Surfing: Iterative Optimization Over Incrementally Trained Deep Networks

Ganlin Song, Zhou Fan, John Lafferty Yale University

Main Idea

We minimize

$$f_{\theta}(x) = \frac{1}{2} ||AG_{\theta}(x) - Ay||^2$$
 (1)

 $A \in \mathbb{R}^{m \times n}$ compression matrix $(m \ll n)$, $G_{\theta} : \mathbb{R}^k \mapsto \mathbb{R}^n$ generative network.

Goal: Find the minimizer \hat{x} and recover y by $G_{\theta}(\hat{x})$.

PROBLEM:

- $f_{\theta}(x)$ is usually non-convex.
- $f_{\theta}(x)$ has nice landscape only when G has random parameters.

OUR RESULTS:

- We propose a novel algorithm surfing that outperforms regular gradient descent in practice.
- Theoretical analysis is provided to ensure its convergence.

Surfing Algorithm

The landscape of $f_{\theta}(x)$ is nice at the beginning and getting wavy and bumpy as G_{θ} is trained.

Figure 1: Behavior of the surfaces $x \mapsto -\frac{1}{2} ||G_{\theta_t}(x) - y||^2$ for an image y from Fashion-MNIST over three levels of training. The network is trained by VAE.

Motivations:

- –Use intermediate networks when training G_{θ}
- -Apply gradient descent on each of these networks
- -Keep track of the global optimum

Algorithm:

Consider a sequence of network $G_0, G_1, \ldots, G_T, G_0$ has random weights θ_0 and G_T is trained. Write

$$f_t(x) = \frac{1}{2} ||AG_t(x) - Ay||^2, \quad \forall \ t \in [T].$$
 (2)

First minimize f_0 to obtain the minimizer x_0 , then apply gradient descent on f_t for t = 1, 2, ..., T successively, starting from the minimizer x_{t-1} for the previous network.

Theoretical Results

Consider G with ReLU activation,

$$G(x,\theta) = V\sigma(W_d \dots \sigma(W_2\sigma(W_1x+b_1)+b_2)\dots+b_d).$$

Our results:

1. If θ_0 is Gaussian and G is sufficiently expansive, then w.h.p., all critical points of $f_0(x)$ belong to a small neighborhood around 0.

Proof technique:

- G is piecewise linear, gradient of f_0 has explicit expression.
- Concentration bounds give $\nabla f_0(x) = 2^{-d}x + O(\varepsilon(1+||x||))$.
- Find v s.t. directional derivative $D_{v}f_{0}(x) < 0$ for all $||x|| > O(\varepsilon)$.
- 2. Consider a network flow $G^s(x) = G(x, \theta(s))$ for $s \in [0, S]$ and corresponding objective $f^s(x) = f(x, \theta(s))$. If the weights of G^s is bounded and the global minimizer of f^s is unique and Lipschitz-continuous, then the projected-gradient surfing can keep track of the minimizer with a small time discretization step δ of G^s .

Projected-gradient surfing:

- Identify all the linear pieces $\{P_1,...,P_l\}$ for current G_t that could contain global minimizer of f_t .
- Apply projected gradient descent $x \leftarrow \operatorname{Proj}_{P}(x \eta \nabla f_{t}(x))$ for each P_{i} .

Experiments

1. $f(x) = \frac{1}{2} ||G(x) - G(x_*)||^2$. (Invert a network)

Compared with regular gradient descent (ADAM), surfing has

- Higher proportion of convergence
- Comparable computations

Figure 2: Distribution of distance between solution \hat{x} and the truth x_* .

Input dimension		5	10	20	5	10	20	5	10	20
	Model	DCGAN			WGAN			WGAN-GP		
% successful	Regular Adam	48.3	68.7	80.0	56.0	84.3	90.3	47.0	64.7	64.7
	Surfing	78.3	98.7	96.3	81.7	97.3	99.3	83.7	95.7	97.3
# iterations	Regular Adam	618	4560	18937	464	1227	3702	463	1915	15445
	Surfing	741	6514	33294	547	1450	4986	564	2394	25991

Table 1: Percentages of solutions \hat{x} satisfying $||\hat{x} - x_*|| < 0.01$.

2. $f(x) = \frac{1}{2} ||AG(x) - AG(x_*)||^2$. (Compressed sensing, y in the range of G) Surfing find global optimum more easily than regular GD.

Figure 3: Compressed sensing setting for exact recovery.

3. $f(x) = \frac{1}{2} ||AG(x) - Ay||^2$, y from test data. Surfing improves the reconstruction of given signal y.

Figure 4: Compressed sensing setting for approximation, or rate-distortion.

The reconstruction error is given by $\sqrt{\frac{1}{n}||G(\hat{x}) - y||^2}$.

Future Work

- 1. Bridge the gap between practice and theoretical analysis for surfing.
- 2. Sometimes, gradient descent works on (1) with trained G. How do we understand this?
- 3. Regularize the training process of *G* so that (1) can always be minimized by simple gradient descent.
- 4. Apply idea of surfing to other optimization problems, where the objective has favorable properties at initial stage and evolves incrementally.