Univ. of Washington

Lecture: Eigenvalues and eigenvectors

Winter 2021

Lecturer: Dan Calderone

Traces and Determinants

Two useful numbers associated with square matrices are the *trace* and the *determinant*. The trace is the sum of the diagonals

$$Tr(A) = \sum_{i} A_{ii} \tag{1}$$

Traces are very well behaved algebraic. One can check immediately the following identities.

$$\operatorname{Tr}(A) = \operatorname{Tr}(A^T), \qquad \operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B), \qquad \operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$
 (2)

Formulas for the determinant are generally complicated but they compute how the volume of the unit cube changes under the transformation A.

$$det(A) = signed volume of the unit cube transformed by A$$
 (3)

The sign of the determinant flips if the unit cube is reflected across some axis.

Determinants have the properties

$$\det(A) = \det(A^T), \qquad \det(A^{-1}) = \det(A)^{-1}, \qquad \det(AB) = \det(BA) = \det(A)\det(B) \quad (4)$$

Both the trace and determinant have special relationships with the eigenvalues of A (see below for discussion of eigenvalues). If the eigenvalues of A, $\lambda_1, \ldots, \lambda_n$ then we have that

$$\operatorname{Tr}(A) = \sum_{i} \lambda_{i}, \qquad \operatorname{det}(A) = \prod_{i} \lambda_{i}$$
 (5)

Eigenvectors, Eigenvalues, and Diagonalization

In general, multiplying a column vector $x \in \mathbb{R}^n$ by a square matrix $A \in \mathbb{R}^{n \times n}$ causes that vector to stretch and to rotate. However, some vectors in specific subspaces are *only stretched*, *not rotated*. Another way to say this is that those subspaces are *invariant* with respect to A. These invariant subspaces are called *right eigenspaces* and vectors within them are called *right eigenvectors*. The amount each eigenvector is stretched is called it's *eigenvalue*. We can also consider a similar situation where left multiplying A by specific row vectors only causes them to stretch. These

row vectors are called *left eigenvectors* and they live in *left eigenspaces*. (The eigenvalues for left and right eigenvectors turn out to be the same, ie. left and right eigenspaces come in pairs.) Finding a linearly independent sets of eigenvectors (either left or right) for a square matrix A is one of the fundamental problems of linear algebra. If we represent vectors as coordinates with respect to a basis of eigenvectors, then the action of the matrix simply becomes scaling each individual coordinate by the appropriate eigenvalue. If a matrix has a linearly independent basis of eigenvectors then we say it is diagonalizable. Not all matrices are diagonalizable, but if we choose a matrix at random then it will be (with probability 1), ie. we have to specifically work to construct a matrix that is not diagonalizable. The reason for this is that non-diagonalizable matrices are a low dimensional subset of the space of all matrices. Many arguments in linear algebra are best understood by understanding them for diagonalizable matrices and then generalizing them to the non-diagonalizable case.

The right and left eigenvector equations are given by

$$\lambda v = Av, \qquad \lambda w^T = w^T A \tag{6}$$

respectively. Suppose the columns of $P \in \mathbb{R}^{n \times n}$ are a linearly independent set of right eigenvectors of A and with eigenvalues $\lambda_1, \dots, \lambda_n$. Let $D \in \mathbb{R}^n$ be a diagonal matrix with the eigenvalues on the diagonal, ie. $D = \text{diag}([\lambda_1, \dots, \lambda_n])$. The columns of P being right eigenvectors is equivalent to the equation

$$AP = PD \tag{7}$$

$$AP = PD \tag{7}$$

$$\Rightarrow A = PDP^{-1} \tag{8}$$

We say that the matrix of eigenvectors P diagonalizes A because it relates A to a diagonal matrix D via a similarity transform. In other words if x = Pz, z' = Px' and x' = Ax, then z' = Dz. Note that in the z-coordinates, D simply scales each coordinate by the appropriate eigenvalue.

Left multiplying (8) by P^{-1} gives $P^{-1}A = DP^{-1}$. Note that this means that the rows of P^{-1} are a set of linearly independent left-eigenvectors of A. Note that this also shows why the left and right eigenvectors come in pairs and share eigenvalues. To summarize, let

$$P = \begin{bmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{bmatrix}, \qquad D = \begin{bmatrix} \lambda_1 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \lambda_n \end{bmatrix}, \qquad P^{-1} = \begin{bmatrix} - & w_1^* & - \\ & \vdots \\ - & w_n^* & - \end{bmatrix}, \tag{9}$$

with v_i and w_i being right and left eigenvectors. A can be decomposed as

$$A = \begin{bmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} - & w_1^* & - \\ & \vdots \\ - & w_n^* & - \end{bmatrix} = \sum_i \lambda_i v_i w_i^*$$
 (10)

Note that real eigenvalues denote how much each eigenvectors get stretched when they are multiplied by the matrix.

