彭·惠毅

高等数学下期末试题集

(2010-2021)

彭康书院学业辅导与发展中心

目录

2021	年高数	下期末词	忧题•••••	 			1
2020	年高数	下期末词	忧题·······	 			5
2019	年高数 ⁻	下期末词	忧题·······	 		八人	9
2018	年高数 ⁻	下期末试	忧题·······	 		/	13
2017	年高数	下期末记	忧题·······		\\ \'		17
2016	年高数	下期末记	忧题·······				21
2015	年高数	下期末记	忧题	Y 4			25
2014	年高数 ⁻	下期末边					30
2013	年高数*	丁期朱证	徒	 			34
A	全 复数		忧题·······	 			38
2011	杨	▼	忧题·······	 			42
2010	年高数	下期末词	忧题	 			46

一、填空题

1. 曲面 $\sin^2 x + \cos(y+z) = \frac{3}{4}$ 在点 $(x, y, z) = \left(\frac{\pi}{6}, \frac{\pi}{3}, 0\right)$ 处的切平面方程是 _______。

2. 设
$$\sum_{n=1}^{\infty} a_n$$
 条件收敛,则幂级数 $\sum_{n=1}^{\infty} \left(a_n + \frac{1}{n}\right) x^n$ 的收敛半径 R 等于 ______。

3. 若 \mathbb{R}^2 上的可微函数 u(x,y) 的梯度 **grad** $u=(2x+e^x\sin y,e^x\cos y)$,且 $u(0,\pi)=2$,则 u(x,y)=0

4. 设 $L: x = 2\cos t, y = 2\sin t, z = 2t(0 \le t \le \pi)$,则 $\int_{L} \frac{z^2}{x^2 + y^2} ds = \underline{\hspace{1cm}}$ 。

5. 设 $f(x) = \begin{cases} 2x, & -1 \le x \le 0 \\ x^2 + 1, & 0 \le x \le 1 \end{cases}$, 将 f(x) 展开成以 2 为周期的傅里叶级数,其和函数记为 S(x),则

$$S\left(-\frac{15}{2}\right) = \underline{\hspace{1cm}}$$

二、选择题

1. 函数
$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & x^2 + y^2 = 0\\ 0, & x^2 + y^2 \neq 0 \end{cases}$$
 在原点 $(0,0)$ 处

- (A) 连续且偏导数存在
- (B) 沿各个方向的方向导数都存在,但不可微

(C) 可微

(D) 连续但偏导数不存在

2. 设空间区域
$$\Omega = \{(x, y, z) | 0 \le z \le \sqrt{4 - x^2 - y^2}, x^2 + y^2 \le 1 \}$$
,则 Ω 的体积等于 ()

(A)
$$4 \int_{0}^{\pi/2} d\theta \int_{0}^{1} r \sqrt{4 - r^2} dr$$

(B)
$$\int_0^{2\pi} d\theta \int_0^2 r \sqrt{4 - r^2} dr$$

(C)
$$4\int_0^{\pi/2} d\theta \int_0^1 \sqrt{4-r^2} dr$$

(D)
$$\int_0^{2\pi} d\theta \int_0^2 \sqrt{4 - r^2} dr$$

3. 设
$$\Sigma$$
: $x^2 + y^2 + z^2 = a^2$, $z \ge 0$,在以下四组积分中,一组中两个积分同时为 0 的是 ()

(A)
$$\iint_{\Sigma} z^2 dx dy$$
, $\iint_{\Sigma} z dx dy$

(B)
$$\iint_{\Sigma} xz \, dy \, dz, \iint_{\Sigma} z^2 \, dy \, dz$$

(C)
$$\iint_{\Sigma} y dx dz$$
, $\iint_{\Sigma} y^2 dx dz$

(D)
$$\iint_{\Sigma} y^2 dx dz$$
, $\iint_{\Sigma} 1 dx dz$

()

(A)
$$e^2 - e$$

(B)
$$\frac{1}{2}e^2 - e$$

(C)
$$e^2+e$$

(D)
$$\frac{1}{2}e^2 + e$$

5. 下列命题中正确的是

()

- (A) 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,且 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 存在,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$
- (B) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 发散,必存在 $N \in \mathbb{N}_+$, 当 n > N 时,恒有 $a_n > \frac{1}{n}$
- (C) 设 $f(x) = x \sin x$,则 $\sum_{n=1}^{\infty} (-1)^n f\left(\frac{1}{\sqrt{n}}\right)$ 绝对收敛
- (D) 若级数 $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛

三、 计算题

+. 设函数 f(u,v) 具有连续二阶偏导数, $z = xf\left(xy, \frac{x}{y}\right)$,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$ 。

2. 计算曲面积分 $\iint_{\Sigma} xz dS$, 其中 Σ 是圆锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2ax(a > 0)$ 所截部分。

3. 求函数 $z = \frac{x^3}{3} - xy + \frac{y^2}{2} - 2y$ 的极值。

4. 计算曲线积分 $\int_{C} \sqrt{x^2 + y^2} dx + \left[2x + y \ln(x + \sqrt{x^2 + y^2}) \right] dy$,其中有向曲线 $C: y = x \sin x$,方向: $A(\pi, 0) \to O(0, 0)$ 。

5. 计算第二类曲面积分 $\iint_{\Sigma} x^3 dy dz - 3x^2 y dz dx + (z^3 - 2) dx dy$, 其中 Σ 是曲面 $z = x^2 + y^2 (0 \le z \le 1)$ 的下 侧。

- 6. (1) 将函数 $f(x) = \frac{\ln(1+x)}{x}$ 展开成麦克劳林级数;
 - (2) 利用(1)中所得级数,求积分 $\int_0^1 f(x) dx$ 的值(注: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$)。

五、将函数
$$f(x) = x - \frac{\pi}{2} + \left| x - \frac{\pi}{2} \right| (0 \le x \le \pi)$$
 展成余弦级数。

六、求幂级数 $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} x^n$ 的和函数,并求 $\sum_{n=2}^{\infty} \frac{1}{(n^2 - 1)2^n}$ 的和。

七、函数 f(x,y)满足 $\frac{\partial f(x,y)}{\partial x} = (2x+1)e^{2x-y}$,且 f(0,y) = y+1, L_t 是从点 (0,0) 到点 (1,t) 的光滑曲线,计算曲线积分

$$I(t) = \int_{L_1} \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial x} dy$$

