\rightarrow page 11

 \rightarrow page 11

 \rightarrow page 11

 \rightarrow page 12

 \rightarrow page 12

 \rightarrow page 12

 \rightarrow page 13

 \rightarrow page 13

Développements asymptotiques à l'ordre 3

Q Comment effectuer un développement asymptotique à l'ordre 3. L'occasion de prendre conscience d'une difficulté à laquelle prêter attention, lorsque vous faites des développements limités : quand vous composez les développements limités de deux fonctions, poussez le second développement à un ordre suffisamment élevé.

Remarque sur les corrigés. Pour progresser en faisant ces exercices et en lisant les corrigés, vous devez vous interroger sur l'ordre choisi pour chacun des développements limités. Bien que l'énoncé demande systématiquement un développement à l'ordre 3, parfois le corrigé se contente de développements à l'ordre 2, parfois à l'ordre 1, etc. Pourquoi n'est-il pas toujours nécessaire de pousser tous les développements à l'ordre 3? Ce n'est bien sûr pas laissé au hasard et cela doit alimenter votre réflexion.

Exercice 1. Déterminer des réels a, b et c tels que :

$$\frac{2}{n} + \frac{1}{n+1} + \frac{1}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 2. Déterminer des réels a, b et c tels que :

$$\frac{5}{n} - \frac{7}{n+3} + \frac{1}{2(n-1)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 3. Déterminer des réels a, b et c tels que :

$$\frac{1}{3n} + \frac{1}{n+1} + \frac{1}{14(n-3)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 4. Déterminer des réels a, b, c et d tels que :

$$e^{\left(6\ln\left(\frac{1}{n}+1\right)+\sinh\left(\frac{1}{n}\right)\right)} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 5. Déterminer des réels a, b et c tels que :

$$-\frac{1}{n} - \frac{3}{n+3} + \frac{1}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 6. Déterminer des réels a, b et c tels que :

$$\frac{1}{n} + \frac{1}{3(n+3)} - \frac{2}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 7. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(\frac{\sinh(x)}{x} + \arctan(x)\right)^{\frac{11}{6}}} = a + bx + cx^2 + dx^3 + o_{x\to 0}(x^3).$$

Exercice 8. Déterminer des réels a, b, c et d tels que :

$$\ln(\arctan(x) - \sinh(x) + 1) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}(x^{3}).$$

Exercice 9. Déterminer des réels a, b, c et d tels que :

$$\ln(-\arctan(x) + \cosh(x)) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}(x^{3}).$$

 \rightarrow page 14

 \rightarrow page 14

 \rightarrow page 15

 \rightarrow page 15

 \rightarrow page 15

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 16

 \rightarrow page 17

 \rightarrow page 17

Exercice 10. Déterminer des réels a, b, c et d tels que :

$$\ln\left(-4\arctan\left(x\right) + \ln\left(x+1\right) + 1\right) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}\left(x^{3}\right).$$

Exercice 11. Déterminer des réels a, b, c et d tels que :

$$\sqrt{-11\arctan\left(\frac{1}{n}\right)+\cos\left(\frac{1}{n}\right)}=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 12. Déterminer des réels a, b et c tels que:

$$-\frac{1}{6n} + \frac{1}{n+4} + \frac{1}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 13. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{e^x - \sinh(x)} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0} (x^3).$$

Exercice 14. Déterminer des réels a, b et c tels que :

$$-\frac{1}{n} + \frac{1}{n+2} + \frac{6}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 15. Déterminer des réels a, b et c tels que :

$$\frac{1}{n} + \frac{1}{8(n+1)} + \frac{1}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 16. Déterminer des réels a, b et c tels que:

$$\frac{5}{n} - \frac{3}{n+3} + \frac{1}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 17. Déterminer des réels a, b, c et d tels que :

$$\sinh\left(\frac{6\cosh\left(\frac{1}{n}\right)}{n} + 8\sin\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 18. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\sqrt{x\cos(x) + 2\sinh(x) + 1}} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}(x^3).$$

Exercice 19. Déterminer des réels a, b et c tels que :

$$-\frac{1}{n} + \frac{7}{2(n+1)} + \frac{4}{5(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 20. Déterminer des réels a, b et c tels que:

$$-\frac{2}{n} - \frac{2}{n+4} + \frac{1}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

 \rightarrow page 18

 \rightarrow page 18

 \rightarrow page 19

 \rightarrow page 19

 \rightarrow page 19

 \rightarrow page 20

 \rightarrow page 20

 \rightarrow page 20

 \rightarrow page 21

 \rightarrow page 21

Exercice 21. Déterminer des réels a, b, c et d tels que:

$$\sinh\left(-\frac{\cos\left(\frac{1}{n}\right)}{n} + 4\ln\left(\frac{1}{n} + 1\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 22. Déterminer des réels a, b et c tels que :

$$-\frac{1}{2n} + \frac{1}{3(n+3)} - \frac{1}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 23. Déterminer des réels a, b, c et d tels que :

$$-\frac{1}{\frac{\cosh\left(\frac{1}{n}\right)}{n} - 3\ln\left(\frac{1}{n} + 1\right) - 1} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 24. Déterminer des réels a, b et c tels que :

$$\frac{1}{4\,n} - \frac{10}{n+4} - \frac{1}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 25. Déterminer des réels a, b, c et d tels que :

$$\ln(x\cosh(x) + \sin(x) + 1) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}(x^{3}).$$

Exercice 26. Déterminer des réels a, b, c et d tels que:

$$\ln(\cos(x) + 5\ln(x+1)) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}(x^{3}).$$

Exercice 27. Déterminer des réels a, b et c tels que:

$$\frac{1}{3n} - \frac{1}{n+2} - \frac{1}{24(n-1)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 28. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} + \frac{304}{5(n+2)} - \frac{2}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 29. Déterminer des réels a, b, c et d tels que:

$$\cosh(-x\cos(x) - \sin(x)) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}(x^{3}).$$

Exercice 30. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(n\sin\left(\frac{1}{n}\right) - 18\sinh\left(\frac{1}{n}\right)\right)^3} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 31. Déterminer des réels a, b, c et d tels que :

$$e^{(\sin(x)-\sinh(x))} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}(x^3)$$
.

Exercice 32. Déterminer des réels a, b et c tels que:

$$\rightarrow$$
 page 22

$$\frac{1}{n} - \frac{1}{n+3} - \frac{1}{138(n-4)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 33. Déterminer des réels a, b, c et d tels que :

$$e^{\left(-\frac{2\cosh\left(\frac{1}{n}\right)}{n} - \frac{e^{\frac{1}{n}}}{n}\right)} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 34. Déterminer des réels a, b, c et d tels que :

$$\ln\left(-13\,\ln\left(\frac{1}{n}+1\right)-\sin\left(\frac{1}{n}\right)+1\right)=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 35. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\ln(x+1) + \sinh(x) + 1} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}(x^3).$$

Exercice 36. Déterminer des réels a, b, c et d tels que :

$$e^{\left(\frac{14\,e^{\frac{1}{n}}}{n}+\sin\left(\frac{1}{n}\right)\right)} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 37. Déterminer des réels a, b et c tels que:

$$-\frac{1}{n} - \frac{2}{27(n+3)} + \frac{3}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 38. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} - \frac{3}{n+2} + \frac{2}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 39. Déterminer des réels a, b et c tels que :

$$\frac{13}{n} - \frac{2}{3(n+4)} - \frac{1}{3(n-3)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 40. Déterminer des réels a, b, c et d tels que :

$$\left(n\ln\left(\frac{1}{n}+1\right)+2\sinh\left(\frac{1}{n}\right)\right)^{\frac{2}{27}}=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 41. Déterminer des réels a, b et c tels que:

$$\frac{50}{n} + \frac{3}{2\left(n+1\right)} - \frac{1}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 42. Déterminer des réels a, b, c et d tels que :

$$\ln\left(n\ln\left(\frac{1}{n}+1\right)+\frac{5\,e^{\frac{1}{n}}}{n}\right)=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

 \rightarrow page 22

 \rightarrow page 22

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 25

 \rightarrow page 25

Exercice 43. Déterminer des réels a, b et c tels que :

$$-\frac{2}{n} + \frac{1}{30(n+4)} + \frac{3}{2(n-1)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 44. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} + \frac{4}{n+4} - \frac{2}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 45. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} + \frac{11}{2(n+1)} - \frac{42}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 46. Déterminer des réels a, b et c tels que :

$$-\frac{1}{8n} + \frac{1}{n+2} - \frac{1}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 47. Déterminer des réels a, b, c et d tels que :

$$\left(\cosh\left(\frac{1}{n}\right) - \sinh\left(\frac{1}{n}\right)\right)^{\frac{1}{3}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 48. Déterminer des réels a, b et c tels que:

$$-\frac{1}{n} - \frac{1}{n+2} + \frac{2}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 49. Déterminer des réels a, b et c tels que:

$$-\frac{1}{3n} - \frac{1}{n+1} + \frac{3}{2(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 50. Déterminer des réels a, b, c et d tels que:

$$\cosh(-x\cosh(x) - 2\sin(x)) = a + bx + cx^{2} + dx^{3} + \underset{x \to 0}{o}(x^{3}).$$

Exercice 51. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\frac{2\cosh\left(\frac{1}{n}\right)}{n}+e^{\frac{1}{n}}}=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 52. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(\frac{\arctan(x)}{x} - 9\sin(x)\right)^2} = a + bx + cx^2 + dx^3 + o_{x\to 0}(x^3).$$

Exercice 53. Déterminer des réels a, b et c tels que:

$$-\frac{1}{6\,n} - \frac{1}{n+2} - \frac{1}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

 \rightarrow page 26

 \rightarrow page 26

 \rightarrow page 26

 \rightarrow page 26

 \rightarrow page 27

 \rightarrow page 27

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 29

 \rightarrow page 30

 \rightarrow page 30

 \rightarrow page 30

 \rightarrow page 30

 \rightarrow page 31

 \rightarrow page 32

 \rightarrow page 32

 \rightarrow page 32

 \rightarrow page 33

Exercice 54. Déterminer des réels a, b et c tels que :

$$-\frac{1}{n} + \frac{5}{4(n+4)} + \frac{4}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 55. Déterminer des réels a, b et c tels que :

$$-\frac{3}{2\,n} - \frac{1}{n+1} + \frac{5}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 56. Déterminer des réels a, b, c et d tels que:

$$\cosh\left(\sin\left(\frac{1}{n}\right) - 2\sinh\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 57. Déterminer des réels a, b et c tels que:

$$\frac{5}{3n} + \frac{1}{n+3} - \frac{1}{2(n-1)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 58. Déterminer des réels a, b, c et d tels que:

$$\frac{1}{\left(\frac{\arctan(x)}{x} + 10\sinh(x)\right)^{\frac{3}{4}}} = a + bx + cx^{2} + dx^{3} + o_{x \to 0}(x^{3}).$$

Exercice 59. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(\frac{\cosh\left(\frac{1}{n}\right)}{n} + 5\sin\left(\frac{1}{n}\right) + 1\right)^2} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 60. Déterminer des réels a, b, c et d tels que:

$$\frac{1}{\left(-\arctan\left(\frac{1}{n}\right)+\sin\left(\frac{1}{n}\right)+1\right)^{\frac{2}{89}}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 61. Déterminer des réels a, b et c tels que :

$$-\frac{3}{2\,n} + \frac{1}{6\,(n+3)} - \frac{1}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 62. Déterminer des réels a, b et c tels que :

$$\frac{3}{n} - \frac{1}{n+2} - \frac{1}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 63. Déterminer des réels a, b, c et d tels que:

$$\frac{1}{n\sinh\left(\frac{1}{n}\right)-2\arctan\left(\frac{1}{n}\right)}=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 64. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(n\ln\left(\frac{1}{n}+1\right)-6\arctan\left(\frac{1}{n}\right)\right)^{\frac{2}{3}}}=a+\frac{b}{n}+\frac{c}{n^2}+\frac{d}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right).$$

Exercice 65. Déterminer des réels a, b et c tels que :

$$\frac{1}{7n} - \frac{2}{21(n+2)} - \frac{1}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underbrace{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 66. Déterminer des réels a, b, c et d tels que :

$$\ln\left(-2\arctan\left(\frac{1}{n}\right) + \sinh\left(\frac{1}{n}\right) + 1\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 67. Déterminer des réels a, b et c tels que:

$$-\frac{4}{n} + \frac{1}{n+3} - \frac{1}{7(n-4)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 68. Déterminer des réels a, b, c et d tels que :

$$-\frac{1}{196 x \cosh(x) - \frac{\sin(x)}{x}} = a + bx + cx^2 + dx^3 + o_{x \to 0}(x^3).$$

