Gruppe C14 Julián Häck, Martin Koytek, Lars Wenning, Erik Zimmermann Vortragender: Lars Wenning

14. März 2016

Gedämpfter LC Schwingkreis Messung mit Cassy, Teilversuch 4.4.2

Versuchsbeschreibung

- Aufzeichnung von mindestens 1 Kriechfall $(D = \frac{\delta}{\omega} > 1)$ und 1 Aperiodischen Grenzfall(D = 1).
- Messung der Frequenz f und des Dämpfungskoeffizienten δ nur diesmal mit Sensor-Cassy statt Oszilloskop. Hierzu Messung von Schwingfällen (D < 1).
- Bestimmung der frequenz über Fast-Fourier-Transformation(FFT).
- Bestimmung der Induktivität der Spule aus:

$$\delta = \underbrace{\frac{1}{2L}}_{Steigung} \cdot R \tag{1}$$

Versuchsaufbau

- (a) Versuchsaufbau aus dem Skript
- (b) unser Versuchsaufbau mit Widerstand und ohne Strommessung

Abbildung: Versuchsaufbau

Durchführung

- 34 Einzelmessungen.
- Aufzeichnung des Kriechfalls: Drehwiderstand durch $1k\Omega$ ersetzt.
- Aufzeichnung des Aperiodischen Grenzfalls: zunächst abgeschätzt:

$$R_{ap} = 2 \cdot \sqrt{\frac{L}{C}} - R_i \approx 110.5\Omega \tag{2}$$

dann Drehwiderstand in diesen Bereich gestellt und gewünschte Charakteristik aufgezeichnet.

- für Messung der Frequenz und Dämpfungskoeffizienten Schwingungsmessung über denselben Widerstand. $R \ll R_{ap}$
- Offsetmessung ⇒ verlängerte Messzeit.
- für Messung der Induktivität unterschiedliche Widerstände über den Drehwiderstand.

Auswertung

Rohdaten

dieselbe Spule, derselbe Kondensator und dieselbe Eingangsspannung wie in Teilversuch 4.4.1

Abbildung: Schwingfall bei $R \approx 0.02\Omega$ mit Bestimmung des Offsets

Abbildung: Schwingfall bei 2.4Ω

Abbildung: Kriechfall bei R=1k Ω

Auswertung

Transformation der Rohdaten

Abbildung: Bestimmung der Frequenz bei $R = 2.4\Omega$ durch FFT

$$f = 261.06$$
 Hz, $\sigma = 32, 3$ Hz.

$$\sigma = 32, 3Hz$$

(3)

Auswertung

Transformation der Rohdaten

Bestimmung der Frequenz und des Dämpfungskoeffizienten durch Ablesen.

Abbildung: Messung der Minima und Maxima

Auswertung Transformation der Rohdaten

Ergebnisse:

$R \ in \ \Omega$	$ar{f}$ in Hz	$\sigma_{ar{f}}$ in Hz	f_{Theo}	$\bar{\delta}$ in $\frac{1}{s}$	$\sigma_{\bar{\delta}}$ in $\frac{1}{s}$	δ_{Theo}
0.02	258.896	0.290	264.422	150.997	0.527	132.222
2.4	258.398	0.334	263.951	175.023	0.654	165.278
5.5	257.046	0.331	263.178	225.027	1.050	208.333
11.8	254.030	0.395	261.046	285.786	1.552	295.833

Auswertung Transformation der Rohdaten

Abbildung: Bestimmung der Induktivität mittels Linearer Regression

Abbildung: Residuenplot für Induktivität

Auswertung

Transformation der Rohdaten

Bestimmung der Induktivität mittels Linearer Regression: Ergebnisse:

$$\delta(R) = A * R + B$$

$$A = 12.087 \frac{1}{H} \qquad B = 35.297 \frac{1}{s}$$

$$\frac{\chi^2}{f} = 0.738$$

$$\Rightarrow L = \frac{1}{2A} = 0.0414 \pm 0.0033H, \qquad L_{Hersteller} = 0.036H$$

Auswertung <u>Transfo</u>rmation der Rohdaten

Abbildung: Aperiodischer Grenzfall

$$R_{ap} = 100.1\Omega < R_{Theo} \approx 110.5\Omega.$$

Vielen Dank für ihre Aufmerksamkeit