МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

СТВОРЕННЯ ТА НАВЧАННЯ МОДЕЛІ КОМП'ЮТЕРНОГО ЗОРУ ДЛЯ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторної роботи № 1 з дисципліни «Штучний інтелект» для студентів першого (бакалаврського) рівня вищої освіти спеціальності 121 "Інженерія програмного забезпечення" Створення та навчання моделі комп'ютерного зору для класифікації зображень: методичні вказівки до виконання лабораторної роботи №2 з дисципліни "Штучний інтелект" для студентів першого (бакалаврського) рівня вищої освіти спеціальності 121 "Інженерія програмного забезпечення" . Укл.: О.Є. Бауск. -- Львів: Видавництво Національного університету "Львівська політехніка", 2025. -- 10 с.

Укладач: Бауск О.Є., к.т.н., асистент кафедри ПЗ

Відповідальний за випуск: Федасюк Д.В., доктор техн. наук, професор

Рецензенти: Федасюк Д.В., доктор техн. наук, професор

Задорожний І.М., асистент кафедри ПЗ

Тема роботи: Створення та навчання моделі глибокого навчання для класифікації зображень з використанням PyTorch, Kaggle, Jupyter Notebook та FastAI.

Мета роботи: Ознайомитись з основами глибокого навчання, навчитися створювати набори даних для навчання моделей комп'ютерного зору, використовувати бібліотеку fastai для навчання моделей класифікації зображень, та розгортати навчені моделі.

Теоретичні відомості

Глибоке навчання та комп'ютерний зір

Глибоке навчання - це підрозділ машинного навчання, що базується на штучних нейронних мережах з багатьма шарами. Ці мережі здатні автоматично вивчати представлення даних з багатьма рівнями абстракції.

У контексті комп'ютерного зору, глибокі нейронні мережі показали надзвичайну ефективність у вирішенні задач:

- Класифікації зображень
- Виявлення об'єктів
- Сегментації зображень
- Генерації зображень

Бібліотека fastai

fastai - це бібліотека глибокого навчання високого рівня, побудована на основі РуТогсh. Вона надає готові інструменти та найкращі практики для швидкого створення високоякісних моделей глибокого навчання.

Основні переваги fastai:

- 1. Простий АРІ високого рівня
- 2. Вбудовані найкращі практики
- 3. Готові рішення для типових задач
- 4. Інтеграція з РуТогсh для низькорівневого контролю

Процес створення моделі класифікації

Типовий процес створення моделі класифікації зображень включає наступні кроки:

1. Підготовка даних

- Збір зображень
- Розділення на навчальну та валідаційну вибірки
- Аугментація даних

2. Створення моделі

• Вибір архітектури

- Налаштування гіперпараметрів
- Підготовка функції втрат та метрик

3. Навчання

- Підбір швидкості навчання
- Навчання моделі
- Моніторинг процесу навчання

4. Оцінка та покращення

- Аналіз помилок
- Тонке налаштування
- Валідація на тестових даних

5. Розгортання

- Експорт моделі
- Створення інтерфейсу
- Розгортання на платформі

Технічні вимоги

1. Для розробки:

- Python 3.9+
- Jupyter Notebook
- Kaggle акаунт
- fastai бібліотека
- PyTorch

2. Для розгортання:

- Hugging Face акаунт
- Git
- o Gradio

Хід роботи

1. Налаштування середовища розробки

- 1.1. Створити акаунт на Kaggle: https://www.kaggle.com/
- 1.2. Відкрити Jupyter notebook "Is it a Bird?" в Kaggle: https://www.kaggle.com/code/jhoward/is-it-a-bird-creating-a-model-from-your-own-data
- 1.3. Створити копію notebook для власної роботи (Fork)

2. Підготовка набору даних

2.1. Використати DuckDuckGo API для завантаження зображень:

```
from duckduckgo_search import ddg_images
from fastcore.all import *

def search_images(term, max_images=30):
    print(f"Searching for '{term}'")
    return L(ddg_images(term, max_results=max_images)).itemgot('image')
```

- 2.2. Завантажити зображення для двох класів:
 - Птахи
 - Ліс (фонові зображення)
- 2.3. Перевірити якість завантажених зображень та видалити пошкоджені файли

3. Створення та навчання моделі

3.1. Підготувати DataLoaders:

```
dls = DataBlock(
    blocks=(ImageBlock, CategoryBlock),
    get_items=get_image_files,
    splitter=RandomSplitter(valid_pct=0.2, seed=42),
    get_y=parent_label,
    item_tfms=[Resize(192, method='squish')]
).dataloaders(path)
```

3.2. Створити модель використовуючи apxiтектуру ResNet:

```
learn = vision_learner(dls, resnet18, metrics=error_rate)
learn.fine_tune(3)
```

3.3. Проаналізувати результати навчання та матрицю помилок.

