Análise das Características do Solo ideiais para cada Cultura

Projeto da disciplina SME0860 - Aprendizado de Máquina Aplicado a Problemas

Membros

- Alexandre E. de Souza Jesus alexandre_souza@usp.br 12559506
- Eduardo Zaffari Monteiro eduardozaffarimonteiro@usp.br 12559490
- Lucas Ivars Cadima Ciziks luciziks@usp.br 12559472

1. Introdução

O uso do solo de maneira adequada é de fundamental importância para maximizar o retorno do plantio e mantê-lo em boas condições para que possa ser utilizado por vários anos sem degradação. Caso o solo seja mal manejado, pode-se acabar com um terreno infértil, o que aumenta a demanda de recursos para o cultivo e recuperação da área de plantio.

Conforme o solo é utilizado para o plantio de um tipo de alimento, ocorre a diminuição dos tipos de nutrientes consumidos por essa planta, e em contrapartida os outros se tornam abundantes pelo acúmulo durante o tempo em que não foi consumido. Dessa forma, pode-se realizar a rotação de culturas, que consiste em plantar alimentos que consomem nutrientes diferentes de maneira cíclica, fazendo com que o solo se mantenha mais bem preservado.

Com objetivo de facilitar a escolha da cultura a ser semeada em um terreno específico será feito o treinamento de um modelo de aprendizado supervisionado. Para isso, serão utilizados dados que consistem em características do terreno, principalmente relacionadas à quantidade de nutrientes e substâncias nele presentes. A classificação dar-se-á de acordo com um tipo de cultura que é considerado ideal para o solo observado.

A tabela de dados apresenta 2200 diferentes condições de solo e suas respectivas culturas ideais, as quais são divididas em 22 classes que indicam diferentes sementes e frutas. Para cada um desses terrenos existem valores de quantidade de nitrogênio, fósforo, potássio, além de temperatura, umidade e pH, além da precipitação plantação recebe durante o crescimento.

2. Metodologia

O projeto está sendo realizado e versionado remotamente através da plataforma Github. Seu acesso é possível por meio do link https://github.com/ale-souza/crop-recommendation

2.1. Origem dos Dados

Os dados foram obtidos diretamente da plataforma kaggle, um site para estudo de ciência de dados e machine learning, e podem ser obtidos através do link https://www.kaggle.com/datasets/aksahaha/crop-recommendation. Segundo o usuário Abhishek Kumar, que disponibilizou os dados, eles são provenientes do ICAR (Indian Council of Agriculture Research), e complementados por pesquisas na internet feitas por ele.

2.2 Dicionário de Dados

- Nitrogênio (nitrogen): Representa a quantidade de nitrogênio (em kg/ha) presente no solo para a cultura. O nitrogênio é um nutriente essencial para o crescimento de plantas, e sua deficiência ou excesso pode afetar o crescimento e a produção da cultura;
- **Fósforo (phosphorus)**: Representa a quantidade de fósforo (em kg/ha) presente no solo para a cultura. Também é um elemento essencial no plantio, sendo importante para processos como transferência de energia e fotossíntese;
- Potássio (potassium): Representa a quantidade de potássio (em kg/ha) presente no solo para a cultura. Também é um elemento essencial, e é importante para processos fisiológicos como regulação de água e transporte de nutrientes;
- **Temperatura (temperature)**: Representa a temperatura média (em Celsius) durante o período de crescimento da cultura. A temperatura é um fator ambiental importante que pode afetar o crescimento e o desenvolvimento das plantas, e cada cultura possui uma temperatura ideal;
- Umidade (humidity): Representa a humidade relativa (em porcentagem) durante o período de
 crescimento da cultura. A humidade é outro fator ambiental importante, tendo em vista que uma alta
 humidade pode promover a proliferação de fungos e desenvolvimento de doenças;
- **pH**: Representa o pH da cultura durante seu período de crescimento. O pH é uma medida de acidez ou alcalinidade do solo e pode afetar a disponibilidade de nutrientes para a cultura;
- Precipitação (rainfall): Representa a precipitação (em mm) durante o período de crescimento da cultura. Cada cultura necessita de uma quantidade diferente de água, o que torna a precipitação outro fator ambiental importante;
- Crop (label): Representa o tipo da cultura.

