POLITECHNIKA POZNAŃSKA

Wydział Elektroniki i Telekomunikacji

SYMULACJA CYFROWA PROJEKT

1. Treść zadania

Szpitalny punkt krwiodawstwa korzysta z monitoringu liczby dostęnych jednostek krwi. Jeżeli liczba ta spadnie do poziomu **R** lub niżej, zostaje wysłane zlecenie na **N** nowych jednostek. Czas od wysłania zamówienia do otrzymania krwi jest zmienną losową o rozkładzie wykładniczym o średniej **Z**. Dostarczona krew musi zostać wykorzystana w ciągu **T**₁ jednostek czasu. Po tym czasie zostaje zutylizowana. Odstęp czasu pomiędzy pojawieniem się kolejnych pacjentów wymagających transfuzji jest zmienną losową o rozkładzie wykładniczym i średniej **P**. Liczba jednostek krwi podawana pojedynczemu pacjentowi jest zmienną losową o rozkładzie geometrycznym i średniej **1/W**. Jeżeli liczba potrzebnych jednostek jest większa niż aktualny stan zaopatrzenia w punkcie krwiodawstwa, zostaje złożone awaryjne zamówienie na **Q** jednostek. Czas dostarczenia takiego zamówienia jest zmienną losową o rozkładzie normalnym, średniej **E** i wariancji **EW**². Dodatkowo, w punkcie krwiodawstwa krew oddają lokalni dawcy. Czas między zgłoszeniem się kolejnych dawców jest zmienną losową o rozkładzie wykładniczym i średniej **L**. Każdy dawca oddaje jedną jednostkę krwi, która musi zostać zużyta w ciągu **T**₂ jednostek czasu (**T**₁ < **T**₂). Celem symulacji jest wyznaczenie wartości **R** oraz **N**, dla których prawdopodobieństwo awaryjnego zamówienia jest mniejsze niż **A**. Dla otrzymanych wartości wyznacz jaki procent krwi jest utylizowany.

Dodatkowo pacjenci oraz dawcy mają jedną z dwóch możliwych grup krwi: A lub B. Pacjenci mogą przyjmować tylko krew swojego grupy. Prawdopodobieństwa występowania grup krwi wynoszą: 60% grupa A oraz 40% grupa B. Prawdopodobieństwa są takie same zarówno dla dawców jak i biorców. Dla każdej grupy krwi występują niezależne zamówienia (t.j. mogą istnieć w jednym momencie cztery zamówienia: dwa awaryjne oraz dwa standardowe, osobne dla każdej grupy krwi)

2. Parametry

Przyjmujemy następujące parametry:

Tab. 1. Parametry.

Grupa:	D1	D2	D3	D4
R	5	10	15	20
N	30	25	20	17
Z	1800	1900	1700	2000
T_1	300	300	300	300
T_2	500	500	500	500
P	150	200	250	300
W	0.22	0.23	0.20	0.19
E (EW ²)	300 (0.1)	400 (0.1)	500 (0.1)	600 (0.1)
Q	14	12	11	12
L	900	850	950	800
A	0.05	0.07	0.06	0.08

Tab. 2. Rozszerzenia zadania:

\mathbf{A}	Opis
A1	Punkt krwiodawstwa raz na TA jednostek czasu przeprowadza akcję promocyjną zbiórki
	krwi, podczas której średni czas pomiędzy zgłoszeniami kolejnych dawców spada o TR.
	Akcja trwa TT=7200 jednostek czasu.
	TA – zmienna losowa o rozkładzie równomiernym w przedziale [TA _{min} ,TA _{max}] [20k,22k]
	TR – zmienna losowa o rozkładzie równomiernym w przedziale [TR _{min} ,TR _{max}] [100,200]
A2	Co TW jednostek czasu zdarza się wypadek. W tym czasie pojawia się jednorazowe
	zapotrzebowanie na TK jednostek krwi.
	TW – zmienna losowa o rozkładzie równomiernym w przedziale [TW_{min} , TW_{max}] [$15k$, $16k$]

	TK – zmienna losowa o rozkładzie równomiernym w przedziale [TK _{min} ,TK _{max}] [10,20]
A3	Zamówienia awaryjne należy zwrócić po TP jednostkach czasu.
	TP – zmienna losowa o rozkładzie równomiernym w przedziale [TP _{min} ,TP _{max}] [150,200]
A4	Jeśli liczba dostępnych jednostek utrzymuje się przez TU=300 jednostek czasu powyżej
	poziomu TB=30, JB jednostek zostaje przeznaczonych na badania naukowe.
	\overline{JB} – zmienna losowa o rozkładzie równomiernym w przedziale [\overline{JB}_{min} , \overline{JB}_{max}] [5,10]

Tab. 3. Metoda symulacji.

M	Opis
M1	Przeglądanie działań
M2	Planowanie zdarzeń
M3	Metoda ABC
M4	Metoda interakcji procesów