Low-Power RF Guide

Table of contents

RF made easy

Texas Instruments (TI) offers a wide selection of cost-effective, low-power RF solutions for proprietary and standard-based wireless applications for use in industrial and consumer applications. Our portfolio includes RF transceivers, RF transmitters, RF front end, network processors and Systemon-Chips as well as various software solutions for the sub-1 and 2.4-GHz frequency bands.

In addition, TI provides a large selection of support collateral such as development tools, technical documentation, reference designs, application expertise, customer support, third party and university programs.

Additionally, the Low-Power RF E2E Online Community provides you with technical support forums, videos and blogs, and the chance to openly and freely interact with fellow engineers.

With a broad selection of product solutions, end application possibilities, and range of technical support TI offers the broadest low-power RF portfolio.

We make RF easy!

Application Areas and Global Frequencies
Sub-1 GHz
CC1020/21 Narrowband Transceiver
CC1100E Transceiver
CC1110 System-on-Chip
CC1111 System-on-Chip with Integrated USB Controller8
CC1150 Transmitter
CC430 Technology Platform
2.4 GHz
CC2400 Transceiver11
CC2500 Transceiver
CC2550 Transmitter
CC2510 System-on-Chip
CC2590/CC2591 RF Front End
IEEE 802.15.4/ZigBee®
ZigBee Overview
CC2420 System-on-Chip
CC2430 System-on-Chip
CC2431 System-on-Chip with Location Engine20
CC2520 Transceiver
CC2530 System-on-Chip
CC2480 ZigBee Processor
ZigBee RF4CE - RemoTI™ Network Protocol
Resources
Development Tools
Development Tools FAQ
Application Notes
Design Notes
Developer Network
E2E Online Community31
Product Comparison Guide Sub-1 GHz
Product Comparison Guide for 2.4 GHz33
HF Reader ICs Product Comparison Guide
MSP430F543x MCU Family
Flash-based F2xx MCU Platform Selection Table
Flash-based F4xx MCU Platform Selection Table
Flash-based F5xx MCU Platform Selection Table
Interface Selection Table
Low Dropout (LDO) Regulators Selection Table
Temperature Sensors Selection Table
Op Amp Selection Table
Instrumentation Amplifier Selection Table
References Selection Table

New products are listed in bold red.

Low-Power RF focuses mainly on five major application areas:

- Metering/Smart Meter
- Remote Controls
- Home Automation and Lighting
- · Alarm, Security and Active RFID
- Consumer

Below is a list of applications within each of these categories as well as appropriate RF ICs and solutions.

Metering/Smart Meter

Automatic meter reading Heat cost allocation Smart energy (HAN, NAN, WAN) Infrastructure

Solutions:

Proprietary, Wireless M-Bus

- CC1020
- CC1101
- CC1110
- SimpliciTI™
- 6LoWPAN

IEEE 802.15.4/ZigBee®

- CC2430/CC2530
- CC2520
- ZigBee PRO stack and Smart Energy Profile
- CC2590/91
- 6LoWPAN

Remote Controls

Solutions:

RF4CE/RemoTI™

- RF4CE Software Stack
- CC2430/CC2530
- CC2520
- CC2590/91

Proprietary

- CC2510/11
- CC2500
- SimpliciTl

Consumer

Gaming

Wireless audio

Sports and leisure

Solutions:

- SimpliciTl
- CC2500
- CC2510/11
- CC2590/91
- CC2550

Home Automation and Lighting

HVAC

Thermostats

Door and blinds control

Garage door control

Light switches and control

Motion detection

Energy harvesting

Solutions:

IEEE 802.15.4 and ZigBee

- CC2430/CC2530
- CC2520
- ZigBee PRO stack and Home Automation Profile
- CC2590/91
- 6LoWPAN

Other (Proprietary, Wireless M-Bus, io-homecontrol®)

- CC1101
- CC1110
- CC1150
- CC1020

CC1020/CC1021

Narrowband RF transceiver

CC1020/CC1021

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC1020 and www.ti.com/sc/device/CC1021

A true single-chip, narrowband UHF transceiver

The industry's first true single-chip FSK/GFSK and OOK RF transceiver that meets the stringent requirements of multi-channel narrowband applications in the 402 to 470-MHz and 804 to 940-MHz frequency bands. The CC1020 is designed to comply with the EN 300 220, ARIB STD-T67 standards and FCC CFR47 part 15. The CC1021 is identical to the CC1020 except that it can be used with minimum 50-kHz channel spacing.

Key features

- Channel spacing down to 12.5 kHz
- Blocking performance (71 dB at ±2 MHz)
- High receiver sensitivity (up to –118 dBm for 12.5-kHz channel spacing)
- Programmable output power up to +10 dBm
- Low receive and transmit current consumption
- Programmable carrier sense indicator and digital RSSI output
- Programmable frequency in <300-Hz steps

Benefits

- Ideal for narrowband applications
- Perfect for battery-operated industrial systems requiring long range and good noise immunity
- Suitable for listen-before-talk systems
- Suitable for frequency hopping systems

Applications

- Narrowband applications in the 426/429/433/868/915/950-MHz ISM/SRD band
- · Automatic meter reading
- · Wireless alarm and security systems
- Home automation
- Low-power telemetry
- · Remote keyless entry

CC1020 functional block diagram.

Development tools and software

- CC1020/CC1070DK-433 MHz Development Kit
- CC1020/CC1070DK-868 MHz Development Kit
- CC1020EMK-433 MHz Evaluation Module Kit
- CC1020EMK-868 MHz Evaluation Module Kit

General characteristics

_								
Parameter								
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit	Condition			
Operating conditions								
Frequency range	402	_	470	MHz	Programmable in less than 300-Hz steps			
	804	_	960	MHz	Programmable in less than 600-Hz steps			
Data rate	0.45	_	153.6	kBaud				
Operating voltage	2.3	3.0	3.6	V				
TX mode								
Output power 433/868	-20	_	+10/+5	dBm				
FSK separation	0	_	108/216	kHz				
*ACP, 12.5/25 kHz	_	-46 -49	_	dBc				
0BW, 99.9%, 12.5/25 kHz	-	7.5 9.6	_	kHz	12.5-kHz spacing: 2.4 kBaud, \pm 2.025 kHz 25-kHz spacing: 4.8 kBaud \pm 2.475 kHz			
RX mode								
Sensitivity OOK, 2, 4/4, 8 kBaud	—	-116/-107	_	dBm	Manchester coded data			
Sensitivity FSK, 2.4 kBaud*	-	-118	_	dBm	12.5-kHz spacing: 12.288-kHz receiver filter bandwidth, jammer at ±12.5/±25-kHz offset			
Image channel rejection, calibrated	_	49/52	_	dB				
Blocking, ±2 MHz	—	64/71	_	dB				
Blocking, ±10 MHz	_	75/78	_	dB				
Power consumption								
Current consumption, RX	—	19.9	_	mA				
Current consumption, TX 433/868	_	16.2/20.5	_	mA	0-dBm output power			
Current consumption, power down	_	0.2	1.8	μΑ				

^{*} The CC1021 is identical to the CC1020 except that it can be used with minimum 50-kHz channel spacing.

Integrated multi-channel RF transceiverw

CC1101ww

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC1101

Integrated solution provides low cost and high performance

The CC1101 is a highly integrated, multichannel RF transceiver designed for low-power wireless applications in the 315/433/868/915-MHz ISM bands. The CC1101 is an upgrade of the CC1100 transceiver with improvements for spurious response, close-in phase noise, input saturation level, output power ramping and extended frequency range.

Key features

- Sub-1 GHz FSK/GFSK/MSK/ASK/ OOK RF transceiver
- 1.2 to 500-kBaud data rate
- Low-power, low system cost
- Sleep current: 200 nA
- 90-μs PLL lock time: 240 μs from sleep to RX/TX
- On-chip support for sync word detection, address check, flexible packet length and automatic CRC checking
- Separate 64-byte RX and TX data FIFOs (enable burst mode data transmission)
- Suitable for systems targeting compliance with EN 300 200 (Europe) and FCC CFR Part 15 (U.S.)

Benefits

- Fast development time and low system cost
- Flexible optimization of range power
- Enables use of inexpensive microcontroller
- Enables adaptive channel selection with increased robustness and coexistence of the wireless link
- · Small size solution

Applications

- Wireless alarm and security systems
- · Automatic meter reading
- Industrial monitoring and control
- Home and building automation

Development tools and software

 CC1101DK-433 MHz Development Kit

The CC1101 is pin and register compatible with the 2.4-GHz CC2500 transceiver. Please see page 12.

- CC1101DK-868/915 MHz Development Kit
- CC1101EMK-433 MHz Evaluation Module Kit
- CC1101EMK-868/915 MHz
 Evaluation Module Kit
- SimpliciTI™ software protocol
- Wireless M-Bus

General Characteristics

Parameter								
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit	Condition			
Operating conditions:								
Frequency range	300	_	348	MHz				
	387	_	464	MHz				
	779	_	928	MHz				
Operating temperature range	-40	_	+85	°C				
Operating supply voltage	1.8	_	3.6	V				
Data rate (programmable)	1.2	_	500	kBaud				
Output power (programmable)	-30	_	+12	dBm				
Receiver sensitivity, 1.2 kBaud	_	-113	_	dBm	1.2 kBaud, 868 MHz, 1% packet error rate			
Power consumption								
Current consumption RX, 868 MHz	-	14.7	_	mA	Input well above sensitivity limit			
Current consumption TX	_	15.0 30.0	_	mA mA	0 dBm 12 dBm			
Current consumption, power down	_	<1	_	μА				

CC1100E

Integrated multi-channel RF transceiver CC1100E

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC1100E

Integrated solution provides low cost and high performance

The CC1101E is a highly integrated, multi-channel RF transceiver designed for low-power wireless applications in the 470-MHz and 950-MHz ISM bands.

Key features

- Sub-1 GHz FSK/GFSK/MSK/ASK/ OOK RF Transceiver
- 1.2 to 500-kBaud data rate
- Low-power, low system cost
- Sleep current: -200 nA
- 90-μs PLL lock time: –240 μs from sleep to RX/TX
- On-chip support for sync word detection, address check, flexible packet length and automatic CRC checking
- Separate 64-byte RX and TX data FIFOs (enable burst mode data transmission)

Benefits

- Fast development time and low system cost
- Flexible optimization of range power
- Enables use of inexpensive microcontroller
- Enables adaptive channel selection with increased robustness and coexistence of the wireless link
- Small size solution

Applications

· Automatic meter reading

Functional block diagram.

General Characteristics

Parameter					
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit	Condition
Operating conditions:					
Frequency range	470	_	510	MHz	
	950	_	960	MHz	
	470	_	510	MHz	
Operating temperature range	-40	_	+85	°C	
Operating supply voltage	1.8	_	3.6	V	
Data rate (programmable)	1.2	_	500	kBaud	
Output power (programmable)	-30	_	+12	dBm	
Receiver sensitivity, 1.2 kBaud	_	-112	_	dBm	1% packet error rate
Power consumption					
Current consumption RX	_	16	_	mA	Input well above sensitivity limit
Current consumption TX	_	15.0 30.0	=	mA mA	0 dBm 12 dBm
Current consumption, power down	_	<1	_	μA	

RF System-on-Chip Solution

CC1110F8/F16/F32

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC1110F8

Radio, MCU and Flash all-in-one chip

The CC1110Fx family consists of three System-on-Chips designed for low-power and low-voltage wireless communication applications. With a 315/433/868/915-MHz radio transceiver, a single-cycle 8051 MCU, 8/16/32-kB Flash memory and additional peripherals, these unique all-in-one devices make it easier than ever to finish your design faster while offering numerous application possibilities.

Key features

- High-performance, low-power 8051 MCU core, typically with 8x the performance of a standard 8051
- Utilizes the high-performance CC1101 RF transceiver core
- 8/16/32-kB in-system programmable Flash
- 1/2/4-kB SRAM (with data retention in all power modes)
- 8- to 12-bit ADC, 21 general purpose I/O pins, on-chip timers
- Very few external components required
- Four flexible power modes for reduced power consumption
- Very fast transition times from sleep modes to active mode enables ultra-low average power consumption in low duty-cycle systems
- In deep-sleep modes the system can wake up on external interrupts or real-time counter events
- Low current consumption
- AES-128 encryption coprocessor
- · Powerful DMA functionality
- Real-time clock with low-power 32.768-kHz crystal oscillator or internal 34-kHz RC Oscillator

Benefits

- Complete solution on one single chip
- Ideal for low-power, battery operated systems
- Robust and secure link with very good coexistence

Applications

- Alarm and security
- Automatic meter reader
- · Smart metering
- · Wireless audio
- Consumer electronics

General characteristics

Development tools and software

- CC1110/CC1111DK Development Kit
- CC1110EMK-433 MHz Evaluation Module Kit
- CC1110EMK-868/915 MHz Evaluation Module Kit
- SimpliciTI™ software protocol
- · Wireless M-Bus

eliciai ciiai acteristics								
Parameter								
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit	Condition			
Operating conditions								
Frequency range	300	_	348	MHz				
	391	_	464	MHz				
	782	_	928	MHz				
Operating temperature range	-40	_	+85	°C				
Operating supply voltage	2.0	_	3.6	V				
Data rate (programmable)	1.2	_	500	kBaud				
Output power (programmable)	-30	_	10	dBm				
Reciever sensitivity	_	-111	_	dBm	1.2 kBaud, 868 MHz, 1% packet error rate			
Current consumption								
MCU active and RX mode	_	17	_	mA	System clock at 203 kHz			
MCU active and TX mode, 0 dBm	_	20/21	_	mA	MCU running at full speed (26 MHz), radio in TX mode, 0-dBm output power			
Power mode 2	_	0.5	_	μА	32 kHz RC-oscillator (or 32.768-kHz crystal oscillator) and sleep timer running			
Power mode 3	_	0.3	_	μА	No clocks running, power On Reset (POR) active, can wake up on external interrupt			
Wake-up and timing								
From power mode 2 or 3 to active	_	100	_	μѕ	Digital regulator and high-speed oscillators off, start-up of regulator and high-speed RC Oscillator			
From active to RX or TX	_	90	_	μs	Time from enabling 26-MHz crystal oscillator and the radio part until RX or TX starts			

RF System-on-Chip with integrated full-speed USB controller CC1111F8/F16/F32

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/CC1111F8

Radio, MCU, Flash and USB all-in-one chip

The CC1111 is a System-on-Chip with USB controller for low-power wireless applications in the 315/433/868/915-MHz frequency bands. The CC1111 combines the excellent performance of the industry-leading CC1101 RF transceiver with an enhanced MCU, full-speed USB 2.0, 32-kByte Flash memory, 4-kBytes RAM, 128-bit AES hardware encryption and many other powerful features.

Key features

- Full-speed USB 2.0 with 1-kB USB FIFO, 12-Mbps transfer rate, five bi-directional endpoints with support for bulk, interrupt and isochronous transfers
- Sub-1 GHz RF transceiver identical to the CC1101:
 - Highly configurable with support for 1.2 to 500kBaud data rate and FSK, MSK, GFSK and OOK/ASK modulation
- Very low current consumption:
 0.3 µA in lowest power mode
- 8/16/32-kB in-system programmable flash
- 1/2/4-kB SRAM (with data retention in all power modes)
- Excellent receiver sensitivity and robustness
- 128-bit AES supported in hardware coprocessor
- 8-channel, 8- to 14-bit ADC with up to eight inputs
- Industry standard I²S interface for digital audio data, full duplex, mono and stereo support, configurable sample rate and sample size
- Direct memory access which reduces MCU load

Benefits

- Complete solution on one single chip
- Ideal for low-power battery operated systems

CC1111 functional block diagram.

- Robust and secure link with very good coexistence
- Powerful and flexible development tools and reference designs available

Applications

- · Alarm and security applications
- · Automatic meter reading
- Industrial monitoring and control
- · Home and building automation

Development tools and software

- CC1110/CC1111DK Development Kit
- CC1111EMK-868/915
 Evaluation Module Kit
- SimpliciTI software protocol

General characteristics

Parameter									
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit	Condition				
Operating conditions									
Frequency range	300	_	348	_					
	391	_	464	_					
	782	_	928	MHz					
Operating temperature range	0	_	85	°C					
Operating supply voltage	3.0	_	3.6	V					
Data rate (programmable)	1.2	_	500	kBaud					
Output power (programmable)	-30	_	10	dBm					
Receiver sensitivity	_	-110	_	dBm	1.2 kBaud, 1% packet error rate				
Current consumption									
MCU active and RX mode	_	19	_	mA					
MCU active and TX mode, 0 dBm	_	20/21	_	mA					
Power mode 2	_	0.5	_	μA					
Power mode 3	_	0.3	_	μA					
Wake-up and timing									
From power mode 2 or 3 to active	_	100	_	μѕ	Digital regulator and high-speed oscillators off, start-up of regulator and high-speed RC oscillator				
From active to RX or TX	_	90	_	μѕ	Time from enabling 26-MHz crystal oscillator and the radio part until RX or TX starts				

Multi-channel RF transmitter CC1150

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC1150

Integrated solution provides low cost and high performance

The CC1150 is a highly integrated, multi-channel RF transmitter designed for low-power wireless applications in the 315/433/868/915-MHz ISM band.

