Stroke Disease Prediction

A PROJECT REPORT

Submitted by

Patel Bhargav Rajeshbhai (181200107026)

In partial fulfilment for the award of the degree of

BACHELOR OF ENGINEERING

In

Information Technology

Aditya Silver Oak Institute of Technology, Ahmedabad

Gujarat Technological University, Ahmedabad
April,2022

Project Id:198211 Certificate

Aditya Silver Oak Institute of Technology

Nr. Bhavik Publications, Opp. Bhagwat Vidyapith, S.G. Road, Gota Cross Road, Gota, Ahmedabad- 382481 – Gujarat.

CERTIFICATE

This is to certify that the project report submitted along with the project entitled **Stroke Disease Prediction** has been carried out by **Patel Bhargav Rajeshbhai** under my guidance in partial fulfillment for the degree of Bachelor of Engineering in Information Technology, 8th Semester of Gujarat Technological University, Ahmadabad during the academic year 2021-22.

Prof . Manish Singh Prof. Jalpa C. Sha

Prof . Manish Singh Prof . Jalpa C. Shah Internal Guide Head of Department

Project Id: 198211 Declaration

Aditya Silver Oak Institute of Technology

Nr. Bhavik Publications, Opp. Bhagwat Vidyapith, S.G. Road, Gota Cross Road, Gota, Ahmedabad- 382481 – Gujarat.

DECLARATION

We hereby declare that the Internship / Project report submitted along with the Internship / Project entitled Stroke Disease Prediction submitted in partial fulfillment for the degree of Bachelor of Engineering in Computer Engineering to Gujarat Technological University, Ahmedabad, is a bonafide record of original project work carried out by me at Inexture Solutions LLP under the supervision of Pritesh Thaker and that no part of this report has been directly copied from any students' reports or taken from any other source, without providing due reference.

Sr. no.	Name of Student	Sign of Student
1.	Patel Bhargav Rajeshbhai	

İ

Project Id: 198211 Industry Certificate

Industry Certificate

22/04/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify, **Bhargav Patel**, a student of Aditya Silver Oak Institute of Technology, Gota, Ahmedabad has successfully completed his internship in the field of **Python Technology** from 01st January, 2022 to 22nd April, 2022 (Total number of Weeks: 16), under the guidance of Devanshi Desai. His internship activities include:

- Core python training
- A variety of tasks to help them practice what they've learned
- Learning of python based web frameworks

During the period of his internship program with us he had been exposed to different process and was found diligent, hardworking and inquisitive.

We wish him every success in his life and career.

Best Wishes,

Kalpna Shukla Asst. Manager HR Inexture Solutions LLP

1113-1117 iSQUARE Corporate Park, Near Shukan Mall Cross Road, Science City Road, Ahmedabad, Gujarat – 380060

www.inexture.com

Project Id: 198211 Acknowledgement

Aditya Silver Oak Institute of Technology

Nr. Bhavik Publications, Opp. Bhagwat Vidyapith, S.G. Road, Gota Cross Road, Gota, Ahmedabad- 382481 – Gujarat.

ACKNOWLEDGEMENT

I would start by thanking my honourable faculty Pro. Manish Singh, who has provided me with the necessary guidance and information needed to complete this project report. Also, he provided me such task which helped me to start with the right topics to think on and provided me such environment which given me a correct direction to work on my weakness. Thanks for giving me technical and non-technical knowledge and guideline during activation period, and the entire team for being helpful and support.

Your sincerely, Bhargav Patel (181200107026) Project Id: 198211 Abstract

ABSTRACT

A stroke is a medical condition in which the blood arteries in the brain rupture, leading brain damage. Symptoms may appear if the brain's flow of blood and other nutrients is disrupted. Stroke is the leading cause of death and disability worldwide, according to the World Health Organization (WHO). Early awareness of the numerous stroke warning symptoms can assist to lessen the severity of the stroke. To forecast the chance of a stroke happening in the brain, many machine learning (ML) models have been created. Random forest, support vector machines, decision trees and classifiers, and neural networks were the most often utilised approaches.

