### **CSE 311: Foundations of Computing**

### Lecture 4: Boolean Algebra, Circuits, Canonical Forms



### Last Time: Proofs of Equivalence

### To show A is equivalent to B

 Apply a series of logical equivalences to sub-expressions to convert A to B

### To show A is a tautology

 Apply a series of logical equivalences to sub-expressions to convert A to T

### **Logical Proofs**

#### Identity

$$- p \wedge T \equiv p$$
  
$$- p \vee F \equiv p$$

#### Domination

$$- p \lor T \equiv T$$

$$-p \wedge F \equiv F$$

#### Idempotent

$$-\ p \vee p \equiv p$$

$$- p \wedge p \equiv p$$

#### Commutative

$$-\ p \vee q \equiv q \vee p$$

$$- p \wedge q \equiv q \wedge p$$

#### Associative

$$- (p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$- (p \land q) \land r \equiv p \land (q \land r)$$

#### Distributive

$$- p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$- p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

#### Absorption

$$-\ p \lor (p \land q) \equiv p$$

$$- p \wedge (p \vee q) \equiv p$$

#### Negation

$$- p \lor \neg p \equiv T$$

$$-p \land \neg p \equiv F$$

#### De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

#### **Law of Implication**

$$p \to q \equiv \neg p \vee q$$

#### Contrapositive

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

#### **Biconditional**

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

#### **Double Negation**

$$p \equiv \neg \neg p$$

### **Example:**

Let A be " $\neg p \lor (p \lor p)$ ".

Our general proof looks like:

$$\neg p \lor (p \lor p) \equiv ($$
 $\equiv ($ 
 $\equiv \mathbf{T}$ 

### **Logical Proofs**

#### Identity

$$- p \wedge T \equiv p$$
  
$$- p \vee F \equiv p$$

#### Domination

$$- p \lor T \equiv T$$

$$-p \wedge F \equiv F$$

#### Idempotent

$$-\ p \vee p \equiv p$$

#### $- p \wedge p \equiv p$

#### Commutative

$$- p \lor q \equiv q \lor p$$
$$- p \land q \equiv q \land p$$

#### Associative

$$- (p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$- (p \land q) \land r \equiv p \land (q \land r)$$

#### Distributive

$$- p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$- p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

#### Absorption

$$- p \lor (p \land q) \equiv p$$
$$- p \land (p \lor q) \equiv p$$

#### Negation

$$- p \lor \neg p \equiv T$$
$$- p \land \neg p \equiv F$$

#### De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

#### Law of Implication

$$p \to q \ \equiv \ \neg p \lor q$$

#### **Contrapositive**

$$p \to q \equiv \neg q \to \neg p$$

#### **Biconditional**

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

#### **Double Negation**

$$p \equiv \neg \neg p$$

### **Example:**

Let A be " $\neg p \lor (p \lor p)$ ".

Our general proof looks like:

$$\neg p \lor (p \lor p) \equiv ( \neg p \lor p ) \text{ Idempotent}$$
 
$$\equiv ( p \lor \neg p ) \text{ Commutative}$$
 
$$\equiv \mathbf{T} \text{ Negation}$$

### Prove these propositions are equivalent

Prove:  $p \land (p \rightarrow r) \equiv p \land r$ 

$$p \land (p \rightarrow r) \equiv$$

$$\equiv$$

$$\equiv$$

$$\equiv$$

$$\equiv p \land r$$

- Identity
  - $-\ p \wedge \mathbf{T} \equiv p$
  - $p \lor F \equiv p$
- Domination
  - $p \lor T \equiv T$
  - $-p \wedge F \equiv F$
- Idempotent
  - $-\ p \vee p \equiv p$
  - $p \wedge p \equiv p$
- Commutative
  - $p \lor q \equiv q \lor p$  $p \land q \equiv q \land p$

- Associative
  - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
  - $-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- Distributive
  - $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
  - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
  - $p \lor (p \land q) \equiv p$
  - $p \land (p \lor q) \equiv p$
- Negation
  - $p \lor \neg p \equiv T$
  - $-p \land \neg p \equiv F$

