Wave Current Interaction

Core Components and Initialization

The WaveCurrentInteraction class, implemented in C#, models the interaction between waves and currents in an estuarine environment using linear wave theory and simplified wave-enhanced friction. The class is initialized with the following parameters:

• Wave height: H_w (m)

• Wave direction: θ_w (degrees, aligned with wind)

• Wave period: T_w (s)

• Water depth: h (m)

• Gravitational acceleration: $g = 9.81 \,\mathrm{m/s^2}$

The constructor sets these parameters, and the UpdateParameters method allows dynamic updates during simulation.

Functioning Logic

The class provides two primary methods to account for wave-current interactions:

- 1. ComputeStokesDrift: Calculates Stokes drift velocities (u_s, v_s) based on linear wave theory, representing the net mass transport induced by waves.
- 2. ComputeWaveEnhancedFriction: Computes a wave-enhanced bottom friction coefficient using a simplified Grant-Madsen approach, accounting for increased turbulence due to wave orbital velocities.

Stokes Drift Computation

The ComputeStokesDrift method calculates Stokes drift velocities using linear wave theory for shallow water:

- Wave characteristics:
 - Approximate wavelength: $\lambda = \sqrt{gh}T_w$
 - Wave number: $k = 2\pi/\lambda$
 - Angular frequency: $\omega = 2\pi/T_w$
 - Wave amplitude: $a = H_w/2$
- Stokes drift magnitude: Near the surface ($z \approx 0$):

$$u_s = \frac{a^2 \omega k \cosh(2kz)}{2 \sinh^2(kh)} \approx \frac{a^2 \omega k}{2 \sinh^2(kh)} \tag{1}$$

· Directional components:

$$u_s = u_{s,\text{mag}}\cos(\theta_w \pi / 180) \tag{2}$$

$$v_s = u_{s,\text{mag}} \sin(\theta_w \pi / 180) \tag{3}$$

If $H_w \leq 0$ or $T_w \leq 0$, the method returns $(u_s, v_s) = (0, 0)$. NaN or Infinity values are clamped to zero to ensure numerical stability.

Wave-Enhanced Friction

The ComputeWaveEnhancedFriction method calculates an enhanced bottom friction coefficient:

• Wave orbital velocity at the bottom:

$$u_b = \frac{a\omega}{\sinh(kh)} \tag{4}$$

where $a = H_w/2$, $\omega = 2\pi/T_w$, $k = 2\pi/\sqrt{gh}T_w$.

Enhanced friction coefficient:

$$C_d = C_{d0}(1 + \beta |u_b|) \tag{5}$$

where C_{d0} is the base friction coefficient, and $\beta = 0.2$ is an empirical factor.

• Constraints: The result is clamped between C_{d0} and 0.01 to prevent numerical instability.

If $H_w \leq 0$ or $T_w \leq 0$, the base friction coefficient is returned unchanged.

Physical and Mathematical Models

The WaveCurrentInteraction class employs the following models:

· Stokes Drift:

$$\lambda = \sqrt{gh}T_w \tag{6}$$

$$k = \frac{2\pi}{\lambda}, \quad \omega = \frac{2\pi}{T_w}, \quad a = \frac{H_w}{2}$$
 (7)

$$u_{s,\text{mag}} = \frac{a^2 \omega k}{2 \sinh^2(kh)} \cosh(2k \cdot 0)$$
(8)

$$u_s = u_{s,\text{mag}}\cos\left(\theta_w \frac{\pi}{180}\right), \quad v_s = u_{s,\text{mag}}\sin\left(\theta_w \frac{\pi}{180}\right)$$
 (9)

Wave-Enhanced Friction:

$$u_b = \frac{a\omega}{\sinh(kh)} \tag{10}$$

$$C_d = C_{d0}(1 + 0.2|u_b|), \quad C_d \in [C_{d0}, 0.01]$$
 (11)

These models capture wave-induced transport and turbulence effects, integrating with estuarine circulation models to enhance realism in velocity and friction calculations.