cadmium, copper and zinc were exceeded. No MCLs/MCLGs were exceeded in a groundwater sample collected from a monitoring well locted in the northwest section of the site; however, the chronic aquatic life criteria for iron and cadmium were exceeded in the sample.
- Observed releases to the South Boulder River (sediment) were documented for arsenic and copper which were attributable to the site.
- Potential safety hazards observed during the investigation included an open adit and an
 unstable highwall where tailings were excavated for reprocessing. The chemical building
 located at the south end of the site contained barrels of sodium sulfide, sodium
 hypochlorite, caustic soda, sodium cyanide residue, and bags of lime.

Mammoth Tailings PA# 29-082 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/19/93

	Metals in soils					SOLID MAT	SOLID MATRIX ANALYSES							
	Results per	Results per dry weight basis	sis											
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	ය (mg/Kg)	Cu (mg/Kg)	Fe (mø/Kø)	Hg (me/Re)	Mn	Z .	& :		Z,	CYANIDE
			## ## ## ## ##	## ## ## ## ## ## ## ##					(mg/kg)	(mg/kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
29-082-SE-1	7 868 808	114 J	2.2	년 첫	24.8 JX	1010	55000	0 300	- 0000					10 81 81 81 81 81 81 81
29-008-SE-2	7 C	31.3	1.8.1	12.4	28	2.2	2000	0 0	7830	49 J	32	^ ∩	275 、	
29-082-SE-3	103 J	131	17	19.1	30,2	- - - - - - - - - -	0000	0.287	377	83	9	⊃ 80	107	Ž
29-082-TP-1	289	224		<u> </u>	55. 45. 55. 55. 55. 55. 55. 55. 55. 55.	60.	7 (200	0.594	723 J	ე დ	83	8 0.7	214	
29-082-TP-2	130		; (۲	₹. 4. /	454	38300 7	0.368	230 J	-	22	111 2	à	
2-11-200-00	ב ב ב ב	7 507	D.	32.2 JX	5.2 JX	160	43200	398	1 1 1 1		1 6	3 :	, , ,	
29-082-1 P-3	515 J	143	- -	8.6 JX	4.2 JX	648	28000	0.000		07	3	9	224	
29-082-WR-1	244)	137 J	60	28.IX	× 0 0	2 2	7 0000	0.270	1/3 J	უ თ	1 05	3 2	106	
			}		S	3	23000 3	7.7	223 J	ი ი	19	5 U	74 JX	X NR
BACKGROUND	78	174	1.5 J	7	24.3	28.6	15900	0.219	1000	8	23	=	7	
									U - Not Detector I. B	A Transfer)) (•	Z Z
	A	•							A COLLIS OF ACCUSED OF ACCUSED OF PROCESSORY IN NO. NOT Requested	A Committee Committee of the Committee o	Comme for Accuma	Cy Of Procussor, NR.	Not Requested	
	Acid/Base Accounting	counting												
		TOTAL		SULFUR				PYRITIC						
	TOTAL	SULFUR	NEUTRAL.	ACID BASE	SULFATE	PYRITIC	ORGANIC	SI 17.17.17.	ACID DAGE					
HELD	SULFUR	ACID BASE	POTENT.		SULFUR	SULFUR	SULFUR	ACID BASE	POTENT					
Ω	%	t/1000t	v/1000t		*	*	*	V1000t	V1000t					
29-082-TP-1	1.91	59.7			======================================				=======================================					
29-082-TP-2	9.0	12.5	16	3.52	0.15	} c		0.0	-31.5 C.T.5					
29-082-TP-3	90.0	2.5	22.7	20.2	5 6	1.0	8 6	0.20	/ S					
29-082-WR-1	0.31	9.68	11.7	1.97	0.22	90.0	0.05 0.05	1.25	10.4					

	Metals in Water	Vater				WATER MAI	WATER MATRIX ANALYSES							
FIELD	Results in ug/L	ng/L												HADDWESS
	A	Ba	90 PO	රි	ភ	්		H	M	ï	2	£	7	CALC.
29-082-GW-1 29-082-GW-2 29-082-SW-1	24.5 1.79 26.5	31.5 18.8	2.83 J 2.57 U 4.77 -	9.9 9.7 U	6.83 U	306 1.55 U	2710 1640	0.038 U 0.038 U	347	19.3	2.27	2.27 30.7 U 1.83 30.7 U	136 17.9	136 86.3 17.9 127
				ò	8	8	7/4 _U	0.039	333 U - Not Detected; J - I	16.4 Estimated Quantity, X	1.85	333 16.4 1.85 30.7 U 129 U-Not Detector J. Editinated Quantity, X. Outlier for Accuracy or Precision: NR. Not Beamman	129	83.1
	Wet Chemistry													
	Kesults In mg/I									LEGEND				
TELD	DISSOLVED					SE2	SE1 - At PPE of acit discharge and S. Boulder River, in the tributary. SE2 - Upgradient sediment sample in the S. Boulder River.	targe and S. Boulder t sample in the S. Bo	River, in the tribu ulder River.	ttary.	GW1 - Flowing adit.	GW1 - Flowing adit.	;	
		CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SE3 - Downgradient of site on S. Boulder River.	e on S. Boulder Rive	ن		SW1 - Same as sample SE1	is semple SE1.	comer.	
29-082-GW-1	40	i	74	0.17	0.17 NR		TP1 - Composite of subsamples TP1A-1 through 1A-3, 1B-1 through 1B-3, 1C-1 through 1C-3.	mples TP1A-1 through 1C-3.	gh 1A-3, 1B-1 thm	ugho				
29-082-SW-1	<u>इ</u> इ	ນ ທ ໝ	8 K	۸ 0.00 1.00	ە 20.0 7.8.	ET W	TP3 - Composite of subsamples TP2A-1 through 2A-3, 2B-1, and 2B-2. WR1 - Sample of the WR1A subsample	mples TP2A-1 through	gh 2A-3, 2B-1, an	d 2B-2.				
						BAC	BACKGROUND - From the Mammoth Mine (29-008-55-1)	e Mammoth Mine (9-008-89-1)					•

Mine/Site Name: B & H	County: Madison
Legal Description: T 3S R 4W	Section(s): NE 1/4, NE 1/4, Sec. 7
Mining District: Tidal Wave	Mine Type: Hardrock/Au, Ag, Pb, Cu
Latitude: N 45° 35' 40"	Primary Drainage: Currant Creek
Longitude: W 112° 07' 45"	USGS Code: 10020005
Land Status: Private/Public	Secondary Drainage: Bear Gulch
Quad: Old Baldy Mountain	Date Investigated: July 23, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # _29-083
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 42,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 113 mg/kg

Cadmium: 3.8 to 4.2 mg/kg

Cobalt: 42.4J mg/kg

Chromium: 108 to 158 mg/kg

Copper: 215J to 2,930J mg/kg

Iron: 80,100 mg/kg Nickel: 196J mg/kg

Mercury: 1.47J mg/kg

Lead: 68J to 81J mg/kg

Zinc: 422J mg/kg

Two discharging adits were identified at the site during the in

- Two discharging adits were identified at the site during the investigation. One of the
 discharges eventually entered Bear Gulch; this discharge was sampled for laboratory
 analysis. No MCLs or acute or chronic aquatic life criteria were exceeded in the adit
 discharge.
- Bear Gulch was flowing adjacent to the site on the north side during the investigation.
 Surface water and sediment samples were collected upstream and downstream from the site in Bear Gulch. No MCLs or acute or chronic aquatic life criteria were exceeded in Bear Gulch, and no observed releases were documented.
- No hazardous mine openings were identified at the site.

B&H PA# 29-083 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/23/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	S			SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANDE
29-083-SE-1 29-083-SE-2 29-083-WR-1 29-083-WR-2	35 80 51 113	142 J 143 J 289 J 154 J	5.6 4.2 3.8	18.4 J 16.5 J 17.3 J 42.4 J	116 52.9 108 158	261 J 232 J 215 J 2930 J	31800 35900 28200 80100	0.461 J 0.108 J 1.47 J 0.093 J	927 3390 764 2040	70 J 58 J 52 J 196 J	679 J 132 J 81 J 68 J	#	403 J 425 J 422 J 121 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	103 94 Acid/Base Accounting	94 Accounting	8.	8.	001	57.4	34300	1.23 J	606 J U-Not Detected: J.	61.4 Estimated Quantity, 7	606 J 61.4 31.9 16.9 70.6 JJ - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	16.9 cy or Precision; NI	70.6 JX	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. #1000t	SULFUR ACID BASB SULFATE POTENT: SULFUR V1000c %	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASB V1000t	SULFUR ACID BASE POTENT. v1000t					
29-083-WR-1 29-083-WR-2	0.47 2.6	14.7 81.2	9.52 61.7	-5.2 -20	0.17 <0.01	0.12 1.38	0.18 1.33	3.75 43.1	5.77 18.6					

	Metals in Water Resutts in uo/L	Vater uo/L				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD D		,	8		Ċ	ರೆ	ድ	H	W	ž	á	ŧ	# ,	HARDNESS CALC.
29-083-SW-1 29-083-SW-2 29-083-SW-3	! ! !	l	24.2 JX 4.2 J 20.8 JX 2.57 U 13.3 JX 2.57 U	9.7 U 9.7 U 9.7 U	8.87 J	263 J 237 J 263 J	48.6 J 117 J 308 J	0.038 U 0.038 U 0.038 U	4.08 U 12.7 U 0.95 J 30.7 U 7.57 U 28.1 12.7 U 0.72 U 30.7 U 10.J 10.J 10.J U-Not Detected J. Estimated Quantity X. Ordina for Accountant S. Ordin	4.08 U 12.7 U 28.1 12.7 U 12.7 U 10.7	0.95 J 0.72 U 0.72 U	30.7 U 30.7 U 30.7 U	7.57 U 10 J 13.6 J	7.57 U 55.4 10 J 95.8 13.6 J 192
	Wet Chemistry						-					ej a tressait inc	- No requested	
	Results in mg/l									LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANII	CYANIDE		 SEI - 200' upgradient from discharging adit in unnamed tributary. SE2 - 60' downgradient of waste rock dump 1 in unnamed tributary. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of subsamples WR2A, 2B, 3A, and 3B. 	discharging adit in waste rock dump 1 riples WR1A, 1B, 1 riples WR2A, 2B,	in unnamed tributary in unnamed tributa and 1C. 3A, and 3B.		SW1 - Same as SE1. SW2 - Same as SE2. SW3 - Discharging ac	SW1 - Same as SE1. SW2 - Same as SE2. SW3 - Discharging adit at lower site.	r site.	
29-083-SW-1 29-083-SW-2 29-083-SW-3	97 < 5.0 34 < 154 < 5.0 50 < 20 < 274 < 5.0 81 <	v v 5:0	£ 03.59	0.050.050.05	0.05 0.05 NR 0.05 NR		BACKGROUND - From Lakeshore (29-436-SS-1).	skeshore (29-436-5	% -1)					

Mine/Site Name: Dry Gulch (South) County: Madison Legal Description: T 3S R 5W Section(s): W 1/2, Sec. 15; E 1/2, Sec. 16 Mining District: Tidal Wave Mine Type: Hardrock/Au, Ag, Pb Latitude: N 45° 34' 40" Primary Drainage: Jefferson River Longitude: W 112° 12' 50" USGS Code: 10020005 Land Status: Private Secondary Drainage: Dry Gulch/Spring Creek Quad: Old Baldy Mountain Date Investigated: July 20, 1993 Inspectors: Tuesday, Belanger, Clark P.A. # <u>29-282</u> Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 16,930 cubic yards. The waste rock was separated into 23 dumps. The following elements were elevated at least three times background:

Arsenic: 93 to 145 mg/kg Chromium: 71.6JX mg/kg Nickel: 65J to 104J mg/kg

Zinc: 652JX mg/kg

Cadmium: 5.4 mg/kg Mercury: 1.01 mg/kg Lead: 469 to 942 mg/kg

- There were no adit discharges, filled shafts, seeps or springs associated with this site.
- The Dry Gulch stream bed extended through the site from east to west. Sediment samples were collected upstream and downstream from the site in Dry Gulch. No observed releases were documented. None of the contaminant concentrations measured in the sediment samples were elevated significantly above background levels.
- One on site adit and one on site shaft represented hazardous openings. Several of the dumps appeared to have been reclaimed and several mine openings had been closed by Department of State Lands.

Dry Gulch South PA# 29-282 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/2093

11		- !! -				
	CYANIDE	(mg/Kg)	<u> </u>	ĸ K		
	Z,	# 92 XC 92	40 190 X X X X X X X	105 JX	OE, IF, FE, HE	DF, BE, BF, 12-SS-1).
	S	#3	2 CC 2 CC 2 CC	8 UJ cy or Precision: NR.	LEGEND leh. * WRJF, KF, LF,	WRIE, CF, DE, leh South (29-28
	£	(mg/Kg) 38	469 942	16 • Outlier for Accum	LEGEND SBI - Upgradient in Dry Gulch. SB2 - Downgradient in Dry Gulch. WR1 - Composite of subsamples WRJF, KF, LF, GE, IF, FE, HE, HF, GF, EF, OF, and FF	WR2 - Composite of subsamples WRJB, CF, DB, DF, BB, BF, AB, and 1. BACKGROUND - From Dry Guleh South (29-282-SS-1). WR1DUP - Duplicate of sasmple 29-282-WR-1.
	Z .	(mg/kg) ====================================	3.48 3.1.2	18 J Stimuted Quantity, X	SE1 - Upgradie SE2 - Downgra WR1 - Compon HF, (WR2 - Composite of subsamples WRJE, CF, DB AB, and I. BACKGROUND - From Dry Guleh South (29-2) WR1 DUP - Duplicate of sasemple 29-282-WR-1.
	Mn (morK e)	592 J	614 J 1130 J	935 J 18 J 16 8 UJ 105 J) U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	SULFUR ACID BASE POTENT.	136 119 122 78
	Hg (mø/kg)	0.309	0.453 1.01	0.246	PYRITIC SULFUR ACID BASIE	0.31 0.31 0.31
SOLID MATRIX ANALYSES	Fe (mg/Kg)	14200 J 14400 J	32600 J 27400 J	15900 J	ORGANIC SULFUR	
SOLID MAT	Cu (mg/Kg)	30.1 J	92.6 J 80.5 J	32.4 J	PYRITIC SULFUR %	0.01 <0.01 0.01 <0.01
	Cr (mg/Kg)			Y C C C C C C C C C C C C C C C	SULFATE SULFUR	40.01 0.06 0.05 0.03
	Co (mg/Kg)		18.5 X	S	SULFUR ACID BASE POTENT. V1000t	135 4 118 0 120 0 77.1 0
ŝ	Cd (mg/Kg)	0.6 U 0.5 U	4. 1.		NEUTRAL. POTENT. V1000t	136 119 122 78
Metals in soils Results per dry weight basis	Ba (mg/Kg)	170 J 45.5 J 94.7 J	105 J 260 J	ccounting	TOTAL SULFUR ACID BASE v1000t	0.94 1.87 1.87 0.94
Metals in soils Results per dry	As (mg/Kg)	31.7 2.5 93.1	145 J	Acid/Base Accounting	TOTAL SULFUR %	0.03 0.06 0.03 0.03
	FIELD D	29-282-8E-1 29-282-8E-2 29-282-WR-1	BACKGROUND		FIELD D	29-282-85-1 29-282-WR-1 29-282-WR-1DUP 29-282-WR-2

Mine/Site Name: <u>Eleanora Mines (East)</u>	County:_Madison
Legal Description: T 3S R 5W	Section(s): 3W 1/4, SE 1/4, Sec. 23; NW 1/4,
Mining District: Tidal Wave	NE 1/4, Sec. 26
Latitude: N 45° 33' 10"	Mine Type: Hardrock/Unknown
Longitude: W 112° 10' 45"	Primary Drainage: <u>Jefferson River</u>
Land Status: Private/Public	USGS Code: 10020005
Quad: Old Baldy Mountain	
Inspectors: Bullock	Secondary Drainage: Goodrich Gulch
Organization: Pionogr Tophsical Considers the	Date Investigated: September 4, 1993
organization. Florieer Technical Services, Inc.	P.A. # <u>29-285</u>
Organization: Pioneer Technical Services, Inc.	P.A. # <u>29-285</u>

- There were no mill tailings associated with this site.
- This site was comprised of approximately 24 adits (20 of which are HMOs) and small
 associated waste rock dumps. The total volume of waste rock associated with this site
 was roughly estimated to be approximately 2500 cubic yards. The following elements
 were elevated at least three times background:

Arsenic: 114J mg/kg

Cobalt: 24.3 mg/kg

Mercury: 1.13J mg/kg

Lead: 236J to 5330J mg/kg

Cadmium: 21 mg/kg

Copper: 657 mg/kg

Manganese: 3160 mg/kg

Zinc: 200J to 4650J mg/kg

- There were no discharging adits, springs or seeps associated with this site.
- There were no direct runoff/flow paths down to Goodrich Gulch that impact this
 drainage. The dumps were very small with very minimal erosion occurring.

Eleanor East PA# 29-285 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/04/93

	Metals in solls Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Nī (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn (ma/Ke)	CYANDE
29-285-WR-1 29-285-WR-2	25.3 J 114 J	140 J 132 J	1 U	1 U 12.4 3.15 21 24.3 17.2	3.15 17.2	34 657	12600 J 0.185 J 46700 J 1.13 J	0.185 J 1.13 J	921 3160	26 J 50 J	¬¬	#33	200 J 4650 J	NR R
BACKGROUND	25 5	260 J	7.	ΧΓ 6.9	19.9 JX	32.4 J	15900 J	0.246	935 J U - Not Detected, J -	18 J Estimated Quantity, 3	935 J 18 J 16 8 UJ 105 JJ U-Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Practicion No. Not December	8 UJ	105 JX	N N
	Acid/Base Accounting	Accounting									-		namankar aar - ve	
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/10001	SULFUR NEUTRAL. ACID BASB SULFATE POTENT. POTENT. SULFUR V1000t V1000t %	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t	WR1 - Compx WR2 - Compx BACKGROUN	LEGEND WR1 - Composite of subsamples WR1 and 4. WR2 - Composite of subsamples WR2, 3, and 5. BACKGROUND - From the Dry Guich South (29-282-SS-1).	ca WR1 and 4. ca WR2, 3, and y Guich South (15. (29-282-5S-1).	
29-285-WR-1 29-285-WR-2	0.02	0.62	6.23 31.5	5.6 20.3	0.01	<0.01 0.05	0.00	1.56	6.23 30					

Mine/Site Name: Pete & Joe	County: Madison
Legal Description: T 3S R 4W	Section(s): SW 1/4, NW 1/4, Sec. 8
Mining District: Tidal Wave	Mine Type: Hardrock/Ag, Au, Pb, Cu
Latitude: N 45° 35' 30"	Primary Drainage: Currant Creek
Longitude: W 112° 07' 40"	USGS Code: 10020005
Land Status: Private/Public	Secondary Drainage: Bear Gulch
Quad: Old Baldy Mountain	Date Investigated: July 23, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # <u>29-449</u>
Organization: Pioneer Technical Services.	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- There was approximately 2,835 cubic yards of uncovered waste rock at the site. The following were elevated at least 3 times background:

Copper: 222J mg/kg Lead: 216J mg/kg

- There were two discharging adits at the site; neither entered surface water directly.
 Measured pH's were 7.6 (SW-1) and 5.13 (SW-4). Discharge SW-1 was sampled; no MCL/MCLGs or aquatic life criteria were exceeded.
- There was no surface water on site; the nearest surface water was 200 feet away. No surface water or sediment samples were collected.
- There were three open adits at the site.

Pete & Joe PA# 29-449 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/23/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	asis			SOLID MAT	SOLID MATRIX ANALYSES	60					·	
FIELD D 29-449-WR-1	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Bs Cd Co (mg/Kg) (mg/Kg) (n 133 J 2.3 6.5 J	Cr (mg/Kg)	Cu (mg/Kg)	ij		Mn (mg/Kg)	Ni (mg/Kg)	Ni Pb (mg/Kg) (mg/Kg)	St (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
BACKGROUND	103	2	1.8	19.8	9	57.4	34300	1.18 J	423		216 J	0 Z	7 U 135 J NR	NR
	Acid/Base	Acid/Base Accounting						£ 87.	606 J	606 J 61.4 31.9 16.9 70.6 U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	31.9 X - Outlier for Accura	16.9 Lety or Precision; N	70.6 R · Not Requested	Z.
FIELD D	TOTAL SULFUR NEUTRAL. ACID BASE SULFATE PYRITIC SULFUR ACID BASE POTENT. POTENT. SULFUR SULFUR SULFUR VIOOR VIOOR Y	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR	i	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
- 11	3.	32.2	3.2	28	0.67	0.16	0.2	======================================	-1.8					

LYSES	HARDNESS CALC Ca Fe Hg Mn Ni Pb Sb Za (mg CaCO3L)	U - Not Detected, J - Estimated Quantity, X - Outlier for A rountry or Precision; NR - Not Requested	WRI - Composite of subsamples WRI, 2A, 2B, 3, and 4 SWI - Discharge from sdit at waste rock dump 1.		
WATER MATRIX ANALYSES	o. 1 1.55 U)B ====:	
	ය 8.7 U 6.83			SULFATE NO3/NO2-N CYANIDE 75 < 0.05 NR	
	Ba cd 11.6 JX 2.57 U			SULPATE	
Metals in Water Results in ug/L	D As Bs Cd Co Cr 1949-SW-1 1.23 11.6 JX 2.57 U 9.7 U 6.83	Wet Chemistry Results in mg/l		29-449-SW-1 240 < 5.0 75 < 0.05 NR	
FIELD	E=====================================		FIELD	29-449-SW-1	

Mine/Site Name: Ohio	County:_Madison
Legal Description: T 2S R 5W	Section(s): SE 1/4, NE 1/4, Sec. 25
Mining District: Tidal Wave	Mine Type: Hardrock/Au
Latitude: N 45° 38' 05"	Primary Drainage: <u>Jefferson River</u>
Longitude: W 112° 09' 25"	USGS Code: 10020005
Land Status: Public	Secondary Drainage: Hellroaring Canyon
Quad: Waterloo	Date Investigated: July 20, 1993
Inspectors: Tuesday, Belanger, Clark	P.A. # 29-473
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The total volume of waste rock associated with this site (including WR-3 which was previously reclaimed) was estimated to be approximately 1,530 cubic yards. The following elements were elevated at least three times background:

Cadmium: 3.3 mg/kg Mercury: 0.797 mg/kg

Zinc: 109JX mg/kg

Copper: 126J mg/kg Lead: 322 mg/kg

- There were no adit discharges, filled shafts, seeps, or springs observed at the site during the investigation; consequently, no groundwater or surface water samples were collected.
- Intermittent Hellroaring Canyon was situated within approximately 20 feet of the toe of the reclaimed waste rock dump.

Ohio PA# 29-473 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/20/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES			·				
FIBLD	As Be (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co (mg/Kg) (mg	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn CYA (mg/Kg) (mg	CYANIDE (ms/Ks)
29-473-WR-1	36 J	205 J	9.9	5.1 JX	10.4 JX		14200 J 0.797	0.797	1790 J	14 J	322	_	X	2
BACKGROUND	25 J	260 J	1.1	8.9 JX	XL 6.61	32.4 J	15900 J	0.246	935 J	18 J	91	8 01	105 X	
	A cod () Pic V								U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Estimated Quantity; 3	X - Outlier for Accu	racy or Precision, N		
	Acid base Accounting	Accounting										LEGEND		T
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACTD BASE POTENT.	WR1 - Compo	osite of subsamp ID - From the D	WRI - Composite of subsamples WRI, 2, and 3. BACKGROUND - From the Dry Guich South (29-282-SS-1).	3. (29-282-55-1).	
29-473-WR-1	<0.01 0 295 295 <0	0	295	285	<0.01	.01 <0.01	0.02	0 295	295					
										_				•

Mine/Site Name: Kearsage	_ County: Madison
Legal Description: T 7S R 3W	Section(s): NW 1/4, NE 1/4, Sec. 23
Mining District: Virginia City	Mine Type: !!ardrock/Au
Latitude: N 45° 13' 00"	Primary Drainage: Alder Gulch
Longitude: W 111° 56' 00"	USGS Code: 10020003
Land Status: Private	Secondary Drainage: Mill Gulch
Quad: Cirque Lake	Date Investigated: July 20, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 29-102
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc	•

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 8,780 cubic yards. The following elements were elevated at least three times background:

Arsenic: 25 mg/kg

Cadmium: 6.8J mg/kg

Chromium: 482 mg/kg

Copper: 78.1 to 111 mg/kg

Nickel: 224 mg/kg

Lead: 41 mg/kg

Zinc: 234 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- Mill Gulch was flowing adjacent to the site on the north side during the investigation.
 Surface water and sediment samples were collected upstream and downstream from the site in Mill Gulch. No MCLs or acute or chronic aquatic life criteria were exceeded in Mill Gulch.
- Observed releases to Mill Gulch (sediment) were documented for cadmium, lead, and zinc.
- Potentially hazardous mine openings identified at the site included one open adit and one open shaft. The shaft was surrounded by a barbed wire fence.

Kearsage PA# 29-102 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/20/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sisi			SOLID MA	SOLID MATRIX ANALYSES	(0						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Min (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Kg)	CYANIDE (ms/Ke)
29-102-SE-1 29-102-SE-2 29-102-WR-1 29-102-WR-2	ა ი 123 ე — 1	54.4 111 232 233	0.0 0.8 0.8 0.8 0.0 0.0 0.0 0.0	9.1 18.5 45.8	31.7 83 160 482	17.7 41.2 78.1 111	12900 26200 61500 52200	0.244 0.461 0.392 0.679	181 354 883 452	2852	65 8 8 8 8 8 8	8 U S U S U S U S U	124 124 183	0.338 U 0.338 U NR NR
BACKGROUND	6 U 155 Acid/Base Accounting	155 Accounting	2.2 J	11	71.1	14.5	24800	0.255	821 U - Not Detected, J -	821 46 13 8 U 73 U · Not Detected J · Belinwited Quantity, X · Outlier for Accuracy or Precision; NR · Not Requested	13 X - Outlier for Accus	8 U	73 VR - Not Requested	
FIELD	TOTAL SULFUR %	!!	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE SULF POTENT SULF V1000t %	SULFATE SULFUR	YY DS	క్ర క	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. 1/1000t					
29-102-WR-1 29-102-WR-2	0.59	18.4 0			6.04 6.04	0.5 <0.01	0.16 0.03	15.6 0	60.9 17.6					

	Metals in Water Results in ug/L	/ater g/L			- 	WATER MATRIX ANALYSES	K ANALYSES							
FIELD D	A Be Cd Co	Ba	PO	ి		ਹ	Ę,	#	M	Z	.	8	H 12	HARDNESS CALC.
29-102-SW-1 29-102-SW-2	1.69 U 1.69 U	30.5 31.7	2.57 U 2.57 U	9.7 U 9.7 U		1.55 U 1.55 U	262 0.038 U 319 0.038 U	0.038 U 0.038 U	8.53 9.4 U · Not Detected; J · J	8.53 12.7 U 1.55 U 30.7 U 7.57 U 83.6 9.4 12.7 U 1.55 U 30.7 U 7.57 U 85.3 U. Nor Detected J. Estimated Quantity, X. Outlier for Accuracy or Precision NR. Nor Removed	1.55 U 1.55 U -Outlier for Accuracy	30.7 U	7.57 U 7.57 U 7.57 U	83.6 85.3
	Wet Chemistry Results in mg/l									ECEND				
FIELD LD	ļ	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE		Of feet upgradient ! PPB in Mill Gulci omposite of subsar	SEI - 300 feet upgradient from waste rock chump 1 in Mill Gulch. SE2 - At PPB in Mill Gulch of waste rock chump 1. WRI - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of subsamples WR2A, 2B, 3, 4, and 5.	mp 1 in Mill Guld mp 1. and 1C. 3, 4, and 5.		SW1 - Same as SE1 SW2 - Same as SE2.	SE1.		
29-102-SW-1 29-102-SW-2		< 5.0 < 5.0	118 < 5.0 8 < 0.05 NR 126 < 5.0 8 < 0.05 NR	^ 0.05 0.05	N N N N N N N N N N N N N N N N N N N		ROUND - From th	BACKGROUND - From the Apex Mine (29-105-SS-1).	05-58-1).					

Mine/Site Name: <u>General Shafter</u>	County:_Madison
Legal Description: T 7S R 3W	Section(s): SW 1/4, NW 1/4, Sec. 23
Mining District: Virginia City	Mine Type: Hardrock/Au
Latitude: N 45° 12' 05"	Primary Drainage: Alder Gulch
Longitude: W 111° 56' 03"	USGS Code: 10020003
Land Status: Private	Secondary Drainage: Mill Gulch
Quad: Cirque Lake	Date Investigated: July 21, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 29-103
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

• The volume of tailings associated with this site was estimated to be approximately 300 cubic yards. The following elements were elevated at least three times background:

Arsenic: 16 mg/kg Mercury: 1.97 mg/kg

Copper: 178 mg/kg

Mercury: 1.97 mg/kg Antimony: 52 mg/kg Lead: 521 mg/kg Zinc: 421 mg/kg

Cyanide: 9.72 mg/kg

• The volume of waste rock associate with this site was estimated to be approximately 9,900 cubic yards. The following elements were elevated at least three times background:

Lead: 109 mg/kg

- One discharging adit was identified at the site. The adit discharge eventually entered Mill Gulch. No MCLs or acute or chronic aquatic life criteria were exceeded in the adit discharge.
- Mill Gulch was flowing adjacent to the site on the south side. Surface water and sediment samples were collected upstream and downstream from the site in Mill Gulch. No MCLs or acute or chronic aquatic life criteria were exceeded, and metals concentrations in the downstream sediment sample were not elevated above upstream concentrations.
- No hazardous mine openings were identified at the site.

General Shafter PA# 29-103 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/21/93

	Metals in soils	· s				SOLID MA	SOLID MATRIX ANALYSES	6 0						
	Results per (Results per dry weight basis	sis											
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
29-102-SE-1 29-103-SE-1 29-103-TP-1 29-103-WR-1	5 0 11	54.4 63.7 54.5	0.0 1.2.1 1.6.2 1.6.2 1.6.2	9.1 12.2 10.1 11	31.7 51.3 9.4 24.4	17.7 18.2 178 39.1	12900 14800 9730 15100	0.244 0.344 1.97 0.704	25 25 25 25 25 25 25 25 25 25 25 25 25 2	8282	16 14 521 109	6 U 7 U 52 6 U	421 421 139	0.338 U NR 9.72 NR
BACKGROUND	6 U 155 Acid/Base Accounting	155 counting	2.2 J	11	71.1	14.5	24800	0.255	821 U - Not Detected, J .	46 Estimated Quartity	821 46 13 8 U 73 U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	8 U nicy or Precision; N	73 R - Not Requested	Z.
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASIE POTENT. V1000t		PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
29-103-TP-1 29-103-WR-1	0.01	0.31 0.94	22.8 102	22.4 101	<0.01 <0.01	0.04	0.01 0.05	0.31	22.4 101					

	Metals in Water	Vater				WATER MATRIX ANALYSES	X ANALYSES							
FIELD	Results in ug/L	ug/r											H	HARDNESS
D	As	Ba	Cd	ల	ර	ටි		8	Mn	Z	æ	8	Zn (ms	CALC. Zn (mg CaCO3/L)
29-102-SW-1 29-103-SW-1	1.69 U	30.5	2.57 U 2.57 U	9.7 U	6.83 U	1.55 U	262	0.038 U	8.53	8.53 12.7 U	1.55 U	30.7 U	7.57 U	7.57 U 83.6
29-103-SW-2	1.69 U	47.9	2.57 U	9.7 0	6.83 U	1.55 U	34.6	0.038 U	5.5 5.5	12.7 U 12.7 U	8. 8. ∪ ∪	30.7 U 30.7 U	7.57 U 7.57 U	51.2 22.2
	Wet Chemistry								U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	tey or Precision, NR	· Not Requested	l
	Results in mg/l									LEGEND				
FIELD	TOTAL					29-102-	SE1 - Upgradient of General Shafter.	29-102-SE1 - Upgradient of Kearage; downgradient for General Shafter	radient for		29-102-SW1 - 29-103-SW1 -	29-102-SW1 - Same as 29-102-SE1. 29-103-SW1 - Same as 29-103-SE1.	- 38 1.	
I.D.	SOLIDS	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N CYANII	NO3/NO2-N CYANIDE	CYANIDE		omposite of subsan	25-105-201. Copprendent of mul bunding in Mull Guich. TPl - Composite of subsamples TPlA and 1B.	Aul Gwleh.		SW2 - Adit dis	SW2 - Adit discharge on Mill Gulch.	hulch.	
29-102-SW-1	118	< 5.0	8	× 0.05	N N		Composite of subse ROUND - From the	WRI - Composite of subsamples WRIA, 1B, and 2. BACKGROIND - From the Area Mine (20 105 es 1)	and 2.					
29-103-SW-1	97	× 5.0	S)	0.1	X.			1-67) armar wada a	.07-50-1).					
29-103-SW-2	5 80	> 5.0	92	0.31	œ Z									

Mine/Site Name: Apex Legal Description: T _7S R _3W Mining District: Virginia City Latitude: N 45° 12' 05' Longitude: W 111° 56' 00 Land Status: Private Quad: Cirque Lake Inspectors: Babits, Lasher/Pierson Organization: Pioneer Technical Services, Inc./Thomas, Dean and Hoskins, Inc.	County: Madison Section(s): Center of N 1/2, Sec. 23 Mine Type: Hardrock/Au, Talc Primary Drainage: Ruby River USGS Code: 10020005 Secondary Drainage: Alder Gulch Date Investigated: July 20, 1993 P.A. # 29-105
---	---

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 6,960 cubic yards. The following elements were elevated at least three times background:

Arsenic: 7 to 53 mg/kg

Cadmium: 7.2J to 14.3J mg/kg

Copper: 70.2 to 100 mg/kg

Lead: 210 to 212 mg/kg

Zinc: 260 to 1,030 mg/kg

- One discharging adit was identified at the site during the investigation. However, the adit was actively being worked and could not be sampled due to inaccessibility.
- Alder Gulch was flowing adjacent to the site on the east side during the investigation. Surface water and sediment samples were collected upstream and downstream from the site in Alder Gulch; no MCLs or acute or chronic aquatic life criteria were exceeded.
- Potentially hazardous mine openings identified at the site included three open adits and one open shaft. The shaft was surrounded by a barbed wire fence.

J.T.C. PA# 29-106
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 08/27/93

Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in soils Heatist in							SOLID MATI	SOLID MATRIX ANALYSES							
As Bs Cd Co Cl Cu Fe Hg 7.5 J 89.4 1.28 J 30.3 112 51.9 37200 0.343 J 7.5 J 89.4 1.28 J 30.3 112 51.9 37200 0.343 J Acid/Base Accounting 155 2.2 J 17 71.1 14.5 24800 0.255 Acid/Base Accounting 1 17 71.1 14.5 24800 0.255 Acid/Base Accounting 1 1 71.1 14.5 24800 0.255 Acid/Base Accounting 1 1 71.1 14.5 24800 0.255 Acid/Base Accounting 1 1 1 1 1 1 1 1 Acid/Base Accounting 1		Metals in so Results per	ils dry weight bas	š											
7.5 J 89.4 1.28 J 30.3 112 51.9 37200 0.343 J 6 U 155 2.2 J 17 71.1 14.5 24800 0.255 Acid/Base Accounting TOTAL TOTAL SULFUR ACID BASE SULFATE PYRITIC ORGANIC SULFUR SULFUR ACID BASE SULFUR SULFUR SULFUR ACID BASE 31.5 0.04 0.13 0.13 4.06 0.3 9.37 40.8 31.5 0.04 0.13 0.14 4.06	FIELD	As (mg/Kg)	Be (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fo. (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	!	Zn (mg/Kg)	CYANIDE (mg/Kg)
Columbia Columbia	29-106-WR-1	7.5 J	**	1.28 J	30.3	# T	51.9	37200	0.343 J	362	62.7	30.1	5.4 U	163	A.
Acid/Base Accounting TOTAL SULFUR SULFUR PYRITIC SULFUR SULFUR ACID BASE TOTAL SULFUR ACID BASE SULFUR SULFUR ACID BASE POTENT SULFUR ACID BASE POTENT SULFUR SULFUR ACID BASE POTENT SULFUR ACID BASE POTENT SULFUR ACID BASE POTENT SULFUR ACID BASE POTENT ACID BASE POTENT MACID BASE POTENT ACID BASE POTENT ACID BASE ACID BASE POTENT ACID BASE VIOXOR VIOXOR ACID BASE ACID BASE VIOXOR ACID BASE ACID BASE VIOXOR	BACKGROUND	∩ 9	155	2.2 J	17	71.1	14.5	24800	0.255	821 U - Not Detected, J -	46 Estimated Quantity	13 X - Outlier for Aco	8 U uracy or Precision;	73 NR - Not Requeste	S S
TOTAL SULFUR PYRITIC ORGANIC SULFUR SULFUR ACID BASE SULFUR ACID BASE SULFUR SULFUR SULFUR ACID BASE POTENT \$\frac{1}{4}\$		Acid/Base /	Accounting								WR1 - Com	posite of subsam	LEGEND ples WR1A and	IB.	
TOTAL SULFUR NEUTRAL ACID BASE SULFATE PYRHIC OKCANIC SULFUR ACID BASE SULFUR SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR ACID BASE SULFUR ACID BASE SULFUR SULFUR ACID BASE 31.50.04 0.13 0.13 4.06 0.3 9.37 41.7 32.3 0.03 0.13 0.14 4.06			TOTAL		SULFUR		1	211.000	PYRITIC	SULFUR	BACKGROU	JND - From the	Apex Mine (29-	105-88-1).	
0.3 9.37 40.8 31.5 0.04 0.13 0.13 4.06 0.3 9.37 41.7 32.3 0.03 0.13 0.14 4.06	FIELD	TOTAL SULFUR %	SULFUR ACTD BASE V1000t	NEUTRAL. POTENT. 1/1000t	ACID BASE POTENT. v1000t	SULFAIE SULFUR	FYKUIC SULFUR %	SULFUR	ACID BASE 1/1000t	POTENT.					
	29-106-WR-1	0.3 0.3	9.37 9.37		31.5 32.3	0.04 0.03	0.13 0.13	0.13 0.14	4.06 4.06	36.8 37.6					

Mine/Site Name: Apex	County:_Madison
Legal Description: T 7S R 3W	Section(s): Center of N 1/2, Sec. 23
Mining District: Virginia City	Mine Type: <u>Hardrock/Au, Talc</u>
Latitude: N 45° 12' 05'	Primary Drainage: Ruby River
Longitude: W 111° 56' 00	USGS Code: 10020005
Land Status: Private	Secondary Drainage: Alder Gulch
Quad: Cirque Lake	Date Investigated: July 20, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 29-105
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 6,960 cubic yards. The following elements were elevated at least three times background:

Arsenic: 7 to 53 mg/kg

Cadmium: 7.2J to 14.3J mg/kg

Copper: 70.2 to 100 mg/kg

Lead: 210 to 212 mg/kg

Zinc: 260 to 1,030 mg/kg

- One discharging adit was identified at the site during the investigation. However, the adit was actively being worked and could not be sampled due to inaccessibility.
- Alder Gulch was flowing adjacent to the site on the east side during the investigation.
 Surface water and sediment samples were collected upstream and downstream from the site in Alder Gulch; no MCLs or acute or chronic aquatic life criteria were exceeded.
- Potentially hazardous mine openings identified at the site included three open adits and one open shaft. The shaft was surrounded by a barbed wire fence.

Apex Mine PA# 29-105 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/20/93

				7.00										
	Metals in soils Results per dry	Metals in solls Results per dry weight basis	Sis			SOLID MA	SOLID MATRIX ANALYSES	Ø						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mø/Ke)	Sb (me/Ke)	Zn	CYANIDE
29-105-SE-1 29-105-SE-2 29-105-WR-1 29-105-WR-2 29-105-WR-3	8 U 7 2 2 C 53 53 53 53 53 53 53 53 53 53 53 53 53	118 63.3 190 193 29.7	2.1 J 1.6 J 3.1 J 7.2 J 14.3 J	16.7 19.8 28.5 36.2 35.9	119 51.3 88.7 105	25.9 32.5 70.2 83.4 100	29400 26600 33100 49800 54200	0.488 0.345 0.502 0.552	408 403 387 940 940	60 37 33 81 82	210 210 210 210	5	8 8 8 8 5 E	N N N N N N N N N N N N N N N N N N N
BACKGROUND	6 U 155 Acid/Base Accounting	155 ccounting	2.2 J	12	11.17	14.5	24800	0.255	821 U - Nat Deserted, J	821 46 13 8 U 73 U . Not Detected, J . Estimated Quartity, X . Outlier for Accuracy or Precision; NR . Not Requested	13 X-Outlier for Acot	8 U	73 TR - Not Requeste	
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t		PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.					
29-105-WR-1DUP 29-105-WR-1 29-105-WR-2 29-105-WR-3	0.22 0.23 0.26 1.12	6.87 7.19 8.12 35	72.9 73.5 60.7 75.5	66.1 66.3 52.6 40.5	6.09 20.00 20.00 20.00	0.16 0.14 0.16 1.11	0.12 0.13 0.12 0.37	4.37 4.37 34.7	67.9 69.1 55.7 60.8					

	Metals in Water Results in ug/L	Nater ug/L				WATER MATRIX ANALYSES	X ANALYSES							
FTELD	8	8	8	රී	Ċ	đ	ß	Ė	:	!			Æ	HARDNESS CALC.
				## ## ## ## ## ## ## ## ## ## ## ## ##			- 11 - 14 - 19		Mn ====================================		£	SP.	Zn (m	Zn (mg CaCO3/L)
29-105-SW-2	1.69 1.69 1.00	32.6 34.6	2.57 U 2.57 U	9.7 U 9.7 U	6.83 U 6.83 U	1.55 U 1.55 U	17.3 42	0.038 U 0.038 U	4.08 U 4.08 U	12.7 U 12.7 U	1.55 U 30.7 U 7.57 U 183 1.55 U 30.7 U 7.57 U 184	1.55 U 30.7 U 1.55 U 30.7 U	7.57 U	£83 84
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X	· Outlier for Accurac	cy or Precision, NR	- Not Requested	3
	Wet Chemistry			-									•	
	Descrits in man									LEGEND				
	TOTAL					SE1- A	SE1 - Approx 1,000' upgradient from waste rock dump 6 in Alder Gulch.	dient from waste ro	ck dump 6		WRIDUP - Duplicate of sample 29-105-WR-1	plicate of sample	• 29-105-WR-1	
FIELD	DISSOLVED	מנומט וויט	911 EA TE			SE2 - A	SE2 - Approx. 50 downgradient from waste rock dump 6.	dient from waste n	ock dump 6.		SW2 - Same as sample SE2.	sample SE1.		
			SOLFA1D	NO3/NO2-N CYANI	SOLFAID NOS/NOZ-N CIANIDE		WRI - Composite of subsamples WR-1A through 1C.	mples WR-1A thro	ugh 1C.			•		
29-105-SW-1	244	> 5.0	_	0.17	N.		WKZ - Composite of subsamples WR2A, ZB, 3A, 3B, and 4.	mples WR2A, 2B,	3A, 3B, and 4.					
29-105-SW-2	211	v 2.0	7	0.21	ž	WR3 - C	(See 110 29-100 for WK4 informatic WR3 - Composite of subsamples WR5 and 6	(See 11C 23-100 for WK4 information). Composite of subsamples WR5 and 6.	(i)					
						BACKO	BACKGROUND - From the Aper (79-105-89 1)	Aner (70.105.99						

Mine/Site Name: JTC	County: Madison
Legal Description: T 7S R 3W	Section(s): NW 1/4, SW 1/4, Sec. 23
Mining District: Virginia City	Mine Type: <u>Flardrock/Au</u>
Latitude: N 45° 12' 04"	Primary Drainage: Ruby River
Longitude: W 111° 56' 01"	USGS Code: 10020003
Land Status: Private	Secondary Drainage: Alder Gulch
Quad: Cirque Lake	Date Investigated: August 27, 1993
Inspectors: Babits, Flammang/Pierson	P.A. # _29-106
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hocking Inc	-

- No mill tailings were observed at the site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 375 cubic yards. The following elements were elevated at least three times background: Copper: 51.9 mg/kg
- No discharging adits were identified at the site; however, one adit contained standing water. This water was sampled for field parameters only; the pH measurement was 8.14.
- Alder Gulch was flowing adjacent to the site on the east side during the investigation.
 Surface water and sediment samples were collected downstream from the site (see analytical data for the Apex Mine #29-105). No MCLs or acute or chronic aquatic life criteria were exceeded downstream from the site.
- One potentially hazardous open adit and a 50 feet tall highwall were identified at the site.

J.T.C. PA# 29-106
AMRB HAZARDOUS MATERALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/27/93

		T			
	CYANIDE (mg/Kg)	163 NR	Z Z		
			73 R - Not Requested	B. 5-SS-1).	
	Pb Sb (mg/Kg) (mg/Kg)	5.4 U	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	WR1 - Composite of subsamples WR1A and 1B. BACKGROUND - From the Apex Mine (29-105-SS-1).	
	Pb (mg/Kg)	30.1	.X - Outlier for Act	posite of subsam	
	Ni (mg/Kg)	62.7	Estimated Quantity	WR1 - Com	
	Hg Mn (mg/Kg) (mg/Kg)	362 821	U - Not Detected, J.	SULPUR ACID BASE POTENT.	v1000t ======= 36.8 37.6
S.	Hg (mg/Kg)	0.255		PYRITIC SULFUR ACID BASE	#1000t 4.06 4.06
SOLID MATRIX ANALYSES	Fe. (mg/Kg)	24800		ORGANIC SULFUR	0.13
SOLID MA	Cu (mg/Kg)	14.5		PYRITIC SULFUR	0.13 0.13
	Cr (mg/Kg)	71.1		SULFUR SULFUR %	0.04
	Co (mg/Kg)	12		SULFUR ACID BASE POTENT. v1000t	31.5 32.3
asis	Cd (mg/Kg)	2.2 J		NEUTRAL. POTENT. v1000r	9.37 40.8 31.5 0.04 9.37 41.7 32.3 0.03
Metals in soils Results per dry weight basis	As Ba (mg/Kg) (mg/Kg)	155	Accounting	TOTAL SULFUR ACID BASE V1000t	9.37 9.37
Metals in soils Results per dry	As (mg/Kg) 7.5 J	⊃ ø	Acid/Base Accounting	TOTAL SULFUR	0.3 0.3
	FIELD D 29-106-WR-1	BACKGROUND		FIELD D	29-106-WR-1DUP 29-106-WR-1

Mine/Site Name: Pacific County: Madison Legal Description: T 7S R 3W Section(s): NW 1/4, Sec. 15 Mining District: Virginia City Mine Type: Hardrock/Au, Ag Latitude: N 45° 13' 45" Primary Drainage: Alder Gulch USGS Code: 10020003 Longitude: W 111° 57' 03" Secondary Drainage: Browns Gulch Land Status: Private Date Investigated: August 26, 1993 Quad: Cirque Lake P.A. # 29-118 Inspectors: Babits, Flammang/Pierson Organization: Pioneer Technical Services, Inc.

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 190,000 cubic yards. The following elements were elevated at least three times background:

Cadmium: 0.88J mg/kg

Chromium: 286JX mg/kg

Copper: 112 mg/kg

Mercury: 0.071J to 0.253J mg/kg

Nickel: 149JX mg/kg

Lead: 30.8JX mg/kg

- Three discharging adits were identified at the site during the investigation. Two of the
 discharges eventually flowed into Brown's Gulch; one of these discharges was sampled
 for laboratory analyses. No MCLs were exceeded in the adit discharge; however, the
 chronic aquatic life criteria for mercury was exceeded.
- Brown's Gulch was flowing through the center of the site during the investigation.
 Surface water and sediment samples were collected upstream and downstream from the site in Brown's Gulch. No MCLs were exceeded; however, the chronic aquatic life criteria for mercury was exceeded in both the upstream and downstream samples. An observed release to Brown's Gulch was documented for lead. Additionally, observed releases to Brown's Gulch (sediment) were documented for mercury and lead.
- Three potentially hazardous open adits and one 200 feet tall highwall were identified at the site.

Pacific PA# 29-118 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/26/93

			<u> </u>						
	CYANIDE	(mg/Kg)	!		ď				
	72	(mg/Kg)	110 J 310 J	74.9 J 91.7 J	52.4	· Not Requested			
	æ	(mg/Kg)	6.91 UJ 6.9 UJ		7.26 UJX 7.01 UJ	Cy or Precision; NR			
	8	(mg/Kg)	38.2 JX 189 JX	30.8 JX	7.26 UJ)	- Outlier for Accura			
	Z	(mg/Kg) ====================================	30.9 JX 24.9 JX	24.2 JX	16.4 JX	istimated Quantity, X			
	Mn	Swamman and swammer	4 4 8 2 2 2	490 J	539 J	U - INUL DESCRICT J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	SULFUR ACID BASE	POTENT.	75.2 739
60	Hg (me/Ke)	- 9300	0.437 J 0.253 J	0.072 J	0.031 UJ		PYRITIC SULFUR		1.25
SOLID MATRIX ANALYSES	Fe (mg/Kg)	24600	27200 34400	22/00	22400		ORGANIC	SULFUR %	0.04
SOLID MA	Cu (mg/Kg)	26.3	62.6	<u>5</u> 5	4.9		PYRITIC	SULFUR	0.04 0.04
	Cr (mg/Kg)	i	18.7 286 XX XX XX	ξ <u>Σ</u>	4.4.5×		SULFATE	SOLEOK %	<0.01 0.07
	Co (mg/Kg)	11.5	24.1 11.2 11.1	24	<u>.</u>		SULFUR ACID BASE POTENT	V1000t %	73.9 131
asis	Cq Cq	1.37	2.5/2. 0.88 J 0.86 UJ	1.02 UJ			NEUTRAL. POTENT	V1000t	76.4 140
Metals in soils Results per dry weight basis	Ba (mg/Kg)	110 J	91.2 100 100 J	123 J		Accounting	TOTAL SULFUR ACID BASE	t/1000t	2.5 9.37
Metals in soils Results per dry	As (mg/Kg)	6.99 7.35	7.42 4.49 U	12.8		Acid/Base Accounting	TOTAL	#	0.08
	FIELD	29-118-SE-1 29-118-SE-2	29-118-WR-1 29-118-WR-2	BACKGROUND			FIELD		29-118-WR-2

FIELD	Metals in Water Results in ug/L	ater //L				WATER MATRIX ANALYSES	X ANALYSES							
Ð	A:===================================	æ	3	రి	Ċ	ರ	iş	Ė	;				HA,	HARDNESS
29-118-SW-1 29-118-SW-2 29-118-SW-3	1.12 U 1.08 1.83	32.2 66.9 99.3	4.59 U 2.57 U 2.57 U	5 U 7.6	4.59 U 5 U 6.24 U 2.57 U 9.7 U 6.83 U 2.57 U 9.7 U 6.83 U	3.67 J 1.55 U 1.97	59.6 J 251 900	59.6 J 0.2 7.47 10.9 U 0.94 U 31.7 U 500 0.14 JX 174 13.8 1.20	Mn 7.47 55.8 174	10.9 U 12.7 U	P. 0.94 U	31.7 U	33	Zn (mg CaCO3/L)
	Wet Chemistry Results in mg/l							.u	· Not Detected, J · E	U. Na Detected, J. Estimated Quantity, X Outlier for Accuracy or Precision, NR Not Requested	1.90 J Outlier for Accuracy	3O.7 U y or Precision; NR.	36.1 J Not Requested	233
FIELD LD.	: :	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANDE	SB1 - 40 SB2 - 50 WR1 - C	SB1 - 400 feet upgradient of waste rock dump 2. SB2 - 50 feet downgradient of culvert where creek crosses road at base of waste rock dump 1. WR1 - Commonity of sulternations	weste rock dump 2. f culvert where creel chump 1.	uses road	LEGEND	SW1 - Same as sample SB1. SW2 - Same as sample SB2. SW3 - Adit discharce across mas form	sample SE1.		
29-118-SW-1 29-118-SW-2 29-118-SW-3		5.0 5.0 5.0	114 < 5.0 8 NR NR 1080 < 5.0 2424 0.05 NR 268 < 5.0 38 < 0.05 NR	NR 0.05 0.05	N N N N N N N N N N N N N N N N N N N	WR2 - C BACKGH	WR2 - Composite of subsamples WR1A, 18, and 1C. WR2 - Composite of subsamples WR2A, 2B, 3A, 3B, 4A, and 4B. BACKGROUND - 275' above waste rock dump 4. From Pacific (29-118-SS-1).	ies WKIA, 1B, and les WR2A, 2B, 3A, waste rock dump 4.	11C. 3B, 4A, and 4B From Pacific (29		dump 1.		waste room	

Mine/Site Name: Easton County: Madison Legal Description: T_7S R 3W Section(s): SE 1/4, SE 1/4, Sec. 4 Mining District: Virginia City Mine Type: Hardrock/Au, Ag Latitude: N 45° 15.0' Primary Drainage: Alder Gulch Longitude: W 111° 58.1 USGS Code: 10020003 Land Status: Private Secondary Drainage: Browns Gulch Quad: Virginia City/Cirque Lake Date Investigated: August 26, 1993 Inspectors: Babits, Flammang/Pierson P.A. # 29-121 Organization: Pioneer Technical Services, Inc./Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be approximately 1,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 52.9 mg/kg

Barium: 455J mg/kg

Cadmium: 45.2J mg/kg

Copper: 489 mg/kg Lead: 2,670JX mg/kg

Mercury: 1.47J mg/kg Antimony: 107J mg/kg

Zinc: 3,650J mg/kg

• The volume of waste rock associate with this site was estimated to be approximately 7,100 cubic yards. The following elements were elevated at least three times background:

Copper: 111 mg/kg

Mercury: 0.18J mg/kg

Lead: 94.2JX mg/kg

Zinc: 158J mg/kg

- One discharging adit was identified at the site; this discharge eventually entered Mill Creek. No MCLs were exceeded in the adit discharge; however, the chronic aquatic life criteria for mercury was exceeded. The pH measurement in the adit discharge was 7.5.
- Mill Creek was flowing through the center of the site during the investigation. Surface
 water and sediment samples were collected upstream and downstream from the site in
 Mill Creek. No MCLs were exceeded in Mill Creek; however, the chronic aquatic life
 criteria for mercury was exceeded in both the upstream and downstream samples.
- One potentially hazardous partially collapsed adit was identified at the site.

