Versione riconoscimento e versione ottimizzazione

• Un problema di ottimizzazione richiede normalmente di trovare il minimo o il massimo di una funzione. Ad es.: risolvere un'istanza di LP; trovare il cammino più lungo da s a t in un grafo.

Si parla di problemi in Versione ottimizzazione, OV.

• Un problema può anche richiedere solo risposta sì/no. Ad es.: stabilire se un'istanza di LP ha soluzione $\leq K$ (per K dato); stabilire se il cammino più lungo da s a t in un grafo ha valore $\geq K$ (per K dato).

Si parla di problemi in Versione riconoscimento, RV.

- La teoria della complessità è stata sviluppata per i problemi in versione riconoscimento.
- Si dimostra però che

(∃ algoritmo polinomiale per un problema in RV)

↓
(∃ algoritmo polinomiale per la corrispondente OV),

e viceversa. Cioè:

• dal punto di vista della polinomialità o meno, le due versioni hanno la stessa difficoltà.

(Intuitivamente: un problema in OV può essere risolto, utilizzando la $ricerca\ binaria$, mediante un numero polinomiale di interrogazioni successive)

Classi \mathcal{P} ed \mathcal{NP}

• $\mathcal{P}=$ classe dei problemi in RV per cui \exists algoritmo \mathcal{P} olinomiale. Es.: cammini minimi, minimo spanning tree;

il simplesso ha mediamente tempo polin. anche se nel caso peggiore può esplorare tutte le basi \to tempo $O\left(\frac{n!}{m! \ (n-m)!}\right)$, ma \exists algoritmi polinomiali (meno efficienti) \Longrightarrow $LP \in \mathcal{P}$.

- \mathcal{NP} = classe dei problemi in RV tali che, se l'istanza ha risposta "sì", ciò può essere certificato in tempo polinomiale (es. esibendo un cammino da s a t di lunghezza $\geq K$), ossia c' è "speranza" di poter trovare un algoritmo polinomiale.
- In pratica, \forall problema di ottimizzazione combinatoria $\in \mathcal{NP}$. $\mathcal{P} \subseteq \mathcal{NP}$.
- $A \in \mathcal{NP}$ è trasformabile polinomialmente in $B \in \mathcal{NP}$ se \exists algoritmo polinomiale che, \forall istanza di A, definisce un'istanza di B che ha sol. "sì" se e solo se l'istanza di A ha sol. "sì".

 $\downarrow \downarrow$

- Se \exists un algoritmo polinomiale per B, \exists anche per A.
- Si dimostrato che praticamente tutti i problemi per i quali non si conoscono algoritmi polinomiali si trasformano polinomialmente uno nell'altro ($problemi \ \mathcal{NP}\text{-}completi$).

 \Downarrow

- Se si trovasse un algoritmo polinomiale per uno qualunque di questi problemi, lo si avrebbe per tutti ($\iff \mathcal{P} = \mathcal{NP}$).
- È "improbabile" che \exists tale algoritmo, e si ritiene che $\mathcal{P} \neq \mathcal{NP}$.