Esercitazione 11

Filtraggio e campionamento di immagini

1 Giugno 2021

1. Filtering and Denoising

- (a) Leggere l'immagine peppers.png (scaricabile dalla cartella del corso nel portale della didattica).
- (b) Visualizzare l'immagine utilizzando il comando imshow con l'opzione cmap='gray' per visualizzarla in scala di grigi.
- (c) Considerare il seguente filtro bidimensionale

applicare il filtro F_{LO} all'immagine utilizzando la convoluzione bidimensionale (utilizzare il comando convolve2d della libreria scipy.signal). Visualizzare l'immagine ottenuta.

- (d) Creare una matrice N della stessa dimensione dell'immagine peppers.png contente rumore gaussiano con media $\mu=0$ e deviazione standard $\sigma=0.05$ (utilizzare il comando random.normal della libreria numpy). Visualizzare l'immagine rumorosa $I_n={\rm Immagine}+N$.
- (e) Utilizzare il filtro definito al punto (c) per effettuare il denoising dell'immagine I_n . Visualizzare il risultato ottenuto.

2. Filtraggio e Campionamento

(a) Considerare il seguente filtro monodimensionale

$$F_{HI-0} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{bmatrix},$$

applicare il filtro F_{HI-O} all'immagine peppers.png e visualizzare l'immagine ottenuta.

- (b) Applicare il filtro $F_{HI-V}=F_{HI-O}^T$ all'immagine peppers.png e visualizzare l'immagine ottenuta. Qual è la differenza rispetto a quanto ottenuto al punto precedente?
- (c) Calcolare $|\nabla I| = \sqrt{I_x^2 + I_y^2}$ dove I_x e I_y sono rispettivamente l'output del fitro al punto (a) e al punto (b). Visualizzare l'immagine ottenuta.
- (d) Costruire una matrice D_2 che effettui un sottocampionamento di un fattore 2 ed applicarla all'immagine peppers.png e all'immagine filtrata con filtro definito in 1.(c), ovvero calcolare $I_d = D_2 I D_2^T$.
- (e) Si può definire anche un'operazione di sovracampionamento che ad ogni pixel dell'immagine a bassa risoluzione fa corrispondere 4 pixel uguali nell'immagine ad alta risoluzione. Costruire una matrice che effettui l'operazione di sovracampionamento appena descritta ed applicarla a I_d , confrontare l'immagine ottenuta con quella originale.