Exercice 69. Déterminer des réels a, b, c et d tels que:

$$\cosh\left(\ln\left(\frac{1}{n}+1\right)-\sinh\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 70. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} + \frac{1}{n+4} - \frac{1}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 71. Déterminer des réels a, b, c et d tels que :

$$\ln\left(\frac{\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 72. Déterminer des réels a, b et c tels que:

$$\frac{1}{2\,n} + \frac{1}{n+3} + \frac{8}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 73. Déterminer des réels a, b, c et d tels que:

$$\frac{1}{\left(-\frac{4\cos(\frac{1}{n})}{n} + \ln(\frac{1}{n} + 1) + 1\right)^{\frac{5}{2}}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \int_{n \to +\infty}^{\infty} \left(\frac{1}{n^3}\right).$$

Exercice 74. Déterminer des réels a, b, c et d tels que :

$$\left(n\sin\left(\frac{1}{n}\right) - 4\arctan\left(\frac{1}{n}\right)\right)^{\frac{1}{11}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

 \rightarrow page 35

 \rightarrow page 35

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 35

 \rightarrow page 36

 \rightarrow page 36

 \rightarrow page 36

 \rightarrow page 38

 \rightarrow page 38

 \rightarrow page 38

 \rightarrow page 39

 \rightarrow page 39

 \rightarrow page 39

 \rightarrow page 40

 \rightarrow page 40

 \rightarrow page 41

Exercice 75. Déterminer des réels a, b et c tels que :

$$\frac{16}{n} + \frac{1}{2(n+2)} - \frac{2}{5(n-1)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 76. Déterminer des réels a, b et c tels que :

$$-\frac{6}{n} - \frac{1}{8(n+4)} + \frac{1}{6(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 77. Déterminer des réels a, b et c tels que:

$$-\frac{5}{3n} + \frac{1}{n+1} - \frac{3}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 78. Déterminer des réels a, b, c et d tels que:

$$\ln(63 \ln(x+1) + \sinh(x) + 1) = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}(x^3).$$

Exercice 79. Déterminer des réels a, b et c tels que:

$$\frac{1}{42n} + \frac{1}{n+1} - \frac{1}{2(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 80. Déterminer des réels a, b, c et d tels que:

$$\left(\cosh\left(\frac{1}{n}\right) - \sinh\left(\frac{1}{n}\right)\right)^{\frac{1}{7}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 81. Déterminer des réels a, b et c tels que:

$$\frac{2}{n} - \frac{1}{7(n+2)} - \frac{1}{n-1} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 82. Déterminer des réels a, b, c et d tels que :

$$\cos\left(\frac{\cosh\left(\frac{1}{n}\right)}{n} - \sin\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 83. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{(\cosh(x) - 10\ln(x+1))^{\frac{1}{6}}} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0}(x^3).$$

Exercice 84. Déterminer des réels a, b et c tels que:

$$\frac{3}{n} + \frac{1}{n+1} + \frac{2}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 85. Déterminer des réels a, b et c tels que:

$$-\frac{1}{n} + \frac{1}{2(n+4)} + \frac{1}{5(n-2)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 43

 \rightarrow page 43

 \rightarrow page 43

 \rightarrow page 44

 \rightarrow page 44

 \rightarrow page 45

Exercice 86. Déterminer des réels a, b, c et d tels que :

$$e^{\left(-\frac{\cosh\left(\frac{1}{n}\right)}{n}-\sin\left(\frac{1}{n}\right)\right)} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 87. Déterminer des réels a, b et c tels que:

$$-\frac{1}{15n} + \frac{1}{n+4} - \frac{1}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 88. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{\left(x\cosh\left(x\right) + \ln\left(x + 1\right) + 1\right)^{\frac{1}{4}}} = a + bx + cx^{2} + dx^{3} + \mathop{o}_{x \to 0}\left(x^{3}\right).$$

Exercice 89. Déterminer des réels a, b, c et d tels que :

$$\left(-\arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right)\right)^{\frac{2}{3}} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 90. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} + \frac{1}{4(n+4)} - \frac{1}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 91. Déterminer des réels a, b et c tels que :

$$\frac{1}{n} + \frac{1}{18\left(n+4\right)} + \frac{19}{n-3} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 92. Déterminer des réels a, b, c et d tels que :

$$\frac{1}{21\arctan\left(\frac{1}{n}\right) + \cosh\left(\frac{1}{n}\right)} = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 93. Déterminer des réels a, b, c et d tels que :

$$\sinh\left(-\frac{4\cosh\left(\frac{1}{n}\right)}{n} - \frac{e^{\frac{1}{n}}}{n}\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 94. Déterminer des réels a, b et c tels que :

$$\frac{1}{8\,n} - \frac{1}{n+3} + \frac{1}{n-2} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3}\right).$$

Exercice 95. Déterminer des réels a, b et c tels que:

$$\frac{1}{n} - \frac{7}{n+2} + \frac{6}{n-4} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right).$$

Exercice 96. Déterminer des réels a, b et c tels que:

$$\frac{1}{20\,n} + \frac{1}{7\,(n+2)} + \frac{1}{4\,(n-3)} = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Exercice 97. Déterminer des réels a, b, c et d tels que :

$$\rightarrow$$
 page 45

$$\ln\left(e^{\frac{1}{n}} + \ln\left(\frac{1}{n} + 1\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 98. Déterminer des réels a, b, c et d tels que :

$$\rightarrow$$
 page 46

$$\sin\left(\arctan\left(\frac{1}{n}\right) - 5\ln\left(\frac{1}{n} + 1\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Exercice 99. Déterminer des réels a, b, c et d tels que :

$$\rightarrow$$
 page 46

$$\frac{1}{x \cosh(x) + e^x} = a + bx + cx^2 + dx^3 + \mathop{o}_{x \to 0} (x^3).$$

Exercice 100. Déterminer des réels a, b, c et d tels que :

$$\rightarrow$$
 page 47

$$\arctan\left(\frac{3\cos\left(\frac{1}{n}\right)}{n} + \sin\left(\frac{1}{n}\right)\right) = a + \frac{b}{n} + \frac{c}{n^2} + \frac{d}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

Corrigé 1. On écrit:

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{2}{n} + \frac{1}{n+1} + \frac{1}{n-4} &= \frac{2}{n} + 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{4}{n} + \frac{3}{n^2} + \frac{17}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 2. On écrit :

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{5}{n} - \frac{7}{n+3} + \frac{1}{2(n-1)} &= \frac{5}{n} - 7\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{3}{2n} + \frac{43}{2n^2} - \frac{125}{2n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 3. On écrit:

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{3\,n} + \frac{1}{n+1} + \frac{1}{14\,(n-3)} &= \frac{1}{3\,n} + 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{14}\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{59}{42\,n} - \frac{11}{14\,n^2} + \frac{23}{14\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 4. On a:

$$\sinh\left(x\right) = x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}\left(x^3\right).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\sinh\left(\frac{1}{n}\right) + 6\ln\left(\frac{1}{n} + 1\right) = \left(\frac{1}{n} + \frac{1}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 6\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{7}{n} - \frac{3}{n^2} + \frac{13}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto e^x$ en 0 à l'ordre 3:

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3),$$

 \leftarrow page 1

 \leftarrow page 1

 \leftarrow page 1

 $e^{\left(6 \ln\left(\frac{1}{n}+1\right)+\sinh\left(\frac{1}{n}\right)\right)}$

$$\begin{split} &=1+\left(\frac{7}{n}-\frac{3}{n^2}+\frac{13}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\frac{1}{2}\left(\frac{7}{n}-\frac{3}{n^2}+\underset{n\to+\infty}{o}\left(\frac{1}{n^2}\right)\right)^2+\frac{1}{6}\left(\frac{7}{n}+\underset{n\to+\infty}{o}\left(\frac{1}{n^1}\right)\right)^3+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\\ &=1+\left(\frac{7}{n}-\frac{3}{n^2}+\frac{13}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\frac{1}{2}\left(\frac{49}{n^2}-\frac{42}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\frac{1}{6}\left(\frac{343}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\\ &=1+\frac{7}{n}+\frac{43}{2\,n^2}+\frac{115}{3\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 5. On écrit :

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + o \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} - \frac{3}{n+3} + \frac{1}{n-1} &= -\frac{1}{n} - 3\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{3}{n} + \frac{10}{n^2} - \frac{26}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 6. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{1}{3\left(n+3\right)} - \frac{2}{n-4} &= \frac{1}{n} + \frac{1}{3}\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 2\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{2}{3\,n} - \frac{9}{n^2} - \frac{29}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 7. On a:

$$\arctan(x) = x - \frac{1}{3}x^3 + o_{x\to 0}(x^3), \quad \text{et}: \quad \sinh(x) = x + \frac{1}{6}x^3 + o_{x\to 0}(x^4).$$

On en déduit :

$$\arctan(x) + \frac{\sinh(x)}{x} = \left(x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3)\right) + \left(1 + \frac{1}{6}x^2 + \underset{x \to 0}{o}(x^3)\right)$$
$$= 1 + x + \frac{1}{6}x^2 - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{(x+1)^{\frac{11}{6}}}$ en 0 à l'ordre 3 :

$$\frac{1}{(x+1)^{\frac{11}{6}}} = 1 - \frac{11}{6} x + \frac{187}{72} x^2 - \frac{4301}{1296} x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

 $\leftarrow \text{page 1}$

 \leftarrow page 1

$$\frac{1}{\left(\frac{\sinh(x)}{x} + \arctan(x)\right)^{\frac{11}{6}}} = 1 - \frac{11}{6} \left(x + \frac{1}{6}x^2 - \frac{1}{3}x^3 + o_{x\to 0}(x^3)\right) + \frac{187}{72} \left(x + \frac{1}{6}x^2 + o_{x\to 0}(x^2)\right)^2 - \frac{4301}{1296} \left(x + o_{x\to 0}(x)\right)^3 + o_{x\to 0}(x^3) = 1 - \frac{11}{6} \left(x + \frac{1}{6}x^2 - \frac{1}{3}x^3 + o_{x\to 0}(x^3)\right) + \frac{187}{72} \left(x^2 + \frac{1}{3}x^3 + o_{x\to 0}(x^3)\right) - \frac{4301}{1296} \left(x^3 + o_{x\to 0}(x^3)\right) + o_{x\to 0}(x^3) = 1 - \frac{11}{6}x + \frac{55}{24}x^2 - \frac{2387}{1296}x^3 + o_{x\to 0}(x^3),$$

d'où le résultat.

Corrigé 8. On a:

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On en déduit:

$$\arctan(x) - \sinh(x) = \left(x - \frac{1}{3}x^3 + o_{x \to 0}(x^3)\right) - \left(x + \frac{1}{6}x^3 + o_{x \to 0}(x^3)\right)$$
$$= -\frac{1}{2}x^3 + o_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 1:

$$\ln\left(x+1\right) = x + \mathop{o}_{x\to 0}\left(x\right),\,$$

on a alors:

$$\begin{split} & \ln \left({\arctan \left(x \right) - \sinh \left(x \right) + 1} \right) \\ & = \left({ - \frac{1}{2}\,{x^3} + \mathop{o}\limits_{x \to 0} \left({{x^3}} \right)} \right) + \mathop{o}\limits_{x \to 0} \left({{x^3}} \right) \\ & = \left({ - \frac{1}{2}\,{x^3} + \mathop{o}\limits_{x \to 0} \left({{x^3}} \right)} \right) + \mathop{o}\limits_{x \to 0} \left({{x^3}} \right) \\ & = - \frac{1}{2}\,{x^3} + \mathop{o}\limits_{x \to 0} \left({{x^3}} \right), \end{split}$$

d'où le résultat.

Corrigé 9. On a:

$$\arctan(x) = x - \frac{1}{3}x^3 + o_{x\to 0}(x^3), \quad \text{et}: \quad \cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^3).$$

On en déduit :

$$-\arctan(x) + \cosh(x) = -\left(x - \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + \left(1 + \frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 1 - x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\ln\left(-\arctan\left(x\right)+\cosh\left(x\right)\right) \\ &= \left(-x+\frac{1}{2}\,x^2+\frac{1}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(-x+\frac{1}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2+\frac{1}{3}\left(-x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right) \\ &= \left(-x+\frac{1}{2}\,x^2+\frac{1}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(x^2-x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{1}{3}\left(-x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right) \\ &= -x+\frac{1}{2}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

 \leftarrow page 1

d'où le résultat.