并求I(t)的最小值。

八、设函数 f(x) 在 $[0,+\infty)$ 上连续,且单调增加有上界。证明级数 $\sum_{n=1}^{\infty} \left[f(n) - \int_{n-1}^{n} f(x) dx \right]$ 收敛。

选择题

+ 函数 f(x,y) 的下面四条性质:

- (1)在点 (x_0, y_0) 处连续;
- (2) 在点 (x_0, y_0) 处两个偏导数连续;
- (3) 在点 (x_0, y_0) 处可微;
- (4) 在点 (x_0, y_0) 处两个偏导数存在;

则如下表示的推导关系成立的是

- (A) $(2) \to (3) \to (1)$
- (B) $(3) \rightarrow (2) \rightarrow (1)$ (C) $(3) \rightarrow (4) \rightarrow (1)$
- (D) $(3) \to (1) \to (4)$

2. 设f(x,y)为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r\sin\theta, r\cos\theta) r dr$ 等于

)

- (A) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x, y) dy$
- (B) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$
- (C) $\int_0^{\frac{\sqrt{2}}{2}} dy \int_y^{\sqrt{1-y^2}} f(x, y) dx$ (D) $\int_0^{\frac{\sqrt{2}}{2}} dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$

3. 设 L 为逆时针方向的圆周 $x^2 + y^2 = a^2$,则 $\oint \frac{(x+y)dx - (x-y)dy}{x^2 + y^2} = a^2$

(A) 0

(B) 2π

(C) $-\pi$

(D) -2π

4. 设级数 $\sum_{i=1}^{\infty} u_n$ 收敛,则下列级数中必定收敛的是

()

- (A) $\sum_{n=1}^{+\infty} (-1)^n \frac{u_n}{n}$ (B) $\sum_{n=1}^{+\infty} u_n^2$
- (C) $\sum_{1}^{+\infty} u_{2n-1} u_{2n}$ (D) $\sum_{1}^{+\infty} u_n u_{n+1}$

5. 设函数 f(x) 是以 2π 为周期的函数,它在区间 $\left[-\pi,\pi\right]$ 上的表达式 $f(x) = \begin{cases} -x, -\pi \le x \le 0 \\ 0.0 < x \le \pi \end{cases}$,则

f(x) 的傅里叶级数在 $X = -\pi$ 收敛于

()

(A) 0

(B) $\frac{\pi}{2}$

- (C) $-\frac{\pi}{2}$
- (D) T

填空题

1. 设曲面 S: z = x + f(y - z),其中 f 可导,则该曲面在任一点处切平面的法向量 n 与向量 (1,1,1) 的夹 角 份 为 。

$$\frac{2}{2} \cdot \int_0^1 dy \int_y^1 \frac{\tan x}{x} dx = \underline{\qquad}$$

3. 设曲面
$$\Sigma$$
 是 $z = \sqrt{4-x^2-y^2}$ 的上侧,则 $\iint_{\Sigma} xydydz + xdzdx + x^2dxdy = ______.$

4. 己知
$$\sum_{n=1}^{+\infty} a_{2n-1} = 5$$
 , $\sum_{n=1}^{+\infty} (-1)^{n-1} a_n = 2$, 则 $\sum_{n=1}^{+\infty} a_n =$ _______。

5.—幂级数
$$\sum_{n=0}^{+\infty} \frac{1}{n!} x^{3n+4}$$
 的和函数 $S(x)$ 为 ______。

三、 计算题

1.
$$\forall u = f(x, y, z)$$
, $\varphi(x^2, e^y, z) = 0$, $y = \sin x$, 其中 f, φ 都具有一阶连续偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0$,求 $\frac{du}{dx}$ 。

2. 求函数 $f(x,y) = x^2 + 2y^2 - x^2y^2$ 在区域 $D = \{(x,y) \mid x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值与最小值。

3. 设 n 为 曲 线 $\begin{cases} x^2 + y^2 + z^2 = 6^2 \\ x + y + z = 0 \end{cases}$ 在 点 (1, -2, 1) 处 的 单 位 切 向 量 , 且 与 OZ 轴 正 向 夹 角 呈 锐 角 , 求 函 数 $f(x, y, z) = \ln(x^2 + y^2 + z^2)$ 在 点 (0, 1, 2) 处 沿 向 量 n 的 方 向 导 数 。

4. 设是 Ω 是曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = 2 - x^2 - y^2$ 所围成的立体,求 Ω 的体积V和表面积S。

5. 计算曲面积分 $\int_L (2xy-y^2\cos x)dx + (1-2y\sin x + 3x^2y^2)dy$,其中 L 为抛物线 $2x = \pi y^2$ 从点 (0,0) 到点 $(\frac{\pi}{2},1)$ 的一段弧。

7. 计算三重积分 $\iiint_{(V)} (\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2 dv$,其中 (V) 为球体 $x^2 + y^2 + z^2 \le R^2$, a,b,c 为正数。

四、设函数
$$f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x, x \neq 0 \\ 1, x = 0 \end{cases}$$

- (1) 将函数 f(x) 展开为x的幂级数;
- (2) 求级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{1-4n^2}$ 的和。

五、设 f(x) 在 $\left[-\pi,\pi\right]$ 上具有二阶连续导数,且 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx$,其中 $a_n \ (n=0,1,2...)$ 是函数 f(x) 的傅里叶系数,求证: $\sum_{n=0}^{+\infty} a_n$ 绝对收敛。

2019 年高等数学下册期末试题

一、填空题 (每小题 3分, 共 15分)

- 1. 函数 $uu=2xxyy-zz^2$ 在点 (2,-1,1) 处沿 II=(1,2,-2) 的方向<u>导数是</u>
- 2.—级数 $\sum_{n=2}^{\infty} \frac{\ln n}{2^n} (x+1)^n$ 的收敛域是_____.
- 3. 曲面 $z = x^2 + y^2 1$ 在点 $M_0(2, 1, 4)$ 处的切平面方程为______
- 4...设曲线 L 是从点 O(0,0,0) 到 A(1,2,2) 的直线段,则对弧长的曲线积分 $\int_L x e^{yz} ds =$ ______.

