

Lecture 5: Random Variable, Part III

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

MONTH DAY, 2021

Roadmap

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables
- (Derived) Distribution of Y = g(X) or Z = g(X, Y)
- Quantifying the degree of dependence between two rvs.
- Conditional expectation/variance
- (Random) Sum of random variables

• Given the PDF of X, What is the PDF of Y = g(X)?

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: $Y = X, Y = X + 1, Y = X^2$, etc.

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?
- Easy cases
 - Discrete
 - Linear: Y = aX + b

Discrete Case

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

Discrete Case

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

Discrete Case

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

$$p_Y(3) = p_X(2) + p_X(3) = 0.1 + 0.2 = 0.3$$

 $p_Y(4) = p_X(4) + p_X(5) = 0.3 + 0.4 = 0.7$

If
$$a > 0$$
,

If
$$a < 0$$
,

If
$$a>0$$
, $F_Y(y)=\mathbb{P}(aX+b\leq y)=\mathbb{P}(X\leq \frac{y-b}{a})=F_X(\frac{y-b}{a})$

If a < 0,

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$

If a < 0,

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a}f_X\left(\frac{y - b}{a}\right)$$
If $a < 0$, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X > \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$
If $a < 0$, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X > \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

$$\to f_Y(y) = -\frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a}f_X\left(\frac{y - b}{a}\right)$$
If $a < 0$, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X > \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

Therefore, $f_Y(y) = \frac{1}{|a|} f_X(\frac{y-b}{a})$

If
$$a > 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$

$$\to f_Y(y) = \frac{1}{a} f_X\left(\frac{y - b}{a}\right)$$

If
$$a < 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X > \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

$$\to f_Y(y) = -\frac{1}{a}f_X\left(\frac{y - b}{a}\right)$$

Therefore, $f_Y(y) = \frac{1}{|a|} f_X(\frac{y-b}{a})$

Special case. X is normal. Then, Y is also normal, i.e., $Y \sim N(a\mu + b, a^2\sigma^2)$

Step 1. Find the CDF of *Y*:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Step 1. Find the CDF of Y: $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

** When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

** When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Ex1. $X \sim uniform[0, 1]$. $Y = \sqrt{X}$.

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

 $f_Y(y) = 2y, \quad 0 \le y \le 1$

KAISTEE

Step 1. Find the CDF of *Y*:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

** When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Ex1. $X \sim uniform[0, 1]$. $Y = \sqrt{X}$.

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

 $f_Y(y) = 2y, \quad 0 \le y \le 1$

Ex2. $X \sim uniform[0, 2]$. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

 $f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$

KAISTEE

Step 1. Find the CDF of *Y*:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

** When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Ex1. $X \sim uniform[0, 1]$. $Y = \sqrt{X}$.

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

 $f_Y(y) = 2y, \quad 0 \le y \le 1$

Ex2. $X \sim uniform[0, 2]$. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

 $f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$

Ex3. X with $f_X(x)$. $Y = X^2$.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) + \frac{1}{2\sqrt{y}} f_X(-\sqrt{y}), \quad y \ge 0$$

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex1. $X, Y \sim uniform[0, 1]$, and $X \perp \!\!\!\perp Y$. Z = max(X, Y).

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0,1].$$

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex1. $X, Y \sim uniform[0, 1]$, and $X \perp \!\!\!\perp Y$. Z = max(X, Y).

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0, 1].$$

$$F_{Z}(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$
$$= \mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^{2}$$

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex1. $X, Y \sim uniform[0, 1]$, and $X \perp \!\!\!\perp Y$. Z = max(X, Y).

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0,1].$$

$$F_Z(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$

$$= \mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^2$$
 $f_Z(z) = \begin{cases} 2z, & \text{if } 0 \le z \le 1\\ 0, & \text{otherwise} \end{cases}$

Basically, follows two step approach: (i) CDF and (ii) differentiate.

Basically, follows two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim uniform[0, 1]$$
, and $X \perp \!\!\! \perp Y$. $Z = Y/X$.

