Congruence relation and modular anthruetic Motivating example Chap 3. Q6. Claim: For prime numbers P, 7, 5. P² + 2 is rever prime. P 5,7,11,.... all seem composite. Pt2 27, 51, 123, How to prove this? Hout: Coverdor dividing P by 6.

Let 2 be a name 25 what effect dres this rondition have?

P = 69 + r Where r= 9,1,2/3,4,5 r=0,2,4 would ruply 2/P

" 3/P So p=6q+r, r=1 or 5. By focusing on the remainders, we've représented the injunte number of possibilitées! for jume numbers by just two case We can prove the claim using this If P=69+1 then P2+2= (69+1) +2 $=369^{2}+129+3$ $= 3(129^2 + 49 + 1)$ SO PZ+Z not prime. Soundarly. If P=69+5 P7+2= 3697+60g+27 =3(1797+209+9).so p²+2 is not prime.

Treating integers according to

their remainders after division by 6 b known as "modular anthmetic modulo 6. Def H. 1 Congruence relation.

1, a is congruent to b modulo n means $n \mid a - b$ modulos and the notation $a \equiv b \pmod{n}$. Theorem 4.1. a = b (mod n) (=) remainder after division by n a=9, n+fr \ same. N = 92N + 1Proof Assume a=b (mod ") re. Nao N (9, N+r,) - (9,2N+r2)

binary relation on N. in fact its an equivalence

relation on 12 Def 422 Avrelation ~ on X binary (80 this forms Natements NNY for 7, y EX). is an eouivalence relation iff its reflexive, symmetric, and travertire. れNス Reflexity frEX n y = y n nSymmetry & n, y &X Transituty Yn, y, ZEX (nny,ynz) = nnzEquivalence relations allow us to group the elements of X into earrivalence clarses (subsets of X) $[x] = \{y \in X : x \sim y\}$ the eouvalence dans Nn.

and in fact X is partitioned by these eouvalence classes. Apactition { X is a systemt of non-empty sulsets of X $\sim 0.5 = \times$ · Provensts of disjoint sets. S=T or $S \cap T=\phi$ Y S, TEP Theorem 4.7 For a fixed modulus n, congruence modulo n an esmiralence relation on Z. Prof: Reflexinty: Nementer NO , for any ZEN. => N Z-Z no Z = Z (nwd n.)Symmetry

 $n \equiv y \pmod{n}$ Assume => $n \mid n-y$ => n/y-n => y = n (mod n.) Transituty Assure $n \equiv y$, $y \equiv z \pmod{n}$ =) $n \mid \pi - y \mid 2 \mid n \mid y - 2$. $= \rangle n / \chi - 2$ = $\gamma N \equiv Z (mwdn)$ So = (mod n) - o an eouvalence relation. It's eouvralence classes are called congruence classes. eg. modulas n=6.

Tres a way malwhy myrmte integers
into a fruite set, in a seuse.
Ext. The existing anthureliz on Th,
Ex4.1 The existing anthurtic on the existing anthurtic or the existing and the existing anthurtic or the existing and the existing anthurtic or the
well' with the longruence "allion.
To a fixed modulus m. Let a, a, b, b en-
satisfy $\alpha = a$, $b = b$ (maxim)
$a+b\equiv a'+b'\pmod{M}$.
Assume $a \equiv a', b \equiv b'$ (mod m)
= $m a-a', m b-b'$
(a+b) - (a'+b') = (a-a') + (b-b') $=) m (a+b) - (a'+b'), as it is a$ $lin. comb. of thirty divisible by m.$
= m (a+b)-(a'4b'), as it is a line (auch of Hyren)
divisible by m.
$2. ab \equiv a'b' \pmod{m}$
$ \frac{2}{ab-a'b'} = (a-a')(b-b') - 2a'b' $ 1. $ab' + a'b$
+ab' + a'b $= (a-a')(b-b') + b'(a-a')$
= (a-a')(b-b') + b'(a-a')

+a'(b-b').This RHS is clearly dorisible by M, as its a combination a-a', b-b'So M/ab-a'b' => ab = a'b' (mod m.) Similar proof techniques can be given for 3-6. Counter 6. Let $ce \pi$. a = a' = ac = a'c(mod m) ~ NO. eg. 20 = 35 (mod 15) but 4 = 7 (mod 15) In fact, factors can be carelled from a covernence, but the modulus May have to charge. If NC = y c mod m.

then $n \equiv y \mod \left(\frac{M}{d}\right)$ where d=gcd(c,m) $Eg. 20 = 35 \pmod{15}$ 5.4 = 5.7gd(5,15) = 5 = d=> 4=7 (mod 3) In particular of grd(c,m)=1 then nc=yc (mod m) =>n=y(mod M) Example 4.1 Prove that 41/20-1.

Congruence relation can allow us to show through about large integers without lively evaluating them.

 $25 = 32 = -9 \pmod{41}$

$$(2^{5})^{2} = 2^{10}$$

$$= 2^{10} = (2^{5})^{2} = (-9)^{2} = 81 \text{ (wdt)}$$

$$= -1$$

$$2^{20} = (2^{10})^{2} = (-1)^{2} = 1 \text{ (wod 41)}$$

$$= 2^{20} = 1 \text{ (mod 41)}$$

$$= 2^{20} = 1 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

$$= 2^{20} - 1 = 0 \text{ (mod 41)}$$

Talong 2012 Aeps, Starry from 1=2°, around this diagram, will finish at 1 = 2012, because (mod 4) $= 1 \pmod{5}$

