Classification

MLAI: Week 9

Neil D. Lawrence

Department of Computer Science Sheffield University

24th November 2015

Review

- ► Last time: Looked at generalisation and validation.
- ► Introduced cross validation, hold out validation, reviewed training and test sets.
- ► This time: Classification.

Outline

Classification

Bayesian Perspective

Naive Bayes

Logistic Regression

Classification

- We are given data set containing "inputs", X, and "targets", y.
- ▶ Each data point consists of an input vector $\mathbf{x}_{i,:}$ and a class label, y_i .
- ► For binary classification assume y_i should be either 1 (yes) or -1 (no).
- ► Input vector can be thought of as features.

Classification Examples

- Classifying hand written digits from binary images (automatic zip code reading).
- ▶ Detecting faces in images (e.g. digital cameras).
- ▶ Who a detected face belongs to (e.g. Picasa).
- ► Classifying type of cancer given gene expression data.
- Categorization of document types (different types of news article on the internet).

The Perceptron

- ▶ Developed in 1957 by Rosenblatt.
- ► Take a data point at, x_i .
- ▶ Predict it belongs to a class, $y_i = 1$ if $\sum_j w_j \mathbf{x}_{i,j} + b > 0$ i.e. $\mathbf{w}^{\top} \mathbf{x}_i + b > 0$. Otherwise assume $y_i = -1$.

Perceptron-like Algorithm

- 1. Select a random data point *i*.
- 2. Ensure *i* is correctly classified by setting $\mathbf{w} = y_i \mathbf{x}_i$.
 - i.e. $\operatorname{sign}(\mathbf{w}^{\top}\mathbf{x}_{i,:}) = \operatorname{sign}(y_i\mathbf{x}_{i,:}^{\top}\mathbf{x}_{i,:}) = \operatorname{sign}(y_i) = y_i$

Perceptron Iteration

- 1. Select a misclassified point, i.
- 2. Set $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_{i,:}$.
 - If η is large enough this will guarantee this point becomes correctly classified.
- 3. Repeat until there are no misclassified points.

▶ Iteration 1 data no 29

- ► Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration
- Set weight vector to data point.

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration
- Set weight vector to data point.
- $\mathbf{w} = y_{29}\mathbf{x}_{29,:}$

- ▶ Iteration 1 data no 29
- $w_1 = 0, w_2 = 0$
- ► First Iteration
- Set weight vector to data point.
- $\mathbf{w} = y_{29}\mathbf{x}_{29,:}$
- Select new incorrectly classified data point.

► Iteration 2 data no 16

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification
- Adjust weight vector with new data point.

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{16} \mathbf{x}_{16,:}$

- ▶ Iteration 2 data no 16
- $w_1 = 0.3519,$ $w_2 = -0.6787$
- ► Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{16} \mathbf{x}_{16,:}$
- Select new incorrectly classified data point.

▶ Iteration 3 data no 58

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification
- Adjust weight vector with new data point.

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification
- Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{58} \mathbf{x}_{58}$

- ▶ Iteration 3 data no 58
- $w_1 = -1.2143,$ $w_2 = -1.0217$
- ► Incorrect classification
- ► Adjust weight vector with new data point.
- $\mathbf{w} \leftarrow \mathbf{w} + \eta y_{58} \mathbf{x}_{58,:}$
- All data correctly classified.

Outline

Classification

Bayesian Perspective

Naive Bayes

Logistic Regression

Bayesian Approach

Likelihood for the regression example has the form

$$p(\mathbf{y}|\mathbf{w},\sigma^2) = \prod_{i=1}^n \mathcal{N}(y_i|\mathbf{w}^\top \boldsymbol{\phi}_i,\sigma^2).$$

- Suggestion was to maximize this likelihood with respect to w.
- This can be done with gradient based optimization of the log likelihood.
- ► Alternative approach: integration across **w**.
- Consider expected value of likelihood under a range of potential ws.
- ► This is known as the *Bayesian* approach.

Note on the Term Bayesian

- We will use Bayes' rule to invert probabilities in the Bayesian approach.
 - Bayesian is not named after Bayes' rule (v. common confusion).
 - The term Bayesian refers to the treatment of the parameters as stochastic variables.
 - ► This approach was proposed by ? and ? independently.
 - For early statisticians this was very controversial (Fisher et al).

Bernoulli Distribution

► Jacob Bernoulli described this distribution in terms of an 'urn'.

Bernoulli Distribution

- ► Jacob Bernoulli described this distribution in terms of an 'urn'.
- Write as a function

$$P(Y = y) = \pi^{y} (1 - \pi)^{1 - y}$$

Bernoulli Distribution

- ► Jacob Bernoulli described this distribution in terms of an 'urn'.
- ► Write as a function

$$P(Y = y) = \pi^{y} (1 - \pi)^{1 - y}$$

► Thomas Bayes considered a ball landing uniformly across a table.