3. Coleta dos Dados

```
NaN
                                                                                                             NaN
                  85
                               58
                                         41
                                               21.770462 80.319644 7.038096 226.655537
                                                                                                   NaN
                                                                                                             NaN
                                                                                         rice
          2
                  60
                               55
                                         44
                                               23.004459 82.320763 7.840207
                                                                            263.964248
                                                                                         rice
                                                                                                   NaN
                                                                                                             NaN
          3
                  74
                                         40
                                               26.491096 80.158363 6.980401
                                                                                                   NaN
                                                                                                             NaN
                               35
                                                                            242.864034
                                                                                         rice
          4
                  78
                              42
                                         42
                                               20.130175 81.604873 7.628473 262.717340
                                                                                                             NaN
                                                                                         rice
                                                                                                   NaN
          # Limpando dataset
In [12]:
          df = df.drop(['Unnamed: 8', 'Unnamed: 9'], axis=1)
          df = df.rename(columns={"label": "crop"})
          df.head()
Out[12]:
                      phosphorus potassium
                                             temperature
                                                          humidity
                                                                                rainfall
                                                                                       crop
          0
                  90
                              42
                                         43
                                               20.879744
                                                         82.002744 6.502985
                                                                            202.935536
                                                                                        rice
                  85
                               58
                                               21.770462 80.319644 7.038096
                                                                            226.655537
                                                                                         rice
          2
                  60
                               55
                                         44
                                               23.004459 82.320763 7.840207
                                                                            263.964248
                                                                                        rice
          3
                   74
                               35
                                         40
                                               26.491096 80.158363 6.980401
                                                                            242.864034
                                                                                         rice
                              42
          4
                  78
                                         42
                                               20.130175 81.604873 7.628473 262.717340
                                                                                        rice
          # Verificando as categorias de plantação
In [13]:
          labels = df['crop'].astype('category').values
          labels = list(labels.categories)
          labels
          ['apple',
Out[13]:
           'banana',
           'blackgram',
           'chickpea',
           'coconut',
           'coffee',
           'cotton',
           'grapes',
           'jute',
           'kidneybeans',
           'lentil',
           'maize',
           'mango',
           'mothbeans',
           'mungbean',
           'muskmelon',
           'orange',
           'papaya',
           'pigeonpeas',
           'pomegranate',
           'rice',
           'watermelon']
```

20.879744 82.002744 6.502985 202.935536

8

rice

9

4. Análise Exploratória dos Dados

4.1. Medidas Descritivas

0

90

42

43

```
In [14]: # Função para calcular o coeficiente de variância (CV)
         def coeficiente variancia(table):
           return 100 * table.std() / table.mean()
         # Função para calcular a amplitude
         def amplitude(table):
            return table.max() - table.min()
         # Aplicando medidas de posição e dispersão aos atributos preditivos
        medidas descritivas = df.drop(["crop"], axis=1).agg(["min", "max", "mean", "median", "va
In [15]: # Renomeando das medidas descritivas
         novos nomes = {
            "min": "Minimo",
            "max": "Maximo",
            "mean": "Media",
             "median": "Mediana",
             "var": "Variancia",
             "std": "Desvio-padrao",
             "coeficiente variancia": "Coeficiente de Variancia",
             "amplitude": "Amplitude"
         medidas descritivas = medidas descritivas.rename(novos nomes)
         # Arredondando casas decimais das medidas descritivas e de dispersão
         medidas descritivas = medidas descritivas.round(3)
```

In [16]: medidas descritivas

Out	$\Gamma 1 \subset \Gamma$	
Uu L	ТОІ	

	Nitrogen	phosphorus	potassium	temperature	humidity	ph	rainfall
Minimo	0.000	5.000	5.000	8.826	14.258	3.505	20.211
Maximo	140.000	145.000	205.000	43.675	99.982	9.935	298.560
Media	50.552	53.363	48.149	25.616	71.482	6.469	103.464
Mediana	37.000	51.000	32.000	25.599	80.473	6.425	94.868
Variancia	1362.890	1088.068	2565.213	25.642	495.677	0.599	3020.424
Desvio-padrao	36.917	32.986	50.648	5.064	22.264	0.774	54.958
Coeficiente de Variancia	73.029	61.814	105.190	19.768	31.146	11.963	53.119
Amplitude	140.000	140.000	200.000	34.850	85.724	6.430	278.349

A partir das medidas descritivas, pode-se ter uma ideia inicial das distribuições das características. É possível inferir que as variáveis temperature e pH possuem uma curva simétrica, já que suas médias e medianas são bem próximas, enquanto humidity provavelmente possui uma curva assimétrica à esquerda. Para todos os outros atributos as curvas são possivelmente assimétricas à direita.

