사이버 물리시스템 보안

유해 동물 감지 시스템 구축

중간 발표

3조

20185636 이은진 20186033 임채원 20180163 최혜정 20184141 황수인

1. 진행 상황

2. 구글 이미지 크롤링

2. 구글 이미지 크롤링

크롤링이 정상적으로 완료되면 '다운로드' 폴더에 지정한 수만큼 사진이 다운로드 된다 멧돼지 200장 꿩 200장 뉴트리아 200장 고라니 200장 고양이 300장 개 200장 멧돼지 152장 꿩 155장 뉴트리아 154장 고라니 165장 고양이 256장 개 164장

3. 이미지 라벨링

기존의 darknet yolo를 커스텀 데이터로 학습을 하거나 학습 중 loss, mAP 값의 변화를 확인하기에 용이

<darknet detector train data/obj.data cfg/yolo-obj.cfg backup/yolo-obj_last.weights>

detector.c - test_detector

학습을 위한 내용이 담긴 data 파일 데이터세트의 경로, 클래스 개수 및 이름 정보, 학습의 결과로 나온 가중치 파일을 저장할 경로 등

```
7 lines (6 sloc) 141 Bytes Obj.data

1 classes= 6
2 train = data/train.txt
3 valid = data/test.txt
4 #difficult = data/difficult_2007 test.txt
5 names = data/obj.names
6 backup = backup/
```

클래스 이름

```
1 wildboar
2 phesant
3 nutria
4 waterdeer
5 dog
6 cat
Obj.names
```

데이터세트에 담긴 각 이미지 파일의 경로

.8 KB

train.txt

```
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (1).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (10).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (100).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (101).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (102).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (103).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (104).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (105).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (106).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (107).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (108).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (109).jpg
/content/gdrive/My Drive/darknet-master/darknet-master/data/obj/cat (11).jpg
```


학습에 따른 가중치 → 1000단위 및 가장 최신의 가중치 저장

<darknet detector train data/obj.data cfg/yolo-obj.cfg backup/yolo-obj_last.weights>

```
1  [net]
2  # Testing
3  #batch=1
4  #subdivisions=1
5  # Training
6  batch=64
7  subdivisions=64
8  width=608
9  height=608
10  channels=3
```

```
17
18 learning_rate=0.001
19 burn_in=1000
20 max_batches = 12000
21 policy=steps
22 steps=9600,10800
23 scales=.1,.1
24
25 #cutmix=1
26 mosaic=1
27
```

Batch = 모든 데이터세트를 한번의 epoch으로 돌리기에는 메모리의 한계 → 몇 개로 나누어서(batch) 학습을 돌리게 됨 (batch 마다 학습 = iteration) Subdivisions = Batch를 얼마나 나눠서 학습을 하는지에 대한 설정 값 Max_batches = 언제까지 iteration을 돌 건지에 대한 설정값 Steps = 함수가 최대 얼마나 돌 건지에 대한 설정값 (보통 max_batches의 80%, 90%로 설정)

```
[yolo]
                          [yolo]
                                                   1143
                                                          [yolo]
                          mask = 3,4,5
mask = 0,1,2
                                                          mask = 6,7,8
anchors = 12, 16 1057
                          anchors = 12, 16, 19, 1145
                                                          anchors = 12, 16,
classes=6
                          classes=6
                                                          classes=6
[convolutional]
                            [convolutional]
                                                         [convolutional]
                                                        size=1
size=1
                            size=1
stride=1
                           stride=1
                                                        stride=1
pad=1
                           pad=1
                                                        pad=1
filters=33
                            filters=33
                                                         filters=33
activation=linear
                           activation=linear
                                                        activation=linear
```

Classes = 클래스의 개수 Filters = (5+classes) x 3

Google Colaboratory를 사용하여 학습 실행

	1 from google.colab import drive 2 drive.mount('/content/gdrive/') 구글드라이브 — colab 연동
	1 cd /content/gdrive/My₩ Drive/darknet-master/darknet-master 실행 디렉토리 변경
	1 !ls
0	1 !apt install libopencv-dev Opencv, gcc 설치 2 !apt install gcc-5 g++-5 -y Opencv, gcc 설치
	1 import os 2 os.environ['PATH'] += ':/usr/local/cuda/bin' 설치한 gcc를 cuda에 링크
	1 !In -s /usr/bin/gcc-5 /usr/local/cuda/bin/gcc 2 !In -s /usr/bin/g++-5 /usr/local/cuda/bin/g++
	1 !sed -i 's/OPENCV=0/OPENCV=1/g' Makefile 2 !sed -i 's/GPU=0/GPU=1/g' Makefile
	1 !make 설정사항 반영하여 실행
0	1 l./darknet detector train data/obj.data cfg/yolo-obj.cfg backup/yolo-obj_last.we <mark>lghts -dont_show 학습 시작</mark>

Avg loss

- → 평균 손실율
- → 알고리즘이 예측한 객체의 위치와 실제 객체의 위치의 차이 = 오차
- → 낮을수록 좋음
- → 데이터세트가 작을수록 낮은 손실율(0.1~0.05) 을 갖도록 학습

IOU

- → 실제 객체와 bounding box 의 교차율
- → 1에 가까울 수록 좋음

Class

→ 1에 가까운 값일수록 학습 이 잘 되어가고 있다는 뜻

현재까지의 학습 결과

Iteration: 6500

Current avg loss: 1.2884

data/boar.jpg: Predicted in 644.621000 milli-sec

data/gorani.jpg: Predicted in 32.468000 waterdeer: 77%

data/nut.jpg: Predicted in 32.365000 milli-se

data/cat.jpg: Predicted in 32.376000 mill cat: 65%

data/phsnt.jpg: Predicted in 32. phesant: 48%

data/dog.jpg: Predicted in 32.31 cat: 62%

현재까지의 학습 결과

Iteration: 6500

Current avg loss: 1.2884

Iteration : 대략 12000

Current avg loss: 0.05~0.1

감사합니다