

MolSim WS 23/24

Sheet 4

Thermostats, Rayleigh-Taylor instability, "Falling Drop" and Performance Measurement

Group C [Manuel, Tobias, Daniel]

22.12.2023

Thermostats

Global scaling

• Simple loop using
$$\beta := \sqrt{\frac{T_{new}}{T_{current}}}$$

Concept of Interceptors

We group all functions performed once all

N iterations under **interceptors**

e.g. Thermostats, FileWriter ...

Periodic boundaries

First idea:

- Fold the rectangle shaped domain to cylinder
- ⇒ problems with distance calculation

Implementation:

Teleport particles manually to the other side

Rayleigh-Taylor instability

https://manuellerchner.github.io/MolSim-WS23-24/submissions/

Rayleigh-Taylor instability

Observations:

- Lower fluid shooting up
- Effect emerging through broken symmetry in upper fluid

Analogy:

Mushroom cloud of an atom bomb

Simulation of a falling drop

Equilibration:

- We implemented the equilibration recursively
- User is able to create subsimulations to build a large system from small parts
- This mechanism lets the user create multiple scales intuitively

Simulation of a falling drop

https://manuellerchner.github.io/MolSim-WS23-24/submissions/

Simulation of a thrown drop

https://manuellerchner.github.io/MolSim-WS23-24/submissions/

Simulation of a falling drop

Observations:

- The simulation really resembles a real fluid
- Visible, big waves distributing into many smaller waves like in reality
- In the thrown version even a surfing-like wave

Remark:

- Temperature is very important in this simulation
- Creating different states of matter

Performance measurement

Performance + Profile:

 The cluster took 42s 476ms with 282960 MUP/s

Idea:

 Calculate Lorentz-Berthelot mixing rule outside of the loop

Performance tuning

- Performance + Profile after optimization:
 - The cluster took 42.485s with 233355 MUP/s after the implementation
 - Did not work :/
 - Mapping logic creates overhead

Summary of cool things

- We failed making a cool torus domain
- We implemented thermostats to control temperature
- We simulated funky liquids
- We created a fancy water drop simulation
- We created a sad falling snowball simulation
- We drew a pretty profile plot

References

Torus picture: https://upload.wikimedia.org/wikipedia/commons/thumb/1/17/Tesseract_torus.png/1500px-

Tesseract_torus.png

Cylinder picture: https://www.doubtnut.com/qna/32538537

Rayleigh-Taylor instability pic: https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Taylor_instability

Macro vs microscopic: https://www.researchgate.net/figure/Macroscopic-microscopic-and-nanoscopic-portraits-in-

kaolinite_fig1_226836400/download?_tp=eyJjb250ZXh0ljp7lmZpcnN0UGFnZSl6ll9kaXJIY3QiLCJwYWdlljoiX2RpcmVjdCl9fO

Recursion pic: https://www.usna.edu/Users/cs/nchamber/courses/si204/s18/lec/l24/lec.html

Wave pic: https://media.istockphoto.com/id/120917341/de/foto/cool-water-

wave.jpg?s=612x612&w=0&k=20&c=Ky3AZFWCoLQhKgW6j_TxG_HF6Ci4Cifj1_tUPAq5ypE=