INDY-5 Helmet

Brian Bergmann & Patrick O'Connell

PATROTS

Concussions

A concussion can be defined as a temporary unconsciousness or confusion caused by blow to the head

According to the University of Michigan a concussion occurs at roughly 90-100 grams of force

219 concussions in the NFL in 2023 alone

If concussions are not treated, patients are at a greater risk of reinjury which can increase symptoms

Concussions can have long term effects such as CTE (Chronic traumatic encephalopathy)

Technology Used

Raspberry Pi 4b

- Raspberry Pi's are micro computers
- Aluminum case also ensures the protection of the device

i2c = busio.I2C(board.SCL, board.SDA) accelerometer = adafruit adx134x.ADXL345(i2c)

Adjust tap detection threshold to 100 m/s^2 accelerometer.enable tap detection(threshold=500,duration=300) accelerometer.range = adafruit adx134x.Range.RANGE 8 G

Adafruit Accelerometer

$$m = \frac{W}{g}$$

An accelerometer is a device that measures the vibration, or acceleration of motion, of a structure. The force caused by vibration or a change in motion (acceleration) causes the mass to "squeeze" the piezoelectric material which F=ma produces an electrical charge to the force exerted upon it. produces an electrical charge that is proportional

> This allows us to track force exerted on a players head

3V3 power o-	02	→ 5V power
GPIO 2 (SDA) •	30	→ 5V power
GPIO 3 (SCL) •	00	Ground
GPIO 4 (GPCLK0) •	00	——— GPIO 14 (TXD)
Ground o-	9 10	GPIO 15 (RXD)
GPI0 17 •	(1) (D	GPIO 18 (PCM_CLK)
GPIO 27 •	(B) (D)	Ground
GPIO 22 0-	(D) (D)	GPIO 23
3V3 power o-	(D) (D)	GPIO 24
GPIO 10 (MOSI) •	1 9 2 0	Ground
GPIO 9 (MISO) •	3 2	GPIO 25
GPIO 11 (SCLK) •	3 2	——— GPIO 8 (CE0)
Ground o-	3 3	GPIO 7 (CE1)
GPIO 0 (ID_SD) •	3 3	GPIO 1 (ID_SC)
GPIO 5 •	39 30	Ground
GPIO 6 •	3 3	GPIO 12 (PWM0)
GPIO 13 (PWM1) •	■ 33 33	Ground
GPIO 19 (PCM_FS) •	35 35	GPIO 16
GPIO 26 •	39 39	——— GPIO 20 (PCM_DIN)
Ground o-	9 40	——— GPIO 21 (PCM_DOUT)

Adafruit Library

The tap detection parameters.

:param int tap_count: 1 to detect only single taps, and 2 to detect only double taps.

:param int threshold: A threshold for the tap detection. The scale factor is 62.5 mg/LSB\

The higher the value the less sensitive the detection.

:param int duration: This caps the duration of the impulse above ``threshold``.\

Anything above ``duration`` won't register as a tap. The scale factor is $625 \mu s/LSB$

:param int latency: (double tap only) The length of time after the initial impulse\

falls below ``threshold`` to start the window looking for a second impulse.\

The scale factor is 1.25 ms/LSB.

:param int window: (double tap only) The length of the window in which to look for a\

second tap. The scale factor is 1.25 ms/LSB

What happens during hit

Sleep for a while to prevent high CPU usage

while True:

time.sleep(1)

```
x, y, z = accelerometer.acceleration
print("Acceleration: %.2f m/s^2, %.2f m/s^2, %.2f m/s^2" % (x, y, z))

tap_detected = accelerometer.events.get("tap", False)
print("Tap event:", tap_detected)

if tap_detected:
    print("Tap detected")
    # Sending the mail
    s.sendmail("indyfive2024@gmail.com", "poconnell20055@gmail.com", messa
```


Twilio

- Provides a messaging software tool
- Able to connect to API in order to send a message to alert the coach of a hit

By using Twilio makes it simple for the user, no need for an app or other interface to connect to

device

SMTP

```
# Create SMTP session
s = smtplib.SMTP('smtp.gmail.com', 587)
# Start TLS for security
s.starttls()
# Authentication
s.login("indyfive2024@gmail.com", ' ' ' '
```

- Simple Mail Transfer Protocol
- Sets up connection to a google email account
- Allows for email to be sent containing a message

```
if tap_detected:
    print("Tap detected")
    # Sending the mail
    s.sendmail("indyfive2024@gmail.com", "poconnell20055@gmail.com", message)
```

Ideas for the future:

- Some sort of database that tracks the force and calculates somehow to accumulate the force that could add up to a concussion (not realistic need billions of dollars and larger team)
- Implement some sort of feedback system that allows real users to send feedback to us about how to make it better (from coaches/players)
- Somehow make it smaller so we don't need to remove padding
- Implement texting feature for a quicker response for coaches

Demonstration