

Learning goals

- What natural language processing (NLP) is?
- What a language model is?
- Transformers: Encoders and Decoders
- Automatic generation of texts and code
- Instructed large language models
- Practice with chatGPT over Data Science problems

Natural Language Processing Tasks

Segmentation	Named Entity Recognition (NER)	Textual Entailment	Coreference Resolution
Part Of Speech PoS	Text Classification Sentiment Analysis	Question Answering (QA)	Summarization
Parsing	Machine Translation	Natural Language Understanding (NLU)	Discourse Analysis
Speech to text	Word Sense Disambiguation	Natural Language Generation (NLG)	CHATBOTS
SYNTAX	SEMANTIC-RELATED TASKS		DISCOURSE

Language models (GPT-family)

GPT is a Transformer decoder aimed at completing word sequences:

GPT training $\rightarrow p(w_i|w_0, ..., w_{i-1}) \rightarrow$ discrete conditional distribution of tokens

REPEAT

Predict the next token with the learnt model, add it to the current sequence STOP if the sequence has a given length or if the sequence probability drops notably.

How tokens are chosen to generate a highly probable sequence?

- Greedy strategy: get always the most likely next token
- Beam Search: at each step keep the most likely k partial sequences and return the most likely one when the prediction stops
- Softmax temperature: we can add a hyperparameter (τ) to the output discrete distribution to smooth it (creativity/hallucination).

Beam Search

$$score(y_1...y_t) = \sum_{i=1...t} log P(y_i|y_1...y_{i-1}, x)$$

Beam search decoder with k=3 and max steps as 51

Figure from:

https://medium.com/voice-tech-podcast/visualising-beam-search-and-other-decoding-algorithms-for-natural-language-generation-fbba7cba2c5b

Large language models (LLM)

- Enormous pre-trained models with masking task (decoder-only)
 - o GPT-2, GPT-3, GPT-3.5, GPT4 (Open AI)
 - LLAMA 3 (Meta, open source)
 - o Gemini, Gemma (Google)
 - Claude (Antrhopic)
 - Falcon (Open source)

https://lmarena.ai/

https://openlm.ai/chatbot-arena/

- All of them have more than 10⁹ parameters (billions), the size usually is included in the name of the model (e.g. Falcon-7B, Falcon-13B).
- This models capture a lot of semantic and causality patterns of the common sense and specialised domains.
- The main task/purpose of these models is to "complete" an initial text, which is called PROMPT.
- **Instruct models** have been trained to guide the completion according to a series of orders about the length, content, constraints, etc.
- The PROMPT can include a few examples of what we want to get (few shot learning)

Instructed LLMs

- Instructed models are LLMs that have been trained to complete instructions (PROMPT)
- chatGPT, Llama-2 and Bard are instructed models.
- Outputs of these models have been supervised by humans through a mechanism called Reinforcement Learning from Human Feedback (RLHF).
- Instructed LLMs are aimed at reduce hallucinations (false predictions) and maximise the alignment with the ethical and legal principles of humans.
- The main limitation of some LLMs are the prompt and output sizes. (~ 4K-8K tokens)
 - We are forced to retrieve the relevant information to be included in the PROMPT
 - We need to integrate LLMs with other existing tools (LANGUAGE CHAINS and Plugins) to complement each other

Basic principles of prompting (chatGPT)

Context: describe without ambiguities the scenario and intent of the prompt

Input: what is being used as input

Output: which is the desired output format (text, JSON, CSV, etc.)

Few shot: write some few examples of input/ouput

Rephrase: adjust the prompt to be more precise about the intent and the output (errors in the output).

Validate: detect errors, show them to the agent and find alternative outputs.

Identify **parameters** to re-use the prompt at scale!

Ways to use prompting for data science

Prompt beyond QA: explain & problem solving

LET'S PRACTICE PROMPTING FOR DATA SCIENCE!