Name: Solutions

Quiz 3

D Term, 2021

I affirm that I have not consulted my text, notes or any reference, paper or electronic, or any person once I opened and/or looked at this quiz.

Signature:

Show all work needed to reach your answers.

1. (1 points)

$$either$$
 $\{0,1,2,3,...\}$
 $\mathbb{N} = \{1,2,3,...\} = \mathbb{Z}^{+}$

2. (12 points) Please complete the following multiplication table for \mathbb{Z}_7 (multiplication mod 7).

×	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
1	0	1	2	3 6 2 5	4	5	6	
1 2 3	0	2	4 6	6	1	3	5	
3	0	3	6	2	5	1	4	
4	0	4	1	5	2	6	2	
5	0	5	3	1	6	4	2	
6	0	6	5	4	3	2	1	

exactly these entries / no partial credit
1 point each

3. (12 points) Please complete the following proof that the prime numbers (\mathbb{P}) are countably infinite.

Proof (Contradiction):

Suppose that the primes are finite, that is, suppose that $P = \{p_1, p_2, ..., p_n\}$ for some finite $n \in \mathbb{Z}^+$.

Consider $M = P_1 P_2 P_3 ... P_n + 1$ Notice that $P_k \mid P_1 P_2 ... P_n \mid \forall K \mid 1 \le K \le N$,

but $P_k \mid 1$. So $P_k \mid m \mid 3$ m is prime. But $m > P_k \mid \forall K \mid 2$ o m is a prime not on our list.

Hence the primes tare not finite. Since $P \in \mathbb{Z}^+$, $P \mid M \mid 3$ must be countably infinite.

A different proof might be given.