Algèbre linéaire

Vallaeys Pascal

4 avril 2024

1 Références:

Exercices de la banque CCINP: 55,60,64,65,87,90

Méthodes de base :

- Montrer qu'un ensemble est un espace vectoriel.
- Montrer qu'une application est linéaire.
- Appliquer le théorème du rang.
- Montrer que des sous-espaces vectoriels sont supplémentaires.
- Écrire la matrice d'une application dans une base donnée.

2 Exercices incontournables:

Exercice 1:

Soit E un K-espace vectoriel de dimension finie et f un endomorphisme de E. Montrer l'équivalence entre les propositions suivantes :

- (i) $E = Ker(f) \oplus Im(f)$
- (ii) $Ker(f) = Ker(f^2)$
- (iii) $\operatorname{Im}(f) = \operatorname{Im}(f^2)$
- (iv) $Ker(f) \cap Im(f) = \{0\}.$
- (v) E = Ker(f) + Im(f)

Exercice 2:

Soient u et v deux endomorphismes de l'espace vectoriel E. Montrer que $u \circ v = 0$ si et seulement si $\operatorname{Im}(v) \subset \operatorname{Ker}(u)$.

Exercice 3 : Soit E un espace vectoriel réel et f une forme linéaire sur E, ie $f \in L(E, \mathbb{R})$, supposée non nulle. Montrer que le noyau de f est un hyperplan de E (c'est-à-dire qu'il possède un supplémentaire de dimension 1), dans les deux cas suivants :

- a) Si E est de dimension finie.
- b) Dans le cas général.

Exercice 4: (Mines MP 2023)

Soient E un espace vectoriel de dimension finie et u et v deux endomorphismes de E.

Montrer que : $|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v)$.

Exercice 5: (Mines MP 2022)

Déterminer la trace et le déterminant de l'endomorphisme de transposition dans $\mathcal{M}_n(\mathbb{K})$.

Exercice 6: (Mines MP 2022)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que $A^2 = \mathcal{O}_n$ si et seulement si A est semblable à la matrice $\begin{pmatrix} \mathcal{O} & I_r \\ \mathcal{O} & \mathcal{O} \end{pmatrix}$ où $r \leqslant \frac{n}{2}$.

Exercice 7: Dans quels cas l'union de deux sous-espaces vectoriels est-elle un sous-espace?

Exercice 8 : Soit E un K-espace vectoriel de dimension finie et f un endomorphisme de E. a) Montrer que pour tout entier naturel n, on a : $Ker(f^n) \subset Ker(f^{n+1})$ et $Im(f^{n+1}) \subset Im(f^n)$.

- b) En déduire qu'il existe un rang N tel que $Ker(f^N)=Ker(f^{N+1})$. c) Montrer alors que ${\rm Im}(f^{N+1})={\rm Im}(f^N)$.
- d) Montrer alors que pour tout entier naturel p, on a : $Ker(f^{N+p}) = Ker(f^{N+p+1})$ et $Im(f^{N+p+1}) = Ker(f^{N+p+1})$ $\operatorname{Im}(f^{N+p}).$
 - e) Montrer que $Ker(f^N)$ et $Im(f^N)$ sont deux sous-espaces supplémentaires de E.
 - f) Si on pose $d_n = \dim(Ker(f^{n+1})) \dim(Ker(f^n))$, montrer que la suite $(d_n)_{n \in \mathbb{N}}$ est décroissante.

Exercice 9 : (Centrale PSI) Montrer que toute matrice carré de rang 1 peut s'écrire $X.Y^T$ où X et Y sont des vecteurs.

Exercice 10:

- a) Soit $f \in L(E)$ tel que pour tout $x \in E$, x et f(x) soient colinéaires. Montrer que f est une homothétie vectorielle.
 - b) En déduire les endomorphismes de \mathbb{R}^n qui commutent avec tous les autres.
 - c) Proposer une solution matricielle de la question précédente.

Exercice 11 : Déterminant de VanderMonde

Soient $x_1, x_2, ..., x_n$ n réels.

Soient
$$x_1, x_2, ..., x_n$$
 n réels.

On pose $V(x_1, x_2, ..., x_n) = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & & & & \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}$.

