

Past Papers Nat 5 Chemistry

2018 Marking Scheme

Grade	Mark R	equired	% condidated cabicular and						
Awarded	(/ ₁₂₅)	%	% candidates achieving grade						
Α	92+	73.6%	36.3%						
В	78+	62.4%	21.8%						
С	64+	51.2%	19.1%						
D	50+	40%	14.0%						
No award	< 50	<40%	8.8%						

Section:	Multiple Choice		Extended Ar	nswer	Assignment	
Average Mark:	17.6	/25	45.6	/75	18.2	/25

20)18 I	Nati	onal 5 C	hen	nistry M	arkii	ng Sc	heme				
M <i>C</i> Qu	Answer	% Pupils Correct		Reasoning								
1	Α		☑A Increasing particle size decreases the reaction rate ☑B Increasing particle size increases the reaction rate ☑C Increasing concentration increases the reaction rate ☑D Adding a catalyst increases the reaction rate									
2	В		Particle Location Charge Mass Proton in nucleus +1 1 amu Neutron in Nucleus 0 1 amu Electron outside nucleus -1 Approx 0									
3	В		☑A Oxygen exists ☑B Helium is a moi ☑C Bromine exists ☑D Hydrogen exis	natomic r s as diato	noble gas in group C omic Br2 molecules							
4	D		Hydrogen bromide The correct struct		_		over rule.					
5	Α		⊠B Mg atoms have ⊠C F atoms have e	☑A Na atoms have electron arrangement 2,8,1 ∴ Na ⁺ ions have arrangement 2,8 ☑B Mg atoms have electron arrangement 2,8,2 ∴ Mg ⁺ ions have arrangement 2,8,1 ☑C F atoms have electron arrangement 2,7 ∴ F ⁺ ions have arrangement 2,6 ☑D Ne atoms have electron arrangement 2,8 ∴ Na ⁺ ions have arrangement 2,7								
6	D		☑B Bonding type is ☑C Bonding type is	☑A Bonding type is covalent molecular as it does not conduct and has low mpt/bpt ☑B Bonding type is ionic as is does not conduct as solid but does conduct as liquid ☑C Bonding type is metallic as it conducts both as a solid and a liquid ☑D Bonding type is covalent network as it does no conduct and has very high mpt								
7	C		c once	concentration = $\frac{\text{no. of moles}}{\text{volume}} = \frac{0.1 \text{ mol}}{0.25 \text{ litres}} = 0.4 \text{ mol } l^{-1}$								
8	В		☑B An alkaline solu ☑C An acidic solut	☑A An alkaline solution contains more OH ⁻ ions than H ⁺ ions (still contains some H ⁺) ☑B An alkaline solution contains more OH ⁻ ions than H ⁺ ions ☑C An acidic solution contains more H ⁺ ions than OH ⁻ ions ☑D A neutral solution contains equal numbers of H ⁺ ions and OH ⁻ ions								
9	С		☑A Diluting acids with water increases pH until it reaches pH=7 ☑B Diluting acids with water increases pH until it reaches pH=7 ☑C Diluting acids with water decreases the H ⁺ ion concentration as water is added ☑D Diluting acids with water decreases the H ⁺ ion concentration as water is added									
10	D		Both this across with water decreases the A ton concentration as water is added C_9H_{20} structure drawn is the isomer 3,4-dimethylheptane \therefore different isomer not same structure $\boxtimes B$ C_9H_{20} structure is 3,4-dimethylhexane \therefore different formula not same structure $\boxtimes C$ C_9H_{20} structure is 3,3-dimethylheptane \therefore different isomer not same structure $\boxtimes C$ C_9H_{20} structure is 3,4-dimethylheptane \therefore same formula and same structure									
11	С		C ₆ H ₁₄ structure d ■ A Cyclohexane C ■ B 2-methylpenta ☑ C 3-methylpenta ■ D 2-methylbutan	6H12 has ne again ne C6H14 ne C5H12 b	different formula : but drawn differer so same formula bu nas different form	nt so canno It differen Ula so cann	t be an isome it structure s ot be an isom	er. To is an isomer. Her of C6H14.				
12	C		☑A Hydrogenation☑B Combustion: bu☑C Hydration: Add☑D Reduction: Gai	ırning co ding H2O	mpound in oxygen t across C=C double	o form CO	2 and H2O	m alkane				

