TRIBUS, MESURES ET APPLICATIONS MESURABLES

Intégration L3– 2018 Pierre-O Goffard et C. Jahel

- 1. Soient $f: X \mapsto Y$, $A, A_i \subset X$, $B, B_i \subset Y$. Comparer (en précisant éventuellement si f est injective ou surjective)
 - (a) $f^{-1}\left(\bigcup_{j} B_{j}\right)$ et $\bigcup_{j} f^{-1}\left(B_{j}\right)$

Solution: $f^{-1}\left(\bigcup_{j} B_{j}\right) = \bigcup_{j} f^{-1}\left(B_{j}\right)$, en effet on vérfie facilement que $f^{-1}\left(B_{j}\right) \subset f^{-1}\left(\bigcup_{j} B_{j}\right)$. De plus si $x \in f^{-1}\left(\bigcup_{j} B_{j}\right)$ alors $f(x) \in \bigcup_{j} B_{j}$, en particulier il existe j tel que $f(x) \in B_{j}$ et donc $x \in \bigcup_{j} f^{-1}\left(B_{j}\right)$.

(b) $f^{-1}\left(\bigcap_{j} B_{j}\right)$ et $\bigcap_{j} f^{-1}\left(B_{j}\right)$

Solution: $f^{-1}\left(\bigcap_{j} B_{j}\right) = \bigcap_{j} f^{-1}\left(B_{j}\right)$.

(c) $f^{-1}(B^c)$ et $f^{-1}(B)^c$

Solution: On a toujours $f^{-1}(B)^c = f^{-1}(B^c)$.

(d) $f\left(\bigcup_{j} A_{j}\right)$ et $\bigcup_{j} f\left(A_{j}\right)$

Solution: $f\left(\bigcup_{j} A_{j}\right) = \bigcup_{j} f\left(A_{j}\right)$

(e) $f\left(\bigcap_{j} A_{j}\right)$ et $\bigcap_{j} f\left(A_{j}\right)$

Solution: $f\left(\bigcap_{j} A_{j}\right) \subset \bigcap_{j} f\left(A_{j}\right)$, avec un contre exemple si f est constante et les A_{j} disjoints. On a égalité ssi f injective.

(f) $f(A^c)$ et $f(A)^c$

Solution: $f(A^c) \subset f(A)^c$ si f est injective. $f(A)^c \subset f(A^c)$ si f est surjective.

- 2. Soient Ω un ensemble et \mathcal{A} une tribu.
 - (a) Montrer qu'une tribu est stable par intersection finie.

Solution: Soit $A_1, \ldots, A_n \in \mathcal{A}$. On sait que $A_1^c, \ldots, A_n^c \in \mathcal{A}$ par propriété des tribus. On en déduit que $\bigcup_{i=1}^n A_i^c \in \mathcal{A}$ et puis $(\bigcup_{i=1}^n A_i^c)^c \in \mathcal{A}$. Comme $(\bigcup_{i=1}^n A_i^c)^c = \bigcap_{i=1}^n A_i^c$, on a le résultat.

Remarque: On aurait en fait pu montrer qu'une tribu est stable par intersection dénombrable.

(b) Montrer que l'intersection quelconque de tribus de Ω est une tribu de Ω .

Solution: On note $\mathcal{B} = \bigcap_{i \in I} \mathcal{A}_i$ où les \mathcal{A}_i sont des tribus sur Ω et I quelconque. Comme $\Omega \in \mathcal{A}_i$ pour tout $i \in I$, on a $\Omega \in \mathcal{B}$. De plus, si $A \in \mathcal{B}$, alors pour tout $i \in I$, $A \in \mathcal{A}_i$, et

donc $A^c \in \mathcal{A}_i$ et $A^c \in \bigcap_{i \in I} \mathcal{A}_i = \mathcal{B}$. De même, soit $(A_j)_{j \in \mathbb{N}} \in \mathcal{B}$, alors pour tout $i \in I$, $\bigcup_{j \in \mathbb{N}} A_j \in \mathcal{A}_i$ et donc $\bigcup_{j \in \mathbb{N}} A_j \in \bigcap_{i \in I} \mathcal{A}_i = \mathcal{B}$.