#### De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

#### Law of Implication

$$p \rightarrow q \equiv \neg p \lor q$$

#### Contrapositive

$$p \to q \ \equiv \ \neg q \to \neg p$$

#### **Biconditional**

$$p \leftrightarrow q \, \equiv \, (p {\to} \, q) \wedge (q \to p)$$

#### **Double Negation**

$$p \equiv \neg \neg p$$

### Prove these propositions are equivalent

## Prove: $p \land (p \rightarrow r) \equiv p \land r$

$$p \land (p \rightarrow r) \equiv p \land (\neg p \lor r)$$
  $\equiv (p \land \neg p) \lor (p \land r)$  Dist  $\equiv \mathbf{F} \lor (p \land r)$  Neg  $\equiv (p \land r) \lor \mathbf{F}$  Com  $\equiv p \land r$  Iden

**Law of Implication** 

**Distributive** 

**Negation** 

**Commutative** 

**Identity** 

#### Identity

$$- p \wedge T \equiv p$$
  
$$- p \vee F \equiv p$$

#### Domination

$$- p \lor T \equiv T$$

$$-p \wedge F \equiv F$$

#### Idempotent

$$-\ p \vee p \equiv p$$

$$- p \wedge p \equiv p$$

#### Commutative

$$-\ p \lor q \equiv q \lor p$$

$$- p \wedge q \equiv q \wedge p$$

#### Associative

$$-\ (p\vee q)\vee r\equiv p\vee (q\vee r)$$

$$- (p \land q) \land r \equiv p \land (q \land r)$$

#### Distributive

$$- p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

#### Absorption

$$- p \lor (p \land q) \equiv p$$

$$- p \land (p \lor q) \equiv p$$

#### Negation

$$- p \lor \neg p \equiv T$$

$$-p \land \neg p \equiv F$$

#### De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

#### Law of Implication

$$p \rightarrow q \equiv \neg p \lor q$$

#### Contrapositive

$$p \to q \ \equiv \ \neg q \to \neg p$$

#### **Biconditional**

$$p \leftrightarrow q \equiv (p {\rightarrow} \, q) \wedge (q \rightarrow p)$$

#### **Double Negation**

$$p \equiv \neg \neg p$$

## Prove this is a Tautology: Option 1

$$(p \land r) \rightarrow (r \lor p)$$

Use a series of equivalences like so:

$$(p \land r) \rightarrow (r \lor p) \equiv$$

#### Identity

- $-p \wedge T \equiv p$
- $p \vee F \equiv p$

#### **Domination**

- $p \lor T \equiv T$
- $-p \wedge F \equiv F$

#### Idempotent

- $p \lor p \equiv p$
- $p \wedge p \equiv p$

#### Commutative

- $p \lor q \equiv q \lor p$
- $p \wedge q \equiv q \wedge p$

#### **Associative**

- $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

#### **Distributive**

- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

#### **Absorption**

- $p \lor (p \land q) \equiv p$
- $p \land (p \lor q) \equiv p$

#### **Negation**

- $p \lor \neg p \equiv T$
- $-p \land \neg p \equiv F$

## Prove this is a Tautology: Option 1

$$(p \land r) \rightarrow (r \lor p)$$

Use a series of equivalences like so:

$$(p \land r) \rightarrow (r \lor p) \equiv \neg (p \land r) \lor (r \lor p)$$

$$\equiv (\neg p \lor \neg r) \lor (r \lor p)$$

$$\equiv \neg p \lor (\neg r \lor (r \lor p))$$

$$\equiv \neg p \lor ((\neg r \lor r) \lor p)$$

$$= \neg p \lor ((\neg r \lor r) \lor p)$$

$$= \neg p \lor (p \lor (\neg r \lor r))$$

$$\equiv \neg p \lor (p \lor (\neg r \lor r))$$

$$\equiv (\neg p \lor p) \lor (\neg r \lor r)$$

$$= (p \lor \neg p) \lor (r \lor \neg r)$$

 $\equiv \mathsf{T} \vee \mathsf{T}$ 

#### **Associative**

- $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

#### Distributive

- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

#### Absorption

- $p \lor (p \land q) \equiv p$
- $p \land (p \lor q) \equiv p$

#### Negation

- $p \lor \neg p \equiv T$
- $-p \land \neg p \equiv F$

Law of Implication

De Morgan

**Associative** 

**Associative** 

Commutative

**Associative** 

**Commutative** (twice)

**Negation (twice)** 

**Domination/Identity** 

### Domination

- $p \lor T \equiv T$
- $-p \wedge F \equiv F$

### Idempotent

- $p \lor p \equiv p$
- $-p \wedge p \equiv p$

#### Commutative

- $p \lor q \equiv q \lor p$
- $p \wedge q \equiv q \wedge p$

### Prove this is a Tautology: Option 2

$$(p \land r) \rightarrow (r \lor p)$$

### Make a Truth Table and show:

$$(p \land r) \rightarrow (r \lor p) \equiv \mathbf{T}$$

| p | r | $p \wedge r$ | $r \lor p$ | $(p \land r) \rightarrow (r \lor p)$ |
|---|---|--------------|------------|--------------------------------------|
| Т | Т | Т            | Т          | Т                                    |
| Т | F | F            | Т          | Т                                    |
| F | Т | F            | Т          | Т                                    |
| F | F | F            | F          | Т                                    |