- a) Montrer que si les réels $x_1, x_2, ..., x_n$ ne sont pas deux à deux distincts, alors $V(x_1, x_2, ..., x_n) = 0$. Dans la suite, on les suppose deux à deux distincts.
 - b) On pose $P(X) = V(x_1, x_2, ..., x_{n-1}, X)$. Montrer que P est un polynômes de degré n-1 en la variable X.
 - c) Déterminer le coefficient dominant de P.
 - d) Déterminer les racines de P, puis son expression.
 - e) En déduire $V(x_1, x_2, ..., x_n)$...
 - f) Retrouver le résultat procédant par opérations sur les lignes et les colonnes.
 - g) En déduire le résultat sur l'existence d'un polynôme d'interpolation en $x_1, x_2, ..., x_n$.

Exercice 12: Trigonalisation par blocs

Soient A,B,C et D quatre matrices carrées de $M_n(\mathbb{R})$.

Montrer que si AC=CA et que A est inversible, $D\acute{e}t\begin{pmatrix} A & C \\ B & D \end{pmatrix} = D\acute{e}t\left(BC - DA\right).$

Exercice 13 : (IMT MP 2017)

Montrer par récurrence sur n que tout matrice de $M_n(K)$ de trace nulle est semblable à une matrice de diagonale nulle.

Exercice 14 : Soit $u \in L(\mathbb{R}^n)$ nilpotent. Montrer que son indice de nilpotence est inférieur ou égal à n.

3 Exercices de niveau 1:

Exercice 15: (Mines télécom MP 2023)

Soit E un K-espace vectoriel; soit $f \in \mathcal{L}(E)$ tel que $f \circ f = f$.

- 1. Montrer que $\operatorname{Ker} f \oplus \operatorname{Im} f = E$. Interpréter géométriquement.
- 2. Si E est de dimension finie, que dire de la matrice dans une base bien choisie?
- 3. Donner un exemple d'un endomorphisme f de E tel que $\operatorname{Ker} f \oplus Imf = E$.

Exercice 16: (Mines télécom MP 2023)

Soit $A \in \mathcal{M}_n(\mathbb{R})$, rg(A) < n. Soit $G = \{B \in \mathcal{M}_n(\mathbb{R}) \mid ABA = 0\}$.

Montrer que G est un espace vectoriel, puis déterminer sa dimension.

Exercice 17: (CCINP MP 2023)

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E vérifiant $f^3 = \mathrm{Id}_E$.

1. Montrer que $E = \text{Ker}(f - \text{Id}_E) \oplus Im(f - \text{Id}_E)$.

- 2. Montrer que $Im(f Id_E) = Ker(f^2 + f + Id_E)$.
- 3. Montrer que $Ker(f Id_E) = Im(f^2 + f + Id_E)$.

Exercice 18: (CCINP MP 2023)

Soit E un espace vectoriel.

Soient p et q deux projecteurs de E tels que $\operatorname{Im}(p) \subset \operatorname{Ker}(q)$.

- 1. Montrer que $\text{Im} p \cap \text{Im} q = \{0_E\}$.
- 2. Soit $r = p + q p \circ q$. Montrer que r est un projecteur sur $\operatorname{Im}(p) + \operatorname{Im}(q)$ parallèlement à $\operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

Exercice 19: (ENSEA/ENSIIE MP 2022)

On note $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ les sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$ constitués respectivement des matrices symétriques et antisymétriques.

- 1) Quelle est la dimension de $S_n(\mathbb{K})$?
- 2) Montrer que $\mathcal{M}_n(\mathbb{K}) = \mathcal{A}_n(\mathbb{K}) \oplus \mathcal{S}_n(\mathbb{K})$.
- 3) On pose $\varphi: M \mapsto M^T$. Déterminer $\det \varphi$.

Exercice 20: (CCINP MP 2022)

Soit E un espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$. Montrer que :

$$\operatorname{rg}(f+g) = \operatorname{rg} f + \operatorname{rg} g \iff \begin{cases} \operatorname{Im} f \cap \operatorname{Im} g = \{0\} \\ \operatorname{Ker} f + \operatorname{Ker} g = E \end{cases}$$

Exercice 21: (CCINP MP 2021)

Soit $(u, v) \in \mathcal{L}(E, F)^2$ avec E et F deux \mathbb{K} -espaces vectoriels de dimension finie.

