# A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH\*

#### JIANXING HAN<sup>†</sup> AND MINGHUA CHEN<sup>‡</sup>

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 8 **Key words.** example, LATEX
- 9 **MSC codes.** 68Q25, 68R10, 68U05
- 10 **1. Introduction.** The introduction introduces the context and summarizes the manuscript. It is importantly to clearly state the contributions of this piece of work.

For 
$$\Omega = (0, 2T), 1 < \alpha < 2$$
, suppose  $f \in C^{\beta}(\Omega), \beta > 4 - \alpha, ||f||_{\beta}^{(\alpha/2)} < \infty$ 

13 (1.1) 
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

14 where

2

3

12

2324

25

27

15 
$$(1.2) \qquad (-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

17 (1.3)  $\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$ 

- and the solution  $u \in C^{\alpha/2}(\Omega)$ .
  - 2. Regularity.

20 Remark 2.1. 1.  $C^k(U)$  is the set of all k-times continuously differentiable func-21 tions on open set U.

22 2.  $C^{\beta}(U)$  is the collection of function f which for any  $V \subset\subset U$   $f|_{V} \in C^{\beta}(V)$ .

THEOREM 2.2. If  $f \in C^{\beta}(\Omega), \beta > 2$  and  $||f||_{\beta}^{(\alpha/2)} < \infty$ , then for l = 0, 1, 2

26 (2.1) 
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

THEOREM 2.3 (Regularity up to the boundary [1]).

29 (2.2) 
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left( ||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

<sup>\*</sup>Submitted to the editors DATE.

<sup>&</sup>lt;sup>†</sup>School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (hanjx2023@mail.lzu.edu.cn).

<sup>&</sup>lt;sup>‡</sup>School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (chen@mail.lzu.edu.cn).

30 COROLLARY 2.4. Let u be a solution of (1.1) on  $\Omega$ . Then, for any  $x \in \Omega$  and 31 l = 0, 1, 2, 3, 4

32 (2.3) 
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

The paper is organized as follows. Our main results are in section 4, experimental results are in section 7, and the conclusions follow in section 8.

#### 3. Numeric Format.

35 (3.1) 
$$x_{i} = \begin{cases} T\left(\frac{i}{N}\right)^{r}, & 0 \leq i \leq N \\ 2T - T\left(\frac{2N-i}{N}\right)^{r}, & N \leq i \leq 2N \end{cases}$$

36 where  $r \geq 1$ . And let

37 (3.2) 
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let  $\{\phi_j(x)\}_{j=1}^{2N-1}$  be standard hat functions, which are basis of the piecewise linear function space.

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

41 And then, we can approximate u(x) with

42 (3.4) 
$$u_h(x) := \sum_{j=1}^{2N-1} u(x_j)\phi_j(x)$$

43 For convience, we denote

44 (3.5) 
$$I_h^{2-\alpha}(x_i) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_i - y|^{1-\alpha} u_h(y) dy$$

And now, we can approximate the operator (1.2) at  $x_i$  with (3.6)

$$D_{h}^{\alpha'}u_{h}(x_{i}) := D_{h}^{2}I_{h}^{2-\alpha}(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i}}I_{h}^{2-\alpha}(x_{i-1}) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right)I_{h}^{2-\alpha}(x_{i}) + \frac{1}{h_{i+1}}I_{h}^{2-\alpha}(x_{i+1}) \right)$$

Finally, we approximate the equation (1.1) with

48 (3.7) 
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = f(x_i), \quad 1 < i < 2N-1$$

The discrete equation (3.7) can be written in matrix form

50 (3.8) 
$$AU = F$$

where U is unknown,  $F = (f(x_1), \dots, f(x_{2N-1}))$ . The matrix A is constructed as follows: Since

$$I_{h}^{2-\alpha}(x_{i}) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u_{h}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u(x_{j}) \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} u(x_{j}) \frac{1}{\Gamma(2-\alpha)} \int_{x_{j-1}}^{x_{j+1}} |x_{i} - y|^{1-\alpha} \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{u(x_{j})}{\Gamma(4-\alpha)} \left( \frac{|x_{i} - x_{j-1}|^{3-\alpha}}{h_{j}} - \frac{h_{j} + h_{j+1}}{h_{j}h_{j+1}} |x_{i} - x_{j}|^{3-\alpha} + \frac{|x_{i} - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

$$=: \sum_{j=1}^{2N-1} \tilde{a}_{ij} u(x_{j}), \quad 0 \le i \le 2N$$

Then, substitute in (3.6), we have

55 (3.10) 
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{j=1}^{2N-1} a_{ij} \ u(x_j)$$

where

57 (3.11) 
$$a_{ij} = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_i} \tilde{a}_{i-1,j} - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

- 4. Main results. Here we state our main results; the proof is deferred to sec-58 tion 5 and section 6. 59
- Let's denote  $h = \frac{1}{N}$ , we have 60
- THEOREM 4.1 (Truncation Error). If  $f \in C^2(\Omega)$  and  $\alpha \in (1,2)$ , and u(x) is a so-61
- lution of the equation (1.1), then there exists a constant  $C_1, C_2 = C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{C^2(\Omega)}), C_2(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)}),$
- such that the truncation error of the discrete format satisfies
- (4.1)

65

$$|-\kappa_{\alpha}D_{h}^{\alpha}u_{h}(x_{i}) - f(x_{i})| \leq C_{1}h^{\min\{\frac{r\alpha}{2},2\}} \begin{cases} x_{i}^{-\alpha}, & 1 \leq i \leq N\\ (2T - x_{i})^{-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

$$+ C_{2}(r - 1)h^{2} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & 1 \leq i \leq N\\ |T - x_{i+1}|^{1-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

- Theorem 4.2 (Convergence). The discrete equation (3.7) has sulotion U, and there exists a positive constant  $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$  such that the error 66
- 67
- between the numerial solution U with the exact solution  $u(x_i)$  satisfies

69 (4.2) 
$$\max_{1 \le i \le 2N-1} |U_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

That means the numerial method has convergence order  $\min\{\frac{r\alpha}{2}, 2\}$ .

5. **Proof of Theorem 4.1.** For convience, let's denote

72 (5.1) 
$$I^{2-\alpha}(x) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha} u(y) dy$$

73 Then, the truncation error of the discrete format can be written as

$$-\kappa_{\alpha}D_{h}^{\alpha}u_{h}(x_{i}) - f(x_{i}) = -\kappa_{\alpha}(D_{h}^{2}I_{h}^{2-\alpha}(x_{i}) - \frac{d^{2}}{dx^{2}}I^{2-\alpha}(x_{i}))$$

$$= -\kappa_{\alpha}D_{h}^{2}(I_{h}^{2-\alpha} - I^{2-\alpha})(x_{i}) - \kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i})$$

75 **5.1. Estimate of**  $-\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i})$ .

THEOREM 5.1. There exits a constant  $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$  such that

77 (5.3) 
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 (x_i^{-\alpha/2 - 2/r} + (2T - x_i)^{-\alpha/2 - 2/r})$$

78 Proof. Since  $f \in C^2(\Omega)$  and

79 (5.4) 
$$\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$$

80 we have  $I^{2-\alpha} \in C^4(\Omega)$ . Therefore, using equation (A.3) of Lemma A.1, for  $1 \le i \le$ 

81 2N - 1, we have (5.5)

$$82 -\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i}) = \frac{h_{i+1} - h_{i}}{3}f'(x_{i}) + \frac{1}{4!}\frac{2}{h_{i} + h_{i+1}}(h_{i}^{3}f''(\eta_{1}) + h_{i+1}^{3}f''(\eta_{2}))$$

where  $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$ . By Lemma B.2 and Theorem 2.2 we have 1.

84 (5.6) 
$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3} Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

85 2. See Proof 20, there is a constant  $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$  such that

$$\begin{vmatrix}
\frac{1}{4!} \frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \\
\leq Ch^2 \begin{cases}
x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\
(2T - x_i)^{-\alpha/2 - 2/r}, & N \leq i \leq 2N - 1
\end{cases}$$

87 Summarizes, we get the result.

**5.2.** Estimate of  $R_i$ . Now, we study the first part of (5.2)

89 (5.8) 
$$D_h^2(I^{2-\alpha} - I_h^{2-\alpha})(x_i) = D_h^2(\int_0^{2T} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

90 For convience, let's denote

91 (5.9) 
$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

92 And define

$$R_{i} := D_{h}^{2} (I^{2-\alpha} - I_{h}^{2-\alpha})(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \sum_{j=1}^{2N} \left( \frac{1}{h_{i}} T_{i-1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

- We have some results about the estimate of  $R_i$
- THEOREM 5.2. For  $1 \le i < N/2$ , there exists  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that

96 (5.11) 
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & \alpha/2-2/r+1>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & \alpha/2-2/r+1=0\\ Ch^{r\alpha/2}x_{i}^{-1-\alpha}, & \alpha/2-2/r+1<0 \end{cases}$$

THEOREM 5.3. For  $N/2 \le i \le N$ , there exists constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ 

99 such that

97

100 (5.12) 
$$R_{i} \leq C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

- And for  $N < i \le 2N 1$ , it is symmetric to the previous case.
- To prove these results, we need some utils. Also for simplicity, we denote DEFINITION 5.4.

