(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11) 許出顧公開番号

特開平11-69855

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl. ⁶	
---------------------------	--

體別記号

ΡI

H 0 2 N 13/00

H 0 2 N 13/00

D

H01L 21/68

H01L 21/68

R

MABUCHI et al.

審査請求 未請求 請求項の数6 OL (全 8 頁)

(21)	母级和

特層平9-223961

(71)出願人 000002118

住友金属工菜株式会社

(22)出廣日

平成9年(1997)8月20日

大阪府大阪市中央区北浜4丁目5番33号

(72)発明者 馬渕 博嗣

大阪府大阪市中央区北浜4丁目5番33号

住友金属工業株式会社内

(72)発明者 和田 等

大阪府大阪市中央区北浜4丁目5番33号

住友金属工業株式会社内

(74)代理人 弁理士 河野 登夫

(54) 【発明の名称】 静電チャックにおける被吸着物の離脱方法及び静電チャック

(57)【要約】

【課題】 静電力にて吸着固定された被吸着物を短時間 で確実に離脱させることが可能な静電チャックにおける 被吸着物の離脱方法及び静電チャックを提供すること。 【解決手段】 制御部3の制御に基づいて電源2が静電 チャック本体1へ所定の電圧を印加することによりウエ ハSを吸着固定し、プロセス終了後、吸着電圧の印加を 停止し、制御部3の制御によりエアシリンダ6を操作し てリフトピン5を上昇させる。そして吸着時とは極性が 逆である電圧を電源2が静電チャック本体1へ所定時間 印加し、位置検出器Gaからの検出信号に基づいてウエハ Sが離脱したか否かを制御部3において判断する。ウエ ハSが離脱していない場合は、制御部3の制御によって 電源2が静電チャック本体1へ前回とは極性が逆である 電圧を印加する。ウエハSが離脱した場合、又は離脱の ための電圧印加が所定回行われた場合は電圧印加を終了 する。

1

【特許請求の範囲】

【請求項1】 静電チャックに吸着電圧を印加することにより静電吸着保持された被吸着物を離脱させる方法において、

前記静電チャックに離脱電圧を所定時間印加する工程 と

前記離脱電圧の印加中に前記被吸着物の離脱状態を検出 する検出工程と、

該検出工程において前記被吸着物の離脱が検出されていない場合は、前記離脱電圧の極性を反転する工程とを含 10 み.

極性反転後は、以上の離脱処理工程を繰り返し、

前記検出工程において前記被吸着物の離脱が検出された場合は、前記離脱処理工程を終了することを特徴とする 静電チャックにおける被吸着物の離脱方法。

【請求項2】 吸着電圧印加を停止した後に、前記被吸着物を前記静電チャックから離脱させる方向へ所定の力を加える工程を含むことを特徴とする請求項1記載の静電チャックにおける被吸着物の離脱方法。

【請求項3】 離脱電圧の印加回数を計数する計数工程 20 を含み、該計数工程における印加回数が所定値に達した場合は、前記離脱電圧の印加を終了することを特徴とする請求項1又は2記載の静電チャックにおける被吸着物の離脱方法。

【請求項4】 静電力により被吸着物を吸着保持する静電チャックにおいて、静電チャック本体に電圧を印加する印加手段と、該印加手段が印加する電圧の極性を反転する反転手段と、前記被吸着物の着脱状態を検出する検出手段と、該検出手段からの検出信号に基づいて前記印加手段による電圧印加を停止させる手段とを備えること 30 を特徴とする静電チャック。

【請求項5】 前記被吸着物との接触表面に対し出没可能に前記静電チャック本体に内設されたピンと、該ピンの出没を操作する手段とを備えることを特徴とする請求項4記載の静電チャック。

【請求項6】 前記反転手段による電圧極性反転の最大 回数を設定する手段を備えることを特徴とする請求項4 又は5記載の静電チャック。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、静電チャックにて 吸着保持された半導体ウエハ等の被吸着物を離脱させる 方法及びその実施に使用する静電チャックに関する。

[0002]