Project Id: 198211 List of Figure

List of Figure

Fig 4.2.1 Gender data Visulization	6
Fig 4.2.2 Age data Visulization	6
Fig 4.2.3 Hypertension data visulization	7
Fig 4.2.4 Heart_disease data visualization	7
Fig 4.2.5 Ever Married data visualization	8
Fig 4.2.6 Work_type data visualization	8
Fig 4.2.7 Residence_type Data Visulization	9
Fig 4.2.8 Avg_Glicose_level Data visualization	9
Fig 4.2.9 Bmi data visualization	9
Fig 4.2.10 smoking_status data visualization	10
Fig 4.2.11 Feature Compering	10
Fig 5.1.1 Smote technique data Before Balancing	13
Fig 5.1.2 Smote technique data After Balancing	13
Fig 5.1.3 Performance Evaluation of various model (Smote Technique)	14
Fig 5.1.4 Performance of RandomeForestClassifier	14
Fig 5.1.5 Learning Curve for Nueral Network	15
Fig 5.1.6 Neural Network Classification Report	16
Fig 5.1.7 Confusion Matrix for Neural Network	16
Fig 5.2.1 NearMiss Data Before Balancing	17
Fig 5.2.2 NearMiss Data After Balancing	17
Fig 5.2.3 Performance of various model(Near-miss technique)	18
Fig 5.2.4 Performance of RandomforestClassification	18
Fig 5.2.5 Evaluation of Neural Network	18
Fig 5.2.6 Learning Curve (Loss over Epoch):	19
Fig 5.2.7 Learning Curve (Accuracy over Epochs)	19
Fig 5.2.8 Confusion Matrics of nueral Network(NearMiss)	19
Fig 5.3.1 Recall values Comparision	20

Project Id: 198211	List of Figure
Fig 5.3.2 Precision Values Comparision	20
Fig 5.3.2 Accuracy values Comparision	21
Fig 5.3.2 F1 Score Comparision	21
Fig 7.1 Flow chart	23
Fig 7.2 Login Page	24
Fig 7.3 Home page	24

Project Id: 198211 List of Tables

List of Tables

Fable 4.1 Data Desciption	5
•	
Γable 4.3 Feature Analysis Result	11

Table of Content

Declaration
Industy Certificatei
Acknowledgementii
Abstractiv
List of Figures
List of Tablesvi
Table of Contentsvii
Chapter 1 Company Overview
1.1 HOSTORY
1.2 PRODUCT
1.3 CAPACITY
Chapter 2 Project Introduction2
2.1 Overview
2.2 Porpuse
2.3 Technology
2.4 Project Planing3
Chapter 3 SYSTEM ANALYSIS
3.1 Study of current syste
3.2 Proposed System4
Chapter 4 Implementation5
4.1 Introduction to data5
4.2 Exploratory Data Analysis6
4.3 Feature Analysis Result
4.4 Observation about data features
4.5 Missing Values Handling
4.6 Label Encoding12
4.7 Standardizing and splitting12
Chapter 5 Model Testing13
5.1 SMOTE Technique
•••

5.2 NearMiss Technique	17
5.3 Performance Evaluation of Neural Network With NearMiss Tec	hnique20
Chapter 6 H5 Model and pickle files	22
6.1 Introduction to h5 and pickle files	22
6.2 Introduction to Pickle module	22
6.3 Introduction to Keras Module	22
Chapter 7 Designing User Interface	23
7.1 Flow Chart	23
7.2 Login Page	24
7.3 Home Page	24
7.4 Conclusion	25
7.5 Future Work	25
Pafarancas	26

Project Id: 198211 Company Overview

CHAPTER 1- Company Overview

1.1 HISTORY

Inexture Solutions LLP is established 10 years ago by the intellectuals to provide such software solutions that are functional, reliable, maintainable and cost-friendly to our existing and growing client and customer base. To consistently cater to their growing needs for an optimal solution, ensuring excellent support and service platform to give a hassle-free experience in achieving their dreams.

1.2 PRODUCT

Our company provide variety of services Software development, Web-Portal development, Website Designing, E-commerce development, SEO, Customized App Development, Data Management Software with cloud hosting facility, etc.

1.3 CAPACITY

There are currently 90+ employees are working in this company and there is different capacity of each department. Web development department have capacity of developing around 50 big full-fledged websites a year. App development department have capacity of developing around 30 big full-fledged mobile applications a year. Software development department have capacity of developing around 25 big full-fledged software a year.

Project Id: 198211 Project Introduction

CHAPTER 2- Project Introduction

2.1 Overview

When blood flow to different parts of the brain is interrupted or reduced, the cells in those areas of the brain don't get the nutrients and oxygen they need, and they die. A stroke is a life-threatening medical condition that need immediate medical intervention. To avoid additional damage to the afflicted area of the brain, as well as effects in other parts of the body, early identification and effective therapy are necessary. According to the World Health Organization (WHO), fifteen million people worldwide suffer from strokes each year, with one person dying every four to five minutes. According to the Centers for Disease Control and Prevention(CDC), stroke is the sixth greatest cause of death in the United States . Approximately 795,000 persons in the United States suffer from the devastating effects of strokes on a regular basis. It is the fourth largest major cause of death in India. Ischemic and hemorrhagic strokes are the two types of strokes. Clots hinder drainage in a chemical stroke, whereas a weak blood artery breaks and bleeds into the brain in a hemorrhagic stroke. Stroke can be avoided by living a healthy and balanced lifestyle that includes quitting smoking and drinking, maintaining a reasonable BMI and glucose level, and having great heart and kidney function.