5. 设
$$f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ 2 - 2x, \frac{1}{2} < x < 1 \end{cases}$$
, $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x (-\infty < x < +\infty)$, 其中 $a_n = 2 \int_0^1 f(x) \cos n\pi x dx (n = 0, 1, 2, \dots)$, 则 $S(-\frac{5}{2}) = \underline{\hspace{1cm}}$.

二、计算题 (每小题 6 分, 共 18 分)

1_设函数 u = f(x, y, z), f 具有连续的二阶偏导数, 且 $z = e^x \sin y$, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$.

2. 计算 $\int_C -y^2 dx + x dy + z^2 dz$, 其中曲线 C 是平面 y + z = 4 与柱面 $x^2 + y^2 = 2y$ 的交线, 且从 z 轴正向往下看是 逆时针方向.

3. 计算曲面积分 $\iint\limits_{\Sigma} \left(x^2+y^2\right) \mathrm{d}S$, 其中 Σ 是锥面 $z=\sqrt{x^2+y^2}, 0 \leq z \leq 2$ 部分.

三、计算题 (每小题 7分, 共 21分)

1. 求曲面 $z=x^2+y^2$ 与圆锥面 $z=2-\sqrt{x^2+y^2}$ 所围空间闭区域 Ω 的体积.

2. 求幂级数 $\sum_{n=0}^{\infty} \frac{(2n+1)}{n!} x^{2n}$ 的和函数 S(x).

3. 计算 $\displaystyle\iint\limits_{\Omega}(2\sin y+z)\mathrm{d}V,$ 其中 $\Omega=\left\{(x,y,z)\mid x^2+y^2+z^2\leq 2z, z\geq \sqrt{x^2+y^2}\right\}.$

四、解答题 (每小题 8 分, 共 32 分)

1. 求曲线积分
$$\int\limits_{L} \frac{-y \, \mathrm{d}x + x \, \mathrm{d}y}{x^2 + y^2}$$
, 其中 L 为摆线
$$\begin{cases} x = t - \sin t - \pi, \\ y = 1 - \cos t \end{cases}$$
 由 $t = 0$ 到 $t = 2\pi$ 的一段.

2. 求椭圆
$$\begin{cases} 5x^2 - 6xy + 5y^2 = 4 \\ z = 0 \end{cases}$$
 上的点到点 $M(0,0,2)$ 的最长距离和最短距离.

3. 求向量场 $\vec{A} = (2x + z)\mathbf{i} + y^2\mathbf{j} + z\mathbf{k}$ 通过抛物面 $\Sigma : z = x^2 + y^2 (0 \le z \le 1)$ 下侧的通量.

4. 将函数 $f(x) = \sin \frac{x}{2} (-\pi \le x \le \pi)$ 展开成傅里叶级数.

五、(8分)将 $f(x) = (1+x)\ln(1+x)$ 展开成 x 的幂级数,并求 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)}$ 的和.

六、(6 分) 设平面区域 $D = \{(x,y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的边界正向. 证明: $\int\limits_{L} x \mathrm{e}^{\sin y} \, \mathrm{d}y - y \mathrm{e}^{-\sin x} \, \mathrm{d}x \ge \frac{5}{2} \pi^2$.

一、单选题

- 1. 设函数 f(x,y) 在点 $P(x_0,y_0)$ 处的某个领域内有定义,则下列说法正确的是(
 - A. 若 f(x,y) 在点 P 处的偏导数存在,则 f(x,y) 在该点一定可微
 - B. 若 f(x,y) 在点 P 处连续,则 f(x,y) 在该点的偏导数一定存在
 - C. 若 f(x,y) 在点 P 处有极限,则 f(x,y) 在该点一定连续
 - D. 若f(x,y)在点P处可微,则f(x,y)在该点连续且偏导数一定存在
- 2. 若 f(x,y)在 D: $a \le x \le b, c \le y \le d$ 上有二阶连续偏导数,则 $\iint_{D} \frac{\partial^2 f(x,y)}{\partial x \partial y} dx dy = ($)
 - A. f(a,d)-f(b,d)-f(b,c)+f(a,c)
- B. f(b,d)-f(a,d)-f(b,c)+f(a,c)
- C. f(a,d)-f(b,d)-f(a,c)+f(b,c)
- D. f(b,d) f(a,d) f(a,c) + f(b,c)
- 3. 若 L 是球面 $x^2 + y^2 + z^2 = 4$ 与平面 x + y + z = 0 的交线,则 $I = \oint_L (x+1)^2 ds = ($)
 - A. $\frac{28}{3}\pi$

Β. 8π

C. $\frac{19}{3}\pi$

- D. 12π
- 4. 设 f(x) 为连续函数, $F(t) = \int_1^t dy \int_v^t f(x) dx$,则 F'(2) = ()
 - A. 2f(2)
- B. f(2)

- C. -f(2)
- D. 0

二、计算题

1. 求曲面 $e^{z} - z + xy = 3$ 在点(2,1,0)处的切平面方程和法线方程.

2. 求密度为 1 的抛物体V: $x^2 + y^2 \le z \le 1$ 绕 z 轴的转动惯量.

3. 设S为上半球面 $x^2 + y^2 + z^2 = 4, z \ge 0$, 计算 $\iint_{(s)} (x + y + z) dS$.

4. 计算 $I = \int_{L} \left[y^2 + \sin^2(x+y) \right] dx + \left[x^2 - \cos^2(x+y) \right] dy$, 其中 L 为曲线 $y = \sqrt{1-x^2}$ 从上点 A(1,0) 到 B(0,1) 的一段弧.

5. 计算积分 $I = \oint_C z dx + x dy + y dz$,其中 C 为 x + y + z = 1 被三个坐标面所截的三角形的边界,方向与三角形上侧的法向量构成右手法则.

7. 计算
$$I = \int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$$
.

1. 讨论函数
$$f(x,y) = \begin{cases} xy \arctan \frac{1}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 处的连续性、偏导数存在性、可微性.

2. 在椭球面 $2x^2+2y^2+z^2=1$ 上求一点 P,使得函数 $u=x^2+y^2+z^2$ 在点 P 沿方向 n=(1,-1,0) 的方向导数最大,并求此方向导数的最大值.