Easton PA# 29-121 . AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/26/93

	CYANIDE	NR NR 0.306	Z Z		
	Z	(mg/kg) 38.9 J 60.2 J 3650 J 158 J	52.4 J		
		6.04 UJ 7.24 UJ 107 J 11.8 J	7.26 UJY 7.01 UJ ttler for Accuracy or Precision; NR		
	Pb	# * * * *	7.26 UJX Outlier for Accuru		
	Ni (me/Ke)	6.86 JX 5.7 JX 22.9 JX 25.6 JX	539 J 16.4 JX 7.26 UJY 7.01 UJ 52.4 J U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested		
	Mn (mg/Kg)	98.4 J 125 J 273 J 406 J	539 J U - Not Detected: J .	SULFUR ACID BASE POTENT.	24 51.4
	Hg (mg/Kg)	0.036 J 0.034 J 1.47 J 0.18 J	0.031 UJ	PYRITIC SULFUR ACID BASE	23.1
SOLID MATRIX ANALYSES	Fe (mg/Kg)	11200 8320 27900 30100	22400	ORGANIC SULFUR %	0.01 0.19
SOLID MA	Cu (mg/Kg)	5.67 6.93 489 111	26.4	PYRITIC SULFUR %	0.74
	Cr (mg/Kg)	9.06 JX 6.91 JX 10.6 JX 10.6 JX	Z2.4 X	SULFATE SULFUR %	0.48 0.13
	Co (mg/Kg)		50	SULFUR ACID BASE POTENT. v1000t	8.69 0.4 41.4 0.1
82	Cd (mg/Kg)	0.88 UJ 1.05 UJ 45.20 J 1.87 J	8 8	NEUTRAL. POTENT. t/1000t	47.1 62
Metals in soils Results per dry weight basis	Ba (mg/Kg)	33.4 23.1 25.5 2.7 2.7 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	ccounting	TOTAL SULFUR ACID BASE V1000t	
Metals in soils Results per dry	As (mg/Kg)	5.48 U 52.9 U 25 25 12.8	Acid/Base Accounting	TOTAL SULFUR %	1.23
	FIELD D C==================================	29-121-SE-2 29-121-TP-1 29-121-WR-1 BACKGROUND		Field D	29-121-TP-1 29-121-WR-1

Metals in Water Results in ug/L FIELD As Bs Cd Co Cr		Cu Re 2.33 U 296 J 2.33 U 270 J 3.8 J 51.9 J SEI - 50 feet upgradient abo SE2 - Downgradient of wast TPI - Composite of subsarry WR1 - Composite of subsarry WR1 - Composite of subsarry WR1 - Composite of subsarry WR1 - Composite of subsarry	MATRIX ANALYSES 10 10 296 J 0.22 118 118 1270 J 0.27 118 1281 - 50 feet upgradient above last cabin. SE2 - Downgradient of waste rock dump 2. TPI - Composite of subsamples TPI A and 1B. WRI - Composite of subsamples WRIA, 1B, 1C, 2A, and 2B. BACKGROUND - From the Pacific Mine (29-118-38-1).	Mn 11.8 11 5 U·Nel Defected J·E 1B. 1B. 1B. 1B. 29-118-SS-1).	Mn Ni 11.8 10.9 U 5 10.9 U 5 10.9 U EGEND SW SW SW SW SW SW SW	Mn Ni Pb Sb Zn (118 10.9 U 3.18 31.7 U 8.71 U 11 10.9 U 3.78 31.7 U 19.7 U 19.7 5 10.9 U 0.99 31.7 U 19.7 U-Net Detectet J - Estimated Quantity, X - Outlier for Accouncy or Precision; NR - Net Requested SW1 - Same as SE1. SW2 - Same as SE2. SW3 - Discharge from acit #1.	Zn (rag 8.71 U 19.7 34.1 T. NR. Not Requested	HARDNESS CALC. Zn (mg Cacco3L) 8.71 U 129 19.7 360 34.1 814 Requested
--	--	--	--	--	---	--	---	---

Mine/Site Name: Missouri County: Madison Legal Description: T 4S R 2W Section(s): N 1/2, NE 1/4, Sec. 30; S 1/2, Sec. Mining District: Washington Latitude: N 45° 27' 32" Mine Type: Hardrock/Au, Ag, Pb, Cu Longitude: W 111° 53' 27" Primary Drainage: Madison River Land Status: Private/Public USGS Code: 10020007 Quad: Ramshorn Mountain Secondary Drainage: South Meadow Creek Inspectors: Babits, Lasher/Pierson Date Investigated: July 22, 1993 Organization: Pioneer Technical Services. P.A. # 29-373 Inc./Thomas, Dean and Hoskins, Inc.

 The volume of tailings associated with this site was estimated to be approximately 12,111 cubic yards. The following elements were elevated at least three times background:

Arsenic: 3,390 to 6,520 mg/kg

Cadmium: 3.6 to 10.6 mg/kg

Copper: 364 to 692 mg/kg

Iron: 79,100 mg/kg

Mercury: 0.791 to 3.68 mg/kg Antimony: 76 to 107 mg/kg

Lead: 536 to 11,900 mg/kg Zinc: 426 to 1,080 mg/kg

 The volume of waste rock associated with this site was estimated to be approximately 5,960 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,730 mg/kg

Cadmium: 9.8 mg/kg

Copper: 255 mg/kg

Mercury: 0.285 to 0.897 mg/kg

Lead: 3,520 mg/kg

Antimony: 38 mg/kg

Zinc: 682 mg/kg

- No discharging adits, filled shafts, seeps, or springs were identified at the site.
- South Meadow Creek was flowing adjacent to the site on the south side. Surface water
 and sediment samples were collected upstream and downstream from the site in South
 Meadow Creek. No MCLs were exceeded in South Meadow Creek; however, the chronic
 aquatic life criteria for lead was exceeded in both the upstream and downstream
 samples.
- Observed releases to South Meadow Creek (sediment) were documented for arsenic and lead.
- Two potentially hazardous open adits were identified at the site.

Missouri PA# 29-373 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/22/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u></u>			SOLID MAT	SOLID MATRIX ANALYSES							
HELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
29-373-SE-1 29-373-SE-2 29-373-TP-1 29-373-WR-1 29-373-WR-2	16 290 6520 3390 1730 5	86.7 68.6 92.7 35.2 103	0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.5 4.3 28.5 34.9		17.6 45.3 692 364 255 65.3	13000 20300 79100 44000 47400 30700	0.054 0.089 3.68 0.791 0.897	362 J 249 J 138 J 76.1 J 784 J 330 J	22 32 18 18 47	42 536 11900 6680 3520	# n	F 9 9 9 7 6	0.323 U 0.397 U 0.317 0.308 NR
BACKGROUND	0	129	0.6	16.6	57.6	28.4	21600	0.029	951 J 51 23 7 U 54 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	51 Saimated Quantity, X	23 :- Outlier for Accuracy	7 U 7 or Precision; NR -1		X X
	Acid/Base Accounting	ccounting	,											
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASB V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
29-373-TP-1 29-373-TP-2 29-373-WR-1 29-373-WR-2	0.31 0.19 0.07 0.01	9.68 5.94 0.19	5.88 2.73 28.9 7.11	-3.8 -3.2 26.7 7.11	0.31 0.19 0.07 <0.01	6.04 6.04 6.04 6.04	6.01 6.01 6.01 6.01	0000	5.88 2.73 28.9 7.11					·

	Metals in Water Results in uo/L	Nater ua/L			. -	WATER MATR	WATER MATRIX ANALYSES							·
FTELD D	As	Ba	ਣ	As Ba Cd Co C	ර්	రె	Ę.	H	Mn	ï	B	8	HA)	HARDNESS CALC.
29-373-SW-1 29-373-SW-2	2.34	12.3 JX 12.3 JX	X 2.57 U X 2.57 U	9.7 U 9.7 U	6.97 J 6.83 U	1.63 J 1.7 J	1.63 J 43.7 J 0.038 U 1.7 J 48.6 J 0.038 U	ii	4.08 U 12.7 U 0.72 U 30.7 U 4.08 U 12.7 U 0.89 J 30.7 U	12.7 U 12.7 U	0.72 U 30.7 U 0.89 J 30.7 U	11	7.57 U 20 7.57 U 23.1	20 23.1
	Wet Chemistry								o ver correra, v zemmanu Quanty; A · Outlier for Arcumy or Precision; NR · Not Requested	mateu (daminy, X - 1	Duther for Accuracy c	ar Precision; NR - Not	Requested	
	Kesuits in mg/i	_								LEGEND				Ī
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE		 SE1 - 800 feet upgradient of tailings pond 1 in S. Meadow Creek. SE2 - At PPB of tailings pond 1 in S. Meadow Creek. TPI - Composite of subsamples TP1 A-C and 1A-B. TP2 - Composite of subsamples TP1 A-C and 1A-D. 	of tailings pond 1 in and 1 in S. Meadow uples TP1A-C and 1 ples TP1A-C and 1/	S. Mesdow Creek Creek. A-B. A-D.		SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1.		
29-373-SW-1 29-373-SW-2	75 < 5.0 < 5.0 < 0.05 NR 71 < 5.0 < 5.0 < 0.05 < 0.01	5.05.0	5050	A 0.05	NR 0.01		WRI - Composite of subsamples WRI, 24, 2B, 3A, and 3B. WR2 - Composite of subsamples WR4, 5, and 6. BACKGROUND - From the Missouri Mine (29-373-SS-1).	mples WR1, 2A, 2E mples WR4, 5, and the Missouri Mine (29)	3, 3A, and 3B. 6. 9-373-SS-1).					

County: Madison Mine/Site Name: SE SE S25 Section(s): SE 1/4, SE 1/4, Sec. 25 Legal Description: T 4S R 3W Mining District: Washington Mine Type: Hardrock/Unknown Primary Drainage: Madison River Latitude: N 45° 27' 18" USGS Code: 10020007 Longitude: W 111° 54' 20" Secondary Drainage: South Meadow Creek Land Status: Public Date Investigated: September 20, 1993 Quad: Ramshorn Mountain P.A. # 29-394 Inspectors: M. Babits, S. Babits Organization: Pioneer Technical Services, Inc.

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 4,600 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,110 mg/kg
Cobalt: 52.6 mg/kg
Mercury: 0.221 mg/kg
Antimony: 23J mg/kg
Cadmium: 7 mg/kg
Copper: 525 mg/kg
Lead: 1,660 mg/kg
Zinc: 1,090 mg/kg

- One discharging adit was identified at the site. No MCLs were exceeded in the adit discharge; however, acute and chronic aquatic life criteria for copper and zinc were exceeded. The chronic aquatic life criteria for lead was also exceeded. The adit discharge pH measurement was 7.75.
- No surface water was observed on or near the site. The nearest surface water was
 located approximately 600 feet away. No surface water or sediment samples were
 collected due to a lack of a direct runoff route.
- Two potentially hazardous open adits were identified at the site.

SE SE Section 25 PA# 29-394 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 09/20/93

	Metals in solls Results per dry	Metals in soils Results per dry weight basis	asis.	·		SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD As ID (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Ba Cd Co C (mg/Kg) (mg/Kg) (mg	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
29-394-WR-1	1110	109	7	52.6	46.5	525	59400	0.221	1700 J 61.3	61.3	1660	23 J	1090	NR.
BACKGROUND	6	129	0.6 U	16.6	57.6	28.4	21600	0.029	951 J	5	33	7 U	20	<u> </u>
	Acid/Base	Acid/Base Accounting							U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	ncy or Precision, ?	VR - Not Requested	
		9		!										
FIELD	TOTAL	SULFUR ACID BASE	NEUTRAL. POTENT.		SULFATE SULFUR	PYRITIC SULFUR	ORGANIC	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
14 14 11 11	% 1,000t v. 0,1000t v. v.1000t	######################################	V1000t . ====================================	V1000t	;; ;; ;; ;; ;; ;;	**************************************	- 1	t/1000t	1					
29-394-WR-1	0.2	6.25	2.89	-3. 4	0.14	<0.01	0.07	0	2.89					

	Metals in V	Vater			-	WATER MATR	WATER MATRIX ANALYSES							
FIELD	Results in ug/L	ng/L											HAR	HARDNESS
8	As Ba Cd Co C	Ba	25	රී	ರ	Ö	F.	H	Mn	Ä	£	£	CALC.	CALC.
29-394-SW-1	32.9 J	3.73	4.59 U	5 U	6.24 U	13.1	10 13.1 20.3 JX 0.12 U 3.76 UJ 10.9 U 2.78.1 31.7 U 59.9 35.9	0.12 U	3.76 UJ 10.9 U 2.78 J 31.7 U 59.9	3.76 UJ 10.9 U	2.78 .1	2.78 .1 31.7 U 59.9	59.9	35.9
	Wet Chemistry									V (The A series of the A	LCY OF PTECISION, NR	Not Requested	
	Results in mg/l									LEGEND				
FIELD	TOTAL DISSOLVED					WRI - BACK	WRI - Composite of subsamples WRIA, 1B, 1C, and 2. BACKGROUND - From the Missouri Mine (29-373-SS-1)	nples WR1A, 1B, Missouri Mine (2			SW1 - Adit dis.	SW1 - Adit discharge at waste rock dump 2.	ock dump 2.	
ID	I.D. SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANII	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N CYANIDE	NO3/NO2-N	CYANIDE									
29-394-SW-1	61	۷	8	0.11	NA NA									

Mine/Site Name: SE NW S24	County: Meagher
Legal Description: T 9N R 4E	Section(s): SE 1/4, NW 1/4, Sec. 24
Mining District: Beaver Creek	Mine Type: !!ardrock/Unknown
Latitude: N 46° 32' 10"	Primary Drainage: Big Birch Creek
Longitude: W 111° 10′ 10″	USGS Code: 10030103
Land Status: Private	Secondary Drainage: Gipsy Creek
Quad: Gipsy Lake	Date Investigated: July 28, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # <u>30-017</u>
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 395 cubic yards.

The following elements were elevated at least three times background:

Arsenic: 184J mg/kg Cadmium: 7.9JX mg/kg Mercury: 2.25J mg/kg

9JX mg/kg Co 5J mg/kg Le

Zinc: 328J mg/kg

Antimony: 108 mg/kg Copper: 1240J mg/kg

Lead: 3910J mg/kg

- The waste rock dumps were unvegetated.
- No adit discharges, seeps or springs were observed.
- There was approximately one half mile of vegetated ground between the site and the nearest surface water.
- There were six open shafts present on the site that were classified as potentially hazardous. Several of the shafts have been used for household garbage disposal.

SE NW Section 24 PA# 30-017
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 07/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>si</u>		·	SOLID MAT	SOLID MATRIX ANALYSES							
FIELD As Ba Cd Co C ID (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
30-017-WR-1	184 J	226 J	XL 6.7	1.4 U	3.7 J	1240 J	9530	2.25 J	245 J	3 J	3910 J			"
BACKGROUND	24 J	116 J	0.8 UX	5.2 J	12.2 J	20.2 J	13400	0.032 J	361 J	7 J	19 J	10 U	7 OE	
	,								U - Not Detected, J	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	icy or Precision, Ni	R - Not Requested	
	Acid/base Accounting	Accounting										LEGEND		
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WR1 - Comp BACKGROUI	WR1 - Composite of subsamples WR2 and 3. BACKGROUND - From the Lane Mine (30-019-SS-1).	es WR2 and 3.	(9-SS-1).	
30-017-WR-1 0.04 1.25 2.49 1.24 0.02 <0.01	0.04	1.25	2.49	1.24	0.02	<0.01	0.02	0.00	ii					

Mine/Site Name: Lane County: Meagher Legal Description: T_9N_R_4E Section(s): NW 1/4, SW 1/4, Sec. 13 Mine Type: <u>Hardrock/Cu</u>, Au Mining District: Beaver Creek Primary Drainage: Big Birch Creek Latitude: N 46° 32' 21" Longitude: W 111° 10' 40" USGS Code: 10030103 Land Status: Private Secondary Drainage: Thompson Gulch Date Investigated: July 28, 1993 Quad: Gipsy Lake Inspectors: Bullock, Clark/Pierson P.A. # 30-019 Organization: Pioneer Technical Services, Inc./Thomas. Dean and Hoskins. Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 793 cubic yards.

The following elements were elevated at least three times background:

Cadmium: 2.4JX mg/kg Mercury: 0.729J mg/kg

Zinc: 419 mg/kg

Copper: 164J mg/kg Lead: 1110J mg/kg

- The waste rock dumps were mostly unvegetated.
- No adit discharges, seeps or springs were observed.
- There was approximately 150 feet of vegetated ground between the site and the nearest surface water.
- There was an open adit associated with WR-1 in the dry drainage, a hazardous pit associated with WR-2, and 2 open shafts associated with WR-3 and WR-4.

Lane PA# 30-019 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES	60	·					
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Cu Fe (mg/Kg) (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
30-019-WR-1	24 J	200 J	2.4 JX		4.6 J	164 J	11500	0.729 J		======================================	 1110 J	21	419 J NR	NR NR
BACKGROUND	2 4 J	116 J	0.8 UX	5.2 J	12.2 J	20.2 J	13400	0.032 J	361 Ј	7 .	19 J	10 U	7 6E	ž.
									U - Not Detected, J -]	Estimated Quantity, 3	\mathbf{U} . Not Detected, \mathbf{J} . Estimated Quantity, \mathbf{X} . Outlier for Accuracy or Precision; NR - Not Requested	cy or Precision, Ni	R - Not Requested	
	Acid/Base Accounting	Accounting										LEGEND		
TOTAL SULFUR NEUTRAL ACID BASH SULFUR ACID BASH SULLON TOTAL SULFUR ACID BASH POTENT. POTENT. SULLON 11000t 110000t 110000t 110000t 110000t 110000t 110000t 110000t 110000t 11000	TOTAL SULFUR	TOTAL SULFUR ACID BASB v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t	WR1 - Compo	WRI - Composite of subsamples WR3 and 4. BACKGROUND - From the Lane (30-019-SS-1).	st WR3 and 4.	â	
30-019-WR-1	0.01	0.31	4.63	4.32	. 10	0.01	<0.01	0.31 4.32	4.32					
														_

Mine/Site Name:_Bigler	County: Meagher
Legal Description: T 9N R 4E	Section(s): NE 1/4, SW 1/4, Sec. 28
Mining District: Beaver Creek	Mine Type: Hardrock/Au, Ag, Cu
Latitude: N 46° 15' 30"	Primary Drainage: Thompson Gulch
Longitude: W 111° 15' 30"	USGS Code: 10030103
Land Status: Public	Secondary Drainage: Thompson Gulch
Quad: Gipsy Lake	Date Investigated: July 28, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # <u>30-067</u>
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

The volume of tailings associated with this site was estimated to be approximately 25 cubic yards. This was a very small volume of tailings in a secure impoundment. The following elements were elevated at least three times background:

Cadmium: 2.4JX mg/kg

Copper: 1020J mg/kg Nickel: 25 ma/ka

Iron: 66,400 mg/kg

- The volume of waste rock associated with this site was estimated to be approximately 7500 cubic yards. Copper (262J mg/kg) was the only element elevated at least three times background.
- There were two adit discharges associated with this site. Neither discharge exceed any of the applicable MCLs or MCLGs. The acute aquatic life criteria for cadmium was exceeded in both adits. The pH of both discharges was greater than 8.5 and the specific conductance of both discharges is 160 umhos/cm. Both discharges returned to subsurface prior to discharging into the drainage approximately 1/3 mile below the site.

Bigler PA# 30-067 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES	40						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Kø)	CYANIDE (me/K e)
!	5 8	!	2.4 JX 11.7 J 13 0.9 JX 10.5 J 9	11.7 J 10.5 J	13.7 J 9.8 J	1020 J 262 J	66400 24900	0.05 J 0.029 J	987 J 634 J	25 J 11 J	42 J 31 J	::	52 J 50 J	**
BACKGROUND	24 J	116 J	0.8 UX	5.2 J	12.2 J	20.2 J	13400	0.032 J	361 J U - Not Detected; J - I	7 J Estimated Quantity,	361 J 7 J 19 J 10 U 39 J U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Noa Requested	10 U acy or Precision; N	39 J	
	Acid/Base Accounting	\ccounting												
FELD D	TOTAL SULFUR %	TOTAL SULFUR ACTD BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
	0.37 0.07 0.07	11.6 2.19 2.19	42.3 10.5 11.8	30.7 8.36 9.62	0.37 0.07 0.07	0.05 0.00 0.00	0.00 0.00 0.00	00.0	42.3 10.5 11.8					

	Metals in Water	Vater			-	WATER MA	WATER MATRIX ANALYSES						
	Results in ug/L	J/Br											HARDINES
Ð	ļ	As Ba	ਲ	ಲೆ	ර්	õ	F	Ħ	Mn	ž	æ	£	CALC.
30-067-GW-1 30-067-GW-2		2.27 3.3	2.57 U 2.57 U	2.57 U 9.7 U 6.83 2.57 U 9.7 U 6.83	6.83 U 6.83 U	U 4.37 J U 3.77 J	## # #	34.4 J 0.074 20.7 J 0.048	4.08 U 12.7 U 1.55 U 30.7 U 4.08 U 12.7 U 1.55 U 30.7 U	12.7 U 12.7 U 12.7 U	1.55 U 1.55 U	30.7 U 30.7 U	14.
									U - Not Detected, J - i	U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision, NR - Not Requested	· Outlier for Accura	acy or Precision; NR	- Not Requested
	Wet Chemistry												
	Results in mg/									LEGEND			
FIELD	TOTAL					WR TP	TPI - Composite of subsamples TP1A and 1B. WR1 - Composite of subsamples WR1A, 1B, 2A, and 4A.	mples TP1A and 1	B. 1, 2A, and 4A.		GW1 - Adit #2 discharge. GW2 - Adit #3 discharge.	2 discharge. I discharge.	
ID.			SULFATE	NO3/NO2-N CYANIDE	CYANIDE	WR	WRIDUP - Duplicate of the 30-067-WR-1 sample.	e Lame Mime (30- s 30-067-WR-1 sa	019-SS-1). emple.				
30-067-GW-1 30-067-GW-2	104		< 5.0 9 0.28 NR < 5.0 < 5.0 0.63 NR	0.28 0.63	NA NA NA	· .							

Mine/Site Name: Porcupine Legal Description: T 9N R 4E	County: Meagher Section(s): NW 1/4, NE 1/4, Sec.28
Mining District: Beaver Creek	Mine Type: _rlardrock/Au
Latitude: N 40° 31' 05"	Primary Drainage: Smith River
Longitude: W 111° 13' 44"	USGS Code: 10030103
Land Status: Public	Secondary Drainage: Thompson Gulch
Quad: Gipsy Lake	Date Investigated: July 28, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # 30-069
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 12,550 cubic yards. The following elements were elevated at least three times background:

Copper: 238J mg/kg Manganese: 1,150 mg/kg

Mercury: 0.218J mg/kg

- No flowing adits, seeps, or springs were observed at the site during the investigation; however, water ponded in an open stope was identified and sampled for field parameters. The sample was not submitted for laboratory analyses due to normal field parameters and lack of receptors in the area. The nearest intermittent stream was over 1/2 mile from the site.
- Two potentially hazardous mine openings were identified at the site including an open stope and a covered adit. Two potentially hazardous structures identified at the site include a 12 feet tall highwall and a collapsing compressor shed.

Porcupine PA# 30-069 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co C (mg/Kg) (mg/	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
30-069-WR-1 30-069-WR-2	4 4 D D	134 J 178 J	0.4 UX 0.6 JX		3 J 1.6 J	238 J 6.9 J	22200 11500	0.218 J 0.015 J	454 J 1150 J	2 U 3 J	15 J 26 J	5 U 5 U 5 U	28.1 2.8.1	N N N
BACKGROUND	24 J	116 J	0.8 UX	5.2 J	12.2 J	20.2 J	13400	0.032	361 J	7 J	19 J	10 U	38	ž
	Acid/Base Accounting	Coninting							$U\cdot Not$ Detected, $I\cdot Estimated$ Quantity, $X\cdot Outlier$ for Accuracy or Precision, NR \cdot Not Requested	Estimated Quantity,	A Outlier for Accur	acy or Precision; NI	R - Not Requested	
		B III										LEGEND		
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT.	SULFUR ACID BASE POTENT. v1000t	SUL.	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT.	WKI - Compo WR2 - Compo BACKGROUP	WKI - Composite of subsamples WR1A and 1B. WR2 - Composite of subsamples WR2A and 3A. BACKGROUND - From the Lane Mine (30-019-38-1).	es WR1A and 1 es WR2A and 3 ne Mine (30-01	B. IA. 9-3S-1).	
30-069-WR-1 30-069-WR-2	0.02 <0.01	0.62 4.11 3.48 0.00 5.27 5.27	4.11 5.27	3.48 5.27	0.02 <0.01	< 0.01	0.00 0.00	0.00	4.11 5.27					

Mine/Site Name: Cumberland County: Meagher Legal Description: T 8N R 8E Section(s): NE 1/4, SE 1/4, Sec. 14 Mining District: Castle Mountain Mine Type: _ : lardrock/Pb, Ag Latitude: N 46° 27' 08" Primary Drainage: Alabaugh Creek Longitude: W 110° 40' 57" USGS Code: 10040201 Land Status: Private Secondary Drainage: Castle Creek Quad: Castle Town Date Investigated: July 29, 1993 Inspectors: Babits, Flammang, Lasher P.A.# 30-004 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- There was a small amount of slag at the site. The following were elevated at least 3 times background:

Arsenic: 861J mg/kg Cadmium: 7.8JX mg/kg Iron: 143,000 mg/kg

Manganese: 4,740J mg/kg Lead: 25,900J mg/kg Antimony: 36 mg/kg

Zinc: 13,000J mg/kg

• There were approximately 20,680 cubic yards of mostly uncovered waste rock on site.

The following were elevated at least 3 times background:

Arsenic: 542J to 574J mg/kg Cadmium: 7.2JX to 9.6JX mg/kg Mercury: 0.191J to 0.196J mg/kg Lead: 15,200J to 52,500J mg/kg

Antimony: 22 to 40 mg/kg Zinc: 990J to 2,000J mg/kg

- There were no discharging adits at the site.
- Castle Creek flows 60 feet from the slag. Observed releases of manganese and lead to downstream surface water were documented. No MCL/MCLGs were exceeded, but the chronic fresh water aquatic life criteria for mercury and lead were exceeded in downstream surface water.
- There were two open shafts at the site (one had been fenced but the fence was down).

Cumberland PA# 30-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/29/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb	Zn	CYANIDE
30-004-SE-1	37 J	136 J	XL 6.1		11.9 J	15.5.1	13300		***************************************		(P- P)	!!	(mg vg)	(mg/kg)
30-004-SE-2 30-004-SI -1	. 10 %	191 J. 2	× ×	7.2 J	21.5 J	28.7 J	19200	0.106 J	924 J 975 J	11 J	130 1	~ t	108 J	ž ž
30-004-WR-1	542 5	48.4 J	X7 9.6	3.6 4.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	11.6 J 13.1 J	288 133 -	143000 22800	0.009 U	4740 J	(E)	25900 J	် တို့	13000	ž ž
30-004-WR-2	574 J	58.4 J	7.2 JX	2.1 U	9.6 1	160 J	34600	0.196 J	1480 J	12J	52500 J 15200 J	8 8	7 000 7 000 7 000 7 000	Z Z
BACKGROUND	S	154 J	2.2	21.9 J	21.4	396 J	46600	0.062 J	878	21 J	52 J	∩ 9	135 J	<u> </u>
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quantity, 3	K - Outlier for Accum	acy or Precision; NR	t - Not Requested	
	Acid/Base Accounting	Accounting												
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT.	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
#=====================================			ij	## ## ## ## ## ##	## ## ## ## ## ## ##		**************************************		71000					
30-004-WR-1 30-004-WR-2	0.21 2.02	50.6 6.56 63.1	150 578 419	99.0 572 356	6.01 6.01 6.01	<0.01 0.17 1.55	3.33 0.39 1.53	0.00 5.31 48.4	150 573 370					
														•

	Metals in Water Results in ud/L	/ater a/L			- '	WATER MATRIX ANALYSES	IX ANALYSES							
FIELD D	FIELD ID As		℧.	පී	ರ		R	H.	Mn	Ź	£	5	1 ,	HARDINESS CALC.
30-004-SW-1 30-004-SW-2	3.69 3.77		19 2.57 U 9.7 U 6.83 24.8 2.57 U 9.7 U 6.83	9.7 U 9.7 U	6.83 U 6.83 U		1.55 U 60.1 J 0.097 1.55 U 178 J 0.11	0.097	4.08 U 16.1	4.08 U 12.7 U 1.14 J 30.7 U 7.57 U 40.2 16.1 12.7 U 6.5 J 30.7 U 7.57 U 53.1	1.14 J 6.5 J	30.7 U 30.7 U	D 75.7	77 U 53.1
	Wet Chemistry								· Change and	o , in defended, o . established (Albrity, X - Ordise for Accuracy of Precision, NR - Not Requested	· Outlier for Accura	icy or Precision; NR	t - Not Requested	
	Nesdins in right									LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		SEI - Upgradient (approx. 100' from site) in Castle Creek. SE2 - 50 feet downgradient of slag pile in Castle Creek. SL1 - Small waste rock pile near middle. WR1 - Composite of subsamples WR2A, 2B, 2C, 2D, 2B, and 2F.	100' from site) in (t of slag pile in Ca near middle. mples WR2A, 2B,	Castle Creek. stle Creek. 2C, 2D, 2E, and 2F	tr.	SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SEI.		
30-004-SW-1 30-004-SW-2	30-004-SW-1 79 < 5.0 5 < 0.05 NR 30-004-SW-2 92 < 5.0 < 5 0.08 NR	5.05.0	v v	o 0.05	N N N	e e	WR2 - Composite of subsamples WWR1A, 1B, 3, and 4. BACKGROUND - From the Belle of the Castles (30-007-SS-1).	mples WWR1A, 1 Belle of the Cast	IB, 3, and 4. iles (30-007-SS-1).					

Mine/Site Name: <u>Belle of the Castle</u> Legal Description: T <u>8N</u> R <u>8E</u>	County: Meagher
Mining District: Castle Mountain	Section(s): NE 1/4, SW 1/4, SW 1/4, Sec. 2 Mine Type: Hardrock/Pb, Cu, Fe, Ag
Latitude: N 46° 28' 55"	Primary Drainage: Alabaugh Creek
Longitude: W 110° 41' 32"	USGS Code: 10040201
Land Status: Private/Public	Secondary Drainage: Hensley Creek
Quad: Castle Town	Date Investigated: July 29, 1993
Inspectors: July 29, 1993	P.A. # <u>30</u> -007
Organization: Pioneer Technical Services, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be 5,500 cubic yards. The following elements were elevated at least three times background: Copper: 1,810J to 2,210J mg/kg

 Lead: 402 mg/kg
- One discharging adit was observed at the site during the investigation. The MCL and the acute and chronic aquatic life criteria for copper were exceeded in the adit discharge. The chronic aquatic life criteria for iron, mercury, and lead were also exceeded in the adit discharge.
- Hensley Creek was flowing through the site. An observed release to Hensley Creek was documented for copper in water and sediment samples. Acute and chronic aquatic life criteria were exceeded for copper in the downstream sample; these exceedances were attributable to the site.
- One potentially hazardous adit opening was observed at the site.

Belle of the Castles PA#30-007 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/29/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ë S			SOLID MAT	SOLID MATRIX ANALYSES				-			
FIELD	As (mg/Kg)	Ba (mg/K.g)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mø/Ke)	Mn (me/Ke)	i.N.	Pb	88	2	CYANIDE
30-007-SE-1	- 00		***************************************	H						THE RESIDENCE OF THE PARTY OF T		(mg/Kg)	(mg/Kg)	(mg/Kg)
30-007-SE-2	60 P	192 J	3.6 JX	20.4	12 7	55.9 J	24800	0.026 UJ	533 J	20 J	107 J	15 U	344 J	Z Z
30-007-SE-3	17 J	173 J	× ×		40.5	200	90200	0.08	1220 J	20 J	105 J	48 U	265 J	Z
30-007-WR-1	61 J	238 J	2.6 JX		2 4	240 J	46000	0.029 J	7 686 6	15 J	124 J	11 U	231 J	ž
30-007-WR-2	25 J	127 J	2.4 JX		20.7 J	2010	48400	0.024	2100 J	16 5	402 J	7 0	145 J	K.
								2	S/2 J	18.	32	2	46 J	Z,
BACKGROUND	ន	154 J	2.2	21.9 J	21.4	396	46600	0.062 J	878	21 5	52 J	9	135 J	Z
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precinion; NR - Not Requested	timated Quantity, X	· Outlier for Accuracy	y or Precimon; NR	- Not Requested	:
	Acid/Base Accounting	Accounting												
	TOTAL	TOTAL	NET TO A CENTER OF THE CENTER	SULFUR	£			PYRITIC	SULFUR					
FIELD	SULFUR	ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	ORGANIC	SULFUR ACID BASE	ACID BASE POTENT.					
		1			######################################	* * * * * * * * * * * * * * * * * * *	8	V1000t	V1000t					
30-007-WR-1 30-007-WR-2	0.01 0.10	0.31 3.12	8.39 6.88	8.08 3.76		60.04 60.04	0.01	00.0	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					
								}	3					

	Motor of clothal	- 4-				WATER MA	WATER MATRIX ANALYSES							
5	Results in ug/L	g/L												Portion of ALI
	As	Ba	25	రి		రె		Нg	M	Z	P	£	2, 62	CALC.
30-007-SW-1 30-007-SW-2 30-007-SW-3 30-007-SW-4	ರ: ⊱ ಔ ರು	33.5 33.4 22.2	2.57 U 2.57 U 2.57 U 2.57 U 2.57 U	0 7.0 0 7.0 0 7.0 13 0.7	6.83 U 6.83 U 6.83 U 6.83 U	1.55 U 42.2 3.6 3320	46.2 J 171 J 55.4 J 18900 J	0.12 0.072 0.063 0.11	5.6 10.5 5.6 384 U-Net Detector J. 1.	12.7 U 12.7 U 12.7 U 12.7 U 14.4	0.7 0.7 0.7 0.7 9.2	30.7 U 30.7 U 30.7 U 30.7 U	18.9 20.6 18.8 51.9	11 11.8 14.2 65.4
FIELD 1.D 30-007-SW-1 30-007-SW-2 30-007-SW-3	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS 49 48 51	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N CYANIDE < 5.0 6 < 0.05 NR < 5.0 7 < 0.05 NR < 5.0 6 < 0.05 NR < 5.0 50 < 0.05 NR	NO3/NO2-N	CYANIDE NR NR NR NR	9E1 9E2 9E3 9E3 WR.	SE1 - Upgradient of discharging adit in Hensley Creek. SE2 - Immediatly downgradient of adit discharge in Hensley Creek. SE3 - Downgradient below confinuce with unnamed tributlary of Hensley Creek. WR1 - Composite of subsamples WR1A and 1B. WR2 - Composite of subsamples WR2A, 2B, 3A, 3B, and 3C. BACKGROUND - Approx. 100' NW of upper, 50' above road. From Belle of the Castles (30-007-3S-1).	riging adit in Hensl dient of adit dischu conflunce with un mples WR1A and mples WR2A, 2B, 100' NW of upper astles (30-007-SS	ey Creek. urge in Hensley Cre- unamed tributary 1B. 3A, 3B, and 3C. 50' above road.	LEGEND	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Same as sample SE3. SW4 - Adit discharge of was	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Same as sample SE3. SW4 - Adit discharge of waste rock dump 1.	rock dump 1.	

Mine/Site Name: SW NE S10 Legal Description: T 11N R 7E	County: Meagher Section(s): SW 1/4, NE 1/4, Sec. 10
Mining District: Smith River	Mine Type: \tansack/Unknown
Latitude: N 46° 48' 01"	Primary Drainage: Newland Creek
Longitude: W 110° 49' 42"	USGS Code: 10030103
Land Status: Private/Public	Secondary Drainage: Newland Creek
Quad: Charcoal Gulch	Date Investigated: July 28, 1993
Inspectors: Bullock, Clark/Pierson	P.A. # _30-078
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 10,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 57J mg/kg

Cadmium: 4.8JX to 6.6JX mg/kg

Copper: 70.5J to 104J mg/kg

Mercury: 4.35J ma/ka

Lead: 757J to 3,640J mg/kg

Antimony: 116 mg/kg Zinc: 512J mg/kg

- No discharging adits, seeps, or springs were observed at the site during the investigation. One shaft containing water was identified on site and was sampled for field parameters; two very small precipitation ponds located on the waste rock dumps were also sampled for field parameters. A residential well located downgradient from the site was sampled for laboratory analyses. No MCLs were exceeded in the well sample.
- A potentially hazardous flooded shaft (reportedly up to 100 feet deep) was identified at the site. Potential hazards observed on-site included a 40 feet tall highwall and two collapsing wooden cabins.

SW NE Section 10 PA# 30-078 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES	40				·		
FIELD ID	As (mg/Kg)	Be (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mo/Ko)	CYANIDE
30-078-WR-1 30-078-WR-2	23 J 57 J	40.1 J 177 J	1	2.1 U 6.4 J	1.5 U 11.1 J	104 J 70.5 J	3640 29600	4.35 J 4.35 J	0.9 U 195 J	3 U 23 J	3640 J 757 J	116	324 J 512 J	ii
BACKGROUND	18 J	121 J	1.4 JX	8.1 L	9.2 J	19.3 J	24100	0.038	579 J	19 J	68	7 0	125 J	
	Acid/Base Accounting	Accounting					· ·		U - Not Detected, J.	Estimated Quantity,	U - Not Delected, J - Estimated Quantity, X - Outlier for Accumacy or Precision; NR - Not Requested	acy or Precision,)	NR - Not Requested	
FELD D	TOTAL SULFUR %	TOTAL SULFUR SULFUR SULFUR NEUTRAL. ACID BASE SUL. ACID BASE POTENT. POTENT. SUL. V1000c V1000c V1000c W	NEUTRAL. POTENT V1000t	SULFUR ACID BASE POTENT. V1000t		PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000	SULFUR ACID BASE POTENT. v1000t					•
30-078-WR-1 30-078-WR-2	0.86	26.9 14.1	3.34 0.95	-30.2 -15.0	0.43	0.03 <0.01	0.40	0.94						

	Metals in Water Results in ug/L	Vater ug/L				WATER MATI	WATER MATRIX ANALYSES						•	
FTELD TD	As	B.	రౌ				я •	H	Mn	Z	æ	æ	H/ Zn (ma	HARDNESS CALC.
30-078-GW-1 30-078-GW-2	1.69 U 3.21		•	9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U	H i	5.77 J 45.9 J 0.096 3.73 34.7 J 0.13		4.08 U 12.7 U 1.55 U 30.7 U 15.9 JX 334 4.08 U 12.7 U 1.01 J 30.7 U 7.9 370 U Na Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	4.08 U 12.7 U 1.55 U 30.7 U 15.9 J) 4.08 U 12.7 U 1.01 J 30.7 U 7.9 U. Net Defected, J. Editmiled Quantity, X. Outlier for Accuracy or Precision; NR. Net Requested	1.55 U 1.01 J	1.55 U 30.7 U 1.01 J 30.7 U tiler for Accuracy or Precision; NR.	15.9 JX 7.9	334 370
FIELD LD. 30-078-GW-1 30-078-GW-2	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS 387 374	t Chemistry ults in mg/l TOTAL DISSOLVED SOLIDS CHLORIDB 387 < 5.0 374 < 5.0	3 SULFATE 87		NO3/NO2-N CYANIDE		WR1 - Sample of the subsample WR1. WR2 - Composite of subsamples WR2A, 2B, and 2C. BACKGROUND - From the SW NE Sec. 10 (30-078-SS-1).	mple WR1. mples WR2A, 2B SW NB Sec. 10	, and 2C. (30-078-SS-1).	LEGEND	GW1 - Resider	GW1 - Residential well in drainage below mine. GW2 - QA/QC duplicate of 30-078-GW-1.	age below mine 378-GW-1.	

Mine/Site Name: Cajun Queen No. 1 County: Mineral Legal Description: T 15N R 27W Section(s): NE 1/4, SE 1/4, Sec. 7 Mining District: Cedar Creek Mine Type: Hardrock/Au, Ag Latitude: N 47° 04' 25" Primary Drainage: Cedar Creek Longitude: W 115° 03' 15" USGS Code: 17010204 Land Status: Public Secondary Drainage: Mary Ann Gulch Quad: Illinois Peak Date Investigated: August 3, 1993 Inspectors: Bullock, Flammang, Belanger, P.A. # <u>31-049</u> Lasher, Clark Organization: Pioneer Technical Services, Inc.

- This site was reported to be active periodically by the claim owner.
- A small impoundment containing approximately eighty cubic yards of mill tailings was associated with this site. The tailings were generated by a mobile ball mill that was present on the site. The following elements were elevated at least three times background:

Barium: 51.8 mg/kg

Copper: 17.1J mg/kg

Zinc: 57.6 mg/kg

Chromium: 3.75 mg/kg

Lead: 110J mg/kg

• The volume of waste rock associated with this site was estimated to be 1150 cubic yards. The following elements were elevated at least three times background:

Barium: 54 mg/kg

Cadmium: 1.7 mg/kg

Copper: 16.9J mg/kg Lead: 88J mg/kg

Mercury: 0.071J mg/kg

Zinc: 102 mg/kg

- No discharging adits, seeps or springs were found at the site.
- Approximately ten feet separated an old mostly vegetated waste rock pile (WR-4) and an
 unnamed tributary to Mary Ann Gulch. No laboratory samples were collected due to
 normal field parameter measurements, and lack of defined runoff pathways to the
 stream.
- There was an open adit below the Cajun Queen Mine in the Mary Ann Gulch drainage. One old cabin present on the site was classified as potentially hazardous. Highwalls were associated with WR-1 and WR-3.

Cajun Queen No. 1 PA# 31-049
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 08/03/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>	•		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
31-049-TP-1 31-049-WR-1	4.58 U 5.1 U	51.8 54	0.7 1.7			17.1 J 16.9 J	4980 8050	0.01 UJ 0.072 J	212 435	3.74 3.89	110 J 88 J	5.96 U 6.64 U	57.6 102	NR NR
BACKGROUND	7.89	89.	0.5 U	3.31	1.2 U	2.44 J	3120	0.01 UJ	609	2.22 U	7.59 J	7.59 J 5.39 U	11.9	
	Acid/Base Accounting	counting							U - Not Detected, J .	Estimated Quantity,	U - Nat Delecter, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Nat Requested	acy or Precision; N	R - Not Requested	
FIELD D	TOTAL SULFUR	TOTAL SULFUR ACID BASIE v1000t	Į.	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRUTIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.	TP1 - Compo WR1 - Comp BACKGROUT	LEGEND TP1 - Composite of subsamples TP1A and 1B WR1 - Composite of subsamples WR1, 2, 3, and 4, BACKGROUND - From the Nancy Lee Mine (31-001-SS-1).	LEGEND s TP1A and 1B cs WR1, 2, 3, a mcy Lee Mine	nd 4.	
31-049-TP-1 31-049-WR-1	!	0.31	6.64 16.3	6.33 16.0	0.01 <0.01	<0.01 <0.01	0.01	0.00	6.64					

Mine/Site Name: Iron Mountain Millsite County: Mineral Legal Description: T 17N R 26W Section(s): NE 1/4, NW 1/4, Sec. 13 Mining District: Iron Mountain Mine Type: Millsite/Cu, Pb, Au, Ag, Zn Latitude: N 47° 14' 25" Primary Drainage: Clark Fork River Longitude: W 114° 51' 10" USGS Code: 17010204 Land Status: Private/Public Secondary Drainage: Flat Creek Quad: Idaho Gulch Date Investigated: July 22, 1993 inspectors: Tuesday, Belanger, Clark P.A. # _31-010 Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with the site was estimated to be approximately 368 cubic yards for the upper two tailings piles. Tailings were observed in the Flat Creek floodplain for approximately three miles downstream. The following elements were elevated at least three times background:

Arsenic: 1470 to 2120 mg/kg

Copper: 68 to 319 mg/kg

Mercury: 6.66 to 32.6 mg/kg Lead: 12,700 to 13,500 mg/kg

Zinc: 8990 to 44,600 mg/kg

Cadmium: 43.3 to 210 mg/kg

Iron: 54,000 mg/kg

Manganese: 2010J to 2080J mg/kg

Antimony: 2390 to 3970 mg/kg

• The volume of waste rock associated with the site was estimated to be approximately 6,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 82 mg/kg

Manganese: 2780J mg/kg

Antimony: 28 mg/kg

Mercury: 0.498 mg/kg

Lead: 152 mg/kg Zinc: 787 mg/kg

- There was one adit discharge observed at the site during the investigation. The MCL for arsenic was exceeded in the adit discharge, and the chronic aquatic life criteria for iron and zinc were exceeded. The acute aquatic life criteria for zinc was also exceeded in the adit discharge sample. No MCLs were exceeded in Flat Creek; however, the acute and chronic aquatic life criteria for zinc were exceeded in the downstream sample, which was directly attributed to the site.
- Flat Creek flowed southwest through the tailings to its confluence with the Clark Fork River approximately 3.5 miles downstream. An observed release to Flat Creek was documented for zinc. Additionally, significant increases in the concentrations of most metals were observed in the downstream Flat Creek sediments (when compared with the upstream sediment concentrations) which was directly attributed to the site. Observed releases to Hall Gulch (sediment) were documented for arsenic, cadmium, mercury, manganese, lead, antimony, and zinc.

Iron Mountain Mill PA#31-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 0772293

Esta vara							No.							
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ				SOLID MAI KIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Ke)
31-010-SE-1	428	46.4	27.5	5.5	1.6 U	51.3	32100	7.46	1800 J	7	07.67	353	200	
31-010-SE-2 31-010-SE-3	231	28.7 191	0.5 3.3 U	3.9 74.1	ر ائن ت	89. ñ	12400	0.014 U	312 J	ω.	84	∩ 2 1	116	ž ž
31-010-SE-4	18	49.1	0.5 U	6		12.6	20300	0.652	3950 J	93	730	46	4110	Z.
31-010-TP-1	1470	5	210	2.8	5.4	319	36800	32,6	L 187	w r	92	0 9	122	œ œ
31-010-TP-2	2120	3.2	43.3	1.5 U	1	89	54000	92.0 8.86	2000	n (13500	39/0	44600	œ Z
31-010-WR-1	83	3.7	0.5 U	8 .1	1.4 U	19.4	30600	0.498	2780 J	, t	152	2380 28 28	8990 787	œ 0
BACKGROUND	13	257	0.5 U	8.5	2.7	15.5	17200	0.012 U	448 J	5	17	∩ 9	3	Ž
•									U - Not Detector, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	stimated Quantity, X	- Outlier for Accuracy	y or Precision; NR - 1	Not Requested	
(122	Acid/Base Accounting	Accounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE t/1000t	SULFUR ACID BASE POTENT. V1000t					
31-010-TP-1 31-010-TP-2 31-010-WR-1	2.53 1.52 0.11	79 47.5 3.44	4.2 6.67 139	-75 -41 136	0.52 0.7 <0.01	0.48 0.2 0.03	1.53 0.62 0.09	15 6.25 0.94	-10.8 0.42 138					

						WATER MATRIX ANALYSES	IX ANA! VEEC							
	Metals in Water Results in ug/L	Water ug/L			-		IN AIRALTSES							
FIELD D	A	B	2	ව ව තු #	ර්	Ö	F.	8 H		ž	£	B	H, Zn (mg	HARDNESS CALC. Zn (mg CaCO3/L)
31-010-GW-1 31-010-SW-1 31-010-SW-2	302 5.53 3.63	38.4 JX 40.7 JX 40.2 JX	X 2.57 U X 2.57 U X 2.57 U	U 260 U	6.83 U 6.83 U 6.83 U	2.7 J 2.63 J 1.57 J	1620 J 26.7 J 41.3 J	0.038 U 0.038 U 0.038 U	4850 30.2 1.9 J 30.7 U 385C 4.08 U 12.7 U 2.97 J 30.7 U 2.68 4.08 U 12.7 U 1.2 J 30.7 U 7.57 U-Not Detector J Endinated Quantity, X. Outlier for Accuracy or Precision VIX: Not Resembled	30.2 12.7 U 12.7 U	1.9 J 30.7 U 2.97 J 30.7 U 1.2 J 30.7 U 1.2 J 30.7 U	30.7 U 30.7 U 30.7 U	3850 J 486 J 266 J 150 J 7.57 U 138	486 150 138
·.	Wet Chemistry	· ·												
	A LOE					SE1 - 1	SE1 - Flat Creek below millsite.	llsite.		LEGEND	GW1 - Adit dis	GW1 - Adit discharge into Hall Gulch	1 Gulch	
FTELD LD	DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	SE3 - 1 SE4 - 1	SE2 - Flat Creek above milisite. SE3 - Hall Gulch below waste rock dump 1. SE4 - Hall Gulch above waste rock dump 1.	llsite. sste rock dump 1. sste rock dump 1.			SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1.		
31-010-GW-1 31-010-SW-1 31-010-SW-2	612 195 203	× × × 50 50 50 50 50 50 50 50 50 50 50 50 50	183 8 < 5.0	612 < 5.0 183 < 0.05 NF 195 < 5.0 8 < 0.05 NF 203 < 5.0 < 5.0 0.1 NF	N N N N N N	TP1 - (TP2 - (WR1 -	TPI - Composite of subsamples TPIAI, 1A2, and 1BI. TP2 - Composite of subsamples TP2A through 2B. WRI - Composite of subsamples WRIA through 1C. BACKGROUND - From the Dillon Millsite (31-073-S8-1).	nples TP1A1, 1A2, nples TP2A throug mples WR1A thro Dillon Millsite (3	, and 1B1. h 2E. ugh 1C. 1-073-SS-1).					-

Mine/Site Name: Gold King Legal Description: T 16N R 24W Mining District: Iron Mountain	County:_Mineral Section(s):_SE 1/4, SW 1/4, Sec. 20 Mine Type:_i-lardrock/Unknown
Latitude: N 47° 07' 30"	Primary Drainage: South Fork Deep Creek
Longitude: W 114° 39' 45" Land Status: Private/Public	USGS Code: 17010204
Quad:_Tarkio	Secondary Drainage: Malley Gulch Date Investigated: August 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # _31-067
Organization: Pioneer Technical Services, Inc.	

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 400 cubic yards. The following elements were elevated at least three times background:
 Barium: 2,440 mg/kg
 Mercury: 0.715 mg/kg
- No discharging adits, filled shafts, seeps, or streams were observed at the site during
 the investigation and no other surface water was observed on or adjacent to the site;
 consequently, no groundwater or surface water samples were collected. Intermittent
 Malley Gulch was identified approximately 800 feet downgradient from the site; however,
 no direct runoff migration path to Malley Gulch was observed.
- One potentially hazardous open adit was identified at the site.

Golg King PA# 31-067 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	isi			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	As Ba (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		i	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (mo/Ke)
31-067-WR-1	4.79 U	2440	0.52 U	2.74 1.3	1.39 U	26.1	19200	0.715	515	ii	8.21 U 6.23 U			NR.
BACKGROUND	13	257	0.5 U	8.5	2.7	15.5	17200	0.012 U	448 J	10	17	N 9	2	Z Z
	A city of								U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	LCy or Precision, N	R - Not Requested	
	Acid/base Accounting	Accounting										LEGEND		
FTELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT. V1000t	WRI - Comp BACKGROU	WRI - Composite of subsamples WRIA and I B. BACKGROUND - From the Dillon Millsite (31-073-SS-1).	ss WR1A and 1 dlon Millsite (3	B. 11-073-SS-1).	
ı	0.47 14.7	14.7	7.24	7.24 -7.45 0.0	0.05	50.05	0.37	1.56	5.67					

Mine/Site Name: Belle of the Hills County: Mineral Legal Description: T 17N R 26W Section(s): SW 1/4, SW 1/4, Sec. 1 Mining District: Iron Mountain Mine Type: Hardrock/Pb, Zn, Ag Latitude: N 47° 15' 20" Primary Drainage: Flat Creek Longitude: W 114° 51' 20" USGS Code: 17010204 Land Status: Private/Public Secondary Drainage: Hall Gulch Quad: Quinns Hot Springs Date Investigated: July 22, 1993 Inspectors: Tuesday, Belanger, Clark P.A. # 31-072 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 7,770 cubic yards. The following elements were elevated at least three times background:

Arsenic: 244 to 1230 mg/kg

Copper: 62 to 243 mg/kg

Mercury: 7.8 to 47.7 mg/kg

Lead: 10,700 to 40,300 mg/kg

Zinc: 1230 to 14,100 mg/kg

Cadmium: 102 to 130 mg/kg

Iron: 66,000 mg/kg

Manganese: 2330J to 5580J mg/kg

Antimony: 785 to 3540 mg/kg

- There were no adit discharges, filled shafts, seeps, or springs observed at the site during the investigation; consequently, no groundwater or surface water samples were collected. Intermittent Hall Gulch, located approximately 400 feet below the site, appeared to be the nearest surface water drainage to the site.
- Four potentially hazardous mine openings, including three adits and one shaft, were observed at the site during the investigation.

