FREE GROUPS, LENGTHS AND COMPUTER PROOFS

SIDDHARTHA GADGIL

Indian Institute of Science

JOINT WITH

the rest of (spontaneous) polymath 14

THE POLYMATH 14 PARTICIPANTS

- Tobias Fritz, MPI MIS
- Siddhartha Gadgil, IISc, Bangalore
- Apoorva Khare, IISc, Bangalore
- Pace Nielsen, BYU
- Lior Silberman, UBC
- Terence Tao, UCLA

 On Saturday, December 16, 2017, Terrence Tao posted on his blog a question, which Apoorva Khare had asked him.

Is there a homogeneous, (conjugacy invariant) length function on the free group on two generators?

- Six days later, this was answered in a collaboration involving several mathematicians (and a computer).
- This the story of the answer and its discovery.

LENGTH FUNCTIONS

- Fix a group G, i.e. a set with an associative product with inverses.
- ullet A pseudo-length function $l:G o [0,\infty)$ is a function such that:
 - l(e) = 0.
 - $ullet \ l(g^{-1}) = l(g)$, for all $g \in G$.
 - ullet (Triangle inequality) $l(gh) \leq l(g) + l(h)$, for all $g,h \in G$.
- A length function is a pseudo-length function such that l(g)>0 whenever $g\neq e$ (positivity condition).

CONJUGACY-INVARIANCE AND HOMOGENEITY

- ullet A pseudo-length function l is said to be conjugacy invariant if $l(ghg^{-1})=l(h)$ for all $g,h\in G.$
- Conjugacy often corresponds to change of coordinates.
- $ullet \ \ l$ is said to be homogeneous if $l(g^n) = nl(g)$ for all $g \in G.$
- Homogeneity was motivated by norms on vector spaces.

LENGTH FUNCTIONS ON \mathbb{Z}^2

- The group $\mathbb{Z}^2=\{(n,m):n,m\in\mathbb{Z}\}$ with $(n_1,m_1)+(n_2,m_2)=(n_1+n_2,m_1,m_2).$
- Two length functions on \mathbb{Z}^2 are:
 - $l_1((a,b)) = |a| + |b|,$
 - $lacksquare l_2((a,b)) = \sqrt{a^2 + b^2}$
- These are homogeneous (and conjugacy invariant).
- The function $l'((a,b)) = \sqrt{|a|} + \sqrt{|b|}$ is a length function, but not homogeneous.
- The function l''((a,b)) = |a-b| is a homogeneous pseudo-length function which is not positive.

GROUPS WITHOUT HOMOGENEOUS LENGTH FUNCTIONS

- If l is a homogeneous length function on G and $g \in G$ is such that $g^n = e$ then l(g) = 0 as $nl(g) = l(g^n) = 0$.
- Thus, if G has torsion, i.e., there exists $g \neq e \in G$, such that $g^n = e$ for some n > 0 and $g \neq e$, then there is no homogeneous length function on G.
- In particular finite groups have no homogeneous length functions.

FREE GROUP \mathbb{F}_2 on lpha, eta

- Consider words in four letters α , β , $\bar{\alpha}$ and $\bar{\beta}$.
- We multiply words by concatenation, e.g. $\alpha\beta\cdot\bar{\alpha}\beta=\alpha\beta\bar{\alpha}\beta$.
- Two words are regarded as equal if they can be related by cancelling adjacent letters that are inverses, e.g. $\alpha \beta \bar{\beta} \alpha \beta = \alpha \alpha \beta$.
- This gives a group;
 - the identity is the empty word
 - every word has an inverse, e.g., $(\alpha \bar{\beta} \alpha \beta \beta)^{-1} = \bar{\beta} \bar{\beta} \bar{\alpha} \beta \bar{\alpha}$.

WORD LENGTH ON \mathbb{F}_2

- The word length l_0 on \mathbb{F}_2 is the length of the shortest word representing an element.
- Indeed any word is equivalent to a unique reduced word, whose length is the word length.
- The word length is not conjugacy-invariant as $l_0(lphaetalpha^{-1})=3
 eq 1=l_0(eta).$
- The word length is also not homogeneous, e.g., $l_0((\alpha\beta\alpha^{-1})^2)=l_0(\alpha\beta\beta\alpha^{-1})=4\neq 2l_0(\alpha\beta\alpha^{-1}).$

PULLBACK PSEUDO-LENGTH ON \mathbb{F}_2

- We define a homomorphism $ab: \mathbb{F}_2 o \mathbb{Z}^2$.
 - For a word g, let $n_{\alpha}(g)$ and $n_{\beta}(g)$ be the number of α 's and β 's counted with sign.
 - $lacksquare ext{Define}\,ab(g)=(n_lpha(g),n_eta(g)), ext{e.g.}\ ab(lphalphaetaar{eta}lphaar{eta})=(2,-1).$
- ullet We get a pullback pseudo-length l on \mathbb{F}_2 by $l_{ab}(g)=l_1(ab(g))=|n_lpha(g)|+|n_eta(g)|.$
- As l_1 is homogeneous, so is l_{ab} .
- However, this is *not* a length function as $l_{ab}([\alpha,\beta])=0$, where $[g,h]=ghg^{-1}h^{-1}$ (violating positivity).

