Understanding flow slides in flood defences

Lisa Wobbes

February 2, 2016

Recap

Last time:

- Accuracy vibrating bar with MATLAB and Fortran
- Courses

Recap

Last time:

- Accuracy vibrating bar with MATLAB and Fortran
- Courses

Work in progress:

- Accuracy tests for oedometer
- Reading papers on liquefaction:
 - Byrne and Eldridge, A three parameter dilatant elastic stress-strain model for sand (1982)
 - Byrne et al., Numerical modeling of liquefaction and comparison with centrifuge test (2004)
- Started writing first year report

Outline

- Accuracy vibrating string revisited
- Accuracy oedometer with Fortran implementation
- Validation of 2-phase FEM
- Elastoplastic model
- Boston
- Short term planning

Vibrating bar

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial x^2}$$

Boundary conditions:

$$u(0,t)=0$$

$$\frac{\partial u}{\partial x}(L,t)=0$$

Initial conditions:

$$u(x,0)=0$$

$$\frac{\partial u}{\partial t}(x,0) = v_0 \sin\left(\frac{\pi x}{2L}\right)$$

Accuracy vibrating bar: Fortran

Accuracy vibrating bar: Fortan

Oedometer (small deformations)

$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 u}{\partial^2 y} - g$$

Boundary conditions:

$$u(0,t)=0$$

$$\frac{\partial u}{\partial y}(H,t) = \frac{p_0}{E} = 0$$

Initial conditions:

$$u(y,0)=0$$

$$\frac{\partial u}{\partial t}(y,0) = 0$$

Accuracy oedometer

MATLAB: lack of convergence with FEM and MPM

Accuracy oedometer

- MATLAB: lack of convergence with FEM and MPM
- Fortran: lack of convergence with FEM and MPM

Accuracy oedometer

- MATLAB: lack of convergence with FEM and MPM
- Fortran: lack of convergence with FEM and MPM Approaches used with FEM:
 - Absolute RMS error
 - Relative RMS error
 - Richardson (node on top)
 - Absolute RMS error with a gradual increase of the gravitational force

2-phase FEM: consolidation

2-phase FEM: one-dimensional wave propagation

2-phase FEM: one-dimensional wave propagation

Continuum Mechanics: completed with a 10 as final grade

- Continuum Mechanics: completed with a 10 as final grade
- Soil Mechanics: online lectures of Hicks and Brinkgreve

- Continuum Mechanics: completed with a 10 as final grade
- Soil Mechanics: online lectures of Hicks and Brinkgreve
- Informed researcher: 4 February and 18 February (and online sessions in between)

- Continuum Mechanics: completed with a 10 as final grade
- Soil Mechanics: online lectures of Hicks and Brinkgreve
- Informed researcher: 4 February and 18 February (and online sessions in between)
- Soft and Granular Matter (J. M. Burgercentrum, 21-24 March): registered

- Continuum Mechanics: completed with a 10 as final grade
- Soil Mechanics: online lectures of Hicks and Brinkgreve
- Informed researcher: 4 February and 18 February (and online sessions in between)
- Soft and Granular Matter (J. M. Burgercentrum, 21-24 March): registered
- Computational Multiphase Flow (J. M. Burgercentrum, 6-8 April): registered

Work in progress

- 2-phase MPM implementation in MATLAB
- Reading Byrne et al., Numerical modeling of liquefaction and comparison with centrifuge test (2004)
- Started writing first year report

News

- Vice-president of SIAM student chapter in Delft
 - annual meeting in Boston 11-15 July
 - financial compensation
 - possible reduction of teaching obligations in 2016/2017

Settings: vibrating bar

	Symbol	Value	Unit
Length	L	25	m
Tension	Ε	100	Pa
Density	ρ	1	kg/m ³
Maximum velocity	v_0	0.1	m/s
Time step	Δt	$1\cdot 10^{-3}$	S
Measurement time	t	0.5	S

Accuracy vibrating bar: MATLAB

Accuracy vibrating bar: MATLAB

Accuracy vibrating bar: Fortran

Accuracy vibrating bar: Fortran