Computing Eigenvalues and Eigenvectors

As stated above the determinant of a matrix is equal to the product of its eigenvalues. This means that if a matrix has a zero eigenvalue than its determinant is zero. Any vector in the nullspace of a matrix is an eigenvector with an eigenvalue of 0. Note that if $\lambda v = Av$ then $(\lambda I - A)v = 0$. In other words, if v is eigenvector of A with eigenvalue λ , then v is also an eigenvector of $\lambda I - A$ with eigenvalue 0. We can find eigenvalues of A by finding values of λ such that $(\lambda I - A)$ has a 0 eigenvalue. This leads us to characterize eigenvalues as solutions to the equation

$$\chi_A(s) = \det(sI - A) = 0 \tag{11}$$

 $\chi_A(s)$ is called the *characteristic polynomial* of A.

$$\chi_A(s) = \det(sI - A) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0$$

Based on properties of determinants, $\chi_A(s)$ will always have order n and the first term will always be s^n .

Once we find roots of $\chi_A(s)$, λ_i , we find the corresponding right and left eigenvectors by finding vectors in the right and left nullspace of $\lambda_i I - A$ respectively.

Formulas

2×2 Matrices

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} m+h & p-k \\ p+k & m-h \end{bmatrix}$$

where $m=\frac{1}{2}(a+d),$ $h=\frac{1}{2}(a-d),$ $p=\frac{1}{2}(b+c),$ and $k=\frac{1}{2}(c-b)$

• Eigenvalues:

$$\begin{split} \lambda_{1,2} &= \frac{\operatorname{Tr}\left(A\right)}{2} \pm \sqrt{\left(\frac{\operatorname{Tr}(A)}{2}\right)^2 - \operatorname{det}(A)} \\ &= m \pm \sqrt{h^2 - bc} \\ &= m \pm \sqrt{h^2 + p^2 - k^2} \end{split}$$

Eigenvectors

Spectral Mapping Theorem

Polynomial Functions

As stated above computing eigenvectors and eigenvalues simplifies matrix computations. In particular, note that given a diagonalization of $A = PDP^{-1}$, we can compute powers of A as

$$A^{k} = \underbrace{A \times \cdots \times A}_{\times k} = PD^{k} \underbrace{P^{-1} \times P}_{I} D^{k} P^{-1} \times \cdots \times PDP^{-1} = PD^{k} P^{-1}$$

$$\tag{12}$$

This implies that if a function $f:\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n}$ is a polynomial (or more generally analytic function) of A, then

$$f(A) = Pf(D)P^{-1} = P \begin{bmatrix} f(\lambda_1) & 0 \\ \vdots & \ddots & \vdots \\ 0 & f(\lambda_n) \end{bmatrix} P^{-1}$$
(13)

In other words, we can compute polynomial functions of A simply by applying that function to the eigenvalues of A and leaving the eigenvectors unchanged. This is known as the *spectral mapping theorem*. Note that this analysis applies to polynomials with an infinite number of terms such as Taylor expansions of functions such as $e^{(\cdot)}$, $\cos(\cdot)$, and $\sin(\cdot)$ as well.

Matrix Exponential

One important function of A that we want to compute is the *matrix exponential* e^A where which can be defined by its Taylor expansion.

$$e^A := I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}A^k$$
 (14)

Note that by the spectral mapping theorem we have that

$$e^{A} = Pe^{D}P^{-1} = P\begin{bmatrix} e^{\lambda_{1}} & 0\\ \vdots & \ddots & \vdots\\ 0 & e^{\lambda_{n}} \end{bmatrix}P^{-1}$$
 (15)

Exponential functions are interesting because they are functions who are equal to their own derivative (times some scaling), ie. $\frac{d}{dt}e^{\lambda t}=\lambda e^{\lambda t}$. (Note that $e^{\lambda t}$ is actually an *eigenfunction* of the derivative operator $\frac{d}{dt}$ with eigenvalue λ .)