103 (5.13) 
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_i} T_{i-1,j} - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

104 then

105 (5.14) 
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

- **5.3. Proof of Theorem 5.2.**
- LEMMA 5.5. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for  $1 \le i < N/2$ ,

109 (5.15) 
$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

110 Proof. For  $\max\{2i+1,i+3\} \leq j \leq N$ , by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left( \frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)} \right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

112 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

114

LEMMA 5.6. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for  $1 \le i < N/2$ ,

117 (5.18) 
$$\sum_{j=N+1}^{2N} S_{ij} \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

118 Proof. For  $1 \le i < N/2, N+1 \le j \le 2N-1$ , by equation (C.2) and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

120

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

122 And by Lemma A.3

123 
$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

124 And when  $\alpha/2 - 2/r + 1 \ge 0$ ,

$$h^{r\alpha/2+r} \le h^2$$

126 Summarizes, we get the result.

127 For i = 1, 2.

This manuscript is for review purposes only.

Lemma 5.7. By Lemma C.5, Lemma 5.5 and Lemma 5.6 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

130

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2}x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For  $3 \le i < N/2$ , we have a new separation of  $R_i$ , Let's denote  $k = \lceil \frac{i}{2} \rceil$ .

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j+1} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

134

LEMMA 5.8. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for  $3 \le 136$   $i \le N, k = \lceil \frac{i}{2} \rceil$ 

137 (5.23) 
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

138 *Proof.* For  $2 \le j \le k-1$ , by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1-\alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

140 And by Lemma A.3, Lemma C.3

141 (5.25) 
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

142 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

144 But

145 (5.27) 
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

146 So we have

147 (5.28) 
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

Definition 5.9. For convience, let's denote

149 (5.29) 
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j+1} - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

150

Theorem 5.10. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for

152  $3 \leq i < N/2, k = \lceil \frac{i}{2} \rceil$ ,

153 (5.30) 
$$I_3 = \sum_{i=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete  $V_{ij}$ , we need some preparations.

155 Lemma 5.11. Denote 
$$y_j^{\theta} = \theta x_{j-1} + (1-\theta)x_j, \theta \in [0,1], \ by \ Lemma \ A.2$$

$$T_{ij} = \int_{x_{j-1}}^{x_{j}} (u(y) - u_{h}(y)) \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_{x_{j-1}}^{x_{j}} -\frac{\theta(1-\theta)}{2} h_{j}^{2} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{3} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) dy_{j}^{\theta}$$

$$= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} h_{j}^{3} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{4} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) d\theta$$

- 157 where  $\eta_{j1}^{\theta} \in [x_{j-1}, y_j^{\theta}], \eta_{j2}^{\theta} \in [y_j^{\theta}, x_j].$
- Now Let's construct a series of functions to represent  $T_{ij}$ .

Definition 5.12.

159 (5.32) 
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

160

161 (5.33) 
$$y_{j-i}^{\theta}(x) = \theta y_{j-1-i}(x) + (1-\theta)y_{j-i}(x)$$

162

163 (5.34) 
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

164 Now, we define

165 (5.35) 
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

166

167 (5.36) 
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

- 168 And now we can rewrite  $T_{ij}$
- 169 LEMMA 5.13. For  $2 \le i \le N, 2 \le j \le N$ ,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} (\theta^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j2}^{\theta})) d\theta$$

Immediately, we can see from (5.29) that

172 LEMMA 5.14. For 
$$3 \le i \le N-1$$
,  $3 \le j \le N-1$ ,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j+1} - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j,2}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate  $V_{ij}$ , we first estimate  $D_h^2 P_{j-i}^{\theta}(x_i)$ , but By Lemma A.1,

175 (5.39) 
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}{}''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

- By Leibniz formula, we calculate and estimate the derivations of  $h_{i-i}^3$ ,  $u''(y_{i-i}^{\theta}(x))$
- 177 and  $\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$  separately.
- Firstly, we have
- Lemma 5.15. There exists a constant C = C(T,r) such that For  $3 \le i \le N$
- 180  $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \xi \in [x_{i-1}, x_{i+1}], \xi \in [$

181 (5.40) 
$$h_{i-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_i$$

182 
$$(5.41)$$
  $(h_{i-1}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_i$ 

183 
$$(5.42)$$
  $(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$ 

- 184 The proof of this theorem see Lemma C.6 and Lemma C.7
- 185 Second,
- LEMMA 5.16. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that For
- 187  $3 \le i \le N 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i 1, N 1\}, \xi \in [x_{i-1}, x_{i+1}],$

188 (5.43) 
$$u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$$

189 (5.44) 
$$(u''(y_{i-i}^{\theta}(\xi)))' \le Cx_i^{\alpha/2-3}$$

190 (5.45) 
$$(u''(y_{j-i}^{\theta}(\xi)))'' \le Cx_i^{\alpha/2-4}$$

- 191 The proof of this theorem see Proof 27
- 192 And Finally, we have
- LEMMA 5.17. There exists a constant  $C = C(T, \alpha, r)$  such that For  $3 \le i \le r$
- 194  $N-1, 1 \le j \le \min\{2i-1, N-1\}, \xi \in [x_{i-1}, x_{i+1}],$

195 (5.46) 
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_i^{\theta} - x_i|^{1-\alpha}$$

196 (5.47) 
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-1}$$

197 (5.48) 
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

198 where 
$$y_j^{\theta} = \theta x_{j-1} + (1 - \theta)x_j$$

199 The proof of this theorem see Proof 28

200

Lemma 5.18. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that For

202 
$$3 \le i \le N - 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\},\$$

203 (5.49) 
$$D_h^2 P_{j-i}^{\theta}(x_i) \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

204 where 
$$y_i^{\theta} = \theta x_{j-1} + (1 - \theta) x_j$$

205 Proof. Since

206 (5.50) 
$$D_h^2 P_{j-i}^{\theta}(x_i) = P_{j-i}^{\theta}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

207 From (5.35), using Leibniz formula and Lemma 5.15, Lemma 5.16 and Lemma 5.17  $\square$ 

208

LEMMA 5.19. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for

210  $3 \le i < N, k = \lceil \frac{i}{2} \rceil$ .

211 For  $k \le j \le \min\{2i - 1, N - 1\}$ ,

$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

213 And for  $k + 1 \le j \le \min\{2i, N\}$ ,

$$\frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_i} \right) \\
\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

215 where 
$$\eta_j^{\theta} \in [x_{j-1}, x_j]$$
.

proof see Proof 29

217

LEMMA 5.20. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for

219  $3 \le i < N, k = \lceil \frac{i}{2} \rceil, k+1 \le j \le \min\{2i-1, N-1\},\$ 

$$V_{ij} \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{i-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

221 *Proof.* Since Lemma 5.14, by Lemma 5.18 and Lemma 5.19, we get the result 222 immediately.  $\square$ 

Now we can prove Theorem 5.10 using Lemma 5.20,  $k = \lceil \frac{i}{2} \rceil$ 

$$I_{3} = \sum_{k+1}^{2i-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{2i-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left( \frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{2i-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

LEMMA 5.21.

226 (5.55) 
$$D_h P_{j-i}^{\theta}(x_i) := \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_i, x_{i+1}]$$

227 Then, for  $3 \le i \le N - 1$ ,  $k = \lceil \frac{i}{2} \rceil$ ,

228 (5.56) 
$$D_h P_{k-i}^{\theta}(x_i) \le C h^2 x_i^{-\alpha/2 - 2/r} h_j$$

229

225

230 Proof. Using Leibniz formula, by Lemma 5.15, Lemma 5.16 and Lemma 5.17, we 231 take j = k + 1, i = i + 1, we get

$$D_{h}P_{k-i}^{\theta}(x_{i}) \leq Ch^{2}x_{i+1}^{\alpha/2-2/r-1}|y_{k+1}^{\theta} - x_{i+1}|^{1-\alpha}h_{j+1}$$

$$\leq Ch^{2}x_{i}^{\alpha/2-2/r-1}|y_{k}^{\theta} - x_{i}|^{1-\alpha}h_{j}$$

$$\leq Ch^{2}x_{i}^{-\alpha/2-2/r}h_{j}$$

233

LEMMA 5.22. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for  $3 \le i < N, k = \lceil \frac{i}{2} \rceil$ ,

(E EQ)

236 
$$I_2 = \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

237 And for  $3 \le i < N/2$ ,

238 
$$I_4 = \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_i} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

239 *Proof.* In fact,

$$\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k} 
= \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i}) T_{i,k}$$

241 While, by Lemma A.2

$$\frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - u_h(y)) \frac{|x_{i+1} - y|^{1-\alpha} - |x_i - y|^{1-\alpha}}{h_{i+1}\Gamma(2-\alpha)} dy$$

$$\leq \int_{x_{k-1}}^{x_k} h_k^2 u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq Ch_k h^2 x_k^{2-2/r} x_{k-1}^{\alpha/2-2} |x_i - x_k|^{-\alpha}$$

$$\leq Ch_k h^2 x_i^{-\alpha/2-2/r}$$

243 Thus,

244 (5.62) 
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

245 For (5.63)

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} d\theta 
+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,1}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,1}^{\theta})}{h_{i+1}} d\theta 
- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,2}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,2}^{\theta})}{h_{i+1}} d\theta$$

247 And by Lemma 5.21

248 (5.64) 
$$\frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} \le Ch^2 x_i^{-\alpha/2 - 2/r} h_k$$

249 And with Lemma 5.19, we can get

250 (5.65) 
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

251 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} h_k C h_k^2 x_{k-1}^{\alpha/2-2} |x_k - x_i|^{1-\alpha} \\
\le C h^2 x_i^{-\alpha/2-2/r}$$

253 Summarizes, we have

254 (5.67) 
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

255 The case for  $I_4$  is similar.

Now combine Lemma 5.8, Lemma 5.22, Theorem 5.10, Lemma 5.5 and Lemma 5.6 to get the final result.

