### Machine Learning [NETW1013] Spring 2019 Assignment 6



Deadline: Sunday 14th of April

For all tasks listed below, use the data set of house prices used previously in Assignment 1

# Principal component analysis

- 1- Assume that the input data set of the house data (column 4 to column 21) is equal to *x* Calculate the Correlation matrix of the *x* Matlab code: Corr\_x = corr(x)
- 2- Use the correlation matrix to identify the relation between different parameters.
- 3- Calculate the covariance matrix using "cov" function Matlab code: x\_cov=cov(x);
- 4- Used the Matlab SVD function to identify the principal components of the House prices data set using the cov of the house data set

  Matlab code: [U S V] = svd(x\_cov)
- 5- Use the EigenValue produced from the SVD function to find K where K is the minimum number of dimensions that can be used to describe a house. This will reduce the number of dimensions from m to K

EigenValues = 
$$[\lambda_1 \lambda_2 \lambda_3 \dots \lambda_m]$$

Where m is the number of dimensions?

The Eigen values are the diagonal of the matrix S

Hint (calculate 
$$\alpha = 1 - \frac{\sum_{i=1}^{i=K} \lambda_i}{\sum_{i=1}^{i=m} \lambda_i}$$
 and find  $K$  that would make  $\alpha \leq 0.001$ )

- 6- Use the Eigen vectors to transform the data set to the reduced dimension data set
  - Reduced\_Data=R=  $U(:,1:K)^T x^T$
- 7- Use the Eigen vector to produce an approximate data out of the reduced data by multiplying by the Eigen vectors matrix.

- 8- Estimate the error in the data produced by the dimension reduction Error =  $\frac{1}{m}\sum_{1}$  (approximate data Reduced\_Data)
- 9- Use linear regression to estimate house prices based on the data set produced using principal component analysis.

### K means clustering

- 1- Use K means clustering to find the clusters involved in the House data set and find the optimal number of clusters and their respective center points
- 2- Use K means on the reduced data set and compare the produced clusters on the real data in both cases

## **Anomaly detection**

Apply anomaly detection to the house data set and use to build an anomaly detection system.

#### **Submission & Grading**

For submission upload your files to a github folder and submit a link to it using the following form:

 $\frac{https://docs.google.com/forms/d/e/1FAIpQLSf3koMKnUqn1JmabYtw3fV5mAWRrz2IDkXe6VM9pk0Eq6x3DA/viewform?usp=sf\ link}{}$ 

| Part                         | Points |
|------------------------------|--------|
| Principal Component Analysis | 40     |
| K Means Clustering           | 30     |
| Anomaly Detection            | 30     |
| Total                        | 100    |

Submissions by email will NOT be considered.