8-9 Qs Exercises of midterm2/prac

MATH 317: Practice Exercises - Final Exam

(1) Recall that a sequence of functions $f_n: X \to \mathbb{R}$ is said to be Cauchy on X if, for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \epsilon$$
 for all $x \in X$ and for all $n, m \ge N$.

Prove that $f_n: X \to \mathbb{R}$ is uniformly convergent if and only if f_n is Cauchy on X.

- (2) Let $f_n: [-10, 10] \to \mathbb{R}$ be defined by $f_n(x) = \frac{x\sin(x)}{n}$. Prove that f_n converges uniformly.
- (3) Let $f_n: X \to \mathbb{R}$ be a sequence of bounded functions and suppose that f_n converges uniformly to $f: X \to \mathbb{R}$. Show that $f: X \to \mathbb{R}$ is also bounded.
- (4) Let $f_n(x) = x^n$ on [0, 1], and let

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1), \\ 1 & \text{if } x = 1. \end{cases}$$

Prove that f_n converges pointwise, but not uniformly, to f.

- (5) Assume that, for each $n \in \mathbb{R}$, the function $f_n : X \to \mathbb{R}$ is uniformly continuous. Also, assume that $f_n \to f$ uniformly. Prove that f is uniformly continuous.
- 2 series of functions W. M-Test $(6)\,$ Exercise 9.24 in the book by Jay Cummings.
- (7) Let $g:[a,b]\to\mathbb{R}$ be integrable and fix a $c\in(a,b)$. Show that, for any $\epsilon>0$, there is a $\delta > 0$ such that

$$\Big| \int_{a}^{x} g dx - \int_{a}^{c} g dx \Big| < \epsilon$$

whenever $x \in (c - \delta, c + \delta)$.

(8) Suppose $f:[a,b]\to\mathbb{R}$ is integrable and let

$$A = \left\{ \int_{a}^{c} f dx \mid c \in [a, b] \right\}.$$

Is it possible to have that $A = [0, 5] \cup [6, 10]$?

(9) Let $f:[a,b]\to\mathbb{R}$ be bounded and let $c\in(a,b)$. Suppose that f is integrable on $[a, c - \epsilon]$ and $[c + \epsilon, b]$ for any ϵ satisfying $0 < \epsilon < \min\{c - a, b - c\}$. Prove that f is integrable on [a, b].

integrability

fund thm of calculus

2

- (10) Let $g:[a,b] \to \mathbb{R}$ be continuous and let $f:[a,b] \to \mathbb{R}$ be another function which differs from g at only finitely many points in [a,b].
 - (a) Show that f is integrable.
 - (b) Show that the function $F:[a,b]\to\mathbb{R}$ defined by

$$F(x) = \int_{a}^{x} f dt$$

is differentiable.

(11) Let $f:[a,b] \to \mathbb{R}$ be continuous and suppose that c < d are points in (a,b) such that

$$\int_{a}^{c} f dx = \int_{a}^{d} f dx = 0.$$

Show that there is an $e \in (c, d)$ such that f(e) = 0.

(12) Let $f:[a,b]\to\mathbb{R}$ be continuous. Show that

$$\int_{a}^{b} f = f(x_0) \cdot (b - a)$$

for some $x_0 \in [a, b]$.

- (13) Suppose that $f:(a,b)\to\mathbb{R}$ is differentiable. Show that, for any $c\in(a,b)$, we can always find a sequence x_n in $(a,b)-\{c\}$ satisfying $x_n\to c$ and $f'(x_n)\to f'(c)$.
- (14) Is

$$f(x) = \begin{cases} \frac{1}{2}x & \text{if } x \in \mathbb{Q}, \\ x & \text{if } x \in \mathbb{I} \end{cases}$$

differentiable at x = 0?

(15) A function is called *Lipschitz* if there exists some $C \geq 0$ such that

$$|f(x) - f(y)| \le C \cdot |x - y|$$

for all x and y.

Now suppose that $f:[a,b]\to\mathbb{R}$ is differentiable and that f' is continuous on [a,b]. Prove that f is Lipschitz.

(16) Suppose that f and g are differentiable functions with f(a) = g(a) and f'(x) < g'(x) for all x > a. Prove that f(x) < g(x) for any x > a.

- (17) Assume that $f:(a,b)\to\mathbb{R}$ is differentiable at some point $c\in(a,b)$. Prove that if $f'(c)\neq 0$, then there exists some $\delta>0$ such that $f(x)\neq f(c)$ for all $x\in(c-\delta,c+\delta)-\{c\}$.
- (18) Let $f:(a,b)\to\mathbb{R}$ be differentiable and suppose that f' is continuous at a point $c\in(a,b)$. If x_n and y_n is any pair of sequences with $x_n\neq y_n$ for all n and such that

$$\lim x_n = \lim y_n = c,$$

then show that

$$\frac{f(y_n) - f(x_n)}{y_n - x_n} \longrightarrow f'(c).$$

- (19) Is it possible for a continuous function $f : \mathbb{R} \to \mathbb{R}$ to have the property that $f(\mathbb{R}) = \mathbb{Q}$?
- (20) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function with the property that f(x) = 0 for all $x \in \mathbb{Q}$. Prove that f(x) = 0 for all $x \in \mathbb{R}$.
- (21) Review all the exercises from the first and second midterm.