Key features

- Best-in-class price/performance ratio
- Many powerful digital features:
- Full packet handling including preamble generation, sync word insertion, flexible packet length and automatic CRC generation
- Reference design with two-layer PCB with all components mounted on the same side
- Programmable high data rate from 1.2 to 500 kBaud
- Programmable output power up to +12 dBm
- Low-transmit current consumption
- Fast startup time (0.3 us)
- Packaging: very small footprint 4x4 mm, 20-pin QLP package

Benefits

- Fast development time and low system cost
- Flexible optimization of range vs power
- Enables use of inexpensive microcontroller
- · Small solution size

Applications

- Home and building automation
- · Automatic meter reading
- Wireless alarm and security systems
- Industrial monitoring and control
- · Wireless sensor networks
- · Consumer electronics

CC1150 functional block diagram.

Development tools and software

- CC1150EMK-433 MHz Evaluation Module Kit
- CC1150EMK-868/915 MHz
 Evaluation Module Kit
- CC1101DK-433 MHz Development Kit

- CC1101DK-868/915 MHz Development Kit
- SimipliciTl software protocol
- SimpliciTl software protocol

General characteristics

Parameter								
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit				
Operating conditions								
Frequency range	300	_	348	MHz				
	400	_	464	MHz				
	800	_	928	MHz				
Output power (programmable)w	-30	_	+10	dBm				
Operating temperature range	-40	_	+85	°C				
Operating supply voltage	1.8	_	3.6	V				
Data rate (programmable)	1.2	_	500	kBaud				
Power consumption								
Current consumption TX, (+10 dBm) 433 MHz	_	26.4	_	mA				
Current consumption TX, (0 dBm) 433 MHz	_	14.9	_	mA				
Current consumption, power down	_	<1	_	μА				

The all new CC430 combines leading MCU and Low-Power RF Technology CC430

www.ti.com/cc430

Bringing personal and industrial wireless networking to the mass market, the CC430 technology platform offers the industry's lowest-power, single-chip radio-frequency (RF) solution for microcontroller (MCU)-based applications. By making RF design easy, small, performance rich and power efficient, the CC430 platform helps advance applications including RF networking, energy harvesting, industrial monitoring and tamper detection, personal wireless networks, automatic metering infrastructure (AMI) and heat cost allocators.

Key features

- Best of both worlds: Newest MSP430 MCU and leading Low-Power RF IC provides smarter, low-power applications with more flexibility
- Smaller is better:
 Leading integration means
 smaller products, easier
 manufacturing and lower
 systems cost
- Making RF easy:
 Complete ecosystem for MCU
 and RF ease of use and fast time to market

Applications

- · Energy harvesting
- Industrial monitoring/tamper detection
- Personal wireless networks
- · Heat cost allocators
- Automatic metering infrastructure (AMI)

Visit the CC430 Technology Blog on TI's E2E Online Community and join the journey towards the release! community.ti.com

CC430 —high integration reduces complexity, lets designers do more with less. *Expected release date, 4Q 2009.

High data-rate RF transceiver CC2400

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2400

The CC2400 is a low supply voltage (1.6 to 3.6 V), 1-Mbps RF transceiver designed for low-power wireless applications in the 2.4-GHz ISM band.

Key features

- Very few external components required
- Reference design with two-layer PCB with all components mounted on the same side
- Very low supply voltage: 1.6 to 3.6 V
- High sensitivity PER: –101 dBm at 10 kBaud PER: –87 dBm at 1 Mbps
- Programmable data rate: 10 kBaud, 250 kBaud and 1 Mbps
- Programmable output power up to 0 dBm
- Low receive and transmit current consumption
- Many powerful digital features:
 - Full packet handling including preamble generation, sync word insertion/detection, address check, flexible packet length and automatic CRC
- Digital RSSI output
- Very good selectivity and blocking performance

Benefits

- High data rate (1 Mbps)
- Fast development time and low system cost
- Flexible optimization of range vs power
- Enables increased robustness and coexistence of the wireless link

Applications

- · Wireless VoIP solutions
- High data-rate consumer electronics
- · Wireless game controllers
- Wireless keyboard/mouse
- · Wireless audio

For a 2.4-GHz alternative, see CC2500, page 12.

Development tools and software

- CC2400DK Development Kit
- CC2400EMK Evaluation Module Kit

General characteristics

Parameter	Min	Тур	Max	Unit
Operating conditions				
Frequency range	2400	_	2483	MHz
Data rate	10.0	_	1000.0	kBaud
Operating voltage (chip core)	1.6	_	2.0	V
Operating I/O voltage	1.6	_	3.6	V
Operating temperature	-40	_	85	°C
RX mode				
Receiver sensitivity, 10 kBaud, BER 10-3	_	-101	_	dBm
Receiver sensitivity, 1 Mbps, BER 10-3	_	-87	_	dBm
Current consumption				
Current consumption, RX	_	23	_	mA
Current consumption, TX, 0 dBm	_	19	_	mA
Current consumption, TX, -5 dBm	_	15	_	mA
Current consumption, TX, -20 dBm	_	11	_	mA
Current consumption, power down	_	1.5	_	μА

Low-power, highly integrated RF transceiver CC2500

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2500

The CC2500 is a highly integrated, multi-channel RF transceiver designed for low-power wireless applications in the 2.4-GHz ISM band.

Key features

- Excellent selectivity and out-of-band blocking performance
- Many powerful digital features:
- Full packet handling including preamble generation, sync word insertion/detection, address check, flexible packet length and automatic CRC
- Programmable carrier sense indicator, digital RSSI output
- Very few low-cost external components required
- Reference design with two-layer PCB with all components mounted on the same side
- 2-FSK, GFSK, MSK, OOK

Benefits

- Fast development time and low system cost
- Only needs an inexpensive microcontroller
- Adaptive channel selection with increased robustness and coexistence of the wireless link
- Robust and secure link with very good coexistence with Bluetooth® and WiFi

Applications

- · Wireless game controllers
- Wireless keyboard/mouse
- Consumer electronics
- · Wireless audio
- Sports and leisure equipment
- · RF-enabled remote controls

Development tools and software

- CC2500/CC2550DK Development Kit
- CC2500EMK Evaluation Module Kit
- eZ430-RF2500 MSP430 Wireless Development Tool
- SimpliciTI™ Software Protocol

The CC2500 is pin and register compatible with the sub-1 GHz CC1101 transceiver, please see page 5.

General characteristics

Parameter								
(433/868 MHz, 3.0 V, 25°C)	Min	Тур	Max	Unit	Condition			
Operating conditions								
Frequency range	2400	_	2483.5	MHz				
Data rate (programmable)	1.2	_	500	kBaud				
Sensitivity, 2.4 kBaud	_	-104	_	dBm	Optimized sensitivity			
Sensitivity, 250 kBaud	_	-89	_	dBm	Optimized sensitivity			
Output power (programmable)	-30	_	1	dBm				
Operating supply voltage	1.8	_	3.6	V				
Current consumption								
RX input signal at the sensitivity limit, 2.4 kBaud	_	17.0	_	mA				
RX input well above sensitivity limit, 2.4 kBaud	_	14.5	_	mA				
RX input signal at the sensitivity limit, 250 kBaud	_	16.6	_	mA	Current optimized			
RX input well above sensitivity limit, 250 kBaud	_	13.3	_	mA	Current optimized			
Current consumption, TX, 0 dBm	_	21.2	_	mA				
Current consumption, TX, -12 dBm	_	11.1	_	mA				
Current consumption, power down	_	<1	_	μA				

Low-power, highly integrated RF transmitter CC2550

Get samples, datasheets and application notes at: www.ti.com/sc/device/CC2550

The CC2550 is a highly integrated, multi-channel RF transmitter designed for low-power, one-way wireless applications in the 2.4-GHz ISM band.

Key features

- Reference design with two-layer PCB with all components mounted on the same side
- Programmable data rate from 1.2 to 500 kBaud
- Programmable output power
- Low transmit current consumption
- Many powerful digital features:
 - Full packet handling including preamble generation, sync word insertion/detection, address check, flexible packet length and automatic CRC
- Very few external components required
- 2-FSK, GFSK, MSK, OOK
- Packaging: Very small footprint 4x4 mm, 16-pin QFP package

Benefits

- Fast development time and low system cost
- Flexible optimization of range vs power
- Small size solution
- Robust and secure link with very good coexistence with Bluetooth® and WiFi

Applications

- Wireless game controllers
- Wireless keyboard/mouse
- · Consumer electronics
- · Wireless audio
- · Sports and leisure equipment

Development tools and software

- CC2500/CC2550DK Development Kit
- CC2550EMK Evaluation Module Kit
- SimpliciTI™ Software Protocol

For a sub-1 GHz alternative, see CC1150, page 9.

General characteristics

Parameter	Min	Тур	Max	Unit
Operating conditions				
Frequency range	2400	_	2483.5	MHz
Operating supply voltage	1.8	_	3.6	V
Data rate (programmable)	1.2	_	500	kBaud
Output power (programmable)	-30	_	1	dBm
Current consumption				
Current consumption, TX, 0 dBm	_	19.4	_	mA
Current consumption, TX, -12 dBm	_	11.2	_	mA
Current consumption, power down	_	<1	_	μА

System-on-Chip RF solution

CC2510F8/F16/F32

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2510F8

The CC2510Fx is a true System-on-Chip device designed for low-power and low-voltage wireless communication applications. The CC2510Fx combines the excellent performance of the CC2500 RF transceiver with an industry-standard enhanced 8051 MCU, 8/16/32 kB of in-system programmable Flash memory, 1/2/4 kB of RAM and many other powerful peripherals.

Key features

- High-performance, low-power 8051 MCU core with in-system programmable Flash and SRAM
- Four flexible power modes for reduced power consumption and very fast transition times from sleep modes to active mode
- Excellent selectivity and out-of-band blocking performance, and AES-128 encryption coprocessor
- 2-FSK, GFSK, MSK, OOK

Benefits

- Complete solution on single chip
- Ideal for low-power, battery operated systems
- Robust and secure link with very good coexistence

Applications

- Consumer electronics
- Wireless keyboard/mouse
- Wireless gaming accessories
- Wireless voice audio
- Sports and leisure equipment
- Remote controls

Development tools and software

- CC2510/CC2511DK Development Kit
- CC2510EMK Evaluation Module Kit
- SimpliciTI™ Software Protocol

For sub-1 GHz alternative, see CC1110 page 7.

General characteristics

Parameter	Min	Тур	Max	Unit	Condition
Operating conditions					
Frequency range	2400	_	2483.5	MHz	
Operating temperature range	-40	_	+85	°C	
Operating supply voltage	2.0	_	3.6	٧	
Data rate (programmable)	1.2	_	500	kBaud	
Output power (programmable)	-30	_	1	dBm	
Receiver sensitivity, 2.4 kBaud	_	-103	_	dBm	2-FSK, 203-kHz RX filter bandwidth, 1% PER
Receiver sensitivity, 250 kBaud	_	-90	_	dBm	2-FSK, 540-kHz RX filter bandwidth, 1% PER
Current consumption					
MCU active and RX mode	_	17.4	_	mA	MCU running at full speed (26 MHz), radio in RX mode 2.4 kBaud
MCU active and TX mode, 0 dBm	_	26	_	mA	MCU running at full speed (26 MHz), radio in TX mode, 0-dBm output power
Power mode 2	_	0.5	1	μА	32-kHz RC oscillator (or 32.768-kHz crystal oscillator), sleep timer running and digital regulator off
Power mode 3	_	0.3	1	μA	No clocks running, digital regulator off
Wake-up and timing					
From power mode 2 or 3 to active	_	100	_	μѕ	Digital regulator and high-speed oscillators off, Start-up of regulator and high-speed RC oscillator
From power mode 1 to active	_	4	_	μs	Digital regulator on and high-speed oscillator off 32-kHz RC oscillator (or 32.768-kHz crystal oscillator) running

System-on-Chip with integrated full-speed USB-certified controller

CC2511F8/F16/F32

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2511F8

The CC2511Fx is a powerful 2.4-GHz System-on-Chip that includes a full-speed USB controller. These unique ICs shorten time to market and allow designers to build tiny USB devices that communicate wirelessly with PC peripherals.

Key features

- Full-speed USB with 1-kB USB FIFO, 12 Mbps tranfer rate, 5 bidirectional endpoints with support for bulk, interrupt and isochonous transfers
- High-performance, low-power 8051 MCU core with in-system programmable Flash, SRAM and full-speed USB controller
- Four flexible power modes for reduced power consumption and very fast transition times from sleep modes to active mode
- Excellent selectivity and out-of-band blocking performance, and AES-128 encryption coprocessor
- 2-FSK, GFSK, MSK, OOK

Benefits

- Complete solution on single chip
- Ideal for low-power, batteryoperated systems
- Robust and secure link with very good coexistence

Applications

- Consumer electronics
- Wireless keyboard/mouse
- Wireless gaming accessories
- · Wireless voice audio
- Sports and leisure equipment
- RF-enabled remote controls

Development tools and software

- CC2510/CC2511DK Development Kit
- CC2511EMK Evaluation Module Kit
- SimpliciTI™ Software Protocol

For sub-1 GHz alternative, see CC1111 on page 12.

General characteristics

Parameter	Min	Тур	Max	Unit	Condition
Operating conditions					
Frequency range	2400	_	2483.5	MHz	
Operating temperature range	0	_	+85	°C	
Operating supply voltage	3.0	_	3.6	٧	
Data rate (programmable)	1.2	_	500	kbps	
Output power (programmable)	-30	_	1	dBm	
Receiver sensitivity, 2.4 kBaud	_	-103	_	dBm	2-FSK, 203-kHz RX filter bandwidth, 1% PER
Receiver sensitivity, 250 kBaud	_	-90	_	dBm	2-FSK, 540-kHz RX filter bandwidth, 1% PER
Current consumption					
MCU active and RX mode	_	17.4	_	mA	MCU running at full speed (26 MHz), radio in RX mode 2.4 kBaud
MCU active and TX mode, 0 dBm	-	26	_	mA	MCU running at full speed (2 MHz), radio in TX mode, 0-dBm output power
Power mode 2	-	0.5	1	μА	32-kHz RC oscillator (or 32.768-kHz crystal oscillator), sleep timer running and digital regulator off
Power mode 3	_	0.3	1	μΑ	No clocks running, digital regulator off
Wake-up and timing					
From power mode 2 or 3 to active	_	100	_	μs	Digital regulator and high-speed oscillators off, start-up of regulator and high-speed RC oscillator
From active to RX or TX	_	4	_	μs	Digital regulator on and high-speed oscillator off, 32-kHz RC oscillator (or 32.768-kHz crystal oscillator) running

CC2590, CC2591

2.4 GHz RF front end

CC2590, CC2591

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2590 and www.ti.com/sc/device/CC2591

CC2590 and CC2591 are 2.4-GHz range extenders specially designed for all existing and future 2.4-GHz RF transceivers and System-on-Chip solutions from TI. CC2590/CC2591 increase the link budget by providing a power amplifier for improved output power and an LNA with low noise figure for improved receiver sensitivity. They contain PA, LNA, switches, RF-matching, and balun for simple design of high-performance wireless applications.

Key features

CC2590

- Up to +14-dBm output power
- 22-mA transmit current at 3 V at +12-dBm output power
- 4.6-dB LNA noise figure including RX/TX switch and antenna match

CC2591

- Up to +22-dBm output power
- Up to +28-dB increased link budget
- 112-mA transmit current at 3 V at +20-dBm output power
- 4.8-dB LNA noise figure including RX/TX switch

CC2590/CC2591

- Seamless interface to TI's 2.4-GHz Low-Power RF devices
- 6-dB typ improved sensitivity on CC24xx, CC2500, CC2510 and CC2511
- Very few external components: integrated PA, LNA, switches, inductors, balun and matching network
- Low receive current: 3.4 mA in HIGH gain mode, 1.7 mA in LOW gain mode
- 100 nA in power down
- Digital control of LNA gain by HGM pin
- Packaging: RoHS-compliant, 4x4 mm QFN-16

Development tools

- CC2590EMK Evaluation Module Kit
- CC2430-CC2590EMK Evaluation Module Kit
- CC2591EMK Evaluation Module Kit

CC2590/CC2591 block diagram.