### **Boolean Logic**

### **Combinational Logic**

- output = F(input)

### **Sequential Logic**

- $-\operatorname{output}_t = \operatorname{F}(\operatorname{output}_{t-1}, \operatorname{input}_t)$ 
  - output dependent on history
  - concept of a time step (clock, t)

### **Boolean Logic**

### **Combinational Logic**

- output = F(input)



### **Boolean Algebra: another notation for logic** consisting of...

- a set of elements B =  $\{0, 1\}$
- binary operations { + , } (OR, AND)
- and a unary operation { ' } (NOT )

### **Boolean Algebra**

- Usual notation used in circuit design
- Boolean algebra
  - a set of elements B containing {0, 1}
  - binary operations { + , }
  - and a unary operation { ' }
  - such that the following axioms hold:



```
For any a, b, c in B:
1. closure:
                                       a + b is in B
                                                                                     a • b is in B
2. commutativity:
                                      a + b = b + a
                                                                                     a \cdot b = b \cdot a
                                 a + (b + c) = (a + b) + c a \cdot (b \cdot c) = (a \cdot b) \cdot c

a + (b \cdot c) = (a + b) \cdot (a + c) a \cdot (b + c) = (a \cdot b) + (a \cdot c)
3. associativity:
                                                                                     a \cdot (b + c) = (a \cdot b) + (a \cdot c)
4. distributivity:
                                      a + 0 = a
                                                                                     a \cdot 1 = a
5. identity:
6. complementarity:
                                      a + a' = 1
                                                                                     a \cdot a' = 0
                                      a + 1 = 1
                                                                                     a \cdot 0 = 0
7. null:
8. idempotency:
                                      a + a = a
                                                                                     a \cdot a = a
9. involution:
                                      (a')' = a
```

### A Combinational Logic Example

### **Sessions of Class:**

We would like to compute the number of lectures or quiz sections remaining at the start of a given day of the week.

- Inputs: Day of the Week, Lecture/Section flag
- Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2

Input: (Monday, Section) Output: 1

### Implementation in Software

```
public int classesLeftInMorning(int weekday, boolean isLecture) {
    switch (weekday) {
        case SUNDAY:
        case MONDAY:
            return isLecture ? 3 : 1;
        case TUESDAY:
        case WEDNESDAY:
            return isLecture ? 2 : 1;
        case THURSDAY:
            return isLecture ? 1 : 1;
        case FRIDAY:
            return isLecture ? 1 : 0;
        case SATURDAY:
            return isLecture ? 0 : 0;
```

### Implementation with Combinational Logic

### **Encoding:**

- How many bits for each input/output?
- Binary number for weekday
- One bit for each possible output



### **Defining Our Inputs!**

### **Weekday Input:**

- Binary number for weekday
- Sunday = 0, Monday = 1, ...
- We care about these in binary:

| Weekday   | Number | Binary             |
|-----------|--------|--------------------|
| Sunday    | 0      | (000) <sub>2</sub> |
| Monday    | 1      | (001) <sub>2</sub> |
| Tuesday   | 2      | (010) <sub>2</sub> |
| Wednesday | 3      | (011) <sub>2</sub> |
| Thursday  | 4      | (100) <sub>2</sub> |
| Friday    | 5      | (101) <sub>2</sub> |
| Saturday  | 6      | (110) <sub>2</sub> |

### **Converting to a Truth Table!**

```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

| Wee | kday | isLecture | c <sub>o</sub> | $\mathbf{c_1}$ | c <sub>2</sub> | C <sub>3</sub> |
|-----|------|-----------|----------------|----------------|----------------|----------------|
| SUN | 000  | 0         |                |                |                |                |
| SUN | 000  | 1         |                |                |                |                |
| MON | 001  | 0         |                |                |                |                |
| MON | 001  | 1         |                |                |                |                |
| TUE | 010  | 0         |                |                |                |                |
| TUE | 010  | 1         |                |                |                |                |
| WED | 011  | 0         |                |                |                |                |
| WED | 011  | 1         |                |                |                |                |
| THU | 100  | -         |                |                |                |                |
| FRI | 101  | 0         |                |                |                |                |
| FRI | 101  | 1         |                |                |                |                |
| SAT | 110  | -         |                |                |                |                |
| -   | 111  | -         |                |                |                |                |

### **Converting to a Truth Table!**

