

SRM Institute of Science and Technology College of Engineering and Technology

SET A

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022 (EVEN)

Answer key

Test: CLAT-III Date: 21.06.2022
Course Code & Title: 18ECE206J Advanced Digital System Design
Vear & Sem: II & IV
Max. Marks: 50

Course Articulation Matrix:

	18ECE206J / Advanced Digital System Design							ram e Att			s (POs	s)			gram Sp comes (
S.No.	Course Outcomes (CO):	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Apply advanced theorems to simplify the design aspects of various practical circuits and design Mealy and Moore models of sequential circuit.	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-
2	Implement synchronous sequential circuits and write VHDL Code	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-
3	Analyze asynchronous sequential circuits and write code using VHDL.	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-
4	Implement Hazard free circuits and various digital circuits using Programmable Logic Devices.	-	2	2	-	-	-	1	-	-	-	-	-	-	-	-
5	Demonstrate FPGAs and Construct digital circuits using VHDL.	-	3	3	-	-	-	-	-	-	-	-	-	-	-	2
6	Design and verify the experiments in the laboratory with hardware and software.		-	-	-	3	-	-	-	2	-	-	3	3	-	2

	Part - A (10 x 1 = 10 Marks) Answer all Questions					
Q. No	Question	Mark	BL	СО	PO	PI Code
1	The input to a PLD is gate. A. AND B. OR C. XOR D. XNOR	1	1	4	2	2.2.1
2	PAL consists of AND gates and OR gates. A.fixed, Programmable B. Programmable, fixed C. programmable, programmable D. fixed, fixed	1	1	4	2	2.2.1
3	FPGA refers to A. Field Programmable Gate Array	1	1	4	2	2.2.1

		I	1	1	1	1
	B. Field Program Gate Array					
	C. First Programmable Gate Array					
	D. First Programmed Gate Array					
4	Which is used in PAL for reducing the loading on inputs?					
	A Output buffore					
	A. Output buffers	4	•		2	222
	B. OR Matrix C. Input buffers	1	2	4	3	3.2.2
	D. Latch					
	D. Laten					
5	Which one of the following is the best way to detect hazards in					
	circuit?					
	Chedit.					
	A. K-map				_	
	B. Boolean expansion	1	1	4	2	2.2.1
	C. Reed-muller expansion					
	D. logical reduction technique					
6	How does a layout of FPGA look?	-				
	A. Matrix					
	B. Rubik	1	1	5	3	3.2.3
	C. Square					
	D. Net list					
7	1:entity and 1 is					
	2:port(A,B: in std_logic; Y: out std_logic);					
	3:end and1;					
	4:architecture andlogic of and1 is					
	5:begin					
	6:Y <= A AND B;					
	7:end and1;	1	2	5	3	3.2.3
	· · · · · · · · · · · · · · · · · · ·					
	Find the syntax error in the above code.					
	A. No error					
	B. Line 7 "and1" should be "andlogic"					
	C. It is a two input and gate line 1,3,7 it should be "and2"					
	D. ";" is missing in line 5					
8	Port map is used in modelling					
	A. behavioural					
	B. structural	1	2	5	3	3.2.3
	C. data flow					
	D. circuit level					
•	II 1					
9	How many logic inputs are available in Xilinx 3000 FPGA?					
	A.5					
	B.6	1	1	5	2	2.2.2
	C.7					
	D.4					
10	If a and b are two STD_LOGIC_VECTOR input signals, then					
	legal assignment for a and b is?					
	A. $x \le a.b$					
	B. $x \le a$ or b	1	2	5	3	3.2.3
	$C. x \le a + b$					
	D. x<= a&&b					
	D. A = acceu					
	1	1	1	1	L	1

