

UNIVERSIDAD FIDELITAS

Escuela de Ingeniería Eléctrica

Control automático

Tarea#7

Realizado por:

Fabricio Gutiérrez Arias.

Profesor:

Erick Salas

II cuatrimestre 2018

Fecha: 03 de julio del 2018

Parte en matlab:

>> A=tf([1],[1 5 6])

A =

1

 $s^2 + 5s + 6$

Continuous-time transfer function.

>> W=feedback(A,1)

W =

1

 $s^2 + 5s + 7$

Continuous-time transfer function.

>> step(W)

>> E=feedback(1,W)

$$s^2 + 5s + 7$$

$$s^2 + 5 s + 8$$

Continuous-time transfer function.

>> step(E)

c =

$$s + 1.81$$

s + 1

>> H=series(c,A)

H =

$$s + 1.81$$

$$s^3 + 6 s^2 + 11 s + 6$$

Continuous-time transfer function.

>> P=feedback(H,1)

P =

$$s + 1.81$$

$$s^3 + 6 s^2 + 12 s + 7.81$$

Continuous-time transfer function.

>> step(P)

>> EC=feedback(1,H)

$$s^3 + 6 s^2 + 11 s + 6$$

$$s^3 + 6 s^2 + 12 s + 7.81$$

Continuous-time transfer function.

>> step(EC)

>> step(P,W,10)

