수학(하): 11 유리함수와 무리함수의 그래프

2018년 10월 29일

차 례

차	례	1
1	복습	2
2	유리함수의 그래프	4
3	무리함수의 그래프	12
*	답	18
*	요약	20

1 복습

정리 1) 도형의 평행이동

도형 f(x,y)=0을 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행 이동시키면 f(x-a,y-b)=0이 된다.

$$f(x,y) = 0 \quad \xrightarrow{\boxed{x}: a, \quad \boxed{y}: b} \quad f(x-a, y-b) = 0$$

예시 2)

포물선 $y=x^2$ 를 x축의 방향으로 2만큼, y축의 방향으로 3만큼 평행이동시 키면 $y-3=(x-2)^2$ 이 된다.

$$y = x^2 \quad \xrightarrow{\boxed{x} : 2, \quad \boxed{y} : 3} \quad y - 3 = (x - 2)^2$$

이것을 정리하면 $y = (x-2)^2 + 3$ 이 된다.

문제 3)

직선 y = 3x을 x축의 방향으로 1만큼, y축의 방향으로 -2만큼 평행이동시킨 도형의 방정식을 구하여라.

정리 4) 도형의 대칭이동

도형 f(x,y) = 0을 각각 x축, y축, 원점, y = x에 대해 대칭이동시키면

$$f(x,y) = 0$$
 $\xrightarrow{x^{\frac{\alpha}{\gamma}}}$ 대칭 $f(x,-y) = 0$

$$f(x,y) = 0$$
 $\xrightarrow{y$ 촉 대칭 $x \leftarrow -x$ 대입 $f(-x,y) = 0$

$$f(x,y)=0$$
 원점 대칭
$$f(-x,-y)=0$$

$$f(x,y) = 0 \qquad \xrightarrow{y=x \text{ 대칭}} \qquad f(y,x) = 0$$

예시 5) 원 $(x-3)^2 + (y-1)^2 = 1$ 을

(1) *x*축에 대해

(2) y축에 대해

대칭이동시킨 도형의 방정식을 구하여라.

(1)
$$(x-3)^2 + (y-1)^2 = 1$$
 $\xrightarrow{x^{\frac{\alpha}{3}} \text{ 대칭}}$ $(x-3)^2 + (-y-1)^2 = 1$ 이다. 이것을 정리하면 $(x-3)^2 + (y+1)^2 = 1$ 이 된다.

(2)
$$(x-3)^2 + (y-1)^2 = 1$$
 $\xrightarrow{y \stackrel{\text{if id}}{\Rightarrow}} (-x-3)^2 + (y-1)^2 = 1$

이다. 이것을 정리하면 $(x+3)^2 + (y-1)^2 = 1$ 이 된다.

문제 6) 예시 5)의 도형을

(1) 원점 대해

(2) 직선 y = x에 대해

대칭이동시킨 도형의 방정식을 구하여라.

2 유리함수의 그래프

예시 7) $y = \frac{1}{x}$ 의 그래프를 그려라.

 $y=\frac{1}{x}$ 를 만족시키는 모든 점 (x,y)을 표시하면 된다. x=1이면 y=1이고 y=2이면 $y=\frac{1}{2}$ 이다. 따라서 $y=\frac{1}{x}$ 의 그래프는 $(1,1), (2,\frac{1}{2})$ 와 같은 점들을 포함한다. 이밖에도

$$(x,y) = (1,1), (2, \frac{1}{2}), (3, \frac{1}{3}), (4, \frac{1}{4}), \cdots$$

$$(\frac{1}{2},2), (\frac{1}{3},3), (\frac{1}{4},4), \cdots$$

$$(-1,-1), (-2,-\frac{1}{2}), (-3,-\frac{1}{3}), (-4,-\frac{1}{4}), \cdots$$

$$(-\frac{1}{2},-2), (-\frac{1}{3},-3), (-\frac{1}{4},-4), \cdots$$

와 같은 점들을 찍을 수 있다. 이 점들을 자연스럽게 이으면 다음과 같은 곡선이 나온다.

문제 8) 다음 유리함수들의 그래프를 그려라.

- (1) $y = \frac{2}{x}$
- $(2) \ y = \frac{6}{x}$
- (3) $y = \frac{1}{2x}$

정리 9) $y = \frac{k}{x}$ 의 그래 $\mathbf{\Xi}(k > 0)$

- 대칭적인 곡선이다.*
- 제1사분면과 제3사분면에 그래프가 그려진다.
- k 값이 커질수록 원점에서 멀어지고 k 값이 작아질수록 원점에 가까 워진다.

^{*}원점에 대해, 직선 y=x에 대해, 직선 y=-x에 대해 대칭인 곡선이다.