```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

| Wee | kday | isLecture | c <sub>o</sub> | $\mathbf{c_1}$ | c <sub>2</sub> | C <sub>3</sub> |
|-----|------|-----------|----------------|----------------|----------------|----------------|
| SUN | 000  | 0         | 0              | 1              | 0              | 0              |
| SUN | 000  | 1         | 0              | 0              | 0              | 1              |
| MON | 001  | 0         | 0              | 1              | 0              | 0              |
| MON | 001  | 1         | 0              | 0              | 0              | 1              |
| TUE | 010  | 0         | 0              | 1              | 0              | 0              |
| TUE | 010  | 1         | 0              | 0              | 1              | 0              |
| WED | 011  | 0         | 0              | 1              | 0              | 0              |
| WED | 011  | 1         | 0              | 0              | 1              | 0              |
| THU | 100  | -         | 0              | 1              | 0              | 0              |
| FRI | 101  | 0         | 1              | 0              | 0              | 0              |
| FRI | 101  | 1         | 0              | 1              | 0              | 0              |
| SAT | 110  | -         | 1              | 0              | 0              | 0              |
| -   | 111  | -         | 1              | 0              | 0              | 0              |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | $\mathbf{c_1}$ | c <sub>2</sub> | c <sub>3</sub> |
|-----|-------------|---|----------------|----------------|----------------|----------------|
| SUN | 000         | 0 | 0              | 1              | 0              | 0              |
| SUN | 000         | 1 | 0              | 0              | 0              | 1              |
| MON | 001         | 0 | 0              | 1              | 0              | 0              |
| MON | 001         | 1 | 0              | 0              | 0              | 1              |
| TUE | 010         | 0 | 0              | 1              | 0              | 0              |
| TUE | 010         | 1 | 0              | 0              | 1              | 0              |
| WED | 011         | 0 | 0              | 1              | 0              | 0              |
| WED | 011         | 1 | 0              | 0              | 1              | 0              |
| THU | 100         | - | 0              | 1              | 0              | 0              |
| FRI | 101         | 0 | 1              | 0              | 0              | 0              |
| FRI | 101         | 1 | 0              | 1              | 0              | 0              |
| SAT | 110         | - | 1              | 0              | 0              | 0              |
| -   | 111         | - | 1              | 0              | 0              | 0              |

Let's begin by finding an expression for  $c_3$ . To do this, we look at the rows where  $c_3 = 1$  (true).

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | c <sub>2</sub> | <b>C</b> <sub>3</sub> |
|-----|-------------|---|----------------|-----------------------|----------------|-----------------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0                     |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1                     |
| MON | 001         | 0 | 0              | 1                     | 0              | 0                     |
| MON | 001         | 1 | 0              | 0                     | 0              | 1                     |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0                     |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0                     |
| WED | 011         | 0 | 0              | 1                     | 0              | 0                     |
| WED | 011         | 1 | 0              | 0                     | 1              | 0                     |
| THU | 100         | - | 0              | 1                     | 0              | 0                     |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0                     |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0                     |
| SAT | 110         | - | 1              | 0                     | 0              | 0                     |
| -   | 111         | - | 1              | 0                     | 0              | 0                     |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub> |
|-----|-------------|---|----------------|-----------------------|----------------|-----------------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0                     |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1                     |
| MON | 001         | 0 | 0              | 1                     | 0              | 0                     |
| MON | 001         | 1 | 0              | 0                     | 0              | 1                     |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0                     |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0                     |
| WED | 011         | 0 | 0              | 1                     | 0              | 0                     |
| WED | 011         | 1 | 0              | 0                     | 1              | 0                     |
| THU | 100         | - | 0              | 1                     | 0              | 0                     |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0                     |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0                     |
| SAT | 110         | - | 1              | 0                     | 0              | 0                     |
| -   | 111         | - | 1              | 0                     | 0              | 0                     |

