Using Base Pairing Probabilities for MiRNA Recognition

Yet Another SVM for MiRNA Recognition: yasMiR

Daniel Pasailă, Irina Mohorianu, Liviu Ciortuz Department of Computer Science "Al. I. Cuza" University, Iași, Romania

PLAN

- microRNAs and SVMs
- our approach: using base-pairing probabilities and pivots
- yasMiR features
- tests and comparisons with other systems and classifiers
- conclusions

The Central Dogma of Molecular Biology

From "Genomics and its impact on science and society: The Human Genome Project and beyond", US Department of Energy, Genome Research Programs

miRNA in the RNA interference process

From D. Novina and P. Sharp, The RNAi Revolution, Nature 430:161-164, 2004.

A pre-miRNA example: hsa-let-7a-2

SVMs for microRNA Identification

Sewer et al. (Switzerland)	2005	miR - $abela$
Xue et al. (China)	2005	Triplet-SVM
Jiang et al. (S. Korea)	2007	MiPred
Zheng et al. (Singapore)	2006	miREncoding
Szafranski et al. (SUA)	2006	DIANA-microH
Helvik et al. (Norway)	2006	Microprocessor SVM &
		\min NA SVM
Hertel et al. (Germany)	2006	RNAmicro
Sakakibara et al. (Japan)	2007	stem kernel
Ng et al. (Singapore)	2007	\min Pred

Base-pairing probabilities

Definition: $p_{ij} = \sum_{S_{\alpha} \in \mathcal{S}} P(S_{\alpha}) \ \delta_{ij}^{\alpha}$, where

 $\mathcal S$ is the set of all possible secondary structures for the given RNA sequence, and

 $\delta^{\alpha}_{ij} = \left\{ \begin{array}{ll} 1 & \text{if the nucleotides } i \text{ and } j \text{ form a base-pair in the structure } S_{\alpha} \\ 0 & \text{otherwise.} \end{array} \right.$

Note: $P(S_{\alpha})$, the probability of the structure $S_{\alpha} \in \mathcal{S}$ follows a Boltzmann distribution:

$$P(S_{\alpha}) = \frac{e^{-MFE_{\alpha}/(R \cdot T)}}{Z}$$

with

 $Z = \sum_{S_{\alpha} \in \mathcal{S}} e^{-MFE_{\alpha}/(R \cdot T)},$

 $R = 8.31451 \text{ J} \text{ mol}^{-1} K^{-1}$ (a molar gas constant), and

 $T = 310.15 \text{K} (37^{\circ} \text{ C}).$

Note: The probabilities p_{ij} are efficiently computed using McCaskill's algorithm (1990).

		7.99				
		20 1				
		32 .56				

				42 .14		
				55 1		
62 .99				69 .01		

A similarity measure for two RNAs based on their pattern ("profile") of base-pairing (Meireles, 2006)

For every nucleotide *i* compute the probability of *i* forming a base pairing upstream, downstream, or not forming a base pairing at all:

$$PF[i, 0] = \sum_{j>i} p_{ij}$$
 $PF[i, 1] = \sum_{j $PF[i, 2] = 1 - PF[i, 0] - PF[i, 1]$$

The similarity measure is the global alignment score of two profiles, calculated using the Needleman-Wunsch algorithm.

We use zero gap penalties, and as match score the inner product of the two profile vectors associated to the corresponding positions in the input sequences:

$$S[i,j] = max \begin{cases} S[i-1,j] \\ S[i,j-1] \\ S[i-1,j-1] + \sum_{k=0}^{2} \mathbf{PF}[i,k] \cdot \mathbf{PF}[j,k] \end{cases}$$

yasMiR profile-based features

We will construct a set of RNA sequences that we call pivots.

Then, the profile alignment scores of a given (training or testing) pre-miRNA with all the pivot sequences will be included in the pre-miRNA's feature vector.

We conjecture that the way in which the pre-miRNA base-pairing profiles align to the profiles of pivot sequences can be successfully used as a discriminative factor in classifying real vs. pseudo pre-miRNAs.