Basically, follows two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim uniform[0, 1]$$
, and $X \perp \!\!\! \perp Y$. $Z = Y/X$.

$$F_Z(z) = \mathbb{P}(Y/X \leq z)$$

Basically, follows two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim uniform[0, 1]$$
, and $X \perp \!\!\! \perp Y$. $Z = Y/X$.

$$F_Z(z) = \mathbb{P}(Y/X \leq z)$$

- Depending on the value of z, two cases need to be considered separately.

Basically, follows two step approach: (i) CDF and (ii) differentiate.

Ex2.
$$X, Y \sim uniform[0, 1]$$
, and $X \perp \!\!\! \perp Y$. $Z = Y/X$.

$$F_Z(z) = \mathbb{P}(Y/X \le z)$$

$$= \begin{cases} z/2, & 0 \le z \le 1 \\ 1 - 1/2z, & z > 1 \\ 0, & \text{otherwise} \end{cases}$$

- Depending on the value of z, two cases need to be considered separately.

Basically, follows two step approach: (i) CDF and (ii) differentiate.

Ex2. $X, Y \sim uniform[0, 1]$, and $X \perp \!\!\! \perp Y$. Z = Y/X.

$$F_Z(z) = \mathbb{P}(Y/X \le z)$$

$$= \begin{cases} z/2, & 0 \le z \le 1 \\ 1 - 1/2z, & z > 1 \\ 0, & \text{otherwise} \end{cases}$$

$$f_Z(z) = egin{cases} 1/2, & 0 \leq z \leq 1 \ 1/(2z^2), & z > 1 \ 0, & ext{otherwise} \end{cases}$$

- Depending on the value of z, two cases need to be considered separately.

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$

- A very basic case with many applications
- Assume that $X,Y\in\mathbb{Z}$

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\! \perp Y$

- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$p_{Z}(z) = \mathbb{P}(X + Y = z)$$

$$= \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X = x, Y = y)$$

$$= \sum_{x} \mathbb{P}(X = x, Y = z - x)$$

$$= \sum_{x} \mathbb{P}(X = x) \mathbb{P}(Y = z - x)$$

$$= \sum_{x} p_{X}(x) p_{Y}(z - x)$$

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\!\perp Y$

- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$p_{Z}(z) = \mathbb{P}(X + Y = z)$$

$$= \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X = x, Y = y)$$

$$= \sum_{x} \mathbb{P}(X = x, Y = z - x)$$

$$= \sum_{x} \mathbb{P}(X = x)\mathbb{P}(Y = z - x)$$

$$= \sum_{x} p_{X}(x)p_{Y}(z - x)$$

- Interpretation (for a given z)
- (i) Flip (horizontally) $p_Y(y)$ ($p_Y(-x)$)
- (ii) Put it underneath $p_X(x)$ $(p_Y(-x+z))$

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\!\perp Y$

- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$p_{Z}(z) = \mathbb{P}(X + Y = z)$$

$$= \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X = x, Y = y)$$

$$= \sum_{x} \mathbb{P}(X = x, Y = z - x)$$

$$= \sum_{x} \mathbb{P}(X = x)\mathbb{P}(Y = z - x)$$

$$= \sum_{x} p_{X}(x)p_{Y}(z - x)$$

- $p_Z(z)$ is called _____ of the PMFs of X and Y.

- Interpretation (for a given z)
- (i) Flip (horizontally) $p_Y(y)$ ($p_Y(-x)$)
- (ii) Put it underneath $p_X(x)$ $(p_Y(-x+z))$

Functions of multiple rvs: Z = X + Y, $X \perp \!\!\!\perp Y$

- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$p_{Z}(z) = \mathbb{P}(X + Y = z)$$

$$= \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X = x, Y = y)$$

$$= \sum_{x} \mathbb{P}(X = x, Y = z - x)$$

$$= \sum_{x} \mathbb{P}(X = x)\mathbb{P}(Y = z - x)$$

$$= \sum_{x} p_{X}(x)p_{Y}(z - x)$$

- $p_Z(z)$ is called **convolution** of the PMFs of X and Y.

- Interpretation (for a given z)
- (i) Flip (horizontally) $p_Y(y)$ ($p_Y(-x)$)
- (ii) Put it underneath $p_X(x)$ $(p_Y(-x+z))$

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

- Very special, but useful case
 - X and Y are normal.