|     | $d_2d_1d_0$                         | L                                                                               | c <sub>0</sub>                                                                                                          | <b>c</b> <sub>1</sub>                     | c <sub>2</sub>                                                                                                                                                          | C <sub>3</sub>                                                                                                                                                |                                                                                                                                                                                                                                               |
|-----|-------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUN | 000                                 | 0                                                                               | 0                                                                                                                       | 1                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| SUN | 000                                 | 1                                                                               | 0                                                                                                                       | 0                                         | 0                                                                                                                                                                       | 1                                                                                                                                                             | d <sub>2</sub> == 0 && d <sub>1</sub> == 0 && d <sub>0</sub> == 0 && L                                                                                                                                                                        |
| MON | 001                                 | 0                                                                               | 0                                                                                                                       | 1                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| MON | 001                                 | 1                                                                               | 0                                                                                                                       | 0                                         | 0                                                                                                                                                                       | 1                                                                                                                                                             | d <sub>2</sub> == 0 && d <sub>1</sub> == 0 && d <sub>0</sub> == 1 && L                                                                                                                                                                        |
| TUE | 010                                 | 0                                                                               | 0                                                                                                                       | 1                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             | Splitting up the bits of the                                                                                                                                                                                                                  |
| TUE | 010                                 | 1                                                                               | 0                                                                                                                       | 0                                         | 1                                                                                                                                                                       | 0                                                                                                                                                             | so, we can write a formul                                                                                                                                                                                                                     |
| WED | 011                                 | 0                                                                               | 0                                                                                                                       | 1                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             | ,                                                                                                                                                                                                                                             |
| WED | 011                                 | 1                                                                               | 0                                                                                                                       | 0                                         | 1                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| THU | 100                                 | -                                                                               | 0                                                                                                                       | 1                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| FRI | 101                                 | 0                                                                               | 1                                                                                                                       | 0                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| FRI | 101                                 | 1                                                                               | 0                                                                                                                       | 1                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| SAT | 110                                 | -                                                                               | 1                                                                                                                       | 0                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
| -   | 111                                 | -                                                                               | 1                                                                                                                       | 0                                         | 0                                                                                                                                                                       | 0                                                                                                                                                             |                                                                                                                                                                                                                                               |
|     | MON MON TUE TUE WED THU FRI FRI SAT | SUN 000 SUN 000 MON 001 TUE 010 TUE 010 WED 011 THU 100 FRI 101 FRI 101 SAT 110 | SUN 000 0 SUN 000 1 MON 001 0 MON 001 1 TUE 010 0 TUE 010 1 WED 011 0 WED 011 1 THU 100 - FRI 101 0 FRI 101 1 SAT 110 - | SUN 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | SUN 000 0 0 1 SUN 000 1 0 0 MON 001 0 0 1 MON 001 1 0 0 TUE 010 0 0 1 TUE 010 1 0 0 WED 011 0 0 1 WED 011 1 0 0 THU 100 - 0 1 FRI 101 0 1 0 FRI 101 1 0 1 SAT 110 - 1 0 | SUN 000 0 0 1 0 SUN 000 1 0 0 0 MON 001 0 0 1 0 MON 001 1 0 0 0 TUE 010 0 1 0 TUE 010 1 0 0 1 WED 011 1 0 0 1 THU 100 - 0 1 0 FRI 101 0 1 0 0 SAT 110 - 1 0 0 | SUN 000 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | c <sub>2</sub> | c <sub>3</sub> |
|-----|-------------|---|----------------|-----------------------|----------------|----------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0              |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1              |
| MON | 001         | 0 | 0              | 1                     | 0              | 0              |
| MON | 001         | 1 | 0              | 0                     | 0              | 1              |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0              |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0              |
| WED | 011         | 0 | 0              | 1                     | 0              | 0              |
| WED | 011         | 1 | 0              | 0                     | 1              | 0              |
| THU | 100         | - | 0              | 1                     | 0              | 0              |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0              |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0              |
| SAT | 110         | - | 1              | 0                     | 0              | 0              |
| -   | 111         | - | 1              | 0                     | 0              | 0              |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | c <sub>2</sub> | C <sub>3</sub> |
|-----|-------------|---|----------------|-----------------------|----------------|----------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0              |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1              |
| MON | 001         | 0 | 0              | 1                     | 0              | 0              |
| MON | 001         | 1 | 0              | 0                     | 0              | 1              |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0              |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0              |
| WED | 011         | 0 | 0              | 1                     | 0              | 0              |
| WED | 011         | 1 | 0              | 0                     | 1              | 0              |
| THU | 100         | - | 0              | 1                     | 0              | 0              |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0              |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0              |
| SAT | 110         | - | 1              | 0                     | 0              | 0              |
| -   | 111         | - | 1              | 0                     | 0              | 0              |

How do we combine them?