258 For  $3 \le i < N/2$ 

$$R_i = I_1 + I_2 + I_3 + I_4 + I_5$$

$$\leq Ch^2 x_i^{-\alpha/2 - 2/r} + \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & r\alpha/2 + r - 2 > 0 \\ Ch^2 (x_i^{-1 - \alpha} \ln(i) + \ln(N)), & r\alpha/2 + r - 2 = 0 \\ Ch^{\alpha/2 + r} x_i^{-1 - \alpha}, & r\alpha/2 + r - 2 < 0 \end{cases}$$

Combine with i = 1, 2, we get for  $1 \le i \le N/2$ 

$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & r\alpha/2+r-2>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & r\alpha/2+r-2=0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & r\alpha/2+r-2<0 \end{cases}$$

5.4. Proof of Theorem 5.3. For  $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$ , we have

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} \left( T_{i+1,k} + T_{i+1,k+1} \right) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j+1} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i}} \left( T_{i-1,2N-\lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N-\lceil \frac{N}{2} \rceil} \right) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2N-\lceil \frac{N}{2} \rceil + 1} \right)$$

$$+ \sum_{j=2N-\lceil \frac{N}{2} \rceil + 2}^{2N} \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j} - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5} + I_{6} + I_{7}$$

- We have estimate  $I_1$  in Lemma 5.8 and  $I_2$  in Lemma 5.22. We can control  $I_3$  in similar with Theorem 5.10 by Lemma 5.20 where  $2i 1 \ge N 1$
- LEMMA 5.23. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that for  $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$ ,

$$I_{3} = \sum_{j=k+1}^{N-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{N-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left( \frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{N-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

Let's study  $I_5$  before  $I_4$ .

270 (5.72) 
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

- 271 Similarly, Let's define a new series of functions
- Definition 5.24. For i < N, j > N,

273 (5.73) 
$$y_{j-i}(x) = 2T - (Z_{2N-j+i} - x^{1/r})^r, \quad Z_{2N-j+i} = T^{1/r} \frac{2N-j+i}{N}$$

275 (5.74) 
$$y_{j-i}'(x) = (2T - y_{j-i}(x))^{1-1/r} x^{1/r-1}$$

276 (5.75) 
$$y_{j-i}''(x) = \frac{1-r}{r} (2T - y_{j-i}(x))^{1-2/r} x^{1/r-2} Z_{2N-j+i}$$

278

279 (5.77) 
$$y_{j-i}^{\theta}(x) = \theta y_{j-i-1}(x) + (1-\theta)y_{j-i}(x)$$
280

281 (5.78) 
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

282

283 (5.79) 
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

284

287

285 (5.80) 
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Now we have, for  $i < N, j \ge N + 2$ 

(5.81)

$$\begin{aligned} V_{ij} &= \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,j+1} - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right) \\ &= \int_0^1 - \frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta \\ &+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta \\ &- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,1}^{\theta})}{h_i} \right) d\theta \\ &- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta \\ &+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta \end{aligned}$$

Similarly, we first estimate

289 (5.82) 
$$D_h^2 P_{j-i}^{\theta}(\xi) = P_{j-i}^{\theta'}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

290 Combine lemmas Lemma C.8, Lemma C.9 and Lemma C.10, we have

LEMMA 5.25. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that For

292  $N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \xi \in [x_{i-1}, x_{i+1}], we have$ 

$$|P_{j-i}^{\theta}|''(\xi)| \leq Ch_{j}h^{2}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}) + |y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2} + (r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha})$$

294 And

295 Lemma 5.26. There exists a constant  $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$  such that For 296  $N/2 \le i < N$ ,  $\xi \in [x_{i-1}, x_{i+1}]$ , we have for  $N+1 \le j \le 2N - \lceil \frac{N}{2} \rceil$ 

$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{j}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}))$$

298 for  $N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$ 

$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2}h_{i}(|y_{i}^{\theta} - x_{i}|^{1-\alpha} + |y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{N}))$$

- 300 The proof see Proof 33.
- Combine (5.81), Lemma 5.25 and Lemma 5.26, we have
- Theorem 5.27. There exists a constant  $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$  such that For  $N/2 \le i < N, N+2 \le j \le 2N \lceil \frac{N}{2} \rceil + 1$

$$V_{ij} \leq Ch^2 \int_{x_{j-1}}^{x_j} (|y - x_i|^{1-\alpha} + |y - x_i|^{-\alpha} (|2T - x_i - y| + h_N) + |y - x_i|^{-1-\alpha} (|2T - x_i - y| + h_N)^2 + (r-1)|y - x_i|^{-\alpha}) dy$$

- We can esitmate  $I_5$  Now.
- THEOREM 5.28. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that For  $N/2 \le i < N$ , we have

308 (5.87) 
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij} \le Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{5} = \sum_{j=N+2}^{2N-\lceil\frac{N}{2}\rceil} V_{ij}$$

$$\leq Ch^{2} \int_{x_{N+1}}^{x_{2N-i}} + \int_{x_{2N-i}}^{x_{2N-\lceil\frac{N}{2}\rceil}} (|y-x_{i}|^{1-\alpha} + |y-x_{i}|^{-\alpha} (|2T-x_{i}-y|+h_{N}) + |y-x_{i}|^{-1-\alpha} (|2T-x_{i}-y|+h_{N})^{2} + (r-1)|y-x_{i}|^{-\alpha}) dy$$

$$= J_{1} + J_{2}$$

310 While  $x_{N+1} \le y \le x_{2N-i} = 2T - x_i$ ,

311 (5.89) 
$$T - x_{i-1} \le x_{N+1} - x_i \le y - x_i \le x_{2N-i} - x_i \le 2(T - x_{i-1})$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH

312 and

313 (5.90) 
$$2T - x_i - y + h_N \le 2T - x_i - x_{N+1} + h_N = T - x_i \le T - x_{i-1}$$

314 So

$$J_{1} \leq Ch^{2}(x_{2N-i} - x_{N+1})(|T - x_{i-1}|^{1-\alpha} + (r-1)|T - x_{i-1}|^{-\alpha})$$

$$\leq Ch^{2}(|T - x_{i-1}|^{2-\alpha} + (r-1)|T - x_{i-1}|^{1-\alpha})$$

$$\leq Ch^{2}T^{2-\alpha} + C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha}$$

316 Otherwise, when  $x_{2N-i} \leq y \leq x_{2N-\lceil \frac{N}{2} \rceil}$ 

317 (5.92) 
$$x_i + y - 2T + h_N \le y - x_i$$

318

$$J_{2} \leq Ch^{2} \int_{x_{2N-i}}^{(2-2^{-r})T} |y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{2N-i} - x_{i}|^{1-\alpha})$$

$$= Ch^{2} + C(r-1)h^{2}|T-x_{i}|^{1-\alpha} \leq Ch^{2} + C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha}$$

320 Summarizes two cases, we get the result.

This manuscript is for review purposes only.

For  $I_4$ , we have

THEOREM 5.29. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that, for

$$323 \quad N/2 \le i < N-1$$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_{i+1}} T_{i+1,N+1} - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

325 Proof. We use the similar skill in the last section, but more complicated. for

326 
$$j = N$$
, Let

327 (5.95) 
$$y_{i \to N-1}(x) = (x^{1/r} + Z_{N-1-i})^r, \quad Z_{N-1-i} = T^{1/r} \frac{N-1-i}{N}$$

328

329 (5.96) 
$$y_{i\to N}(x) = \frac{x^{1/r} - Z_i}{Z_1} h_N + T, \quad Z_i = T^{1/r} \frac{i}{N}, x_N = T$$

330 and

331 (5.97) 
$$y_{i\to N+1}(x) = 2T - (Z_{N-1+i} - x^{1/r})^r, \quad Z_{N-1+i} = T^{1/r} \frac{N-1+i}{N}$$

332 Thus,

333 
$$y_{i\to N-1}(x_{i-1}) = x_{N-2}, \quad y_{i\to N}(x_i) = x_{N-1}, \quad y_{i\to N}(x_{i+1}) = x_N$$

334 
$$y_{i\to N}(x_{i-1}) = x_{N-1}, \quad y_{i\to N}(x_i) = x_N, \quad y_{i\to N}(x_{i+1}) = x_{N+1}$$

335 
$$y_{i \to N-1}(x_{i-1}) = x_N, \quad y_{i \to N}(x_i) = x_{N+1}, \quad y_{i \to N}(x_{i+1}) = x_{N+2}$$

336 Then, define

337 (5.98) 
$$y_{i \to N}^{\theta}(x) = \theta y_{i \to N-1}(x) + (1 - \theta) y_{i \to N}(x)$$

338 (5.99) 
$$y_{i \to N+1}^{\theta}(x) = \theta y_{i \to N}(x) + (1-\theta)y_{i \to N+1}(x)$$

339

340 (5.100) 
$$h_{i\to N}(x) = y_{i\to N}(x) - y_{i\to N-1}(x)$$

341 (5.101) 
$$h_{i \to N+1}(x) = y_{i \to N+1}(x) - y_{i \to N}(x)$$

342 We have

343 (5.102) 
$$y_{i \to N-1}'(x) = y_{i \to N-1}^{1-1/r}(x)x^{1/r-1}$$

344 (5.103) 
$$y_{i \to N-1}''(x) = \frac{1-r}{r} y_{i \to N-1}^{1-2/r}(x) x^{1/r-2} Z_{N-1-i}$$

