Ab initio methods in solid state physics

XIII. Lattice Thermodynamics

Przemysław Piekarz Paweł T. Jochym

Department of Computational Material Science

Institute of Nuclear Physics, Polish Academy of Sciences

May 17, 2023

Thermodynamics of lattices

- This is not a thermodynamics lecture
- Basic thermodynamics of crystals
 - Harmonic phonons
 - Anharmonic perturbation
- Thermodynamic properties
 - Thermodynamic functions
 - Thermal displacements
 - Heat capacity
 - Thermal expansion
 - Heat conductance
 - Phase transitions

Thermodynamics of crystals

The thermodynamics in the statistical mechanics formulation is founded on probability distribution and partition function Z:

$$Z = \sum e^{-E/k_BT}$$

The remining thermodynamic functions are defined in relation to Z. For example Helmholtz free energy F:

$$F = -k_B T \ln Z,$$

also entropy, pressure, stresses, heat capacity are defined in terms of various functions of Z.

Calculation of Z requires knowledge of the energy levels of the system E. The energy can be expanded in the small parameter $\epsilon = \sqrt{\langle u^2 \rangle}/\langle R \rangle$ where u is a displacement and R is an interatomic distance. Thus, terms in Hamiltonian H can be ordered in the powers of ϵ :

$$H = H_0 + H_2 + H_3 + H_4 + \dots$$

Harmonic phonons

If we keep just two first terms in the Hamiltonian, the energy levels written in the *occupation number* formulation will take the form:

$$E_2(\dots,n_k,\dots) = \sum_k \hbar \omega_k \left(n_k + \frac{1}{2}\right)$$

which leads to the harmonic partition function Z_H :

$$Z_H = \sum_{(\dots,n_k,\dots)} e^{-\sum_k \hbar \omega_k (n_k + \frac{1}{2})/k_B T} = \prod_k \frac{e^{-\hbar \omega_k/2k_B T}}{1 - e^{-\hbar \omega_k/k_B T}}$$

giving harmonic free energy F_H :

$$F_{H} = \sum_{k} \left[\frac{1}{2} \hbar \omega_{k} + k_{B} T \ln \left(1 - e^{-\hbar \omega_{k}/k_{B}T} \right) \right] \label{eq:fh}$$

Anharmonic perturbation

Sustaining fourth order term in the Hamiltonian ($H=H_0+H_2+H_4$) leads to the anharmonic partition function Z:

$$Z = e^{-E_0/k_BT} \sum e^{-(E_2 + E_4)/k_BT} = e^{-E_0/k_BT} Z_H \left[1 - Z_H^{-1} \sum \frac{E_4}{k_BT} e^{-E_2/k_BT} \right]$$

$$Z = e^{-E_0/k_BT} Z_H \left[1 - \frac{\langle E_4 \rangle_H}{k_BT} \right]$$

giving free energy F:

$$F = E_0 - k_B T \ln Z_H + \langle E_4 \rangle_H = E_0 + F_H + F_A$$

Anharmonic free energy

After rather lenghty calculations the anharmonic free energy term becomes:

$$\begin{split} F_A = & 12 \sum_{k,k'} \Phi_{k,-k,k',-k'}(n_k + 1/2)(n_{k'} + 1/2) \\ & - \frac{18}{\hbar} \sum_{k,k',k''} \left\{ |\Phi_{kk'k''}|^2 \left[\frac{n_k n_{k'} + n_k + 1/3}{(\omega_k + \omega_{k'} + \omega_{k''})_p} + \frac{2n_k n_{k''} - n_k n_{k'} + n_{k''}}{(\omega_k + \omega_{k'} - \omega_{k''})_p} \right] \\ & + & 2\Phi_{k,-k,k''} \Phi_{k',-k',k''} \frac{n_k n_{k'} + n_k + 1/4}{(\omega_{k''})_p} \right\} \end{split}$$

which can be used to calculate further termodynamic functions (entropy, heat capacity, forces, stresses, etc.). The formulas for harmonic parts are reasonably compact, e.g. C_V :

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = -T\frac{\partial^2 F}{\partial T^2} = \sum_{\mathbf{q}\nu} k_{\rm B} \left(\frac{\hbar\omega(\mathbf{q}\nu)}{k_{\rm B}T}\right)^2 \frac{\exp(\hbar\omega(\mathbf{q}\nu)/k_{\rm B}T)}{[\exp(\hbar\omega(\mathbf{q}\nu)/k_{\rm B}T)-1]^2}$$

Expectation value of the squared atomic displacement:

$$\left\langle |u^{\alpha}(jl,t)|^2 \right\rangle = \frac{\hbar}{2Nm_j} \sum_{\mathbf{q},\nu} \omega_{\nu}(\mathbf{q})^{-1} (1 + 2n_{\nu}(\mathbf{q},T)) |e^{\alpha}_{\nu}(j,\mathbf{q})|^2,$$

Thermal expansion

$$F_{H} = \sum_{k} \left[\frac{1}{2} \hbar \omega_{k} + k_{B} T \ln \left(1 - e^{-\hbar \omega_{k}/k_{B}T} \right) \right] \label{eq:fh}$$

Figure 1: Figure from documentation of Phonopy package

Phase transitions

J. Łażewski, P. T. Jochym, P. Piekarz, and K. Parlinski; Phys. Rev. B 70 (2004) 104109