		☑A pentan-2-ol: five carbons linked by single bonds with -OH group in Carbon No 2						
13	Δ	☑B Pentan-4-ol: The -OH group has not given the lowest numbering system						
13	7	☑C 1-methylbutan-3-ol: Longest continuous chain of carbons with -OH group is 5						
		☑D 4-methylbutan-1-ol Longest continuous chain of carbons with -OH group is 5						
		Alcohol Methanol Ethanol Propanol Butanol Pentanol Hexanol Heptanol Octanol						
		Formula CH ₃ OH C ₂ H ₅ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH C ₆ H ₁₃ OH C ₇ H ₁₅ OH C ₈ H ₁₇ OH						
14	В	Melting Point low high Boiling Point low high						
1 1	D	Solubility high						
		Strength of Intermolecular lowhigh Bonds						
		🗷 A metal beaker used instead of glass beaker to allow heat to conduct better						
15	ח	☑B metal beaker and draught shield should be used for the most accurate result						
15	В	☑C draught shield should be used to reduce heat loss						
		🗷D draught shield should be used to reduce heat loss						
		🗷 A Alcohol used must be 2 carbon ethanol not 3 carbon propan-1-ol						
16		☑B Alcohol used must be 2 carbon ethanol not 3 carbon propan-1-ol						
10		☑C 2 carbon alcohol and 3 carbon haloalkane with -Cl group on C₂ of three carbons						
		☑D one of the reactants must be an alcohol with a -OH hydroxyl group						
		✓A X is most reactive as it reacts with water. Y is least reactive as it reacts						
		slowest with dilute acid. Z is more reactive than W as Z reacts faster with						
17	Δ	dilute acid						
1,	\mathcal{A}	☑B Y must be the least reactive metal as it has slowest reaction with dilute acid						
		区 Z is less reactive than X as Z does not react with water						
		☑D Y must be the least reactive metal as it has slowest reaction with dilute acid						
		● $H_{2(g)}$						
		2 120(i) · O2(g) · 10 P						
		•×2 2H _{2(g)}						
4.0	_	$2H_2O(1) + O_{2(9)} + 4e^- \longrightarrow 4OH^-(aq)$						
18	В	$_{\mathbf{0'+Q}}^{\text{Add}}$ 2H _{2(g)} + 2H ₂ O(l) + O _{2(g)} + 4e ⁻ \longrightarrow 4H ⁺ (aq) + 4e ⁻ + 4OH ⁻ (aq)						
		1 + 2 - 1 - 2 - 2 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3						
		$_{\text{down}}^{\text{cancel}} 2H_{2(g)} + 2H_{2}O(l) + O_{2(g)} + 2H_{2}^{-} \longrightarrow 4H^{+}_{(aq)} + 4OH^{-}_{(aq)}$						
		redox $2H_{2(g)} + 2H_2O_{(1)} + O_{2(g)} \longrightarrow 4H^{+}_{(aq)} + 4OH^{-}_{(aq)}$						
		largest Voltage						
19	A	Order in Electrochemical series Zinc Nickel Tin Lead						
		smallest voltage						
		🗷 A Ammonium chloride contains the element nitrogen and is soluble						
20		🗷 B Ammonium phosphate contains elements nitrogen & phosphorus and is soluble						
20		☑C sodium chloride does not contain nitrogen, phosphorus or potassium						
		Sodium phosphate contains the element phosphorus and is soluble						
		■ A Nickel is the catalyst used in the production of margarine from vegetable oil						
21		☑B Platinum is the catalyst in the Ostwald Process where nitric acid is produced						
		$\square C$ iron is the catalyst in the Haber Process where ammonia is produced						
		☑D Rhodium is a transition metal used in a catalytic converter in a car						
		🗷 A beta particles bend towards the positive electrode Y is not a beta particle						
22		☑B alpha particles bend towards the negative electrode Y is not a alpha particle						
		EC beta particles bend towards the positive electrode X is not a beta particle						
		☑D X is alpha (bends towards to negative electrode) & Y is gamma (does not bend)						

