Nesta apresentação, iremos abordar os importantes conceitos de Chances e Razão de Chances, a partir da análise do artigo científico:

SOLER, G.L.N.; SILVA, A.W.S.M.; SILVA, V.C.G.; TEIXEIRA, R.J. Doença hepática gordurosa não-alcoólica: associação com síndrome metabólica e fatores de risco cardiovascular. Rev. SOCERJ. n.21, v.2, p.94-100, 2008.

Artigos 2 e 3: Regressão Log Introdução Adicionalmente, é feita uma discussão sobre o uso da Razão de Chances quando temos uma variável explicativa de regressão. Aqui foram considerados dois outros artigos: • PERUCCI, L.O. et al. Neuroserpin: A potential biomarker for early-onset severe preeclampsia. Immunobiology. n.228, • ROSÁRIO, N.S.A. et al. Exploring the effects of COVID-19related traumatic events on the mental health of university students in Brazil: A cross-sectional investigation. Acta Psychologica. n.247, 2024. Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde Introdução 2 Artigo 1: Soler et al., 2008 • Entendendo a Coleta dos Dados • Chances e Razão de Chances Chances e GLM 4 Artigos 2 e 3: Regressão Logística e OR Artigo 1: Soler et al., 2008 Chances e GLM Artigos 2 e 3: Regressão Logística e OR Artigo 1

Artigo 1

A doença hepática gordurosa não-alcoólica (DHGNA) é uma doença com quadro patológico semelhante ao de lesão induzida por álcool, que ocorre em indivíduos sem ingestão etílica significativa.

Pacientes podem ser assintomáticos.

A pesquisa foi um estudo transversal de prevalência, que procurou relacionar a DHGNA com fatores de risco cardiovasculares.

Público: idosos participantes do projeto "Atividade Física na Vila".

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Entendendo a Coleta dos Dados

- Introdução
- 2 Artigo 1: Soler et al., 2008
 - Entendendo a Coleta dos Dados
 - Chances e Razão de Chances
- 3 Chances e GLM
- 4 Artigos 2 e 3: Regressão Logística e OR

Anotações		
*~		
Anotações		
Anotações		
Anotações		

Introdução Artigo 1: Soler et al., 2008 Chances e GLM Artigos 2 e 3: Regressão Logística e OR

Entendendo a Coleta dos Dados Chances e Razão de Chances

Artigo 1

Neste artigo, foi apresentados valores de Razões de Chances para diferentes fatores de risco.

Por exemplo, os fatores obesidade e hipertensão:

Fatores de Risco	DHGNA <i>n</i> = 22	Odds Ratio	Valor de p
Obesidade $(n = 60)$	13	1,8	0,21
Hipertensão ($n = 60$)	19	5,7	0,007

Anotações

Artigo 1: Soler et al., 2008 Chances e GLM

Artigo 1

Antes de mais nada, vamos entender como os dados foram coletados.

Por exemplo, em relação à obesidade, as informações do slide anterior permitem construir uma tabela de contingência incompleta:

	DHC		
Obesidade	Com DHGNA	Sem DHGNA	TOTAIS
Obeso	13		
Não obeso	9		
TOTAIS	22	38	60

Introdução Artigo 1: Soler et al., 2008 Chances e GLM Artigos 2 e 3: Regressão Logística e OR

Entendendo a Coleta dos Dados Chances e Razão de Chances

Artigo 1

Na publicação, verificamos que o número de obesos sem DHGNA foi igual a 17. Com isso somos capazes de preencher a Tabela completamente:

Obesidade	Com DHGNA	Sem DHGNA	TOTAIS
Obeso	13	17	30
Não obeso	9	21	30
TOTAIS	22	38	60

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Introdução Artigo 1: Soler et al., 2008 Chances e GLM Artigos 2 e 3: Regressão Logística e OR

