

Problema 1:

Pruebe que los siguientes conjuntos no son algebraicos:

• $\{(z, w) \in A^2(\mathbb{C}) \mid |z|^2 + |w|^2 = 1\}.$

Solución:

Sea $X = \{(z,w) \in A^2(\mathbb{C}) \mid |z|^2 + |w|^2 = 1\}$. Suponga que X es un conjunto algebraico, luego existe $S \subseteq \mathbb{C}[x,y]$, no vació y de polinomios no constantes tal que X = V(S). Sea $f(x,y) = \sum_{i=0}^m f_i(y)x^i \in S$, donde $f_i(y) \in \mathbb{C}[y]$. Consideremos $w_0 \in \mathbb{C}$ tal que $|w_0| < 1$, luego $|z|^2 = 1 - |w_0|^2$, luego el polinomio $f(x,w_0) = \sum_{i=0}^m f_i(w_0)x^i$ tiene infinitas raíces, ya que hay infinitos puntos en el circulo del plano complejo centrado en 0 y de radio $1 - |w_0|^2$. Pero esto solo es posible si $f_i(w_0) = 0$ para todo $|w_0| < 1$ y cada $i = 0, 1, \ldots, m$, luego como hay infinitos w_0 complejos, que cumplen tener norma menor que $1, f_i = 0$ para todo $i = 0, 1, \ldots, m$, así f = 0, pero esto es una contradicción, ya que f por hipótesis es no constante. Así concluimos que X no es algebraico.

 \Box

 $\{(\cos(t), \sin(t), t) \in A^3(\mathbb{R}) \mid t \in \mathbb{R} \}.$

Solución:

Sea $X=\{(\cos(t),\sin(t),t)\in A^3(\mathbb{R})\,|\,t\in\mathbb{R}\}$. Suponga que X es un conjunto algebraico, luego existe $S\subseteq\mathbb{R}[x,y,z]$, no vació y de polinomios no constantes tal que X=V(S). Sea $f(x,y,z)=\sum_{i=0}^m f_i(x,y)z^i\in S$, donde $f_i(x,y)\in\mathbb{R}[x,y]$. Consideremos $\theta_0\in[0,2\pi)$ luego por la periodicidad del coseno y del seno, note que $f(\cos(\theta_0+2k\pi),\sin(\theta_0+2k\pi),\theta_0+2k\pi)=f(\cos(\theta_0),\sin(\theta_0),\theta_0+2k\pi)=0$, para todo $k\in\mathbb{Z}$, ya que este ultimo es un punto de X. Así para θ_0 fijo tenemos que $f(\cos(\theta_0),\sin(\theta_0),z)$ tiene infinitas raíces, luego $f_i(\cos(\theta_0),\sin(\theta_0))=0$ para todo $\theta_0\in[0,2\pi)$ y cada $i=0,1,\ldots,m$. Así cada f_i tiene infinitas raíces, entonces $f_i=0$ para todo $i=0,1,\ldots,m$, luego f=0, llegando así a una contradicción y concluyendo que X no es algebraico.

 $\Box^{}\Box$

Problema 2:

Muestre a través de un ejemplo que la unión infinita de algebraicos no siempre es un conjunto algebraico

Solución:

Consideremos $A^1(\mathbb{R}) = \mathbb{R}$ y tomemos $X = \mathbb{Z} \subseteq A^1(\mathbb{R})$ note que $\mathbb{Z} = \bigcup_{a \in \mathbb{Z}} \{a\}$, sabemos que $\{a\} = V(x-a)$, por lo que \mathbb{Z} es la unión contable de conjuntos algebraicos. Si X fuera algebraico existiría $S \subseteq \mathbb{R}[x]$, no vació y de polinomios no constantes, tal que X = V(S), luego dado $f \in S$, es un polinomio con infinitas raíces ya que todos los enteros son raíces, así f = 0, una contradicción. Mostrando así que una unión infinita de conjuntos algebraicos no es un conjunto algebraico siempre.

O^O

Problema 3:

Sean $V \subseteq A^n(\mathbb{K})$ y $W \subseteq A^m(\mathbb{K})$ conjuntos algebraicos. Demuestre que

$$V \times W = \{(a_1, \dots, a_n, b_1, \dots, b_m) \in A^{n+m}(\mathbb{K}) \mid (a_1, \dots, a_n) \in V, (b_1, \dots, b_m) \in W\}$$

es algebraico.

