BCC760 Turma 6	Nome Completo:	
2021/1		
Avaliação 01		
10/11/2021		
Limite de Tempo: 140 minutos	Matrícula:	
1		

Esta prova contém 4 páginas (incluindo esta capa) e 3 questões. Confira se há páginas faltando. Para entrega da prova, por favor, siga cuidadosamente os procedimentos determinados no documento instruções para a entrega das atividades avaliativas, disponível no Moodle Presencial.

Você deve demonstrar o seu raciocínio em cada problema deste teste. Utilize as seguintes regras:

- Retenha os cálculos em 4 casas decimais caso aproximações sejam necessárias.
- Organize sua resposta de maneira razoavelmente clara e coerente no espaço reservado.
- Respostas misteriosas não receberão crédito total. Uma resposta correta sem cálculos que a suporte, explicação, ou desenvolvimento algébrico não receberão crédito. Uma resposta incorreta apoiada por cálculos substancialmente corretos e explicações pode receber crédito parcial.

Problema	Pontos	Nota
1	3	
2	3	
3	4	
Total:	10	

1. $\fbox{3 pontos}$ Suponha como valor M os quatro últimos dígitos do seu número de matrícula dividido por 1000. Por exemplo, M=1,235 para número de matrícula 20.1.1235.

Resolva o seguinte sistema de equações pelo método de Gauss com pivotação.

Sistema
$$\left\{ \begin{array}{lll} x_1-x_2-6x_3 & = & M \\ 4x_1-x_2-x_3 & = & 2 \\ x_1-6x_2-x_3 & = & 3 \end{array} \right|$$
 Sistema triangular
$$\left\{ \begin{array}{lll} x_1-x_2-6x_3 & = & M \\ x_1-x_2-x_3 & = & 3 \end{array} \right|$$

Sumário:

Linha	Multiplicador	Coeficientes	Term. Ind.	Transformações

2. $\boxed{3 \text{ pontos}}$ Suponha o mesmo valor M da questão anterior. Resolver o sistema a seguir utilizando o método iterativo de **Jacobi**. Utilizar precisão de 0,001, no máximo 4 iterações e $X^0 = [000]^t$. Reorganize o sistema, caso necessário.

Sistema
$$\begin{cases} -x_1 + 4x_2 - x_3 &= 2\\ x_1 - x_2 - 8x_3 &= 3\\ -8x_1 - x_2 + x_3 &= M \end{cases}$$

Sumário:

k	x_1^k	x_2^k	x_3^k	$ max_{1 \le i \le 3} x_i^k - x_i^{k-1} $
0	0	0	0	
1				
2				
3				
4				

3. $\boxed{4 \text{ pontos}}$ Seja y=f(x) uma função dada nos pontos a seguir:

Utilize o método de Lagrange com interpolação de **grau 3** para determinar o valor da função no ponto M (o mesmo utilizado nas questões anteriores).

$$L_i(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n-1})(x - x_n)}{(x_i - x_0)(x_i - x_1)\dots(x_i - x_{i-1})(x_i - x_{i+1})\dots(x_i - x_{n-1})(x_i - x_n)}$$
para $i = 0, 1, 2, \dots, n$

$$p(x) = L(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$