

PREDICTIVE ANALYTIC REPORT

This analysis is designed to predict customer salary correlation with certain custom attributes and then create models for predicting future salary trends

Import Required Libraries

```
In [36]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Get Data For Analysis

```
In [38]: data = "ANZ_synthesised_transaction_dataset.xlsx"
    customer_data = pd.read_excel(data)
```

In [4]: customer_data.head()

Out[4]:	age	merchant_suburb	merchant_state	extraction	amount	trar	1
	26	Ashmore	QLD	2018-08- 01T01:01:15.000+0000	16.25	a623070bfead4541a6b0ff	f
	26	Sydney	NSW	2018-08- 01T01:13:45.000+0000	14.19	13270a2a902145da9db4c95	5
	38	Sydney	NSW	2018-08- 01T01:26:15.000+0000	6.42	feb79e7ecd7048a5a36ec88	} !
	40	Buderim	QLD	2018-08- 01T01:38:45.000+0000	40.90	2698170da3704fd981b15e6) ,
	26	Mermaid Beach	QLD	2018-08- 01T01:51:15.000+0000	3.25	329adf79878c4cf0aeb4188	3
							_
	4					• • • • • • • • • • • • • • • • • • •	

In [5]: customer_data.tail()

Out[5]: :hant_state	extraction	amount	transaction_id	country	customer_id
VIC	2018-10- 31T23:09:06.000+0000	9.79	f2e3e695c2ee4c50a4c8747f852cbe2e	Australia	CUS- 55310383
NSW	2018-10- 31T23:21:46.000+0000	63.87	56e147e5485f4683b9076fcaaed76640	Australia	CUS- 2688605418
NSW	2018-10- 31T23:34:25.000+0000	43.96	2fdd4681827343f6af2e6519644a684a	Australia	CUS- 2663907001
VIC	2018-10- 31T23:47:05.000+0000	30.77	74aa9cd7e4af4c6d9cd7dbd28e9aedc9	Australia	CUS- 1388323263
NSW	2018-10- 31T23:59:44.000+0000	22.36	6d5218e04e8040b9996850ce11a19426	Australia	CUS- 3129499595

Checking Details of data