 $\frac{19.}{2} \text{ if } f: \mathbb{R} \rightarrow \mathbb{R} \text{ is cont. is it}$ $\text{possible to have } f(\mathbb{R}) = \mathbb{Q}?$

A. $\mathbb{R} \to \text{this}$ is connected since \mathbb{Q} is not connected, we can't have $f(\mathbb{R}) = \mathbb{Q}$

Seperation for X is a ...

(1) Recall that a sequence of functions $f_n: X \to \mathbb{R}$ is said to be Cauchy on X if, for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \epsilon$$
 for all $x \in X$ and for all $n, m \ge N$.

Prove that $f_n: X \to \mathbb{R}$ is uniformly convergent if and only if f_n is Cauchy on X.

pointwise convergent -> uniformly convergent

<u>review</u> (an) conv. \Rightarrow an is Cauchy (from 316)

(2) Let $f_n: [-10, 10] \to \mathbb{R}$ be defined by $f_n(x) = \frac{x\sin(x)}{n}$. Prove that f_n converges uniformly.

$$f_n: [-10, 10] \to \mathbb{R}$$
, $f_n(x) = \frac{x \sin(x)}{n} \Rightarrow f_n$ converges uniformly

Define $f: [-10, 10] \to \mathbb{R}$ $|f_n - f| = |\frac{x \sin(x)}{n}| < \varepsilon$
 $x \sin(x) < n\varepsilon$

domain compact -> image compact

(3) Let $f_n: X \to \mathbb{R}$ be a sequence of bounded functions and suppose that f_n converges uniformly to $f: X \to \mathbb{R}$. Show that $f: X \to \mathbb{R}$ is also bounded.

 $f_n: X \to \mathbb{R}$: seq of bounded function $f_n \to_u f \Rightarrow f$ is bounded

def of bounded

(4) Let
$$f_n(x) = x^n$$
 on [0, 1], and let

office + Mar 13 class

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1), \\ 1 & \text{if } x = 1. \end{cases}$$

Prove that f_n converges pointwise, but not uniformly, to f.

its NOT continuous

$$f_n : [0,1] \to \mathbb{R} \quad f_n(x) = x^n$$

$$f: [0,1] \to \mathbb{R} \quad f(x) = \begin{cases} 0 & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$f_n \to f$$
 pointwise $0 \le c < 1$

$$C = 1, f_n(1) = 1 = f(1)$$

$$C^n \to 0 \quad \text{as} \quad n \to \infty$$

$$f_n(c) \to f(c)$$

$$f_n \rightarrow f$$
 uniformly? No

$$\downarrow \text{ Each } f_n \text{ is continuous, but } f \text{ isn't}$$

(7) Let $g:[a,b]\to\mathbb{R}$ be integrable and fix a $c\in(a,b)$. Show that, for any $\epsilon>0$, there is a $\delta > 0$ such that $\left| \int_a^x g dx - \int_a^c g dx \right| < \epsilon$ whenever $x \in (c - \delta, c + \delta)$.

$$\big| \int_{a}^{x} g dx - \int_{a}^{c} g dx \big| < \epsilon$$

(8) Suppose $f:[a,b]\to\mathbb{R}$ is integrable and let

$$A = \left\{ \int_{a}^{c} f dx \mid c \in [a, b] \right\}.$$

(office) $A = \{ \int_a^c f dx \mid c \in [a,b] \}.$ Similar to midterm 2 Is it possible to have that $A = [0,5] \cup [6,10]$?

contradiction

$$f: [a,b] \rightarrow \mathbb{R}$$
 integrable

Let
$$A = \left\{ \int_a^c f dx \mid c \in [a,b] \right\} = F([a,b])$$

$$\underline{Q}$$
: Can we have that $A = [0,5] \cup [6.10]$?

A: We. Because A must be an interval

Fund Thm of Calculus (Pare B)

$$f: [a,b] \to \mathbb{R} \quad integrable$$

$$F: [a,b] \rightarrow \mathbb{R}$$

$$F(x) = \int_a^x f dx \quad \forall x \in [a,b]$$

$$F \text{ is continuous}$$

$$F(x) = f(x)$$

** (9) Let $f:[a,b]\to\mathbb{R}$ be bounded and let $c\in(a,b)$. Suppose that f is integrable on $[a,c-\epsilon]$ and $[c+\epsilon,b]$ for any ϵ satisfying $0<\epsilon<\min\{c-a,b-c\}$. Prove that f is integrable on [a,b].

c is fixed in the middle? No

II $f: [a,b] \to \mathbb{R}$ continuous

Take c < d in (a.b) s.t. $\int_a^c f dx = \int_a^d f dx$

Show that $\exists c \in [a,b]$ s.t. f(c) = 0

Rolle's Thm + Fund Thm of Cal

Proof: F(c) = F(d)

By Rolle's Thm. $\exists c \in (c,d)$ s.t. $F'(c) = 0 \iff f(c) = 0$