MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

1^a Lista de Exercícios - Resolução dos Exercícios 2, 11 e 16

- **2-)** (a) Sejam X e Y conjuntos, e denote por $\mathcal{F}(X,Y)$ o conjunto de todas as funções de X em Y. Prove que, se X for finito e Y enumerável, então $\mathcal{F}(X,Y)$ é enumerável.
 - (b) Dada $f: \mathbb{N} \to \mathbb{N}$, seja $A_f \doteq \{n \in \mathbb{N} \mid f(n) \neq 1\}$. Seja X o conjunto formado por todas as funções $f: \mathbb{N} \to \mathbb{N}$ tais que A_f é finito. Prove que X é enumerável.

Demonstração:

- (a) Os casos em que X é vazio ou Y é finito são triviais (nestes casos $\mathcal{F}(X,Y)$ seria finito, sendo um subconjunto do conjunto finito $2^{X\times Y}$). Suponha, pois, que X seja finito com n elementos e Y seja infinito enumerável. Tomando bijeções $\phi: I_n \to X$ e $\psi: \mathbb{N} \to Y$, a aplicação $f \in \mathcal{F}(X,Y) \mapsto \psi^{-1} \circ f \circ \phi$ é uma bijeção $\mathcal{F}(X,Y) \to \mathcal{F}(I_n,\mathbb{N})$; por meio desta bijeção, a demonstração fica reduzida a provar que $\mathcal{F}(I_n,\mathbb{N})$ é enumerável. Ora, $\mathcal{F}(I_n,\mathbb{N}) = \mathbb{N}^n$ (i.e. produto cartesiano de n fatores \mathbb{N}) é enumerável (isto foi provado em aula para n=2; o caso geral segue por indução sobre n. Ou diretamente, pelo seguinte argumento: tome $p_1,\ldots,p_n\in\mathbb{N}$ primos distintos, e $F:\mathbb{N}^n\to\mathbb{N}$ dada por $F:(x_1,\ldots,x_n)\mapsto\prod_{i=1}^n p_i^{x_i}$; então F é injetiva, pela unicidade da decomposição em fatores primos).
- (b) Para cada $Y \subset \mathbb{N}$ finito, denotemos por A_Y o conjunto $\{f \in X \mid A_f = Y\}$. Então X é a reunião da família $\{A_Y \mid Y \subset \mathbb{N} \text{ finito}\}$. Verifiquemos que esta família é enumerável e que cada A_Y é enumerável; então seguirá que X é enumerável, sendo a reunião de uma família enumerável de conjuntos enumeráveis. Com efeito, dado $Y \subset \mathbb{N}$ finito, a aplicação $\mathcal{F}(Y,\mathbb{N}) \to A_Y$ dada por $f \mapsto \widetilde{f}$, onde \widetilde{f} é a extensão de f que é constante e igual a 1 em $\mathbb{N} \setminus Y$, é uma bijeção; ora, já foi demonstrado no item anterior que $\mathcal{F}(Y,\mathbb{N})$ é enumerável. Resta mostrar que $\{Y \subset \mathbb{N} \mid Y \text{ finito}\}$ é enumerável. Tal conjunto é a reunião da família enumerável $\{Y \subset \mathbb{N} \mid Y \text{ tem } n \text{ elementos}\}_{n\geqslant 0}$. Ora, para cada $n\in \mathbb{N}$, $A_n \doteq \{Y \subset \mathbb{N} \mid Y \text{ tem } n \text{ elementos}\}$ é enumerável, pois a aplicação $f \in \mathcal{F}(I_n,\mathbb{N}) \mapsto f(I_n) \in A_n$ é sobrejetiva e já demonstramos que $\mathcal{F}(I_n,\mathbb{N})$ é enumerável. Então segue-se que $\{Y \subset \mathbb{N} \mid Y \text{ finito}\}$ é enumerável, sendo a reunião de uma família enumerável de conjuntos enumeráveis.

11-) Seja $p \in \mathbb{R}$, p > 1. Mostre que é enumerável e denso em \mathbb{R} o conjunto dos números reais da forma m/p^n , com $m \in \mathbb{Z}$ e $n \in \mathbb{N}$.

Demonstração:

(i) Seja X o conjunto dos números reais da forma m/p^n , com $m \in \mathbb{Z}$ e $n \in \mathbb{N}$. Então $(m,n) \in \mathbb{Z} \times \mathbb{N} \mapsto m/p^n \in X$ é sobrejetiva, portanto X é enumerável, uma vez que $\mathbb{Z} \times \mathbb{N}$ é enumerável, por ser o produto cartesiano de dois conjuntos enumeráveis. Resta mostrar que X é denso em \mathbb{R} .

- (ii) $\forall \epsilon > 0, \ \exists n \in \mathbb{N}$ tal que $p^n > \frac{1}{\epsilon} \Leftrightarrow \frac{1}{p^n} < \epsilon$; isto já foi demonstrado em aula, usando a desigualdade de Bernoulli.
- (iii) Seja (a, b) um intervalo aberto; queremos mostrar que existe um elemento de X neste intervalo. Tomando-se, no item anterior, $\epsilon = b a$, conclui-se que existe $n \in \mathbb{N}$ tal que $\frac{1}{n^n} < b a$.

