PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-319667

(43) Date of publication of application: 16.11.2001

(51)Int.CI.

8/02 HO1M H01 M 8/10

(21)Application number: 2000-133864

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

02.05.2000

(72)Inventor: INOUE MASAJIRO

KIMURA KUNIAKI

SUENAGA TOSHIHIKO HATANO HARUMI

(54) FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To improve sealability between an electrode membrane structural body and a separator.

SOLUTION: A cell of a fuel cell composed of a solid polyelectrolyte membrane 18 and an anode diffusion electrode (22, 26) and a cathode diffusion electrode (20, 24) at each opposed end thereof is pinched between by the separator 14 and the second separator 16. Around the solid polyelectrolyte membrane 18 is provided a projection 18a protruding from anode diffusion electrodes (22, 26) periphery and cathode diffusion electrodes (20, 24) periphery. Each groove portion 28 is provided in a position corresponding to the projection 18a which is a periphery in the surface of respective each separators 14, 16. The fuel cell is pinched between by the above separators 14, 16 with a fluid sealant S applied to the groove portion 28 in close contact with the projection 18a of the solid polyelectrolyte membrane 18 and in close contact with an end surface T of the anode diffusion electrodes (22, 26) and the cathode diffusion electrodes (20, 24).

LEGAL STATUS

[Date of request for examination]

27.11.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

DEST AVAILABLE COPY

of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号 特開2001-319667

(P2001-319667A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.Cl.'

鐵別記号

FΙ

テーマコート*(参考)

H01M 8/02 8/10 H01M 8/02 5H026

8/10

審査請求 未請求 請求項の数1 OL (全 9 頁)

(21)出願番号

(22)出願日

特顧2000-133864(P2000-133864)

平成12年5月2日(2000.5.2)

(71) 出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 井ノ上 雅次郎

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72)発明者 木村 晋朗

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 100064908

弁理士 志賀 正武 (外5名)

最終頁に続く

(54) 【発明の名称】 燃料電池

(57)【要約】

【課題】 電極膜構造体とセパレータとのシール性向上 を図る。

【解決手段】 固体高分子電解質膜18とその両側のア ノード側拡散電極(22,26)とカソード側拡散電極 (20.24)とで構成された燃料電池セルを、第1、 第2セパレータ14,16で挟持した燃料電池におい て、固体高分子電解質膜18の周囲にはアノード側拡散 電極(22,26)外周及びカソード側拡散電極(2 0、24) 外周からはみ出すはみ出し部18aを設け、 前記各セパレータ14,16面内の外周部分であって、 前記はみ出し部18aに対応する位置に各々溝部28を 設け、この溝部28に塗布された液状シールSを前記固 体高分子電解質膜18のはみ出し部18aに密着させ、 かつ、アノード側拡散電極(22,26)及びカソード 側拡散電極(20、24)の端面Tに密着させた状態で 上記各セパレータ14, 16により燃料電池セルを挟持 した。

【特許請求の範囲】

固体高分子電解質膜とその両側に配設さ 【請求項1】 れたアノード電極とガス拡散層とから成るアノード側拡 散電極とカソード電極とガス拡散層とから成るカソード 側拡散電極とで構成された電極膜構造体を、一対のセパ レータで挟持して構成された燃料電池において、固体高 分子電解質膜の周囲にはアノード側拡散電極外周及びカ ソード側拡散電極外周からはみ出すはみ出し部を設け、 前記セパレータ面内の外周部分であって、前記固体高分 子電解質膜のはみ出し部に対応する位置に各々溝部を設 け、この溝部に塗布された液状シールを前記固体高分子 電解質膜のはみ出し部に密着させると共に、少なくとも 上記アノード側拡散電極のガス拡散層又はカソード側拡 散電極のガス拡散層の端面に密着させた状態で一対のセ パレータにより電極膜構造体を挟持したことを特徴とす る燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、固体高分子電解質膜とその両側のアノード側拡散電極とカソード側拡散電極とで構成された電極膜構造体を、一対のセパレータで挟持した燃料電池に係るものであり、特に、セパレータ間で電極膜構造体を確実にシールし、かつ、反応ガスが電極膜構造体の周囲を吹き抜けるのを防止することができる燃料電池に関するものである。

[0002]

