

APV Illustrations

- A. Finite Term
- B. Flotation Costs
- C. Interest Rate Subsidies

Worldwide Trousers, Inc. is considering a \$5 million expansion of their existing business. The initial capital investment will be depreciated straight-line over 5 years to zero salvage value; and will be sold for \$500,000 at the termination. The project will generate pretax earnings of \$650,000 per year, and will not change the risk level of the firm. The firm can obtain a 5-year \$3,000,000 loan at 12.5% to partially finance the project. If the project were financed with all equity, the cost of capital would be 18%. The corporate tax rate is 34%, and the risk-free rate is 4%. The project will require a \$100,000 investment in net working capital. Calculate the APV.

APV Example: NPV (unlevered project with all equity financing)

$$APV = NPV + PV$$
 interest tax shield

See the spreadsheet image on the next slide for the NPV calculation using the CF(A) framework to estimate CFs!

-- Note that EBT replaces EBIT in the calculation of OCFs.

$$NPV = (\$443, 315.65)$$

Note - Reference Chapter 6 for your review of related topics!

Cash Flow Estimation for NPV Analysis -Wo	orldwide Trousers Inc.					
DATA: Tax Rate	34%		Cost of Unlevered Firm,	Ro	18%	
Machine Cost	\$ 5,000,000		Selling Price at Termina		\$ 500,000	
Year	0	1	2	3	4	5
Depreciation Rate		20.00%	20.00%	20.00%	20.00%	20.00%
Depreciation (Dep)	\$ -	\$ 1,000,000	\$ 1,000,000	\$ 1,000,000	\$ 1,000,000	\$ 1,000,000
Pretax Earnings (EBT)	\$ -	\$ 650,000	\$ 650,000	\$ 650,000	\$ 650,000	\$ 650,000
Taxes	\$ -	\$ 221,000	\$ 221,000	\$ 221,000	\$ 221,000	\$ 221,000
OCF	\$ -	\$1,429,000	\$1,429,000	\$1,429,000	\$1,429,000	\$1,429,000
Capital Spending (CE) (as a cash flow)	\$ (5,000,000)	\$ -	\$ -	\$ -	\$ -	\$ 330,000
Change in NWC (as a cash flow)	\$ (100,000)	\$ -	\$ -	\$ -	\$ -	\$ 100,000
Cash Flow (CF)	\$ (5,100,000)	\$1,429,000	\$1,429,000	\$1,429,000	\$1,429,000	\$1,859,000
NPV	\$(443,315.65)		(Reject the project b	ecause its NPV is negative	!)	

APV Example: PV interest tax shield

Turning our attention to the valuation to debt financing effects:

$$APV = -\$443,315.65 + PV_{\text{interest}}$$

The $PV_{interest\ tax\ shield}$ is the present value of the tax savings on interest expenses, discounted at the firm's cost of debt capital, $r_D = 12.5\%$

$$PV_{\text{interest}} = \sum_{t=1}^{5} \frac{T_C \times r_D \times \$3M}{(1+r_D)^t} = \sum_{t=1}^{5} \frac{0.34 \times 0.125 \times \$3M}{(1.125)^t}$$

$$PV_{\text{interest}} = \sum_{t=1}^{5} \frac{\$127,500}{(1.125)^t} = \$453,972.46$$

APV Example: PV interest tax shield

$$APV = -\$443,315.65 + PV_{\text{interest}}$$

PV interest tax shield: Financial Calculator Approach

Input: N=5; I/Y=12.5; FV=\$3M PMT=0.125*\$3M*(1-0.34)=\$247,500

→ PV = \$2,546,027.54, i.e., the PV of debt obligations, compared to the \$3M proceeds.

Hence, \$(3,000,000-2,546,027.54)=**\$453,972.46** is the value of the interest tax shield!

APV Example: Adding it all up

$$APV = -\$443,315.65 + \$453,972.46$$

\rightarrow APV = \$10,656.81

Note – With the inclusion of the interest tax shield, the valuation of the project, its adjusted present value (APV), becomes positive and hence an acceptance recommendation follows.

B. Incorporating Flotation Costs

- Previous example Worldwide Trousers
 - Borrow \$3 million
 - Suppose firm pays 1% flotation fee.
 - \blacksquare \$3M / (1-1%) = \$3M / 0.99 = \$3,030,303
 - Flotation fee in \$ = \$3,030,303*1% = \$30,303

Reference: Chapter 13!

Bi. Net Flotation Costs

- = -\$30,303 + \$7,336.91 = -\$22,966
 - where \$30,303 is the flotation cost
 - and \$7,336.91 is the value of the flotation cost tax shield
 - N=5; I/Y=12.5; PMT=2,060.60; FV=0
 - ==> PV = \$7,336.91!
 - where \$2,060.60 is the annual flotation cost tax shield, i.e., 0.34*(\$30,303/5)!
- The project value is reduced by the amount of NET flotation costs!

1

Bii. Interest Tax Shield When Flotation Costs Present

- 0.125 * \$3,030,303 = \$378,788
- Annual interest tax shield
 - 0.34 * \$378,788 = \$128,788
 - Valuation of the 5-year interest tax shield:

→ PV = **\$458,558**, i.e., interest tax shield

Note that the interest tax shield has a higher value because of the larger loan amount that includes the flotation costs. (compared to \$453,972.46 on slide #6)

APV recalculated with flotation costs and revised value of interest tax shield

- APV = NPV+ (PV interest tax shield PV flotation costs)
- \rightarrow APV = -\$443,315.65 + [\$458,558 \$22,966]
- \rightarrow APV = (\$7,723.65)

Note – After taking into account the flotation costs associated with the bond issuance, the valuation of the project, its adjusted present value (APV), becomes negative and hence a NO GO recommendation follows.

- Loan Amount \$3 million
- Subsidized interest rate is 10%.
- Market interest rate is 12.5%.
- PV of the loan subsidy is calculated by finding the NPV of the loan, using the market interest rate as the discount rate.
- Note: It is assumed that there is no flotation fee in the following analysis of the subsidized loan. Such assumption will be removed in the follow-up exercise!

C. PV of subsidized loan

Amt of loan \$3M @ 10%						
	\$ interest paid = \$300,000	-\$300K	-\$300K	-\$300K	-\$300K	-\$300K
	A-t interest payment = (134)* interest amount = \$198,000	-\$198K	-\$198K	-\$198K	-\$198K	-\$198K
						Repay loan -\$3M

C. PV of subsidized loan

- Discount at the market rate of 12.5% to find PV of after tax interest payments and principal amount. Subtract this from the loan proceeds of \$3 million.
 - \$3 million \$2,369,779.40 = \$630,220.60 i.e., the value of the interest tax shield on the subsidized loan! (compared to \$453,972.46 on slide #6)
 - Financial Calculator Approach (ref.: slide #6)
 - Input: N=5; I/Y=12.5; FV=\$3,000,000
 - PMT=0.10*\$3M*(1-0.34)=\$198,000
 - → PV = \$2,369,779.40, i.e., the PV of subsidized debt obligations, to be subtracted from the \$3 million proceeds.

C. NPV of Subsidized Loan

- APV = NPV + PV subsidized loan
- \rightarrow APV = -\$443,315.65 + \$630,220.60

\rightarrow APV = \$186,904.95

Note — This illustration implicitly assumes that there is no flotation cost associated with the subsidized loan. However, subsidized loans could incur flotation costs!

* Exercise: Recalculate APV assuming that the 1% flotation fee also applies to the subsidized loan, and the corporate tax rate is 21%! <Canvas Discussion>