

TRABAJO N° 1

"EJEMPLO DE DISEÑO DE UN EJE"

CARRERA: TECNOLOGÍA MECÁNICA ELÉCTRICA

CICLO: IV

GRUPO: C10-F

CURSO: ELEMENTOS DE MAQUINAS

PROFESOR: AGUILAR NARVAEZ CARLOS

ALUMNO: ESTRADA ARQUEROS MAURICIO

FECHA DE REALIZACIÓN DEL LABORATORIO: 15 de noviembre de 2012

FECHA DE ENTREGA DEL INFORME: 21 de noviembre de 2012

EJEMPLO DE DISEÑO DE UN EJE

Diseñe el eje mostrado en las figuras 12-1 y 12-2. Se va a maquinar en acero AISI 1144 OQT 1000. El eje es parte de la transmisión para un sistema de soplador grande, que suministra aire a un horno. El engrane A recibe 200 HP del engrane P. el engrane C entrega la potencia al engrane Q. El eje gira a 600 rpm.

Figura 12-1 eje intermedio para un reductor de velocidad

Figura 12-2 dimensiones propuestas para el eje de la figura 12-1.

Obtenemos el valor de la resistencia a la fatiga con respecto al dato de la resistencia a la tensión, en la siguiente tabla

Figura 5-8 resistencia a la fatiga Sn en función de la resistencia a la tensión

Resistencia a la tensión >>>>>> Sy= 83000 psi

Sn= 42000psi Resistencia a la fatiga >>>>>>

<u>2º PASO:</u>

Determinamos la resistencia a la fatiga modificada estimando un factor por tamaño y un factor por confiabilidad.

Figura 5-9 factor por tamaño

TABLA 5-1 Factores de confiabilidad aproximados C_R		
Confiabilidad deseada C_R		
_ 0.5	0	1.0
0.9	0	0.90
0.9	9	0.81
0.9	99	0.75

Estimamos un valor para el factor por tamaño porque no se conoce el tamaño real en este momento:

$$Cs = 0.75$$

En una decisión de diseño, se elegirá una confiabilidad de 0.99, tomando como dato de la tabla 5-1:

$$Cr = 0.81$$

Remplazamos los datos en la siguiente formula:

<u>3º PASO:</u>

Calcularemos el par torsional en el eje.

P= potencia que se transmite, HP = 200 HP

n= velocidad de giro, rpm = 600 rpm

T= par torsional del engrane, lb.pulg

Se supondrá que el factor de diseño es: N= 2

4º PASO:

Calcularemos las fuerzas que ejercen los elementos de maquinas sobre los engranajes "A" y "C".

D = diámetro de paso del engranaje, pulg

Wt = fuerza tangencial, lb

Wr = fuerza radial, lb

$$W_{tA} = T_A/(D_A/2) = 21\,000/(20/2) = 2100\,\text{lb} \downarrow$$

 $W_{rA} = W_{tA} \tan(\phi) = 2100 \tan(20^\circ) = 764\,\text{lb} \rightarrow$
 $W_{rC} = T_C/(D_C/2) = 21\,000/(10/2) = 4200\,\text{lb} \downarrow$
 $W_{rC} = W_{rC} \tan(\phi) = 4200 \tan(20^\circ) = 1529\,\text{lb} \leftarrow$

Calculamos los esfuerzos y reacciones en los siguientes puntos del eje, dichos datos servirán para calcular los diámetros mínimos que se requieren para las diversas partes del eje.