ways to use the LUT Use 5 of the 7 possible inputs (A–E, QX, QY) with the entire 32-bit LUT Split the 32-bit LUT in half to implement 2 functions of 4 variables each Basic I/O Block Structure Three-State FF Enable Group Three-State FF Enable Explanation (2 marks) (ii) Iibrary IEEE: use IEEE.STD_LOGIC_1164.all; entity ckt is port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;); end ckt; architecture seq ckt of ckt is component dff is port(D.CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (Q2, clk, Q1); u1: dff port map (Q2, clk, Q1); u3: dff port map (Q1, clk, Q0);		ways to use the LUT			
entire 32-bit LUT • Split the 32-bit LUT in half to implement 2 functions of 4 variables each IS (i) Basic I/O Block Structure Three-State Output Registered FF Enable Registered Input Registered Reg					
of 4 variables each IS (i) Basic I/O Block Structure Three-State Clock Clock Set/Reset PF Enable Set/Reset Input Path Set/Reset Set/					
Basic I/O Block Structure Three-State FF Enable Clock Set/Reset PF Enable Registered SR (3 marks) (ii) library IEEE; use IEEE.STD_LOGIC_1164.all; entity ckt is port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;); end ckt; architecture seq ckt of ckt is component dff is port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);					
Basic I/O Block Structure Three-State FF Enable Clock Set/Reset PF Enable Registered SR (3 marks) (ii) library IEEE; use IEEE.STD_LOGIC_1164.all; entity ckt is port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;); end ckt; architecture seq ckt of ckt is component dff is port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);					
Basic I/O Block Structure Three-State FF Enable Clock Set/Reset FF Enable Registered FF Enable Registered Reg	15	(i)			
Set Color					
(3 marks) Explanation (2 marks) (ii) library IEEE; use IEEE.STD_LOGIC_1164.all; entity ckt is port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;); end ckt; architecture seq ckt of ckt is component dff is port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);		FF Enable Clock Set/Reset Output FF Enable Direct Input FF Enable Registered Input Path Input Path			
library IEEE; use IEEE.STD_LOGIC_1164.all; entity ckt is port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;); end ckt; architecture seq ckt of ckt is component dff is port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);		(3 marks) Explanation (2 marks)			
port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;); end ckt; architecture seq ckt of ckt is component dff is port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);		library IEEE;			
architecture seq ckt of ckt is component dff is port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);		port(clk: in STD_LOGIC; Q0, Q1, Q2: inout STD_LOGIC;);			
port(D,CLK: in std_logic; Q: out std_logic); end component dff; signal s: std_logic; begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);		architecture seq ckt of ckt is			
begin s <= not Q0; u0: dff port map (s, clk, Q2); u1: dff port map (Q2, clk, Q1);		port(D,CLK : in std_logic; Q: out std_logic);			
s <= not Q0; u0 : dff port map (s, clk, Q2); u1 : dff port map (Q2, clk, Q1);		signal s : std_logic;			
		s <= not Q0; u0 : dff port map (s, clk, Q2); u1 : dff port map (Q2, clk, Q1);			
end seq ckt;		end seq ckt;			

16	B3 ▶	► G3					
	B2	►G2					
	B1	►G1					
	B0	► G0					
	(2 marks)						
	library IEEE;						
	use IEEE.STD_LOGIC_1164.ALL;						
	entity B_G is						
	Port (bin: in std_logic_vector (1 downto 0);		10	4	5	3	3.2.3
	gray: out std_logic_vector (3 downto 0);						
	end B_G;						
	architecture Behavioral_BG of B_G is						
	component xor_1 is						
	Port (o,p: in STD_LOGIC;						
	q: out STD_LOGIC);						
	end component;						
	begin						
	11: xor_1 port map (bin(3), 0, gray(3));						
	12: xor_1 port map (bin(3), bin(2),gray(2));						
	13: xor_1 port map (bin(2), bin(1),gray(1));						
	14: xor_1 port map (bin(1), bin(0),gray(0));						
	end Behavioral_BG;	6 marks)					
	sub program – xor gate (2	marks)					