Belle of the Hills PA# 31-072 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/22/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>s</u> is			SOLID MA	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co Co (mg/Kg) (mg/	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Ke)
31-072-WR-1 31-072-WR-2	1230 244	16.3 6.7	102 130	2.8	1.2 U 1 U	243 62	33400 66000	47.7	2330 J 5580 J	33 33 34	40300	3540 785	1230	NR NR
BACKGROUND	13	. 257	0.5 U	8.5	2.7	15.5	17200	0.012 U	448 J	5	17	∩ 9	2	ž ž
	Acid/Base	Acid/Base Accounting			·				\mathbf{U} . Not Detected, \mathbf{J} - Estimated Quantity, \mathbf{X} - Outlier for Accuracy or Precision. NR - Not Requested	Estimated Quantity,	X - Outlier for Accu	aracy or Precision, N	VR · Not Requested	
FIELD D 31-072-WR-2 31-072-WR-1	TOTAL SULFUR % 0.64	TOTAL SULFUR ACID BASE V10000 20	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR % 0.14	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASB v1000t 4.06	SULFUR ACID BASE POTENT: #/1000t	WR1 - Comp WR2 - Comp BACKGROU	WRI - Composite of subsamples WRI, 2, and 3. WR2 - Composite of subsamples WR4A, 5A, 4B, and 5B. BACKGROUND - From the Dillon Millsite (31-073-SS-1).	LEGEND Jes WR1, 2, and Jes WR4, 5A, Julion Millsite (3)	4B, and 5B.	
				77.	5	0.02	4 0.0	0.62	12.8					

Mine/Site Name: Dillon Millsite County: Mineral Legal Description: T 17N R 26W Section(s): NW 1/4, NW 1/4, Sec. 12 Mining District: Iron Mountain Mine Type: Millsite/Unknown Latitude: N 47° 15' 15" Primary Drainage: Flat Creek Longitude: W 114° 51' 30" USGS Code: 17010204 Land Status: Private/Public Secondary Drainage: Hall Gulch Quad: Plains Date Investigated: July 22, 1993 Inspectors: Tuesday, Belanger, Clark P.A. # 31-073 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 3,000 cubic yards. Waste rock was observed in the intermittent Hall Gulch stream bed for approximately 1/4 mile downstream. The following elements were elevated at least three times background:

Arsenic: 863 mg/kg Copper: 67.9 mg/kg

Manganese: 4670J mg/kg Antimony: 813 mg/kg Cadmium: 14 mg/kg

Mercury: 1.43 mg/kg Lead: 3970 mg/kg Zinc: 7710 mg/kg

- There were no adit discharges, filled shafts, seeps, or springs observed at the site during the investigation; consequently, no groundwater or surface water samples were collected.
- Observed releases to Hall Gulch (sediment) were documented for arsenic, cadmium, antimony, and zinc, and were directly attributed to the site.
- WR-1, which was cut by Hall Gulch, was extremely steep and potentially hazardous.

Dillon Millsite PA# 31-073 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/22/93

	Metals in soils Results per dry	Metals in soils Resutts per dry weight basis	Sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cq (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	St (me/Ke)	Zn	CYANIDE
31-073-SE-1 31-073-SE-2 31-073-WR-1	336 336 853	190 38.3 155	0.7 U 6.5 14		2.9 1.5 2.6	17.2 22.4 67.9	24800 22300 35300	0.813 0.399 1.43	1040 J 1480 J 4670 J	19 8 12 12	395 498 3970	9 U 45 813	275 3380 7710	N N N N N N N N N N N N N N N N N N N
BACKGROUND	13	257	0.5 U	8.5 3.5	2.7	15.5	17200	0.012 U	448 J U - Not Detected, J - E	10 Satimated Quantit	448 J 10 17 6 U 64 U - Not Detected 1 - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	6 U mcy or Precision, ?	64 NR - Not Requested	X X
FIELD D 31-073-WR-1	Acid/Base / TOTAL SULFUR % 0.48	Acid/Base Accounting TOTAL SULFUR NEUTRAL. ACID BASE SULFUR ACID BASE POTENT. POTENT. % V1000t V1000t V1000t 0.48 15 131 116	NBUTRAL. POTENT. V1000	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR % 0.21	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT: v1000t	SEI - Upstra SE2 - Down WR1 - Corr BACKGROI	LEGEND SE1 - Upstream in Hall Gulch. SE2 - Downstream in Hall Gulch. WR1 - Composite of subsamples WR1 A through 1 C. BACKGROUND - Northwest of site along road, From Dillon Milisite (31-073-SS-1).	LEGEND lich. les WR1A thro of site along roe site (31-073-SS		

Mine/Site Name: Nancy Lee Mine County: Mineral Legal Description: T 18N R 26W Section(s): SW 1/4, SE 1/4, Sec. 31 Mining District: Keystone Mine Type: Hardrock/Au, Pb, Zn Latitude: N 47° 16' 12" Primary Drainage: Clark Fork River Longitude: W 114° 57' 12" USGS Code: 17010204 Land Status: Public Secondary Drainage: Keystone Creek Quad: Keystone Peak Date Investigated: August 2, 1993 Inspectors: Tuesday, Belanger, Lasher P.A. # _31-001 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation; however, tailings were observed in the stream bed approximately 3,000 feet downstream from the site.
- The volume of waste rock associated with this site was estimated to be approximately 30,875 cubic yards. The following elements were elevated at least three times background:

Arsenic: 143 to 445 mg/kg

Copper: 55.4J to 161J mg/kg

Mercury: 0.058J mg/kg

Nickel: 9.12 mg/kg

Antimony: 27.1 to 46.2 mg/kg

Barium: 62.8 mg/kg

Iron: 19,800 to30,000 mg/kg

Manganese: 2050 to 2290 mg/kg

Lead: 266J to340J mg/kg Zinc: 184 to 324 mg/kg

- The water discharged from the adit associated with WR-4 exceeded the MCL and acute aquatic life criteria for arsenic and the chronic aquatic life criteria for arsenic and iron in samples collected near its mouth. After flowing through WR-4, the discharge exceeded the MCL for arsenic as well the chronic aquatic life criteria for arsenic and iron and the acute aquatic life criteria for iron.
- Two tunnels associated with the site, the Elander Tunnel and the Fawcett Tunnel, were fenced at the time of the investigation, but were open and potentially hazardous.

Nancy Lee Mine PA# 31-001 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	isi Si			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Ke)
31-001-WR-1 31-001-WR-2 31-001-WR-3		4.95 12 62.8	0.5 U 0.4 U 0.5 U	2.55 4.34 8.73	1.41 U 2.27 2.01	60.3 J 55.4 J 161 J	27100 19800 30000	0.008 UJ 0.015 J 0.059 J	920 2050 2290	2.62 U 2.11 U 9.12	340 J 266 J 279 J	46.2 7.7 27.1	22.5 324 184	N N N
BACKGROUND	7.89	8.8	0.5 U	3.31	1.2 U	2.44 J	3120	0.01 UJ	609 U - Nat Detected, J -	609 2.22 U 7.59 J 5.39 U 11.9 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	7.59 J X - Outlier for Accura	5.39 U acy or Precision; N	11.9 NR - Not Requested	
	Acid/Base Accounting	Accounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL: POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	9 20	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000	SULFUR ACID BASE POTENT. V1000t					
31-001-WR-1 31-001-WR-2 31-001-WR-3	0.28 0.55		1	-7.84 3.41	0.21 0.01	0.02	0.05	0.62 0.31	0.28					
31-001-WR-1DUP	0.29	90.6	1.15	-7.90	0.23	0.02	0.040	0.62	0.53					

	Metals in Water Results in uo/L	ater o/L				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD ID	As	Ba	25	ુ	ర	õ	F.	В	Mn	Z	£	ź	HA L	HARDNESS CALC.
31-001-SW-1 31-001-SW-2	815 274	40.5 28	2.57 U 2.57 U	9.7 U 8.2 9.7 U 14.6	8.2 14.6	1.55 U 1.55 U	33900 13200	0.038 U 0.038 U 0.038 U	0.038 U 8160 15.3 1.55 U 30.7 U 0.038 U 7300 27 1.55 U 30.7 U U · Not Detected J · Estimated Quantity, X · Outlier for Accuracy or Precision NR · N	15.3 27 Estimated Quantity.	1.55 U 1.55 U X-Outlier for Accuracy	8160 15.3 1.55 U 30.7 U 7.57 U 7.57 U U · Net Detected J · Estimated Quantity, X · Outlier for Accuracy or Precision NR · Net Requested	7.5 7.5 7.5 10 Rea	530 540
	Wet Chemistry Results in mg/l					WRI -	WR1 - Composite of subsamples WR1A, 1B, and 1C.	umples WR1A, 1B,	and 1C.	LEGEND	- SW1 - Dischan	SWI - Discharze from adit above waste rock chum A	e waste mek du	7
FIELD LD	a l	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		WR2 - Composite of subsamples WR2A, 2B, and 3. WR3 - Composite of subsamples WR4A, 4B, and 4C. BACKGROUND - West of waste rock dump 1 on divide near road.	amples WR2A, 2B, amples WR4A, 4B, f waste rock dump 1	and 3. and 4C. on divide near ro	- Pg	SW2 - Dischar	SW2 - Discharge from acit which flows through waste rock dump 4, taken below dump.	h flows through ow dump.	waste
31-001-SW-1 31-001-SW-2	694 684	16.0 5.7	213 214	16.0 213 < 0.05 NR 5.7 214 < 0.05 NR	NR NR	ii								

Mine/Site Name: Keystone County: Mineral Legal Description: T 18N R 26W Section(s): NE 1/4, SE 1/4, Sec. 32 Mining District: Keystone Mine Type: !!ardrock/Au, Ag Latitude: N 47° 16' 22" Primary Drainage: Clark Fork River Longitude: W 114° 55' 40" USGS Code: 17010204 Land Status: Public Secondary Drainage: Keystone Creek Quad: Keystone Peak Date Investigated: August 2, 1993 Inspectors: Tuesday, Belanger, Lasher P.A. # _31-074 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 9,500 cubic yards. The following elements were elevated at least three times background:

Barium: 53.2 mg/kg
Lead: 39.5J mg/kg

Copper: 84.9J mg/kg
Zinc: 37.5 mg/kg

- One minor adit discharge was observed at the site during the investigation. The water flowed from the open adit over the waste rock dump for a distance prior to disappearing into the dump. No MCLs/MCLGs were exceeded in the adit discharge sample; however, the chronic aquatic life criteria for iron was exceeded.
- The site was situated directly in an intermittent drainage adjacent to perennial Keystone Creek. The drainage was dry at the time of the investigation.
- At the time of the site investigation, it appeared that the site had recently been mowed.
- Although the open adit had a gate with a lock, the wooden gate was in relatively poor condition, and the opening was potentially hazardous.

Keystone PA#31-074 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/02/93

		1	
	CYANIDE (mg/Kg)		S.
	Zn (mg/Kg)	37.5	11.9 R - Not Requested
	Sb (mg/Kg)	6.19 U	5.39 U icy or Precision; N
	Pb (mg/Kg)	2.55 U 39.5 J 6.19 U 37.5 NR	2.22 U 7.59 J 5.39 U mated Quantity, X. Outlier for Accuracy or Precision; NR
	Ni (mg/Kg)	2.55 U	609 2.22 U 7.59 J 5.39 U 11.9 U - Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision: NR Not Requested
	Mn (mg/Kg)	1180	609 J-Not Detected, J-E
	Hg Mn (mg/Kg) (mg/Kg)	0.01 UJ 1180	0.01 UJ
SOLID MATRIX ANALYSES	Fe (mg/Kg)	7490	3120
SOLID MATR	Cu Fe (mg/Kg) (mg/Kg)	84.9 J	2.44 J
	Cr (mg/Kg)	1.38 U	1.2 U
	Co (mg/Kg)	2.9	3.31
<u>.s.</u>	Cd (mg/Kg) ========	0.5 U 2.9	0.5 U
s iry weight bas	Be (mg/Kg) :====================================	53.2	8 .89
Metals in soils Results per dry weight basis	#	4.75 U	7.89
		31-074-WR-1	BACKGROUND

	Metals in Water Results in ug/L	Vater ig/L				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD D	!	8	ਣ	రి	Ċ	ਠੌ	Ľ.	. H	M	ž	£	ਲ	H 6	HARDNESS CALC.
31-074-GW-1	1.69 U	51.5	2.57 U	9.7 U	6.83 U	1.69 U 51.5 2.57 U 9.7 U 6.83 U 1.55 U 1010 0.15 J 813 13 1.55 U 30.7 U 314	1010	0.15 J	813 U · Not Detected, J · J	813 13 1.55 U 30.7 U 7.57 U U · Not Detected 1 · Editinated Quantity X · Onlite for Accounts.	1.55 U	1.55 U 30.7 U	7.57 U 314	314
	Wet Chemistry											NV tension in	· wa kapiestea	
CBB	TOTAL					WR1 - 1 BACKG	WR1 - Composite of subsamples WR1A through 1C. BACKGROUND - From Nancy Lee Mine (31-001-SS-1).	nples WR1A thros ncy Lee Mine (31-	ugh 1C. 001-SS-1).	LEGEND	GW1 - Discharge from adit.	ge from adit.	•	
E.	SOLIDS	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE									
31-074-GW-1	31-074-GW-1 375 < 5.0 107 < 0.05 NR	375 < 5.0	107 < 0.05	< 0.05	NR									

Mine/Site Name: <u>Little Anaconda</u> Legal Description: T <u>18N</u> R <u>26W</u>	County: Mineral Section(s): SE 1/4, NW 1/4, Sec. 35
Mining District: Keystone	Mine Type: Hardrock/Au, Zn, Pb, Cu
Latitude: N 47° 16' 40"	Primary Drainage: Clark Fork River
Longitude: W 114° 52' 35"	USGS Code: 17010204
Land Status: Private/Public	Secondary Drainage: Pardee Creek
Quad: Plains	Date Investigated: July 23, 1993
Inspectors: Tuesday, Belanger, Clark	P.A. # 31-077
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 9,230 cubic yards. The following elements were elevated at least three times background:

Arsenic: 39 mg/kg
Cadmium: 3.6 mg/kg
Copper: 15.4J mg/kg
Mercury: 0.633J mg/kg

Barium: 22.6J mg/kg
Cobalt: 11.4J mg/kg
Iron: 47,500 mg/kg
Manganese: 7.050 m

Mercury: 0.633J mg/kg
Nickel: 12J mg/kg
Lead: 2.720 J mg/kg

- Nickel: 12J mg/kg Lead: 2,720J mg/kg
- There was one adit discharge observed at the site during the investigation. The minor discharge flowed over WR-1 and combined with the drainage. No MCLs or acute or chronic aquatic life criteria were exceeded in the adit discharge sample.
- An unnamed intermittent tributary to Pardee Creek bisected the site directly through several of the waste rock dumps, the dumps were actively eroding into the drainage.

Little Anaconda PA# 31-077 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/23/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>\$</u>			SOLID MATI	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	As Ba Cd Co Cr (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)		Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (me/Ke)
31-077-WR-1	36	22.6 J	3.6	11.4 J		15.4 J	47500 0.633	0.633 J	7050	li li	12 J 2720 J 15 J	15 J	11	NR.
BACKGROUND	7.89	8.8	0.5 U	3.31	1.2 U	2.44 J	3120	0.01	609	2.22 U	2.22 U 7.59 J 5.39 U	5.39 U	11.9	, E
	Acid/Base	Acid/Base Accounting							U. Not Detected, J	U - Na Detecteck I - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Na Requested	X - Outlier for Accum	ucy or Precision.	NR - Not Requested	
FIELD D	TOTAL SULFUR	TOTAL SULFUR NEUTRAL ACID BASE SULFATE SULFUR ACID BASE POTENT. POTENT. SULFUR % V1000t V1000t V1000t %	NEUTRAL. POTENT. #1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000k	SULFUR ACID BASE POTENT. v1000t					
31-077-WR-1	0.11	3.44	139	135	<0.01	0.04	0.04 0.1 1.25	11	137					

	Metals in Water	Vater			_	NATER MATR	WATER MATRIX ANALYSES							
THELD	Results in ug/L	ng/L											HARDNESS	SE SE
A	D As Ba Cd Co C	Ba	ਣ	ರೆ		రే	ñ.	Hg	Mn	ž	Pb	જ	CALC.	C.
31-077-GW-1	6.39	2.01 U	2.01 UX 2.57 U	9.7 U		1.9 J	55.9 J	0.038 U	11.3	12.7 U	7.43 .J	12.7 U 7.43 J 30.7 U 60.7 J	55.9 J 0.038 U 11.3 12.7 U 7.43 J 30.7 U 60.7 J 261	61
									U - Not Detected, J -	U - Not Detected, J - Estimated Quantity, X - Outlier for A councy or Precision, NR - Not Requested	Outlier for A course	cy or Precision; NR -		
TO 100 100 100 100 100 100 100 100 100 10	Wet Chemistry													
	Results in rr					L				LEGEND				
FIELD	TOTAL					WR1 - BACK	WRI - Composite of subsamples WRIA, 1B, 2A, and 2B. BACKGROUND - From the Nancy Lee Mine (31-001-SS-1).	mples WR1A, 1B, 2 e Nency Lee Mine (!A, and 2B. 31-001-SS-1).		GW1 - Discharp	GWI - Discharge from lower adit.	,ej	
I.D. SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANII	SOLIDS	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N CYANIDE	NO3/NO2-N	CYANIDE									
31-077-GW-1	272	272 < 5.0	35	0.33	N N									

Mine/Site Name: Hopkins County: Mineral Legal Description: T 18N R 26W Section(s): SE 1/4, SE 1/4, Sec. 35 Mining District:_Keystone Mine Type: Hardrock/Unknown Latitude: N 47° 16' 10" Primary Drainage: Clark Fork River Longitude: W 114° 51' 50" USGS Code: 17010204 Land Status: Public Secondary Drainage: Pardee Creek Quad: Quinns Hot Springs Date Investigated: July 23, 1993 Inspectors: Tuesday, Belanger, Clark P.A. # 31-078 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with the site was estimated to be approximately 400 cubic yards. The two waste rock dumps have both completely revegetated naturally. The following elements were elevated at least three times background level:

Barium: 39.5J mg/kg Copper: 9J mg/kg Mercury: 0.558J mg/kg

Zinc: 417J mg/kg

Cadmium: 4.5 mg/kg Iron: 13,300 mg/kg

Lead: 469J mg/kg

- Pardee Creek bisected the site directly between the two waste rock dumps. There were
 no MCLs or acute or chronic aquatic life criteria exceeded in either the upstream or
 downstream surface water samples of Pardee Creek. However, observed releases to
 Pardee Creek were documented for barium, cadmium, copper, mercury, lead, and zinc
 based on analyses of upstream and downstream sediment samples.
- Two potentially hazardous and easily accessible mine openings (adits) were observed along the Pardee Creek Road. An old cabin located at the west end of the site was collapsing and potentially hazardous.

Hopkins PA# 31-078 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 0723/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>si</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
31-078-SE-1 31-078-SE-2 31-078-WR-1	¥ 4 8	777	5.3 0.7 4.5	10.8 J 3.2 J 4.4 J	10.9 3 2.6	40.1 J 8.9 J 9 J	17800 14300 13300	1.98 J 0.12 J 0.558 J	849 732 1130	12.1 9.1	1600 J 173 J 469 J	17 U 7 U 7 U 6 U	1080 J 184 J 417 J	A K K
BACKGROUND	7.89	89.89	0.5 U	3.31	1.2 U	2.44	3120	0.01	609 U - Not Detected, J.	609 2.22 U 7.59 J 5.39 U 11.9 U. Net Detected, J. Editinaled Quantity, X. Outlier for Accuracy or Precision; NR. Net Requested	7.59 J X - Outlier for Accum	5.39 U scy or Precision; N	11.9 R - Not Requested	Z.
	Acid/Base Accounting	⁴ccounting												
FIBLD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	TOTAL SULFUR SULFUR SULFUR NEUTRAL: ACID BASE SULF/ACID BASE POTENT. POTENT. SULF/V1000c V1000c V1000c %	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
31-078-WR-1	90.0	2.5	130	128	<0.01	0.05	0.04	1.56 129	129					

Ba Cd Co Cr Cu Fe Hg Min Ni Pb Sb Zn		Metals in Water Results in ug/L	Water ug/L		•		WATER MATRIX ANALYSES	IX ANALYSES					-		
2.53	FIELD D		Ä	8	రి		ರ		Hg	Mn	ž	£	ಕ್ಷ	Z, (m	HARDNESS CALC.
Wet Chemistry Results in .mg/l SEI - Downstream in Pardee Creek. SEI - Downstream in Pardee Creek. SEI - Downstream in Pardee Creek. SEI - Upstream in Pardee Creek. WR1 - Composite of subsamples WR1A and 1 BACKGROUND - From the Nancy Lee Mine (215 < 5.0	31-078-SW-1 31-078-SW-2	2.88		JX 2.57 L JX 2.57 U	9.7 U 0.7.0		1.87 J 2.07 J	!!	ļį.	4.08 U 4.08 U 0.Not Detected J.E.	12.7 U 12.7 U stimated Quantity, X.	3.49 J 0.72 U	30.7 U 30.7 U 30.7 U	7.57 U 7.57 U 7.57 U	200
TOTAL SIEL - Downstream in Pardee Creek		Wet Chemistry Results in mg/l	>=	-							LEGEND			-	
215 < 5.0 6 0.05 NR 209 < 5.0 6 0.05 NR	FIBLD LD	TOTAL DISSOLVED SOLIDS	CHLORID	E SULFATE	NO3/NO2-N	CYANIDE		Downstream in Parde (Upstream in Pardee (Composite of subsa. RROUND - From the	tee Creek. Creek. mples WR1A and 1 s Nancy Lee Mine (.B. 31-001-SS-1).		SWI - Same as SW2 - Same as	sample SE1.		
	31-078-SW-1 31-078-SW-2	215 209	s 5.0	တမ	0.05	X X									

Mine/Site Name: Nancy Lee Millsite	County: Mineral
Legal Description: T 17N R 26W	Section(s): NE 1/4, NW 1/4, Sec. 5
Mining District: Keystone	Mine Type: Millsite/Cu, Ag, Pb, Zn, Au
Latitude: N 47° 15' 55"	Primary Drainage: Clark Fork River
Longitude: W 114° 56' 21"	USGS Code: 17010204
Land Status: Public	Secondary Drainage: Keystone Creek
Quad: Keystone Peak	Date Investigated: August 2, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # <u>31-082</u>
Organization: Pioneer Technical Services, Inc.	

• The volume of tailings associated with this site was estimated to be approximately 16,333 cubic yards. The tailings were observed in the floodplain of an unnamed drainage for approximately one mile downstream to confluence with Keystone Creek; however, the tailings were not observed in the Keystone Creek drainage. The following elements were elevated at least three times background:

Arsenic: 540 mg/kg Cadmium: 14.4 mg/kg Copper: 4630J mg/kg

Mercury: 1.19J mg/kg Lead: 10,500J mg/kg

Zinc: 9350 mg/kg

Barium: 27.6 mg/kg

Cobalt: 15.9 mg/kg Iron: 66,800 mg/kg

Manganese: 5340 mg/kg Antimony: 1230 mg/kg

- The flow in the unnamed drainage which travelled directly through the site consisted of the adit discharge originating at the Nancy Lee Mine located upstream. The MCL for arsenic and the chronic aquatic life criteria for arsenic and iron were exceeded in the upstream sample of this discharge; however, only the chronic aquatic life criteria for lead was exceeded in the downstream sample, just prior to where the water seeped into the ground. The chronic aquatic life criteria exceedance for lead was directly attributable to the site.
- Observed releases to surface water were documented for copper, lead, and zinc which were directly attributable to the site.

Nancy Lee Millsite PA# 31-082 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>83</u>			SOLID MAT	SOLID MATRIX ANALYSES	40						
FELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)		Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
31-082-TP-1	540	27.6		15.9	2.58	4630 J	00899	1.19 J	5340	2.38 U	2.38 U 10500 J 1230	1230	9350	**
BACKGROUND	7.89	89 89:	0.5 U	3.31	1.2 U	2.44 J	3120	0.01	609 U-Not Detected, J.	609 2.22 U 7.59 J 5.39 U 11.9 U-Not Detected J - Entimated Quantity, X - Outlier for Accuracy or Precision NR - Now Removed and	2.22 U 7.59 J 5.39 U mated Quantity, X Outlier for Accuracy or Precisions	5.39 U	11.9	S S
	Acid/Base Accounting	Accounting												
TELD D	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL ACID BASE SULFATE SULFUR ACID BASE POTENT. POTENT. SULFUR % v1000t v1000t v1000t %	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %		SULFUR ACID BASE POTENT. v1000t					
31-082-TP-1	0.69	21.6	5.80	-15.8	<0.01	0.06	0.70	1.87	2.98					

	Metals in Water Results in ug/L	Vater ig/L				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD	ľ	.	ਲ	රී	ర	õ	Fe	聟	M	Z	£	Ð	# #Z	HARDNESS CALC.
31-082-SW-1 31-001-SW-2		43.1 28	2.57 U 2.57 U	4.84 43.1 2.57 U 9.7 U 6.8 274 28 2.57 U 9.8 U 14	6.83 U 14.6	15.7 1.55 U	34.8 0.054 J 8.2 12.7 U 13200 0.038 U 7300 27	0.038 U	8.2 7300 U - Not Detected, J -	8.2 12.7 U 18.7 30.7 U 53.2 7300 27 1.55 U 30.7 U 7.57 U U. Not Detected J. Editimated Quantity, X. Outlier for A country or Practicion. No. No. Practicion.	18.7 30.7 U 53.2 314 1.55 U 30.7 U 7.57 U 540	18.7 30.7 U 1.55 1J 30.7 U	53.2 7.57 U	314 540
	Wet Chemistry Results in mg/l					TP1 - 0	LEG TPI - Composite of subsamples TPIA, 1BA through 1BC, 1C, and 1D.	nples TP1A, 1BA th	rough 1BC, 1C, a	LEGEND and 1D.	SWI - Middle	of floodulain tai	SWI - Middle of floorthlair tailines inch before	
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		BACKGROUND - From the Nancy Lee Mine (31-001-SS-1).	he Nancy Lee Mine	(31-001-5S-1).		goes in 31-001-SW-2 - Nancy	goes into ground. SW-2 - Upstream sampl Nancy Lee Mine.	goes into ground and ground ground ground and all 2001.SW-2 - Upstream sample for this site from the Nancy Lee Mine.	m the
31-082-SW-1 31-001-SW-2	404 5.7 120 < 0.05 NR 684 5.7 214 < 0.05 NR	5.7 5.7	120 214	× 0.05 × 0.05	NR NR									

Mine/Site Name: Nancy Lee Millsite-Slowey County: Mineral Legal Description: T 17N R 27W Section(s): NW 1/4, Sec. 14 Mining District: Keystone Mine Type: Millsite/Au, Ag, Pb, Cu Latitude: N 47° 14' 19" Primary Drainage: Clark Fork River Longitude: W 115° 00' 25" USGS Code: 17010204 Land Status: Private Secondary Drainage: Slowey Gulch Quad: Wilson Gulch Date Investigated: September 7, 1993 Inspectors: Bullock, Tuesday P.A. # <u>31-090</u> Organization: Pioneer Technical Services, Inc.

 There were approximately 205,000 cubic yards of tailings on site. The following elements were elevated at least three times background:

Arsenic: 1,490J to 3,040J mg/kg

Cobalt: 24.9 to 26.9 mg/kg

Copper: 299 to 316 mg/kg
Mercury: 0.085 to 1.06 t mg/kg

Mercury: 0.085J to 1.06J mg/kg Lead: 1,080 to 2,320 mg/kg

Zinc: 2,180 to 3,440 mg/kg

Cadmium: 9.3 to 14 mg/kg Chromium: 6.48 mg/kg

Iron: 114,000 to 178,000 mg/kg Manganese: 7,630 to 9,940 mg/kg Antimony: 85.4J to 123J mg/kg

- There was no waste rock on site.
- There was no surface water on site; no surface water samples were collected. The
 nearest surface water was the Clark Fork River, approximately 200 feet away. A dry
 drainage existed on site. Observed releases of arsenic, cadmium, cobalt, mercury, lead,
 antimony, and zinc were documented in downstream sediments, but no direct pathway to
 the Clark Fork River was identified.
- There were no hazardous openings on site. There were four potentially hazardous structures identified on site.

Nancy Lee-Slowey PA# 31-090
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 09/07/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
31-090-SE-1 31-090-SE-2 31-090-TP-1 31-090-TP-2	1010 J 31.4 J 1490 J 3040 J	379 93.6 6.21 22.3	13.8 0.4 U 14.0	15.8 3.66 24.9 26.9	4.8 4.11 2.9 6.48	435 590 316 299	30400 14100 178000 114000	2.38 J 0.028 U 0.086 J 1.06 J	1620 906 9940 7630	7.21 6.03 1.99 U 2.36	3360 35.4 1080 2320	78.6 J 5.13 UJ 85.4 J 123 J	4240 J 69.9 J 2180 J 3440 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	7.89	8.8	0.5 U	3.31	1.2 U	2.44	3120	0.01 UJ	609 U - Not Detected, J -	609 2.22 U 7.59 J 5.39 U 11.9 U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	7.59 J X - Outlier for Accus	5.39 U nacy or Precision; N	11.9 R - Not Requested	X.
FIELD D	Acid/Base Accounting TOTAL TOTAL SULFUR VI VIOOR	Accounting TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t	SE1 - Intermi SE2 - Upgrad TP1 - Compos TP2 - Compos BACKGROU	LEGEND SEI - Intermittent drainage between tailings and cabin. SE2 - Upgradient intermittent drainage. TP1 - Composite of subsamples TP1A, 1B, 1C, 2A, 2B, 3A, 3B, and 3C TP2 - Composite of subsamples TP1D, 2C, 3C, and 4C. BACKGROUND - From the Nancy Lee (31-00) -5S-1.)	LEGEND tween tailings and drainage. s TP1A, 1B, 1C, 25 3C 3T P1D, 2C, 3C anoy Lee (31-00 anoy	nd cabin , 2A, 2B, 3A, 3B , and 4C.	3, and 3C
31-090-TP-1 31-090-TP-2	0.66	20.6 24.4		!	-0.01 0.04	0.74 0.56	0.19 0.18	23.1 17.5	-14 -8.42				,	

Mine/Site Name: Saltese Consolidate Legal Description: T 19N R 30W	County: Mineral
Mining District: Packer Creek	Section(s): SE 1/4, NW 1/4, Sec. 4
Latitude: N 47° 26' 10"	Mine Type: Hardrock/Unknown
Longitude: W 115° 25' 40"	Primary Drainage: St. Regis River USGS Code: 17010204
Land Status: Public	Secondary Drainage: Timber Creek
Quad: Haugan	Date Investigated : August 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # _31-021
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 1,300 cubic yards. The following elements were elevated at least three times background:

Mercury: 0.228J mg/kg

- One discharging adit was observed at the site during the investigation. No MCLs were
 exceeded in the adit discharge; however, chronic aquatic life criteria were exceeded for
 mercury and lead. The adit discharge was sampled farther downstream after flowing
 over the waste rock dump, the sample exceeded the chronic aquatic life criteria for
 mercury.
- A potentially hazardous highwall was identified behind Adit #1, and a cabin located east
 of the site was collapsing and potentially hazardous.

Salteste Consolidate PA# 31-021 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD As D (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Ba Cd (mg/Kg) (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANDE (me/Ke)
31-021-WR-1	4.17 U	4	0.5 U	2.2	1.31	12.8 J	5740	0.228	255	4.27	29.7 J	29.7 J 5.42 U		
BACKGROUND	4.52 U	241	0.5 U	6.09	4.83	16.2 J	12500	0.047 J	1020	9.02	22.2	22.2 J 5.89 U	59.3	
	Acid/Base Accounting	Accounting							U - Not Detected; J -	Estimated Quantity	U - Not Detecteck J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	acy or Precision, N	IR - Not Requested	
TOTAL SULFUR TOTAL SULFUR NEUTRAL ACTD BASE SULFATE FIELD SULFUR ACTD BASE POTENT. POTENT. SULFUR ID % v1000t v1000t v300t %	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %		PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
31-021-WR-1	<0.01	0.00	3.14	3.14	<0.01	<0.01	<0.01	0.00	3.14					

Metals in Water Results in ug/L FTELD D As Bs Cd Co Cr Cu 31-021-GW-1 1.69 U 2.83 2.57 U 9.7 U 7.2 1.55 U 31-021-SW-1 1.69 U 16.5 2.57 U 9.7 U 6.83 U 1.55 U Beautify	රී	3	WATER MATRIX ANALYSES	SEC.						
As Ba 1.69 U 2.83 1.69 U 16.5 Wet Chemistry										
1.69 U 2.83 1.69 U 16.5 Wet Chemistry		ర	Cu F	Hg	Mn	Z	£	5	H.	HARDNESS CALC.
Wet Chemistry	U 2.6 U U 2.6 U	7.2 6.83 U	1.55 U 18.6 1.55 U 65	18.6 0.052 J 65 0.056 J	4.08 U 11.2	4.08 U 12.7 U 3.07 11.2 12.7 U 1.55 U	3.07 30.7 U 1.55 U 30.7 U	30.7 U 7.57 U 23 30.7 U 7.57 U 23	U 72.7	23 21.5
					o - Ing Lobecter, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	stumaled Quantity; X -	Outlier for Accurac	y or Precision, NR - 1	Not Requested	
Nesdita III III III		•				LEGEND				
TOTAL TOTAL DISSOLVED			WRI - Composite o BACKGROUND - Fi	WRI - Composite of subsamples WRIA, 1B, and 2. BACKGROUND - From the Salteste Consolidate Mine (31-021-SS-1).	, and 2. date Mine (31-021-S		GWI - Approx. it appe	GW1 - Approx. 10 from the mouth of adit #1 where it appears out of a vegetated area.	uth of adit #1 whetated area.	here
CHLORIDE	SULFATE NO3/NO2-N CYANIDE	CYANIDE					SWI - Approx.	SW1 - Approx. 50 below lower adit - downgradient.	adit - downgrad	iont
48 6.2 < 5.0 56 5.2 < 5.0	× 0.05	N N N								

Mine/Site Name: <u>Tarbox-Mineral King</u> County: Mineral Legal Description: T 20N R 31W Section(s): SE 1/4, NE 1/4, Sec. 35 Mining District: Packer Creek Mine Type: <u>Hardrock/Pb, Zn, Ag, Au</u> Latitude: N 47° 27' 05" Primary Drainage: St. Regis River Longitude: W 115° 29' 55" USGS Code: 17010204 Land Status: Public Secondary Drainage: Packer Creek Quad: Haugan Date Investigated: August 2, 1993 Inspectors: Bullock, Flammang, Clark P.A. # 31-003 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 5300 cubic yards. The following elements were elevated at least three times background:

Arsenic: 244 to 4030 mg/kg

Copper: 209J mg/kg

Cadmium: 45.8 mg/kg

Iron: 142,000 mg/kg

Manganese: 6570 mg/kg

Lead: 158J to 10,100J mg/kg

Antimony: 279 mg/kg

Zinc: 443 to 26,400 mg/kg

- There was one adit discharge associated with this site. The small flow of approximately five gpm seeps from the adit portal through rock, discharging at the base of the dump. At this discharge point, the pH is 6.39 and the specific conductance was 140 umhos/cm. The MCLs/MCLGs were not exceeded in this discharge. The acute aquatic life criteria for zinc was exceeded and the chronic aquatic life criteria for lead and zinc were exceeded. The discharge flowed through a small wetlands prior to discharge into a tributary to Packer Creek.
- The Packer Creek tributary flowed north to south through the site, bisecting the waste rock dumps associated with the adit and shaft. Observed releases were documented for iron, manganese, and zinc. No MCL/MCLGs were exceeded in the stream. The acute and chronic aquatic life criteria for zinc were exceeded and directly attributable to this site.
- The headframe of the shaft was a hazardous structure. The shaft was covered at the time of this investigation, but was accessible and potentially hazardous.

Tarbox-Mineral King PA# 31-003 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>sis</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg) :=========	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
31-003-SE-1 31-003-SE-2 31-003-WR-1 31-003-WR-2	1210 17.3 4030 244	45.1 33.4 26.9	1.7 0.6 U 45.8 1.1	5.61 3.43 6.57 6.53	2.9 1.47 U 3.34 2.55	42.6 J 8.12 J 209 J 18 J	87000 21800 142000 18700	0.009 UJ 0.009 UJ 0.308 J 0.071 J	9650 711 6570 1180	2.1 U 7.99 2.59 U 8.63	3060 J 37.9 J 10100 J 158 J	# pp p	2440 25.4 55.4 26400 443	R R R R
BACKGROUND	4.52 U 241 Acid/Base Accounting	241 J	0.5 U	60.09 J	4.83	16.2 J	12500	0.047 J	1020 J U - Not Detected, J -	9.02 Estimated Quantity, 3	1020 J 9.02 22.2 J 5.89 U 59.3 J U - Not Detected: J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	5.89 U	59.3 J R-Not Requested	S.
FELD .	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000l	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
31-003-WR-1 31-003-WR-2	3.14 0.14	98.1 4.37	3.19 14.2	-94.9 9.82	0.01 0.01	0.83	2.30	25.9 1.25	-22.7 12.9					

	Metals in Water Results in ud/L	Vater Jg/L			. -	WATER MATRIX ANALYSES	IX ANALYSES							
FIELD D	As	4	25			õ	Ŗ e	H	Mn	Ë	£	Ð	Ξ į	HARDNESS CALC.
31-003-GW-1 31-003-SW-1	1.69 U 3.46	ļ	2.57 U 2.57 U	9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U 6.83 U	1.55 U 1.55 U	594 378	0.038 U 0.039 J	793 178	13.5	1.97	#	307	307 57.5
31-003-SW-2	1.69 U	6.37	2.57 U	9.7 U	6.83 U	1.55 U	53.4	0.049	5.6	12.7 U	1.86	30.7 U	230 7.57 U	11.5
	Wet Chemistry								U - Not Detected: J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	K - Outlier for Accur	ncy or Precision, NR	- Not Requested	
	Results in mg/l									LEGEND				
FIELD	TOTAL					1 - 188 1 - 188	Nowngradient of was lower shaft dump.	SEI - Downgradient of waste rock dump 1, approx. 30 below lower shaft dump.	рргох. 30' below		GWI - At seep below adit # SWI - Same as sample SEI.	GW1 - At seep below adit #1. SW1 - Same as sample SE1.		
ľΩ	į	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYAN		NEA - Opgradient of waste rock dump 2 of WR1 - Sample of the WR1A subsample.	3.2.2 - Opgradient of waste rock dump 2 on South Fork of Creek. WR1 - Sample of the WR1A subsample.	outh Fork of Creek	. 3	SW2 - Same as sample SE2.	s sample SE2.		
31-003-GW-1 31-003-SW-1		< 5.0 5.7	22 < 0.05 8 < 0.05	^ 0.05 0.05	N		Composite of subsi ROUND - From th	WR2 - Composite of subsamples WR1B, 1C, 2A, 2B, and 2C. BACKGROUND - From the Saltese Consolidate (31-021-SS-1).	2A, 2B, and 2C. ate (31-021-SS-1).					
Z-MS-500-16	?).	۰ ۷	v 0.05	X X		-							

Mine/Site Name: Linton Mine and Millsite County: Missoula Legal Description: T 12N R 15W Section(s): NW 1/4, NE 1/4, Sec. 30 Mining District: Unincorporated Mine Type: Hardrock/Pb, Ag Latitude: N 46° 46' 30" Primary Drainage: Cramer Creek Longitude: W 113° 32' 36" USGS Code: 17010201 Land Status: Public Secondary Drainage: Cramer Creek Quad: Mineral Ridge Date Investigated: July 1, 1993 Inspectors: Bullock, Flammang, Clark P.A. # 32-017 Organization: Pioneer Technical Services, Inc.

The volume of tailings associated with this site was estimated to be approximately 23,000 cubic yards. The tailings were severely eroded by Cramer Creek. The following elements were elevated at least three times background:

Arsenic: 1090JX mg/kg

Manganese: 34,300 mg/kg

Barium: 7340 mg/kg Cobalt: 43.1J mg/kg Copper: 105 mg/kg

Nickel: 151J mg/kg Lead: 210J mg/kg Mercury: 1.41 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 6,500 cubic yards. The following elements were elevated at least three times

background:

Arsenic: 136 mg/kg Manganese: 3,620J mg/kg Barium: 694JX mg/kg Lead: 4,890J to 14,100 mg/kg

Copper: 155 to 183JX mg/kg Antimony: 28J to 34 mg/kg

Mercury: 7.88 mg/kg

- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation.
- Cramer Creek was flowing east to west adjacent to the site on the south side. The tailings and one of the waste rock dumps (WR-4) were situated next to the creek and tailings were actively eroding into the stream. There was not an observed release to surface water documented in the water samples. No MCL/MCLGs or acute or chronic aquatic life criteria were exceeded in upstream or downstream surface water samples. Observed releases of arsenic, barium, cobalt, copper, mercury, manganese, and lead were documented in the stream sediment samples.
- Six potentially hazardous mine openings were identified at the site. The loadout structure located in the east-central section of the site was also potentially hazardous and the southern part of the tailings pile was severely undercut by Cramer Creek.

Linton PA# 32-017 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/01/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.w</u>			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	رئ (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
32-017-SE-1 32-017-SE-2 32-017-TP-1 32-017-WR-1	168 J 6 U 1090 JX 30 JX 136 J		i .	14.8 JX 2.5 UJX 43.1 J 1.1 U 3.1 JX	4.1 6.6 13.1 J 2.2 J 1.7	57.2 JX 10.4 JX 105 155 183 JX	6220 8010 25900 J 3970 J 4690	0.552 J 0.16 J 1.41 7.88 0.04 J	11400 J 410 J 34300 J 711 J 3620 J	15 9 151 J 6 J	5830 88 210 J 4890 J	# > >>	66 1 85 1 85 1 86 1	AN AN AN AN
BACKGROUND	17 JX 95 Acid/Base Accounting	95 Scounting	0.5 U	J.9.J	5.4 J	17.6	8760 J	0.081	747 J 9 J 63 J 4 U 57 J U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	9 J Estimated Quartity, 7	63 J X - Outlier for Accum	4 U LCy or Precision; NR	57 J	X X
FIBLD	TOTAL SULFUR %	TOTAL SULFUR N ACID BASB P V1000t t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT V1000t					
32-017-TP-1 32-017-WR-1 32-017-WR-4	-0.01 0.03	0.31 0.94	309 960 912		60.01 0.03	6.01 6.01 6.01	0.0 60.01 60.01	000	309 960 912					

	Metals in Water Results in ug/L	ater 7.				WATER MATRIX ANALYSES	IX ANALYSES	45						
FIELD D	i i i	æ	පි	රී	ර්	ਨੌ		H	Mn	ž	æ	욼	H.A. Zn (me	HARDNESS CALC. Zn (mg CaCO3/L.)
32-017-SW-1 32-017-SW-2	5.11 J 5.13 J	50 JX 52.1 JX	2.57 U 2.57 U	50 JX 2.57 U 9.7 U 6.83 U 52.1 JX 2.57 U 9.7 U 6.83 U	6.83 U 6.83 U	1.55 U 1.55 U	66.4 51.6	0.038 U 0.038 U	4.9 12.7 U 1.25 30.7 U 7.57 U 213 4.08 U 12.7 U 1 0 30.7 U 7.57 U 214 U - Nat Datested J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	4.9 12.7 U 1.25 30.7 U 7.57 U V-Net Detected 1 - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Net Required	1.25 1 U	.25 30.7 U 1 U 30.7 U er for Accuracy or Precision; NR.	7.57 U 7.57 U 7.57 U	213
FIELD LD 32-017.5W.1	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE	CHLORDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANDE		SE1 - Downstream Cramer Creek. SE2 - Upstream Cramer Creek. TP1 - Composite of subsamples TP1A-A, 1A-B, and 1B-A. WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, 2B, a. WR4 - Sample of the WR4 subsample. BACKGROUND - From the Linton Mine (32-017-SS-1).	r Creek. reek. mples TP1A-A, 1A mples WR1A, 1B, I subsample.	SEI - Downstream Cramer Creek. SE2 - Upstream Cramer Creek. TP1 - Composite of subsamples TP1A-A, 1A-B, and 1B-A. WR1 - Composite of subsamples WR1A, 1B, 1C, 2A, 2B, and 2C. WR4 - Sample of the WR4 subsample. BACKGROUND - From the Linton Mine (32-017-SS-1).	LEGEND C.	SW1 - Same as sample SB1. SW2 - Same as sample SB2.	sample SE1.		
32-017-SW-2	242	6.7	2 60	0.13	Z Z									

Mine/Site Name: Morse and Kennedy	County: Missoula
Legal Description: T 13N R 14W	Section(s): N 1/2, Sec. 15
Mining District: Elk Creek	Mine Type: \hardrock/Cu
Latitude: N 46° 23' 20"	Primary Drainage: Elk Creek
Longitude: W 113° 21' 20"	USGS Code: 17010203
Land Status: Public	Secondary Drainage: North Fork of Elk Creek
Quad: Bata Mountain	Date Investigated: July 1, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # <u>32-033</u>
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- There were approximately 65,700 cubic yards of uncovered waste rock at the site. The following were elevated at least 3 times background:

Barium: 3,810JX mg/kg Mercury: 1.08J mg/kg Lead: 111 mg/kg

- There were no discharging adits at the site.
- There was no surface water on the site. The nearest surface water was 0.5 mile away.
- There were no hazardous openings at the site; but, there were highwalls associated with the pits.

Morse & Kennedy PA#32-033
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 07/01/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	is.			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co C (mg/Kg) (mg/	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
32-033-WR-1 32-033-WR-2	4 U 12 J	3810 JX 166 JX	j	1	18.5 5.6	10.8 JX 29.6 JX	10400 9160	0.051 J 1.08 J	290 J 815 J	11 11	 >		11)	R R R
BACKGROUND	5 U	322 JX	0.6 U	5.6 JX	0	10.4 JX	9450	0.071 J	G40 J	60	N 6	7 U	30 J	S.
	Acid/Base Accounting	Accounting								, (many)	Accuracy of Precision, No. Not Requested	cy or precision; N	R - Not Requested	
CHERT O	TOTAL SULFUR %		NEUTRAL. POTENT v1000t	TOTAL SULFUR SULFUR SULFATE ACID BASE SULFATE ACID BASE POTENT. POTENT. SULFUR VIOOR VIOOR %	SULFATE SULFUR	PYRITIC SULFUR %		PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	WR1 - Comp WR2 - Comp BACKGROU	WRI - Composite of subsamples WRI, 2, 3, and 4. WR2 - Composite of subsamples WR2A and 5B. BACKGROUND - From Morse and Kernedy Mine (32-033-SS-1).	S WR1, 2, 3, as WR5A and 5 and Kermedy N	nd 4. iB. Vine (32-033-St	Î
32-033-WR-1 32-033-WR-2	<0.01 <0.01	00	29.7 506	29.7 506	6.01 6.01	<0.01 <0.01	<0.01 0.01	0 29.7 0 506	29.7 506					

Mine/Site Name: Joe Wallit Mine County: Missoula Legal Description: T 17N R 24W Section(s): NW 1/4, NW 1/4, Sec. 8 Mining District: Nine Mile Mine Type: Hardrock/Unknown Latitude: N 47° 15' 11" Primary Drainage: Nine Mile Creek Longitude: W 114° 41' 11" USGS Code: 17010204 Land Status: Public Secondary Drainage: St. Louis Creek Quad: Knowles Date Investigated: July 2, 1993 Inspectors: Babits, Lasher/Pierson P.A. # 32-010 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- There were approximately 68,300 cubic yards of uncovered waste rock on site. The following were elevated at least 3 times background:

Arsenic: 31J mg/kg Copper: 338JX mg/kg

- There were no discharging adits at the site.
- The East Fork of St. Louis Creek flows through the waste rock dumps and St. Louis
 Creek flows adjacent to the waste rock dumps. There were observed releases of arsenic
 and copper in downstream sediment; there were no observed releases to downstream
 surface water. No MCL/MCLGs were exceeded, but the chronic fresh water aquatic life
 criteria for lead was exceeded in downstream surface water.
- There were no hazardous openings at the site, but there was a highwall at the pit.

Joe Wallit PA# 32-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 07/0293

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>w</u>			SOLID MATE	SOLID MATRIX ANALYSES	W						
FIELD D	As (mg/Kg)	As Ba Cd Co C (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Min (mg/Kg)	Ni (me/Ke)	Pb (me/Ke)	Sb (me/Ke)	Zn (me/(Ze)	CYANDE
32-010-SE-1 32-010-SE-2 32-010-WR-1	10 1 32 1 31 1	44.7 JX 49.5 JX 64.6 JX	0.5 0.5 0.5 0.5 U.S	5.3 JX 7.5 JX 6.7 JX	3.5 2.1 2.3	11.4 JX 15300 739 JX 18100 338 JX 16000	15300 18100 16000	0.066 J 0.062 J 0.137 J	251 J 1000 J 807 J	4 o o	29 28 88	6 13	64 J 74 J 136 J	AN AN AN
BACKGROUND	ω	336 JX	6.0	5.9 JX	2.2 U	12.1 JX	8140	0.18 J	1730 J	80	41	10 U	57 J	
	Acid/Base Accounting	Accounting									or Accuracy of Precision, NR - Not Requested	racy of Precision, ?	VR - Not Requested	
TOTAL TOTAL SULFUR NEUTRAL: FIELD SULFUR ACID BASE POTENT. D % V1000t V1000t	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL: POTENT. 1/1000t	SULFUR ACID BASE SULFATE POTENT. SULFUR V1000t %	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASIE v1000t	SULFUR ACID BASIE POTENT. v1000t					
32-010-WR-1	0.01	0.31	56.7	56.3	<0.01	0.02	<0.01	0.62						

	Metals in Water Results in ug/L	/ater ig/L			-	WATER MATRIX ANALYSES	X ANALYSES							
FIELD D	A.	Ba	ਣ	రి	ð		₽.	Hg	Mn	Z	£	æ	H E	HARDNESS CALC.
32-010-SW-1 32-010-SW-2 32-010-SW-3 32-010-SW-4	3.65 J 3.7 J 3.82 J 3.01 J	4.8 JX 2.01 UJX 3.17 JX 2.3 JX	×	9.7 L 9.7 L 9.7 L 9.7 L	6.83 U 8.83 U 6.83 U	1.55 U 1.55 U 1.7 J	12.3 19.7 54	0.200 0.200	4.08 U 23.1	12.7 U 3	1.5 3.43 1 U	30.7 U 30.7 U 30.7 U	- - -	12.9 37.8 7.57 U 16.1 7.57 U 30.7
	Wet Chemistry							<u>.</u>	4.4 12.7 U 2.88 30.7 U 7.57 U 7.57 U 7.57 U 7.57 U V - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	12./ U	2.88 C-Outlier for Accum	30.7 U icy or Precision, NR -	7.57 U	19.6
	Results in mg/l					SE1 - U	SEI - Upgradient in St. Louis Creek. SE2 - Below confluence of East Forb	uis Creek. East Fork St. Lor	SEI - Upgradient in St. Louis Creek. SE2 - Below confluence of East Fork St. Louis Creek in St. Louis Creek	LEGEND	SWI - Same as sample SEI.	sample SE1.		
FIELD I.D	DISSOLVED SOLIDS	CHLORIDE		SULFATE NO3/NO2-N	CYAN	WR1 - C BACKGI	WRI - Composite of subsamples WRI, 2, 3, and 4. BACKGROUND - From the Joe Wallit Mine (32-010-SS-1).	mples WR1, 2, 3, 5 Joe Wallit Mine	and 4. (32-010-SS-1).		SW3 - Downgr SW4 - Upgradi	SW3 - Downgradient of last dump in St. Louis Creek. SW4 - Upgradient in East Fork of St. Louis Creek.	np in St. Louis (Creek.
32-010-SW-1 32-010-SW-2 32-010-SW-3 32-010-SW-4	55 59	5.05.06.7		× 0.05 × 0.05 × 0.05	X	***************************************					?			

Mine/Site Name: Lost Cabin Mine Legal Description: T 16N R 22W	County: Missoula Section(s): SE 1/4, NE 1/4, Sec. 13
Mining District: Nine Mile	Mine Type: Hardrock/Zn, Pb, Cu, Ag, Au
Latitude: N 47° 08' 56"	Primary Drainage: Kennedy Creek
Longitude: W 114° 26' 40"	USGS Code: 17010204
Land Status: Public	Secondary Drainage: Kennedy Creek
Quad: McCormick Peak	Date Investigated: July 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # 32-011
Organization: Pioneer Technical Services, Inc.	

- This site was in close proximity to the Hautilla Mine (PA# 32-057) and the Nugget Mine (PA# 32-042).
- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 3700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 98J mg/kg Mercury: 0.318J mg/kg

Copper: 1150JX mg/kg Lead: 3370 mg/kg

- The waste rock dump was mostly unvegetated.
- No discharging adits, seeps and springs were found at the site.
- Surface water samples were collected upstream and downstream of the site in Kennedy Creek which bisected the site. There were no observed releases documented to surface water and the samples did not exceed MCL/MCLGs. Acute and chronic aquatic life criteria for copper were exceeded and attributable to this site. Stream sediment samples did document observed releases of copper, mercury, and lead, attributable to this site.
- The bridge on Kennedy Creek at the site posed a potential hazard to site visitors.

