

Curso de introdução ao software R - Modulo 1

Darlene Duarte Renata Veroneze

Dúvida de ontem

Trocar o nome das colunas

```
>d <- data.frame(alpha=1:3, beta=4:6, gamma=7:9)
```

>names(d)[names(d)=="beta"] <- "two"

>names(d)[3] <- "three"

>names(d) <- sub("^alpha\$", "one", names(d))

Usando o pacote

>library(plyr)

>rename(d, c("beta"="two", "gamma"="three"))

Gerando distribuições

No R podemos gerar dados usando uma distribuição desejada

>?distributions #abre ajuda do R sobre distribuições

Gerando distribuições

>d<-rnorm(n=100,mean=5,sd=2)#gera valores de uma dist. normal

>d<-rnorm(100,5,2)#gera valores de uma dist. normal

>plot(density(d))#constrói um gráfico de densidade com os valores gerados

Análise exploratória de dados

Média

No R a média pode ser calculada através do comando mean().

- > x<-c(3,9,10,12)
- > mean(x)

Mediana

- > y<-c(3,9,10,12,21)
- > median(y)

E se houverem valores perdidos?

```
>x <- c(12,7,3,4.2,18,2,54,-21,8,-5,NA) #criando vetor com valor perdido
```

```
>mean(x)
```

>mean(x,na.rm = TRUE)

>median(x,na.rm=TRUE)

Moda

```
Duas formas table() ou subset()
> z<-c(2,5,8,7,5,6,9,5)
> table(z)
> subset(table(z),table(z)==max(table(z)))
```


Quantis

Tal como a mediana, é uma medida que se calcula a partir da amostra ordenada. E representa as partes em que a série de dados é dividida.

- > b < -rnorm(50,10)
- > quantile(b)

Desafio

Calcule a média da coluna resposta do arquivo "Exemplo01.csv" usando a função *mean()* e usando o R como calculadora (escreva seu próprio código). Calcule a amplitude e a mediana.

Respostas

```
>r<-ex03$resposta
#ou
>r<-ex03[.3]
>mean(r)
>med<-sum(r)/length(r)
>range(r)
>median(r)
>summary(r)
```


Por tratamento...

```
>m<-by(ex03$resposta, ex03$trat, mean)</pre>
```

```
>by(ex03$resposta, ex03$trat, median)
```

```
>by(ex03$resposta, ex03$trat, summary)
```

>mean<-do.call("rbind", as.list(m))</pre>

Variância e desvio padrão

No R usamos as funções *var()* e *sd()* para calcular essas medidas.

- > p<-c(20,23,23,28,33,37,37,37,40,44)
- > var(p)
- > sd(p)

Variância e desvio padrão

O coeficiente de correlação mede o grau de associação entre as variáveis dependente e independente (x e y).

```
> x < rnorm(20, mean=2, sd=0.5)
```

- > y < -rnorm(20,1,3)
- > cor(x,y)

Análise exploratória de dados

Função	Descrição
length(x)	Tamanho
max(x)	Máximo
min(x)	Mínimo
range(x)	Amplitude
sum(x)	Soma dos elementos
prod(x)	Produto dos elementos
mean(x)	Média
median(x)	Mediana
var(x)	Variância
sd(x)	Desvio padrão
summary(x)	"Sumário"

Função tapply

Tal função permite aplicar operações semelhantes em subgrupos de dados determinados por fatores.

```
>tapply(ex03$resposta,
ex03$tratamento, mean)
>tapply(ex03$resposta, ex03[, 2],
var)
>tapply(ex03$resposta, ex03[, 2],
range)
```

Desafio

Usando o arquivo exercicio3.5_2.txt , calcule a média da biomassa das folhas e a variância da biomassa dos troncos. Calcule a correlação entre a biomassa dos troncos e a nova variável obtida no exercício anterior(soma das biomassas das folhas e troncos). Qual é a altura (ht) máxima? Qual é a classe que mais ocorre?

Resposta

```
> mean(dados.esaligna$folha)
[1] 7.231944
> var(dados.esaligna$tronco)
[1] 4882.308
> cor(dados.esaligna$tronco,T_F)
[1] 0.9916532
```


Resposta

```
> max(dados.esaligna$ht)
[1] 25.52
```

> table(dados.esaligna\$classe)

```
a b c d
10 10 10 6
```


Desafio

Leia o arquivo dados_suinos.csv

2. Faça um summary das variáveis PESOINC, CRT, CMD, GPT, GPD, ETT, ETA e CA

3. Usando a função tapply faça um summary de cada variável por tratamento

How I Communicate With People In The Next Room

Representação esquemática dos dados

Visualmente melhor que as tabelas

Valoriza o seu trabalho

Gráficos de dispersão

Gráficos de barra

Box-plot

Histogramas

QQ-plot

http://rgraphgallery.blogspot.com.br/

- A função plot().
- > x < -c(10:20)
- > y < -seq(30,50,2)
- > plot(x,y)

QQ-plot

 Comparar distribuição dos dados com a distribuição teórica (qqnorm e qqline).

QQ-plot

 Comparar distribuições dos dados com a distribuição teórica (qqnorm e qqline).

- >set.seed(183)
- >x <- rnorm(80, mean=50, sd=5) # Normally distributed numbers
- >z <- runif(80) # Uniformly distributed numbers
- >qqnorm(x)
- > qqline(x)

Boxplot

 Permite avaliar a simetria dos dados e a sua dispersão

Boxplot

 Permite avaliar a simetria dos dados e a sua dispersão

Boxplot

 Permite avaliar a simetria dos dados e a sua dispersão

```
riqueza <- c(15,18,22,24,25,30,31,34,37,39,41,45) area <- c(2,4.5,6,10,30,34,50,56,60,77.5,80,85) area.cate <- rep(c("pequeno", "grande"), each=6) plot(riqueza~area) plot(area,riqueza) # o mesmo que o anterior boxplot(riqueza~area.cate)
```


Desafio

- 1. Leia o arquivo de dados exercicio3.5_2.txt
- 2. Faça um plot utilizando as variáveis dap e ht
- 3. Faça um boxplot utilizando as variáveis dap e classe

Resposta


```
a<-read.table("exercicio3.5_2.txt",h=T, sep=",")
head(a)
plot(a$dap,a$ht)
boxplot(a$dap~a$classe)</pre>
```


Barplot

```
a<-read.table("exercicio3.5_2.txt",h=T, sep=",")
counts <- table(a$classe)
counts
barplot(counts)</pre>
```


Gráfico de pizza

```
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany",
    "France")
pie(slices, labels = lbls, main="Pie Chart of
    Countries")</pre>
```


Desafio

- Utilize a função tapply para calcular a média de dap para cada classe do exercicio3.5_2.txt
- Faça um barplot utilizando as médias geradas com a função tapply

Resposta

m_classe<-tapply(a\$dap, a\$classe, mean)
barplot(m_classe)</pre>

