Développement 1. Simplicité du groupe alterné \mathfrak{A}_n lorsque $n \geqslant 5$

Lemme 1. Le groupe \mathfrak{A}_5 est simple.

Preuve Tout d'abord, comptons le nombre d'éléments du groupe \mathfrak{A}_5 classés selon leurs ordres : on trouve

- le neutre:
- $-15 = \frac{5\times4}{2} \times \frac{3\times2}{2} \times \frac{1}{2}$ éléments d'ordre 2 (ce sont les produits de deux transpositions dont les supports sont disjoints);
- $-20 = \frac{5 \times 4 \times 3}{3}$ éléments d'ordre 3 (ce sont les 3-cycles);
- -24 = 5! 1 15 20 éléments d'ordre 5.

Comme énoncé, les éléments d'ordre 3 sont conjugués dans \mathfrak{A}_5 . C'est également le cas pour les éléments d'ordre 2 puisque, si $\tau \coloneqq (a\ b)(c\ d)(e)$ et $\tau' \coloneqq (a'\ b')(c'\ d')(e')$ sont deux transpositions de \mathfrak{A}_5 , alors la 3-transitivité de l'action de \mathfrak{A}_5 sur [1,5] assure qu'il existe une permutation $\sigma \in \mathfrak{A}_5$ telle que

$$\sigma(a) = a', \quad \sigma(b) = b' \quad \text{et} \quad \sigma(e) = e'$$

et on peut alors écrire $\tau' = \sigma \tau \sigma^{-1}$.

Soit $H \leqslant \mathfrak{A}_5$ un sous-groupe distingué non trivial. On veut montrer que $H = \mathfrak{A}_5$. S'il contient un élément d'ordre 3 (respectivement 2), alors il les contient tous d'après le précédent paragraphe. S'il contient un élément d'ordre 5, alors il contient le 5-sous-groupe de Sylow engendré par cet élément, donc tous les 5-sous-groupes de Sylow — ces derniers étant conjugués — et donc tous les éléments d'ordre 5. Comme les entiers 24+1, 20+1 et 15+1 ne divisent pas $|\mathfrak{A}_5|=60$ et grâce au théorème de Lagrange, le sous-groupe H contient au moins deux des trois types d'éléments de telle sorte que $|H| \geqslant 1+15+20=36$. D'où |H|=60, soit $H=\mathfrak{A}_5$.

Théorème 2. Soit $n \ge 5$ un entier. Alors le groupe \mathfrak{A}_n est simple.

Preuve On suppose désormais n>5. Soit $H\leqslant\mathfrak{A}_5$ un sous-groupe distingué non trivial. Soit $\sigma\in H\setminus\{\mathrm{Id}_{\llbracket 1,n\rrbracket}\}$. Comme $\sigma\neq\mathrm{Id}_{\llbracket 1,n\rrbracket}$, on peut trouver un élément $a\in\llbracket 1,n\rrbracket$ tel que $b:=\sigma(a)\neq a$. Soit $c\in\llbracket 1,n\rrbracket\setminus\{a,b,\sigma(b)\}$. Considérons le 3-cycle $\tau:=(a\ c\ b)$ d'inverse $\tau^{-1}=(a\ b\ c)$ et la permutation

$$\rho \coloneqq \tau \sigma \tau^{-1} \sigma^{-1} = (a \ c \ b)(\sigma(a) \ \sigma(b) \ \sigma(c)).$$

Comme $b=\sigma(a)$, l'ensemble $F\coloneqq\{a,b,c,\sigma(a),\sigma(b),\sigma(c)\}$ a au plus 5 éléments. De plus, on a

$$\rho(F) = F \quad \text{et} \quad \rho|_{\llbracket 1,n \rrbracket \setminus F} = \operatorname{Id}_{\llbracket 1,n \rrbracket \setminus F}.$$

Quitte à rajouter des éléments à l'ensemble F, on peut supposer qu'il est de cardinal 5. Enfin, remarquons que $\rho \neq \operatorname{Id}$ car, comme $\sigma(b) \neq c = \tau^{-1}(b)$, on a

$$\rho(b) = \tau \sigma \tau^{-1} \sigma^{-1}(b) = \tau \sigma \tau^{-1}(a) = \tau \sigma(b) \neq \tau(c) = b.$$

Avec ces différentes remarques, le groupe alterné $\mathfrak{A}(F)$ est isomorphe à \mathfrak{A}_5 et se plonge dans \mathfrak{A}_n par l'application $u \longmapsto \overline{u}$ où, pour chaque permutation $u \in \mathfrak{A}(F)$, on définit la permutation $\overline{u} \in \mathfrak{A}_n$ par les égalités

$$\overline{u}|_F = u$$
 et $\overline{u}|_{\llbracket 1,n \rrbracket \setminus F} = \operatorname{Id}_{\llbracket 1,n \rrbracket \setminus F}$.

