

概述

VS-PW01是一款专为移动电源设计的单芯片解决方案IC,高度集成了充电管理模块、LED电量显示模块、同步升压放电管理模块的移动电源管理芯片,极大的简化了外围电路与元器件数量。针对大容量单芯或多芯并联锂电池(锂离子或锂聚合物)的移动电源应用,提供最简单易用的低成本解决方案。

VS-PW01采用的封装形式为S0P16。

应用

手机、平板电脑、GPS、电动工具等移动设备 备用电源

特点

- ◆ 线性充电,同步升压放电,内置充电、放电 功率MOS
- ◆ 高达1A的可编程充电电流
- ◆ 同步升压最大输出电流1A
- ◆ 独创升压输出热调节技术
- ◆ 涓流/恒流/恒压充电,并具有在无过热危险 的情况下实现充电速率最大化的热调节功能
- ◆ C/10 充电终止,自动再充电
- ◆ 预设4.2V充电电压,精度达±1%
- ◆ 放电模块过流、短路、过压、过温保护
- ◆ 4颗LED电量显示、充放电指示及异常指示
- ◆ KEY键单击显示电量,双击开关手电筒
- ◆ 在非充电模式下,升压模块常开,即插即用

PCB LAYOUT注意事项(重点):

- 1. R1和C1必须尽量靠近LX引脚,LX引脚必须先经过R1和C1后再到电感。
- 2. Cbat尽量靠近BAT脚, Cin尽量靠近VDD脚,并且走线时都经过电容再到IC管脚。
- 3. 电感L与LX脚之间存在高频振荡,必须相互靠近并且尽量减小布线面积;其它敏感的器件必须远离电感以减小耦合效应。
- 4. 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小阻抗。
- 5. 芯片AGND和PGND需要在芯片下面先汇合,再直接连到系统地,连接的铜箔需要短、粗且 尽量保持完整,不被其他走线所截断。AGND不需要单独走线到系统地。
- 6. 应用中所使用的电容必须选用X7R材质。

管脚功能

光 口						
	端口		功能描述			
名称	管脚	1/0	- 24 HEATHAL			
LX	1, 2	0	BOOST 开关输出			
PGND	3	-	功率地			
BAT	4	ı	电池正极			
VDD	5	I	适配器正电压输入端			
ISET	6	I	充电电流设定端			
AGND	7	_	模拟地			
ILED	8	Ι	LED 指示电流设定端			
LED1	9	0	LED指示输出1			
LED2	10	0	LED指示输出2			
LED3	11	0	LED指示输出3			
LED4	12	0	LED指示输出4			
KEY	13	I	多功能按键输入端			
LIGHT	14	0	LED手电筒输出端			
OUT	15, 16	0	升压输出端			

功能框图

电性参数

极限参数(注1)

· · · · · · · · · · · · · · · · · · ·			
参数	最小值	最大值	单位
引脚电压	-0.3	+6	V
储存环境温度	-65	150	$^{\circ}$ C
工作环境温度	-40	85	$^{\circ}$ C
工作结温范围	-40	150	$^{\circ}$ C
HBM (人体放电模型)	2K	-	V
MM (机器放电模型)	200	-	V

