Introduction to Exploratory Data Analysis

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Teaching Professor at the California Institute of Technology

Exploratory data analysis

 The process of organizing, plotting, and summarizing a data set

"Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone." —John Tukey

```
2008_swing_states.csv
 1 state,county,total_votes,dem_votes,rep_votes,dem_share
    PA, Erie County, 127691, 75775, 50351, 60.08
    PA, Bradford County, 25787, 10306, 15057, 40.64
    PA, Tioga County, 17984, 6390, 11326, 36.07
    PA, McKean County, 15947, 6465, 9224, 41.21
    PA, Potter County, 7507, 2300, 5109, 31.04
    PA, Wayne County, 22835, 9892, 12702, 43.78
    PA, Susquehanna County, 19286, 8381, 10633, 44.08
    PA, Warren County, 18517, 8537, 9685, 46.85
    OH, Ashtabula County, 44874, 25027, 18949, 56.94
    OH, Lake County, 121335, 60155, 59142, 50.46
    PA, Crawford County, 38134, 16780, 20750, 44.71
    OH, Lucas County, 219830, 142852, 73706, 65.99
    OH, Fulton County, 21973, 9900, 11689, 45.88
    OH, Geauga County, 51102, 21250, 29096, 42.23
    OH, Williams County, 18397, 8174, 9880, 45.26
    PA, Wyoming County, 13138, 5985, 6983, 46.15
    PA, Lackawanna County, 107876, 67520, 39488, 63.10
    PA, Elk County, 14271, 7290, 6676, 52.20
    PA, Forest County, 2444, 1038, 1366, 43.18
    PA, Venango County, 23307, 9238, 13718, 40.24
     OH, Erie County, 41229, 23148, 17432, 57.01
```

¹ Data retrieved from Data.gov (https://www.data.gov/)


```
import pandas as pd

df_swing = pd.read_csv('2008_swing_states.csv')

df_swing[['state', 'county', 'dem_share']]
```

```
state
                                 dem_share
                         county
                   Erie County
                                      60.08
       PA
0
               Bradford County
                                      40.64
       PA
                  Tioga County
                                      36.07
2
       PA
                 McKean County
                                      41.21
3
       PA
                 Potter County
                                      31.04
       PA
                  Wayne County
                                      43.78
5
       PA
                                      44.08
            Susquehanna County
6
                 Warren County
                                      46.85
       PA
              Ashtabula County
                                      56.94
8
       \mathsf{OH}
```

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Plotting a histogram

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Teaching Professor at the California Institute of Technology

Data retrieved from Data.gov (https://www.data.gov/)

Generating a histogram

```
import matplotlib.pyplot as plt
_ = plt.hist(df_swing['dem_share'])
_ = plt.xlabel('percent of vote for Obama')
_ = plt.ylabel('number of counties')
plt.show()
```

Always label your axes

Data retrieved from Data.gov (https://www.data.gov/)

Histograms with different binning

Data retrieved from Data.gov (https://www.data.gov/)

Setting the bins of a histogram

Setting the bins of a histogram

```
_ = plt.hist(df_swing['dem_share'], bins=20)
plt.show()
```


Seaborn

 An excellent Matplotlib-based statistical data visualization package written by Michael Waskom

Setting Seaborn styling

```
import seaborn as sns
sns.set()
_ = plt.hist(df_swing['dem_share'])
_ = plt.xlabel('percent of vote for Obama')
_ = plt.ylabel('number of counties')
plt.show()
```

A Seaborn-styled histogram

¹ Data retrieved from Data.gov (https://www.data.gov/)

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Plot all of your data: Bee swarm plots

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Teaching Professor at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Binning bias

 The same data may be interpreted differently depending on choice of bins

Bee swarm plot

¹ Data retrieved from Data.gov (https://www.data.gov/)

Organization of the data frame

	state		county	total_votes	dem_votes	rep_votes	dem_share
0	PA	Erie	County	127691	75775	50351	60.08
1	PA	Bradford	County	25787	10306	15057	40.64
2	PA	Tioga	County	17984	6390	11326	36.07
3	PA	McKean	County	15947	6465	9224	41.21
4	PA	Potter	County	7507	2300	5109	31.04
5	PA	Wayne	County	22835	9892	12702	43.78
6	PA	Susquehanna	County	19286	8381	10633	44.08
7	PA	Warren	County	18517	8537	9685	46.85
8	ОН	Ashtabula	County	44874	25027	18949	56.94
:	:		:	:	:	:	:

¹ Data retrieved from Data.gov (https://www.data.gov/)

Organization of the data frame

features of interest										
	state		county	total_votes	dem_votes	rep_votes	dem_share			
0	PA	Erie	County	127691	75775	50351	60.08			
1	PA	Bradford	County	25787	10306	15057	40.64			
2	PA	Tioga	County	17984	6390	11326	36.07			
3	PA	McKean	County	15947	6465	9224	41.21			
4	PA	Potter	County	7507	2300	5109	31.04			
5	PA	Wayne	County	22835	9892	12702	43.78			
6	PA	Susquehanna	County	19286	8381	10633	44.08			
7	PA	Warren	-	18517	8537	9685	46.85			
8	ОН	Ashtabula	-	44874	25027	18949	56.94			
	-									
:			:	:	:	:	:			

Organization of the data frame

		features of interest						
							\rightarrow	
	0	state PA	Erie	county County	total_votes 127691	dem_votes 75775	rep_votes 50351	dem_share 60.08
	1 2	PA PA	Bradford Tioga	County County	25787 17984	10306 6390	15057 11326	40.64 36.07
observation	3	PA PA	Potter	County County	15947 7507	6465 2300	9224 5109	41.21 31.04
	5 6	PA PA	Susquehanna	•	22835 19286	9892 8381	12702 10633	43.78 44.08
	8	PA OH	Warren Ashtabula	County County	18517 44874	8537 25027	9685 18949	46.85 56.94
	÷	:		÷	:	:	:	:

Generating a bee swarm plot

```
_ = sns.swarmplot(x='state', y='dem_share', data=df_swing)
_ = plt.xlabel('state')
_ = plt.ylabel('percent of vote for Obama')
plt.show()
```


¹ Data retrieved from Data.gov (https://www.data.gov/)

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Plot all of your data: ECDFs

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Teaching Professor at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

2008 US election results: East and West

¹ Data retrieved from Data.gov (https://www.data.gov/)

Empirical cumulative distribution function (ECDF)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Empirical cumulative distribution function (ECDF)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Empirical cumulative distribution function (ECDF)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Making an ECDF

```
import numpy as np
x = np.sort(df_swing['dem_share'])
y = np.arange(1, len(x)+1) / len(x)
_ = plt.plot(x, y, marker='.', linestyle='none')
_ = plt.xlabel('percent of vote for Obama')
_ = plt.ylabel('ECDF')
plt.margins(0.02) # Keeps data off plot edges
plt.show()
```

2008 US swing state election ECDF

¹ Data retrieved from Data.gov (https://www.data.gov/)

2008 US swing state election ECDFs

¹ Data retrieved from Data.gov (https://www.data.gov/)

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Onward toward the whole story!

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Teaching Professor at the California Institute of Technology

"Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone." — John Tukey

Coming up...

- Thinking probabilistically
- Discrete and continuous distributions
- The power of hacker statistics using np.random

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