Remarks on pivots

In the developing phase of our system, we used pseudomiRNAs and pre-miRNAs as pivots, but we saw that the prediction accuracy didn't significantly change when we used randomly generated RNA sequences.

Also, we noticed that about 50-200 pivots were needed to achieve best performance.

The length of the used pivot sequences seemed to affect the result. In practice we noticed that sequences of 45-65 nucleotides were most appropriate.

Triplet probabilistic patterns

- For any 3-mer there are $8 = 2^3$ possible structure patterns: 'ppp', 'pp.', 'p.', 'p.', '.pp', '.p.', '.p', and '...'.
- Further on, if we consider the middle nucleotide (A, C, G or U) in a 3-mer, there will be $32 = 8 \times 4$ possible combinations.
- Given a pre-miRNA, we will compute the probability of every such combination occurring inside the sequence.
- Example: The probability for the pattern 'p.p' to occur for a certain position i inside the given RNA sequence, is:

$$(1-\mathbf{PNP}[i-1])\cdot\mathbf{PNP}[i]\cdot(1-\mathbf{PNP}[i+1])$$

where PNP[i] is the probability of base i being unpaired: PNP[i] = PF[2].

yasMiR non-profile-based features (I)

• 32 features, each one representing the probability that nucleotide a appears in the middle position of occurrences of pattern j:

$$Pn[a,j] = \frac{\sum_{S[i]=a} Pt[i,j]}{cnt(a)/L}$$

where S[1..L] is the current sequence, Pt[i,j] stores the probability that the 3-mer centered of the *i*-th nucleotide has the pattern j, and cnt(a) denotes the number of nucleotides of type a in the sequence.

• 12 features, one for each pair of distinct nucleotides (a, b): the sum of the base-pair probabilities for all the corresponding positions in the sequence:

$$\sum_{S[i]=a,S[j]=b} p_{ij}$$

yasMiR non-profile-based features (II)

• the overall non base-pairing probability:

$$\sum_{i=1}^{L} PNP[i]/L$$

• 4 features: the non base-pairing probability for every nucleotide $a \in \{A, C, G, U\}$:

$$\sum_{S[i]=a} PNP[i]/cnt(a)$$

• the mean base pair distance in the equilibrium state of the given RNA (a measure of the structural diversity), computed by the mean_bp_dist function in the Vienna RNA package, also using base pairing probabilities.

yasMiR non-profile-based features (III) not using base pairing probabilities

- the folding minimum free energy, obtained using the fold function in the Vienna RNA package
- 4 features: the *average frequency* for each nucleotide $a \in \{A, C, G, U\}$ in the current sequence, calculated as cnt(a)/L
- 16 features: the average dinucleotide frequency (one for each dimer ab).

Comparison of yasMiR with Triplet-SVM

Test	yasMiR	Triplet-SVM
	accuracy(%)	accuracy(%)
TE-C: Human pre-miRNAs	96.6 (29/30)	93.3
TE-C: Pseudo pre-miRNAs	96.5 (965/1000)	88.1
UPDATED	92.3 (36/39)	92.3
CROSS-SPECIES	95.4 (554/581)	90.9
CONSERVED-HAIRPIN	93.5 (2287/2444)	89.0

The results for Triplet-SVM are taken from [Xue et al., 2005]. In paranthesis: the ratio of correctly classified instances.

Detailed comparison of yasMiR with Triplet-SVM: accuracy on the CROSS-SPECIES dataset

Test	yasMiR	Triplet-SVM
	accuracy(%)	accuracy(%)
Mus musculusi	97.2 (35/36)	94.4
Rattus norvegicus	84.0 (21/25)	80.0
Callus Gallus	100.0 (13/13)	84.6
Dnio Rerio	83.3 (5/6)	66.7
Caenorhabditis briggsae	100.0 (73/73)	95.9
Caenorhabditis elegans	92.7 (102/110)	86.4
Drosophila pseudoobscura	94.3 (67/71)	90.1
Drosophila melanogaster	95.7 (68/71)	91.5
Oryza sativa	96.8 (93/96)	94.8
Arabidopsis thaliana	97.3 (73/75)	92.0
Epstein Barr Virus	80.0 (4/5)	100.0
Total	95.35 (554/581)	90.9

