ÖVEGES JÓZSEF Fizikaverseny

I. forduló 2014. február 24. VIII. osztály

JAVÍTÓKULCS

I. feladat

1.) $Q/5h = mc\Delta\theta/5h$ a mértékegységek helyes használatáért ha a számítások is a b) választ igazolják 0,5 kg •4200J/ kg fok•50fok: 18000 $s = 2,5.42/18$ •J/ $s = 5,8$ J/ s	1 p 1 p 1 p
2.) a víz lehűlésékor felszabaduló hő meghatározásához szükséges összefüggés, adatok helyettesítése: $m_v c_v \Delta \theta$ a jég olvadásához szükséges hő meghatározásához szükséges összefüggés, adatok helyettesítése: $m_x \lambda_{\rm jég}$ a hőegyensúly összefüggésének használatáért, helyes mértékegységek és számítás $m_v c_v \Delta \theta = m_x \lambda_{\rm jég}$ $m_x = (15 \ kg \cdot 40 \ fok \cdot 4185 \ J/kg \cdot fok)/333000 \ J/kg = 7,54 \ kg$	1 p 1 p 1 p
3.) a) $p = \rho g h = \rho_{\text{Hg}} g h_1 + \rho_{\text{viz}} g h_2$	1 p
$m_1 = ho_{ m Hg} m V_{ m Hg} = ho_{ m Hg}.\pi m R^2 h_1 \qquad m_2 = ho_{ m viz} m V_{ m viz} = ho_{ m viz} \pi m R^2 h_2 \ h_1 = m_1/ ho_{ m Hg} \pi m R^2 \qquad h_2 = m_2/ ho_{ m viz}.\pi m R^2$	1 p
$p = (m_1 + m_2)g/\pi R^2$	1 p
b) $F = m_2 g$ A higanyoszlop a felette levő vízoszlop súlyának számértékével egyenlő nagyságú visszaható erővel hat a vízoszlopra.	1 p
II. feladat	
1.) az OB egyensúlyának feltétele: $m_1gOA = F_BOB$	1 p
$2F_B = G_2 - \rho_0 V_2 g = m_2 g - \rho_0 (m_2/\rho) g$ (1 p a mozgó csiga erőviszonyainak helyes használata, 1 p a kiszorított folyadék súlyának helyes kifejezése, 1 p a helyes összefüggés az F_B , G_2 , és az arkhimédészi felhajtó erő között)	3 p
$m_1 g OB/3 = F_B OB; F_B = m_1 g/3$	
$m_1 = (3/2)m_2(1 - \rho_0/\rho);$ $m_1/m_2 = (3/2)(1 - \rho_0/\rho)$	2 p
$2.) m_1 gx = F_{B2}OB$	1 p
$F_{B2} = m_2 g/2$ $m_1 x = (m_2/2) OB$	1 p
$\mathbf{x} = (m_2/2m_1)\mathbf{OB}$	0
$x = OB/3(1 - \rho_0/\rho)$	2 p

III. feladat

Ha V_1 a kocka vízbe merülő részének a térfogata, V_2 a kocka olajba merülő részének a térfogata, b a kocka olajba merülő oldalrészének hossza, a a kocka vízbe merülő oldalrészének hossza (adott $a + b = 10 \ cm$).

1.) A kocka súlya egyensúlyban a felhajtó erővel:

$$G = F_{Av} + F_{Ao}$$

$$mg = \rho_v V_l g + \rho_{olaj} V_2 g$$

$$m = 0,720 kg$$
2 p
1 p

2.)
$$p_{\text{als}\acute{o}} = \rho_{\text{v}} g a + \rho_{\text{olaj}} g h_{I}$$

 $p_{\text{fels}\~{o}} = \rho_{\text{olaj}} (h_{I} - b) g$
 $p_{\text{als}\acute{o}} - p_{\text{fels}\~{o}} = \Delta p, \ \Delta p = 720 \ Pa$
1 p
1 p

3.)
$$G_{fa} + G_{Pb} = F_{Afa} + F_{APb}$$

 $mg + V_{Pb}\rho_{Pb}g = \rho_{v}l^{3}g + \rho_{v}V_{Pb}g$
 $V_{Pb}(\rho_{Pb} - \rho_{v}) = \rho_{v}l^{3} - m$
 $V_{Pb} = (\rho_{v}l^{3} - m)/(\rho_{Pb} - \rho_{v}), V_{Pb} = 26,92 \text{ cm}^{3}$
1 p