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | C <sub>2</sub> | <b>C</b> <sub>3</sub> |
|-----|-------------|---|----------------|-----------------------|----------------|-----------------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0                     |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1                     |
| MON | 001         | 0 | 0              | 1                     | 0              | 0                     |
| MON | 001         | 1 | 0              | 0                     | 0              | 1                     |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0                     |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0                     |
| WED | 011         | 0 | 0              | 1                     | 0              | 0                     |
| WED | 011         | 1 | 0              | 0                     | 1              | 0                     |
| THU | 100         | - | 0              | 1                     | 0              | 0                     |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0                     |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0                     |
| SAT | 110         | - | 1              | 0                     | 0              | 0                     |
| -   | 111         | - | 1              | 0                     | 0              | 0                     |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | $c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ |
|-----|-------------|---|----------------|-----------------------|----------------|----------------|--------------------------------------------------------------------------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0              | Now, we do c <sub>2</sub> .                                                    |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1              |                                                                                |
| MON | 001         | 0 | 0              | 1                     | 0              | 0              |                                                                                |
| MON | 001         | 1 | 0              | 0                     | 0              | 1              |                                                                                |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0              |                                                                                |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0              |                                                                                |
| WED | 011         | 0 | 0              | 1                     | 0              | 0              |                                                                                |
| WED | 011         | 1 | 0              | 0                     | 1              | 0              |                                                                                |
| THU | 100         | - | 0              | 1                     | 0              | 0              |                                                                                |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0              |                                                                                |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0              |                                                                                |
| SAT | 110         | - | 1              | 0                     | 0              | 0              |                                                                                |
| -   | 111         | - | 1              | 0                     | 0              | 0              |                                                                                |

