All-pairs suffix/prefix in optimal time using Aho-Corasick space

Grigorios Loukides^a and Solon P. Pissis^{b, c, *}

^aDepartment of Informatics, King's College London, London, UK ^bCWI, Amsterdam, the Netherlands ^cVrije Universiteit, Amsterdam, the Netherlands

Abstract

The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set $\{S_1, \ldots, S_k\}$ of k strings of total length n, we are asked to find, for each string S_i , $i \in [1, k]$, its longest suffix that is a prefix of string S_j , for all $j \neq i, j \in [1, k]$.

Paper organization. Section 2 presents some preliminaries and our main result. Section 3 presents the algorithm we develop. Section 4 concludes the paper.

Keywords

- Algorithms
- Data Structures
- String algorithms
- Aho-Corasick Machine

1 Introduction

Given a set $R = \{S1, ..., Sk\}$ of k strings of total length n, the APSP problem asks us to find, for each string $S_i, i \in [1, k]$, its longest suffix that is a prefix of string S_j , for all $j \neq i, j \in [1, k]$.

Other related work. In addition to l-APSP that is formulated in this paper, there are two other versions of APSP that have been studied in the literature.

2 Preliminaries and main result

An alphabet Σ is a finite nonempty set whose elements are called *letters*. A string S = S[1..m] is a sequence of length |S| = m over Σ . The empty string ϵ is the string of length 0. The of two strings S and T is the string composed of the letters of S followed by the letters of T; it is denoted by $S\dot{T}$ or simply by ST. For $1 \le i \le j \le m$, S[i] denotes the ith letter of S, and the fragment S[i..j] denotes an occurrence of the underlying substring P = S[i]S[j]. We say that P occurs at (starting) position i in S. A fragment S[i..j] is a suffix of S if j=m, and it is a prefix of S if i = 1. A substring of S is called proper if it is not equal to S. Given two strings S and T, a suffix/prefix overlap of S and T is a suffix U of S that is a prefix of T; when U is the longest such suffix, then U is called the maximal suffix/prefix overlap of S and T.

Figure 1: The ACmachine R $\{abaa, abac, abb, abcb, baba, bbaa, bbba\}.$ Solid rows correspond to goto transitions and dashed arrows to failure transitions. The lexicographic ranks of the strings in R are the indices of array A

Lemma 2.1 (Aho-Corasick lemma [1]). Let state s correspond to string U and state t correspond to string V in the AC machine of a set R of strings. Then, we have that f(s) = t if and only if V is the longest proper suffix of U that is also a prefix of some string in R

3 The Algorithm

Reducing the *l*-APSP problem to the ULIT problem

Given a collection $I = \{[i1, j1]d1, ..., [ir, jr]dr\}$ of r labeled intervals, we define the union of I as the set

Figure 2: FTtree T_1 for l=1. The output set per leaf node is in a squared box

Figure 3: FTtree T_2 for l=2. The output set per leaf node is in a squared box

(FTtree, for short) of R is the rooted tree induced by the set of (reversed) failure transitions of the AC machine of R.

We prove the following lemma.

Lemma 3.1 Lemma 2. Any instance of the -APSP problem can be reduced to some instance of the ULIT problem in O(n) time.

$$U(I) = \{e_d : e \in [i,j]_d \in I \text{ and } e \in [i',j']_{d'} \in I : d' > d\}$$
3.2 Solving the ULIT Problem

Given a set R of strings, the failure transition tree least two children. A branchless subpath is an up-

Definition 1 (Failure transition tree (FTtree)). A branching node of T is a non-root node with at

ward maximal path of nodes starting from a branching node or a leaf node and ending at the node right before a branching node

Branchless Subpaths	Sorted Tuples	Compact Represen- tation of the Union
1	(1,1,4,1)	$\{[1,4]_1\}$
4	(4,1,1,4)	$\{[1,1]_4^1\}$
$5 \rightarrow 10$	(5,3,3,3) (5,6,7,2)	$\{[3,3]_3,[6,7]_2\}$
6	(6,5,7,1)	$\{[5,7]_1\}$
7	(7,5,5,2)	$\{[5,5]_2\}$
$9 \rightarrow 3$	(9,1,2,3) (9,5,5,4)	{[1,2]_3,[5,5]_4}
12	(12,6,6,4)	$\{[6,6]_4\}$
$14 \rightarrow 11$	(14,6,6,3) (14,7,7,4)	$\{[6,6]_3,[7,7]_4\}$
16	(16,4,4,4)	$\{\{4,4]_{4}\}$
17	(17,2,2,4)	$\{[2,2]_4\}$

Figure 4: Step 3 using the FTtree in Fig. 2. At each branching node, we store the resulting union. At each leaf node, we store the output in a squared box.

(or the root node if no branching node exists). For example, the branchless subpaths in Fig. 2 are shown in Table 1. The algorithm for solving the ULIT problem works as follows:

- 1. Decompose T_l into a set of branchless subpaths. Using a DFS traversal on T_l , for each node decorated with [i, j]d of every branchless subpath starting with node u, construct a tuple (u, i, j, d).
- 2. Sort all tuples constructed in Step 1 together.

For each branchless subpath, take the compact representation of the union of its set of labeled intervals, which are now sorted. Inspect Table 1

3. Visit the branching and leaf nodes using a BFS traver- sal on T_l . From node u to node v, such that v is the child of u, take the union of the two sets of labeled intervals (one from u and one from v), and update the union associated with v. At the leaf nodes we have the output sets. Inspect Fig. 4.

The following lemma together with Lemma 2 implies Theorem 1.

Lemma 3.2 Lemma 3. The ULIT problem can be solved in $\mathcal{O}(\mathcal{N}) + |OUTPUTK|$ time using O(N) space.

4 Final Remarks

All existing optimal algorithms for APSP rely on sorting the suffixes of all strings in R.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank Anne Luesink (Vrije Universiteit) for implementing the algorithm underlying Theorem 1. The source code is freely available at wat

References