```
In [6]: customer data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 12043 entries, 0 to 12042
          Data columns (total 23 columns):
           #
               Column
                                    Non-Null Count
                                                      Dtype
           0
                status
                                    12043 non-null
                                                      object
           1
               card_present_flag
                                    7717 non-null
                                                      float64
           2
               bpay biller code
                                    885 non-null
                                                      object
           3
               account
                                    12043 non-null
                                                      object
           4
               currency
                                    12043 non-null
                                                      object
           5
               long_lat
                                    12043 non-null
                                                      object
                                    12043 non-null
           6
               txn description
                                                      object
           7
               merchant_id
                                    7717 non-null
                                                      object
           8
               merchant_code
                                    883 non-null
                                                      float64
           9
                first name
                                    12043 non-null
                                                      object
                                                      float64
           10
               balance
                                    12043 non-null
           11
               date
                                    12043 non-null
                                                      datetime64[ns]
           12
               gender
                                    12043 non-null
                                                      object
           13
                                                      int64
               age
                                    12043 non-null
           14
               merchant_suburb
                                    7717 non-null
                                                      object
           15
               merchant state
                                    7717 non-null
                                                      object
           16
               extraction
                                    12043 non-null
                                                      object
           17
               amount
                                    12043 non-null
                                                      float64
           18
               transaction id
                                    12043 non-null
                                                      object
           19
               country
                                    12043 non-null
                                                      object
           20
               customer_id
                                    12043 non-null
                                                      object
               merchant_long_lat
           21
                                                      object
                                    7717 non-null
                                    12043 non-null
               movement
                                                      object
          dtypes: datetime64[ns](1), float64(4), int64(1), object(17)
          memory usage: 2.1+ MB
 In [8]: customer_data.shape
 Out[8]: (12043, 23)
          customer data.describe()
In [10]:
Out[10]:
                 card_present_flag
                                 merchant_code
                                                      balance
                                                                      age
                                                                                amount
                      7717.000000
                                                 12043.000000 12043.000000 12043.000000
           count
                                          883.0
           mean
                         0.802644
                                            0.0
                                                 14704.195553
                                                                 30.582330
                                                                             187.933588
             std
                         0.398029
                                            0.0
                                                 31503.722652
                                                                 10.046343
                                                                             592.599934
             min
                         0.000000
                                            0.0
                                                     0.240000
                                                                 18.000000
                                                                               0.100000
            25%
                         1.000000
                                            0.0
                                                  3158.585000
                                                                 22.000000
                                                                              16.000000
            50%
                         1.000000
                                            0.0
                                                  6432.010000
                                                                 28.000000
                                                                              29.000000
            75%
                         1.000000
                                            0.0
                                                 12465.945000
                                                                 38.000000
                                                                              53.655000
            max
                         1.000000
                                            0.0
                                                267128.520000
                                                                 78.000000
                                                                            8835.980000
```

Getting the Data Cleaned

In [14]:	4]: customer_data.isnull()								
Out[14]:	ınt_id	merchant_code	first_name		age	merchant_suburb	merchant_state	extraction	amount
•	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	False	True	False		False	False	False	False	False
	4								
									•
In [19]:	cust	omer_data[<mark>'ba</mark>	lance'].is	nul	1().v	alue_counts()			
Out[19]:	Fals	e 12043							
	Name	: balance, dt	ype: int64	1					
In [21]:	<pre>customer_data['age'].isnull().value_counts()</pre>								
Out[21]:	Fals	e 12043							
out[21].		: age, dtype:	int64						
In [25]:		cking for out omer_data['ag		be()				
Out[25]:	coun	t 12043.00	0000						
	mean								
	std min	10.04 18.00							
	25%	22.00							
	50%	28.00							
	75%	38.00	0000						
	max 78.000000								
	Name	: age, dtype:	float64						

```
In [27]: #Checking for outliers
    customer_data['age'].plot(kind='box', vert=False, figsize = (10, 6))
```

```
Out[27]: <AxesSubplot:>
```



```
In [22]: customer_data['gender'].value_counts()
Out[22]: M
              6285
              5758
         Name: gender, dtype: int64
In [24]: | customer_data['amount'].isnull().value_counts()
Out[24]: False
                   12043
         Name: amount, dtype: int64
In [37]: #Checking for outliers
         customer_data['amount'].describe()
Out[37]: count
                   12043.000000
         mean
                     187.933588
         std
                     592.599934
                       0.100000
         min
         25%
                      16.000000
         50%
                      29.000000
         75%
                      53.655000
                    8835.980000
         max
         Name: amount, dtype: float64
```

```
In [35]: dx = customer_data['amount'].plot(kind='density', figsize = (10,6))
    dx.axvline(customer_data['amount'].mean(), color="red")
    dx.axvline(customer_data['amount'].median(), color='blue')
```

Out[35]: <matplotlib.lines.Line2D at 0x1735be3cb20>


```
In [39]: customer_data['txn_description'].value_counts()
```

Out[39]: SALES-POS 3934 POS 3783 PAYMENT 2600 PAY/SALARY 883 INTER BANK 742 PHONE BANK 101

Name: txn_description, dtype: int64

```
In [44]: customer_data['txn_description'].value_counts().plot(kind="pie", figsize =(4,3))
```

Out[44]: <AxesSubplot:ylabel='txn_description'>


```
In [41]: customer_data['status'].value_counts()
```

Out[41]: authorized 7717 posted 4326

Name: status, dtype: int64

```
In [43]: customer_data['status'].value_counts().plot(kind="pie", figsize=(4,4))
```

Out[43]: <AxesSubplot:ylabel='status'>


```
In [39]: customer_data['salary'] = customer_data['amount'] + customer_data['balance']
    customer_data['salary'].head()
```

Out[39]: 0 51.64 1 35.39 2 12.13 3 2158.12 4 21.20

Name: salary, dtype: float64

