# Radiation and Shielding

By Ian Wald

August 2, 2024

#### Introduction to Radiation

Radiation is the emission of energy as electromagnetic waves or as moving subatomic particles. It can be classified into four major types:

- Alpha particles
- Beta particles
- Neutrons
- Electromagnetic waves (gamma rays and X-rays)

These types of radiation vary in mass, energy, and their ability to penetrate materials.

### Alpha Particles

- Consist of two protons and two neutrons
- ► Heaviest type of radiation particle
- ▶ Emitted by radioactive materials like uranium and thorium
- Example: Radon gas in homes

### Beta Particles

- Electrons not attached to atoms
- Small mass and negative charge
- ▶ Emitted by materials like tritium and carbon-14
- Used in applications like carbon dating and medical imaging

#### Neutrons

- Uncharged particles found in atomic nuclei
- ► Commonly released during nuclear fission
- ► Essential for sustaining nuclear reactions in reactors

### Electromagnetic Radiation

- Includes gamma rays and X-rays
- ► No mass or charge
- ► High energy, capable of deep penetration
- Widely used in medical treatments and imaging

## Effects of Shielding

#### ► Alpha particles:

- Stopped by a sheet of paper or skin
- However dangerous if inhaled or ingested

#### Beta particles:

- Require small amounts of shielding (plastic and glass)
- Can penetrate skin but not deeply into tissues

#### Gamma rays and X-rays:

- ► Require dense materials like lead or concrete
- Can penetrate deep into tissues and organs

#### Neutrons:

- Best shielded by materials with light atoms (like water) yet difficult.
- ► Can penetrate deeply due to being uncharged particles; it does interact with electrons and can penetrate deep into materials.

# A Visualized Representation



## Radiation Detectors







#### Conclusion

- Radiation comes in various forms with distinct properties and uses.
- Understanding the types and effects of radiation helps in safely harnessing its benefits while minimizing risks.
- ▶ Effective shielding is crucial in protecting against harmful radiation exposure.