Visual approximation of continued fraction

日本大学大学院理工学研究科 博士前期課程 杉本 和希 日本大学理工学部 利根川 聡・鷲尾 夕紀子・平田 典子 日本大学 生産工学部 川島 誠

> TeX による教材作成セミナー 2021 年 3 月 6 日

Contents

本講演では無理数 $\omega \in \mathbb{R} \setminus \mathbb{Q}$ の連分数展開を考える.

- ▶ 連分数の概要
- ▶ Dirichlet の定理・Roth の定理
- ▶ Legendre の定理・Vahlen の定理
- 部分商について
- ト Riemann zeta 関数 $\zeta(2) = \frac{\pi^2}{6} \notin \mathbb{Q}$ の連分数展開
- ▶ R. Apéry による ζ(3) ∉ ℚ の連分数展開
- ▶ Ford circle by GeoGebra による連分数の表示

連分数の概要

連分数を用いて無理数を有理数で近似しよう.

定義 [n 次近似分数]

 $\omega \in \mathbb{R} \setminus \mathbb{Q}$ とする. $a_0 = \lfloor \omega \rfloor \in \mathbb{Z}$, $0 < a_1, a_2, \cdots, a_{n-1} \in \mathbb{Z}$ に対し

$$\omega = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots a_{n-1} + \frac{1}{\omega_n}}}}$$

と表される.この式を ω の連分数展開と言う.連分数展開を a_n で止めて得られる有理数を $\frac{p_n}{q_n}:=[a_0,a_1,\cdots,a_{n-1},a_n]\in\mathbb{Q}$ $(p_n,q_n\in\mathbb{Z},$ $\gcd(p_n,q_n)=1)$ と書き,n 次近似分数,各 a_k を部分商という. $\frac{p_n}{q_n}=\frac{a_np_{n-1}+p_{n-2}}{a_nq_{n-1}+q_{n-2}}$ 及び $p_{n-1}q_n-q_{n-1}p_n=(-1)^n$ が成立する.

Dirichlet の定理

Dirichlet の定理

 $\omega \in \mathbb{R} \setminus \mathbb{Q}$ とする.このとき

$$\left|\omega - \frac{p}{q}\right| < \frac{1}{q^2}$$

を満たす $rac{p}{a}\in\mathbb{Q}$ $(p,q\in\mathbb{Z},q>0,\gcd(p,q)=1)$ は無限個存在する.

つまり,無理数は有理数でよく近似できる.以下 $\overline{\mathbb{Q}}$ を代数的数 (有理数係数一変数多項式の根) 全体のなす体とする.

Roth の定理

 $\omega \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$ 即ち代数的無理数とする.任意の $\varepsilon > 0$ に対して

$$\left|\omega - \frac{p}{q}\right| < \frac{1}{q^{2+\varepsilon}}$$

を満たす $rac{p}{q}\in\mathbb{Q}$ $(p,q\in\mathbb{Z},q>0,\gcd(p,q)=1)$ は有限個に限る.

Legendre の定理

連分数展開を途中で止めた近似分数は, ω をよく近似する.

Legendre の定理

 $\omega \in \mathbb{R} \setminus \mathbb{Q}$, p,q を互いに素な整数(q>0), さらに,

$$\left|\omega - \frac{p}{q}\right| < \frac{1}{2q^2}$$

であるとする.このとき, $\frac{p}{q}$ は必ず ω の近似分数になる.

Vahlen の定理

 $\omega\in\mathbb{R}\setminus\mathbb{Q}$ に対して $\frac{p_{n-1}}{q_{n-1}},\frac{p_n}{q_n}$ を連続した ω の近似分数とすると 2個の近似分数の \times うちの一方は必ず下記を満たす:

$$\left|\omega - \frac{p}{q}\right| < \frac{1}{2q^2}$$

部分商

 $K(\omega) = \sup a_n$ とおく・

 $n \ge 1$

 $K(\omega) < \infty$ のとき,部分商が有界であるといい

 $K(\omega) = \infty$ のとき部分商が非有界という.

例えば,部分商が周期的ならば,有界である.

事実

 ω の部分商は周期的 $\Longleftrightarrow \omega$ は 2 次無理数 ($\mathbb Q$ 係数 2 次方程式の根)

Conjecture

- 3次以上の実代数的無理数の部分商 a, は必ず非有界であろう
- (3次以上の代数的無理数である実数で、部分商が非有界な例はまだ知られていません、一方、部分商が有界な超越数の例は知られています).

Criterion

無理数の判定条件

次の条件は全て同値.

- $\triangleright \theta \notin \mathbb{Q}$.
- ightharpoonup orall arepsilon > 0 に対し $rac{
 ho}{q} \in \mathbb{Q}$ が存在して

$$0<\left| heta-rac{p}{q}
ight|<rac{arepsilon}{q}$$
 が成立.

▶ 不等式

$$0 < \left| \theta - \frac{p}{q} \right| < \frac{1}{q^2}$$

を満たす無限個の $rac{
ho}{q}\in\mathbb{Q}$ が存在する.

