Entropie et codage de source

 $\mathbf{Q2}$

$$\mathcal{D}(\mathcal{B}(a)||\mathcal{B}(b)) = alog_2(\frac{a}{b}) + (1-a)log_2(\frac{1-a}{1-b})$$

D'où
$$\mathcal{D}(\mathcal{B}(a)||\mathcal{B}(b)) - \mathcal{D}(\mathcal{B}(b)||\mathcal{B}(a)) = (a+b)\log_2\frac{a}{b} + (2-a-b)\log_2\frac{1-a}{1-b}$$

Or pour $a = \frac{1}{4}$ et $b = \frac{1}{2}$,

$$\mathcal{D}(\mathcal{B}(a)||\mathcal{B}(b)) - \mathcal{D}(\mathcal{B}(b)||\mathcal{B}(a)) = \frac{3}{4}\log_2\left(2\right) + \frac{5}{4}\log_2\left(\frac{3}{2}\right) \neq 0$$

Ainsi, dans le cas général, $\mathcal{D}(p||q) \neq \mathcal{D}(q||p)$

Q3a

La fonction $-\log_2$ est strictement convexe. Alors, d'après l'inégalité de Jensen,

$$\sum_{x \in E} p(x) \left(-\log_2\left(\frac{q(x)}{p(x)}\right) \right) \ge -\log_2\left(\sum_{x \in E} p(x) \frac{q(x)}{p(x)} \right) = -\log_2(\sum_{x \in E} q(x)) = 0$$

Ainsi
$$D(p||q) \ge 0$$

La stricte convexité de $-\log_2$ permet de conclure qu'il y a égalité si et seulement si $\forall x \in E, p(x) = q(x)$, soit p = q.

Q3b

D'après Q3a,
$$\mathcal{I}(X,Y) = \mathcal{D}(p_{(X,Y)}||p_X \otimes p_Y) \geq 0$$

Avec égalité si et seulement si $p_{(X,Y)} = p_X \otimes p_Y \iff X$ et Y sont indépendants.

Q4a

$$\begin{split} \mathcal{H}(X,Y) &= -\sum_{x,y \in E} p_{X,Y}(x,y) \log_2 \left(p_{X,Y}(x,y) \right) \\ &= -\sum_{x \in E} \sum_{y \in E} p_X(x) p_{Y|X=x}(y) \log_2 p_X(x) + \log_2 p_{Y|X=x}(y) \\ &= \mathcal{H}(X) + \sum_{x \in E} p_X(x) \left(-\sum_{Y \in E} p_{Y|X=x}(y) \log_2 p_{Y|X=x}(y) \right) \\ &= \mathcal{H}(X) + \mathcal{H}(Y|X) \end{split}$$

Q4b

$$\begin{split} &\mathcal{I}(X,Y) = \sum_{(X,Y) \in E} p_{X,Y}(x,y) \log_2 \frac{p_{X,Y}x,y}{p_X(x)p_Y(y)} \\ &= \sum_{(X,Y) \in E} p_X(x) p_{Y|X=x}(y) \log_2 \left(p_{Y|X=x}(y) \right) - \sum_{(X,Y) \in E} p_Y(y) p_{X|Y=y}(x) \log_2 \left(p_Y(y) \right) \\ &= \mathcal{H}(Y) - \mathcal{H}(Y|X) \\ &= \mathcal{H}(X) - \mathcal{H}(X|Y) \text{ (par symétrie des rôles de X et Y)} \\ &= \mathcal{H}(Y) - \left(\mathcal{H}(X,Y) - \mathcal{H}(X) \right) \text{ (Q4a)} \\ &= \mathcal{H}(X) + \mathcal{H}(Y) - \mathcal{H}(X,Y) \end{split}$$

 $\mathbf{Q4c}$

D'après 4b,
$$\mathcal{H}(X,Y)=\mathcal{H}(X)-\mathcal{I}(X;Y)$$
 Or $\mathcal{I}(X;Y)\geq 0$ Ainsi, $\mathcal{H}(X,Y)\leq \mathcal{H}(X)$

Q5a

On utilise l'algorithme d'inversion de la fonction de répartition pour une loi discrète.