345 (5.104) 
$$y_{i\to N}'(x) = \frac{1}{r} \frac{h_N}{Z_1} x^{1/r-1}$$

346 (5.105) 
$$y_{i\to N}''(x) = \frac{1-r}{r^2} \frac{h_N}{Z_1} x^{1/r-2}$$

347 (5.106) 
$$y_{i\to N+1}'(x) = (2T - y_{i\to N+1}(x))^{1-1/r} x^{1/r-1}$$

348 (5.107) 
$$y_{i\to N+1}''(x) = \frac{1-r}{r} (2T - y_{i\to N+1}(x))^{1-2/r} x^{1/r-2} Z_{N-1+i}$$

349

350 (5.108) 
$$P_{i\to N}^{\theta}(x) = (h_{i\to N}(x))^3 \frac{|y_{i\to N}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i\to N}^{\theta}(x))$$

351 (5.109) 
$$P_{i \to N+1}^{\theta}(x) = (h_{i \to N+1}(x))^3 \frac{|y_{i \to N+1}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''(y_{i \to N+1}^{\theta}(x))$$

352 (5.110) 
$$Q_{i\to N}^{\theta}(x) = (h_{i\to N}(x))^4 \frac{|y_{i\to N}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

353 (5.111) 
$$Q_{i \to N+1}^{\theta}(x) = (h_{i \to N+1}(x))^4 \frac{|y_{i \to N+1}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Similar with Lemma 5.13, we can get for l = -1, 0, 1,

$$T_{i+l,N+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} P_{i\to N}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} Q_{i\to N}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+l,2}^{\theta})) d\theta$$

356 (5.113)

$$T_{i+l,N+1+l} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{i\to N+1}^{\theta}(x_{i+l}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} Q_{i\to N+1}^{\theta}(x_{i+l}) (\theta^{2} u'''(\eta_{N+1+l,1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{N+1+l,2}^{\theta})) d\theta$$

358 So we have

 $V_{i,N} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{h}^{2} P_{i\to N}^{\theta}(x_{i}) d\theta$   $+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{i\to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$   $- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$   $- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{i\to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$   $+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{i\to N}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$ 

360 N + 1 is similar.

361 We estimate  $D_h^2 P_{i \to N}^{\theta}(x_i) = P_{i \to N}^{\theta}(\xi), \xi \in [x_{i-1}, x_{i+1}].$ 

362

LEMMA 5.30.

363 (5.115) 
$$h_{i \to N}^{3}(\xi) \le Ch_{N}^{3} \le Ch^{3}$$
364 (5.116) 
$$h_{i \to N+1}^{3}(\xi) < Ch_{N}^{3} < Ch^{3}$$

(5.119)

365 (5.117) 
$$(h_{i\to N}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$
366 (5.118) 
$$(h_{i\to N+1}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

366 (5.118) 
$$(h_{i \to N+1}^{3}(\xi))^{r} \leq C(r-1)h_{N}^{2}h \leq C(r-1)h^{2}$$
367 (5.119) 
$$(h_{i \to N}^{3}(\xi))'' < C(r-1)h^{2}$$

368 
$$(5.120)$$
  $(h_{i\to N+1}^3(\xi))'' \le C(r-1)h^2$ 

Proof.

369 (5.121) 
$$h_{i\to N}(\xi) \le 2h_N, \quad h_{i\to N+1}(\xi) \le 2h_N$$

370

373

367

$$(h_{i\to N}^{l}(\xi))' = lh_{i\to N}^{l-1}(\xi)(y_{i\to N}'(\xi) - y_{i\to N-1}'(\xi))$$

$$= lh_{i\to N}^{l-1}(\xi)x_i^{1/r-1}(\frac{1}{r}\frac{h_N}{Z_1} - y_{i\to N-1}^{1-1/r}(\xi))$$

372 while (5.123)

$$|\frac{1}{r}\frac{h_N}{Z_1} - y_{i \to N-1}^{1-1/r}(\xi)| = |\frac{1}{r}\frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1} - \eta^{1-1/r}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r}|(\frac{N-t}{N})^{r-1} - (\frac{N-s}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r}|1 - (\frac{N-2}{N})^{r-1}| \leq CT^{1-1/r}(r-1)\frac{2}{N}$$

Thus, 374

375 
$$(5.124)$$
  $(h_{i\to N}^l(\xi))' \le C(r-1)h_N^{l-1}x_i^{1/r-1}h$ 

$$(h_{i\to N+1}^{l}(\xi))' = lh_{i\to N+1}^{l-1}(\xi)(y_{i\to N+1}'(\xi) - y_{i\to N}'(\xi))$$

$$= lh_{i\to N+1}^{l-1}(\xi)x_i^{1/r-1}((2T - y_{i\to N+1}(\xi))^{1-1/r} - \frac{1}{r}\frac{h_N}{Z_1})$$

377 Similarly,

$$|(2T - y_{i \to N+1})^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1}| = |\eta^{1-1/r} - \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} |(\frac{N-s}{N})^{r-1} - (\frac{N-t}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} |(\frac{N-2}{N})^{r-1} - 1| \leq CT^{1-1/r} (r-1) \frac{2}{N}$$

$$(h_{i\to N}^{3}(\xi))'' = 3h_{i\to N}^{2}(\xi)h_{i\to N}''(\xi) + 6h_{i\to N}(\xi)(h_{i\to N}'(\xi))^{2}$$

$$\leq Ch_{N}^{2} \frac{1-r}{r} x_{i}^{1/r-2} \left(\frac{1}{r} \frac{h_{N}}{Z_{1}} - y_{i\to N-1}^{1-2/r}(\xi)Z_{N-1-i}\right) + Ch_{N}(r-1)^{2} h^{2} x_{i}^{2/r-2}$$

$$\left| \frac{h_N}{rZ_1} - y_{i \to N-1}^{1-2/r}(\xi) Z_{N-1-i} \right| \le T^{1-1/r} + C x_N^{1-2/r} x_N^{1/r} = C T^{1-1/r}$$

382 So

$$(h_{i \to N}^{3}(\xi))'' \le Ch_{N}^{2} \frac{1-r}{r} x_{i}^{1/r-2} + C(r-1)^{2} h_{N} x_{i}^{2/r-2} h^{2}$$

$$\le C(r-1)h_{N}^{2} x_{i}^{1/r-1}$$

$$h_{i\to N+1}^3(\xi)$$
 is similar.

Lemma 5.31.

385 (5.129) 
$$u''(y_{i\to N}^{\theta}(\xi)) \le Cx_{N-2}^{-\alpha/2-2} \le C$$

386 (5.130) 
$$(u''(y_{i\to N}^{\theta}(\xi)))' \le C$$

387 (5.131) 
$$(u''(y_{i\to N}^{\theta}(\xi)))'' \le C$$

Proof.

$$(u''(y_{i\to N}^{\theta}(\xi)))' = u'''(y_{i\to N}^{\theta}(\xi))y_{i\to N}^{\theta}(\xi)$$

$$\leq C(\theta y_{i\to N-1}'(\xi) + (1-\theta)y_{i\to N}'(\xi))$$

$$\leq Cx_i^{1/r-1}(\theta y_{i\to N-1}^{1-1/r}(\xi) + (1-\theta)\frac{h_N}{rZ_1})$$

$$\leq Cx_i^{1/r-1}x_N^{1-1/r}$$

389 And
$$(5.133) \qquad \Box$$

$$(u''(y_{i\to N}^{\theta}(\xi)))'' = u''''(y_{i\to N}^{\theta}(\xi))(y_{i\to N}^{\theta}(\xi))^{2} + u'''(y_{i\to N}^{\theta}(\xi))y_{i\to N}^{\theta}(\xi)$$

$$\leq Cx_{i}^{2/r-2}x_{N}^{2-2/r} + C\frac{r-1}{r}x_{i}^{1/r-2}(\theta x_{N}^{1-2/r}Z_{N-1-i} + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{2/r-2} + C(r-1)x_{i}^{1/r-2}T^{1-1/r}$$

Lemma 5.32.

