Pattern Recognition

- S. S. Samant

Measuring Cluster Quality: Cohesion and Separation

- A proximity graph based approach can be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clustering
- For an individual point i
 - Calculate α = average distance of i to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = (b - a)/max(a,b)$$

- Varies between -1 and 1.
- The closer to 1 the better.

Can calculate the Average Silhouette coefficient for a cluster or a clustering

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point

$$s = (b - a)/max(a,b)$$

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2}

Cluster 2: {P3, P4}

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2}

Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Using the distance matrix in the following table, compute the silhouette coefficient for each point and each of the two clusters

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Using the distance matrix in the following table, compute the silhouette coefficient for each point and each of the two clusters

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Cluster 1 Average SC = (0.833+0.846)/2 = 0.84

Cluster 2 Average SC = (0.556+0.478)/2 = 0.52

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point, each of the two clusters, and **overall clustering**

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Cluster 1 Average SC = (0.833+0.846)/2 = 0.84

Cluster 2 Average SC = (0.556+0.478)/2 = 0.52

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point, each of the two clusters, and **overall clustering**

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Cluster 1 Average SC = (0.833+0.846)/2 = 0.84

Cluster 2 Average SC = (0.556+0.478)/2 = 0.52

Overall Average SC = (0.840+0.517)/2 = 0.68

K-means with scikit-learn

from sklearn import datasets import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn import metrics

Iris Versicolor

Iris Setosa

Iris Virginica

```
iris = datasets.load iris()
X = iris.data
v = iris.target
plt.scatter(X[:,0], X[:,2], c=y, cmap='spring', s=100)
plt.title('Actual',fontsize=25, fontweight='bold')
plt.xlabel('Sepal Length', fontsize=20)
plt.ylabel('Petal Length',fontsize=20)
plt.figure()
cls = KMeans(n clusters = 3, random state=42)
cls.fit(X)
print 'Final centroids:'
print cls.cluster centers
km labels = cls.labels
print metrics.silhouette score(X, km labels)
plt.scatter(X[:,0], X[:,2],c=km labels, cmap='spring', s=100)
plt.xlabel('Sepal Length', fontsize=20)
plt.ylabel('Petal Length',fontsize=20)
plt.title('Predicted clusters',fontsize=25, fontweight='bold')
plt.show()
```


Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	*	
2	4	7	280	29	39	2		300 800
3	1	1	1	7	4	671	- 600	-
4	10	162	3	119	73	2		·-
5	331	22	5	70	13	23		·-
6	5	358	12	212	48	13		·-
Total	354	555	341	943	273	738		

Calculate Entropy, purity, precision, recall, F-score of each of the clusters above.

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the precision and recall of Cluster-1 wrt Metro class

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the precision and recall of Cluster-1 wrt Metro class

Precision = 0.74

Recall = 0.53

- Starts with each point being a cluster, and at each step, merge the closest pair of clusters
- Displayed graphically using a **dendrogram a tree like structure**

- Starts with each point being a cluster, and at each step, merge the closest pair of clusters
- Displayed graphically using a **dendrogram a tree like structure** (*dendro* "tree", *gramma* "drawing")

- Starts with each point being a cluster, and at each step, merge the closest pair of clusters
- Can also be displayed graphically using a **nested cluster diagram**

Basic algorithm

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a proximity matrix p4 p5 |...

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

proximity matrix.

After Merging

• The question is "How do we update the proximity matrix?"

C1 ? C3 C4

C1 ? ?

C2 U C5 ? ? ? ?

C3 ?

C4 ?

C2

Proximity Matrix

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	р4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						_
						_
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
p1						
p2						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>р4</u> р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Cluster Similarity: MIN or Single Link

• Similarity of two clusters is based on the two closest points in the different clusters

	<u> 11 </u>	12	13	4	15
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MIN or Single Link

• Similarity of two clusters is based on the two closest points in the different clusters

_	I 1	12	2 13		15	
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00	
12	0.90	1.00	0.70	0.60	0.50	
13	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
15	0.20	0.50	0.30	0.80	1.00	

Cluster Similarity: MAX or Complete Linkage

• Similarity of two clusters is based on the two farthest points in the different clusters

	<u> 11 </u>	12	13	4	15
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Cluster Similarity: MAX or Complete Linkage

• Similarity of two clusters is based on the two farthest points in the different clusters

_	I 1	12	13	14	15
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Comparison

	p1	p2	р3	p4	p5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
p3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p5	0.35	0.98	0.85	0.76	1.00

Given the data above, perform single link and complete link hierarchical clustering. Draw dendrogram of your results.

	p1	p2	р3	p4	p5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
p3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p 5	0.35	0.98	0.85	0.76	1.00

Given the data above, perform single link and complete link hierarchical clustering. Draw dendrogram of your results.

Single Link:

	p1	p2	p3	p4	p5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
p3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p 5	0.35	0.98	0.85	0.76	1.00

Given the data above, perform single link and complete link hierarchical clustering. Draw dendrogram of your results.

Single Link:

Complete Link

Example - HAC on Iris dataset

```
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from sklearn import metrics
iris = datasets.load iris()
X = iris.data
y = iris.target
plt.scatter(X[:,0], X[:,1], c=y, cmap='spring', s=100)
plt.title('Actual',fontsize=20, fontweight='bold')
plt.xlabel('Sepal Length',fontsize=20)
plt.ylabel('Petal Length',fontsize=20)
plt.figure()
cls = AgglomerativeClustering(n clusters = 3, linkage='average')
cls.fit(X)
hac labels = cls.labels
print metrics.silhouette score(X, hac labels)
plt.scatter(X[:,0], X[:,1],c=hac labels, cmap='spring', s=100)
plt.xlabel('Sepal Length',fontsize=20)
plt.ylabel('Petal Length', fontsize=20)
plt.title('Predicted clusters',fontsize=20, fontweight='bold')
```

Display the Dendrogram

```
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
import numpy as np
from scipy.cluster.hierarchy import dendrogram
iris = datasets.load iris()
X = iris.data
y = iris.target
cls = AgglomerativeClustering(n clusters = 3, linkage='average')
cls.fit(X)
children = cls.children
dist = np.arange(children.shape[0])
observations = np.arange(2, children.shape[0]+2)
linkage mat = np.column stack([children, dist,
observations]).astype(float)
dendrogram(linkage mat, labels=cls.labels )
plt.show()
```

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	V:	
2	4	7	280	29	39	2		35
3	1	1	1	7	4	671		·-
4	10	162	3	119	73	2		
5	331	22	5	70	13	23		·-
6	5	358	12	212	48	13		
Total	354	555	341	943	273	738		

Calculate Entropy and purity of each of the clusters above.

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the Precision and Recall of Cluster-1.

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the Precision and Recall of Cluster-1 wrt Metro class

Precision = 0.74

Recall = 0.53

Thank You!