MPP-E1180 Lecture 3: Introduction to the R Programming Language

Christopher Gandrud

25 September 2014

Objectives for the week

- Review
- Sync a fork with the original
- Reminder: Pair Assignment 1
- Basics of object oriented programming in R
- Simple R data structures
- Simple descriptive statistics and plotting with Base R

Review

With a partner:

- ▶ What is the difference between **relative** and **absolute** file paths?
- What is a commit?
- What does it mean to pull and push a repo?

Sync a fork with the original repo

See: https://help.github.com/articles/syncing-a-fork.

Change current working directory to the repo:

cd /FILE/PATH

Add the original repo as an **upstream repo**:

Note: should be on one line & only need to do once
git remote add upstream
https://github.com/HertieDataScience2014/SyllabusAndLecture

Then **fetch** and **merge**:

git fetch upstream git checkout master git merge upstream/master

Pair Assignment 1

- ▶ **Due:** Midnight 26 September.
- Learning objectives: develop your understanding of
 - file structures,
 - version control,
 - basic R data structures and descriptive statistics.

Pair Assignment 1

Each pair will create a new public GitHub repository

- Must be fully documented, including with a descriptive README.md file. Your code must be human readable and clearly commented.
- Include R source code files that:
 - Access at least two core R data sets
 - Illustrate the datas' distributions using a variety of relevant descriptive statistics
 - Two files must be dynamically linked
- Another pair makes a pull request. And this is discussed/merged.

What is R?

Open source programming language, with a particular focus on statistical programming.

History: Originally (in 1993) an implementation of the S programming language (Bell Labs), by **R**oss Ihaka and **R**obert Gentleman (hence \mathbf{R}) at University of Auckland.

Currently the R Foundation for Statistical Computing is based in Vienna.

R is to RStudio as Git is to GitHub.

Growing popularity

R can be easily expanded by ${\bf user}$ created packages hosted on GitHub and/or CRAN.

How to Cite R

##

##

##

##

citation()

To cite R in publications use:

 $year = \{2014\},\$

```
##
     statistical computing. R Foundation for Statistical Co
     Vienna, Austria. URL http://www.R-project.org/.
##
##
  A BibTeX entry for LaTeX users is
##
     @Manual{.
##
       title = {R: A Language and Environment for Statistic
##
       author = {{R Core Team}},
##
##
       organization = {R Foundation for Statistical Comput:
       address = {Vienna, Austria},
##
```

R Core Team (2014). R: A language and environment for

Fundamentals of the R language

R is **object-oriented**.

Objects are R's nouns. They include (not exhaustive):

- character string (e.g. word)
- number
- vector of numbers or character strings
- matrix
- data frame
- list

Assignment

You use the **assignment operator** (<-) to assign character strings, numbers, vectors, etc. to object names

```
## Assign the number 10 to an object called number
number <- 10
number</pre>
```

```
## [1] 10
```

```
# Assign Hello world to an object called words
words <- "Hello World"</pre>
```

```
## [1] "Hello World"
```

Assignment

You can also use =:

```
number = 10
number
```

[1] 10

Note: it has a slightly different meaning.

See StackOverflow discussion.

Special values in R

- NA: not available, missing
- NULL: does not exist, is undefined
- ► TRUE, T: logical true. **Logical** is also an object class.
- ► FALSE, F: logical false

Finding special values

Function	Meaning
is.na	Is the value NA
is.null	ls the value NULL
isTRUE	Is the value TRUE
!isTRUE	Is the value FALSE

```
absent <- NA
is.na(absent)</pre>
```

```
## [1] TRUE
```


Operator	Meaning		
<	less than		
>	greater than		
==	equal to		
<=	less than or equal to		
>=	greater than or equal to		
!=	not equal to		
a b	a or b		
a & b	a and b		

Classes

Objects have distinct classes.

```
# Find the class of number
class(number)
## [1] "numeric"
# Find the class of absent
class(absent)
## [1] "logical"
```

Naming objects

- Object names cannot have spaces
 - Use CamelCase, name_underscore, or name.period
- Avoid creating an object with the same name as a function (e.g. c and t) or special value (NA, NULL, TRUE, FALSE).
- Use descriptive object names!
 - ▶ Not: obj1, obj2
- Each object name must be unique in a workspace.
 - Assigning something to an object name that is already in use will overwrite the object's previous contents.

Finding objects

```
# Find objects in your workspace
ls()
```

```
## [1] "absent" "number" "words"
```

Style Guides

As with natural language writing, it is a good idea to stick to one style guide with your R code:

- Google's R Style Guide
- ► Hadely Wickham's R Style Guide

Vectors

A vector is an **ordered collection** of numbers, characters, etc. of the **same type**.

