$\mathbf{CS5228} \ \mathbf{Knowledge} \underset{\scriptscriptstyle{\mathbf{AY2024/25} \ \mathbf{Sem2} \ \mathbf{By} \ \mathbf{Zhao} \ \mathbf{Peiduo}}{\mathbf{Discovery}} \ \mathbf{and} \ \mathbf{Data} \ \mathbf{Mining}$

Introduction

Common Data Mining Tasks Data mining encompasses various techniques to analyze and extract patterns from large datasets. Some of the most common data mining tasks include:

- Association Rules: This method analyzes transactional data, where a transaction is a data record consisting of a set of items from a fixed collection. The goal is to identify association rules that predict the occurrence of items based on the presence of other items in the dataset.
- Clustering: Clustering involves grouping data points based on a well-defined notion of similarity. The objective is to form clusters, ensuring that data points within the same cluster have high intra-cluster similarity while minimizing inter-cluster similarity with other clusters.
- Classification: This method uses datasets with multiple attributes to determine the categorical value of an attribute as a function of other attribute values. Popular classification techniques include K-Nearest Neighbor, Decision Trees, and Linear Classification.
- Regression: Similar to classification, regression also works with datasets having multiple attributes, but it predicts numerical values of an attribute as a function of other attributes. Common regression methods include K-Nearest Neighbor, Regression Trees, and Linear Regression.
- ullet Graph Mining: This technique analyzes data represented as a graph, G=(V,E), where V represents data points (vertices) and E represents relationships between them (edges). Typical patterns derived from graph mining include identifying communities of nodes and detecting important nodes within the network.
- Recommender Systems: Recommender systems work with user-rated items (such as movie ratings) to predict missing values and recommend items based on similarities. They exploit item features and user similarities to enhance recommendations.

Types of Attributes

- Categorical (Qualitative):
 - Nominal:
 - * Values are only labels.
 - * Operations: =, ≠
 - * Examples: sex (m/f), eye color, zip code.
 - Ordinal:
 - Values are labels with a meaningful order.
 - * Operations: =, \neq , <, >
 - Examples: street numbers, education level.
- Numerical (Quantitative):
 - Interval:
 - * Values are measurements with a meaningful distance.
 - * Operations: =, \neq , <, >, +, -
 - * Examples: body temperature in °C, calendar dates.
 - - * Values are measurements with a meaningful ratio.
 - * Operations: =, \neq , <, >, +, -, \times , \div
 - * Examples: age, weight, income, blood pressure.

Types of Data

Data can be classified into three main types based on structure and organization:

- (Well-)Structured Data:
 - Highly organized: adheres to a predefined data model.
 - Each object has the same fixed set of attributes.
 - Easy to search, aggregate, manipulate, and analyze.
- Examples: relational databases, spreadsheets. Semi-Structured Data:
 - No rigid data model: mix of structured and unstructured data.
 - Data exchange formats: XML, JSON, CSV.
 - Tagged unstructured data (e.g., photo with date/time, location, exposure, resolution, flash, etc.).
- Unstructured Data:
 - No fixed data model.
 - Requires more advanced data analysis techniques.
 - Examples: images, videos, audio, text, social media.

Data Quality

- Noise: Data can be defined as: true signal + noise. Sources of noise include:
 - Sensor readings from faulty devices (e.g., intrinsic noise or external influences).
 - Errors during data entry (by humans or machines).
 - Errors during data transmission.
 - Inconsistencies in data formats (e.g., ISO time vs. Unix time, DD/MM/YYYY vs. MM/DD/YYYY).
 - Inconsistencies in conventions (e.g., meters vs. miles, meters vs. centimeters).
- Outliers: An outlier is a data point with attribute values considerably different from other points. Outliers can be
 - Outliers as noise:
 - * They negatively interfere with data analysis.
 - Removal of outliers or using robust methods is recommended.
 - Outliers as targets:
 - * The goal is to detect rare or anomalous events such as credit card fraud detection and intrusion detection in security systems.
- Missing Values
 - Common causes of missing values:
 - * Attribute values not collected (e.g., broken sensor, person refused to report age).
 - * Attributes not applicable in all cases (e.g., no income data for children).
 - Handling missing values:
 - * Remove data points with missing values.
 - Remove attributes with missing values (if not essential).
 - * Try to fill in missing values (e.g., using average temperature from nearby sensors).
- Duplicates
 - Duplicates refer to data points representing the same object/entity.
 - * Exact duplicates: Data points have identical attribute values.
 - Near duplicates: Data points slightly differ in their attribute values (e.g., same person with phone numbers in different formats).
 - Duplicate elimination:
 - Relatively easy for exact duplicates.
 - * Challenging for near duplicates.