【従来の技術】半導体装置の製造において、半導体ウエハに対してエッチング、CVD等のプロセスを施す場合、半導体ウエハを固定保持するために一般に静電チャックが使用されている。静電チャックは、メカニカルチャックに比べ、ウエハの反りを矯正することができる、ウエハの温度を容易に制御することができる、等の長所

を有する。

【0003】静電チャック本体1は、図8にその概略を示す如く、電極1bとその外表面に被覆された絶縁膜1aとで構成されている。例えば、静電チャック本体1をプラズマ処理装置内に設置し、正の電位を与えた場合、プラズマ処理中においては、ウエハSはプラズマを介して接地されるので、電極1bとウエハSとの間に電位差が生じる。この電位差により絶縁膜1aには誘電分極現象が起こり、静電チャック本体1表面には正の電荷が励起され、ウエハSとの間の静電気力(クーロン力)による吸着力でウエハSは静電チャック本体1に吸着固定される。この吸着力は、エッチング等のプロセスが終了し、電圧の印加を停止しても、ウエハに電荷が残るために残存する。従ってウエハを離脱させるには、この電荷が完全に放電される必要があり、時間がかかるという問題がある。

【0004】そこで従来から種々の離脱方法が提案されている。例えば、吸着時の電圧とは極性が逆である電圧を印加する方法、交流電圧を印加する方法(特開昭62-153034号公報、実公平5-28773号公報)、及び減衰する交番電圧を印加する方法(特開昭62-44332号公報)等である。また離脱時にウエハをリフトピンで押し上げる方法も実際に行われている。さらに処理が終了する前に吸着のための電圧印加を停止する方法も開示されている(特開平3-236255号公報)。

[0005]

【発明が解決しようとする課題】しかしながら逆電圧、 交流電圧、又は減衰交番電圧を印加する各方法において は確実に離脱させることは困難である。交流電圧を印加 しても、ウエハが離脱される確率があまり高くならない 理由については明らかではないが、以下のように考える ことができる。一定の逆電圧を印加した際の残留吸着力 は、印加電圧等の条件により異なるが、基本的には図9 に示す如く変化する。即ち吸着力は急激に低下し、そし て再度上昇を始める。しかしながら50Hz又は60Hzの 交流電圧を印加した場合、残留吸着力の変化が電圧の変 化に追随することができず、残留吸着力が十分に低下し 得ないためであると考えることができる。

【0006】またリフトピンによる押し上げを併用することも行われているが、ウエハのサイズ、表面に形成されている膜の種類及び厚み等が異なるウエハの種類、又は処理の条件等によっては、残留吸着力が大きいことがあり、その残留吸着力がリフトピンによる押し上げ力を上回ると、ウエハの離脱が行えない。またリフトピンによる押し上げ力を過度に大きくすると、残留吸着力が大きい場合、ウエハを損傷することがある。プロセスが終了する前に電圧印加を停止する方法は、プロセス終了直前の固定状態を不安定にするという問題がある。

ャックに比べ、ウエハの反りを矯正することができる、 【0007】図9において、吸着のために印加した電圧 ウエハの温度を容易に制御することができる、等の長所 50 を 800Vとし、離脱のために印加した電圧を-200 Vと する。またリフトピンによる押し上げ力を併記する。上 述した如く、逆電圧を印加すると、吸着力は急激に低下 し、ある時間で極小値に達し、そして再度上昇し、飽和 する。吸着力の下降時に、吸着力がリフトピンによる押 し上げ力を下回り、この状態が充分に継続した場合ウエ ハは離脱する。しかしながら吸着力の下降が不十分であ ったり、持続時間が短かったりした場合は、逆電圧によ ってウエハが逆電荷に帯電し再度吸着される。

【0008】そこで逆電圧の値を大きく設定したり、逆 電圧の印加時間を短く設定したりという工夫がなされて 10 いるが、残留吸着力はウエハの種類、処理条件により変 化するため、逆電圧の値、及び印加時間を適正に設定す ることは困難であり、確実にウエハが離脱するとは限ら ない。ウエハの種類、処理条件によっては、ウエハが離 脱する確率は5割を少し上回る程度であるのが現状であ

