

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 Paper WFM01/01

Question Number	Scheme	Marks
1.(a)	f(0.2) = and $f(0.6) =$	M1
	f(0.2) = -0.5973 and $f(0.6) = 0.2707Continuous function with change of sign so root (in given interval)$	A1 (2)
(b)	f(0.4) = -0.1788	B1
	f(0.5) =	M1
	$f(0.5) = 0.04114 \implies 0.4 \le \alpha \le 0.5$	A1 (3)
		[5]
	Notes	
	Must see correct values for the accuracy marks. But allow signs only for	r attempts at
(-)	values for the method marks.	
(a) M1	Attempts both values, accept $f(0.2)=$ and $f(0.6)=$ with any values. (NB $f(0.2)=-0.2069$, $f(0.6)=1.379$ are the values with calculator in degree of the values.	grees mode.)
A1	Both values correct (rounded or truncated to 1d.p.) and a correct conclusion and sign change). Allusion to continuity must be mentioned somewhere in	(continuous
(b)	Allow other ways to show sign change e.g. <0, >0 etc.	
B1	Correct value of $f(0.4)$; may be rounded or truncated to 1 dp	
M1	Attempt value of $f(0.5)$ or attempt value of $f(0.3)$ if relevant for their signature.	gn of f(0.4).
A1	Correct value of $f(0.5)$ which may be rounded to 2 dp and correct interval.	Allow as open
	or closed interval. Accept any valid notation for the interval. Accept e.g. 0.4	4 < x < 0.5

Question Number	Scheme	Marks
2 (a)	$\frac{3}{8} - \frac{\sqrt{71}}{8}i$	B1 (1)
(b)	$\left(x - \frac{3}{8} - \frac{\sqrt{71}}{8}i\right)\left(x - \frac{3}{8} + \frac{\sqrt{71}}{8}i\right) ((x - 4) = 0)$	
	$\begin{pmatrix} x^2 - \frac{3}{4}x + \frac{5}{4} \end{pmatrix} ((x-4) = 0)$ $x^3 - \frac{19}{4}x^2 + \frac{17}{4}x - 5 (=0)$	M1A1 dM1
	$4x^3 - 19x^2 + 17x - 20 \ (=0)$ $p = 17, q = -20$	A1 (4) [5]
(a) B1 (b)	Correct answer only	
M1 A1 dM1 A1	Attempt the multiplication of the 2 brackets with the complex terms. Allow the brackets. Allow "invisible" brackets. Correct quadratic obtained - may have multiplied by the 4 (or other constant this is fine. (Need not be fully simplified but must have real terms) Attempt to multiply their quadratic by $(x-4)$ or may divide their quadratic or other full method leading to at least one of p or q . Correct values. Values of p and q need not be shown explicitly but may been	at factor) and
	cubic, provided the cubic starts $4x^3-19x^2$ (isw after a correct cubic) Note if a candidate uses a hybrid method, mark under main scheme un scores more marks.	lless an Alt
Alt 1 (b)	$-\frac{q}{4} = 4 \times \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) \times \left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) = \dots \to q = \dots \qquad \mathbf{or}$ $\frac{p}{4} = 4\left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) + 4\left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) + \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right)\left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) \to p = \dots$	M1
	$\Rightarrow q = -16 \times \left(\frac{9}{64} + \frac{71}{64}\right) = -20 \text{or} p = 17$	A1
	E.g. $f(4) = 0 \Rightarrow 4(4)^3 - 19(4)^2 + 4p - 20 = 0 \Rightarrow p = \dots$ or $\frac{p}{4} = 4\left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) + 4\left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) + \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right)\left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) \to p = \dots$	dM1
	p = 17, q = -20	A1 (4)