23	D	 ☒A covalent bonding contains a shared pair of electrons and two nuclei ☒B there is no attraction between negative ions and electrons (they repel) ☒C ionic bonding is the force of attraction between negative ions and positive ions ☒D metallic bonding is the force of attraction between positive ions and delocalised electrons
24	В	 ☒A neutralisation: reaction of H⁺ ions to form H₂O ☒B precipitation: two ions combining to form an insoluble solid. ☒C addition: adding a molecule across a C=C double bond ☒D redox: electrons are transferred between reduction and oxidation reactions
25	D	 ☒A Filtration (Step Z) must occur before evaporation (Step X) ☒B Neutralisation Step Y must be first step ☒C Neutralisation Step Y must be first step ☒D Order: Neutralisation (Y) followed by Filtration (Z) followed by Evaporation (X)

201	8 National	5 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning							
1a	Carbon dioxide	hydrochloric acid + carbonate - calcium + water + carbon dioxide ACID + METAL - SALT + WATER + CARBON DIOXIDE							
1b(i)	$0.5 \text{ cm}^3 \text{ s}^{-1}$	Rate = $\frac{\Delta Quantity}{\Delta Time} = \frac{77 - 62 \text{ cm}^3}{50 - 20 \text{ s}} = 0.5 \text{ cm}^3 \text{ s}^{-1}$							
1b(ii)	Graph showing:	1 mark One mark is awarded for a graph which shows points plotted rather than bars. 1 mark 1 mark 1 mark 1 mark 1 mark The axis/axes of the graph has/have suitable scale(s). • plotted points occupies at least half of the width and half of the height of the graph half of the width and graph paper • The axes have suitable scales 1 mark The axes of the graph the graph have suitable accurately (within a half box tolerance) with either a line labels and units. 1 mark The axes of the graph the graph have suitable scale(s). The axes of the graph the graph have suitable solutions accurately (within a half box tolerance) with either a line accurately (within a half box tolerance) with either a line of best fit drawn or plots points. This mark can only be accessed if linear scales for both axes have been provided.							
1b(iii)	68±1	Problem Solving: Reading information from a graph.							
1c	One answer from:	Greater number of Greater concentration Greater moles of hydrogen ions/H ⁺ of hydrogen ions/H ⁺ hydrogen ions/H ⁺ More H ⁺ ions							
2a(i)	addition	Addition reactions involve the opening up of the 2^{nd} bond in a $C=C$ double bond and single bonds being formed on either side. Addition Polymerisation is when the $C=C$ double bond in the monomer opens up and joins with other monomers to form a long polymer chain.							
2a(ii)	$-\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c } \hline F & F & F & F & F & F & F & F & F & F$							
2b	エー C ―エ エー C ―エ	A addition monomer always has the shape: The monomer given in the question has four fluorine atoms in its corners. The other monomer has four hydrogen atoms in its corners.							
3a	Increase the percentage of carbon increases the average heat content	Problem Solving: Spotting a relationship in a table							
3b	46.7	gfm FeS ₂ : $(1\times56) + (2\times32) = 56 + 64 = 120 \text{ (1 mark)}$ % Fe = $\frac{56}{120} \times 100 = 46.7\% \text{ (1 mark)}$							
4a	carbon & hydrogen	A hydrocarbon is a compound containing the elements carbon and hydrogen only.							
4 b	2-methylpropane or methylpropane	The longest continuous chain of carbons is 3 name ends in propane A 1 carbon side group is called a methyl methylpropane The methyl group is on 2 nd carbon 2-methylpropane (It is acceptable to drop the number 2 as the methyl group can only be positioned on carbon number 2)							