 $\operatorname{Montrer\ que\ dim} \operatorname{Ker}(u+v) \leq \operatorname{dim} (\operatorname{Ker}(u) \cap \operatorname{Ker}(v)) + \operatorname{dim} (\operatorname{Im}(u) \cap \operatorname{Im}(v)).$

Exercice 22: (Centrale PSI 2021)

Soit f un endomorphisme de \mathbb{R}^3 . Sa matrice dans la base canonique est $A = \begin{pmatrix} -2 & 1 & -2 \\ -8 & \frac{13}{3} & -\frac{14}{3} \\ -4 & \frac{5}{3} & -\frac{4}{3} \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

Soit $u = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ et $w = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ trois vecteurs de \mathbb{R}^3 . On note \mathcal{B} la famille composée des trois

vecteurs précédents.

- 1. Montrer que \mathcal{B} est une base de \mathbb{R}^3 .
- 2. Écrire la matrice de f dans la base \mathcal{B} .
- 3. Exprimer A^n pour tout $n \in \mathbb{N}$.

Exercice 23 : (Mines télécom MP 2021)

Soit
$$\phi: M_n(\mathbb{R}) \longrightarrow L(M_n(\mathbb{R}), \mathbb{R})$$

 $A \longmapsto M \mapsto \operatorname{Tr}(AM)$

Montrer que ϕ est un isomorphisme.

Exercice 24: (Mines PSI 2021)

Soit
$$M \in M_3(\mathbb{R}), M = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Calculer $(M^n)_{n\geq 1}$.
- 2) Déterminer une base de $F = Vect(M^n)_{n \ge 1}$.
- 3) Montrer que le commutant de M est exactement F.

4 Exercices de niveau 2 :

Exercice 25: (Mines MP 2023)

Soit E un espace vectoriel de dimension n et $u, v \in \mathcal{L}(E)$.

- 1. Montrer que $\operatorname{rg}(u) + \operatorname{rg}(v) n \leqslant \operatorname{rg}(u \circ v) \leqslant \min(\operatorname{rg}(u), \operatorname{rg}(v))$.
- 2. On suppose que $u \circ v = 0$ et $u + v \in GL(E)$.

Montrer que $\operatorname{rg}(u) + \operatorname{rg}(v) = n$; $\operatorname{Ker}(u) = \operatorname{Im}(v)$ et $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$.

3

Exercice 26: (CCINP MP 2022)

Soient E et F deux espaces de dimension finie et $u, v \in \mathcal{L}(E, F)$.

Montrer que $\dim(\ker(u+v) \leq \dim(\ker(u) \cap \ker(v)) + \dim(\operatorname{Im}(u) \cap \operatorname{Im}(v))$

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Regarder la restriction de u à $\ker(u+v)$.

Commentaires divers : interrogatrice sympathique mais très pointilleuse sur certains détails .

Exercice 27: (Mines MP 2022)

Pour $z \in \mathbb{C}^*$ et $n \geq 2$, calculer le déterminant $n \times n$,

$$D_n(z) = \begin{vmatrix} z - \frac{1}{z} & 1 & 0 & \cdots & 0 \\ 1 & z - \frac{1}{z} & 1 & \ddots & \vdots \\ 0 & 1 & z - \frac{1}{z} & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 1 & z - \frac{1}{z} \end{vmatrix}.$$

Exercice 28: (Mines MP 2021)

Soit $(A, B) \in \mathfrak{M}_n(\mathbb{R})$. On note $E_{A,B} = \{M \in \mathfrak{M}_n(\mathbb{R}) / AMB = 0\}$.

Déterminer la dimension de $E_{A,B}$ en fonction du rang des matrices A et B.

Exercice 29: (Mines MP 2021)

- 1. Montrer que si H est un hyperplan d'un espace vectoriel E, alors il existe $\varphi \in E^* \setminus \{0\}$ tel que $H = \operatorname{Ker} \varphi$.
- 2. Soit H un hyperplan de $\mathfrak{M}_n(\mathbb{C})$. Montrer qu'il contient au moins une matrice inversible.

Exercice 30: (Mines-Ponts 2019)

Soient $A, B \in M_n(\mathbb{R})$. On suppose que B est de rang 1. Comparer $\det(A+B)$. $\det(A-B)$ et $\det(A^2)$.

Exercice 31: (Mines-Ponts 2017)

Trouver les matrices $B \in M_n(\mathbb{C})$ telles que $\forall A \in M_n(\mathbb{C}), (AB = 0) \Rightarrow (BA = 0).$

Exercice 32:

Quelles sont les matrices A de $M_n(\mathbb{R})$ telles que pour toute matrice M de $M_n(\mathbb{R})$, on ait $D\acute{e}t(A+M)=D\acute{e}t(A)+D\acute{e}t(M)$.