注1: 最大极限值是指超出该工作范围芯片可能会损坏。

推荐工作条件

移动电源单芯片解决方案 VS-PW01

少/ <i>\$/0N</i>							
符号	参数	测试条件	最小值	典型值	最大值	单位	
充电部分(无特殊说明, VDD=5V,Ta=25℃)					
VDD	充电输入电压		4. 4	5	5. 5	V	
$\mathrm{I}_{ extsf{VDD}}$	输入电源电流	待机模式 (充电终止)	_	600	-	μА	
$V_{\scriptsize{\text{FLOAT}}}$	稳定输出 (浮充) 电压	0°C≤TA≤85°C	4. 158	4. 2	4. 242	V	
$\mathrm{I}_{\mathtt{BAT}}$	恒流充电电流	$V_{BAT}=3.7V$, $R_{ISET}=1K\Omega$	0.9	1	1.1	A	
${ m I}_{ exttt{TRIKL}}$	涓流充电电流	$V_{BAT} < V_{TRIKL}$, $R_{ISET} = 1 \text{K } \Omega$	90	100	110	mA	
$V_{\mathtt{TRIKL}}$	涓流充电阈值电压	VBAT上升	2.8	2. 9	3. 0	V	
V_{TRHYS}	涓流充电迟滞电压		_	100	_	mV	
$V_{\scriptscriptstyle UV}$	VDD欠压闭锁阈值电压	VDD从低至高	2.9	3. 0	3. 1	V	
V_{UVHYS}	VDD欠压闭锁迟滞		0. 15	0.2	0. 25	V	
17	17DD 17DAT27日秋河往中区	VDD从低到高	60	100	140	***	
V_{ASD}	VDD-VBAT闭锁阈值电压	VDD从高到低	5	30	50	mV	
$I_{\mathtt{TERM}}$	终止电流门限	R _{ISET} =1K Ω	-	100	-	mA	
$\Delta~V_{\text{RECHRG}}$	再充电电池门限电压	$V_{ ext{FLOAT}} - V_{ ext{RECHRG}}$	100	150	200	mV	
$T_{ t LIM}$	限定温度模式中的结温		-	100	_	$^{\circ}$	
R_{ON}	功率FET导通电阻		-	600	7	mΩ	
$\mathrm{I}_{\mathtt{RC}}$	ISET引脚上拉电流		-	2	-	uA	
V_{RC}	ISET引脚电压	$R_{\text{ISET}}=10\text{K}\ \Omega$	-	1	-	V	
放电部分(无特殊说明, VBAT=3.7V,Ta <mark>=</mark> 2	5℃)				I.	
$ m V_{BAT}$	电池工作电压		2. 9		4. 35	V	
$V_{ ext{OUT}}$	额定输出电压	V _{BAT} =3.7V	4.8	5	5. 2	V	
$I_{ ext{STDB}}$	待机电流		-	120	_	μА	
$V_{\text{UV_BAT}}$	电池欠压闭锁阈值电压	VBAT下降	2.85	2.9	2. 95	V	
$V_{\text{HYS_BAT}}$	电池欠压闭锁迟滞	VBAT上升	0.2	0.3	0. 4	V	
F_{sw}	工作频率	Ta=60°C	_	1	_	MHz	
${ m I}_{ m OUT}$	输出电流	$V_{BAT}=2.9^{4}.2V$	_	1	_	A	
$I_{ ext{\tiny LIM}}$	周期电流限制	VOUT=5V	_	2	_	A	
η	转换效率	V _{BAT} =4. 2V VOUT=5. 0V&IOUT=1A	90	_	-	%	
D_{MAX}	最大占空比		-	85	_	%	
${ m I}_{ ext{END}}$	放电结束电流		-	20	-	mA	
T_{ov}	过温保护		-	150	-	$^{\circ}$	
T_{HYS}	过温保护滞回		-	20	-	$^{\circ}\!\mathbb{C}$	
V_{RIPPLE}	输出纹波电压	VOUT=5. OV&IOUT=1A	-	100	_	mV	
$T_{\mathtt{SHUT}}$	输出无负载关闭检测时间		-	16	-	S	
V_{SHORT}	短路保护电压		-	4. 3	_	V	
LED 及 KEY 领	建部分(无特殊说明, VBAT=3.7	7V, Ta=25℃)	•			•	
$V_{ ext{FLH}}$	FLH驱动压降	$I_{\text{LED}} = 100 \text{mA}$	_	0.9	-	V	
$V_{\scriptscriptstyle RL}$	RL引脚电压	充电模式或放电模式	0.45	0.5	0. 55	V	
$F_{\text{LEDx_C}}$	LEDx充电/低电量闪烁频率		_	1	_	Hz	
T_{DKEY}	检测双击KEY键时间		_	1	_	S	
I_{KEY}	KEY引脚上拉电流		_	45	_	μА	

功能说明: 充电模式

VS-PW01内部集成一颗完整的充电模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。充电电流由ISET引脚外部设定,最大持续充电电流为1A,不需要另加阻流二极管和电流检测电阻。芯片内部的功率管理电路在芯片的结温超过100℃时自动降低充电电流,直到150℃以上将电流减小至0。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当VDD的输入电压超过3.0V并且大于电池电压时,充电模块开始对电池充电。如果电池电压低于2.9V,充电模块用小电流对电池进行预充电。当电池电压超过2.9V时,充电器采用恒流模式对电池充电。当电池电压接近4.2V时,充电电流逐渐减小,系统进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束,完整的充电过程为涓流-恒流-恒压。

充电结束阈值是恒流充电电流的10%。当电池电压降到再充电阈值以下时,自动开始新的充电周期。

充电电流是采用一个连接在ISET管脚与GND之间的电阻器来设定的,设定电阻器和充电电流则采用下列公式来计算:

R_{ISET}=1000/I_{CH} (误差±10%)

升压输出模式

VS-PW01提供一路同步升压输出,集成功率MOS,可提供5V/1A输出,效率高达90%。VS-PW01采用1MHz的开关频率,可有效减小外部元件尺寸。在非充电模式下,芯片默认工作在升压输出状态,空载电流为120uA。

升压输出为芯片内部设定的5V,在重载的状况下,VS-PW01工作在固定频率1MHz,并且逐周期限流,当负载的电流逐渐减小时,VS-PW01会进入间歇式输出模式,以保证输出电压调整能力。当负载电流低于20mA(典型值)超过16S后,输出电压仍然保持5V, LED1~LED4灭,提醒用户外接设备充电已结束。

当电池电压低于2.9V以后,升压模块会被锁定在关闭状态,防止虚电反弹后升压模块重新 开启,这时只有插入适配器或单击KEY键可以解除锁定,同时要求电池电压大于3.2V以上升压

移动电源单芯片解决方案 VS-PW01

模块才会重新启动。

VS-PW01提供输出过流、过压、短路、过热以及电池欠压等多种异常保护,可以有效保护电池及系统安全。在发生输出过流、短路及过温情况时,芯片关闭升压模块,在200mS后重新启动,若异常未解除则芯片不断关闭重启(称之为打嗝模式)。VS-PW01通过控制续流PMOS可以有效阻止输出电流的倒灌。

KEY键功能

VS-PW01提供多功能KEY键,在非充电模式下单击KEY键,LED1~LED4显示电池电量,16s后关闭。单击KEY键可以解除升压模块UVL0锁定。在1s内双击KEY键可以开关手电筒。

系统管理

VS-PW01充电优先,如果负载与充电电源都有接入的情况,系统将单纯工作在充电模式, 无升压输出。只有将充电电源移除,系统才进入升压输出模式。

LED指示和手电筒

LED1~LED4为PMOS漏极输出,分别外接LED灯来指示充放电状态与电量;LIGHT引脚为NMOS漏极输出,外接LED5为LED手电筒:

- 1) 充电时LED1~LED4一直工作在指示充电状态,达到电量的LED常亮,当前最高电量的LED以1Hz频率闪烁;
- 2) 电池充满后LED1~LED4常亮;
- 3) 拔掉充电电源后LED1~LED4灭;
- 4) 待机状态下,若按下按键,LED1~LED4显示电池电量,16S后关闭;
- 5) 正常放电时, LED1~LED4根据电池电压指示当前电量,达到电量的LED常亮,若电池电压低于3.2V且大于2.9V时,LED1以IHz闪烁,LED2~LED4灭,提醒用户电量过低; 当电池电压低于2.9V时,升压模块关闭,进入低压保护模式,LED1~LED4灭。电池电压回至3.2V以上才可以再次放电:
- 6) 放电结束,即放电电流小于20mA(典型值)16秒后,LED1~LED4灭,输出保持5V;
- 7) 在充电过程中,如果发生异常,无法充电时,LED1~LED4灭。在放电过程中,如果发生 短路保护、过流保护、过温保护、LED1~LED4灭,芯片进入打嗝输出模式。
- 8) 在1s内双击KEY键可以开关手电筒,LIGHT用来驱动手电筒,最大驱动电流为100mA。

电池电压 (V)		充电			放电/单击电量显示			
电他电压 (1)	LED1	LED2	LED3	LED4	LED1	LED2	LED3	LED4
VBAT≥4. 2	亮	亮	亮	亮	亮	亮	亮	亮
$3.9 \leq VBAT \leq 4.2$	亮	亮	亮	1Hz	亮	亮	亮	亮
3. 7≤VBAT<3. 9	亮	亮	1Hz	灭	亮	亮	亮	灭
3. 5≤VBAT<3. 7	亮	1Hz	灭	灭	亮	亮	灭	灭
$3.2 \leq VBAT \leq 3.5$	1Hz	灭	灭	灭	亮	灭	灭	灭
$2.9 \leq VBAT < 3.2$	1Hz	灭	灭	灭	1Hz	灭	灭	灭
VBAT<2.9	1Hz	灭	灭	灭	灭	灭	灭	灭

芯片SOP16封装示意图

Cumb a l	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0.061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.007	0. 010	
D	9. 800	10. 200	0. 386	0. 402	
Ę	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050	(BSC)	
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)