Cayley-Hamilton Theorem

The Cayley-Hamilton theorem says that a matrix satisfies its own characteristic polynomial, ie. $_A(A) = 0$. For diagonalizable matrices, this is a direct application of the spectral mapping theorem.

$$\chi_A(A) = P\chi_A(D)P^{-1} = P\begin{bmatrix} \chi_A(\lambda_1) & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & \chi_A(\lambda_n) \end{bmatrix} P^{-1} = 0$$

Consequently,

$$A^n = -\alpha_{n-1}A^{n-1} - \dots - \alpha_1A - \alpha_0I$$

As a result of this, any polynomial function of A could be expressed in terms of powers of A only up through n-1. Higher powers of A can be reduced by iteratively plugging in the above equation. Another application of Cayley-Hamilton gives a polynomial expression for a matrix inverse.

$$0 = \left(A^{n} + \alpha_{n-1}A^{n-1} + \dots + \alpha_{1}A + \alpha_{0}I\right)A^{-1}$$
$$A^{-1} = -\frac{1}{\alpha_{0}}A^{n-1} - \frac{\alpha_{n-1}}{\alpha_{0}}A^{n-2} - \dots - \frac{\alpha_{1}}{\alpha_{0}}I$$

Jordan Form

To motivate a study of Jordan form, we consider the following matrix

$$J_i = \lambda_i I + N_i = \begin{bmatrix} \lambda_i & 1 & \cdots & \cdots & 0 \\ 0 & \lambda_i & & \vdots \\ \vdots & & \ddots & \vdots \\ \vdots & & & \lambda_i & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_i \end{bmatrix}$$

where N_i is a matrix with 1's on the first super diagonal. This matrix N_i is an example of a *nilpotent* matrix since raising it to some power gives a matrix of 0's, ie. for example

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}^{3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Note that any matrix similar to a nilpotent matrix is also nilpotent. If $N_i^k = 0$, then $(PN_iP^{-1})^k = PN_i^kP^{-1} = 0$. If $J_i = \lambda_iI + N_i$, then clearly, $J_i - \lambda_iI$ is nilpotent, ie. $J_i - \lambda_iI = N_i$. Since the eigenvalues of a triangular matrix are just the diagonal values, we have that the only eigenvalue of N_i is simply 0. However, N_i clearly has n-1 linearly independent columns, ie. rank n-1. Thus

it only has a one dimensional nullspace. One can check that the characteristic polynomial of N_i is $\chi_{N_i}(s) = s^n$ and the characteristic polynomial of $J_i = \lambda_i I + N_i$ is $\chi_{J_i}(s) = (s - \lambda_i)^n$.

A matrix is not diagonalizable when a full basis of eigenvectors does not exist. For a matrix $A \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues, there must be a basis of n linearly independent eigenvectors since each eigenvalue λ_i is associated with the nullspace of $\lambda_i I - A$. We know these eigenvectors are linearly independent since if not

$$v_i = \sum_{j \neq i} \alpha_j v_j$$

$$Av_i = A \left(\sum_{j \neq i} \alpha_j v_j \right)$$

$$0 = \sum_{j \neq i} \alpha_j \lambda_j v_j - \lambda_i v_i$$

$$0 = \sum_{j \neq i} \alpha_j (\lambda_j - \lambda_i) v_j$$

An inductive argument shows that $\lambda_i = \lambda_j$ for some i and j which is a contradiction. In this case, the characteristic polynomial is

$$\chi_A(s) = (s - \lambda_1)(s - \lambda_2) \cdots (s - \lambda_n)$$

In the general case with repeated eigenvaleus, the characteristic polynomial is given by

$$\chi_A(s) = \prod_{i=1}^k (s - \lambda_i)^{k_i}$$

where k is the number of distinct eigenvalues and k_i is the number of times each eigenvalue is repeated. If $\dim(\mathcal{N}(\lambda_i I - A)) = k_i$ for all i, then the matrix is diagonalizable. In this case,

$$\mathcal{N}(\lambda_i I - A) = \mathcal{N}((\lambda_i I - A)^2) = \mathcal{N}((\lambda_i I - A)^3) = \dots$$

and

$$\dim(\mathcal{N}(\lambda_i I - A)) = \dim(\mathcal{N}((\lambda_i I - A)^2)) = \dim(\mathcal{N}((\lambda_i I - A)^3)) = \dots = k_i$$

This happens when $\mathcal{N}(\lambda_i I - A) \cap \mathcal{R}(\lambda_i I - A) = 0$ for all i.

