$$n_A = \frac{66 \cdot \sqrt{1}}{\pi \cdot d}$$

$$M_A = \frac{d * F_L}{2 * \eta}$$

$$M_{A,a} = \left(J_A + J_W + \frac{(m_L + m_F) * d^2}{\eta * 4}\right) * \frac{\pi * \Delta n_A}{30 * \Delta t_a}$$

 n_A = Antriebs Drehzahl (1/min) v_I = Lastgeschwindigkeit (m/s) d = Durchmesser Antriebsrad (m) M_A = Antriebs Drehmoment (Nm) F_I = Lastkraft (N) n = Wirkungsgrad (-) $M_{A,a}$ = Beschleunigungsdrehmoment (Nm) J_A = Massenträgheitsmoment Antrieb (kg*m²)J_W = Massenträgheitsmoment alle Räder (kg*m²) $m_l = Masse Last (kg)$ m_F = Masse Fahrzeug (kg)

 m_L = Masse Last (kg) m_F = Masse Fahrzeug (kg) Δn_A = Drehzahländerung Antrieb (1/min) Δt_a = Beschleunigungszeit (s)