391 (5.134) 
$$|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

392 (5.135) 
$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

393 (5.136) 
$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_N^{\theta} - x_i|^{-\alpha} + |y_N^{\theta} - x_i|^{1-\alpha}$$

Proof.

$$(5.137) (y_{i\to N}^{\theta}(\xi) - \xi)' = (\theta(y_{i\to N-1}(\xi) - \xi) + (1-\theta)(y_{i\to N}(\xi) - \xi))'$$

$$= \theta(y_{i\to N-1}'(\xi) - 1) + (1-\theta)(y_{i\to N}'(\xi) - 1)$$

$$= \theta\xi^{1/r-1}(y_{i\to N-1}^{1-1/r}(\xi) - \xi^{1-1/r}) + (1-\theta)\xi^{1/r-1}(\frac{h_N}{rZ_1} - \xi^{1-1/r})$$

395

$$(y_{i\to N}^{\theta}(\xi) - \xi)'' = \theta(y_{i\to N-1}''(\xi)) + (1-\theta)(y_{i\to N}''(\xi))$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta y_{i\to N-1}^{1-2/r}(\xi) Z_{N-1-i} + (1-\theta) \frac{h_N}{rZ_1}) \le 0$$

398 (5.139) 
$$|(y_{i\to N}^{\theta}(\xi) - \xi)''| \le C(r-1)\xi^{1/r-2}T^{1-1/r}$$

We have known

400 (5.140) 
$$C|x_{N-1} - x_i| \le |y_{i \to N-1}(\xi) - \xi| \le C|x_{N-1} - x_i|$$

401 If 
$$\xi \le x_{N-1}$$
, then  $(y_{i\to N}(\xi) - \xi)' \ge 0$ , so

$$402 \quad (5.141) \quad C|x_N - x_i| \le |x_{N-1} - x_{i-1}| \le |y_{i \to N}^{\theta}(\xi) - \xi| \le |x_{N+1} - x_{i+1}| \le C|x_N - x_i|$$

403 If i = N - 1 and  $\xi \in [x_{N-1}, x_N]$ , then  $y_{i \to N}(\xi) - \xi$  is concave, bigger than its two

404 neighboring points, which are equal to  $h_N$ , so

405 (5.142) 
$$h_N = |x_N - x_{N-1}| \le |y_{i \to N}(\xi) - \xi| \le |x_{N+1} - x_{N-1}| = 2h_N$$

406 So we have

407 (5.143) 
$$|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

408 While

409 (5.144) 
$$y_{i \to N-1}^{1-1/r}(\xi) - \xi^{1-1/r} \le (y_{i \to N-1}(\xi) - \xi)\xi^{-1/r}$$

410 and (5.145

$$\left|\frac{h_N}{rZ_1} - \xi^{1-1/r}\right| \le \max\{\left|\frac{h_N}{rZ_1} - x_{i-1}^{1-1/r}\right|, \left|\frac{h_N}{rZ_1} - x_{i+1}^{1-1/r}\right|\}$$

412 So we have

413 
$$(5.146)$$
  $(y_{i\to N}^{\theta}(\xi) - \xi)' \le C|y_N^{\theta} - x_i|$ 

414

$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})' = |y_{i\to N}^{\theta}(\xi) - \xi|^{-\alpha}(y_{i\to N}^{\theta}(\xi) - \xi)'$$

$$\leq |y_N^{\theta} - x_i|^{1-\alpha}$$

416 Finally,

$$(|y_{i\to N}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{i\to N}^{\theta}(\xi) - \xi|^{-\alpha}(y_{i\to N}^{\theta}(\xi) - \xi)'' + \alpha(\alpha - 1)|y_{i\to N}^{\theta}(\xi) - \xi|^{-1-\alpha}((y_{i\to N}^{\theta}(\xi) - \xi)')^{2} \qquad \Box$$

$$\leq C(r-1)|y_{N}^{\theta} - x_{i}|^{-\alpha} + C|y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

By the three lemmas above, for  $N/2 \le i \le N-1$ , we have

Lemma 5.33.

(5.149)

$$D_h^2 P_{i \to N}^{\theta}(x_i) = P_{i \to N}^{\theta}{}''(\xi) \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha} + C(r-1)(h^3 |y_N^{\theta} - x_i|^{-\alpha} + h^2 |y_N^{\theta} - x_i|^{1-\alpha})$$

Lemma 5.34.

421 (5.150) 
$$\frac{2}{h_i + h_{i+1}} \left( \frac{Q_{i \to N}^{\theta}(x_{i+1})u'''(\eta_{N+1}^{\theta}) - Q_{i \to N}^{\theta}(x_i)u'''(\eta_N^{\theta})}{h_{i+1}} \right) \\ \leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha}$$

422 And immediately, For  $N/2 \le i \le N-2$ 

$$V_{iN} \leq C \int_{x_{N-1}}^{x_N} h^2 |y - x_i|^{1-\alpha} + C(r-1)h^2 |y - x_i|^{-\alpha} + h|y - x_i|^{1-\alpha} dy$$

$$\leq Ch^2 h_N |T - x_i|^{1-\alpha} + C(r-1)h^2 |x_{N-1} - x_i|^{1-\alpha} + Chh_N |T - x_i|^{1-\alpha}$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

But expecially, when i = N - 1,

$$V_{N-1,N} = \int_{0}^{1} -\frac{\theta^{2-\alpha}(1-\theta)}{2} \frac{2}{h_{N-1} + h_{N}} \left( \frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - (\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + \frac{1}{h_{N}} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{i \to N}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{i \to N}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - Q_{i \to N}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$425$$

$$-\int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i}+h_{i+1}} \left( \frac{Q_{i\to N}^{\theta}(x_{i+1})u'''(\eta_{N+1,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+\int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i}+h_{i+1}} \left( \frac{Q_{i\to N}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta}) - Q_{i\to N}^{\theta}(x_{i-1})u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

while combine Lemma 5.30

$$\frac{2}{h_{N-1} + h_N} \left( \frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - \left( \frac{1}{h_{N-1}} + \frac{1}{h_N} \right) h_N^{4-\alpha} u''(y_N^{\theta}) + \frac{1}{h_N} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right)$$

$$\frac{1}{h_{N-1} + h_N} \left( \frac{1}{h_{N-1}} h_{N-1} u \left( g_{N-1} \right) - \left( \frac{1}{h_{N-1}} + \frac{1}{h_N} \right) h_N u \left( g_N \right) + \frac{1}{h_N} h_{N+1} u \left( g_{N+1} \right) \right) 
= D_h^2 \left( h_{N-1 \to N}^{4-\alpha} (x_i) u'' \left( g_{N-1 \to N}^{\theta} (x_i) \right) \right) 
\leq C h_N^{4-\alpha} + C (r-1) h_N^{3-\alpha} \leq C h^{4-\alpha} + C (r-1) h^2 |T - x_{N-1-1}|^{1-\alpha}$$

428 429 Similarly with 
$$j = N + 1$$
.

 $I_6$ ,  $I_7$  is easy. Similar with Lemma 5.22 and Lemma 5.6, we have

431

Theorem 5.35. There is a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that For

433  $N/2 \le i \le N$ 

(5.154)

$$I_{6} = \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i}} (T_{i-1,2N - \lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N - \lceil \frac{N}{2} \rceil}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2N - \lceil \frac{N}{2} \rceil + 1} \right) < Ch^{2}$$

435 *Proof.* In fact, let  $l = 2N - \lceil \frac{N}{2} \rceil + 1$ 

436 (5.155) 
$$\frac{1}{h_i}(T_{i-1,l} + T_{i-1,l-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}})T_{i,l}$$
$$= \frac{1}{h_i}(T_{i-1,l} - T_{i,l}) + \frac{1}{h_i}(T_{i-1,l-1} - T_{i,l}) + (\frac{1}{h_i} - \frac{1}{h_{i+1}})T_{i,l}$$

437 While, by Lemma A.2

$$\frac{1}{h_{i}}(T_{i-1,l} - T_{i,l}) = \int_{x_{l-1}}^{x_{l}} (u(y) - u_{h}(y)) \frac{|x_{i-1} - y|^{1-\alpha} - |x_{i} - y|^{1-\alpha}}{h_{i}\Gamma(2-\alpha)} dy$$

$$\leq C \int_{x_{l-1}}^{x_{l}} h_{l}^{2} u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq C h_{l}^{3} x_{l-1}^{\alpha/2-2} T^{-\alpha}$$

$$\leq C h_{l}^{3}$$

439 Thus,

440 (5.157) 
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l} - T_{i,l}) \le Ch_l^3$$

441 For (5.15

$$442 \quad \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{h_{l-1}^3 |y_{l-1}^\theta - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^\theta) - h_l^3 |y_l^\theta - x_i|^{1-\alpha} u''(\eta_l^\theta)}{h_i} d\theta$$

443 And Similar with Lemma 5.19, we can get

$$444 \quad (5.159) \quad \frac{h_{l-1}^{3}|y_{l-1}^{\theta} - x_{i-1}|^{1-\alpha}u''(\eta_{l-1}^{\theta}) - h_{l}^{3}|y_{l}^{\theta} - x_{i}|^{1-\alpha}u''(\eta_{l}^{\theta})}{(h_{i} + h_{i+1})h_{i}} \le Ch_{l}^{2}|y_{l}^{\theta} - x_{i}|^{1-\alpha}u''(\eta_{l}^{\theta})$$

445 So

446 (5.160) 
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) \le Ch^2$$

447 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

448 (5.161) 
$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,l} \le h_i^{-3} h^2 x_i^{1-2/r} h_l C h_l^2 x_{l-1}^{\alpha/2-2} |x_l - x_i|^{1-\alpha} < C h^2$$

449 Summarizes, we have

450 (5.162) 
$$I_6 < Ch^2$$

- 451 And
- LEMMA 5.36. There is a constant  $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$  such that For  $N/2\leq 453$   $i\leq N$ ,

$$I_{7} = \sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N} S_{ij}$$

$$\leq \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

455 *Proof.* For  $i \leq N, j \geq 2N - \lceil \frac{N}{2} \rceil + 2$ , we have

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} |y - x_{i+1}^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

457

$$\sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{(2-2^{-r})T}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(2^{-r}T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

Now we can conclude a part of the theorem Theorem 5.3 at the beginning of this section.

By Lemma 5.8 Lemma 5.22 Lemma 5.23 Theorem 5.29 Theorem 5.28 Theorem 5.35 Lemma 5.36 , we have there exists a constant  $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$  such that for  $N/2 \le i < N$ ,

$$R_{i} = \sum_{j=1}^{r} I_{j}$$

$$\leq C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

- 465 6. Proof of Theorem 4.2.
- 7. Experimental results. 466
- **8. Conclusions.** Some conclusions here. 467
- Appendix A. Approximate of difference quotients. 468
- LEMMA A.1. If q(x) is twice differentiable continuous function on open set  $\Omega$ , there 469
- exists  $\xi \in [x_{i-1}, x_{i+1}]$  such that 470

$$D_h^2 g(x_i) := \frac{2}{h_i + h_{i+1}} \left( \frac{1}{h_{i+1}} g(x_{i+1}) - \left( \frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

(A.2)
$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} g(x_{i+1}) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$$

And if  $g(x) \in C^4(\Omega)$ , then 474

$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} g(x_{i+1}) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

where  $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$ 476

Proof.

