Física Nuclear y de Partículas Grado en Física UNED

Tema 4. Desintegración nuclear

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)

Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
 - Tema 1. Principales características del núcleo atómico
 - Tema 2. La interacción nuclear. El deuterón y la interacción nucleón-nucleón
 - Tema 3. Modelos nucleares
- · Bloque II. Radioactividad y desintegraciones nucleares
 - Tema 4. Desintegración nuclear
 - Tema 5. Desintegraciones α , β y γ
- · Bloque III. Reacciones nucleares e interacción radiación-materia
 - Tema 6. Reacciones nucleares
 - Tema 7. Interacción radiación-materia
- Bloque IV. Física subnuclear
 - Tema 8. El Modelo Estándar de partículas elementales
 - Tema 9. Quarks y hadrones

Cronograma

	L	М	Х	J	V	S	D
Octubre		1	2	3	4	5	6
	7	8	9	10	11	12	13
	14	15	16	17	18	19	20
]	21	22	23	24	25	26	27
	28	29	30	31			
Noviembre					1	2	3
	4	5	6	7	8	9	10
1 1	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	
Diciembre							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31					
Enero			1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31		

Bloque I	
	Tema 1
	Tema 2
	Tema 3
Bloque II	
	Tema 4
	Tema 5
Bloque III	
	Tema 6
	Tema 7
Bloque IV	
	Tema 8
	Tema 9
	•

Apertura foros				
Apertura TE				
PEC				
Periodo vacacional				
Cierre foros				
Exámenes				
Cierre TE				

Material disponible

- Material disponible en el repositorio Github de la asignatura
 - https://github.com/cefera/FNyP
 - Esta presentación:
 - ./Presentaciones/Tema4.pdf
 - Código en Python asociado:
 - ./Notebooks/Tema4.ipynb

Esquema

- Introducción
- · Ley de desintegración radiactiva
- Tipos de desintegraciones
- · Radiactividad natural. Series naturales de elementos radiactivos
- Cadenas radiactivas
- Radiactividad artificial
- Datación

Objetivos específicos

- Definir radiactividad, nucleido radiactivo, proceso radiactivo.
- Explicar las hipótesis fundamentales de las desintegraciones radiactivas, definir las diferentes magnitudes que caracterizan la evolución temporal de las sustancias radiactivas y las unidades más comunes en las que se expresan. desintegración radiactiva.
- Deducir las leyes de evolución temporal de una sustancia radiactiva en los posibles casos: una sola sustancia, ramificaciones y cadenas. Interpretación y reconocimiento en cada caso de las características más importantes que se pueden obtener de estas leyes.
- Identificar los tipos de desintegraciones radiactivas
- Entender el origen de la radiactividad natural
- Aplicación de la radiactividad a la datación

Definición

 La radiactividad es un fenómeno natural por el que un núcleo emite uno o más tipos de partículas, tranformándose o desexcitándose a un estado de menor energía

Introducción histórica

- Descubierta por Henri Becquerel en 1896 al trabajar con sales de Uranio
- En 1898 Pierre Curie y Marie Sklodowska-Curie aislaron los elementos radiactivos Polonio y Radio a partir de pechblenda
- En 1919 Enest Rutherford realizó la primera transmutación $\alpha + ^{14}$ N $\rightarrow ^{17}$ O + p
- En 1932 Chadwick descubrió el neutrón
- En 1934 Irene y Frederic Joliot-Curie descubrieron la radiactividad artificial, creando núcleos inestables

Actividad

- La actividad de una sustancia radiactiva es el número de núcleos que se desintegran por unidad de tiempo: $\frac{dN}{dt} = -\lambda N$, y es proporcional al número de núcleos existentes N.
- λ es la constante de desintegración. Proporciona la probabilidad de desintegración de un núcleo por unidad de tiempo.
- La ley de desintegración es: $N=N_0\,\mathrm{e}^{-\lambda t}$
- La actividad cumple la misma ley: $\mathcal{A} = \lambda N = \lambda N_0 e^{-\lambda t} = \mathcal{A}_0 e^{-\lambda t}$
- · Es una ley probabilística.