Lost Cabin PA#32-011 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u></u>			SOLID MATE	SOLID MATRIX ANALYSES	· ·						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co C) (mg/Kg) (mg/	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (me/Ke)
32-011-SE-1 32-057-SE-1 32-011-WR-1	26 1 1 28 2 2 2 2	43.6 JX 41.8 JX 17.2 JX			7.7.4. 4.4.6.	177 JX 37.1 JX 37.1 JX 1150 JX	24300 15500 21700	0.199 J 0.025 J 0.318 J	548 J 298 J 398 J	16 11	346 17 3370	7 U 7 U 7 U 8	293 J 56 J 56 J	N N N
BACKGROUND	14)	Xf 689	8.0	X. 7	3.9	17.8 JX	13100	0.1 J	3380 J U - Not Detected, J -	16 Estimated Quantity,	3380 J 16 43 6 329 J U - Na Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Na Requested	6 Jacy or Precision; P	329 J	S S
	Acid/Base Accounting	Accounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL: ACID BASE SULFUR SULFUR ACID BASE POTENT. POTENT. SULFUR V1000 V1000t V1000t %	NEUTRAL: POTENT. V1000t	SULFUR ACID BASE POTENT. V1000k		į	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
32-011-WR-1	0.21	6.56	3.29	-3.3	0.08	0.01	0.12	0.31	2.98					

Mel														
	Metals in Water Results in ud/L	.				WATER MATRIX ANALYSES	X ANALYSES							•
FIELD D	As Ba	Æ	පී	රී	Ċ	ਟੋ	F.	置	Mn	ž	£	B	H #	HARDNESS CALC.
	1.49 U	4.27 JX 2.13 JX	2.57 U 2.57 U	9.7 U 9.7 U	2.57 U 9.7 U 6.83 U 2.57 U 9.7 U 6.83 U	7.73 J 2.63 J	31 (0.056 J 0.097 J	0.056 J 4.08 U 12.7 U 2.24 J 0.097 J 4.08 U 12.7 U 1.29 J	12.7 U 12.7 U	2.24 J 1.29 J	30.7 U 30.7 U	#	37.7 J 23 19.9 J 20.3
Wet Chemistry Results in mg/l	emistry in mg/l					32-011-5	3E1 - 20' below br.	LEGEND 32-011-SE1 - 20 below bridge, also below confluence of unramed tributary.	fluence of unname	LEGEND of tributary				
TOT FIELD DISS LD SOL	TOTAL DISSOLVED SOLIDS CI	CHLORIDE	SULFATE	SULFATE NO3NO2-N CYANIDE	CYANIDE	32-057-; WR1 - (BACKG) SW1 - S	32-057-SEI - Downgradient of Hauti WRI - Composite of subsamples WR BACKGROUND - From the Lost Cab SWI - Same as sample 32-011 -SE-1.	32-057-SE1 - Downgradient of Hautilla mine, upgradient for Lost Cabin. WRI - Composite of subsamples WRIA, 1B, 1C, and 2. BACKGROUND - From the Lost Cabin Mine (32-001-8S-1). SWI - Same as sample 32-011-SE-1.	upgradient for Los C, and 2. 32-001-SS-1).	Cabin				
	88 v v	5.0	v v	× 0.05	93 < 5.0 < 5 < 0.05 NR 49 < 5.0 < 5 < 0.05 NR	SW2 - S	SW2 - Same as sample 32-057-SE-1.	057-SE-1.						

Mine/Site Name: Nugget	County:_Missoula
Legal Description: T 16N R 23W	Section(s): NW 1/4, SE 1/4, Sec. 13
Mining District: Nine Mile	Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn
Latitude: N 47° 08' 50"	Primary Drainage: Kennedy Creek
Longitude: W 114° 26' 45"	USGS Code: 17010204
Land Status: Public	Secondary Drainage: Kennedy Creek
Quad: McCormick Peak	Date Investigated: July 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # 32-042
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 1300 cubic yards. The following elements were elevated at least three times background: Arsenic: 150J mg/kg

Lead: 2340 mg/kg

Copper: 9378J mg/kg

- The waste rock dumps were 75% unvegetated.
- One discharging adit had a small flow of approximately 1.3 gpm. The adit water was sampled as GW-1and had a neutral pH of 7.09, and a moderate specific conductance of 108.6 umhos/cm. The adit discharge flowed into a small settling pond constructed in the waste rock prior to discharging directly to Kennedy Creek. No MCL/MCLGs were exceeded. Chronic aquatic life criteria were exceeded for mercury, copper, lead, and zinc, and the acute aquatic life criteria were exceeded for copper and zinc in the adit discharge.
- Surface water samples were collected upstream and downstream on Kennedy Creek which bisected the site. There were no observed releases to surface water documented and the samples did not exceed MCL/MCLGs. Acute and chronic aquatic life criteria were exceeded in Kennedy Creek but could not be attributed to this site due to upgradient sources (the Lost Cabin and Hautilla Mines). Stream sediment samples did document observed releases of copper and lead, attributable to this site.
- The discharging adit was open and hazardous. WR-1 was being undercut by Kennedy Creek

Nugget PA# 32-042 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/02/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.v</u>			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mer/Ke)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANIDE
32-042-SE-1 32-011-SE-1 32-042-WR-1	32 J 26 J 150 J	17.6 JX 43.6 JX 10.1 JX	1	X. 1.01 X. 4. X. X. X. X. X. 4. X. X. 4. X. X. 4. X. X. 4. X. X. X. X. X. X. X. X. X. X. X. X. X.	5.4 1.3 U	642 JX 177 JX 378 JX	12400 24300 21600	0.015 J 0.199 J 0.196 J	238 J 548 J 143 J		227 346 2340	5 U 7 U 11	# = 8 8 #	NR NR
BACKGROUND	14 J	XC 689	0.8	X 7	3.9	17.8 JX	13100	0.1 J	3380 J U - Not Detected, J -	16 Estimated Ouartity	3380 J 16 43 6 329 J	6	329 J	X X
	Acid/Base /	Acid/Base Accounting											ry - vor vedneste	
TOTAL FIELD SULFUR ID %	TOTAL SULFUR %	TOTAL SULFUR SULFUR SULFUR NEUTRAL: ACID BASB SULFATE ACID BASB SULFATE VIOOR VIOOR VIOOR 54	NEUTRAL: POTENT. V1000t	SULFUR ACID BASIE POTENT. V1000t	SULFUR	PYRITIC SULFUR		PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
32-042-WR-1	0.24		3.65	-3.9	0.19	<0.01	0.06	0	3.65					

Metals in Water Results in ug/L															
1.49 1.253 1.257 1.97 1.683 1.86 1.37 1.096 1.27 1.2		Metals in M Results in u	Vater Ig/L				WATER MATRI	IX ANALYSES							,
1 2.63 7.23 JX 2.57 U 9.7 U 6.83 U 38.6 J 377 0.096 J 88.1 12.7 U 16.83 U 6.7 J 25.8 0.071 J 4.08 U 12.7 U 12.7 U 12.7 U 6.83 U 6.7 J 25.8 0.071 J 4.08 U 12.7 U 12	FIELD	\$¥		3	5	ć	ć	ſ						ii.	HARDNESS
2.63 7.23 JX 2.57 U 9.7 U 6.83 U 377 0.096 J 88.1 12.7 U 1.49 U 4.03 JX 2.57 U 9.7 U 6.83 U 6.7 J 25.8 0.071 J 4.08 U 12.7 U 12.7 U 1.49 U 4.27 JX 2.57 U 9.7 U 6.83 U 7.73 J 31 0.056 J 4.08 U 12.7 U 1.27 U 1.25 U 9.7 U 6.83 U 7.73 J 31 0.056 J 4.08 U 12.7 U 1.27 U 1.25 U 9.7 U 6.83 U 7.73 J 31 0.056 J 4.08 U 12.7 U 1.27 U 1.25 U	## ## ## ## ## ## ## ## ## ## ## ## ##) ## ## ##		Fe Hendelen	Hg ====================================	Min	ż	Pb	æ	Zn (m	Zn (mg CaCO3/L)
1.49 U 4.03 JX 2.57 U 9.7 U 6.83 U 7.73 J 31 0.056 J 4.08 U 12.7 U	32-042-GW-1	2.63	7.23		9.7 U	6.83 ∪	38.6 J	377	0.096	88.1	12.7.11		30.7.11	- 0707	
Vet Chemistry Vet Chemistry C.37 U 6.83 U 7.73 J 31 0.056 J 4.08 U 12.7 U Wet Chemistry U - Not Detected 1 - Estimated Quantity, X Results in mg/l 12-042-3E1 - Downstream of site. TOTAL 32-042-3E1 - Downstream of site. DISSOLVED 32-011-3E1 - 20 below bridge, below Lost Cabin Mine. SOLIDS WR1 - Composite of subsamples WR1A, 1B, 1C, and 1D. BACKGROUND - From the Lost Cabin Mine (32-011-3S-1). BACKGROUND - From the Lost Cabin Mine (32-011-3S-1). 76 50 5 0.055 NR 49 50 5 0.055 NR	32-042-5W-1	54. D 54. D ≤ 64.	4.03 J		9.7 U :	6.83 U	6.7 J	25.8	0.071 J	4.08 U	12.7 U	1.67	30.7	5.05 2.05 2.05	8 £
U - Not Detected 1 - Edimand Questity, x	10.70	?	4.21) (6)	6.83	7.73 J	સ	0.056 J	4.08 U	12.7 U	2.24 J	30.7 U	37.7	2 22
Wet Chemistry Results in mg/l LEGEND Results in mg/l 32-042-SEI - Downstream of site. TOTAL 32-011-SEI - 20 below bridge, below Lost Cabin Mine. DISSOLVED WRI - Composite of subsamples WRIA, 1B, 1C, and 1D. SOLIDS CHLORIDE SOLIDS CHLORIDE SOLIDS NR 76 5 63 6 64 5 63 6 64 5 65 6 66 6 67 6 68 6 69 6 60 6 60 6 64 6 65 6 66 6 67 6 68 6 69 6 60 6 60 6 60 6 60 6 60 6 60										U - Not Detected, J -	Estimated Quantity, X	C - Outlier for Accum	acy or Precision; NR	2 - Not Requested	}
12-042-SEI - Downstream of site. 32-04-SEI - Downstream of site. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge, below bridge. 32-01-SEI - 20' below bridge, below Lost Cabin Mine. 32-01-SEI - 20' below bridge.		Wet Chemistry									LEGEND				
TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE RACKGROUND - From the Lost Cabin Mine (32-011-SS-1). RACKGROUND - From the Lost Cabin Mine (32-01-SS-1). RACKGROUND - From the Lost Cabin Mine (32-01-SS-1). RA		Nesaus III IIIgri					32-042-	SE1 - Downstream	1 of site.			GWI - At man	uth of odis #1		
DACKGROUND - From the Lost Cabin Mine (32-011-SS-1)		TOTAL					32-011- WR1 - (-SE1 - 20' below by Composite of subsa	ridge, below Lost C umples WR1A, 1B,	Abin Mine. 1C, and 1D.		32-042-SW1 -	Same as corresp	conding SE1 san	rple.
76 < 5.0 9 < 0.05 NR 63 < 5.0 < 5 < 0.05 NR 49 < 5.0 < 5 < 0.05 NR NB NB NB NB NB NB NB NB NB NB NB NB NB	right.	SOLIDS	CHLORIDE			CYANIDE	BACKG	ROUND - From th	he Lost Cabin Mine	(32-011-88-1).			ज्यात क ट्याक	Jonaing SEI san	nple.
76 × 5.0 9 × 0.05 63 × 5.0 × 5 × 0.05 49 × 5.0 × 5 × 0.05	#														
63 × 5.0 × 5 × 0.05 49 × 5.0 × 5 × 0.05	32-042-GW-1	92	> 5.0	6	o.05	Z.									
49 < 50 < 5 < 005	32-042-SW-1	æ	< 5.0	v 2	v 0.05	Z.	-								
	32-057-SW-1	8	> 20	v v	v 0.05	2	-								

Mine/Site Name: Hautilla	County: Missoula
Legal Description: T 16N R 23W	Section(s): NE 1/4, NE 1/4, Sec. 13
Mining District: Nine Mile	Mine Type: <u>Hardrock/Cu, Ag, Zn</u>
Latitude: N 47° 09' 08"	Primary Drainage: Kennedy Creek
Longitude: W 114° 26' 30"	USGS Code: 17010204
Land Status: Public	Secondary Drainage: Kennedy Creek
Quad: McCormick Peak	Date Investigated: July 2, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # _32-057
Organization: Pioneer Technical Services, Inc.	

- This site was directly downstream from the Lost Cabin (PA# 32-011) and Hautilla (PA#32-057) Mines.
- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 3800 cubic yards. Copper (530JX mg/kg) was the only element elevated at least three times background.
- The waste rock dump was 50% vegetated.
- No discharging adits, seeps and springs were found at the site.
- Kennedy Creek flowed along the north side of the site. There were no observed releases to surface water or exceedances of MCL/MCLGs or aquatic life criteria. Copper was documented as an observed release in the stream sediment samples.
- A cabin present on site was classified as a potentially hazardous structure.

Hautilla PA# 32-057 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/0293

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s.</u>			SOLID MATR	SOLID MATRIX ANALYSES	40						
FIELD D	As (mg/Kg)	As Ba mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mø/K¢)	Zn (me/Ke)	CYANIDE
32-057-SE-1 32-057-SE-2 32-057-WR-1	11 J 6 U 24 J	41.8 JX 36.7 JX 42.4 JX	0.6 U 0.5 U 0.5 U	6.1 JX 4.2 JX 19.1 JX	5.4 2.1 1.3 U	37.1 JX 1 11 JX 1 530 JX	15500 13200 9180	0.025 J 0.106 J 0.056 J	298 J 288 J 577 J	10	17 9 U 34	7 C C C C C C C C C C C C C C C C C C C	2.4.55 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	A R R
BACKGROUND	14 J	XC 689	8.0	XL 7	3.9	17.8 JX	13100	0.1 J	3380 J U - Not Detected, J -	16 Estimated Quartity	3380 J 16 43 6 329 J U-Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision r NR - New Removed	6 Icy or Precision: N	329 J	Z.
	Acid/Base Accounting	Accounting												
FIELD	TOTAL SULFUR %	TOTAL SULFUR SULFUR TOTAL SULFUR NEUTRAL: ACTD BASE SULFATE P SULFUR ACTD BASE POTENT. POTENT. SULFUR SI % v1000t v1000t v1000t %	NEUTRAL: POTENT. V1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000	SULFUR ACID BASE POTENT. V1000t					
	0.02	0.62	5.2	4.57	<0.01	<0.01	0.03	0 5.2	5.2					

	٠													
	Metals in Water Results in ug/L	Vater Jg/L				WATER MATRIX ANALYSES	UX ANALYSES							
FIELD D	 		Ba Cd	පී	ර්	õ	ਜ e	Hg	Mn	ž	£	£	н "	HARDNESS CALC.
32-057-SW-1 32-057-SW-2		2.13 JX 3.87 JX	IX 2.57 IX 2.57	U 7.6 U U 7.6 U	9.7 U 6.83 U 9.7 U 6.83 U	2.63 J 2.53 J	36.1 41.3	0.097 J 0.190 J	4.08 U 4.08 U	4.08 U 12.7 U 4.08 U 12.7 U	1.29 J 30.7 U 1.27 J 30.7 U	1.29 J 30.7 U 1.27 J 30.7 U	19.9 J 20.3	20.3
	Wet Chemistry	,							U - Not Detected, J - I	U - Nat Detected, J - Edimuled Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	· Outlier for Accura	cy or Precision, NR .	· Not Requested	
FIELD	TOTAL			•		SE1 - 1 SE2 - 1 WR1 -	SEI - Downgradient of site. SE2 - Upgradient of site. WRI - Compsite of subsamples WRIA 118 and 10	n. mojes WRIA 118 sa	ָּ - - - -	LEGEND	SW1 - Same as sample SEI. SW2 - Same as sample SE2.	sample SE1.		
ID	I.D. SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIE	CHLORIDE	SULFATE	I NO3/NO2-N CYANID	CYANIDE		BACKGROUND - From the Lost Cabin Mine (32-011-8S-1).	o Lost Cabin Mine	(32-011-8S-1).					
32-057-SW-1 32-057-SW-2	8	۸ ۸ 5.0 5.0	ν v	o 0.05	NN NN									

Mine/Site Name: Ward Lode County: Missoula Legal Description: T 11N R 22W Section(s): NE 1/4, SE 1/4, Sec. 21 Mining District: Woodman Mine Type: Hardrock/Ag, Pb Latitude: N 46° 41' 42" Primary Drainage: South Fork Lolo Creek Longitude: W 114° 21' 40" USGS Code: 17010205 Land Status: Public Secondary Drainage: Dick Creek Quad: Dick Creek Date Investigated: September 8, 1993 Inspectors: Bullock, Tuesday P.A. # 32-005 Organization: Pioneer Technical Services, Inc.

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 321,200 cubic yards. The following elements were elevated at least three times background:

Arsenic: 68.3 to 89.8 mg/kg Chromium: 55.2 to 86.9 mg/kg Nickel: 55.5 to 79.1 mg/kg

Zinc: 1990 to 7660 mg/kg

Cadmium: 2.5 to 12.1 mg/kg Copper: 70.5J to 77.9J mg/kg

Lead: 588 to 590 mg/kg

- One possible adit discharge was observed at this site during the investigation. No MCLs
 were exceeded in the adit discharge; however, acute and chronic aquatic life criteria
 were exceeded for cadmium, copper, lead and zinc.
- A sediment sample was collected just below the settling basin associated with the adit discharge. Arsenic, lead, and zinc concentrations were significantly elevated (greater than three times background) in the sediment sample.
- Potential safety hazards identified at the site included a 50 feet tall highwall associated with the trench and an over-steepened waste rock dump (WR-1) which was actively eroding.

Ward Lode Mine PA# 32-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER-BULLOCK INVESTIGATION DATE: 09/08/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s.</u>			SOLID	SOLID MATRIX ANALYSES	YSES						
HELD OI	As (mg/Kg)	Ba (mg/K.g)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Ke)	Zn (me/Kø)	Cyanide (metRe)
32-005-SE-1 32-005-WR-1 32-005-WR-2	39.2 J 68.3 89.8	190 618 J 806 J	1.8 2.5 12.1	3.47 8.78 J 7.97 J	7.24 55.2 86.9	11 70.5 J 77.9 J	5680 21900 26700	0.031 U 0.061 0.036	638 1750 J 2790 J	9.2 55.5 79.1	104 590 588	# -> ->	385 J 1990 7660	A N N
BACKGROUND	5.04 U	357 J	0.6 U	8.34	8.69	5.95 J	10700	0.144	2320 J U-Not Detected, J-E	7.66 Estimated Quantity, 3	2320 J 7.66 18.4 6.56 UJ 58.9 U. Not Detected J. Estimated Quantity, X Outlier for Accuracy or Precision, NR Not Requested	6.56 UJ 57 or Precision; NR -	58.9	Z Z
	Acid/Base Accounting	ccounting												
NELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	TOTAL SULFUR NEUTRAL ACID BASE POTENT POTENT V10001	TOTAL SULFUR ACID BASE POTENT. #1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	PYRITIC SULFUR ACID BASE POTENT.					
32-005-WR-1 32-005-WR-2 32-005-WR-2DUP	0.04	1.25 19.4 19.1	7.29 32.5 32.6	6.04 13.1 13.6	0.01 0.13 0.13	0.03 0.15 0.15	0.01 0.34 0.33	0.94 4.69 4.69	6.36 27.8 28					

	Metals in Water	/ater				WATER MA	WATER MATRIX ANALYSES	SES						
FIELD	Results in ug/L	10/L												HARDNESS
D As Ba cd co c	A	Ba	8	ප	ರ	õ	£	Hg	Mn	ž	8	융	Z	CALC.
32-005-SW-1	3.34	81.7	2.9 J	9.7 U	6.83 U	J 10.3 J 238 0.12 UJX 77.1 12.7 UX 12.8 30.7 U 243 J 6.8 U-Not Detected 1 - Estimated Quantity, X - Outlier for Accumacy on Practicing, NR - Not Requested	238	0.12 UJX 0.12 UJX	77.1 U-Not Detected; J-E	77.1 12.7 UX 12.8 30.7 U 243 U . Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	12.8 httler for Accura	30.7 U	243 J	6.8
	Wet Chemistry Results in mg/l	<u>}</u>				SE1 - Bek	ow outlet of settling	SE1 - Below outlet of setting pond in drainage.		LEGEND		SWI - In trench prior to enterine settline name	r to entering set	fline road
TOTAL FIELD DISSOLVED TOTAL I.D. SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	TOTAL SULFATE NO3NO2-N CYANIDE	TOTAL		omposite of subsan omposite of subsan OUND - From the - Duplicate of the	WRI - Composite of substamples WRIA through 1D. WR2 - Composite of substamples WR2A and 2B. BACKGROUND - From the Mill Creek Mine (32-049-SS-1). WR2DUP - Duplicate of the 32-005-WR-2 sample.	1D. 049-3S-1).					
32-005-SW-1	65	< 5.0	< 5.0	× 0.05	N N									

Mine/Site Name: Upper Triantler County: Missoula Legal Description: T 12N R 22W Section(s): NW 1/4, NW 1/4, Sec. 27 Mining District: Woodman Mine Type: 'lardrock/Unknown, possibly Cu Latitude: N 46° 46' 29" Primary Drainage: Lolo Creek Longitude: W 114° 21' 32" USGS Code: 17010205 Land Status: Private Secondary Drainage: Lolo Creek Quad: Camp Creek Date Investigated: September 8, 1993 Inspectors: Bullock, Tuesday P.A. # <u>32-048</u> Organization: Pioneer Technical Services, Inc.

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 1,700 cubic yards. Metals concentrations in the waste rock were relatively low. The following elements were elevated at least three times background:

Copper: 81.2 mg/kg Lead: 105 mg/kg

- No discharging adits, filled shafts, seeps, or springs were observed at the site during the investigation.
- Lolo Creek was identified approximately 200 feet south of the site and wetlands were identified approximately 50 feet west of the site; however, Lolo Creek was isolated from the site by Montana Highway 12 and the wetlands were isolated by a gravel road. No groundwater or surface water samples were collected due to a lack of runoff pathways.
- One potentially hazardous open shaft was identified northeast of and above the site on top of a ridge.

Upper Triantier PA# 32-048
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 09/08/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ន៍	·		SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co Cr (mg/Kg) (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (me/Ke)
32-048-WR-1	4.79 U	57.1	0.5 U	8.23	5.22	81.2	15100	0.182 J	352	13.3	105	#3	51 J	
BACKGROUND	5.04 U	357 J	0.6 U	8.34 J	8.69	5.95 J	10700	441.0	2320 J	7.66	18.4	6.56 UJ 58.9	283	
									U . Not Detected, J - Estimated Quantity, X - Qutiler for Accuracy or Precision; NR - Not Requested	Estimated Quartity,	X - Outlier for Accu	uncy or Precision, NR	R - Not Requested	•
44	Acid/base Accounting	Accounting										LEGEND		
FIELD D	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000	SULFUR ACID BASE POTENT.	WR1 - Comp BACKGROU	posite of subsamp	WRI - Composite of subsamples WRIA and IB BACKGROUND - From the Mill Creek Mine (32-049-SS-1)	B. (32-049-SS-1).	
32-048-WR-1 0.01 0.31 114 114 <0.01	0.01	0.31	114	114	<0.01	0.01	0.04	0.04 0.31	ii ii			-		

Mine/Site Name: Mill Creek Mine County: Missoula Legal Description: T 11N R 21W Section(s): NE 1/4, NE 1/4, Sec. 9 Mining District: Woodman Mine Type: Hardrock/Au, Ag Latitude: N 46° 43' 55" Primary Drainage: Lolo Creek Longitude: W 114° 14' 15" USGS Code: 17010205 Land Status: Private Secondary Drainage: Mill Creek Quad:_Carlton Lake Date Investigated: September 8, 1993 Inspectors: Bullock, Tuesday P.A. # 32-049 Organization: Pioneer Technical Services, Inc.

- No mill tailings were observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 315 cubic yards. The following elements were elevated at least three times background:

Cobalt: 31.1J mg/kg Mercury: 0.713 mg/kg

Copper: 139J mg/kg Iron: 40,300 mg/kg

Nickel: 28.1 mg/kg

- No discharging adits, filled shafts, seeps, or springs were observed at or near the site during the investigation. Consequently, no groundwater or surface water samples were collected during the investigation.
- One minor intermittent stream bed was identified approximately 100 feet south of WR-1 (which was dry at the time of the investigation). No sediment samples were collected due to the absence of a direct runoff pathway.
- One potentially hazardous adit opening was identified at the site.

Mill Creek PA# 32-049
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 09/08/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	: <u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES	Ø						
FIELD As ID (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Ba Cd (mg/Kg) (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	ි. (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)		Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE
32-049-WR-1	4.89 U	183 J	0.5 U	31.1 J	16.8	139 J	40300	0.713		28.1	12.9	# =	77.2	NR NR
BACKGROUND	5.04 U	357 J	0.6 U	8.34 J	8.69	5.95	10700	0.144	2320 J	7.66	18.4	6.56 UJ		2
	Acid/Base Accounting	editai 2004							U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Estimated Quartity,	X - Outlier for Accu	uncy or Precision, N	R - Not Requested	
		fillilling and a										LEGEND		
FIELD D	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WR1 - Comp	WRI - Composite of subsamples WRI A and I B. BACKGROUND - From the Mill Creek Mine (32-049-SS-1).	oles WR1A and 1 Aill Creek Mine ((32-049-SS-1).	
8	<0.01 0 8.77 8.77 <0.	0	8.77	8.77	P	<0.01	0.01	0 8.77	8.77					

Mine/Site Name: Allison	County:_Park
Legal Description: T 7S R 9E	Section(s): SW 1/4, NE 1/4, Sec. 6
Mining District: Emigrant	Mine Type: Hardrock/Au, Ag, Cu, Mo
Latitude: N 45° 15' 28"	Primary Drainage: Yellowstone River
Longitude: W 110° 40' 02"	USGS Code: 10070002
Land Status: Private/Public	Secondary Drainage: Emigrant Creek
Quad: Emigrant	Date Investigated: August 12, 1993
Inspectors: Bullock, Belanger, Clark	P.A. # 34-018
Organization: Pioneer Technical Services Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 5660 cubic yards. Mercury (0.114-1.14 mg/kg) was the only element elevated at least three times background.
- The waste rock dumps were mostly unvegetated.
- The discharging adit, sampled as GW-1, was flowing at approximately 100 gpm, with a pH of 9.30, and a specific conductance of 80 umhos/cm. The discharge did not exceed any MCL/MCLGs; however, acute aquatic life standards for cadmium, copper, lead, and zinc were exceeded in the adit discharge. A borehole at the base of WR-1 was also discharging at about 20 gpm. The pH from the discharge was neutral at 6.87, and had a specific conductance of 300 umhos/cm. This discharge, sampled as GW-2, did not exceed drinking water standards; however, it did exceed the acute aquatic life criteria for cadmium and zinc as well as the chronic aquatic life criteria for iron, cadmium, lead, and zinc.
- There were no direct runoff pathways from this site to Emigrant Creek in the drainage below, therefore, no samples were collected in the Creek.

Allison PA# 34-018 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/12/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u> </u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Or (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	. Sh (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
34-018-WR-1 34-018-WR-2	15.5 31.1	59.1 J 72.6 J	0.92 J 1.01 J		1.54 3.89	416 385	25800 46800	0.114	329	3.17 4.55	232 126	6.24 UJ 5.41 UJ	6.24 UJ 80.5 5.41 UJ 119	NR RR
BACKGROUND	32.8	175 J	1.32 J	3.87	10.4	165	29500	0.028 U	484 U - Not Detected, J -	9.84 Estimated Quantity	484 9.84 242 6.52 UJ 96.5 U - Na Detectet J - Edinated Quantity, X - Outlier for Accuracy or Precision, NR - Na Requested	6.52 UJ	96.5 R - Not Requester	_
	Acid/Base	Acid/Base Accounting												
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. VIOOR	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.					
34-018-WR-1 34-018-WR-2	0.65	20.3 6.56	-0.21 -0.26	-20.5 -6.82	0.30 0.14	0.02 <0.01	0.33	0.62 0.00	-0.83 -0.26					

	Metals in Water Results in ud/L	Water ug/L				WATER MAT	WATER MATRIX ANALYSES	S.						·
FIELD	As	æ	ප	පී		ටි	Ę.	Hg	Mn	ï	£	В	HA (n	HARDNESS CALC. Zn (mg CaCO3/L)
34-018-GW-1 34-018-GW-2	18.3	9.57 18.4	2.83 4.63	12.1 9.7 U	6.83 U 6.83 U	268 J 2.3 J	12500 15100	0.120 U 0.120 U	0.120 U 989 0.120 U 684 U-Nei Defected J-	989 25.7 1.84 30.7 U 1050 684 20.2 21.5 30.7 U 2190 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	1.84 21.5 X-Outlier for Accor	1.84 30.7 U 21.5 30.7 U Outlier for Accuracy or Precision, NR	1050 20.2 2190 111	20.2
	Wet Chemistry Results in mg/l	۶<				WRI	Composite of subsu	WR1 - Composite of subsamples WR1A, 1B, 1C, and 1D.	C, and 1D.	LEGEND	GWI - Discha	GWI - Discharping acti associated with seeds made	ated with waste	4
FIELD I.D.	TOTAL DISSOLVED SOLIDS	!		NO3/NO2-N CYANIDB	CYANIDE	WR2 - BACK	Composite of subs GROUND - From t	WR2 - Composite of subsamples WR2A and 2B. BACKGROUND - From the Allison Mine (34-018-SS-1).	.B. -018-SS-1).		dun SWl - Discha	SWI - Discharge from bore hole at base of weste rock dump 1.	le at base of wa	ste rock
34-018-GW-1 34-018-GW-2	189 216	5.05.0	# #	77 < 0.05 NR 77 < 0.05 NR	N N N									

Mine/Site Name: McLaren Tailings	County:_Park
Legal Description: T 19S R 14E	Section(s): S 1/2, NE 1/4, Sec. 25
Mining District: Cooke City	Mine Type: Mill Tailings
Latitude: N 45° 01' 34"	Primary Drainage: Yellowstone River
Longitude: W 109° 55' 29"	USGS Code: 10070001
Land Status: Private/Public	Secondary Drainage: Soda Butte Creek
Quad: Cooke City	Date Investigated: August 10, 1993
Inspectors: Bullock, Belanger, Clark	P.A. # 34-004
Organization: Pioneer Technical Services, Inc.	

- Previous reclamation work has been conducted on this site which included dam stabilization, run-on control, grading, covering and revegetation.
- The volume of tailings associated with this site was estimated to be approximately 370,000 cubic yards. The following elements were elevated at least three times background:

Iron: 107,000 to 163,000 mg/kg Mercury: 0.179 mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 8,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 45.3 mg/kg

Copper: 846 mg/kg

Cadmium: 1.99 mg/kg

Iron: 105,000 mg/kg

- A groundwater seep was identified at the toe of the tailings. No MCLs were exceeded in the seep; however, the chronic aquatic life criteria for iron was exceeded. In addition, no MCLs were exceeded in a sample collected from a monitoring well located at the west end of the tailings. Residents living directly downgradient of this site were serviced by a municipal water supply.
- Surface water samples were collected upstream and downstream from the site in Soda Butte Creek, and in Miller Creek prior to its confluence with Soda Butte Creek. An observed release to Soda Butte Creek was documented for iron; however, the concentration of iron in the downstream sample did not exceed any established standards. No MCLs were exceeded in any of the samples. The only aquatic life criteria exceedance observed was the chronic lead standard in the Miller Creek sample.

McLaren Tailings PA# 34-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/10/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES	-						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mo/Ko)	CYANIDE
34-004-SE-1 34-004-SE-2 34-004-SE-3 34-004-TP-1 34-004-TP-2	10.6 J 7.37 J 4.12 U 26.3 J 416 J	86.2 93.5 73.8	0.61 U 0.60 U 0.45 U 2.58	11.9 12.9 7.91 6.79	14.4 17 J	214 243 103 1700	20400 15400 20500 107000	0.047 0.035 U 0.04 U 0.105	557 504 658 217	19.7 23.1 14.3 10.4	59.1 55.1 116 69	#3333	98.2 98.7 102 81.9	A R R G
34-004-WR-1	45.3 J	10.5	8. 8.	5.13	L 9.17 L 2.71	3680 846	163000 105000	0.179 0.099	576 191	14.4 8.87	208 208	6.71 UJ 6.18 UJ	162 80.1	<u> </u>
BACKGROUND	14.6 J	88	0.4 U	10.5 J	30.7	4	23300	0.058 J	1450 J	20.7	158 J	5.17 U	181	ď
	Acid/Base Accounting	ccounting							U - Not Detected, J - Baimsted Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	stimated Quantity, X	- Outlier for Accuracy	or Precision, NR - N	of Requested	
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASB v1000t	NEUTRAL POTENT v1000t	SULFUR ACID BASE SUI POTENT. SUI v1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
34-004-TP-1 34-004-TP-2 34-004-WR-1	6.10 14.1 1.14	191 440 35.6	116 9.83 -3.22	-74.9 -431 -38.8	<0.01 2.89 0.76	7.05 4.21 0.01	0.82 7.00 0.37	220 132 0.31	-105 -122 -3.53					

Metals in Water Results in ug/L	ر ار					WAIEK MATRIX ANALYSES	IX ANALYSES							
													H	HARDNESS
As	ı	æ		ರೆ		3	Fe	H	Mn	Z	윮	ŧ	ŀ	CALC.
	5	58.7	2.57 U	32	**************************************	***************************************	117000	l)		#1 #1 #1 #1 #1			#####################################	z=====================================
		22	2.57 U	11 2 6	17.1	ξ ζ Σ	000	0.29	4240	26.5 J	2.28 J	30.7 U	62	731
1.12 UJX	-	45.7	2.57 U	1 2 6	683	χς - χ Σ Σ Σ Σ	90200	0.22	2010	12.7 U	2.95 J	30.7 U	7.57 U	2850
		29.3	2.57 U	11 26	683 1	ξ <u>×</u>	75.0 75.6	0.22	82.8	12.7 U	3.2 J	30.7 U	9.1	119
		54.8	2.57 U	9.7 U	6.83 U	X 1.4	3. C	2.5	5.03 7.7	12.7 U	3.05 J	30.7 U	13.8	78.7
						S		ŧ S	27.0	T5./ J	2.3 J	30.7 U	11.3	125
									U - Not Detected, J - E	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Jutlier for Accuracy o	or Precision; NR - Not	Requested	
Wet Chemistry		æ	Results in mg/l											
TOTAL						L								
DISSOI VED							;			LEGEND				
_	븀	CHLORIDE	SULFATE	N-CON/SON	CVANIDE	3E1 - L	SEI - Downgradient on Soda Butte Creek	da Butte Creek.			GWI - Seepage	GWI - Seepage at toe of tailings.	و.	
			- !!			N - 735	ALL - Miller CK. Just above confinence with Soda Butte Creek.	confluence with	Soda Butte Creek.		GW2 - Monitor	GW2 - Monitor well at West end of tailings.	d of tailings.	
1180		ĸ	697	v 0.05	0	- 636 Thi	323 - Upgradient on Soda Butte Creek.	Butte Creek.			SW1 - Same as sample SE1.	sample SE1.)	
4360		ı,	2660	v 002	ξ α 2	1. E	TES Composite of subsamples 1PIA-A, 1B-A, and 1C-A.	mples IPIA-A, 1B	-A, and IC-A.		SW2 - Same as sample SE2.	sample SB2.		
v	4,	5.0	25	v 0.05	2		11.2. Conspone of subsamples IPIA-B, IB-B, IB-C, IB-D,	rpiestriA-B,1B. ≘	-B, 1B-C, 1B-D,		SW3 - Same as sample SE3.	sample SE3.		
115		_	2 (v v	2 2	41	15-E, 10-B, and 10-C.	ب						
155 ^		5.0	_	o.05	Z Z	BACKG	WALL - Composite of subsamples WRIA and 1B. BACKGROUND - From the Little Deise Mine (24 000 cc 1)	mples WKIA and Little Daise Miss	1B.					
								THE PARTY WHEN	d (34-003-03-1).					

Mine/Site Name: Lower Glengarry County: Park Legal Description: T 9S R 14E Section(s): NW 1/4, NE 1/4, Sec. 11 Mining District: New World Mine Type: Hardrock/Au Latitude: N 45° 04' 05" Primary Drainage: Clark Fork Yellowstone Longitude: W 109° 56' 05" River Land Status: Private/Public USGS Code: 10070006 Quad:_Cooke City Secondary Drainage: Fisher Creek Inspectors: Bullock, Belanger, Clark Date Investigated: August 9, 1993 Organization: Pioneer Technical Services, Inc. P.A. # 34-006

• The volume of tailings associated with this site was estimated to be approximately 782 cubic yards. The following elements were elevated at least three times background:

Lead: 106J mg/kg

• The volume of waste rock associated with this site was estimated to be approximately 17,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 50.2J to 53.6J mg/kg Cadmium: 3.6 mg/kg

Copper: 421 to 1260 mg/kg

Mercury: 2.14J mg/kg

Iron: 60,000 to 185,000 mg/kg

Lead: 109J to 116J mg/kg

- Two discharging adits and a groundwater seep (located at the base of WR-1) were observed at the site during the investigation. The discharge from Adit #1 exceeded the MCL for copper and acute and chronic aquatic life criteria for copper and zinc. Additionally, the Adit #1 discharge exceeded the chronic aquatic life criteria for iron, mercury, and lead. The discharge from Adit #2 and the seep exceeded the acute and chronic aquatic life criteria for copper and zinc as well as chronic aquatic life criteria for iron, mercury, and lead. Adit discharge pH measurements were 3.23 and 3.85 for Adit #1 and Adit #2, respectively; and the pH measurement in the seep was 3.43.
- Several surface water and sediment samples were collected at the site during the investigation, including: upstream and downstream samples in Fisher Creek; and samples from an unnamed tributary to Fisher Creek. Observed releases of iron, mercury, and lead were documented and attributable to this site. The MCL/MCLG for copper was exceeded an attributable to this site. Although several aquatic life criteria were exceeded upstream and downstream of the site, the chronic criteria for iron was the only standard attributable to the site. The upstream surface water samples indicated the presence of an upgradient source (the Upper Glengarry Mine).
- Potential hazards that were observed at the site included two adits (one with a locked gate, and one partially caved-in) and two collapsing cabins.

Lower Glengarry PA# 34-006 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/09/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES	10						
FIELD ID	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (ms/Ke)	CYANIDE (me/Ke)
34-006-SE-1 34-006-SE-2 34-006-SE-3 34-006-TP-1 34-006-WR-1	86.6 J 20.1 J 74.6 J 22.6 J 50.2 J 53.6 J	76.2 98.8 33.4 142 11.8	0.60 0.70 0.70 0.50 0.50	2.83 J 2.83 J 3.96 J 2.11 J 1.96 U	9.39 11.8 6.21 32.1 4.67 1.38 U	371 601 415 377 421 1260	57500 83900 54500 141000 60000	0.066 J 0.051 J 0.042 J 0.036 J 2.14 J 0.038 J	492 J 494 J 319 J 73.7 J 233 J 1.45 J	2.76 U 5.45 5.21 5.1 2.34 U 2.56 U	92.1 J 377 J 73.1 J 106 J 109 J	6.69 U 8.46 U 8.39 U 8.42 U 5.67 U	74 197 67.9 41.1 29.1	# # # # # # # # # # # # # # # # # # #
BACKGROUND	8.61 J 71.7 Acid/Base Accounting	71.7	6.0	12.4 J	27	6.99 6.99	17100	0.02 J	461 J U-Not Detected, J-E	461 J 23.9 28.3 J 5.49 U 69.9 U - Not Detected J - Estimated Quantity, X - Otalier for Accuracy or Precision: NR - Not Requested	28.3 J - Outlier for Accuracy	5.49 U 7 or Precinion; NR -	69.9	N N
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE #1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT:	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
34-006-WR-1 34-006-WR-2 34-006-WR-3	0.77 45.6 0.75	24.1 1426 23.4	-1.68 -4.79 -4.13	-25.7 -1431 -27.6	0.23 0.31 0.32	0.16 0.01 0.01	0.38 47.2 0.53	5:00 0:00 0:00	-6.68 -4.79 -4.13					

Metals in Water As Ba Cd Co Cr Cu 1 7.31 8.3 2.57 U 46.1 10.6 7730 2 2.27 13.7 2.57 U 46.1 10.6 7730 2 2.27 13.7 2.57 U 46.1 10.6 7730 2 2.27 13.7 2.57 U 46.1 10.6 83.0 1770 2 1.89 20.1 2.57 U 15.4 6.83 U 1770 3 1.93 37.1 2.57 U 9.7 U 6.83 U 761 4 0.96 U 42.5 2.57 U 9.7 U 6.83 U 761 4 0.05 0.97 U 6.83 U 761 6.46 761 10 489 < 0.05 NR 762 77 6.05 NR 165 < 5.0 77 < 0.05 NR 762 77 6.05 NR 166 < 5.0 94 < 0.05 NR 76 76 76 76 76															
As Ba Cd Co Cr CD 7.31 8.3 2.57 U 46.1 10.6 7730 2.27 13.7 2.57 U 46.1 10.6 7730 1.21 28.6 2.57 U 11.7 6.83 U 1170 1.83 37.1 2.57 U 15.4 6.83 U 1170 1.93 37.1 2.57 U 9.7 U 6.83 U 170 0.96 U 42.5 2.57 U 9.7 U 6.83 U 646 Wet Chemistry TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3NOZ-N CYANIDE 763 10 489 < 0.05 NR 165 < 5.0 77 < 0.05 NR 166 < 5.0 87 < 0.05 NR 166 < 5.0 87 < 0.05 NR 167 < 5.0 26 0.11 NR		Metals in W. Resutts in u	/ater o/L				WATER MATR	UX ANALYSES		٠.					
7.31 8.3 2.57 U 46.1 10.6 7730 2.27 13.7 2.57 U 46.1 10.6 7730 1.21 28.6 2.57 U 11.7 6.83 U 1270 1.93 37.1 2.57 U 15.4 6.83 U 1770 1.93 37.1 2.57 U 15.4 6.83 U 1770 1.93 37.1 2.57 U 9.7 U 6.83 U 761 0.96 U 42.5 2.57 U 9.7 U 6.83 U 761 TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NOS/NOZ-N CYANIDE 763 10 489 < 0.05 NR 165 < 5.0 77 < 0.05 NR 166 < 5.0 87 < 0.05 NR 166 < 5.0 94 < 0.05 NR 167 < 5.0 26 0.11 NR	FIELD ID	As	88				đ		光	Mn	Z	£	8	- 5	HARDNESS CALC.
Wet Chemistry Results in mg/ TOTAL DISSOLVED SOLIDS CHLORIDE SOLIDS 10 763 10 168 < 5.0	D6-GW-1 D6-SW-1 D6-SW-2 D6-SW-3 D6-SW-3	_	8.3 13.7 28.6 20.1 37.1 42.5	,		∥ ~ @ @ @ @	7730 JX 121 JX 1340 JX 1170 JX 761 JX 646 JX	85600 JX 14200 JX 7860 JX 3160 JX 187 JX 3750 JX	0.09 J 0.11 J 0.25 J 0.08 J 0.07 J	5610 1020 794 722 56.4 346 U-Net Detector J-1	5610 99.2 J 40.1 30.7 U 671 1020 20.5 J 2.45 30.7 U 127 794 22.5 J 9.56 30.7 U 133 722 32.5 J 8.2 30.7 U 137 56.4 12.7 U 3.17 30.7 U 34.7 34.6 13.9 J 6.49 30.7 U 55.9 U.Not Detected J. Estimated Quantity, X. Otulier for Accurancy on Precision, INR - Not Requested	40.1 2.45 9.56 8.2 3.17 6.49	30.7 U 30.7 U 30.7 U 30.7 U 30.7 U 30.7 U		202 38.8 47.2 42.6 7.1
763 10 489 < 0.05 NR 165 < 5.0 77 < 0.05 NR 168 < 5.0 87 < 0.05 NR 186 < 5.0 94 < 0.05 NR 98 < 5.0 26 0.11 NR	FIELD L.D.	Wet Chemistry TOTAL DISSOLVED SOLIDS	Re CHLORIDE	ssufts in mg/l	NO3/NO2-N	CYANIDE	SE1 - 1 SE2 - 1 SE3 - 1	SE1 - Downgradient of site on Flaher Creek. SE2 - Upgradient of site on headwaters of Flaher Creek. SE3 - Upgradient stream (unnamed).	on Fisher Creek. headwaters of Fis	her Creek.	LEGEND	GW1 - Discha GW2 - Discha	GW1 - Discharge from edit #1. GW2 - Discharge from edit #2.	2	
20.0 9c 0.c > 12l	34-006-GW-1 34-006-GW-2 34-006-SW-1 34-006-SW-3 34-006-SW-3	25 25 26 26 27 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	× × × × × × × × × × × × × × × × × × ×	489 77 77 87 94 26 56	^ ^ ^ 0	X X X X X X X X X X X X X X X X X X X		TP1 - Composite of subsamples TP1A, 1B, and 1C. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Sample of the WR2 subsample. BACKGROUND - From the Lower Glengarry Mine (34-006-SS-1).	pies TP1A, 1B, a rpies WR1A, 1B, subsampie. subsampie.	nd 1C. and 1C. / Mine (34-006-3S	(-	SW2 - Dischal SW3 - Upgradi	OW1 - Lowing autent of a sin on the fact Creek. SW2 - Discharge from waste rock dump 1 base. SW3 - Upgradient of site on headwaters of Fisher Creek. SW4 - Upgradient stream (unnamed).	runer Creek. ck dump 1 bas dwaters of Fish med).	er Creek

Mine/Site Name: Gold Dust	County:_Park
Legal Description: T 9S R 14E	Section(s): SE 1/4, SE 1/4, Sec. 11
Mining District: New World	Mine Type: hardrock/Au
Latitude: N 45° 04' 01"	Primary Drainage: Clark Fork Yellowstone
Longitude: W 109° 56' 33"	River
Land Status: Private/Public	USGS Code: 10070006
Quad: Cooke City	Secondary Drainage: Fisher Creek
Inspectors: Bullock, Belanger, Clark	Date Investigated: August 0, 1002
Organization: Pioneer Technical Services, Inc.	P.A. # _34-007

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 8,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 34.9J to 40.3J mg/kg Mercury: 0.256J to 1.15J mg/kg

- One discharging adit was identified at the site. No MCLs were exceeded in the adit discharge; however, the chronic aquatic life criteria for mercury was exceeded.
- An unnamed tributary to Fisher Creek was observed flowing adjacent to the waste rock dump at the site and received the adit discharge. There were no documented releases to this drainage and no MCL/MCLGs were exceeded in surface water samples collected upstream and downstream from the site. The stream sediment samples documented an observed release to the tributary for mercury.
- A potentially hazardous wooden loadout structure was identified at the site, and explosives may have been stored in the newer mine buildings.

Gold Dust PA# 34-007 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES	10			·			
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Cd Co g/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
34-007-SE-1 34-007-SE-2 34-007-WR-1	20.2 J 19.1 J 40.3 J	76.8 48.3 85.8	 ← 0 ຍ. ຍ. ຄ.	12.8 J 24.1 J 4.2 J	O 4- 4	378 547 180	33200 23500 47600	0.065 J 0.014 J	835 J 1580 J	25.9 33.8	245 J 309 J	6.51 U 8.13 U	403 472	X X
34-007-WR-2	34.9 J	56.9	0.5 U	10.6 J	20.4	98.4	30500	0.256 J	339 1	0.74 24.8	68.2 J 51.2 J	5.93 U 5.45 U	66.1 83.3	Z Z Z Z
BACKGROUND	8.61 J	71.7	0.0	12.4 J	27	6.99	17100	0.02 J	461 J U·Not Detected, J·F	23.9 Estimated Quantity,	461 J 23.9 28.3 J 5.49 U 69.9 J) U. Not Detected J. Estimated Quantity, X Outlier for Accuracy or Precision NB - Not Bonard	5.49 U	XL 6.69	Z.
	Acid/Base Accounting	counting												
FELD O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t		SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
34-007-WR-1 34-007-WR-2	0.27 4.67	8.43 146		-8.08 -84.3	0.12 <0.01	0.0 4 2.0 6	0.11 2.83	1.25 64.4	-0.90 -2.76					

	Metals in Water	Vater				WATER MATRIX ANALYSES	(ANALYSES							
FIELD	Results in ug/L	ug/L											н	HARDNESS
A	A	Ba	ਲ	රී	ď	Ç	F	Я́н	Mn	Z	£	ક્ષ	Zn (m	CALC. Zn (mg CaCO3/L)
34-007-GW-1	3.06		2.57 U	9.7 (6.83 U	6.53 JX	144 JX	#	55.7	11 14	ii	30.7.11		***************************************
34-007-SW-1	. . 9	38.4	2.57 U	9.7 U	6.83 U	11.4 JX	58.7 JX	0.06 J	13	15.	2.17	30.7	- 6	£ 5
34-007-SW-2	. 38	86	2.57 U	9.7 ∪	6.83 U	11.5 JX	40 X	0.1 ک	11.3	12.7 U	3.58	36.7 D	5 6	2 6
									U - Not Detected, J -	U. Not Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision; NR. Not Requested	- Outlier for Accum	acy or Precision; NR.	· Not Requested	3
-	Wet Chemistry													
	Results in mg/l									LEGEND				
i	TOTAL					381 - D. 382 - U	SEI - Downgradient of site in unnamed stream. SE2 - Upgradient of site in unnamed stream.	n unnamed stream nnamed stream.			GW1 - Discharge from adit. SW1 - Same as sample SR1	rge from adit.		
FIELD I.D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		WR1 - Composite of subsamples WR1A and 1D. WR2 - Composite of subsamples WR1B and 1C.	ples WR1A and 1.	ជប		SW2 - Same as sample SB2.	sample SE2.		
34-007-GW-1	581	< 5.0	< 5.0 282 0.07 NR	0.07	NR NR		BACKGROUND - From the Lower Glengarry (34-006-SS-1)	Lower Glengarry (34-006-88-1).					
34-007-SW-1	256	> 5.0	117	90.0	Z.									
34-007-SW-2	231	v 5.0	109	0.18	뽒									

Mine/Site Name: Little Daisy County: Park Legal Description: T 9S R 14E Section(s): NW 1/4, NW 1/4, Sec. 14 Mining District: New World Mine Type: Hardrock/Au, Ag, Cu, Zn, Pb Latitude: N 45° 03' 10" Primary Drainage: Soda Butte Creek Longitude: W 109° 57' 09" USGS Code: 10070001 Land Status: Private/Public Secondary Drainage: Miller Creek Quad: Cooke City Date Investigated: August 9, 1993 Inspectors: Babits, Flammang, Lasher P.A. # _34-009 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- There were approximately 3,220 cubic yards of mostly covered waste rock on site. The following were elevated at least 3 times background:

Cadmium: 1.7 to 2.3 mg/kg Copper: 138 to 1,520 mg/kg Iron: 78,200 to 80,500 mg/kg Mercury: 0.222J to 1.08J mg/kg

Zinc: 546 mg/kg

- There were two discharging adits on site, but neither entered surface water directly; pH's were 7.24 and 7.60. One adit was sampled; no MCL/MCLG's were exceeded.
- Miller Creek flows adjacent to waste rock. There were no observed releases to downstream surface water or sediment. No MCL/MCLGs were exceeded in downstream surface water. Chronic fresh water aquatic life criteria for mercury and lead were exceeded in both upstream and downstream surface water, indicating an upstream source.
- There were no hazardous openings on site.

