Linear Regression

Supervised Learning

A supervised model is trained on a labeled dataset of (feature, label) pairs.

Regression Model - numerical label

Problem: Predict weight (number) given height and age

Features:

Height, Age

Label:

Weight

Height:	1.50	1.70	2.10	1.55	1.02
Age:	10	24	40	20	30

IU 40 ZU JU

1 55

Weight: 40 58 80 45

Training data

Test data

The history of Linear Regression

1800s, Francis Galton

- Study of relationship between parents and children
 - Height of a father VS height of a son
- Son's height close to fathers height
- But, son's height is closer to the overall average height of all people

Example: Shaquille O'Neal - 2.2 m VS his son - 2m

"Father's son's height tends to regress (drift towards) the average height"

Linear regression

 Draw a straight line that is as close to all the data points as possible

Our line fits the data points perfectly

Linear regression

 Draw a straight line that is as close to all the data points as possible

- More points - some errors

Benefits of Linear Regression

- Runs fast
- Easy to use
- Easily interpretable
- Basis for many other methods

Linear regression

 Our goal with this algorithm is to minimize the vertical distance between all data points and our line i.e. to find the best line that describes our data

- Different minimizing methods available: **least squares**, absolute distance, etc.

Least squares method

- Minimizing the sum of squares of the residuals
- Residual difference between the observation (actual y-value) and the fitted line i.e. $y_i \hat{y}$
- **Slope** (change in y) / (change in x)
- Intercept value of y when x=0

$$\min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Bivariate Linear Regression $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

$$\min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

- 1) Take partial derivatives w.r.t. \hat{eta}_0 and \hat{eta}_1
- 2) Set the partial derivatives equal to 0
- 3) Solve the resulting equations for \hat{eta}_0 and \hat{eta}_1

$$\sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\frac{\partial}{\partial \hat{\beta}_0} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \sum_{i=1}^{N} \frac{\partial}{\partial \hat{\beta}_0} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \sum_{i=1}^{N} 2 * (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) * (-1) =$$

$$\frac{\partial}{\partial \hat{\beta}_0} \sum_{i=1}^{n} \mathcal{O}_i \quad \beta_0 \quad \beta_1 x_i \mathcal{O}_i \quad -\sum_{i=1}^{n} \frac{\partial}{\partial \hat{\beta}_0} \mathcal{O}_i \quad \beta_0 \quad \beta_1 x_i \mathcal{O}_i \quad -\sum_{i=1}^{n} \frac{\partial}{\partial \hat{\beta}_0} \mathcal{O}_i \quad \beta_0 \quad \beta_1 x_i \mathcal{O}_i \quad -\sum_{i=1}^{n} \frac{\partial}{\partial \hat{\beta}_0} \mathcal{O}_i \quad \beta_0 \quad \beta_1 x_i \mathcal{O}_i \quad -\sum_{i=1}^{n} \frac{\partial}{\partial \hat{\beta}_0} \mathcal$$

$$= -2 * \sum_{i=1}^{N} (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i))$$

$$\frac{\partial}{\partial \widehat{\beta}_1} \sum_{i=1}^{N} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2 = \sum_{i=1}^{N} \frac{\partial}{\partial \widehat{\beta}_1} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2 = \sum_{i=1}^{N} 2 * (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) * (-x_i) =$$

$$= -2 * \sum_{i=1}^{N} x_i * (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i))$$

$$\frac{\partial}{\partial \hat{\beta}_0} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = -2 * \sum_{i=1}^{N} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)) = 0$$

$$\sum_{i=1}^{N} (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)) = 0$$

$$\sum_{i=1}^{N} y_i - \sum_{i=1}^{N} \widehat{\beta_0} - \sum_{i=1}^{N} \widehat{\beta_1} x_i = 0$$

$$\sum_{i=1}^{N} y_{i} - N \hat{\beta_{0}} - \hat{\beta_{1}} \sum_{i=1}^{N} x_{i} = 0$$

$$N\widehat{\beta_0} = \sum_{i=1}^N y_i - \widehat{\beta_1} \sum_{i=1}^N x_i$$

$$\widehat{\beta_0} = \frac{\sum_{i=1}^N y_i - \widehat{\beta_1} \sum_{i=1}^N x_i}{N}$$

$$\frac{\partial}{\partial \hat{\beta}_1} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = -2 * \sum_{i=1}^{N} x_i * (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)) = 0$$