【従来の技術】燃料電池の中には、固体高分子電解質膜とその両側のアノード側拡散電極とカソード側拡散電極とで構成された電極膜構造体を、一対のセパレータで挟持して構成されたものがある。アノード側拡散電極の反応面に燃料ガス(例えば、水素ガス)を供給すると、ここで水素がイオン化され、固体高分子電解質膜を介してカソード側拡散電極側に移動する。この間に生じた電子が外部回路に取り出され、直流の電気エネルギーとして利用される。カソード電極においては酸化ガス(例えば、酸素を含む空気)が供給されているため、水素イオン、電子、及び酸素が反応して水が生成される。

【0003】この一例を図11によって説明すると、図において1は固体高分子電解質膜を示し、この固体高分子電解質膜を示し、この固体高分子電解質膜1を両側からガス拡散電極(アノード側拡散 40電極とカソード側拡散電極)2,3で挟持して燃料電池セル4が構成されている。この燃料電池セル4の両面には燃料電池セル4の反応面に対応する位置に開口部を有するシート状のガスケット5が配置され、このガスケット5,5を介して各燃料電池セル4の周縁を包み込み、かつ、外側押さえ6を介して燃料電池セル4の周縁を押さえた状態で、セパレータ7,7により燃料電池セル4を両側から挟持して構成されている(特開平6-325777号公報参照)。

【0004】また、図12に示すように、固体高分子館 50

解質膜1を両側からガス拡散電極2,3で挟持して形成された矩形状の燃料電池セル4の両面に一対のセパレータ7,7を配設し、各セパレータ7に形成された溝部8に〇リング9をセットして、この〇リング9により固体高分子電解質膜1を挟持し、その状態で両セパレータ7,7で燃料電池セル4を挟持したものもある(特開平8-148169号公報参照)。

[0005]

【発明が解決しようとする課題】前者の燃料電池にあっては、前記ガスケット5によりセパレータ7とガス拡散電極2,3との間の空間部分が外部と遮断されるため、燃料ガス及び酸化ガスが外部に漏れることはなく、かつ、両者が混合することもないため、無駄のない発電を行なうことができる点で優れているが、セパレータ7及びガス拡散電極2,3の厚さ方向において各々寸法のバラツキは避けられないため、ここに一定寸法のガスケット5を用いて両者を締結した場合に、シール反力が各部位で異なってしまう。そのため、セパレータ7とガス拡散電極2,3との間で全周に渡って均一なシール性を確保することができないという問題がある。

【0006】均一なシール性を確保するためにはセパレータ7及びガス拡散電極2,3の寸法精度を厳密に管理しなければならずコストアップにつながるという問題がある。また、ガスケット5の面圧がガス拡散電極2,3の周囲でバラツキを起こしセパレータ7に偏った曲げ応力が作用してしまうという問題がある。

【0007】とりわけ、車両用燃料電池として使用される場合に、ガスケット5の面圧のバラツキに対してもセパレータ7に作用する曲げ応力を所定の大きさ以下となるようにセパレータ7の厚さ寸法を確保すると、燃料電池を積層して形成された燃料電池スタックが大型化してしまい車室空間を狭めてしまうという問題がある。

【0008】また、後者の燃料電池にあっては、Oリング9により確実にセパレータ7と燃料電池セル4との間のシールを行なうことはできるが、Oリング9とガス拡散電極2,3の端面から漏れたガスが反応に寄与しないでガス拡散電極2,3の面方向へ吹き抜けてしまうため、その分だけ発電の効率が低下するという問題がある。そこで、この発明は、電極膜構造体とセパレータとのシール性を向上できと共に発電効率の低下を防止することができる燃料電池を提供するものである。

[0009]

【課題を解決するための手段】上記課題を解決するために、請求項1に記載した発明は、固体高分子電解質膜(例えば、実施形態における固体高分子電解質膜18)とその両側に配設されたアノード電極(例えば、実施形態におけるアノード電極22)とガス拡散層(例えば、実施形態における第2ガス拡散層26)とから成るアノード側拡散電極とカソード電極(例えば、実施形態にお

けるカソード電極20) とガス拡散層(例えば、実施形態における第1ガス拡散層24) とから成るカソード側拡散電極とで構成された電極膜構造体(例えば、実施形態における燃料電池セル12)を、一対のセパレータ

