

CONVERSÃO ELETROMECÂNICA DE ENERGIA

TRABALHO PRÁTICO Nº 1 ENSAIOS DA MÁQUINA ASSÍNCRONA

CLASSIFICAÇÃO

Trabalho realizado pelos estudantes:

Rodrigo Miguel Nunes

64100

Cordeiro

60077

Guilherme José Carreira Mendes

Tiago Capelo Monteiro

63368

Turno Prático

P2

ANO LETIVO 2024/2025

Contents

Obj	etivo do trabalho	4
Res	ultados obtidos experimentalmente	5
Ν	Medição Direta das Resistências do Estator	5
N	Medição do Ensaio em Vazio	5
N	Medição do Ensaio em Rotor Bloqueado	5
N	Medição do Ensaio em Carga	6
Det	erminação dos parâmetros do esquema equivalente do motor de indução	7
E	nsaio do motor em vazio	7
E	nsaio do motor com rotor bloqueado	8
Е	squema elétrico equivalente e a sua utilidade	9
P	Perdas magnéticas do motor em condições nominais	10
P	Perdas nos enrolamentos do motor em condições nominais	10
	Perdas nos enrolamentos do rotor	10
	Perdas nos enrolamentos do estator	10
	Perdas nos enrolamentos de todo o motor	10
E	scorregamento nominal do motor	11
P	Potência mecânica nominal obtida a partir do esquema equivalente	11
Е	Binário mecânico nominal	11
Car	acterísticas elétricas e mecânicas do motor	13
Ġ	Gráfico da Corrente Rotórica em função do Escorregamento do Motor	13
(Gráfico da Potência Mecânica em Função do Escorregamento	14
G	Gráfico do Binário em Função do Escorregamento	15
Мо	tor em carga: resultados reais e comparação com os resultados obtidos a partir do modelo elétrico	16
Sim	ulação do motor em carga	17
Ġ	Gráficos desenvolvidos	17
C	Questões pedidas	19
	A velocidade da máquina, em regime estacionário, é próxima da medida no ensaio em carga?	19
	Comentar o comportamento da corrente de alimentação do motor, no regime transitório	19
	O binário eletromagnético desenvolvido é coerente com o binário resistente imposto pela carga?	19
	A potência ativa simulada fornecida ao motor, é próxima da medida no ensaio em carga? E em relaç potência mecânica?	
	Que impacto tem a variação da carga na velocidade e corrente do motor?	19
	Se num determinado momento o binário resistente aumentar para além do binário máximo calculanteriormente, o que acontece à velocidade do motor?	

Se variar a frequência de alimentação, por exemplo passando para metade, o que acontece à veloc	
mecânica do motor?20	
Conclusões	
Bibliografia	

Objetivo do trabalho

Neste trabalho pretende-se determinar os parâmetros do esquema elétrico equivalente de um motor assíncrono de 1,1kW de potência reduzidos ao estator. A partir desses valores, analisar as características elétricas e mecânicas da máquina. Para tal a máquina deve ser ensaiada em vazio e com o rotor bloqueado. Adicionalmente pretende-se medir diretamente a resistência elétrica dos enrolamentos do estator. Desta forma, com os valores registados da máquina a funcionar com uma carga com uma simulação, compara-se

A máquina de indução a ensaiar representada na Figura 1:

Figura 1 – Máquina de indução a ensaiar

Para a medição das tensões, correntes e potência ativa usar-se-á um analisador de energia Chauvin Arnaux C.A 8334B como ilustra a Figura 2:

Figura 2 – Analisador de energia Chauvin Arnaux

Resultados obtidos experimentalmente

Medição Direta das Resistências do Estator

A medição direta das resistências do estator foi realizada com o objetivo de determinar os valores resistivos dos enrolamentos das fases do motor.

RsU (Ω)	4,5
RsV (Ω)	4,6
Rsw (Ω)	4,5

Tabela 1 - Medidas das Resistências do Estator

Medição do Ensaio em Vazio

O ensaio em vazio foi realizado com o intuito de determinar os parâmetros relacionados às perdas no ferro, à corrente de excitação e ao comportamento magnético do motor quando submetido à tensão nominal, sem carga mecânica no eixo.