Corrigé 10. On a:

 \leftarrow page 2

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

On en déduit:

$$\begin{aligned} -4\arctan\left(x\right) + \ln\left(x+1\right) + 1 &= -4\left(x - \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \left(1 + x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) \\ &= 1 - 3\,x - \frac{1}{2}\,x^2 + \frac{5}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right). \end{aligned}$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\ln\left(-4\arctan\left(x\right)+\ln\left(x+1\right)+1\right) \\ &=\left(-3\,x-\frac{1}{2}\,x^2+\frac{5}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(-3\,x-\frac{1}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2+\frac{1}{3}\left(-3\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right) \\ &=\left(-3\,x-\frac{1}{2}\,x^2+\frac{5}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(9\,x^2+3\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{1}{3}\left(-27\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right) \\ &=-3\,x-5\,x^2-\frac{53}{6}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\,, \end{split}$$

d'où le résultat.

Corrigé 11. On a:

 \leftarrow page 2

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \cos(x) = 1 - \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$-11 \arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right) = -11\left(\frac{1}{n} - \frac{1}{3n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{2n^2} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 - \frac{11}{n} - \frac{1}{2n^2} + \frac{11}{3n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \sqrt{x+1}$ en 0 à l'ordre 3:

$$\sqrt{x+1} = 1 + \frac{1}{2} \, x - \frac{1}{8} \, x^2 + \frac{1}{16} \, x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

on a alors:

$$\begin{split} &\sqrt{-11\,\arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right)} \\ &= 1 + \frac{1}{2}\left(-\frac{11}{n} - \frac{1}{2\,n^2} + \frac{11}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{8}\left(-\frac{11}{n} - \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 + \frac{1}{16}\left(-\frac{11}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \frac{1}{2}\left(-\frac{11}{n} - \frac{1}{2\,n^2} + \frac{11}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{8}\left(\frac{121}{n^2} + \frac{11}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{16}\left(-\frac{1331}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - \frac{11}{2\,n} - \frac{123}{8\,n^2} - \frac{3971}{48\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 12. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$-\frac{1}{6n} + \frac{1}{n+4} + \frac{1}{n-1} = -\frac{1}{6n} + 1\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{11}{6n} - \frac{3}{n^2} + \frac{17}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 13. On a:

 $\sinh\left(x\right) = x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}\left(x^3\right).$

On en déduit:

$$-\sinh(x) + e^x = -\left(x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + \left(1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 1 + \frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{x+1}$ en 0 à l'ordre 1 :

$$\frac{1}{x+1} = 1 - x + \mathop{o}_{x \to 0}(x),$$

on a alors:

$$\begin{split} &\frac{1}{e^x - \sinh(x)} \\ &= 1 - \left(\frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3)\right) + \mathop{o}_{x \to 0}(x^3) \\ &= 1 - \left(\frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3)\right) + \mathop{o}_{x \to 0}(x^3) \\ &= 1 - \frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3), \end{split}$$

d'où le résultat.

Corrigé 14. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + o \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} + \frac{1}{n+2} + \frac{6}{n-1} &= -\frac{1}{n} + 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 6\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{6}{n} + \frac{4}{n^2} + \frac{10}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 15. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

 \leftarrow page 2

 \leftarrow page 2

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + o \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{1}{8\left(n+1\right)} + \frac{1}{n-4} &= \frac{1}{n} + \frac{1}{8}\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{17}{8\,n} + \frac{31}{8\,n^2} + \frac{129}{8\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 16. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\frac{5}{n} - \frac{3}{n+3} + \frac{1}{n-3} = \frac{5}{n} - 3\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{3}{n} + \frac{12}{n^2} - \frac{18}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 17. On a:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et:} \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{split} 6\frac{\cosh\left(\frac{1}{n}\right)}{n} + 8\sin\left(\frac{1}{n}\right) &= 6\left(\frac{1}{n} + \frac{1}{2n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 8\left(\frac{1}{n} - \frac{1}{6n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{14}{n} + \frac{5}{3n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x \mapsto \sinh(x)$ en 0 à l'ordre 3:

$$\sinh(x) = x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} & \sinh\left(\frac{6\cosh\left(\frac{1}{n}\right)}{n} + 8\sin\left(\frac{1}{n}\right)\right) \\ & = \left(\frac{14}{n} + \frac{5}{3n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(\frac{14}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = \left(\frac{14}{n} + \frac{5}{3n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(\frac{2744}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = \frac{14}{n} + \frac{459}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 18. On a:

$$\sinh(x) = x + \frac{1}{6}x^3 + o_{x\to 0}(x^3), \quad \text{et}: \quad x\cos(x) = x - \frac{1}{2}x^3 + o_{x\to 0}(x^3).$$

 $\leftarrow \text{page 2}$

 \leftarrow page 2

On en déduit:

$$2\sinh(x) + x\cos(x) = 2\left(x + \frac{1}{6}x^3 + \mathop{o}_{x\to 0}(x^3)\right) + \left(x - \frac{1}{2}x^3 + \mathop{o}_{x\to 0}(x^3)\right)$$
$$= 3x - \frac{1}{6}x^3 + \mathop{o}_{x\to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{\sqrt{x+1}}$ en 0 à l'ordre 3:

$$\frac{1}{\sqrt{x+1}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\sqrt{x\cos\left(x\right)+2\,\sinh\left(x\right)+1}}\\ &=1-\frac{1}{2}\left(3\,x-\frac{1}{6}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{3}{8}\left(3\,x+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2-\frac{5}{16}\left(3\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{1}{2}\left(3\,x-\frac{1}{6}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{3}{8}\left(9\,x^2+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{5}{16}\left(27\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{3}{2}\,x+\frac{27}{8}\,x^2-\frac{401}{48}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 19. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} + \frac{7}{2\left(n+1\right)} + \frac{4}{5\left(n-2\right)} &= -\frac{1}{n} + \frac{7}{2}\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{4}{5}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{33}{10\,n} - \frac{19}{10\,n^2} + \frac{67}{10\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 20. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + o \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{2}{n} - \frac{2}{n+4} + \frac{1}{n-4} &= -\frac{2}{n} - 2\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{3}{n} + \frac{12}{n^2} - \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 21. On a:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad x\cos(x) = x - \frac{1}{2}x^3 + \underset{x \to 0}{o}(x^3).$$

 $\leftarrow \text{page } 2$

 \leftarrow page 2

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$4\ln\left(\frac{1}{n}+1\right) - \frac{\cos\left(\frac{1}{n}\right)}{n} = 4\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - \left(\frac{1}{n} - \frac{1}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{3}{n} - \frac{2}{n^2} + \frac{11}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \sinh(x)$ en 0 à l'ordre 3:

$$\sinh(x) = x + \frac{1}{6}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\sinh\left(-\frac{\cos\left(\frac{1}{n}\right)}{n} + 4\ln\left(\frac{1}{n} + 1\right)\right) \\
= \left(\frac{3}{n} - \frac{2}{n^2} + \frac{11}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(\frac{3}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^1}\right)\right)^3 + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right) \\
= \left(\frac{3}{n} - \frac{2}{n^2} + \frac{11}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(\frac{27}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right) \\
= \frac{3}{n} - \frac{2}{n^2} + \frac{19}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right),$$

d'où le résultat.

Corrigé 22. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{2\,n} + \frac{1}{3\,(n+3)} - \frac{1}{n-4} &= -\frac{1}{2\,n} + \frac{1}{3}\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{7}{6\,n} - \frac{5}{n^2} - \frac{13}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 23. On a:

$$\cosh\left(x\right) = 1 + \frac{1}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right), \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{split} \frac{\cosh\left(\frac{1}{n}\right)}{n} - 3\ln\left(\frac{1}{n} + 1\right) &= \left(\frac{1}{n} + \frac{1}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 3\left(\frac{1}{n} - \frac{1}{2\,n^2} + \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{2}{n} + \frac{3}{2\,n^2} - \frac{1}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{1-x}$ en 0 à l'ordre 3:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \underset{x \to 0}{o} (x^3),$$

 \leftarrow page 3

$$\begin{split} &-\frac{1}{\frac{\cosh\left(\frac{1}{n}\right)}{n}-3\ln\left(\frac{1}{n}+1\right)-1} \\ &=1+\left(-\frac{2}{n}+\frac{3}{2\,n^2}-\frac{1}{2\,n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\left(-\frac{2}{n}+\frac{3}{2\,n^2}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)^2+\left(-\frac{2}{n}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^1}\right)\right)^3+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right) \\ &=1+\left(-\frac{2}{n}+\frac{3}{2\,n^2}-\frac{1}{2\,n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\left(\frac{4}{n^2}-\frac{6}{n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\left(-\frac{8}{n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right) \\ &=1-\frac{2}{n}+\frac{11}{2\,n^2}-\frac{29}{2\,n^3}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 24. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\frac{1}{4n} - \frac{10}{n+4} - \frac{1}{n-1} = \frac{1}{4n} - 10\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= -\frac{43}{4n} + \frac{39}{n^2} - \frac{161}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 25. On a:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et:} \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On en déduit:

$$x \cosh(x) + \sin(x) + 1 = \left(x + \frac{1}{2}x^3 + \underset{x \to 0}{o}(x^3)\right) + \left(1 + x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3)\right)$$
$$= 1 + 2x + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\ln\left(x\cosh\left(x\right)+\sin\left(x\right)+1\right) \\ &= \left(2\,x+\frac{1}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(2\,x+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2+\frac{1}{3}\left(2\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right) \\ &= \left(2\,x+\frac{1}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{1}{2}\left(4\,x^2+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{1}{3}\left(8\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right) \\ &= 2\,x-2\,x^2+3\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 26. On a:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3), \quad \text{et:} \quad \cos(x) = 1 - \frac{1}{2}x^2 + \mathop{o}_{x\to 0}(x^3).$$

 \leftarrow page 3

 \leftarrow page 3

On en déduit:

$$5\ln(x+1) + \cos(x) = 5\left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3)\right) + \left(1 - \frac{1}{2}x^2 + \mathop{o}_{x\to 0}(x^3)\right)$$
$$= 1 + 5x - 3x^2 + \frac{5}{3}x^3 + \mathop{o}_{x\to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\ln\left(\cos\left(x\right) + 5\,\ln\left(x + 1\right)\right) \\ &= \left(5\,x - 3\,x^2 + \frac{5}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) - \frac{1}{2}\left(5\,x - 3\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right)\right)^2 + \frac{1}{3}\left(5\,x + \mathop{o}_{x \to 0}\left(x\right)\right)^3 + \mathop{o}_{x \to 0}\left(x^3\right) \\ &= \left(5\,x - 3\,x^2 + \frac{5}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) - \frac{1}{2}\left(25\,x^2 - 30\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \frac{1}{3}\left(125\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \mathop{o}_{x \to 0}\left(x^3\right) \\ &= 5\,x - \frac{31}{2}\,x^2 + \frac{175}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 27. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{3\,n} - \frac{1}{n+2} - \frac{1}{24\,(n-1)} &= \frac{1}{3\,n} - 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{24}\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{17}{24\,n} + \frac{47}{24\,n^2} - \frac{97}{24\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 28. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{304}{5\left(n+2\right)} - \frac{2}{n-2} &= \frac{1}{n} + \frac{304}{5}\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 2\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{299}{5\,n} - \frac{628}{5\,n^2} + \frac{1176}{5\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 29. On a:

$$\cos(x) = 1 + \underset{x \to 0}{o}(x), \quad \text{et:} \quad \sin(x) = x + \underset{x \to 0}{o}(x^2).$$

On en déduit:

$$-x\cos(x) - \sin(x) = -\left(x + \mathop{o}_{x \to 0}(x^2)\right) - \left(x + \mathop{o}_{x \to 0}(x^2)\right)$$
$$= -2x + \mathop{o}_{x \to 0}(x^2).$$

 \leftarrow page 3

 \leftarrow page 3

En combinant ce résultat avec le développement limité de $x \mapsto \cosh(x)$ en 0 à l'ordre 3:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{aligned} &\cosh\left(-x\cos\left(x\right) - \sin\left(x\right)\right) \\ &= 1 + \frac{1}{2}\left(-2x + \mathop{o}_{x \to 0}\left(x^{2}\right)\right)^{2} + \mathop{o}_{x \to 0}\left(x^{3}\right) \\ &= 1 + \frac{1}{2}\left(4x^{2} + \mathop{o}_{x \to 0}\left(x^{3}\right)\right) + \mathop{o}_{x \to 0}\left(x^{3}\right) \\ &= 1 + 2x^{2} + \mathop{o}_{x \to 0}\left(x^{3}\right), \end{aligned}$$

d'où le résultat.