Entendendo a Coleta dos Dados

Artigo 1

Procedendo de maneira análoga, podemos reconstruir a tabela de contingência referente à hipertensão:

	DHO	GNA	
Hipertensão	Com DHGNA	Sem DHGNA	TOTAIS
Hipertenso	19	20	39
Não hipertenso	3	18	21
TOTAIS	22	38	60

Anotações	
Anotações	
,	
A :: - t ~	
Anotações	

Introdução

2 Artigo 1: Soler et al., 2008

Entendendo a Coleta dos Dados

• Chances e Razão de Chances

Chances e GLM

4 Artigos 2 e 3: Regressão Logística e OR

Chances e Razão de Chances

O "estranho" conceito (para nós, falantes de língua portuguesa) de chances:

Na língua inglesa, o termo "chances" é muito usado.

Na língua portuguesa, nós tendemos a confundir "chances" com o conceito de "probabilidade".

Exemplo: suponha que, antes das eleições americanas, houvesse um estadunidense (o Sr. John Doe) que acreditasse que Trump teria 75% de probabilidade de vencer o pleito.

Chances e Razão de Chances

Se um órgão de pesquisa entrevistasse o Sr. John Doe, haveria duas maneiras de captar a sua opinião:

1) Pesquisa: "Na sua opinião, qual a probabilidade de Trump vencer as eleições?"

John Doe: "A probabilidade é de 75%."

2) Pesquisa: "Na sua opinião, quais as chances de Trump vencer as eleições?"

John Doe: "As chances são de 3 para 1."

Chances e Razão de Chances

Ou seja, as chances são um parâmetro relativo, considerando a possibilidade de vitória (sucesso) em relação à possibilidade de derrota (fracasso).

Perceba: 3 para 1 (3:1) é a mesma coisa que 75%: 25%.

A partir das chances, podemos calcular a probabilidade de vitória, e vice-versa. Para calcular a probabilidade de vitória, a partir das chances 3:1, basta somar 3 com 1, e fazer:

$$\frac{3}{3+1}=\frac{3}{4}=75\%$$

Anotações			
Anotações			
A+ ~			
Anotações			
Anotações			
	<u> </u>	<u> </u>	<u> </u>

Entendendo a Coleta dos Dados Chances e Razão de Chances Chances e Razão de Chances Exemplo: O Leicester City venceu a Premier League em 2016, contrariando odds de 5000:1, um dos maiores feitos da história do esporte. Página da ESPN: "Prior to the season, Leicester City was a 5,000-to-1 longshot to win the Premier League, according to English bookmaker William Hill." Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde Chances e Razão de Chances Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúd Chances e Razão de Chances Portal Terra: Chances de vencer o Campeonato Mineiro: • Cruzeiro: 1,90 • Atlético-MG: 2,10

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúdo

Chances e Razão de Chances

Interpretação:

As chances de o Cruzeiro ganhar o campeonato (em relação a não ganhar) são de 1,9 para 1.

As chances de o Atlético ganhar o campeonato (em relação a não ganhar) são de 2,1 para 1.

Anotações Anotações Anotações Anotações

Chances e Razão de Chances

Perceba que as chances podem ser razões menores que 1:

As chances de o Cruzeiro perder o campeonato (em relação a ganhar) são de 1 para 1,9.

As chances de o Atlético perder o campeonato (em relação a ganhar) são de 1 para 2,1.

Anotações

Chances e Razão de Chances

No artigo, qual seria a probabilidade de um obeso apresentar DHGNA? E não apresentar?