No que tange as medidas de dispersão, a análise anterior é reforçada. As medidas de variância e desviopadrão apresentam valores altos para as variáveis que não são simétricas, o que indica que há uma alta variabilidade nos dados. Ou seja, há valores que possuem uma grande distância da média.

4.2. Visualização dos Dados

4.2.1. Histogramas

Abaixo, é possível observar o formato da curva dos atributos. Assim, há ainda mais evidências de que a análise anteriormente feita está, provavelmente, correta. Fazem-se necessários, então, testes de hipóteses.

```
In [17]: # Nitrogen
sns.histplot(data=df, x="Nitrogen", kde=True, color="gold")
```

Out[17]: <Axes: xlabel='Nitrogen', ylabel='Count'>


```
In [18]: # Phosphorus
sns.histplot(data=df, x="phosphorus", kde=True, color="salmon")
```

Out[18]: <Axes: xlabel='phosphorus', ylabel='Count'>


```
In [19]: # Potassium
sns.histplot(data=df, x="potassium", kde=True, color="green")
```

Out[19]: <Axes: xlabel='potassium', ylabel='Count'>


```
In [20]: # temperature
sns.histplot(data=df, x="temperature", kde=True, color="red")
```

Out[20]: <Axes: xlabel='temperature', ylabel='Count'>

Percebe-se, como anteriormente dito, que a distribuição dos dados referentes à variável temperatura provavelmente segue uma distribuição.

```
In [21]: # Humidity
sns.histplot(data=df, x="humidity", kde=True, color="steelblue")
```

Out[21]: <Axes: xlabel='humidity', ylabel='Count'>


```
In [22]: # ph
sns.histplot(data=df, x="ph", kde=True, color="hotpink")
```

Out[22]: <Axes: xlabel='ph', ylabel='Count'>

Percebe-se, como anteriormente dito, que a distribuição dos dados referentes à variável pH provavelmente segue uma distribuição.

```
In [23]: ## Rainfall
sns.histplot(data=df, x="rainfall", kde=True, color="aqua")
Out[23]: <Axes: xlabel='rainfall', ylabel='Count'>
```


4.2.2. Boxplots

Com os boxplots, é possível comparar a distribuição dos dados em relação ao atributo-alvo. Mais uma vez, a teoria de que as variáveis pH e temperature são mais balanceadas é corroborada.

```
In [24]:
         sns.boxplot(x=df["Nitrogen"], y=df["crop"])
         <Axes: xlabel='Nitrogen', ylabel='crop'>
```

Out[24]:


```
In [25]: # ------
# Phosphorus x Crop
# -----
sns.boxplot(x=df["phosphorus"], y=df["crop"])
```

Out[25]: <Axes: xlabel='phosphorus', ylabel='crop'>


```
# Potassium x Crop
# -----
sns.boxplot(x=df["potassium"], y=df["crop"])
```

Out[26]: <Axes: xlabel='potassium', ylabel='crop'>


```
In [27]: # ------
# Temperature x Crop
# -----
sns.boxplot(x=df["temperature"], y=df["crop"])
```

Out[27]: <Axes: xlabel='temperature', ylabel='crop'>

A maior parte dos valores está ao redor da média, que é de aproximadamente 25. Apesar de certos valores apresentarem grande variação, como *grapes* e *orange*, isso não afetou a curva.

```
In [28]: # ------
# Humidity x Crop
# ------
sns.boxplot(x=df["humidity"], y=df["crop"])
Out[28]: <Axes: xlabel='humidity', ylabel='crop'>
```


Out[29]: <Axes: xlabel='ph', ylabel='crop'>

O padrão se repete com o atributo pH. A maior parte dos valores está concentrada ao redor da média.

Neste caso, tal resultado é previsível, visto que essa medida varia entre 0 e 14, e 7 representa um meio neutro (a média dos valores foi de aproximadamente 6,4)

```
In [30]: # ------
# Rainfall x Crop
# ------
sns.boxplot(x=df["rainfall"], y=df["crop"])
```

Out[30]: <Axes: xlabel='rainfall', ylabel='crop'>

É possível perceber, então, que há certa separação no que tange aos atributos para cada tipo de cultura. Há indícios, portanto, de que é possível classificar o rótulo de novas observações a partir deste conjunto de variáveis.

4.2.3. Balaceamento dos Dados

```
In [31]: plt.figure(figsize=(8, 8))
    colors = sns.color_palette('pastel')

plt.pie(df['crop'].groupby(df['crop']).count(), labels = labels, colors = colors, autopc
    plt.show()
```


É possível perceber que a distribuição dos valores é idêntica.

