

Carbon Capture and Storage

- Term mainly used to describe capturing CO₂ from flue gas emissions and storing it in geological structures or the oceans
- Can also be used to describe biological processes which sequester
 CO₂ through photosynthesis trees, plankton, algae
- Another potential method is via burying biochar
- Where biological processes are utilised the S in CCS refers to carbon sequestration rather than storage

Suitable CO₂ sources for Capture

CCS

- Large stationary point source
- High CO₂ concentration in the waste, flue gas or by-product stream (purity)
- Pressure of CO₂ stream
- Distance from suitable storage sites

Global large stationary ${\rm CO_2}$ sources with emissions of more than 0.1 MtCO₂/ year

	Process	Number of sources	Emissions (MtCO ₂ yr ⁻¹)
Fossil fuels	Power	4,942	10,539
	Cement production	1,175	932
	Refineries	638	798
	Iron & steel industry	269	646
	Petrochemical industry	470	379
	Oil & gas processing	Not available	50
	Other sources	90	33
Biomass	Bioethanol & bioenergy	303	91
Total		7,887	13,466

EG5066 Energy Technologies: current issues & future directions

Future CO₂ Sources

CCS

Global ${\rm CO_2}$ emissions rising – projected to range from

2020
29 – 44 GtCO₂

2050
23 – 84 GtCO₂

Technical potential of ${\rm CO_2}$ capture estimated at:

• 2020 2.6 – 4.9 GtCO₂ – around 10%

■ 2050 4.7 – 37.5 GtCO₂ (20 – 40%)

Source: IPCC

Maturity of capture technology CC					
Technology	Research	Demonstration	Economically	Mature	
			feasible	Market	
Post-combustion			X		
Pre-combustion			X		
Oxyfuel combustion		X			
Industrial separation				X	
				Source: IPCC	
EG5066 Energy Techno	logies: curr	ent issues & futu	re directions		

Post-Combustion Capture

CCS

Before CO₂ can be removed from flue gas first need to remove:

- Particles electrostatic precipitator
- Contaminant gases such as SOx and NOx flue gas desulpherisation
- Particle and contaminant free flue gas passed through chemical sorbent (amine-based) which absorbs CO₂
- Other methods membranes or solid sorbents not as efficient/cost effective

EG5066 Energy Technologies: current issues & future directions

Post-Combustion Capture

CCS

- Flue gas cooled & brought into contact with amine solution
- CO₂ bound to amine solution & transported to stripper
- Chemical reaction binding CO₂ with amine reversible
- Amine solution regenerated in scrubber
- Captured CO₂ compressed & dehydrated

Post-Combustion Capture

CCS

Pros:

- Feasible to retrofit to current industrial plants and power stations
- Existing technology 60 years
 experience with amine solvents but needs 10x scale-up.
- Currently in use to capture CO₂ for soft drinks industry.

Cons:

- High running costs absorber and degraded solvents replacement.
- Limited large scale operating experience.

EG5066 Energy Technologies: current issues & future directions

Post-Combustion Capture Sigma Power Mikawa Power Plant FGD (Flue Gas Desulphurization) (Electrostatic Precipitator) Annine Co. Absorber Edsouler Carbon Capture Pilot Plant EG5066 Energy Technologies: current issues & future directions

Carbon Capture & Storage

Post-Combustion Capture

Pros:

- Feasible to retrofit to current industrial plants and power stations
- Existing technology 60 years experience with amine solvents but needs 10x scale-up.
- Currently in use to capture CO₂ for soft drinks industry.

Cons:

- High running costs absorber and degraded solvents replacement.
- Limited large scale operating experience.

Energy Industries Overview

Pre-combustion Capture

CCS

1st stage – to produce syngas (H₂ + CO)

Two routes:

Steam reforming - steam added to primary fuel

$$CxHy + xH_2O \longrightarrow xCO + (x + y/2)H_2$$

Partial oxidation of gaseous fuels (gasification)

$$CxHy + x/2O_2 \longrightarrow xCO + (y/2)H_2$$

2nd stage water gas shift reaction to convert the CO into CO₂

$$CO + H_2O \longrightarrow CO_2 + H_2$$

Oxyfuel Combustion Capture

CCS

- Eliminates nitrogen from the flue gas by combustion in pure oxygen or mixture of pure oxygen and flue gas so NOx production reduced
- Combustion temperature of fuel in pure oxygen is too high so temp controlled by proportion of process heat being recycled back to combustion chamber
- Combustion products mainly CO₂ + water vapour + O₂
- Combustion products cooled to condense water vapour giving 80 98%
 CO₂ depending on process & fuel
- Concentrated CO₂ compressed, dehydated, purified before transport & storage

EG5066 Energy Technologies: current issues & future directions

Oxyfuel Combustion Capture

CCS

Pros

- Potential for 100% CO₂ capture.
- Few other harmful emissions due to more complete combustion.
- May be possible to retro-fit the oxyfuel burners onto modified existing coal power plant

Cons

- High energy penalty without chemical looping combustion.
- Only at large development stage in 2007 first Demonstration plants in planning