Little Daisy PA# 34-009 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/09/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	: 8			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg) (Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANDE
34-009-SE-1	12.7 U	136	1.4 U		43.9	279	38200	0.097 J	2610 J	42.7	72.9 J	16.5.11	380	> #
34-009-WR-1	19.1	26.3	1.7	3.94 J	12.4 27.7	146 1520	22100 80500	0.105 J	593 J	11.6	92.4 J	6.8 U	5	
34-009-WR-2 34-009-WR-3	17.4 J 7.22 J	71.2	2.3 0.5 U	9.91 J 12.5 J	24.8 17.1	763 138	78200	0.175 J	2520 J 618 J	19.6 0.6 1.00 +	431 J	6.28 0.28 0.00	25 S	E E :
BACKGROUND	14.6 J	88	0.4 U	10.5 J	30.7	4	23300	0.058	1450 J	20.7	158 J	5.17 U	5. 15. 1. 18.	
	Acid/Base Accounting	ccounting							U - Not Detected, J - E	Atimated Quantity;	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	or Precision; NR.	Not Requested	
FIELD CI	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	Z Z 2 1		SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
34-009-WR-1 34-009-WR-2 34-009-WR-3	3.59 0.35 0.51	112 10.9 15.9	48.6 15.8 74.7	-63.6 4.90 58.7	40.01 0.01 0.13	2.00 0.06 0.07	1.87 0.28 0.31	62.5 1.87 2.19	-13.9 14.0 72.5					

Ba Cd Co Cr Cu Fe Hg Mn Ni Pb Sh		Metals in Water Resutts in un/l	Water uo/l				WATER MATRIX ANALYSES	IX ANALYSES							
3.17 9.03 2.57 U 9.7 U 6.83 U 96.1 JX 4150 JX 0.07 J 1460 37.2 J 526 30.7 U 1.5 19.5 2.57 U 9.7 U 6.83 U 4.97 JX 11.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U Wet Chemistry Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLLDS CHLORIDE SULFATE NO3NOZ-N CYANIDE 730 6 341 0.31 NR From Little Daisy Mine (34-009-SS-1).	FIELD			ਲ	రి	<u>ម</u>	ਰੌ	£.	ř	ž	ä	1	;	H	HARDNESS CALC.
3.17 9.03 2.57 U 9.7 U 6.83 U 4.97 JX 11.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.79 30.7 U 1.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.70 II.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.70 II.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.79 30.7 U 1.79 30.7 U 1.70 II.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.70 II.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.70 II.8 UJX 0.10 J 10.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.70 II.8 UJX 0.10 J 10.8 UJX 0.10 J 10.8 UJX 0.12 J 10.4 12.7 U 1.79 30.7 U 1.70 II.8 UJX 0.10 J 10.8 UJX 0		 	11 '		# # #			ii	ij				SP SP		Zn (mg CaCO3/L)
1.5 19.5 2.57 U 9.7 U 6.83 U 5.27 JX 24 JX 0.09 J 5.97 12.7 U 1.79 30.7 U	34-009-6W-1 34-009-SW-1	3.17 2.08	9.03 19.6	2.57 U 2.57 U	⊃ 2.6 ⊃ 2.6	6.83 U	96.1 JX	4150 JX		1460	37.2 J		30.7 U	167 551	551
Vet Chemistry Results in mg/l Results in mg/l TOTAL TOTAL SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 730 6 341 0.31 NR 234 < 5.0 75 0.57 NR Tomal Chemistry Total Total Chemistry Total Chemist	34-009-SW-2	1.5	19.5	2.57 U	9.7 U	6.83 U	5.27 JX	24 JX		10.4 5.97	12.7 U 12.7 U	1.79 2.96	30.7 U 30.7 U	7.57 U 7.57 H	161 155
Results in mg/l TOTAL TOTAL SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE 730 6 341 0.31 NR PROMERATE Of unnamed tributary of Mine (34-009-SS-1 235 < 5.0 75 0.57 NR	-,									U - Not Detected, J - I	Satimated Quantity, X -	Outlier for Accuracy	or Precision; NR - No	of Requested	3
TOTAL TOTAL TOTAL TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE TOTAL SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE TOTAL WR2 - Composite of subsamples WR2A, 2B, 3, and 4. WR3 - Composite of subsamples WR2A, 2B, 3, and 4. WR3 - Composite of subsamples WR2A, 2B, 3, and 4. WR3 - Composite of subsamples WR2A, 2B, 3, and 4. WR3 - Composite of subsamples WR2 and 6. BACKGROUND - 100' West, 50' to North of self #1 (WR-1). From Little Daisy Mine (34-009-SS-1).		Wet Chemistry	.												ć
TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE SOLIDS The composite of subsamples WR24, 2B, 3, and 4. WR3 - Composite of subsamples WR24, 2B, 3, and 4. WR3 - Composite of subsamples WR2 and 6. BACKGROUND - 100' West, 50' to North of self #1 (WR-1). From Little Daisy Mine (34-009-SS-1).		Aesults in mg/	-								LEGEND				
SOLIDS CHLORIDE SULFATE NO3MO2-N CYANIDE 730 6 341 0.31 NR 234 < 5.0 76 0.57 NR 235 < 5.0 75 0.57 NR	FIELD	TOTAL				•,	SEI - 1	Headwaters of unname in unnamed tributary a	ed tributary of M it PPE of waste r	filler Creek. rock dump 6.		SW1 - Same a SW2 - Same a	us sample SE1. Is sample SE2.		
730 6 341 0.31 NR 234 < 5.0 76 0.57 NR 235 < 5.0 75 0.57 NR	10	- 1	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		Composite of subsam Composite of subsam	ples WRIA sand ples WR2A, 2B,	1B. 3, amd 4.					
	34-009-GW-1 34-009-SW-1 34-009-SW-2		۸ ۸ 5.0 م	341 76 75	0.31 0.57 0.57	R R R		Composite of subsam TROUND - 100 West, From Little Daisy M	ples WRS and 6, 50 to North of ine (34-009-SS-	adit #1 (WR-1). 1).					

Mine/Site Name: McLaren Mine Legal Description: T 9S R 14E	County: Park Section(s): NW 1/4, SW 1/4, Sec. 11
Mining District: New World	Mine Type: !!ardrock/Unknown
Latitude: N 45° 03' 35"	Primary Drainage: Stillwater River
Longitude: W 109° 57' 30"	USGS Code: 10070005
Land Status: Private/Public	Secondary Drainage: Stillwater River
Quad: Cooke City	Date Investigated: August 9, 1993
Inspectors: Babits, Flammang, Lasher	P.A. # 34-010
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- There were approximately 351,500 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:

Cadmium: 1.9 to 2.81 mg/kg Cobalt: 47J mg/kg

- There was one discharging adit on site, but it did not enter surface water directly. There were seeps emanating from the waste rock which entered surface water. One seep was sampled and had a pH of 3.21. The MCL/MCLGs for cadmium, copper, and nickel were exceeded, as was the chronic fresh water aquatic life criteria for iron. The chronic and acute fresh water aquatic life criteria for cadmium, copper, and zinc were exceeded.
- The seeps entered Daisy Creek 1,000 feet from the site. The seeps made up the flow of the creek, hence, no upstream surface water samples were collected. At the location the seeps entered Daisy Creek, cadmium and lead exceeded MCL/MCLGs, and the chronic fresh water aquatic life criteria for iron was exceeded. The chronic and acute fresh water aquatic life criteria for copper was also exceeded.
- There were no hazardous openings on site; but, there was one large highwall.

MCLaren PA# 34-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/09/93

						SOLID MA	SOLID MATRIX ANA! YSES							
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis											
FIELD D	As (mg/Kg)	Ba (mg/K.g.)	Cd (mg/Kg)	Co (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (me/Kø)	Sb (me/Ke)	Zn	CYANIDE
34-010-SE-1 34-010-WR-1 34-010-WR-2 34-010-WR-3	33.5 J 36.3 J 32.9 J 27.4 J	41.1 45.6 143 71.5	2.0 1.9 2.81 2.68	3.14 J 47 J 3.51 5.37	14.7 1.51 11.1 J 23.4 J	1110 1030 887 885	131000 152000 120000 92000	0.257 J 0.077 J 0.091 0.049	195 J 27.6 J 117 242	4.7 21.7 7.57 9.9	35.4 J 112	6.79 U 5.92 U 7.43 UJ	123 7.71 50.2	NR NR NR
BACKGROUND	14.6 J	8	0.4 U	10.5 J	30.7	4	23300	0.058 J	1450 J	20.7	1450 J 20.7 158 J 5.17 U 181	5.17 U	181	Z Z
	Acid/Base Accounting	ccounting									The property of the property o	ny ur rrecision, n	K - NOT Kequested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL POTENT	SULFUR NEUTRAL. ACID BASE POTENT. POTENT. V1000t V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
39-010-WR-1 39-010-WR-2 39-010-WR-3	18.2 1.33 0.55	567 41.5 17.2		-582 -44.8 -11.7	8.18 0.59 0.19	1.23 0.01 0.01	8.75 0.80 0.36	38.4 0.00 0.00	-53.0 -3.30 5.47					

	Metals in Water Results in uo/L	Nater ua/L				WATER MATE	WATER MATRIX ANALYSES							
FIELD D	i !	e e	Ba Cd	రి			F.	H	Mn	Z	£	5	H ,	HARDNESS CALC.
34-010-SW-1 34-010-SW-5	1.34 JX 1.12 UJX	X 27.4 JX 2.01 U	6.3 J U 20.3 J	35.8 133	14.2 41.7	6520 JX 26700 JX 1	24300 92000	1.93 0.48	2240 7150	2240 63.8 J 5.08 J 30.7 U 7150 141 J 6.47 J 30.7 U	5.08 J 6.47 J	30.7 U	# 98 900	203
	Wet Chemistry	. • -							U - Not Detected, J .	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accura	cy or Precision, NR -	- Not Requested	<u> </u>
	results in mg/l	-				SBI -	SB1 - At confluence of three mine drainages, summy 1000	e mine drainages	1000 mar	LEGEND	0 1/10			
FIELD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		from pit at Daiay Paus Road. WR1 - Composite of subsamples WR1A and 1B. WR2 - Composite of subsamples WR2A, 2B, and 2D.	us Road. uples WR1A and ples WR2A, 2B.	(1B.		SW5 - Discharge emanating f	OW 1 - Seame as sample SE1. SWS - Discharge emanating from dump.	n dump.	
34-010-SW-1 34-010-SW-5	34-010-SW-1 583 < 5.0 356 < 0.05 NR 34-010-SW-5 1870 55 1210 < 0.05 NR	< 5.0 55	356 1210	× 0.05	S S		WR3 - Sample of the WR2C subsample. BACKGROUND - From the Little Daisy Mine (34-009-SS-1).	C subsample. Little Daisy Mine	(34-009-88-1).					

Mine/Site Name: Black Warrior County: Park Legal Description: T 9S R 14E Section(s): NE 1/4, SE 1/4, Sec. 15 Mining District: New World Mine Type: ilardrock/Ag, Au, Zn, Pb Latitude: N 45° 02' 05" Primary Drainage: Soda Butte Creek Longitude: W 109° 57' 55" USGS Code: 10070001 Land Status: Private/Public Secondary Drainage: Miller Creek Quad: Cooke City Date Investigated: August 9, 1993 Inspectors: Babits, Flammang, Lasher P.A. # _34-079 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- There were approximately 1,100 cubic yards of mostly uncovered waste rock on site.

The following were elevated at least 3 times background:

Arsenic: 54J mg/kg Cadmium: 7.76 mg/kg Copper: 981 mg/kg Mercury: 0.93 mg/kg Lead: 14,600 mg/kg Antimony: 25.2J mg/kg Zinc: 2,490 mg/kg

- There were two discharging adits on site and both entered surface water directly. One adit discharge sample was collected; the pH was 7.22. The MCL for lead was exceeded, as was the chronic fresh water aquatic life criteria for iron and lead. The chronic and acute fresh water aquatic life criteria were exceeded for copper and zinc.
- Miller Creek flows adjacent to waste rock and there was an observed release of zinc documented to downstream surface water. No MCL/MCLGs were exceeded. The fresh water aquatic life criteria for mercury and lead were exceeded in both upstream and downstream surface water, indicating an upstream source.
- There was one open shaft with subsidence, one open adit, one hazardous loadout structure, and one collapsing cabin on site.

Black Warrior PA# 34-079 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/09/93

Cu Fe Hg Mn Ni Pb Sh Zn CYANIDE								OTOX IAMA YOU							
Cu Fe Hg Min Ni Pb Sb Zn C 35.5 17600 0.041 494 23 168 8.14 UJ 131 37.8 10000 0.055 U 61.8 20.8 78.5 10.2 UJ 743 981 65000 0.93 736 13.2 14600 25.2 J 2490 40 23300 0.058 J 1450 J 20.7 158 J 5.17 U 181 PYXIIC ORGANIC SULFUR ACID BASE POTENT ACID BASE POTENT % % V10000 V10000 ACID BASE POTENT ACID BASE <	Metals in soils Results per dry weight basis	solis er dry weight basis	<u>\$</u>					INA AIMALT SES							
35.5 17600 0.041 494 23 168 8.14 UJ 131 37.8 10000 0.055 U 61.8 20.8 78.5 10.2 UJ 743 981 65000 0.055 U 61.8 20.8 78.5 10.2 UJ 743 743 13.2 14600 25.2 J 2490 1450 23300 0.058 J 1450 J 20.7 158 J 5.17 U 181 U-Net Detected. J- Estimated Quantity. X. Oudlier for Accuracy or Precision: NR. Not Requested N. Not Detected. J- Estimated Quantity. X. Oudlier for Accuracy or Precision: NR. Not Requested N. Not Detected. J- Estimated Quantity. X. Oudlier for Accuracy or Precision: NR. Not Requested N. Not Detected. J- Estimated Quantity. X. Oudlier for Accuracy or Precision: NR. Not Requested N. Not Not Detected. J- Estimated Quantity. X. Oudlier for Accuracy or Precision: NR. Not Requested N. Not Not Detected. J- Estimated Quantity. X. Oudlier for Accuracy or Precision: NR. Not Requested N. Not Not Not Not Not Not Not Not Not Not	m)	Cd Co (mg/Kg) (mg/Kg) (m	Cd Co (mg/Kg) (mg	(m)	Cr (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (mo/Kg)
40 23300 0.058 J 1450 J 20.7 158 J 5.17 U 181 U-Not Detected: J- Estimated Quantity, X-Outlier for Accuracy or Precision: NR-Not Requested PYRITIC ORGANIC SULFUR ACID BASE SULFUR ACID BASE POTENT: "" "" "" "" "" "" "" "" "" "" "" "" "		0.92 9.67 5.55 8.14 7.76 6.34	0.92 9.67 5.55 8.14 7.76 6.34	 	17.8 20.2 11.2	!	35.5 37.8 981	17600 10000 65000	0.041 0.055 U 0.93	494 61.8 736	23 20.8 13.2	168 78.5 14600	8.14 UJ 10.2 UJ 25.2 J		AN AN
PYRITIC ORGANIC SULFUR SULFUR SULFUR ACID BASE % % v10000	14.6 J 89 0.4 U 10.5 J 30.7	89 0.4 U 10.5 J	10.5 J		30.7		8	23300	0.058 J	1450 J U - Not Detected J -	20.7 Estimated Quantity,	158 J X - Outlier for Accura	5.17 U	181 R - Not Remediate	_
PYRITIC ORGANIC SULFUR SULFUR SULFUR ACID BASE % % 1/1000:	Acid/Base Accounting	Accounting									•				
3.22 4.36 101	TOTAL SULFUR NEUTRAL. ACID BASE SULFATE SULFUR ACID BASE POTENT. POTENT. SULFUR % v1000t v1000t %	TOTAL SULFUR SULFUR SULFUR NEUTRAL. ACID BASE SUL. ACID BASE POTENT. POTENT. SUL. V1000t V1000t N					PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
	174 166 -8.17 <0	174 166 -8.17 <0				į	3.22	4.36	101	64.9					

	Metals in Water	Nater		·		WATER MATRIX ANALYSES	IX ANALYSES							·
FIELD	Results in ug/L	ug/L											ii.	HARDNESS
B	As ====================================	# # # #	Ba Cd	8	5 H	Cu	Cu Fe Hg	Hg	Mn	Ņ	£	8	Zn (m	CALC. Zn (mg CaCO3/L)
34-079-SW-1 34-079-SW-2	1.12 UJX 1.12 UJX	JX 18.2	2.57 U	0.7 U	6.83 U	5.53 JX	308	0.38	26.1	26.1 12.7 U 6.24 J 30.7 L	6.24 J	30.7 U	11.7	.7 82.8
34-079-SW-3	1.12 U.			9.7.0	7.73	23.4 JX	1320	0.27	15.1 65.8	12.7 U 12.7 U	5.48 J 89.8 J	30.7 U 30.7 U	49.2 430	102
									U - Not Detected, J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	X - Outlier for Accur.	acy or Precision, NR -	- Not Requested	
	Wet Chemistry													
	Results in mg/									LEGEND				
	TOTAL					- IES	SE1 - Upgradient on Miller Creek. Approx. 75 upgradient from waste rock dump 2.	r Creek. Approx.	75' upgradient from		SWI - Same as sample SEI.	s sample SE1.		
TRELD 1.0	DISSOLVED SOLIDS	CHLORIDE	DE SULFATE	NO3/NO2-N	CYAN		SE2 - Downgradient of waste rock dump 2 on Miller Creek. Approx. 3: from confluence of adit discharge in creek.	ate rock dump 2 o. Fadit discharge in c	n Miller Creek. Ap reek.	prox. 3'	SW3 - Adit dis	SW3 - Adit discharge at waste rock dump 1.	ock dump 1.	•
34-079-SW-1	115		7 49 < 0.05	× 0.05	ii 💮		WR1 - Composite of subsamples WR1A, 1B, and 2. BACKGROUND - From the Little Dairy Mine (34 process)	umples WR1A, 1B, e Little Dainy Min.	and 2.					
34-079-SW-2	135	v 200	5 5	v .	Z.				(-1-00)-00-1).					
C-AAC-8/0-50	8	•	S C	v S	X X									

Mine/Site Name: <u>Upper Alice E.</u> County: Park Legal Description: T 9S R 14E Section(s): NW 1/4, SE 1/4, Sec. 24 Mining District: New World Mine Type: | | lardrock/Au Latitude: N 45° 01' 58" Primary Drainage: Soda Butte Creek Longitude: W 109° 55' 38" USGS Code: 10070001 Land Status: Private/Public Secondary Drainage: Miller Creek Quad: Cooke City Date Investigated: August 10, 1993 Inspectors: Babits, Flammang, Lasher P.A. # _34-085 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- There were approximately 6,600 cubic yards of uncovered waste rock on site. The following were elevated at least 3 times background:

Copper: 120 to 174 mg/kg

Iron: 81,800 mg/kg

Mercury: 0.215 to 0.651 mg/kg

Lead: 3,440 mg/kg

- There were no discharging adits at the site.
- There was no surface water at the site. The nearest surface water was approximately 200 feet away. No surface water or sediment samples were collected.
- There was one hazardous subsidence feature at the site.

Upper Alice East PA# 34-085
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BABITS
INVESTIGATION DATE: 08/10/93

	Metals in solls Results per dry	Metals in soils Results per dry weight basis	<u>8</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	1		Cu (mg/Kg)	Fe (mg/Kg)	. Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
34-085-WR-1 34-085-WR-2	17.4 J 41.6 J	80.4 80.1		4.23 3.07	1.4 U 12.3 J	174	81800 46100	0.651 0.215	45.2 63.2	3.51 6.72	252 3440	6.29 UJ 7.04 UJ	104	NR NR
BACKGROUND	14.6 J	88	0.4 U	10.5 J	30.7	4	23300	0.058 J	1450 J	20.7	1450 J 20.7 158 J 5.17 U 181	5.17 U	181	Z Z
	Acid/Base Accounting	ccounting				•					TO THE TIME VICE	acy of Precision, N	IR - Not Requested	
FIELD D		TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	g i	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t	WR1 - Comp WR2 - Comp BACKGROU	WR1 - Composite of subsamples WR1A, 1B, 1C, 1D, 2A, and 2B. WR2 - Composite of subsamples WR3 and 4. BACKGROUND - From the Little Daisy Mine (34-009-SS-1).	LEGEND les WR1A, 1B, les WR3 and 4. ttle Daisy Mine	1C, 1D, 2A, and (34-009-SS-1).	2B.
34-085-WR-1 34-085-WR-2	11.3 0.77	354 24.1		1	3.11 0.53	2.65 0.09	5.56 0.15	82.8 2.81	**************************************					

Mine/Site Name: Fisher Creek No. 1 County: Park Legal Description: T 9S R 15E Section(s): NW 1/4, SW 1/4, Sec. 18 Mining District: New World Mine Type: Hardrock/Unknown Latitude: N 45° 02' 15" Primary Drainage: Clark Fork Yellowstone Longitude: W 109° 55' 11" River Land Status: Public USGS Code: 10070006 Quad: Cooke City Secondary Drainage: Fisher Creek Inspectors: Babits, Flammang, Lasher Date Investigated: August 10, 1993 Organization: Pioneer Technical Services, Inc. P.A. # <u>34-090</u>

- There were no mill tailings associate with this site.
- There were approximately 3,950 cubic yards of mostly uncovered waste rock on site.

The following were elevated at least 3 times background:

Arsenic: 82.3J to 207J mg/kg Barium: 228 to 333 mg/kg Cadmium: 3.26 mg/kg Copper: 255 to 449 mg/kg

Iron: 65,900 mg/kg Mercury: 1.98 mg/kg Lead: 213 to 920 mg/kg

Zinc: 732 mg/kg

- There were two discharging adits on site, and one enters Fisher Creek directly (SW-3); pH 6.95. Both discharges were sampled; the MCL for lead was exceeded in sample SW-3. Both discharges exceeded the acute and chronic fresh water aquatic criteria for copper.
- Fisher Creek was 1,300 feet from discharging adit SW-3. There was an observed release of mercury in the downstream sediments. No MCL/MCLGs were exceeded in downstream surface water. The chronic and acute fresh water aquatic life criteria for copper was exceeded in both the upstream and downstream surface water samples. The chronic fresh water aquatic life criteria was exceeded for lead in both upstream and downstream surface water samples, indicating an upstream source.
- There were three open adits at the site.

Fisher Creek PA# 34-090 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/10/93

	Metals in soils	. Sign				SOLID MA	SOLID MATRIX ANALYSES							
FIELD D	Results per As (mg/Kg)	Results per dry weight basis As Ba (mg/kg) (mg/kg)		Co (mg/Kg)	Cr (mg/Kg)	Ou (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mæ/Ke)	Zn (me/Ke)	CYANIDE
34-090-SE-1 34-090-SE-2 34-090-WR-1 34-090-WR-2	16.3 J 10.7 J 207 J 82.3 J	104 76.4 228 333	0.76 U 0.80 U 3.26 0.49 U	17.6 14.6 3.07 15.4	19.8 J 13.9 J 1.17 U 19.2 J	1220 1020 449 255	33900 24600 65900 32900	0.092 0.641 1.98 0.055	885 515 7.99 673	21.2 17.6 6.24 25.5	59.6 54.5 920 213	#33_3		A A A A
BACKGROUND	8.61 J	71.7	6:0	12.4 J	27	6.99	17100	0.02 J	461 J U-Not Detected, J.	23.9 Estimated Quantity, 7	461 J 23.9 28.3 J 5.49 U 69.9 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or President, NR - Not Requested	5.49 U	69.9 JX	
TELD D	Acid/Base Accounting TOTAL SULFUR SULFUR ACID BAS	Accounting TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
34-090-WR-1 34-090-WR-2DUP 34-090-WR-2	6.64 0.27 0.25	207 8.43 7.81	-3.57 4.15 3.81	l	0.72 0.10 0.07	2.91 0.03 0.03	3.01 0.14 0.15	90.9 0.94 0.94	-94.5 3.21 2.88					

	Metals in Water	/ater				WATER MAT	WATER MATRIX ANALYSES							·
FIELD	Results in ug/L	ig/L												HARDNESS
A !!	As Ba		ਲ	රි	ბ	ୃପ	F.	Нg	Mn	Z	.	8	ZZ	CALC. Zn (mg CaCO3/L)
34-090-GW-1 34-090-GW-2	4.48 JX 6.44 JX		2.57 U 2.67 J	9.7 U 0.7.0		23.4 JX 37 JX	1610 2190	0.27	ii ii II	12.7 U	5.68 J	H	36.6	75.8
34-090-SW-1	1.18 1.48 U	32.7	2.57 U	9.7 U	6.83 U	180	655	0.27	112	34.6 J	9.21 1.85 J	30.7 0	65.9 6.04	67.2
34-090-SW-3	6.5		2.57 U	0 7.6 0 7.6	6.83 U	169 51.1	647 756	0.12 U 0.15	102 91.6	12.7 U 14.8	1.86 J 38.1 J	30.7 U	£ 2	48.6
	Wet Chemistry								U - Not Detected, J - E	U - Not Delected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accuracy	or Precinion; NR - No	of Requested	!
	Results in mg/l									LEGEND				
FIELD LD.	TOTAL DISSOLVED SOLIDS	ORIDE	SULFATE		CYANIDE		SBI - Upgradient sediment sample in Fisher Creek. SB2 - Downgradient sediment sample in Fisher Creek. WR1 - Composite of subsamples WR1 and 2. WR2 - Sample of the WR4 subsample.	t sample in Fisher C tent sample in Fishe imples WR1 and 2. subsample.	r Creak		GWI - Groundwater in adit at waste rock dump 1. GW2 - Duplicate of sample GW1. SW1 - Same as sample SB1. SW2 - Same as sample NR2	Groundwater in adit at Duplicate of sample GV Same as sample SB1.	waste rock dı W1.	лгр 1.
34-090-GW-1 34-090-GW-2	110	8 12	72		0.3 NR	-	BACKGROUND - From the Little Daisy Mine (34-009-SS-1) WR2DUP - Duplicate of the 34-009-WR-2 sample.	te Little Daisy Mine	(34-009-SS-1). nple.		SW3 - Adit discharge of waste rock dump 4.	charge of waste	rock dump 4.	
34-090-SW-1	88	5	47	0.14	Z Z									
34-090-SW-2 34-090-SW-3	8 8	ເນ ເນ	4	^ 0.05 0.05 0.05	Z Z									
				}	•	-								

Mine/Site Name: Homestake No. 2 Legal Description: T 9S R 14E	County: Park Section(s): NE 1/4, NW 1/4, Sec. 14
Mining District: New World Latitude: N 45° 03' 14"	Mine Type: Hardrock/Cu, Au
Longitude: W 109° 56' 50"	Primary Drainage: Clark Fork Yellowstone River
Land Status: Private/Public	USGS Code: 10070006
Quad: Cooke City	Secondary Drainage: Fisher Creek
Inspectors: <u>Bullock, Belanger, Clark</u> Organization: <u>Pioneer Technical Services, Inc.</u>	Data Investigated A
- Tochnical Services, Inc.	P.A. # <u>34-093</u>

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 2,400 cubic yards. The following elements were elevated at least three times background:

Iron: 61,200 mg/kg

Manganese: 1490J mg/kg

Mercury: 0.378J mg/kg

- There were no flowing adits, filled shafts, seeps, or springs associated with the site; consequently, no groundwater or surface water samples were collected during the investigation.
- The site was located approximately 1/2 mile above the Fisher Creek drainage with no direct runoff pathways from the waste rock to the Creek.
- There was one open adit, a highwall associated with an exploration trench and two structures identified as potential safety hazards at the site.

Homestake #2 PA# 34-093
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 08/09/93

	Metals in soils Results per dry	Metals in solls Results per dry weight basis	Sisi			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	As Ba Cd Co (mg/Kg) (mg/Kg) (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
34-093-WR-1	16.7 J	71.7	9.0		21	1140	61200	0.378 J	1490 J	23.1	79.8 J	79.8 J 6.35 U	2	NR.
BACKGROUND	8.61 J	71.7	6.0	12.4 J	22	6.99	17100	0.02 J	461 J	23.9	28.3 J	28.3 J 5.49 U	N XL 6.69	ž
	A cool/PicA	1							U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	acy or Precision, Ni	R - Not Requested	
	Acid/ base Accounting	Accounting					•					LEGEND		
FIELD O	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WR1 - Comp BACKGROU	WRI - Composite of subsamples WRIA, 1B, and 1C. BACKGROUND - From the Lower Glengarry (34-006-SS-1).	es WR1A, 1B, a wwer Glengarry (and 1 C. (34-006-SS-1).	
34-093-WR-1 1.01 31.6 29.0 -2.52 0.02 0.32	1.01	31.6	29.0	-2.52	0.02	0.32	29:0	10.0 19.0	19.0					
														_

Mine/Site Name: Charter Oak County: Powell Legal Description: T 9N R 7W Mining District: Elliston Latitude: N 46° 29' 25" Longitude: W 112° 25' 10" Land Status: Private/Public Quad:_Bison Mountain Inspectors: Bullock, Babits, Flammang, Clark, P.A. # 39-003 Lasher/Pierson Organization: Pioneer Tech. Services//TD&H

Section(s): SW 1/4, NE 1/4, Sec. 36 Mine Type: Hardrock/Pb, Zn, Cu, Ag, Au Primary Drainage: Little Blackfoot River USGS Code: 17010201 Secondary Drainage: Little Blackfoot River

Date Investigated: June 11, 1993

The volume of tailings associated with this site was estimated to be approximately 6,000 cubic yards. The tailings extended out into a wetlands associated with the Little Blackfoot River. The following elements were at least three times background:

Arsenic: 14,500 to 63,700 mg/kg

Copper: 198 to 318 mg/kg

Mercury: 0.365JX to 0.375JX mg/kg Antimony: 131J to 843J mg/kg

Cadmium: 61J mg/kg Iron: 111,000 mg/kg

Lead: 3670 to 18,200 mg/kg Zinc: 314J to 6650J mg/kg

The volume of waste rock associated with this site was estimated to be approximately 19,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2650 to 13,500 mg/kg

Copper: 144 mg/kg

Lead: 4100 to 12,300 mg/kg

Zinc: 244J mg/kg

Cadmium: 1.8J to 2.0J mg/kg

Mercury: 0.329JX to 0.984JX mg/kg

Antimony: 71J to 284J mg/kg

- Two discharging adits were associated with this site. The lower, and more recently worked adit discharged approximately 10 to 15 gpm, at a pH of 2.4 to 2.5 and a specific conductance of 2380 to 3030 umhos/cm. Total arsenic concentrations in this discharge range from 24,100 to 41,900 ug/l. A dissolved arsenic sample concentration was measured at 16,100 ug/l. This discharge exceeded MCL/MCLGs for arsenic, cadmium, copper, and antimony. This discharge also exceeded aquatic life criteria for these metals and zinc. The upper adit discharge was comparatively benign with a neutral pH, no MCL/MCLG exceedances, and only exceeded the acute aquatic life criteria for iron.
- The Little Blackfoot River flowed adjacent to the site. No observed releases to the river were documented during this investigation, however, cyanide was elevated in the discharge from the wetlands to the river.
- There were several barrels of chemicals, solvents, and liquids present on the site.
- A domestic water supply well within one mile downgradient of the site had a slightly elevated arsenic concentration (10.9 ug/l), but well below the MCL of 50 ug/l.

Charter Oak PA# 39-003 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/11/93

Cd Co	Nesults per dry weight basis, mg/kg Ba Cd Co Cr	ins per dry weight basis, r Cd Co	mg/kg	mg/kg	#	ن ت	S	!	l	Z	æ	S	ភ	CYANIDE
39-003-SE-1 39-003-SE-2	4 0	26.2 44.7	1.6 J	4. Q. A	13.9	8.1	10300		 	8	31	5 UJ	#	261.1 0.18
39-003-SE-3	84	8			. 15 5. 50 5. 60	12.1	14600	0.032 JX	291 J	13	74		156 J	ž
39-003-TP-1	14500	25	1.7 J	2.7	7.5	198	48700	0.025 JX	397 J		82	5 J	150 J	ž
39-003-TP-2	63700	22.4	61 J	9.7	6 .	318	111000	XI. 385.0	2.5 2.4 2.4	0 :	3670	131 J	314 J	Z Z
39-003-WR-1	2650 12500	62.6	1.8 1.8	1.2 U	2.4	34.8	27000	0.361 JX	124		1960	843	9650	ž :
39-003-WR-3	2930	20.7 4.02	- 7 - 2	1.2 1.3 ∪	<u>—</u> დ	144 50.3	26700 34200		28.3 J	226	12300	113 J	233)	X X
BACKGROUND	163	147	0.6 U	9.2	6	21.7	35800	A ago	, - , 8	າ (914	284 J	72 }	œ Z
		;				<u>:</u> !		VC 000.0	L 558		8	¬ ∞	78)	ž
	Acid/Base Accounting	Accounting							U - Nat Detected, J - Estis	Æ	 Outlier for Accuracy 	sted Quantity, X · Outlier for Accuracy or Precision; NR · Not Requested	of Requested	
	TOTA	TOTAL	-	SULFUR				PYRITIC	SULFUR			FOEND		
FIELD	STEELES.	ACTO BASE	NEUTKAL.	ACID BASE	SULFATE	PYRITIC	ORGANIC	SULFUR	ACID BASE	SED1 - At PPE	<u></u>			
Ω	No. 190	WIDOR	*CION!	POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	POTENT.	SED2 - Downs	tream of PPE on	SED2 - Downstream of PPE on Little Blackfoot Rive	i.	
10 01 11 11 11 11	#				? !!	8	*	V1000t	1/1000t	SED3 - Upstre	am of PPE on Li	SED3 - Upstream of PPE on Little Blackfoot River.	į k	
39-003-TP-1	2.97	92.8	-7.8	-101	i	4 08			##	TP1 - Compos	ite of subsamples	rPl - Composite of subsamples TP1A, 2A, and 3.		
39-003-TP-2	13.8	430	r. G	438	2000	5 G	6 6	61.9	6	TP2 - Compos	ite of subsamples	TP2 - Composite of subsamples TP1C, 1E, and 2C.	บ	
39-003-WR-1	1.	56.2	-1.5	ģ	7.5	5.5	0.72		-201	WR1 - Compo	site of subsample	WR1 - Composite of subsamples WR1, 4, and 5.		
39-003-WR-2	1.01	31.6	5.5	, S	0.86	5 5	0.0	>	- 1.52 - 1.52	WR2 - Compo	site of subsample	WR2 - Composite of subsamples WR2A and 2B.		
39-003-WR-3	5.06	158	-3.3	-161	0.2	3.14	. . 5	9	-3.5 25.	WR3 - Compo	site of subsample	WR3 - Composite of subsamples WR3, 6, 7, 8, and 9	.6 pc	
39-003-WR-3DUP	5.08	159	4	-163	0.24	3.14	1.7	. 65 65 65 65 65 65 65 65 65 65 65 65 65 6	5 5	BACKGROUN	D - From the Ch	BACKGROUND - From the Charter Oak Mine (39-003-SS-1)	9-003-88-1).	
									70	WICEDUP - MI	WKSDUF - Duplicate of sample 39-003-WR-3	39-003-WR-3		
	:				WAT	WATER MATRIX ANALYSES	ALYSES							
	Metals in Water		Results in ug/L											Hardness
FIELD ID	As	Ba	3	පී	ರ	ð	Fe	Hg	W	Z	£	ŧ	1	Calc.
39-003-GW-1(TM)	41900	10	140	40.1	- S	======================================	222000			## ## ## ## ## ## ## ## ## ## ## ##			#	
39-003-GW-1A(DM)	16100	10.2	73.1	18.8		1180	120000	27.0	2610	33.3	440 J	148	14500	406
39-003-GW1A(TM)	24100	10.5	97.5	25.1	683 U	1520	15000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1930	18.3 J	127 J	30.7 U	8160 J	8
39-003-GW-2(TM)	196	9.13	2.55 U		2 5	1 35 1	3220	2.0	2320		256 J	42.5	10500 J	419
39-003-GW-3(TM)	10.9 J	5.37		9.7 U		3.23	32/0 128	2.00	0677		1.31		421	593
39-003-GW-3(DM)	8.73 J	4.8	2.57 U			3.3 J	5 5	2,00	0.0		1.57		ය	53.7
39-003-SW-1(TM)	20.1	7.3	2.55 U	5.99 U	5 0	5.	52	0 22 7	0. 7	0 7.7 0	0.72 U		68.3	57.5
39-003-SW-2(TM)	10.4	2.24 U	2.55 U	5.99 U	5 U	1.35 U	15	0.11	21.4	8.78 28.08 28.08	2.18 2.48 2.48	18.3 U	46.4	72.9
	Wet Chemietry	å	Oceanity of affices of					•		C. 7 C Limated Que	Z. 10 J Outlier for Accuracy	Or Precision NR - Not Bennesed) 9	4.3
		ש ע											De la company	
	TOTAL									LEGEND				
Field	DISSOLVED					M 10	Ow i(1M) - And discharge associated with waste rock dump 9; Total metals.	s associated with w	aste rock dump 9; '	Total metals.				
I.D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE	T AS	GW1A(DM) - Same location, yet filtered and sampled for dissolved metals.	ion, yet filtered and	sampled for dissolv	ed metals.				
10 00 01 01 11	######################################); }} \$1 \$1 \$1 \$1	10 10 10 11 11 11 11 11 11 11 11 11 11 1				GW2(TM) - Add directly above old mill building and mill	ou, sempled for total shows old mill beside.	metals.					
39-003-GW-1			•		æ	GW3(GW3(TM) - Well at Sunshine Kiawanas Gamp - total metals	tine Kiswanas cemn	lg - total metals. total metals					
39-003-GW-2	804	V V			ž	GW3(GW3(DM) - Same location, yet filtered and sampled for dissolved metals.	1, yet filtered and sar	npled for dissolved	metals.				
30-003-5W-1) () ()	3 2	× 0.05	0.02	SW1(SW1(TM) - PPE - Beaver pond discharge - total metals	pond discharge - to	tal metals.					
7-11				֡										

Mine/Site Name: Lily/Orphan Boy
Legal Description: T _8N R _6W
Mining District: Elliston
Latitude: N 46° 26' 34"
Longitude: W 112° 20' 27"
Land Status: Private/Public
Quad: Three Brothers
Inspectors: Bullock, Flammang, Clark
Organization: Pioneer Technical Services, Inc.

County: Powell
Section(s): NE 1/4, SW 1/4, Sec. 15
Mine Type: Liardrock/Au, Pb, Zn, Ag, Cu
Primary Drainage: Telegraph Creek
USGS Code: 17010201
Secondary Drainage: Telegraph Creek
Date Investigated: June 28, 1993
P.A. # 39-006

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 2600 cubic yards. The following elements were elevated at least three times background:

Arsenic: 13,000 to 21,500 mg/kg

Copper: 125 mg/kg

Mercury: 0.289J to 0.861J mg/kg

Antimony: 164J to 254J mg/kg

Cadmium: 5.9 mg/kg

Iron: 71,800 mg/kg

Lead: 9720 to 9850 mg/kg

Zinc: 612 mg/kg

- The waste rock dumps were unvegetated and WR-2 was being undercut and eroded by Telegraph Creek.
- A discharging adit (GW-1) was present, with a flow of 15 gpm, a pH of 3.36, and a specific conductance of 910 umhos/cm. The adit discharge exceeded MCL/MCLGs for arsenic, cadmium, and antimony. Acute aquatic life criteria were exceeded for arsenic, cadmium, copper, lead, and zinc and chronic aquatic life standards were exceeded for arsenic, cadmium, copper, iron, lead and zinc.
- Telegraph Creek was in contact with part of Waste Rock 2. The stream sampling was conducted during a storm runoff event. Water samples from the creek documented observed releases of arsenic, cadmium, copper, iron, lead, and zinc, as well as an exceedance of the MCL/MCLG for cadmium. The acute aquatic life criteria for copper and the chronic aquatic life criteria for iron were exceeded and directly attributable to the site. Stream sediment samples also documented releases of arsenic, cadmium, copper, iron, mercury, lead, antimony, and zinc.
- The shaft associated with Waste Rock 1was a hazardous mine opening and has been grated by MDSL.

Lily/Orphan Boy PA# 39-006 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>:8</u>			SOLID MAT	SOLID MATRIX ANALYSES			·				
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Рь (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
39-006-SE-1 39-006-SE-2 39-006-WR-1 39-006-WR-2	4450 104 13000 21500	283 62.8 43.7 15.1	38.4 0.5 U 0.5 U	118 15.5 7 11.2	4.1 U 3.5 1.9 1.7	440 11.5 78.3 125	61800 18300 29900 71800	0.106 J 0.018 U 0.861 J 0.289 J	14200 1570 1310 43	86 13 9	550 65 9720 9850	15 UJ 4 UJ 254 J 164 J	1200 164 612 251	N N N N N N N N N N N N N N N N N N N
BACKGROUND	88 61 Acid/Base Accounting	61 Accounting	1.2 J	ග ර	5. 4	32.7	18500	XL 710.0	1220 J U - Not Detected, J -	1220 J 10 62 5 J 133 J U - Not Detected: J - Estimated Quantity, X - Outlier for Accumey or Precision; NR - Not Requested	62 X - Outlier for Accur	5 J Nacy or Precision; N	133 J R - Not Requested	Z Z
FIELD O	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000k	SULFUR ACID BASE POTENT.	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
39-006-WR-1 39-006-WR-2		55.6 267	-1.3 -5.7	1	0.49 0.54	0.56 5.61	0.73	17.5 175	-18.8 -181					,

														
	Metals in Water Results in uo/L	Nater ug/L				WATER MAT	WATER MATRIX ANALYSES							
FIELD			<u>ਤ</u>	පී	ර්	ರ	Ħ.	H	ž	5	ŧ	ŧ	ш .	HARDNESS CALC.
39-006-GW-1	ii II II II	ji N	ii	42.1 JX	5 U	620	19200	**************************************	######################################			90	Zn (mg CaCO3/L)	Zn (mg CaCO3/L)
39-006-SW-1 39-006-SW-2	20.5 4.3	15.7 8.87	7.3 J 2.55 U	7.33 JX 5.99 UX	7.93	11.7	1900	0.038 U 0.042	228 15 15	32.8 11 8.78 U	26. 7.7. 86.	36.7 18.3 U	22500 635 73.4	132 16.8
									U - Not Detected, J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accura	acy or Precision; NR	l - Not Requested	-
	Wet Chemistry													
	Kesults in mg/									LEGEND				
FIRID	TOTAL				• .	SEI.	 SEI - Downstream of waste rock dump 2 approx. 200 SE2 - Upstream of pond behind waste rock dump 2. 	e rock dump 2 appr shind waste rock du	гох. 200° гпр 2.		GWI - Collapsed adit #1. SWI - Same as sample SEI.	sed adit #1.		
£	SOLIDS	CHLORIDE	SULFATE		CYANIDE		WKI - Composite of subsamples WR1A, 1B, 1C, and 1D. WR2 - Composite of subsamples WR2A, 2B, and 2C.	umples WR1A, 1B, ruples WR2A, 2B, 8	IC, and 1D. and 2C.		SW2 - Same as sample SE2.	sample SE2.		
39-006-GW-1	470	< 5.0	282	- - -			BACKGROUND - From the Ontario Millsite (39-010-SS-1).	e Ontario Millsite (3	39-010-SS-1).					
39-006-SW-1	83	> 2.0	16	× 0.05	X.	<u> </u>								<u>*</u>
39-006-SW-2	8	v 2:0	c	× 0.05	Ä									
							-							-

Mine/Site Name: Monarch	County:_Powell_
Legal Description: T 8N R 6W	Section(s): NE 1/4, NW 1/4, Sec. 31
Mining District: Elliston	Mine Type: Hardrock/Au, Ag
Latitude: N 46° 24' 27"	Primary Drainage: Little Blackfoot River
Longitude: W 112° 24' 12"	USGS Code: 17010201
Land Status: Public	Secondary Drainage: Monarch Creek
Quad: Bison Mountain	Date Investigated: August 18, 1993
Inspectors: Bullock, Belanger	P.A. # 39-008
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings observed at this site during the investigation. The claim holder was in the process of assembling a small-scale mill but had not achieved production at the time of this investigation.
- The volume of waste rock associated with the site was estimated to be approximately 4,200 cubic yards. The following elements were elevated at least three times background:

Arsenic: 163J mg/kg

Copper: 727J mg/kg

Mercury: 1.85J mg/kg

Manganese: 4240J mg/kg

Lead: 469J mg/kg

Antimony: 195 mg/kg

- One discharging adit was observed at the site during the investigation. No MCLs were
 exceeded in the adit discharge; however, the chronic aquatic life criteria for mercury was
 exceeded. The discharge had a pH measurement of 9.0 and a specific conductance of
 780 umhos/cm. After flowing adjacent to the waste rock dump for its entire length, the
 discharge had a pH measurement of 8.26 and a specific conductance of 180 umhos/cm.
- One potentially hazardous adit opening was identified at the site, as well as one potentially hazardous structure.

Monarch PA# 39-008 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/18/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.8</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD As Ba Cd Co Cr D (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	1	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
39-008-WR-1	1ങ ച	40 ک	3.3	8.49	2.85	L 727	42100 J	1.85 J	4240 J	3.49	469 J	Ï	109 J NR	N.
BACKGROUND	22.6 J	141 J	1 .	7.17	8.13	18.9 J	16600 J	0.043 J	835 J U - Na Delected, J . E	5.56 Estimated Quantity,	835 J 5.56 37 J 6.78 U 90.9 J U - Not Detected, J. Estimated Quantity, X Outlier for Accuracy or Precision; NR - Nea Requested	37 J 6.78 U or Accuracy or Precision, NR	90.9 J	X X
	Acid/Base Accounting	Accounting												
TOTAL SULFUR ACID BASE SULFATE FIELD SULFUR ACID BASE POTENT. POTENT. SULFUR D % v1000t v1000t v1000t %	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE SULFATE POTENT. SULFUR V1000t %	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
39-008-WR-1	-	31.2	6.19	-25	0.44	0.31	0.25	9.68	-3.5					
					The state of the s									

· Long														
	Metals in Water Results in ug/L	Vater ug/L			-	WATER MATI	WATER MATRIX ANALYSES							
FIELD D	FIELD D As Ba Cd Co C	.	ర	రి	ర	ď	Fe	H H	Mn	Z	Pb	જ	/H .	HARDNESS CALC.
39-008-GW-1	4.21	19.6	2.57 U	9.7 U	6.83 U	1.67 J	U 1.67 J 46.7	0.19 J 41.6 12.7 U 2.19 J 30.7 U 38.5 J 115 U - Not Detector J - Estimated Quantity, X - Outlier for A , curacy or Procision; NR - Not Requested	41.6 U - Not Detected; J - 1	41.6 12.7 U 2.19 ,1 30.7 U 38.5 J U Na Detected J - Editinated Quantity, X - Outlier for A. curacy or Precision; NR: Na Requested	2.19 (1	12.7 U 2.19 ,1 30.7 U mated Quaratty, X - Outlier for A .curacy or Precision; NR - 1	38.5 J	115
	Wet Chemistry									LEGEND				
CHE	TOTAL					WRI BACF	WRI - Composite of subsamples WRIA, 1B, 1C, and 1D. BACKGROUND - From the Monarch Mine (39-008-SS-1).	mples WR1A, 1B, se Monarch Mine (3	1C, and 1D. 19-008-SS-1).		GW1 - Dischar	GWI - Discharge from adit associated with waste rock dump 1.	ciated with wast	Q
.G1	SOLIDS	CHLORIDE	CHLORIDE SULFATE NO3/NO2-N CYANIDE	NO3/NO2-N	CYANIDE									
39-008-GW-1	9-008-GW-1 167 < 5.0 133 < 0.05 NR	< 5.0	133 < 0.05	< 0.05	NR									<u> </u>

Mine/Site Name: Ontario Millsite County: Powell Legal Description: T 8N R 6W Section(s): NE 1/4, SW 1/4, Sec. 22 Mining District: Elliston Mine Type: Hardrock/Pb, Zn, Cu, Aq, Au Latitude: N 46° 25' 45" Primary Drainage: Little Blackfoot River Longitude: W 112° 15' 00" USGS Code: 17010201 Land Status: Private/Public Secondary Drainage: Ontario Creek Quad: Three Brothers Date Investigated: June 10, 1993 Inspectors: Babits, Bullock, Flammang, Clark, P.A. # 39-010 Lasher/Pierson Organization: Pioneer Technical Services, Inc./ Thomas, Dean and Hoskins, Inc.

The volume of tailings associated with this site was estimated to be approximately 2,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 1,510 to 2,730 mg/kg Cadmium: 13.8J to 30.7J mg/kg

Copper: 178 to 628 mg/kg

Mercury: 0.085JX to 0.113JX mg/kg

Lead: 1,290 to 2,090 mg/kg Antimony: 55J to 130J mg/kg Zinc: 1,770 to 2,530 mg/kg

The volume of waste rock associated with this site was estimated to be approximately 25,750 cubic yards. The following elements were elevated at least three times background (based on XRF analyses):

Arsenic: 905 mg/kg

Lead: 393 to 1,396 mg/kg

Barium: 454 to 701 mg/kg

- Two discharging adits (collapsed) were observed at the site during the investigation. MCLs were exceeded for arsenic, cadmium, and antimony in the Adit #1 discharge. Acute and chronic aquatic life criteria were exceeded for arsenic, cadmium, copper, lead, and zinc, and chronic aquatic life criteria were exceeded for iron and mercury in the Adit #1 discharge. Acute and chronic aquatic life criteria were exceeded for cadmium, copper, and zinc, and chronic aquatic life criteria were exceeded for iron and mercury in the Adit #2 discharge. Adit discharge pH measurements were 2.3 and 3.6 for Adit #1 and Adit #2, respectively.
- Ontario Creek was flowing near the site and received the discharge from Adit #2.
 Observed releases to Ontario Creek were documented for copper and zinc in water samples, and arsenic, copper, lead and antimony in sediment samples; however, no MCLs or acute or chronic aquatic life criteria were exceeded in Ontario Creek that were attributable to the site. The upstream surface water sample indicated the presence of an upgradient contaminant source.
- A potentially hazardous collapsing building was observed at the site.

Ontario Millsite PA# 39-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/10/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MA	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (me/Ke)
39-010-SE-1 39-010-SE-2 39-010-SE-4 39-010-TP-1 39-010-TP-2	851 3420 12 1790 2730 1510	26.7 17.4 26.7 41.1 8.5 5.8	1.8 J 0.5 U 0.6 U 30.7 J 13.8 J 0.4 U	8.55 1.3 U 1.2 U	25.9 25.5 1.8 4 4 0.9 1 U	60.7 52.1 9.3 628 178 47.4	8060 25000 8410 7560 6930 3550	0.034 JX 0.114 JX 0.031 JX 0.085 JX 0.113 JX	544 J 19.9 J 269 J 74.4 J 22.2 J 4.3 J	4 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	337 2080 12 1410 1290 2090	128 J 128 J 4 UJ 130 J 55 J	150 J 273 J 62 J 2530 J 1770 J	N N N N N N N N N N N N N N N N N N N
BACKGROUND	88	61	1.2 J	ල ල	5. 4	32.7	18500	0.017 JX	1220 J U-Not Detector, J.E	1220 J 10 62 5 J 135 U - Not Detected; J - Estimated Quantity; X - Outlier for Accuracy or Precision; NR - Not Requested	62 - Outlier for Accuracy	5 J 7 or Precision; NR - ?	133 J	Z Z
FIELD D	Acid/Base Accounting TOTAL SULFUR SULFUR ACID BAS	Accounting TOTAL SULFUR ACID BASE V1000t	SI NEUTRAL, A POTENT. P	ULFUR CID BASB OTENT.	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
39-010-TP-1 39-010-TP-2 39-010-TP-5	1.35 0.52 0.1	42.2 16.2 3.12		8 4 8 8 6 5	-0.01 0.12 0.07	0.13 0.05 0.01	1.22 0.35 0.03	4.06 1.56 0	-10.2 -3.29 0.09					

WATER MATRIX ANALYSES Results in ug/L	Sd Co Cr Cu Fe	35 33 5 U 306 44300 0.053 J 2100 21.3 425 J 29.5 53.1 2.55 U 5.99 U 5 U 5.67 177 0.093 J 44.4 8.78 U 5.79 J 18.3 U 76.255 U 5.99 U 5 U 5.67 177 0.093 J 44.4 8.78 U 5.5 J 18.3 U 76.255 U 5.99 U 5 U 92 480 0.099 J 1160 8.78 U 153 J 18.3 U 165.255 U 5.99 U 5 U 1.35 U 198	sults in mg/l SULFATE	220 < 0.05 NR (7PI - Companies of inhumania TO 12 and 141)
in ug/L	రి	33 15.2 5.99 U 14.6 5.99 U		× 0.05
Metals in Water Results	As Ba	1190 9.27 20.3 14.6 5.4 6.27 2 11.3 14 2.87 6.73 2	ry CHLORIDI	48 < 5.0 2
	FIELD D	39-010-GW-1 39-010-GW-2 39-010-SW-1 39-010-SW-4		39-010-GW-1

Mine/Site Name: Golden Anchor County: Powell Legal Description: T 8N R 7W Section(s): NE 1/4, SW 1/4, Sec. 1 Mining District: Elliston Mine Type: riardrock/Unknown Latitude: N 46° 28' 20" Primary Drainage: Little Blackfoot River Longitude: W 112° 25' 27" USGS Code: 17010201 Land Status: Private/Public Secondary Drainage: Little Blackfoot River Quad: Bison Mountain Date Investigated: July 14, 1993 Inspectors: Bullock, Flammang, Clark P.A. # 39-012 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 5000 cubic yards. The following elements were elevated at least three times background:

 Cadmium: 3.1J mg/kg

 Antimony: 29J mg/kg

 Zinc: 329J mg/kg.

- The waste rock dumps were mostly unvegetated.
- A discharging adit, sampled as GW-1, was present, with a flow of approximately 1.4 gpm, a pH of 6.85, and a specific conductance of 188.7 umhos/cm. The adit discharge exceeded the MCL for arsenic, the acute aquatic life criteria for zinc and the chronic aquatic life criteria for iron, mercury, and zinc.
- An unnamed tributary to the Little Blackfoot River flowed past the northern boundary of the site. There were no observed releases, MCL/MCLG or aquatic life criteria exceedances attributable to this site. Samples were collected during a storm event which visibly intensified between the downstream and upstream sample collection. This storm event may be partially responsible for inconclusive results generated by this sampling.
- Two highwalls were present and classified as hazardous; one approximately 25 feet high and associated with collapsed Adit #1, and the second approximately one half mile above the adit in an exploration cut that was about 50 feet high. A metal building in poor repair was also classified as potentially hazardous.

