华东师范大学期中试卷 A 卷 2023-2024 学年第一学期 参考答案及评分标准

学 号:

年级/班级:

2023 级

概率论与数理统计

软件工程

课程名称:

学生姓名:

专业:

Ì	果程性	. 质:	公共必	必修、	公共货	些修、	专业必	<u>必修</u> 、	专业运	先修				
	_	=	三	四四	五.	六	七	八	九	+	总分	阅卷人名	签名	
	此	セス 町	(与)	、晒っ	/\	# 20) (<u>)</u>)							
	、 此	手型	(每小	、	汀,	共 20	J TT)							
1.	设 A	, B ≯	为两个	相互犯	由立的	随机马	事件,	且 A,	B 都	不发生	E的概率	为 $\frac{1}{9}$, A 发	生B	不
	发生	的概	率与 A	不发	生母	发生的	的概率	相等。	求 A	发生	的概率是	<u>.</u>	()
	A. $\frac{2}{3}$	3		B. $\frac{2}{9}$			C. $\frac{2}{5}$]	D. $\frac{1}{9}$				
2.	甲乙	两人:	约定上	:午9.	点到 1	0 点之	之 间约	会,两	 人到	达时间		过 10 分钟	中则约	会
	成功	,两	人到达	时间	差超过	:10 分	钟则组	约会失	:败。	求两者	的会成.	功的概率。	是()
	A. $\frac{1}{3}$	1 86		В.	$\frac{11}{36}$		C.	$\frac{1}{26}$		D.	$\frac{11}{26}$			
3.	设 X	(X,Y)	 为随机	变量,	且P	$\{X \geq$	$\{0\} =$	1/2, I	$P\{Y \ge$	<u> </u>	= 3/5, <i>P</i> {	$\{X \ge 0, Y$	≥ 0	-
	1/4.	求 <i>I</i>	P{min((X,Y)	< 0}	和 P	{max(.	X, Y)	≥ 0	分別)	勺		()
	A. $\frac{1}{4}$	$\frac{7}{10}$			B. $\frac{1}{12}$	$;\frac{5}{9}$		C.	$\frac{7}{15}$; $\frac{3}{8}$; - ;	D	$\frac{3}{4}$; $\frac{17}{20}$		
4.	己知	甲口:	袋中有	12个	白球和	14个	黑球,	乙口	袋中有	自3个	白球和:	3 个黑球,	从甲	

袋中取两个球放入乙口袋,再从乙口袋中任取一个球。计算(1):取出的球为黑球

第1页,共11页

	的概率;②: 若已知乙口袋取出的球为黑球,则甲口袋取出的2个球是白	冰的燃
	率,则以下选项正确的是	()
	A. ①: $\frac{7}{24}$; ②: $\frac{3}{65}$ B. ①: $\frac{13}{24}$; ②: $\frac{3}{65}$	
	C. ①: $\frac{1}{24}$; ②: $\frac{7}{65}$ D. ①: $\frac{11}{24}$; ②: $\frac{7}{65}$	
5.	. 设随机变量 ξ 密度函数为 $p(x)$,则 $\eta=3\xi-1$ 的密度函数 $p_{\eta}(y)$ 为	()
	A. $\frac{1}{3}p(\frac{y+1}{3});$ B. $3p(\frac{y+1}{3});$ C. $\frac{1}{3}p(3(y+1));$ D. $3p(\frac{y-1}{3});$	$(\frac{1}{3}).$
6.	. 离散随机变量 X 的分布函数为 $F(x)$,且 $x_{k-1} < x_k < x_{k+1}$,则 $P\{X = x_k < $	x_k } =
	A. $P\{x_{k-1} \le X \le x_k\};$ B. $F(x_{k+1}) - F(x_{k-1});$	
	C. $P\{x_{k-1} < X < x_{k+1}\};$ D. $F(x_k) - F(x_{k-1}).$	
7.	. 设 $f(x)$ 为某分布的概率密度函数, $f(1+x) = f(1-x)$, $\int_0^2 f(x)dx = 0$.6,则
	$P\{X<0\} =$	()
	$P\{X < 0\} =$ A. 0.2; B. 0.3; C. 0.4; D. 0.6.	()
8.	A. 0.2; B. 0.3; C. 0.4; D. 0.6.	
8.		
8.	A. 0.2 ; B. 0.3; C. 0.4; D. 0.6. . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$	
8.	A. 0.2; B. 0.3; C. 0.4; D. 0.6. . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$	
	A. 0.2 ; B. 0.3 ; C. 0.4 ; D. 0.6 . . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$ () A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数; C. $f_1(x) + f_2(x)$ 是密度函数 D. $f_1(x) \cdot f_2(x)$ 是密度函数.	x)。则
	A. 0.2 ; B. 0.3 ; C. 0.4 ; D. 0.6 . . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$ () A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数; C. $f_1(x) + f_2(x)$ 是密度函数 D. $f_1(x) \cdot f_2(x)$ 是密度函数. . 设随机变量 (X,Y) 服从二维正态分布,则随机变量 $U = X + Y, V = X - X$	x)。则
	A. 0.2; B. 0.3; C. 0.4; D. 0.6. . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$ () A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数; C. $f_1(x) + f_2(x)$ 是密度函数 D. $f_1(x) \cdot f_2(x)$ 是密度函数. . 设随机变量 (X,Y) 服从二维正态分布,则随机变量 $U = X + Y, V = X - X + Y$ 关的充分必要条件为	x)。则
	A. 0.2 ; B. 0.3 ; C. 0.4 ; D. 0.6 . . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$ () A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数; C. $f_1(x) + f_2(x)$ 是密度函数 D. $f_1(x) \cdot f_2(x)$ 是密度函数. . 设随机变量 (X,Y) 服从二维正态分布,则随机变量 $U = X + Y$, $V = X - X +$	x)。则
9.	A. 0.2 ; B. 0.3 ; C. 0.4 ; D. 0.6 . . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$ () A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数; C. $f_1(x) + f_2(x)$ 是密度函数 D. $f_1(x) \cdot f_2(x)$ 是密度函数. . 设随机变量 (X,Y) 服从二维正态分布,则随机变量 $U = X + Y, V = X - X + Y$ 关的充分必要条件为 A. $EX = EY$ B. $E(X^2) - (EX)^2 = E(Y^2) - (EY)^2$; C. $E(X^2) = E(Y^2)$ D. $E(X^2) + (EX)^2 = E(Y^2) + (EY)^2$	x)。则 Y 不相 ()
9.	A. 0.2 ; B. 0.3 ; C. 0.4 ; D. 0.6 . . 设两个随机变量的分布函数和密度函数分别是 $F_1(x)$, $F_2(x)$ 和 $f_1(x)$, $f_2(x)$ () A. $F_1(x) + F_2(x)$ 是分布函数 B. $F_1(x) \cdot F_2(x)$ 是分布函数; C. $f_1(x) + f_2(x)$ 是密度函数 D. $f_1(x) \cdot f_2(x)$ 是密度函数. . 设随机变量 (X,Y) 服从二维正态分布,则随机变量 $U = X + Y$, $V = X - X +$	x)。则 Y 不相 ()

二、填空题 (每小题 4 分, 共 20 分)

- 11. 设 A, B, C 是三个事件,且 P(A) = P(B) = P(C) = 1/4,P(AB) = P(BC) = 0, P(AC) = 1/8。则 A, B, C 至少有一个发生的概率是 $\frac{5}{8}$ 。
- 12. 甲、乙两人向同一个目标射击,命中率分别为 0.5 和 0.6。若甲、乙两人同时向目 标射击,命中的概率记为P(A);若甲、乙两人同时向目标射击,已知目标被命 中,该目标是甲命中的概率记为 P(B)。则 $P(A) - P(B) = \frac{7}{40}$ 。
- 13. 设随机变量 $X \sim N(\mu, \sigma^2)$, 且二次方程 $y^2 + 4y + X = 0$ 无实根的概率等于 0.5, 则 $\mu = \underline{\mathbf{4}}_{\circ}$
- 14. 设随机变量 X 的概率密度为 $f(x) = \left\{ \begin{array}{ll} \frac{x}{2}, & 0 < x < 2 \\ & & , F(x)$ 为 X 的分布函数, E(X) 为 X 的数学期望,则 $P\{F(X) > E(X) - 1\} = \frac{2}{3}$
- 15. 设 X, Y 为随机变量, 数学期望都是 2, 方差分别为 1 和 4, 相关系数为 0.5, 则由切 比雪夫不等式, $P\{|X - Y| \ge 6\} \le \frac{1}{19}$.
- 三、计算题 (每小题 10 分, 共 60 分)

附表:

x	1.20	1.34	1.50	1.645	2.00	2.50	2.60
$\Phi(x)$	0.855	0.9099	0.933	0.95	0.977	0.994	0.995

16. 设第一只盒子中装有 4 只蓝色球、3 只绿色球、2 只白色球,第二只盒子中装有 3 只蓝色球、5 只绿色球、4 只白色球.独立地分别在两只盒子中各取一只球。

- (1). 求至少有1只蓝色球的概率。
- (2). 求有1只蓝色球、1只白色球的概率。
- (3). 已知至少有1只蓝色球,求有1只蓝色球、1只白色球的概率。

解: B_i 记事件"从第i 只盒子中取得一只蓝色球",以 W_i 记事件"从第i 只盒子中取得一只白色球",i=1,2. 由题设在不同盒子中取球是相互独立的。

(1) 即需求 $P(B_1 \cup B_2)$. 利用对立事件来求较方便,即有

$$P(B_1 \cup B_2) = 1 - P(\overline{B_1 \cup B_2}) = 1 - P(\overline{B_1 B_2})$$
 (1)

$$= 1 - P(\overline{B_1})P(\overline{B_2}) = 1 - \frac{5}{9} \times \frac{9}{12}$$
 (2)

$$=\frac{7}{12}\tag{3}$$

(2) 即需求事件 $B_1W_2 \cup B_2W_1$ 的概率,注意到 B_1 , W_1 是互不相容的,即 $B_1W_1\Box$,因而 $(B_1W_2)(B_2W_1)\Box$,故有

$$P(B_1W_2 \cup B_2W_1) = P(B_1W_2) + P(B_2W_1) \tag{4}$$

$$= P(B_1)P(W_2) + P(B_2)P(W_1)$$
 (5)

$$=\frac{11}{54}$$
 (6)

(3) 即需要条件概率 $p = P(B_1W_2 \cup B_2W_1 | B_1 \cup B_2)$. 因 $(B_1W_2 \cup B_2W_1) \subset B_1 \cup B_2$, 故有

$$p = P[(B_1W_2 \cup B_2W_1)(B_1 \cup B_2)]/P(B_1 \cup B_2)$$
(7)

$$= P(B_1 W_2 \cup B_2 W_1) / P(B_1 \cup B_2) \tag{8}$$

$$=\frac{22}{63}\tag{9}$$

17. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} be^{-(x+y)}, & 0 < x < 1, 0 < y < \infty \\ 0, & \text{其他} \end{cases}$$

试求 (1) 试确定常数 b; (3 分)

- (2) 求边缘概率密度 $f_X(x)$ 与 $f_Y(y)$. (4分)
- (3) 求函数 $U = \max\{X, Y\}$ 的分布函数. (3 分)

(1)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

$$\int_{0}^{\infty} \int_{0}^{1} b e^{-(x+y)} \, dx \, dy = 1$$

$$b \left[\int_{0}^{\infty} e^{-y} \, dy \right] \left[\int_{0}^{1} e^{-x} \, dx \right] = 1$$

$$b (1 - e^{-1}) = 1$$

得
$$b = \frac{1}{1 - e^{-1}} = \frac{e}{e - 1}$$

(2)

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \begin{cases} \frac{1}{1 - e^{-1}} \int_0^{\infty} e^{-x} e^{-y} \, dy = \frac{e^{-x}}{1 - e^{-1}}, & 0 < x < 1, \\ 0, & else. \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} \frac{1}{1 - e^{-1}} \int_0^1 e^{-x} e^{-y} dx = e^{-y}, & y > 0, \\ 0, & else. \end{cases}$$

(3)

由 (2) 知 $f(x,y)=f_X(x)f_Y(y)$, 故 X, Y 相互独立,分别记 $U=max\{X,Y\}$, X 和 Y 的分布函数为 $F_U(u)$, $F_X(x)$ 和 $F_Y(y)$, 则有

$$F_U(u) = F_X(u)F_Y(u) \tag{A}$$

由(2)知

$$F_X(u) = \int_{-\infty}^u f_X(x) \, dx = \begin{cases} 0, & u < 0, \\ \int_0^u \frac{e^{-x}}{1 - e^{-1}} \, dx, & 0 \le u < 1, \\ 1, & u \ge 1. \end{cases}$$

$$= \begin{cases} 0, & u < 0, \\ \frac{1 - e^{-u}}{1 - e^{-1}}, & 0 \le u < 1, \\ 1, & u \ge 1. \end{cases}$$

$$F_Y(u) = \int_{-\infty}^u f_Y(y) \, dy = \begin{cases} 0, & u < 0, \\ \int_0^u e^{-y} \, dy, & u \ge 0. \end{cases}$$
$$= \begin{cases} 0, & u < 0, \\ 1 - e^{-u}, & u \ge 0. \end{cases}$$

将 $F_X(u)$, $F_Y(u)$ 的表达式代入 (A) 式,得到 $U = max\{X,Y\}$ 的分布函数为

$$F_U(u) = \begin{cases} 0, & u < 0, \\ \frac{(1 - e^{-u})^2}{1 - e^{-1}}, & 0 \le u < 1, \\ 1 - e^{-u}, & u \ge 1. \end{cases}$$

18. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} a + bx^2, & 0 < x < 1, \\ 0, & \text{ 其他} \end{cases}$$

已知 $EX = \frac{3}{5}$, 求 DX.

解: 由
$$1 = \int_{-\infty}^{+\infty} f(x)dx = \int_{0}^{1} (a+bx^{2})dx = a + \frac{1}{3}b$$
, 得
$$3a+b=3. \tag{10}$$

再由
$$\frac{3}{5} = EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} (ax + bx^{3}) dx = \frac{1}{2}a + \frac{1}{4}b,$$
 得
$$2a + b = \frac{12}{5}.$$
(11)

联立 (1)(2) 两式, 解得 $a = \frac{3}{5}, b = \frac{6}{5}$, 代入 f(x) 表达式中, 即得

$$DX = EX^{2} - (EX)^{2} = \int_{-\infty}^{+\infty} x^{2} f(x) dx - \left(\frac{3}{5}\right)^{2}$$
$$= \frac{3}{5} \int_{0}^{1} x^{2} (1 + 2x^{2}) dx - \frac{9}{25}$$
$$= \frac{11}{25} - \frac{9}{25} = \frac{2}{25}.$$

19. 设 A, B 为两个随机事件, 且 $P(A) = \frac{1}{4}, P(B|A) = \frac{1}{3}, P(A|B) = \frac{1}{2}$. 令

$$X = \begin{cases} 1, & A$$
 发生,
$$Y = \begin{cases} 1, & B$$
 发生,
$$0, & A$$
 发生,
$$0, & B$$
 发生,

求: (1) 二维随机变量 (X,Y) 的概率分布; (2) X,Y 的相关系数 ρ_{XY} .

解: (1)
$$(X,Y)$$
 的所有取值为 $(0,0),(0,1),(1,0),(1,1)$,并有 $P\{X=0,Y=0\}$ = $P(\overline{A}\overline{B}) = P(\overline{A \cup B}) = 1 - P(A) - P(B) + P(AB)$,其中, $P(AB) = 0$

$$P(A)P(B|A) = \frac{1}{12}, P(B) = \frac{P(AB)}{P(A|B)} = \frac{1}{6},$$
 因此
$$P\{X = 0, Y = 0\} = 1 - \frac{1}{4} - \frac{1}{6} + \frac{1}{12} = \frac{2}{3},$$

$$P\{X = 0, Y = 1\} = P(\overline{A}B) = P(B) - P(AB) = \frac{1}{6} - \frac{1}{12} = \frac{1}{12},$$

$$P\{X = 1, Y = 0\} = P(A\overline{B}) = P(A) - P(AB) = \frac{1}{4} - \frac{1}{12} = \frac{1}{6},$$

$$P\{X = 1, Y = 1\} = P(AB) = \frac{1}{12}$$

从而 (X,Y) 的概率分布为:

$X \setminus Y$	0	1	P_{i} .
0	$\frac{2}{3}$	$\frac{1}{12}$	$\frac{3}{4}$
1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{4}$
$P_{\cdot j}$	$\frac{5}{6}$	$\frac{1}{6}$	1

(2) 由 X 和 Y 的联合分布律,得 X 与 Y 的边缘分布律分别为

$$X \sim \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}, Y \sim \begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{6} \\ \frac{5}{6} & \frac{1}{6} \end{pmatrix}$$
, 从而

$$EX = \frac{1}{4}, E(X^2) = \frac{1}{4}, DX = \frac{1}{4} - \left(\frac{1}{4}\right)^2 = \frac{3}{16},$$

$$EY = \frac{1}{6}, E(Y^2) = \frac{1}{6}, DY = \frac{1}{6} - \left(\frac{1}{6}\right)^2 = \frac{5}{36},$$

$$E(XY) = \frac{2}{3} \times 0 \times 0 + \frac{1}{12} \times 0 \times 1 + \frac{1}{6} \times 1 \times 0 + \frac{1}{12} \times 1 \times 1 = \frac{1}{12},$$

$$Cov(X, Y) = E(XY) - EXEY = \frac{1}{24},$$

$$\mathbb{E}\mathbb{E}, \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{DY}, \sqrt{DY}} = \frac{1}{\sqrt{15}} = \frac{\sqrt{15}}{15}.$$

20. 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) \mid 0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布,令

$$U = \begin{cases} 1, & X \le Y \\ 0, & X > Y \end{cases}$$

试求 (1) 写出 (X,Y) 的概率密度;(3 分)

- (2) 问 *U* 与 *X* 是否相互独立?并说明理由; (3 分)
- (3) 求 Z = U + X 的分布函数 F(z).(4 分)

解: (1) 区域 D 的面积为 $\int_0^1 dx \int_{x^2}^{\sqrt{x}} dy = \int_0^1 (\sqrt{x} - x^2) dx = \frac{1}{3}$, 因此 (X, Y) 的概率密度为

$$f(x,y) = \begin{cases} 3, & (x,y) \in D, \\ 0, & else. \end{cases}$$

(2) 对于 0 < t < 1, $P\{U \le 0, X \le t\} = P\{X > Y, X \le t\} = \int_0^t dx \int_{x^2}^x 3dy = \frac{3}{2}t^2 - t^3$,

$$P\{U \le 0\} = P\{X > Y\} = \frac{1}{2},$$

$$P\{X \le t\} = \int_0^t dx \int_{x^2}^{\sqrt{x}} 3dy = 2t^{\frac{3}{2}} - t^3.$$

由于 $P\{U \le 0, X \le t\} \ne P\{U \le 0\}P\{X \le t\}$, 所以 U 与 X 不相互独立。

(3) 当 z < 0 时, $F_Z(z) = 0$;

当
$$0 \le z < 1$$
 时, $F_Z(z) = P\{Z \le z\} = P\{U + X \le z\} = P\{U = 0, X \le z\} = P\{X > Y, X \le z\} = \frac{3}{2}z^2 - z^3;$

当
$$1 \le z < 2$$
 时, $F_Z(z) = P\{U + X \le z\} = P\{U = 0, X \le z\} + P\{U = 1, X \le z - 1\} = \frac{1}{2} + 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2;$

当
$$z \ge 2$$
 时, $F_Z(z) = P\{U + X \le z\} = 1.$

$$F_Z(z) = \begin{cases} 0, & z < 0, \\ \frac{3}{2}z^2 - z^3, & 0 \le z < 1, \\ \frac{1}{2} + 2(z - 1)^{\frac{3}{2}} - \frac{3}{2}(z - 1)^2, & 1 \le z < 2, \\ 1, & z \ge 2. \end{cases}$$

- 21. 计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差是独立的 且在 (-0.5, 0.5) 上服从均匀分布.
 - (1) 若将 1500 个数相加, 问误差总和的绝对值超过 15 的概率是多少?
 - (2) 最多可有几个数相加使得误差总和的绝对值小于 10 的概率不小于 0.90?

解: 设每个加数的舍入误差为 $X_i(i=1,2,\cdots,1500)$, 由题设知 X_i 独立同分布, 且在 (-0.5,0.5) 上服从均匀分布, 从而 $E(X_i)=\frac{-0.5+0.5}{2}=0$, $D(X_i)=\frac{(0.5+0.5)^2}{12}=\frac{1}{12}$. (1) 设 $X=\sum_{i=1}^{1500}X_i$, 由独立同分布的中心极限定理, 随机变量 $\frac{X-1500\times 0}{\sqrt{1500}\times\sqrt{\frac{1}{12}}}$ 近似服从 N(0,1), 从而

$$P\{|X| > 15\} = 1 - P\{|X| \le 15\}$$

$$= 1 - P\left\{-\frac{15}{\sqrt{125}} \le \frac{X}{\sqrt{125}} \le \frac{15}{\sqrt{125}}\right\}$$

$$\approx 2 - 2\Phi(1.34) = 0.1802,$$

即误差总和的绝对值超过15的概率约为0.1802.

(2) 记 $Y = \sum_{i=1}^{n} X_i$, 要使 $P\{|Y| < 10\} \ge 0.90$. 由独立同分布的中心极限定理, 近似地有

$$P\{|Y| < 10\} = P\{-10 < Y < 10\}$$

$$= P\left\{\frac{-10}{\sqrt{n/12}} < \frac{Y}{\sqrt{n/12}} < \frac{10}{\sqrt{n/12}}\right\}$$

$$\approx 2\Phi\left(\frac{10}{\sqrt{n/12}}\right) - 1 \ge 0.90,$$

即 $\Phi\left(\frac{10}{\sqrt{n/12}}\right) \ge 0.95$, 查表得 $\frac{10}{\sqrt{n/12}} \ge 1.645$, 故 $n \le 443$. 即最多有 443 个数相加使得误差总和的绝对值小于 10 的概率不小于 0.90.