Development of a Validation Database and Metrics for Characterization of L-mode Shortfall

Christopher Holland University of California, San Diego

Collaborators

S. P. Smith², G. R. McKee³, Z. Yan³, T. L. Rhodes⁴, L. Schmitz⁴, G. Wang⁴, A. E. White⁵, K. H. Burrell², R. Prater², R. E. Waltz², G. M. Staebler², and J. E. Kinsey²

²General Atomics

³University of Wisconsin-Madison

⁴University of California, Los Angeles

⁵Massachusetts Institute of Technology

Presented at 2012 ITPA Transport & Confinement Mtg San Diego, CA, Oct. 16, 2012

"Near-edge shortfall": Multiple gyrokinetic & gyrofluid codes appear to systematically underpredict near-edge transport

- Results below show consistency between quaslinear TGLF, fully nonlinear GYRO transport predictions
 - For both codes, transport predictions are made for an ensemble of 10 independent sets of input profile, and ensemble statistics used to quantify uncertainty
- Quantitatively similar flux results at ρ
 = 0.5 and 0.75 predicted by global,
 PIC GEM code [Chen & Parker, J.
 Comp. Phys. 220 839 (2007)]
- Similar shortfall observed in nonlinear gyrofluid simulations of TFTR by Beer et al [M. Beer, Ph.D. Thesis]

Q_e (W/cm²)

GYRO fluctuation predictions exhibit similar "underprediction" trends as flux predictions

 Based on previous results, use simple estimate rather than full synthetic calculations

NATIONAL FUSION FACILITY

$$\delta f_{syn} \approx \frac{1}{2} \delta f_{midplane}^{GYRO}$$

To characterize robustness and scalings of shortfall, we have begun to analyze a new set of metrics over a collection of DIII-D validation experiments

- Using data from DIII-D TMV and related experiments, profile and powerbalance analysis carried out for
 - 8 neutral beam injection (NBI) heated L-modes (some with additional ECH)
 - 5 electron cyclotron heated (ECH) L-modes
 - 7 NBI heated H-modes (some with additional ECH)
- For NB-heated L-modes, 10 realization ensembles of equilibria, profiles, and power balance results have been generated
 - Generally built by splitting 200 ms averaging window in 10 20 ms windows
- For each condition, use the quasilinear TGLF transport model to calculate local flux-matching gradients at radii of interest
 - At a given radius, hold local n_e , T_e , T_i , V_{tor} fixed, but vary local a/L_{ne} , a/L_{Te} , and a/L_{Ti} to match power balance particle and energy fluxes
 - Use normalized metric $\mathbf{E}_{L} = (a/L_{TGLF} a/L_{expt})/(a/L_{expt})$ to assess local fidelity of TGLF
 - This approach allows better incorporation of stiffness than previous local tests

Example: comparison of local flux-matching scale lengths predicted by TGLF against experiment for beam heated L-mode

- Currently, use spline fits to data as proxy for direct calculation of gradients from data (TBD in future)
- Metric uncertainties are 95% confidence interval defined using t-statistic

NATIONAL FUSION FACILITY
SAN DIEGO

Local flux-matching temperature gradients are consistently larger than experiment in near-edge region for NBI-heated L-modes

No similar trend send for density gradients

ECH-only L-modes show similar trends in gradients as beam-heated cases

- Error trend strongest for a/L_{Te}
- Ensemble statistics still being analyzed for these cases

No divergence in near-edge flux-matching gradients observed for H-modes

- Largest errors for TGLF H-mode predictions are:
 - overprediction of near-axis a/L_{te}- sawteeth may play role here
 - Systematic underprediction of a/ L_{ne} (overprediction of Γ_{e} , too small pinch?)

Database of local metric results allows for new ways of quantifying fidelity: e.g. model performance as function of safety factor q

Note: many H-mode results near q=1 and for all cases above q=5 are not well-converged in flux; treat extremes as very preliminary

Hypothesis: is the short-fall may a result of gyrokinetic (GK) ordering breakdown?

- "Conventional" δf GK equations use $\rho^* = \rho/L$ ordering
 - Require $f_0 = n_0 \exp(mv^2/2T)$ to O(1)
 - Require $\delta f/f_0 \sim O(\rho^*)$
 - Requires Q/(nTv_{th}) \sim O(ρ^{*2})
- Implies $Q/Q_{gB} = Q/n_e T_e c_s \rho_s^{*2}$ should be O(1)
 - However, in near-edge (particularly L-mode), smallness of $n_{\rm e}$ and $T_{\rm e}$ make $Q_{\rm qB}$, $\rho_{\rm s}$ small and thus $Q/Q_{\rm qB}$ large
- For this work, define $L = \min(L_{Ti}, L_{Te}, L_{ne})$
 - Effectively almost always L_{Te} for these plasmas
 - Note that alternate, equally valid choice of L=a (midplane minor radius) yields values of ρ^* 3-5 smaller in near edge, Q_{aB} 10-20 smaller

L- and H-mode fluxes appear to be consistent with ordering assumption using $\rho^* = \rho_s/L$ inside norm. toroidal flux = 0.9

- Note that normalized H-mode electron energy fluxes Q_e are generally an order of magnitude smaller than L-modes; Q_i systematically lower than NBI L-modes as well
- Beam-driven particle fluxes always sub-gyroBohm in L- and H-mode

Note that use of $\rho^* = \rho_s/a$ yields significantly worse assessment of L-modes satisfying ordering assumptions

- Strongest divergence between L- and H-modes remains in Q_e
- Beam-driven particle fluxes remain sub-gyroBohm for ρ < 0.9

Database of local metric results allows for new ways of quantifying fidelity: e.g. model performance as function of experimental flux

RMS fluctuation amplitudes normalized to $\rho_{\rm s}/L$ show similar consistency with assumed ordering as fluxes

- Note that previous synthetic diagnostic studies find that BES, CECE transfer functions both yield ~50% attenuation of RMS levels
 - "Actual" experimental levels probably 2x larger