예시 10) $y = -\frac{1}{x}$ 의 그래프를 그려라.

마찬가지로 $y=-\frac{1}{x}$ 를 만족시키는 모든 점 (x,y)을 표시하면 된다.

$$(x,y) = (1,-1), (2,-\frac{1}{2}), (3,-\frac{1}{3}), (4,-\frac{1}{4}), \cdots$$
$$(\frac{1}{2},-2), (\frac{1}{3},-3), (\frac{1}{4},-4), \cdots$$
$$(-1,1), (-2,\frac{1}{2}), (-3,\frac{1}{3}), (-4,\frac{1}{4}), \cdots$$
$$(-\frac{1}{2},2), (-\frac{1}{3},3), (-\frac{1}{4},4), \cdots$$

와 같은 점들을 찍을 수 있다. 이번에도 이 점들을 자연스럽게 이으면 다음과 같은 곡선이 나온다.

문제 11) 다음 유리함수들의 그래프를 그려라.

- (1) $y = -\frac{2}{x}$
- (2) $y = -\frac{6}{x}$
- (3) $y = -\frac{1}{2x}$

정리 12) $y = \frac{k}{x}$ 의 그래프(k < 0)

- 대칭적인 곡선이다.
- 제2사분면과 제4사분면에 그래프가 그려진다.
- |k| 값이 커질수록 원점에서 멀어지고 |k| 값이 작아질수록 원점에 가까워진다.

문제 13) 함수 $y = \frac{k}{x}$ 의 정의역과 공역, 치역을 각각 말하여라.

예시 14) $y = \frac{2x-5}{x-3}$ 의 그래프를 그려라.

주어진 식의 좌변을 잘 정리하면

$$\frac{2x-5}{x-3} = \frac{2(x-3)+1}{x-3} = \frac{1}{x-3} + 2$$

이다. 따라서 $y=\frac{1}{x-3}+2$ 의 그래프를 그리면 된다. 이 그래프는 $y=\frac{1}{x}$ 의 그래프를 x축의 방향으로 3만큼, y축의 방향으로 2만큼 평행이동시킨 그래프이다.

이때, 곡선 위의 점들은 x의 절댓값이 커질수록 직선 y=2에 가까워지고 y의 절댓값이 커질수록 직선 x=3에 가까워진다. 이와 같은 두 직선 y=2, x=3을 점근선 이라고 부른다.

또한, 주어진 식 $y = \frac{2x-5}{x-3}$ 에 y = 0을 대입하면 $x = \frac{5}{2}$ 이고, x = 0을 대입하면 $y = \frac{5}{3}$ 이므로 x절편은 $\frac{5}{2}$, y절편은 $\frac{5}{3}$ 이다.

문제 15)

다음 유리함수들의 그래프를 그리고 점근선과 x절편, y절편을 구하여라.

(1) $y = \frac{3x+5}{x+1}$

점근선:

x절편 =

y 절편 =

 $(2) \ y = \frac{2x}{x-2}$

점근선:

x절편 =

y절편 =

(3) $y = \frac{-x+2}{x-3}$

점근선:

x절편 =

y 절편 =

3 무리함수의 그래프

예시 16) $y = \sqrt{x}$ 의 그래프를 그려라. $y = \sqrt{x}$ 를 만족시키는 모든 점 (x, y)를 표시하면 된다.

$$(x,y) = (0,0), (1,1), (4,2), (9,3), \cdots$$

등을 좌표평면에 표시하고 자연스럽게 이으면

이 된다.

잘 살펴보면 $y=\sqrt{x}$ 의 그래프는 $y=x^2$ 의 그래프와 비슷하게 생겼다. $y=x^2$ 의 그래프 중 제1사분면 부분을 y=x에 대해 대칭이동시키면 $y=\sqrt{x}$ 의 그래프가 되는 것이다.

실제로 함수 $y=x^2$ 의 정의역이 $\{x\,|\,x\geq 0\}$ 이고 공역이 $\{y\,|\,y\geq 0\}$ 이라고 가정하고, 이 함수의 역함수를 구해보면,

$$y = x^2 \qquad (x \ge 0, \, y \ge 0)$$

에서 x대신에 y를, y대신에 x를 대입시켜야 하므로

$$x = y^2 \qquad (y \ge 0, \, x \ge 0)$$

이고 $y \ge 0$ 로부터

$$y = \sqrt{x} \qquad (x \ge 0, \, y \ge 0)$$

이다. 즉, A를 음이 아닌 실수들의 집합이라고 할 때, 함수 $f:A\to A$, $f(x)=x^2$ 의 역함수 $f^{-1}:A\to A$ 는 $f^{-1}(x)=\sqrt{x}$ 이다.