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in [x_{i-1}, x_i]$$

478 
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in [x_i, x_{i+1}]$$

Substitute them in the left side of (A.1), we have

$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{1}{h_{i+1}} g(x_{i+1}) - \left( \frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{h_{i}}{h_{i} + h_{i+1}} g''(\xi_{1}) + \frac{h_{i+1}}{h_{i} + h_{i+1}} g''(\xi_{2})$$

Now, using intermediate value theorem, there exists  $\xi \in [\xi_1, \xi_2]$  such that 481

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

For the second equation, similarly 483

484 
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

485 
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

486 And the last equation can be obtained by

487 
$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \frac{h_i^4}{4!} g''''(\eta_1)$$
488 
$$g(x_{i+1}) = g(x_i) + h_{i+1} g'(x_i) + \frac{h_{i+1}^2}{2} g''(x_i) + \frac{h_{i+1}^3}{3!} g'''(x_i) + \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

489 where  $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$ . Expecially,

$$\frac{h_i^4}{4!}g''''(\eta_1) = \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$\frac{h_{i+1}^4}{4!}g''''(\eta_2) = \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

Substitute them to the left side of (A.3), we can get the result.

492 LEMMA A.2. If 
$$y \in [x_{j-1}, x_j]$$
, denote  $y = \theta x_{j-1} + (1 - \theta)x_j, \theta \in [0, 1]$ ,

493 (A.5) 
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

494 (A.6)

495 
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2}h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!}h_j^3(\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

496 where  $\eta_1 \in [x_{j-1}, y_j^{\theta}], \eta_2 \in [y_j^{\theta}, x_j].$ 

497 *Proof.* By Taylor expansion, we have

498 
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in [x_{j-1}, y_j^{\theta}]$$

499 
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in [y_j^{\theta}, x_j]$$

500 Thus

501

$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2}h_j^2(\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2}h_j^2u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

502 The second equation is similar,

$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta) h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{2!} u'''(\eta_2)$$

505 where  $\eta_1 \in [x_{j-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_j]$ . Thus

$$u(y_{j}^{\theta}) - u_{h}(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

507 LEMMA A.3. For  $x \in [x_{j-1}, x_j]$ 

$$|u(x) - u_h(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

509 If  $x \in [0, x_1]$ , with Corollary 2.4, we have

510 (A.8) 
$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

511 Similarly, if  $x \in [x_{2N-1}, 1]$ , we have

512 (A.9) 
$$|u(x) - u_h(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

513 Appendix B. Inequality.

Lemma B.1.

514 (B.1) 
$$h_i \le rT^{1/r}h \begin{cases} x_i^{1-1/r}, & 1 \le i \le N \\ (2T - x_{i-1})^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

515

516 (B.2) 
$$h_i \ge rT^{1/r}h \begin{cases} x_{i-1}^{1-1/r}, & 1 \le i \le N \\ (2T - x_i)^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

517 Proof. For  $1 \le i \le N$ ,

$$h_{i} = T\left(\left(\frac{i}{N}\right)^{r} - \left(\frac{i-1}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{i}{N}\right)^{r-1} = rT^{1/r}hx_{i}^{1-1/r}$$

519

520 
$$h_i \ge rT \frac{1}{N} \left( \frac{i-1}{N} \right)^{r-1} = rT^{1/r} h x_{i-1}^{1-1/r}$$

521 For  $N < i \le 2N$ ,

$$h_{i} = T\left(\left(\frac{2N - i + 1}{N}\right)^{r} - \left(\frac{2N - i}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{2N - i + 1}{N}\right)^{r - 1} = rT^{1/r}h(2T - x_{i-1})^{1 - 1/r}$$

523

$$h_i \ge rT \frac{1}{N} \left( \frac{2N - i}{N} \right)^{r - 1} = rT^{1/r} h (2T - x_i)^{1 - 1/r}$$

525

LEMMA B.2. There is a constant 
$$C=2^{|r-2|}r(r-1)T^{2/r}$$
 such that for all  $i\in\{1,2,\cdots,2N-1\}$ 

528 (B.3) 
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof.

$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

530 For i = 1,

531 
$$h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

532 For  $2 \le i \le N - 1$ ,

533 
$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$

534 If  $r \in [1, 2]$ ,

535

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i-1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{2-r} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{2-r} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

536 else if r > 2,

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i+1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{r-2} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{r-2} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

538 Since

539 
$$2^r - 2 \le 2^{|r-2|} r(r-1), \quad r \ge 1$$

540 we have

541 
$$h_{i+1} - h_i \le 2^{|r-2|} r(r-1) T^{2/r} h^2 x_i^{1-2/r}, \quad 1 \le i \le N-1$$

542 For i = N,  $h_{N+1} - h_N = 0$ . For  $N < i \le 2N - 1$ , it's central symmetric to the first

543 half of the proof, which is

$$544 h_i - h_{i+1} \le 2^{|r-2|} r(r-1) T^{2/r} h^2 (2T - x_i)^{1-2/r}$$

545 Summarizes the inequalities, we can get

546 (B.4) 
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

### 547 Appendix C. Proofs of some technical details.

548 Additional proof of Theorem 5.1. For  $2 \le i \le N-1$ ,

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

$$\leq C \frac{2}{h_i + h_{i+1}} (h_i^3 x_{i-1}^{-2-\alpha/2} + h_{i+1}^3 x_i^{-2-\alpha/2})$$

$$\leq 2C (h_i^2 x_{i-1}^{-2-\alpha/2} + h_{i+1}^2 x_i^{-2-\alpha/2})$$

550 Since Lemma B.1, we have

$$h_i \le rT^{1/r}hx_i^{1-1/r}, \quad 1 \le i \le N$$

$$h_{i+1} \le rT^{1/r}hx_{i+1}^{1-1/r}, \quad 1 \le i \le N-1$$

553 and

549

554 
$$x_{i-1}^{-2-\alpha/2} \le 2^{-r(-2-\alpha/2)} x_i^{-2-\alpha/2} 2 \le i \le N-1$$

$$x_{i+1}^{1-1/r} \le 2^{r-1} x_i^{1-1/r} \quad 1 \le i \le N-1$$

556 So there is a constant  $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$  such that

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

558 For i = 1, by (A.4)

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left( \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

560 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

and we can get

$$\int_{0}^{x_{1}} f''(y) \frac{y^{3}}{3!} dy \le C \frac{1}{3!} \int_{0}^{x_{1}} y^{1-\alpha/2} dy$$

$$= C \frac{1}{3!(2-\alpha/2)} x_{1}^{2-\alpha/2}$$

564 **so** 

$$\frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

566 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\le r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\le 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

568 Finally,  $N+1 \le i \le 2N-1$  is symmetric to the first half of the proof, so we can

569 conclude that

570 
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

Lemma C.1. There is a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  for  $2 \leq j \leq N$ , if

572  $y \in [x_{j-1}, x_j],$ 

577

573 (C.1) 
$$|u(y) - u_h(y)| \le Ch^2 y^{\alpha/2 - 2/r}$$

574 *Proof.* For  $2 \le j \le N$ , we have

575 
$$x_i \le 2^r y, \quad x_{i-1} \ge 2^{-r} y$$

576 And by Lemma A.2, Lemma B.1 and Corollary 2.4, we have

$$u(y) - u_h(y) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

$$\leq \frac{\|u\|_{\beta+\alpha}^{(-\alpha/2)}}{4} r^2 T^{2/r} h^2 x_j^{2-2/r} x_{j-1}^{\alpha/2-2}$$

$$\leq Ch^2 2^{2r-2} y^{2-2/r} 2^{-r(\alpha/2-2)} y^{\alpha/2-2}$$

$$= C2^{-r\alpha/2+4r-2} h^2 y^{\alpha/2-2/r}$$

symmetricly, for  $N < j \le 2N - 1$ , we have

579 (C.2) 
$$|u(y) - u_h(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant  $C = C(\alpha, r)$  such that for all  $1 \le i < N/2$ ,

581  $\max\{2i+1, i+3\} \le j \le 2N \text{ and } y \in [x_{j-1}, x_j], \text{ we have }$ 

582 (C.3) 
$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

583 *Proof.* Since  $y \ge x_{j-1} > x_{i+1}$ , by Lemma A.1, if j - 1 > i + 1

$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|y-\xi|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(y-x_{i+1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq (1-(\frac{2}{3})^r)^{-1-\alpha} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant  $C = C(\alpha, r)$  such that for all  $3 \le i < N/2, k = \begin{bmatrix} \frac{i}{2} \end{bmatrix}$ ,  $1 \le j \le k-1$  and  $y \in [x_{j-1}, x_j]$ , we have

587 (C.4) 
$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

588 *Proof.* Since  $y \le x_j < x_{i-1}$ , by Lemma A.1,

$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

590

589

Lemma C.4. While  $0 \le i < N/2$ , By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} |x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha}|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

593 For  $2 \le j \le N$ , by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant  $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$  such that

596 (C.7) 
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

597

598 (C.8) 
$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

599

Proof.