3. 计算 $I = \bigoplus_{(s)} (x - y + z) dy \wedge dz + (y - z + x) dz \wedge dx + (z^2 - x + y) dx \wedge dy$, 其中 S 为曲面 $x^2 + y^2 + z^2 = R^2$ 与 $x^2 + y^2 + (z - R)^2 = R^2$ 所围立体表面的外侧.

4. 设L是不经过点(2,0),(-2,0)的分段光滑的简单正向闭曲线,试就L的不同情形计算曲线积分:

$$I = \oint_{L} \left[\frac{y}{(2-x)^{2} + y^{2}} + \frac{y}{(2+x)^{2} + y^{2}} \right] dx + \left[\frac{2-x}{(2-x)^{2} + y^{2}} - \frac{2+x}{(2+x)^{2} + y^{2}} \right] dy$$

一、计算题

1. 求 $u = 4x^2 + y^2 + z^2$ 在点M(1,0,2)处的梯度及最大方向导数.

2. 判定级数 $\sum_{n=1}^{\infty} a^n \sin \frac{\pi}{2^n}$ (a > 0) 的敛散性.

3. 将函数 $f(x) = x \in [0,\pi]$ 上展成余弦级数.

4. 设 $u = f(t), t = \varphi(xy, x)$, 其中f, φ 具有连续的二阶导数及偏导数, 求 $\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x \partial y}$.

5. 求曲线 $\begin{cases} x = t \\ y = -t^2$ 与平面 x + 2y + z = 4 平行的切线方程. $z = t^3$

6. 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的所有极值.

7. 计算累次积分 $I = \int_0^1 dx \int_x^1 x^2 e^{-y^2} dy$.

9. 计算曲面积分 $I = \iint_{\Sigma} \frac{x^3}{r^3} dy \wedge dz + \frac{y^3}{r^3} dz \wedge dx + \frac{z^3}{r^3} dx \wedge dy$, $r = \sqrt{x^2 + y^2 + z^2}$, Σ 为 $x^2 + y^2 + z^2 = a^2$ 的外侧.

10. 求第一型曲线积分 $I = \int_L \sqrt{2y^2 + z^2} ds$, 其中 L: $\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x - y = 0 \end{cases}$.

11. 求双曲抛物面(马鞍面)z=xy被圆柱面 $x^2+y^2=R^2$ 所截下那部分的面积.

二、解答题

1. 讨论
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 的偏导数存在性、可微性、偏导函数的 $x^2 + y^2 = 0$

2. 计算第二型曲线积分 $I = \int_L \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$, 其中 L 是从点 A(-a,0) 经上半椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(y \ge 0)$, 到点 B(a,0) 的弧段.

- 3. (学习高数 I 者做 (1), 学习高数 II 者做 (2))
- (1) 判断级数 $\sum_{n=1}^{\infty} \frac{\cos nx}{1+n^{\frac{3}{2}}}$ 的一致收敛性.
- (2) 求幂级数 $\sum_{n=0}^{\infty} \frac{n^2 + 1}{3^n n!} x^n$ 的收敛域及和函数 S(x).

面 $x^2 + y^2 = 2x$ 的交线, 其方向为从 oz 轴正向看进去为逆时针方向 $(z \ge 0)$.

、填空题

1. 设函数 f(x,y)满足 $\frac{\partial f}{\partial x} = x^2 + y + 1$, $\frac{\partial f}{\partial y} = ax + y^2 + 2$,则 a =_______

2. 设三元函数 $f(x,y,z) = \int_0^{x+y+z} \cos^2 t^2 dt$,则 $df|_{(1,0,-1)} =$ ______

3. 设 $f(x) = \int_{0}^{1} e^{\frac{y^2}{2}} dy$,则 $\int_{0}^{1} f(x) dx =$ _______.

4. 函数 z = 3x + 4y 在条件 $x^2 + y^2 = 1$ 下的最大值为_____

5. 设函数 $f(x) = \begin{cases} x+1, & -\pi \le x < 0 \\ x^2, & 0 \le x < \pi \end{cases}$ 在 $[-\pi, \pi]$ 上的 Fourier 级数的和函数为 S(x),则 $S(-\pi) = (-\pi, \pi)$

二、单选题

1. 设函数 f(x,y) 在点 (x_0,y_0) 不可微,则必有(

A. f(x,y)在点 (x_0,y_0) 不连续

B. f(x,y) 在点 (x_0,y_0) 的两个偏导数不存在

C. f(x,y)在点 (x_0,y_0) 的两个偏导数至少有一个不连续

D. f(x,y)在点 (x_0,y_0) 沿某个方向的方向导数不存在

2. 设函数 f(x,y) 在有界闭区域 D 上连续,在 D 内偏导数存在. 若 f(x,y) 在 D 的边界上恒为零,且满

足等式
$$\frac{\partial f(x,y)}{\partial x} + 2\frac{\partial f(x,y)}{\partial y} = -f(x,y)$$
,则 $f(x,y)$ 在 D 上(

A. 存在非零的最大值

B. 存在非零的最小值

C. 只在边界上取得最大值和最小值 D. 能在边界上取得最大值和最小值

3. 设 $I_1 = \iint\limits_{x^2+v^2+z^2 \le 1} e^{xyz} dv$, $I_2 = \iiint\limits_{|x| \le 1, |y| \le 1, |z| \le 1} e^{xyz} dv$, $I_3 = \iiint\limits_{|x|+|y|+|z| \le 1} e^{xyz} dv$, 则 (

A. $I_3 < I_1 < I_2$ B. $I_1 < I_2 < I_3$ C. $I_2 < I_3 < I_1$ D. $I_1 < I_3 < I_2$

4. 质点在变力 $\vec{F} = \{P(x,y),0\}$ 的作用下沿平面有向曲线 L 移动,则该力所做的功为()

A. 0

- B. $\int_{L} P(x, y) dx$ C. $\int_{L} P(x, y) dy$ D. $\int_{L} P(x, y) ds$

5. 设 L 是曲线 $x^2 + y^2 = a^2$, 则曲线积分 $\int_L (x+y)^2 ds$ 为(

A. a^2

6. 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $\sum_{n=1}^{\infty} b_n$ 发散 $(b_n \neq 0)$,则下列级数中一定发散的是(

- A. $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ B. $\sum_{n=1}^{\infty} a_n b_n$ C. $\sum_{n=1}^{\infty} (|a_n| + |b_n|)$

三、简答题

1. 设函数 $z = f(xy, \sin y)$, 其中 f 具有二阶连续的偏导数,

2. 求曲线 $\begin{cases} 3x^2 + 2y^2 + 3z^2 = 12 \\ z = x \end{cases}$ 在点 $(1, \sqrt{3}, 1)$ 处的切线与法平面方程.