Vida media y semi-vida

La vida media de un núcleo se puede calcular:

$$\tau = \frac{\int_0^\infty t dN}{\int_0^\infty dN} = \frac{\int_0^\infty t \lambda N dt}{\int_0^\infty \lambda N dt} = \frac{\int_0^\infty t e^{-\lambda t} dt}{\int_0^\infty e^{-\lambda t} dt} = \frac{1}{\lambda}$$

• La semi-vida $T_{1/2}$ se define como el tiempo necesario para que el número de núcleos se reduzca a la mitad $N=N_0/2$:

$$T_{1/2} = \frac{\ln 2}{\lambda} = \tau \ln 2$$

Unidad de actividad

- Bequerelio: 1 Bq = 1 d/s
- Curio: 1 Ci = 3.7×10^{10} d/s que es la actividad de 1 g de Radio
- A mayor cantidad de sustancia radiactiva, mayor actividad: $\mathcal{A} = \lambda N$

Desintegraciones parciales (I)

- Que exista un única desintegración no es lo habitual
- Casos sencillos:
 - · Caso más sencillo: $N_1 \to N_2 + y$ donde N_2 es estable y N_1 no se crea, $N_1(t) = N_0 \mathrm{e}^{-\lambda_1 t}$ $N_1 + N_2 = N_0. \text{ Entonces: } N_2(t) = N_0 \left(1 \mathrm{e}^{-\lambda_1 t}\right)$

Desintegraciones parciales (II)

Existen dos o más modos de desintegración:

$$N_1 \to N_{2a} + x$$
$$\to N_{2b} + y$$

La ley de desintegración viene definida por $\lambda_t = \lambda_a + \lambda_b$: $N(t) = N_0 \, \mathrm{e}^{-\lambda_t t}$ λ_a y λ_b son las constantes de desintegración parciales y permiten calcular las proporciones de cada modo parcial: λ_a/λ_t y λ_b/λ_t denominados cocientes de desintegración (branching ratios):

$$N_1(t) = N_0 e^{-\lambda_t t}$$

$$N_{2a}(t) = N_0(\lambda_a/\lambda_t) \left(1 - e^{-\lambda_t t}\right)$$

$$N_{2b}(t) = N_0(\lambda_b/\lambda_t) (1 - e^{-\lambda_t t})$$

En general se tiene:
$$\lambda = \sum_{i} \lambda_{i}$$

Tipos de desintegraciones (I)

- Se profundizará en el Tema 5. Procesos α , β y γ
- Desintegración $\alpha: {}^{A}_{Z}X \rightarrow^{A-4}_{Z-2}Y + {}^{4}_{2}$ He
 - $\cdot \ ^{238}_{92} \cup \ ^{234}_{90} \ {\rm Th} + \alpha, \ T_{1/2} = 4,47 \times 10^9 \ {\rm años}$
 - $\cdot \ ^{226}_{88} {\rm Ra} \to ^{222}_{86} {\rm Rn} + \alpha, \, T_{1/2} = 1600 \, {\rm a\tilde{n}os}$
 - Debida a la interacción fuerte (efecto túnel)
- Desintegración β:
 - $\cdot~\beta^+:n\to p+e^-+\bar\nu_e$, $^{131}_{53}$ $|\to^{131}_{54}$ Xe $+~e^-+\bar\nu_e$, $T_{1/2}=8$ días
 - $\cdot \beta^{-}: p \to n + e^{+} + \nu_{e}$, $^{25}_{13} \text{Al} \to ^{25}_{12} \text{Mg} + e^{+} + \nu_{e}$, $T_{1/2} = 7.2 \text{ s}$
 - \cdot CE: $p+e^- \rightarrow n + \nu_e$, $^{54}_{25}{\rm Mn} + e^- \rightarrow ^{54}_{24}{\rm Cr} + \nu_e$, $T_{1/2} = 312$ días
 - Después de la captura electrónica, se ha de producir la emisión de un rayo X al haberse producido la captura de un electrón de las capas más internas
 - Esta desintegración es consecuencia de la interacción débil que se tratará en el Tema 8. El Modelo Estándar de partículas elementales del Bloque IV. Física subnuclear

Tipos de desintegraciones (II)

- Desintegración γ
 - Es el proceso de desexcitación nuclear por excelencia
 - Debido a la interacción electromagnética
 - El proceso es rápido $T_{1/2} \approx 10^{-9} \, \mathrm{s}$
- · Fisión espontánea
 - · Se suele producir en núcleos transuránidos
 - Debido a las fuerzas de repulsión eléctricas creadas por la deformación del núcleo
 - Este fenómeno junto con la desintegración α explica por qué no existen núcleos estables con A elevado
 - A partir de $A \approx 300$ los núcleos fisionan espontáneamente

