# Part of Speech Tagging with LSTM Networks Project Presentation

Zeming Lin

Department of Computer Science at University of Virginia

04/30/2015

#### Table of Contents

# Background

POS Tagging

Recurrent Neural Networks

#### Methods and Results

LSTM Networks

Network Structure

#### Results and Discussion

Results

# Part of Speech



#### Penn Treebank Dataset

- ► We use 93915 words, from NLTK. Only consider sentences with length > 4.
- Already tokenized.
- ► Example:
  - Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.
  - ► NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN NNP CD .

# State of the art

| Author                     | Model                       | Accuracy |
|----------------------------|-----------------------------|----------|
| Brants (2000)              | Hidden Markov Model         | 96.46%   |
| Giménez and                | SVM                         | 97.16%   |
| Márquez (2004)             |                             |          |
| Spoustová et al.<br>(2009) | Averaged Perceptron         | 97.44%   |
| Manning (2011)             | Dependency Network          | 97.32%   |
| Søgaard (2011)             | Condensed Nearest Neighbors | 97.50%   |

#### State of the art

- ► Human disagreement is ~3.5%
- Why is this interesting?
  - Machines often make very obvious mistakes
  - ► Single error tends to cascade to downstream modules for NLP

#### Table of Contents

#### Background

POS Tagging

Recurrent Neural Networks

#### Methods and Results

LSTM Networks Network Structure

#### Results and Discussion

Results

#### Neural Networks



# Recurrent Networks



#### Recurrent networks

- Hard to train!
- ► Backpropagation through time is used to approximate training



#### Recurrent Networks

- ► BPTT algorithm not guaranteed to converge to a *local* minimum
  - Very sensitive to learning rate changes
- Exploding / vanishing gradients



#### Table of Contents

#### Background

POS Tagging
Recurrent Neural Networks

### Methods and Results LSTM Networks

Network Structure

#### Results and Discussion

Results

# Long-short term memory

- ► Fixes the gradients problem, so we can train on longer time steps!
- ► LSTM Cell:





$$\begin{aligned} i_t &= \sigma(W_i x_t + U_i h_{t-1} + b_i) \\ \tilde{C}_t &= \tanh(W_c x_t + U_c h_{t-1} + b_c) \\ f_t &= \sigma(W_f x_t + U_f h_{t-1} + b_f) \\ C_t &= i_t \odot \tilde{C}_t + f_t \odot C_{t-1} \\ o_t &= \sigma(W_o x_t + U_o h_{t-1} + V_o C_t + b_f) \\ h_t &= o_t \odot \tanh C_t \end{aligned}$$



$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$



$$ilde{C}_t = anh(W_c x_t + U_c h_{t-1} + b_c)$$



$$f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)$$



$$C_t = i_t \odot \tilde{C}_t + f_t \odot C_{t-1}$$



$$o_t = \sigma(W_o x_t + U_o h_{t-1} + V_o C_t + b_f)$$
  

$$h_t = o_t \odot \tanh C_t$$

## LSTM Network

#### Error gradients no longer vanish / explode!



#### Table of Contents

#### Background

POS Tagging
Recurrent Neural Networks

#### Methods and Results

LSTM Networks

Network Structure

#### Results and Discussion

Results



▶ Embedding is a E = 50 dim vector, trained from wikipedia, lookuptable of 130k by 50.



- ▶ Embedding is a E = 50 dim vector, trained from wikipedia, lookuptable of 130k by 50.
- R is the size of output



- Embedding is a E = 50 dim vector, trained from wikipedia, lookuptable of 130k by 50.
- R is the size of output
- ► *C* is the memory of the network, the "error carousel"



- ▶ Embedding is a E = 50 dim vector, trained from wikipedia, lookuptable of 130k by 50.
- R is the size of output
- C is the memory of the network, the "error carousel"
- ightharpoonup V is number of tags to label, or 46.

# Running scheme



- ► Run sequence through twice: Only consider the second run through
  - "Read entire sequence" before considering POS labels.
  - ▶ 2-time slowdown, but ~1-2% extra accuracy

#### Table of Contents

#### Background

POS Tagging
Recurrent Neural Networks

#### Methods and Results

LSTM Networks
Network Structure

#### Results and Discussion

Results

#### Results

| L | R   | T   | Accuracy | Speed (wps) |
|---|-----|-----|----------|-------------|
| 2 | 100 | 40  | .942     | 319         |
| 2 | 250 | 40  | .952     | 88          |
| 2 | 500 | 40  | .953     | 25          |
| 2 | 100 | 400 | .942     | 363         |
| 2 | 100 | 10  | .932     | 394         |
| 3 | 100 | 40  | .936     | 239         |
| 4 | 100 | 40  | .924     | 171         |

- ► Each network has L layers
- ► Consider *T*-length sequences
- ► Cells memory of *R* units.

#### Table of Contents

#### Background

POS Tagging
Recurrent Neural Networks

#### Methods and Results

LSTM Networks
Network Structure

#### Results and Discussion

Results

| L | R   | T   | Accuracy | Speed (wps) |
|---|-----|-----|----------|-------------|
| 2 | 100 | 40  | .942     | 319         |
| 2 | 250 | 40  | .952     | 88          |
| 2 | 500 | 40  | .953     | 25          |
| 2 | 100 | 400 | .942     | 363         |
| 2 | 100 | 10  | .932     | 394         |
| 3 | 100 | 40  | .936     | 239         |
| 4 | 100 | 40  | .924     | 171         |

- ► More layers == worse performance?
- ► Increase number of training iterations?

| L | R   | T   | Accuracy | Speed (wps) |
|---|-----|-----|----------|-------------|
| 2 | 100 | 40  | .942     | 319         |
| 2 | 250 | 40  | .952     | 88          |
| 2 | 500 | 40  | .953     | 25          |
| 2 | 100 | 400 | .942     | 363         |
| 2 | 100 | 10  | .932     | 394         |
| 3 | 100 | 40  | .936     | 239         |
| 4 | 100 | 40  | .924     | 171         |

- ► High T doesn't impact, but low T does
- ▶ Memory units R had large impact,  $100 \rightarrow 250$  gave 1% accuracy!

#### Future Work

- ► Find the full Treebank dataset, see if we get state of the art 97.5% results
- ► Test larger models, use GPU to parallelize matrix computation
- Batch gradient descent to parallelize training, can use Mapreduce

# Thank you!