```
In [46]: customer_data['salary'].plot(kind="box", figsize=(4,6))
```

Out[46]: <AxesSubplot:>

Finding Relationships and Correlations

```
In [51]: corr = customer_data.corr()
corr
```

Out[51]:

	card_present_flag	merchant_code	balance	age	amount	salary	
card_present_flag	1.000000	NaN	0.005925	-0.008405	-0.002074	0.005912	
merchant_code	NaN	NaN	NaN	NaN	NaN	NaN	
balance	0.005925	NaN	1.000000	0.199329	0.059178	0.999824	
age	-0.008405	NaN	0.199329	1.000000	0.029980	0.199636	
amount	-0.002074	NaN	0.059178	0.029980	1.000000	0.077888	
salary	0.005912	NaN	0.999824	0.199636	0.077888	1.000000	

```
In [53]: fig = plt.figure(figsize=(8,8))
    plt.matshow(corr, cmap='RdBu', fignum=fig.number)
    plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical');
    plt.yticks(range(len(corr.columns)), corr.columns);
```


It is clear that Merchant code has no impact on the data

If we decide to drop it the new correlation will look like this

In [57]: corr = customer_data.drop(['merchant_code'], axis = 1).corr()
corr

Out[57]:		card_present_flag	balance	age	amount	salary
	card_present_flag	1.000000	0.005925	-0.008405	-0.002074	0.005912
	balance	0.005925	1.000000	0.199329	0.059178	0.999824
	age	-0.008405	0.199329	1.000000	0.029980	0.199636
	amount	-0.002074	0.059178	0.029980	1.000000	0.077888
	salary	0.005912	0.999824	0.199636	0.077888	1.000000

```
In [58]: fig = plt.figure(figsize=(8,8))
    plt.matshow(corr, cmap='RdBu', fignum=fig.number)
    plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical');
    plt.yticks(range(len(corr.columns)), corr.columns);
```



```
In [67]: customer_data.plot(kind='scatter', x= 'age', y='salary', figsize=(4,4))
```

Out[67]: <AxesSubplot:xlabel='age', ylabel='salary'>


```
In [ ]:
```

Creating a regression model

```
In [8]: #simple linear regression
sns.regplot(x='age', y='salary', data=customer_data)
```

Out[8]: <AxesSubplot:xlabel='age', ylabel='salary'>

In [12]: #Relationship between the amount a customer is willing to spend and his salary
sns.regplot(x='amount', y='salary', data=customer_data)

Out[12]: <AxesSubplot:xlabel='amount', ylabel='salary'>

In [60]: #predicting the salary model based on amount spent, age, and account balance
 reqdata = customer_data[['balance','age','amount','salary']]
 reqdata.head()

Out[60]:

	balance	age	amount	salary
0	35.39	26	16.25	51.64
1	21.20	26	14.19	35.39
2	5.71	38	6.42	12.13
3	2117.22	40	40.90	2158.12
4	17.95	26	3.25	21.20

In [61]: #correlation matrix for the new data sns.heatmap(reqdata.corr())

Out[61]: <AxesSubplot:>


```
In [62]:
    x = reqdata.iloc[:, :-1].values
    y = reqdata.iloc[:, 3].values

In [63]: #spliting dataset into training and testing data
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_s)

In [64]: #fitting mutiple linear regression to the training set
    from sklearn.linear_model import LinearRegression
    model_fit = LinearRegression()
    model_fit.fit(x_train, y_train)

Out[64]: LinearRegression()

In [65]: y_predict = model_fit.predict(x_test)
    y_predict

Out[65]: array([2176.02, 7920.17, 6370.68, ..., 183.91, 360.95, 492.41])
```

<pre>from sklearn.metrics import r2_score r2_score(y_test, y_predict)</pre>

Out[66]: 1.0

Perfect Model

The Age, Account balance and amount spent can be used to predict the salary of a customer

In []:				
---------	--	--	--	--