Corrigé 30. On a:

$$\leftarrow \text{page } 3$$

$$\sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^4).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-18\sinh\left(\frac{1}{n}\right) + n\sin\left(\frac{1}{n}\right) = -18\left(\frac{1}{n} + \frac{1}{6n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{6n^2} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 - \frac{18}{n} - \frac{1}{6n^2} - \frac{3}{n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{(x+1)^3}$ en 0 à l'ordre 3 :

$$\frac{1}{(x+1)^3} = 1 - 3x + 6x^2 - 10x^3 + o_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\left(n\sin\left(\frac{1}{n}\right)-18\,\sinh\left(\frac{1}{n}\right)\right)^3} \\ &= 1-3\left(-\frac{18}{n}-\frac{1}{6\,n^2}-\frac{3}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+6\left(-\frac{18}{n}-\frac{1}{6\,n^2}+\underset{n\to+\infty}{o}\left(\frac{1}{n^2}\right)\right)^2-10\left(-\frac{18}{n}+\underset{n\to+\infty}{o}\left(\frac{1}{n^1}\right)\right)^3+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ &= 1-3\left(-\frac{18}{n}-\frac{1}{6\,n^2}-\frac{3}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+6\left(\frac{324}{n^2}+\frac{6}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-10\left(-\frac{5832}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ &= 1+\frac{54}{n}+\frac{3889}{2\,n^2}+\frac{58365}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 31. On a:

$$\leftarrow$$
 page 3

$$\sin(x) = x - \frac{1}{6}x^3 + o_{x\to 0}(x^3), \quad \text{et}: \quad \sinh(x) = x + \frac{1}{6}x^3 + o_{x\to 0}(x^3).$$

On en déduit :

$$\sin(x) - \sinh(x) = \left(x - \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3)\right) - \left(x + \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= -\frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto e^x$ en 0 à l'ordre 1:

$$e^x = 1 + x + o_{x \to 0}(x)$$
,

$$\begin{split} &e^{(\sin(x)-\sinh(x))} \\ &= 1 + \left(-\frac{1}{3} \, x^3 + \mathop{o}_{x \to 0} \left(x^3 \right) \right) + \mathop{o}_{x \to 0} \left(x^3 \right) \\ &= 1 + \left(-\frac{1}{3} \, x^3 + \mathop{o}_{x \to 0} \left(x^3 \right) \right) + \mathop{o}_{x \to 0} \left(x^3 \right) \\ &= 1 - \frac{1}{3} \, x^3 + \mathop{o}_{x \to 0} \left(x^3 \right), \end{split}$$

d'où le résultat.

Corrigé 32. On écrit :

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{-}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en $0 \text{ de } x \mapsto \frac{1}{1-x}$, avec respectivement $x=-\frac{3}{n}$ et $x=\frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n\to+\infty$).

$$\begin{split} \frac{1}{n} - \frac{1}{n+3} - \frac{1}{138\left(n-4\right)} &= \frac{1}{n} - 1\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - \frac{1}{138}\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{1}{138\,n} + \frac{205}{69\,n^2} - \frac{629}{69\,n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 33. On a:

$$e^x = 1 + x + \frac{1}{2}x^2 + o_{x \to 0}(x^2)$$
, et: $x \cosh(x) = x + \frac{1}{2}x^3 + o_{x \to 0}(x^3)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-\frac{e^{\frac{1}{n}}}{n} - 2\frac{\cosh\left(\frac{1}{n}\right)}{n} = -\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - 2\left(\frac{1}{n} + \frac{1}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= -\frac{3}{n} - \frac{1}{n^2} - \frac{3}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto e^x$ en 0 à l'ordre 3:

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{split} & e^{\left(-\frac{2\cosh\left(\frac{1}{n}\right)}{n} - \frac{e^{\frac{1}{n}}}{n}\right)} \\ &= 1 + \left(-\frac{3}{n} - \frac{1}{n^2} - \frac{3}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(-\frac{3}{n} - \frac{1}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 + \frac{1}{6}\left(-\frac{3}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \left(-\frac{3}{n} - \frac{1}{n^2} - \frac{3}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{9}{n^2} + \frac{6}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(-\frac{27}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - \frac{3}{n} + \frac{7}{2\,n^2} - \frac{3}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 34. On a:

$$\sin\left(x\right) = x - \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right).$$

 \leftarrow page 4

 \leftarrow page 4

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{split} -\sin\left(\frac{1}{n}\right) - 13\ln\left(\frac{1}{n} + 1\right) &= -\left(\frac{1}{n} - \frac{1}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 13\left(\frac{1}{n} - \frac{1}{2\,n^2} + \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{14}{n} + \frac{13}{2\,n^2} - \frac{25}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} & \ln\left(-13\ln\left(\frac{1}{n}+1\right)-\sin\left(\frac{1}{n}\right)+1\right) \\ & = \left(-\frac{14}{n}+\frac{13}{2\,n^2}-\frac{25}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-\frac{1}{2}\left(-\frac{14}{n}+\frac{13}{2\,n^2}+\underset{n\to+\infty}{o}\left(\frac{1}{n^2}\right)\right)^2+\frac{1}{3}\left(-\frac{14}{n}+\underset{n\to+\infty}{o}\left(\frac{1}{n^1}\right)\right)^3+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ & = \left(-\frac{14}{n}+\frac{13}{2\,n^2}-\frac{25}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-\frac{1}{2}\left(\frac{196}{n^2}-\frac{182}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\frac{1}{3}\left(-\frac{2744}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ & = -\frac{14}{n}-\frac{183}{2\,n^2}-\frac{4967}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 35. On a:

$$\sinh\left(x\right) = x + \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right).$$

On en déduit :

$$\sinh(x) + \ln(x+1) + 1 = \left(x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3)\right) + \left(1 + x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3)\right)$$
$$= 1 + 2x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + \underset{x \to 0}{o}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{x+1}$ en 0 à l'ordre 3 :

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} (x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\ln\left(x+1\right)+\sinh\left(x\right)+1}\\ &=1-\left(2\,x-\frac{1}{2}\,x^2+\frac{1}{2}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\left(2\,x-\frac{1}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2-\left(2\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\left(2\,x-\frac{1}{2}\,x^2+\frac{1}{2}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\left(4\,x^2-2\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\left(8\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-2\,x+\frac{9}{2}\,x^2-\frac{21}{2}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 36. On a:

$$e^x = 1 + x + \frac{1}{2}x^2 + o_{x\to 0}(x^2)$$
, et: $\sin(x) = x - \frac{1}{6}x^3 + o_{x\to 0}(x^3)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$14\frac{e^{\frac{1}{n}}}{n} + \sin\left(\frac{1}{n}\right) = 14\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{2n^3} + \frac{o}{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(\frac{1}{n} - \frac{1}{6n^3} + \frac{o}{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{15}{n} + \frac{14}{n^2} + \frac{41}{6n^3} + \frac{o}{n \to +\infty}\left(\frac{1}{n^3}\right).$$

 \leftarrow page 4

En combinant ce résultat avec le développement limité de $x \mapsto e^x$ en 0 à l'ordre 3:

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{split} & e^{\left(\frac{14 e^{\frac{1}{n}}}{n} + \sin\left(\frac{1}{n}\right)\right)} \\ &= 1 + \left(\frac{15}{n} + \frac{14}{n^2} + \frac{41}{6 n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{15}{n} + \frac{14}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 + \frac{1}{6}\left(\frac{15}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \left(\frac{15}{n} + \frac{14}{n^2} + \frac{41}{6 n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{225}{n^2} + \frac{420}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(\frac{3375}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \frac{15}{n} + \frac{253}{2 n^2} + \frac{2338}{3 n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 37. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en $0 \text{ de } x \mapsto \frac{1}{1-x}$, avec respectivement $x=-\frac{3}{n}$ et $x=\frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n\to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} - \frac{2}{27\left(n+3\right)} + \frac{3}{n-1} &= -\frac{1}{n} - \frac{2}{27}\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 3\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{52}{27\,n} + \frac{29}{9\,n^2} + \frac{7}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 38. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en $0 \text{ de } x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$).

$$\begin{split} \frac{1}{n} - \frac{3}{n+2} + \frac{2}{n-1} &= \frac{1}{n} - 3\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 2\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{8}{n^2} - \frac{10}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 39. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x\mapsto \frac{1}{1-x}$, avec respectivement $x=-\frac{4}{n}$ et $x=\frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n\to +\infty$).

$$\frac{13}{n} - \frac{2}{3(n+4)} - \frac{1}{3(n-3)} = \frac{13}{n} - \frac{2}{3} \left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3} \right) \right) - \frac{1}{3} \left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3} \right) \right)$$

$$= \frac{12}{n} + \frac{5}{3n^2} - \frac{41}{3n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3} \right).$$

page 4

 \leftarrow page 4

Corrigé 40. On a:

$$\leftarrow$$
 page 4

$$\sinh\left(x\right) = x + \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 - \frac{1}{4}\,x^4 + \mathop{o}_{x \to 0}\left(x^4\right).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$2\sinh\left(\frac{1}{n}\right) + n\ln\left(\frac{1}{n} + 1\right) = 2\left(\frac{1}{n} + \frac{1}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{2n} + \frac{1}{3n^2} - \frac{1}{4n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 + \frac{3}{2n} + \frac{1}{3n^2} + \frac{1}{12n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x\mapsto (x+1)^{\frac{2}{27}}$ en 0 à l'ordre 3:

$$(x+1)^{\frac{2}{27}} = 1 + \frac{2}{27}x - \frac{25}{729}x^2 + \frac{1300}{59049}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\left(n \ln \left(\frac{1}{n} + 1\right) + 2 \sinh \left(\frac{1}{n}\right)\right)^{\frac{2}{27}}$$

$$= 1 + \frac{2}{27} \left(\frac{3}{2n} + \frac{1}{3n^2} + \frac{1}{12n^3} + o \left(\frac{1}{n^3}\right)\right) - \frac{25}{729} \left(\frac{3}{2n} + \frac{1}{3n^2} + o \left(\frac{1}{n^2}\right)\right)^2 + \frac{1300}{59049} \left(\frac{3}{2n} + o \left(\frac{1}{n^1}\right)\right)^3 + o \left(\frac{1}{n^2}\right) + o \left(\frac{1}{n^2}\right)^3 + o \left($$

d'où le résultat.

Corrigé 41. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{50}{n} + \frac{3}{2\left(n+1\right)} - \frac{1}{n-4} &= \frac{50}{n} + \frac{3}{2}\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{101}{2\,n} - \frac{11}{2\,n^2} - \frac{29}{2\,n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 42. On a:

$$\leftarrow$$
 page 4

 \leftarrow page 4

$$e^x = 1 + x + \frac{1}{2}x^2 + o_{x \to 0}(x^2)$$
, et: $\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + o_{x \to 0}(x^4)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$5\frac{e^{\frac{1}{n}}}{n} + n\ln\left(\frac{1}{n} + 1\right) = 5\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{2n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{2n} + \frac{1}{3n^2} - \frac{1}{4n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$

$$= 1 + \frac{9}{2n} + \frac{16}{3n^2} + \frac{9}{4n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln{(x+1)} = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

$$\begin{split} & \ln \left(n \ln \left(\frac{1}{n} + 1 \right) + \frac{5 \, e^{\frac{1}{n}}}{n} \right) \\ & = \left(\frac{9}{2 \, n} + \frac{16}{3 \, n^2} + \frac{9}{4 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{9}{2 \, n} + \frac{16}{3 \, n^2} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^2} \right) \right)^2 + \frac{1}{3} \left(\frac{9}{2 \, n} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^1} \right) \right)^3 + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \\ & = \left(\frac{9}{2 \, n} + \frac{16}{3 \, n^2} + \frac{9}{4 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{81}{4 \, n^2} + \frac{48}{n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) + \frac{1}{3} \left(\frac{729}{8 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \\ & = \frac{9}{2 \, n} - \frac{115}{24 \, n^2} + \frac{69}{8 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right), \end{split}$$

d'où le résultat.

