ROOM TEMPERATURE SENSOR

Submitted by: Group 0

Group Members Anupama KR Hrishikesh Sonalikar Noel R Anurag Nishad

Date: 13/4/2020

[Email address]

Contents

User Requirements & Technical Specifications	2
Assumptions & Justifications	2
Justification	2
Assumptions	2
Components used with justification wherever required	3
Address Map	4
Memory Map	4
I/O Map	4
Design	5
Flow Chart	6
Main Program	6
Flow Chart of ISR	7
ADC ISR	8
Variations in Proteus Implementation with Justification	9
Firmware	10
List of Attachments	11

User Requirements & Technical Specifications

Design a System that senses the temperature in a room and displays them on 2, 7-segment displays.

The Technical Specifications are as follows

- Size of the room is as large as the BITS Auditorium only one floor
- Temperature range is from 15°C to 35°C
- Resolution required is 1°C
- Temperature has to be sensed every 2 minutes and the display should be updated

Assumptions & Justifications

Justification

- 1. Based on the size of the room only 6 sensors required. There are 3 wings and there are two zones per wing.
- 2. As the value to be displayed is only between 15°C to 35°C and resolution is only 1°C there is only a need for two seven segment displays.

Assumptions

None Made.

Components used with justification wherever required

- 8086
- 8284
- Temperature Sensor (Manual Attached) 6 Nos.

ATS2000A – This covers the required temperature range with required resolution

Temperature range 32 F - 150 F

Voltage i/p 5-30V - DC Regulated with a typical Voltage -12 V DC 1.5 mA

Four -pin connector - V_{CC}, GND, T20 and T10

PIN	SIGNAL	Input/ Output	Scale Factor	Description
1	+V	INPUT	N/A	Voltage referenced to the COM terminal (+5Vdc min to +30Vdc max)
2	T10	OUTPUT	10.0mV/°F	Temperature Signal (direct reading)
3	T20	OUTPUT	19.6mV/°F	Temperature Signal (scaled for 8-bit ADC)
4	СОМ	INPUT	N/A	Common (power supply & ADC common

- ADC 0808 6 analog inputs with voltage varying from 0 5 V with 8-bit resolution T 20 output
 can be directly connected to it (as it directly compatible) Manual Attached
- Common Anode Seven Segment Display 2 Nos. As 2 digits are to be displayed
- 7447 BCD to Common Anode 7 Segment converter -as values will be only numeric values
- 8255 Interface ADC and 7447
- 8254 to generate ADC Clock and 2 Minute RTI to read the temperature
- 8259 Interrupts from EOC from ADC and Timer Interrupt every 2 Minute. Timer given higher priority as the timer is the one that enables the ADC for conversion
- 2716 4 nos. Smallest ROM chip available is 2K and as we need to have even and odd bank and ROM is required at reset address which is at FFFFO_H and 00000_H where there is the IVT
- 6116 2 nos. Smallest RAM chip available is 2 K and we need odd and even bank. We need RAM for stack and temporary storage of data
- LS 138 2 decoders
- LS 373, LS 245, LS 244 and required gates

Address Map

Memory Map

ROM1 - 00000_H - 00FFF_H

RAM 1-01000_H-01FFF_H

 $\mathsf{ROM2} - \mathsf{FF000}_\mathsf{H} - \mathsf{FFFFF}_\mathsf{H}$

I/O Map

 $8255 - 00 - 06_{H}$

8254 - 08 - 0E_H

 $8259 - 10 - 12_{H}$

Design

Complete design shown with proper labelling (design attached)

Flow Chart

ADC ISR

Variations in Proteus Implementation with Justification

- 1. Using 2 Min delay as 8259 does not work in proteus EOC is used as NMI and the Timer Int replaced by software delay as 2 Minutes
- 2. ROM in only 00000 as proteus allows to change reset address.
- 3. Using 8253 as 8254 not available in Proteus.
- 4. Clock is at 2 MHz as the clock generated for 8086 requires a long rise and fall time of clock. So ADC clock will be only 500KHz that is also ok as 1 MHz is the max clock that can be provided.
- 5. 2732 is used as 2716 not available in Proteus.
- 6. Using a gate-based circuit for memory does the same as LS 138 here
- 7. Temperature Sensor replaced by DC voltage source giving voltage between $0-5\ V-as$ all sensors not there in Proteus
- 8. 8259 not there justification is as per point 1.

Firmware

Implemented using emu8086 attached.

List of Attachments

- 1. Complete Hardware Real World Design example.pdf
- 2. Manuals
 - a. ADC 0808
 - b. ATS 2000A
- 3. Proteus File adc.dsn
- 4. EMU8086 ASM File adc.asm
- 5. Binary File after assembly adc.bin