

UNIVERSITY OF HELSINKI

Department of Computer Science

Mohsin Khan¹
Philip Ginzboorg^{2,3}
Valtteri Niemi¹

¹University of Helsinki ²Huawei Technologies, ³Aalto University

IDENTITY PRIVACY IN 5G, DEFEATING DOWNGRADE ATTACK

IMSI

- Stands for International Mobile Subscriber Identity. Also called SUPI in 5G
- Globally Unique

IMSI 15 decimal digits

MOBILE NETWORK

The SN and the HN are in a roaming contract. In case the UE is not roaming, SN and HN are the same network.

IMSI CATCHERS

An IMSI catcher impersonates a legitimate SN.

No protection against IMSI catchers in GSM, 3G and LTE. There will be a protection in 5G.

DEFEATING IMSI CATCHERS IN 5G (STANDARDIZED)

3GPP solves the problem by encrypting the MSIN using the public key of the HN.

DOWNGRADE ATTACK

5G and LTE interwork – a 5G phone can connect to an LTE SN. So, even though 5G has a protection against IMSI catchers, LTE based IMSI catcher can mount a downgrade attack.

DEFEATING DOWNGRADE ATTACK

Hybrid solution using public-key encryption and pseudonyms.

When the SN is from an LTE Network:

When the SN is from a 5G Network:

Other Advantages:

Apart from defeating the downgrade attack there are other advantages of using the hybrid solution

- If synchronization of pseudonyms is lost, resynchronization can be done just by connecting through a 5G SN.
- Works for both 5G AKA and EAP-AKA'.

Challenges:

- A 5G UE may connect with multiple SNs. Thus the UE will have multiple active connection using different pseudonyms simultaneously. These may create complications when a UE or the HN may forget an old pseudonym?
- SN has to rely on the HN for lawful interception identifying a user using SUPI (IMSI).