Question Number	Scheme	Marks
M1	A correct attempt to use product of roots is $-\frac{q}{4}$ to find a value for q or pair sum is $\frac{p}{4}$ to find a value of p .	
A1 dM1 A1	Correct value for p or q Correct full method to find both p and q . Correct values for both	
Alt 2	Attempts at using the factor theorem are possible but unlikely to succeed. Score as follows: M1: Uses the factor theorem to generate two equations in the two unknown need to use a complex root to achieve this and equate real and imaginary part A1: Correct equations. dM1: Solves their two equations to find values for <i>p</i> and <i>q</i> . A1: Correct values Send to review if unsure.	,
Alt 3 (b)	$ \frac{4x^{2} - 3x + p - 12}{x - 4 \sqrt{4x^{3} - 19x^{2} + px + q}} $ $ 4x^{3} - 16x^{2} $ $ -3x^{2} + px + q $ $ -3x^{2} + 12x $ $ (p - 12)x + q $ $ (p - 12)x - 4(p - 12) $ $ \Rightarrow q + 4(p - 12) = 0 \& \frac{p - 12}{4} = \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right)\left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) = \frac{5}{4} $	M1 A1
	4 (8 8) (8 8) 4 $P = 17, q = -20$	A1 (4)
(b) M1 A1 dM1 A1	Divides $x - 4$ into the cubic to achieve a 3TQ quotient and a remainder Correct quotient and remainder Correct full method to find p or q Correct values	

Question Number	Scheme	Marks
3(a)	k(k+5)-6=0	M1
	$k(k+5)-6=0$ $k^2 + 5k - 6 = 0$	
	$k^{2} + 5k - 6 = 0$ $((k-1)(k+6) = 0 \Rightarrow) \qquad k = 1, -6$ $1 \qquad (k \qquad 2)$	A1 (2)
(b)	$\frac{1}{"k^2+5k-6"} \binom{k}{3} \frac{2}{k+5}$	M1A1 (2)
		[4]
(a) M1 A1	Attempts determinant and sets equal to zero (or equivalent method) to obtain unsimplified quadratic equation Correct values for k (may solve the quadratic by any valid means)	in an
(b) M1 A1	Forms the matrix of signed minors (must have at least three correct element multiplied by an attempt at the determinant Fully correct inverse	ts) divided or

Question Number	Scheme	Marks
4	5 7	
(a)	$\alpha + \beta = -\frac{5}{2} \qquad \alpha \beta = \frac{7}{2}$	B1
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \left(-\frac{5}{2}\right)^{3} - 3\left(\frac{7}{2}\right)\left(-\frac{5}{2}\right)$	M1
	$=\frac{85}{8}$	A1 (3)
(b)	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \dots$	M1
	$= \left(\frac{85}{8}\right) \times \left(\frac{2}{7}\right) = \frac{85}{28}$	A1
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = \frac{7}{2}$	B1ft
	$x^2 - \frac{85}{28}x + \frac{7}{2} (=0)$	M1
	$28x^2 - 85x + 98 = 0$	A1 (5) [8]
	Note : if a candidate solves the equation and uses the roots to answer the qu	estion, then
(a)	send to review.	
B1	Both correct. (Seen anywhere in the working)	
M1	Uses their sum and product of roots in a correct expression for $\alpha^3 + \beta^3$.	
A1	Correct value. Must be exact. Accept 10.625	
(b)		
M1	$\alpha^3 + \beta^3$ $\alpha\beta$ $\frac{\alpha^3 + \beta^3}{\beta^3} = \dots$	
A1 B1ft M1	$ \alpha^3 + \beta^3 \qquad \alpha\beta \qquad \frac{\alpha^3 + \beta^3}{\alpha\beta} = \dots $ substitutes their values for and into $\alpha\beta$ (allow slips in substitution). Correct sum as a single fraction (may be seen or implied in their equation) Correct product or follow through their product Use x^2 – sum of roots × x + product of roots with their values for sum and product. "= 0"	
A1	may be missing. A correct final equation as shown or any integer multiple of this. "= 0" mu	st be included.

