

# UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE TECNOLOGIA ENGENHARIA DA COMPUTAÇÃO

#### Identificação e Controle de um Levitador à Ar

Mateus Martínez de Lucena

MANAUS-AM

Mateus Martínez de Lucena

Identificação e Controle de um Levitador à Ar

Monografia apresentada à Coordenação do Curso de Engenharia da Computação da Universidade Federal do Amazonas, como

parte dos requisitos necessários à obtenção

do título de Engenheiro de Computação.

Orientador: Iury Bessa

MANAUS-AM

# Agradecimentos

AGRADECIMENTOS AQUI.

EPÍGRAFE AQUI

(AUTOR AQUI, TÍTULO DA OBRA.)

Resumo

No estudo do controle de sistemas nos deparamos com variados sistemas clássicos

extensivamente estudados e exauridos. Neste trabalho nos propomos a construir um

sistema de túnel de vento capaz de levitar através do empuxo do fluxo de ar gerado, o

estudo das propriedades do sistema, a obtenção de um modelo matemático através de

testes e o controle do sistema. A fim de demonstrar a usabilidade deste sistema como

material didático para a matéria de Laboratório Sistemas de Controle.

Palavras-chave: Levitador, Túnel de Vento, Controle.

### Abstract

ABSTRACT AQUI

**Keywords:** KEYWORDS HERE.

# Lista de Figuras

### Lista de Tabelas

# Lista de Abreviaturas e Siglas

 ${\bf SIGLA}~$ NOME EXPANDIDO – do inglês  ${\bf \it SI}~{\bf \it Gl}~{\bf \it A}$ 

### Lista de Símbolos

#### Símbolos Matemáticos

 $\mathbb{R}$  conjunto dos números reais

### Sumário

| 1                                                       | Introdução                 |        | 1                                   |   |
|---------------------------------------------------------|----------------------------|--------|-------------------------------------|---|
| 2 Fundamentação Teórica                                 |                            |        | 2                                   |   |
| 2.1 Identificação de Sistemas e Estimação de Parâmetros |                            | 2      |                                     |   |
|                                                         |                            | 2.1.1  | Visão Geral                         | 2 |
|                                                         |                            | 2.1.2  | Identificação por Mínimos Quadrados | 3 |
| 3                                                       | Título do Capítulo Aqui    |        |                                     | 4 |
| 4                                                       | Títu                       | ılo do | Capítulo Aqui                       | 5 |
| 5                                                       | Títu                       | ılo do | Capítulo Aqui                       | 6 |
| 6                                                       | Con                        | clusão |                                     | 7 |
| $\mathbf{R}$                                            | Referências Bibliográficas |        |                                     | 8 |

# Introdução

INTRODUÇÃO AQUI

### Fundamentação Teórica

Neste capítulo serão apresentados conceitos necessários para o entendimento do trabalho.

#### 2.1 Identificação de Sistemas e Estimação de Parâmetros

A identificação do sistema é o primeiro passo para o seu controle. Nesta seção serão tratados conceitos de identificação de sistemas e estimação de parâmetros fundamentais para o entendimento do trabalho.

#### 2.1.1 Visão Geral

A identificação de sistemas e estimação de parâmetros se tratam de métodos e práticas que permitem construir modelos dinâmicos de um sistema real à partir de experimentos. Muitas vezes um sistema construído que precisa ser controlado não pode ser modelado devido à limitações matemáticas ou imprecisão na interação dos componentes. Nestes casos se utiliza da identificação de sistemas para obter um modelo matemático. A identificação de sistemas se baseia em testar a resposta do sistema à certas entradas e a partir das respostas aproximar o modelo matemático de forma satisfatória. Para identificar sistemas temos métodos determinísticos, que desprezam o ruído presente nos dados, e métodos não paramétricos, que não resultam em um modelo matemático mas em uma representação gráfica da dinâmica do sistema da qual um modelo pode ser extraído.

#### 2.1.2 Identificação por Mínimos Quadrados

O método de mínimos quadrados é um dos mais conhecidos e utilizados em várias áreas da ciência e tecnologia. Ele utiliza sistemas de equações com matrizes geradas a partir de testes com os sistemas reais no seguinte formato:

$$\hat{\Theta} = [X^T X]^{-1} X^T y \tag{2.1}$$

A equação 2.1 é o objetivo da identificação por quadrados mínimos, mas para entender ela precisamos primeiro entender de onde ela vem.

Um sistema geralmente é descrito por uma função entrada - saída, em um sistema onde não sabemos a função podemos executar uma série de testes para obtermos um conjunto de valores de entrada e saída da seguinte forma:

$$y_1 = f(x_1)$$

$$y_2 = f(x_2)$$

$$y_3 = f(x_3)$$

$$\dots$$

$$y_N = f(x_N)$$
(2.2)

Podemos então tratar esse conjunto como vetores da seguinte forma:

$$y = f(x, \Theta) \tag{2.3}$$

Onde  $\Theta$  é um vetor de n parâmetros.

# Título do Capítulo Aqui

MODELAGEM AQUI

# Título do Capítulo Aqui

METODOLOGIA AQUI

# Título do Capítulo Aqui

RESULTADOS AQUI

# Conclusão

CONCLUSÃO AQUI

# Referências Bibliográficas