	DHC	GNA	
Obesidade	Com DHGNA	Sem DHGNA	TOTAIS
Obeso	13	17	30
Não obeso	9	21	30
TOTAIS	22	38	60

Apresentar:
$$\frac{13}{30}=0,4333\ldots\approx 0,43=43\%$$

Não apresentar: $1-0,4333\ldots=0,5666\ldots\approx0,57=57\%$

Chances e Razão de Chances

E quais são as chances de um obeso apresentar DHGNA?

$$\mathsf{Chances} = \mathsf{Odds} = \frac{0,4333}{0,5666} = 0,76$$

Este número não é muito intuitivo, por ser menor que 1. Poderíamos expressá-lo, alternativamente:

$$0,76 = \frac{0,76}{1} = \frac{0,76/0,76}{1/0,76} = \frac{1}{1,3} = 1:1,3$$

Assim, coloquialmente, poderíamos falar: "as chances de um obeso desenvolver DHGNA (em relação a não desenvolver) é de 1 para 1,3".

Chances e Razão de Chances

E no caso dos não-obesos?

	DHO		
Obesidade	Com DHGNA	Sem DHGNA	TOTAIS
Obeso	13	17	30
Não obeso	9	21	30
TOTAIS	22	38	60

Apresentar DHGNA: $\frac{9}{30} = 0.3 = 30\%$

Não apresentar DHGNA: 1-0, 3=0, 7=70%

Anotações	
,	
Anotações	
Anotocães	
Anotações	

Chances e Razão de Chances

Chances de um não-obeso apresentar DHGNA?

$$\mathsf{Chances} = \mathsf{Odds} = \frac{0,3}{0,7} = 0,42857\ldots \approx 0,4286$$

Como este número também é menor que 1, podemos expressá-lo, alternativamente:

$$0,4286 = \frac{0,4286}{1} = \frac{0,4286/0,4286}{1/0,4286} = \frac{1}{2,3} = 1:2,3$$

Assim, coloquialmente, poderíamos falar: "as chances de um nãoobeso desenvolver DHGNA (em relação a não desenvolver) é de 1 para 2,3".

Anotações

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Artigos 2 e 3: Regressão Logístic

Chances e Razão de Chances

Como as chances de desenvolver DHGNA para os obesos foram maiores do que as chances para os não obesos, daí é que surgiu a ideia de dividir as chances de uma categoria pelas chances de uma outra categoria, e isso levou à criação do conceito de Razão de Chances (em inglês, Odds Ratio, OR).

Se dividirmos as chances dos obesos pelas chances dos não obesos, encontramos:

$$OR = \frac{0,7647}{0,4286} = 1,78\ldots \approx 1,8$$

E este valor 1,8 é o que está constando na tabela publicada no artigo original.

Chances e Razão de Chances

Interpretação:

As chances de um obeso apresentar DHGNA (em relação a não desenvolver) é 1,8 vezes maior que as dos não obesos.

Chances e Razão de Chances

A razão de chances, permite, por exemplo, comparar o Atlético com o Cruzeiro:

$$\mathit{OR} = \frac{\mathsf{Atl\acute{e}tico}}{\mathsf{Cruzeiro}} = \frac{2,1}{1,9} = 1,1$$

As chances de o Atlético ganhar o campeonato (em relação a não ganhar) é 1,1 vezes maior que as do Cruzeiro.

Anotações Anotações Anotações

Chances e Razão de Chances

Para construirmos um intervalo de confiança para OR, ou fazer testes, podemos utilizar uma aproximação normal para o logaritmo da razão de chances.

Na escala logarítmica, o erro padrão de ln OR é dado por:

$$\hat{\sigma}(\ln \textit{OR}) = \sqrt{\frac{1}{n_{\scriptscriptstyle 11}} + \frac{1}{n_{\scriptscriptstyle 12}} + \frac{1}{n_{\scriptscriptstyle 21}} + \frac{1}{n_{\scriptscriptstyle 22}}}$$

E assim um intervalo de confiança para o logaritmo da razão de chances pode ser construído por:

In
$$OR \pm z_{_{lpha/2}} \hat{\sigma}(OR)$$

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Artigo 1: Soler et al., 2008

Chances e Razão de Chances

Grande vantagem da OR:

Note:

$$\hat{OR} = \frac{\hat{p}_1(1-\hat{p}_2)}{\hat{p}_2(1-\hat{p}_1)} = \frac{\frac{n_{11}}{n_{1.}} \left(\frac{n_{2.}-n_{21}}{n_{2.}}\right)}{\frac{n_{21}}{n_{2.}} \left(\frac{n_{1.}-n_{11}}{n_{2.}}\right)} = \frac{\frac{n_{11}}{n_{1.}} \frac{n_{22}}{n_{2.}}}{\frac{n_{21}}{n_{2.}} \frac{n_{12}}{n_{2.}}} \frac{n_{12}}{n_{2.}} \frac{n_{12}}{n_{2.}}$$

Ou seja:

$$\hat{OR} = \frac{n_{11}n_{22}}{n_{21}n_{12}}$$

No numerador temos as células da diagonal da tabela; no denominador temos as células fora da diagonal

* a consequência é a de que, se trocarmos as linhas pelas colunas, a expressão de *ÔR permanece a mesma!*.

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Artigos 2 e 3: Regressão Logísti

Chances e Razão de Chances

Um estudo de caso-controle foi feito, considerando como casos pessoas de pressão elevada, e como controles pessoas de pressão normal. Em seguida observou-se se essas pessoas eram fumantes ou não:

Hábito (Y)					
Pressão (X)	TOTAIS				
Elevada	218	305	523		
Normal	99	424	523		
TOTAIS	317	729	1046		

Um teste de qui-quadrado revelou-se altamente significativo ($\chi^2_{_P}=$ 64, 10).

Perceba que aqui a pressão é uma variável explicativa, e o hábito de fumo é uma variável resposta!

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Artigos 2 e 3: Regressão Logístic

Chances e Razão de Chances

Ou seja, podemos apenas concluir com o teste que há diferença quanto ao hábito de fumo, conforme a pressão.

O ideal, contudo, seria verificar a influência do hábito de fumo na

O parâmetro Razão de Chances é que fornece um critério. Podemos estimar:

$$\hat{OR} = \frac{n_{11}n_{22}}{n_{21}n_{12}} = \frac{218 \times 424}{99 \times 305} = 3,06$$

Assim, embora tenhamos controlado X (número de casos e de controles), podemos afirmar que, no grupo dos fumantes, a chance de ter pressão alta, em relação a não ter, é 3,06 vezes maior do que a do grupo dos não fumantes.

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúd

Anotações			
Anotações			
Anotações			
Anotações			

Anotações Introdução 2 Artigo 1: Soler *et al.*, 2008 • Entendendo a Coleta dos Dados • Chances e Razão de Chances Chances e GLM 4 Artigos 2 e 3: Regressão Logística e OR Anotações Chances e GLM As chances guardam uma estreita relação com a Regressão Logística, a qual é um GLM. Componentes de Um GLM: • Componente Aleatório • Componente Sistemático • Função de Ligação Componente Aleatório O componente aleatório se refere à distribuição de probabilidade escolhida para Y. Aqui utilizamos distribuições discretas, como a binomial. Anotações Chances e GLM Componente Sistemático O componente sistemático explicita as variáveis explicativas do mo-Nos GLM's o adjetivo "Linear" se refere ao fato de o componente sistemático ser uma combinação linear de parâmetros. Assim, se temos \boldsymbol{k} variáveis explicativas, este componente seria: $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$ Obs.: o componente sistemático também é chamado de Preditor Anotações Chances e GLM Função de Ligação Vamos representar a esperança de Y como μ , ou seja, $\mu = E(Y)$. A função de ligação é uma função g que relaciona μ com o preditor linear:

$$g(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

A função de ligação mais simples que existe é a função de ligação identidade, na qual $g(\mu) = \mu$:

$$\mu = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$$

Esta é a função em geral utilizada para modelos de regressão, por exemplo.