2.2 Purpose

A stroke is a medical condition in which the blood arteries in the brain rupture, leading brain damage. Symptoms may appear if the brain's flow of blood and other nutrients is disrupted. Stroke is the leading cause of death and disability worldwide, according to the World Health Organization (WHO). Early awareness of the numerous stroke warning symptoms can assist to lessen the severity of the stroke. To forecast the chance of a stroke happening in the brain, many machine learning (ML) models have been created.

Project Id : 198211 Project Introduction

2.3 Technology

Technologies used for the project are listed below:

- Machine Learning Algorithms
- NearMiss Technique
- SMOTE Technique
- Neural Network
- Front-End: HTML5, CSS3
- Back-End: Django
- Database: Postgresql
- Version Control: Git

2.4 Project Planing

The steps for basic project planning was:

- Requirement gathering
- Data Collection
- Exploratory Data Analysis
- Training
- Testing
- Deployment

Project Id: 198211 SYSTEM ANALYSIS

CHAPTER 3- SYSTEM ANALYSIS

3.1 Study Of Current System

In all current Systems for balancing a imblanced data they have used a SMOTE Technique which Add duplicate values to minority class. SMOTE first selects a minority class instance a at random and finds its k nearest minority class neighbors. The synthetic instance is then created by choosing one of the k nearest neighbors b at random and connecting a and b to form a line segment in the feature space. The synthetic instances are generated as a convex combination of the two chosen instances a and b.

3.2 Proposed System

In new system will use NearMiss Undersampling Technique to balance the imbalance data. NearMiss Technique remove the values form majority class.

Steps of NearMiss Technique:

- (1) The algorithm first calculates the distance between all the points in the larger class with the points in the smaller class. This can make the process of undersampling easier.
- (2) Select instaces of the larger class that have the shortest distance with the smaller class. These n classes need to be stored for elimination.
- (3) If there are m instances of the smaller class then the algorithm will return m*n instances of the larger class.

Project Id: 198211 SYSTEM ANALYSIS

CHAPTER 4- Implementation

4.1 Introduction to data

The investigation was conducted using a globally accessible stroke prediction dataset. This dataset has 5110 rows and 12 columns. The output column stroke value is either 1 or 0. A score of 0 indicates that no stroke risk has been identified, whereas a value of 1 indicates that a risk of stroke has been identified. In this dataset, the chance of 0 in the output column (stroke) is greater than the likelihood of 1 in the same column.

Attribute Name	Type (Values)	Description
1. id	Integer	A unique integer value for patients
2. gender	String literal (Male, Female, Other)	Tells the gender of the patient
3. age	Integer	Age of the Patient
4. hypertension	Integer (1, 0)	Tells whether the patient hashypertension or not
5. heart_disease	Integer (1, 0)	Tells whether the patient hasheart disease or not
6. ever_married	String literal (Yes, No)	It tells whether the patient ismarried or not
7. work_type	String literal (children, Govt_job, Never_worked ,Private, Self- employed)	It gives different categories forwork
8. Residence_type	String literal (Urban, Rural)	The patient's residence type isstored
9.avg_glucose_level	Floating pointnumber	Gives the value of averageglucose level in blood
10. bmi	Floating pointnumber	Gives the value of the patient's Body Mass Index
11. smoking_status	String literal (formerly smoked,never smoked, smokes, unknown)	It gives the smoking status of thepatient
12. stroke	Integer (1, 0)	Output column that gives thestroke status