6º PASO:

PUNTO A

Calcularemos el diámetro requerido del eje en A, mediante el término de la torsión.

$$D_1 = \left[\frac{32 N}{\pi} \sqrt{\frac{3}{4} \left(\frac{T}{s_y} \right)^2} \right]^{1/3}$$

$$D_1 = \left[\frac{32 N}{\pi} \sqrt{\frac{3}{4} \left(\frac{21 000}{83 000} \right)^2} \right]^{1/3} = 1.65 \text{ pulg}$$

<u> 7º PASO:</u>

PUNTO B

El momento flexionante en B es la resultante del momento en los planos "X" y "y" de acuerdo con los diagramas de carga, cortante y flexión

$$M_{B} = \sqrt{M_{Bx}^{2} + M_{By}^{2}}$$

$$M_B = \sqrt{(7640)^2 + (21\ 000)^2} = 22\ 350\ \text{lb} \cdot \text{pulg}$$

Se emplea una ecuación a causa de la condición de esfuerzo combinado

$$D_2 = \left[\left(\frac{32N}{\pi} \right) \sqrt{\left(\frac{K, M}{s_n'} \right)^2 + \frac{3}{4} \left(\frac{T}{s_y} \right)^2} \right]^{1/3}$$

$$D_2 = \left[\frac{32(2)}{\pi} \sqrt{\left[\frac{1.5(22\,350)}{25\,500} \right]^2 + \frac{3}{4} \left[\frac{21\,000}{83\,000} \right]^2} \right]^{1/3}$$

$$D_2 = 3.30 \text{ pulgadas}$$

En B y a la derecha de B (diámetro D3) todo es igual, excepto el valor de K_t = 2.5, debido al chaflán agudo. Entonces:

$$D_3 = \left[\frac{32(2)}{\pi} \sqrt{\left[\frac{2.5(22350)}{25500} \right]^2 + \frac{3}{4} \left[\frac{21000}{83000} \right]^2} \right]^{1/3}$$

$$D_3 = 3.55 \text{ pulgadas}$$

<u>8º PASO:</u>

EL PUNTO C

El momento de flexión en C es:

$$M_c = \sqrt{M_{Cx}^2 + M_{Cy}^2}$$

$$M_c = \sqrt{(12\ 230)^2 + (16\ 800)^2} = 20\ 780\ \text{lb} \cdot \text{pulg}$$

A la izquierda de C existe el par torsional de 21 000 lb.pulg, y con el cuñero de perfil Kt = 2.0

$$D_5 = \left[\left(\frac{32N}{\pi} \right) \sqrt{\left(\frac{K_t M}{s_n'} \right)^2 + \frac{3}{4} \left(\frac{T}{s_y} \right)^2} \right]^{1/3}$$

$$D_{s} = \left[\frac{32(2)}{\pi} \sqrt{\left[\frac{2.0(20780)}{25500} \right]^{2} + \frac{3}{4} \left[\frac{21000}{83000} \right]^{2}} \right]^{1/3} = 3.22 \text{ pulg}$$

A la derecha de C no hay par, pero la ranura para el anillo sugiere un K_t = 3.0 para diseño, aplicando la ecuación anterior con M = 20780 lb.pulg y T = 0

$$D_5 = \left[\frac{32(2)}{\pi} \sqrt{\left(\frac{(3.0)(20780)}{25500} \right)^2} \right]^{1/3} = 3.68 \text{ pulg}$$

Si el factor por ranura de anillo es 3.57, el diámetro sube a 3.90 pulgadas.

$$D_5 = \left[\frac{32(2)}{\pi} \sqrt{\left(\frac{(1.6)(20780)}{25500} \right)^2} \right]^{1/3} = 3.90 \text{ pulg}$$

Este último valor es mayor que el calculado a la izquierda de C, por lo cual es el que gobierna al diseño en el punto C.

PUNTO D

Se empleara la resultante de las reacciones en los planos "X" y "Y" para calcular la fuerza cortante para el punto "D"

$$V_D = \sqrt{(1223)^2 + (1680)^2} = 2078 \text{ lb}$$

Aplicaremos la siguiente ecuación para calcular el diámetro que requiere el eje en este punto; en la figura 12-2 se observa que en este punto existe un chaflán agudo, por consiguiente tendrá un $K_{t=}$ 2.5

$$D = \sqrt{2.94 \ K_l(V) N/s_n'}$$

$$D_6 = \sqrt{\frac{2.94(2.5)(2078)(2)}{25\,500}} = 1.094 \text{ pulg}$$

10º PASO

Los diámetros mínimos que se requieren, calculados para las diversas partes del eje de la figura 12-2, son los siguientes:

También, D₄ debe ser un poco mayor que 3.90 para tener escalones adecuados en el engrane "C" y el rodamiento "B"

DISEÑO DE UN EJE

Diseñe el eje mostrado en las figuras 1-1 y 1-2. Se va a maquinar en acero AISI 1144 OQT 1000. El eje es parte de la transmisión para un sistema de soplador grande, que suministra aire a un horno. El engrane A recibe 400 HP del engrane P. el engrane C entrega la potencia al engrane Q. El eje gira a 800 rpm.

Figura 1-1 eje intermedio para un reductor de velocidad

Figura 1-2 dimensiones propuestas para el eje de la figura 1-1.

Obtenemos el valor de la resistencia a la fatiga con respecto al dato de la resistencia a la tensión, en la siguiente tabla

Figura 5-8 resistencia a la fatiga Sn en función de la resistencia a la tensión

Resistencia a la tensión >>>>>> Sy= 80 000 psi

Sn= 40 000psi Resistencia a la fatiga >>>>>>

2º PASO:

Determinamos la resistencia a la fatiga modificada estimando un factor por tamaño y un factor por confiabilidad.

Figura 5-9 factor por tamaño

TABLA 5-1 Factores de confiabilidad aproximados C_R			
Confiabilidad deseada C_R			
_	0.50	1.0	
	0.90	0.90	
	0.99	0.81	
	0.999	0.75	

Estimamos un valor para el factor por tamaño porque no se conoce el tamaño real en este momento:

$$Cs = 0.75$$

En una decisión de diseño, se elegirá una confiabilidad de 0.999, tomando como dato de la tabla 5-1:

$$Cr = 0.75$$

Remplazamos los datos en la siguiente formula:

<u>3º PASO:</u>

Calcularemos el par torsional en el eje.

P= potencia que se transmite, HP = 400 HP

n= velocidad de giro, rpm = 800 rpm

T= par torsional del engrane, lb.pulg

Se supondrá que el factor de diseño es: N= 3

4º PASO:

Calcularemos las fuerzas que ejercen los elementos de maquinas sobre los engranajes "A" y "C".

D = diámetro de paso del engranaje, pulg

Wt = fuerza tangencial, lb

Wr = fuerza radial, lb

$$W_{LA} = T_A/(D_A/2) = 31500/(20/2) = 3150 \text{ lb} \downarrow$$

 $W_{LA} = W_{LA} \tan(\phi) = 3150 \tan(20^\circ) = 1146 \text{ lb} \rightarrow$
 $W_{LC} = T_C/(D_C/2) = 31500/(10/2) = 6300 \text{ lb} \downarrow$
 $W_{LC} = W_{LC} \tan(\phi) = 6300 \tan(20^\circ) = 2293 \text{ lb} \leftarrow$

Calculamos los esfuerzos y reacciones en los siguientes puntos del eje, dichos datos servirán para calcular los diámetros mínimos que se requieren para las diversas partes del eje.

6º PASO:

PUNTO A

Calcularemos el diámetro requerido del eje en A, mediante el término de la torsión.

$$D_1 = \left[\frac{32 N}{\pi} \sqrt{\frac{3}{4} \left(\frac{T}{s_y} \right)^2} \right]^{1/3}$$

$$D_1 = \left[\frac{32(3)}{\pi} \sqrt{\frac{3}{4} \left(\frac{31500}{80000} \right)^2} \right]^{1/3} = 2.18 \text{ pulg}$$

PUNTO B

El momento flexionante en B es la resultante del momento en los planos "X" y "y" de acuerdo con los diagramas de carga, cortante y flexión

$$M_{\theta} = \sqrt{M_{Bx}^2 + M_{By}^2}$$

$$M_{\theta} = \sqrt{(11460)^2 + (31500)^2} = 33520 \text{ lb} \cdot \text{pulg}$$

$$K_t = 1.5$$
 (chaflán bien redondeado)

