Introduction to databases

The Dull Day of Databases

Database Management Systems

- Designed for storing, managing, and retrieving information
- We will be working with Relational Databases
- MS Access
 - But lots of other alternatives

Database Management Systems

- Data is separate from manipulations of the data
- ▶ Tables store the data

- Queries stores questions about the data
 - If we update the data, the query asks the same question of the new data

Outline

- Introduction to Relational Databases
- Example
- Alternative database structures used in science
- Types
- Primary Keys
- ▶ SQL
- Create a Database in MS Access

Relational Databases

- Data is stored in tables
 - One table per type of data
 - Tables can be linked together to combine information
- Each row contains a single record
 - A single observation or data point
- ▶ Each column contains a single attribute
 - ▶ A single type of information

Example

IndivID	SpeciesID	BodyMass	HindFoot

Example

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

Example

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

It is often not efficient to include all information of interest in a single table

It is often not efficient to include all information of interest in a single table

IndivID	Family	Genus	Species	Mass	HindFoot
1	Heteromyidae	Dipodomys	Spectabilis	110.5	48
2	Heteromyidae	Dipodomys	Spectabilis	107.2	47
3	Heteromyidae	Dipodomys	Spectabilis	125.6	50
4	Heteromyidae	Dipodomys	Spectabilis	144.1	48
5	Heteromyidae	Dipodomys	Spectabilis	117.0	49
6	Heteromyidae	Dipodomys	Spectabilis	142.4	44

- It is often not efficient to include all information of interest in a single table
- ▶ To solve these problems we store data in multiple tables
- And connect the data in different tables using Joins or Relationships (hence Relational Database)

It is often not efficient to include all information of interest in a single table

IndivID	Family	Genus	Species	Mass	HindFoot
1	Heteromyidae	Dipodomys	Spectabilis	110.5	48
2	Heteromyidae	Dipodomys	Spectabilis	107.2	47
3	Heteromyidae	Dipodomys	Spectabilis	125.6	50
4	Heteromyidae	Dipodomys	Spectabilis	144.1	48
5	Heteromyidae	Dipodomys	Spectabilis	117.0	49
6	Heteromyidae	Dipodomys	Spectabilis	142.4	44

One table per data type

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

One table per data type

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

Samples
IndivID
SpeciesID
BodyMass
HindFoot

One table per data type

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

Alternative structures

	Species I	Species 2	Species 3
Site I	23	5	2
Site 2	32	10	0
Site 3	10	20	5

Alternative structures

	Species I	Species 2	Species 3
Site I	23	5	2
Site 2	32	10	0
Site 3	10	20	5

Site	Species	Count
I	I	23
I	2	5
I	3	2
2	I	32
2	2	10
3	I	10

Types

- Fields in databases have Types just like variables in Python
 - Types need to be specified in advance

IndivID	SpeciesID	BodyMass	HindFoot

Types

- Fields in databases have Types just like variables in Python
 - Types need to be specified in advance

IndivID	SpeciesID	BodyMass	HindFoot
1	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

Types

- Fields in databases have Types just like variables in Python
 - Types need to be specified in advance

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

- Types are highly configurable
 - Because space is important

IndivID	SpeciesID	BodyMass	HindFoot
I	DS	110.5	48
2	NA	201.2	34
3	SH	75.7	28

Integer How long?

Text How long?

How many values before & after the decimal place?

Integer How long?

Primary keys

- Every table in a database "needs" a column (or a set of columns) that is unique across records
- ▶ This is called the primary key
- The easiest way to do this is to use an Integer that increments every time a new record is added
- Many databases that you import will already have a field like this

SQL – structured query language

```
CREATE DATABASE MammalSurveys;
CREATE TABLE SurveyData (
    IndivID INT,
    SpeciesID VARCHAR,
    BodyMass INT,
    HindFoot INT,
    PRIMARY KEY (IndivID)
```

