

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4351

8-channel analog multiplexer/demultiplexer with latch

Product specification
File under Integrated Circuits, IC06

December 1990

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

FEATURES

- Wide analog input voltage range:
± 5 V
- Low "ON" resistance:
80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5$ V
70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0$ V
60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0$ V
- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- Address latches provided
- Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4351 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4351 are 8-channel analog multiplexers/demultiplexers with three select inputs (S_0 to S_2), two enable inputs (\bar{E}_1 and E_2), a latch enable input (LE), eight independent inputs/outputs (Y_0 to Y_7) and a common input/output (Z).

With \bar{E}_1 LOW and E_2 is HIGH, one of the eight switches is selected (low impedance ON-state) by S_0 to S_2 . The data at the select inputs may be latched by using the active LOW latch enable input (LE). When LE is HIGH the latch is transparent. When either of the two enable inputs, \bar{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all 8 analog switches are turned off.

V_{CC} and GND are the supply voltage pins for the digital control inputs (S_0 to S_2 , \bar{E}_1 , E_2). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y_0 to Y_7 , and Z) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit.

$V_{CC} - V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

$V_{EE} = GND = 0$ V; $T_{amb} = 25$ °C; $t_r = t_f = 6$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PZH} / t_{PZL}	turn "ON" time \bar{E}_1 , E_2 or S_n to V_{os}	$C_L = 15$ pF; $R_L = 1$ kΩ; $V_{CC} = 5$ V	27	35	ns
t_{PHZ} / t_{PLZ}	turn "OFF" time \bar{E}_1 , E_2 or S_n to V_{os}		21	23	ns
C_I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipation capacitance per switch	notes 1 and 2	25	25	pF
C_S	max. switch capacitance independent (Y) common (Z)		5	5	pF
			25	25	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\}$$

where:

f_i = input frequency in MHz

f_o = output frequency in MHz

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

$\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\}$ = sum of outputs

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}
For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4	Z	common
3, 14	n.c.	not connected
7	\bar{E}_1	enable input (active LOW)
8	E_2	enable input (active HIGH)
9	V_{EE}	negative supply voltage
10	GND	ground (0 V)
11	\bar{LE}	latch enable input (active LOW)
15, 13, 12	S_0 to S_2	select inputs
17, 18, 19, 16, 1, 6, 2, 5	Y_0 to Y_7	independent inputs/outputs
20	V_{CC}	positive supply voltage

Fig.1 Pin configuration.

Fig.2

Fig.3 IEC logic symbol.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

FUNCTION TABLE

INPUTS						CHANNEL ON
\bar{E}_1	E_2	\bar{LE}	S_2	S_1	S_0	
H	X	X	X	X	X	none
X	L	X	X	X	X	none
L	H	H	L	L	L	Y_0
L	H	H	L	L	H	Y_1
L	H	H	L	H	L	Y_2
L	H	H	L	H	H	Y_3
L	H	H	H	L	L	Y_4
L	H	H	H	L	H	Y_5
L	H	H	H	H	L	Y_6
L	H	H	H	H	H	Y_7
L	H	L	X	X	X	(1)
X	X	↓	X	X	X	(2)

Notes

1. Last selected channel "ON".
2. Selected channels latched.
3. H = HIGH voltage level
L = LOW voltage level
X = don't care
↓ = HIGH-to-LOW \bar{LE} transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Fig.4 Functional diagram.

Fig.5 Schematic diagram (one switch).

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V_{CC}	DC supply voltage	-0.5	+11.0	V	
$\pm I_{IK}$	DC digital input diode current		20	mA	for $V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V
$\pm I_{SK}$	DC switch diode current		20	mA	for $V_S < -0.5$ V or $V_S > V_{CC} + 0.5$ V
$\pm I_S$	DC switch current		25	mA	for -0.5 V < V_S < $V_{CC} + 0.5$ V
$\pm I_{EE}$	DC V_{EE} current		20	mA	
$\pm I_{CC}; \pm I_{GND}$	DC V_{CC} or GND current		50	mA	
T_{stg}	storage temperature range	-65	+150	°C	
P_{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
P_S	power dissipation per switch		100	mW	

Note to ratings

1. To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n , the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Y_n . In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
V_{CC}	DC supply voltage V_{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V_{CC}	DC supply voltage V_{CC} - V_{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
V_I	DC input voltage range	GND		V_{CC}	GND		V_{CC}	V	
V_S	DC switch voltage range	V_{EE}		V_{CC}	V_{EE}		V_{CC}	V	
T_{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC CHARACTERISTICS
T_{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	
t_r, t_f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0$ V $V_{CC} = 4.5$ V $V_{CC} = 6.0$ V $V_{CC} = 10.0$ V

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4351.

Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4351.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: $V_{CC} - GND$ or $V_{CC} - V_{EE} = 2.0, 4.5, 6.0$ and 9.0 V

For 74HCT: $V_{CC} - GND = 4.5$ and 5.5 V ; $V_{CC} - V_{EE} = 2.0, 4.5, 6.0$ and 9.0 V

SYMBOL	PARAMETER	T_{amb} ($^{\circ}\text{C}$)						UNIT	TEST CONDITIONS										
		74HC/HCT							V _{CC} (V)	V _{EE} (V)	I _S (μA)	V _{IS}	V _I						
		+25		-40 to +85		-40 to +125													
		min.	typ.	max.	min.	max.	min.												
R_{ON}	ON resistance (rail)	—	100	180	—	225	—	Ω	2.0	0	100	V_{CC} to V_{EE}	V_{IN} or V_{IL}						
		90	160	—	200	240	270	Ω	4.5	0	1000								
		70	130	—	165	195	240	Ω	6.0	0	1000								
							4.5	Ω	—4.5	1000									
R_{ON}	ON resistance (rail)	150	—	—	175	—	210	Ω	2.0	0	100	V_{EE}	V_{IH} or V_{IL}						
		80	140	—	150	180	210	Ω	4.5	0	1000								
		70	120	—	130	160	180	Ω	6.0	0	1000								
		60	105	—	—	130	160	Ω	4.5	—4.5	1000								
R_{ON}	ON resistance (rail)	150	—	—	200	—	240	Ω	2.0	0	100	V_{CC}	V_{IH} or V_{IL}						
		90	160	—	175	—	210	Ω	4.5	0	1000								
		80	140	—	150	180	210	Ω	6.0	0	1000								
		65	120	—	150	180	210	Ω	4.5	—4.5	1000								
ΔR_{ON}	maximum Δ ON resistance between any two channels	—	9	—	—	—	—	Ω	2.0	0	—	V_{CC} to V_{EE}	V_{IH} or V_{IL}						
		8	—	—	—	—	—	Ω	4.5	0	—								
		6	—	—	—	—	—	Ω	6.0	0	—								
							—	Ω	4.5	—4.5	—								

Notes to DC characteristics

- At supply voltages ($V_{CC} - V_{EE}$) approaching 2.0 V, the analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- For test circuit measuring R_{ON} see Fig.8.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS							
		74HC							V _{CC} (V)	V _{EE} (V)	V _I	OTHER				
		+25			−40 to +85		−40 to +125									
		min.	typ.	max.	min.	max.	min.	max.								
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0						
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0						
±I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	µA	6.0 10.0	0 0	V _{CC} or GND				
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	µA	10.0	0	V _{IH} or V _{IL} $ I_S = V_{CC} - V_{EE}$ (see Fig.10)				
±I _S	analog switch OFF-state current all channels			0.4		4.0		4.0	µA	10.0	0	V _{IH} or V _{IL} $ I_S = V_{CC} - V_{EE}$ (see Fig.10)				
±I _S	analog switch ON-state current			0.4		4.0		4.0	µA	10.0	0	V _{IH} or V _{IL} $ I_S = V_{CC} - V_{EE}$ (see Fig.11)				
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	µA	6.0 10.0	0 0	V _{CC} or GND $V_{IS} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}				

