ECN 7060 Examen Intra 2019

2019-10-16

- 1. Pour $A_n = [-n, (-1)^n/n]$, trouvez $\sup_{k \ge n} A_k$, $\inf_{k \ge n} A_k$, $\limsup_n A_n$ et $\liminf_n A_n$. Trouvez une représentation simple de l'ensemble $\{x \in \mathbb{R} : 1 \in \limsup_n \{e^{2\pi i n x}\}\}$.
- 2. Soit A_n une suite d'événements sur (Ω, \mathcal{F}, P) . Montrez que $P(\limsup A_n) \ge \limsup P(A_n)$. Sur un espace de probabilité (Ω, \mathcal{F}, P) de votre choix, donnez un exemple d'une suite A_n où l'inégalité tient avec égalité et un autre exemple où l'inégalité est stricte.
- 3. Considérez le théorème 10.1.1. Démontrez que la condition (3) implique la condition (1). Vous pouvez utiliser la preuve dans le livre, mais faites-la dans vos propres mots et expliquez les étapes.
- 4. Soit (Ω, \mathcal{F}, P) un espace de probabilité où $\Omega = [0, 1]$, \mathcal{F} est borélien et P est la mesure de Lebesgue. Soit $X(\omega) = 1/\omega$.
 - a. Trouvez une séquence $X_n(\omega)$ de variables aléatoires simples telles que $X_n \leq X$ et $\lim_{n\to\infty} E[X_n] = \infty$.
 - b. Trouvez E[X].
 - c. Supposez que $Y \sim N(10^6, 1)$. Soit

$$Z = \begin{cases} Y^{-1} & Y \neq 0, \\ 0 & Y = 0. \end{cases}$$

Qu'est-ce que vous pouvez conclure sur la valeur de E[Z]? Expliquez brièvement.

- 5. Si $X \sim N(\mu, \sigma^2)$, trouvez $E[X^3]$. Utilisez la fonction caractéristique.
- 6. Montrez que la loi $\chi^2(\nu)$ est infiniment divisible. Utilisez la fonction caractéristique.
- 7. Montrez que la condition $X_n \stackrel{a.s.}{\to} X$ a.s. dans la proposition 9.1.5. ne peut pas être remplacé par $X_n \stackrel{p}{\to} X$. (Trouvez un contre-exemple.)
- 8. Soit $(\mathcal{F}_{\alpha})_{\alpha \in A}$ une famille de tribus sur l'ensemble Ω . Montrez que $\mathcal{G} = \bigcap_{\alpha \in \mathcal{A}} \mathcal{F}_{\alpha}$ est aussi une tribu sur Ω .
- 9. Si A_1, A_2, \ldots, A_n sont des événements indépendants, montrez que la probabilité pour qu'aucun des A_i ne soit réalisé est au plus égale à $\exp(-\sum_{i=1}^n P(A_i))$.