【0009】本発明は、斯かる知見に鑑みてなされたも のであり、被吸着物を損傷することなく、静電力により 吸着固定された被吸着物を短時間で確実に離脱させるこ とが可能な静電チャックにおける被吸着物の離脱方法及 20 びその実施に使用する静電チャックを提供することを目 的とする。

[0010]

【課題を解決するための手段】請求項1記載の発明は、 静電チャックに吸着電圧を印加することにより静電吸着 保持された被吸着物を離脱させる方法において、前記静 電チャックに離脱電圧を所定時間印加する工程と、前記 離脱電圧の印加中に前記被吸着物の離脱状態を検出する 検出工程と、該検出工程において前記被吸着物の離脱が 検出されていない場合は、前記離脱電圧の極性を反転す 30 る工程とを含み、極性反転後は、以上の離脱処理工程を 繰り返し、前記検出工程において前記被吸着物の離脱が 検出された場合は、前記離脱処理工程を終了することを 特徴とする。

【0011】請求項4記載の発明は、静電力により被吸 着物を吸着保持する静電チャックにおいて、静電チャッ ク本体に電圧を印加する印加手段と、該印加手段が印加 する電圧の極性を反転する反転手段と、前記被吸着物の 着脱状態を検出する検出手段と、該検出手段からの検出 信号に基づいて前記印加手段による電圧印加を停止させ 40 る手段とを備えることを特徴とする。

【0012】離脱電圧(初回の離脱電圧は吸着電圧と逆 の極性の電圧)を印加した場合、吸着力が降下し極小値 に達した後に、被吸着物にも逆の電荷が生じて再吸着さ れることがある。本発明では、1回の逆電圧の印加によ って吸着力が極小値に達しても離脱しなかった場合に、 さらに初回の離脱電圧とは逆極性の離脱電圧を所定時間 印加して、吸着力が低下し極小値に達する機会を付与す る。そして被吸着物の着脱状態を検出しながらこのよう な機会の付与(離脱工程)を自動的に複数回実施するこ 50 5が突入可能に設置されている。支持板4はエアシリン

とが可能であるので、離脱成功率が大幅に向上し得る。 【0013】請求項2記載の発明は、請求項1記載の発 明において、吸着電圧印加を停止した後に、前記被吸着 物を前記静電チャックから離脱させる方向へ所定の力を

4

【0014】請求項5記載の発明は、請求項4記載の発 明において、前記被吸着物との接触表面に対し出没可能 に前記静電チャック本体に内設されたピンと、該ピンの 出没を操作する手段とを備えることを特徴とする。

加える工程を含むことを特徴とする。

【0015】吸着力がピンによる押し上げ力を下回った ときに、被吸着物が離脱する可能性があり、この時間が 長く、また回数が多いほど被吸着物は確実に静電チャッ クから離脱する。 従って帯電している電荷が完全に放電 される前に被吸着物を離脱させることができ、これによ り離脱に要する時間を短縮することができる。

【0016】請求項3記載の発明は、請求項1又は2に おいて、離脱電圧の印加回数を計数する計数工程を含 み、該計数工程における印加回数が所定値に達した場合 は、前記離脱電圧の印加を終了することを特徴とする。 【0017】請求項6記載の発明は、請求項4、又は5 記載の発明において、印加電圧の最大反転回数を予め設 定することを特徴とする。

【0018】 静電チャック本体に印加される電圧の極性 反転回数が有限であるので、処理を所定時間内に強制的 に終了させることができる。強制終了後は、オペレータ がその後の処理を指示するようになしてある。適宜設定 された回数を実施しても離脱されない場合は、同一条件 の処理をそれ以上繰り返しても離脱されないことが多 く、また静電チャック表面に、例えばプロセスガスの分 解生成物、又は反応生成物等の不純物が付着、堆積して いる等の、トラブルが生じている可能性がある。従って これ以上離脱処理を続行するか否か、また続行する場合 は離脱条件を変更するか否かについては、オペレータに よって判断することが望ましい。