THE MAIN RESULTS

- Question: Is there a homogeneous length function on the free group on two generators?
- Answer: No; we in fact describe all homogeneous pseudo-lengths.
- Theorem: Any homogeneous pseudo-length function on a group G is the pullback of a pseudo-length on its abelianization G/[G,G].
- Corollary: If G is not abelian (e.g. $G = \mathbb{F}_2$) there is no homogeneous length function on G.
- In fact, every homogeneous pseudo-length is the pullback of a norm on a vector space.

LENGTHS FROM NON-CROSSING MATCHINGS

- ullet Given a word in \mathbb{F}_2 , we consider matchings such that
 - letters are paired with their inverses,
 - there are no crossings
- The energy is the number of unmatched letters.

WATSON-CRICK LENGTH ON \mathbb{F}_2

- For $g \in \mathbb{F}_2$, define the Watson-Crick length $l_{WC}(g)$ to be the minimum number of unmatched letters over all non-crossing matchings.
- l_{WC} is unchanged under cancellation (hence well-defined on \mathbb{F}_2) and conjugacy invariant.
- In fact it is the *maximal* normalized conjugacy-invariant length function on \mathbb{F} .
- ullet However, if g=lpha[lpha,eta], then $l_{WC}(g^2)=4$, but $l_{WC}(g)=3$, violating homogeneity.

THE GREAT BOUND CHASE

- By Tuesday morning, most people were convinced that there are no homogeneous length functions on the free group, and probably $l([\alpha,\beta])=0$ for homogeneous pseudo-lengths.
- There was a steady improvements in the combinatorial/analytic bounds on $l([\alpha, \beta])$.
- These seemed to be stuck above 1 (as observed by Khare) - but eventually broke this barrier (work of Fritz, Khare, Nielsen, Silberman, Tao).
- At this stage, my approach diverged.

COMPUTER ASSISTED PROOFS: BEYOND (SYMBOLIC) COMPUTATION, ENUMERATION?

- We can recursively compute the Watson-Crick length $l_{WC}(g)$ for a word g.
- This gives an upper bound on all conjugacy-invariant normalized lengths.
- This can be combined with using homogenity.
- Using this, I obtained an upper bound of about 0.85 on $l(\alpha,\beta)$.
- This was upgraded to a (computer) checkable proof.
- On Thursday morning, I posted an in principle human readable proof of a bound.

Gross proof time

Back to presentation (HomogeneousLengths.html#gross

Here is a computer generated proof of a bound on the length of the commutator abab for a linear norm on the free group with the lengths of the generators bounded above by 1.

- 1. |a| ≤ 1.0
- 2. $|\overline{bab}| \le 1.0$ using $|\overline{a}| \le 1.0$
- 3. $|\overline{b}| \le 1.0$
- 4. $|a\overline{b}\overline{a}| \le 1.0$ using $|\overline{b}| \le 1.0$
- 5. $|\overline{a}\overline{b}ab\overline{a}\overline{b}| \le 2.0$ using $|\overline{a}\overline{b}a| \le 1.0$ and $|b\overline{a}\overline{b}| \le 1.0$
- 6. $|a| \le 1.0$
- 7. $|ba\overline{b}| \le 1.0$ using $|a| \le 1.0$
- 8. $|b| \le 1.0$
- 9. |aba| ≤ 1.0 using |b| ≤ 1.0
- 10. $|ab\overline{a}\overline{b}ab| \le 2.0$ using $|ab\overline{a}| \le 1.0$ and $|\overline{b}ab| \le 1.0$
- 11. |āabābaba| ≤ 2.0 using |abābab| ≤ 2.0
- 12. $|b\overline{a}\overline{b}aab\overline{a}\overline{b}ab\overline{a}| \le 3.0$ using $|b\overline{a}\overline{b}| \le 1.0$ and $|aab\overline{a}\overline{b}ab\overline{a}| \le 2.0$
- 13. $|\overline{a}\overline{b}ab\overline{a}\overline{b}aab\overline{a}\overline{b}ab\overline{a}|$ ≤ 4.0 using $|\overline{a}\overline{b}a|$ ≤ 1.0 and $|b\overline{a}\overline{b}aab\overline{a}\overline{b}ab\overline{a}|$ ≤ 3.0
- 14. $|b\overline{a}bab\overline{a}baab\overline{a}bab\overline{a}b|$ ≤ 4.0 using $|\overline{a}bab\overline{a}baab\overline{a}bab\overline{a}|$ ≤ 4.0
- 15. $|b\overline{a}\overline{b}ab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}ab\overline{a}|$ ≤ 6.0 using $|b\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}ab\overline{a}\overline{b}|$ ≤ 4.0 and $|aab\overline{a}\overline{b}aab\overline{a}|$ ≤ 2.0
- 16. $|\overline{b}ab\overline{a}\overline{b}a| \le 2.0$ using $|\overline{b}ab| \le 1.0$ and $|\overline{a}\overline{b}a| \le 1.0$
- 17. $|a\overline{b}ab\overline{a}\overline{b}a\overline{a}| \le 2.0$ using $|\overline{b}ab\overline{a}\overline{b}a| \le 2.0$
- 18. $|\overline{a}\overline{b}ab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}| \le 8.0$ using $|\overline{a}\overline{b}aab\overline{a}\overline{b}aa| \le 2.0$ and $|b\overline{a}\overline{b}ab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}\overline{b}aab\overline{a}$