CC2590 general characteristics

Parameter	Min	Тур	Max	Unit
Supply range	2.0	_	3.6	V
Frequency range	2400	_	2483.5	MHz
Ambient temperature range	-40	_	85	°C
Power down current	_	0.1	0.3	μA
RX mode				
Receive current, high gain mode		3.4	4	mA
Receive current, low gain mode	_	1.8	2	mA
Gain, high gain mode	_	11.4	_	dB
Gain, low gain mode	_	0	_	dB
Input, 1-dB compression, high gain mode	_	-21	_	dB
Noise figure, high gain mode	_	4.6	_	dB
TX mode				
Transmit current, 12-dBm output power	_	22	_	mA
Output power	_	12	_	dBm
Power added efficiency, PAE	_	23	_	%
Output 1-dB compression	_	10.4	_	dBm

CC2591 general characteristics

Parameter	Min	Тур	Max	Unit
Supply range	2.0	_	3.6	V
Frequency range	2400	_	2483.5	MHz
Ambient temperature range	-40	_	85	°C
Power down current	_	0.1	0.3	μΑ
RX mode				
Receive current, high gain mode	_	3.4	4	mA
Receive current, low gain mode	_	1.7	2	mA
Gain, high gain mode	_	11	_	dB
Gain, low gain mode	_	1	_	dB
Noise figure, high gain mode	_	4.8	_	dB
Input, 1-dB compression, high gain mode	_	-17	_	dB
TX mode				
Transmit current, 20-dBm output power	_	100	_	mA
Output power	_	20	_	dBm
Power added efficiency, PAE	_	33	_	%
Output 1-dB compression	_	19	_	dBm

ZigBee/IEEE 802.15.4

ZigBee enables companies to have a simple, reliable, low-power, worldwide wireless public standard optimized for the unique needs of remote monitoring and control applications.

ZigBee mesh networking

ZigBee supports self-healing mesh networking which is a decentralized network topology very similar to the Internet. It allows nodes to find new routes throughout the network if one route fails making ZigBee a very robust solution.

Z-Stack™ – TI's industry leading ZigBee protocol stack

Z-Stack supports ZigBee-2007, including both the ZigBee and ZigBee PRO feature sets and smart energy and supports multiple platforms, including the CC2430 System-on-Chip, CC2431 System-on-Chip with location engine and CC2520 + MSP430 platform.

TI's newest version of Z-Stack introduces a new application feature called SimpleAPI. SimpleAPI has only 10 API calls to learn, which drastically simplifies the development of ZigBee applications. Z-Stack features include:

- SimpleAPI
- Z-Stack protocol stack extensions
- Z-Tool™ (debug tool)

*For more information on TI's ZigBee software offering, see page 27.

Application areas

ZigBee 802.15.4 can be used in any monitoring and control application that requires a wireless link:

- Home, building and industrial automation
- Energy harvesting
- · Home control/security
- · Medical/patient monitoring
- · Logistics and asset tracking
- · Sensor networks and active RFID
- Advanced metering
- · Commercial building automation

ZigBee RF4CE

ZigBee[®] RF4CE is designed for a wide range of remotely-controlled audio/visual consumer electronics products to enable RF communication between remote controls, TVs and set-top boxes.

RemoTI™ is TI's solution for ZigBee RF4CE and is a complete solution offering hardware and software support for TI's Low-Power RF product portfolio.

For more information on ZigBee RF4CE and RemoTl see page 24.

Three paths to ZigBee

TI offers three ZigBee-compliant platforms for all its IEEE 802.15.4 radios to provide designers with a solution where only the application needs to be added.

All three solutions are built on the CC2420/CC2520 radio and feature excellent coexistence.

These compliant platforms will shorten time to market and simplify system design and ZigBee end-product certification.

		Path 1 Small footprint High integration Location Engine optional	Path 2 Flexible Easy to use Reduces time to market	Path 3 Ultra-low power Well known radio Excellent coexistence
® Solution	Customer Application	CC2530 CC2430/1	Any MSP430	MSP430
e ZigBee [®]	Z-Stack™ ZigBee Stack	Low-Power Re	CC2480 ZigBee Processor	Tanaana J
Complete	Radio		Section of the sectio	CC2420/CC2520
Dev	velopment Kits	CC2530DK CC2430/1ZDK	eZ430-RF2480	CC2420/CC2520 + MSP430ZDK

3

CC2420

RF transceiver for IEEE 802.15.4/ZigBee

CC2420

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2420

The CC2420 is the leading ZigBee/ IEEE 802.15.4 RF transceiver on the market designed specifically for low-power, low-voltage RF applications in the 2.4-GHz unlicensed ISM band. It exceeds the standard's requirements for selectivity and ensures long communication range as well as effective, reliable communication.

Key features

- True single-chip 2.4-GHz IEEE 802.15.4/ZigBee RF transceiver
- Very few external components required
- No external RF switch/filter needed
- Packet handling with RX and TX data buffering
- Digital RSSI/LQI support
- Hardware MAC encryption and authentication (AES-128)
- Low current consumption:
 RX: 18.8 mA, TX: 17.4 mA
- Low supply voltage with internal voltage regulator:
 - o 2.1 V to 3.6 V
- Programmable output power
- Excellent selectivity and blocking performance
- DSSS modem with 2M chips/s and 250-kbps effective data rate
- Packaging: QLP-48 7x7 mm

Benefits

- · Low system cost and small footprint
- Hardware support offloads microcontroller
- Excellent coexistence with Bluetooth[®] and WiFi

Applications

- Home and building automation
- · Industrial monitoring and control
- · Sensor networks
- Consumer electronics

CC2420 functional block diagram.

Development tools and software

- CC2420DK Development Kit
- CC2420ZDK ZigBee Development Kit
- CC2420+MSP430 ZigBee/ IEEE 802.15.4 Development Kit
- CC2420EMK ZigBee/IEEE 802.15.4 Evaluation Module Kit
- Z-Stack™ Software
- TIMAC
- SimpliciTI™ Software Protocol

General characteristics

Parameter	Min	Tun	Max	Unit
	IVIIII	Тур	IVIAX	UIIIL
Operating conditions				
Frequency range	2400	_	2483.5	MHz
Data rate	_	250	_	kBaud
Operating voltage	2.1	_	3.6	V
Operating temperature	-40	_	85	°C
Nominal output power in TX mode	0	_	_	dBm
RX mode				
Receiver sensitivity	-95	_	dBm	_
Adjacent channel rejection, + 5 MHz	45	_	dB	_
Adjacent channel rejection, - 5 MHz	30	_	dB	_
Adjacent channel rejection, + 10 MHz	54	_	dB	_
Adjacent channel rejection, - 10 MHz	53	_	dB	_
Channel rejection >±15 MHz	62	_	dB	_
Current consumption:				
Current consumption, RX	_	18.8	_	mA
Current consumption, TX, -10 dBm	_	11	_	mA
Current consumption, TX, -5 dBm	_	14	_	mA
Current consumption, TX, 0 dBm	_	17.4	_	mA
Current consumption, voltage regulator off	_	0.02	1	mA

RF System-on-Chip for IEEE 802.15.4/ZigBee

CC2430F32/F64/F128

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2430

The CC2430 is a true System-on-Chip solution for ZigBee and combines the excellent performance of the leading CC2420 RF transceiver with an industry-standard enhanced 8051 MCU, 32/64/128-kByte Flash, 8 kB of RAM and many other powerful features. Combined with TI's leading ZigBee protocol stack (Z-StackTM), the CC2430 is the market's most competitive ZigBee solution.

Key features

- 32-MHz, single-cycle, low-power 8051 MCU
- Four flexible power modes for reduced power consumption
- 8-kByte SRAM, 4 kByte with data retention in all power modes
- One IEEE 802.15.4 MAC timer, one general 16-bit timer and two 8-bit timers
- Digital RSSI/LQI support
- Hardware AES encryption engine
- 2.4-GHz IEEE 802.15.4 compliant RF transceiver
- 32/64/128-kByte in-system programmable Flash
- Industry leading ZigBee protocol stack (Z-Stack) available
- Excellent selectivity and blocking performance
- DSSS modem with 2M chips/s and 250-kBaud effective data rate
- Packaging: QLP-48 RoHScompliant, 7x7 mm QLP-48

Benefits

- Ultra-low power, ideal for battery-operated systems
- Hardware support offloads microcontroller
- Flexible solution that fits both IEEE 802.15.4 and ZigBee applications
- Excellent coexistence with Bluetooth[®] and WiFi
- Very small footprint
- Very few external components required

CC2430 functional block diagram.

Applications

- Home and building automation
- · Industrial monitoring and control
- Sensor networks
- Intelligent toys
- · Consumer electronics

Development tools and software

- CC2430DK Development Kit
- CC2430ZDK ZigBee Development Kit
- CC2430EMK Evaluation Module Kit
- Z-Stack™ Software
- TIMAC
- SimpliciTI™ Software Protocol
- RF4CE

General characteristics					
Parameter	Min	Тур	Max	Unit	Condition
Operating conditions					
Frequency range	2400	—	2483.5	MHz	
Operating temperature range	-40	_	+85	°C	
Operating supply voltage	2.0	_	3.6	٧	
Radio bit rate	_	250	_	kBaud	
Receiver sensitivity	_	-92	_	dBm	
Adjacent channel rejection (+5 MHz/ -5 MHz)	_	41/30	_	dB	
Alternate channel rejection (+10 MHz/-10 MHz)	55/53	_	_	dB	
Interfering channel rejection (+15 MHz/-15 MHz)	55/53	_	_	dB	
Nominal output power in TX mode	_	0	_	dBm	
Current consumption					
MCU active and RX mode	_	27	_	mA	MCU running at full speed (32 MHz), radio in RX mode
MCU active and TX mode, 0 dBm	-	27	_	mA	MCU running at full speed (32 MHz), radio in TX mode, 0-dBm output power
Power mode 2	_	0.5	_	μA	32-kHz oscilliator and sleep time running
Power mode 3	_	0.3	_	μА	No clocks running, power on reset (POR) active, can wake-up on external interrupt.
Wake-up and timing					
From power mode 2 or 3 to active		120		μs	

RF System-on-Chip with location engine for IEEE 802.15.4/ZigBee CC2431

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2431

The CC2431 with location engine is a true System-on-Chip for ZigBee/IEEE 802.15.4 wireless sensor networking solutions. It combines the excellent performance of the industry leading CC2420 RF transceiver with an enhanced 8051 MCU, 8-kB RAM, 128-kB Flash, memory and many other powerful features. The CC2431 is the market's most competitive solution for low-power wireless sensor networking.

Key features

- RSSI-based flexible location engine
- Fully pin compatible with CC2430
- 32-MHz single-cycle low-power 8051 MCU
- Four flexible power modes for reduced power consumption
- 8-kB SRAM, 4 kB with data retention in all power modes
- One IEEE 802.15.4 MAC timer, one general 16-bit timer and two 8-bit timers
- Digital RSSI/LQI support
- Hardware AES encryption engine
- 2.4-GHz IEEE 802.15.4 compliant RF transceiver
- 128-kB in-system programmable Flash
- Industry leading ZigBee protocol stack (Z-StackTM) available
- Excellent selectivity and blocking performance
- DSSS modem with 2M chips/s and 250-kBps effective data rate
- Very few external components required
- Packaging: RoHS-compliant, 7x7 mm QLP-48

Benefits

- Same hardware/module as for CC2430 can be used
- Ultra-low power, ideal for battery-operated systems
- Hardware support offloads MCU
- Flexible solution that fits both IEEE 802.15.4 and ZigBee applications
- Excellent coexistence with Bluetooth® and WiFi
- Very small footprint

CC2431 functional block diagram.

Applications

- Asset tracking
- Inventory control
- Container/pallet tracking
- Security
- · Access and control systems
- Commissioning networks

Development tools and software

- CC2431DK Development Kit
- CC2431ZDK ZigBee Development Kit
- CC2431EMK Evaluation Module Kit
- Z-Stack™ Software
- TIMAC
- SimpliciTI™ Software Protocol

General characteristics

See CC2430 page 20 for general characteristics

Location Engine	Min	Тур	Max	Unit	Condition
Location range	_	_	_	_	64 m x 64 m
Reference node location resolution	0.25	_	_	m	
RSSI resolution	0.5	_	_	dB	
Number of reference nodes used in calculation	3	_	16	_	
Location error	_	3	_	m	The recommended density of 3 m reference nodes is one per 100 m2

RF transceiver for IEEE 802.15.4/ZigBee CC2520

Get samples, datasheets, evaluation modules and application notes at: www.ti.com/sc/device/CC2520

The CC2520 is TI's second generation ZigBee/IEEE 802.15.4 RF transceiver for the 2.4-GHz unlicensed ISM band. This chip enables industrial-grade applications by offering state-of-the-art noise immunity, excellent link budget, operation up to 125°C and low-voltage operation.

In addition, the CC2520 provides extensive hardware support for packet handling, data buffering, burst transmissions, data encryption, data authentication, clear channel assessment, link quality indication and packet timing information. These features reduce the load on the host controller.

Key features

- State-of-the-art noise immunity with mininum 48-dB adjacent channel rejection
- Excellent link budget (103 dB)
- Extended temp range (-40°C to +125°C)
- Extensive IEEE 802.15.4 MAC hardware support
- CC2420 interface compatibility mode
- AES-128 security module

Benefits

- Enables industrial applications in the 2.4-GHz ISM band
- Excellent coexistence with Bluetooth[®] and WiFi
- Hardware support offloads MCU

Applications

- Industrial monitoring and control
- · Home and building automation
- Low-power wireless sensor networks
- · Set-top boxes and remote controls

Development tools and software

- CC2520DK Development Kit
- Z-Stack™ Software
- TIMAC
- SimpliciTI™ Software Protocol

CC2520 functional block diagram.

General characteristics

Parameter	Min	Тур	Max	Unit
Operating conditions				
Frequency range	2394	2483.5	2507	MHz
Data rate	_	250	_	kBaud
Operating voltage	1.8	_	3.6	V
Operating temperature	-40	_	125	°C
Output power	-18	_	5	dBm
RX mode				
Receiver sensitivity		-98	_	dBm
Adjacent channel rejection, +5 MHz	_	49	_	dB
Adjacent channel rejection, -5 MHz	_	49	_	dB
Adjacent channel rejection, +10 MHz	_	54	_	dB
Adjacent channel rejection, -10 MHz	_	54	_	dB
Current consumption				
Current consumption, RX		22	_	mA
Current consumption, TX, +5 dBm	_	33	_	mA
Current consumption, TX, 0 dBm	_	25	_	mA
Current consumption, power down	_	<1	_	μA

2.4-GHz IEEE 802.15.4/ZigBee® System-on-Chip solution

CC2530

Get samples, evaluation modules and application notes at: www.ti.com/sc/device/CC2530

The CC2530 is a cost-effective, low power, and true System-on-Chip solution specifically tailored to IEEE 802.15.4 and ZigBee applications.

The CC2530 comes in four different versions: CC2530-F32/64/128/256, with 32/64/128/256-KB flash memory respectively and combines a fully integrated high-performance RF transceiver with an industry-standard enhanced 8051 MCU, 8-KB RAM and other powerful supporting features and peripherals.

Key features

- Up to 256-kB flash with 20K erase cycles to support over-the-air updates, large applications
- 8-kB RAM for more complex applications and ZigBee profiles
- Programmable output power up to +4 dBm
- Less than 1-µA current consumption in power down with sleep timer running
- Includes powerful address recognition and packet processing engine
- On-chip USB 2.0 full-speed device on CC2531. available 5/11/2009.

Key benefits

- Supports ZigBee/ZigBee PRO, ZigBee RF4CE, 6LoWPAN, WirelessHART, and all 802.15.4based solutions
- Excellent receiver sensitivity and programmable output power
- Very low current consumption in RX, TX, and multiple low-power modes ensure long battery lifetime
- Best-in-class selectivity and blocking performance (50-dB ACR)

Applications

- Smart energy/automated meter reading
- Remote controls
- Home/building automation
- Consumer products
- · Industrial control and monitoring
- Low-power wireless sensor networks

NEW

CC2530 block diagram.

General characteristics

Parameter	Min	Тур	Max	Unit						
Operating conditions	Operating conditions									
Frequency range	2400	_	2483.6	MHz						
Operating temperature range	-40	_	+85/125	°C						
Operating supply voltage	2.0	_	3.6	V						
Radio bit rate	_	250	_	kBaud						
Receiver sensitivity	_	- 97	_	dBm						
Adjacent channel rejection	_	49/49	_	dB						
Alternate channel rejection	_	54/54	_	dB						
Interfering channel rejection	_	54/54	_	dB						
Nominal output power in TX mode	_	+4	_	dBm						
Current consumption										
MCU active and RX mode	_	25	_	mA						
MCU active and TX mode, +4 dBm	_	34	_	mA						
Power mode 1	_	105	_	μA						
Power mode 2	_	0.8	_	μА						
Power mode 3	_	0.4	_	μА						
Wake-up and timing	Wake-up and timing									
From power mode 2 or 3 to active	_	120	_	μs						
From active to RX or TX	_	192	_	μs						

ZigBee® Processor

CC2480

Get samples, datasheets and application notes at: www.ti.com/sc/device/cc2480a1

The CC2480 is a cost-effective and simple-to-use 2.4-GHz RF ZigBee front end. It is ideal for application developers that have their own MCU preference and want to add ZigBee functionality, without having to learn the complexities of a full ZigBee stack.