Question Number	Scheme	Marks
5(a)	$\sum_{r=1}^{n} (r+1)(r+5) = \sum_{r=1}^{n} (r^2 + 6r + 5)$	B1
	$= \sum_{r=1}^{n} r^2 + 6 \sum_{r=1}^{n} r + 5n$	
	$= \frac{n}{6}(n+1)(2n+1) + 6\frac{n}{2}(n+1) + 5n$	M1A1
	$= \frac{n}{6} \left(2n^2 + 3n + 1 + 18n + 18 + 30 \right)$	dM1
	$= \frac{n}{6} (2n^2 + 21n + 49) = \frac{n}{6} (n+7)(2n+7) $ *	A1 * (5)
(b)	$\sum_{r=n+1}^{2n} = \sum_{r=1}^{2n} -\sum_{r=1}^{n} = \frac{2n}{6} (2n+7)(4n+7) - \frac{n}{6} (n+7)(2n+7)$	M1
	$= \frac{n}{6} (2n+7) \{8n+14-(n+7)\}$	
	$=\frac{7n}{6}(2n+7)(n+1)$	A1 (2) [7]
(a) B1 M1	Brackets multiplied out correctly. Summation signs not needed. Use at least two correct formulae from $\sum_{i=1}^{n} r_i$, $\sum_{i=1}^{n} r_i^2$ and $\sum_{i=1}^{n} 1 = n$.	
A1	Fully correct expression.	
dM1	Attempt to remove factor $\frac{n}{6}$ from an expression with common factor n pres	sent. (if "5 <i>n</i> " is
	just 5 then this mark will not be scored). Must be seen before the given ans No need to simplify the remaining quadratic factor.	wer is quoted.
A1*	Obtain the correct 3 term quadratic and factorise. This is a "show that" quest TQ must be seen. No errors seen.	stion, so the 3
(b)		
M1	Use $\sum_{r=n+1}^{2n} = \sum_{r=1}^{2n} -\sum_{r=1}^{n}$	
A1	Simplify to the correct answer.	

Question Number	Scheme	Mark	KS
6(a)	$\lambda = 4$	B1	(1)
(b)	$\arctan \frac{3}{"4"}$ or $\arctan \frac{-3}{"4"}$	M1	
	(Second quadrant so arg $z = 2.498$) = 2.5 (rad)	A1	(2)
(c)(i)	$\frac{z+3i}{2-4i} = \frac{-4+6i}{2-4i} \times \frac{2+4i}{2+4i} \text{or } \frac{z+3i}{2-4i} = a+ib \Rightarrow -4+6i = (a+ib)(2-4i)$	M1	
	$= \frac{-8 + 12i - 16i + 24i^{2}}{4 + 16} = -\frac{8}{5} - \frac{1}{5}i \text{Accept e.g. } \frac{-32 - 4i}{20}$	dM1A1	
	Or $2a + 4b = -4, 2b - 4a = 6 \Rightarrow a =, b =$		
(ii)	$z^2 = (-4+3i)^2 = 16-24i+9i^2 = 16-24i-9$	M1	
	=7-24i	A1ft	(5)
(d)	Im ↑	D1	
	A or z	B1 B1ft	
		B1ft	
	<i>C</i> ▲ Re		
	$B \text{ or } z^*$		
	<i>B</i> of 2		(3)
	$D \text{ or } z^2$		(-)
			[11]
(a) B1	Correct answer. No working needed.		
(b)	Correct answer. No working needed.		
M1	For arctan $\left(\pm \frac{3}{4}\right)$ with their "4". Can be awarded from $\tan \theta = \pm \frac{3}{4} \Rightarrow \theta$	9 = or b	y
	implication if correct value for either arctan or correct final answer (rounde		
	rounded, may be degrees) is seen.	d of not	
A1	Cao 2.5		
(c)(i)			
M1	Multiplies numerator and denominator by complex conjugate of denominat		
	denominator of 4+16 or 20 is seen instead of product. May still have z at th allow with $\lambda + 3i$ as numerator.	is stage, o	r even
	Alternatively, sets equal to $a + ib$ and cross multiplies.		
dM1	Using their λ or 4 substitutes correctly for z, fully expands the numerator	and uses	
	$i^2 = -1$		
	Alt, uses $i^2 = -1$, equates real and imaginary terms and solves their equation		
A1	Correct answer only, as shown or single fraction accepting equivalent fraction exact decimals $(-1.6 - 0.2i)$.	ions or wi	th
(ii) M1	Squaring an expression of form $k + 3i$ (with a real value for k) to get 3 term	ns (may be	2
()	implied) and uses $i^2 = -1$	()	
A 1 £4	Correct answer, follow through their $\lambda > 0$ (ie for " $\lambda^2 - 9$ "–" 6λ "i must be	e negative	i
A1ft	term)	S	
(d)	NB: Penalise once only (in the first mark due) for mislabelling or failing to		
	long as they look to be placed correctly. Award if lines/arrows not included		
B1	labelled by letter, name or their Cartesian coordinates (which may be given Plots z in second quadrant and z * as mirror image in the Real axis. Both mu		
B1ft	Plot and label C for their solution to (c)(ii) It must be the correct side of B (