其中D是由曲线 $y = x^2 (x \ge 0)$ 和直线x = 0, y = 4围成的平面区域.

4. 求∭ $\sqrt{x^2 + y^2} dv$, 其中Ω是由曲面 $z^2 = x^2 + y^2$, z = 1与z = 2所围成的区域.

5. 求函数 $f(x,y)=2x^2-3xy+2y^2-x+2y$ 的极值.

- 7. (学习高数 I 者做 (1), 学习高数 II 者做 (2))
 - (1) 证明: 函数项级数 $\sum_{n=1}^{\infty} x^2 e^{-nx}$ 在 $[0,+\infty)$ 上一致收敛.
- (2) 设函数 f(x) 在 x=0 的某邻域 N(0,r) 内具有二阶连续导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,证明:级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 绝对收敛.

- 8. 将函数 $f(x) = \frac{1}{1+x}$ 在 $x_0 = 2$ 处展开为幂级数,并指出收敛区间.
- 9. 求幂级数 $\sum_{n=0}^{\infty} \frac{2n+1}{n!} x^{2n}$ 的和函数,并求数项级数 $\sum_{n=0}^{\infty} \frac{(2n+1)2^n}{n!}$ 的和.

- (1) 写出曲线积分 $I = \int_{\Gamma} P dx + Q dy + R dz$ 与路径无关的一个充分条件.
- (2) 计算积分 $I = \int_{\Gamma} (y+z)dx + (z+x)dy + (x+y)dz$,其中 Γ : $x = a\cos t, y = a\sin t, z = t$ 上从点 (a,0,0) 到点 $(-a,0,\pi)$ 的一段.

11. 计算曲面积分 $I = \iint_{S} \frac{xdydz + ydzdx + zdxdy}{\sqrt{(x^2 + y^2 + z^2)^3}}$,其中曲面 S 为: $1 - \frac{z}{7} = \frac{(x-2)^2}{25} + \frac{(y-1)^2}{16} (z \ge 0)$ 的上侧.

、单选题

- 1. $\partial f(x,y) = \frac{2x^2}{x^2 + y^2}$, $\mathcal{Q} f(x,y) \neq (0,0)$ $\mathcal{Q} f(x,y) = 0$
 - A. 等干 0
- B. 等于1
- C. 等于 2

- D. 不存在
- 2. 设曲面 $S: x^2 + y^2 + z^2 = R^2 (z \ge 0)$, 取上侧, S_1 为 S 位于第一卦限部分,则有(
 - A. $\iint_{S} x dS = 4 \iint_{S} x dS$

C. $\iint_{S} x dy \wedge dz = 4 \iint_{S} x dy \wedge dz$

- B. $\iint_{S} ydS = 4 \iint_{S_{1}} ydS$ D. $\iint_{S} ydy \wedge dz = 4 \iint_{S_{1}} ydy \wedge dz$
- 3. 设曲线 $C: x^2 + y^2 = 1$, 取逆时针方向,则 $\oint_C (y + \frac{y^3}{6}) dx + (2x \frac{x^3}{3}) dy = ($

- A. $\frac{\pi}{4}$ B. $\frac{3\pi}{8}$ C. $\frac{\pi}{2}$ D. $\frac{5\pi}{8}$ 4. $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ 则 f(x,y) 在 (0,0) 点沿方向 $\vec{l} = (1,\sqrt{3})$ 的方向导数 $\frac{\partial f}{\partial \vec{l}}\Big|_{(0,0)} = (0,0)$
 - A. 0

- D. 3

二、填空题

- 1. 设 $f(x, y) = x^3 y \sin(x^2 y^2)$,则 $\frac{\partial f}{\partial x}\Big|_{(1.3)}$
- 2. 空间曲线 $\begin{cases} z = x^2 + 4y^2 \\ y = \frac{1}{2} \end{cases}$ 在点 $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{7}{4}\right)$ 处的切线与 Ox 的夹角 $\alpha =$ _____.
- 3. 二次积分 $\int_0^1 dx \int_x^{\sqrt{x}} \frac{\cos y}{y} dy = 1$
- 4. 设空间曲线 C 为 $\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = \frac{3R}{2} \end{cases}$, 其中常数 R > 0, 则 $\oint_C y ds = \underline{\qquad}$.

三、解答题

1. 设函数 f(u,v) 具有一阶连续偏导数, $z = \int_0^{xy} f(e^t,t)dt$, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 设 z = z(x, y) 是由方程 $e^z - 2x + yz = e$ 在 (0, 0, 1) 点的某领域内确定的隐函数,求全微分 $dz|_{(0,0)}$.

3. 判定级数 $\sum_{n=1}^{\infty} n! \left(\frac{x}{n}\right)^n$, (x>0) 的敛散性.

4. 将 $f(x) = \frac{2}{\pi} |x| \pm |x| \le \pi$ 上展开为 Fourier 级数.

5. 求幂级数 $\sum_{n=1}^{\infty} \frac{n^2+1}{n} x^n$ 的收敛域及和函数.

- (1)证明函数项级数 $\sum_{n=1}^{\infty}e^{-nx}$,在区间 $[\delta,+\infty)(\delta>0)$ 一致收敛。但在 $(0,+\infty)$ 内不一致收敛.
- (2) 将函数 $f(x) = \frac{x+4}{2x^2-5x-3}$ 在 $x_0 = 1$ 处展开为幂级数.

7.
$$I = \iint_{D} \sqrt{|y - x^2|} dxdy$$
, $\sharp + D = \{(x, y) | -1 \le x \le 1, 0 \le y \le 1\}$.

