Section 9.9: Arc Length

Goal

In this section, we will learn how integrals can be used to find the arc length of differentiable functions.

Arc length

Suppose that f is a "smooth" function (i.e., f' exists and is continuous, so that there are no sharp turns or vertical tangents on f) on a closed interval [a, b].

Question 1. How could we approximate the arc length using things we know how to do?

One possible answer is to partition [a, b] into equal width subintervals (as we did when we approximated area). Between each pair of adjacent points, form a line segment.

Here's the picture:

In this case,

arc length \approx the sum of the lengths of the line segments $=\sum_{i=1}^{n}d(x_{i-1},x_i)$.

But what is each $d(x_{i-1}, x_i)$ equal to?

$$d(x_{i-1}, x_i) =$$

We have just shown that

arc length
$$\approx \sum_{i=1}^{n} \sqrt{1 + [f'(c_i)]^2} \Delta x$$
.

Well, how do you think we can get the exact value of the arc length?

$$s = \operatorname{arc length} = \underline{\hspace{1cm}}$$

Therefore, the arc length of the smooth curve y = f(x) over the interval [a, b] is given by

$$s = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx.$$

Sometimes $\sqrt{1+[f'(x)]^2} dx$ is denoted by ds, so that

$$s = \int_{a}^{b} ds$$
.

Let's play with the arc length applet located at http://calculusapplets.com.

Examples

Let's do a couple of examples.

Example 2. Find the length of the curve $y = 2x^{3/2}$ over the interval [0,1].

Example 3. Prove that the circumference of the unit circle is 2π .

Example 4. Find the length of the curve $y = x^2 - \frac{\ln x}{8}$ over the interval [1, e].