U10 (V)	220,2	
I10 (A)	1,189	
U20 (V)	220,8	
I20 (A)	1,525	
U30 (V)	220,3	
I30 (A)	1,462	
Py0 (W)	196,1	

Tabela 2 – Medidas do motor em ensaio vazio

Medição do Ensaio em Rotor Bloqueado

O ensaio em rotor bloqueado foi realizado com o objetivo de determinar os parâmetros relacionados às impedâncias de dispersão e às perdas no cobre do motor.

U1bl (V)	28,7
І 1ы (A)	2,470
U2bl (V)	28,0
I2ы(А)	2,424
U3bl (V)	28,5
I3bl (A)	2,523
Pybl (W)	153,2

Tabela 3 - Medidas do motor em ensaio com rotor bloqueado

Medição do Ensaio em Carga

O ensaio em carga tem por objetivo avaliar o desempenho real do motor sob condições de trabalho.

U1 (V)	28,7
I1 (A)	2,470
U2 (V)	28,0
I2 (A)	2,424
U3 (V)	28,5
la (A)	2,523
Py (W)	153,2
Ucc (V)	208,5
Icc (A)	0,883
P(N)	20
b (N.m)	0,8

Tabela 4 – Medidas do motor em ensaio com carga

Determinação dos parâmetros do esquema equivalente do motor de indução

Ensaio do motor em vazio

Valores a descobrir:

 R_m X_m

Descobrir a média das tensões e das correntes:

$$U_1 = \frac{(U_{10} + U_{20} + U_{30})}{3} = \frac{(220,4 + 220,8 + 220,3)}{3} = 220,4 \text{ V}$$

$$I_1 = \frac{I_{10} + I_{20} + I_{30}}{3} = \frac{1,189 + 1,525 + 1,462}{3} = 1,4 \text{ A}$$

Valor da magnitude da impedância complexa:

$$Z = \frac{U_1}{I_1} = \frac{220.4}{1.4} = 157.4 \,\Omega$$

Cálculo da média da potência:

$$P_y = \frac{P_{y0}}{3} = \frac{196,1}{3} = 65,4$$

Cálculo do ângulo do fator de potência:

$$\varphi = \arccos\left(\frac{P_y}{U_1 \cdot I_1}\right) = 77,76^{\circ}$$

Impedância complexa:

$$\overline{Z} = Z < \omega = 157.4 < 77.76^{\circ} \Omega$$

Cálculo da admitância:

$$\overline{Y} = \frac{1}{\overline{Z}} = \frac{1}{157.4 < 77.76^{\circ}} = 0.001347 - 0.006209j$$

Cálculo da Resistência e da Reactância:

$$\overline{Y} = \frac{1}{R_m} - \frac{1}{jXm}$$

$$\frac{1}{R_m} = 0.001347 \Leftrightarrow R_m = 742.4 \Omega$$

$$\frac{1}{X_m} = 0.006209 \Leftrightarrow X_m = 161.1 \Omega$$

Cálculo da Indutância:

$$L_m = \frac{X_m}{2\pi f} = 0.51 H$$

Cálculos das componentes de perdas e magnetizante da corrente de magnetização:

$$I_p = \frac{U_1}{R_m} = \frac{220.4}{742.4} = 0.3 A$$

$$I_m = I_1 - I_P = 1.4 - 0.3 = 1.1 A$$

Ensaio do motor com rotor bloqueado

Valores a descobrir:

$$R_{eq} = r_1 + r'_2$$

 $X_{eq} = X_1 + X'_2$

Descobrir a media da tensão e das correntes

$$U = \frac{U_{1bi} + U_{2bi} + U_{3bi}}{3} = \frac{28.7 + 28 + 28.5}{3} = 28.4 V$$

$$I = \frac{I_{1bi} + I_{2bi} + I_{3bi}}{3} = \frac{2.47 + 2.424 + 2.523}{3} = 2.4723 A$$