Golden Anchor PA# 39-012 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/14/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	S			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)		Cu (ing/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sh (me/Ke)	Zn (mø/K e)	CYANIDE
39-012-SE-1 39-012-SE-2 39-012-WR-1	247 J 697 J 323 J		6.6 J 7 J 3.1 J	19.2 12.8 3.3	1.7 2.7 3.9	8.6 JX 19.4 JX 17.2 JX	12200 20800 13500	0.084 J 0.131 J 0.074 J	1910 1200 310		137 J 454 J 80 J	7 J 12 J 29 J	643 J 726 J 329 J	N N N N N N
BACKGROUND	<u>8</u>	147	0.6 U	9.2	6.0	21.7	32800	0.066 JX	933 J U - Not Detected, J -	933 J 9 30 B J 78 J U - Not Detected 1 - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	30 • Outlier for Accura	8 J Ley or Precision; N	78 J	X X
	Acid/Base,	Acid/Base Accounting											-	
FIELD	TOTAL TOTAL SULFUR SULFUR ACTD BASE % v1000	TOTAL SULFUR ACID BASE V1000t	NEUTRAL: POTENT. 1/1000t	SULFUR EUTRAL: ACID BASE OTENT: POTENT. /1000t v1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASIB POTENT. V1000t					
39-012-WR-1	2.84	88.7	52.6		-	1.3	0.54	40.6	12					
														-

	Metals in Water	Nater			·	WATER MATRIX ANALYSES	X ANALYSES							
FIELD	Results in ug/L	ng/L											H.	HARDNESS
8	A	As Ba	ਣ	రి	ָט	ರ	Ę	H	Mn	ž	£	Ŕ	Zn (me	CALC.
39-012-GW-1	61.6	10.40	2.57 U	9.70 U	1	1.55 U	3610	0.260	953 J	953 J 12.7 U 1.42 J 30.7 U	1.42 J	30.7 U	208 J 80.9	80.9
39-012-SW-2	27.9	6.77	2.57 U	9.70 0.70 0.70	6.83 U	23.10	8 2	0.230	58.5 J 18.4 J	12.7 U 12.7 U	1.85 J 2.19 J	30.7 U 30.7 U	183 152 J	65 4
									U - Not Detected, J - I	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	· Outlier for Accum	icy or Precision, NR -	Not Requested	
	Wet Chemistry	_												
	Results in mg/l	_				i				LEGEND				
FIELD	TOTAL	•				SE2 - L SE2 - A	SE1 - Downstream of waste rock dump 1. SE2 - Above access road to mine approx. 40. WP1 - Commence of the second se	e rock dump 1. mine approx. 40.			GW1 - At the mouth adit #1. SW1 - Same as sample SE1.	nouth adit #1.		- IIA
I.D.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANE		BACKGROUND - From the Charter Oak (39-003-SS-1).	e Charter Oak (394	and IC. 303-88-1).	-	SW2 - Same as sample SE2.	sample SE2.		
39-012-GW-1		6.3		× 0.05	H									
39-012-SW-1	271	< 5.0	88	× 0.05	X									
39-012-SW-2	151	< 5.0	22	× 0.05	¥									

Mine/Site Name: Hard Luck County: Powell Legal Description: T_8N R 6W Section(s): NW 1/4, SW 1/4, Sec. 21 Mining District: Elliston Mine Type: Hardrock/Ag, Zn, Pb, Cu, Au Latitude: N 46° 25' 43" Primary Drainage: Ontario Creek Longitude: W 112° 22' 12" USGS Code: 17010201 Land Status: Public Secondary Drainage: Ontario Creek Quad: Three Brothers Date Investigated: July 14, 1993 Inspectors: Tuesday, Belanger, Lasher P.A. # 39-014 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 650 cubic yards. The following elements were elevated at least three times background:

Arsenic: 4290J to 3750J mg/kg Mercury: 0.061J to 0.391J mg/kg

Lead: 16,500 J mg/kg

Zinc: 492J mg/kg

Cadmium: 6J mg/kg

Manganese: 26,500 mg/kg Antimony: 15J to 314J mg/kg

- One adit discharge was observed at the site during the investigation. The minor flow was discharged from the open adit through a 2-inch pipe around a waste dump, to a wooden bucket and eventually seeped into the ground. No MCLs were exceeded in the adit discharge; however, the acute aquatic life criteria for cadmium and the chronic aquatic life criteria for mercury were exceeded. No other surface water was observed in the vicinity of the site.
- Two potentially hazardous mine openings were observed during the investigation including one partially caved adit and one partially caved shaft, and a potentially hazardous collapsing building was located on the west side of the site.

Hard Luck PA# 39-014 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/14/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD D	As Ba (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (ms/Ke)	CYANIDE (me/Kr.)
39-014-WR-1 39-014-WR-2	3750 J 4290 J	16.7 70.2	6 J 3.3 J		1.9 U 1.1	13.3 JX 55.1 JX	52400 17300	0.391 J	26500 8.1	#×S	151 J 16500 J	15 J 314 J	492 J NR 97 J NR	S S S
BACKGROUND	88	61	1.2 J	6 .	5.4	32.7	18500	0.017 JX	1220 J U-Not Detected, J.)	1220 J 10 62 5 J 133 J U-Net Detected J. Estimated Quantity, X. Outlier for Accuracy or Precision; NR. Net Requested	62 - Outlier for Accura	5 J key or Precision; N	133 J	
	Acid/Base Accounting	Accounting												
FIBLD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. '	SULFUR NEUTRAL. ACID BASE SULFATE POTENT. POTENT. SULFUR V1000t v1000t %	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. t/1000t					
39-014-WR-1 39-014-WR-2	1.6 0.76	50 23.7	119 -0.3	69.3 -24	0.44 0.72	0.87 0.01	0.29	27.2 0.31	92.1 -0.65					

	Metals in Water Results in ug/L	/ater g/L				WATER MATRIX ANALYSES	(ANALYSES						
FIELD D	FIELD As	Ba	స్	రి	ರ	₹ .	Ŧ.	Hg	Mn	ž	£	ŝ	HARDNESS CALC. Zn (me CeCo3()
39-014-GW-1	31.7 J	2.01 U	2.01 U 2.57 U	9.70 U	6.83 U	1.55 U	23.7	0.038 U	4.08 U	4.08 U 12.7 U 0.72 U 30.7 U 7.57 U U · Net Detected 1 - Entimeted Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	0.72 U	30.7 U	2.01 U 2.57 U 9.70 U 6.83 U 1.55 U 23.7 0.038 U 4.08 U 12.7 U 0.72 U 30.7 U 7.57 U 62.8 U - Not Detected J. Estimated Quantity, X. Outlier for Accuracy or Precision, NR. Not Reported
	Wet Chemistry Results in mg/l					WR1 - C	omposite of subsa	WR1 - Composite of subsamples WR1A and 1B.	, aci	LEGEND	T IT VITA UND		
FIBLD	TOTAL					WR2 - C BACKGR	composite of subsatoUND - From the	WR2 - Composite of subsamples WR3A and 3B. BACKGROUND - From the Ortanio Millsite (39-010-SS-1).	B. 19-010-8S-1).			crientige.	
ID.	SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE								
39-014-GW-1	 	116 < 5.0	24	× 0.05	NR NR								

Mine/Site Name: Kimball County: Powell Legal Description: T 8N R 7W Section(s): NW 1/4, NE 1/4, Sec. 12 Mining District: Elliston Mine Type: <u>Hardrock/Pb, Ag, Au, Zn, Cu</u> Latitude: N46° 27' 49" Primary Drainage: Little Blackfoot River Longitude: W 112° 25' 04" USGS Code: 17010201 Land Status: Public Secondary Drainage: Little Blackfoot River Quad: Bison Mountain Date Investigated: August 18, 1993 Inspectors: Bullock, Belanger/Pierson P.A. # 39-018 Organization: Pioneer Technical Services. Inc./ Thomas, Dean and Hoskins, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 6500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2350J mg/kg Antimony: 97.6 mg/kg

Lead: 901J mg/kg

Cadmium: 5.6 mg/kg Zinc: 385J mg/kg

- The waste rock was 90% unvegetated.
- No discharging adits, seeps, or springs were observed during the investigation.
- No surface water samples were collected due to an absence of direct runoff pathways to the nearest surface water.
- The adit associated with Waste Rock 3 had a culvert closure installed by the MDSL.
- An old loadout present on the site was classified as a potential hazardous structure.

Kimball PA# 39-018 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/18/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>.s</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba Cd Co Gr (mg/Kg) (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (ma/Ke)	CYANIDE (me/K.e)
39-018-WR-1	2350 J	66.6 J	5.6	3.91	4.47	32.2 J	38600 J	0.064 J	**************************************	2.64 U	-	97.6	385 I ND	ON ON
BACKGROUND	163	147	0.6 U	9.2	6.9	21.7	35800	XC 990.0	g33 J	o	8		. 82	2
	Acid/Base Accounting	Accounting							U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Satimated Quantity, 3	C - Outlier for Accura	icy or Precision, NR	· Not Requested	
FIELD ID 39-018-WR-1	TOTAL SULFUR % 3.07	TOTAL SULFUR SULFUR ACID BASE SULFUR ACID BASE POTENT. POTENT. % 11000t 11000t 11000t 11000t 3.07 95.9 43.4 -53	NEUTRAL. POTENT. #10000 .	SULFUR ACID BASE POTENT. #1000t	SULFATE SULFUR % 0.65	PYRITIC SULFUR % 2.09	PYRITIC ORGANIC SULFUR SULFUR % % 2.09 0.33	PYRITIC SULFUR ACID BASB v1000:	SULFUR ACID BASE POTENT. v1000t -21.9	WR1 - Compo	WR1 - Composite of subsamples WR1, 2A, 2B, and 3. BACKGROUND - From Charter Oak Mine (39-003-8S-1).	LEGEND ss WR1, 2A, 2B, r Oak Mine (39-	on3-SS-1).	

Mine/Site Name: Sure Thing County: Powell Legal Description: T 8N R 6W Section(s): NW 1/4, SE 1/4, Sec. 15 Mining District: Elliston Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn Latitude: N 46° 26' 23" Primary Drainage: Telegraph Creek Longitude: W 112° 19' 55" USGS Code: 17010201 Land Status: Private/Public Secondary Drainage: O'Keefe Creek Quad: Three Brothers Date Investigated: June 28, 1993 Inspectors: Bullock, Flammang, Clark P.A. # <u>39-020</u> Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 7700 cubic yards. The following elements were elevated at least three times background:

Arsenic: 2810-4930 mg/kg Mercury: 0.149J-0.285J mg/kg Copper: 129-248 mg/kg Antimony: 35J-42J mg/kg

Cobalt: 57.3 mg/kg Nickel: 57 mg/kg Iron: 123,000 mg/kg Zinc: 556 mg/kg

- The waste rock dump(WR-2) had elevated radiation readings ranging from 0.15-0.7 mR/hr.
- One discharging adit had a small flow of 3 gpm. The discharge, sampled as GW-1, had
 a pH of 3.36, and a specific conductance of 990 umhos/cm. The sample exceeded
 MCL/MCLGs for antimony, arsenic, cadmium, and copper, exceeded aquatic life
 standards (chronic) for iron, cadmium, copper, lead, and zinc, and aquatic life standards
 (acute) for cadmium, copper, lead, and zinc.
- Seeps were located below the Sure Thing Mine site, associated with mine workings that were not originally inventoried under this PA number also had low pH's ranging from 3.71 to 5.34.
- The hazardous highwall associated with the collapsed adit was 20 feet high.

Sure Thing PA# 39-020 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s</u>			SOLID MA	SOLID MATRIX ANALYSES	Ø						
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
39-020-WR-1 39-020-WR-2 39-020-WR-3	2810 4460 4930	9.6 11.7 22.9	0.6 U 0.5 U 0.5 U	1.3 U 57.3 3.1	- 4	54.8 129 248	12000 123000 54100	0.149 J 0.285 J 0.18 J	16.5 6.8 151	2 U 57 3	3850 24000 1620	42 J 35 J 13 J	43 166 556	A A A
BACKGROUND	88	19	1.2 J	6.9	5.4	32.7	18500	XL 710.0	1220 J 10 62 5 J 133 J U - Na Delectec, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	10 Estimated Quaraity;	62 X - Outlier for Accu	5 J	133 J	S S
	Acid/Base Accounting	Accounting												
FELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	SULFUR NEUTRAL. ACID BASE POTENT. POTENT.	SULFUR ACID BASE POTENT. V1000t		PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
39-020-WR-1 39-020-WR-2 39-020-WR-3	0.47 17.7 1.54	14.7 554 48.1	-0.8 -4.5 -7.4	-15 -558 -56	0.16 2.08 1.24	0.13 7.92 0.05	0.18 7.72 0.25	4.06 247 1.56	4.82 -252 -8.97					

	Metals in Water	Vater				WATER MA	WATER MATRIX ANALYSES							
FIELD	Nesalis III ug/L	J J											H	HARDNESS
D	ID As Ba Cd Co C	Be	8	රී	Ö		. ₽	Я́Н	Mn	ï	æ	8	Zn (m	CALC.
39-020-GW-1	1740	4.57	101	61.2 JX	7.8		1360 29400 0.038 U	0.038 U	12800	12800 52.7 183 25.5 11000 114	183	25.5	11000	114
						i			of Tananara and	Control Section, 1. Estimated Commity, A Oddier for Accuracy or Precision; NR - Not Requested	L - Oddier for Accura	icy or Precision; NI	R - Not Requested	
	Wet Chemistry									LEGEND				
	Mesonis III III					W	WR1 - Composite of subsamples WR1A, 1B, and 1C.	amples WR1A, 1B,	and 1C.		GW1 - Discharge from adit #1.	ge from adit #1		
	TOTAL					X X	WAZ - Sample of the WKZA subsample. WR3 - Composite of the subsample. WR2B and 2C	2A subsample. ubsamples WR2B s	S. Fin					
FIELD	DISSOLVED					BA	BACKGROUND - From the Ontario Millsite (39-010-SS-1).	re Ontario Millsite	(39-010-SS-1).					
LD.	SOLIDS	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE									
39-020-GW-1	39-020-GW-1 490 < 5.0 286 < 0.05 NR	490 < 5.0	286	286 < 0.05	NR III									

Mine/Site Name: Julia	_ County:_Powell
Legal Description: T 8N R 6W	Section(s): S 1/2, SW 1/4, Sec. 5
Mining District: Elliston	Mine Type: Hardrock/Cu, Pb, Au, Ag
Latitude: N 46° 28' 00"	Primary Drainage: Telegraph Creek
Longitude: W 112° 22' 35"	USGS Code: 17010201
Land Status: Public	Secondary Drainage: Booth Gulch
Quad: Bison Mountain and Three Brothers	Date Investigated: June 28, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # _39-022
Organization: Pioneer Technical Services,	
Inc./Thomas, Dean and Hoskins, Inc.	•

- There were no mill tailings associated with this site.
- There were approximately 10,720 cubic yards of uncovered waste rock on site. The following were elevated at least 3 times background:

Cadmium: 3.9 to 291 mg/kg Copper: 108 to 155 mg/kg Mercury: 1.37J to 5.12J mg/kg Lead: 2,030 to 10,500 mg/kg Antimony: 382J to 602J mg/kg

- There were no discharging adits at this site.
- There was no surface water on the site. The nearest surface water is 0.5 miles away.
- There was one open adit and two hazardous loadout structures on site.

Julia PA# 39-022 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/28/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Š			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	r) > 1	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
39-022-WR-1 39-022-WR-2	106 136	17.8 5.8	3.9 291	2.3 8.6	1.2 1.1 U	108 155	25000 90500	1.37 J 5.12 J	67.2 16.7	2 C	2030 10500	382 J 602 J	458 27600	Z Z
BACKGROUND	3	147	0.6 U	9.2	6.0	21.7	35800	0.066 JX	933 J	் ர	8	8	78 J	X.
	Acid/Base Accounting	\ccounting							U - Not Detected, J -	U - Na Delected, I - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	X - Outlier for Accu	macy or Precision; N	R Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASB POTENT. V1000t	WR1 - Compo WR2 - Sample BACKGROUN	LEGEN WRI - Composite of subsamples WRI A, 18 WR2 - Sample from the WR2 subsample. BACKGROUND - From Charter Oak Mire	LEGEND WRI - Composite of subsamples WRIA, 1B, 1C, and 3. WR2 - Sample from the WR2 subsample. BACKGROUND - From Charter Oak Mine (39-003-SS-1).	1C, and 3.	
	1.77 17.2	55.3 537	-1.9 -3.5	1	1.24	0.12 6.96	0.41 3.75 10.9 217	3.75 217	-5.66 -221					

Mine/Site Name: Telegraph	_ County:_Powell
Legal Description: T 8N R 6W	Section(s): NW 1/4, NE 1/4, Sec. 11
Mining District: Elliston	Mine Type: riardrock, Placer/Au, Ag
Latitude: N 46° 27' 51"	Primary Drainage: Telegraph Creek
Longitude: W 112° 18' 51"	USGS Code: 17010201
Land Status: Private/Public	Secondary Drainage: Bryan Creek
Quad: Three Brothers	Date Investigated: June 10, 1993
Inspectors: Bullock/Pierson	P.A. # _39-023
Organization: Pioneer Technical Services,	
Inc./ Thomas Dean and Hoskins Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 1260 cubic yards. The following elements were elevated at least three times background:

 Arsenic: 524J mg/kg

 Copper: 99.2 mg/kg

Mercury: 0.147 to 0.506 mg/kg

Copper: 99.2 mg/kg Lead: 425 mg/kg

- The waste rock dumps were unvegetated.
- Two discharging adits were present, GW-1 had a flow of 5 gpm, a pH of 4.77, and specific conductance of 135.3 umhos/cm. The second adit (GW-2) had a flow of 8 gpm, a neutral pH of 6.53, and a low specific conductance of 36 umhos/cm. Both adit discharges empty into Bryan Creek below the site. One seep was also located between WR-3 and WR-4.
- The discharge flowed over the waste rock at the site and then into Bryan Creek south of the mine. An observed release of copper was documented in the surface water.
 MCL/MCLGs were not exceeded in Bryan Creek. Although, there were several aquatic life criteria exceedances in the Bryan Creek samples, none were directly attributed to this site.
- Two hazardous structures were present at the site, an old loadout or mill, and a cabin.
 There was a highwall present behind adit #1and WR-1 was over-steepened and eroding into the adit discharge.

Telegraph PA# 39-023 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/10/93

· ·	Metals in soils Results per dry	Metals in soils Results per dry weight basis				SOLID MAT	SOLID MATRIX ANALYSES							-
FIELD D	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
39-023-SE-1 39-023-SE-2 39-023-WR-1	58 J 57 J 208 J	91.9 112 48	10.1 19.6 0.4 UJ	7.7 5.3 1.3		54.2 70.3 48.9	14300 13000 25500	0.217 0.131 0.506	2080 3080 24.3	17 J 23 J	62 45 46	6 J 4 UJ	913	Z Z
39-023-WR-2	524 J	23.8	0.5 UJ	1.1 U	6:1	99.2	27500	0.147	24.1	2 S		n & n &	133	Z Z
BACKGROUND	88	19	1.2 J	6.9	5.4	32.7	18500	0.017 JX	1220 J	10	62	יט ה	133 J	S.
	Acid/Base Accounting	ccounting								o - iva descret, s - eminero quentity, X - Outlief for Accumy or Precision, NR - Not Requested	- Outlier for Accurat	y or Precision; NR - 1	Not Requested	
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. t/1000t		SUL SUL	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. v1000t					
39-023-WR-1 39-023-WR-2	0.35 0.44	10.9 13.7	6.4 1.1	-11 -18	0.34 0.43	0.07 0.07	0.01	00	-0.05 -4.14					

	Metals in Water Results in un/	Water				WATER N	WATER MATRIX ANALYSES							
FIELD D	As	i 1	Ba	రి	Ö	ਟੌ		Я	Min	ž	æ	S	Zn (r	HARDNESS CALC. Zn (mg CaCO3/L)
39-023-SW-1 39-023-SW-2 39-023-SW-3 39-023-SW-4	2.9 1.49 U 2.84 1.87			5.99 U 5.99 U 5.99 U		8.43 4.57 34.2 17.7	142 107 166 329	0.14 0.1 J 0.11 J 0.07 J	0.14 40.5 0.1 J 62.2 0.11 J 103 0.07 J 129	40.5 8.78 U 3.6 18.3 U 726 62.2 8.78 U 2.39 J 18.3 U 1090 1090 103 8.78 U 6.17 J 18.3 U 76.8 U 1.9 J 18.3 U 80.5 U-Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Presidion, NR - Not Requested	3.6 2.39 J 6.17 J 1.9 J	18.3 U 18.3 U 18.3 U 18.3 U 18.3 U	726 1090 76.8 80.5	726 15.2 1090 16.6 76.8 13.3 80.5 20
FIELD LD.	Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS	δ		NO3/NO2-N	NO3/NO2-N CYANIDE		LEGE SB1 - Bryan Creek downstream from adit discharge confluence. SE2 - Bryan Creek upstream from adit discharge and possible influence from waste rock dump 2. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Sample of the WR2 subsample.	tream from adit diss un from adit discha np 2. unples WR1A, 1B, ! subsample.	charge confluenc	LEGEND e.	SW1 - Same as sample SB1. SW2 - Same as sample SE2. SW3 - Addit discharge below SW4 - Confluence of seeps is	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Adit discharge below waste rock dump 1. SW4 - Confluence of seeps in adit #1 area on the N. side of the read	raste rock dum	p 1.
39-023-SW-1 39-023-SW-2 39-023-SW-3 39-023-SW-4	2823	v v v 5.0 5.0 5.0	19 18 28 26	0.07 0.06 0.05 0.05	0.07 NR 0.06 NR < 0.05 NR < 0.05 NR		BACKGROUND - From the Ontario Millsite (39-010-SS-1).	e Ontario Millsite ((39-010-SS-1).					, , , , , , , , , , , , , , , , , , ,

Mine/Site Name: Third Term	County:_Powell
Legal Description: T 9N R 6W	Section(s): NE 1/4, SE 1/4, Sec. 28
Mining District: Elliston	Mine Type: Hardrock/Zn, Cu, Pb, Au, Ag
Latitude: N 46° 30' 08"	Primary Drainage: <u>Little Blackfoot</u>
Longitude: W 112° 21' 09"	USGS Code: 17010201
Land Status:_Public	Secondary Drainage: Flume Creek
Quad: Mac Donald Pass	Date Investigated: July 14, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # _39-024
Organization: Pioneer Technical Services Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with the site was estimated to be approximately 2,700 cubic yards. The dumps were previously reclaimed. The following elements were elevated at least three times background:

Copper: 116JX mg/kg Lead: 200J mg/kg

- There were no adit discharges, filled shafts, seeps, or springs observed at the site during the investigation.
- Little Flume Gulch flowed from east to west approximately eight feet south of the toe of WR-1. No MCLs were exceeded in Little Flume Gulch in either the upstream or downstream water samples; however, the chronic aquatic life criteria for mercury and lead were exceeded in both the upstream and downstream samples. The acute and chronic aquatic life criteria were exceeded for copper and zinc in the downstream sample.
- Observed releases to Little Flume Gulch were documented for copper and zinc. The aquatic life criteria exceedances for copper and zinc were directly attributed to the site.

Third Term PA# 39-024 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 07/14/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	is.			SOLID MATR	SOLID MATRIX ANALYSES	10						
FIBLD	As (mg/Kg) :====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Kg)
39-024-SE-1 39-024-SE-2 39-024-WR-1	23 J 23 J 29 J	199 116 93.7	3.00.00 3.00.00 3.00.00 3.00.00	24.9 28.2 6.3	8.9 3.5 83.2	23.6 JX 169 JX 116 JX	25500 11100 28400	0.107 J 0.072 J 0.12 J	3680 3300 281	9 X 11 X 42 X		#33-	132 J 405 J 128 J	R R R R
BACKGROUND	20 J	180	J. 9.1	8.2	39.2	Z9 XL	15900	0.067 J	588 U - Not Detected, J.	. 588 19 JX 28 J 6 UJ 123 J U- Na Detected, J - Edimated Quantity, X - Outlier for Accuracy or Precision: NR - Nat Requested	28 J C-Outlier for Accum	G UJ 1cy or Precision: NR	123 J t - Not Requested	S.
· P 1	Acid/Base Accounting	Accounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR NEUTRAL. ACID BASE POTENT. POTENT.	SULF. SULF	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT: v1000t					
BACKGROUND 39-024-WR-1	0.02	0.62 28.1	4.49 201	3.86 173	0.01	0.01 0.16	<0.01 0.21	0.31 5	4.18 4.18					

	Metals in Water Results in ug/L	Nater ug/L				WATERM	WATER MATRIX ANALYSES							
FIELD	l	æ	8	පී		ਟੌ	Ħ •	H	Mn	Z	£	5	Η ,	HARDNESS CALC.
39-024-SW-1 39-024-SW-2		6.90 9.30 2.57 U 9.70 U 6.83 6.11 14.30 2.57 U 9.70 U 6.83	2.57 U 2.57 U	9.70 U 9.70 U	6.83 U 6.83 U	24.50 1.67	628 0.240 598 0.210	0.240 0.210	58.5 J 32.5 J	58.5 J 12.7 U 32.5 J 12.7 U	1.25 J 30.7 U 1.22 J 30.7 U	30.7 U 30.7 U	89.1 J 25.2 7.57 U 24.5	25.2 24.5
	Wet Chemistry								U - Not Detected, J.	U - Nat Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	- Outlier for Accura	cy or Precision: NR	- Not Requested	
	Results in mg/l									LEGEND				
FIELD 1.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE		NO3/NO2-N CYANII	CYANIDE		SB1 - Downstream of dump in Little Flume Gulch. SB2 - Upstream from dump in Little Flume Gulch. SWR1 - Composite of WR1 A and 1B. BACKGROUND - West of subsample WR1B, From the Third Term (39-024-SS-1).	np in Little Flume up in Little Flume 1A and 1B. of subsample WR1	Gulch. Gulch. B. From the Third I	erm (39-024-8S-1)	SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sample SE1.		
39-024-SW-1 39-024-SW-2	92 87	< 5.0 < 5.0		10 < 0.05 NR 8 < 0.05 NR	N N N N									

Mine/Site Name: Anna R./Hattie M.	County: Powell
Legal Description: T 8N R 6W	Section(s): NE 1/4, NE 1/4, NW 1/4, Sec. 15
Mining District: Elliston	Mine Type: Hardrock/Au
Latitude: N 46° 27' 04"	Primary Drainage: Little Blackfoot River
Longitude: W 112° 20' 27"	USGS Code: 17010201
Land Status: Private/Public	Secondary Drainage: Telegraph Creek
Quad: Three Brothers	Date Investigated: June 28, 1993
Inspectors: Babits, Lasher/Pierson	P.A. # 39-044
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- There were approximately 2,230 cubic yards of uncovered waste rock at the site. The following were elevated at least three times background:

Arsenic: 3,540 to 10,400 mg/kg

Cobalt: 28.6 mg/kg

Mercury: 0.195J to 0.721J mg/kg Lead: 2,030 to 5,980 mg/kg

Zinc: 673 mg/kg

Cadmium: 5.9 mg/kg

Copper: 167 to 343 mg/kg

Nickel: 37 mg/kg Antimony: 38J mg/kg

- There was one discharging adit at the site, but it did not enter surface water directly. A
 sample of this discharge had a pH of 5.73, and the MCL/MCLG for cadmium was
 exceeded.
- There was no surface water on the site. The nearest surface water was 500 feet away.
- There was one open shaft, one hazardous loadout structure, and one collapsing cabin (mill) at the site.

Anna R./Hattie M. PA# 39-044 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 06/28/93

Ē)	Ba (mg/Kg)	results per dry weignt basis											
	ii	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
39-044-WR-1 3540 39-044-WR-2 10400	25.1 18.5	5.9 0.5 U	28.6 4.1	2.4 1 U	343 167	27000 54900	0.721 J 0.195 J	5840 63.3	37 4	2030 5980	14 J 38 J	673 272	N N N
BACKGROUND 88	61	1.2 J	6.0	4.0	32.7	18500	0.017 JX	1220 J	6	62	5 J	133 J	
Acid/Base	Acid/Base Accounting							U - Not Defected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Estimated Quartity,	X - Outlier for Accu	racy or Precision, N	IR - Not Requested	
TOTAL FIELD SULFUR D %	TOTAL SULFUR ACID BAS V1000t	NEUTRAL. SE POTENT. V1000t	SULFUR ACID BASE SULF POTENT. SULF		PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
39-044-WR-1 0.57 39-044-WR-2 2.53	17.8 79			0.36 0.73	0.05 1.22	0.16 0.58	1.56 38.1	-0.19 -48.8					

	Metals in Water	Vater			>	VATER MATR	WATER MATRIX ANALYSES							
FIELD D	results in ug/L As Ba Cd	Jg/L Ba	ਣ	రి	ರ	ರ	Ŗ Đ	Н	Mn	Z	P	Sp	Zn (n	HARDNESS CALC. Zn (mg CaCO3/L.)
39-044-SW-1	40.2	2.67	6.93 J	11.9 JX	5 U	6 4	11.9 JX 5 U 64 1390 0.038 U 630 10.4 12.5 18.3 U 810 57.3 U - Not Detector J - Estimated Quantity, X - Outlier for Accounscy or Procision; NR - Not Requested	0.038 U	630 U - Not Detected, J -	630 10.4 12.5 18.3 U 810 U · Not Detector, J · Estimated Quantity, X · Outlier for Accuracy or Precision; NR · Not Requested	12.5 X - Outlier for Accuracy	18.3 U	810 1-Not Requested	57.3
	Wet Chemistry Results in mg/l					WR1 -	WR1 - Composite of subsamples WR1A, 1B, and 3B.	unples WR1A, 1B,	and 3B.	LEGEND	SW1 - Adit dia	SWI - Adit discharae from users and Amen	4 4000	
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE	WR2 - BACK	WR2 - Composite of subsamples WR2A, 2B, and 3A. BACKGROUND - From Ontario Millsite (39-010-SS-1).	amples WR2A, 2B, ntario Millsite (394	and 3A. 310-SS-1).				dimp you as	_
39-044-SW-1	145 < 5.0 49 0.15 NR	145 < 5.0	49	0.15	N.									

Mine/Site Name: Mountain View County: Powell Legal Description: T 8N R 6W Section(s): SW 1/4, NW 1/4, Sec. 6 Mining District: Elliston Mine Type: Hardrock/Pb, Ag, Au Latitude: N 46° 28' 26" Primary Drainage: Little Blackfoot River Longitude: W 112° 24' 20" USGS Code: 17010201 Land Status: Private/Public Secondary Drainage: Unnamed Tributary Quad: Bison Mountain Date Investigated: July 14, 1993 Inspectors: Bullock, Flammang, Clark P.A. # 39-062 Organization: Pioneer Technical Services, Inc.

- There were no tailings directly associated with this site. Approximately 10 cubic yards of tailings were found to be associated with a mine west of the Mountain View.
- The volume of waste rock associated with this site was estimated to be 6500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 706J mg/kg Mercury: 0.177J mg/kg Lead: 687J mg/kg

Cadmium: 12.4J mg/kg Antimony: 41J mg/kg Zinc: 1870J mg/kg

- The waste rock dumps were mostly unvegetated.
- The adit associated with Waste Rock 1, sampled as GW-1, was discharging at approximately 5 gpm, had a pH of 6.81, and a specific conductance of 2050 umhos/cm. This sample exceeded the MCL/MCLGs for arsenic, and antimony, as well as the acute aquatic life criteria for zinc and the chronic aquatic life criteria for iron, and zinc.
- A seep at the toe of WR-1 was the start of the flow in the unnamed tributary to the Little Blackfoot River. This seep had a pH of 6.68 and a specific conductance of 205 umhos/cm
- The unnamed tributary was sampled as SW-1 below Waste Rock 2. The stream had a flow rate of approximately 30 gpm, a pH of 6.87, and a specific conductance of 187.8 umhos/cm. This sample exceeded the MCL for arsenic, as well as the acute aquatic life criteria for cadmium and zinc, and the chronic aquatic life criteria for cadmium, lead, and zinc. Arsenic, cadmium, copper, mercury, lead, antimony and zinc were detected in the stream sediment sample collected at this location higher than three times background for the area
- The discharging adit at WR-1 was open and classified as potentially hazardous. Water was ponded behind a berm pushed up in front of the adit opening.

Mountain View PA# 39-062 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/14/93

-	Metals in soils Results per dry	Metals in soils Results per dry weight basis	isi			SOLID MATE	SOLID MATRIX ANALYSES	6						
FIELD D	As (mg/Kg)	As Ba (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Сu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
39-062-SE-1 39-062-WR-1	4390 J 706 J	105 31	74.4 J 12.4 J		9.8 3.	194 JX 46.2 JX	75800 28300	0.195 J 0.177 J	2400 1130	5 UJX 1700 J 3 JX 687 J	11	49 J 41 J	11500 J 1870 J	X X
BACKGROUND	163	147	0.6 U	9.2	6. 6.	21.7	35800	0.066 JX	933 J U - Not Detected J .	933 J 9 30 B J 78 J U-Net Detected 1 - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Net Requires and	30 Outlier for Accura	8 J Icy or Precision: }	78 J	S.
	Acid/Base Accounting	Accounting											_	
FIBLD D	TOTAL SULFUR %	TOTAL SULFUR NEUTRAL ACID BASE SUL SULFUR ACID BASE POTENT. POTENT. SUL % V1000t V1000t V1000t v	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	FATB FUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
39-062-WR-1	2.97	92.8	52.9	4	8	1.24	0.75	38.7	14.2					
														_

	Metals in Water Results in ud/l	Nater			_	WATER MATRIX ANALYSES	X ANALYSES							
FIELD	FIELD As	r B	35	රි	ඊ		F.	Нg	Mn	፟፟፟፟፟፟፟፟	સ	융	H Z	HARDNESS CALC. Zn (mg CaCO3/L)
39-062-GW-1 39-062-SW-1	149 J 92.6 J		l	9.70 U 9.70 U	9.70 U 6.83 U 9.70 U 6.83 U	1.55 U 1.55 U	1660 0.038 U 928 12.7 U 1.37 J 31.1 190 0.038 U 23.1 12.7 U 4.31 J 30.7 U	0.038 U 0.038 U	928	12.7 U 12.7 U	1.37 J 31.1 4.31 J 30.7 U	# 	132 111 931 116	111
	Wet Chemistry								U - Not Detected, J -	U - Not Detected, J - Estimated Quantlyy, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accura	icy or Precision, NR .	- Not Requested	**************************************
	Results in mg/l									LEGEND				
FELD	TOTAL DISSOLVED	TOTAL OF THE				SEI - JA WRI - (BACKG)	SEI - Just downstream of waste rock dump 2. WR1 - Composite of subsamples WR1A, 1B, 2A, and 2B. BACKGROUND - From the Charter Oak Mine (39-003-SS-1).	waste rock dump 2. imples WR1A, 1B, ie Charter Oak Min	2A, and 2B. te (39-003-SS-1).		GW1 - At the mouth of adit SW1 - Same as sample SE1.	GWI - At the mouth of adit #1. SWI - Same as sample SE1.		
39-062-GW-1			30LFAIE 12====================================	SOLFAIE NOS/NOZ-N CYANDE 58 < 0.05 NR	CYANIDE SESSESSESSESSESSESSESSESSESSESSESSESSE									
39-062-SW-1	204	> 2.0	8	< 0.05	Z Z		-						-	
														-

Mine/Site Name: Viking	County: Powell
Legal Description: T 8N R 6W	Section(s): NE 1/4, NE 1/4, Sec. 5
Mining District: Elliston	Mine Type: Hardrock/Au
Latitude: N 46° 27' 47"	Primary Drainage: Telegraph Creek
Longitude: W 112° 22' 30"	USGS Code: 17010201
Land Status: Public	Secondary Drainage: Booth Gulch
Quad: Three Brothers and Bison Mountain	Date Investigated: August 18, 1993
Inspectors: Bullock, Belanger/Pierson	P.A. # <u>39-077</u>
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

- Site was a former cyanide heap leach facility which had been graded out and reseeded. At the time of this investigation approximately 50% of the area had revegetated.
- The volume of waste material formerly associated with the leach pad was estimated to be 2000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 719J mg/kg

Copper: 128JX mg/kg

Zinc: 604JX mg/kg

Cadmium: 2.4J mg/kg

Lead: 586J-796J mg/kg

Cyanide was also detected at 0.564 mg/kg

- No discharging adits, seeps of springs were observed. A sediment retention pond had been installed below the northern adit waste rock pile.
- It was approximately 1/3 mile to the nearest surface water from the site; no surface water samples were collected.
- There was an open adit present below the leach pad area that was classified as a potential hazard.
- A highwall was associated with the large partially backfilled trench on the north side of the site.

Viking PA# 39-077 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/18/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ક			SOLID MATE	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba Cd (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	r) > 1	Cu (mg/Kg)	Fe (mg/Kg)	Н g (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (ms/Ke)
39-077-WR-1 39-077-WR-2	719 J 168 J	51.9 J 44.6 J	2.4 J 0.4 U	17.3 J 8.6 J	8.9 L 6.6	128 JX 56.6 JX	32500 J 18800 J	0.038 U 0.026 U	562 J 467 J		796 J 586 J	5 U 4 U	604 J	604 JX 0.32 U
BACKGROUND	163	147	0.6 U	9.2	6.9	21.7	35800	0.066 JX	933 J	თ	93	80 7	78 J	N.
	Acid/Race Accounting	output 1000							U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	acy or Precision; 1	NR - Not Requested	
	TOTAL SULFUR	TOTAL SULFUR ACID BASE	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. 1/1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	WR1 - Sampl WR2 - Sampl BACKGROUN	WR1 - Sample of the WR1 subsample. WR2 - Sample of the WR2 subsample. BACKGROUND - From the Charter Oak Mine (39-003-SS-1).	LEGEND beample. beample. harter Oak Min	ne (39-003-SS-1	
39-077-WR-1 39-077-WR-2	0.04 1.25 5.61 4.36 0.04 <0.01 0.02 0.62 6.03 5.4 0.01 <0.01	1.25 0.62	5.61 6.03	4.36 5.4	0.04 0.01	<0.01 <0.01	0.01	0 5.61 0 6.03	5.61 6.03					

Mine/Site Name: Emery County: Powell Legal Description: T 7N R 8W Section(s): Sec. 10 and Sec. 11 Mining District: Emery/Zosell Mine Type: Hardrock/Au, Ag, Pb, Zn Latitude: N 46° 22' 30" Primary Drainage: Cottonwood Longitude: W 112° 35' 00" USGS Code: 17010201 Secondary Drainage: Rocker Gulch Land Status: Private/Public Quad: Baggs Creek/Sugarloaf Mountain Date Investigated: July 6, 1993 Inspectors: Tuesday, Belanger, Lasher P.A. # 39-004 Organization: Pioneer Technical Services, Inc.

 The volume of tailings associated with this site was estimated to be approximately 21,400 cubic yards. The following elements were elevated at least three times background:

Arsenic: 6480J mg/kg Copper: 226J mg/kg Antimony: 65J mg/kg

Cadmium: 17.1 mg/kg Lead: 1560 mg/kg Zinc: 2070 JX mg/kg

The volume of waste rock associated with this site was estimated to be approximately 244,625 cubic yards (over 12 waste rock dumps were observed). The following elements were elevated at least three times background:

Arsenic: 3630J to 12,900J mg/kg Copper: 3131J to 472J mg/kg Manganese: 8080J mg/kg Lead: 1970 to 9230 mg/kg Zinc: 2070JX to 9910JX mg/kg Cadmium: 34 to 87.2 mg/kg Mercury: 0.785 to 1.56 mg/kg Nickel: 29J to 81J mg/kg Antimony: 32J to 564J mg/kg

- This site was situated on both sides and between two flowing streams: Rocker Gulch and North Fork Rocker Gulch. North Fork Rocker Gulch intersected the site from the north and disappeared into the ground before reaching the tailings ponds located in the center of the site. Rocker Gulch intersected the site from the northeast and disappeared into the ground on the north side of the tailings ponds. Rocker Gulch reappeared farther south on the south side of WR-9. No MCLs were exceeded in upstream samples collected from either stream; however, acute aquatic life criteria for cadmium and chronic aquatic life criteria were exceeded for cadmium and lead in North Fork Rocker Gulch. Chronic aquatic life criteria were exceeded for cadmium and mercury in Rocker Gulch. The MCL for arsenic and chronic aquatic life criteria were exceeded for cadmium and mercury in the downstream Rocker Gulch sample.
- Observed releases to Rocker Gulch were documented for arsenic, mercury, lead, and zinc.
- Three potentially hazardous mine openings including two shafts and one adit were observed during the investigation.

Emery PA# 39-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONER - TUESDAY INVESTIGATION DATE: 07/16/93

	Metals in soils		Results per dry weight basis	weight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANDE (me/Ke)
39-004-SE-1	_	49.5	5.7	15.8	39.5	28.6	38500	0.454	070				(9.78.	**************************************
39-004-SE-2	157	110	2.9	17.1	32.1	26.1	45400	- <u>-</u> -	970	<u>p</u> (645	9	957	ž
39-004-SE-3	454	77.2	5.5	20.2	43.7	29.5	47700	2 5	770	æ;	141	G 8 €	247	ž
39-004-SE-4	390 J	159 J	7	42.7 JX	60.3 JX	64 4 .1	80000	0.162	200	4 5	503	^ ^		_
39-004-TP-1	6480 J	39.1 J	17.1	12.5 JX	29.3 JX	226 J	43000	0.457	2040	. 46	462	19 UJ		_
39-004-WR-1	12900 J	162 J	87.2	23.8 JX	14.5 JX	477	81600		0000	F 6	1560	65 65		_
39-004-WR-2	6080	14.5 J	8	20.1 JX	33.5 JX	17.	61300	8	9080	5 S	9230	564 J		_
39-004-WR-3	3630 J	477 J	56.3	21.2 JX	27.6 JX	313 J	45300 J	0.785	3/80 11600 J	. Et	5980 1970	32 J	2070 J	¥ \$
	į	1								2	2	2021		_
BACKGROUND	5	5 82	3.5	13.9	36.9	67.3	43400	0.165	2960	7	63	7 13	171	Z Z
	Acid/Base Accounting	\ccounting							U - Not Detector, J - I	U - Not Detectod, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	- Outlier for Accurac,	y or Precision; NR - N	ot Requested	
	TOTAL	TOTAL		SULFUR				PYRITIC	SULFUR					
FIELD	SULFUR	ACID BASE	POTENT.	ACID BASE POTENT.	SULFATE	SULFUR	ORGANIC	SULFUR	ACID BASE					
Д	8	v/1000t	v/1000t	t/1000t	*	%	*	V1000t	V1000t					
39-004-TP-1	1.44	45	90.6	45.6	40.01	1.24	0.27	38.7	7. O 7.					
39-004-WR-1	4.5	141	51	0 6-	0.86	2.1	15.	65.6 65.6	. 14.6 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6					
39-004-WR-2	2.34 0.44	73.1 F. A	94.3	21.2	0.77	0.98	0.59	30.6	63.7					
	5	ß	\$ 7	0.07	`	44.	6:0	₹	78.6					

ć.	Metals in Water		Results in ug/L			WATER MATRIX ANALYSES	IX ANALYSES							
	A3	Ba	ව	රී	Ö	ថី	Fe	Hg	Mn	Ž	Pb	ß	Zn (mg	CALC. Zn (mg CaCO3/L)
39-004-SW-1 39-004-SW-2	15.5	7.43	3.63 J 3.13 J	9.7 U 9.7 U	6.83 U 6.83 U	1.6 1.55 U	152 411	0.038 U 0.038 U	ii .	12.7 U 12.7 U	10.7 2.88	30.7 U	54.5	34.5 70.6
39-004-SW-3	92.4 8.61	17.0	3.9 J 2.6 J	0.7.6 0.7.6	6.83 U 6.83 U	1.55 U 1.55 U	152 21.7	0.250 0.052	11.9 4.08 U	12.7 U 12.7 U	6.76 1.61	30.7 U	32.3 7.57 U	14
	Wet Chemistry	à	Results in mo/						U · Not Detected, J · E	U - Not Detected, J - Bairmated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accuracy	or Precision; NR - No	of Requested	
C III	TOTAL		•							LEGEND				
ID.	SOLIDS	CHLORIDE	1	NO3/NO2-N CYANIDE	CYANIDE		SE1 - Downstream N. Fork Rocker Gulch. SE2 - Upstream N. Fork Rocker Gulch.	k Rocker Gulch. Jocker Gulch.			BACKGROUND - From the SW1 - Same as sample SE1	VD - From the Ensample SE1.	BACKGROUND - From the Emery Mine (39-004-SS-1). SW1 - Same as sample SE1.	04-SS-1).
39-004-SW-1 39-004-SW-2 39-004-SW-3 39-004-SW-4		5.0 5.0 5.0 5.0	!	× 0.05 × 0.05 × 0.05	21 < 0.05 NR 12 < 0.05 NR 114 < 0.05 NR 46 < 0.05 NR		SE3 - Downstream Rocker Gulch. SE4 - Upstream Rocker Gulch. TP1 - Composite of subsamples II WR1 - Composite of subsamples WR2 - Composite of subsamples WR2 - Composite of subsamples WR3	 SE3 - Downstream Rocker Gulch. SE4 - Upstream Rocker Gulch. TP1 - Composite of subsamples TP1a, 1B, 2, 3, and 4. TW1 - Composite of subsamples WR1A, 1B, 2, and 3. WR2 - Composite of subsamples WR4A, 4B, 5, 6, 7, and 8. WR2 - Composite of subsamples WR9A, 9B, 9C, 10A, 10B, 12A, and 12B. 	3, and 4. 2, and 3. 5, 6, 7, and 8. 9C, 10A, 10B, 12		SW2 - Same as sample SE2. SW3 - Same as sample SE3. SW4 - Same as sample SE4.	s sample SE2. s sample SE3. s sample SE4.		

Mine/Site Name: NE NW S32	County:_Powell
Legal Description: T 11N R 7W	Section(s): NE 1/4, NW 1/4, Sec. 32
Mining District: Ophir	Mine Type: Hardrock/Placer, Au
Latitude: N 46° 40' 15"	Primary Drainage: Carpenter Creek
Longitude: W 112° 30' 30"	USGS Code: 17010201
Land Status: Public	Secondary Drainage: Carpenter Creek
Quad: Avon	Date Investigated: July 15, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # _39-052
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock at this site was estimated to be 90 cubic yards with additional disturbance south of the site associated with recent trenching. Iron at 48,154 mg/kg was elevated at least three times background.
- Some of the waste rock had been used to construct small settling basins for discharge from Adit #1. There was no discharge occurring from that adit during this investigation.
- Water flowing from Adit #2 appeared to be Carpenter Creek water, the pH of the
 possible discharge was 7.94 and had a specific conductance of 309 umhos/cm. Field
 measurements were similar to Carpenter Creek up and downstream of the adit.
- Carpenter Creek bisected the site. A downstream sediment sample contained no elements that were elevated three times above background.
- Both Adit #1 and #2 were open and hazardous.

NE NW Section 32 Pa# 39-062 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 07/16/93

		;				SOLID MA	SOLID MATRIX ANALYSES	Si						
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis Sis											
FIELD As Ba D (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	9	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mø/Ke)	CYANDE
39-052-SE-1	5 U	5 U 78.4	0.8 J	10.1	0.8 J 10.1 12.7	38 JX 15200	15200	0.063 J	0.063 J 405	11 JX	11 JX 22 J 7 UJ 43 J NR	7 W	43 J	43 J NR
BACKGROUND	7	312	5.6	13	18	224	15800	0.296	1570	15	156	6	9 UJ 240	<u> </u>
									U - Not Detected, J.	U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accur	acy or Precision; N	R - Not Requested	
									4		LEGEND	9		
									BACKGROUND - From th	DELI - LOWISTERIN OF SITE. BACKGROUND - From the Victory/Evening Star (25-0] 0-SS-1).	ry/Evening Star	(25-010-SS-1)		
											,			

Mine/Site Name: Curlew	County:_Ravalli
Legal Description: T Mn R W	Section(s): NE 1/4, NE 1/4, Sec. 14
Mining District: Curlew	Mine Type: Hardrock/Au, Ag, Pb, Cu, Zn
Latitude: N 46° 27' 49"	Primary Drainage: Battered River
Longitude: W 114° 10' 45"	USGS Code: 17010205
Land Status: Private	Secondary Drainage: Big Creek
Quad: Victor	Date Investigated: September 9, 1993
Inspectors: Bullock, Tuesday	P.A. # 41-003
Organization: Pioneer Technical Services Inc.	

 An estimated 41,000 cubic yards of tailings were present on the site. The tailings were about 60% unvegetated at the time of this investigation. The following elements were elevated at least three times background:

Arsenic 1640-3160 mg/kg Copper: 286-749 mg/kg

Manganese: 29,600-32,000 mg/kg

Lead: 3140-4450 mg/kg Zinc: 18,300-20,300 mg/kg Cadmium: 39.6-47.5 mg/kg Iron: 74,900-76,100 mg/kg Nickel: 31.8-33.3 mg/kg Antimony: 27J-33.1J mg/kg

 The volume of waste rock associated with this site was estimated to be 82,110 cubic yards. The following elements were elevated at least three times background:

Arsenic: 48.3-692 mg/kg

Lead: 509 mg/kg

Zinc: 1930 mg/kg

Mercury: 0.439J mg/kg Manganese: 8790 mg/kg

- The waste rock was mostly unvegetated.
- No discharging adits, seeps or springs were observed on site.
- A large pond was present in the glory hole, with a moderately high pH of 8.71. No
 exceedances of MCL/MCLGs or aquatic life criteria were documented, with the exception
 of the chronic aquatic life criteria for mercury.
- Two irrigation ditches that were flowing, at the time of this investigation, bisected the site. No samples were collected due to lack of runoff from the site. Spring runoff sampling was recommended for this site.
- The north end of TP-1 had recently been used for a household garbage disposal area.
- Two open adits, two structures, and the highwall associated with the glory hole were classified as potential hazards.

Curlew PA# 41-003 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/09/93

	CYANIDE (mg/Kg)	X X X X X X X X X X X X X X X X X X X	Υ Z			
	Zn C (mg/Kg)	20300 18300 1930 86.8	58.9 Not Requested			
	Sb (mg/Kg) (1	33.1 J 27 J 4.74 UJ 5.94 UJ	6.56 UJ Ley or Precision; NR			
	Pb (mg/Kg)	4450 3140 509 32.7	18.4 C-Outlier for Accum			
	Ni (mg/Kg)	31.8 33.3 16 8.33	7.66 Estimated Quantity,)			
	Mn (mg/Kg)	29600 32000 8790 508	2320 J 7.66 18.4 6.56 UJ 58.9 U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested		SULFUR ACID BASE POTENT. V1000t	62.6 113 141 257
	Hg (mg/Kg)	0.163 J 0.069 J 0.091 J 0.439 J	0.144		PYRITIC SULFUR ACID BASE V1000t	18.4 7.81 3.12 1.56
SOLID MATRIX ANALYSES	Fe (mg/Kg)	76100 74900 27600 31200	10700		ORGANIC SULFUR %	0.53 0.4 0.14 0.5
SOLID MATE	Cu (mg/Kg)	749 286 11.8 13	5.95 J		PYRITIC SULFUR %	0.59 0.25 0.1 0.05
	Cr (mg/Kg)	5.77 5.66 4.91 3.52	8.69		SULFATE SULFUR %	40.01 0.03 0.04
	Co (mg/Kg)	2.21 2.89 4.65 2.39	8.34 J		SULFUR ACID BASB POTENT. V1000t	47.6 <0. 102 <0. 136 0.0 240 0.0
.is	Cd (mg/Kg) ====================================	47.5 39.6 1.3 0.9 U	0.6 U		NEUTRAL. POTENT. V1000t	81 121 145 259
Metals in soils Results per dry weight basis	Ba (mg/Kg)	6.12 10.5 53.4 1000	357 J	ccounting	TOTAL SULFUR ACID BASE v1000t	33.4 19.1 8.43 18.4
Metals in soils Results per dry	As (mg/Kg)	3160 1640 692 48.3	5.04 U	Acid/Base Accounting	TOTAL SULFUR %	1.07 0.61 0.27 0.59
	FIBLD D	41-003-TP-1 41-003-TP-2 41-003-WR-1 41-003-WR-2	BACKGROUND		FIELD D	41-003-TP-1 41-003-TP-2 41-003-WR-1 41-003-WR-2

	Metals in Water Results in ug/L	Nater ug/L			>	WATER MATRIX ANALYSES	X ANALYSES						1	
FIELD D		Ba	ಶ	පී	As Ba Cd Co Cr	ਨੌ	H.		Mn	ï	æ	ક્ર	HA Zn (mg	HARDNESS CALC. Zn (mg CeCO3/L)
41-003-SW-1		(17.8	2.57 U	9.7 U	6.83 U	1.55 U 27.9	27.9	0.13	35.8 16 3.82 30.7 U.Jy 47.5 U Not Detected, J Editmined Quantity, X Outlier for Accuracy or Precision; NR Not Requested	16 16 Satimated Quantity, X	3.82 3.0utlier for Accura	35.8 16 3.82 30.7 U.J. 47.5 528 U. Nat Detected, J. Editmited Quantity, X Outlier for Accuracy or Precision; NR Nat Requested	47.5	528
	Wet Chemistry Results in mg/l	~ -				E. S.	LR IPI - Composite of subsamples TPIA, IB, ICA, IC-B, and IC-C.	ples TP1A, 1B, 1C	and 1C.	LEGEND.	SW1 - Pond in	SWI - Pond in bottom of Glory Hole	- Pol	
FIELD LD.	TOTAL FIELD DISSOLVED LD. SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE	WRI - C WR2 - C WR2 - C	TP2 - Composite of subsamples TP2A, 2B-A, and 2B-C. WRI - Composite of subsamples WR1A_B, 2, 3A, and 3B. WR2 - Composite of subsamples WR4A, 4B, 5A, 5B, 6A, and 6B. BACKGROUND - From the Mill Creek Mine (32-049-SS-1).	ples TP2A, 2B-A, mples WR1A_B, 2, mples WR4A, 4B, : Mill Creek Mine (and 2B-C. , 3A, and 3B. 5A, 5B, 6A, and 6I. (32-049-SS-1).	ø.				
41-003-SW-1	835	s 5.0	560 < 0.05	< 0.05	NR									

Mine/Site Name: Montana Prince	County:_Ravalli
Legal Description: T 3N R 17W	Section(s): NE 1/4, NW 1/4, Sec. 14
Mining District: Frog Pond Basin	Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn
Latitude: N 46° 00' 51"	Primary Drainage: Moose Creek
Longitude: W 113° 40' 55"	USGS Code: 17010205
Land Status: Private/Public	Secondary Drainage: Cuba Creek
Quad: Whetstone Ridge	Date Investigated: June 22, 1993
Inspectors: Flammang, Clark	P.A. # 41-004
Organization: Pioneer Technical Services, Inc.	

