CNNs for image classification

Instructor: Seunghoon Hong

Announcement

- We have a complete list of teams for the final project.
 - Check your new teammates and contact them as soon as possible.
- Assignment 1 will be released tonight!
 - **Due date: midnight September 23** (late submission due: midnight September 25)
 - We provide you a colab example that walks you through the image classification process using CNN
 - If you are not familiar with PyTorch yet, it may take some time! Start it ASAP.

Review: CNN for image classification

Today's agenda

- CNN architectures for image classification
 - AlexNet, ZFNet, VGGNet, Resnet, DenseNet
- Training tips for CNN
 - o data augmentation, fine-tuning

~2% improvements

Top 5 classification error on ImageNet

AlexNet [Krizhevsky et al. 2012]:

The first CNN that accelerates the deep learning era in vision

Architecture

8 layer CNN = 5 convolution layers + 3 fully-connected layers

Architecture

[227x227x3] Input

Architecture

[227x227x3] Input

[? x ? x?] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

(Feature size - kernel size)/stride + 1

Architecture

[227x227x3] Input

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

Architecture

```
[227x227x3] Input
[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU
[? x ? x?] MaxPool1 (kernel=3x3, stride=2)

(Feature size - kernel size)/stride + 1
```


Architecture

[227x227x3] Input [55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU [27x27x96] MaxPool1 (kernel=3x3, stride=2)

Architecture

[227x227x3] Input [55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU [27x27x96] MaxPool1 (kernel=3x3, stride=2) [27x27x96] Norm1

Architecture

[227x227x3] Input [55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU [27x27x96] MaxPool1 (kernel=3x3, stride=2) [27x27x96] Norm1 [27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU [13x13x256] MaxPool2 (kernel=3x3, stride=2) [13x13x256] Norm2

Architecture

[227x227x3] Input

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

[27x27x96] MaxPool1 (kernel=3x3, stride=2)

[27x27x96] Norm1

[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU

[13x13x256] MaxPool2 (kernel=3x3, stride=2)

[13x13x256] Norm2

[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU

Architecture

```
[227x227x3] Input

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

[27x27x96] MaxPool1 (kernel=3x3, stride=2)

[27x27x96] Norm1

[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU

[13x13x256] MaxPool2 (kernel=3x3, stride=2)

[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU
```

192

192

Max

pooling

128

pooling

128

dense

pooling

densé

2048

Architecture

```
[227x227x3] Input

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

[27x27x96] MaxPool1 (kernel=3x3, stride=2)

[27x27x96] Norm1

[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU

[13x13x256] MaxPool2 (kernel=3x3, stride=2)

[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU
```

192

192

Max

pooling

128

pooling

pooling

Architecture

```
[227x227x3] Input
[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU
[27x27x96] MaxPool1 (kernel=3x3, stride=2)
[27x27x96] Norm1
[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU
[13x13x256] MaxPool2 (kernel=3x3, stride=2)
[13x13x256] Norm2
[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU
[6x6x256] MaxPool3 (kernel=3x3, stride=2)
```

192

192

Max

pooling

128

pooling

128

pooling

```
Architecture
[227x227x3] Input
[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU
[27x27x96] MaxPool1 (kernel=3x3, stride=2)
[27x27x96] Norm1
[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU
[13x13x256] MaxPool2 (kernel=3x3, stride=2)
[13x13x256] Norm2
[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU
[6x6x256] MaxPool3 (kernel=3x3, stride=2)
[4096] FC6 (9216x4096)
[4096] FC7 (4096×4096)
[1000] FC8 (4096x1000)
```

192

192

Max

pooling

128

pooling

dense

pooling

```
Architecture
                                                          Max
                                                          pooling
[227x227x3] Input
[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU
[27x27x96] MaxPool1 (kernel=3x3, stride=2)
[27x27x96] Norm1
[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU
[13x13x256] MaxPool2 (kernel=3x3, stride=2)
[13x13x256] Norm2
[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU
[6x6x256] MaxPool3 (kernel=3x3, stride=2)
[4096] FC6 (9216x4096)
[4096] FC7 (4096×4096)
[1000] FC8 (4096x1000)
```

First CNN that applied ReLU nonlinearity (before: sigmoid or tanh → **problems**?)

128

pooling

192

1000

pooling

Architecture

[1000] FC8 (4096x1000)

```
[227x227x3] Input
[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU
[27x27x96] MaxPool1 (kernel=3x3, stride=2)
[27x27x96] Norm1
[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU
[13x13x256] MaxPool2 (kernel=3x3, stride=2)
[13x13x256] Norm2
[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU
[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU
[6x6x256] MaxPool3 (kernel=3x3, stride=2)
[4096] FC6 (9216x4096)
[4096] FC7 (4096×4096)
```

First CNN that applied ReLU nonlinearity (before: sigmoid or tanh → Saturating gradient → slow learning)

Max

pooling

128

pooling

192

densé

pooling

Architecture

```
[227x227x3] Input

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

[27x27x96] MaxPool1 (kernel=3x3, stride=2)

[27x27x96] Norm1

[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU

[13x13x256] MaxPool2 (kernel=3x3, stride=2)

[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU
```

[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU [13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU

[6x6x256] MaxPool3 (kernel=3x3, stride=2)

[4096] FC6 (9216x4096) [4096] FC7 (4096x4096) [1000] FC8 (4096x1000)

First CNN that applied ReLU nonlinearity

Large stride at the first layer → to reduce feature size and save computation (the model is trained with ~3G GPU memory)

Architecture

[1000] FC8 (4096x1000)

[227x227x3] Input [55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU [27x27x96] MaxPool1 (kernel=3x3, stride=2) [27x27x96] Norm1 [27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU [13x13x256] MaxPool2 (kernel=3x3, stride=2) [13x13x256] Norm2 [13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU [13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU [13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU [6x6x256] MaxPool3 (kernel=3x3, stride=2) **[4096] FC6** (9216x4096) [4096] FC7 (4096×4096)

224 Stride of 4 pooling 128 Max pooling 2048 pooling 3 48 8 192 192 192 128 Max pooling 2048 2048 dense

First CNN that applied ReLU nonlinearity

Large stride at the first layer

Normalization layer (no more used in recent CNNs)

Architecture

[227x227x3] Input

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU

[27x27x96] MaxPool1 (kernel=3x3, stride=2)

[27x27x96] Norm1

[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU

[13x13x256] MaxPool2 (kernel=3x3, stride=2)

[13x13x256] Norm2

[13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU

[6x6x256] MaxPool3 (kernel=3x3, stride=2)

[4096] FC6 (9216×4096)

[4096] FC7 (4096x4096)

[1000] FC8 (4096x1000)

First CNN that applied ReLU nonlinearity

Large stride at the first layer

Normalization layer

Dropout=0.5 is applied in FC layers to prevent overfitting

Number of parameters


```
[227x227x3] Input
```

[55x55x96] Conv1 (96, kernel=11x11, stride=4, pad=0) + ReLU $\rightarrow 11.6K$

[27x27x96] MaxPool1 (kernel=3x3, stride=2)

[27x27x96] Norm1

[27x27x256] Conv2 (256, kernel=5x5, stride=1, pad=2) + ReLU $\rightarrow 6.4K$

[13x13x256] MaxPool2 (kernel=3x3, stride=2)

[13x13x256] Norm2

 $\rightarrow 3.5K$ [13x13x384] Conv3 (384, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x256] Conv5 (256, kernel=3x3, stride=1, pad=1) + ReLU

[13x13x384] Conv4 (384, kernel=3x3, stride=1, pad=1) + ReLU

[6x6x256] MaxPool3 (kernel=3x3, stride=2)

[**4096**] FC6 (9216x4096)

[4096] FC7 (4096×4096)

 \rightarrow 16777K

FC layers are extremely expensive!

[1000] FC8 (4096x1000)

 $\rightarrow 4096K$

 $\rightarrow 3.5K$

 $\rightarrow 2.3K$

 \rightarrow 37749K

ZFNet [Zeiler et al. 2013]:

Better tuning of network parameters over AlexNet

ZFNet

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

VGGNet [Simonyan et al. 2013]:

Building deeper network with smaller convolutional filters

VGGNet

- Use only small conv filters (3x3 conv) (c.f. Early conv layers in AlexNet)
- Stack much deeper layers (8 -> 16 or 19 layers)
- Perf. improvement:

11.7% -> 7.3% top-5 error

Softmax FC 1000

FC 4096

FC 4096

Input

FC 4096

Softmax

FC 1000

FC 4096

Input

Softmax

FC 4096

FC 4096

AlexNet

Input VGG16

VGG19

VGGNet

- Why stacking small filters is better than a shallow but large filters?
 - → More non-linearity!
- It also reduces number of parameters

Input

Softmax FC 1000 FC 4096 FC 4096 AlexNet

Softmax

FC 1000

```
FC 4096
  FC 4096
   Input
                    Input
VGG16
                 VGG19
```

FC 4096

FC 4096

GoogleNet [Simonyan et al. 2013]:

Deeper, much efficient and accurate

GoogleNet

- Deeper network
 - o 22 layers (vs. 16 layers in VGG)
 - Each layer is composed of a small network (inception module)
- Efficient parametrization
 - No fully-connected layers
 - 12x fewer parameters than AlexNet
- Improved performance
 - \circ 7.3 (VGGNet) \rightarrow 6.7% top-5 error

GoogleNet

- Inception module
 - Combination of filters in different size
 (1x1, 3x3, 5x5, maxpool with stride=1)
 - Aggregating information in multiple receptive fields
 - Combine all filter responses by depth-wise concatenation

Inception module

- Closer inspection
 - 1x1 convolution

Inception module

- Closer inspection
 - 1x1 convolution

- Closer inspection
 - 1x1 convolution

- Closer inspection
 - 1x1 convolution

Apply K (1x1xC) convolution filters

This is equivalent to **pixel-wise embedding** from C to K dimension (if K < C, it reduces dimension)