- 21. $|\overline{a}\overline{b}ab\overline{a}\overline{b}aab\overline{a}aab\overline{a$
- 22. $|\overline{bab}ab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}aab\overline{ab}abab| \le 12.0$ using

- The computer-generated proof was studied by Pace Nielsen, who extracted the internal repetition trick.
- This was extended by Nielsen and Fritz and generalized by Tao; from this Fritz obtained the key lemma:
- Let $f(m,k) = l(x^m[x,y]^k)$. Then $f(m,k) \leq rac{f(m-1,k)+f(m+1,k-1)}{2}$.
- A probabilistic argument of Tao finished the proof.

- Lemma: If $x=s(wy)s^{-1}=t(zw^{-1})t^{-1}$, we have $l(x)\leq rac{l(y)+l(z)}{2}.$
- ullet Proof: $l(x^nx^n)=l(s(wy)^ns^{-1}t(zw^{-1})^nt^{-1}) \le n(l(y)+l(z))+2(l(s)+l(t))$

• Use $l(x) = \frac{l(x^n x^n)}{2n}$ and take limits.

- Lemma: $f(m,k) \leq rac{f(m-1,k)+f(m+1,k-1)}{2}$, where $f(m,k) = l(x^m[x,y]^k)$.
- In other words, for Y a Rademacher random variable, i.e., Y is 1 or -1 each with probability 1/2, $f(m,k) \leq E(f((m,k-1/2)+Y(1,-1/2))).$
- Hence for Y_i i.i.d. Rademacher random variables, $f(0,n) \leq E(f((Y_1 + Y_2 + \cdots + Y_{2n})(1,-1/2)))$
- By triangle inequality, $f(a,b) \leq A \|(a,b)\|$.
- $Y_1+Y_2+\ldots Y_{2n}$ has mean (0,0) and variance 2n, so $E(\|Y_1+Y_2+\ldots Y_{2n}\|)\leq B\sqrt{n}.$
- We deduce that $l([x,y]^n) = f(0,n) \leq C \sqrt{n}$, hence l([x,y]) = 0.

COMPUTER BOUNDS AND PROOFS

- For $g=ah, a\in \{\alpha, \beta, \bar{\alpha}, \bar{\beta}\}$, the length $l_{WC}(g)$ is the minimum of:
 - $1 + l_{WC}(h)$: corresponding to a unmatched.
 - $-\min\{l_{WC}(x) + l_{WC}(y) : h = x\bar{a}y\}.$
- We can describe a minimal non-crossing matching by a similar recursive definition.
- A similar recursion gives a proof of a bound on l(g) for g a homogeneous, conjugacy-invariant length with $l(\alpha) = l(\beta) = 1$.
- We can also use homogeneity for selected elements and powers to bound the length function $l. \,$

CONCLUSIONS

- If we view applications of the axioms as moves, the computer proof helped in identifying composite moves that could be applied recursively.
- The principal difficulty in finding computer proofs often lies in choosing the useful complexity increasing moves (here homogeneity).
- In this case, these were chosen mainly on mathematical considerations.
- However, a general heuristic we see is to seek useful families of complexity-increasing moves.

CONCLUSIONS

- The unusual feature of the use of computers here was that a computer generated but human readable proof was read, understood, generalized and abstracted by mathematicians to obtain the key lemma in an interesting mathematical result.
- The use of computers was based on the idea of proofs as mathematical objects which can be computed, following foundations based on Homotopy Type Theory.