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is an essential step in data analysis to identify potential issues such as noise, outliers, missing values, and class distribution imbalances.

- Identifying Noise
- Using histograms to inspect the distribution of data values.
- Identifying Noise / Outliers
 - Using box plots to inspect the distribution of attribute values.
 - * Make outliers explicit.
 - Using scatter plots to inspect correlations.
 - * Not always feasible in practice
 - * Requires good understanding of data
- · Handling Missing Values
 - Example: Default value (0) if people did not disclose weight.
- * Can negatively affect simple analysis such as calculating means/averages. • Distribution of Class Labels
 - Classification tasks generally benefit from balanced datasets.
 - * Balanced = all classes are (almost) equally represented.
 - * Distribution of classes also affects the evaluation of found patterns.
- Data Preprocessing
 - Main Purposes
 - Improve data quality ("Garbage in, garbage out!").
 - Generate valid input for data mining algorithms.
 - Remove complexity from data to ease analysis.
 - Core Preprocessing Tasks
 - Data cleaning

 - Data reduction
 - Data transformation
 - Data discretization • Data Cleaning
 - Remove or fill missing values.
 - Identify and remove outliers (if outliers are not the goal of the analysis).
 - Identify and remove/merge duplicates.
 - Correct errors and inconsistencies (e.g., convert inches to centimeters)
 - Non-trivial tasks that are typically very application-specific.
 - Data Reduction
 - Reducing the number of data points
 - * Sampling selecting a subset of data points (random or stratified sampling).
 - Used for preliminary analysis or large datasets.
 - Reducing the number of attributes
 - * Removing irrelevant attributes (e.g., IDs, sensitive attributes).
 * Dimensionality reduction (PCA, LDA, t-SNE).
 - Reducing the number of attribute values
 - * Aggregation or generalization. * Binning with smoothing.
 - Data Transformation
 - Some data reduction techniques also transform data (e.g., dimensionality reduction, aggregation, binning).
 - Attribute construction:
 - * Add or replace attributes inferred from existing attributes.
 - * Example: weight, volume → density
 - Normalization:
 - * Scaling attribute values to a specified range (e.g., [0,1]).
 - * Standardization: scaling using mean and standard deviation.
 - Data Discretization
 - Converting continuous attributes into ordinal attributes.
 - Some algorithms accept only categorical attributes
 - Convert a regression task to a classification task.
 - One-Hot Encoding
 - Converting categorical attributes into numerical attributes.
 - Transform categorical attributes into binary attributes (0/1).
 - Allows the application of numerical methods on categorical attributes.

Lecture 2

Clustering

Goal of Clustering

- Separate unlabeled data into groups of similar objects/points
- Maximize intra-cluster similarity

Minimize inter-cluster similarity

- Meso-level perspective on data • micro: individual data points
 - meso: clusters
- macro: whole dataset
- Ingredients for Clustering
 - Representation of objects, e.g.:
 - (Multidimensional) point coordinates x, y
 - Sets A, B (e.g., items in a transaction)
 - Vectors u, v (e.g., TF-IDF)
 - Similarity Measure, e.g.: - Euclidean Distance: $dist_{\text{euclidean}}(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
 - Jaccard Similarity: $sim_{jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}$
 - Cosine Similarity: $sim_{cosine}(u, v) = \frac{u \cdot v}{\|u\| \|v\|}$
 - Clustering Algorithm Process that determines if an object belongs to a cluster