Table 1: Data Discriptio

4.2 Exploratory Data Analysisi

4.2.1 Gender

Figure 1 : Gender data Visulization

4.2.2 Age

Figure 2 : Age Data Visulization

4.2.3 Hypertension

26.51%

Figure 3 : Hypertension data visulization

4.2.4 Heart_disease

Figure 4 : Heart_disease Data Visulization

4.2.5 Ever_Married

Figure 5 : Ever_Married Data Visulization

4.2.6 Work_type

 $\textit{Figure 6: Work_Type data visulization}$

4.2.7 Residence_type

Figure 7 : Residence_type Data Visulization

4.2.8 Avg_glucose_level

Figure 8 : Avg_glucose_level Data Visulization

4.2.9 Bmi

Figure 9 : Bmi Dadta Visulization

4.2.10 Smoking_status

Figure 8 : Smoking_status Data visualization

4.2.10 Feature Comparision

Figure 9 : feature Comparison

4.3 Feature Analysis Result

	No Stroke	Has Stroke	Note
gender (Most)	Female	Female	No Clear Difference also Other catagory can be ignore
age (Median)	43	71	the median age of stroke patients is higher than patient with no stroke
hypertension (Most)	0	0	the patient who has hypertension from stroke patient is 18 $\%$ higher than the patient with no stroke
heart_disease (Most)	0	0	the patient who has heart disease from stroke patient is 14 % higher than the patient with no stroke
ever_married (Most)	Yes	Yes	the patient who ever married from stroke patient is 24 % higher than the patient with no stroke
work_type (Most)	Private	Private	the patient who work as self-employed from stroke patient is 11.4% higher than the patient with no stroke
Residence_type (Most)	Urban	Urban	No Clear Difference
avg_glucose_level (Median)	91.5	105.2	the median of avg_glucose_level from Stroke Patient is higher than the Patient with no Stroke
bmi (Median)	28.3	30.5	the median of bmi from Stroke Patient is little higher than the Patient with no Stroke
smoking_status (Most)	never smoked	never smoked	The patient who smokes or formerly smoked from is 13% higher than the patient with no stroke
Whole Dataset	95.13%	4.87%	The Data Is Imbalanced

Table 2: Feature Analysis Result

4.4 Observations about data features

- People with age 65-85 have high chances of getting stroke.
- bmi can't distinguish stroke patterns and also have 4% missing values, Hence
 It can be drop.
- there are higher samples of no stroke (stroke=0) as compared to the other class. Hence it is a Highly Imbalanced dataset
- Others category in 'gender' can be ignored
- Type of Residence either Urban or Rural has no effect on having stroke. This feature can also be dropped.
- Dataset is Imbalanced.

4.5 Missing Value Handling

- (1) Deleting Rows
- (2) Replacing with Mean/Median/Mode
- (3) Assigning An Unique Category
- (4) Predicting the missing values

After doing exploratory data analysis, exclude the 'bmi', 'id', and 'Residence type' columns, as well as the row data for the Gender type 'other'.

4.6 Label Encoding

Label encoding converts a string data column to an integer type, allowing the model to better grasp the data pattern. Label Encoding is required for the 'gender', 'smoking status', 'work type', and 'ever married' columns.

4.7 Standardizing and splitting

Standardizing data helps model to tarin and test model faster on given standardized data. After Standardinzing the data splite the data in training and testing part For training on different models and evaluate performance.

CHAPTER 5 – Model Testing

5.1 SMOTE Technique

SMOTE Technique is a Over-sampling technique.

Working - SMOTE first selects a minority class instance a at random and finds its k nearest minority class neighbors. The synthetic instance is then created by choosing one of the k nearest neighbors b at random and connecting a and b to form a line segment in the feature space. The synthetic instances are generated as a convex combination of the two chosen instances a and b.

Figure 10 : Data Before Balancing

Figure 11: Data After Balancing

	Model	Precision	Recall	F1	balanced_accuracy
0	LogisticRegression	0.758555	0.812842	0.784723	0.779670
1	KNeighborsClassifier	0.841099	0.963609	0.898139	0.892595
2	DecisionTreeClassifier	0.898514	0.903815	0.901880	0.902018
3	RandomForestClassifier	0.922971	0.943074	0.932647	0.931979
4	BernoulliNB	0.660416	0.927474	0.771435	0.730086
5	SVC	0.776550	0.884065	0.826799	0.817447

Figure 12 : Performance Evaluation of Various Model (SMOTE Technique)

	precision	recall	f1-score	support
0 1	0.95 0.97	0.97 0.96	0.96 0.97	931 1013
accuracy macro avg weighted avg	0.96 0.97	0.97 0.97	0.97 0.96 0.97	1944 1944 1944

Figure 12 : Performance of RandomForestClassifier

Figure 13 : Learning Curve For Neural Network

Classification	Report: precision	recall	f1-score	support
Had no stroke Had stroke	1.00 0.86	0.85 1.00	0.91 0.92	3929 3847
accuracy macro avg weighted avg	0.93 0.93	0.92 0.92	0.92 0.92 0.92	7776 7776 7776

Figure 14 : Neural Network Classification Report

Figure 15 : Confusion Matrix For Neural Network Model

5.2 NearMiss (Under- Sampling) Technique

NearMiss (Under-Sampling) technique Used For Balancing the data which removes data from majority class. For this technique We need large set of data.