The ZigBee processor communicates to the host processor via an SPI or UART command interface. The host processor converses with the ZigBee processor using an easy-to-use protocol.

Key features

- Easy-to-use ZigBee processor
- Integrated 2.4-GHz, IEEE 802.15.4 compliant radio
- Integrated ZigBee 2006 compliant stack
- Supports TI's Z-Stack™ Software and SimpleAPI
- Excellent radio performance
- Low power consumption, very few low-cost external components needed
- Packaging: RoHS-compliant, 7x7 mm QLP-48

Benefits

- Shorten time to market
- Lower development cost
- Enable system partitioning: the ZigBee processor handles all network related activities while the host MCU can focus on the application
 - Easy integration with existing systems
 - Short development time
- Very good coexistence with Bluetooth[®] and Wifi
- Very few external components needed

Applications

- Home and building automation
- · Industrial monitoring and control
- Sensor networks
- Intelligent toys
- Consumer electronics

Development tools

• eZ430-RF2480 Evaluation Module

→

ZigBee RF4CE - RemoTI™ Network Protocol

RemoTITM Change infrared to RF with RemoTI

ZigBee® RF4CE is designed for a wide range of remotely-controlled audio/visual consumer electronics products to enable RF communication between remote controls, TVs and set-top boxes.

RemoTI Network Protocol from Texas Instruments

The RemoTl Network Protocol is the industry leading ZigBee RF4CE software architecture and provides a complete solution for developing ZigBee RF4CE compliant products with Tl's industry leading CC2530 IEEE/802.15.4 System-on-Chip. The RemoTl Network Protocol provides:

- A low-cost feature-enriched solution for ZigBee RF4CE products with TI's best-in-class CC2530 System-on-Chip
- Full application profile support in an easy-to-use package
- Four flexible power modes drawing as little as 0.4µA in quiescent mode thus reducing power consumption and extending system lifetime for battery powered devices
- Extensive worldwide support and tools to ensure development of ZigBee RF4CE-based products is simple, fast and can be completed at minimal cost

RemoTI development kits:

- Simple remote control form factor
- Easy-to-use receiver board w/PC interface and GUI
- Legacy IR support
- Suite of development tools available

For more information on the RemoTI development kit, please contact: lprf-rf4ce@ti.com

www.ti.com/rf4ce

Development Tools

TI offers a large selection of development kits and tools that enable both software and hardware designers and engineers to quickly get started with their low-power RF devices.

The table below gives an overview of the development kits available for each of the LPRF RF ICs.

Development tools

•			
Part number	Development kit (DK)	Evaluation module kit (EMK)	Other compatible mother boards
CC1020	CC1020-CC1070DK433 CC1020-CC1070DK868	CC1020EMK433 CC1020EMK868	_
CC1070	CC1020-CC1070DK433 CC1020-CC1070DK868	CC1070EMK433 CC1070EMK868	_
CC1101	CC1101DK433 CC1101DK868-915	CC1101EMK433 CC1101EMK868-915	MSP430FG4618 Exp Board MSP430F5438 Exp Board*
CC1150	_	CC1150EMK433 CC1150EMK868	MSP430FG4618 Exp Board MSP430F5438 Exp Board*
CC1110	CC1110-CC1111DK	CC1110EMK433 CC1110EMK868-915	_
CC1111	CC1110-CC1111DK	CC1111EMK868-915	_
CC2500	CC2500-CC2550DK	CC2500EMK	MSP430FG4618 Exp Board MSP430F5438 Exp Board*
CC2550	CC2500-CC2550DK	CC2550EMK	MSP430FG4618 Exp Board MSP430F5438 Exp Board*
CC2510	CC2510-CC2511DK	CC2510EMK	_
CC2511	CC2510-CC2511DK	CC2511EMK	_
	_		_
CC2520	CC2520DK	CC2520EMK	MSP430F5438 Exp Board*
CC2430	CC2430DK CC2430ZDK CC2430DBK	CC2430EMK	_
CC2431	CC2431DK CC2431ZDK	CC2431EMK	_
CC2530	CC2530-CC2531DK CC2530ZDK	CC2530EMK	_
CC2531	CC2530-CC2531DK	CC2531EMK	_
CC2590	_	CC2590EMK CC2430-CC2590EMK	_
CC2591	_	CC2591EMK CC2430-CC2591EMK CC2520-CC2591EMK	_

^{*}Not released yet

eZ430-RF development tools

Part number	Description
eZ430-RF2500	Low-cost development tool with CC2500 and MSP430F2274
eZ430-RF2480	Low-cost ZigBee demonstration and development tool with a CC2480 ZigBee network processor and MSP430F2274

PC tools

Part number	Description
SmartRF™ Studio	Application for controlling the RF ICs from the PC and to find appropriate register settings for the radio.
RF Protocol Packet Sniffer	Simple packet sniffer application. Communicates with an evaluation board that captures packets on the specified channel. The sniffer parses and displays the packets.
Flash Programmer	Use this application to program Intel HEX files on the System-on-Chips or to update the firmware on the evaluation boards.

9

Development Tools FAQ

What is a DK?

A Development Kit (DK) contains the basic hardware that is necessary to start development of an RF system. In most configurations, a development kit consists of two evaluation boards, two small RF modules, antennas and cables. The RF modules can be plugged into the evaluation board – enabling direct access to the radio's features from a PC.

What is an EMK?

An Evaluation Module Kit (EMK) is a small kit that contains two RF modules (we also call them evaluation modules) and antennas. The EMK3 is exactly the same piece of hardware that is being used in characterization of the radio, and it is possible to get the same performance from these boards as what is stated in the part's datasheet. The EMK can be ordered separately and can be used as add-ons to existing kits, compatible motherboards or other boards with matching connectors. The modules are equipped with two 2x10 sockets from Samtec (SFM-110-02-SM-D-A-K-TR) matched with headers from Samtec (TFM-110-02-SM-D-A-K-TR).

What is a DBK?

A Demonstration Board Kit (DBK) usually contains one single board with a radio and peripherals – i.e. a complete functional reference board for the device. A DBK is typically used as an additional node in ZigBee development kits.

What is a ZDK?

A ZigBee Development Kit (ZDK) is very similar to a normal development kit, but it contains more nodes and they come preprogrammed with a ZigBee demo application, giving you ZigBee directly out of the box. The ZDK also contains extended evaluation periods of several development tools and a trial version of and advanced ZigBee Network Analyzer from Daintree.

What can I do with a DK?

When the RF modules are connected to the evaluation board, it is possible to control the radio from the PC using SmartRF Studio. Most of the development kits also come preprogrammed with a Packet Error Rate

test application, which makes it easy to perform practical range testing with the radios. In addition, the development kits are very flexible platforms and it is easy to connect your own peripherals and controllers to breakout pins on the boards. The development kit would also serve as a known good platform during test and verification of your own system.

For development kits with System-on-Chips, the evaluation boards make it possible to debug and program the chip with no additional hardware. The kit also gives access to useful user interfaces for testing of the various peripherals and capabilities of the SoC. The hardware in the kit can also be used as an RF packet sniffer.

Why do I need the EB?

The Evaluation Board (EB) is a very flexible test and development platform. It makes it easy to perform basic functional RF tests, e.g.: use SmartRF Studio + EB + EM to send packets that are received by your own system. Use your own system to send packets and receive the packets using SmartRF Studio + EB + EM.

It lets you test your own software with known good RF hardware, by simply connecting your own MCU to the EB with a radio connected.

You can also do it the other way around, by connecting the EB to your own hardware and use SmartRF Studio to exercise the RF design.

What is the MSP430 Experimenter Board?

The Experimenter Boards are versatile development boards for MSP430 with a lot of external peripherals, making it

easy to experiment and make prototypes to explore the many features of the MSP430 peripherals. These boards are also equipped with connectors for the RF evaluation modules. Note that due to the pin out of the connectors, only a subset of the evaluation modules can be used with the boards. See the table for more information. You will find schematics, software examples and Application Notes for the Experimenter's Boards on the MSP430 Development Tools web pages.

What is the difference between eZ430-RF2500 and eZ430-RF2480?

The eZ430-RF2500 has a target board with a CC2500 RF transceiver, whereas the eZ430-RF2480 has a target board with the CC2480 ZigBee network processor. The eZ430-RF2480 has three nodes (one connected to the PC and two battery operated nodes) and is preprogrammed with a simple application demonstrating a temperature sensor network using the ZigBee network protocol to send messages. The eZ430-RF2500 contains two nodes (one connected to the PC and one battery operated node) and is preprogrammed with a simple wireless sensor application using SimpliciTI™ as the RF transport layer. Both kits contain the same eZ430 emulator dongle.

Are the MSP430 Experimenter's Boards compatible with SmartRF Studio or the RF Protocol Packet Sniffer? No

Are the eZ430-RF tools compatible with SmartRF Studio or the RF Protocol Packet Sniffer? No

Software

In addition to the comprehensive hardware portfolio, TI also provides supporting software ranging from simple application examples to the ZigBee Z-StackTM Software.

SimpliciTI™ Network Protocol www.ti.com/simpliciti

SimpliciTI is a simple low-power RF network protocol aimed at small (<256 nodes) RF networks. Such networks typically contain battery operated devices, which require long battery life, low data rate and low duty cycle. They usually have a limited number of nodes talking directly to each other or through an access point or a range extender. Access points and range extenders are not required, but provide extra functionality such as storing and forwarding messages. With SimpliciTI the MCU resource requirements are minimal which results in a low system cost.

SimpliciTI was designed for easy implementation and out-of-the-box deployment on several TI RF platforms such as the MSP430 family of low-power MCUs and the CC11xx/CC25xx transceivers and SoCs.

TIMAC – IEEE 802.15.4 medium access control software stack

www.ti.com/timac

TIMAC is ideal when you need a wireless point-to-point or point-to-multipoint solution based on a standard (e.g. multiple sensors reporting directly to a master).

TIMAC is:

- A standardized wireless protocol for battery powered and/or mains powered nodes
- Support for acknowledgement and retransmission
- Suitable for applications with low data-rate requirements (about 100 kBps effective data rate)
- Support for IEEE 802.15.4-2003
- Support for IEEE 802.15.4-2006
- Multiple platforms
- Easy application development
- Easy porting

TIMAC is distributed as object code free of charge. There are no royalties for using TIMAC.

Z-Stack™ – ZigBee protocol stack

www.ti.com/z-stack

In December 2006, TI's ZigBee stack, Z-Stack, was one of the first ZigBee stacks to be certified for the ZigBee 2006 specification. The certification ensures that products developed on this platform will be fully interoperable with other platforms that have been ZigBee 2006 certified.

Z-Stack supports multiple platforms including the CC2430 System-on-Chip, CC2431 System-on-Chip with location engine and CC2420 + MSP430 platform.

SimpleAPI

SimpleAPI was introduced with Z-Stack version 1.4.2 and drastically simplifies the development of ZigBee applications.

It has only 10 function calls targeted toward network formation, binding, sending and receiving data.

In addition, stack configuration can be done via NVRAM parameters instead of having pre-compiled values in code. Configuration can be done using a PC-based tool or by an external microcontroller.

Software resources

Name	Description	Web link
SimpliciTI™ Network Protocol	SimpliciTl is a simple low-power RF network protocol aimed at small RF networks	www.ti.com/simpliciti
TIMAC	IEEE 802.15.4 medium access control software stack	www.ti.com/timac
Z-Stack™ Software	ZigBee® protocol stack	www.ti.com/z-stack
MSP430 Code Library for Low-Power RF	The code library provides functions to facilitate the interfacing of an MSP430 MCU to CC1100/2500 RF IC	www.ti.com/ccmsplib
SmartRF™ Studio	SmartRF® Studio is a Windows application made to evaluate and configure the RF ICs	www.ti.com/smartrfstudio
Packet Sniffer	The packet sniffer enables the developer to monitor the packages sent over the air. It is a very useful tool that can be used for SimpliciTI, IEEE 802.15.4, and ZigBee applications	www.ti.com/packetsniffer
Flash Programmer	The flash programmer is used to program TI's SoC solutions	See tool folder of your preferred SoC part
Example Libraries	The example libraries include the most basic functionality needed to establish a link between two devices	See tool folder of your preferred SoC part
USB Libraries	USB interface libraries for devices with built-in USB interface (CC2511, CC1111)	See tool folder of your preferred SoC part

Low-Power RF application notes

To access any of the following application notes, type the URL: www-s.ti.com/sc/techlit/litnumber and replace the lit number with the number in the lit number column below.

Application notes title	Literature number
AN001 - SRD Regulations for License Free Transceiver Operation	swra090
AN002 - Optimizing CC400/CC900/CC1000 for Low LO Leakage	swra089
AN003 - SRD Antennas	swra088
AN009 - CC1000 Micro Controller Interfacing	swra082
AN010 - Using CC1000 for the Konnex Standard	swra081
AN011 - Programming CC1000 Frequency for Best Sensitivity	swra080
AN014 - Frequency Hopping Systems	swra077
AN015 - RF Modem Reference Design	swra076
AN016 - CC1000/CC1050 Used With On-Off Keying	swra075
AN017 - Low Power Systems Using the CC1010	swra074
AN018 - CC1000 Debugging Hints	swra073
AN019 - Crystal Oscillator Issues for CC1000 and CC1010	swra072
AN021 - Voltage Level Conversion	swra071
AN022 - CC1020 Crystal Frequency Selection	swra070
AN023 - CC1020 MCU Interfacing	swra069
AN024 - Frequency Hopping Protocol	swra068
AN025 - CC1020 RF	swra067
AN026 - Wireless Audio	swra066
AN027 - Temperature Compensation	swra065
AN028 - Improved LC Filter	swra064
AN029 - CC1020/CC1021 Automatic Frequency Control (AFC)	swra063
AN030 - CC1020/1021 Received Signal Strength Indicator	swra062
AN031 - Mono Audio Link	swra061
AN032 - 2.4 GHz Regulations	swra060
AN033 - Porting of RF Blinking LED Software Example to CC2420 - MSP430	swra059
AN035 - CC2400 FIFO Usage	swra058
AN036 - CC1020 1021 Spurious Emission	swra057
AN037 - CC2420 with External PA (Rev. B)	swra056
AN039 - Using CC1100/CC1150 in European 433/868 MHz Bands	swra054
AN40 - Folded Dipole Antenna for CC2400, CC2420 and CC2430	swra093
AN41 - CC2420 Coexistence	swra094
AN042 - CC2431 Location Engine	swra095

Application notes title	Literature number
AN043 - 2.4 GHz PCB Antenna for USB Dongle (Rev. A)	swra117
AN045 - Z-Tool	swra119
AN047 - CC1100 CC2500 Wake on Radio	swra126
AN048 - 2.4GHz Antenna (Rev. A)	swra092
AN049 - Software for CC1100/CC2500 and MSP430	swra141
AN50 - Using the CC1101 in the European 868MHz SRD Band	swra146
AN053 - Measuring Power Consumption with CC2430 & Z-Stack	swra144
AN054 - Anaren Balun Optimized for CC2420	swra155
AN055 - Anaren Balun Optimized for CC2430	swra156
AN056 - Gang-Pro CC and Production Programming of the CC2430	swra147
AN057 - Measuring Power Consumption on eZ430-RF2480	swra177
AN058 – Antenna Selection Guide	swra161
AN062 - TI-MAC and Z-Stack modifications for using CC2591 RF Front End w/CC2430	swra208
AN063 - Using CC2591 RF Front End with CC2430	swra212
AN064 - Two Way Audio Communications Using the CC2510	swra225
AN065 - Using CC2591 RF Front End with CC2520	swra229
AN066 - TI-MAC modifications for using CC2591 PA/LNA with MSP430F2618+CC2520	swra230
AN067 - Wireless MBUS Implementation with CC1101 and MSP430	swra234
AN068 - Design Steps and Results for Changing PCB Layer Thickness	swra236
AN069 - Low Cost Long Range One Way Audio Communications at 900 MHz	swra237

Low-Power RF design notes

To access any of the following design notes, type the URL: www-s.ti.com/sc/techlit/litnumber and replace the lit number with the number in the lit number column below.