Types of Clusters

- Well-separated vs. Center-based
 - Well-separated: Any object in a cluster is closer to every other object in the cluster than to any point outside the cluster.
 - Center-based: Any object in a cluster is closer to the "center" of the cluster than to the center of any other cluster. The cluster center is commonly called a centroid.
- Contiguity-based vs. Density-based
 - Contiguity-based: Two objects are in the same cluster if they are more similar than a specified threshold, ensuring each object is more similar to some object in the cluster than to any point in a different cluster.
 - Density-based: A cluster is defined as a dense region of objects surrounded by regions of lower density, which allows better handling of noise.
- Partitional vs. Hierarchical
 - Partitional: The data is divided into non-overlapping subsets (i.e., clusters), where each object belongs to exactly one cluster or no cluster at all.
 - Hierarchical: Clusters can be nested, and a point can belong to different clusters depending on the hierarchy level.
- Exclusive vs. Non-exclusive / Overlapping
 - Exclusive: Each object belongs to exactly one cluster.
 - Non-exclusive / Overlapping: An object can belong to more than one cluster at a time. Fuzzy clustering assigns each object to all clusters with a certain probability.
- · Complete vs. Partial
 - Complete: Every object is assigned to at least one cluster, ensuring full coverage of data points.
 - Partial: An object might not belong to any cluster, allowing for the presence of noise and outliers.

K-Means

- Basic Characteristics
 - Clusters are centroid-based.
 - Clustering is partitional, exclusive, and complete.
- Inputs (for d-dimensional Euclidean space)
- $\begin{array}{lll} & \text{ Data points: } (x_1,x_2,...,x_N), & x_i \in R^d \\ & \text{ Number of clusters: } K \to C_1,C_2,...,C_K \text{ (cluster centers).} \\ & \bullet \text{ Optimization Objective} \end{array}$
- - Finding the optimal solution is NP-hard: $O(N^{Kd+1})$.

K-Means — How to Define the Centroid of a Cluster?

Simple case in Euclidean space

The centroid is derived by minimizing SSE, which turns out to be the mean of all points in that cluster. Proof:

$$\begin{split} SSE &= \sum_{i=1}^{K} \sum_{x \in C_{i}} \|x - c_{i}\|^{2} \\ &\frac{\delta}{\delta c_{k}} SSE = \frac{\delta}{\delta c_{k}} \sum_{i=1}^{K} \sum_{x \in C_{i}} \|x - c_{i}\|^{2} \\ &= \sum_{x \in C_{k}} \frac{\delta}{\delta c_{k}} \|x - c_{k}\|^{2} \\ &= \sum_{x \in C_{k}} 2(x - c_{k}) \end{split}$$

$$= \sum_{x \in C_{k}} \sum_{x \in C_{k}} \|x - c_{k}\|^{2}$$

$$= \sum_{x \in C_{k}} 2(x - c_{k})$$

$$c_{k} = \frac{1}{m_{k}} \sum_{x \in C_{k}} x$$

K-Means - Basic Algorithm (Lloyd's Algorithm)

- Initialization
 - Select K points as initial centroids: C₁, C₂, ..., C_K.
- - Assignment: Assign each point to the nearest cluster (i.e., centroid).
- Update: Move each centroid to the average of its assigned points.
- Stopping Criterion
 - Repeat until no change in assignments.

Handling Empty Clusters

- · Artificially fill empty clusters after assignment step
 - Replace empty cluster with the point that contributes most to SSE.
 - Replace empty cluster with a point from the cluster with the highest SSE.
- Postprocessing
- Split "loose" clusters with very high SSE.
- Modification of Lloyd's Algorithm
- K-Means variants aim to address the initial centroids issue

K-Means — Limitations and Potential Workarounds

- Susceptibility to "Natural" Clusters
 - K-Means struggles with: * Non-spherical clusters.
 - * Clusters of different sizes
 - * Clusters of different densities.
 - Potential Workaround: Choose a Larger Value for K
 - * Split natural clusters into multiple "well-behaved" subclusters.
 - Apply suitable postprocessing steps to merge subclusters.
- Sensitivity to Initial Centroid Selection
 - Different initializations of centroids may yield:
 - * Different clusterings with varying SSEs (leading to local optima).
 - * Empty clusters if a centroid is "blocked off" by other centroids.
 - Potential Workaround: Improve Centroid Initialization
 - * Artificially Fill Empty Clusters After Assignment Replace empty cluster with the point that contributes most to SSE
 - Replace empty cluster with a point from the cluster with the highest SSE.
 - * Postprocessing
 - Split "loose" clusters with very high SSE.
 - * Modification of Lloyd's Algorithm (K-Means Variants)
 - Use improved centroid initialization techniques