$$S_{1j} = \frac{2}{x_2} \left( \frac{1}{x_1} T_{0j} - \left( \frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

601 So, by Lemma C.4

$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$

603
$$S_{12} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left( x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$
605

$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left( x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

607 But

$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

For 
$$i = 2$$
, Sorry

610

- LEMMA C.6. There exists a constant C = C(T, r, l) such that For  $3 \le i \le N$
- 612  $1, k+1 = \lceil \frac{i}{2} \rceil, k \le j \le \min\{2i-1, N-1\}, l = 3, 4,$
- 613 when  $\xi \in [x_{i-1}, x_{i+1}]$ ,

614 (C.9) 
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

615

616 (C.10) 
$$(h_{j-i}^4(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j^2$$

617 *Proof.* From (5.32)

618 (C.11) 
$$y'_{j-i}(x) = y_{j-i}^{1-1/r}(x)x^{1/r-1}$$

619 (C.12) 
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

620 for l = 3, 4, by (5.34)

(C.13) 
$$(h_{j-i}^{l}(\xi))' = l h_{j-i}^{l-1}(\xi)(y_{j-i}'(\xi) - y_{j-i-1}'(\xi))$$
$$= l h_{j-i}^{l-1}(\xi)\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi)) \ge 0$$

622 For  $\xi \in [x_{i-1}, x_{i+1}]$  and  $2 \le k \le j \le \min\{2i - 1, N - 1\}$ , using Lemma B.1

$$h_{j-i}(\xi) \le h_{j-i}(x_{i+1}) = h_{j+1}$$

$$\le rT^{1/r} hx_{j+1}^{1-1/r} \le rT^{1/r}2^{r-1} hx_i^{1-1/r}$$

624 And

625 (C.14) 
$$2^{-r}x_i \le x_{i-1} \le \xi \le x_{i+1} \le 2^r x_i$$

626 We have

627 (C.15) 
$$\xi^{1/r-m} \le 2^{|mr-1|} x_i^{1/r-m}, \quad m = 1, 2$$

628 but

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-1} - (\xi^{1/r} + Z_{j-i-1})^{r-1}$$

$$= (r-1)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-2}, \quad \gamma \in [0,1]$$

$$= (r-1)T^{1/r}hy_{j-i-\gamma}^{1-2/r}(\xi)$$

631 
$$4^{-r}x_i \le x_{\lceil \frac{i}{2} \rceil - 1} \le x_{j-2} = y_{j-i-1}(x_{i-1}) \le y_{j-i-\gamma}(\xi) \le y_{j-i}(x_{i+1}) = x_{j+1} \le x_{2i} \le 2^r x_i$$

632 Therefore,

633 (C.18) 
$$y_{i-i-\gamma}^{1-2/r}(\xi) \le 2^{2|r-2|} x_i^{1-2/r}$$

634 So we can get

635 (C.19) 
$$y'_{i-1}(\xi) - y'_{i-1}(\xi) \le (r-1)C(T,r)hx_i^{-1/r}$$

636 We get

637 (C.20) 
$$(h_{i-1}^{l}(\xi))' \leq l(r-1)C h_{i+1}^{l-1} h x_i^{-1/r}$$

638 And by Lemma B.1,

639 (C.21) 
$$h_{j+1} \le rTh\left(\frac{j+1}{N}\right)^{r-1} \le rTh2^{r-1}\left(\frac{j-1}{N}\right) = 2^{r-1}h_j$$

640

641 (C.22) 
$$h_{j+1} \le rT^{1/r}hx_{j+1}^{1-1/r} \le rT^{1/r}hx_{2i}^{1-1/r} \le rT^{1/r}2^{r-1}hx_i^{1-1/r}$$

642 We can get

$$(h_{j-i}^{l}(\xi))' \leq l(r-1)C h_{j}^{l-2}h_{j+1}hx_{i}^{-1/r}$$

$$\leq l(r-1)Chh_{j}^{l-2}(hx_{i}^{1-1/r})x_{i}^{-1/r}$$

$$= (r-1)C h^{2}x_{i}^{1-2/r}h_{j}^{l-2}$$

644 Meanwhile, we can get

645 (C.24) 
$$h_{j-i}^3(\xi) \le h_{j+1}^3 \le Ch^2 x_i^{2-2/r} h_j$$

646 (C.25) 
$$h_{j-i}^4(\xi) \le h_{j+1}^4 \le Ch^2 x_i^{2-2/r} h_j^2$$

647

Lemma C.7. There exists a constant C = C(T, r, l) such that For  $3 \le i \le N$ 

649  $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\},\$ 

650 when  $\xi \in [x_{i-1}, x_{i+1}],$ 

651 (C.26) 
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

652 *Proof.* From (C.11)

$$(h_{j-i}^{3}(\xi))'' = 6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2} + 3h_{j-i}^{2}(\xi)(y''_{j-i}(\xi) - y''_{j-i-1}(\xi))$$

$$= 6h_{j-i}(\xi)\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi))$$

$$+ 3\frac{1-r}{r}h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

654 Using the inequalities of the proof of Lemma C.6

$$6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2}$$

$$\leq 6h_{j+1}((r-1)Chx_{i}^{-1/r})^{2}$$

$$\leq C(r-1)^{2}h^{2}x_{i}^{-2/r}h_{j}$$

656 For the second partial

(C.29) 
$$h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1}) \\ \leq Ch_{j+1}^{2}x_{i}^{1/r-2}((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi))Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi)Z_{1})$$

658 but

$$y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-2} - (\xi^{1/r} + Z_{j-i-1})^{r-2}$$

$$= (r-2)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-3}$$

$$= (r-2)T^{-r}hy_{j-i-\gamma}^{1-3/r}(\xi)$$

$$\leq C(r-2)hx_i^{1-3/r}$$

660 So we can get

$$(C.31) h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

$$\leq Ch_{j}hx_{i}^{1-1/r}x_{i}^{1/r-2}(C(r-2)hx_{i}^{1-3/r}Z_{j-i} + Cx_{i}^{1-2/r}T^{1/r}h)$$

$$\leq Ch^{2}((r-2)x_{i}^{-3/r}x_{|j-i|}^{1/r} + x_{i}^{-2/r})h_{j}$$

$$\leq Ch^{2}x_{i}^{-2/r}h_{j}$$

662 Summarizes, we have

663 (C.32) 
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

proof of Lemma 5.16. From (5.32)

665 (C.33) 
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

666 (C.34) 
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

667 Since

671

668 
$$x_{j-2} \le y_{j-i-1}(x_{i-1}) \le y_{j-i}^{\theta}(\xi) \le y_{j-i-1}^{\theta}(x_{i+1}) \le x_{j+1}$$

669 We have known (C.17)

670 (C.35) 
$$u''(y_{j-i}^{\theta}(\xi)) \le C(y_{j-i}^{\theta}(\xi))^{\alpha/2-2} \le Cx_{j-2}^{\alpha/2-2} \le Cx_{\lceil \frac{i}{2} \rceil - 1}^{\alpha/2-2} \le C4^{r(2-\alpha/2)}x_i^{\alpha/2-2}$$

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}'(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

673

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 5.17.

(C.38) 
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

Since  $|y_{j-i}(\xi) - \xi|$  is increasing about  $\xi$ , we have

677 
$$\left(\frac{i-1}{i}\right)^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le \left(\frac{i+1}{i}\right)^r |x_j - x_i|$$

Thus, 678 (C.40)

$$(\frac{2}{3})^r |y_j^{\theta} - x_i| \le |y_{j-i}^{\theta}(\xi) - \xi| \le (\frac{3}{4})^r (\theta |x_j - x_i| + (1 - \theta)|x_{j-1} - x_i|) = (\frac{3}{4})^r |y_j^{\theta} - x_i|$$

681 (C.41) 
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{j}^{\theta} - x_{i}|^{1-\alpha}$$

Next, 682 (C.42)

(C.42)  

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}|\xi^{1/r-1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi)) - 1|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha}\xi^{1/r-1}|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

Similar with (C.40), we have 684

685 (C.43) 
$$|y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}| \le C|x_j^{1-1/r} - x_i^{1-1/r}| \le C|x_j - x_i|x_i^{-1/r}$$

So we can get 686

$$|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

$$\leq Cx_i^{-1/r}(\theta|x_{j-1} - x_i| + (1-\theta)|x_j - x_i|)$$

$$= Cx_i^{-1/r}|y_j^{\theta} - x_i|$$

Combine them, we get 688

(C.45) 
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \leq C|y_{j}^{\theta} - x_{i}|^{-\alpha}x_{i}^{1/r-1}x_{i}^{-1/r}|y_{j}^{\theta} - x_{i}|$$
$$= C|y_{j}^{\theta} - x_{i}|^{1-\alpha}x_{i}^{-1}$$

Finally, we have 690

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1}(\xi^{1/r - 1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1 - \theta)y_{j-i}^{1-1/r}(\xi)) - 1)^{2} + (1 - \alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha} \frac{1 - r}{r} \xi^{1/r - 2}|\theta y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1} + (1 - \theta)y_{j-i}^{1-2/r}(\xi)Z_{j-i}|$$

692 Using the inequalities above, we have

$$|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1} (\xi^{1/r - 1}(\theta y_{j-i-1}^{1 - 1/r}(\xi) + (1 - \theta) y_{j-i}^{1 - 1/r}(\xi)) - 1)^{2}$$
693 (C.47)
$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha - 1} (x_{i}^{-1}|y_{j}^{\theta} - x_{i}|)^{2}$$

$$= C|y_{j}^{\theta} - x_{i}|^{1 - \alpha} x_{i}^{-2}$$

694 And by

695 (C.48) 
$$|Z_{i-i}| = |x_i^{1/r} - x_i^{1/r}| \le |x_i - x_i| x_i^{1/r - 1}$$