Design notes title	Literature number
Antenna Measurement with Network Analyzer	DN001 (swra096)
Practical Sensitivity Testing	DN002 (swra097)
Implementation of Microstrip Balun for CC2420, CC243x, and CC2480	DN003 (swra088)
Folded Dipole Antenna for CC25xx	DN004 (swra118)
CC11xx Sensitivity versus Frequency Offset and Crystal Accuracy	DN005 (swra122b)
CC11XX Settings for FCC 15.247 Solutions	DN006 (swra123a)
2.4 GHz Inverted F Antenna	DN007 (swru120b)
868 MHz and 915 MHz PCB Antenna	DN008 (swru121a)
Upgrade from CC1100 to CC1101	DN009 (swra145)
Close-in Reception with CC1101	DN010 (swra147a)
RF Module Testing using SmartRF® Studio	DN011 (swra149a)
Programming Output Power on CC1100 and CC1150	DN012 (swra150a)
Programming Output Power on CC1101	DN013 (swra151a)
Programming Output Power on CC2500 and CC2550	DN014 (swra152)
Permanent Frequency Offset Compensation	DN015 (swra159a)
Compact 868/915 MHz Antenna Design	DN016 (swra160a)
CC11xx 868/915 MHz RF Matching	DN017 (swra168a)
Range Measurements in an Open Field Environment	DN018 (swra169a)
Powering LPW Products	DN019 (swra173)
Programming Output Power on CC243x	DN020 (swra171)
CC2500 and CC2510/CC2511 Sensitivity versus Frequency Offset and Crystal Accuracy	DN021 (swra181)
CC11xx OOK ASK Register Settings	DN022 (swra215)
868 MHz and 915 MHz PCB Inverted-F Antenna	DN023 (swra228a)
868 MHz and 915 MHz Meandering Monopole PCB Antenna	DN024 (swra227a)
Using the ADC to Measure Supply Voltage	DN101 (swra100a)
SoC Temperature Sensor	DN102 (swra101a)
Upgrade from CC2510/11 Preview to Release part	DN105 (swra159)
Power Modes in CC111xFx, CC243x, and CC251xFx	DN106 (swra162a)
DMA and Radio Configuration	DN107 (swra164)

Design notes title	Literature number
Using AES Encryption in CC11xFx, CC243x, and CC251xFx	DN108 (swra120k)
DN109 Using I2S in CC111xFx and CC251xFx	DN109 (swra183)
State Transition Times on CC111xFx and CC251xFx	DN110 (swra191)
Current Consumption for a Polling Receiver	DN111 (swra207)
Using UART in CC111xFx CC243x and CC251xFx	DN112 (swra222a)
CC111xFx CC243xFx CC251xFx SPI Interface	DN113 (swra223)
Using Constants in Code with Z-Stack	DN200 (swra104)
Using the Direct Join Request Feature in Z-Stack	DN201 (swru124a)
Choosing Optimal ZigBee Stack TX Power	DN202 (swra218)
SmartRF04 [®] EB Troubleshooting	DN300 (swra105a)
Code Export from SmartRF® Studio	DN301 (swra106)
Register View in SmartRF® Studio	DN302 (swra107)
Cleanup of Installed PC tools	DN303 (swra108)
Interfacing CC1100 - CC2500 to the MSP430	DN400 (swra116)
Interfacing CC1020/1 to the MSP430	DN401 (swra115)
Simple Audio Loopback Using CC251X	DN402 (swra138)
Packet Transmission Basics	DN500 (swra109b)
PATABLE Access	DN501 (swra110a)
CRC Implementation	DN502 (swra111b)
SPI Access	DN503 (swra112b)
FEC Implementation	DN504 (swra113a)
RSSI Interpretation and Timing	DN505 (swra114b)
GDO Pin Usage	DN506 (swra121a)

Low-Power RF Developer Network

The TI Low-Power RF Developer Network is a worldwide community of respected, experienced, and well established companies servicing the low-power RF market in the sub-1 GHz and 2.4-GHz ISM frequency bands.

This network consists of recommended companies, RF consultants and independent design houses that provide scalable projects from antenna circuit-board layout to turnkey system design and FCC or ETSI compliance testing.

Benefits include:

- A faster design-to-production schedule and experience with the TI Low-power RF product portfolio
- RF circuit, low-power RF and ZigBee design services
- Low-Power RF and ZigBee module solutions
- Development tools for testing and troubleshooting RF systems
- RF certification services and RF circuit manufacturing
- Online search tool to determine suitable RF development partners

To find a suitable partner for your design and test project go to:

www.ti.com/lprfnetwork

Are you interested in becoming a TI development partner?

Send an email to *m.grazier@ti.com* for more information.

Featured third party developers

Europe

Amber Europe:

Amber Wireless GmbH is a German electronics company specializing in the design, manufacturing and marketing of compact short range radio modules and modems for rapid implementation of cable-free data links and have become one of the leading suppliers for ISM/SRD radio modules and radio modems in Europe.

Low-Power RF ICs: CC1020, CC1100, CC2400, CC2420, CC2520

Contact details:

Contact: Wolfgang Esch

Email: wolfgang.esch@amber-wireless.de

Phone: 0049-2203-6991950

URL: http://www.amber-wireless.de/

Radiocrafts:

Radiocrafts designs, manufactures and markets standard RF modules for operation in the license-free ISM bands at 315 / 433 / 429 / 868 / 915 MHz and 2.4 GHz.

Low-Power RF ICs:

CC2420, CC1020, CC2430, CC2431,

CC2400, CC1000 Contact details:

Contact: Peder Martin Evjen

Email: radiocrafts@radiocrafts.com

Phone: (+47) 4000 5195

URL: http://www.radiocrafts.com

Sensinode 6LowPAN:

Sensinode is the pioneer IP-based wireless sensor network solution provider and offers seamless internet integration to embedded device and chip manufacturers through all industries on a worldwide level.

Low-Power RF ICs: CC2430, CC1100, CC1110

Contact details:

Phone: +358 10 387 8680 URL: www.sensinode.com

United States

LS Research:

L.S. Research provides complete design services for product development including embedded firmware, RF design, antenna design, analog/digital design, PCB layout, and prototyping. L.S. Compliance provides FCC, CE, and ETSI testing services.

Low-Power RF ICs:

CC2430, CC2500, CC2550, CC2510, CC1100, CC1110, CC2511,

CC2431,CC1020, CC242

Contact details:

Contact: Bill Steinike

Email: bsteinike@lsr.com Phone: 262-375-4400 ext.103

URL: http://www.lsr.com/

Awarepoint:

Awarepoint is providing its Real-Time Awareness Solutions® to healthcare clients that include prestigious teaching institutions, premiere independents, military facilities and members of major integrated delivery networks.

Low-Power RF ICs: CC2430, CC2431

Contact details:

Toll-Free: 1-888-860-FIND (888-860-3463)

Phone: (858) 345-5000 URL: www.awarepoint.com

Asia

Infortech/Holy Stone Enterprise Co.,LTD

Holy Stone is incorporated as the professional agent of electronic components and parts in Asia since 1981 and provides customers with professional technologies as well as produces MLCC with their own brand name since 1994.

Low-Power RF ICs:

CC2500, CC2550, CC2510, CC1100, CC1110, CC2511, CC2430, CC2431, CC1020, CC2420.

Contact details:

Phone: 886-2-26270383 Fax: 886-2-27981737

E-mail: inquiry@holystone.com.tw

Low-Power RF Online Community

TI's new Online Community has been created to provide you with technical support forums, videos and blogs, and the chance to openly and freely interact with fellow engineers.

With the Low-Power RF Online Community you can:

- Exchange ideas, share knowledge and ask questions about RF-related topics
- > View our latest videos covering basic RF knowledge to deep technical content
- Interact with fellow engineers from all over the world

Join the Low-Power RF E2E Online Community

www.ti.com/lprf-forum

3

Product comparison guide sub-1 GHz

Features/Product	CC1020	CC1021	CC1101	CC1150	CC1110	CC1111	CC1100E
Product type	Transceiver	Transceiver	Transceiver	Transmitter	SoC	SoC	Transceiver
Programmable frequency	402 to 470 MHz 804 to 960 MHz	402 to 470 MHz 804 to 960 MHz	300 to 348 MHz 387 to 464 MHz 779 to 928 MHz	300 to 348 MHz 400 to 464 MHz 800 to 928 MHz	300 to 348 MHz 391 to 464 MHz 782 to 928 MHz	300 to 348 MHz 391 to 464 MHz 782 to 928 MHz	470 to 510 MHz 950 to 960 MHz
Supply voltage	2.3 to 3.6 V	2.1 to 3.6 V	1.8 to 3.6 V	1.8 to 3.6 V	2.0 to 3.6 V	3.0 to 3.6 V	1.8 to 3.6 V
Current consumption (RX) 0 dBm (TX)	19.9/19.9 mA 16.2/20.5 mA	19.9/19.9 mA 16.2/20.5 mA	15.0 mA 14.7 mA	 14.5/15.9 mA	17 mA 31 mA	17 mA 31 mA	15.5 mA 16.6 mA
FSK data rate (max)	153.6 kbps	153.6 kbps	500 kbps	500 kbps	500 kbps	500 kbps	500 kbps
Modulation format	FSK/00K/GFSK	FSK/GFSK/00K	FSK/GFSK/MSK/00K/ ASK	FSK/GFSK/MSK/00K/ ASK	FSK/GFSK/MSK/00K/ ASK	FSK/GFSK/MSK/00K/ ASK	FSK/GFSK/MSK/00K ASK
Receiver sensitivity (FSK)	–118 dBm	-109 dBm	-111 dBm	_	–111 dBm	-111 dBm	-112 dBm
Programmable output power ranging from	–20 to 10 dBm	-20 to 10 dBm	-30 to 12 dBm	-30 to 10 dBm	-30 to 12 dBm	–30 to 12 dBm	-30 to 11 dBm
Multi-channel systems/ frequency hopping protocols	~	~	~	~	~	V	~
RSSI output	Digital	Digital	Digital	_	Digital	Digital	Digital
Integrated bit synchronizer	~	✓	~	_	✓	V	✓
Internal RF switch/IF filter	V	~	V	_	·	✓	V
Antenna connection	Single ended	Single ended	Differential	Differential	Differential	Differential	Differential
Package type	QFN-32	QFN-32	QLP-20	QLP-16	QLP-36	QLP-36	QLP-20
Complies with EN 300 220 and FCC CFR 47, part 15	~	~	~	~	•	V	•
Narrow band (12.5/25 kHz)	~	_	_	_	_	_	_
Integrated MCU	_	_	_	_	✓	V	~
USB	_	_	_	_	_	✓	✓
AES encryption/ authentication	_	_	_	_	~	V	~
Program memory	_	_	_	_	8/16/32-kB Flash	8/16/32-kB Flash	8/16/32-kB Flash
Data memory	_	_	_	_	124-kB SRAM	124-kB SRAM	124-kB SRAM

Product comparison guide 2.4 GHZ

Features/Product	CC2400	CC2520	CC2430	CC2431	CC2550	CC2500	CC2510	CC2511	CC2590 CC2591	CC2480	CC2530 (Preliminary)
Product type	Transceiver	Transceiver	SoC	SoC	Transmitter	Transceiver	SoC	SoC	RF front end	ZigBee® processor	SoC
Programmable frequency, MHz	2400 to 2483	2394 to 2507	2400 to 2483	2400 to 483	2400 to 2483	2400 to 2483	2400 to 2483	2400 to 2483	2400 to 2483.5	2400 to 2483.5	2400 to 2483
Frequency resolution	1 MHz	1 MHz	1 MHz	1 MHz	427 Hz	427 Hz	427 Hz	427 Hz	_	5 MHz	1 MHz
Operating supply voltage	1.6 to 2.0 V	1.8 to 3.8 V	2.0 to 3.6 V	2.0 to 3.6 V	1.8 to 3.6 V	1.8 to 3.6 V	2.0 to 3.6 V	3.0 to 3.6 V	2.0 to 3.6 V	2.0 to 3.6 V	2.0 to 3.6
Current consumption (RX) 0 dBm (TX)	24.0 mA 19 mA	18.5 mA 25.8 mA	27 mA 27 mA	27 mA 24.7 mA	N/A 22.8 mA	12.8 mA 21.6 mA	19.8 mA 23 mA	22 mA 23 mA	1.8 mA 3.4 mA	27 mA 27 mA	25 mA 29 mA
Data rate (max)	1.0 Mbps	250 kbps	250 kbps	250 kbps	500 kbps	500 kbps	500 kbps	500 kbps	_	250 kbps	250 kbps
Receiver sensitivity	-101 dBm at 10 kbps BER = 10-3 85 dBm at 1 Mbps	–98 dBm	-92 dBm at PER < 1%	–94 dBm at PER < 1%	N/A	-89 dBm at 250 kbps 1% PER -99 dBm at 10 kbps	-88 dBm at 250 kbps 1% PER -99 dBm at 10 kbps	-88 dBm at 250 kbps 1% PER -99 dBm at 10 kbps	_	-92 dBm at PER <1%	–97 dBm at PER <1%
Programmable output power ranging from	-25 to 0 Mbps	–20 to 5 dBm	–25 to 0 dBm	–24 to 0 dBm	–20 to 1 dBm	–20 to 1 dBm	-30 to 1 dBm	–30 to 1 dBm	_	0 dBm	–28 to 4 dBm
Multi-channel systems	FHSS	DSSS	DSSS	DSSS	FHSS	FHSS	FHSS	FHSS	_	DSSS	DSSS
RSSI output	Digital	Digital	Digital	Digital	_	Digital	Digital	Digital	_	Digital	Digital
Integrated bit synchronizer	v	v	V	v	_	V	✓	V	_	~	~
Integrated packet handling	v	v	V	V	~	V	~	V	_	~	~
Data buffering	32 bytes FIF0	128 bytes TX 128 bytes RX	128 bytes TX 128 bytes RX DMA	128 bytes TX 128 bytes RX DMA	64 bytes	64 bytes TX 64 bytes RX	128 bytes TX 128 bytes RX DMA	128 bytes TX 128 bytes RX DMA	_	V	128 TX 128 RX DMA
			DIVIA	DIVIA			5.00				J.1 1
Internal RF switch/IF Filter	V	V	✓ ✓	V V	_	V	✓	~	_	V	_
Internal RF switch/IF Filter RF chip interface	✓ Differential	✓ Differential			— Differential	✓ Differential			_	✓ Differential	— Differential
			✓	V	— Differential QLP-16 4x4 mm		v	V	— — QFN-16 QFN-48		_
RF chip interface	Differential QFN-48	Differential QLP-48	Differential QLP-48	Differential QLP-48	QLP-16	Differential QLP-20	Differential QLP-36	Differential QLP-36		Differential	— Differential QFN-40
RF chip interface Package type Complies with EN 300 220, FCC CFR 47, part 15 and	Differential QFN-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	QLP-16 4x4 mm	Differential QLP-20 4x4 mm	Differential QLP-36 6x6 mm	Differential QLP-36 6x6 mm		Differential QFN-48	— Differential QFN-40 6x6 mm
RF chip interface Package type Complies with EN 300 220, FCC CFR 47, part 15 and ARIB STD-T66	Differential QFN-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	QLP-16 4x4 mm	Differential QLP-20 4x4 mm	Differential QLP-36 6x6 mm	Differential QLP-36 6x6 mm		Differential QFN-48	— Differential QFN-40 6x6 mm
RF chip interface Package type Complies with EN 300 220, FCC CFR 47, part 15 and ARIB STD-T66 Integrated MCU	Differential QFN-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	QLP-16 4x4 mm	Differential QLP-20 4x4 mm	Differential QLP-36 6x6 mm	Differential QLP-36 6x6 mm		Differential QFN-48	Differential QFN-40 6x6 mm
RF chip interface Package type Complies with EN 300 220, FCC CFR 47, part 15 and ARIB STD-T66 Integrated MCU IEEE 802.15.4 compliant	Differential QFN-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	QLP-16 4x4 mm	Differential QLP-20 4x4 mm	Differential QLP-36 6x6 mm	Differential QLP-36 6x6 mm		Differential QFN-48	Differential QFN-40 6x6 mm
RF chip interface Package type Complies with EN 300 220, FCC CFR 47, part 15 and ARIB STD-T66 Integrated MCU IEEE 802.15.4 compliant USB AES encryption/	Differential QFN-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	Differential QLP-48 7x7 mm	QLP-16 4x4 mm	Differential QLP-20 4x4 mm	Differential QLP-36 6x6 mm	Differential QLP-36 6x6 mm		Differential QFN-48	Differential QFN-40 6x6 mm

7

HF Reader ICs product comparison guide

TI'S Radio Frequency Identification Systems is an industry leader in RFID technology, and the world's largest integrated manufacturer of TI-RFid™ tags, TI-RFid smart labels, and TI-RFid reader systems. With more than 500 million RFID tags manufactured, TI-RFid technology is used in a broad range of RFID applications worldwide. TI is an active member of many standards bodies, including EPCglobal, ISO, ISO/IEC, ECMA International, ETSI, and several national standardization bodies working to drive the adoption of global standards for RFID technology.