(例えば、実施形態における第1セパレータ14及び第2セパレータ16)で挟持して構成された燃料電池において、固体高分子電解質膜の周囲にはアノード側拡散電極外周及びカソード側拡散電極外周からはみ出すはみ出し部(例えば、実施形態におけるはみ出し部18a)を設け、前記セパレータ面内の外周部分であって、前記固体高分子電解質膜のはみ出し部に対応する位置に各々溝部(例えば、実施形態における溝部28)を設け、この溝部に塗布された液状シール(例えば、実施形態における液状シールS)を前記固体高分子電解質膜のはみ出し部に密着させると共に、少なくとも上記アノード側拡散電極のガス拡散層又はカソード側拡散電極のガス拡散層の端面に密着させた状態で一対のセパレータにより電極原構造体を挟持したことを特徴とする。

【0010】このように構成することで、前記固体高分子電解質膜の周囲に設けたはみ出し部に直接的に密着する液状シールが固体高分子電解質膜とセパレータとの間で形状変化して前記シール寸法のバラツキに追従し、溝内部において一定の面圧を確保した状態で両者間に隙間なく介在して両者間の気密性を確保することができる。また、液状シールが少なくともアノード側拡散電極のガス拡散層又はカソード側拡散電極のガス拡散層の端面に密着することで、これらアノード側拡散電極とカソード側拡散電極の双方の端面からの反応ガスの吹き抜けを阻止することができる。

[0011]

【発明の実施の形態】以下、この発明の実施形態を図面 と共に説明する。図1はこの発明の実施形態の燃料電池 を示す分解斜視図である。この燃料電池10は燃料電池 セル(電極膜構造体)12とこれを挟持する第1セパレ ータ14及び第2セパレータ16を備え、これらが複数 組積層されて車両用の燃料電池スタックが構成されるも のである。燃料電池セル12は、固体高分子電解質膜1 8と、この固体高分子電解質膜18を挟んで配設される カソード電極20及びアノード電極22とを有するとと もに、前記カソード電極20及び前記アノード電極22 には、例えば、多孔質層である多孔質カーボンクロス又 は多孔質カーボンペーパーからなる第1ガス拡散層24 及び第2ガス拡散層26が配設されている。ここで、固 体高分子電解質膜18としては、ペルフルオロスルホン 酸ポリマーを用いている。また、カソード電極20、ア ノード電極22はPtを主体としたものである。尚、上 記カソード電極20と第1ガス拡散層24とでカソード 側拡散電極が構成され、上記アノード電極22と第2ガ ス拡散層24とでアノード側拡散電極が構成される。

【0012】固体高分子電解質膜18には、これを挟ん

で配設されるカソード電極20及びアノード電極22の 外周からはみ出すはみ出し部18aが設けられ、このは み出し部18aに対応する位置に両側から第1及び第2 セパレータ14,16に塗布された後述する液状シール Sが直接密着するようになっている。

【0013】図3に示すように、第1セパレータ14 は、その平面内であって外周縁部に位置する横方向両端 上部側に、水素含有ガス等の燃料ガスを通過させるため の入口側燃料ガス連通孔36aと、酸素含有ガス又は空 気である酸化剤ガスを通過させるための入口側酸化剤ガ ス連通孔38aとを備えている。第1セパレータ14の 横方向両端中央側には、純水やエチレングリコールやオ イル等の冷却媒体を通過させるための入口側冷却媒体連 通孔40aと、使用後の前記冷却媒体を通過させるため の出口側冷却媒体連通孔40bとが設けられている。ま た、第1セパレータ14の平面内であって外周縁部に位 置する横方向両端下部側に、燃料ガスを通過させるため の出口側燃料ガス連通孔36bと、酸化剤ガスを通過さ せるための出口側酸化剤ガス連通孔38bとが、入口側 燃料ガス連通孔36a及び入口側酸化剤ガス連通孔38 aと対角位置になるように設けられている。

【0014】図1に示すように、第1セパレータ14のカソード電極20に対向する面14aには、入口側酸化剤ガス連通孔38aに近接して複数本、例えば、6本のそれぞれ独立した第1酸化剤ガス流路溝42が、水平方向に蛇行しながら重力方向に向かって設けられている。第1酸化剤ガス流路溝42は、3本の第2酸化剤ガス流路溝44が出口側酸化剤ガス連通孔38bに近接して終端している。