Tipos de desintegraciones (III)

- Emisión de nucleones
 - Son desintegraciones de núcleos alejados del valle de estabilidad
 - Para que se produzca la energía de separación [Tema 1: Energía necesaria para arrancar un protón/neutrón de un núcleo] debe ser $S_p, S_n < 0$
 - Recordad la drip line que se estudió en el Tema 1

Radiactividad natural

- La radiactividad natural es debida a dos tipos de radionúcleos naturales
 - Primordiales: En la tierra desde que se formó y su periodo de semidesintegración es mayor que la edad de la tierra y parte de ellos pertenecen a cadenas de elementos pesados
 - Cosmogénicos: Producidos en colisiones de rayos cósmicos con los núcleos del aire de la atmósfera

Rayos cósmicos

- Los rayos cósmicos son partículas que llegan desde el espacio exterior y bombardean constantemente la Tierra desde todas direcciones. La mayoría de estas partículas son protones o núcleos de átomos más pesados (como helio, carbono o hierro)
- La mayoría de los rayos cósmicos de menor energía que llegan a la Tierra provienen de algún sitio dentro de nuestra galaxia, la Vía Láctea.
- El origen de los rayos cósmicos de alta energía (10²⁰ eV) no es claro, aunque en su mayoría proceden de fuera de la Vía Láctea

Primordiales

Serie	Elemento	T _{1/2} (años)	Estable
Torio	²³² Th	14,1×10 ⁹	²⁰⁸ Pb
Neptunio	²³⁷ Np	2,01×10 ¹⁹	205 T
Uranio	238⋃	4,47×10 ⁹	²⁰⁶ Pb
Actinio	235⋃	0,704×10 ⁹	²⁰⁷ Pb

$$\begin{array}{c}
232\text{Th} \xrightarrow{\alpha} \xrightarrow{228} \text{Rn} \xrightarrow{\beta^{-}} \xrightarrow{228} \text{Ac} \xrightarrow{\beta^{-}} \xrightarrow{228} \text{Th} \xrightarrow{\alpha} \xrightarrow{1,9116a} \text{Ra} \xrightarrow{\alpha} \xrightarrow{3,6319} \text{d} \\
220\text{Rn} \xrightarrow{\alpha} \xrightarrow{55,68} \text{Po} \xrightarrow{\alpha} \xrightarrow{210} \text{Pb} \xrightarrow{\alpha} \xrightarrow{212} \text{Pb} \xrightarrow{\beta^{-}} \xrightarrow{212} \text{Bi} \xrightarrow{\beta^{-},64\%} \xrightarrow{212} \text{Po} \xrightarrow{\alpha} \xrightarrow{208} \text{Pb} \\
\xrightarrow{\alpha,36\%} \text{Tl} \xrightarrow{\beta^{-}} \xrightarrow{208} \text{Pb} \\
\xrightarrow{\alpha,36\%} \text{Tl} \xrightarrow{\beta^{-}} \xrightarrow{208} \text{Pb}
\end{array}$$
Edad de la Tierra 4.5×109 años

Edad de la Tierra 4,5×10⁹ años

Cosmogénicos

- Ejemplos:
 - . Tritio (1 protón y 2 neutrones): ${}^3\text{H} \xrightarrow{\beta^-}$ ${}^3\text{He} + e^- + \bar{\nu}_e$. Carbono-14: ${}^{14}\text{C} \xrightarrow{\beta^-}$ ${}^{14}\text{N} + e^- + \bar{\nu}_e$
- Estos ejemplos tienen aplicaciones a datación (se verá más adelante)

Cadena radiactiva para tres elementos (I)

- $\cdot 1 \rightarrow 2 \rightarrow 3$
- Este es un caso sencillo, generalizable a un número arbitrario de decaimientos
- Originalmente sólo existe la especie nuclear 1
- · El núcleo 3 es estable
- Las ecuaciones son:

$$\begin{split} \frac{dN_1}{dt} &= -\lambda_1 N_1 \Rightarrow N_1(t) = N_0 e^{-\lambda_1 t} \\ \frac{dN_2}{dt} &= \lambda_1 N_1 - \lambda_2 N_2 \Rightarrow N_2(t) = N_0 \frac{\lambda_1}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) \\ \frac{dN_3}{dt} &= -\lambda_2 N_2 \Rightarrow N_3(t) = N_0 \left[1 + \frac{1}{\lambda_2 - \lambda_1} \left(\lambda_1 e^{-\lambda_2 t} - \lambda_2 e^{-\lambda_1 t} \right) \right] \end{split}$$