Product comparison guide for HF Reader ICs

Part number	TRF7960	TRF7961
Operating frequency	13.56 MHz	13.56 MHz
Supported protocols	ISO 15693 ISO 18000-3 (Mode 1) ISO 14443A & B Tag-it™ HF	ISO 15693 ISO 18000-3 (Mode 1) Tag-it HF
Operating voltage	2.7 V to 5.5 VDC	2.7 V to 5.5 VDC
Current consumption	Transmit: 200 mW at 110 mA, typ. 100 mW at 70 mA, typ. Active (RX only) 10 mA, typ. Stand-by: 12 µA Power down: <1 µA	Transmit: 200 mW at 110 mA, typ. 100 mW at 70 mA, typ. Active (RX only) 10 mA, typ. Stand-by: 120 µA Power down: <1 µA
Transmitter power	Adjustable power, 100 mW or 200 mW at 5 VDC	Adjustable power, 100 mW or 200 mW at 5 VDC
Transmitter modulation	ASK, adjustable 8% to 30% 00K	ASK, adjustable 8% to 30% 00K
Communication interface	Parallel 8-bit or 4-wire SPI	Parallel 8-bit or 4-wire SPI
Operating temperature	-40°C to +100°C	-40°C to +110°C
Storage temperature	−55°C to +150°C	−55°C to +150°C
Package	32-pin QFN (5mm x 5mm)	32-pin QFN (5mm x 5mm)
Packing/delivery	Tape-on reel, 250 or 3000 per reel	Tape-on reel, 250 or 3000 per reel

www.ti.com/rfid

MSP430F54xx(A)

MSP430 family of ultra-low-power microcontrollers MSP430F54xx(A)

The MSP430F54xx(A) is the newest Flash-based family featuring the lowest power consumption up to 25 MIPS with 1.8 to 3.6-V operation starting at 12 MIPS. New features include an innovative power management module for optimizing power consumption, an internally controlled voltage regulator, and 2x more memory than previous devices.

The MSP43054xx(A) and other members of the MSP430 family support several wireless protocol software stacks including ZigBee, TIMAC 802.15.4 and SimpliciTI™. Memory requirements and code availability information for the software are shown on page 39.

Key features

- Low supply-voltage range
 - 1.8-V to 3.6-V interfaces
- Ultra-low power consumption
 - Active mode (AM): 165 μA/MHz at 8 MHz
 - Standby mode (LPM3 RTC mode): 2.60 μA
 - Off mode (LPM4 RAM retention):
 1.69 μA
 - Shutdown mode (LPM5): 0.1 μA
- Wake-up from standby mode in less than 5 µs
- 16-bit RISC architecture
 - Extended memory operations
 - Up to 18-MHz system clock (MSP430F543x, MSP430F541x)
 - Up to 25-MHz system clock (MSP430F543xA, MSP430F541xA)

- Flexible power management system
 - Fully integrated LDO with programmable regulated core supply voltage
 - Supply voltage supervision, monitoring, and brownout
 - Unified clock system interfaces
 - FLL control loop for frequency stabilization
 - Low-power/low-frequency internal clock source (VLO)
 - Low-frequency trimmed internal reference source (REFO) interfaces
 - o 32-kHz crystals
 - High-frequency crystals up to 32 MHz
- 16-bit timer0_A5 with five capture/compare registers
- 16-Bit timer1_A3 with three capture/compare registers
- 16-bit timer_B7 with seven capture/compare shadow registers
- Up to four universal serial communication interfaces
- Enhanced UART supporting auto-baudrate detection
 - o IrDA encoder and decoder
 - Synchronous SPI
 - o I²C
- 12-bit analog-to-digital (A/D) Converter
 - Internal reference
 - Sample and hold
 - Autoscan feature
 - 12 external channels, 4 internal channels
- Hardware multiplier supporting 32-bit operations
- Serial onboard programming, no external programming voltage needed
- Three channel internal DMA
- Basic timer with real-time clock feature

Key benefits

- Ideal for low-power, battery power applications
 - Ultra-low standby current at 1.5 μA (RTC Mode)
- 32.768-kHz crystal oscillator active
- <5-µs wakeup to stable 25-MHz internal DCO
- RAM and peripheral setup maintained, all interrupts usable
 - Lowest active-mode current at 160 μA/MHz
- Four level user-configurable core voltage tailored to application needs for maximum power savings
- Expanded memory/peripheral mapping
- Peripheral module enhancements
- Offers higher integration enabling USB, RF and more in future family members
- Leading code density and execution efficiency

Applications

- Portable consumer and white goods
- Sensors and Security
- · Automated metering reading
- · Smoke, fire and motion detection
- Human interface controls
 - Voice activation
 - Security systems
 - Automated thermostat
- Portable medical instrumentation

Development tools and software

 MSP-FET430U5x100 (FET + Target Board Bundle)

http://focus.ti.com/docs/toolsw/folders/print/ msp-fet430u5x100.htm

Flash-Based F1xx MCU Platform (V_{CC.} 1.8 - 3.6V), Up to 8 MIPS

riasi	n-Based F1xx M(JU PIALIUII	III (V _{CC,} I	.o - 3.0V),	16	6-Bit ners						MDV						
	(F) Flash	Program (kB)	SRAM (kB)	1/0	A	В	Watchdog	BOR	SVS	(UART/ SPI)	DMA	MPY (16 x 16)	Comp_A+	Temp Sensor	ADC Ch/Res	Additional Features	Packages	Price*
	MSP430F1101A	1	128	14	3	_	•	_	_	_	_	_	~	_	slope	_	20 DGV, DW, PW, 24 RGE	1.25
	MSP430C1101	1	128	14	3	_	~	_	_	_	_	_	v	_	slope	_	20 DW, PW, 24 RGE	0.75
도	MSP430F1111A	2	128	14	3	_	~	_	_	_	_	_	v	_	slope	_	20 DGV, DW, PW, 24 RGE	1.70
x11x1	MSP430C1111	2	128	14	3	_	~	_	_	_	_	_	V	_	slope	_	20 DW, PW, 24 RGE	1.40
	MSP430F1121A	4	256	14	3	_	~	_	_	_	_	_	~	_	slope	_	20 DGV, DW, PW, 24 RGE	2.10
	MSP430C1121	4	256	14	3	_	~	_	_	_	_	_	~	_	slope	_	20 DW, PW, 24 RGE	1.90
F11x2	MSP430F1122	4	256	14	3	_	~	•	_	_	_	_	_	•	5ch, ADC10	_	20 DW, PW, 32 RHB	2.50
듄	MSP430F1132	8	256	14	3	_	~	~	_	_	_	_	_	•	5ch, ADC10	_	20 DW, PW, 32 RHB	2.80
F122	MSP430F122	4	256	22	3	_	•	_	_	1	_	_	•	_	slope	_	28 DW, PW, 32 RHB	2.65
⊏	MSP430F123	8	256	22	3	_	•	_	-	1	_	_	v	_	slope	_	28 DW, PW, 32 RHB	2.85
F12x2	MSP430F1222	4	256	22	3	_	•	•	_	1	_	_	_	•	8ch, ADC10	_	28 DW, PW, 32 RHB	2.95
芷	MSP430F1232	8	256	22	3	_	~	•	_	1	_	_	_	~	8ch, ADC10	_	28 DW, PW, 32 RHB	3.15
F13x	MSP430F133	8	256	48	3	3	1	_	_	1	_	_	V	V	8ch, ADC12	_	64 PM, PAG, RTD	3.75
Ξ	MSP430F135	16	512	48	3	3	1	_	_	1	_	_	✓	V	8ch, ADC12	_	64 PM, PAG, RTD	4.50
×	MSP430C1331	8	256	48	3	3	1	_	_	1	_	_	v	_	slope	_	64 PM, RTD	2.50
C13x1	MSP430C1351	16	512	48	3	3	1	_	_	1	_	_	✓	_	slope	_	64 PM, RTD	2.85
	MSP430F147	32	1024	48	3	7	~	_	_	2	_	~	V	~	8ch, ADC12	_	64 PM, PAG, RTD	6.30
FI 4x	MSP430F148	48	2048	48	3	7	1	_	_	2	_	1	V	V	8ch, ADC12	_	64 PM, PAG, RTD	7.15
_	MSP430F149	60	2048	48	3	7	1	_	_	2	_	~	V	~	8ch, ADC12	_	64 PM, PAG, RTD	7.55
	MSP430F1471	32	1024	48	3	7	1	_	_	2	_	~	V	_	slope	_	64 PM, RTD	5.75
F14x1	MSP430F1481	48	2048	48	3	7	1	_	_	2	_	~	V	_	slope	_	64 PM, RTD	6.65
Œ	MSP430F1491	60	2048	48	3	7	1	_	_	2	_	~	V	_	slope	_	64 PM, RTD	7.00
	MSP430F155	16	512	48	3	3	~	~	~	1 with	~	_	V	V	8ch, ADC12	(2) DAC12	64 PM, RTD	6.20
F15x	MSP430F156	24	1024	48	3	3	•	•	~	1 with I ² C	•	_	~	~	8ch, ADC12	(2) DAC12	64 PM, RTD	6.95
	MSP430F157	32	1024	48	3	3	~	~	~	1 with I ² C	•	_	~	~	8ch, ADC12	(2) DAC12	64 PM, RTD	7.35
	MSP430F167	32	1024	48	3	7	~	•	~	2 with I ² C	~	~	~	•	8ch, ADC12	(2) DAC12	64 PM, RTD	8.45
	MSP430F168	48	2048	48	3	7	•	•	•	2 with I ² C	•	•	•	•	8ch, ADC12	(2) DAC12	64 PM, RTD	9.35
F16x	MSP430F169	60	2048	48	3	7	~	•	~	2 with I ² C	•	•	v	~	8ch, ADC12	(2) DAC12	64 PM, RTD	9.95
Ξ	MSP430F1610	32	5120	48	3	7	~	•	•	2 with I ² C	•	•	v	•	8ch, ADC12	(2) DAC12	64 PM, RTD	10.35
	MSP430F1611	48	10240	48	3	7	~	•	~	2 with I ² C	•	•	v	~	8ch, ADC12	(2) DAC12	64 PM, RTD	10.85
	MSP430F1612	55	5120	48	3	7	•	•	~	2 with I ² C	•	•	~	•	8ch, ADC12	(2) DAC12	64 PM, RTD	11.20

*Prices are quoted in U.S. dollars in quantities of 100 and represent year 2009 suggested resale pricing. All prices are subject to change. Customers are advised to obtain the most current and complete pricing information from TI prior to placing orders.

TI may verify final pricing prior to accepting any order.

See www.ti.com/msp430 for additional information

Flash-Based F2xx MCU Platform (V_{CC} 1.8 - 3.6V), Up to 16 MIPS

	h-Based F2xx				16-	-Bit ners					US	CI								
	(F) Flash	Program (kB)	SRAM (kB)	1/0	A	В	Watchdog	BOR	SVS	USI: I ² C/SPI	Ch A: UART/ LIN/ IrDA/ SPI	Ch B: I ² C/ SPI	DMA	MPY (16 x 16)	Comp_ A+	Temp Sensor	ADC Ch/Res	Additional Features	Packages	Price*
	MSP430F2001	1	128	10	2	_	~	1	_	_	_	_	_	_	V	_	slope	_	14 PW, N, 16 RSA	0.70
	MSP430F2011	2	128	10	2	-	1	1	_	_	_	_	_	_	1	_	slope	_	14 PW, N, 16 RSA	0.80
ž	MSP430F2002	1	128	10	2	_	1	1	_	~	_	_	_	_	_	V	8ch, ADC10	_	14 PW, N, 16 RSA	1.05
120XX	MSP430F2012	2	128	10	2	_	~	1	_	V	_	_	_	_	_	V	8ch, ADC10	_	14 PW, N, 16 RSA	1.15
	MSP430F2003	1	128	10	2	_	~	1	_	V	_	_	_	_	_	V	4ch, SD16	_	14 PW, N, 16 RSA	1.50
	MSP430F2013	2	128	10	2	_	~	1	_	V	_	_	_	_	_	V	4ch, SD16	_	14 PW, N, 16 RSA	1.65
	MSP430F2101	1	128	16	3, 2	_	~	~	_	_	_	_	_	_	~	_	slope	_	20 DGV, DW, PW, 24 RGE	0.90
	MSP430F2111	2	128	16	3, 2	_	~	~	_	_	_	_	_	_	~	_	slope	_	20 DGV, DW, PW, 24 RGE	1.00
FZIXX	MSP430F2121	4	256	16	3, 2	_	~	•	_	_	_	_	_	_	•	_	slope	_	20 DGV, DW, PW, 24 RGE	1.35
2	MSP430F2131	8	256	16	3, 2	-	~	•	_	_	_	_	_	_	~	_	slope	_	20 DGV, DW, PW, 24 RGE	1.70
	MSP430F2112	2	256	22	3, 2	-	~	~	_	_	1	1	_	_	V	V	8ch, ADC10	_	28 PW, 32 RHB	1.95
	MSP430F2122	4	512	22	3, 2	-	~	V	_	_	1	1	_	_	V	V	8ch, ADC10	_	28 PW, 32 RHB	2.10
	MSP430F2132	8	512	22	3, 2	_	~	~	_	_	1	1		_	~	V	8ch, ADC10	_	28 PW, 32 RHB	2.20
7	MSP430F2232	8	512	32	3	3	~	1	_	_	1	1	_	_	_	V	12ch, ADC10	_	38 DA, 40 RHA	2.40
77	MSP430F2252	16	512	32	3	3	~	1	_	_	1	1	_	_	_	V	12ch, ADC10	_	38 DA, 40 RHA	2.70
	MSP430F2272	32	1024	32	3	3	~	1	_	_	1	1	_	_		V	12ch, ADC10	_	38 DA, 40 RHA	3.10
+	MSP430F2234	8	512	32	3	3	~	~	_	_	1	1	_	_	_	V	12ch, ADC10	(2) OPAMP	38 DA, 40 RHA	2.65
F224	MSP430F2254	16	512	32	3	3	~	1	_	_	1	1	_	_	_	V	12ch, ADC10	(2) OPAMP	38 DA, 40 RHA	2.95
	MSP430F2274	32	1024	32	3	3	V	1			1	1		_		V	12ch, ADC10	(2) OPAMP	38 DA, 40 RHA	3.35
_	MSP430F2330	8	1024	32	3	3	~	1	_	_	1	1	_	1	V	_	slope	_	40 RHA	2.30
25	MSP430F2350	16	2048	32	3	3	~	1	_	_	1	1	_	~	V	_	slope	_	40 RHA	2.65
_	MSP430F2370	32	2048	32	3	3	~	1	_	_	1	1	_	~	V	_	slope	_	40 RHA	2.95
ž	MSP430F233	8	1024	48	3	3	~	1	~	_	1	1	_	~	V	V	8ch, ADC12	_	64 PM, 64 RGC	3.00
2	MSP430F235	16	2048	48	3	3	V	1	~	_	1	1	_	~	V	V	8ch, ADC12	_	64 PM, 64 RGC	3.60
_	MSP430F247	32	4096	48	3	7	~	1	~	_	2	2	_	~	V	V	8ch, ADC12	_	64 PM, 64 RGC	5.05
7.41	MSP430F248	48	4096	48	3	7	1	1	~	_	2	2	_	~	V	V	8ch, ADC12	_	64 PM, 64 RGC	5.75
-24X/2410	MSP430F249	60	2048	48	3	7	~	1	~	_	2	2	_	~	~	V	8ch, ADC12	_	64 PM, 64 RGC	5.90
	MSP430F2410	56	4096	48	3	7	~	1	1	_	2	2	_	1	1	V	8ch, ADC12	_	64 PM, 64 RGC	6.05
	MSP430F2471	32	4096	48	3	7	~	1	1	_	2	2	_	1	V	_	slope	_	64 PM, 64 RGC	4.60
7.4X	MSP430F2481	48	4096	48	3	7	~	1	1	_	2	2	_	~	~	_	slope	_	64 PM, 64 RGC	5.30
_	MSP430F2491	60	2048	48	3	7	1	1	~	_	2	2	_	~	~	_	slope	_	64 PM, 64 RGC	5.45
	MSP430F2416	92	4096	48/64	3	7	~	•	~	_	2	2	_	~	~	~	8ch, ADC12	_	64 PM, 80 PN, 113 ZQW	6.95
F241X	MSP430F2417	92	8192	48/64	3	7	~	•	•	_	2	2	_	•	~	~	8ch, ADC12	_	64 PM, 80 PN, 113 ZQW	7.60
Ź	MSP430F2418	116	8192	48/64	3	7	~	•	•	_	2	2	_	•	~	•	8ch, ADC12	_	64 PM, 80 PN, 113 ZQW	7.95
	MSP430F2419	120	4096	48/64	3	7	~	•	•	_	2	2	_	•	•	•	8ch, ADC12	_	64 PM, 80 PN, 113 ZQW	7.60
	MSP430F2616	92	4096	48/64	3	7	•	•	•	_	2	2	•	•	~	~	8ch, ADC12	(2) DAC12	64 PM, 80 PN, 113 ZQW	8.85
F261x	MSP430F2617	92	8192	48/64	3	7	~	•	•	_	2	2	•	•	~	~	8ch, ADC12	(2) DAC12	64 PM, 80 PN, 113 ZQW	9.50
2	MSP430F2618	116	8192	48/64	3	7	~	•	•	_	2	2	•	•	•	•	8ch, ADC12	(2) DAC12	64 PM, 80 PN, 113 ZQW	9.85
	MSP430F2619	120	4096	48/64	3	7	•	~	•	_	2	2	•	~	•	~	8ch, ADC12	(2) DAC12	64 PM, 80 PN, 113 ZQW	9.50

^{*}Prices are quoted in U.S.dollars in quantities of 100 and represent year 2009 suggested resale pricing. All prices are subject to change.