Vectors can be created with the c (combine) function.

```
# Create numeric vector
numeric_vector <- c(1, 2, 3)
# Create character vector
character_vector <- c('Albania', 'Botswana', 'Cambodia')</pre>
```

Factor class vector

Categorical variables are called **factors** in R.

```
# Create numeric vector
fruits \leftarrow c(1, 1, 2)
# Create character vector for factor labels
fruit_names <- c('apples', 'mangos')</pre>
# Convert to labelled factor
fruits factor <- factor(fruits, labels = fruit names)</pre>
summary(fruits_factor)
```

```
## apples mangos
## 2 1
```

Matrices

Matrices are collections of vectors with the same length

```
# Combine numeric_vector and character_vector into a matrix
combined <- cbind(numeric_vector, character_vector)
combined</pre>
```

```
## numeric_vector character_vector
## [1,] "1" "Albania"
## [2,] "2" "Botswana"
## [3,] "3" "Cambodia"
```

Note: In addition to cbind you can rbind new rows onto a matrix.

Data frames

Data frames are collections of vectors with the same length.

Each column (vector) can be of a **different class**.

Lists

A list is a vector containing other objects.

They the objects can have different lengths and classes.

```
## [1] "Albania" "Botswana" "Cambodia"
##
## $not_there
## [1] NA NA
##
```

\$more_numbers
[1] 1 2 3 4 5 6 7 8 9 10 11 12 5
[18] 18 19 20 21 22 23 24 25 26 27 28 29 29

Functions

Functions do things to/with objects. Functions are like **R's verbs**.

When using them to do things to objects, they are always followed by parentheses (). The parentheses contain the **arguments**. Arguments are separated by commas.

```
# Summarise combined_df
summary(combined_df, digits = 2)
```

```
##
   numeric vector character vector
##
   Min. :1.0
                 Length:3
##
   1st Qu.:1.5
                 Class:character
   Median :2.0
##
                 Mode :character
##
   Mean :2.0
##
   3rd Qu.:2.5
##
   Max. :3.0
```

Functions help

To find out what arguments a function can take use ?.

?summary

The help page will also show the function's **default argument** values.

Component selection (\$)

The \$ is known as the component selector. It selects a component of an object.

```
combined_df$character_vector
```

```
## [1] "Albania" "Botswana" "Cambodia"
```

Subscripts []

You can use subscripts [] to also select components.

For data frames they have a [row, column] pattern.

```
# Select the second row and first column of combined_df
combined_df[2, 1]

## [1] 2

# Select the first two rows
```

combined df[c(1, 2),]

Subscripts []

```
# Select the character_vector column
combined_df[, 'character_vector']
```

```
## [1] "Albania" "Botswana" "Cambodia"
```

Assigment with elements of objects

You can use assignment with parts of objects. For example:

```
combined_df$character_vector[3] <- 'China'
combined_df$character_vector</pre>
```

You can even add new variables:

[1] "Albania" "Botswana" "China"

```
combined_df$new_var <- 1:3
combined_df</pre>
```

Packages

You can greatly expand the number of functions available to you by installing and loading user-created packages.

```
# Install dplyr package
install.packages('dplyr')

# Load dplyr package
library(dplyr)
```

You can also call a function directly from a specific package with the double colon operator (::).

```
Grouped <- dplyr::group_by(combined_df, character_vector)</pre>
```

R's build-in data sets

List internal data sets:
data()
Load swiss data set:
data(swiss)
Find data description:
?swiss

R's build-in data sets

Find variable names:

```
names(swiss)
```

```
## [1] "Fertility" "Agriculture" "Examination"
## [4] "Education" "Catholic" "Infant.Mortal
```

See the first three rows and four columns

```
head(swiss[1:3, 1:4])
```

##	Fertility	Agriculture	Examination	Education
## Courtelary	80.2	17.0	15	12
## Delemont	83 1	45 1	6	

What all the cool kids are doing: piping

Pipe: pass a value forward to a function call.

Why?

- Faster compilation.
- Enhanced code readability.

In R use %>% from the magrittr package.

%>% passes a value to the **first argument** of the next function call.