$\overline{Y = X + Y}$, $X \perp \!\!\!\perp Y$: Continuous

Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

- Very special, but useful case
 - X and Y are normal.

Sum of two independent normal rvs

$$X \sim N(\mu_X, \sigma_X^2)$$
 and $Y \sim N(\mu_X, \sigma_X^2)$
Then, $X + Y \sim N(\mu_X + \mu_y, \sigma_X^2 + \sigma_y^2)$

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

- Very special, but useful case
 - X and Y are normal.

Sum of two independent normal rvs

$$X \sim N(\mu_X, \sigma_X^2)$$
 and $Y \sim N(\mu_X, \sigma_X^2)$
Then, $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

- Why normal rvs are used to model the sum of random noises.
- (Extension) The sum of finitely many independent normals is also normal.

Roadmap

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables
- (Derived) Distribution of Y = g(X) or Z = g(X, Y)
- Quantifying the degree of dependence between two rvs.
- Conditional expectation/variance
- (Random) Sum of random variables

• Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Reqs.

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Reqs.
 - a) Increases (resp. decreases) as they become more (resp. less) dependent.

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Reqs.
 - a) Increases (resp. decreases) as they become more (resp. less) dependent.
 - b) 0 when they are independent.

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Reqs.
 - a) Increases (resp. decreases) as they become more (resp. less) dependent.
 - b) 0 when they are independent.
 - c) Shows the direction of dependence by + and -

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Reqs.
 - a) Increases (resp. decreases) as they become more (resp. less) dependent.
 - b) 0 when they are independent.
 - c) Shows the direction of dependence by + and -
 - d) Always bounded by some numbers, e.g., [-1,1]

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence
- Reqs.
 - a) Increases (resp. decreases) as they become more (resp. less) dependent.
 - b) 0 when they are independent.
 - c) Shows the direction of dependence by + and -
 - d) Always bounded by some numbers, e.g., [-1,1]
- Good engineers: Good at making good metrics
 - Metric of how our society is economically polarized
 - A lot of metrics in our professional sports leagues (baseball, basketball, etc)
 - Cybermetrics in MLB (Major League Baseball):
 http://m.mlb.com/glossary/advanced-stats

• Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\! \perp Y$
 - More data points (thus increases) when xy > 0 (both positive or negative)

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow$, $Y \uparrow$) or Negative (If $X \uparrow$, $Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$
 - More data points (thus increases) when xy > 0 (both positive or negative)

(Q) What about $\mathbb{E}[X + Y]$?

ullet Solution: Centering. $X o X - \mu_X$ and $Y o Y - \mu_Y$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

• After some algebra, $cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

$$\operatorname{\mathsf{cov}}(X,Y) = \mathbb{E}ig[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])ig]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

Example: cov(X, Y) = 0, but not independent

•
$$p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$$

Example: cov(X, Y) = 0, but not independent

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0

Example: cov(X, Y) = 0, but not independent

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X=1, then we should have Y=0.

$$cov(X,X)=0$$

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

Some Properties

$$cov(X,X)=0$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] - 2cov(X, Y)$$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim Bernoulli(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $var[X_i] = \frac{1}{n}(1 \frac{1}{n})$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim Bernoulli(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $var[X_i] = \frac{1}{n}(1 \frac{1}{n})$

$$var[X] = var\left[\sum_{i \in X_i} X_i\right]$$

$$= \sum_{i \neq j} var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim Bernoulli(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\text{var}[X_i] = \frac{1}{n}(1 \frac{1}{n})$

 \circ For $i \neq j$,

$$\operatorname{cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

$$= \mathbb{P}(X_i = 1 \text{ and } X_j = 1) - \frac{1}{n^2}$$

$$= \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1 | X_i = 1) - \frac{1}{n^2}$$

$$= \frac{1}{n} \frac{1}{n-1} - \frac{1}{n^2} = \frac{1}{n^2(n-1)}$$

$$var[X] = var\left[\sum_{i \in X_i} X_i\right]$$

$$= \sum_{i \neq j} var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

- n people throw their hats in a box and then pick one at random
- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then, $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_i s are independent?
- $X_i \sim Bernoulli(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $\text{var}[X_i] = \frac{1}{n}(1 \frac{1}{n})$