【0015】図3に示すように、第1セパレータ14には、この第1セパレータ14を貫通するとともに、一端が面14aとは反対側の面14bで入口側酸化剤ガス連通孔38aに連通する一方、他端が前記面14a側で第1酸化剤ガス流路溝42に連通する第1酸化剤ガス連結流路46と、一端が前記面14b側で出口側酸化剤ガス連通孔38bに連通する一方、他端が前記面14a側で第2酸化剤ガス流路溝44に連通する第2酸化剤ガス連結流路48とが、前記第1セパレータ14を貫通して設けられている。

【0016】図4、図5に示すように、第2セパレータ 16の平面内であって外周縁部に位置する横方向両端側 には、第1セパレータ14と同様に、入口側燃料ガス連 通孔36a、入口側酸化剤ガス連通孔38a、入口側冷 却媒体連通孔40a、出口側冷却媒体連通孔40b、出 口側燃料ガス連通孔36b及び出口側酸化剤ガス連通孔 38bが形成されている。

【0017】前記第2セパレータ16の面16aには、 入口側燃料ガス連通孔36aに近接して複数本、例え ば、6本の第1燃料ガス流路溝60が形成される。この 第1燃料ガス流路溝60は、水平方向に蛇行しながら重

力方向に向かって延在し、3本の第2燃料ガス流路溝6 2に合流してこの第2燃料ガス流路溝62が出口側燃料ガス連通孔36bの近傍で終端している。第2セパレータ16には、入口側燃料ガス連通孔36aを面16b側から第1燃料ガス流路溝60に連通する第1燃料ガス連結流路64と、出口側燃料ガス連通孔36bを前記面16b側から第2燃料ガス流路溝62に連通する第2燃料ガス連結流路66とが、前記第2セパレータ16を貫通して設けられている。

【0018】図2、図5に示すように、第2セパレータ16の面16 bには、後述する液状シールSで囲まれる範囲内に、入口側冷却媒体連通孔40 a 及び出口側冷却媒体連通孔40 bに近接して冷却媒体流路を構成する複数本の主流路溝72 a、72 bが形成されている。主流路溝72 a、72 b間には、それぞれ複数本に分岐する分岐流路溝74が水平方向に延在して設けられている。第2セパレータ16には、入口側冷却媒体連通孔40 a と主流路溝72 a とを連通する第1 冷却媒体連結流路76と、出口側冷却媒体連通孔40 b と主流路溝72 b とを連通する第2 冷却媒体連結流路78とが前記第2セパレータ16を貫通して設けられている。

【0019】ここで、図4に示すように、前記固体高分子電解質膜18のはみ出し部18aに対応する位置にはこの固体高分子電解質膜1を挟持する第2セパレータ16のアノード電極22に対向する面16aに溝部28が設けられ、この溝部28に液状シールSが塗布されている。また、この第2セパレータ16の面16aの入口側燃料ガス連通孔36a、入口側酸化剤ガス連通孔38a、入口側冷却媒体連通孔40b、出口側燃料ガス連通孔36b及び出口側酸化剤ガス連通孔38bの周囲にも溝部30が形成され、この溝部30にも液状シールSが塗布されている。ここで、前記入口側冷却媒体連通孔40aと出口側冷却媒体連通孔40bとの周囲の溝部30は、各々第1冷却媒体連通孔40bとの周囲の溝部30は、各々第1冷却媒体連結流路76、第2冷却媒体連結流路78を囲むように形成されている。

【0020】また、前記第2セパレータ16と共に燃料電池セル12を挟持する第1セパレータ14のカソード電極20に対向する面14aにも、図1に示すように前記第2セパレータ16の面16aの溝部28及び溝部30が形成され、各溝部28,30には液状シールSが塗布されている。したがって、図2、図6に示すように、これら燃料電池セル12を挟持する第1セパレータ14と第2セパレータ16との溝部28,30に塗布された各液状シールSが、溝部28の液状シールSにあっては前記はみ出し部18aを両側から向かい合う位置で挟持して直接密で、これと同時に液状シールSがアノード電極22及び第2ガス拡散層24の各々の端面Tに密着して、燃料電池セル1