Valor da magnitude da impedância complexa:

$$Z = \frac{\dot{U}}{I} = \frac{28.4}{2.4723} = 11.487279 \,\Omega$$

Assim, vamos descobrir a fase da impedância complexa. Importante descobrir apenas a partir da potência de uma única fase:

$$P_{Ybi} = \frac{153.2}{3} = 51.0666 W$$

E pela fórmula da potencia ativa, temos a fase da impedância complexa:

$$P = UIcos(\varphi) \leftrightarrow \varphi = \cos^{-1}(\frac{P}{UI}) \leftrightarrow \varphi = \cos^{-1}\left(\frac{51.0666}{28.4 \times 2.4723}\right) \leftrightarrow \varphi = 43.3388^{\circ}$$

Logo, a impedância complexa na fórmula polar é dada por:

$$\bar{z} = z < \varphi = 11.487279 < 43.3388^{\circ}$$

E, ao ser decomposta na sua versão retangular:

$$\bar{z} = 8.35458 + j7.88365$$

Assim, com esta decomposição da impedância complexa, podemos afirmar que:

$$\begin{cases} 8.35458 = R_{eq} \\ 7.88365 = X_{eq} \\ r_1 = \frac{4.57 + 4.6 + 4.5}{3} \end{cases} \leftrightarrow \begin{cases} 8.35458 = r_1 + r_2' \\ 8.35458 = X_1 + X_2' \\ r_1 = 4.533 \ \Omega \end{cases}$$

Assim, assumimos que as reactâncias são iguais:

$$X_1 = X_2 = X$$

para simplificação de contas:

$$\begin{cases} 8.35458 = r_1 + r_2' \\ 7.88365X_1 + X_2' \\ r_1 = 4.533 \,\Omega \end{cases} \leftrightarrow \begin{cases} 8.35458 = 4.533 + r_2' \\ 7.88365 = X + X \\ r_1 = 4.533 \,\Omega \end{cases} \leftrightarrow \begin{cases} r_2' = 8.35458 - 4.533 \\ 7.88365 = 2X \\ r_1 = 4.533 \,\Omega \end{cases} \leftrightarrow \begin{cases} r_2' = 3.82158 \,\Omega \\ X = 3.941825 \,\Omega \\ r_1 = 4.533 \,\Omega \end{cases}$$

Como assumimos que as reactâncias são iguais, as indutâncias também são iguais:

$$L_{X_1} = L_{X_2'} = L_X$$

Assim:

$$L_X = \frac{X}{2\pi f} = \frac{3.941825}{2\pi \times 50} = 0.012547 H$$

Esquema elétrico equivalente e a sua utilidade

Figura 3 – Esquema elétrico equivalente do motor assíncrono

O esquema equivalente tem como valores:

- $R1 = 4.8666 \Omega$
- $R'2 = 3.6024 \Omega$
- $Rm = 786.442 \Omega$
- $X1 = 3.829 \Omega$
- $X2 = 3.829 \Omega$
- $Xm = 169.17 \Omega$

O esquema equivalente modela a estrutura interna da máquina assíncrona num circuito elétrico. Deste modo, é possível analisar o seu desempenho e estudá-la a fundo. Adicionalmente, este estudo apenas necessita a realização de ensaios para se deduzir todos os componentes da máquina de forma analítica. Algo que evita trabalho na realização de complexos possíveis testes físicos[1][2]. Concluindo, é uma forma de modelar um motor elétrico assíncrono de uma forma teórica de modo a simplificar a análise do sistema.

Perdas magnéticas do motor em condições nominais

Para determinarmos as perdas magnéticas do motor, temos que:

$$P_{mag} = 3 \times R_m \times \left(\frac{U_s}{R_m}\right)^2 = 3 \times \frac{U_s^2}{R_m} = 3 \times \frac{220^2}{742.4} = 195.58 W$$

Logo, concluídos que o motor 195.58 Watts em perdas magnéticas

Perdas nos enrolamentos do motor em condições nominais

Para determinar as perdas nos enrolamentos, é necessário somar:

- Perdas nos enrolamentos do rotor
- Perdas nos enrolamentos do estator

Perdas nos enrolamentos do rotor

Os valores das perdas por efeito Joule no Rotor foram determinados no ensaio com rotor bloqueado. Logo, o valor destas:

$$P_{irt} = 153.2 W$$

Perdas nos enrolamentos do estator

E pela corrente quando se realiza o ensaio de rotor bloqueado:

$$P_{ist} = 3 \times R1 \times I_1^2 = 3 \times 4.533 \times 2.472^2 = 83.1 W$$

Perdas nos enrolamentos de todo o motor

Ao somarmos as duas perdas, temos as perdas dos enrolamentos de todo o motor:

$$P_{ist} + P_{irt} = 153.2 + 83.1 = 236.3 W$$

Assim, concluímos que em todo o motor, houve cerca de 236 W de perdas de energias em todos os enrolamentos.

Escorregamento nominal do motor

Através da ficha técnica do motor, verificamos que rotor roda a uma velocidade nominal de 2830 rpm. Para calcular o escorregamento precisamos ainda de calcular a velocidade do Estator.

$$Ns = \frac{f \cdot 60}{p} = \frac{50 \cdot 60}{1} = 3000 \text{ rpm}$$

Assim, verificamos que o escorregamento é de:

$$s = \frac{Ns - Nr}{Ns} = \frac{3000 - 2830}{3000} = 0,057$$
$$s = 5,7\%$$

Potência mecânica nominal obtida a partir do esquema equivalente

Para calcularmos a potência mecânica é necessário calcular antes a corrente rotórica e a resistividade da carga associada.

$$R'_2 \cdot \left(\frac{1-s}{s}\right) = 3,6024 \cdot \left(\frac{1-0,057}{0,057}\right) = 59,60\Omega$$

$$I'_{2} = \frac{sU_{1}}{\sqrt{(sR_{1} + R'_{2})^{2} + s^{2}(X_{1} + X'_{2})^{2}}} = 3,05A$$

$$P_{mec} = 3 \cdot R \cdot I^2 = 3R'_2 \left(\frac{1-s}{s}\right) \cdot (I'_2)^2 = 1663,3W$$

A Potência mecânica calculada difere da potência mecânica referida na chapa do motor. A percentagem dessa diferença é a seguinte:

$$\left| \frac{P_{mec,chapa} - P_{mec,calculada}}{P_{mec,chapa}} \right| \cdot 100 = \left| \frac{1100 - 1663,3}{1100} \right| \cdot 100 = 51.2\%$$

Binário mecânico nominal

Para obtermos o binário nominal temos que calcular antes a velocidade angular do rotor

$$W_r = \frac{N_r \cdot 2\pi}{60} = 296,36 \, \frac{rad}{s}$$

$$T = \frac{1663.3}{296.36} = 5.61 \, N. \, m$$

Características elétricas e mecânicas do motor

Gráfico da Corrente Rotórica em função do Escorregamento do Motor

Á medida que o escorregamento varia de 1 (arranque) até valores próximos de 0 (regime nominal), a corrente rotóricas apresenta uma variação não linear. Desta forma, refletindo as características do circuito equivalente do motor.[3]

Assim, a análise deste gráfico permite avaliar o desempenho do motor e identificar condições de operação críticas. Nomeadamente, as correntes excessivas na partida. Desta maneira, é possível otimizar o controlo e a proteção de equipamento.

Figura 4 – Gráfico da corrente giratória em função do escorregamento

Gráfico da Potência Mecânica em Função do Escorregamento

A potência mecânica aumenta com o escorregamento a partir do ponto de partida (s = 1) e atinge um valor máximo numa determinada faixa de escorregamento. Esta é conhecida como escorregamento crítico. Em seguida, diminui conforme o escorregamento se aproxima de 1 novamente. Esse comportamento reflete o equilíbrio entre a potência transferida ao rotor e as perdas rotóricas.

Figura 5 - Gráfico da potência mecânica em função do escorregamento

Gráfico do Binário em Função do Escorregamento

O binário varia desde o arranque (s = 1) até o regime de sincronismo (s \approx 0). Inicialmente, o binário cresce com a diminuição do escorregamento, atingindo um valor máximo. Após esse ponto, à medida que o motor se aproxima da velocidade de sincronismo, o binário diminui rapidamente.