8. 设 Σ 是旋转抛物面 $z=1-x^2-y^2(z\geq 0)$,取上侧,计算第二类曲面积分:

$$I = \iint_{\sum} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$$

$$\int_{L} \left[\frac{x}{y^{2}} - xf(xy) \right] dy - \left[\frac{1}{y} + yf(xy) \right] dx$$

10. 在曲面 $z = 4 - x^2 - y^2$ 位于第一卦限部分上求一点 P,使 P点的切平面与三个坐标面围成的四面体体积最小,并求此最小体积.

$$I = \iint_{D} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) dx dy = \frac{\pi}{2e}$$

一、计算题

1. 在曲面 $z = \frac{x^2}{2} + y^2$ 上求一点,使曲面在该点处的切平面平行于平面 2x + 2y - z = 0.

3. 判断级数 $\sum_{n=1}^{\infty} \frac{(\lambda - e)^2 \lambda^n n!}{n^n}$ $(\lambda \ge 0)$ 的敛散性.

4. 已知曲线 $L: y = x^2 (0 \le x \le 1)$ 上任意一点处的线密度在数值上与该点的横坐标相同,求曲线的质量.

5. 设 $f(x) = \begin{cases} 0 & -2 \le x \le 0 \\ x & 0 < x < 2 \end{cases}$, 将 f(x) 展为以 4 为周期的 Fourier 级数.

6. 将函数 $f(x) = \ln(4x-5)$ 展开为 x-2 的幂级数.

7. 计算三重积分 $\iiint_V z dv$,其中 V 是由不等式 $\sqrt{x^2+y^2} \le z \le \sqrt{2-x^2-y^2}$ 确定的空间区域.

8. 求向量场 $\vec{A} = \{z + x^2, x, z^2 + 3y\}$ 穿过曲面 Σ : $z = x^2 + y^2 (0 \le z \le 1)$ 下侧的通量.

9. 计算第一型曲面积分 $\iint_{\Sigma} (x^2+y^2) dS$,其中 Σ 为曲面 $z=\sqrt{x^2+y^2}$ 介于 $0 \le z \le 1$ 之间的部分.

10. 计算第二型线积分 $\int_L ye^{y^2}dx + (xe^{y^2} + 2xy^2e^{y^2})dy$, 其中 L 为 $y = \sqrt[3]{x}$ 上从 O(0,0) 到 A(1,1) 的曲线段.

- 12. (学习高数 I 者做 (2), 学习高数 II 者做 (1))
- (1) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{(2n+1)3^n}$ 的收敛域及和函数.

(2) 判断级数 $\sum_{n=1}^{\infty} \frac{\sin(n+\frac{1}{2})x}{\sqrt[3]{n^4+x^4}}$ 在 $x \in (-\infty, +\infty)$ 上的一致收敛性,并讨论是否可以逐项求导.

13. 设 y = f(x,t),而 t 是由方程 F(x,y,t) = 0 所确定的 x,y 的函数,其中 f,F 都具有一阶连续偏导数,求 $\frac{dy}{dx}$.

14. 计算 $\iint_{(D)} x[1+y\sin^2(x^2+y^2)]d\sigma$, 其中 (D) 是由 $y=x^3,y=1,x=-1$ 所围成的区域.

15. 设函数 $\varphi(y)$, $\psi(y)$ 具有连续导数,对平面内的任意分段光滑简单闭曲线C,有曲线积分

$$\oint_C 2[x\varphi(y) + \psi(y)]dx + [x^2\psi(y) + 2xy^2 + 2x\varphi(y)]dy = 0, \quad \text{\Re:}$$

- (1) 求满足条件 $\varphi(0)=-2,\psi(0)=0$ 的函数 $\varphi(y),\psi(y)$.
- (2) 计算 $\int_{(1,1)}^{(0,0)} 2[x\varphi(y) + \psi(y)]dx + [x^2\psi(y) + 2xy^2 + 2x\varphi(y)]dy$.

(1) 计算
$$A = \iint_{D} |xy - 1| dxdy$$
.

(2) 设
$$f(x,y)$$
在 D 上连续,且 $\iint_D f(x,y) dx dy = 0$, $\iint_D xy f(x,y) dx dy = 1$, 证明存在 $(\xi,\eta) \in D$,使
$$|f(\xi,\eta)| \ge \frac{1}{A}.$$

1. 求函数 $u = x^2 + y^2 + z^4 - 3xz$ 在点 $M_0(1,1,1)$ 处 $\vec{l} = (1,2,2)$ 方向的方向导数.

3. 设函数
$$z = z(x, y)$$
 由方程 $z^2y - xz^3 = 1$ 所确定,求 $\frac{\partial z}{\partial x}\Big|_{(1,2,1)}$

4. 判定级数
$$\sum_{n=1}^{\infty} n \sin \frac{\pi}{3^n}$$
 的敛散性.

5. 将 f(x) = |x|, $|x| \le \pi$ 展开成 Fourier 的级数.

6. 将函数 $f(x) = \frac{1}{1 - x - 2x^2}$ 在 $x_0 = 0$ 处展开为幂级数.

9. 计算
$$\int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$$
.

10. 设有一物体由曲面 $z=\sqrt{x^2+y^2}$ 和 $z=\sqrt{8-x^2-y^2}$ 所围成,已知它在任意的点 (x,y,z) 处的密度 $\rho=z$,求此物体的质量 m .

11. 计算曲线积分 $\int_{AB} (e^x \sin y + y + 1) dx + (e^x \cos y - x) dy$, 其中 AB 为曲线 $y = -\sqrt{-x^2 + 8x - 7}$ 从 A(7,0) 到点 B(1,0) 的一段弧.

- 13. (学习高数 Ⅰ 者做 (1), 学习高数 Ⅱ 者做 (2))
 - (1) 求函数项级数 $\sum_{n=0}^{\infty} e^{-nx}$ 的和函数,证明: 对 $\forall \delta > 0$,级数在区间 $[\delta, +\infty)(\delta > 0)$ 一致收敛,但在其收敛域内不一致收敛.
- (2) 求幂级数 $\sum_{n=1}^{\infty} \frac{(2n+1)}{n!} x^{2n}$ 的收敛域及和函数

14. 讨论函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 在点 $(0,0)$ 的连续性、可导性、可微性.

15. 设
$$f(x,y)$$
连续,且 $f(x,y) = \sqrt{1-x^2-y^2} - \frac{1}{\pi} \iint_D f(x,y) dx dy$,其中 $D \neq x^2 + y^2 \leq 1$,求 $f(x,y)$.

