

# COE-C2004 - Materials Science and Engineering

Prof. Junhe Lian Wenqi Liu (Teaching Assistant)

#### **Updates:**

- Slides (pre) were uploaded to MyCourses
- Get familiar with MyCourses
- Active participation is very much appreciated
- Get some paper and pen. Let's derive.

#### Where are you?



https://dorsaamir.medium.com/modest-advice-for-new-graduate-students-b0be6b8dbc22



#### **Previously**



#### **Previously**



# Chapter 3: Mechanical Properties of Metals

#### **ISSUES TO ADDRESS...**

- When a metal is exposed to mechanical forces, what parameters are used to express force magnitude and degree of deformation?
- What is the distinction between elastic and plastic deformations?
- How are the following mechanical characteristics of metals
   measured? (a) Stiffness (b) Strength (c) Ductility (d) Hardness
- What is true stress true strain curve?
- How to determine necking?
- What structure decides the elastic properties?

# Stress and Strain

#### **Common States of Stress**

Uniaxial tension ←
 Cable



A = cross-sectional area of cable



Ski lift (photo courtesy P.M. Anderson)

Tensile stress =  $\sigma$ 

$$\sigma = \frac{F}{A}$$

# **Common States of Stress (cont.)**



#### Common States of Stress (cont.)

#### Uniaxial compression:



# Common States of Stress (cont.)

Biaxial tension



Hydrostatic compression



# **Engineering Stress**

• Tensile stress, σ:



original cross-sectional area before loading

• Shear stress, τ:



$$\tau = \frac{F}{A_O}$$

Unit for stress:

 $MPa = 10^6 Pa = 10^6 N/m^2$ 

# **Engineering Strain**

• Tensile strain  $(\varepsilon_7)$ :

$$\varepsilon_z = \frac{\Delta l}{l_o}$$

• Shear strain  $(\gamma)$ :





• Lateral strain  $(\varepsilon_x)$ :

$$\varepsilon_{x} = \frac{\Delta d}{d_{0}}$$

$$\gamma = \Delta x/y = \tan \theta$$

Both tensile and shear strain are dimensionless

# Stress – Strain Testing and Curve

#### **Stress-Strain Testing**

 Typical tensile test machine



 Typical tensile specimen



Fig. 6.2, Callister & Rethwisch 10e.

Fig. 6.3, Callister & Rethwisch 10e. (Taken from H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, p. 2, John Wiley and Sons, New York, 1965.)

#### **Stress-Strain Curve**



Materials Science of Steel, Wolfgang Bleck

# **Linear Elastic Properties**

- Elastic deformation is nonpermanent and reversible!
  - generally valid at small deformations
  - linear stress strain curve
- Modulus of Elasticity, E: (also known as Young's modulus)
- Hooke's Law:

$$\sigma_z = E \varepsilon_z \text{ or } \sigma = E \varepsilon$$

Units:

*E*: [GPa]

 $1 \text{ GPa} = 10^9 \text{ Pa}$ 



Area, A

#### Poisson's ratio

• Poisson's ratio, v:

$$v = -\frac{\varepsilon_{x}}{\varepsilon_{z}}$$

metals:  $v \sim 0.33$ 

ceramics:  $v \sim 0.25$ 

polymers:  $v \sim 0.40$ 

#### Units:

v: dimensionless



$$\varepsilon_{z} = \frac{\Delta l}{l_{o}}$$

$$\varepsilon_{x} = \frac{\Delta d}{d_{0}}$$



### Other Elastic Properties

 Elastic Shear modulus, G:

$$\tau = \mathbf{G} \gamma$$

 Elastic Bulk modulus, K:

$$P = -K \frac{\Delta V}{V_O}$$









Elastic constant relationships for isotropic materials:

$$G = \frac{E}{2(1+v)}$$

$$K = \frac{E}{3(1-2v)}$$

### **Linear Elastic Relationships**

Uniaxial tension

Known: F and  $A_0$ ; E and v => derive axial and lateral deformation

$$\Delta l_z = \frac{\textit{Fl}_{OZ}}{\textit{EA}_{O}}$$

$$\Delta l_x = -v \frac{Fl_{OX}}{EA_o}$$

- Deflection is dependent on material, geometric, and loading parameters.
- Materials with large elastic moduli deform less