4.3. Correlação entre as Variáveis

```
In [32]: # Mapa de calor com as correlações entre os atributos
sns.heatmap(df.drop(columns=["crop"]).corr(), annot=True, linewidths=0.5)
```

Out[32]: <Axes: >

A maior parte das variáveis **não** está relacionada entre si, com exceção dos atributos *potassium* e *phosphorus*, que possuem uma correlação positiva considerável. Para que a classificação dos dados seja mais efetiva, um dos atributos pode ser removido. Abaixo é possível visualizar a **matriz de dispersão** entre todos as culturas possíveis (os rótulos) e os atributos, o que é necessário para avaliar qual das duas variáveis relacionadas poderia ser removida.

```
In [33]: dummies = pd.get_dummies(df['crop'])
  dummy_df = pd.concat([df, dummies], axis=1)

  plt.figure(figsize=(30, 35))
  corr = dummy_df.drop(columns=["crop"]).corr()
  sns.heatmap(corr, annot=True, linewidths=0.5)
```

Out[33]: <Ax

É possível perceber que dentre elas a que possui maior relação com os atributos-alvo é a *potassium*. Sendo assim, uma possível saída para o problema seria remover a variável *phosporus* do conjunto de dados, visto que *potassium* tem maior relação com o atributo-alvo.

Out[34]:

5. Treinamento dos Modelos

6. Avaliação dos Modelos

7. Referências Bibliográficas

- SISTEMA DE PRODUÇÃO DE MELÃO. [S. I.]: Embrapa Semiárido, ISSN 1807-0027. Mensal. Disponível em: http://www.cpatsa.embrapa.br:8080/sistema_producao/spmelao/manejo_do_solo.html. Acesso em: 1 maio 2023;
- SOUSA, Rafaela. Rotação de culturas. [S. l.]: Brasil Escola. Disponível em: https://brasilescola.uol.com.br/geografia/rotacao-culturas.htm. Acesso em: 1 maio 2023.

```
| 0.00/137M [00:00<?, ?b/s]
             | 123k/137M [00:00<01:53, 1.21Mb/s]
 0%1
 1%|
             | 809k/137M [00:00<00:30, 4.49Mb/s]
1%|1
             | 1.79M/137M [00:00<00:19, 6.88Mb/s]
             | 2.83M/137M [00:00<00:16, 8.18Mb/s]
 2% | 2
 3% | 2
            | 3.93M/137M [00:00<00:14, 9.19Mb/s]
            | 4.99M/137M [00:00<00:13, 9.64Mb/s]
 4% | 3
             | 6.11M/137M [00:00<00:12, 10.1Mb/s]
 4% | 4
             | 7.25M/137M [00:00<00:12, 10.5Mb/s]
 5% | 5
            | 8.38M/137M [00:00<00:12, 10.7Mb/s]
 6% | 6
             | 9.45M/137M [00:01<00:11, 10.7Mb/s]
7% | 6
             | 10.6M/137M [00:01<00:11, 10.8Mb/s]
 8%|7
            | 11.7M/137M [00:01<00:12, 10.2Mb/s]
 9%18
 9% | 9
            | 12.7M/137M [00:01<00:11, 10.4Mb/s]
10%|#
            | 13.9M/137M [00:01<00:11, 10.7Mb/s]
             | 15.0M/137M [00:02<00:33, 3.63Mb/s]
11%|#
12% | #1
            | 16.1M/137M [00:02<00:26, 4.56Mb/s]
13%|#2
            | 17.2M/137M [00:02<00:21, 5.55Mb/s]
             | 18.3M/137M [00:02<00:18, 6.49Mb/s]
13%|#3
             | 19.5M/137M [00:02<00:15, 7.51Mb/s]
14% | #4
15%|#5
            | 20.6M/137M [00:02<00:13, 8.37Mb/s]
             | 21.8M/137M [00:03<00:36, 3.12Mb/s]
16%|#5
             | 22.9M/137M [00:03<00:29, 3.91Mb/s]
17%|#6
             | 24.0M/137M [00:03<00:23, 4.89Mb/s]
18%|#7
18%|#8
             | 25.0M/137M [00:03<00:20, 5.49Mb/s]
19%|#9
             | 26.0M/137M [00:04<00:17, 6.39Mb/s]
20%|#9
             | 27.2M/137M [00:04<00:14, 7.37Mb/s]
            | 28.3M/137M [00:04<00:13, 8.22Mb/s]
21%|##
21% | ##1
            29.4M/137M [00:04<00:12, 8.89Mb/s]
22% | ##2
             | 30.5M/137M [00:04<00:11, 9.38Mb/s]
23%|##3
             | 31.5M/137M [00:04<00:10, 9.73Mb/s]
            | 32.7M/137M [00:04<00:10, 10.1Mb/s]
24%|##3
            | 33.7M/137M [00:04<00:10, 10.1Mb/s]
25% | ##4
             | 34.8M/137M [00:04<00:10, 10.2Mb/s]
25%|##5
26%|##6
            | 35.9M/137M [00:04<00:09, 10.1Mb/s]
            | 37.0M/137M [00:05<00:09, 10.5Mb/s]
27% | ##7
28%|##7
            | 38.1M/137M [00:05<00:09, 10.5Mb/s]
29% | ##8
             | 39.2M/137M [00:05<00:09, 10.8Mb/s]
29%|##9
            | 40.4M/137M [00:05<00:08, 11.0Mb/s]
30%|###
            | 41.5M/137M [00:05<00:13, 7.19Mb/s]
31%|###1
             | 42.6M/137M [00:05<00:11, 8.07Mb/s]
            | 43.7M/137M [00:05<00:10, 8.79Mb/s]
32% | ###1
            | 44.8M/137M [00:05<00:09, 9.33Mb/s]
33%|###2
            | 45.9M/137M [00:06<00:09, 9.29Mb/s]
34%|###3
             | 47.0M/137M [00:06<00:09, 9.80Mb/s]
34%|###4
35% | ###5
             | 48.0M/137M [00:06<00:09, 9.64Mb/s]
             | 49.0M/137M [00:06<00:09, 9.64Mb/s]
36% | ###5
37%|###6
             | 50.0M/137M [00:06<00:09, 9.53Mb/s]
             | 51.0M/137M [00:06<00:09, 9.46Mb/s]
37% | ###7
            | 52.1M/137M [00:06<00:08, 9.76Mb/s]
38%|###8
39%|###8
            | 53.2M/137M [00:06<00:08, 10.1Mb/s]
             | 54.2M/137M [00:06<00:08, 10.1Mb/s]
40%|###9
             | 55.2M/137M [00:06<00:08, 10.2Mb/s]
40%|####
41%|####1
            | 56.3M/137M [00:07<00:07, 10.2Mb/s]
             | 57.4M/137M [00:07<00:07, 10.5Mb/s]
42% | ####1
             | 58.5M/137M [00:07<00:07, 10.5Mb/s]
43% | ####2
            | 59.5M/137M [00:07<00:07, 10.5Mb/s]
43% | ####3
            | 60.6M/137M [00:07<00:07, 10.5Mb/s]
44% | ####4
45%|####5 | 61.7M/137M [00:07<00:07, 10.6Mb/s]
```

```