 \circ For $i \neq j$,

$$cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

$$= \mathbb{P}(X_i = 1 \text{ and } X_j = 1) - \frac{1}{n^2}$$

$$= \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1 | X_i = 1) - \frac{1}{n^2}$$

$$= \frac{1}{n} \frac{1}{n-1} - \frac{1}{n^2} = \frac{1}{n^2(n-1)}$$

$$var[X] = var\left[\sum X_i\right]$$

$$= \sum var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

$$= n\frac{1}{n}(1 - \frac{1}{n}) + n(n - 1)\frac{1}{n^2(n - 1)} = 1$$

• Reqs. a), b), and c) satisfied.

- Reqs. a), b), and c) satisfied.
 - d) Always bounded by some numbers, e.g., [-1,1]

- Reqs. a), b), and c) satisfied.
 - d) Always bounded by some numbers, e.g., $\left[-1,1\right]$
- Dimensionless metric. How? but by what?

- Reqs. a), b), and c) satisfied.
 - d) Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

- Reqs. a), b), and c) satisfied.
 - d) Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Reqs. a), b), and c) satisfied.
 - d) Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

• $-1 \le \rho \le 1$

- Reqs. a), b), and c) satisfied.
 - d) Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X-\mu_X)}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- $-1 \le \rho \le 1$
- $|\rho| = 1 \Longrightarrow X \mu_X = c(Y \mu_Y)$ (linear relation, VERY related)

Roadmap

- o Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- Conditioning for random variables, Independence for random variables
- Continuous random variables
 - Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables
- (Derived) Distribution of Y = g(X) or Z = g(X, Y)
- Quantifying the degree of dependence between two rvs.
- Conditional expectation/variance
- (Random) Sum of random variables

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

Consider other rv X, such that

$$\mathbb{E}[X|Y=y] = \begin{cases} 3, & \text{if } y=0\\ 8, & \text{if } y=1\\ 9, & \text{if } y=2 \end{cases}$$

Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider other rv X, such that

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider other rv X, such that

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider other rv X, such that

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

- The rv g(Y) looks special, so let's notate it with some fancy one.

• Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider other rv X, such that

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

- The rv g(Y) looks special, so let's notate it with some fancy one.
- What about? $X_{exp}(Y)$, $\mathbb{E}[X_Y]$, $\mathbb{E}_X[Y]$?

Conditional Expectation

A random variable g(Y) = , called takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

Conditional Expectation

A random variable $g(Y) = \mathbb{E}[X|Y]$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

A function of Y

Conditional Expectation

A random variable $g(Y) = \mathbb{E}[X|Y]$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable

Conditional Expectation

A random variable $g(Y) = \mathbb{E}[X|Y]$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has

Conditional Expectation

A random variable $g(Y) = \mathbb{E}[X|Y]$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has
- Often confusing because of the notation

Expectation of $\mathbb{E}[X|Y]$

Expectation of Conditional Expectation

$$\mathbb{E}\big[\mathbb{E}[X|Y]\big] = \mathbb{E}[X]$$
, Law of iterated expectations

Proof.

$$\mathbb{E}\left[\mathbb{E}[X|Y]\right] = \sum_{y} \mathbb{E}[X|Y = y]p_{Y}(y)$$
$$= \mathbb{E}[X]$$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y=y]=y/2$
- $\mathbb{E}[X|Y] = Y/2$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y=y]=y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

 Forecasts on sales: calculating expected value, given any available information

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{1}{2} = 1/4$

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales)

Revised forecast: $\mathbb{E}[X|Y=y]$

Revised forecast $\neq \mathbb{E}[X]$

- Stick of length /
- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales) Revised forecast: $\mathbb{E}[X|Y = y]$ Revised forecast $\neq \mathbb{E}[X]$
- Law of iterated expectations $\mathbb{E}[\text{revised forecast}] = \text{original one}$

Conditional Variance var[X|Y]

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$var[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$\operatorname{\mathsf{var}}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$var[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