16. 设对任意的分片光滑有向封闭曲面 S,都有:

$$\bigoplus_{c} (y+1)f'(x)dy \Lambda dz + (y-y^2)f(x)dz \Lambda dx + [zyf'(x)-2ze^x]dx \Lambda dy = 0$$

其中函数 f(x)在 $(-\infty,+\infty)$ 内具有连续的二阶导数,求 f(x).

17. 证明:
$$\oint_L [xf(y) + x^2] dy - [\frac{y}{f(x)} + 2y^2] dx \ge 2\pi + 6a\pi$$
,其中 L 为圆周曲线 $(x-a)^2 + (y-a)^2 = 1$, $(a > 0)$

的正向,f(x)连续取正值.

2012 年高数下期末试题

一、计算题

1. 求曲线 $\vec{r}(t) = (\cos t, \sin t, \tan \frac{t}{2})$ 在点 (0,1,1) 处的切线方程.

3. 设f 是连续函数,交换下列积分次序 $\int_1^2 dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$.

4. 判定级数 $\sum_{n=1}^{\infty} (1-\cos\frac{1}{n})\sqrt{n}$ 的敛散性.

5. 将
$$f(x) = \begin{cases} x + \frac{\pi}{2} & 0 < x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < x < \pi \end{cases}$$
 展开为以 2π 为周期的正弦级数.

7. 已知
$$z = f(2x - y, y \sin x)$$
, $f(u, v)$ 具有连续二阶偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

8. 计算
$$\iint_D \sin \frac{x}{y} dxdy$$
, 其中 D 是由 $x = 0$, $y = \frac{\pi}{2}$, $y = \pi$ 及 $x = y^2$ 所围的平面区域.

9. 设有一物体, 由曲面 $z = \sqrt{4 - x^2 - y^2}$ 与 $z = \frac{1}{3}(x^2 + y^2)$ 所围成, 已知它在任意点 (x, y, z) 处的密度 $\mu = z$, 求此物体的质量.

10. 计算曲线积分 $\int_L e^x [\cos y dx + (y - \sin y) dy]$, 其中 $L \stackrel{\cdot}{=} y = \sin x \, \text{从} \, A(0,0)$ 到点 $B(\pi,0)$ 的弧段.

11. 计算第二型面积分 $\iint_{\Sigma} x dy \wedge dz + y dz \wedge dx + (z+1) dx \wedge dy$,其中 Σ 为曲面 $z=1-x^2-y^2$ 在 xoy 平面上方部分,方向取上侧.

12. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n2^n}$ 的收敛域及和函数

- 13. (学习高数 Ⅰ 者做 (1), 学习高数 Ⅱ 者做 (2))
 - (1) 证明函数项级数 $\sum_{n=1}^{\infty} \sqrt{n} 2^{-nx}$, 在区间 $[\delta,+\infty]$ ($\delta>0$) 一致收敛,但在 $(0,+\infty)$ 内不一致收敛.
 - (2) 将函数 $f(x) = \frac{x}{2x^2 + 3x 2}$ 在 $x_0 = 2$ 处展开为幂级数.

14. 计算第一型曲面积分 $\iint_{\Sigma} z dS$, 其中曲面 Σ 是圆锥面 $z = \sqrt{x^2 + y^2}$ 上介于平面 z = 1 于 z = 2 之间的部分.

2011 年高数上期末试题

、填空题

- 1. 曲线 $x = t^3$, y = 2t, z = t 上相应于 y = 2 的点处的切线方程是
- 2. $u = z \arctan \frac{y}{x}$ 在点 A(1,0,1) 处沿点 A 指向点 B(3,-2,2) 方向的方向导数为
- 3. 第一型曲线积分 $\oint_{x^2+y^2=1} x^2 ds =$ _______.
- 4. 设 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 3,则 $\sum_{n=1}^{\infty} n a_n (x-1)^{n-1}$ 的收敛半径 R =_____
- 5. 设函数 $u = e^{xyz} + \int_0^{xy} t \sin t dt$, 则 $\operatorname{rot}(\operatorname{grad} u) =$ ___

二、单选题

1. 已知 $(axy^3 - y^2\cos x)dx + (1+by\sin x + 3x^2y^2)dy$ 为某个二元函数 f(x,y) 的全微分,则常数 a,b 分别 是(

- A. -2 和 2
- B. 2和-2

- -3和3
- D. 3和-3

- 2. 二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$ 可写成(
 - A. $\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x,y) dx$

B. $\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x, y) dx$

C. $\int_0^1 dx \int_0^1 f(x, y) dy$

- D. $\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x, y) dy$
- 3. 对于常数 k > 0,级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \tan(\frac{1}{n} + \frac{k}{n^2})$ (
 - A. 绝对收敛
- B. 条件收敛
- C. 发散
- D. 收敛性与 k 取值有关

- A. $\frac{2}{3} \le I \le 2$ B. $2 \le I \le 3$ C. $0 \le I \le \frac{1}{2}$
- D. $-1 \le I \le 0$
- 5. 设 $L: x^2 + y^2 = R^2$, 其方向为正, 则 $\oint_L -yx^2 dx + xy^2 dy = ($
 - A. $-\frac{\pi}{2}R^4$
- B. 0

C. $\frac{\pi}{2}R^4$

D. $\frac{2\pi}{3}R^{3}$

三、计算题

1. 设 $z = f(e^x \sin y, y)$, f 有二阶连续偏导数, 求 $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2. 计算二次积分 $\int_0^1 dy \int_{3y}^3 e^{x^2} dx$.

3. 设球体 $x^2 + y^2 + z^2 \le 2z$ 上各点的密度等于该点到坐标原点的距离,求该球体的质量.

4. 求曲面 $xy-z^2+1=0$ 上距离原点最近的点.

y+z=5 被柱面 $x^2+y^2=25$ 所截的部分,计算曲面积分 $I=\iint_{\Sigma} (x+y+z)dS$.

- 6. 已知 $\varphi(x) = \frac{1}{2}(x \frac{1}{x})$,试证曲线积分 $I = \int_{A}^{B} [x \varphi(x)] \frac{y}{x} dx + \varphi(x) dy$ 在右半平面(x > 0)内与路径无
- 关,并求当A,B两点分别为(1,0)和(π,π)时该积分的值.