K-Means Variants

- K-Means++
 - Only changes the initialization of centroids.
 - Goal: Spread out centroids for better performance with theoretical guarantees. - Initialization Process:
 - * Pick a random point as the first centroid C1.
 - * Repeat:
 - For each point x, calculate distance d_x to the nearest existing centroid.
 - · Pick a random point for the next centroid with probability proportional to d_{x}^{2}
 - * Until K centroids have been picked.
- X-Means
 - Automatic method to choose K.
 - Iteratively applies K-Means with K=2 to refine clustering.
 - Example Scoring Functions:
 - * Bayesian Information Criterion (BIC)
 - * Akaike Information Criterion (AIC).
- * Minimum Description Length (MDL) • K-Medoids
 - Restriction: Centroids are chosen from the data points.
 - * Does not require calculation of averages.
 - * Uses only a notion of distance or similarity.
 - More robust to noise and outliers.
 - Main Issue: Performance
 - * More expensive update step
 - * Swap medoid with each point in the cluster and calculate change in cost (e.g., SSE).
 - * Choose the point as the new medoid that minimizes cost after swapping

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Basic Characteristics

- Clusters: Density-based
- Clustering: Partitional, Exclusive, Partial

Inputs (for d-dimensional Euclidean space)

- $\mathbf{x} = (x_1, x_2, ..., x_N), x_i \in \mathbb{R}^d$ ε (Epsilon): Radius defining a point's neighborhood
- MinPts: Minimum number of points in a neighborhood

$density = \frac{mass}{i} = \frac{MinPts}{i}$

Types of Points in DBSCAN

- · Core points
 - Points with at least MinPts neighbors within radius ε
- Form the interior of a cluster • Border points
- Non-core points with at least one core point in their neighborhood
- Form the border of a cluster • Outliers / Noise
 - All other pointsDefault node type

Algorithm 1 DBSCAN Algorithm

- 1: Input: Dataset D, radius ε , minimum points MinPts
- 2: Output: Clusters and outliers
- 3: for each point P in D do
- if P is already visited then
 - Continue

5:

- 7: Mark P as visited
- Retrieve all neighbors N of P within radius ε 8:
- 9: if |N| < MinPts then
- 10: Mark P as noise
- 11: else
- 12: Create a new cluster
- 13: Expand cluster by adding density-reachable points
- 14: end if
- 15: end for

Characteristics of DBSCAN

- DBSCAN always converges
 - Every data point is explored in either Phase 1 or Phase 2
 - A data point does not change its type (exception: noise → border)
- DBSCAN is not completely deterministic
 - Phase 1 introduces randomness
 - Border points may be reachable from core points of different clusters
- Noise and core points are deterministic
- DBSCAN Limitations
 - · DBSCAN cannot handle different densities.
 - ullet DBSCAN is generally very sensitive to parameters. Choosing ϵ and MinPts requires a good understanding of data

and context. DBSCAN — How to Choose Parameter Values?

- · Informed by results of EDA, e.g.:
 - Distribution of all pairwise distances.
- First insights into suitable values for ε.
- Density of data points has intuitive semantic meaning, e.g.: - Geographic distance between bars in a city.
 - Task: Find areas (clusters) with more than 10 bars within 500m

Hierarchical Clustering

Basic characteristics

- · Clusters: depends.
- Clustering: hierarchical, complete, exclusive (at each level!)

No parameterization (in principle)

- In practice, typically the number of clusters is specified (similar to K-means)
- Different choices of measures to calculate distances between clusters

Dendrograms

- A dendrogram is a visualization of hierarchical relationships
- Binary tree showing how clusters are hierarchically merged/split
- Each node represents a cluster
- Each leaf is a singleton cluster
- Height reflects distance between clusters

Two Main Types of Hierarchical Clustering

- Agglomerative (bottom-up)
 - Start with each point being its own cluster
 - Merge the closest pair of clusters at each step
 - Stop when only one cluster remains Example: AGNES (Agglomerative Nesting)
- Divisive (top-down)
 - Start with all points in a single cluster
 - Recursively split clusters at each step
 - Stop when each cluster contains a single point
 - Example: DIANA (Divisive Analysis)