4c	stronger intermolecular	The process of evaporation/boiling does not change the strong covalent bonds inside a molecule. Boiling/evaporation is dependent on the weaker intermolecular bonds between molecules. The higher boiling point of butane compared to isobutene is due to the stronger intermolecular bonds between butane molecules compared to isobutene molecules.									
4d	150-154° <i>C</i>	AlkanePentaneHexaneHeptaneOctaneNonaneBoiling Point (°C)366998126-Difference:332928Prediction: 27Prediction:153									
5a	Sodium azide, potassium nitrate and silicon dioxide	Problem Solving: Gathering information from a passage									
5b	Potassium	Element Ion Flame Colour Barium Ba²* Green Potassium K* Lilac Calcium Ca²* Orange-red Sodium Na* Yellow Element Ion Flame Colour Copper Cu²* Blue-green Strontium Sr²* Red Lithium Li* Red									
5c	SiO ₂	Write down Valency below each element's symbol Si O Si O Si O Si O Cancel Down 4 2 4 2 SiO2									
5d	44	Total volume given off is the maximum height attained by the graph.									
6a(i)	2	The two lines on the graph represent the two different isotopes of boron with mass numbers of 10 and 11.									
6a(ii)	10.8	$ram = \frac{(10 \times 20) + (11 \times 80)}{100} = \frac{200 + 880}{100} = 10.8$									
6b	14 C	Atomic number = number of protons = 6 Mass number = no. of protons + no. of neutrons = 6+8 = 14									
7a	Lattice	Ionic compounds have a structure of alternating positive and negative ions in each direction. This structure is called a lattice structure.									
7b(i)	Ions are free to move	In the solid state, ions are locked together in a lattice structure and cannot move. The circuit cannot be completed without the movement of ions. In the liquid/molten state or the solution state, ions are free to move and will compete the circuit.									
7b(ii)	oxidation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
7b(iii)	One answer from:	Allows products to be identified To make sure that only one product is produced at each electrode To separate the strontium from the chlorine									
8	Open Question:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statements with the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.									

9a(i)	contains C=C double bond	Saturated: All bonds between carbons are single bonds and it does not decolourise bromine solution quickly. Unsaturated: At least one C=C double bond between carbons and will decolourise bromine solution quickly.									
9a(ii)	Bromine solution decolourises	romine Br_2 adds across a $C=C$ double bond by addition reaction. Each bromine joins across where the $C=C$ double bond used to be and leaves a $C-C$ single bond in its place. Fromine solution is yellow/orange and decolourises (loses its colour) when it adds across the $C=C$ double bond.									
9b	472.8	heat energy = specific heat capacity \times mass \times change in Temperature E_h = C \times m \times ΔT E_h = 1.97 kJ kg ⁻¹ °C ⁻¹ \times 1.5kg \times 20°C E_h = 472.8 kJ									
10a(i)	N ₂ + 3H ₂ ← 2NH ₃	N ₂ + H ₂ ⇒ NH ₃ 2×N atoms on LH5 but only 1×N atom on RH5 ∴ Double NH ₃ N ₂ + H ₂ ⇒ 2NH ₃ 2×H atoms on LH5 but 6×H atoms on RH5 ∴ treble H ₂ N ₂ + 3H ₂ ⇒ 2NH ₃									
10a(ii)	One answer from:	Reaction is Reaction occurs in The reaction is reversible both directions at equilibrium									
10b	Answer showing:	HON HON HON H									
10c	Ostwald Process	ammonia + oxygen $\frac{\text{platinum}}{\text{catalyst}}$ nitrogen monoxide + water $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ $\downarrow \text{oxygen}$ $\downarrow \text{NO}_2$ $\downarrow \text{water}$ $\downarrow \text{Nitric Acid}$									
10d	ammonium nitrate	ammonia + water — ammonium hydroxide ammonium + nitric + ammonium hydroxide + acid + water									
11a	Arrow showing flow through wires from magnesium/right to copper/left	Electrons travel through wires while ions flow through the solution. Electrons travel from higher metal in electrochemical series (magnesium on right) to metal lower down electrochemical series (copper on left).									
11b	One answer from:	Completes the circuit/cell allows ions to provide ions to complete circuit/cell									

