

SimPowerSystems Hands-on Workshop: Modeling and Simulation of Electrical Power Systems with SimPowerSystems™

Carlos Osorio
Principal Application Engineer
MathWorks - Natick, MA

Outline

- Model fidelity vs. simulation speed
- SimPowerSystems simulation modes
 - Inter-machine oscillation example
 - Matrix converter example
 - Power inverter example

Model fidelity vs. simulation speed

Configure your model to balance the trade-off between simulation speed and model fidelity based on the goals of your simulation

>> edit compare_simulation_modes

Inter-machine oscillation example

>> inter_machine_oscillation

Inter-machine oscillation example

- When there is no active control, the frequency will drop when the load R2 is connected
- This will result in the phasor model results becoming increasingly inaccurate the further the frequency moves away from nominal
- If active control* is in place, then the phasor simulation method is very effective for fast, credible results (*Note: in this example voltage regulators were excluded for clarity)

Inter-machine oscillation example

>> edit bench_inter_machine_oscillation

Matrix converter example

Three-Phase Matrix Converter

>> threephase_matrix_converter

Matrix converter example

Simulation Mode	Normalized Time (Normal Mode)	Normalized Time (Accelerator Mode)
Continuous	1	0.220
Discrete T _s = 2.5e-06	0.128	0.024

>> edit bench_threephase_matrix_converter

Discrete mode - Selecting the integration step size

circuit dynamics

switching frequency (f_{pwm})

duty cycle resolution (f_s)

Power inverter example

Three-Phase Power Inverter

>> threephase_power_inverter

Power inverter example

>> edit bench_threephase_power_inverter