Solución:

Como V y W son algebraicos, existen $S_1\subseteq \mathbb{K}[x_1,\ldots,x_n]$ y $S_2\subseteq \mathbb{K}[y_1,\ldots,y_m]$, no vacíos y de polinomios no constantes tales que $V=V(S_1)$ y $W=V(S_2)$. Definamos los conjuntos $\widehat{S}_1,\widehat{S}_2\subseteq \mathbb{K}[x_1,\ldots,x_n,y_1,\ldots,y_m]$, tales que, dada $\widehat{f}\in \widehat{S}_1$, tenemos que $\widehat{f}(x_1,\ldots,x_n,y_1,\ldots,y_m)=f(x_1,\ldots,x_n)$, donde $f\in S_1$, y dada $\widehat{g}\in \widehat{S}_2$, tenemos que $\widehat{g}(x_1,\ldots,x_n,y_1,\ldots,y_m)=g(y_1,\ldots,y_m)$, donde $g\in S_2$. Basta con probar que $V\times W=V(\widehat{S}_1\cup\widehat{S}_2)$. Sea $p\in V\times W$, luego $p=(a_1,\ldots,a_n,b_1,\ldots,b_m)$, donde $(a_1,\ldots,a_n)\in V$ y $(b_1,\ldots,b_m)\in W$, Note que tomando $h\in \widehat{S}_1\cup\widehat{S}_2$ tenemos que $h=\widehat{f}$ o $h=\widehat{g}$, para algún $\widehat{f}\in \widehat{S}_1$ o $\widehat{g}\in \widehat{S}_2$.

En el primer caso tenemos que $h(p) = \hat{f}(p) = f(a_1, \dots, a_n) = 0$, ya que $(a_1, \dots, a_n) \in V(S_1)$. En el otro caso tenemos que $h(p) = \hat{g}(p) = g(b_1, \dots, b_m) = 0$, ya que $(b_1, \dots, b_m) \in V(S_2)$. Concluyendo así que para todo $h \in \hat{S}_1 \cup \hat{S}_2$ tenemos que h(p) = 0 y por tanto $p \in V(\hat{S}_1 \cup \hat{S}_2)$, mostrando así que $V \times W \subseteq V(\hat{S}_1 \cup \hat{S}_2)$. Ahora sea $p \in V(\hat{S}_1 \cup \hat{S}_2)$ luego para todo $h \in \hat{S}_1 \cup \hat{S}_2$. h(p) = 0. Para los $h \in \hat{S}_1$ tenemos que $h(p) = \hat{f}(p) = f(p_1, \dots, p_n)$. Como es arbitrario, tenemos que para todo $f \in S_1$, $f(p_1, \dots, p_n) = 0$, es decir, $(p_1, \dots, p_n) \in V(S_1) = V$. De manera similar para los $h \in \hat{S}_2$, tenemos que $0 = h(p) = \hat{g}(p) = g(p_{n+1}, \dots, p_{n+m})$, concluyendo análogamente que $(p_{n+1}, \dots, p_{n+m}) \in V(S_2) = W$. Luego por como lo definimos concluimos que $p \in V \times W$, mostrando que $V(\hat{S}_1 \cup \hat{S}_2) \subseteq V \times W$. Por la doble continencia, concluimos la igualdad y por tanto que $V \times W$ es algebraico.

Problema 4:

Calcule las componentes irreducibles de $V(2x^2 + 3x^2 - 11, x^2 - y^2 - 3) \subseteq A^2(\mathbb{C})$.

Solución:

Primero notemos que $V := V(2x^2 + 3x^2 - 11, x^2 - y^2 - 3) = V(2x^2 + 3x^2 - 11) \cap V(x^2 - y^2 - 3)$. Luego dado $(x, y) \in V$, tiene que ser solución del siguiente sistema de ecuaciones

$$\begin{cases} 2x^2 + 3x^2 - 11 = 0, \\ x^2 - y^2 - 3 = 0. \end{cases}$$

Multiplicando la segunda ecuación por 3 y sumando ambas ecuaciones obtenemos

$$0 = 2x^{2} + 3x^{2} - 11 + 3x^{2} - 3y^{2} - 9$$
$$= 5x^{2} - 20.$$

esta ecuación se satisface si x=2 o x=-2. Para hallar y, reemplazamos los valores de x en $x^2 - y^2 - 3 = 0$, así

$$(2)^2 - y^2 - 3 = (-2)^2 - y^2 - 3 = 1 - y^2 = 0.$$

Por lo tanto y=1 o y=-1, así concluimos que $V=\{(2,1)\}\cup\{(2,-1)\}\cup\{(-2,1)\}\cup\{(-2,1)\}\cup\{(-2,-1)\}$. Es decir las componentes irreducibles de $V(2x^2+3x^2-11,x^2-y^2-3)$ son $V_1=\{(2,1)\}, V_2=\{(2,-1)\}, V_3=\{(-2,1)\}$ y $V_4=\{(-2,-1)\}$.

ס ֿם