Figura 6 – Gráfico do binário resistivo em função do escorregamento

Motor em carga: resultados reais e comparação com os resultados obtidos a partir do modelo elétrico

O ensaio em carga ao motor permite observar o seu comportamento em condições mais próximas da operação real, revelando características como variação de corrente, binário, velocidade e rendimento.

Para calcular a potência mecânica usaremos o binário obtido no ensaio e a velocidade angular do rotor:

$$Pmec = T \cdot wr$$

$$U = 220, 7V$$

$$Pmec = 248,48 W$$

Usando a tensão do gerador e a corrente do mesmo obtidos também no ensaio calculamos a potência elétrica fornecida pelo gerador às lâmpadas:

$$Ucc \cdot Icc = Pele$$

$$Pele = 184,11 W$$

Rendimento da máquina elétrica:

$$\eta = \frac{248,48}{491} \cdot 100 = 50,61\%$$

Rendimento do sistema motor de indução-gerador cc:

$$\eta = \frac{184,11}{248,48} \cdot 100 = 74,1\%$$

Os resultados obtidos ao longo dos ensaios provam uma forte concordância entre os valores teóricos obtidos e os valores medidos de forma experimental.

Esta proximidade confirma a validade do modelo elétrico utilizado para representar o motor. Assim evidenciando que, apesar de simplificações, o modelo é eficaz na previsão do comportamento da máquina em diferentes condições de operação.

Simulação do motor em carga

Gráficos desenvolvidos

Observa-se que a potência aumenta com o escorregamento, até atingir um valor máximo. Após esse ponto, a potência diminui. Este comportamento é típico de motores assíncronos. Onde a potência útil é máxima antes do ponto de escorregamento onde a potência mecânica é máxima.

Figura 7 - Potência mecânica simulada

Observa-se que, no instante inicial, o binário apresenta um pico devido à corrente de arranque elevado. Em seguida, o binário estabiliza num valor constante, correspondente ao regime permanente sob carga.

A velocidade angular, por sua vez, inicia-se em zero e aumenta gradualmente até atingir um valor constante. Tal indica que o motor atingiu o seu ponto de equilíbrio. Este comportamento confirma a resposta esperada do sistema do motor. Assim demonstrando a atuação do binário eletromagnético para responder á inércia inicial e assegurar a estabilidade final do sistema[4].

Figura 8 - Velocidade angular e binário simulados

Verifica-se que a tensão permanece praticamente constante ao longo do tempo. Tal prova uma alimentação estável do sistema, como esperado em condições normais de operação. Por outro lado, a corrente apresenta um pico inicial acentuado no momento de arranque. Este valor diminui gradualmente à medida que o motor acelera, até estabilizar num valor de regime permanente.

Figura 9 - Corrente e tensão simulada

A velocidade do rotor, em rotações por minuto (RPM) aumenta e estabiliza num dado valor a partir de um dado escorregamento. Assim, este gráfico demonstra, tal como outros gráficos, a estabilidade de certas variáveis no sistema mal o binário eletromagnético e o binário resistivo.

Figura 10 – Velocidade do rotor simulada

Questões pedidas

A velocidade da máquina, em regime estacionário, é próxima da medida no ensaio em carga?

Sim, é próxima da medida no ensaio em carga. A velocidade em regime estacionário é perto de 2988. No ensaio em carga, é de 2966. Assim existe uma diferença entre ambas de aproximadamente 99 %.

Comentar o comportamento da corrente de alimentação do motor, no regime transitório.

No regime transitório, passa-se do arranque do motor até o seu correspondente regime estacionário. Nesta transição, a corrente alternada vai a diminuir até a sua amplitude estabilizar. Um processo de estabilização semelhante acontece para a velocidade angular, binário eletromagnético e a potência mecânica. Para a velocidade angular, esta cresce até estabilizar em 310,6 rad/s. Para o binário eletromagnético desenvolvido, esta oscila até estabilizar aproximadamente em 1 N. m.

Para a potência mecânica, esta cresce de forma oscilatória, até cair quando o binário eletromagnético se aproxima mais do binário resistivo. Eventualmente, acaba por estabilizar aproximadamente 250 W. A razão devido a esta queda repentina da potência mecânica simulada deve-se ao aumento gradual do escorregamento.