Corrigé 43. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$-\frac{2}{n} + \frac{1}{30(n+4)} + \frac{3}{2(n-1)} = -\frac{2}{n} + \frac{1}{30} \left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3} \right) \right) + \frac{3}{2} \left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3} \right) \right)$$

$$= -\frac{7}{15n} + \frac{41}{30n^2} + \frac{61}{30n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3} \right).$$

Corrigé 44. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{4}{n+4} - \frac{2}{n-3} &= \frac{1}{n} + 4\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 2\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{3}{n} - \frac{22}{n^2} + \frac{46}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 45. On écrit:

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{11}{2\left(n+1\right)} - \frac{42}{n-4} &= \frac{1}{n} + \frac{11}{2}\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 42\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{71}{2\,n} - \frac{347}{2\,n^2} - \frac{1333}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 46. On écrit:

- page 5

 \leftarrow page 5

- page 5

- page 5

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{8\,n} + \frac{1}{n+2} - \frac{1}{n-3} &= -\frac{1}{8\,n} + 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{1}{8\,n} - \frac{5}{n^2} - \frac{5}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 47. On a:

 $\sinh\left(x\right) = x + \frac{1}{6}\,x^3 + \mathop{o}\limits_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad \cosh\left(x\right) = 1 + \frac{1}{2}\,x^2 + \mathop{o}\limits_{x \to 0}\left(x^3\right).$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$-\sinh\left(\frac{1}{n}\right) + \cosh\left(\frac{1}{n}\right) = -\left(\frac{1}{n} + \frac{1}{6n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{2n^2} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 - \frac{1}{n} + \frac{1}{2n^2} - \frac{1}{6n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto (x+1)^{\frac{1}{3}}$ en 0 à l'ordre 3:

$$(x+1)^{\frac{1}{3}} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{split} &\left(\cosh\left(\frac{1}{n}\right)-\sinh\left(\frac{1}{n}\right)\right)^{\frac{1}{3}} \\ &=1+\frac{1}{3}\left(-\frac{1}{n}+\frac{1}{2\,n^2}-\frac{1}{6\,n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)-\frac{1}{9}\left(-\frac{1}{n}+\frac{1}{2\,n^2}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)^2+\frac{5}{81}\left(-\frac{1}{n}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^1}\right)\right)^3+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right) \\ &=1+\frac{1}{3}\left(-\frac{1}{n}+\frac{1}{2\,n^2}-\frac{1}{6\,n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)-\frac{1}{9}\left(\frac{1}{n^2}-\frac{1}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\frac{5}{81}\left(-\frac{1}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right) \\ &=1-\frac{1}{3\,n}+\frac{1}{18\,n^2}-\frac{1}{162\,n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 48. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} - \frac{1}{n+2} + \frac{2}{n-2} &= -\frac{1}{n} - 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 2\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{6}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 49. On écrit:

 \leftarrow page 5

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{3\,n} - \frac{1}{n+1} + \frac{3}{2\,(n-2)} &= -\frac{1}{3\,n} - 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{3}{2}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{1}{6\,n} + \frac{4}{n^2} + \frac{5}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 50. On a:

$$\cosh(x) = 1 + \underset{x \to 0}{o}(x), \quad \text{et}: \quad \sin(x) = x + \underset{x \to 0}{o}(x^2).$$

On en déduit :

$$\begin{aligned} -x\cosh\left(x\right) - 2\sin\left(x\right) &= -\left(x + \mathop{o}\limits_{x \to 0}\left(x^2\right)\right) - 2\left(x + \mathop{o}\limits_{x \to 0}\left(x^2\right)\right) \\ &= -3x + \mathop{o}\limits_{x \to 0}\left(x^2\right). \end{aligned}$$

En combinant ce résultat avec le développement limité de $x \mapsto \cosh(x)$ en 0 à l'ordre 3:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x\to 0}{o}(x^3),$$

on a alors:

$$\begin{aligned} &\cosh\left(-x\cosh\left(x\right) - 2\sin\left(x\right)\right) \\ &= 1 + \frac{1}{2}\left(-3x + \mathop{o}_{x \to 0}\left(x^{2}\right)\right)^{2} + \mathop{o}_{x \to 0}\left(x^{3}\right) \\ &= 1 + \frac{1}{2}\left(9x^{2} + \mathop{o}_{x \to 0}\left(x^{3}\right)\right) + \mathop{o}_{x \to 0}\left(x^{3}\right) \\ &= 1 + \frac{9}{2}x^{2} + \mathop{o}_{x \to 0}\left(x^{3}\right), \end{aligned}$$

d'où le résultat.

Corrigé 51. On a:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x \to 0}(x^2), \quad \text{et}: \quad e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o_{x \to 0}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{split} 2\frac{\cosh\left(\frac{1}{n}\right)}{n} + e^{\frac{1}{n}} &= 2\left(\frac{1}{n} + \frac{1}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{n} + \frac{1}{2\,n^2} + \frac{1}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 + \frac{3}{n} + \frac{1}{2\,n^2} + \frac{7}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{x+1}$ en 0 à l'ordre 3 :

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

on a alors:

$$\begin{split} &\frac{1}{\frac{2\cosh\left(\frac{1}{n}\right)}{n}+e^{\frac{1}{n}}}\\ &=1-\left(\frac{3}{n}+\frac{1}{2\,n^2}+\frac{7}{6\,n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\left(\frac{3}{n}+\frac{1}{2\,n^2}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)^2-\left(\frac{3}{n}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^1}\right)\right)^3+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\\ &=1-\left(\frac{3}{n}+\frac{1}{2\,n^2}+\frac{7}{6\,n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\left(\frac{9}{n^2}+\frac{3}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)-\left(\frac{27}{n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\right)+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right)\\ &=1-\frac{3}{n}+\frac{17}{2\,n^2}-\frac{151}{6\,n^3}+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right), \end{split}$$

 \leftarrow page 5

d'où le résultat.

Corrigé 52. On a:

 \leftarrow page 5

$$\sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad \arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^4).$$

On en déduit :

$$-9\sin(x) + \frac{\arctan(x)}{x} = -9\left(x - \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + \left(1 - \frac{1}{3}x^2 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 1 - 9x - \frac{1}{3}x^2 + \frac{3}{2}x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^2}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^2} = 1 - 2x + 3x^2 - 4x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\left(\frac{\arctan(x)}{x}-9\sin\left(x\right)\right)^{2}}\\ &=1-2\left(-9\,x-\frac{1}{3}\,x^{2}+\frac{3}{2}\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)+3\left(-9\,x-\frac{1}{3}\,x^{2}+\mathop{o}_{x\to0}\left(x^{2}\right)\right)^{2}-4\left(-9\,x+\mathop{o}_{x\to0}\left(x\right)\right)^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\\ &=1-2\left(-9\,x-\frac{1}{3}\,x^{2}+\frac{3}{2}\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)+3\left(81\,x^{2}+6\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)-4\left(-729\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)+\mathop{o}_{x\to0}\left(x^{3}\right)\\ &=1+18\,x+\frac{731}{3}\,x^{2}+2931\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right), \end{split}$$

d'où le résultat.

Corrigé 53. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{6\,n} - \frac{1}{n+2} - \frac{1}{n-3} &= -\frac{1}{6\,n} - 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{13}{6\,n} - \frac{1}{n^2} - \frac{13}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 54. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} + \frac{5}{4\left(n+4\right)} + \frac{4}{n-4} &= -\frac{1}{n} + \frac{5}{4}\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 4\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{17}{4\,n} + \frac{11}{n^2} + \frac{84}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

 $\leftarrow \text{page 5}$

 \leftarrow page 6

 \leftarrow page 6

Corrigé 55. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même: $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{3}{2\,n} - \frac{1}{n+1} + \frac{5}{n-3} &= -\frac{3}{2\,n} - 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 5\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{5}{2\,n} + \frac{16}{n^2} + \frac{44}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 56. On a:

$$\sin(x) = x + \underset{x \to 0}{o}(x^2)$$
, et: $\sinh(x) = x + \underset{x \to 0}{o}(x^2)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\sin\left(\frac{1}{n}\right) - 2\sinh\left(\frac{1}{n}\right) = \left(\frac{1}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right)\right) - 2\left(\frac{1}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right)\right)$$
$$= -\frac{1}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \cosh(x)$ en 0 à l'ordre 3:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} \cosh\left(\sin\left(\frac{1}{n}\right) - 2\sinh\left(\frac{1}{n}\right)\right) \\ &= 1 + \frac{1}{2}\left(-\frac{1}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \frac{1}{2}\left(\frac{1}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \frac{1}{2n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 57. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{5}{3\,n} + \frac{1}{n+3} - \frac{1}{2\,(n-1)} &= \frac{5}{3\,n} + 1\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{2}\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{13}{6\,n} - \frac{7}{2\,n^2} + \frac{17}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 58. On a:

← page 6

$$\sinh\left(x\right) = x + \frac{1}{6}\,x^3 + \mathop{o}\limits_{x \to 0}\left(x^3\right), \quad \text{ et : } \quad \arctan\left(x\right) = x - \frac{1}{3}\,x^3 + \mathop{o}\limits_{x \to 0}\left(x^4\right).$$

On en déduit :

$$10\sinh(x) + \frac{\arctan(x)}{x} = 10\left(x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3)\right) + \left(1 - \frac{1}{3}x^2 + \underset{x \to 0}{o}(x^3)\right)$$
$$= 1 + 10x - \frac{1}{3}x^2 + \frac{5}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^{\frac{3}{4}}}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^{\frac{3}{4}}} = 1 - \frac{3}{4}x + \frac{21}{32}x^2 - \frac{77}{128}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\left(\frac{\arctan(x)}{x}+10\,\sinh\left(x\right)\right)^{\frac{3}{4}}}\\ &=1-\frac{3}{4}\left(10\,x-\frac{1}{3}\,x^2+\frac{5}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{21}{32}\left(10\,x-\frac{1}{3}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2-\frac{77}{128}\left(10\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{3}{4}\left(10\,x-\frac{1}{3}\,x^2+\frac{5}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{21}{32}\left(100\,x^2-\frac{20}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{77}{128}\left(1000\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{15}{2}\,x+\frac{527}{8}\,x^2-\frac{9715}{16}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 59. On a:

 \leftarrow page 6

$$\sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad x \cosh(x) = x + \frac{1}{2}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$5\sin\left(\frac{1}{n}\right) + \frac{\cosh\left(\frac{1}{n}\right)}{n} = 5\left(\frac{1}{n} - \frac{1}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \left(\frac{1}{n} + \frac{1}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{6}{n} - \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^2}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^2} = 1 - 2x + 3x^2 - 4x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} &\frac{1}{\left(\frac{\cosh\left(\frac{1}{n}\right)}{n} + 5\sin\left(\frac{1}{n}\right) + 1\right)^2} \\ &= 1 - 2\left(\frac{6}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 3\left(\frac{6}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 - 4\left(\frac{6}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - 2\left(\frac{6}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 3\left(\frac{36}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 4\left(\frac{216}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - \frac{12}{n} + \frac{108}{n^2} - \frac{2590}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 60. On a:

 \leftarrow page 6

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$-\arctan\left(\frac{1}{n}\right) + \sin\left(\frac{1}{n}\right) + 1 = -\left(\frac{1}{n} - \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{n} - \frac{1}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 + \frac{1}{6n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^{\frac{2}{89}}}$ en 0 à l'ordre 1:

$$\frac{1}{(x+1)^{\frac{2}{89}}} = 1 - \frac{2}{89} x + \mathop{o}_{x \to 0}(x),$$

on a alors:

$$\frac{1}{\left(-\arctan\left(\frac{1}{n}\right) + \sin\left(\frac{1}{n}\right) + 1\right)^{\frac{2}{89}}}$$

$$= 1 - \frac{2}{89} \left(\frac{1}{6n^3} + o_{n \to +\infty} \left(\frac{1}{n^3}\right)\right) + o_{n \to +\infty} \left(\frac{1}{n^3}\right)$$

$$= 1 - \frac{2}{89} \left(\frac{1}{6n^3} + o_{n \to +\infty} \left(\frac{1}{n^3}\right)\right) + o_{n \to +\infty} \left(\frac{1}{n^3}\right)$$

$$= 1 - \frac{1}{267n^3} + o_{n \to +\infty} \left(\frac{1}{n^3}\right),$$

d'où le résultat.