- There are no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be approximately 3000 cubic yards. The following elements were elevated at least three times background:

Cadmium: 5.7 mg/kg Mercury: 0.829JX ma/ka

Lead: 267 mg/kg

Copper: 41.6 mg/kg Manganese: 1220 mg/kg

Zinc: 292 mg/kg

- There was one adit discharge associated with this site. The discharge flow rate was approximately 1 gpm, the pH was 7.54, and the specific conductance was 120 umhos/cm. The discharge did not exceed any of the applicable MCL/MCLGs or aquatic life criteria. The discharge seeped into the dump near the adit and then reappeared below the waste rock dump.
- This seep constituted the headwater of a small tributary to Cuba Creek. The manganese concentration measured in the seep was elevated greater than three times the adit discharge concentration, constituting the only observed release. The seep did not exceed any of the applicable MCL/MCLGs or aquatic life criteria.

Montana Prince PA# 41-004 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 06/2293

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	SS			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	As Ba (mg/Kg) (mg/Kg)	Cd (mg/Kg)	С о (mg/ K g)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
41-004-SE-1 41-004-WR-1	6 1	65.1 146	5.7 5.7	4.4 9.3		16.7 41.6	4380 20900	0.726 JX 0.829 JX	829 1220	6 12	19 267	# = =	278	!!
BACKGROUND	11)	267	1.7	=	8.7	7.8	12800	XL 80.0	250	o	15	5 03	62	Z Z
· .	Acid/Base Accounting	Accounting							U - Not Detected, J .	Estimated Quartity	U - Not Detecteck J - Estimated Quartity, X - Outlier for Accuracy or Precision, NR - Not Requested	racy or Precision; N	R - Not Requested	
FIELD	TOTAL TOTAL TOTAL SULFUR SULFUR ACID BASE %	TOTAL SULFUR ACID BASE V1000t	SULFUR NBUTRAL. ACID BASE POTENT. POTENT.	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.					
41-004-WR-1	1.24	38.7		7.92		0.41	0.56	12.8	33.8					

	Metals in Water Results in uo/L	Vater Jo/L				WATER MAT!	WATER MATRIX ANALYSES	46						
FIELD D	11 11	Ba	ਲ	ර්	Ċ	Z.	F	H,	Mn	Z	Pb	S	H #Z	HARDNESS CALC.
41-004-GW-1 41-004-SW-1	U 86.0 U 86.0		2.57 U 2.57 U	9.7 U 6.83 9.7 U 6.83	6.83 U 6.83 U	1.97 2.03	25.5 0.038 U 43.3 0.038 U	0.038 U 0.038 U	4.5 23.3 U · Not Detected, J ·	4.5 12.7 U 0.38 ·J 30.7 U 7.57 U 23.3 12.7 U 0.38 U 30.7 U 13.2 U Not Detected J - Editorted Quantity, X - Outlier for Accuracy or Precision, NR - Not Represent	0.38 U	0.38 J 30.7 U 0.38 U 30.7 U Hiller for Accuracy or Precision; NR -	7.57 U 44.4 13.2 44.8	44.8
	Wet Chemistry Results in mg/l					SEI.	SE1 - 10 feet below toe of waste rock dump 1.	waste rock dump 1		LEGEND	GWI - Weter		4	
FIELD I.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		WRI - Composite of subsamples WRIA and 1B. BACKGROUND - From the Montans Prince (41-004-SS-1)	amples WR1A and te Montana Prince (1B. (41-004-SS-1).		SWI - Same as sample SEI.	OWI - Water sceping from collapsed addi. SWI - Same as sample SB1.	apsed adıf.	
41-004-GW-1 41-004-SW-1	88 82	× 5.0	88 < 5.0 5 < 0.05 NR 82 < 5.0 6 < 0.05 NR	0.050.05	NR NR NR	::			•					

Mine/Site Name: Lucky Joe	County:_Ravalli
Legal Description: T 3S R 22W	Section(s): NW 1/4, NE 1/4, Sec. 9
Mining District: Hughes Creek	Mine Type: Hardrock/Uranium
Latitude: N 45° 35' 33"	Primary Drainage: West Fork Bitterroot River
Longitude: W 114° 19' 00"	USGS Code: 17010205
Land Status: Private/Public	Secondary Drainage: None
Quad: Alta	Date Investigated: June 22, 1993
Inspectors: Bullock, Flammang, Clark	P.A. # 41-027
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 360 cubic yards.
 The following elements were elevated at least three times background:
 Chromium: 60.2 mg/kg
 Nickel: 30J mg/kg
- The waste rock dumps were mostly unvegetated. The mine was reported to have been an uranium mine, but no unusual radiation levels were measured.
- No discharging adits, seeps, or springs were observed.
- The nearest surface water was greater than 600 feet away with no direct runoff pathways. Therefore, no surface water or stream sediment samples were collected.
- Classified hazards included two open adits; Adit #1 was easily accessible, Adit #2 had a
 narrow opening but still could be entered. In addition, a 75 foot highwall was present
 above Adit #1.

Lucky Joe PA# 41-027
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 06/22/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>isi</u>			SOLID MAT	SOLID MATRIX ANALYSES	ø						
FIELD D	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co C (mg/Kg) (mg/	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Kø)	CYANIDE (me/Ke)
41-027-WR-1	4 U	30.8	9.0	7.9	60.2	5.2 J	12600	0.02	135	30 J	5 J 4 U	4 U	13	NR
BACKGROUND	5.04 U	357 J	0.6 U	8.34 J	8.69	5.95 J	10700	0.14	2320 J	7.66	18.4	6.56 UJ	6.56 UJ 58.9	2
	/ cocd/bioA	,							U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	Estimated Quartity,	X - Outlier for Accur	acy or Precision, N	JR - Not Requested	
	Acid base Accouning	Gunund								WR1 - Compa	WRI - Composite of subsemples Wald 12 10	LEGEND	0.5	
FIELD	TOTAL SULFUR	SULFUR ACID BASIE	NEUTRAL. POTENT.	SULFUR ACID BASE POTENT	SULFATE	PYRITIC	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.	BACKGROUP	BACKGROUND - From the Mill Greek (32-049-SS-1).	fill Creek (32-0	10, and 2A.	
* 10010 10010 10010					**********	% ====================================	:======== %	v/1000t v/1000t	v/1000t					
41-027-WK-1	40 .04	0	24.7	24.7	-0.01	<0.01	40.04	0	24.7					

Mine/Site Name: Bluebird	County:_Ravalli
Legal Description: T 7N R 21W	Section(s): NE 1/4, SW 1/4, Sec. 4
Mining District: Pleasant View	Mine Type: Hardrock/Ag, Cu
Latitude: N 46° 23' 24"	Primary Drainage: Bitterroot River
Longitude: W 114° 13' 53"	USGS Code: 17010205
Land Status: Private	Secondary Drainage: Bear Creek
Quad: Victor	Date Investigated: September 8, 1993
Inspectors: Bullock, Tuesday	P.A. # 41-009
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 2140 cubic yards. The following elements were elevated at least three times background:
 Copper: 117 mg/kg
 Mercury: 1.43J mg/kg

Lead: 64.9 mg/kg

- The waste rock was mostly unvegetated.
- One adit at the site appeared to have had an occasional discharge. It was not, however, discharging at the time of the investigation. A small seep or precipitation puddle was present at the north end of WR-4.
- A intermittent tributary to Bear Creek was present along the south side of the site, This
 tributary was dry at the time of this investigation. Stream sediment samples collected in
 this drainage documented an observed release for mercury.
- Shafts were open and classified as hazardous at WR-2 and WR-4. The shaft at WR-2 had been used for illegal household garbage disposal. The highwall in the borrow pit area was approximately 40 feet high.

Blue Bird PA# 41-009 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/08/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>isi</u>			SOLID MAT	SOLID MATRIX ANALYSES	40		,				
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)		Cr (mg/Kg)	Cu (mg/Kg)	-	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (me/Ke)
41-009-SE-1 41-009-SE-2 41-009-WR-1	14.7 J 12.8 J 7.28 J	138 160 24.2	⊃ 9:0 0:0 0:0	9.31 6.1 1.94 U	7.29 3.76 1.37 U	35 20.6 117	24300 14100 6890	0.41 J 0.034 U 1.43 J	1550 1700 237	5.03 3.6 2.53 U	48.5 21.8 64.9	6.61 UJ 7.24 UJ 6.13 UJ		N N N N N N N N N N N N N N N N N N N
BACKGROUND	5.04 U	357 J	0.6 U	8.34 J	8.69	5.95	10700	0.144	2320 J 7.66 18.4 6.56 UJ 58.9 U. No Detected, J. Estimated Quantity, X. Outlier for Accuracy or Precision; NR. Mol Requested	7.66 Estimated Quantity; 3	18.4 X - Outlier for Accur	6.56 UJ	58.9 NR - Not Requested	X X
FIELD D D P P P P P P P P P P P P P P P P P	Acid/Base Accounting TOTAL TOTAL SULFUR SULFUR ACID BASE % V1000 0.21 6.56	Accounting TOTAL SULFUR ACID BASE V1000:	ii	SULFUR NEUTRAL. ACID BASE SUI POTENT. POTENT. SUI v1000c v1000c v	FATE FUR W	PYRITIC SULFUR % 0.02	ORGANIC SULFUR % 0.09	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT: v1000t	SE1 - Downg SE2 - Upgrad WR1 - Compx BACKGROUN	LEGEND SE1 - Downgradient sediment sample in intermittant drainage. SE2 - Upgradient sediment sample in intermittant drainage. WR1 - Composite of subsamples WR2, 3, and 4. BACKGROUND - From the Mill Creek Mine (32-049-SS-1).	LEGEND 1 sample in interning mple in intermitt les WR2, 3, and Will Creek Mine	mittant drainage tant drainage. 14. (32-049-SS-1).	

Mine/Site Name: Broken Hill County: Sanders Legal Description: T 27N R 34W Section(s): SW 1/4, SW, 1/4, NE 1/4, Sec. 10 Mining District: Blue Creek Mine Type: Hardrock/Ag, Pb, Zn Latitude: N 48° 07' 15" Primary Drainage: East Fork Blue Creek Longitude: W 115° 58' 06" USGS Code: 17010213 Land Status: Private/Public Secondary Drainage: East Fork Blue Creek Quad: Heron Date Investigated: August 3, 1993 Inspectors: Bullock, Flammang, Clark P.A. # 45-005 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 6200 cubic yards. The following elements were elevated at least three times background:

Arsenic: 508 to 1140 mg/kg Cadmium: 15.2 to 26 mg/kg Copper: 140J to 342J mg/kg

Iron: 94,400 mg/kg

Mercury: 2.53J to 27.2J ma/ka.

Lead: 18,700J to 55,900J mg/kg Antimony: 61.3 to 344 mg/kg Zinc: 9600 to 11,400 mg/kg.

- The waste rock dumps were mostly unvegetated.
- A collapsed discharging adit (GW-1) was present, with a flow of approximately 25 gpm, a pH of 8.71, and a specific conductance of 75 umhos/cm. The adit discharge did not exceed any MCL/MCLGs. Chronic aquatic life criteria for mercury, lead and zinc and acute aquatic life criteria for lead and zinc were exceeded in this sample of the discharge.
- A dry tributary to the East Fork of Dry Creek was approximately 100 feet north of the site. There were no direct runoff pathways to surface water identified during this investigation. Therefore, surface water and stream sediment samples were not collected.
- One plastic barrel half full of an unknown material was present at the base of WR-1.

Broken Hill PA# 45-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER -BULLOCK INVESTIGATION DATE: 08/03/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sissi		,	SOLID MAT	SOLID MATRIX ANALYSES		-					
FIELD D	As (mg/Kg)	Ba (mg/Kg)	Cd Co Cd (mg/Kg) (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Kg)	CYANIDE (me/Kg)
45-005-WR-1 45-005-WR-2	1140 508	27.9 19.8	15.2 26	7.25 5.86	5.25 4.5	342 J 140 J	94400	27.2 J 2.53 J	992	3.84 6.23	55900 J 18700 J	344 61.3	9600	N N N
BACKGROUND	8.68	142	0.6 U	10.4	10.5	21.2 J	22100	0.06 J	710 U - Not Detected; J -	14.4 Estimated Quartity	710 14.4 33.8 J 6.84 U 78.2 U · Not Detected J · Estimated Quantity, X · Outlier for Accuracy or Precision; NR · Not Requested	6.84 U	78.2	
· · · · · · · · · · · · · · · · · · ·	Acid/Base	Acid/Base Accounting											•	
FIBLD D	TOTAL SULFUR	TOTAL SULFUR NEUTRAL. ACID BASE SULFATE SULFUR ACID BASE POTENT. POTENT. SULFUR % V1000t V1000t %	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
45-005-WR-1 45-005-WR-2	2.80 2.46	87.5 76.9	-5.78 -4.12	-93.3 -81.0	1.86 0.59	0.08	0.86 1.72	2.50 4.69	8.28 -8.81					

	Metals in Water	ater				WATER MATRIX ANALYSES	IIX ANALYSES	10					•	
FIELD	Results in ug/L As	g/L Ba	3	రి	ರ	ਟੌ	F.	Ħ	Š	Ż	á	ŧ		HARDNESS CALC.
45-005-GW-1	30.4	2.01 U	2.01 U 2.57 U 9.7 U 6.83	9.7 U	6.83 U		2.97 69.6 0.044 J	0.044	15.2 U-Na Deeded I	15.2 12.7 U 107 30.7 U 867	107	30.7 U	24 (mg CaCOS/L) 867 23.4	Zn (mg CaCO3/L) ====================================
	Wet Chemistry Results in mg/l					WR1 -	WRI - Composite of subsamples WRIA, 1B. 1C. and 3.	emples WR1A, 1B.	IC and 3	LEGEND	GWI From 5	(WI) - From the flow and of all wo	Parsage And Reduced Parsage	
FIBLD LD.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE		WR2 - Composite of subsamples WR2A and 2B. BACKGROUND - From the Holliday Mine (45-009-SS-1).	tamples WR2A and the Holliday Mine (2B. 45-009-SS-1).					
45-005-GW-1	52	6.7		< 0.05	52 6.7 < 5 < 0.05 NR									

Mine/Site Name: Montro Gold	County: Sanders
Legal Description: T 19N R 26W	Section(s): SW 1/4, NW 1/4, Sec. 3
Mining District: Plains	Mine Type: Hardrock/Unknown
Latitude: N 47° 26' 08"	Primary Drainage: Clark Fork River
Longitude: W 114° 54' 00"	USGS Code: 17010213
Land Status: Private/Public	Secondary Drainage: Combest Creek
Quad: Plains	Date Investigated: August 6, 1993
Inspectors: Bullock; Clark	P.A. # _45-010
Organization: Pioneer Technical Services, Inc.	

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 6300 cubic yards. The following elements were elevated at least three times background:

Copper: 125J to 345J mg/kg

Mercury: 0.306 to 1.51 mg/kg

Antimony: 28 mg/kg.

Iron: 41,000 mg/kg

Lead: 4280 to 27,500 mg/kg

- The waste rock dump was 90% unvegetated.
- A collapsed discharging adit (GW-1) was present, with a low flow of approximately 2-3 gpm, a pH of 8.36, and a specific conductance of 250 umhos/cm. The adit discharge did not exceed MCL/MCLGs, but chronic aquatic life criteria for mercury, cadmium, and lead were exceeded.
- Residents downgradient from this site were apparently on a community water supply.
- There were no surface water expressions associated with this site.
- One adit was open with a gate and was classified as a potentially hazardous mine opening.

Montro Gold PA# 45-010 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/06/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As (mg/Kg)	Ba (mg/Kg) ====================================	Cd (mg/Kg)	С о (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
45-010-WR-1 45-010-WR-2	6 J 7 J	43.7 30	1.3	22.7 13.1	7.2 4.3	125 J 345 J	34400 41000	1.51 0.306	733 J 492 J	18 9	4280 27500	# ⊃	57	N N N
BACKGROUND	4.44 U	234	1.06	8.15	7.26	8.33	12900	0.037	987 U - Not Detected, J -	9.72 Estimated Quantity,	987 9.72 21.3 5.79 U 95.2 U . Not Detected J . Estimated Quantity, X - Outlier for Accuracy of Procession NR . Not Remined	5.79 U	95.2	X X
	Acid/Base Accounting	ccounting										•		
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t		SULFUR NEUTRAL. ACID BASE SULF POTENT. POTENT. SULF 1/1000t 1/1000t %	SULFATE SULFUR %	PYI	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
45-010-WR-1DUP 45-010-WR-1 45-010-WR-2	0.05 0.06 0.21	1.56 1.87 6.56	1	2.82 2.54 4.41	0.03 0.03 0.19	6.01 0.01 0.01	0.02 0.02 0.01	0.00 0.31 0.31	4.38 4.11 1.84					

Mine/Site Name: Dee Creek Mine County: Sanders Legal Description: T 20N R 28W Section(s): SE 1/4, SE 1/4, Sec. 25 Mining District: Plains Mine Type: Hardrock/Unknown Latitude: N 47° 27' 30" Primary Drainage: Swamp Creek Longitude: W 115° 05' 40" USGS Code: 17010213 Land Status: Public Secondary Drainage: Dee Creek Quad: Sunset Peak Date Investigated: August 6, 1993 Inspectors: Flammang, Belanger P.A. # 45-041 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 250 cubic yards.
 The following elements were elevated at least three times background:

Arsenic: 201J mg/kg Mercury: 0.955 mg/kg.

- The waste rock dump was approximately 60% unvegetated.
- A collapsed discharging adit (GW-1) was present, with a very small flow of 1 gpm, a pH of 6.33, and a specific conductance of 620 umhos/cm. The adit discharge did not exceed MCL/MCLGs, but chronic aquatic life criteria for mercury was exceeded.
- Dee Creek flowed past the south side of the site. Water in the creek did not exceed MCL/MCLGs. Water samples did exceed aquatic life standards (chronic) for mercury, lead, and zinc. The upstream sample exceeded aquatic life standards (chronic) for mercury, and lead indicating a possible upstream contaminant source. No release of any elements was documented from the site in either surface water or sediments.
- A hazardous inclined shaft (Adit #2) was present at the site.

Dee Creek PA# 45-041 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/06/93

FIELD As Ba Cd Co Cr Cu Fe High Min Ni Pb Sb Zn Cu Cu Cu Fe High Min Ni Pb Sb Zn Cu Cu Cu Cu Cu Cu Cu C		Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES							
69 J 68.2 0.7 U 7.7 9 36.1 J 25800 32 J 62.8 0.6 U 8.1 9.8 16.1 J 25800 201 J 25.1 1.2 7 8.3 43.2 J 28700 44 J 362 0.5 U 17.7 16.5 29.1 J 38500 Acid/Base Accounting TOTAL SULFUR ACID BASE SULFUR SULFUR SULFUR SULFUR ACID BASE SULFUR SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR ACID BASE SULFUR SULFUR ACID BASE SULFUR ACID BAS	FEELD	!!	Ba (mg/Kg)	į.	·		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mp/Kg)
44 J 362 0.5 U 17.7 16.5 29.1 J 38500 Acid/Base Accounting TOTAL SULFUR ACID BASE SULFATE PYRITIC ORGANIC SULFUR A V1000t V1000t V1000t % % % 0.25 7.81 0.76 -7.05 0.23 <0.01 0.02	45-041-SE-1 45-041-SE-2 45-041-WR-1	69 J 32 J 201 J	68.2 62.8 25.1	0.7 U 0.6 U 1.2	i .		36.1 J 16.1 J 43.2 J	25800 28700 56100	0.048 0.05 0.955	355 J 379 J 200 J	15 14 7	19 26 82	8 UJ 7 UJ 5 UJ 5 UJ	67 73	N N N N
Acid/Base Accounting TOTAL SULFUR SULFATE PYRUTC ORGANIC SULFUR ACID BASE SULFATE PYRUTC ORGANIC SULFUR ACID BASE POTENT SULFUR SULFUR SULFUR A VIOCOL V	BACKGROUND	4	362	0.5 U	17.7	16.5	29.1	38200	0.044 U-Not Detected	611 J J - Estimated Quantity, X	38 - Outlier for Accu	42 nacy or Precision; NR .	6 UJ	147 D - No Data	X X
TOTAL SULFUR NEUTRAL, ACID BASE SULFUR PYRITIC ORGANIC SULFUR SULFUR ACID BASE POTENT. SULFUR SULFUR SULFUR ACID BASE % v1000t v1000t v1000t % % % v1000t v1000t 0.25 7.81 0.76 -7.05 0.23 <0.01 0.02 0.00		Acid/Base /	Accounting												
0.25 7.81 0.76 -7.05 0.23 <0.01 0.02 0.00	FIBLD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITC SULFUR %		PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000					
	45-041-WR-1	0.25	7.81	0.76	-7.05	0.23	<0.01		0.00	0.76					

	Metals in Water Results in 10/1	/ater				WATER MATRIX ANALYSES	IX ANALYSES							
FIELD		jo T											Ħ	HARDNESS
a	A	Ba	8	లి	ರ		Ŗ.	H	Mn	ï	æ	æ	Zn (m	CALC. Zn (mg CaCO3/L.)
45-041-GW-1	2.89	2.01 U	2.57 (9.7 U	6.83 U	-	20.1 J	0.230 JX	4.08 U 12.7 U	12.7 U	" -	30.7 U	H	817.1 151
45-041-SW-1	1.14 J	4.67	257 U	7.6	6.83 U E8.30		11.8 U	0.190 JX	4.08 U	12.7 U	1.22 U	30.7 U	7.57 U	0
45-041-SW-2	0.96 U	4.93		9.7 U	-	1.55 U	1.8.0	0.230 JX	4.08 0.08 0.0	12.7 U 12.7 U	1.78 J 1.77 J	30.7 U 30.7 U	16.5 J	න හ ග ග
								U - Not Detected, J - Estimated Quantity, X - Outlier for Accumey or Precision, NR - Not Requested, ND - No Data	timated Quantity, X -	Outlier for Accuracy	y or Precision, NR - 1	Not Requested, ND -	No Data)
	Wet Chemistry						·							
	Kesults in mg/l					-				LEGEND				
FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE		NO3/NO2-N CYANIDB	CYAN	SE1 - I SE2 - U WR1 - (BACKG	SEI - Downgradient of site approx. 50. SE2 - Upgradient of site approx. 50. WRI - Composite of subsamples WRIA BACKGROUND - From Dee Creek Min	SEI - Downgradient of site approx. 50. SE2 - Upgradient of site approx. 50. WRI - Composite of subsamples WRIA and 1B. BACKGROUND - From Dee Creek Mine (45-041-SS-1).	1.38-1).		GWI - From seep just below GW2 - QA/QC Blank. SWI - Same as sample SEI. SW2 - Same as sample SR2	GWI - From seep just below caved mouth of adit #1. GW2 - QA/QC Blank SWI - Same as sample SE1. SW2 - Same as sample SF2	wed mouth of ad	lit #1.
45-041-GW-1	35	i	ı V	5.0 < 0.05	ji H									
45-041-GW-2	တ ဗ	8.7	v 500	× 0.05	Z.									
45-041-5W-1	8	= 4	۸ ت ت	v ,	Z :	-								
7-AAC-1+0-C+	2	2	2	v 0.05	Y									

Mine/Site Name: Lower Letterman	County:_Sanders
Legal Description: T 19N R 26W	Section(s): SW 1/4, SE 1/4, Sec. 3
Mining District: Plains	Mine Type: Lardrock/Ag, Ag, Pb
Latitude: N 47° 25' 43"	Primary Drainage: Clark Fork River
Longitude: W 114° 53' 37"	USGS Code: 17010213
Land Status: Private/Public	Secondary Drainage: Combest Creek
Quad: Plains	Date Investigated: August 6, 1993
Inspectors: Bullock, Clark	P.A. #_45-047
Organization: Pioneer Technical Services. Inc.	

- No mill tailings were associated with this site.
- The volume of waste material at the site was estimated to be 423 cubic yards. The following elements were elevated at least three times background: Mercury: 0.543 mg/kg

Lead: 2600 mg/kg

- The waste rock dumps were approximately 75% unvegetated.
- No discharging adits, seeps, or springs were observed during this investigation.
- Water present in the southern stope had a fairly neutral pH of 6.40, and a low specific conductance of 90 umhos/cm. This water appeared to be ponded precipitation
- The nearest surface water expression was Combest Creek approximately 400 feet from the site, Combest Creek was dry at the time of this investigation.
- There were two hazardous stopes present at the Lower Letterman and a hazardous open adit was present. The open adit was approximately 1/4 mile north of the site.

Lower Letterman PA# 45-047 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/06/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u> </u>	-		SOLID MAT	SOLID MATRIX ANALYSES	60						
FTELD D	As (mg/Kg)	As Ba (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu Fe (mg/Kg) (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
45-047-WR-1	4 O	45.4		9.3	5.9	19.3 J	24800	0.543	2510 J	16	2600	5 UJ	47 NR	NR.
BACKGROUND	4.44 U	234	1.06	8.15	7.26	8.33	12900	0.037	287	9.72	21.3	5.79 U	95.2	K K
- Park		:							U · Not Detected, J · Estimated Quantity, X · Outlier for Accuracy or Precision; NR · Not Requested	Estimated Quantity,	X - Outlier for Accu	uncy or Precision; Ni	R - Not Requested	-
	Acid/base /	Acid/base Accounting										LEGEND		
FIELD	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT:	WRI - Comp	WRI - Composite of subsamples WRI and 2. BACKGROUND - From the Montro Gold Mine (45-010-SS-1).	oles WR1 and 2.	le (45-010-SS-1	÷
45-047-WR-1	0.01 0.31 8.55 8.24 0.01 <0.01	0.31	8.55	8.24	0.01	<0.01	<0.01	0.00	8.55					

Mine/Site Name: Holliday	County:_Sanders_
Legal Description: T 26N R 34W	Section(s): SE 1/4, NE 1/4, Sec. 36
Mining District: Trout Creek	Mine Type: Hardrock/Unknown
Latitude: N 47° 58' 30"	Primary Drainage: Pilgrim Creek
Longitude: W 115° 54' 40"	USGS Code: 17010213
Land Status: Public	Secondary Drainage: West Fork Pilgrim Creek
Quad: Gem Peak	Date: August 3, 1993
Inspectors: Tuesday, Belanger, Lasher	P.A. # 45-009
Organization: Pioneer Technical Services Inc.	

- There were no mill tailings observed at the site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 10,490 cubic yards. The following elements were elevated at least three times background:

Lead: 371J mg/kg

- Two adits had minor discharges during the investigation. No MCLs were exceeded for either of the discharges. The chronic aquatic life criteria for lead was exceeded in the Adit #4 discharge.
- West Fork Pilgrim Creek and an unnamed tributary to West Fork Pilgrim Creek converge and flowed within 5 feet of a WR-4. No MCLs were exceeded in upstream or downstream samples collected in West Fork Pilgrim Creek; however, chronic aquatic life criteria for lead were exceeded in both the upstream and downstream samples.
 Upstream and downstream sediment samples collected in West Fork Pilgrim Creek exhibited metals concentrations similar to background.

Holliday PA# 45-009 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - TUESDAY INVESTIGATION DATE: 08/03/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES							
FELD	As (mg/Kg)	Ba (mg/Kg)	Ba Cd (mg/Kg) (mg/Kg)	ı	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (me/Ke)	Sb (mø/Ke)	Zn (me/Ka)	CYANIDE
45-009-SE-1 45-009-SE-2 45-009-WR-1	7.52 11.3 12	45.6 38.7 77.4	0.6 0.4 0.5 0.5	7.84 9.96 6.53 10.5 9.55 5.86	9.96 10.5 5.86	35.9 J 18.5 J 45.1 J	21000 20900 21300	0.041 J 0.021 J 0.032 J	406 398 513	11.5 12.6 11.1	65 J 50.4 J 371 J	7.17 U 5.27 U 6.07 U	96.6 94.6	NR NR
BACKGROUND	8.68	142	0.6 U	10.4	10.5	. 21.2 J	22100	0.06 J	710 U - Not Detected, J -	14.4 Estimated Quartity	710 14.4 33.8 J 6.84 U 78.2 U-Not Detected J - Estimated Quantity, X - Outlier for Accumery or Precision; NR - Not Requested	6.84 U	78.2 R- Not Requested	Z Z
	Acid/Base	Acid/Base Accounting												
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
45-009-WR-1	90.0	1.87	25.7	23.9	0.01	0.02	0.03	0.62	25.1					

						WATER MATRIX ANALYSES	X ANALYSES							
	Metals in Water Results in ug/L	Vater Jg/L												
FIELD													=	HARDNESS
A	As::::::::::::::::::::::::::::::::::::	2 H	Cd	రి	ರ	Çn	Ŗ.	Hg	Mn	ž	Pb	S	Zn (m	CALC.
45-009-GW-1	1.69 U	59.2	'	9.7 U		1.55 U	11.8 U		4.08 U 12.7 II	12.7.11	3 16	11		
45-009-5W-2	2. 2. 4. 2.	7.60 7.0	2.57 U	9.7 U	6.83 U	1.55 U	11.8 U	0.076 J	4.08 U	12.7	2.89	30.7) (S	42.4
45-009-SW-2	1.74 J	3.07	2.57 U	9.7.0	6.83 U	8.8. 0.00	17.6 J 11.8 U	0.140 XX XX	4.08 ∪ 804 ∪ ∷	12.7 U	2.15 J	30.7 U	10.2 J	12.3
							-		U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X	Outlier for Accura	SOLY O	U /C./ U	13.1
	Wet Chemistry													
	Results in mg/I					_				LEGEND				
FIELD LD.	, EE S	CHLORIDE	ξ α	NO3/NO2-N	CYANIDE	SE1 - U SE2 - D WR1 - C BACKG	SEI - Upgradient on umamed drainage. SE2 - Downgradient of mine in W. Fork. WRI - Composite of subsamples WRI, 2 BACKGROUND - From the Holliday Min	SBI - Upgradient on unnamed drainage. SB2 - Downgradient of mine in W. Fork Pilgrim Creek. WRI - Composite of subsamples WRI, 2, 3A, 3B, 4A, and 4B. BACKGROUND - From the Holliday Mine (45-009-SS-1).	1 Creek. 3B, 4A, and 4B. 009-SS-1).		GWI - Discharge from adit f GWZ - Discharge from adit f SWI - Same as sample SEI.	GWI - Discharge from adit #3 (caved) GW2 - Discharge from adit #4 (pipe). SWI - Same as sample SEI.	(pipe).	
45-009-GW-1	150	× 5.0	81 81 81 81	v	E C				,			seniple 352.		
45-009-SW-1	۸ 5.0	v v	v v	v v 0.05	X X									
45-009-SW-2	સ	> 5.0	< 5.0	× 0.05	N.									

Mine/Site Name: Jack Waite County: Sanders Legal Description: T 22N R 32W Section(s): NE 1/4, SW 1/4, Sec. 17 Mining District: White Pine Mine Type: Hardrock/Au, Ag, Cu, Pb, Zn Latitude: N 47° 39' 50" Primary Drainage: Beaver Creek Longitude: W 115° 43' 15" USGS Code: 17010213 Land Status: Private/Public Secondary Drainage: Dixie Creek Date Investigated: September 7, 1993 Quad:_Cooper Gulch Inspectors: Bullock, Tuesday P.A. # _45-002 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 3800 cubic yards. The following elements were elevated at least three times background:

Cadmium: 513 mg/kg Copper: 97.2 mg/kg Lead: 4150 mg/kg Zinc: 7920J mg/kg.

- The waste rock dump was unvegetated and also over-steepened in the drainage.
- A discharging adit (GW-1) was present, with a small flow of 3 gpm, a pH of 7.40, and a specific conductance of 280 umhos/cm. The adit discharge did not exceed MCL/MCLGs; but the chronic aquatic life criteria for lead was exceeded.
- Dixie Creek bisected the site. Water samples collected up and down stream of this site
 documented an observed release of lead and zinc to surface water. The samples did not
 exceed MCL/MCLGs. The acute and chronic aquatic life criteria were exceeded for lead
 and zinc, both attributable to this site. An observed release of lead was also
 documented in the stream sediment samples.
- One adit was open and classified as potentially hazardous.

Jack Waite PA# 45-002 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/07/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE (me/Ke)
45-002-SE-1 45-002-SE-2 45-002-WR-1	9.91 J 21 J 25.1 J	69.2 68.3 56.7	1 0.8 U 513	9.06 16.2 9.47	1.53 U 5.91 1.7	36.6 20.1 97.2	16600 21200 22300	0.034 U 0.044 U 0.029 U	274 965 374	18 16.9 11.4	866 68.7 4150	6.89 UJ 9.9 UJ 7.		ii
BACKGROUND	8.68	142	0 9 O	10.4	10.5	21.2 J	22100	0.06 J	710 U - Not Detected, J -	14.4 - Estimated Quantity,	710 14.4 33.8 J 6.84 U 78.2 U - Not Detected J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Nor Requested	6.84 U Icy or Precision; N	78.2 R. Not Requested	
	Acid/Base	Acid/Base Accounting											,	
FELD D	TOTAL SULFUR %	TOTAL TOTAL SULFUR SULFUR ACID BASE	NEUTRAL. POTENT. 1/1000t	SULFUR NEUTRAL. ACID BASE SULFATE POTENT. POTENT. SULFUR V1000t V1000t %	SULFATE SULFUR %	PYRITIC SULFUR	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
	0.53	16.6	21.2	4.68	0.01	0.34	0.18	10.6	10.6					

	Metals in Water	√ater				WATER MATRIX ANALYSES	X ANALYSES							
FIELD	Results in ug/L	ng/L											/H	HARDNESS
A	As ====================================	Ba	ਲ	ට හි Pට	اير	Çr	%		Mn	ï	P	S	Zn (me	CALC.
45-002-GW-1 45-002-SW-1	5.83 2.38		2.57 U 2.63 J	U 7.6	_ _	4.07 J	11 11 11 U	0.12 UJX	25.2	12.7 UX	11.5	30.7 U	18.9 J 122	122
45-002-SW-2	1.69 U		3.03 J	9.7 U	6.83 U	5.17	75.3	0.12 UJX	2. 4. 80. 4. 0. 0.	12.7 UX 16.3 JX	/6.9 4.41	30.7 U 30.7 U	82.7 J 12.4 J	62.9 22.3
								Þ	- Not Detected, J.	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Outlier for Accur	acy or Precision; NR	- Not Requested	ì
	Wet Chemistry													
	Results in mg/l	_							-	LEGEND				
FIELD L.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE	03	NO3/NO2-N CYANIDE	CYANIDE	SE1 - 2 SE2 - 1 WR1 - (BACKG	100 feet downstream 00 feet upstream fros Composite of subsan ROUND - From the	SBI - 200 feet downstream of waste rock dump I. SB2 - 100 feet upstream from waste rock dump I. WRI - Composite of subsamples WRIA, IB, and IC. BACKGROUND - From the Holliday Mine (45-009-SS-I)	1. t. d1C. 09-SS-1).		GW1 - Adit discharge. SW1 - Same as sample SE1. SW2 - Same as sample SE2.	ischarge. s sample SE1. s sample SE2.		
45-002-GW-1 45-002-SW-1 45-002-SW-2	225 162 90	A A A 550	1	42 < 0.05 25 < 0.05 8 < 0.05	8 8 8 8 8 8									

Mine/Site Name: Highland	County:_Silver Bow
Legal Description: T Mn R W	Section(s): NW 1/4, NE 1/4, Sec. 31
Mining District: Basin Creek	Mine Type: !!ardrock/Au
Latitude: N 45° 47' 50"	Primary Drainage: Silver Bow Creek
Longitude: W 112° 31' 10"	USGS Code: 17010201
Land Status: Private/Public	Secondary Drainage: Basin Creek
Quad: Mount Humbug	Date Investigated: September 17, 1993
Inspectors: Bullock/Pierson	P.A. #_47-028
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site. Ore from this mine was processed at the Middle Fork Millsite (PA# 47-081).
- The volume of waste rock associated with this site was estimated to be 40,000 cubic yards. The following elements were elevated at least three times background:

Arsenic: 139J mg/kg

Mercury: 0.261J mg/kg.

Copper: 943 mg/kg

Iron: 128,000JX mg/kg

- The waste rock dumps were approximately 90% unvegetated.
- One discharging adit had a flow of approximately 15 gpm, a pH of 7.42, and a specific conductance of 208 umhos/cm. No MCL/MCLG's were exceeded nor were any aquatic life criteria exceeded in the sample of this discharge.
- The discharge was a source for a perennial flow to Basin Creek. No MCL/MCLGs were exceeded in the downstream sample, however, the chronic aquatic life criteria for mercury was exceeded downstream from the site. The downstream sediment sample also exhibited copper concentrations greater than three times the background soil. Basin Creek was a source of drinking water for the City of Butte.
- Ten cubic yards of a white unknown powder was present at the south end of the site.

Highland PA# 47-028 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/17/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD D	As Ba (mg/Kg) (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
47-028-SE-1 47-028-WR-1	26.5 J 139 J	32.3 J 38.7 J	1.1 U	4.05 9.77	3.61 J 1.81 J	38.9 943	9700 JX 0.038 J 128000 JX 0.261 J	0.038 J 0.261 J	289 491	71.9 7.57	42.9 13.5		305 J	li .
BACKGROUND	40.1	173 J	1.1 U	10.1	21.1 J	34.3	18500 JX	0.039 J	832 U - Not Detected: J -	18.1 Estimated Quantity	832 18.1 14.8 7.28 UJ 61.9 J	7.28 UJ	61.9 J	
	Acid/Base Accounting	Accounting										mery or received, N	R - NOT Requested	
FTELD	TOTAL SULFUR %	TOTAL SULFUR SULFUR ACTI BASE	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE SULI POTENT. SULI	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE	SULFUR ACID BASE POTENT.					
47-028-WR-1	1.64		321	270	<0.01	2	0.85	62.5	259					

	Metals in Water	Vater				WATER MAT	WATER MATRIX ANALYSES	(6						
FIELD	Results in ug/L	ng/L											HAR	HARDNESS
А	As	Ba	PO	3	ර්	õ	Fe	Нg	Mn	ž	Pb	જ	Zn (ms	CALC.
47-028-GW-1 47-028-SW-1	1.88	12.4	4.4	ر ا	6.24 U	2.33 U	116	0.12 U	10	10.9 U	1.12	31.7 U	31.7 U 8.71 U 211	211
47-028-SW-2	1.12 U	1.1 U) D	6.24 U	2.33 U	13.7 U	0.35 0.12 U	6.3 3.76 ∪	10.9 U 10.9 U	1.19 0.94 ∪	31.7 U 31.7 U	8.71 U 8.71 U	206
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	Stimated Quantity, X	· Outlier for Accura	icy or Precision; NR	- Not Requested	
	Wet Chemistry													
	Sin in capean					į	:	,		LEGEND				
FIELD 1.D.	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDB	CYANIDE	SEI - WRI - BACK	NEI - At adit discharge below Moose Creek road. WRI - Composite of subsamples WRIA, 1B, and 1C. BACKGROUND - From the Highland Mine (47-028-3S-1).	ow Moose Creek r riples WR1A, 1B, Highland Mine (4	oad. and 1 C. 17-028-SS-1).		GWI - Adit #I discharge. SWI - Adit discharge belo SW2 - QA/QC Blank.	GWI - Adit #1 discharge. SWI - Adit discharge below Moose Creek road. SW2 - QAQC Blank.	oose Creek road	
47-028-GW-1 47-028-SW-1 47-028-SW-2	178 210 NR	۸ ۸ ۳ ۳ ۳ ۳	15 16 NR	0.18 NR 0.01 NR 0.00	NR NR 0.01									

Mine/Site Name: Mary Emme/Clinton County:_Silver Bow Legal Description: T 3N R 7W Section(s): NE 1/4, SW 1/4, Sec. 10 Mining District: Elk Park-Butte Mine Type: Hardrock/Unknown Latitude: N 46° 01' 17" Primary Drainage: Silver Bow Creek Longitude: W 112° 27' 14" USGS Code: 17010201 Land Status: Private Secondary Drainage: Woodville Gulch Quad: Elk Park Pass Date: August 20, 1993 Inspectors: Babits, Flammang, Lasher P.A. # 47-035 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with site.
- There were approximately 66,620 cubic yards of uncovered waste rock on site. The following elements were elevated at least three times background:

Mercury: 1.27 mg/kg

Lead: 834 to 1,670 mg/kg

Antimony: 61.8 to 235 mg/kg

- There was one discharging adit at the site which entered Woodville Gulch. A sample of this discharge had a pH of 5.40, and MCLs were exceeded for arsenic, cadmium, and lead. The chronic fresh water aquatic life criteria for iron and lead was exceeded. The acute fresh water aquatic life criteria for cadmium was exceeded, and the chronic and acute fresh water aquatic life criteria for copper and zinc were exceeded.
- Woodville Gulch flowed approximately 100 feet from the waste rock. There were no
 observed releases to downstream surface water or sediment. Cadmium and copper
 exceeded MCLs, and the acute fresh water aquatic life criteria for cadmium was
 exceeded in downstream surface water samples. The acute and chronic fresh water
 aquatic life criteria for copper and zinc were also exceeded in downstream surface
 water.
- There were three open shafts at the site.

Mary Emmee/ Clinton PA# 47-035 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/20/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	ŝ			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANDE (mg/Kg)
47-035-SE-1 47-035-SE-2 47-035-WR-2 47-035-WR-1	110 48.8 263 216	205 J 39 J 45.1 J 23.4 J	29 J 1.2 U 0.4 U 1.8 J	13.5 U 7.65 J 4.67 J 2.09 U	10.2 12.7 2.33 1.47 U	1230 347 365 422	9470 26400 33300 17600	0.232 U 0.062 U 1.27 0.833	480 J 762 J 144 J 51.5 J	17.6 U 5.69 U 3.07 2.72 U	119 91.8 1670 834	42.6 U 13.8 U 235 61.8	4420 J 577 J 1200 J 865 J	R R R R
BACKGROUND	143	228 J	3.7 J	9.72 J	6.81	447	20200	0.177	480 J	480 J 3.84 156 6.01 U 911 J U - Not Detected, J - Estimated Quantity, X - Outlier for Accumary or Precision; NR - Not Requested	156 X - Outlier for Accur	6.01 U nacy or Precision; N	911 J R - Not Requested	χ Ω
*	Acid/Base Accounting TOTAL	Accounting TOTAL		SULFUR				CHIANA	E E					
FIELD ID	TOTAL SULFUR %	SULFUR ACID BASE V1000t	NEUTRAL. POTENT. 1/1000t	ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	SULFUR ACID BASE V1000t	ACID BASE POTENT.					
	1.04 2.45	32.5 76.5	4	-4 -37 -1.1 -78	0.49	0.09 0.66	0.46	2.81 20.6	-6.58 -21.7					

	Metals in Water Results in un/I	Vater				WATER MATR	WATER MATRIX ANALYSES							
FIELD	\$	1	స్			ਹੈ ਹੈ	F.	Hg	Mn	Z	P.	æ	7 1	HARDNESS CALC.
47-035-SW-1 47-035-SW-2 47-035-SW-3	3.89 J 1.69 U 65.6 J	33.4 21.9 2.01 U	2.57 U 27.9 29.7	9.7 U 6.83 16.9 6.83 9.7 U 6.83	6.83 U 6.83 U 6.83 U	13.3 J 2670 J 1260 J	64.3 J 863 J 19100 J	0.12 U 0.12 U 0.12 U	12.7 2590 2120 U-Na Deecled J-E	12.7 12.7 U 1.56 30.7 U 248 2590 12.7 U 28.6 30.7 U 7970 2120 12.7 U 28.6 30.7 U 4710 U Not Detected J - Estimated Quantity, X - Outlier for Accumery of Precision NR - Not Recogned	1.56 4 28.6	30.7 U 30.7 U 30.7 U 30.7 U	248 7970 4710	248 60.3 7970 136 4710 84.7
	Wet Chemistry Results in ma/l	. -												
FIELD LD	TOTAL DISSOLVED SOLIDS CHLORIDE	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYANIDE		SB1 - Upgradient of tributary approx. 50 above waste rock dump 1. SB2 - 10 above where tributary enters culvert going under freeway. WR1 - Composite of subsamples WR1A, 1B, and 1C. WR2 - Composite of subsamples WR2, 3A, 3B, 3C, 4A, and 4B.	ry approx. 50' abov tary enters culvert nples WR1A, 1B, e nples WR2, 3A, 3E	re waste rock dumi going under freew and 1C.	EGEND	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Adit discharge of was	SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Adit discharge of waste rock dump 1.	rock dump 1.	
47-035-SW-1 47-035-SW-2 47-035-SW-3	148 432 8	v v 5.0 5.0 5.0	29 281 134	^ ^ 0.05 0.05 0.05 0.05	N N N N N N		BACKGROUND - From Mary Emmee/Clinton Mine (47-035-SS-1).	ry Emmee/Clinton	Mine (47-035-SS	÷				

Mine/Site Name: Rising Sun	_ County:_Silver Bow
Legal Description: T <u>3N</u> R <u>7W</u>	Section(s): NE 1/4, SW 1/4, Sec. 22
Mining District: Elk Park	Mine Type: Hardrock/Ag, Cu
Latitude: N 45° 59' 47"	Primary Drainage: Silver Bow Creek
Longitude: W 112° 27' 27"	USGS Code: 17010201
Land Status: Private/Public	Secondary Drainage: Tramway Gulch
Quad: Homestake	Date Investigated: September 14, 1993
Inspectors: Bullock/Pierson	P.A. # <u>47-037</u>
Organization: Pioneer Technical Services,	
Inc /Thomas Dean and Hoskins Inc	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 2,000 cubic yards. The only element elevated at least three times background was mercury (0.661J mg/kg).
- One adit discharge was present at this site with a flow of approximately 20 gpm and a pH of 7.28. No MCL/MCLGs or acute or chronic aquatic life criteria were exceeded in the adit discharge.
- The adit discharge served as the headwaters for the stream associated with Tramway Gulch. No other surface water was observed on or near the site.
- The adit opening was identified as a potential safety hazard. Recreation use in the area appeared to be high.

Rising Sun PA# 47-037 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 09/14/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	sis			SOLID MAT	SOLID MATRIX ANALYSES	60						
FIELD ID	As (mg/Kg)	As Ba Cd Co C (mg/Kg) (mg/Kg) (mg/Kg) (mg/	Cd (mg/Kg)	Сo (mg/Kg)		Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANIDE
47-037-WR-1	10 J	83.2	0.86 U	7.71	4.89	24.5	13500	0.661 J	311 4.04	4.04	9.26	# ⊃	37	NR.
BACKGROUND	143	228 J	3.7 J	9.72 J	6.81	447	20200	0.177	480 J	480 J 3.84	156	6.01 U	911 J	
									U - Not Detected, J -	Estimated Quantity	U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	racy or Precision; NR	R - Not Requested	É
	Acid/Base	Acid/Base Accounting												
TOTAL SULFUR NEUTRAL ACID BASE SULFATE FIELD SULFUR ACID BASE POTENT. POTENT. SULFUR D % 1/1000t 1/1000t %	TOTAL SULFUR %	TOTAL SULFUR ACID BASB V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t					
47-037-WR-1	0.01	0.31	13.6	13.3	<0.01	<0.01	0.01	0.01 0 13.6	13.6					

FIELD FIELD FIELD FIELD Fig. Fig. Fig. Fig. Min Ni Ph Sh Zn (mg CaCO3LI) CALC		Metals in Water Results in ug/L	Vater ug/L			_'	WATER MATRIX ANALYSES	X ANALYSES						
3.06 15.1 4.59 U 5.U 6.24 U 2.33 U 13.7 U Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 180 < 5 33 0.12 NR	FIELD D	- 11	BB I	ਣ	రి	ර්	č	Ŗ 6		Mn	Z	£	£	HARDNESS CALC.
Wet Chemistry Results in mg/l TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3NO2-N CYANIDE 180 < 5 33 0.12 NR	47-037-GW-1		15.1	4.59 U	5 U	6.24 U	2.33 U	13.7 U	0.12 U	3.76 U J-Not Detected, J-Est	10.9 U	1.22 lJ	31.7 U	8.71 U 98.6
TOTAL DISSOLVED SOLIDS CHLORIDE SULFATE NO3/NO2-N CYANIDE 180 < 5 33 0.12 NR		Wet Chemistry Results in mg/l					WR1 - C	Composite of subsam	ples WR1A, 1B, as	nd 1C.	EGEND	GWI - Owen A	in the second	
i i	FIELD LD	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		ROUND - From the	Mary Errmee/Clir	ton Mine (47-035-		**************************************	i the grand arms	.
	47-037-GW-1	180		33	0.12	N.								

Mine/Site Name: Old Glory County: Silver Bow Legal Description: T 1S R 8W Section(s): NW 1/4, NW 1/4, Sec. 31 Mining District: Melrose Mine Type: Hardrock/Ag, Au, Cu Latitude: N 45° 42' 40" Primary Drainage: Soap Gulch Longitude: W 112° 38' 38" USGS Code: 10020004 Land Status: Private Secondary Drainage: Soap Gulch Quad: Melrose Date Investigated: August 24, 1993 Inspectors: Bullock, Tuesday P.A. # 47-027 Organization: Pioneer Technical Services, Inc.

- No mill tailings were associated with this site.
- The volume of waste material at the site was estimated to be 10,025 cubic yards. The following elements were elevated at least three times background:

Arsenic: 843 mg/kg

Mercury: 0.608J mg/kg

Nickel: 92.1J mg/kg Antimony: 12.6J mg/kg. Cadmium: 6.2 mg/kg

Manganese: 11,600 mg/kg

Lead: 254 mg/kg

- The waste rock dumps were unvegetated.
- No discharging adits, seeps, or springs were observed.
- No surface water samples were collected as there was no surface water on or near the site
- Hazards present at the site during the investigation included an old cabin near the shaft, and unstable slopes around the collapsed shaft.

Old Glory PA# 47-027 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/24/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	SiS			SOLID MA	SOLID MATRIX ANALYSES	10						
FIELD ID	As (mg/Kg)	H	Ba Cd (mg/Kg) (mg/Kg)	Co Cr (mg/Kg) (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
47-027-WR-1	843	414 J	6.2		4.38	69.3	28300	0.608 J	11600	92.1 J	254	ii		354 NR
BACKGROUND	26	691	0.8 JX	13.8	29.4	34.2	25300	0.014 U	462	8	æ	4 U		2
	!	:							U · Not Detected, J	U - Not Detected, I - Estimated Quartity, X - Outlier for Accuracy or Precision; NR - Not Requested	X - Outlier for Accu	racy or Precision, N	R - Not Requested	
	Acid/Base	Acid/Base Accounting										LEGEND		
FIELD	TOTAL SULFUR %	TOTAL SULFUR SULFUR SULFUR NEUTRAL. ACID BASE SUL. ACID BASE POTENT. POTENT. SUL. VIOOR VIOOR W	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. v1000t	FATE	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t	WR1 - Comp BACKGROU	WRI - Composite of subsamples WRIA, 1B, 2, and 3. BACKGROUND - From the Emma Mine (29-061-SS-1)	oles WR1A, 1B, 2	2, and 3. 61-SS-1).	
47-027-WR-1	0.12	3.75	5.06	1.31	12	<0.01	0.01	0 5.06	5.06					

Mine/Site Name: Clipper	County: Silver Bow
Legal Description: T 1S R 8W	Section(s): NE 1/4, NW 1/4, Sec. 26
Mining District: Melrose	Mine Type: _!!ardrock/Cu
Latitude: N 45° 43' 30"	Primary Drainage: Camp Creek
Longitude: W 112° 33' 35"	USGS Code: 10020004
Land Status: Private/Public	Secondary Drainage: Wickiup Creek
Quad: Wickiup Creek	Date Investigated: August 24, 1993
Inspectors: Bullock, Tuesday	P.A. # 47-029
Organization: Pioneer Technical Services Inc.	

- There were no mill tailings observed at this site during the investigation.
- The volume of waste rock associated with this site was estimated to be approximately 6,255 cubic yards. The following elements were elevated at least three times background:

Arsenic: 177 to 236 mg/kg

Copper: 1290 to 19,100 mg/kg

Lead: 389 to 979 mg/kg

Cobalt: 86 mg/kg

Mercury: 0.219J to 0.293J mg/kg

Antimony: 274J mg/kg

- One discharging adit was identified at the site. The MCL for copper was exceeded in the adit discharge. Also, the acute and chronic aquatic life criteria for copper and chronic aquatic life criteria for mercury and lead were exceeded in the adit discharge.
- Upstream and downstream surface water samples were collected from Wickiup Creek.
 No MCLs were exceeded in either of the samples; however, chronic aquatic life criteria
 were exceeded for mercury and lead in both the upstream and downstream samples.
 Acute and chronic aquatic life criteria were exceeded for copper in the downstream
 sample.
- An observed release to Wickiup Creek was documented for copper. The acute and chronic aquatic life criteria exceedances for copper in Wickiup Creek were directly attributable to the site. Additionally, concentrations of arsenic, cobalt, copper, and lead were significantly elevated (greater than three times) in the downstream sediment sample when compared to the upstream sediment sample.
- Two potentially hazardous mine openings were identified at the site including a fenced shaft and an open adit.

