P. Maurer

ENS Rennes

Recasages: 101, 102.

Référence : Perrin, Cours d'algèbre

Théorème de Wedderburn

Théorème 1. (Wedderburn)

Tout corps fini est commutatif.

Démonstration.

Soit K un corps fini (non nécessairement commutatif, de fait). On note Z son centre :

$$Z = \{ x \in K : \forall a \in K \ a \ x = x \ a \}$$

Alors K est un Z-espace vectoriel de dimension finie, donc isomorphe à Z^n pour un certain entier $n \in \mathbb{N}$, d'où $|K| = q^n$ avec $q = |Z| \ge 2$. Supposons par l'absurde que n > 1.

Le groupe K^{\times} agit sur lui-même par conjugaison. Pour $x \in K$, l'ensemble $\operatorname{Stab}(x) \cup \{0\}$ est un surcorps de Z, donc on en déduit comme précédemment qu'il existe $d \in \mathbb{N}^*$ tel que $|\operatorname{Stab}(x)| = q^d - 1$.

Comme $\operatorname{Stab}(x) \subset K^{\times}$, le théorème de Lagrange donne $q^d - 1|q^n - 1$, ce qui n'est possible que si d divise n. En écrivant l'équation aux classes, il vient alors :

$$|K^{\times}| = |Z^{\times}| + \sum_{x \notin Z} \frac{|K^{\times}|}{|\operatorname{Stab}(x)|} \Longleftrightarrow q^n - 1 = q - 1 + \sum \frac{q^n - 1}{q^d - 1}$$

Où la somme de droite porte sur un certain nombre de diviseurs d stricts de n (car $|\operatorname{Stab}(x)| \neq |K^{\times}|$ pour $x \notin Z$), notons $d \in \mathfrak{D}$ avec $\mathfrak{D} \subset \{k \mid n, \ k < n\}$.

On a les égalités $q^n-1=\prod_{m|n}\Phi_m(q)$ et $q^d-1=\prod_{m|d}\Phi_m(q)$, où $\Phi_m(q)$ désigne le $m^{\text{ème}}$ polynôme cyclotomique. Il vient alors $\frac{q^n-1}{q^d-1}=\prod_{\substack{m|n\\m\neq d}}\Phi_m(q)$.

On a donc :

$$q-1 = \prod_{m|n} \Phi_m(q) - \sum_{d \in \mathfrak{D}} \prod_{\substack{m|n \\ m \nmid d}} \Phi_m(q)$$

D'où $\Phi_n(q)|q-1$, et en particulier, $|\Phi_n(q)| \le q-1$. Or par définition, $\Phi_n(q) = (q-\zeta_1)\cdots(q-\zeta_s)$ où ζ_1,\ldots,ζ_s sont des racines primitives $n^{\text{èmes}}$ de l'unité, donc comme n>1, $|\zeta_i|=1$ et $\zeta_i\neq 1$ pour tout i. En particulier, on a $|q-\zeta_i|>|q-1|$:

On en déduit que $|\Phi_n(q)| > |q-1|^\ell \ge |q-1|$, ce qui constitue une contradiction.