$$\sum_{i=1}^{N} x_i * (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)) = 0$$

$$\sum_{i=0}^{N} (x_{i}y_{i} - \hat{\beta_{0}}x_{i} - \hat{\beta_{1}}x_{i}^{2}) = 0$$

$$\sum_{i=1}^{N} x_i y_i - \hat{\beta_0} \sum_{i=1}^{N} x_i - \hat{\beta_1} \sum_{i=1}^{N} x_i^2) = 0 \qquad \bullet \qquad \hat{\beta_0} = \frac{\sum_{i=1}^{N} y_i - \hat{\beta_1} \sum_{i=1}^{N} x_i}{N}$$

$$\sum_{i=1}^{N} x_i y_i - \frac{(\sum_{i=1}^{N} y_i - \widehat{\beta_1} \sum_{i=1}^{N} x_i) * \sum_{i=1}^{N} x_i}{N} - \widehat{\beta_1} \sum_{i=1}^{N} x_i^2 = 0$$

$$\sum_{i=1}^{N} x_i y_i - \frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i + \frac{\widehat{\beta}_1}{N} (\sum_{i=1}^{N} x_i)^2 - \widehat{\beta}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$\sum_{i=1}^{N} x_i y_i - \frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i = \hat{\beta}_1 \sum_{i=1}^{N} x_i^2 - \frac{\hat{\beta}_1}{N} (\sum_{i=1}^{N} x_i)^2$$

$$\sum_{i=1}^{N} x_i y_i - \frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i = \hat{\beta_1} (\sum_{i=1}^{N} x_i^2 - \frac{1}{N} (\sum_{i=1}^{N} x_i)^2)$$

$$\hat{\beta_1} = \frac{\sum_{i=1}^{N} x_i y_i - \frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i}{\sum_{i=1}^{N} x_i^2 - \frac{1}{N} (\sum_{i=1}^{N} x_i)^2}$$

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{N} x_{i} y_{i} - \frac{1}{N} \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}}{\sum_{i=1}^{N} x_{i}^{2} - \frac{1}{N} (\sum_{i=1}^{N} x_{i})^{2}}$$

Multivariate Linear Regression

Suppose we have **n** data points of **k** dimensions - each data point is described with **k** features. A general multivariate model can be written as:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik} + u_i$$
 for $i = 1, ..., n$.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_n \end{bmatrix}$$

$$Y = X\beta + u \qquad u = Y - X\beta$$
Error term: how far is the actual v from regression line actual v from regression line.

 $n \times 1$ $n \times (k+1) \times (k+1) \times 1$ $n \times 1$

$$\min_{\beta} u'u = (Y - X\beta)'(Y - X\beta)$$

$$u'u = (Y' - \beta' X')(Y - X\beta)$$

$$= Y'Y - \beta'X'Y - Y'X\beta + \beta'X'X\beta$$

$$= Y'Y - 2\beta'X'Y + \beta'X'X\beta$$

$Y'X\beta$

1xn nx(k+1) (k+1)x1

1xk+1 k+1x1

1x1

Transpose of a scalar is equal to itself

$$Y'X\beta = (Y'X\beta)' = \beta'X'Y$$

$$u'u = Y'Y - 2\beta'X'Y + \beta'X'X\beta$$

$$\frac{\partial (u'u)}{\partial \beta} = -2X'Y + 2X'X\beta$$

$$-2X'Y + 2X'X\beta = 0$$

$$X'X\beta = X'Y$$

$$(X'X)^{-1}(X'X)\beta = (XX)^{-1}XY$$

$$)^{-1}X'Y$$

Training, test and validation sets

- **Training set -** a subset to train a model
- Validation set a set used for parameter tuning
- **Test set -** a subset to test the trained model

Test set criteria:

- Large enough to give statistically meaningful results
- Representative of the data set as a whole (has same characteristics as the training set)

Model Evaluation

- **R-squared** proportion of variance explained (0,1)
- What is a good R-squared value? hard to say
- More features higher R-square => not a reliable approach for choosing the best model

Unexplained variance =
$$\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}$$

Total variance = $\sum_{i=1}^{n} (y_{i} - avg(y))^{2}$

$$R^2 = 1 - \frac{Unexplained\ variance}{Total\ variance}$$

Model Evaluation

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-y_i^2|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-y_i^2)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-y_i^2)^2}$$

Thank you!