10.11 Attendu que h est un automorphisme, la restriction de h à F est aussi bijective, c'est-à-dire que pour un $y \in F$ quelconque, il existe $y' \in F$ tel que h(y') = y.

Soit
$$x \in \mathcal{F}^{\perp}$$
.

Par définition, $x \cdot y = 0$ pour tout $y \in F$.

Soit $y \in F$.

Il existe $y' \in F$ tel que h(y') = y.

$$h(x) \cdot y = h(x) \cdot h(y') = x \cdot y' = 0.$$

On a ainsi montré que $h(x) \in \mathcal{F}^{\perp}$.