|     |             |   | 1              |                | )              |                |                                                                                                                                                             |
|-----|-------------|---|----------------|----------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $d_2d_1d_0$ | L | c <sub>o</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | Now, we do <b>c₁:</b>                                                                                                                                       |
| SUN | 000         | 0 | 0              | 1              | 0              | 0              |                                                                                                                                                             |
| SUN | 000         | 1 | 0              | 0              | 0              | 1              |                                                                                                                                                             |
| MON | 001         | 0 | 0              | 1              | 0              | 0              |                                                                                                                                                             |
| MON | 001         | 1 | 0              | 0              | 0              | 1              |                                                                                                                                                             |
| TUE | 010         | 0 | 0              | 1              | 0              | 0              |                                                                                                                                                             |
| TUE | 010         | 1 | 0              | 0              | 1              | 0              |                                                                                                                                                             |
| WED | 011         | 0 | 0              | 1              | 0              | 0              |                                                                                                                                                             |
| WED | 011         | 1 | 0              | 0              | 1              | 0              |                                                                                                                                                             |
| THU | 100         | - | 0              | 1              | 0              | 0              |                                                                                                                                                             |
| FRI | 101         | 0 | 1              | 0              | 0              | 0              |                                                                                                                                                             |
| FRI | 101         | 1 | 0              | 1              | 0              | 0              |                                                                                                                                                             |
| SAT | 110         | - | 1              | 0              | 0              | 0              | -                                                                                                                                                           |
| -   | 111         | - | 1              | 0              | 0              | 0              | $c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$ |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | Now, we do <b>c₁:</b>                                        |
|-----|-------------|---|----------------|----------------|----------------|----------------|--------------------------------------------------------------|
| SUN | 000         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> '•d <sub>1</sub> '•d <sub>0</sub> '•L'        |
| SUN | 000         | 1 | 0              | 0              | 0              | 1              |                                                              |
| MON | 001         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> ' • d <sub>1</sub> ' • d <sub>0</sub> • L'    |
| MON | 001         | 1 | 0              | 0              | 0              | 1              |                                                              |
| TUE | 010         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> ' • d <sub>1</sub> • d <sub>0</sub> ' • L'    |
| TUE | 010         | 1 | 0              | 0              | 1              | 0              |                                                              |
| WED | 011         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> ' • d <sub>1</sub> • d <sub>0</sub> • L'      |
| WED | 011         | 1 | 0              | 0              | 1              | 0              |                                                              |
| THU | 100         | - | 0              | 1              | 0              | 0              | ???                                                          |
| FRI | 101         | 0 | 1              | 0              | 0              | 0              |                                                              |
| FRI | 101         | 1 | 0              | 1              | 0              | 0              | d <sub>2</sub> • d <sub>1</sub> ' • d <sub>0</sub> • L       |
| SAT | 110         | - | 1              | 0              | 0              | 0              |                                                              |
| -   | 111         | - | 1              | 0              | 0              | 0              | $c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1'$ |
|     |             |   |                |                |                |                | $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1$   |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | Now, we do <b>c₁</b> :                                                                                                                                      |
|-----|-------------|---|----------------|----------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUN | 000         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> ' • d <sub>1</sub> ' • d <sub>0</sub> ' • L'                                                                                                 |
| SUN | 000         | 1 | 0              | 0              | 0              | 1              |                                                                                                                                                             |
| MON | 001         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> ' • d <sub>1</sub> ' • d <sub>0</sub> • L'                                                                                                   |
| MON | 001         | 1 | 0              | 0              | 0              | 1              |                                                                                                                                                             |
| TUE | 010         | 0 | 0              | 1              | 0              | 0              | $d_2' \cdot d_1 \cdot d_0' \cdot L'$                                                                                                                        |
| TUE | 010         | 1 | 0              | 0              | 1              | 0              |                                                                                                                                                             |
| WED | 011         | 0 | 0              | 1              | 0              | 0              | $d_2' \cdot d_1 \cdot d_0 \cdot L'$                                                                                                                         |
| WED | 011         | 1 | 0              | 0              | 1              | 0              | No matter what L is                                                                                                                                         |
| THU | 100         | - | 0              | 1              | 0              | 0              | d <sub>2</sub> •d <sub>1</sub> '•d <sub>0</sub> ' we always say it's 1<br>So, we don't need L                                                               |
| FRI | 101         | 0 | 1              | 0              | 0              | 0              | in the expression.                                                                                                                                          |
| FRI | 101         | 1 | 0              | 1              | 0              | 0              | $d_2 \cdot d_1' \cdot d_0 \cdot L$                                                                                                                          |
| SAT | 110         | - | 1              | 0              | 0              | 0              |                                                                                                                                                             |
| -   | 111         | - | 1              | 0              | 0              | 0              | $c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$ |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | Now, we do <b>c₁</b> :                                                         |
|-----|-------------|---|----------------|----------------|----------------|----------------|--------------------------------------------------------------------------------|
| SUN | 000         | 0 | 0              | 1              | 0              | 0              | d <sub>2</sub> '•d <sub>1</sub> '•d <sub>0</sub> '•L'                          |
| SUN | 000         | 1 | 0              | 0              | 0              | 1              |                                                                                |
| MON | 001         | 0 | 0              | 1              | 0              | 0              | $d_2' \cdot d_1' \cdot d_0 \cdot L'$                                           |
| MON | 001         | 1 | 0              | 0              | 0              | 1              |                                                                                |
| TUE | 010         | 0 | 0              | 1              | 0              | 0              | $d_2' \cdot d_1 \cdot d_0' \cdot L'$                                           |
| TUE | 010         | 1 | 0              | 0              | 1              | 0              |                                                                                |
| WED | 011         | 0 | 0              | 1              | 0              | 0              | $d_2' \cdot d_1 \cdot d_0 \cdot L'$                                            |
| WED | 011         | 1 | 0              | 0              | 1              | 0              | No matter what L i                                                             |
| THU | 100         | - | 0              | 1              | 0              | 0              | d₂ • d₁' • d₀' we always say it's :  So, we don't need                         |
| FRI | 101         | 0 | 1              | 0              | 0              | 0              | in the expression                                                              |
| FRI | 101         | 1 | 0              | 1              | 0              | 0              | $d_2 \cdot d_1' \cdot d_0 \cdot L$                                             |
| SAT | 110         | - | 1              | 0              | 0              | 0              | $c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ |
| -   | 111         | - | 1              | 0              | 0              | 0              | $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$   |