Figure 16: Data before Balancing

Figure 17 : After data Balancing

	Model	Precision	Recall	F1	balanced_accuracy
0	LogisticRegression	0.740247	0.688684	0.710752	0.723033
1	KNeighborsClassifier	0.907342	0.694211	0.785020	0.812462
2	DecisionTreeClassifier	0.823394	0.755526	0.786155	0.801122
3	RandomForestClassifier	0.868658	0.841316	0.858393	0.868897
4	BernoulliNB	0.749542	0.672368	0.707098	0.727018
5	SVC	0.926121	0.805789	0.859993	0.870633

Figure 18: Performance of various model(Near-Miss Technique)

_	precision	recall	f1-score	support
0	0.83	0.85	0.84	47
1	0.87	0.85	0.86	53
accuracy			0.85	100
macro avg	0.85	0.85	0.85	100
weighted avg	0.85	0.85	0.85	100

 ${\it Figure~19: Performance~of~RandmForestCLass fication}$

Classification	Report: precision	recall	f1-score	support
Had no stroke	0.93	0.99	0.96	202
Had stroke	0.99	0.93	0.96	196
accuracy			0.96	398
macro avg	0.96	0.96	0.96	398
weighted avg	0.96	0.96	0.96	398

Figure 20 : Evaluation of Neural Network

Figure 21 : Learning Curve (Loss over Epochs) : For Nueral network

Figure 22 : Learning Curve (Accuracy Over Epochs) : For Nueral Network

Figure 23 : Confusion Matrics of Neural Network

5.3 Performance Evaluation of Models With Nearmiss Technique

The 'Neural Network' algorithm performs the best out of all the algorithms tested, with a 96 percent accuracy rate. The following graph shows a comparison of accuracies achieved from various methods. 'Neural Network' outperformed the others in terms of accuracy, recall, and F1 scores.

Figure 24: Recall values Comparision

Figure 25: Precision Values Comparision

Figure 26 : Accuracy Values Comparision

Figure 27 : F1 Score Comparision

Project Id: 198211 H5 And Pickle files

CHAPTER 6 - H5 And Pickle files

6.1 H5 file

Using H5 file we can store scaler file which will be used to ssclae our data in when we connect our model to frontend.

6.2 INTRODUCTION TO PICKLE MODULE

By python pickle module we can load the Machine learning model gathered in pickle file as above mentioned. And after opening the pickle file using open function of file module we can give the opened file to pickle.load(openFileObject). Then we can call this pickle file function called predict inside our callback function of DASH in this way we can link the pickle file to website.

6.3 INTRODUCTION TO KERAS MODULE

Keras is the main module of python in which the models module is located in which there is a function names load_model which is used to load the h5 files as mentioned above. But h5 files need to have the preprocessed data because these models take data of some period of regular time interval and predicts the data of one time interval so numpy and pandas one of the famous python modules come into the picture of this model, after predicting the values from the learned data set the callback function of DASH use these created predicts functions by providing some set of inputs to it.

CHAPTER 7 – User Interface Design

7.1 Flow Chart

Project Id: 198211 User Interface Design

7.2 Login page

7.3 Home page

7.4 Conclusion

With NearMiss imbalanced data managing technique The 'Neural Network' algorithm performs the best out of all the algorithms tested, with a 96 percent accuracy rate. The following graph shows a comparison of accuracies achieved from various methods. 'Neural Network' outperformed the others in terms of accuracy, recall, and F1 scores.

Delivering additional data as an input-set to neural networks and giving Brain CT Scan Image as input can increase neural network accuracy.

7.5 Future Work

Complete the user interface design and integret it with h5 and pickle file model using keras model to make end-to-end system.

Project Id: 198211 References

REFERENCES

- [1] Nueral Network
- [2] Dataset named 'Stroke Prediction Dataset' from Kaggle
- [3] Singh, M.S., Choudhary, P., Thongam, K.: A comparative analysis for various stroke prediction techniques. In: Springer, Singapore (2020).
- [4] 7 Techniques to Handle Imbalanced Data Kdnuggets.
- [5] Under sampling Techniques -https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/
- [6] Documentation for Logistic Regression from Scikit-learn.org.
- [7] Documentation for Decision Tree Classification from Scikit-learn.org.
- [8] Documentation for Random Forest Classification from Scikit-learn.org.
- [9] Documentation for K-Nearest Neighbor from Scikit-learn.org.
- [10] Documentation for SVM from Scikit-learn.org.