Exercice 33: (Centrale MP)

Soit $f: M_n(\mathbb{R}) \to \mathbb{R}$ une forme multiplicative, c'est à dire telle que : $\forall A, B \in M_n(\mathbb{R}), f(A.B) = f(A).f(B)$. On suppose f non constante.

- a) Que vaut $f(I_n)$? f(0)?
- b) Montrer que deux matrices semblables ont même image par f.
- c) Si $A \in M_n(\mathbb{R})$, montrer que $f(A) \neq 0$ si et seulement si $A \in GL_n(\mathbb{R})$. (On pourra utiliser la notion de matrices équivalentes).
 - d) Pouvez-vous proposer deux applications f possibles?
 - e) Existe-t-il de telles applications qui soient en outre linéaires?

Exercice 34:

Soient a et b deux réels distincts. Montrer qu'il existe un unique endomorphisme f de $\mathbb{R}_n[X]$ tel que f(1) = 1, f(X) = X et pour tout autre polynôme P, $(P(a) = P(b) = 0) \Rightarrow (f(P) = 0)$.

Exercice 35: (Centrale)

Soient $x_0 < x_1 < ... < x_n$. Montrer qu'il existe n+1 réels $\lambda_0, ..., \lambda_n$ tels que $\forall P \in \mathbb{R}_n[X], \int_0^1 \frac{P(t)}{\sqrt{t^2+1}} dt = \sum_{k=0}^n \lambda_k P(x_k)$.

4

5 Exercices de niveau 3:

Exercice 36: (Mines MP 2022)

Soit E un \mathbb{K} -espace vectoriel et u un endomorphisme de E.

Montrer que : $u^2 = 0_E \iff$ Il existe un projecteur p de E tel que $p \circ u - u \circ p = u$.

Exercice 37: (Mines MP 2021)

On note:

- \mathcal{H} l'ensemble des matrices carrées réelles d'ordre n de trace nulle.
- \mathcal{N} l'espace vectoriel engendré par les matrices nilpotentes.
- 1. \mathcal{N} est-il l'ensemble des matrices nilpotentes?
- 2. Montrer que $\mathcal{N} \subset \mathcal{H}$.
- 3. A-t-on $\mathcal{N} = \mathcal{H}$?

Exercice 38: (X MP 2021)

Déterminer les matrices qui ne sont semblables qu'à elles-mêmes.

(pour occuper les 5 dernières minutes)

Exercice 39:

Soit A une matrice de $M_{3n}(\mathbb{R})$ telle que $A^3=0$ et A est de rang 2n. Montrer que A est semblable à la

matrice définie par blocs
$$\begin{pmatrix} 0 & 0 & 0 \\ I_n & 0 & 0 \\ 0 & I_n & 0 \end{pmatrix}.$$

Exercice 40:

Soient
$$a_1, a_2, ..., a_n$$
 n réels. On pose $A = \begin{pmatrix} a_1 & a_2 & a_3 & ... & a_n \\ a_n & a_1 & a_2 & ... & a_{n-1} \\ \vdots & & & & \vdots \\ a_2 & a_3 & ... & a_n & a_1 \end{pmatrix}$. On pose $w = e^{\frac{2i\pi}{n}}$ et M la matrice $a_1, a_2, ..., a_n$ et M

de terme général $w^{(i-1).(j-1)}$.

- a) Calculer le produit A.M.
- b) En déduire le déterminant de A. (On utilisera un polynôme dont les coefficients sont les a_i)

Exercice 41: (Centrale MP)

Soient
$$A, B \in M_n(\mathbb{R})$$
. On pose $\Phi : \frac{M_n(\mathbb{R}) \to M_n(\mathbb{R})}{X \to A^T.X.B}$.

Déterminer le déterminant de Φ .

Exercice 42: (X 2001 42)

Soient $0 < t_1 < ... < t_n$ et $\alpha_1 < \alpha_2 < ... < \alpha_n$. Montrer que le déterminant de la matrice de terme général $(t_i^{\alpha_j})$ est strictement positif.

Exercice 43: (X)

Soient $A, B \in M_n(\mathbb{R})$ telles que A-B soient inversibles et $A^2 + B^2 = \sqrt{3}(AB - BA)$. Montrer que n est un multiple de 6.