answers) and a correct relative scale (so noticeably closer to O than their B if correct
values). Plot and label their D (- 24 need not be to scale, but should be further from O than their B).

Question Number	Scheme	Marks
7(a)	$\begin{vmatrix} 4 & -5 \\ -3 & 2 \end{vmatrix} = 8 - 15 = -7 \Rightarrow \text{Area } T' = "\pm 7" \times 23 = \dots$	M1
	Area T' = 161	A1 (2)
(b)	$ \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 3p+2 \\ 2p-1 \end{pmatrix} = \begin{pmatrix} 17 \\ -18 \end{pmatrix} \text{ or } \begin{pmatrix} 3p+2 \\ 2p-1 \end{pmatrix} = \frac{1}{8-15} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 17 \\ -18 \end{pmatrix} $	
	$4(3p+2)-5(2p-1)=17 \text{ or } -3(3p+2)+2(2p-1)=-18 \text{ or}$ $3p+2=-\frac{1}{7}(34-90) \text{ or } 2p-1=-\frac{1}{7}(51-72)$	M1
	(e.g. $2p+13=17 \Rightarrow \dots$) p=2	A1 (2)
(c)	Rotation; through 90° clockwise (or 270° anticlockwise) about origin	B1;B1 (2)
(d)	$\mathbf{CA} = \mathbf{B}$ $\mathbf{A}^{-1} = -\frac{1}{7} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \text{ or } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 4a - 3b & -5a + 2b \\ 4c - 3d & -5c + 2d \end{pmatrix}$	B1
	$C = -\frac{1}{7} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} = \dots \text{ or } \begin{cases} 4a - 3b = 0 & -5a + 2b = 1 \\ 4c - 3d = -1 & -5c + 2d = 0 \end{cases} \Rightarrow \dots$ $C = -\frac{1}{7} \begin{pmatrix} 3 & 4 \\ -2 & -5 \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{3}{7} & -\frac{4}{7} \\ \frac{2}{7} & \frac{5}{7} \end{pmatrix} \text{ oe}$	M1 A1 (3) [9]
(a)		[2]
M1	Attempts to find the determinant of M and use as a scale factor. Accept if a calculation is made and accept if negative is used for this mark. Dividing by determinant is M0.	-
A1	Correct answer only. No working needed (correct answer implies the method	od).
(b) M1	Form a matrix equation using either A or an attempt at A^{-1} , obtain a linear solve for p .	equation and
A1	Correct value for p , obtained from a correct equation. (No need to check in	other equation.)
(c) B1 B1	Rotation, rotates, rotate or rotating (oe) Accept "turn" Correct angle (degrees or radians) with direction specified and about origin	or (0, 0)
(d) B1	Correct matrix for A ⁻¹ May have been found in (b) but must be used in (d) correct CA with unknowns for entries of C.	
M1 A1	Multiply B by A ⁻¹ on the right. Alternatively, sets CA equal to B and solve Correct matrix C (isw after a correct answer).	es equations.