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T_{amb} (°C)						UNIT	TEST CONDITIONS					
		74HC							V _{CC} (V)	V _{EE} (V)	OTHER			
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
t_{PHL}/ t_{PLH}	propagation delay V_{is} to V_{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty$; $C_L = 50$ pF (see Fig.17)		
t_{PZH}/ t_{PZL}	turn "ON" time \bar{E}_1 to V_{os}		85 31 25 28	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PZH}/ t_{PZL}	turn "ON" time E_2 to V_{os}		85 31 25 25	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PZH}/ t_{PZL}	turn "ON" time $\bar{L}E$ to V_{os}		91 33 26 27	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PZH}/ t_{PZL}	turn "ON" time S_n to V_{os}		88 32 26 25	300 60 51 50		375 75 64 63		450 90 77 75	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PHZ}/ t_{PLZ}	turn "OFF" time \bar{E}_1 to V_{os}		69 25 20 20	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PHZ}/ t_{PLZ}	turn "OFF" time E_2 to V_{os}		72 26 21 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PHZ}/ t_{PLZ}	turn "OFF" time $\bar{L}E$ to V_{os}		83 30 24 26	275 55 47 45		345 69 59 56		415 83 71 68	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		
t_{PHZ}/ t_{PLZ}	turn "OFF" time S_n to V_{os}		80 29 23 24	275 55 47 48		345 69 59 60		415 83 71 72	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)		

8-channel analog multiplexer/demultiplexer
with latch

74HC/HCT4351

SYMBOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS						
		74HC								V _{CC} (V)	V _{EE} (V)	OTHER				
		+25			−40 to +85		−40 to +125									
		min.	typ.	max.	min.	max.	min.	max.								
t _{su}	set-up time S _n to \overline{LE}	60 12 10 18	17 6 5 9			75 15 13 23		90 18 15 27	ns	2.0 4.5 6.0 4.5	0 0 0 −4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig.19)				
t _h	hold time S _n to \overline{LE}	5 5 5 5	−8 −3 −2 −4			5 5 5 5		5 5 5 5	ns	2.0 4.5 6.0 4.5	0 0 0 −4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig.19)				
t _w	\overline{LE} minimum pulse width HIGH	100 20 17 25	11 1 3 7			125 25 21 31		150 30 26 38	ns	2.0 4.5 6.0 4.5	0 0 0 −4.5	R _L = 1 kΩ; C _L = 50 pF (see Fig.19)				

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS							
		74HCT							V _{CC} (V)	V _{EE} (V)	V _I	OTHER				
		+25		-40 to +85		-40 to +125										
		min.	typ.	max.	min.	max.	min.	max.								
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5						
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5						
±I _I	input leakage current			0.1		1.0		1.0	µA	5.5	0	V _{CC} or GND				
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	µA	10.0	0	V _{IH} or V _{IL}				
±I _S	analog switch OFF-state current all channels			0.4		4.0		4.0	µA	10.0	0	V _{IH} or V _{IL}				
±I _S	analog switch ON-state current			0.4		4.0		4.0	µA	10.0	0	V _{IH} or V _{IL}				
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	µA	5.5 5.0	0 -5.0	V _{CC} or GND				
ΔI _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	µA	4.5 to 5.5	0	V _{CC} -2.1 V				
												other inputs at V _{CC} or GND				

Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here.

To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
Ē ₁ , E ₂	0.50
S _n	0.50
LE	1.5

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T_{amb} (°C)						UNIT	TEST CONDITIONS					
		74HCT							V _{CC} (V)	V _{EE} (V)	OTHER			
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
t_{PHL}/ t_{PLH}	propagation delay V_{is} to V_{os}	6 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50$ pF (see Fig.17)			
t_{PZH}/ t_{PZL}	turn "ON" time \bar{E}_1 to V_{os}	40 31	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PZH}/ t_{PZL}	turn "ON" time E_2 to V_{os}	35 26	70 50		88 63		105 75	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PZH}/ t_{PZL}	turn "ON" time $\bar{L}E$ to V_{os}	42 37	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PZH}/ t_{PZL}	turn "ON" time S_n to V_{os}	39 30	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PHZ}/ t_{PLZ}	turn "OFF" time \bar{E}_1 to V_{os}	27 20	55 40		69 50		83 60	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PHZ}/ t_{PLZ}	turn "OFF" time E_2 to V_{os}	32 26	60 50		75 63		90 75	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PHZ}/ t_{PLZ}	turn "OFF" time $\bar{L}E$ to V_{os}	33 30	60 55		75 69		90 83	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{PHZ}/ t_{PLZ}	turn "OFF" time S_n to V_{os}	33 29	65 55		81 69		98 83	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.18)			
t_{su}	set-up time S_n to $\bar{L}E$	12 14	6 7		15 18		18 21	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.19)			
t_h	hold time S_n to $\bar{L}E$	5 5	-1 -2		5 5		5 5	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.19)			
t_w	$\bar{L}E$ minimum pulse width HIGH	25 25	13 13		31 31		38 38	ns	4.5 4.5	0 -4.5	$R_L = 1$ kΩ; $C_L = 50$ pF (see Fig.19)			

