Azure End-To-End Data Engineering Project

Project Overview

This project demonstrates a comprehensive end-to-end data engineering solution using Microsoft Azure. The goal was to build a scalable data pipeline that ingests, transforms, and serves data for analytics. The project leverages multiple Azure services, including:

- Azure Data Lake Storage (ADLS Gen2) For storing raw, processed, and serving data.
- Azure Data Factory (ADF) For orchestrating data movement and transformations.
- Azure Databricks For performing advanced data transformations using Spark.
- Azure Synapse Analytics For data warehousing and serving structured data.
- Power BI For visualization and reporting.

The project follows the Medallion Architecture (Bronze \rightarrow Silver \rightarrow Gold) to ensure data quality and reliability.

Project Architecture

The architecture consists of the following stages:

1. Data Ingestion (Bronze Layer)

• Source: GitHub API (AdventureWorks dataset).

- Tool: Azure Data Factory (ADF) for dynamic data ingestion.
- Storage: Azure Data Lake (Bronze container).

2. Data Transformation (Silver Layer)

- Tool: Azure Databricks for Spark-based transformations.
- Storage: Azure Data Lake (Silver container).

3. Data Serving (Gold Layer)

- Tool: Azure Synapse Analytics for SQL-based data modeling.
- Storage: Azure Data Lake (Gold container).
- Visualization: Power BI for reporting.

Detailed Implementation

1. Setting Up Azure Resources

- **Resource Group:** Created to organize all Azure services.
- Azure Data Lake Storage (ADLS Gen2)
 - Enabled hierarchical namespace for folder structure.
 - Created three containers:
 - Bronze (raw data)
 - Silver (cleaned & transformed data)
 - Gold (serving layer for analytics)

2. Data Ingestion with Azure Data Factory (ADF)

- Static Pipeline:
 - Pulled data from GitHub (CSV files) into the Bronze layer.

• Dynamic Pipeline:

- Used parameters and loops to automate ingestion.
- Implemented JSON configuration for flexible file handling.

3. Data Transformation with Azure Databricks

• Cluster Setup: Configured a Databricks cluster for Spark processing.

- **Data Loading**: Read data from the Bronze layer into Spark DataFrames.
- Transformations Applied:
 - **Date Functions**: Extracted month and year from dates.
 - String Manipulation: Concatenated columns (e.g., full customer name).
 - Split Operations: Separated product SKU into categories.
 - Aggregations: Grouped sales data by date for trend analysis.
- Data Storage: Saved transformed data in Parquet format to the Silver layer.

Notebook Link: https://github.com/shivaramsb/Adventure-Works-Data-Engineering-Project/blob/main/Silver-layer.ipynb

- 4. Data Serving with Azure Synapse Analytics
 - Serverless SQL Pool: Used for querying data directly from ADLS.
 - Views Creation: Defined SQL views on Silver layer data.

```
Microsoft Azure Synapse Analytics I synapse aw project workspace

We use optional cookies to provide a better experience. Learn more 

| We use optional cookies to provide a better experience. Learn more | Search | Sear
```

• External Tables:

• Created using CETAS (CREATE EXTERNAL TABLE AS SELECT).

• Stored final data in the Gold layer for Power BI consumption.

5. Visualization with Power BI

• Connection Setup: Linked Power BI to Synapse using SQL endpoint.

• Dashboard Creation:

- Built interactive reports (line charts, KPIs).
- Analyzed sales trends and customer metrics.

Key Learnings

1. **Dynamic Pipelines in ADF**:

- Learned to use parameters, loops, and JSON configurations for flexible data ingestion.
- Challenges: Debugging pipeline failures due to incorrect parameter mappings.

2. Databricks Transformations:

- Mastered Spark functions (withColumn, groupBy, split).
- Challenges: Schema inference issues with CSV files.

3. Synapse & Lakehouse Concept:

- Understood the difference between **dedicated SQL pool** (traditional DW) and **serverless SQL pool** (Lakehouse).
- Challenges: Managing external tables and credentials.

4. Power BI Integration:

• Successfully connected Synapse to Power BI using SQL endpoints.

Conclusion

This project successfully implemented a scalable, automated, and end-to-end data pipeline on Azure. Key achievements:

- Efficient Data Flow: From raw ingestion to analytics-ready datasets.
- Cost Optimization: Leveraged serverless components (Synapse, Databricks).
- Real-World Applicability: Used dynamic pipelines and Lakehouse architecture.

GitHub & Code References

- Github
- <u>Linkdin</u>