4. Експорт та розгортання моделі

4.1. Експортувати навчену модель:

```
learn.export('model.pkl')
```

4.2. Створити простий інтерфейс використовуючи Gradio:

```
import gradio as gr

def classify_image(img):
    pred,_, probs = learn.predict(img)
```

УМОВА ЗАВДАННЯ ДО ЛАБОРАТОРНОЇ РОБОТИ

- 1. Налаштувати середовище розробки в Kaggle.
- 2. Створити набір даних для класифікації зображень з двох класів.
- 3. Навчити модель класифікації використовуючи fastai.
- 4. Проаналізувати результати та покращити модель.
- 5. Створити простий інтерфейс для використання моделі.
- 6. Розгорнути модель на Hugging Face Spaces.

ІНДІВІДУАЛЬНІ ВАРІАНТИ ЗАВДАННЯ

Кожен студент має створити класифікатор для однієї з наступних пар класів:

- 1. Кішки vs Собаки
- 2. Автомобілі vs Мотоцикли
- 3. Квіти vs Дерева
- 4. Портрети vs Пейзажі
- 5. Будівлі vs Природа
- 6. Фрукти vs Овочі
- 7. Літаки vs Кораблі
- 8. День vs Ніч
- 9. Micтo vs Село
- 10. Гори vs Море
- 11. Їжа vs Напої
- 12. Комахи vs Птахи
- 13. Спорт vs Музика
- 14. Зима vs Літо
- 15. Дощ vs Сонце
- 16. Книги vs Журнали
- 17. Настільні ігри vs Відеоігри
- 18. Кава vs Чай
- 19. Риба vs М'ясо
- 20. Макіяж vs Косметика

- 21. Годинники vs Ювелірні вироби
- 22. Окуляри vs Контактні лінзи
- 23. Рукописний текст vs Друкований текст
- 24. Малюнки vs Фотографії
- 25. Скульптури vs Картини

ЗМІСТ ЗВІТУ

- 1. Тема та мета роботи
- 2. Теоретичні відомості
- 3. Постановка завдання
- 4. Хід виконання роботи:
 - Скріншоти процесу створення набору даних
 - Код та пояснення для створення моделі
 - Графіки або скріншоти процесу навчання
 - Скріншоти інтерфейсу
- 5. Результати роботи
- 6. Висновки

КОНТРОЛЬНІ ПИТАННЯ

- 1. Що таке глибоке навчання і як воно відрізняється від традиційного машинного навчання?
- 2. Які основні компоненти необхідні для створення моделі класифікації зображень?
- 3. Як працює transfer learning і чому він ефективний?
- 4. Що таке fine-tuning і коли його варто застосовувати?
- 5. Які переваги використання fastai порівняно з чистим PyTorch?
- 6. Як правильно підготувати набір даних для навчання моделі?
- 7. Що таке data augmentation і навіщо він потрібен?
- 8. Як оцінити якість роботи моделі класифікації?
- 9. Які основні проблеми можуть виникнути при навчанні моделі?
- 10. Як можна покращити точність моделі?
- 11. Що таке learning rate і як правильно його підібрати?
- 12. Як працює архітектура ResNet?
- 13. Які існують методи регуляризації в глибокому навчанні?
- 14. Як правильно розділити дані на навчальну та валідаційну вибірки?

СПИСОК ЛІТЕРАТУРИ

- 1. Howard J., Gugger S. Deep Learning for Coders with fastai and PyTorch. -- O'Reilly Media, 2020.
- 2. Fast.ai Course v5 [Електронний ресурс]. -- Режим доступу: https://course.fast.ai/
- 3. PyTorch Documentation [Електронний ресурс]. -- Режим доступу: https://pytorch.org/docs/stable/index.html
- 4. fastai Documentation [Електронний ресурс]. -- Режим доступу: https://docs.fast.ai/
- 5. Chollet F. Deep Learning with Python. -- Manning Publications, 2021.
- 6. Gradio Documentation [Електронний ресурс]. -- Режим доступу: https://gradio.app/docs/
- 7. Hugging Face Documentation [Електронний ресурс]. -- Режим доступу: https://huggingface.co/docs
- 8. He K. et al. Deep Residual Learning for Image Recognition // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). -- 2016.
- 9. Is It a Bird? [Електронний ресурс]. -- Режим доступу: https://www.kaggle.com/code/jhoward/is-it-a-bird-creating-a-model-from-your-own-data
- 10. DuckDuckGo API [Електронний ресурс]. -- Режим доступу: https://duckduckgo.com/api
- 11. Stanford CS229 Lecture Notes [Електронний ресурс]. -- Режим доступу: https://cs229.stanford.edu/lectures-spring2022/main notes.pdf
- 12. Coursera Machine Learning Specialization [Електронний ресурс]. -- Режим доступу: https://www.coursera.org/specializations/machine-learning-introduction
- 13. Stanford CS229 Cheatsheet [Електронний ресурс]. -- Режим доступу: https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning