

■ General Description

The AME8805/8810 family of positive, linear regulators feature low quiescent current (30 μ A typ.) with low dropout voltage, making them ideal for battery applications. The space-saving SOT-89 and SOT-223 packages are attractive for "Pocket" and "Hand Held" applications.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

The AME8805/8810 is stable with an output capacitance of $2.2\mu F$ or greater.

■ Features

- Very Low Dropout Voltage
- Guaranteed 600mA Output
- Accurate to within 1.5%
- 30μA Quiescent Current
- Over-Temperature Shutdown
- Current Limiting
- Short Circuit Current Fold-back
- Space-Saving SOT-89, SOT-223
- Factory Pre-set Output Voltages
- Low Temperature Coefficient

■ Applications

- Instrumentation
- Portable Electronics
- Wireless Devices
- Cordless Phones
- PC Peripherals
- Battery Powered Widgets
- Electronic Scales

■ Functional Block Diagram

■ Typical Application

■ Pin Configuration

SOT-89 Top View

AME8805

- 1. GND
- 2. V_{IN}
- 3. V_{OUT}

SOT-223 Top View

AME8805

2

AME8805

- 1. V_{IN}
- 2. GND
- 3. V_{OUT}

SOT-223 Top View

AME8810

- 1. GND
- 2. V_{OUT}
- 3. V_{IN}

AME, Inc.

■ Ordering Information

Product Grade or Option	Operating Temperature Range	Package Type	Number of Pins	Special Feature
A: 3.3V B: 3.0V C: 2.8V D: 2.5V E: 3.8V F: 3.6V G: 3.5V H: 2.7V I: 3.4V J: 2.85V K: 3.7V L: 1.5V M: 1.8V N: 2.9V O: 3.1V Y: 1.9V 1: 1.3V 2: 2.0V	E: -40°C to 85°C	F: SOT-89 G: SOT-223	T: 3	Z: Lead Free

AME8805 / 8810

■ Ordering Information

Part Number	Marking	Output Voltage	Package	Operating Temp. Range
AME8805AEFT	A8805 AEFww	3.3V	SOT-89	- 40°C to + 85°C
AME8805AEFTZ	A8805 AEFww	3.3V	SOT-89	- 40°C to + 85°C
AME8805BEFT	A8805 BEFww	3.0V	SOT-89	- 40°C to + 85°C
AME8805CEFT	A8805 CEFww	2.8V	SOT-89	- 40°C to + 85°C
AME8805DEFT	A8805 DEFww	2.5V	SOT-89	- 40°C to + 85°C
AME8805DEFTZ	A8805 DEFww	2.5V	SOT-89	- 40°C to + 85°C
AME8805EEFT	A8805 EEFww	3.8V	SOT-89	- 40°C to + 85°C
AME8805FEFT	A8805 FEFww	3.6V	SOT-89	- 40°C to + 85°C
AME8805GEFT	A8805 GEFww	3.5V	SOT-89	- 40°C to + 85°C
AME8805HEFT	A8805 HEFww	2.7V	SOT-89	- 40°C to + 85°C
AME8805IEFT	A8805 IEFww	3.4V	SOT-89	- 40°C to + 85°C
AME8805JEFT	A8805 JEFww	2.85V	SOT-89	- 40°C to + 85°C
AME8805KEFT	A8805 KEFww	3.7V	SOT-89	- 40°C to + 85°C
AME8805LEFT	A8805 LEFww	1.5V	SOT-89	- 40°C to + 85°C
AME8805MEFT	A8805 MEFww	1.8V	SOT-89	- 40°C to + 85°C
AME8805MEFTZ	A8805 MEFww	1.8V	SOT-89	- 40°C to + 85°C
AME8805NEFT	A8805 NEFww	2.9V	SOT-89	- 40°C to + 85°C
AME8805OEFT	A8805 OEFww	3.1V	SOT-89	- 40°C to + 85°C
AME8805YEFT	A8805 YEFww	1.9V	SOT-89	- 40°C to + 85°C
AME88052EFT	A8805 2EFww	2.0V	SOT-89	- 40°C to + 85°C
AME8805AEGT	ADByww	3.3V	SOT-223	- 40°C to + 85°C
AME8805AEGTZ	ADByww	3.3V	SOT-223	- 40°C to + 85°C
AME8805BEGT	ADCyww	3.0V	SOT-223	- 40°C to + 85°C
AME8805CEGT	ADDyww	2.8V	SOT-223	- 40°C to + 85°C

■ Ordering Information (contd.)

Part Number	Marking	Output Voltage	Package	Operating Temp. Range
AME8805DEGT	ADEyww	2.5V	SOT-223	- 40°C to + 85°C
AME8805DEGTZ	ADEyww	2.5V	SOT-223	- 40°C to + 85°C
AME8805EEGT	ADFyww	3.8V	SOT-223	- 40°C to + 85°C
AME8805FEGT	ADGyww	3.6V	SOT-223	- 40°C to + 85°C
AME8805GEGT	ADHyww	3.5V	SOT-223	- 40°C to + 85°C
AME8805HEGT	AEJyww	2.7V	SOT-223	- 40°C to + 85°C
AME8805IEGT	AERyww	3.4V	SOT-223	- 40°C to + 85°C
AME8805JEGT	AGTyww	2.85V	SOT-223	- 40°C to + 85°C
AME8805KEGT	AHVyww	3.7V	SOT-223	- 40°C to + 85°C
AME8805MEGT	AJJyww	1.8V	SOT-223	- 40°C to + 85°C
AME8805NEGT	AKSyww	2.9V	SOT-223	- 40°C to + 85°C
AME8805OEGT	AKTyww	3.1V	SOT-223	- 40°C to + 85°C
AME88051EGT	AWLww	1.3V	SOT-223	- 40°C to + 85°C
AME8810AEGT	ADlyww	3.3V	SOT-223	- 40°C to + 85°C
AME8810AEGTZ	ADlyww	3.3V	SOT-223	- 40°C to + 85°C
AME8810BEGT	ADJyww	3.0V	SOT-223	- 40°C to + 85°C
AME8810BEGTZ	ADJyww	3.0V	SOT-223	- 40°C to + 85°C
AME8810CEGT	ADKyww	2.8V	SOT-223	- 40°C to + 85°C
AME8810DEGT	ADLyww	2.5V	SOT-223	- 40°C to + 85°C
AME8810EEGT	ADMyww	3.8V	SOT-223	- 40°C to + 85°C
AME8810FEGT	ADNyww	3.6V	SOT-223	- 40°C to + 85°C
AME8810GEGT	ADOyww	3.5V	SOT-223	- 40°C to + 85°C
AME8810HEGT	AEKyww	2.7V	SOT-223	- 40°C to + 85°C
AME8810IEGT	AESyww	3.4V	SOT-223	- 40°C to + 85°C
AME8810JEGT	AGVyww	2.85V	SOT-223	- 40°C to + 85°C
AME8810KEGT	AHXyww	3.7V	SOT-223	- 40°C to + 85°C
AME8810LEGT	AJFyww	1.5V	SOT-223	- 40°C to + 85°C
AME8810MEGT	AJGyww	1.8V	SOT-223	- 40°C to + 85°C
AME8810NEGT	AKWyww	2.9V	SOT-223	- 40°C to + 85°C
AME88100EGT	AKXyww	3.1V	SOT-223	- 40°C to + 85°C

Please consult AME sales office or authorized Rep./Distributor for other output voltage and package type availability.

■ Absolute Maximum Ratings

Parameter	Maximum	Unit
Input Voltage	8	V
Output Current	1	А
Input, Output Voltage	GND - 0.3 to V _{IN} + 0.3	V
ESD Classification	В	

Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device

■ Recommended Operating Conditions

Parameter	Rating	Unit
Supply Voltage	4.5 to 5.5	V
Ambient Temperature Range	- 40 to + 85	°C
Junction Temperature	- 40 to + 125	°C

■ Thermal Information

Parameter		Maximum	Unit
Thormal Posistance (a.)	SOT-89	180	°C / W
Thermal Resistance (θ_{ja})	SOT-223	160	C / W
Thermal Resistance (θ_{ic})	SOT-89	18	°C / W
memai Nesistance (G _{jc})	SOT-223	15	C / VV
Internal Power Dissipation (P _D)	SOT-89	550	mW
$(\Delta T = 100^{\circ}C, \text{ No Heat Sink})$	SOT-223	625	IIIVV
Internal Power Dissipation (P _D)	SOT-89	2750*	mW
$(\Delta T = 100^{\circ}C, With Heat Sink)$	SOT-223	3300*	11100
Maximum Junction Temperature		150	°C
Maximum Lead Temperature (10 Sec)		300	°C

^{*} Using twice the θ jc for this calculation.

■ Electrical Specifications

TA = 25°C unless otherwise noted

Parameter	Symbol	Test C	Condition	Min	Тур	Max	Units
Input Voltage	V _{IN}			Note 1		7	V
Output Voltage Accuracy	Vo	I _O =1mA		-1.5		1.5	%
	.,		1.3V<=V _{O(NOM)} <=1.4V			1900	
Dropout Voltage		I _O =600mA	1.4V <v<sub>O(NOM)<=2.0V</v<sub>	See	1400	mV	
Dropout Voltage	V _{DROPOUT}	$V_O = V_{O(NOM)}$ -2.0%	2.0V <v<sub>O(NOM)<=2.8V</v<sub>		chart	800	IIIV
			2.8V <v<sub>O(NOM)</v<sub>			600	
Output Current	Io	Vo	>1.2V	600			mA
Current Limit	I _{LIM}	Vo	>1.2V	600	800		mA
Short Circuit Current	I _{sc}	Vo	<0.8V		300	600	mA
Quiescent Current	ΙQ	l _O =	=0mA		30	50	μΑ
Ground Pin Current	I_{GND}	I _O =1mA to 600mA			35		μΑ
	REG _{LINE}		1.3V <= V _O <= 1.4V	-0.2		0.2	
Line Regulation		$I_O=1mA$ $V_{IN}=V_O+1$ to V_O+2	1.4V < V _O <= 2.0V	-0.15		0.15	
Line regulation			$2.0V < V_O < 4.0V$	-0.1	0.02	0.1	
			V _O >= 4.0V	-0.4	0.2	0.4	
Load Regulation	REG _{LOAD}	I _O =1mA	to 600mA		0.2	1	%
Over Temperature Shutdown	OTS				150		٥°
Over Temperature Hysterisis	ОТН				30		°C
V _O Temperature Coefficient	TC				30		ppm/°C
		I _O =100mA C _O =2.2μF	f=1kHz	50			
Power Supply Rejection	PSRR		f=10kHz		20		dB
			f=100kHz		15		
Output Voltage Noise	eN	$ \begin{array}{c} \text{f=10Hz to 100kHz} \\ \text{I}_{O}\text{=10mA}, C_{BYP}\text{=}0\mu\text{F} \end{array} $			30		μVrms

Note1: $V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}$ Note2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

■ Detailed Description

The AME8805/8810 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, and thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150°C, or the current exceeds 600mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120°C.

The AME8805/8810 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The AME8805/8810 also incorporates current foldback to reduce power dissipation when the output is short circuited. This feature becomes active when the output drops below 0.8 volts, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.8 volts.

■ External Capacitors

The AME8805/8810 is stable with an output capacitor to ground of $2.2\mu F$ or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a $0.1\mu F$ ceramic capacitor with a $10\mu F$ Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least $0.1\mu F$ to have a beneficial effect.

All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

AME8805 / 8810

Vo (1mV DIV)

AME8805 / 8810 600mA CMOS LDO

Noise Measurement

TIME (20ms/DIV)

Overtemperature Shutdown

Current Limit Response

TIME (2mS/DIV)

Short Circuit Response

TIME (2mS/DIV)

AME8805 / 8810

■ Package Dimension

SOT-223

SYMBOLS	MILLIN	IETERS	INCHES		
3 TWIBOLS	MIN	MAX	MIN	MAX	
A ₁	0.02	0.10	0.0008	0.0039	
В	0.60	0.84	0.0236	0.0330	
B ₁	2.90	3.15	0.1140	0.1240	
С	0.24	0.38	0.0094	0.0150	
D	6.30	6.71	0.2480	0.2640	
E	3.30	3.71	0.1299	0.1460	
е	2.30	BSC	0.0906 BSC		
F	1.40	1.80	0.0560 0.070		
Н	6.70	7.30	0.2638	0.2874	
θ	0°	10°	0°	10°	

SOT-89

SYMBOLS	MILLIN	IETERS	INCHES		
OTHIBOLO	MIN	MAX	MIN	MAX	
Α	1.39	1.60	0.05472	0.06299	
A ₁	0.81	REF	0.0315REF		
С	0.35	0.44	0.01378 0.0173		
D	4.39	4.60	0.17283	0.1811	
D ₁	1.35	1.83	0.05315	0.07205	
E	2.28	3.60	0.08976	0.14173	
е	3.00REF 0.118		1REF		
Н	0.70	.70REF 0.0276RE		6REF	
S 1	1.50	REF	0.0590REF		

www.ame.com.tw E-Mail: sales@ame.com.tw

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.

© AME, Inc. , December 2003 Document: 2006-DS8805/8810-K

Corporate Headquarter AME, Inc.

2F, 189 Kang-Chien Road, Nei-Hu District Taipei 114, Taiwan, R.O.C.

Tel: 886 2 2627-8687 Fax: 886 2 2659-2989

U.S.A. (Subsidiary) Analog Microelectronics, Inc.

3100 De La Cruz Blvd., Suite 201 Santa Clara, CA. 95054-2046

Tel: (408) 988-2388 Fax: (408) 988-2489 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.