### **Elastic Modulus – Material Types**



#### **Elastic Deformation**

Atomic configurations—before, during, after load (force) application



### **Influence of Bonding Forces**

- Elastic modulus depends on interatomic bonding forces
- Modulus proportional to slope of interatomic forceinteratomic separation curve  $\left(\frac{dF}{dF}\right)$



#### **Stress-Strain Curve**



Materials Science of Steel, Wolfgang Bleck



#### **Plastic Deformation (Metals)**



#### **Plastic Deformation**

Plastic Deformation is permanent and nonrecoverable

Stress-strain plot for simple tension test:



#### **Elastic Strain Recovery**



# **Yield Strength**

Transition from elastic to plastic deformation is gradual

Yield strength = stress at which noticeable plastic deformation has occurred

when 
$$\varepsilon_p = 0.002$$

$$\sigma_y$$
 = yield strength

Note: for 5 cm sample

$$\varepsilon = 0.002 = \Delta z/z$$

$$\Delta z = 0.01 \text{ cm}$$



 $\varepsilon_D = 0.002$ 

Adapted from Fig. 6.10 (a), Callister & Rethwisch 10e.

# **Yield Strength – Material Types**



#### **Tensile Strength**

• Tensile strength (*TS*) = maximum stress on engineering stress-strain curve.



 Metals: Maximum on stress-strain curve appears at the onset of noticeable necking



# **Tensile Strength – Material Types**



# **Ductility**

- Ductility = amount of plastic deformation at failure:
- Specification of ductility
  - -- Percent elongation:
  - -- Percent reduction in area:

$$\%EL = \frac{l_f - l_0}{l_0} \times 100$$

$$%RA = \frac{A_0 - A_f}{A_0} \times 100$$



#### Resilience

- Resilience—ability of a material to absorb energy during elastic deformation
- Energy recovered when load released
- $\square$  Resilience specified by modulus of resilience,  $U_r$



 $U_r$  = Area under stress-strain curve to yielding =  $\hat{0}_0^{e_y} S de$ 

If assume a linear stress-strain curve this simplifies to

$$U_r \cong \frac{1}{2}\sigma_y \varepsilon_y$$

Fig. 6.15, Callister & Rethwisch 10e.

#### **Toughness**

- Toughness of a material is expressed in several contexts
- For this chapter, toughness = amount of energy absorbed before fracture
- Approximate by area under the stress-strain curve—units of energy per unit volume

tensile stress,  $\sigma$ 



Brittle fracture: small toughness

Ductile fracture: large toughness



#### **Are Engineering Stress & Strain Correct?**

True stress

$$\sigma_T = F / A$$

True strain

$$d\varepsilon_T = dl / L$$

where A = instantaneous cross-sectional area L = instantaneous length







engineering strain

# True Stress & True Strain

## **True Stress & Strain**

- where A = instantaneouscross-sectional area *L* = instantaneous length

- True strain
- $d\varepsilon_T = dl / L$

Volume consistency

$$G_T = \frac{F}{A} = \frac{F}{Lo Ao}$$

#### **True Stress & Strain**

□ True stress  $\sigma_T = F / A$ 

$$\mathcal{E}_{T} = \int \frac{dL}{L} = \int_{L_{0}}^{L} \frac{dL}{L} dL$$

$$= \ln L - \ln L_{0}$$

$$= \ln \frac{L}{L_{0}} = \ln \frac{L_{0} + \Delta L}{L_{0}}$$

$$\mathcal{E}_{T} = \ln (1 + \mathcal{E})$$

where A = instantaneous cross-sectional area L = instantaneous length

$$y = \int \frac{1}{x} dx$$

$$= \ln x$$

#### **True Stress & Strain**

True stress

$$\sigma_T = F / A$$

where A = instantaneous

cross-sectional area

True strain

$$d\varepsilon_T = dl / L$$

*L* = instantaneous length



$$S_T = S(1 + e)$$

$$e_T = \ln(1 + e)$$

**Conversion Equations:** valid only to the onset of necking

Adapted from Fig. 6.16, Callister & Rethwisch 10e. Strain

## Why is there necking?

- □ True stress  $\sigma_T = F / A$
- lacksquare True strain  $darepsilon_T=dl/L$