- Closer inspection
 - o 1x1 convolution, 3x3 convolutions, 5x5 convolutions
 - Convolutions with different receptive fields.
 - Set to have the same spatial feature size
 - Max pooling for additional spatial abstraction

- Closer inspection
 - 1x1 convolution, 3x3 convolutions, 5x5 convolutions
 - Convolutions with different receptive fields.
 - Set to have the same spatial feature size
 - Max pooling for additional spatial abstraction

- Closer inspection
 - 1x1 convolution, 3x3 convolutions, 5x5 convolutions
 - Convolutions with different receptive fields.
 - Set to have the same spatial feature size
 - Max pooling for additional spatial abstraction

Feature size

Parameter size

- Closer inspection
 - o 1x1 convolution, 3x3 convolutions, 5x5 convolutions
 - Convolutions with different receptive fields.
 - Set to have the same spatial feature size
 - Max pooling for additional spatial abstraction

Problem: too large feature dimension

- → increase the parameter size in upper layers
- → increase the memory requirement

Feature size

Parameter size

- 1x1 convolution for dimensionality reduction
 - Insert 1x1 convs for every conv and pooling

- 1x1 convolution for dimensionality reduction
 - Insert 1x1 convs for every conv and pooling

Feature size

- 1x1 convolution for dimensionality reduction
 - Insert 1x1 convs for every conv and pooling

Feature size

Parameter size

- 1x1 convolution for dimensionality reduction
 - Insert 1x1 convs for every conv and pooling

Feature size

Parameter size

Naive inception: ~ 1090k

Inception with bottleneck:

~330k

A stack of simple convolution layers for initial layers

- A stack of simple convolution layers for initial layers
- A stack of inception modules in higher layers with occasional downsamplings

- A stack of simple convolution layers for initial layers
- A stack of inception modules in higher layers
- Average pooling to reduce the spatial feature dimension instead of FC

- A stack of simple convolution layers for initial layers
- A stack of inception modules in higher layers
- Average pooling to reduce the spatial feature dimension instead of FC
- Auxiliary loss (i.e. shortcuts) for strong gradient signals

Case study: CNN architectures for image classification

Resnet [Simonyan et al. 2013]:

Revolution in network depth Substantial performance improvement

So far, the deeper network seems to be better

- AlexNet → VGGNet → GoogleNet
 (8 layers) (16 layers) (22 layers)
 (16.4%) (7.3%) (6.3%)
- How about deeper network?

Depth vs. performance

Deeper network performs worse (higher test error). Maybe an overfitting issue? (due to increased amount of params)

Depth vs. performance

The deeper model fits even worse on training data! It's not an overfitting problem!

Why deeper network performs worse?

- In theory, deeper network should be at least as good as the shallow one in fitting the training data
- However, larger networks are much difficult to optimize
 - Potential problems in deeper networks
 - **Gradient vanishing** (gradients norm approaches near zero)

$$\frac{\partial \mathcal{J}(\mathbf{W})}{\partial \mathbf{h}^{(l)}} = \frac{\partial \mathcal{J}(\mathbf{W})}{\partial \mathbf{h}^{(L)}} \frac{\partial \mathbf{h}^{(L)}}{\partial \mathbf{h}^{(L-1)}} \frac{\partial \mathbf{h}^{(L-1)}}{\partial \mathbf{h}^{(L-2)}} \cdots \frac{\partial \mathbf{h}^{(l+1)}}{\partial \mathbf{h}^{(l)}}$$

■ Covariate shift (small variations in lower layers lead to large variations in deeper layers)

Residual connection

Main idea: add a shortcut connection that allows learning identity mapping

In degenerated case, We can learn identity mapping by setting F(x)=0

Optimization is much easier by allowing "bypassing" gradients through identity connection

Residual network

Blocks of residual connection

Plain residual block

Residual block with "bottleneck"

Classification on Cifar 10 dataset

Dashed line: training Solid line: testing

Today's agenda

- CNN architectures for image classification
 - AlexNet, ZFNet, VGGNet, Resnet, DenseNet
- Training tips for CNN
 - data augmentation, fine-tuning

Data augmentation

- Increases the training data to prevent overfitting
- Approaches: horizontal flip

Data augmentation

- Increases the training data to prevent overfitting
- Approaches: Random crop

Increase the image size slightly more than input size, and crop the images at random locations

Data augmentation

- Increases the training data to prevent overfitting
- Approaches: random color jittering

Fine-tuning

Transfer the weights from the models trained on other tasks (with larger data)

General layers (feature extractor)

Task-specific layers (depends on output)

Size of output

Fine-tuning

Transfer the weights from the models trained on other tasks (with larger data)

Freeze Early Layers in Network

> Only Train FC Layers

Fine-tuning

- Transfer the weights from the models trained on other tasks (with larger data)
 - o In terms of optimization: initialize the parameters near the good local optima
 - Also related to transfer learning (i.e. transferring the knowledge from one experience to another)