2の周囲をシールし、溝部30の液状シールSにあっては互いに密着して各連通孔36a,36b,38a,38b,40a,40bの周囲をシールするようになっている。尚、上記液状シールSには少なくとも第1ガス拡散層24と第2ガス拡散層26の端面Tを密着させれば十分である。また、アノード電極22側あるいはカソード電極20側のいずれかからのガスの吹き抜けを防止できれば発電効率にさほどの影響を与えないため、双方の端面Tを液状シールSに密着させなくてもよい。ここで、上記液状シールSをアノード電極22及び第2ガス拡散層26とカソード電極20及び第1ガス拡散層24の各々の端面Tに密着させるためには、液状シールSを塗布する際に密着させたり、あるいは、第1、第2セパレータ14,16により燃料電池セル12を挟持することで液状シールSが潰れる際に密着させることができる。

【0021】図5に示すように、前記第2セパレータ16の面16bには、複数の燃料電池10を積層した際に前記第1セパレータ14の面14bに対向する位置であって、分岐流路溝74の周囲を取り囲む溝部34が設けられ、この溝部34に液状シールSが塗布されている。また、この第2セパレータ16の面16bの入口側燃料ガス連通孔36a、入口側酸化剤ガス連通孔38a、入口側冷却媒体連通孔40b、出口側燃料ガス連通孔36b及び出口側酸化剤ガス連通孔38bの周囲にも溝部35が形成され、この溝部35にも液状シールSが塗布されている。

【0022】ここで、前記入口側燃料ガス連通孔36aと出口側燃料ガス連通孔36bとの周囲の溝部35は、各々第1燃料ガス連結流路64、第2燃料ガス連結流路66を囲むように形成されている。また、入口側酸化剤ガス連通孔38aと出口側酸化剤ガス連通孔38bとの周囲の溝部35は前記第1セパレータ14の面14bの入口側酸化剤ガス連通孔38aと出口側酸化剤ガス連通孔38bとを囲むように設けられている。

【0023】このようにして、燃料電池10を積層した場合に、第1セパレータ14の面14bと第2セパレータ16の面16bとを重合すると、入口側燃料ガス連通孔36a、入口側酸化剤ガス連通孔38a、入口側冷却媒体連通孔40b、出口側燃料ガス連通孔36b及び出口側酸化剤ガス連通孔38bの周囲と分岐流路溝74の周囲で第2セパレータ16側の液状シールSが第1セパレータ14の面14bに密着することで、第1セパレータ14と第2セパレータ16との水密性を確保している。

【0024】ここで前記液状シールSは熱硬化型フッ素系あるいは熱硬化型シリコンからなり、塗布した状態で断面形状が変化しない程度の粘度を有し、塗布後にある程度の弾性を保持して硬化するものであり、非接着性、接着性のいずれをも使用可能である。尚、メインテナン

ス等で交換の必要がある部分、例えば第1セパレータ14の面14bと第2セパレータ16の面16bとの間の液状シールSは非接着性のものを使用することが望ましい。具体的に液状シールSの寸法は、液状シールSの並布径は0.6mm、シール荷重0.5(これより小さいとシール性が低下)~2(これより大きいとへたり発生)N/mm程度とすることができる。また、前記溝部28,30,34,35は幅2mm、深さ0.2mm程度に設定されている。これら溝部28,30,34,35内において、塗布後において液状シールSが潰れることで、シール断面積を拡大してシール部分における寸法誤差を吸収し、均一に密着することが可能となる。

【0025】このように構成される第1の実施形態に係る燃料電池10の動作について、以下に説明する。燃料電池10には、燃料ガス、例えば、炭化水素を改質した水素を含むガスが供給されるとともに、酸化剤ガスとして空気または酸素含有ガス(以下、単に空気ともいう)が供給され、さらにその発電面を冷却するために、冷却媒体が供給される。燃料電池10の入口側燃料ガス連通孔36aに供給された燃料ガスは、図2に示すように、第1燃料ガス連結流路64を介して面16b側から面16a側に移動し、この面16a側に形成されている第1燃料ガス流路溝60に供給される。