예시 17) 다음 무리함수들의 그래프를 그려라.

(1)
$$y = -\sqrt{x}$$

(2)
$$y = \sqrt{-x}$$

(3)
$$y = -\sqrt{-x}$$

(1)의 경우 식 $y=\sqrt{x}$ 에 y 대신 -y를 대입한 $-y=\sqrt{x}$ 를 정리하여 얻어질 수 있다.

$$y = \sqrt{x}$$
 $\xrightarrow{x^{\stackrel{\wedge}{\Rightarrow}}}$ 대칭 $y = -\sqrt{x}$

따라서 $y=-\sqrt{x}$ 의 그래프는 $y=\sqrt{x}$ 의 그래프를 y축대칭시킨 것이다. (2)와 (3)의 경우에는

$$y = \sqrt{x}$$
 $\xrightarrow{y$ 축 대칭 $y = \sqrt{-x}$

$$y = \sqrt{x}$$
 원점 대청 $y = -\sqrt{-x}$ 자 나는 $y = -\sqrt{-x}$

이다. 따라서 $y=\sqrt{-x}$ 와 $y=-\sqrt{-x}$ 의 그래프는 $y=\sqrt{x}$ 의 그래프를 각각 x축대칭, 원점대칭시켜 얻어진다. 이것들을 좌표평면 위에 그리면 다음과 같다.

예시 18) $y = -\sqrt{2x}$ 의 그래프를 그려라.

 $y=-\sqrt{2x}$ 의 그래프의 개형은 $y=-\sqrt{x}$ 의 그래프와 비슷할 것이다. (0,0), (2,-2) 등을 지나도록 그래프를 그리면 다음과 같다.

 $y = -\sqrt{2x}$

문제 19) 다음 무리함수들의 그래프를 그려라.

$$(1) \ y = \sqrt{-\frac{1}{2}x}$$

문제 20)

예시 18)과 문제 19)의 세 함수들의 정의역과 치역을 각각 말하여라.

	정의역	치역
$y = -\sqrt{2x}$	$\left\{ x x \ge 0 \right\}$	
$y = \sqrt{-\frac{1}{2}x}$		
$y = -\sqrt{-3x}$		

예시 21) $y = -\sqrt{2x+4} + 1$ 의 그래프를 그리고, x절편과 y절편을 각각 구하여라.

주어진 식을 잘 정리하면

$$y - 1 = -\sqrt{2(x+2)}$$

가 된다. 따라서 이 함수의 그래프는 $y=-\sqrt{2x}$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 1만큼 평행이동시킨 것이다. $y=-\sqrt{2x}$ 의 그래프가 (0,0), (2,-2)를 지나기 때문에 $y=-\sqrt{2x+4}+1$ 의 그래프는 (-2,1), (0,-1)을 지난다.

이다.

또한, 주어진 식 $y = -\sqrt{2x+4} + 1$ 에

y=0을 대입하면 $x=-\frac{3}{2}$ 이고, x=0을 대입하면 y=-1이므로 x 절편은 $-\frac{3}{2}$, y 절편은 -1이다.

문제 22)

다음 무리함수들의 그래프를 그리고 x절편, y절편을 구하여라.

$$(1) \ y = \sqrt{-\frac{1}{2}x + 3}$$

x절편 =

y절편 =

$$(2) \ y = -\sqrt{-3x+9} + 3$$

x절편 =

y 절편 =

답

문제 3)

$$y = 3x - 5$$

문제 6)

$$(1) (x+3)^2 + (y+1)^2 = 1$$

(2)
$$(x-1)^2 + (y-3)^2 = 1$$

문제 8)

문제 11)

문제 13)

정의역 = $\{x \mid x \neq 0\}$ 공역 = 실수 전체의 집합 치역 = $\{y \mid y \neq 0\}$

문제 15)

(1)

점근선 : x=-1, y=3 x절편 $=-\frac{5}{3}, \qquad y$ 절편 =5

(2)

점근선 : x = 2, y = 2x절편 = 0, y절편 = 0 (3)

점근선 : x=3, y=-1 x절편 = 2, y절편 = $-\frac{2}{3}$

문제 19)

(1)

(2)

문제 20)

	정의역	치역
$y = \sqrt{-\frac{1}{2}x}$	$\{x \mid x \le 0\}$	$\{y \mid y \ge 0\}$
$y = -\sqrt{-3x}$	$\{x \mid x \le 0\}$	$\{y \mid y \le 0\}$

문제 22)

(1)

x절편 = 6, y절편 = $\sqrt{3}$

(2)

x절편 = 0, y절편 = 0

요약

1. 유리함수 $y = \frac{1}{x}$ 의 그래프

2. 무리함수 $y = \sqrt{x}$ 의 그래프

