Plant Leaf Diseases Diagnosis with Deep Learning

Fei Wang 09/21/2023

Why This Project?

Automated Agricultural Systems

https://images.pexels.com/photos/96715/pexels-photo-96715.jpeg?cs=srgl&dl=pexels-alejandro-barr%C3%B3n-96715.jpg&fm=jpg

Mobile App for Houseplant Hobbyists

Data

Images of Plant Leaves

- Source: Mendeley Data, originally from a journal paper.¹
- Total Class: 39, including 1 background (not plants)

Total Images: 61,486

Total Species: 15

Raspberry

Strawberry

Peach

Orange

¹Geetharamani G., Arun Pandian J., "Identification of plant leaf diseases using a nine-layer deep convolutional neural network", Computers & Electrical Engineering, V76, p323-338, June 2019

Method

Convolutional Neural Network (original)

A 9-layer structure same as in the journal paper

Convolutional Neural Network (tuned)

Data Challenges

Imbalance Class

Wavy distribution

Varies from 122 to 4406

Insufficient Data

Potato_heathy only has 122 images in the training data.

Solutions

Hybrid approaches listed below:

Approaches	Upsampling (Data Augmentation*)	Data Ensembling (Bootstrapping)	Model Ensembling (Bagging)	Data Imbalanced	Class Sample Size
1	No	No	No	Yes	122-4406
2	Yes	No	No	Yes	915-4406
3	No	Yes (5 times)	Yes (5 times)	No	200
4	Yes	Yes (5 times)	Yes (5 times)	No	900

^{*} Data augmentation: rotating, flipping, scaling, adding noises, etc. of existing data.

Models & Evaluation Original CNN

Model Metrics (original CNN)

TensorFlow.Keras.Models

```
# create a model
model = Sequential()
# Add layers to the model
model.add(Conv2D(32, (3,3), 1, activation = 'relu', input_shape = (128,128,3)))
model.add(MaxPooling2D())
model.add(Conv2D(16, (3,3), 1, activation = 'relu'))
model.add(MaxPooling2D())
model.add(Conv2D(8, (3,3), 1, activation = 'relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.2))
model.add(Dense(39, activation = 'softmax'))
# compile the model
model.compile('adam', loss = 'sparse categorical crossentropy', metrics = ['accuracy'])
# train the model
model.fit(train, epochs = 15, validation data = val)
```


Model Evaluation

Models	Accuracy	Cross Entropy	Upsampling (Data Augmentation)	Data Ensembling (Bootstrapping)	Model Ensembling (Bagging)	Data Imbalanced	Class Sample Size
1	0.871	0.426	No	No	No	Yes	122-4406
2	0.858	0.452	Yes	No	No	Yes	915-4406
3	0.795*	0.853 [*]	No	Yes (5 times)	Yes (5 times)	No	200
4	0.883*	0.460 [*]	Yes	Yes (5 times)	Yes (5 times)	No	900

^{*} Majority vote was used for Model 3 and Model 4

Winner: Model 1 & Model 4

Classification Reports

Testing Data also imbalanced

Classification Reports are helpful

Upsampling + Ensembling (Model 4)

Performs better for most classes with less images

Except for Potato_healthy(23), which has too less images

	Model I				Model 4					
		precision	recall	f1-score	support		precision	recall	f1-score	support
	0	0.80	0.65	0.72	126	0	0.69	0.80	0.74	126
_	1	0.77	0.85	0.81	124	1	0.80	0.85	0.83	124
	2	0.74	0.36	0.49	55	2	0.71	0.64	0.67	55
l '	3	0.74	0.88	0.80	329	3	0.80	0.79	0.79	329
	4	0.91	0.89	0.90	228	4	0.92	0.89	0.90	228
	5	0.92	0.89	0.90	300	5	0.90	0.94	0.92	300
	6	0.91	0.79	0.84	210	6	0.91	0.95	0.93	210
	7	0.87	0.88	0.87	170	7	0.84	0.92	0.88	170
	8	0.58	0.66	0.61	102	8	0.67	0.54	0.60	102
	9	0.97	1.00	0.98	238	9	0.95	1.00	0.97	238
	10	0.87	0.65	0.75	197	10	0.80	0.86	0.83	197
	11	0.97	0.98	0.98	232	11	0.97	0.99	0.98	232
	12	0.88	0.84	0.86	236	12	0.83	0.92	0.87	236
	13	0.93	0.92	0.93	276	13	0.95	0.91	0.93	276
	14	0.93	0.94	0.94	215	14	0.95	0.96	0.96	215
	15	0.94	0.80	0.86	84	15	0.92	0.92	0.92	84
_	16	0.97	0.98	0.98	1101	16	0.97	0.96	0.97	1101
_	17	0.89	0.85	0.87	459	17	0.90	0.85	0.88	459
[18	0.84	0.88	0.86	72	18	0.78	0.88	0.82	72
	19	0.75	0.69	0.72	199	19	0.66	0.84	0.74	199
	20	0.94	0.81	0.87	295	20	0.80	0.91	0.85	295
	21	0.86	0.94	0.90	200	21	0.88	0.95	0.92	200
١.	22	0.72	0.70	0.71	200	22	0.80	0.72	0.76	200
[23	0.79	0.73	0.76	30	23	0.69	0.60	0.64	30
[24	0.78	0.80	0.79	74	24	0.95	0.82	0.88	74
	25	0.92	0.98	0.95	1018	25	0.99	0.93	0.96	1018
	26	0.89	0.93	0.91	367	26	0.93	0.96	0.95	367
_	27	0.90	0.81	0.85	221	27	0.92	0.84	0.88	221
	28	0.92	0.86	0.89	91	28	0.87	0.90	0.89	91
	29	0.91	0.87	0.89	425	29	0.90	0.83	0.86	425
	30	0.65	0.46	0.53	200	30	0.53	0.67	0.59	200
	31	0.78	0.65	0.71	381	31	0.75	0.76	0.75	381
	32	0.81	0.64	0.71	190	32	0.77	0.75	0.76	190
	33	0.59	0.81	0.68	354	33	0.81	0.70	0.75	354
	34	0.81	0.90	0.85	335	34	0.89	0.84	0.87	335
	35	0.81	0.83	0.82	280	35	0.83	0.84	0.84	280
	36	0.94	0.97	0.96	1071	36	0.96	0.94	0.95	1071
ı [37	0.82	0.92	0.87	74	37	0.95	0.93	0.94	74
	38	0.90	0.98	0.94	318	38	0.97	0.97	0.97	318
accur	асу			0.87	11077	accuracy			0.88	11077
macro	avg	0.84	0.82	0.83	11077	macro avg	0.85	0.85	0.85	11077
weighted .	avg	0.87	0.87	0.87	11077	weighted avg	0.89	0.88	0.88	11077

Model 4

Model 1

Models & Evaluation

Tuned CNN on Training Data 4

Model Metrics (tuned CNN)

TensorFlow.Keras.Models

```
# create a model
model = Sequential()
# Add layers to the model
model.add(Conv2D(32, (3,3), 1, activation = 'relu', input shape = (128,128,3)))
model.add(MaxPooling2D())
                                                       [16, 24, 32]
model.add(Conv2D(16, (3,3), 1, activation = 'relu'))
model.add(MaxPooling2D())
model.add(Conv2D(32, (3,3), 1, activation = 'relu'))
                                                     [16, 24, 32]
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
                                     [0.1, 0.2, 0.3, 0.4]
model.add(Dropout(0.1))
model.add(Dense(39, activation = 'softmax'))
# compile the model
model.compile('adam', loss = 'sparse categorical crossentropy', metrics = ['accuracy'])
                                                                                          ['adam', 'sgd']
# train the model
model.fit(train, epochs = 15, validation data = val)
```


keras-tuner keras_tuner.Hyperband

Model Evaluation

Models	Accuracy	Cross Entropy	AUC (one over rest)			
original	0.896	0.450	0.996			
tuned	0.909	0.441	0.997			

Winner: tuned model

^{*} Training data 4 (bootstrapping + augmentation; 900 images for each class) was used for both models.

Classification Reports

Testing Data also imbalanced

Classification Reports are helpful

Tuned model performs better than the original one.

	tuneu				Original				
F	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.72	0.80	0.76	126	0	0.69	0.80	0.74	126
1	0.75	0.95	0.84	124	1	0.80	0.85	0.83	124
2	0.80	0.71	0.75	55	2	0.71	0.64	0.67	55
3	0.85	0.89	0.87	329	3	0.80	0.79	0.79	329
4	0.94	0.90	0.92	228	4	0.92	0.89	0.90	228
5	0.92	0.96	0.94	300	5	0.90	0.94	0.92	300
6	0.93	0.95	0.94	210	6	0.91	0.95	0.93	210
7	0.91	0.96	0.93	170	7	0.84	0.92	0.88	170
8	0.65	0.65	0.65	102	8	0.67	0.54	0.60	102
9	0.97	0.99	0.98	238	9	0.95	1.00	0.97	238
10	0.79	0.86	0.83	197	10	0.80	0.86	0.83	197
11	0.97	0.97	0.97	232	11	0.97	0.99	0.98	232
12	0.90	0.92	0.91	236	12	0.83	0.92	0.87	236
13	0.95	0.94	0.95	276	13	0.95	0.91	0.93	276
14	0.99	0.96	0.97	215	14	0.95	0.96	0.96	215
15	0.91	0.98	0.94	84	15	0.92	0.92	0.92	84
16	0.99	0.98	0.98	1101	16	0.97	0.96	0.97	1101
17	0.96	0.85	0.90	459	17	0.90	0.85	0.88	459
18	0.81	0.90	0.86	72	18	0.78	0.88	0.82	72
19	0.83	0.83	0.83	199	19	0.66	0.84	0.74	199
20	0.94	0.90	0.92	295	20	0.80	0.91	0.85	295
21	0.90	0.98	0.94	200	21	0.88	0.95	0.92	200
22	0.88	0.80	0.83	200	22	0.80	0.72	0.76	200
23	0.87	0.67	0.75	30	23	0.69	0.60	0.64	30
24	0.89	0.96	0.92	74	24	0.95	0.82	0.88	74
25	0.98	0.96	0.97	1018	25	0.99	0.93	0.96	1018
26	0.95	0.98	0.97	367	26	0.93	0.96	0.95	367
27	0.91	0.91	0.91	221	27	0.92	0.84	0.88	221
28	0.93	0.91	0.92	91	28	0.87	0.90	0.89	91
29	0.92	0.92	0.92	425	29	0.90	0.83	0.86	425
30	0.58	0.68	0.63	200	30	0.53	0.67	0.59	200
31	0.81	0.74	0.77	381	31	0.75	0.76	0.75	381
32	0.83	0.82	0.82	190	32	0.77	0.75	0.76	190
33	0.79	0.75	0.77	354	33	0.81	0.70	0.75	354
34	0.87	0.89	0.88	335	34	0.89	0.84	0.87	335
35	0.82	0.87	0.85	280	35	0.83	0.84	0.84	280
36	0.98	0.96	0.97	1071	36	0.96	0.94	0.95	1071
37	0.93	0.95	0.94	74	37	0.95	0.93	0.94	74
38	0.95	0.96	0.95	318	38	0.97	0.97	0.97	318
accuracy			0.91	11077	accuracy			0.88	11077
macro avg	0.88	0.89	0.88	11077	macro avg	0.85	0.85	0.85	11077
weighted avg	0.91	0.91	0.91	11077	weighted avg	0.89	0.88	0.88	11077

tuned

original

Takeaways

- Simple CNN model works well
- Hyper-parameter tuning improves model performance
- Image quality and quantity are key
- Bootstrapping and bagging help improve model performance

Next Steps

- Collect more data
- Reduce cost: gray scale?
- Find sweet spot for Bootstrapping sample size
- Is 5-time ensemble a good number
- More hyper-parameter tuning

Acknowledgement

Thanks to Raghunandan Patthar for being a super supporting Springboard mentor and his kindest help.

Thanks to Nicolas Renotte for his fun and engaging YouTube Video on Build a Deep CNN Image Classifier.