

FIG.1

FIG.3

FIG.4

FIG.5

FIG.6

FIG. 7

FIG.8

FIG.9

FIG.10

FIG.11

11/25

7G.12

12/25

FIG.13

FIG.14

FIG.15

FIG.16

7IG.18

FIG.19

FIG.20

H_CALL HARDWARE ACCELERATOR (COPROCESSOR) CALL PRIMITIVE												
OPERATION: PASS PARAMETERS TO HARDWARE ACCELERATOR												
ASSEMBLER SYNTAX: H_CALL #UU, R4-RLAST, #CODE												
DESCRIPTION: H_CALL_PASSES A SET_OF_REGISTER-BASED_PARAMETERS_AND_A CODE_TO_HARDWARE_BLOCK_(COPROCESSOR)_#UU												
CONDITION-CODE: UNAFFECTED												
INSTRUCTION FORMAT: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
0 1 0	0	UU	0	1	1		CNT			CO	DE	
INSTRUCTION FIELDS: UU FIELD—SPECIFIES HARDWARE BLOCK (COPROCESSOR) 00 — BLOCK 0 11 — BLOCK 1 10 — BLOCK 2 11 — BLOCK 2 11 — BLOCK 3 CNT FIELD—SPECIFIES NUMBER OF REGISTERS TO PASS, BEGINNING WITH R4 000 — RESERVED, DO NOT USE 001 — PASS R4 : 111 — PASS R4—R10												

FIG.22

H_RET HARDWARE ACCELERATOR (COPROCESSOR) RETURN PRIMITIVE												
OPERATION: PASS PARAMETERS FROM HARDWARE ACCELERATOR												
ASSEMBLER SYNTAX: H_RET #UU, R4-RLAST, #CODE												
DESCRIPTION: H RET PASSES A CODE TO COPROCESSOR #UU AND RECEIVES A SET OF RETURN PARAMETERS TO BE LOADED INTO CPU REGISTERS												
CONDITION-CODE: UNAFFECTED												
INSTRUCTION FORMAT: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
15 14 13		11 10	9	1	7	6	5 CNT	4			DE	0
0 1 0	0	UU	0	-1	U		CIVI			- 00	UL	
INSTRUCTION FIELDS: UU FIELD—SPECIFIES HARDWARE BLOCK (COPROCESSOR) 00 — BLOCK 0 01 — BLOCK 1 10 — BLOCK 2 11 — BLOCK 3 CNT FIELD—SPECIFIES NUMBER OF REGISTERS TO PASS, BEGINNING WITH R4 000 — RESERVED, DO NOT USE 001 — PASS R4 010 — PASS R4 111 — PASS R4—R10												

FIG.23

H_EXEC HARDWARE ACCELERATOR (COPROCESSOR) EXECUTE PRIMITIVE												
OPERATION: PASS EXECUTION CODE TO HARDWARE ACCELERATOR												
ASSEMBLER SYNTAX: H_EXEC #UU, #CODE												
DESCRIPTION: H EXEC IS USED TO CONTROL A FUNCTION IN COPROCESSOR #ŪU. THE CODE FIELD IS NOT INTERPRETED BY THE CPU												
CONDITION-CODE: UNAFFECTED												
INSTRUCTION FORMAT:												
15 14 13 12 11 10 9 8 7 6 5 4	3	2	_1_	0								
0 1 0 0 00 0 0	ODE											
INSTRUCTION FIELDS: UU FIELD—SPECIFIES HARDWARE BLOCK (COPROCESSOR) 00 — BLOCK 0 01 — BLOCK 1 10 — BLOCK 2 11 — BLOCK 3												