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

Fig.9 Typical R_{ON} as a function of input voltage V_{IS} for $V_{IS} = 0$ to $V_{CC} - V_{EE}$.

Fig.10 Test circuit for measuring OFF-state current.

Fig.11 Test circuit for measuring ON-state current.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V_{CC} (V)	V_{EE} (V)	$V_{is(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $f = 1$ kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10$ kΩ; $C_L = 50$ pF (see Fig.14)
	sine-wave distortion $f = 10$ kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10$ kΩ; $C_L = 50$ pF (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600$ Ω; $C_L = 50$ pF (see Figs 12 and 15)
$V_{(p-p)}$	crosstalk voltage between control and any switch (peak-to-peak value)	120 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600$ Ω; $C_L = 50$ pF; $f = 1$ MHz (E_1 , E_2 or S_n , square-wave between V_{CC} and GND, $t_r = t_f = 6$ ns) (see Fig.16)
f_{max}	minimum frequency response (-3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50$ Ω; $C_L = 10$ pF (see Figs 13 and 14)
C_S	maximum switch capacitance independent (Y) common (Z)	5 25	pF pF				

Notes to AC characteristics

1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

V_{is} is the input voltage at a Y_n or Z terminal, whichever is assigned as an input.

V_{os} is the output voltage at a Y_n or Z terminal, whichever is assigned as an output.

Test conditions:
 $V_{CC} = 4.5$ V; GND = 0 V; $V_{EE} = -4.5$ V;
 $R_L = 50$ Ω; $R_{source} = 1$ kΩ.

Fig.12 Typical switch "OFF" signal feed-through as a function of frequency.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

Test conditions:
 $V_{CC} = 4.5$ V; GND = 0 V; $V_{EE} = -4.5$ V;
 $R_L = 50 \Omega$; $R_{source} = 1 \text{ k}\Omega$.

Fig.13 Typical frequency response.

Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

The crosstalk is defined as follows
(oscilloscope output):

Fig.16 Test circuit for measuring crosstalk between control and any switch.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC WAVEFORMS

Fig.17 Waveforms showing the input (V_{is}) to output (V_{os}) propagation delays.

HC : $V_M = 50\%$; $V_I = \text{GND to } V_{CC}$.
HCT: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to } 3 \text{ V}$.

Fig.18 Waveforms showing the turn-ON and turn-OFF times.

HC : $V_M = 50\%$; $V_I = \text{GND to } V_{CC}$.
HCT: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to } 3 \text{ V}$.

Fig.19 Waveforms showing the set-up and hold times from S_n inputs to \overline{LE} input, and minimum pulse width of \overline{LE} .

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V_{IS}
t_{PZH}	V_{EE}	V_{CC}
t_{PZL}	V_{CC}	V_{EE}
t_{PHZ}	V_{EE}	V_{CC}
t_{PLZ}	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	V_M	$t_r; t_f$	
			$f_{max};$ PULSE WIDTH	OTHER
74HC	V_{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

t_r = $t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r, t_f with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V_{IS}
t_{PZH}	V_{EE}	V_{CC}
t_{PZL}	V_{CC}	V_{EE}
t_{PHZ}	V_{EE}	V_{CC}
t_{PLZ}	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	V_M	$t_r; t_f$	
			$f_{max};$ PULSE WIDTH	OTHER
74HC	V_{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

t_r = $t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r, t_f with 50% duty factor.

Fig.21 Input pulse definitions.

8-channel analog multiplexer/demultiplexer
with latch

74HC/HCT4351

PACKAGE OUTLINES

See "[74HC/HCT/HCU/HCMOS Logic Package Outlines](#)".