Recherche en profondeur (Depth-First Search) et recherche en largeur (Breadth-First Search) (§12.3)

Sous-graphes

- Un sous-graphe S d'un graphe G est un graphe tel que
 - les sommets de S forment un sous-ensemble des sommets de G
 - les arêtes de S forment une sous-collection des arêtes de G

Un sous-graphe couvrant d'un graphe G est sous-graphe contenant tous les sommets de G

Sous-graphe couvrant

Graphes connexes

Un graphe est connexe s'il existe un chemin entre chaque paire de sommets du graphe

 Une composante connexe d'un graphe G est un sous-graphe connexe maximal de G

Un graphe non-connexe ayant deux composantes connexes

Arbres et forêts

- Un arbre est un graphe non-orienté T tel que
 - T est connexe
 - T n'a pas de cycles

- OUne forêt est un graphe non-orienté qui n'a pas de cycles
- Les composantes connexes d'une forêt sont des arbres

Arbres et forêts couvrants

• Un arbre couvrant d'un graphe connexe est un sous-graphe couvrant qui est un arbre.

• Une forêt couvrante d'un graphe est un sousgraphe couvrant qui est une forêt.

Parcours en profondeur (Depth-First Search)

- Un parcours en profondeur d'un graphe G
 - □ Visite tous les sommets et toutes les arêtes de G
 - Détermine si G est connexe ou non
 - □ Calcule les composantes connexes de G
 - Calcule une forêt couvrante pour G
- ullet La complexité en temps d'un parcours en profondeur est O(n+m)
- L'algorithme de parcours en profondeur peut être modifié pour résoudre d'autres problèmes sur les graphes:
 - trouver et retourner un chemin entre deux sommets
 - trouver un cycle dans un graphe

Parcours en profondeur: Exemple

- A Sommets non-explorés
- A Sommets visités
- ——— Arêtes non-explorées
- → Arêtes sélectionnées
- → Arêtes de retour

Parcours en profondeur: Exemple

Analyse du parcours en profondeur

- O Chaque sommet est étiquetté deux fois
 - Une fois "non-exploré"
 - Une fois "visité"
- Chaque arête est étiquettée deux fois
 - Une fois "non-explorée"
 - Une fois "sélectionnée" ou "retour"
- L'opération incidentes(s) est appelée pour chaque sommet
- ullet La complexité en temps du parcours en profondeur est en O(n+m) si on utilise la structure de données "liste d'adjacence"

Chemin entre deux sommets

```
Algorithme trouverChemin(G, v, z)
  changerÉtiquette(v, VISITÉ)
  S.empiler(v)
  si v = z
    retourner S.éléments()
  Pour tout e \in G.incidentes(v)
     si \ \textit{Étiquette}(e) = NON-EXPLORÉ
       w \leftarrow oppos\acute{e}(v,e)
       si \ Étiquette(w) = NON-EXPLORÉ
          changerÉtiquette(e, SÉLECTIONNÉ)
         S.empiler(e)
          trouverChemin(G, w, z)
         S.dépiler(e)
       sinon
          changerÉtiquette(e, RETOUR)
  S.dépiler(v)
```

Trouver un cycle dans un graphe

```
Algorithme trouverCycle(G, v, z)
  changerÉtiquette(v, VISITÉ)
  S.empiler(v)
  Pour tout e \in G.incidentes(v)
     si Étiquette(e) = NON-EXPLORÉ
       w \leftarrow oppos\acute{e}(v,e)
       S.empiler(e)
       si\ Étiquette(w) = NON-EXPLORÉ
           changerÉtiquette(e, SÉLECTIONNÉ)
          trouverChemin(G, w, z)
          S.dépiler(e)
       sinon
          T \leftarrow nouvelle pile vide
          répéter
            o \leftarrow S.d\acute{e}piler()
             T.empiler(o)
          tant que o = w
          retourner T.éléments()
  S.dépiler(v)
```

Parcours en largeur (Breadth-First Search)

- Un parcours en largeur d'un graphe G
 - □ Visite tous les sommets et toutes les arêtes de G
 - Détermine si G est connexe ou non
 - Calcule les composantes connexes de G
 - Calcule une forêt couvrante pour G
- ullet La complexité en temps d'un parcours en largeur est O(n+m)
- L'algorithme de parcours en profondeur peut être modifié pour résoudre d'autres problèmes sur les graphes:
 - trouver et retourner un chemin de longueur minimale entre deux sommets
 - □ trouver un cycle simple, s'il y en a un

Parcours en largeur: Exemple

- A Sommets non-explorés
- A Sommets visités
- Arêtes non-explorées
- → Arêtes sélectionnées
- → Arêtes de retour

Parcours en largeur: Exemple

Parcours en largeur: Exemple

Analyse du parcours en largeur

- O Chaque sommet est étiquetté deux fois
 - Une fois "non-exploré"
 - Une fois "visité"
- Chaque arête est étiquettée deux fois
 - Une fois "non-explorée"
 - Une fois "sélectionnée" ou "de traverse"
- ullet Chaque sommet est inséré une fois dans une séquence L_i
- L'opération incidentes(s) est appelée pour chaque sommet
- ullet La complexité en temps du parcours en profondeur est en O(n+m) si on utilise la structure de données "liste d'adjacence"

Profondeur versus largeur

Applications	Parcours en profondeur	Parcours en largeur
Forêt couvrante, composantes connexes, chemins, cycles	V	V
Plus court chemin		V

Parcours en largeur

Profondeur versus largeur (suite)

Arête de retour (v,w)

 w est un ancêtre de v dans l'arbre des arêtes sélectionnées

B C D Parcours en profondeur

Arête de traverse (v,w)

w est sur le même niveau que v ou dans le prochain niveau dans l'arbre des arêtes sélectionnées

