Claims

[c1]

1. A method for decreasing gradient field pulse sequence duration and reducing peripheral nerve stimulation with known gradient pulse areas for a magnetic resonance imaging system, the method comprising: receiving a first desired area corresponding to a first pulse;

obtaining a second desired area corresponding to a second pulse;

selecting said first pulse as a nested pulse if said first desired area is smaller than said second desired area, and establishing said second pulse as a nesting pulse, otherwise selecting said second pulse as said nested pulse and

establishing said first pulse as said nesting pulse;

determining an amplitude and pulse duration for said nested pulse; ascertaining an amplitude and pulse duration for said nesting pulse; and arranging a plurality of gradient field pulse sequences to include said nested

pulse and said nesting pulse.

[c2]

Hand,

und that then

25.7

Hunt.

MI MAN

 2. The method of Claim 1 wherein said determining further comprises: establishing if said nested pulse is triangular or trapezoidal and establishing a flat top time for said nested pulse if it is trapezoidal; and calculating said amplitude a ramp time for said nested pulse.

[c3]

3. The method of Claim 1 wherein said calculating comprises: setting a first duration corresponding to said nested pulse equivalent to about a second duration corresponding to a flattop portion of said nesting pulse; and calculating said amplitude a ramp time for said nesting pulse.

[c4]

4. The method of Claim 1 wherein said first pulse is a slice select rephaser pulse and said second pulse is a readout prephaser pulse.

[c5]

5. The method of Claim 1 wherein said first pulse is a readout prephaser pulse and said second pulse is a slice select rephaser pulse.

[c6]

6. The method of Claim 1 wherein said plurality of gradient field pulse sequences includes a slice select pulse sequence, a phase encoding pulse sequence and a readout pulse sequence.

[c7]

7. The method of Claim 6 wherein: said slice select pulse sequence comprises a

[c10]

[c11]

[c12]

[c13]

slice select pulse, a slice select rephaser pulse and a slice select dephaser pulse; said phase encoding pulse sequence includes a phase encoding pulse and a phase encoding rewinder pulse; and said readout pulse sequence includes a readout prephaser pulse, a readout pulse and a readout dephaser pulse.

- [c8] 8. The method of Claim 7 wherein said slice select dephaser pulse is configured to be about equivalent to said slice select rephaser pulse.
- [c9] 9. The method of Claim 7 wherein said phase encoding rewinder pulse is configured to be about equivalent to said phase encoding pulse but of opposite sign.
 - 10. The method of Claim 7 wherein said readout dephaser pulse is configured to be about equivalent to said readout prephaser pulse.
 - 11. The method of Claim 1 further including determining an amplitude and duration for a slice select pulse and a readout pulse responsive to a desired area for said slice select pulse and another desired area for said readout pulse.
 - 12. The method of Claim 11 wherein said arranging includes configuring said plurality of gradient field pulse sequences to reduce a gradient field pulse sequence duration and maintain established magnetic field constraints.
 - 13. The method of Claim 1 further including a third desired area corresponding to a third pulse, wherein said plurality of gradient field pulse sequences includes an initial slew of said third pulse which is occurs during a non-slewing portion of said nested pulse.
- [c14] 14. The method of Claim 13 further including computing an amplitude and duration of said third pulse responsive to said third desired area.
- [c15] 15. The method of Claim 14 wherein said computing comprises:
 establishing if said third pulse is triangular or trapezoidal and establishing a flat
 top time for said third pulse if it is trapezoidal; and
 calculating said amplitude a ramp time for said third pulse.
- [c16] 16. The method of Claim 13 said third pulse is a phase encoding pulse.

[c17] 17. A system for decreasing gradient field pulse sequence duration and reducing peripheral nerve stimulation with known gradient pulse areas in a magnetic resonance imaging system, comprising: a magnetic resonance imaging system including system control configured to implement a method comprising: receiving a first desired area corresponding to a first pulse; obtaining a second desired area corresponding to a second pulse: selecting said first pulse as a nested pulse if said first desired area is smaller than said second desired area, and establishing said second pulse as a nesting pulse, otherwise selecting said second pulse as said nested pulse and establishing said first pulse as said nesting pulse; determining an amplitude and pulse duration for said nested pulse; ascertaining an amplitude and pulse duration for said nesting pulse; and arranging a plurality of gradient field pulse sequences to include said nested pulse and said nesting pulse.

[c18]

18. The system of Claim 17 wherein said determining further comprises: establishing if said nested pulse is triangular or trapezoidal and establishing a flat top time for said nested pulse if it is trapezoidal; and calculating said amplitude a ramp time for said nested pulse.

[c19]

19. The system of Claim 17 wherein said calculating comprises: setting a first duration corresponding to said nested pulse equivalent to about a second duration corresponding to a flattop portion of said nesting pulse; and calculating said amplitude a ramp time for said nesting pulse.

[c20]

20. The system of Claim 17 wherein said first pulse is a slice select rephaser pulse and said second pulse is a readout prephaser pulse.

[c21]

21. The system of Claim 17 wherein said first pulse is a readout prephaser pulse and said second pulse is a slice select rephaser pulse.

