

Тиристори и IGBT

Двустабилна схема

Между PNP и NPN транзисторите съществува положителна обратна връзка:

- увеличаване на lb(Q2) води до увеличаване на lc(Q2) и следователно на lb(Q1)
- увеличаването на lb(Q1) води до пропорционално нарастване на lc(Q1), който в крайна сметка още повече увеличава lb(Q2)

Този процес ще завърши когато и двата транзистора достигна режим на насищане.

По подобен начин ще се "усилват" и отрицателните промени. Ако някакъв фактор причини намаляване на базовия ток на един от транзисторите, процесът ще продължи докато и двата транзистора достигнат режим на отсечка.

Схемата има две стабилни състояния: отворено и затворено.

Тиристор (semiconductor controlled rectifier – SCR)

Включване – импулс на гейта Изключване – намаляване на напрежението анод-катод

Предимства и приложения на тиристорите

- Могат да работят във вериги с променливо напрежение (за разлика от MOSFET)
- Малко съпротивление когато са във включено състояние (по сравнение с MOSFET)
- Издържат големи токове (приложение в схеми за защита от свръхнапрежение)
- Издържа на високи напрежения
- Управлението чрез ток на гейта се реализира с прости схеми
- Остава в включено състояние след като края на управляващия сигнал
- Изключва се когато токът стане нула (zero current turn off)

Приложения – защита от пренапрежение

Приложения – регулиране на мощност

Фазово управление (phase control)

Симетричен тиристор – триак (triac)

Диак (diac)

Пропуска ток и в двете посоки.

Включва се при достигане на определено напрежение Ubo (breakover voltage)

Диак - приложение

Изработва управляващ импулс за triac.

По-добрата симетричност на момента на отпушване (спрямо triac) намалява хармоничните смущения.

IGBT - insulated-gate bipolar transistor

IGBT - insulated-gate bipolar transistor

OT MOSFET:

Висок входен импеданс и малък входен капацитет.

От BJT:

Ниско съпротивление във включено състояние и способност да управлява големи токове.

Може да бъде изключен чрез гейта.

IGBT comparison table

Device characteristic	Power BJT	Power MOSFET	IGBT
Voltage rating	High <1 kV	High <1 kV	Very high >1 kV
Current rating	High <500 A	Low <200 A	High >500 A
Input drive	Current ratio $h_{FE} \sim 20-200$	Voltage V _{GS} ~ 3–10 V	Voltage V _{GE} ~ 4–8 V
Input impedance	Low	High	High
Output impedance	Low	Medium	Low
Switching speed	Slow (µs)	Fast (ns)	Medium
Cost	Low	Medium	High