Projet Master 1 DSMS: Modélisation de la mortalité des scarabées

Contexte de l'étude : On étudie la mortalité de scarabées en fonction de la dose d'un insecticide. Les données proviennent du Tableau 7.2 (non reproduit ici). Pour chaque dose X_i , on observe Y_i scarabées morts parmi n_i individus exposés.

1 Partie théorique

1.1 Modèle logistique (lien logit)

1. Fonction de vraisemblance :

- i) Exprimer la vraisemblance $L(\beta)$ pour le modèle logistique.
- ii) Donner l'expression de la log-vraisemblance $\ell(\beta)$.

2. Score et information de Fisher:

- i) Donner l'expression du vecteur score $U(\beta)$.
- ii) Donner l'expression de la matrice d'information de Fisher $I(\beta)$.

3. Algorithme de Newton-Raphson:

- i) Écrire la relation de récurrence pour l'estimation de β par la méthode du score de Fisher.
- ii) Préciser la valeur initiale de β .

4. Tests d'ajustement :

- i) Donner l'expression de la deviance D pour ce modèle.
- ii) Donner l'expression de la statistique du χ^2 de Pearson pour ce modèle.
- iii) Donner l'expression des résidus de deviance.
- iv) Donner l'expression des résidus de Pearson.

1.2 Modèle probit

On considère maintenant le modèle avec fonction lien *probit* définie par :

$$g(p) = \Phi^{-1}(p)$$
, où $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$

est la fonction de répartition de la loi normale centrée réduite.

Consigne: Répondre aux questions 1 à 4 du modèle logistique pour ce modèle probit.

1.3 Modèle log-log complémentaire (c-log-log)

On considère le modèle avec fonction lien inverse :

$$g^{-1}(x) = 1 - \exp(-e^x), \quad x \in \mathbb{R}.$$

Cette fonction correspond à la fonction de répartition de la loi de Gumbel (loi des valeurs extrêmes type I).

Consigne: Répondre aux questions 1 à 4 du modèle logistique pour ce modèle c-log-log.

2 Partie pratique

2.1 Modèle logistique (lien logit)

a) Visualisation des données :

- i) Tracer le graphique de la proportion observée $p_i = Y_i/n_i$ en fonction de la dose X_i .
- ii) Commenter l'allure de la relation dose-réponse.

b) Estimation des paramètres :

- i) Implémenter l'algorithme de Newton-Raphson jusqu'à convergence.
- ii) Donner les estimateurs du maximum de vraisemblance obtenus.

c) Prédictions :

- i) Calculer les valeurs prédites linéaires $\hat{\eta}_i$.
- ii) Calculer les proportions prédites \hat{p}_i .
- iii) Calculer les effectifs prédits \hat{Y}_i pour chaque dose.

d) Visualisation des résultats :

- i) Tracer sur un même graphique les proportions observées et les proportions prédites \hat{p}_i en fonction de la dose X_i .
- ii) Commenter la qualité de l'ajustement.

e) Diagnostics:

- i) Calculer numériquement la deviance D pour ce modèle.
- ii) Calculer la statistique du χ^2 de Pearson.

2.2 Modèle probit

Consigne: Reprendre l'analyse pratique (questions a à e) avec le modèle probit.

2.3 Modèle c-log-log

Consigne: Reprendre l'analyse pratique (questions a à e) avec le modèle c-log-log.

3 Comparaison des modèles

a) Synthèse des résultats :

- i) Récapituler dans un tableau les valeurs de la deviance D et du χ^2 de Pearson pour les trois modèles.
- ii) Comparer les estimateurs des paramètres obtenus pour chaque modèle.

b) Sélection du modèle :

- i) Proposer un critère de sélection basé sur la deviance.
- ii) Discuter des avantages et inconvénients de chaque modèle.

c) Conclusion:

- i) Quel modèle semble le plus adapté aux données ?
- ii) Justifier le choix du modèle retenu en s'appuyant sur les résultats numériques et graphiques.