Proyecto de prácticas: Guante de pesaje

Antonio José Blánquez Pérez

Tecnologías Emergentes

Idea y estado del arte

https://ifworlddesignguide.com/entry/97480-weglo

https://ifworlddesignguide.com/entry/306423-courier-weighing-gloves

https://ifworlddesignguide.com/entry/91927-weighing-glove

Material usado

Arduino Lilypad ATTINY85

"Lilytiny"

RP-S40-ST

TM1637

Arduino Lilytiny

https://bricolabs.cc/wiki/quias/lilytiny

ATiny85		ATmega328
Number of pins	8	28
Flash size (ko)	8	32
SRAM size (bytes)	512	2048
EEPROM size(bytes)	512	1024
PWM	2	6
GPIO	6	23
12C	yes	yes
SPI	yes	yes
UART	no	yes

RP-S40-ST

https://makersportal.com/blog/2020/5/24/force-sensitive-resistors-fsrs-arduino

$$m_i = \left(\frac{271.0}{R_0 \left(\frac{V_{cc}}{V_{meas}} - 1\right)}\right)^{\frac{1}{0.69}}$$

Circuito

Programación

https://github.com/blanquez/weighing_glove

- Lectura de voltaje
- Cálculo de peso
- Imprimir en el display
- Tras un delay, repetir

Resultado

https://drive.google.com/le/d/1J4n6ylxbZP2EsFUy20ySgomhOzCO-m0T/view?usp=sharing

Posible mejora, uso de Machine Learning

- Cubrir la parte anterior del guante con galgas extensiométricas
- Obtener una medida por cada galga
- Crear dataset a partir de objetos con distinta forma y peso
- Entrenar un modelo de ML, como SVM o RRNN, en un PC
- Introducir modelo entrenado en Arduino