696 we have

$$|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha} \xi^{1/r-2} |\theta y_{j-i-1}^{1-2/r}(\xi) Z_{j-i-1} + (1-\theta) y_{j-i}^{1-2/r}(\xi) Z_{j-i}|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{1/r-2} x_{i}^{1-2/r} |\theta Z_{j-i-1} + (1-\theta) Z_{j-i}|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha} x_{i}^{-2} |y_{j}^{\theta} - x_{i}|$$

$$= C|y_{j}^{\theta} - x_{i}|^{1-\alpha} x_{i}^{-2}$$

698 proof of Lemma 5.19. For  $k \le j < \min\{2i - 1, N - 1\}$ 

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
699 (C.50)
$$\frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{j-i}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

$$\leq Q_{j-i}^{\theta}'(\xi)Cx_{j}^{\alpha/2-3} + Q_{j-i}^{\theta}(x_{i})Cu''''(\eta)\frac{h_{i} + h_{i+1}}{h_{i+1}}$$

700 where  $\xi \in [x_i, x_{i+1}], \eta \in [x_{j-1}, x_{j+1}].$ 

From (5.36), by Lemma C.6 and Lemma 5.17, we have

702 (C.51) 
$$Q_{j-i}^{\theta'}(\xi) \leq Ch^2 \frac{|y_{j+1}^{\theta} - x_{i+1}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i+1}^{1-2/r} h_{j+1}^2$$
$$\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{1-2/r} h_j^2$$

703 And by defination

704 (C.52) 
$$Q_{j-i}^{\theta}(x_i) = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} \le Ch^2 x_i^{2-2/r} \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j^2$$

705 With, we have

706 (C.53) 
$$4^{-r}x_i \le x_{k-1} \le x_{j-1} < x_j \le x_{2i-1} \le 2^r x_i$$

707 So we have

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
708 (C.54)
$$\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^{2} x_{i}^{\alpha/2-3} + Ch^{2} x_{i}^{2-2/r} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} h_{j}^{2} x_{j-1}^{\alpha/2-4}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}^{2}$$

709 while

$$710 h_j \le h_{2i-1} \le 2^r h_i$$

711 Substitute into the inequality above, we get the goal

$$\frac{2}{h_{i} + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right)$$
712 (C.55)
$$\leq \frac{1}{h_{i}}Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j} 2^{r} h_{i}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

713 While, the later is similar.

714

Lemma C.8. There exists a constant 
$$C = C(T,r)$$
 such that For  $N/2 \le i < N$ ,

716 
$$N+2 \leq j \leq 2N-\lceil \frac{N}{2} \rceil+1, \ l=3,4$$
 ,  $\xi \in [x_{i-1},x_{i+1}]$ , we have

717 (C.56) 
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}h_{j}^{l-2}$$

718 (C.57) 
$$(h_{j-i-1}^{l}(\xi))' \le C(r-1)h^2 h_j^{l-2}$$

719 (C.58) 
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2h_i$$

Proof.

(C.59) 
$$(h_{j-i}(\xi))' = y_{j-i}'(\xi) - y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} ((2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}) \le 0$$

721 Thus,

722 (C.60) 
$$Ch_j \le h_{j+1} \le h_{j-i}(\xi) \le h_{j-i}(x_{i-1}) = h_{j-1} \le Ch_j$$

723 So as  $4^{-r}T \leq 2T - x_j \leq T, 2^{-r}T \leq x_i \leq T$ , we have

724 (C.61) 
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}(2T - x_{j})^{2-2/r}h_{j}^{l-2} \le Ch^{2}h_{j}^{l-2}$$

725 Since

$$|(2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}|$$

$$= |(Z_{2N-(j-i)} - \xi^{1/r})^{r-1} - (Z_{2N-(j-1-i)} - \xi^{1/r})^{r-1}|$$

$$= (r-1)Z_1(Z_{2N-(j-i-\gamma)} - \xi^{1/r})^{r-2} \quad \gamma \in [0, 1]$$

$$\leq C(r-1)h(2T - x_j)^{1-2/r}$$

727 we have

728 (C.63) 
$$|(h_{j-i}(\xi))'| \le C(r-1)h(2T-x_j)^{1-2/r}x_i^{1/r-1}$$

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h_{j-i}'(\xi)$$

$$\leq C(r-1)h_{j}^{l-1}h(2T-x_{j})^{1-2/r}x_{i}^{1/r-1}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}(2T-x_{j})^{2-3/r}x_{i}^{1-1/r}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}$$

$$(C.65) \qquad (D.65) \qquad (C.65) \qquad (D.65) \qquad ($$

732 733

Lemma C.9. There exists a constant  $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$  such that For  $N/2\leq i< N,\ N+2\leq j\leq 2N-\lceil\frac{N}{2}\rceil+1$ ,  $\xi\in[x_{i-1},x_{i+1}],$  we have

735 (C.66) 
$$u''(y_{i-i}^{\theta}(\xi)) \le C$$

736 (C.67) 
$$(u''(y_{j-i}^{\theta}(\xi)))' \le C$$

737 (C.68) 
$$(u''(y_{i-i}^{\theta}(\xi)))'' \le C$$

Proof.

738 (C.69) 
$$x_{j-2} \le y_{j-i}^{\theta}(\xi) \le x_{j+1} \Rightarrow 4^{-r}T \le 2T - y_{j-i}^{\theta}(\xi) \le T$$

Thus, for l = 2, 3, 4, 739

740 (C.70) 
$$u^{(l)}(y_{i-i}^{\theta}(\xi)) \le C(2T - y_{i-i}^{\theta}(\xi))^{\alpha/2 - l} \le C$$

741 and

$$(y_{j-i}^{\theta}(\xi))' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} (\theta(2T - y_{j-1-i}(\xi))^{1-1/r} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-1/r})$$

$$\leq C(2T - x_{j-2})^{1-1/r} \leq C$$

With 743

744 (C.72) 
$$Z_{2N-j-i} \le 2T^{1/r}$$

745

$$(y_{j-i}^{\theta}(\xi))'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T-y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} + (1-\theta)(2T-y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)})$$

$$\leq C(r-1)$$

Therefore, 747

(C.74) 
$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$\leq C$$

749

750 (C.75) 
$$(u''(y_{j-i}^{\theta}(\xi)))'' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^2 + u''''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq C + C(r-1) = C$$

751

There exists a constant  $C = C(T, \alpha, r)$  such that

753 (C.76) 
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{i}^{\theta} - x_{i}|^{1-\alpha}$$

754 (C.77) 
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N)$$

(C.78)

755 
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2}$$

Proof.

756 (C.79) 
$$(y_{j-i}^{\theta}(\xi) - \xi)' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i}'(\xi) - 1$$
757

758 (C.80) 
$$|y_{j-i}'(\xi) - 1| = \xi^{1/r-1} |(2T - y_{j-i}(\xi))^{1-1/r} - \xi^{1-1/r}|$$
$$\leq \xi^{1/r-1} |2T - \xi - y_{j-i}(\xi)| \xi^{-1/r}$$

760 (C.81)

759

$$|2T - \xi - y_{j-i}(\xi)| \le \max \begin{cases} |2T - x_{i-1} - x_{j-1}| \\ |2T - x_{i+1} - x_{j+1}| \end{cases}$$
$$\le |2T - x_i - x_j| + h_{i+1} + h_{i+1}$$

761 (C.82)

$$(y_{j-i}^{\theta}(\xi) - \xi)'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T - y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)}) \le 0$$

763 It's concave, so

764 (C.83) 
$$y_{j-i}(\xi) - \xi \ge \min\{x_{j+1} - x_{i+1}, x_{j-1} - x_{i-1}\} \ge C(x_j - x_i)$$

765 We have

766 (C.84) 
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

767

773

(C.85) 
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'$$

$$\leq C|y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{i+1} + h_{i-1})$$

769 (C.86)

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'' + \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-1-\alpha}(y_{j-i}^{\theta}(\xi) - 1)^{2}$$

$$\leq C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{i+1} + h_{j-1})^{2}$$

*Proof.* From (5.24), by Lemma C.8 and Lemma C.10, we have  $\xi \in [x_i, x_{i+1}]$ 

772 (C.87) 
$$Q_{j-i}^{\theta'}(\xi) \le Ch^2 h_j^2((r-1)|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N))$$

774 (C.88)  $Q_{j-i}^{\theta}(\xi) \le Ch^2 h_j^2 |y_j^{\theta} - x_i|^{1-\alpha}$ 

775 So use the skill in Proof 29 with Lemma C.9

776 (C.89) 
$$\frac{2}{h_i + h_{i+1}} \left( \frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\ \leq Ch^2 h_i (|y_i^{\theta} - x_i|^{1-\alpha} + |y_i^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_i^{\theta}| + h_N))$$

## A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MES41

| 777 | Acknowledgments. We would like to acknowledge the assistance of volunteers |
|-----|----------------------------------------------------------------------------|
| 778 | in putting together this example manuscript and supplement.                |

| 780 | [1] X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: Reg | ular |
|-----|---------------------------------------------------------------------------------------|------|
| 781 | ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (20         | 014) |
| 782 | pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://w  | vww  |
| 783 | sciencedirect.com/science/article/pii/S0021782413000895.                              |      |