## DM1 : Électricité

## Exercice 1: POTENTIOMÈTRE

On considère le circuit ci-dessous, appelé "potentiomètre", alimenté par un générateur idéal de tension continue, de force électromotrice e. Entre les points A et B est branché une résistance R possédant un curseur C, réalisant un contact mobile; K représente un interrupteur et r la résistance d'un autre résistor.

Le contact en C définit une résistance R' pour le tronçon CB de la branche AB.



- 1. Exprimer la tension  $U_{CB} = V_C V_B$  aux bornes de R' lorsque l'interrupteur K est ouvert?
- 2. Entre quels valeurs peut-on faire varier  $U_{CB}$  lorsqu'on déplace le curseur du potentiomètre?
- 3. Que devient la tension  $U_{CB}$  lorsqu'on ferme l'interrupteur K?
- 4. Calculer la puissance électrique  $P_u$  absorbée par la résistance r.
- 5. Calculer la puissance totale  $P_t$  fournie par le générateur.
- 6. Le rendement  $\gamma$  du montage potentiométrique est défini par le rapport entre la puissance consommée par r et la puissance totale fournie par le générateur.

$$\gamma = \frac{P_u}{P_t}.\tag{1}$$

On note  $R' = \alpha R$  ( $\alpha$  varie entre 0 et 1) et  $x = \frac{r}{R}$ . Quelles sont les unités de  $\alpha$  et x? Exprimer  $\gamma$  en fonction de x et  $\alpha$ 

- 7. Le point C étant fixé (donc les résistances R et R' sont fixes), on fait varier la résistance r. En étudiant la fonction  $\gamma(x)$  montrer que le rendement passe par un maximum.
- 8. Montrer que la valeur  $r_0$  de r pour laquelle ce rendement maximum est atteint est donnée par  $r_0 = R'\sqrt{1 \frac{R'}{R}}$ .
- 9. A.N. :  $R = 1000 \Omega$ ,  $\alpha = 0.5$ , calculer  $r_0$  et le rendement du montage pour la valeur  $r_0$ .