AGNES Algorithm

Algorithm 2 AGNES Algorithm

- 1: Input: Dataset D
- 2: Output: Hierarchical clusters
- 3: **for** each point P in D **do**
- Assign P to its own cluster
- 5: end for
- 6: while more than one cluster exists do
- Merge the two closest clusters into one
- 8: end while

AGNES Algorithm Linkages

- Single Linkage Clustering
 - Distance between clusters = minimum distance between two points from each cluster:
 - $d_{\text{single}}(C_i, C_j) = \min_{p \in C_i, q \in C_i} d(p, q)$
 - Strength: Can handle non-globular shapes.
 - Weakness: Very susceptible to noise (Chaining Effect).

Complete Linkage Clustering

- Distance between clusters = maximum distance between two points from each cluster:
- $d_{\text{complete}}(C_i, C_j) = \max_{p \in C_i, q \in C_i} d(p, q)$
- Strength: Less susceptible to noise or outliers.
- Weakness: Bias towards globular clusters, breaks large clusters.
- Average Linkage Clustering
 - Distance between clusters = average distance between two points from each cluster:
- $d_{\text{average}}(C_i, C_j) = \text{avg}_{p \in C_i, q \in C_j} d(p, q)$
- Centroid Linkage
 - Distance between clusters = distance between centroids:
- $d_{\rm centroid}(C_i,C_j)=d(m_i,m_j)$

$$d_{\mathrm{ward}}(C_i,C_j) = \sum_{k \in C_i \cup C_j} \left\| x_k - m_{ij} \right\|^2 - \sum_{k \in C_i} \left\| x_k - m_i \right\|^2 - \sum_{k \in C_j} \left\| x_k - m_j \right\|^2$$

AGNES Complexity Analysis

- Space Complexity: $O(N^2)$ (storing distance matrix)
- Time Complexity:
 - Baseline: $O(N^3)$ (N-1) steps, each step $O(N^2)$
 - Using heap/priority queue: $O(N^2 \log N)$
 - Single Linkage special optimization: O(N²)

DIANA Algorithm

- Top-Down Hierarchical Clustering
 - Start with all points in a single cluster
- Recursively split clusters until each point is its own cluster
- Challenge: 2ⁿ ways to split a cluster with n points
 - Heuristics required to restrict the search space - Generally slower and less common than AGNES
- Cases where DIANA is preferable:
 - When no complete clustering is needed (early stopping)
 - When splitting can use global knowledge

Cluster Evaluation

Cluster Evaluation Problems

- Challenges in Visual Inspection: Just eyeballing the clustering is rarely possible.
- Algorithmic Bias: Clustering algorithms will always find some clusters.

Purpose of Cluster Evaluation

- Comparing the results of different clustering algorithms.
- Comparing the results of a clustering algorithm with different parameters.
- Minimizing the effects of noise on the clustering.

Two Main Approaches of Clustering Evaluation

- External quality measures: Evaluate clustering against a ground truth (if available).
- Internal quality measures: Evaluate clustering from the data itself.

External Quality Measures

- Ground Truth: Labeled Data
 - Labels indicate that two points "belong together."
- If clustering reflects this, it is considered good clustering.
- Cluster Purity
 - Measures how pure clusters are concerning the most common label.
 - Formula: $P = \frac{1}{N} \sum_{c \in C} \max_{l \in L} |c \cap l|$
 - Example Calculation: $P = \frac{1}{8}(3+4) = 0.875$
 - Limitation: Purity does not penalize having many clusters.
- P = 1 is easy to achieve if each cluster contains only a single point.
- Information Retrieval Metrics
 - True Positives (TP): Same cluster, same label.
 - True Negatives (TN): Different clusters, different labels.
 False Positives (FP): Same cluster, different labels.