$$F = 67.(A)$$
 Frax  $\Rightarrow dF = 0$ 

$$dF = d6T \cdot A + 6T \cdot dA = 0$$

$$\frac{d67 \cdot 1}{67} + \frac{67 \cdot dA}{A} = 0$$

$$\frac{d6T}{6T} = -\frac{dA}{A}$$
 (1)

$$\frac{V_{c} = L_{0} \cdot A_{0} = L \cdot A}{dW = dL \cdot A + L \cdot dA} \Rightarrow \frac{dL}{dL} = -\frac{dA}{A} (2)$$



### Considère criterion

- □ True stress  $\sigma_T = F / A$
- ullet True strain  $darepsilon_T=dl/L$

$$\frac{d6\tau}{6\tau} = d\xi\tau \Rightarrow \frac{d6\tau}{d\xi\tau} = 6\tau \tag{4}$$
True strain

 $1/d\sigma_{\tau}/d\phi$ 

$$ET = ln(1+E)$$

$$d\xi_T = \frac{1}{1+5} \cdot d\xi \quad (3)$$

$$\frac{d6T}{d8} = 6T \Rightarrow \frac{d6T}{d8} = \frac{6T}{1+8}$$

### Considère criterion II

$$\sigma_{T} = \sigma \left( 1 + \varepsilon \right)$$
$$\varepsilon_{T} = \ln \left( 1 + \varepsilon \right)$$



## **True Stress-True Strain Relationship**

· Most alloys, between point of yielding and onset of necking

$$\sigma_T = K(\varepsilon_T)^n$$

- n and K values depend on alloy and treatment
- *n* = strain-hardening exponent
- -- n < 1.0
- $\sigma_T$  vs.  $\varepsilon_T$  -- influence of n.







# Hardness

#### **Hardness**

- Measure of resistance to surface plastic deformation indentation or scratch.
- Large hardness means:
  - -- high resistance to deformation from compressive loads.
  - -- better wear properties.





#### **Measurement of Hardness**

#### **Brinell Hardness**

- Single scale
- Brinell hardness designation: (hardness reading) HB

10-mm sphere of steel or tungsten carbide



$$HB = \frac{QP}{\pi D[D - \sqrt{D^2 - d^2}]}$$

- -P = load (kg)
- $-500 \text{ kg} \le P \le 3000 \text{ kg (500 kg increments)}$
- Relationships—Brinell hardness & tensile strength
  - TS (psia) = 500 x HB
  - TS (MPa) = 3.45 x HB

## Variability of Material Properties

- Measured material properties—always scatter in values for same material
- Statistical treatments
- □ Typical value—take average value,  $\overline{X}$  for some parameter x:

n = number of measurements

 $x_i$  = specific measured value

Degree of scatter—use standard deviation, s



$$s = \left[\frac{\int_{i=1}^{n} (x_i - \overline{x})^2}{n-1}\right]^{\frac{1}{2}}$$

## **Summary so far**

- Applied mechanical force => normalized to stress; and Degree
  of deformation => normalized to strain
- Deformation is classified into elastic deformation and plastic deformation:
  - non-permanent; low levels of stress

permanent; higher levels of stress

stress-strain behavior is linear

- stress-strain behavior is nonlinear
- Stiffness is a material's resistance to elastic deformation
  - elastic (or Young's) modulus
- Strength is a material's resistance to plastic deformation
  - yield and tensile strengths
- Ductility is amount of plastic deformation at failure
  - percentage of elongation, reduction in area
- Hardness is a resistance to localized surface deformation & compressive stresses
  - Brinell harnesses



# What happened during plastic deformation?



## **Questions?**