

Homework 6 Solutions

Weihao Li Fudan University

Problem 1

The normal equation for that least square problem is

$$(A^*A + \lambda I)x = A^*b.$$

To solve this, we can

- 1. compute $A^*A + \lambda I$, which is a bidiagonal matrix,
- 2. use n Givens rotations to reduce $A^*A + \lambda I$ to a upper triangular matrix R,
- 3. Apply same Givens rotations to $A^{st}b$ to get c, and solve upper triangular linear equation Rx=c.

Problem 2

By Gauss elimination (may with column pivoting), reduce $\left[C|d\right]$ into row echelon form

$$\begin{bmatrix} R & C' & | & d' \end{bmatrix},$$

in which R is a invertible upper triangular matrix.

Partition x into $[x_1|x_2]^T$ corresponding to $[R \quad C']$, then we have

$$x_1 = R^{-1}(d - C'x_2).$$

Partition A into $[A_1|A_2]$ and substitute equation above into ||Ax-b||, we have a new least square problem with lower size

$$min||(A_2-A_1R^{-1}C')x_2-(b-A_1R^{-1}d)||_2.$$

Problem 3

Suppose A has size m imes n, C has size p imes n (p < m). Define the objective function:

$$L(x,\lambda)=rac{1}{2}||Ax-b||_2^2+\lambda^*(d-Cx), \quad \lambda\in\mathbb{C}^p,$$

and set

$$L_x(x,\lambda) = A^*(Ax - b) - C^*\lambda = 0.$$

Then we can construct the augmented system

$$egin{bmatrix} I & A & O \ A^* & O & C^* \ O & C & O \end{bmatrix} egin{bmatrix} r \ x \ \lambda \end{bmatrix} = egin{bmatrix} b \ O \ d \end{bmatrix}.$$

Problem 4

see powiter.py.

Problem 5

see powiter.py