Cadena radiactiva para tres elementos (II)

- · La actividad del núcleo hijo 2 es $\mathscr{A}\lambda_2N_2(t)$
- . Hay un máximo para 2 en $t_{\max} = \frac{\ln \left(\lambda_2/\lambda_1\right)}{\lambda_2 \lambda_1}$ para el que la actividad del hijo está en equilibrio

$$\lambda_2 N_2(t_{\text{max}}) = \lambda_1 N_1(t_{\text{max}})$$

• El cociente de la actividad entre padre e hijo es:

$$\frac{\lambda_2 N_2}{\lambda_1 N_1} = \frac{\lambda_2}{\lambda_2 - \lambda_1} \left[1 - e^{-(\lambda_2 - \lambda_1)t} \right]$$
 distinguiéndose tres casos

Cadena radiactiva para tres elementos (III)

El cociente de la actividad entre padre e hijo es:

$$\frac{\lambda_2 N_2}{\lambda_1 N_1} = \frac{\lambda_2}{\lambda_2 - \lambda_1} \left[1 - \mathrm{e}^{-(\lambda_2 - \lambda_1)t} \right] \, \mathrm{distingui\acute{e}ndose}$$
 tres casos

- $\lambda_2 >> \lambda_1$ Equilibrio secular, el hijo se desintegra mucho más rápido que el padre
- $\lambda_2 > \lambda_1$ Equilibrio transiente o transitorio, el cociente de actividades va creciendo hasta aproximarse a una constante $\lambda_2/(\lambda_2-\lambda_1)$
- $\lambda_2 < \lambda_1$ Los núcleos 1 se desintegran más rápidamente que los de tipo 2

Ecuaciones de Bateman

- . Caso de k generaciones $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow ... \rightarrow k \frac{dN_i}{dt} = \lambda_{i-1}N_{i-1}(t) \lambda_iN_i(t)$
- Si se supone que $N_i(0)=0$ para todos los elementos de la cadena i>1, la actividad de cada miembro n de la cadena será dada por las ecuaciones de Bateman

$$\mathcal{A}_n = N_0 \sum_{i=1}^n c_i \mathrm{e}^{-\lambda_i t} \text{ siendo } c_m = \frac{\prod_{i=1}^{n} \lambda_i}{\prod_{m \neq i=1}^n \left(\lambda_i - \lambda_m\right)} \text{ teniendo en cuenta } n \leq m$$

· Se tiene equilibrio secular si $\lambda_1 N_1 = \lambda_2 N_2 = \ldots = \lambda_n N_n$

Númeoro de átomos del elemento n: $N_n(t) = \lambda_1 \ldots \lambda_{n-1} N_1(0) \sum_{i=1}^n \frac{\mathrm{e}^{-\lambda_1 \iota}}{\prod_{m \neq i=1}^n} \left(\lambda_i - \lambda_m\right)$

Ejemplo de aplicación

- Supongamos dos elementos radiactivos en equilibrio, ²²⁶Ra y ²³⁸U, de los que se conoce la relación de masa $\frac{M_{\rm Ra}}{M_{\rm C}}=3.4\times10^{-7}$
- Si se conoce una de las semi-vidas: $T_{1/2}(Ra) = 1602$ años
- Se puede calcular $T_{1/2}(\mathsf{U})$ teniendo en cuenta la condición de equilibrio

$$N_{\text{Ra}}\lambda_{\text{Ra}} = N_{\text{U}}\lambda_{\text{U}}$$
 y como $N = M\frac{\mathcal{N}_A}{A'}$ al despejar queda: $T_{1/2}(\text{U}) = 1602\frac{226}{238}\frac{1}{3,4\times ao^{-7}} = 4,5\times 10^9$ años

$$T_{1/2}(\cup) = 1602 \frac{226}{238} \frac{1}{3.4 \times ao^{-7}} = 4.5 \times 10^9 \text{ años}$$