Corrigé 61. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{3}{2\,n} + \frac{1}{6\,(n+3)} - \frac{1}{n-1} &= -\frac{3}{2\,n} + \frac{1}{6}\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{7}{3\,n} - \frac{3}{2\,n^2} + \frac{1}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 62. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2} \right) \right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{3}{n} - \frac{1}{n+2} - \frac{1}{n-2} &= \frac{3}{n} - 1\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{1}{n} - \frac{8}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

 \leftarrow page 6

Corrigé 63. On a:

$$\leftarrow$$
 page 6

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^4).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$-2\arctan\left(\frac{1}{n}\right) + n\sinh\left(\frac{1}{n}\right) = -2\left(\frac{1}{n} - \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{6n^2} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 - \frac{2}{n} + \frac{1}{6n^2} + \frac{2}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{x+1}$ en 0 à l'ordre 3:

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} (x^3),$$

on a alors:

$$\begin{split} &\frac{1}{n \sinh\left(\frac{1}{n}\right) - 2 \arctan\left(\frac{1}{n}\right)} \\ &= 1 - \left(-\frac{2}{n} + \frac{1}{6 \, n^2} + \frac{2}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(-\frac{2}{n} + \frac{1}{6 \, n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 - \left(-\frac{2}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - \left(-\frac{2}{n} + \frac{1}{6 \, n^2} + \frac{2}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(\frac{4}{n^2} - \frac{2}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \left(-\frac{8}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \frac{2}{n} + \frac{23}{6 \, n^2} + \frac{20}{3 \, n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 64. On a:

 $\leftarrow \text{page } 6$

$$\arctan(x) = x - \frac{1}{3}x^3 + o_{x \to 0}(x^3), \quad \text{et}: \quad \ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + o_{x \to 0}(x^4).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{aligned} -6\arctan\left(\frac{1}{n}\right) + n\ln\left(\frac{1}{n} + 1\right) &= -6\left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{2\,n} + \frac{1}{3\,n^2} - \frac{1}{4\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 - \frac{13}{2\,n} + \frac{1}{3\,n^2} + \frac{7}{4\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{aligned}$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^{\frac{2}{3}}}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^{\frac{2}{3}}} = 1 - \frac{2}{3}x + \frac{5}{9}x^2 - \frac{40}{81}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\frac{1}{\left(n\ln\left(\frac{1}{n}+1\right)-6\arctan\left(\frac{1}{n}\right)\right)^{\frac{2}{3}}} \\ = 1 - \frac{2}{3}\left(-\frac{13}{2n} + \frac{1}{3n^2} + \frac{7}{4n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \frac{5}{9}\left(-\frac{13}{2n} + \frac{1}{3n^2} + \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right)\right)^2 - \frac{40}{81}\left(-\frac{13}{2n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^1}\right)\right)^3 + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right) \\ = 1 - \frac{2}{3}\left(-\frac{13}{2n} + \frac{1}{3n^2} + \frac{7}{4n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \frac{5}{9}\left(\frac{169}{4n^2} - \frac{13}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - \frac{40}{81}\left(-\frac{2197}{8n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right) \\ = 1 + \frac{13}{3n} + \frac{93}{4n^2} + \frac{21391}{162n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right),$$

d'où le résultat.

Corrigé 65. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{7\,n} - \frac{2}{21\,(n+2)} - \frac{1}{n-3} &= \frac{1}{7\,n} - \frac{2}{21}\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{20}{21\,n} - \frac{59}{21\,n^2} - \frac{197}{21\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 66. On a:

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \sinh(x) = x + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{split} -2\arctan\left(\frac{1}{n}\right) + \sinh\left(\frac{1}{n}\right) + 1 &= -2\left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{n} + \frac{1}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 - \frac{1}{n} + \frac{5}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} & \ln \left(-2 \arctan \left(\frac{1}{n} \right) + \sinh \left(\frac{1}{n} \right) + 1 \right) \\ & = \left(-\frac{1}{n} + \frac{5}{6 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(-\frac{1}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right)^2 + \frac{1}{3} \left(-\frac{1}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^1} \right) \right)^3 + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \\ & = \left(-\frac{1}{n} + \frac{5}{6 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{1}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) + \frac{1}{3} \left(-\frac{1}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \\ & = -\frac{1}{n} - \frac{1}{2 \, n^2} + \frac{1}{2 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right), \end{split}$$

d'où le résultat.

Corrigé 67. On écrit :

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{2}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{4}{n} + \frac{1}{n+3} - \frac{1}{7(n-4)} &= -\frac{4}{n} + 1\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{7}\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{22}{7n} - \frac{25}{7n^2} + \frac{47}{7n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

 \leftarrow page 7

 \leftarrow page 7

page 7

Corrigé 68. On a:

 \leftarrow page 7

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et}: \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^4).$$

On en déduit:

$$-196x \cosh(x) + \frac{\sin(x)}{x} = -196\left(x + \frac{1}{2}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + \left(1 - \frac{1}{6}x^2 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 1 - 196x - \frac{1}{6}x^2 - 98x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{x+1}$ en 0 à l'ordre 3 :

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} (x^3),$$

on a alors:

$$\begin{split} &-\frac{1}{196\,x\cosh\left(x\right)-\frac{\sin\left(x\right)}{x}} \\ &=1-\left(-196\,x-\frac{1}{6}\,x^2-98\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\left(-196\,x-\frac{1}{6}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2-\left(-196\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right) \\ &=1-\left(-196\,x-\frac{1}{6}\,x^2-98\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\left(38416\,x^2+\frac{196}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\left(-7529536\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right) \\ &=1+196\,x+\frac{230497}{6}\,x^2+\frac{22589098}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 69. On a:

 $\leftarrow \text{page } 7$

$$\sinh(x) = x + o_{x\to 0}(x^2)$$
, et: $\ln(x+1) = x - \frac{1}{2}x^2 + o_{x\to 0}(x^2)$.

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{split} -\sinh\left(\frac{1}{n}\right) + \ln\left(\frac{1}{n} + 1\right) &= -\left(\frac{1}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) + \left(\frac{1}{n} - \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right) \\ &= -\frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x \mapsto \cosh(x)$ en 0 à l'ordre 1:

$$\cosh\left(x\right) = 1 + \mathop{o}_{x \to 0}\left(x\right),\,$$

on a alors:

$$\begin{split} \cosh\left(\ln\left(\frac{1}{n}+1\right)-\sinh\left(\frac{1}{n}\right)\right) \\ &=1+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right) \\ &=1+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right) \\ &=1+\mathop{o}_{n\to+\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 70. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\frac{1}{n} + \frac{1}{n+4} - \frac{1}{n-3} = \frac{1}{n} + 1\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{1}{n} - \frac{7}{n^2} + \frac{7}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 71. On a:

 $\cos{(x)} = 1 - \frac{1}{2} x^2 + \mathop{o}_{x \to 0} \left(x^2 \right), \quad \text{ et : } \quad \cosh{(x)} = 1 + \frac{1}{2} x^2 + \mathop{o}_{x \to 0} \left(x^3 \right).$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\frac{\cos\left(\frac{1}{n}\right)}{n} + \cosh\left(\frac{1}{n}\right) = \left(\frac{1}{n} - \frac{1}{2n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{2n^2} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= 1 + \frac{1}{n} + \frac{1}{2n^2} - \frac{1}{2n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{split} & \ln \left(\frac{\cos \left(\frac{1}{n} \right)}{n} + \cosh \left(\frac{1}{n} \right) \right) \\ & = \left(\frac{1}{n} + \frac{1}{2 \, n^2} - \frac{1}{2 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{1}{n} + \frac{1}{2 \, n^2} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^2} \right) \right)^2 + \frac{1}{3} \left(\frac{1}{n} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^1} \right) \right)^3 + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \\ & = \left(\frac{1}{n} + \frac{1}{2 \, n^2} - \frac{1}{2 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{2} \left(\frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) + \frac{1}{3} \left(\frac{1}{n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \right) + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right) \\ & = \frac{1}{n} - \frac{2}{3 \, n^3} + \mathop{o}_{n \to + \infty} \left(\frac{1}{n^3} \right), \end{split}$$

d'où le résultat.

Corrigé 72. On écrit :

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{2\,n} + \frac{1}{n+3} + \frac{8}{n-3} &= \frac{1}{2\,n} + 1\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 8\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{19}{2\,n} + \frac{21}{n^2} + \frac{81}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 73. On a:

 \leftarrow page 7

$$\cos\left(x\right) = 1 - \frac{1}{2}x^{2} + \mathop{o}_{x \to 0}\left(x^{2}\right), \quad \text{ et : } \quad \ln\left(x+1\right) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} + \mathop{o}_{x \to 0}\left(x^{3}\right).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-4\frac{\cos\left(\frac{1}{n}\right)}{n} + \ln\left(\frac{1}{n} + 1\right) + 1 = -4\left(\frac{1}{n} - \frac{1}{2n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= 1 - \frac{3}{n} - \frac{1}{2n^2} + \frac{7}{3n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^{\frac{5}{2}}}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^{\frac{5}{2}}} = 1 - \frac{5}{2}x + \frac{35}{8}x^2 - \frac{105}{16}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\frac{1}{\left(-\frac{4\cos\left(\frac{1}{n}\right)}{n} + \ln\left(\frac{1}{n} + 1\right) + 1\right)^{\frac{5}{2}}} \\
= 1 - \frac{5}{2}\left(-\frac{3}{n} - \frac{1}{2n^2} + \frac{7}{3n^3} + o_{n\to+\infty}\left(\frac{1}{n^3}\right)\right) + \frac{35}{8}\left(-\frac{3}{n} - \frac{1}{2n^2} + o_{n\to+\infty}\left(\frac{1}{n^2}\right)\right)^2 - \frac{105}{16}\left(-\frac{3}{n} + o_{n\to+\infty}\left(\frac{1}{n^1}\right)\right)^3 + o_{n\to+\infty}\left(\frac{1}{n^3}\right) \\
= 1 - \frac{5}{2}\left(-\frac{3}{n} - \frac{1}{2n^2} + \frac{7}{3n^3} + o_{n\to+\infty}\left(\frac{1}{n^3}\right)\right) + \frac{35}{8}\left(\frac{9}{n^2} + \frac{3}{n^3} + o_{n\to+\infty}\left(\frac{1}{n^3}\right)\right) - \frac{105}{16}\left(-\frac{27}{n^3} + o_{n\to+\infty}\left(\frac{1}{n^3}\right)\right) + o_{n\to+\infty}\left(\frac{1}{n^3}\right) \\
= 1 + \frac{15}{2n} + \frac{325}{8n^2} + \frac{8855}{48n^3} + o_{n\to+\infty}\left(\frac{1}{n^3}\right),$$

d'où le résultat.

Corrigé 74. On a:

 \leftarrow page 7

$$\arctan(x) = x - \frac{1}{3}x^3 + o_{x\to 0}(x^3), \quad \text{et:} \quad \sin(x) = x - \frac{1}{6}x^3 + o_{x\to 0}(x^4).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{split} -4\arctan\left(\frac{1}{n}\right) + n\sin\left(\frac{1}{n}\right) &= -4\left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{6\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 - \frac{4}{n} - \frac{1}{6\,n^2} + \frac{4}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto (x+1)^{\frac{1}{11}}$ en 0 à l'ordre 3:

$$(x+1)^{\frac{1}{11}} = 1 + \frac{1}{11} x - \frac{5}{121} x^2 + \frac{35}{1331} x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

on a alors:

$$\left(n \sin\left(\frac{1}{n}\right) - 4 \arctan\left(\frac{1}{n}\right)\right)^{\frac{1}{11}}$$

$$= 1 + \frac{1}{11} \left(-\frac{4}{n} - \frac{1}{6n^2} + \frac{4}{3n^3} + \frac{o}{n \to +\infty} \left(\frac{1}{n^3}\right)\right) - \frac{5}{121} \left(-\frac{4}{n} - \frac{1}{6n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)^2 + \frac{35}{1331} \left(-\frac{4}{n} + \frac{o}{n \to +\infty} \left(\frac{1}{n^1}\right)\right)^3 + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)$$

$$= 1 + \frac{1}{11} \left(-\frac{4}{n} - \frac{1}{6n^2} + \frac{4}{3n^3} + \frac{o}{n \to +\infty} \left(\frac{1}{n^3}\right)\right) - \frac{5}{121} \left(\frac{16}{n^2} + \frac{4}{3n^3} + \frac{o}{n \to +\infty} \left(\frac{1}{n^3}\right)\right) + \frac{35}{1331} \left(-\frac{64}{n^3} + \frac{o}{n \to +\infty} \left(\frac{1}{n^3}\right)\right) + \frac{o}{n \to +\infty} \left(\frac{1}{n^3}\right)$$

$$= 1 - \frac{4}{11} \frac{491}{n} - \frac{491}{726n^2} - \frac{2152}{1331} \frac{1}{n^3} + \frac{o}{n \to +\infty} \left(\frac{1}{n^3}\right),$$

d'où le résultat.