| 62.8M/137M [00:07<00:06, 10.7Mb/s]
46% | ####5
            | 63.9M/137M [00:07<00:06, 10.8Mb/s]
47% | ####6
47% | ####7
            [ 65.0M/137M [00:07<00:06, 10.9Mb/s]
             | 66.1M/137M [00:07<00:06, 10.9Mb/s]
48% | ####8
            | 67.3M/137M [00:08<00:06, 11.0Mb/s]
49%|####9
            | 68.4M/137M [00:08<00:06, 11.0Mb/s]
50%|####9
51%|#####
            | 69.5M/137M [00:08<00:06, 11.1Mb/s]
52%|#####1
            | 70.6M/137M [00:08<00:06, 10.7Mb/s]
52%|#####2
            | 71.7M/137M [00:08<00:06, 10.4Mb/s]
53%|#####3
            | 72.7M/137M [00:08<00:06, 9.41Mb/s]
            | 73.8M/137M [00:08<00:06, 9.65Mb/s]
54%|#####3
            | 74.8M/137M [00:08<00:06, 9.82Mb/s]
55% | ######4
55%|#####5
           | 75.8M/137M [00:08<00:06, 9.86Mb/s]
           | 77.0M/137M [00:09<00:05, 10.3Mb/s]
56% | #####6
            | 78.1M/137M [00:09<00:05, 10.7Mb/s]
57% | #####7
            | 79.2M/137M [00:09<00:05, 10.5Mb/s]
58% | #####7
            | 80.3M/137M [00:09<00:05, 10.1Mb/s]
59%|#####8
            | 81.3M/137M [00:09<00:05, 10.2Mb/s]
59%|#####9
            | 82.4M/137M [00:09<00:05, 10.2Mb/s]
60%|######
            | 83.4M/137M [00:09<00:05, 10.2Mb/s]
61%|######
62%|######1 | 84.4M/137M [00:09<00:05, 10.2Mb/s]
62%|####### | 85.5M/137M [00:09<00:04, 10.5Mb/s]
63%|######3
            | 86.6M/137M [00:09<00:04, 10.4Mb/s]
64%|######4 | 87.7M/137M [00:10<00:04, 10.0Mb/s]
65%|######4 | 88.8M/137M [00:10<00:05, 9.55Mb/s]
66%|######5 | 89.7M/137M [00:10<00:04, 9.55Mb/s]
            | 90.7M/137M [00:10<00:04, 9.67Mb/s]
66%|######6
67%|######6 | 91.7M/137M [00:10<00:04, 9.76Mb/s]
68%|######7 | 92.8M/137M [00:10<00:04, 10.0Mb/s]
69%|######8 | 93.8M/137M [00:10<00:04, 9.67Mb/s]
69%|######9 | 94.9M/137M [00:10<00:04, 10.0Mb/s]
70%|####### | 96.0M/137M [00:10<00:04, 10.2Mb/s]
           | 97.0M/137M [00:11<00:04, 9.91Mb/s]
71%|#######
72%|####### | 98.0M/137M [00:11<00:03, 10.0Mb/s]
72%|####### | 99.2M/137M [00:11<00:03, 10.3Mb/s]
73%|######## 1 100M/137M [00:11<00:03, 10.1Mb/s]
74%|####### 1 101M/137M [00:11<00:03, 9.23Mb/s]
75%|#######4 | 102M/137M [00:11<00:03, 9.58Mb/s]
75%|####### 103M/137M [00:11<00:03, 9.76Mb/s]
76%|#######6 | 104M/137M [00:11<00:04, 6.73Mb/s]
77%|#######6 | 105M/137M [00:12<00:04, 7.37Mb/s]
78%|####### 1 106M/137M [00:12<00:03, 8.17Mb/s]
79%|####### 108M/137M [00:12<00:03, 8.99Mb/s]
79%|####### | 109M/137M [00:12<00:03, 9.38Mb/s]
80%|######## | 110M/137M [00:12<00:02, 9.93Mb/s]
81%|####### | 111M/137M [00:12<00:02, 10.4Mb/s]
82%|######## | 112M/137M [00:12<00:02, 10.3Mb/s]
83%|######### 113M/137M [00:12<00:02, 9.97Mb/s]
83%|######## 1 114M/137M [00:12<00:02, 9.97Mb/s]
84%|######## 4 | 115M/137M [00:12<00:02, 10.2Mb/s]
85%|######## 4 | 116M/137M [00:13<00:02, 10.2Mb/s]
86%|########6 | 118M/137M [00:13<00:01, 10.4Mb/s]
87%|######## 1 119M/137M [00:13<00:01, 10.0Mb/s]
88%|########7 | 120M/137M [00:13<00:01, 9.94Mb/s]
89%|######## 122M/137M [00:13<00:01, 10.3Mb/s]
90%|######## 123M/137M [00:13<00:01, 9.96Mb/s]
90%|######## | 124M/137M [00:13<00:01, 10.1Mb/s]
92%|########## 1 126M/137M [00:14<00:01, 10.5Mb/s]
93%|########## 127M/137M [00:14<00:00, 10.6Mb/s]
94%|########## 128M/137M [00:14<00:00, 10.5Mb/s]
94%|########## 129M/137M [00:14<00:00, 10.8Mb/s]
95%|######### 130M/137M [00:14<00:00, 10.7Mb/s]
96%|#########5| 131M/137M [00:14<00:00, 10.2Mb/s]
97%|#########6| 132M/137M [00:14<00:00, 10.2Mb/s]
```

```
98%|########## 134M/137M [00:14<00:00, 10.4Mb/s]
98%|########## 135M/137M [00:14<00:00, 10.2Mb/s]
99%|########## 136M/137M [00:14<00:00, 10.3Mb/s]
100%|######### 137M/137M [00:15<00:00, 10.5Mb/s]
100%|########## 137M/137M [00:15<00:00, 9.07Mb/s]
[INFO] Beginning extraction
[INFO] Chromium extracted to: C:\Users\Eduardo\AppData\Local\pyppeteer\pyppeteer\local-c hromium\588429
[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 2522654 bytes to Análise de Culturas.pdf
```