 - False Negatives (FN): Different clusters, same label
- Rand Index (RI)
 - Reflects clustering accuracy.
- $\quad \text{Formula: } RI = \frac{TP + TN}{TP + FP + FN + TN} \\ \quad \text{Example: } RI_{example} = 0.82$ Precision, Recall, and F1-Score
- - Precision: $P = \frac{TP}{TP+FP}$

 - Recall: $R = \frac{TP}{TP+FN}$ F1-Score: $F1 = \frac{2 \cdot P \cdot R}{P+R}$ Example values: $P_{example} = 0.75$, $R_{example} = 0.69$, $F1_{example} = 0.72$

Internal Quality Measures

- Sum of Squared Errors (SSE)
 - SSE is often used to determine the number of clusters. Formula: $SSE = \sum_{i=1}^k \sum_{x \in C_i} ||x \mu_i||^2$

 - Limitations:
 - * Does not penalize having a large number of clusters.
 - * SSE decreases as the number of clusters increases.
 - * Applicable beyond K-Means but less intuitive for non-globular clusters.
 - SSE can also be used for complex data but inherently favors globular clusters.
- Silhouette Coefficient
 - A good clustering has:
 - * High inter-cluster distances.
 - * Low intra-cluster distances
 - Defined for each data point x:
 - Cohesion a(x): average distance to points in the same cluster.
 - **Separation** b(x): minimum average distance to points in a different cluster.
 - * Silhouette Score:

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}, \text{ if } |C_x| > 1$$

- * If $|C_x| = 1$, then s(x) = 0.

 The overall **Silhouette Coefficient** for the clustering:

$$SC = \frac{1}{N} \sum_{i=1}^{N} s(x_i)$$

- Interpretation: $-1 \le s(x) \le 1$ where **negative values indicate poor clustering** and **values closer to 1 indicate well-separated clusters**

Pragmatic Considerations

- The choice of the "best"clustering is often pragmatic:
 - Fixed number of clusters (problematic for DBSCAN).
 - Parameters defined by tasks (e.g., "areas with more than 5 McDonalds within 500m")
 - Maximum, minimum, or average size of clusters.
 - Focus on individual clusters instead of the whole clustering (e.g., largest/smallest cluster).
 - Setting k too high and merging later if needed.

Lecture 4

Association Rule Mining

Basic Setup

- Input database:
 - Set of transactions
 - Transaction = set of items
- Output: Association Rules
 - Rules predicting the occurrence of some items based on the occurrence of other items

Example Association Rules • Antecedent → Consequent {item2, item3} → {item5} {item₁} → {item₃} Problem Statement • Association rules are not "hard"rules Example: {cereal} → {milk} does not mean customers always buy milk with cereal. Each possible combination (e.g., {yogurt, bread} → {milk}) is a potential rule. Given d unique items, the number of possible rules is: 3^d - 2^{d+1} + 1 • Example: If d = 6, then there are 602 possible rules. Applications of Association Rule Mining Market Basket Analysis: Understanding customer shopping behavior. Medical Data Analysis: Diagnosis Support Systems and ADR discovery (adverse drug reaction) Census Data Analysis: Getting insights into a population. · Behavior Data Analysis: User preferences & linkings. Association Rule Definitions • Itemset: A subset of items. K-itemset: An itemset containing k items. Support Count (SC): Number of transactions containing an itemset. Support (S): Fraction of transactions containing an itemset. • Frequent Itemset: An itemset with a support greater or equal to a minimum threshold minsup. • Association Rule: An implication expression $X \to Y$, where X and Y are itemsets. Support of an Association Rule: Fraction of transactions containing all items in an association rule X → Y:

$$S(X \to Y) = \frac{SC(X \cup Y)}{N} = S(X \cup Y)$$

• Confidence of an Association Rule: Probability of Y given X:

$$C(X \to Y) = \frac{S(X \to Y)}{S(X)} = \frac{S(X \cup Y)}{S(X)}$$

Support-Confidence Combinations

- Low Support, Low Confidence: Items in $(X \cup Y)$ do not frequently appear together. Even when items in Xappear together, they often do so without items in Y.
- High Support, Low Confidence: Items in $(X \cup Y)$ frequently appear together, but if items in X appear together, they often do so without items in Y.
- Low Support, High Confidence: Items in $(X \cup Y)$ do not frequently appear together, but when items in X appear together, they often do so with items in Y.
- High Support, High Confidence: Items in $(X \cup Y)$ frequently appear together, and if items in X appear together, they often do so with items in Y.