[0019]

【発明の実施の形態】以下、本発明をその実施の形態を 示す図面に基づき具体的に説明する。 図1は、本発明に 係る静電チャックにおける被吸着物の離脱方法を実施す る静電チャックを示す模式図であり、例えばプラズマ処 理装置等の装置内に設けられている。図中1は被吸着物 であるウエハSを固定するための静電チャック本体であ り、電極1bの外表面が絶縁膜1aにて被覆されてなる。静 電チャック本体1には電極16へ所定の電圧を所定時間印 加するための電源2が接続されており、電圧の極性、値 及び印加時間は、制御部3の制御に基づいて変更可能に なしてある。

【0020】 静電チャック本体1には、その厚み方向 (図では上下方向) に貫通する孔1bが数カ所に設けられ ており、各孔1cには支持板4にて支持されたリフトピン 5

ダ6に接続されており、これによって上下動せしめられるようになっている。エアシリンダ6にはリフトピン5の位置を検出するための、例えばリミットスイッチで構成される位置検出器6aが取り付けられており、その検出信号は制御部3へ与えられるようになしてある。エアシリンダ6によるリフトピン5の上下動も制御部3にて制御するようになしてある。

【0021】制御部3は、図2に示す如く、位置検出器 6aからの検出信号が与えられるリフトピン位置入力部31 と、電源2の電圧を設定する電圧設定部34と、エアシリ 10 ンダ6の動作を制御するエアシリンダ制御部37と、カウンタ35と、リフトピン位置入力部31及びカウンタ35の出力信号を受けて、電圧設定部34及びエアシリンダ制御部37へ制御信号を出力する判断部32とを備える。さらに予め定めたステップに基づくプログラムを設定するために、電圧値、印加時間、電圧極性の最大反転回数等のデータに関するキー入力信号が与えられるキー入力部38 と、これにより与えられたデータを記憶するメモリ36とを備える。

【0022】図3は本発明方法を説明するためのフロー 20 チャートである。予めメモリ36に記憶されている吸着の ための電圧を、電源2が電極1bへ印加するように、判断 部32が、電圧設定部34を制御することにより、ウエハS が静電チャック本体1に吸着固定される (ステップS 1)。静電チャックが備えられた処理装置における所定 のプロセス時間が経過した後、判断部32は、電圧の印加 を停止させ(ステップS2)、リフトピン5を上昇させ るべくエアシリンダ制御部37からエアシリンダ6へ制御 信号を出力させる(ステップS3)。そして吸着時とは 極性が逆である離脱電圧が所定時間、電極1bへ印加され 30 るように、判断部32がカウンタ35の出力信号に基づいて 電圧設定部34を制御し(ステップS4)、リフトピン位 置入力部31を介して与えられる位置検出器6aからの検出 信号に基づいて判断部32が、ウエハSが離脱したか否か を判断する(ステップS5)。

【0023】ウエハSが離脱されていないと判断された場合は、所定の印加時間が経過するまで(ステップS6)、この確認を行い、所定時間が経過したときは、離脱電圧の印加が、予めメモリ36に記憶された所定回数行われたか否かを判断し(ステップS7)、NOである場位、ステップS4へ戻り、さらに前回とは極性が逆である離脱電圧を印加させる。ステップS7においてYESである場合は離脱電圧の印加を終了する。またステップS5においてウエハSが離脱したと判断された場合は、離脱処理を終了する。なお上述の離脱電圧の印加時間は、吸着力が極小値にいたる時間より長く、設定する必要がある。

【0024】本発明方法を実施した場合の、ウエハS、 り、 静電チャック本体1間の吸着力は、図4に示すように変 【0 化すると考えられる。吸着時の電圧とは逆の電圧を印加 50 る。

する第1回離脱工程を実施すると、吸着力は急激に下降し、極小値に達した後上昇を始める。そして、ある時間で吸着力は飽和し、略一定となる。さらに第2回離脱工程を実施すると、同様に吸着力は急激に下降し、極小値に達した後上昇を始め、吸着力は略一定となる。第3回、第4回離脱工程も同様である。