(c) $F \subset \Omega$. Montrer que $\mathcal{A}_F = \{A \cap F : A \in \mathcal{A}\}$ est une tribu sur F. On l'appelle tribu trace.

Solution: Comme $\Omega \in \mathcal{A}$, $F = F \cap \Omega \in \mathcal{A}_F$. Soit $A \in \mathcal{A}_F$, alors il existe $B \in \mathcal{A}$ tel que $A = B \cap F$, et $F \setminus A = B^c \cap F$ donc $F \setminus A \in \mathcal{A}_F$ puisque $B^c \in \mathcal{A}$. Enfin, si $(A_i)_{i \in \mathbb{N}} \in \mathcal{A}_F$, alors il existe $(B_i)_{i \in \mathbb{N}}$ tels que $A_i = B_i \cap F$. On a $\cup_i A_i = \cup_i B_i \cap F$ et donc $\cup_i A_i \in \mathcal{A}_f$.

- 3. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré et deux suites $(A_n)_{n \in \mathbb{N}}$, $(B_n)_{n \in \mathbb{N}} \in \mathcal{A}$ telles que $B_n \subset A_n$.
 - (a) Montrer que

$$\bigcup_{n\in\mathbb{N}} A_n \setminus \bigcup_{n\in\mathbb{N}} B_n \subset \bigcup_{n\in\mathbb{N}} (A_n \setminus B_n).$$

Solution: Soit $x \in \bigcup_{n \in \mathbb{N}} A_n \setminus \bigcup_{n \in \mathbb{N}} B_n$, il existe $n_O \in \mathbb{N}$ tel que $x \in A_{n_0}$. Vu que $x \notin \bigcup_{n \in \mathbb{N}} B_n$, on a en particulier $x \notin B_{n_0}$ et donc $x \in A_{n_0} \setminus B_{n_0} \subset \bigcup_{n \in \mathbb{N}} (A_n \setminus B_n)$.

(b) Montrer que

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)-\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right)\leq \sum_{n\in\mathbb{N}}[\mu(A_n)-\mu(B_n)].$$

Solution:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) - \mu\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}}A_n\setminus\bigcup_{n\in\mathbb{N}}B_n\right)$$

$$\leq \mu\left(\bigcup_{n\in\mathbb{N}}(A_n\setminus B_n)\right)$$

$$\leq \sum_{n\in\mathbb{N}}[\mu(A_n) - \mu(B_n)].$$

- 4. Les ensembles suivants sont-ils des tribus
 - (a) $\mathcal{F}_1 = \{A \subset X ; A \text{ est fini}\}$

Solution: \mathcal{F}_1 est une tribu sur X ssi X est fini.

(b) $\mathcal{F}_2 = \{A \subset X ; A \text{ est dénombrable}\}\$

Solution: \mathcal{F}_2 est une tribu sur X ssi X est dénombrable.

(c) $\mathcal{F}_3 = \{A \subset X ; A \text{ est dénombrable ou codénombrable dans } X\}$

Solution: \mathcal{F}_3 est une tribu

(d) $\mathcal{F}_4 = \{A \subset X ; A \text{ est fini ou cofini dans } X\}$

Solution: \mathcal{F}_4 est une tribu

(e) $\mathcal{F}_5 = \mathcal{P}(X)$

Solution: \mathcal{F}_5 est une tribu sur X

- 5. On considère (X, \mathcal{T}) un espace muni d'une tribu.
 - (a) Soit $A \subset X$, montrer que 1_A est mesurable ssi $A \in \mathcal{T}$.

Solution: On note \mathcal{C} la tribu de l'espace d'arrivée. On prend $B \in \mathcal{C}$, $(1_A)^{-1}(B) = \emptyset$ si $1 \notin B$ et $(1_A)^{-1}(B) = A$ sinon, d'où le résultat.

(b) Soit \mathcal{P} une partition au plus dénombrable de X qui engendre \mathcal{T} , et f une fonction réelle \mathcal{T} -mesurable, montrer que f est constante sur P pour tout $P \in \mathcal{P}$.