【0026】第1燃料ガス流路溝60に供給された燃料ガスは、第2セパレータ16の面16aに沿って水平方向に蛇行しながら重力方向に移動する。その際、燃料ガス中の水素含有ガスは、第2ガス拡散層26を通って単位燃料電池セル12のアノード側電極22に供給される。そして、未使用の燃料ガスは、第1燃料ガス流路溝60に沿って移動しながらアノード側電極22に供給される一方、未使用の燃料ガスが第2燃料ガス流路溝62を介して第2燃料ガス連結流路66に導入され、面16b側に移動した後に図1に示す出口側燃料ガス連通孔36bに排出される。

【0027】また、燃料電池スタック10内の入口側酸化剤ガス連通孔38aに供給された空気は、第1セパレータ14の入口側酸化剤ガス連通孔38aに連通する第1酸化剤ガス連結流路46を介して第1酸化剤ガス流路溝42に供給された空気は、水平方向に蛇行しながら重力方向に移動する間、この空気中の酸素含有ガスが第1ガス拡散層24からカソード側電極20に供給される。一方、未使用の空気は、第2酸化剤ガス流路溝44を介して第2酸化剤ガス連結流路48から図1に示す出口側酸化剤ガス連通孔38bに排出される。これにより、燃料電池10で発電が行われ、例えば、図示しないモータに電力が供給されることになる。

【0028】さらにまた、燃料電池10に供給された冷却媒体は、図1に示す入口側冷却媒体連通孔40aに導入された後、図5に示すように、第2セパレータ16の 50

第1冷却媒体連結流路76を介して面16b側の主流路 溝72aに供給される。冷却媒体は、主流路溝72aか ら分岐する複数本の分岐流路溝74を通って単位燃料電 池セル12の発電面を冷却した後、主流路溝72bに合 流する。そして、使用後の冷却媒体は、第2冷却媒体連 結流路78を通って出口側冷却媒体連通孔40bから排 出される。

【0029】図7、図8は液状シールSとアノード電極 22及び第2ガス拡散層26とカソード電極20及び第 1ガス拡散層24の端面Tとの間の寸法しを変化させ て、発電電圧を測定したものである。図7はこの発明の 実施形態に即したサンプル1であって、L=0、つまり 上記端面Tが液状シールSと密着している場合を示す。 図8のサンプル2は上記端面Tと液状シールSとの間隔 をL1 (>0)、図9のサンプル3は上記端面Tと液状 シールSとの間隔をL2(L2>L1)としている。具 体的にはL1=1 mm、L2=2 mm、燃料ガス(H 2) 圧力100kPaG、酸化剤ガス(O2)圧力10 OkPaG、加湿条件はアノード側、カソード側ともに 加湿、固体高分子電解質膜としてペルスルオロスルホン 酸ポリマー (366×186×0.05mm)、拡散層 としてはカーボンクロス (310×180×0.6m) m)、セパレータとしては焼成カーボン切削品(外寸3 68×188×3) を用いた。この実験の結果、図10 に示すように、縦軸を電圧V、横軸を電流密度A/cm 2とした場合に、端面Tと液状シールSとの間隔が大き くなるほど電圧密度の増加と共に電圧Vが下がり、サン プル1、つまり上記端面Tが液状シールSと密着してい る場合が最も電圧降下が少ないことが判明した。

【0030】上記実施形態によれば、前記固体高分子電解質膜18の周囲に設けたはみ出し部18aに直接的に密着する液状シールSが固体高分子電解質膜18と第1,第2セパレータ14,16との間で形状変化してシール寸法のバラツキに追従し、各溝部28,30,34,35内において一定の面圧を確保した状態で両者間に隙間なく介在して両者間の気密性を確保することができるため、第1,第2セパレータ14,16と燃料電池セル12との間で全周に渡って均一なシール反力が得られ、均一なシール性を確保することができるという効果がある。したがって、液状シールSによる寸法誤差に対する追従性の良さから、第1,第2セパレータ14,16や燃料電池セル12のとりわけ厚さ方向での寸法管理を厳密に行なう必要がなく、寸法精度管理が容易となりコストダウンを図ることができる。

【0031】また、第1、第2セパレータ14,16の 講部28に塗布された液状シールSは、溝部28内で一 定の幅を維持した状態で、前記固体高分子電解質膜18 のはみ出し部18aに密着して、シール寸法に応じて変 形することができるため、第1,第2セパレータ14, 16により燃料電池セル12を挟持するだけで、シール