Ford Circle

定義 [Ford Circle]

 $p\in\mathbb{Z}$ と $0< q\in\mathbb{Z}$ は互いに素であるとする. 平面において中心 $\left(rac{p}{q},rac{1}{2q^2}
ight)$,半径 $rac{1}{2q^2}$ の円を Ford の円と言い, $C\left(rac{p}{q}
ight)$ で表す.

▶ 中心の y 座標の値と 半径の長さが等しい ので、Ford の円と x 軸は接する.

Ford Circle by GeoGebra

- ▶ ω の連分数展開の近似分数列に対応する Ford の円を並べる.
- ▶ 2円 $C(\frac{p}{q})$ と $C(\frac{r}{s})$ が外接 \iff $ps-qr=\pm 1$.
- ▶ 近似分数 $\frac{p_{n-1}}{q_{n-1}}, \frac{p_n}{q_n}$ は $p_{n-1}q_n q_{n-1}p_n = (-1)^n$ を満たすので n-1 次と n 次の近似分数の Ford の円は外接.

$\zeta(2)$ の連分数展開

Riemann zeta 関数
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 を考える $(s>1)$.

Table: $\zeta(2)$ の近似分数表

n	p _n	q_n	$\frac{p_n}{q_n}$
0	1	1	1
1	2	1	2
2	3	2	3 2 5
3	5	3	53
4	23	14	2 <u>3</u> 14
5	51	31	<u>51</u> 31
6	227	138	$\frac{227}{138}$
7	1640	997	1640 997
8	1867	1135	1867 1135
9	9108	5537	9108 5537

$\zeta(2)$ の Irregular 連分数展開

Irregular 連分数 (分子が 1 とは限らないもの) で展開すると

$$\zeta(2) = \frac{5}{3 + \frac{1^4}{P(1) + \frac{2^4}{P(n) + \frac{n^4}{\dots}}}}$$

ただし $P(n)=11n^2+11n+3$. この多項式は連分数の関数版である Hermite-Padé 近似と呼ばれるものによって求められる.

$\zeta(2)$ の連分数 by Ford Circle

$\zeta(3)$ の連分数展開

Table: $\zeta(3)$ の近似分数表

		ı	
n	p_n	q_n	$\frac{p_n}{q_n}$
0	1	1	1
1	5	4	<u>5</u> 4
2	6	5	<u>6</u> 5
3	113	94	$\frac{113}{94}$
4	119	99	119 99
5	232	193	232 193
6	351	292	351 292
7	1636	1361	1636 1361
8	1987	1653	$\frac{1987}{1653}$
9	19519	16238	$\frac{19519}{16238}$

$\zeta(3)$ の Irregular 連分数展開

Irregular 連分数 (分子が 1 とは限らないもの) で展開すると

$$\zeta(3) = \frac{6}{5 + \frac{-1^{6}}{Q(1) + \frac{-2^{6}}{Q(n) + \frac{-n^{6}}{\cdots}}}}$$

ただし $Q(n) = (2n+1)(17n^2+17n+5)$. この多項式は連分数の関数版である Hermite-Padé 近似と呼ばれるものによって求められる.

$\zeta(3)$ の連分数 by Ford Circle

$\zeta(5)$ の連分数展開

Table: ζ(5) の近似分数表

n	p _n	q_n	$\frac{p_n}{q_n}$
0	1	1	1
1	28	27	28 27
2	337	325	337 325
3	365	352	365 352
4	702	677	702 677
5	10895	10507	10895 10507
6	11597	11184	$\frac{11597}{11184}$
7	68880	66427	68880 66427
8	80477	77611	804 77 77611
9	229834	221649	$\frac{229834}{221649}$

$\zeta(5)$ の連分数 by Ford Circle

$\zeta(5)$ の連分数 by Zoomed Ford Circle

⟨関数の書き換え

$$ho$$
 $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ のかわりに,交代級数 $\zeta(3) = \frac{5}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3 \cdot \binom{2n}{n}}$

を採用すると速く収束し、無理数性の証明に有用 (R. Apérý).

ト ちなみに
$$\zeta(2) = 3\sum_{n=1}^{\infty} \frac{1}{n^2 \cdot \binom{2n}{n}}$$
.

 $ightharpoonup \zeta(5)$ について,例えば $n \in \mathbb{N}, s \in 2\mathbb{N}+1$ に対し

$$R_n(t) := \frac{2^{6n} n!^{s-5} \prod_{j=0}^{6n} (t-n+\frac{1}{2}j)}{\prod_{j=0}^{n} (t+j)^{s+1}}, \quad r_n = \sum_{t=1}^{\infty} R_n(t)$$

と定めると、各 n に対し $r_n \in \mathbb{Q} + \mathbb{Q}\zeta(3) + \mathbb{Q}\zeta(5) + \cdots + \mathbb{Q}\zeta(s)$

- 事実 ζ(3) ∉ ℚ.
- ▶ 予想 $\forall s \in 2\mathbb{N} + 1$ に対し、 $\zeta(5), \zeta(7), ..., \zeta(s)$ はすべて無理数.
- ▶ 予想 $\forall s \in 2\mathbb{N} + 1$ に対し、 $\zeta(s)$ も $\frac{\zeta(s)}{\pi^s}$ もすべて無理数.

GeoGebra files ご紹介