

Computer Base Engineering Mathematics Lab

Summer Semester 2018

Project 1: Vibration of a string

Project coordinators

Universität Duisburg-Essen

Faculty for Engineering Sciences

Prof. Dr. Johannes Gottschling

Dr. Robert Martin

Saad Alvi, M.Sc.

Presented by

Group Number 11

Md Abu Saym 3022015

Sadek Dewan 3056001

Mohammad khademul Amin 3022194

Azahar Hossain 3056371

Abdullah Al Mamun 3037571

Project 1: Vibration of a string

The vibration of a string can be described by the "one-dimensional time dependent wave equation initial value problem"

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \\ u(0,t) = u(L,t) = 0 \quad \forall \ t \ge 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x) \quad \forall \ x \in [0;L] \end{cases}$$

where u(x; t) is the displacement of the string at the point x and the time t, the real number c > 0 is a material constant, L is the length of the vibrating string, f is the initial displacement and g is the initial velocity of the string; note that all constants and variables are written without dimension.

Figure 1: Displacement of a string with length $L = 2\pi$ at the times t = 0 and t = 0.01.

Task 1:

Using the methods introduced in Section 1.1 of the script ("Motivation"), find (an approximation of) the displacement function u of a vibrating string for

- the grid given in Fig. 2,
- c = 1
- L=1
- the initial velocity zero,
- the initial displacement f with

$$f(x) = x \cdot (x-2) \cdot (x-1)$$

Figure 2: Grid for task 1.

Plot the (three-dimensional) graph of $u(\cdot,\cdot)$ and the (two-dimensional) graphs of $u(\cdot,0)$, $u(\cdot,\pi)$ and $u(\cdot,2\pi)$.

Task 2:

Write a matlab function which takes the input arguments

- f (the initial displacement function),
- h (the grid size in x-direction),
- k (the grid size in t-direction),
- T (the endpoint of the time interval)

and returns the (approximate) solution to problem (1)

for c = 1, L = 1, zero initial velocity and the given initial displacement f on the grid given by h, k and T, see Fig. 3.

Figure 3: Grid for task 2.

Your project solution must be a file called waveSolution.m of the following form:

- 1 function [u] = waveSolution(f, h, k, T)
- 2 % your code
- 3 % ...
- 4 end

The return value u must be in the form of a matrix; more specifically: $\mathbf{u}(\mathbf{m},\mathbf{n})$ must be the value $\mathbf{u}((\mathbf{m-1}) \cdot \mathbf{h}; (\mathbf{n-1}) \cdot \mathbf{k}/\mathbf{T})$ of the solution u at the $(\mathbf{m}; \mathbf{n})$ -grid point, see Fig. 3.

Theory and mathematical formulae

The main task of this project is to find the displacement of a sting which is fixed in both ends at various points in given grid. We do it using matrices extensively.

Au=B is the main formula used, where A is the coefficient matrix, B is the boundary matrix and u is the resulting temperature matrix.

$$h = \Delta x$$

$$k = \Delta t$$

The differential Vibration equation provided is

$$\frac{\partial^2 u}{\partial^2 t}(x,t) - c^2 \frac{\partial^2 u}{\partial^2 x}(x,t) = 0 \qquad ----- (1)$$

$$u(0,t) = u(L,t) = 0 \ \forall t \ge 0,$$

$$u(x; 0) = f(x), u_t(x,0) = g(x) \forall x \in [0;L]$$

We know from Taylor series expansion we get,

$$\frac{\partial^2 u}{\partial^2 t}(x,t) = \frac{u(x,y+k) - 2u(x,y) + u(x,y-k)}{\partial^2 t} \quad ---- \quad (2)$$

And,

$$\frac{\partial^2 u}{\partial^2 x}(x,t) = \frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{\partial^2 x} \quad ---- \quad (3)$$

So, from, (1) we get,

$$\frac{\partial^2 u}{\partial^2 t}(x,t) - c^2 \frac{\partial^2 u}{\partial^2 x}(x,t) = 0$$

$$\Rightarrow \frac{\partial^2 u}{\partial^2 t}(x,t) = c^2 \frac{\partial^2 u}{\partial^2 x}(x,t) \qquad ----- (4)$$