Chances e GLM

Esta função é chamada de *logit*, ou *logito*, e daí o nome de <u>regressão</u>

Esta função corresponde à função natural (parâmetro natural) dos parâmetros do modelo, quando expressamos a binomial como uma família exponencial.

Quando isso ocorre, chamamos a função de ligação de ligação canônica.

Uma das vantagens de usarmos ligações canônicas é que as mesmas garantem a concavidade da verossimilhança e consequentemente muitos resultados assintóticos são obtidos mais facilmente.

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Chances e GLM

No caso da distribuição Bernoulli:

$$f(y_i|p_i) = p_i^{y_i} (1-p_i)^{1-y_i}$$

Expressando como uma família exponencial, temos:

$$f(y_i|p_i) = (1-p_i) \exp\left\{y_i \ln \frac{p_i}{1-p_i}\right\}$$

O parâmetro natural é, portanto $\ln \frac{p_i}{1-p_i}$, sendo esta portanto a ligação canônica:

$$\ln\frac{p_{\scriptscriptstyle i}}{1-p_{\scriptscriptstyle i}}=\beta_{\scriptscriptstyle 0}+\beta_{\scriptscriptstyle 1}X_{\scriptscriptstyle 1i}+\beta_{\scriptscriptstyle 2}X_{\scriptscriptstyle 2i}+\ldots+\beta_{\scriptscriptstyle k}X_{\scriptscriptstyle ki}$$

representando uma regressão logística com \boldsymbol{k} variáveis explicativas.

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

- Introdução
- 2 Artigo 1: Soler *et al.*, 2008
 - Entendendo a Coleta dos Dados
 - Chances e Razão de Chances
- 3 Chances e GLM
- 4 Artigos 2 e 3: Regressão Logística e OR

OR e Regressão Logística

Regressão Logística: Interpretação de Parâmetros

Vamos considerar uma regressão logística com uma única variável explicativa, ou seja:

$$\ln\frac{\mu}{(1-\mu)} = \beta_{\scriptscriptstyle 0} + \beta_{\scriptscriptstyle 1} X$$

lembrando que μ é a esperança de Y para um dado valor de X, ou seja, é a probabilidade de sucesso para um dado valor de X.

A função de ligação *logito* corresponde assim ao logaritmo da <u>chance</u> de ser um sucesso, em relação a ser um fracasso. Assim:

$$\frac{\mu}{(1-\mu)} = \exp\left(\beta_0 + \beta_1 X\right) = e^{\beta_0} \left(e^{\beta_1}\right)^X$$

Anotações		
Anotações		
,		
Anotações		
Anotações		

Artigos 2 e 3: Regressão Logística

OR e Regressão Logística

Ou seja, a cada incremento de 1 unidade em X, a chance de ser um sucesso fica multiplicada por e^{β_1} , pois:

$$\mathbf{e}^{\beta_0} \left(\mathbf{e}^{\beta_1} \right)^{X+1} = \mathbf{e}^{\beta_0} \left(\mathbf{e}^{\beta_1} \right)^{X} \mathbf{e}^{\beta_1}$$

Além disso, o termo e^{eta_0} corresponde à chance quando X=0.

Poderíamos ter interesse também em estimar razões de chances, considerando dois valores distintos de X.

Designando estes dois valores por $X=x_{\scriptscriptstyle 1}$ e $X=x_{\scriptscriptstyle 2}$, e as correspondentes probabilidades de sucesso por μ_1 e μ_2 , temos:

Anotações

Anotações

Thales Tavares Correa Razão de Chances: Aplicações na Área da Saúde

Artigo 1: Soler et al., Artigo 2 e 3: Regressão Logística e OR

OR e Regressão Logística

$$\begin{split} \ln \frac{\mu_1}{(1-\mu_1)} &= \beta_0 + \beta_1 x_1 \\ \ln \frac{\mu_2}{(1-\mu_2)} &= \beta_0 + \beta_1 x_2 \end{split}$$