【0025】従ってリフトピン5による押し上げ力を吸着力の極小値よりも大きく、しかもウエハを損傷しない範囲で適当な値に設定しておくことにより、言い換えれば吸着力がリフトピン5による押し上げ力を適宜時間下回るように電圧を設定することにより、この間にウエハSを離脱させることができる。しかしながら実際にはウエハS又はその他の条件によっては、吸着力がリフトピン5による押し上げ力以下に下降しなかったり、吸着力がリフトピン5による押し上げ力を下回った場合でも、ウエハSが離脱しないことがあるが、離脱工程を複数回実施することにより、その確率を高めることができる。またウエハSの離脱が検出された場合は、設定された離脱工程が残っていても、それを中断するので、離脱されたウエハSが再吸着されることはない。

【0026】さらに離脱工程1回当たりの逆電圧の印加時間を、吸着力が再上昇し飽和にいたる時間よりも短く設定すると、さらに離脱する確率が向上することが繰り返し行った実験により分かった。

【0027】1回当たりの印加時間を、上述したように 設定した際に、離脱確率がさらに向上する理由について は正確には分かっていないが、以下のように考えること ができる。離脱工程1回当たりの逆電圧の印加時間を、 吸着力が飽和にいたる時間より短く設定すると、ウエハ Sと静電チャック本体1間の吸着力は、図5に示す如く 変化すると考えられる。即ち第1回離脱工程終了時の吸 着力Fm1よりも第2回離脱工程終了時の吸着力Fm2 の方が小さくなる。以下同様にFm1>Fm2>Fm3 >Fm4となる。但し、この値は収束し、やがてFm (n) = Fm(n+1)となると考えられる。従って吸 着力の極小値Fs(n)も、順次小さくなり、同様に、 やがて飽和すると考えられる。吸着力の極小値が小さく なることにより、リフトピンの押し上げ力が吸着力を上 回る確率が高くなり、また上回る時間が長くなると考え られる。以上より、離脱確率が向上すると考えることが できる。

[0028]

【実施例】プラズマエッチング装置において、そのタイムチャートを図6に示す本発明方法と、図7に示す従来方法とを用い、1000枚のウエハSに対して連続ランニングテストを実施した結果について述べる。ウエハSは、両面に2μπの熱酸化膜が形成されたSiウエハであり、サイズは8インチである。

【0029】エッチングのための条件は以下の通りである

マイクロ波パワー RFパワー

反応ガス: CHF3

室内圧力

静電チャック (ESC) 電圧

エッチング処理時間

【0030】図6に示す如く本発明方法では、離脱工程 の最大値を4回に設定してある。また図7に示す如く従 来方法では、離脱工程は1回である。いずれの場合も吸 とし、1回当たりの印加時間は5sec.に設定してある。 リフトピン押し上げ力は1.5kgf/cm² である。結果を表 1に示す。

[0031] 【表1】

麦 1

	従来方法	本発明方法		
脱糠成功枚数	615	8 9 8		
脱離失敗枚数	3 8 5	102		
脱離成功率 (%)	61.5	8 9 . 8		

【0032】表1より明らかな如く、吸着力がリフトピ ン5による押し上げ力を下回る機会が1回しかない従来 方法では、離脱成功率は約6割であったが、この機会が 4回まで得られる本発明方法では約9割にまで上昇し た。いずれの場合もウエハに損傷は見られなかった。

【0033】離脱工程での電圧値は、吸着時の電圧及び ウエハSのサイズ、又は処理条件により適宜に設定す る。また離脱工程の回数についても所望する離脱成功率 30 が達成されるように適宜設定すればよいが、4、5回以 下に設定することが望ましい。これは、数多く行った実 験によると、離脱工程を4、5回繰り返しても離脱され ないウエハは、同条件では回数を多くしても離脱されな いことが多い。またこのような場合は、静電チャック本 体1の表面に不純物の付着、堆積等のトラブルが生じて いる可能性があり、オペレータの判断に委ねることが好 ましいからである。