See www.ti.com/msp430 for additional information

Customers are advised to obtain the most current and complete pricing information from TI prior to placing orders.

TI may verify final pricing prior to accepting any order.

Flash-based x4xx MCU Platform (V_{CC}, 1.8 - 3.6V), Up to 8 MIPS (unless noted²)

	ash-based x4xx					ers					US										
	(C) Rom (F) Flash	Pro- gram (kB)	SRAM (kB)	1/0	A	В	Watchdog	BOR	svs	USART (UART/ SPI)	Cha A: UART/ LIN/ IrDA/ SPI	Ch B: I ² C/ SPI	LCD Seg- ments	DMA	MPY (16 x 16)	Comp_ A+	Temp Sensor	ADC Ch/ Res	Additional Features	Packages	Pri
×	MSP430FW423	8	256	48	3,5	-	V	~	1		_	_	96	_	_	~	-	slope	Flow-meter	64 PM	4.
1 W #ZX	MSP430FW425	16	512	48	3,5	-	~	1	1	_	_	—	96	-	_	V	-	slope	Flow-meter	64 PM	6.
	MSP430FW427	32	1024	48	3,5		~	1	~	_	_	_	96	_	_	V	_	slope	Flow-meter	64 PM	5.
	MSP430FE423	8	256	14	3	_	~	1	~	1	_	_	128	_	~	_	~	(3) SD16	E-meter	64 PM	4.
	MSP430FE425	16	512	14	3	_	~	1	~	1	_	_	128	l —	~	_	~	(3) SD16	E-meter	64 PM	5.
	MSP430FE427	32	1024	14	3	_	1	1	1	1	_	_	128	_	V	_	V	(3) SD16	E-meter	64 PM	5.
	MSP430FE4232	8	256	14	3	_	1	V	V	1	_	_	128	_	V	_	V	(2) SD16	E-meter	64 PM	3
	MSP430FE4242	12	512	14	3	_	1	V	V	1	_	_	128	_	~	_	~	(2) SD16	E-meter	64 PM	3
	MSP430F4250	16	256	32	3		~	1					56	_			V	5ch, SD16	DAC12	48 DL, RGZ	3
	MSP430F4260	-			3	_		· .		_	_					_					_
		24	256	32		_	V	~	_	_	_	_	56	_	_	_	V	5ch, SD16	DAC12	48 DL, RGZ	4
	MSP430F4270	32	256	32	3	_	/	~	_			_	56	_	_	_	· ·	5ch, SD16	DAC12	48 DL, RGZ	4
2	MSP430FG4250	16	256	32	3	-	~	•	_	_	_	_	56	_	_	_	~	5ch, SD16	DAC12, (2) OPAMP	48 DL, RGZ	4
	MSP430FG4260	24	256	32	3	_	~	~	_	_	_	_	56	_	_	_	~	5ch, SD16	DAC12, (2) OPAMP	48 DL, RGZ	4
	MSP430FG4270	32	256	32	3	-	V	1	_	_	_	_	56	_	_	_	V	5ch, SD16	DAC12, (2) OPAMP	48 DL, RGZ	5
Š	MSP430F435	16	512	48	3	3	V	1	/	1	_	_	128/160	_	_	V	V	8ch, ADC12	_	80 PN, 100 PZ	5
	MSP430F436	24	1024	48	3	3	/	~	~	1	_	_	128/160	_	_	/	V	8ch, ADC12	_	80 PN, 100 PZ	
	MSP430F437	32	1024	48	3	3	~	~	~	1			128/160			V	V	8ch, ADC12		80 PN, 100 PZ	6
	MSP430F4152	16	512	56	2		~	1	1		1	1	144			у		8ch, ADC10		64 PM, 48 RGZ	. 2
	MSP430F4132	8KB	512B	56	2		V	~	~		1	1	144			у		8ch, ADC10		64 PM, 48 RGZ	. 2
	MSP430F4351	16	512	48	3	3	~	1	1	1	_	_	128/160	_	_	V	~	slope	_	80 PN, 100 PZ	5
	MSP430F4361	24	1024	48	3	3	~	1	1	1	_	_	128/160	_	_	V	V	slope	_	80 PN, 100 PZ	Ę
	MSP430F4371	32	1024	48	3	3	1	V	V	1	_	_	128/160	_	_	V	V	slope	_	80 PN, 100 PZ	_
	MSP430FG437	32	1024	48	3	3	~	~	~	1	_	_	128	~	_	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	80 PN	8
	MSP430FG438	48	2048	48	3	3	~	~	~	1	_	_	128	~	_	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	80 PN	9
	MSP430FG439	60	2048	48	3	3	~	~	~	1	_	_	128	~	_	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	80 PN	ć
	MSP430F447	32	1024	48	3	7	~	1	1	2	_	_	160	_	~	~	~	8ch, ADC12	_	100 PZ	7
	MSP430F448	48	2048	48	3	7	~	1	1	2	_	_	160	_	V	V	V	8ch, ADC12	_	100 PZ	8
	MSP430F449	60	2048	48	3	7	1	V	V	2	_	_	160	_	V	V	V	8ch, ADC12	_	100 PZ	1
	MSP430FG4616	92	4096	80	3	7	~	~	~	1	1	1	160	~	~	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ, 113 ZQW	1
	MSP430FG4617	92	8192	80	3	7	~	~	~	1	1	1	160	~	~	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ, 113 ZQW	1
	MSP430FG4618	116	8192	80	3	7	~	~	~	1	1	1	160	V	~	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ, 113 ZQW	1
	MSP430FG4619	120	4096	80	3	7	~	~	~	1	1	1	160	~	~	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ, 113 ZQW	1
	MSP430CG4616	92	4096	80	3	7	~	•	•	1	1	1	160	•	~	~	~	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ	9
	MSP430CG4617	92	8192	80	3	7	~	•	•	1	1	1	160	~	~	~	•	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ	1
	MSP430CG4618	116	8192	80	3	7	~	•	•	1	1	1	160	•	~	•	~	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ	1
	MSP430CG4619	120	4096	80	3	7	V	•	•	1	1	1	160	•	V	V	V	12ch, ADC12	(2) DAC12, (3) OPAMP	100 PZ	1
	MSP430F4783 ¹	48	2480	72	3	3	WDT+	1	1	_	2	2	160	_	32x32	V	V	(3) SD16	_	100 PZ	(
	MSP430F4793 ¹	60	2560	72	3	3	WDT+	~	~	_	2	2	160	_	32x32	~	~	(3) SD16	_	100 PZ	1
	MSP430F4784 ¹	48	2048	72	3	3	WDT+	~	~	_	2	2	160	_	32x32	~	/	(4) SD16	_	100 PZ	1
	MSP430F4794 ¹	60	2560	72	3	3	WDT+	~	1	_	2	2	160	_	32x32	~	V	(4) SD16	_	100 PZ	1
	MSP430F47166 ¹	92	4096	72	3	3	V	~	~	_	2	2	160	1	V	/	_	(6) SD16	RTC	100 PZ	
	MSP430F47176 ¹	92	8192	72	3	3	V	~	1	_	2	2	160	1	1	1	_	(6) SD16	RTC	100 PZ	
	MSP430F47186 ¹	116	8192	72	3	3	1	1	V	_	2	2	160	1	1	~	_	(6) SD16	RTC	100 PZ	Т
	MSP430F47196 ¹	120	4096	72	3	3	1	V	V	_	2	2	160	V	1	V	_	(6) SD16	RTC	100 PZ	
	MSP430F47167 ¹	92	4096	72	3	3	1	~	~	_	2	2	160	1	1	~	_	(7) SD16	RTC	100 PZ	
	MSP430F47177 ¹	92	8192	72	3	3	V	~			2	2	160		V	~		(7) SD16	RTC	100 PZ	
									V					V		-	_	. ,			
	MSP430F47187 ¹	116	8192	72	3	3	V	~	1	_	2	2	160	~	V	V	_	(7) SD16	RTC	100 PZ	
	MSP430F47197 ¹	120	4096	72	3	3	· ·	~	V	_	2	2	160	V	/	· /	_	(7) SD16	RTC	100 PZ	

^{*} Prices are quoted in U.S.dollars in quantities of 100 and represent year 2009 suggested resale pricing. All prices are subject to change.

New products are listed in bold red. Preview products are listed in bold blue.

Customers are advised to obtain the most current and complete pricing information from TI prior to placing orders. TI may verify final pricing prior to accepting any order.

1 Up to 16 MIPS

Flash-based x4xx MCU Platform (V_{CC} 1.8-3.6V), Up to 8 MIPS (unless noted²) (continued)

					16- Tim	Bit ers					US	CI									
	(C) Rom (F) Flash	Pro- gram (kB)	SRAM (kB)	1/0	A	В	Watchdog	BOR	SVS	USART (UART/ SPI)	Cha A: UART/ LIN/ IrDA/ SPI	Ch B: I2C/ SPI	LCD Seg- ments	DMA	MPY (16 x 16)	Comp_ A+	Temp Sensor	ADC Ch/ Res	Additional Features	Packages	Price*
	MSP430F412	4	256	48	3	-	1	~	~	_	_	-	96	—	_	V	—	slope	_	64 PM, RTD	3.25
	MSP430C412	4	256	48	3	-	1	1	~	_	_	_	96	_	_	V	_	slope	_	64 PM, RTD	2.40
	MSP430F413 MSP430C413	8	256	48	3	_	~	~	~	_	_	_	96	_	_	/	_	slope	_	64 PM, RTD	3.70
	MSP430C413	8	256	48	3	_	1	~	~	_	_	_	96	_	_	V	_	slope	_	64 PM, RTD	2.65
	MSP430F415	16	512	48	3, 5	-	~	~	~	-	_	—	96	—	_	V	-	slope	_	64 PM, RTD	4.25
	MSP430F417	32	1024	48	3, 5	_	1	~	~	_	_	_	96	_	_	V	_	slope	_	64 PM, RTD	4.90
	MSP430F423	8	256	14	3	_	'	~	~	1	_	_	128	_	~	_	/	(3) SD16	_	64 PM	5.65
5	MSP430F425	16	512	14	3	_	1	1	~	1	_	_	128	_	~	_	V	(3) SD16	_	64 PM	6.20
	MSP430F427	32	1024	14	3	_	~	1	~	1	_	_	128	_	~	_	/	(3) SD16	_	64 PM	6.75

^{*}Prices are quoted in U.S. Jollars in quantities of 100 and represent year 2008 suggested resale pricing. All prices are subject to change.

New products are listed in bold red. Preview products are listed in bold blue.

Customers are advised to obtain the most current and complete pricing information from TI prior to placing orders. TI may verify final pricing prior to accepting any order.

1 Up to 16 MIPS

See www.ti.com/msp430 for additional information

Flash-Based x5xx MCU Platform (V_{CC} 1.8-3.6V), Up to 25 MIPS

				16-	Bit			USC									
(F) Flash	Program (KB)	SRAM (B)	1/0	A	В	Watchdog and RTC	PMM, (BOR SVS, SVM, LDO	Ch A: UART/LIN/ IrDA/SPI	Ch B: PC/ SPI	DMA	MPY (32 x 32)	Comp A	Temp Sensor	ADC Ch/Res	Addtl. Features	Packages	Price*
MSP430F5418	128	16	64	5, 3	7	V	V	2	2	~	~	_	~	16ch ADC12A	_	80 PN	\$4.15
MSP430F5419	128	16	83	5, 3	7	V	V	4	4	~	~	_	~	16ch ADC12A	_	100 PZ	\$4.55
MSP430F5435	192	16	64	5, 3	7	V	V	2	2	~	~	_	~	16ch ADC12A	_	80 PN	\$4.85
MSP430F5436	192	16	83	5, 3	7	V	V	4	4	~	~	_	~	16ch ADC12A	_	100 PZ	\$5.35
MSP430F5437	256	16	64	5, 3	7	V	V	2	2	~	~	_	~	16ch ADC12A	_	80 PN	\$5.50
MSP430F5438	256	16	83	5, 3	7	V	V	4	4	1	1	_	~	16ch ADC12A	_	100 PZ	\$6.10

^{*}Prices are quoted in U.S. dollars in quantities of 100 and represent year 2008 suggested resale pricing. All prices are subject to change. Customers are advised to obtain the most current and complete pricing information from TI prior to placing orders. TI may verify final pricing prior to accepting any order.

See www.ti.com/msp430 for additional information

Note: Memory requirements for the MSP430 for SimpliciTI™, ZigBee and TIMAC 802.15.4 were generated using code available for download at www.ti.com and are as follows:

	Project	Version	Flash/ROM (kB)	RAM (kB)	Source Code
SimpliciTI ¹	AP Data Hub	1.0.3	6	1	http://www.ti.com/simpliciti
TIMAC 802.15.4 ²	MSA_MSP430	1.2.1	26	2.3	http://www.ti.com/timac
ZigBee Coordinator 3, 4	SampleApp (used for table)	1.4.3	49	3.9	http://www.ti.com/z-stack
ZigBee End Device 3, 4	SampleApp (used for table)	1.4.3	37.7	3.3	http://www.ti.com/z-stack
ZigBee Coordinator ^{2, 4}	GenericApp	1.4.3	53.5	4.5	http://www.ti.com/z-stack
ZigBee End Device ^{2, 4}	GenericApp	1.4.3	42.3	3.8	http://www.ti.com/z-stack

¹Compiled for the MSP430F2274, ²Compiled for the MSP-EXP4304618, ³Compiled for the MSP-EXP4304619, ⁴Compiled without support for the ZTOOL

Interface

Device	Description	Key Specifications	Smallest Package	Price*
SN65HVD32	3.3 V, 1 Mbps, full-duplex RS-485 transceiver	8 mA (max) I $_0$, 1 μA standby mode, 15 kV ESD protection, true fail-safe, up to 256 nodes	SOIC-14	1.35
SN65HVD12	3.3 V, 1 Mbps, RS-485 transceiver , half-duplex	15.5 mA (max) $I_0,$ 1 μA standby mode, 16 kV ESD protection, true fail-safe, up to 256 nodes	SOIC-8	1.30
SN65HVD3085E	5 V, low-power, 1 Mbps RS-485 transceiver	0.9 mA (max) $\rm I_0$, 1 nA shutdown mode, 15 kV ESD protection, true fail-safe, up to 256 nodes	MSOP-8	0.90
SN65HVD234	3.3 V, CAN transceiver with sleep mode	6 mA (max) $\rm I_0$, 16 kV ESD protection, $-36\rm V$ to $+36\rm V$ bus-fault protection with 50 nA sleep mode	SOIC-8	1.45
SN65HVD1050	5 V, CAN transceiver with optimized EMC	10 mA I $_{\rm 0}$, 16 kV ESD protection, –27 V to +40 V bus-fault protection, dominant time-out feature	SOIC-8	0.55
SN65HVD1786	5 V, half-duplex, 1Mbps RS-485 transceiver	$\pm 70 \text{V}$ protected, 6mA (max), 5µA star 16kV ESD protection, wide -20 to $+25$ common mode	SOIC-8	1.85
SN65HVD1781	3.3-5V, half-duplex, 1Mbps, RS485 transciever	$\pm 70 V$ protected, 6mA (max), 5µA, 16kV ESD protection, weide –20 tc +25 common mode	SOIC-8	1.85

^{*}Suggested resale price in U.S. dollars in quantities of 1,000.