Corrigé 75. On écrit:

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{16}{n} + \frac{1}{2\left(n+2\right)} - \frac{2}{5\left(n-1\right)} &= \frac{16}{n} + \frac{1}{2}\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{2}{5}\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{161}{10n} - \frac{7}{5n^2} + \frac{8}{5n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 76. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{6}{n} - \frac{1}{8\left(n+4\right)} + \frac{1}{6\left(n-2\right)} &= -\frac{6}{n} - \frac{1}{8}\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{143}{24\,n} + \frac{5}{6\,n^2} - \frac{4}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 77. On écrit:

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{5}{3\,n} + \frac{1}{n+1} - \frac{3}{n-2} &= -\frac{5}{3\,n} + 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 3\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{11}{3\,n} - \frac{7}{n^2} - \frac{11}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 78. On a:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o_{x\to 0}(x^3), \quad \text{et:} \quad \sinh(x) = x + \frac{1}{6}x^3 + o_{x\to 0}(x^3).$$

On en déduit:

$$63\ln(x+1) + \sinh(x) + 1 = 63\left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}\left(x^3\right)\right) + \left(1 + x + \frac{1}{6}x^3 + \underset{x \to 0}{o}\left(x^3\right)\right)$$
$$= 1 + 64x - \frac{63}{2}x^2 + \frac{127}{6}x^3 + \underset{x \to 0}{o}\left(x^3\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \ln(x+1)$ en 0 à l'ordre 3:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3),$$

- page 8

← page 8

 \leftarrow page 8

$$\ln (63 \ln (x+1) + \sinh (x) + 1)$$

$$\begin{split} &= \left(64\,x - \frac{63}{2}\,x^2 + \frac{127}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) - \frac{1}{2}\left(64\,x - \frac{63}{2}\,x^2 + \mathop{o}_{x \to 0}\left(x^2\right)\right)^2 + \frac{1}{3}\left(64\,x + \mathop{o}_{x \to 0}\left(x\right)\right)^3 + \mathop{o}_{x \to 0}\left(x^3\right) \\ &= \left(64\,x - \frac{63}{2}\,x^2 + \frac{127}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) - \frac{1}{2}\left(4096\,x^2 - 4032\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \frac{1}{3}\left(262144\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \mathop{o}_{x \to 0}\left(x^3\right) \\ &= 64\,x - \frac{4159}{2}\,x^2 + \frac{178837}{2}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 79. On écrit:

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{42\,n} + \frac{1}{n+1} - \frac{1}{2\,(n-2)} &= \frac{1}{42\,n} + 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{2}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{11}{21\,n} - \frac{2}{n^2} - \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 80. On a:

$$\sinh(x) = x + \frac{1}{6}x^3 + o_{x\to 0}(x^3), \quad \text{et}: \quad \cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\begin{split} -\sinh\left(\frac{1}{n}\right) + \cosh\left(\frac{1}{n}\right) &= -\left(\frac{1}{n} + \frac{1}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 - \frac{1}{n} + \frac{1}{2\,n^2} - \frac{1}{6\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto (x+1)^{\frac{1}{7}}$ en 0 à l'ordre 3 :

$$(x+1)^{\frac{1}{7}} = 1 + \frac{1}{7}x - \frac{3}{49}x^2 + \frac{13}{343}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{split} &\left(\cosh\left(\frac{1}{n}\right)-\sinh\left(\frac{1}{n}\right)\right)^{\frac{1}{7}} \\ &=1+\frac{1}{7}\left(-\frac{1}{n}+\frac{1}{2\,n^2}-\frac{1}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-\frac{3}{49}\left(-\frac{1}{n}+\frac{1}{2\,n^2}+\underset{n\to+\infty}{o}\left(\frac{1}{n^2}\right)\right)^2+\frac{13}{343}\left(-\frac{1}{n}+\underset{n\to+\infty}{o}\left(\frac{1}{n^1}\right)\right)^3+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ &=1+\frac{1}{7}\left(-\frac{1}{n}+\frac{1}{2\,n^2}-\frac{1}{6\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)-\frac{3}{49}\left(\frac{1}{n^2}-\frac{1}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\frac{13}{343}\left(-\frac{1}{n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right)\right)+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right) \\ &=1-\frac{1}{7\,n}+\frac{1}{98\,n^2}-\frac{1}{2058\,n^3}+\underset{n\to+\infty}{o}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 81. On écrit:

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

← page 8

- page 8

et de même : $\frac{1}{n-1} = \frac{1}{n} \frac{1}{1-\frac{1}{n}} = \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{1}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{2}{n} - \frac{1}{7\left(n+2\right)} - \frac{1}{n-1} &= \frac{2}{n} - \frac{1}{7}\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{6}{7n} - \frac{5}{7n^2} - \frac{11}{7n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 82. On a:

$$\sin(x) = x + \underset{x \to 0}{o}(x^2), \quad \text{et}: \quad x \cosh(x) = x + \underset{x \to 0}{o}(x^2).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-\sin\left(\frac{1}{n}\right) + \frac{\cosh\left(\frac{1}{n}\right)}{n} = -\left(\frac{1}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right)\right) + \left(\frac{1}{n} + \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right)\right)$$
$$= \underset{n \to +\infty}{o}\left(\frac{1}{n^2}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \cos(x)$ en 0 à l'ordre 1:

$$\cos\left(x\right) = 1 + \mathop{o}\limits_{x \to 0}\left(x\right),\,$$

on a alors:

$$\begin{split} &\cos\left(\frac{\cosh\left(\frac{1}{n}\right)}{n} - \sin\left(\frac{1}{n}\right)\right) \\ &= 1 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 83. On a:

$$\ln\left(x+1\right) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}\left(x^3\right), \quad \text{ et : } \quad \cosh\left(x\right) = 1 + \frac{1}{2}x^2 + \mathop{o}_{x\to 0}\left(x^3\right).$$

On en déduit :

$$-10\ln(x+1) + \cosh(x) = -10\left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3)\right) + \left(1 + \frac{1}{2}x^2 + \mathop{o}_{x\to 0}(x^3)\right)$$
$$= 1 - 10x + \frac{11}{2}x^2 - \frac{10}{3}x^3 + \mathop{o}_{x\to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x \mapsto \frac{1}{(x+1)^{\frac{1}{6}}}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^{\frac{1}{6}}} = 1 - \frac{1}{6}x + \frac{7}{72}x^2 - \frac{91}{1296}x^3 + \mathop{o}_{x \to 0}(x^3),$$

 \leftarrow page 8

$$\begin{split} &\frac{1}{\left(\cosh\left(x\right)-10\,\ln\left(x+1\right)\right)^{\frac{1}{6}}}\\ &=1-\frac{1}{6}\left(-10\,x+\frac{11}{2}\,x^2-\frac{10}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{7}{72}\left(-10\,x+\frac{11}{2}\,x^2+\mathop{o}_{x\to 0}\left(x^2\right)\right)^2-\frac{91}{1296}\left(-10\,x+\mathop{o}_{x\to 0}\left(x\right)\right)^3+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1-\frac{1}{6}\left(-10\,x+\frac{11}{2}\,x^2-\frac{10}{3}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\frac{7}{72}\left(100\,x^2-110\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)-\frac{91}{1296}\left(-1000\,x^3+\mathop{o}_{x\to 0}\left(x^3\right)\right)+\mathop{o}_{x\to 0}\left(x^3\right)\\ &=1+\frac{5}{3}\,x+\frac{317}{36}\,x^2+\frac{19465}{324}\,x^3+\mathop{o}_{x\to 0}\left(x^3\right), \end{split}$$

d'où le résultat.

Corrigé 84. On écrit :

$$\frac{1}{n+1} = \frac{1}{n} \frac{1}{1+\frac{1}{n}} = \frac{1}{n} \left(1 - \frac{1}{n} + \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{1}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\frac{3}{n} + \frac{1}{n+1} + \frac{2}{n-3} = \frac{3}{n} + 1\left(\frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 2\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{6}{n} + \frac{5}{n^2} + \frac{19}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 85. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{n} + \frac{1}{2\left(n+4\right)} + \frac{1}{5\left(n-2\right)} &= -\frac{1}{n} + \frac{1}{2}\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{5}\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{3}{10\,n} - \frac{8}{5\,n^2} + \frac{44}{5\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 86. On a:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et}: \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$-\frac{\cosh\left(\frac{1}{n}\right)}{n} - \sin\left(\frac{1}{n}\right) = -\left(\frac{1}{n} + \frac{1}{2n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \left(\frac{1}{n} - \frac{1}{6n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= -\frac{2}{n} - \frac{1}{3n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto e^x$ en 0 à l'ordre 3:

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3),$$

 $\leftarrow \text{page } 8$

 \leftarrow page 9

- page 8

$$\begin{split} & e^{\left(-\frac{\cosh\left(\frac{1}{n}\right)}{n} - \sin\left(\frac{1}{n}\right)\right)} \\ & = 1 + \left(-\frac{2}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(-\frac{2}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 + \frac{1}{6}\left(-\frac{2}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = 1 + \left(-\frac{2}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{2}\left(\frac{4}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(-\frac{8}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = 1 - \frac{2}{n} + \frac{2}{n^2} - \frac{5}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 87. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1 + \frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} -\frac{1}{15\,n} + \frac{1}{n+4} - \frac{1}{n-2} &= -\frac{1}{15\,n} + 1\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{1}{15\,n} - \frac{6}{n^2} + \frac{12}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 88. On a:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et}: \quad \ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3).$$

On en déduit:

$$x \cosh(x) + \ln(x+1) + 1 = \left(x + \frac{1}{2}x^3 + \mathop{o}_{x \to 0}(x^3)\right) + \left(1 + x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x \to 0}(x^3)\right)$$
$$= 1 + 2x - \frac{1}{2}x^2 + \frac{5}{6}x^3 + \mathop{o}_{x \to 0}(x^3).$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{(x+1)^{\frac{1}{4}}}$ en 0 à l'ordre 3:

$$\frac{1}{(x+1)^{\frac{1}{4}}} = 1 - \frac{1}{4}x + \frac{5}{32}x^2 - \frac{15}{128}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\frac{1}{(x\cosh(x) + \ln(x+1) + 1)^{\frac{1}{4}}}$$

$$= 1 - \frac{1}{4} \left(2x - \frac{1}{2}x^2 + \frac{5}{6}x^3 + \mathop{o}_{x\to 0}(x^3) \right) + \frac{5}{32} \left(2x - \frac{1}{2}x^2 + \mathop{o}_{x\to 0}(x^2) \right)^2 - \frac{15}{128} \left(2x + \mathop{o}_{x\to 0}(x) \right)^3 + \mathop{o}_{x\to 0}(x^3)$$

$$= 1 - \frac{1}{4} \left(2x - \frac{1}{2}x^2 + \frac{5}{6}x^3 + \mathop{o}_{x\to 0}(x^3) \right) + \frac{5}{32} \left(4x^2 - 2x^3 + \mathop{o}_{x\to 0}(x^3) \right) - \frac{15}{128} \left(8x^3 + \mathop{o}_{x\to 0}(x^3) \right) + \mathop{o}_{x\to 0}(x^3)$$

$$= 1 - \frac{1}{2}x + \frac{3}{4}x^2 - \frac{35}{24}x^3 + \mathop{o}_{x\to 0}(x^3),$$

d'où le résultat.

Corrigé 89. On a:

← page 9

 \leftarrow page 9

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et}: \quad \cos(x) = 1 - \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{split} -\arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right) &= -\left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 - \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 - \frac{1}{n} - \frac{1}{2\,n^2} + \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto (x+1)^{\frac{2}{3}}$ en 0 à l'ordre 3:

$$(x+1)^{\frac{2}{3}} = 1 + \frac{2}{3}x - \frac{1}{9}x^2 + \frac{4}{81}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\left(-\arctan\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right) \right)^{\frac{2}{3}}$$

$$= 1 + \frac{2}{3} \left(-\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right) \right) - \frac{1}{9} \left(-\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \right)^2 + \frac{4}{81} \left(-\frac{1}{n} + o\left(\frac{1}{n^1}\right) \right)^3 + o\left(\frac{1}{n^3}\right)$$

$$= 1 + \frac{2}{3} \left(-\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right) \right) - \frac{1}{9} \left(\frac{1}{n^2} + \frac{1}{n^3} + o\left(\frac{1}{n^3}\right) \right) + \frac{4}{81} \left(-\frac{1}{n^3} + o\left(\frac{1}{n^3}\right) \right) + o\left(\frac{1}{n^3}\right)$$

$$= 1 - \frac{2}{3n} - \frac{4}{9n^2} + \frac{5}{81n^3} + o\left(\frac{1}{n^3}\right),$$

d'où le résultat.