It is also possible that $\dim(\mathcal{N}(\lambda_i I - A)) < k_i$ In this case

$$\mathcal{N}(\lambda_i I - A) \subset \mathcal{N}((\lambda_i I - A)^2) \subset \mathcal{N}((\lambda_i I - A)^3) \subset \dots$$

and

$$\dim(\mathcal{N}(\lambda_i I - A)) < \dim(\mathcal{N}((\lambda_i I - A)^2)) < \dim(\mathcal{N}((\lambda_i I - A)^3)) < \dots < k_i$$
 (16)

ie., $\mathcal{N}(\lambda_i I - A) \cap \mathcal{R}(\lambda_i I - A) \neq 0$. A regular eigenvector satisfies

$$(\lambda_i I - A)v_i = 0$$

If $\dim (\mathcal{N}(\lambda_i I - A)) < \dim (\mathcal{N}(\lambda_i I - A)^2)$, then we should be able to find generalized eigenvectors that satisfy

$$(\lambda_i I - A)w_i^2 \in \mathcal{N}(\lambda_i I - A), \qquad (\lambda_i I - A)w_i^3 \in \mathcal{N}(\lambda_i I - A)^2, \qquad \text{etc}$$

 $w_i^2\in\mathbb{C}^n$ is a 2nd order eigenvector, $w_i^3\in\mathbb{C}^n$ is a 3rd order eigenvector, etc. Note that

$$(\lambda_i I - A)^2 w_i^2 = 0,$$
 $(\lambda_i I - A)^3 w_i^3 = 0,$ etc

If we are careful in picking, v_i , w_i^2 , w_i^3 , ... we can choose them so that

$$0 = (\lambda_i I - A)v_i, v_i = (\lambda_i I - A)w_i^2, w_i^2 = (\lambda_i I - A)w_i^3, \text{etc} (17)$$

A general organization of these equations is given by

$$AP = PJ = \underbrace{\begin{bmatrix} V_1 & \cdots & V_q \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} J_1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & J_q \end{bmatrix}}_{I}$$

where

$$V_{i} = \begin{bmatrix} | & | & | & | \\ v_{1} & w_{1}^{2} & w_{1}^{3} & \cdots \\ | & | & | & \end{bmatrix}, \qquad J_{i} = \lambda_{i}I + N_{i} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & \cdots & 0 \\ 0 & \lambda_{i} & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \lambda_{i} & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_{i} \end{bmatrix}$$

$$N_i = \begin{bmatrix} 0 & 1 & \cdots & \cdots & 0 \\ 0 & 0 & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix}$$

 J_i is called a Jordan block and q is the number of Jordan blocks. Each Jordan block corresponds to one true eigenvector and a chain of generalized eigenvectors as in (17). Note that if each distinct eigenvalue has only one Jordan block (and only one true eigenvector), then q = k, the number of

distinct eigenvalues. It is possible that a distinct eigenvalue has more than one Jordan block. In this case, q > k. Most matrices are diagonalizable, but every matrix can be put in *Jordan form*. Note that

$$A - \lambda_1 I = PJP^{-1} - \lambda_1 PP^{-1}$$

$$= P(J - \lambda_1 I)P^{-1}$$

$$= P\begin{bmatrix} N_1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & J_q \end{bmatrix}$$

and that

$$(A - \lambda_1 I)^{\ell} = P \begin{bmatrix} N_1^{\ell} & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & J_q^{\ell} \end{bmatrix}$$

Since N_1 is nilpotent, as ℓ increases the nullspace of $(A - \lambda_1 I)^{\ell}$ grows as in (16).

We now perform several manipulations with a simple non-diagonalizable matrix to illustrate some simple properties of Jordan form. Consider

$$A = \begin{bmatrix} | & | & | \\ v & w^2 & w^3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix} \begin{bmatrix} | & | & | \\ v & w^2 & w^3 \\ | & | & | \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} | & | & | \\ v & w^2 & w^3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix} \begin{bmatrix} - & (q^3)^T & - \\ - & (q^2)^T & - \\ - & p^T & - \end{bmatrix}$$

$$= \lambda v (q^3)^T + (v + \lambda w^2) (q^2)^T + (w^2 + \lambda w^3) p^T$$

$$= \lambda v (q^3)^T + \lambda w^2 (q^2)^T + \lambda w^3 p^T + v (q^2)^T + w^2 p^T$$

Note that

- The first order right eigenvector v matches up with the third order left generalized eigenvector $(q^3)^T$
- The second order right eigenvector w^2 matches up with the second order left generalized eigenvector $(q^2)^T$
- The third order right eigenvector \boldsymbol{w}^3 matches up with the first order left eigenvector \boldsymbol{p}^T

We note that we could also write A in other ways related to Jordan form (These are just a sample of how the Jordan block and eigenvectors could be shuffled.)

$$A = \begin{bmatrix} | & | & | \\ w^2 & v & w^3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \begin{bmatrix} - & (q^2)^T & - \\ - & (q^3)^T & - \\ - & p^T & - \end{bmatrix}$$
$$= \begin{bmatrix} | & | & | \\ w^3 & w^2 & v \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} \begin{bmatrix} - & p^T & - \\ - & (q^2)^T & - \\ - & (q^3)^T & - \end{bmatrix}$$
$$= \text{etc}$$