Homework 1

Alexander Brandt STAT 215A

September 14, 2017

1 Hypothesis testing, the t-distribution

1.1

$$s_{\text{pooled}}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

and if $n_1 = n_2$ and $s_1 = s_2$:

$$s_{\text{pooled}} = \frac{1}{2} \left(\frac{1}{n-1} \right) \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 + (y_i - \bar{y})^2 \right)$$

1.2

$$\mathbb{E}[s_{\text{pooled}}^2] = \frac{1}{2} \left(\frac{1}{n-1} \right) \mathbb{E}\left[\left(\sum_{i=1}^n (x_i - \bar{x})^2 + (y_i - \bar{y})^2 \right) \right]$$

$$= \frac{1}{2} \left(\frac{1}{n-1} \right) \left[\sum_{i=1}^n \left(\mathbb{E}\left[(x_i - \bar{x})^2 \right] + \mathbb{E}\left[(y_i - \bar{y})^2 \right] \right) \right]$$

$$= \frac{\mathbb{V}[X] + \mathbb{V}[Y]}{2(n-1)}$$

$$= \frac{(n-1)\sigma^2 + (n-1)\sigma^2}{2(n-1)}$$

$$\mathbb{E}[s^2 \dots] = \sigma^2$$

2 Questions from Freedman

3 Questions from Broad Street