11c	Cu ²⁺ + 2e ⁻ → Cu		Reduction is the gain of electrons by the reactant. Cu ²⁺ ions will gain 2 electrons to become Cu metal.								
11d	Insoluble	Magnesium	Magnesium phosphate is insoluble (p8 of data booklet) and the ions are not able to move so the circuit would not be complete.								
12a	Alpha Particles are stopped by paper	Use		Alpha 4 2 Paper ards negative smoke detectors		Beta 0 -1 Aluminium Towards positive Measuring thickness of paper in paper mill		Gamma No mass No charge Thick lead No defection Radiotherapy cancer treatment			
12b	14.8	1 half-life = 3	Number of h 0 1 2 3 4 years 4 half-live			Fraction 1 1/2 1/4 1/8 1/16 7 years = 14	1.8years				
12c	increases stays the same	2	204 81	TI	\rightarrow	²⁰⁴ ₈₂ P	b +	₋₁ ⁰ e			
13a(i)	Carboxyl group			—O-	—H	O - C carb	— OH				
13a(ii)	134	Gfm C4H6O	5 = (4×12)+	·(6×1)·	+(5×16) =	48 + 6 +	80 = 134g			
13b	As halogen atom goes down group 7 the acidity decreases.	decreases going the acidity the highest acidity is at the bottom (
13c	OH H H H H O=C-C-C-C-H H H H H H-C-H H	The carbon with the hydroxyl -OH group changes. 2									
14a	С	Sample C is only sample with chloride ion concentration below 0.25 g l^{-1}									
14b(i)	Pipette	A pipette is the most appropriate piece of equipment to measure exact volume of liquids. They are more accurate that using measuring cylinders and beakers.									
14b(ii)	One answer from:	2 & 4 are Concordant within 0.2 cm ³ They are within 0.1 two are not concordant or not within 0.2 of each other						t concordant or not			
14b(iii)	0.000161	no. of moles = volume × concentration = 0.00805litres × 0.02mol l ⁻¹ = 0.000161mol									
15a	Diamond(s) anvil cell Problem Solving Question										

15b(i)	1.9million or 1900000	1000gigapascals \longleftrightarrow 10million atmospheres 190 gigapascals \longleftrightarrow 10million atmospheres x $^{190}/_{1000}$ = 1.9 million atmospheres									
15b(ii)	Light bulb would not light up		Pressurised sodium becomes an insulator. Circuit will not be complete and the bulb will not light up.								
15c	Fe_2O_3 \downarrow $O_2 + Fe_5O_7$	Problem Solving Question									
16a(i)	Homologous Series	_			lies of compou and a general f	nds that have formula.					
16	C _n H _{2n+1} SH or	Name Structure	Methan	ethiol	Ethanethiol	Propanethiol H H H I I H—C—C—C—S I I I H H H H					
16a(ii)	C _n H _{2n+2} S or C _n H _{2n+1} HS	Formula Relationship General Formula	CH ₃ SH If n=1, 2n+1=3 C _n H _{2n+1} SH		C ₂ H ₅ SH If n=2, 2n+1=5 C _n H _{2n+1} SH	C_3H_7SH 5 If n=3, 2n+1=7 $C_nH_{2n+1}SH$					
16b	Any answer from:	Sulphur oxide Sulphur monoxide Sulphur dioxide Sulphur trioxide									
	$ \frac{\text{gfm } CH_3OH = (1\times12)+(4\times1)+(1\times16) = 12+4+16 = 32g}{\text{no. of mol}} = \frac{\text{mass}}{\text{gfm}} = \frac{640g}{32g \text{ mol}^{-1}} = 20\text{mol} $										
16c	960	CH3OH + H2S —									
		1mc 20m		1mol 20mol							
		gfm CH ₃ SH = (1x12)+(4x1)+(1x32) = 12+4+32 = 48g									
	mass = no. of mol × gfm = 20mol × 48g mol ⁻¹ = 960g										
17	Open Question:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a liveration of involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. that at least a liveration of chemistry within understood.									