On utilise python pour déterminer un nombre a aléatoirement suivant la loi uniforme, entre 0 et 1, et on pose Y tel que :

$$Y = x_i \iff \sum_{j=1}^{i-1} p_j < a \le \sum_{j=1}^{i} p_{j+1}$$

On peut appliquer ce principe pour $X \leadsto \mathcal{B}(\frac{1}{3})$
Soit $a \leadsto \mathcal{U}([0;1])$ Notons aussi $x_0 = 1$ et $x_1 = 0$
Alors $\mathbb{P}(X = x_0) = \frac{2}{3} = \mathbb{P}(a < \frac{2}{3})$ et $\mathbb{P}(X = x_1) = \frac{1}{3} = \mathbb{P}(a > \frac{2}{3})$.

Q7a

$$\mathcal{D}(p_X||q) = \sum_{x \in E} p_X(x) log_2(\frac{p_X(x)}{\frac{1}{c}d^{-l(x)}})$$
> 0

Alors

$$\begin{split} \sum_{x \in E} p_X(x) log_2(p_X(x)) &\geq -\sum_{x \in E} p_X(x) l(x) log_2(d) + \sum_{x \in E} p_X(x) log_2(\frac{1}{c}) \\ &\iff \\ -\mathcal{H}(X) &\geq -log_2(d) \mathbb{E}(X) + log_2(\frac{1}{c}) \\ &\geq -log_2(d) \mathbb{E}(X) \quad (\texttt{car} \leq 1) \end{split}$$

D'où
$$\frac{\mathcal{H}(x)}{log_2(d)} \leq \mathbb{E}[l(X)]$$

Le cas d'égalité se déduit de celui de \mathcal{D} , et a lieu pour $p_X = q$, soit les $p_X(x)$ sont des puissances négatives de d.

Q7b

Soit p une loi de probabilité telle que qui s'écrit $p_X(x)=\frac{1}{c}d^{-n_x}$ avec $c=\sum_{x\in E}d^{-n_x}$.

Cas 1 : $c \le 1$ Prenons $\forall x \in E, l_0(x) = n_x$

Cas 2 : c > 1 Alors soit k tel que $\frac{c}{d^k} \le 1$

$$p_X(x) = \frac{d^k}{c} d^{-n_x - k}$$
, avec $\sum_{x \in E} d^{-n_x - k} \le \frac{c}{d^k} \le 1$

Posons alors $\forall x \in E, l_0(x) = n_x + k$

Cette application vérifie l'inégalité de Kraft-McMillan, et vérifie le cas d'égalité de la question Q7a d'après les calculs précédents pour q définie à partir de la fonction l_0 .

Q7c

La fonction puissance étant bijective sur \mathbb{R}^+ , on a :

$$\forall x \in E, \exists \alpha_x, \quad p_X(x) = d^{\alpha_x}$$

Posons c et β tels que :

$$c = \sum_{x \in E} d^{\alpha_x} = d^{\beta}$$

Alors

$$\forall x \in E, \quad p_X(x) = \frac{1}{c}d^{-(\beta - \alpha_x)}$$

On pose donc

$$l_0(x) = \beta - \alpha_x$$

D'où

$$\mathbb{E}[\overline{l_0}(X)] = \sum_{x \in E} \overline{l_0}(X) \mathbb{P}(X = x)$$

$$< \sum_{x \in E} l_0(X) \mathbb{P}(X = x) + \sum_{x \in E} \mathbb{P}(X = x)$$

Or d'après la question Q7a, la forme de $p_X(x) = \frac{1}{c} d^{-(\beta - \alpha_x)}$ assure :

$$\frac{\mathcal{H}(x)}{log_2(d)} = \mathbb{E}[l(X)] \quad \text{puisque } \mathcal{D}(p_X||p_X) = 0$$

Q9a

Voici le tableau des occurrences.

a	b	c	d	e	f
2	3	1	2	2	1

On choisit c et f

\mathbf{a}	b	d	e	cf
2	3	2	2	2

On choisit e et cf

a	b	d	ecf
2	3	2	4

On choisit a et d

b	ad		ecf		
3	4		4		
On choisit b et ad					
bad		e	cf		
7		4			

On n'a plus que deux éléments, et construisons donc l'arbre en remontant les étapes précédentes.

 d