Solution: On raisonne pas l'absurde, prenons $P \in \mathcal{P}$ sur lequel f n'est pas constante. On note x_1, x_2 deux valeurs telles que $\{x_1, x_2\} \subset f(P)$. On sait que $f^{-1}(x_1) \in \mathcal{T}$ et $f^{-1}(x_2) \in \mathcal{T}$. Comme \mathcal{P} est une partie dénombrable qui engendre la tribu, $f^{-1}(x_1)$ et $f^{-1}(x_2)$ sont des unions de parties de \mathcal{P} , or elle ont intersection non vide avec P, c'est impossible.

6. (a) L'inverse d'une application mesurable est elle mesurable?

Solution: Non, on peut en particulier considérer $f: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \{\emptyset, \mathbb{R}\})$ qui associe x à x.

(b) Une application mesurable est elle continue?

Solution: Non, par exemple f tel que F(x) = 1 si x < 0 et f(x) = 0 sinon. On peut aussi considérer $1_{\mathbb{Q}}$.

(c) Une application continue est elle mesurable?

Solution: Oui, pour la tribu borélienne.

7. (a) Soit $\mathcal{F} = \{]-\infty, x[, x \in \mathbb{Q} \}, \text{ montrer que } \mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{F}) \}$

Solution:

(b) A-t-on $\mathcal{B}_{\mathbb{R}} = \sigma\left(\left\{\left\{x\right\}, x \in X\right\}\right)$

Solution: Non, $\sigma(\{\{x\}, x \in X\})$ ne contient que les ensembles dénombrables ou de complémentaire dénombrable.

- 8. Soit (X, \mathcal{T}, μ) un espace probabilisé, f une application \mathcal{T} -mesurable. On suppose que μ est f invariante, c'est à dire que pour tout $T \in \mathcal{T}$, on a $\mu(T) = \mu(f^{-1}(T))$. On fixe $A \in \mathcal{T}$ et on considère $A' = \{x \in A \text{ tels que il existe une infinité de } n \in \mathbb{N} \text{ avec } f^n(x) \in A\}$.
 - (a) Soit $n \ge 1$, on considère $B_n = \{x \in A \text{ tels que pour tout } f^n(x) \in A \text{ et } k > n, f^k(x) \notin A\}$. Montrer que $f^{-nk}(B_n)$ est disjoint de $f^{-nk'}(B_n)$ pour $k \ne k'$ des entiers naturels.

Solution: Supposons k < k, soit $x \in f^{-nk}(B_n)$, $f^{nk}(x) \in B_n$, donc $f^{n(k'-k)+n}(f^{nk}(x)) \notin A$ et donc necessairement $x \notin f^{-nk'}(B_n)$.

(b) En utilisant la finitude de μ , montrer que $\mu(A) = \mu(A')$.

Solution: $f^{-1}(B_n) = B_{n+1}$, en particulier $\mu(B_i) = \mu(B_j)$ pour tout i, j et comme il en existe une infinité disjointe, on a $\mu(B_n) = 0$. De plus, $B = \bigcup_n B_n = A \backslash A'$ et donc $\mu(B) \leq \sum_n \mu(B_n)$, et necessairement $\mu(B) = 0 = \mu(A) - \mu(A')$.

9. Le but de cet exercice est de construire une partie non mesurable de \mathbb{R} . On considère R la relation d'équivalence sur [0,1] "être à distance rationelle". Soit A un système de représentants des classes d'équivalences (l'existence d'une telle partie repose sur l'axiome du choix !). Montrer que A ne peut pas avoir de mesure pour la mesure de Lebesgue. Indication : raisonner par l'absurde et utiliser l'invariance par translation de la mesure de Lebesgue.

Solution: Supposons que A a une mesure, on remarque que $\mathbb{R} = \bigcup_{q \in \mathbb{Q}} A + q$, donc $\lambda(A) > 0$. Par ailleurs $\bigcup_{q \in \mathbb{Q} \cap [0,1]} A + q \subset [0,2]$, ce qui signifie que $\lambda(\bigcup_{q \in \mathbb{Q} \cap [0,1]} A + q) \leq 2$ et donc $\lambda(A) = 0$.