8

部分における気密性を確保できる。

【0032】また、第1、第2セパレータ14,16と固体高分子電解質膜18のはみ出し部18aとの間のシール寸法のバラツキを液状シールSが吸収することにより、各セパレータ14,16に偏った力が作用するのを防止できるため、各セパレータ14,16の薄肉化を図ることができ、全体として軽量かつ小型化することができる。よって配置スペースに制限があり、できる限り各セパレータ14,16を薄型化する必要がある車両用として用いられた場合に好適である。

【0033】また、液状シールSを固体高分子電解質膜 18に対して直接的に密着させるため、例えば、燃料電 気セル12の周囲に額縁状の枠体を設ける場合に比較して部品点数、組付け工数を削減できる点で有利である。 そして、固体高分子電解質膜18に対する液状シールSの面圧も均一になり、固体高分子電解質膜18が偏った力を受けることもない。

【0034】そして、液状シールSを、アノード電極2 2及び第2ガス拡散層26とカソード電極20及び第1 ガス拡散層24の各端面下に密着しているため、該端面 Tからリークした反応ガスが燃料電池セル12の外周を 吹き抜けることがないため、反応に寄与しないガスがな くなり、供給されたガスを確実に発電に寄与させ、無駄 なく効率のよい発電を行なうことができる。

[0035]

【発明の効果】以上説明してきたように、請求項1に記載した発明によれば、前記固体高分子電解質膜の周囲に設けたはみ出し部に直接的に密着する液状シールが固体高分子電解質膜とセパレータとの間で形状変化して前記シール寸法のバラツキに追従し、溝部内において一定の面圧を確保した状態で両者間に隙間なく介在して両者間の気密性を確保することができるため、セパレータと電極膜構造体との間で全周に渡って均一なシール反力が得られ、均一なシール性を確保することができるという効果がある。したがって、液状シールによる寸法誤差に対する追従性の良さから、セパレータや電極膜構造体の寸法管理を厳密に行なう必要がなく、寸法精度管理が容易となりコストダウンを図ることができるという効果がある。

【0036】また、液状シールが少なくともアノード側 40

拡散電極のガス拡散層又はカソード側拡散電極のガス拡 散層の端面に密着することで、これらアノード側拡散電 極とカソード側拡散電極の双方の端面からの反応ガスの 吹き抜けを阻止することができるため、そのまま無駄に 排出されるのを防止でき、したがって、その分だけ発電 に使用される実質的なガス量が増加し、効率良く発電を 行なうことができるという効果がある。

【図面の簡単な説明】

【図1】 この発明の実施形態の分解斜視図である。

o 【図2】 図1のA-A断面図である。

【図3】 この発明の実施形態の第1セパレータの図1 のB矢視図である。

【図4】 この発明の実施形態の第2セパレータの図1 のC矢視図である。

【図5】 この発明の実施形態の第2セパレータの図1のD矢視図である。

【図6】 この発明の実施形態の図2の要部拡大図である。

【図7】 実施形態に相当する実験用のサンプル1を示す す断面図である。

【図8】 比較例としての実験用のサンプル2を示す断面図である。

【図9】 比較例としての実験用のサンプル3を示す断面図である。

【図10】 実験結果を示すグラフ図である。

【図11】 従来技術の断面図である。

【図12】 他の従来技術の断面図である。

【符号の説明】

12 燃料電池セル (電極膜構造体)

) 14 第1セパレータ

16 第2セパレータ

18 固体高分子電解質膜

18a はみ出し部

20 カソード電極

22 アノード電極

24 第1ガス拡散層

26 第2ガス拡散層

28 溝部

S 液状シール

40 T 端面

[図11] 【図12】

【図2】

【図5】 16a 16b S(34) -S(35) - <u>38a</u> <u>36a</u> S(35)-\$(35)--S(35) ~<u>40ь</u> <u>40a</u> -<u>78</u> S(35)-~S(35) ~<u>36b</u> <u>38b</u>

フロントページの続き

(72) 発明者 末永 寿彦 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 波多野 治巳 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H026 AA06 CC03 CC08 HH03