

Submission date: 26-Feb-2020 02:04PM (UTC+0300)

Submission ID: 1264500473 **File name:** mileage.docx (21.6K)

Word count: 586

Character count: 2935

The regression output to predict mileage is given below

Descriptive Statistics

	Mean	Std. Deviation	N
Mileage	24.6552	4.85781	58
Weight	2895.9483	502.90337	58
Disp	151.7241	54.96436	58
Fuel	4.2019	.76916	58
Small	.2241	.42066	58
Sporty	.1552	.36523	58
Compact	.2586	.44170	58
Medium	.1897	.39545	58
Large	.0517	.22340	58

Regression 1320.494 8 165.062 328.654 .000b

Residual 24.610 49 .502

Total 1345.103 57

1	(Constant)	57.488	2.072		27.750	.000	53.325	61.651
	Weight	001	.001	151	-2.474	.017	003	.000
	Disp	.015	.005	.175	3.362	.002	.006	.025
	Fuel	-6.785	.313	-1.074	-21.657	.000	-7.415	-6.156
	Small	-2.495	.808	216	-3.087	.003	-4.119	871
	Sporty	-3.097	.691	233	-4.481	.000	-4.485	-1.708
	Compact	-3.139	.557	285	-5.637	.000	-4.258	-2.020
	Medium	-2.504	.473	204	-5.292	.000	-3.455	-1.553
	Large	-2.412	.732	111	-3.292	.002	-3.884	940

a. Dependent Variable: Mileage

The regression equation is

The coefficient of determination is 0.982, indicating that 98.2% of the variation of Mileage is explained by the regression model

The model goodness of fit was validated using F test for overall significance. The p – value of f test statistic falls well below 0.05, indicating that the estimated regression model is good fit in predicting Mileage

2)

The regression output after ignoring the type is given below

Mileage	24.6552	4.85781	58
Weight	2895.9483	502.90337	58
Disp	151.7241	54.96436	58
Fuel	4.2019	.76916	58

4 Change Statistics

		R	Adjusted R	Std. Error of	R Square	F			Sig. F	Durbin-
Model	R	Square	Square	the Estimate	Change	Change	df1	df2	Change	Watson
1	.980a	.960	.958	.99422	.960	435.596	3	54	.000	1.205

Į.	5					
5 Model		Sum of Squares		Mean Square	F	Sig.
1	Regression	1291.726	3	430.575	435.596	.000b
	Residual	53.378	54	.988		
	Total	1345.103	57			

Model

1 (Constant) 50.956 .887 57.460 .000 49.178 52.734

Weight .000 .001 -.032 -.514 .610 -.002 .001

Disp .002 .004 .024 .528 .600 -.006 .010

Fuel -6.121 .338 -.969 -18.099 .000 -6.799 -5.443

The regression equation is

Mileage = 50.956 - 0.000312 * weight + 0.002 * Displacement - 6.121 * Fuel

The coefficient of determination is 0.96, indicating that 96% of the variation of Mileage is explained by the regression model

The model goodness of fit was validated using F test for overall significance. The p – value of f test statistic falls well below 0.05, indicating that the estimated regression model is good fit in predicting Mileage

3)

Model Checking procedures

The F test statistic is

$$F = \frac{\frac{RSS_1 - RSS_2}{K_2 - K_1}}{\frac{RSS_2}{n - K_2}} = \frac{\frac{53.378 - 24.61}{54 - 49}}{\frac{53.378}{58 - 54}} = 0.4312$$

Thus, the value of F test statistic is 0.4312 and its corresponding p – value is 0.81 > 0.05. Since the p-value is greater than 0.05, we conclude that the regression used to validate the F test seems to be identical

One of the important SAS procedure is "Upcase, lowcase, propcase"

Function: these functions are mainly used to convert the character value to any one of these three cases, namely upper case, lower case or procase. Procase was normally used to arrange the word in proper case with first letter of the word in capital letter and the remaining letters in small case

Example

Data newdata; text1 = "I am INTERESTED in doing Maths" text2 = upcase(text1); text3 = lowcase(text1); text4 = procase(text1); Run;

mileage

ORIGINALITY REPORT

SIMILARITY INDEX

11%

INTERNET SOURCES

PUBLICATIONS

25%

STUDENT PAPERS

PRIMARY SOURCES

1	Submitted to Kingston University	y
ı	Student Paper	

Submitted to Coventry University

Student Paper

Submitted to EDMC

Student Paper

pdfs.semanticscholar.org

Internet Source

fr.scribd.com

Internet Source

2%

docplayer.nl

Internet Source

Submitted to La Trobe University

Student Paper

bucks.collections.crest.ac.uk

Internet Source

Exclude quotes On Exclude matches Off

Exclude bibliography On