Conditional Variance

A random variable g(Y) = and called takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

$$\operatorname{var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$\operatorname{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

Conditional Variance

A random variable g(Y) = var[X|Y] and called conditional variance of X given Y, takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

$$var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$var[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

Conditional Variance

A random variable g(Y) = var[X|Y] and called conditional variance of X given Y, takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has

Expectation and Variance of $\mathbb{E}[X|Y]$ and var[X|Y]

	$\mathbb{E}[X Y]$	var[X Y]
Expectation	$\mathbb{E}ig[\mathbb{E}(X Y)ig]$	$\mathbb{E}\Big[var(X Y)\Big]$
Variance	$\left[\mathbb{E}(X Y)\right]$	var[var(X Y)]

Law of total variance

$$var[X] =$$

Proof.

(1)

Law of total variance

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

(1)

Law of total variance

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{var}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

(1)

Law of total variance

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{var}(X|Y) = \mathbb{E}[X^{2}|Y] - (\mathbb{E}[X|Y])^{2}$$

$$\mathbb{E}\left[\operatorname{var}(X|Y)\right] = \mathbb{E}[X^{2}] - \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right]$$
(1)

Law of total variance

$$\operatorname{\mathsf{var}}[X] = \mathbb{E}\Big[\operatorname{\mathsf{var}}(X|Y)\Big] + \operatorname{\mathsf{var}}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{var}(X|Y) = \mathbb{E}[X^{2}|Y] - (\mathbb{E}[X|Y])^{2}$$

$$\mathbb{E}\left[\operatorname{var}(X|Y)\right] = \mathbb{E}[X^{2}] - \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right] \tag{1}$$

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right] - (\mathbb{E}\left[\mathbb{E}(X|Y)\right])^{2} = \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right] - (\mathbb{E}[X])^{2} \tag{2}$$

Law of total variance

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{var}(X|Y) = \mathbb{E}[X^{2}|Y] - (\mathbb{E}[X|Y])^{2}$$

$$\mathbb{E}\left[\operatorname{var}(X|Y)\right] = \mathbb{E}[X^{2}] - \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right]$$

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right] - (\mathbb{E}\left[\mathbb{E}(X|Y)\right])^{2} = \mathbb{E}\left[(\mathbb{E}[X|Y])^{2}\right] - (\mathbb{E}[X])^{2}$$
(2)

$$(1) + (2) = \mathbb{E}[X^2] + (\mathbb{E}[X])^2 = \text{var}[X]$$

• *N* : number of stores visited (random)

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + ... X_N$. What are $\mathbb{E}[Y]$ and var[Y]?

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + ... X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{\mathsf{var}}[Y] = \mathbb{E}\Big[\operatorname{\mathsf{var}}(Y|\mathcal{N})\Big] + \operatorname{\mathsf{var}}[\mathbb{E}(Y|\mathcal{N})]$

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + ... X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + ... X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$ $\operatorname{var}[Y|N] = N \operatorname{var}[X_i]$

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$ $\operatorname{var}[Y|N] = N \operatorname{var}[X_i]$ $\mathbb{E}[\operatorname{var}(Y|N)] = \mathbb{E}[N \operatorname{var}[X_i]] = \mathbb{E}[N] \operatorname{var}[X_i]$

- N : number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + \dots X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}\left[\mathbb{E}(Y|N)\right] = \mathbb{E}[N]\operatorname{var}[X_i] \mu^2\operatorname{var}[N]$ $\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2\operatorname{var}[N]$ $\operatorname{var}[Y|N] = N\operatorname{var}[X_i]$ $\mathbb{E}[\operatorname{var}(Y|N)] = \mathbb{E}[N\operatorname{var}[X_i]] = \mathbb{E}[N]\operatorname{var}[X_i]$

Questions?

Review Questions

- 1) What are the key steps to get the derived distributions of Y = g(X) or Z = g(X, Y)?
- 2) How can we compute the distribution of Z + X + Y when X and Y are independent?
- 3) What are covariance and correlation coefficient? Why do we need them?
- 4) Please explain the concepts of conditional expectation and conditional variance.