【0034】離脱工程1回当たりの逆電圧印加時間は、 吸着力の時間変化が追随することができる程度の時間で 40 あり、しかも吸着力が極小値にいたるまでの時間よりも 長く設定すればよいが、前述の理由により、吸着力が再 度上昇して飽和にいたるまでの時間よりも短く設定する 方が望ましい。最低な電圧値、離脱工程1回当たりの印 加時間、及び最適なリフトピンの押し上げ力は、ウエハ のサイズ、ウエハ上に形成されている薄膜の状態、又は ウエハの処理条件等の条件により異なる。しかし、一般*

1300 W

600 W

50 sccm

50 mTorr

600 V

2 分

*に同一条件の処理が連続して行われるので、その同一条 件の処理を行う前に、予め図9に示されるような逆電圧 を印加した際のその条件における吸着力の時間変化を求 着時の電圧は 600Vとし、離脱工程での電圧は± 200V 10 めるか、過去の当該条件での処理における実績から、吸 着力の極小値、極小値にいたるまでの時間、及び飽和に いたるまでの時間等を考慮して電圧値、印加時間、及び 押し上げ力の各値を設定することが好ましい。

8

[0035]

【発明の効果】以上のように本発明に係る静電チャック における被吸着物の離脱方法は、被吸着物が離脱するま で逆電圧を印加する離脱工程を複数回自動的に繰り返す ことにより、1回の逆電圧印加では低い離脱成功確率 を、被吸着物を損傷することなく大幅に上昇させること 20 ができる。また本発明に係る静電チャックは、被吸着物 の離脱を検出する手段を備え、被吸着物が離脱するまで 複数回の離脱工程を自動的に実施することができる等、 本発明は優れた効果を奏する。

【図面の簡単な説明】

【図1】本発明に係る静電チャックを示す模式図であ

【図2】図1に示す制御部の構成図である。

【図3】 本発明方法を説明するためのフローチャートで

【図4】本発明方法による吸着力の変化を示す図であ

【図5】本発明方法による吸着力の変化の他の例を示す 図である。

【図6】本発明方法の実施条件を説明するタイムチャー トである。

【図7】従来方法の実施条件を説明するタイムチャート である。

【図8】静電吸着の原理を説明する図である。

【図9】従来方法による吸着力の変化を示す図である。 【符号の説明】

- 1 静電チャック本体
- 2 電源
- 3 制御部
- 5 リフトピン
- 6 エアシリンダ
- 6a 位置検出器
- S ウエハ

【図6】

本発明のウエハ酸脱ステップ

時間 (sec)	120	1	5	5	5	5	
マイクロ波 1300W	1300W			<u> </u>	!	<u> </u>	
							DW
	600W				<u> </u>		
RF			200W	<u> </u>		<u> </u>	i
l'''		CM		į	į		OW
	600Y					<u> </u>	<u> </u>
ESC		ov		200V	ì	2007	ov
		UV	-200V	•	-200V	İ	<u> </u>
				1	<u> </u>	!	<u> </u>
	押し上げか	押し上げ力 ON		•			
リフトピン	押し上げ力 OFF	(1.5kmf/		!		1	
		c m ²)			Ì	į	į
ガス	CHF3						
工程	エッチング 工程	リフトピン 押し上げ力 付加工程	雅脱工程 I	離脱工程 II	離脱工程 Ⅲ	幕股工程 N	全項目 OF F

【図7】

従来のウエハ種脱ステップ

時間 (aec)	120	1	5	
マイクロ波	1300W			OW
	600W			
RF		OW	200W	ow
	600Y	†		
ESC		04	 -200V	DV
		<u> </u>		-
リフトピン		押し上げ力のN		
	押し上げ力のFF	(1.5ksf/cm ²)		
42-		<u> </u>	L	-
ガス	CHF3			<u>i</u>
工程	エッチング工程	リフトピン 押し上げ力付加工程	養脱工程	全項目OFF

【図8】

【図9】

