Greatest Common Divisor, Linear Diophantine Euqations, Congruence and Modular Arithmetic & The RSA Public-key Encryption Scheme

Sachin Kumar

University of Waterloo

January 13, 2023

Proposition 1

For all real numbers x, we have $x \leq |x|$.

Proposition 2 - Bounds by Divisibility (BBD)

For all integers a and b, if b|a and $a \neq 0$ then $b \leq |a|$.

Proposition 3 - Division Algorithm (DA)

For all integers a and positive integers b, there exist unique integers q and r such that

$$a = qb + r$$
, $0 \le r < b$

Proposition 4 - GCD with Remainders (GCD WR)

For all integers a, b, q and r, if a = qb + r, then gcd(a, b) = gcd(b, r).

Proposition 5 - GCD Characterization Theorem (GCD CT)

For all integers a and b, and non-negative integers d, if

- d is a common divisor of a and b, and
- there exist integers s and t such that as + bt = d,

then $d = \gcd(a, b)$.

Proposition 6 - Bézout's Lemma (BL)

For all integers a and b, there exists integers s and t such that as + bt = d, where $d = \gcd(a, b)$.

Proposition 7 - Common Divisor Divides GCD (CDDGCD)

For all integers a, b and c, if c|a and c|b, then $c|\gcd(a, b)$.

Proposition 8 - Coprimeness Characterization Theorem (CCT)

For all integers a and b, gcd(a, b) = 1 if and only if there exist integers s and t such that as + bt = 1.

Proposition 9 - Division by the GCD (DB GCD)

For all integers a and b, not both zero, $gcd(\frac{a}{d}, \frac{b}{d}) = 1$, where d = gcd(a.b).

Proposition 10 - Coprimeness and Divisibility (CAD)

For all integers a, b and c, if c|ab and gcd(a, c) = 1, then c|b.

Proposition 11 - Prime Factorization (PF)

Every natural number n > 1 can be written as a product of primes.

Proposition 12 - Euclid's Theorem (ET)

The number of primes is infinite.

Corollary 13 - Euclid's Lemma (EL)

For all integers a and b, then prime numbers p, if p|ab, then p|a or p|b

Proposition 14

Let p be a prime number, n be a natural number, and a_1, a_2, \ldots, a_n be integers. If $p|(a_1a_2\ldots a_n)$, then $p|a_i$ for some $i=1,2,\ldots,n$.

Theorem 15 - Unique Factorization Theorem (UFT)

Every natural number n > 1 can be written as a product of prime factors uniquely, apart from the order of factors.

Proposition 16 - Finding a Prime Factor (FPF)

Every natural number n > 1 is either prime or contains a prime factor less than or equal to \sqrt{n} .

Proposition 17 - Divisors From Prime Factorization (DFPF)

Let $n \ge 2$ and $c \ge 1$ be positive integers, and let

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$$

be the unique representation of n as a product of distinct primes p_1, p_2, \ldots, p_k , where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are positive integers. The integer c is a positive divisor of n if and only if c can be represented as a product.

$$c = p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k}, \quad \text{where } 0 \le \beta_i \le \alpha_i \text{ for } i = 1, 2, \dots, k$$

Proposition 18 - GCD From Prime Factorization (GCD PF)

Let a and b be positive integers, and let

$$a=p_1^{lpha_1}p_2^{lpha_2}\dots p_k^{lpha_k}, \quad ext{ and } \quad b=p_1^{eta_1}p_2^{eta_2}\dots p_k^{eta_k},$$

be ways to express a and b as products of the distinct primes p_1, p_2, \ldots, p_k , where some or all of the exponents may be zero. We have

$$gcd(a, b) = p_1^{\gamma_1} p_2^{\gamma_2} \dots p_k^{\gamma_k}$$
 where $\gamma_i = \min\{\alpha_i, \beta_i\}$ for $i = 1, 2, \dots, k$.

Extended Euclidean Algorithm(EEA)

input: Integers a, b with $a \ge b > 0$.

Initialize: Construct a table with four columns so that

- the columns are labelled x, y, r and q,
- the first row in the table is (1,0,a,0)
- the second row in the table is (0, 1, b, 0)

Repeat: For $i \ge 3$,

•
$$q_i \leftarrow \left\lfloor \frac{r_{i-2}}{r_{i-1}} \right\rfloor$$

• $\mathsf{Row}_i \leftarrow \mathsf{Row}_{i-2} - q_i \mathsf{Row}_{i-1}$

Stop: When $r_i = 0$.

Output: Set n = i - 1. Then $gcd(a, b) = r_n$, and $s = x_n$ and $t = y_n$ are a certificate of correctness

Linear Diophantine Equations

Theorem 1 - Linear Diophantine Equation Theorem, Part 1 (LDET 1)

For all integers a, b and c, with a and b not both zero, the linear Diophantine equation

$$ax + by = c$$

(in variables x and y) has an integer solution if and only if d|c, where $d = \gcd(a, b)$.

Theorem 2 - Linear Diophantine Equation Theorem (LDET 2)

Let a, b and c be integers with a and b not zero, and define $d = \gcd(a, b)$. If $x = x_0$ and $y = y_0$ is one particular integer solution to the linear Diophantine equation ax + by = c, then the set of all solutions is given by

$$\{(x,y): x = x_0 + \frac{b}{d}n, \ y = y_0 - \frac{a}{d}n, \ n \in \mathbb{Z}\}.$$

Congruence and Modular Arithmetic

Theorem 1 - Linear Diophantine Equation Theorem, Part 1 (LDET 1)

For all integers a, b and c, with a and b not both zero, the linear Diophantine equation

$$ax + by = c$$

(in variables x and y) has an integer solution if and only if d|c, where $d = \gcd(a, b)$.

Theorem 2 - Linear Diophantine Equation Theorem (LDET 2)

Let a, b and c be integers with a and b not zero, and define $d = \gcd(a, b)$. If $x = x_0$ and $y = y_0$ is one particular integer solution to the linear Diophantine equation ax + by = c, then the set of all solutions is given by

$$\{(x,y): x = x_0 + \frac{b}{d}n, \ y = y_0 - \frac{a}{d}n, \ n \in \mathbb{Z}\}.$$