Low dropout (LDO) regulators, positive-voltage, single-output devices

Low dropout (LDO) regulators, positive-voltage, single-output devices																
				Output Options			S	%)				F	Pack	age(s)	
Device ¹	Ι _Q (μΑ)	$\begin{array}{c} \textbf{V}_{DO} \\ \textbf{at } \textbf{I}_{Q} \\ (\textbf{mV}) \end{array}$	I _{OUT} (mA)	Fixed Voltage (V)	Adj. (V)	Min V _{IN} (V)	Max V _{IN} (V)	Accuracy (%)	Features ²	C ₀ ³	Comments	WCSP	SC70	S0T23	QFN	Price*
TPS780xxyy	0.5	130	150	1.5 - 4.2, EEPROM ⁴	1.22 to 5.25	2.2	5.5	3	EN,DVS	1μF	MSP430, lowest Iq			Х	Х	0.65
TPS781xxyy	1	130	150	1.5 - 4.2, EEPROM	1.22 to 5.25	2.2	5.5	3	EN,DVS	1µF	MSP430 low Iq			х	х	0.50
TPS782xx	1	130	150	2.3,2.5,2.7,2.8.3.0,3.3	1.22 to 5.25	2.2	5.5	3	EN	1μF	MSP430 low Iq			х	х	0.43
TPS797xx	1.2	105	50	1.8, 3.0, 3.3		1.8	5.5		EN,PG	0.47µF	MSP430 low Iq					0.34
TPS715xx	3.2	415	50	1.8, 1.9, 2.3, 2.5, 3.0, 3.3, 4.5, 5.0	1.2 to 15	2.5	24	4	_	0.47µF	High Vin'		х			0.34
TPS714xx	3.2	670	50	3.3	1.2 to 9	2.5	10	4	_	0.47µF	High Vin'		х		х	0.34
TPS715Axx	3.2	670	80	3.3	1.2 to 15	2.5	24	4	_	0.47µF	High Vin'				х	0.44
TPS720xx	32	110	350	1.05, 1.2, 1.3, 1.5, 1.8		1.1	4.4	2	EN, Vbias	2.2µF	Vbias, low noise high PSRR	х			х	0.48
TPS799xx	40	100	200	1.2, 1.3, 1.5, 1.8, 1.85, 1.9, 1.95, 2.0, 2.1, 2.5, 2.6, 2.7, 2.75, 2.8, 2.85, 3.0, 3.15, 3.2, 3.3, 4.2, 4.5	1.2 to 5.5	2.7	6.5	2	EN	2.2µF	Low noise high PSRR	х		х	х	0.30
TPS734xx	44	125	250	1.8, 3.0, 3.3	1.2 to 6.0	2.7	6.5	2	EN	2μF	Low noise high PSRR			Х	Х	0.40
TPS735xx	46	250	500	2.5, 3.3	1.2 to 6.0	2.7	6.5	2	EN	2μF	Low noise high PSRR				х	0.05
TPS717xx	50	170	150	0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 1.85, 1.9, 2.1, 2.5, 2.6, 2.7, 2.8, 2.85, 2.9, 3.0, 3.3, 4.5	0.9 to 6.0	2.5	6.5	3	EN	1μF	Low noise high PSRR		х		х	0.45
TPS728xx	50	230	200	0.9 - 3.6, EEPROM4		2.7	6.5		EN, DVS	1μF	DVS	х			х	0.49
TPS718xx	90	230	200	1.2/3.3, 1.8/2.7, 1.2/2.5, 2.8/2.8, 2.8/3.0	0.9 to 6.0	2.5	6.5	3	EN, Dual	1μF	Dual low noise high PSRR	х			х	0.70
TPS719xx	90	230	200	1.3/2.8, 1.8/1.2, 2.6/1.5, 2.8/2.8, 2.85/2.85, 3.3/2.8, 3.3/3.3, 3.6/3.15	0.9 to 6.0	2.5	6.5	3	EN, Dual	1μF	Dual low noise high PSRR	х			х	0.70

¹xx represents the voltage option. For example, 33 represents the 3.3-V option. $^2BP = bypass$ pin for noise reduction capacitor, EN = active high enable, fixed voltages. Minimum quantities apply, Please contact TI. /EN = active low enable, PG = Power Good, SS = soft-start pin, SVS = supply voltage supervisor, TR = tracking. $^3C = ceramic$, T = tantalum, No Cap = capacitor-free LDO. The adjustable output voltage option is represented by 01. 4EEPROM programmable at the factory, allowing production of custom "Suggested resale price in U.S. dollars in quantities of 1,000.

Temperature sensors

Device	Description	Power (max)	Key Specifications	Smallest Pkg.	Price*
TMP102	Digital temperature sensor in SOT-23-6	10 μA, 1 μA SHDN	I ² C interface, 1.4 V to 3.6 V, 0.5°C accurate from –25°C to +85°C	S0T-23-6	0.80
TMP121/123	High accuracy, read-only temp sensor	$50~\mu\text{A}, 1~\mu\text{A}/3~\mu\text{A}~\text{SHDN}$	SPI interface, 2.7 V to 5.5 V, 2°C accurate from -25°C to +85°C	S0T-23-6	0.90
TMP122	Fully programmable temp sensor	75 μA, 1 μA SHDN	SPI interface, 2.7 V to 5.5 V, 2°C accurate from –25°C to +85°C, programmable high/low thresholds	S0T-23-6	0.99
TMP105/106	Chipscale digital temperature sensor	85 μA, 3 μA SHDN	World's smallest digital temp sensor, I^2C interface, 2.7 V to 5.5 V, 2°C accurate from $-25^{\circ}C$ to $+85^{\circ}C$	WCSP	0.85
TMP75	Digital temp sensor w/2-wire interface	85 μA, 3 μA SHDN	l^2C Interface, 2.7 V to 5.5 V, 1.5 °C accurate from –25 °C to +85 °C, drop-in replacement for LM75	MSOP-8	0.70
TMP275	Highest accuracy temp sensor	85 μA, 3 μA SHDN	I^2C interface, 2.7 V to 5.5 V, 0.5°C accurate from –25°C to +100°C with 3.3 V supply	MSOP-8	1.25
TMP300	Resistor programmable temp switch	110 μA SHDN	10 mV/°C analog output, 1.8 V to 18 V, $\pm 2^{\circ}\text{C}$ (typ) trip point accuracy, programmable hysteresis	SC-70	0.80

*Suggested resale price in U.S. dollars in quantities of 1,000

Operational amplifiers

Device	Description	Key specifications	Package(s)	Price*
0PA333	Ultra-low power, zero-drift in SC-70	1.8 V to 5.5 V, 17 $\mu\text{A I}_0,$ 350 kHz GBW, 5 μV (max) $\text{V}_{0\text{S}},$ RRIO	SC-70, SOT23, DFN proposed single channel WCSP package for release Q4 '09	0.95
OPA379	Low noise, µPower, SC-70	$1.8V$ to $5.5V, 5~\mu\text{A}$ max $I_{\text{Q}},100~\text{kHz}$ GBW, 1mV (max) $V_{\text{OS}},\text{RRIO}$	SC-70, S0T23, S08	0.75
TLV2401	Sub-1 μA	$2.5\mathrm{V}$ to 16 V, 88 nA $\mathrm{I}_{\mathrm{Q}}, 5.5\mathrm{kHz}$ GBW, 1.2 mV (max) $\mathrm{V}_{\mathrm{OS}}, \mathrm{RRIO}$	S0T23	0.6
OPA349	Best speed/power, nanoPower, SC-70	1.8 V to 5.5 V, 1 μA I _Q , 70 kHz GBW, RRIO	SC-70	0.75
TLV2381	Good speed/power, wide supply range	$2.5V$ to 16 V, 20 μA (max) I_Q 160 kHz GBW, RRIO	S0T23	0.60
TLV2760	Fast, µPower	2.5 V to 16 V, 20 μA I _Q 500 kHz GBW, RRIO	S0T-23	0.65
OPA336	High precision, µPower	2.3 V to 5.5 V, 20 μA I $_{\rm Q}$, 100 kHz GBW, 60 μV V $_{\rm OS}$, RRIO	S0T23	0.40
OPA347	μPower, SC-70 (dual in chipscale)	$2.3V$ to $5.5V, 20~\mu A I_Q, 350~kHz$ GBW, $2~\mu V/^{\circ} C$ (max) drift, RRIO	SC-70, WCSP	0.48
TLV2450	μPower with SHDN	$2.7~V$ to $6~V, 35~\mu A~I_{Q}, 220~kHz$ GBW, $1.5~mV$ (max) $V_{OS}, RRIO$	S0T23	0.65
OPA348	Fastest µPower op amp in SC-70	2.1 V to 5.5 V, 65 μ A max I $_{\rm Q}$, 1 MHz GBW, 35 nV/ $\sqrt{\rm Hz}$ noise, 125°C, RRIO	SC-70	0.45
TLV341A	SC-70 with SHDN	1.5 V to 5 V, 200 μ A (max) I $_0$, 2.3 MHz, 0.9 V/ μ s, 3 nA (max) I $_B$, 1.7 mV (max) V $_{0S}$, RRO	SC-70	0.45
OPA334	Highest precision, with SHDN	2.7 V, 350 μA (max) I _Q , 2 MHz GBW, 5 μV (max) offset, 0.0 μsV/°C (max) drift	S0T23	1.00
OPA373	Low cost, performance, SHDN	2.7 V to 5.5 V, 750 A (max) $\rm I_Q, 6.5~MHz~GBW, 5~V\mu s$ slew rate, RRIO	S0T23	0.36
OPA363	1.8 V, high CMRR, precision, low distortion	1.8 V, 90 dB CMRR (typ), 750 μ A (max) I_Q , 7 MHz GBW, 500 μ V (max) V_{OS} , RRIO, SHDN	S0T23	0.60
OPAy369	nanopower, Zero-Crossover Amplifier	1.8V to 5.5V, 800/700nA lq (single/dual), excellent DC precision, 3.6uVp-p noise (0.1 to 10Hz)	SC70 and SOT23 (dual)	0.80
OPAy376	Low noise, low quiescent current, Precision op amp e-trim™ series	2.2V to 5.5V, 760uA Iq, 5.5MHz GBW, 7.5nV per rtHz at 1kHz, RR0	SC70, SOT23, WCSP (Dual)	0.65 (single)
0PAy347	Micropower rail-to-rail op amp	2.3V to 5.5V, 20uA Iq, 350kHz GBW, RRIO	SC70, SOT23, WCSP (Dual)	0.55 (single)
TLV2780	1.3 V operation, low noise	1.3 V to 3.6 V, 820 μ A (max) I $_{\rm Q}$, 8 MHz GBW, 4.3 V/ μ s slew rate, RRIO	S0T23	0.70

Instrumer	ntation amplifiers				
Device	Description	Power	Key Specifications	Package	Price*
INA321	μPower, SHDN	40 μΑ	2.7 V to 5.5 V, $40~\mu A$ $I_{Q}, 200~\mu V$ typ $V_{OS}, 94~dB$ CMRR, $10~pA$ $I_{B}, RRO, G=5~to~1k$	MSOP-8	1.05
INA322	μPower, low cost, SHDN	40 μA, 1 μA SD	2.7 V to 5.5 V, $40~\mu A$ I_Q , ($I_Q~\mu A$ in SD), $2~mV$ typ $V_{OS},$ $500~kHz$ BW, RRO, $G=5~to~1~k$	MSOP-8	0.85
INA122	μPower, RRO, CM to GND	85 μΑ	2.2 V to 36 V, 85 μ A (max) V _{0S} , 3 μ V/°C (max) drift, G = 5 to 1k	S0IC-8	2.10
INA126	Low noise, µPower, precision	175 μΑ	2.7 V to 36 V, 175 $\mu\text{A/channel }I_{0}, 250$ μV (max) $V_{0S},$ 3 $\mu\text{V/}^{\circ}\text{C}$ (max) drift, $G=5$ to $1k$	MSOP-8	1.05
INA118	High precision, μ Power, G = 1 to 10000	385 μΑ	$2.7~V$ to $36~V,385~\mu A$ (max) $I_0,107~dB$ (min) CMRR, $55~\mu V$ (max) $_{VOS},0.7~\mu V/^{\circ}C$ (max) drift	SOIC-8	4.14
INA331	Low power, high speed, precision, SHDN	415 μA, 0.01 μA SD	2.7 V to 5.5 V, $415~\mu A$ (max) I_0 (0.01 μA in SD), $2~MHz$ BW, $5~V/\mu s,$ RRO, $G=5$ to $1k$	MSOP-8	1.10
INA125	Low power, internal reference, SHDN	460 μΑ	2.7 V to 36 V, 460 μ A (max) I_Q , 250 V (max) V_{OS} ,	S0IC-8	2.05
INA332	Low power, high speed, SHDN	490 μA, 0.01 μA SD	2.7 V to 5.5 V, $490~\mu\text{A}$ (max) I_{Q} (0.01 μA in SD), $2~\text{MHz}$ BW, $5~\text{V}\mu\text{s}$, RRO, $G=5~\text{to}~1~\text{k}$	MSOP-8	0.85
INA132	Low power difference amp	185 μΑ	2.7 V to 36 V, $185~\mu A$ (max) $l_0,250$ V (max) $V_{0S},90$ dB CMR, 0.001% non-linearity	SOIC-8	1.05
INA152	Difference amp with rail-rail output	650 μΑ	2.7 V to 20 V, 650 μA (max) $\rm I_0, 250~V$ typ $\rm V_{OS},$ 3 $\mu V/^{\circ}C$ drift, 94 dB CMR, 0.001% non-linearity	MSOP-8	1.20
INA333	Noise free, precision, low power	50 μA	1.8 V to 5.5 V, 20 µV offset, 50 nV/°C drift, RFI filtered inputs	MSOP-8	1.80

References

Device	Description	Power (max)	Key Specifications	Package	Price*
REF33xx	Very low power series reference	5 μΑ	0.15% initial accuracy, 30 ppm/°C (max) drift, ± 5 mA output, 1.25 V, 1.8 V, 2.048 V, 2.5 V, 3.0 V, 3.3 V	SC70-3	0.85
REF30xx	Low power, low drift series reference	50 μΑ	0.2% initial accuracy, 50 ppm/°C (max) drift, ± 25 mA output, 1.25 V, 2.048 V, 2.5 V, 3.0 V, 3.3 V, 4.096 V	S0T23-3	0.60
REF32xx	Ultra-low drift series reference	100 μΑ	0.2% initial accuracy, 7 ppm/°C (max) drift, ± 10 mA output, 1.25 V, 2.048 V, 2.5 V, 3.0 V, 3.3 V, 4.096 V	S0T23-3	1.70
REF29xx	Low power, low cost series reference	50 μΑ	2% initial accuracy, 100 ppm/°C (max) drift, ±25 mA output, 1.25 V, 2.048 V, 2.5 V, 3.0 V, 3.3 V, 4.096 V	S0T23-3	0.49

*Suggested resale price in U.S. dollars in quantities of 1,000

Notes

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page

support.ti.com

TI Semiconductor KnowledgeBase Home Page support.ti.com/sc/knowledgebase

Product Information Centers

 Americas
 Phone
 +1(972) 644-5580

 Brazil
 Phone
 0800-891-2616

 Mexico
 Phone
 0800-670-7544

Fax +1(972)927-6377

Internet support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

European Free Call 00800-ASK-TEXAS

(00800 275 83927)

International +49 (0) 8161 80 2121 Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax +49 (0) 8161 80 2045 Internet support.ti.com/sc/pic/euro.htm

Japan

Fax

International +81-3-3344-5317 Domestic 0120-81-0036

Internet

International support.ti.com/sc/pic/japan.htm

Domestic www.tij.co.jp/pic

Asia

Phone

International +91-80-41381665 Domestic Toll Free Number Australia 1-800-999-084 China 800-820-8682 Hona Kona 800-96-5941 India 1-800-425-7888 Indonesia 001-803-8861-1006 Korea 080-551-2804 Malaysia 1-800-80-3973 New Zealand 0800-446-934 Philippines 1-800-765-7404 Singapore 800-886-1028

Thailand 001-800-886-0010 Fax +886-2-2378-6808

Taiwan

Email tiasia@ti.com or ti-china@ti.com Internet support.ti.com/sc/pic/asia.htm

0800-006800

D093008

Safe Harbor Statement

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These "forward-looking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking state ments. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forwardlooking statements as a result of developments occurring after the date of this publication.

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to Tl's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about Tl products and services before placing orders. Tl assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute Tl's approval, warranty or endorsement thereof.

The platform bar is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

© 2008 Texas Instruments Incorporated

14950 F.A.A. Blvd. Fort Worth, Texas 76155

Address service requested

PRSRT STD U.S. POSTAGE PAID DALLAS, TEXAS PERMIT NO.

2758

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated