LECTURE 11: REGULARIZATION

STAT 598z: Introduction to computing for statistics

Vinayak Rao

Department of Statistics, Purdue University

February 15, 2017

Consider linear regression:

$$\mathbf{y} = \mathbf{x}^{\top}\mathbf{w} + \boldsymbol{\epsilon}$$

Consider linear regression:

$$y = \mathbf{X}^{\top} \mathbf{W} + \epsilon$$

In vector notation:

$$y = Xw + \epsilon, \quad y \in \Re^n, X \in \Re^{n \times p}$$

Consider linear regression:

$$y = \mathbf{X}^{\top} \mathbf{W} + \epsilon$$

In vector notation:

$$y = Xw + \epsilon, \quad y \in \Re^n, X \in \Re^{n \times p}$$

$$\hat{\mathbf{w}} = \text{arg min } \|\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}\|^2 = \text{arg min } \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2$$

$$\hat{\mathbf{w}} = \text{arg min } \|\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}\|^2 = \text{arg min } \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2$$

Solution:
$$\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
 (correlation in 1-d)

Problem:
$$\hat{\mathbf{w}} = \text{arg min } \|\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}\|^2 = \text{arg min } \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2$$

How to do this in R (without using 1m)?

Do not invert with solve and multiply!

Problem:
$$\hat{\mathbf{w}} = \text{arg min } \|\mathbf{y} - \mathbf{X}^{\top} \mathbf{w}\|^2 = \text{arg min } \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2$$

How to do this in R (without using 1m)?

- Do not invert with solve and multiply!
- Directly solve $(XX^{\top})\hat{w} = Xy$

PREDICTION ERROR

 $\hat{\mathbf{w}}$ is an unbiased estimate of the true \mathbf{w}

For a test vector \mathbf{x}^{test} we predict $\mathbf{w}^{\top}\mathbf{x}^{test}$.

(Squared) prediction error: $PE = \frac{1}{k} \sum_{i=1}^{k} (y_i^{test} - \mathbf{w}^{\top} \mathbf{x}_i^{test})^2$

PREDICTION ERROR

 $\hat{\mathbf{w}}$ is an unbiased estimate of the true \mathbf{w}

For a test vector \mathbf{x}^{test} we predict $\mathbf{w}^{\top}\mathbf{x}^{test}$.

(Squared) prediction error: $PE = \frac{1}{k} \sum_{i=1}^{k} (y_i^{test} - \mathbf{w}^{\top} \mathbf{x}_i^{test})^2$

Can show:

- · PE is has mean 0
- variance grows with number of features (p)

PREDICTION ERROR

 $\hat{\mathbf{w}}$ is an unbiased estimate of the true \mathbf{w}

For a test vector \mathbf{x}^{test} we predict $\mathbf{w}^{\top}\mathbf{x}^{test}$.

(Squared) prediction error: $PE = \frac{1}{k} \sum_{i=1}^{k} (y_i^{test} - \mathbf{w}^{\top} \mathbf{x}_i^{test})^2$

Can show:

- · PE is has mean 0
- variance grows with number of features (p)

What if p > n?

· XX^{\top} is singular

p > n:

• Cannot invert $\mathbf{X}\mathbf{X}^{\top}$

$$p > n$$
:

- Cannot invert XX[™]
- We can invert if we add a small λ to the diagonal

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 (I is the identity matrix)

p > n:

- Cannot invert XX[™]
- \cdot We can invert if we add a small λ to the diagonal

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 (I is the identity matrix)

p > n:

- Cannot invert XX[™]
- \cdot We can invert if we add a small λ to the diagonal

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda I)^{-1}\mathbf{X}\mathbf{y}$$
 (I is the identity matrix)

- $\lambda = 0$ recovers OLS
- · Larger λ causes larger bias

p > n:

- Cannot invert XX[™]
- · We can invert if we add a small λ to the diagonal

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 (I is the identity matrix)

- $\lambda = 0$ recovers OLS
- · Larger λ causes larger bias
- · $\lambda = \infty$?

p > n:

- Cannot invert XX[™]
- \cdot We can invert if we add a small λ to the diagonal

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 (I is the identity matrix)

- $\lambda = 0$ recovers OLS
- · Larger λ causes larger bias
- $\lambda = \infty$? No variance!

p > n:

- Cannot invert XX[™]
- \cdot We can invert if we add a small λ to the diagonal

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda I)^{-1}\mathbf{X}\mathbf{y}$$
 (I is the identity matrix)

Introducing λ makes problem well-posed, but introduces bias

- $\lambda = 0$ recovers OLS
- Larger λ causes larger bias
- $\lambda = \infty$? No variance!

 λ trades-off bias and variance

Maybe a nonzero λ is actually good?

Recall $\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$ solves $\hat{\mathbf{w}} = \arg\min \|\mathbf{y} - \mathbf{X}^{\top}\mathbf{w}\|^2$

Recall
$$\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
 solves $\hat{\mathbf{w}} = \arg\min \|\mathbf{y} - \mathbf{X}^{\top}\mathbf{w}\|^2$
 $\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda I)^{-1}\mathbf{X}\mathbf{y}$ solves

$$\hat{\mathbf{w}}_{\lambda} = \operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$$

Recall
$$\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
 solves $\hat{\mathbf{w}} = \arg\min \|\mathbf{y} - \mathbf{X}^{\top}\mathbf{w}\|^2$
 $\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda I)^{-1}\mathbf{X}\mathbf{y}$ solves

$$\hat{\mathbf{w}}_{\lambda} = \operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$$

 $\|\mathbf{w}\|_2^2 = \sum_{i=1}^p w_i^2$ is the squared ℓ_2 -norm $\lambda \|\mathbf{w}\|_2$ is the *shrinkage penalty*.

Recall
$$\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
 solves $\hat{\mathbf{w}} = \arg\min \|\mathbf{y} - \mathbf{X}^{\top}\mathbf{w}\|^2$

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 solves

$$\hat{\mathbf{w}}_{\lambda} = \operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$$

 $\|\mathbf{w}\|_2^2 = \sum_{i=1}^p w_i^2$ is the squared ℓ_2 -norm

 $\lambda \|\mathbf{w}\|_2$ is the shrinkage penalty.

Favours w's with smaller components

Recall
$$\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
 solves $\hat{\mathbf{w}} = \arg\min \|\mathbf{y} - \mathbf{X}^{\top}\mathbf{w}\|^2$

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 solves

$$\hat{\mathbf{w}}_{\lambda} = \operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$$

 $\|\mathbf{w}\|_2^2 = \sum_{i=1}^p w_i^2$ is the squared ℓ_2 -norm

 $\lambda \|\mathbf{w}\|_2$ is the shrinkage penalty.

Favours w's with smaller components

 λ trades of small training error with 'simple' solutions

Recall
$$\hat{\mathbf{w}} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
 solves $\hat{\mathbf{w}} = \arg\min \|\mathbf{y} - \mathbf{X}^{\top}\mathbf{w}\|^2$

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$
 solves

$$\hat{\mathbf{w}}_{\lambda} = \operatorname{argmin} \mathcal{L}_{\lambda}(\mathbf{w}) := \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$$

 $\|\mathbf{w}\|_2^2 = \sum_{i=1}^p w_i^2$ is the squared ℓ_2 -norm

 $\lambda \|\mathbf{w}\|_2$ is the shrinkage penalty.

Favours w's with smaller components

 λ trades of small training error with 'simple' solutions

 ℓ_2 /ridge/Tikhonov regularization

Simple modification of the least-squares solution:

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Simple modification of the least-squares solution:

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

In the 1-dimensional case,

$$\hat{w}_{\lambda} = (\mathbf{x}^{\top}\mathbf{x} + \lambda \mathbf{I}_{p})^{-1}\mathbf{x}^{\top}\mathbf{y}$$

Simple modification of the least-squares solution:

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

In the 1-dimensional case,

$$\hat{w}_{\lambda} = (\mathbf{x}^{\top}\mathbf{x} + \lambda \mathbf{I}_{p})^{-1}\mathbf{x}^{\top}\mathbf{y}$$
$$= \frac{\mathbf{x}^{\top}\mathbf{x}}{(\mathbf{x}^{\top}\mathbf{x} + \lambda \mathbf{I}_{p})} \frac{\mathbf{x}^{\top}\mathbf{y}}{\mathbf{x}^{\top}\mathbf{x}}$$

Simple modification of the least-squares solution:

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

In the 1-dimensional case,

$$\hat{w}_{\lambda} = (\mathbf{x}^{\top} \mathbf{x} + \lambda \mathbf{I}_{p})^{-1} \mathbf{x}^{\top} \mathbf{y}$$

$$= \frac{\mathbf{x}^{\top} \mathbf{x}}{(\mathbf{x}^{\top} \mathbf{x} + \lambda \mathbf{I}_{p})} \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}}$$

$$= c \hat{w} \quad (c < 1)$$

Simple modification of the least-squares solution:

$$\hat{\mathbf{w}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

In the 1-dimensional case,

$$\hat{w}_{\lambda} = (\mathbf{x}^{\top} \mathbf{x} + \lambda \mathbf{I}_{p})^{-1} \mathbf{x}^{\top} \mathbf{y}$$

$$= \frac{\mathbf{x}^{\top} \mathbf{x}}{(\mathbf{x}^{\top} \mathbf{x} + \lambda \mathbf{I}_{p})} \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}}$$

$$= c \hat{w} \quad (c < 1)$$

Shrinks least-squares solution.

RIDGE REGRESSION

Credit data set (average credit card debt)

James, Witten, Hastic and Tibshirani

- Pick a set of λ 's
- For kth fold of cross-validation:

- Pick a set of λ 's
- For kth fold of cross-validation:
 - For each λ :
 - · Solve the regularized least squares problem on training data.
 - Evaluate estimated **w** on held-out data (call this $PE_{\lambda,k}$).

- Pick a set of λ 's
- For kth fold of cross-validation:
 - For each λ :
 - · Solve the regularized least squares problem on training data.
 - Evaluate estimated **w** on held-out data (call this $PE_{\lambda,k}$).
- Pick $\hat{\lambda} = \operatorname{argmin} \operatorname{mean}(PE_{\lambda})$ or $(\operatorname{argmin} (\operatorname{mean}(PE_{\lambda}) + \operatorname{stderr}(PE_{\lambda})))$

- Pick a set of λ 's
- For kth fold of cross-validation:
 - For each λ :
 - · Solve the regularized least squares problem on training data.
 - Evaluate estimated **w** on held-out data (call this $PE_{\lambda,k}$).
- Pick $\hat{\lambda} = \operatorname{argmin} \operatorname{mean}(PE_{\lambda})$ or $(\operatorname{argmin} (\operatorname{mean}(PE_{\lambda}) + \operatorname{stderr}(PE_{\lambda})))$
- \cdot Having chosen $\hat{\lambda}$ solve regularized least square on all data

DOES THIS WORK?

DOES THIS WORK?

Ridge regression improves performance by reducing variance

DOES THIS WORK?

Ridge regression improves performance by reducing variance

- does not perform feature selection
- just shrinks components of \boldsymbol{w} towards 0

For the former: Lasso

REGULARIZATION AS CONSTRAINED OPTIMIZATION

```
\begin{split} & \text{argmin} (\mathbf{y} - \mathbf{X}^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2 \quad \text{is equivalent to} \\ & \text{argmin} (\mathbf{y} - \mathbf{X}^{\top} \mathbf{w})^2 \quad \text{s.t.} \ \|\mathbf{w}\|_2^2 \leq \gamma \\ & \text{(Note: } \gamma \text{ will depend on data)} \end{split}
```

REGULARIZATION AS CONSTRAINED OPTIMIZATION

 $\operatorname{argmin}(\mathbf{y} - \mathbf{X}^{\top}\mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$ is equivalent to

 $\operatorname{argmin}(\mathbf{y} - \mathbf{X}^{\top}\mathbf{w})^{2}$ s.t. $\|\mathbf{w}\|_{2}^{2} \leq \gamma$

(Note: γ will depend on data)

First problem: regularized optimization Second problem: constrained optimization

REGULARIZATION AS CONSTRAINED OPTIMIZATION

 $\operatorname{argmin}(\mathbf{y} - \mathbf{X}^{\top}\mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2$ is equivalent to

 $\operatorname{argmin}(\mathbf{y} - \mathbf{X}^{\top}\mathbf{w})^{2}$ s.t. $\|\mathbf{w}\|_{2}^{2} \leq \gamma$

(Note: γ will depend on data)

First problem: regularized optimization Second problem: constrained optimization

 $\begin{aligned} & \text{argmin} (\mathbf{y} - \mathbf{X}^{\top} \mathbf{w})^2 \quad \text{s.t. } \|\mathbf{w}\|_1 \leq \gamma \\ & \|\mathbf{w}\|_1 = \sum_{i=1}^p |w|_i \text{ is the } \ell_1\text{-norm.} \end{aligned}$

argmin
$$(\mathbf{y} - \mathbf{X}^{\top} \mathbf{w})^2$$
 s.t. $\|\mathbf{w}\|_1 \le \gamma$
 $\|\mathbf{w}\|_1 = \sum_{i=1}^p |w|_i$ is the ℓ_1 -norm.

Lasso: least absolute shrinkage and selection operator.

$$\hat{\mathbf{w}} = \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\mathsf{T}} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_1$$

$$\begin{aligned} & \text{argmin} (\mathbf{y} - \mathbf{X}^{\top} \mathbf{w})^2 \quad \text{s.t. } \|\mathbf{w}\|_1 \leq \gamma \\ & \|\mathbf{w}\|_1 = \sum_{i=1}^p |w|_i \text{ is the } \ell_1\text{-norm.} \end{aligned}$$

Lasso: least absolute shrinkage and selection operator.

$$\hat{\mathbf{w}} = \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\mathsf{T}} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_1$$

- Penalizes small w_i 's more than ridge regression.
- Tolerates larger w_i 's more than ridge regression.

$$\operatorname{argmin}(\mathbf{y} - \mathbf{X}^{\top}\mathbf{w})^{2}$$
 s.t. $\|\mathbf{w}\|_{1} \leq \gamma$

$$\|\mathbf{w}\|_1 = \sum_{i=1}^p |w|_i$$
 is the ℓ_1 -norm.

Lasso: least absolute shrinkage and selection operator.

$$\hat{\mathbf{w}} = \operatorname{argmin} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2 + \lambda \|\mathbf{w}\|_1$$

- Penalizes small w_i's more than ridge regression.
- Tolerates larger w_i 's more than ridge regression.

Result:

- \cdot $\hat{\mathbf{w}}_{LASSO}$ has some components exactly equal to zero.
- · Performs feature selection.

Credit data set (average credit card debt)

James, Witten, Hastic and Tibshirani