Activación y decaimiento

- Los radioisótopos se pueden obtener por "bombardeo" de un material mediante aceleradores de partículas o con reactores
- Ejemplo: $p + N_0 \rightarrow N_1 + q$
- El ritmo de de generación es: $R=\phi\sigma N_0$ ϕ es el flujo ($\sim 10^{14}\,\mathrm{cm}^{-2}s^{-1}$); σ sección eficaz ($\sim 1\,\mathrm{b}=10^{-24}\,\mathrm{cm}^2$); N_0 número de núcleos disponibles;
- $R/N_0 \sim 10^{-10}\,\mathrm{s}^{-1}$. Se puede suponer N_0 constante
- Si N_1 es inestable: $N_1 \rightarrow N_2 + x$
- $\mathcal{A}_1(t) = R\left(1 e^{-\lambda_1 t}\right); N_1(t) = \mathcal{A}_1(t)/\lambda_1;$

Datación por Carbono-14

- El Carbono-14 es un isótopo radiactivo con $T_{1/2}=5730\,\mathrm{a}$ ños de origen cosmogénico
- Se supone que la proporción $^{14}\text{C/C} = 1/10^{12}$
- El carbono natural tiene la proporción isotópica 90,89% de 12 C y 1,11% de 13 C, que forma CO $_2$ y es absorbido por los organismos
- Al morir, el organismo deja de absorber carbono por este medio y cesa de adquirir ¹⁴C
- · Esto proporciona un forma de datar los restos del organismo.

Ejemplo de datación por Carbono-14

• Supongamos que el carbón de un fogón situado en un campamento tiene una actividad de $\mathcal{A}_{hoy}=0.0048\,\mu\text{Ci/kg}$. Calcular el año en el que el campamento fue usado por última vez sabiendo que la actividad del carbono en seres vivos es $\mathcal{A}_{\text{VivO}}=0.007\,\mu\text{Ci/kg}$

$$\frac{N_{\text{hoy}}}{N_{\text{vivo}}} = e^{-\lambda t} = e^{-t \log 2/T_{1/2}} y$$

$$\frac{\mathcal{A}_{\text{hoy}}}{\mathcal{A}_{\text{vivo}}} = \frac{\lambda N_{\text{hoy}}}{\lambda N_{\text{vivo}}} = \frac{N_{\text{hoy}}}{N_{\text{vivo}}} \Rightarrow t = -\frac{T_{1/2}}{\log 2} \log \frac{\mathcal{A}_{\text{hoy}}}{\mathcal{A}_{\text{vivo}}} \Rightarrow t = 2923 \text{ años}$$

Datación geológica

- Para tiempos geológicos se debe obtener N_0 .
- · Buenos elementos para medir tiempos geológicos son:

Isótopo	T _{1/2} (años)	Isótopo	T _{1/2} (años)
⁴⁰ K	1,28×10 ⁹	¹³⁸ La	1,3×10 ¹¹
⁸⁷ Rb	4,8×10 ¹⁰	¹⁷⁶ Lu	3,6×10 ¹⁰
¹¹³ Cd	9,0×10 ¹⁵	¹⁸⁷ Re	5,0×10 ¹⁰
¹¹⁵ ln	4,4×10 ¹⁴	238	4,5×10 ⁹

Ejemplo

- · Supongamos que tenemos una muestra de Rubidio
- Este es una mezcla isotópica de 85 Rb(72,15%) y 87 Rb(27,85%)
- El ⁸⁵Rb es estable
- \cdot El 87 Rb es inestable: 87 Rb \rightarrow^{87} Sr + e^- + $\bar{\nu}_e$ con $T_{1/2}=4.8\times 10^{10}$ años
- Si se tiene una muestra actual de $N_p(t_{
 m hoy})$ núcleos de Rb y $N_h(t_{
 m hoy})$ de Sr y que en t_0 se tenían $N_p(t_0)$ y 0 respectivamente
- . Se cumple $N_p(t_{\text{hoy}}) = N_p(t_0) \mathrm{e}^{-\lambda(t_{\text{hoy}}-t_0)}$, luego

$$t_{\text{hoy}} - t_0 = \Delta t = \frac{1}{\lambda} \ln \frac{N_p(t_0)}{N_p(t_{\text{hoy}})} = \frac{1}{\lambda} \ln \left(1 + \frac{N_h(t_{\text{hoy}})}{N_p(t_{\text{hoy}})} \right)$$

- donde se hace uso de que $N_p(t_0) = N_p(t_{\mbox{\scriptsize hoy}}) + N_h(t_{\mbox{\scriptsize hoy}})$

Resumen

- Ley de desintegración radiactiva
- · Vida media, semi-vida, actividad
- Tipos de radiactividad
- Cadenas radiactivas
- Origen de la radiactividad:
 - Natural
 - Primordial
 - Cosmogénica
 - Artificial
- Aplicaciones: Datación