Clipper PA# 47-029 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/24/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES	vo.						
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Рь (mg/Kg)	Sb (mg/Kg)	Zn (me/Ke)	CYANDE
47-029-SE-1 47-029-SE-2 47-029-WR-1 47-029-WR-2	44.4 10.4 236 177	20.4 J 29.4 J 2.79 J 15.4 J	0.8 U 0.8 U 0.8 U	18.4 5.02 2.45 86	6.72 8.09 3.04 9.37	1650 12.7 1290 19100	32400 17800 27100 39400	0.031 U 0.034 U 0.219 J 0.293 J	85.5 181 20.2 609	13.6 J 11.8 J 3.37 J 18.2 J	41.8 5.43 U 389 979	5.24 UJ 5.67 UJ 5.67 UJ 274 J		R R R R
BACKGROUND	56 169 Acid/Base Accounting	169 Accounting	0.8 JX	13.8	29.4	34.2	25300	0.014 U	462 U - Nol Detected, J	462 26 30 4 UJ 119 U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	30 X - Outlier for Accum	4 UJ	119 R - Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. v1000t					
47-029-WR-1 47-029-WR-2	0.92 0.12	28.7 3.75	-0.3 2.62	-29 -1.1	-29 0.76 -1.1 0.06	0.03 <0.01	0.13 0.06	0.94	-1.23 2.62					

	Metals in Water	Vater				WATER MATR	WATER MATRIX ANALYSES							
FTELD	Results in ug/L As	ug/L Ba	8	ક	ځ	ć	£	!					II	HARDNESS CALC.
1 000 OW 4				!!			For the second s	Hg :====================================	Mn ===========	Mn Ni	Pb	SP	ω) uZ	Zn (mg CaCO3/L)
47-029-5W-1	1.97 2.18	8.03 8.03	2.57 U 2.57 U	43.3 9.7 ∪	6.83 U 10.3 J	3020 206	725 291	0.18 JX	165 37.6	25.3	4.29 J	30.7 U	52.6 J 68.9	6.89
47-029-SW-2	2.67	7.73	2.57 U	9.7 ∪	6.83 U	1.55 U	102		8.2	28	3.52 J	30.7 U	7.9 J 13.1 J	57.2 52.9
									U - Not Detected, J	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	X - Outlier for Accur.	acy or Precision, NR	? - Not Requested	
	Wet Chemistry													
	results in mg/l									LEGEND				
FIELD	TOTAL	•				SE2 - 1	SEI - Downstream from mine site in Wickiup Creek. SE2 - Upstream from mine in Wickiup Creek.	ne site in Wickiup in Wickiup Creek.	Creek.		GWI - Adit #1 discharge. SWI - Same as sample SEI.	l discharge. s sample SE1.		
1.D.	SOLIDS	SOLIDS CHLORIDE	SULFATE	NO3/NO2-N	CYANIDE		w.r.t Composite of subsamples WR1A, 1B, 1C, and 2. WR2 - Composite of subsamples WR3, 5, and 6.	nples WRIA, 1B, Inples WR3, 5, and	IC, amd 2. 6.		SW2 - Same as sample SE2.	s sample SE2.		
47-029-GW-1	131 131	۸ ۸ 5.0	8	0.11	0.11 NR		BACKGROUND - From the Emma Mine (29-061-SS-1)	e Emma Mine (29-(061-58-1).					
47-029-SW-2	107	20 20 20 20	<u> </u>	9.0 9.0 V	ž Z									

Mine/Site Name: Maiden Rock	County: Silver Bow
Legal Description: T 2S R 9W	Section(s): NE 1/4, NE 1/4, Sec. 5
Mining District: Melrose	Mine Type: Open Pit/P
Latitude: N 45° 41' 42"	Primary Drainage: Big Hole River
Longitude: W 112° 44' 03"	USGS Code: 10020004
Land Status: Public	Secondary Drainage: Big Hole River
Quad:_Melrose	Date Investigated: August 24, 1993
Inspectors: Bullock, Tuesday	P.A. # 47-051
Organization: Pioneer Technical Consider Inc	

Small historic mine workings were identified above the active Rhone-Poulenc
phosphorous pit and milling facility. The workings were insignificant compared to the
active crushing facility below and the open pit mining operation located across the Big
Hole River. No samples were collected due to the active status of the site. The site
should be inventoried if active mining operations cease.

I d St me Lev

by ci

An (mg/Kg) (mg	CAL	A Accuracy	
(mg/8) (m	PYRUTIC SULFUR PYRUTIC ACID BASE SULFUR PYRUTIC SULFUR VIOON 89.9 " 0.27 2.83 SULFUR PYRUTIC ACID BASE VIOON 89.9 8.43 -32 2.83	Hs	
Co (mg/Kg) 13.5 11.20 13.5 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 11.20 13.5 13.5 11.20 13.5 11.20 13.5 11.20 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	SULTUR SULFATE PY SULFUR SULFATE SU NEUTRAL POTENT " POTENT VIOON VIOON	S in Water Cd Co Cr Cd Cd Cd Cd Cd Cd	NO3/NO2-N CYANIDE NO3/NO2-N CYANIDE NO3/NO2-N CYANIDE NATE
i	265 J 473 J 40.1 J 173 J Acid/Base Accounting Acid/Base Accounting TOTAL SULEUR TOTAL ACID/BAS SULEUR " 1.15 93.7	P. 1 I.D. A. 15 I.D. A. 15	Wet

Mine/Site Name: Maiden Rock	County: Silver Bow
Legal Description: T 2S R 9W	Section(s): NE 1/4, NE 1/4, Sec. 5
Mining District: Melrose	Mine Type: Open Pit/P
Latitude: N 45° 41' 42"	Primary Drainage: Big Hole River
Longitude: W 112° 44' 03"	USGS Code: 10020004
Land Status: Public	Secondary Drainage: Big Hole River
Quad: Melrose	Date Investigated: August 24, 1993
Inspectors: Bullock, Tuesday	P.A. # 47-051
Organization: Pioneer Technical Services, Inc.	

• Small historic mine workings were identified above the active Rhone-Poulenc phosphorous pit and milling facility. The workings were insignificant compared to the active crushing facility below and the open pit mining operation located across the Big Hole River. No samples were collected due to the active status of the site. The site should be inventoried if active mining operations cease.

					:	

Mine/Site Name: Middle Fork Millsite County: Silver Bow Legal Description: T 1N R 8W Section(s): SW 1/4, SE 1/4, Sec. 36 Mining District: Moose Creek Mine Type: will tailings/Au Latitude: N 46° 47' 15" Primary Drainage: Moose Creek Longitude: W 112° 33' 10" USGS Code: 10020004 Land Status: Public Secondary Drainage: Middle Fork Moose Ck. Quad: Mount Humbug Date Investigated: August 27, 1993 Inspectors: Bullock, Tuesday P.A. # 47-081 Organization: Pioneer Technical Services, Inc.

The volume of mill tailings associated with this site was estimated to be 36,500 cubic yards. The following elements were elevated at least three times background:

Arsenic: 261J to 265J mg/kg Iron: 70,700 to 106,000 mg/kg

Copper: 783 to 1120 mg/kg Mercury: 0.705J to 0.93J mg/kg

Zinc: 241 mg/kg

Lead: 62 to 195 mg/kg

- There was no waste rock associated with this site.
- There were no discharges associated with mine openings at this site. Several seeps were identified associated with small tributaries to Moose Creek.
- Moose Creek was sample upstream and downstream of this site. The water samples documented an observed release of iron, attributable to this site. Sampling did not document exceedances of MCL/MCLGs or aquatic life criteria attributable to this site. Stream sediment samples documented observed releases of arsenic, copper, iron, mercury, lead, and zinc.
- Level areas of the tailings impoundments were well vegetated, except where disturbed by cattle grazing.

Middle Fork Millsite PA# 47-081 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/27/93

													,	
	Metals in soils Results per dry	Metals in soils Results per dry weight basis	. <u>s</u>			SOLID MAT	SOLID MATRIX ANALYSES					·		
FIELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mg/Kg)	CYANIDE (mg/Kg)
47-081-SE-1 47-081-SE-2	418 J 1080 J	204 259	2.59 J 9.08 J	27.8	14.3	993	127000	0.546 J	6420	8	109	14.8 U	249	N.
47-081-SE-3	12.5 J	96.3	0.99	5.56	7.05	14.5	8490	0.126	20/07	13.5	75.1	36.9 U	635	ž
47-081-TP-1	261 5	29.5	1.52 J	6.68	15.5	783	70700	0.93	213	0 ru	8 5	6.8 U	24.1	ž
47-081-TP-2	5 65 J	4	2.47 J	13.5	10.7	1120	106000	0.705 J	432	7.99	195	7.71 U	2 4 24	žž
BACKGROUND	40.1 ي	173 J	7	10.1	21.1 J	34.3	18500 JX	0.039	832	18.1	14.8	7.28 UJ	61.9 J	S.
									U · Not Detected, J ·	Stimated Quantity	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	icy or Precision, N	R - Not Requested	
	Acid/Base Accounting	\ccounting												
FIELD	TOTAL SULFUR	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT.					
47-081-TP-1 47-081-TP-2	1.15 3	35.9 93.7	98.3 56.4	62.4 -37	0.78 <0.01	0.27	0.1 0.37	8.43 88.4	89.9 -32					
														=

						WATER MATR	WATER MATRIX ANAI YSES							
	Metals in Water Results in ug/L	Nater ug/L											,	
FIELD ID	As	Ba	ľ	පී	ڻ	លី		Нв	Mn	ï	ይ	윩	A, H,	HARDNESS CALC. Zn (mg CaCO3/L.)
47-081-SW-1	4.15	30	l	4.59 U 5 U 6.24 U	6.24 U	9.23 J	#i 	0.21	49.9	10.9 U	10.9 U 2.1 31.	1 7	871 U 295	295
47-081-SW-3	3.53	37.9	4.59 U	0 v0	6.24 U 6.24 U	5.73 J 10.6 J	371 J 46.7 J	0.21 0.19	27.6 30.9	10.9 U 10.9 U	0.94 U 0.94 U	31.7 U 31.7 U	8.71 U 8.71 U	200
									U - Not Detected, J -	U - Not Detected, I - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	- Outlier for Accurac	cy or Precision, NR	- Not Requested) ! !
	Wet Chemistry													
-	Mesonis III III di	_				• .				LEGEND				
FTELD LD:	TOTAL DISSOLVED SOLIDS	CHLORIDE	SULFATE	NO3/NO2-N CYANIDE	CYAN	882 - 883 - 171 - 0	 SEI - Downstream below lowest tailings pond. SE2 - Intermediate sample on tributary between mill and tailings. SE3 - Upgradient on Middle Fork Moose Creek. TP1 - Composite of subsamples Tp1, 2A-A, 2A-B, and 2A-C. 	owest tailings pon on tributary betwe e Fork Moose Cre ples Tp1, 2A-A, 2	d. en mill and tailings ek. 'A-B, and 2A-C.		SW1 - Same as sample SE1. SW2 - Same as sample SE2. SW3 - Same as sample SE3.	sample SE1. sample SE2. sample SE3.		
47-081-SW-1 47-081-SW-2 47-081-SW-3	329 285 272	۸ ۸ ۸ بې ښې	57 52 7	57 < 0.05 52 < 0.05 7 < 0.05	N N N N N N N N N N N N N N N N N N N	TP2 - BACK	TP2 - Composite of subsamples TP3A-A, 3A-B, and 4. BACKGROUND - From the Highland Mine (47-028-SS-1).	ples TP3A-A, 3A Highland Mine (4	.B, and 4.					

Mine/Site Name: Mouat Mine	County:_Stillwater
Legal Description: T <u>5S</u> R <u>15E</u>	Section(s): NW 1/4, Sec. 20
Mining District: Nye	Mine Type: Hardrock/Cr
Latitude: N 45° 23' 20"	Primary Drainage: Stillwater River
Longitude: W 109° 54' 03"	USGS Code: 10070005
Land Status: Public	Secondary Drainage: Mountain View Creek
Quad: Meyer Mountain	Date Investigated: August 24, 1993
Inspectors: Babits, Flammang/Pierson	P.A. # <u>48-001</u>
Organization: Pioneer Technical Services,	
Inc./ Thomas, Dean and Hoskins, Inc.	

- There were no mill tailings associated with this site.
- There were approximately 90,400 cubic yards of uncovered waste rock on site. The following were elevated at least three times background:
 Mercury: 0.146J to 0.25J mg/kg
- There was one discharging adit on site, but it did not enter surface water directly. The pH of the discharge was 8.05, and no MCL/MCLGs were exceeded.
- A lake was approximately 750 feet from the site. A sample was collected in the lake prior to its discharge to the Mountain View Creek. No MCL/MCLGs were exceeded. The chronic fresh water aquatic life criteria for cadmium, mercury, and lead were exceeded in downstream surface water.
- There was one open adit and at least 12 hazardous structures on site.

Mouat Mine PA# 48-001 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/24/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>8</u> .			SOLID MA'	SOLID MATRIX ANALYSES	v						
FELD	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (mo/Ke)	CYANDE
48-001-WR-1 48-001-WR-2 48-001-WR-3	4.29 U 4.42 U 4.85 U 4.7 U	7.79 J 3.22 J 12.4 J 3.8 J	0.8 U 1.1 1.2 0.9 U	11 80.5 66.3 39.5	82.6 51.8 66 103	18.5 22.8 23.4 22.1	10900 46600 38100 23500	0.028 U 0.25 J 0.146 J 0.185 J	105 696 569 384	123 J 943 J 770 J 489 J	5.89 U 6.06 U 6.64 U 6.44 U	5.68 UJ 5.85 UJ 6.41 UJ 6.22 UJ	15.7 28.3 22.3 14.4	R X X X
BACKGROUND	4.27 U 30.7 Acid/Base Accounting	30.7 J	0.8 U	2	147	18.5	33400	0.028 U	668 U - Not Detected, J .	551 J Estimated Quartity:	668 551 J 5.85 U 5.65 UJ 25.8 U - Na Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision: NR - Not Requested	5.65 UJ	25.8 R - Not Requested	
FIELD D	TOTAL SULFUR %	TOTAL SULFUR ACID BASIE v1000t	NEUTRAL. POTENT. 1/1000t	SULFUR ACID BASE POTENT. V1000t	SULFATE SULFUR	PYRITIC SULFUR	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
48-001-WR-1 48-001-WR-2 48-001-WR-3	60.04 60.04 60.04	000	37.5 37.8 11.3	37.5 37.8 <0 11.3	6.00 0.00 0.01	<0.01 0.01 <0.01	<0.01 <0.01 0.01	0.31 0	37.5 37.5 11.3					

	Metals in Water	Nater				WATER MAT	WATER MATRIX ANALYSES							
FIELD		9											HARI	HARDNESS
Ð	As	As Ba	ප	co		Ö	E G	盟	Mn	ž	윤	S	Zn (me	CALC. Zn (mg CaCO3/L)
48-001-SW-1 48-001-SW-2	0.96 U 0.96 U	2.01 U 2.01 U	2.57 U 2.57 U	9.7 U 9.7 U	18.1 J 12.3 J	1.57 1.55 U	21.6 135	0.14 JX 0.19 JX	0.14 JX 4.08 U 12.7 U 3.62 J 30.7 U 7.57 U 121 0.19 JX 14.6 12.7 U 3.14 J 30.7 U 8.37 J 70.6	12.7 U 12.7 U	3.62 J 3.14 J	30.7 U 30.7 U	7.57 U 8.37 J	121
									U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	stimated Quantity, X	- Outlier for Accum	ncy or Precision; NR		
	Wet Chemistry									LEGEND				
						WR1	SE2 - Mountain View Lake just prior to discharge. WR1 - Commonity of subsecucies UP: A condition	just prior to disch			SWI - Adit discharge.	charge.		-
FIELD	TOTAL DISSOLVED					WR2	WR2 - Composite of subsamples WR1B, 1C, 2A, and 2B. WR3 - Composite of subsamples WR3A, 3B, 3C, 4, and 4.	mples WRIB, 1C, 7	2A, and 2B.		SW2 - Same as sample SE2.	sample SE2.		
I.D.	SOLIDS	OLIDS CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE		BACKGROUND - From the Moust Mine (48-001-5S-1)	Mount Mine (48-	ooi -ss-1).					-
48-001-SW-1 48-001-SW-2	149 97	< 5.0 < 5.0	<u>4</u> .c	0.24 NR	0.24 NR NR NR									
							•							_

Mine/Site Name: Benbow Millsite County: Stillwater Legal Description: T <u>5S</u> R <u>16E</u> Section(s): NW 1/4. Sec. 21 Mining District: Stillwater Mine Type: Hardrock/Cr, Fe, Ni Latitude: N 45° 23' 20" Primary Drainage: Stillwater River Longitude: W 109° 45' 55" USGS Code: 10070005 Land Status: Public Secondary Drainage: Little Rocky Creek Quad: Nye Date Investigated: August 11, 1993 Inspectors: Babits, Flammang, Lasher P.A. # <u>48-005</u> Organization: Pioneer Technical Services, Inc.

There were approximately 5,950 cubic yards of mostly covered mill tailings at the site.

The following were elevated at least three times background:

Cadmium: 1.08J to 1.60J mg/kg Chromium: 66.8 to 908 mg/kg

Nickel: 72.3 to 983 mg/kg

Cobalt: 44.7 to 68.3 mg/kg

Mercury: 0.199 mg/kg

- There was no waste rock associated with this site.
- There were no discharging adits at the site.
- An unnamed tributary of Little Rocky Creek flowed adjacent to the tailings. There were
 observed releases of cobalt, chromium, and nickel in downstream sediment, and there
 were no observed releases to downstream surface water. No MCL/MCLGs or fresh
 water aquatic life criteria were exceeded in downstream surface water.
- A conveyor gallery in the mill was partially open and hazardous and the mill wall is 20 feet high.

Benbow Millsite PA# 48-005 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BABITS INVESTIGATION DATE: 08/11/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	<u>is</u>			SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg) ====================================	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (mg/Kg)	Zn (mø/Ke)	CYANIDE (mø/Kø)
48-005-SE-1	677 11	7.	11 72 0									11	:====== :=============================	(SV SIII)
40 000 01 0		- ;	0.74 0.14	20.0	. 9 4	13.9	7060	0.051 U	183	23.9	11 8 11	2 6 8	,	2
40-003-SE-Z	D 88.0	16.1	0.59 U	34.7	497 J	13.3	25200	0 102	ACA ACA	23	2 - 0		4.00	Y :
48-005-SE-3	11.4 C	85.9 J	1.25 UJ	16.5	160	33.0	21600	2000	277	3	9.22 0		13.9	ž
48-005-SE-4	4.76 U	22 J	0.52 U.I	44.7	8	18.5	2,000	0.000	110	134	38.8	14.9 UJ	9.89	Z.
48-005-TP-1	5.18 U	9 25 .	200	. 68	6	- 9 - 9	34800	0.034 U	687	899	8.16 U		25.9	X.
48-005-TP-2	120	20.0	3 6	9 6	9 1	9	43/00	0.199	6	953	8.88	6.74 U.I	25.6	0 2
48 OOF TO 2		0.00	9.6	4.70	25	16.1	44800	0.03 U	754	983	7.06.11	5 36 11	27.0	2 2
5-L1-000-04	00.0	7 \$	0.56 0.3	11.6	8.99	13.5	20700	0.034 U	808	72.3	16.4	6.58 1.08 1.08 1.08	54.3 7 0 7	¥ 0
		. !								!		3	3	<u> </u>
BACKGROUND	14.8 L	97.1	0.54 U	6.45	10.8 J	12.9	21100	0.051	381	11.5	11.8	6.41 UJ	58.1	Z.
									U - Not Detected, J -	Estimated Quantity,	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	or Precision; NR - 1	Vot Requested	•
	Acid/Base Accounting	ccounting												
		TOTAL		SULFUR				Citiana						
i E	TOTAL	SULFUR	NEUTRAL.	ACID BASE	SULFATE	PYRITIC	ORGANIC	SULFUR	ACID BASE					
FIELD	SULFUR	ACID BASE	POTENT.	POTENT.	SULFUR	SULFUR	SULFUR	ACID BASE	POTENT.					
		VIUUUR	V1000t	t/1000t	*	*	*	v1000t	t/1000t					
48-005-TP-1	0.04	1.25	108	107	<0.01	0.01	0.03	0.24	400					
48-005-TP-1DUP	90.0	1.25	9	108	0.01	60.01	0.0	000	<u>8</u> 6					
48-005-TP-3	5 6		87.3 10.3	87.0 35.0	6 2 2 2	6 2 2	0.0	0.00	87.3				•	
			2	3	5	<u>.</u>	0.03	0.31	9.97					

	Metals in Water Results in ug/L	Nater ug/L				WATER MA	WATER MATRIX ANALYSES	v						
FIELD		•											HAR	HARDNESS
Ol .	8	Ba	ಶ	ප	ರ	් ය ය ය		Hg	M	Z	P.	æ	Zn (ms	CALC. Zn (mg CaCO3/L)
48-005-SW-1 48-005-SW-2	1.18 U 1.19	26.3	2.57 U 2.57 U	9.7 U 0.7.0	6.83 U 8.6	2.03 1.7	112 645	0.16 0.12 U	4.13 60.4	4.13 12.7 U 1.09 J 30.7 U 11.7 83 60.4 12.7 U 1.23 J 30.7 U 7.57 U 139	1.09 J 1.23 J	30.7 U 30.7 U	11.7 7.57 U	83 139
									U - Not Detected, J -	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	- Outlier for Accuracy	y or Precision; NR - N	vot Requested	
	Wet Chemistry Results in ma/l									LEGEND		-		
						SE2	SE2 - In unnamed trib. N of road crossing. SE2 - In unnamed trib. at base of tailings nond?	of road crossing. He of failings nand	ŗ		BACKGROUN	BACKGROUND - From the Benbow Millsite	nbow Millsite	
FIELD	TOTAL DISSOLVED					SE3 -	SE3 - In Little Rocky Creek, 50 upstream of confluence with	c, 50' upstream of c	onfluence with		(48-005-83-1). SW1 - Same as sample SE1	(48-005-88-1). me as sample SE1.		
.D.	SOLIDS	CHLORIDE	SULFATE	SULFATE NO3/NO2-N CYANIDE	CYANIDE		SE4 - In Little Rocky Creek, 50 downstream of confluence with	t, 50' downstream c	of confluence with		SW2 -Same as sample SE2.	sample SE2.		
48-005-SW-1	123	< 5.0	123 < 5.0 14 < 0.05 NR	< 0.05	N		unnamed tributary. TP1 - Comments of unbeamales TP1 AA 1754 - 1757	ole Tota 104	44					
48-005-SW-2	69	> 20	7	< 0.05	Z Z	TP2-	TP2 - Composite of subsamples TP2AA, 2AB, and 2BA.	ples TP2AA, 2AB,	end 2BA.					
						TP3.	TP3 - Sample of the TP2BB subsample.	3 subsample.						

MONTANA DEPARTMENT OF STATE LANDS ABANDONED MINE RECLAMATION BUREAU HAZARDOUS MATERIALS INVENTORY SITE SUMMARY

Mine/Site Name: Poorman/Emma County: Sweetgrass Legal Description: T 7S R 12E Section(s): SW 1/4, NE 1/4, Sec. 22 Mining District: Independence Mine Type: <u>Hardrock/Au</u>, Ag Latitude: N 45° 12' 43" Primary Drainage: East Fork Boulder River Longitude: W 110° 13' 46" USGS Code: 10070002 Land Status: Private/Public Secondary Drainage: Unnamed Tributary Quad: Haystack Peak Date Investigated: August 11, 1993 Inspectors: Bullock, Belanger, Clark P.A. # 49-001 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings observed at the site.
- The volume of waste rock associated with this site was estimated to be 245 cubic yards.
 The following elements were elevated at least three times background:

Arsenic: 270 mg/kg Mercury: 0.323 mg/kg

Copper: 292 mg/kg Lead: 399 mg/kg.

- The waste rock dumps were unvegetated.
- One partially flooded shaft was present with a pH of 6.20 and a specific conductance of 230 umhos/cm. The water did not exceed MCL/MCLGs. No seeps or springs were observed during the site visit.
- It was approximately 200 feet from the waste rock to the nearest drainage with no direct runoff pathways observed.
- The flooded shaft was open and potentially hazardous, as were two wood cabins present on the site.

Poor Man/ Emma PA# 49-001 AMRB HAZARDOUS MATERIALS INVENTORY INVESTIGATOR: PIONEER - BULLOCK INVESTIGATION DATE: 08/11/93

	Metals in soils Results per dry	Metals in soils Results per dry weight basis	Sis			SOLID MA'	SOLID MATRIX ANALYSES	v.						
FIBLD D	As (mg/Kg)	Ba Cd (mg/Kg) (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mg/Kg)	Pb (mg/Kg)	Sb (me/Ke)	Zn (me/Ke)	CYANIDE
49-001-WR-1	270	103 J	103 J 1.57 J 24.6	24.6	21.5	292	27800	0.323	637	42.5	399	5.79 U.I	5.79 U.I 273	ii
BACKGROUND	16.3	78.3 J	0.68 J	13.5	45.6	1.04	28500	0.064	612	24	37.2	LU 78.7	8	
		;							U - Not Detected, J.	· Estimated Quantity	U - Not Detected, J - Estimated Quantity, X - Outlier for Accuracy or Precision, NR - Not Requested	uracy or Precision; N	VR - Not Requested	
	Acid/Base	Acid/Base Accounting												
FIBLD D	TOTAL SULFUR %	TOTAL TOTAL SULFUR SULFUR ACID BASE % #1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT.					
49-001-WR-1	0.07	2.19	8.60		0.03	<0.01	0.04	0.00	8.60					

	Metals in Water Results in ud/l	Vater				WATER MATRIX ANALYSES	IX ANALYSE	S						
FIELD		j D											HAR	HARDNESS
Д	As	Ba	P	රී	ರ	8	Fe	Hg	M	ï	£	£	7-2	CALC.
49-001-GW-1 49-001-GW-2	2.03	19 17.1	2.57 U 2.57 U	9.7 U 9.7 U	6.83 U 6.83 U	3 U 3.2 3 U 1.9 J	22.8 48.2	0.12 U 0.120 U	36.2 12.7 U 1.07 J 30.7 U 10.3 4.08 U 12.7 U 0.72 U 30.7 U 7.57 U 0.75 U 30.7 U 7.57 U	36.2 12.7 U 1.07 J 30.7 U 10.3 19.3 4.08 U 12.7 U 0.72 U 30.7 U 7.57 U 18.4 No Detected J. Estimated Quantity, X. Outlier for A. rouney or Precision NR. Not Resinesed	1.07 J 0.72 U	1.07 J 30.7 U 0.72 U 30.7 U dlier for A: cursey or Precision: NR.	10.3 7.57 U	3 19.3 17 U 18.4
	Wet Chemistry									LEGEND				
						WR1 - C BACKGR	composite of subse	WRI - Composite of subsamples WR1, 2, 3, and 4. BACKGROUND - From the Poorman/Emma Mine (WR1 - Composite of subsamples WR1, 2, 3, and 4. BACKGROUND - From the Poorman/Emma Mine (49-001-SS-1).		GW1 - Filled shaft. GW2 - Diminate of	GWI - Filled shaft.	1 200 00	
FIELD	DISSOLVED											ardines are to as	-WD-100-64	
I.D.	SOLIDS	CHLORIDE	••	SULFATE NO3/NO2-N CYANIDE	CYANIDE		-							
49-001-GW-1 49-001-GW-2	56 61	5.0 5.0	တ မ	9 0.05 NR 6 0.06 NR	N N N N									

MONTANA DEPARTMENT OF STATE LANDS **ABANDONED MINE RECLAMATION BUREAU** HAZARDOUS MATERIALS INVENTORY SITE SUMMARY

Mine/Site Name: Yager/Daisy	County: Sweetgrass
Legal Description: T <u>7S</u> R <u>12E</u>	Section(s): NE 1/4, SW 1/4, Sec. 15
Mining District: Independence	Mine Type: Hardrock/Au
Latitude: N 45° 13' 17"	Primary Drainage: Boulder River
Longitude: W 110° 13' 10"	USGS Code: 10070002
Land Status: Private/Public	Secondary Drainage: Basin Creek
Quad: Haystack Peak	Date Investigated: August 11, 1993
Inspectors: Bullock, Belanger, Clark	P.A. # 49-002
Organization: Pioneer Technical Services, Inc.	

The volume of tailings present on the site was estimated to be 1700 cubic yards. The tailings were not contained in any impoundment and were in contact with a wetlands area. The following elements were elevated at least three times background:

Arsenic: 138 mg/kg Mercury: 1.91 to 31.9 mg/kg Lead: 226 to 700 mg/kg.

The volume of waste rock associated with this site was estimated to be 10,150 cubic yards. The following elements were elevated at least three times background:

Arsenic: 59.1 mg/kg Cadmium: 2.92J mg/kg

Copper: 160 to 168 mg/kg Mercury: 0.644 to 23.5 mg/kg

Lead: 389 to 2520 mg/kg

- Four discharging adits were present on site. GW-1 was flowing at approximately 15 gpm, had a pH of 6.85, and a specific conductance of 110 umhos/cm. Water from this adit did not exceed MCL/MCLGs, but did exceed chronic aquatic life criteria for copper and lead. GW-2 had a flow of approximately 10 gpm, a pH of 7.28, a specific conductance of 70 umhos/cm, and exceeded acute and chronic aquatic life criteria for copper. GW-3 was flowing at approximately 5 gpm, had a pH of 6.99 and a specific conductance of 170 umhos/cm. The water from this adit exceeded the MCL/MCLG for nickel, the chronic aquatic life criteria for copper, nickel, and zinc, and acute aquatic life criteria for copper and zinc. GW-4 had a flow at approximately 6 gpm, a pH of 3.78, a specific conductance of 190 umhos/cm, and exceeded chronic aquatic life criteria for iron and lead.
- Basin Creek flowed past the south side of the site. Water in the creek did not exceed MCL/MCLGs, but did exceed the acute and chronic aquatic life criteria for copper. This exceedance was attributable to the site. No observed releases were documented in either the surface water or the sediments.
- One open shaft and several structures were classified as potentially hazardous.

Yager/Daisy PA# 49-002
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BULLOCK
INVESTIGATION DATE: 08/11/93

	Metals in soils		Results per dry weight basis	veight basis		SOLID MAT	SOLID MATRIX ANALYSES							
FIELD ID	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (mø/Kg)	Pb (me/Ke)	Sb (me/Ke)	Zn	CYANIDE
49-002-SE-1 49-002-SE-2 49-002-TP-1 49-002-WR-1 49-002-WR-2	5.66 5.21 U 138 19.6 59.1	49.2 J 45.8 J 122 J 82.4 J 140 J	0.54 UJ 0.57 UJ 0.56 UJ 1.31 J 2.92 J 0.88 J	5.8 9.28 2.73 7.82 31	17.7 17.7 6.13 8.82 9.42 17.4	58.8 51.6 95.4 65 168	12100 13200 28300 25300 56900 41400	0.032 U 0.031 U 1.91 31.9 0.644 23.5	205 307 24.8 99 627 199	12.2 16.6 6.87 12 24.5 18.9	50.5 109 700 226 2520 389	#333333	49.3 82.8 82.2 64 296 40.4	R N N N N N N N N N N N N N N N N N N N
BACKGROUND	16.3 78.3 Acid/Base Accounting	78.3 J	0.68 J	13.5	45.6	40.1	28500	0.064	612 U - Not Detected, J	612 24 37.2 7.97 UJ 99 U-Not Detected: J. Estimated Quantity, X - Outlier for Accuracy or Precision; NR - Not Requested	37.2 X - Outlier for Accur	7.97 UJ	99 Not Requested	ž Z
FIELD ID	TOTAL SULFUR %	TOTAL SULFUR ACID BASE V1000t	NEUTRAL. POTENT. V1000t	SULFUR ACID BASE POTENT. #1000t	SULFATE SULFUR %	PYRITIC SULFUR %	ORGANIC SULFUR %	PYRITIC SULFUR ACID BASE V1000t	SULFUR ACID BASE POTENT. V1000t					
49-002-TP-1 49-002-TP-2 49-002-WR-1 49-002-WR-2	0.60 2.34 3.59 2.51	18.7 73.1 112 78.4	-1.05 1.83 0.86 0.07	-19.8 -71.3 -111 -78.3	60.01 60.01 6.01 6.56	0.32 0.75 1.65 0.37	0.48 1.06 2.45 1.58	10.0 23.4 51.5 11.6	-11.0 -21.6 -50.7 -11.5					

	Metals in Water		Results in ug/L			WATER MA	WATER MATRIX ANALYSES							
FIELD ID	As	Ba	ಶಿ	రి		ਠ	ድ	ag M	M	Z	£	ਲ	- 2	HARDNESS CALC.
49-002-GW-1 49-002-GW-2 49-002-GW-3 49-002-GW-4 49-002-SW-1 49-002-SW-2	1.18 U 1.18 U 1.18 U 1.18 U 1.18 U 1.18 U	J	257 U 257 U 257 U 257 U 257 U 257 U	ഗ ഗഗഗഗ	6.83 U 6.83 U 14.7 6.83 U 6.83 U 6.83 U	5.37 8.13 186 3.07 4.53	112 11.8 U 155 1500 137	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.08 U 4.08 U 9.17 92.5 8.43 4.08 U	4.08 U 12.7 U 4.08 U 12.7 U 12.7 U 12.7 U 11.5 92.5 12.7 U 4.08 U 12.7 U	1.33 J 0.72 U 1.22 J 9.37 J 1.05 J	30.7 U 30.7 U 30.7 U 30.7 U 30.7 U 30.7 U	7.57 U 17.1 20.5 12.4 10.3	10.1 30.8 7.57 U 18.1 17.1 51.2 20.5 23.9 12.4 14.6 10.3 19.7
FIELD LD	Wet Chemistry TOTAL DISSOLVED SOLIDS	R	Results in mg/l	N-30NO2-N	CYANIDE	SE2 SE2 TP1	SE1 - In Basin Creek, downgradient from site. SE2 - In Basin Creek, upgradient of site. TP1 - Composite of subsamples TPIA-A, 1B-A, and 1C.A.	ngradient from site adient of site.	LEGEND GWI - Adit discharge above lower, waste ro GWZ - Adit discharge above waste rock du A and IC.A	LEGEND	GW1 - Adit disa GW2 - Adit disa	Outlier for Accuracy or Precision; NR. Not Requested GWI - Addi discharge above lower, waste rock dump 6A. GW2 - Addi discharge above waste rock dump 5.	Not Requested /er, waste rock ste rock dump	dump 6A. 5.
49-002-GW-1 49-002-GW-2 49-002-GW-3 49-002-GW-4 49-002-SW-1 49-002-SW-2	72 100 72 75 85	8.0 7.0 5.0 8 6	22 < 0.05 9 < 0.05 46 0.06 37 0.05 9 < 0.05 8 < 0.05	>	X X X X X X X X X X X X X X X X X X X		TP2 - Composite of subsamples TP1A-B, IB-B, and 1C-B. WR1 - Composite of subsamples WR14, 1B, 2A, 2B, and 3. WR2 - Composite of subsamples WR2C, 4A, 5A, 5B, 6A, and 6B. BACKGROUND - From the Poor Man/Elmna Mine (49-001-38-1).	mples TP1A-B. iB. mples WR1A, 1B. mples WR2C, 4A, e Poor Man/Erums	B, and 10-B. 2A, 2B, and 3. 5A, 5B, 6A, and 6. Mire (49-001-85-	æ :	CW3 - Auti dacharge abow GW4 - Adit discharge abow SW1 - Same as sample SE1 SW2 - Same as sample SE2	ows - Aut assitutge above waste rock dump 4. GW4 - Adit discharge above waste rock dump 2. SW1 - Same as sample SE1. SW2 - Same as sample SE2.	sste rock dump	4 7

Bore Hole - An exploratory or prospecting hole made by drilling.

CECRA - The Comprehensive Environmental Cleanup and Responsibility Act.

CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act of 1980, also known as Superfund: Amended in 1986 by the Superfund Amendments and Reauthoization Act (SARA).

Claim - An area of land claimed by an individual or corporation for the ultimate purpose of mineral extraction. The dimensions of a lode claim are 600 by 1,500 feet; for a placer claim, 600 by 1,320 feet.

Chronic Aquatic Life Criteria - EPA's maximum chronic toxicity concentrations for protection of aquatic life and its uses as established under Section 304(a)(1) of the Clean Water Act, as amended.

Collar - The term applied to the timbering or concrete around the mouth or top of a shaft. The junction of a mine shaft with the surface.

Collector (flotation mill) - A reagent that aids or facilitates the attraction of mineral particles to the froth in a flotation cell.

Comminution - To reduce solids to minute particles by crushing and grinding to liberate metals.

Concentrate - To separate metal or ore from the associated gangue or barren rock.

Concentrate (mineral concentrate)- Enriched ore after the removal of waste in a benefication mill.

Concentrator - Mill or plant in which ore is concentrated by removing unwanted constituents.

Containment - Engineered structures designed to prevent releases to groundwater, such as liners, covers, and run-on diversions.

Country Rock - General term applied to the rock surrounding and penetrated by mineralized veins; in a wider sense applied to the rocks invaded by and surrounding an igneous intrusion.

Cribbing - A method of timbering used primarily to rectify the removal of too great a percentage of the rock on the advance, and has the effect of replacing part of the rock.

Crosscut - (1) A passageway driven at right angles to the main entry to connect it with a parallel entry or air course. (2) A horizontal opening driven across the course of a vein or in general perpendicular to the direction of the main workings.

Crusher - A machine for crushing rock or other materials. Among the various types of crushers are the ball-mill, gyratory crusher, Hadsel mill, jaw crusher, rod mill, rolls, stamp mill, and tube mill.

Cyanide - A salt or ester of hydrocyanic acid. In aqueous solution, cyanide is used to dissolve metal from gangue material for later recovery.

Cyclone - A device for classification by centrifugal means of fine particles suspended in water, whereby the coarser grains collect and are discharged at the apex of the vessel, while the finer particles are eliminated with the bulk of the water at the discharge orifice.

Depressant (flotation mill) - A reagent that causes selected mineral species to sink in a flotation cell.

Drift - A horizontal passage underground. A drift follows the vein, as distinguished from a crosscut, which intersects it.

Drainage Basin Code - Code assigned to each discrete hydrologic unit by the U.S. Geologic Survey.

DHES-SHWB - Montana Department of Health and Environmental Sciences, Solid and Hazardous Waste Bureau.

DHES-WQB - Montana Department of Health and Environmental Sciences, Water Quality Bureau.

DNRC - Montana Department of Natural Resources and Conservation.

DSL-AMRB - Montana Department of State Lands, Abandoned Mine Reclamation Bureau.

Dump - A pile or heap of waste rock material or other non-ore refuse near a mine.

Electrowinning - Recovery of a metal from an ore or solution by electrochemical processes.

EPA - United States Environmental Protection Agency.

Face - The surface exposed by excavation. The working face, front, or forehead is the face at the end of the tunnel heading, or at the end of the full size excavation.

Floodplain - An alluvial plain caused by the overbank deposition of alluvial material. They typically appear as flat expanses of land bordering a stream or river. Most floodplains are accompanied by a series of alluvial terraces of varying levels.

Fluvial - pertaining to or produced by the action of a stream or river.

Flotation - The method of mineral separation in which a froth created in water by a variety of reagents floats some finely crushed minerals, whereas other mineral sink.

Flotation Cell - Device in which froth flotation of ores is performed. It has provisions for receiving conditioned pulp, aerating the pulp, and for separate discharge of the resulting mineralized froth and impoverished tailings.

Frother - A reagent which serves to stabilize the froth in a flotation cell until it can be scraped off into the concentrate launder.

Glory Hole - Large open hole typically associated with a mined-out or widened shaft.

Gravity Mill - A process in which heavy metals or minerals are separated from waste by the action of agitation and gravity on materials suspended in a liquid, usually water.

Grizzly - A devise used for coarse screening of bulk materials. A rugged screen for rough sizing at a comparatively large size (for example, 6-inches); it can comprise fixed or moving bars, disks, or shaped tumblers or rollers.

Hand Auger - A large tool modeled after the carpenter's drill used in soil sampling.

Hazardous Substance - CERCLA hazardous substances, pollutants, and contaminants as defined in CERCLA Sections 101(14) and 101(33).

Headframe - The vertical steel or timber frame at the top of a shaft, which carries the sheave or pulley for the hoist.

Heavy Metal - Principally the metals zinc, copper, cobalt, and lead; however, may include one or more of the following metals: bismuth, cadmium, gold, indium, iron, manganese, mercury, nickel, palladium, silver, thallium, and tin (often included, though not a metal).

Highwall - The unexcavated face of exposed overburden and coal or ore in an open-cast mine or the face or bank on the uphill side of a contour strip mine excavation.

Hoist - (1) A drum on which wire rope is wound in the engine house, as the cage or skip is raised in the hoisting shaft. (2) An engine with a drum used for winding up a load from a shaft.

HRS - EPA's Hazard Ranking System (Federal Register, Vol. 55, No. 241, pp 51532 -51667).

Inclined Shaft or Incline - A non-vertical shaft; usually along the dip of a vein.

Intermittent Stream - A stream or stretch of stream which flows only at certain times of the year when it receives water from springs, snow melt or storm runoff.

Jaw Crusher - A primary crusher designed to reduce large rocks or ores to sizes capable of being handled by a secondary crusher. It consists of a moving jaw, hinged at one end, which swings toward and away from a stationary jaw in a regular oscillatory cycle.

Jig (Mineral Jig) - A machine in which the feed is stratified in water by means of a pulsating motion and from which the stratified products are separately removed, the pulsating motion usually being obtained by alternate upward and downward currents of water.

Latitude - The angular distance north or south from the equator of a point on the earth's surface, expressed in degrees.

Leaching - (1) The removal in solution of the more soluble minerals by percolating waters. (2) Extracting a soluble metallic compound from an ore by selectively dissolving it in a suitable solvent, such as water, sulfuric acid, hydrochloric acid, cyanide, etc.

Legal Description - The Township, Range, Section, and typically quarter/quarter section location.

Level - A main underground roadway or passage driven along the level course to afford access to the stopes or workings and to provide ventilation and haulageways for the removal of ore.

Loadout -A receptacle for ore awaiting treatment or shipment, also referred to as an ore bin.

Longitude - an angular distance east or west from the meridian of some particular place to the prime meridian at Greenwich, England.

MCL - Maximum contaminant level: Established under the Safe Drinking Water Act.

MCLG - Maximum contaminant level goal: Established under the Safe Drinking Water Act.

MBMG - Montana Bureau of Mines and Geology.

Master Inventory - Inventory of all identifiable abandoned or inactive hardrock mine sites in Montana conducted by the DSL-AMRB.

Mesh - The number of openings per unit area of a screen (sieve).

Mill - A mineral treatment plant in which crushing, grinding, and further processing of ore is conducted to produce a product.

Milling - The processing of ore to produce a product.

Mine - Excavation of earth for the extraction of ore or other economic minerals.

Mine Development - The term used to describe the operations involved in preparing a mine for ore extraction. These operations may include tunneling, sinking, crosscutting, drifting, and raising.

Mineral - An inorganic substance occurring in nature, though not necessarily of inorganic origin, which has (1) a definite chemical composition or, more commonly, a characteristic range of composition, and (2) distinctive physical properties or molecular structure.

Mineral Dressing - Physical and chemical concentration of raw ore into a product from which a metal can be recovered for a profit.

Mineral Deposit - A surface or underground body of mineral matter that may be utilized for its industrial mineral or metal content.

Observed Release - Concentration of hazardous substance(s) has increased significantly (greater than three times) above the background concentration for the site for that specific type of sample. For example, to document an observed release to surface water, a contaminant concentration detected in a surface water sample collected downstream from a site must exceed the concentration detected in a surface water sample collected upstream from the site by more than three times. See also "Attribution".

MONTANA DEPARTMENT OF STATE LANDS ABANDONED MINE RECLAMATION BUREAU HAZARDOUS MATERIALS INVENTORY SITE SUMMARY

Mine/Site Name: NW SE S22 County: Sweetgrass Legal Description: T 7S R 12E Section(s): NE 1/4, NW 1/4, Sec. 22 Mining District: Independence Mine Type: !!ardrock/Unknown Latitude: N 45° 13' 03" Primary Drainage: Boulder River Longitude: W 110° 13' 08" USGS Code: 10070002 Land Status: Private/Public Secondary Drainage: Basin Creek Quad: Haystack Peak Date Investigated: August 11, 1993 Inspectors: Bullock P.A. # 49-003 Organization: Pioneer Technical Services, Inc.

- There were no mill tailings associated with this site.
- The volume of waste rock associated with this site was estimated to be 65 cubic yards.

The following elements were elevated at least three times background:

Arsenic: 329 mg/kg Copper: 125 mg/kg

Cadmium: 4.05J mg/kg Lead: 1660 mg/kg

Zinc: 745 mg/kg.

- No discharging adits, seeps or springs were observed at the site, however running water could be heard in the caved adit
- Basin Creek was approximately 900 feet away from the base of the waste rock dumps.
- There was one open adit classified as potentially hazardous.

NW Section 22 PA# 49-003
AMRB HAZARDOUS MATERIALS INVENTORY
INVESTIGATOR: PIONEER - BUILLOCK
INVESTIGATION DATE: 08/11/93

	Metals in soils	siloi				SOLID MA	SOLID MATRIX ANALYSES	45		-				
-	ad simeau	results per dry weignt basis	Sis											
FIELD As Ba Cd D (mg/Kg) (mg/Kg) (mg/Kg)	As (mg/Kg)	Ba (mg/Kg)	Cd (mg/Kg)	Co (mg/Kg)	Cr (mg/Kg)	Cu (mg/Kg)	Fe (mg/Kg)	Hg (mg/Kg)	Mn (mg/Kg)	Ni (me/Ke)	Pb (mo/Ke)	Sb	Z	CYANIDE
49-003-WR-1	329	196 J	4.05 J	17	17 15.6	125	42900	0.125	1780	30.5	30.5 1660	# -	(mg/ng)	~
BACKGROUND	16.3	78.3 J	0.68 J	13.5	45.6	40.1	28500	0.064	612	24	37.2	7 97 111	? 8	Y 0
	O) Pic V								U - Not Detected, J - Estimated Quartity, X - Outlier for Accuracy or Precision, NR - Not Requested	Estimated Quantity,	X · Outlier for Accu	Tacy or Precision, Ni	S. Not Requested	
	Acid/base	Acid/base Accounting												
TOTAL SULFUR NEUTRAL ACID BASE SULFATE FIELD SULFUR ACID BASE POTENT. POTENT. SULFUR D % v1000t v1000t v1000t %	TOTAL SULFUR %	TOTAL SULFUR ACID BASE v1000t	NEUTRAL. POTENT. v1000t	SULFUR ACID BASE POTENT. v1000t	SULFATE SULFUR	PYRITIC SULFUR %	ORGANIC SULFUR	PYRITIC SULFUR ACID BASE v1000t	SULFUR ACID BASE POTENT. V1000t	WRI - Comp BACKGROU (49	omposite of subsamp OUND - From the F (49-001-SS-1).	WRI - Composite of subsamples WRIA and 2A. BACKGROUND - From the Poor Man/Emma Mine (49-001-SS-1).	2A. Mine	
49-003-WR-1	1.05	32.8	10.2	-22.6	0.24	0.17	0.64	5.31	4.88					

6.0 REFERENCES

- Pioneer, 1994. Abandoned Hardrock Mines Project Report for the Abandoned Hardrock Mine Priority Sites, 1994.
- Pioneer, 1993a. Sampling and Analysis Plan for the Abandoned Mines Hazardous Materials Inventory, August 1993.
- Pioneer, 1993b. Quality Assurance Project Plan for the Abandoned Mines Hazardous Materials Inventory, June 1993.
- Pioneer, 1993c. Laboratory Analytical Protocol for the Abandoned Mines Hazardous Materials Inventory, June 1993.
- Pioneer, 1993d. Health and Safety Plan for the Abandoned Mines Hazardous Materials Inventory, May 1993.

GLOSSARY

Abandoned Mine; Abandoned Workings - Excavations, either open, caved, or sealed, that are deserted and in which further mining is not intended.

Acid Mine Water - Mine water which contains sulfuric acid, mainly due to the oxidation of iron pyrite.

Acidity - Estimate of the capacity for a neutral water to neutralize caustic wastes without disturbing biological activities.

Activator (flotation mill) - A reagent that facilitates flotation of selected mineral species in a flotation cell.

Acute Aquatic Life Criteria - EPA's maximum acute toxicity concentrations for protection of aquatic life and its uses as established under Section 304(a)(1) of the Clean Water Act, as amended.

Adit - A horizontal or nearly horizontal passage driven in rock from the surface for the working or dewatering of a mine.

AIMSS - Abandoned and Inactive Mines Scoring System.

Alkalinity - Estimate of the capacity for a neutral water to neutralize acidic wastes without disturbing biological activities.

Amalgamation - The process by which mercury is alloyed with some other metal to produce an amalgam. Used at one time for the extraction of gold and silver from pulverized ores.

Alluvium - Sediments deposited on land by streams and rivers.

Attribution - To document an observed release of a hazardous substance(s) to the environment, the presence of the hazardous substance(s) must be attributable to a waste source at the site. For example, if an observed release to surface water can be established for copper, the concentration of copper in any waste source at the site must exist at greater than three times the background concentration of copper to establish attribution to the site.

BLM - United States Department of Interior, Bureau of Land Management.

Ball Mill - A rotating horizontal cylinder in which nonmetallic materials are ground using various types of grinding media such as quartz pebbles, porcelain balls, or steel balls.

Barren Solution - Leaching solution that has been chemically stripped of metal values. Typically, the barren solution is recharged with leaching agent and recycled.

Benefication - The processing of ores for the purpose of (1) regulating the size of a desired product, (2) removing unwanted constituents, and (3) improving the quality, purity, or assay grade of a desired product.

Open Pit Mining - A form of operation designed to extract minerals that lie near the surface.

Open Stope Method - Stoping in which no regular artificial method of support is employed, although occasional props or cribs may be used to hold local patches of insecure ground. Usually confined to relatively small, narrow ore bodies.

Ore - A mineral, or mineral aggregate, containing precious or useful metals, and which occurs in such quantity, grade, and chemical combination as to make extraction commercially profitable.

Ore Bin - A receptacle for ore awaiting treatment or shipment, also referred to as a loadout.

Ore Body - A solid and fairly continuous mass of ore, which may include low-grade ore and waste as well as high-grade material.

Ore Deposit - A general term applied to rocks containing minerals of economic value in such amount that they can be profitably tracted.

Oxidation/Reduction Potential - The hypothetical electron activity at equilibrium. A measurement of the relative tendency (potential) of a solution to accept or transfer electrons, measured in volts.

PA No. - Problem Area Number established by the DSL-AMRB.

Perennial stream - A stream or stretch of a stream that flows continuously throughout the year.

pH - A measure of the degree of acidity or basicity of a solution. At 25° C, a pH of 7 is neutral. Acidity increases as measurements decrease below 7, and basicity increases as measurements increase above 7.

Placer - A mineral concentration resulting from weathering processes, usually involving water. Placer deposits are typically composed of heavy minerals, with gold, platinum, tin, and diamonds being the most important.

Ponded - A condition in which free water covers the soil surface, as in a closed depression.

Portal - (1) The surface entrance to a drift, tunnel, or adit; (2) The entrance to a mine.

Pregnant Solution - Metal-laden solution (cyanide, acid, etc.) resulting from a leach process.

Primary Drainage - The primary drainage is the smallest named stream segment/drainage basin that is locatable on the USGS Hydrologic Unit Map within which the mine site is located.

Prospect - (1) A mineral property, the value of which has not been proved by exploration. (2) Non-producing mining property under development or considered worthy of such attention.

PRP - Potentially Responsible Party.

Pulp - A mixture of ground ore and water capable of flowing through suitably graded channels as a fluid.

QA - Quality Assurance

QC - Quality Control

Raise - A vertical or inclined opening driven upward from a level to connect with the level above, or to explore the ground for a limited distance above one level.

Reagent - A chemical or solution used to produce a desired chemical reaction; a substance used in assay or flotation.

Rod Mill - A mill for fine grinding, employing long steel rods to grind the material.

Secondary Drainage - The secondary drainage is the smallest named stream segment/drainage that is locatable on the USGS Quadrangle Map within which the mine site is located.

Sediment - Solid material, both mineral and organic, that is in suspension, is being transported, or has been moved from its site of origin by air, water, or ice and has come to rest on the earth's surface either above or below the water level.

Sedimentation - The settling of solid particles of soil, coal, or mineral from liquid as a result of gravity or centrifuging.

Shaft - An excavation of limited area compared with its depth, made for access to underground mine workings.

Sluice (Sluice Box) - A long trough-like box set at an incline of about 1:20 through which placer gravel is carried by a stream of water. The gravel is washed away while most of the gold or other heavy materials are caught by riffles or blankets on the floor of the sluice.

Slurry - Fine solid particles suspended in a liquid, typically water, of a consistency that allows flow by gravity or pumping.

Source - Any area where a hazardous substance has been deposited, stored, disposed, or placed, plus those soils that have become contaminated from migration of a hazardous substance.

Specific Conductance - The specific conductance or conductivity of water (or other substance measured) is the electrical conductance of the material between opposite sides of a cube 1 centimeter in each direction.

Stamp Mill - An apparatus in which rock is crushed by a stamp battery.

Stope - An underground excavation from which ore has been removed.

Subsidence - A sinking down of a part of the earth's surface due to the collapse of underlying underground openings.

Surface Mining - The mining in surface excavations, including placer mining, mining in open pits, mining and removing ore from open cuts by hand or with mechanical excavating and transportation equipment, and the removal of overburden to uncover the ore.

Tailing Pond - A pond with a constraining wall or dam to which mill effluents are run.

Tailings - The refuse material resulting from the washing, concentration, or treatment of ground ore.

Tunnel - A horizontal or nearly horizontal underground passage that is open to the atmosphere at both ends.

USFS - United States Department of Agriculture, Forest Service.

USGS - United States Department of Interior, Geological Survey.

Waste - The rock that is too low in grade to be of economic value.

Waste Dump (Spoil Pile) - The area where mine wastes or spoil materials are discarded.

Wetlands - Areas that under normal circumstances have hydrophytic vegetation, hydric marshes, and wetland hydrology. It includes landscape units such as bogs, marshes, and lowlands covered with shallow ephemeral or intermittent waters. Permanent waters of streams and water deeper than 9 feet in lakes or reservoirs are not considered wetlands.

Winze - A vertical or inclined opening, or excavation, connecting two levels in a mine, differing from a raise only in construction. A winze is driven downward and a raise is excavated upward.

X-ray Fluorescence (XRF) Spectrometer - Instrument used for metals analysis of solid media by energy dispersive X-ray fluorescence.