- (iv) Suponha b>0. Como \mathbb{R} é arquimediano, existe $m\in\mathbb{N}$ tal que $m\cdot\frac{1}{p^n}>b$, de modo que o conjunto $A\doteq\{m\in\mathbb{N}\mid m\cdot\frac{1}{p^n}\geqslant b\}$ é não-vazio; pelo princípio da boa ordenação, A possui um elemento mínimo m_0 . Afirmo que $\frac{m_0-1}{p^n}\in(a,b)$. Com efeito, tem-se $\frac{m_0-1}{p^n}< b$, pela minimalidade de m_0 ; se fosse $\frac{m_0-1}{p^n}\leqslant a$, ter-se-ia $\frac{m_0}{p^n}-\frac{m_0-1}{p^n}=\frac{1}{p^n}\geqslant b-a$. Assim, $\frac{m_0-1}{p^n}>a$, o que conclui a prova da afirmação.
- (v) Se $b \le 0$, tem-se -a > 0; assim, pelo item anterior existe um elemento m/p^n de X no intervalo (-b, -a), donde $-m/p^n \in (a, b)$.

16-) Um conjunto G de números reais chama-se um grupo aditivo quando $0 \in G$ e $x, y \in G \Rightarrow x - y \in G$. Então $x \in G \Rightarrow -x \in G$ e $x, y \in G \Rightarrow x + y \in G$.

Seja G um grupo aditivo de números reais, e denote por G^+ o conjunto dos elementos positivos de G. Suponha $G \neq \{0\}$, de modo que G^+ seja não-vazio. Prove que:

- (a) se inf $G^+=0$, então G é denso em \mathbb{R} ;
- (b) se inf $G^+ = a > 0$, então $a \in G^+$ e $G = \{0, \pm a, \pm 2a, \dots\}$.
- (c) Conclua que, se $\alpha \in \mathbb{R}$ é irracional, os números reais da forma $m + n\alpha$, $m, n \in \mathbb{Z}$, formam um subconjunto denso de \mathbb{R} .

DEMONSTRAÇÃO:

- (a) Seja $(a,b) \subset \mathbb{R}$ um intervalo aberto; como inf $G^+ = 0$, existe $g \in G^+$ tal que g < b-a. Usando o mesmo argumento da questão anterior, com g no lugar de $1/p^n$, conclui-se que existe $m \in \mathbb{Z}$ tal que $mg \in (a,b)$. Como $(\forall n \in \mathbb{Z}) ng \in G$, e como (a,b) foi tomado arbitrariamente, segue-se que G é denso em \mathbb{R} .
- (b) Afirmo que $a \in G^+$. Com efeito, se $a \notin G^+$, existiria $h \in G^+$ tal que $a < h < a + \frac{a}{2}$, pois $a + \frac{a}{2}$ não é cota inferior de G^+ . Pelo mesmo argumento, existe $g \in G^+$ tal que a < g < h. Portanto, $g, h \in G^+$ são tais que $a < g < h < a + \frac{a}{2}$, donde h g < a/2; como $h g \in G^+$, isto contraria o fato de ser a o ínfimo de G^+ . Assim, $a \in G^+$.
- Seja $g \in G^+$. Pelo fato de ser $\mathbb R$ arquimediano, existe $m \in \mathbb N$ tal que ma > g, o que mostra ser não-vazio o conjunto $A \doteq \{n \in \mathbb N \mid na > g\}$. Assim, pelo princípio da boa ordenação, A tem um elemento mínimo n; tome $r \doteq g (n-1)a$. Então $r \geqslant 0$, pela minimalidade de n; e, se fosse $r \geqslant a$, ter-se-ia $g \geqslant (n-1)a + a = na$, contrariando $n \in A$. Assim, $0 \leqslant r < a$. Como $r = g (n-1)a \in G$, e $a = \inf G^+$, não é possível 0 < r < a, donde r = 0. Isto prova que todo elemento de G^+ é da forma na para algum $n \in \mathbb N$. Por conseguinte, todo elemento de G^- é da forma -na para algum $n \in \mathbb N$, donde $G = \{na \mid n \in \mathbb Z\}$.
- (c) $G \doteq \{m+n \cdot \alpha \mid m, n \in \mathbb{Z}\}$ é um subgrupo aditivo de \mathbb{R} . Suponha inf $G^+ = a > 0$. Então, pelo item anterior, tem-se $G = \{na \mid n \in \mathbb{Z}\}$. Como $1 \in G^+$, existe $n \in \mathbb{N}$ tal que na = 1, donde a = 1/n. Então, sendo $\alpha \in G$, existe $m \in \mathbb{Z}$ tal que $\alpha = ma = m/n$, portanto $\alpha \in \mathbb{Q}$, o que é uma contradição. Deste modo, não podemos ter inf $G^+ > 0$, donde inf $G^+ = 0$ e do item anterior segue-se que G é denso em \mathbb{R} .