Oxyfuel Combustion Capture

CCS

CCS

Combustion

Products

Vattenfall demonstration plant - Schwarze Pumpe in Germany

- 30MW oxyfuel pilot plant attached to 1600MW lignite-fuelled power plant
- 90% CO₂ capture rate

EG5066 Energy Technologies: current issues & future directions

Chemical Looping Combustion

2 stage reaction of hydrocarbon combustion in 2 separate reactors:

- Air (oxidiser) Reactor
- Fuel (reducer) Reactor
- *Fuel burns in reducer therefore does not come into contact with air and avoids need for post-combustion capture

Uses metal oxide as a hydrogen carrier

- Metal particles reacted with air to give metal oxide
- Metal oxide particles react with fuel on fluidised bed reactor to produce:
 - Metal particles
 - CO₂ and water vapour
- Water vapour condensed leaving pure

Air Reactor (Oxidiser)

MeO

Air Reactor (Reducer)

Me Fuel Reactor (Reducer)

Depleted Air

 N_2 , O_2

EG5066 Energy Technologies: current issues & future directions

13

Transport

CCS

The main complication with CO_2 transport is that CO_2 behaves differently under varying pressures and temperatures and therefore transport of CO_2 must be carefully controlled to prevent solidification and blockages occurring.

At temperatures & pressures higher than the critical point CO₂ is in a supercritical state where it behaves as a gas but has a very high density similar to that of water

Phase Diagram of Carbon Dioxide

Pressure - 74 bar

Temperature - 31°C

Two main methods:

- Pipeline
- Ship

EG5066 Energy Technologies: current issues & future directions

Transport by pipeline

CCS

31.1 °C

- Common in USA in 2008 there were some 5800km of CO₂ pipelines used since 1970s for EOR projects
- Designed for supercritical/dense phase CO₂ transport.
- Avoids solidification of the CO₂ and to be pumped as a liquid.
- Pressures are kept above 10 MPa
- CO₂ must be dried before transportation because:
 - CO₂ dissolved in water creates an acidic solution that attacks metal pipelines.
 - CO₂ hydrate crystals can form when CO₂ and water mix causing pipeline blockages

CCS

Ship Transport

- Limited to food & brewing industry 100, 000 tonnes/y
- Similar to Liquefied Petroleum Gas (LPG)
- Liquid CO₂ at -25 to -35°C; pressures of 1.4 to 1.7 Mpa
- Carry 850 to 1,400 t CO₂
- Need more carrying capacity to make difference

Storage CCS

Geological

- Geological storage capacity at least 2,000 GtCO₂ mainly in oil and gas fields and in formations bearing saline water
- Upper limit uncertain, especially in saline formations
- Specific site characteristics need closer evaluation
- CO₂ injection and reservoir engineering technology for depleted oil &
 gas fields and saline formations is mature and available
- Monitoring of subsurface movement of CO₂ is being successfully conducted at several sites

Carbon Capture & Storage Basic Criteria for CO₂ Geological Storage Site Reservoir – good porosity and permeability. Usually sandstone but can be carbonate Seal/caprock – low permeability, low porosity, preferably unfractured. Usually a salt of shale Structural closure (although not essential) Formation below 800m – CO₂ exists in its dense phase Geologically stable area Energy Industries Overview

Project name	Country	Injection start (year)	Approximate average daily injection rate (tCO ₂ day ⁻¹)	Total (planned) storage (tCO ₂)	Storage reservoir type
Weyburn	Canada	2000	3,000-5,000	40,000,000	EOR
In Salah	Algeria	2004	3,000-4,000	17,000,000	Gas field
Sleipner	Norway	1996	3,000	20,000,000	Saline formation
Snøhvit	Norway	2006	2,000	unknown	Saline formation

Biochar CCS

- Carbon-rich product of thermal decomposition of biomass under limited oxygen supply and relatively low temperatures (<700°C)
- Similar to charcoal, but produced to improve soil productivity and C storage
- Can sequester carbon in soil for hundreds of thousands of years
- Promoted by James Hansen & James Lovelock to mitigate GHG emissions
- Pre-Columbian Amazonian Natives used biochar to enhance soil productivity – so-called *Terra Preta* de indio
- Used a pit or trench method to produce biochar resulting in terra preta or dark soil

EG5066 Energy Technologies: current issues & future directions

Biochar - characteristics

CCS

- High carbon content (60 95% C)
- Resistant to biodegradation
- Significant adsorptive qualities (similar to activated carbon)
- Nutrients (& contaminants) essentially lock on to the structure
- Increases moisture holding capacity
- Enhances microbial biomass

EG5066 Energy Technologies: current issues & future directions

Biochar - production

- Original method was to produce a soil additive in the pit or trench method
- Modern method involves pyrolysis:
- Fast pyrolysis (seconds) yields 60% bio-oil; 20% char, 20% syngas
- Slow pyrolysis (hours) gives~50% char uses the syngas as fuel
- The lower the temperature the more biochar produced

CCS

EG5066 Energy Technologies: current issues & future directions

Biochar - production

As temperature increases:

- Biochar yield decreases
- Fixed carbon increases
- Surface area increases
- Ash content increases

EG5066 Energy Technologies: current issues & future directions

21