Question Number	Scheme	Marks
8(a)	$200t^3 = 25$ or $\left(\frac{25}{x}\right)^2 = 40x$ or $y^2 = 40\left(\frac{25}{y}\right)$	M1
	$t = \frac{1}{2}$ or $x = \frac{5}{2}$ or $y = 10$	A1
	$\left(\frac{5}{2},10\right)$	A1 (3)
(b)	$y^{2} = 40x \Rightarrow x = \frac{y^{2}}{40} \Rightarrow \frac{dx}{dy} = \frac{2y}{40} \text{ or } 2y \frac{dy}{dx} = 40 \Rightarrow \frac{dy}{dx} = \frac{40}{2y} \text{ or } \frac{dy}{dx} = \frac{\sqrt{10}}{\sqrt{x}}$ or by parametric differentiation: $\frac{dy}{dx} = \frac{1}{t}$	B1
	at $(10,20)$: $\frac{dy}{dx} = 1$ or $\frac{dx}{dy} = 1$	M1
	Grad normal $=-1$	A1
	y-20=-(x-10)	M1
(c)	x + y - 30 = 0 xy = 25 x + y - 30 = 0	A1 (5)
(c)	$x + \frac{25}{x} - 30 = 0$ or $\frac{25}{y} + y - 30 = 0$ or $\frac{5}{t} + 5t - 30 = 0$	M1
	$x^{2} - 30x + 25 = 0 \text{or} y^{2} - 30y + 25 = 0 \text{or} 5t^{2} - 30t + 5 = 0$ $x = 15 \pm \sqrt{200} \text{or} y = 15 \pm \sqrt{200} \text{or} t = 3 \pm 2\sqrt{2} \text{(or exact equivalents)}$	dM1
	$x = 15 \pm \sqrt{200}$ or $y = 15 \pm \sqrt{200}$ or $t = 3 \pm 2\sqrt{2}$ (or exact equivalents)	A1
	$ \text{eg } x = 15 + \sqrt{200} \Rightarrow y = 15 - \sqrt{200}$	ddM1
	$(15+10\sqrt{2},15-10\sqrt{2})$ $(15-10\sqrt{2},15+10\sqrt{2})$	A1A1 (6)
		[14]
(a) M1	Attempt an equation in a single variable.	
A1	Correct value for x , y or t	
A1	Correct values for x and y. Need not be in coordinate brackets. No other points so	een.
(b)	dv dx	
B1	Any correct expression involving the derivative, $\frac{dy}{dx}$ or $\frac{dx}{dy}$, for P	
M1	Attempt to obtain value of their derivative at (10, 20). May be from an incorrect	curve.
A1	Correct gradient of normal. Equation of normal by any complete method. Must involve a sign change of their	r derivative and
M1	have numerical gradient. Cam be scored from an incorrect starting equation/poin	
A1	Correct equation in form demanded (though terms may be in different order).	
(c) M1	Use the equation of H and their equation of the normal from (b) to obtain an equation in a single variable	
dM1	Obtains a 3TQ and attempts to solve by any valid means.	4:
A1	Correct values for <i>x</i> or <i>y</i> or <i>t</i> . Must be exact but need not be fully simplified (but must be evaluated).	uiscriminant
ddM1	Use at least one of their values for x or y to obtain a value for the other coordinate or t to find at least one set of coordinates. (Can be scored with inexact values.)	
A1	Either pair of coordinates correct. Allow if unsimplified.	and Comment (and
A1	Second pair of coordinates correct and no extra solutions and both pairs in simpl shown in scheme). Need not be coordinates as long as correctly paired. Award A1A0 if $x = 15 \pm 10\sqrt{2}$, $y = 15 \pm 10\sqrt{2}$ is given	est form (as
	11	

