Clasificación de texto: Deteción de humor mediante el uso de perceptrón simple y multicapa.

Julia Patrycja Wojciechowska UPV/EHU (December 11, 2022)

Objetivos

El objetivo de este ejercicio es obtener el mejor clasificador posible empleando diferentes parámetros o variaciones de un algoritmo que clasifica un grupo de datos.

Dataset

El dataset está dividido en dos clases: humor o no humor. El atributo de cada instancia tiene formato de textos cortos y estos, están escritos en inglés.

Text	Humor
Divorce gift card: mexican	False
More like president pajama	True

Table 1:Formato de los datos

El dataset consta de 200 mil instancias y está equilibrado.

Figure 1:Proporción del número de instancias cada clase en el dataset

Preproceso de datos

- 1 Cambio de todas las letras mayúsculas a minúsculas
- 2 Lematización
- 3 Eliminación de stop-words
- 4 Tf-idf: Cambio de atributo 'Text' a atributos numéricos.

Baseline

Los datos representados en 2D tienen este aspecto

Figure 2:Representación de los datos en 3D

Mediante un **perceptrón** intentaremos trazar una recta para separar las dos clases.

Train	Test	Atributos
260	40	1 atributo aleatorio
Table 2:Parámetros del baseline		

El **F-Score** obtenido es de tan solo **0.31**. Los siguientes experimentos servirán para mejorarlo.

Experimento nº 1: Perceptrón simple mejorado

Una recta no es suficiente; hay que emplear más atributos y crear hiperplanos. Para evitar overfitting se limita el número de iteraciones

Train	6400
Test	1600
${f N}^{f o}$ de atributos	50, 100, 200, 250, 300, 350
Nº de iteraciones	100, 250, 500, 1000, 2000

¡Aplicando combinaciones de atributos e iteraciones, se llegó a conseguir en algunos casos un **F-Score** de **0.81**!

Table 3:Parámetros del experimento nº 1

Tendencia: Cuanto mayor número de atributos e iteraciones, mejor resultado.

Experimento nº 2: Perceptrón multicapa

Si con un perceptrón simple conseguimos un 0.81, ¿qué pasará si empleamos un **perceptrón multi-** capas?

Train	8000
Test	2000
${f N}^{f o}$ de atributos	200, 250, 300, 350
$N^{\underline{o}}$ de iteraciones	500, 1000, 1250, 1500, 2000
Nº capas ocultas	2, 4, 6, 8, 10
Alpha	0'32, 1, 3'16

Table 4:Parámetros del experimento nº 2

Alpha es un parámetro de regularización empleado para mejorar la generalización.

Figure 3:Regularización de alpha

F-Score ha aumentado hasta un 0.84.

Tendencia: El resultado 0.84 mayoritariamente aparece con valor de alpha 1 y 8 capas ocultas del perceptrón.

En el último intento de mejora del **F-Score**, se empleó la función de activacióm **ReLU**.

Los parámetros empleados fueron los mismos que los que se pueden observar en la tabla 4, con la diferencia de que no se empleó el valor 3'16 del parámetro alpha.

F-Score máximo conseguido: ¡0.87!

Modelo final

Para elegir el modelo ganador, se empleó las curvas ROC de cada clasificador que obtuvo un **F-Score** de **0.87**

Figure 4:Curvas ROC de los mejores modelos

El modelo que más AUC posee tiene los siguientes parámetros:

Table 5:Parámetros del mejor modelo

Conclusiones

- Encontrar las mejores combinaciones de parametros requiere experimentación.
- Utilizar más capas ocultas de las que se necesita, puede llevar a sobreajsute.
- Con un algoritmo tan simple como un
 Perceptrón, los resultados obtenidos ya eran buenos.
- Como se puede observar en la Figura 2, hay bastantes instancias dificiles de separar, lo que podría ser la causa de lo poco que se consigió mejorar el **F-Score** a partir del primer experimento.