7. 函数 $f(x,y) = \sqrt[3]{x^2y}$ 在点 (0,0) 处是否连续? 偏导数是否存在? 是否可微? 请说明理由.

曲面 Σ 是 $z = \sqrt{x^2 + y^2}$ 与两球面 $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 2$ 所围立体表面的外侧, 计算 $dz + \left[y^3 + f(xy) \right] dz \wedge dx + z^3 dx \wedge dy$, 其中 f(u) 是连续可微的奇函数.

9. 将函数 $f(x) = |x|, |x| \le \pi$ 展开成傅里叶级数.

10. 将函数 $f(x) = \frac{x+4}{2x^2-5x-3}$ 在 x=1 处展开成 x-1 的幂级数并指出收敛域.

11. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n2^n}$ 的收敛域及和函数.

$$\iint_{\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1} \frac{(b+1)f(\frac{x}{a}) + (a-1)f(\frac{x}{a})}{f(\frac{x}{a}) + f(\frac{y}{b})} dxdy = \frac{\pi}{2}ab(a+b)$$

2010年高数上期末试题

、填空题

1. 若函数 $f(x, y) = 2x^2 + ax + xy^2 + 2y$ 在 (1, -1) 处取得极值,则常数 a =.

2. 曲线 $x = t^2$, $y = t^3$, $z = t^{2/3}$ 在点 (1,1,1) 处的一个切向量与 oz 轴正向成钝角. 则它与 ox 轴正向夹角的余

3. 交换二次积分的积分次序(其中 f(x,y)连续): $\int_0^1 dx \int_0^{x^2} f dy + \int_1^2 dx \int_0^{2-x} f dy = 1$

4. 设 L 为圆周 $x^2 + y^2 = 4$,则 $\oint_L 2y^2 ds = \underline{\hspace{1cm}}$

二、单选题

1. 二阶常系数线性非齐次微分方程 $y'' - 2y' + 5y = e^x \cos 2x$ 的特解 y^* 的形式为 (

A. $ae^x \cos 2x$

B. $ae^x \sin 2x$

C. $e^x x(a\cos 2x + b\sin 2x)$

2. 设 曲 面 $\Sigma: x^2 + y^2 + z^2 = R^2$ 的 外 法 线 的 方 向 余 弦 为 $\cos\alpha, \cos\beta, \cos\gamma$, 则 $\oiint (x\cos\alpha + y\cos\beta + z\cos\gamma) \,\mathrm{d}\,S = ($

A. πR^3

3. 设 f(u) 是连续函数,平面区域 $D = \{(x,y) | 0 \le y \le \sqrt{1-x^2} \}$,则 $\iint_{\mathbb{R}} f(x^2 + y^2) d\sigma = 0$

A. $\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x^2 + y^2) dy$ B. $\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x^2 + y^2) dx$

C. $\int_0^{\pi} d\theta \int_0^1 f(\rho^2) \rho d\rho$

D. $\int_0^{\pi} d\theta \int_0^1 f(\rho^2) d\rho$

4. 过曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{5}$ 上点 $M_0(x_0, y_0, z_0)$ 的切平面在各坐标轴上的截距之和为(

A. $x_0 + y_0 + z_0$ B. 5 C. $\sqrt{5}$ D. $\frac{1}{2} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}} \right)$

5. 若二元函数 f(x,y) 在点 (x_0,y_0) 处可微,则 f(x,y) 在点 (x_0,y_0) 处下列结论不一定成立的是 (

A. 连续

B. 偏导数存在 C. 偏导数连续

D. 曲面 z = f(x, y) 的切平面存在

6. 设a为常数,则级数 $\sum_{n=1}^{\infty} \left[\frac{\sin(na)}{n^2} - \frac{1}{\sqrt{n}} \right]$ (

A. 绝对收敛

B. 条件收敛

C. 发散

D. 收敛性与 a 取值有关

三、计算题

1. 设 $z = f(\frac{x}{y}, x^2 + y)$, 其中 f 具有连续二阶偏导数, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 在圆锥面 $z = \frac{h}{R} \sqrt{x^2 + y^2}$ 与平面 z = h(R > 0, h > 0) 所围的锥体内作一个底面平行 xoy 平面的长方体,求此长方体体积的最大值.

3. 设力场 $\vec{F} = \{\phi(y)\cos x - \pi y, \phi'(y)\sin x - \pi\}$,其中 $\phi(y)$ 具有一阶连续的导数, $A(\pi,2), B(3\pi,4)$ 为力场中的两点. $AmB(\pi \le x \le 3\pi)$ 是力场中位于直线段 \overline{AB} 下方的一条光滑曲线段,且AmB与 \overline{AB} 所围成的平面区域D的面积为 2,质点M 在场力 \overline{F} 的作用下由点A沿AmB移动到点B,求场力 \overline{F} 所作的功.

4. 计算曲面积分 $I = \iint_{\Sigma} (x+y) dy \wedge dz + (y+z) dz \wedge dx + (z+x) dx \wedge dy$,其中 Σ 为曲面 $z = x^2 + y^2$ ($0 \le z \le 1$)的下侧.

5. 设函数 f(x) 具有二阶连续的导数,并满足 $\oint_L [\mathbf{e}^x - f'(x)] y \, \mathrm{d} x + f'(x) \, \mathrm{d} y = 0$,其中 L 为 xoy 平面上任意一条逐段光滑的封闭曲线,求 f(x).

- (1) 讨论级数 $\sum_{n=1}^{\infty} n2^{-nx}$ 在 $[\delta, +\infty)(\delta > 0)$ 上的一致收敛性并求和.
- (2) 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n2^n} x^{n-1}$ 的收敛域及和函数.

8. 计算 $\oint_L \frac{xdy - ydx}{x^2 + xy + y^2}$, 其中 L 是圆 $x^2 + y^2 = 1$ 的一周, 方向为逆时针.

本试题集由彭康学导团制作,所有题目均改编自往年 真题,鉴于教材改版和内容调整,已对部分题目进行了删 减和修改。本试题集的编制及发放属于公益服务活动,如 有打印店以此盈利,请勿购买。未经允许,请勿复印转载。

彭康学导团 QQ 学习群: 647383944

搜索微信公众号"彭康书院学导团"或扫描下方二维码关注我们,了解更多学业动态,掌握更新学习资料。

