CS 2704 – Final Project Instruction

Jong-Kyou Kim, PhD Mar 24, 2025

1 Schedule

- Scheule
 - Mar 29 (Sat): Submit proposal (individual submission)
 - Apr 9 (Wed): Final presentation
 - Apr 23 (Wed): Final report/presentation

2 Requirements of the proposal

- Group members
- Choose the dataset
- Your github repository for the project
 - dataset
 - code
 - proposal
 - report
- Explain your hypothesis
- Plan for testing your hypothesis

3 Requirements of the final report

- Minimum requirement (70%)
 - Explain your hypothesis
 - * (Compare it with your original hypothesis if changed)
 - Explain the data
 - * Meta data (tables, columns, and the description of values)
 - * Source of the data (preferrably publically available)
 - Descriptive analytics
 - * Basic statistics
 - * Visualize the description (such as correlation heatmap)
 - Predictive analytics
 - * Explain the response variable
 - * Choose the predictor variables
 - Submit the code
- Intermediate requirements (20%)
 - Analyze the dataset
 - * Feature engineering of the predictor variables
 - * Visualize the feature to explain the data
 - Submit the code
- Advanced requirement (10%)
 - Build a predictive model
 - Evaluate the predictive model
 - Submit the code and the collected data

4 An example of the hypothesis and the data sets

- Brief background
 - GDP per capita could explain how well a country is prepared for treating COVID-19 such that preventing the infection to be escalated to a serious condition.

- We can find a significant correlation between the two variables
- Hypothesis: The fatality rate of covid-19 has a correlation with GDP per capita.

• Dataset:

- https://ourworldindata.org/coronavirus-source-data
- https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

• Explain the dataset

- Examples: Scatter plot of GDP vs. Fatality rate, heatmap of the correlation, etc.
- The goal: Without having a prior knowledge, the readers or the audience can recognize the relationship between variales

• Descriptive analytics

- The p-value is smaller than 0.05, therefore, the two variables are correlated
- The references for the conclusion

• Predictive analytics

- We used the linear regression to predict the fatality rate of COVID-19. We concluded that the prediction is not statistically significant.
- The references for the conclusion

• Discussion and further research

- Explain what have been useful or successful
- Explain what were the theretical or practical challenged
- Suggest future work for better understanding the dataset
 - * This may include suggestions for more data collection

5 Recommendations for possible data source

• The following web pages are supposed to be free data sources. Note: Some pages may contain broken links or possible phishing site. Bad guys seem to exploit the popularity of data analytics. Though I reviewed the following links, I might have missed something. Please inform me when you find something suspicious within the following.

```
https://wikidata.org/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://wiki.dbpedia.org/
https://www.data.gov/
https://www.usa.gov/developer
https://registry.opendata.aws/
https://www.nationalarchives.gov.uk/
https://archive.ics.uci.edu/ml/index.php
http://crawdad.org/
http://snap.stanford.edu/data/index.html
https://data.austintexas.gov/
https://registry.opendata.aws/
https://data.cityofchicago.org/
https://data.gov.uk/
https://www2.jpl.nasa.gov/srtm/
https://data.medicare.gov/
https://data.seattle.gov/
https://datasf.org/opendata/
https://www.dartmouthatlas.org/
https://www.bls.gov/
https://www.kiva.org/
https://www.faa.gov/data_research/
https://opendata.vancouver.ca/pages/home/
https://fred.stlouisfed.org/
https://stats.oecd.org/index.aspx
http://data.un.org/Explorer.aspx
https://www.ngdc.noaa.gov/ngdc.html
https://data.gov.uk/
https://data.worldbank.org/
https://pslcdatashop.web.cmu.edu/
https://data.gov.bc.ca/
```

```
https://www.archives.gov/research/alic/tools/online-databases.
html
  https://www.data.gv.at/veroeffentlichende-stellen/
  https://daten.berlin.de/datensaetze
  https://opendata.cityofnewyork.us/
  https://dados.gov.pt/pt/
  https://www.dati.gov.it/
  https://dati.trentino.it/
  https://www.google.com/publicdata/directory?hl=en_US&dl=en_US#
  https://www.google.com/publicdata/directory
  https://developer.imdb.com/
  http://usgovxml.com/
  https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.
  https://www.kaggle.com/
  https://www.theguardian.com/data
  https://github.com/awesomedata/awesome-public-datasets
```

6 Materials for your proposal

- Slides explaining your hypothesis
- URL or snippet of data
- Your guess to the expected output

7 Materials for your final presentation

- Slides
- Demonstration
 - Explain the code
 - Generate visualization

8 Sections for your final report

• Introduction and Background ($\leq 200 \text{ words}$)

- The hypothesis (≤ 200 words)
- \bullet The analysis and the implication ($\leq\!300$ words)
- Conclusion ($\leq 200 \text{ words}$)
- \bullet References (as complete as possible)