Simple piping example

Not piped:

```
values <- rnorm(1000, mean = 10)
value_mean <- mean(values)
round(value_mean, digits = 2)</pre>
```

```
## [1] 10.01
```

Piped:

```
library(magrittr)
rnorm(1000, mean = 10) %>% mean() %>% round(digits = 2)
```

```
## [1] 9.98
```

Descriptive statistics: review

Descriptive Statistics: describe samples

Stats 101: describe samples **distributions** with appropriate measure of

- central tendancy
- variability

Histograms

hist(swiss\$Examination)

Histogram of swiss\$Examination

Histograms: styling

```
hist(swiss$Examination,
   main = 'Swiss Canton Draftee Examination Scores (1888)
   xlab = '% receiving highest mark on army exam')
```

Swiss Canton Draftee Examination Scores (1888)

Digression: Creating functions

You can create a function to find the sample mean $(\bar{x} = \frac{\sum x}{n})$ of a vector.

```
fun_mean <- function(x){
    sum(x) / length(x)
}
## Find the mean
fun_mean(x = swiss$Examination)</pre>
```

```
## [1] 16.49
```

Finding means

```
(or use the mean function in base R)
mean(swiss$Examination)
## [1] 16.49
If you have missing values (NA):
mean(swiss$Examination, na.rm = TRUE)
```

Digression: Loops

You can 'loop' through the data set to find the mean for each column

```
for (i in 1:length(names(swiss))) {
    swiss[, i] %>%
    mean() %>%
    round(digits = 1) %>%
    paste(names(swiss)[i], ., '\n') %>% # the . directs the cat()
}
```

```
## Fertility 70.1
## Agriculture 50.7
## Examination 16.5
## Education 11
## Catholic 41.1
## Infant.Mortality 19.9
```

Other functions for central tendency

Median

```
median(swiss$Examination)
```

[1] 16

Mode

mode is not an R function to find the statistical mode.

Instead use summary for factor nominal variables or make a bar chart.

Simple bar chart for nominal

```
devtools::source_url('http://bit.ly/OTWEGS')
plot(MortalityGDP$region, xlab = 'Region')
```


Variation

Range:

```
range(swiss$Examination)
```

```
## [1] 3 37
```

Quartiles:

summary(swiss\$Examination)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.0 12.0 16.0 16.5 22.0 37.0
```

Variation

Boxplots:

boxplot(swiss\$Examination, main = '% of Draftees with High

% of Draftees with Highest Mark

Variation

Interquartile Range ($IQR = Q_3 - Q_1$):

IQR(swiss\$Examination)

[1] 10

Variation: standard deviation

Sum of squared deviations:

Sum of Squares =
$$\sum (x - \bar{x})^2$$

Degrees of freedom (number of values that are free to vary):

$$df = n - 1$$

Variance (s^2) :

$$s^2 = \frac{\text{Sum of Squares}}{\text{Degrees of Freedom}} = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Standard deviation (s) (in terms of the mean):

$$s = \sqrt{s^2}$$

Variation: Standard Error

The **standard error** of the mean:

If we think of the variation as around a central tendancy as a measure of **unreliability** then we want the measure to **decrease as the sample size goes up**.

$$\mathrm{SE}_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Variation: Variance and Standard Deviation

Variance:

```
var(swiss$Examination)
```

```
## [1] 63.65
```

Standard Deviation:

```
sd(swiss$Examination)
```

```
## [1] 7.978
```

Variation: Standard Error

Standard Error:

```
sd_error <- function(x) {
    sd(x) / sqrt(length(x))
}
sd_error(swiss$Examination)</pre>
```

```
## [1] 1.164
```

Playing with distributions

Simulated normally distributed data with SD of 30 and mean 50

Normal30 <- rnorm(1e+6, mean = 50, sd = 30)

Transform skewed data

Highly skewed data can be transformed to have a normal distribution.

Helps correct two violations of key assumptions: (a) non-linearity and (b) heteroskedasticity.

hist(swiss\$Education, main = '')

Natural log transformed skewed data

log(swiss\$Education) %>% hist()

Joint distributions

plot(log(swiss\$Education), swiss\$Examination)

Summarise with loess

```
ggplot2::ggplot(swiss, aes(log(Education), Examination)) +
   geom_point() + geom_smooth() + theme_bw()
```


Programming Hint (1)

Always close!

In R this means closing:

- **)**
- **[**]
- **▶** {}
- **▶** 1
- **▶** II I

Programming Hint (2)

Make your code as simple as possible.

- ► Easier to read.
- Easier to write (ultimately).
- Easier to find mistakes.
- Often computationally more efficient.

One way to do this is to **define things once**.

Programming Hint (2)

Bad

```
mean(rnorm(1000))

## [1] -0.02098

sd(rnorm(1000))

## [1] 0.9898
```

Programming Hint (2)

Good

```
rand_sample <- rnorm(1000)</pre>
mean(rand_sample)
## [1] 0.0002194
sd(rand_sample)
## [1] 1.013
```

Seminar: Start using R!

- Access R data sets
- Explore the data and find ways to numerically/graphically describe it.
- ► Find and use R functions that were **not covered** in the lecture for exploring and transforming your data.
- Create your own function (what it does is open to you).