Corrigé 90. On écrit :

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{1}{4\left(n+4\right)} - \frac{1}{n-3} &= \frac{1}{n} + \frac{1}{4}\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 1\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{1}{4n} - \frac{4}{n^2} - \frac{5}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 91. On écrit:

$$\frac{1}{n+4} = \frac{1}{n} \frac{1}{1+\frac{4}{n}} = \frac{1}{n} \left(1 - \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{4}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{n} + \frac{1}{18\left(n+4\right)} + \frac{19}{n-3} &= \frac{1}{n} + \frac{1}{18}\left(\frac{1}{n} - \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 19\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{361}{18n} + \frac{511}{9n^2} + \frac{1547}{9n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 92. On a:

 \leftarrow page 9

$$\arctan(x) = x - \frac{1}{3}x^3 + o_{x\to 0}(x^3), \quad \text{et}: \quad \cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{aligned} 21 \arctan\left(\frac{1}{n}\right) + \cosh\left(\frac{1}{n}\right) &= 21\left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= 1 + \frac{21}{n} + \frac{1}{2\,n^2} - \frac{7}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{aligned}$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{x+1}$ en 0 à l'ordre 3 :

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

on a alors:

$$\begin{split} &\frac{1}{21\arctan\left(\frac{1}{n}\right)+\cosh\left(\frac{1}{n}\right)} \\ &= 1 - \left(\frac{21}{n} + \frac{1}{2\,n^2} - \frac{7}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(\frac{21}{n} + \frac{1}{2\,n^2} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^2}\right)\right)^2 - \left(\frac{21}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - \left(\frac{21}{n} + \frac{1}{2\,n^2} - \frac{7}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(\frac{441}{n^2} + \frac{21}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \left(\frac{9261}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= 1 - \frac{21}{n} + \frac{881}{2\,n^2} - \frac{9233}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 93. On a:

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + o(x^{2}), \quad \text{et}: \quad x \cosh(x) = x + \frac{1}{2}x^{3} + o(x^{3}).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$-\frac{e^{\frac{1}{n}}}{n} - 4\frac{\cosh\left(\frac{1}{n}\right)}{n} = -\left(\frac{1}{n} + \frac{1}{n^2} + \frac{1}{2n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - 4\left(\frac{1}{n} + \frac{1}{2n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= -\frac{5}{n} - \frac{1}{n^2} - \frac{5}{2n^3} + o_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \sinh(x)$ en 0 à l'ordre 3:

$$\sinh(x) = x + \frac{1}{6}x^3 + \mathop{o}_{x\to 0}(x^3),$$

on a alors:

$$\begin{split} & \sinh\left(-\frac{4\cosh\left(\frac{1}{n}\right)}{n} - \frac{e^{\frac{1}{n}}}{n}\right) \\ & = \left(-\frac{5}{n} - \frac{1}{n^2} - \frac{5}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(-\frac{5}{n} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = \left(-\frac{5}{n} - \frac{1}{n^2} - \frac{5}{2\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{6}\left(-\frac{125}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ & = -\frac{5}{n} - \frac{1}{n^2} - \frac{70}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.

Corrigé 94. On écrit:

$$\frac{1}{n+3} = \frac{1}{n} \frac{1}{1+\frac{3}{n}} = \frac{1}{n} \left(1 - \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-2} = \frac{1}{n} \frac{1}{1-\frac{2}{n}} = \frac{1}{n} \left(1 + \frac{2}{n} + \frac{4}{n^2} + \frac{o}{n \to +\infty} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{3}{n}$ et $x = \frac{2}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{8\,n} - \frac{1}{n+3} + \frac{1}{n-2} &= \frac{1}{8\,n} - 1\left(\frac{1}{n} - \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + 1\left(\frac{1}{n} + \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{1}{8\,n} + \frac{5}{n^2} - \frac{5}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 95. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-4} = \frac{1}{n} \frac{1}{1-\frac{4}{n}} = \frac{1}{n} \left(1 + \frac{4}{n} + \frac{16}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{4}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$).

$$\frac{1}{n} - \frac{7}{n+2} + \frac{6}{n-4} = \frac{1}{n} - 7\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right) + 6\left(\frac{1}{n} + \frac{4}{n^2} + \frac{16}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{38}{n^2} + \frac{68}{n^3} + \underset{n \to +\infty}{o}\left(\frac{1}{n^3}\right).$$

Corrigé 96. On écrit :

$$\frac{1}{n+2} = \frac{1}{n} \frac{1}{1+\frac{2}{n}} = \frac{1}{n} \left(1 - \frac{2}{n} + \frac{4}{n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2} \right) \right),$$

et de même : $\frac{1}{n-3} = \frac{1}{n} \frac{1}{1-\frac{3}{n}} = \frac{1}{n} \left(1 + \frac{3}{n} + \frac{9}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)\right)$ (on utilise deux fois le développement limité en 0 de $x \mapsto \frac{1}{1-x}$, avec respectivement $x = -\frac{2}{n}$ et $x = \frac{3}{n}$: ces deux quantités tendent bien vers 0 quand $n \to +\infty$). On en déduit :

$$\begin{split} \frac{1}{20\,n} + \frac{1}{7\,(n+2)} + \frac{1}{4\,(n-3)} &= \frac{1}{20\,n} + \frac{1}{7}\left(\frac{1}{n} - \frac{2}{n^2} + \frac{4}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \frac{1}{4}\left(\frac{1}{n} + \frac{3}{n^2} + \frac{9}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= \frac{31}{70\,n} + \frac{13}{28\,n^2} + \frac{79}{28\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

Corrigé 97. On a:

$$\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3), \quad \text{et:} \quad e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient:

$$\ln\left(\frac{1}{n}+1\right) + e^{\frac{1}{n}} = \left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(1 + \frac{1}{n} + \frac{1}{2n^2} + \frac{1}{6n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$

$$= 1 + \frac{2}{n} + \frac{1}{2n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x\mapsto \ln{(x+1)}$ en 0 à l'ordre 3 :

$$\ln\left(x+1\right) = x - \frac{1}{2}\,x^2 + \frac{1}{3}\,x^3 + \mathop{o}_{x\to 0}\left(x^3\right),$$

 \leftarrow page 9

 \leftarrow page 10

$$\begin{split} & \ln \left({e^{\frac{1}{n}} + \ln \left({\frac{1}{n} + 1} \right)} \right) \\ & = \left({\frac{2}{n} + \frac{1}{2\,{n^3}} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right)} \right) - \frac{1}{2}\left({\frac{2}{n} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^2}}} \right)} \right)^2 + \frac{1}{3}\left({\frac{2}{n} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^1}}} \right)} \right)^3 + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right) \\ & = \left({\frac{2}{n} + \frac{1}{2\,{n^3}} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right)} \right) - \frac{1}{2}\left({\frac{4}{{n^2}} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right)} \right) + \frac{1}{3}\left({\frac{8}{{n^3}} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right)} \right) + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right) \\ & = \frac{2}{n} - \frac{2}{{n^2}} + \frac{{19}}{{6\,{n^3}}} + \mathop{o}\limits_{n \to + \infty } \left({\frac{1}{{n^3}}} \right), \end{split}$$

d'où le résultat.

Corrigé 98. On a:

 $\ln(x+1) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3), \quad \text{et}: \quad \arctan(x) = x - \frac{1}{3}x^3 + \mathop{o}_{x\to 0}(x^3).$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$\begin{split} -5\ln\left(\frac{1}{n}+1\right) + \arctan\left(\frac{1}{n}\right) &= -5\left(\frac{1}{n} - \frac{1}{2\,n^2} + \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(\frac{1}{n} - \frac{1}{3\,n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) \\ &= -\frac{4}{n} + \frac{5}{2\,n^2} - \frac{2}{n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto\sin{(x)}$ en 0 à l'ordre 3 :

$$\sin(x) = x - \frac{1}{6}x^3 + \mathop{o}_{x \to 0}(x^3),$$

on a alors:

$$\begin{split} & \sin \left(\arctan \left(\frac{1}{n} \right) - 5 \ln \left(\frac{1}{n} + 1 \right) \right) \\ & = \left(-\frac{4}{n} + \frac{5}{2 \, n^2} - \frac{2}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{6} \left(-\frac{4}{n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^1} \right) \right)^3 + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \\ & = \left(-\frac{4}{n} + \frac{5}{2 \, n^2} - \frac{2}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) - \frac{1}{6} \left(-\frac{64}{n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \right) + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right) \\ & = -\frac{4}{n} + \frac{5}{2 \, n^2} + \frac{26}{3 \, n^3} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^3} \right), \end{split}$$

d'où le résultat.

Corrigé 99. On a:

$$\cosh(x) = 1 + \frac{1}{2}x^2 + o_{x\to 0}(x^2), \quad \text{et:} \quad e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o_{x\to 0}(x^3).$$

On en déduit :

$$\begin{split} x\cosh\left(x\right) + e^x &= \left(x + \frac{1}{2}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) + \left(1 + x + \frac{1}{2}\,x^2 + \frac{1}{6}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right)\right) \\ &= 1 + 2\,x + \frac{1}{2}\,x^2 + \frac{2}{3}\,x^3 + \mathop{o}_{x \to 0}\left(x^3\right). \end{split}$$

En combinant ce résultat avec le développement limité de $x\mapsto \frac{1}{x+1}$ en 0 à l'ordre 3 :

$$\frac{1}{x+1} = 1 - x + x^2 - x^3 + \mathop{o}_{x \to 0} \left(x^3 \right),$$

 \leftarrow page 10

$$\begin{split} &\frac{1}{x\cosh\left(x\right)+e^{x}}\\ &=1-\left(2\,x+\frac{1}{2}\,x^{2}+\frac{2}{3}\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)+\left(2\,x+\frac{1}{2}\,x^{2}+\mathop{o}_{x\to0}\left(x^{2}\right)\right)^{2}-\left(2\,x+\mathop{o}_{x\to0}\left(x\right)\right)^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\\ &=1-\left(2\,x+\frac{1}{2}\,x^{2}+\frac{2}{3}\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)+\left(4\,x^{2}+2\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)-\left(8\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right)\right)+\mathop{o}_{x\to0}\left(x^{3}\right)\\ &=1-2\,x+\frac{7}{2}\,x^{2}-\frac{20}{3}\,x^{3}+\mathop{o}_{x\to0}\left(x^{3}\right), \end{split}$$

d'où le résultat.

Corrigé 100. On a:

$$\cos(x) = 1 - \frac{1}{2}x^2 + \underset{x \to 0}{o}(x^2), \quad \text{et}: \quad \sin(x) = x - \frac{1}{6}x^3 + \underset{x \to 0}{o}(x^3).$$

On compose ces développements limités avec $\frac{1}{n}$ (quand $n \to +\infty$, on a bien $\frac{1}{n} \to 0$), et on obtient :

$$3\frac{\cos\left(\frac{1}{n}\right)}{n} + \sin\left(\frac{1}{n}\right) = 3\left(\frac{1}{n} - \frac{1}{2n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \left(\frac{1}{n} - \frac{1}{6n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{4}{n} - \frac{5}{3n^3} + \mathop{o}_{n \to +\infty}\left(\frac{1}{n^3}\right).$$

En combinant ce résultat avec le développement limité de $x \mapsto \arctan(x)$ en 0 à l'ordre 3:

$$\arctan(x) = x - \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3),$$

on a alors:

$$\begin{split} &\arctan\left(\frac{3\cos\left(\frac{1}{n}\right)}{n} + \sin\left(\frac{1}{n}\right)\right) \\ &= \left(\frac{4}{n} - \frac{5}{3\,n^3} + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{3}\left(\frac{4}{n} + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^1}\right)\right)^3 + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= \left(\frac{4}{n} - \frac{5}{3\,n^3} + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) - \frac{1}{3}\left(\frac{64}{n^3} + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^3}\right)\right) + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^3}\right) \\ &= \frac{4}{n} - \frac{23}{n^3} + \mathop{o}\limits_{n \to +\infty}\left(\frac{1}{n^3}\right), \end{split}$$

d'où le résultat.