► Thomas Bayes considered a ball landing uniformly across a table.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).
- ► The position of the first ball gives the parameter π .

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (?, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

Bayesian Controversy

- ▶ Bayesian controversy relates to treating *epistemic* uncertainty as *aleatoric* uncertainty.
- Another analogy:
 - Before a football match the uncertainty about the result is aleatoric.
 - If I watch a recorded match without knowing the result the uncertainty is epistemic.

Simple Bayesian Inference

$$posterior = \frac{likelihood \times prior}{marginal\ likelihood}$$

Four components:

- 1. Prior distribution: represents belief about parameter values before seeing data.
- 2. Likelihood: gives relation between parameters and data.
- 3. Posterior distribution: represents updated belief about parameters after data is observed.
- 4. Marginal likelihood: represents assessment of the quality of the model. Can be compared with other models (likelihood/prior combinations). Ratios of marginal likelihoods are known as Bayes factors.

Outline

Classification

Bayesian Perspective

Naive Bayes

Logistic Regression

Naive Bayes

- ► Recall first lecture: Probabilities over everything.
- ► Covariances, **x**, & response **y**.

Prediction Reminder

- ► Idea in Machine Learning: Joint Distribution over *everything*.
- ▶ Reformulate joint distribution using *sum* and *product* rules to answer question we want.
- First construct model: $P(y^*, \mathbf{x}^*, \mathbf{y}, \mathbf{X})$
- ► Then make prediction:

$$P(y^*|\mathbf{x}^*, \mathbf{y}, \mathbf{X})$$

can be found using product rule of probability.

Model

1. Data Conditional Independence There are parameters of the model, θ , and conditioned on these parameters all data points in the model are independent.

$$P(y^*, \mathbf{x}^*, \mathbf{y}, \mathbf{X}|\boldsymbol{\theta}) = P(y^*, \mathbf{x}^*|\boldsymbol{\theta}) \prod_{i=1}^n P(y_i, \mathbf{x}_i|\boldsymbol{\theta})$$

2. Feature Conditional Independence The covariates/features of the model are *also* conditionally independent given the label.

$$P(\mathbf{x}_i|y_i,\boldsymbol{\theta}) = \prod_{j=1}^q p(x_{i,j}|y_i,\boldsymbol{\theta})$$

where q is the covariate dimensionality.

Model

- These two assumptions are enough to begin to specify our model.
- We further need a marginal distribution over the data labels,

$$p(y_i|\pi) = y_i^{\pi} (1 - y_i)^{(1 - \pi)}$$

- Which we can specify as *Bernoulli* because it is the most general form. π is the probability of a positive class.
- This equips us to specify the *joint* distribution for a single data point using the product rule.

$$p(y_i, \mathbf{x}_i | \boldsymbol{\theta}) = p(y_i) \prod_{j=1}^{q} p(x_{i,j} | y_i \boldsymbol{\theta})$$

The Joint Probability of the Training Data

We can now fit the joint probability to our data y, X.

▶ Using sum rule and data conditional independence we have

$$P(\mathbf{y}, \mathbf{X}|\boldsymbol{\theta}) = \sum_{y^*} \sum_{\mathbf{y}^*} P(y^*, \mathbf{x}^*, \mathbf{y}, \mathbf{X}|\boldsymbol{\theta})$$

$$= \prod_{i=1}^n P(y_i, \mathbf{x}_i|\boldsymbol{\theta}) \sum_{y^*} \sum_{\mathbf{y}^*} P(y^*, \mathbf{x}^*)$$

$$= \prod_{i=1}^n P(y_i, \mathbf{x}_i|\boldsymbol{\theta})$$

The Joint Probability of a Training Point

We now need to specify the joint distribution for a single point.

▶ Using product rule and *feature conditional independence*.

$$P(y_i, \mathbf{x}_i | \boldsymbol{\theta}) = P(y_i) P(\mathbf{x}_i | y_i, \boldsymbol{\theta}) = P(y_i) \prod_{i,j} P(x_{i,j} | y_i, \boldsymbol{\theta})$$

GOT TO NHERE!

Reading

Outline

Classification

Bayesian Perspective

Naive Bayes

Logistic Regression

Generalised Linear Models

► Link function

Logit: Predicting the Log Odds

..

Logit: Interpretation as a Squashing Function

٠.,

Reading

References I

- T. Bayes. An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society*, 53:370–418, 1763. [DOI].
- P. S. Laplace. Mémoire sur la probabilité des causes par les évènemens. In *Mémoires de mathèmatique et de physique, presentés à lAcadémie Royale des Sciences, par divers savans, & lù dans ses assemblées 6*, pages 621–656, 1774. Translated in ?.