O binário eletromagnético desenvolvido é coerente com o binário resistente imposto pela carga?

Sim, pois para um dado binário resistente, a máquina desenvolverá um binário eletromagnético para o funcionamento desta funcionar em equilíbrio.

A potência ativa simulada fornecida ao motor, é próxima da medida no ensaio em carga? E em relação à potência mecânica?

A potência ativa simulada fornecida ao motor deu um valor próximo à medida no ensaio em carga. A potência mecânica também está bastante semelhante como podemos ver através da figura 7 onde vemos que a potência mecânica tem um valor de 250W e no ensaio obtivemos um valor de 248,48W.

Que impacto tem a variação da carga na velocidade e corrente do motor?

A variação de carga afeta a velocidade e a corrente do motor. Para a velocidade do motor, uma maior carga implicará uma menor velocidade no rotor. Isto porque o motor precisa de desenvolver um maior binário eletromagnético para o funcionamento desta estar estabilizado com o binário resistente.

Assim, um maior binário resistente implicará uma maior corrente. Isto porque, ao binário resistente aumentar, a velocidade do rotor diminui. Com esta diminuição, existe um maior escorregamento, implicando uma maior diferença entre o campo magnético girante do rotor e estator. Esta diferença faz com que a corrente criada seja maior.

Se num determinado momento o binário resistente aumentar para além do binário máximo calculado anteriormente, o que acontece à velocidade do motor?

Se num determinado momento o binário resistente aumentar além do binário máximo, a velocidade do motor começa a diminuir. Desta forma, o motor acaba por parar. Isto acontece porque se houver um binário superior ao binário suportado pela máquina elétrica, esta tende a diminuir a velocidade para fornecer um binário superior. Tal se comprova ao se analisar gráfico velocidade-binário. Onde após o binário máximo, a curva decresce até o escorregamento ser 100%.

Se variar a frequência de alimentação, por exemplo passando para metade, o que acontece à velocidade mecânica do motor?

Variando a frequência de alimentação para metade, a velocidade de sincronismo também irá diminuir para metade. Desta forma, esta variação da velocidade de sincronismo implicará a redução da velocidade do rotor. Assim, a frequência de alimentação é diretamente proporcional à velocidade mecânica do motor.

Conclusões

Neste trabalho, estudou-se o motor assíncrono de uma forma teórica através do ensaio em vazio e rotor bloqueado. Dai, se extraio outros dados, como as perdas magnéticas e gráficos que demonstram o comportamento do motor. Por fim, fez-me uma comparação entre o ensaio em carga prático e o simulado. Desta forma, com o ensaio em carga simulado e prático, conseguiu-se entender a fundo o funcionamento da máquina assíncrona. Assim, consolidando e desenvolvendo os conhecimentos adquiridos nesta cadeira sobre motores assíncronos.

Bibliografia

Powerpoints disponibilizados pelos docentes da cadeira

[1]

Y. Yang and L. Tang, "Equivalent Circuit Modeling of Piezoelectric Energy Harvesters," *Journal of Intelligent Material Systems and Structures*, vol. 20, no. 18, pp. 2223–2235, Oct. 2009, doi: https://doi.org/10.1177/1045389x09351757.

[2]

M. Yilmaz and P. T. Krein, "Capabilities of finite element analysis and magnetic equivalent circuits for electrical machine analysis and design," Jun. 2008, doi: https://doi.org/10.1109/pesc.2008.4592584.

[3]

C. Mastorocostas, I. Kioskeridis, and N. Margaris, "Thermal and slip effects on rotor time constant in vector controlled induction motor drives," *IEEE Transactions on Power Electronics*, vol. 21, no. 2, pp. 495–504, Mar. 2006, doi: https://doi.org/10.1109/tpel.2005.869765.

[4]

R. J. Donnelly and N. J. Simon, "An empirical torque relation for supercritical flow between rotating cylinders," Journal of Fluid Mechanics, vol. 7, no. 3, pp. 401–418, Mar. 1960, doi: https://doi.org/10.1017/s0022112060000177.