Le groupe $H_0 := \{ u \in \mathfrak{A}(F) \mid \overline{u} \in H \} = H \cap \mathfrak{A}(F)$ est distingué dans $\mathfrak{A}(F)$ et on a $\rho|_F \in H_0$ et $\rho|_F \neq \mathrm{Id}_F$, c'est-à-dire $\rho|_F \in H_0 \setminus \{\mathrm{Id}_F\}$.

Grâce au lemme, le groupe $\mathfrak{A}(F) \simeq \mathfrak{A}_5$ est distingué ce qui impose $H_0 = \mathfrak{A}(F)$.

Soit $u_0 \in \mathfrak{A}(F)$ un 3-cycle. Alors la permutation $\overline{u} \in H$ est encore un 3-cycle. Les 3-cycles étant conjugués dans \mathfrak{A}_n et le sous-groupe H étant distingué, ce dernier contient tous les 3-cycles. Enfin, comme les 3-cycles engendrent le groupe \mathfrak{A}_n , on en déduit $H = \mathfrak{A}_n$.

Précision

Dans la preuve du lemme, on peut se passer du théorème de Sylow pour montrer que, si un sous-groupe distingué $H \triangleleft \mathfrak{A}_5$ contient un 5-cycle, alors il les contient tous.

Soient $\tau, \tau' \in \mathfrak{S}_5$ deux 5-cycles. Alors il existe une permutation $\sigma \in \mathfrak{S}_n$ telle que $\tau' = \sigma \tau \sigma^{-1}$. On suppose que $\tau \in H$. On veut montrer que $\tau' \in H$. Distinguons deux cas. Si $\sigma \in \mathfrak{A}_5$, c'est plié! On suppose que $\sigma \notin \mathfrak{A}_5$. Notons $\tau = (a \ b \ c \ d \ e)$. Comme $\tau^2 = (a \ c \ e \ b \ d)$, en notant $\rho := (b \ c \ e \ d)$, on a $\rho \tau \rho^{-1} = \tau^2$ de telle sorte que

$$\tau' = \tilde{\sigma}\tau^2\tilde{\sigma}^{-1}$$
 avec $\tilde{\sigma} := \sigma\rho^{-1} \in \mathfrak{A}_5$.

Comme $\tau^2 \in H$, cela montre que $\tau' \in H$.

Application

Corollaire 3. Soit $n \ge 5$ un entier. Alors le seul sous-groupe distingué non trivial et propre de \mathfrak{S}_n est \mathfrak{A}_n .

Preuve Soit H un sous-groupe distingué de \mathfrak{S}_n . Alors le sous-groupe $H \cap \mathfrak{A}_n$ est distingué dans \mathfrak{A}_n . Grâce au théorème, on en réduit à traiter les deux points suivants.

- Si $H \cap \mathfrak{A}_n = \mathfrak{A}_n$, alors $H \supset \mathfrak{A}_n$ et, pour des raisons d'ordre, on a $H \in {\mathfrak{A}_n, \mathfrak{S}_n}$.
- On suppose $H \cap \mathfrak{A}_n = \{ \mathrm{Id} \}$. Alors la signature induit un isomorphisme

$$\varepsilon \colon H \longrightarrow \varepsilon(H) \subset \{\pm 1\}$$

ce qui assure l'inégalité $|H| \leq 2$. Raisonnons par l'absurde et supposons que |H| = 2. On note alors $H = \{\mathrm{Id}, \sigma\}$ avec $\sigma \in \mathfrak{A}_n \setminus \{\mathrm{Id}\}$. Pour toute permutation $\tau \in \mathfrak{S}_n$, la distinction donne $\tau \sigma \tau^{-1} \in H$ et, comme $\tau \sigma \tau^{-1} \neq \mathrm{Id}$, on en déduit $\tau \sigma \tau^{-1} = \sigma$ ce qui montre $\sigma \in \mathrm{Z}(\mathfrak{S}_n)$. Le centre de \mathfrak{S}_n étant trivial, cela conduit à une contradiction. D'où |H| = 1, soit $H = \{\mathrm{Id}\}$.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.