Comparison of yasMiR with miPred and Triplet-SVM

	yasl	$\overline{ ext{MiR}}$	miF	Pred	Triple	et-SVM
Test	accuracy(%)		accura	acy(%)	accuracy(%)	
	se.(%)	$\operatorname{sp.}(\%)$	se.(%)	$\operatorname{sp.}(\%)$	se.(%)	$\operatorname{sp.}(\%)$
TE-H	93.	.77	93	.50	87	7.96
	87.80	96.74	84.55	97.97	73.15	93.57
IE-NH	94.	.11	95.64		86.15	
	90.35	95.99	92.08	97.42	86.15	96.27
IE-NC	82.	.75	68	.68	78	3.37
IE-M	10	00	87	.09	0	

The results for miPred and Triplet-SVM are taken from [Ng and Mishra, 2007].

Note: Only accuracy is given for IE-NC and IE-M since these datasets are made only of non miRNAs; in such a case, specificity is equal to accuracy, and sensitivity is null.

Comparing the predictive accuracy (%) of RF and SVM using yasMiR features

• on test datasets from Triplet-SVM

	R	SVM	
Test	without	with	with
	feat. selection	feat. selection	feat. selection
TE-C	61.1	93.2	94.4
UPDATED	94.9	89.7	97.4
CROSS-SPECIES	96.1	89.5	89.8
CONSERVED-HAIRPIN	92.6	89.6	91.0

• on test datasets from miPred

	R	\mathbf{SVM}	
Test	without	with	with
	feature sel.	feature sel.	feature sel.
TE-H	92.14	92.14	91.86
IE-NH	93.82	92.72	91.87
IE-NC	63.46	63.30	88.31
IE-M	74.19	16.12	100

Prediction results of yasMiR on miPred's test datasets

using 200 pivots
selected via clustering
from a pool of 2000 randomly generated pivots

using 88 pivots selected via PCA and varSelRF from the 200 pivots obtained by clusterisation

	SV	\mathbf{SVM}		\mathbf{F}	
Test	accura	acy(%)	accuracy(%)		
	sens.(%) spec.(%)		sens.(%) spec.(%)		
TE-H	92.55		91.69		
	83.74	97.34	83.74	96.01	
IE-NH	93	.37	93	.67	
	86.36	96.88	89.66	95.68	
IE-NC	91.11		63.77		
IE-M	10	00	19.35		

	SVM	RF		
Test	accuracy(%)	accuracy(%)		
	sens.(%) spec.(%)	sens.(%) spec.(%)		
TE-H	92.68	91.06		
	83.74 97.15	82.11 95.53		
IE-NH	93.57	94.07		
	89.0 95.86	92.23 94.99		
IE-NC	93.11	63.11		
IE-M	100	19.35		

Replacing the probabilistic triplet features in yasMiR with their non-probabilistic counterpart: The effect on Triplet-SVM datasets, using 100 pivots

Test	yasMiR	yasMiR'
	accuracy(%)	accuracy(%)
TE-C: Human pre-miRNAs	100 (30/30)	96.67 (29/30)
TE-C: Pseudo pre-miRNAs	96.20 (962/1000)	95.90 (952/1000)
UPDATED	94.87 (37/39)	94.87 (37/39)
CROSS-SPECIES	95.18 (553/581)	9 5.87 (557/581)
CONSERVED-HAIRPIN	94.23 (2303/2444)	93.09 (2275/2444)

In paranthesis: the ratio of correctly classified instances.

Conclusions

- We showed that the base-pairing probabilities combined with some other, simple statistical measures lead a SVM to achieve high pre-miRNA prediction accuracy rates, comparable to the best published miRNA classification results up to our knowledge.
- The RF classifier is a not good enough candidate to replace SVM for miRNA identification using our set of features.
- One of the advantages of our approach is that it makes no use of so-called normalised features which are based on sequence shuffling (as for instance miPred does), which is a sensitive issue from the biological point of view, and also makes our approach much less time consuming.