Question Number	Scheme	Marks
9(i)	$n=1$ $u_1 = 3 \times \frac{2}{3} - 1 = 1$ (so true for $n=1$ (†))	B1
	Assume true for $n = k$ ie $u_k = 3\left(\frac{2}{3}\right)^k - 1$ (†) $u_{k+1} = \frac{1}{3}(2u_k - 1) = \frac{1}{3}\left(2\left(3\left(\frac{2}{3}\right)^k - 1\right) - 1\right) = \frac{1}{3}\left(6\left(\frac{2}{3}\right)^k - 2 - 1\right)$ $= \frac{1}{3}\left(2 \times 3\left(\frac{2}{3}\right)^{k+1} \times \left(\frac{3}{2}\right) - 2 - 1\right)$ $= \frac{1}{3} \times 2 \times 3\left(\frac{2}{3}\right)^{k+1} \times \left(\frac{3}{2}\right) + \frac{1}{3}(-2 - 1)$ $= 3\left(\frac{2}{3}\right)^{k+1} - 1$	M1A1 dM1
	$\begin{vmatrix} =3 & \boxed{3} & -1 \\ \therefore \text{ if true for } n = k, \text{ also true for } n = k+1 \qquad (\dagger) $	A1
	(True for $n = 1$) so $u_n = 3\left(\frac{2}{3}\right)^n - 1$ is true for all $n \in \mathbb{Z}^+$	Alcso (6)
(ii)	f(1) = $2^3 + 3^3 = 8 + 27 = 35$ (Multiple of 7) (so true for $n = 1$ (†)	B1
	Assume $f(k)$ is a multiple of 7 $f(k) = 2^{k+2} + 3^{2k+1}$ is a multiple of 7 (†)	
	$f(k+1)-Mf(k) = 2^{k+3} + 3^{2k+3} - M(2^{k+2} + 3^{2k+1})$	M1
	$=2^{k+2}(2-M)+3^{2k+1}(3^2-M)$	A1
	$= (2-M)(2^{k+2}+3^{2k+1})+3^{2k+1}\times7 \text{ or } (9-M)(2^{k+2}+3^{2k+1})-7\times2^{k+2} \text{ oe}$	dM1
	$\therefore f(k+1) = 2f(k) + 7 \times 3^{2k+1} \text{oe e.g. } 9f(k) - 7 \times 2^{k+2}$ Or e.g. $7 \times 3^{2k+1}$ is a multiple of 7, so if $f(k)$ is a multiple of 7 then $\underline{f(k+1)}$ is also a multiple of 7	A1
	If the result is true for $n = k$ it is also true for $n = k + 1$ (†)	
	As the result has been shown to be true for $n = 1$, it is true for all $n \in \mathbb{Z}^+$	A1 cso (6) [12]

9(i)	
B1	Check that the formula gives 1 when $n = 1$ Working must be shown. (Need not state true
	for $n = 1$ for this mark – but see final A)
M1	(Assume true for $n = k$ and) attempts to substitute the formula for u_k into
	$u_{k+1} = \frac{1}{3}(2u_k - 1)$ or equivalent with suffixes increased. Allow slips.
A 4	
A1	Correct substitution.
dM1	Obtain an expression with $\left(\frac{2}{3}\right)^{k+1}$ and no other k. Alternatively, expands u_{k+1} to a
	matching expression (ie work from both directions).
A1	Correct expression when $n = k + 1$
	At least one intermediate stage of working must be shown and no errors (though
	notational slips may be condoned).
	If working from both directions, it is for correct work to reach matching expressions.
A1cso	Correct concluding statements following correct solution which has included each of the
	points (†) at some stage during the working. Depends on all except the first B mark (e.g.
	if they think they have checked $n = 1$ but have really checked $n = 2$). Note: Allow the M's and first two A's for students who go from $k+1$ to $k+2$ but treat it as
	Note. Allow the M s and first two A s for students who go from $k+1$ to $k+2$ but treat it as k to $k+1$.
(ii)	κ to $\kappa + 1$.
B1	Checks the case $n = 1$. Minimum statement of $f(1) = 35$
M1	Attempts an expression for $f(k+1) - Mf(k)$ with any value of M. Need not be simplified.
	Most likely with $M = 1$ but may be seen with other values of M . With $M = 0$,
	$f(k+1) = 2^{k+3} + 3^{2k+3}$ is all that is required.
A1	A correct expression with terms 2^{k+2} and 3^{2k+1} clearly identified.
dM1	Attempts to extract/identify $f(k)$ within a correct expression to give terms divisible by 7.
divii	With $M = 0$ look for $f(k+1) = 2 \times (2^{k+2} + 3^{3k+1}) + 7 \times 3^{2k+1}$ or $9 \times (2^{k+2} + 3^{3k+1}) - 7 \times 2^{k+2}$
	oe and similar for other value of M .
A1	One of the correct expressions for $f(k+1)$ shown (or with powers of 2 and 3) or full reason
A 4	why $f(k+1)$ is divisible by 7, following a suitable expression.
A1cso	Correct concluding statements following correct solution which has included each of the
	points (†) at some stage during the working. Depends on all previous marks.