Brute Force Algorithm

- Finding Association Rules: Given a set of transactions, find all association rules $X \to Y$ with:
- Support $S(X \to Y) \ge minsup$ Confidence $C(X \to Y) \ge minconf$
- Brute Force Algorithm:
 - List all possible association rules X → Y
 - Calculate support $S(X \to Y)$ and confidence $C(X \to Y)$ for each rule. Drop rules where $S(X \to Y) < minsup$ and $C(X \to Y) < minconf$.

Algorithm 3 Brute Force Association Rule Mining

- 1: Input: Transaction database D, minimum support minsup, minimum confidence minconf
- 2: Output: Set of association rules R
- 3: Initialize an empty set F for frequent itemsets
- 4: Initialize an empty set R for valid rules

▶ Frequent Itemset Generation

- 5: for each transaction t in D do for k = 1 to |t| do 7: Generate all possible k-itemsets for each itemset I in k-itemsets do Count occurrences of I10. end for
- 11: end for 12: end for
- 13: Retain only itemsets with support $\geq minsup$

▶ Rule Generation

- 14: for each frequent itemset do Generate all possible rules $X \to Y$ 15: Compute $S(\hat{X} \to Y)$ and $C(X \to Y)$ 16: 17: if $S(X \to Y) \ge minsup$ and $C(X \to Y) \ge minconf$ then 18: Add $X \to Y$ to R19: end if
- 20: end for
- 21: return R

Computational Complexity:

• Given d unique items, the number of possible rules is:

$$3^d - 2^{d+1} + 1 \in O(3^d)$$

• Let w be the maximum number of items in a transaction within the database:

$$O(N \cdot (3^w - 2^{w+1} + 1))$$

where typically $w \ll d$.

· Frequent itemset generation complexity:

$$O(N \cdot 2^{w})$$

Observation: Decoupling Support and Confidence:

- A rule $X \to Y$ has sufficient support only if $X \cup Y$ is a frequent itemset.
- No need to calculate confidence of rules where $X \cup Y$ is not a frequent itemset.

Apriori Algorithm

- Apriori Principle (Anti-Monotonicity):
 - If an itemset X is **not frequent**, then any superset Y ⊃ X is **also not frequent**.
 - If an itemset Y is **frequent**, then all its subsets $X \subset \overline{Y}$ must also be **frequent**.
- Apriori Algorithm:
 - Iteratively generate candidate frequent itemsets.
 - Use previously found frequent (k-1)-itemsets to **prune** candidate k-itemsets.
 - Filter frequent itemsets based on the minimum support threshold.

Algorithm 4 Apriori Algorithm for Frequent Itemset Mining

- 1: Input: Transaction database D, minimum support minsup
- 2: Output: Frequent itemsets F
- 3: Initialize F_1 with frequent 1-itemsets

▶ Frequent Itemset Generation

▷ Rule Generation

- 4: for k=2 to max itemset length do Generate candidate k-itemsets L_k from F_{k-1}
- Prune infrequent itemsets from L_k
- for each transaction t in D do
- for each candidate itemset I in L_k do
- 9: Count occurrences of I
- 10: end for
- 11:
- Retain only itemsets with support $\geq minsup$ as F_k
- 13: if F_k is empty then
- 14: break
- 15: end if
- 16: end for
- 17: for each frequent itemset do
- Generate all possible rules $X \to Y$ 19:
- Compute $S(X \to Y)$ and $C(X \to Y)$ 20:
- if $C(X \to Y) \ge minconf$ then 21: Add $X \to \overline{Y}$ to R
- 22: end if
- 23: end for
- 24: return F
 - Bule Generation:
 - Generate association rules X → Y from frequent itemsets.
 - Compute confidence:

$$C(X \to Y) = \frac{S(X \cup Y)}{S(X)}$$

- Retain rules where $C(X \to Y) \ge minconf$. • Computational Complexity:
 - - Generates at most **2^d 1** itemsets for d unique items.
 - Reduces complexity by **pruning** infrequent itemsets early.
 - Worst-case complexity:

 $O(N \cdot 2^{w})$

where N is the number of transactions and w is the largest transaction size

- Advantages:
 - Reduces the number of candidate itemsets compared to brute-force.
 - Efficient for **dense** datasets with many frequent itemsets.
- Limitations:
 - **Computationally expensive** when itemsets are very large.
 - **Many database scans required**, increasing execution time.