And from (2) & (3) we get,

$$\frac{u(x,y+k) - 2u(x,y) + u(x,y-k)}{\partial^{2}t} = C^{2} \frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{\partial^{2}x}$$

$$\Rightarrow u(x,y+k) - 2u(x,y) + u(x,y-k) = (c^{2} \frac{\partial^{2}t}{\partial^{2}x}) * (u(x+h,y) - 2u(x,y) + u(x-h,y))$$

$$= 2u(x,y) + u(x-h,y) \qquad ---- \qquad (5)$$

Being,
$$s = (c^2 \frac{\partial^2 t}{\partial^2 x})$$

and $t+k(\Delta t) = j+1$

$$x+h(\Delta x)=i+1$$

so, our equation now looks like this,

$$u_i^{j+1} = 2(1-s)u_{i,j} + s.u_{i+1,j} + s.u_{i-1,j} - 4_{x,j-1}$$

We can convert this equation in matrix form, Ax = b

Here,

$$\circ$$
 Main Diagonal = $2(1-s)$

Boundary conditions:

- O Along the diagonal below main diagonal = s - Except = $0 n^{th}$, $n+(n-1)^{th}$, $n+2(n-1)^{th}$ = 0
- O Along the diagonal above main diagonal = s
 - Except = $0 (n-1)^{th}$, $2(n-1)^{th}$, $3(n-1)^{th}$ = s
- O S is present above and below the main diagonal at (n-1)

Tast 1:

With the given at x and y direction width

Here, x direction, y direction and

Being,
$$s = (c^2 \frac{\partial^2 t}{\partial^2 x})$$

$$A = \begin{bmatrix} 2(1\text{-s}) & s & 0 & s \\ s & 2(1\text{-s}) & s & 0 \\ 0 & s & 2(1\text{-s}) & 0 \\ s & 0 & 0 & 2(1\text{-s}) \end{bmatrix}$$

$$\mathbf{B} = \begin{cases} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ f(\mathbf{x}_3) \\ f(\mathbf{x}_4) \end{cases} = \begin{cases} 0.2880 \\ 0.3840 \\ 0.3360 \\ 0.1920 \end{cases}$$

$$X = A \setminus B$$
 = $\begin{pmatrix} 0.0089 \\ 0.0124 \\ 0.0115 \\ 0.0063 \end{pmatrix}$

Figure 2: Grid for task 1.

When, ET = 0.2

Now we combine all the values of the grid with the boundary values and get the result as:

V =

0	0.0089	0.0124	0.0115	0.0063	0
0	0.0179	0.0247	0.0226	0.0125	0
0	0.0359	0.0491	0.0443	0.0248	0
0	0.0719	0.0974	0.0870	0.0490	0
0	0.1439	0.1934	0.1710	0.0970	0
0	0.2880	0.3840	0.3360	0.1920	0

figure: graph of u(.;.)

When $ET = \pi$ in 2d graph

The result is:

V =

0	-0.0208	-0.0208	-0.0129	-0.0129	0
0	0.0368	0.0368	0.0228	0.0228	0
0	-0.0651	-0.0652	-0.0403	-0.0402	0
0	0.1150	0.1156	0.0719	0.0708	0
0	-0.1991	-0.2070	-0.1341	-0.1216	0
0	0.2880	0.3840	0.3360	0.1920	0

figure: graph of u (.; π)

When $ET = 2\pi$ in in 2d graph

The result is:


```
0 -0.0000 -0.0000 -0.0000 -0.0000
                                         0
  0.0000
           0.0000
                    0.0000
                             0.0000
                                        0
  -0.0002
           -0.0002
                    -0.0001
                             -0.0001
                                         0
  0.0021
           0.0021
                    0.0013
                             0.0013
                                        0
  -0.0265
           -0.0283
                    -0.0189
                             -0.0161
0
   0.2880
           0.3840
                    0.3360
                             0.1920
                                        0
```


figure: graph of u (.; 2π)

MATLAB codes for Task 1 is below:

```
% creating variables for grid X and Y directions
initial time=0;
pie=3.1415;
pie 2=2*pie;
ET=0.2; % end time in time(Y-axis)
Nx=5; %grid division in X-direction
Ny=5; % grid division in Y-direction
h=1/Nx; % width in X-direction
k=ET/Ny; % width in Y-direction
L=1; % Bars length
C=1; % String constant
% Initializing grid entries
grid y= [k:k:ET];
grid x=[h:h:(1-h)]; % grid of valid entries for u(x,0)
% defining coefficient
s=((C*k)/h)^2;
% initialization, declaration and defination of A Matrix
A=zeros(4,4);
I=2*(1-s)*eye(4,4); %
alphas diag=[s s 0];
corner diag=[s];
A=I+diag(alphas diag, 1)+diag(alphas diag, -
1) + diag(corner diag, 3) + diag(corner diag, -3);
%initialisation, declaration and defination of B Vector
displacement_i=(grid_x.*(grid_x-2).*(grid_x-1))'; % valid
displacement grid entries or "B" vector
initial grid=displacement i;
grid points n=zeros(4,5);
%ii=repmat(1,4,4);
 for i=1:Ny
     B=displacement i;
     XX=A\setminus B;
     displacement i=XX;
 grid points n(:,i)=XX;
grid points i=horzcat(initial grid,grid points n);
```