Assim:

$$\begin{split} & \ln \frac{\mu_1}{(1-\mu_1)} - \ln \frac{\mu_2}{(1-\mu_2)} = \ln \frac{\mu_1(1-\mu_2)}{\mu_2(1-\mu_1)} = \\ & = \beta_0 + \beta_1 x_1 - (\beta_0 + \beta_1 x_2) = \beta_1(x_1 - x_2) \end{split}$$

Portanto, o termo $\beta_1(x_1-x_2)$ o de chances. Ou seja, esta corres

$$\frac{\mu_1(1-\mu_2)}{\mu_2(1-\mu_1)} = e^{\beta_1(x_1-x_2)}$$

Thales Tavares Correa

Artigos 2 e 3: Regressão Logística

OR e Regressão Logística

Na obesidade, temos 1 grau de li gorias: obesos e não-obesos.

Assim, podemos utilizar um únio variável X que assume valor 1obesos.

Fazendo o ajustamento, encontra

E assim, de fato:

$$e^{\beta_1(x_1-x_2)} = e^{0.579(1-0)} = 1.78$$

conforme obtido anteriormente.

Thales Tavares Correa

Artigos 2 e 3: Regressão Logística

OR e Regressão Logística

Outra ilustração: PERUCCI et a

	Age 1 (years-old)				
Age 2 (years-old)	44	29	24	20	15
15	21,63	4,41	2,60	1,70	1
20	12,73	2,60	1,53	1	[1,1; 2,6]
24	8,33	1,70	1	[1,1; 2,2]	[1,2; 5,6]
29	4,90	1	[1,1; 2,6]	[1,2; 5,6]	[1,3; 14,8]
44	1	[1,3; 17,9]	[1.5; 46.7]	[1,6; 100,9]	[1,8; 263,7]

Outra ilustração: ROSÁRIO et a de depressão, ansiedade e estress

F2) F2(2 F1)	
$+\beta_1 x_2) = \beta_1 (x_1 - x_2)$	
corresponde ao logaritmo da razão	
oonde a:	
$=e^{\beta_1(x_1-x_2)}$	
<□▷<避▷<불▷<불▷	
Razão de Chances: Aplicações na Área da Saúde	
	Anotações
9 1 1	
iberdade, porque temos duas cate-	
co parâmetro $eta_{\scriptscriptstyle 1}$, referente a uma	
para os obesos, e 0 para os não-	
amos $\hat{eta}_1=0,579$	
•	
0.579(1-0) = 1,78	
7 = 1,78	
<ロト (母) (さ) (き) (き) (を) の(C)	
Razão de Chances: Aplicações na Área da Saúde	
	Anotações
	·
. 2023: idade <i>versus</i> pre-eclâmpsia	
. 2025. Idade <i>versu</i> s pre-eclampsia	
Age 1 (years-old)	
24 20 15	
2,60 1,70 1	
1,53 1 [1,1; 2,6] 1 [1,1; 2,2] [1,2; 5,6]	
[1,1; 2,6] [1,2; 5,6] [1,3; 14,8] [1,5; 46,7] [1,6; 100,9] [1,8; 263,7]	
[1,0, 100,1] [1,0, 100,9] [1,0, 200,1]	
al. 2024: traumas <i>versus</i> sintomas	
se durante a pandemia.	
<□ > <∰ > < \	
Razão de Chances: Aplicações na Área da Saúde	
- And the State	

					itro	dução
	Artigo		Soler			2008
			Cha	nce	es e	GLN
Artigos 2 e 3	: Regn	ess	ão Lo	gíst	ica	e OR

FIM

Obrigado!

(D) (B) (E) (E) E 900

Thales Tavares Correa

Razão de Chances: Aplicações na Area da Saúde

Anotações	
Anotações	
Anotações	
·	
Anotações	