Semaforización inteligente como herramienta de apoyo al diagnóstico de cáncer de mama en Baja California

Hospital General de Ensenada

Carlos Sánchez, Ángel González, Vitaly Kober, José Magaña, Ignacio Ayala

Universidad Autónoma de Baja California

El cáncer de mama un gran reto para México y el mundo.

Incidencia de cáncer de mama en la población de 20 años o más por sexo 2010 a 2019

(Por cada 100 mil habitantes de cada sexo)

Nota: Se utilizó la Clasificación Estadística Internacional de Enfermedades y Problemas Relacionados con la Salud (CIE-10), código C50, Excluye casos con edad no especificada.

Fuentes: SALUD, Dirección General de Epidemiología (DGE). (2020). Anuarios de Morbilidad 1984-2019. CONAPO (2018). Proyecciones de la Población de México y de las Entidades Federativas, 2016-2050.

El cáncer de mama un gran reto para México y el mundo

Nota: Se utilizó la Clasificación Estadística Internacional de Enfermedades y Problemas Relacionados con la Salud (CIE-10), código C50 (Tumor maligno de la mama).

Fuente: INEGI. Estadísticas de mortalidad 2018. Consulta interactiva de datos. SNIEG. Información de Interés Nacional. CONAPO (2018). Proyecciones de la Población de México y de las Entidades Federativas. 2016-2050.

Hechos remarcables del cáncer de mama

- 2.22.6 millones de casos.
- Al menos 14 mujeres diariamente..
- Es una de las primeras causas de incidencia y muerte

Fuente: World Health Organization (2021).

Hechos remarcables del cáncer de mama

Fuente: World Health Organization (2021).

Caso de estudio

Resumen

Transformar el proceso de entrega de diagnóstico en los hospitales públicos mexicanos, identificando y comprendiendo las diferentes etapas del proceso, con el fin de desplegar una semaforización inteligente como herramienta de apoyo al diagnóstico de cáncer de mama mediante redes neuronales convolucionales y mamografías en un entorno real.

BIRADS

Saffari, N. and al. Fully Automated Breast Density Segmentation and Classification Using Deep Learning. https://doi.org/10.3390/diagnostics10110988

BIRADS

Pesce, K., Orruma, M. B., Hadad, C., Bermúdez Cano, Y., Secco, R., & Cernadas, A. (2019). BI-RADS terminology for mammography reports: What residents need to know. RadioGraphics, 39(2), 319-320.

Trabajos relacionados

- Deep Convolutional Neural Network (CNN). Kim develops a Deep CNN that reads mammography images on DDSM and CBIS-DDSM (2019). Google developed in 2021 a Self-Supervised Learning Classifier (Multi-Instance Contrastive Learning method).
- Risk factors datasets applying Gradient-boosting decision tree model.
 Valencia-Moreno at al. deploy to public Hospital (2022).
- From free text (medical records), Nassif at al. purposed an **algorithms feature** extraction (2009).

Proceso actual

Fuente: Entrevistas con los encargados.

Mexican PACS

Mexican PACS

Mexican PACS CNN Interpretación

Mexican PACS CNN Interpretación

${\sf A\tilde{n}os/estudios}$

Año/Birads-Estudios									
Año/Birads	0	1	2	3	4	5	Total		
2011	76	474	623	57	11	0	1241		
2012	57	1227	2020	171	32	3	3510		
2013	218	1389	1423	270	49	6	3355		
2014	15	1613	1791	197	18	4	3638		
2015	33	1246	1515	184	33	0	3011		
2016	138	1149	1976	216	19	2	3500		
2017	167	521	1323	78	26	5	2120		
2018	133	619	1537	60	13	3	2365		
2019	264	196	909	50	10	6	1435		
2020	147	210	469	30	16	4	876		
2021	413	316	388	27	50	17	1211		
2022	113	357	885	1	5	10	1371		
2023	44	82	258	1	0	1	386		
Total	1818	9399	15117	1342	282	61	28019		

Interpretaciones y notas médicas

Birads-Estudios					
Birads	Estudios				
0	1813				
1	9386				
2	15055				
3	1342				
4	282				
5	61				
Total	27939				

Capitulo	apitulo Nombre	
C50	Tumor maligno de la mama	456
D05	Carcinoma in situ de la mama	97
D24	Tumor benigno de la mama	59
N60	Displasia mamaria benigna	236
		848

Preprocesamiento de DDSM

Original Image

Crop (Heuristic segmentation)
Apply Gaussian Blur
Use Otsu's binarization
Apply morphological operations
Apply the mask
Find the countours
Apply magma
Resize

Preprocessed Image

Preprocesamiento distribuido en un cluster on-promise

Ray.

Migración a DICOM WEB

OHIF y Conquest Server

Trabajo futuro.

- Ajuste fino sobre una CNN preentrenada con transformadores para extraer características clave.
- Pedir la Interpretabilidad al modelo mediante CIE10.