Task 2:

function [u] = waveSolution(f ,h,k,ET)

here, f = displacement

h = width in x direction

k = width in y direction

ET = end time

So, u(m,n) = waveSolution(f,h,k,ET)

Where,
$$m=(m-1)*h$$

$$n = (n-1)*k/T$$

for example,

when,
$$h = 0.25$$
 $dx = 4$

$$k = 0.5$$
 $dy = 4$

$$ET = 2$$

$$f = \exp(x)$$

given, L = 1, c = 1

so, for
$$\frac{x}{1-e^x}$$
 we got,

waveSolution(@ (x) x ./ (exp (x) -1), 0.25, 2, 2)

-0.0200 -0.0256 -0.0183

0.8802 0.7707 0.6714

Figure 3: Grid for task 2.

figure: waveSolution(@ (x) x ./ (exp (x) -1), 0.25, 2, 2)

```
Again,
```

```
when, h = 0.2 dx = 5

k = 0.5 dy = 4

ET = 2

f = \sin(x)

given, L = 1, c = 1

so, for \sin(x) we got,

waveSolution(@sin, 0.2, 4, 2)

grid_points =

-0.0031 -0.0032 -0.0023 -0.0024

0.1987 0.3894 0.5646 0.7174
```


figure: waveSolution(@sin, 0.2, 4, 2)

Matlab codes for waveSolution(f,h,k,ET) is below:

```
% This Matlab code will create a function which has as parameters a
% displacement function of spring, number of step with given lenght and
% number of steps with given END TIME
function [U] = waveSolution(f,h,k,ET);
L=1; % Bars length
C=1; % String constant
dx=(L/h)-1; % number of steps in X-direction with valid entries M-1
(Note: grid entries are without boundries)
dy=round(ET/k); % number of steps in y-direction till given END
POINT
% Initializing valid grid entries
grid x=[h:h:(1-h)]'; % grid of valid entries for u(x,0)
% defining coefficient
s=((C*k)/h)^2;
                 % calculating the constant from differential
equation
% initialization, declaration and defination of A Matrix
A=zeros(dx,dx);
                               % memory allocation with M-1 and N-1
entries
I=2*(1-s)*eye(dx,dx);
                               % initializing and defining main
diagonal with 2*(1-s) (M * times)
diag 1=repmat([s; s; 0],dx,1); % initializing and defining diagonal
with repeting s s 0 (M * times)
                               % initializing and defining diagonal
diag 2 = repmat(s, dx, 1);
with all s (M * times)
% definition of A matrix depending on the M entries
if (dx==1)
A=I;
```

```
else if (dx==2)
last diag= diag 1(1:dx-1,1);
A=I+diag(last diag,+1)+diag(last diag,-1);
    else
            last diag= diag 1(1:dx-1,1);
            last diag all s=diag 2(1:dx-3,1);
            A=I+diag(last diag,+1)+diag(last diag,-
1) + diag(last diag all s,+3) + diag(last diag all s,-3);
    end
end
% %initialisation, declaration and defination of B Vector
displacement i=f(grid x);
                            % valid displacement grid entries or "B"
vector
initial grid=displacement i;
grid points n=zeros(dx,dy); % memory allocation for grid entries
without boundires for loop
 for i=1:dy
     B=displacement i;
     XX=A\setminus B;
     displacement i=XX;
 grid points n(:,i)=XX;
                              % definition and declaration of grid
entries without boundries
 end
grid points i=horzcat(initial grid,grid points n); % complete grid with
initial displacement entries
boundries=zeros(dy+1,1);
                              % N-1 times zeros for start and end point
fixed boundries
grid points=flipud(grid points i');
V=horzcat(boundries, grid points, boundries); % complete grid of [U]=((M-
1) *h, (N-1) *k)
mesh(V);
zlabel('displacement');
display(grid points);
 end
```