Se emplea una ecuación a causa de la condición de esfuerzo combinado

$$D_2 = \left[\left(\frac{32N}{\pi} \right) \sqrt{\left(\frac{K_r M}{s_n'} \right)^2 + \frac{3}{4} \left(\frac{T}{s_y} \right)^2} \right]^{1/3}$$

$$D_2 = \left[\frac{32(3)}{\pi} \sqrt{\left[\frac{1.5(33520)}{22500} \right]^2 + \frac{3}{4} \left[\frac{31500}{80000} \right]^2} \right]^{1/3}$$

$$D_2 = 4.10$$
 pulgadas

En B y a la derecha de B (diámetro D3) todo es igual, excepto el valor de K_t = 2.5, debido al chaflán agudo. Entonces:

$$D_3 = \left[\frac{32(3)}{\pi} \sqrt{\left[\frac{2.5(33520)}{22500} \right]^2 + \frac{3}{4} \left[\frac{31500}{80000} \right]^2} \right]^{1/3}$$

$$D_3 = 4.85$$
 pulgadas

EL PUNTO C

El momento de flexión en C es:

$$M_c = \sqrt{M_{Cx}^2 + M_{Cy}^2}$$

$$M_c = \sqrt{(18 \ 342)^2 + (25 \ 200)^2} = 31 \ 168 \ \text{lb} \cdot \text{pulg}$$

A la izquierda de C existe el par torsional de 21 000 lb.pulg, y con el cuñero de perfil K_t = 2.0

$$D_{5} = \left[\left(\frac{32N}{\pi} \right) \sqrt{\left(\frac{K_{t}M}{s_{n}'} \right)^{2} + \frac{3}{4} \left(\frac{T}{s_{y}} \right)^{2}} \right]^{1/3}$$

$$D_5 = \left[\frac{32(3)}{\pi} \sqrt{\left[\frac{2.0(31\ 168)}{22\ 500} \right]^2 + \frac{3}{4} \left[\frac{31\ 500}{80\ 000} \right]^2} \right]^{1/3} = 4.40 \text{ pulg}$$

A la derecha de C no hay par, pero la ranura para el anillo sugiere un K_t = 3.0 para diseño, aplicando la ecuación anterior con M = 20780 lb.pulg y T = 0

$$D_5 = \left[\frac{32(3)}{\pi} \sqrt{\left(\frac{(3.0)(31\ 168)}{22\ 500} \right)^2} \right]^{1/3} = 5.03 \text{ pulg}$$

Si el factor por ranura de anillo es 3.57, el diámetro sube a 5.33 pulgadas.

$$D_5 = \left[\frac{32(3)}{\pi} \sqrt{\left(\frac{(3.57)(31\ 168)}{22\ 500} \right)^2} \right]^{1/3} = 5.33 \text{ pulg}$$

Este último valor es mayor que el calculado a la izquierda de C, por lo cual es el que gobierna al diseño en el punto C.

PUNTO D

Se empleara la resultante de las reacciones en los planos "X" y "Y" para calcular la fuerza cortante para el punto "D"

$$V_D = \sqrt{(1834)^2 + (2520)^2} = 3116 \text{ lb}$$

Aplicaremos la siguiente ecuación para calcular el diámetro que requiere el eje en este punto; en la figura 1-2 se observa que en este punto existe un chaflán agudo, por consiguiente tendrá un $K_{t=}$ 2.5

$$D = \sqrt{2.94 \ K_t(V) N/s_n'}$$

$$D_6 = \sqrt{\frac{2.94(2.5)(3 \, 116)(3)}{22 \, 500}} = 1.75 \, \text{pulg}$$

10º PASO

Los diámetros mínimos que se requieren, calculados para las diversas partes del eje de la figura 1-2, son los siguientes:

También, D₄ debe ser un poco mayor que 5.33 para tener escalones adecuados en el engrane "C" y el rodamiento "B"