|     | $d_2d_1d_0$ | L | c <sub>0</sub> | <b>c</b> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | $\mathbf{c_1} = \mathbf{d_2'} \cdot \mathbf{d_1'} \cdot \mathbf{d_0'} \cdot \mathbf{L'} + \mathbf{d_2'} \cdot \mathbf{d_1'} \cdot \mathbf{d_0}$ |
|-----|-------------|---|----------------|-----------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| SUN | 000         | 0 | 0              | 1                     | 0              | 0              | $d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot d_2 \cdot d_1' \cdot d_0' + d_2 \cdot d_1' \cdot d_0 \cdot L$              |
| SUN | 000         | 1 | 0              | 0                     | 0              | 1              | $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1$                                                                                      |
| MON | 001         | 0 | 0              | 1                     | 0              | 0              | $c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1$                                                                                     |
| MON | 001         | 1 | 0              | 0                     | 0              | 1              |                                                                                                                                                 |
| TUE | 010         | 0 | 0              | 1                     | 0              | 0              |                                                                                                                                                 |
| TUE | 010         | 1 | 0              | 0                     | 1              | 0              |                                                                                                                                                 |
| WED | 011         | 0 | 0              | 1                     | 0              | 0              |                                                                                                                                                 |
| WED | 011         | 1 | 0              | 0                     | 1              | 0              |                                                                                                                                                 |
| THU | 100         | - | 0              | 1                     | 0              | 0              | Finally, we do <b>c</b> <sub>0</sub> :                                                                                                          |
| FRI | 101         | 0 | 1              | 0                     | 0              | 0              | d <sub>2</sub> • d <sub>1</sub> ' • d <sub>0</sub> • L'                                                                                         |
| FRI | 101         | 1 | 0              | 1                     | 0              | 0              |                                                                                                                                                 |
| SAT | 110         | - | 1              | 0                     | 0              | 0              | d <sub>2</sub> • d <sub>1</sub> • d <sub>0</sub> '                                                                                              |
| -   | 111         | - | 1              | 0                     | 0              | 0              | $d_2 \cdot d_1 \cdot d_0$                                                                                                                       |

$$\begin{aligned} c_0 &= d_2 \cdot d_1' \cdot d_0 \cdot L' + d_2 \cdot d_1 \cdot d_0' + d_2 \cdot d_1 \cdot d_0 \\ c_1 &= d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' + d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' + d_2 \cdot d_1' \cdot d_0 \cdot L \\ c_2 &= d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L \\ c_3 &= d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L \end{aligned}$$

### Here's c<sub>3</sub> as a circuit:



### **Boolean Algebra**

- Usual notation used in circuit design
- Boolean algebra
  - a set of elements B containing {0, 1}
  - binary operations { + , }
  - and a unary operation { ' }
  - such that the following axioms hold:



```
For any a, b, c in B:
1. closure:
                                       a + b is in B
                                                                                     a • b is in B
2. commutativity:
                                      a + b = b + a
                                                                                     a \cdot b = b \cdot a
                                 a + (b + c) = (a + b) + c a \cdot (b \cdot c) = (a \cdot b) \cdot c

a + (b \cdot c) = (a + b) \cdot (a + c) a \cdot (b + c) = (a \cdot b) + (a \cdot c)
3. associativity:
                                                                                     a \cdot (b + c) = (a \cdot b) + (a \cdot c)
4. distributivity:
                                      a + 0 = a
                                                                                     a \cdot 1 = a
5. identity:
6. complementarity:
                                      a + a' = 1
                                                                                     a \cdot a' = 0
                                      a + 1 = 1
                                                                                     a \cdot 0 = 0
7. null:
8. idempotency:
                                      a + a = a
                                                                                     a \cdot a = a
9. involution:
                                      (a')' = a
```

### Simplification using Boolean Algebra

### uniting:

10. 
$$a \cdot b + a \cdot b' = a$$

### absorption:

11. 
$$a + a \cdot b = a$$

**12**. 
$$(a + b') \cdot b = a \cdot b$$

### factoring:

13. 
$$(a + b) \cdot (a' + c) =$$
  
 $a \cdot c + a' \cdot b$ 

#### consensus:

14. 
$$(a \cdot b) + (b \cdot c) + (a' \cdot c) = a \cdot b + a' \cdot c$$

### de Morgan's:

**15**. 
$$(a + b + ...)' = a' \cdot b' \cdot ...$$

**10D.** 
$$(a + b) \cdot (a + b') = a$$

**11D**. 
$$a \cdot (a + b) = a$$

**12D.** 
$$(a \cdot b') + b = a + b$$

13D. 
$$a \cdot b + a' \cdot c =$$
  
(a + c) \cdot (a' + b)

**14D.** 
$$(a + b) \cdot (b + c) \cdot (a' + c) = (a + b) \cdot (a' + c)$$

**15D.** 
$$(a \cdot b \cdot ...)' = a' + b' + ...$$

## Simplifying using Boolean Algebra

```
c3 = d2' \cdot d1' \cdot d0' \cdot L + d2' \cdot d1' \cdot d0 \cdot L
    = d2' \cdot d1' \cdot (d0' + d0) \cdot L
    = d2' • d1' • 1 • L
    = d2' • d1' • L
                                                       AND
               d1
                           NOT
```