FIG.24

HARDWARE ACCELERATOR (COPROCESSOR) LOAD PRIMITIVE H LD LOAD OPERAND FROM MEMORY AND PASS TO HARDWARE ACCELERATOR OPERATION: ASSEMBLER H LD.[HW][U] #UU, (RX, DISP) SYNTAX: H LD.[U] #UU, (RX, DISP) H LD PERFORMS A LOAD OF A VALUE IN MEMORY. AND PASSES DESCRIPTION: THE MEMORY OPERAND TO THE COPROCESSOR WITHOUT STORING IT IN A GPR. THE H LD OPERATION HAS THREE OPTIONS. W-WORD, H-HALF WORD AND U-UPDATE, DISP IS OBTAINED BY SCALING THE IMM2 FIELD BY THE SIZE OF THE LOAD, AND ZERO-EXTENDING. THIS VALUE IS ADDED TO THE VALUE OF REGISTER RX AND A LOAD OF THE SPECIFIED SIZE IS PERFORMED FROM THIS ADDRESS. WITH THE RESULT OF THE LOAD PASSED TO THE HARDWARE INTERFACE. FOR HALFWORD LOADS, THE DATA FETCHED IS ZERO-EXTENDED TO TO 32-BITS. IF THE .U OPTION IS SPECIFIED, THE EFFECTIVE ADDRESS OF THE LOAD IS PLACED IN REGISTER RX AFTER IT IS CALCULATED CONDITION-CODE: UNAFFECTED INSTRUCTION FORMAT: 8 7 6 3 2 1 14 13 12 11 10 15 SZ RX UP TMM2 0 UU 1 INSTRUCTION FIELDS: UU FIELD-SPECIFIES HARDWARE BLOCK (COPROCESSOR) 00 - BLOCK 0 01 - BLOCK 1 10 - BLOCK 2 11 - BLOCK 3 SIZE-SPECIFIES LOAD SIZE 0 - WORD 1 - HALFWORD UP-SPECIFIES WHETHER THE BASE REGISTER SHOULD BE UPDATED 0 - NO UPDATE 1 - UPDATE BASE REGISTER WITH EFFECTIVE ADDRESS TMM2 FTFLD-SPECTFIES A 2-BIT SCALED IMMEDIATE VALUE REGISTER X-SPECIFIES THE BASE ADDRESS TO BE ADDED TO THE SCALED IMMEDIATE FIELD

H ST HARDWARE ACCELERATOR (COPROCESSOR) STORE PRIMITIVE

OPERATION: STORE OPERAND TO MEMORY FROM HARDWARE ACCELERATOR

ASSEMBLER

SYNTAX: H ST.[HW][U] #UU, (RX, DISP)

DESCRIPTION: H_ST PERFORMS A STORE TO MEMORY, OF AN OPERAND FROM A COPROCESSOR WITHOUT STORING IT IN A GPR. THE H ST OPERATION HAS W—WORD, H—HALF WORD AND U—UPDATE. DISP IS OBTATNED BY SCALING THE IMM2 FIELD BY THE SIZE OF THE STORE AND ZERO—EXTENDING. THIS VALUE IS ADDED TO THE VALUE OF EGISTER RX AND STORE OF THE SPECIFIED SIZE IS PERFORMED TO THIS ADDRESS, WITH THE DATA FOR THE STORE OBTAINED FROM THE HARDWARE INTERFACE. IF THE .U OPTION IS SPECIFIED, THE EFFECTIVE ADDRESS OF THE LOAD IS PLACED IN REGISTER RX AFTER IT IS CALCULATED

CONDITION-CODE: UNAFFECTED

INSTRUCTION FORMAT:

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	0	1	0	0	UU		1	SZ	1	UP	IM	М2		R	Χ	

INSTRUCTION FIELDS:

UU FIELD-SPECIFIES HARDWARE BLOCK (COPROCESSOR)

00 - BLOCK 0

01 - BLOCK 1 10 - BLOCK 2

11 - BLOCK 3

SIZE-SPECIFIES STORE SIZE

0 - WORD

1 - HALFWORD

UP-SPECIFIES WHETHER THE BASE REGISTER SHOULD BE UPDATED

0 - NO UPDATE

1 - UPDATE BASE REGISTER WITH EFFECTIVE ADDRESS

IMM2 FIELD—SPECIFIES A 2—BIT SCALED IMMEDIATE VALUE

REGISTER X-SPECIFIES THE BASE ADDRESS TO BE ADDED TO THE SCALED IMMEDIATE FIELD