问题描述

我们研究了从大量测度中进行相位恢复的问题。特别的,我们希望重建一个复值信号 $\mathbf{x}inC^n$,我们对其进行了一个无相采样: $y_r = |\langle \mathbf{a}_r, \mathbf{x} \rangle|^2, r = 1, \ldots, m$ (已知这些相的样本可以生成一个线性系统。)这篇文章提出了一个非凸的相位恢复问题,和它的一个紧致解。

简而言之,这个算法开始于一个基于谱方法生成的初始值,然后通过迭代低复杂度的初始 更新规则,提炼一个初始估计。这个过程跟梯度下降是很像的。这个算法的主要贡献是证 明了相位恢复问题可以用几乎是最少的随机度量得到。实际上,可以证明一系列的迭代可 以以几何速度收敛到真实解。理论上,这个算法可以导出一个接近线性时间的模型实现。

相变

信号模型

随机低通信号

这里, x 由下式给定:

$$x[t] = \sum_{k=-(M/2-1)}^{M/2} (X_k + iY_k)e^{2\pi i(k-1)(t-1)/n},$$

其中 $M = n/8, X_k, Y_k$ 是服从 $\mathcal{N}(0,1)$ 的独立同分布的。

随机高斯信号

这个模型中, $\mathbf{x} \in C^n$ 是一个复随机高斯向量。每一个维度的形式都是 x[t] = X + iY, 其中 X 和 Y 都是服从 $\mathcal{N}(0,1)$; this can be expressed as

第二种算法的思路如下图1所示:

我在这次作业中,选择了第一种算法,用 python 语言对其进行实现。

PROTO-ALGORITHM: SOLVING THE FIXED-RANK PROBLEM

Given an $m \times n$ matrix A, a target rank k, and an oversampling parameter p, this procedure computes an $m \times (k+p)$ matrix Q whose columns are orthonormal and whose range approximates the range of A.

- 1 Draw a random $n \times (k+p)$ test matrix Ω .
- 2 Form the matrix product $Y = A\Omega$.
- 3 Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

图 1: Proto-Algorithm: Solving the Fixed-Rank Problem

实验

随机生成数据

通过下面的设置取得一个矩阵,并求出其前 $r \in \{5, 10, 15, 20\}$ 大的奇异值,以及其奇异向量。

m = 2048

n = 512

p = 20

A = randn(m, p) * randn(p, n)

得到的结果如下:

r	$\exp 1: t$	$\exp 2: t$	$\exp 3: t$
5	0.08126497268676758	0.06409597396850586	0.07390093803405762
10	0.03443193435668945	0.025016069412231445	0.03003096580505371
15	0.03320908546447754	0.035800933837890625	0.03665590286254883
20	0.034197092056274414	0.03660106658935547	0.040490150451660156

我对 $r = \{5, 10, 15, 20\}$ 进行了 3 组实验,得到的运行时间如上表所示。可见运行时间较为稳定,可以在线性时间内运行完毕。

rSVD-single-pass 数据集

这个部分里,我复现了https://github.com/WenjianYu/rSVD-single-pass中生成随机数据集的算法,写在 generatedata.py 文件中。并测试了对于 $m=n=2\times 10^3$. 的矩阵的计算

时间的三次试验结果1。

r	exp1-timing	exp2-timing	exp3-timing
50	0.4229423999786377	0.4193081855773926	0.4090569019317627
100	0.4109618663787842	0.5056757926940918	0.4087069034576416
150	0.451876163482666	0.4589710235595703	0.43385791778564453
200	0.5109848976135254	0.5014669895172119	0.4837648868560791
500	0.994359016418457	0.9467556476593018	0.9239499568939209
1000	2.2344188690185547	2.214768886566162	2.300198793411255
1500	4.6173412799835205	4.693850994110107	4.715956926345825

可见,运行时间比较稳定,算法是有效的。

 $^{^{1}}$ 我尝试生成了 2×10^{5} 阶矩阵的数据集,但是内存超了,所以没有呈现在报告上。特此说明。