Empfehlungen zum mathematischen Sprachgebrauch

Inhaltsverzeichnis

Vorwort

Dieses Dokument beschreibt Empfehlungen zum mathematischen Sprachgebrauch. Darin enthalten sind sowohl Schreibweisen als auch inhaltliche Definitionen. Die Empfehlungen stehen niemals in der Luft, sondern werden immer vollständig begründet. Das Dokument ist nicht dogmatisch zu verstehen.

1 Geometrie und lineare Algebra

1.1 Notation für Quadranten

Im ebenen kartesischen Koordinatensystem werden Quadranten für gewöhnlich gegen den Uhrzeitsinn mit den römischen Zahlen I, II, III, IV nummeriert. Man startet bei x > 0, y > 0.

Diese Praxis erscheint mir äußert fragwürdig, weil sie in höheren Dimensionen sehr unübersichtlich wird. Außerdem ist nicht von vornherein klar, ob im oder gegen den Uhrzeitsinn nummeriert wird. Weiterhin ist nicht von vornherein klar, in welchem Quadrant die Nummerierung gestartet wird.

Ich schlage deshalb vor, die Quadranten durch PP, NP, NN, PN zu identifizieren. Hierbei ist P als Abkürzung für *positiv* und N als Abkürzung für *negativ* gemeint. Diese Abkürzungen sind auch im Englischen und anderen europäischen Sprachen gültig. Die Stellen in der Identifikation stehen dabei für die Stellen im Koordinatentupel. Bei Oktanten hat man dementsprechend PPP, PPN usw.

Weiterhin ergibt sich jetzt der Vorteil, dass die Halbebenen durch PX, NX, XP, XN dargestellt werden können.

1.2 Notation für Skalarprodukte

Für das Skalarprodukt zweier Vektoren v, w gibt es eine Vielzahl von Schreibweisen, die Verwendung finden. Darunter sind $vw, v \circ w, v \cdot w, v \bullet w, v * w$ und $\langle v, w \rangle, \langle v, w \rangle, [v, w]$. Außerdem gibt es noch $v|w, \langle v|w \rangle, \langle v|w \rangle, [v|w]$.

Ich schlage vor, $\langle v, w \rangle$ (einschließlich $\langle v|w \rangle$) als einzige Schreibweise zu verwenden.

Das Skalarprodukt ist nicht assoziativ, und $\langle v, w \rangle$ hebt diesen Mangel im Gegensatz zu Schreibweisen mit Infixoperator hervor.

Gegen die Schreibweisen vw und $v \cdot w$ spricht, dass sie bei Funktionenräumen mit dem punktweisen Produkt verwechselt werden können. Außerdem wird mit vw auch das Produkt einer Clifford-Algebra bezeichnet.

Gegen die Schreibweise $v \circ w$ spricht, dass sie bei Funktionenräumen mit der Komposition verwechselt werden kann.

Bei (v, w) denkt man zuerst an ein Tupel, bei [v, w] an ein Tupel oder ein geschlossenes Intervall. Würde man diese Schreibweisen allgemein für Skalarprodukte verwenden, so wären sie stark überladen.

1.3 Adjungierte Matrix

Für die adjungierte Matrix von A wird manchmal die Notation A^* verwendet. Bei dieser Notation besteht jedoch Verwechslungsgefahr mit der konjugierten Matrix \overline{A} wo manchmal ebenfalls die Notation A^* verwendet wird.

Die Notation mit dem Dolch, A^{\dagger} , finde ich nicht so schön, weil einige A^t anstelle von A^T für die transponierte Matrix benutzen. Im Drucksatz kann das noch unterschieden werden, aber bei Handschrift kann es schlimm sein.

Ich finde die Notation A^H für die adjungierte Matrix daher am besten. Die Notationen A^H und \overline{A} sind m. E. unmissverständlich.

1.4 Standardskalarprodukt

Ich würde das Standardskalarprodukt für $v, w \in \mathbb{C}^n$ am besten semilinear im ersten Argument definieren:

$$\langle v, w \rangle := \sum_{k=1}^{n} \overline{v_k} \, w_k. \tag{1}$$

Diese Variante ist kompatibel mit der Bra-Ket-Notation. Nachteile sind mir keine bewusst.

Das Standardskalarprodukt für die Fourieranalysis würde ich am besten durch

$$\langle f, g \rangle := \frac{1}{T} \int_{t_0}^{t_0 + T} \overline{f(t)} g(t) dt$$
 (2)

definieren. Mit T ist die Periodendauer gemeint.

Würde man den Normierungsfaktor 1/T weglassen, so würde $||f|| := \sqrt{\langle f, f \rangle}$ nicht mehr mit Formel für den klassischen Effektivwert übereinstimmen.

Würde man den Normierungsfaktor 1/T weglassen, so könnte man nicht einfach schreiben:

$$f(t) = \sum_{k=-\infty}^{\infty} \langle b_k, f \rangle b_k(t). \qquad (b_k(t) := e^{kit})$$
(3)

Man müsste dann schreiben:

$$f(t) = \sum_{k=-\infty}^{\infty} \langle b_k, f \rangle b_k(t). \qquad (b_k(t) := \frac{1}{\sqrt{T}} e^{kit})$$
 (4)

Das Problem ist hier jetzt, dass es sich bei $c_k := \langle b_k, f \rangle$ nicht mehr um den klassischen Fourierkoeffizienten handelt, weil der Faktor \sqrt{T} herumgegeben wird.

Eine weitere Alternative ist

$$\langle f, g \rangle := \int_0^1 \overline{f(x)} g(x) dx.$$
 (5)

Hier müsste man $b_k(x) := e^{kiTx}$ verwenden. Diese Variante scheint unüblich zu sein. Sie ist aber kompatibel zu (2), wenn man alle beteiligten Funktionen und Operatoren in x mit t = Tx darstellt.

Semilinear im ersten Argument ist das Skalarprodukt deshalb, weil diese Variante kompatibel zur Bra-Ket-Notation ist. Nachteile sind mir keine bekannt.

2 Analysis

2.1 Differenz von Funktionswerten

Für Differenz F(b) - F(a) finde ich die Notation $[F(x)]_a^b$ am besten. Wenn man ganz pedantisch ist, so bemerkt man, dass x im Ausdruck eine gebundene Variable ist und schreibt besser $[F(x)]_{x=a}^{x=b}$.

Die Notation $F(x)|_a^b$ finde ich ambivalent. Man muss z.B.

$$[2 + F(x)]_a^b = (2 + F(b)) - (2 + F(a)) = F(b) - F(a)$$

von

$$2 + [F(x)]_a^b = 2 + F(b) - F(a)$$

unterscheiden können. Bei der Notation $F(x)|_a^b$ müsste man dafür extra ein Paar Klammern setzen.