[c22]

22. The system of Claim 17 wherein said plurality of gradient field pulse sequences includes a slice select pulse sequence, a phase encoding pulse sequence and a readout pulse sequence.

[c26]

[c27]

[c28]

- [c23] 23. The system of Claim 22 wherein: said slice select pulse sequence comprises a slice select pulse, a slice select rephaser pulse and a slice select dephaser pulse; said phase encoding pulse sequence includes a phase encoding pulse and a phase encoding rewinder pulse; and said readout pulse sequence includes a readout prephaser pulse, a readout pulse and a readout dephaser pulse.
- [c24] 24. The method of Claim 23 wherein said slice select dephaser pulse is configured to be about equivalent to said slice select rephaser pulse.
- [c25] 25. The method of Claim 23 wherein said phase encoding rewinder pulse is configured to be about equivalent to said phase encoding pulse but of opposite sign.
 - 26. The system of Claim 23 wherein said readout dephaser pulse is configured to be about equivalent to said readout prephaser pulse.
 - 27. The system of Claim 17 further including determining an amplitude and duration for a slice select pulse and a readout pulse responsive to a desired area for said slice select pulse and another desired area for said readout pulse.
 - 28. The system of Claim 27 wherein said arranging includes configuring said plurality of gradient field pulse sequences to reduce a gradient field pulse sequence duration and maintain established magnetic field constraints.
- [c29] 29. The system of Claim 17 further including a third desired area corresponding to a third pulse, wherein said plurality of gradient field pulse sequences includes an initial slew of said third pulse which is occurs during a non-slewing portion of said nested pulse.
- [c30] 30. The system of Claim 29 further including computing an amplitude and duration of said third pulse responsive to said third desired area.
- [c31] 31. The system of Claim 30 wherein said computing comprises:
 establishing if said third pulse is triangular or trapezoidal and establishing a flat
 top time for said third pulse if it is trapezoidal; and
 calculating said amplitude a ramp time for said third pulse.

- [c32] 32. The system of Claim 29 said third pulse is a phase encoding pulse.
 - 33. A storage medium encoded with a machine-readable computer program code; said code including instructions for causing a computer to implement a method for decreasing gradient field pulse sequence duration and reducing peripheral nerve stimulation with known gradient pulse areas for a magnetic resonance imaging system, the method comprising: receiving a first desired area corresponding to a first pulse: obtaining a second desired area corresponding to a second pulse; selecting said first pulse as a nested pulse if said first desired area is smaller than said second desired area, and establishing said second pulse as a nesting pulse, otherwise selecting said second pulse as said nested pulse and establishing said first pulse as said nesting pulse; determining an amplitude and pulse duration for said nested pulse; ascertaining an amplitude and pulse duration for said nesting pulse; and arranging a plurality of gradient field pulse sequences to include said nested pulse and said nesting pulse.

34. A computer data signal comprising code configured to cause a processor to implement a method for decreasing gradient field pulse sequence duration and reducing peripheral nerve stimulation with known gradient pulse areas in a magnetic resonance imaging system, the method comprising: receiving a first desired area corresponding to a first pulse; obtaining a second desired area corresponding to a second pulse; selecting said first pulse as a nested pulse if said first desired area is smaller than said second desired area, and establishing said second pulse as a nesting pulse, otherwise selecting said second pulse as said nested pulse and establishing said first pulse as said nesting pulse; determining an amplitude and pulse duration for said nested pulse; ascertaining an amplitude and pulse duration for said nesting pulse; and arranging a plurality of gradient field pulse sequences to include said nested pulse and said nesting pulse.

[c34]

[c33]

from the man first own the third and the man from the first own the first through the first own the

35. A means for decreasing gradient field pulse sequence duration and reducing peripheral nerve stimulation with known gradient pulse areas for a magnetic resonance imaging system, the method comprising:

a means for receiving a first desired area corresponding to a first pulse; a means for obtaining a second desired area corresponding to a second pulse; a means for selecting said first pulse as a nested pulse if said first desired area is smaller than said second desired area, and establishing said second pulse as a nesting pulse, otherwise selecting said second pulse as said nested pulse and

establishing said first pulse as said nesting pulse;
a means for determining an amplitude and pulse duration for said nested pulse;
a means for ascertaining an amplitude and pulse duration for said nesting

a means for arranging a plurality of gradient field pulse sequences to include said nested pulse and said nesting pulse.

36. A method for nesting gradient pulses in gradient field pulse sequences with known gradient pulse areas for a magnetic resonance imaging system, comprising:

receiving a slice select rephaser pulse desired area indicative of a desired area for a slice select rephaser pulse;

receiving a readout prephaser pulse desired area indicative of a desired area for a readout prephaser pulse;

selecting said slice select rephaser pulse as a nested pulse if said slice select rephaser pulse desired area is smaller than said readout prephaser pulse desired area, and establishing said readout prephaser pulse as a nesting pulse, otherwise selecting said readout prephaser pulse as said nested pulse and establishing said slice select rephaser pulse as said nesting pulse; determining an amplitude and pulse duration for said nested pulse; determining an amplitude and pulse duration for said nesting pulse; and arranging a plurality of gradient field pulse sequences to include said nested pulse and said nesting pulse in a manner that minimizes concurrent slews of any gradient field.

[c36]

pulse; and